网络表示学习第三次作业报告

• 姓名: 甘云冲

• 学号: 2101213081

本次作业需要使用GNN+分类head的模型结构进行节点分类任务,并且将GNN的输出作为表示利用t-SNE在二维空间内进行可视化,来查看GNN表示学习的最终效果。具体实现借助torch_geometric第三方库。

本次作业所采用的数据集与第二次相同,三个数据集的基本统计信息如下:

	Cora	Citeseer	Amazon Photo
Number of nodes	2708	3264	7535
Number of edges	5278	4536	119082
Average Degree	3.898	1.779	31.61
Average Clustering Coefficient	0.241	0.145	0.410

在图神经网络模型的embedding之上直接做一个线性映射,将图神经网络学到的表征映射到分类的类别数量,作为模型的分类头。以下参数在本次作业所有实验当中保持一致:

Hyperparameters	Value
hidden_units	128
dropout	0.5
num_layers	2
early_stop	50
max_epochs	300
optimizer	Adam
learning_rate	0.01

以下为各模型在不同数据集下的分类准确率,其中加粗部分为本次作业实验结果:

Model	Cora	Citeseer	Amazon Photo
DeepWalk	0.8429	0.6120	0.9085
Node2Vec	0.8429	0.6380	0.9131
GCN	0.8928	0.7684	0.9484
GAT	0.8909	0.7699	0.9529
GIN	0.8632	0.7193	0.9412
GraphSAGE	0.9039	0.7653	0.9510

可以发现,通过GNN学习所得到的表示,能够较DeepWalk和Node2Vec得到更高的分类准确率。

Cora

Citeseer

Amazon Photo

从可视化结果可以看出,图神经网络能够确实学到图节点上特征的关系,并且在二维平面上的投影明显相同类别的节点聚集在一块儿。