Problemes d'Equacions Diferencials II

Grau en Enginyeria Matemàtica i Física

BLOC 1: TEORIA FONAMENTAL

- 1. Doneu diferents parelles (φ, I) solucions del problema de Cauchy $\left\{ \begin{array}{l} \dot{x} = tx^2, \\ x(1) = 1. \end{array} \right.$ Feu el mateix per al problema de Cauchy $\left\{ \begin{array}{l} \dot{x} = x^{3/5}, \\ x(1) = 0. \end{array} \right.$
- 2. Si x(t) és solució del problema

$$\begin{cases} \dot{x} = e^{t(x+1)} - \cos t, \\ x(0) = 0, \end{cases}$$

demostreu que x(t) té un mínim relatiu a t=0.

3. Sigui $\mathbf{f}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ tal que el problema de Cauchy

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \\ \mathbf{x}(t_0) = \mathbf{x}_0, \end{cases}$$

té una única solució, diguem $\varphi(t)$. Suposem que existeix T > 0 tal que $\varphi(t_0) = \varphi(t_0 + T)$. Demostreu que la solució φ està definida per a tot $t \in \mathbb{R}$ i que $\varphi(t)$ és periòdica.

- 4. Estudieu si la funció f satisfà alguna condició de Lipschitz global o local respecte de x. En cas afirmatiu calculeu la constant de Lipschitz.
 - (a) $f(t,x) = x^2$, $x \in [0,1]$.
 - (b) $f(t,x) = t^2 + x^4$, $|t| \le 1$ i $|x| \le 3$.
 - (c) $f(t,x) = x^n$, n > 1 i $x \in \mathbb{R}$.
 - (d) $f(t,x)=p(t)\cos x+q(t)\sin x, \ |t|\leqslant 100, \ x\in \mathbb{R}$ i p(t),q(t) funcions contínues.
 - (e) $f(t,x) = te^{-x^2}$, $|t| \le 1$, $x \in \mathbb{R}$.

- (f) $f(t,x) = x^{1/3}, x \in [-1,1].$
- (g) $f(t,x) = \frac{1}{1+x^2}, x \in \mathbb{R}.$
- 5. Donat el problema de valor inicial $\begin{cases} \dot{x} = \sqrt{|x|}, \\ x(0) = 0, \end{cases}$
 - (a) Trobeu una solució.
 - (b) És única?
 - (c) En cas de resposta negativa, contradiu això el Teorema de Picard?
- **6.** Sigui I un interval obert (fins i tot $I = \mathbb{R}$) i $\mathbf{f} : I \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ una funció contínua. Suposem que per a tot subinterval compacte J de I \mathbf{f} és Lipschitziana en \mathbf{x} a $J \times \mathbb{R}^n$. Proveu que, sota aquestes hipòtesis, per a qualsevol $(t_0, \mathbf{x}_0) \in I \times \mathbb{R}^n$ el problema de valor inicial

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \\ \mathbf{x}(t_0) = \mathbf{x}_0, \end{cases}$$

té una única solució definida a I.

7. Considerem el problema de Cauchy

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \\ \mathbf{x}(t_0) = \mathbf{x}_0, \end{cases}$$

on $\mathbf{f}: \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ és contínua i verifica $\|\mathbf{f}(t, \mathbf{x}_1) - \mathbf{f}(t, \mathbf{x}_2)\| \le L(t)\|\mathbf{x}_1 - \mathbf{x}_2\|$, per a tot $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ amb L(t) contínua a \mathbb{R} . Demostreu que hi ha solució única definida per a tot $t \in \mathbb{R}$.

8. Proveu que el problema de valor inicial

$$\begin{cases} \dot{x} = x^3 + e^{-t^2}, \\ x(0) = 1, \end{cases}$$

admet una solució única definida a l'interval $\left(-\frac{1}{9},\frac{1}{9}\right)$. Quin és el màxim interval d'existència d'aquesta solució que garanteix el teorema de Picard? Podríeu garantir que la solució es pot continuar al menys fins a t=1?

9. Proveu que la funció $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ definida com

$$f(t,x) = \begin{cases} \frac{tx}{t^2 + x^2}, & (t,x) \neq (0,0), \\ 0, & (t,x) = (0,0), \end{cases}$$

no és contínua a l'origen, però el problema de Cauchy

$$\begin{cases} \dot{x} = f(t, x), \\ x(t_0) = x_0, \end{cases}$$

té solució per tot $(t_0, x_0) \in \mathbb{R}^2$.

10. Sigui $f:[t_0,t_1]\times\mathbb{R}\longrightarrow\mathbb{R}$ una funció contínua. Suposem que f és decreixent en x. Demostreu que per a tot $x_0\in\mathbb{R}$ el problema

$$\begin{cases} \dot{x} = f(t, x), \\ x(t_0) = x_0, \end{cases}$$

té una única solució.

11. Una funció $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^1 satisfà f(n) = 0 per a tot enter n. Demostreu que totes les solucions maximals de l'equació $\dot{x} = f(x)$ estan afitades i definides sobre tot \mathbb{R} .

12. Considerem l'equació diferencial $\dot{x} = f(x), x \in \mathbb{R}$, amb f localment Lipschitz amb un nombre finit de zeros $a_1 < a_2 < \ldots < a_n$. Proveu que per tot $(t_0, x_0) \in \mathbb{R}^2$ amb $a_1 \le x_0 \le a_n$ la solució $\varphi(t)$ amb $\varphi(t_0) = x_0$ està definida per a tot $t \in \mathbb{R}$.

Demostreu que si $a_i < x_0 < a_{i+1}$ per a cert $i = 1, \ldots, n-1$, aleshores la solució $\varphi(t)$ amb $\varphi(t_0) = x_0$ satisfà $\lim_{t \to \infty} \varphi(t) = a_{i+1}$, $\lim_{t \to -\infty} \varphi(t) = a_i$ si f(x) > 0 sobre (a_i, a_{i+1}) , i $\lim_{t \to \infty} \varphi(t) = a_i$, $\lim_{t \to -\infty} \varphi(t) = a_{i+1}$ si f(x) < 0 sobre (a_i, a_{i+1}) .

13. Determineu segons el valor de x_0 l'interval de definició de la solució del problema

$$\begin{cases} \dot{x} = x^3 - x^2, \\ x(t_0) = x_0. \end{cases}$$

14. Determineu l'interval maximal de definició de la solució del problema

$$\begin{cases} \dot{x} = t^2 + e^{-x^2}, \\ x(t_0) = x_0. \end{cases}$$

15. Considereu el problema de Cauchy

$$\begin{cases} \dot{x} = t^2 e^{nx^2}, & n \in \mathbb{Z} \\ x(t_0) = 0. \end{cases}$$

- (a) Discutiu l'existència i unicitat de solucions maximals.
- (b) Proveu que si $n \leq 0$ aleshores l'interval de definició de la solució és tot \mathbb{R} .
- (c) Trobeu l'interval de definició de la solució si n > 0.
- (d) Considereu el sistema

$$\begin{cases} \dot{x} = t^2 e^{nx^2}, & n \in \mathbb{Z} \\ \dot{y} = xy + t, \end{cases}$$

amb les condicions inicials $x(t_0) = 0, y(t_0) = 0$. Trobeu l'interval de definició de la solució per a $n \in \mathbb{Z}$ i $t_0 \in \mathbb{R}$.

16. Donada una funció contínua $f:(a,b)\longrightarrow \mathbb{R}$ i $x_0\in (a,b)$, considereu el problema de valor inicial

$$\begin{cases} \dot{x} = f(x), \\ x(t_0) = x_0. \end{cases}$$
 (1)

- (a) Demostreu que si $f(x_0) \neq 0$ llavors (1) té una única solució (local).
- (b) Suposeu que x_0 és un zero aïllat de f; demostreu que (1) té solució única (local) si i només si les integrals

$$\int_{x_0}^{x} \frac{ds}{f(s)} i \int_{x}^{x_0} \frac{ds}{f(s)}$$

són divergents.

17. Considerem el problema de Cauchy

$$\begin{cases} \dot{x} = t \sin x, \\ x(0) = x_0. \end{cases}$$

Demostreu, sense resoldre l'equació, que hi ha una única solució definida a \mathbb{R} i que aquesta solució verifica que $x_0 - \frac{t^2}{2} \leqslant x(t) \leqslant x_0 + \frac{t^2}{2}$ per tot $t \in \mathbb{R}$.

18. Proveu que per a cada $(t_0, x_0) \in \mathbb{R}^2$ l'equació

$$\dot{x} = \frac{x^3}{1 + x^2}$$

té una única solució tal que $x(t_0) = x_0$ i que aquesta està definida per a tot $t \in \mathbb{R}$.

19. Demostreu la versió general del Lema de Gronwall: Siguin u, v, w: $[a, b) \longrightarrow \mathbb{R}$ contínues, $v(t) \ge 0$ i verificant

$$u(t) \leqslant w(t) + \int_a^t v(s)u(s)ds$$
 per a tot $t \in [a,b)$.

Aleshores

$$u(t) \leqslant w(t) + \int_a^t w(s)v(s) \exp\left(\int_s^t v(r)dr\right) ds$$
 per a tot $t \in [a,b)$.

Proveu a més que si $w \in C^1((a,b))$ llavors

$$u(t) \le w(a) \exp\left(\int_a^t v(s)ds\right) + \int_a^t w'(s) \exp\left(\int_s^t v(r)dr\right)ds.$$

20. Utilitzeu el Lema de Gronwall generalitzat per provar el següent resultat:

Sigui $\mathbf{f}: \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ contínua i localment Lipschitz respecte \mathbf{x} tal que, per a cert $R \geqslant 0$,

$$\|\mathbf{f}(t,\mathbf{x})\| \le a(t)\|\mathbf{x}\| + b(t), \ t \in \mathbb{R} \ i \ \|\mathbf{x}\| \ge R$$

on $a, b : \mathbb{R} \longrightarrow \mathbb{R}$ són contínues i no negatives. Llavors, per tot $(t_0, \mathbf{x}_0) \in \mathbb{R}^n$, el problema

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \\ \mathbf{x}(t_0) = x_0, \end{cases}$$

té una única solució que es pot definir per a tot $t \in \mathbb{R}$.

Observeu que, en particular, si $\mathbf{f} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ s contínua i localment Lipschitz respecte \mathbf{x} tal que $\|\mathbf{f}(\mathbf{x})\| \leq M\|\mathbf{x}\| + N$ amb M, N > 0, aleshores les solucions de $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ estan definides per tot temps.

Aplicació: $\dot{x} = |x|^{\alpha} + 1, x \in \mathbb{R}, \alpha \leq 1.$

21. Sigui $\mathbf{f}: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^n$ diferenciable amb continuïtat tal que

$$<\mathbf{x},\mathbf{f}(t,\mathbf{x})>\leqslant k(t)\|\mathbf{x}\|^2$$

per a tot \mathbf{x} amb $\|\mathbf{x}\| > R$, on k(t) és una funció contínua i positiva i R una constant positiva. Proveu que les solucions maximals de l'equació diferencial $\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x})$ estan definides per a tot temps positiu.

22. Donat el sistema

$$\begin{cases} \dot{x} = x(x-1), \\ \dot{y} = -2xy + y, \end{cases}$$

- (a) Calculeu $\varphi(t; 0, (x_0, y_0))$, la solució del sistema amb condició inicial $\varphi(0) = (x_0, y_0)$?
- (b) Comprove que $\phi(t) := \varphi(t; 0, (1, 1)) = (1, e^{-t}).$
- (c) A partir de l'apartat (a) trobeu $\frac{\partial \varphi}{\partial x_0}(t;0,(1,1))$ i $\frac{\partial \varphi}{\partial y_0}(t;0,(1,1))$.
- (d) Comproveu que les derivades de l'apartat anterior coincideixen amb les solucions de les equacions de primera variació del sistema sobre la solució $\phi(t)$.

23. Considerem el sistema

$$\begin{cases} \dot{x} = x(x-1), \\ \dot{y} = y^2 - x, \end{cases}$$

i sigui $\varphi=\varphi(t;t_0,x_0,y_0)$ la solució amb $\varphi(t_0,t_0,x_0,y_0)=(x_0,y_0)$. Trobeu l'expressió de $\varphi(t;0,0,-1)$. Calculeu $\frac{\partial \varphi}{\partial x_0}(t;0,0,-1)$.

24. Sigui $\varphi = \varphi(t; t_0, x_0, (a, b))$ la solució del problema

$$\begin{cases} \dot{x} = 2t(ax - bx^2), \\ x(t_0) = x_0. \end{cases}$$

- (a) Trobeu la solució explícita.
- (b) Comproveu que $\varphi(t) = e^{t^2}$ és solució si $t_0 = 0, x_0 = 1, a = 1$ i b = 0.
- (c) Comproveu que les derivades $\frac{\partial \varphi}{\partial x_0}(t;0,1,(1,0)), \frac{\partial \varphi}{\partial a}(t;0,1,(1,0)), \frac{\partial \varphi}{\partial b}(t;0,1,(1,0))$ són les mateixes que s'obtenen a partir dels teoremes de dependència diferenciable respecte condicions inicials i paràmetres.

25. Considereu el sistema

$$\begin{cases} \dot{x} = x(y-1), \\ \dot{y} = xy + 1, \end{cases}$$

amb condicions inicials $t_0=0, (x_0,y_0)=(0,1)$. Calculeu $\varphi(t;0,(0,1))$ i $\frac{\partial \varphi}{\partial x_0}(t;0,(0,1))$ i $\frac{\partial \varphi}{\partial y_0}(t;0,(0,1))$

- **26.** Considereu l'equació diferencial $\dot{x} = x^2 + e^t(1 e^t)$ que té com a solució particular $\varphi(t;0,1) = e^t$. Calculen $\frac{\partial \varphi}{\partial x_0}(t;0,1)$.
- 27. L'equació diferencial $\dot{x} = \alpha x + \beta$ amb $\alpha, \beta \in \mathbb{R}$ admet la solució $x(t) = -\frac{\beta}{\alpha}$, que és una funció no contínua en α . Contradiu això la dependència contínua respecte de paràmetres?
- 28. Considerem l'equació

$$\dot{x} = \alpha \tan x$$
.

- (a) Analitzeu, en funció del paràmetre real α , les dades inicials (t_0, x_0) per a les quals podem assegurar existència local de solucions. És aquesta única?
- (b) Dibuixeu de forma aproximada el camp de direccions. Trobeu el flux associat i analitzeu les propietats de continuïtat i diferenciabilitat. Dibuixeu aproximadament les solucions.
- (c) Trobeu i resoleu les equacions variacionals lineals respecte de x_0 i de α corresponents a la solució de l'equació que passa pel punt (0,0). Comproveu els resultats amb l'ajut de la solució explícita obtinguda a (b).
- 29. Considerem l'equació

$$\dot{x} = \frac{x}{t} + \frac{x^m}{t^m},$$

on $m \in \mathbb{Z}$.

- (a) Trobeu, en funció de m, les regions d'existència i unicitat de solucions
- (b) Trobeu la solució que passa per (t_0, x_0) i indiqueu si la fórmula obtinguda és coherent amb les conclusions de l'apartat (a).

(c) Per m=0 doneu la solució general $\phi(t,t_0,x_0)$ corresponent. Escriviu l'equació diferencial que satisfà $\frac{\partial \phi(t,1,1)}{\partial x_0}$ i resoleu-la. Compareu amb el resultat obtingut derivant directament en la fórmula explícita calculada a (b).