

PROJET ENERGIE

Fleisch Fabien
Jouve Adrien
Ramadier Loïck

SOMMAIRE

- I. Choix des données
- II. Préparation des données
- III. Choix des graphiques
- IV. Présentation des graphiques
- V. Evolutions possibles
- VI. Conclusion

CHOIX DES DONNÉES

Recherche d'un jeu de données:

- Sur le thème de l'énergie
- Permettant de faire au moins 3 visuelles
- Regroupant des données sur plusieurs années

PRÉSENTATION DU JEU DE DONNÉES

- Consommation de Gaz et d'électricité par département, région et secteur d'activités
- Données de 2012 à 2020
- Données EPCI (possibilité d'affichage sur carte)

PRÉPARATION DES DONNÉES

PRÉPARATION DES DONNÉES

Suppression des colonnes inutiles :

- Code et libellé EPCI
- Opérateur (fournisseur)

Suppression des années 2012 à 2015 pour limiter la taille du fichier (commit github 100 Mo)

Gestion des virgules dans les données :

Code département 💠	Libellé département 💠
26	Drôme
07, 26	Ardèche, Drôme
84, 04	Vaucluse, Alpes-de-H

Consommation tertiaire (MWh) 💠	Consommation autre (MWh) 💠	Consommation totale (MWh) 💠
55 360,570	76,89	278 985,060
3 356,86	0	36 919,84

NETTOYAGE DE DONNÉES POUR LA CARTE

Génération d'un fichier JSON ne comportant que les informations utiles à la carte

```
import json
import numpy as np
import pandas as pd
df = pd.read csv("DonneesFabien2016.csv")
unique columns = sorted(df['Code departement'].unique().tolist())
export = []
for dep in unique columns:
 var = df.loc[df['Code departement'] == dep]
 totelec = var['Consommation totale MWh'].sum()
  export.append(var.head(1).drop(['Geo-shape EPCI'], axis=1).values[0])
grandeArray = []
for i in range(len(export)):
  array = []
 for y in range(len(export[0])):
 array.append(export[i][y])
  array[10] = totelec
  grandeArray.append(array)
jsonstr = json.dumps(grandeArray)
with open('finalDatas.json', 'w') as outfile:
    outfile.write(jsonstr)
```

CHOIX DES GRAPHIQUES

- 3 graphiques pour représenter les différentes données :
 - Graphique en bâton
 - Graphique circulaire
 - Carte

PRESENTATION DES GRAPHIQUES

Diagramme en bâton :

- Affichage de la consommation par année, région et département
- Visualisation de la consommation totale (Gaz et électricité), pour une comparaison rapide
- Choix année possible entre 2016 et 2020 pour avoir un jeu de données plus petit

But:

- Visualisation des régions et départements les plus consommatrices en général

PRESENTATION DES GRAPHIQUES

Diagramme en secteurs :

- Un graphique pour un secteur
- Découpage des secteurs en région

But:

- Visualisation des secteurs les plus importants par région

PRESENTATION DES GRAPHIQUES

Carte centrée sur la France :

- Un point par département qui au clic indique la consommation en électricité et en gaz de chaque région

But:

- Avoir un visuel plus géographique sur l'utilisation du gaz et de l'électricité en France => implémentation d'une entreprise en fonction des prix des ressources

DÉMONSTRATION

EVOLUTIONS POSSIBLE

- Fichier encore mis à jour régulièrement-> Permet la maintenabilité de la donnée dans le temps à l'heure actuelle

- Avoir des données plus précises par département (secteurs)

- Utilisation de la carte comme filtrage vers les autres graphiques

- Intégration sur le site

CONCLUSION