Intelligent Robots Practice

Introduction

Chungbuk National University, Korea Intelligent Robots Lab. (IRL)

Prof. Gon-Woo Kim

Intelligent Robots Lab. @ CBNU

- Autonomous Mobile Robots
 - Autonomous Navigation
 - Robot Motion Planning (Global/Local)
 - Localization and Mapping
 - Localization, VINS, etc
 - SLAM (Simultaneous Localization And Mapping)

물류자동화 AGV 관련 기술개발: SLAM, 자율주행 및 도킹 기술

LiDAR 기반 동시 위치추정 및 지도작성(SLAM) 기술

자율주행을 위한 차량, 보행자 검출 및 추적 기술

조명, 환경 변화에 강인한 동시 위치추정 및 지도작성(SLAM) 기술

다중센서융합 및 캘리브레이션 기술

Intelligent Robots Lab. @ CBNU

■ Vehicles and Infrastructure

Autonomous Vehicles

Testbed for Autonomous Vehicles (about 10,000m²)

2D LiDAR Odometry

- Efficient 2D LiDAR odometry using geometric primitives
 - Line feature extraction and association algorithm
 - Accurate LiDAR odometry algorithm using line feature-aided scan-to-map matching
 - Pipeline for LiDAR odometry
 - LiDAR data preprocessing
 - Line feature extraction and line association
 - Pose estimation

3D LiDAR based GraphSLAM

- 3D LiDAR point cloud data based GraphSLAM
 - Experimental Results

Sensor Fusion based SLAM/Localization

- Sensor Fusion based SLAM/Localization
 - LiDAR, GPS, IMU sensor fusion
 - Robust LiDAR feature detection
 - Corner, blob feature detection and mapping
 - SLAM and Accurate Localization based on EKF

LiDAR based MODT

- MODT(Multiple Objects Detection and Tracking)
 - 3D LiDAR based MODT

LiDAR based MODT

- MODT(Multiple Objects Detection and Tracking)
 - 3D LiDAR and Camera Fusion based MODT

Stereo Visual Odometry

■ SOFT based Stereo Visual Odometry

Intelligent Robots Lab.
Chungbuk National University

Multi-Sensor Fusion based SLAM

■ Stereo Vision-Aided Inertial Navigation System in Dynamic Environments

Autonomous Vehicle

- Autonomous Vehicle
 - CBNU Clothoid (현대자동차 경진대회, 2019)

Autonomous Mobile Robots Introduction

Key Questions and Concepts in Autonomous Mobile Robotics

- The three key questions in Mobile Robotics
 - Where am I?
 - Where am I going?
 - How do I get there ?

- have a model of the environment (given or autonomously built)
- perceive and analyze the environment
- find its position/situation within the environment
- plan and execute the movement

Generic Control Scheme for Mobile Robot Systems

Intelligent Robots Lab.
Chungbuk National University

Control Architectures / Strategies

Control Loop

- dynamically changing environment
- no compact model available
- many sources of uncertainty

■ Two Approaches

- Classical AI
 - complete modeling
 - function based
 - horizontal decomposition
- New Al, AL
 - sparse or no modeling
 - behavior based
 - vertical decomposition
 - bottom up

Environment Representation and Modeling

- Environment Representation
 - Continuous Metric \rightarrow x,y, θ
 - Discrete Metric → metric grid
 - Discrete Topological
 → topological grid
- Environment Modeling
 - Raw sensor data, e.g. laser range data, grayscale images
 - large volume of data, low distinctiveness
 - makes use of all acquired information
 - Low level features, e.g. line other geometric features
 - medium volume of data, average distinctiveness
 - filters out the useful information, still ambiguities
 - High level features, e.g. doors, a car, the Eiffel tower
 - low volume of data, high distinctiveness
 - filters out the useful information, few/no ambiguities, not enough information

Environment Representation and Modeling

- Human Navigation
 - Topological with imprecise metric information

Environment Representation and Modeling

■ Topological Maps (Recognizable Locations)

Metric Topological Maps

■ Fully Metric Maps (continuous or discrete)

Intelligent Robots Lab.

Chungbuk National University

From Perception to Understanding

