ISPB, Faculté de Pharmacie de Lyon Filière ingénieur 3^{ème} année de pharmacie

ALGEBRE LINEAIRE Cours et exercices

Cours d'algèbre linéaire

- 1. Espaces vectoriels
- 2. Applications linéaires
 - 3. Matrices
 - 4. Déterminants
 - 5. Diagonalisation

1

Chapitre 1 Espaces vectoriels

1. <u>Définition</u>

Soit K un corps commutatif (K = R ou C)

Soit E un ensemble dont les éléments seront appelés des <u>vecteurs</u>. On munit E de :

- la loi interne « + » (addition vectorielle) : $\forall (x,y) \in E^2, (x+y) \in E$
- la loi externe «.» (multiplication par un scalaire) : $\forall x \in E, \forall \lambda \in K, (\lambda.x) \in E$

(E, +, .) est un **espace vectoriel** (ev) sur K (K-ev) si :

- 1) (E,+) est un groupe commutatif
 - l'addition est associative : $\forall (x,y,z) \in E^3, (x+y)+z=x+(y+z)$
 - 1'addition est commutative : $\forall (x,y) \in E^2$, x + y = y + x
- Il existe un élément neutre $0_E \in E$ tq $\forall x \in E, x + 0_E = x$
- $\forall x \in E, \exists ! x' \in E \text{ tq } x + x' = x' + x = 0_F$ (x' est appelé l'opposé de x et se note (-x))
- 2) la loi externe doit vérifier :
 - $\forall \lambda \in K, \forall (x,y) \in E^2, \lambda.(x+y) = \lambda.x + \lambda.y$
- $\forall (\lambda_1, \lambda_2) \in K^2, \forall x \in E, (\lambda_1 + \lambda_2).x = \lambda_1.x + \lambda_2.x$
- $\forall (\lambda_1, \lambda_2) \in K^2, \forall x \in E, \lambda_1.(\lambda_2.x) = (\lambda_1.\lambda_2).x$
- $\forall x \in E, 1.x = x$

Propriétés :

Si E est un K-ev, on a:

1)
$$\forall x \in E, \forall \lambda \in K$$
, $\lambda.x = 0_E \Leftrightarrow \begin{cases} \lambda = 0 \\ \text{ou } x = 0_E \end{cases}$

2)
$$(-\lambda).x = -(\lambda.x) = \lambda.(-x)$$

Exemple:

Soit K = R et $E = R^n$. $(R^n, +, .)$ est un R-ev

1) loi interne:

$$\forall x \in R^n, x = (x_1, x_2, ..., x_n) \text{ et } \forall y \in R^n, y = (y_1, y_2, ..., y_n)$$

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

2) loi externe:

$$\forall x \in \mathbb{R}^n, \forall \lambda \in \mathbb{R} : \lambda.x = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

2. Sous espace vectoriel (sev)

Définition:

Soit E un K-ev et $F \subset E$. F est un sev si :

- F≠Ø
- la loi interne « + » est stable dans $F : \forall (x,y) \in F^2, (x+y) \in F$
- la loi externe «.» est stable dans $F: \forall x \in F, \forall \lambda \in K, (\lambda x) \in F$

Remarque : Si E est un K-ev, $\{0_{\scriptscriptstyle\rm E}\}$ et E sont 2 sev de E

Exercice 1:

Soit E l'ensemble défini par $E = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + 2x_2 - x_3 = 0\}$

Montrer que E est un sev de R³

Exercice 2:

Soit E un ev sur K et F_1 et F_2 deux sev de E. Montrer que $F_1 \cap F_2$ est un sev de E

3. Somme de 2 sev

Théorème:

 $Soit \ F_1 \ et \ F_2 \ deux \ sev \ de \ E. \ On \ appelle \ somme \ des \ sev \ F_1 \ et \ F_2 \ l'ensemble \ not\'e \ (F_1+F_2) \ d\'efini \ par \ :$

$$F_1 + F_2 = \{x + y / x \in F_1 \text{ et } y \in F_2\}$$

On peut montrer que $F_1 + F_2$ est un sev de E

Somme directe de sev:

Définition:

On appelle somme directe la somme notée $F_1 + F_2$

$$F = F_1 + F_2 \Leftrightarrow \begin{cases} F = F_1 + F_2 \\ F_1 \cap F_2 = \{0_E\} \end{cases}$$

Remarque : Si F = E, on dit que F_1 et F_2 sont supplémentaires

Propriété:

 $F = F_1 + F_2$ ssi $\forall z \in F$, z s'écrit de manière unique sous la forme z = x + y avec $x \in F_1$ et $y \in F_2$

Exercice 3:

$$F_1 = \{(x_1, 0, 0) \text{ avec } x_1 \in R\} \text{ et } F_2 = \{(0, x_2, x_3) \text{ avec } (x_2, x_3) \in R^2\}$$

Montrer que F_1 et F_2 sont supplémentaires de R^3 c'est-à-dire $F_1 + F_2 = R^3$

4. Combinaisons linéaires, familles libres, liées et génératrices

Définition:

Soit E un K-ev et $\{x_i\}_{i\in I}$ une famille d'éléments de E. On appelle <u>combinaison linéaire</u> de la famille $\{x_i\}_{i\in I}$, l'expression $\sum_{i\in I}\lambda_ix_i$ avec $\lambda_i\in K$

Définition:

On dit que la famille
$$\{x_i\}_{i\in I}$$
 est libre si $\sum_{i\in I} \lambda_i x_i = 0_E \Rightarrow \lambda_i = 0 \ \forall i \in I$

Définition:

On dit que la famille
$$\left\{x_i\right\}_{i\in I}$$
 est liée si elle n'est pas libre : $\exists \left(\lambda_1,...,\lambda_p\right) \neq \left(0,...,0\right)$ tq $\sum_{i\in I} \lambda_i x_i = 0_E$

Définition:

On appelle famille génératrice de \underline{E} une famille telle que tout élément de \underline{E} est une combinaison linéaire de cette famille : $\forall x \in E, \exists (\lambda_i)_{i \in I} \text{ tq } x = \sum_{i \in I} \lambda_i x_i$

Définition:

On dit que la famille $\{x_i\}_{i\in I}$ est une <u>base de E</u> si $\{x_i\}_{i\in I}$ est une famille libre et génératrice

Propriété:

On dit que la famille $\{x_i\}_{i\in I}$ est une base de E ssi $\forall x\in E$, x s'écrit de manière <u>unique</u> $x=\sum_{i\in I}\lambda_i x_i$

Démonstration (1) \Rightarrow (2) (D_1)

Exercice 4:

Soit $e_1 = (1,0) \in \mathbb{R}^2$ et $e_2 = (0,1) \in \mathbb{R}^2$. La famille $\{e_1,e_2\}$ est-elle une base ?

Remarque:

La famille $\{e_1, e_2, ..., e_n\}$ avec $e_1 = (1,0,...,0), e_2 = (0,1,...,0), ..., e_n = (0,0,...,1)$ constitue la <u>base canonique</u> de \mathbb{R}^n

Propriétés:

- $\{x\}$ est une famille libre $\Leftrightarrow x \neq 0$
- Toute famille contenant une famille génératrice est génératrice
- Toute sous-famille d'une famille libre est libre
- Toute famille contenant une famille liée est liée
- Toute famille $\left\{ v_{_{1}},v_{_{2}},...,v_{_{p}}\right\}$ dont l'un des vecteurs v_{i} est nul, est liée

5. Espace vectoriel de dimension finie

Définitions:

- Soit $\{x_i\}_{i \in I}$ une famille S d'éléments de E. On appelle <u>cardinal</u> de S le nombre d'éléments de S
- E est un ev de dimension finie si E admet une famille génératrice de cardinal fini.

Théorème:

Toutes les bases d'un même ev E ont le même cardinal. Ce nombre commun est appelé la <u>dimension</u> de E. On note **dimE**

Corollaire:

Dans un ev de dimension n, on a :

- Toute famille libre a au plus n éléments
- Toute famille génératrice a au moins n éléments

Remarque : si dimE = n, pour montrer qu'une famille de n éléments est une base de E, il suffit de montrer qu'elle est libre ou bien génératrice.

Exercice 5:

Dans R^3 , soit $e_1 = (1,0,0)$, $e_2 = (1,0,1)$ et $e_3 = (0,1,2)$

Montrer que $\{e_1, e_2, e_3\}$ est une base de \mathbb{R}^3

Théorème de la base incomplète :

Soit E un ev de dimension finie et L une famille libre de E. Alors il existe une base B de cardinal fini qui contient L.

6. Caractérisation des sev de dimension finie

Proposition:

Soit E un K-ev de dimension n et F un sev de E:

- dimF≤dimE
- $\dim F = \dim E \Leftrightarrow F = E$

6.1. Coordonnées d'un vecteur

Définition:

Soit E un K-ev de dimension n et $B = \{x_1,...,x_n\}$ une base de E (c'est-à-dire $\forall x \in E$, x s'écrit de manière unique $x = \sum_{i=1}^n \lambda_i x_i$), les scalaires $\lambda_1, ..., \lambda_n$ sont appelés les <u>coordonnées de x dans la base B</u>.

6.2. Rang d'une famille de vecteurs. Sous-espaces engendrés

Définition:

Soit
$$G = \{x_1, ..., x_p\}$$

Le sev F des combinaisons linéaires des vecteurs $x_1, ..., x_p$ est appelé <u>sous-espace engendré par G</u> et se note : $F = VectG = Vect\{x_1,...,x_p\}$

$$F = \left\{ x \in E / x = \sum_{i=1}^{p} \lambda_{i} x_{i} \text{ avec } (\lambda_{1}, ..., \lambda_{p}) \in R^{p} \right\}$$

Remarque : $F = Vect\{x_1,...,x_p\} \Leftrightarrow \{x_1,...,x_p\}$ est une famille génératrice de F

Définition:

La dimension de F s'appelle le <u>rang</u> de la famille G : dimF = rgG

Propriétés : Soit $G = \{x_1,...,x_p\}$

- $rgG \le p$
- $rgG = p \Leftrightarrow G \text{ est libre}$
- On ne change pas le rang d'une famille de vecteurs :
 - en ajoutant à l'un d'eux une combinaison linéaire des autres
 - en multipliant l'un d'eux par un scalaire non nul
 - en changeant l'ordre des vecteurs

6.3. Détermination du rang d'une famille de vecteurs

Théorème:

Soit E un K-ev de dimension finie n et $B = \{e_1,...,e_n\}$ une base de E.

Si $\left\{x_1,...,x_p\right\}$ est une famille d'éléments de E $(p \le n)$ telle que les x_i s'écrivent $x_i = \sum_{j=1}^n \alpha_{j,i} e_j$ avec $\alpha_{i,i} \ne 0$ et $\alpha_{j,i} = 0$ pour j < i, alors $\left\{x_1,...,x_p\right\}$ est libre.

Application: Méthode des zéros échelonnés

Soit E un ev de dimension finie n et $B = \{e_1,...,e_n\}$ une base de E

Pour déterminer le rang d'une famille $G = \left\{x_1, ..., x_p\right\}$ avec $p \leq n$:

- 1) On écrit sur p colonnes et n lignes les vecteurs $x_1,...,x_p$ dans la base B
- 2) En utilisant les propriétés relatives au rang d'une famille de vecteurs, on se ramène à la disposition du théorème précédent.

Exercice 6:

Déterminer le rang de la famille $\{a_1, a_2, a_3\}$ avec $a_1 = (1, 4, 7), a_2 = (2, 5, 8), a_3 = (3, 6, 1)$

6.4. Existence de sous-espaces supplémentaires en dimension finie, bases et sous-espaces supplémentaires

Propositions:

Soit E un K-ev de dimension finie n

- Tout sev F admet au moins un sous-espace supplémentaire, c'est-à-dire qu'il existe un sev G tq
 E = F + G
- 2) Soit $F \neq \emptyset$ et $G \neq \emptyset$ deux sev de E et soit B_1 une base de F et B_2 une base de G La famille $\{B_1, B_2\}$ est une base ssi E = F + G
- 3) Soit G et G' deux sous-espaces supplémentaires de F dans E, alors G et G' ont la même dimension : $\dim G = \dim G' = \dim E \dim F$

6.5. Caractérisation des sous-espaces supplémentaires par la dimension

Corollaire:

Soit E un K-ev de dimension finie

$$F+G=E \ ssi \ \begin{cases} F \cap G = \left\{0_{\scriptscriptstyle E}\right\} \\ \dim E = \dim F + \dim G \end{cases}$$

6.6. Dimension d'une somme de sev

⇒ Formule de Grassman

Proposition:

Soit E un K-ev de dimension finie et F et G deux sev de E, alors :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

Chapitre 2 Applications linéaires

Définitions : Soit f une application quelconque de E dans F :

- 1) f est <u>injective</u> si $\forall (x,y) \in E^2$, $f(x) = f(y) \Rightarrow x = y$ (équivaut à : $\forall (x,y) \in E^2$, $x \neq y \Rightarrow f(x) \neq f(y)$)
- 2) f est surjective si $\forall y \in F, \exists x \in E \text{ tq } y = f(x)$
- 3) f est bijective ssi f est injective et surjective : $\forall y \in F, \exists ! x \in E \text{ tq } y = f(x)$

1. <u>Définition d'une application linéaire</u>

Soit E et F deux K-ev (K = R ou C) et f une application de E dans F.

On dit que f est <u>linéaire</u> ssi $\forall (x,y) \in E^2$ et $\forall (\lambda,\mu) \in K^2$, $f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$

Remarques:

1) $f: E \rightarrow F$ est une application linéaire ssi :

$$\begin{cases} \forall x \in E \text{ et } \forall \lambda \in K, f(\lambda x) = \lambda f(x) \\ \forall (x,y) \in E^2, f(x+y) = f(x) + f(y) \end{cases}$$

2) $f(0_E) = 0_F$

Démonstration de la remarque $2(D_1)$

2. Image et noyau d'une application linéaire

Soit f une application linéaire de E dans F

1) On appelle <u>image de f</u> et on note **Im(f)** le sous-ensemble de F défini par :

$$Im(f) = \{ y \in F / \exists x \in E, f(x) = y \}$$

2) On appelle noyau de f et on note **Ker(f)** le sous-ensemble de E défini par :

$$Ker(f) = \left\{ x \in E/f(x) = 0_F \right\}$$

Théorème:

Im(f) est un sev de F

Ker(f) est un sev de E

 $D\acute{e}monstration (D_2)$

Théorème:

Soit f une application linéaire de E dans F.

f est injective ssi $Ker(f) = \{0_E\}$

Démonstration (D_3)

Théorème : f est surjective ssi Im(f) = F

Démonstration (D_4)

Définitions:

- 1) Une application linéaire f de E dans F est un homomorphisme de E dans F.
- 2) Si f est un homomorphisme bijectif de E dans F, alors f⁻¹ est linéaire et f est un <u>isomorphisme</u> de E dans F.
- 3) Si E = F, f est un <u>endomorphisme</u> de E.
- 4) Si f est un endomorphisme bijectif, f est un automorphisme.

Notations:

£(E,F) est l'ensemble des applications linéaires (= homomorphismes) de E dans F.

£(E) est l'ensemble des endomorphismes de E.

3. Applications linéaires en dimension finie

3.1. Propriétés

Soit f une application linéaire de E dans F avec dimE = n

- f est injective ssi f transforme toute base de E en une famille libre de F
- f est surjective ssi l'image de toute base de E est une famille génératrice de F
- f est bijective ssi l'image de toute base de E est une base de F

Démonstration de la 1^{ère} propriété (D₅)

3.2. Rang d'une application linéaire

Définition:

Le rang d'une application linéaire f est égal à la dimension de Im(f): rg(f) = dim(Imf)

Propriétés:

- 1) on a toujours $rg(f) \le dim E$
- 2) f est surjective ssi rg(f) = dimF
- 3) f est injective ssi rg(f) = dimE
- 4) f est bijective ssi rg(f) = dimE = dimF

Remarque : Si f est un endomorphisme de E, alors : f injective \Leftrightarrow f surjective \Leftrightarrow f bijective

4. Théorème fondamental :

Soit f une application linéaire de E dans F avec dimE = n, alors dim(Imf) + dim(Kerf) = dimE

Remarque: ce n'est vrai qu'en dimension finie!

Chapitre 3

Matrices

1. <u>Définitions</u>

On appelle matrice de type (n,p) à coefficients dans K, un tableau de n.p éléments de K rangés sur n lignes et p colonnes:

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1p} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2p} \\ \dots & \dots & \dots \\ \mathbf{a}_{n1} & \mathbf{a}_{n2} & \dots & \mathbf{a}_{np} \end{pmatrix}$$

En abrégé, on note $A = (a_{ij})_{1 \le i \le n \text{ et } 1 \le i \le n}$

On désigne par $M_{n,p}(K)$ l'ensemble des matrices à coefficients dans K, à n lignes et p colonnes.

Cas particuliers:

- Si n = p, on dit que la matrice est <u>carrée</u>
- Si n = 1, $M_{1,p}$ est l'ensemble des <u>matrices lignes</u>
- Si p = 1, $M_{n,1}$ est l'ensemble des <u>matrices colonnes</u>
- Si les coefficients sont tq $a_{ij} = 0$ pour i > j, on dit que la matrice est <u>triangulaire</u> supérieure

Matrice associée à une application linéaire

Soit E et F deux ev de dimensions finies p et n respectivement

Soit $B = \{e_1, ..., e_p\}$ une base de E et $B' = \{e'_1, ..., e'_n\}$ une base de F

Soit
$$f \in \mathcal{E}(E,F)$$
 et on pose $f(e_j) = \sum_{i=1}^n a_{ij} e'_i$ (donc $f(e_j) = a_{1j} e'_1 + a_{2j} e'_2 + ... + a_{nj} e'_n$)

On définit une matrice $M = (a_{ij})_{1 \le i \le n \text{ et } 1 \le i \le p}$

$$\mathbf{M} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1p} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2p} \\ \dots & \dots & \dots & \dots \end{pmatrix} \mathbf{e'}_{2}$$

$$\begin{bmatrix} \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{bmatrix} e'_{n}$$

M est appelée la matrice associée à f dans les bases B et B'. On la note M_{BB'}(f).

Remarque : la matrice d'une application linéaire dépend des bases choisies (B et B')

Exercice 1:

Soit
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x_1, x_2, x_3) \rightarrow (2x_1 + x_2 + x_3, x_1 + 2x_2 + x_3, x_1 + x_2)$$

$$f(x_1, x_2, x_3) = (2x_1 + x_2 + x_3, x_1 + 2x_2 + x_3, x_1 + x_2)$$

- 1) Montrer que f est un endomorphisme de R^3 (c'est-à-dire $f \in \mathcal{E}(R^3)$)
- 2) Déterminer la matrice associée à f dans la base canonique de R³

Exercice 2:

Soit f une application linéaire de R³ dans R²

Soit B et B' les bases canoniques de R³ et R²

La matrice associée à f dans les bases B et B' est :
$$M_{BB'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \in M_{2,3}(R)$$

Déterminer l'expression analytique de f

Théorème:

L'application qui à $f \in \mathcal{E}(E,F)$ fait correspondre $M_{BB}(f)$ est bijective.

3. Opérations sur les matrices

3.1. Addition interne et multiplication externe

Soit
$$A = (a_{ij}) \in M_{n,p}(R)$$
 et $B = (b_{ij}) \in M_{n,p}(R)$

Alors
$$A + B = (a_{ij} + b_{ij}) \in M_{n,p}(R)$$

Et,
$$\forall \lambda \in \mathbb{R}$$
, $\lambda A = (\lambda a_{ij}) \in M_{n,p}(\mathbb{R})$

Exemples:

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \\ 2 & 3 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 1 & -2 \\ 11 & 0 & -1 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 13 & 3 & 0 \end{pmatrix} \text{ et } 2A = \begin{pmatrix} 2 & -2 & 0 \\ 0 & 0 & 4 \\ 4 & 6 & 2 \end{pmatrix}$$

3.2. Produit de deux matrices

Soit E, F, G trois K-ev de bases respectives $B = \{e_1, ..., e_n\}$, $B' = \{e'_1, ..., e'_m\}$ et $B'' = \{e''_1, ..., e''_p\}$ $f : E \rightarrow F$ de matrice associée $M_{BB'}(f) \in M_{m,n}$

 $g: F \to G \text{ de matrice associée } M_{B `B ``}(g) \in \ M_{p,m}$

 $(g \circ f) \in \mathcal{E}(E,G)$, on détermine la matrice associée de cette application linéaire :

$$(g \circ f)(e_i) = g(f(e_i)) = g\left(\sum_{j=1}^m a_{ji}e'_j\right) = \sum_{j=1}^m a_{ji}g(e'_j) = \sum_{j=1}^m a_{ji}\left(\sum_{k=1}^p b_{kj}e''_k\right) = \sum_{j=1}^m \sum_{k=1}^p b_{kj}a_{ji}e''_k$$

On pose
$$c_{ki} = \sum_{j=1}^{m} b_{kj} a_{ji}$$

Donc
$$(g \circ f)(e_i) = \sum_{k=1}^{p} c_{ki} e''_{k}$$

La matrice associée à $(g \circ f)$ est $M_{BB''}(g \circ f) \in M_{p,n}$

Remarque:

Pour que le produit existe, il faut que l'on ait $M_{p,m} \times M_{m,n} = M_{p,n}$

En pratique: $M_{BB''}(g \circ f) = M_{B'B''}(g) \times M_{BB'}(f)$

$$\mathbf{M}_{1} = \begin{pmatrix} \dots & \mathbf{a}_{1i} & \dots \\ \dots & \mathbf{a}_{2i} & \dots \\ \dots & \dots & \dots \\ \dots & \mathbf{a}_{mi} & \dots \end{pmatrix}_{(m \times n)}$$

$$\mathbf{M}_{2} = \begin{pmatrix} \dots & \dots & \dots \\ b_{k1} & b_{k2} & \dots & b_{km} \\ \dots & \dots & \dots \end{pmatrix}_{(p \times m)} = \begin{pmatrix} \dots & \dots & \dots \\ \dots & c_{ki} & \dots \\ \dots & \dots & \dots \end{pmatrix}_{(p \times n)} = \mathbf{M}_{3}$$

Exemple:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ & & \\ 2 & -1 & 0 \end{pmatrix}_{(2\times 3)} \text{ et } B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 1 \end{pmatrix}_{(3\times 2)}$$

Calcul de $A \times B$:

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}_{(2 \times 2)}$$

Remarque: $A \times B \neq B \times A$

Dans le cas précédent $A \times B \in M_{2,2}$ et $B \times A \in M_{3,3}$

Donc
$$(A + B)^2 = A^2 + AB + BA + B^2$$

3.3. Propriétés

Si les produits sont définis :

•
$$A \times (B \times C) = (A \times B) \times C$$

$$\bullet \quad A \times (B+C) = (A \times B) + (A \times C)$$

•
$$(B+C)\times A = (B\times A) + (C\times A)$$

•
$$\forall \lambda \in K, \lambda(A \times B) = (\lambda A) \times B$$

Cas des matrices carrées :

- L'ensemble des matrices carrées est M_n(K)
- M_n(K) est un K-ev de dimension n²
- Les 4 propriétés précédentes sont valables
- $\exists (A, B) \in (M_n(K))^2 \text{ tq } A \neq 0, B \neq 0 \text{ et } AB = 0$

Exemple:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A \neq 0$$
, $B \neq 0$ et $A \times B = 0$

Définition:

 $A \in \ M_n(K) \ est \ \underline{inversible} \ ssi \ \exists B \in \ M_n(K) \ tq \ A \times B = B \times A = I_{_n}$

B est dite <u>inverse</u> de A et se note A⁻¹

Remarque : I_n est la matrice identité de $M_n(K)$:

$$\mathbf{I}_{n} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Propriétés de la matrice identité :

•
$$A \times I_n = I_n \times A = A$$

•
$$I_n$$
 est inversible : $I_n^{-1} = I_n$

Méthode pour trouver l'inverse d'une matrice :

Exemple: trouver l'inverse de
$$A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$$

On cherche
$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $tq A \times B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$

Or,
$$A \times B = \begin{pmatrix} a & b \\ 2a - c & 2b - d \end{pmatrix}$$

Donc, par identification :
$$\begin{cases} a = 1 \\ b = 0 \\ 2a - c = 0 \end{cases} \Rightarrow \begin{cases} a = 1 \\ b = 0 \\ c = 2 \\ d = -1 \end{cases}$$

Théorème:

Soit f une application linéaire de E dans F et $A = M_{BB'}(f)$ avec B une base de E et B' une base de F. A est inversible ssi f est un isomorphisme de E dans F et $A^{-1} = M_{B'B}(f^{-1})$

Théorème:

Soit $A \in M_n(K)$. A est inversible ssi la famille des vecteurs colonnes de A est une base de E.

Exercice 3:

Montrer que la matrice $A \in M_n(K)$ suivante est inversible.

$$\mathbf{A} = \begin{pmatrix} \lambda_{11} & 0 & 0 & \dots & 0 \\ \lambda_{21} & \lambda_{22} & 0 & \dots & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \lambda_{n1} & \lambda_{n2} & \lambda_{n3} & \dots & \lambda_{nn} \end{pmatrix} \text{ avec } \lambda_{ii} \neq 0, \forall i$$

Théorème:

Si A et B sont des matrices inversibles de $M_n(K)$, alors $A \times B$ est inversible et $(A \times B)^{-1} = B^{-1} \times A^{-1}$

4. Changement de base

4.1. Formule matricielle de Y = AX

Soit $f \in \mathbf{f}(E,F)$ avec dimE = n et dimF = p $A = \left(a_{ij}\right)_{1 \le i \le p \text{ et } 1 \le j \le n} \text{ matrice associée à f}$

Soit
$$x = \sum_{j=1}^{n} x_{j} e_{j}$$
 avec $B = \{e_{1},...,e_{n}\}$ base de E et $y = f(x) = \sum_{i=1}^{p} y_{i} e'_{i}$ avec $B' = \{e'_{1},...,e'_{p}\}$ base de F

$$f(x) = f\left(\sum_{j=1}^{n} x_{j} e_{j}\right) = \sum_{j=1}^{n} f\left(x_{j} e_{j}\right) = \sum_{j=1}^{n} x_{j} f\left(e_{j}\right) = \sum_{j=1}^{n} x_{j} \left(\sum_{i=1}^{p} a_{ij} e'_{i}\right) = \sum_{j=1}^{n} \sum_{i=1}^{p} \left(x_{j} a_{ij}\right) e'_{i}$$

Donc
$$y_i = \sum_{i=1}^{n} (x_j a_{ij})$$

A x et y, on fait correspondre deux vecteurs colonnes X et Y et on a la matrice A suivante :

$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \dots \\ y_p \end{pmatrix} \text{ et } A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{p1} & a_{p2} & \dots & a_{pn} \end{pmatrix} \implies Y = AX$$

Exercice 4:

Soit
$$f: \mathbb{R}^4 \to \mathbb{R}^3$$

$$(x_1, x_2, x_3, x_4) \rightarrow (y_1, y_2, y_3)$$
 tq

$$\begin{cases} y_1 = 2x_1 - x_2 + x_3 \\ y_2 = 3x_2 - x_3 + x_4 \\ y_3 = x_1 - x_2 + x_3 + x_4 \end{cases}$$

- 1) Déterminer la matrice A associée à f
- 2) Déterminer Ker(f)

4.2. Matrice de passage

Définition:

Soit
$$B = \{e_1, ..., e_n\}$$
 et $B' = \{e'_1, ..., e'_n\}$ des bases de E

B s'appelle <u>ancienne base</u> de E et B' <u>nouvelle base</u> de E. On a $e'_j = \sum_{i=1}^n \alpha_{ij} e_i \quad \forall j \text{ pour } 1 \leq j \leq n$

On appelle <u>matrice de passage</u> de B à B' la matrice $P = (\alpha_{ij})_{1 \le i,j \le n}$ dont les colonnes sont constituées des coordonnées des nouveaux vecteurs e'_i écrites dans l'ancienne base.

$$P = \begin{pmatrix} \alpha_{11} & \alpha_{12} & ... & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & ... & \alpha_{2n} \\ ... & ... & ... & \alpha_{nn} \\ \alpha_{n1} & \alpha_{n2} & ... & \alpha_{nn} \end{pmatrix} e_{n}$$

Proposition:

Soit E un K-ev de dimension p, alors :

- Toute matrice de passage est inversible
- Si $P_{BB'}$ est la matrice de passage de B à B' alors $(P_{BB'})^{-1}$ est la matrice de passage de B' à B et $(P_{BB'})^{-1} = P_{B'B}$

4.2. Effet d'un changement de base sur les coordonnées d'un vecteur

Proposition:

Soit P la matrice de passage de B à B'.

 $\forall x \in E$, soit X le vecteur colonne des coordonnées de x dans l'ancienne base B et X' le vecteur colonne de x dans la nouvelle base B'. Alors $X'=P^{-1}X$

4.2. Effet d'un changement de base sur la matrice d'une application linéaire

Proposition:

Soit E et F deux K-ev ayant pour anciennes bases respectivement B_E et B_F.

Soit B'_E et B'_F deux nouvelles bases de E et F.

Soit P la matrice de passage de B_E à B'_E et Q la matrice de passage de B_F à B'_F

Pour toute application linéaire de E dans F, soit M sa matrice associée dans les anciennes bases (BE et B_F).

Alors, la nouvelle matrice N dans les nouvelles bases (B'_E et B'_F) est donnée par la formule suivante : $N = Q^{-1}MP$ (= formule de changement de base)

Corollaire:

Soit f un endomorphisme de E, M sa matrice associée dans l'ancienne base B et N sa matrice associée dans la nouvelle base B'.

Soit P la matrice de passage de B à B'.

Alors $N = P^{-1}MP$

Remarque : dans la matrice de passage, on écrit les éléments de la nouvelle base en fonction des éléments de l'ancienne base.

Remarques:

•
$$N = P^{-1}MP$$

 $PN = PP^{-1}MP = IMP \Rightarrow PNP^{-1} = M$

• Si N est une matrice diagonale :

$$\mathbf{M}^{n} = (\mathbf{PNP}^{-1})^{n} = \underbrace{\mathbf{PNP}^{-1} \times \mathbf{PNP}^{-1} \times ... \times \mathbf{PNP}^{-1}}_{\text{n fois}}$$

$$\mathbf{M}^{\mathrm{n}} = \mathbf{P} \mathbf{N}^{\mathrm{n}} \mathbf{P}^{-1}$$

$$M^{n} = PN^{n}P^{-1}$$
Comme N est diagonale :
$$N = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{p} \end{pmatrix}$$

Donc
$$N^n = \begin{pmatrix} \lambda_1^n & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_p^n \end{pmatrix} \Rightarrow \text{calcul de } M^n$$

5. Rang d'une matrice

Définition:

Soit $A \in M_{n,p}(K)$, on appelle <u>rang de A</u> le rang du système composé par ses vecteurs colonnes.

Théorème:

Le rang de A est le rang de toute application linéaire représentée par A.

6. Matrices particulières

Définition:

Si $A = (a_{ij})_{1 \le i \le n \text{ et } 1 \le j \le p}$, la <u>transposée</u> de A, notée ${}^t A$ est la matrice ${}^t A = (a_{ji})_{1 \le j \le p \text{ et } 1 \le i \le n}$

Propriétés:

- $\bullet \quad {}^{t}(A+B) = {}^{t}A + {}^{t}B$
- ${}^{t}(\lambda A) = \lambda^{t}A$
- ${}^{t}({}^{t}A) = A$
- ${}^{t}(A \times B) = {}^{t}B \times {}^{t}A$
- ${}^{t}(A^{-1}) = ({}^{t}A)^{-1}$
- $rg(^tA) = rg(A)$

On dit que A est symétrique ssi ^tA = A

On dit que A est <u>antisymétrique</u> ssi ^tA = - A

Chapitre 4 Déterminants

1. Déterminants d'ordre 2

1.1. Définitions

Soit E un K-ev de dimension 2

• On dit que f est une <u>forme bilinéaire</u> de ExE dans K si $\forall (x_1, x_2) \in E^2$:

$$\begin{cases} f(\lambda x_1 + \mu x_1', x_2) = \lambda f(x_1, x_2) + \mu f(x_1', x_2) \\ f(x_1, \lambda x_2 + \mu x_2') = \lambda f(x_1, x_2) + \mu f(x_1, x_2') \end{cases}$$

- On dit que f est <u>antisymétrique</u> si $\forall (x_1, x_2) \in E^2$, $f(x_2, x_1) = -f(x_1, x_2)$
- On dit que f est <u>alternée</u> si $\forall x \in E$, f(x,x)=0

Exemple: le produit scalaire $\vec{x} \cdot \vec{y}$

- 1) le produit scalaire est une forme bilinéaire : $\forall (\vec{x}, \vec{y}) \in R^3 \times R^3$, $\vec{x} \cdot \vec{y} = x_1y_1 + x_2y_2 + x_3y_3$
- 2) il est symétrique : $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- 3) il n'est pas alterné : $\vec{x} \cdot \vec{x} = x_1^2 + x_2^2 + x_3^2 = ||\vec{x}||^2$

Théorème:

Toute forme bilinéaire antisymétrique est alternée et, réciproquement, toute forme bilinéaire alternée est antisymétrique.

 $D\acute{e}monstration (D_1)$

Théorème:

Soit f une forme bilinéaire antisymétrique

Soit $B = \{e_1, e_2\}$ une base de E

$$\forall (x_1, x_2) \in E^2, \exists (a_{11}, a_{12}, a_{21}, a_{22}) \in R^4 \text{ tq } \begin{cases} x_1 = a_{11}e_1 + a_{12}e_2 \\ x_2 = a_{21}e_1 + a_{22}e_2 \end{cases}$$

Alors
$$f(x_1, x_2) = \det_B(x_1, x_2) \times f(e_1, e_2)$$

Avec
$$\det_{B}(x_1, x_2) = a_{11} \times a_{22} - a_{12} \times a_{21}$$

On note
$$\det_{B}(x_{1}, x_{2}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

Démonstration (D₂)

Théorèmes:

- L'espace A2 des formes bilinéaires alternées sur E est un K-ev de dimension 1
- Soit $B = \{e_1, e_2\}$ et $B' = \{e'_1, e'_2\}$ deux bases de E $\det_{B'}(x_1, x_2) = \det_{B'}(e_1, e_2) \times \det_{B}(x_1, x_2)$
- La famille $\{x_1, x_2\}$ est libre ssi $\det_B(x_1, x_2) \neq 0$

Démonstration du $3^{\text{ème}}$ théorème (D_3)

1.2. Déterminants et matrices

Soit $A \in M_2(K)$. On appelle <u>déterminant de A</u> le déterminant des vecteurs lignes (ou colonnes) de A.

Exemple: soit la matrice A suivante:

$$f(e_1) \quad f(e_2)$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} e_1$$

$$\det(\mathbf{A}) = \det_{\mathbf{B}}(\mathbf{f}(\mathbf{e}_1), \mathbf{f}(\mathbf{e}_2)) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \times a_{22} - a_{12} \times a_{21}$$

Théorème:

Soit
$$(A,B) \in (M_2(K))^2$$

$$det(A \times B) = det(A) \times det(B) = det(B) \times det(A)$$

2. Déterminant d'ordre 3

2.2.Définitions

Soit E un K-ev de dimension 3 et $f: E^3 \to K$

- f est <u>trilinéaire</u> si elle est linéaire par rapport à chaque vecteur x_i ($i \in \{1, 2, 3\}$)
- f est <u>antisymétrique</u> ou <u>alternée</u> si elle est nulle lorsque 2 vecteurs sont égaux.

$$f(x_1, x_2, x_3) = 0$$
 dès que $x_i = x_j$ pour 1 couple (i,j)

Théorèmes:

- A₃ est l'ensemble des formes trilinéaires alternées et est un K-ev de dimension 1
- Soit f une forme trilinéaire et $B = \{e_1, e_2, e_3\}$ une base de E:

$$f(x_1, x_2, x_3) = det_B(x_1, x_2, x_3) \times f(e_1, e_2, e_3)$$

• Si B et B' sont deux bases de E:

$$\det_{B'}(x_1, x_2, x_3) = \det_{B'}(e_1, e_2, e_3) \times \det_{B}(x_1, x_2, x_3)$$

- La famille $\{x_1, x_2, x_3\}$ est libre ssi $\det_B(x_1, x_2, x_3) \neq 0$
- Soit A et B \in M₃(K), det(AB) = det(A) \times det(B)
- Soit $A \in M_3(K)$, $det(^tA) = det(A)$

2.2. Calcul pratique

Soit la matrice :
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Notations:

- $\bullet \quad \text{On note A_{ij} la matrice déduite de A en supprimant la ligne i et la colonne j}\\$
- On note \widetilde{a}_{ij} le <u>cofacteur</u> de l'élément a_{ij} : $\widetilde{a}_{ij} = (-1)^{i+j} \times \det(A_{ij})$ det (A_{ij}) s'appelle <u>déterminant mineur</u>

En pratique, on développe le déterminant de A au moyen des cofacteurs relatifs à la 1^{ère} ligne (ou la 1^{ère} colonne).

$$\begin{aligned} \det(\mathbf{A}) &= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ \det(\mathbf{A}) &= a_{11} \times \widetilde{a}_{11} + a_{12} \times \widetilde{a}_{12} + a_{13} \times \widetilde{a}_{13} \\ &= a_{11} \times \det(\mathbf{A}_{11}) - a_{12} \times \det(\mathbf{A}_{12}) + a_{13} \times \det(\mathbf{A}_{13}) \\ &= a_{11} \times \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \times \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \times \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

 $= a_{11} \times (a_{22}a_{33} - a_{23}a_{32}) - a_{12} \times (a_{21}a_{33} - a_{23}a_{31}) + a_{13} \times (a_{21}a_{32} - a_{22}a_{31})$

3. <u>Déterminant d'ordre n</u>

3.1. Déterminant d'une matrice carrée d'ordre n

On a les résultats et les règles de calcul suivants :

- detA = 0 si deux colonnes sont égales ou proportionnelles ou si une colonne est nulle
- detA change de signe si on permute deux colonnes
- detA ne change pas de valeur si on substitue à la colonne i la colonne i+kj (j étant une autre colonne)
- detA est multiplié par λ si on remplace la colonne j par λj

Remarque : ces propriétés sont aussi valables pour les lignes

Propriétés:

$$det(AB) = det A \times det B$$

$$\det(^{t}A) = \det A$$

Exercice 1:

Calculer le déterminant de la matrice suivante :

$$A = \begin{pmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{pmatrix}$$

Exercice 2:

Calculer le déterminant de la matrice suivante :

$$T = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

$$\det T = a_{11} \times \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ 0 & \dots & a_{nn} \end{vmatrix} = a_{11} \times a_{22} \times \begin{vmatrix} a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots \\ 0 & \dots & a_{nn} \end{vmatrix} = a_{11} \times a_{22} \times a_{33} \times \dots \times a_{nn}$$

Le déterminant d'une <u>matrice triangulaire</u> est égal au produit des coefficients de la diagonale.

3.2. Comatrice

Définition:

Soit $M \in M_n(K)$. On appelle comatrice de M, notée M^* , la matrice des cofacteurs.

Exercice 3:

Trouver la comatrice de la matrice suivante :

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix}$$

Théorème:

$$\forall M \in M_n(K), M \times^t M^* = t^t M^* \times M = \det M \times I_n$$

Exercice 4:

Reprendre l'exemple précédent et montrer que $M \times^t M^* = \det M \times I_3$

3.3. Matrices inversibles

Théorème:

Soit $M \in M_n(K)$, M est inversible ssi det $M \neq 0$

On a alors
$$M^{-1} = \frac{1}{\det M} \times^t M^*$$

Propriétés:

Soit A et B deux matrices carrées d'ordre n telles que det $A \neq 0$ et det $B \neq 0$

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1} \times A^{-1}$
- ${}^{t}(A^{-1}) = ({}^{t}A)^{-1}$

Démonstrations (D_4)

4. Déterminant d'un endomorphisme de E

Définition:

Soit $f \in \mathcal{E}(E)$. On appelle <u>déterminant de f</u> et on note det(f) le déterminant de sa matrice associée dans une base quelconque.

Remarque:

det(f) ne dépend pas de la base considérée

Démonstration (D_5)

5. Applications

5.1. Rang d'une matrice (rectangle ou carrée)

Rappels:

$$rgA = rgf = dim(Imf)$$

rgA = rang du système composé par les vecteurs colonnes de la matrice

rgA = rang du système composé par les vecteurs lignes de la matrice

rgA = taille de la plus grande matrice carrée extraite de A et de $det \neq 0$

5.2. Système linéaire de n équations à n inconnues

(S)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2 \\ ... \\ a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n \end{cases}$$

On pose
$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
, $B = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix}$ et $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$ donc on peut écrire le système $AX = B$

Si det $\neq 0$, A est inversible et on peut calculer $X = A^{-1}B$

Définition:

(S) est dit système de Cramer si det $\neq 0$

$$\Leftrightarrow$$
 X = A⁻¹B

- ⇔ (S) possède une unique solution
- ⇔ f est une bijection sur E

Calcul de la solution unique $(x_1, x_2, ..., x_n)$

Lorsque l'on a une solution unique $(x_1, x_2, ..., x_n)$, on utilise les <u>formules de Cramer</u>: $x_j = \frac{\Delta_j}{\Lambda}$

$$\Delta = \det(A)$$

 Δ_i : déterminant déduit de Δ en remplaçant la colonne a_i par la colonne b

Exercice 5 : Résoudre le système suivant :

$$\begin{cases} 4x_1 + 5x_2 = 3 \\ 2x_1 + 3x_2 = 1 \end{cases}$$

Proposition : critères d'existence de solutions

Soit l'application linéaire $f: K^p \to K^n$ dont la matrice dans les bases B_p et B_n est A.

Soit x et b les vecteurs de K^p et de K^n dont les coordonnées dans les bases B_p et B_n sont X et B.

Soit le système linéaire (S) défini par : AX = B

Alors (S) admet au moins une solution ssi l'une des conditions équivalentes suivantes est satisfaite :

1) $b \in Imf$

2)
$$\exists (\lambda_1, \lambda_2, ... \lambda_p) \in K^p \text{ tq } B = \sum_{i=1}^p \lambda_i C_i \text{ avec } C_i = \begin{pmatrix} a_{1i} \\ ... \\ a_{ni} \end{pmatrix} \text{ la } i^{\text{ème}} \text{ colonne de la matrice } A$$

Démonstration (D_6)

Chapitre 5

Diagonalisation

1. Introduction

Soit A une matrice associée à un endomorphisme $f \in \mathfrak{t}(E)$, avec E un K-ev de dimension finie.

On pose $A = M_B(f)$ et $B = \{e_1, ..., e_n\}$ une base de E.

Objectif: on veut trouver une base B' de E ou trouver une matrice P inversible tq $A' = P^{-1}AP$ avec A' matrice diagonale.

Définitions:

- Soit E un K-ev de dimension n et f ∈ £(E). On dit que f est <u>diagonalisable</u> s'il existe une base
 B' de E et (λ₁,...,λ_n) ∈ Kⁿ tq f(e'_i) = λ_ie'_i
- On dit que $A \in M_n(K)$ est diagonalisable si elle est <u>semblable</u> à une matrice diagonale c'est-àdire s'il existe une matrice P inversible tq la matrice $A' = P^{-1}AP$ est diagonale.

2. Valeurs propres et vecteurs propres

Définitions:

Soit E un K-ev et $f \in \mathbf{f}(E)$

- On dit que $\lambda \in K$ est <u>valeur propre</u> de f s'il existe $x \in E$ tq $x \neq 0_E$ et $f(x) = \lambda x$
- On dit que x est <u>vecteur propre</u> de f associé à λ

Remarques:

1) Soit λ une valeur propre de f. Donc $\exists x \neq 0_E \text{ tq } f(x) = \lambda x$

$$\Rightarrow f(x) - \lambda x = 0_F \Rightarrow (f - \lambda id)x = 0_F$$

$$\Rightarrow$$
 x \in Ker(f $-\lambda$ id)

Comme $x \neq 0_F$, (f - λ id) n'est pas injective

2) f est diagonalisable ssi il existe une base de E formée de vecteurs propres.

Démonstration du 2) (D_1)

Remarque: sur la diagonale de la matrice diagonale apparaissent les valeurs propres de l'endomorphisme.

Théorème:

Si les valeurs propres sont 2 à 2 distinctes, alors la famille constituée par les vecteurs propres associés à ces valeurs propres est libre.

Corollaire:

Si dimE = n et que f admet n valeurs propres distinctes, alors f est diagonalisable.

3. Polynôme caractéristique

Définition

Le polynôme $P_n(\lambda) = \det(A - \lambda I_n)$ s'appelle le <u>polynôme caractéristique</u> de A.

Les valeurs propres de A sont les racines de ce polynôme de degré n.

Résumé:

- 1) Les valeurs propres λ sont les solutions de l'équation : $\det(A \lambda I) = 0$
- 2) Les vecteurs propres V sont les solutions de l'équation : $(A \lambda I).V = 0$

Remarques:

- On calcule un vecteur propre pour chaque valeur propre
- Lorsqu'on exprime la matrice dans la base constituée par les vecteurs propres, on obtient une matrice diagonale dont les éléments diagonaux sont les valeurs propres de la matrice.

Exercice 1:

Déterminer les valeurs propres de la matrice suivante :

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & 8 & 2 \end{pmatrix}$$

4. Sous-espaces propres

Définition:

Soit $f \in \mathbf{f}(E)$ et λ une valeur propre de f.

On appelle sous-espace propre associé à λ l'ensemble $E_{\lambda} = \{x \in E/f(x) = \lambda x\} = Ker(f - \lambda id_E)$

Remarques:

- E_{λ} est l'ensemble formé des vecteurs propres associés à la valeur propre λ et du vecteur 0_E
- $\dim E_{\lambda} \ge 1$
- $(f \lambda i d_E)$ est un endomorphisme de E, donc $\dim E = \dim Ker(f \lambda i d_E) + \dim Im(f \lambda i d_E)$ $n = \dim E_{\lambda} + rg(f - \lambda i d_E)$

Donc
$$\dim E_{\lambda} = n - rg(f - \lambda id_{E})$$

Exercice 2:

Déterminer les sous-espaces propres associés aux valeurs propres de la matrice A :

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & 8 & 2 \end{pmatrix}$$

5. Diagonalisation

Théorème:

f est diagonalisable ssi $P_n(\lambda)$ admet n racines λ_i (distinctes ou confondues) et si on a, pour tout $i: m(\lambda_i) = \dim E_{\lambda_i}$ $(m(\lambda_i): \text{ ordre de multiplicité de } \lambda_i)$

Autre formulation du théorème :

$$f \ est \ diagonalisable \ ssi \ \begin{cases} dimE = n = \sum\limits_{i=1}^{p} m(\lambda_i) \\ dimE_{\lambda_i} = m(\lambda_i) \ \ \forall i \in \left\{1,...,p\right\} \end{cases}$$

6. Applications

6.1. Calcul de la puissance d'une matrice : A^k

Soit $A \in M_n(K)$.

Si A est diagonalisable, il existe deux matrices : A' diagonale et P inversible tq $A' = P^{-1}AP$ (c'est-à-dire $A = PA'P^{-1}$)

$$A^{k} = (PA'P^{-1}) \times (PA'P^{-1}) \times ... \times (PA'P^{-1}) = P(A')^{k} P^{-1}$$
k fois

Or, si A'=
$$\begin{pmatrix} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \lambda_n \end{pmatrix} \Rightarrow (A')^k = \begin{pmatrix} \lambda_1^k & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \lambda_n^k \end{pmatrix}$$

Donc A^k se calcule par la formule suivante :

$$A^k = P \times \begin{pmatrix} \lambda_1^k & ... & 0 \\ ... & ... & ... \\ 0 & ... & \lambda_n^k \end{pmatrix} \times P^{-1}$$

6.2. Résolution d'un système de suites récurrentes

On cherche à déterminer les expressions de u_n et v_n en fonction de n, connaissant le système suivant :

$$\begin{cases} u_{n+l} = f(u_n, v_n) \\ v_{n+l} = g(u_n, v_n) \end{cases} \text{ et les valeurs } u_0 \text{ et } v_0$$

On pose
$$X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$$
 et $X_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$

Le système précédent s'écrit $X_{n+1} = A.X_n$

D'où, par récurrence, $X_n = A^n.X_0$

On est ainsi ramené au calcul de Aⁿ puis de X_n en fonction de n.

6.3. Système différentiel linéaire à coefficients constants

On cherche à résoudre le système suivant :

$$(1) \begin{cases} \frac{dx_{_{1}}}{dt} = a_{_{11}}x_{_{1}} + ... + a_{_{1n}}x_{_{n}} \\ ... & \text{avec } a_{_{ij}} \in R \text{ et } x_{_{i}} : R \to R \text{ d\'erivables} \\ \frac{dx_{_{n}}}{dt} = a_{_{n1}}x_{_{1}} + ... + a_{_{nn}}x_{_{n}} \end{cases}$$

Sous forme matricielle, le système s'écrit
$$\frac{dX}{dt} = AX$$
 où $A = (a_{ij})$ et $X = \begin{pmatrix} x_1 \\ ... \\ x_n \end{pmatrix}$

Si A est diagonalisable, il existe A' diagonale et P inversible tq $A' = P^{-1}AP$

Si on considère A comme la matrice d'un endomorphisme f dans la base canonique, A' est la matrice de f dans la base des vecteurs propres $\{v_i\}$.

X est la matrice du vecteur x dans la base canonique et Y est la matrice de x dans la base des $\{v_i\}$. On a la relation : $Y = P^{-1}X$

En dérivant cette relation : $\frac{dY}{dt} = P^{-1} \frac{dX}{dt}$

Donc
$$\frac{dY}{dt} = P^{-1}AX = (P^{-1}AP)Y = A'Y$$

Donc le système (1) équivaut à $\frac{dY}{dt}$ = A'Y . Ce système s'intègre facilement car A' est diagonale.

Résumé: pour résoudre le système $\frac{dX}{dt} = AX$:

- 1) On diagonalise A. On trouve $A' = P^{-1}AP$ une matrice diagonale semblable à A
- 2) On intègre le système $\frac{dY}{dt} = A'Y$
- 3) On revient à X par X = PY

Exercices d'algèbre linéaire

Exercices de préparation
 Annales

Exercices de préparation

Chapitre 1: Espaces vectoriels

Exercice 1

Soit E l'ev des fonctions réelles définies sur R.

Parmi les sous-ensembles suivants, quels sont ceux qui possèdent une structure de sous-espace vectoriel (sev) ?

- le sous-ensemble E_p des fonctions positives
- le sous-ensemble E₁ des fonctions qui s'annulent en 1
- le sous-ensemble E_{inf} des fonctions qui tendent vers + infini lorsque x tend vers + infini

Exercice 2

Déterminer $m \in R$ pour que :

$$E_m = \{(x, y, z, t) \in \mathbb{R}^4 / x - y + 2z - 3t = m\}$$
 soit un sev de \mathbb{R}^4

Exercice 3

Soit $(\mathfrak{I},+,.)$ l'ev des fonctions définies sur R.

On pose F_1 le sous-ensemble des fonctions paires et F_2 le sous-ensemble des fonctions impaires. Ces deux sous-ensembles sont des sev de $(\mathfrak{I},+,\cdot)$. Montrer qu'ils sont supplémentaires.

Exercice 4

Dans R^2 , soit $v_1 = (1,1)$ et $v_2 = (1,-1)$. Montrer que $\{v_1, v_2\}$ est une famille génératrice de R^2 .

Exercice 5

Soit 3 l'ev des fonctions réelles définies sur R.

Soit les fonctions suivantes :

$$f_1: x \longrightarrow x^2 + x - 1$$

$$f_2: x \to 2 x$$

$$f_3: x \to \cos x$$

$$f_4: x \to sin \; x$$

- 1) Est-ce que $\{f_1, f_2\}$ est libre?
- 2) Est-ce que $\{f_3, f_4\}$ est libre ?

Exercice 6

Soit F un sev de R³ tq:
$$F = \{(x, y, z) \in R^3 / 2x + y + 3z = 0\}$$

Soit
$$v_1 = (1,-2,0)$$
 et $v_2 = (0,-3,1)$. Montrer que $\{v_1, v_2\}$ forme une base de F.

Exercice 7

Montrer que $B = \{1, x, x^2, ... x^n\}$ est une base de $R_n[x]$

 $R_n[x]$ étant l'ensemble des polynômes de degré n, c'est-à-dire :

$$R_n[x] = \left\{ P/P = \sum_{i=0}^n a_i x^i \text{ avec } (a_0,...,a_n) \in \mathbb{R}^{n+1} \right\}$$

Exercice 8 : Obtention d'une base à partir d'une famille génératrice

Déterminer une base du sous-espace de R⁴ engendré par les vecteurs $v_1 = (1,1,0,-1)$ et $v_2 = (-1,1,1,0)$ et $v_3 = (0,2,1,-1)$ et donner les éventuelles relations linéaires entre ces vecteurs.

Exercice 9: Obtention d'une base à partir d'une famille libre

Dans \mathbb{R}^5 , soit les vecteurs $x_1 = (1,0,1,1,1)$ et $x_2 = (2,1,3,0,2)$ et $x_3 = (1,-1,1,1,1)$

- 1) Montrer que $\{x_1, x_2, x_3\}$ est une famille libre
- 2) Compléter cette famille pour obtenir une base de R⁵
- 3) Déterminer un sous-espace supplémentaire de $F = \text{Vect}\{x_1, x_2, x_3\}$

Exercice 10

Soit F et G les sev de R⁴ engendrés respectivement par $\{v_1, v_2\}$ et $\{w_1, w_2\}$ où $v_1 = (1,-1,0,2), v_2 = (2,1,3,1), w_1 = (1,1,1,1)$ et $w_2 = (3,-4,4,2)$.

Déterminer une base de $F \cap G$

Chapitre 2 : Applications linéaires

Exercice 1

Déterminer si les applications suivantes sont linéaires :

 $f_1: (x,y) \in \mathbb{R}^2 \rightarrow x + y \in \mathbb{R}$

 $f_2: (x,y,z) \in R^3 \to (xy,x,y) \in R^3$

 $f_3: P \in R_3[X] \rightarrow P' \in R_2[X]$

Exercice 2

Pour tout réel m, soit l'application $f : \mathbb{R}^3 \to \mathbb{R}^4$ définie par :

f(x,y,z) = (x - y + z, mx - 2y + mz, -x + y, -mx + my - mz)

- 1) Montrer que f est linéaire
- 2) Déterminer une base du noyau de f. Pour quelle valeur de m l'application f est-elle injective ? f est-elle bijective ?
- 3) Déterminer une base de l'image de f

Chapitre 3 : Matrices

Exercice 1

Soit $B_4 = \{e_1, e_2, e_3, e_4\}$ la base canonique de R^4 et $B_3 = \{f_1, f_2, f_3\}$ la base canonique de R^3 .

Soit u l'application linéaire de R⁴ dans R³ définie par :

$$R^4 \longrightarrow R^3$$

$$(x, y, z, t) \rightarrow u(x, y, z, t) = (z, x + y + z - t, x + z)$$

- 1) Déterminer la matrice associée à u dans ces bases
 - 2) Déterminer le rang de u

Exercice 2

Pour tout entier $n \ge 2$, soit l'application f définie sur $R_n[X]$ par :

$$f: P \rightarrow P + (1-X)P'$$

- 1) Montrer que f est un endomorphisme de $R_n[X]$
- 2) Déterminer la matrice M associée à f dans la base $B = \{1, X, X^2, ..., X^n\}$
- 3) Déterminer une base de Imf
- 4) Déterminer une base de Kerf
- 5) Montrer que Imf et Kerf sont supplémentaires dans R_n[X]

Exercice 3

Soit $(0, \vec{i}, \vec{j}, \vec{k})$ le repère orthonormé de R³. Soit $\vec{v} = \vec{i} + \vec{j}$ et $\vec{w} = \vec{j} + \vec{k}$

- 1) Trouver \vec{u} orthogonal à \vec{v} et \vec{w} et montrer que B'= $\{\vec{u}, \vec{v}, \vec{w}\}$ est une base de R³
- 2) Soit f la symétrie orthogonale par rapport au plan (\vec{v}, \vec{w}) . Ecrire la matrice A' de f dans la base B'
- 3) Ecrire la matrice A de f dans la base $B = (\vec{i}, \vec{j}, \vec{k})$

Exercice 4

Soit f une application linéaire de R² dans R²

$$f:(x_1, x_2) \rightarrow (5x_1 + 3x_2, 3x_1 + 5x_2)$$

- 1) Quelle est la matrice associée à f lorsque R² est muni de la base canonique ? (on appelle A cette matrice)
- 2) Montrer que $e'_1 = \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}$ et $e'_2 = \begin{pmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{pmatrix}$ constitue une base de R^2
- 3) Quelle est la matrice associée à f dans la nouvelle base {e'₁, e'₂} ? (on appelle N cette matrice)
- 4) Calculer N^p avec $p \in N$

Exercice 5

Calculer le rang de la matrice A :

$$A = \begin{pmatrix} 1 & -1 & 3 & 5 & 1 \\ 2 & 0 & -1 & 3 & 1 \\ 3 & -1 & 2 & 8 & 2 \end{pmatrix}$$

Chapitre 4 : Déterminants

Exercice 1

Calculer le déterminant de la matrice suivante :

$$A = \begin{pmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{pmatrix}$$

Exercice 2

Calculer le déterminant de la matrice suivante :

$$B = \begin{pmatrix} a + i\alpha & \alpha + ia & a + \alpha \\ b + i\beta & \beta + ib & b + \beta \\ c + i\gamma & \gamma + ic & c + \gamma \end{pmatrix}$$

Indication : utiliser le fait que le déterminant de B est une forme trilinéaire

Exercice 3

Soit D_n le déterminant de la matrice $C \in M_n(R)$ tq :

$$D_{n} = \begin{vmatrix} a & b & \dots & 0 \\ c & a & \dots & \dots \\ \dots & \dots & \dots & b \\ 0 & \dots & c & a \end{vmatrix} \text{ avec } (a, b, c) \in \mathbb{R}^{3}$$

Soit D_{n-1} le déterminant de la matrice $C' \in M_{n-1}(R)$ et D_{n-2} le déterminant de la matrice $C'' \in M_{n-2}(R)$. Les matrices C' et C'' sont construites de la même façon que la matrice C.

- 1) Exprimer D_n en fonction de D_{n-1} et D_{n-2}
- 2) Calculer D₁, D₂ et D₃

Exercice 4

Soit la matrice suivante :

$$\mathbf{M}_{\mathbf{a}} = \begin{pmatrix} 2a+1 & -a & a+1 \\ a-2 & a-1 & a-2 \\ 2a-1 & a-1 & 2a-1 \end{pmatrix} \text{ avec } \mathbf{a} \in \mathbf{R}$$

- 1) Déterminer le rang de M_a selon la valeur de a
- 2) Résoudre $M_aX = B_a$ avec $B_a = \begin{pmatrix} a-1 \\ a \\ a \end{pmatrix}$ et $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Exercice 5

Résoudre le système suivant selon les valeurs de k, α , β et $\gamma \in R$:

$$\begin{cases} 2x + y - z = \alpha \\ y + 3z = \beta \\ 2x + ky + 2z = \gamma \end{cases}$$

Exercice 6: Etude des matrices semblables

Soit A et B deux matrices carrées de M_n(R)

- 1) On suppose que A et B sont semblables (= \exists une matrice carrée inversible P tq A = PBP⁻¹). Montrer que :
 - ^tA est semblable à ^tB
 - $\forall k \in \subseteq \text{avec } k \ge 1, A^k \text{ est semblable à } B^k$
 - A est inversible ssi B est inversible
- 2) On suppose uniquement que A ou B est inversible. Montrer que AB et BA sont semblables.

Exercice 7

Calculer la matrice inverse de la matrice suivante :

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

Chapitre 5 : Diagonalisation

Exercice 1

Soit $f \in \mathcal{E}(E)$ et A la matrice associée à f dans la base B.

- 1) A quelle condition 0 est-il valeur propre de A? Quel est le sous-espace propre associé à 0?
- 2) Quels sont les vecteurs propres et valeurs propres de A^p à partir de ceux de A?

Exercice 2

Soit la matrice A suivante :

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Calculer la base de vecteurs propres orthonormés associée à cette matrice

Exercice 3

Montrer que toute matrice réelle symétrique d'ordre 2 est diagonalisable.

Exercice 4

Pour quelles valeurs des paramètres réels a, b, c, d, e et f les matrices suivantes sont-elles diagonalisables dans $M_4(R)$?

$$A = \begin{pmatrix} 1 & a & b & c \\ 0 & 2 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Exercice 5 Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par leurs 1^{ers} termes u_0 et v_0 et par les relations de récurrence suivantes :

$$\begin{cases} u_{n+1} = u_n + 2v_n \\ v_{n+1} = u_n + v_n \end{cases}$$

1) Montrer que
$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = A^{n+1} \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}$$
 avec $A \in M_2(R)$

2) Déterminer les expressions de u_{n+1} et v_{n+1} en fonction de n, u_0 et v_0

Exercice 6

Résoudre le système d'équations différentielles suivant par l'algèbre linéaire :

$$\begin{cases} x'_{1}(t) = 3x_{1}(t) - x_{2}(t) + x_{3}(t) \\ x'_{2}(t) = 2x_{2}(t) \\ x'_{3}(t) = x_{1}(t) - x_{2}(t) + 3x_{3}(t) \end{cases}$$

Examen d'algèbre linéaire

10 mai 2007

Exercice 1:

Soit le système linéaire suivant (avec $(a, m) \in \mathbb{R}^2$):

$$\begin{cases} (a-1).x + y - z = m \\ x + ay + z = m \\ x + y + az = m + 2 \end{cases}$$

Donner, en justifiant vos réponses, le **nombre** de solutions de ce système selon les valeurs de a et de m (les solutions ne sont pas à calculer !).

Exercice 2:

Soit
$$F = \text{Vect}\{v_1, v_2, v_3\}$$
 avec $v_1 = (1, -1, 2, 0), v_2 = (2, 2, 3, 1)$ et $v_3 = (3, 1, 5, 1)$

- 1. Donner une base de F
- 2. Compléter cette base pour obtenir une base de R⁴

Problème:

Dans l'espace vectoriel $E = \mathcal{M}_2(R)$ de dimension 4, on considère les matrices suivantes :

$$\mathbf{M}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{M}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{M}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{M}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- 1. Montrer que $B = \{M_1, M_2, M_3, M_4\}$ est une base de E.
- 2. Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$

On considère l'application f définie sur E par la relation suivante :

$$\forall M \in E, f(M) = A \times M - M \times A$$
 (× représente le produit matriciel)

- 2.1. Montrer que f est un endomorphisme de E.
- 2.2. Montrer que la matrice F de f dans la base B est la matrice suivante :

$$\mathbf{F} = \begin{pmatrix} 0 & 0 & 2 & 0 \\ -2 & -1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$

- 2.3. Déterminer une base de Imf.
- 2.4. Déterminer une base de Kerf.
- 2.5. Est-ce que f est une fonction injective ? surjective ? bijective ? (Justifier vos réponses)
- 2.6. Montrer que la matrice A est diagonalisable et donner ses valeurs propres et vecteurs propres.
- 2.7. Soit M_i ' la matrice définie de la façon suivante : M_i '= $P \times M_i \times P^{-1}$ (P étant une matrice de passage). En utilisant le résultat de la question 1, montrer (sans calcul !) que la famille $\{M_1', M_2', M_3', M_4'\}$ forme une base de E.
- 2.8. On a les relations suivantes :

$$f(M_1') = M_0$$
, $f(M_2') = -M_2'$, $f(M_3') = M_3'$ et $f(M_4') = M_0$ avec $M_0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

En déduire les valeurs propres et « vecteurs » propres de F.

2.9. Soit G la matrice de f dans $\{M_1', M_2', M_3', M_4'\}$. Ecrire cette matrice.

Examen d'algèbre linéaire

15 mai 2008

Exercice 1:

Soit le système linéaire suivant (avec $(m, a, b) \in \mathbb{R}^3$):

(S)
$$\begin{cases} x + 3y = a \\ 2mx - y = b \end{cases}$$

En utilisant l'algèbre linéaire, indiquer pour quelles valeurs des paramètres m, a et b le système (S) admet au moins une solution (le calcul des solutions n'est pas demandé!).

Exercice 2:

Soit $B = \{e_1, e_2, e_3\}$ la base canonique de R^3 et f une application de R^3 dans R^3 définie de la façon suivante :

$$\begin{cases} f(e_1) = e_1 \\ f(e_2) = f(e_3) = \frac{1}{2} \times (e_2 + e_3) \end{cases}$$

1) Montrer que la matrice M associée à f dans la base B s'écrit de la façon suivante :

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix}$$

- 2) Montrer que f est un endomorphisme de R³.
- 3) Déterminer Kerf. En donner une base et préciser sa dimension.
- 4) Déterminer une base de Imf. Donner le rang de f.
- 5) Montrer que les sous-espaces vectoriels Kerf et Imf sont supplémentaires dans R^3 (\Leftrightarrow Kerf + Imf = R^3).
- 6) Est-ce que f est une fonction injective? surjective? bijective?
- 7) Soit g un endomorphisme de R^3 tel que $g = f \circ f$ Calculer la matrice associée à g dans la base B. En déduire ce que vaut la fonction g.

Exercice 3:

Soit $B = \{e_1, e_2, e_3\}$ la base canonique de R^3 et f un endomorphisme de R^3 dont la matrice associée dans la base B est la matrice A suivante :

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Soit les vecteurs V_1 , V_2 et V_3 tels que : $\begin{cases} V_1 = e_1 \\ V_2 = e_1 + e_2 \\ V_3 = e_1 + e_3 \end{cases}$

- 1) Montrer que B'= $\{V_1, V_2, V_3\}$ est une base de R³.
- 2) Exprimer $f(V_1)$, $f(V_2)$ et $f(V_3)$ en fonction de e_1 , e_2 et e_3 . Puis exprimer $f(V_1)$, $f(V_2)$ et $f(V_3)$ en fonction de V_1 , V_2 et V_3 .
- 3) En déduire la matrice A' associée à f dans la base B' (sans calcul!).
- 4) En déduire les valeurs propres de f. Pour chacune de ces valeurs propres, préciser son ordre de multiplicité et le(s) vecteur(s) propre(s) associé(s) (sans calcul!).

5) Soit F_1 et F_2 les deux sous-espaces vectoriels suivants :

$$\begin{cases} F_1 = Ker(f-id) \\ F_2 = Ker(f-2\times id) \end{cases}$$
 (id représente ici la fonction identité dans R^3)

Déterminer une base de F₁ et une base de F₂.

- 6) Exprimer A en fonction de A', P et P⁻¹, la matrice P étant une matrice de passage que l'on déterminera.
- 7) Calculer la matrice Aⁿ.
- 8) Soit $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites définies par leurs 1^{ers} termes u_0 , v_0 et w_0 et par les relations de récurrence suivantes :

$$\begin{cases} u_{n+1} = u_n + v_n + w_n \\ v_{n+1} = 2v_n \\ w_{n+1} = 2w_n \end{cases} \quad \text{avec} \begin{cases} u_0 = 0 \\ v_0 = 2 \\ w_0 = 1 \end{cases}$$

En utilisant le résultat de la question 7), exprimer u_n, v_n et w_n en fonction de n.

19 mars 2009

Exercice 1:

- 1) Soit F_1 l'ensemble défini par : $F_1 = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + z + 1 = 0\}$ Est-ce que F_1 est un sev de \mathbb{R}^3 ?
- 2) Soit E l'ensemble des fonctions réelles et F_2 l'ensemble des fonctions paires : $F_2 = \{f \in E \mid f(-x) = f(x) \mid \forall x \in R\}$ Est-ce que F_2 est un sev de E?

Exercice 2:

Soit la famille de vecteurs $F = \{v_1, v_2, v_3\}$ avec $v_1 = (0,1,2,0), v_2 = (1,0,3,1)$ et $v_3 = (0,0,1,2)$

- 1) Est-ce que F est une famille génératrice de R⁴?
- 2) Est-ce que F est une famille libre?
- 3) Donner une base de R^4 à partir des vecteurs v_1 , v_2 et v_3 .

Exercice 3:

$$f: R^2 \rightarrow R^3$$

 $(x,y) \rightarrow (2x+y, x-y, x)$

- 1) Donner la matrice associée à f dans les bases canoniques de R² et de R³. Utiliser deux méthodes différentes pour répondre à cette question.
- 2) Donner la matrice associée à f dans les bases B et B', B étant la base canonique de R² et B' étant la base de R³ formée par les vecteurs u_1 , u_2 et u_3 tels que $u_1 = (1,0,0)$, $u_2 = (0,2,0)$ et $u_3 = (0,0,3)$
- 3) Déterminer Kerf.
- 4) Est-ce que f est injective? Est-elle bijective?

14 mai 2009

Exercice 1

Soit la matrice A suivante :

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ -2 & 0 & -1 \end{pmatrix}$$

- 1) Cette matrice est-elle inversible? Si oui, donner son inverse.
- 2) Déterminer les valeurs propres de cette matrice.
- 3) Déterminer les vecteurs propres associés à ces valeurs propres.
- 4) La matrice A est-elle diagonalisable ? Si oui, donner la matrice diagonale A' correspondante et indiquer dans quelle base elle est exprimée (sans faire de calcul !).
- 5) Soit f l'endomorphisme auquel est associée la matrice A dans la base canonique de R³. Déterminer Kerf et Ker(f id) (sans faire de calcul!).

 *Remarque: id représente ici la fonction identité de R³ dans R³

Exercice 2

Soit f l'endomorphisme défini de la façon suivante :

$$f: R^3 \rightarrow R^3$$

 $(x,y,z) \rightarrow (2x+2z, -x-z, 2x+y+3z)$

Partie 1:

- 1) Déterminer la matrice A associée à f dans la base canonique B de R³.
- 2) Déterminer Kerf.
- 3) Déterminer Imf.
- 4) L'application f est-elle injective ? surjective ? bijective ?

Partie 2 :

Soit les 3 vecteurs de R^3 suivants : u = (0,1,0), v = (2,0,0) et w = (0,0,1)

- 1) Montrer que la famille $B' = \{u, v, w\}$ forme une base de R^3 .
- 2) Déterminer les composantes des vecteurs f(u), f(v) et f(w) dans la base canonique B de R³.
- 3) Exprimer les vecteurs f(u), f(v) et f(w) en fonction des vecteurs u, v et w.
- 4) Les vecteurs u, v et w sont-ils des vecteurs propres de A ? (sans faire de calcul!)
- 5) Donner la matrice C associée à f dans la base $B' = \{u, v, w\}$ (sans faire de calcul!).

Partie 3

On considère le système linéaire suivant :

(S)
$$\begin{cases} 2x + 2z = 0 \\ -x - z = 0 \\ 2x + y + 3z = 0 \end{cases}$$

En utilisant la réponse à une des questions précédentes de l'exercice 2, résoudre ce système (sans faire de calcul!).

8 avril 2010

Exercice 1:

- 1) Soit F_1 l'ensemble défini par : $F_1 = \{(x, y, z) \in \mathbb{R}^3 / x = 3y\}$ Est-ce que F_1 est un sev de \mathbb{R}^3 ?
- 2) Soit $M_2(R)$ l'ensemble des matrices carrées contenant 2 lignes et 2 colonnes et comportant des coefficients réels.

Soit $\overline{F_2}$ l'ensemble des matrices carrées contenant 2 lignes et 2 colonnes et comportant des coefficients réels positifs ou nuls, c'est-à-dire :

$$F_2 = \{(a_{ij}) \in /a_{ij} \ge 0 \ \forall i \in \{1,2\} \text{ et } \forall j \in \{1,2\} \}$$

Est-ce que F_2 est un sev de $M_2(R)$?

Exercice 2:

Soit R₃[x] l'ensemble des polynômes de degré 3, c'est-à-dire :

$$R_3[x] = \left\{ P/P = \sum_{i=0}^{3} a_i x^i \text{ avec } (a_0, a_1, a_2, a_3) \in \mathbb{R}^4 \right\}$$

Soit les polynômes P₁, P₂ et P₃ définis de la façon suivante :

$$P_1(x) = 2x \quad \forall x \in R$$

$$P_2(x) = 4x^2 \quad \forall x \in \mathbb{R}$$

$$P_3(x) = x^3 \quad \forall x \in \mathbb{R}$$

Soit F la famille constituée des vecteurs P_1 , P_2 et P_3 (c'est-à-dire $F = \{P_1, P_2, P_3\}$)

- 1) Est-ce que F est une famille libre dans $R_3[x]$?
 - 2) Est-ce que F est une famille génératrice de $R_3[x]$?
 - 3) Est-il possible d'avoir une famille de 5 vecteurs qui soit libre dans $R_3[x]$? Si oui, donner un exemple en utilisant les vecteurs P_1 , P_2 et P_3 .
- 4) Est-il possible d'avoir une famille de 5 vecteurs qui soit génératrice de R₃[x] ? Si oui, donner un exemple en utilisant les vecteurs P₁, P₂ et P₃.

Exercice 3:

f:
$$R^3 \rightarrow R^2$$

 $(x, y, z) \rightarrow (4x + 2z, 9x - 3y)$

- 1) Donner la matrice associée à f dans les bases canoniques de R³ et de R². Utiliser deux méthodes différentes pour répondre à cette question.
- 2) Donner la matrice associée à f dans les bases B et B', B étant la base canonique de R³ et B' étant la base de R² formée par les vecteurs u_1 et u_2 tels que $u_1 = (2,0)$ et $u_2 = (0,3)$
- 3) Déterminer Kerf et indiquer si f est injective.

10 juin 2010

Exercice 1:

Soit le système linéaire suivant :

(S)
$$\begin{cases} x + 2y = a \\ mx - y = 2b \end{cases}$$
 avec $(m, a, b) \in \mathbb{R}^3$

En utilisant l'algèbre linéaire, indiquer pour quelles valeurs des paramètres m, a et b le système (S) admet au moins une solution (le calcul des solutions n'est pas demandé!).

Problème:

Soit $E = \mathcal{M}_2(R)$ l'ensemble des matrices carrées, à coefficients réels, comprenant 2 lignes et 2 colonnes. On rappelle que cet ensemble est un espace-vectoriel de dimension 4. Soit l'application f définie sur E par la relation suivante :

$$\forall M \in E, \ f(M) = A \times M - M \times A$$
 avec $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ (× représente le produit matriciel)

- 1) Montrer que f est un endomorphisme de E.
- 2) Soit les matrices suivantes :

$$\mathbf{M}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{M}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{M}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{M}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Montrer que $B = \{M_1, M_2, M_3, M_4\}$ est une base de E.

- 3) On considère la famille $F_1 = \{M_1, M_2, A, M_4\}$. Cette famille est-elle une famille libre ?
- 4) On considère la famille $F_2 = \{M_1, M_2, M_3, A\}$. Cette famille est-elle une famille génératrice de E ?
- 5) Montrer que la matrice K associée à f dans la base B est la matrice suivante :

$$\mathbf{K} = \begin{pmatrix} 0 & 0 & 2 & 0 \\ -2 & -1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$

- 6) Est-ce que la matrice K est inversible?
- 7) Déterminer le rang de K.
- 8) Déterminer Im(f) et donner une base de Im(f).
- 9) Déterminer Ker(f) et donner une base de Ker(f).
- 10) Est-ce que f est une fonction injective ? surjective ? bijective ?
- 11) A-t-on la relation suivante : Kerf + Imf = E?
- 12) Montrer que la matrice A est diagonalisable et donner ses valeurs propres et les vecteurs propres associés.
- 13) Soit M_i ' la matrice définie de la façon suivante : M_i '= P^{-1} . M_i .P (P étant une matrice de passage). En utilisant le résultat de la question 2, montrer (**sans calcul !**) que la famille $\{M_1', M_2', M_3', M_4'\}$ forme une base de E.
- 14) On a les relations suivantes :

$$f(M_1') = M_0$$
, $f(M_2') = -M_2'$, $f(M_3') = M_3'$ et $f(M_4') = M_0$ avec $M_0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

En déduire les valeurs propres de K ainsi que les « vecteurs » propres associés.

15) Soit G la matrice associée à f dans $\{M_1', M_2', M_3', M_4'\}$. Ecrire cette matrice.

7 avril 2011

Exercice 1

Soit E l'ensemble des fonctions réelles et G l'ensemble des fonctions périodiques de période T réelle : $G = \{f \in E \mid f(x+T) = f(x) \ \forall x \in R\}$

L'ensemble G est-il un sev de E?

Exercice 2

Soit les vecteurs suivants : $V_1 = (0,2)$, $V_2 = (3,2)$ et $V_3 = (1,0)$

Soit H l'ensemble suivant : $H = Vect\{V_1, V_2, V_3\}$

Donner une base de H.

Exercice 3

 $M_2(R)$ représente l'ensemble des matrices carrées contenant 2 lignes et 2 colonnes et comportant des coefficients réels.

Soit les matrices suivantes : $M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $M_2 = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ et $M_3 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

Soit F la famille suivante : $F = \{M_1, M_2, M_3\}$

Partie 1

- 1) La famille F est-elle libre dans $M_2(R)$?
- 2) La famille F est-elle génératrice de $M_2(R)$?

Partie 2

Soit N l'ensemble des matrices carrées de dimension 2 dont le $3^{\text{ème}}$ coefficient est nul : $N = \{(a_{ii}) \in M_2(R) \mid a_{21} = 0\}$

- 1) L'ensemble N est-il un sev de $M_2(R)$?
- 2) La famille F est-elle génératrice de N?

Exercice 4

Soit l'application linéaire f définie de la façon suivante :

f:
$$R^3 \rightarrow R^2$$

(x,y,z) \rightarrow (y+2z,2x-2y)

- 1) Donner la matrice associée à f dans les bases canoniques de R³ et de R².
- 2) Donner la matrice associée à f dans les bases B et B', B étant la base canonique de R³ et B' étant la base de R² formée par les vecteurs u_1 et u_2 tels que $u_1 = (4,0)$ et $u_2 = (0,2)$

Donner une base de Kerf et indiquer si f est injective

31 mai 2011

Exercice 1

Soit la famille de vecteurs $F = \{v_1, v_2, v_3\}$ avec $v_1 = (0,1,0,1)$, $v_2 = (1,2,0,0)$ et $v_3 = (0,0,3,0)$

- 1) Est-ce que F est une famille génératrice de R⁴?
- 2) Est-ce que F est une famille libre?
- 3) Donner une base de R^4 à partir des vecteurs v_1 , v_2 et v_3 .

Exercice 2

Soit f un endomorphisme de R³ et A la matrice associée à cet endomorphisme dans la base canonique de R³ :

$$A = \begin{pmatrix} 10 & 5 & -15 \\ -2 & -1 & 3 \\ 6 & 3 & -9 \end{pmatrix}$$

- 1) Donner l'expression analytique de f.
- 2) Déterminer Kerf et donner une base de Kerf.
- 3) Déterminer Imf et donner une base de Imf.
- 4) Déterminer le rang de f.
- 5) L'application f est-elle injective ? surjective ? bijective ?
- 6) A-t-on l'égalité suivante : $\operatorname{Im} f + \operatorname{Ker} f = R^3$?
- 7) *Question facultative*: Montrer que $Im f \cap Kerf = Im f$

Exercice 3

Soit f un endomorphisme de R³ et M la matrice associée à cet endomorphisme dans la base canonique de R³ :

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1) Cette matrice est-elle inversible?
- 2) Déterminer les valeurs propres de cette matrice.
- 3) Déterminer les vecteurs propres associés à ces valeurs propres.
- 4) La matrice M est-elle diagonalisable ? Si oui, donner la matrice diagonale M' correspondante et indiquer dans quelle base elle est exprimée.
- 5) Déterminer la matrice de passage P permettant de passer de la base canonique de R³ à la base des vecteurs propres.
- 6) Calculer l'inverse P⁻¹ de cette matrice de passage.
- 7) Soit le système d'équations différentielles (S₁) ci-dessous. Résoudre ce système.

$$(S_1) \begin{cases} \frac{dx_1}{dt} = 2x_1 + x_2 \\ \frac{dx_2}{dt} = x_1 + 2x_2 \\ \frac{dx_3}{dt} = x_1 + x_2 + x_3 \end{cases}$$
 avec x_1 , x_2 et x_3 des fonctions réelles, dérivables sur R

8) Soit le système linéaire (S2) ci-dessous. Indiquer le nombre de solutions de ce système

puis résoudre ce système par l'algèbre linéaire
$$\Rightarrow$$
 (S₂)
$$\begin{cases} 2x + y = 2 \\ x + 2y = 0 \\ x + y + z = 0 \end{cases}$$

5 avril 2012

Exercice 1

- 1) Soit F_1 l'ensemble défini par : $F_1 = \{(x, y, z) \in \mathbb{R}^3 / z = 2x + y\}$ Est-ce que F_1 est un sev de \mathbb{R}^3 ?
- 2) Soit E l'ensemble des fonctions réelles et F_2 l'ensemble des fonctions impaires : $F_2 = \{f \in E \mid f(-x) = -f(x) \mid \forall x \in R\}$ Est-ce que F_2 est un sev de E ?

Exercice 2

Soit R₂[x] l'ensemble des polynômes de degré 2, c'est-à-dire :

$$R_2[x] = \left\{ P / P = \sum_{i=0}^{2} a_i x^i \text{ avec } (a_0, a_1, a_2) \in \mathbb{R}^3 \right\}$$

Soit les polynômes P₁, P₂, P₃ et P₄ définis de la façon suivante :

$$P_1(x) = 3x^2 \quad \forall x \in R$$

$$P_2(x) = 2x \quad \forall x \in R$$

$$P_3(x) = 4 \quad \forall x \in R$$

$$P_4(x) = 3x \quad \forall x \in R$$

- 1) Soit F_1 la famille constituée des vecteurs P_1 , P_2 et P_3 (c'est-à-dire $F_1 = \{P_1, P_2, P_3\}$)
 - a. Est-ce que F_1 est une famille libre dans $R_2[x]$?
 - b. Est-ce que F_1 est une famille génératrice de $R_2[x]$?
- 2) Soit F_2 la famille constituée des vecteurs P_1 , P_2 , P_3 et P_4 (c'est-à-dire $F_2 = \{P_1, P_2, P_3, P_4\}$)
 - c. Est-ce que F_2 est une famille libre dans $R_2[x]$?
 - d. Est-ce que F_2 est une famille génératrice de $R_2[x]$?
- 3) Soit F_3 la famille constituée des vecteurs P_1 et P_2 (c'est-à-dire $F_3 = \{P_1, P_2\}$) et soit $H = Vect\{P_1, P_2\}$
 - a. Est-ce que F₃ est une famille génératrice de H?

Exercice 3

f:
$$R^2 \rightarrow R^3$$

 $(x,y) \rightarrow (2x+y,3y,2x-y)$

- 1) Donner la matrice associée à f dans les bases canoniques de R² et de R³.
- 2) Donner la matrice associée à f dans les bases B_1 et B_2 , B_1 étant la base canonique de R^2 et B_2 étant la base de R^3 formée par les vecteurs u_1 , u_2 et u_3 tels que $u_1 = (2,0,0)$, $u_2 = (0,3,0)$ et $u_3 = (0,0,1)$
- 3) Donner la matrice associée à f dans les bases B_3 et B_4 , B_3 étant la base de R^2 formée par les vecteurs v_1 et v_2 tels que $v_1 = (2,0)$ et $v_2 = (1,1)$ et B_4 étant la base canonique de R^3

22 mai 2012

Exercice 1

Soit les vecteurs suivants $v_1 = (0,3)$, $v_2 = (2,1)$ et $v_3 = (1,0)$

Soit H l'ensemble suivant : $H = Vect\{v_1, v_2, v_3\}$

Donner une base de H

Exercice 2

Résoudre par l'algèbre linéaire le système suivant :

$$\begin{cases} x + y = 2 \\ -y + z = 1 \\ 2x + y = 0 \end{cases}$$

Exercice 3

Soit A et B deux matrices carrées de M_n(R)

On suppose que A et B sont semblables (= il existe une matrice carrée inversible M telle que $B = M^{-1}AM$)

- 1) Montrer que A est inversible si et seulement si B est inversible
- 2) Montrer que ^tA est semblable à ^tB
- 3) Soit $k \in N^*$, montrer que A^k est semblable à B^k

Problème

Soit f un endomorphisme de R³ et A la matrice associée à cet endomorphisme dans la base canonique de R³ :

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1) Cette matrice est-elle inversible? Si c'est le cas, donner son inverse.
- 2) Donner l'expression analytique de f
- 3) Déterminer Imf et donner une base de Imf.
- 4) Donner l'image du (ou des) vecteur(s) de base de Imf. En déduire si ce (ou ces) vecteur(s) sont un (ou des) vecteur(s) propre(s) de A. Si c'est le cas, donner la (ou les) valeur(s) propre(s) associée(s).
- 5) Déterminer Kerf et donner une base de Kerf.
- 6) Donner l'image du (ou des) vecteur(s) de base de Kerf. En déduire si ce (ou ces) vecteur(s) sont un (ou des) vecteur(s) propre(s) de A. Si c'est le cas, donner la (ou les) valeur(s) propre(s) associée(s).
- 7) Déterminer le rang de f.
- 8) L'application f est-elle injective ? surjective ? bijective ?
- 9) A-t-on l'égalité suivante : $Im f + Kerf = R^3$?
- 10) Calculer la matrice associée à l'application $g = f \circ f$ dans la base canonique de R^3
- 11) Donner l'ensemble des valeurs propres de A et leurs vecteurs propres associés. Déterminer également les sous-espaces propres correspondants.
- 12) Indiquer si A est diagonalisable. Si c'est le cas, indiquer dans quelle base la matrice est diagonale et donner cette matrice diagonale.
- 13) Calculer A¹⁰

14) Soit (u_n) , (v_n) et (w_n) trois suites définies par leurs premiers termes u_0 , v_0 et w_0 et par les relations de récurrence suivantes :

$$\begin{cases} u_{n+1} = u_n + v_n + w_n \\ v_{n+1} = u_n + v_n + w_n \\ w_{n+1} = u_n + v_n + w_n \end{cases} \text{ avec } u_0 = 1, \ v_0 = 2 \text{ et } w_0 = 0$$

Déterminer $u_n,\,v_n$ et w_n en fonction de n

7 mars 2013

Exercice 1

Soit G l'ensemble défini par : $G = \{(x, y, z) \in \mathbb{R}^3 / 3x + 2y = z\}$ Est-ce que G est un sev de \mathbb{R}^3 ?

Exercice 2

Soit la famille de vecteurs $F = \{v_1, v_2, v_3\}$ avec $v_1 = (0,2)$, $v_2 = (1,1)$ et $v_3 = (2,0)$ dans R^2

- 1) La famille F est-elle libre?
- 2) La famille F est-elle génératrice de R²?

Exercice 3

 $M_3(R)$ représente l'ensemble des matrices carrées contenant 3 lignes et 3 colonnes et comportant des coefficients réels.

Soit les matrices suivantes :
$$\mathbf{M}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 1 & 0 \end{pmatrix}$$
, $\mathbf{M}_2 = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ et $\mathbf{M}_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Soit F la famille suivante : $F = \{M_1, M_2, M_3\}$

Soit G l'ensemble suivant : $G = Vect\{M_1, M_2, M_3\}$

Partie 1

- 1) La famille F est-elle libre?
- 2) La famille F est-elle génératrice de $M_3(R)$?
- 3) La famille F est-elle une base de G?

Partie 2

- 1) Calculer $M = M_1 \times M_2 \times M_3$
- 2) Est-ce que M est une matrice inversible?

Exercice 4

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x,y) \to (x-2y, y, 2x-6y)$

- 1) Donner la matrice associée à f dans les bases canoniques de R² et de R³.
- 2) Donner la matrice associée à f dans les bases B_1 et B_2 , B_1 étant la base canonique de R^2 et B_2 étant la base de R^3 formée par les vecteurs u_1 , u_2 et u_3 tels que $u_1 = (-2,0,0)$, $u_2 = (0,1,0)$ et $u_3 = (0,0,2)$

17 mai 2013

Exercice 1:

Résoudre par l'algèbre linéaire le système suivant :

$$(S_1) \begin{cases} x + a.y + 2z = 1 \\ -y + z = 0 \\ x + z = 1 \end{cases} \text{ avec } a \in R$$

Exercice 2

Soit les vecteurs suivants : $v_1 = (0,0,1)$, $v_2 = (1,3,2)$, $v_3 = (3,0,0)$ et $v_4 = (0,6,0)$

Soit H l'ensemble suivant : $H = \text{Vect}\{v_1, v_2, v_3, v_4\}$

Donner une base de H

Problème:

Soit $E = \mathcal{M}_2(R)$ l'ensemble des matrices carrées, à coefficients réels, comprenant 2 lignes et 2 colonnes. On rappelle que cet ensemble est un espace-vectoriel de dimension 4. Soit l'application f définie sur E par la relation suivante :

$$\forall M \in E, f(M) = AM$$
 avec $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$

- 1) Montrer que f est un endomorphisme de E.
- 2) Soit les matrices suivantes :

$$\mathbf{M}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{M}_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{M}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{M}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Montrer que $B = \{M_1, M_2, M_3, M_4\}$ est une base de E

- 3) On considère la famille $F_1 = \{M_1, M_2, A, M_4\}$. Cette famille est-elle une famille libre ?
- 4) On considère la famille $F_2 = \{M_1, M_2, M_3, A\}$. Cette famille est-elle une famille génératrice de E ?
- 5) Montrer que la matrice K associée à f dans la base B est la matrice suivante :

$$\mathbf{K} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

- 6) Est-ce que K est une matrice inversible?
- 7) Déterminer Kerf.
- 8) Déterminer Imf et donner une base de Imf.
- 9) Est-ce que f est une fonction injective? surjective? bijective?
- 10) Déterminer le rang de f.
- 11) A-t-on la relation suivante : Kerf + Imf = E?
- 12) Calculer les valeurs propres de K et les vecteurs propres associés.
- 13) Est-ce la matrice K est diagonalisable ? Si oui, indiquer la matrice diagonale et préciser la base dans laquelle elle est obtenue.

13 mars 2014

Exercice 1

- 1) Soit F_1 l'ensemble défini par : $F_1 = \{(x, y, z) \in \mathbb{R}^3 / x + 2y + 3z + 3 = 0\}$ Est-ce que F_1 est un sev de \mathbb{R}^3 ?
- 2) Soit M₂(R) l'ensemble des matrices carrées à coefficients réels contenant 2 lignes et 2 colonnes x.

Soit F₂ l'ensemble des matrices carrées diagonales à coefficients réels, c'est-à-dire :

$$F_2 = \{M = (a_{ii}) \in M_2(R) / a_{ii} \in R \text{ pour } i = j \text{ et } a_{ii} = 0 \text{ pour } i \neq j\}$$

Est-ce que F_2 est un sev de $M_2(R)$?

Exercice 2

Soit les vecteurs suivants : $V_1 = (1,2)$, $V_2 = (2,0)$, $V_3 = (0,1)$, $V_4 = (3,0)$ dans R^2

Soit F la famille suivante : $F = \{V_1, V_2, V_3\}$

Soit H l'ensemble suivant : $H = Vect\{V_2, V_4\}$

- 1) La famille F est-elle libre?
- 2) La famille F est-elle génératrice de R² ?
- 3) Donner une base de H.

Exercice 3

Soit R₂[x] l'ensemble des polynômes de degré 2, c'est-à-dire :

$$R_2[x] = \left\{ P/P = \sum_{i=0}^{2} a_i x^i \text{ avec } (a_0, a_1, a_2) \in \mathbb{R}^2 \right\}$$

Soit les polynômes P_1 , P_2 et P_3 définis de la façon suivante :

$$P_1(x) = 2x \quad \forall x \in R$$

$$P_2(x) = 4x^2 \quad \forall x \in R$$

$$P_3(x) = x \quad \forall x \in R$$

Soit L la famille constituée des vecteurs P_1 , P_2 et P_3 (c'est-à-dire $L=\{P_1,P_2,P_3\}$)

- 1) Est-ce que L est une famille libre dans $R_2[x]$?
- 2) Est-ce que L est une famille génératrice de $R_2[x]$?

Exercice 4

f:
$$R^3 \rightarrow R^2$$

 $(x,y,z) \rightarrow (4x+2z,2x-y)$

- 1) Donner la matrice associée à f dans les bases canoniques de R³ et de R².
- 2) Donner la matrice associée à f dans les bases B et B', B étant la base canonique de R³ et B' étant la base de R² formée par les vecteurs u_1 et u_2 tels que $u_1 = (4,0)$ et $u_2 = (0,-1)$
- 3) Déterminer Kerf et indiquer si f est injective.

22 mai 2014

Exercice 1

Soit le système linéaire suivant :

$$\begin{cases} 2x + a.y = 1 \\ x + z = m & \text{avec } (a, m) \in \mathbb{R}^2 \\ y + 2z = 1 \end{cases}$$

En utilisant l'algèbre linéaire, indiquer le nombre de solutions de ce système selon les valeurs de a et m (le calcul des solutions n'est pas demandé)

Exercice 2

Soit le sous-espace vectoriel suivant :

$$F = \{(x, y, z) \in \mathbb{R}^3 / x + y = 0 \text{ et } x + z = 0\}$$

- 1) Donner une base de F
- 2) On pose $L = \{u_1, u_2, u_3\}$ avec : $u_1 = (1,0,1)$, $u_2 = (2,1,2)$, $u_3 = (1,1,1)$ La famille L est-elle génératrice de R³ ? Est-elle libre dans R³ ?
- 3) On pose $G = Vect\{u_1, u_2, u_3\}$. Donner une base de G
- 4) A-t-on $F + G = R^3$?

Exercice 3

Soit la matrice A suivante :

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{pmatrix}$$

On note $B = \{e_1, e_2, e_3\}$ la base canonique de R^3

On note f l'application linéaire dont la matrice associée dans la base B est la matrice A

- 1) Donner l'expression analytique de f
- 2) Déterminer Kerf et donner une base de Kerf
- 3) Déterminer Imf et donner une base de Imf
- 4) f est-elle injective? surjective? bijective?
- 5) Soit la famille B'= $\{u_1, u_2, u_3\}$ telle que

$$\begin{cases} u_1 = e_1 - e_2 \\ u_2 = e_3 \\ u_3 = e_1 + e_2 + 4e_3 \end{cases}$$

Montrer que B' est une base de R³

- 6) Donner les images des vecteurs de B' par l'application f (dans la base B). Exprimer ensuite ces vecteurs images dans la base B'.
- 7) En déduire les valeurs propres de A et les vecteurs propres associés à ces valeurs propres
- 8) En déduire si la matrice A est diagonalisable. Si oui, donner la matrice diagonale correspondante et indiquer dans quelle base elle est obtenue
- 9) Ecrire la matrice M permettant de passer de la base B à la base B'
- 10) La matrice M est-elle inversible ? Si oui, donner son inverse.
- 11) Résoudre le système d'équations différentielles ci-dessous :

$$\begin{cases} \frac{dx_1}{dt} = x_1 + x_2 \\ \frac{dx_2}{dt} = x_1 + x_2 \\ \frac{dx_3}{dt} = 2x_1 + 2x_2 + x_3 \end{cases}$$
 avec x_1 , x_2 et x_3 des fonctions réelles, dérivables sur x_1

Exercice 4

Soit la matrice N suivante :

$$\mathbf{N} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 2 \end{pmatrix}$$

Cette matrice est-elle diagonalisable ? Si oui, donner la matrice diagonale correspondante et indiquer dans quelle base elle est obtenue