

ClimateTalk 2.0 HAC Motor Application Profile

Document revision: 01 Released: June 12, 2013

Abstract

ClimateTalk is a universal language for innovative, cost-effective solutions that optimize performance, efficiency and home comfort. The ClimateTalk Open Standards define a set of messages and commands to enable interoperability, enhanced user interface, and machine to machine control independent of the physical layer connecting the devices.

This document defines the application requirements corresponding to OSI Layer 7 that are specific to a Heating and Air Conditioning (HAC) motor operation and interaction with other devices on a ClimateTalk network.

Copyright @ 2013 by the ClimateTalk Alliance 2400 Camino Ramon Suite 375 San Ramon, CA 94583 USA

All rights reserved.

This document and the information contained herein are provided on an "AS IS" basis and ClimateTalk Alliance DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING WITH-OUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. IN NO EVENT WILL CLIMATETALK BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OF DATA, INTERRUPTION OF BUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. All Company, brand and product names may be trademarks that are the sole property of their respective owners.

This document is subject to change without notice.

Updates

This specification may be updated at any time and may be superseded by a more recent version or amended to from time to time. Users should be certain they are using the current ClimateTalk version and the latest revision of the documents.

The released versions of all specifications are available at http://www.ClimateTalk.org

Version History

ClimateTal k Version	Document Revision	Release Date	Comments
V 1.0		2009-08-24	Initial Release
V 1.3		2011-11-02	Errata Updates, Revised Formatting
V 2.0	00	2013-01-18	Version 2.0 Release – Correct packet example messages (Reset, power level, manufacturer ID reply).
V 2.0	01	2013-06-12	Updated references to /4 to be *4. Actual data transmitted is the desired CFM or RPM multiplied by 4. Updated DMA Request - CFM Status to show the correct number of bytes requested for the response received.

Contributors

The following is a list of ClimateTalk Alliance member companies that were actively engaged in the development of this standard:

A.O. Smith, Motors Division

A.O. Smith, Water Products Company

Aprilaire

Arzel Zoning

Emerson Electric, Co.

Nidec Motor Company

Rheem Manufacturing

ZoneFirst

ALLIANCE

Document revision: 01

Table of Contents

1.0	OVERVIEW	5
1.1 1.2	CLIMATETALK MODELSCOPE	_
2.0	NORMATIVE REFERENCES	7
3.0	TERMINOLOGY	8
3.1 3.2 3.3	DefinitionsAcronymsWord Usage	9
4.0	NORMAL OPERATION	10
4. 4.	PROTOCOL REQUIREMENTS ACK AND NAK USAGE GENERAL RULES. 3.1 Running an Indoor Blower Motor. 3.2 Running an Inducer Fan Motor. 3.3 Running a Stepper Motor. 3.4 Running an Outdoor Fan Motor.	10 10 11 14 15
5.0	DIAGNOSTICS	17
5.1	DIAGNOSTIC CONTROL	17
6.0	APPLICATION SUPPORTED MESSAGE TYPES	17
6.1	CONTROL COMMANDS	18
7.0	MESSAGE DATA INTERFACES (MDIS)	19
7. 7. 7.2 7. 7. 7. 7.3 7.	1.1 Indoor Blower Motor Status Data 1.2 Inducer Fan Motor Status Data 1.3 Outdoor Fan Motor Status Data 1.4 Stepper Motor Status Data SENSOR MESSAGE DATA INTERFACES 2.1 Indoor Blower Motor Sensor Data 2.2 Inducer Fan Motor Sensor Data 2.3 Outdoor Fan Motor Sensor Data	20 23 26 29 30 31 32 33 33 35
8.0	PACKET EXAMPLES	38
8.1 8.2 8.3	INDOOR BLOWER MOTOR	43

ALLIANCE

Document revision: 01

List of Figures

Figure 1 - OSI Layers for ClimateTalk Implementation6

List of Tables

Table 1 - Acknowledgements to Commands	13
Table 2: Application Message Types	17
Table 3: Motor Control Commands	19
Table 4: Indoor Blower Motor Status Data	22
Table 5: Inducer Fan Motor Status Data	25
Table 6: Outdoor Fan Motor Status Data	28
Table 7: Stepper Motor Status Data	29
Table 8: Indoor Blower Motor Sensor Data	
Table 9: Inducer Fan Motor Sensor Data	31
Table 10: Outdoor Fan Motor Sensor Data	32
Table 11: Indoor Blower Motor Identification Data	34
Table 12: Inducer Fan and Outdoor Fan Motor Identification Data	36
Table 13: Stepper Motor Identification Data	37

1.0 Overview

1.1 ClimateTalk Model

ClimateTalk is an open standard that defines a set of messages and commands to enable interoperability, enhanced user interface, and machine to machine control independent of the physical layer connecting the devices.

The messages and commands defined by ClimateTalk Information Model (CIM) are the presentation and application layers as defined by the OSI Model¹. ClimateTalk Applications are fully defined at Layer 7 of the OSI model by a combination of a Device Specific Application Profile, the Generic Application Specification and the Command Reference.

ClimateTalk messages can be carried over any physical medium following the OSI model. The ClimateTalk Presentation Layer defines how messages are executed over the various physical mediums in use.

CT-485 and CT-LWP are wired serial physical and network layers designed to support the formation of ClimateTalk networks and transport ClimateTalk messages, but other OSI based protocols – including wireless transports - can be used as well.

1.2 Scope

This document defines the specific application requirements for a variety of Heating and Air Conditioning (HAC) motors designed to ClimateTalk Open Standards. This profile defines how to operate & monitor the motors and how the motor interacts with other devices on a ClimateTalk network. This profile builds on the *Generic Application Specification* defining requirements common to all ClimateTalk enabled devices.

The ClimateTalk Open Standards package shown in Figure 1 - OSI Layers for ClimateTalk Implementation prescribes the mandatory requirements to ensure proper network formation of interoperable devices. Membership in the ClimateTalk Alliance as well as successful completion of mandatory conformance testing is required for listing a product as a ClimateTalk Certified Device.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=20269

OSI HAC Water **HVAC** Zoning **Future** Motor Heater Model Profile **Profiles Profile** Profile* Profile ClimateTalk Layer 7 Generic Application Specification Information Application Model Command Reference Layer 6 Presentation CT-485 API Future API Layer 5 Session CT-485 Layer 4 Session, Transport & Transport **Network Specification Future** Compatible Layer 3 OSI Based CT-LWP **Protocols** Network Protocols CT-485 Network, Data Layer 2 Data Link Specification Link & Physical Daťa Link Specification CT-485 Layer 1 **Physical Specification** Physical

Figure 1 - OSI Layers for ClimateTalk Implementation

*This Document

This profile also defines the testable requirements used to validate that a motor is behaving properly within a ClimateTalk network. Each device must comply with the mandatory requirements defined in this document as well as all other ClimateTalk standards applicable to the device functionality.

2.0 Normative References

A good understanding of the most recent version of the following documents is required to apply the contents of this specification correctly.

ClimateTalk HVAC Application Profile

ClimateTalk Generic Application Specification

ClimateTalk Command Reference

ClimateTalk CT-LWP Specification

3.0 Terminology

3.1 Definitions

Attempt Delay The amount of time a subsystem waits for a response from another

subsystem to a request.

Null Byte Hexadecimal zero, also shown as 0x00.

Profile Set of rules governing the implementation of certain aspects of the

protocol, which will include timings and communication rules to function

properly.

Shared Data Configuration information for each subsystem on the network that is stored

by multiple subsystems on the network. This allows for automatic configuration of replacement subsystems and is optional for the Motor

Profile.

Master Network node in charge of all communication functions. The master node

shall be one of the subsystems defined in the ClimateTalk HVAC profile.

Slave Within this profile, a slave is a motor that only communicates upon

initiation from a Master node. There can be up to 254 slave nodes per CT-

LWP network.

Twos compliment A means by which binary numbers can be used to represent both positive

and negative numbers. The twos compliment of a binary number is defined as the value obtained by subtracting the number from a large power of two, specifically, from 2^N for an N-bit two's complement. This mechanism enables negative numbers behave like the negative of the original number in most arithmetic, and it can coexist with positive numbers in a natural way. An N-bit two's-complement numeral system

can represent every integer in the range -2N-1 to +2N-1-1.

3.2 Acronyms

A_{rms} Root mean square of the amperage

CCW Counter clockwise
CFM Cubic Feet per Minute

CW Clockwise

DBID Database Identification **DMA** Data Memory Access

IBM Indoor Blower Motor (Furnace/ Air Handler Blower Motor)

IEEE Institute of Electrical and Electronics Engineers

IFM Inducer Fan Motor

LE Lead end of the motor

LNG Liquefied Natural Gas

LPG Liquefied Petroleum Gas

MDI Message Data Interface

Nm Newton meters
OFM Outdoor Fan Motor
PHOME Position Home
PVAL Position Value

RPM Revolutions per Minute

SD Shared Data

STP Stepper Valve Position Motor

SW Software

VAC_{rms} Root mean square of the AC Voltage

3.3 Word Usage

The conventions used in this document are modelled after the definitions of the *2009 IEEE Standards Style Manual*. The *IEEE Standards Style Manual* can be downloaded from https://development.standards.ieee.org/myproject/Public/mytools/draft/styleman.pdf.

can Equivalent to is able to or is capable of.

may Equivalent to is permitted to or is allowed to. The use of may means that something is

optional and does not imply a requirement.

must Used to describe situations where no other course of action is possible.

shall Equivalent to is required to. Use of the word shall means that the specification shall be

implemented exactly as described in order to ensure correct operation and

interoperability with other devices.

should Equivalent to *is recommended that*. This is used in situations where there are several

possible options, but one option is preferable to the others.

4.0 Normal Operation

4.1 Protocol Requirements

This version of the Motor Application Profile shall be used with CT-LWP protocol. In its current definition, the motors are intended to be connected as a slave in a master-slave configuration with the master device being one of the subsystems defined in the ClimateTalk HVAC profile.

4.2 ACK and NAK Usage

The ClimateTalk Motor, as a slave device, supports multiple message acknowledgements presented in the application layer and a NAK1 message used in the network layer. Reference ClimateTalk standard, CT-LWP for the proper response from the slave device under each circumstance.

4.3 General Rules

This section details the general rules that apply for normal operation of the motor types supported in this profile.

- Control Status1 indicates the status of the motor. The master is responsible for asking the Control Status1 of the motor using a DMA request as specified in Section 7.1. Packet examples of these commands can be found in Section 8.0. The control status 1 request can be made at any time.
- If required minimum parameters, as defined in the following sections for each motor type, are set, the motor will run.
 - o If a run command is sent and the minimum parameters are not set, the motor will not run and respond with ACK3.
 - Bit 10 of Control Status1 is set if the minimum parameters required to run the motor have not been set. This flag will be cleared once all the required parameters are successfully sent to the motor.
- Direction, Control Mode and Blower Coefficients (if applicable) should not be changed while the motor is running.
 - Attempt to change these parameters while the motor is running will result with an ACK2 response and the motor will keep running using prior settings.
 - Bit 15 of Control Status 1 is set if 'Undesired Parameters' have been sent. This flag will be cleared once a stop command is issued to the motor. The motor will not retain the undesired parameter that was sent.
- When the motor is stopped, the master is responsible for issuing new direction, control mode and blower coefficients (if applicable) otherwise the motor will use the previous values that were sent.
- The master is responsible for ramping down to a lower desired demand (airflow, speed or torque) before issuing a command to stop the motor.
- If Run/Stop Motor Command is cleared, the master stops the motor immediately.

4.3.1 Running an Indoor Blower Motor

A motor must be able to understand and respond to the mandatory set of message types as defined in Section 6.0.

The steps to operate an Indoor Blower Motor are dependent on the operating mode selected and are defined as follows:

In Speed or Torque Mode - Control Modes 0 or 1

*NOTE 1: In speed or torque mode, Parameters 3 through 6 are required to run the motor

In Airflow Mode - Control Mode 2;

*NOTE 2: In airflow mode, Parameters 3 through 7 are required to run the motor

The following table shows appropriate responses from the motor for most commonly used commands on an Indoor Blower Motor.

	Response if Stopped			Response if Running		
Command	Torque Mode	Speed Mode	CFM Mode	Torque Mode	Speed Mode	CFM Mode
Set Control Mode	ACK1	ACK1	ACK1	ACK2	ACK2	ACK2
Set Motor Speed	ACK2	ACK1	ACK2	ACK2	ACK1	ACK2
Set Motor Torque	ACK1	ACK2	ACK2	ACK1	ACK2	ACK2
Set Air Flow Demand	ACK2	ACK2	ACK1	ACK2	ACK2	ACK1
Set Demand Ramp Time	ACK1	ACK1	ACK1	ACK1	ACK1	ACK1
Set Motor Direction	ACK1	ACK1	ACK1	ACK2	ACK2	ACK2
Set Motor Torque Percent	ACK1	ACK2	ACK2	ACK1	ACK2	ACK2
Set Blower Coefficient 1	ACK2	ACK2	ACK1	ACK2	ACK2	ACK2
Set Blower Coefficient 2	ACK2	ACK2	ACK1	ACK2	ACK2	ACK2
Set Blower Coefficient 3	ACK2	ACK2	ACK1	ACK2	ACK2	ACK2
Set Blower Coefficient 4	ACK2	ACK2	ACK1	ACK2	ACK2	ACK2
Set Blower Coefficient 5	ACK2	ACK2	ACK1	ACK2	ACK2	ACK2
Set Air Flow Limit	ACK1	ACK1	ACK1	ACK1	ACK1	ACK1
RUN/STOP Motor	ACK1	ACK1	ACK1	ACK1	ACK1	ACK1

NOTE 3: ACK1 represer

ACK1 represents a valid message receipt with valid and complete parameters ACK2 represents a valid message with undesired parameters

Table 1 - Acknowledgements to Commands

4.3.2 Running an Inducer Fan Motor

A motor must be able to understand and respond to the mandatory set of message types as defined in Section 6.0. The steps to operate an Inducer Fan Motor are as follows:

*NOTE 4: Parameters 2 through 4 are required to run an inducer fan motor

4.3.3 Running a Stepper Motor

A motor must be able to understand and respond to the mandatory set of message types as defined in Section 6.0. The steps to operate a Stepper Motor (STP) as a Furnace Gas Valve controller are as follows;

*NOTE 5: Parameters 2 through 3 are required to run a stepper motor

4.3.4 Running an Outdoor Fan Motor

A motor must be able to understand and respond to the mandatory set of message types as defined in Section 6.0. The steps to operate an Outdoor Fan Motor (OFM) for an Air Conditioner or Heat Pump are as follows;

*NOTE 6: Parameters 2 through 4 are required to run an Outdoor Blower Motor

5.0 Diagnostics

5.1 Diagnostic Control

Diagnostic information is provided via the Status MDI using the DMA Request Message Type as defined in Section 7.1. Any device needing diagnostic information must request that specific information from the motor.

6.0 Application Supported Message Types

A motor must be able to understand and respond to the following mandatory set of message types as defined in the table below.

	Code			
Message Name	Hex	DEC		
Control Command	0x03	3		
DMA Request	0x1D	29		
DMA Reply	0x1E	30		
OEM Generic Set	0x1F	31		
OEM Generic Request	0x20	32		
OEM Generic Reply	0x21	33		

Table 2: Application Message Types

In order to keep the data payload below 16 bytes, Status, Identification and Sensor Data are accessed thru DMA requests as specified in Section 7.0.

6.1 Control Commands

Control commands are used for remotely modifying a device function. The control commands used by the Motor Profile are shown in the table below. Control Command Definitions are located in the Command Reference.

The Mandatory column identifies the control command which must be implemented for the type of motor specified. All control commands not identified as Mandatory are optional and may be used per application specific requirements.

			Mandatory Applications			
Control Command	Code (Hex)	Code (Decimal)	Indoor Blower Motor	Inducer Fan Motor	Outdoor Fan Motor	Stepper Motor
Reset Micro	0x31	49				
Set Motor Speed	0x6A	106	Х	Х	Х	
Set Motor Torque	0x6B	107	Х			
Set Airflow Demand	0x6C	108	Х			
Set Control Mode	0x6D	109	Χ	X	X	
Set Demand Ramp Rate	0x6E	110	Χ		Х	
Set Motor Direction	0x6F	111	X	X	X	
Set Motor Torque Percent	0x70	112	X			
Set Motor Position Demand	0x71	113				X
Set Blower Coefficient 1	0x72	114	Χ			
Set Blower Coefficient 2	0x73	115	X			
Set Blower Coefficient 3	0x74	116	X			
Set Blower Coefficient 4	0x75	117	X			
Set Blower Coefficient 5	0x76	118	X			
Set Blower Identification 0	0x77	119				
Set Blower Identification 1	0x78	120				
Set Blower Identification 2	0x79	121				
Set Blower Identification 3	0x7A	122				
Set Blower Identification 4	0x7B	123				
Set Blower Identification 5	0x7C	124				

			M	landatory A	Application	ns
Control Command	Code (Hex)	Code (Decimal)	Indoor Blower Motor	Inducer Fan Motor	Outdoor Fan Motor	Stepper Motor
Reserved	0x7D	125				
Reserved	0x7E	126				
Set Speed Limit	0x7F	127		X		
Set Torque Limit	0x80	128				
Set Airflow Limit	0x81	129	X			
Set Power Output Limit	0x82	130				
Set Device Temperature Limit	0x83	131				
Reserved	0x84	132				
STOP Motor by Braking	0x85	133				
RUN/STOP Motor	0x86	134	X	Х	X	
Reserved	0x87	135				
Set Demand Ramp Time	0x88	136				
Set Inducer Ramp Rate	0x89	137		X		
Set Blower Coefficient 6	0x8A	138				
Set Blower Coefficient 7	0x8B	139				
Set Blower Coefficient 8	0x8C	140				
Set Blower Coefficient 9	0x8D	141				
Set Blower Coefficient 10	0x8E	142				

NOTE 7: Green Shaded cells are required in order for the system to function properly

Table 3: Motor Control Commands

7.0 Message Data Interfaces (MDIs)

Motors shall support the message data interfaces defined below by motor type.

Fields shaded in Green are mandatory and must have accurate values reflecting the state of the device. Space must be reserved for the optional fields. If not being used, it is recommended that the optional fields be set to 0.

In the packet examples at the end of this document, the following codes shall be used in the Data 1 byte position to represent the various MDI requests: Status = 0x02, Sensor = 0x07, Identification = 0x0E.

7.1 Status Message Data Interface

7.1.1 Indoor Blower Motor Status Data

Packet	DBID	Bit	Description	Size	Notes
	0	7-0	Speed Low Byte	1 Byte	RPM * 4
	1	7-0	Speed High Byte	1 Byte	
	2	7-0	Torque Low Byte	1 Byte	Nm * 2048
	3	7-0	Torque High Byte	1 Byte	
	4	7-0	Airflow Low Byte	1 Byte	CFM * 4
	5	7-0	Airflow High Byte	1 Byte	
	6	7-0	Reserved	1 Byte	
	7	7-0	Reserved	1 Byte	
					0 = speed
	8	7-0	Control Mode	1 Byte	1 = torque
	0	7-0	Control Mode	1 byte	2 = airflow
					3 to 255 : not defined
	9	7-0	Demand Low Byte	1 Byte	Demand = Speed demand(RPM*4), if speed mode
0	10	10 7-0 Demand High Byte		1 Byte	= Torque demand (Nm *2048), if torque mode = Airflow demand(CFM*4), if
					Airflow mode
	11	7-0	Direction	1 Byte	0 = CCW LE; 1 = CW LE
	12	7-0	Demand Ramp Rate	1 Byte	Time in seconds to ramp from 0% to 100%
					0,128 = Ramp as fast as possible
	13	7-0	Inducer Ramp Rate	1 Byte	1-127 = ramp rate in RPM / sec
					129-255 = ramp rate in 10 * RPM / sec
	14	7-0	Speed Limit set Low Byte	1 Byte	RPM * 4
	15	7-0	Speed Limit set High Byte	1 Byte	IN FI
	16	7-0	Torque Limit set Low Byte	1 Byte	Nm * 2048
	17	7-0	Torque Limit set High Byte	1 Byte	

ALLIANCE

Document revision: 01

Packet	DBID	Bit	Description	Size	Notes
	18	7-0	Airflow Limit set Low Byte	1 Byte	CFM * 4
	19	7-0	Airflow Limit set High Byte	1 Byte	Crivi 4
	20	7-0	Shaft Power Out Limit Low Byte	1 Byte	Watts * 2
	21	7-0	Shaft Power Out Limit High Byte	1 Byte	watts 2
	22	7-0	Power In Limit Low Byte	1 Byte	Watts * 2
	23	7-0	Power In Limit High Byte	1 Byte	watts 2
	24	7-0	Motor Temp Limit Low Byte	1 Byte	Degrees C * 128, twos
	25	7-0	Motor Temp Limit High Byte	1 Byte	complement
	26	7-0	Device Temp Limit Low Byte	1 Byte	Degrees C * 128, twos
	27	7-0	Device Temp Limit High Byte	1 Byte	complement
	28	7-0	Reserved	1 Byte	
	29	7-0	Reserved	1 Byte	
					Bit 0 Starting Routine
					Bit 1 Demand Slew
					Bit 2 Run : Normal
	30	7-0	Control Status1 Low Byte	1 Byte	Bit 3 Run : Power Limit
	30	7 0	Control Status1 Low Byte	Dyte	Bit 4 Run : Temp Limit
					Bit 5 Lost Rotor Trip
					Bit 6 Current Trip
					Bit 7 Over Voltage
					Bit 8 Under Voltage
					Bit 9 Over Temp.
					Bit 10 Incomplete Parameters.
	31	7-0	Control Status1 High Byte	1 Byte	Bit 11 Reserved
					Bit 12 Reserved
					Bit 13 Reserved
					Bit 14 Reserved
					Bit 15 Undesired Parameter

Packet	DBID	Bit	Description	Size	Notes
			·		Change
	32	7-0	Control Status2 Low Byte	1 Byte	User defined
	33	7-0	Control Status2 High Byte	1 Byte	User defined
	34	7-0	Control Status3 Low Byte	1 Byte	User defined
	35	7-0	Control Status3 Low Byte	1 Byte	User defined
	36	7-0	Reserved	1 Byte	
	37	7-0	Reserved	1 Byte	
	38	7-0	Reserved	1 Byte	
	39	7-0	Reserved	1 Byte	
	40	7-0	Reserved	1 Byte	
	41	7-0	Reserved	1 Byte	
	42	7-0	Reserved	1 Byte	
	43	7-0	Reserved	1 Byte	
	44	7-0	Reserved	1 Byte	
	45	7-0	Reserved	1 Byte	
	46	7-0	Reserved	1 Byte	
	47	7-0	Reserved	1 Byte	
	48	7-0	Reserved	1 Byte	
	49	7-0	Reserved	1 Byte	

NOTE 8: Green Shaded rows are required in order for the system to function properly

Table 4: Indoor Blower Motor Status Data

7.1.2 Inducer Fan Motor Status Data

Packet	DBID	Bit	Description	Size	Notes
	0	7-0	Speed Low Byte	1 Byte	RPM * 4
	1	7-0	Speed High Byte	1 Byte	
	2	7-0	Torque Low Byte	1 Byte	Nm * 2048
	3	7-0	Torque High Byte	1 Byte	
	4	7-0	Airflow Low Byte	1 Byte	CFM * 4
	5	7-0	Airflow High Byte	1 Byte	CIPI 4
	6	7-0	Reserved	1 Byte	
	7	7-0	Reserved	1 Byte	
					0 = speed
	8	7-0	Control Mode	1 Byte	1 = torque
	0	7-0	Control Mode	1 byte	2 = airflow
					3 to 255 : not defined
	9	7-0	Demand Low Byte	1 Byte	Demand = Speed
0			· · · · · · · · · · · · · · · · · · ·	demand(RPM*4), if speed mode	
	10	0 7-0	Demand High Byte	1 Byte	= Torque demand (Nm
					*2048), if torque mode
					= Airflow demand (CFM*4), if Airflow mode
	11	7-0	Direction	1 Byte	0 = CCW LE; 1 = CW LE
				,	Time in seconds to ramp
	12	7-0	Demand Ramp Rate	1 Byte	from 0% to 100%
					0,128 = Ramp as fast as possible
	13	7-0	Inducer Ramp Rate	1 Byte	1-127 = ramp rate in RPM / sec
					129-255 = ramp rate in
	1.4	7.0	Connections	1 D. ±-	10 * RPM / sec
	14	7-0	Speed Limit set Low Byte	1 Byte	RPM * 4
	15	7-0	Speed Limit set High Byte	1 Byte	
	16	7-0	Torque Limit set Low Byte	1 Byte	Nm * 2048

Packet	DBID	Bit	Description	Size		Notes
	17	7-0	Torque Limit set High Byte	1 Byte		
	18	7-0	Airflow Limit set Low Byte	1 Byte	CFM * 4	
	19	7-0	Airflow Limit set High Byte	1 Byte		
	20	7-0	Shaft Power Out Limit Low Byte	1 Byte	Watts * 2	2
	21	7-0	Shaft Power Out Limit High Byte	1 Byte	- Walls 1	2
	22	7-0	Power In Limit Low Byte	1 Byte	Watts * 2	2
	23	7-0	Power In Limit High Byte	1 Byte	- Walls '	2
	24	7-0	Motor Temp Limit Low Byte	1 Byte	Degrees	C * 128, twos
	25	7-0	Motor Temp Limit High Byte	1 Byte	complem	ent
	26	7-0	Device Temp Limit Low Byte	1 Byte	Degrees	C * 128, twos
	27	7-0	Device Temp Limit High Byte	1 Byte	complem	ent
	28	7-0	Reserved	1 Byte		
	29	7-0	Reserved	1 Byte		
	30	7-0			Bit 0	Starting Routine
			Control Status1 Low Byte	1 Byte	Bit 1	Demand Slew
					Bit 2	Run : Normal
					Bit 3	Run : Power Limit
					Bit 4	Run : Temp Limit
					Bit 5	Lost Rotor Trip
					Bit 6	Current Trip
					Bit 7	Over Voltage
					Bit 8	Under Voltage
					Bit 9	Over Temp.
	24	- 0		4.5.	Bit 10	Incomplete Parameters.
	31	7-0	Control Status1 High Byte	1 Byte	Bit 11	Reserved
					Bit 12	Reserved
					Bit 13	Reserved
					Bit 14	Reserved

Packet	DBID	Bit	Description	Size		Notes
				3,25	Bit 15	Undesired Parameter Change
	32	7-0	Control Status2 Low Byte	1 Byte	User defi	ned
	33	7-0	Control Status2 High Byte	1 Byte	User defi	ned
	34	7-0	Control Status3 Low Byte	1 Byte	User defi	ned
	35	7-0	Control Status3 Low Byte	1 Byte	User defi	ned
	36	7-0	Reserved	1 Byte		
	37	7-0	Reserved	1 Byte		
	38	7-0	Reserved	1 Byte		
	39	7-0	Reserved	1 Byte		
	40	7-0	Reserved	1 Byte		
	41	7-0	Reserved	1 Byte		
	42	7-0	Reserved	1 Byte		
	43	7-0	Reserved	1 Byte		
	44	7-0	Reserved	1 Byte		
	45	7-0	Reserved	1 Byte		
	46	7-0	Reserved	1 Byte		
	47	7-0	Reserved	1 Byte		
	48	7-0	Reserved	1 Byte		
	49	7-0	Reserved	1 Byte		

NOTE 9: Green Shaded rows are required in order for the system to function properly

Table 5: Inducer Fan Motor Status Data

7.1.3 Outdoor Fan Motor Status Data

DBID	Bit	Description	Size	Notes	
0	7-0	Speed Low Byte	1 Byte	RPM * 4	
1	7-0	Speed High Byte	1 Byte		
2	7-0	Torque Low Byte	1 Byte	Nm * 2048	
3	7-0	Torque High Byte	1 Byte		
4	7-0	Airflow Low Byte	1 Byte	CFM * 4	
5	7-0	Airflow High Byte	1 Byte		
6	7-0	Reserved	1 Byte		
7	7-0	Reserved	1 Byte		
				0 = speed	
8	7-0	Control Mode	1 Byte	1 = torque	
0	7-0	Control Mode	1 Dyte	2 = airflow	
				3 to 255 : not defined	
9	7-0	Demand Low Byte	1 Byte	Demand = Speed demand(RPM*4), if speed mode	
				= Torque demand (Nm *2048), if torque mode	
10	7-0	Demand High Byte	te 1 Byte	= Airflow demand (CFM*4), if	
				Airflow mode	
11	7-0	Direction	1 Byte	0 = CCW LE; 1 = CW LE	
12	7-0	Demand Ramp Rate	1 Byte	Time in seconds to ramp from 0% to 100%	
				0,128 = Ramp as fast as possible	
13	7-0	Inducer Ramp Rate	1 Byte	1-127 = ramp rate in RPM / sec	
		, , , , , , , , , , , , , , , , , , ,	,	129-255 = ramp rate in 10 * RPM / sec	
14	7-0	Speed Limit set Low Byte	1 Byte	RPM * 4	
15	7-0	Speed Limit set High Byte	1 Byte	- INFIN - 4	
16	7-0	Torque Limit set Low Byte	1 Byte	Nm * 2048	
17	7-0	Torque Limit set High Byte	1 Byte	1	
18	7-0	Airflow Limit set Low Byte	1 Byte	CFM * 4	
19	7-0	Airflow Limit set High Byte	1 Byte	- Grin - 4	
20	7-0	Shaft Power Out Limit Low	1 Byte	Watts * 2	

ALLIANCE

Document revision: 01

DBID	Bit	Description	Size	Notes		
		Byte				
21	7-0	Shaft Power Out Limit High Byte	1 Byte			
22	7-0	Power In Limit Low Byte	1 Byte	Watts *	2	
23	7-0	Power In Limit High Byte	1 Byte	vaces	2	
24	7-0	Motor Temp Limit Low Byte	1 Byte	Degrees	C * 128, twos complement	
25	7-0	Motor Temp Limit High Byte	1 Byte	Degrees	c 120, twos complement	
26	7-0	Device Temp Limit Low Byte	1 Byte	Degrees	C * 128, twos complement	
27	7-0	Device Temp Limit High Byte	1 Byte	Degrees	c 120, twos complement	
28	7-0	Reserved	1 Byte			
29	7-0	Reserved	1 Byte			
				Bit 0	Starting Routine	
				Bit 1	Demand Slew	
		Control Status1 Low Byte	1 Byte	Bit 2	Run : Normal	
30	7-0			Bit 3	Run : Power Limit	
30	7-0			Bit 4	Run : Temp Limit	
				Bit 5	Lost Rotor Trip	
				Bit 6	Current Trip	
				Bit 7	Over Voltage	
				Bit 8	Under Voltage	
				Bit 9	Over Temp.	
				Bit 10	Incomplete Parameters	
				Bit 11	Reserved	
31	7-0	Control Status1 High Byte	1 Byte	Bit 12	Reserved	
				Bit 13	Reserved	
				Bit 14	Reserved	
				Bit 15	Undesired Parameter Change	
32	7-0	Control Status2 Low Byte	1 Byte	User defined		
33	7-0	Control Status2 High Byte	1 Byte	User def	ined	
34	7-0	Control Status3 Low Byte	1 Byte	User def	ined	

DBID	Bit	Description	Size	Notes
35	7-0	Control Status3 Low Byte	1 Byte	User defined
36	7-0	Reserved	1 Byte	
37	7-0	Reserved	1 Byte	
38	7-0	Reserved	1 Byte	
39	7-0	Reserved	1 Byte	
40	7-0	Reserved	1 Byte	
41	7-0	Reserved	1 Byte	
42	7-0	Reserved	1 Byte	
43	7-0	Reserved	1 Byte	
44	7-0	Reserved	1 Byte	
45	7-0	Reserved	1 Byte	
46	7-0	Reserved	1 Byte	
47	7-0	Reserved	1 Byte	
48	7-0	Reserved	1 Byte	
49	7-0	Reserved	1 Byte	

NOTE 10: Green Shaded rows are required in order for the system to function properly

Table 6: Outdoor Fan Motor Status Data

7.1.4 Stepper Motor Status Data

DBID	Bit	Description	Size	Notes	
0	7-0	Position Home (PHOME)	1 Byte	If PHOME \neq 0, position % = PVAL / 2	
1	7-0	Position Value (PVAL)	1 Byte	If $PHOME = 0$, positi	ion = HOME
				Bit 0	Home Position Flag
				Bit 1	Positioning in Progress
				Bit 2	Positioning complete
2	7-0	Control Status1 Low Byte	1 Byte	Bit 3	Reserved
2	/ 0	Control Status Low Byte	1 Byte	Bit 4	Reserved
				Bit 5	Reserved
				Bit 6	Been Reset Flag
				Bit 7	Motor Fault
			1 Byte	Bit 8	Dip Encoding bit 0
				Bit 9	Dip Encoding bit 1
				Bit 10	Dip Encoding bit 2
3	7-0	Control Status1 High Byte		Bit 11	Dip Encoding bit 3
	, ,	Control Status Friight Byte		Bit 12	Reserved
				Bit 13	Reserved
				Bit 14	Reserved
				Bit 15	LPG / LNG Flag

NOTE 11: Green Shaded rows are required in order for the system to function properly

Table 7: Stepper Motor Status Data

7.2 Sensor Message Data Interfaces

7.2.1 Indoor Blower Motor Sensor Data

DBID	Bits	Description	Size	Notes
0	7-0	DC Bus Low Byte	1 Byte	Volts * 64
1	7-0	DC Bus High Byte	1 Byte	voits or
2	7-0	AC Input Low Byte	1 Byte	VAC _{rms} * 64
3	7-0	AC input High Byte	1 Byte	
4	7-0	PHASE A Current Low Byte	1 Byte	A _{rms} * 2048
5	7-0	PHASE A Current High Byte	1 Byte	Arms 2040
6	7-0	PHASE B Current Low Byte	1 Byte	A _{rms} * 2048
7	7-0	PHASE B Current High Byte	1 Byte	A _{rms} 2040
8	7-0	PHASE C Current Low Byte	1 Byte	A _{rms} * 2048
9	7-0	PHASE C Current High Byte	1 Byte	A _{rms} 2040
10	7-0	Reserved	1 Byte	
11	7-0	Reserved	1 Byte	
12	7-0	Reserved	1 Byte	
13	7-0	Reserved	1 Byte	
14	7-0	Motor Temp Low byte	1 Byte	Degrees C * 128, twos complement
15	7-0	Motor Temp High Byte	1 Byte	Degrees C 120, two complement
16	7-0	Ambient Temp Low Byte	1 Byte	Degrees C * 128, twos complement
17	7-0	Ambient Temp High Byte	1 Byte	Degrees C 120, twos complement
18	7-0	Reserved	1 Byte	
19	7-0	Reserved	1 Byte	
20	7-0	Reserved	1 Byte	

NOTE 12: Green Shaded rows are required in order for the system to function properly

Table 8: Indoor Blower Motor Sensor Data

7.2.2 Inducer Fan Motor Sensor Data

DBID	Bits	Description	Size	Notes
0	7-0	DC Bus Low Byte	1 Byte	Volts * 64
1	7-0	DC Bus High Byte	1 Byte	voits or
2	7-0	AC Input Low Byte	1 Byte	VAC _{rms} * 64
3	7-0	AC input High Byte	1 Byte	
4	7-0	PHASE A Current Low Byte	1 Byte	A _{rms} * 2048
5	7-0	PHASE A Current High Byte	1 Byte	Arms 2040
6	7-0	PHASE B Current Low Byte	1 Byte	A * 2049
7	7-0	PHASE B Current High Byte	1 Byte	A _{rms} * 2048
8	7-0	PHASE C Current Low Byte	1 Byte	A * 2049
9	7-0	PHASE C Current High Byte	1 Byte	A _{rms} * 2048
10	7-0	Reserved	1 Byte	
11	7-0	Reserved	1 Byte	
12	7-0	Reserved	1 Byte	
13	7-0	Reserved	1 Byte	
14	7-0	Motor Temp Low byte	1 Byte	Dograce C * 129 two complement
15	7-0	Motor Temp High Byte	1 Byte	Degrees C * 128, twos complement
16	7-0	Ambient Temp Low Byte	1 Byte	Degrees C * 128, twos complement
17	7-0	Ambient Temp High Byte	1 Byte	Degrees C · 126, twos complement
18	7-0	Reserved	1 Byte	
19	7-0	Reserved	1 Byte	
20	7-0	Reserved	1 Byte	

NOTE 13: Green Shaded rows are required in order for the system to function properly

Table 9: Inducer Fan Motor Sensor Data

7.2.3 Outdoor Fan Motor Sensor Data

DBID	Bits	Description	Size	Notes
0	7-0	DC Bus Low Byte	1 Byte	Volts * 64
1	7-0	DC Bus High Byte	1 Byte	voits or
2	7-0	AC Input Low Byte	1 Byte	VAC _{rms} * 64
3	7-0	AC input High Byte	1 Byte	
4	7-0	Phase A Current Low Byte	1 Byte	A _{rms} * 2048
5	7-0	Phase A Current High Byte	1 Byte	A _{rms} 2040
6	7-0	Phase B Current Low Byte	1 Byte	A _{rms} * 2048
7	7-0	Phase B Current High Byte	1 Byte	A _{rms} 2046
8	7-0	Phase C Current Low Byte	1 Byte	A _{rms} * 2048
9	7-0	Phase C Current High Byte	1 Byte	A _{rms} 2046
10	7-0	Reserved	1 Byte	
11	7-0	Reserved	1 Byte	
12	7-0	Reserved	1 Byte	
13	7-0	Reserved	1 Byte	
14	7-0	Motor Temp Low byte	1 Byte	Degrees C * 129 two complement
15	7-0	Motor Temp High Byte	1 Byte	Degrees C * 128, twos complement
16	7-0	Ambient Temp Low Byte	1 Byte	Degrees C * 128, twos complement
17	7-0	Ambient Temp High Byte	1 Byte	Degrees C · 120, twos complement
18	7-0	Reserved	1 Byte	
19	7-0	Reserved	1 Byte	
20	7-0	Reserved	1 Byte	

NOTE 14: Green Shaded rows are required in order for the system to function properly

Table 10: Outdoor Fan Motor Sensor Data

7.3 Identification Message Data Interfaces

7.3.1 Indoor Blower Motor Identification Data

DBID	Bits	Description	Size	Notes
0	7-0	Software Version 0	1 Byte	
1	7-0	Software Version 1	1 Byte	
2	7-0	Software Version 2	1 Byte	
3	7-0	Software Version 3	1 Byte	
4	7-0	Control Version	1 Byte	
5	7-0	Drive Serial Number 0	1 Byte	
6	7-0	Drive Serial Number 1	1 Byte	
7	7-0	Drive Serial Number 2	1 Byte	
8	7-0	Drive Serial Number 3	1 Byte	
9	7-0	Drive Serial Number 4	1 Byte	
10	7-0	Drive Serial Number 5	1 Byte	
11	7-0	Reserved	1 Byte	
12	7-0	Protocol Version	1 Byte	
13	7-0	Manufacturer ID (OEM1 ID)	1 Byte	
14	7-0	EEPROM Version Low Byte	1 Byte	
15	7-0	EEPROM Version High Byte	1 Byte	
16	7-0	OEM ID (OEM0 ID)	1 Byte	
17	7-0	Power Level	1 Byte	
18	7-0	Blower Coefficient 1 Low Byte	1 Byte	
19	7-0	Blower Coefficient 1 High Byte	1 Byte	
20	7-0	Blower Coefficient 2 Low Byte	1 Byte	
21	7-0	Blower Coefficient 2 High Byte	1 Byte	
22	7-0	Blower Coefficient 3 Low Byte	1 Byte	
23	7-0	Blower Coefficient 3 High Byte	1 Byte	
24	7-0	Blower Coefficient 4 Low Byte	1 Byte	
25	7-0	Blower Coefficient 4 High Byte	1 Byte	
26	7-0	Blower Coefficient 5 Low Byte	1 Byte	
27	7-0	Blower Coefficient 5 High Byte	1 Byte	
28	7-0	Blower Identification 0 Low Byte	1 Byte	

DBID	Bits	Description	Size	Notes
29	7-0	Blower Identification 0 High Byte	1 Byte	
30	7-0	Blower Identification 1 Low Byte	1 Byte	
31	7-0	Blower Identification1 High Byte	1 Byte	
32	7-0	Blower Identification2 Low Byte	1 Byte	
33	7-0	Blower Identification2 High Byte	1 Byte	
34	7-0	Blower Identification3 Low Byte	1 Byte	
35	7-0	Blower Identification3 High Byte	1 Byte	
36	7-0	Blower Identification4 Low Byte	1 Byte	
37	7-0	Blower Identification4 High Byte	1 Byte	
38	7-0	Blower Identification 5 Low Byte	1 Byte	
39	7-0	Blower Identification5 High Byte	1 Byte	
40	7-0	Blower Identification6 Low Byte	1 Byte	
41	7-0	Blower Coefficient 6 High Byte	1 Byte	
42	7-0	Blower Coefficient 7 Low Byte	1 Byte	
43	7-0	Blower Coefficient 7 High Byte	1 Byte	
44	7-0	Blower Coefficient 8 Low Byte	1 Byte	
45	7-0	Blower Coefficient 8 High Byte	1 Byte	
46	7-0	Blower Coefficient 9 Low Byte	1 Byte	
47	7-0	Blower Coefficient 9 High Byte	1 Byte	
48	7-0	Blower Coefficient 10 Low Byte	1 Byte	
49	7-0	Blower Coefficient 10HighByte	1 Byte	

NOTE 15: Green Shaded rows are required in order for the system to function properly

Table 11: Indoor Blower Motor Identification Data

7.3.2 Inducer Fan and Outdoor Fan Motor Identification Data

DBID	Bits	Description	Size	Notes
0	7-0	Software Version 0	1 Byte	
1	7-0	Software Version 1	1 Byte	
2	7-0	Software Version 2	1 Byte	
3	7-0	Software Version 3	1 Byte	
4	7-0	Control Version	1 Byte	
5	7-0	Drive Serial Number 0	1 Byte	
6	7-0	Drive Serial Number 1	1 Byte	
7	7-0	Drive Serial Number 2	1 Byte	
8	7-0	Drive Serial Number 3	1 Byte	
9	7-0	Drive Serial Number 4	1 Byte	
10	7-0	Drive Serial Number 5	1 Byte	
11	7-0	Reserved	1 Byte	
12	7-0	Protocol Version	1 Byte	
13	7-0	Manufacturer ID (OEM1 ID)	1 Byte	
14	7-0	EEPROM Version Low Byte	1 Byte	
15	7-0	EEPROM Version High Byte	1 Byte	
16	7-0	OEM ID (OEM0 ID)	1 Byte	
17	7-0	Power Level	1 Byte	
18	7-0	Blower Coefficient 1 Low Byte	1 Byte	
19	7-0	Blower Coefficient 1 High Byte	1 Byte	
20	7-0	Blower Coefficient 2 Low Byte	1 Byte	
21	7-0	Blower Coefficient 2 High Byte	1 Byte	
22	7-0	Blower Coefficient 3 Low Byte	1 Byte	
23	7-0	Blower Coefficient 3 High Byte	1 Byte	
24	7-0	Blower Coefficient 4 Low Byte	1 Byte	
25	7-0	Blower Coefficient 4 High Byte	1 Byte	
26	7-0	Blower Coefficient 5 Low Byte	1 Byte	
27	7-0	Blower Coefficient 5 High Byte	1 Byte	
28	7-0	Blower Identification 0 Low Byte	1 Byte	
29	7-0	Blower Identification 0 High Byte	1 Byte	

DBID	Bits	Description	Size	Notes
30	7-0	Blower Identification 1 Low Byte	1 Byte	
31	7-0	Blower Identification1 High Byte	1 Byte	
32	7-0	Blower Identification2 Low Byte	1 Byte	
33	7-0	Blower Identification2 High Byte	1 Byte	
34	7-0	Blower Identification3 Low Byte	1 Byte	
35	7-0	Blower Identification3 High Byte	1 Byte	
36	7-0	Blower Identification4 Low Byte	1 Byte	
37	7-0	Blower Identification4 High Byte	1 Byte	
38	7-0	Blower Identification 5 Low Byte	1 Byte	
39	7-0	Blower Identification5 High Byte	1 Byte	
40	7-0	Blower Identification6 Low Byte	1 Byte	
41	7-0	Blower Coefficient 6 High Byte	1 Byte	
42	7-0	Blower Coefficient 7 Low Byte	1 Byte	
43	7-0	Blower Coefficient 7 High Byte	1 Byte	
44	7-0	Blower Coefficient 8 Low Byte	1 Byte	
45	7-0	Blower Coefficient 8 High Byte	1 Byte	
46	7-0	Blower Coefficient 9 Low Byte	1 Byte	
47	7-0	Blower Coefficient 9 High Byte	1 Byte	
48	7-0	Blower Coefficient 10 Low Byte	1 Byte	
49	7-0	Blower Coefficient 10HighByte	1 Byte	

NOTE 16: Green Shaded rows are required in order for the system to function properly

Table 12: Inducer Fan and Outdoor Fan Motor Identification Data

A L L I A N C E Document revision: 01

7.3.3 Stepper Motor Identification Data

DBID	Bits	Description	Size	Notes
0	7-0	Software Version 0	1 Byte	
1	7-0	Software Version 1	1 Byte	
2	7-0	Software Version 2	1 Byte	
3	7-0	Software Version 3	1 Byte	
4	7-0	Control Version	1 Byte	
5	7-0	Drive Serial Number 0	1 Byte	
6	7-0	Drive Serial Number 1	1 Byte	
7	7-0	Drive Serial Number 2	1 Byte	
8	7-0	Drive Serial Number 3	1 Byte	
9	7-0	Drive Serial Number 4	1 Byte	
10	7-0	Drive Serial Number 5	1 Byte	
11	7-0	Reserved	1 Byte	
12	7-0	Protocol Version	1 Byte	
13	7-0	Manufacturer ID (OEM1 ID)	1 Byte	
14	7-0	EEPROM Version Low Byte	1 Byte	
15	7-0	EEPROM Version High Byte	1 Byte	
16	7-0	OEM ID (OEM0 ID)	1 Byte	

NOTE 17: Green Shaded rows are required in order for the system to function properly

Table 13: Stepper Motor Identification Data

ALLIANCE

Document revision: 00

8.0 Packet Examples

The packet examples are provided as an aid to device development and debugging by showing what the contents of both request and response packets should be for each command. The examples are divided up by device type and show commands that the device should either be capable of transmitting or responding to. The tables are not inclusive and the presence or absence of a command does not imply that a device should or should not support the command.

In the packet examples, a length field of "n" indicates that the value in the field depends on the amount of data to be returned. A value of "-" for the data field means that there is no data for that packet.

The following section identifies the normal expected traffic for motors designed to ClimateTalk standards.

8.1 Indoor Blower Motor

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2	
Control Commands													
Mode Set Command - CFM	0x0A	0x03	0x00	0x03	0x00	0x6D	0x02	-	-	-	х	Х	
Mode Set Response	0x0A	0x03	0x00	0×01	ACK/NAK	-	-	-	-	-	x	x	
Mode Set Command - Torque	0x0A	0x03	0x00	0x03	0x00	0x6D	0x01	-	-	-	х	х	
Mode Set Response	0x0A	0x03	0x00	0x01	ACK/NAK	-	-	-	-	-	х	х	
Mode Set Command - RPM	0x0A	0x03	0x00	0x03	0x00	0x6D	0x00	-	-	-	х	х	

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Mode Set Response	0x0A	0x03	0x00	0x01	ACK/NAK	-	-	-	-	-	х	х
Set CFM	0x0A	0x03	0x00	0x04	0x00	0x6C	CFM*4 low	CFM*4 high			х	Х
Set CFM Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	х
Set RPM	0x0A	0x03	0x00	0x04	0x00	0x6A	RPM*4 low	RPM*4 high	-	-	х	X
Set RPM Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
Set Torque	0×0A	0x03	0x00	0x04	0x00	0x70	(Torque% * 65535/100) lo byte	(Torque% * 65535/100) hi byte	-	-	х	х
Set Torque Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
Set Demand Ramp Rate (circulator)	0x0A	0x03	0x00	0x03	0x00	0x6E	rate				х	х
Set Demand Ramp Rate(circulator) - Response	0x0A	0x03	0X00	0×01	ACK/NAK						x	x
	,	_			•			_		,		
Set Direction	0x0A	0x03	0x00	0x03	0x00	0x6F	direction				х	Х
Set Direction Response	0x0A	0x03	0X00	0x01	ACK/NAK						x	x
			_									

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Set Blower Coefficient 1	0x0A	0x03	0x00	0x04	0x00	0x72	low byte	high byte	-	-	х	х
Set Blower Coefficient 1 Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			х	x
Set Blower Coefficient 2	0x0A	0x03	0x00	0x04	0x00	0x73	low byte	high byte	-	-	х	Х
Set Blower Coefficient 2 Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
					1			1			•	
Set Blower Coefficient 3	0x0A	0x03	0x00	0x04	0x00	0x74	low byte	high byte	-	-	х	Х
Set Blower Coefficient 3 Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
Set Blower Coefficient 4	0x0A	0x03	0x00	0x04	0x00	0x75	low byte	high byte	-	-	x	Х
Set Blower Coefficient 4 Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
					•			•				
Set Blower Coefficient 5	0x0A	0x03	0x00	0x04	0x00	0x76	low byte	high byte	-	-	х	Х
Set Blower Coefficient 5 Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
					1			1			•	
Set Speed Limit - Max RPM	0x0A	0x03	0x00	0x04	0x00	0x7F	RPM * 4 low byte	RPM * 4 high byte	-	-	х	Х
Set Speed Limit - Max RPM Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			x	x
										<u> </u>	<u> </u>	

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Set Airflow Limit - Max CFM	0x0A	0x03	0x00	0x04	0x00	0x81	CFM * 4 low byte	CFM * 4 high byte	-	-	х	х
Set Airflow Limit - Max CFM Response	0x0A	0x03	0X00	0x01	ACK/NAK	-	-	-			×	x
Run / Stop	0x0A	0x03	0x00	0x03	0x00	0x86	0 = stop;1=run				х	х
Run / Stop Response	0x0A	0x03	0X00	0×01	ACK/NAK						x	х
Reset Micro	0x0A	0x03	0x00	0x02	0x00	0x31					х	х
Reset Micro - Response	0x0A	0x03	0X00	0x01	ACK/NAK						х	х
											•	
API Requirements												
Unknown Application Transactions	0x0A	UNKNOWN TYPE	0x00	Χ	<x number<br="">BYTE</x>						х	х
Unknown App Trans Response	0x0A	SAME TYPE	0X00	1	0x1B						x	x
											l	
Commands with Incomplete parameters	0x0A	0x03	0x00	Х	<x number<br="">BYTE</x>						х	х
Incomplete Parameters Response	0x0A	0x03	0X00	1	0x0D						х	x
Command with undesired parameter change	0x0A	0x03	0x00	Х	<x number<br="">BYTE</x>						х	х

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Undesired Parameter Change Response	0x0A	0x03	0X00	1	0x0A						x	х
Status Requests												
DMA Request - Speed RPM	0x0A	0x1D	0x00	4	2	0	0	1			X	x
DMA Reply - Speed RPM	0x0A	0x1E	0x00	5	2	0	0	RPM * 4 low	RPM * 4 high		x	х
											•	
DMA Request - Control Status 1	0x0A	0x1D	0x00	4	2	0	0x1E	1			х	х
DMA Reply - Control Status 1 Reply	0x0A	0x1E	0x00	5	2	0	0x1E	CS1L	CS1H		х	х
DMA Request - CFM		1			I			I	I	1		
Status	0x0A	0x1D	0x00	4	2	0	0x08	2			X	Х
DMA Reply - CFM Status	0x0A	0x1E	0x00	6	2	0	0x08	MODE	CFM*4 low	CFM*4 high	x	х
Identification Request	s											
DMA Request - Manufacturer ID	0x0A	0x1D	0x00	4	0x0E	0	0x0D	0			х	х
DMA Reply - Manufacturer ID Reply	0x0A	0x1E	0x00	4	0x0E	0	0x0D	ОЕМ			х	х

ALLIANCE

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
DMA - Request Motor Power Level	0x0A	0x1D	0x00	4	0x0E	0	0x11	0			х	х
DMA - Motor Power Level Reply	0x0A	0x1E	0x00	4	0x0E	0	0x11	Power			х	х

8.2 Inducer Fan Motor

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2			
Control Commands															
Mode Set Command - RPM	0x14	0x03	0x00	0x03	0x00	0x6D	0x00	-	-	-	Х	Х			
Mode Set Response	0x14	0x03	0x00	0x01	ACK/NAK	-	-	-	-	-	х	х			
Set RPM	0x14	0x03	0x00	0x04	0x00	0x6A	RP*/4 low	RPM*4 high	-	-	х	х			
Set RPM Response	0x14	0x03	0X00	0x01	ACK/NAK	-	-	-			х	х			
Set Inducer Ramp Rate	0x14	0x03	0x00	0x03	0x00	0x89	rate				Х	Х			
Set Inducer Ramp Rate - Response	0x14	0x03	0X00	0x01	ACK/NAK						x	х			
		•					•								
Set Direction	0x14	0x03	0x00	0x03	0x00	0x6F	direction				х	Х			
Set Direction Response	0x14	0x03	0X00	0x01	ACK/NAK						х	х			
								1	1						

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Set Speed Limit - Max RPM	0x14	0x03	0x00	0x04	0x00	0x7F	RPM * 4 low byte	RPM * 4 high byte	-	-	х	х
Set Speed Limit - Max RPM Response	0x14	0x03	0X00	0x01	ACK/NAK	-	-	-			x	х
Run / Stop	0x14	0x03	0x00	0x03	0x00	0x86	0 = stop;1=run				х	х
Run / Stop Response	0x14	0x03	0X00	0x01	ACK/NAK						х	х
		,			•		,					
Reset Micro	0x14	0x03	0x00	0x02	0x00	0x31					х	х
Reset Micro - Response	0x14	0x03	0X00	0x01	ACK/NAK						×	×
API Requirements												
Unknown Application Transactions	0x14	UNKNOWN TYPE	0x00	Х	<x numbe<br="">BYT</x>						х	х
Unknown App Trans Response	0x14	SAME TYPE	0X00	1	0x1B						x	x
											<u> </u>	<u> </u>
Commands with Incomplete parameters	0x14	0x03	0x00	Х	<x numbe<br="">BYT</x>						х	х
Incomplete Parameters Response	0x14	0x03	0X00	1	0x0D						x	x
Command with undesired parameter change	0x14	0x03	0x00	Х	<x NUMBER OF DATA BYTES></x 						х	х

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Undesired Parameter Change Response	0x14	0x03	0X00	1	0x0A						x	x
Status Requests												
DMA Request - Speed RPM	0x14	0x1D	0x00	4	2	0	0	1			Х	Х
DMA Reply - Speed RPM	0x14	0x1E	0x00	5	2	0	0	RPM * 4 low	RPM * 4 high		х	х
DMA Request - Control Status 1	0x14	0x1D	0x00	4	2	0	0x1E	1			х	х
DMA Reply - Control Status 1 Reply	0x14	0x1E	0x00	5	2	0	0x1E	CS1L	CS1H		x	x
Identification Requests	5											
DMA Request - Manufacturer ID	0x14	0x1D	0x00	4	0x0E	0	0x0D	0			х	х
DMA Reply - Manufacturer ID Reply	0x14	0x1E	0x00	4	0x0E	0	0x0D	ОЕМ			х	x
DMA - Request Motor Power Level	0x14	0x1D	0x00	4	0x0E	0	0x11	0			х	х
DMA - Motor Power Level Reply	0x14	0x1E	0x00	4	0x0E	0	0x11	Power			x	x

A L L I A N C E Document revision: 00

8.3 Stepper Motor

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Control Commands												
Set Position Demand	0x3C	0x03	0×00	0×04	0x00	0x71	PHOME	PVAL			х	х
Set Position Response	0x3C	0x03	0X00	0×01	ACK/NAK	-					x	x
								,			ı	
Reset Micro	0x3C	0x03	0x00	0x02	0x00	0x31					х	х
Reset Micro - Response	0x3C	0x03	0X00	0x01	ACK/NAK						х	х
API Requirements												
Unknown Application Transactions	0x3C	UNKNOWN TYPE	0x00	Х	<x numbe<br="">BYT</x>	R OF DATA ES>					х	х
Unknown App Trans Response	0x3C	SAME TYPE	0X00	1	0x1B						x	х

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
Commands with Incomplete parameters	0x3C	0x03	0×00	Х	<x numbe<br="">BYT</x>	R OF DATA ES>					x	х
Incomplete Parameters Response	0x3C	0x03	0X00	1	0x0D						x	x
Status Requests				Ī			Ī	Ī		Ī	1	
DMA Request – Position	0x3C	0x1D	0x00	4	2	0	0	1			x	x
DMA Reply - Position	0x3C	0x1E	0×00	5	2	0	0	PHOME	PVAL		x	x
DMA Request - Control Status 1	0x3C	0x1D	0x00	4	2	0	2	1			x	х
DMA Reply - Control Status 1 Reply	0x3C	0×1E	0×00	5	2	0	2	CS1L	CS1H		x	x
Identification Request	s											
DMA Request - Manufacturer ID	0x3C	0x1D	0x00	4	0x0E	0	0x0D	0			х	х

Description	CT-LWP Address	Message Type	Packet #	Length	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	CRC1	CRC2
DMA Reply - Manufacturer ID Reply	0x3C	0x1E	0x00	4	0x0E	0	0x0D	OEM			x	х