Logic of Computer Science Lecture 1: Foundations & Set Theory Review

Emmanuel Kwesi Tandoh

University of Mines and Technology (UMaT)

June 2025

Knowledge | Truth | Excellence

Learning Objectives

By the end of this session, you will be able to:

- Recall basic set operations.
 - Form unions, intersections, set-differences, complements.
 - Interpret notation $A \subseteq B$, $x \in A$, $A \cup B$, etc.
- 2 Reinforce proof techniques on set identities.
 - Practise direct proofs and contrapositives.
 - Canonical identity example: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

2/10

Key Definitions

1. Set, Element, Subset

- **Set** *A*: collection of distinct objects.
- **Element** $x \in A$: x belongs to A.
- Subset $A \subseteq B$: $\forall x (x \in A \Rightarrow x \in B)$.
- Empty set \varnothing .

2. Operations

- Union $A \cup B = \{x : x \in A \lor x \in B\}$.
- Intersection $A \cap B = \{x : x \in A \land x \in B\}.$
- Difference $A B = \{x : x \in A \land x \notin B\}.$
- Complement $\overline{A} = U A$.

Intersection vs. Union visual

3/10

Relations & Functions

$$(a,b) \in R \Leftrightarrow a R b$$

Domain $(R) = \{a \in A \mid \exists b (a,b) \in R\}$

Each $a \in A$ has exactly one $b \in B$ with f(a) = b.

- **Injective**: distinct inputs ⇒ distinct outputs.
- **Surjective**: every $y \in B$ hit by some x.
- Bijective: both injective and surjective.

Example:

surjective but not injective.

Proof Techniques Refresher

Set Equality X = Y

Show $X \subseteq Y$ and $Y \subseteq X$.

Direct Proof

Assume P; derive Q.

Contrapositive

Prove $\neg Q \Rightarrow \neg P$ instead of $P \Rightarrow Q$.

Tip: identify P and Q clearly before choosing a method.

E. K. Tandoh (UMaT)

Example Proof — Distributive Law

Proposition

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- \subseteq Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $(x \in B \lor x \in C)$.
 - If $x \in B \Rightarrow x \in A \cap B$.
 - If $x \in C \Rightarrow x \in A \cap C$.

Hence $x \in (A \cap B) \cup (A \cap C)$.

- \supseteq Let $y \in (A \cap B) \cup (A \cap C)$.
 - If $y \in A \cap B \Rightarrow y \in A$ and $y \in B \Rightarrow y \in B \cup C$.
 - Similar for $A \cap C$.

Thus $y \in A \cap (B \cup C)$.

6 / 10

Lecture 1 – Foundations June 2025

In-Class Activity — Set-Proof Race

- Split into small groups
- Each group receives one set identity to prove, e.g.
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - $A \triangle B = (A \cup B) (A \cap B)$
- **1**2 minutes to craft proofs & choose a presenter.
- Rapid-fire presentations (2 minutes each).

7/10

Summary & Takeaways

Key Points

- Set theory is foundational for logic and programming semantics.
- Precise definitions and notation underpin logical reasoning.
- Proof techniques build rigor and form the basis for formal logic systems.
- These concepts set the stage for propositional and predicate logic.

Up Next — Week 2

Truth tables, logical connectives, more complex reasoning.

Home Practice: Prove $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

8 / 10

References I

- D. Gries and F. B. Schneider, *A Logical Approach to Discrete Math*, Springer-Verlag, 1993.
- K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed., McGraw-Hill, 2011.
- P. Halmos, Naive Set Theory, Van Nostrand, 1960.

E. K. Tandoh (UMaT)

Thank You!