Laboratório - Comandos de Repetição

2.1. Série

Implemente um programa que imprima todos os termos da série dado n, e os termos x0 e x1. Os outros termos da série serão:

$$x_n = 4 * x_{n-1} - 2 * x_{n-2}$$

O primeiro valor é referente à variável n, ou seja, o valor de termos da série, seguida de (X0) e (X1). O programa deve imprimir o valor de cada termo até o enésimo termo. No exemplo abaixo, com o valor de $\mathbf{n=4}$, $\mathbf{x0=3}$ e $\mathbf{x1=4}$, o programa deve imprimir o valor de $\mathbf{x0}$, $\mathbf{x1}$, $\mathbf{x2}$, $\mathbf{x3}$ e $\mathbf{x4}$.

Entrada	Saída
4 3 4	X0: 3 X1: 4 X2: 10 X3: 32 X4: 108

Entrada	Saída

**não tem valor de entrada	imprimir o resultado separando os números por "\n". Ex: 233 238
----------------------------	--

2.2. PI

Aproxime o valor de Pi empregando a série infinita de Gregory-Leibniz:

$$Pi = 4 - 4/3 + 4/5 - 4/7 + ...$$

Executando a série acima, a sua função deve retornar o *número de iterações* necessárias para encontrar um valor próximo ao valor de M_PI (uma constante com o valor de PI da biblioteca math.h) com uma diferença máxima de X, que é fornecida como entrada. No exemplo abaixo: foi necessário calcular 100002 termos da série para obter um valor próximo ao valor de PI (M_PI) com uma diferença de 0.000010.

Entrada	Saída
0.000010	100001

2.3. Contagem

Faça um programa que mostre uma contagem na tela de 233 a 457, só que contando de 3 em 3 quando estiver entre 300 e 400 e de 5 em 5 quando não estiver. (utilize do{}\)while())

 =	•	 0,,
••		
457		

2.4. Múltiplos

Faça um programa que compute quantos são os múltiplos de 2, de 3 e de 5 entre 1 e \boldsymbol{X} ; compute também quantos são os números múltiplos de 2, 3 e 5 ao mesmo tempo. (utilize while())

 $\acute{ extbf{E}}$ fornecido o valor de $\emph{\textbf{X}}$ onde deve ser impresso a quantidade de múltiplos conforme abaixo.

Entrada	Saída
---------	-------

1000	Múltiplos de 2: 500 Múltiplos de 3: 333 Múltiplos de 5: 200 Múltiplos de todos: 33
500	Múltiplos de 2: 250 Múltiplos de 3: 166 Múltiplos de 5: 100 Múltiplos de todos: 16

2.5. Soma

Faça um programa que pegue um número do teclado e calcule a soma de todos os números de 1 até ele (use laço for()). Ex.: o usuário entra 7, o programa vai mostrar 28, pois 1+2+3+4+5+6+7=28.

Entrada	Saída
7	28