Practice Problems: Lesson 6 - Mastering Lipschitz Conditions

Essential skill for uniqueness!

Part A: Basic Lipschitz Checks

Determine if each function is Lipschitz in y. If yes, find the constant L:

1.
$$f(x,y) = 5y + \cos(x)$$
 on \mathbb{R}^2

2.
$$f(x,y) = y^4 \text{ on } |y| \le 1$$

3.
$$f(x,y) = \frac{1}{y}$$
 on $y \ge 1$

4.
$$f(x,y) = y\sin(y)$$
 on \mathbb{R}

5.
$$f(x,y) = \sqrt{y^2 + 1}$$
 on \mathbb{R}

Part B: Finding Optimal Constants

Find the smallest Lipschitz constant for:

6.
$$f(y) = y^2 - 4y + 3$$
 on $[0, 5]$

7.
$$f(y) = e^{-y^2}$$
 on $[-1, 1]$

8.
$$f(x,y) = x^2y^2$$
 on $|x| \le 2$, $|y| \le 3$

9.
$$f(y) = \frac{y}{1+y^2}$$
 on \mathbb{R}

Part C: Piecewise Functions

Check Lipschitz continuity for these piecewise functions:

10.
$$f(y) = \begin{cases} y^2 & y \ge 0 \\ -y^2 & y < 0 \end{cases}$$
 on $[-2, 2]$

11.
$$f(y) = \begin{cases} \sqrt{y} & y \ge 0 \\ 0 & y < 0 \end{cases} \text{ near } y = 0$$

12.
$$f(y) = \begin{cases} y \sin(1/y) & y \neq 0 \\ 0 & y = 0 \end{cases}$$
 on $[-1, 1]$

Part D: Composition and Operations

- 13. If g(y) = y + 1 is Lipschitz with $L_g = 1$ and h(y) = 2y is Lipschitz with $L_h = 2$:
 - (a) Find the Lipschitz constant of g + h
 - (b) Find the Lipschitz constant of 3g h
 - (c) Is $g \cdot h$ Lipschitz on [-1, 1]?
- 14. Show that if f is Lipschitz with constant L and $|f| \leq M$, then f^2 is Lipschitz with constant 2ML.

Part E: Non-Lipschitz Examples

Prove that these functions are NOT Lipschitz at the specified point:

15.
$$f(y) = y^{1/3}$$
 at $y = 0$

16.
$$f(y) = y \ln |y|$$
 at $y = 0$ (defined as $f(0) = 0$)

17.
$$f(y) = \begin{cases} \sin(1/y) & y \neq 0 \\ 0 & y = 0 \end{cases}$$
 at $y = 0$

Part F: Domain Dependence

- 18. For $f(y) = y^2$:
 - (a) Find the Lipschitz constant on [-1, 1]
 - (b) Find the Lipschitz constant on [-5, 5]
 - (c) Find the Lipschitz constant on [-M, M]
 - (d) Is it globally Lipschitz?
- 19. For $f(y) = e^y$:
 - (a) Show it's Lipschitz on any bounded interval [a, b]
 - (b) Find L on [-2, 3]
 - (c) Why isn't it globally Lipschitz?

Part G: Applications to ODEs

- 20. For which values of α is the IVP $y' = |y|^{\alpha}$, y(0) = 0 guaranteed to have a unique solution?
- 21. Consider y' = f(y) where f is continuously differentiable with $|f'(y)| \le 10$ for all y:

- (a) Why does every IVP have a unique solution?
- (b) If two solutions start 0.01 apart, how far apart can they be after time t = 1?
- 22. The ODE $y' = y^2 \sin(1/y)$ for $y \neq 0$ and y' = 0 for y = 0:
 - (a) Is the right-hand side continuous?
 - (b) Is it Lipschitz near y = 0?
 - (c) What does this imply about uniqueness?

Part H: Theoretical Problems

- 23. Prove the reverse triangle inequality: $||a| |b|| \le |a b|$
- 24. Show that if f is differentiable with continuous derivative on [a, b], then f is Lipschitz on [a, b].
- 25. Give an example of:
 - (a) A Lipschitz function that's not differentiable
 - (b) A continuous function that's not Lipschitz
 - (c) A Lipschitz function with discontinuous derivative

Part I: Exam-Style Questions

- 26. Professor Ditkowski asks: "For $f(y) = y^n$ on [-2, 2], find the smallest n such that the Lipschitz constant exceeds 100."
- 27. Consider the family $f_{\epsilon}(y) = \sqrt{y^2 + \epsilon^2}$:
 - (a) Show each f_{ϵ} is Lipschitz for $\epsilon > 0$
 - (b) Find the Lipschitz constant as function of ϵ
 - (c) What happens as $\epsilon \to 0$?
- 28. You're told that f satisfies: $|f(y_1) f(y_2)| \le K|y_1 y_2|^{\alpha}$ for some $\alpha > 0$:
 - (a) When is f Lipschitz?
 - (b) When is f uniformly continuous?
 - (c) Give examples for $\alpha = 0.5, 1, 2$
- 29. The "Lipschitz constant function" L(M) = smallest L such that f is Lipschitz on [-M, M]:
 - (a) Find L(M) for $f(y) = y^3$
 - (b) Find L(M) for $f(y) = \sin(y^2)$
 - (c) For which functions is L(M) bounded as $M \to \infty$?

Solutions Guide

Part A Quick Answers: 1. Yes, L=5 2. Yes, L=4 3. Yes, L=1 4. No (unbounded derivative) 5. Yes, L=1

Part B Hints: 6. Check f'(y) = 2y - 4; max at boundaries, L = 6 7. Check critical points of $f'(y) = -2ye^{-y^2}$ 8. Use product rule carefully 9. Find max of $|f'(y)| = |1 - y^2|/(1 + y^2)^2$

Key Concepts: - Derivative bounded \Rightarrow Lipschitz - Powers less than 1 fail at origin - Piecewise needs checking at transitions - Local Lipschitz \neq Global Lipschitz