

Wheeled Locomotion | Introduction Autonomous Mobile Robots

Paul Furgale

Margarita Chli, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

Motivation: Efficiency of Locomotion Types

- Wheeled locomotion
 - Highly efficient on hard surfaces
 - Generally restricted to man-made surfaces
 - The de facto standard in mobile robotics

Review: Kinematics

Forward kinematics

Given a set of actuator positions, determine the corresponding pose

Review: Kinematics

- Forward kinematics
 - Given a set of actuator positions, determine the corresponding pose
- Inverse kinematics
 - Given a desired pose, determine the corresponding actuator positions

Review: Kinematics

- Forward kinematics
 - Given a set of actuator positions, determine the corresponding pose
- Inverse kinematics
 - Given a desired pose, determine the corresponding actuator positions

Wheeled Kinematics

 Not all degrees of freedom of a wheel can be actuated or have encoders

Wheeled Kinematics

- Not all degrees of freedom of a wheel can be actuated or have encoders
- Wheels can impose differential constraints that complicate the computation of kinematics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \dot{\phi}r \\ 0 \end{bmatrix}$$
no-sliding constraint

Differential Kinematics

- Differential forward kinematics
 - Given a set of actuator speeds, determine the corresponding velocity

Differential Kinematics

- Differential forward kinematics
 - Given a set of actuator speeds, determine the corresponding velocity
- Differential inverse kinematics
 - Given a desired velocity, determine the corresponding actuator speeds

a) Standard wheel

- Two degrees of freedom
 - Rotation around the wheel axle
 - Free rotation around the contact point
- Can be steered or fixed

b) Castor wheel

- Three degrees of freedom
 - Rotation around the wheel axle
 - Free rotation around the contact point
 - Rotation around the castor axle

- Swedish wheel
 - Three degrees of freedom
 - Rotation around the wheel axle
 - Free rotation around the rollers
 - Free rotation around the contact point
- Spherical wheel (ball)
 - Three degrees of freedom

By Rotacaster (Rotacaster Wheel Pty Ltd) via Wikimedia Commons

- Swedish wheel
 - Three degrees of freedom
 - Rotation around the wheel axle
 - Free rotation around the rollers
 - Free rotation around the contact point
- Spherical wheel (ball)
 - Three degrees of freedom

- Swedish wheel
 - Three degrees of freedom
 - Rotation around the wheel axle
 - Free rotation around the rollers
 - Free rotation around the contact point
- Spherical wheel (ball)
 - Three degrees of freedom

Holonomic and Non-Holonomic Systems

- Holonomic systems
 - Differential constrains are integrable. They
 may be expressed as constraints on the
 robot's pose
 - The robot is able to move instantaneously in any direction in the space of its degrees of freedom

- Non-holonomic systems
 - Differential constraints are not integrable.
 There is no way to express them as constraints on the robot's pose
 - The robot is not able to move instantaneously in every direction in the space of its degrees of freedom

A Holonomic Mobile Robot

- A bicycle with fixed steering
 - Two non-steerable wheels
 - The workspace of the robot collapses to a single degree of freedom: a circle
 - The differential constraints can be expressed as constraints on position
 - In any configuration, it is possible to choose wheel velocities that move the robot any direction within its workspace

A Holonomic Wheeled Platform

Photographer: Frank C. Müller via Wikimedia Commons

- The office chair
 - Castor wheels impose no differential constraints
 - In any configuration, it is possible to choose wheel velocities that move the robot any with any velocity within the plane

A Non-Holonomic Mobile Robot

No sliding constraint: $\dot{y}_R = 0$

- A differential drive robot
 - Two non-steerable wheels aligned on a common axis
 - The workspace of the robot encompasses all poses in the plane
 - The no-sliding constraint, $\dot{y}_R = 0$, cannot be expressed as a constraint on position
 - Regardless of the configuration the robot is in, instantaneous motion in the y_R direction is not possible.

Preview: Deriving the wheel equation

 Next topic: Given a specific wheel configuration, what is the relationship between platform speed and wheel constraints

