

Shenzhen Asia Test Technology Co., Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China Tel: +86)-0755-23284990 Email: att@att-lab.com Http://www.att-lab.cn

FCC RF Test Report

Product Type : WiFi/Zigbee Gateway

Report No : ATT-2015SZ0229145F-1

Applicant : Sensing TeK Co., Ltd.

Address : 4F-1,No.62,Chen Gung 5 st., ChuBei City, Hsinchu county Taiwan 302

Trade Name : N/A

Model Number GWZ2100

List Model . N/A

Test Specification : FCC 47 CFR PART 15 SUBPART C: Oct., 2013

ANSI C63.10:2009

KD558074 D01 DTS Meas Guidance v03r02

Receive Date : 15 Feb,2015

Test Period : 16 Feb ,2015 to 11 Mar , 2015

Issue Date : 12 Mar, 2015

Issue by

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China.

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Asia Test Technology Co.,Ltd. This document may be altered or revised by Asia Institute Technology (Dongguan) Limited. Personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Verification of Compliance

Issued Date: 12/03/2015

Product Type : WiFi/Zigbee Gateway

Applicant : Sensing TeK Co., Ltd.

Address : 4F-1,No.62,Chen Gung 5 st., ChuBei City, Hsinchu county Taiwan 302

Manufacturer : Sensing TeK Co., Ltd.

Address : 4F-1,No.62,Chen Gung 5 st., ChuBei City, Hsinchu county Taiwan 302

Trade Name : N/A

Model Number : GWZ2100

FCC ID : WMXGWZ2100

EUT Rated Voltage : DC 12.0V From Adapter By AC 120V

Adapter: : Model:AU1121206u

Input:AC 100-240V 50/60Hz 0.5A

Output: DC 12V 1A

Applicable Standard : FCC 47 CFR PART 15 SUBPART C: Oct., 2013

ANSI C63.10:2009

KD558074 D01 DTS Meas Guidance v03r02

Test Result : Complied

Performing Lab. : Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District,

Shenzhen, China

The EUT described above is tested by Shenzhen Asia Test Technology Co.,Ltd. EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Asia Test Technology Co.,Ltd. EMC Laboratory assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2003) and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.207, 15.209 and 15.247.

The test results of this report relate only to the tested sample identified in this report.

Approved By : Reviewed By :

(Testing Engineer) (Seal Chen) (Manager) (Jackie Deng)

CONTENT

1	Genera	al Information	∠
	1.1	Applied Standard	∠
	1.2	Test Location	2
	1.3	Test Environment Condition	⊿
2	Test S	ummary	∠
3 Description of the Equipment under Test (EUT)			5
	3.1	General Description	5
	3.2	EUTIdentity	5
	3.3	Technical Description	5
	3.4	Customized Configurations	6
	3.5	Test Environments	6
	3.6	Test Setup	7
	3.7	Test condtions	9
4	Main T	est Instruments	10
5	Main Tesr Instruments		

1. General Information

1.1 Applied Standard

Applied Rules: FCC 47 CFR PART 15 SUBPART C: Oct., 2013

Test Method: KD558074 D01 DTS Meas Guidance v03r02

1.2 Test Location

TestLocation1: Shenzhen Asia Test Technology Co.,Ltd.

Address: 7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

FCC Registration No.: 348715

1.3 Test Environment Condition

Ambient Temperature: 19.5to 25°C Ambient Relative Humidity: 40 to 55 % Atmospheric Pressure: Not applicable

2. Test Summary

Test Item	FCC Part No.	Requirements	Verdict
DTS (6 dB) Bandwidth	15.247(a)(2)	≥ 500 kHz.	PASS
Maximum Peak Conducted Output Power	15.247(b)(3)	For directional gain:< 30dBm – (G[dBi] –6 [dB]),peak; Otherwise:< 30dBm, peak.	PASS
Maximum Power Spectral Density Level	15.247(e)	For directional gain :< 8dBm/3 kHz – (G[dBi] –6[dB]), peak. Otherwise :< 8dBm/3 kHz, peak.	PASS
Band Edges Compliance	15.247(d)	< -20dBr/100 kHz if total Peak power ≤power limit.	PASS
Unwanted Emissions into Non- Restricted Frequency Bands	15.247(d)	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Unwanted Emissions into Restricted Frequency Bands (Conducted)	15.247(d) 15.209	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Unwanted Emissions into Restricted Frequency Bands (Radiated)	15.247(d) 15.209	FCC Part 15.209 field strength limit;	PASS
AC Power Line Conducted Emissions	15.207	FCC Part 15.207 conducted limit;	PASS

3. Description of the Equipment under Test (EUT)

3.1 General Description

Product	WiFi/Zigbee Gateway	WiFi/Zigbee Gateway			
Trade Name	N/A				
Model Number	GWZ2100	GWZ2100			
Applicant	Sensing TeK Co., Ltd.				
Applicant	4F-1,No.62,Chen Gung 5 s	st., ChuBei City, Hsinchu county Taiwan 302			
Manufacturer	Sensing TeK Co., Ltd.				
Manufacturer	4F-1,No.62,Chen Gung 5 s	4F-1,No.62,Chen Gung 5 st., ChuBei City, Hsinchu county Taiwan 302			
FCC ID	WMXGWZ2100	WMXGWZ2100			
Mode	Frequency (MHz)	Modulation			
IEEE 802.11b	2412 ~ 2462	CCK(DSSS)			
IEEE 802.11g	2412 ~ 2462	OFDM			
IEEE 802.11n(H20)	2412 ~ 2462	OFDM			
IEEE 802.11n(H40)	2422 ~ 2452	OFDM			
Antenna Delivery	1*Tx + 1*Rx	1*Tx + 1*Rx			
Type of Antenna	Internal				
Antenna Gain (dBi)	3.0 dBi	3.0 dBi			

NOTE: Only WLAN test data included in this report.

3.2 Test Modes

NOTE: Typical working modes for each IEEE 802.11mode are selected to perform tests. The manufacturer provide special test software to control TX duty cycle >98% for TX test.

Test Mode	Test Modes Description
IEEE 802.11b	IEEE 802.11b with data rate of 1 Mbps
IEEE 802.11g	IEEE 802.11g with data rate of 6 Mbps
IEEE 802.11n(H20)	IEEE 802.11g with data rate of 6.5 Mbps
IEEE 802.11n(H40)	IEEE 802.11g with data rate of 13.5 Mbps

3.3 EUT Configurations

3.3.1 General Configurations

The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

3.3.2 Customized Configurations

Test Mode	RF Ch.	TX Channel NO.	TX Freq. [MHz]	RX Freq. [MHz]	Ch. BW [MHz]
	11b_L	CH 1	2412MHz	2412MHz	20
11b	11b_M	CH 6	2437MHz	2437MHz	20
	11b_H	CH 11	2462MHz	2462MHz	20
	11g_L	CH 1	2412MHz	2412MHz	20
11g	11g_M	CH 6	2437MHz	2437MHz	20
	11g_H	CH 11	2462MHz	2462MHz	20
	11n(H20)_L	CH 1	2412MHz	2412MHz	20
11n(H20)	11n(H20)_M	CH 6	2437MHz	2437MHz	20
	11n(H20)_H	CH 11	2462MHz	2462MHz	20
	11n(H40)_L	CH 3	2422MHz	2422MHz	40
11n(H40)	11n(H40)_M	CH 6	2437MHz	2437MHz	40
	11n(H40)_H	CH 9	2452MHz	2452MHz	40

3.4 Test Environments

NOTE: The values used in the test report maybe stringent than the declared.

Environment Parameter	Selected Values During Tests			
NTNV	Temperature	Voltage	Relative Humidity	
INTINV	Ambient	AC 120V/60Hz	Ambient	

3.5 Test Setups

3.5.1 Test Setup 1

The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

3.5.2 Test Setup 2

The test sites anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSIC63.4. The test distance is 3m.The setup is according to ANSI C63.4 and CAN/CSA-CEI/IEC CISPR 22.

The maximal emission value is acquired by adjusting the antenna height, polarization and turntable azimuth. Normally, the height range of antenna is 1m to 4m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(Below1 GHz)

(Above 1GHz)

3.5.3 **Test Setup 3**

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

3.6 Test Conditions

Tost Caso	Test Conditions	
rest case	Configuration	Description
DTS (6 dB) Bandwidth	Measurement Method	FCC KDB 558074 §8.1 Option2.
Maximum Peak Conducted Dutput Power Maximum Power Spectral Density Level Junwanted Emissions into Non Restricted Frequency Bands Conducted) Junwanted Emissions into Restricted Frequency Bands Conducted)	Test Environment	NTNV
	Test Setup	Test Setup 1
		11b_L,11b_M,11b_H
	FUT Configuration	11g_L,11g_M,11g_H
	EUT Configuration	11n(H20)_L, 11n(H20)_M, 11n(H20)_H
		11n(H40)_L, 11n(H40)_M, 11n(H40)_H
	Measurement Method	FCC KDB 558074§9.1.2
	Test Environment	NTNV
Martin or Brief Constraint	Test Setup	Test Setup 1
	·	11b_L,11b_M,11b_H
Output Power Maximum Power Spectral Density Level Jnwanted Emissions into Non-	5.17 0 5	11g_L,11g_M,11g_H
	EUT Configuration	11n(H20)_L, 11n(H20)_M, 11n(H20)_H
		11n(H40)_L, 11n(H40)_M, 11n(H40)_H
	Measurement Method	FCC KDB 558074 §10.2 (peak PSD).
	Test Environment	NTNV
aximum Peak Conducted atput Power aximum Power Spectral ansity Level awanted Emissions into Non-stricted Frequency Bands and activities and activities are activities as a second activities and activities are activi	Test Setup	Test Setup 1
Maximum Peak Conducted Output Power Maximum Power Spectral Density Level Junwanted Emissions into Non- Restricted Frequency Bands Conducted) Junwanted Emissions into Restricted Frequency Bands Conducted Junwanted Emissions into Restricted Frequency Bands Conducted	'	11b_L,11b_M,11b_H
		11g_L,11g_M,11g_H
	EUT Configuration	11n(H20)_L, 11n(H20)_M, 11n(H20)_H
		11n(H40)_L, 11n(H40)_M, 11n(H40)_H
	Measurement Method	FCC KDB 558074§11.0
	Test Environment	NTNV
Unwanted Emissions into Non- Restricted Frequency Bands	Test Setup	Test Setup 1
		11b_L,11b_M,11b_H
		11g_L,11g_M,11g_H
	EUT Configuration	11n(H20) L, 11n(H20) M, 11n(H20) H
		11n(H40)_L, 11n(H40)_M, 11n(H40)_H
		FCC KDB 558074§12.2, Conducted (antenna-
	Measurement Method	port).
	Test Environment	NTNV
	Test Setup	Test Setup 1
• •	'	11b_L,11b_H
(Conducted)		11g_L, ,11g_H
	EUT Configuration	11n(H20) L, 11n(H20) H
		11n(H40)_L, 11n(H40)_H
Unwanted Emissions into	Measurement Method	FCC KDB 558074§12.1,Radiated(cabinet/case
Restricted		emissions with Impedance matching for
		antenna-port).
	Test Environment	NTNV
	Test Setup	Test Setup 2
		11b L,11b H
		11g_L, ,11g_H
	EUT Configuration	11n(H20)_L, 11n(H20)_H
		11n(H40)_L, 11n(H40)_H
AC Power Line Conducted	Measurement Method	AC mains conducted.
	Test Environment	NTNV
55.51.5	Test Setup	Test Setup 3
	EUT Configuration	11b _M (Worst Conf.)
	Lor comiguration	TTD IN (AAOLOT COLLI')

Note: For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements and is documented in the Shenzhen Asia Test Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for General Testing & Inspection laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.65 dB	(1)
Transmitter power Radiated	2.33 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.62 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.50 dB	(1)
Radiated Emission 30~1000MHz	4.50 dB	(1)
Radiated Emission 1~18GHz	4.60 dB	(1)
Radiated Emission 18-40GHz	5.12 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

5. Main Test Instruments

NO	Equipment Name	Model	Serial	Manufacturer	Cal DUE	Cal Period
			Number		Date	
1	Test Receiver	ESCI	100701	R&S	2015-07-30	1 year
2	Spectrum Analyzer	FSP40	100378	R&S	2015-12-20	1 year
3	Test Receiver	ESCI	100702	R&S	2015-07-30	1 year
4	LISN	ESH2-Z5	100196	R&S	2015-12-20	1 year
5	Horn Antenna	EM-AH-10180	2011071402	EM	2015-05-29	1 year
6	Horn Ant	BBHA 9170	9170-181	Schwarz beck	2015-05-29	1 year
7	Loop Antenna	HLA6120	35779	TESEQ	2015-05-29	1 year
8	EMI-Antenna	3160-09	00118383	ETS-Lindgren	2015-09-05	1 year
9	Power Mete	ML2487B	110553	Anritsu	2015-07-10	1 year
10	Power Sensor	MA2411B	100345	Anritsu	2015-07-10	1 year
11	RF cable 1	MXHS83QE3000	1420354	MURATA	2015-07-10	1 year

6. Test Conditions and Results

6.1 AC Power Conducted Emission

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4. The EUT received DC12V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

- Francisco - Fran	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLA	CLASS A		SS B		
(IVITIZ)	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

The AC Power Conducted Emission measurement is performed the each test mode (b/g/n (H20)/n (H40)) and channel (low/mid/high), the data recorded below (802.11b mode, the middle channel) is the worst case for all the test modes and channels. And the test plot already covers the maximum result from both of L and N Mode.

Test mode:	11b_M	Test condition:	Normal
Channel:	Chanel 6	Polarity:	L/N

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M

150K-30M Voltage

MEASUREMENT RESULT: "ATT150305520_fin"

3/	3/05/2015 7:20PM							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.178000	50.40	12.2	65	14.2	QP	L1	GND
	10.486000	41.50	10.7	60	18.5	QP	N	GND
	10.930000	44.30	10.7	60	15.7	QP	L1	GND
	11.414000	46.00	10.7	60	14.0	QP	L1	GND
	11.882000	44.00	10.7	60	16.0	QP	L1	GND
	12.834000	41.90	10.7	60	18.1	OP	L1	GND

MEASUREMENT RESULT: "ATT150305520_fin2"

3/05/2015	7:20PM						
Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
9.982000	37.90	10.7	50	12.1	AV	L1	GND
10.462000	36.00	10.7	50	14.0	AV	N	GND
10.922000	35.30	10.7	50	14.7	AV	L1	GND
11.406000	38.00	10.7	50	12.0	AV	L1	GND
11.886000	37.00	10.7	50	13.0	AV	L1	GND
20.326000	29.80	10.9	50	20.2	AV	L1	GND

6.2 Radiated Emissions

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT maximum operation frequency was 2462MHz.so radiated emission test frequency band from 9 KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz, VBW=3MHz for Peak Detector while the RBW=1MHz, VBW=10Hz for Average Detector, Readings are both peak and average values.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- The radiated measurement are performed the each test mode (b/g/n (H20)/n (H40)) and channel (low/mid/high), the datum recorded below (802.11b mode) is the worst case for all the test mode and channel.
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.
- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. We tested X, Y, Z Axis, and recorded the worst case at the X Axis.

For 9 KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.25	54.58	99.65	45.07	QP	PASS
1.65	42.47	63.25	20.78	QP	PASS
20.24	53.20	69.54	16.34	QP	PASS
25.61	50.36	69.54	19.18	QP	PASS

For 30MHz to 1000MHz

For 1GHz to 25GHz

802.11b Mode

	Frequency(MHz):			2412		Polarity:				AL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	d	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4824	67.51	PK	74	6.49	1.00	45	65.58	31.54	6.87	36.48	1.93
1	4824	49.68	ΑV	54	4.32	1.00	45	47.75	31.54	6.87	36.48	1.93
2	7236	58.14	PK	74	15.86	1.00	110	47.47	37.35	8.57	35.25	10.67
2	7236	41.47	ΑV	54	12.53	1.00	110	30.80	37.35	8.57	35.25	10.67

	Frequency(MHz): 2412							Polarity:		VERTICAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4824	68.63	PK	74	5.37	1.00	120	66.70	31.54	6.87	36.48	1.93	
1	4824	47.42	ΑV	54	6.58	1.00	120	45.49	31.54	6.87	36.48	1.93	
2	7236	57.66	PK	74	16.34	1.00	135	46.99	37.35	8.57	35.25	10.67	
2	7236	40.20	ΑV	54	13.80	1.00	135	29.53	37.35	8.57	35.25	10.67	

	Frequency(MHz): 2437							Polarity:		HORIZONTAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4874.00	67.11	PK	74.00	6.89	1.00	110	64.83	31.25	7.58	36.55	2.28	
1	4874.00	49.25	ΑV	54.00	4.75	1.00	110	46.97	31.25	7.58	36.55	2.28	
2	7311.00	58.23	PK	74.00	15.77	1.00	185	47.15	37.30	8.62	34.84	11.08	
2	7311.00	40.54	ΑV	54.00	13.46	1.00	185	29.46	37.30	8.62	34.84	11.08	

	Frequency(MHz): 2437							Polarity:		VERTICAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4874.00	68.44	PK	74.00	5.56	1.00	115	66.16	31.25	7.58	36.55	2.28	
1	4874.00	47.25	ΑV	54.00	6.75	1.00	115	44.97	31.25	7.58	36.55	2.28	
2	7311.00	57.36	PK	74.00	16.64	1.00	70	46.28	37.30	8.62	34.84	11.08	
2	7311.00	40.57	ΑV	54.00	13.43	1.00	70	29.49	37.30	8.62	34.84	11.08	

	Frequency(MHz): 2462							Polarity:		HORIZONTAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4924.00	68.47	PK	74.00	5.56	1.00	130	65.17	31.60	7.85	36.18	3.27	
1	4924.00	49.48	AV	54.00	4.52	1.00	130	46.21	31.60	7.85	36.18	3.27	
2	7386.00	58.14	PK	74.00	15.86	1.00	120	46.30	38.47	8.64	35.27	11.84	
2	7386.00	40.36	AV	54.00	13.64	1.00	120	28.52	38.47	8.64	35.27	11.84	

	Frequency(MHz):			2462			Polarity:				
No.	Frequency (MHz)	Emissi Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4924.00	68.98	PK	74.00	5.02	1.00	100	65.71	31.60	7.85	36.18	3.27
1	4924.00	47.32	ΑV	54.00	6.68	1.00	100	44.05	31.60	7.85	36.18	3.27
2	7386.00	57.04	PK	74.00	16.96	1.00	15	45.20	38.47	8.64	35.27	11.84
2	7386.00	40.36	ΑV	54.00	13.64	1.00	15	28.52	38.47	8.64	35.27	11.84

802.11g Mode

	Frequency(MHz):			2412		Polarity:			HORIZONTAL		
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4824	60.24	PK	74	13.76	1.00	47	58.31	31.54	6.87	36.48	1.93
1	4824	45.26	ΑV	54	8.74	1.00	47	43.33	31.54	6.87	36.48	1.93
2	7236	55.41	PK	74	18.59	1.00	115	44.74	37.35	8.57	35.25	10.67
2	7236	38.65	ΑV	54	15.35	1.00	115	27.98	37.35	8.57	35.25	10.67

	Frequency(MHz): 2412							Polarity:		VERTICAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	d	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4824	61.47	PK	74	12.53	1.00	120	59.54	31.54	6.87	36.48	1.93	
1	4824	46.33	ΑV	54	7.67	1.00	120	44.40	31.54	6.87	36.48	1.93	
2	7236	56.25	PK	74	17.75	1.00	100	45.58	37.35	8.57	35.25	10.67	
2	7236	38.97	ΑV	54	15.03	1.00	100	28.30	37.35	8.57	35.25	10.67	

	Frequency(MHz):			2437			Polarity:			HORIZONTA	AL
No.	Frequency (MHz)	Emissi Leve (dBuV/	el .	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4874.00	60.54	PK	74.00	13.46	1.00	90	58.26	31.25	7.58	36.55	2.28
1	4874.00	44.87	ΑV	54.00	9.13	1.00	90	42.59	31.25	7.58	36.55	2.28
2	7311.00	54.96	PK	74.00	19.04	1.00	95	43.88	37.30	8.62	34.84	11.08
2	7311.00	39.32	ΑV	54.00	14.68	1.00	95	28.24	37.30	8.62	34.84	11.08

	Frequency(MHz):			2437			Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4874.00	61.78	PK	74.00	12.22	1.00	120	59.50	31.25	7.58	36.55	2.28
1	4874.00	46.24	ΑV	54.00	7.76	1.00	120	43.96	31.25	7.58	36.55	2.28
2	7311.00	56.35	PK	74.00	17.65	1.00	115	45.27	37.30	8.62	34.84	11.08
2	7311.00	38.87	ΑV	54.00	15.13	1.00	115	27.79	37.30	8.62	34.84	11.08

	Frequency(MHz):			2462			Polarity:			HORIZONTA	AL
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4924.00	60.36	PK	74.00	13.64	1.00	130	57.09	31.60	7.85	36.18	3.27
1	4924.00	45.15	AV	54.00	8.85	1.00	130	41.88	31.60	7.85	36.18	3.27
2	7386.00	55.52	PK	74.00	18.48	1.00	120	43.68	38.47	8.64	35.27	11.84
2	7386.00	38.51	ΑV	54.00	15.49	1.00	120	26.67	38.47	8.64	35.27	11.84

	Frequency(MHz):			2462			Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4924.00	61.44	PK	74.00	12.56	1.00	110	58.17	31.60	7.85	36.18	3.27
1	4924.00	46.26	ΑV	54.00	7.74	1.00	110	42.99	31.60	7.85	36.18	3.27
2	7386.00	56.36	PK	74.00	17.64	1.00	145	44.52	38.47	8.64	35.27	11.84
2	7386.00	38.74	ΑV	54.00	15.26	1.00	145	26.90	38.47	8.64	35.27	11.84

802.11n (H20) Mode

	Frequency(MHz):			2412			Polarity:			HORIZONTA	AL
No.	Frequency (MHz)	Emissi Leve (dBuV/	el .	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4824	61.74	PK	74	12.26	1.00	38	59.81	31.54	6.87	36.48	1.93
1	4824	45.26	ΑV	54	8.74	1.00	38	43.33	31.54	6.87	36.48	1.93
2	7236	55.56	PK	74	18.44	1.00	110	44.89	37.35	8.57	35.25	10.67
2	7236	38.41	ΑV	54	15.59	1.00	110	27.74	37.35	8.57	35.25	10.67

	Frequency(MHz):			2412			Polarity:			VERTICAL	
No.	Frequency (MHz)	Emission Level (dBuV/m) 61.54 PK		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4824	61.54	PK	74	12.46	1.00	120	59.61	31.54	6.87	36.48	1.93
1	4824	46.36	ΑV	54	7.64	1.00	120	44.43	31.54	6.87	36.48	1.93
2	7236	56.25	PK	74	17.75	1.00	55	45.58	37.35	8.57	35.25	10.67
2	7236	38.41	ΑV	54	15.59	1.00	55	27.74	37.35	8.57	35.25	10.67

	Frequency(MHz):			2437			Polarity:			HORIZONTA	AL
No.	Frequency (MHz)	Emissi Leve (dBuV/	el .	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4874.00	60.30	PK	74.00	13.70	1.00	110	58.02	31.25	7.58	36.55	2.28
1	4874.00	45.55	ΑV	54.00	8.45	1.00	110	43.27	31.25	7.58	36.55	2.28
2	7311.00	55.41	PK	74.00	18.59	1.00	180	44.33	37.3	8.62	34.84	11.08
2	7311.00	38.32	ΑV	54.00	15.68	1.00	180	27.24	37.3	8.62	34.84	11.08

	Frequency(MHz):			2437			Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4874.00	61.36	PK	74.00	12.64	1.00	115	59.08	31.25	7.58	36.55	2.28
1	4874.00	46.14	ΑV	54.00	7.86	1.00	115	43.86	31.25	7.58	36.55	2.28
2	7311.00	56.25	PK	74.00	17.75	1.00	75	45.17	37.30	8.62	34.84	11.08
2	7311.00	38.36	ΑV	54.00	15.64	1.00	75	27.28	37.30	8.62	34.84	11.08

	Frequency(MHz):			2462			Polarity:			HORIZONTA	AL
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4924.00	60.36	PK	74.00	13.64	1.00	130	57.09	31.60	7.85	36.18	3.27
1	4924.00	45.14	AV	54.00	8.86	1.00	130	41.87	31.60	7.85	36.18	3.27
2	7386.00	55.56	PK	74.00	18.44	1.00	120	43.72	38.47	8.64	35.27	11.84
2	7386.00	38.35	ΑV	54.00	15.65	1.00	120	26.51	38.47	8.64	35.27	11.84

	Frequency(MHz):			2462			Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4924.00	61.34	PK	74.00	12.66	1.00	115	58.07	31.60	7.85	36.18	3.27
1	4924.00	46.15	ΑV	54.00	7.85	1.00	115	42.88	31.60	7.85	36.18	3.27
2	7386.00	56.20	PK	74.00	17.80	1.00	145	44.36	38.47	8.64	35.27	11.84
2	7386.00	38.58	ΑV	54.00	15.42	1.00	145	26.74	38.47	8.64	35.27	11.84

802.11n (H40) Mode

	Frequency(MHz):			2422			Polarity:			HORIZONTA	AL
No.	Frequency (MHz)	Emissi Leve (dBuV/	el .	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4844	56.89	PK	74	17.11	1.00	85	54.79	31.6	7.10	36.60	2.10
1	4844	41.58	ΑV	54	12.42	1.00	85	39.48	31.6	7.10	36.60	2.10
2	7266	44.36	PK	74	29.64	1.00	110	33.28	37.33	8.95	35.20	11.08
2	7266		ΑV	54.00								

	Frequency(MHz):			2422			Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	el .	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	4844	57.62	PK	74	16.38	1.00	120	55.52	31.6	7.10	36.60	2.10
1	4844	41.10	ΑV	54	12.90	1.00	120	39.00	31.6	7.10	36.60	2.10
2	7266	43.20	PK	74	30.80	1.00	135	32.12	37.33	8.95	35.20	11.08
2	7266		ΑV	54.00								

	Frequency(MHz): 2437							Polarity:		HORIZONTAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	el .	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4874.00	55.87	PK	74.00	18.13	1.00	110	53.75	31.02	7.60	36.50	2.12	
1	4874.00	40.41	ΑV	54.00	13.59	1.00	110	38.29	31.02	7.60	36.50	2.12	
2	7311.00	42.65	PK	74.00	31.35	1.00	180	31.47	37.28	8.60	34.70	11.18	
2	7311.00	-	ΑV	54.00									

	Frequency(MHz): 2437							Polarity:		VERTICAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4874.00	56.95	PK	74.00	17.05	1.00	85	54.83	31.02	7.60	36.50	2.12	
1	4874.00	41.41	ΑV	54.00	12.59	1.00	85	39.29	31.02	7.60	36.50	2.12	
2	7311.00	44.62	PK	74.00	29.38	1.00	116	33.44	37.28	8.60	34.70	11.18	
2	7311.00	1	ΑV	54.00	-			-			-		

	Frequency(MHz): 2452							Polarity:		HORIZONTAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4904.00	56.68	PK	74.00	17.32	1.00	87	53.59	31.58	7.81	36.30	3.09	
1	4904.00	41.44	ΑV	54.00	12.56	1.00	87	38.35	31.58	7.81	36.30	3.09	
2	7356.00	44.36	PK	74.00	29.64	1.00	185	32.53	38.51	8.72	35.40	11.83	
2	7356.00	-	ΑV	54.00					-				

	Frequency(MHz): 2452							Polarity:		VERTICAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	d	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)	
1	4904.00	57.25	PK	74.00	16.75	1.00	100	54.16	31.58	7.81	36.30	3.09	
1	4904.00	41.45	ΑV	54.00	12.55	1.00	100	38.36	31.58	7.81	36.30	3.09	
2	7356.00	43.36	PK	74.00	30.64	1.00	145	31.53	38.51	8.72	35.40	11.83	
2	7356.00	1	ΑV	54.00					-				

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

6.3 Maximum Peak Output Power TEST PROCEDURE

According to KDB558074 D01 DTS Mea Guidance v03r02 9.1.2 PKPM1 Peak power meter method "The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector."

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Туре	Channel	Total Output power(dBm)	Limit (dBm)	Result
	01	18.35		
802.11b	06	18.73	30.00	Pass
	11	18. 68		
	01	16.85		
802.11g	06	16.94	30.00	Pass
	11	16.79		
	01	16.57		
802.11n(H20)	06	16.62	30.00	Pass
	11	16.45		
	03	15.36		
802.11n(H40)	06	15.58	30.00	Pass
	09	15.33		

6.4 Power Spectral Density TEST PROCEDURE

According to KDB 558074 D01 V03 Method PKPSD (peak PSD) this procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

<u>LIMIT</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Туре	Channel	Total Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	01	-9.35		
802.11b	06	-9.86	8.00	Pass
	11	-10.24		
	01	-12.50		
802.11g	06	-13.84	8.00	Pass
	11	-13.24		
	01	-15.91		
802.11n(HT20)	06	-16.60	8.00	Pass
	11	-17.19		
	03	-20.56		
802.11n(HT40)	06	-19.73	8.00	Pass
	09	-20.25		

6.5 Band Edge Compliance of RF Emission TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Procedure tor conducted method

- 1. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a spectrum analyzer
- 2. Turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set spectrum analyzer RBW =100 kHz and VBW=300 kHz
- 4. Use spectrum analyzer Maxhold function to allow trace to fully stabilize
- 5. Marker the highest point which fall into restricted frequency bands
- 6. Repeat above procedures until all measured frequencies were complete.

Test Procedure tor radiated method

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- 7. Test the EUT in the lowest channel, the highest channel
- 8. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
- 9. Repeat above procedures until all frequencies measured was complete.

Test Results

A. Conducted measurements

B. Radiated measurements

802.11b

Frequenc	y(MHz):		2	412			Polarity	/ :	HORIZONTAL		
Frequency (MHz)	Emissio Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.47	PK	74.00	11.53	1.00	105	67.78	27.49	3.32	36.12	-5.31
2390.00	47.26	AV	54.00	6.74	1.00	105	52.57	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):		2	412			Polarity	/ :		VERTICAL	
Frequency (MHz)	Emission Level (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	63.34	PK	74.00	10.66	1.00	45	68.65	27.49	3.32	36.12	-5.31
2390.00	48.69	AV	54.00	5.31	1.00	45	54.00	27.49	3.32	36.12	-5.31
Frequenc	y(MHz):		2	462			Polarity	/ :	Н	ORIZONT	AL
Frequency (MHz)	Emission Level (dBuV/	I	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.55	PK	74.00	13.45	1.00	180	66.27	27.45	3.38	36.55	-5.72
2483.50	45.23	AV	54.00	8.77	1.00	180	50.95	27.45	3.38	36.55	-5.72
Frequenc	uency(MHz):		2	462			Polarity	<i>/</i> :		VERTICAL	
Frequency (MHz)	Emissio Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	63.55	PK	74.00	10.45	1.00	140	69.27	27.45	3.38	36.55	-5.72
2483.50	47.12	AV	54.00	6.88	1.00	140	52.84	27.45	3.38	36.55	-5.72

802.11g

						JZ.115					
Frequen	cy(MHz):		2	2412			Polarity	y:	ı	HORIZONT	AL
Frequency (MHz)	Emissio Level (dBuV/n		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	64.74	PK	74.00	9.26	1.00	130	70.05	27.49	3.32	36.12	-5.31
2390.00	48.36	AV	54.00	5.64	1.00	130	53.67	27.49	3.32	36.12	-5.31
Frequen	cy(MHz):		2	2412			Polarity	y:		VERTICA	L
Frequency (MHz)	Emissio Level (dBuV/n		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	65.69	PK	74.00	8.31	1.00	25	71.00	27.49	3.32	36.12	-5.31
2390.00	49.56	AV	54.00	4.44	1.00	25	54.87	27.49	3.32	36.12	-5.31
Frequen	cy(MHz):		2462				Polarity	y:	ı	HORIZONT	AL
Frequency (MHz)	Emissio Level (dBuV/n		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	65.65	PK	74.00	8.35	1.00	50	71.37	27.45	3.38	36.55	-5.72
2483.50	48.26	AV	54.00	5.74	1.00	50	53.98	27.45	3.38	36.55	-5.72
Frequen	uency(MHz):		2	2462			Polarit	y:		VERTICA	L
Frequency (MHz)	Emissio Level (dBuV/n		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	64.30	PK	74.00	9.70	1.00	120	70.02	27.45	3.38	36.55	-5.72
2483.50	49.45	AV	54.00	4.55	1.00	120	55.17	27.45	3.38	36.55	-5.72

802.11n (H20)

Frequen	cy(MHz):			2412			Polarit	y:	HORIZONTAL		
Frequency (MHz)	Emissio Level (dBuV/		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	63.22	PK	74.00	10.78	1.00	145	68.53	27.49	3.32	36.12	-5.31
2390.00	46.37	AV	54.00	7.63	1.00	145	51.68	27.49	3.32	36.12	-5.31
Frequen	cy(MHz):			2412			Polarit	y:		VERTICAL	-
Frequency (MHz)	Emissio Level (dBuV/		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	64.36	PK	74.00	9.64	1.00	50	69.67	27.49	3.32	36.12	-5.31
2390.00	47.15	AV	54.00	6.85	1.00	50	52.46	27.49	3.32	36.12	-5.31
Frequen	cy(MHz):		2462				Polarit	y:	ı	HORIZONT	AL
Frequency (MHz)	Emissio Level (dBuV/		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	66.12	PK	74.00	7.88	1.00	120	71.84	27.45	3.38	36.55	-5.72
2483.50	47.20	AV	54.00	6.80	1.00	120	52.92	27.45	3.38	36.55	-5.72
Frequen	uency(MHz):			2462			Polarit	y:		VERTICAL	-
Frequency (MHz)	Emissio Level (dBuV/		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	65.32	PK	74.00	8.68	1.00	75	71.04	27.45	3.38	36.55	-5.72
2483.50	49.21	AV	54.00	4.79	1.00	75	54.93	27.45	3.38	36.55	-5.72

802.11n (H40)

Frequen	cy(MHz):			2422			Polarit	y:		HORIZONT	AL
Frequency (MHz)	Emissio Level (dBuV/i		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	64.22	PK	74.00	9.78	1.00	130	69.53	27.49	3.32	36.12	-5.31
2390.00	48.12	AV	54.00	5.88	1.00	130	53.43	27.49	3.32	36.12	-5.31
Frequen	cy(MHz):			2422			Polarit	y:		VERTICAL	•
Frequency (MHz)	Emissic Level (dBuV/i		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	66.39	PK	74.00	7.61	1.00	120	71.70	27.49	3.32	36.12	-5.31
2390.00	48.26	AV	54.00	5.74	1.00	120	53.57	27.49	3.32	36.12	-5.31
Frequen	cy(MHz):		2452				Polarit	y:	I	HORIZONT	AL
Frequency (MHz)	Emissio Level (dBuV/i		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	66.64	PK	74.00	7.36	1.00	55	72.36	27.45	3.38	36.55	-5.72
2483.50	47.26	AV	54.00	6.74	1.00	55	52.98	27.45	3.38	36.55	-5.72
Frequen	uency(MHz):			2452			Polarit	y:		VERTICAL	
Frequency (MHz)	Emissio Level (dBuV/i		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	66.47	PK	74.00	7.53	1.00	135	72.19	27.45	3.38	36.55	-5.72
2483.50	47.52	AV	54.00	6.48	1.00	135	53.24	27.45	3.38	36.55	-5.72

6.6 Spurious RF Conducted Emission TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100 kHz and VBW= 300 KHz to measure the peak field strength, and measure frequency range from 9 KHz to 26.5GHz.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark: The measurement frequency range is from 9 KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

The spurious emissions of the 9 kHz to 30MHz are Background and lower than Limit, so we don't recorded it.

6.7 6dB Bandwidth

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

According to KDB558074 D01 V03 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

<u>LIMIT</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST RESULTS

Туре	Channel	Bandwidth (MHz)	Limit (KHz)	Result
	01	10.08		
802.11b	06	10.08	≥500	Pass
	11	10.08		
	01	16.56		
802.11g	06	16.56	≥500	Pass
	11	16.56		
	01	17.76		
802.11n(H20)	06	17.76	≥500	Pass
	11	17.76		
	03	36.00		
802.11n(H40)	06	36.00	≥500	Pass
	09	36.00		

6.8 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The device use a High-gain External Directiona	Antenna and the maximum	antenna gain was 3.00 dBi.
--	-------------------------	----------------------------

END