Gegeben ist die Schaltung gemäß Abbildung 2 mit der Spannungsquelle $U_0 = 8 V$ und den Widerständen $R_1 = 24 \Omega$ und $R_2 = 72 \Omega$.

Abbildung 2:

a) Wie groß ist die Spannung U_A an den Klemmen a-a'?

c) Stellen Sie die Schaltung durch eine Ersatzspannungsquelle (reale Spannungsquelle) dar! Zeichnen Sie die Ersatzschaltung und geben Sie deren charakteristische Größen an! (4 Punkte)

d) An den Klemmen der obigen Schaltung wird ein Verbraucher mit der Angabe ("6V / 2W") angeschlossen. Berechnen Sie die tatsächlich im Verbraucher umgesetzte Leistung! (4 Punkte)

$$R_{i}=18.2$$

$$R_{V} \text{ berechnen:}$$

$$GV \text{ } P=0.1 = R$$

$$CV \text{ } P=0.2$$

$$CV \text{ } P=0.2$$

Gegeben ist eine Schaltung gemäß nebenstehender Abbildung 2a: Abbildung 2a mit der Spannungsquelle $U_1 = 3,6 \text{ V}$. den Widerständen $R_1 = 3 \text{ k}\Omega$, $R_2 = 0,6 \text{ k}\Omega$ und $R_3 = 1,2 \text{ k}\Omega$ sowie einem Schalter S. Der Schalter S befindet sich zunächst in der Position 'a'.

a) Zeichnen Sie ein vereinfachtes Schaltbild f
ür den Fall, dass sich der Schalter in der Position 'a' befindet!

b) Berechnen Sie für diesen Fall der Gesamtwiderstand der Schaltung aus R_1 , R_2 und R_3 (2 Punkte)

c) Welcher Gesamtwiderstand ergibt sich aus R_1 , R_2 und R_3 für die Schalterposition 'b'?

12, R, Réhe: Rn=R,+R2=3,6k1

R, R, Réhe: Rn=R,+R2=3,6kn

Rz posollel zu R12:

d) Geben Sie für beide Schalterpositionen jeweils die Leerlaufspannung und den Kurzschlussstrom bezüglich der Klemme k-k' an! (2,5 Punkte)

$$U_{\lambda} = 3,6V = U_{L,\alpha}$$

$$U_{L,\alpha} = \frac{3,6V}{3,6V}$$

$$R_{go,\alpha} = 3,6V$$

Pos b $\prod_{k=1}^{\infty} R_{ges, k} = 0$ $\bigcup_{k=1}^{\infty} V_{k} = 0$ $\bigcup_{k=1}^{\infty} V_{k} = 0$ $\bigcup_{k=1}^{\infty} V_{k} = 0$

Gegeben ist eine Schaltung gemäß nebenstehender Abbildung mit der Stromquelle I_I und den Widerständen $R_I = 1 k\Omega$, $R_2 = 1 k\Omega$ und $R_L = 3 k\Omega$.

a) Berechnen Sie aus den Widerstände R_1 , R_2 und R_L den Gesamtwiderstand R_{ges} bezüglich der Klemmen k-k'!

(1,5 Punkte)

b) Welche Spannung U_L ergibt sich, wenn die Stromquelle $I_I = 7 \text{ mA}$ liefert? (1 Punkte)

Porollelschaltung: Uin Aceigen gleich groß U1=U2=...

I teilt sich auf: Igs=I1+I2+...

da Ciderstande perallel, gill $U_2 = U_1 = U_2 = 0$ $U_2 = R_{ges} \cdot T_1 = \frac{3}{7} \times 12 \cdot 7 \text{ A}$

Die Schaltung wird gemäß nebenstehen-

Die Schaltung wird gemäß nebenstehender Abbildung durch eine Spannungsquelle $U_2 = 1,4\ V$ ergänzt.

Spanningsquelle

Umit Rin Reihe

c) Wandeln Sie zunächst die Reihenschaltung U_2 , R_2 in eine reale Stromquelle um! (3 Punkte)

· Unnenciderstand : R2, I = R2, U = 1 KIR

· Kurschlusstrom: Iz = Ix = Rzu = 161V = 161MA

d) Berechnen Sie die Spannung U_L ! (3 Punkte)

