Tutorial 7: Subword Models

- 1. Modify the model of Question 1 of Tutorial 4 to use character embeddings of the method Character-based neural language models¹
 - a. Convert word to character indices
 - i. Assume we have a pre-defined 'vocabulary' of characters (e.g. all lowercase letters, uppercase letters, numbers and punctuations).
 - ii. By looking up the index of each character, we can represent the length-l word x as a vector of integers: $\mathbf{x} = [c_1, c_2, \dots, c_l] \in \mathbb{Z}^l$
 - 1. where each c_i is an integer index into the character vocabulary
 - b. Padding and embedding lookup
 - i. Using a special <PAD> 'character', we pad (or truncate) every word so that it has length m_{word} (pre-defined hyper parameter, representing maximum word length):
 - 1. $\boldsymbol{x}_{padded} = [c_1, c_2, \cdots, c_{m_{word}}] \in \mathbb{Z}^{m_{word}}$
 - ii. For each of these characters c_i , we look up a dense character embedding (which has shape e_{char} ; e_{char} =50). This yields a tensor x_{emb} :
 - 1. $x_{emb} = \text{CharEmbedding}(x_{padded}) \in \mathbb{R}^{m_{word} \times e_{char}}$
 - iii. We will reshape x_{emb} to obtain $x_{reshaped} \in \mathbb{R}^{e_{char} \times m_{word}}$ before feeding into the convolutional network of the Convolutional network below.
 - Necessary because PyTorch Conv1D performs only on the last dimension of the input
 - c. Convolutional network
 - i. To combine these character embeddings, we'll use 1-dimensional convolutions.
 - ii. The convolutional layer has two hyper-parameters:
 - 1. the kernel size *k* (also called window size; *k*=5), which dictates the size of the window used to compute features, and
 - 2. the number of filters *f* (also called number of output features or number of output channels)
 - 3. Assume no padding is applied and the stride is 1
 - iii. The convolutional layer has a weight matrix $\mathbf{W} \in \mathbb{R}^{f \times e_{char} \times k}$ and a bias vector $\mathbf{b} \in \mathbb{R}^f$.
 - iv. To compute the i^{th} output feature (where $i \in \{1, \ldots, f\}$) for the t^{th} window of the input, the convolution operation is performed between the input window $(\boldsymbol{x}_{reshaped})_{[:,t:t+k-1]} \in \mathbb{R}^{e_{char} \times k}$ and the weights $\boldsymbol{W}_{[i,::]} \in \mathbb{R}^{e_{char} \times k}$, and the bias term $b_i \in R$ is added:
 - 1. $(x_{conv})_{i,t} = \text{sum}\left(W_{[i,:,:]}\odot(x_{reshaped})_{[:,t:t+k-1]}\right) + b_i \in \mathbb{R}$
 - 2. where \odot is element-wise multiplication of two matrices with the same shape and "sum" is the sum of all the elements in the matrix. This operation is performed for every feature i and every window t, where $t \in \{1, \cdots, m_{word} k + 1\}$. Overall this produces output x_{conv} :
 - 3. $x_{conv} = \text{Conv1D}(x_{reshaped}) \in \mathbb{R}^{f \times (m_{word} k + 1)}$

¹ Originally from Assignment of https://web.stanford.edu/class/cs224n/

Tutorial 7: Subword Models

- v. For our application, we'll set f to be equal to e_{word} , the size of the final word embedding for word x (the rightmost vector in Figure 1). Therefore,
 - 1. $x_{conv} \in \mathbb{R}^{e_{word} \times (m_{word} k + 1)}$
- vi. Finally, we apply the ReLU function to x_{conv} , then use max-pooling to reduce this to a single vector $x_{conv-out} \in \mathbb{R}^{e_{word}}$, which is the final output of the Convolutional Network:
 - 1. $x_{conv-out} = \text{MaxPool}(\text{ReLU}(x_{conv})) \in \mathbb{R}^{e_{word}}$
- vii. Here, MaxPool simply takes the maximum across the second dimension.
- viii. Given a matrix $M \in \mathbb{R}^{a \times b}$, then $\operatorname{MaxPool}(M) \in \mathbb{R}^a$ with $\operatorname{MaxPool}(M)_i = \max_{1 \leq j \leq b} M_{ij}$ for $i \in \{1, \cdots, a\}$
- ix. This output is fed into the Convolutional Network of Question 1.

Figure 1. Character-based convolutional encoder, which ultimately produces a word embedding of length eword