# 2节用电池保护IC

S-8232系列

S-8232系列是内置了高精度电压检测电路和延迟电路的锂离子可 充电池保护用IC

这种IC最适合在2节用锂离子电池组上使用

### ■ 特点

(1) 内置高精度电压检测电路

▪ 过充电检测电压

3 90 V ±25 mV ~ 4 60 V ±25 mV = 5 mV级进对应

• 过充电解除电压

3,60 V ±50 mV ~ 4,60 V ±50 mV 5 mV级进对应

(过充电解除电压与过充电检测电压的差可在0 V~0.3 V的范围内选择)

• 过放电检测电压

1 70 V ±80 mV ~ 2.60 V ±80 mV = 50 mV级进对应

■ 过放电解除电压

1.70 V ±100 mV~3.80 V ±100 mV 50 mV级进对应

(过放电解除电压与过放电检测电压的差可在0 V~1.2 V的范围内选择)

- 过电流检测电压1 = 0.07 V ±20 mV ~ 0.30 V ±20 mV = 5 mV级进对应

(2) 耐高圧元件:

绝对最大额定值 18 V

(3) 宽工作电压范围:

2.0 V ~ 16 V

- (4) 可通过1个的外接器件的容量来设置过充电检测、过放电检测、过电流检测的延迟时间 (时间比各自为100.10:1)
- (5) 2段的过电流检测 (负载短路时的保护)
- (6) 内置过充电辅助检测电压电路(针对过充电检测电压的故障保险)
- (7) 具有向0 V电池的充电功能 (也可以利用选购件设置为禁止向0 V电池的充电)
- (8) 低消耗电流

工作时

7.5 億 典型值

14.2 歴 最大值

(-40~+85 fg)

休眠时

0.2 nA 典型值 0.1 礎 最大值

(-40~+85季)

(9) 无铅产品

### ■ 用途

• 锂离子可充电池电池组

### 封装

| 封裝名         |         | 图面号码    |         |
|-------------|---------|---------|---------|
|             | 封装图面    | 卷带图面    | 带卷图面    |
| 8-Pin TSSOP | FT008-A | FT008-E | FT008-E |



### ■ 框图



**备注** CO端子为CMOS输出,Nch晶体管连接了电阻(RCOL)。因此,从CO端子输出"Low"的时候, 1 抗会变高。有关阻抗值,请参阅电气特性

图1

# ■ 产品型号的构成

### 1. 产品名



### \*1. 请参阅带卷图

### 2. 产品名目录

### 表1 (1 / 2)

|                   |                 |                                | AC (   / Z )               | l                          |                             |                                               |               |
|-------------------|-----------------|--------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------------------------|---------------|
| 型号名称 项目           | 过充电检测电压<br>Copy | 过充电解除电压<br>V <sub>CC</sub>     | 过放电检测电压<br>V <sub>DC</sub> | 过放电解除电压<br>V <sub>DU</sub> | 过电流检测电压<br>V <sub>IOV</sub> | 过充电检测<br>延迟时间 t <sub>CU</sub><br>(C3=0 22 µF) | 全 /电池<br>充心功能 |
| S-8232AAFT-T2-G   | 4.25 V ? 5 mV   | 4 05 V ? 0 mV                  | 2.40 V ? 0 mV              | 3.00 V ? 00 mV             | 0.150 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232ABFT-T2-G   | 4.35 V ? 5 mV   | 4 15 V ? 0 mV                  | 2.30 V ? 0 mV              | 3.00 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232ACFT-T2-G   | 4.35 V ? 5 mV   | 4 15 V ? 0 mV                  | 2.30 V ? 0 mV              | 3.00 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 禁止            |
| S-8232AEFT-T2-G   | 4.35 V ? 5 mV   | 4.28 V ? 0 mV                  | 2.15 V ? 0 mV              | 2.80 V ? 00 mV             | 0.100 V ? 0 mV              | 10s                                           | 可能            |
| S-8232AFFT-T2-G   | 4.25 V ? 5 mV   | 4.05 V ? 0 mV                  | 2.30 V ? 0 mV              | 2.70 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232AGFT-T2-G   | 4 25 V ? 5 mV   | 4.05 V ? 0 mV                  | 2.20 V ? 0 mV              | 2.40 V ? 00 mV             | 0.200 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232AHFT-T2-G   | 4 25 V ? 5 mV   | 4 05 V ? 0 mV                  | 2.20 V ? 0 mV              | 2.40 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232AIFT-T2-G   | 4.325 V ? 5 mV  | 4.325 V ±25 mV 11.2            | 240 V ? 0 mV               | 3.00 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | <u>*</u> 此    |
| S-8232AJFT-T2-G   | 4.25 V ? 5 mV   | 4.05 V ? 0 mV                  | 2.40 V ? 0 mV              | 3.00 V ? 00 mV             | 0 150 V ? 0 mV              | 1.0 s                                         | . <u>ut</u>   |
| S-8232AKFT-T2-G   | 4.20 V ? 5 mV   | 4.00 V ? 0 mV                  | 2.30 V ? 0 mV              | 2 90 V ? 00 mV             | 0.200 V ? 0 mV              | 1.0 s                                         | 三能            |
| S-8232ALFT-T2-G   | 4.30 V ? 5 mV   | 4.05 V ? 0 mV                  | 2.00 V ? 0 mV              | 3.00 V ? 00 mV             | 0.200 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232AMFT-T2-G   | 4.19 V ? 5 mV   | 4.19 V? 5 mV <sup>*1</sup>     | 2.00 V ? 0 mV              | 3.00 V ? 00 mV             | 0.190 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232ANFT-T2-G   | 4.325 V ? 5 mV  | 4.325 V ±25 mV <sup>1113</sup> | 2.40 V ? 0 mV              | 3.00 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 禁止            |
| S-8232AOFT-T2-G   | 430 V ? 5 mV    | 4.05 V ? 0 mV                  | 2.00 V ? 0 mV              | 3.00 V ? 00 mV             | 0.230 V ? 0 mV              | 10s                                           | 可能            |
| S-8232APFT-T2-G   | 4.28 V ? 5 mV   | 4.05 V ? 0 mV                  | 2.30 V ? 0 mV              | 2.90 V ? 00 mV             | 0.100 V ? 0 mV              | 10s                                           | 禁止            |
| S-8232ARFT-T2-G   | 4.325 V ? 5 mV  | 4.325 V ±25 mV <sup>1113</sup> | 2.00 V ? 0 mV              | 2.50 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 禁止            |
| S-8232ASFT-T2-G * | 4 295 V ? 5 mV  | 4 20 V ±50 mV <sup>3</sup>     | 2.30 V ? 0 mV              | 3.00 ∨ ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 禁止            |
| S-8232ATFT-T2-G   | 4 125 V ? 5 mV  | 4 125 V ±25 mV *1              | 2.00 V ? 0 mV              | 3.00 V ? 00 mV             | 0.190 V ? 0 mV              | 1.0 s                                         | 丁能            |
| S-8232AUFT-T2-G   | 4.30 V ? 5 mV   | 41V?0mV                        | 2.40 V ? 0 mV              | 3.00 V ? 00 mV             | 0.200 V ? 0 mV              | 1.0 s                                         | :1            |
| S-8232AVFT-T2-G   | 430 V ? 5 mV    | 4.05 V ? 0 mV                  | 2.00 V ? 0 mV              | 3.00 V ? 00 mV             | 0.300 V ? 0 mV              | 1.0 s                                         | 可能            |
| S-8232AWFT-T2-G   | 4.35 V ? 5 mV   | 4.15 V ? 0 mV                  | 230 V ? 0 mV               | 3.00 V ? 00 mV             | 0.150 V ? 0 mV              | 1.0 s                                         | 禁止            |
| S-8232AXFT-T2-G   | 4 325 V ? 5 mV  | 4.200 V ? 0 mV                 | 230 V ? 0 mV               | 3.00 V ? 00 mV             | 0.20 V ± 20 mV              | 1.0 s                                         | 禁止            |
| S-8232AYFT-T2-G   | 4 30 V ? 5 mV   | 4.05 V ? 0 mV                  | 200 V ? 0 mV               | 2.00 V ? 0 mV              | 0.20 V ? 0 mV               | 1.0 s                                         | 可能            |
| S-8232AZFT-T2-G   | 4.30 V ? 5 mV   | 4 05 V ? 0 mV                  | 2.30 V ? 0 mV              | 2.30 V ? 0 mV              | 0.20 V ? 0 mV               | 10s                                           | 可能            |
|                   |                 |                                | <del></del>                |                            | ·                           |                                               |               |







### 表1 (2 / 2)

| 전号名称 项目         | 过充电检测电压<br>V <sub>1</sub> | Voi                             | Voe           | 过放电解除电压<br>Vo  | V <sub>iov</sub> | 过充电检测<br>延迟时间 t <sub>cn</sub><br>(C3=0.22 µF) | り√电池<br>チ も功能 |
|-----------------|---------------------------|---------------------------------|---------------|----------------|------------------|-----------------------------------------------|---------------|
| S 8232NAFT T2-G | 4.325 V ? 5 mV            | 4 325 V ±25 mV <sup>'1 '3</sup> | 2.40 V ? 0 mV | 3.00 V ? 00 mV | 0.15 V ? 0 mV    | 10s                                           | :ah           |
| S-8232NCFT-T2-G | 4 275 V ? 5 mV            | 4.05 V ? 0 mV                   | 2.20 V ? 0 mV | 3.00 V ? 00 mV | 0 20 V ? 0 mV    | 1.0 s                                         | 禁止            |
| S-8232NDFT-T2-G | 435 V ? 5 mV              | 4 15 V ? 0 mV                   | 2.30 V ? 0 mV | 2.30 V ? 0 mV  | 0.15 V ? 0 mV    | 1.0 s                                         | 可能            |
| S-8232NEFT-T2-G | 4.35 V? 5 mV              | 4.15 V? 0 mV                    | 2.30 V? 0 mV  | 3.00 V? 00 mV  | 0 23 V? 0 mV     | 1.0 s                                         | 可能            |
| S-8232NFFT-T2-G | 4 325 V? 5 mV             | 41 V? 0 mV                      | 2 30 V? 0 mV  | 2.90 V? 00 mV  | 0.21 V? 0 mV     | 1.0 s                                         | 禁止            |
| S-8232NGFT-T2-G | 4.35 V? 5 mV              | 4 15 V? 0 mV                    | 2.60 V? 0 mV  | 3.00 V? 00 mV  | 0.30 V? 0 mV     | 1.0 s                                         | 可能            |
| S-8232NHFT-T2-G | 4 28 V? 5 mV              | 4 05 V? 0 mV                    | 2.30 V? 0 mV  | 2 90 V? 00 mV  | 0 11 V? 0 mV     | 1.0 s                                         | 禁止            |
| S-8232NIFT-T2-G | 4.25 V? 5 mV              | 4.05 V? 0 mV                    | 2.50 V? 0 mV  | 3.00 V? 00 mV  | 0.15 V? 0 mV     | 1.0 s                                         | 禁止            |
| S-8232NJFT-T2-G | 4 28 V? 5 mV              | 4 05 V? 0 mV                    | 2.30 V? 0 mV  | 2.90 V? 00 mV  | 0.11 V? 0 mV     | 1.0 s                                         | 可能            |
| S-8232NKFT-T2-G | 4.35 V? 5 mV              | 4.15 V? 0 mV                    | 2.30 V? 0 mV  | 2.30 V? 0 mV   | 0.12 V? 0 mV     | 1.0 s                                         | 能             |
| S-8232NLFT-T2-G | 4.30 V? 5 mV              | 4.05 V? 0 mV                    | 2.30 V? 0 mV  | 3 00 V? 00 mV  | 0.23 V? 0 mV     | 1.0 s                                         | 五能            |

- \*1. 无过充电检测 解除滞后
- \*2. 最终过充电倍率为111倍,其他为1.25倍
- \*3. 无最终过充电功能
- \*4. 请参阅工作说明\*2 (过充电检测 解除滞后有、最终过充电功能无、向0 V电池充电功能禁止)
- 备注1. 用户需要上述检测电压以外的产品时。请向本公司营业部咨询
  - 2. 过放电检测电压可在1.7~3.0 V的范围中设置。但是,过放电检测电压在2.6 V以上时会如**表2**所示 产生对过充电检测电压、过充电解除电压的限制

#### 表2

| 过放电检测电压     | 过充电检测电压     | 过充电检测电压与<br>过充电解除电压的差 |
|-------------|-------------|-----------------------|
| 1 70~2 60 V | 3.90~4.60 V | 0~0.30 V              |
| 1.70~2 80 V | 3 90~4 60 V | 0~0.20 V              |
| 1.70~3 00 V | 3.90~4.50 V | 0~0.10 V              |

# ■ 引脚排列图



|       | 表3                            |
|-------|-------------------------------|
| 端子名   | 内容                            |
| QENIQ | VC-SENS间的电压检测端子               |
| OLIVO | (过充电、过放电检测端子)                 |
| DO    | 放电控制用FET门极连接端子                |
| DO    | (CMOS输出)                      |
| СО    | 充电控制用FET门极连接端子                |
|       | (CMOS输出)                      |
|       | VSS VM间的电压检测端子                |
| VIVI  | (过电流检测端子)                     |
| VSS   | 負电源输入端子                       |
| ICT   | 检测延迟用的容量连接端子                  |
| VC    | 中点电源输入端子                      |
| VCC   | 正电源输入端子                       |
|       | SENS  DO  CO  VM  VSS ICT  VC |

# ■ 绝对最大额定值

表4 (除特殊注明以外: Ta=25 等)

|                         |                   | ~ ·  | (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(  |          |  |
|-------------------------|-------------------|------|-------------------------------------------|----------|--|
| 项目                      | 记号                | 适用端子 | 额定值                                       | 单位       |  |
| VCC-VSS间输入电压            | V <sub>DS</sub>   | VCC  | V <sub>SS</sub> -0.3~V <sub>SS</sub> +18  | V        |  |
| SENS输入端子电压              | V <sub>SENS</sub> | SENS | V <sub>SS</sub> -0.3~V <sub>CC</sub> +0.3 | V        |  |
| 延迟容量连接端子电压              | Vich              | ICT  | V <sub>SS</sub> =0.3~V <sub>CC</sub> =0.3 | V        |  |
| VM翰入端子电压                | V <sub>VN</sub> . | VM   | Vac: 18~Vac+0.3                           | V        |  |
| DO輸出端子电压                | V <sub>DO</sub>   | DO   | V <sub>SS</sub> -0.3~V <sub>CC</sub> +0.3 | V        |  |
| CO輸出端子电压 Voo            |                   | CO   | V <sub>vv</sub> =0.3~V <sub>cc</sub> +0.3 | V        |  |
| 容许功耗                    | Po                |      | 300                                       | mW       |  |
| 丁作温度范围                  | Toer              | _    | −40 ~ +85                                 | 46       |  |
| 保存温度范围 T <sub>stg</sub> |                   |      | 40 ~ +125                                 | <b>#</b> |  |
|                         |                   |      |                                           |          |  |

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值, 有可能造成产品劣化等物理性损伤。 Rev.5.0\_oc

2节用电池保护IC S-8232系列

|                                             | 表6                      |                                          |                            |                          | (除特殊注明以外: Ta=-20          |       |                                        | 0~70年) |
|---------------------------------------------|-------------------------|------------------------------------------|----------------------------|--------------------------|---------------------------|-------|----------------------------------------|--------|
| 项目                                          | 记号                      | 条件                                       | 最小值                        | 典型值                      | 最大值                       | 単位    | 測定条件                                   | 定电路    |
| 检测电压                                        |                         |                                          | • • • • • •                |                          |                           |       |                                        |        |
| 过充电检测电压1.2                                  | Value                   | 3 90~4 60 V可调整                           | V <sub>Cur.:</sub> 0.045   | Vouris                   | V <sub>CU12</sub> -0 040  | V     | 1.2                                    |        |
| 最终过充电检测电压10                                 | V <sub>31 and 1</sub>   | V <sub>0U+2</sub> ×1.25                  | V <sub>0517</sub> <1.19    | V <sub>001.2</sub> ×1.25 | V <sub>Cu1,2</sub> ×1,31  | V     | 1.2                                    | 1      |
| V <sub>G/1</sub> 沙1 25或者为1.11 <sup>-1</sup> | V <sub>Cuauria</sub>    | V <sub>5.01.2</sub> ×1.11                | V <sub>CU12</sub> ×1 05    | V <sub>CU1.2</sub> ×1.11 | V <sub>CU1.2</sub> ×1.17  | V     | 1,2                                    | 1      |
| 过充电解除电压12                                   | Vooris                  | 3.60~4.60 V可调整                           | V <sub>0.01.2</sub> =0.070 | V <sub>CD12</sub>        | V <sub>CD1.2</sub> +0.065 | V     | 1,2                                    | 1      |
| 过放电检测电压12                                   | V <sub>DD1,2</sub>      | 1 70~2 60 V可调整                           | V <sub>DD1 2</sub> =0.100  | V <sub>pp12</sub>        | V <sub>DD12</sub> +0.095  | V     | 1,2                                    | 1      |
| 过放电解除电压1.2                                  | V <sub>3</sub>          | 1.70~3.80 V可调整                           | V <sub>DU12</sub> =0.120   | Voure                    | V <sub>DU1.7</sub> +0.115 | V     | 1,2                                    | 1      |
| 过电流检测电压1                                    | Victor                  | 0 07~0.30 V可调整                           | V <sub>IOV1</sub> =0.029   | V <sub>IOV</sub>         | V <sub>ICV1</sub> =0.029  | V     | 3                                      | 1      |
| 过电流检测电压2                                    | V pyg                   | 负载短路。Vcc基准                               | -1.66                      | -1.20                    | 0.74                      | V     | 3                                      | 1      |
| 检测电压温度係数1 2                                 | Tude                    | Ta=-40~85 °C                             | -0.6                       | 0.0                      | +0.6                      | mV/°C |                                        |        |
| 检测电压温度係数2 '3                                | Tabas                   | Ta=-40~85 °C                             | -0.24                      | -0.05                    | 0                         | mV/°C |                                        | -      |
| 延迟时间(C3=0.22 🍇 )                            |                         |                                          |                            |                          |                           |       |                                        |        |
| 过充电检测延迟时间12                                 | t <sub>ours</sub>       | 1.0 s                                    | 0.60                       | 1.00                     | 1.84                      | S     | 8,9                                    | 5      |
| 过放电检测延迟时间1.2                                | t <sub>otate</sub>      | 0.1 s                                    | 67                         | 100                      | 140                       | ms    | 8,9                                    | 5      |
| 过电流检测延迟时间1                                  | $t_{i \in \mathcal{N}}$ | 0.01 s                                   | 6.5                        | 10                       | 14.5                      | ms    | 10                                     | 5      |
| 输入电压                                        |                         | -                                        | <del></del>                |                          |                           |       |                                        |        |
| VCC-VSS间输入电压                                | V <sub>3.5</sub>        | 绝对最大额定值                                  | 0.3                        | -                        | 18                        | ٧     | _                                      |        |
| 工作电压                                        | .,                      |                                          | <u> </u>                   |                          |                           |       |                                        |        |
| VCC-VSS间工作电压 14                             | Vosce                   | 输出原理确定                                   | 2.0                        | _                        | 16                        | V     |                                        |        |
| 消耗电流                                        |                         |                                          |                            |                          |                           |       |                                        |        |
| 通常工作消耗电流                                    | loss                    | V1=V2=3.6 V                              | 1.9                        | 7.5                      | 13 8                      | μA    | 4                                      | 2      |
| 休眠时消耗电流                                     | I <sub>EON</sub>        | V1=V2=1.5 V                              | 0                          | 0 0002                   | 0.06                      | μА    | 4                                      | 2      |
| 输出电压                                        |                         |                                          |                            |                          |                           | ·     | ······································ |        |
| DO"H"电压                                     | V <sub>DC(H)</sub>      | l <sub>out</sub> =10 μA                  | V <sub>CC</sub> -0.14      | V <sub>CC</sub> =0.003   | V <sub>cc</sub>           | V     | 6                                      | 3      |
| 00년 <b>원</b> 년                              | V <sub>oo.</sub> ]      | l <sub>∞.:</sub> =10 μA                  | V <sub>ss</sub>            | V <sub>SS</sub> +0.003   | V <sub>SS</sub> -0.14     | V     | 6                                      | 3      |
| CO"H"电压                                     | V <sub>20</sub>         | I <sub>ou</sub> =10 μA                   | V <sub>CC</sub> -0.24      | V <sub>CC</sub> -0.019   | V <sub>CC</sub>           | V     | 7                                      | 4      |
| CO端子内部电阻                                    | ,                       |                                          | ·                          | <u></u>                  | · ·                       |       |                                        |        |
| VSS-CO间内部电阻                                 | Root                    | V <sub>00</sub> =V <sub>SS</sub> =9.4 V  | 0.24                       | 0.60                     | 1.96                      | MΩ    | 7                                      | 4      |
| VM内部电阻                                      |                         |                                          |                            | <u> </u>                 | ·                         | ·     |                                        |        |
| /CC-VM间内部电阻                                 | R <sub>vea</sub>        | V <sub>CC</sub> - V <sub>VM</sub> =0.5 V | 86                         | 240                      | 785                       | kΩ    | 5                                      | 2      |
| VSS VM间内部电阻                                 | Rystr                   | V <sub>vi/</sub> V <sub>ss</sub> =1.1 V  | 418                        | 597                      | 1332                      | kΩ    | 5                                      | 2      |
| 句0 V电池充电功能                                  |                         | '                                        |                            | '                        |                           |       | . '                                    | -      |
| 向0 V充电开始电压                                  | Vager4                  | 向0 V充电功能可能                               | 0.29                       | 0.75                     | 1.21                      | V     | 11                                     | 6      |
| 句0 V充电禁止电压1.2                               | Versetz                 | 向0 V充电功能禁止                               | 0.23                       | 0.88                     | 1.53                      | V     | 12.13                                  | 6      |

<sup>\*1.</sup> 无过充电滞后的产品的最终过充电检测电压为过充电检测电压的1.11倍。其他的为1.25倍

<sup>\*2.</sup> 电压温度係数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压

<sup>\*3.</sup> 电压温度係数2表示过电流检测电压

<sup>\*4.</sup> 工作电压表示DO、CO的逻辑已经成立

|                                              |                         |                                          | 表7                         |                          | (除特殊注                                 | 明以外   | : Ta=-4     | 0~85% |
|----------------------------------------------|-------------------------|------------------------------------------|----------------------------|--------------------------|---------------------------------------|-------|-------------|-------|
| 项目                                           | 记号                      | 条件                                       | 最小值                        | 典型值                      | 最大值                                   | 单位    | 测定条件        | 测定电路  |
| 检测电压                                         |                         |                                          |                            |                          |                                       | •     |             |       |
| 过充电检测电压12                                    | Valve                   | 3.90~4.60 V可调整                           | V <sub>C1.1.2</sub> =0 055 | V <sub>CU12</sub>        | V <sub>CU12</sub> ~0.045              | V     | 1.2         | 1     |
| 最终过充电检测电压10                                  | Volument                | V <sub>out o</sub> v 1.25                | V <sub>001.2</sub> ×1.19   | V <sub>CU1.2</sub> ×1.25 | V <sub>cu1.2</sub> ×1.31              | V     | 1,2         | 1     |
| V <sub>CU12</sub> ×1.25或者为1.11 <sup>*1</sup> | V <sub>CL aux 1.0</sub> | V <sub>cu1.2</sub> ×1.11                 | V <sub>CU1.2</sub> ×1.05   | V <sub>CU12</sub> ×1.11  | V <sub>CU1,2</sub> ×1.17              | V     | 1,2         | i     |
| 过充电解除电压1.2                                   | V <sub>oprie</sub>      | 3.60~4.60 V引调整                           | V <sub>CD1 2</sub> -0.080  | V <sub>GD1 2</sub>       | V <sub>OD1.2</sub> +0.070             | V     | 1,2         | 1     |
| 过放电检测电压1.2                                   | V <sub>BD12</sub>       | 1.70~2.60 V可调整                           | V <sub>DD1.7</sub> =0.110  | V <sub>obtio</sub>       | V <sub>DD1.2</sub> +0.100             | V     | 1,2         | 1     |
| 过放电解除电压1.2                                   | Volta                   | 1.70~3.80 V可调整                           | V <sub>DU12</sub> =0.130   | Voure                    | V <sub>DJ1.2</sub> ÷0.120             | V     | 1,2         | 1     |
| 过电流检测电压1                                     | Viovi                   | 0 07~0.30 V可调整                           | V <sub>IOV*</sub> 0.033    | V <sub>IOV</sub>         | V <sub>IOV</sub> -+0.033              | V     | 3           | 1     |
| 过电流检测电压2                                     | V <sub>iova</sub>       | 负载短路, Vcc基准                              | 1.70                       | -1.20                    | -0.71                                 | V     | 3           | 1     |
| 检测电压温度係数1 <sup>-2</sup>                      | Tober                   | Ta=-40~85 °C                             | -0.6                       | 0.0                      | -0.6                                  | mV/°C |             | _     |
| 检测电压温度係数2 3                                  | Trigge                  | Ta= 40~85 °C                             | -0.24                      | -0.05                    | 0                                     | mV/°C |             | _     |
| 延迟时间(C3=0.22 🖤 )                             |                         |                                          |                            |                          |                                       |       |             |       |
| 过充电检测延迟时间1.2                                 | tour:                   | 1.0 s                                    | 0 55                       | 1.00                     | 2 06                                  | s     | 8.9         | 5     |
| 过放电检测延迟时间1.2                                 | toors                   | 0.1 s                                    | 67                         | 100                      | 141                                   | ms    | 8.9         | 5     |
| 过电流检测延迟时间1                                   | t <sub>iovit</sub>      | 0.01 s                                   | 6.3                        | 10                       | 14.7                                  | ms    | 10          | 5     |
| 输入电压                                         |                         |                                          | ·                          |                          | · · · · · · · · · · · · · · · · · · · |       |             |       |
| VCC-VSS间输入电压                                 | $V_{55}$                | 绝对最大额定值                                  | -0.3                       |                          | 18                                    | V     | _           |       |
| 工作电压                                         |                         |                                          |                            |                          |                                       |       | <del></del> |       |
| VCC VSS间工作电压 <sup>14</sup>                   | Vosor                   | 输出原理确定                                   | 2.0                        | _                        | 16                                    | V     |             | _     |
| 消耗电流                                         |                         |                                          |                            |                          |                                       |       |             |       |
| 通常工作消耗电流                                     | I <sub>OPE</sub>        | V1=V2=3.6 V                              | 1.8                        | 7 5                      | 14 2                                  | μΑ    | 4           | 2     |
| 休眠时消耗电流                                      | I <sub>PON</sub>        | V1=V2=1.5 V                              | 0                          | 0.0002                   | 0.10                                  | μΑ    | 4           | .)    |
| 输出电压                                         |                         |                                          |                            | ·                        |                                       |       |             |       |
| DO"H"电压                                      | V <sub>DO Hi</sub>      | l <sub>out</sub> =10 μA                  | V <sub>CC</sub> -0.17      | V <sub>CC</sub> -0.003   | V <sub>cc</sub>                       | V     | 6           | 3     |
| DO"L"电压                                      | VDOIL                   | ι <sub>ουί</sub> =10 μΑ                  | V <sub>SS</sub>            | V <sub>SS</sub> +0.003   | V <sub>SS</sub> +0.17                 | V     | 6           | 3     |
| CO"H"电压                                      | V <sub>CO(F)</sub>      | l <sub>ou:</sub> =10 μA                  | V <sub>cc</sub> 0.27       | V <sub>cc</sub> -0.019   | Vcc                                   | V     | 7           | 4     |
| CO端子内部电阻                                     |                         |                                          |                            |                          |                                       |       | <u> </u>    |       |
| VSS CO间内部电阻                                  | R <sub>co.</sub>        | V <sub>CO</sub> -V <sub>SS</sub> =9 4 V  | 0.22                       | 0.60                     | 2.20                                  | MΩ    | 7           | 4     |
| VM内部电阻                                       |                         |                                          |                            | · · · · · · ·            |                                       |       |             |       |
| VCC-VM间内部电阻                                  | R <sub>vevi</sub>       | V <sub>cc</sub> V <sub>VM</sub> =0.5 V   | 79                         | 240                      | 878                                   | kΩ    | 5           | 2     |
| VSS-VM间内部电阻                                  | $R_{VSM}$               | V <sub>VI</sub> , V <sub>SS</sub> =1.1 V | 387                        | 597                      | 1491                                  | kΩ    | 5           | 2     |
| 向0 V电池充电功能                                   |                         |                                          |                            |                          |                                       |       | ·           |       |
| 向0 V充电开始电压                                   | V <sub>ooma</sub>       | 向0 V充电功能可能                               | 0.26                       | 0.75                     | 1.25                                  | V     | 11          | 6     |
| 旬0 V充电禁止电压1,2                                | V <sub>0.1etr.2</sub>   | 向0 V充电功能禁止                               | 0.20                       | 0.88                     | 1.57                                  |       | 12,13       | 6     |

<sup>\*1.</sup> 无过充电滞后的产品的最终过充电检测电压为过充电检测电压的1.11倍。其他的为1.25倍

<sup>\*2.</sup> 电压温度係数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压

<sup>\*3.</sup> 电压温度係数2表示过电流检测电压

<sup>\*4.</sup> 工作电压表示DO、CO的逻辑已经成立

### ■ 测定电路

### (1) 测定条件1 测定电路1

通常状态下,在S1=OFF、V1=V2=3.6 V、V3=0 V设置后、V1从3.6 V开始缓慢提升到CO="L"时V1的电压 即为过充电检测电压  $1(V_{\text{curl}})$ 。之后,V1缓慢降低到 $CO=H^*$ 时V1的电压即为过充电解除电压  $1(V_{\text{curl}})$ 。再接 着、V1缓慢降低到DO="L"时V1的电压即为过放电检测电压1(Vpp)。之后、V1缓慢提升到DO="H"时V1的电 压即为过放电解除电压1(V<sub>i,i,e</sub>)

通常状态下,在S1=ON、V1=V2=3.6 V、V3=0 V设置后、V1从3.6 V开始缓慢提升到CO="L"时V1的电压即 为最终过充电检测电压1(Valualist)

## (2) 测定条件2 测定电路1

通常状态下,在S1=OFF、V1=V2=3.6 V、V3=0 V设置后,V2从3.6 V开始缓慢提升到CO="L"时V2f. 皂压 即为过充电检测电压 $2(V_{\text{COS}})$ 。之后,V2缓慢降低到CO="H"时V2的电压即为过充电解除电压 $2(V_{\text{CDS}})$ 。再接 着,V2缓慢降低到DO="L"时V2的电压即为过放电检测电压 $2(V_{DD2})$ 之后,V2缓慢提升到DO="H"时V2的电 压即为过放电解除电压2(V<sub>bus</sub>)

通常状态下、在S1=ON、V1=V2=3.6 V、V3=0 V设置后、V2从3.6 V开始缓慢提升到CO="L"时V2的电压即 为最终过充电检测电压2(Vccano)

### (3) 测定条件3 测定电路1

在通常状态下,设置S1=OFF、V1=V2=3.6 V、V3=0 V V3从0 V开始缓慢提升到DO="L"时的V3电三即为 过电流检测电压1(V<sub>50/3</sub>)

在通常状态下,设置S1=ON、V1=V2=3.6 V、V3=0 V。V3以10 括以下的速度上升到DO="L"时的V3-(V ;+V2) 車压即为过电流检测电压2(Vave)

## (4) 测定条件4 测定电路2

通常状态下,在S1=ON、V1=V2=3.6 V、V3=0 V设置后的消耗电流I1即为通常状态消耗电流(lope)。 过放电状态下,在S1=OFF、V1=V2=1.5 V设置后的消耗电流I1即为休眠时消耗电流(I<sub>PDN</sub>)

## (5) 测定条件5 测定电路2

过放电状态下,在S1=ON、V1=V2=1.5 V、V3=2.5 V设置后。(V1+V2-V3)//2即为VCC VM间内部广阻 (RVCM)

过电流状态下,在S1=ON、V1=V2=3.5 V、V3=1.1 V设置后,V3/I2即为VSS-VM间内部电阻(RVSM)

# (6) 测定条件6 测定电路3

通常状态下,在S1=ON、S2=OFF、V1=V2=3.5 V、V3=0 V设置后,V4=0 V开始缓慢提升,I1=10 礎 流经 时的V4电压即为DO"H"电压(Vpoed)

过电流状态下,在S1=OFF、S2=ON、V1=V2=3.6 V、V3=0.5 V设置后,V5=0 V开始缓慢提升,I2=10 使 流经时的V5电压即为DO"L"电压(Vpos.)



#### (7) 测定条件7 测定电路4

通常状态下,在S1=ON、S2=OFF、V1=V2=3.6 V、V3=0 V设置后,V4=0 V开始缓慢提升,I1=10 事流经时的V4电压即为COTH"电压(V<sub>55=</sub>)

过充电状态下。在S1=OFF、S2=ON、V1=V2=4.7 V、V3=0 V、V5=9.4 V设置后。V5/I2即为VSS=C 间内部电阻(RCOL)

### (8) 测定条件8 测定电路5

通常状态下。在V1=V2=3.6 V、V3=0 V设置后、V1的电压缓慢提升到过充电检测电压1( $V_{cor}$ ) ~0.2 V为止,从这种状态开始瞬间(10 气以内)提升V1到 $V_{cor}$ +0.2 V,从V1变为 $V_{cor}$ +0.2 V开始到CO变为"L"为止的时间即为过充电检测延迟时间1( $t_{cor}$ )

通常状态下,在V1=V2=3.6 V、V3=0 V设置后,V1的电压缓慢下降到过放电检测电压1(V<sub>201</sub>) +0.2 V为止,从这种状态开始瞬间(10 延以内)降低V1到V<sub>201</sub> 0.2 V,从V1变为V<sub>201</sub>-0.2 V开始到DO变为"L"为止暂时间即为过放电检测延迟时间1(t<sub>201</sub>)

### (9) 测定条件9 测定电路5

通常状态下。在V1=V2=3.6 V、V3=0 V设置后。V2的电压缓慢提升到过充电检测电压2( $V_{\text{cu2}}$ ) -0.2 V为止,从这种状态开始瞬间(10 活以内)提升V2到 $V_{\text{cu2}}$ +0.2 V,从V2变为 $V_{\text{cu2}}$ +0.2 V开始到CO变为"L"为止的时间即为过充电检测延迟时间2( $t_{\text{cu2}}$ )

通常状态下,在V1=V2=3.6 V、V3=0 V设置后,V2的电压缓慢下降到过放电检测电压2( $V_{DD2}$ ) +0.2 V为止,从这种状态开始瞬间(10 扩以内)降低V2到 $V_{DD2}$ =0.2 V,从V2变为 $V_{DD2}$ =0.2 V开始到DO变为"L"为止的时间即为过放电检测延迟时间2( $t_{DD2}$ )。

### (10) 测定条件10 测定电路5

通常状态下,在V1=V2=3.6 V、V3=0 V设置后,V3从0 V开始瞬间 (10 活以内)提升到V3=0.5 V,从\一变为 0.5 V时开始到DO变为"L" 为止的时间即为过电流检测延迟时间1(t<sub>lov</sub>-)。

### (11) 测定条件11 测定电路6

在V1=V2=0 V、V3=2 V设置后的状态下,V3缓慢下降,CO变为"L"( $V_{VM}$ =0.3 V以下)时的V3电压即为向0 V 电池充电开始电压( $V_{SGE4}$ )

### (12) 测定条件12 测定电路6

在V1=0 V、V2=3 6 V、V3=12 V设置后的状态下,V1缓慢提升,CO变为"H"( $V_{VM}$ +0.3 V以上)时的V1 1 电压即为向0 V电池充电禁止电压1( $V_{0,N=1}$ )。

### (13) 测定条件13 测定电路6

在V1=3.6 V、V2=0 V、V3=12 V设置后的状态下,V2缓慢提升,CO变为"H"(V<sub>VM</sub>+0.3 V以上)时的V2电压即为向0 V电池充电禁止电压2(V<sub>2042</sub>)



图3

### ■ 工作说明

## 通常状态 1.72

本IC可以监视被串联连接的2个电池的各种电压与放电电流。控制充放电。2个电池电压的总数在过源电检测电压 $(V_{\text{CM-2}})$ 以上并且在过充电检测电压 $(V_{\text{CM-2}})$ 以下,流经电池的电流在所定值以下 $(VM \overset{\cdot}{\bowtie})$ 子的电压在过电流检测电压 $(V_{\text{CM-2}})$ 以下,流经电池的电流在所定值以下 $(VM \overset{\cdot}{\bowtie})$ 子的电压在过电流检测电压 $(V_{\text{CM-2}})$ 的情况下,充电用的FET与放电用的FET的双方变为ON。可自由地进行充放电。这种状态称为通常状态。在通常状态下,VM编子与VSS编子之间通过RVSM的电阻而被短路

#### 过电流状态

在通常状态的放电中,放电电流在所定值以上(VM端子的电压在过电流检测电压1以上)。并且这种状态保持在过电流检测延迟时间(toyz)以上的情况下,放电用FET变为OFF,放电被停止。这种状态称为过电流状态。在过电流状态下,VM端子与VSS端子之间通过RVSM的电阻而被短路。另外,充电用FET变为OFF。在放电用的FET变为OFF。连接了负载的时候,VM端子的电压变为Voo电位

从过电流状态的恢复,通过解除负载等手段,EB-端子与EB+端子之间(参阅图7的连接例)的阻抗在2... MΩ以上时进行。解除了负载。因为VM端子与VSS端子之间通过RVSM的电阻被短路的缘故。恢复回V<sub>SS</sub>电位本IC在检测到VM端子电位回到过电流检测电压1(V<sub>inve</sub>)以下时。恢复回通常状态。

### 过充电状态

过充电状态的检测有以下的2种情况

- 在通常状态的充电中,任意1个电池的电压超过过充电检测电压(V<sub>CU1.2</sub>),且这种状态保持在过充电检测延迟时间(t<sub>Cl2.1</sub>)以上的情况下,充电用的FET变为OFF,充电被停止。这种状态称为过充电状态。 在过充电状态下,VM端子与VSS端子之间通过RVSM的电阻而被短路。
- ② 即使在过充电检测延迟时间(t<sub>cut 2</sub>)以下,任意1个电池的电压超过最终过充电检测电压(V<sub>culaur 2</sub>, 向情况下, 充电用的FET变为OFF, 充电被停止。这种状态称为过充电状态。在过充电状态下, VM第一5与 VSS競子之间通过RVSM的电阻而被短路。

最终过充电检测电压 $(V_{\text{OULCT}})$ 的值与过充电检测电压 $(V_{\text{OULC}})$ 的设置值相联动,按照以下的公式被自动地决定

Volator[V]=1.25×Volto[V] 或者为 Volator[V]=1.11×Volto[V]

过充电状态的解除有以下的2种情况

- ① 超过过充电检测电压(V<sub>cmin</sub>)的电池电压,下降到过充电解除电压(V<sub>cbin</sub>)以下时,充电用的FET变为 ON、恢复到通常状态
- ② 超过过充电检测电压(Volve)的电池电压,即使是在过充电解除电压(Vob1e)以上,只要取掉充电器而连接负数开始放电时,充电用的FET变为ON,恢复到通常状态。

解除工作的机械原理为,在连接负载开始放电之后,因为放电电流经充电用FET的内部寄生二极管而加入的缘故,在瞬间VM端子从VSS端子开始上升约0.6 V(只有二极管的VF电压)。IC通过检测这个电压为过电流检测电压1(V<sub>cove</sub>)。解除过充电状态而回到通常状态

### 过放电状态

在通常状态的放电中,任意1个电池的电压在过放电检测电压( $V_{\text{CDT},2}$ )以下,且此种状态保持在过放电检测延迟时间( $t_{\text{CDT},2}$ )以上的情况下,放电用的FET变为OFF,放电被停止。这种状态称为过放电状态。放电用的FET变为OFF时,VM端子电压变为 $V_{\text{CC}}$ 电位,IC的消耗电流在休眠时消耗电流( $t_{\text{PDN}}$ )以下。这种状态称为休眠状态。在过放电状态以及休眠状态下,VM端子与VCC端子之间通过RVCM的电阻而被短路。

从休眠状态的解除,可通过连接充电器,使VCC-VM间电压差变为过电流检测电压2(V<sub>GV2</sub>)以上时而进行从该种状态开始,接着电池的电压变为过放电解除电压(V<sub>FM1</sub>2)以上时,从过放电状态恢复回通常状态



#### 有美延识电路

过充电检测延迟时间( $t_{\text{Loc}}$ ),过放电检测延迟时间( $t_{\text{Doc}}$ ),过电流检测延迟时间1( $t_{\text{OM}}$ ) 由于外接电图量(C3) 而产生变化。因为可通过1个的容量来设置各种延迟时间,延迟时间接如下的比例而联动

过充电延迟时间:过放电延迟时间;过电流延迟时间=100:10:1

另外,各种延迟时间依照以下的公式可以计算求出 (-40~+85 的)

最小值 典型值 最大值

过充电检测延迟时间 toa [s]=延迟係数 (2.500、 4.545、 9.364 )×C3[變]

过放电检测延迟时间 tan[s]=延迟係数 (0.3045、 0.4545、 0.6409 )×C3[唇]

过电流检测延迟时间 t<sub>ine</sub> [s]=延迟係数 (0 02864、 0.04545、 0.06682 )×C3 [新]

### 向0 V电池充电功能可能 13

被连接的双方的电池通过自我放电从变为0 V的状态开始,可以进行充电的功能。通过连接了充电器 VCC-VM之间印加了向0 V充电开始电压(V<sub>CC-4R</sub>)以上的电压,充电用FET的门极固定为V<sub>CC</sub>电位 由于充电器电压,充电用FET的门极与源极之间电压变为导通电压以上时,充电用FET变为ON,开始充电。这时,放电用FET变为OFF,充电电流经放电用FET的内部寄生二极管而流入。电池电压变为过放电解除电压(V<sub>CC-4-8</sub>)以上时,回到通常状态

### 向0 V电池充电功能禁止 "3

被连接的任意一方的电池通过自我放电从变为0 V的状态开始。禁止充电的功能

任意一方的电池电压在向0.00 V充电禁止电压 $1...2(V_{ONH1,2})$ 以下时,充电用FET的门极固定为EB-电位。禁止充电。只有双方电池的电压变为向0.00 V充电禁止电压 $1...2(V_{O.NH1,2})$ 以上时,可以进行充电。

但是,双方电池的电压总数不足于VCC-VSS间工作电压的最小值(Vosoperin)时,任意一方的电池电压。使在向0 V充电禁止电压1、2(Von-12)以下,也有被充电的情况发生,务请注意。双方的电池电压的总数。2到了 VCC-VSS间工作电压的最小值(Vosoperin)时,充电被禁止

另外、使用选购件的情况下、充电控制用FET的门极与源极间需要4.7 MΩ的电阻 (参阅图7)

- \*1. 第一次开始连接电池时,有不能进入通常状态(不是放电可能状态)的情况发生。这时,一旦将VM端子设置为Vss电压(使VM端子与VSS端子短路,或者连接充电器),就可恢复到通常状态。
- \*2. 有关设置为过充电检测 解除滞后有、最终过充电功能无、向0 V电池充电功能禁止的产品(选择指南的型号名称/项目的栏上标有\*4印的产品)。可观测到其他的设置产品所没有的如以下所示的工作。在实际的使用上没有问题

在电池电压为过充电解除电压(V<sub>CD1 c</sub>)以上,过充电检测电压(V<sub>CU1 2</sub>)以下的通常状态下,通过连接:负载变为过电流状态。从这种状态开始,解除了过负载。原本可恢复回通常状态,因为充电用FET变为。FF。也有变为过充电状态的情况发生。但是,之后,只要连接了负载开始放电。充电用的FET变为ON就可恢复到通常状态(参阅过充电状态工作说明),因此在使用上并没有障碍。

\*3. 也有不推荐被完全放电的电池再一次充电的锂离子电池 因为依靠所使用的锂离子电池的特性,所以在决定向0 V电池充电功能可能、禁止之时,有关电池的详情,请务必向电池生产厂家确认

## ■ 工作时序图

1 过充电检测



\*\*\*\*

- 远窜状态 过充重状态 过效更状态
  - 1. 过风流状态

备注 充用器表示定用 会东电





14444

\*1. 1、通常状态 1、 19 京東状态 1、 12 坂東状态 1、 12 東治状态

备注 - 乔电器表示调电的预用

图5

### 3 过电流检测



11. 通常状态 7: 过充甲状态

- 3: 过坡単状で - 1: 过度流状态

备注 克甲路表示定电流变用

图6