Автор лабораторной работы

Сыров Владислав Андреевич

группа: НКНбд-01-19

ст.билет: 1032192889

Цель работы

Изучить модель эпидемии SIR

Задание

- 1. Изучить модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае:

$$I(0) \leq I^*, I(0) > I^*$$

Выполнение лабораторной работы

Теоретические сведения

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I[^], считаем, что все больные изолированы и не заражают здоровых. Когда I(t)> I[^], тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,если } I(t) > I^* \ 0 & ext{,если } I(t) \leq I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & ext{,ecли } I(t) > I^* \ -eta I & ext{,ecли } I(t) \leq I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности alpha, beta - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: I(0) \leq I^* и I(0)>I^*

Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=4289) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=82, А число здоровых людей с иммунитетом к болезни R(0)=15. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0).

Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в двух случаях:

```
model Project
  parameter Real a=0.12;
  parameter Real b=0.02;

Real S(start=4289);
  Real I(start=82);
  Real R(start=15);

equation
    der(S) = 0;
    der(I) = -b*I;
    der(R) = b*I;

annotation(experiment(StartTime=0, StopTime=200, Tplerance=1e-06,Interval=0.05));
end Project;
```

```
model Project
  parameter Real a=0.12;
  parameter Real b=0.02;

Real S(start=4289);
  Real I(start=82);
  Real R(start=15);

equation
    der(S) = -a*S;
    der(I) = a*S-b*I;
    der(R) = b*I;

annotation(experiment(StartTime=0, StopTime=200, Tplerance=1e-06,Interval=0.05));
end Project;
```


Выводы

В ходе выполнения лабораторной работы была изучена модель эпидемии и построены графики.

Список литературы

- 1. SIR models of epidemics
- 2. Конструирование эпидемиологических моделей