22BIO201 Intelligence of Biological Systems 1

Lab Sheet 2

- 1. Create a Python dictionary to store the RNA codon table explained in the class. Download the DNA sequence of 'Insulin' from NCBI and do the process of transcription and translation to see what amino acid sequence is produced from it.
- 2. Create a .fasta file with the following content

>000626 | HUMAN Small inducible cytokine A22.

MARLQTALLVVLVLLAVALQATEAGPYGANMEDSVCCRDYVRYRLPLRVVKHFYWTS DS<=

CPRPGVVLLTFRDKEICADPR

VPWVKMILNKLSQ

- a. Read the file, extract the header information and print it.
- b. Read and print the sequence from the file.
- c. Append molecular weight of the sequence at the end of the file.
- 3. Compute the Number of Times a Pattern Appears in a Text

Description: This is the first problem in a collection of "code challenges" to accompany *Bioinformatics Algorithms: An Active-Learning Approach* by Phillip Compeau & Pavel Pevzner.

A k-mer is a string of length k. We define Count(Text, Pattern) as the number of times that a k-mer Pattern appears as a substring of Text.

For example,

Count(ACAACTATGCATACTATCGGGAACTATCCT,ACTAT)=3.

We note that *Count*(CGATATATCCATAG, ATA) is equal to 3 (not 2) since we should account for overlapping occurrences of *Pattern* in *Text*.

Implement PatternCount

Given: {DNA strings}} *Text* and *Pattern*.

Return: Count(Text, Pattern).

Pseudocode:

PatternCount(Text, Pattern) $count \leftarrow 0$

```
for i \leftarrow 0 to |Text| - |Pattern|

if Text(i, |Pattern|) = Pattern

count \leftarrow count + 1

return count
```

Sample Dataset

GCGCG GCG

Sample Output

2

Visit http://rosalind.info/problems/ba1a/ . Solve the problem. Use the sample dataset given in the site.

4. Find All Occurrences of a Pattern in a DNA String

Description: In this problem, we ask a simple question: how many times can one string occur as a substring of another? Recall from "Find the Most Frequent Words in a String" that different occurrences of a substring can overlap with each other. For example, ATA occurs three times in CGATATATCCATAG.Pattern Matching Problem

Find all occurrences of a pattern in a string.

Given: Strings *Pattern* and *Genome*.

Return: All starting positions in *Genome* where *Pattern* appears as a substring. Use 0-based indexing.

Sample Dataset

ATAT GATATATGCATATACTT

Sample Output

139

Visit http://rosalind.info/problems/ba1d/ . Solve the problem. Use the sample dataset given in the site.

5. Find the Most Frequent Words in a String

Description: We say that *Pattern* is a **most frequent** *k*-**mer** in *Text* if it maximizes *Count*(*Text*, *Pattern*) among all <u>k</u>-**mers**. For example, "ACTAT" is a most frequent 5-mer in "ACAACTATGCATCACTATCGGGAACTATCCT", and "ATA" is a most frequent 3-mer of "CGATATATCCATAG".

Frequent Words Problem

Find the most frequent k-mers in a string.

Given: A DNA string Text and an integer k.

Return: All most frequent *k*-mers in *Text* (in any order).

Sample Dataset

ACGTTGCATGTCGCATGATGCATGAGAGCT

Sample Output

CATG GCAT

Visit http://rosalind.info/problems/ba1b/ . Solve the problem. Use the sample dataset given in the site.