

Produkthandbuch (v1.01)

BSM-WS36A-H01-1311-0000

Gebr. Bauer GbR

Breitenbergstr. 2 87719 Mindelheim Deutschland

Tel. +49 (0)8261 - 7656 - 0 Fax. +49 (0)8261 - 7656 - 56

info@bzr-bauer.de www.bzr-bauer.de

Inhalt

1.	Eige	enschaften und Nutzung	4
	1.1.	Bestimmungsgemäße Verwendung	4
	1.2.	Allgemeine Beschreibung	4
	1.3.	Herstellung	4
	1.4.	Hauptmerkmale	4
	1.5.	Normen und Vorschriften	5
2.	Sich	nerheit	6
	2.1.	Allgemeine Sicherheitshinweise	6
	2.2.	Wartung und Garantie	6
3.	Mon	ntage und Installation	6
	3.1.	Montage	6
	3.2.	Installationskontrolle	6
	3.3.	Abmessungen	7
	3.4.	Schaltbild	8
4.	Ger	ätebeschreibung	9
	4.1.	LCD Anzeige	9
	4.2.	LCD Beleuchtung	9
	4.3.	Bedienelemente	10
	4.4.	Typenschild	11
	4.5.	Spracheinstellung	12
	4.6.	BUS-Adresse	12
5.	Disp	olay-Anzeige	13
6.	lden	ntifikation Firmware	14
	6.1.	Signaturmodul	14
	6.2.	Zähler	15
	6.2.	Am Display abzulesen (Darstellung hier Beispielhaft)	15
	6.2.2	2. Mit Modbus auszulesen	15
7.	Forr	mbezeichnungssystem	16
8.	Mes	swerk Beschreibung	17
	8.1.	Strommessung	17
	8.2.	Spannungsmessung	17
	8.3.	Messwerte	17
	8.4.	Datensicherung	17
	8.5.	Blockschaltbild	17
9.	Sch	nittstellen	18
	9.1.	Modbus RTU über RS485	18
	9.2.	Digitale Schnittstelle	19
	9.3.	S0 Impulsausgänge	19

9.	4.	Impuls LED	20
9.	5.	Engineering-Tool	20
9.	6.	Optische Schnittstelle	20
9.	7.	Zugriffsrechte Parameter opt. Schnittstelle	21
9.	8.	Parametereinstellung über Tasten	22
10.	Funk	tionen zur Eichrechtskonformität in der E-Mobilität	23
10).1.	Signierung	23
	10.1.	1. Schnappschüsse	23
	10.1.	2. Schlüsselpaar	24
	10.1.	3. Validierung	24
10).2.	Schalt-Mess-Koordination	25
10).3.	Format für Transparenzsoftware	29
11.	Mess	richtigkeitshinweise	33
12.	Eich	echnische Prüfung	34
13.	Betri	ebszustände	34
13	3.1.	Servicemode	34
13	3.2.	Parametereinstellung im Servicemode	34
13	3.3.	Normalmode	34
13	3.4.	Kalibriermode (Eichmodus)	34
14.	Tech	nische Daten	35
15.	Fehle	ermeldungen	36
16.	Zugr	iffssicherung	37
17.	Anha	ng A – Übersicht Modbus-Register	38
17	7.1.	Allgemeines	38
17	7.2.	Datendarstellung	39
17	7.3.	Datenblöcke	41
17	7.4.	Schreibbare Register	83
17	7.5.	Aufzählungen	85
18.	Anha	ng B: Kommunikation	87
19.	Anha	ng C: Schnappschüsse erstellen	89
20.	Anha	ng D: Details zur Signierung	90
24	A n h c	ng E. Schalt Moss Koordination	0.4

1. Eigenschaften und Nutzung

1.1. Bestimmungsgemäße Verwendung

Die Zähler sind ausschließlich zur Messung elektrischer Energie zu verwenden.

1.2. Allgemeine Beschreibung

Bei dem BSM-WS36A-H01-1311-0000 handelt es sich um einen digitalen Elektrizitätszähler für Wirkenergie in 4-Leiternetzen.

Einsatzgebiet ist die Energieverbrauchserfassung im Energieversorgungsbereich. Mit dem integrierten Modul zur Signierung von Messwerten eignet sich der BSM Zähler besonders für den Einbau in eichrechtskonforme Ladestationen für die E-Mobilität. Der Zähler kann signierte Messwerte über eine Modbusschnittstelle bereitstellen und führt selbstständig eine geprüfte Schalt-Mess-Koordination durch, wodurch die Energiemenge pro Bezugsvorgang immer exakt ermittelt wird.

1.3. Herstellung

Fertigungsstätte: Gebr. Bauer GbR

Breitenbergstraße 2 87719 Mindelheim

Qualitätsmanagementsystem

ISO 9001:2005

Inverkehrbringung nach Modul D

In Kooperation mit

chargeIT mobility GmbH

Steigweg 24

97318 Kitzingen

1.4. Hauptmerkmale

Messung von Wirkenergie

Ausführung als direkt messender Zähler

Impulsausgänge (S0) zur Weitergabe von wirkenergieproportionalen Impulsen

Prüf-LED mit 10000 Imp/kWh zur Zählerprüfung

Statusanzeige zur Installationskontrolle im Display

Optische Schnittstelle

Datenschnittstelle RS485, Modbus RTU

Batteriegepufferte Echtzeituhr

Zählwerk für Lademenge (E-Mobility)

Signierung von Messwerten (Eichrecht E-Mobility)

Schalt-Mess-Koordination (Eichrecht E-Mobility)

1.5. Normen und Vorschriften

EN 50470-1:2006	Wechselstrom-Elektrizitätszähler, Allgemeine Anforderungen
EN 50470-3:2006	Wechselstrom-Elektrizitätszähler, Besondere Anforderungen- Elektronische Wirkverbrauchszähler der Genauigkeitsklassen A,B, und C
EN 62053-21:2003	Wechselstrom-Elektrizitätszähler, Besondere Anforderungen- Elektronische Wirkverbrauchszähler der Genauigkeitsklassen 1 und 2
EN 62052-11:2003	Wechselstrom-Elektrizitätszähler- Allgemeine Anforderungen, und Prüfungen und Prüfbedingungen – Teil 11: Messeinrichtungen.
PTB-A 20.1:2003 PTB-A 50.7:2002	PTB-Anforderungen an elektronische und softwaregesteuerte Messgeräte
TR 50579:2012	Wechselstrom-Elektrizitätszähler Prüfschärfe, Störfestigkeit und Prüfverfahren für leitungsgebundene Störungen
WELMEC 7.2	WELMEC Softwareleitfaden 7.2 (Europäische Messgeräterichtinie 2014/32/EU)

2. Sicherheit

2.1. Allgemeine Sicherheitshinweise

Die Installation der Zähler darf nur von fachkundigem und dafür geschultem Personal vorgenommen werden.

Der Zähler ist ausschließlich im Sinne der bestimmungsgemäßen Verwendung einzusetzen. Der Zähler darf nicht außerhalb der spezifizierten technischen Daten betrieben werden.

Das Berühren unter Spannung stehender Teile ist lebensgefährlich!

Alle Leitungen zum Zähler müssen während der Montage- und Installationsarbeiten spannungsfrei sein.

Leitungsschutzschalter, die zum Freischalten verwendet werden, sind gegen unbemerktes Wiedereinschalten zu sichern.

Vorsicherungen, die zum Freischalten entfernt werden, sind so aufzubewahren, dass sie nicht unbemerkt durch andere Personen eingesetzt werden können.

2.2. Wartung und Garantie

Der Zähler ist wartungsfrei. Wird das Gehäuse geöffnet, erlischt der Garantieanspruch. Mängel, die auf äußere Einflüsse zurückzuführen sind (Blitz, Wasser, Brand, unsachgemäße Verwendung usw.), sind vom Garantiefall ausgeschlossen.

Bei Beschädigungen durch Transport oder Lagerung dürfen selbst keine Reparaturen vorgenommen werden.

3. Montage und Installation

Beachten Sie bei Montage- und Installationsarbeiten alle Sicherheitshinweise im Kapitel "Sicherheit".

3.1. Montage

Der Zähler wird üblicherweise auf Tragschienen (Hutschiene) T35mm montiert. Um den nach Norm (IP51, EN50470-1, Pkt.5.9) geforderten Schutz gegen Eindringen von Staub und Wasser zu erreichen, dürfen die Geräte nur in Zählerschränken verwendet werden, welche die Klasse IP51 erfüllen.

3.2. Installationskontrolle

Zur Kontrolle der Installation dienen die Symbole L1; L2 und L3 im Display

Symbole	Zustand	Funktion
L1; L2; L3	angezeigt	Drehfeld rechts
L1; L2; L3	blinken	Drehfeld links
L1; L2	blinken	L3 fehlt bzw. Anlaufschwelle nicht überschritten
L1; ; L3	blinken	L2 fehlt bzw. Anlaufschwelle nicht überschritten
; L2 ; L3	blinken	L1 fehlt bzw. Anlaufschwelle nicht überschritten

3.3. Abmessungen

3.4. Schaltbild

Klemmen		Bezeichnung		elekt. Daten	
Out	1; 2	Opto-MOSFET 212EH		24V ; 0,55A	
DOE	3	Digital Out Enable (input)		"high" (6-30VDC)	"low" (0-1VDC)
DI	4	Digital IN		"high" (6-30VDC)	"low" (0-1VDC)
A , B	5; 6	RS485 Schnittstelle			
SOA+	8	Impulsausgang Opto-MOSFET	P+	max 24V; 0,20A	100lmp/kWh
COM	9	common			
SOA -	10	Impulsausgang Opto-MOSFET	P-	max 24V; 0,20A	100Imp/kWh
	11	not connected		ohne Funktion	
L1; L2; L3; N		Stromklemmen		bis 16mm²	

4. Gerätebeschreibung

4.1. LCD Anzeige

Der BSM-WS36A-H01-1311-0000 besitzt ein beleuchtetes LCD Grafik-Display mit 128 x 64 Pixel. Diese Anzeige ermöglicht die Darstellung der verschiedenen Messwerte und die dazugehörigen Einheiten und Register im Klartext. Die Texte können in Deutsch oder Englisch dargestellt werden. Durch Betätigen der Bedientaste 1 schaltet das Display auf die nächste Anzeigeseite um. Bei Zählern ohne Bedientasten werden die einzelnen Seiten automatisch rollierend angezeigt.

Zur Kontrolle der visuellen Zählerablesung wird für die Vorkommastellen eine Prüfsumme angezeigt.

4.2. LCD Beleuchtung

Die Beleuchtung des LCD Displays wird automatisch beim Start eines Ladevorganges eingeschaltet. Ist die Stromversorgung des Ladepunktes nur 1 phasig ausgelegt, müssen die Anschlüsse L1, L2, und L3 zusammengeschaltet werden, damit die LCD Beleuchtung aktiviert wird.

Nr.	Beschreibung			
1	Zeigt den aktuell aktiven Tarif			
2	Anzeige für angeschlossene Phasen und Drehfeld			
3	Anzeige des Quadranten			
4	Anzeige der Energierichtung (rechtsdrehend wenn Anlaufschwelle überschritten ist)			
5	OBIS Kennziffern			
6	Anzeige der gewählten Messeinheit			
7	Anzeige des dazugehörigen Tarifes			
8	Achtstellige Anzeige des Messwertes			
9	Anzeige des momentanen Leistungswertes			
10	Symbol für Servicemode (nur während der Produktion sichtbar)			
11	Symbol für Eichmode (nur während der Produktion sichtbar)			
12	Symbol für Aktivität der Schnittstellen			
13	Prüfsumme der Zählerstände (nur für Vorkommastellen)			

4.3. Bedienelemente

Nr.	Bezeichnung	Beschreibung		
1	Taste 1	rollieren Display, Parameteränderung		
2	Optische Schnittstelle (Info Schnittstelle)	Datenausgabe für Kundenzwecke		
3	Prüf - LED	Gibt Leistungsproportionale Impulse für Prüfzweck aus 10000Imp./kWh		
4	Taste 3	zum Setzen der Busadresse (siehe 4.6)		
5	LED	LED-ADR (Änderungsmodus Busadresse)		
6	LED	Digital Output enable DOE		
7	LED	Digital Output DO		
8	Taste 2	Änderungsmodus Parameter (siehe 4.5)		

4.4. Typenschild

Nr.	Bezeichnung				
1	Metrologie-Kennzeichnung, EU-Baumusterprüfbescheinigung				
2	Metrologie-Kennzeichnung, nationale Baumusterprüfbescheinigung				
3	Nennspannung				
4	Strombereich				
5	Baujahr				
6	Netzfrequenz				
7	Temperaturbereich -25°C bis 70°C				
8	Seriennummer				
9	Data Matrix Code enthält Public Key und Seriennummer				
10	Netz und Anschlussart 1-phasiger Betrieb auf L3				
11	Schutzklasse II				
12	Prüf-LED, Konstante				
13	Typenbezeichnung und Typenschlüssel				
14	Hinweis Bedienungsanleitung beachten				
15	Rücklaufsperre,				
16	Netz und Anschlussart 3-phasiger Betrieb				
17	Genauigkeitsklasse				

4.5. Spracheinstellung

Die im Display angezeigten Texte können auf Deutsch oder Englisch dargestellt werden.

- Taste 1 drücken bis die Checksumme im Display angezeigt wird.
- Taste 2 für min. 4 Sekunden drücken. Im Display wird blinkend die aktuelle Sprache angezeigt.
- Taste 1 drücken zur Auswahl der Sprache.
- Taste 2 für min. 4 Sekunden drücken. Einstellung wird gespeichert.

4.6. BUS-Adresse

Die Busadresse ist standardmäßig auf 42 voreingestellt. Sie können die Bus-Adresse mit dem nachfolgenden Vorgehen ändern. Eine Änderung der Busadresse darf nur getätigt werden, wenn kein Verbraucher anliegt.

- Taste 1 drücken bis die aktuelle Adresse im Display angezeigt wird.
- Taste 3 für min. 4 Sekunden drücken LED (ADR) leuchtet
- Taste 3 kurz drücken Adresse wird um 1 erhöht.
- Taste 3 für min. 4 Sekunden drücken Adresse wird gespeichert

5. Display-Anzeige

Die Anzeigetexte im Display rollieren zyklisch durch. Alle 8 Sekunden erscheint die nächste Anzeige. Durch Tastendruck (Taste 1) lässt sich ebenfalls die nächste Anzeige aufrufen. Während des Ladebetriebs wird das Display beleuchtet und das Rollieren der Anzeige fortgesetzt.

Der Gesamt-Wirkenergiebezug wird in den OCMF-Daten mit OBIS-Code 1-0:1.8.0*255 gekennzeichnet. Das entsprechende Zählwerk wird im Display mit OBIS-Code 1.8.0 gekennzeichnet.

Anzeigereihenfolge im Display:

Rückstellbares Energieregister eichrechtlich nicht relevant

Energieregister nicht Rückstellbar

Uhrzeit

Datum

Modbus Adresse

Version Firmware-Hash Signatur-Modul

Version Checksumme Messmodul

Sprachauswahl

6. Identifikation Firmware

6.1. Signaturmodul

Zur Identifikation der Firmware wird deren Prüfsumme und Versionsbezeichnung im Display dargestellt. Abwechselnd erscheinen im Anzeigefeld der Zähleradresse die Werte für Modbus-Parameter, Firmware-Version, Firmware-Hash Teil 2.

Der Wechsel der Anzeige erfolgt im Rhythmus von ca. 48 Sekunden.

Firmware-Version und Firmware-Hash werden in verkürzter Form dargestellt.

Die vollständige Form kann über Modbus ausgelesen werden.

Folgende Angaben sind Beispielhaft.

Modbus-Parameter 04 = Baudrate 19.200 42 = Bus-Adresse

F0 = Firmware-Version 6D1D

F1 = Firmware-Hash Teil 1: FC99

F2 = Firmware-Hash Teil 2: **B508**

Kennung und Hash können über die folgenden Register ausgelesen und verglichen werden.

Adresse	Register	ID	Name	Тур
40228	8	VrC	Software-Version	string
			Kommunikationsmodul	

Unter dieser Adresse ist die Versionsnummer auslesbar.

Zulässige Werte zu finden unter:

https://github.com/chargelTmobility/bsm-python

Adresse	Register	ID	Name	Тур
40506	1	В	Firmware-Hash	uint16

In der Modellinstanz "Hash Firmware Kommunikationsmodul" ist der Hash auslesbar.

Zulässige Werte zu finden unter:

https://github.com/chargelTmobility/bsm-python

6.2. Zähler

6.2.1. Am Display abzulesen (Darstellung hier Beispielhaft)

Die Versionsnummer sowie die Checksumme der Software werden im Display dargestellt und können über die beiden Schnittstellen ausgelesen werden.

Checksumme 32CA:AFF4 (Beispielhaft)

Die Checksummen werden mit einem CRC-16 Algorithmus berechnet.

6.2.2. Mit Modbus auszulesen

In dem Zähler gibt es für die Signatur- und die Zählereinheit jeweils eine separate Firmware, mit eigener Kennung und eigenem Hash. Diese können über die folgenden Register ausgelesen und verglichen werden.

Adresse	Register	ID	Name	Тур
40220	8	VrM	Software-Version Zählwerk	string

Unter dieser Adresse ist die Versionsnummer und der Hash auslesbar.

Zulässige Werte zu finden unter:

https://github.com/chargelTmobility/bsm-python

7. Formbezeichnungssystem

8. Messwerk Beschreibung

Die Strom- und Spannungsverläufe werden durch Analog-Digital-Wandler in kurzen Intervallen abgetastet und digitalisiert. Ein Mikrokontroller errechnet daraus die Messwerte.

8.1. Strommessung

Die Strommessung erfolgt mittels Präzisions-Stromwandler. Die Ausgangssignale werden den Eingängen des A/D Wandlers zugeführt. 2048 mal pro Sekunde werden die stromproportionalen Momentanwerte digitalisiert und vom Mikrokontroller verarbeitet.

8.2. Spannungsmessung

Zur Absetzung der Spannung auf geeignete Spannungswerte werden Spannungsteiler eingesetzt. Das abgesetzte Spannungssignal wird den Eingängen des A/D Wandlers zugeführt. 2048 mal pro Sekunde werden die spannungsproportionalen Momentanwerte digitalisiert und vom Mikrokontroller verarbeitet

8.3. Messwerte

Die ermittelten Messwerte für den Energieverbrauch werden zum entsprechenden Energieregistern zugeordnet addiert. Die gebildeten Zählerstände werden am Display dargestellt und können über die Schnittstellen mit anderen Messwerten ausgelesen werden.

8.4. Datensicherung

Während des Normalbetriebes arbeitet der Mikrokontroller mit Daten, die sich im flüchtigen RAM des Mikrokontrollers befinden. Um einen Datenverlust bei Spannungsausfall zu vermeiden, werden alle relevanten Daten des flüchtigen RAMs bei Spannungsausfall in ein nichtflüchtiges EEProm geschrieben.

Dies erfolgt bei Unterschreiten eines definierten Betriebsspannungspegels. Die Energiereserve der Elektronik ist ausreichend groß, um alle Daten zu sichern.

Alle relevanten Daten werden automatisch alle 24 Stunden ebenfalls im nichtflüchtigen EEProm gesichert. Die Daten bleiben im nichtflüchtigen EEProm für mindestens 20 Jahre erhalten. Eine Pufferbatterie ist für den Datenerhalt nicht erforderlich.

8.5. Blockschaltbild

9. Schnittstellen

Die folgende Abbildung zeigt die Anschlüsse am Zähler, welche in den nachfolgenden Teilkapiteln erläutert werden.

9.1. Modbus RTU über RS485

Der Modbus RTU läuft über eine RS-485 Schnittstelle mit den beiden Datenleitungen A/B (5; 6) bei einer möglichen Übertragungsrate von 2.400 bis 115.200 Baud, ab Werk sind 19.200 Baud voreingestellt.

Der Zähler stellt Daten über die Modbus-Schnittstelle über Holding-Register bereit - je nach Eintrag über ein oder mehrere zusammenhängende Register. Die Werte sind dabei nach der SunSpec Information Model Specification [1] kodiert, was einer Binärdarstellung in Big-Endian in Wort- und Bytereihenfolge entspricht.

Zum Lesen und Schreiben der Holding-Register unterstützt der Zähler die Modbus-Funktionen Read Holding Register (Funktionscode 3) zum Lesen und Write Multiple Registers (Funktionscode 16). Andere Funktionscodes werden nicht unterstützt. Weitere Details sind in der Registerübersicht (Anhang A – Übersicht Modbus-Register) aufgeführt. Entsprechende Beispiele zu Kommunikationsanfragen finden Sie in "Anhang B: Kommunikation".

9.2. Digitale Schnittstelle

Über die digitale Schnittstelle, bestehend aus digitalem Input (DI), digitalem Output (DO) und Masse (GND), wird die Schalt-Mess-Koordination umgesetzt [1; 2; 3; 4]. Falls die digitale Schnittstelle hierfür verwendet wird, werden die Hilfskontakte eines externen Schützes daran angeschlossen. Die nähere Funktionsweise der Schaltmesskoordination wird in Kapitel 10.2 erläutert.

Für DI "high" 6-30VDC "low" 0-1VDC

Der digitale Ausgang ist über ein intern gesteuertes Halbleiterrelais mit der Masse verbunden, welches den Kreis schalten kann. Es dürfen maximal 550 mA bei max. 30 V fließen. Im Normalfall wird hier ein 12 V /24 V Schütz eingesetzt.

Die digitale Schnittstelle kann auch anderweitig genutzt werden, falls die Schalt-Mess-Koordination nicht gebraucht wird:

- Digitalausgang kann individuell geschaltet werden
- Digitaleingang kann eingelesen werden

Der digitale Eingang (DOE = DO enable) ist eine zusätzliche Besonderheit des Zählers. Dieser ist als Freigabe gedacht, um eine schnelle Schaltung des Schützes zu ermöglichen.

Für DOE "high" 6-30VDC "low" 0-1VDC

Falls beispielsweise ein RCM Modul verbaut ist, wird das Signal zu diesem hier angeschlossen. Das Schütz kann nur eingeschaltet werden, wenn das RCM nicht ausgelöst ist, bzw. wird eine Not-Abschaltung eingeleitet, wenn es zur Auslösung kommt. Die Abschaltung erfolgt in diesem Fall allein durch die interne Hardware und ist Software-unabhängig. Die Abschaltung geschieht garantiert nach < 1ms.

Der Freigabe-Kontakt kann auch für weitere Sicherheitsfunktionen genutzt werden.

Möchten Sie den Freigabe-Kontakt nicht nutzen, muss dieser dauerhaft auf "high" (6-30VDC) angeschlossen sein.

Möchten Sie die Schalt-Mess-Koordination auf einer externen Steuerung selbst durchführen, lassen Sie die Kontakte auf dem Zähler frei.

9.3. S0 Impulsausgänge

Der Zähler BSM-WS36A-H01-1311-0000 besitzt einen S0 Impulsausgang nach EN 62053-31. Der S0-Ausgang stellt energieproportionale Impulse zur Verfügung, die mit einer übergeordneten Steuerung gezählt und ausgewertet werden können.

9.4. Impuls LED

Die Impuls LED ist geeignet zu Prüfzwecken.
Impulskonstante = 10000 imp./kWh
Impulsdauer = 2ms
Blinkt proportional zur Energiemenge, wenn die Anlaufschwelle überschritten ist.
Ist die Energiemenge unterhalb der Anlaufschwelle, leuchtet die LED nicht.

9.5. Engineering-Tool

Ein umfassendes Beispiel zur Kommunikation mit dem BSM-WS36A-H01-1311-0000 bietet das Modbus-Tool. Dieses in Python 3 geschriebene Befehlszeilenprogramm zeigt alle wichtigen Aspekte der Kommunikation mit dem Gerät und lässt sie live erleben:

- Modbus-Kommunikation
- Lesen und Interpretieren von Datenblöcken und einzelnen Werten
- Erstellen von Schnappschüssen (inklusive Schalt-Mess-Koordination)
- Auslesen des öffentlichen Schlüssels und Signaturprüfung für Schnappschüsse

Das Modbus-Tools steht auf:

https://github.com/chargelTmobility/bsm-python

als Download und Git-Repository bereit. Bei diesem Projekt handelt es sich um ein OpenSource Softwareangebot, das unter der Apache 2 Lizenz bereitgestellt wird. Bitte kontaktieren Sie uns, falls Sie kommerziellen Support zur Einbindung des Produktes in Ihre Umgebung wünschen.

9.6. Optische Schnittstelle

Auf der Vorderseite befindet sich eine optische Datenschnittstellen nach EN 62056-21, für einen entsprechenden magnetisch fixierbaren Tastkopf.

Die Schnittstelle dient zum Auslesen der Messwerte und zum Setzen von Parametern. Für das Datenprotokoll kann zwischen Mode A, C oder Mode D0 gemäß EN 62056-21 gewählt werden.

Die Schnittstelle kann auch unidirektional als D0-Schnittstelle ausgelegt werden. Dabei wird ein definiertes Datenpaket in festgelegten Intervallen andauernd gesendet.

(siehe 7 Formbezeichnungssystem)

Auf Kundenwunsch können die im Datenpaket enthaltenen Parameter festgelegt werden. (Einstellungen sind nur durch den Hersteller möglich)

Die Schnittstelle arbeitet in jeglicher Art rückwirkungsfrei.

Zugriffsrechte Parameter opt. Schnittstelle 9.7.

Parameter änderbar durch:

M = Messstellenbetreiber

H = Hersteller (Änderung nur bei geöffnetem Gehäuse möglich)

B = Benutzer

U = unidirektionale Ausgabe möglich (Änderung nur bei geöffnetem Gehäuse möglich)

Parameter lesbar	Lesen erlaubt	Schreiben erlaubt	Unidirekt. Ausgabe möglich	Kennziffer
Servicemode aktivieren		М		s. Handbuch 13.1; 13.2
Fehlermeldung	X		U	1-0:F.F.0
Kundennummer	X	Н	U	1-0:C.1.1
Seriennummer	Х	Н	U	1-0:C.1.0
Geräteadresse	X	M	U	1-0:0.0.1
Version	Х		U	1-0:0.2.0
Momentane Wirkleistung	X		U	1-0:15.7.0
Mom. Wirkleistung L1	Х		U	1-0:21.7.0
Mom. Wirkleistung L2	X		U	1-0:41.7.0
Mom. Wirkleistung L3	Х		U	1-0:61.7.0
Energieregister 1 Tarif 1	X		U	1-0:1.8.1
Momentane Spannung L1	Х		U	1-0:32.7.0
Momentane Spannung L2	X		U	1-0:52.7.0
Momentane Spannung L3	X		U	1-0:72.7.0
Momentaner Strom Total	X		U	1-0:25.7.0
Momentaner Strom L1	X		U	1-0:31.7.0
Momentaner Strom L2	X		U	1-0:51.7.0
Momentaner Strom L3	X		U	1-0:71.7.0
Formfaktor L1	Х		U	1-0:33.7.0
Formfaktor L2	Х		U	1-0:53.7.0
Formfaktor L3	Х		U	1-0:73.7.0
Mom. Netzfrequenz	Х		U	1-0:14.7.0

Anzahl Spannungsausfälle	Х		U	1-0:C.7.0
S0 Impulswertigkeit	Х	Н		1-0:0.3.2
S0 Impulsdauer	Х	Н		1-0:0.3.3
Datum Uhrzeit	X	М	U	1-0:1.0.0
Rückstellung RZählwerk		М		
Rückstellbares Zählwerk	Х		U	1-0:1.8.0*198

9.8. Parametereinstellung über Tasten

Beschreibung und Position der Tasten siehe Kapitel 4.3.

M = Messstellenbetreiber (Benutzersicherung muss geöffnet sein, Klemmenabdeckung)

B = Benutzer

Funktionen	Berecht- igung	Taste	
rollieren Display	В	Taste 1	
Bus Adresse	М	Taste 3	(siehe 4.6)
Sprachauswahl	М	Taste 1 und 2	(siehe 4.5)

10. Funktionen zur Eichrechtskonformität in der E-Mobilität

In einer Baumusterprüfbescheinigung nach Modul B wird eine Ladestation auf Konformität zum Eichrecht (nach MessEG/MessEV) bewertet. Dieses Zertifizierungsverfahren wird von den Konformitätsbewertungsstellen durchgeführt. Der Zähler ist auf die Anwendung in eichrechtskonformen Ladestationen optimiert. Dabei kann dieser bei richtigem Einsatz eine vollständige Messkapsel darstellen. In den folgenden Teilkapiteln werden diese spezifischen Funktionen erklärt.

10.1. Signierung

10.1.1. Schnappschüsse

Bei der Signaturerstellung wird stets ein Datenpaket ausgewählter Mess- und Kenngrößen aus dem Zählerspeicher zu einem spezifischen Zeitpunkt signiert. Dieses signierte Datenpaket wird im Folgenden als Schnappschuss bezeichnet.

Über einen Registerblock werden diese bereitgestellt.

Ein Schnappschuss enthält unter anderem folgende Daten:

- Energiebezug
- Momentanleistung
- Zustand DI/DO
- Zeitstempel
- diverse Metadaten

Über die Modbus-Schnittstelle erhält der Zähler den Befehl zum Erstellen oder Aktualisieren eines Schnappschusses. Sobald der Vorgang abgeschlossen ist, wird der Schnappschuss-Status vom Zähler auf "gültig" gesetzt und der Schnappschuss kann ausgelesen werden.

Die reine Signierungsdauer beträgt etwa 150 ms, aber durch die Kommunikation der Daten, die signiert werden, dehnt sich der Prozess aus, sodass innerhalb 2 – 6 s ein signierter Momentanzustand vorliegt.

Es gibt die folgenden Arten von Schnappschüsse:

- Signierter Momentanzustand (Zwischenwert)
- Schalt-Mess-Koordination Einschalten
- Schalt-Mess-Koordination Ausschalten
- Signierter Schnappschuss Start
- Signierter Schnappschuss Ende

Die integrierte Schalt-Mess-Koordination wird in Kapitel 10.2 näher beschrieben. Verwenden Sie eine externe Schalt-Mess-Koordination, nutzen Sie die Schnappschussarten: "Signierter Schnappschuss Start/Ende".

In "Anhang C: Schnappschüsse erstellen" ist ein kompletter Ablauf einer Schnappschussanfrage beispielhaft geschildert.

10.1.2. Schlüsselpaar

Die Signierung basiert auf einem asymmetrischen Schlüsselpaar: Private Key und Public Key. Zur Signaturerstellung wird der Private Key verwendet, welcher geheim ist. Um die Signatur zu bestätigen, wird der Public Key benötigt, welcher auf dem Gehäuse abgedruckt ist und über die Modbus-Schnittstelle elektronisch ausgelesen werden kann.

Bei der Signaturerstellung wird über die Daten ein Hash (SHA-256) generiert, welcher anschließend nach ECDSA (Kurve secp256r1) signiert wird.

Aus Sicherheitsgründen kann eine Schlüsselgenerierung nicht erneut erfolgen. Ein Schlüsselpaar gilt für den entsprechenden Zähler permanent.

10.1.3. Validierung

Zum Validieren der Signatur wird der Datensatz mit Signatur und der Public-Key (ist nicht im signierten Datensatz enthalten) benötigt. Durch die erneute Berechnung des Hashs über diese Daten (in einer abstrakten Darstellung) und die anschließende Prüfung der Signatur für diesen Hash kann die Authentizität der Daten bestätigt werden. Für diesen Vorgang kann eine Transparenzsoftware verwendet werden, welche das Format des signierten Datensatzes unterstützt. Das Format für die jeweilige Transparenzsoftware ist in Kapitel 10.3 beschrieben. Nach der Validierung zeigt die Transparenzsoftware die Gültigkeit der digitalen Signatur an. Näheres zur Bedienung ist im Handbuch der verwendeten Transparenzsoftware zu finden.

In "Anhang D: " sind weitere Details von der Signaturerstellung geschildert.

10.2. Schalt-Mess-Koordination

Die Schalt-Mess-Koordination ist die synchronisierte Ansteuerung eines Schaltausgangs, der Auswertung eines Rückmeldeeingangs zum Feststellen des Zustandes und die Messwerterhebung. Sie kann sicherstellen, dass der Energiebezug eines über einen Schütz angeschlossenen Verbrauchers exakt erfasst wird, indem Anfangs- und Endmessung im ausgeschalteten Zustand erfolgen. Dies ist besonders für Abrechnungszwecke sinnvoll. Die Schalt-Mess-Koordination am Zähler muss jedoch nicht zwingend genutzt werden.

Im folgenden Schaltbild ist der Anschluss des Zählers nach der Schalt-Mess-Koordination abgebildet.

Wird der Befehl "Schalt-Mess-Koordination Einschalten" angefordert, werden folgende Schritte ausgeführt:

- DO zum Schütz ausschalten, falls es noch nicht aus ist
- Rückmeldung vom Schütz an DI zur Abschaltung wird geprüft
- Messwerte erheben
- DO zum Schütz wird auf high geschalten
- Schnappschuss signieren und bereitstellen

Signiert wird stets das Referenzzählwerk, somit ist der Startwert immer 0 kWh.

Wird der Befehl "Schalt-Mess-Koordination Ausschalten" angefordert, werden folgende Schritte ausgeführt:

DO zum Schütz geht auf low

- Rückmeldung vom Schütz an DI zur Abschaltung wird geprüft
- Messwerte erheben
- Schnappschuss signieren und bereitstellen

Für das Aus- und Einschalten des DOs zum Schütz wird die zugehörige Rückmeldung eines NC-Rückmeldekontakts an DI ausgewertet. Nur wenn diese in erwarteter Form und Zeit erfolgt, gilt der Schaltvorgang als erfolgreich. Für die Rückmeldung vom Schütz liegt der Timeout bei 0,5 s. Kann der Zähler bis zum Ende dieses Zeitraums nicht den erwarteten Schaltzustand über den Rückmeldekontakt feststellen, ist der Schnappschuss ungültig. Der Zähler stellt den Schnappschuss nur dann bereit, wenn die notwendigen Schaltvorgänge erfolgreich waren. Ansonsten werden ein Fehler und ungültige Schnappschussdaten gemeldet.

Nähere Details zur Kommunikation der Schalt-Mess-Koordination sind in "Anhang E: Schalt-Mess-Koordination" gezeigt.

Der Schaltvorgang am Schütz wird durch DO bestimmt. Der Schaltzustand von DO ist wiederum abhängig von zwei Digen: Der internen Schaltvorgabe des Zählers und dem Zustand von DOE. Es müssen beide auf aktiv sein (Schaltvorgabe DO aktiv & DOE aktiv/high), damit das Schütz geschlossen wird.

Der DO Kontakt wird vom Zähler gesteuert und stellt eine korrekte Schalt-Mess-Koordination sicher. Er erteilt demnach die Freigabe an den Schaltvorgang nach der Erhebung der Messdaten für die Signierung. Für ein geschlossenes Schütz wird DO auf GND gezogen.

Der DOE Kontakt ist der Schaltkontakt für eine externe Steuerung (DO Ctrl.). Er erteilt demnach die Freigabe an den Schaltvorgang nach den Regeln der Steuerung. Die Schaltung des Schützes durch den DOE ist ausschließlich an Hardware gekoppelt und eignet sich somit für eine Schnellab- und zuschaltung. Für ein geschlossenes Schütz muss DOE high sein. Der DOE kann auch gleichzeitig als Notabschaltkontakt eines RCMs genutzt werden.

Bei Nutzung der Schalt-Mess-Koordination ergeben sich die folgenden Abläufe:

Lastfreier Zustand:

Ein 12 V / 24 V Schütz ist über den A2-Kontakt angeschlossen. Der interne Schalter (Halbleiterrelais) zu DO ist offen, wodurch das Schütz ebenfalls offen ist. Das ist der Fall, wenn mindestens eine der folgenden Bedingungen erfüllt ist:

- Interne Schaltvorgabe f
 ür DO ist inaktiv
- DOE low

Einschaltvorgang:

- DOE und die interne DO-Schaltfreigabe sind inaktiv. Metadaten werden über Modbus gesetzt.
- 2. Von der Steuerung über die Modbus-Schnittstelle kommt der Befehl Schalt-Mess-Koordination Starten.
- 3. Der Zähler öffnet das Halbleiterrelais und damit den Schaltkreis zum Schütz (Falls dies noch nicht der Fall ist).
- 4. Der Feedback-Kontakt des Schützes (DI) wird ausgewertet. Ändert sich trotz Schaltbefehl die Schützstellung nicht, ist der Schnappschuss ungültig und das weitere Vorgehen hängt von der Systemstrategie ab.
- 5. Im sichergestellten offenen Zustand des Schützes werden die Messdaten für einen Schnappschuss

- erhoben (Zählerstand und weitere).
- 6. Über die Firmware des Zählers wird anschließend die Schaltvorgabe für DO aktiviert. Der Schaltkontakt DO ist durch den geschlossenen Schaltkreis nun auf GND und damit aktiv. Der Schnappschuss wird signiert und für gültig erklärt. (Schütz muss nicht geschalten sein über DOE)
- 7. Die Steuerung (DO Ctrl.) gibt den Energiebezug frei über DOE (high).

Hinweise:

- Eine zu frühe Freigabe durch DOE wird am von DO am Schütz auf einen Zustand mit erhobenen Messwerten verzögert. Es wird verhindert, dass ein laufender Zählerstand signiert wird.
- Soll DOE nicht zur Schaltung oder Sicherung genutzt werden, ist dieser dauerhaft auf high.

Zustand unter Last:

Es ist ein Verbraucher angeschlossen, welcher Energie beziehen kann und den Zählerstand entsprechend ansteigen lässt. Solange kein Fehlerfall eintritt, bleibt dieser Zustand unverändert. DOE kann als Sicherheitskontakt den Ladevorgang sofort beenden (beispielsweise durch ein RCM). Es können signierte Zwischenstände erstellt werden (Paginierung steigt) falls gewünscht.

Ausschaltvorgang:

- 1. Die Steuerung (DO Ctrl.) entzieht die Freigabe zum Energiebezug über DOE (low). Das Schütz schaltet ab.
- 2. Von der Steuerung über die Modbus-Schnittstelle kommt der Befehl Schalt-Mess-Koordination Ausschalten.
- 3. Der Zähler öffnet das interne Halbleiterrelais und damit den Schaltkreis zum Schütz, wodurch DO ein offener Kontakt ist.
- 4. Der Feedback-Kontakt des Schützes (DI) wird ausgewertet. Ändert sich trotz Schaltbefehl die Schützstellung nicht, ist der Schnappschuss ungültig und das weitere Vorgehen hängt von der Systemstrategie ab.
- 5. Im sichergestellten offenen Zustand des Schützes werden die Messdaten für einen Schnappschuss erhoben (Zählerstand und weitere). Der Schnappschuss wird signiert und für gültig erklärt.

Hinweis: Eine zu späte Entziehung der Freigabe durch DOE wird von DO am Schütz vorgezogen. Es wird verhindert, dass ein laufender Zählerstand signiert wird.

Timings

In der logischen UND-Verknüpfung von DO und DOE, stellt der DO sicher, dass kein falscher (laufender) Zählerstand gemessen und signiert wird. Jedoch wird die Einschaltzeit des Schützes entsprechend verzögert, sollte DO greifen. Dieser ist daher als Sicherung für eine richtige Schalt-Mess-Koordination zu verstehen. Der DOE sollte im Normalfall der Kontakt sein, der nach der Vorbereitung das Schütz durch seine Freigabe einschaltet. Der DOE ermöglicht dabei schnellere Schaltzeiten. Bei der Abschaltung muss zuerst die DOE Freigabe entzogen werden, um eine schnelle Abschaltung zu gewährleisten.

Aus diesen Prozessen ergeben sich die folgenden timings:

Start-Event	Stopp-Event	Zeit (max.)
DOE Freigabe entzogen	DO offener Kontakt (DOE)	1 ms
DOE Freigabe gegeben	DO auf GND (DOE)	2 ms

SMK Ausschalten über Modbus	DO offener Kontakt (Relais)	2 s
SMK Einschalten über Modbus	DO auf GND (Relais)	9,7 s
SMK Ausschalten über Modbus	Bereitstellung signierter Daten	8 s
SMK Einschalten über Modbus	Bereitstellung signierter Daten	10 s*

^{*} Von ausgeschaltet bis eingeschaltet

Die IEC 61851-1 schreibt die folgenden Zeiten vor:

- Einschaltzeit nach PWM Ladebereitschaft max. 3 s
- Abschaltzeit nach PWM Lastabschaltung max. 100 ms

Dies kann nur erreicht werden, wenn der DOE der schaltende Kontakt ist. Die Signierung des Zählerstartwertes über RS-485 und die daraus resultierende Freigabe von DO ist im Status der Vorbereitung durchzuführen (vor B2).

10.3. Format für Transparenzsoftware

Signierte Messwerte eines Ladevorgangs müssen von Nutzern in einer Transparenzsoftware validiert werden können, wodurch eine Rechnungskontrolle ermöglicht wird. Dieser Zähler ist für die Anwendung mit der Transparenzsoftware Chargy (von chargeIT) und der S.A.F.E.-Transparenzsoftware vorbereitet.

Format der Signierten Daten

Der Zähler signiert stets einzelne Momentanwerte als Schnappschüsse und stellt diese in Form von signierten Daten in den Registern bereit. Um einen Ladevorgang vollständig abzubilden, werden zwei Messzeitpunkte benötigt: Startwert und Endwert. Demnach gibt es ein Format für einzelne Messzeitpunkte (Einzelformat) und ein übergeordnetes Format (Metaformat).

Prinzipieller Aufbau eines signierten Datensatzes für eine Transparenzsoftware:

Metaformat:

Zusatzdaten (nicht signiert)

Einzelformat (Start, signiert)

Einzelformat (Ende, signiert)

Ein Schnappschuss wird stets automatisch signiert oder ist ungültig. Vor der Schnappschusserstellung müssen die Metadaten gesetzt sein. Der Schnappschuss kann sowohl direkt als OCMF abgerufen werden oder durch die entsprechenden Register des Datenmodells.

Im Folgenden werden die Formate kurz vorgestellt. Eine umfangreiche Erklärung mit Beispielen befindet sich auf Github:

https://github.com/chargelTmobility/bsm-python

Signierte Daten für Chargy (Einzelformat)

Abruf über:

Register Schnappschuss Schalt-Mess-Koordination Start: 40776 - 41029

Register Schnappschuss Schalt-Mess-Koordination Ende: 41030 – 41283

Register Schnappschuss Start: 41284 – 41537

Register Schnappschuss Ende: 41538 – 41791

Aus den Registern der signierten Daten muss die Steuerung der Ladestation das Format für einen einzelnen Messzeitpunkt bilden. Das Format eines Einzelwertes ist nicht das endgültige Format für die Transparenzsoftware.

Signierte Daten als OCMF (Einzelformat)

Abruf über:

Register OCMF Schnappschuss Schalt-Mess-Koordination Start: 42292 – 42791

Register OCMF Schnappschuss Schalt-Mess-Koordination Ende: 42792 – 43291

Register OCMF Schnappschuss Start: 43292 – 43791

Register OCMF Schnappschuss Ende: 43792 - 44291

Bei der Ausgabe der signierten Daten für die S.A.F.E. Transparenzsoftware werden diese bereits im fertigen Einzelformat (OCMF) zur Verfügung gestellt. Das Format eines Einzelwertes ist nicht das endgültige Format für die Transparenzsoftware.

Erstellung des Metaformats

Die beiden signierten Schnappschüsse (Start & Ende) müssen in ein übergeordnetes Metaformat integriert werden. Dies geschieht im Normalfall in einem Backend, welches noch zusätzliche Metadaten innerhalb des Formates hinzufügen kann.

Das Metaformat kann in die entsprechende Transparenzsoftware eingefügt werden.

Auch hier befinden sich Beispiele auf Github:

https://github.com/chargelTmobility/bsm-python

Setzen Sie diese Formate um, können Sie ohne größere Aufwände eine fertige Transparenzsoftware nutzen. Weiterhin besteht immer die Möglichkeit, aus den signierten Daten des Zählers sowohl ein neues Einzelformat als auch ein neues Metaformat zu erstellen. Die Kompatibilität einer bestehenden Transparenzsoftware geht hierbei verloren.

Validierung mit einer Transparenzsoftware

Für die Validierung des Datensatzes ist eine Transparenzsoftware notwendig. Dabei kann zwischen Chargy und S.A.F.E. ausgewählt werden.

Chargy:

Chargy ist eine open source Transparenzsoftware von chargeIT und bereits in eichrechtlich zertifizierten Ladesystemen im Einsatz. Auf der Website von chargeIT steht eine Bedienungsanleitung zur Verfügung. Die Transparenzsoftware ist vollumfänglich kostenfrei.

In Kooperation mit chargeIT mobility bieten wir unseren Support zur Implementation des Formates für Chargy an. Kommen Sie bei Fragen gerne auf uns zu.

S.A.F.E.

Die Transparenzsoftware von S.A.F.E. wurde von Mitgliedern des Vereins entwickelt und steht allen Vereinsmitgliedern als open source zur Verfügung. Um diese Transparenzsoftware in einer Baumusterprüfung verwenden zu können, ist eine kostenpflichtige Mitgliedschaft erforderlich. Für Nutzer ist die Software kostenfrei. Auf der Website von S.A.F.E. steht eine Bedienungsanleitung zur Verfügung.

Für die Pflege, Weiterentwicklung und den Support der S.A.F.E-Transparenzsoftware ist der S.A.F.E-Verein verantwortlich.

11. Messrichtigkeitshinweise

Auflagen für den Verwender im Sinne des § 23 der Mess- und Eichverordnung

Die Mess- und Eichverordnung [MessEV] verpflichtet diejenigen, die im Sinne des Eichrechtes Verwender eines Messgerätes sind, so zu messen und Messgeräte so zu handhaben, dass die Richtigkeit der Messung gewährleistet ist. Unter Berücksichtigung der Regelung von Marktrollen durch den § 21 des Energiewirtschaftsgesetzes [EnWG] gelten folgende Festlegungen:

Verwender im Sinne des Eichrechtes sind:

Messgeräteverwender

Messgeräteverwender sind die Messstellenbetreiber im Sinne des EnWG.

Messwertverwender

Messwertverwender sind die, die im Sinne des EnWG Messung und Messwertweitergabe an berechtigte Dritte durchführen, sowie Abrechnung der Netznutzung und Energielieferung durchführen.

Die Messgeräteverwender trifft die Aufgabe, den Messwertverwendern die Möglichkeit zu verschaffen, sich über die nachfolgend erläuterten Auflagen in Kenntnis zu setzen.

Nachvollziehbarkeit der Tarifierung

Entsprechend den anerkannten Regeln der Technik im Sinne des Eichrechts ist dem Endverbraucher die Nachvollziehbarkeit seiner Abrechnung zu ermöglichen. Verantwortlich ist der Messwertverwender.

Der Messwertverwender hat dem Stromkunden einen "Tariffahrplan" zur Verfügung zu stellen, wenn die zählerinterne Uhr als Tarifschaltuhr fungiert. Unter Tariffahrplan ist hier eine Information zu verstehen, die klarstellt, wann welche Tarifumschaltungen bzw. Tarifzuordnungen und verrechnungsrelevanten Speichervorgänge erfolgen. Der im Zähler aktivierte Tariffahrplan muss für den Stromkunden über eine in der Anzeige abrufbare Schlüsselzahl identifizierbar gemacht werden. Die Kennziffer unter der die Schlüsselzahl aufgerufen werden kann, ist dem Stromkunden zur Kenntnis zu bringen.

Fehlermeldungen

Die Beschreibung der Fehlermeldungen ist dieser Produktbeschreibung zu entnehmen. Beim Auftreten von einem Fehler oder mehr (Abweichen der Anzeige 00000000), darf das Gerät nicht für Verrechnungszwecke verwendet werden und die gespeicherten Messergebnisse sind als dubios anzusehen. Die Geräte müssen ausgebaut, nötigenfalls repariert und eichrechtrechtkonform in den Verkehr gebracht werden, wenn sie weiterhin für Verrechnungszwecke verwendet werden sollen.

Verwendung der Kommunikationsschnittstellen

Die über die Schnittstellen des Zählers übertragenen Daten dürfen nur in Geräten gespeichert und weiterverarbeitet werden, die nicht den Charakter von Zusatzeinrichtungen gemäß § 3 Nr. 24 MessEG haben und entsprechend § 6, Absatz (3) MessEG einer Konformitätserklärung ihrer Hersteller bedürfen.

12. Eichtechnische Prüfung

Es gelten die PTB-Prüfregeln Band 6 für Elektrizitätszähler und Zusatzeinrichtungen, sowie die Zulassungsdokumente.

Ausgabeeinrichtung und Funktionskontrolle

Als Prüfausgang dient die Prüf-LED.

Die Prüf-LED pulsiert proportional zur anliegenden Last.

Ohne Last leuchtet die LED nicht.

Mindestmesszeit zur Erreichung der Wiederholpräzision beträgt 10 Sekunden.

13. Betriebszustände

13.1. Servicemode

Im Servicemode können Energieregister mit einer höheren Auflösung (mehr Kommastellen) angezeigt sowie ausgelesen werden.

In diesem Mode kann der Zähler vom Betreiber überprüft und einige Parameter neu gesetzt werden.

Der Servicemode kann nur mit geeigneter Software und Passwort gesetzt werden.

13.2. Parametereinstellung im Servicemode

Parameter	Einstellbereich	Тур	Änderung
Datum	tt.mm.jj	numerisch	mit Tasten
Uhrzeit	hh:mm:ss	numerisch	mit Tasten
Zähleradresse	8 stellig	numerisch	mit Tasten
Schalttabelle	Schaltzeiten der int. Tarifschaltuhr	numerisch	Schnittstelle1,2

13.3. Normalmode

Der Normalmode ist der normale Betriebszustand des Zählers.

Der Zähler schaltet automatisch nach einer Minute aus dem Servicemode in den Normalmode, zurück.

Mit einem Telegramm über die Schnittstellen, kann der Servicemode wieder hergestellt werden

13.4. Kalibriermode (Eichmodus)

In diesem Mode wird der Zähler geeicht und es können alle Parameter gesetzt werden. Dieser Mode kann nur nach dem Öffnen einer Hardwarebrücke und mit einem Telegramm über die Schnittstellen eingeschaltet werden.

Die Zugriffssicherung (Plomben) muss hierbei entfernt werden.

14. Technische Daten

Energiezählwerke	Anzahl	1 T1
Spannung	4-Leiter-Zähler	3x230/400V
Strom Imin Iref Imax	direkt	250mA 5A 60A
Frequenz		50Hz
Klassengenauigkeit	Wirkenergie	KI. B, A
Messart	Wirkenergie	+A
Impulswertigkeit	Prüf-LED	10000 Imp/kWh 2 ms
Impulswertigkeit	S0-Ausgang	100 Imp/kWh
Datenschnittstelle	Optisch SML RS485 / Modbus RTU	nach EN 60065-31
Temperaturbereich	Betriebstemperaturbereich Lagerung/Transport	-25°C bis +70°C -25°C bis +80°C
Umgebungsbedingungen/Feuchte		90% bei 40°C nicht kondensierend
Mechanische Umgebungsbedingungen	Klasse	M1
Einsatzort des Zählers		Innenraum
Energieversorgung		3-phasig aus Messspannung
Eigenverbrauch	Spannungspfad Strompfad	< 8,0VA / < 0,8W < 0,03VA
EMV Eigenschaften	Klasse Isolationsfestigkeit Festigkeit gegen HF-Felder	E1, E2 4 kV AC, 50Hz, 1min 6 kV, Impuls 1.5/50μs 500Ω 10 V/m (unter Last)
Gehäuse	Abmessungen Schutzklasse Schutzart Gehäusematerial	90 x 90 x 66mm II IP20* Polycarbonat schwer entflammbar

^{*}Um den nach Norm (IP51, EN50470-1, Pkt.5.9) geforderten Schutz gegen Eindringen von Staub und Wasser zu erreichen, dürfen die Geräte nur in Zählerschränken verwendet werden, die Klasse IP51 erfüllen.

15. Fehlermeldungen

Tritt ein interner Fehler auf, wird eine Fehlermeldung gesetzt. Diese wird auf der LCD Anzeige angezeigt und kann auch über die seriellen Schnittstellen ausgelesen werden.

Fehlermeldungen	F.F(00000000)	Kein Fehler gesetzt, Zähler i.O.
	F.F(xxxxxxx0)	Zähler geeicht (kalibriert).
	F.F(xxxxxxx1)	Zähler nicht geeicht (kalibriert).
	F.F(xxxxxxx8)	Eichfreigabe, der Zähler ist geeicht, kann aber nachgeeicht werden.
	F.F(xxxxxxx9)	Eichfreigabe, der Zähler ist noch nicht geeicht und kann jetzt geeicht werden.
	F.F(xxxxxxxF)	Zähler neu Initialisiert, die Default Parameter wurden geladen.
	F.F(xxxxxx0x)	Zähler im Normalmode.
	F.F(xxxxxx1x)	Zähler im Servicemode.
	F.F(xxxxx0xx)	Checksummen Micro FLASH und EEPROM i.O.
	F.F(xxxxx1xx)	Fehler Checksumme Micro FLASH.
	F.F(xxxxx2xx)	Fehler Checksumme EEPROM.
	F.F(xxxxx3xx)	Fehler Checksumme Micro FLASH und EEPROM.
	F.F(xxxx0xxx)	Micro RAM und STACK i.O.
	F.F(xxxx1xxx)	Fehler Checksumme Micro RAM.
	F.F(xxxx2xxx)	Fehler Micro STACK (Overflow).
	F.F(xxxx3xxx)	Fehler Checksumme Micro RAM und Fehler Micro STACK.
	F.F(xxx0xxxx)	Micro i.O.
	F.F(xxx1xxxx)	Fehler im Micro.
	F.F(xx0xxxxx)	Hardware i.O.
	F.F(xx1xxxxx)	Fehler auf Hardware.
	F.F(x0xxxxxx)	Zeitbasis (RealTime Clock) i.O.
	F.F(x1xxxxxx)	Fehler in Zeitbasis (RealTime Clock).
	F.F(0xxxxxxx)	RealTime Clock gesetzt.
	F.F(1xxxxxxxx)	RealTime Clock mit Default Datum/Zeit (Nach Neulnit).

16. Zugriffssicherung

Das Siegeletikett ist als Zugriffssicherung über die Gehäusetrennung geklebt. Das Etikett ist selbstzerstörend beim Versuch es zu entfernen.

Die Benutzersicherung erfolgt durch die Plombierung der Klemmenabdeckungen.

17. Anhang A - Übersicht Modbus-Register

17.1. Allgemeines

Das Gerät stellt Informationen über sogenannte Datenpunkte bereit, die in Modellen gruppiert sind. Ein Datenpunkt legt die Darstellung eines Wertes abhängig vom Typ durch ein oder mehrere Modbus-Register fest. Ein Modell gruppiert mehrere Datenpunkte und kann zur Darstellung gleich strukturierter Daten, zum Beispiel für die verschiedenen Schnappschüsse des Gerätes, wiederholt werden.

Datenpunkte aus Standardmodellen, die nicht bereitstellt werden, sind im Folgenden mit Reserviert gekennzeichnet und mehrere aufeinanderfolgende davon zusammengefasst.

Lesezugriffe:

Es können beliebige Folgen von Registern gelesen werden. Für eine maximale Geschwindigkeit sollten die gelesenen Daten an den Grenzen der Datenpunkte ausgerichtet sein.

Schreibzugriffe:

Einige Register sind beschreibbar, bei nicht beschreibbaren Registern wird eine Anfrage ignoriert. Beim Schreiben eines Datenpunkts müssen alle seine Register in einem Schreibzugriff enthalten sein. Schreibzugriffe, die nur auf einen Teil der Register eines Datenpunktes erfolgen, werden abgelehnt.

Adressierung:

Modbus unterscheidet zwischen den Registeradressen des Protokolls und des Datenmodells (Siehe [6], Abschnitt 4.4 MODBUS Addressing Model)

Im Datenmodell beginnen Registeradressen bei 1 – unser Datenmodell demzufolge bei Adresse 40001.

Im Protokoll beginnen Registeradressen bei 0 – unser Datenmodell demzufolge bei Adresse 40000 Die SunSpec-Spezifikation beschreibt die Adressen des Datenmodells.

Je nach verwendetem Werkzeug kommt eine der beiden Adressierungen zum Einsatz und es muss individuell geprüft werden, um welche es sich handelt. Die Register sind dabei alle einheitlich um eins versetzt. In den nachfolgenden Tabellen ist immer die Datenmodelladresse angegeben. Eine Tabelle mit beiden Adressierungen, finden Sie auf Github oder können Sie über unseren Support anfordern.

17.2. Datendarstellung

Allgemeines

Zahlen und Zeichenketten werden nach SunSpec dargestellt. Binärdaten, wie zum Beispiel für Schlüssel und Signaturen, werden über den wiederholenden Block am Ende eines Modells dargestellt.

Zahlen

Die Byte- und Wortreihenfolge für Zahlen ist Big-Endian.

Die jeweilige Messgröße ergibt sich aus drei Komponenten:

- Zahlenwert aus Interpretation von Registerwerten
- Ggfls. Skalierungsfaktor zur Bildung einer Zehnerpotenz 10^{Skalierungsfaktor} mit der dieser Zahlenwert multipliziert wird.
- · Ggfls. einer Einheit

Тур	Beschreibung	Bilden des Wertes aus Registerinhalten	Wertebereich	Nicht vorhanden oder ungültig
acc32	32 Bit Zähler, Vorzeichenlos	wie uint32	0 bis 4294967295	0
bitfield32	Sammlung von 15 Bit Information	wie uint32	0 bis 0x7fff	Wenn Bit 32 gesetzt ist (0x80000000)
enum16	16 Bit Aufzählung	wie uint16	0 bis 65534	65535 (0xffff)
int16	16 Bit Ganzzahl, vorzeichenbehafte t	(int16_t)R[n]	-32767 32767	-32768 (0x8000)
pad	Fülldaten	wie int16	0x8000	-32768 (0x8000)
sunsf	Skalierungsfaktor	(int16_t)R[n]	-10 bis 10	-32768 (0x8000)
uint16	16 Bit Ganzzahl, vorzeichenlos	(uint16_t)R[n]	0 bis 65534	65535 (0xffff)
uint32	32 Bit Ganzzahl, vorzeichenlos	(uint32_t)R[n] << 16 (uint32_t)R[n + 1]	0 bis 4294967294	4294967295 (0xffffffff)

Zeichenketten

Zeichenketten (Typ: string) werden in einer zusammenhängenden Folge von Registern bereitgestellt, wobei pro Register zwei ASCII-Zeichen enthalten sind. Eine Zeichenkette wird mit Null-Zeichen ('\x00' aufgefüllt, falls sie kürzer als die Registerfolge ist. Es muss immer die gesamte Registerfolge geschrieben werden.

Zum Beispiel: 'ABC' in einer vier Register langen Zeichenkette

Register		R[n]	R[n + 1	1]	R[n + 2]	R[n + 3]	
Byte	0	1	2	3	7	5	6	7
Zeichen	Α	В	С	0x00	0x00	0x00	0x00	0x00

Binärdaten

Binärdaten (Binary Large Objects, BLOBs) werden in einem Datenbereich aus einer zusammenhängenden Folge von uint16-Registern bereitgestellt. Zwei weitere Register geben die Länge dieses Bereichs und die Anzahl der aktuell darin bereitgestellten Bytes an.

Die Datenpunkte werden nach folgender Konvention benannt: Heißt der Datenpunkt der Binärdaten B, so gibt NB die Anzahl der Register des Datenbereichs an und BB die Anzahl der darin belegten Bytes. Die Längeninformation ist typischerweise am Ende des festen Blocks eines Modells zu finden - der Datenbereich liegt im wiederholenden Block. Zum Ausrichten der Binärdaten kann am Ende des festen Blocks ein PaddingRegister enthalten sein.

Zum Beispiel werden die Daten 0x123456 wie folgt dargestellt:.

Register	NB		ВВ		Pad		B[0]		B[1]	
Byte							0	1	2	3
Funktion	Anzahl Registe	er	Anzahl Bytes		Padding		Gültige Binärdaten			Ungültig
Daten	0x00	0x02	0x00	0x03	0x80	0x00	0x12	0x23	0x56	0x00

Einheiten

Einheiten werden in den nachfolgenden Tabellen explizit genannt. Fürs Signieren von Daten werden sie gemäß der folgenden Tabelle nach COSEM Interface Classes and OBIS Object Identification System kodiert [5]:

Einheit	Einheitenzeichen	Wert
Dimensionslos/ohne Einheit		255
Minute	min	6
Sekunde	S	7
Watt	W	27
Wattstunde	Wh	30

17.3. Datenblöcke

Übersicht Modell-Instanzen

Die nachfolgende Tabelle führt die Modell-Instanzen auf. Jede Instanz beginnt mit einem Header aus Modell-ID und Nutzdatenlänge von jeweils einem Register. Diese beiden Register sind nicht in der Nutzdatenlänge enthalten.

Eine Zusammenfassung aller schreibbaren Register in 17.4

Datenmodell-	Register-	Name Modellinstanz	Modell-ID	Beschreibung
adresse	anzahl			
	Nutzdaten			
40001	0	SunSpec-ID		Identifikationsnummer
40003	66	Common-Block	1	Standard SunSpec-Modell mit allgemeinen Informationen
40071	4	Schnittstellen-Header	10	Standard SunSpec-Modell mit allgemeinen Informationen zu einer
				Kommunikationsschnittstelle
40077	12	Serielle Schnittstelle	17	Standard SunSpec-Modell einer seriellen Schnittstelle
40091	105	Dreiphasen-Energiezähler	203	Standard SunSpec-Modell eines Dreiphasen-Energiezählers
40198	300	Signierender Zähler	64900	Eigenes Modell mit erweiterten Informationen für diesen signierenden
				Energiezähler
40500	20	Hash Firmware	64902	Eigenes Modell mit der binären Darstellung des Hashs der Firmware des
		Kommunikationsmodul		Kommunikationsmoduls
40522	260	Signierter	64901	Eigenes Modell eines signierten Schnappschusses einer Auswahl der
		Momentanzustand		Daten des Momentanzustands des Gerätes

40776	260	Signierte Schalt-Mess-	64901	Eigenes Modell eines signierten Schnappschusses einer Auswahl von
		Koordination Einschalten		Daten, die im Rahmen des Einschaltens des Digitalausgangs über die
				Schalt-Mess-Koordination erhoben wurden
41030	260	Signierte Schalt-Mess-	64901	Eigenes Modell eines signierten Schnappschusses einer Auswahl von
		Koordination Ausschalten		Daten, die im Rahmen des Ausschaltens des Digitalausgangs über die
				Schalt-Mess-Koordination erhoben wurden
41284	252	Signierter Schnappschuss	64901	Eigenes Modell eines signierten Schnappschusses einer Auswahl von
		Start		Daten, die zum Start eines Ladevorgangs (ohne Schalten) erhoben wurden
41538	252	Signierter Schnappschuss	64901	Eigenes Modell eines signierten Schnappschusses einer Auswahl von
		Ende		Daten, die zum Beenden eines Ladevorgangs (ohne Schalten) erhoben
				wurden
41792	498	Signierter	64903	Eigenes Modell einer OCMF-Darstellung des signierten Momentanzustands
		Momentanzustand OCMF		
42292	498	Signierte Schalt-Mess-	64903	Eigenes Modell einer OCMF-Darstellung der signierten Schalt-Mess-
		Koordination Einschalten		Koordination Einschalten
		OCMF		
42792	498	Signierte Schalt-Mess-	64903	Eigenes Modell einer OCMF-Darstellung der signierten Schalt-Mess-
		Koordination Ausschalten		Koordination Ausschalten
		OCMF		
43292	498	Signierter Schnappschuss	64903	Eigenes Modell einer OCMF-Darstellung der signierten Messung zum Start
		Start OCMF		
43792	498	Signierter Schnappschuss	64903	Eigenes Modell einer OCMF-Darstellung der signierten Messung zum Ende
		Ende OCMF		
44292	0	Ende	65535	Standard SunSpec-Modell zur Anzeige des Endes der Modelle dieses
				Gerätes

SunSpec-ID

Die SunSpec-ID ist eine magische Zahl (magic number) zur Identifikation. Sie folgt nicht der Block-Struktur.

Datenmodell- Adresse	Register	Name	Тур	Standardwert	Bemerkung
40001	2	SunSpec-ID	uint32	0x53756e53	Identifikationsnummer, als Zeichenkette interpretiert 'SunS'

Common

Das Common-Modell enthält die allgemeinen Informationen zum Gerät. Es beinhaltet den Datenpunkt DA zum Setzen der Modbus-Adresse, was auch zusammen mit der Kommunikationsgeschwindigkeit im Modell Signierender Zähler vorgenommen werden kann.

Datenmodell-	Register	ID	Name	Тур	Einheit	Schreib-	Standardwert	Bemerkung
Adresse						bar		
40003	1	ID	Modell-ID	uint16		nein	1	SunSpec Common-Modell
40004	1	L	Länge Nutzdaten	uint16		nein	66	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
40005	16	Mn	Hersteller	string		nein		
40021	16	Md	Modellbezeichnun g	string		nein		
40037	8	Opt	Reserviert	string		nein		

40045	8	Vr	Versionsnummer des Gerätes	string	nein		
40053	16	SN	Seriennummer	string	nein		
40033	10	JIN	Sellerillulliller	String	Helli		
40069	1	DA	Modbus-Adresse	uint16	ja	42	
40070	1	Pad	Padding	pad	nein	206696	

Schnittstellen-Header

Das Modell Schnittstellen-Header enthält allgemeine Informationen zur Modbusschnittstelle.

Datenmodell- Adresse	Register	ID	Name	Тур	Einheit	Schreibbar	Standardwert	Bemerkung
40071	1	ID	Modell-ID	uint16		nein	10	SunSpec-Modell Schnittstellen-Header (Interface Header)
40072	1	L	Länge Nutzdaten	uint16		nein	4	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
40073	1	St	Status	enum16		nein	1	Siehe Kapitel 17.5
40074	1	Ctl	Steuerung	uint16		nein	65535	Bedeutung dieses Wertes in der Spezifikation noch offen
40075	1	Тур	Medium	enum16		nein	2	Fest 2 für verdrilltes Adernpaar (Twisted Pair)
40076	1	Pad	Padding	pad		nein	32768	

Serielle Schnittstelle

Der Datenblock Serielle Schnittstelle enthält Informationen und Konfigurationen für die Modbusschnittstelle. Hier lässt sich einzig die Kommunikationsgeschwindigkeit einstellen, die anderen Parameter sind nicht konfigurierbar.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Schreibbar	Standardwert	Bemerkung
40077	1	ID	Modell-ID	uint16		nein	17	SunSpec-Modell serielle Schnittstelle
40078	1	L	Länge Nutzdaten	uint16		nein	12	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
40079	4	Nam	Name	string		nein		
40083	2	Rte	Baud-Rate	uint32	bps	ja		
40085	1	Bits	Bits pro Zeichen	uint16		nein	8	Fest 8
40086	1	Pty	Parität	enum16		nein	2	Fest 2 für gerade Parität
40087	1	Dup	Duplex	enum16		nein	1	Fest 1 für Halbduplex
40088	1	Flw	Flusskontrolle	enum16		nein	0	Fest 0 für keine Flusskontrolle
40089	1	Тур	Schnittstellentyp	enum16		nein	2	Fest 2 für RS-485
40090	1	Pcol	Protokoll	enum16		nein	1	Fest 1 für Modbus

Dreiphasen-Energiezähler

Der Datenblock Dreiphasen-Energiezähler enthält die standardisierten Informationen eines Dreiphasen-Energiezählers.

Datenmodell- Adresse	Registe r	ID	Name	Тур	Einheit	Schreibbar	Standardwert	Bemerkung
40091	1	ID	Modell-ID	uint16		nein	203	SunSpec-Modell Dreiphasen- Energiezähler (Three Phase Meter)
40092	1	L	Länge Nutzdaten	uint16		nein	105	Ohne die Felder 'Modell-ID' und 'Länge Nutzdaten'
40093	1	Α	Momentaner Strom Total	int16	Α	nein		
40094	1	AphA	Momentaner Strom Phase L1	int16	Α	nein		
40095	1	AphB	Momentaner Strom Phase L2	int16	Α	nein		
40096	1	AphC	Momentaner Strom Phase L3	int16	Α	nein		
40097	1	A_SF	Skalierungsfaktor Strom	sunssf		nein		
40098	1					nein		Reserviert

40099	1	PhVphA	Momentane Spannung Phase L1	int16	V	nein	
40100	1	PhVphB	Momentane Spannung Phase L2	int16	V	nein	
40101	1	PhVphC	Momentane Spannung Phase L3	int16	V	nein	
40102	4					nein	Reserviert
40106	1	V_SF	Skalierungsfaktor Spannung	sunssf		nein	
40107	1	Hz	Momentane Netzfrequenz	int16	Hz	nein	
40108	1	Hz_SF	Skalierungsfaktor Netzfrequenz	sunssf		nein	
40109	1	W	Momentane Wirk- Leistung Total	int16	W	nein	
40110	1	WphA	Mom. Wirk- Leistung Phase L1	int16	W	nein	
40111	1	WphB	Mom. Wirk- Leistung Phase L2	int16	W	nein	
40112	1	WphC	Mom. Wirk- Leistung Phase L3	int16	W	nein	

40113	1	W_SF	Skalierungsfaktor Wirkleistung	sunssf		nein	
40114	1	VA	Momentane Schein-Leistung Total	int16	VA	nein	
40115	1	VAphA	Mom. Schein- Leistung Phase L1	int16	VA	nein	
40116	1	VAphB	Mom. Schein- Leistung Phase L2	int16	VA	nein	
40117	1	VAphC	Mom. Schein- Leistung Phase L3	int16	VA	nein	
40118	1	VA_SF	Skalierungsfaktor Scheinleistung	sunssf		nein	
40119	1	VAR	Momentane Blind- Leistung Total	int16	var	nein	
40120	1	VARphA	Mom. Blind- Leistung Phase L1	int16	var	nein	
40121	1	VARphB	Mom. Blind- Leistung Phase L2	int16	var	nein	
40122	1	VARph C	Mom. Blind- Leistung Phase L3	int16	var	nein	
40123	1	VAR_S F	Skalierungsfaktor Blindleistung	sunssf		nein	
40124	1					nein	Reserviert

40125	1	PFphA	Momentaner Formfakter Phase L1	int16	Pct	nein	
40126	1	PFphB	Momentaner Formfakter Phase L2	int16	Pct	nein	
40127	1	PFphC	Momentaner Formfakter Phase L3	int16	Pct	nein	
40128	1	PF_SF	Skalierungsfaktor Formfaktor	sunssf		nein	
40129	8					nein	Reserviert
40137	2	TotWhI mp	Wirkenergiezähler Bezug	acc32	Wh	nein	
40139	6					nein	Reserviert
40145	1	TotWh_ SF	Skalierungsfaktor Wirkenergie	sunssf		nein	
40146	50					nein	Reserviert
40196	2	Evt	Ereignisse	bitfield32		nein	Siehe Kapitel 17.5 Ereignis-Flags kritischer Ereignisse von Zähler- und Kommunikationsmodul. Ein Problem liegt vor, wenn dieser Wert verschieden von Null ist.

Signierender Zähler

Das Modell "Signierender Zähler" enthält Informationen, welche über die des "Dreiphasen-Energiezähler" hinausgehen. Darunter auch die meisten konfigurierbaren Werte des Gerätes:

- Aktuelle Uhrzeit
- Metadaten zur Aufnahme in signierte Daten
- Direkte Ansteuerung des Digital-Ausgangs

Die Modbus-Kommunikationsparameter können über die Modellinstanzen "Common" und "Serielle Schnittstelle" gesetzt werden.

Adresse	Register	ID	Name	Тур	Einheit	Skalierungsfaktor	Schreib- bar	Standard- wert	Bemerkung
40198	1	ID	Modell-ID	uint16			nein	64900	Eigener Block Signierender Zähler
40199	1	L	Länge Nutzdaten	uint16			nein	292	Ohne die Felder 'Modell-ID' und 'Länge Nutzdaten'
40200	4	ErrM	Fehler-Code Zählermodul	string			nein		Dieser Fehlercode wird in einem Bit des Feldes ,Evt' des Modells des Dreiphasenzählers
40204	8	SNM	Seriennummer Zählermodul	string			nein		
40212	8	SNC	Seriennummer Kommunikationsmodul	string			nein		

40220	8	VrM	Software-Version Zählermodul	string			nein	Hierin wird auch die Prüfsumme dieser Firmware angegeben
40228	8	VrC	Software-Version Kommunikationsmodul	string			nein	Die Prüfsumme dieser Firmware ist in der Instanz ,Communication Module Firmware Hash' des BLOB- Modells (64902) zu finden.
40236	8	MA1	Adresse 1	string			nein	
40244	8	MA2	Adresse 2	string			nein	
40252	2	RCR	Energiebezug seit der letzten Schalt-Mess-Koordination Einschalten	uint32	Wh	RCR_SF	nein	
40254	1	RCR_ SF	Skalierungsfaktor Energiebezug seit der letzten Schalt-Mess- Koordination Einschalten	sunssf			nein	
40255	2	PDCnt	Zähler Spannungsausfall	uint32			nein	
40257	2	RCnt	Paginierungsindex/Antw ortzähler	uint32			nein	Anzahl der bisher von diesem Gerät signierten Schnappschüsse

40259	2	OS	Sekundenindex/Betriebs sekunden	uint32	S	nein	Betriebssekunden dieses Gerätes
40261	2	Epoch	Aktuelle Uhrzeit	uint32	S	ja	Epoch-Time, "Unix-Zeit", Sekunden seit dem 1.1.1970 00:00
40263	1	TZO	Aktueller Zeitzonen- Offset	int16	min	ja	
40264	2	Epoch SetCnt	Zähler Stellen Aktuelle Uhrzeit UTC	uint32		nein	
40266	2	Epoch SetOS	Letztes Stellen der Aktuellen Uhrzeit UTC (Betriebssekunden)	uint32	S	nein	
40268	1	DI	Zustand Digital-Inputs	uint16		nein	Niederwertigstes Bit enthält den Zustand des Digitaleingangs
40269	1	DO	Zustand Digital-Outputs	uint16		ja	Schreiben des niederwertigsten Bits Register schaltet den Ausgang
40270	2	DIChg OS	Sekundenindex letzte Modifikation Digital- Inputs	uint32	S	nein	

40272	2	DIChg Epoch	Zeitstempel letzte Modifikation Digital- Inputs	uint32	s	nein	
40274	1	DIChg TZO	Offset UTC letzte Modifikation Digital Inputs	int16	min	nein	
40275	2	DOCh gOS	Sekundenindex letzte Modifikation Digital- Outputs	uint32	S	nein	
40277	2	DOCh gEpoc h	Zeitstempel letzte Modifikation Digital- Outputs	uint32	S	nein	
40279	1	DOCh gTZO	Offset UTC letzte Modifikation Digital- Outputs	int16	min	nein	
40280	70	Meta1	Metadaten 1	string		ja	Metadaten, die in Schnappschüsse aufgenommen werden, Identifikationsdaten für OCMF

40350	50	Meta2	Metadaten 2	string	ja	Metadaten, die in
						Schnappschüsse
						aufgenommen werden
40400	50	Meta3	Metadaten 3	string	ja	Metadaten, die in
						Schnappschüsse
						aufgenommen werden
40450	1	NPK	BLOB-Register in PK	uint16	nein	Anzahl der wiederholenden Blöcke PK des BLOB-Bereichs des öffentlichen Schlüssels
40451	1	BPK	BLOB-Bytes in PK	uint16	nein	Tatsächliche Anzahl Bytes des
						öffentlichen Schlüssels
40452	1	PK	Öffentlicher Schlüssel	uint16	nein	Wiederholender Block mit
						Binärdaten des öffentlichen
						Schüssels im DER-Format

Hash Firmware Kommunikationsmodul

Diese Modellinstanz liefert den aktuellen Hash der Firmware des Kommunikationsmoduls in binärer Form.

Datenmodell- Adresse	Register	ID	Name	Тур	Einheit	Schreib- bar	Standardwert	Bemerkung
40500	1	ID	Modell-ID	uint16		nein	64902	Modell Binärdaten

40501	1	L	Länge Nutzdaten	uint16	nein	20	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
40502	1	Тур	BLOB-Typ	enum16	nein		
40503	1	NB	BLOB Register B	uint16	nein		Anzahl der wiederholenden Blöcke B des Firmware-Hash- BLOBs
40504	1	BB	BLOB Bytes in	uint16	nein		Tatsächliche Anzahl Bytes des Firmware- Hash-BLOBs
40505	1	Pad	Padding	pad	nein		
40506	1	В	Firmware-Hash	uint16	nein		Wiederholender Block mit dem Firmware- Hash (SHA-256).

Signierter Momentanzustand

In diesem Datenblock wird ein signierter Schnappschuss aus dem aktuellen Betrieb abgebildet. Dabei ist der Block losgelöst von der Schalt-Mess-Koordination und die Daten werden hierbei ohne eine Änderung des Digital-Ausgangs erhoben. Das Erstellen eines Schnappschusses kann jederzeit durchgeführt werden und wird durch das Schreiben des Wertes "aktualisieren" auf das Statusregister ausgelöst. Das Modell (Layout vom Registerblock) ist identisch mit dem der Schnappschüsse der Schalt-Mess-Koordination (im Folgenden).

Datenmodell- Adresse	Register	ID	Name	Тур	Einheit	Skalierungsfaktor	Schreib- bar	Standardwert	Bemerkung
40522	1	ID	Modell-ID	uint16			nein	64901	Modell Schnappschuss
40523	1	L	Länge Nutzdaten	uint16			nein	260	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
40524	1	Тур	Typ dieses Snapshots	enum16			nein	0	Signierter Momentanzustand, Siehe Kapitel 17.5
40525	1	St	Status des Snapshots/Auslöser	enum16			ja		Siehe Kapitel 17.5, Schreiben von aktualisieren löst das Erstellen aus
40526	2	RCR	Energiebezug seit der letzten Schalt- Mess-Koordination Einschalten	acc32	Wh	Wh_SF	nein		
40528	2	TotWhExp	Wirkenergiezähler Bezug	acc32	Wh	Wh_SF	nein		

40530	1	Wh_SF	Skalierungsfaktor Wirkenergie	sunssf			nein	
40531	1	W	Momentane Wirk- Leistung Total	int16	W	W_SF	nein	
40532	1	W_SF	Skalierungsfaktor Wirkleistung	sunssf			nein	
40533	8	MA1	Adresse 1	string			nein	
40541	2	RCnt	Paginierungsindex dieses Snapshots	uint32			nein	
40543	2	OS	Sekundenindex dieses Snapshots	uint32	S		nein	
40545	2	Epoch	Zeitstempel dieses Snapshots	uint32	S		nein	
40547	1	TZO	Offset UTC dieses Snapshots	int16	min		nein	

40548	2	EpochSetCnt	Zähler Stellen Aktuelle Uhrzeit UTC	uint32		nein	
40550	2	EpochSetOS	Letztes Stellen der Aktuellen Uhrzeit UTC (Betriebssekunden)	uint32	S	nein	
40552	1	DI	Zustand Digital- Inputs	uint16		nein	
40553	1	DO	Zustand Digital- Outputs	uint16		nein	
40554	70	Meta1	Metadaten 1	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
40624	50	Meta2	Metadaten 2	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden

40674	50	Meta3	Metadaten 3	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
40724	2	Evt	Ereignisse	bitfield32		nein	Siehe Kapitel 17.5, Ereignis-Flags kritischer Ereignisse von Zähler- und Kommunikationsmodul. Ein Problem liegt vor, wenn dieser Wert verschieden von Null ist.
40726	1	NSig	Länge Signaturblock	uint16		nein	Anzahl der wiederholenden Blöcke Sig der Signatur
40727	1	BSig	Länge der Signatur in Bytes	uint16		nein	Tatsächliche Anzahl Bytes der Signatur
40728	1	Sig	Signatur	uint16		nein	Wiederholender Block mit Binärdaten der Signatur im DER- Format

Signierte Schalt-Mess-Koordination Einschalten

Beim Ausführen von "Schalt-Mess-Koordination Einschalten" findet der Schaltvorgang nach der bereits beschriebenen Schalt-Mess-Koordination statt. Es wird ein signierter Schnappschuss mit ausgewählten Daten erstellt.

Datenmodell- Adresse	Register	ID	Name	Тур	Einheit	Skalierungsfaktor	Schreib- bar	Standardwert	Bemerkung
40776	1	ID	Modell-ID	uint16			nein	64901	Modell Schnappschuss
40777	1	L	Länge Nutzdaten	uint16			nein	260	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
40778	1	Тур	Typ dieses Snapshots	enum16			nein	1	Signierte Schalt-Mess- Koordination Einschalten, Siehe Kapitel 17.5
40779	1	St	Status des Snapshots/Auslöser	enum16			ja		Siehe Kapitel 17.5, Schreiben von aktualisieren löst das Erstellen aus
40780	2	RCR	Energiebezug seit der letzten Schalt-Mess-Koordination Einschalten	acc32	Wh	Wh_SF	nein		
40782	2	TotWhExp	Wirkenergiezähler Bezug	acc32	Wh	Wh_SF	nein		

40784	1	Wh_SF	Skalierungsfaktor Wirkenergie	sunssf			nein	
40785	1	W	Momentane Wirk- Leistung Total	int16	W	W_SF	nein	
40786	1	W_SF	Skalierungsfaktor Wirkleistung	sunssf			nein	
40787	8	MA1	Adresse 1	string			nein	
40795	2	RCnt	Paginierungsindex dieses Snapshots	uint32			nein	
40797	2	OS	Sekundenindex dieses Snapshots	uint32	S		nein	
40799	2	Epoch	Zeitstempel dieses Snapshots	uint32	S		nein	
40801	1	TZO	Offset UTC dieses Snapshots	int16	min		nein	

40802	2	EpochSetCnt	Zähler Stellen Aktuelle Uhrzeit UTC	uint32		nein	
40804	2	EpochSetOS	Letztes Stellen der Aktuellen Uhrzeit UTC (Betriebssekunden)	uint32	S	nein	
40806	1	DI	Zustand Digital- Inputs	uint16		nein	
40807	1	DO	Zustand Digital- Outputs	uint16		nein	
40808	70	Meta1	Metadaten 1	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
40878	50	Meta2	Metadaten 2	string		nein	Metadaten, die beim Anfertigen und signieren eines

							Schnappschusses mit einbezogen werden
40928	50	Meta3	Metadaten 3	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
40978	2	Evt	Ereignisse	bitfield32		nein	Siehe Kapitel 17.5, Ereignis-Flags kritischer Ereignisse von Zähler- und Kommunikationsmodul. Ein Problem liegt vor, wenn dieser Wert verschieden von Null ist.
40980	1	NSig	Länge Signaturblock	uint16		nein	Anzahl der wiederholenden Blöcke Sig der Signatur
40981	1	BSig	Länge der Signatur in Bytes	uint16		nein	Tatsächliche Anzahl Bytes der Signatur

40982	1	Sig	Signatur	uint16		nein	Wiederholender Block
							mit Binärdaten der
							Signatur im DER-
							Format

Signierte Schalt-Mess-Koordination Ausschalten

Beim Ausführen von "Schalt-Mess-Koordination Ausschalten" findet der Schaltvorgang nach der bereits beschriebenen Schalt-Mess-Koordination statt. Es wird ein signierter Schnappschuss mit ausgewählten Daten erstellt.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Skalierungsfaktor	Schreib- bar	Standardwert	Bemerkung
41030	1	ID	Modell-ID	uint16			nein	64901	Modell Schnappschuss
41031	1	L	Länge Nutzdaten	uint16			nein	260	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
41032	1	Тур	Typ dieses Snapshots	enum16			nein	2	Signierte Schalt-Mess- Koordination Ausschalten, Siehe Kapitel 17.5

41033	1	St	Status des	enum16			ja	Siehe Kapitel 17.5, Schreiben
			Snapshots/Auslöse					von aktualisieren löst
			ľ					das Erstellen aus
	_							uas Eistelleii aus
41034	2	RCR	Energiebezug seit	acc32	Wh	Wh_SF	nein	
			der letzten Schalt-					
			Mess-Koordination					
			Einschalten					
41036	2	TotWhExp	Wirkenergiezähler	acc32	Wh	Wh_SF	nein	
			Bezug					
44000	1	\\/\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	Olyalia wys wafalsta w					
41038	1	Wh_SF	Skalierungsfaktor	sunssf			nein	
			Wirkenergie					
41039	1	W	Momentane Wirk-	int16	W	W_SF	nein	
			Leistung Total					
				_				
41040	1	W_SF	Skalierungsfaktor	sunssf			nein	
			Wirkleistung					
41041	8	MA1	Adresse 1	string			nein	

41049	2	RCnt	Paginierungsindex dieses Snapshots	uint32		nein	
41051	2	OS	Sekundenindex dieses Snapshots	uint32	S	nein	
41053	2	Epoch	Zeitstempel dieses Snapshots	uint32	S	nein	
41055	1	TZO	Offset UTC dieses Snapshots	int16	min	nein	
41056	2	EpochSet Cnt	Zähler Stellen Aktuelle Uhrzeit UTC	uint32		nein	
41058	2	EpochSet OS	Letztes Stellen der Aktuellen Uhrzeit UTC (Betriebssekunden)	uint32	S	nein	
41060	1	DI	Zustand Digital- Inputs	uint16		nein	

41061	1	DO	Zustand Digital- Outputs	uint16		nein	
41062	70	Meta1	Metadaten 1	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41132	50	Meta2	Metadaten 2	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41182	50	Meta3	Metadaten 3	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41232	2	Evt	Ereignisse	bitfield3 2		nein	Siehe Kapitel 17.5, Ereignis-Flags kritischer Ereignisse von Zähler- und Kommunikationsmodul. Ein Problem liegt vor, wenn dieser Wert verschieden von Null ist.

41234	1	NSig	Länge Signaturblock	uint16	nein	Anzahl der wiederholenden Blöcke Sig der Signatur
41235	1	BSig	Länge der Signatur in Bytes	uint16	nein	Tatsächliche Anzahl Bytes der Signatur
41236	1	Sig	Signatur	uint16	nein	Wiederholender Block mit Binärdaten der Signatur im DER- Format

Signierter Schnappschuss Start

In dieser Modellinstanz wird ein signierter Schnappschuss vom Start eines Ladevorgangs (ohne Schaltung) bereitgestellt.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Skalierungsfaktor	Schreib- bar	Standardwert	Bemerkung
41284	1	ID	Modell-ID	uint16			nein	64901	Modell Schnappschuss
41285	1	L	Länge Nutzdaten	uint16			nein	260	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'

41286	1	Тур	Typ dieses Snapshots	enum16			nein	3	Signierte Messung Start, Siehe Kapitel 17.5
41287	1	St	Status des Snapshots/Auslöse r	enum16			ja		Siehe Kapitel 17.5, Schreiben von aktualisieren löst das Erstellen aus
41288	2	RCR	Energiebezug seit der letzten Schalt- Mess-Koordination Einschalten	acc32	Wh	Wh_SF	nein		
41290	2	TotWhExp	Wirkenergiezähler Bezug	acc32	Wh	Wh_SF	nein		
41292	1	Wh_SF	Skalierungsfaktor Wirkenergie	sunssf			nein		
41293	1	W	Momentane Wirk- Leistung Total	int16	W	W_SF	nein		

41294	1	W_SF	Skalierungsfaktor Wirkleistung	sunssf		nein	
41295	8	MA1	Adresse 1	string		nein	
41303	2	RCnt	Paginierungsindex dieses Snapshots	uint32		nein	
41305	2	OS	Sekundenindex dieses Snapshots	uint32	S	nein	
41307	2	Epoch	Zeitstempel dieses Snapshots	uint32	S	nein	
41309	1	TZO	Offset UTC dieses Snapshots	int16	min	nein	
41310	2	EpochSet Cnt	Zähler Stellen Aktuelle Uhrzeit UTC	uint32		nein	
41312	2	EpochSet OS	Letztes Stellen der Aktuellen Uhrzeit UTC (Betriebssekunden)	uint32	S	nein	

41314	1	DI	Zustand Digital- Inputs	uint16	nein	
41315	1	DO	Zustand Digital- Outputs	uint16	nein	
41316	70	Meta1	Metadaten 1	string	nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41386	50	Meta2	Metadaten 2	string	nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41436	50	Meta3	Metadaten 3	string	nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41486	2	Evt	Ereignisse	bitfield3 2	nein	Siehe Kapitel 17.5, Ereignis-Flags kritischer Ereignisse von Zähler- und Kommunikationsmodul. Ein Problem liegt vor, wenn dieser Wert

						verschieden von Null ist.
41488	1	NSig	Länge Signaturblock	uint16	nein	Anzahl der wiederholenden Blöcke Sig der Signatur
41489	1	BSig	Länge der Signatur in Bytes	uint16	nein	Tatsächliche Anzahl Bytes der Signatur
41490	1	Sig	Signatur	uint16	nein	Wiederholender Block mit Binärdaten der Signatur im DER- Format

Signierter Schnappschuss Ende

In dieser Modellinstanz wird ein signierter Schnappschuss vom Ende eines Ladevorgangs (ohne Schaltung) bereitgestellt.

	Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Skalierungsfaktor	Schreib- bar	Standardwert	Bemerkung
4	41538	1	ID	Modell-ID	uint16			nein	64901	Modell Schnappschuss

41539	1	L	Länge Nutzdaten	uint16			nein	260	Ohne die Felder
									,Modell-ID' und ,Länge
									Nutzdaten'
41540	1	Тур	Typ dieses	enum16			nein	4	Signierte Messung
			Snapshots						Ende, Siehe Kapitel
									17.5
41541	1	St	Status des	enum16			ja		Siehe Kapitel 17.5,
			Snapshots/Auslöse						Schreiben
			r						von aktualisieren löst
									das Erstellen aus
41542	2	RCR	Energiebezug seit	acc32	Wh	Wh_SF	nein		
			der letzten Schalt-						
			Mess-Koordination						
			Einschalten						
41544	2	TotWhExp	Wirkenergiezähler	acc32	Wh	Wh_SF	nein		
			Bezug						
41546	1	Wh_SF	Skalierungsfaktor	sunssf			nein		
			Wirkenergie	2					
			g						

41547	1	W	Momentane Wirk- Leistung Total	int16	W	W_SF	nein	
41548	1	W_SF	Skalierungsfaktor Wirkleistung	sunssf			nein	
41549	8	MA1	Adresse 1	string			nein	
41557	2	RCnt	Paginierungsindex dieses Snapshots	uint32			nein	
41559	2	OS	Sekundenindex dieses Snapshots	uint32	S		nein	
41561	2	Epoch	Zeitstempel dieses Snapshots	uint32	S		nein	
41563	1	TZO	Offset UTC dieses Snapshots	int16	min		nein	
41564	2	EpochSet Cnt	Zähler Stellen Aktuelle Uhrzeit UTC	uint32			nein	

41566	2	EpochSet	Letztes Stellen der	uint32	S	nein	
		os	Aktuellen Uhrzeit				
			UTC				
			(Betriebssekunden)				
41568	1	DI	Zustand Digital-	uint16		nein	
			Inputs				
41569	1	DO	Zustand Digital- Outputs	uint16		nein	
41570	70	Meta1	Metadaten 1	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41640	50	Meta2	Metadaten 2	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden
41690	50	Meta3	Metadaten 3	string		nein	Metadaten, die beim Anfertigen und signieren eines Schnappschusses mit einbezogen werden

41740	2	Evt	Ereignisse	bitfield3 2	nein	Siehe Kapitel 17.5, Ereignis-Flags kritischer Ereignisse von Zähler- und Kommunikationsmodul. Ein Problem liegt vor, wenn dieser Wert verschieden von Null ist.
41742	1	NSig	Länge Signaturblock	uint16	nein	Anzahl der wiederholenden Blöcke Sig der Signatur
41743	1	BSig	Länge der Signatur in Bytes	uint16	nein	Tatsächliche Anzahl Bytes der Signatur
41744	1	Sig	Signatur	uint16	nein	Wiederholender Block mit Binärdaten der Signatur im DER- Format

Signierter Momentanzustand (OCMF)

In dieser Modellinstanz wird ein signierter Momentanzustand als OCMF bereitgestellt zur Weiterverwendung für die S.A.F.E. Transparenzsoftware.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Schreib- bar	Standardwert	Bemerkung
41792	1	ID	Modell-ID	uint16		nein	64903	Modell OCMF-Daten

41793	1	L	Länge Nutzdaten	uint16	nein	372	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
41794	1	Тур	Typ dieses Snapshots	enum16	nein	0	Signierter Momentanzustand, Siehe Kapitel 17.5
41795	1	St	Status des Snapshots/ Auslöser	enum16	nein		Siehe Kapitel 17.5, zum Erstellen auf das Feld Status des zugehörigen Schnappschusses schreiben
41796	496	0	OCMF-Darstellung des Schnappschusses	string	nein		OCMF-Darstellung des Schnappschusses signierter Momentanzustand, das Metadatenfeld 1 wird als OCMF-Identität benutzt

Signierte Schalt-Mess-Koordination Einschalten (OCMF)

Beim Ausführen von "Schalt-Mess-Koordination Einschalten" findet der Schaltvorgang nach der bereits beschriebenen Schalt-Mess-Koordination statt. Aus einem signierten Schnappschuss wird das OCMF-Format erstellt und hier bereitgestellt.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Schreib- bar	Standardwert	Bemerkung
42292	1	ID	Modell-ID	uint16		nein	64903	Modell OCMF-Daten

42293	1	L	Länge Nutzdaten	uint16	neir	۱ (372	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
42294	1	Тур	Typ dieses Snapshots	enum16	neir	1	1	Signierte Schalt-Mess- Koordination Einschalten, Siehe Kapitel 17.5
42295	1	St	Status des Snapshots/ Auslöser	enum16	neir	1		Siehe Kapitel 17.5, zum Erstellen auf das Feld Status des zugehörigen Schnappschusses schreiben
42296	496	0	OCMF-Darstellung des Schnappschusses	string	neir	1		OCMF-Darstellung des Schnappschusses zur signierten Schalt-Mess- Koordination Einschalten, das Metadatenfeld 1 wird als OCMF-Identität benutzt

10.09.21

Signierte Schalt-Mess-Koordination Ausschalten (OCMF)

Beim Ausführen von "Schalt-Mess-Koordination Ausschalten" findet der Schaltvorgang nach der bereits beschriebenen Schalt-Mess-Koordination statt. Aus einem signierten Schnappschuss wird das OCMF-Format erstellt und hier bereitgestellt.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Schreib- bar	Standardwert	Bemerkung
42792	1	ID	Modell-ID	uint16		nein	64903	Modell OCMF-Daten
42793	1	L	Länge Nutzdaten	uint16		nein	372	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
42794	1	Тур	Typ dieses Snapshots	enum16		nein	2	Signierte Schalt-Mess- Koordination Ausschalten, Siehe Kapitel 17.5
42795	1	St	Status des Snapshots/Auslöse r	enum16		nein		Siehe Kapitel 17.5, zum Erstellen auf das Feld Status des zugehörigen Schnappschusses schreiben
42796	496	0	OCMF-Darstellung des Schnappschusses	string		nein		OCMF-Darstellung des Schnappschusses zur signierten Schalt-Mess- Koordination Ausschalten, das Metadatenfeld 1 wird

als OCMF-Identität benutzt	
----------------------------	--

Signierter Schnappschuss Start (OCMF)

Aus einem signierten Schnappschuss vom Start eines Ladevorgangs (ohne Schaltung) wird das OCMF-Format erstellt und hier bereitgestellt.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Schreib- bar	Standardwert	Bemerkung
43292	1	ID	Modell-ID	uint16		nein	64903	Modell OCMF-Daten
43293	1	L	Länge Nutzdaten	uint16		nein	372	Ohne die Felder ,Modell-ID' und ,Länge Nutzdaten'
43294	1	Тур	Typ dieses Snapshots	enum16		nein	3	Signierte Messung Start, Siehe Kapitel 17.5
43295	1	St	Status des Snapshots/Auslöse r	enum16		nein		Siehe Kapitel 17.5, zum Erstellen auf das Feld Status des zugehörigen Schnappschusses schreiben

10.09.21

43296	496	0	OCMF-Darstellung des Schnappschusses	string	nein	OCMF-Darstellung des Schnappschusses zur signierten Schalt-Mess- Koordination Ausschalten, das Metadatenfeld 1 wird als OCMF-Identität benutzt
-------	-----	---	--------------------------------------	--------	------	---

Signierter Schnappschuss Ende (OCMF)

Aus einem signierten Schnappschuss vom Beenden eines Ladevorgangs (ohne Schaltung) wird das OCMF-Format erstellt und hier bereitgestellt.

Datenmodell -Adresse	Register	ID	Name	Тур	Einheit	Schreib- bar	Standardwert	Bemerkung
43792	1	ID	Modell-ID	uint16		nein	64903	Modell OCMF-Daten
43793	1	L	Länge Nutzdaten	uint16		nein	372	Ohne die Felder "Modell-ID" und "Länge Nutzdaten"
43794	1	Тур	Typ dieses Snapshots	enum16		nein	4	Signierte Messung Ende, Siehe Kapitel 17.5
43795	1	St	Status des Snapshots/Auslöse r	enum16		nein		Siehe Kapitel 17.5, zum Erstellen auf das Feld Status des zugehörigen

						Schnappschusses schreiben
43796	496	0	OCMF-Darstellung des Schnappschusses	string	nein	OCMF-Darstellung des Schnappschusses zur signierten Schalt-Mess- Koordination Ausschalten, das Metadatenfeld 1 wird als OCMF-Identität benutzt

Ende

Durch diese Register wird das Ende der Datenblöcke nach SunSpec gekennzeichnet.

Datenmodell- Adresse	Register	Name	Тур	Standardwert	Bemerkung
44292	1	Modell-ID	uint16	65535	
44293	1	Modelllänge	uint16	0	

17.4. Schreibbare Register

Aus allen zuvor aufgeführten Registern sind die folgenden schreibbar. Mit Hilfe geeigneter Modbus Telegramme können die nachfolgend aufgelisteten Register jederzeit geändert werden.

Datenmodell- Adresse	Register	ID	Name	Тур	Einheit	Standardwert	Erläuterung
40069	1	DA	Modbus-Adresse	uint16		42	Modbus-Adresse wird festgelegt
40083	2	Rte	Baud-Rate	uint32	bps		Baudrate kann eingestellt werden
40261	2	Epoch	Aktuelle Uhrzeit	uint32	S		Setzen der Uhrzeit für ersten Betrieb und zur Zeitnachführung
40263	1	TZO	Aktueller Zeitzonen- Offset	int16	min		Einstellung der Zeitzone
40269	1	DO	Zustand Digital- Outputs	uint16			Schreiben des niederwertigsten Bits Register schaltet den Ausgang (Sicherheitsfunktion)
40280	70	Meta1	Metadaten 1	string			Metadaten, die in Schnappschüsse aufgenommen werden, Identifikationsdaten für OCMF

40350	50	Meta2	Metadaten 2	string	Metadaten, die in Schnappschüsse aufgenommen werden
40400	50	Meta3	Metadaten 3	string	Metadaten, die in Schnappschüsse aufgenommen werden
40525	1	St	Status des Snapshots/Auslöser	enum16	Siehe Kapitel 17.5., Schreiben von aktualisieren löst das Erstellen aus
40779	1	St	Status des Snapshots/Auslöser	enum16	Siehe Kapitel 17.5., Schreiben von aktualisieren löst das Erstellen aus
41033	1	St	Status des Snapshots/Auslöser	enum16	Siehe Kapitel 17.5., Schreiben von aktualisieren löst das Erstellen aus
41287	1	St	Status des Snapshots/Auslöser	enum16	Siehe Kapitel 17.5., Schreiben von aktualisieren löst das Erstellen aus
41541	1	St	Status des Snapshots/Auslöser	enum16	Siehe Kapitel 17.5., Schreiben von aktualisieren löst das Erstellen aus

10.09.21

17.5. Aufzählungen

Einige Registerwerte sind vom Typ Aufzählungen, die nach den untenstehenden Tabellen interpretiert werden können.

Status einer Schnittstelle

Wert	Name	Bemerkung
0	Inaktiv	
1	Aktiv	
2	Fehler	

Ereignisse des Zählers

Das Bitfeld für die Ereignisse des Zählers aus dem Modell Dreiphasenzähler und Schnappschüsse stellt die nachfolgend beschriebenen Bits bereit. Ist irgendein Bit in diesem Bitfeld gesetzt, ist das Gerät nicht betriebsbereit.

Bit	Name	Bemerkung
16	Fataler Fehler des Zählermoduls	
17	Initialisierung Signaturmodul	
	fehlgeschlagen	
18	Prüfung Firmware-Hash Signaturmodul fehlgeschlagen	
19	Signaturmodul in Entwicklungsmodus	

Typ von Binärdaten

Das Modell für Binärdaten (BLOBs) ist universell. Dieser Aufzählungstyp beschreibt die bereitgestellten Daten.

Wert	Name	Bemerkung
0	Firmware-Hash	

Typ eines signierten Schnappschusses

Die drei Registerblöcke in denen die Schnappschüsse abgebildet werden, haben das gleiche Layout. Um diese auch im Nachhinein besser auseinanderhalten zu können, besitzen diese den Registereintrag "Typ" (Beispiel: 40778). Durch den Wert wird ersichtlich, welche Art Schnappschuss vorliegt:

Wert	Name	Bemerkung
0	Signierter Momentanzustand	
1	Signierte Schalt-Mess-Koordination Einschalten	
2	Signierte Schalt-Mess-Koordination Ausschalten	
3	Signierter Schnappschuss Start	
4	Signierter Schnappschuss Ende	

Zustand eines signierten Schnappschusses

Wert	Name	Bemerkung
0	Gültig	
1	Ungültig	
2	Wird aktualisiert/aktualisieren	Das Schreiben dieses Wertes löst eine Aktualisierung aus
3	Fehlgeschlagen: allgemeiner Fehler	
4	Fehlgeschlagen: keine Ladefreigabe über DOE	Kann bei Schalt-Mess-Koordination Einschalten auftreten
5	Fehlgeschlagen: falsche Rückmeldung vom Schütz über DI	Kann bei Schalt-Mess-Koordination Ein- und Ausschalten auftreten

18. Anhang B: Kommunikation

Die Modbus Schnittstelle ist als RTU über RS-485 ausgeführt mit folgenden Parametern:

- Datenleitungen A/- und B/+
- Übertragungsrate 2.400-115.200 Baud (Default 19.200 Baud)
- Parität gerade
- 8 Datenbits
- 1 Stoppbit

Beispiel: Auslesen des aktuellen Energiebezugs

Der aktuelle Zählerstand des aktuellen Wirkenergiebezugs kann nach der Registerübersicht (Anhang A) über drei Register ausgelesen werden:

- Der Zahlenwert des Zählerstandes aus den Holding-Registern an den Modbus-Adressen 40137 und 40138
- Der Exponent des zugehörigen Skalierungsfaktors an der Modbus-Adresse 40145
- Die Einheit des Wirkenergiebezugs explizit als Wh (Wattstunde) festgelegt

In diesem Bespiel liefert das Auslesen die Werte:

R[40137] = 0x00bc, R[40138] = 0x614e und R[40145] = 0x0000

Daraus ergibt sich der Zahlenwert: 0xbc614e = 12.345.678

und der Skalierungsfaktor: 10^0 = 1

kombiniert zu 12.345.678 * 1 Wh

und damit der Wert 12.345.678 Wh oder 12.345,678 kWh.

Uhrzeit setzen

Die Uhrzeit wird durch das Schreiben der folgenden Register im Block signierender Zähler gesetzt.

Adresse	Register	Name	Тур	Einheit	Bemerkung
40261	2	Aktuelle Uhrzeit UTC	uint32	S	Epoch-Time, "Unix-Zeit", Sekunden seit dem 1.1.1970 00:00
40263	1	Offset lokale Zeit zu UTC	int16	min	

Beispiel:

1574076961 s mit Offset 60 min ist der 18.11.2019, 12:36:01 MEZ

1574076961 = 0x5dd28221

60 = 0x3c

Zuweisungen an Register:

R[40261] = 0x5dd2, R[40262] = 0x8221, R[40263] = 0x003c

Um die volle Lebensdauer des Zählers in Betriebsstunden zu erreichen, darf die Uhrzeit nicht häufiger als in einem 24h Zyklus nachgeführt werden. Wird dauerhaft ein kleinerer Zeitraum der Zeitnachstellung gewählt, verkürzt dies die Betriebsstunden, wodurch die Garantiedauer unwirksam wird. Einmalige Nachstellvorgänge der Zeit außerhalb des normalen Zyklus sind zulässig. Liegt nach 24h eine größere Zeitabweichung vor (>1%), ist dies ein Fehlerzustand und muss vom Hersteller überprüft werden.

Metadaten für Abrechnung setzen

In allen Blöcken, die einen Schnappschuss abbilden, gibt es drei Datenpunkte für Metadaten. Diese können mit einer Zeichenkette (Typ: string) frei beschrieben werden. In der Regel werden hier abrechnungsrelevante Daten für einen Lastfluss festgehalten. Diese sollten vor der ersten Schnappschusserstellung beschrieben werden. Falls gewünscht, können diese Felder auch unbeschrieben bleiben, ohne dass es zu einer Fehlermeldung kommt.

Beispielhaft für einen Ladevorgang in der Elektromobilität können die Metadaten im Registerblock "signierender Zähler" wie im Folgenden beschrieben werden:

- Customer-ID badeafea in Metadaten 1 (Registeradresse 40280)
- Typ der Customer-ID RFID Tag in Metadaten 2 (Registeradresse 40350)
- EVSE-ID DE*BDO*E12345*1 in Metadaten 3 (Registeradresse 40400)

Bei der Verwendung der signierten Schnappschüsse (ohne OCMF) kann die Länge der Datenpunkte von 140 ASCII-Zeichen beliebig genutzt werden. Für Zeichen außerhalb von ASCII muss eine Byte-Kodierung wie UTF-8 oder ISO 8559-1 (Latin 1) eingesetzt werden, wodurch sich die Anzahl der effektiv nutzbaren Zeichen verringern kann.

In OCMF besitzen einige Zeichen eine besondere Bedeutung:

- Steuerzeichen (U+0000 bis einschließlich U+001F)
- Anführungszeichen (", U+0022)
- Backslash (\, U+005C)
- Senkrechter Strich (|, U+007C)

Werden diese in Metadaten verwendet, wird für die Ausgabe von OCMF zu einer längeren Ersatzdarstellung gegriffen, welche die Anzahl der effektiv nutzbaren Zeichen verringert.

19. Anhang C: Schnappschüsse erstellen

Erstellen und Auslesen eines Schnappschusses

Ein Schnappschuss wird durch das Schreiben von "Wird aktualisiert/Aktualisieren" in das Statusregister des jeweiligen Blocks angefordert.

Beispiel für den signierten Momentanzustand: Register 40525 auf 2 setzen

Anschließend wird das Statusregister abgefragt, bis dies "Gültig" ist oder einen Fehler anzeigt. War die Erstellung des Schnappschusses erfolgreich, können die Daten des Blocks ausgelesen werden.

Beispiel: Register 40525 steht auf 0 wenn gültig

Prinzipieller Ablauf:

20. Anhang D: Details zur Signierung

Öffentlicher Schlüssel (Public Key)

Das BSM-Modell stellt den öffentlichen Schlüssel DER-kodiert nach RFC 5480 (https://tools.ietf.org/html/rfc5480) über seinen wiederholenden Block bereit:

- Datenpunkt NPK mit L\u00e4nge des Public-Key-Bereichs in Registern: Register 40450
- Datenpunkt BPK mit Länge der darin enthaltenen Public-Key-Daten in Bytes: Register 40451
- Wiederholender Datenpunkt PK mit Daten des Public Keys: ab Register 40452

Die Schlüsseldaten enthalten Informationen zum Signaturverfahren, der benutzen Kurve und den Kurvenpunkt des öffentlichen Schlüssels. Die Byte-Reihenfolge ist Big-Endian.

Beispiel:

- Länge des Public-Key-Bereichs (NPK): 48 Register
- Inhalt des Public-Key-Bereichs:
 3059301306072a8648ce3d020106082a8648ce3d030107034200044bfd02c1d85272ceea9977db26d7
 2cc401d9e5602faeee7ec7b6b62f9c0cce34ad8d345d5ac0e8f65deb5ff0bb402b1b87926bd1b7fc2dbc3
 a9774e8e70c72540000000000
- Länge des Public-Keys (BPK): 91 Bytes
- Public-Key als DER:
 3059301306072a8648ce3d020106082a8648ce3d030107034200044bfd02c1d85272ceea9977db26d7
 2cc401d9e5602faeee7ec7b6b62f9c0cce34ad8d345d5ac0e8f65deb5ff0bb402b1b87926bd1b7fc2dbc3
 a9774e8e70c7254
- Interpretation mit OpenSSL's asn1parse (https://www.openssl.org/docs/man1.1.1/man1/openssl-asn1parse.html):

```
$ openssl asn1parse -inform der -in charging-demo-20201111-24-public-key.bin -i -dump 0:d=0 hl=2 l= 89 cons: SEQUENCE 2:d=1 hl=2 l= 19 cons: SEQUENCE 4:d=2 hl=2 l= 7 prim: OBJECT :id-ecPublicKey 13:d=2 hl=2 l= 8 prim: OBJECT :prime256v1 23:d=1 hl=2 l= 66 prim: BIT STRING 0000 - 00 04 4b fd 02 c1 d8 52-72 ce ea 99 77 db 26 d7 ...K....Rr...w.&. 0010 - 2c c4 01 d9 e5 60 2f ae-ee 7e c7 b6 b6 2f 9c 0c ,..../..~.../.. 0020 - ce 34 ad 8d 34 5d 5a c0-e8 f6 5d eb 5f f0 bb 40 .4..4]Z...]._..@ 0030 - 2b 1b 87 92 6b d1 b7 fc-2d bc 3a 97 74 e8 e7 0c +...k...-::t... 0040 - 72 54
```

Der Bit-String enthält die Punktkoordinaten nach SEC1 (https://www.secg.org/sec1-v2.pdf):
 Präfix für unkomprimierten Punkt: 0004

```
X: 4bfd02c1d85272ceea9977db26d72cc401d9e5602faeee7ec7b6b62f9c0cce34
Y: ad8d345d5ac0e8f65deb5ff0bb402b1b87926bd1b7fc2dbc3a9774e8e70c7254
```

Auf der Front des Zählers ist ein QR-Code aufgedruckt, welcher den Public Key im vollständigen Format (DER) beinhaltet.

{V1

AA1BZR1520110401

AC3059301306072a8648ce3d020106082a8648ce3d030107034200044bfd02c1d85272ceea9977db26d72cc401d9e5602faeee7ec7b6b62f9c0cce34ad8d345d5ac0e8f65deb5ff0bb402b1b87926bd1b7fc2dbc3a9774e8e70c7254

}

AA = Herstellerübergreifende Identifikationsnummer

AC = Public Key

Signatur

Die Schnappschüsse stellen die Signatur DER-kodiert nach RFC 4299 (https://tools.ietf.org/html/rfc4492) analog zum Public-Key im BSM-Modell über ihren wiederholenden Block bereit. Beispiel: Schalt-Mess-Koordination Einschalten:

- Datenpunkt NSig (Register 40980) stellt die Länge des Signaturbereichs in Registern bereit
- Datenpunkt BSig (Register 40981) stellt die Länge der Signaturdaten in Bytes bereit
- Die Wiederholung des Datenpunkts Sig (Register 40982 bis 41029) die Signatur

Die Signatur besteht aus einer Sequenz der Werte r und s. Die Bytereihenfolge ist Big-Endian. Beispiel:

- Länge des Signaturbereichs (NSig): 48 Register
- Länge der Signaturdaten (BSig): 71 Bytes
- Signaturdaten: 30450220633af3e89b89747ed105f7b7df02b814ad289dc8d20aed6815c184e4344a0109022100d1e0 019af352cadc5aef90687903c54c0e41074a3ede65d8798769ab44959329

Interpretation der Signaturdaten mit OpenSSL's asn1parse:

\$ openssl asn1parse -inform der -in charging-demo-20201111-25-signature.bin -i -dump
0:d=0 hl=2 l= 69 cons: SEQUENCE
2:d=1 hl=2 l= 32 prim: INTEGER :633AF3E89B89747ED105F7B7DF02B814AD289DC8D20AED6815C184E4344A0109
36:d=1 hl=2 l= 33 prim: INTEGER :D1E0019AF352CADC5AEF90687903C54C0E41074A3EDE65D8798769AB44959329

Die Beiden Integer-Werte darin sind r und s der Signatur.

Die Signatur kann mittels Public Key verifiziert werden.

Hash (SHA-256)

Der Hash ist eine abstrakte Darstellung der Daten, über die der Hash gebildet wird. Alle Zahlenwerte daraus haben folgende Eigenschaften:

- Zahlenwerte Big Endian
- Zahlenwerte als skalierter Wert mit Einheit
 - 32-Bit Zahlenwert (mit oder ohne Vorzeichen)
 - o 8-Bit Skalierungsfaktor (vorzeichenbehaftet, explizit gegeben oder 0)
 - 8-Bit Einheit (vorzeichenlos, explizit angegeben oder implizit über Registerüberblick)
- Zeichenketten als Länge und Daten
 - o 32-Bit Länge
 - Länge Datenbytes

Folgende Daten gehen in die Hash-Berechnung mit ein. Der Hash wird über die Darstellung in der Spalte Daten in der Reihenfolge der Tabelle gebildet:

Name	ID	Format für Hash	Beispielwert	Daten
Typ dieses	Тур	SUI32	1	000000100ff
Snapshots				
Wirkenergiezähler	TotWhImp	SUI32	268 Wh	0000010c001e
Bezug				
Momentane Wirk-	W	SI32	0.0 W	0000000011b
Leistung Total				
Adresse 1	MA1	String	001BZR152020000	00000010303031425a523135323
(Kundennummer)			7	0323030303037
Paginierungsindex	RCnt	SUI32	49	000003100ff
dieses Snapshots				
Sekundenindex	OS	SUI32	14980 s	00003a840007
dieses Snapshots				
Zeitstempel dieses	Epoch	SUI32	1602145353 s	5f7ecc490007
Snapshots				
Offset UTC dieses	TZO	SI32	120 min	00000780006
Snapshots				

Zähler Stellen Aktuelle Uhrzeit UTC	EpochSetC nt	SUI32	22	0000001600ff
Letztes Stellen der	EpochSetO	SUI32	14954 s	00003a6a0007
Aktuellen Uhrzeit	S			
UTC				
(Betriebssekunden)				
Zustand Digital-	DI	SUI32	1	000000100ff
Inputs				
Zustand Digital-	DO	SUI32	0	000000000ff
Outputs				
Sekundenindex	DIChgOS	SUI32	Nicht vorhanden	fffffff0007
letzte Modifikation				
Digital-Inputs				
Zeitstempel letzte	DIChgEpoc	SUI32	Nicht vorhanden	fffffff0007
Modifikation	h			
Digital-Inputs				
Offset UTC letzte	DIChgTZO	SI32	Nicht vorhanden	ffff8000006
Modifikation Digital				
Inputs				
Sekundenindex	DOChgOS	SUI32	Nicht vorhanden	fffffff0007
letzte Modifikation				
Digital-Outputs				
Zeitstempel letzte	DOChgEpo	SUI32	Nicht vorhanden	fffffff0007
Modifikation	ch	00102	Mont vomanden	IIIIIII0007
Digital-Outputs	GII			
Offset UTC letzte	DOChgTZ	SI32	Nicht vorhanden	ffff8000006
Modifikation	0	0102	Michi Vomanden	1110000000
Digital-Outputs				
Metadaten 1	Meta1	String	chargeIT up 12*4,	000000246368617267654954207
ivictadatell I	ivicia i	Juliy	id: 12345678abcdef	5702031322a342c2069643a2031
			id. 12040070abcuel	32333435363738616263646566
Metadaten 2	Meta2	String	demo data 2	0000000b64656d6f206461746120
wetauaten z	IVICIAZ	String	ueiiio uata Z	32
Metadaten 3	Moto2	String	Nicht vorhanden	00000000
	Meta3	String		
Ereignisse	Evt	SUI32	0	000000000ff

Der Hash über diese Beispiel-Daten:

cab351d004e66292963ca855717cc7ba55cc84b11a655d0d1db4c705d05796e7

21. Anhang E: Schalt-Mess-Koordination

Prinzip Einschaltvorgang: Das Register 40779 wird auf 2 gesetzt. Der nachfolgende Ablauf wird dann automatisch durch die Firmware gesteuert.

Prinzip Ausschaltvorgang: Das Register 41033 wird auf 2 gesetzt. Der nachfolgende Ablauf wird dann automatisch durch die Firmware gesteuert.

Referenzen

- [1]: SunSpec Alliance, SunSpec Information Model Specification, Version 1.9, https://sunspec.org/download/
- [2]: SunSpec Alliance, SunSpec Information Model Reference, Version vom 15.2.2018, https://sunspec.org/download/
- [3]: Certicom Research, Standards for EfficientCryptography 1 (SEC 1), Version 2.0, https://www.secg.org/sec1-v2.pdf
- [4]: Certicom Research, Standards for EfficientCryptography 2 (SEC 2), Version 2.0, https://www.secg.org/sec2-v2.pdf
- [5]: DLMS User Association, COSEM Interface Classes and OBIS Object Identification System, Blue Book Edition 12.2, https://www.dlms.com/files/Blue-Book-Ed-122-Excerpt.pdf
- [6]: Modbus Organization, MODBUS APPLICATION PROTOCOL SPECIFICATION, Version 1.1b3, http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf