

FILE COPY TECHNICAL REPORT CERC-88-12

SUPERDUCK NEARSHORE PROCESSES EXPERIMENT: SUMMARY OF STUDIES CERC FIELD RESEARCH FACILITY

AD-A200 251

Ronald A. Crowson, William A. Birkemeier Harriet M. Klein, Herman C. Miller

Coastal Engineering Research Center

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631, Vicksburg, Mississippi 39181-0631

September 1988

Final Report

Approved For Public Release; Distribution Unlimited

88 1012 072

Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 1a. REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) Technical Report CERC-88-12 6. NAME OF PERFORMING ORGANIZATION USAEWES, Coastal Engineering OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION (If applicable) Research Center 7b. ADDRESS (City, State, and ZIP Code) 6c. ADDRESS (City, State, and ZIP Code) PO Box 631 Vicksburg, MS 39181-0631 8a. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION US Army Corps of Engineers 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT NO. WORK UNIT Washington, DC 20314-1000 11. TITLE (Include Security Classification)
SUPERDUCK Nearshore Processes Experiment: Summary of Studies, CERC Field Research Facility 12. PERSONAL AUTHOR(S) Crowson, Ronald A.; Birkemeier, William A.; Klein, Harriet M.; Miller, Herman C. 14. DATE Of REPORT (Year, Month, Day) September 1988 13a. TYPE OF REPORT Final Report 13b. TIME COVERED 15. PAGE COUNT TO FROM 16 SUPPLEMENTARY NOTATION
Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Nearshore morphology Sediment transport FIELD SUB-GROUP GROUP Nearshore processes Surf zone processes Nearshore waves 19. ABSTRACT (Continue on reverse if necessary and identify by block number) During September and October 1986, the US Army Engineer Waterways Experiment Station's Coastal Engineering Research Center (CERC) hosted SUPERDUCK, a nearshore processes experiment, at its Field Research Facility located at Duck, North Carolina. The objectives of SUPERDUCK were to develop an improved understanding of coastal processes (currents, waves, sediment transport, and nearshore geomorphology) under a wide variety of conditions and to collect data essential to the development of improved numerical models of coastal phenomena. SUPERDUCK benefited from the cooperative efforts and resources of engineers and scientists from CERC, 6 other government agencies, 10 universities, 3 foreign countries, and 15 Corps of Engineers district and division offices. This report describes the 30 experiments that comprised SUPERDUCK and summarizes the data sets collected.

SUPERDUCK was organized into	three phases	: a nonstorm wave phase	conducted during (Continued)
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS RPT.	DTIC USERS	21. ABSTRACT SECURITY CLASSIFICA	
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE (Include Area Code)	22c. OFFICE SYMBOL

Unclassified SECURITY CLASSIFICATION OF THIS PAGE							
19. ABSTRACT (Continued).							
September, a storm wave phase carried out during October, and an all-weather phase. This is the first in a series of reports which will be published summarizing the data and findings of this unique effort.							

PREFACE

The study herein was authorized by the US Army Corps of Engineers (USACE), Coastal Engineering Area of Civil Works Research and Development. Work was performed under Field Research Facility (FRF) Measurements and Analysis Work Unit 31537, Waves and Coastal Flooding Program, at the Coastal Engineering Research Center (CERC) of the US Army Engineer Waterways Experiment Station (WES). Technical monitors were Messrs. John H. Lockhart, Jr., and John G. Housley, USACE. CERC Program Manager is Dr. C. Linwood Vincent.

Mr. Ronald A. Crowson, SUPERDUCK Experiment Coordinator, compiled the report from information provided by the individual principal investigators under direct supervision of Messrs. Curt Mason, former Chief, FRF; and Thomas W. Richardson, Chief, Engineering Development Division; and under general supervision of Dr. James R. Houston and Mr. Charles C. Calhoun, Jr., Chief and Assistant Chief, CERC, respectively. Final preparation of the manuscript was done by Mr. William A. Birkemeier, Acting Chief, FRF, and Ms. Harriet M. Klein and Mr. Herman C. Miller, FRF. This report was edited by Ms. Shirley A. J. Hanshaw, Information Products Division, Information Technology Laboratory, WES.

Commander and Director of WES during publication of this report was COL Dwayne G. Lee, EN. Dr. Robert W. Whalin was Technical Director.

CONTENTS

	<u>P</u>	age
PREFA	CE	1
PART	I: INTRODUCTION	4
	Background	4
	Objective	4
	Scope	5
PART	II: BASIC DATA COLLECTION AND FRF SUPPORT	7
	Process Data	7
	Survey Data	11
PART	III: NONSTORM WAVE STUDIES	15
	Surf Zone Sediment Trap	15
	Photopole	22
	Surf Zone Currents	25
	Surf Zone Rip Currents	25
	Surf Zone Waves	26
	LEO Measurements	26
PART	IV: STORM WAVE STUDIES	28
	Infragravity Wave Climatology	28
	Nearshore Profile Response	31
	Infragravity Wave Dynamics	32
	Wind and Wind Wave Forcing of Mean Nearshore Currents	33
	Momentum Balance and Surface Slope	39
	Inner-Shelf Dynamics: Process Measurements	41
	Inner-Shelf Dynamics: DARTS II	43
	Foreshore Sedimentation Processes	45
	Sedimentary Micro Structures	49
	Effects of Coastal Processes on Sand-Dwelling Organisms	51
	Application of a Photographic System for Evaluation of Sediment	
	Transport Using Fluorescent Tracers	52
	Short-Term Disturbance Effects of Storms on the Subtidal	
	Benthic Communities of Duck, North Carolina	54
	Dune Erosion	56
PART	7: ALL-WEATHER STUDIES	57
	Offshore Material Placement	57
	Sea Scour	
	Seabed Drifters	61 63
	Nearshore Wind Stress	
		66
	Marine Radar	68
	Coastal Ocean Dynamics Application Radar	69
	Linear Array Wave Gage High-Resolution Directional Wave Array	69
	Remote Acoustic Doppler Sensing System	71

Measur	ement of	Slope Long-Period Operational	Microseism	ns	 			 . 72
PART VI: SU	MMARY .				 			 . 80
REFERENCES					 		 •	 . 81
APPENDIX A:		OF SUPERDUC			 	•		 . A:

SUPERDUCK NEARSHORE PROCESSES EXPERIMENT SUMMARY OF STUDIES CERC FIELD RESEARCH FACILITY

PART I: INTRODUCTION

Background

- 1. With the increasing sophistication of nearshore numerical and physical models, there is a growing need for high quality field data, both to improve our understanding of the physics of the nearshore zone and to use in the testing of these models. Because the collection of field data is both expensive and logistically demanding, it is best obtained through cooperative efforts where the knowledge and resources of a number of investic are pooled toward a common goal. This report summarizes the activities of SUPER-DUCK, a large multi-agency, multi-investigator, nearshore processes experiment hosted by the US Army Engineer Waterways Experiment Station's (WES's) Coastal Engineering Research Center (CERC) at its Field Research Facility (FRF) in Duck, North Carolina (Figure 1) during September and October 1986.
- 2. The SUPERDUCK experiment was organized into three phases: (a) a nonstorm wave phase during September when mild wave conditions generally dominate, (b) a storm wave phase during October when higher wave conditions are usually experienced, and (c) an all-weather phase conducted throughout September and October. Most of the individual SUPERDUCK studies were located along a 600-m-long section of shoreline centered 500 m north of the FRF's pier (Figure 2). The nonstorm studies of waves, currents, and sediment transport in the surf zone used a wide variety of electronic, visual, and remote sensing techniques. During the storm wave phase, more than 70 electronic sensors (current meters, sonar bed-level sensors, wave gages, and optical backscatter sediment sensors (OBS)) were deployed in three major arrays.

Objective

3. The objectives of the SUPERDUCK experiment were to develop an improved understanding of coastal processes (currents, waves, sediment transport, and nearshore geomorphology) under a wide variety of conditions and to

collect data essential to the development of improved numerical models of coastal phenomena. SUPERDUCK was the third in a series of nearshore experiments, benefiting greatly from experience and data obtained during DUCK82, performed in October 1982 (Mason et al. 1984) and DUCK85, performed from September to October 1985 (Mason et al. 1987).

4. In addition to investigators from CERC, engineers and scientists from 6 other government agencies, 10 universities, 3 foreign countries, and 15 Corps of Engineers district and division offices participated. The role

Figure 1. FRF location map

that each played in the overall effort is discussed herein.

Scope

- 5. This report describes the 30 experiments that comprised SUPERDUCK. It is the first in a series of reports which will be published summarizing the data and findings of this unique effort. Principal investigators were responsible for the success of their individual experiments and each day reported a record of their activities to the SUPERDUCK coordinator who maintained a daily log. A brief project description and data collection summary are given for each experiment.
- 6. The organization of this report is as follows: Part II describes the data collection effort and the FRF's support. Part III presents the conditions which occurred in September and describes the nonstorm wave studies. Part IV describes the October conditions and storm wave studies. Part V discusses the all-weather studies, and Part VI is a summary. Appendix A is a tabular summary of the data collected on the FRF computers.

Figure 2. Locations of SUPERDUCK experiments

7. Further information on SUPERDUCK or the data collected can be obtained by contacting Herman C. Miller, SUPERDUCK Data Management Coordinator, at the following address:

CERC Field Research Facility SR Box 271 Kitty Hawk, North Carolina 27949

PART II: BASIC DATA COLLECTION AND FRF SUPPORT

8. A primary factor contributing to the success of SUPERDUCK was the capability of the FRF to deploy and support the large number of oceanographic instruments required during the experiment (Figure 3). The FRF routinely col-

Figure 3. FRF equipment being used to deploy a buoy

lects long-term measurements of both processes (winds, waves, tides, etc.) and responses (high precision bathymetric surveys), and this basic monitoring program provided the framework for all three phases of the SUPERDUCK experiment.

Process Data

9. Most of the data from the instruments deployed during SUPERDUCK were collected by the FRF minicomputers (either a Data General NOVA-4 or a Digital Equipment VAX-11/750) on Eastern Standard Time (EST) unless stated otherwise. Each instrument channel was assigned a unique number, as listed in Table 1. Coordinates given in Table 1 refer to the local horizontal coordinate system of the FRF which is shown in Figure 2. Elevations are relative to the National Geodetic Vertical Datum (NGVD) of 1929. A log giving the operational status of each gage is included in Appendix A.

Table 1 Summary of SUPERDUCK Instrumentation*

							Gage Location		Wate
	Gage		Ga	ge Numb	<u>xer</u>	Alongshore	Cross-Shore	Elevation	Dept
xperiment	<u>Name</u>	Gage Type	Other	U			m	M	<u>m</u>
inear wave	LA01	Pressure	111			826	914	-7.9	-8.
array	LA02	Pressure	121			816	914	-7.8	-8
J ,	LA03	Pressure	131			801	915	-7.7	-8
	LA04	Pressure	141			796	914	-7.9	-8
	LA05	Pressure	151			761	914	-7.8	-8
	LA06	Pressure	161			736	914	-7.7	-8
	LAO7	Pressure	171			930	914	-7.8	-8
	LA08	Pressure	181			956	914	-7.8	-8
	LA09	Pressure	191			990	914	-7.8	-8
	LA10	Pressure	101			816	919	-7.7	-8
Longshore	LS01	ENCH		219	319	992	155	-0.8	-1.
current array	LS02	EMCM		229	329	972	156	-0.8	-1.
	LS03	EMCM		239	339	945	155	-1.2	-1.
	LS04	EMCM		249	349	935	155	-0.8	-1
	LS05	EMCM		259	359	865	155	-0.8	-1
	LS06	EMCM		269	369	816	155	-0.8	-1
	LS07	EMCM		279	379	1106	155	-0.9	-1
	LS08	EMCM		289	389	1205	155	-0.7	-0
	LS09	ENCM		299	399	1256	155	-0.8	-1
	LS10	EMCM		209	309	1325	155	-0.7	-0
Cross-Shore	CS01A	EMCM		219	319	992	155	-0.8	-1
current array	CS10	EMCM		409	509	991	145	-0.9	-1
	CS11	EMCM		449	549	99 1	136	-0.9	-1
ross-Shore	CS01	Pressure	411			989	155	-0.8	-1
wave array	CS02	Pressure	421			991	16 9	-0.7	-1
	CS03	Pressure	431			99 1	178	-0.7	-1
	CS04	Pressure	441			99 1	187	-0.7	-1
	CS05	Pressure	451			990	200	-1.0	-1
	CS06	Pressure	461			99 1	217	-1.1	-2
	CS07	Pressure	471			991	247	-1.5	-3
Sallenger's	CS01	Sonar Altimeter	418			989	155	-1.0	-1
cross-shore	CS02	Sonar Altimeter	428			991	169	-1.0	-1
sonar array	CS03	Sonar Altimeter	438			991	178	-1.0	-1
	CS04	Sonar Altimeter	448			99 1	187	-1.0	-1
	CS05	Sonar Altimeter	458			990	200	-1.2	-1
	CS06	Sonar Altimeter	468			991	217	-1.4	-2
	CS07	Sonar Altimeter	478			991	247	-1.5	-3
RF basic	FRF	EMCM	456	679	689	18	619	-4.9	-6
instrumentation		Pressure	621			18	619	-5.1	-6
		PUV	21			18	619		-6
		Waverider Waverider	630 640				6 km	0.0	- 18
		Baylor Wave gage				516	579	-6.7	-7

(Continued)

*Definitions:

(sheet 1 of 2)

EMCM - Electromagnetic Current Meter

OBS - Optical Backscatter Sediment Sensor

U - Cross-shore component of velocity, positive offshore

V - Longshore component of velocity, positive to the right (southward) PUV - Combination Pressure/Current Meter gage for determining directional wave spectra

Table 1 (Concluded)

	_				Gage Location		Water
	Gage		Gage Number		Cross-Shore	Elevation	Depth
<u>xperiment</u>	<u>Name</u>	Gage Type	Other U V		<u>m</u>	<u>m</u>	<u> </u>
		Baylor Wave gage	625	516	579	-6.7	-7.7
		Baylor Wave gage		516	451	-4.7	-6.9
		Baylor Wave gage		516	238	-1.9	-2.7
				569	12	3.0	-2.1
		Atm. Pressure	616				
		Air Temperature	624	569	12	3.0	
		Wind Speed	632	516	21	19.0	
		Wind Direction	633	516	21	19.0	
		Tide	1	514	596	0.0	-7.7
Weishar's	W01	EMCM		993	665	-6.55	-6.7
inner tripod		Pressure		993	665	-6.10	-6.7
-6.7 m (-22 ft)		OBS	1	993	665	-6.65	-6.7
0 m (LL 11)		OBS	2	993	665	-6.64	-6.7
		085	3	993	665	-6.45	-6.7
		08S	4	993	665	-6.20	-6.7
		OBS	5	993	665	-5.65	-6.7
Weishar's	W02	EMCM		1047	1361	-11.45	-11.6
offshore tripod,		Pressure		1047	1361	-10.85	-11.6
-11.6 m (-38 ft)		085	1	1047	1361	-11,55	-11.6
(11.0 (30 10)		OBS	2	1047	1361	-11.54	-11.6
		085	3	1047	1361	-11.35	-11.6
			4				-11.6
		08S		1047	1361	-11.10	
		08S	5	1047	1361	-10.55	-11.6
Weishar's 635/12 (North)	W 04	Pressure		6 km no	rth		-6.7
Weishar's 635/12 (South)	W 05	Pressure		10 km so	outh		-6.7
Andrew's short-base wave array	ANO1	Pressure		693	915		-8.3
Thornton's sled	TO1	EMCM (4 ea.) Pressure (5 ea.) Wind Speed Wind Direction		Mobile p	latform withi	n the minigri	d
Clausnerts	C01	Ducted Impeller	1	1047	1361	-4.6	-11.6
current	C02	Ducted Impeller	ż	1047	1361	-7.6	-11.6
sensors	C03	Ducted Impeller	3	1047	1361	-9.8	-11.6
				=4.			
Long/Hubertz		Impelior Vane And		514	598	22.0	
Sensors		Vertical Impello		514	598	22.0	
		Hot Film Anemome	ter	514	598	18.7	
		Vertical Wind Spe	eed	514	598	18.7	
		3-Axis Impellor		514	598	18.7	
		Air Temperature		514	598	18.7	
			(Chromel Constantan)	514	598	18.7	
		•	•	-	598	18.7	
		Air Temperature	•	514			
		Humidity (Thin F	•	514	598	18.7	
		Humidity (Optical	•	514	598	18.7	
		Humidity (Relativ	ve Humidity)	514	598	18.7	
		Wind Speed (Pup /	Anemometer)	514	598	13.7	
		Sea Temperature	•	514	598	0.0	-7.7
Appell's current meter	APO1	Doppler		1047	1361		-11.6

10. Data collection on the VAX computer began in October and consisted of 4-hr-long records centered on every high and low tide (Table 2). Each

Table 2

VAX Data Collection Schedule* - October 1986

Date	Time, EST	<u>Date</u>	Time, EST	<u>Date</u>	Time, EST
6 Oct	1400	7 Oct	0117	8 Oct	0200
	1907		0735 H		0830 H
			1400		1500
			2000 н		2100 H
9 Oct	0300	10 Oct	0400	11 Oct	0540
	0930 H		1030 H		1200 H
	1600		1700		1820
	2200 H		2320 н		
12 Oct	0040 H	13 Oct	0130 н	14 Oct	0230 H
	0645		0745		0845
	1300 H		1400 H		1500 H
	1915		2015		2115
15 Oct	0330 н	16 Oct	0400 н	17 Oct	0450 H
	0945		1020		1100
	1600 H		1630 H		1710 H
	2200		2240		2320
18 Oct	0530 H	19 Oct	0000	20 Oct	0040
	1140		0610 H		0650 H
	1750 H		1220		1300
			1830 H		1900 H
21 Oct	0100	22 Oct	0200	23 Oct	0230
	0730 H		0810 H		0900 н
	1340 1950 H		1430 2030 H		1515
	I DCAI		2030 M		2115 H
24 Oct	0315	25 Oct		26 Oct	2300 H
	0930 H		0400		0500
	1600 2200 н		1030 H		1130 H
	2200 H		1700		1800
27 Oct	0000 H	28 Oct	0100 H	29 Oct	0130 H
	0600		0700		0800
	1230 H		1330 H		1400 H
	1900		1930		2030
30 Oct	0230 H	31 Oct	0330 н		
	0900		0930		
	1500 H		1550 H		
	2100				

^{*} VAX collection periods began at above times and continued for 4 hr.

H High tide.

collection was comprised of seven contiguous time series (representing the voltage output of the sensor), each with 4,096 data values sampled at 2 Hz. After the voltages were converted to engineering units using the sensor calibration factors, the time series were edited to eliminate erroneous jumps and spikes. The mean of the time series was computed and removed, and estimates of the spectral density were obtained. Spectral estimates were computed with

high statistical stability (60 deg of freedom) and a spectral resolution of 0.0117 Hz.

- 11. Data collection on the NOVA-4 differed from that on the VAX in that 35-min data records, sampled at 2 Hz, were collected every 6 hr in September and hourly in October. Time series data were transferred to the VAX computer and processed as described above.
- 12. In addition to SUPERDUCK instrumentation, the basic measurements program of the FRF continued to provide background data on the weather, waves, tides, and currents occurring during the experiment. This program consists of a combination of instrument measurements and observations. Details of the observations and instrumentation used in this program can be found in Miller et. al (1986) and in the FRF Preliminary Data Summary reports for September and October 1986 (FRF 1986).

Survey Data

- 13. During the experiment, numerous bathymetric data were collected using the FRF's Coastal Research Amphibious Buggy (CRAB)-Zeiss surveying system which consists of a Zeiss Elta-2 first-order, self-recording electronic theodolite distance meter in combination with the CRAB, a 10.7-m-high self-propelled mobile tripod on wheels. Besides being used for surveying, the CRAB was also used for precise positioning, deployment, and retrieval of many of the SUPERDUCK instruments (Figure 4).
- 14. All surveying was done in a 600-m by 600-m region designated as the "minigrid" area which was centered on the primary instrument line. During each complete survey of the minigrid, a total of 20 profile lines was surveyed. The location and length of these lines are illustrated in Figure 2 and in greater detail in Figure 5. Line spacing and length were designed to minimize survey time while maximizing the coverage closest to shore. Maximum line length was also affected by wave and weather conditions along with availability of the CRAB.
- 15. A total of 13 minigrid surveys was obtained during the experiment (Table 3). All 20 minigrid profile lines were surveyed except when high waves restricted the operation of the CRAB. Additional surveys of single lines near the primary instrument line were also obtained.

Figure 4. Deploying pipe-mounted current meter

Figure 5. FRF bathymetric map, 12 September 86, showing minigrid area and location and length of profile survey lines (circles indicate major instrument arrays used in October storm-wave experiment)

Table 3
SUPERDUCK Bathymetric Surveys

Survey No.	Type	Date	Profile Lines Surveyed
1	Minigrid	4 Sep	188, 190
2	Minigrid	12 Sep	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 260, 245, 250, 255, 260, 270, 275
3 4		18 Sep	210, 230, 188, 190
		20 Sep	225, 230, 235, 240, 245, 250, 255, 260
5	Minigrid	26 Sep	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 270, 275
6 7		30 Sep	230, 235
		2 Oct	233
8	Minigrid	6 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 270, 275, 188, 190
9		7 Oct	235
10		8 Oct	235
11	Minigrid	9 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 270, 275
40		10 0-1	235, 240, 245, 250, 255, 260, 270, 275
12 13	Minimid	10 Oct	165, 170, 180, 195, 197, 200, 210, 220, 230 165, 170, 180, 195, 200, 210, 220, 230, 235, 240,
13	Minigrid	11 Oct	250, 260, 270, 275
14	Minigrid	12 Oct	165, 170, 180, 195, 200, 210, 220, 230, 235, 240,
	_		250, 260, 270, 275
15	Minigrid	13 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
16	Minimid	4/ 0-4	235, 240, 245, 250, 255, 260, 270, 275
10	Minigrid	14 Oct	165, 170, 180, 195, 200, 205, 210, 220, 230, 235, 240, 245, 250, 255, 260, 270, 275
17	Minigrid	15 Oct	170. 180. 195. 200. 205. 210. 215. 220. 225. 230.
			235, 240, 245, 250, 255, 260, 270, 275
18	Minigrid	16 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 270, 275 170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
40		47 4.4	235. 240. 245. 250. 255. 260. 270. 275
19 20	Minimid	17 Oct	195, 210, 230, 188, 190
20	Minigrid	18 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 270, 275
21	Minigrid	20 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230,
- ·	,,,,,,,		235, 240, 245, 250, 255, 260, 270, 275
22		21 Oct	170, 230
23	Minigrid	22 Oct	170, 180, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260, 270, 275

^{*} See Figure 2 and Figure 3 for location and length of lines.

PART III: NONSTORM WAVE STUDIES

- 16. These studies were conducted during September and included the sediment trap, surf zone currents, photopole, surf zone waves, and Littoral Environment Observation (LEO) experiments.
- 17. Figure 6 illustrates the complex nearshore morphology within the minigrid on 4 September at the beginning of the experiment. Conditions during

Figure 6. Minigrid bathymetry, 4 September 1986

September were generally ideal with wave heights remaining below 1.5 m for the entire month. Figure 7 shows the general climatic and sea state conditions during September, and Table 4 lists the daily observations which supplemented the automated data collection.

Surf Zone Sediment Trap

18. Principal investigators were Dr. Nicholas C. Kraus and Ms. Julie Dean Rosati of CERC, and Dr. Lindsay D. Nakashima of the Louisiana Geological Survey.

Table 4

FRF Supplemental Observations September 1986

			pproach		-		Characteri	stics
		Angle at Pier End		Radar Wave		at Pier End		
		•	m True N	Angle deg	Width of	Temp.	Density	Secch i
)ay	Time	<u>Primary</u>	Secondary	<u>from True N</u>	Surf Zone.m	-c	_g/cc	Vis.,m
1	0740	80		85	84	22.3	1.0204	1.2
2	0604	80	60	80	76	22.5	1.0204	1.5
3	0704	95	45		84	23.0	1.0204	2.4
4	0616	80		80	87	23.1	1.0201	1.5
5	0605	90		80	67	23.2	1.0208	1.2
6	0608	90		80	79	23.8	1.0210	2.1
7	0610	80		80	78	23.8	1.0208	2.1
8	0718	90		85	7	24.0	1.0211	2.4
9	0605	60	80	80	91	22.7	1.0212	2.1
10	0705	90		80	64	22.7	1.0206	2.4
11	0700	80		75	55	22.7	1.0208	3.0
12	0620	135			61	22.1	1.0220	3.4
13	0700	20		40	119	22.1	1.0222	1.5
4	0805	20	105		70	21.8	1.0224	2.7
15	0627	100		90	79	22.2	1.0212	2.1
6	0654	100		80	58	22.3	1.0222	1.5
17	0630	50	60	50	137	21.3	1.0225	1.2
18	0734	50	75		88	20.7	1.0224	0.9
19	0600	105			52	21.2	1.0224	1.2
20	0600	90			18	21.5	1.0224	1.8
21	0610	75		inoperative	61	21.5	1.0218	2.1
22	0748	40	50	60	75	22.1	1.0222	0.9
23	0647	55			72	22.0	1.0218	3.0
24	0557	80			55	22.3	1.0222	1.5
25	0619	100			41	22.0	1.0221	1.2
26	0735	120			21	23.4	1.0220	1.8
27	0541	90			52	25.5	1.0216	1.2
28	0700	40		60	123	24.2	1.0208	0.9
29	0648	80		90	91	24.3	1.0203	1.2
3 0	0715	125			55	23.7	1.0214	3.4

Objective

19. The objective was to measure the longshore sediment transport rate and local waves and currents in the surf zone.

Experiment plan

20. Specially designed portable traps were deployed in the surf zone together with one or two electromagnetic current meters mounted on tripods (Figures 8 and 9). The traps measured the vertical distribution of the transport rate from the bed to the water surface. Because the traps must be attended by operators, these experiments were limited to surf zone environments with significant breaking wave heights less than about 1 m. The current meters were connected by cable to a newly-developed field data logger based around a superminicomputer. The data logger allowed almost real-time data verification at the site as well as basic analysis. The photopole group

collected wave data in support of the sediment trapping for all major data runs.

21. Three types of trap experiments were performed. The major effort was directed toward temporal sampling, in which traps were deployed one after another at a fixed location. Typically, four to eight trap interchanges were made. Temporal sampling allows ready comparison of transport rates, currents, and waves, all of which vary in time. The second type of experiment was termed longshore sampling, whereby several traps were placed across the surf zone at the same time to measure the crossshore distribution of the longshore sediment transport rate. The third type was a consistency check, made by placing two traps near each other to allow com-

Figure 8. Sediment trap

Figure 9. Sediment traps being deployed

parison of trapped quantities of sediment under presumably nearly equal longshore transport conditions. Typical sampling intervals for a single trap were 5 to 8 min. Sediment samples from selected runs on each day were retained for grain size analysis.

Location

22. The surf zone sediment trap experiment was conducted approximately 100 m south of the north FRF property line. During the study the principal investigators established a convenient local baseline (tied into the FRF coordinate system) and conducted their own profile surveys using a Zeiss survey system mounted on the pier or the main system housed in the FRF main building. The line of photopoles was used as a reference point in most of the surveys and trap experiments.

Data collection schedule and summary

23. Summaries of experiment times, types, and supplemental data are given in Tables 5-8.

Table 5
Summary of Surf Zone Sediment Trap Experiment for September

Run No.	Date	Time. EDT	Type of Experiment and Sampling Interval
11	11	1745-1755	Longshore, 6 traps
12	12	1037-1047	Rip current, 6 traps
20 21	15 15	1345-1408 1630-1654	Temporal, 3 trap pairs, 7/8/8 min Temporal, 1 trap, 3 repetitions, 8/8/8 min
23 24 26	16 16 16	0922-0932 0945-0955 1116-1126	Consistency, 1 trap pair Consistency, 1 trap pair Longshore, 10 traps
27 28	18 18	1225-1249 1453-1524	Temporal, 4 trap pairs, 6-min interval Temporal, 5 trap pairs, 6-min interval
30 32	19 19	1016-1026 1230-1254	Longshore, 6 traps Temporal, 4 trap pairs, 6-min interval
33 34	20 20	1045 - 1133 1500 - 1548	Temporal, 8 traps, 6-min interval Temporal, 8 traps, 6-min interval including 2 consistency (2 pairs)
35 37	21 21	1046-1056 1345-1509	Consistency, 1 trap pair Temporal, 14 tran repetitions, 6-min interval, including 2 consistency runs
38 39 40	22 22 22	0730-0810 1600-1625 1750-1756	Temporal, 8 traps, 5-min intervals Temporal, 5 trap pairs, 5-min intervals Longshore, 10 traps, 6-min intervals
42	23	1035-1100	Temporal, 5 traps

Table 6 Summary of Surf Zone Sediment Trap Support Data for September 1986*

Run No.	Date	Current Meters	Bathymetry and Gage Surveys	Location Rel. to Photopoles	<u>Tide</u>	Samples Retained
11	11	None	Line 1-12, PP	Between 4.5 & 13.5	Falling	All traps
12	12	None	Rip region, PP	Between 4.6 m & 46 m (15 & 150 ft) offshore	LOW	All traps
20 21	15 15	2	Lines 1-9, PP, 2 CN 2 CN	Between 6 & 7 Pole 4	Rising Rising	Traps 3, 4 None
23	16	1	Lines 1-6, PP, est. 1 CM	Pole 7	Falling	None
24 26	16 16	1 2	1 CH 2 CH	Pole 8 Between 6.5 & 17.5	Falling Falling	None All traps
27 28	18 18	2	Lines 1-4, PP, 2 CM 2 CM	Poles 5 & 8 Poles 7 & 9	falling Falling	None Trap 5
30	19	2	Lines 1-6, PP,	Between 1.5 & 7	High	None
32	19	2	est. 1 CM, 1 CM 2 CM, Partial malfunction	Poles 6 & 7	Falling	Тгар 7
33	20	2	Lines 1-3, PP, est. 2 CM	Pole 5.5	High	All traps
34	20	2	2 CH	Between 8 & 9	Low	Traps 9 & 10
35	21	2	Lines 1-3, PP, est. 2 CM	Poles 5.5 & 6.5	High	None
37	21	2	2 CH	Pole 8.5	Falling	Traps 15 & 16
38	22	2	Lines 1-9, One line S of Line	Pole 5.5	Rising	None
39 40	22 22	2	1, PP, est. 2 CM 2 CM 2 CM	Poles 7 & 9 Between 5 & 9.5	Rising Low	Traps 1 & 2 None
42	23	2	Lines 1-8, PP, 2 CM	Between 4 & 5	Rising	Trap 2

^{*}Notes: Survey lines 1-12 on a local grid system from a baseline set parallel to trend of shoreline in experiment area; spacing of 15 m (50 ft) between lines.

PP - survey on photopole line. CM - current meter.

Table 7
Summary of Photopole Data in Support of Surf Zone
Sediment Trap Experiments

Run No.	Date	Photopole Data
11	11	Start 1744; 3901 frames, Poles 5-22
12	12	Start 1037; 3892 frames, Poles 5-22
20 21	15 15	Start 1345; 2 x 3800 frames, Poles 6-17 Start 1631; 2 x 3800 frames, Poles 3-11
23 24	16 16	None Start 0950; 3899 frames, Poles 6-22, missing 1st 5 min; camera controller problem at end
26	16	Start 1114; 3901 frames, Poles 6-22
27 28	18 18	Start 1225; 2 x 3800 frames, Poles 6-13, Camera 5 problem at start Start 1453; 2 x 3800 frames, Poles 6-13
30 32	19 19	Start 1015; 3900 frames, Poles 2-22, Camera 4 failure Start 1230; 2 x 3800 frames, Poles 6-13
33 34	20 20	Start 1046; 4 x 3800 frames, Poles 3-8, 1-min gap between sets 2 & 3 Start 1500; 4 x 3800 frames, Poles 7-10, short gap between sets 2 & 3
35 37	21 21	None Start 1345; 8 x 3800 frames, Poles 8-9, some problems with Camera 5
38 39 40	22 22 22	Start 0730; 4 x 3800 frames, Poles 5-6, many problems Start 1600; 2 x 3800 frames, Poles 7-9 Start 1748; 3900 frames, Poles 5-22
42	23	Start 1035; 2 x 3800 frames, Poles 4-5, many problems with cameras

Table 8

Comments on Quality of Surf Zone Sediment Trap Data for September

Run No.	Date	Comments
11	11	Malfunction in current meter system; wave conditions rough; trap data of acceptable quality
12	12	Malfunction in current meter system; trap data of good quality
20	15	North trap in deeper water, south trap in shallower water at same distance from shoreline; moderate longshore current; overall high quality
21	15	Wave conditions rough; strong current; south location as in Run 20; overall good quality
23 24	16 16	Traps separated by 3 m; moderate current; overall high quality Traps separated by 1 m; moderate current; overall high quality
26	16	Moderate current; high quality
27	18	Moderate/strong longshore current; high quality
28	18	Strong longshore current; high quality
30	19	High swell; several traps became dislodged; 2 traps unsuccessful; moderate current; significant transport of gravel in swash zone; limited quality
32	19	Strong current; first 14 min of current meter record (2-1/4 trap intervals of 4 intervals total) lost; trap data of high quality
33 34	20 20	Deeper water, high tide, weak/moderate longshore current; good quality Low tide; performed in very strong feeder current of a rip; overall high quality
35	21	Moderate current; good quality
37	21	Performed in moderately strong feeder of a rip; current weaker at offshore cm; overall high quality
38	22	Strong current; waves arriving at large angle; water unusually turbulent due to mixed swell and chop; trap 6 fell over several times; reduced number of streamers in Traps 7 & 8; experiment discontinued due to high breakers on beach face and strong current; overall good quality
39	22	Moderate/strong current; traps located 5-10 m downdrift of current meters; good quality
40	22	Outermost three traps in deeper water not completely set in bottom for first 2 min; good placement of swash zone traps; moderate current; fair quality
42	23	Very weak longshore current to north, with some reversals in direction; high (1- to 1.5-m) waves breaking at trap positions; near the shoreface; poor overall quality

Photopole

24. Principal investigators were Mr. Bruce A. Ebersole and Dr. Steven A. Hughes of CERC and Dr. Shintaro Hotta of Tokyo Metropolitan University, Japan.

Objectives

25. The objectives were to (a) collect high quality water level and wave height data in and just outside the surf zone during typical and severe wave events, and (b) collect wave data in support of the sediment trap experiment.

Experiment plan

26. A shore-perpendicular transect of photopoles (2-in. steel pipes with horizontal calibration rods) was jetted into the seabed using a portable

land-based air compressor and handheld lance (Figure 10). The CRAB was used to install photopoles in water depths greater than 1.5 m. Seabed elevations in the vicinity of the photopole transect and elevations of the lower calibration rods were surveyed daily to establish vertical control for the measurements.

Figure 10. Photopoles

- 27. A battery-powered system of 6 synchronized Bolex 16 mm movie cameras was used to film water surface fluctuations at each photopole (Figure 11). The camera system was mounted on a 6.1-m-high scaffold erected on the beach berm approximately 122 m south of the photopole line. Cameras were fitted with appropriate lenses such that each camera typically filmed 2 or 3 poles. A filming or sampling rate of 5 Hz was used for all filming runs. Location
- 28. The photopole experiment was conducted 425 m north of the FRF pier in the immediate vicinity of the sediment trap experiment. A second line of photopoles was erected 140 m north of the pier in anticipation of high wave conditions. Six photopoles, mounted on sleds, were also planned for deployment along this second photopole transect to measure waves in deeper water.

Figure 11. Photopole camera system

Unfortunately, the weather did not produce storm wave conditions during the study period.

Data analysis

- 29. Data collected during the first phase of the experiment in conjunction with the sediment trap experiment are summarized in Table 9. Information is provided as follows:
 - a. Run identification number.
 - b. Day and time run initiated.
 - c. Number of poles photographed (22 is the seawardmost pole).
 - \underline{d} . Tide elevation at the FRF pier.
 - e. Significant wave height and peak spectral period, as measured by the FRF's Gage 621.
 - $\underline{\mathbf{f}}$. Wave direction associated with the peak spectral period (from FRF's Gage 21).
 - g. Poles whose calibration rods were surveyed.
 - h. Poles where seabed elevations were surveyed.

Table 9
Summary of Photopole Experiment Runs

Run No.	Date	Time, EDT	Pole No.	Tide* m, NGVD	H _{mo, m*}	Tp. sec*	Dir*	Rod Elev.	Sea Elev.
1	11 Sep	1744	5-22	0.05	0.57	10.0	74	1-22	1-22
2	12 Sep	1037	5-22	-0.25	0.52	10.0	88	1-22	1-22
3	12 Sep	1300	9,12 4-22	0.35	0.55	9.0	85	1-22	1-22
4	13 Sep	1425	4-22	0.66	0.86	5.0	38		1-22
5	13 Sep	1535	4-22	0.79	0.86	5.0	38		1-22
6	14 Sep	1558	3-14	0.68	0.92	9.0	89		1-22
7	14 Sep	1713	3-22	0.80	0.95	10.0	88		1-22
8	15 Sep	1345	6-17	-0.23	0.88	10.0	83	1-8	1-13
9	15 Sep	1445	5-22	0.03	0.90	10.0	85	1-8	1-12,14
10	15 Sep	1552	5-22	0.37	0.85	11.0	78	1-8	1-12,14
11	15 Sep	1631	3-11	0.49	0.86	11.0	82	1-8	1-12,14
12	16 Sep	0950	6-22	-0.14	0.60	11.0	81	1-22	1-22
13	16 Sep	1114	6-22	-0.46	0.58	11.0	82	1-22	1-22
14	18 Sep	1225	6-13	-0.15	1.02	8.0	80	1-13	1-13
15	18 Sep	1453	6-13	-0.45	1.02	8.0	79	1-13	1-13
15 16	19 Sep	1015	3-22	0.50	0.80	9.0	77		1-22
17	19 Sep	1100	3-22	0.35	0.80	9.0	77		1-22
18	19 Sep	1230	6-13	-0.07	0.80	9.0	77		1-22
19	20 Sep	1046	3-8	0.70	0.81	10.0	73		1-22
20	20 Sep	1500	7-10	-0.40	0.81	11.0	69		1-22
21	21 Sep	1345	1-4,8-9, 20-22	0.11	0.78	12.0	75		1-5,7-8
22	22 Sep	0730	5-6	0.28	0.73	4.0	29		1-7
22 23	22 Sep	1600	7-9	-0.04	0.78	6.0	38		1-7
24	22 Sep	1748	Š-22	-0.07	0.77	6.0	55		1-7
24 25	23 Sep	1035	4-5	0.62	0.63	9.0	65		1-7 1-5

Estimated from tide data from NOS tide gage at end of pier; wave data from PUV meter (Gage 21); wave directions relative to True North (shore normal = 70 deg).

Surf Zone Currents

30. Principal investigators were Dr. Rao S. Vemulakonda and Dr. Nicholas C. Kraus of CERC.

<u>Objective</u>

31. The objective was to obtain synoptic current measurements in the surf zone for comparison to numerical model predictions. Some of these measurements were to be used to support the sediment trap experiments.

Experiment plan

32. Equipment malfunctions plagued this project, and it was later discovered that problems with the Marsh-McBirney electromagnetic current meters prohibited the experiment's completion.

Surf Zone Rip Currents

33. Principal investigator was Dr. Robert A. Dalrymple of the University of Delaware.

Objective

- 34. The objective was to make detailed measurements of currents within the surf zone, particularly rip currents generated during nonstorm conditions. Experiment plan
- 35. A portable array of two electromagnetic current meters and pressure wave gages was placed at selected points within the surf zone. This experiment was carried out in conjunction with the sediment trap experiment.

Surf Zone Waves

36. Principal investigator was Dr. James T. Kirby of the University of Florida.

<u>Objective</u>

37. The objective was to compare the photopole wave data to data collected simultaneously from two resistance wave staff gages and two pressure sensors that were attached to the photopoles.

Experiment plan

38. Two resistance wave staff gages and two pressure sensors were mounted on photopoles, and data were collected on the MICROVAX computer located in the north trailer in conjunction with the data collection periods of the photopoles and other sediment transport experiments.

LEO Measurements

39. Principal investigators were Ms. Joan Pope, and Messrs. Clifford L. Truitt, Stephen E. Wagner, and W. Jeff Lillycrop of CERC.

Objective

40. The objective was to improve Littoral Environment Observation (LEO) measurements by testing existing and proposed technology relative to accurate field observations of currents, waves, and sediment movement.

Experiment plan

41. Numerous methods of testing the LEO techniques were tried. Coincidental data collected by the FRF were used to verify measurements made by the LEO observers such as longshore drift, wave height and period, and wind speed and direction. Passersby and volunteers provided a test group to study the bias of the observer. New methods of measuring currents were compared with

the standard dye packet method. A copy of the standard LEO observer sheet is included as a reference for the type of information collected (Figure 12).

LITTORAL ENVIRONMENT OBSERVATIONS RECORD ALL DATA CAREFULLY AND LEGIBLY					
BITE NUMBERS YEAR BONTH	Record time 19 19 19 19 19 19 19 19 19 19 19 19 19				
WAVE PERIOD Record the time in seconds for ploven (11) wave <u>creats</u> to pass o stationary point. If calm record 0.	BREAKER HEIGHT Record the best estimate of the everage wave height to the nearest tenth of a foot				
Record to the nearest degree the direction the waves are coming from using the profractor on the reverse side. O if colm.	WAVE TYPE 0 - Colm 3 - Surging 1 - Spilling 4 - Spill / Plunge 2 - Plunging				
WIND SPEED Recard wind speed to the nearest mph. If calm record 0	WIND DIRECTION - Direction the wind is coming from 1-N 3-E 5-S 7-W 0-Colm 2-NE 4-SE 6-SW 8-NW				
FORESHORE SLOPE Record foreshore slope to the nearest degree	WIDTH OF SURF ZONE Estimate in feet the distance from shore to breakers, it calm record 0.				
LONGSHORE CURRENT	Estimate distance in feet from shareline to point of dye injection				
CURRENT SPEED Measure in feet the distance the dye potch is observed to move during a one (1) minute period, If no longshore movement record 0	O No longshore movement + 1 Dye moves toward left - 1 Dye moves toward left				
RIP CURRENTS If rip currents are present, indicate specing {feet}. If specing is irregular estimate everage specing. If no rips record.					
BEACH CUSPS If cusps are present, indicate spacing (feet.) If spacing is irregular estimate everage spacing. If no cusps record 0					
PLEASE PRINT:					
SITE NAME OBSERVER					
Please Check The Form For Completeness REMARKS:					
cgRC 113-72 Make any additional remarks, computations or sketches on the reverse side of this form.					

Figure 12. Littoral Environment Observations (LEO) form

PART IV: STORM WAVE STUDIES

42. These 13 studies were conducted during October when the wave energy was, as expected, significantly higher than in September. The nearshore morphology on 6 October is shown in Figure 13. The nearshore bar, though still

Figure 13. Minigrid bathymetry, 6 October 1986

complex, was milder than it was on 4 September (Figure 6). During October two large northeasters were monitored. The first and largest storm began on 10 October soon after the instrument installation was completed. Figure 14 shows the general climatic and sea state conditions for October. Table 10 lists daily observations that supplement the automated data collection.

43. The storm wave phase of SUPERDUCK was the most demanding in terms of instruments deployed, surveys conducted, and time series data collected. Locations of the experiments are shown in Figure 2.

Infragravity Wave Climatology

44. Principal investigators were Messrs. Peter A. Howd and William A. Birkemeier of CERC's FRF and Dr. Joan Oltman-Shay of Oregon State University.

Table 10

FRF Supplemental Observations October 1986

		Wave Approach Angle at Pier End		Radar Wave		Water Characteristics at Pier End		
_			m True N	Angle deg	Width of	Temp.	Density	Secchi
Day		Primary	Secondary	<u>from True N</u>	Surf Zone, m	<u>•c</u>	9/cc	Vis.,
1	0700	120			43	22.0	1.0224	1.2
2	0800	100			24	21.5	1.0226	1.5
3	0845		/isible		20	23.2	1.0220	1.8
4	0835		risible		6	21.3	1.0222	2.7
5	0730		isible/		6	21.0	1.0230	4.3
6	0805	15			23	20.9	1.0229	2.4
7	0610	20			61	20.6	1.0230	0.9
8	0700	90			76	21.4	1.0233	1.8
9	0635	95			64	21.7	1.0220	7.0
10	0656	45		50	171	21.8	1.0222	0.9
11	0740	60			498	20.1	1.0213	0.0
12	0841	90	<i>7</i> 5		317	20.2	1.0204	0.6
13	0703	90	80		223	20.5	1.0204	0.3
14	0650	90	<i>7</i> 5		91	21.0	1.0220	0.3
15	0637	30	40		119	20.5	1.0225	0.3
16	0622	50			104	19.2	1.0227	0.6
17	0615	20			79	18.1	1.0222	0.6
18	0905	40	65	65	82	17.8	1.0212	0.6
19	0845	60	30		250	16.8	1.0212	0.6
20	0720	40	70		107	17.3	1.0220	0.3
21	0637	80	55		99	17.0	1.0218	0.3
22	0633	80		80	81	17.3	1.0224	0.6
23	0840	105			72	18.2	1.0228	0.9
24	0730	90			61	18.0	1.0232	0.9
25	0805	45	60	60	177	18.2	1.0230	0.6
26	0906	90	80		88	18.2	1.0230	0.6
27	0740	100		90	79	18.3	1.0230	0.9
28	0731	80		80	69	18.0	1.0232	0.6
29	0708	90			41	17.8	1.0230	2.4
50	0712	100			43	17.6	1.0227	1.2
51	0800	50			291	17.3	1.0227	0.6

Objective

45. The objective was to study the infragravity wave climatology, addressing (a) the relative importance of trapped (edge wave) and leaky modes, (b) their generation via the nonlinear interactions of the incident wind wave field and (c) infragravity wave relationship to nearshore bathymetry.

Experiment plan

46. A longshore array of 10 Marsh McBirney electromagnetic current meters located in the surf zone was operational from 6-23 October. The array was designed to measure the longshore wave number spectrum of the infragravity wave energy.

Data analysis

47. Thorough analysis of the infragravity wave content was crucial if the objectives were to be met. Both the surf zone current meter array and the

video runup array (discussed under Infragravity Wave Dynamics) were deployed at the SUPERDUCK field site to aid in this effort. Analysis methods applied to these array data will depend on their infragravity wave content. The wave field may be purely progressive, longshore-standing, or mixed. All waves may be equally present, or the field may be dominated by a few modes. Because the surf zone and video runup arrays view the infragravity wave field from different perspectives, the success of an analysis method may differ between arrays for the same infragravity field.

- 48. The investigators suspect that the content of the infragravity energy will differ from simple, plane beaches because of the many hypotheses (linking infragravity waves to complex beach morphology) that suggest preferential amplification of discrete infragravity frequencies and modes on a barred beach or the generation of bars in response to a narrow infragravity energy peak. Any observed structure (a peak) in the infragravity band could be the result of actual preferential forcing offshore by the incident wind waves through resonant tuning by the bar under broad-banded wind wave forcing.
- 49. The offshore wind wave directional array (discussed under Linear Array Wave Gage in Part V) will aid in discerning the broad or narrow band nature of the infragravity wave forcing. In addition, the sequence of high and low tide data runs presented an opportunity to look specifically at the response of the infragravity waves to the various cross-shore locations of the bar.
- 50. Preliminary analysis of the current meter data in the longshore array indicates tidal dependence on the magnitude of both the cross-shore and longshore mean currents in the surf zone. In addition, large oscillations in both of the current components with periods of 5 to 10 min were frequently observed. The longshore array will permit examination of both the temporal and spatial characteristics of these currents.
- 51. The longshore current meter data set was greatly enhanced by the data obtained by other surf zone experimenters. The status of the longshore gages throughout their collection life is given in Appendix A.

Nearshore Profile Response

52. Principal investigators were Dr. Asbury H. Sallenger and Mr. Bruce E. Jaffe of the US Geological Survey (USGS).

Objectives

53. The objectives were to (a) develop an all-weather capability to nearshore profile response and (b) relate observed profile changes during storms to waves and currents.

Experiment plan

54. Seven pressure and seven sonar gages (Table 1) were installed along the cross-shore array shown in Figure 2. The USGS supplied a battery of microcomputers to collect data and provide near real-time analysis of the changes in the cross-shore profile. The FRF VAX-750 and NOVA-4 were used as backup to collect the data on varying time schedules.

Data collection schedule

55. The USGS data acquisition system began data collection on 2 October 86 (1900 EST) and continued until 17 October 86 (1500 EST). The only interruptions were as follows:

Time, EST	Date	Reason
0600 - 1800	3 Oct 86	Instrument calibration
0600 - 0700	4 Oct 86	Program error
1400 - 1900	4 Oct 86	Adjustments
0800 - 1800	5 OCT 86	Testing
1300 - 1400	6 Oct 86	Program error
2200 - 0600	10 Oct 86	Computer crash
0800 - 0900	11 Oct 86	Program error
0000 - 0700	13 Oct 86	Computer crash

56. The data were collected at a sampling rate of 2 Hz for a period of 2,048 sec. Sonar and pressure gages (CS05, CS06, CS07) were disconnected intermittently between 8 October 86 (1100 EST) and 9 October 86 (1700 EST). Pressure gage CS07 had a diaphragm problem and provided questionable data.

Infragravity Wave Dynamics

57. Principal investigator was Dr. Robert A. Holman of Oregon State University.

<u>Objectives</u>

58. The objectives were to study (a) infragravity wave climatology, (b) relative importance of trapped waves (edge waves) versus leaky modes, and (c) interaction of infragravity waves with nearshore morphology. In addition, data were taken which will allow testing of a particular model for the forcing

of infragravity waves. Remote sensing techniques were used to collect all the appropriate data.

Experiment plan

59. An extensive set of video data under a variety of wave conditions was collected. Four-hour runup records centered at high and low tides were recorded during daylight hours from 1 October to 16 October, looking both to the north and south of the pier. Short time exposure records were recorded (approximately hourly) over the period of 28 September to 16 October. These were predominantly northward oriented with some southward facing data collected sporadically. Southward-facing time exposures will also be available from the longer runup runs. A listing of all data runs is included in Tables 11 and 12 (some data were lost, particularly on 10 October).

Data analysis

- 60. Analysis will follow three lines. First, time exposures will be made and rectified views computed. These will be compared to the CRAB data for verification. The morphology evolution will be charted with one emphasis being bar response and another being transverse bars in the trough.
- 61. Second, the runup data from which statistics will be taken will be digitized as a function of longshore location, but the primary emphasis will be calculating frequency-wave number spectra for studying infragravity band. This analysis is parallel to the longshore current meter array.
- 62. Third, the data will be analyzed to monitor surf zone width fluctuations as a rough parameterization of infragravity band forcing. Again, frequency-wave number analysis will be used.

Wind and Wind Wave Forcing of Mean Nearshore Currents

63. Principal investigators were Dr. Edward B. Thornton and CDR Dennis J. Whitford, United States Navy, Naval Postgraduate School.

Objectives

64. Objectives were to (a) examine the spatial variability of the bed shear stress coefficient at a barred beach and (b) calculate the relative importance of wind and wave forcing of nearshore currents.

Experiment plan

65. Instrumentation mounted on a sled was designed to measure the local momentum balance and the vertical distribution of mean currents in the near-

Table 11 Morphology Time Exposures

Date	11me 1336	Duration	View	Tide Mid-High	Tape		Date	Time	Duration	View	Tide	Tape
28 Sep 86	1336	0:15	N	Mid-High	CD001	10	Oct 86	1400	0:16	S	High	Tape GT061
	1345	0:15	Ņ	Mid	GD001			1500	0:16	S	High-Mid	GT061
29 Sep 86	1400 1318	0:15 0:15	N N	Mid Mid	GD 001 GD 001			1600 1700	0:16	S	Mid	GT061
Er sep ou	1335	0:15	Š	Mid	GD001	11	Oct 86	0620	0:16 0:36	S	Low	GT061
30 Sep 86	1045	0:15	Ň	Mid	GD 001		OCT 00	0700	0:20	N N	LOW	GH072 GH072
	1100	0:15	Ŝ	Mid	GD001			0900	0:20	Ñ	Mid	GH072
	1725	0:15	N	Mid	GD002			1000	0:20	Ñ	Mid	GH072
4 5 4 64	1730	0:15	S	Mid	GD002			1100	0:20	N	Mid	GH072
1 Oct 86	1400	0:15	Ņ	Mid	GD002			1200	0:20	N	Mid-High	GH072
2 Oct 86	1420 0908	0:15 0:15	S	Mid	GD002			1300	0:20	N	High	GH083
2 001 00	0928	0:15	S	Mid Mid	GD 002 GD 002			1400 1500	0:20 0:20	N	High	GH083
	1213	0:15	Ň	Low	GD002			1600	0:20	N N	High High-Mid	GH083 GH083
	1225	0:15	S	Low	GD002			1700	0:20	Ñ	Mid	GH083
	1527	0:15	N	High	GT008			0900	0:20	Š	Mid	GT073
7 004 94	1548	0:15	S	Mid	GT008			1710	0:20	S	Mid	GT073
3 Oct 86 4 Oct 86	1310 1340	0:15 0:15	N	Low	GT008	12	Oct 86	0600	0:20	N	Mid	GH083
5 Oct 86	0100	0:15	N N	LOW LOW	80012 GT008			0700 0800	0:20	N	Low	GH083
2 333 33	1745	0:15	Ñ	Mid	GT008			0900	0:20 0:20	N N	Low-Mid Mid	GH083 GH083
6 Oct 86	0615	0:15	Ñ	Mid-High	GD015			1000	0:20	Ñ	Low	GH096
	1338	0:15	N	Low	GD015			1100	0:20	Ñ	Mid	GH096
	1430	0:16	N	LOW	GD 015			1200	0:20	N	Mid	GH096
	1530	0:16	Ņ	Low-Mid				1300	0:20	N	High	GH096
	1630 1730	0:16 0:16	N	Mid High	GD015 GD015			1400	0:20	N	High	GH096
7 Oct 86	0730	0:16	Ñ	Mid-High				1500 1600	0:20 0:20	N	Mid	GH096
	0830	0:16	Ñ	High	GH031			1700	0:20	N N	Mid Low	GH096 GH096
	0930	0:16	Ñ	High	GH031	13 (Oct 86	1400	0:20	Ñ	LOW	GH096
	1030	0:16	N	High	GH031			0600	0:20	Ñ	Mid	GH096
	1130	0:16	N	High-Mid				0706	0:20	N	Mid	GH111
	1230 1330	0:16 0:16	N N	Mid	GH031			0800	0:20	N	LON	GH111
	1430	0:16	Ñ	Mid Mid-Low	GH031 GH031			0900 1000	0:20	N	Low	GH111
	1530	0:16	Ñ	Low	GH031			1100	0:20 0:20	N N	Low Low-Mid	GH111 GH111
	1630	0:16	N	LOW	GH031			1200	0:20	Ñ	Mid	GH111
8 Oct 86	0900	0:16	N	High	erased			1300	0:20	Ñ	Mid	GH111
	0930	0:22	N	High	erased			1400	0:20	N	Mid-High	GH111
	1030 1130	0:16	N	High	erased			1520	0:20	N	High	GH111
	1230	0:16 0:16	N N	High-Mid Mid	GHO41			1600 1700	0:20	N	High	GH121
	1330	0:16	Ñ	Low	GH041			0900	0:20 0:20	N N	High	GH121
	1330	0:16	Ñ	Mid-Low	GH041	14 (Oct 86	0607	0:20	Ñ	High High	UMATIC GH121
	1451	0:16	N	LOW	GH041			0700	0:20	Ñ	High-Mid	GH121
	1640	0:16	N	Mid	GH041			0800	0:20	N	Mid	GH121
	1730 1748	0:16 0:32	N	Low	GH041			0900	0:20	N	Low	GH121
9 Oct 86	0600	0:16	Ñ	Low Mid	GH041 GH041			1000 1100	0:20	N	Low	GH121
	0700	0:16	Ñ	Mid	GH041			1200	0:20 0:20	N N	LOW LOW	GH121 GH121
	0800	0:16	N	Mid-High				1300	0:20	Ñ	Mid	GH129
	0900	0:16	N	High	GH041			1400	0:20	Ñ	High	GH129
	1000	0:16	N	High	GH041			1500	0:20	N	High	GH129
	1100 1200	0:16 0:16	N N	High	GH054			1600	0:20	N	High	GH129
	1300	0:16	N	High High-Mid	GH054 GH054	15 /	Oct 86	1700 1000	0:20	N	Mid	GH129
	1400	0:16	Ñ	Mid	GH054	15 (00	1120	0:20 0:20	N N	Low Low	GH129 GH129
	1500	0:16	N	Mid	GH054			1120 1205	0:20	Ñ	Low	GH129
	1600	0:16	N	Mid-Low	GH054			1300	0:20	Ñ	Mid	GH129
10 Oct 86	1700	0:16	N	Low	GH054			1415	0:20	N	Mid	GH138
10 001 00	0600 0700	0:16 0:16	N N	Low-Mid				1507	0:20	Ņ	Mid	GH138
	0800	0:16	N	Low-Mid Mid	GH062 GH062			1600 1730	0:20 0:20	N	Mid	GH138
	0900	0:16	Ñ	Mid-High		16.0	ct 86	0600	0:20	N N		GH138 GH138
	1000	0:16	N		GH062			0700	0:20	Ñ	High	GH138
	1100	0:16	N		GH062			0800	0:20		High-Mid	
	1200	0:16 0:16	N		GH062			0900	0:20	N	Ĥid	GH138
	1300 1400	0:16 0:16	N N	High-Mid				1000	0:20	N	Mid	GH138
	1500	0:16	N		GH062 GH062			1100 1200	0:20	N	LOW	GH145
	1600	0:16	Ñ		GH062			1300	0:20 0:20	N N	LOW	GH145
	1652	0:31	N		GH072			1400	0:20	N		GH145 GH145
	0930	0:15	S	Mid	GT061			1500	0:20	Ñ		GH145
	1000	0:16	S	Low-Mid				1600	0:20	N		GH145
	1100 1200	0:16 0:16	S		GT061			1700	0:20	N	High	GH145
	1300	0:16 0:16	S		GT061 GT061	17 0	ct 86	0635	0:20	N		GH145
	.550	V. 10	•	n i y ii	G1001			0700	0:20	N	High	GH145

Table 12 SUPERDUCK Runup Video Runs

Date	lime	Duration	Tide	Tape	Date	Time	Duration	Tide	Tape
1 Oct 86	1008	1:50	tow	GD003	11 Oct 86	1004	1:55	mjų	GT079
	1008 1008	1:50	LOW	GM004		1005	1:56	m;d	GD077 GN078
2 0 0 04	1008	1:50	low	GT005 GD006		1005 1204	1:56 1:56	mid high	GT082
2 Oct 86	1113 1113	1:50 1:10	low	GH007		1205	3:56	high	GD 080
	1529	1:10 1:10	mid	© 0009		1205 1205	1:56	high	GH081
	1529 1529	1:10	mid	GN010		1404 1405	1:56 1:56	high bioth	GT085 GM084
3 Oct 86	0755 0755	1:10 3:00	high high	GD011 GH013		1410	1:50	high high	GD086
	0755	4:00	High	GT012		1604	1:55	high	GT088
5 Oct 86	1025	₹-00	high	GH014		1605	1:56	high	GM087
6 Oct 86	0805 0805	1:55 1:55 1:55	high	GD016	12 Oct 86	0736 0736	1:45 1:44	low	GD090 GM091
	2080	1:55	high high	GMG17 GT018		0736	1:44	low	GT092
	1005	1:55	mid	CD019		0736 0929	1:55	mid	GH094
	1005	1:55	mid	GH020		0929 0930	35:0	mid	GT095
	1005	1:55	mid	GT021 GD022		0930	1:56 1:56	mid mid	GD 089 GD 093
	1303	1:55	LOW	GM023		1174	1.56	mid	GM098
	1303	1:55	low	GT024		1135	1:56	mid	GD 09%
	1505	1:55 1:55 1:55 1:55 1:55 1:55 1:55	low	GD 025		1135 1135 1335	1:56 1:57 1:55	mid	GD097 GN100
	0805 1005 1005 1005 1303 1303 1505 1505	1:55 1:55 1:55 1:55	low	GM026 GT027		1337	1:55	high high	GT099
7 Oct 86	0730	1:55	low high	GD028		1535	1:56	mid	GM102
1 001 00	0730	1:55	high	GM029		1335 1535 1535	1:56	mid	GT 103
	0730 0930	1:55 1:55 1:55	high	GT030	47 0-4 94	1530	1:55	mid	GD 101 GD 104
	0930	1:55	high high	GD032 GM033	13 Oct 86	0600 0745	1:55	mid low	GD 105
	0930	1:55	high	GT034		0745	1:55	low	GH106
	0930 0930 1300 1300 1300	1:55	mid	CD 035		0745	1:55	LOW	GT107
	1300	1:55 1:55	mid	GM036		0948 0948	1:50	ίο μ Ιαν	GD 108 GM 109
	1500	1:55	mid low	GT037 GD038		0948	1:50 1:50	low	GT 110
	1500 1500	1:55 1:55	low	GH039		1145	1:56	low	GD 112
	1500	1:55	LOW	GT040		1145 1145	1:56	low	GM113
8 Oct 86	0904	1:55	high			1145	1:56	low mid	GT 114 GD 115
	0904 0904	1:55	high high			1350 1350	1:55 1:55	mid	GM116
	1104	1:5 1:55 1:55	high			1350	1:55	mid	GT117
	1104	1:55 1:55	hígh	GH046		1553	1:55	high	GD118
0.0=+.04	1104 0929	1:55 1:55	high high			1553 1553	1:55 1:55 0:25	high high	GM119 GT120
9 Oct 86	กจรก	1:55	high	GD048	14 Oct 86	0800	0:25	mid	GW122
	0930	1:55	high	GM049		0922	1:55	LON	GD 123
	0930 1129 1130	1:56	high			0922 0922	1:55	low	GM124 GT125
	1130	1:56 1:56	high high			1124	1:55 1:55 1:55 0:51	low	GD 126
10 Oct 86	1130 0734	1:56 1:55 1:55 1:55	low	GD055		1124	0:51	low	GH127
	0734	1:55	low	GM056		1124	0:52	low	GT 128
	0734	1:55	low	GT057 GD058	15 Oct 86	1528 1000	1:55 0:10	high low	GM130 GD131
	0934	1:56 1:56	mid mid	GM059	13 000 00	1025	1:55	low	GD 132
	0934 0934 0934	1:56 1:57	mid	GT060		1025	1:55 1:55 1:55	low	GM133
	1147	1:55	high	GD063		1025	1:55	LOM	GT134
	1147		high			1225 1225	1:55 1:55	low	GD 135 GM 136
	1147 1347	1:55 1:56	high high			1225	1:55	low	GT 137
	1347	1:56	high	GM067		1426	1:55	mid	GD 139
	1347	1:55	high			1426 1426	1:55 1:55 1:55	mid mid	GM140 GT141
	1546 1547		mid mid	GT071 GD069	16 Oct 86	1020	1:55	(OM	GD 142
	1547	1:55	mid	GH070	.0 301 00	1020	1:55	low	GH143
11 Oct 86	0805	1:56	low	GD074		1020	1:55	low	GT 144
	0805		low	GM075 GT076		1221 1221	1:55 1:55	low	GD 146 GM 147
	0805	1:55	t OH	U10/6		, , , ,	1.23		- Section 1

shore (Figures 15 and 16). The sled's orientation was accurate to within less than 0.5 deg, as determined by Zeiss shots on two spatially separated prisms on a mast spreader. Also, the sled's mobility was used to study rip currents.

Figure 15. Base of instrumented sled

Figure 16. CRAB towing sled to experiment site

66. By numerically orienting the sled normal to the local bathymetric contours, the complete longshore momentum equation is

$$\frac{\partial M_{y}}{\partial t} + \frac{\partial \widetilde{S}_{yx}}{\partial x} = -\tau_{by} + \tau_{\eta y} - \frac{\partial S''_{yx}}{\partial x}$$
Term: 1 2 3 4 5

where a right-handed Cartesian system is adopted with x increasing offshore, and

- term 1 = temporal change of the time-averaged depth-integrated mean momentum per unit area in the longshore direction due to both steady $(\overline{M_y})$ and unsteady flow (M_y')
- term 2 = on-offshore gradient of the wave-induced longshore momentum
 flux (also called the radiation stress gradient)
- term 3 bottom shear stress modeled as

$$-\tau_{\rm by} = \rho C_{\rm f} (u^2 + v^2)^{1/2} v$$

term 4 = wind-driven surface shear stress

$$r_{\eta y} = \overline{\rho_a C_d |W| W^y}$$

term 5 = on-offshore gradient of the longshore momentum flux due to turbulence.

As used in terms 3 and 4, where ρ and ρ_a are water and atmospheric densities, u and v are current velocities in the x and y directions, C_f is a bed shear stress coefficient, C_d is a stability-dependent atmospheric drag coefficient, W is wind speed, and the overbar denotes time-averaging.

67. Two differential pressure slope arrays and an absolute pressure reference were used to measure the wave-induced radiation stress gradient. Marsh McBirney electromagnetic current meters located at the centroid of the slope arrays were used to measure the total radiation stress gradient. A mast-mounted anemometer was used to measure wind stress. A stability-dependent atmospheric drag coefficient was determined from simultaneous wind stress measurements taken at the end of the FRF pier by Dr. Sethu Raman (NC State University). The vertical structure of the mean currents was measured using three currents at various elevations mounted on the sled. Assuming temporal

stationarity, the distribution of mean currents and wave energy across the surf zone was determined by moving the sled. Longshore array current meters were used as a reference for stationarity considerations.

Data collection schedule

- 68. Data collection using the current meters and an absolute pressure sensor commenced 11 October 86; and data collection, including the slope arrays, commenced 15 October 86. Sled transects were made near profile lines 197, 240, and 250. The data runs were at least 35 min in duration and were acquired at three to five different locations along a transect, commencing just seaward of the breaker zone of the inner bar. Data were acquired during daylight hours coinciding with the VAX collection times.
- 69. Prior to selecting an area of the surf zone to transect, the previous day's bathymetry was studied and changes in morphology noted. The area with the highest degree of straight-and-parallel isobaths was selected for each day's operations. Observations of waves breaking on the sled mast were marked by an electrical trigger which registered a pulse on the data tapes.

Data analysis

- 70. Data analysis will examine the following:
 - \underline{a} . Momentum balance. Determine spatial variability of $C_{\mathbf{f}}$ and relative importance of wind and wave forcing.
 - <u>b</u>. Vertical distribution of radiation stress. The vertical distribution of radiation stress is important to recent theories on vertical current distribution and "undertow".
 - vertical mean current structure across a nearshore bar. Data were acquired offshore, on top of, and inshore of the bar on all nearshore transects. It may be hypothesized that primary morphological changes are caused by mean current "events".
 - d. Anatomy of a rip current. The vertical structure of the mean cross-shore and longshore currents within a rip current were measured by transecting the rip current longitudinally on 12 October.
 - <u>e</u>. Unsteadiness of nearshore currents, such as pulsating rip currents. Unsteadiness of the currents may be correlated with wave groups or supercritical head of water within the nearshore bar or other mechanisms.
 - f. Wave height distribution over a nearshore bar.

- g. Breaking wave height probability distributions. The probability density functions (pdf) could be utilized to verify the "whiteness" of the remotely sensed breaking wave data.
- h. Comparison of radiation stress calculated by refracting the offshore directional spectra with the measured nearshore values on the sled.
- i. Integration of the sled's anemometer data (generally within 3 m above NGVD) with the wind profile data acquired by NC State University's vertical wind profile (which lacked a wind sensor near the sea surface).

Momentum Balance and Surface Slope

- 71. Principal investigators were Dr. Guy A. Meadows and Ms. Lorelle A. Meadows of the University of Michigan and Dr. Lee L. Weishar of CERC.

 Objective
- 72. The objective was to determine the longshore and cross-shore momentum balance throughout the nearshore region. This determination of the longshore momentum balance was based upon preliminary work conducted as part of the DUCK85 experiment and utilizes hydrodynamic observations throughout the coastal boundary layer to formulate the distribution of momentum outside and inside the surf zone. Results from the DUCK85 experiment showed that the dominant terms in the longshore momentum balance outside the surf zone were longshore pressure gradient and wind stress terms. Although important, bottom stress is secondary compared to wind stress and longshore pressure gradient force. Inside the surf zone and through the refraction zone these forces are still important, but bottom stress and wave radiation force are comparable to them. In both regions, momentum advection, Coriolis, and acceleration terms were small compared to the other terms in the momentum balance. These observations are consistent with results of the Coastal Boundary Layer Experiment (LEX81) conducted in Lake Erie in 1981.

Experiment plan

73. From knowledge gained during the DUCK85 experiment, several improvements were made to the field deployment scheme to enhance the SUPERDUCK data collection and analysis efforts. DUCK85 results showed that in examining the nearshore momentum balance, large quantities of momentum could reside in very subtle longshore pressure gradients. Therefore, great care was taken to

accurately measure the longshore gradient in sea surface elevation and to assess its contribution to the longshore momentum balance in this region. Figure 17 shows this gradient (as measured in 1985) using three pressure sensors; one located near the FRF pier, one located at Kitty Hawk pier, and one located at Avalon pier, approximately 10.2 and 17.3 km south of the FRF pier, respectively. To improve upon this configuration in SUPERDUCK, four pressure gages were deployed in 6.7 m (22 ft) of water in a region extending from 6 km north to 10 km south of the FRF pier. These pressure sensors were

Figure 17. Time-averaged and digitally filtered longshore water elevation slopes between experiment site and Kitty Hawk pier and experiment site and Avalon pier (data from DUCK85)

dynamically leveled and routinely releveled during the experiment to assure a high level of accuracy in this measurement. To measure the other factors contributing to the nearshore momentum balance, two instrumented tripods were deployed in 6.7 and 11.6 m (22 and 38 ft) of water. Each tripod contained an electromagnetic current meter and pressure sensor (PUV) to determine incident directional wave spectra and near-bottom current velocities.

Data collection schedule

- 74. Data from these sensors were recorded by a newly developed portable automated data acquisition system consisting of a data concentrator located at each tripod and a portable Compaq 286 computer and Alloy 59 megabyte tape drive for mass data storage. Over 500 37-min time series of data sampled at 5 Hz were collected for each sensor.
- 75. To complete the momentum balance computation across the coastal boundary layer, a suite of other surf zone and nearshore instruments was also deployed as part of the SUPERDUCK experiment.

Data analysis

76. The data analysis will focus on the computation of the nearshore momentum balance inside and outside of the surf zone. Contributions from the longshore pressure gradient, first- and second-order wave radiation stress, wind stress, bottom stress, and longshore current acceleration will be considered as well as residual terms which may arise.

Inner-Shelf Dynamics: Process Measurements

- 77. Principal investigators were Dr. Lee L. Weishar of CERC, Dr. Guy A. Meadows and Ms. Lorelle A. Meadows of the University of Michigan.

 Objective
- 78. This study was undertaken to quantify sediment transport seaward of the breaker zone by obtaining a combination of direct and indirect process measurements. These measurements consisted of waves, currents, and suspended sediment concentrations outside the surf zone on the inner shelf. This experiment was part of a larger overall effort to quantify the dominant processes responsible for transporting sediment outside the surf zone. The overall objective was to identify and then quantify the processes responsible for sediment resuspension events through a comprehensive series of measurements in the inner-shelf region. In addition, the effects of water depth and sediment size were examined by obtaining process and suspended sediment concentration measurements at the two locations (depths of 6.7 and 11.6 m).

Experiment plan

79. Two field efforts were embarked upon to determine relationships between the incident processes and resulting resuspension of sediment in the inner-shelf region. The first experiment involved the deployment of two

bottom-mounted tripods containing a PUV wave and current meter and a stacked array of OBS gages (Figure 18). Each OBS gage measured concentrations of suspended sediment as a function of elevation above the bed. Vertical spacing of the individual sensors is presented below.

Sensor	Height Above	the	Bottom
1	5.0	cm	
2	5.5	CI	
3	25.1	cm	
4	50.1	cm	
5	105.0	cm	

80. The second experiment involved an unsuccessful attempt to measure vertical current structure. Five electromagnetic current meters were rigged to a sled mast and towed out to the 11.6-m site just prior to the onset of a northeaster. The current meter data were telemetered back to shore via a VHF transmitter. Unfortunately, the northeaster was one of the most severe that has occurred on the Outer Banks in the past several years. The sea state progressed from flat calm to a fully arisen state in approximately 4 hrs. The subsurface forces on the sled were so great that the rigging on the mast failed, preventing data from being telemetered to shore.

Data collection schedule

81. Data from each instrument were fed into a data concentrator located on the tripod. Next, the analog signals were digitized in the concentrator, multiplexed, amplified, and transmitted to shore through a single conductor. Then these data were routed to a PC-based data acquisition system where the signals were demultiplexed and stored in individual files of raw pressure, U-and V-current velocity, and suspended sediment concentration values. A synopsis of the data collected using this newly-developed portable data acquisition system is contained in Table 13.

Data analysis

82. The analysis of these data will provide a better understanding of the effects of various combinations of incident surface wave energy and subsurface currents on resuspension events. It also will provide a better data set to examine the effects of sea surface slopes and infragravity waves on sediment transport which were shown in DUCK85 to be an important factor in the inner-shelf region.

Figure 18. Instrumented tripod being deployed

Inner-Shelf Dynamics: DARTS II

- 83. Principal investigators were Dr. Guy A. Meadows and Ms. Lorelle A. Meadows from the University of Michigan, and Dr. Lee L. Weishar and Ms. M. Leslie Fields of CERC.
- 84. The Digital Automated Radar Tracking System (DARTS-II) is a prototype portable radar tracking system designed to obtain directional wave number spectra measurements from the breaker zone up to 4 km offshore. This system is an extension of the DARTS-I system used for automated tracking of current drogues released in restricted inlets.

Table 13

Inner Shelf Dynamics, Process Data Collection Summary

						_		_	1	nsh	ore					7 .	1)							
0	_	_		-	,	_		_	_	_	40	Tir	ne,	EST	<u> </u>	45	4.		40	40	20	24		~
Date	0		ے۔	_3	_	_2.	_0		_0		10	11	16	13	14	12	10	17	10	17	<u>20</u>	<u>21</u>	<u> </u>	23
6 Oct																*	*	*	*	*	*	*	*	*
7 Oct	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	•	*	*	*	*
8 Oct	•	*	*	*	*	*	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*
9 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
10 Oct		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
11 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
12 Oct	*	*							*	*	*	*	*	•	*	*	*	*	*	*	*	*	*	*
13 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*							
14 Oct											*	*	*	*	*	*	*	*	*					
15 Oct									*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
16 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
17 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
18 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*
19 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*					
20 Oct								*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
21 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
22 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
23 Oct	*	*	*	*	*	*	*	*	*	ŧ	*	*	*	*	*	*	*	*	*	*	*	*	*	*
24 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
25 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
26 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
27 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
28 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
29 Oct	*	*	*	*	*	*	*	*	*	*														
									ο.	ffel	hore		ri n	~ .	r - 1 1	۱ ۸	~ \							
														ne,			/							
Date	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_			_		
4 Oct														*	*	*	*							
5 Oct														*	*	*	*	*	*	*	*	*	*	*
6 Oct	*	*	*	*	*	*	*	*	*		*	*	*	*			*	*	*	*	*	*	*	*
7 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
8 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*					
9 Oct	*								*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
10 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
11 Oct	*		*			*		*	*		*		=			*	*	*	*	*	*	*	*	*
12 Oct	*	#	*	*	*	*	*	*	*	*	*	#	*	*	*	*	*	*	*	*	*	*	*	*
13 Oct	#	-	*	=	*	=	*	*	*	=	=	×	×	# _	-	*	*	_	*					
14 Oct	-							_	_	_	. =	-	-	-	_	_	*		*	_	_	_	_	_
15 Oct	-	*	•		•			_	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
16 Oct 17 Oct	*	*	•	-	•	-	*	-	-	•	•	•	*	•					*	-	-	-	-	-
18 Oct	*		*	*	*	•	*	*	*		*	*	*	*	*	*	*			*	•	•	-	*
19 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
20 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
21 Oct	*	*	*	*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
22 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
23 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
24 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
25 Oct						*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
26 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	•	*	*	*	*
27 Oct	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*					
28 Oct									*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
29 Oct	*								*	*	*	*												

85. The major components of the DARTS system are a digital raster scan radar with a built-in video interface, a video monitor, and a portable AT computer with frame grabber digitizing peripheral board. A small generator may be used to power the system; however, during the SUPERDUCK experiment, shore power was provided.

Objectives

- 86. The objectives were to determine the operational limits of the system, i.e. under which atmospheric and wave conditions it will obtain useful data, and to evaluate the DARTS-II remote sensing system using the comparative data obtained from a number of other wave-measuring devices.
- 87. In processing the DARTS-II data, the digitized radar signal is accessed in a region of interest (offshore, nearshore, or inshore) along the direction of wave approach. A spatial series of 1,024 sea surface radar return intensities is preprocessed with a 10 percent cosine taper on 50 percent overlapping segments and 3 lines averaged per band. A quasi-two-dimensional (2-D) (wave number spectra versus direction) Fast Fourier Transform (FFT) is then performed on the data in the direction of wave approach yielding a wave number spectrum. Representative DARTS-II wave number spectrum is provided in Figure 19.

Data collection schedule

88. Table 14 shows the dates and times of DARTS-II data acquisition. The prevailing conditions were videotaped along with the video radar output during all data sessions.

Data analysis

89. A full 2-D FFT is under development and will be applied to the twice daily DARTS-II data collected during SUPERDUCK. Comparisons of DARTS-II wave number spectra with conventional wave energy spectra from in situ point gages will be made. The DARTS-II system will be fully evaluated in terms of providing a rapid, reliable, and inexpensive means for measuring incident wave characteristics for coastal engineering applications.

Foreshore Sedimentation Processes

90. Principal investigators were Dr. Suzette M. Kimball (formerly with CERC) of the Virginia Institute of Marine Science (VIMS), Mr. Bruce E. Jaffe of the USGS, and Mr. Mark R. Byrnes of CERC.

Figure 19. Sample DARTS-II wave number spectrum

Table 14

<u>DARTS-II Operation Summary</u>

<u>Date</u>	Time, EST	<u>Date</u>	Time, EST
3 Oct	1407	16 Oct	1000
4 Oct	0909	17 Oct	0945
6 Oct	1503		1155
10 Oct	0747		1530
	1046	19 Oct	0832
	1329	20 Oct	0715
12 Oct	0755	21 Oct	1322
	1312	22 Oct	1117
13 Oct	0710	23 Oct	1348
14 Oct	0717	24 Oct	1246
15 Oct	0717	25 Oct	1745
	1520		

Objective

- 91. As originally conceived, the objective was to develop a 3-D model of nearshore morphological and sedimentological variations in response to high-energy conditions. Specific elements to be evaluated during the period included:
 - a. Sediment sorting processes alongshore and cross-shore.
 - <u>b</u>. Relationships between textural variations and incipient morphological changes.
 - <u>c</u>. Delineation of longshore and offshore sources of sediment in the nearshore.
 - d. Evaluation of fine structures with larger scale morphological features (i.e. bars).
 - e. Evaluation of mesoscale bedforms in the inner trough.
 - $\underline{\mathbf{f}}$. Evaluation of coarse-grained deposits and their control over morphological development.
- 92. Based on an evaluation of events that occurred during the DUCK85 storm event, the experimental objectives were redefined to focus on the evolution of foreshore morphology and foreshore sedimentation patterns during and following a series of high-energy episodes.

Experiment plan

93. Initial experimental design included the collection of 18 short cores along profile lines 275, 250, and 230 (Figure 2) at high and low tides. An integral factor in the collection of the nearshore samples was the consistent functioning of the Remotely Operated Sediment Coring system (ROSCO), a portable coring device developed by CERC. During preexperiment test runs, the reliability of ROSCO offshore under high-energy conditions did not meet the minimum requirements for proper execution of the experiment. The experiment was rescaled to use hand-emplaced cores as the principal and supplementary means of data collection supplemented with the ROSCO system.

Data collection schedule

94. Data were collected using the following sampling layout:

				Pr	<u>ofile</u>	Numb	er			
Location	270	<u> 260</u>	<u>255</u>	<u>250</u>	<u> 245</u>	240	<u>240a</u>	<u>235</u>	<u>230</u>	N. Prop*
Storm berm	R	R	R	R	Н	H/R	Н	H	Н	Н
Upper swash	R	R	R	R		R				
Mid-swash	R	R	R	R	Н	H/R	Н	Н	Н	H
Step	R	R	R	R	Н	H/R	H	H	Н	Н

Note: R= ROSCO system.

- H- Hand driven.
- * North property line (see Figure 2).
- 95. The study used bathymetric profiles surveyed by the CRAB, shallow cores obtained by ROSCO, and numerous hand cores. Table 15 lists the sample collection times. During each sample run, foreshore profiles were collected using a prism rod and Zeiss total

electronic surveying station, and the upper swash limit was mapped. Samples were collected at both high and low tides during the 10 October storm and subsequent recovery period and at low tides for the remainder of the experiment.

Table 15
Foreshore Profile and Sediment Sampling Schedule

		NO. OT SAMPLE	es kecovered
<u>Date</u>	Survey Time, EST	<u>Foreshore</u>	ROSCO
7 Oct	1400		22
10 Oct	0900 1830	7	
11 Oct	0900 1430	3 18	
12 Oct	1820 1100	15	16
13 Oct	1700 0945	18	18
14 Oct	1700 1045	18	16
15 Oct	1700 1145	19	
16 Oct	1450 1515	18	4
17 Oct 18 Oct	1340 1400	18 18	
19 Oct 20 Oct	1500 1600	18 18	4 5
21 Oct 22 Oct	1600 1630	18 18	

Data analysis

96. All cores were split, photographed, described, and subsampled according to visible depositional units. The 530 subsamples that were extracted will be mechanically sieved. Next,

sand fractions will be analyzed

with a Rapid Sediment Analyzer (RSA) to determine their hydraulic characteristics. The mineralogies will be established. Then, these data will be combined with the foreshore profiles to determine the sequences of morphologic and sedimentologic development. Finally, wave and current data from other experiments will be used to evaluate foreshore evolution under given energy conditions.

Sedimentary Micro Structures

97. Principal investigator was Dr. Curt D. Peterson of Oregon State University.

Objective

98. The objective was to test the hypothesis that the microstratigraphic criteria can be used to establish mechanisms and environments of deposition from nearshore sediment cores. Depending on the grain density relations, it should be possible to discriminate between planar stratigraphic deposition by (a) settling from a suspension event (normal grading), (b) selective entrainment from fluid shear (critical shear stress equivalence), and (c) grain shear sorting from grain flow (dispersive pressure equivalence).

Experiment plan

99. The experiment was coordinated with the geomorphological study conducted by Dr. Suzette Kimball. Some cores were taken by hand across the surf zone and inner bar (along the cross-shore array) prior to and during the October storm.

Data analysis

100. Cores taken by hand and the ROSCO system were examined using a Hewlett-Packard sediment X-ray unit and a binocular microscope. Figure 20 is an X-radiograph of a core taken at the seaward end of the cross-shore array following the first day of the October storm. The core was taken in approximately 4 m of water, just offshore of the inner bar and was oriented along-shore. This was the full extent of the core because a gravel bed prevented further penetration. There was some slight disturbance in the upper part of the core as shown in the downturned sand laminae.

101. The radiograph shows:

- <u>a</u>. Alternating layers of gravel and very coarse sand (core bottom) deposited by energetic nearshore currents following an initial scouring event.
- <u>b</u>. Thin overlying laminae of heavy minerals, including magnetite (dark layers in core middle) concentrated by selective entrainment.
- c. Finely striated laminations of light minerals deposited under high-flow regime, plane-bed conditions.

Figure 20. X-radiography of a core

102. This well-preserved core thus represents a partial storm sequence -scour followed by gravel lag deposition, followed by heavy mineral lag deposition, followed by light mineral deposition -- during the course of transition
from storm to waning storm conditions. Of particular interest is the regular
alternation of gravel and coarse sand layers at the bottom of the core. At
least six couplets can be counted, and these might indicate some periodic
variation in nearshore current velocity during an early phase of the storm.

Similarly, there are several apparent couplets of light minerals and traces of heavy minerals in the plane-bed striated sands of the upper part of the core.

103. Interesting samples were impregnated with wax and taken back to the College of Oceanography to determine the mean intermediate grain diameter of quartz (density of 2.6) and magnetite (density of 5.2) using a petrographic microscope.

Effects of Coastal Processes on Sand-Dwelling Organisms

 $104.\$ Principal investigators were Mr. Mark W. Denny and Ms. Lani A. West from the Hopkins Marine Station of Stanford University.

Objective

105. The objective was to gain improved understanding of the influences of physical coastal processes on sand-dwelling organisms.

Experiment plan

106. Surface sediment cores (11 \times 3 cm) were collected cross-shore along the photopoles at the morning low tide from 8-16 October.

Data analysis

- 107. The surface sediment core samples will be analyzed by sorting interstitial organisms into taxonomic groups to quantify abundance and distribution of taxa before, during, and after storm conditions. The distributional patterns of organisms will be compared to the corresponding wave and current conditions. Organismal patterns will be correlated with grain size distribution of sand and sediment along the photopoles.
- 108. To test for patchiness or clumping in the distribution of organisms alongshore, 50 random points were sampled along a 50-m transect on each of two days (13 and 14 October). These transects were conducted in the swash zone directly inshore from the cross-shore array of current meters.
- 109. To document the vertical distribution of organisms at depths deeper than 11 cm, sand samples from Dr. Kimball's cores taken with ROSCO alongshore at low tide are being examined. Vertical distribution will be compared to Dr. Kimball's documentation of grain size and distribution.

Application of a Photographic System for Evaluation of Sediment Transport Using Fluorescent Tracers

110. Principal investigators were Ms. M. Leslie Fields and Dr. Lee L. Weishar of CERC.

Experiment plan

- 111. A study of sediment transport seaward of the surf zone was conducted using fluorescent tracer sands monitored with a benthic sediment profiling camera. The imaging system was originally developed in 1971 for in situ imaging of organism-sediment relationships on the ocean floor. The camera differs from conventional underwater cameras by its ability to make a vertical slice into the seafloor and to image the sediment-water interface in profile. The optical path of the system consists of air and distilled water so image quality is not affected by high water turbidity. A hydraulic piston controls the rate at which the optical prism vertically cuts through the bottom, thus minimizing disturbance of the sediment.
- 112. Application of the imaging system was expanded to include detection of sediment dispersion as a function of grain size and depth of sediment burial through ultraviolet imaging of fluorescent tracer sands. The original camera design was modified by the addition of two ultraviolet light sources placed inside the optical prism. A benthic profiling camera owned and operated by the Virginia Institute of Marine Science was used to collect the images during SUPERDUCK (Figure 21). Ektachrome ASA 400 slide film was used with the ultraviolet light source for maximum detection of the fluorescent particles. To provide information on bed roughness and sediment characteristics, images were also taken with Kodachrome ASA 25 film illuminated with a white light strobe.

Data collection schedule

113. Sediment profile images were taken on 9 October and 29 October within a 200- \times 200-ft (61- \times 61-m) grid which consisted of 16 sample stations spaced 50 ft (15 m) apart. The sample grids were located 4,400 to 5,070 ft (1,341 to 1,545 m) offshore in water depths of 38 to 40 ft (11 to 12 m). Wave and current conditions were provided by data collected on a nearby instrumented tripod described in the Inner Shelf Dynamics: Process Measurements experiment (paragraph 77).

Figure 21. Benthic profiling camera

114. Fluorescent tracer material was deployed as a point source at the center of each grid and sampled using the benthic profiling system at time intervals that ranged from 22 to 28 hr after injection. The tracer consisted of three sizes of sediment with mean diameters of 0.44, 0.34, and 0.12 mm that were tagged with different fluorescent colors. A summary of the sediment profile imagery is presented in the following tabulation:

Date	Time, EST	Data Collection
8 Oct 86	1340	Fluorescent tracer deployment
9 Oct 86	1600-1730	Benthic profiling imagery - 16 Ektachrome ASA 400 images
28 Oct 86	1320	Fluorescent tracer deployment
29 Oct 86	1149-1320	Benthic profiling imagery - 22 Ektachrome ASA 400 images
	1607-1700	Benthic profiling imagery - 32 Kodachrome ASA 25 images

Data analysis

115. A computer image analysis will be conducted on each of the samples using an International Imaging System Model 75 image processor. The parameters to be evaluated from the sediment profile images include tracer concentration, depth of sediment burial, surface roughness, and sediment grain size and compaction. The data will be used to construct a series of tracer concentration contour plots necessary to determine sediment distribution patterns and dispersion rates as a function of grain size and wave and current processes. The experimental tracer distributions will be compared with theoretical distributions predicted by models of 2-D spreading from a point source.

Short-Term Disturbance Effects of Storms on the Subtidal Benthic Communities of Duck, North Carolina

- 116. Principal investigator was Mr. David A. Nelson of WES's Environmental Lab.
- 117. This study was conducted in cooperation with the "Application of a Photographic System for Evaluation of Sediment Transport using Fluorescent Tracers" study.

Objectives

118. The objectives were to assess the short-term effect of storms on the composition of the benthic community, demonstrate the effectiveness of combining physical and biological studies, and test the efficacy of using sediment profiling cameras in sandy substrates.

Experiment plan

119. Examination of the benthic community and sediment characteristic was conducted prestorm and poststorm. A Smith-McIntyre grab sampler was used to quantitatively sample the benthos, and a benthic profiling camera was used to qualitatively examine the benthos and effects of sediment disturbance.

Data collection schedule

120. Sediment profiling photos and corresponding benthic samples were taken along a transect perpendicular to the shoreline, beginning at a depth of 14 ft (4 m) (the shallowest depth at which sampling from a vessel could be conducted) and continued at 8-ft- (2.4-m-) depth intervals to a depth of 46 ft (14 m). This offshore depth was selected to represent a stable reference site because this was the shallowest depth at which sediment transport was unlikely during a storm of moderate strength. This station array was taken to represent a continuum of decreasing sediment disturbance effects on the benthic communities of the nearshore zone off Duck, North Carolina.

Preliminary Comments

- 121. Benthic samples were obtained only during the poststorm period. On 29 October three replicate Smith-McIntyre grab samples were taken at the five stations. Samples were sieved through a 0.5-mm sieve and then preserved with a 10 percent formalin solution and stained with rose bengal. In the laboratory, fauna were identified to family and counted.
- 122. Sediment profiling camera pictures were obtained during the prestorm and poststorm periods. On 9 October, one photo was taken at the five stations. On 29 October, the poststorm sampling date, five color photos were again taken at all five stations.

Data analysis

- 123. From computer analysis of the photos, the following data were obtained:
 - a. Total image area.
 - b. Anaerobic/aerobic layer area.
 - c. Prism penetration (measure of compactness of sand).
 - d. Surface roughness (relief).
 - e. Depth of redox partial discontinuity (RPD).
 - f. Depth of burial.
 - g. Void area and number (indication of feeding activity).
 - h. Burrow area and number of animal tubes.
 - i. Shell area.
 - j. Grain size (Udden-Wentworth scale).

- k. Surface features.
- 1. Fauna.
- m. Position of voids relative to other features.

Dune Erosion

 $124.\,$ Principal investigators were Drs. John S. Fisher and Margery F. Overton of North Carolina State University.

Objective

125. The objective was to define the processes and rates of dune erosion and the rates of sediment supply and transport in the swash zone.

Experiment plan

126. Two days of dune construction and erosion experiments were conducted during October (Figure 22). The site of the study was located in the swash zone, shoreward of the cross-shore array (see Figure 2).

Data analysis

127. From this information the investigators plan to derive important data related to shear stress and sediment load.

Figure 22. Construction of experimental dune

PART V: ALL-WEATHER STUDIES

128. All-weather studies were conducted during both September and October.

Offshore Material Placement

129. Principal investigators were Messrs. James E. Clausner and Edward B. Hands of CERC.

Objective

130. The objective of this experiment was to improve the ability to monitor and predict the response of dredged material placed seaward of the surf zone.

Experiment plan

- 131. The surf zone traps described in Part III were modified for use in deep water. First, the 1.8-m- (6-ft-) long streamers were shortened to 1.1 m (3.5 ft) to reduce the probability of the streamers becoming snarled around the traps and rigging. Second, one-way doors were placed at the trap openings to prevent sand which entered the trap from escaping when the current directions reversed. Finally, the traps were stabilized with 0.64-cm (1/4-in.) wire rope lines connected to 2.22-cm (7/8-in.) rebar anchors. Each trap had two anchors.
- 132. The traps were connected in a diamond pattern designed to have adjacent trap corners 4.3 m (14 ft) apart with 6.7 m (22 ft) separating opposite traps. These distances were thought to be a reasonable compromise between isolating the traps from each other and making installation practical by divers in moderate visibility.
- 133. Prior to installation, the sediment trap streamers were arranged vertically to give a roughly logarithmic spacing. During initial spacing, the distances on a single trap were measured; then the other streamers were installed on the remaining traps to give as close to the same spacing as possible to the original trap. After recovery, the spacing on all the traps was measured. Streamer spacing for the measured trap (T1) is shown in Table 16.
- 134. To simplify the underwater portion of the installation, all anchor lines, interconnecting lines, and streamers were rigged onshore and cable tied

to the trap frames prior to deployment. To verify that the design worked prior to the storm wave portion of SUPERDUCK and to take advantage of good weather, the traps were installed during the end of the nonstorm wave experiment from 24 to 30 September. Trap installation was sufficiently complicated that visibility of 3 m (10 ft) or more and low currents were a necessity.

Table 16

Elevations* of Streamers Above the Bottom During 24-30 Sep Deployment

Streamer No.	Elevation. cm
S 7	90.6
S 6	68.4
S 5	48.4
S 4	32.3
S 3	18.1
S2	8.2
S1	1.3

^{*} Water depth 11.6 m.

135. The traps were aligned with Trap 1 facing north. After the legs were pressed into the bottom, the anchor lines stretched out, and the 1.5-m-(5-ft-) long rebar anchors were driven 76 cm (30 in.) into the bottom. After Traps 2 and 4 were walked back to remove slack, Trap 3 was positioned to face south using two alignment cables. The anchor lines to Trap 3 were then installed. Following similar procedures, Traps 2 and 4 were also installed. Turnbuckles in the anchor lines and interconnecting lines were then adjusted to remove all slack. Finally, the streamers were unfurled.

136. To provide current data prior to the installation of the tripod at the 11.6-m (38-ft) site, three ENDECO 174 self-recording current meters were installed on a submerged mooring approximately 30 m (100 ft) east of the traps. The meters were located 1.8 m (6 ft), 4 m (13 ft), and 7 m (23 ft) above the bottom. Unfortunately, only meter AO76 located 1.8 m (6 ft) above the bottom functioned correctly.

Data collection schedule

137. When the traps were checked on 26 September, no noticeable sand had accumulated in the traps. This is not surprising because no significant wave activity had taken place.

- 138. On 27 September the wind switched from the southwest to east north-east and increased to approximately 15 knots (10 m/sec) (Figure 7). Wave heights were estimated to be 1 to 1.4 m (3 to 4.5 ft). These conditions persisted through the 28th when the winds died down and shifted back to the southwest.
- 139. On 30 September the streamers were recovered. Streamers T3S6, T3S7, T4S6, and T2S5 had become untied. Some of these streamers had become tangled, probably because they had extended to their full 1.8-m (6-ft) length. The weight of the sand trapped by each streamer is presented in Table 17. Because four of the streamers had become untied, plastic cable ties were used to secure the ends of the streamers on the next deployment.

Table 17
Weight* of Sand Accumulated in Streamers 24-30 Sep 86

	Trap 1	Trap 2	Trap 3	Trap 4
Streamer No.	(North)	(East)	(South)	(West)
S 7	27	11	0	13
S 6	10	11	3**	12**
S 5	26	10†	3	16
S 4	26	44	7	26
S3	58	250	9	160
S2	110	450	50	290
S1	210	900	40	140**

^{*} Dry weight measured in grams.

140. On 8 October the streamers were redeployed at the elevations given in Table 18. Comparison of these elevations with those in Table 16 shows that the streamers in Trap 1 were not reinstalled at the same elevation as on the earlier deployment because of the difficulty of installing the traps underwater with limited visibility. The depth of the scour holes under the traps was also measured. The scour holes under Traps 1, 2, 3, and 4 were 9, 6, 1, and 1 cm (0.3, 0.2, 0.04, and 0.04 ft), respectively. On 2 October a Sea Data 635-12 PUV gage that provided wave and current data was installed on the tripod at the 11.6-m (38-ft) site, approximately 30 m (100 ft) east (seaward) of the sediment traps (Figure 2). The current sensor on the gage was located approximately 15 cm (0.5 ft) above the sea bottom.

^{**} Streamer door was jammed shut upon delivery to laboratory.

[†] Streamer ends were open upon delivery to laboratory.

Table 18

Elevations* of Streamers Above the Bottom During 8-24 Oct Deployment

Streamer No.	Trap 1 (North)	Trap 2 <u>(East)</u>	Trap 3 (South)	Trap 4 (West)
S 7	93.9	87.7	94.6	84.9
S6	71.1	69.2	70.5	66.7
S5	55.5	48.9	54.9	50.6
S 3	40.0	28.9	35.6	35.3
S 3	23.8	16.8	23.2	17.2
S2	14.3	5.1	11.7	6.4
S1	1.3	1.3	1.3	1.3

^{*} Elevations (in centimeters) are to the center of the 2.54-cm streamer opening. Water depth was 11.6 m.

141. Problems with weather and equipment prevented recovery of the sediment traps until 25 October. In spite of large waves, the traps and anchoring system performed well.

Data analysis

142. While the length of deployment made calculation of the absolute sediment transport impossible, relative weights contained by the streamers listed in Table 19 give an indication of transport concentration at various elevations. Notably, the lower streamers had become so full that they were buried in the bottom. Some of the streamers did not function correctly, probably as a result of the one-way doors becoming jammed in the open or closed position for various lengths of time. Still two conclusions can

Table 19
Weight* of Sand Accumulated in Streamers 8-24 Oct 86

Streamer No.	Trap 1 <u>(North)</u>	Trap 2 <u>(East)</u>	Trap 3 <u>(South)</u>	Trap 4 <u>(West)</u>
S 7	18	5	5	220
S 6	30	17	4	1,000
S 5	9	250	6	1,800
S 4	110	140	25	5,600
S 3	1,800	1,100	63	7,300
S 2	5,400	2,000	340	2,000
S1	5,700	1,800	3,700	8,700

^{*} Dry weight measured in grams.

immediately be drawn from the data. First, the major direction of sediment movement was offshore, as evidenced by the weight of sand trapped in the streamers of Trap 3. Second, the amount of sediment moving dropped off rapidly with elevation above the bottom for the traps facing north, south, and east. However, the traps facing west (onshore) had significant amounts (66.7 cm above the bottom) of sediment up to and including Streamer 5.

143. To provide data on bed elevation changes and the depth of disturbance (DOD) on the bed, reference rods were driven into the bottom at the 6.7-and 11.6-m (22- and 38-ft) sites. Four 2.2-cm- (7/8-in.-) diam stainless steel rods were installed at each site. Each 1.8-m- (6-ft-) long rod was driven approximately 0.9 m (3 ft) into the bottom and spaced approximately 1.5 m (5 ft) apart. A PVC "T", with a 0.6-m- (2-ft-) long cross piece was used to eliminate the effect of local scour craters around the rods when the elevation of the bed was measured. Tables 20 and 21 give bed elevation data from both the 6.7-m (22-ft) and 11.6-m (38-ft) site.

Table 20

<u>Changes in Bed Elevations at the 22-ft (6.7 m) Site from DOD Rod Measurements*</u>

Rod <u>Number</u>	24 Sep 86	1 Oct 86	Change	9 Oct 86	<u>Change</u>	Total <u>Change</u>
1	96.0	97.5	1.5	95.7	-1.8	-0.3
2	93.9	93.0	-0.9	93.0	0.0	-0.9
3	93.6	93.6	0.0	91.4	-2.2	-2.2
4	91.7	89.9	-1.8	89.6	-0.3	-2.1
Average	Change		-0.3		-1.1	-1.4

^{*} Elevations in cm.

144. On 9 October stainless steel washers were slipped over the rods and placed on the bottom. Eventually, measurements of the depth of the washer below the bottom will be measured to give an indication of the depth of the active layer.

Sea Scour

145. Principal investigator was Mr. John H. Lockhart, Jr. of the US Army Corps of Engineers.

Table 21

<u>Changes in Bed Elevations at the 38-ft (11,6 m) Site from DOD Rod Measurements*</u>

Rod Number	24 Sep 86	1 Oct 86	Change	9 Oct 86	Change	Total <u>Change</u>
1	89.6	86.0	-3.6	88.1	2.1	-1.5
2	93.0	90.5	-2.5	86.6	-3.9	-6.4
3	89.0	88.7	-0.3	89.0	0.3	0.0
4	89.9	89.0	-0.9	89.3	0.3	-0.6
Average	Change		-1.8		-0.3	-2.1

^{*} Elevations in cm.

Objective

146. The objective was to test applicability of a maximum scour depth determination method used in fluvial systems to the nearshore environment at the FRF. The study was intended to provide the Corps of Engineers with an economical method to determine the maximum erosion or scour experienced during a storm season or after a single storm.

Experiment plan

- 147. The study involved the installation of colored sand pipes at various depths and locations along the beach south of the FRF pier (see Figure 2). The sea scour concept is based upon the premise that if dyed sand cores are placed along a profile normal to the beach at precise locations, then it would be possible to determine the profile of maximum scour during any period of time by determining the elevation of the top of the dyed sand cores. The FRF's Zeiss survey system was vital in precisely locating the position of the dyed sand cores.
- 148. Several types of dyed sand and dye implantation methods were tried. The simplest and most successful method involved the washing of a 4- to 6-in.-(10- to 15-cm-) diam hole with a 4-in.- (10-cm-) PVC casing and a 1.5-in. (4-cm) lance. A 4-in. (10-cm) casing was advanced around the lance as water (approximately 100 gpm) was used to jet a hole (Figure 23). The casing prevented the hole from collapsing after the hole was complete and the lance removed.
- 149. Dyed sand was then poured down the casing as the casing was pulled out. The result was a 4- to 6-in. (10- to 15-cm) dyed sand pipe that extended

Figure 23. Installation of dyed sand pipe

from the surface to a depth of approximately 10 ft (3 m). Some of the sand pipes were dug out to determine the success of the installation. It was then discovered that liquid dye emplacement was not successful and that the larger the casing the more successful was the installation of predyed sand.

150. Figure 24 illustrates the method used to place the dyed sand in the washed hole. Table 22 lists the locations of dyed sand cores that have been successfully dug out to determine depth of maximum scour.

Seabed Drifters

151. Principal investigators were Messrs. Edward B. Hands and Darryl D. Bishop of CERC.

Figure 24. Method for the placement of dyed sand in a bore hole

Table 22

Locations of Dyed Sand Pipes*

X, Longshore, m	Y, Cross-Shore, m	Z. Elevation, m
1.26	115.30	.23
.51	105.75	1.19
2.04	90.32	2.07
2.43	75.51	2.90
90.70	120.87	. 22
90.35	111.76	1.14
90.85	105.10	1.45
90.81	101.93	1.59
90.61	94.45	2.22
69.42	104.14	1.42
46.46	101.85	1.45

^{*} Installed during week of 10 Aug 86.

Objective

152. The objective was to test the effectiveness of seabed drifters (SBD's) as indicators of nearshore current patterns.

Experiment plan

153. Two types of weighted drifters were deployed in varying water depths and varying sea conditions during September and October (Table 23).

Data collection schedule

154. The SBD's were collected along the beach as they washed ashore. The exact time and location were noted and compared with the known release times and locations to determine the rate and direction of drift. Special sound

Table 23 Preliminary SUPERDUCK Seabed Drifter Data

	Releas			Drifter	Number .
Drifter SN	Date	Time	Site*	Code**	Recovered
4001 to 4025	11 SEP 86	1049	3 VIMS	YN	17
4026 to 4050	11 SEP 86	1037	4 WOT	YN	8
4051 to 4075	11 SEP 86	1040	1 PIER	YN	19
4076 TO 4100	11 SEP 86	1033	5 BB5	YN	13
4101 TO 4125	20 SEP 86	853	1 PIER	ON	17
4126 TO 4150	20 SEP 86	855	1 PIER	ON	24
4151 TO 4175	20 SEP 86	800	2 INNR	ON	18
4176 TO 4200	20 SEP 86	800	2 INNR	ON	18
4201 TO 4225	11 SEP 86	1049	3 VIMS	ON	24
4226 TO 4250	11 SEP 86	1040	1 PIER	ON	21
4251 TO 4275	20 SEP 86	826	3 VIMS	ON	23
4276 TO 4300	20 SEP 86	826	3 VIMS	ON	21
4301 TO 4325	19 SEP 86	1136	4 WOT	ON	19
4326 TO 4350	19 SEP 86	1136	4 WOT	ON	22
4351 TO 4375	24 SEP 86	1048	1 PIER	ON	22
4376 TO 4400	24 SEP 86 24 SEP 86	1053	2 INNR	ON	25 27
4401 TO 4425 4426 TO 4450	24 SEP 86 24 SEP 86	1053	3 VIMS 4 WOT	ON	23
4426 10 4430 4451 TO 4475	24 SEP 86	1057 1057		ON	19 19
4476 TO 4500	24 SEP 86	1037	4 WOT 4 WOT	ON	21
4501 TO 4525	11 SEP 86	1033	5 BB5	ON ON	21
4526 TO 4550	11 SEP 86	1100	5 885	ON	21
4551 TO 4575	19 SEP 86	1100	5 BB5	ON	18
4576 TO 4600	19 SEP 86	1100	5 BB5	ON	18
4601 TO 4625	24 SEP 86	1100	5 BB5	ON	16
4626 TO 4650	24 SEP 86	1100	5 BB5	ON	23
4651 TO 4675	24 SEP 86	1108	6 RAD	ON	17
4676 TO 4700	24 SEP 86	1108	6 RAD	ON	16
4701 TO 4725	8 OCT 86	1310	1 PIER	ON	25
4726 TO 4750	8 OCT 86	1310	2 INNR	ON	24
4751 TO 4775	8 OCT 86	1303	3 VIMS	ON	18
4776 TO 4800	8 OCT 86	1340	4 WOT	ON	4
4801 TO 4825	8 OCT 86	1340	4 WOT	ON	5
4826 TO 4850	8 OCT 86	1121	5 BB5	ON	6
4851 TO 4875	8 OCT 86	1121	5 BB5	ON	4
4876 TO 4900	8 OCT 86	1130	6 RAD	ON	3
4901 TO 4925	8 OCT 86	1130	6 RAD	ON	6
4926 to 4950	11 OCT 86	730	1 PIER	ON	22
4951 TO 4975	11 OCT 86	1517	1 PIER	ON	23
4976 to 5000	12 OCT 86	723	1 PIER	ON	21
5001 TO 5025	12 OCT 86	1721	1 PIER	ου	12
5026 10 5050	13 OCT 86	1415	4 LTD	ou	25
5051 TO 5075	12 OCT 86	1821	1 PIER	OU	24
5076 TO 5100	14 OCT 86	936	8 120	ON	10
5101 TO 5125	14 OCT 86	924	7 JSI	ou ou	24
5126 TO 5150	14 OCT 86	924	7 JSI	ου	20

* Site		Local	_Coordi	nate, m
Code	Description	Y	X	2
1 PIER	- East end of FRF pier	597	515	-7.9
2 INNR	- Inner drop/Photopole Line	606	947	-6.4
3 VIMS	- VIMS 8509 current meter	867	969	-7.9
4 WOT	- Weishar's outer tripod	1360	1050	-11.6
5 BB5	- Boundary buoy 5	1540	1140	-12.8
6 RAD	- Outermost drop	1980	1040	-14.6
7 JSI	- From RV John Smith	1460	1750	-11.6
8 JS0	- From RV John Smith	2450	1550	-14.6

^{**} Sea Bed Drifter Codes relate to Drifter type:
 Y = Yellow, O = Orange, N = New, U = Used
† Number recovered out of 25 deployed

transmitters were attached to some of the SBD's. A hydrophone from the pier and a trawler were used in an attempt to develop a method of tracking the path between drifter release and recovery points.

Data analysis

155. The pattern of drift from the deployment sites will be compared with predicted and measured flow patterns made from a number of instruments deployed during SUPERDUCK.

Nearshore Wind Stress

- 156. Principal investigators were Drs. Jon M. Hubertz and Charles E. Long of CERC and Dr. Sethu Raman of North Carolina State University.

 Objective
- 157. Time series of atmospheric temperature, humidity, and three components of wind speed would enable direct computation of turbulent fluxes of heat, water vapor, and momentum near the sea surface. Mean values of air temperature, water temperature, humidity, wind speed, and wind direction would serve as general climatological descriptors. All these measurements, in conjunction with sea state and current data provided by other investigators, would allow testing and, if necessary, modification of existing drag coefficient models for wind stress on the ocean surface. It is hypothesized that modification is necessary because existing models assume deep ocean conditions and do not account for differences in ocean dynamics which occur nearshore. Experiment plan
- 158. Two sets of meteorological sensors were provided and installed at the seaward end of the FRF pier by personnel from North Carolina State University (Figure 25). One set of sensors consisted of robust, low-frequency response devices intended to provide stable estimates of mean air temperature, humidity, sea surface temperature, wind speed, and wind direction. These sensors were sampled at 5 Hz by a Campbell Scientific Model 21X data logger. Hourly mean values and variances were computed in real time and stored on audio cassette tapes. The data logger digital display and handheld instruments were used three times per day to ensure that these sensors were functioning properly.
- 159. The second set of sensors consisted of high-frequency response devices for measuring air velocity, temperature, and humidity. Velocity was measured with a three-axis impellor anemometer. Redundant horizontal speed measurement was made with a hot film anemometer, and redundant vertical velocity measurement was made with a single-axis sonic anemometer. A chromel

constantan thermocouple and a platinum wire resistance thermometer provided redundant measures of air temperature.

by a thin film capacitor humidiometer and an optical absorption hygrometer. These devices were sampled at 10 Hz by a second Campbell data logger. Hourly means, variances, and all possible turbulent covariances were computed in real time and stored on audio cassette tape. Data collection schedule

161. To ensure that these devices were functioning properly, a 30-min time series of all channels was collected daily through a second program on the data logger. Data were collected from 7 September through 31 October.

Figure 25. Meteorological instrumentation

<u>Data analysis</u>

editing and correcting the data. The redundancy in data collection allows intercomparisons to be made so that data of poor quality can be eliminated. Spectra of time series collected from the high-frequency devices will allow corrections to be made to flux estimates for the roughly 10 percent of variariance not resolved by the instruments at the higher frequencies. Anticipated results of this experiment will take the following forms:

- $\underline{\mathbf{a}}$. A background report justifying the execution of this experiment.
- \underline{b} . A summary of the data from the low frequency instruments for those interested in mean climatology.
- $\underline{\mathbf{c}}$. A summary of the flux estimates for those interested in the actual wind stress during SUPERDUCK.
- d. An analysis of drag coefficient formulae using all the data in the context of equations given in the background report.

Marine Radar

163. Principal investigator was Dr. Dennis B. Trizna of the Naval Research Lab.

Objective

164. The objective was to study the capability of marine radar to determine various parameters of the wave field.

Experiment plan

165. The marine radar at the FRF was modified to allow collection of digitized samples of the video signal for offline analysis. This was the first time the collection hardware was used in a field experiment, and the results appear to be promising.

Data collection schedule

166. The data were collected with a density to allow for imaging of the incoming ocean waves from the shoreline to a range of the order of 2.5 km.

Data analysis

167. Because the image does not map linearly to a surface profile for low angles of radar illumination, wave height cannot be retrieved directly from the image. As a result of the lack of a theory to provide such a mapping at this time, analysis of 2-D image spectra reveals no root mean square (RMS) wave height information. At this point the primary analysis will be the generation of 2-D image power spectra with the peak wave numbers and directions determined for three different areas in the field coverage.

168. Three areas within a semicircle of 2.5-km radius are proposed for analysis: (a) a deepwater region at the farthest extent of radar coverage; (b) a region over the linear array, for comparison; and (c) a region south of the pier in shallow water where shoaling effects are apparent in radar imagery. The output will be values of wave length and direction for the dominant spectral peak and any swell apparent in the image. Planned data processing will be from the following dates and times:

Date	Time, EDT
10 Oct 86	0800, 1000, 1200, 1330, 1600, 1730
11 Oct 86	0800, 1000, 1100
12 Oct 86	0900, 1000
17 Oct 86	0800, 0930, 1130, 1330
18 Oct 86	0730, 1230, 1630

Coastal Ocean Dynamics Application Radar

- 169. Principal investigator was Mr. David B. Driver of CERC.
- <u>Objective</u>
- 170. The objective was to measure waves and currents at distances of up to 40 km from the shoreline.

Experiment plan

171. The Coastal Ocean Dynamics Application Radar (CODAR) unit was installed in the radar trailer at the north end of the FRF property during early September. CODAR was operated on a 4-hr sampling schedule, collecting approximately one-half hour of data per sample period. An initial inspection of the data indicated that the unit did not properly record the data. The problem was fixed and 8 days of continuous data were recorded and analyzed beginning on 23 October. Comparisons with the 6-km Waverider showed good agreement for significant wave height and peak period.

Linear Array Wave Gage High-Resolution Directional Wave Array

172. Principal investigator was Dr. Joan M. Oltman-Shay of Oregon State University.

<u>Objective</u>

173. A linear wave array was designed and deployed to investigate the nature of the wave climate found along the Atlantic seaboard in the vicinity of Duck, North Carolina, and to provide complimentary data for other nearshore studies. Wind-generated surface gravity waves are a principal source of energy to oceanic coastlines. A complete description of the incident wave field requires well-resolved estimates of both frequency and directional spectra. Significant progress has been made in the design of spatial wave arrays and in the refinement of the associated analysis techniques (Davis and Regier 1977; Long and Hasselman 1979; Pawka 1982, 1983; Pawka et al. 1983, 1964). Spatial arrays provide the best resolved ocean wave directional spectra available. These arrays have demonstrated in the field the ability to resolve wave trains separated by 15 deg (Pawka 1983). Compact measurement systems such as pitch-and-roll buoy, the slope array, and PUV are logistically easier to deploy and maintain; however, using the most sophisticated analysis

methods available, they have not been able to resolve wave trains separated by less than 70 deg (Oltman-Shay and Guza 1984).

Experiment plan

174. A long-term offshore linear array of pressure sensors was constructed at the FRF for the purpose of acquiring high-resolution directional information of the locally incident wind wave field. It was installed in late August north of the pier (in 8-m water depth) parallel to the survey baseline and was in full operation by mid-September. This water depth was selected because of the need to measure relatively high-frequency waves known to be present at Duck. The linear array consisted of 10 pressure sensors with a maximum and minimum separation of 255 and 5 m, respectively (Table 1). The array sensors were configured to optimally measure the 0.06 to 0.3 Hz wind wave field. Because the incident wind wave field at Duck has the potential of being spatially inhomogeneous under certain conditions (esp. at lower wind frequencies), the array was designed to monitor the homogeneity of the wave field. If conditions presented an inhomogeneous wave field at lower frequencies, the linear array was to be inoperable at those frequencies. Therefore, a slope array which did not require spatial homogeneity was built into the array as a "fail safe". High wind wave frequencies were not anticipated to be spatially inhomogeneous.

Data collection schedule

175. This wave directional array is a long-term instrument/data acquisition system. The goal was to acquire high-resolution directional information from 2-hr records taken every 6 hr, except during storm conditions, at which time records were taken every 3 hr. Only data taken at 6-hr intervals were kept for the archives unless interesting wind wave conditions warranted more. The directional array provided for the first time high-resolution incident wind wave direction information coincident with a major nearshore field study.

Data analysis

- 176. Raw data from the directional array was available almost immediately after SUPERDUCK. Processed data will be available later.
- 177. The benefits of such a high resolution description of the offshore wind wave directional field are many. Immediate benefits will be to provide an important measurement useful to most of the SUPERDUCK experiments, including the shoaling wave transformation study, the surf zone width fluctuations

study, the long-wave generation study, and the evolving bathymetry studies. In addition, it provides the motivation for future nearshore investigations such as intensive mean flow current and sediment transport studies. Long-term benefits are a data base of high quality wind wave frequency and directional spectra for the central east coast.

Remote Acoustic Doppler Sensing System

178. Principal investigator was Mr. Gerald F. Appell of the National Oceanic and Atmospheric Administration's Ocean Systems Division.

Objective

179. The objective was to evaluate the near-surface measurement capability of a Remote Acoustic Doppler Sensing (RADS) system under various sea states.

Experiment plan

- 180. An RD Instruments model RD-SC 1200 Doppler current profiler (RD) was set up to transmit both a standard processed data stream and the doppler-shifted frequency data from two beams to a shore station. The frequency data were recorded on an analog tape recorder and will be digitized for analysis. The data will be compared to data collected at a nearby instrument tripod. The RADS was connected to an existing seven conductor cable located near Dr. Weishar's 38-ft (11.6-m) tripod (see Figure 2). Data collection began on 3 October. The instrument was oriented at approximately 45 deg west of north. Unfortunately, this was not the best orientation, and subsequent dives in the area did not afford the opportunity to reorient the instrument.
- 181. An anemometer and wind direction vane were erected at the end of the pier, and wind speed and direction were recorded simultaneously with RADS data.
- 182. When the dive team retrieved the RADS, they found the device covered up by sediment, with only the sensor and one half of the instrument package exposed above the sediment water interface. The dive team was unable to free the RADS by manually lifting, so they cut the main instrument package free from the sediment covered base.

Data analysis

183. Although some problems were experienced with the data acquisition system, the data collected during the experiment from the RD data stream have

been reduced and transferred onto LOTUS 1-2-3 spreadsheets. Some of these data, collected by the National Oceanic and Atmospheric Administration (NOAA), have been plotted-up and are presented in Figure 26.

Short Baseline Slope

184. Principal investigator was Dr. Michael E. Andrew, formerly with CERC.

Objectives

185. The short baseline slope experiment was intended to verify simulation results indicating that small slope arrays of high resolution quartz pressure sensors can provide accurate estimates of mean wave direction. The results of this experiment will provide the foundation for development of directional wave measurement technology that can survive longer deployments, is simple to calibrate, easy to protect from hazards such as trawler nets, and has improved data accuracy and reliability.

Experiment plan

186. The experiment consisted a 12-ft (3.7-m) right triangle slope array with nested 8- and 6-ft (2.4- and 1.8-m) slope arrays (Figures 27 and 28). The pressure sensors output frequencies in analog form. Each analog frequency signal was sampled 5 times per sec and converted to digital format at a concentrator on the gage. The multiplexed digital output was sent via armored cable to a microcomputer recording station inside the FRF building. The gage was sampled at the beginning of every hour for 37 min.

Data collection schedule

187. The gage was installed, and recording was started on 15 October 1986 at 0900 hours. Several days of data were lost during October because of hardware failure at the receiving station. Otherwise, the data set was complete.

Measurement of Long-Period Microseisms

188. Principal investigator was Mr. Kent K. Hathaway (formerly with the Florida Institute of Technology) of CERC.

Objectives

189. This study examined the relationship between microseismic activity and local ocean wave activity, with particular attention to the ocean wave

Figure 26. RADS data for October 1986

Figure 27. Slope array prior to deployment

height and direction determined from the south tripod data. Other considerations for microseismic production was the effect of ocean wave modifications as a result of beach slope, offshore bars, and tidal elevations. A previous investigation by Hathaway and Costa (1982) found significant heights deduced from microseismic records were correlated with tide heights (Figure 29). Wind fluctuations were also considered as a possible mechanism for microseismic generation.

Figure 28. Short baseline slope array

Figure 29. Plot of seismometer significant wave height (solid line) and tide height (dashed line) for Nov 1981 and Jan-Feb 1982 (from Hathaway and Costa 1982)

Experiment plan

190. Microseisms (Earth noises) are perceived as the continuous background noise recorded by seismometers. These noises are results of external influences from the atmosphere and the ocean. Any disturbance of the structure of the Earth will result, at least locally, in some degree of seismic activity. Although seismic noise has been recorded with periods ranging from 10^{-2} to 10^{+8} sec, the microseisms primarily discussed in literature have periods in the range of 2 to 20 sec and are associated with gravity wind waves.

The microseisms measured in this study, in the 2- to 20-sec range, propagate principally as Rayleigh waves with peak periods ranging from 3 to 8 sec and typical amplitudes of 1 to 10 microns.

191. Microseisms often have periods identical to those of the associated ocean waves, termed primary microseisms. However, microseisms are generally observed with periods half those of the ocean waves, termed secondary microseisms, and are believed due to nonlinear ocean wave-wave interactions of standing waves. Waves of this type can occur in a coastal region by reflecting off a steep coast or in the open ocean by intersection of oppositely moving wave trains of similar period. This experiment compared primary and secondary microseismic energy to the local ocean wave energy.

Data collection schedule

192. Long-period vertical microseisms were recorded in September and October 1986 during the SUPERDUCK experiment. The times of data collection are presented in Table 24. These microseisms were measured with a Teledyne Geotech long-period vertical seismometer which produced a signal that was digitized and recorded on an LNW-80 microcomputer. The seismometer and electronics were located in the FRF main building, and the recording computer was in the instrument trailer. Each seismic data set consisted of 4,096 points sampled at 2 Hz and was collected at times corresponding to the FRF data collection.

Data analysis

193. The data were transferred to the FRF VAX computer for analysis. Spectral analysis of the seismic data conforms to the FRF standard time series analysis, allowing a direct comparison to ocean wave gage spectra (e.g., coherence calculations). If possible, the primary and secondary microseismic energies are separated, usually when the corresponding ocean wave spectra are narrow banded and single peaked. The primary, secondary, and total seismic energies are analyzed separately for correlations with the ocean wave energy.

Improvement of Operational Surf Forecasts

194. Principal investigator was Dr. Marshall D. Earle of MEC Systems Corporation.

Objective

195. The objective was to test the real-time operation of a surf fore-

Table 24

<u>Times of Microseismic Data Collection</u>

Date	Time, EDT
13 Sep 86	1400, 1600, 1800, 2000, 2200
14 Sep 86	0000, 0200, 0400, 0600, 0800, 1000, 1700, 1900, 2100, 2300
15 Sep 86	0100, 0300, 0700, 0900, 1100, 1300, 1500, 1700, 1900, 2100, 2300
16 Sep 86	0100, 0300, 0500, 0700, 0900, 1400, 1600, 1800, 2000, 2200
17 Sep 86	0000, 0200, 0400, 0500, 0800, 1000, 1200, 1400, 1600
6 Oct 86	1730, 2000, 2300
7 Oct 86	0200, 0500, 0800, 1100, 1810, 2132
8 Oct 86	1702, 2312, 2346
9 Oct 86	0556, 1646
10 Oct 86	1210, 1301, 1600, 1800
11 Oct 86	1200, 1400, 1600, 1800, 2000, 2200
12 Oct 86	0000, 0200, 0400, 1020, 1220, 1600, 1800, 2000, 2200
13 Oct 86	0000, 0400, 0900, 1100, 1300, 1500, 1700
14 Oct 86	1200, 1400, 1600, 1800, 2000
15 Oct 86	1015, 1100, 1300, 1700, 1900, 2100, 2300
16 Oct 86	0100, 0300, 0500, 0700, 1004, 1204, 1404, 1604, 1815, 2015, 2215
17 Oct 86	0015, 0215, 0415, 0615, 0815, 1015, 1215, 1400, 1600, 1800, 2000, 2200
18 Oct 86	0000, 0200, 0400, 0600, 0800, 1000, 1200, 1850, 2150
19 Oct 86	0050, 0350, 0650, 1250, 1550, 1930
20 Oct 86	0140, 0750, 2000, 2300
21 Oct 86	0200, 0500, 0800, 1100, 1400, 1700
22 Oct 86	1030, 1630, 2230
23 Oct 86	0430, 1030, 1815
24 Oct 86	0015, 0615, 1215

casting model being developed for the US Navy. The model had been previously tested with limited data; however, SUPERDUCK provided an opportunity to test and evaluate it using both actual nearshore wave data and deepwater directional wave forecasts generated by the Navy's Global Spectral Ocean Wave Model (GSOWM).

Experiment plan

196. A Hewlett-Packard 9020A computer system was installed on 19 October. Test forecasts and hindcasts were made between 21-26 October.

Data collection schedule

197. A time period late in October was originally selected for data collection to increase the probability of relatively high waves. Because significant wave heights after 20 October were around 1 m, model capabilities were not tested to the extent desired. During these low-wave conditions, the GSOWM data appeared to overpredict the observed low-wave heights at some times, thus affecting the surf forecasts. For these reasons, data from an earlier high-wave event (10-14 October) with significant wave heights up to approximately 3 m will be used for hindcast tests.

198. Main model components were the surf forecasting model and a separate wave refraction model. Because wave refraction calculations are much more

time-consuming than surf calculations, this division permits prior calculation of wave refraction information for regions of interest.

- 199. Parts of the surf forecasting model cover wave aspects outside the surf zone. The model can use deepwater input consisting of directional spectra or wave parameters (height, period, and direction). Directional spectra forecasts will be provided by GSOWM. Wave parameter input allows use of measured, locally observed, or locally forecast wave information. For parameter input, directional spectra are fit to the parameters. Each directional spectra component (24 directions and 15 frequencies for GSOWM) is modified for wave refraction using previously calculated tables of refraction coefficients and refraction direction changes. Directional spectra just outside of the surf zone provide the total wave energy (i.e. variance from which significant wave height is computed), the dominant frequency associated with maximum wave energy, and a direction determined so that this three-parameter representation has the same longshore momentum flux as that obtained from the 24 x 15 element directional spectra.
- 200. Within the surf zone, a modified version of Thornton and Guza's (1983) work combined with Longuet-Higgins' (1970) radiation stress longshore current model is used. The relationship between the local rate of loss of energy as a result of wave breaking and the bottom stress associated with longshore currents provides longshore current horizontal profiles. For these calculations, provision is made for the user to input the most recent nearshore bottom profile because depths within the surf zone may change rapidly. Surf forecasts at several locations within a region for which refraction effects are calculated can be made without repeating the refraction and deepwater aspects of the model.
- 201. Refraction information is calculated from a 2-D depth grid which typically covers a region from the coast to depths of a few hundred feet and several miles along the coast of interest. Two refraction models operate on the HP-9020A and provide outputs formatted for automatic input to the surf forecasting model. The first is a modified version of Dobson's (1967) well-known numerical wave ray refraction program. The second is a modified version of CERC's program, Regional Coastal Processes Numerical Wave Model (RCPWAVE) (Ebersole et al. 1986), which provides finite-difference solutions of wave velocity potential field equations at each grid point and considers wave diffraction. For this application, some of the RCPWAVE modifications involved

automatic decisions and intelligence to assure that various types of numerical problems are automatically solved or avoided. The modified RCPWAVE model will be used in place of the modified Dobson model as the operational refraction model.

PART VI: SUMMARY

- 202. The SUPERDUCK experiment provided a unique framework for a variety of coastal field studies. Although the studies varied widely, from improving basic observation techniques to very sophisticated arrays of fixed instruments, all the experiments benefited from the cooperative nature of the investigations and from mutual sharing of the collected data.
- 203. This report has described the 30 experiments conducted during the three phases (nonstorm wave, storm wave, and all weather) of SUPERDUCK and summarizes the survey, instrument, and other data which were collected. Much work remains in processing, interpreting, and reporting on the data collected by each of these studies.

REFERENCES

- Davis, R. E., and Regier, L. 1977. "Methods for Estimating Directional Wave Spectra from Multi-Element Arrays," <u>Journal of Marine Research</u>, Vol 35, pp 453-477.
- Dobson, R. S. 1967. "Some Applications of a Digital Computer to Hydraulic Engineering Problems," TR-80, Department of Civil 'ngineering, Stanford University, Palo Alto, CA.
- Ebersole, B. et al. 1986. "Regional Coastal Processes Numerical Modeling Systems; Report 1, RCPWAVE: A Linear Wave Propagation Model for Engineering Use," Technical Report CERC-86-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Field Research Facility. 1986 (Sep-Oct). "Preliminary Data Summary," Monthly Series, Coastal Engineering Research Center, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Hathaway, K. K., and Costa, S. L. 1982. "A Comparison Between Microseisms and Ocean Waves at the Coast of Northern California: Final Report to the Institute of Marine Resources," University of California, San Diego, CA.
- Long, R. B., and Hasselmann, K. 1979. "A Variational Technique for Extracting Directional Spectra from Multi-Component Wave Data," <u>Journal of Physical Oceanography</u>, Vol 9, pp 373-381.
- Longuet-Higgins, M. S. 1970. "Longshore Currents Generated by Obliquely Incident Sea Waves, Parts 1 and 2," <u>Journal of Geophysical Research</u>, Vol 75, pp 6678-6801.
- Mason, C., Birkemeier, W. A., and Howd, P. A. 1987. "Overview of DUCK85 Nearshore Processes Experiment," <u>Proceedings of the Coastal Sediments</u> <u>Conference</u>, American Society of Civil Engineers, pp 818-833.
- Mason, C., Sallenger, A. H., Holman, R. A., and Birkemeier, W. A. 1984. "DUCK82 a Coastal Storm Processes Experiment," <u>Proceedings of the 19th Coastal Engineering Conference</u>, American Society of Civil Engineers, pp 1913-1927.
- Miller, H. C. et al. 1986. "Annual Data Summary for 1984, CERC Field Research Facility," Technical Report CERC-86-11, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Oltman-Shay, J. and Guza, R.T. 1984. "A Data-Adaptive Ocean Wave Directional Spectrum Estimator for Pitch and Roll Type Measurements," <u>Journal of Physical Oceanography</u>, Vol 14, pp 1800-1810.
- Pawka, S. S. 1982. "Wave Directional Characteristics on a Partially Sheltered Coast,", Ph.D. Dissertation, Scripps Institution of Oceanography, University of California, San Diego, CA.

- Pawka, S. S. 1983. "Island Shadows in Wave Directional Spectra," <u>Journal of Geophysical Research</u>, Vol 88, pp 2579-2591.
- Pawka, S. S. et al. 1983. "Radiation Stress Estimates," <u>Journal of Physical Oceanography</u>, Vol 13, pp 1698-1708.
- Pawka, S. S. et al. 1984. "Island Sheltering of Surface Gravity Waves: Model and Experiment," <u>Continental Shelf Research</u>, Vol 3, pp 35-53.
- Thornton, E. B., and Guza, R. T. 1983. "Transformation of Wave Height Distribution," <u>Journal of Geophysical Research</u>, Vol 88, pp 5925-5938.

APPENDIX A: SUMMARY OF SUPERDUCK DIGITAL DATA COLLECTED BY THE FRF

This appendix includes tables of the hourly status of each instrument deployed during SUPERDUCK which was hooked up to either the FRF's Data General NOVA-4 minicomputer or the Digital Equipment VAX 11/750. The tables are organized by day and computer. Gage numbers and gage names refer to the gages listed in Table 1 and shown in Figure 2 of the main text. Gages which are part of the routine FRF data collection program have a gage name of "FRF". Other information included in the tables is defined below.

	Gage Types		Hourly Status Legend
Type	Description	Symbol	Description
1	Baylor staff wave gage	0	Operational, data collected
2	Datawell Waverider buoy	N	No good, data collected
3	Pressure wave gage	?	Questionable data collected
4	Electromagnetic current meter	X	Gage inoperative and/or not on system
6	Wind Speed	blank	Data not collected
7	Wind Direction		
8	Air Temperature		
9	Atmospheric pressure		
12	Tide gage		
29	Sonar altimeter		

Specific comments recorded by Dr. Joan Oltman-Shay regarding the operational status of the longshore current array are also included in the tables.

September 13, 1986: NOVA-4 Data Collection Gage Gage Gage (13, 1986: NOVA-4 Data Collection Mumber Type Name (123456/7890123456/7890123 645 1 FRF 0 0 0 0 645 1 FRF 0 0 0 0 651 3 FRF 0 0 0 0 659 4 FRF 0 0 0 0 650 2 FRF 0 0 0 0 650 2 FRF 0 0 0 0 651 3 FRF 0 0 0 0 652 6 FRF 0 0 0 0 653 7 FRF 0 0 0 0 653 7 FRF 0 0 0 0 654 8 FRF 0 0 0 0	September 13, 1986 VAX Data Collection Hourly Status Gage Gage Gage Gage Gage Gage Hourly Status 675 1 FRF 0000 0000 0000 0000 0000 0000 000
September 12, 1986: NOVA-4 Data Collection Gage Gage Hourly Status 645 1 FRF 0 0.00000000 0 645 1 FRF 0 0.00000000 0 645 1 FRF 0 0.0000000 0 645 1 FRF 0 0.0000000 0 651 3 FRF 0 0.0000000 0 679 4 FRF 0 0.0000000 0 689 4 FRF 0 0.0000000 0 640 2 FRF 0 0.0000000 0 640 2 FRF 0 0.0000000 0 633 6 FRF 0 0.0000000 0 624 8 FRF 0 0.0000000 0	Gage Gage <th< td=""></th<>
September 11, 1986: NOVA-4 Data Collection Cage Gage Gage Gage Gage Gage TITITITITIZZZZ Number 1ype Naxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	September 11, 1986 VAX Data Collection Gage Gage Hourly Status 675 1 FRF 00000 00000 000 645 1 FRF 00000 00000 000 645 1 FRF 00000 00000 000 657 4 FRF 00000 00000 000 659 4 FRF 00000 00000 000 650 2 FRF 00000 00000 000 630 2 FRF 00000 00000 000 631 3 FRF 00000 0000 000 631 4 FRF 00000 00000 000 631 5 FRF 77777 00000 000 632 6 FRF 77777 00000 000 633 1 FRF 00000 00000 000 631 3 LA01 NINNIN

September 16, 1986: NOVA-4 Data Collection lage Gage Gage Gage Gage Gage Gage Gage G	September 16, 1996 VAX Data Collection Lamber Lype Hourly Status 675 1 FR 0000 0000 000
September 15, 1986: NOVA-4 Data Collection Gage Gage Gage Gage Gage Gage Gage Gage	September 15, 1986 VAX Data Collection Rage Gage Gage Gage Gage Gage Gage Gage G
September 14, 1986: NOVA-4 Data Collection Gage Gage Hourly Status Rumber Type Name 012345678901234567890123 675 1 FRF 0 0 0 616 9 FRF 0 0 0 621 3 FRF 0 0 0 679 4 FRF 0 0 0 650 2 FRF 0 0 0 640 2 FRF 0 0 0 640 2 FRF 0 0 0 633 7 FRF 0 0 0 624 8 FRF 0 0 0 624 8 FRF 0 0 0	September 14, 1986 VAX Data Collection Hourly Status Gage Gage Gage Hourly Status Number Type Name O12345678901234 567890123 1717171717222 645 1 FRF 0000 0000 0000 0000 621 3 FRF 0000 0000 0000 0000 630 4 FRF 0000 0000 0000 0000 630 2 FRF 0000 0000 0000 0000 631 3 FRF 0000 0000 0000 0000 632 6 FRF 0000 0000 0000 0000 633 7 FRF 0000 0000 0000 0000 633 7 FRF 0000 0000 0000 0000 633 7 FRF 0000 0000 0000 0000 641 3 LA01 0000 0000 0000 0000 651 3 FRF 0000 0000 0000 0000 652 6 FRF 0000 0000 0000 0000 653 7 FRF 0000 0000 0000 0000 653 8 FRF 0000 0000 0000 0000 654 9 FRF 0000 0000 0000 0000 655 9 FRF 0000 0000 0000 0000 656 9 FRF 0000 0000 0000 0000 657 141 LA02 0000 0000 0000 0000 658 9 FRF 0000 0000 0000 0000 659 9 FRF 0000 0000 0000 0000 650 000 0000 0000 0000 0000 FRF 0000 0000 00

September 19, 1986: NOVA-4 Data Collection Hourly Status Gage Gage Hourly Status 625 PRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	September 19, 1986 VAX Data Collection Ray Cage Gage Gage Gage Gage Gage Light Hame 11711111111112222 Mumber Type Name 012345678901234567890123 000
September 18, 1986: NOVA-4 Data Collection Gage Gage Gage Gage Gage Gage Gage (123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789010345678678901034567867867867867867889010345678890103456786789010345678901034567890103456788901034	September 18, 1986 vAX Data Collection Gage Gage Gage Hourly Status 625 1 645 1 645 1 645 1 646 9 647 4 689 4 640 2 652 6 645 1 669 4 679 4 679 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6 670 6
September 17, 1986: NOVA-4 Data Collection Gage Gage Gage Gage Gage O1234567890123.567890123 Number Iype Name 01234567890123567890123 645 1 FRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	September 17, 1986 VAX Data Collection Gage Gage Gage Gage Gage Gage Gage Gage

September 22, 1986: NOVA-4 Data Collection Gage Gage Gage Aurity Status Aurity Status Hourity Status Hourity Status Gage Gage Gage Gage Gage Gage Gage Gage Gage Gage Gage Gag	September 22, 1986 VAX Data Collection Gage Gage Gage Mumber Type Name 012345678901234 625 1 FRF 0000000 0000 675 1 FRF 0000000 0000 677 4 FRF 0000000 0000 621 3 FRF 0000000 0000 624 8 FRF 0000000 0000 630 2 FRF 0000000 0000 631 2 FRF 0000000 0000 632 6 FRF 0000000 0000 633 7 FRF 0000000 0000 633 7 FRF 0000000 0000 633 1 And 000000 0000 634 6 FRF 0000000 0000 645 6 FRF 0000000 0000 647 1 3 LA01 0000000 0000 121 3 LA02 000000 0000 141 3 LA02 000000 0000 151 3 LA05 000000 0000 161 3 LA06 0000000 0000 161 3 LA08 000000 0000 161 3 LA09 000000 0000 161 3 LA09 000000 0000
September 21, 1986: WOVA-4 Data Collection Gage Gage Gage Gage Gage O1234567890124567890123 Hourly Status Gage Gage Gage Gage Gage Gage Gage Gage	September 21, 1986 vAX Data Collection Hourly Status Gage Gage Gage Gage Hourly Status 625 1 FRF 000 0000 00000000 675 1 FRF 000 0000 00000000 675 1 FRF 000 0000 00000000 621 3 FRF 000 0000 00000000 624 8 FRF 000 0000 00000000 630 2 FRF 000 0000 000000000 631 3 FRF 000 0000 000000000 632 6 FRF 000 0000 000000000 633 7 FRF 000 0000 000000000 633 7 FRF 000 0000 000000000 633 7 FRF 000 0000 000000000 640 5 FRF 000 0000 000000000 641 3 LA03 000 0000000000 640 5 FRF 000 0000 0000000000 641 5 FRF 000 0000 0000000000 <t< td=""></t<>
September 20, 1986: NOVA-4 Data Collection Hourly Status Gage Gage Gage (12345678901234567890123 Number Type Name 012345678901234567890123 625 1 FRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	September 20, 1986 VAX Data Collection Gage Gage Gage Gage Gage Gage Gage Gage

September 25, 1986: NOVA-4 Data Collection Gage Gage Gage Gage Gage Gage Gage Gage	September 25, 1986 VAX Data Collection Gage Gage Gage Gage Gage Gage Gage Gage
September 24, 1986: NOVA-4 Data Collection Hourly Status Hourly Status Hourly Status Aumber Type Amme C75 625 1 FRF 0	September 24, 1986 VAX Data Collection Gage Gage Gage Gage Number Iype Hourly Status 625 Hourly Status 625 FRF 645 FRF 646 FRF 659 FRF 650 FRF 650 FRF 650 FRF 651 FRF 652 FRF 653 FRF 653 FRF 653 FRF 654 FRF 655 FRF 656 FRF 657 FRF 658 FRF 658 FRF 658 FRF 659 FRF 650 FRF 650 FRF 651 FRF 652 FRF 653 FRF 653 FRF 653 FRF 653 FRF 654 FRF 655 FRF 656 FRF 657 FRF 658 FRF 658 FRF 659 FRF 650 FRF
September 23, 1986: NOVA-4 Data Col.ection Gage Gage Gage Number Type Name 01234567890123 Hourly Status 6.75 1 FRF 0 0 0 6.45 1 FRF 0 0 0 6.45 1 FRF 0 0 0 6.45 1 FRF 0 0 0 6.57 2 FRF 0 0 0 6.51 3 FRF 0 0 0 6.79 4 FRF 0 0 0 6.79 5 FRF 0 0 0 6.70 6 FRF 0 0 0 6.70 7 FRF 0 0 0 6.30 2 FRF 0 0 0 6.40 2 FRF 0 0 0 6.32 6 FRF 0 0 0 6.34 8 FRF 0 0 0	September 23, 1986 VAX Data Collection Gage Gage Gage Hourly Status 625 PRF 645 FRF 645 FRF 646 9 FRF 650 2 FR

September 28, 1986; NOVA-4 Data Collection Gage Gage Gage Number Type Name 012345678901234567890123 625 1 FRF 0 0 0 0 645 1 FRF 0 0 0 0 645 1 FRF 0 0 0 0 645 4 FRF 0 0 0 0 650 2 FRF 0 0 0 0	September 28, 1986 VAX Data Collection Gage Gage Gage Gage Hourly Status Gage Gage Gage Gage Hill 11112222 Number Iype RRF 675 1 FRF 621 3 FRF 622 8 FRF 630 2 FRF 630 2 FRF 631 640 2 FRF 632 6 FRF 633 7 FRF 633 7 FRF 633 1 A00 151 3 LA02 151 3 LA05 161 3 LA06 171 3 LA06 191 3 LA06 101 3 LA06
September 27, 1986; NOVA-4 Data Collection Gage Gage Gage Gage Gage Gage Gage FRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	September 27, 1986 VAX Data Collection Gage Gage Gage Gage Mumber Type Rape 675 1 FRF 675 4 FRF 630 2 FRF 630 2 FRF 631 3 FRF 633 7 FRF 633 7 FRF 633 1 11 3 LA03 141 3 LA04 171 3 LA04 181 3 LA05 101 3 LA06 101 3 LA09 101 3 LA09
September 26, 1986: NOVA-4 Data Collection Gage Gage	September 26, 1986 VAX Data Collection Gage Gage Gage Gage Mumber Type Name 012345678901235 675 1 FRF 675 1 FRF 676 9 FRF 630 2 FRF 630 2 FRF 631 3 FRF 640 2 FRF 640 2 FRF 640 2 FRF 640 2 FRF 640 3 FRF 640 3 LA02 151 3 LA03 161 3 LA03 161 3 LA05 161 3 LA06 171 3 LA07 181 3 LA07 181 3 LA07 181 3 LA07 191 3 LA07

October 1, 1986: NOVA-4 Data Collection Hourly Status Gage Gage Gage Thill 111111222 Almber Type 615 1 FRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Gage Gage Gage Gage Gage Gage Gage Gage
September 30, 1986: NOVA-4 Data Collection Hourly Status Advance Hourly Status Advance Hourly Status Advance Hourly Status Advance FRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	September 30, 1986 vax Data Collection Gage Gage
September 29, 1986: NOVA-4 Data Collection Hourly Status Gage Gage Gage Hourly Status Number Type Name 01234567890123 1717171717222 625 1 FRF 0 0 0 0 0 0 0 645 1 FRF 0 0 0 0 0 0 0 645 2 FRF 0 0 0 0 0 0 0 640 2 FRF 0 0 0 0 0 0 0 630 2 FRF 0 0 0 0 0 0 0 640 2 FRF 0 0 0 0 0 0 0 640 2 FRF 0 0 0 0 0 0 0 633 7 FRF 0 0 0 0 0 0 0 624 8 FRF 0 0 0 0 0 0 0	September 29, 1986 VAX Data Collection Gage Gage Gage Gage Gage Gage Gage Gage

Cotober 4, 1986; NOVA-4 Data Collection Gage Gage Gage O1224567890123567890123 Number Type Name 01224567890123567890123 625 1 FRF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	October 4, 1986 VAX Data Collection Gage Gage Gage Mumber Iype Name 012345678901234 675 1 FRF 645 1 FRF 651 9 FRF 652 2 FRF 653 2 FRF 650 12 FRF 651 3 LA02 151 3 LA02 151 3 LA04 151 3 LA04 151 3 LA05 161 3 LA06
October 3, 1986: MOVA-4 Data Collection Gage Gage Gage Hourly Status Number Iype Name CSS 1 FRF 0 0 <td>October 3, 1986 VAX Data Collection Gage Gage Gage Number Iype Name 012345678901234567890123 645 1 FRF 645 1 FRF 645 1 FRF 646 2 FRF 650 2 FRF 650 12 FR</td>	October 3, 1986 VAX Data Collection Gage Gage Gage Number Iype Name 012345678901234567890123 645 1 FRF 645 1 FRF 645 1 FRF 646 2 FRF 650 2 FRF 650 12 FR
October 2, 1986; NOVA-4 Data Collection Hourly Status Gage Gage Gage Hourly Status 625 1 FRF 0 0 0 645 1 FRF 0 0 0 0 645 1 FRF 0 0 0 0 645 4 FRF 0 0 0 0 650 4 FRF 0 0 0 0 650 2 FRF 0 0 0 0 640 2 FRF 0 0 0 0 640 2 FRF 0 0 0 0 651 3 FRF 0 0 0 0 652 4 FRF 0 0 0 0 653 5 FRF 0 0 0 0 640 2 FRF 0 0 0 0 654 8 FRF 0 0 0 0 654 8 FRF 0 0 0 0	October 2, 1986 VAX Data Collection Gage Gage Gage Gage Gage Gage Gage Gage

ollection	11111122	-	0				0						0		lection		77	234567890123																					
NOVA-4 Data C	l	012345678901		0		0			_				0		VAX Data Col	HOULLY		012345678901																					
1986:	Gage	Name		œ	œ		FRF			7.	F.R.F	œ		78. T	1986		cage	all	¥ ;			<u> </u>	7. T	7.	FRF	7.	FR	2	2	× (200	¥05	LA03	70 V 1	LA05	LA06	LA08	LA09	<u> </u>
October 5,	Gage Gage	L	i	673	£2 -	6 919	621	-	_		_	_	633 7	_	October 5			Type Type	Ç,	ر د د د د د د د د د د د د د د د د د د د	- G	6 919	621 3	7 629			630 2			•	-		31.	141 3	151	161		191	n 101
		_	-																																				

Collection	y Status	111111111112622 01234567890123	1	0000 0000					XXXX XXXX		7777 7777			3333 3333					0000 0000						XXXX XXXX					0000		0000 0000			000									0000		0000 towarmolitude	OOOO LOW amp	NAME AND VITING PROBLEM	DULLIA NAMA
October 6, 1986 VAX Data Co	JOOH .	Gage Gage Type Mame	1087	41	o <	t 4	12	4	- 21	MI		91		۸ h	۷ ۲ 		36	36	ደ		8	8		4	4 1	س ا	M 1	∩ ⊬	151 7 150) P	m	181 3 LA08	M	1 ×	• •	4	4.	703 7 67Z	: ~	r v	• • •	-	4	-	- L	1 -	. 4	209 4 LS10	3
ا ا	HOULLY STATUS	111111111222 0123478901234567890123	0000000000	•		0000000000	,	XXXXXXXXX	XXXXXXXXX	ililitati	22222222	1111111111	11111111	1111111111	1111111111				000000000	000000000	ZZZZZZZZ	000000000	XXXXXXXXX	XXXXXXXXX		0	000000000000000000000000000000000000000		.	0	,	0000000000 0 0																	
October 6, 1986: N		Gage Gage Gage	120	41	∽ ~	t -4	12	4	4 1	~ 1	٠ ·	^ •	^ P	^ ∼) M	אַר	3	3	2000	200	:2	29	8	4	4	- .	- •	- م	۰,	10	∞ ∞	632 6 FRF	_																

October 7, 1986 VAX Data Collection		Gage Gage 0122/5478001	0000 0000 0000 1031 7	4 LS01 0000 0000 0000 0000 X and Y crossed, fixed by	3 FRF 0000	4 FRF 0000 0000 0000 0000	4 FRF 0000 0000 0000	12 TIDE NNNN NNNN NNNN	4 CS10 XXXX XXXX XXXX	XXXX XXXX XXXX	3 CS01	2577 7777	3 CS03 7777 7777 7777	1 3 CSO4 7777 7777 7777	2777 7777	3 CS06 7777 7777 7777	3 CSO6 7777 7777 7777	29 CS01 7777 7777 7777	2777 7777 7777	29 CS03 7777 7777 7777	29 CSO4 7777 7777 7777	29 CSOS 7777 7777 7777	29 CSO6 NNNN NNNN NNNN	29 CS07 7777 7777 7777	29 CSO8 XXXX XXXX XXXX	4 CS11 XXXX XXXX XXXX	4 CS11 XXXX XXXX XXXX	3 LA01 0000 0000 0000	3 LA02 0000 0000 0000	3 LA03 0000 0000 0000	3 LA04 0000 0000 0000	3 1.405 0000 0000 0000	0000 0000 0000	3 LA07 0000 0000 0000	0000 0000 0000	3 LA09 0000 0000 0000	3 LA10 NINN 0000 0000 0000	229 4 LSO2 NNNN 0000 0000 0000 Filter problem, fixed by 0730
	Hourly Status	22221111111111	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	ENDERENDED DE LE LE	XXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXX	titititititititititititi	*************************	227777777777777777777777777777777777777	<i>iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</i>	***************************************	ilititititititititititi	titititititititititi	***************************************	2552577777777777777777777	lilllililililililililili	2222222222222222222	************************	ZZZZZZZZZZZZZZZZZZZZZZZ	225555555555555555555555555555555555555	XXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
1986: NOVA-4		Cage	1801	LS01	FRF	FR	FRF	TIDE	cs10	cs10	CS01	CS05	CS03	CS04	CS05	cs06	CS07	CS01	CS0 2	CS03	CS04	CS05	CS06	CS07	CS08	CS11	CS11	7. 7.	W.	ж ж	FRF	FRF	FRF	FRF	F.	FRF		
October 7,		Gage Gage	44Z	319 4	621 3	7 229	7 689	600 12	7 607	200	411 3	421 3	431 3	441 3	451 3	461 3	471 3	418 29	428 29	438 29	67 8 7 5 6	458 29	62 897	478 29	818 29	7 677	249	625	673	\$3	630 2	%	616 9	624 8	632 6	633 7		

	Low amplitude Low amplitude Low amplitude Fixed during s Fixed during s
Main Value Status Hour Value Status Hour Value	888888888888888888888888888888888888888
Date Collection Hourty Status 11111111 111111111 11111111111111	00000000000000000000000000000000000000
NAX Day 10 10 10 10 10 10 10 1	88888888888888888888888888888888888888
1986 VAX	1808 1808 1808 1809 1810 1810
90 90 90 90 90 90 90 90 90 90 90 90 90 9	4444444
	2000 000 000 000 000 000 000 000 000 00
111111222 1000000 0000000 0000000 0000000 000000	
1986. NOVA-4. Data Collection 150 Marie 15111111112222 150 Marie 15111111111222 150 Marie 1524567890123.567890123 150 Marie 150 150 Marie 150	
286 286 286 286 286 286 286 286 286 286	
10000000000000000000000000000000000000	
CC Coperation of the coperatio	

	Low amplitude signal Low amplitude signal
888888888888888888888888888 <mark>8</mark> 73	8888888888
\$1 \cdot \cd	00000000000000000000000000000000000000
1986 VAX Data Collection Hourity Status Hourity Sta	00000000000000000000000000000000000000
\$ 500000000000000000000000000000000000	00000000020
]	1200 1200 1200 1200 1200 1200 1200 1200
00100	44444444444
Control of the contro	2000 2000 2000 2000 2000 2000 2000 200
1986; NOVA-4 Data Collection	
1986. 1003	
P. B. M. 44 74 44 44 44 44 44 44 44 44 44 44 44	
0ctober 9 Large L	

Giitches possible 1200-1600 All channels	
2 3 3 3 3 3 3 3 3 3 3	signa Jangis
38.5 16 5 16 5	
tches possib	amplitude amplitude
itche All	
₽N	55
20000000000000000000000000000000000000	88888888888888888888888888888888888888
## Collection Hourity Status 1111111111111222 111111111111222 1111111111	20000000000000000000000000000000000000
25	
MAX Data Color Color	
8	
	1504 1504 1506 1506 1506 1506 1506 1506 1506 1510 1510
90	144444444444
000 000 000 000 000 000 000 000 000 00	571 680 680 680 680 680 680 680 680 680 680
Gage 623 623 623 623 623 623 623 623 623 623	ัพณ์พิณีพัญพัญพัญพัญพัญ
000000000000000000000000000000000000000	
COLLection Status 111111111111111111111111111111111111	
1004-4. Data Collection Hourity Status 11234.5678901234.5678901 00000000000000000000000000000000000	
18 CO	
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NOVA-4, Data Collection Hourly Status	
1986 1	
1	
Ctober 11	
CCC	

```
looks good
looks good
looks good
looks good
de signal
de signal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Strip chart loc
Strip chart loc
Strip chart loc
Strip chart loc
Low amplitude s
Low amplitude s
                          VAX Data Collection
Hourly Status
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
33.33
    1986
                                                 FINAL TENNO CONTRACTOR TO THE 
  October 12,
                                                                                                                                                                                                                                                                                                                                                                                 mmmmmmggggggmmm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45454

45
1986:
                                                 October 12,
                                                 25.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26.50

26
```

Zafara.

	Low amplitude signal Low amplitude signal	LS10 hit by CRAB Lost for remainder
1986 VAX Data Collection Hourly Status Hourly Status Hourly Status (2000 0000 0000 0000 0000 0000 0000 00	00000000000000000000000000000000000000	
Gage Gage Gage Gage Gage Gage Gage Gage	4444	14468
1986: NOVA-4. Data Collection Hourly Status Hourly Status Hourly Status Hourly Status 1500000000000000000000000000000000000		
13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 13. 1986. 14. 19. 19. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18		

Collection started on generator power	Low amplitude signal Low amplitude signal Noisy strip chart Strip chart looks good
	88888888888888888888888888888888888888
11116ct ion 11234567891222222222222222222222222222222222222	800000 N 000000000000000000000000000000
1986 VAX Data Collection 1986 VAX Data Colle	20000000000000000000000000000000000000
13	1507 1508 1508 1509 1510 1510 1510 1510 1510
00 00 00 00 00 00 00 00 00 00 00 00 00	344444408
000 000 000 000 000 000 000 000 000 00	£888888888
1986: NOVA-4 Data Collection Hourly Status	
1986 19	
J.	
Cage Ca	

	amplitude amplitude
	300
8888888888 <i>222222</i>	888888888888888888888888888888888888888
MAX Data Collection	80000000000000000000000000000000000000
Data Collection 11111111111111111111111111111111111	88888888888888888888888888888888888888
20000000000000000000000000000000000000	000000000000000000000000000000000000000
20000000000000000000000000000000000000	
× 500000000000000000000000000000000000	0000000000000000
1986 1986	1502 1503 1503 1503 1503 1504 1506 1508 1508 1508 1509 1509 1509 1509 1509 1509 1509 1509
######################################	บลลลลลลลลลลลลลลล
200 000 000 000 000 000 000 000 000 000	88 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
NOVA-4 Data Collection Hourly Status 111111111112222 012345678901234567890123	AX Data Collection
	5 1 010000000
Gage Sage Sa	Gage Name LS01 LS01 FRF FRF FRF
25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	ober 1 1706 22 23 33
Gage Gage Gage Gage Gage Gage Gage Gage	Gage 1319 625 635 640 640 621

Coper 17, 1986 VAX Data Collect Hourly Status Hourly Statu	0000 00000 00000 00000 0000 0000 0000 0000	4 LS08 DOO DOOD DOOD OOOO COOO COOO COOO COOO
Gage Gage I 17 1986: NOVA-4 Data Collection HOLTLY Status Gage Gage I 20100000000000000000000000000000000000	00000000000000000000000000000000000000	 ች ሊ ሕ ሺ ሕ 3 3

																																			CRAB at 1400 - probe pike not hit									
ક	11222	89012	38	NNN	KKKK	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8	88	38	38	88	ZZZ	2222	7777	2222	2222	2225	2222	8	88	38	88	8	8	88	38	8	8	88	38	000	88	88	88	38	000	88	88	000	88	88	NNN	NNN	8
llecti		1234567890123	88	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	<u>X</u> 00	8	8	8	38	38	88	ZZZZ	7777	7777	2222	2222	2225	ذذذذ	8	88	38	88	8	8	88	38	8	8	88	38	000	88		88	38	00	88	88	8	88	38	NNN	N N	000
1986 VAX Data Collection		012345678901	88	N.N.	ZZZZ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000	000	38	38	88	スピスフ	7777	7777	2222	222	2225	2277	8	88	38		8	00	88	38	8	800	88	38	8	88	88	88	38	8	88	88	000	88	38	N S		8
YAX (01234	88		Z			88																									38								_	- \ R R		_
•	Gade		¥ 0	CS11	CS11	S 10	CS01	CS02	200	50.00 50.00	2000	cs06	cs01	202	2000	CS05	CS06	CS07	FR	X (ž 0	1401	LA02	LA03	LA04	A 05	LA07	LA08	8	LS02	L S02	1.503	1204	L S04	1505	1.506	LS06	1807	1.508	1208	1209	LS10	1106	CS08
October 18,	Gade		4 <	14	4	4 4	m		1 P	ሳ M	m	M	ጵያ	3,8	52	:8	53	გ.	. .	01	۰,	M	m	MI	M 14	O 141	m	m	M N	1 4	4	4 4	.4.	4 .	t t	4	.	1 4	4	4.	1 4	4.	. ₂	8
90 51	Gage	Number	> 9	64 84	249	404 204 204	41	421	3	44	19	471	418 60 60 60 60 60 60 60 60 60 60 60 60 60	274	0 K 7 7	458	468	478	3	632	254	25	121	131	141	7	12	181	55	525	329	239	38	34,	329	569	389	32	583	383	38	200	9	884
1986: NOVA-4 Data Collection	Ŧ	012345678901234567890123	_		_	000000000000000000000000000000000000000	TEXT TO THE TEXT T	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	A SENETHENESS OF THE SENETHENESS AS A SE		3 0000000000000000000000000000000000000	4 0000000000000000000000000000000000000	25 000000000000000000000000000000000000		7 222222222222222222222	3 227277777777777777777	4 222722222222222222	5 77777777777777777777777	222222222222222222	11 2222222222222222222									8 00000000000000000000000000		1986 VAX Data Collection	Hourly Status	0123456	ww	800	F 000 0000 0000 0000	0000	800	0000 0000 000					
			S	18. 18.	FRF	FRF 117	CS1	CS 10			CS03	CS04	CS05	CSUS	200	CS03	CSO4	CS05	206	2000	¥ 0	2	FR	FRE	A .	7 G	FR	TIDE	CS08		18, 19		Sale Sale		1501	FRE	5. 0 17. 10	, A	FR					
October 18,	Sege			ł M	4	4 4	4	4.	J P	0 K	m	M	mı	n ç	\$2	3	೩	న	ኢ	₹;			~	7	0	0 <	~	12	&		October	9		`	t t	-	۰- ۰	۰,	M					
Octob	ener.	Mage	212	621	83	689 99 99	249	604	<u>}</u> :	1,57	431	441	451		\$ 1 2	438	448	458	89	874	Š.	\$	630	070	616	* C* S	633	9	488		9	9	Marger	6	319	625	673 673	3	621					

1986 VAX Data Collection Hourly Status	1111111112222	11234567	8	8				8 00	_	8	8	0000	88	38	3		1111	2575			2222	icic	2222	0000	8	000	8	8	8	8	8	8		88	88	38		38		8	8	8	8	Z Z Z		8	8	0000 0000	NNNN NNNN Sensor	NNNN NNNN Sensor goes	0000 0000	322			0000 0000	}
Data Hour		20/20	8	3		Z Z Z	Z Z Z	X X X	8	8	8	000	8	38	3		111	277	2277	222	222	777	227	Ö	8	00	8	g	8	8	8	8	3	8	8	38	38	38	88	Ö	8	8	8	8	8	8	8	8	X X X	Ž	88		8	3	0	
X		01234	8	8			Z	ZZZ	8	8	8	000	8	38	3	N N N	3333	222	2225	2222	2225	2222	2222	8	000	800	8	8	8	8	8	8	8	88	88	38	38	38	88	000	8	8	8	8	8	8	8	8	Z	Z	88	32	E E E E E E E E E E	N	8	}
	Gade	Name	FRF	FRF	CSI	CSI	CS 10	CS 10	CS01	CS02	CS03	705	200		93	CSG0	CS01			CS04					F.		E E			LA03					208 1.408		202	202	203	1.503	1.504	LS04	LS05	LS05	1.506				L 508	L 508	200	200	250	TIDE	208	
October 19	Gage	TYDe	3	.	4	4	4	4	m	m	M	M) P	3 P	^ 1	2	R)	&	&	2	2	2	. 2	; -	۰.		۰.	m	M	m	~	mı	mı	~ 1	~ ,	9,	o <	5 ~	۲ ۷	. 4	4	4	4.	3	4	4	4	4	4	4	4.	\$ ~	* <	12	18	ì
OC \$	Gage	Number	629	200	644	249	604	200	411	421	431	177	127	?	Ģį	74	418	428	438	877	857	897	478	645	632	633	616	11	121	131	141	151	19	<u> </u>	181	5	200	220	236	339	549	349	259	359	569	369	& ~	& F	58 8	386	888	200	200	900	887	}
October 19, 1986: NOVA-4 Data Collection Hourly Status	Gage Gage Gage 11111111111222	IZ.	000000000000000000000000000000000000000	1 F201	~) .	FRF	FRF	_	4	- cs10	- CS10	2 CS01	202		2000		3 CS05	m	ጲ	8	2	20 CS OK	205	2000	29 CS07	1	FR	1 FRF	2 FRF (_	PRF.		6 FRF	FRF				October 10 1086 VAY Data Collection	Mourily Status	Gade Gade Gade	Z e	1057 7	0000	1 FRF 0000 0000 0000	1 FRF 0000 0000 0000	2 FRF 0000 0000 0000	2 FRF 0000 0000 0000	3 FRF 0000 0000 0000								

	if bed 13
	X channel
1245.567890123 518 tus 518 tus 518 tus 6000 0000 0000 0000	00000000000000000000000000000000000000
22222222222222222222222222222222222222	00000000000000000000000000000000000000
MANNIN NOON NAME NAME NAME NAME NAME NAME NAME NAM	
1986 VAX Data Col ect On Col Col	
	1504 1504 1504 1506 1506 1510 1510 1510 1510 1510 1510
20019997597597597597597597597597597597597597	เลลลลลลลลลลลลล
250 250 250 250 250 250 250 250 250 250	\$
OE 000000000000000000000000000000000000	2222 2000 2000 2000 2000 2000 2000 200
NOVA-4. Data Collection HOUTLY Status COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC	
Sec. MOVA-4 Data Collecti Fatus Fa	11111111111111111111111111111111111111
4 Data C	\$ 888888888888888888888888888888888888
	0123456789012 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
286.25.202.25.203.203.25.203.203.25.203.25.203.203.203.203.203.203.203.203.203.203	6899 1201 12
100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 3 3 3
Gage Gage 119 4 4 11 11 11 11 11 11 11 11 11 11 11 11	Gage Number 319 319 675 675 620 621

Data Collection	1111111222	1234567890123	0000	000 0000 MANA MANA		ZZZ	NAME OF STREET	38	8	8	88	8	SOOD SOOD	7777	2777	2777	2777	7777	` {	38	88	0000	8	8	88	88	N N N	8 8	88	38	0000 0000	0000 0000	- C	0000 0000	8	XXXX XXXX	XXXX	NNNN NNNN Sersor became	0000 0000			8	0000 0000	8	NAMA NAMA	3
ST C		57890	000	3 3				38	8	8	8	3	2222	2222	ilii	2555	222	7777	2	38	38	8	8	8	88	38	} }	8	88	38	88	8	88	88	8	Š		Z	8			8		8		3
VAX De		0123456	0000			ZZZ		88	8	8	8	82	2222	2222	1111	7777	255	7777	: { : {	38	38	8	8	8	88	38	N N N N N	8	88	38	88	000	88	88	8	0 2		X	8			8	00 N 00 N N	8	NN S	3
1, 1986 VAX	9065	Name	FR	¥ 5	CS11	CS10	S 10	CS02	CS03	CS04	203	96		CS02	CS03	CS04	CS05	CSO		F 0	F 6	. H	Ş	LA02	1403	Y	288	LA07	88 3:	35	L S02	705	1503	1204	1204	LS05	200	90S1	LS07	/0S1	8087	6087	LS09	LS10	1106	ב ה ב
October 21	9085	Z		s <	. 4	4	4 P) M	M	M	m 1	~ P	ი გ	36	8	&	&	R 3	٠,	- •	٥,	. 0	m	M	M	۱ ۲	'n	M	m	~ ~	1 ·\$	4	4	• •	4	4 ~	\$ ~ 3	4	.	3 ~	1 4	4.	4 4	4	~⊱	Š
900	9080		6/9	8 ?) } }	607	865	75	431	£41	451	Ş (- «	758	438	877	458	9 9 9 9	\$ \ 0 \ 1	35	729	616	Ξ	121	<u>.</u>	į	<u> </u>	171	<u>ه</u>	<u> </u>	523	33	333	573	340	526	260	8	2	2,0	<u> </u>	83	& &	8	8	ğ
NOVA-4 Data Collection	141411117777	012345678901234567890123	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	ZZZZZZZZZZZZZZZZZZZZ	*************************************	NIN	000000000000000000000000000000000000000	0000000000000000000000			000000000000000000000000000000000000000	ililippini	***************************************	222222222222222222	222222222222222222222		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	NANANANANANANANANANANANANANANANANANANA	accommonation		6 VAX Data Collection	Hourly Status	012345678901234567890123	0000 0000 0000 0000	0000 0000 0000		0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000						
1986:	9049		130	LSOI	, 1	FRF	Si	520	CS 10	CS01	CS02	CSOS		2000	CS01	CS05	CS03	CS04	200	2000	FRF		FR	FRF	æ 6	7 0	. E	FRF	110E	202		٩	į	Zage Z	[S		F 65	£	FRF	F. F.						
October 21,		Type	 -	3 M	200	4	4 ·	: 4		M	421	~) r	~ ~) M	8	&	&:	& 8	\$ 5	\$ \$	5 -		,	7	~ 0	~ œ	632 6	_	25	3		October 21	3		612	519 4	25,	630 2	2,0	951 3						

