Hash Functions and the Boomerang Attack ECRYPT Hash Workshop 2007 - Barcelona

Antoine Joux 1,3 Thomas Peyrin 2,3

¹ DGA

² France Télécom R&D

³ University of Versailles

May 16, 2007

Outline

- Introduction
- 2 The (Amplified) Boomerang Attack
- 3 Application to SHA-1
- 4 Conclusion

Outline

- 1 Introduction
- 2 The (Amplified) Boomerang Attack
- Application to SHA-1
- 4 Conclusion

The MDx-SHAx family of hash functions: high level design

The MDx-SHAx family of hash functions: the internal block cipher

The SHA-1 compression function (1)

The SHA-1 compression function (2)

Message expansion:

$$W_{i} = \begin{cases} M_{i}, & \text{for } 0 \leq i \leq 15 \\ (W_{i-3} \oplus W_{i-8} \oplus W_{i-14} \oplus W_{i-16}) \ll 1, & \text{for } 16 \leq i \leq 79 \end{cases}$$

Boolean functions:

round	step i	$f_i(B,C,D)$
1	1 ≤ <i>i</i> ≤ 20	$f_{IF} = (B \wedge C) \oplus (\overline{B} \wedge D)$
2	21 ≤ <i>i</i> ≤ 40	$f_{XOR} = B \oplus C \oplus D$
3	41 ≤ <i>i</i> ≤ 60	$f_{MAJ} = (B \wedge C) \oplus (B \wedge D) \oplus (C \wedge D)$
4	61 ≤ <i>i</i> ≤ 80	$f_{XOR} = B \oplus C \oplus D$

Chabaud-Joux method for collision attack against SHA-0

- local collision: insert a perturbation and correct it!
- find perturbation and corrections vectors such that the overall difference mask verifies the message expansion.
- you can use several blocks to find a collision:

Original instance

conformant

random behavior

random behavior

Neutral bit N2

Wang et al.'s attacks: the differential path

- modify (by hand !) the first steps of the differential path non-linear part.
- find (by hand!) the necessary conditions such that everything goes as expected

 gives a lower bound on the probability of the differential path.

New attacks

Wang et al. found everything by hand! Can we provide most "theoretical" explanations of what is happening?

- a better way of evaluating the probability of a diff. path [DeCannière, Rechberger – 2006].
- automatic and heuristic search of non linear parts
 [De Cannière, Rechberger 2006].
- finding sufficient conditions with Gröbner Basis
 [Sugita, Kawazoe, Imai 2007].
- finding message modifications with Gröbner Basis
 [Sugita, Kawazoe, Imai 2007].

Results of known attacks

- 2⁶⁹ message modifications (improved to 2⁶³ but not published)
 [Wang, Yin, Yu 2005].
- ... but message modifications can cost a lot!
 [Sugita, Kawazoe, Imai 2007].
- fast collisions for 58 steps
 [Sugita, Kawazoe, Imai 2007].
- a 70-step collision
 [DeCannière, Rechberger 2006].

Outline

- Introduction
- 2 The (Amplified) Boomerang Attack
- Application to SHA-1
- 4 Conclusion

The boomerang attack: [Wagner – 1999]

The boomerang attack: [Wagner - 1999]

The boomerang attack: [Wagner - 1999]

We call the small differential path auxiliary differential path.

Two possibilities of use:

- neutral bits approach: instantiate a message pair and check is there is good auxiliary differential paths ⇒ generalization of neutral bits.
- explicit conditions approach: before instantiating the message pair, fix some bits so that you will be sure that very good auxiliary differential paths exist
 - ⇒ allows you to find very powerful neutral bits!

For t auxiliary differential paths, you get 2^t conformant pairs of messages for free (with an independence assumption, true in practice).

Outline

- Introduction
- 2 The (Amplified) Boomerang Attack
- 3 Application to SHA-1
- 4 Conclusion

step	type	constraints
i + 1	no carry	$W_i^j = a, A_{i+1}^j = a$

i	A_i	W_i
-1:		
00:		a
01:	a	
02:		
03:		
04:		
05:		
06:		

step	type	constraints
i + 1	no carry	$W_i^j = a, A_{i+1}^j = a$
i + 2	correction	$W_{i+1}^{j+5} = \overline{a}$

i	A_i	W_i
-1:		
00:		a
01:	a	 ā
02:		
03:		
04:		
05:		
06:		

step	type	constraints
i + 1	no carry	$W_i^j = a, A_{i+1}^j = a$
i + 2	correction	$W_{i+1}^{j+5} = \overline{a}$
i + 3	no correction	$A_{i-1}^{j+2} = A_i^{j+2}$
	correction	$A_{i-1}^{j+2} \neq A_i^{j+2}, W_{i+2}^j = \overline{a}$

i	A_i	W_i
-1: 00:	d	_
01:	a	a
02:		
03:		
04:		
05:		
06:		

step	type	constraints
i + 1	no carry	$W_i^j = a, A_{i+1}^j = a$
i + 2	correction	$W_{i+1}^{j+5} = \overline{a}$
i + 3	no correction	$A_{i-1}^{j+2} = A_i^{j+2}$
i + 4	no correction	$A_{i+2}^{j-2}=0$
	correction	$A_{i+2}^{j-2} = 1, W_{i+3}^{j-2} = \overline{a}$

i	A_i	W_i
4.	,	
-1: 00:	α	
01:	u	-
02:	1	
03:		 ā
04:		
05:		
06:		

step	type	constraints
i + 1	no carry	$W_i^j = a, A_{i+1}^j = a$
i + 2	correction	$W_{i+1}^{j+5} = \overline{a}$
i + 3	no correction	$A_{i-1}^{j+2} = A_i^{j+2}$
i + 4	correction	$A_{i+2}^{j-2} = 1, W_{i+3}^{j-2} = \overline{a}$
i + 5	no correction	$A_{i+3}^{j-2}=1$
	correction	$A_{i+3}^{j-2} = 0, W_{i+4}^{j-2} = \overline{a}$

i	A_i	W_i
-1:	d	
00:	d	a
01:	a	 ā
02:	1	
03:	0	ā
04:		 <u>a</u>
05:		
06:		

step	type	constraints
i + 1	no carry	$W_i^j = a, A_{i+1}^j = a$
i + 2	correction	$W_{i+1}^{j+5} = \overline{a}$
i + 3	no correction	$A_{i-1}^{j+2} = A_i^{j+2}$
i + 4	correction	$A_{i+2}^{j-2} = 1, W_{i+3}^{j-2} = \overline{a}$
i + 5	correction	$A_{i+3}^{j-2} = 0, W_{i+4}^{j-2} = \overline{a}$
i + 6	correction	$W_{i+5}^{j-2}=\overline{a}$

i	A_i	W_i
-1:	d	
00:	d	a
01:	a	 ā
02:	1	
03:	0	 ā
04: 05:		 ā
05:		 ā
06:		

	W ₀ to W ₁₅	W ₁₆ to W ₃₁	
perturbation mask	1010000000100000		
differences on W ^j	1010000000100000	0000000010110110	
differences on W ^{j+5}	0 <mark>1</mark> 01000000010000	0000000001011011	
differences on W ^{j-2}	00011111100000011	000000000001110	

i	A_i	W_i
-1:	d	
00:	d	a
01:	e-a	 ā
02:	e1	b
03:	b-0	 ā
04:	0	 ā
05:	0	 ā
06:		<u>b</u>
07:		 <u></u>
08:		
09:	f	
10:	f	c
11:	c	 <u></u>
12:	0	
13:	0	
14:		
15:		

	W_0 to W_{15}	W ₁₆ to W ₃₁	
perturbation mask	1010000000100000		
differences on W ^j	1010000000100000	0000000010110110	
differences on W ^{j+5}	0101000000010000	0000000001011011	
differences on W ^{j-2}	0001111100000011	000000000001110	

i	A_i	W_i
-1:	d	
00:	d	a
01:	e-a	 ā
02:	e1	b
03:	b-0	 ōā
04:	0	 ā
05:	0	 ā
06:		<u></u> _
07:		 <u></u>
08:		
09:	f	
10:	f	c
11:	c	 <u></u>
12:	0	
13:	0	
14:		
15:		c

	W_0 to W_{15}	W ₁₆ to W ₃₁	
perturbation mask	1010000000 <mark>1</mark> 00000		
differences on W ^j	1010000000 <mark>1</mark> 00000	0000000010110110	
differences on W ^{j+5}	0101000000010000	0000000001011011	
differences on W ^{j-2}	00011111000000 <mark>11</mark>	000000000001110	

i	A_i	W_i
-1:	d	
00:	d	a
01:	e-a	 ā
02:	e1	b
03:	b-0	 ā
04:	0	 ā
05:	0	a
06:		<u>b</u>
07:		<u>b</u>
08:		
09:	f	
10:	f	c
11:	c	
12:	0	
13:	0	
14:		c
15:		

	W ₀ to W ₁₅	W ₁₆ to W ₃₁	
perturbation mask	1010000000100000		
differences on W ^j	1010000000100000	00000000 <mark>1</mark> 0110110	
differences on W ^{j+5}	0101000000010000	0000000001011011	
differences on W ^{j-2}	0001111100000011	000000000001110	

i	A_i	W_i
-1:	d	
00:	d	a
01:	e-a	 ā
02:	e1	b
03:	b-0	 <u>b</u> a
04:	0	 ā
05:	0	a
06:		 b
07:		<u>b</u>
08:		
09:	f	
10:	f	c
11:	c	
12:	0	
13:	0	
14:		c
15:		c

i	A_i	W _i
-4:	00101001010011011100100101000111	
-3:	000001111000010001100101101100010	
-2:	11011000010000101001111101011111	
-1:	01011011 <mark>1</mark> 10111101101 1 011111010001	
00:	01000010 <mark>1</mark> 01 <u>1</u> 01110111 <u>1</u> 01110011011	1uu1110110011 <mark>1</mark> 1101100111111011
01:	n1n010111001011001001-0100100110	nuu101-100010111111111101u1n0n1
02:	1nu110111111011111011011111111111	n110-10-1111000 1 10n0111uu
03:	nnu000-00-0110000110111110n	x-nn-11010100010011u111001
04:	u010u11-000010010110-1010un0u1	uu-u011-01011001n1n10nu
05:	1001u00-000000000001u00011010	nn-u011010111111n100u1
06:	011unnnnnnnnnnnnnn1110n001uu	00n1-11001111 <mark>0</mark> 0011001
07:	u110-01000000u010110nu111uu1010n	1nu00111-100-1-10-un-0n-
08:	11110101111111011unu110-0nu1	-un011u0111nu
09:	-00101101-0u-10nnnnu01010	u011001-u1100
10:	11001-101nu1111u10	xxu00n-
11:	00-110n-100nn0u1n0	-xn1001011-0010x-
12:	0000-01-010n1-nn	xu
13:	000-0-0-00100n0n-00	1001n1
14:	-0010001u0un-	1n
15:	nunnn1101	-x-10100-10u-nu-
16:	11nu001	-n01u0
17:	n-0111-0n	xxn1u-xn-
18:	-11101-	x-u100
19:	u-	x11n
20:		xx
	• • • •	

Discussion on the implementation

- how to implement it ?
- we can use boomerang attacks with neutral bits or message modifications if we carefully check that the auxiliary paths remain valid.
- message modifications are costly and the 2⁶³ attack is not yet published.
- works well with neutral bits (but their range is too small).

If you are interested in the details, see our paper!

- find a conformant message pair (with some auxiliary differential paths) and multiply it thanks to the neutral bits (check that a lot of the auxiliaries remain valid).
- when a message pair is conformant up to step 28, trigger the auxiliary paths and get new message pairs conformant up to step 28 for free.

M _O	11111101100111111111111111111111111111	0xfd9ff7fb
M ₁	0111010100000010100111111101110001	0x75053f71
M ₂	0001110000011 <mark>1</mark> 01 <mark>0</mark> 11 1 001100011111	0x1c1d731f
M ₃	00000111001110000000001001111001	0x07380279
M ₄	111101011010111101000100000101001	0xf5ae8829
M ₅	0011010111111101011001011010101011	0x35facb53
M ₆	00010000011111001010101100011001	0x107cab19
M ₇	101001101111111100110001101101001	0xa6fe6369
M ₈	01001000001100111010100101011101	0x4833a95d
M ₉	01100000000110110110100111101100	0x601b69ec
M ₁₀	10100011010010100100111001100100	0xa34a4e64
M _{1.1}	0101110010011111010111111100100111	0x5c9ebf27
M ₁₂	10111011010000110101001001110111	0xbb435277
M ₁₃	10100101011101110100110011010100	0xa5774cd4
M ₁₄	111111100111101 <mark>1</mark> 10 1 10100000000000	0xfe7bb400
M ₁₅	101101010011101 <mark>1</mark> 10 1 0110101101011	0xb53bad6b

Outline

- Introduction
- 2 The (Amplified) Boomerang Attack
- Application to SHA-1
- 4 Conclusion

Yet another way of using freedom degrees ...

- boomerang attack for hash functions is nothing more than another way of cleverly using the freedom degrees from the message.
- message modifications, neutral bits, auxiliary differentials are closely related.
- they all have pros and cons:

	message modifications	neutral bits	auxiliary paths
speed cost	big	medium	small
freedom degrees cost	medium	small	big
range	medium	small	long

... but freedom degrees are not unlimited!

- we can not use all those techniques independently!
- twofold waste of freedom degrees: or we use a lot of freedom degrees for a small gain, or some freedom degrees are left unused.
- it would be great to find a way to use exactly what we need from all those techniques.
- not trivial since we need to settle the long range characteristics first, which imposes a lot (too much?) of constraints.
- maybe a generalization of those techniques may achieve this?

4 口 > 4 回 > 4 豆 > 4 豆 >

That's all folks!

Thank you!

