Desafío STEM: Explorando el Péndulo Físico Usando una Regla Perforada

Objetivos

- Estudiar cómo varía el periodo de oscilación de una barra homogénea en función del punto de suspensión.
- lacktriangle Determinar experimentalmente la aceleración de la gravedad g y el radio de giro K de una barra homogénea.
- Desarrollar habilidades de análisis de datos y linealización de modelos físicos.

Preparación previa

Antes de la sesión experimental, cada grupo debe entregar una síntesis escrita (máx. 1/2 página) que incluya:

- Definición y características del péndulo físico.
- Diferencias entre péndulo simple y péndulo compuesto.
- Teorema de Steiner para el momento de inercia.
- Deducción de la expresión para el periodo:

$$T = 2\pi \sqrt{\frac{x^2 + K^2}{gx}}$$

• Linealización del modelo:

$$X = x^2$$
, $Y = xT^2 \Rightarrow Y = mX + b$

• Expresión de g y K en función de la pendiente e intersección:

$$g = \frac{4\pi^2}{m}, \quad K = \sqrt{\frac{b}{m}}$$

• Cálculo del valor teórico de K para una barra homogénea delgada de longitud L y ancho h:

$$K_{\text{teo}} = \sqrt{\frac{L^2 + h^2}{12}}$$

Pregunta motivadora

¿Es posible predecir el periodo de oscilación de una barra según el punto donde se sostiene? ¿Cómo podríamos usar este fenómeno para diseñar sensores o estructuras más estables?

Conexiones STEM

- Ciencia: Comprensión del movimiento oscilatorio, momento de inercia y péndulo físico.
- **Tecnología:** Uso de herramientas digitales como cronómetros, cámaras lentas y software de análisis como Excel.
- Ingeniería: Aplicación de conceptos mecánicos para el diseño de sistemas que requieren estabilidad oscilatoria, como sensores, estructuras o mecanismos de seguridad.
- Matemáticas: Linealización de relaciones no lineales, regresión lineal, interpretación de pendiente e intersección, análisis gráfico de datos experimentales.

Trabajo en equipo: Se espera que cada miembro del grupo participe activamente. Se recomienda distribuir los roles (experimentalista, analista de datos, presentador, redactor) y rotarlos entre sesiones.

Procedimiento experimental

- 1. Determinar el centro de masa suspendiendo la barra y marcándolo.
- 2. Medir el periodo T desde varios orificios a ambos lados del centro.
- 3. Registrar los datos y construir una tabla con:

x (m)	T(s)	$X = x^2 \text{ (m}^2\text{)}$	$Y = xT^2 (s^2 \cdot m)$

- 4. Graficar Y vs. X y ajustar una recta.
- 5. Calcular q y K, y comparar con los valores teóricos.

Exploración adicional (opcional)

¿Puedes encontrar dos puntos simétricos respecto al centro de masa que tengan el mismo periodo de oscilación? ¿Qué implicaciones tiene esto sobre la simetría del sistema físico?"

Aplicaciones del péndulo físico

- Diseño de sensores de inclinación o aceleración.
- Estabilidad en construcciones como puentes, estructuras antivibración o péndulos de Foucault.
- Sistemas de control en brazos robóticos o instrumentos de medición.

Rúbrica para Informe Escrito (máx. 3.0 puntos)

Criterio	Puntaje
Objetivo y planteamiento del problema	0.5
Marco teórico y deducción del modelo	0.7
Datos, análisis y gráfica	1.0
Discusión y comparación con teoría	0.5
Presentación y redacción	0.3

Rúbrica para Mini Exposición (máx. 2.0 puntos)

Nota importante: No se permite el uso de hojas ni celulares para leer durante la presentación. La exposición debe ser preparada y dominada por los integrantes del grupo.

Criterio	Puntaje
Claridad y dominio conceptual	0.8
Uso de recursos visuales	0.4
Participación del grupo	0.4
Respuestas a preguntas	0.4