II - Fonctions polynômes de degré 3

<u>Définition</u>: Une fonction polynôme de degré 3 est une fonction définie sur \mathbb{R} . Son expression est de la forme $ax^3 + bx^2 + cx + d$ avec a, b, c et d réels $(a \neq 0)$ pour tout réel x.

a) Les fonctions $x \mapsto ax^3 + b$

Propriété:

Les courbes représentatives de toutes les fonctions f de la forme $f(x) = ax^3$ admettent l'origine pour centre de symétrie.

Par exemple, ci-dessous, on retrouve la courbe représentant la fonction cube $(x \mapsto x^3)$ et celles qui représentent deux autres fonctions dont l'expression est de la forme ax^3 .

$f(x) = x^3$	$f(x) = 2x^3$	$f(x) = -\frac{1}{2}x^3$	
-2 -1 1 2 -2 -1 -1 -2 -3 -45678	-2 -1 1 2 -2 -3 -3 -4 -5 -6 -7 -8	-2 -1 2 -2 -3 -4 -5 -6 -7 -8	

Propriété : Soit f une fonction définie sur \mathbb{R} par $f(x) = ax^3 + b$ avec a et b réels (a non nul).

- si a > 0 alors f est strictement croissante sur \mathbb{R} .
- si a < 0 alors f est strictement décroissante sur \mathbb{R} .

La courbe représentant $x \mapsto ax^3 + b$ est obtenue à partir de celle représentant $x \mapsto ax^3$ en la « décalant vers le haut ou vers le bas », selon le signe de b.

Sur la figure en lien, on peut modifier les valeurs de a et b pour voir l'impact de ces valeurs sur la courbe représentant la fonction définie par $ax^3 + b$.

Propriété : Soit c un nombre réel. L'équation $x^3=c$ admet une unique solution sur \mathbb{R}

Cette solution est appelée racine cubique de c; on la note $\sqrt[3]{c} = c^{\frac{1}{3}}$.

Graphiquement, la droite d'équation y=c coupe la courbe représentant la fonction cube en un unique point d'abscisse $\sqrt[3]{c}$ comme on peut le vérifier sur la figure en lien.

b) Les fonctions $x \mapsto a(x-x_1)(x-x_2)(x-3)$

Propriété:

Toute fonction f définie sur \mathbb{R} et de la forme $f(x) = a(x - x_1)(x - x_2)(x - x_3)$ est une fonction polynôme de degré 3 s'annulant en x_1 , x_2 et x_3 (ces nombres sont **les racines de ce polynôme**).

La courbe représentant ce type de fonction coupe alors l'axe des abscisses en trois points de coordonnées $(x_1; 0), (x_2; 0)$ et $(x_3; 0)$.

En effet
$$f(x)=0$$
 équivaut à $x-x_1=0$ ou $x-x_2=0$ ou $x-x_3=0$ $x=x_1$

Remarque: Toute fonction polynôme de degré 3 ne s'écrit pas sous cette forme $\overline{a(x-x_1)(x-x_2)}(x-x_3)$.

L'étude du signe d'une fonction définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)(x - x_2)$ se fait à l'aide d'un tableau de signes.

Par exemple, déterminons le signe de 4(x-5)(x+3)(x-2).

On doit faire apparaître dans le tableau le signe de chacun des quatre facteurs : -3; x - 5; x + 3 et x - 2.

On résout
$$x-5=0$$
 ; $x+3=0$; $x-2=0$

On complète alors le signe de chacun des facteurs (comme ce qui a été fait dans le cas des polynômes de degré 2) puis on déterminer le signe du produit en comptant le nombre de facteurs négatifs :

- $-\,$ lorsqu'il y a un nombre ${\bf pair}$ de facteurs négatifs, alors le produit est positif ;
- lorsqu'il y a un nombre **impair** de facteurs négatifs, alors le produit est négatif.

x	$-\infty$		$+\infty$
signe de 4			
signe de $x-5$			
signe de $x+3$			
signe de $x-2$			
signe du produit			