확장 이진 유한체 제곱근 연산의 최적 구현 기법에 관한 연구

박민진 오진석 인재휘 전창열 김동찬

국민대학교

A Study on Optimal Implementation of Square Root in Extended Binary Field MinJin Park, JinSeok Oh, JaeHui In, ChangYeol Jeon, Dong-Chan Kim Kookmin University

요 약

확장 이진 유한체의 제곱근 연산은 사전계산 테이블 참조 방식의 지수승 연산으로 계산할 수 있다. Takuya Sumi 등은 이진 유한체의 성질을 이용하여 보다 효율적으로 제곱근을 계산하는 방식을 사용하였다. 본 논문에서는 두 제곱근 연산 방식인 지수승 기반 방식과 Takuya Sumi 등의 방식을 소개하고, 두 연산을 C언어로 구현하여 시간과 메모리 관점에서 성능을 비교 분석한다.

I. 서론

확장 이진 유한체의 원소의 제곱근은 항상 존재하고, 사전계산 테이블 참조 방식의 지수승 연산으로 계산할 수 있다. Takuya Sumi 등은 이진 유한체의 성질을 이용하여 보다 효율적으로 제곱근을 계산하였다[2]. 해당하는 두 가지 제곱근 연산에 대해 [1]에서는 FLINT로 구현한 후 연산 시간과 메모리를 비교하였다. 구현 시FLINT를 이용했기 때문에 최적화 과정에서 한계를 보였다.

본 논문에서는 [1]에서 사용한 두 제곱근 연산인 지수승 기반 제곱근 연산과 Takuya Sumi 등의 제곱근 연산을 소개한다. 그리고 두 연산을 C언어로 구현 시 진행한 최적 구현 기법에 대해 설명한다. 이후 구현한 연산을 시간과 메모리 관점에서 [1]과 비교한다. 비교는 Classic McEliece에서 제안한 4개의 파라미터에 대해이루어진다. C언어로 구현 시 FLINT를 이용한 [1]에 비해 지수승 기반 제곱근 연산 기준 최대 122배, Takuya Sumi 등의 제곱근 연산 기준 최대 33배 빠르게 동작하였다.

본 논문의 구성은 다음과 같다. Ⅱ절에서는 기호를 정의한다. Ⅲ절에서는 [1]에서 사용한 두 알고리듬에 대해 소개한다. Ⅳ절에서는 두 알고 리듬에 적용한 최적 구현 기법에 대해 설명한다. V절에서는 C언어로 구현한 두 연산의 시간과 메모리를 측정하고 [1]의 결과와 비교한다.

II. 기호

본 논문에서 사용하는 기호는 다음과 같다.

$$-F_{2^m}$$
 2^m 개의 원소를 가진 유한
체

$$-f(s)(=\sum_{i=0}^m z_i s^i)$$
 유한체 F_{2^m} 의 생성 기약 다항식 $(z_i{\in}F_2)$

$$-F_{2^m}[X]$$
 F_{2^m} 으로 정의한 다항식 환 $-g(X)$ 은 $F_{2^m}[X]$ t 차 기약다항식

$$-F_{2^m}[X]/(g(X))$$
 $g(X)$ 로 정의한 2^{mt} 개의
원소를 가진 유한체

$$-\sqrt{lpha}$$
 $lpha(\in F_{2^m})$ 의 제곱근

$$A(X)(\in F_{2^m}[X]/(g(X)))$$
의 제곱근

III. 제곱근 연산

$$F_{2^m}[X]/(g(X))$$
의 원소 $A(X) = \sum_{i=0}^{t-1} a_i X^i$ 는 다음 두 연산으로 제곱근을 계산할 수 있다.

$$\sqrt{A(X)} = A(X)^{2^{mt-1}}$$
 (식 1) **IV.** 구현

$$=\sum_{i=0}^{t-1} \sqrt{a_i X^i} . \qquad (\stackrel{\triangleright}{4} 2)$$

(식 1) 이용 시 다항식 A(X)에 대한 제곱 모 듈러 연산을 mt-1회 하는 것으로 제곱근을 구할 수 있다. 이때 사전계산 테이블 T,S를 이 용한다. T에는 F_{2^m} 의 모든 원소를 제곱한 결과 를 저장하고, S에는 $\lfloor (t+1)/2 \rfloor \leq i \leq t-1$ 에 대해 X^{2i} mod q(X)를 저장한다. 이 방식의 수행과정은 알고리듬 1과 같다.

알고리듬 1: (식 1)을 이용한 제곱근 연산

입력:
$$A(X) = \sum_{i=0}^{t-1} a_i X^i \in F_{2^m}[X]/(g(X)),$$

사전계산 테이블 T, S

출력: $\sqrt{A(X)}$

1. $k \leftarrow \lfloor (t-1)/2 \rfloor$

2. for j = mt - 2 downto 0 do

3.
$$\sum_{i=0}^{t-1} a_i X^i \leftarrow \sum_{i=0}^k T[a_i] X^{2i} + \sum_{i=k+1}^{t-1} T[a_i] S[i]$$

4. return
$$\sum_{i=0}^{t-1} a_i X^i$$

(식 2)는 Takuva Sumi 등이 이용한 제곱근 연산 방법에서 이용한다. 이때 사전계산 테이블 \tilde{T},\tilde{S} 를 사용한다. \tilde{T} 에는 F_{2^m} 의 모든 원소의 제곱근을 저장하고, \widetilde{S} 에는 $0 \le i \le \lfloor t/2 \rfloor - 1$ 에 대해 $X^i\sqrt{X} \bmod g(X)$ 를 저장한다. 이 방 식의 수행과정은 알고리듬 2와 같다.

알고리듬 2: (식 2)를 이용한 제곱근 연산

입력:
$$A(X) = \sum_{i=0}^{t-1} a_i X^i \in F_{2^m}[X]/(g(X)),$$

사전계산 테이블 \widetilde{T} , \widetilde{S}

출력: $\sqrt{A(X)}$

$$\mathbf{1.} \ A'(X) \leftarrow \sum_{i=0}^{\lfloor (t-1)/2 \rfloor} \widetilde{T}[a_{2i}]X^i$$

2.
$$A''(X) \leftarrow \sum_{i=0}^{\lfloor t/2 \rfloor - 1} \widetilde{T}[a_{2i+1}] \widetilde{S}[i]$$

3. return A'(X) + A''(X)

알고리듬 구현을 위해 다항식을 구조체로 저 장한다. 구조체는 다항식의 계수와 최고차수로 구성된다. 이때 다항식의 최고차수는 int형 변수 로 설정하고, 다항식의 계수는 int형 배열을 이 용하여 F_{2^m} 의 원소 하나를 4바이트에 저장한다.

두 알고리듬은 사전계산을 통한 테이블 참조 이외에 유한체 곱셈, 다항식 덧셈으로 구성된

유한체 곱셈에서는 사전계산 테이블 R을 사 용한다. $m \le i \le 2m-1$ 에 대해 $s^i \mod f(s)$ 를 계산하여 R에 저장한다. 이후 과정에서 유한체 곱셈 시 발생하는 모듈러 연산은 테이블 참조 로 처리하였다.

다항식 덧셈은 동일한 차수에 대해 F_{2^m} 상에 서의 덧셈이다. 해당 연산은 입력받은 다항식의 계수에 대해 XOR 연산을 하는 것으로 처리하 였다.

V. 측정 결과

실험 환경은 다음과 같다.

-하드웨어 환경 1.4GHz 쿼드 코어 Intel Co re i5, 8GB RAM, macOS

Big Sur 버전 11.0.1

-컴파일러 Apple clang version 12. 0.0 (clang-1200.0.32.27)

컴파일 옵션 -O2

Classic McEliece에서 제안한 파라미터에 대 해 사용한 테이블의 메모리, 연산 수행 횟수(테 이블 참조 횟수, XOR 연산 횟수), 연산 시간을 측정하였다.

사용한 사전계산 테이블은 $T, T, S, \widetilde{S}, R$ 이며 구현에서 사용한 총 메모리는 다음과 같다. T, T테이블은 각각 F_{2^m} 의 원소를 2^m 개 저장한 다. F_{2^m} 의 각 원소는 4바이트의 공간을 차지하 므로 각 테이블은 2^{m+2} 바이트의 메모리를 사 용한다. S, \widetilde{S} 테이블은 각각 $F_{2^m}[X]/(g(X))$ 의 원소를 $\lfloor t/2 \rfloor$ 개 저장한다. 각 원소는 곱셈을 고려하여 계수를 최대 2t개로 설정한다. 따라서 테이블 당 $2t \cdot \lfloor t/2 \rfloor \cdot 2^2$ 바이트의 메모리를

사용한다. R테이블은 F_{2^m} 의 원소를 m개 저장한다. 그러므로 2^2m 바이트의 메모리를 사용한다. 최종적으로 각 알고리듬에서 사용하는 메모리는 다음과 같다.

$$(2^m + 2t \mid t/2 \mid +m) \cdot 2^2$$

연산 수행 횟수는 A(X)에 따라 달라진다. 그러므로 임의의 A(X)를 1000회 생성하여 측정한 후 평균값으로 나타내었다. 메모리와 연산수행 횟수는 [표 1]과 같다. 사용한 메모리의 단위는 바이트(byte) 이다. 또한 XOR 횟수는 4바이트에 대한 연산 횟수이다.

[표 1] 알고리듬 연산 수행 횟수 및 메모리

파라미터	Mceliece348864		Mceliece460896	
(<i>m</i> , <i>t</i>)	(12, 64)		(13, 96)	
알고리듬	1	2	1	2
참조횟수	1,330,541	12,376	4,716,419	30,051
XOR횟수	25,422,382	88,217	98,334,238	214,094
메모리		32,816		69,684
		02,010		05,004
파라미터	Mceliece		Mceliece	,
파라미터 (m, t)	Mceliece (13,	e6960119		e6688128
		e6960119	Mceliece	e6688128
(m, t)	(13,	e6960119 119)	Mceliece	e6688128 128)
(<i>m</i> , <i>t</i>) 알고리듬	(13,	2 45,817	Mceliece (13,	e6688128 128)

FLINT로 구현한 [1]과 C언어로 구현한 알고리듬의 연산 시간은 [표 2]와 같다. 1000회 동작시 걸린 시간의 평균으로 나타내었고, 사용한시간 단위는 밀리초(ms)이다.

[표 2] 알고리듬 연산 시간 측정결과 (단위: ms)

파라미터 (<i>m</i> , <i>t</i>)	알고리듬	FLINT [1]	C(본 논문)
Mceliece348864	1	2,984.971	24.294
(12, 64)	2	2.878	0.086
Mceliece460896	1	6,320.881	100.715
(13, 96)	2	4.182	0.218
Mceliece6960119 (13, 119)	1	11,400.386	173.928
	2	6.472	0.284
Mceliece6688128	1	14,497.782	292.432
(13, 128)	2	7.904	0.393

연산 시간에 대한 신뢰성을 확인하기 위해 C 언어로 구현한 두 알고리듬의 수행 횟수와 연 산 시간에 대한 비율을 확인하였다. 이는 [표 3] 과 같다. 비는 수행 횟수 비율을 연산 시간 비율로 나눈 값이고, 각각의 비율은 알고리듬 1에 대한 측정값을 알고리듬 2에 대한 측정값으로나는 값이다.

[표 3] 파라미터별 수행 횟수 및 연산 시간 비율

파라미터 (m,t)	수행 횟수	연산 시간	月
Mceliece348864	265	282	0.93
(12, 64)	200	404	0.93
Mceliece460896	422	461	0.91
(13, 96)	422	401	0.91
Mceliece6960119	521	612	0.85
(13, 119)	521	012	0.65
Mceliece6688128	664	744	0.89
(13, 128)	004	744	0.09

VI.결론

본 논문에서는 두 알고리듬을 C언어로 구현한 결과와 FLINT로 구현한 [1]의 결과를 비교하였다. 결과적으로 연산 시간이 알고리듬 1 기준 최대 122배, 알고리듬 2 기준 최대 33배 줄었다. 또한 파라미터 별로 연산 수행 횟수 비율과 연산 시간 비율을 확인한 결과 두 비율이유사함을 확인하였다.

추후에는 SIMD를 이용한 병렬연산으로 제곱 근 연산의 고속 구현 기법에 대해 연구할 예정 이다.

[참고문헌]

- [1] 전창열, 박민진, 오진석, 인재휘 and 김동찬. "확장 이진 유한체 제곱근 연산의 효율적 구현에 관한 연구." 한국통신학회 동계종합 학술발표회. 2021.
- [2] Sumi Takuya, Morozov Kirill, and Takagi Tsuyoshi. Efficient implementation of the McEliece cryptosystem. In computer security symposium 2011, volume 2011, pages 582–586, oct 2011.