CPSC471 DATABASE MANAGEMENT SYSTEMS

University of Calgary Assignment 5

Instructor: Jalal Kawash TA: Kashfia Sailunaz Student: Omar Qureshi

ID: 10086638

Question 1

```
{Classid}+ = {Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity}
= CLASS
{Course#, Instr_name}+ = {Course#, Credit_hrs, Text, Publisher, Classroom, Capacity}
```

Question 2

The set F of functional dependencies in question 1 is not minimal. This is because it violates one of the first rules of minimality, which is every FD must have a single attribute for its right hand side. The following is F_{min} :

```
F<sub>min</sub> = {
Classid -> {Course#},
Course# -> {Credit_hrs},
Course# -> {Text},
Course# -> {Publisher},
Course# -> {Classroom},
Course# -> {Capacity},
Classid -> {Instr_name},
}
```

To show equivalence, we prove that F is covered by F_{min} and vice versa. First we prove F is covered by F_{min}:

{Classid}+ = {Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity} with respect to F_{min} covers Classid -> {Course#, Instr_name} in F and **{Course#, Instr_name}**+ = {Credit_hrs, Text_Publisher, Classroom, Capacity} with respect to F_{min} covers

{Course#, Instr_name} $^+$ = {Credit_hrs, Text, Publisher, Classroom, Capacity} with respect to F_{min} covers {Course#} -> {Credit_hrs, Text, Publisher, Classroom, Capacity} in F.

Second we prove F_{min} is covered by F:

 $\label{eq:Classid} \begin{tabular}{ll} \begi$

 $\label{lem:course} \begin{tabular}{ll} \beg$

Question 3

```
Since \{B,D\} \rightarrow \{E,F\} then \{A,B,D\} \rightarrow \{A,B,D,E,F\}
Since \{A,D\} \rightarrow \{G,H\} then \{A,B,D\} \rightarrow \{A,B,D,G,H\}
Since \{A,D\} \rightarrow \{G,H\} then \{A,D\} \rightarrow \{H\}. Since also \{H\} \rightarrow \{J\} then \{A,D\} \rightarrow \{J\} and so \{A,B,D\} \rightarrow \{A,B,D,J\}
Since \{A,I\} then \{A,B,D\} \rightarrow \{A,B,C,D,E,F,G,H,I,J\} by union. Thus \{A,B,D\} is a key of R.
2NF
R1: \{\underline{A},\underline{B},C\}
R2: \{B,D,E,F\}
```

3NF

R4: {<u>A</u>,I} R5: {<u>A</u>,B,<u>D</u>}

R1: {<u>A,B,C</u>} R2: {<u>B,D,E,F</u>} R3.1: {<u>A, D,</u> G, H}, R3.2: {<u>H,</u> J}

R4: {<u>A</u>, I} R5: {<u>A, I}</u>

R3: {A,D,G,H,J}

Question 4

A) Dependency preservation property:

$$R1 = {AB -> C}$$

 $R2 = {}, \text{ no D -> G and D -> H}$

We can stop at this point and conclude that is NOT dependancy preservation

B) Dependency preservation property:

$$\begin{array}{l} R1 = \{\{AB \rightarrow C\}, \, \{B \rightarrow E\}, \, \{D \rightarrow E\}\} \\ R2 = \{\} \; No \; \{A \rightarrow G\} \; and \; \{D \rightarrow H\} \end{array}$$

We can stop at this point and conclude that is NOT dependancy preservation

C) Dependency preservation property:

No A -> H and no D -> H, we can stop at this point and conclude that is NOT dependancy preservation

A) Lossless join property - check for occurrences

	Α	В	С	D	Е	F	G	Н	I	J
R1	X	Х	X							
R2	Х			Х	Х					
R3		Х								
R4						Х	Х	Х		
R5				Х					Х	Х

Since no single attribute was in over % of the spots, it is NOT lossless.

A) Lossless join property - Check for occurrences

	Α	В	С	D	Е	F	G	Н	I	J
R1	Х	Х	Х	X	Х					
R2		Х				Х	Х	Х		
R3				Х					Х	Х

Since B appears in over 2 of the rows, it is lossless.

	А	В	С	D	Е	F	G	Н	I	J
R1	Х	Х	Х	X						
R2				Х	Х					
R3		Х				Х				
R4						Х	Х	Х		
R5				Х					Х	Х

NOT Lossless

A) Normal form check D_1 is not in 2NF, and thus it is not in any other form either.

B) Normal form check

D₂ is not in 2NF, and thus it is not in any other form either.

C) Normal form check

D₃ is not in 2NF, and thus it is not in any other form either.