Sprawozdanie Systemy Mobilne Lab8

Lewicki Maciej – index: 34410

Modele propagacyjne w sieciach bezprzewodowych.

1. Dla podanych modeli propagacyjnych napisz funkcje realizujące obliczenia.

```
def free_space(freq, dist):
    return -27.55 + 20 * np.log10(freq) + 20 * np.log10(dist)

def itur(freq, dist, N, ceilDamping, ceils):
    return 20 * np.log10(freq) + N * np.log10(dist) + ceilDamping*ceils - 28

def one_slope(freq, dist, y):
    return free_space(freq, 1) + 10 * y * np.log10(dist)

def motley_keenan(freq, dist, walls, ceils, wallDamping, ceilDamping):
    return free_space(freq, dist) + walls * wallDamping + ceils * ceilDamping

def multi_wall(freq, dist, y, obstacles):
    sumDamp = 0
    for obstacle in obstacles:
        sumDamp += obstacle[0] * obstacle[1]
```

 Dokonaj 12 pomiarów sieci bezprzewodowych wykorzystując dowolne oprogramowanie na urzadzeniu mobilnym

Parametry									
	Pokój z wifi	Salon	Piętro wyżej	Na zewnątrz					
Liczba ścian	0	0	1	0					
Liczba sufitów	0	0	2	0					
Liczba okien	0	0	0	1					
Odległość (m)	3	10	5	7					

RSSI [dBm] WiFI Analyzer									
	Pokój z wifi	Salon	Piętro wyżej	Na zewnątrz					
	-34	-64	-90	-7	72				
	-48	-72	-88	-6	68				
	-38	-70	-80	-7	72				

Opis parametrów pomiarów:

Badania przeprowadzono w mieszkaniu, w budynku zbudowanego z tzw. "wielkiej płyty". Mieszkanie jest na 1 piętrze, router znajduje się w pokoju którego okno sąsiaduje z miejscem wykonywania pomiaru "na zewnątrz". Router leży na półce. Mierzono siłę sygnału o częstotliwości 2.4 GHz.

3. Porównaj dokonane pomiary z wynikami modeli propagacyjnych

Wyniki modeli [dBm]										
	Pokój z wifi	Salon	Piętro wyżej	Na zewnątrz	Avg delta					
free_space	-29,64	-40,1	-40,1	-37	29,62					
itur	-33	-47,65	-69,65	-65,31	12,43					
one_slope	-39,18	-60,1	-60,1	-53,9	13,01					
motley_keenan	-29,64	-40,1	-69,1	-66	15,12					
multi_wall	-39,18	-60,1	-85,1	-58,4	5,64					

Wnioski:

Jak widać w powyższej tabelce (Avg delta – średnie odchylenie dla wszystkich pomiarów) najlepiej poradził sobie model multi_wall, który bierze pod uwagę więcej zmiennych środowiska niż inne modele. Najgorzej wypadł free_space który był blisko jedynie dla pomiaru w tym samym pomieszczeniu. Duży wpływ na wyniki ma również poprawne dobranie współczynnika y.