Least Squares Data Fitting

Stephen Boyd

EE103 Stanford University

October 31, 2017

Outline

Least squares model fitting

Validation

Feature engineering

Setup

lacktriangle we believe a scalar y and an n-vector x are related by model

$$y \approx f(x)$$

- lacktriangleright x is called the *independent variable*
- ▶ *y* is called the *outcome* or *response variable*
- ▶ $f: \mathbf{R}^n \to \mathbf{R}$ gives the relation between x and y
- lacktriangle often x is a feature vector, and y is something we want to predict
- lacktriangle we don't know f, which gives the 'true' relationship between x and y

Data

▶ we are given some data

$$x^{(1)}, \dots, x^{(N)}, \qquad y^{(1)}, \dots, y^{(N)}$$

also called observations, examples, samples, or measurements

- $ightharpoonup x^{(i)}, y^{(i)}$ is ith data pair
- $ightharpoonup x_j^{(i)}$ is the jth component of ith data point $x^{(i)}$

Model

- ightharpoonup choose model $\hat{f}: \mathbf{R}^n \to \mathbf{R}$, a guess or approximation of f
- linear in the parameters model form:

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

- ▶ $f_i : \mathbf{R}^n \to \mathbf{R}$ are basis functions that we choose
- lackbox θ_i are model parameters that we choose
- $\hat{y}^{(i)} = \hat{f}(x^{(i)})$ is (the model's) prediction of $y^{(i)}$
- \blacktriangleright we'd like $\hat{y}^{(i)} \approx y^{(i)}$, i.e., model is consistent with observed data

Least squares data fitting

- prediction error or residual is $r_i = y^{(i)} \hat{y}^{(i)}$
- least squares data fitting: choose model parameters θ_i to minimize RMS prediction error on data set

$$\left(\frac{(r^{(1)})^2 + \dots + (r^{(N)})^2}{N}\right)^{1/2}$$

▶ this can be formulated (and solved) as a least squares problem

Least squares data fitting

- express $y^{(i)}$, $\hat{y}^{(i)}$, and $r^{(i)}$ as N-vectors
 - $y^{\mathrm{d}} = (y^{(1)}, \dots, y^{(N)})$ is vector of outcomes
 - $-\hat{y}^{\mathrm{d}}=(\hat{y}^{(1)},\ldots,\hat{y}^{(N)})$ is vector of predictions
 - $r^{\mathrm{d}} = (r^{(1)}, \dots, r^{(N)})$ is vector of residuals
- $ightharpoonup \mathbf{rms}(r^{\mathrm{d}})$ is *RMS prediction error*
- define $N \times p$ matrix A, $A_{ij} = f_j(x^{(i)})$, so $\hat{y}^d = A\theta$
- ightharpoonup least squares data fitting: choose θ to minimize

$$\|r^{\mathbf{d}}\|^2 = \|y^{\mathbf{d}} - \hat{y}^{\mathbf{d}}\|^2 = \|y^{\mathbf{d}} - A\theta\|^2 = \|A\theta - y^{\mathbf{d}}\|^2$$

- $\hat{\theta} = (A^T A)^{-1} A^T y$ (if columns of A are independent)
- $ightharpoonup \|A\hat{ heta}-y\|^2/N$ is minimum mean-square (fitting) error

Fitting a constant model

- ▶ simplest possible model: p = 1, $f_1(x) = 1$, so model $\hat{f}(x) = \theta_1$ is a constant function
- ightharpoonup A = 1, so

$$\hat{\theta}_1 = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T y^{\mathrm{d}} = (1/N) \mathbf{1}^T y^{\mathrm{d}} = \mathbf{avg}(y^{\mathrm{d}})$$

- lacktriangle the mean of $y^{(1)},\ldots,y^{(N)}$ is the least squares fit by a constant
- lacktriangledown MMSE is $\mathbf{std}(y^{\mathrm{d}})^2$; RMS error is $\mathbf{std}(y^{\mathrm{d}})$
- more sophisticated models are judged against the constant model

Fitting univariate functions

- ightharpoonup when n=1, we seek to approximate a function $f: \mathbf{R} \to \mathbf{R}$
- lacktriangle we can plot the data (x_i,y_i) and the model function $\hat{y}=\hat{f}(x)$

Straight-line fit

- p = 2, with $f_1(x) = 1$, $f_2(x) = x$
- ▶ model has form $\hat{f}(x) = \theta_1 + \theta_2 x$
- ▶ matrix A has form

$$A = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \vdots & \vdots \\ 1 & x^{(N)} \end{bmatrix}$$

ightharpoonup can work out $\hat{\theta}_1$ and $\hat{\theta}_2$ explicitly:

$$\hat{f}(x) = \mathbf{avg}(y^{\mathrm{d}}) + \rho \frac{\mathbf{std}(y^{\mathrm{d}})}{\mathbf{std}(x^{\mathrm{d}})} (x - \mathbf{avg}(x^{\mathrm{d}}))$$

where
$$x^{\mathrm{d}} = (x^{(1)}, \dots, x^{(N)})$$

Asset α and β

- \triangleright x is return of whole market, y is return of a particular asset
- write straight-line model as

$$\hat{y} = (r^{\text{rf}} + \alpha) + \beta(x - \mu^{\text{mkt}})$$

- $-\mu^{\mathrm{mkt}}$ is the average market return
- $-r^{\rm rf}$ is the risk-free interest rate
- several other slightly different definitions are used
- \blacktriangleright called asset ' α ' and ' β ', widely used

Time series trend

- $lackbox{ }y^{(i)}$ is value of quantity at time $x^{(i)}=i$
- $m{\hat{y}}^{(i)}=\hat{ heta}_1+\hat{ heta}_2i, \quad i=1,\ldots,N$, is called *trend line*
- $lackbox{y}^{
 m d} \hat{y}^{
 m d}$ is called *de-trended time series*
- $ightharpoonup \hat{ heta}_2$ is trend coefficient

World petroleum consumption

World petroleum consumption, de-trended

Polynomial fit

- $f_i(x) = x^{i-1}, \quad i = 1, \dots, p$
- ightharpoonup model is a polynomial of degree less than p

$$\hat{f}(x) = \theta_1 + \theta_2 x + \dots + \theta_p x^{p-1}$$

(here x^i means scalar x to ith power; $x^{(i)}$ is ith data point)

▶ A is Vandermonde matrix

$$A = \begin{bmatrix} 1 & x^{(1)} & \cdots & (x^{(1)})^{p-1} \\ 1 & x^{(2)} & \cdots & (x^{(2)})^{p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x^{(N)} & \cdots & (x^{(N)})^{p-1} \end{bmatrix}$$

$N=100 \; \mathrm{data} \; \mathrm{points}$

Regression as general data fitting

- ▶ regression model is affine function $\hat{y} = \hat{f}(x) = x^T \beta + v$
- ▶ fits general fitting form with basis functions

$$f_1(x) = 1,$$
 $f_i(x) = x_{i-1},$ $i = 2, ..., n+1$

so model is

$$\hat{y} = \theta_1 + \theta_2 x_1 + \dots + \theta_{n+1} x_n = x^T \theta_{2:n} + \theta_1$$

 $\beta = \theta_{2:n+1}, \ v = \theta_1$

General data fitting as regression

- general fitting model $\hat{f}(x) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)$
- ▶ common assumption: $f_1(x) = 1$
- same as regression model $\hat{f}(\tilde{x}) = \tilde{x}^T \beta + v$, with
 - $ilde{x}=(f_2(x),\ldots,f_p(x))$ are 'transformed features'
 - $-v=\theta_1, \beta=\theta_{2:p}$

Auto-regressive time series model

- ightharpoonup time zeries z_1, z_2, \ldots
- auto-regressive (AR) prediction model:

$$\hat{z}_{t+1} = \theta_1 z_t + \dots + \theta_M z_{t-M+1}, \quad t = M, M+1, \dots$$

- ▶ *M* is *memory* of model
- $ightharpoonup \hat{z}_{t+1}$ is prediction of next value, based on previous M values
- lacktriangle we'll choose eta to minimize sum of squares of prediction errors,

$$(\hat{z}_{M+1} - z_{M+1})^2 + \dots + (\hat{z}_T - z_T)^2$$

put in general form with

$$y^{(i)} = z_{M+i}, \quad x^{(i)} = (z_{M+i-1}, \dots, z_i), \quad i = 1, \dots, T - M$$

- hourly temperature at LAX in May 2016, length 744
- ▶ average is 61.76°F, standard deviation 3.05°F
- predictor $\hat{z}_{t+1} = z_t$ gives RMS error 1.16° F
- predictor $\hat{z}_{t+1} = z_{t-23}$ gives RMS error 1.73°F
- ▶ AR model with M=8 gives RMS error 0.98° F

solid line shows one-hour ahead predictions from AR model, first 5 days

Outline

Least squares model fitting

Validation

Feature engineering

Generalization

basic idea:

- ▶ goal of model is *not* to predict outcome for the given data
- ▶ instead it is to predict the outcome on new, unseen data

- a model that makes reasonable predictions on new, unseen data has generalization ability, or generalizes
- a model that makes poor predictions on new, unseen data is said to suffer from over-fit

Validation

- a simple and effective method to guess if a model will generalize
 - split original data into a training set and a test set
 - ▶ typical splits: 80%/20%, 90%/10%
 - build ('train') model on training data set
 - then check the model's predictions on the test data set
 - ► (can also compare RMS prediction error on train and test data)
 - ▶ if they are similar, we can *guess* the model will generalize

Validation

- ▶ can be used to choose among different candidate models, e.g.
 - polynomials of different degrees
 - regression models with different sets of regressors
- we'd use one with low, or lowest, test error

- polynomials fit using training set of 100 points
- ▶ plots below show performance with *test set* of 100 points

▶ suggests degree 4, 5, or 6 are reasonable choices

Cross validation

to carry out cross validation:

- divide data into 10 folds
- for i = 1, ..., 10, build (train) model using all folds except i
- test model on data in fold i

interpreting cross validation results:

- if test RMS errors are much larger than train RMS errors, model is over-fit
- ▶ if test and train RMS errors are similar and consistent, we can *guess* the model will have a similar RMS error on future data

- ▶ house price, regression fit with $x = (area/1000 \text{ ft.}^2, bedrooms)$
- ▶ 774 sales, divided into 5 folds of 155 sales each
- ▶ fit 5 regression models, removing each fold

	Мо	del param	RMS error		
Fold	v	β_1	β_2	Train	Test
1	60.65	143.36	-18.00	74.00	78.44
2	54.00	151.11	-20.30	75.11	73.89
3	49.06	157.75	-21.10	76.22	69.93
4	47.96	142.65	-14.35	71.16	88.35
5	60.24	150.13	-21.11	77.28	64.20

Outline

Least squares model fitting

Validation

Feature engineering

Feature engineering

- start with original or base feature n-vector x
- lacktriangle choose basis functions f_1,\ldots,f_p to create 'mapped' feature p-vector

$$(f_1(x),\ldots,f_p(x))$$

now fit linear in parameters model with mapped features

$$\hat{y} = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

check the model using validation

Transforming features

- standardizing features: replace x_i with $(x_i b_i)/a_i$
 - $b_i \approx$ mean value of the feature across the data
 - $-a_i \approx$ standard deviation of the feature across the data new features are called *z-scores*
- ▶ log transform: if x_i is nonnegative and spans a wide range, replace it with $\log(1+x_i)$
- hi and lo features: create new features given by

$$\max\{x_1 - b, 0\}, \quad \min\{x_1 - a, 0\}$$

(called hi and lo versions of original feature x_i)

- house price prediction
- start with base features
 - $-x_1$ is area of house (in 1000ft.²)
 - x_2 is number of bedrooms
 - x_3 is 1 for condo, 0 for house
 - x_4 is zip code of address (62 values)
- we'll use p = 8 basis functions:
 - $-f_1(x) = 1, f_2(x) = x_1, f_3(x) = \max\{x_1 1.5, 0\}$
 - $f_4(x) = x_2, f_5(x) = x_3$
 - $f_6(x)$, $f_7(x)$, $f_8(x)$ are Boolean functions of x_4 which encode 4 groups of nearby zipcodes (*i.e.*, neighborhood)
- five fold model validation

	Model parameters							RMS error		
Fold	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7	θ_8	Train	Test
1	122.35	166.87	-39.27	-16.31	-23.97	-100.42	-106.66	-25.98	67.29	72.78
2	100.95	186.65	-55.80	-18.66	-14.81	-99.10	-109.62	-17.94	67.83	70.81
3	133.61	167.15	-23.62	-18.66	-14.71	-109.32	-114.41	-28.46	69.70	63.80
4	108.43	171.21	-41.25	-15.42	-17.68	-94.17	-103.63	-29.83	65.58	78.91
5	114.45	185.69	-52.71	-20.87	-23.26	-102.84	-110.46	-23.43	70.69	58.27