Assignment 1

Q1.

Time(s)	0.001	0.1	1	5	60	600
Rfib(n)	26	34	40	43	48	53
Ifib(n)	2.1*10^	2.1*10^	2.08*10^	1.1*10^	2*10^10	2*10^11
	5	7	8	9		
Cleverfib(n	>10^18	>10^18	>10^8	>10^18	>10^18	>10^18
)						

Q2.

i)Rfib(n)

n	time(S)	log2(time)
25	0.000834	-10.227665
26	0.001471	-9.408987038
27	0.002396	-8.705156377
28	0.003645	-8.09986547
29	0.005871	-7.412178028
30	0.009477	-6.721353847
31	0.015284	-6.031834027
32	0.02471	-5.338761179
33	0.039781	-4.651776647
34	0.065021	-3.942950445
35	0.107342	-3.219713421
36	0.254536	-1.974058378
37	0.321351	-1.637778133
38	0.540364	-0.887996532
39	0.801826	-0.318638896
40	1.207907	0.272509382
41	1.93719	0.953965461
42	4.04712	2.016895627
43	6.193032	2.630645901
44	9.835174	3.297950576
45	15.48638	3.95292795
47	37.53292	5.230084744
49	95.71717	6.580705898
51	2.510058	7.971576736

ii)(IFIB)

(value)n	time
200000	0.001703
5200000	0.043459
10200000	0.08398
15200000	0.124013
25200000	0.209369
35200000	0.287753
45200000	0.366598
55200000	0.447184
60200000	0.486996
65200000	0.527032
70200000	0.568071
75200000	0.607086
90200000	0.727729
100200000	0.814987
110200000	0.894929
120200000	0.971608
125200000	1.011615
130200000	1.058381

1.100582
1.204486
1.295128
1.400957
1.524827
1.61828
1.725975
1.987983
2.013307
2.028869
2.087233
2.346973
2.568261
2.702752
2.967797
3.004562
3.09916
3.271152
3.319148
3.319148
3.54061
3.54061 3.652743
3.54061 3.652743 3.830737
3.54061 3.652743 3.830737 3.983546
3.54061 3.652743 3.830737 3.983546 4.091975
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929 4.50153
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929 4.50153 4.661183
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929 4.50153 4.661183 4.775569
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929 4.50153 4.661183 4.775569 4.882017
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929 4.50153 4.661183 4.775569 4.882017 4.999565
3.54061 3.652743 3.830737 3.983546 4.091975 4.288054 4.365929 4.50153 4.661183 4.775569 4.882017 4.999565 5.037631

690200000	5.636898						
710200000	5.808593						
850000000	6.889823						
950000000	7.672583						
1000000000	8.067554						
1200000000	9.736658						
1250000000	10.117065						
1350000000	10.933563						
1400000000	11.35074						
1500000000	12.149596						
1650000000	13.339017						
time	vs (val	ue)n					
unic	vs (vai	ue)II		0.44	E 00* 0 000) D2 – 4	
1	5 ———		= time(s	s) = 8.11	E-09*x + 0.023	3 K* = 1	
'	5						
1	0 ———						
time							
	5						

iii) cleverfib(n)

2.50E+8

5.00E+8

7.50E+8

(value)n

1.00E+9

1.25E+9

1.50E+9

log2(n)	time(ms)
1	0
2	0.0003
3	0.0002
4	0.0002

5	0.0004
6	0.0006
7	0.0004
8	0.0004
9	0.0004
10	0.0005
11	0.0007
12	0.0006
13	0.0008
14	0.0008
15	0.0008
16	0.0008
17	0.001
18	0.001
19	0.0011
20	0.0017
21	0.0014
22	0.0014
23	0.0013
24	0.0016
25	0.0016
26	0.0017
27	0.0017
28	0.0015
29	0.0014
30	0.0016
31	0.0018
32	0.0021
33	0.0019
34	0.0018
35	0.002
36	0.0018

37	0.002
38	0.002
39	0.0021
40	0.0021
41	0.0025
42	0.003
43	0.0025
44	0.0033
45	0.0027
46	0.0035
47	0.0034
48	0.004
49	0.0039
50	0.0031
51	0.0033
52	0.0032
53	0.0031
54	0.0034
55	0.0034
56	0.0033
57	0.0032
58	0.0035
59	0.0035

- a) i) graph of log2(time) vs n for Rfib is linear as the total number of instructions executed for the computation as Rfib(n) is>2^(n-1)/2. the total number of instructions executed for Ifib(n) is 3*n and hence the graph of time vs n is linear. The total Number of instructions executed for Cleverfib(n) is proportional to log(n-1) so the graph of time vs log2(n) is linear.
- b) Slope of Rfib:0.704 (log2(time(s)) vs n)

slope of Ifib:8.11*10^-09 (time(s)vs n)

Slope of Clever fib: 6.37*10^-5 (time(ms) Vs log(n))

The difference in slope is due to the difference in the number of instructions in each iteration of a specific function.

- c) 1)yes this will affect the running time of cleverfib. Running time per iteration for clever fib is significantly more as compared to Ifib and Rfib. This we can verify from the slope of graphs plotted for Ifib and Cleverfib (because they are of the same order). Value of slope of cleverfib is more than that of Ifib
- 2) no, these facts have negligible effect on the relative speed of clever fib as the number of total instructions executed for computation when we call clever fib is still far far lesser as compared to the other two algorithm.
- 3) yes, yes (word Ram model of computation gives us a good idea about the efficiency of an algorithm by giving the total number of instructions executed and thus is quite accurate in comparing the efficiency of a pair of algorithms, however, it does not accurately give us the running time of an algorithm because there are various other factors that affect the running time .)