

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 26.04.2017

Äquivalente Darstellungen der FFT

- Realzahlendarstellung
 - Sinus und Cosinus-Funktionen der einzelnen Frequenzen

$$g(x) = \sum_{k=0}^{N-1} a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}$$

 Berechnung der Inversen durch Integralprodukt mit Cosinus/Sinus

$$a_k = rac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
 $b_k = rac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$

- Komplexe Darstellung
 - Realteil der Exponentialfunktion der verschiedenen Frequenzen

$$f(x) = \sum_{k=0}^{N-1} z_k \ e^{i2\pi kt/T}$$

 Berechnung der Inversen durch Integral des Produkts mit der komplex konjugierten Trägerwelle

$$z_k = \frac{1}{T} \int_0^T \left(e^{i2\pi kt/T} \right)^* f(x) dt$$

Vorteil der komplexen Darstellung

 Jedes Symbol des QAM kann direkt als komplexe Zahl dargestellt werden

$$f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T}$$

$$e^{it} = \cos t + i \cdot \sin t$$

$$f(x) = \sum_{k=0}^{N-1} z_k e^{i2\pi kt/T}$$

QAM und Rauschen

 Rauschen wird mit der Normalverteilung beschrieben

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2}$$

- Bitfehler entstehen, wenn das dekodierte Signal zu stark abweicht
- Das Signal/Rauschverhältnis korreliert mit der Standardabweichung σ

Die Bitfehlerhäufigkeit und das Signalrauschverhältnis

- Je höher das Signal-Rausch-Verhältnis, BER desto geringer ist der auftretende Fehler
- Bitfehlerhäufigkeit (bit error rate BER)
 - Bezeichnet den Anteil fehlerhaft empfangener Bits
- Abhängig von
 - Signalstärke,
 - Rauschen,
 - Übertragungsgeschwindigkeit
 - Verwendetem Verfahren
- Abhängigkeit der Bitfehlerhäufigkeit (BER) vom Signal-Rausch-Verhältnis
 - Beispiel:4 QAM, 16 QAM, 64 QAM, 256 QAM

OFDM

- OFDM (Orthogonal Frequency Division Multiplex)
 - Signale werden in parallele Signalströme aufgeteilt
 - Parallele Signale werden auf Trägerwellen verschiedener Frequenzen Phasen/Amplituden moduliert
 - z.B. 16-QAM
 - Die Trägersignale werden zusammengefasst und gleichzeitig gesendet
- Sonderform der Frequenz-Multiplex-Verfahren
- Die Trägerwellen verwenden orthogonale Frequenzen:
 - Frequenzen f, 2f, 3f, 4f, 5f, ...

Der Satz von Shannon

- Tatsächlich ist der Einfluss des Rauschens fundamental
 - Betrachte das Verhältnis zwischen Sendestärke S zur Stärke des Rauschens N
 - Je weniger Rauschen desto besser können Signale erkannt werden
- Theorem von Shannon
 - Die maximale mögliche Datenrate ist H log₂ (1+S/N) bit/s
 - bei Bandweite H
 - Signalstärke S
- Achtung
 - Dies ist eine theoretische obere Schranke
 - Existierende Kodierungen erreichen diesen Wert nicht

Symbolvate

Mehrfachnutzung des Mediums

Raummultiplexverfahren

- Parallele und exklusive Nutzung von Übertragungskanäle
 - z.B. Extraleitungen/Zellen/Richtantenne

Frequenzmultiplexverfahren

- Mehrere zu übertragende Signale in einem Frequenzbereich gebündelt;
- Bei Funkübertragung werden unterschiedlichen Sendern unterschiedliche Frequenzen zugewiesen.

Zeitmultiplexverfahren

- Zeitversetztes Senden mehrerer Signale

Wellenlängenmultiplexverfahren

- Optisches Frequenzmultiplexverfahren für die Übertragung in Glasfaserkabel

Codemultiplexverfahren

- Nur in Funktechnik: Kodierung des Signals in orthogonale Codes, die nun gleichzeitig auf einer Frequenz gesendet werden können
- Dekodierung auch bei Überlagerung möglich

Raum

- Raumaufteilung (Space-Multiplexing)
 - Ausnutzung des
 Abstandsverlusts zum
 parallelen Betriebs
 verschiedener Funkzellen →
 zellulare Netze
 - Verwendung gerichteter
 Antennen zur gerichtenen
 Kommunikations
 - GSM-Antennen mit Richtcharakteristik
 - Richtfunk mit Parabolantenne
 - Laserkommunikation
 - Infrarotkommunikation

Zeit — MAC

- Zeitaufteilung (Time-Multiplexing)
 - Zeitliche Aufteilung des Sende-/Empfangskanals
 - Verschiedene Teilnehmer erhalten exklusive Zeiträume (Slots) auf dem Medium
 - Genaue Synchronisation notwendig
 - Koordination notwendig, oder starre Einteilung
- Wird in der Medium-Zugriffsschicht koordiniert

Frequenz

- Aufteilung der Bandbreite in Frequenzabschnitte
- Spreizen der Kanäle und Hopping
- Direct Sequence Spread Spectrum (DSSS)
 - Xor eines Signals mit einer Folge Pseudozufallszahlen beim Sender und Empfänger (Verwandt mit Codemultiplex)
 - Fremde Signale erscheinen als Hintergrundrauschen
 - Frequency Hopping Spread Spectrum (FHSS)
 - Frequenzwechsel durch Pseudozufallszahlen
 - Zwei Versionen
 - Schneller Wechsel (fast hopping): Mehrere Frequenzen pro Nutzdatenbit
 - Langsamer Wechsel (slow hopping): Mehrere Nutzdatenbits pro Frequenz

J - 2

40

61

Code

CDMA (Code Division Multiple Access)

- z.B. GSM (Global System for Mobile Communication)
- oder UMTS (Universal Mobile Telecommunications System) $\sqrt[6]{-1/1+1}$

- Sender A:
 - <u>0</u> ist (-1,-1)
 - 1 ist (+1,+1)
- Sender B:
 - 0 ist (-1,+1)
 - 1 ist (+1,-1)
- A sendet 0, B sendet 0:
 - Ergebnis: (-2,0)
- C empfängt (-2,0):
 - Dekodierung bzgl. A: (-2,0) (-1,-1) = (-2)(-1) + 0(-1) = 2
 - A hat also 0 gesendet (da Ergebnis positiv)

Polarization-division multiplexing

- Spezialfall des Wellenlängenmultiplex-Verfahren
- Polarisation
 - Durch die Bewegungsrichtung der elektrischen Ladung ergibt sich eine Polarisation
- Z.B.
 - linear: horizontal, vertikal
 - zirkular
 - elliptisch (allgemeiner Fall)
- Die Verwendung verschiedener
 Polarisationen kann zur Trennung oder zur Modulation verwendet werden
 - in Kombination mit QPSK = 4-PSK
 - Z.B. 112 Gb/s PM-QPSK in Glasfaser mit Übertragungen bis zu 6000 km mit 200 km Distanz zwischen den Verstärkern

http://optikwiki.harzoptics.de/doku.php?id=polarisation

Physikalische Medien

- Leitungsgebundene Übertragungsmedien
 - Kupferdraht Twisted Pair

Funkübertragung

Mikrowellenübertragung

Infrarot

Lichtwellen

