

MGCCC PRESENTS

USA COLLEGE OF ENGINEERING AND COMPUTING

Come learn about the programs offered at the University of South Alabama in Engineering and Computer Science!

JANUARY 28, 2020 12:30 PM TO 1:20 PM ROOM F-5 Both solutions are pure imaginary

k < 0

k > 0

×

Both solutions are real Solutions

~	
+	
(I)	
~	
7	
0	
+	
0	
~	
U	
0	
- Desired	
a	
-	
ത	
-	
_	
O	
IA	
U ,	
41	
W	
_	
bo	
~	
S	
3	
>	
þ	
by	
s by	
ns by	
ns by	
ons by	
ions by	
tions by	
ations by	
lations by	
uations by	
quations by	
equations by	
equations by	
equations by	
ic equations by	
tic equations by	
itic equations by	
atic equations by	
ratic equations by	
dratic equations by	
dratic equations by	
adratic equations by	
uadratic equations by	
quadratic equations by	
quadratic equations by	
e quadratic equations by	
e quadratic equations by	
ve quadratic equations by	
Ive quadratic equations by	
olve quadratic equations by	
solve quadratic equations by	
Solve quadratic equations by	
Solve quadratic equations by	
: Solve quadratic equations by	
2: Solve quadratic equations by	
2: Solve quadratic equations by	
#2: Solve quadratic equations by	
: #2: Solve quadratic equations by	
e #2: Solve quadratic equations by	
ve #2: Solve quadratic equations by	
ive #2: Solve quadratic equations by	
tive #2: Solve quadratic equations by	
ctive #2: Solve quadratic equations by	
ctive #2: Solve quadratic equations by	
ective #2: Solve quadratic equations by	
jective #2: Solve quadratic equations by	
bjective #2: Solve quadratic equations by	
bjective #2: Solve quadratic equations by	
Objective #2: Solve quadratic equations by using the Square Root Property.	

Circle each quadratic equation below. Then, draw a small star next to the quadratic equations on which the Zero-Factor Property could be easily used to solve for x.

1.
$$4\sqrt{x-3} = 0$$

2.
$$2x^2 - 5 = 0$$
 3. $x^2 + 3x + 2 = 0$

4.
$$\frac{x^2-4}{x+1}=0$$

5.
$$(6x+3)^2 = 4$$

6.
$$|6x + 3| = 0$$

We will study four ways to solve a quadratic equation:

- 2) Square Root Theorem (sometimes works) Zero-Factor Property (sometimes works)
 - Complete the Square
 - Quadratic Formula

Process:

KEY IDEAS

The solution set of $x^2 = k$ is $\{\sqrt{k}, -\sqrt{k}\}$ which may be abbreviated as $\{\pm \sqrt{k}\}$.

If $x^2 = k$, then $x = \sqrt{k}$ or $x = -\sqrt{k}$.

Square Root Property

- 1. Isolate the squared stuff; rewrite the equation in the form $(variable\ expression)^2 = k$
- 2. Take the square root of both sides of the equation. Don't forget the "±" symbol.
- 3. Isolate the variable, if needed.
 - 4. Simplify, if needed.

Solve each equation by using the Square Root Property,

7.
$$2x^2 - 32 = 0$$

 $+32 + 32$
 $+20 + 2$

10. $(3x - 3)^2 - 7 = 11$

guad.ean.

11.
$$2(2x+1)^2 = -6$$
 12. $(3x-3)^2 + 7 = 7$

$$(2x+1)^2 = -3$$
 $(3x-3)^2 = 0$

$$\sqrt{(3x-3)^2} = \frac{1}{\sqrt{3x-3}}$$

Objective #3: Solve quadratic equations by using Completing the Square.	ng the Square.	
Explore Perfect Square Trinomials.		
Starting Expression $(with \ a=1)$ Evaluate $\left(rac{1}{2} \cdot b ight)^2$	Create Perfect Square Trinomial	Factored Form
1. $x^2 + 8x$ $b = 8$ $(\frac{1}{2} \cdot 8)^2 = (4)^2 = 16$	3+8×+16	$(x + 4)^2$
2. $x^2 + 12x$ $b = 12$ $(\frac{1}{2} \cdot 12)^2 = (6)^2 = 36$	x²+12x+3L	$(x+b)^2$
3. $x^2 - 20x$ $b = -20 \left(\frac{1}{4} - 20 \right)^2 = (-10)^2 = 100$	X2-20x+100	z(01 - x)
4. $x^2 - 5x$ $b = -5$ $(\frac{1}{4} \cdot -5)^2 = (-5/2)^2 = 25/4$	$x^2 - 5x + 294$	(x -5%) ²
5. $x^2 + 7x$ $b = 7$		
	Process:	
We will study four ways	To solve $ax^2 + bx + c = 0$, where $a \neq 0$, by completing the square:	completing the square:
1. Zero-Factor Property (sometimes works) 1. If $a \neq 1$,	If $a \neq 1$, divide both sides of the equation by a .	
Square Root Theorem (sometimes works) 2.	Rewrite the equation so that the constant term is alone on one side of the equality symbol.	e on one side of the equality symbol.
3. Complete the Square (always works) 3.	Evaluate $\left(rac{1}{r}\cdot b ight)^{2}$ and add it to both sides of the equation.	ion.
4. Quadratic Formula 4. Factor the reserved.	Factor the resulting perfect square trinomial and combine like terms on the other side. Use the square root property to complete the solution	bine like terms on the other side.
6. $x^2 + 10x + 21 = 0$ 0=1 $b = 10$ 7. $x^2 + 8x + 7 = 0$	a=1 $b=8$ 8. $(x-1)$	(x-1)(x+4) = 9 0= 0= 0= 3
	-7 (7.6)=(4.8), x +4x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C7 = (4) = 97+	116 = (4)2=16 X+3X+3	(++ = 3+4 = (3)=4
√(x+5)2=1/4 Sq. Rt. Php. (x+4)2=	(X+20)2 = ± 6
X+5= ±2 X+4= ±3	×+ ×	19 + 1
-5 -5	100	2 2
-	al :	The things
-5+55-2 2-5 -2-5	-4-3 (7-	$\frac{2 \pm \sqrt{61}}{2} = \left(\frac{2 \pm \sqrt{61}}{2}\right)$
	7	
}		

Caution Remember to extend the fraction bar in the quadratic formula extends under the $-b$ term in the numerator. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\int_{0}^{1} \frac{1}{a^{2}} \int_{0}^{1} \frac{1}{a^{2}$
Process: To solve $ax^2 + bx + c = 0$, where $a \neq 0$, by the quadratic formula: 1. Write the equation in standard form and identify the values of a , b , and c . 2. Substitute the values of a , b , and c equadratic formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. 3. Simplify the expression found in step 2.	$\frac{4(2)(15)}{4x^2-12x+9=0}$ $\frac{2.4x(x-3)+9=0}{4x^2-12x+9=0}$ $x=-b\pm 1b^2-4ac$ $x=-b\pm 1b^2-4ac$ $x^2+x+8=0$ $x^2+x+8=0$ $x^2+x+8=0$ $x^2+x+8=0$ $x^2+x+8=0$ $x^2+x+8=0$ $x^2+x+8=0$ $x^2+x+8=0$
We will study four ways to solve a quadratic equation: 1. Zero-Factor Property (sometimes works) 2. Square Root Theorem (sometimes works) 3. Complete the Square (always works) 4. Quadratic Formula (always works) 3. Sir	h equation by using the Quadratic Formula $11x + 15 = 0$ 1
KEA IDEPS	Solve each $3.4x^2+3$