DEVELOPMENT OF THE TAMPONAGE POSITION FROM PLUGGING PROPERTY

УДК.622.24.063

С ЗАКУПОРИВАЮЩИМ СВОЙСТВОМ

Махаматхожаев Дилмурад Рахматович

кандидат технических наук, Ташкентский архитектурно-строительный институт id.yug2016@gmail.com

Аннотация. В статье рассмотрена по разработке состава быстросхватывающихся смесей для установления цементных мостов в поглощающих горизонтах, которые встречаются при бурении ствола скважин подкондуктор и техническую колонну.

Ключевые слова: смесь, изоляция, раствор, тампонажный.

Mahamatkhozhaev Dilmurad Rakhmatovich Candidate of Technical Sciences, Tashkent institute of architecture and civil engineering id.yug2016@gmail.com

Annotation. The article presents the development of the composition of quick-setting mixtures for the establishment of cement from bridges in the absorbing horizons, which are encountered when drilling a wellbore subconductor and technical column.

Keywords: mixture, isolation, solution, plugging.

К репление скважин является очень ответственной технической операцией в процессе проводки любой скважины, оказывает решающее влияние на успешность ее заканчивания и освоения. Основными задачами при креплении скважин являются создание надежного канала связи в системе «пласт – устье скважины» и надежная изоляция нефтегазо и водоносных пластов друг от друга [1].

В конструкции скважины цементирование играет большую роль. Оно образует в затрубном пространстве непроницаемую преграду, для разобщения нефти и газосодержащих горизонтов [2]. Цементный камень изолирует притоки посторонних вод, препятствует прорыву газа. Вместе с тем повышается прочность конструкции скважин. Качество крепления скважин определяет долговечность и безаварийность эксплуатации продуктивного объекта.

Цементный камень, наряду с механической прочностью должен обладать пластичностью, что исключает растрескивание камня при перфорации, низкой проницаемостью, устойчивостью к агрессии пластовых вод, способностью сращиваться с породой, составляющей стенку ствола, и сцепляться с наружной поверхностью обсадных труб. Усадочные деформации, которыми характеризуется твердение обычного тампонажного цемента, рассматриваются как одна из причин неудовлетворительной герметичности скважин [3].

Кроме того, усадка приводит к образованию зазоров по поверхности контакта цементного камня, труб и стенок скважины. Этому в значительной степени способствует образовавшийся на стенках скважины глинистая корка. Отдавая гравитационную воду в пласт или цементному камню, глинистая корка дает значительную усадку с образованием целой сети трещин. Все это снижает качество разобщения пластов. Зазор между обсадной трубой и цементным кольцом может также появляться за счет остаточных деформаций цементного камня при изменении температур и давлений в процессе эксплуатации.

К тампонажным цементам предъявляют ряд специальных технических требований, обусловленных особыми условиями их применения. К таким общим требованиям относятся возможность быстрого прокачивания цементного раствора насосами, достаточная подвижность раствора в процессе прокачивания и связанное с этим увеличение срока для начала схватывания, стойкость в минерализованных водах, быстрое твердение, обеспечивающие достаточно высокую прочность вскоре после окончания тампонирования [4].

При цементировании может быть сильно снижена естественная проницаемость продуктивных пород, что недопустимо. Поэтому уменьшение водоотдачи раствора и предупреждение проникновения в пласт воды (на которой цемент затворен) и частиц самого цемента относятся к одним из наиболее важных требований. В этом отношении представляют интерес цементные растворы, приготовленные по рецептуре, предложенной КФ ВНИИ (добавка к сухому цементу бентонита) [5]. Применение цементно-бентонитовых смесей позволяет предупредить поглощение раствора в пласт, сохранить естественную проницаемость продуктивных пород в процессе цементирования и увеличить высоту подъема цементного раствора в затрубном пространстве.

При гидравлическом разрыве пласта в процессе цементирования проникновение в пласт тампонажного раствора и его фильтрата может быть большим, чем проникновение фильтрата бурового раствора. К тому же ухудшение фильтрационных свойств пласта при этом будет большим, так как удалить тампонажный раствор и его фильтрат из пласта практически невозможно [6].

Для уменьшения проникновения фильтрата тампонажного раствора в мировой практике за последние годы при цементировании поглощающих нефтяных и газовых скважин широкое применение находят цементно-полимерные тампонажные растворы, обладающие закупоривающей способностью [7].

Учитывая это нами были проведены лабораторные исследования по разработке состава тампонажных растворов с повешенной стабильностью и закупоривающей способностью.

Лабораторные исследования проводились с использованием в качестве закупоривающего материала – полимерного наполнителя, который приготавливается на основе рисового комбикорма. В данное время рисовый комбикорм не имеет кормовых достоинств, однако его используют в птицефабриках в месте с другими кормами в комбинированном виде. Полимерный наполнитель получается при химической обработке рисового комбикорма и представляет собой сухую однородную массу.

При приготовлении тампонажных растворов определенное количество полимерного наполнителя перемешивается с тампонажным цементом и затворяется в жидкости затворения. С использованием полимерного наполнителя были изучены влияние его не технологические свойства тампонажа раствора и цементного камня. В лаборатории исследования проводились при температуре от 22 °C до $100\ ^{\circ}$ C. Результаты проведенных лабораторных исследований приводятся в таблице 1.

Таблица 1 – Влияние полимерного наполнителя на технологические свойства тампонажных растворов

						ı			
№ п/п	Состав тампонажного раствора, %					Параметры тампонажного раствора			
	Цемент	Бентонит	Мраморная пудра	Полимерный наполнитель	В/ц	Плот- ность, кг/м³	Растекае- мость D, см	Прочность при изгибе, МПа	Прочность при сжатии, МПа
	100	_	-	_	0,7	1670	25	2,5	5,2
	80	30	_	-	0,90	1550	25	0,9	2,4
	70	_	30	_	0,7	1500	25	2,2	4,9
	99	_	_	1	0,7	1660	24	2,6	5,4
	98	_	ı	2	0,7	1650	23	2,8	5,6
	97	_	ı	3	0,7	1640	21	3,9	5,8
	96	_	ı	4	0,7	1630	19	3,0	6,0
	95	_	ı	5	0,7	1620	17	3,2	6,2
	79	20	ı	1	0,90	1540	24	1,0	2,5
	77	20	_	3	0,90	1520	19	1,4	2,9
	75	20	-	5	0,90	1500	17	1,7	3,1
	69	_	30	1	0,7	1490	24	2,3	5,1
	67	_	30	3	0,7	1470	19	2,5	5,3
	65	_	30	5	0,7	1450	17	2,7	5,6

Как видно, из данных таблицы 1 с увеличением содержания полимерного наполнителя в составе тампонажных растворов, наблюдается уменьшение показателя растекаемости и водоотделения растворов. Одновременно с этим увеличивается прочность образцов цементного камня. Увеличение прочности цементного камня наблюдалась на всех испытуемых составах тампонажных растворов, включая гельцементных и облегченных, которые приготавливаются с применением мраморной пудры в качестве облегчающей добавки.

На основании проведенных лабораторных исследований и полученных положительных результатов, можно сделать следующие выводы:

- 1. Разработан состав быстросхватывающихся смесей для установления цементных мостов в поглощающих горизонтах, которые встречаются при бурении ствола скважин под кондуктор и техническую колонну с применением местных химических реагентов и материалов.
- 2. В результате применения механических мешалок обеспечивающих смешивание химических реагентов и материалов по горизонтальному направлению при приготовлении составов быстросхватывающихся смесей получается конденсированная однородная масса, которая обеспечивает успешность проведения изоляционных работ в условиях поглощения бурового раствора с различной интенсивностью.
- 3. Показано что для приготовления тампонаж растворов из быстросхватывающих смесей и доставки их до поглощающего горизонта не требуется специальная техника и технология. Рекомендуются использование цементировочной техники, которая широко применяется при цементировании скважин.

Литература

- 1. Справочник по креплению нефтяных и газовых скважин. М.: Недра, 1980.
- 2. Данюшевский В.С., Толстых И.Ф., Мильштеин В.М. Справочное руководство по тампонажным материалам. М. : Недра, 1973. 312 с.
- 3. Мальцев А.В. Баженов В.С. Выбор размеров образцов при исследовании объемных изменений тампонажных материалов // Труды ВНИИ по креплению скважин и буровым растворам. 1977. № 13.
 - 4. Данюшевский В.С. Проектирование оптимальных составов тампонажных цементов. М.: Недра, 1978.
 - 5. Булатов А.И. Тампонажные материалы и технология цементирования скважин. М.: Недра, 1991.
- 6. Вяхирев В.И., Овчинников В.П., Овчинников П.В., Ипполитов В.В. и др. Облегченные тампонажные растворы для крепления газовых скважин. М.: Недра, 2000. 133 с.
- 7. Кривошей А.В. Новые расширяющиеся тампонажные композиции, повышающие надежность крепи скважины // Бурение и нефть. 2008. № 2. С. 42–43.
- 8. Белей И.И. и др. Применение стабилизированных тампонажных растворов для разобщения продуктивных пластов // Строительство нефтяных и газовых скважин на суше и на море. 2009. № 7.
 - 9. Akramov B.Sh., Umedov Sh.Kh. Oil-and-gas production handbook. -Tashkent: Fan va tekhnologiya, 2010.
- 10. Махаматхожаев Д.Р., Комилов Т.О., Юсуфхужаев С.А., Рахматов Ш.Д. Результаты бурения ствола скважины на площади учкызыл в условиях поглощения бурового раствора // Научно-технологический журнал «Технологии нефти и газа». 2019. № 4 С. 51–56.

References

- 1. Handbook for fixing oil and gas wells. M.: Nedra, 1980.
- 2. Daniushevsky V.S., Tolstykh I.F., Milshtein V.M. Reference Guide to cementing materials. M.: Nedra, 1973. 312 p.
- 3. Maltsev A.V. Bazhenov V.S. The choice of sample sizes in the study of volumetric changes in grouting materials // Proceedings of the All-Russian Research Institute for Wells and Drilling Fluids. − 1977. − № 13.
 - 4. Danyushevsky V.S. Designing optimal cement slurry compositions. M.: Nedra, 1978.
 - 5. Bulatov A.I. Grouting materials and well cementing technology. M.: Nedra, 1991.
- 6. Vyakhirev V.I., Ovchinnikov V.P., Ovchinnikov P.V., Ippolitov V.V. etc. Lightweight grouting mortars for fastening gas wells. M.: Nedra, 2000. 133 p.
- 7. Krivoshey A.V. New expanding grouting compositions that increase the reliability of the well support // Drilling and Oil. 2008. № 2. P. 42–43.
- 8. Belem I.I. and others. The use of stabilized grouting mortars for the separation of productive formations // Construction of oil and gas wells on land and at sea. 2099. № 7.
 - 9. Akramov B.Sh., Umedov Sh.Kh. Oil-and-gas production handbook. Tashkent: Fan va tekhnologiya, 2010.
- 10. Makhamatkhozhaev D.R., Komilov T.O., Yusufkhuzhaev S.A., Rakhmatov Sh.D. The results of drilling a well-bore in the area under the conditions of absorption of drilling fluid // Scientific and technological journal «Oil and Gas Technologies». M., 2019. \mathbb{N}_2 4. P. 51–56.