

The Matrix Stride

Generator

Het genereren van populaties

Werking

- · Steden en dorpen genereren
- Populatie genereren
- Clusters genereren
- Populatie toewijzen aan clusters

Aanpassingen

- Amount → fraction
- Populatiegrootte

Demo

Wat	Hoeveel	% Van de totale bevolking	
Inwonersaantal	6.444.127		
Actieven 20-65	2.740.495	±42.5 %	
Studenten 3-19	1.120.00	±16.8 %	
College 18-26	234.971	± 3.6% (±43 %)	
Studenten Totaal	1.355.455	±21 %	
Overig	1.667.509	±25.9 %	

TBB

Reken-intensieve for lussen parallelliseren

TBB

- Krachtige parallel algoritmen en container
- · Maar wel een oproepbaar object (functie) nodig
 - Een functie voor elke body van een for lus
- Dankzij lambda functie van C++11 heel eenvoudig
- Detectie via cmake

Keuze via command line

- stride -p tbb
- stride -p openmp

Keuze via configuratie file

```
<?xml version="1.0" encoding="utf-8"?>
<run>
    <rng_seed>1</rng_seed>
    <r0>11</r0>
    <seeding_rate>0.002</seeding_rate>
    <immunity_rate>0.8</immunity_rate>
    <population_file>pop_nassau.csv/population_file>
    <num_days>50</num_days>
    <output_prefix></output_prefix>
    <disease_config_file>disease_measles.xml</disease_config_file>
    <generate_person_file>1</generate_person_file>
    <num_participants_survey>10</num_participants_survey>
    <start_date>2017-01-01
    <holidays_file>holidays_none.json</holidays_file>
    <age_contact_matrix_file>contact_matrix_average.xml</age_contact_matrix_file>
    <log_level>Transmissions</log_level>
    <parallelliser>tbb</parallelliser>
</run>
```

TBB

- · Niet mogelijk om de huidige thread nummer op te vragen
 - geen gelijkaardige functie als omp_get_thread_num()!

```
const unsigned int thread = omp_get_thread_num();

// OpenMP
Infector<log_level, track_index_case, information_policy>::Execute(
    m_households[i], m_disease_profile, m_rng_handler[thread], m_calendar);

// TBB
Infector<log_level, track_index_case, information_policy>::Execute(
    m_work_clusters[i], m_disease_profile, m_rng_handler[m_rng_misc(m_num_threads)], m_calendar);
```

TBB vs OpenMP

TBB vs OpenMP

EN.	Seeding rate	Immunity rate	# days	Avg runtime OMP (ms)	Avg runtime TBB (ms)	Difference (OMP – TBB) (ms)
1	0.0	0.8	50	11259	10622	637
2	0.0	0.8	365	99396	83423	15973
3	0.0	0.8	100	44162	40975	3186
4	0,002	0.8	50	23815	21867	1948
5	0,002	0.1	365	264830	244539	20291
6	0,002	0.01	50	171418	167603	3814
7	0.1	0.8	50	111876	92101	19775
8	0.1	0.8	365	1240051	1222685	17366
9	0.2	0.8	365	630332	621974	8357

Conclusie

- Miniem verschil in gemiddelde runtime
- · Gemiddeld gezien TBB sneller in alle experimenten

Checkpointing

Het opslaan en herstarten van een reeds uitgevoerde simulatie

Checkpointing

- Gebruikmakend van HDF5
 - Krachtig formaat voor schrijven data
 - Snel gegevens opvragen
- Dagen worden voorgesteld als stappen
- · Geen "live" demos

Structuur

```
General
 Config
Step I
 Population
 Calendar
Step J
```

Opslaan van een checkpoint

- Frequentie
 - Dagelijks stride -o "checkpoint.h5" -w
 - Om het interval stride -o "checkpoint.h5" -w --checkpointinterval "5"

• Einde simulatie stride -o "checkpoint.h5" -w --checkpointonlylaststep

Opslaan van een checkpoint

- Compressie stride -o "checkpoint.h5" -w --checkpointcompress
 - Ingebouwd in HDF5
 - Deflate(Gzip)
- Probleem Kleine Populaties

Lezen van een checkpoint

- Van bepaalde dag starten stride -i "checkpoint.h5" -s 20
- Configuratie simulator stride -i "checkpoint.h5" -s 20 -checkpointuseconfigfiles

Multi Regio

- · Geen wijziging voor de gebruiker
 - Opslaan stride -o "checkpoints/checkpoint-multi.h5" -w -m "config/run_multi_default.xml"
 - Lezen stride -i "checkpoints/checkpoint-multi.h5" -s 3
- · Stappen opslaan onder regio's in één checkpoint file

Structuur

```
General
    Config
    Regio Info
Regio X
    General
        Config
    Step I
        Population
        Calendar
        Visitors
        Travellers
    Step J
```

Checkpoint Utility (CPU)

- Alle checkpoints files beschikbaar cpu —allfiles
- Checkpoint files splitsen cpu-splitregions "checkpoint.h5"
- · In een checkpoint file een overzicht van
 - Regio's cpu-allregions "checkpoint.h5"
 - Stappen cpu -allsteps -r 3 "checkpoint.h5"
 - Configuratie bestanden cpu-config [-r 3] "checkpoint.h5"
 - Compressie cpu -compression "checkpoint.h5"
- Individuele configuratie bestanden cpu-config -t holidays -r 3 "checkpoint.h5"

Multi Regio

Het coördineren van simulaties met meerdere regio's

Multi Regio

- · Simuleren van meerdere gesynchroniseerde regio's
 - Flight Step
 - Time Step (OpenMP of TBB)
 - Output Step
 - Print Step
- Shared memory met OpenMP
- Distributed memory met MPI

Aanpassingen

- Algemeen
 - Oplossen van bugs en memory leaks
 - Reizigersaantallen → populatie percentage
 - Bijhouden van reizigers voor performantie

Aanpassingen

- MPI
 - Opstarten van processen
 - Splitsen van log files per Simulator
 - Versturen van clusters

Demo

- Multi Threading
 - Simuleren van twee regio's (TBB vs OpenMP)
 - Heropstarten vanuit checkpoint
- MPI
 - · Infectie spreiding over regio's op één systeem

Checkpointing Multi Regio

- Fundamenten gebouwd
 - Schrijven van data verschillende nodes naar 1 coördinator
 - Splitsen van multi regio checkpoint files in coördinator naar nodes
- · Geen ondersteuning voor Multi Regio Checkpointing d.m.v. MPI
 - Niet genoeg getest geweest op betrouwbaarheid

Multi Regio Architectuur

Multi Regio Testen

- Unit
 - NoTrafficOnWeekend
 - TrafficOnMonday
 - CommutersAreActivePersons
 - TravellersEqualVisitors
 - CommutersReassignedToClusters
 - PopulationTransmission
 - CommutersBackHome

- Scenario
 - Multiregio_Transmissie

Visualizer

Het visueel weergeven van de simulatieresultaten

Demo

- · Delay checkpointing en multi-regio
- Niet volledig af
- · Single-regio simulatie en checkpointing files

