(104031) אינפי 1מ' | תרגול 11 - יוליה

שם: איל שטיין

November 28, 2022

$lim\ sup, lim\ inf$:נושאי השיעור

תרגיל 1.

. מהי חסומה סדרה a_n

 $k \geq n$ כאשר $b_n = \sup \; \{a_k\}$ מתקיים מתקיים לכל לכל גדיר: לכל

 $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \sup \ a_n$ צ"ל: הוכיחו כי

 $\lim_{n\to\infty} \left\{ \sup \ a_n \right\} = \lim \sup \ a_n$ במילים אחרות,

פיתרון:

 $k \geq n$ נתבונן בנתון: כאשר •

$$b_n = \sup \{a_k\}$$

$$b_n = \sup \{a_k\} = \sup \{a_n, a_{n+1}, \dots, a_m\}$$

- כלומר:

$$b_1 = \sup \{a_1, a_2 \ldots\}$$

$$b_2 = \sup \{a_2, a_3 \ldots \}$$

$$b_{1000} = sup\{a_{1000}, a_{1001}...\}$$

- ההוכחה תתחלק לשלושה חלקים:
 - מתכנסת b_n (1)

- $\limsup \ a_n$ של סדרה של היא b_n (2)
 - (3) הגבולות שלהם שווים.
 - b_n : נוכיח ש b_n מתכנסת
 - היא חסומה b_n •
- . $\{a_{n+1},\dots,a_m\}$ של הסופרמום את הסופרמום וב- $\{a_n,a_{n+1},\dots,a_m\}$ וב- $\{a_n,a_{n+1},\dots,a_m\}$ של הסופרמום של הסופרמום של $\{a_n,a_{n+1},\dots,a_m\}$ ב- כלומר,

$$b_{n+1} = \sup \{a_{n+1}, a_{n+2} \dots a_m\}$$

$$b_{n+1} = \sup \{a_{n+1}, a_{n+2} \dots a_m\} \le \max \{a_n, \sup \{a_{n+1}, a_{n+2} \dots a_m\}\}$$

: רגם –

$$max \{a_n, sup \{a_{n+1}, a_{n+2} \dots a_m\}\} = sup \{a_n, a_{n+1}, \dots\} = b_n$$

ולכן: –

$$b_{n+1} \le b_n$$

- . יורדת מונוטונית הסדרה b_n –
- מתקיים $k\in\mathbb{N}$ לכל , a_n של סופרמום תמיד הוא תמיד הוא b_n מכיוון ש

$$b_n \ge a_n$$

• מכיוון שהסדרה חסומה, יש לה גבול מלמטה, כלומר:

$$b_n \ge a_n \ge \inf a_n$$

- . יורדת יורדת ומונוטונית מלמטה חסומה b_n
 - . כלומר, b_n מתכנסת \star
 - a_n שלקי אבול הוא הוא b-שלקי של.
- a_n של חלקי אבול אבול הוא b-של של נניח בשלילה •

- $a_n \notin (b-arepsilon,b+arepsilon)$ מתקיים n>N מתקיים n>0 כך שקיים arepsilon>0 מתקיים השלילה: קיים
 - $a_n > b + arepsilon$ או $a_n < b arepsilon$: מילים אחרות
- $b_n > b_{n+1} > \ldots \geq b$ עובדה ראשונה: $b_n > b_n$ לכל לכל היא סדרה מונוטונית יורדת, כלומר $b_n \geq b$ לכל -
- a לכל $b_n \geq b$ מתקיים שלה, מכיוון שהסדרה b_n היא מונוטונית יורדת ו-b הוא הגבול שלה, מכיוון א
 - $b-arepsilon \leq b_n-arepsilon$ ש מתקיים לכל לכל מתקיים ש יולכן גם מתקיים לכל יולכן א
 - $ar{a}_n$ עובדה שניה: מכיוון ש b_n הוא סופרמום של
 - $b_n \geq a_n$:מא) לכל a_n לכל
 - $b_n arepsilon < a_{n_{(arepsilon)}}$ כך שי $a_{n_{(arepsilon)}}$ קיים arepsilon > 0 (ב)
 - $a_n < b arepsilon$ או $a_n > b + arepsilon$ הנחת השלילה הנחנו
 - * נחלק לשני מקרים:
 - $a_n < b \varepsilon$: א מקרה ראשון)
- $(b-arepsilon \leq b_n-arepsilon)$ b_n של הוא הגבול של הוא העובדה העובדה העובדה $b_n-arepsilon < a_{n_{(arepsilon)}} \leq b_n$ ואת העובדה השנייה: $b_n-arepsilon \leq a_{n_{(arepsilon)}} \leq b_n$ ואת העובדה השנייה:

$$b - \varepsilon < b_n - \varepsilon < a_{n(\varepsilon)} \le b_n$$

$$b - \varepsilon < b_n$$

- : ולכן $b-\varepsilon < a_n$ שמקיים a_n ולכן איבר בסדרה י
 - $a_n < b arepsilon$ מתקיים a_n להיות שלכל אי. או שלא יכול להיות
 - $b_n > b \varepsilon$ בי. או שלא יכול להיות
 - $b_n \leq b \varepsilon$: כלומר הנחת השלילה אומרת כלומר הנחת
 - $a_n>b+arepsilon$ (ב)
- $b_n \geq a_n$ ולכן: לכל מתקיים השנייה מתקיים מתקיים i.

$$b_n \ge a_n > b + \varepsilon$$

$$b_n > b + \varepsilon$$

- , $b_n > b + \varepsilon$ או ש $b_n < b \varepsilon$ או ש השלילה, או הראנו שלפי הנחת *
 - $b_n \notin (b-arepsilon, b+arepsilon)$ כלומר הנחת השלילה גוררת כלומר הנחת
 - $b = \lim_{n \to \infty} b_n$ ו סתירה עם כך ש- -
 - a_n של חלקי את הנחת השלילה וקיבלנו ש- b הוא גבול חלקי של
 - a_n ש- a_n הוא הגבול החלקי הגדול ביותר של .3
 - L נוספו, נוסף, גבול הלקי a_n פוכיח ינוסף.

- $\lim_{n \to \infty} a_{n_k} = L$ לכן, לפי הגדרת גבול חלקי: קיימת תת סדרה לבי הגדרת לפי
 - $a_{n_k} \leq b_{nk}$ מתקיים $k \in \mathbb{N}$ לכן לכל , $a_n \leq b_n$ מראינו
- . ומכיוון ש- b_n היא סדרה המתכנסת ל-b. לכן, כל תת סדרה של b_n מתכנסת לאותו הגבול.
 - $L = \lim_{n o \infty} a_{n_k} \leq \lim_{n o \infty} b_{n_k} = b$ לפי לפי סדר גבולות נקבל ש- לפי משפט יחס סדר
 - b-טווה שכל קטן או קטן או לבול חלקי של אבול הראינו \star
 - $lim \ sup \ a_n$ לכן b י

. סדרות חסומות a_n,b_n יהיו a_n,b_n יהיו

: אזי

- $\lim \sup (a_n + b_n) \le \lim \sup a_n + \lim \sup b_n$.1
- $lim\ inf\ (a_n+b_n)\geq lim\ inf\ a_n+lim\ inf\ b_n$ ב. 2

 $a_{n_k}+b_{n_k}$ של חלקי הוא גבול הוא $lim\ sup\ (a_n+b_n)$ - נוכיח של נוכיח הוכחה: נוכיח את 1. רעיון ההוכחה:

נתבונן ב:

$$\lim \sup (a_n + b_n)$$

- $a_n + b_n$ הסדרה של חלקי הכווה גבול –
- $\lim_{k o \infty} \left(a_{n_k} + b_{n_k} \right) = lim \; sup \left(a_n + b_n \right)$ כך ש- כך מרה מדרה מדרה $a_{n_k} + b_{n_k}$
- a_n נתבונן ב a_{n_k} : היא לא בהכרח מתכנסת אבל היא בהכרח חסומה כי a_n חסומה והיא תת סדרה של
- $j o \infty$ כאשר a כאשר קבוע מתכנסת לאיזהו היירשטראס, עמת ל- a_{n_k} תת סדרה שנסמנה מתחברה שמתכנסת. נסמן שהיא מתכנסת לאיזהו קבוע *
 - $:b_{n_{k_{i}}}$ -נתבונן ב*

$$b_{n_{k_j}} = \left(a_{n_{k_j}} + b_{n_{k_j}}\right) - a_{n_{k_j}}$$
 כיתן להציג אותה כ-

. מתכנסת. $b_{n_{k_j}}$ מתכנסת שבון גבולות משפט הפניסת, מתכנסת מתכנסת מתכנסת ($a_{n_{k_j}}+b_{n_{k_j}}$) - ומכיוון שאמרנו ש

- מכיוון שבסדרה מתכנסת כל תתי הסדרות שלה מתכנסות גם הן לאותו הגבול, קיבלנו ש:

$$\lim \sup (a_n + b_n) = \lim_{k \to \infty} (a_{n_k} + b_{n_k}) = \lim_{j \to \infty} (a_{n_{k_j}} + b_{n_{k_j}})$$

: ולפי משפט חשבון גבולות

$$\lim_{i \to \infty} \left(a_{n_{k_j}} + b_{n_{k_j}} \right) = \lim_{i \to \infty} a_{n_{k_j}} + \lim_{i \to \infty} b_{n_{k_j}}$$

: בגלל הגדרת sup מתקיים ש \star

$$\lim_{j\to\infty}a_{n_{k_j}}\leq \lim\ \sup\ a_n$$

 $lim\ sup\$ וגם בגלל הגדרת -

$$\lim_{j \to \infty} b_{n_{k_j}} \le \lim \sup b_n$$

: ולכן *

$$\lim \sup (a_n + b_n) \le \lim \sup b_n + \lim \sup a_n$$

תרגיל 3.

. מתכנסת סדרה a_n

. חסומה b_n

צ"ל: הוכיחו ש:

- $\lim \sup (a_n + b_n) = \lim_{n \to \infty} a_n + \lim \sup b_n$.1
- $\lim \inf (a_n + b_n) = \lim_{n \to \infty} a_n + \lim \inf b_n$.2

:פתרון

- .מכנסת היא גם חסומה a_n -ש מכיון פ
- לכן, מהתרגיל הקודם יש לנו אי שוויון:

 $\lim \sup (a_n + b_n) \le \lim \sup b_n + \lim \sup a_n$

 a_n - ומכיוון ש- a_n

$$\lim \sup a_n = \lim_{n \to \infty} a_n$$

: ולכן *

$$\lim \sup (a_n + b_n) \le \lim \sup b_n + \lim_{n \to \infty} a_n$$

- $lim\ sup\ b_n\ + \lim_{n \to \infty} a_n \le lim\ sup\ (a_n + b_n)$ שי הרוכית שלינו להוכיח יש.
- $\lim_{n o\infty}b_{n_k}=lim\ sup\ b_n$ כך ש- , $lim\ sup\ b_n$ המתכנסת ל-, המתכנסת ל- ולכן קיימת החלקי של ולכן קיימת הת-סדרה ולה
 - $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n_k}$ מתכנסת לאותו הגבול של , a_n של הגבול מתכנסת מתכנסת מתכנסת הגבול של

: לכן

$$\lim_{n\to\infty} a_n + \lim \ \sup \ b_n = \lim_{k\to\infty} a_{n_k} + \lim_{k\to\infty} b_{n_k}$$

התקיים: מרכנסות, מותר השתמש בחשבון גבולות. לפי משפט חשבון גבולות מתקיים: מכיוון ש- b_{n_k} יו ו- מכיוון ש-

$$\lim_{k \to \infty} a_{n_k} + \lim_{k \to \infty} b_{n_k} = \lim_{k \to \infty} \left(a_{n_k} + b_{n_k} \right)$$

: לפי הגדרת $lim\ sup\$ מתקיים

$$\lim_{k \to \infty} (a_{n_k} + b_{n_k}) \le \lim \sup (a_{n_k} + b_{n_k})$$

נצרף ביחד את כל אי השוויונות ונקבל:

$$\lim_{n\to\infty} a_n + \lim \sup b_n \le \lim \sup (a_{n_k} + b_{n_k})$$

 $\lim_{n \to \infty} a_n + lim \ sup \ b_n \ge lim \ sup \ (a_{n_k} + b_{n_k})$ וגם $\lim_{n \to \infty} a_n + lim \ sup \ b_n \le lim \ sup \ (a_{n_k} + b_{n_k})$ מתקיים: