Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Master's Thesis Dissertation by Bhargav P Swaminathan M2 - Smart Grids and Buildings

Supervisors: Raphaël Caire & Vincent Debusschere

June 25, 2014

Introduction Preliminary Work The Algorithm Results & Conclusion

Agenda

for today's presentation

Introduction

- Background
- Introduction to the Problem
- Literature Review

Introduction Preliminary Work The Algorithm Results & Conclusion

Agenda

for today's presentation

Introduction

- Background
- Introduction to the Problem
- Literature Review

Preliminary Work

- Work Objectives
- Test Networks
- Day-ahead Load and DRES Models

Introduction Preliminary Work The Algorithm Results & Conclusions

Agenda

for today's presentation

Introduction

- Background
- Introduction to the Problem
- Literature Review

Preliminary Work

- Work Objectives
- Test Networks
- Day-ahead Load and DRES Models

The Algorithm

- Formulation & Economic Models
- Components
- Working of the Algorithm

Introduction Preliminary Work The Algorithm Results & Conclusion

Agenda

for today's presentation

Introduction

- Background
- Introduction to the Problem
- Literature Review

Preliminary Work

- Work Objectives
- Test Networks
- Day-ahead Load and DRES Models

The Algorithm

- Formulation & Economic Models
- Components
- Working of the Algorithm

Results & Conclusions

- Results Obtained
- Conclusions
- Future Work

Introduction Preliminary Work The Algorithm Results & Conclusion

Background

Electrical Distribution Network Optimization

• Merlin and Back method, close to 40 years ago!

Introduction Preliminary Work The Algorithm Results & Conclusion on th

Background

- Merlin and Back method, close to 40 years ago!
- $\bullet \ \ {\sf Developments} \ {\sf in} \ {\sf Optimization}.$

Introduction Preliminary Work The Algorithm Results & Conclusion on th

Background

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.

Introduction Preliminary Work The Algorithm Results & Conclusions of the Algorithm

Background

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- Problems with DRES integration!

Introduction Preliminary Work The Algorithm Results & Conclusion on th

Background

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- Problems with DRES integration!
- Distribution network optimization has to take a new, giant leap.

Introduction Preliminary Work The Algorithm Results & Conclusions of the Algorithm Results & Conclusions & Conclusions

Background

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- Problems with DRES integration!
- Distribution network optimization has to take a new, giant leap.
- This work proposes a method to take this leap!

Introduction

to the problem

Why is large-scale DRES integration is a problem?

- Variability / Intermittency
- Bi-directional Power Flows
- Grid Weakening
- Network Imbalance
- Fault Current Issues
- And finally: Money!

There is a **real need** to find solutions that assuage the problem with the integration of DRES.

Introduction Preliminary Work The Algorithm Results & Conclusion

Literature Review

Current Work in the Domain

Forecasting:

- A lot of work has been done in forecasting for DRES and Loads
- Persistency / NWP based methods
- Both traditional and stochastic load forecasting: fairly mature
- But are they applicable to Distribution Networks?

Introduction Preliminary Work The Algorithm Results & Conclusion

Literature Review

Current Work in the Domain

Forecasting:

- A lot of work has been done in forecasting for DRES and Loads
- Persistency / NWP based methods
- Both traditional and stochastic load forecasting: fairly mature
- But are they applicable to Distribution Networks?

Distribution Network Optimization:

- "Snapshot" based optimization
- Few instances of multi-temporal optimization
- Even they don't take a lot of issues into account
- Hence, there is a real need for a novel tool

6

Part II Preliminary Work

The following requirements were defined for the work to be done. The work should:

• Create a day-ahead schedule based on DRES and Load forecasts

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization

- Create a day-ahead schedule based on DRES and Load forecasts
- $\bullet \;\; \text{Effectively utilize all flexibilities} \; \text{in distribution networks} \; \text{for optimization}$
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all flexibilities in distribution networks for optimization
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal
- Be multi-objective

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal
- Be multi-objective
- Be modular

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal
- Be multi-objective
- Be modular
- Be a black box for end-users

nduction Preliminary Work The Algorithm Results & Conclusions of the Algorithm

Test Networks

Network 1 - PRFDIS Lirban Network

- Reduced-scale Urban Network
- 14 buses, 17 lines
- Connected Load: 26.5 MVA
- Installed DRES Capacity: 27 MW
- Undervoltage and overcurrent problems

oduction Preliminary Work The Algorithm

Test Networks

Network 2 - IEEE 11kV Rural Network

- Larger Network than PREDIS
- 70 buses, 79 lines
- Connected Load: 5.41 MVA
- DRES Info not available

nduction Preliminary Work The Algorithm Results & Conclusions

Day-ahead Load and DRES Models

Raw Models

- Two raw models extracted from literature.
- Specific weights for different types of loads.
- Residential, Industrial, Commercial, and Public Lighting.
- DRES Models: Values based on characteristic curves.
- Variation of Solar Power etc., taken into account.

Day-ahead Load and DRES Models

Models Applied to Networks

Load Model A

- This model consists of a simple association of each load type to one node.
- The load in each node varies accordingly for a given 24 hour period.

Load Model B

Each node has a particular % of loads of each type.

Load Type	PREDIS Network	Rural Network
Residential	5 – 80%	8 – 50%
Industrial	5 – 50%	20 - 75%
Commercial	0 – 50%	5-70%
Lighting	5-15%	5-15%

reduction Preliminary Work The Algorithm Results & Conclusions

Day-ahead Load and DRES Models

Models Applied to Networks

Load Model A

- This model consists of a simple association of each load type to one node.
- The load in each node varies accordingly for a given 24 hour period.

Load Model B

Each node has a particular % of loads of each type.

Load Type	PREDIS Network	Rural Network
Residential	5 – 80%	8 – 50%
Industrial	5 – 50%	20 – 75%
Commercial	0 – 50%	5-70%
Lighting	5-15%	5-15%

Rural Network (Based on Model 2) 4 3 2 4 8 10 4 8 12 16 20 24 Time (hour) Model A — Model B — DRES

Part III The Algorithm

Formulation

reduction Preliminary Work The Algorithm Results & Conclusion

The Algorithm

Formulation

Available Flexibilities

© pro-NERDS, SunValley, gov.com.au, wikipedia

Economic Models

Switching:

Cost/switching =
$$\frac{C_{SW}}{n_{SW}} + C_{OM} + C_{log}$$

 $C_{OM} = c \cdot f(t_{SW})$

• OLTC:

$$Cost/operation = \frac{C_{OLTC}}{n_{op}} + C_{OM} + C_{log}$$

$$C_{OM} = c \cdot f(t_{op})$$

Models for Load Reduction, VVC, and Violations are more difficult to develop.

Switching Operation	300 €
Load Reduction	6 €/MWh
OLTC Operation	20 €/Tap Change
VVC	132.9 €/MWh
Violations	500 €/violation

reduction Preliminary Work The Algorithm Results & Conclusion

The Algorithm

Components

Legend: VVC: Voltage VAr Control, LR: Load Reduction, OLTC: On-Load Tap Changing

Components - Reconfiguration

Multi-Objective Reconfiguration

- Branch exchange based method with pre-selection
- Membership Functions for Each Objective:

$$x_{i} = \frac{PLOSS(i)}{PLOSS0} \qquad i = 1, 2, N_{k}$$

$$\mu L_{i} = \frac{(x_{max} - x_{i})}{(x_{max} - x_{min})} \qquad \text{for } x_{min} < x_{i} < x_{max}$$

$$\mu L_{i} = 0 \qquad \qquad \text{for } x_{i} \le x_{min}$$

$$\mu L_{i} = 1 \qquad \qquad \text{for } x_{i} \ge x_{max}$$

- · Fuzzy min-max principle for finding branch to exchange
- Reconfiguration database based on "maximum" conditions

Components - Local Management

To manage "local" violations in distribution networks for the hour when it is launched.

Voltage Violations

- When V < 0.95pu or V > 1.05pu
- Solution: Use nearby nodes to improve voltage profile
- Objective function: f = abs(V (0.95 + c))

Current Violations

- When $I > I_{max}$
- Solution: Use downstream nodes to try reduce line current
- Objective function: $f = abs(I_{max} (I + c))$
- When both current and voltage violations exist, consider both sets of nodes, $f = abs(V (0.95 + c)) + abs(I_{max} (I + c))$
- Once done, check if $C_{spent} \ge C_{org}$, if yes, do not optimize.
- Return solution to calling function.

Components - Global Management

- At hour h, perform reconfiguration, and globally optimize using LM functions
- From hour h+1 to end of the day, check for violations
- Classify violations found and launch the respective management function
- At the end of the day, calculate overall costs and feed it back to calling function

- At hour h, use only LM functions to optimize globally
- From hour h+1 to end of the day, check for violations
- Classify violations found and launch the respective management function
- At the end of the day, calculate overall costs and feed it back to calling function

Working

Part IV

Results & Conclusions

Initial Results

Methodology

- Both networks were tested with the two load models.
- Two initial configurations were used: the original, and the 24 hour optimal configurations.

Methodology

- Both networks were tested with the two load models.
- Two initial configurations were used: the original, and the 24 hour optimal configurations.

Output Variables			
Money Spent without Optimization	Money Spent with Optimization		
Load Reduction effected	DRES VVC Outputs		
Number of Switching Operations	Number of OLTC Operations		
Loss Curves over the 24h period	Complete Bus Voltage Profiles		
Violations in the Network	Final Line and Bus statuses for every hour		

Preliminary Work The Algorithm Results & Conclusions

Results

PREDIS Network - Load Model A

oduction Preliminary Work The Algorithm Paculte & Conclusions

reduction Preliminary Work The Algorithm Results & Conclusions

adjustion Preliminary Work The Algorithm Results & Conclusions

Results

Rural Network - Load Model B

oduction Preliminary Work The Algorithm Results & Conclusions

reduction Preliminary Work The Algorithm Results & Conclusions

Results

B. P. Swaminathan

Conclusions

The developed algorithm

- Can optimize networks with a variety of characteristics.
- Is multi-objective and multi-temporal.
- Takes into account the day-ahead forecasts of DRES and loads, and uses inherent flexibilities.
- Outputs a day-ahead schedule.
- Provides Up to 70% reduction in expenditure, 91% reduction in violations, and 75% reduction in losses.
- Executes quickly.

Proliminary Work The Algorithm Proliminary Work

Conclusions

The developed algorithm

- Can optimize networks with a variety of characteristics.
- Is multi-objective and multi-temporal.
- Takes into account the day-ahead forecasts of DRES and loads, and uses inherent flexibilities.
- Outputs a day-ahead schedule.
- Provides Up to 70% reduction in expenditure, 91% reduction in violations, and 75% reduction in losses.
- Executes quickly.

Professional and Personal Perspectives

- Professional Perspectives: about my work in the laboratory
- · Personal Perspectives: studying abroad

Future Work

Work envisaged

- Sensibility studies
- The development of a novel reconfiguration function
- The development of a better multi-objective constrained optimization function
- The development of a complete economic model
- The development of a day-ahead market based purchase scenario
- The development of a probabilistic load-flow function

All as a part of my PhD here at G2ELab, commencing in September.

Thank You! ©

Questions? ©

Elevator Pitch

Back-up Slides

The Algorithm

Components - Reconfiguration (Extras)

Multi-Objective Reconfiguration

- Branch exchange based method with pre-selection
- Membership Functions for Each Objective:

$\begin{aligned} x_i &= \frac{PLOSS(i)}{PLOSS0} \\ \mu L_i &= \frac{(x_{max} - x_i)}{(x_{max} - x_{min})} \\ \mu L_i &= 0 \\ \mu L_i &= 0 \end{aligned}$	$i = 1, 2, N_k$ for $x_{min} < x_i < x_{max}$ for $x_i \le x_{min}$ for $x_i \le x_{max}$	$\mu V_i = 1 \qquad \qquad \text{fo}$	or $y_{min} < y_i < y_{max}$ or $y_i \le y_{min}$ or $y_i \ge y_{max}$
$z_{i} = max \left(\frac{I}{I_{max}}\right)$ $\mu A_{i} = \frac{(z_{max} - z_{i})}{(z_{max} - z_{min})}$ $\mu A_{i} = 1$ $\mu A_{i} = 0$	for $z_{min} < z_i < z_{max}$	$\begin{aligned} u_i &= \max\left(\frac{ F_{max} - F_{feeder} }{ F_{max} }\right) \\ \mu B_i &= \frac{(u_{max} - u_i)}{(u_{max} - u_{min})} \\ \mu B_i &= 1 \\ \mu B_i &= 0 \end{aligned}$	for all feeders $for \ u_{min} < u_i < u_{max}$ $for \ u_i \le u_{min}$ $for \ u_i \ge u_{max}$

- Fuzzy min-max principle for finding branch to exchange
- Creation of the reconfiguration database based on "maximum" conditions

The Algorithm

Working

troduction Preliminary Work The Algorithm Results & Conclusions

Initial Results

Why "Maximum" Condition was Chosen

Parameter	Original Network	Merlin & Back	Fuzzy Algorithm
PREDIS Network			
Power Losses (kWh)	11503.77	2678.49	2796.41
Minimum Voltage (pu)	0.9359	0.9415	0.9433
Voltage Violations	70	9	5
Rural Network			
Power Losses (kWh)	999.81	814.11	822.82
Minimum Voltage (pu)	0.9262	0.9410	0.9462
Voltage Violations	34	11	7

PREDIS Network - Load Model B

Network Parameter	Original Configuration	Optimal Configuration
Money Spent without Optimization	€ 35807	
Money Spent with Optimization	€ 12560.6	€ 14793.89
Original Losses	rinal Losses 9834 kWh	
Optimal Losses	3247 kWh	3219 kWh
Load Reduced	~ 0 kWh 0 kVArh	
VVC Energy		
Switching Operations	10 (1 Reconfiguration)	6 (2 Reconfigurations)
OLTC Operations	(0

Rural Network - Load Model A

OLTC Operations