IN THE CLAIMS:

Please AMEND claims 1, 3, 5, 7, 8, and 10, and please CANCEL claims 2, 6, 9, and 11 without prejudice or disclaimer in accordance with the following:

1. (**CURRENTLY AMENDED**) A high density recording medium with a superresolution near-field structure including a sequential stack of a second dielectric layer, a recording layer, a protective layer, a mask layer, a first dielectric layer, and a polycarbonate layer, wherein the mask layer comprises high melting point metal oxide WO_x to generate a near field by optically or thermally inducing physical changes in the crystalline structure and optical properties of the WO_xhigh melting point metal oxide.

2. (CANCELED)

A high density recording medium with a super-resolution near-field structure including a sequential stack of a second dielectric layer, a recording layer, a protective layer, a mask layer, a first dielectric layer, and a polycarbonate layer, wherein the mask layer comprises TaO_x or AuO_x to generate a near field by optically or thermally inducing physical changes in the crystalline structure and optical properties of the TaO_x or AuO_x high density recording medium of claim 1, wherein the high melting point metal exide for the mask layer is TaO_x or AuO_x which shows irreversible physical changes.

4. (CANCELED)

- 5. (**CURRENTLY AMENDED**) The high density recording medium of claim 1, further comprising a reflective layer containing silver or aluminum below-disposed on an opposite side of the second dielectric layer from the recording layer.
 - 6. (CANCELED)
 - 7. (CURRENTLY AMENDED) The high density recording medium of claim 3,

further comprising a reflective layer containing silver or aluminum below disposed on an opposite side of the second dielectric layer from the recording layer.

8. (**CURRENTLY AMENDED**) A high density recording medium with a superresolution near-field structure including a sequential stack of a second dielectric layer, a recording layer, a protective layer, a mask layer, a first dielectric layer, and a polycarbonate layer, wherein the mask layer <u>consists of SiO_x comprises silicon oxide</u> to generate a near field by optically or thermally inducing physical changes in the crystalline structure and optical properties of the silicon oxide.

9. (CANCELED)

10. (**CURRENTLY AMENDED**) The high density recording medium of claim 8, further comprising a reflective layer containing silver or aluminum below disposed on an opposite side of the second dielectric layer from the recording layer.

11. (CANCELED)