

projekt do předmětu PGR – Počítačová grafika 2023

gi01 – Výpočet světelné mapy pro jednoduchou scénu

řešitel: **Peter Ďurica**, xduric05

Zadání

- 1. Navrhnúť jednoduchú scénu zo základných geometrických tvarov
- 2. Vytvoriť vrcholy týchto objektov a ich vloženie do premenných
- 3. Navrhnutie jednoduchých textúr a priradenie textúrových súradníc ku vrcholom objektov
- 4. Výpočet normálových hodnôt pre vrcholy
- 5. Zobrazenie scény bez svetelných máp
- 6. Výber vhodnej metódy a implementácie globálneho osvetlenia
- 7. Vloženie implementácie GO do projektu
- 8. Ukladanie hodnôt implementácie do svetelných máp
- 9. Zostavenie finálneho zobrazenia scény s použitím vypočítaných svetelných máp s textúrami objektov

Nejdůležitější dosažené výsledky

1. Výber pozície a veľkosti zdroja svetla užívateľom

2. Program v reálnom čase zobrazuje aktuálne hodnoty svetelných máp počas iterácií radiozity

3. Filtrovanie textúr svetelných máp pre zjemnenie prechodov medzi hodnotami textúry

Ovládání vytvořeného programu

Ovládanie kamery

Používam orbitovú kameru s ovládaním z cvičení, teda:

- Pri stlačení ľavého tlačítka a pohybu myšky kamera rotuje okolo scény
- Pri stlačení pravého tlačítka a pohybu myšky sa kamera približuje alebo odďaluje od scény
- Pri stlačení stredného tlačítka a pohybu myšky sa hýbe s celou scénou

Ovládanie sveteľného zdroja

Svetlo sa ovláda pomocou gui a to hodnotou škálovania modelu kocky a pozície svetla pomocou x,y,z hodnôt.

Ovládanie zobrazenia scény

Program sa automaticky spustí v režime, v ktorom sa zobrazujú len textúry objektov. Stlačením prvého tlačítka sa spustí radiosita a začnú sa vykreslovať textury spoločne s aktuálními svetelnými mapami. Toto tlačítko sa vždy stačí pri zmene nastavení scény aby program začal odznova počítať s novými hodnotami. Následné dve tlačítka sú na zastavenie alebo pokračovanie iterácií výpočtu radiozity po začatí jej zobrazovania. Posledné tlačítko slúži na návrat do zobrazenia s len texúrami. Meniť nastavenia scény sa odporúča len v tomto režime.

Ovládanie nastavení radiozity

V prvom okienku sa nastavuje rozlíšenie textúr svetelných máp. Číslo znázorňuje mocninu čísla 2. Čiže například pri nastavení čísla 5 je rozlíšenie textúr 2^5x2^5, takže 32x32. Následne sa dá pridať ambientné svetlo do scény alebo zapnúť filtrovanie textúr. Meniť rozlíšenie textúry svetelnej mapy sa odporúča len v režime bez zobrazenia radiozity.

Použité technologie

- Windows 11
- Jazyk C++
- OpenGL
- Framework FITGraphics od pána profesora Mileta
- CMake
- Visual Studio 2022

Použité zdroje

- Výsledné riešenie projektu je založené na tutoriále od Tamasa Kormendiho dostupného v tomto Github repozitáry: <u>Github repozitár</u>
- Kód na generáciu normálov bol inšpirovaný tu: <u>Normály</u>
- Kód na čítanie zo súboru a uloženie do reťazca bol inšpirovaný tu: <u>Čítanie a zápis zo súboru</u>
- Inak som čerpal z kódu na cvičeniach a z kódov priložených vo frameworku FitGraphics

Co bylo nejpracnější

Najviac práce dala zabrať implementácia radiozity. Tú som dokončoval do posledných dní pred odovzdaním projektu a stále nieje implementovaná bez chýb.

Zkušenosti získané řešením projektu

Naučil som sa spôsob implementácie radiosity na vysvietenie globálnej iluminácie scény. V rámci toho som sa naučil pracovať s viacerými shader programamy, kde každý bol určený na nejakú časť výpočtu. Rovnako som sa zoznámil aj s čítaním výstupov shaderov a následným použitím týchto výstupov v nasledujúcich výpočtoch. V neposlednom rade som sa naučil pracovať s multitexturovaním objektov pri nasvietení scény.

Autoevaluace

Ohodnoť te vaše řešení v jednotlivých kategoriích (0 – nic neuděláno, zoufalství, 100% – dokonalost sama). Projekt, který ve finále obdrží plný počet bodů, může mít složky hodnocené i hodně nízko. Uvedení hodnot blízkých 100% ve všech nebo mnoha kategoriích může ukazovat na nepochopení problematiky nebo na snahu kamuflovat slabé stránky projektu. Bodově hodnocena bude i schopnost vnímat silné a slabé stránky svého řešení.

Technický návrh: 75% (analýza, dekompozice problému, volba vhodných prostředků, ...)

Myslím si, že som splnil zadanie úlohy a nemal som problém s mojím návrhom pri riešení. Jediná chyba bola podľa mňa výber algoritmu globálneho osvetlenia, ktorý bol až příliš robustný na nasvietenie jednoduchej scény o pár vrcholoch a strávil som pritom veľa času.

Programování: 25% (kvalita a čitelnost kódu, spolehlivost běhu, obecnost řešení, znovupoužitelnost, ...)

V kóde je určite porušených mnoho zásad správneho písania kódu a nieje práve veľmi čitatelný pre lajka. Program však funguje bez výrazných chýb stability. Nemyslím si, že by bol program vhodný pre znovapoužitie bez nutnosti opravy častí kódu.

Vzhled vytvořeného řešení: 40% (uvěřitelnost zobrazení, estetická kvalita, vhled GUI, ...)

Pri riešení som sa zasekol na probléme tieňovania objektov ostatnými objektami a tento problém sa mi nepodarilo vyriesiť. Vďaka tomu výsledné nasvietenie nezodpovedá úplne reálnemu svetu. Inak si nemyslím že výzor programu je zlý.

Využití zdrojů: 15% (využití existujícího kódu a dat, využití literatury, ...)

Takmer celé riešenie je podľa priloženého Github repozitára. V projekte som hlavne len prepájal jednotlivé časti hotového kódu a upravoval kód aby fungoval na moju scénu a na framework FitGraphics.

Hospodaření s časem: 60% (rovnoměrné dotažení částí projektu, míra spěchu, chybějící části řešení, ...)

Myslím že času na projekt som si rezervoval dostatok, len som sa počas riešenia zasekol na pár veciach a následne sa plánovaná časová os posunula. Ku koncu som už začal nestíhať a to vyústilo aj do nedokončenej radiozity.

Celkový dojem: 40-50% (pracnost, získané dovednosti, užitečnost, volba zadání, cokoliv, ...)

Myslím že som si zvolil zaujímavé zadanie projeku a práca na ňom ma bavila. Je mi ľúto že som ho nedotiahol do úplného konca a že nefungujú všetky časti projektu správne. Aj tak som sa pri práci na projekte mnohému naučil a tieto vedomosti určite využijem v budúcnosti. Myslím si že finálne riešenie nieje úplne dotiahnuté a určite je na ňom veľa vecí čo mohli byť spravené lepšie. Takisto si však myslím že som splnil zadanie projektu a program využíva multitexturovanie na zobrazenie nasvietenia scény. Preto si myslím že hodnotenie pri 50% by bolo spravodlivé.

Doporučení pro budoucí zadávání projektů

Vyhovoval mi velký výber zadaní, alebo aj možnosť vlastného zadania. Možno by bolo dobre mať viac informácií ohladom času prihlasovania na projekty, keďže som zistil o ňom až po otvorení prihlasovania. Inak sa mi páčil termín odovzdania, kedy sa mi projekt nekryl s ostatnými projektami a vedel som si naň rezervovať dostatok času.

Spôsob spustenia projektu

V zipe projektu budú okrem tohoto dokumentu aj súbor projekt.cpp a priečinok projekt_dep. Kedže program beží vo frameworku FITGraphics je potrebné súbor projekt.cpp vloziť do zdrojového priečinka. Cesta kam tento súbor vložiť je: fitgraphics/src/student/projekt.cpp.

Priečinok projekt_dep stačí vložiť len do zdrojového priečinka fitgraphics. Prípadne ak ho vložíte inde je treba prepísať cestu v hlavičke projekt.cpp.