Decision tree classifier

Hung-Hsuan Chen 陳弘軒 Computer Science and Information Engineering National Central University hhchen@ncu.edu.tw

Many slides are taken from Jiawei Han at UIUC

Decision Tree (2/2)

• Example:

(A test instance)

Outlook	Temperat ure	Humidity	Windy	Play
Rainy	Hot	High	True	?

Decision Tree (1/2)

Training set

· Learned decision tree

How to generate a classification tree?

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-andconquer manner.
 - Attributes are categorical.

 (if an attribute is a continuous number, it needs to be discretized in advance.) E.g.

0 <= age <= 100 0 = age <= 100 $0 \sim 20$ $21 \sim 40$ $41 \sim 60$ $41 \sim 60$

- At start, all the training examples are at the root.
- Examples are partitioned recursively based on selected attributes.

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain): maximizing an information gain measure, i.e., <u>favoring the partitioning</u> <u>which makes the majority of examples belong to a single class</u>.
- Examples of conditions for stopping partitioning:
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain): maximizing an information gain measure, i.e., <u>favoring the partitioning</u> <u>which makes the majority of examples belong to a single</u>

Primary Issues in Tree Construction (1/2)

- •Split criterion: Goodness function
 - <u>Used to select the attribute to be split at a</u> <u>tree node during the tree generation phase</u>
 - Different algorithms may use different goodness functions:
 - Information gain (used in ID3)
 - Gain ratio (used in C4.5)
 - Gini index (used in CART)

not only

Primary Issues in Tree Construction (2/2)

- Branching scheme:
 - Determining the tree branch to which a sample belongs
 - Binary vs. k-ary splitting

- When to stop the further splitting of a node? e.g. impurity measure
- Labeling rule: a node is labeled as the class to which most samples at the node belongs.

How to Use a Tree?

- Directly
 - Test the attribute value of unknown sample against the tree.
 - A path is traced from root to a leaf which holds the label.
- Indirectly
 - Decision tree is converted to classification rules.
 - One rule is created for each path from the root to a leaf.
 - IF-THEN might be easier for humans to understand .

10

Expected Information (Entropy)

Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

(p.: probability that a tuple in D belongs to class C, m: number of classes)

$$Info(D) = I(3,2) = -\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5}) \qquad Info(D) = I(5,0) = -\frac{5}{5}\log_2(\frac{5}{5}) - \frac{0}{5}\log_2(\frac{0}{5})$$

$$\approx -\frac{3}{5}\times(-0.737) - \frac{2}{5}\times(-1.322)$$

$$\approx 0.971$$

11

Expected Information (Entropy)

Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Split on Attribute A

Attribute B

$$Info_A(D) = \frac{2}{5}Info(1,1) + \frac{3}{5}Info(2,1) = 0.918$$
 $Info_B(D) = \frac{2}{5}Info(2,0) + \frac{3}{5}Info(3,0) = 0$

$$Gain(A) = Info(D) - Info_A(D)$$

= 0.971 - 0.918 = 0.053

$$Gain(B) = Info(D) - Info_B(D)$$

= 0.971 - 0 = 0.971

Expected Information (Entropy)

- Entropy is a measurement of uncertainty (or randomness, untidiness)
- Entropy H(X) of a coin flip
 - · X: the probability of getting a head
- If the coin is fair, then entropy of the next flip is maximized
 - This is the situation of maximum uncertainty, since it is most difficult to predict the outcome
- If the coin is unfair, there is less uncertainty
- One side is more likely to come up than the other
- Extreme case: a double-headed or a doubletailed coin
 - · There is no uncertainty
 - The entropy is zero

2020/9/

Decision Tree Induction: An Example

□Training data set: Buys_computer

□Resulting tree:

age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

age?

Attribute Selection Measure: Information Gain (ID3)

- Select the attribute with the highest information gain
 To minimize # of tests needed to classify a given tuple
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i ; p_i is estimated by $|C_{i,p}|/|D|$
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum p_i \log_2(p_i)$
- Information needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{i=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$

we'dnikermation gained by branching on attribute A

to minimize Info_A(D), the

 \Longrightarrow Gain(A) = Info(D) – Info₄(D)

information still required to finish classifying the tuples

Attribute Selection: Information Gain

	3/					
i		age	income	student	credit_rating	buys_computer
١	1	youth	high	no	fair	no
	•	youth	high	no	excellent	no
7	2	middle_aged	high	no	fair	yes
ξ	•	senior	medium	no	fair	yes
J	>	senior	low	yes	fair	yes
١		senior	low	yes	excellent	no
Ĭ	Į.	middle_aged	low	yes	excellent	yes
Į	•	youth	medium	no	fair	no
1		youth	low	yes	fair	yes
l	L	senior	medium	yes	fair	yes
	7	youth	medium	yes	excellent	yes
	•	middle_aged	medium	no	excellent	yes
	٠.	middle_aged	high	yes	fair	yes
١	עט	senior	medium	no	excellent	no
ı	_ \					

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

Attribute Selection: Information Gain

age	pi	ni	I(p _i , n _i)
youth	2	3	0.971
middle_aged	4	0	0
senior	3	2	0.971

- Class P: buvs computer = "ves"
- Class N: buvs computer = "no"
- $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$
- $\frac{3}{14}I(2,3)$: age="youth" appears in 5 out of 14 samples, with 2 positive and 3 negative examples
- $Gain(age) = Info(D) Info_{age}(D) = 0.246$

- Which of the following has a higher entropy?
 - (O,O,X,X) vs (O,O,X,X,X) vs (O,O,O)
- Which attribute (A or B) will be selected by a decision tree classifier based on information gain?

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
 - E.g., unique pID -> split on pID results in large number of partitions, each containing just one tuple => each partition is pure => information required to classify this partition would be Info pro(D)=0, i.e., the information gain is maximal!!
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

cessor of ID3) uses gain ratio to overcome the problem tion to information gain)
$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|}), \text{ If the many io(A) = Gain(A)/SplitInfo(A)}$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- The attribute with the maximum gain ratio is selected as the splitting attribute

Example of Gain Ratio

age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

income=high: 4 # income=medium: 6 # income=low: 4

• Split Info_{income}(D) =
$$-\frac{4}{14}\log_2\left(\frac{4}{14}\right) - \frac{6}{14}\log_2\left(\frac{6}{14}\right) - \frac{4}{14}\log_2\left(\frac{4}{14}\right) \approx 1.557$$

• GainRatio(income) = Gain(income)/SplitInfo_A(D) = $\frac{0.029}{1.557} \approx 0.019$

Gini Index (CART, IBM IntelligentMiner)

• If a data set D contains examples from n classes, impurity measure is calculated by Gini index, Gini(D) $Gini(D) = 1 - \sum p_i^2$

where p_i is the probability of class C_i in D_i estimated by $|C_{i,D_i}|/|D$

• If a data set D is split on A into subsets D_n the Gini index $Gini_A(D)$ given the split on A is:

$$Gini_A(D) = \sum_i \frac{|D_i|}{|D|} Gini(D_i)$$

• Reduction in Impurity:

 $\Delta Gini(A) = Gini(D) - Gini_A(D)$

• The attribute provides the largest reduction in impurity, i.e., maximized \triangle Gini(A), is chosen to split the node (need to enumerate all the possible cut-point for each attribute)

Quiz

- Given students' ID, height, weight, and gender as the training data, you are asked to build a decision tree classifier to predict a student's gender based on her/his ID. height, and weight
 - Which attribute (ID. height, or weight) is likely to be selected first if you use information gain as the attribute selection method?

Example of Gini index

age	income	student	credit_rating	buys_computer
youth	high	no	fair	no
youth	high	no	excellent	no
middle_aged	high	no	fair	yes
senior	medium	no	fair	yes
senior	low	yes	fair	yes
senior	low	yes	excellent	no
middle_aged	low	yes	excellent	yes
youth	medium	no	fair	no
youth	low	yes	fair	yes
senior	medium	yes	fair	yes
youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
senior	medium	no	excellent	no

- D has 9 tuples in buys_computer = "yes" and 5 in "no"
- $Gini(D) = 1 \left(\frac{9}{14}\right)^2 \left(\frac{5}{14}\right)^2 = 0.459$

Example of Gini index

age	income	student	credit rating	buys computer	When income = "high"
youth	high	no	fair	no	
youth	high	no	excellent	no	→ 2 "yes" and 2 "no"
middle_aged	high	no	fair	yes	-
senior	medium	no	fair	yes	
senior	low	yes	fair	yes	When income = "medium"
senior	low	yes	excellent	no	
middle_aged	low	yes	excellent	yes	→ 4 "yes" and 2 "no"
youth	medium	no	fair	no	
youth	low	yes	fair	yes	
senior	medium	yes	fair	yes	When income = "low"
youth	medium	yes	excellent	yes	- 2 " " 14 " "
middle_aged	medium	no	excellent	yes	→ 3 "yes" and 1 "no"
middle_aged	high	yes	fair	yes	
senior	medium	no	excellent	no	

•
$$Gini_{income}(D) = \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 \right) + \frac{6}{14} \left(1 - \left(\frac{4}{6}\right)^2 - \left(\frac{2}{6}\right)^2 \right)$$

$$+ \frac{4}{14} \left(1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2 \right) = 0.325$$

• $\Delta Gini(income) = Gini(D) - Gini_{income}(D) = 0.134$

Computing Information-Gain for Continuous-Valued Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - $(a_i + a_{i+1})/2$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the *minimum expected information requirement* for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Quiz

 Can we apply Decision Tree Classifier on the datasets with only numerical attributes?

Example of Information-Gain for Continuous-Valued Attributes

Temperature: 40 48 60 72 80 90 有其分 pwi

- · Sort the continuous-valued attributes
- · Determine the classifier's changing points
 - E.g., (48-60) and (80-90) in the above example
- Take the mid-points of the changing points as the candidates for discretization
 - E.g., (48+60)/2, (80+90)/2
- Use "54" to split
 - If Temperature <= 54 → No; Else → Yes
 - $Gain(T=54) = Info(D) Info_{T=54}(D) = 1 0.811 = 0.189$
- Use "85" to split
 - If Temperature <= 85 → Yes; Else → No
 - $Gain(T=85) = Info(D) Info_{T=85}(D) = 1 0.696 = 0.304$

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - Usually faster than information gain (because information gain requires logarithm computation)

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples, i.e., lose the ability of generalization

Many Attribute Selection Measures

- Which attribute selection measure is the best?
 - · Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

- Perfect decision tree performs 100% accuracy on the training data
 - Assuming that in the training data if two instances have the same feature sets then they must have the same label
- Prevent overfitting
 - · Pre-prune the tree
 - · Stop before a tree is fully grown
 - E.g., limit the tree height; stop when the number of instances in a node is small; when misclassification rate is low enough
 - · The method is short-sighted
 - A seemly worthless early split may be followed by a very good split
 - Post-prune the tree
 - · Grow a perfect tree and prune the nodes from bottom up
 - $R_{\alpha}(T) = R(T) + \alpha \cdot |f(T)|$

Training error

Post-pruning considerations

Goal: cut a large portion of a tree, but only increase few error rate

- The two requests are usually against each other
- We may define the goodness of a cut by

$$\alpha(t_i) = \frac{\text{\# error after cut} - \text{\# error before cut}}{\text{\# leaves been cut} - 1}$$

Example

Example

$$\alpha(t_0) = \frac{25 - (4 + 0 + 0 + 1 + 1)}{5 - 1} = 4.75$$

$$\alpha(t_1) = \frac{10 - (4 + 0 + 0)}{3 - 1} = 3 \Rightarrow \text{ Cut here!}$$

$$\alpha(t_2) = \frac{5 - (1 + 1)}{2 - 1} = 3$$

$$\alpha(t_4) = \frac{4 - (0 + 0)}{2 - 1} = 4$$

Classification tree is constructed in a "greedy" manner

- Greedy: pick a feature to split the data best on the current information
 - This may lead to a local optimal

Example

В	С	label
0	1	1
1	0	1
1	1	1
0	0	0
1	1	0
	0 1 1	0 1 1 0 1 1

We build an imaginary dataset as follows

The dataset has three binary features A, B, and C

The label is constructed by A xor B

C is set to label for 80% of the time and the inverse of the label for 20% of the time

On average, $Info_A(D) = 1$

When A=1, 50% of the labels are 1 and 50% of the labels are 0 When A=0, 50% of the labels are 1 and 50% of the labels are 0

Similarly, $Info_B(D) = 1$

On average, $Info_{C}(D) = 0.722$

When C=1, 80% of the labels are 1; 20% of the labels are 0 When C=0, 80% of the labels are 0; 20% of the labels are 1

In the case, we will choose feature C as the feature to split data

However, an oracle should first select one feature from A or from B, and select the other feature as the second feature

2020/9/2

Why not try all possible attribute splitting sequences?

- The best tree requires to test all possible sequences
 - Very large search space
 - If the training data have *d* binary features, consider one path from root to one leaf:
 - d possible roots
 - d-1 possible level-1 nodes
 - *d*-2 possible level-2 nodes
 - ...
 - This is just one path from root to one leaf, there are *d* different leaves
 - If there are numerical attributes, the number of trees is even larger
 - Why?

2020/9/23

Which one is better?

- Occam's razor
 - Among competing hypotheses, the one with the fewest assumptions should be selected.

.0/.0/2.3

An example of testing all trees vs decision trees

- Suppose we want to predict whether an individual has a certain disease based on 4 binary features: gender (male/female), height (tall/short), weight (fat/thin), age (young/old)
- Decision tree: need to test approximately 4 + 3*2 + 2*4 = 18/
 splits
 - 4: root split test 4 features
 - 3*2: each level-1 node test 3 features; 2 level-1 nodes
 - 2*4: each level-1 node test 2 features; 4 level-1 nodes
- List all tress: need to test approximately 4 * 3*2 * 2*4 = 192
 - 4: root split test 4 features
 - 3*2: each level-1 node test 3 features; 2 level-1 nodes
 - 2*4: each level-1 node test 2 features; 4 level-1 nodes

V9/23 40

Regression tree

- 12 34 f
- A brief review of classification tre
 - Select a feature A and a cut-point v to split the original dataset D into sub-groups such that the labels in each sub-group are as pure as possible
 - Repeat the above step
- Regression tree
 - Select a feature A and a cut-point v to split the original dataset
 D into sub-groups such that the target values in each group is
 as pure as possible
 - There could be multiple ways to define "purity"
 - Possible choices: RSS (residual sum of squares), max-min, variance
 - Repeat the above step

2020/9/2

Quiz

 You are asked to build a decision tree classifier based on two features x1 and x2. How to partition the space into the following figure?

2020/9/23

Quiz

 You are asked to build a decision tree classifier based on two features x1 and x2. How to separate the space into the following figure?

Quiz

• True or false: if decision tree T2'a pruned tree of tree T1, then T1 is less likely to overfit the training data

- · Consider the following training data
 - What is the entropy of the training examples?
 - What is the information gain of f2 relative to these training examples?

				- 1 = energy
f1	f2	Target		- 1 2 cocost.
T	Т	1] /	
T	F	1	1 ()
T	Т	0		✓
F	F	1	T5.と /	12-1
F	Т	0	1 ''	
F	F	0		
	·	((0,0)	(1,1,0)

2020/9/23

23(-1/05-2/05)+3(-1/05-2/05)

Random forest

• A random forest is a **meta estimator** that fits numerous decision tree classifiers on various sub-samples of the dataset

- Each tree can use only part of the available features
 - A common practice is using sqrt(n_features)
- Sub-sampling the training data for each tree
 - A common practice: the sub-sample size is always the same as the original input sample size, but the samples are drawn with replacement
- The prediction is based on the majority voting of all the generated decision trees
 - · Prevent overfitting
 - · Usually yield higher test accuracy
- · Highly parallelizable during training and testing
- One of the best predictor in many applications and competitions

120/9/23

Summary

Info gan z entopy [-entopy] 分前 一分级

- Decision tree generates a set of classification/ regression rules based on the training data
- "Interpretable" prediction

2020/9/23

X P,12

 $Z_{1}(D) = \frac{1}{2} Z_{1}(C_{1}) + \frac{1}{2} Z_{2}(C_{2}) + \frac{1}{2} Z_{3}(C_{2}) + \frac{1}{2} Z_{4}(C_{2}) + \frac{1}{2} Z$