검정고무신 이미지 생성 모델을 활용한 서비스

부제: 클라우드를 이용한 시스템 아키텍처 효율적 구축

201918298 김지성 201911895 정예성 201911838 황예찬 201911752 강봉구

목차

- 개요
- 주제 및 목표
- 시스템 아키텍처
 - LoadBalancer, AutoScalingGroup를 활용한 인스턴스(모델 + 웹) 서버
 - Lambda를 활용한 웹 서버
- 실험 결과
 - 비용 측정
 - 속도 테스트
 - 트래픽 한계 테스트
 - 서비스 사용 예제
- 한계 및 개선방안

개요

생성형 AI

개요

개요

- 주제: 클라우드를 이용한 시스템 아키텍처 효율적 구축
 - 클라우드를 이용한 검정고무신 이미지 생성 모델
- 목표: 인스턴스 활용 아키텍처와 Lambda 활용 아키텍처를 비교하여 장단점을 분석
- 동작 방식: 웹에 변환을 원하는 인물 이미지를 업로드 후 생성된 이미지를 확인한다.
- 활용 기술
 - 사용 모델
 - UGATIT-pytorch (https://github.com/znxlwm/UGATIT-pytorch)
 - 데이터셋 구축
 - 얼굴 인식: <u>https://github.com/ultralytics/yolov5/releases/tag/v2.0</u>
 - 원본 검정고무신 이미지: https://www.youtube.com/playlist?list=PLrNFl43wt6gCEdWfQjzPf2Dnza7liRcpL
 - 원본 얼굴 데이터셋: https://github.com/JingchunCheng/All-Age-Faces-Dataset

ALB + ASG 인스턴스 서버

Lambda + 웹 서버

모델 학습 데이터셋 생성 - yolo5 활용

모델 학습

초기 결과

기존 서비스

프로젝트 시연

프로젝트 시연 결과

속도 및 트래픽 비교

- 측정 환경: Locust 사용하여 측정
- 사용자가 이미지를 업로드한 시점부터 출력 이미지를 전달받는 시점까지 계산

속도 및 트래픽 비교

- 각 실험은 15분 간 측정

요청수/ 단위 시간	Instance 서버					Lambda + 웹 서버				
	Req.	Fail	Mean (ms)	Min (ms)	Max (ms)	Req.	Fail	Mean (ms)	Min (ms)	Max (ms)
(1회/10초)	115	6	5899	248	20657	62	0	15107	9051	23191
(10회/10초)	372	67	22171	222	60654	681	1	11639	384	21216
(15회/10초)	682	140	15816	232	62636	1409	617	6858	242	20905

비용 측정

AWS Calculator

비용 비교

요청수/ 단위 시간		Instance 서버		Lambda + 웹 서버				
	EC2 (t2.medium)	ALB	합계	EC2 (t2.micro)	Lambda (3000MB)	합계		
Toy Project (680회/1일)	33.87USD (1대)	18.77USD (1 대)	52.64USD	8.47USD (1대)	5.25USD	13.72USD		
기존 모델 이 용자 서비스 (3300회/1일)	33.87USD (1대)	18.77USD (1 대)	52.64USD	8.47USD (1대)	20.78USD	29.25USD		
(7200회/1일)	33.87USD (1대)	18.77USD (1 대)	52.64USD	8.47USD (1대)	51.13USD	59.6USD		
네이버 Snow (5만 회/1일)	270.9USD (8 대)	19.35USD (1 대)	290.33USD	8.47USD (1대)	381.38USD	389.85USD		

한계 및 개선방안

- 모델
 - 성능 개선
- 람다
 - 콜드 스타트
- S3 활용(IAM 이슈)
 - EFS 대신 아카이빙
 - 한 번 처리가 된 이미지는 캐싱하여 처리