Formale Sprachen und Automaten TINF20B1

Markus Eble

Chomsky-Normalform

- Die Chomsky-Normalform (CNF)
- Der Algorithmus von Cocke, Younger und Kasami

Chomsky-Hierarchie

Тур	Name	Erlaubte Produktionen	Akzeptierende Maschine	Beispiel
3	Regulär	$N \to wM$ $w \in T^*$	Endlicher Automat	a^n
2	Kontextfrei	$N \to w$ $w \in (N \cup T)^*$	Kellerautomat	a^nb^n

Skript Worsch: Seite 76-80

Ziel

Gegeben: eine Grammatik und ein Wort

Gesucht: der Ableitungsbaum

Ansatz – Ausprobieren?

Die Zahl der Regeln ist endlich

Die Länge des Wortes ist endlich

Ableitungen der Form $N \rightarrow \varepsilon$

Machen es schwer zu garantieren dass das Ausprobieren terminiert

Ansatz

Sorge dafür, dass es keine beliebig langen Ableitungsfolgen für ein bestimmtes Wort geben kann.

Monotone Grammatiken (nichtverkürzende Grammatiken).

Ansatz: Monotone Grammatiken

- Gestalte die Grammatik so, dass das Wort mit einer weiteren Ableitung nur "länger" werden kann.
- Dann kann eine "Suche durch Probieren" "abbrechen", wenn das abgeleitete Wort die Länge des gesuchten Wortes erreicht hat.
- Dafür nötig:
 - ▶ Keine Ableitungen der Form $X \to \varepsilon$.

Definition 4.14: Chomsky-Normalform

Eine Grammatik G = (N, T, S, P) ist in Chomsky-Normalform (CNF) wenn gilt:

- ▶ Jede Produktion $X \rightarrow w$ hat als rechte Seite
 - entweder ein Wort $w \in N^2$ (genau zwei Nichtterminalsymbole)
 - \triangleright oder ein Wort $w \in T$ (genau ein Terminalsymbol).
- ▶ Zusätzlich ist die Produktion $S \to \varepsilon$ zugelassen, dann kommt S bei keiner Produktion auf der rechten Seite vor.

2n-1 Ableitungen möglich => in endlichen Schritten möglich abzuleiten

Satz 4.15: Transformation in Chomsky-NF

Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie Grammatik G' in Chomsky-Normalform, die zu G äquivalent ist (also L(G) = L(G') gilt).

- ▶ I.S $\rightarrow \varepsilon$ behandeln
- ▶ 2. Terminal symbole durch Regeln der Form $N \rightarrow t$ erzeugen
- ▶ 3. Regeln der Form $N \rightarrow \varepsilon$ ersetzen
- ▶ 4. Regeln der Form N → M ersetzen
- 5. Regeln mit mehr als 2 NonTerminals ersetzen

Quelle: Chomsky-Normalform – Wikipedia

Beispiel

Grammatik mit Startsymbol S und den Regeln:

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

▶ I.S $\rightarrow \varepsilon$ behandeln

Falls die Grammatik $S \rightarrow \varepsilon$ enthält:

- Füge neues Startsymbol S' ein
- Füge folgende Regeln hinzu

$$S' \to \varepsilon$$

$$S' \rightarrow S$$

Beispiel: $S \rightarrow \varepsilon$ behandeln

Bisherige Grammatik:

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

Füge hinzu:

$$S' \to S \mid \varepsilon$$

S' wird neues Startsymbol

▶ 2. Terminalsymbole durch Regeln der Form $N \rightarrow t$ erzeugen

Für jedes Terminal t ein NonTerminal N_t mit der Regel $N_t \rightarrow t$ erzeugen

Beispiel: Regeln für Terminalsymbole

Bisherige Grammatik:

$$S' \to S \mid \varepsilon$$

 $S \to SS \mid (S) \mid \varepsilon$

Füge hinzu:

$$Z_{(} \rightarrow (Z_{)} \rightarrow)$$

Ersetze:

$$S \rightarrow (S)$$
 durch $S \rightarrow Z(SZ)$

▶ 3. Regeln der Form N $\rightarrow \varepsilon$ ersetzen

```
Für jede Regel der Form N \to \varepsilon
Für jede Regel M \to uNv
Regel M \to uv zufügen
```

Danach N $\rightarrow \varepsilon$ streichen

Füge dabei keine Regel hinzu die bereits ersetzt wurde

Dadurch wird der ε -Übergang von N auf die Verwendungsstellen von N übertragen

Beispiel: Regeln der Form $N \to \varepsilon$ ersetzen

Bisherige Grammatik:

$$S' \to S \mid \varepsilon$$

 $S \to SS \mid Z(SZ) \mid \varepsilon$

Suche nach Vorkommen von S und füge ε statt S ein

Füge hinzu:

$$S \to Z_(Z)$$
 (ε eingefügt in $S \to Z_(SZ)$)

Andere Vorkommen von S:

$$S' \to S$$
 ($S' \to \varepsilon$ gibt es bereits)
 $S \to SS$ ($S \to \varepsilon$ streichen wir gerade)

▶ 4. Regeln der Form N → M ersetzen

Für jede Regel der Form $N \to M$ Für jede Regel der Form $M \to w$ Regel $N \to w$ zufügen

Danach $N \to M$ streichen

Füge dabei keine Regel hinzu die bereits ersetzt wurde

Dadurch werden die Regeln von N nach M übertragen

Beispiel: Regeln der Form N → M ersetzen

Bisherige Grammatik:

$$S' \to S \mid \varepsilon$$

 $S \to SS \mid Z(SZ) \mid Z(Z)$

Ersetze $S' \rightarrow S$

Füge hinzu:

$$S' \rightarrow SS \mid Z(SZ) \mid Z(Z)$$

▶ 5. Regeln mit mehr als 2 NonTerminals ersetzen

Jede Regel der Form $N \rightarrow M_1 M_2 \dots M_k$ mit $k \geq 3$ entfernt und ersetzt durch die k-I Regel

$$N \to M_1 L_1, L_1 \to M_2 L_2 \dots L_{k-1} \to M_{k-1} M_k$$

Dabei sind L_i jeweils neue Nichtterminalsymbole

Beispiel: Regeln mit mehr als 2 NonTerminals ersetzen

Bisherige Grammatik:

$$S' \to SS \mid Z(SZ) \mid Z(Z) \mid \varepsilon$$

 $S \to SS \mid Z(SZ) \mid Z(Z)$

Ersetze $S' \rightarrow Z(SZ)$ und $S \rightarrow Z(SZ)$

Füge hinzu:

$$S_{j} \rightarrow SZ_{j}$$

 $S' \rightarrow Z_{j}$
 $S \rightarrow Z_{j}$

Beispiel: Grammatik in Chomsky NF

Original Grammatik:

$$S \rightarrow SS \mid (S) \mid \varepsilon$$

Grammatik in Chomsky Normalform:

$$S' \to SS \mid Z(S) \mid Z(Z) \mid \varepsilon$$

 $S \to SS \mid Z(S) \mid Z(Z)$
 $S_1 \to SZ_1$

Lernziele

- Die Idee der monotonen Grammatik um eine Obergrenze für die Zahl der Ableitungsschritte zu bestimmen
- Grammatiken ähnlich wie Gleichungssysteme durch Äquivalenzumformungen in einen gewünschte Form bringen

Mögliche Klausuraufgaben

- ▶ Prüfen ob eine Grammatik in Chomsky-Normalform ist
- ▶ Eine Grammatik in Chomsky-Normalform bringen