Visual Odometry Using Essential Matrix Estimation

Felix Wempe

Software Practical

January 18, 2016

Motivation

Problem

- Monocular odometry.
- Estimate the position and the orientation of a car.
- On the KITTI dataset.

Approach

Approach

- Estimate the Essential matrix from one frame to the next.
- Use geometry of the Essential Manifold:

$$\mathcal{E} := \left\{ \Omega R | \Omega \in \mathfrak{so}_3, R \in \mathrm{SO}_3, \|\Omega\|^2 = 2 \right\}$$

Define a Newton type algorithm on the manifold.

HELMKE, UWE: Essential Matrix Estimation Using Gauss-Newton Iterations on a Manifold. In: *International Journal of Computer Vision* 74(2) (2007)

Essential Manifold

Essential Matrix

■ Essential matrix relates corresponding points in two images.

$$m_1^{\top} E m_2 = 0$$

- Epipolar constraint.
- $E = \Omega R$, with $\Omega \in \mathfrak{so}_3$ and $R \in SO_3$

$$\Omega = \left(egin{array}{ccc} 0 & -t_3 & t_2 \ t_3 & 0 & -t_1 \ -t_2 & t_1 & 0 \end{array}
ight)$$

Essential Manifold

- For every Essential Matrix E holds (with $\mu \in \mathbb{R}$) μE is also an Essential Matrix.
- Only consider normalised Essential Matrices:

$$||E|| = \sqrt{2}$$

$$\mathcal{E} := \left\{ \Omega R | \Omega \in \mathfrak{so}_3, R \in \mathrm{SO}_3, \|\Omega\|^2 = 2 \right\}$$

- ullet is a five-dimensional smooth manifold.
- Normalised Essential Matrices have singular values $\{1, 1, 0\}$.

■ Using the SVD we find another representation:

$$\mathcal{E} = \{ U E_0 V^\top | U, V \in SO_3 \}$$

Using this we get the tangent space at E:

$$\mathcal{T}_{E}\mathcal{E} = \{ \textit{U}(\Omega \textit{E}_{0} - \textit{E}_{0}\Psi) \textit{V}^{\top} | \Omega, \Psi \in \mathfrak{so}_{3} \}$$

Local Parametrization

- For computations on the manifold we need a local parametrization.
- lacksquare A local parametrization $\mu: \mathbb{R}^5 o \mathcal{E}$ at $E \in \mathcal{E}$ satisfies:
 - $\mu_{(U,V)}(0) = E$
 - $\mu_{(U,V)}$ is a local diffeomorphism around 0.
 - lacktriangle There exists a map $L:\mathcal{S} o \mathrm{GL}_5$ such that

$$\mu_{(U\Gamma,V\Gamma)}(x) = \mu_{(U,V)}(L(\Gamma)x)$$

Exponential Projection

We use the exponential projection:

$$\mu_{(U,V)} : \mathbb{R}^5 \to \mathcal{E}$$

$$\mu_{(U,V)}(x) = Ue^{\Omega_1(x)} E_0 e^{-\Omega_2(x)} V^{\top}$$

$$\Omega_1(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -\frac{x_3}{\sqrt{2}} & x_2 \\ \frac{x_3}{\sqrt{2}} & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}, \Omega_2(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \frac{x_3}{\sqrt{2}} & x_5 \\ -\frac{x_3}{\sqrt{2}} & 0 & -x_4 \\ -x_5 & x_4 & 0 \end{pmatrix}$$

Algorithm

Algorithm

- Minimize a cost function $f : \mathcal{E} \to \mathbb{R}$ given matched points.
- Using a Newton-type algorithm.
 - Newton directions: $-H_{f \circ \mu}(0)^{-1} \nabla (f \circ \mu)(0)$
 - Gauss-Newton directions: $-\hat{H}_{f \circ \mu}(0)^{-1} \nabla (f \circ \mu)(0)$.

Algorithm 1 Essential Matrix Estimation

- 1: Determine the initial Estimate $E_1 = U_1 E_0 V_1^{\top}$.
- 2: Set k=1 and $\epsilon>0$ to prescribed accuracy.
- 3: Given U_k , V_k compute the gradient ∇_k and Hessian H_k .
- 4: if $H_k \succ 0$ then
- 5: Go in Newton direction.
- 6: **else**
- 7: Go in Gauss-Newton direction.
- 8: end if
- 9: Project back on the manifold. $\rightarrow U_{k+1}$, V_{k+1}
- 10: if $\|\nabla_{k+1}\| < \epsilon$ then
- 11: Terminate.
- 12: **else**
- 13: Set k = k + 1 and go to Line 3.
- 14: end if

Cost Function

Cost Function

- The chosen cost function is quadratic on the error measure.
- Added by a weighted smoothing factor.
- The matched points m_1^i , m_2^i we write as $(M^i = \hat{m}_2^i \hat{m}_1^{i^{\top}})$:

$$\overline{M} := egin{pmatrix} ext{vec}^{ op}(M^{1^+}) \ dots \ ext{vec}^{ op}(M^{n^+}) \end{pmatrix}$$

$$\mathcal{M} := \frac{1}{n} (\overline{M}^{\top} \overline{M}) \geq 0$$

The cost function $f: \mathcal{E} \to \mathbb{R}$ is defined as:

$$f(E) = \frac{1}{2n} \sum_{i=1}^{n} \left(\hat{m}_{1}^{i^{\top}} E \hat{m}_{2}^{i} \right)^{2} + \lambda \frac{1}{2} \|E - \hat{E}\|_{F}^{2}$$

We may rewrite the quadratic part:

$$\frac{1}{2n} \sum_{i=1}^{n} \left(\hat{m}_{1}^{i^{\top}} E \hat{m}_{2}^{i} \right)^{2} = \frac{1}{2} \| \operatorname{vec}(E) \|_{\mathcal{M}}^{2}$$

Cost Function

We get:

$$\nabla (f \circ \mu_{(U,V)})(0) = J^{\top} \mathcal{M} \text{vec}(E) + \lambda J^{\top} (E - \hat{E})$$

$$H_{f \circ \mu_{(U,V)}}(0) = \hat{H}_{f \circ \mu_{(U,V)}}(0) + \tilde{H}_{f \circ \mu_{(U,V)}}(0)$$

for

$$\hat{H}_{f \circ \mu_{(U,V)}}(0) = J^{\top} \mathcal{M} J + \lambda J^{\top} J \geq 0$$

RANSAC

RANSAC

- Wrong point matches have strong influence on the quadratic cost function.
- To get rid of these outliers RANSAC is used.

Algorithm 2 RANSAC

- 1: return consensus set
- 2: **loop**
- 3: Choose randomly 10 matched point pairs.
- 4: Compute Essential matrix for these 10 points.
- 5: **for** All matched point pairs **do**
- 6: Check if $m_1^{\top} E m_2 < \epsilon$. (test set)
- 7: end for
- 8: **if** $\#\{\text{test set}\} > 100$ **then**
- 9: Add test set to the consensus set.
- 10: **end if**
- 11: end loop

Evaluation

Evaluation

- Test data from "The KITTI Vision Benchmark Suite".
- Comparison of the different weights.
 - Computation times.
 - Average errors.
 - Plot of the paths.
- Comparison of the RANSAC to one implemented in Matlab.

- We Estimated U, $V \in SO_3$, such that: $E = UE_0V^{\top}$.
- Want to get the Rotation and Translation: $E = \Omega R$.

$$\Omega = U \begin{pmatrix} 0 & arepsilon & 0 \ -arepsilon & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} U^{ op}$$

$$R = U egin{pmatrix} 0 & -arepsilon & 0 \ arepsilon & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} V^{ op}$$

Error Measures

Distance function for rotation matrices:

$$d(R, \tilde{R}) = \|\log(R^{\top} \tilde{R})\|_{F}$$

■ Distance for the angle of the translation:

$$d(t, \tilde{t}) = \arccos\left(rac{\langle t, \tilde{t}
angle}{\|t\| \| ilde{t}\|}
ight)$$

Estimation without RANSAC, $\lambda = 0$

Estimation with $\lambda = 0$

Estimation with $\lambda = 2$

Estimation with $\lambda = 0.2$

Estimation with $\lambda = 0.02$

Average Computation Times

(in seconds)

Sequence	$\lambda = 0$	$\lambda = 2$	$\lambda = 0.2$	$\lambda = 0.02$
00	0,0154	0,0263	0,0222	0,0194
01	0,0194	0,0302	0,024	0,0216
02	0,0144	0,0296	0,0208	0,0203

Average Iterations used

Sequence	$\lambda = 0$	$\lambda = 2$	$\lambda = 0.2$	$\lambda = 0.02$
00	10,48	14,32	12,03	10,06
01	11,35	16	13,27	10,99
02	9,8	14,29	11,27	9,86

Average Translation Error

(in degree)

(degree)				
Sequence	$\lambda = 0$	$\lambda = 2$	$\lambda = 0.2$	$\lambda = 0.02$
00	1,806	1,829	1,66	1,669
01	3,697	1,582	1,523	2,439
02	1.338	1.086	1.428	1.443

Average Rotation Error

(in degree)

(deg.ee)				
Sequence	$\lambda = 0$	$\lambda = 2$	$\lambda = 0.2$	$\lambda = 0.02$
00	2,152	1,484	1,974	2,149
01	1,436	1,289	1,231	1,354
02	1,892	1,299	1,702	1,838

Estimation with $\lambda = 0$ and $\lambda = 0.2$

35 / 39

Comparison RANSAC with $\lambda = 0$

Comparison RANSAC

Sequence 02	Own	Matlab
average time	0,3903s	0,7392s
Rotation error	1,845	1,851
Translation error	1.312	1.306

Conclusion

- Using the geometry of the essential manifold gives a fast algorithm.
- RANSAC is necessary, since outliers have a strong influence on the estimation.
- Smoothing leads to better results in the average errors.