XXXII Olimpíada de Matemática do Pacífico-Asiático

9 de Março de 2020

Duração da prova: 4 horas

Cada problema vale 7 pontos

* Informe nome completo, data de nascimento e escola.

* Essa prova também servirá para a seleção da equipe do Brasil na IMO.

* Os problemas da prova devem ser mantidos CONFIDENCIAIS até eles serem divulgados no website oficial da APMO (http://apmo-official.org). Não divulgue ou discuta os problemas pela Internet até essa data. Não é permitido o uso de calculadoras.

* A primeira página da sua solução de cada um do(s) problema(s) de geometria dessa prova deve ser somente a figura do problema feita com régua e compasso. Caso isso não aconteça, sua pontuação máxima no problema na seletiva será 6 pontos.

* Somente escreva em um lado de cada folha que utilizar.

* Essa prova tem cinco problemas.

* Não se esqueça: Informe nome completo, data de nascimento e escola.

Problema 1. Seja Γ o circuncírculo do $\triangle ABC$. Seja D um ponto sobre o lado BC. A reta tangente a Γ em A intersecta a reta paralela a BA que passa por D em E. O segmento CE intersecta Γ novamente em F. Suponha que B, D, E e F são concíclicos. Prove que AC, BF e DE são concorrentes.

Problema 2. Mostre que r=2 é o maior número real r que satisfaz a seguinte condição: Se uma sequência a_1, a_2, \ldots de inteiros positivos satisfaz as desigualdades

$$a_n \le a_{n+2} \le \sqrt{a_n^2 + ra_{n+1}}$$

para todo inteiro positivo n, então existe um inteiro positivo M tal que $a_{n+2} = a_n$ para todo $n \ge M$.

Problema 3. Determine todos os inteiros positivos k para os quais existe um inteiro positivo m e um conjunto S de inteiros positivos tais que todo inteiro n > m pode ser escrito como uma soma de elementos distintos de S em exatamente k maneiras.

Problema 4. Seja \mathbb{Z} o conjunto de todos os inteiros. Encontre todos os polinômios P(x) com coeficientes inteiros que satisfazem à seguinte propriedade:

Para toda sequência infinita a_1, a_2, \ldots de inteiros em que cada inteiro de $\mathbb Z$ aparece exatamente uma vez, existem índices i < j e um inteiro k tais que $a_i + a_{i+1} + \cdots + a_j = P(k)$.

Problema 5. Seja $n \ge 3$ um inteiro fixado. O número 1 é escrito n vezes em uma lousa. Abaixo da lousa há dois baldes inicialmente vazios. Um movimento consiste em apagar dois números a e b, trocá-los pelos números 1 e a+b, adicionar uma pedra no primeiro balde e mdc(a,b) pedras no segundo balde. Após uma quantidade finita de movimentos, há s pedras no primeiro balde e t pedras no segundo balde, em que s e t são inteiros positivos. Encontre todos os possíveis valores da razão $\frac{t}{a}$.

* Não se esqueça: Informe nome completo, data de nascimento e escola.