Push-forward Measures for Parameter Identification under Uncertainty

Michael Pilosov

University of Colorado: Denver

Introduction

Motivation

How do we update initial descriptions of uncertainty using model predictions and data?

Data-Consistent Inversion is a novel framework that uses push-forward and pull-back measures to ensure solutions are consistent with the observed distribution of data.

Question

How do we cast a **Parameter Identification** problem in the context of Data-Consistent Inversion?

Framework

$lacksquare$ $\mathbb{P},\;\pi$	Probability Measure, Density	
$\Lambda \subset \mathbb{R}^P$	Parameter Space	
$oldsymbol{\circ}$ $oldsymbol{o}:\Lambda o\mathcal{O}\subset\mathbb{R}^D$	Observables	
$\Xi \subset \mathbb{R}^D$	Noise Space	
$\lambda^{\dagger} \in \Lambda$	True Parameter	
$m{d}(\xi)\subset\mathbb{R}^D$	Possible Data, $d_i(\xi) = \boldsymbol{o}_i(\lambda^{\dagger}) + \xi_i$	
• $\xi^{\dagger} \in \Xi$	Noise in Measurements	
$ullet$ σ^2	Variance of Noise	
$m{d}^\dagger \in \mathbb{R}^D$	Observed Data, $oldsymbol{d}^\dagger = oldsymbol{d}(\xi^\dagger)$	
$lacksquare$ $\mathbb{P}_{\mathrm{in}},\;\pi_{\mathrm{in}}$	Initial	
$lacksquare$ $\mathbb{P}_{\mathrm{obs}}, \; \pi_{\mathrm{obs}}$	Observed	
• $\mathbb{P}_{\mathrm{pre}},\;\pi_{\mathrm{pre}}$	Predicted (push-forward)	
$lacksquare$ $\mathbb{P}_{\mathrm{up}}, \pi_{\mathrm{up}}$	Updated (pull-back)	

Updating with Observations and Predictions

$$\mathbb{P}_{\text{up}} = \mathbb{P}_{\text{in}} \frac{\mathbb{P}_{\text{obs}}}{\mathbb{P}_{\text{pre}}} \qquad \pi_{\text{up}}(\lambda) = \pi_{\text{in}}(\lambda) \frac{\pi_{\text{obs}}(Q(\lambda))}{\pi_{\text{pre}}(Q(\lambda))}$$

References & Attribution

Advisor: Dr. Troy Butler

(Left to Right): Theory, Stability, BET, ConsistentBayes, Personal Website. Funding provided by NSF DMS-1818941.

Approach

Quantity of Interest Map

A Functional Relating **Predictions** and **Data**

- Ideal
- $Q(\lambda, \xi) = F(\boldsymbol{o}(\lambda), \boldsymbol{d}(\xi))$
- Theoretical
- $Q(\Lambda,\Xi)=:\mathcal{D}_{\mathcal{T}}\subset\mathbb{R}$
- Practical
- $Q(\lambda) = F\left(\boldsymbol{o}(\lambda), \boldsymbol{d}^{\dagger}\right)$
- Computable
- $Q(\Lambda) =: \mathcal{D}_{\mathcal{C}} \subset \mathcal{D}_{\mathcal{T}}$

How do conditionals of Ξ compare to the joint density?

Observed Distribution

Given a functional, what measure do we invert? $Q(\lambda^{\dagger}, \xi) \sim \pi_{\rm obs}$ when we allow ξ to vary over Ξ

$F(oldsymbol{o}(\lambda),oldsymbol{d}^\dagger)$	ξ	$\pi_{ m obs}$
$rac{1}{\sigma\sqrt{D}}\sum\left(oldsymbol{o}_{i}\left(\lambda ight)-oldsymbol{d}_{i}^{\dagger} ight)$	$\xi \sim L^2$	N(0,1)
$rac{1}{\sigma^2}\sum\left(oldsymbol{o}_i\left(\lambda ight)-oldsymbol{d}_i^\dagger ight)^2$	$\xi \sim N(0, \sigma^2)$	$\chi^2(D)$
$rac{1}{\sigma^{2}D}\sum\left(oldsymbol{o}_{i}\left(\lambda ight)-oldsymbol{d}_{i}^{\dagger} ight)^{2}$	$\xi \sim N(0,\sigma^2)$	$\Gamma(D/2,D/2)$
:	:	:

Choices of F and associated π_{obs} for stochastic inverse problem with $\mathbf{d}^{\dagger} = \mathbf{o}_i(\lambda^{\dagger}) + \xi_i^{\dagger}$

Example

Consider an exponential decay problem with uncertain initial condition:

Convergence

How do solutions change with more data?

 λ^{\dagger} and π_{up} for D=1,10,50,100 for N=1000

Stability

How do solutions on conditionals of Ξ compare?

 λ^{\dagger} and π_{up} for one hundred realizations of ξ^{\dagger} for D=1,10,50,100