Homework - Serie 10

Kevin Sturm Python 3

Test your code with examples!

Problem 1.

- (a) Create a figure object called fig using plt.figure.
- (b) Use add_axes to add an two axes to the figure canvas at [0.11, 0.11, 0.35, 0.8] and the second one at [0.6, 0.11, 0.35, 0.8].
- (c) Plot (x, y) on that axes and set the labels and titles to match the plot below:

(d) What do plt.gca and plt.gcf do?

Problem 2.

(a) Create a figure object and put two axes ax1 and ax2 on it which are located at [0.1, 0.1, 0.8, 0.8] and [0.2, 0.5, .2], respectively.

Figure 1: Problem 2

(b) Reproduce Figure 1!

Problem 3.

Use plt.subplots to create the following plot. Notice that the columns share the same x range. Also the location of the legends should be identical to the one in Figure 2.

Figure 2: Problem 3

Problem 4. We want to implement *Newton's method* for the calculation of a root of a function $f:[a,b]\to \mathbf{R}$. Given an initial value x_0 one inductively defines the sequence (x_n) : For given x_k let

 x_{k+1} be the root of the tangent on the graph of f in the point $(x_k, f(x_k))$, i.e. $x = x_{k+1}$ satisfies $0 = f(x_k) + f'(x_k)(x - x_k)$. Solving for x shows

$$x_{k+1} = x_k - f(x_k)/f'(x_k).$$

Implement the Newton-method in a function newton(f,fprime,x0,tau) where the iteration is stopped if

$$|f'(x_n)| \le \tau$$

or

$$|f(x_n)| \le \tau$$
 and $|x_n - x_{n-1}| \le \begin{cases} \tau & \text{for } |x_n| \le \tau, \\ \tau |x_n| & \text{else} \end{cases}$

In each case, return x_n as approximation of the root, where in the first case, additionally give a warning. Beside x_n , return the sequence (x_0, \ldots, x_n) of the approximative roots and the corresponding function values. Test your implementation with the function $f(x) = x^2 + e^x - 2$.

Problem 5. Study the documentation of mlab.quiver3d(ux,uy,uz,vx,vy,vz) of the mayavi module. In this exercise we want to plot the (outward pointing) unit normal vector field along an ellipsoid

$$E^2 := \{(x, y, z) : ax^2 + by^2 + cz^2 = 1\}.$$

In order to plot this vector field consider the parametrisation of the ellipsoid:

$$\varphi:(u,v)\to(a\sin(u)\cos(v),b\sin(u)\sin(v),c\cos(v)):[0,\pi)\times[0,2\pi):\to E^2\subset\mathbf{R}^3,$$

The functions (ux,uy,uz) are the component functions of φ and the functions (vx,vy,vz) are

Figure 3: Problem 5

the component functions of $\partial_u \varphi \times \partial_v \varphi / \|\partial_u \varphi \times \partial_v \varphi\|_2$. Also put a nice coordinate system into the plot. The output in case of a = b = c = 1 should look like Figure 3.

Problem 6. Write a function saveMatrix which takes a matrix $A \in \mathbf{R}^{d \times d}$ and writes it into a file matrix.dat via open. Write another function loadMatrix, which takes a string 'matrix.dat' and reads the file with open and stores the data into numpy array. Compare your result with numpy.savetxt and numpy.loadtxt.

Problem 7. Use the matplotlib function plt.quiver to visualise the vector field $F: \mathbf{R}^2 \to \mathbf{R}^2$ given by

 $F(x,y) := \left\{ \begin{array}{ll} (1,1) + (-y,x) & \text{if } x > 0 \\ -(1,1) + (y,-x) & \text{if } x < 0 \end{array} \right..$

Plot the vector field on $[-1,1] \times [-2,1]$ and make nice captions and legends. Make sure the font size of your plot is not too small.

Problem 8. Use the matplotlib function plt.scatter to produce the following plots.

