

North South University CSE 332 Project

Name : Khandaker Mobashyer Hossain

ID : 1611240042

Section : 02

Date of Submission : 29-04-2018

Project description:

We are to design a 20 bit single cycle CPU that can perform R-Type, I-Type and J-Type Instruction.

ISA Design:

Here, rs = First Source Register

rt = Second Source Register

rd = Destination Register

funct = Function

shamt = Shift Distance

imm = immidiate

Instructions List:

R-Type								
Instruction	Name	Action	opcode	funct				
ADD rd, rs, rt	Addition	rd = rs + rt	0000	0000				
SUB rd, rs, rt	Subtraction	rd = rs - rt	0000	0001				
MULT rd, rs, rt	Multiplication	rd = rs * rt	0000	0010				
DIV rd, rs, rt	Division	rd = rs / rt	0000	0011				
SLT rd, rt, rt	Set On Less Than	rd=rs < rt	0000	0100				
AND rd, rs, rt	AND	rd = rs & rt	0000	0101				
OR rd, rs, rt	OR	rd = rs rt	0000	0110				
NOT rd, rt	NOT	rd = ~rt	0000	0111				
NOR rd, rs, rt	NOR	rd = ~(rs rt)	0000	1000				
NAND rd, rs, rt	NAND	rd = ~(rs & rt)	0000	1001				
XOR rd, rs, rt	XOR	rd = rs ^ rt	0000	1010				
XNOR rd, rs, rt	XNOR	rd = ~(rs ^ rt)	0000	1011				
SLL rd, rt, shamt	Shift Left Logical	rd = rt << shamt	0000	1100				
SRL rd, rt, shamt	Shift Right Logical	rd = rt >> shamt	0000	1101				
JALR rd rs	Jump And Link Register	rd = pc; pc = rs	0000	1110				
JR rs	Jump Register	pc = rs	0000	1111				

	_		
1-1	Гν	p	e

160							
Instruction	Name	Action	opcode				
SW rt, offset(rs)	Store Word	M[offset + rs] = rt	0001				
LW rt, offset(rs)	Load Word	rt = M[offset + rs]	0010				
BEQ rs, rt, offset	Branch On Equal	if(rs==rt) than pc = pc + offset	0011				
BNE rs, rt, offset	Branch On Not Equal	if(rs!=rt) than pc = pc + offset	0100				
ADDI rt, rs, imm	Add immediate	rt = rs + imm	0101				
SUBI rt, rs, imm	Sub immediate	rt = rs - imm	0110				
ANDI rt, rs, imm	AND immidiate	rt = rs & imm	0111				
ORI rt, rs, imm	OR immidiate	rt = rs imm	1000				
NOTI rt, imm	NOT immidiate	rt = ~ imm	1001				
NORI rt, rs, imm	NOR immidiate	rt = ~(rs imm)	1010				
NANDI rt, rs, imm	NAND immidiate	rt = ~(rs & imm)	1011				
XORI rt, rs, imm	XOR immidiate	rt = rs ^ imm	1100				
XNORI rt, rs, imm	XNOR immidiate	rt = ~(rs ^ imm)	1101				

J-Type

Instruction	Name	Action	opcode					
J target	Jump	pc[0-15] = target;	1110					
		pc[16-19] = (pc+1)[16-19];						
JAL target	Jump And Link	r7 = pc+1; pc[0-15] = target;	1111					
		pc[16-19] = (pc+1)[16-19];						

Registers:

Name	Address
\$r0	000
\$r1	001
\$r2	010
\$r3	011
\$r4	100
\$r5	101
\$r6	110
\$r7	111

ALU Control Bits:

Instruction	ALUOp	Instruction	Function Field	Desired ALU	ALU Control
Opcode		Operation		Action	Input
SW	0000	Store Word	XXXX	ADD	0000
LW	0000	Lord Word	XXXX	ADD	0000
BEQ	0001	Branch on Equal	XXXX	SUB	0001
BNE	0001	Branch on Not Equal	XXXX	SUB	0001
ADDI	0000	ADD immediate	XXXX	ADD	0000
SUBI	0001	SUB immediate	XXXX	SUB	0001
ANDI	0010	AND immidiate	XXXX	AND	0101
ORI	0011	OR immidiate	XXXX	OR	0110
NOTI	0100	NOT immidiate	XXXX	NOT	0111
NORI	0101	NOR immidiate	XXXX	NOR	1000
NANDI	0110	NAND immidiate	XXXX	NAND	1001
XORI	0111	XOR immidiate	XXXX	XOR	1010
XNORI	1000	XNOR immidiate	XXXX	XNOR	1011
R-Type	1001	ADD	0000	ADD	0000
R-Type	1001	SUB	0001	SUB	0001
R-Type	1001	MUL	0010	MUL	0010
R-Type	1001	DIV	0011	DIV	0011
R-Type	1001	Set On Less Than	0100	Set On Less Than	0100
R-Type	1001	AND	0101	AND	0101
R-Type	1001	OR	0110	OR	0110
R-Type	1001	NOT	0111	NOT	0111
R-Type	1001	NOR	1000	NOR	1000
R-Type	1001	NAND	1001	NAND	1001
R-Type	1001	XOR	1010	XOR	1010
R-Type	1001	XNOR	1011	XNOR	1011
R-Type	1001	Shift Left Logical	1100	Shift Left Logical	1100
R-Type	1001	Shift Right Logical	1101	Shift Right Logical	1101

ALU Control Truth Table:

	ALU	JOp		Funct Field			Operation		
ALUop3	ALUop2	ALUop1	ALUop0	F3	F2	F1	F0	Operation	
0	0	0	0	X	Χ	X	Χ	0000	
0	0	0	1	X	Χ	X	Χ	0001	
0	0	1	0	X	Χ	X	Χ	0101	
0	0	1	1	X	Χ	Х	Χ	0110	
0	1	0	0	X	Χ	Х	Χ	0111	
0	1	0	1	Χ	Χ	X	Χ	1000	
0	1	1	0	X	Χ	X	Χ	1001	
0	1	1	1	Χ	Χ	Χ	Χ	1010	
1	0	0	0	Χ	Χ	Χ	Χ	1011	
1	0	0	1	0	0	0	0	0000	
1	0	0	1	0	0	0	1	0001	
1	0	0	1	0	0	1	0	0010	
1	0	0	1	0	0	1	1	0011	
1	0	0	1	0	1	0	0	0100	
1	0	0	1	0	1	0	1	0101	
1	0	0	1	0	1	1	0	0110	
1	0	0	1	0	1	1	1	0111	
1	0	0	1	1	0	0	0	1000	
1	0	0	1	1	0	0	1	1001	
1	0	0	1	1	0	1	0	1010	
1	0	0	1	1	0	1	1	1011	
1	0	0	1	1	1	0	0	1100	
1	0	0	1	1	1	0	1	1101	

Control Unit Signal Table:

Input	Signals								
Opcode	RegDst	Jump	Branch	MemRead	MemToReg	Memwrite	ALUSrc	RegWrite	ALUOp
0000	01	0	00	0	00	0	0	1	1001
0001	Χ	0	00	0	X	1	1	0	0000
0010	00	0	00	1	01	0	1	1	0000
0011	Χ	0	01	0	X	0	0	0	0001
0100	Χ	0	10	0	X	0	0	0	0001
0101	00	0	00	0	00	0	1	1	0000
0110	00	0	00	0	00	0	1	1	0001
0111	00	0	00	0	00	0	1	1	0010
1000	00	0	00	0	00	0	1	1	0011
1001	00	0	00	0	00	0	1	1	0100
1010	00	0	00	0	00	0	1	1	0101
1011	00	0	00	0	00	0	1	1	0110
1100	00	0	00	0	00	0	1	1	0111
1101	00	0	00	0	00	0	1	1	1000
1110	Χ	1	00	0	00	0	Χ	0	XXXX
1111	10	1	00	X	10	0	Χ	1	XXXX

Example Instructions:

Instruction	Action	Binary	Hex
ADD \$r1 \$r2 \$r3	\$r1 = \$r2 + \$r3	0000 010 011 001 000 0000	4C80
SUB \$r1 \$r2 \$r3	\$r1 = \$r2 - \$r3	0000 010 011 001 000 0001	4C81
MULT \$r1 \$r2 \$r3	\$r1 = \$r2 * \$r3	0000 010 011 001 000 0010	4C82
DIV \$r1 \$r2 \$r3	\$r1 = \$r2 / \$r3	0000 010 011 001 000 0011	4C83
SLT \$r1 \$r2 \$r3	\$r1 = \$r2 < \$r3	0000 010 011 001 000 0100	4C84
AND \$r1 \$r2 \$r3	\$r1 = \$r2 & \$r3	0000 010 011 001 000 0101	4C85
OR \$r1 \$r2 \$r3	\$r1 = \$r2 \$r3	0000 010 011 001 000 0110	4C86
NOT \$r1 \$r3	\$r1 = ~ \$r3	0000 010 011 001 000 0111	4C87
NOR \$r1 \$r2 \$r3	\$r1 = ~(\$r2 \$r3)	0000 010 011 001 000 1000	4C88
NAND \$r1 \$r2 \$r3	\$r1 = ~(\$r2 & \$r3)	0000 010 011 001 000 1001	4C89
XOR \$r1 \$r2 \$r3	\$r1 = \$r2 ^ \$r3	0000 010 011 001 000 1010	4C8A
XNOR \$r1 \$r2 \$r3	\$r1 = ~(\$r2 ^ \$r3)	0000 010 011 001 000 1011	4C8B
SLL \$r4 \$r5 3	\$r4 = \$r5 << 3	0000 000 101 100 011 1100	163C
SRL \$r4 \$r5 4	\$r4 = \$r5 >> 4	0000 000 101 100 100 1101	164D
JALR \$r4 \$r3	\$r4 = pc; pc = \$r3	0000 011 000 100 000 1110	620E
JR \$r5	pc = \$r5	0000 101 000 000 000 1111	A00F
SW \$r4 \$r3 5	M[5 + \$r3] = \$r4	0001 011 100 0000000101	17005
LW \$r2 \$r3 4	\$r2 = M[4 + \$r3]	0010 011 010 0000000100	26804
BEQ \$r4 \$r3 5	if(\$r3 == \$r4) than pc = pc + 5	0011 011 100 0000000101	37005
BNE \$r2 \$r3 4	if(\$r3 != \$r2) than pc = pc + 4	0100 011 010 0000000100	46804
ADDI \$r2 \$r3 3	\$r2 = \$r3 + 3	0101 011 010 0000000011	56803
SUBI \$r2 \$r3 2	\$r2 = \$r3 – 2	0110 011 010 0000000010	66802
ANDI \$r2 \$r3 4	\$r2 = \$r3 & 4	0111 011 010 0000000100	76804
ORI \$r2 \$r3 2	\$r2 = \$r3 2	1000 011 010 0000000010	86802
NOTI \$r2 6	\$r2 = ~ 6	1001 000 010 0000000110	90806
NORI \$r2 \$r3 5	\$r2 = ~ (\$r3 5)	1010 011 010 0000000101	A6805
NANDI \$r2 \$r3 3	\$r2 = ~ (\$r3 & 3)	1011 011 010 000000011	B6803
XORI \$r2 \$r3 4	\$r2 = \$r3 ^ 4	1100 011 010 0000000100	C6804
XNORI \$r2 \$r3 6	\$r2 = ~ (\$r3 ^ 6)	1101 011 010 0000000110	D6806
J 12	pc[0-15] = 12;	1110 000000000001100	E000C
	pc[16-19] = (pc+1)[16-19];	1110 000000000001100	EUUUC
JAL 13	\$r7 = pc+1; pc[0-15] = 13;	1111 00000000001101	F000D
	pc[16-19] = (pc+1)[16-19];	1111 0000000001101	1 0000