Value-at-Risk (b-2)

杨静平

北京大学数学学科学院金融数学系

2019年9月

Outline

- 1 多元模型
 - 为什么要简化协方差阵
 - 因子结构
 - Copula方法
 - 主成分分析法

多元模型

- 如果有N项资产,对应的N个风险因子。在很多情况下,把所有的 单个头寸都像风险因子那样计算是非常困难的,而且也没有必 要。
- ◆ 许多头寸都有一些相同的风险因子,在不丢失风险信息的前提下 整合成一个更小的新的因子集合。
- 在一般情况下, 会选择少于资产数目的风险因子。

本章将对这种简化法提供各种工具。 下面解释为什么需要简化协方差 矩阵,然后介绍因子模型,最后介绍如何使用copula方法。

Outline

- 多元模型
 - 为什么要简化协方差阵
 - 因子结构
 - Copula方法
 - 主成分分析法

为什么要简化协方差阵

- 在使用正态建模时,需要考虑相关系数矩阵。协方差的计算量会 很大,对于大型投资组合,操作很困难。
- 同时,矩阵的正定问题也是需要考虑的问题:观察到的样本数目少于资产的个数,或者资产之间线性相关时。
- 对于具有N个资产的组合,相关系数总计有 $\frac{N(N+1)}{2}$.

可以通过简化结构的方法来得到。每个因素都受一些共同因素的影响, 同时受自身数据的影响。具体可使用copula方法。

Outline

- 1 多元模型
 - 为什么要简化协方差阵
 - 因子结构
 - Copula方法
 - 主成分分析法

因子结构

简化

考虑到资产数目很多,简单的做法是假设两两资产之间具有相同的相关系数. 该方法过去简单。

对角模型

- 该模型假设所有资产的一般价格波动只与一个共同因子有关:例如股票市场指数。
- 某一股票的收益率 R_i 是通过市场的收益率 R_m 回归等式得到,不能解释的项为残差项 ϵ_i :

$$R_i = \alpha_i + \beta_i R_m + \epsilon_i.$$

并假设

$$E(\epsilon_i) = 0, E(\epsilon_i R_m) = 0, E(\epsilon_i \epsilon_j) = 0.$$

 $\beta_i R_m$ 被称为普通市场风险, ϵ_i 称为特殊风险。 β_i 是对市场因子的 偿口。 对于股票而言,当市场因子是股票市场指数时, β_i 也被称 做系统性风险。

根据前面的假设,有股票i的收益的方差可以表示为

$$\sigma_i^2 = Var(\beta_i R_m + \epsilon_i) = \beta_i^2 \sigma_m^2 + \sigma_{\epsilon,i}^2$$

以及

$$\sigma_{i,j} = cov(\beta_i R_m + \epsilon_i, \beta_j R_m + \epsilon_j) = \beta_i \beta_j \sigma_m^2$$

因此, 整个协方差矩阵可以表示为

$$\sum = \begin{pmatrix} \beta_1 \\ \cdots \\ \beta_N \end{pmatrix} \begin{pmatrix} \beta_1 & \cdots & \beta_N \end{pmatrix} \sigma_m^2 + \begin{pmatrix} \sigma_{\epsilon,1}^2 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \sigma_{\epsilon,N}^2 \end{pmatrix}$$
$$= \beta \beta' \sigma_m^2 + D_{\epsilon}.$$

由于 D_{ϵ} 为对角矩阵,参数数目从N(N+1)/2减少到2N+1.

可以利用上面的假设来计算组合的风险。

• 考虑投资组合 $R_p = \sum_{i=1}^N w_i R_i$. 则有

$$Var(R_p) = Var(w'R) = (w'\beta)(\beta'w)\sigma_m^2 + w'D_\epsilon w$$

• 第一项包含了 $\beta_p = w'\beta$, 为投资组合的 β 值; 第二项 是 $\sum_{i=1}^{N} w_i^2 \sigma_{\epsilon i}^2$.

当资产数目 $N \to \infty$ 时如果所有残差项都相同并且权重一样,则有投资组合的方差

$$Var(R_p) o (\beta_p \sigma_m^2)$$

这一简化模型被称为β模型。

例子

- 以三种股票为例, 分别是通用汽车、福特公司和惠普公司的股票。 下表给出按月收益百分比计算的全协方差矩阵。市场风 险 R_m 的方差为 $Var(R_m)=11.90$.
- 通过每种股票对美国股市指数进行回归估计得到简化,得到的β系数分别为 0.806,1.183,1.864.

协方差矩阵

	通用汽车	福特汽车	惠普公司
统计方法			
通用汽车	72.17		
福特公司	43.92	66.12	
惠普公司	26.32	44.31	90.41
回归			
β_i	0.806	1.183	1.864
$Var(R_i)$	72.17	66.12	90.41
$Var(\epsilon_i)$	64.44	49.46	49.10
$\beta_i^2 Var(R_m)$	7.73	16.65	41.32
对角模型			
通用汽车	72.17		
福特公司	11.35	66.12	
惠普公司	17.87	26.23	90.41

相关系数矩阵

	通用汽车	福特汽车	惠普公司
统计方法			
通用汽车	1		
福特公司	0.636	1	
惠普公司	0.326	0.573	1
回归			
$eta_{\pmb{i}}$			
$Var(R_i)$			
$\beta_i^2 Var(R_p)$			
对角模型			
通用汽车	1		
福特公司	0.164	1	
惠普公司	0.221	0.339	1

- 考虑对于这三种股票投资100万美元的投资组合的VaR.
- 选取的时间跨度为1个月, 置信水平为95%.
- 该表显示了四个协方差矩阵: 统计方法,对角模型,β模型和无分散化模型。其中,无分散化模型是在所有的相关系数都是1的情况下计算出来的。 统计方法给出了统计的计算结果,其他都是近似值。

	头寸(美元)	通用汽车	福特汽车	惠普公司	VaR
VaR (%)		14.01	13.41	15.68	
统计方法					
通用汽车	33.33	72.17	43.92	26.32	11.76
福特公司	33.33	43.92	66.12	44.31	
惠普公司	33.33	26.32	44.31	90.41	
对角模型					
通用汽车	33.33	72.17	11.35	17.87	10.13
福特公司	33.33	11.35	66.12	26.23	
惠普公司	33.33	17.87	26.23	90.41	

β模型					
通用汽车	33.33	7.73	11.35	17.88	7.30
福特公司	33.33	11.35	16.65	26.24	
惠普公司	33.33	17.88	26.24	41.32	
无分散化模型					
通用汽车	33.33	72.17	69.08	80.78	14.37
福特公司	33.33	69.08	66.12	77.32	
惠普公司	33.33	80.78	77.32	90.41	

- 几种方法计算得到的VaR分别为11.76, 10.13, 7.3, 14.37.
- 对角模型的结果虽然低估了真实的VaR, 但近似效果良好。
- β模型忽略了残差风险,较大的低估了真实的VaR。
- 无分散化的VaR远高于真实的VaR.

多因子模型

可以通过多因子的形式来研究:

$$R_i = \alpha_i + \beta_{i1}f_1 + \beta_{i2}f_2 + \cdots + \beta_{iK}f_K + \epsilon_i.$$

其中, R_1, \dots, R_N 是N项资产的收益率, 而 f_1, \dots, f_k 是相互独立的因子。

协方差矩阵可以得到更为复杂的结构:

$$\sum = \beta_1 \beta_1' \sigma_1^2 + \dots + \beta_k \beta_k' \sigma_k^2 + D_{\epsilon}.$$

考虑极限的情况, 有

$$Var(R_p) o (\beta_{1p}\sigma_1)^2 + \cdots + (\beta_{kp}\sigma_k)^2$$

选择公共因子的方法

- 第一种方法: 预先选出我们认为的公共因子,这需要我们对影响 收益率的市场和经济因子有很好的了解。
- 第二种方法: 把统计方法应用到协方差矩阵,从资产收益率本身 找出共同因子,通过合适的转换后,对这些共同因子给予经济意 义上的解释: 主成分分析法或因子分析法

在债券上的应用

某国家债券市场的到期日呈连续性, 到期日从一天到30年不等。 问题 在于,需要多少个VaR单元才能全面模拟该市场? 债券的价格 P是到期收益率y的非线性函数。 对y求导有

$$dP/P \sim -D^* \times dy$$
.

其中,*D**为债券修正久期。这样可以把债券到期收益率作为风险因子。

考虑债券的波动率, 有

$$\sigma(dP/P) = |D^*| \times \sigma(dy)$$

对于期限为T的零息债券的修正久期为

$$D^* = \frac{T}{1+y}$$

近似的有

$$VaR(dP/P) \sim |D^*| \times VaR(dy).$$

下表列举了美国国债市场中11种到期期限从1年到30年不等的零息债券的价格收益率的月VaR的值。假定服从正态分布。

美国债券风险(0.95置信水平的月VaR)

到期	债券价格收益率	到期	修正	到期收益率
期限	的VaR%	收益率%	久期	的VaR%
1	0.470	5.83	0.945	0.497
2	0.987	5.71	1.892	0.522
3	1.484	5.81	2.835	0.523
4	1.971	5.89	3.777	0.522
5	2.426	5.96	4.719	0.514
7	3.192	6.07	6.599	0.484
9	3.913	6.20	8.475	0.462
10	4.250	6.26	9.411	0.452
15	6.234	6.59	14.072	0.443
20	8.146	6.74	18.737	0.435
30	11.119	6.72	28.111	0.396
			4 □ →	→ □ → ← □ → ← □ →

美国国债的风险及相关性

到期期限	1年	2年	3年	4年	5年
1	1				
2	0.897	1			
3	0.866	0.991	1		
4	0.866	0.976	0.994	1	
5	0.855	0.966	0.988	0.988	1
7	0.825	0.936	0.965	0.982	0.990
9	0.796	0.909	0.942	0.964	0.975
10	0.788	0.903	0.937	0.959	0.971
15	0.740	0.853	0.891	0.915	0.930
20	0.679	0.791	0.832	0.860	0.878
30	0.644	0.761	0.801	0.831	0.853

美国国债的风险及相关性

到期期限	7年	9年	10年	15年	20年
7	1				
9	0.996	1			
10	0.994	0.999	1		
15	0.961	0.976	0.981	1	
20	0.919	0.942	0.951	0.991	1
30	0.902	0.931	0.943	0.975	0.981

因子结构 Copula方法 主成分分析法

多元模型

将主成分法应用后上表中的得到的结果:

为什么要简化协方差阵 因子结构 Copula方法 主成分分析法

到期期限	特征向量	特征向量	特征向量
(年)	β_1	β_2	eta_{3}
1	0.27	0.52	0.79
2	0.30	0.34	-0.17
3	0.31	0.26	-0.22
4	0.31	0.18	-0.26
5	0.31	0.13	-0.24
7	0.31	-0.01	-0.17
9	0.31	-0.10	-0.11
10	0.31	-0.13	-0.08
15	0.30	-0.28	0.11
20	0.29	-0.41	0.24
30	0.29	-0.47	0.24
平均值	0.30	0.00	0.01
特征值	10.104	0.662	0.156

到期期限	因子1	因子2	因子3	方差总贡献
1	72.2	17.9	9.8	99.8
2	89.7	7.8	0.5	98.0
3	94.3	4.5	0.7	99.5
4	96.5	2.2	1.0	99.7
5	97.7	1.1	0.9	99.7
7	98.9	0.0	0.4	99.3
9	98.2	0.7	0.2	99.1
10	98.1	1.2	0.1	
15	94.1	5.3	0.2	99.6
20	87.2	11.0	0.9	99.1
30	83.6	14.5	0.9	99.0
平均值	91.9	6.0	1.4	99.3

由第一个主要成分拟合的相关性矩阵

到期期限	1年	2年	3年	4年	5年
1	0.722				
2	0.805	0.897			
3	0.825	0.920	0.943		
4	0.835	0.931	0.954	0.965	
5	0.840	0.936	0.959	0.971	0.977
7	0.845	0.942	0.965	0.977	0.983
9	0.842	0.939	0.962	0.974	0.979
10	0.842	0.938	0.962	0.973	0.979
15	0.824	0.919	0.942	0.953	0.959
20	0.793	0.884	0.906	0.917	0.923
30	0.777	0.866	0.888	0.898	0.904

由第一个主要成分拟合的相关性矩阵

到期期限	7年	9年	10年	15年	20年	30年
7	0.989					·
9	0.985	0.982				
10	0.985	0.981	0.981			
15	0.965	0.961	0.961	0.941		
20	0.928	0.925	0.925	0.906	0.872	
30	0.909	0.906	0.906	0.887	0.854	0.836

太平洋投资管理公司的风险模型PIMCO

- 到期收益率的曲线水平;
- 2年期收益率和10年期收益率在收益率曲线上的斜率;
- 10年期收益率和30年期收益率在收益率曲线上的斜率;
- 抵押债券和国库券之间的价差
- 公司债券和国库券之间的价差
- 每种头寸都可以表示为对这些风险因子的敞口。

各种方法的比较

- 指数映射;
- β值映射;
- 行业映射;
- 对角映射;
- 单个映射。

Outline

- 多元模型
 - 为什么要简化协方差阵
 - 因子结构
 - Copula方法
 - 主成分分析法

Copula方法

下一章详细介绍

Outline

- 多元模型
 - 为什么要简化协方差阵
 - 因子结构
 - Copula方法
 - 主成分分析法

主成分分析法

- 有N个变量 R_1, \dots, R_N . 协方差矩阵为 \sum .
- 通过另一个矩阵 \sum^* 来近似 \sum ,来简化或减少 \sum 的维数。 目标是用 $Var^*(R_p) = w'\sum^* w$ 来提供一个投资组合 $R_p = w'R$ 方差的较好的 近似值.
- 该过程通过挑选合适的序列Z来代替 初始变量 $R = (R_1, \ldots, R_N)'$.

第一个主要成分是下面的线性组合,

$$Z_1 = \beta_{11}R_1 + \dots + \beta_{N1}R_N = \beta_1'R$$

其中的一个约束为

$$Var(Z_1) = \beta_1' \sum \beta_1 = \lambda_1$$

其中, λ_1 是矩阵的最大特征值,

$$\beta_1 = (\beta_{11}, \ldots, \beta_{N1})'$$

为一个单位向量.

第二个主要成分是下面的线性组合,

$$Z_2 = \beta_{12}R_1 + \cdots + \beta_{N2}R_N = \beta_2'R$$

$$\beta_2 = (\beta_{12}, \dots, \beta_{N2})$$

为一个单位向量, 并且与 β_1 正交。

且

$$Var(Z_2) = \beta_2' \sum \beta_2 = \lambda_2$$

其中, λ_2 是矩阵的第二大特征向量。

实际上,矩阵∑可以分解为

$$\sum = PDP' = (\beta_1 \cdots \beta_N) \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_N \end{pmatrix} \begin{pmatrix} \beta_1' \\ \cdots \\ \beta_N' \end{pmatrix}$$

其中,P是正交矩阵, 它的拟矩阵等于其转置 $P^{-1} = P'$. 则有

$$R_i = \beta_{i1}Z_1 + \cdots + \beta_{iN}Z_N.$$

如果只保留其中的前K项,则有

$$R_i = \beta_{i1}Z_1 + \cdots + \beta_{iK}Z_K.$$

实际上,矩阵 \sum^* 可以近似为

$$\sum^{*} \sim (\beta_{1} \cdots \beta_{K}) \begin{pmatrix} \lambda_{1} & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_{K} \end{pmatrix} \begin{pmatrix} \beta'_{1} \\ \cdots \\ \beta'_{K} \end{pmatrix}$$
$$= \beta_{1} \beta'_{1} \lambda_{1} + \beta_{2} \beta'_{2} \lambda_{2} + \cdots + \beta_{K} \beta'_{K} \lambda_{K}$$

$$R_{P} = \sum_{i} w_{i}R_{i}$$

$$\sim w_{1}(\beta_{11}Z_{1} + \dots + \beta_{1k}Z_{k}) + \dots + w_{N}(\beta_{N1}Z_{1} + \dots + \beta_{Nk}Z_{k})$$

$$= \sigma_{1}Z_{1} + \dots + \sigma_{k}Z_{k}.$$

对应的方差有

$$\sigma^{2}(R_{p}) = w' \sum_{k=0}^{\infty} w = w' \beta_{1} \beta'_{1} w \lambda_{1} + \dots + w' \beta_{K} \beta'_{K} w \lambda_{K}$$
$$= \sigma_{1}^{2} var(Z_{1}) + \dots + \sigma_{k}^{2} var(Z_{k}).$$