高育文二.

Mo Tu We Th Fr so su 软 O1 赵 訳日 120200 Date

b. (1) → PVVQRS PQRVSV→ 注:7P在逆波兰式中

(2) ← ハP¬RVPQ PR¬ハPQV←> 写为P¬

(3) VV¬¬PΛWR¬Q P¬¬WRΛVQ¬V

1.(1) $(P \rightarrow Q) \land (P \rightarrow Q)$ = $(\neg P \lor Q) \land (\neg P \lor R)$ = $\neg P \land (Q \lor R) \rightarrow P \lor (Q \land R)$ $\Rightarrow P \rightarrow (Q \lor R) \rightarrow P \lor (Q \land R) = P \rightarrow (Q \land R)$

 $(3)((P \rightarrow \neg Q) \rightarrow (Q \rightarrow \neg P)) \Lambda R$ $= (\neg P \vee \neg Q) \vee (\neg Q \vee \neg P)) \Lambda R = ((P \wedge Q) \vee \neg (P \wedge Q) \Lambda R = T \wedge R = R$

(4) (P→Q)→((Pハ¬Q)V(Qハ¬P)) =(P→Q)→(¬P→Q) —已於候 =F=Pハ¬P

(5) $P \rightarrow (Q \rightarrow R) = P \rightarrow (\neg Q \lor R) = \neg P \lor (\neg Q \lor R) = \neg P \lor \neg Q \lor R$ = $\neg (P \land Q) \lor R = (P \land Q) \rightarrow R$

(b) ¬(P↔Q) = ¬((PV¬Q) ∧(¬PVQ)) = tP∧Q)V(PV¬Q) = (P∧¬Q) V(¬P∧Q)

 $A = (\neg P \land \neg Q) \lor (\neg P \land Q) = m_0 \lor m_1 \lor m_2$ $B = (\neg P \land \neg Q) \lor (P \land Q) = m_0 \lor m_3$ $C = \neg P \land \neg Q = m_0$

Memo No._____

F出发:

A= TPVTQ = Mo

B= (PV7Q)1(7PVQ)= M,1M2

C=[PV7Q)/[7PVQ)/(7PV7Q)=Mo/Mi/M2

M₁ M₂ Mo

3.0-P= -(PAP) = P1P-

2 PAQ= 77(PAQ)=7(PAQ)=(PAQ)A(PAQ)

3PVQ= 7 (7P17Q)= - (P1Q)

= (P1Q)1(P1Q)

@PVQ= 7 (7P17Q) = 7P17Q= (P1P) (Q1Q)

5 P→Q= ¬PVQ = [P1P)VQ = ([P1P)1Q)1([P1P)1Q)

(a) $P \leftrightarrow Q = (\neg P \lor Q) \land (P \lor \neg Q) = (P \rightarrow Q) \land (Q \rightarrow P)$

= [[P1 (Q1 Q)1 (Q1 (P1 P)))] [(P1 (Q1 Q)) (Q1 (P1 P)))

@PAQ=77(PAQ)=7(7PV7Q)=(PJP)J(QJQ)

3PVQ= ¬¬(PVQ)= ¬(P↓Q) = (P↓Q)↓(P↓Q) /

@ P→Q= ¬PVQ=(¬PJQ)J(¬PJQ)=((PJP)JQ)J((PJP)JQ)

= ((P)P)) Q)] (P)(Q)Q)

Memo No.			
Date	1/	/	

4.	A→B永真 ⇒ ¬B→¬A永直	∴ $B^{*-} \rightarrow A^{*-}$ 永真. to $B^{*} \rightarrow A^{*}$ 永真
	课本第24页	

A=[A*)* B=[B*)*. 若B*→A* 永真沢|¬A*→¬B* 永真, 故 A**-→B**永真. 故 A→B永真

 $A \rightarrow B$ 可满足时, $\neg A \rightarrow \neg B$ 也可满足.由定理 2.5.6有. $\neg B \rightarrow \neg A$ 可满足; $\neg A \rightarrow A \rightarrow A$ 同时可满足, $\neg B \rightarrow B \rightarrow B$ 同时规可满足 故 $B^* \rightarrow A^*$ 亦可满足,反之亦然

(2) A ← B 永真 Ŋ ¬A ← ¬B 永真 . ¬ A与 A*同永真 , ¬B与 B*同永真 放 A*← B* 同永真 反之 亦然

 $A \leftrightarrow B$ 可满足时, $\neg A \leftrightarrow \neg B$ 可满足, $\neg A = A^*$ 同可满足, $\neg B = B^*$ 同可满足 故 $A^* \leftrightarrow B^*$ 同可满足,反之亦然