

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Chiral Antibiotics

Chiral Antibiotics

Part A Chloroamphenicol

Chloroamphenicol is an antibiotic drug. Its formula is given below.

Figure 1: Structure of chloroamphenicol

List any of the letters a-g which are chiral centres in alphabetical order without spaces e.g."ab".

Part B Penicillin

Penicillin is widely used to kill bacteria. The general structure of a penicillin molecule is given below.

Figure 2: General structure of penicillin

List in alphabetical order (e.g."ab") any of the carbon atoms a-i which are chiral centres.

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 2, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 3, Question 5

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Asthma drugs

Asthma drugs

Part A Salbutamol

Salbutamol is a widely used anti-asthmatic drug. The stucture of salbutamol is:

Figure 1: Structure of salbutamol

Which of the carbon atoms numbered on the structure are chiral?

1, 2 and 3 are chiral
1 and 2 only are chiral
1 and 3 only are chiral
2 and 3 only are chiral
1 only is chiral
2 only is chiral
3 only is chiral
None of the labelled carbons are chiral

Part B Intal

The anti-asthma drug *Intal* contains disodium cromoglycate, which has the following structure:

Figure 2: Structure of disodium cromoglycate

How many chiral centres are there in the molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 38; Part B adapted with permission from UCLES, A-Level Chemistry, June 1988, Paper 3, Question 22

Gameboard:

STEM SMART Chemistry Week 47

Home Gameboard Chemistry Organic Isomerism Chiral Centres

Chiral Centres

Part A Amino acids

Α

D

Ε

Which of the following amino acids contains two chiral carbon atoms?

Figure 1: Amino acids A - E.

Part B Liquid crystal displays

The following compounds are used in liquid crystal displays in watches and calculators.

Figure 2: Compounds used in liquid crystal displays.

Which of the following are correct statements about these molecules?

- 1. Both can exist in optically active forms.
- **2**. Both have permanent dipoles.
- **3**. Both react with bromine in the dark.
 - 1, 2 and 3 are correct
 - 1 and 2 only are correct
 - 1 and 3 only are correct
 - 2 and 3 only are correct
 - 1 only is correct
 - 2 only is correct
 - 3 only is correct
 - None of the statements is correct.

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Drugs and Poisons

Drugs and Poisons

Many drugs show optical isomerism. The diagrams show the structure of three drugs.

amphetamine

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ &$$

$$\begin{array}{c|c} & & & & \\ & &$$

Figure 1: Structures of amphetamine, lidocaine and phenobarbital.

phenobarbital

What is the total number of chiral carbon centres in these three structures?

Part B Poisons

Warfarin is used as a rat poison.

Figure 2: Structure of Warfarin.

How many chiral centres are present in the Warfarin molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 20; Part B adapted with permission from UCLES, A-Level Chemistry, November 1992, Paper 4, Question 21

Gameboard:

STEM SMART Chemistry Week 47

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Types of Isomerism

Types of Isomerism

Which types of stereoisomerism would be exhibited by the following compounds?

Part A Compound A

Figure 1: Compound A.

- Cis-trans
- Optical
- Both *cis-trans* and optical
- No isomerism

Part B	Compound B			
CH	$\mathrm{CH_{3}CH}{=}\mathrm{CHCH_{2}CH(OH)CH_{3}}.$			
	○ Cis-trans			
	Optical			
	Both <i>cis-trans</i> and optical			
	O No isomerism			
Part C	Compound C			
(C	$\mathrm{H}_{3})_{2}\mathrm{C}{=}\mathrm{CHCH}_{2}\mathrm{CH}(\mathrm{OH})\mathrm{CH}_{2}\mathrm{CH}{=}\mathrm{C}(\mathrm{CH}_{3})_{2}.$			
	Cis-trans			
	Optical			
	Both <i>cis-trans</i> and optical			
	O No isomerism			
Adapted with	permission from UCLES, A-Level Chemistry, 1989, Paper 1, Question 6.			
Gameboard: STEM SMA	ART Chemistry Week 47			

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Natural Products

Natural Products

Part A Compound P

A product ${f P}$, isolated from a naturally-occurring source, has a molecular formula of $C_9H_{11}NO_3$. It possesses a chiral centre and it forms a zwitterion.

What could the structure of **P** be?

A
$$O_2N$$
 CH_2 CH_3 B $HOOC$ CH_2 CH_2 CH_2 NH_2

C HO
$$\longrightarrow$$
 CH₂ \longrightarrow COOH

Figure 1: Possible structures of compound P.

- () A
- **B**

Part B Insect attractant

The diagram shows the structure of the insect attractant *methoprene*.

Figure 2: Structure of methoprene.

What is the total number of stereoisomers (cis-trans and optical) of this molecule?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 29; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 22

Gameboard:

STEM SMART Chemistry Week 47

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism More Natural Products

More Natural Products

Part A Vitamin C

The diagram shows the structure of vitamin C.

Figure 1: Structure of vitamin C.

How many chiral centres are there in one molecule of vitamin C?

- 0
- ·
- 2
- 3
- 5

Part B Menthol

Menthol, a cyclohexane derivative is used in skin lotions since it counteracts itching. The structural formula of menthol is shown below.

Figure 2: Structure of menthol.

List in alphabetical order without spaces (e.g. **abc**) any of the carbon atoms **a-j** which are chiral.

Part A adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 3, Question 4

Gameboard:

STEM SMART Chemistry Week 47

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Optical Isomerism

Use the <u>structure editor</u> to generate a SMILES string.

Optical Isomerism

Part A Definition
Optical isomers are that have the same structural and molecular, but are
of each other.
Optical isomerism is caused by molecules with a carbon atom joined to different groups.
We call the carbon atom a or an carbon. It is often indicated by an asterisk, *.
The two isomers are known as
Items: molecules four chiral centre two mirror images enantiomers formulae three asymmetric non-superimposable
Part B Chiral alkane

Part C Chiral alcohol

Draw the structural formula of one of the optical isomers of the alcohol with the lowest M_r that can show optical isomerism, indicating the stereochemistry with a wedged or hashed bond.

Use the structure editor to generate a SMILES string.

Part A created for isaacphysics.org by R. Less;

Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 1, Question 9;

Part C created for isaacphysics.org by R. Less

Gameboard:

STEM SMART Chemistry Week 47

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Geometric and Optical Isomerism

Geometric and Optical Isomerism

This question is about two types of stereoisomers, *cis-trans* isomers and enantiomers.

Consider possible stereoisomers of structures I, II, III, IV and V.

$\mathrm{CH_{3}CH}{=}\mathrm{CH_{2}}$	$\mathrm{CH_{3}CH}{=}\mathrm{CHCH_{3}}$	$(\mathrm{CH_3})_2\mathrm{C}{=}\mathrm{CH_2}$	$\mathrm{C_6H_5CH(OH)CH_3}$	$\mathrm{C_6H_5CH_2CH_2OH}$
I	П	III	IV	V

For each of the structures I - V, indicate what type of stereoisomers, if any, could exist.

Part A		
) Cis-trans	
	Optical	
	Both <i>cis-trans</i> and optical	
	No isomerism	
Part B		
) Cis-trans	
	Both <i>cis-trans</i> and optical	
	No isomerism	
	Optical	

Part C	Ш	
		Cis-trans
		Optical
		Both <i>cis-trans</i> and optical
		No isomerism
Part D	IV	
		Cis-trans
		No isomerism
		Optical
		Both <i>cis-trans</i> and optical
Part E	V	
		Both <i>cis-trans</i> and optical
		No isomerism
		Cis-trans
		Optical

Which of the following compounds could display optical activity? CH₃CH₂CH(OH)CH₂CH₃ (CH₃)₃CCH₂OH CH₃CH₂CH₂CH₂CH(OH)CH₃ (CH₃)₂CHCH₂CH₂OH CH₃CH₂CH₂CH₂OH

Parts A-E adapted with permission from OCSEB, A-Level Chemistry, January 1996, Paper C3, Question 3; Part F adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 1, Question 25

Gameboard:

Part F

STEM SMART Chemistry Week 47

Optical activity

Home Gameboard Chemistry Organic Isomerism Formulae and Isomers

Formulae and Isomers

Part A	$\mathrm{C_4H_{10}}$	\mathbf{O}
	<u> </u>	$\mathbf{\mathcal{I}}$

How many isomers (including both structural isomers and stereoisomers) are possible for $C_4H_{10}O$?

Part B $C_2H_2Br_2$

In what ways could two compounds of molecular forumula $C_2H_2Br_2$ be related to each other?

- 1. structural isomers
- 2. cis-trans isomers
- 3. optical isomers
 - 1 and 2 only are correct
 - 1, 2 and 3 are correct
 - 2 and 3 only are correct
 - 2 only is correct
 - 1 only is correct
 - 3 only is correct
 - 1 and 3 only are correct

Part C Chlorination of ethane

How many chiral compounds is it possible to prepare by subjecting ethane to repeated substitution by chlorine?

Part A adapted with permission from UCLES, A-Level Chemistry, 1989, Paper 3, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, 1988, Paper 3, Question 38; Part C adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 23