Analyzing Clinical and Genomic Oncological Data with the {genieBPC} R Package

SPCC 2024
February 16, 2024
Samantha Brown
Jessica Lavery

Agenda

Projects GENIE & GENIE BPC

Clinico-Genomic Data Processing Pipeline

Case study

Data processing with {genieBPC}

Conclusion

American Association for Cancer Research Project GENIE

- AACR Project GENIE (Genomics Evidence Neoplasia Information Exchange) is a publicly accessible
 international cancer registry of genomic data assembled through data sharing agreements between 19 of
 the leading cancer centers in the world
 - GENIE includes genomic data and limited clinical data (age, sex, date of diagnosis, cancer type and date
 of death)
 - Genomic data for 120,000 samples is currently available
- Goal of Project GENIE BPC (Biopharma Collaborative) is to augment the existing registry genomic data with enhanced clinical (phenomic) data to create a publicly-released dataset that supports clinico-genomics analyses

"AACR Project GENIE: Powering Precision Medicine through an International Consortium." <u>Cancer Discovery</u> (2017).

https://www.aacr.org/professionals/research/aacr-project-genie/

GENIE Biopharma Collaborative

- Data includes patients with ≥1 high-throughput sequencing profile
- Four participating institutions for Phase I: Currently Memorial Sloan Kettering, Dana Farber, Vanderbilt and University Health Network

Cancer Cohort	N	Status
Non-small cell lung cancer	1832	Publicly available
Colorectal cancer	1479	Publicly available
Breast cancer*	1130	Data currently available to consortium members
Pancreas cancer*	1109	Data currently available to consortium members
Prostate cancer*	1116	Data currently available to consortium members
Bladder cancer*	716	Data currently available to consortium members

Cancer Cohort	N	Status
Non-small cell lung cancer, additional cases	1717	Undergoing quality assurance processes
Colorectal cancer, additional cases	1481	Undergoing quality assurance processes
Renal cell carcinoma	1302	Beginning curation
Ovarian cancer	1294	Testing data dictionary
Esophagogastric cancer	1297	Planned 2025 data release
Melanoma	1294	Planned 2025 data release

^{*}Data to be publicly released in 2024

Projects GENIE & GENIE BPC

The goal of **Project GENIE Biopharma Collaborative (BPC)** is to augment the existing registry genomic data from AACR Project GENIE with enhanced clinical (phenomic) data to support clinical-genomics analyses.

Phenomic data are curated using the PRISSMM curation model to capture detailed information on cancer diagnosis, drug regimens, disease status from radiology reports, pathology reports and medical oncologist assessments, structured in several datasets with over 700 feature variables.

Analyses using linked clinicogenomic databases – including GENIE BPC – will help to drive advancements in precision oncology in identifying the genomic alterations and drug therapies that optimize clinical outcomes.

Genomic data included in GENIE

Researchers receive genomic data in different formats and types

The AACR Project GENIE data repository is comprised of one type of genomic data called tumor DNA sequencing assays

- Collected from tumor samples via biopsy/resection
- Compare DNA sequence in cancer cells with that in normal cells

Sequencing assays can be broad or targeted

- Broad regions: whole genome/whole exome sequencing
- Targeted regions: gene panels
 - GENIE data consists of data from targeted gene panels from high-throughput (huge amounts of data) sequencing assays, also referred to as next-generation sequencing (NGS)

Clinical Data Curation

PRISSMM[™]:

A Taxonomy for Defining Cancer Outcomes

Pathologic evidence of locoregional or distant evidence of tumor

Radiographic evidence of locoregional recurrent or persistent tumor

Imaging evidence of distant/disseminated tumor beyond the primary site

Symptoms of tumor on physical exam or symptoms that can be attributed to tumor

Signs of cancer on physical exam or symptoms that can be attributed to tumor

Tumor $\underline{\mathbf{M}}$ arker evidence of persistent or recurrent tumo

Oncology <u>M</u>edical Provider assessment

Each curation effort may focus on some or all of the PRISSMM™ components

GENIE BPC Datasets

Patient characteristics

Cancer diagnosis

Cancer-directed drugs

PRISSMM Imaging PRISSMM Pathology

PRISSMM
Medical
Oncologist
Assessments

GENIE Public Release (Genomic Data)

PRISSMM
Tumor Marker
Assessments

Cancer Panel Test

GENIE BPC Data

- Data are publicly released by cancer cohort: non-small cell lung (NSCLC), colorectal (CRC), breast, pancreas, prostate, bladder
- New versions of data are released periodically to include additional patients and variables and to incorporate data corrections
- .csv and .txt data files are available for download from Sage Bionetworks' Synapse data sharing platform
- Downloading each file individually poses challenges for efficient and reproducible workflows

{genieBPC} R Package

The {genieBPC} package
is a pipeline to
programmatically access
the data corresponding to
each release from Synapse
to support reproducibility,
and to create datasets
linking clinical and genomic
data for analysis.

Created and developed by

Samantha Brown

Michael Curry

Hannah Fuchs

Jessica Lavery

Axel Martin

Dan Sjoberg

Karissa Whiting

Register for a Synapse Account

Instructions:

 Register for a <u>'Synapse' account</u>. Be sure to create a username and password. Do NOT connect via your Google account.

https://www.synapse.org/#

- 2. Accept the Synapse account terms of use.
- Navigate to GENIE Biopharma Collaborative Public page

https://www.synapse.org/#!Synapse:syn27056172/wiki/616601

- In the Files folder, navigate to Data Releases -> NSCLC -> 2.0-public
- 5. Select Request Access, review the terms of data use and click Accept

Installation Instructions

```
Installing {genieBPC}:
install.packages("genieBPC")
```

- These instructions are also included in the Demo.R script on our GitHub repository: https://github.com/GENIE-BPC/intro to genieBPC
- Further R package details are available on the {genieBPC} GitHub repo & website
- {genieBPC} requires R version >= 3.6

Clinico-Genomic Data Processing Pipeline

Data import

synapse_version()

Indicates the versions of the data that are available to be specified in pull_data_synapse()

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Case Study

Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma nonsmall cell lung cancer (NSCLC) and received Carboplatin and Pemetrexed +/-Bevacizumab or Cisplatin and Pemetrexed +/- Bevacizumab as their first cancerdirected drug regimen after diagnosis.

Follow along using the Demo.R script on our GitHub repository: https://github.com/GENIE-BPC/intro to genieBPC

Clinico-Genomic Data Processing Pipeline

Data stored on SYNAPSE

Data import

synapse_version()

Indicates the versions of the data that are available to be specified in pull_data_synapse()

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Set Synapse Credentials

To pull data from Synapse, users must create a Synapse account and store their Synapse credentials in the R environment. The **set_synapse_credentials()** function will store credentials during each R session:

Set Synapse Credentials

To pull data from Synapse, users must create a Synapse account and store their Synapse credentials in the R environment. The **set_synapse_credentials()** function will store credentials during each R session:

Future enhancement

Additional functionality will be released soon to allow users to pass their Synapse Personal Access Token (PAT) through **set_synapse_credentials()**:

```
set_synapse_credentials(pat = 'your_pat')
```

synapse_version()

- Helper function that returns a table of GENIE BPC data releases that are currently available
- synapse_version() has one input: most_recent = TRUE/FALSE
 - Calling genieBPC::synapse_version(most_recent = TRUE) will return a table with each
 cancer cohort and its latest data release version
 - Calling genieBPC::synapse_version(most_recent = FALSE) will return a table with all cancer cohorts and data releases available

synapse_version()

- Helper function that returns a table of GENIE BPC data releases that are currently available
- synapse_version() has one input: most_recent = TRUE/FALSE
 - Calling genieBPC::synapse_version(most_recent = TRUE) will return a table with each cancer cohort and its latest data release version
 - Calling genieBPC::synapse_version(most_recent = FALSE) will return a table with all cancer cohorts and data releases available

synapse_version(most_recent = TRUE)

cohort	version	release_date	all_versions
BLADDER	v1.2-consortium	November 2023	Most Recent Versions
BrCa	v1.2-consortium	October 2022	Most Recent Versions
CRC	v1.2-consortium	August 2021	Most Recent Versions
CRC	v2.0-public	October 2022	Most Recent Versions
NSCLC	v2.1-consortium	August 2021	Most Recent Versions
NSCLC	v2.0-public	May 2022	Most Recent Versions
PANC	v1.2-consortium	January 2023	Most Recent Versions
Prostate	v1.2-consortium	January 2023	Most Recent Versions

pull_data_synapse()

- Pull GENIE BPC clinical and genomic data directly from Synapse into R
- Can specify cancer type (`cohort`) and version of data (`version`)
 - Version of the data is updated periodically on Synapse with re-releases (new variables available, additional QA, etc.)
- Returns a nested list of data frames for each cancer site for the accompanying version

Argument	Description	Acceptable Values
cohort	 GENIE BPC Project cancer Currently, NSCLC and CRC are the only two publicly available datasets 	 NSCLC CRC BrCa PANC Prostate BLADDER
version	Version of the data (e.g v1.1-consortium, v2.0-public)	Values can be found in synapse_version()

Demo: Run pull_data_synapse() for case study

Demo: Run pull_data_synapse() for case study

```
library(genieBPC)
set synapse credentials()
nsclc_synapse_data <- pull_data_synapse(cohort = "NSCLC",
                                         version = "v2.0-public")
```

Calling nsclc_synapse_data\$NSCLC_v2.0 returns a list of datasets in nsclc_synapse_data:

- pt char
- ca_dx_index
- ca_dx_non_index
- ca drugs
- prissmm_pathologyfusions
- prissmm_imaging

- prissmm md
- cpt
- mutations_extended
- cna

Clinico-Genomic Data Processing Pipeline

Data import

synapse_version()

Indicates the versions of the data that are available to be specified in pull_data_synapse()

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

Create a cohort from the GENIE BPC data

Cancer diagnosis information such as cancer cohort, treating institution, histology, and stage at diagnosis

Cancer-directed regimen information including regimen name and regimen order.

This function returns all clinical and genomic data for the selected patients

GENIE BPC Clinical Datasets

Patient characteristics

1 row/patient

Cancer diagnosis

1 row/cancer diagnosis

Cancer-directed drugs

1 row/drug regimen/associated cancer dx

PRISSMM Imaging

1 row/imaging report

PRISSMM Pathology

1 row/pathology report

PRISSMM
Medical
Oncologist
Assessments

PRISSMM Tumor Marker Assessments

1 row/tumor marker result

Cancer Panel
Test

1 row/CPT report/associated cancer dx

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse()	 Name of object in global environment that was returned from pull_data_synapse()

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse()	 Name of object in global environment that was returned from pull_data_synapse()
index_ca_seq	Index cancer sequence. Default is 1, indicating the patient's first index cancer. This refers to the cancer with associated genomic sequencing.	• Numeric (1+)

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse()	 Name of object in global environment that was returned from pull_data_synapse()
index_ca_seq	Index cancer sequence. Default is 1, indicating the patient's first index cancer. This refers to the cancer with associated genomic sequencing.	• Numeric (1+)
institution	GENIE BPC participating institution. Default selection is all institutions. Note that not all institutions curated data for all cancer sites.	DFCIMSKUHNVICC

Argument	Description	Acceptable Values
stage_dx	Stage at diagnosis. Default selection is all stages.	 Stage I Stage III Stage I-III NOS Stage IV

Argument	Description	Acceptable Values
stage_dx	Stage at diagnosis. Default selection is all stages.	 Stage I Stage III Stage I-III NOS Stage IV
histology	Cancer histology. Default selection is all histologies. For all cancer cohorts except for BrCa (breast cancer), this parameter corresponds to the variable 'ca_hist_adeno_squamous'.	 All cancer types except breast: Adenocarcinoma Squamous cell Sarcoma Small cell carcinoma Other histologies/mixed tumor
	For BrCa, this parameter corresponds to the variable 'ca_hist_brca'	Breast cancer: Invasive lobular carcinoma Invasive ductal carcinoma Other histology

Argument	Description	Acceptable Values
regimen_drugs	Vector with names of drugs in cancer-directed regimen, separated by a comma. For example, to specify a regimen consisting of Carboplatin and Pemetrexed Disodium, specify regimen_drugs = "Carboplatin, Pemetrexed Disodium".	Acceptable values are found in the drug_names_by_cohort dataset provided with this package.
regimen_type	Indicates whether the regimen(s) specified in regimen_drugs indicates the exact regimen to return, or if regimens containing the drugs listed in regimen_drugs should be returned.	ExactContaining

Example: regimen_drugs and regimen_type

regimen_drugs	regimen_type	Example regimens returned
Carboplatin	Exact	Carboplatin
Carboplatin	Containing	 Carboplatin Carboplatin, Cisplatin Carboplatin, Paclitaxel Carboplatin, Pemetrexed Disodium etc.

Argument	Description	Acceptable Values
regimen_order	Order of cancer-directed regimen. If multiple drugs are specified, regimen_order indicates the regimen order for all drugs; different values of regimen_order cannot be specified for different drug regimens.	Numeric (1+)
regimen_order_type	Specifies whether the 'regimen_order' parameter refers to the order of receipt of the drug regimen within the cancer diagnosis (across all other drug regimens; "within cancer") or the order of receipt of the drug regimen within the times that that drug regimen was administered (e.g. the first time carboplatin pemetrexed was received, out of all times that the patient received carboplatin pemetrexed; "within regimen").	Within cancerWithin regimen

Argument	Description	Acceptable Values
return_summary	Specifies whether summary tables are returned using {gtsummary}. Default is FALSE.	TRUEFALSE

Demo: create_analytic_cohort() for case study using NSCLC 2.0-public data

Case Study: Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC and received Carboplatin and Pemetrexed +/-Bevacizumab or Cisplatin and Pemetrexed +/-Bevacizumab as their first cancerdirected drug regimen after diagnosis

Demo: create_analytic_cohort() for case study using NSCLC 2.0-public data

Case Study: Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC and received Carboplatin and Pemetrexed +/-Bevacizumab or Cisplatin and Pemetrexed +/-Bevacizumab as their first cancerdirected drug regimen after diagnosis

```
nsclc_cohort <- create_analytic_cohort(</pre>
  data_synapse = nsclc_synapse_data$NSCLC_v2.0,
  stage dx = c("Stage IV"),
  histology = "Adenocarcinoma",
  regimen drugs = c("Carboplatin, Pemetrexed Disodium",
                    "Cisplatin, Pemetrexed Disodium",
                    "Bevacizumab, Carboplatin, Pemetrexed Disodium",
                    "Bevacizumab, Cisplatin, Pemetrexed Disodium"),
  regimen_type = "Exact",
  regimen order = 1,
  regimen order type = "within cancer",
  return summary = TRUE
```


Demo: create_analytic_cohort() for case study using NSCLC 2.0-public data

Case Study: Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC and received Carboplatin and Pemetrexed +/-Bevacizumab or Cisplatin and Pemetrexed +/-Bevacizumab as their first cancerdirected drug regimen after diagnosis

Calling nsclc_cohort returns a list of datasets:

- cohort_pt_char
- cohort ca dx index
- cohort_ ca_dx_non_index
- cohort_ ca_drugs
- cohort_prissmm_pathology
- cohort_prissmm_imaging

- cohort_prissmm_md
- cohort_cpt
- cohort_ mutations_extended
- cohort cna
- cohort_fusions

Additionally, the list contains summary table objects when return_summary = TRUE:

- tbl_overall_summary
- tbl_cohort

- tbl_drugs
- tbl_ngs

nsclc_cohort\$
tbl_overall_summary

Characteristic	N = 241 patients
Number of diagnoses per patient in coh	ort_ca_dx data frame
1	241 (100%)
Number of regimens per patient in coho	ort_ca_drugs data frame
1	241 (100%)
Number of CPTs per patient in cohort_n	gs data frame
1	222 (92%)
2	18 (7.5%)
4	1 (0.4%)
¹ n (%)	

nsclc_cohort\$ tbl_cohort

Characteristic	N = 241 Diagnoses ¹
Cohort (cohort)	
NSCLC	241 (100%)
Institution (institution)	
DFCI	92 (38%)
MSK	118 (49%)
VICC	31 (13%)
Stage at diagnosis (stage_dx)	
Stage IV	241 (100%)
Histology (ca_hist_adeno_squamous)	
Adenocarcinoma	241 (100%)
¹ n (%)	

nsclc_cohort\$ tbl_drugs

Characteristic	N = 241 Regimens [†]
Cohort (cohort)	
NSCLC	241 (100%)
Institution (institution)	
DFCI	92 (38%)
MSK	118 (49%)
VICC	31 (13%)
Drugs in regimen (regimen_drugs)	
Bevacizumab, Carboplatin, Pemetrexed Disodium	52 (22%)
Bevacizumab, Cisplatin, Pemetrexed Disodium	27 (11%)
Carboplatin, Pemetrexed Disodium	124 (51%)
Cisplatin, Pemetrexed Disodium	38 (16%)
¹ n (%)	

nsclc_cohort\$ tbl_ngs

Characteristic	N = 262 Cancer Panel Tests	
Cohort (cohort)		
NSCLC	262 (100%)	
Institution (institution)		
DFCI	99 (38%)	
MSK	126 (48%)	
VICC	37 (14%)	
OncoTree code (cpt_oncotree_code)		
LCLC	1 (0.4%)	
LUAD	253 (97%)	
LUAS	1 (0.4%)	
LUSC	1 (0.4%)	
NSCLC	4 (1.5%)	
NSCLCPD	2 (0.8%)	
Sequence assay ID (cpt_seq_assay_id)		
DFCI-ONCOPANEL-1	1 (0.4%)	
DFCI-ONCOPANEL-2	57 (22%)	
DFCI-ONCOPANEL-3	41 (16%)	
MSK-IMPACT341	3 (1.1%)	
MSK-IMPACT410	61 (23%)	
MSK-IMPACT468	62 (24%)	
VICC-01-SOLIDTUMOR	26 (9.9%)	
VICC-01-T5A	1 (0.4%)	
VICC-01-T7	10 (3.8%)	
¹ n (%)		

select_unique_ngs()

Selecting one genomic sample per patient:

While patients can have many NGS reports, we often need to select a single sample per patient for analyses.

The **select_unique_ngs()** function selects one sample per patient.

This function prioritizes characteristics of interest (e.g., sample type).

Note: if a patient only has one report, it will be returned regardless of criteria.

select_unique_ngs()

Argument	Description	Acceptable Values
data_cohort	Output object of the create_analytic_cohort() function	 Name of NGS object in global environment that was returned from create_analytic_cohort()
oncotree_code	Character vector specifying which sample OncoTree codes to keep.	See 'cpt_oncotree_code' column of data_cohort.
sample_type	Character specifying which type of genomic sample to prioritize. Options are 'Primary', 'Local', and 'Metastasis'. Default is to not select a NGS sample based on the sample type.	PrimaryLocalMetastasis
min_max_time	Character specifying if the first or last genomic sample recorded should be kept.	 min (refers to earliest sample) max (refers to latest sample)

Demo: select_unique_ngs() for case study using NSCLC 2.0-public data

Case Study: Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC and received Carboplatin and Pemetrexed +/-Bevacizumab or Cisplatin and Pemetrexed +/-Bevacizumab as their first cancerdirected drug regimen after diagnosis

```
nrow(nsclc_cohort$cohort_ngs)
[1] 262
nsclc_samp <- select_unique_ngs(</pre>
   data_cohort = nsclc_cohort$cohort ngs,
   oncotree_code = "LUAD",
   sample type = "Metastasis",
   min_max_time = "max")
nrow(nsclc_samp)
[1] 241
```


Clinico-Genomic Data Processing Pipeline

Data import

synapse_version()

Indicates the versions of the data that are available to be specified in pull_data_synapse()

pull_data_synapse()

Imports GENIE BPC data from Synapse into the R environment

Data processing

create_analytic_cohort()

Selects an analytic cohort based on cancer diagnosis information and/or cancer-directed drug regimen information

select_unique_ngs()

Selects a unique next generation sequencing (NGS) test corresponding to the selected diagnoses

Data visualization

drug_regimen_sunburst()

Creates a sunburst figure of drug regimen information corresponding to the selected diagnoses in the order that the regimens were administered

drug_regimen_sunburst()

- Visualize the complete treatment course for selected cancer diagnoses
- Each ring corresponds to a regimen (i.e., innermost ring is first regimen, second innermost ring is second regimen, etc.)
- Interactive figure: Can hover to see regimen names and percent of patients receiving that regimen

drug_regimen_sunburst()

Argument	Description	Acceptable Values
data_synapse	List returned from pull_data_synapse()	 Name of object in global environment that was returned from pull_data_synapse()
data_cohort	The list returned from the create_analytic_cohort() function call	 Name of object in global environment that was returned from create_analytic_cohort()
max_n_regimens	The maximum number of regimens displayed in the sunburst plot	• Integer >0

Demo: drug_regimen_sunburst() for case study using NSCLC 2.0-public data

Case Study: Create a cohort of patients who were diagnosed with Stage IV adenocarcinoma NSCLC and received Carboplatin and Pemetrexed +/-Bevacizumab or Cisplatin and Pemetrexed +/-Bevacizumab as their first cancerdirected drug regimen after diagnosis

Carboplatin, Pemetrexed Disodium Nivolumab 10.4%

nsclc_sunburst\$ sunburst_plot

Future {genieBPC} R Package Enhancements

- Selection of multiple cohorts simultaneously (a single call to create_analytic_cohort() instead of multiple calls in order to pull patients across cancer types based on similar criteria)
- Cohort selection based on sites of metastatic disease
- Access to Synapse via Personal Access Token (PAT), in addition to username and password

Suggestions? File an issue on GitHub https://github.com/GENIE-BPC/genieBPC/issues

The Future of Project GENIE BPC

- Currently onboarding additional participating institutions
- Curation of additional cancer sites and additional cases for existing cancer sites
 - Additional NSCLC, CRC cases
 - Renal cell carcinoma
 - Ovarian cancer
 - Esophagogastric cancer
 - Melanoma

Conclusion

The **{genieBPC}** R package offers a reproducible pipeline to create cohorts for clinicogenomic analyses by streamlining data access and clinical data processing from multiple clinical data files of varying structure to create analytic cohorts.

Thank you!

Thank you to Hannah Fuchs and Karissa Whiting for contributions to slides, and to contributing {genieBPC} authors: Michael Curry, Hannah Fuchs, Axel Martin, Dan Sjoberg, Karissa Whiting

Project GENIE BPC Acknowledgements

AACR GENIE Coordinating Center

Shawn Sweeney

Alyssa Acebedo

Mike Fiandalo

Dana Farber Cancer Institute

Ken Kehl

Asha Postle

Bill Hahn

John Orechia

Vanderbilt

Rhonda Potter

Christine Micheel

Sandip Chaugai

Ben Ho Park

Sanjay Mishra

Lucy Wang

University Health Network

Celeste Yu

Philippe Bedard

Memorial Sloan Kettering

Charles Sawyers

Gregory Riely

Deb Schrag

Julia Rudolph

Chelsea Nichols

Shirin Pillai

John Phillip

Marufur Bhuiya

Stu Gardos

Cynthia Chu

Rona Yaeger

Pedram Razavi

Anna Varghese

Wassim Abida

David Jones

Ronglai Shen

Yuan Chen

Karissa Whiting

Sage Bionetworks

Xindi Guo

Chelsea Nayan

Thomas Yu

VASTA Global

Melanie Bernstein

cBioPortal

Niki Schultz

Ritika Kundra

Brooke Mastrogiacomo

Ino de Bruijn

Statistical Coordinating Center

Kathy Panageas

Jessica Lavery

Samantha Brown

Hannah Fuchs