Conjuntos Numéricos

Conjunto dos Números Naturais

O conjunto dos números naturais é denotado por $\,\mathbb{N}\,$

Enumerando alguns de seus elmentos temos: $\mathbb{N}=\{0,1,$ $2,3,4,\dots$. }

- Conjunto dos números naturais não nulos:
$$\mathbb{N}*$$

$$= \{1, \\ 2, 3, 4, . \\ \ldots\}$$

Propriedade	Adição	Multiplicação
Fechamento	$egin{aligned} a+b\ \in \mathbb{N} \end{aligned}$	$a.b\in\mathbb{N}$
Associatividade	$(a \\ + b) \\ + c \\ = a \\ + (b \\ + c)$	$(a.b).c \ = a.(b.c)$
Comutatividade	$egin{array}{l} a+b \ =b \ +a \end{array}$	a.b=b.a
Existência de um elemento neutro	$egin{aligned} a+0\ &=a \end{aligned}$	a.1=a
Distributividade	$egin{array}{l} a.(b \ +c) \ = a \ .b \ + a \ .c \end{array}$	

Conjunto dos Números Inteiros

O conjunto dos números inteiros é denotado por \mathbb{Z} . Enumerando alguns de seus elçementos, temos:

$$\mathbb{Z} = \{\dots, -3, -2 \\ -1, 0, 1, 2, 3, \dots \\ .\}$$

ullet Conjunto dos números inteiros não negativos: $\mathbb{Z}_+=\{x$

$$\in \mathbb{Z}|x$$

$$\geq 0\}$$

ullet Conjunto dos números inteiros não positivos: $\mathbb{Z}_-=\{x$

$$\in \mathbb{Z}|x$$

- Conjunto dos números inteiros não nulos: $\mathbb{Z}^*=\{x\in\mathbb{Z}|x\in\mathbb{Z}|x$ Conjunto dos números inteiros positivos: $\mathbb{Z}_+^*=\{x\in\mathbb{Z}|x$
- $>0\}$ Conjunto dos números inteiros negativos: $\mathbb{Z}_{-}^{*}=\{x\in\mathbb{Z}|x$

Propriedade	Adição
Existência de um	Para todo $a\in\mathbb{Z}$, existe um $-a$, tal que $\in\mathbb{Z}$ $a+($
simétrico	$egin{array}{l} -a) \ =0 \end{array}$

< 0

Conjunto dos Números Racionais

O conjunto dos números racionais, denotado por \mathbb{Q} , é constituído por números que podem ser escritos na forma de uma razão $\frac{p}{q}$, em que $p \in \mathbb{Z}$ e $q \in \mathbb{Z}^*$:

$$egin{aligned} &Q\ &=\left\{x|x=rac{p}{q},p\in\mathbb{Z}
ight.\ & ext{e}\quad q\in*\mathbb{Z}
ight\} \end{aligned}$$

- Inteiros: $\frac{4}{2}$
- Decimals finitos: $\frac{2}{4}$
- Dízimas períodicas: ¹/₃
- ullet Conjunto dos números racionais não negativos: \mathbb{Q}_+

$$=\{x\ \in Q|x\ \geq 0\}$$

• Conjunto dos números racionais não positivos: \mathbb{Q}_-

$$=\{x\ \in Q|x\ \leq 0\}$$

• Conjunto dos números racionais não nulos: \mathbb{Q}^*

$$=\{x\ \in Q|x\
eq 0\}$$

• Conjunto dos números racionais positivos: \mathbb{Q}_+^*

$$egin{array}{l} & = \{x \ & \in Q | x \ & > 0 \} \end{array}$$

ullet Conjunto dos números racionais negativos: \mathbb{Q}_-^*

$$=\{x$$

$$\in Q|x$$
 < 0 }

Propriedade	multiplicação
Existência de um inverso	Para todo $rac{a}{b} \in \mathbb{Q}^*$, tal que $rac{a}{b}.rac{b}{a} = 1$

Conjunto dos Números Irracionais

O conjunto dos números irracionais, denotado por \mathbb{I} , reúne números representados na forma decimal, com infinitos algarismos e que não apresentam periodicidade.

• Algébricos: $\sqrt{2}$

ullet Transcendentes: $\pi=3,$

 $14159265358979323846..... \ \ 718281828$

Conjunto dos Números Reais

O conjunto dos números reais, denotado por $\,\mathbb{R}$, reúne o conjunto dos números rqacionais e o conjunto dos números irracionais $\mathbb{R}=\mathbb{Q}\cup\mathbb{L}$

ullet Conjunto dos números reais não negativos: $\mathbb{R}_+=\{x$

$$\in \mathbb{R}|x$$

$$\geq 0$$

ullet Conjunto dos números reais não positivos: $\mathbb{R}_-=\{x$

$$\in \mathbb{R}|x$$

$$\leq 0\}$$

- Conjunto dos números reais não nulos: $\mathbb{R}^* = \{x \; ext{ou} \; \mathbb{R} - \{0\}$

$$\in \mathbb{R}|x$$

$$\neq 0$$
}

ullet Conjunto dos números reais positivos: $\mathbb{R}_+^*=\{x$

$$\in \mathbb{R}|x$$

ullet Conjunto dos números reais negativos: $\mathbb{R}_{-}^{*}=\{x$

$$\in \mathbb{R}|x$$

Desigualdades

Se a,b e c são números reais quaisquer, então:

$$\bullet \ \ {\rm Se} \ a > b {\rm , \ ent \ \~ao}, \ a+c < b+c$$

$$\bullet \ \ {\rm Se} \ a < b \ {\rm e} \ c > 0 \mbox{, então, } ac < bc$$

- Se
$$a < b$$
 e $c < 0$, então, $ac > bc$

Inequações

$$5x - 3 \le 7$$
$$5x \le 7 + 3$$

$$5x \le 10$$

$$x < \frac{10}{10}$$

In []:

$$egin{array}{lll} 2+4x < 5x + 7 \ 4x - 5x < 7 - 2 \ -x < 5 & .(-1) \ x > -5 \ S = \{x \in \mathbb{R} & | & x > -5 \} \end{array}$$

In []:

$$x^2 - 7x + 10 > 0$$

 $x^2+7x\,$ é uma função quadrática, logo: $f(x)=x^2\,$. Essa função quadrática tem concavidade voltada para $+\,10\,$ $-\,7x+10\,$ cima, pois o coeficiente a é maior do que 0.

Para calcular as raízes da equação, onde a parábola intercepta o eixo x, igualamos f(x) a zero: x^2-7x . Para +10=0 encontrar as raízes a partir da equação, utilizaremos a fórmula de Baskara.

$$x = rac{-b\pm\sqrt(\Delta)}{2.a}$$

$$\Delta = b^2 - 4.a.c$$

Calculando o discriminante Δ :

$$egin{aligned} \Delta &= b^2 \ -4.a.\,c \ \Delta &= (-7)^2 \ -4.1.10 \ \Delta &= 49 \ -40 \ \Delta &= 9 \end{aligned}$$

Calculando a primeira raíz:

$$x' - b = rac{-b}{2.a} = rac{+\sqrt(\Delta)}{2.a} = rac{x'}{-(-7)} = rac{+\sqrt(9)}{2.1} = rac{7+3}{2} = rac{7-10}{2}$$

$$x^{\prime}=rac{2}{x^{\prime}=5}$$

Calculando a segunda raíz:

$$x'' - b$$

$$= \frac{-\sqrt{(\Delta)}}{2.a}$$

$$x'' - (-7)$$

$$= \frac{-\sqrt{(9)}}{2.1}$$

$$x'' = \frac{7-3}{2}$$

$$x'' = \frac{4}{2}$$

$$x'' = 2$$

$$S=\set{]-\infty,2[\,\cup\,]5,+\infty}$$

In []: