Теория автоматов и формальных языков Магазинные автоматы

Автор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

15 ноября 2016г.

В предыдущей серии

- Регулярные языки распознаются с помощью конечных автоматов
- Разные алгоритмы синтаксического анализа для контекстно-свободных языков
 - CYK
 - Эрли
 - Рекурсивный спуск
 - ► LL(1)
 - * GLL
 - ► LR(0), SLR(1), CLR, LALR(1)
 - **★** GLR
- Есть ли универсальный распознаватель для КС-языков?

TLDR

- Произвольный КС язык можно распознать при помощи магазинного автомата (он же автомат с магазинной памятью, он же pushdown automata, он же pda)
- Магазинный автомат по сути автомат со стеком
- Детерминированные магазинные автоматы могут распознавать только детерминированные КС языки
- Недетерминированные магазинные автоматы могут распознавать произольные КС языки

Что такое магазинный автомат

Что такое магазинный автомат: неформально

- Автомат, переходы которого осуществляются по входному символу, текущему состоянию и символу на вершине стека
 - У конечного автомата не было стека
- Никакие состояния стека, кроме вершины, не доступны
- Во время перехода может изменяться стек
 - ▶ Положить что-то на стек (push)
 - Снять верхушку со стека (рор)
- А может и не изменяться
 - ▶ Магазинный автомат может вообще игнорировать стек
 - ▶ Или стек может не изменяться, хоть значение оттуда и читается
- Итого: по тройке (входной символ, состояние, символ на вершине стека) получается новое состояние, и модифицируется (или нет) стек

Детерминированные магазинные автоматы vs недетерминированные

- В общем случае одной входной строке может соответствовать несколько вычислений
 - ▶ Некоторые из них могут завершаться в принимающих состояниях
- Если существует хотя бы одно вычисление, завершающееся в принимающем состоянии, строка принадлежит языку
- Если для каждой строки существует ровно одно вычисление в магазинном автомате, то он является детерминированным
 - Соответсвующий язык является детерминированным КС языком
- Детерминированный магазинный автомат является частным случаем недетерминированного, поэтому детерминированные КС языки строгое подмножество контекстно-свободных

Формальное определение

Магазинный автомат это набор $(Q, \Sigma, \Gamma, \delta, q_0, Z, F)$

- Q конечное множество состояний
- ullet Σ конечное множество символов, входной алфавит
- Г конечное множество символов, стековый алфавит
- $\delta\subseteq Q\times (Z\cup \varepsilon)\times \Gamma\times Q\times \Gamma^*$ конечное подмножество, задающее отношение переходов
- ullet $q_0 \in Q$ стартовое состояние
- $Z \in \Gamma$ начальный элемент стека
- ullet $F\subseteq Q$ множество принимающих (конечных) состояний

Отношение переходов

 $(p,a,A,q,lpha)\in\delta$ означает

- Если магазинный автомат находится в состоянии $p \in Q$, на вершине стека находится $A \in \Gamma$, а со входа читается символ $a \in \Sigma \cup \varepsilon$, то изменяем состояние на $q \in Q$, снимаем со стека символ A, записываем на стек строку $\alpha \in \Gamma^*$
- ullet $\Sigma \cup arepsilon$ сигнализирует о том, что вход можно и не читать
- Иногда δ альтернативно определяют как отображение $\delta::(Q\times(\Sigma\cup\varepsilon)\times\Gamma\to 2^{Q\times\Gamma^*})$

Семантика магазинного автомата

- Мгновенное описание MA: $(p, \omega, \beta) \in Q \times \Sigma^* \times \Gamma^*$
 - ▶ р текущее состояние автомата
 - lacktriangledown непрочитанный фрагмент входного потока
 - ightharpoonup eta содержимое стека (верхушка записана первой)
- Отношение ⊢ на мгновенных описаниях (шаг)
 - ▶ Для каждого $(p, a, A, q, \alpha) \in \delta$, верно $(p, ax, A\gamma) \vdash (q, x, \alpha\gamma)$ для произвольных $x \in \Sigma^*, \gamma \in \Gamma^*$
- В недетерминированных магазинных автоматах может существовать несколько шагов
 - Можно выбрать любой
 - ► Если какой-нибудь выбор приведет к успеху, значит, строка распознается
- Шаг не определен, если стек пуст

Семантика магазинного автомата: вычисление

- Вычисление последовательность шагов
- Начальное мгновенное описание (q_0, ω, Z)
- Два варианта окончания работы
 - ▶ По достижении конечного состояния

*
$$L(M) = \{\omega \in \Sigma^* \mid (q_0, \omega, Z) \vdash^* (f, \varepsilon, \gamma), f \in F, \gamma \in \Gamma^* \}$$

По опустошении стека

★
$$N(M) = \{\omega \in \Sigma^* \mid (q_0, \omega, Z) \vdash^* (q, \varepsilon, \varepsilon), q \in Q\}$$

- Эти варианты эквивалентны: по автомату, завершающемуся по первой схеме, можно посмотроить автомат, завершающийся по второй схеме, и наоборот
- ullet транизитивно рефлексивное замыкание отношения \vdash

Пример: язык $\{0^n 1^n \mid n \ge 0\}$

Вычисление на строке 0011:

- $(p,0011,Z) \vdash (q,0011,Z) \vdash (r,0011,Z)$ провал
- $(p,0011,Z) \vdash (p,011,AZ) \vdash (q,011,AZ)$ провал
- $(p,0011,Z) \vdash (p,011,AZ) \vdash (p,11AAZ) \vdash (q,11,AAZ) \vdash (q,1,AZ) \vdash (q,1,AZ) \vdash (q,\varepsilon,Z) \vdash (r,\varepsilon,Z)$ успех (по принимающему состоянию)

Пример: язык $\{0^n 1^n \mid n \ge 0\}$

Вычисление на строке 00111:

- $(p,00111,Z) \vdash (q,00111,Z) \vdash (r,00111,Z)$ провал
- ullet $(p,00111,Z) \vdash (p,0111,AZ) \vdash (q,0111,AZ)$ провал
- $(p,00111,Z) \vdash (p,0111,AZ) \vdash (p,111,AAZ) \vdash (q,111,AAZ) \vdash (q,11,AZ) \vdash (q,1,Z) \vdash (r,1,Z)$ провал

Построение магазинного автомата по КС-грамматике

- Интуиция:
 - ▶ Для каждого нетерминала: заменяем его на стеке на правую часть правила
 - Для каждого терминала: считываем со входа этот терминал и кладем его на стек
- Построение:
 - lacktriangle Для каждого правила A olpha добавляем переход (1,arepsilon,A,1,lpha)
 - ightharpoonup Для каждого терминала a добавляем (1,a,a,1,arepsilon)
- Относительно бесполезный автомат: как найти правильное вычисление?

Лемма о накачке для КС языков

Теорема

Если язык L является контекстно свободным, то

 $\exists p \geq 1: \forall s \in L. |s| \geq p$ можно разбить на подстроки

 $s = uvwxy: |vwx| \le p, |vx| \ge 1$ и

 $\forall n \geq 0$. $uv^n wx^n y \in L$

Лемма о накачке для КС языков: пример

Язык $L=\{a^nb^nc^n\}$ Предполагаем, что он КС, тогда по Лемме существует p... Рассмотрим слово $a^pb^pc^p=uvwxy,|vwx|\leq p,|vx|\geq 1$

- $vwx = a^j, j \le p$
- $vwx = a^j b^k, j + k \le p$
- $vwx = b^j, j \le p$
- $vwx = b^j c^k, j + k \le p$
- $vwx = c^j, j \le p$

Строка uv^iwx^iy не содержит одинаковое количество букв для всех i. Например, рассмотреть i=2. Получили противоречие — успех