

Módulo 3

Aprendizaje automático

Extreme Gradient Boosting | XGBoost

Gradient Boosting

Gradient Boosting = Gradient descent + Boosting

En cada paso se mejora un "weak learner"

En AdaBoost se identifican problemas por su mayor peso

En GradientBoosting se identifican estos problemas por gradientes

- Residual error = diferencia entre el valor real y la predicción
- Gradient = residual error + signo (de la derivada o pendiente)

Gradient Boosting

El uso de gradientes permite:

- Intercambiar distintas funciones de pérdida (loss)
 - Classifier: loss('log_loss', 'exponential'), default='log_loss'
 - Regressor: loss('squared_error', 'absolute_error', 'huber', 'quantile'), default='squared_error'

XGBoost

XGBoost = Extreme Gradient Boosting

- Ensamble de modelos
- Empieza con un modelo base (base learner)
 - Generalmente son decision trees (gbtree = gradient boosted tree)
 - Pero también pueden ser modelos lineales (gblinear = gradient boosted linear)
- Funciona en forma similar a Gradient Boosting
 - Agrega: uso de la segunda derivada de la función de pérdida
 - o Optimizaciones computacionales, regularización para balancear sesgo vs desviación
 - Estas optimizaciones corren en paralelo!

XGBoost: afinación, parámetros

XGboost: objetivo y balance de sesgo vs desvio

Por qué queremos dos componentes en el objetivo?

- Optimizar para reducir la pérdida (Training Loss) nos garantiza obtener modelos predictivos que ajustan bien a la distribución de base
- Optimizar regularización garantiza obtener modelos más simples, que en general tienden a tener menos desvío en predicciones futuras
 - Modelos más estables!

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

Training Loss measures how well model fit on training data

Regularization, measures complexity of model

XGboost: sub-muestreo

XGBoost puede sub-muestrear, x filas o x columnas

