单片机原理及应用考试复习知识点

第1章 计算机基础知识

考试知识点:

- 1、各种进制之间的转换
 - (1) 各种进制转换为十进制数

方法:各位按权展开相加即可。

(2) 十进制数转换为各种进制

方法:整数部分采用"除基取余法",小数部分采用"乘基取整法"。

(3)二进制数与十六进制数之间的相互转换

方法:每四位二进制转换为一位十六进制数。

- 2、带符号数的三种表示方法
 - (1) 原码:机器数的原始表示,最高位为符号位 (0.5) (
 - (2)反码: 正数的反码与原码相同。 负数的反码把原码的最高位不变, 其余各位求反。
 - (3)补码:正数的补码与原码相同。负数的补码为反码加 1。

原码、反码的表示范围: -127~+127,补码的表示范围: -128~+127。

- 3、计算机中使用的编码
 - (1) BCD 码:每 4位二进制数对应 1位十进制数。
- (2) ASCII 码: 7位二进制数表示字符。 0~9的 ASCII 码 30H~39H, A的 ASCII 码 41H, a的 ASCII 码 61H。

第 2 章 80C51 单片机的硬件结构

考试知识点:

1、80C51 单片机的内部逻辑结构

单片机是把 CPU、存储器、输入输出接口、定时 /计数器和时钟电路集成到一块芯片上的微型计算机,主要由以下几个部分组成。

(1)中央处理器 CPU

包括运算器和控制器。

运算电路以 ALU 为核心,完成算术运算和逻辑运算,运算结果存放于 ACC 中,运算结果的特征存放于 PSW 中。

控制电路是单片机的指挥控制部件,保证单片机各部分能自动而协调地工作。程序计数器 PC 是一个 16 位寄存器, PC 的内容为将要执行的下一条指令地址, 具有自动加 1 功能,以实现程序的顺序执行。

(2)存储器

分类:

随机存取存储器 RAM:能读能写,信息在关机后消失。可分为静态 RAM(SRAM)和 动态 RAM(DRAM)两种。

只读存储器:信息在关机后不会消失。

掩膜 ROM:信息在出厂时由厂家一次性写入。

可编程 PROM:信息由用户一次性写入。

可擦除可编程 EPROM:写入后的内容可由紫外线照射擦除。

电可擦除可编程 EEPROM:可用电信号进行清除和改写。

存储容量:

存储容量指存储器可以容纳的二进制信息量 , M 位地址总线、 N 位数据总线的存储器 容量为 $2^M \times N$ 位。

80C51 单片机的存储器有内部 RAM(128B,高 128B 为专用寄存器)、外部 RAM(64KB)、内部 ROM(4KB 掩膜 ROM)、外部 ROM(64KB)。

- (3)输入输出接口
- 4 个 8 位并行 I/O 口 (P0、P1、P2、P3)
- (4) 其它资源
- 一个全双工串行口、 5个中断源、 2个16位的定时/计数器、时钟电路。
- 2、80C51 单片机的信号引脚
 - (1) 电源部分: VCC 接+5V、 VSS 接地。
 - (2) 时钟电路部分: XTAL1 和 XTAL2 接晶振。
 - 1 个机器周期 =6 个状态 =12 个拍节

6MHZ 的晶体机器周期 2us, 12MHZ 的晶体机器周期 1us。

- (3) I/O 口部分: P0——8位数据总线 /地址总线低 8位、P1——用户口、 P2——地址 高 8位、P3——第二功能。
 - (4)控制部分:

地址锁存控制信号 ALE , 用于控制把 P0 口输出的低 8 位地址送入锁存器锁存地起来。 外部程序存储器读选通信号 PSEN , 低电平有效 , 以实现外部 ROM 单元的读操作。

访问程序存储器控制信号 EA,低电平时只读外部 ROM,高电平时先读内部 ROM,再读外部 ROM。

复位信号 RST, 当输入的复位信号延续 2个机器周期以上高电平时即为有效。

复位值: PC=0000H, SP=07H, P0=0FFH。

3、内部 RAM 的基本结构与功能

80C51 的内部数据存储器低 128 单元区,称为内部 RAM,地址为 00~7FH。

(1)寄存器区(00~1FH)

共分为 4 组,组号依次为 0、1、2、3,每组有 8 个寄存器,在组中按 R7~R0 编号。由 PSW 中 RS1、RS0 位的状态组合来决定哪一组。

(2)位寻址区(20H~2FH)

可对单元中的每一位进行位操作, 16 个字节单元共 128 个可寻址位, 位地址为 00~7FH。位起始地址 D0=(字节地址 -20H)*8

(3)用户 RAM 区(30H~7FH)堆栈、缓冲区

堆栈是在内部 RAM 中开辟的,最大特点就是"后进先出"的数据操作原则。

两项功能:保护断点和保护现场。两种操作:进栈和出栈。

SP 堆栈指针,它的内容就是堆栈栈顶单元的地址。

- 4、专用寄存器(内部数据存储器高 128 单元)
 - (1)累加器 A(ACC)
 - (2)寄存器 B
 - (3)程序状态字 PSW
 - CY——进位标志位,最高位的进位或借位。
 - AC——半进位标志位,低 4位向高 4位的进位或借位。
 - OV——溢出标志位,同符号数相加,结果为异符号,有溢出;异符号数相减,结果和

减数符号相同,有溢出。

P--- A 中 1 的个数, 奇数个 P=1, 偶数个 P=0。

(4)数据指针 DPTR:80C51 中惟一一个供用户使用的 16 位寄存器。 高 8 位 DPH,低 8 位 DPL。

第 3 章 80C51 单片机指令系统

考试知识点:

- 1、寻址方式
 - (1) 立即寻址(#data, #data16) 例: MOV A , #00H
 - (2)直接寻址(direct)内部 RAM: 00~7FH、特殊功能寄存器 例: MOVA, 00H
 - (3)寄存器寻址(A、B、Rn、DPTR)
 - (4)寄存器间接寻址(@Ri、@DPTR)例: MOVXA,@DPTR
 - (5) 变址寻址(@A+DPTR , @A+PC) 例: MOVC A , @A+DPTR
 - (6)位寻址(bit)20~2FH:00~7FH、特殊功能寄存器 例:MOVC,00H
 - (7)相对寻址(rel)例: JZ rel
- 2、数据传送类指令
 - (1)内部 RAM 数据传送指令

MOV 目的,源;目的 源

交换指令:

XCH A , direct/Rn/@Ri ; A 和源交换

XCHD A , @Ri ; 只换低 4位

SWAP A; A 的高低 4 位交换

注意: A 作目的操作数会影响 P。

PUSH direct

POP direct

(2)外部 RAM 数据传送指令

MOVX A , @Ri/@DPTR ; 外部地址内容 A MOVX@Ri/@DPTR , A ; A 外部地址内容

(3) ROM 数据传送指令

MOVC A , @A+DPTR/@A+PC ; 查表指令

- 3、算术运算指令
 - (1)加法指令

ADD/ADDC A , #data/ direct/ Rn/@Ri ; 会影响 CY、AC、OV、P

INC A/ direct/ Rn/@Ri/DPTR ;加 1, P

DA A;十进制调整,大于 9加6

(2)减法指令

SUBB A,#data/ direct/ Rn/@Ri ;会影响 CY、 AC、 OV、 P DEC A/ direct/ Rn/@Ri ;减 1

(3)乘除指令

MUL AB; (A)*(B) BA,会影响 CY=0,OV,P
DIV AB; (A)/(B)的商 A,余数 B

DIV AB; (A)/(B) 的商 A,余数

4、逻辑运算及移动指令

(1)逻辑运算指令

ANL/ORL/XRL A , #data/ direct/ Rn/@Ri

ANL/ORL/XRL direct , A/#data

与 清 0,或 置 1,异或 取反

CLR/CPL A;清 0和取反

(2)移位指令

RL/RR/RLC/RRC A

注意:每左移一位相当于乘 2,每右移一位相当于除 2,带进位的移会影响 CY和 P。

- 5、控制转移类指令
 - (1) 无条件转移指令

LJMP addr16 ; addr16 PC, 64KB

AJMP addr11; (PC)+2 PC, addr11 PC10~0, 2KB

SJMP rel; (PC)+2+rel PC, 256B

JMP @A+DPTR ; (A)+(DPTR) PC, 64KB

(2)条件转移指令

累加器 A 判 0 转移指令

JZ rel; A为 0

JNZ rel; A 不为 0

比较不相等转移指令

CJNE A/Rn/@Ri , #data , rel

CJNE A, direct, rel

减 1 不为 0 转移指令

DJNZ Rn/direct , rel ; (Rn/direct) -1 不为 0 , 程序转移。

(3)调用和返回指令

LCALL addr16 ; (PC)+3 PC, 先入低 8位, 再入高 8位, addr16 PC

ACALL addr11 ; (PC)+2 PC, 先入低 8位, 再入高 8位, addr11 PC10~0

RET;先出高 8位,再出低 8位

- 6、位操作类指令
 - (1)位传送指令

MOV C , bit

MOV bit , C

(2)位赋值指令

CLR C/bit

SETB C/bit

(3)位逻辑运算指令

ANL/ORL C , bit 或/bit

CPL C/bit

注意:实现逻辑表达式

(4)位控制转移指令

JC rel ; (CY) = 1

JNC rel; (CY) = 0

JB bit , rel ; (bit)=1

JNB bit, rel; (bit)=0

JBC bit, rel; (bit)=1,转移,清 0

第 4 章 80C51 单片机汇编语言程序设计

考试知识点:

1、汇编语言的语句格式

【标号:】 操作码 【操作数】 【;注释】

标号:语句地址的标志符号。

操作码:语句执行的操作内容,用指令助记符表示。

操作数:为指令操作提供数据。 注释:对语句的解释说明。

2、伪指令

起始地址 ORG、结束 END、赋值 EQU、字节 DB、字 DW、空 DS、位 BIT

- 3、汇编语言程序的基本结构形式
 - (1)顺序结构
 - (2)分支结构
 - (3)循环结构:数据传送问题、求和问题
- 4、定时程序

例:延时 100ms 的子程序,设晶振频率 6MHZ。

DELAY: MOV R5, #250 LOOP2: MOV R4, #49

LOOP1: NOP

NOP

DJNZ R4, LOOP1 DJNZ R5, LOOP2

RET

- 5、查表程序
 - (1)要查找的数据在表中的位置给 A
 - (2)表的首地址给 DPTR
 - (3) MOVC A, @A+DPTR
 - (4)数据表

第 5 章 80C51 单片机的中断与定时

考试知识点:

1、中断源和中断请求标志位

中断名称	中断请求标志	中断向量	
外部中断 0	IE0	0003H	
TO 中断	TF0	000BH	
外部中断 1	IE1	0013H	
T1 中断	TF1	001BH	
串行发送中断	TI	0023H	
串行接收中断	RI	0023H	

2、和中断相关的寄存器的设置

(1)定时器控制寄存器 TCON

格式如下:

位	D7	D6	D5	D4	D3	D2	D1	D0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
位地址	8F	8E	8D	8C	8B	8A	89	88

ITO=0 , 为电平触发方式。 INTO 低电平有效。

IT0=1 , 为边沿触发方式。

INTO 输入脚上电平由高到低的负跳变有效。

IE0=1 ,说明有中断请求,否则 IE0=0。

(2)中断允许控制寄存器 ΙE

其各位的定义如下:

位	D7	D6	D5	D4	D3	D2	D1	D0
代号	EA	_		ES	ET1	EX1	ET0	EX0

EA: 开放或禁止所有中断。 ES:开放或禁止串行通道中断。 ET1:开放或禁止定时 /计 数器 T1 溢出中断。 EX1:开放或禁止外部中断源 1。ET0:开放或禁止定时 /计数器 T0 溢出 中断。 EXO:开放或禁止外部中断源

(3)中断优先级控制寄存器

各位的定义如下:

位	D7	D6	D5	D4	D3	D2	D1	D0
代号	_	_		PS	PT1	PX1	PT0	PX0

1 为高优先级、 0 为低优先级。 如果同级的多个中断请求同时出现, 则按 CPU 查询次序 确定哪个中断请求被响应。查询次序为:外部中断 0、T0 中断、外部中断 1、T1 中断、串 行中断。

3、响应中断的必要条件

- (1)有中断源发出中断请求。
- (2)中断允许寄存器 IE 相应位置" 1", CPU 中断开放(EA=1)。
- (3)无同级或高级中断正在服务。
- (4)现行指令执行到最后一个机器周期且已结束。若现行指令为 RETI 或需访问特殊 功能寄存器 IE 或 IP 的指令时,执行完该指令且其紧接着的指令也已执行完。

中断响应的主要内容是由硬件自动生成一条长调用指令, 指令格式为 "LCALL addr16"。 这里的 addr16 就是程序存储器中断区中相应中断的入口地址。

4、中断程序设计

- (1)在 0000H 处存放一条无条件转移指令转到主程序。
- (2)在入口地址处存放一条无条件转移指令转到中断服务子程序。
- (3)设置触发方式(ITO/IT1)
- (4)设置 IE 和 IP。
- (5)设置 SP。
- (6)原地踏步。

- (7)中断服务子程序。最后 RETI。
- 5、定时计数的基本原理
 - (1)定时功能:每个机器周期计数器加 1。
 - (2)计数功能: T0(P3.4)和 T1(P3.5)输入计数脉冲,每一来一个脉冲计数器加
- 6、用于定时计数的寄存器的设置
 - (1)定时器控制寄存器 TCON

格式如下:

位	D7	D6	D5	D4	D3	D2	D1	D0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
位地址	8F	8E	8D	8C	8B	8A	89	88

TF1、TF0—— 计数溢出标志位。当计数器产生计数溢出时,由硬件置 1。采用查询方式,它是供查询的状态位。采用中断方式,作为中断请求信号。

TR1、TR0—— 计数运行控制位。为 1 时,启动定时器 /计数器工作; 为 0 时,停止定时器/计数器工作。

(2)工作方式控制寄存器 TMOD

其格式如下:

GATE:门控位。当 GATE=1 时,同时 INTx 为高电平,且 TRx 置位时,启动定时器,外部启动。当 GATE=0 时,每当 TRx 置位时,就启动定时器,是内部启动方式。

C/T:选择定时器功能还是计数器功能。该位置位时选择计数器功能;该位清零时选择 定时器功能。

M1M0 : 这两位指定定时 / 计数器的工作方式 , 可形成四种编码 , 对应四种工作方式 :

M1	MO	方式	说明				
0	0	0	TLx 低 5 位与 THx 中 8 位构成 13 位计数器				
0	1	1	TLx 与 THx 构成 16 位计数器				
1	0	2	可自动再装入的 8位计数器,当 TLx 计数溢出时,THx 内容自动装入TLx。				
1	1	3	对定时器 0,分成两个 8 位的计数器;对定时器 1,停止计数。				

7、各种工作方式计数初值计算公式

方式 0:

定时时间 T=(8192-计数初值)×机器周期

计数次数 C=8192-X

1。

方式 1:

定时时间 T= (65536-计数初值)×机器周期

计数次数 C=65536-X

方式 2:

定时时间 T=(256-计数初值)×机器周期

计数次数 C=256-X

8、定时器程序设计

查询方式:

- (1)在 0000H 处存放一条无条件转移指令,转到主程序。
- (2)设置工作方式 TMOD。
- (3)设置计数初值。
- (4)启动定时计数。
- (5)等待时间到或计数计满。

LOOP: JBC TF0/TF1 , LOOP1

SJMP LOOP

LOOP1: ,,

(6)重新设置计数初值(除方式 2),再转第 5 步。

中断方式:

- (1)在 0000H 处存放一条无条件转移指令,转到主程序。
- (2)在入口地址处存放一条无条件转移指令转到中断服务子程序。
- (3)设置工作方式 TMOD。
- (4)设置计数初值。
- (5)启动定时计数。
- (6)设置 IE 和 IP。
- (7)设置 SP。
- (8)原地踏步。
- (9)中断服务子程序。重新设置计数初值(除方式 2),最后 RETI。

例 选用定时器 /计数器 T1 工作方式 0 产生 $500\,\mu$ S 定时,在 P1.1 输出周期为 1ms的方波,设晶振频率 =6MHZ。

(1) 根据定时器 /计数器 1 的工作方式,对 TMOD 进行初始化。

按题意可设: GATE=0 (用 TR1 位控制定时的启动和停止) , T = 0 (置定时功能) , M1M0=00 (置方式 0), 因定时器 /计数器 T0 不用 , 可将其置为方式 0(不能置为工作方式 3), 这样可将 TMOD 的低 4 位置 0 , 所以 (TMOD) = 00H。

(2) 计算定时初值

$$(2^{13} - X) \times 2 = 500$$

X = 7942D = 1111100000110B

将低 5 位送 TL1 , 高 8 位送 TH1 得 : (TH1) = F8H , (TL1) = 06H

(3) 编制程序(查询方式)

ORG 0000H

LJMP MAIN

ORG 0300H

MAIN: MOV TMOD, #00H; TMOD 初始化

MOV TH1, #0F8H ;设置计数初值

MOV TL1, #06H

SETB TR1 ; 启动定时

LOOP: JBC TF1, LOOP1 ; 查询计数溢出

AJMP LOOP

LOOP1: CPL P1.1 ; 输出取反

MOV TL1 , #06H ; 重新置计数初值

MOV TH1, #0F8H

AJMP LOOP ; 重复循环

END

例 用定时器 /计数器 T1 以工作方式 2 计数 , 要求每计满 100 次进行累加器加 1 操作。

(1) TMOD 初始化

(2)计算计数初值

2⁸100=156D=9CH 所以 TH1=9CH

(3)编制程序(中断方式)

ORG 0000H

AJMP MAIN ; 跳转到主程序

ORG 001BH ; 定时 /计数器 1 中断服务程序入口地址

AJMP INSERT1

ORG 0030H

MAIN: MOV TMOD #60H ; TMOD 初始化

MOV TL1,#9CH;首次计数初值

MOV TH1,#9CH ;装入循环计数初值

SETB TR1 ; 启动定时 /计数器 1

SETB EA ; 开中断

SETB ET1

SETB PT1 ; T1 为高优先级

MOV SP, #40H

SJMP s ; 等待中断

INSERT1: INC A

RETI

END

第6章 单片机并行存储器扩展

考试知识点:

- 1、单片机并行扩展总线的组成
 - (1)地址总线:传送地址信号
 - (2)数据总线:传送数据、状态、指令和命令
 - (3)控制总线:控制信号
- 2、80C51 单片机并行扩展总线
 - (1)以 P0 口的 8 位口线充当低位地址线 /数据线
 - (2)以 P2 口的口线作高位地址线
 - (3)控制信号:

使用 ALE 作地址锁存的选通信号,以实现低 8 位地下锁存。

- 以 PSEN 信号作为扩展程序存储器的读选通信号。
- 以 EA 信号作为内外程序存储器的选择信号。
- 以 RD 和 WR 作为扩展数据存储器和 I/O 端口的读 /写选通信号。
- 3、单片机并行存储器扩展的方法

各种外围接口电路与单片机相连都是利用三总线实现。

(1)地址线的连接

将外围芯片的低 8 位地址线 (A7~A0)经锁存器与 P0 口相连 , 高 8 位地址线 (A15~A8) 与 P2 口相连。如果不足 16 位则按从低至高的顺序与 P0、P2 口的各位相连。

(2)数据线的连接

外围芯片的数据线(D7~D0)可直接与 P0口相连。

(3)控制线的连接

ROM: OE-PSEN

RAM: OE—RD、WE—WR 片选信号 CE 的连接方法:

- (1)接地,适用于扩展一块存储器芯片。
- (2)线选法