MAC 422 Sistemas Operacionais

Gabriel Fernandes de Oliveira 9345370 Thiago Estrela Montenegro 9762873

Decisões de Projeto

- Barreira de Sincronização a cada 60 ms, ou 20 ms, caso algum ciclista ande a 90 km/h
- Barreira Coordenador / Trabalhador
- Quando um ciclista quebra, sua thread é destruída com pthread_exit(NULL)

Decisões de Projeto

Movimentação dos ciclistas em duas fases:

Intenções de Movimentação

- Avanços
- Ultrapassagens
- Atrasos

Finalização da Movimentação

- Fica no mesmo lugar que a intenção
- Anda uma posição para a esquerda da intenção

Intenções de Movimentação

Ciclistas divididos em duas classes:

- Os que avançariam uma posição na pista após se movimentarem por dt com sua velocidade definida
- Aqueles que se manteriam na mesma posição inteira da pista

Nesta simulação aos 960 ms, os ciclistas 1 e 2 pertencem à primeira classe, já que se movimentam no instante seguinte, enquanto que o ciclista 0 pertence a segunda classe

Intenções de Movimentação

- Feita em duas partes:
 - Primeiramente decide-se os movimentos dos ciclistas que não mudarão de posição inteira na pista, e já atrasamos também os ciclistas que mudariam de posição, porém que terão diminuir a velocidade
 - Em seguida, realiza-se a movimentação dos ciclistas que, ou simplesmente avançarão uma posição na pista, ou realizarão uma ultrapassagem

```
tempo 720
tempo 780
```

Nesta simulação, aos 720 ms, apenas os ciclistas 1 e 4 não avançam, por isso o ciclista 10 precisa realizar uma ultrapassagem e todos os outros simplesmente avançam

Finalização da Movimentação

Após serem calculadas as intenções de movimentação, trataremos do movimento de **andar para a esquerda**:

Caso a posição imediatamente à esquerda de um ciclista estiver vazia, este anda para esta posição

temp	0 6	00							
10	X	X	X	X	X	X	X	X	Χ
X	X	Χ	X	X	X	X	X	X	Χ
X	X	X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X	X	X
0	1	2	3	4	5	6	7	8	9
temp	0 6	60							
10	X	X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X	X	Χ
0	2	X	3	5	6	7	8	X	9
1	X	X	4	X	X	X	X	X	X

Decisões de Projeto

Algumas seções críticas do programa:

- Mudança de posição do ciclista na matriz pista
- Sorteio de variável aleatória na tomada de decisões
- Verificação se um ciclista quebrou

Testes

 Realizados em um Ubuntu 16.04 com processador i5-3210M e 4GB de memória RAM DDR3 1600MHz

Fixado o **tamanho da pista em 300m**, variou-se o número de ciclistas em 50, 100 e 200 ciclistas e o número de voltas em 20, 100 e 200 voltas

- Foram analisados o tempo de execução do programa, por meio de clocks e a quantidade em bytes de memória utilizada, usando o memusage
- Dados coletados com a opção de debug desabilitada

Resultados

- Tendência de crescimento linear entre o número de voltas, fixando-se o número de ciclistas
- Tendência do crescimento do tempo fixando-se o número de voltas é próxima à linear. As pequenas diferenças da média ao valor esperado podem ser causadas pelo tempo gasto com as mudanças de contexto necessárias para gerenciar as threads adicionais

Resultados

Uso de memória também cresce linearmente, ignorando-se uma constante que representa a memória utilizada para o gerenciamento da corrida, que independem dos valores de entrada