

1. Features

- Core
 - 32-bit ARM® Cortex® M0+ CPU
 - Up to 32 MHz operating frequency
- Memories
 - Maximum 32 Kbytes of flash memory
 - Up to 4 Kbytes SRAM
- Clock system
 - Internal 4 /8/16/ 22.12 / 24 MHz RC Oscillator (HSI)
 - Internal 32.768 KHz RC oscillator (LSI)
 - 4 to 32 MHz crystal oscillator (HSE)
- Power management and reset
 - Operating voltage: 1.7V to 5.5V
 - Low power modes: Sleep and Stop
 - Power-on/Power-down reset (POR/PDR)
 - Brownout Detect Reset (BOR)
 - Programmable Voltage Detection (PVD)
- General purpose input and output (I/O)
 - Up to 18 I/Os, all available as external interrupts
 - Driver current 8mA
- 3-channel DMA controller
- 1 x 12-bit ADC
 - Supports up to 10 external input channels
 - Input voltage conversion range: 0 ~ VCC

■ Timer

- A 16bit advanced control timer (TIM1)
- 4 general purpose 16-bit timers(TIM3/TIM14/TIM16/TIM17)
- A low-power timer (LPTIM), supports wakeup from stop mode
- An Independent Watchdog Timer (IWDT)
- A Window Watchdog Timer (WWDT)
- A SysTick timer
- A IRTIM
- RTC
- Communication Interface
 - A Serial Peripheral Interface (SPI)
 - Two Universal Synchronous / Asynchronous
 Transceivers (USARTs) with automatic baudrate detection
 - A I2C interface , supports standard mode (100 kHz) , Fast mode (400 kHz) , supports 7-bit addressing mode
- Hardware CRC-32 module
- Two comparators
- Unique UID
- Serial wire debug (SWD)
- Working temperature: -40 to 85°C
- Package: TSSOP20, QFN 20

Content

1.	F	eature	S	1
2.	Int	troduc	tion	4
3.	Fu	ınctio	nal overview	6
	3.1.	Arm	®Cortex®-M0+ core	6
	3.2.	Mer	nories	6
	3.3.		t mode	
	3.4.	Clo	ck System	7
	3.5.	Pow	ver management	
	3.5	5.1.	Power block diagram	
	3.5	5.2.	Power monitoring	
	3.5	5.3.	Voltage regulator	
	3.5	5.4.	Low power mode	10
	3.6.	Res	et	
	3.6	5.1.	Power reset	10
	3.6	5.2.	System reset	
	3.7.		neral-purpose input and output (GPIOs)	
	3.8.		Α	
	3.9.	Inte	rrupt	
	3.9	9.1.	Interrupt controller NVIC	11
	3.9	9.2.	Extended interrupt/event controller (EXTI)	12
	3.10.		nalog to digital converter (ADC)	
	3.11.	. Т	imer	13
	3.1	11.1.	Advanced timer	
	3.1	11.2.	General-purpose timer	13
	3.1	11.3.	Low power timer (LPTIM)	
	3.1	11.4.	IWDG	14
	3.1	11.5.	WWDG	15
	3.1	11.6.	SysTick timer	15
	3.12.	R	eal time clock (RTC)	15
	3.13.	. 12	2C interface	15
	3.14.	U	niversal synchronous asynchronous recevicer/ transmitter (USART)	16
	3.15.	S	erial peripheral interface (SPI)	17
	3.16.	S	WD	18
4.	Pi	n conf	iguration	19
	4.1.	Port	A multiplexing function mapping	23
	4.2.	Port	B multiplexing function mapping	24
	4.3.	Port	F multiplexing function mapping	24
5.	Me	emory	Мар	25
6.	Ele	ectrica	al characteristics	29

6	i.1. Tes	t conditions	29
	6.1.1.	Min and Max	29
	6.1.2.	Typical value	29
6	.2. Abs	olute maximum ratings	29
6	.3. Ope	erating conditions	30
	6.3.1.	General operating conditions	30
	6.3.2.	Power on and down operating conditions	30
	6.3.3.	Embedded reset and LVD module features	30
	6.3.4.	Operating current characteristics	31
	6.3.5.	Low power mode wake-up time	33
	6.3.6.	External clock source characteristics	33
	6.3.7.	Internal high frequency clock source HSI characteristics	34
	6.3.8.	Internal low frequency clock source LSI characteristics	35
	6.3.9.	Memory characteristics	35
	6.3.10.	EFT characteristics	35
	6.3.11.	ESD & LU Characteristics	36
	6.3.12.	Port characteristics	36
	6.3.13.	NRST pin characteristics	36
	6.3.14.	ADC characteristics	37
	6.3.15.	Comparator characteristics	37
	6.3.16.	Temperature sensor characteristics	38
	6.3.17.	Timer features	39
	6.3.18.	Communication port characteristics	40
7.	Package	e information	43
7	.1. QFI	N20 package information	43
7	.2. TSS	SOP20 package information	44
8.	Ordering	g Information	45
0	Version	history	16

2. Introduction

PY32F003 series microcontrollers are MCUs with high performance 32 - bit ARM® Cortex® -M0 + core, wide voltage operating range. It has embedded up to 32 Kbytes flash and 4 Kbytes SRAM memory, a maximum operating frequency of 32 MHz, and contains various products in different package types. The chip integrates multi-channel I2C, SPI, USART and other communication peripherals, one channel 12bit ADC, five 16bit timers, and two-channel comparators.

PY32F003 series microcontrollers are -40 °C ~ 85 °C, and the operating voltage range is 1.7V ~ 5.5V. The chip provides sleep and stop low-power operating modes from meeting different low-power applications.

The PY32F003 series of microcontrollers are suitable for various application scenarios, such as controllers, portable devices, PC peripherals, gaming and GPS platforms, industrial applications.

Table 2-1 PY32F003 series product features and peripheral counts

Peripherals		PY32	F003FxxP	PY32F003FxxU					
		F x 4	Fx6	F x 4	Fx6				
Flash	memory (Kbyte	es) 16	32	16	32				
SF	RAM (Kbytes)	2	4	2	4				
	Advanc Time	•	1 (16-bit)					
	Genera pupos timer	e	4 (16-bit)						
Time	er low pow timer			1					
	RTC			1					
	SysTic	:k	1	1					
	Watchd	og	2						
Comu			1						
catio			1						
Por	t USAR	T	2						
	DMA		3ch						
	RTC		Yes						
	niversal port		18						
	er of ADC cha nels ernal + internal		8+2						
	Comparators	,	2						
High	nest frequency		32MHz						
Ope	erating Voltage		1.7~5.5V						
	Internal HS	il	4/8/16/22.12/24MHz						
Clock	Internal LS	I	32.768KHz						
	External HS	E	4~32MHz						
	Package	TS	SOP20	QFI	N20				

Figure 2-1 Functional Module

3. Functional overview

3.1. Arm®Cortex®-M0+ core

Arm ® The Cortex ® - M0+ is an entry-level 32-bit Arm Cortex processor designed for a wide range of embedded applications. It provides developers with significant benefits, including:

- Simple structure, easy to learn and program
- Ultra-low power consumption, energy-saving operation
- Reduced code density and more

Cortex-M0+ processor is a 32-bit core optimized for area and power consumption and is a 2-stage pipeline Von Neumann architecture. The processor offers high-end processing hardware, including single-cycle multipliers, through a streamlined but powerful instruction set and an extensively optimized design. Moreover, it delivers the superior performance expected from a 32-bit architecture computer, with a higher coding density than other 8 and 16-bit microcontrollers.

The Cortex-M0+ is tightly coupled with a Nested Vectored Interrupt Controller (NVIC).

3.2. Memories

The on-chip integrated SRAM is accessed by bytes (8 bits), half-word (16bits) or word (32bits).

The on-chip integrated Flash consists of two different physical areas:

- Main flash area, which contains application and user data
- The information area has 4K bytes, and it includes the following parts:
 - Option bytes
 - UID bytes
 - System memory

The protection of Flash main memory includes the following mechanisms:

- Read protection(RDP) prevents access from outside.
- Write protection (WRP) control prevents unwanted writes (confuse by program memory pointer from PC). The minimum protection unit for write protection is 4K bytes.
- Option byte write protection, special unlocking design.

3.3. Boot mode

Through BOOT0 pin and boot configuration bit nBOOT1 (stored in Option bytes), three different boot modes can be selected, as shown in the following table:

Table 3-1Boot configuration

Boot mode	configuration	Mode		
nBOOT1 bit	BOOT0 pin			
X	0	Select Main flash as the boot area		
1	1	Select System memory as the boot area		

0	Select SRAM as the boot area
---	------------------------------

The Boot loader program is stored in the System memory and used to download the Flash program through the USART interface.

3.4. Clock System

After the CPU starts, the default system clock frequency is HSI 8 MHz, and the system clock frequency and system clock source can be reconfigured after the program runs. The high frequency clocks that can be selected are:

- A 4 /8/16/ 22.12/ 24 MHz configurable internal high precision HSI clock.
- A 32.768 KHz configurable internal LSI clock.
- 4 ~ 32 MHz HSE clock can enable the CSS function to detect HSE. If CSS fails, the hardware will automatically convert the system clock to HSI, and software configures the HSI frequency. Simultaneously, CPU NMI interrupt is generated.

The AHB clock can be divided based on the system clock, and the APB clock can be divided based on the AHB clock. AHB and APB clock frequencies up to 32 MHz.

Figure 3-1 System Clock Structure Diagram

3.5. Power management

3.5.1. Power block diagram

Figure 3-2 Power Block Diagram

Table 3-2 Power Block Diagram

Serial number	Power supply	Power value	Describe		
1	VCC	1.7v ~ 5.5v	The chip is supplied with power through the power pins, and its power supply module is part of the analogue circuit.		
2	2 VCCA 1.7v ~ 5.5v		Power to most analogue modules from VCC PAD (a separate power supply PAD can also be designed).		
3	VCCIO	1.7v ~ 5.5v	Power supply to IO, from VCC PAD		
4	VDD	1.2v/1.0v ± 10 %	VR supplies power to the main logic circuits and SRAM inside the chip. When the MR is powered, it outputs 1.2v. According to the software configuration, entering the stop mode can be powered by MR or LPR, and the LPR output is determined to be 1.2v or 1.0v.		

3.5.2. Power monitoring

3.5.2.1. Power on reset (POR/PDR)

The Power on reset (POR)/Power down reset (PDR) module is designed to provide power-on and power-off reset for the chip. The module keeps working in all modes.

3.5.2.2. Brown-out reset (BOR)

In addition to POR/ PDR, BOR (brown-out reset) is also implemented. BOR can only be enabled and disabled through the option byte.

When the BOR is turned on, the BOR threshold can be selected by the Option byte, and both the rising and falling detection points can be configured individually.

Figure 3-3 POR/PDR/BOR threshold

3.5.2.3. Voltage detection (PVD)

Programmable Voltage Detector (PVD) module can be used to detect the VCC power supply (it can also detect the voltage of the PB7 pin), and the detection point can be configured through the register. When VCC is higher or lower than the detection point of PVD, a corresponding reset flag is generated.

This event is internally connected to line 16 of EXTI, depending on the rising/falling edge configuration of EXTI line 16. When VCC rises above the PVD detection point, or VCC falls below the PVD detection point, an interrupt is generated. In the service program, users can perform urgent shutdown tasks.

Figure 3-4 PVD Threshold

3.5.3. Voltage regulator

The chip designs two voltage regulators:

- MR (Main regulator) keeps working when the chip is in normal operating state.
- LPR (Low power regulator) provides a lower power consumption option in stop mode.

3.5.4. Low power mode

In addition to the normal operating mode, the chip has 2 low-power modes:

- Sleep mode: Peripherals can be configured to keep working when the CPU clock is off (NVIC, SysTick, etc.). It is recommended only to enable the modules that must work, and close the module after the module works.
- **Stop mode**: In this mode, the contents of SRAM and registers are maintained, HSI and HSE are turned off, and most modules of clocks in the VDD domain are stopped. GPIO, PVD, COMP output, RTC and LPTIM can wake up stop mode.

3.6. Reset

Two resets are designed in the chip: power and system reset.

3.6.1. Power reset

A power reset occurs in the following situations:

- Power on reset (POR/PDR)
- Brown-out reset (BOR)

3.6.2. System reset

A system reset occurs when the following events occur:

- Reset of NRST pin
- Windowed Watchdog Reset (WWDG)
- Independent Watchdog Reset (IWDG)
- SYSRESETREQ software reset
- Option byte load reset (OBL)
- Power reset (POR/PDR, BOR)

3.7. General-purpose input and output (GPIOs)

The software configures each GPIO as output (push-pull or open-drain), input (floating, pull-up/down, analogue), peripheral multiplexing function, and locking mechanism freeze I/O port configuration function.

3.8. DMA

Direct Memory Access (DMA) provides high-speed data transfer between peripherals and memory or between memory and memory.

DMA controller has three channels, and each channel is responsible for managing memory access requests from one or more peripherals. The DMA controller includes an arbiter for handling DMA requests for each DMA request's priority..

DMA supports circular buffer management, eliminating the need for user code to intervene when the controller reaches the end of the buffer.

Each channel is directly connected to a dedicated hardware DMA request, and each channel also supports software triggering. These functions are configured through software.

DMA is available for peripherals: SPI, I2C, USART, all TIMx timers (except TIM14 and LPTIM) and ADC.

3.9. Interrupt

The PY32F003 handles exceptions through the Cortex-M0+ processor's embedded Vectored Interrupt Controller (NVIC) and an Extended Interrupt/Event Controller (EXTI).

3.9.1. Interrupt controller NVIC

NVIC is a tightly coupled IP inside the Cortex-M0+ processor. The NVIC can handle NMI (Non-Maskable Interrupts) and maskable external interrupts from outside the processor and Cortex-M0+ internal exceptions. NVIC provides flexible priority management.

The tight coupling of the processor core to the NVIC greatly reduces the delay between an interrupt event and the initiation of the corresponding interrupt service routine (ISR). The ISR vectors are listed in a vector table,

stored at a base address of the NVIC. The vector table base address determines the vector address of the ISR to execute, and the ISR is used as the offset composed of serial numbers.

If a high-priority interrupt event occurs and a low-priority interrupt event is just waiting to be serviced, the laterarriving high-priority interrupt event will be serviced first. Another optimization is called tail-chaining. When returning from a high-priority ISR and then starting a pending low-priority ISR, unnecessary pushes and pops of processor contexts will be skipped. This reduces latency and improves power efficiency.

NVIC features:

- Low latency interrupt handling
- Level 4 Interrupt Priority
- Supports one NMI interrupt
- Supports 32 maskable external interrupts
- Supports 10 Cortex-M0+ exceptions
- High-priority interrupts can interrupt low-priority interrupt responses
- Support tail-chaining optimization
- Hardware Interrupt Vector Retrieval

3.9.2. Extended interrupt/event controller (EXTI)

EXTI adds flexibility to handle physical wire events and generates wake-up events when the processor wakes up from stop mode.

The EXTI controller has multiple channels, including a maximum of 16 GPIOs, 1 PVD output, 2 COMP outputs, RTC and LPTIM wake-up signals. GPIO, PVD and COMP can be configured to be triggered by a rising edge, falling edge or double edge. Any GPIO signal can be configured as EXTI0 ~ 15 channel through the select signal. Each EXTI line can be independently masked through registers.

The EXTI controller can capture pulses shorter than the internal clock period.

Registers in the EXTI controller latch each event. Even in stop mode, after the processor wakes up from stop mode, it can identify the wake-up source or identify the GPIO and event that caused the interrupt.

3.10. Analog to digital converter (ADC)

The chip has a 12-bit SARADC. The module has up to 10 channels to be measured, including 8 external channels and 2 internal channels.

The conversion mode of each channel can be set to single, continuous, sweep, discontinuous mode. Conversion results are stored in left or right-aligned 16-bit data registers.

An analogue watchdog allows the application to detect if the input voltage exceeds a user-defined high or low threshold.

The ADC has been implemented to operate at a low frequency, resulting in lower power consumption.

At the end of sampling, conversion, and continuous conversion, an interrupt request is generated when the conversion voltage exceeds the threshold when simulating the watchdog.

3.11. Timer

The characteristics of different timers of PY32F003 are shown in the following table:

Table 3-3 Timer Features

Types	Timer	Bit Width	Counting Direction	Prescaler	DMA	Capture /compare channel	Comple- mentary output
Advanced Timer	TIM1	16 bit	superior, Down, center aligned	1 ~ 65536	support	4	3
General purpose	TIM3	16-bit	superior, Down, center aligned	1 ~ 65536	support	4	-
timer	TIM14	16-bit	superior	1 ~ 65536	-	1	-
	TIM16, TIM17	16-bit	superior	1 ~ 65536	support	1	1

3.11.1. Advanced timer

The advanced timer (TIM1) consists of a 16-bit auto-reload counter driven by a 16-bit programmable prescaler. It can be used in various scenarios, including pulse length measurement of input signals (input capture) or generating output waveforms (output compare, output PWM, complementary PWM with dead-time insertion).

TIM1 includes 4 independent channels:

- Input capture
- Output comparison
- PWM generation (edge or center-aligned mode)
- Single pulse mode output

If TIM1 is configured as a standard 16-bit timer, it has the same characteristics as the TIMx timer. Full modulation capability (0-100%) if configured as a 16-bit PWM generator.

In the MCU debug mode, TIM1 can freeze counting.

The timer feature with the same architecture is shared so that the TIM1 can work with other timers for synchronization or event chaining through the timer chaining function.

TIM1 supports the DMA function.

3.11.2. General-purpose timer

3.11.2.1. TIM3

The general-purpose timer TIM3 consists of a 16-bit auto-reload counter driven by a 16-bit programmable prescaler. It has 4 independent channels, each for input capture/output compare, PWM or single pulse mode output.

TIM3 can work with TIM1 through the timer link function.

TIM3 supports the DMA function.

The TIM3 can process quadrature (incremental) encoder signals and digital outputs from 1 to 3 Hall Effect Sensors.

In the MCU debug mode, the TIM 3 can freeze counting.

3.11.2.2. TIM14

The general-purpose timer TIM14 consists of a 16-bit auto-reload counter driven by a 16-bit programmable prescaler.

TIM14 has one independent channel for input capture/output compare, PWM or single pulse mode output.

In the MCU debug mode, the TIM14 can freeze counting.

3.11.2.3. TIM16/TIM17

The general-purpose timer TIM16 and TIM17 consists of a 16-bit auto-reload counter driven by a 16-bit programmable prescaler.

TIM16/TIM17 have 1 independent channel for input capture/output compare, PWM or single pulse mode output.

TIM16/TIM17 have one independent channel for input capture/output compare, PWM or single pulse mode output.

TIM16/TIM17 have complementary outputs with dead time.

TIM16/TIM17 supports the DMA function.

In the MCU debug mode, TIM 16/TIM17 can freeze counting.

3.11.3. Low power timer (LPTIM)

LPTIM is a 16 -bit up counter with a 3-bit prescaler and only support a single count.

LPTIM can be configured as a stop mode wakeup source.

In the MCU debug mode, LPTIM can freeze the count value.

3.11.4. IWDG

Independent watchdog (IWDG) is integrated in the chip, and this module has the characteristics of high-security level, accurate timing and flexible use. IWDG finds and resolves functional confusion due to software failure and triggers a system reset when the counter reaches the specified timeout value.

The IWDG is clocked by LSI, so even if the main clock fails, it can keep working.

IWDG is the best suited for applications that require the watchdog as a standalone process outside of the main application and do not have high timing accuracy constraints.

Controlling of option byte can enable IWDG hardware mode.

IWDG is the wake-up source of stop mode, which wakes up stop mode by reset.

In the MCU debug mode, IWDG can freeze the count value.

3.11.5. WWDG

The system window watchdog is based on a 7-bit down counter and can be set to free-run. It acts as a watchdog to reset the system when a failure shows. The count clock is the APB clock (PCLK). It has early warning interrupt capability, and the counter can be freeze in the MCU debug mode.

3.11.6. SysTick timer

SysTick counters are specifically for real-time operating systems (RTOS) also can use as standard down counters.

SysTick Features:

- 24-bit count down
- Self-loading capability
- An interrupt can be generated when the counter reaches 0 (maskable)

3.12. Real time clock (RTC)

The real-time clock is an independent timer. It has a set of continuous counting counters, which can provide a clock calendar function under the corresponding software configuration. Modifying the value of the counter can reset the current time and date of the system.

RTC is a 32-bit programmable counter with a prescale factor of up to 220 bits.

The RTC counter clock source can be LSI and the stop wake-up source.

RTC can generate alarm interrupt, second interrupt and overflow interrupt (maskable).

RTC supports clock calibration.

In the MCU debug mode, RTC can freeze counting.

3.13. I2C interface

I2C (inter-integrated circuit) bus interface connects the microcontroller and the serial I2C bus. It provides multi-master capability and controls all I2C bus specific sequences, protocols, arbitration and timing. Standard (Sm) and fast (Fm) are supported.

I2C Features:

- Slave and master mode
- Multi-host function: can be master or slave
- Support different communication speeds
 - Standard Mode (Sm): Up to 100 kHz
 - Fast Mode (Fm): up to 400 kHz
- As master

- Generate Clock
- Generation of Start and Stop
- As slave
 - Programmable I2C address detection
 - Discovery of the Stop bit
- 7-bit addressing mode
- General call
- Status flag
 - Transmit/receive mode flags
 - Byte transfer complete flag
 - > I2C busy flag bit
- Error flag
 - Master a rbitration loss
 - ACK failure after address/data transfer
 - Start/Stop error
 - Overrun/Underrun (clock stretching function disable)
- Optional Clock Stretching
- Single-byte buffer with DMA capability
- Software reset
- Analogue noise filter function

3.14. Universal synchronous asynchronous recevicer/ transmitter (USART)

PY32F003 contains 2 USARTs with precisely the same functions.

The Universal Synchronous Asynchronous Transceiver (USART) provides a flexible method for full-duplex data exchange with external devices using the industry-standard NRZ asynchronous serial data format. The USART utilizes a fractional baudrate generator to provide a wide range of baudrate options.

It supports simultaneous one-way communication and half-duplex single-wire communication, and it also allows multi-processor communication.

Automatic baudrate detection is supported.

High-speed data communication can be achieved by using the DMA method of the multi-buffer configuration.

USART features:

- Full-duplex asynchronous communication
- NRZ standard format
- Configurable 16 times or 8 times oversampling for increased flexibility in speed and clock tolerance
- Programmable baudrate shared by transmit and receive, up to 4.5Mbit/s
- Automatic baudrate detection
- Programmable data length of 8 or 9 bits
- Configurable stop bits (1 or 2 bits)

- Synchronous mode and clock output function for synchronous communication
- Single-wire half-duplex communication
- Independent transmit and receive enable bits
- Hardware flow control
- Receive/transmit bytes by DMA buffer
- Detection flag
 - Receive full buffer
 - Send empty buffer
 - > End of transmission
- Parity Control
 - Send check digit
 - Check the received data
- Flagged interrupt sources
 - CTS change
 - Send empty register
 - Send completed
 - > Receive full data register
 - Bus idle detected
 - Overflow error
 - Frame error
 - Noise operation
 - Error detection
- Multiprocessor communication
 - > If the address does not match, enter silent mode
- Wake-up from silent mode: by idle detection and address flag detection

3.15. Serial peripheral interface (SPI)

PY32F003 contains one SPI.

Serial Peripheral Interface (SPI) allows the chip to communicate with external devices in half-duplex, full-duplex, and simplex synchronous serial communication. This interface can be configured in master mode and provides the communication clock (SCK) for external slave devices. The interface can also work in a multi-master configuration.

The SPI features are as follows:

- Master or slave mode
- 3 -wire full-duplex simultaneous transmission
- 2-wire half-duplex synchronous transmission (with bidirectional data line)
- 2-wire simplex synchronous transmission (no bidirectional data line)
- 8-bit or 16-bit transmission frame selection
- Support multi-master mode

- 8 master mode baudrate prescaler factors (max fPCLK/ 4)
- Slave mode frequency (max fPCLK/4)
- Both master and slave modes can be managed by software or hardware NSS: dynamic change of master/slave operating mode
- Programmable clock polarity and phase
- Programmable data order, MSB first or LSB first
- Dedicated transmit and receive flags that can trigger interrupts
- SPI bus busy status flag
- Motorola mode
- Interrupt-causing master mode faults, overloads
- Two 32-bit Rx and Tx FIFOs with DMA capability

3.16. SWD

The ARM SWD interface allows serial debugging tools to be connected to the PY32F003.

4. Pin configuration

Figure 4-1QFN20 pinout2 PY32F003F1xU

Figure 4-2TSSOP20 pinout2 PY32F003F1 xP

Table 4-1 Pin definition terminology and symbols

Types	Symbol	Definition
	S	Supply pin
Don't town	G	Ground p in
Port type	I/O	Input/output pin
	NC	Undefined
	COM	5V port, support analogue input and output function
Port structure	RST	Reset port, with internal weak pull-up resistor, does not support analog input and output function
Notes		Unless other specified, all ports are used as floating inputs between and after reset

Port	Multi- plexing function	Function selected by GPIOx_AFR register
function	Addi- tional features	Directly selected or enabled through peripheral registers

Table 4-2QFN20/TSSOP20 pin definition

Package type				<u>e</u>		Port function		
QFN20 F1	TSSOP20 F1	Port type Notes		Multiplexing function	Additional features			
13	16	PF0-OSC_IN- (PF0)	I/O	СОМ		USART2_RX TIM14_CH1 USART1_RX USART2_TX I2C_SDA	OSC_IN	
14	17	PF1-OSC_OUT- (PF1)	I/O	СОМ		USART2_TX USART1_TX USART2_RX I2C_SCL SP1_NSS TIM14_CH	OSC_OUT	
15	18	PF2-NRST	I/O	RST	(1)	MCO USART2_RX	NRST	
16	19	PAO	I/O	СОМ		USART1_CTS USART2_CTS COMP1_OUT TIM1_CH3 TIM1_CH1N SPI1_MISO USART2_TX IR_OUT	ADC_IN0 COMP1_INM	
17	20	PA1	I/O	СОМ		SPI1_SCK USART1_RTS USART2_RTS EVENTOUT SPI1_MOSI USART2_RX TIM1_CH4 TIM1_CH2N MCO	COMP1_INP ADC_IN1	
18	1	PA2	I/O	COM		SPI1_MOSI	j l	

1 1	1	1	1	I	1		I
						USART1_TX	
						USART2_TX	
						LPUART_TX	COMP2_INM
						COMP2_OUT	ADC_IN2
						SPI1_SCK	_
						TIM3_CH1	
						I2C_SDA	
						USART1_RX	
						USART2_RX	
19	2	PA3	I/O	СОМ		EVENTOUT	COMP2_INP
13	2	1 73	1/0	COIVI		SPI1_MOSI	ADC_IN3
						TIM1_CH1	
						I2C_SCL	
						SPI1_NSS	
						USART1_CK	*
						TIM14_CH1	
20	2	DA4	1/0	COM		USART2_CK	ADC INA
20	3	PA4	I/O	СОМ		ENENTOUT	ADC_IN4
						RTC_OUT	
						TIM3_CH3	
						USART2_TX	
						SPI1_SCK	
			1/0	СОМ		LPTIM_ETR	ADC_IN5
1	4	PA5				EVENTOUT	
'	4	PAS	I/O	COM		TIM3_CH2	ADC_INS
						USART2_RX	
						MCO	
						SPI1_MISO	
						TIM3_CH1	
						TIM1_BKIN	
						TIM16_CH1	
2	5	PA6	I/O	COM		EVENTOUT	ADC_IN6
						LPUART_CTS	
						COMP1_OUT	
						USART1_CK	
						RTC_OUT	
					_	SPI1_MOSI	
						TIM3_CH2	
						TIM1_CH1N	
						TIM14_CH1	
3	6	PA7	I/O	СОМ		TIM17_CH1	ADC_IN7
						EVENTOUT	
						COMP2_OUT	
						USART1_TX	
						USART2_TX	

						I2C_SDA	
						SPI1_MISO	
4	7	VSS	S			 Grou	nd
6	9	VCC	S			Digital pow	
						SPI1_MOSI	
						USART1_RTS	
						TIM1_ETR	
5	8	PA12	I/O	СОМ		USART2_RTS	-
						EVENTOUT	
						I2C_SDA	
						COMP2_OUT	
						SWDIO	
						IR_OUT	
						EVENTOUT	
7	10	PA13(SWDIO)	I/O	COM	(2)	SPI1_MISO	-
						TIM1_CH2	
						USART1_RX	
						MCO	
						SWCLK	
						USART1_TX	
8	11	PA14(SWCLK)	I/O	COM	(2)	USART2_TX	-
						EVENTOUT	
						MCO	
						SPI1_MOSI	
						TIM3_CH2	
						TIM16_BKIN	
9	12	PB5	I/O	COM		USART2_CK	-
						USART1_CK	
						LPTIM_IN1	
		4'/}				COMP1_OUT	
						USART1_TX	
						TIM1_CH3	
10	13	DDC	1/0	COM		TIM16_CH1N	COMPO IND
10	13	PB6	I/O	COM		USART2_TX	COMP2_INP
		_				I2C_SCL	
						LPTIM_ETR EVENTOUT	
						USART1_RX	
						TIM17_CH1N	
11	14	PB7	I/O	СОМ		USART2_RX	COMP2_INM
	'-	1 51	1,0	JOIVI		I2C_SDA	PVD_IN
						EVENTOUT	
12	15	PF4-BOOT0	I/O	COM	(3)	-	BOOT0
12	15	PF4-BOOT0	I/O	COM	(3)	-	BOOT0

Note:

- (1) Selecting PF2 or NRST is configured through option bytes.
- (2) After reset, the two pins of PA13 and PA14 are configured as SWDIO and SWCLK AF function, the former internal pull-up resistor, the latter internal pull-down resistor is activated.
- (3) PF4 -BOOT0 is the default digital input mode, and the pull-down is enabled.

4.1. Port A multiplexing function mapping

Table 4-3 Port A multiplexing function mapping

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	-	USART 1_CTS _	-	-	USART2_CTS	-		COMP1_OUT
PA0	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_TX	SPI1_MISO	-	-	TIM1_CH3	TIM1_CH1N	IR_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA1	SPI1_SCK	USART 1_RTS _	-	-	USART2_RTS	·	_	EVENTOUT
	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_RX	SPI1_MOSI	-	-	TIM1_CH4	TIM1_CH2N	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA2	SPI1_MOSI	USART 1_TX	-		USART2_TX	-	-	COMP2_OUT
	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	-	SPI1_SCK	-	I2C_SDA	TIM3_CH1	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA3	-	USART 1_RX	-	-	USART2_RX	-	-	EVENTOUT
	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	-	SPI1_MOSI	-	I2C_SCL	TIM1_CH1	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DA 4	SPI1_NSS	USART1_CK	-		TIM14_CH1	USART2_CK	-	EVENTOUT
PA4	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_TX	-	-	-	TIM3_CH3	-	RTC_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DAE	SPI1_SCK	-	-		-	LPTIM1_ETR	-	EVENTOUT
PA5	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_RX	-	-	-	TIM3_CH2	-	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA6	SPI1_MISO_	TIM3_CH1	TIM1_BKIN		-	TIM16_CH1	-	COMP1_OUT
PAG	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_CK	-	-	-	-	-	-	RTC_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	COMP2_OUT
PAI	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_TX	USART2_TX	SPI1_MISO	-	I2C_SDA	-	-	-
PA12	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
FAIZ	SPI1_MOSI	USART1_RTS	TIM1_ETR	-	USART2_RTS	EVENTOUT	I2C_SDA	COMP2_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA13	SWDIO	IR_OUT	-	-	-	-	-	EVENTOUT
FAIS	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_RX	-	SPI1_MISO	-	-	TIM1_CH2	-	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA14	SWCLK	USART 1_TX	-	-	USART 2_TX	-	-	EVENTOUT
	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	-	-	-	-	-	-	MCO

4.2. Port B multiplexing function mapping

Table 4-4 Port B multiplexing function mapping

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	USART1_CK	USART2_CK	LPTIM_IN1	-	COMP1_OU T
DDG	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB6	USART1_TX	TIM1_CH3	TIM16_CH1N	•	USART2_TX	LPTIM_ETR	I2C_SCL	EVENTOUT
557	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB7	USART1_RX	-	TIM17_CH1N	-	USART2_RX	-	I2C_SDA	EVENTOUT

4.3. Port F multiplexing function mapping

Table 4-5 Port F multiplexing function mapping

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	1	-	TIM14_CH1	ı	USART2_RX	-		-
PF0-OSC_IN	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_RX	USART2_TX	1	ı	I2C_SDA	-	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	1	-	1	ı	USART2_TX		-	-
PF1_OSC_OUT	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_TX	USART2_RX	SPI1_NSS		I2C_SCL	TIM14_CH 1	AF14 - AF6	-
DEC NOOT	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF2-NRST	1	-	1		USART2_RX	-	MCO	-
DE L DOOTS	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF4-BOOT0	-	-	-		-	-	-	

5. Memory Map

Figure 5-1 Memory map

Table 5-1 Memory address

Туре	Boundary Address	Size	Memory Area	Description
	0x2000 1 000-0x3FFF FFFF	512MBytes	Reserved	
S RAM	0x2000 0000-0x2000 0FFF	4KBytes	SRAM	Depending on the hard- ware, the SRAM is up to 4k Bytes
	0x1FFF 1000-0x1FFF FFFF	4 KBytes	Reserved	
	0x1FFF 0F80-0x1FFF 0FFF	128Bytes	Reserved	
Code	0x1FFF 0F00-0x1FFF 0F7F	128Bytes	Factory config	Store HSI triming data, flash erasing time config- uration parameters
_	0x1FFF 0E80-0x1FFF 0EFF	1 28Bytes	Option bytes	Option bytes
	0x1FFF 0E00-0x1FFF 0E7F	1 28Bytes	UID	Unique ID
	0x1FFF 0000-0x1FFF 0DFF	3.5KBytes	System memory	Store the boot loader
	0x0800 8000-0x1FFE FFFF	384MBytes	Reserved	
	0x0800 0000-0x0800 7FFF	32KBytes	Main flash memory	

0x0000 8000-0x07FF FFFF	128MBytes	Reserved	
0x0000 0000-0x0000 7FFF	32KBytes	According to the Boot configuration: 1) Main flash memory 2) System memory 3) SRAM	

Note:

Except for 0x1FFF 0E00-0x1FFF 0E7F, the above spaces are marked as reserved spaces, which cannot be written and read as 0 with response error.

Table 5-2 Peripheral register address

Bus	Boundary Address	Size	Peripheral
	0xE000 0000-0xE00F FFFF	1Mbytes	M0+
	0x5000 1800-0x5FFF FFFF	256MBytes	Reserved (1)
	0x5000 1400-0x5000 17FF	1KBytes	GPIOF
	0x5000 1000-0x5000 13FF	1KBytes	Reserved
IOPORT	0x5000 0C00-0x5000 0FFF	1Kbytes	Reserved
	0x5000 0C00-0x5000 0FFF	1K bytes	Reserved
	0x5000 0400-0x5000 07FF	1K bytes	GPIOB
	0x5000 0000-0x5000 03FF	1K bytes	GPIOA
	0x4002 3400-0x4FFF FFFF		Reserved
	0x4002 300C-0x4002 33FF	11/hydaa	Reserved
	0x4002 3000-0x4002 3008	1Kbytes	CRC
	0x4002 2400-0x4002 2FFF		Reserved
	0x4002 2124-0x4002 23FF	4I/Dytes	Reserved
	0x4002 2000-0x4002 2120	1KBytes	Flash
	0x4002 1C00-0x4002 1FFF	3KBytes	Reserved
АНВ	0x4002 1888-0x4002 1BFF	Althura	Reserved
	0x4002 1800-0x4002 1884	1Kbytes	EXTI (2)
	0x4002 1400-0x4002 17FF	1Kbytes	Reserved
	0x4002 1064-0x4002 13FF	445	Reserved
	0x4002 1000-0x4002 1060	1KBytes	RCC (2)
	0x4002 0C00-0x4002 0FFF	1KBytes	Reserved
	0x4002 0040-0x4002 03FF	41/0	Reserved
	0x4002 0000-0x4002 003C	1KBytes	DMA
	0x4001 5C00-0x4001 FFFF	32KBytes	Reserved
	0x4001 5880-0x4001 5BFF	AI/D: to a	Reserved
	0x4001 5800-0x4001 587F	1KBytes	DBG
	0x4001 4C00-0x4001 57FF	3KBytes	Reserved
	0x4001 4850-0x4001 4BFF	1KDvtoo	Reserved
	0x4001 4800-0x4001 484C	1KBytes	TIM17
A DD	0x4001 4450-0x4001 47FF	1KPvtoo	Reserved
APB	0x4001 4400-0x4001 404C	1KBytes	TIM16
	0x4001 3C00-0x4001 43FF	2KBytes	Reserved
	0x4001 381C-0x4001 3BFF	1KBytos	Reserved
	0x4001 3800-0x4001 3018	1KBytes	USART1
	0x4001 3400-0x4001 37FF	1Kbytes	Reserved
	0x4001 3010-0x4001 33FF	1Khytes	Reserved
	0x4001 3000-0x4001 300C	1Kbytes	SPI1

1			
	0x4001 2C50-0x4001 2FFF	1Kbytes	Reserved
	0x4001 2C00-0x4001 2C4C	Tribytoo	TIM1
	0x4001 2800-0x4001 2BFF	1Kbytes	Reserved
	0x4001 270C-0x4001 27FF	1Kbytes	Reserved
	0x4001 2400-0x4001 2708	TROYICO	ADC
	0x4001 0400-0x4001 23FF	8Kbytes	Reserved
	0x4001 0220-0x4001 03FF		Reserved
	0x4001 0200-0x4001 021F	1KBytes	COMP1 and COMP2
	0x4001 0000-0x4001 01FF		SYSCFG
	0x4000 B400-0x4000 FFFF	19KBytes	Reserved
	0x4000 B000-0x4000 B3FF	1KBytes	Reserved
	0x4000 8400-0x4000 AFFF	11KBytes	Reserved
	0x4000 8000-0x4000 83FF	1KBytes	Reserved
	0x4000 7C28-0x4000 7FFF	1KPvtoo	Reserved
	0x4000 7C00-0x4000 7C24	1KBytes	LPTIM
	0x4000 7400-0x4000 7BFF	2KBytes	Reserved
	0x4000 7018-0x4000 73FF	AIXD 1	Reserved
	0x4000 7000-0x4000 7014	1KBytes	PWR (3)
	0x4000 5800-0x4000 6FFF	6KBytes	Reserved
	0x4000 5434-0x4000 57FF	4I/Dutan	Reserved
	0x4000 5400-0x4000 5430	1KBytes	I2C
	0x4000 4800-0x4000 53FF	3KBytes	Reserved
	0x4000 441C-0x4000 47FF	4I/Dutas	Reserved
	0x4000 4400-0x4000 4418	1KBytes	USART2
	0x4000 3C00-0x4000 43FF	1KBytes	Reserved
	0x4000 3800-0x4000 3BFF	1KBytes	Reserved
	0x4000 3400-0x4000 37FF	1KBytes	Reserved
	0x4000 3014-0x4000 33FF	41/Dutas	Reserved
	0x4000 3000-0x4000 0010	1KBytes	IWDG
	0x4000 2C0C-0x4000 2FFF	AICD: to a	Reserved
	0x4000 2C00-0x4000 2C08	1KBytes	WWDG
	0x4000 2830-0x4000 2BFF	4I/Dutan	Reserved
	0x4000 2800-0x4000 282C	1KBytes	RTC (3)
	0x4000 2400-0x4000 27FF	1KBytes	Reserved
	0x4000 2054-0x4000 23FF	1165	Reserved
	0x4000 2000-0x4000 0050	1KBytes	TIM14
	0x4000 1800-0x4000 1FFF	2KBytes	Reserved
	0x4000 1400-0x4000 17FF	1KBytes	Reserved
	0x4000 1000-0x4000 13FF	1KBytes	Reserved
	0x4000 0800-0x4000 0FFF	2KBytes	Reserved
	0x4000 0450-0x4000 07FF		Reserved
	0x4000 0400-0x4000 044C	1Kbytes	TIM3
	0x4000 0000-0x4000 03FF	1KBytes	Reserved
		J	

Note:

(1) The address space marked as Reserved by AHB in the above table cannot be written, read is 0, and a hardfault is generated. The address space marked as Reserved by APB cannot be written, read back as 0, but no hardfault will be generated.

- (2) Not only supports 32 bit word access, but also supports halfword and byte access.
- (3) Not only supports 32 bit word access, but also supports half word access.

6. Electrical characteristics

Test conditions 6.1.

All voltages are referenced to VSS unless otherwise specified.

6.1.1. Min and Max

Unless otherwise specified, the chip is screened by mass production testing at ambient temperature TA =25°C and T_A =T_{A(max)}, guaranteed to reach the minimum value and maximum value under the worst ambient temperature, supply voltage and clock frequency conditions.

Based on electrical characterization results, design simulations, and/or process parameters noted below the table, not tested in production. Minimum and maximum values are referenced to sample testing and averaged plus or minus three times the standard deviation.

6.1.2. Typical value

Unless otherwise specified, typical data is based on T_A =25°C and VCC = 3.3V. These data are for design guidance only and have not been tested.

Typical ADC accuracy values are obtained by sampling a standard batch, tested under all temperature ranges, and 95% of the chip error is less than or equal to the given value.

6.2. **Absolute maximum ratings**

If the applied voltage exceeds the absolute maximum value given in the table below, it may cause permanent damage to the chip. Only the strength ratings that can be tolerated are listed here, and it does not imply that the functional operation of the device is correct under these conditions. Operating under maximum conditions for a long time may affect the reliability of the chip.

Table 6-1 Voltage characteristics (1)

Symbol	Describe	Minimum value	Maximum value	Unit
VCC	External mains power supply	-0.3	6.25	V
VIN	Input voltage of other pins	-0.3	VCC+0.3	V

Power supply VCC and ground VSS pins must always be connected to the external power supply within the allowable range.

Symbol **Describe** Maximum Unit value Flowing into VCC pin (supply current) (1) 100 I_{VCC} Total current flowing out of VSS pin (outflow current) (1) 100 lvss mΑ Output sink current of COM IO 20 IO(PIN) Source current for all IOs - 20

Table 6-2 Current characteristics

Power supply VCC and ground VSS pins must always be connected to the external power supply within (1) the allowable range.

Table 6-3 Temperature characteristics

Symbol	Describe	Value	Unit
T _{STG}	Storage temperature range	-65 ~ +150	$^{\circ}$
To	Range of working temperature	- 40 ~ + 8 5	°C

6.3. Operating conditions

6.3.1. General operating conditions

Table 6-4 General operating conditions

Symbol	Parameter	Condition	Minimum	Maxi- mum value	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	32	MHz
f _{PCLK}	Internal APB Clock Frequency	-	0	32	MHz
VCC	Standard working voltage	-	1.7	5.5	V
VIN	IO input voltage	-	-0.3	VCC+0.3	V
TA	ambient temperature	-	-40	85	$^{\circ}$
TJ	Junction temperature	-	-40	90	$^{\circ}$

6.3.2. Power on and down operating conditions

Table 6-5 Power on and Power down Operating Conditions

Symbol	Parameter	Condition	Minimum	Maxi- mum value	Unit
	VCC rise rate	-	0	8	// /
tvcc	V CC fall rate	-	20	8	us/V

6.3.3. Embedded reset and LVD module features

Table 6-6 Embedded Reset Module Features

Symbol	Parameter	Condition	Minimum	Typical value	Maximum value	Unit
trsttempo ⁽¹⁾	Reset time	-	-	4.0	7.5 _	ms
V	POR/PDR reset thresh-	rising edge	1.5 0 ⁽²⁾	1.6 0	1.7 0	V
V _{POR/PDR}	old	falling edge	1.45 (1)	1.55	1.65 ⁽²⁾	V
\/	DOD throokald 4	rising edge	1.70 (2)	1.80	1.90	V
V _{BOR1}	BOR threshold 1	falling edge	1.60	1.70	1.80 (2)	V
	DOD // 1.116	rising edge	1.90 (2)	2.00	2.10	V
V _{BOR2}	BOR threshold 2	falling edge	1.80	1.90	2.00 (2)	V
V _{BOR3}	BOR threshold 3	rising edge	2.10 (2)	2.20	2.30	V
• Bolto		falling edge	2.00	2.10	2.20 (2)	V
V _{BOR4}	BOR threshold 4	rising edge	2.30 (2)	2.40	2.50	V
V BUK4	DON tillesiloid 4	falling edge	2.20	2.30	2.40 (2)	V

M	DOD throokald 5	rising edge	2.50 (2)	2.60	2.70	V
V_{BOR5}	BOR threshold 5	falling edge	2.40	2.50	2.60 (2)	V
M	DOD throohold C	rising edge	2.70 (2)	2.80	2.90	V
V _{BOR6}	BOR threshold 6	falling edge	2.60	2.70	2.80 (2)	V
	DOD (1 1 1 1 7	rising edge	2.90 (2)	3.00	3.10	V
V _{BOR7}	BOR threshold 7	falling edge	2.80	2.90	3.00 (2)	V
	DOD the state of the	rising edge	3.10 (2)	3.20	3.30	V
V _{BOR8}	BOR threshold 8	falling edge	3.00	3.10	3.20 (2)	V
V	D) /D throat ald 0	rising edge	1.70 ⁽²⁾	1.80	1.90	V
V_{PVD0}	PVD threshold 0	falling edge	1.60	1.70	1.80 (2)	V
V	DVD Three shold 4	rising edge	1.90 (2)	2.00	2.10	V
V _{PVD1}	PVD Threshold 1	falling edge	1.80	1.90	2.00 (2)	V
V_{PVD2}	DVD Throohold 2	rising edge	2.10 (2)	2.20	2.30	V
	PVD Threshold 2	falling edge	2.00	2.10	2.20 (2)	V
	PVD Threshold 3	rising edge	2.30 (2)	2.40	2.50	V
V_{PVD3}	PVD Tillesiloid 3	falling edge	2.20	2.30	2.40 (2)	V
V	PVD Threshold 4	rising edge	2.50 (2)	2.60	2.70	V
V_{PVD4}		falling edge	2.40	2.50	2.60 (2)	V
		rising edge	2.70 (2)	2.80	2.90	V
V_{PVD5}	PVD threshold 5	falling edge	2.60	2.70	2.80 (2)	V
		rising edge	2.90 (2)	3.00	3.10	V
V_{PVD6}	PVD threshold 6	falling edge	2.80	2.90	3.00 (2)	V
	DVD (1 1 . 1 . 1 . 7	rising edge	3.10 (2)	3.20	3.30	V
V_{PVD7}	PVD threshold 7	falling edge	3.00	3.10	3.20 (2)	V
VPOR_PDR_hyst ⁽¹⁾	POR / PDR hysteresis voltage		—	50		mV
V _{PVD_BOR_hyst} (1)	PVD hysteresis voltage			100		mV
I _{dd(PVD)}	PVD power consump- tion			0.6		uA
I _{dd(BOR)}	BOR power consump- tion			0.6		uA

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.4. Operating current characteristics

Table 6-7 Run mode current

			Condit	ion				Maxi-	
Symbol	System clock	Fre- quency	Code	Run	Periph- eral clock	FLASH sleep	Typical value ⁽¹⁾	mum value	Unit
	24MHz			ON	DISABLE	1.5	•		
		241011 12	While(1)	Flash	OFF	DISABLE	0.9	•	-
		HSI 16MHz			ON	DISABLE	1.1	•	
IDD(run)	HSI				OFF	DISABLE	0.7	ı	mA
		OMLI-			ON	DISABLE	0.7	ı	-
		8MHz			OFF	DISABLE	0.5	-	
		4MHz			ON	DISABLE	0.5	-	

				OFF	DISABLE	0.35	-	
	LSI 32.768kHz	22 760kU-		ON	DISABLE	170	-	^
		32.760KHZ	OFF	DISABLE	170	-	uA	
	1.01	32.768kHz		ON	ENABLE	95	-	uA
	LSI	32.7 UOKIIZ		OFF	ENABLE	95	-	uA

(1) Data is based on assessment results and is not tested in production.

surface 6-8Sleep mode current

		Cond	ition		Typical	Maxi-	
Symbol	System clock	Frequency	Peripheral clock	FLASH sleep	value ⁽¹⁾	mum value	Unit
	HSI	24MHz	ON	DISABLE	1	-	mA
		24111112	OFF	DISABLE	0.6	-	mA
		16MHz	ON	DISABLE	0.75	-	mA
		1 OIVII 12	OFF	DISABLE	0.5	-	mA
		8MHz	ON	DISABLE	0.5	-	mA
IDD(sleep)			OFF	DISABLE	0.35	-	mA
iDD(sieep)		4841.1-	ON	DISABLE	0.4	-	mA
		4MHz	OFF	DISABLE	0.35	-	mA
	LSI	32.768kHz	ON	DISABLE	170	-	uA
	LOI	32.1 OOKFIZ	OFF	DISABLE	170	-	uA
	1.01	32.768kHz	ON	ENABLE	95	-	uA
	LSI		OFF	ENABLE	96	-	uA

(1) Data is based on assessment results and is not tested in production.

Table 6-9Stop mode current

			Cond	ition		Typical	Maxi-	
Symbol	vcc	VDD	MR/LPR	LSI	Peripheral clock	value ⁽¹⁾	mum value	Unit
		1.2V	MR	-	-	70	-	
			- LPR -		RTC+IWDG+LPTIM	6	1	
		1.2V .7~5.5V		ON	IWDG	6	ı	
				ON	LPTIM	6	1	
					RTC	6		
I _{DD} (stop)	1.7~5.5V			OFF	No	6	ı	uA
					RTC+IWDG+LPTIM	4.5	1	
				ON	IWDG	4.5	1	
		1.0V		ON	LPTIM	4.5	ı	
					RTC	4.5	ı	
				OFF	No	4.5	-	

(1) Data is based on assessment results and is not tested in production.

6.3.5. Low power mode wake-up time

Table 6-10 Low power mode wake-up	time
-----------------------------------	------

Symbol	Para	meters ⁽¹⁾	Condition		Typical value ⁽²⁾	maxi- mum value	unit
Twusleep	Wake-up sleep	time from	-	1.65		us	
	Wake-	Powered by MR	Execute program in Flas Mhz) as system clock	sh, HSI (24	3.5		us
Twustop	up time from	up time from Powered	Powered Execute program in	VDD=1.2V	6		
	stop	by LPR	Flash, HSI as system clock	VDD=1.0V	6		us

- (1) The wake-up time is measured from the wake-up time until the first instruction is read by the user program.
- (2) Data is based on assessment results and is not tested in production.

6.3.6. External clock source characteristics

6.3.6.1. External high-speed clock

In the bypass mode of HSE (the HSEBYP of RCC_CR is set), when the high-speed start-up circuit in the chip stops working, the corresponding IO is used as a standard GPIO.

Figure 6-1 External high-speed clock timing diagram

Table 6-11 External high-speed clock features

Symbol	Parameters ⁽¹⁾	Minimum	Typical value	Maximum value	Unit
fHSE_ext	User external clock frequency	0	8	32	MHz
V _{HSEH}	Input pin high level voltage	0.7VCC		VCC	\
V _{HSEL}	Input pin low level voltage	Vss		0.3VCC	V
tw(HSEH)	Enter high or low time	15			ns
t _{r(HSE)}	Enter the rise/fall time	-		20	ns

(1) Guaranteed by design, not tested in production.

6.3.6.2. External high-speed crystal

An external 4~32MHz crystal/ceramic resonator. In the application, the crystal and load capacitors should be as close as possible to the pins to minimize output distortion and start-up settling time.

Symbol	Parameter	Condition ⁽¹⁾	Mini- mum ⁽²⁾	Typi- cal value	Maxi- mum ⁽²⁾	Unit
f _{OSC_IN}	Oscillation frequency	-	4		32	MHz
		During startup VCC=3V, Rm=30Ω, CL=10pF@8MHz VCC=3V,Rm=45Ω,		0.58	5.5	
IDD ⁽⁴⁾	HSE power consumption	CL=10pF@8MHz VCC=3V,Rm=30Ω, CL=5pF@32MHz		0.89		mA
		VCC=3V,Rm=30Ω, CL=10pF@32MHz VCC=3V,Rm=30Ω, CL=20pF@32MHz	16	1.10		
tSU (HSE) (3)	Start Time	fosc_in=32MHz fosc_in=4MHz		3 15		ms ms

Table 6-12 External high-speed crystal characteristics

- (1) Crystal/ceramic resonator characteristics are based on the manufacturer datasheet.
- (2) Guaranteed by design, not tested in production.
- $t_{SU(HSE)}$ is the start-up time from enable (by software) to the clock oscillation reaches stability, measured for a standard crystal/resonator, which can vary greatly from one crystal/resonator to another .
- (4) Data is based on assessment results and is not tested in production.

6.3.7. Internal high frequency clock source HSI characteristics

Table 6-13 Internal high frequency clock source characteristics

Symbol	Parameter	Condition	Mini- mum	Typi- cal value	Maxi- mum	Unit
	HSI frequency		23.83(2)	24	24.17(2)	MHz
			21.97(2)	22.12	22.27(2)	MHz
f _{HSI}		T _A =25°C,VCC=3.3V	15.89 ⁽²⁾	16	16.11 ⁽²⁾	MHz
			7.94(2)	8	8.06(2)	MHz
			3.97(2)	4	4.03(2)	MHz
	HSI frequency tempera- ture drift	VCC=1.7V~5.5V, TJ=0C~85C	-2 ⁽²⁾		2(2)	%
∆Temp(HSI)		VCC=1.7V~5.5V, T _J =-40C~85C	-4 ⁽²⁾		2(2)	%
f _{TRIM} ⁽¹⁾	HSI fine-tuning accuracy			0.1		%
D _{HSI} ⁽¹⁾	Duty cycle		45 ⁽¹⁾		55 ⁽¹⁾	%
t _{Stab(HSI)}	HSI stabilization time			2	4 ⁽¹⁾	us
		4MHz		100		uA
(2)	LICI navvar as navvantion	8MHz		105		uA
I _{DD(HSI)} (2)	HSI power consumption	16MHz		150		uA
		22.12MHz, 24MHz		180		uA

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.8. Internal low frequency clock source LSI characteristics

Table 6-14 Internal low frequency clock characteristics

Symbol	Parameter	Condition	Mini- mum	Typi- cal value	Maxi- mum	Unit
f _{LSI}	LSI frequency	T _A =25°C,VCC=3.3V	-1		+1	%
	$\Delta_{Temp(LSI)}$ LSI frequency temperature drift	VCC=1.6V~5.5V T _J =0C~70C	-10 ⁽²⁾		10(2)	%
ΔTemp(LSI)		VCC=1.6V~5.5V,T _J =-40C~85C	-20 ⁽²⁾	\	20(2)	%
f _{TRIM} ⁽¹⁾	LSI fine-tuning accuracy			0.2		%
t _{Stab(LSI)} (1)	LSI stabilization time			150		us
I _{DD(LSI)} (1)	LSI power consumption			210		nA

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.9. Memory characteristics

Table 6-15 Memory characteristics

Symbol	Parameter	Condition	Typical value	Maxi- mum ⁽¹⁾	Unit
t _{prog}	Page program	-	1.0	1.5	ms
terase	Page/sector/mass erase	-	3.0	4.5	ms
	Page programe		2.1	2.9	mA
I _{DD}	Page/sector/mass erase		2.1	2.9	mA

(1) Guaranteed by design, not tested in production.

Table 6-16 Memory erase times and data retention

Symbol	Parameter	Condition	Mini- mum ⁽¹⁾	Unit
Nend	Erase and write times	T _A = -40~85°C	100	kcycle
tret	Data retention period	10 kcycle T _A = 55°C	20	Year

(1) Data is based on assessment results and is not tested in production.

6.3.10. EFT characteristics

Symbol	Parameter	Condition	Grade	Typical value	Unit
EFT to IO		IEC61000-4-4	В	2	KV
EFT to Power		IEC61000-4-4	В	4	KV

6.3.11. ESD & LU Characteristics

Table 6-17ESD & LU characteristics

Symbol	Parameter	Condition	Typical value	Unit
Vesd(HBM)	Static Discharge Voltage (human body model)	ESDA/JEDEC JS-001-2017	6	KV
V _{ESD(CDM)}	Static Discharge Voltage (charging equipment model)	ESDA/JEDEC JS-002-2018	1	KV
V _{ESD(MM)}	Static discharge voltage (machine model)	JESD22-A115C	200	V
LU	Static Latch-Up	JESD78E	200	mA

6.3.12. Port characteristics

Table 6-18IO static characteristics

Sym- bol	Parameter	Condition	Minimum	Typi- cal value	Maximum	Unit
V _{IH}	Input high level voltage	VCC=1.7V~5.5V	0.7VCC			V
VIL	Input low level voltage	VCC=1.7V~5.5V			0.3VCC	V
$V_{hys}^{(1)}$	Schmitt hysteresis voltage			200		mV
I _{lkg}	Input leakage current				1	uA
R _{PU}	Pull-up resistor		30	50	70	kΩ
R _{PD}	Pull-down resistor		30	50	70	kΩ
C ₁₀ ⁽¹⁾	Pin capacitance			5		pF

(1) Guaranteed by design, not tested in production.

Table 6-19 Output Voltage Characteristics

sym- bol	Parameters ⁽¹⁾	condition	minimum	maxi- mum value	unit
V_{OL}	COM IO output low lovel	IOL = 8 mA, _{VCC} ≥ 2.7 V	ı	0.4	V
Vol	COM IO output low level	IOL = 4 mA, vcc = 1.8 V	-	0.5	V
Vон	COM IO output high	IOH = 8 mA, vcc ≥ 2.7 V	VCC-0.4	-	V
Vон	level	IOH = 4 mA, vcc = 1.8 V	VCC-0.5	-	V

(1) IO types can refer to the terms and symbols defined by the pins.

6.3.13. NRST pin characteristics

Table 6-20NRST pin characteristics

Sym- bol	Parameter	Condition	Mini- mum	Typical value	Maxi- mum	Unit
VIH	Input high level voltage	VCC=1.7V~5.5V	0.7VCC			V
VIL	Input low level voltage	VCC=1.7V~5.5V			0.2VCC	V
V _{hys} (1)	Schmitt hysteresis voltage			300		mV
I _{lkg}	Input leakage current				1	uA
R _{PU} (1)	Pull-up resistor		30	50	70	kΩ
R _{PD} (1)	Pull-down resistor		30	50	70	kΩ

C _{IO}	Pin capacitance		5	рF

(1) Guaranteed by design, not tested in production.

6.3.14. ADC characteristics

Table 6-21ADC characteristics

Symbol	Parameter	Condition	Mini- mum	Typical value	Maxi- mum	Unit
I _{DD}	Power consumption	@0.75MSPS		1.0		mA
C _{IN} ⁽¹⁾	Internal sample and hold capacitors			5		pF
_	Convert clock frequency	VCC=1.7~2.3V	1	4	6(2)	MHz
FADC		VCC=2.3~5.5V	1	8	12(2)	MHz
T (1)		@0.75MSPS		1.0		mA
Tsamp ⁽¹⁾		VCC=2.3~5.5V	0.1			us
Tconv ⁽¹⁾				12*Tclk		
Teoc ⁽¹⁾				0.5*Tclk		
DNL ⁽²⁾				±2		LSB
INL ⁽²⁾				±3		LSB
Offset ⁽²⁾				±2		LSB

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.15. Comparator characteristics

Table 6-22 Comparator features⁽¹⁾

Symbol	Parameter	Condition	on	Mini- mum	Typi- cal value	Maxi- mum	Unit
VIN	Input voltage range			0		VCC	V
VBG	Scale input voltage				VREFIN	Γ	
VSC	Scaler offset voltage				±5	±10	mV
IDD(SCALER)	Scaler static con-	BRG_EN=0(bridg	je disable)		200	300	nA
IDD(SCALER)	sumption	BRG_EN=1(bridg	je enable)		0.8	1	uA
tSTART_SCALER	Scaler startup time				100	200	us
_	Startup time to	High-speed mode)			5	
tSTART	reach propaga- tion delay specifi- cation	Medium-speed m	ode			15	us
4D	Propagation de-	200mV step;	High- speed mode		30	50	ns
tD	lay	100mV over- drive	Medium- speed mode		0.3	0.6	us

		>200mV	High- speed mode		10	us
		step;100mV overdrive	Medium- speed mode		1.2	ns
Voffset	Offset error			±5		mV
		No hysteresis		0		
\	hyatarasia	Low hysteresis		10		\/
Vhys	hysteresis	Medium hysteresi	S	20		mV
		High hysteresis		30		
			Static	5		uA
		Medium-speed mode; No de- glitcher	With 50kHz and ±100mv overdrive square signal	6		uA
			Static	7		uA
IDD	consumption	Medium-speed mode With de- glitcher	With 50kHz and ±100mv overdrive square signal	8		uA
			Static	250		uA
		High-speed mode; No de- glitcher	With 50kHz and ±100mv overdrive square signal	250		uA

⁽¹⁾ Guaranteed by design, not tested in production.

6.3.16. Temperature sensor characteristics

Table 6-23 Temperature sensor characteristics

Symbol	Parameter		Typical value	Maxi- mum	Unit
T _L ⁽¹⁾	VTS linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C(±5°C)	0.742	0.76	0.785	V
tstart ⁽¹⁾	Start-up time entering in continuous mode		70	120	us
ts_temp ⁽¹⁾	ADC sampling time when reading the temperature	9			us

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.17. Timer features

Table 6-24 Timer features

Symbol	Parameter	Condition	Minimum	Maximum	Unit
	Times and abotion times	-	1		t _{TIMxCLK}
tres(TIM)	Timer resolution time	f _{TIMxCLK} = 32MHz	20.833		ns
	Timer external clock	•		f _{TIMxCLK} /2	
f _{EXT}	frequency on CH1 to CH4	$f_{TIMxCLK} = 32MHz$		24	MHz
Restim	Timer resolution	TIM1/3/14/16/17		16	Bit
4	16-bit counter clock		1	65536	t _{TIMx} CLK
tcounter	period	f _{TIMxCLK} = 32MHz	0.020833	1365	us

Table 6-25LPTIM characteristics (clock selection LSI)

Prescaler	PRESC [2:0]	Minimum overflow value	Maximum overflow value	Unit	
/1	0	0.0305	1998.848		
/2	1	0.0610	3997.696		
/4	2	0.1221	8001.9456		
/8	3	0.2441	15997.3376		
/16	4	0.4883	32001.2288	ms	
/32	5	0.9766	64002.4576		
/64	6	1.9531	127998.3616		
/128	7	3.9063	256003.2768		

Table 6-26IWDG characteristics (clock selection LSI)

		•	· · · · · · · · · · · · · · · · · · ·	
Prescaler	PR[2:0]	Minimum overflow value	Maximum overflow value	Unit
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

Table 6-27 WWDG characteristics (clock select 32M Hz PCLK)

Prescaler	WDGTB[1:0]	Minimum overflow value	Maximum overflow value	Unit
1*4096	0	0.085	5.461	
2*4096	1	0.171	10.923	
4*4096	2	0.341	21.845	ms
8*4096	3	0.683	43.691	

6.3.18. Communication port characteristics

6.3.18.1. I2C bus interface features

I2C interface meets the requirements of the I2C -bus specification and user manual:

Standard-mode(Sm): 100kbit/s

■ Fast-mode(Fm): 400kbit/s

Timing is guaranteed by design, provided the I2C peripheral is properly configured and the I2C CLK frequency is greater than the minimum required in the table below.

Table 6-28 Minimum I2C CLK frequency

Symbol	Parameter	Condition	Minimum	Unit
fl2CCLK(min)	Minimum I2CCLK freq	Standard-mode	2	MHz
	uency	Fast-mode	9	

I 2 C SDA and SCL pins have analog filtering, see table below.

Table 6-29I2C filter characteristics

Symbol	Parameter	Minimum	Maxi- mum	Unit
t _{AF}	Limiting duration of spikes suppressed by the filter (Spikers shorter than the limiting duration are suppressed)	50	260	ns

6.3.18.2. Serial Peripheral Interface SPI Characteristics

Table 6-30SPI characteristics

Symbol	Parameter	Condition	Minimum	Maximum	Unit	
fsck	SPI clock fre-	Master mode	-	12	NALI	
1/t _{c(SCK)}	quency	Slave mode	-	12	MHz	
t _{r(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	ns	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, fPCLK = 36 MHz,presc = 4	Tpclk*2 -2	Tpclk*2 + 1	ns	
t _{su(MI)}	Data input setup time	Master mode, fPCLK = 48 MHz,presc = 4	Tpclk+5 ⁽¹⁾	-		
t _{su(SI)}		Slave mode, fPCLK = 48 MHz,presc = 4	5	-	ns	
t _{h(MI)}	Data input hold	Master mode	5	-	ns	
t _{h(SI)}	time	Slave mode	Tpclk+5	-		
t _{a(SO)}	Data output access time	Slave mode, presc = 4	0	3Tpclk	ns	
t _{dis(SO)}	Data output disable time	Slave mode	2Tpclk+5	4Tpclk+5	ns	
t _{v(SO)}	Data output valid ime	Slave mode (after enable edge), presc = 4	0	1.5Tpclk ⁽²⁾	ns	
t _{v(MO)}	Data output valid ime	Master mode (after enable edge)	-	6	ns	
t _{h(SO)}		Slave mode, presc = 4	0(3)	-	ns	

t _{h(MO)}	Data output hold time	Master mode	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	45	55	%

- (1) The Master generates 1pclk to receive control signal before the receive edge.
- (2) Slave has a maximum of 1PCLK based on the sending edge of SCK delay, considering IO delay, etc., define 1.5PCLK.
- (3) In the case that the SCK duty cycle sent by the Master is wide between the receiving edge and the sending edge, the Slave updates the data before the sending edge.

Figure 6-2SPI timing diagram – slave mode and CPHA=0

Figure 6-3SPI timing diagram – slave mode and CPHA=1

Figure 6-4SPI timing diagram – master mode

7. Package information

7.1. QFN20 package information

7.2. TSSOP20 package information

8. Ordering Information

9. Version history

Version	date	Description	Note
V1.0	2022-01-14	Initial version	-
V1.1	2022-01-18	1. Update Table 2-1 2. Update Table 6-15	-
V1.2	2022-01-24	1. Update parameters in Table 6-30	-