Лабораторная работа №5

Дисциплина: Архитектура компьютера

Савостин Олег

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
	4.1 Основы работы с mc	9
	4.2 Подключение внешнего файла	12
	4.3 Выполнение заданий для самостоятельной работы	15
5	Выводы	20
Сг	писок литературы	21

Список иллюстраций

4.1	Запуск программы Midnight Commander	9
4.2	Переход в нужный каталог	10
4.3	Создание нового каталога	10
4.4	Наличие нового каталога в папке	10
4.5	Создание файла с помощью командной строки	11
4.6	Файл lab5-1.asm	11
4.7	Новое содержимое созданного файла	12
4.8	Свойство программы	12
4.9	in_out.asm в нужном каталоге	12
	Копирование файла lab5-2.asm	13
4.11	Файл lab5-2.asm	13
4.12	Содержимое файла lab5-2.asm	14
4.13	Работа файла lab5-2	14
4.14	Изменение sprintLF на sprint	15
4.15	Результаты	15
	Копия файла	15
4.17	Редактированный текст	16
4.18	Проверка на правильность выполнения на правильность	16
4.19	Создание копии файла lab5-2.asm	18
4.20	Содержимое копии файла lab5-2-2.asm	18
4.21	Проверка на правильность выполнения работы.	19

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков работы в Midnight Commander. Освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Подключение внешнего файла
- 3. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной

Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss)

Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss)

Инструкция языка ассемблера intпредназначена для вызова прерывания с указанным номером. В общем виде она записывается в виде int n Здесь n — номер прерывания, принадлежащий диапазону 0–255. Простейший диалог с пользователем требует наличия двух функций — вывода текста на экран и ввода текста с клавиатуры. Простейший способ вывести строку на экран — использо- вать системный вызов write. Этот системный вызов имеет номер 4, поэтому перед вызовом инструкции int необходимо поместить значение 4 в регистр еах. Первым аргументом write, помещаемым в регистр ebx, задаётся дескриптор файла.

Для вывода на экран в качестве дескриптора файла нужно указать 1 (это означает «стандартный вывод», т. е. вывод на экран). Вторым аргументом задаётся адрес выводимой строки (помещаем его в регистр есх, напри- мер, инструкцией mov есх, msg). Строка может иметь любую длину. Последним аргументом (т.е. в регистре edx) должна задаваться максимальная длина выводимой строки.

4 Выполнение лабораторной работы

4.1 Основы работы с тс

Сперва, я открываю терминал и открываю Midnight Commander с помощью команды "mc" (рис. 4.1)

Рис. 4.1: Запуск программы Midnight Commander

Затем, я перехожу в каталог arch-pc и создаю новую папку "lab05" с помощью клавиши F7 (рис. 4.2)(рис. 4.3)(рис. 4.4)

Левая	панель	Файл	Ко	манда	На	астр	оойки
r< ·	-2025/Архи	тектура	компь	ютера/а	rch-p	С	[^]> <mark>7</mark>
. И	Имя	l e		Размер	Дата	а пр	равки
/				-BBEPX-	сен	28	21:08
/.git				218	окт	20	20:13
/confi	g			24	сен	28	20:05
/labs				152	окт	11	21:03
/prese	ntation			78	окт	11	21:03
/templ	ate			36	сен	28	20:05
.gita	ttributes			1765	сен	28	20:05
.giti	gnore			4637	сен	28	20:05
.gitm	odules			278	сен	28	20:05

Рис. 4.2: Переход в нужный каталог

Рис. 4.3: Создание нового каталога

Левая панель	ф Файл	Ко	манда	На	стр	оойки
	рхитектура	компь	ютера/а	rch-p	С	[^]> <mark>7</mark>
. и	Имя		Размер	Дата	П	равки
/			-BBEPX-	сен	28	21:08
/.git			218	окт	20	20:13
/config			24	сен	28	20:05
/lab05			0	ноя	8	18:21
/labs			152	окт	11	21:03
/presentation	1		78	окт	11	21:03
/template			36	сен	28	20:05
.gitattribut	es		1765	сен	28	20:05
.gitignore			4637	сен	28	20:05
			0.70			00 05

Рис. 4.4: Наличие нового каталога в папке.

Теперь с помощью командной строки создаю файл lab5-1.asm c touch (рис. 4.5)(рис. 4.6)

:/lab05\$ touch lab5-1.asm

Рис. 4.5: Создание файла с помощью командной строки

```
-<-- ...Архитектура компьютера/arch-pc/lab05 -.[^]>-
.и Имя Размер Дата правки
/.. -BBEPX- ноя 8 18:21
lab5-1.asm 0 ноя 8 18:21
```

Рис. 4.6: Файл lab5-1.asm

Открываю мною созданный файл с помощью текстового редактора и вставляю туда текст, предоставленный в документе Архитектура ЭВМ (рис. 4.7). Транслирую текст в объектный файл, компилирую его и затем запускаю исполняемый файл. Программа вводит текст 'Введите строку:', после чего я вводу свои ФИ. (рис. 4.8)

Рис. 4.7: Новое содержимое созданного файла

```
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f elf lab5-1.asm
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf_i386 -o lab5-1 lab5-1.o
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab5-1
Введите строку:
Caвостин Олег
```

Рис. 4.8: Свойство программы

4.2 Подключение внешнего файла.

Сначала, я устанавилваю файл in_out.asm со страницы курса в ТУИС и переношу его в каталог, в котором он будет использован (рис. 4.9)

Рис. 4.9: in_out.asm в нужном каталоге

Теперь, с помощью функциональной клавиши F6 я создаю копию файла lab5-1.asm с именем lab5-2.asm. Выделяю файл lab5-1.asm, нажимаю клавишу F6 и ввожу название lab5-2.asm (рис. 4.10)

Рис. 4.10: Копирование файла lab5-2.asm

2025/Архитектура компьютера	/arch-pc	/lab05	5
.и Имя	Размер	Дата	правки
/	-BBEPX-	ноя	8 18:21
in_out.asm	3942	ноя	8 18:29
*lab5-1	8744	ноя	8 18:41
lab5-1.asm	2441	ноя	8 18:36
lab5-1.o	752	ноя	8 18:40
lab5-2.asm	2441	ноя	8 18:36

Рис. 4.11: Файл lab5-2.asm

Изменяю содержимое файла на текст, предоставленный на странице курса в ТУИС (рис. 4.12)

Рис. 4.12: Содержимое файла lab5-2.asm

Создаю файл и проверяю его работу(рис. 4.13)

```
|savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab03$ nasm -f elf lab5-2.asm
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab03$ ld -m elf_1386 -o lab5-2 lab5-2.o
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab5-2
Введите строку:
Савостин Олег
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$
```

Рис. 4.13: Работа файла lab5-2

Теперь, изменяю sprintLF на sprint(рис. 4.14). Разница состоим в том, что теперь вводимый мною текст теперь находится на одной строчке с "Введите строку:", когда в прошлый раз текст переходил на новую строчку (рис. 4.15)

Рис. 4.14: Изменение sprintLF на sprint

```
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f elf lab5-2.asm savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf_i386 -o lab5-2 lab5-2.o savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab5-2
Введите строку: Савостин Олег savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ .
```

Рис. 4.15: Результаты.

4.3 Выполнение заданий для самостоятельной работы

Создаю копию файла lab5-1.asm - lab5-1.1.asm(рис. 4.16)

Рис. 4.16: Копия файла

Редактирую содержимое файла чтобы он работал по алгоритму (1): • вывести приглашение типа "Введите строку:"; • ввести строку с клавиатуры; • вывести введённую строку на экран.(рис. 4.17)

```
lab5-1.1.asm [---] 0 L:[ 1+26 27/ 27] *(1336/1336b) <EOF>

[*][
SECTION .data ; Секция инициированных данных
msg: DB '8Beдите строку:',10 ; сообщение плюс
msgLen: EQU $-msg ; Длина переменной 'msg'
SECTION .bss ; Секция не инициированных данных
bufl: RESB 80 ; Буфер размером 80 байт

SECTION .text ; Код программы
GLOBAL _start ; Начало программы
_start
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx,msg ; Адрес строки 'msg' в 'ecx'
mov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
mov eax, 3 ; Системный вызов для чтения (sys_read)
mov eax, 3 ; Системный вызов для чтения (sys_read)
mov ecx, bufl ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,4 ; Системный вызов для записи
mov ebx,1;
mov edx,bufl ;
mov edx,bufl ;
mov edx,bufl ;
mov edx, 1; Системный вызов для выхода (sys_exit)
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
```

Рис. 4.17: Редактированный текст

Теперь проверяю на правильность выполнения изменения файла. Всё сделано верно.(рис. 4.18)

```
savostinoleg@vbox:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f elf lab5-1.1.asm lab5-1.1.asm:8: warning: label alone on a line without a colon might be in error [-w+label-orphan] savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf_i368 -o lab5-1.1.o ld: не распознан режим эмуляции: elf_i368
Поддерживаемые эмуляции: elf_x86_64 elf32_x86_64 elf_i386 elf_iamcu i386pep i386pe elf64bpf savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf_i386 -o lab5-1.1 lab5-1.1.o savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab5-1.1 Введите строку:
Савостин Олег
Савос
```

Рис. 4.18: Проверка на правильность выполнения на правильность

Текст кода в Puc.16 : SECTION .data ; Секция инициированных данных msg: DB 'Введите строку:',10 ; сообщение плюс msgLen: EQU \$-msg ; Длина переменной 'msg' SECTION .bss ; Секция не инициированных данных

```
buf1: RESB 80; Буфер размером 80 байт
```

SECTION .text; Код программы

GLOBAL _start; Начало программы

_start

mov eax,4 ; Системный вызов для записи (sys_write)

mov ebx,1; Описатель файла 1 - стандартный вывод

mov ecx,msg; Адрес строки 'msg' в 'ecx'

mov edx,msgLen; Размер строки 'msg' в 'edx'

int 80h; Вызов ядра

mov eax, 3; Системный вызов для чтения (sys_read)

mov ebx, 0; Дескриптор файла 0 - стандартный ввод

mov ecx, buf1; Адрес буфера под вводимую строку

mov edx, 80; Длина вводимой строки

int 80h; Вызов ядра

mov eax,4; Системный вызов для записи

mov ebx,1;

mov ecx,buf1;

mov edx,buf1;

int 80h;

mov eax,1; Системный вызов для выхода (sys exit)

mov ebx,0; Выход с кодом возврата 0 (без ошибок)

int 80h; Вызов ядра

Теперь делаю подобную программу, только с использованием in_out.asm. Сперва, я создаю копию файла lab5-2.asm и возвращаю файл in_out.asm(рис. 4.19)

Рис. 4.19: Создание копии файла lab5-2.asm

Затем, я редактирую текст файла, чтобы он повторял подобный алгоритм (1).(рис. 4.20)

```
Lab5-2-2.asm [----] O L:[ 1+ O 1/29] *(0 /1270b) 0059 0x03B

[*](X
Программа вывода сообщения на экран и ввода строки с клавиатури

*Kinclude 'in_out.asm'; подключение внешнего файла

SECTION .data; Секция инициированных данных

вsg: DB 'Введите строку: ',0h; сообщение

SECTION .bss; Секция не инициированных данных

bufl: RESB 80; Буфер размерон 80 байт

SECTION .text; Код программы

GLOBAL _start; Начало программы
_start:; Точка входа в программы
_start:; Точка входа в программы

mov eax, msg; запись адреса выводимого сообщения в 'EAX'

call sprint; вызов подпрограммы печати сообщения

mov ecx, bufl; запись дареса подпрограммы вводимого сообщения

mov ecx, bufl; запись дареса подпрограммы вводимого сообщения

mov ecx, bufl; запись дареса подпрограммы вводи сообщения

mov ecx, bufl;

int 80h;

call quit; вызов подпрограммы завершения

call quit; вызов подпрограммы завершения
```

Рис. 4.20: Содержимое копии файла lab5-2-2.asm

Теперь, подобно предыдущему разу, я проверяю на правильность выполнения работы.Всё сделано корректно (рис. 4.21)

```
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f elf lab5-2-2.asm savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -melf_i386 -o lab5-2-2 lab5-2-2.o savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab5-2-2
Введите строку: Сввостин Олег
Савостин Олег
savostinoleg@vbox:-/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$
```

Рис. 4.21: Проверка на правильность выполнения работы.

```
Код из второго файла:
%include 'in_out.asm'; подключение внешнего файла
SECTION .data ; Секция инициированных данных
msg: DB 'Введите строку:',0h; сообщение
SECTION .bss ; Секция не инициированных данных
buf1: RESB 80; Буфер размером 80 байт
SECTION .text; Код программы
GLOBAL _start; Начало программы
_start: ; Точка входа в программу
mov eax, msg; запись адреса выводимого сообщения в EAX
call sprint; вызов подпрограммы печати сообщения
mov ecx, buf1; запись адреса переменной в EAX
mov edx, 80; запись длины вводимого сообщения в EBX
call sread; вызов подпрограммы ввода сообщения
mov eax,4;
mov ebx,1;
mov ecx,buf1;
int 80h;
```

5 Выводы

При выполнении лабораторной работы я приобрел практические навыки работы в Midnight Commander и освоил инструкции языка ассемблера mov и int.

Список литературы

1. Лабораторная работа №5