FUNCTIONAL GRANGER CAUSATION

MARCELO M. TADDEO1 AND RAYDONAL OSPINA1

ABSTRACT.

Keywords. Recurrent events, splines, empirical processes.

1. Introduction

....

2. Preliminaries

2.1. Banach and Hilbert Space Valued Random Elements. Let (Ω, \mathcal{F}, P) be a given complete probability space and \mathbb{B} a separable Banach space with norm $\|\cdot\|_{\mathbb{B}}$ and equipped with the Borel σ -field $\mathcal{B}(\mathbb{B})$. Since we are primarily concerned with \mathbb{B} -valued stochastic processes, we summarize the main concepts we will need.

Definition 1. A map $X : \Omega \to \mathbb{B}$ is said to be a weakly measurable function if $\psi(X) : \Omega \to \mathbb{R}$ is measurable for every $\psi \in \mathbb{B}'$, where \mathbb{B}' is the topological dual of \mathbb{B} . Such functions will be referred to as \mathbb{B} -random elements.

The assumption that X is weakly measurable allows us to consider the following (weak) integral for \mathbb{B} -valued functions.

Definition 2. Any weakly measurable function $X : \Omega \to \mathbb{B}$ satisfying $(i) \ \psi(X) \in L^1(\Omega, \mathcal{F}, P)$, for all $\psi \in \mathbb{B}'$, and (ii) there is $Y \in \mathbb{B}$ such that, for all $\psi \in \mathbb{B}'$, $\psi(Y) = \int \psi(X) dP$, is said to be weakly integrable. The random element Y is denoted by $\int X dP$ and referred to as the weak integral of X.

Date: September 6, 2023.

Additionally, if $E \|X\|_{\mathbb{B}} < \infty$, we say that X is integrable. In particular, if X is integrable, then X is also strongly (Bochner) integrable. Actually, if X is integrable, then the notions of weakly and strongly integrable functions are equivalent. This follows from the fact that every integrable X can be approximated by a sequence of simple functions. The reason we use weak integrals instead is that they are more suitable to deal with the second moments of \mathbb{B} -random elements. Since P is a probability measure it is natural to identify the weak integral of X with its (weak) expectation, which will be denoted as usual by E(X). The expectation E(X) is associated with the operator E(X) $\psi \in \mathbb{B}'$, so that E(X) is such that $\psi(E(X)) = E(X)$, for all $\psi \in \mathbb{B}'$.

Proposition 1. For any $X \in \mathbb{B}$, the operator $E_X : \mathbb{B}' \to \mathbb{R}$ is linear and $\| E_X \| = E \| X \|$.

Proof. Linearity follows trivially from the definition of E_X . Now, if $\psi \in \mathbb{B}'$,

$$|E_X \psi| = |E \psi(X)| \le E |\psi(X)| \le E ||\psi|| ||X|| = (E ||\psi||) ||X||,$$

so that $\| \operatorname{E}_X \| \leq \operatorname{E} \| \psi \|$. On the other hand, let $\mathbb{B}_X = \langle X \rangle$, the subspace generated by $X \in \mathbb{B}$, and consider the functional (defined on \mathbb{B}_X) $\tilde{\psi}(\alpha X) = \alpha \| X \|$, which clearly is bounded linear with norm $\| \tilde{\psi} \| = 1$. Using the Hahn-Banach Theorem, $\tilde{\psi}$ can be extended to a bounded linear functional ψ on \mathbb{B} such that $\| \psi \| = \| \tilde{\psi} \| = 1$. In particular, $\psi(X) = \tilde{\psi}(X) = \| X \|$. Hence,

$$\| \operatorname{E}_X \| \ge | \operatorname{E}_X \psi | = \left| \int \psi(X) d\operatorname{P} \right| = \left| \int \|X\| d\operatorname{P} \right| = \operatorname{E} \|X\|,$$
 so that $\| \operatorname{E}_X \| = \operatorname{E} \|X\|.$

In other words, $E_X \in \mathbb{B}''$, the topological second dual of \mathbb{B} . A similar argument as in the proof of Proposition 1 shows us that $\|E_X\| = \|EX\|$. For Hilbert spaces \mathbb{H} , it follows from Riesz's theorem that there exists an unique $Y \in \mathbb{H}$ such that $\psi(X) = \langle X, Y \rangle$, for every $X \in \mathbb{H}$. Hence, EX is the element in \mathbb{H} such that $\langle EX, Y \rangle = \int \langle X, Y \rangle dP$, for all $Y \in \mathbb{H}$. Moreover, EX is also the representer of EX, since $EX = \langle EX, Y \rangle$, where $X \in \mathbb{H}$ is the representer of $X \in \mathbb{H}$. Finally,

notice that $\int [\psi(X - EX)] dP = \int \psi(X) - \psi(EX) = 0$, for all $\psi \in \mathbb{B}'$, so that E[X - EX] = 0. Hence, without loss of generality, we may assume EX = 0.

To define an analogous of a covariance measure for Banach space valued random elements, we consider a bilinear version of E_{Φ} . Given any pair of random elements $X_1 \in \mathbb{B}_1$, $X_2 \in \mathbb{B}_2$, with $\operatorname{E} X_1 = 0$, $\operatorname{E} X_2 = 0$ and $\psi(X_i) \in$ $L^2(\Omega, \mathcal{F}, P)$, for any $\psi \in \mathbb{B}'_i$, define the covariance functional $C_{X_1, X_2}(\psi_1, \psi_2) =$ $\int \psi_1(X_1)\psi_2(X_2)dP = \operatorname{Cov}(\psi_1(X_1),\psi_2(X_2))$ on $\mathbb{B}'_1 \times \mathbb{B}'_2$. The functional C_{X_1,X_2} is clearly linear with $|C_{X_1,X_2}(\psi_1,\psi_2)| \leq E[||X_1||||X_2||]||\psi_1||||\psi_2||$ and it is connected to E_X in the following sense: $C_{X_1,X_2}(\psi_1,\psi_2) = \int \psi_1(\psi_2(X_2)X_1)dP =$ $E_{\psi_2(X_2)X_1} \, \psi_1 = E_{\psi_1(X_1)X_2} \, \psi_2$. Conversely, given $\psi_2 \in \mathbb{B}_2'$, $E_{\psi_1(X_1)X_2} \, \psi_2 = E_{\psi_2(X_2)X_1} \, \psi_2$ $\psi_2(\mathrm{E}[\psi_1(X_1)X_2])$, meaning that $\mathrm{C}_{X_1,X_2}(\psi_1,\psi_2)$ is completely determined by the cross-covariance operators $c_{X_1,X_2}:\psi\in\mathbb{B}_1'\mapsto\mathrm{E}[\psi(X_1)X_2]\in\mathbb{B}_2.$ If $X_1=X_2=$ $X \in \mathbb{B}$, we write $C_{X_1,X_2}(\psi_1,\psi_2) = C_X(\psi_1,\psi_2)$. In this case, the covariance functional is also symmetric positive semidefinite and, by the Schwarz inequality, $|C_X(\psi_1,\psi_2)|^2 \leq V_X(\psi_1)V_X(\psi_2)$, where $V_X(\psi) \equiv C_X(\psi,\psi)$, called the variance functional for X. Both $C_X(\psi,\psi)$ and $V_X(\psi)$ are completely determined by $c_X(\psi) \equiv c_{X,X}(\psi) = \mathbb{E}[\psi(X)X]$ in \mathbb{B} . For Hilbert spaces, all these functionals can be clearly written in terms of inner products.

2.2. Functional FARMA. A sequence $\varepsilon=(\varepsilon_t:t\in\mathbb{Z})$ of zero mean \mathbb{B} -random elements is said to be a strong white noise if (i) its elements are i.i.d., (ii) 0< $\mathbb{E}\|\varepsilon_t\|^2=\sigma^2<\infty$ and (iii) $\mathbb{E}\,\varepsilon_t=0$. A sequence $X=(X_t:t\in\mathbb{Z})$ of \mathbb{B} -random elements is a strong functional autorregressive model of order p if

$$\sum_{j=0}^{p} \Phi_j(X_{t-j} - \mu) = \varepsilon_t,$$

where $\mu \in \mathbb{B}$, ε is a strong white noise and $\Phi_0, ..., \Phi_p \in \mathcal{L}(\mathbb{B}, \mathbb{B})$, with $\Phi_0 = I$ and $\Phi_p \neq 0$. If we relax the condition (i) of independence between the elements ε_t for (i') the covariance operators c_{ε_t} do not depend on t and $c_{\varepsilon_t,\varepsilon_s} \equiv 0$ if $t \neq s$, we obtain what is called weak white noise. The sequence X above is referred to as a weak autorregressive process. Whenever this distinction is unnecessary, X will

Se p = 1, a condicao (iii)
não eh imposta — ?, p.
127.

be referred to just as a autorregressive process. In any case we will write $X \sim \operatorname{FAR}(p)$. The extension to functional ARMA (FARMA) models is straighforward. In fact, a sequence $X = (X_t : t \in \mathbb{Z})$ of \mathbb{B} -random elements is said to be a (weak) strong functional ARMA process in \mathbb{B} of order p and q if

$$\sum_{j=0}^{p} \Phi_j(X_{t-j} - \mu) = \sum_{j=0}^{q} \Psi_j \varepsilon_{t-j},$$

where μ , Φ_j are as before, ε is a (weak) strong white noise and $\Psi_0, ..., \Psi_q \in \mathcal{L}(\mathbb{B}, \mathbb{B})$, with $\Psi_0 = I$ and $\Psi_q \neq 0$. In this case, we use the notation $X \sim \mathrm{FARMA}(p,q)$.

2.3. **Linear Prediction.** A subset \mathcal{L}_o of $L_{\mathbb{B}}(\Omega, \mathcal{F}, P)$ is a \mathcal{L} -closed subspace if it is a closed subspace and invariant under any linear operator in \mathcal{L} . Given a \mathbb{B} -valued zero-mean stationary process, let \mathcal{M}_n^X be the \mathcal{L} -closed subspace generated by $\{X_k: k \leq n\}$, which means that \mathcal{M}_n^X is just the closure of $\{\sum_{j=0}^M \Phi_j X_{n-j}: \Phi_j \in \mathcal{L}, \ M \in \mathbb{N}\}$. The projection of X_{n+k} over \mathcal{M}_n^X , denoted by $\pi(X_{n+k}|\mathcal{M}_n^X)$, will be referred to as best linear k-step predictor of X_n and the corresponding k-step predictive error is defined by $\mathcal{E}_k(X|\mathcal{M}_n^X) = X_{t+k} - \pi(X_{n+k}|\mathcal{M}_n^X)$.

3. MULTIPLE FAR(1) PROCESSES

Given the Banach spaces $(\mathbb{B}_1, \|\cdot\|_1)$ and $(\mathbb{B}_2, \|\cdot\|_2)$, let $\mathbb{B} = \mathbb{B}_1 \oplus \mathbb{B}_2$ be their (external) direct sum equipped with the norm $\|(X_1, X_2)\| = (\|X_1\|_1^2 + \|X_2\|_2^2)^{1/2}$. In this section we are interested in Banach space valued processes of the form

(1)
$$\boldsymbol{X}_{t+1} - \boldsymbol{\mu} = \Phi(\boldsymbol{X}_t - \boldsymbol{\mu}) + \boldsymbol{\varepsilon}_{t+1},$$

where $\boldsymbol{X}_t = (X_{1,t}, X_{2,t})^{\top}$, $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\top} \in \mathbb{B}$, $\Phi : \mathbb{B} \to \mathbb{B}$ is a bounded linear operator, $X_{i,t}$ and $\varepsilon_{i,t}$ are \mathbb{B}_i -random elements, for i=1,2 and $t\in\mathbb{Z}$, and the sequence $(\varepsilon_t = (\varepsilon_{1,t}, \varepsilon_{2,t})^{\top} : t\in\mathbb{Z})$ is a strong white noise. Since $\mathrm{E} \|(\varepsilon_{1,t},\varepsilon_{2,t})\|^2 = \mathrm{E} \|\varepsilon_{1,t}\|_{\mathbb{B}_1}^2 + \mathrm{E} \|\varepsilon_{2,t}\|_{\mathbb{B}_2}^2$, we may write $\sigma^2 = \sigma_1^2 + \sigma_2^2$, where $\sigma_1^2 \equiv \mathrm{E} \|\varepsilon_{1,t}\|_{\mathbb{B}_1}^2 < \infty$ and $\sigma_2^2 \equiv \mathrm{E} \|\varepsilon_{2,t}\|_{\mathbb{B}_2}^2 < \infty$. Moreover, each sequence $(\varepsilon_{i,t}:t\in\mathbb{Z})$ is itself a strong white noise. If the process \boldsymbol{X}_t is stationary, it will be referred to as a multiple autorregressive process in \mathbb{B} of order 1 and denoted

by $\mathbb{B}-MAR(1)$. Of course, such a definition can be easily extended to more general processes by considering the space $\mathbb{B}=\mathbb{B}_1\oplus\cdots\oplus\mathbb{B}_m$, but we will focus here on the case m=2 just to keep notation simpler. Finally, we allow the elemens $\varepsilon_{1,t}$ and $\varepsilon_{2,t}$ to be correlated, but their covariance functionals must satisfy $C_{\varepsilon_{1,t},\varepsilon_{2,t}}(\psi_1,\psi_2)=C_{\varepsilon_{1,0},\varepsilon_{2,0}}(\psi_1,\psi_2)$, for all $t\in\mathbb{Z}$, $\psi_1\in\mathbb{B}_1$ and $\psi_2\in\mathbb{B}_2$. This is equivalent to assume $c_{\varepsilon_{i,t},\varepsilon_{j,t}}\equiv c_{\varepsilon_{i,0},\varepsilon_{j,0}}$, for any $t\in\mathbb{Z}$ and $i\neq j\in\{1,2\}$.

We note now that the operator Φ can be written as

$$\Phi = \left[\begin{array}{cc} \Phi_{11} & \Phi_{12} \\ \Phi_{21} & \Phi_{22} \end{array} \right]$$

where $\Phi_{ij}: \mathbb{B}_j \to \mathbb{B}_i$ is a bounded linear operator⁽ⁱ⁾, for any i, j = 1, 2. Hence the $\mathbb{B} - MAR(1)$ process X_t can be written in the more usual form

$$X_{1,t+1} = \Phi_{11}X_{1,t} + \Phi_{12}X_{2,t} + \varepsilon_{1,t+1},$$

$$X_{2,t+1} = \Phi_{21}X_{1,t} + \Phi_{22}X_{2,t} + \varepsilon_{2,t+1}.$$

Moreover, from Theorem 3.1 in ?, if there exists $j_o \in \mathbb{N}$ such that $\|\Phi\|_{\mathcal{L}(\mathbb{B},\mathbb{B})} < 1$, then the process (1) can be uniquely represented by

niquely represented by
$$oldsymbol{X}_t = oldsymbol{\mu} + \sum_{j \geq 0} \Phi^j oldsymbol{arepsilon}_{t-j},$$

for all $t \in \mathbb{Z}$.

By simple recursion, we get

$$(X_{1,t+1}, X_{2,t+1}) = \sum_{j=1}^{\infty} \Phi^j(\varepsilon_{1,t+1-j}, \varepsilon_{2,t+1-j}).$$

4. FUNCTIONAL GRANGER CAUSALITY

Loosely speaking, given two time series X and Y, it is said that X causes Y (in the Granger's sense) if X contains in itself relevant and unique information regarding Y. More precisely, if \mathcal{J}_t stands for all the available information in universe at

A ideia é avaliar quais condições devem satisfazer os elementos de Φ para que X_2 não Granger cause X_1 .

⁽i)Indeed, since Φ is a bounded linear operator from $\mathbb{B}_1 \oplus \mathbb{B}_2$ to itself, then $\Phi(X_{1,t},X_{2,t}) = (\Phi_1(X_{1,t},X_{2,t}),\Phi_2(X_{1,t},X_{2,t}))$, where Φ_i is a bounded linear operator from $\mathbb{B}_1 \oplus \mathbb{B}_2$ to \mathbb{B}_i . Now, if $\Phi_{i1}(X_{1,t}) = \Phi_i(X_{1,t},0)$ and $\Phi_{i2}(X_{2,t}) = \Phi_i(0,X_{2,t})$, then both are bounded linear operators and $\Phi_i(X_{1,t},X_{2,t}) = \Phi_i(X_{1,t},0) + \Phi_i(0,X_{2,t}) = \Phi_{i1}(X_{1,t}) + \Phi_{i2}(X_{2,t})$.

t and \mathcal{J}_t' stands for all the available information at t except for that contained in $\{Y_{t-k}: k \geq 0\}$, then X is said not to Granger-cause Y if

$$Y_{t+1} \perp \mathcal{J}_t | \mathcal{J}_t',$$

for all t. Otherwise, X is said to Granger-cause Y. This definition has three problems. The first one concerning the idea of causality itself and the second related to a measure theoretic isse regarding the "size" of \mathcal{J}'_t in the sense that for sufficiently rich processes X and Y, it is not true that \mathcal{J}'_t is smaller that \mathcal{J}_t , even if X has actually caused Y in a more strict sense, see Eichler (2012). Finally, it is not practical to consider \mathcal{J}_t to be all the available information in the universe and the independence condition (??). In practice, it is more convenient to consider \mathcal{J}_t and \mathcal{J}'_t to be the information generated by $\{(X_{t-k}, Y_{t-k}) : k \geq 1\}$ and $\{Y_{t-k} : k \geq 1\}$, respectively. Moreover, instead of independence, it is said that X does not Granger-cause Y if the predictions of Y, the first one given \mathcal{J} and the second one given \mathcal{J}' , both result in the same prediction error.

This definition extends naturally for functional time series. In fact,

REFERENCES

Bosq, D. (2000). *Linear Processes in Function Spaces – Theory and Applications*. New York: Springer-Verlag.

Eichler, M. (2012). Causal inference in time series analysis. In Berzuini, C., Dawid, A.P., and Bernardinelli, L. (eds.), *Causality*, 327 – 354. John Wiley and Sons.

¹DEPARTMENT OF STATISTICS, UNIVERSITY OF BAHIA, BRAZIL