1. Concrete Curve Selection

1.1. IRC112: Recto-Parabolic

$$f_{cd} = \frac{\alpha f_{ck}}{\gamma_m}$$

where $\alpha = 0.67$

$$\begin{split} \sigma_{\rm c} &= f_{\rm cd} \left[1 - \left(1 - \frac{\varepsilon_{\rm c}}{\varepsilon_{\rm c2}} \right)^{\rm n} \right] \quad \text{for} \quad 0 \le \varepsilon_{\rm c} \le \varepsilon_{\rm c2} \\ \sigma_{\rm c} &= f_{\rm cd} \quad \textit{for} \quad \varepsilon_{\rm c2} \le \varepsilon_{\rm c} \le \varepsilon_{\rm cu2} \end{split}$$

Where,

 η = Exponent as given in Table 6.5

 ϵ_{c2} = Strain at reaching characteristic strength as given in Table 6.5

 ε_{cu2} = Ultimate strain as given in Table 6.5

Υ_m = Material factor as provided in Input file under "Material Properties"

Section

NOTE: Apart from Material properties, program only reads Ultimate/Limiting Strain (\mathcal{E}_{cu}), Strain at Characteristic Strength (\mathcal{E}_{c}) and Exponent (η) from the Input file to generate the above curve.

1.2. IRC112: Confined

January 1, 2025

$f_{ck,c} = f_{ck} (1 + 5\sigma_2 / f_{ck}) \text{ for } \sigma_2 \le 0.05 f_{ck}$	Eq. A2-29
--	-----------

$$f_{ck,c} = f_{ck} (1.125 + 2.5\sigma_2 / f_{ck})$$
 for $\sigma_2 > 0.05 f_{ck}$ Eq. A2-30

$$\varepsilon_{c2,c} = \varepsilon_{c2} (f_{ck,c}/f_{ck})^2$$
 Eq. A2-31

$$\varepsilon_{cu2,c} = \varepsilon_{cu2} + 0.2\sigma_2 / f_{ck}$$
 Eq. A2-32

Where $\sigma_2(=\sigma_3)$ is the effective lateral compressive stress at the ULS due to confinement and ε_{c2} and ε_{cu2} follow from **Table 6.5**. Confinement can be achieved by adequately closed links or crossties, which reach the plastic condition due to lateral extension of the concrete.

NOTE:

Apart from Material properties, program only reads Ultimate/Limiting Strain (\mathcal{E}_{cu}), Strain at Characteristic Strength (\mathcal{E}_c), Exponent (η) and Effective Lateral Compressive Stress (σ_2) from the Input file to generate the above curve, using equations given above.

1.3. IRC112: Bilinear

$$f_{cd} = \frac{\alpha f_{ck}}{\gamma_m}$$

where $\alpha = 0.67$

Where,

 ε_{c3} = Strain at reaching characteristic strength as given in Table 6.5

 ε_{cu3} = Ultimate strain as given in Table 6.5

 $\Upsilon_{\rm m}$ = Material factor as provided in Input file under "Material Properties"

Section

NOTE:	Apart from Material properties, program only reads Ultimate/Limiting	
	Strain (\mathcal{E}_{cu}) and Strain at Characteristic Strength (\mathcal{E}_{c}) from the Input file to	
	generate the above curve	

1.4. IRS: Parabolic or BS5400: Parabolic

FIG3: SHORT TERM DESIGN STRESS STRAIN CURVE FOR NORMAL WEIGHT CONCRETE

Equation for the parabolic curve between ϵ = 0 and ϵ = 2.44x10⁻⁴ $V(f_{ck}/\Upsilon_m)$, may be taken as

$$\mathsf{f} = \left\lceil 5500 \sqrt{\frac{f_{\mathrm{ck}}}{Y_{\mathrm{m}}}} \right\rceil \varepsilon - \left[\frac{5500^2}{2.68} \right] \varepsilon^2$$

NOTE: Apart from Material properties, program only reads Ultimate/Limiting Strain (\mathcal{E}_{cu}) from the Input file to generate the above curve.

2. Reinforcement Steel Curve Selection

2.1. IRC112: Idealised Bilinear or IRC112: Simplified Bilinear

NOTE:

Apart from Material properties, program reads from the Input file to generate the above curve as follows:

- i. In order to generate the Stress Strain curve as per IRC112, "Ultimate/Limiting Strain (\mathcal{E}_{uk}) " (given in Table 18.1 of IRC112) and "Ratio of \mathcal{E}_{uk} & Design Strain (\mathcal{E}_{ud}) " is a must input.
- ii. Additionally, if Idealised Bilinear Curve option is selected, then the "Ratio of f_t/f_{yk} " (given in Table 18.1 of IRC112) is required to calculate " f_t ".

3

January 1, 2025

Where, f_{yk} is the Yield strength (F_y) of reinforcement steel as provided in the input file under "Material Properties" Section.

2.2. IRS: Fig4A or IRS: Fig4B

FIG 4: REPRESENTATIVE STRESS STRAIN CURVE FOR REINFORCEMENT

NOTE: Apart from Material properties, program only reads Ultimate/Limiting Strain (\mathcal{E}_{uk}) from the Input file to generate the above curve.

4

2.3. BS5400: Fig2

Figure 2 — Short term design stress-strain curve for reinforcement

NOTE: Apart from Material properties, program only reads Ultimate/Limiting Strain (\mathcal{E}_{uk}) from the Input file to generate the above curve.

3. Prestressing Steel Curve Selection

3.1. IRC112: Fig6.3 or IRS: Fig2A

NOTE: Program only reads Ultimate Strength of Prestressing Steel from Material properties from the Input file to generate the above curve.

3.2. IRC112: Idealised Bilinear or IRC112: Simplified Bilinear

NOTE:

struct/Qe

Apart from Material properties, program reads Ultimate/Limiting Strain (\mathcal{E}_{uk}) and Ratio of $f_{p0.1k}/f_{pk}$ from the Input file to generate the curve for Simplified Bilinear Diagram. Additionally, if Idealised Bilinear Diagram is selected, program reads Ratio of \mathcal{E}_{uk} & Design Strain (\mathcal{E}_{ud}) also.

3.3. IRS: Fig2B

FIG 2B: WIRES (AS DRAWN)
REPRESENTATIVE STRESS STRAIN
CURVES FOR PRE-STRESSING STEEL

NOTE: Program only reads Ultimate Strength of Prestressing Steel from Material properties from the Input file to generate the above curve.

January 1, 2025

3.4. IRS: Fig2 or BS5400: Fig3

Fig. 2. Short term design stress strain curve for normal and for low relaxation products.

NOTE:	Apart from Material properties, program only reads Ultimate/Limiting
	Strain (\mathcal{E}_{uk}) from the Input file to generate the above curve.

