Approximations for λ-colorings of graphs

Simone Bianco - 1986936 Network Algorithms Sapienza University of Rome

Introduction

Article: "Approximations for λ -colorings of graphs" by Bodlaender et al. (2004)

Focus: Upper and lower bounds for L(2,1), L(1,1) and L(0,1) labelings in graph classes

Summary of the presentation:

- Upper bound on graphs with treewidth k
- Upper bound on outerplanar graphs
- Lower bound on split graphs

Recall

General lower bounds for L(p,q)-labeling are given by the tree graph $K_{1,\Delta}$

$$\Delta + 1 \leq \lambda_{2,1}$$

$$\Delta \leq \lambda_{1,1}$$

$$\Delta$$
 - $1 \leq \lambda_{0,1}$

Tree decomposition

Given a graph G, a **tree decomposition** of G is a tree T whose vertices $X_1, ..., X_k$ are subsets of V(G) that satisfy the following properties:

- $X_1, ..., X_k$ are a cover of V(G)
- If $v \in X_i \cap X_j$ then each subset X_h in the path from X_i to X_j contains v
- For each edge (u,v) of G at least one subset
 X_i contains u and v

Treewidth

Width of a tree decomposition: size of the largest vertex of T, minus 1

Treewidth of a graph: smallest width of all the tree decompositions

k-Trees

Inductive definition:

- The complete graph K_{k+1} is a k-tree
- A k-tree with n > k+1 nodes can be built from a k-tree G' with n-1 nodes by adding a new node and connecting it to k vertices that form a k-clique in G'

Partial k-tree

Partial k-tree: any graph that is a subgraph of a k-tree

(Thm) G has treewidth \leq k if and only if G is a partial k-tree

(Cor) G has treewidth k if and only if k is the smallest integer such that G is a partial k-tree

Cordal graphs

K-trees are a special type of **cordal (or triangulated)** graph.

A graph is **chordal** when all cycles of 4+ vertices have a **chord**, i.e. an edge that is not part of the cycle but connects two vertices of the cycle.

Equivalently, a chordal graph can be defined as a graph in which every induced cycle in the graph has **exactly three vertices** (hence the alternative name).

(Thm) A graph is chordal if and only if it has a perfect elimination sequence

A **perfect elimination sequence** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(Thm) A graph is chordal if and only if it has a perfect elimination sequence

A **perfect elimination sequence** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(Thm) A graph is chordal if and only if it has a perfect elimination sequence

A **perfect elimination sequence** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(Thm) A graph is chordal if and only if it has a perfect elimination sequence

A **perfect elimination sequence** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(Thm) A graph is chordal if and only if it has a perfect elimination sequence

A **perfect elimination sequence** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

Given (G, λ , p, q) in input:

- Build a k-tree H that contains G
- 2) Construct a perfect elimination sequence v₁, ..., v_n on H
- 3) For i=n,...,1: Color v_i using the smallest color in $\{0,...,\lambda\}$ that satisfies the L(p,q)-constraints in G

Treewidth: 3

Sequence: (8,1,7,2,6,5,3,4)

Sequence: (8,1,7,2,6,5,3,4)

Forbidden Colors: ---

Sequence: (8,1,7,2,6,5,3,4)

Forbidden Colors: {0,1}

Sequence: (8,1,7,2,6,5,3,4)

Forbidden Colors: {0,1,2}

Sequence: (8,1,7,2,6,5,3,4) $\lambda \geq 7$ in order to work

(Thm) Given any graph G of treewidth k, the previous algorithm finds:

- An L(2, 1)-labeling using the set $\{0, ..., k\Delta + 2k\}$.
- An L(1, 1)-labeling using the set $\{0, ..., k\Delta\}$.
- An L(0, 1)-labeling using the set $\{0, ..., k\Delta k\}$.

(Cor) Given any graph G of treewidth k it holds that:

$$\lambda_{2,1} \leq k\Delta + 2k$$

$$\lambda_{1,1} \leq k\Delta$$

$$\lambda_{0,1} \leq k\Delta - k$$

Dim. For each v_i there are 3 types of already-colored nodes that forbid colors to v_i :

- a vertices at distance 1 from v_i in G
- 2) β vertices at distance 2 from v_i in G that have a common neighbor with v_i in G that has not yet been colored
- 3) γ vertices at distance 2 from v_i in G that have a common neighbor with v_i in G that has already been colored

Dim. (cont.)

Let v_i be a node with i < j:

1) If v_i is a type 1 node than it is one of such at most k clique-neighbors

Dim. (cont.)

2) If v_j is a type 2 node and v_h is the common neighbor that has not yet been colored

$$\Longrightarrow$$
 h < i < j and $v_i \sim v_h \sim v_j$

Dim. (cont.)

- 2) If v_j is a type 2 node and v_h is the common neighbor that has not yet been colored
 - \implies h < i < j and $v_i \sim v_h \sim v_j$
 - \Rightarrow v_i, v_j are in v_h's at most k clique-neighbors
 - \Rightarrow v_i is one of v_i's at most k clique-neighbors

Dim. (cont.)

3) If v_j is a type 3 node and v_h is the common neighbor that has not yet been colored

 \implies v_i , v_h are adjacent in H

Moreover, v_h can have at most Δ – 1 already colored neighbors

Dim. (cont.) Each case has at least one of v_i 's at most k clique-neighbors $\implies \alpha + \beta + \gamma \le k$

Let $x_{p,q}$ denote the number of colors needed to color v_i for L(p,q). Then:

$$X_{2,1} \le 1 + 3\alpha + \beta + \gamma(\Delta - 1) \le 1 + k\Delta + 2k \implies \{0, ..., k\Delta + 2k\}$$
 suffices for L(2,1)

$$X_{1,1} \le 1 + \alpha + \beta + \gamma(\Delta - 1) \le 1 + k\Delta$$
 $\Longrightarrow \{0, ..., k\Delta\}$ suffices for L(1,1)

$$X_{0,1} \le 1 + \beta + \gamma(\Delta - 1)$$
 $\le 1 + k\Delta - k$ $\Longrightarrow \{0, ..., k\Delta - k\}$ suffices for L(0,1)

Outerplanar graphs

Outerplanar: the graph has a planar embedding where all the vertices on the exterior face.

(Lem) Any outerplanar graph has either a node with degree at most 1 or a node with degree at most 2 who has a neighbor of degree at most 4

Algorithm for outerplanar graphs

Given (G, λ, p, q) in input:

- 1) Let H = G, let $S = (v_1, ..., v_n)$
- 2) For i = 1, ..., n:
 - 1) Let u be a vertex s.t. $deg(u) \le 1$ or $[deg(u) \le 2$ and $u \sim v$ where $deg(v) \le 4]$
 - a) If u has two neighbors x,y not adjacent in H then add the edge (x,y) in H
 - b) Set $v_i = u$ and remove u from H
- 3) For i=n,...,1: Color v_i using the smallest color in $\{0,...,\lambda\}$ that satisfies the L(p,q)-constraints in G

Example of Sequence Construction

Final Sequence: (3,5,7,2,6,1,4)

Algorithm for outerplanar graphs

(Thm) Given any outerplanar graph G, the previous algorithm finds:

- An L(2, 1)-labeling using the set $\{0, ..., \Delta + 8\}$.
- An L(1, 1)-labeling using the set $\{0, ..., \Delta + 4\}$.
- An L(0, 1)-labeling using the set $\{0, ..., \Delta + 2\}$.

(Cor) Given any outerplanar graph G it holds that:

$$\lambda_{2,1} \leq \Delta + 8$$

$$\lambda_{2.1} \leq \Delta + 8$$
 $\lambda_{1.1} \leq \Delta + 4$

$$\lambda_{0.1} \leq \Delta + 2$$

Algorithm for outerplanar graphs

we have at most $3 + \Delta - 1$ already-colored neighbors at distance 2 from v_i

(**Dim**) In each iteration, H is always outerplanar \Longrightarrow The lemma always works If the sequence always picks a node v_i with degree ≤ 2 who has a neighbor u of degree ≤ 4 ,

$$X_{2,1} \le 1 + 6 + (3 + \Delta - 1) = 1 + \Delta + 8$$
 $\Longrightarrow \{0, ..., \Delta + 8\}$ suffices for L(2,1) $X_{1,1} \le 1 + 2 + (3 + \Delta - 1) = 1 + \Delta + 4$ $\Longrightarrow \{0, ..., \Delta + 4\}$ suffices for L(1,1) $X_{0,1} \le 1 + (3 + \Delta - 1) = 1 + \Delta + 2$ $\Longrightarrow \{0, ..., \Delta + 2\}$ suffices for L(0,1)

Split graphs

A split graph is a graph whose node set can be partitioned into two sets K and S such that K is a clique and S is an independent set in G.

Upper bounds for split graphs

(Thm) Given any graph G of treewidth k, there is an algorithm that finds:

- An L(2, 1)-labeling using the set $\{0, ..., \frac{1}{2}\Delta^{1.5} + 2\Delta\}$.
- An L(1, 1)-labeling using the set $\{0, ..., \frac{1}{2}\Delta^{1.5} + \Delta\}$.
- An L(0, 1)-labeling using the set $\{0, ..., \frac{1}{2}\Delta^{1.5}\}$.

(Cor) Given any split graph G it holds that:

$$\lambda_{2,1} \le \frac{1}{2} \Delta^{1.5} + 2\Delta$$
 $\lambda_{1,1} \le \frac{1}{2} \Delta^{1.5} + \Delta$ $\lambda_{0,1} \le \frac{1}{2} \Delta^{1.5}$

$$\lambda_{1.1} \leq \frac{1}{2} \Delta^{1.5} + \Delta$$

$$\lambda_{0.1} \leq \frac{1}{2} \Delta^{1.5}$$

(Thm) For any $\Delta > 0$, there is a split graph with maximum degree Δ such that:

$$\lambda_{2,1} \geq \lambda_{1,1} \geq \lambda_{0,1} \geq \frac{1}{3} \sqrt{\frac{2}{3}} \Delta^{1.5}$$

Note: a lower value may suffice for some split graphs

Authors' Conjecture: for all split graphs we have that $\lambda_{2,1}$, $\lambda_{1,1}$, $\lambda_{0,1} = \Omega(\Delta^{1.5})$

Dim.

Take an independent set S with $k = \sqrt{\frac{2}{3}\Delta}$ groups of $\frac{1}{3}\Delta$ nodes

$$\implies \frac{1}{3}\sqrt{\frac{2}{3}}\Delta^{1.5}$$
 total nodes in S

$$\implies \frac{k(k-1)}{2} \le \frac{1}{3} \Delta$$
 distinct pairs of groups

$$\Delta = 10$$

Dim.

Add a clique with $\frac{1}{3}\Delta + 1$ nodes

Connect each pair with an unique node

$$\Delta = 10$$

Dim.

Add a clique with $\frac{1}{3}\Delta + 1$ nodes

Connect each pair with an unique node

- \Longrightarrow Each node of the clique has degree Δ
- \implies Each pair of nodes in S has distance 2
- \implies We need $\frac{1}{3}\sqrt{\frac{2}{3}}\Delta^{1.5}$ colors for S

Recap

Graphs with Treewidth k:

$$\Delta + 1 \le \lambda_{2,1} \le k\Delta + 2k$$

$$\Delta \leq \lambda_{1,1} \leq k\Delta$$

$$\Delta - 1 \leq \lambda_{0,1} \leq k\Delta - k$$

Outerplanar graphs:

$$\Delta + 1 \leq \lambda_{2,1} \leq \Delta + 8$$

$$\Delta \leq \lambda_{1.1} \leq \Delta + 4$$

$$\Delta \le \lambda_{1,1} \le \Delta + 4$$
 $\Delta - 1 \le \lambda_{0,1} \le \Delta + 2$

Split graphs:

$$\frac{1}{3}\sqrt{\frac{2}{3}}\Delta^{1.5} \le \lambda_{2,1} \le \frac{1}{2}\Delta^{1.5} + 2\Delta$$

$$\frac{1}{3}\sqrt{\frac{2}{3}}\Delta^{1.5} \le \lambda_{2,1} \le \frac{1}{2}\Delta^{1.5} + 2\Delta \qquad \qquad \frac{1}{3}\sqrt{\frac{2}{3}}\Delta^{1.5} \le \lambda_{1,1} \le \frac{1}{2}\Delta^{1.5} + \Delta$$

$$\frac{1}{3}\sqrt{\frac{2}{3}}\Delta^{1.5} \le \lambda_{0,1} \le \frac{1}{2}\Delta^{1.5}$$

Main references

- Hans L. Bodlaender, Ton Kloks, Richard B. Tan, et al. "Approximations for Lambda-Colorings of Graphs". In: The Computer Journal (2004)
- Jerrold R. Griggs and Roger K. Yeh. "Labelling Graphs with a Condition at Distance 2". In: SIAM Journal on Discrete Mathematics (1992)
- Frederic Havet, Bruce Reed, and Jean-Sebastien Sereni. "L(2,1)-labelling of graphs".
 In: ACM-SIAM symposium on Discrete algorithms (2008)
- H. P. Patil. "On the structure of k-trees". In: Journal of Combinatorics, Information and System Sciences, (1986)

Thank you for the attention!

