Лекция 9. Деревья. Остовные деревья. Кратчайшие остовные деревья. Алгоритм построения кратчайшего остовного дерева.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Дерево

Деревом называется связный граф без циклов.

Граф без циклов (без условия связности) называется лесом.

Отметим, что любая компонента связности леса является деревом.

Остовное дерево графа

Остовным деревом связного графа называется его остовный подграф, являющийся деревом.

Значит, D — остовное дерево графа G, если выполняются три свойства:

- 1) D остовный подграф, т. е. содержит все вершины графа G;
- 2) *D* связный граф;
- 3) *D* граф без циклов.

Остовные деревья

Предложение 9.1. В любом связном графе найдется остовное дерево.

Доказательство. Пусть G=(V,E) — связный граф, |V|=p.

Если D — остовное дерево графа G, то для D выполняются три свойства: остовность, связность и отсутствие циклов.

Покажем, что в графе G можно пошагово построить остовное дерево.

Остовные деревья

Доказательство. 1-й способ: поддерживаем остовность и связность, получаем отсутствие циклов.

Пусть H — какой-то остовный связный подграф графа G, например, сам граф G.

- 1) Если в подграфе H нет циклов, то он является остовным деревом графа G.
- 2) Иначе выберем в графе G произвольное ребро $e \in E$, принадлежащее какому-то циклу подграфа H. Повторим рассуждения 1–2 для остовного подграфа H-e, который также является связным.

На каждом шаге разрываем хотя бы один цикл графа G, а циклов конечное число, поэтому через конечное число шагов получим подграф без циклов. Он является остовным деревом D графа G.

Остовные деревья

Доказательство (2-й способ): поддерживаем остовность и отсутствие циклов, получаем связность.

Пусть H — какой-то остовный подграф графа G без циклов, например, пустой граф, содержащий все вершины графа G.

- 1) Если подграф H связный, то он является остовным деревом графа G.
- 2) Иначе выберем в графе G произвольное ребро $e \in E$, соединяющее какие-то вершины из разных компонент связности графа H. Повторим рассуждения 1–2 для остовного подграфа H+e, который также без циклов.

На каждом шаге добавляем одно ребро графа G, поэтому через (p-1) шагов получим связный подграф. Он является остовным деревом D графа G.

Остовные деревья

Доказательство (3-й способ): поддерживаем связность и отсутствие циклов, получаем остовность.

Пусть H — какой-то подграф графа G, являющийся деревом, например, подграф из одной вершины графа G.

- 1) Если подграф H остовный, то он является остовным деревом графа G.
- 2) Иначе выберем в графе G произвольное ребро $e \in E$, соединяющее какую-то вершину подграфа H с какой-то вершиной графа G, не принадлежащей подграфу H. Повторим рассуждения 1–2 для подграфа H+e, который также является деревом.

На каждом шаге добавляем одну вершину графа G, поэтому через (p-1) шагов получим остовный подграф. Он является остовным деревом D графа G.

Остовные деревья

Несложно увидеть, что для связного графа G его остовное дерево D, вообще говоря, не однозначно.

Кратчайшее остовное дерево

Граф G=(V,E) называется **взвешенным**, если задана функция весов $w:E\to\mathbb{R}_+$, которая ставит в соответствие каждому ребру $e\in E$ неотрицательное действительное число w(e), называемое весом этого ребра e.

Пусть G = (V, E) — взвешенный связный граф с функцией весов w и D = (V, E') — его остовное дерево, $E' \subseteq E$.

Тогда **весом** w(D) дерева D называется сумма весов всех его ребер, т. е. $w(D) = \sum_{e \in E'} w(e)$.

Остовное дерево D^* связного графа G называется **кратчайшим**, если его вес $w(D^*)$ является наименьшим среди весов всех остовных деревьев графа G.

Алгоритм построения кратчайшего остовного дерева

 $extit{Вход:}$ связный граф G=(V,E), |V|=p, |E|=q, функция весов $w:E o\mathbb{R}_+.$

Bыход: какое-то кратчайшее остовное дерево $D^* = (V, E^*)$ графа $G, E^* \subseteq E$.

Описание алгоритма.

- 1. Положить: $H_1=(V_1,E_1)$, где $V_1=\{v\},\ v\in V$ произвольная вершина, $E_1=\emptyset$.
- 2. Цикл: для всех $i=1,\ldots,p-1$ повторить:

выбрать произвольное ребро $e_i \in E$ наименьшего веса в множестве

$${e = (v, w) \in E \mid v \in V_i, w \in V \setminus V_i},$$

где $e_i = (v_i, w_i) \in E$, $v_i \in V_i$, $w_i \in V \setminus V_i$, и положить

$$H_{i+1} = (V_{i+1}, E_{i+1}),$$

где
$$V_{i+1} = V_i \cup \{w_i\}, \ E_{i+1} = E_i \cup \{e_i\}.$$

3. Положить $D^* = H_n$.

Окончание описания алгоритма.

$$w(D^*) = 16$$

Теорема 9.1. Предложенный выше алгоритм для заданного графа G и для заданной функции весов w находит какое-то кратчайшее дерево D^* графа G.

Доказательство. Пусть алгоритм строит граф $D^* = (V, E^*)$, $E^* \subseteq E$.

1. Сначала покажем, что граф D^* — остовное дерево графа G.

Действительно, начинаем с дерева H_1 , состоящего из одной вершины. На каждом шаге добавляем одну вершину и одно ребро, получая дерево H_{i+1} , $i=1,\ldots,p-1$. Дерево $H_p=D^*$ содержит p вершин, поэтому является остовным.

Доказательство. 2. Теперь покажем, что граф D^* — кратчайшее остовное дерево графа G.

Пусть D' = (V, E'), $E' \subseteq E$, — какое-то кратчайшее остовное дерево графа G.

Пусть при построении дерева D^* ребра добавлялись в следующем порядке: $e_1, e_2, \ldots, e_{p-1}$.

Пусть k — такое число, $1 \leqslant k \leqslant p$, что ребра e_1, \ldots, e_{k-1} принадлежат дереву D', т. е. $e_1, \ldots, e_{k-1} \in E'$, а ребро e_k не принадлежит дереву D', т. е. $e_k \notin E'$.

Если k=p, то $D^*=D'$, и все доказано.

Доказательство. Пусть k < p. Рассмотрим дерево $H_k = (V_k, E_k)$, $E_k = \{e_1, \dots, e_{k-1}\} \subseteq E$, полученное при применении алгоритма. Пусть $e_k = (v_k, w_k) \in E$, где $v_k \in V_k$, $w_k \in V \setminus V_k$.

Заметим, что H_k является поддеревом дерева D'.

В дереве D' найдется простая (v_k, w_k) -цепь P.

Пусть $e'=(v',w')\in E'$ — первое такое ребро этой цепи при движении от вершины v_k к вершине w_k , что $v'\in V_k$, $w'\in V\setminus V_k$. При этом $e'\neq e_k$.

Отметим, что $w(e_k) \leqslant w(e')$, т. к. иначе при применении алгоритма к дереву H_k было бы добавлено ребро e' (а не ребро e_k).

Доказательство. Рассмотрим подграф $G' = D' + e_k$.

Граф G' содержит ровно один цикл

$$C = v_k P_1 e' P_2 w_k e_k v_k,$$

где P_1 и P_2 — части, на которые ребро e' разбивает цепь P, причем $v_k P_1 v'$ — простая цепь в дереве H_k .

Значит, подграф H = G' - e' является связным и не содержит циклов.

Доказательство. Итак, H — остовный связный подграф без циклов. Значит, H — остовное дерево графа G.

Кроме того,

$$w(H) = w(D') - w(e') + w(e_k) \leqslant w(D'),$$

т. к. $w(e_k) \leqslant w(e')$. Но D' — кратчайшее дерево, поэтому w(H) = w(D').

Таким образом, построили кратчайшее остовное дерево H, у которого с остовным деревом D^* совпадает уже не менее k первых добавляемых по алгоритму ребер.

Повторим рассуждения, положив D' = H.

Через конечное число повторов получим, что D^* — кратчайшее остовное дерево графа G.

Задачи для самостоятельного решения

- 1. Опишите алгоритмы построения кратчайшего остовного дерева взвешенного связного графа по 1-му и 2-му способам нахождения остовного дерева в связном графе. Обоснуйте правильность полученных алгоритмов.
- 2. Оцените сложность алгоритма построения кратчайшего остовного дерева через число вершин p и число ребер q исходного графа G (в зависимости от способа представления графа G).

Литература к лекции

1. Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Либроком, 2009. С. 53–55, 334–342.