Lecture Six – Trigonometric

Section 6.1 – Introduction

Basic Terminology

Two distinct points determine line AB.

Line segment AB: portion of the line between A and B.

Ray AB: portion of the line AB starts at A and continues through B, and past B.

Angles in General

An angle is formed by 2 rays with the same end point.

The two rays are the sides of the angle, angle $\theta = AOB$ *O* is the common endpoint and it is called *vertex* of the angle.

An angle is in a Counterclockwise (*CCW*) direction: positive angle.

An angle is in a Clockwise (*CW*) direction: negative angle.

Type of Angles: Degree

Acute angle $0^{\circ} < \theta < 90^{\circ}$

Right angle $\theta = 90^{\circ}$

Obtuse angle $90^{\circ} < \theta < 180^{\circ}$

Complementary angles: $\alpha + \beta = 90^{\circ}$ Supplementary angles: $\alpha + \beta = 180^{\circ}$

Example

Give the complement and the supplement of each angle: 40° 110°

Solution

a. 40°

Complement: $90^{\circ} - 40^{\circ} = 50^{\circ}$

Supplement: $180^{\circ} - 40^{\circ} = 140^{\circ}$

b. 110°

Complement: $90^{\circ} - 110^{\circ} = -20^{\circ}$

Supplement: $180^{\circ} - 110^{\circ} = 70^{\circ}$

Degrees, Minutes, Seconds

1°: 1 degree

1': 1 *minute*

1": 1 *second*

1 full Rotation or Revolution = **360°** $1^{\circ} = 60' = 3600''$ $1'' = \left(\frac{1}{60}\right)' = \left(\frac{1}{3600}\right)''$

2

Example

Change 27.25° to degrees and minutes

$$27.25^{\circ} = 27^{\circ} + .25^{\circ}$$

= $27^{\circ} + .25(60')$
= $27^{\circ} + 15'$
= $27^{\circ} - 15'$

Example

Add 48° 49′ and 72° 26′

Solution

$$120^{\circ} 75' = 120^{\circ} 60' + 15'$$

= $121^{\circ} 15'$

Example

Subtract 24° 14′ and 90°

Angles in Standard Position

An angle is said to be in standard position if its initial side is along the positive *x*-axis and its vertex is at the origin. If angle θ is in standard position and the terminal side of θ lies in quadrant I, then we say θ lies in QI

$$\theta \in QI$$

If the terminal side of an angle in standard position lies along one of the axes (x-axis or y-axis), such as angles with measures 90°, 180°, 270°, then that called a *quadrantal* angle.

Two angles in standard position with the same terminal side are called *coterminal* angles.

Example

Find all angles that are coterminal with 120°.

Solution

$$120^{\circ} + 360^{\circ}k$$

Example

Find the angle of least possible positive measure coterminal with an angle of 908°.

Solution

$$908^{\circ} - 2.360^{\circ} = 188^{\circ}$$

An angle of 908° is coterminal with an angle of 188°

Triangles

Radians

Degrees - Radians

 θ measures one full rotation The measure of θ in radians is 2π

1=1 rad

$$1^{\circ} = 1$$
 degree

If no unit of angle measure is specified, then the angle is to be measured in radians.

Full Rotation: $360^{\circ} = 2\pi$ rad

 $180^{\circ} = \pi \ rad$

Converting from Degrees to Radians

$$\frac{180^{\circ}}{180} = \frac{\pi}{180} \ rad \qquad \Rightarrow 1^{\circ} = \frac{\pi}{180} \ rad$$

$$\Rightarrow$$
 1° = $\frac{\pi}{180}$ rad

Multiply a degree measure by $\frac{\pi}{180}$ rad and simplify to convert to radians.

Example

Convert 45° to radians

$$45^{\circ} = 45 \left(\frac{\pi}{180}\right) rad$$
$$= \frac{\pi}{4} rad$$

Example

Convert -450° to radians

Solution

$$-450^{\circ} = -450 \left(\frac{\pi}{180}\right) rad$$
$$= -\frac{5\pi}{2} rad$$

Example

Convert 249.8° to radians

Solution

$$249.8^{\circ} = \frac{2498}{10} \left(\frac{\pi}{180}\right) rad$$
$$= \frac{1,249\pi}{900} rad$$
$$\approx 4.360 rad$$

Converting from Radians to Degrees

Multiply a radian measure by $\frac{180^{\circ}}{\pi}$ radian and simplify to convert to degrees.

$$\frac{180^{\circ}}{\pi} = \frac{\pi}{\pi} \ rad$$

$$\frac{180^{\circ}}{\pi} = 1 \ rad$$

Example

Convert 1 to degrees

$$1 \ rad = 1 \left(\frac{180^{\circ}}{\pi} \right)$$
$$= 1 \left(\frac{180^{\circ}}{3.14} \right)$$
$$= 57.3^{\circ}$$

Example

Convert $\frac{4\pi}{3}$ to degrees

Solution

$$\frac{4\pi}{3} = \frac{4\pi}{3} \left(\frac{180^{\circ}}{\pi} \right)$$
$$= 240^{\circ}$$

Example

Convert –4.5 to degrees

$$-4.5 = -4.5 \left(\frac{180^{\circ}}{\pi} \right)$$

$$\approx -257.8^{\circ}$$

Exercises Section 6.1– Introduction

1. Indicate the angle if it is an acute or obtuse. Then give the complement and the supplement of each angle.

a) 10°

b) 52°

c) 90°

d) 120°

e) 150°

2. Change to decimal degrees.

a) 10° 45′

c) 274° 18′ 59″

e) 98° 22′ 45″

g) 1° 2′ 3″

b) 34° 51′ 35″ d) 74° 8′ 14″

f) 9° 9′ 9″

h) 73° 40′ 40″

3. Convert to degrees, minutes, and seconds.

a) 89.9004°

c) 122.6853°

e) 44.01°

g) 29.411°

b) 34.817°

d) 178.5994°

f) 19.99°

h) 18.255°

4. Perform each calculation

a) $51^{\circ} 29' + 32^{\circ} 46'$ b) $90^{\circ} - 73^{\circ}12'$ c) $90^{\circ} - 36^{\circ} 18' 47''$ d) $75^{\circ} 15' + 83^{\circ} 32'$

5. Find the angle of least possible positive measure coterminal with an angle of

a) -75°

b) −800°

c) 270°

6. Convert to radians

a) $256^{\circ} 20'$ b) -78.4° c) 330° d) -60°

e) −225°

Convert to degrees 7.

a) $\frac{11\pi}{6}$

 $e) \frac{\pi}{3}$

b) $-\frac{5\pi}{3}$

f) $-\frac{5\pi}{12}$

- 8. A vertical rise of the Forest Double chair lift 1,170 feet and the length of the chair lift as 5,570 feet. To the nearest foot, find the horizontal distance covered by a person riding this lift.
- 9. A tire is rotating 600 times per minute. Through how many degrees does a point of the edge of the tire move in $\frac{1}{2}$ second?
- **10.** A windmill makes 90 revolutions per minute. How many revolutions does it make per second?