Stocha Notizen

<u>Inhalt</u>	
Grundbegriffe	
Rechenregeln für Wahrscheinlichkeitsmaß	4
Kombinatorisches Abzählprinzip	5
Ziehen in Reihenfolge mit Zurücklegen Ziehen in Reihenfolge ohne Zurücklegen	6
Ziehen ohne Reihenfolge ohne Zurücklegen Ziehen ohne Reihenfolge mit Zurücklegen	6
Ereignisalgebra / σ-Algebra	7
Rechenregel	8
Satz von Bayes	8
Pfadregel Produktsatz	9
Totale und paarweise Unabhängigkeit	9
Diskrete Zufallsvariable	10
Verteilung einer Zufallsvariable	12
Verteilungsfunktion	14
Stetige Zufallsvariablen/Dichtefunktion	16
Unabhängige Zufallsvariablen	17
Kriterium für stetige Zufallsvariablen Zufallsstichprobe	18
Erwartungswert für diskrete ZV	19
Erwartungswert für stetige ZV Rechenregeln für den Erwartungswert	
Varianz	
Rechenregeln für Varianz	
Bernoulli-Verteilung Binomialverteilung	23
Faltung Negative Binomialverteilung	23 23
Geometrische Verteilung	24
Poisson-Grenzwertsatz Verteilung	25
Rechenregeln	25
Exponentialverteilung	27
Eigenschaften der Normalverteilung Rechenregeln	28
Zufallsvektoren	29
Produktverteilung / Produktmodell	30
Bedingte Dichte	32
Bedingter Erwartungswert	34
Erwartungsvektor	36
Rechenregeln	37
Das Gesetz der großen Zahlen	38
Schwaches Gesetz der großen Zahlen	38
Hauptsatz der Statistik Zentraler Grenzwertsatz (ZGWS)	40
Stochastische Konvergenz	41
Fast sichere Konvergenz	42
Visualisierung von Zahlenmaterial	44
Gruppierung (Klassierung) von Daten	46
Median Berechnung	47
Eigenschaften	48
Entropie	49
Eigenschaften	50
Rechenregeln	
Quantile Berechnung	
Quartile	
Schließende Statistik	
Stichprobe Verteilungsmodell	
Statistik, Schätzfunktion, Schätzer	56
Empirische VerteilungsfunktionLikelihood-Funktion	57
Likelihood-Prinzip Maximum-Likelihood-Schätzer	58
Likelihood für Dichten Likelihoof für Stichproben	58
Schätzer Erwartungstreue	59
Anschauung	60
Gütekriterien	62
Konsistenz	62
Effizienz	62
Der <i>t</i> -Test (für eine Stichprobe)	63
Einseitiger t -Test (2)	63
P-Wert Einseitige Tests	64
Zweiseitiger Test Einseitige Tests gegeben p_{zweis}	64
Gütefunktion	66
Verbundenes Design Unverbundenes Design	66
Test auf Varianzinhomogenität Test auf Lageunterschied	66
Welch-Test auf Lageunterschied Fallzahlplanung	67
Zweiseitiger Test Einseitiger Test	68
t-Verteilung	69
Verteilung der VarianzschätzerF-Verteilung	71
Konfidenzintervall	73
Konfidenzintervall für σ^2	

1 / 76

<u>Grundbegriffe</u>

Ergebnismenge/Grundmenge Ω

Ereignis A: Teilmenge der Ergebnismenge

Wahrscheinlichkeit eines Ereignisses P(A)

Versuchsausgang $\omega \in \Omega$

Elementarereignis $\{\omega\}, \omega \in \Omega$

Sicheres Ereignis: P(A) = 1

Unmögliches Ereignis: P(A) = 0

Ereignisse disjunkt: $A_i \cap A_j = \emptyset = \emptyset$

Zufallsexperiment: (Ω, P)

Wahrscheinlichkeitsraum: (Ω, \mathcal{A}, P)

Wahrscheinlichkeitsmaß

Ein/e Wahrscheinlichkeitsmaß/Wahrscheinlichkeitsverteilung ist eine Abbildung, die jedem Ereignis

- $A\subseteq \Omega$ eine Zahl $P(A)\in \mathbb{R}$ zuordnet $(P:\operatorname{Pot}(\Omega)\to \mathbb{R})$, sodass gilt:
- 1. $0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$
- 3. Sind A_1, A_2, \dots paarweise disjunkt, dann gilt

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots = \sum_{k=1}^{\infty} P(A_k)$$

Rechenregeln für Wahrscheinlichkeitsmaß

- 1. $P(\overline{A}) = 1 P(A)$
- 2. Für $A \subseteq B$ gilt: $P(A \setminus B) = P(B) P(A)$
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 4. $P(A \cap B) = P(A) + P(B) P(A \cup B)$
- 5. $P(A \cup B) \le P(A) + P(B)$

Laplace-Raum

 (Ω,P) heißt Laplace-Raum, wenn $\Omega=\{\omega_1,...,\omega_K\}$ endlich ist und das Wahrscheinlichkeitsmaß durch

$$p(\omega) = P(\{\omega\}) = \frac{1}{K} \quad \omega \in \Omega$$

gegeben ist. P heißt auch diskrete Gleichverteilung auf Ω . Dann berechnen sich Wahrscheinlichkeiten durch

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl möglicher Fälle}}{\text{Anzahl günstiger Fälle}}$$

Kombinatorisches Abzählprinzip

Ist $\Omega=\Omega_1\times\cdots\times\Omega_k$ für ein $k\in\mathbb{N}$ und $A=A_1\times\cdots\times A_k\subseteq\Omega$, dann ist

$$|A| = |A_1| \cdot |A_2| \cdot \dots \cdot |A_k|$$

Urnenmodelle

Sei $A = \{1, ..., N\}.$

1. Ziehen in Reihenfolge mit Zurücklegen

$$\Omega = \{(\omega_1, ..., \omega_n) \mid \omega_1, ..., \omega_n \in A\}, \quad |\Omega| = N^n$$

2. Ziehen in Reihenfolge ohne Zurücklegen

$$\Omega = \{(\omega_1, ..., \omega_n) \mid \omega_1, ..., \omega_n \in A, \omega_i \neq \omega_i \text{ für } i \neq j\}$$

Es gilt:

$$|\Omega| = N \cdot (N-1) \cdot \ldots \cdot (N-n+1) = \frac{N!}{(N-n)!}$$

3. Ziehen ohne Reihenfolge ohne Zurücklegen

$$\Omega = \{\{\omega_1, ..., \omega_k\} : \omega_1, ..., \omega_k \in \{1, ..., n\}, \omega_i \neq \omega_k, (i \neq j)\}$$

Es gilt:

$$|\Omega| = \frac{1}{k!} \frac{n!}{(n-k)!} = \binom{n}{k}$$

4. Ziehen ohne Reihenfolge mit Zurücklegen

$$\Omega = \{(\omega_1, ..., \omega_n) : \omega_i \in A, i = 1, ..., n, \omega_1 \le ... \le \omega_n\}$$

Es gilt:

$$|\Omega| = \binom{N-1+n}{n}$$

Ereignisalgebra / σ -Algebra

Ein Mengensystem $\mathcal{A} \subseteq \operatorname{Pot}(\Omega)$ von Teilmengen von Ω heißt Ereignisalgebra (σ -Algebra), wenn die folgenden Eigenschaften gelten:

- 1. Die Ergebnismenge Ω und die leere Menge \emptyset gehören zu \mathcal{A} .
- 2. Mit A ist auch \overline{A} Element von A.
- 3. Sind A_1,A_2,\dots Mengen aus $\mathcal{A},$ dann ist auch $\bigcup_{i=1}^{\infty}A_i=A_1\cup A_2\cup\dots$ ein Element von $\mathcal{A}.$

Die Elemente von \mathcal{A} heißen Ereignisse.

Bedingte Wahrscheinlichkeit

Es seien A, B Ereignisse P(B) > 0. Dann heißt

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

bedingte Wahrscheinlichkeit von A gegeben B.

Liegt ein Laplace-Raum vor, dann ist $P(A \mid B)$ der Anteil der für das Ereignis $A \cap B$ günstigen Fälle, bezogen auf die möglichen Fälle, welche die Menge B bilden:

$$P(A \mid B) = \frac{|A \cap B|}{|\Omega|} \cdot \frac{|\Omega|}{|B|} = \frac{|A \cap B|}{|B|}$$

Rechenregel

A, B seien Ereignisse mit P(B) > 0. Dann gilt:

$$P(A \cap B) = P(A \mid B)P(B)$$

Satz von der totalen Wahrscheinlichkeit

Sei $A_1, ..., A_k$ eine disjunkte Zerlegung von Ω :

$$\Omega = A_1 \cup \dots \cup A_k, \quad A_i \cap A_j = \emptyset, i \neq j$$

Dann gilt:

$$P(B) = \sum_{i=1}^{K} P(B \mid A_i) \cdot P(A_i)$$

Satz von Bayes

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Mehrstufige Wahrscheinlichkeitsmodelle

$$\Omega = \Omega_1 \times \cdots \times \Omega_n$$

Startverteilung
$$p(\omega_1), \quad \omega_1 \in \Omega_1$$

Bedingte Wahrscheinlichkeiten $p \left(\omega_j \mid \omega_1, ..., \omega_{j-1} \right)$

Pfadregel

für $\omega = (\omega_1, ..., \omega_n)$:

$$P(\{\omega\}) = p(\omega_1)p(\omega_2 \ | \ \omega_1) \cdots p(\omega_n \ | \ \omega_1,...,\omega_{n-1})$$

Produktsatz

Zwei Ereignisse heißen stochastisch unabhängig, wenn

$$P(A \cap B) = P(A) \cdot P(B)$$

gilt.

k Ereignisse erfüllen den Produktsatz, wenn gilt:

$$P\bigl(\cap_{i=1}^k A_i\bigr) = \prod_{i=1}^k P(A_i)$$

Totale und paarweise Unabhängigkeit

- $A_1,...,A_n\subseteq\Omega$ heißen (total) stochastisch unabhängig, wenn für jede Teilauswahl $A_{i_1},...,A_{i_k}$ von $k\in\mathbb{N}$ Ereignissen der Produktsatz gilt.
- $A_1,...,A_n$ heißen paarweise stochastisch unabhängig, wenn alle Paare A_i,A_j mit $(i\neq j)$ stochastisch unabhängig sind.

Zufallsvariablen

Eine Abbildung $X: \Omega \to \mathcal{X} \subseteq \mathbb{R}, \quad \omega \mapsto X(\omega)$

 Ω abzählbar, in die reellen Zahlen heißt Zufallsvariable (mit Werten in \mathcal{X}).

x = X(w): Realisation

Zusatz: Allgemeines $\Omega: X$ muss messbar sein:

$$\{\omega \in \Omega : X(\omega) \in B\} \in A \text{ für alle Ereignisse } B \text{ von } \mathcal{X}.$$

Diskrete Zufallsvariable

X heißt diskrete Zufallsvariable, wenn

$$\mathcal{X} = \{X(\omega) : \omega \in \Omega\}$$

eine diskrete Menge (endlich oder abzählbar) ist.

Notiz: Ω diskret \Rightarrow Alle ZV sind diskret.

Verteilung einer Zufallsvariable

Die Zuordnung, die jedem Ereignis A die Wahrscheinlichkeit $P(X \in A)$ zuordnet, heißt Verteilung von X. Formal:

$$P_X: A \mapsto P_{X(A)} = P(X \in A)$$

für Ereignisse $A \subseteq \mathcal{X}$.

Hinweis: Unterscheide P, das Wahrscheinlichkeitsmaß auf Ω und P_X , das Wahrscheinlichkeitsmaß auf \mathcal{X} .

• Punktförmige Ereignisse $\{x\}, x \in \mathcal{X}$:

$$P_X(\{x\}) = P(X = x)$$

- Intervallförmige Ereignisse $(a,b], a \leq b$

$$P_X((a,b]) = P(X \in (a,b]) = P(a < X \le b)$$

Wahrscheinlichkeitsfunktion/ Zähldichte

X sei diskrete Zufallsvariable mit Werten $\mathcal{X} = \{x_1, x_1, ...\} \subseteq \mathbb{R}$. Dann heißt die Funktion

$$p_X(x) = P(X = x), \quad x \in \mathbb{R},$$

Wahrscheinlichkeitsfunktion oder Zähldichte von X, Es gilt:

$$\sum_{x \in \mathcal{X}} p_X(x) = \sum_{i=0}^{\infty} p_x(x_i) = 1$$

Sie bestimmt eindeutig die Verteilung von X.

Die Zähldichte kann durch die Punktwahrscheinlichkeiten

$$p_i = P(X = x_i), \quad i = 1, 2, \dots$$

festgelegt werden: Es gilt $p_X(x_i) = p_i$ und $p_X(x) = 0$, wenn $x \notin \mathcal{X}$. Kann X nur endlich viele Werte $x_1,...,x_k$ annehmen, dann heißt $(p_1,...,p_k)$ auch Wahrscheinlichkeitsvektor.

Verteilungsfunktion

Die Funktion $F_x: \mathbb{R} \to [0, 1]$,

$$F_X(x) = P(X \le x), \quad x \in \mathbb{R}$$

heißt Verteilungsfunktion von X. $F_X(x)$ ist monoton wachsend, rechtsstetig und es gilt:

$$F(-\infty)\coloneqq \lim_{x\to -\infty} F_X(x) = 0, \quad F(\infty)\coloneqq \lim_{x\to \infty} F_X(x) = 1$$

Ferner gilt: $P(X < x) = F(x -) = \lim_{z \uparrow x} F(z)$ und

$$P(X = x) = F(x) - F(x -).$$

Allgemein heißt jede monoton wachsende und rechtsstetige Funktion $F : \mathbb{R} \to [0, 1]$ mit $F(-\infty) = 0$ und $F(\infty) = 1$ Verteilungsfunktion (auf \mathbb{R}) und besitzt obige Eigenschaften.

Quantilfunktion

F(x) sei eine Verteilungsfunktion.

Die Funktion $F^{-1}:[0,1]\to\mathbb{R}$,

$$F^{-1}(p) = \min\{x \in \mathbb{R} : F(x) \ge p\}, \quad p \in (0, 1),$$

heißt Quantilfunktion von F.

Ist F(x) stetig und streng monoton steigend, dann ist $F^{-1}(p)$ die Umkehrfunktion von F(x).

Für ein festes p heißt $F^{-1}(p)$ (theoretisches) p-Quantil.

Stetige Zufallsvariablen/Dichtefunktion

Eine ZV X heißt **stetig (verteilt)**, wenn es eine integrierbare nicht-negative Funktion f(x) gibt, sodass für alle Intervalle $(a,b] \subseteq \mathbb{R}$ gilt:

$$P_X((a,b]) = P(a < X \le b) = \int_a^b f(x) \, \mathrm{d}x$$

 $f_X(x) = f(x)$ heißt dann **Dichtefunktion von** X (kurz: Dichte).

Allgemein heißt jede Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) \ge 0, x \in \mathbb{R}, \text{ und } \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$$

Dichtefunktion.

Notation: X hat Dichte $f_X(x)$:

$$X \sim f_X$$

Verteilungsfunktion aus Dichte:

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t, \quad x \in \mathbb{R}$$

Dichte aus Verteilungsfunktion:

$$f_X(x) = F'_X(x), \quad x \in \mathbb{R}$$

Dichtetransformationssatz

X sei eine stetige Zufallsvariable mit Werten in $\mathcal{X} = (a,b), a < b$, und mit Dichtefunktion $f_X(x)$.

Weiter sei y=g(x) eine stetig differenzierbare Funktion mit Umkehrfunktion $x=g^{-1}(y)$, so dass $(g^{-1})'\neq 0$ gilt.

Dann hat die Zufallsvariable Y = g(X) die Dichtefunktion

$$f_Y(y) = f_X\big(g^{-1}(y)\big) \bigg| \frac{dg^{-1}(y)}{dy} \bigg|$$

Unabhängige Zufallsvariablen

Zwei Zufallsvariablen X und Y heißen stochastisch unabhängig, wenn die Ereignisse $\{X \in A\}$ und $\{Y \in B\}$ stochastisch unabhängig sind, für alle Ereignisse $A \subseteq \mathbb{R}$ und $B \subseteq \mathbb{R}$, d.h.

$$P(X \in A, Y \in B) = P(\{X \in A\} \cap \{Y \in B\}) = P(X \in A) \cdot P(Y \in B)$$

n Zufallsvariablen $X_1,...,X_n$ mit Werten in Mengen $\mathcal{X}_1,...,\mathcal{X}_n$ heißen (total) **stochastisch unabhängig**, wenn für alle Ereignisse $A_1\subseteq\mathcal{X}_1,...,A_n\subseteq\mathcal{X}_n$ die Ereignisse $\{X_1\in A_1\},...,\{X_n\in A_n\}$ stochastisch unabhängig sind. D.h.: Für alle $i_1,...,i_k\in\{1,...,n\}$ gilt:

$$P(X_{i_1} \in A_{i_1}, ..., X_{i_k} \in A_{i_k}) = P(X_{i_1} \in A_{i_1}) \cdots P(X_{i_k} \in A_{i_k})$$

Kurz: Stets gilt der Produktsatz für gemeinsame Wahrscheinlichkeiten (d.h. von Schnitten)

Kriterium für diskrete Zufallsvariablen

Zwei diskrete Zufallsvariablen X und Y sind stochastisch unabhängig, wenn für alle Realisationen x_i von X und y_i von Y die Ereignisse $\{X=x_i\}$ und $\{Y=y_i\}$ stochastisch unabhängig sind, d.h.

$$P\big(X=x_i,Y=y_j\big)=P(X=x_i)\cdot P\big(Y=y_j\big)$$

Dann gilt ferner

$$P\big(X=x_i \mid Y=y_j\big) = P(X=x_i), \quad \text{und } P\big(Y=y_j \mid X=x_i\big) = P\big(Y=y_j\big)$$

Kriterium für stetige Zufallsvariablen

Zwei stetige Zufallsvariablen X und Y sind stochastisch unabhängig, wenn für alle Intervalle (a,b] und (c,d] die Ereignisse

$$\{a < X \leq b\} \quad \text{und} \quad \{c < Y \leq d\}$$

unabhängig sind, d.h.

$$\begin{split} P(a < X \leq b, c < Y \leq d) &= \int_a^b f_X(x) \, \mathrm{d}x \cdot \int_c^d f_{Y(y)} \, \mathrm{d}y \\ &= \int_a^b \int_c^d f_X(x) f_Y(y) \, \mathrm{d}y \, \mathrm{d}x \end{split}$$

Zufallsstichprobe

Das Gesamtexperiment sei wie folgt beschrieben:

- *n*-fache Wiederholung eines Zufallsexperiments beschrieben durch $X: \Omega \to \mathcal{X}$.
- Die Wiederholungen erfolgen unter identischen Bedingungen.
- Die Ergebnisse hängen nicht voneinander ab.

Stochastisches Modell:

- *n* Zufallsvariablen $X_1, ..., X_n : \Omega \to \mathcal{X}$.
- X_i repräsentiert das Ergebnis der i-ten Wiederholung.

 $X_1,...,X_n$ bilden eine (einfache) Zufallsstichprobe, wenn gilt:

- 1. $X_1, ..., X_n$ sind stochastisch unabhängig und
- 2. $X_1,...,X_n$ sind identisch verteilt, d.h. alle X_i besitzen dieselbe Verteilung:

$$P(X_i \in A) = P(X_1 \in A), i = 1, ..., n$$
 für alle Ereignisse A.

Sei $F(x) = F_X(x)$ die Verteilungsfunktion der X_i , so schreibt man kurz:

$$X_1,...,X_n \stackrel{\text{i.i.d.}}{\sim} F(x)$$

i.i.d. (engl.: independent an identically distributed) steht hierbei für unabhängig und identisch verteilt.

Erwartungswert

Erwartungswert für diskrete ZV

 $X \sim p_X$ diskrete ZV mit Werten in \mathcal{X} , verteilt nach der Zähldichte p_X . Dann heißt die reelle Zahl

$$E(X) = \sum_{x \in \mathcal{X}} x \cdot p_X(x)$$

Erwartungswert von X, sofern $\sum_{x \in \mathcal{X}} |x| \cdot p_X(x) < \infty$.

Wichtiger Spezialfall: $\mathcal{X} = \{x_1, ..., x_k\}$ endlich. Dann ist

$$E(X) = x_1 \cdot p_X(x_1) + x_2 \cdot p_X(x_2) + \dots + x_k \cdot p_X(x_k).$$

Erwartungswert für stetige ZV

 $X \sim f_X$ stetige ZV, verteilt nach der Dichtefunktion $f_X(x)$.

Dann heißt die reelle Zahl

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) \, \mathrm{d}x$$

Erwartungswert von X (sofern $\int_{-\infty}^{\infty} |x| \cdot f_X(x) \, \mathrm{d}x < \infty$).

Rechenregeln für den Erwartungswert

Seien X, Y ZVen (mit $E(|X|), E(|Y|) < \infty$) und $a, b \in \mathbb{R}$.

- 1. E(X + Y) = E(X) + E(Y),
- 2. E(aX + b) = aE(X) + b,
- 3. $E(|X + Y|) \le E(|X|) + E(|Y|)$
- 4. **Jensen-Ungleichung**: Ist g(x) konvex, dann gilt:

 $E(g(X)) \ge g(E(X))$ und E(g(X)) > g(E(X)), falls g(x) strikt konvex ist. Ist g(x) konkav bzw. strikt konkav, dann kehren sich die Ungleichheitszeichen um.

Produkteigenschaft Seien X,Y stochastisch unabhängige ZVen.

Für alle Funktionen f(x) und g(y) (mit $E(|f(x)|)<\infty)$ gilt:

$$E(f(X)\cdot g(Y))=E(f(X))\cdot E(g(Y))$$

Insbesondere $E(XY) = E(X) \cdot E(Y)$

Notiz

X,Yunabhängig $\Rightarrow E(XY)-E(X)\cdot E(Y)=0.$

$$\operatorname{Cov}(X,Y) = E(XY) - E(X) \cdot E(Y)$$

ist ein gängiges Maß für Abhängigkeit.

Varianz

Sei X eine Zufallsvariable. Dann heißt

$$\sigma_X^2 = \operatorname{Var}(X) = E((X - E(X))^2)$$

Varianz von X, sofern $E(X^2) < \infty$. Die Wurzel aus der Varianz,

$$\sigma_X = \sqrt{\operatorname{Var}(X)},$$

heißt Standardabweichung von X.

Verschiebungssatz

$$Var(X) = E(X^2) - (E(X))^2$$

Rechenregeln für Varianz

X, Y Zufallsvariablen

- 1. $\operatorname{Var}(aX) = a^2 \operatorname{Var}(X)$
- 2. Falls E(X) = 0, dann gilt $Var(X) = E(X^2)$
- 3. Sind X und Y stochastisch unabhängig, dann gilt:

$$Var(X + Y) = Var(X) + Var(Y)$$

Momente, Kurtosis, Exzess

Seit X eine Zufallsvariable und $k \in \mathbb{N}$ und es gelte $E(|X^k|) < \infty$.

- $m_k = E(X^k)$ ist das **k-te Moment** von X
- $m_k^* = E(|X|^k)$ ist das **k-te absolute Moment** von X
- $m_{k(a)} = E(X-a)^k$ ist das k-te Moment um a
- $m_k^{n(a)} = E(|X-a|^k)$ ist das k-te absolute Moment um a
- $\beta_2 = (E(X^*)^4)$ heißt Kurtosis von X (misst die Wölbung)
- $\gamma_2=\beta_2-3$ heißt Exzess. $\gamma_2>0$: Verteilung 'spitzer' als Gaussverteilung, $\gamma_2<0$: 'flacher'

Bernoulli-Verteilung

Sei A ein Ereignis. Beobachte, ob A eintritt oder nicht:

$$X = \mathbb{1}_A = \begin{cases} 1, & A \text{ tritt ein} \\ 0, & A \text{ tritt nicht ein.} \end{cases}$$

Träger: $=\{0,1\}$ (binär). Verteilung gegeben durch $p=P(X=1)=P(A), \quad q=1-p=P(X=0)$ p: Erfolgswahrscheinlichkeit

$$X \sim \text{Ber}(p), \quad X \sim \text{Bin}(1, p)$$

- Erwartungswert: E(X) = p,
- Varianz: Var(X) = p(1-p)

Binomialverteilung

- Modell: $X_1,...,X_n$ i.i.d. $\sim \operatorname{Ber}(p)$
- Anzahl der Erfolge gegeben durch:

$$Y = \sum_{i=1}^{n} X_i$$

 \Rightarrow *Y* ist binomial verteilt.

Y heißt binomialverteilt, $Y \sim \text{Bin}(n, p)$, wenn

$$P(Y = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad k = 0, ..., n$$

Erwartungswert: E(Y) = np

Varianz: Var(Y) = np(1-p)

Zähldichte: $p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \{0,...,n\}$

Faltung

 $X \sim \text{Bin}(n_1, p)$ und $Y \sim \text{Bin}(n_2, p)$ unabhängig, dann folgt:

$$X + Y \sim \text{Bin}(n_1 + n_2, p)$$

Negative Binomialverteilung

Die Verteilung der Summe

$$S = T_1 + \dots + T_k = \sum_{i=1}^k T_i$$

von k i.i.d. Geo(p)-verteilten Zufallsvariablen $T_1, ..., T_k$ heißt negativ binomialverteilt. S_k ist die Anzahl der erforderlichen Versuche, um k Erfolge zu beobachten.

Geometrische Verteilung

T heißt **geometrisch verteilt** mit Parameter $p \in (p, 1]$. Notation: $T \sim \text{Geo}(p)$

$$P(W = n) = p(1-p)^n, \quad n = 0, 1, \dots$$

$$P(T = n) = p(1-p)^{n-1}, \quad n = 1, 2, \dots$$

• Erwartungswerte:

$$E(T) = \frac{1}{p}, \quad E(W) = \frac{1}{p} - 1$$

• Varianzen:

$$Var(T) = \frac{1-p}{p^2}, Var(W) = (1-p)$$

Poisson-Verteilung

Es werden punktförmige Ereignisse in einem Zeitintervall [0, T] gezählt:

$$X_t = \begin{cases} 1, & \text{Ereignis zur Zeit } t \\ 0, & \text{kein Ereignis zur Zeit } t \end{cases}$$

Die X_t sind unabhängig und identisch verteilt. Zerlege nun [0,T] in n gleichbreite Teilintervalle:

$$X_{ni} = \begin{cases} 1, & \text{Ereignis im } i\text{-ten Teilintervall} \\ 0, & \text{kein Ereignis im } i\text{-ten Teilintervall} \end{cases}$$

Dann gilt: $X_{n1},...,X_{nn}$ i.i.d. $\operatorname{Bin}(1,p_n)$ mit

$$p_n = \lambda \cdot \frac{T}{n}$$

Dabei ist λ die Proportionalitätskonstante.

Anzahl:

$$Y = X_{n1} + ... + X_{nn} \sim Bin(n, p_n)$$

Poisson-Grenzwertsatz

Sind $Y_n \sim \text{Bin}(n,p_n), n=1,2,...$, binomial verteilte Zufallsvariablen mit $np_n \to \lambda, n \to \infty$, dann gilt für ein festes k:

$$\lim_{n\to\infty}P(Y_n=k)=p_{\lambda}(k)=\frac{\lambda^k}{k!}e^{-\lambda}$$

Verteilung

Y heißt **poissonverteilt** mit Parameter λ . Notation: $Y \sim \text{Poi}(\lambda)$, wenn

$$P(Y = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

- Erwartungswert: $E(Y) = \lambda$
- Varianz: $\operatorname{Var}(Y) = \lambda$
- Zähldichte: $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k \in \mathbb{N}_0$

Rechenregeln

- $X \sim \operatorname{Poi}(\lambda)$ und $Y \sim \operatorname{Poi}(\mu)$ unabhängig, dann $X + Y \sim \operatorname{Poi}(\lambda + \mu)$
- $X \sim \operatorname{Poi}(\lambda)$ die Anzahl in [0,T] und Y die Anzahl im Teilintervall $[0,r\cdot T]$, so ist $Y \sim \operatorname{Poi}(r\cdot \lambda)$

Für (sehr) kleine $p: Y \sim \text{Bin}(n, p)$ wird mit $\lambda = np$ die Binomialverteilung approximiert:

$$P(Y=k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

Stetige Gleichverteilung (uniforme Verteilung)

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$$

X heißt dann stetig gleichverteilt auf dem Intervall [a,b]. Notation: $X \sim U[a,b]$. Für die Verteilungsfunktion ergibt sich:

$$F(x) = \frac{x-a}{b-a}, \quad x \in [a,b]$$

sowie F(x) = 0, wenn x < a und F(x) = 1 für x > b

- Erwartungswert: $E(X) = \frac{a+b}{2}$ Varianz: $Var(X) = \frac{(b-a)^2}{12}$

Exponentialverteilung

X heißt **exponentialverteilt**, $X \sim \text{Exp}(\lambda)$ mit Parameter $\lambda > 0$, wenn X die Dichtefuntion

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

- und f(x) = 0 für $x \le 0$ besitzt.
- Erwartungswert: $E(X) = \frac{1}{\lambda}$ • Varianz: $E((X-\lambda)^2) = E(X^2) - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$

Normalverteilung

X heißt normalverteilt mit Parametern $\mu \in \mathbb{R}$ und $\sigma^2 \in (0, \infty)$, falls X die Dichte

$$\varphi_{(\mu,\sigma^2)}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}$$

hat (Gauß'sche Glockenkurve)

Verteilungsfuntion:

$$\Phi_{(\mu,\sigma^2)}(x) = \int_{-\infty}^x \varphi_{(\mu,\sigma^2)}(t) dt = p$$

Quantilfunktion (Umkehrfunktion):

$$x=\Phi_{(\mu,\sigma^2)}^{-1}(p)$$

Eigenschaften der Normalverteilung

- $E(X) = \int_{-\infty}^{\infty} x \varphi_{(\mu,\sigma^2)}(x) dx = \mu$ $\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x \mu)^2 \varphi_{(\mu,\sigma^2)}(x) dx = \sigma^2$

Rechenregeln

- $X \sim N(\mu_1, \sigma_1^2)$ und $Y \sim N(\mu_2, \sigma_2^2)$ unabhängig, dann gilt: $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
- Ist $X \sim N(\mu, \sigma^2)$ und sind $a, b \in \mathbb{R}$, dann gilt: $aX + b \sim N(a\mu + b, a^2\sigma^2)$
- Ist $X \sim N(\mu, \sigma^2)$, dann gilt:

$$X^* = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

mit X^* : Standardisierte Version

• Ist $X^* \sim N(0,1)$, dann gilt

$$\mu + \sigma \cdot X^* \sim N(\mu, \sigma^2)$$

Sind $X_1,...,X_n \sim N(\mu,\sigma^2)$ unabhängig, dann ist das arithmetische Mittel normalverteilt mit Erwartungswert μ und Varianz $\frac{\sigma^2}{n}$:

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

und

$$\overline{X}^* = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \sim N(0, 1)$$

Zufallsvektoren

Wenn Ω abzählbar ist, dann heißt jede Abbildung

$$m{X}: \Omega o \mathbb{R}^n, \quad \omega \mapsto m{X}(\omega) = \left(X_1(\omega), ..., X_{n(\omega)} \right)$$

in den n-dimensionalen Raum \mathbb{R}^n Zufallsvektor. Realisationen von $\boldsymbol{X}=(X_1,...,X_n)$ sind Vektoren $x \text{ im } \mathbb{R}^n$: $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$.

Verteilung eines Zufallsvektors (X, Y)

Diskrete Zufallsvektoren: Verteilung durch Zähldichten gegeben

$$p(x,y) = P(X = x, Y = y), (x,y) \in \mathbb{R}^2$$

- Stäbe über der (x, y)-Ebene an denjenigen Stellen (x, y) mit P(X = x, Y = y) > 0, sonst 0.
- $P(X \in A, Y \in B) = \sum_{(x,y) \in A \times B} p(x,y)$ (Summe der Stäbe, die in $A \times B$ stehen.)

Stetige Zufallsvektoren: Verteilung gegeben durch Dichte f(x,y)

$$f(x,y) \ge 0, (x,y) \in \mathbb{R}^2, \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

- 'Gebirge' über der (x,y)-Ebene $P(a < X \le b, c < Y \le d) = \int_a^b \int_c^d f(x,y) \, \mathrm{d}y \, \mathrm{d}x$

Produktverteilung / Produktmodell

Produkt-Verteilungsfunktion

$$F(x,y) = F_X(x) \cdot F_Y(y), \quad (x,y) \in \mathbb{R}^2$$

Produkt-Zähldichte

$$p(x,y) = p_X(x) \cdot p_Y(y), \quad (x,y) \in \mathbb{R}^2$$

Produkt-Dichtefunktion

$$f(x,y) = f_X(x) \cdot f_Y(y), \quad (x,y) \in \mathbb{R}^2$$

Dies entspricht der stochastischen Unabhängigkeit von X und Y.

Bedingte Verteilung/ Unabhängigkeit

X, Y diskret mit Werten in $\mathcal{X} = \{x_1, x_2, ..., \}$ bzw. $\mathcal{Y} = \{y_1, y_2, ..., \}$.

1. Bedingte Wahrscheinlichkeit von $X=x_i$ gegeben $Y=y_i$:

$$P\big(X=x_i\mid Y=y_j\big) = \frac{P(X=x_i,Y=y_i)}{P\big(Y=y_j\big)} = \frac{p\big(x_i,y_j\big)}{p_Y\big(y_j\big)}$$

 $p(x_i, y_i)$: gemischte Zähldichte $p_Y(y_i)$: Zähldichte von Y.

2. Definiert die bedingte Zähldichte

$$p(x\mid y) = p_{X\mid Y}(X = x\mid Y = y) = \begin{cases} \frac{p(x,y)}{p_Y(y)}, & y \in \{y_1,y_2,...,\} \\ p_X(x), & y \notin \{y_1,y_2,...,\} \end{cases}$$

- 3. Endlicher Fall: $p(x_i, y_j)$: Tabelle (Kontingenztafel), $p_Y(y_j)$: Rand
- 4. Entsprechend definiert man die bedingte Wahrscheinlichkeit von $Y=y_j$ gegeben $X=x_j$.

Bedingte Dichte

X und Y stetig verteilt: $(X,Y) \sim f(x,y)$.

Bedingte Dichte von X gegeben Y = y (v fest):

$$f(x \mid y) = f_{X \mid Y}(x \mid y) = \begin{cases} \frac{f(x,y)}{f_Y(x)}, & f_Y(y) > 0 \\ f_X(x), & f_Y(y) = 0 \end{cases}$$

Dies ist als Funktion von x eine Dichte (für jedes $y \in \mathbb{R}$).

Notation:
$$X \mid Y = y \sim f_{X \mid Y}(x \mid y)$$

Kriterien für Unabhängigkeit

1. Diskreter Fall: X und Y sind genau dann stochastisch unabhängig, wenn für alle x und y gilt:

$$p_{X \perp Y}(x \mid y) = p_X(x)$$
 bzw. $p_{Y \perp X}(y \mid x) = p_Y(y)$

bzw. $p_{x,y} = p_X(x)p_Y(y)$ (gemischte Zähldichte = Produkt-Zähldichte)

2. Stetiger Fall: X und Y genau dann stochastisch unabhängig, wenn für alle x und y gilt:

$$f_{X \perp Y}(x) = f_X(x)$$
 bzw. $f_{Y \perp X}(y) = f_Y(y)$

bzw. $f(x,y) = f_X(x)f_Y(y)$ (gemischte Dichte = Produktdichte)

3. X,Y sind genau dann stochastisch unabhängig, wenn für die gemeinsame Verteilungsfunktion $F_{X,Y}(x,y)$ für alle $x,y\in\mathbb{R}$ gilt:

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$

Bedingter Erwartungswert

Berechne den Erwartungswert mit bedingter Verteilung.

1. Sei (X, Y) nach der Zähldichte p(x, y) verteilt. Der **bedingte Erwartungswert** ist gegeben durch

$$E(X \mid Y = y) = \sum_{x \in \mathcal{X}} x \cdot p_{X \mid Y}(x \mid y)$$

2. Sei $(X,Y) \sim f_{X \mid Y}(x,y)$ stetig. Bedingter Erwartungswert:

$$E(X \mid Y = y) = \int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) \, \mathrm{d}x$$

- 3. $g(Y) = E(X \mid Y = y)$ ist eine Funktion von y.
- 4. Einsetzen der Zufallsvariable Y liefert bedingte Erwartung von X gegeben Y. Notation: $E(X \mid Y) := g(Y)$

Erwartungsvektor

 $X = (X_1, ..., X_n)'$ Zufallsvektor.

Gelte: $\mu_i = E(X_i), i = 1, ..., n$ existieren.

Der (Spalten-)Vektor $\mu = (E(X_1), ..., E(X_n))'$ heißt **Erwartungsvektor von X**.

Die Rechenregeln übertragen sich, z.B. gilt für $a,b\in\mathbb{R}$ und Zufallsvektoren X und Y:

$$E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$$

Kovarianz

Wenn X und Y Zufallsvariablen mit existierenden Varianzen sind, dann heißt

$$\operatorname{Cov}(X,Y) = E((X - \mu_X)(Y - \mu_Y))$$

Kovarianz von X und Y.

- X, Y heißen **unkorreliert**, falls Cov(X, Y) = 0
- Ist $\pmb{X}=(X_1,...,X_n)$ ein Zufallsvektor, dann heißt die symmetrische $(n\times n)$ -Matrix $\mathrm{Var}(X)=\left(\mathrm{Cov}\big(X_i,X_j\big)\right)_{i,j}$ der n^2 Kovarianzen Kovarianzmatrix von \pmb{X}
- Wenn alle X_i paarweise unkorreliert sind, ist Var(X) eine Diagonalmatrix
- Korrelation:

$$\operatorname{Cor}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

Rechenregeln

Seien X,Y und Z Zufallsvariablen mit endlichen Varianzen. Dann gelten für alle $a,b\in\mathbb{R}$ die folgenden Rechenregeln:

- Cov(aX, bY) = ab Cov(X, Y)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, Y) = 0, wenn X und Y unabhängig sind
- Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)
- Cauchy-Schwarz-Ungleichung: $\sigma_X^2 = \text{Var}(X), \sigma_Y^2 = \text{Var}(Y)$

$$|\text{Cov}(X,Y)| \leq \sqrt{\text{Var}(X)} \sqrt{\text{Var}(Y)} = \sigma_X \sigma_Y$$

Multivariate Normalverteilung

Wenn $X_1,...,X_n$ unabhängig und identisch N(0,1)-verteilte Zufallsvariablen sind, dann ist die gemeinsame Dichtefuntion des Zufallsvektors $X=(X_1,...,X_n)'$ gegeben durch

$$\varphi(x_1,...,x_n) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp\left(-\frac{1}{2}\sum_{i=1}^n x_i^2\right), \quad x_1,...,x_n \in \mathbb{R}$$

X heißt multivariat oder n-dimensional standardnormalverteilt. Notation: $X \sim N_n(\mathbf{0}, \mathbf{1})$

- Erwartungswertvektor: $\mu = E(X) = 0 = (0, ..., 0)' \in \mathbb{R}^n$
- Kovarianzmatrix: Σ hat die Form einer Einheitsmatrix

Satz: Wenn $\boldsymbol{X}=(X_1,...,X_n)'\sim N_n(\boldsymbol{\mu},\boldsymbol{I})$ und $\boldsymbol{a}=(a_1,...,a_n)'\in\mathbb{R}^n$, dann folgt

$$a'X \sim N_n(a'\mu, a'a)$$

Das Gesetz der großen Zahlen

Tschebyschow-Ungleichung

Seien $X_1,...,X_n$ i.i.d. mit Varianz $\sigma^2 \in (0,\infty)$ und Erwartungswert μ . Dann gilt:

$$P(|\overline{X}_n - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2}$$

Schwaches Gesetz der großen Zahlen

Das arithmetische Mittel $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ konvergiert gegen den Erwartungswert μ , d.h. für jede Toleranzabweichung $\varepsilon > 0$ gilt: $P(\left|\overline{X}_n - \mu\right| > \varepsilon) \to 0$ für $n \to \infty$

Starkes Gesetz der großen Zahlen

Seien $X_1,...,X_n$ i.i.d. mit $E(|X_1|)<\infty$ und Erwartungswert μ . Dann konvergiert das arithmetische Mittel mit Wahrscheinlichkeit 1 gegen μ , d.h.

$$P(\overline{X}_n \to \mu) = P(\{\omega \mid \overline{X}_{n(\omega)} \text{ konvergiert gegen } \mu\}) = 1$$

Hauptsatz der Statistik

Die Zufallsvariablen $X_1,...,X_n,...$ seien unabhängig und identisch nach der Verteilungsfunktion F vertetilt.

Dann konvergiert der (maximale) Abstand zwischen der **empirischen Verteilungsfunktion** $F_n(x)$ und der **wahren Verteilungsfunktion** F(x) mit Wahrscheinlichkeit 1 gegen 0:

$$P\left(\lim_{n\to\infty} \max_{x\in\mathbb{R}} |F_n(x) - F(X)| = 0\right) = 1$$

Zentraler Grenzwertsatz (ZGWS)

Seien $X_1,...,X_n$ i.i.d. mit

$$\mu = E(X_1), \quad \sigma^2 = \text{Var}(X_1) \in (0, \infty)$$

Dann gilt: \overline{X}_n ist asymptotisch $N\!\left(\mu,\frac{o^2}{n}\right)$ -verteilt,

$$\overline{X}_n \sim_{ ext{approx}} N\!\left(\mu, \frac{\sigma^2}{n}
ight)$$

in dem Sinne, dass die Verteilungsfunktion der standardisierten Version gegen die Verteilungsfunktion der N(0,1)-Verteilung konvergiert:

$$P\left(\sqrt{n}\frac{\overline{X}_n - \mu}{\sigma} < x\right) \to \Phi(x), \quad n \to \infty$$

Die Aussage des zentralen Grenzwertsatzes bleibt gültig, wenn die in der Praxis meist unbekannte Streuung σ durch die empirische Standardabweichung

$$\hat{\sigma}_n = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X}_n \right)^2}$$

ersetzt wird.

Stochastische Konvergenz

Eine Folge $X_1, X_2, ...$ von Zufallsvarialen konvergiert stochastisch oder in Wahrscheinlichkeit

• gegen die Zufallsvariable X, wenn für alle $\varepsilon>0$ gilt:

$$P(|X_n - X| > \varepsilon) \to 0, \quad n \to \infty$$

Notation: $X_n \overset{P}{\rightarrow}, n \rightarrow \infty$

• gegen die Konstante a, wenn für all $\varepsilon > 0$ gilt:

$$P(|X_n - a| > \varepsilon) \to 0, \quad n \to \infty$$

Rechenregeln

 X_1, X_2, \dots und Y_1, Y_2, \dots seien Folgen von ZVen.

• Aus $X_n \stackrel{P}{\to} a, n \to \infty$ und $Y_n \stackrel{P}{\to} b, n \to \infty$ folgt für $\lambda, \mu \in \mathbb{R}$:

$$\lambda \cdot X_n \pm \mu \cdot Y_n \overset{P}{\rightarrow} \lambda \cdot a \pm \mu \cdot b, \quad n \rightarrow \infty$$

• Aus $X_n \overset{P}{\to} X, n \to \infty$ und $Y_n \overset{P}{\to} b, n \to \infty$ folgt:

$$X_n \cdot Y_n \stackrel{P}{\to} X \cdot b, \quad n \to \infty$$

und, falls $b \neq 0$ und ein $n_0 \in \mathbb{N}$ ex. mit $P(Y_n \neq 0)$ für $n > n_0$:

$$\frac{X_n}{Y} \stackrel{P}{\to} \frac{X}{h}, \quad n \to \infty$$

Aus $X_n \overset{P}{\to} X, n \to \infty$ und $Y_n \overset{P}{\to} b, n \to \infty$

- folgt für jede stetige Funktion $f: f(X_n) \stackrel{P}{\to} f(x), \quad n \to \infty$
- folgt für jede stetige Funktion $f:\mathbb{R}^2 \to \mathbb{R}$: Falls f(X,Y) und $f(X_n,Y_n)$ definiert sind für alle $n\in\mathbb{N}$, dann gilt: $f(X_n,Y_n) \to f(X,Y), n\to\infty$

Fast sichere Konvergenz

Eine Folge X_1, X_2, \dots von Zufallsvariablen konvergiert fast sicher oder mit Wahrscheinlichkeit 1

ullet gegen die Zufallsvariable X, wenn gilt:

$$P\Bigl(\lim_{n\to\infty} \lvert X_n - X \rvert = 0\Bigr) = 1$$

Notation: $X_n \stackrel{\text{f.s.}}{\rightarrow} X, n \rightarrow \infty$

• gegen die Konstante a, wenn gilt:

$$P\Bigl(\lim_{n\to\infty} \lvert X_n-a\rvert=0\Bigr)=1$$

Grundbegriffe Statistik

Statistische Analyse von Daten:

- 1. Definition der relevanten **statistischen Einheiten (Untersuchungseinheiten, Merkmalsträger)**
- 2. Die **Grundgesamtheit** G ist die Menge aller statistischen Einheiten.
- 3. Erhebe Daten (Merkmale, Variablen) an allen (Totalerhebung) oder ausgewählten Einheiten.
- 4. Werden die Daten durch Experimente gewonnen, dann heißen die $g \in G$ auch Versuchseinheiten (experimental units). Werden die Daten durch Beobachtung gewonnnen, so spricht man von Beobachtungseinheiten (observational units).
- 5. Merkmale X nehme gewissen Merkmalsausprägungen M an. Formal:

$$X: G \to M, \quad g \mapsto X(g)$$

(o.E. (durch Kodieren) $M \subseteq \mathbb{R}$)

6. Zufallsauswahl: Ziehe n mal aus der 'Urne' G mit Zurücklegen:

$$\Omega = G \times \cdots \times G$$

- 7. Zufallsstichprobe: $X_1, ..., X_n : \Omega \to \mathbb{R}$, unabhängig und identisch verteilte Zufallsvariablen (Zufallsvektoren, wenn mehrere Variablen erhoben werden).
- 8. Bei Experimenten werden den gezogenen $g \in G$ gewisse Ausprägungen zugeordnet (z.B. Kontrollgruppe/ Behandlungsgruppe). Diese haben i.d.R. nur wenige mögliche Ausprägungen (z.B. binär 0/1).
- 9. Deskriptive Statistik betrachtet eine Realisation $(x_1,...,x_n)'$ als Input, die **Datenmatrix**.

Skalenniveaus: $X:G\to M$

Diskrete Merkmale: *M* endlich oder abzählbar unendlich.

Stetige Merkmale: $M \subseteq \mathbb{R}$ Intervall (oder ganz \mathbb{R}).

In der Praxis werden stetige Merkmale oft vergröbert (komprimiert) durch Gruppierung.

Klassifikation von Merkmalen aufgrund des Skalenniveaus:

- Nominalskala: Ausprägungen nur unterscheidbar (Labels)
- Ordinalskala: Ausprägungen können verglichen werden (Schulnoten, Grad der Zustimmung 1-5, ...)
- Metrische Skala (Kardinalskala, Intervallskala, Ratioskala):

Kardinalskala: Messe Vielfache einer Grundeinheit.

Intervallskala: Nullpunkt willkürlich. Dann können Quotienten nicht interpretiert werden (Temperatur).

Verhältnis-, Quotienten- o. Ratioskala: Nullpunkt physikalisch zwingend (Längen, Gewichte, Geld, Anzahlen)

Visualisierung von Zahlenmaterial

Ausgangspunkt: **Rohdaten (Primärdaten, Urliste)** nach der Erhebung. Allgemeine Situation: Erhebe p Merkmale an n statistischen Einheiten.

Darstellung der Daten in der **Datenmatrix** (Tabelle):

stat. Einheit Nr.	Geschlecht	Alter	Größe	Messwert
1	M	18	72.6	10.2
2	W	21	18.7	9.5
:				:
n	W	19	15.6	5.6

i-te Zeile: Werte der p Variablen für die i-te statistische Einheit j-te Spalte: Stichprobe der n beobachteten Werte des j-ten Merkmals.

Zeilen = Beobachtungen, Spalten = Variablen

Selektierte Spalte:

- $\rightarrow {\it Stichprobe}\; x_1,...,x_n$
- \rightarrow Datenvektor $\boldsymbol{x}=(x_1,...,x_n)'$

Nominale/ordinale Daten:

Zähle aus, wie oft die Ausprägungen $(a_1,...,a_k)$ im Datensatz vorkommen. Die absoluten Häufigkeiten (engl.: frequencies, counts) $h_1,...,h_k$ sind durch

$$h_j = \text{Anzahl der } x_i \text{ mit } x_i = a_j$$

$$= \sum_{i=1}^n \mathbf{1} \big(x_i = a_j \big)$$

j=1,...,k gegeben. Die (tabellarische) Zusammenstellung der absoluten Häufigkeiten $h_1,...,h_k$ heißt absolute Häufigkeitsverteilung. Es gilt:

$$n = h_1 + \dots + h_k$$

Dividiert man die absoluten Häufigkeiten durch den Stichprobenumfang n, so erhält man die relativen Häufigkeiten $f_1, ..., f_k$. Für j = 1, ..., k berechnet sich f_j durch

$$f_j = \frac{h_j}{n}$$

 f_j ist der Anteil der Beobachtungen, die den Wert a_j haben.

Die (tabellarische) Zusammenstellung der $f_1,...,f_k$ heißt relative Häufigkeitsverteilung.

Die relativen Häufigkeiten summieren sich zu 1 auf:

$$f_1 + \dots + f_k = 1$$

Darstellung durch Stab-, Balken- oder Kreisdiagramme.

Sortierte Beobachtungen

Die sortierten Beobachtungen werden mit $x_{(1)},...,x_{(n)}$ bezeichnet. Die Klammer um den Index deutet somit den Sortiervorgang an.

Es gilt:

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$$

 $x_{(i)}$ heißt *i*-te Ordnungsstatistik,

 $(x_{(1)},...,x_{(n)})$ heißt **Ordnungsstatistik** der Stichprobe $x_1,...,x_n$. Das **Minimum** $x_{(1)}$ wird auch mit x_{\min} bezeichnet, das **Maximum** entsprechend mit x_{\max} .

Messbereich (range): $[x_{\min}, x_{\max}]$ (kleinstes Intervall, das alle Daten enthält)

Gruppierung (Klassierung) von Daten

Lege *k* Intervalle

$$I_1 = [g_1, g_2], \quad I_2 = (g_2, g_3], \quad ..., \quad I_k = (g_k, g_{k+1}]$$

fest, welche den Messbereich überdecken.

 I_j heißt j-te **Gruppe** oder **Klasse** und ist für j=2,...,k gegeben durch $I_j=\left(g_j,g_{j+1}\right]$. Die Zahlen $g_1,...,g_{k+1}$ heißen Gruppengrenzen. Des Weiteren führen wir noch die k **Gruppenbreiten**

$$b_i = g_{i+1} - g_i, \quad j = 1, ..., k$$

und die k **Gruppenmitten**

$$m_j = \frac{g_{j+1} + g_j}{2}, \quad j = 1, ..., k$$

ein.

Histogramm

Das Histogramm ist eine grafische Darstellung der relativen Häufigkeitsverteilung, die dem Prinzip der Flächentreue folgt.

- 1. Gruppiere in k Klassen mit Gruppengrenzen $g_1 < \cdots < g_{k+1}$.
- 2. Berechne zugehörige relative Häufigkeiten $f_1, ..., f_k$.
- 3. Zeichne über Gruppe j ein Rechteck der Fläche f_j .

Hierzu bestimmen wir die Höhe I_j des j-ten Rechtecks so, dass die Fläche $F_j=b_jI_j$ des Rechtecks der relativen Häufigkeit f_j entspricht:

$$F_j = b_j I_j \stackrel{!}{=} f_j \quad \Rightarrow \quad I_j = \frac{f_j}{b_j}, \quad j = 1,...,k$$

Der obere Rand des Histogramms definiert eine Treppenfunktion $\hat{f}(x)$, die über dem j-ten Intervall der Gruppeneinteilung den konstanten Funktionswert I_j annimmt. Außerhalb der Gruppeneinteilung setzt man $\hat{f}(x)$ auf 0.

 \hat{f} heißt **Häufigkeitsdichte** oder auch **Dichteschätzer**.

ightarrow Die aus dem Histogramm abgeleitete Häufigkeitsdichte ist ein Schätzer für die Wahrscheinlichkeitsdichte f(x) des Merkmals.

Die Häufigkeitsdichte ist selbst eine Wahrscheinlichkeitsdichte:

- 1. $\hat{f} \geq 0$ für alle $x \in \mathbb{R}$
- 2. Für $x \in (g_i, g_{i+1}]$ ist sie konstant mit Wert

$$\hat{f}(x) = I_j = \frac{f_j}{g_{j+1} - g_j}$$

so dass

$$\int_{g_i}^{g_{j+1}} \hat{f}(x) \,\mathrm{d}x = \big(g_{j+1} - g_j\big) \hat{f}(x) = f_j$$

Summation über j liefert daher den Wert 1 und somit

$$\begin{split} \int_{-\infty}^{\infty} \hat{f}(x) \, \mathrm{d}x &= \int_{g_1}^{g_{k+1}} \hat{f}(x) \, \mathrm{d}x \\ &= \int_{g_1}^{g_2} \hat{f}(x) \, \mathrm{d}x + \dots + \int_{g_k}^{g_{k+1}} \hat{f}(x) \, \mathrm{d}x \\ &= \sum_{j=1}^k f_j = 1 \end{split}$$

Median

 x_{med} heißt **Median** von $x_1, ..., x_n$, wenn

- mind. 50% der Daten kleiner oder gleich x_{med} sind und
- mind. 50% der Daten größer oder gleich x_{med} sind

Berechnung

- n ungerade: x_{med} = $x_{(k)}, k = \frac{n+1}{2}$
- n gerade: Jede Zahl des Intervalls $\left[x_{\frac{n}{2}}, x_{\frac{n}{2}+1}\right]$

Konvention:

$$x_{\mathrm{med}} = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & n \text{ ungerade} \\ \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}\right), & n \text{ gerade} \end{cases}$$

Eigenschaften

• Vollzieht affin-lineare Transformation nach

$$y_i = a + b \cdot x_i, \quad i = 1, ..., n$$

Dann gilt: $y_{\text{med}} = a + b \cdot x_{\text{med}}$

• Vollzieht monotone Transformationen f(x) nach

$$y_i = f(x_i), \quad i = 1, ..., n$$

Dann gilt: $y_{\mathrm{med}} = f(x_{\mathrm{med}})$

• x_{med} mimimiert $Q(m) = \sum_{i=1}^{n} |x_i - m|$

Arithmetisches Mittel

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + \dots + x_n}{n}$$

heißt arithmetisches Mittel oder arithmetischer Mittelwert.

Bei gruppierten Daten mit

- $f_1, ..., f_k$: relative Häufigkeit
- $m_1, ..., m_k$: Gruppenmitten

verwendet man:

$$\overline{x}_q = f_1 m_1 + \dots + f_k m_k$$

Eigenschaften

- Schwerpunkteigenschaft
- Hochrechnung
- Verhalten unter affin-linearen Transformationen
- \overline{x} minimiert $Q(m) = \sum_{i=1}^{n} (x_i m)^2, m \in \mathbb{R}$

Entropie

Die Kennzahl

$$H = -\sum_{j=1}^{k} f_j \log(f_j)$$

heißt Shannon-Wieder-Index oder Shannon-Entropie.

$$J = \frac{H}{\log(k)}$$

heißt relative Entropie

Eigenschaften

- $p \le H \le \log(k)$
- $0 \le J \le 1$
- Minimalwert: 1-Punkt-Verteilung
- Maximalwert: Gleichverteilung auf k Kategorien

Stichprobenvarianz/ empirische Varianz

Stichprobenvarianz:

$$s^2 = \operatorname{var}(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Bei gruppierten Daten:

$$s_g^2 = \sum_{i=1}^k f_j (m_j - \overline{x}_g)^2$$

Standardabweichung $s = \sqrt{s^2}$

Eigenschaften

Maßstabänderung von Datenvektoren $x = (x_1, ..., x_n)$

$$b \cdot \boldsymbol{x} = (b \cdot x_1, ..., b \cdot x_n)$$

Lageänderung

$$x + a = (x_1 + a, ..., x_n + a)$$

Rechenregeln

• Invarianz unter Lageänderung

$$var(a + x) = var(x)$$

• Quadratische Reaktion auf Maßstabänderung

$$var(b \cdot x) = b^2 \cdot var(x)$$

<u>Verschiebungssatz</u>

Es gilt:

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n \cdot (\overline{x}^2)$$

sowie

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\overline{x})^2$$

In der Praxis wird die Formel

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

verwendet.

Quantile

Ein **empirisches** p-**Quantil**, $p \in (0,1)$, von $x_1, ..., x_n$ ist jede Zahl \tilde{x}_p , sodass

- mindestens $100 \cdot p\%$ der Datenpunkte $\leq \tilde{x}_p$ und
- mindestens $100\cdot (1-p)\%$ der Datenpunkte $\geq \tilde{x}_p$

sind.

1

Berechnung

- np ganzzahlig: Jede Zahl aus $\left[x_{(np)},x_{(np+1)}\right]$. Nicht immer ist das Merkmal metrisch skaliert. Dann sind mitunter nur bestimmte x-Werte interpretierbar, nicht jedoch 'Zwischenwerte'. Dann sind (nur) $x_{(np)}$ und $x_{(np+1)}$ Quantile
- sonst $\tilde{x}_p = x_{(\lfloor np \rfloor + 1)}$.

Konvention: Intervallmitte: $\frac{1}{2} \left(x_{(np)} + x_{(np+1)} \right)$

¹Formelsammlung S. 3

Quartile

Ouartile:

 $Q_1 = \tilde{x}_{0.25}$: unteres Quartil (grenzt das untere Viertel ab)

 $Q_2 = \tilde{x}_{0.5}$: Median (grenzt die untere Hälfte ab, teilt die Verteilung)

 $Q_3 = \tilde{x}_{0.75}$ oberes Quartil (grenzt das obere Viertel ab)

Zwischen Q_1 und Q_3 liegen die zentralen 50% der Datenpunkte (die Mitte)!

 Q_3-Q_1 heißt Interquartilabstand IQR und ist ein robustes Streuungsmaß.

Fünfpunkte-Zusammenfassung und Boxplot

Die 5 Statistiken (Kennzahlen) $x_{\min}, Q_1, \tilde{x} = x\,, Q_3, x_{\max}$ heißen Fünfpunkte-Zusammenfassung.

Boxplot: Grafische Darstellung der 5-Punkte-Zusammenfassung:

Schließende Statistik

- Gegeben: Verrauschte (zufallsbehaftete) Daten $X_1,...,X_n \sim F_{\vartheta}$.
- Gesucht: Das Modell F_{ϑ} also ϑ .
- Ziel: Schließe aus den Daten auf das zugrunde liegende Modell.
- Relevante Schritte:
 - 1. Gute Modellklasse für die Daten finden.
 - 2. Schätzen des Modells aus den Daten.
 - 3. Testen: Gilt $\vartheta \in \Theta_0$ oder $\vartheta \in \Theta_1$?
 - 4. Untersuche, ob das Modell die Daten gut erklärt.

Modellierung

Schätzen

Testen

Modellvalidierung

Grundbegriffe

Stichprobe

 $X_1,...,X_n$ heißt Stichprobe vom Stichprobenumfang n, wenn

$$X_1,...,X_n:(\Omega,\mathcal{A},P)\to(\mathbb{R},\mathcal{B})$$

Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) sind. Zufallsvektor $\boldsymbol{X} = (X_1, ..., X_n)$ nimmt Werte im **Stichprobenraum**

$$\mathcal{X} = \{ \boldsymbol{X}(\omega) : \omega \in \Omega \} \subset \mathbb{R}^n$$

an. Realisierungen: Vektoren $(x_1,...,x_n)\in\mathcal{X}.$

Hinweis:

In der Statistik interessiert i.d.R. der zugrunde liegende Wahrscheinlichkeitrsum (Ω, \mathcal{A}, P) nicht, sondern lediglich der Stichprobenraum \mathcal{X} und die Verteilung $P_{\mathbf{X}}$ von $\mathbf{X} = (X_1, ..., X_n)'$ hierauf!

Verteilungsmodell

Eine Menge $\mathcal P$ von (möglichen) Verteilungen auf $\mathbb R^n$ (für die Stichprobe $(X_1,...,X_n)$) heißt Verteilungsmodell.

 \mathcal{P} heißt parametrisches Verteilungsmodell, falls

$$\mathcal{P} = \{P_\vartheta : \vartheta \in \Theta\}$$

für eine Menge $\Theta \in \mathbb{R}^k$ von Parametervektoren.

 $\Theta \mathbf{:}$ Parameterraum d.h. Es gibt eine Bijektion $\mathcal{P} \leftrightarrow \Theta$

Ein Verteilungsmodell, das nicht durch einen endlichdimensionalen Parameter parametrisiert werden kann, heißt nichtparametrisches Verteilungsmodell.

Statistik, Schätzfunktion, Schätzer

Statistik

Sei $X_1, ..., X_n$ eine Stichprobe (und o.E. $\mathcal{X} = \mathbb{R}^n$).

Eine Abbildung

$$T: \mathbb{R}^n \to \mathbb{R}^d$$

mit $d \in \mathbb{N}$ (oft: d = 1) heißt **Statistik**. Bildet T in den Paramterraum ab, d.h.

$$T: \mathbb{R}^n \to \Theta$$

dann heißt T Schätzfunktion oder kürzer Schätzer (für ϑ).

Allgemein: Schätzung von Funktionen $g(\vartheta)$ von θ durch Statistiken $T: \mathbb{R}^n \to \Gamma$ mit $\Gamma = g(\Theta) = \{g(\vartheta) \mid \vartheta \in \Theta\}.$

Empirische Verteilungsfunktion

$$\hat{F}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty, x]}(X_i), \quad x \in \mathbb{R}$$

Hierbei: $\mathbf{1}_{(-\infty,x]}(X_i) = \mathbf{1}(X_i \le x)$

 $\hat{F}_n(x)$: Anteil der Beobachtungen, die kleiner oder gleich x sind.

- Die Anzahl $n\hat{F}_n(x)$ der Beobachtungen $\leq x$ ist binomialverteilt mit Parametern n und $p(x) = E(\mathbf{1}(X_i \leq x)) = F(x)$
- Daher folgt:

$$E \Big(\hat{\boldsymbol{F}}_n(\boldsymbol{x}) \Big) = P(\boldsymbol{X}_i \leq \boldsymbol{x}) = F(\boldsymbol{x}), \quad \operatorname{Var} \Big(\hat{\boldsymbol{F}}_n(\boldsymbol{x}) \Big) = \frac{F(\boldsymbol{x})(1 - F(\boldsymbol{x}))}{n}$$

• Nach dem Hauptsatz der Statistik konvergiert $\hat{F}_n(x)$ mit Wahrscheinlichkeit 1 gegen F(x) (gleichmäßig in x).

Likelihood-Funktion

Sei $p_{\vartheta}(x)$ eine Zähldichte (in $x \in \mathcal{X}$) und $\vartheta \in \Theta$ ein Parameter. Für eine gegebene (feste) Beobachtung $x \in \mathcal{X}$ heißt die Funktion

$$L(\vartheta \mid x) = p_{\vartheta}(x), \quad \vartheta \in \Theta$$

Likelihood-Funktion.

<u>Likelihood-Prinzip</u>

Ein Verteilungsmodell ist bei gegebenen Daten plausibel, wenn es die Daten mit hoher Wahrscheinlichkeit erzeugt. Entscheide dich für das plausibelste Verteilungsmodell!

Maximum-Likelihood-Schätzer

 $p_{\vartheta}(x)$ sei Zähldichte (in $x \in \mathcal{X}$).

 $\vartheta \in \Theta \subset \mathbb{R}^k, k \in \mathbb{N}.$

Dann heißt $\hat{\vartheta} = \hat{\vartheta}(x) \in \Theta$ Maximum-Likelihood-Schätzer (ML-Schätzer), wenn für festes x gilt:

$$p_{\hat{\vartheta}} \ge p_{\vartheta}(x)$$
 für alle $\vartheta \in \Theta$

(Falls Maximum nicht eindeutig, so wähle eines aus)

Hierdurch ist eine Funktion $\hat{\vartheta}: \mathcal{X} \to \Theta$ definiert.

Likelihood für Dichten

Sei $f_{\vartheta}(x)$ eine Dichtefunktion (in x), $\vartheta \in \Theta \subset \mathbb{R}^k$, $k \in \mathbb{N}$

Für ein festes x heißt die Funktion

$$L(\vartheta \mid x) = f_{\vartheta}(x), \quad \vartheta \in \Theta$$

Likelihood-Funktion. $\hat{\vartheta} \in \Theta$ heißt **Maximum-Likelihood-Schätzer**, wenn bei festem x gilt:

$$f_{\hat{\vartheta}}(x) \geq f_{\vartheta}, \quad \text{für alle } \vartheta \in \Theta$$

Likelihoof für Stichproben

Kompakt: $X \sim f_{\vartheta}(x), f_{\vartheta}$ eine Zähldichte oder Dichtefunktion. Dann ist

$$L_{\vartheta}(x) = f_{\vartheta}(x)$$

Sei nun speziell $\boldsymbol{X}=(X_1,...,X_n)'$ mit

$$X_1,...,X_n \stackrel{\text{i.i.d}}{\sim} F$$

Dann ist die gemeinsame (Zähl)-Dichte die Produkt-(Zähl-)Dichte. Also:

$$L_{\vartheta}(x) = f_{\vartheta} \cdots f_{\vartheta}(x_n)$$

(Gilt für Zähldichten und Dichtefunktionen).

Schätzer

Unterscheide (konzeptionell):

• Die Abbildung $\hat{\vartheta}_n = \hat{\vartheta}_n(x),$

$$x=(x_1,...,x_n)\mapsto \hat{\vartheta}_n(x)$$

die jeder Realisation x des Stichproben
raums $\mathcal X$ einen Schätzwert zuordnet; gedanklich nach Durchführung des Zufalls
experiments.

• Die Abbildung $\hat{\Theta}_n = \hat{\vartheta}_n(X)$,

$$X=(X_1,...,X_n)\mapsto \hat{\vartheta}_n(X)$$

die jedem (zufälligen) Vektor X die Zufallsgrößte $\hat{\vartheta}_n(X)$ zuordnet; gedanklich vor Durchführung des Zufallsexperiments.

Es ist üblich, in beiden Fällen $\hat{\vartheta}_n$ zu schreiben und von einem 'Schätzer' zu sprechen. Ob die Statistik (als Zufallsvariable bzw. Zufallsvektor) oder eine Realisation derselben gemeint ist, muss aus dem Kontext erschlossen werden.

Erwartungstreue

Ein Schätzer $\hat{\vartheta}_n$ heißt **erwartungstreu für** $\vartheta,$ wenn für alle $\vartheta \in \Theta$ gilt:

$$E(\hat{\vartheta}_n) = \vartheta$$

 $g\left(\hat{\vartheta}_{n}\right)$ heißt **erwartungstreu für** $g(\vartheta)$, wenn für alle $\vartheta\in\Theta$ gilt:

$$E\!\left(g\!\left(\hat{\vartheta}_n\right)\right) = g(\vartheta)$$

Sinngemäß gelten diese Definitionen auch für nichtparametrische Modelle: T_n heißt erwartungstreu für eine Kenngröße g(F), wenn $E(T_n) = E_F(T_n) = g(F)$ für alle Verteilungsfunktionen F der betrachteten Verteilungsklasse. Hierbei deutet $E_F(\cdot)$ an, dass der Erwartungswert unter der Annahme $X_i \sim F$ berechnet wird.

Anschauung

- Wende erwartungstreuen Schätzer N Mal auf Stichproben vom Umfang n an.
- N Schätzungen: $\hat{\vartheta}_n(1), ..., \hat{\vartheta}_n(N)$
- Wende Gesetz der großen Zahlen an:

$$\frac{1}{N}\sum_{i=1}^N \hat{\vartheta}(i) \to E\Big(\hat{\vartheta}_n(i)\Big) = E\Big(\hat{\vartheta}_n\Big)$$

- $\hat{\vartheta}_n$ erwartungstreu: rechte Seite ist ϑ unabhängig von $\vartheta \in \Theta$
- sonst: rechte Seite $\neq \vartheta$

Werden Schätzungen aus einer täglichen Stichprobe vom Umfang n über einen langen Zeitraum gemittelt, so schwankt dieses Mittel um $E(\hat{\vartheta})$. Bei einer erwartungstreuen Schätzfunktion also um den wahren Wert ϑ .

<u>Verzerrung (Bias)</u>

Die Verzerrung (engl.: Bias) wird gemessen durch

$$\mathrm{Bias} \big(\hat{\vartheta}_n ; \vartheta \big) = E_{\vartheta} \big(\hat{\vartheta} \big) - \vartheta$$

Gütekriterien

(Asymptotische) Erwartungstreue, Unverfälschtheit

Ein Schätzer $\hat{\vartheta}$ für einen Parameter ϑ heißt **asymptotisch erwartungstreu für** ϑ , wenn für alle ϑ

$$E_{\vartheta}(\hat{\vartheta}) \to \vartheta$$

gilt.

Konsistenz

Ein Schätzer $\hat{\vartheta}_n = T(X_1,...,X_n)$ basierend auf einer Stichprobe vom Umfang n heißt (schwach) konsistent für ϑ , falls

$$\hat{\vartheta}_n \stackrel{P}{\to}, \quad n \to \infty$$

Gilt sogar fast sichere Konvergenz, dann heißt $\hat{\vartheta}_n$ stark konsistent für $\vartheta.$

- Ist $\hat{\vartheta}_n$ konsistent für ϑ und ist g stetig, dann ist $g\Big(\hat{\vartheta}_n\Big)$ konsistent für den abgeleiteten Parameter $g(\vartheta)$.
- Die obige Aussage gilt auch für vektorwertige Parameter und ihre Schätzer. Insbesondere folgt aus der Konsistenz von $\hat{\vartheta}_n$ für ϑ und $\hat{\xi}_n$ für ξ die Konsistenz von $\hat{\vartheta} \pm \hat{\xi}_n$ für $\vartheta \pm \xi$.

Effizienz

- 1. Sind T_1 und T_2 zwei erwartungstreue Schätzer für ϑ und gilt $\mathrm{Var}(T_1) < \mathrm{Var}(T_2)$, so heißt T_1 effizienter als T_2 .
- 2. T_1 ist **effizient**, wenn T_1 effizienter als jede andere erwartungstreue Schätzfunktion ist.

Mittlerer quadratischer Fehler/ MSE

Der MSE ist das wichtigste Gütemaß für Bewertung und Vergleiche von Schätzern. Er integriert die Varianz (als Streuungsmaß) und den Bias in einer Kennzahl.

$$\mathrm{MSE} \big(\hat{\vartheta}_n ; \vartheta \big) = E_{\vartheta} \Big(\big(\hat{\vartheta}_n - \vartheta \big)^2 \Big)$$

Additive Zerlegung:

Ist $\hat{\vartheta}_n$ eine Schätzfunktion mit $\mathrm{Var}_{\vartheta} \Big(\hat{\vartheta}_n \Big) < \infty,$ dann gilt die additive Zerlegung

$$\mathrm{MSE}\big(\hat{\vartheta}_n;\vartheta\big) = \mathrm{Var}_{\vartheta}\big(\hat{\vartheta}_n\big) + \big[\mathrm{Bias}\big(\hat{\vartheta}_n;\vartheta\big)\big]^2$$

MS-Effizienz:

- 1. Sind T_1 und T_2 zwei Schätzer für ϑ und gilt $\mathrm{MSE}(T_1;\vartheta) < \mathrm{MSE}(T_2;\vartheta)$, so heißt T_1 effizienter als T_2 .
- 2. T_1 ist **effizient**, wenn T_1 effizienter als jede andere erwartungstreue Schätzfunktion ist.

Der t-Test (für eine Stichprobe)

Einseitiger t-Test (1)

Der einseitige t-Test verwirft die Nullhypothese $H_0: \mu \leq \mu_0$ auf dem Signifikanzniveau α zugunsten von $H_1: \mu > \mu_0$, wenn $T > t(n-1)_{1-\alpha}$.

Einseitiger t-Test (2)

Der einseitige t-Test verwirft die Nullhypothese $H_p: \mu \geq \mu_0$ auf dem Signifikanzniveau α zugunsten von $H_1: \mu < \mu_0$, wenn $T<-t(n-1)_{1-\alpha}=t(n-1)_{\alpha}$.

Zweiseitiger t-Test

Der zweieseitige t-Test verwirft die Nullhypothese $H_0: \mu=\mu_0$ auf dem Signifikanzniveau α zugunsten von $H_1: \mu \neq \mu_0$, wenn $|T| > t(n-1)_{1-\alpha/2}$.

p-Wert

Durchführung eines statistischen Tests:

- 1. Formuliere H_0 und H_1
- 2. Wähle Signifikanzniveau α .
- 3. Bestimme kritischen Wert $c_{
 m krit}$
- 4. Berechne $t_{\rm obs}$
- 5. Vergleiche $t_{
 m obs}$ mit $c_{
 m krit}$

Einseitige Tests

Testproblem: $H_0: \mu \leq \mu_0$ gegen $H_1: \mu > \mu_0$

$$p = P_{\mu_0}(T > t_{\rm obs})$$

Testproblem: $H_0: \mu \geq \mu_0$ gegen $H_1: \mu < \mu_0$

$$p = P_{\mu_0}(T < t_{\rm obs})$$

Lehne H_0 genau dann ab, wenn $p < \alpha$.

Zweiseitiger Test

Testproblem: $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$

$$p_{\mathrm{zweis}} = P_{\mu_0}(|T| > |t_{\mathrm{obs}}|)$$

Lehne H_0 genau dann ab, wenn $p_{\rm zweis} < \alpha$

Einseitige Tests gegeben pzweis

Gegeben: $t_{\rm obs}$ und $p_{\rm zweis}$.

1. Lehne $H_0: \mu \leq \mu_0$ zugunsten von $H_1: \mu > \mu_0$ ab, falls

$$t_{\rm obs} \geq 0 \text{ und } \frac{p_{\rm zweis}}{2} \stackrel{t_{\rm obs}>0}{=} P_{\mu_0}(T>t_{\rm obs}) < \alpha$$

2. Lehne $H_0: \mu \geq \mu_0$ zugunsten von $H_1: \mu < \mu_0$ ab, falls

$$t_{\rm obs} \leq 0 \text{ und } \frac{p_{\rm zweis}}{2} \stackrel{t_{\rm obs}<0}{=} P_{\mu_0}(T>t_{\rm obs}) < \alpha$$

Gütefunktion

Die Funktion

$$G(\mu) = P_{\mu}(,H_1") = P(,H_1" \mid \mu,\sigma^2), \quad \mu \in \mathbb{R}$$

heißt Gütefunktion (an der Stelle μ).

Formel für die Güte des einseitigen Gaußtests:

$$G(\mu) = \Phi \left(-z_{z-\alpha} + \frac{\mu - \mu_0}{\frac{\sigma}{\sqrt{n}}} \right)$$

Analog für den zweiseitigen Test:

$$G_{
m zweis.}(\mu) = 2\Phi \Biggl(-z_{1-rac{lpha}{2}} + rac{\mu - \mu_0}{rac{\sigma}{\sqrt{n}}} \Biggr)$$

Hinweis: In der Praxis wird mit σ aus Trainingsdaten (historischen Daten) durch S geschätzt.

2-Stichproben-Tests

Verbundenes Design

Für i = 1, ..., n erhebe

 X_i : Messung an der *i*-ten Versuchseinheit vorher

 Y_i : Messung an der i-ten Versuchseinheit nachher

Modell: Bivariate einfache Stichprobe

$$(X_{1},Y_{1}),...,(X_{n},Y_{n}) \\$$

von normalverteilten Zufallsvektoren mit

$$\mu_X = E(X_i) \quad \text{und} \quad \mu_Y = E(Y_i)$$

Betrachte die Differenzen (nachher - vorher):

$$D_i = Y_i - X_i, \quad i = 1, ..., n$$

Erwartungswert der Differenzen:

$$E(D_i) = E(Y_i) - E(X_i) = \mu_V - \mu_X = \delta$$

Es sei $\sigma_D^2 = \operatorname{Var}(D_1) = \ldots = \operatorname{Var}(D_n)$ unbekannt.

Verwerfe dann

$$H_0: \delta = 0 \Leftrightarrow \mu_X = \mu_Y$$
 (kein Effekt)

zugunsten von

$$H_1: \delta \neq 0 \Leftrightarrow \mu_X \neq \mu_Y \quad \text{(Effekt vorhanden)}$$

falls

$$|T| > t(n-1)_{1-\frac{\alpha}{2}}$$

wobei

$$T = \sqrt{n} \frac{\overline{D}}{S_D} \quad \text{mit} \quad \overline{D} = \frac{1}{n} \sum_{i=1}^n D_i, \quad S_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^n \left(D_i - \overline{D}\right)^2}$$

Unverbundenes Design

Modell: Zwei unabhängige Stichproben

$$X_{11},...,X_{1n_1}\stackrel{\text{i.i.d.}}{\sim} N\big(\mu_1,\sigma_1^2\big)$$

$$X_{21},...,X_{2n_2}\stackrel{\mathrm{i.i.d.}}{\sim} N(\mu_2,\sigma_2^2)$$

Schritte:

- 1. Test auf Varianzhomogenität: Gilt $\sigma_1^2 = \sigma_2^2$?
- 2. Test auf Lageunterschied: Gilt $\mu_1 = \mu_2$?

Test auf Varianzinhomogenität

Testproblem $H_0:\sigma_1^2=\sigma_2^2$ versus $H_1:\sigma_1^2\neq\sigma_2^2$ Varianzschätzungen:

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{j=1}^{n_1} \left(X_{1j} - \overline{X}_1 \right)^2, \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} \left(X_{2j} - \overline{X}_2 \right)^2$$

Test statistik: $F=\frac{S_1^2}{S_2^2}.$ Unter $H_0:\sigma_1^2=\sigma_2^2$ ist F F-verteilt.

Test

 H_0 ablehnen, falls

$$F < F(n_1-1,n_2-1)_{\frac{\alpha}{2}} \quad \text{oder} \quad F > F(n_1-1,n_2-1)_{1-\frac{\alpha}{2}}$$

Äquivalent: Nummeriere so, dass $S_1^2 \leq S_2^2$ und lehne H_0 ab, falls $F < F(n_1-1,n_2-1)_{\frac{\alpha}{2}}$.

Test auf Lageunterschied

Annahme: $\sigma_1 = \sigma_2 =: \sigma$ (Varianzhomogenität).

Testproblem (zweiseitig):

$$H_0: \mu_1 = \mu_2$$
 (kein Lageunterschied)

versus

$$H_1: \mu_1 \neq \mu_2$$
 (Lageunterschied)

Testprobleme (einseitig):

$$H_0: \mu_1 \geq \mu_2 \quad \text{versus} \quad H_1: \mu_1 < \mu_2$$

bzw.

$$H_0: \mu_1 \leq \mu_2 \quad \text{versus} \quad H_1: \mu_1 > \mu_2$$

Teststatistik:

$$T = \frac{\overline{X}_2 - \overline{X}_1}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}S} \quad \text{mit}$$

$$S^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} S_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} \left(\sum_{i=1}^{n_1} \left(X_{1i} - \overline{X}_1 \right)^2 + \sum_{j=1}^{n_2} \left(X_{1j} - \overline{X}_2 \right)^2 \right)$$

- $n_1 + n_2 2^{|S_1|} \quad n_1 + n_2 2\left(\sum_{i=1}^{n} (X_{1i} X_1) + \sum_{j=1}^{n} (X_{1j} X_2)\right)$ 1. Lehne $H_0: \mu_1 = \mu_2$ zugunsten von $H_1: \mu_1 \neq \mu_2$ ab, wenn $|T| > t(n_1 + n_2 2)_{1-\frac{\alpha}{3}}$.
- 2. Lehne $H_0: \mu_1 \geq \mu_2$ zugunsten von $H_1: \mu_1 < \mu_2$ abb, wenn $T > t(n_1 + n_2 2)_{\alpha}$.
- 3. Lehne $H_0: \mu_1 \leq \mu_2$ zugunsten von $H_1: \mu_1 > \mu_2$ ab, falls $T < t(n_1 + n_2 2)_{1-\alpha}$

Welch-Test auf Lageunterschied

Bei Varianzinhomogenität $\sigma_1^2 \neq \sigma_2^2$ verwendet man den Welch-Test. Teststatistik:

$$T = \frac{\overline{X}_2 - \overline{X}_1}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Lehne $H_0: \mu_1 = \mu_2$ auf dem Niveau α ab, wenn $|T| > t(df)_{1-\frac{\alpha}{2}},$ wobei

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 \frac{1}{n_1 - 1} + \left(\frac{S_2^2}{n_2}\right)^2 \frac{1}{n_2 - 1}}$$

Falls $df \notin \mathbb{N}$, dann vorher auf nächste ganze Zahl abrunden.

Fallzahlplanung

Für $n=n_1=n_2$ kann man folgende Näherungen verwenden:

Zweiseitiger Test

Wähle

$$n \ge \frac{\sigma^2}{\Lambda^2} \left(z_{1 - \frac{\alpha}{2}} + z_{1 - \beta} \right)^2$$

um eine Schärfe von $1-\beta$ bei einer Abweichung von $\Delta=|\mu_A-\mu_B|$ näherungsweise zu erzielen.

Einseitiger Test

Wähle

$$n \ge \frac{\sigma^2}{\Lambda^2} \big(z_{1-\alpha} + z_{1-\beta} \big)^2$$

um eine Schärfe von $1-\beta$ bei einer Abweichung von $\Delta=|\mu_A-\mu_B|$ näherungsweise zu erzielen.

t-Verteilung

Die Verteilung von

$$T = \sqrt{n} \frac{\overline{X} - \mu}{S}$$

heißt t-Verteilung mit n-1 Freiheitsgraden.

Notation: t(n-1)

p-Quantil: $t(n-1)_p$

χ²-Verteilung

Sind $U_1, ..., U_k$ i.i.d. $\sim N(0, 1)$, dann heißt die Verteilung von

$$Q = \sum_{i=1}^{k} U_i^2$$

 χ^2 -Verteilung mit k Freiheitsgraden.

Momente: Es gilt: E(Q) = k und Var(Q) = 2k.

Gilt mit einer Konstanten c > 0:

$$\frac{T}{c} \sim \chi^2(k)$$

dann heißt T gestreckt χ^2 -verteilt mit k Freiheitsgraden. Man schreibt auch: $T \sim c \cdot \chi^2(k)$

Verteilung der Varianzschätzer

Annahme: Normalverteilungsmodell, d.h. $X_1, ..., X_n \stackrel{d}{\sim} N(\mu, \sigma^2)$

Annahme: Normalverteilungsmodell, d.h.
$$X_1, ..., X_n \sim N(\mu, \sigma^2)$$

Fall 1:
$$\mu$$
 bekannt. Verwende $\hat{\sigma}_n^2=\frac{1}{n}\sum_{i=1}^n{(X_i-\mu)^2}$. Dann gilt
$$\frac{n}{\sigma^2}\hat{\sigma}_n^2\sim\chi^2(n)$$

Fall 2: μ unbekannt. Verwende $\hat{\sigma}_n^2 := S_n^2 := \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$. Dann

$$\frac{n-1}{\sigma^2}S_n^2 \sim \chi^2(n-1)$$

F-Verteilung

Seien $Q_1 \sim \chi^2(n_1)$ und $Q_2 \sim \chi^2(n_2)$ unabhängig. Dann heißt die Verteilung des Quotienten

$$F = \frac{Q_1 / n_1}{Q_2 / n_2}$$

F-Verteilung mit n_1 und n_2 Freiheitsgraden.

Notation: $F(n_1, n_2)$.

p-Quantil:
$$F(n_1, n_2)_p$$
.
Momente: $E(F) = \frac{n_2}{n_2 - 2}$, $\operatorname{Var}(F) = \frac{2n_2^2(n + 2 + n_1 - 2)}{n_1(n_2 - 2)^2(n_2 - 4)}$

Konfidenzintervall

Ein Intervall [L, U] mit datenabhängigen Intervallgrenzen

$$L = L(X_1,...,X_n)$$

$$U = U(X_1,...,X_n)$$

heißt Konfidenzintervall (Vertrauensbereich) zum Konfidenzniveau $1-\alpha$, wenn für alle $\vartheta \in \Theta$ gilt:

$$P([L, U] \ni \vartheta) \ge 1 - \alpha$$

.

Konfidenzintervall für μ

Zweiseitiges Konfidenzintervall, σ unbekannt:

$$\left[\overline{X} - t(n-1)_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + t(n-1)_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$$

Einseitiges unteres Konfidenzintervall:

$$\left[-\infty,\overline{X}+t(n-1)_{1-\alpha}\frac{S}{\sqrt{n}}\right]$$

Einseitiges oberes Konfidenzintervall:

$$\left[\overline{X} - t(n-1)_{1-\alpha} \frac{S}{\sqrt{n}}, \infty\right]$$

Falls σ bekannt ist: Ersetze in den Formeln:

1. S durch σ .

2.
$$t_{(n-1)_{1-\frac{\alpha}{2}}}$$
 durch $z_{1-\frac{\alpha}{2}}=\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$

3.
$$t_{(n-1)_{1-\alpha}} \operatorname{durch} z_{1-\alpha}$$

 z_{1-lpha} : (1-lpha)-Quantil der N(0,1)-Verteilung.

Konfidenzintervall für σ^2

Das zweiseitige Konfidenzintervall für σ^2 liefert:

$$\left[\frac{n-1}{\chi^2(n-1)_{1-\alpha/2}}\hat{\sigma}^2,\frac{n-1}{\chi^2(n-1)_{\alpha/2}}\hat{\sigma}^2\right]$$

Konfidenzintervall für p

Modell: $Y \sim Bin(n, p)$

Approximatives Konfidenzintervall (aus ZGWS):

$$L=\hat{p}-z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$U=\hat{p}+z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Statistische Testtheorie

Testproblem, Nullhypothese, Alternative

Sind f_0 und f_1 zwei mögliche Verteilungen für eine Zufallsvariable X, dann wird das Testproblem, zwischen $X \sim f_0$ und $X \sim f_1$ zu entscheiden, in der Form

$$H_0: f = f_0$$
 gegen $H_1: f = f_1$

notiert, wobei f die wahre Verteilung von X bezeichnet. H_0 heißt Nullhypothese und H_1 Alternative (Alternativhypothese).

Statistischer Test

Ein (statistischer) Test ist eine Entscheidungsregel, die basierend auf T entweder zugunsten von H_0 (Notation: " H_0 ") oder zugunsten von H_1 (" H_1 ") entscheidet.

Fehler 1. und 2. Art

Entscheidung für H_1 , obwohl H_0 richtig ist, heißt **Fehler 1. Art**. H_0 wird dann fälschlicherweise verworfen. Eine Entscheidung für H_0 , obwohl H_1 richtig ist, heißt **Fehler 2. Art**. H_0 wird fälschlicherweise akzeptiert.

Insegsamt sind vier Konstellationen möglich, die in der folgenden Tabelle zusammengefasst sind:

	H_0	H_1	
$,H_0$ "	✓	Fehler 2. Art	
H_1 "	Fehler 1. Art	1	

Signifikanzniveau, Test zum Niveau α

Bezeichnet " H_1 " eine Annahme der Alternative und " H_0 " eine Annahme der Nullhypothese durch eine Entscheidungsregel, dann ist durch diese Regel ein **statistischer Test zum Signifikanzniveau** (Niveau) α gegeben, wenn

$$P_{H_0}(,H_1") \leq \alpha$$

Genauer ist die linke Seite das tatsächliche Signifikanzniveau des Tests und die rechte Seite das vorgegebene **nominale** Signifikanzniveau.

Hinweis: Die Wahrscheinlichkeit eines Fehlers 2. Art wird nicht unbedingt kontrolliert. Dies erfordert eine Planung der Stichprobengröße.

Schärfe (Power)

Die Wahrscheinlichkeit eines Fehlers 2. Art wird üblicherweise mit β bezeichnet. Die Gegenwahrscheinlichkeit,

$$1-\beta = P_{H_1}(,H_1``) \Big(= E_{H_1}(1-\phi)\Big),$$

dass der Test die Alternative H_1 tatsächlich aufdeckt, heißt **Schärfe (Power)** des Testverfahrens.

<u>Hypothesen (über den Erwartungswert μ)</u>

Einseitiges Testproblem:

$$H_0: \mu \leq \mu_0 \quad \text{gegen} \quad H_1: \mu > \mu_0$$

bzw.

$$H_0: \mu \ge \mu_0$$
 gegen $H_1: \mu < \mu_0$

Zweiseitiges Testproblem:

$$H_0: \mu = \mu_0 \quad \text{gegen} \quad H_1: \mu \neq \mu_0$$

Wichtig: Der Grenzfall "=" wird immer H_0 zugeschlagen.

Gauß-Test

Gegeben: $X_1,...,X_n \overset{\text{i.i.d.}}{\sim} N(\mu,\sigma^2)$ mit bekannter Varianz $\sigma^2 \in (0,\infty)$

Teststatistik:

$$T = \sqrt{n} \frac{\overline{X}_n - \mu_0}{\sigma} \quad (\mu_0 \in \mathbb{R} \text{ vorgegebener Sollwert})$$

Verteilung der Teststatistik:

$$T \sim N(0,1)$$
 für $\mu = \mu_0$

Einseitiger Gauß-Test

- 1. Der einseitige Gaußtest verwirft die Nullhypothese $H_0: \mu \leq \mu_0$ auf dem Signifikanzniveau α zugunsten von $H_1: \mu > \mu_0$ m wenn $T > z_{1-\alpha}$.
- 2. Der einseitige Gaußtest verwirft die Nullhypothese $H_0: \mu \geq \mu_0$ auf dem Signifikanzniveau α zugunsten von $H_1: \mu < \mu_0$, wenn $T < -z_{1-\alpha} = z_{\alpha}$.

Zweiseitiger Gauß-Test

Der zweiseitige Gauß-Test verwift die Nullhypothese $H_0: \mu=\mu_0$ auf dem Signifikanzniveau α zugunsten von $H_1: \mu\neq\mu_0$, wenn $|T|>z_{1-\frac{\alpha}{2}}.$