따로X Refsheet Haoli Yin p. 1 of 1

1 Aussagenlogik

Aussage

Eine Aussage ist ein Satz, der entweder wahr oder falsch ist, also nie beides zugleich. Wahre Aussagen haben den Wahrheitswert w und falsche Aussagen den Wahrheitswert f.

Belegung von Variablen

Sei $A_B(F) = f$. Dann ist stets $A_B(F \Rightarrow G) = w$

Formelbeweis über Belegung

Wenn $F \wedge G$ eine Tautologie ist, dann (und nur dann) ist *F* eine Tautologie und *G* auch. Hinweis: In dem Lemma stecken zwei Teilaussagen, die beide zu beweisen sind: 1. Wenn $F \wedge G$ eine Tautologie ist, dann ist F eine Tautologie und G auch. 2. Umgekehrt: Sind F und G Tautologien, dann ist auch $F \wedge G$ eine. *Beweis.* 1. Annahme: $F \wedge G$ sei eine Tautologie. Dann: Für jede Belegung B wertet $F \wedge G$ zu wahr aus. Dann: Das ist nur der Fall, wenn sowohl F als auch G (für jedes B) zu wahr auswerten. Dann: Für jede Belegung B wertet F zu wahr aus. Und: Für jede Belegung B wertet G zu wahr aus. Dann: F ist Tautologie und G ist Tautologie. 2. Annahme: F ist Tautologie und G ist Tautologie. Dann: Für jede Belegung B_1 wertet F zu wahr aus. Und: Für jede Belegung B_2 wertet G zu wahr aus. Dann: Für jede Belegung B wertet $F \wedge G$ zu wahr aus. Dann: $F \wedge G$ ist eine Tautologie.

Äquivalenz und Folgerung

 $p \equiv q$ gilt genau dann, wenn sowohl $p \models q$ als auch $q \models p$ gelten. Beweis. $p \equiv q$ GDW $p \Leftrightarrow q$ ist Tautologie nach Def. von \equiv GDW $(p \Rightarrow q) \land (q \Rightarrow p)$ ist Tautologie GDW $(p \Rightarrow q)$ ist Tautologie und $(q \Rightarrow p)$ ist Tautologie GDW $(p \models q)$ gilt und $q \models p$ gilt.

Substitution

Ersetzt man in einer Formel eine beliebige Teilformel *F* durch eine logisch äquivalente Teilformel *F'*, so verändert sich der Wahrheitswerteverlauf der Gesamtformel nicht. Man kann Formeln also vereinfachen, indem man Teilformeln durch äquivalente (einfachere) Teilformeln ersetzt.

Universum

Die freien Variablen in einer Aussagenform können durch Objekte aus einer als Universum bezeichneten Gesamtheit wie $\mathbb{N}, \mathbb{R}, \mathbb{Z}, \mathbb{Q}$ ersetzt werden.

Tautologien

$$\begin{array}{l} (p \wedge q) \stackrel{\Rightarrow}{\Rightarrow} p \text{ bzw. } p \Rightarrow (p \vee q) \\ (q \Rightarrow p) \vee (\neg q \Rightarrow p) \\ (p \Rightarrow q) \Leftrightarrow (\neg p \vee q) \\ (p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p) \\ (p \wedge (p \Rightarrow q)) \Rightarrow q \\ ((p \Rightarrow q) \wedge (q \Rightarrow r)) \Rightarrow (p \Rightarrow r) \end{array} \tag{Kontraposition}$$

$$((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \land r))$$
$$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$$

Nützliche Äquivalenzen

Kommutativität:

 $(p \land q) \equiv (q \land p)$ $(p \lor q) \equiv (q \lor p)$

Assoziativität:

 $(p \wedge (q \wedge r)) \equiv ((p \wedge q) \wedge r)$

 $(p \lor (q \lor r)) \equiv ((p \lor q) \lor r)$

Distributivität:

 $(p \land (q \lor r)) \equiv ((p \land q) \lor (p \land r))$ $(p \lor (q \land r)) \equiv ((p \lor q) \land (p \lor r))$

Idempotenz:

 $(p \land p) \equiv p$ $(p \lor p) \equiv p$

Doppelnegation:

 $\neg(\neg p) \equiv p$

de Morgans Regeln:

 $\neg(p \land q) \equiv ((\neg p) \lor (\neg q))$

 $\neg (p \lor q) \equiv ((\neg p) \land (\neg q))$ Definition Implikation:

 $(p \Rightarrow q) \equiv (\neg p \lor q)$

Tautologieregeln:

 $(p \land q) \equiv p$ (falls q eine Tautologie ist)

 $(p \lor q) \equiv q$ Kontradiktionsregeln:

 $(p \land q) \equiv q$ (falls q eine Kontradiktion ist)

 $(p \lor q) \equiv p$

Absorptionsregeln:

 $(p \land (p \lor q)) \equiv p$

 $(p \lor (p \land q)) \equiv p$

Prinzip vom ausgeschlossenen Dritten:

 $p \lor (\neg p) \equiv w$

Prinzip vom ausgeschlossenen Widerspruch:

 $p \wedge (\neg p) \equiv f$

Äquivalenzen von quant. Aussagen

Negationsregeln:

 $\neg \forall x : p(x) \equiv \exists x : (\neg p(x))$ $\neg \exists x : p(x) \equiv \forall x : (\neg p(x))$

Ausklammerregeln:

 $(\forall x : p(x) \land \forall y : q(y)) \equiv \forall z : (p(z) \land q(z))$

 $(\exists x : p(x) \land \exists y : q(y)) \equiv \exists z : (p(z) \land q(z))$

Vertauschungsregeln

 $\forall x \forall y : p(x,y) \equiv \forall y \forall x : p(x,y)$ $\exists x \exists y : p(x,y) \equiv \forall y \exists x : p(x,y)$

Äquivalenzumformung

Wir demonstrieren an der Formel $\neg(\neg p \land q) \land (p \lor q)$, wie man mit Hilfe der aufgelisteten logischen Äquivalenzen tatsächlich zu Vereinfachungen kommen kann:

 $\begin{array}{l} \neg(\neg p \wedge q) \wedge (p \vee q) \\ \equiv (\neg(\neg p) \vee (\neg q)) \wedge (p \vee q) \\ \equiv (p \vee (\neg q)) \wedge (p \vee q) \\ \equiv p \vee ((\neg q) \wedge q) \\ \equiv p \vee (q \wedge (\neg q)) \\ \equiv p \vee (q \wedge (\neg q)) \\ \equiv p \vee f \\ \end{array} \begin{array}{l} \text{Distributivtät v.r.n.l.} \\ \text{End } p \times (p \wedge (\neg q)) \\ \equiv p \wedge (p \wedge (\neg q)) \\ \text{Kontradiktions regel} \\ \end{array}$

Quantifizierte Aussagen

Sei p(x) eine Aussageform über dem Universum U. $\exists x : p(x)$ ist wahr genau dann, wenn ein u in U existiert, so dass p(u) wahr ist. $\forall x : p(x)$ ist wahr genau dann, wenn p(u) für jedes u aus U wahr ist.