Лабораторная работа №5

Лабораторная работа №5

В качестве набора данных будем использовать датасет "HR Dataset". В датасете содержится информация о сотрудниках компании.

Ссылка на датасет: https://www.kaggle.com/datasets/imtiajemon/hr-dataset/data
Датасет содержит следующие поля.

- 1. Employee_ID уникальный идентификатор сотрудника
- 2. Name имя сотрудника
- 3. Gender пол сотрудника
- 4. **Department -** отдел, в котором работает сотрудник
- 5. EducationField область образования
- 6. MaritalStatus семейное положение
- 7. JobRole должность
- 8. JobLevel уровень должности
- Age возраст
- 10. MonthlyIncome месячный доход
- 11. NumCompaniesWorked количество компаний, в которых работал сотрудник
- 12. TotalWorkingYears общий стаж работы
- 13. TrainingTimesLastYear количество тренингов за последний год
- 14. YearsAtCompany стаж работы в компании
- 15. YearsInCurrentRole стаж в текущей должности
- 16. YearsSinceLastPromotion лет с последнего повышения
- 17. YearsWithCurrManager лет с текущим менеджером
- 18. **Attrition** увольнение (целевая переменная)

Загрузка данных

```
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.utils import resample

# Загрузка данных
data = pd.read_csv('HR_data.csv')
```

Информация датасета

```
print("Первые 5 строк датасета:")
print(data.head())
print("\nИнформация о датасете:")
print(data.info())
```

```
Первые 5 строк датасета:
   EmpID Age AgeGroup Attrition
                                        BusinessTravel
                                                                      Department
\
   RM297
                                                         Research & Development
           18
                  18-25
                               Yes
                                        Travel_Rarely
0
   RM302
                                         Travel_Rarely
1
           18
                  18-25
                                No
                                                                           Sales
                                    Travel_Frequently
2
   RM458
           18
                  18-25
                               Yes
                                                                           Sales
                                            Non_Travel Research & Development
3
   RM728
           18
                  18-25
                                No
4
   RM829
           18
                  18-25
                               Yes
                                            Non_Travel Research & Development
   DistanceFromHome EducationField EnvironmentSatisfaction
                                                               Gender
                      Life Sciences
0
                   3
                                                       Average
                                                                   Male
1
                  10
                             Medical
                                                                Female
                                                          Good
2
                   5
                           Marketing
                                                                   Male
                                                          Poor
                      Life Sciences
3
                   5
                                                                   Male
                                                          Poor
4
                             Medical
                   8
                                                       Average
                                                                   Male
                                                                         . . .
   MonthlyIncome Over18 OverTime PercentSalaryHike
                                                        PerformanceRating \
0
             1420
                       Υ
                                No
                                                    13
                                                                   Average
             1200
                       Υ
                                                   12
1
                                No
                                                                   Average
2
             1878
                       Υ
                               Yes
                                                   14
                                                                   Average
3
             1051
                       Υ
                                No
                                                    15
                                                                   Average
4
             1904
                       Υ
                                No
                                                    12
                                                                   Average
  TotalWorkingYears YearsAtCompany
                                      YearsInCurrentRole
0
                   0
                                   0
                                                         0
1
                   0
                                   0
                                                         0
2
                                   0
                   0
                                                         0
3
                   0
                                   0
                                                         0
4
                   0
                                   0
                                                         0
```

	YearsSinceLastPromotion	YearsWithCurrManager
0	0	0.0
1	0	0.0
2	0	0.0
3	0	0.0
4	Θ	0.0

[5 rows x 24 columns]

Информация о датасете:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1473 entries, 0 to 1472
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	EmpID	1473 non-null	object
1	Age	1473 non-null	int64
2	AgeGroup	1473 non-null	object
3	Attrition	1473 non-null	object
4	BusinessTravel	1473 non-null	object
5	Department	1473 non-null	object
6	DistanceFromHome	1473 non-null	int64
7	EducationField	1473 non-null	object
8	EnvironmentSatisfaction	1473 non-null	object
9	Gender	1473 non-null	object
10	JobLevel	1473 non-null	int64
11	JobRole	1473 non-null	object
12	JobSatisfaction	1473 non-null	object
13	MaritalStatus	1473 non-null	object
14	MonthlyIncome	1473 non-null	int64
15	Over18	1473 non-null	object
16	OverTime	1473 non-null	object
17	PercentSalaryHike	1473 non-null	int64
18	PerformanceRating	1473 non-null	object
19	TotalWorkingYears	1473 non-null	int64
20	YearsAtCompany	1473 non-null	int64
21	YearsInCurrentRole	1473 non-null	int64
22	YearsSinceLastPromotion	1473 non-null	int64
23	YearsWithCurrManager	1473 non-null	float64
dtyp	es: float64(1), int64(9),	object(14)	

dtypes: float64(1), int64(9), object(14)

memory usage: 276.3+ KB

None

Очистка и подготовка данных

Проверка на пропуски

```
print("\nПропуски в данных:")
print(data.isnull().sum())
```

```
Пропуски в данных:
EmpID
                            0
Age
                            0
AgeGroup
                            0
Attrition
                            0
BusinessTravel
                            0
Department
                            0
DistanceFromHome
                            0
EducationField
EnvironmentSatisfaction
                            0
Gender
JobLevel
                            0
JobRole
                            0
JobSatisfaction
                            0
MaritalStatus
                            0
MonthlyIncome
Over18
                            0
OverTime
                            0
PercentSalaryHike
                            0
PerformanceRating
                            0
TotalWorkingYears
YearsAtCompany
YearsInCurrentRole
YearsSinceLastPromotion
YearsWithCurrManager
                            0
dtype: int64
```

Удаление ненужных столбцов

```
data = data.drop(['EmpID', 'Over18'], axis=1)
```

Преобразование категориальных переменных

```
cat_cols = data.select_dtypes(include=['object']).columns
le = LabelEncoder()
for col in cat_cols:
    data[col] = le.fit_transform(data[col])
```

Проверка дисбаланса классов

```
print("\nPacпределение целевой переменной Attrition:")
print(data['Attrition'].value_counts())

Pacпределение целевой переменной Attrition:
Attrition
0 1236
1 237
Name: count, dtype: int64
```

Визуализация дисбаланса

```
plt.figure(figsize=(6,4))
sns.countplot(x='Attrition', data=data)
plt.title('Распределение целевой переменной Attrition')
plt.show()
```


Разделение на признаки и целевую переменную

```
X = data.drop('Attrition', axis=1)
y = data['Attrition']
```

Масштабирование числовых признаков

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Разделение на train/test

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42, stratify=y)
print(f"\n0бучающая выборка: {X_train.shape[0]} samples")
print(f"Тестовая выборка: {X_test.shape[0]} samples")
```

```
Обучающая выборка: 1178 samples
Тестовая выборка: 295 samples
```

Обучение ансамблевых моделей

Инициализация моделей

```
models = {
    "Bagging": BaggingClassifier(
        estimator=DecisionTreeClassifier(random_state=42),
        n_estimators=100,
        random_state=42
    ),
    "Random Forest": RandomForestClassifier(
        n_estimators=100,
        random_state=42
    ),
    "Extra Trees": ExtraTreesClassifier(
        n_estimators=100,
        random_state=42
    ),
    "AdaBoost": AdaBoostClassifier(
        estimator=DecisionTreeClassifier(max_depth=1),
        n_estimators=100,
        random_state=42,
        algorithm='SAMME'
    ),
    "Gradient Boosting": GradientBoostingClassifier(
        n_estimators=100,
```

```
random_state=42
)
}
```

Обучение и предсказание

```
predictions = {}

for name, model in models.items():
    model.fit(X_train, y_train)
    predictions[name] = model.predict(X_test)
    print(f"\n{name} обучена")

Ваддіпд обучена

Random Forest обучена

Extra Trees обучена

AdaBoost обучена

Gradient Boosting обучена
```

Оценка качества моделей

Сравнение метрик

```
metrics = []
for name, pred in predictions.items():
    accuracy = accuracy_score(y_test, pred)
   f1 = f1_score(y_test, pred)
    metrics.append({
        'Model': name,
        'Accuracy': accuracy,
        'F1-score': f1
   })
    print(f"\n{name}:")
    print(f"Accuracy: {accuracy:.4f}")
    print(f"F1-score: {f1:.4f}")
    print("Classification Report:")
    print(classification_report(y_test, pred))
    print("Confusion Matrix:")
    print(confusion_matrix(y_test, pred))
```

Bagging:

Accuracy: 0.8508 F1-score: 0.3714

Classification Report:

support	f1-score	recall	precision	
248	0.92	0.96	0.88	Θ
47	0.37	0.28	0.57	1
295	0.85			accuracy
295	0.64	0.62	0.72	macro avg
295	0.83	0.85	0.83	weighted avg

Confusion Matrix:

[[238 10]

[34 13]]

Random Forest:

Accuracy: 0.8610 F1-score: 0.3279

Classification Report:

support	f1-score	recall	precision	
248	0.92	0.98	0.87	Θ
47	0.33	0.21	0.71	1
295	0.86			accuracy
295	0.63	0.60	0.79	macro avg
295	0.83	0.86	0.84	weighted avg

Confusion Matrix:

[[244 4]

[37 10]]

Extra Trees:

Accuracy: 0.8712 F1-score: 0.3667

Classification Report:

	precision	recall	f1-score	support
0	0.87	0.99	0.93	248
1	0.85	0.23	0.37	47

				.
accuracy		0.44	0.87	295
macro avg		0.61	0.65	295
weighted avg	0.87	0.87	0.84	295
Confusion Mat	trix:			
[[246 2]				
[36 11]]				
AdaBoost:				
Accuracy: 0.8	2717			
F1-score: 0.4				
Classification				
Ctassiitati	precision	recall	f1-score	support
	brcciaton	recatt	11 30016	24phot c
Θ	0.88	0.98	0.93	248
1		0.30	0.42	47
_		-,23	- · · <u>-</u>	
accuracy			0.87	295
macro avg	0.81	0.64	0.68	295
weighted avg	0.86	0.87	0.85	295
Confusion Mat	trix:			
[[243 5]				
[33 14]]				
Gradient Boos	sting:			
Accuracy: 0.8	8746			
F1-score: 0.	4789			
Classificatio	on Report:			
	precision	recall	f1-score	support
0	0.89	0.97	0.93	248
1	0.71	0.36	0.48	47
accuracy			0.87	295
macro avg	0.80	0.67	0.70	295
weighted avg	0.86	0.87	0.86	295
Confusion Mat	trix:			
[[241 7]				
[30 17]]				

Визуализация сравнения моделей

```
metrics_df = pd.DataFrame(metrics)
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
sns.barplot(x='Model', y='Accuracy', data=metrics_df)
plt.title('Accuracy моделей')
plt.xticks(rotation=45)

plt.subplot(1, 2, 2)
sns.barplot(x='Model', y='F1-score', data=metrics_df)
plt.title('F1-score моделей')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Визуализация важности признаков для лучшей модели

```
best_model_name = metrics_df.loc[metrics_df['F1-score'].idxmax(), 'Model']
best_model = models[best_model_name]

if hasattr(best_model, 'feature_importances_'):
    importances = best_model.feature_importances_
elif hasattr(best_model, 'estimators_'):
    importances = np.mean([tree.feature_importances_ for tree in best_model.estimators_], axis=0)

feature_importance = pd.DataFrame({
    'Feature': X.columns,
    'Importance': importances
}).sort_values('Importance', ascending=False)
```

```
plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=feature_importance)
plt.title(f'Важность признаков в модели {best_model_name}')
plt.tight_layout()
plt.show()
```

