

CNN

- Convolutional Neural Network

概要

- ・LeNet (第一个卷积神经网络)
- AlexNet
 - 升级版的 LeNet
 - ReLu 激活,丢弃法
- VGG
 - 模块化的 AlexNet
 - 重复的 VGG 块

ResNet

泰勒展开式 残差网络

Hub

稠密连接网络 (DenseNet), ShuffleNet, ...

LeNet 架构

手写的数字识别

MNIST

- 居中和缩放
- 50,000 个训练数据
- 10,000 个测试数据
- 图像大小28*28
- 10 类

2222222222

88888888888

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998
Gradient-based learning applied to document recognition

如果我们有很多输出,那开销就很大了

· Code...

AlexNet

图像	自然物体的彩色图像	手写数字的灰色图像
尺寸	469 x 387	28 x 28
# 样本数	1200万	6万
# 类别数	1,000	10

AlexNet

- AlexNet 在 2012 年赢 得了ImageNet 竞赛
- 更深更大的 LeNet
- 主要修改
 - 丢弃法 (正则化)
 - ReLu 激活函数 (训 练)
 - 最大池化法
- 计算机视觉的范式转变

AlexNet 架构

AlexNet 架构

更多技巧

- · 将激活函数从 sigmoid 更改为 ReLu (不再梯度消失)
- 在两个隐含层之后应用丢弃法(更好的稳定性/正则化)
- 数据增强

复杂度

Dense (1000)

Dense (4096)

image (224x224)

RENMIN UNIX

	# 参数量		浮点计算量 (FLOP)		Dense (4096)
	AlexNet	LeNet	AlexNet	LeNet	Max Pooling
卷积层1	35K	150	101M	1.2M	3x3 Conv (384)
卷积层2	614K	2.4K	415M	2.4M	3x3 Conv (384)
卷积层3-5	3M		445M		3x3 Conv (384)
稠密层1	26M	0.48M	26M	0.48M	Max Pooling
稠密层2	16M	0.1M	16M	0.1M	5x5 Conv (256)
总共	46M	0.6M	1G	4M	Max Pooling
倍数增加	11x	1x	250x	1x	11x11 Conv (96), stride 4
					<u> </u>

RENMIN UNIVERSITY OF CHINA

• Code...

VGG

- AlexNet 比 LeNet 更深入更大,以获得更强性能
- 怎么更大更深?
 - 选项
 - 更多稠密层(开销太大)
 - 更多的卷积层
 - 分组成块

VGG 块

- VGG 块
 - 3x3 卷积 (填充=1) (n层, m个通道)
 - 2x2 最大池化层 (步幅=2)

AlexNet 一部分

VGG 结构

- · 多个VGG块后 加稠密层
- 不同数目的重复VGG 块,可获得不同的。
 架构,例如
 VGG-16,VGG-19,

11x11 Conv (96), stride 4

NEISMIN VINITERSITE

OF CHINA

发展进程

- LeNet (1995)
 - 2 卷积层 +池化层
 - 2 隐含层
- AlexNet
 - 更大更深的 LeNet
 - ReLu 激活, 丢弃法, 预处理
- VGG
 - 更大更深的 AlexNet (重复的 VGG 块)


```
sequential1 output shape: (1, 64, 112, 112) sequential2 output shape: (1, 128, 56, 56) sequential3 output shape: (1, 256, 28, 28) sequential4 output shape: (1, 512, 14, 14) sequential5 output shape: (1, 512, 7, 7) dense0 output shape: (1, 4096) dropout0 output shape: (1, 4096) dropout1 output shape: (1, 4096)
```

(1, 10)

dense2 output shape:

· Code...

残差网络 (ResNet)

添加层会提高准确性吗?

generic function classes

nested function classes

残差网络(ResNet)

- ·添加层会更改原 特征类
- •我们想要"加"到原函数中
- "泰勒展开"的 参数

$$f(x) = x + g(x)$$

残差块

不同的残差块

尝试每一个排列

残差块

- 每个模块进行降采样
- 需要调整尺寸时,通过1x1卷积 (步幅 = 2)
- 保证主路尺寸和旁路尺寸一致

残差网络 (ResNet)

- 相同块结构,类似VGG块结构
- 残差块连接可增加表现力
- 池化 / 步幅 减少维度
- 批量归一化 增加深度
-大规模训练......

· Code...

使用PyTorch Hub

model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True)

