(ii) Laasonen Method/Implicit method
$$\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

$$\mathcal{L}\left[\frac{\mathcal{T}_{i+1,j+1}-2\mathcal{T}_{i+1,j}+\mathcal{T}_{i+1,j+1}}{\Delta x^{2}}\right]=\frac{\mathcal{T}_{i+1,j}-\mathcal{T}_{i,j}}{\Delta t}$$

Simplify this equation

$$-FT_{itl,jtl} + (1+2F)T_{itl,j} - FT_{itl,jtl} = T_{i,j}$$

$$F = \underbrace{A} \underbrace{\Delta t}_{A} \underbrace{X}^{2}$$

Implicit because we cannot some for Titl, jtl, Titl, jtl explicitly Unconditionally stable

EXAMPLE:
$$\partial T = \alpha \partial^2 T \qquad (\alpha = 0.2)$$

Assuming $\Delta X = 0.25$; $\Delta t = 0.1$, compute the temperature profile for

Use Laasonen method

$$F = \angle \Delta t = \frac{(0.2)(0.1)}{(0.25)^2} = 0.32$$

Ti,j
$$i = tince index$$

 $j = position index$

$$t_{i} = i\Delta t$$
 $i = 0, 1, 2, 3, 4, 5$
 $t_{i} = 0, 0.1, 0.2, 0.3, 0.4, 0.5$

$$x_{j} = j \Delta x$$
 $j = 0, 1, 2, 3, 4$
 $x_{j} = 0, 0.25, 0.5, 0.75, 1.0$

Temperature profile					
\x' 1	0		2	3	9
i t T	0	0.25	0.5	0.72	1
00	0	18.75	25	18.75	0
0.1	O	15.515	21.3297	15-595	0
2 0.2	O	13.0397	18.0946	13-0397	O
3 0.3	0	10.9326	15-3012	10.9366	O
4 0.4	0	9-1889	12.9159	9.1889	0
5 0.5	0	7.728/	10.8914	7.728	0

IC:
$$T(o, x) = 100 \times (1-x) = T_{0,j}$$

 $T_{0,0} = 100(0)(1-0) = 0$
 $T_{0,1} = 100(0.25)(1-0.25) = 18.75$
 $T_{0,2} = 100(0.5)(1-0.5) = 25$
 $T_{0,3} = 100(0.75)(1-0.75) = 16.75$
 $T_{0,4} = 100(1)(1-1) = 0$

$$\begin{bmatrix} 1.64 & -0.32 & 0 \\ -0.32 & 1.64 & -0.32 \end{bmatrix} \begin{bmatrix} T_{1,1} \\ T_{1,2} \end{bmatrix} = \begin{bmatrix} 18.75 \\ 25 \\ T_{1,3} \end{bmatrix}$$

$$A \quad X = b$$

$$X = A \setminus b$$

$$T_{1,1} = T_{1,3} = 15.595$$

 $T_{1,2} = 21.33$

$$\begin{bmatrix} 1.64 & -0.32 & 0 \\ -0.32 & 1.64 & -0.32 \\ 0 & -0.32 & 1.64 \end{bmatrix} \begin{bmatrix} 7_{2,1} \\ 7_{2,2} \\ T_{2,3} \end{bmatrix} = \begin{bmatrix} 15.595 \\ 21.32 \\ 15.595 \end{bmatrix}$$

$$T_{2,1} = T_{2,3} = 13 \times 397$$
 $T_{2,2} = 18.0946$