操作系统

Operating system

孔维强 大连理工大学

内容纲要

11.3 目录实现

- 一、 目录与文件按名存取
- 二、目录数据结构

directory-management algorithms significantly affects efficiency, performance, and reliability of a file system

一、目录与文件按名存取

・文件路径名解析

- 文件路径名解析在文件open等操作中经常被使用,很重要
- 路径名解析的目的: 根据文件路径, 找到对应文件控制块
- 做法:解构路径名,将其拆分成一级一级的目录名及最后一级的文件名

一、目录与文件按名存取

- ・文件路径名解析
 - Linux中解析代码的函数调用序列

path_lookup_open path_lookup_create

一、目录与文件按名存取

・Linux文件遍历实现: __link_path_walk()

二、目录数据结构

・目录结构1: 线性表

- Linear list of file names with pointer to the data blocks
 - Simple to program
 - Time-consuming to execute
 - Linear search time (for a file name)
 - Could keep ordered alphabetically via linked list

二、目录数据结构

・目录结构2: 哈希表

- Hash Table linear list with hash data structure
 - Decreases directory search time (for a file name)
 - Collisions situations where two file names hash to the same location
 - Only good if entries are fixed size (change size requires new hash function, or use chained-overflow method (handle collisions)

二、目录数据结构

・Linux目录组织

The Linux original path lookup mechanism. (The 'block' means a dentry structure and 'p' means parent's name and 'n' means its own name)

本讲小结

- 目录与文件按名存取
- 目录数据结构

