HW7 Report

學號:b07901039 系級:電機二 姓名:劉知穎

1. 請從 Network Pruning/Quantization/Knowledge Distillation/Low Rank Approximation 選擇兩個方法(並詳述),將同一個大 model 壓縮至同等數量級,並討論其 accuracy 的變化。 (2%)

大 model:使用助教 trained 的 torchvisions 的 resnet18。

size: 43 MB。(44788712 bytes)、参數量:11.1 M。 Valididation Loss: 0.55742 、Validation Acc: 0.885

resnet18 模型架構:

Layer (type)	Output Shape	Param #
Conv2d-1	[-1, 64, 64, 64]	9,408
BatchNorm2d-2	1-1 64 64 641	128
ReLU-3 MaxPool2d-4	[-1, 64, 64, 64] [-1, 64, 32, 32]	0 0
Conv2d-5	1-1 64 32 321	36,864
BatchNorm2d-6	[-1 64 32 32]	128
ReLU-7 Conv2d-8	[-1, 64, 32, 32] [-1, 64, 32, 32]	0 36,864
BatchNorm2d-9	[-1, 64, 32, 32]	128
ReLU-10	[-1, 64, 32, 32]	0
BasicBlock-11 Conv2d-12	[-1, 64, 32, 32] [-1, 64, 32, 32]	0 36,864
BatchNorm2d-13	[-1, 64, 32, 32]	128
ReLU-14	[-1 64 32 32]	0
Conv2d-15 BatchNorm2d-16	[-1, 64, 32, 32] [-1, 64, 32, 32]	36,864 128
ReLU-17	[-1, 64, 32, 32]	0
BasicBlock-18	[-1, 64, 32, 32]	72 720
Conv2d-19 BatchNorm2d-20	[-1, 128, 16, 16] [-1, 128, 16, 16]	73,728 256
ReLU-21	r-1 128 16 161	0
Conv2d-22 BatchNorm2d-23	[-1, 128, 16, 16]	147,456 256
Conv2d-24	[-1, 128, 16, 16] [-1, 128, 16, 16]	8,192
BatchNorm2d-25	[-1, 128, 16, 16]	256
ReLU-26	[-1, 128, 16, 16]	0 0
BasicBlock-27 Conv2d-28	[-1, 128, 16, 16] [-1, 128, 16, 16] [-1, 128, 16, 16]	147,456
BatchNorm2d-29	[-1, 128, 16, 16]	256
ReLU-30	[-1, 128, 16, 16]	0
Conv2d-31	[-1, 128, 16, 16]	147,456
BatchNorm2d-32 ReLU-33	[-1, 128, 16, 16] [-1, 128, 16, 16]	256 0
BasicBlock-34	[-1 128 16 161	Õ
Conv2d-35	1-1 256 8 81	294,912
BatchNorm2d-36	[-1, 256, 8, 8]	512 0
ReLU-37 Conv2d-38	[-1, 256, 8, 8] [-1, 256, 8, 8]	589,824
BatchNorm2d-39	[-1. 256. 8. 81	512
Conv2d-40	[-1, 256, 8, 8]	32,768
BatchNorm2d-41	[-1, 256, 8, 8]	512
ReLU-42 BasicBlock-43	[-1, 256, 8, 8] [-1, 256, 8, 8]	0 0
Conv2d-44	[-1, 256, 8, 8]	589,824
BatchNorm2d-45	[-1, 256, 8, 8]	512
ReLU-46	1-1. 256. 8. 81	0
Conv2d-47 BatchNorm2d-48	[-1, 256, 8, 8] [-1, 256, 8, 8]	589,824 512
ReLU-49	[-1. 256. 8. 8]	0
BasicBlock-50	1-1. 256. 8. 81	0
Conv2d-51	[-1, 512, 4, 4]	1,179,648
BatchNorm2d-52 ReLU-53	[-1, 512, 4, 4] [-1, 512, 4, 4]	1,024 0
Conv2d-54	[-1, 512, 4, 41	2,359,296
BatchNorm2d-55	1-1. 512. 4. 41	1,024
Conv2d-56	1-1 512 4 41	131,072
BatchNorm2d-57 ReLU-58	[-1, 512, 4, 4] [-1, 512, 4, 4]	1,024 0
BasicBlock-59	1-1. 512. 4. 41	0
Conv2d-60	[-1, 512, 4, 4]	2,359,296
BatchNorm2d-61 ReLU-62	[-1, 512, 4, 4] [-1, 512, 4, 4] [-1, 512, 4, 4]	1.024
Conv2d-63	[-1, 512, 4, 4] [-1, 512, 4, 4] [-1, 512, 4, 4]	2,359,296
BatchNorm2d-64 ReLU-65	[-1, 512, 4, 4]	1,024
ReLU-65 BasicBlock-66	[-1, 512, 4, 4] [-1, 512, 4, 4]	0
AdaptiveAvgPool2d-67	[-1, 512, 1, 1]	0
Linear-68	[-1, 11]	5,643
Total params: 11,182,155		
Trainable params: 11,182,155		
Non-trainable params: 0		

(1) Low Rank Approximation

將 resnet18 架構中除第一層 convolution layer 外的 convolution layer,拆解 成 depthwise 和 pointwise 的 convolution layer。

size: 5.7 MB。(5922784 bytes)、參數量: 1.4 M

training 時將 data 隨機作 RandomCrop、RandomHorizontalFlip、

RandomRotation、ColorJitter、RandomPerspective 這些 transform。

使用 AdamW optimizer、learning rate = 1e-3、batch size = 128、跑 250 個 epoch。

smallResnet 模型架構:

Best Validation Loss: 0.807 \ Validation Acc: 0.801

(2) Knowledge Distillation

以助教 trained 好的 resnet18 當 teacher net,用一般 CNN 架構(沒有用 depthwise 和 pointwise convolution)的小 model 當 student net。 size: 5.0 MB (5223289 bytes)、參數量:1.7 M training 時將 data 隨機作 RandomCrop、RandomHorizontalFlip、RandomRotation、ColorJitter、RandomPerspective 這些 transform。 使用 AdamW optimizer、learning rate = 1e-3、batch size = 128、跑 250 個 epoch。

loss function 定義為(alpha = 0.5, T= 20)

$$Loss = \alpha T^2 \times KL(rac{ ext{Teacher's Logits}}{T}||rac{ ext{Student's Logits}}{T}) + (1-lpha)$$
(原本的Loss) studentnet 架構:

Layer (type)	Output Shape	Param #
 Conv2d-1		064
Conv2d-1 BatchNorm2d-2	[-1, 32, 64, 64]	864 64
ReLU6-3	[-1, 32, 64, 64] [-1, 32, 64, 64]	0
MaxPool2d-4		0
Conv2d-5	[-1, 32, 32, 32] [-1, 64, 32, 32]	18,432
BatchNorm2d-6	[-1, 64, 32, 32]	10,432
ReLU6-7	[-1, 64, 32, 32]	0
MaxPool2d-8	[-1, 64, 32, 32]	0
Conv2d-9	[-1, 128, 8, 8]	73,728
BatchNorm2d-10	[-1, 128, 8, 8]	73,728 256
ReLU6-11	[-1, 128, 8, 8]	0
MaxPool2d-12	[-1, 128, 4, 4]	ő
Conv2d-13	[-1, 128, 4, 4]	147,456
BatchNorm2d-14	[-1, 128, 4, 4]	256
ReLU6-15	[-1, 128, 4, 4]	0
Conv2d-16	[-1, 256, 2, 2]	294,912
BatchNorm2d-17	[-1, 256, 2, 2]	512
ReLU6-18	[-1, 256, 2, 2]	0
Conv2d-19	[-1, 256, 2, 2]	589,824
BatchNorm2d-20	[-1, 256, 2, 2]	512
ReLU6-21	[-1, 256, 2, 2]	0
Conv2d-22	[-1, 256, 2, 2]	589,824
BatchNorm2d-23	[-1, 256, 2, 2]	512
ReLU6-24	[-1, 256, 2, 2]	0
AdaptiveAvgPool2d-25	[-1, 256, 1, 1]	0
Linear-26	[-1, 11]	2,827
Total params: 1,720,107 Trainable params: 1,720,107 Non-trainable params: 0		

Conv2d(3, 32, 2) / Conv2d(32, 64, 1) / Conv2d(64, 128, 2) / Conv2d(128, 128, 1) / Conv2d(128, 256, 2) / Conv2d(256, 256, 1) / Conv2d(256, 256, 1)

每個 Conv2d 後面都接 BatchNorm2d 和 ReLU6、前三個 ReLU6 之後接 MaxPool2d,最後接一層 Linear(256, 1) Best validation loss: 4.0890 、acc: 0.8050

	state_dict size	# of parameters	validation accuracy
resnet18	43 MB	11.1M	0.885
DW+PW conv	5.7 MB	1.4 M	0.801
Knowledge	5 MB	1.7 M	0.805
Distillation			

用上述兩個方法壓縮模型後,模型大小約為原本的八分之一,參數量約為原本的十分之一,validation accuracy 從 0.885 降至 0.801 和 0.805。

- 2. [Knowledge Distillation] 請嘗試比較以下 validation accuracy (兩個 Teacher Net 由助教提供)以及 student 的總參數量以及架構,並嘗試解釋為甚麼有這樣的結果。你的 Student Net 的參數量必須要小於 Teacher Net 的參數量。(2%) x. Teacher net architecture and # of parameters: torchvision's ResNet18, with 11,182,155 parameters. size: 43738 KB。
 - y. Student net architecture and # of parameters: 274763。size: 1107 KB。student net 架構:

```
StudentNet(
(cnn): Sequential(
(cnn): Sequential(
(d): Se
```

除了第一層 convonlution layer 之外,其他層都使用 deepwise+pointwise convolution。第一層 conv2d 之後接 batchnorm2d 和 ReLU6。其他層 layer 的架構是 deepwise conv2d / batchnorm2d / ReLU6 / pointwise conv2d / batchnorm2d / ReLU6。輸 入輸出 channel 維度分別是 (3, 32) / (32, 64) / (64, 128) / (128, 128) / (128, 256) / (256, 256) / (256, 256) / (256, 256)。最後接 AdaptiveAvgPool 和一層 linear(256, 11)。 訓練方式:

(d)(e)小題以助教提供的 model 當 teacher net, loss 定義為 (alpha = 0.5, T = 20)

$$Loss = \alpha T^2 imes KL(rac{ ext{Teacher's Logits}}{T}||rac{ ext{Student's Logits}}{T}) + (1-lpha)$$
(原本的 $ext{Loss}$)

(c)小題只用 student net 訓練,loss 定義為 CrossEntropyLoss。

training 時將 data 隨機作 RandomCrop、RandomHorizontalFlip、 RandomRotation、ColorJitter、RandomPerspective 這些 transform。 使用 AdamW optimizer 、learning rate = 1e-3、batch size = 32、跑 250 個 epoch。最後再用 SGD optimizer、learning rate = 1e-3、batch size = 32、跑 50個 epoch。

- a. Teacher net (ResNet18) from scratch: 80.09%
- b. Teacher net (ResNet18) ImageNet pretrained & fine-tune: 88.41%
- c. Your student net from scratch: 83.10%

d. Your student net KD from (a.): 82.22 %

e. Your student net KD from (b.): 85.86 %

	validation
	accuracy
student net	83.10%
KD from resnet18 from scratch (80.09%)	82.22%
KD from resnet18 imagenet & fine-	85.56%
tuned(88.41%)	

以 resnet18 from scratch (80.09%)當 teacher net 使用 knowledge distillation 得出的結果較單純以 student net 訓練的結果稍差,而使用 resnet18 imagenet & fine-tuned(88.41%)當 teacher net 得出的結果較單純用 student net 訓練好。推測原因為 resnet18 from scratch 本身的 accuracy 太低,造成 student net 學習時,學到不正確 的訊息。反之,resnet18 imagenet& fine-tuned 的 accuracy 夠高,student net 學習 時不僅能學到較大比例正確的 label,也能學到額外的訊息,例如:某兩類圖形長的相 像的訊息。

註:在 epoch = 250 時,loss 和 accuracy 曲線有明顯的變化是因為我在 epoch = 250 時將 optimizer 改成 SGD,以收斂到 loss 更小的點。

3. [Network Pruning] 請使用兩種以上的 pruning rate 畫出 X 軸為參數量,Y 軸為 validation accuracy 的折線圖。你的圖上應該會有兩條以上的折線。(2%) 使用 knowledge distillation,以助教提供的 resnet18 當作 teacher net(Validation accuracy: 0.884) 訓練小模型 student net 。 student net 使用 depthwise 和 pointwise convolution。

training 時將 data 隨機作 RandomCrop、RandomHorizontalFlip、RandomRotation、ColorJitter、RandomPerspective 這些 transform。使用 AdamW optimizer、learning rate = 1e-3、batch size = 128、跑 250 個 epoch。

size: 1022 KB。參數量: 256K。

Validation loss: 0.94757 Validation Acc: 0.814 •

student net 模型架構:

```
StudentNet(
(cnn): Sequential(
(0): Sequential(
(0): Sequential(
(0): Sequential(
(0): Sequential(
(0): Sequential(
(0): Sequential(
(1): Sequ
```

```
(4): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=128)
(1): Bactkhoraz2d(128, eps=1e-05, momentum=0.1, sffine=frue, track_running_stats=frue)
(2): ReLUGY
(3): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(3): Sequential(
(0): Conv2d(126, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
(1): BatchNoraz2d(236, eps=1e-05, momentum=0.1, sffine=frue, track_running_stats=frue)
(2): ReLUGY
(3): Conv2d(1256, 256, kernel_size=(1, 1), stride=(1, 1))
(6): Sequential(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=256)
(1): BatchNoraz2d(256, eps=1e-05, momentum=0.1, sffine=frue, track_running_stats=frue)
(3): Conv2d(1256, 256, kernel_size=(1, 1), stride=(1, 1))
(7): Sequential(
(0): Conv2d(1256, eps=1e-05, momentum=0.1, sffine=frue, track_running_stats=frue)
(1): BatchNoraz2d(236, eps=1e-05, momentum=0.1, sffine=frue, track_running_stats=frue)
(2): ReluGy (1): Relugy (1):
```

network pruning 實作方法:

用 batchnorm layer 的 γ 因子來決定 neuron 的重要性。從第三層以後的 layer 做 network pruning,每次 prune 掉一定比例的 neurons。 prune 完之後再 train 5 個 epoch,存下 validation accuracy 較高的模型。

使用 rate=0.975, 0.95, 0.9 做 network pruning。

結論:

一次 prune 較少 neuron(較大的 rate),在參數量相同的情況下,準確率較好。