Chapitre 4

Feuille d'exercices supplémentaires

Séquence 1

Exercice 1.

Soit u une fonction définie sur \mathbb{R} et soit la fonction f définie par $f(x) = \sqrt{u(x)}$.

- 1) Supposons qu'il existe $x \in \mathbb{R}$ tel que u(x) < 0. Expliquer pourquoi, dans ce cas, l'expression f(x) n'existe pas. En déduire le domaine de définition de la fonction f.
- 2) Donner le domaine de définition de la fonction f pour les fonctions u suivantes

a)
$$u(x) = 3x - 1$$
,

c)
$$u(x) = x^2 - 2$$
,

$$e) \ u(x) = \sin x,$$

b)
$$u(x) = -4 - 7x$$
,

a)
$$u(x) = 3x - 1$$
, c) $u(x) = x^2 - 2$, e) $u(x) = \sin x$,
b) $u(x) = -4 - 7x$, d) $u(x) = x^2 + x - 12$, f) $u(x) = e^{x^2 - 1}$

f)
$$u(x) = e^{x^2 - 1}$$

Exercice 2.

Soit la fonction $f: x \mapsto \frac{1}{2} - \frac{1}{1+e^x}$ définie sur \mathbb{R} . Montrer que la fonction f est impaire, croissante et bornée sur \mathbb{R}

Indication: il est nécessaire d'utiliser toutes les propriétés de l'exponentielle.

Exercice 3.

Soient f une fonction croissante et strictement positive sur $D \subset \mathbb{R}$. Montrer que la fonction $\frac{1}{f}$ est décroissante sur D.

S Exercice 4.

Soient f et g deux fonctions croissantes sur $D \subset \mathbb{R}$. Montrer que la fonction f+g est croissante sur D.

Exercice 5.

Soit f une fonction définie sur \mathbb{R} . Notons f_p et f_i les fonctions définies sur \mathbb{R} par

pour tout
$$x \in \mathbb{R}$$
, $f_p(x) = \frac{f(x) + f(-x)}{2}$ et $f_i(x) = \frac{f(x) - f(-x)}{2}$.

Montrer que la fonction f peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.

Exercice 6.

Soit $T \in \mathbb{R}$ et soient f une fonction définie sur $D \subset \mathbb{R}$ telle que, pour tout $x \in D$, on a $x+T \in D$. La fonction f est dite périodique de période T (ou T-périodique) si, pour tout $x \in D$, f(x+T) = f(x).

- 1) Montrer que si f est T-périodique sur D, alors f(x+2T)=f(x), pour tout $x \in D$. En déduire que 2T est aussi une période.
- 2) Montrer que les fonctions cos, sin et tan sont périodiques dont il faudra déterminer la plus petite période.

31

Séquence 2

Exercice 7.

Déterminer le domaine de définition des fonctions suivantes :

1)
$$f_1(x) = \frac{1}{\tan x}$$
,

$$5) \ f_5(x) = \frac{-1 - 2x}{2 - x^2},$$

9)
$$f_9(x) = e^{\sqrt{x}+1}$$
,
10) $f_{10}(x) = \ln(\arctan x)$,

2)
$$f_2(x) = \sqrt{e^{\frac{1}{x}-1}}$$
,

6)
$$f_6(x) = e^{|x|},$$

11)
$$f_{11}(x) = \frac{1}{\ln(\sqrt{x} - 3)},$$

3)
$$f_3(x) = \frac{1}{\sqrt{3-2x}-3}$$
,

7)
$$f_7(x) = \ln |x|,$$

12)
$$f_{12}(x) = \ln(\tan x)$$
,

4)
$$f_6(x) = \sqrt{5 + \ln(x)}$$
,

8)
$$f_8(x) = \frac{1}{\sqrt{x} - 4}$$
,

12)
$$f_{12}(x) \equiv \ln(\tan x)$$

13) $f_{13}(x) = \sqrt{\sin x}$.

Exercice 8.

Soient f et g deux fonctions définies sur \mathbb{R} .

- 1) Montrer que si la fonction g est croissante et la fonction f est croissante, alors la fonction $f \circ g$ est croissante sur \mathbb{R} .
- 2) Montrer que si la fonction g est décroissante et la fonction f est décroissante, alors la fonction $f \circ g$ est croissante sur \mathbb{R} .

Exercice 9.

Soit $a \in \mathbb{R}_+^*$. Montrer que la fonction $f: x \mapsto \sqrt{x}$ est dérivable en a et que $f'(a) = \frac{1}{2\sqrt{a}}$. Indication : il est nécessaire d'utiliser l'identité remarquable $A^2 - B^2$.

S Exercice 10.

Soient f et g deux fonctions définies sur \mathbb{R} , et soit $T \in \mathbb{R}$. Montrer que si les fonctions f et g sont T-périodiques, alors la fonction $f \circ g$ est T-périodique sur \mathbb{R} .

S Exercice 11.

Soit $f: \mathbb{R}^* \to \mathbb{R}$ la fonction définie par

$$f(x) = \arctan x + \arctan \frac{1}{x}$$
, pour tout $x \in \mathbb{R}^*$.

- 1) Calculer f' sur \mathbb{R}^* .
- 2) En déduire une expression simplifiée de f sur \mathbb{R}_+^* . Et sur \mathbb{R}_-^* ?

Exercice 12.

Soient la fonction $f: x \mapsto |x|$ et $g: x \mapsto \frac{|x|}{x}$.

- 1) Donner le domaine de définition de f. En déduire le domaine de définition de g.
- 2) Déterminer une expression simplifiée de g sur \mathbb{R}_+^* . Même question sur \mathbb{R}_-^* .
- 3) Soit $a \in \mathbb{R}_+^*$. En déduire que la fonction f est dérivable sur \mathbb{R}_+^* avec f'(x) = 1.
- 4) Montrer que f est dérivable sur \mathbb{R}_{-}^{*} .
- 5) La fonction $x \mapsto |x|$ est-elle dérivable en 0?

Séquence 3

Exercice 13.

Calculer la dérivée de la fonction f définie par

$$f(x) = (\sin x)(\cos x)^3 + (\cos x)(\sin x)^3.$$

Exercice 14.

En utilisant la définition d'une dérivée en un point, montrer que

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$
 et $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$.

S Exercice 15.

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

La fonction f est dite convexe sur I si, pour tous $x, y \in I$ et tout $\lambda \in [0, 1]$

$$f(\lambda x + (1 - \lambda)y \le \lambda x + (1 - \lambda)y$$
.

Une caractérisation des fonctions convexes est le théorème suivant

Si $f \in C^2(I)$ et si pour tout $x \in I$ on a $f''(x) \ge 0$, alors f est convexe sur I.

Soit $f:]1; +\infty[\to \mathbb{R}$ définie par $f(x) = -\ln(\ln x)$ pour tout x > 1.

- 1) Montrer que f est convexe.
- 2) En déduire que pour tout $x, y \in]1; +\infty[$, on a $\ln\left(\frac{x+y}{2}\right) \ge \sqrt{(\ln x)(\ln y)}$.

Exercice 16.

L'objectif de cet exercice est d'approximer une fonction en un point a à l'aide d'un polynôme du premier ou du second degré. Introduisons la notion d'approximation affine d'une fonction :

Soit f une fonction dérivable en un réel a. Et notons

$$\varphi_a(x) = f(a) + f'(a)(x - a) + (x - a)\varepsilon(x - a),$$

où $\varepsilon(x-a)$ est une expression qui tend vers 0 lorsque x tend vers a.

L'expression $\varphi_a(x)$ est appelée approximation d'ordre 1 (ou approximation affine) de l'expression f(x) lorsque x est proche de a.

En utilisant la définition ci-dessus, donner une approximation d'ordre 1 des fonctions suivantes :

a)
$$f_1(x) = x^5 - 3x^3 + 5x + 3$$
 en 0, **b)** $f_2(x) = \sqrt{1+x} - \frac{1}{1+x}$ en 1.

S Exercice 17.

Soit la fonction g définie par $g(x)=(2x-5)^3$. Montrer que pour tout réel x, on a

$$g(x) = g(0) + \frac{g'(0)}{1!}x + \frac{g''(0)}{2!}x^2 + \frac{g^{(3)}(0)}{3!}x^3.$$

où $g^{(k)}(0)$ désigne la valeur en 0 de la k-ème dérivée de g et $k! = k \times (k-1) \times (k-2) \times \cdots \times 2 \times 1$ est la factorielle de k.

Séquence 4

S Exercice 18.

Soit la fonction g définie sur \mathbb{R} par

$$g(x) = e^x - x - 1$$
, pour tout $x \in \mathbb{R}$.

- 1) Déterminer la fonction dérivée de g.
- 2) Dresser le tableau de variations de qu
- 3) Après avoir calculé g(0), étudier le signe de g sur \mathbb{R} .

S Exercice 19.

Soit f la fonction définie par $f(x) = \sqrt{x} - \ln x$.

- 1) Déterminer le domaine de définition D_f .
- 2) Calculer la dérivée f'.
- 3) Étudier les variations de f.
- 4) En déduire que, pour tout $x \in]0; +\infty[$, on a $\ln x < \sqrt{x}$.

S Exercice 20.

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x) = \frac{x-1}{x+1}.$$

Montrer que f est une bijection de \mathbb{R}_+ sur un intervalle à déterminer.

S Exercice 21.

- 1) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction définie sur \mathbb{R} , croissante sur \mathbb{R}_- et impaire sur \mathbb{R} . Que peut-on dire des variations de f sur \mathbb{R}_+ ?
- 2) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction définie sur \mathbb{R} , décroissante sur \mathbb{R}_+ et paire. Que peut-on dire des variations de f sur \mathbb{R}_{-} ?
- 3) Soit T>0 et $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction définie et T-périodique sur \mathbb{R} . Montrer que si f est croissante sur $[0; \frac{T}{2}]$, alors la fonction f est croissante sur $[T; \frac{3T}{2}]$.