1 Векторные и матричные нормы

- 1. По определению норма должна удовлетворять следующему набору свойств:
 - (a) $||x|| \ge 0$;
 - (b) ||x|| = 0 тогда и только тогда, когда x = 0;
 - (c) ||cx|| = |c|||x||;
 - (d) $||x + y|| \le ||x|| + ||y||$.

Покажите, что одно из этих свойств следует из двух других.

- 2. Покажите, что при $0 величина <math>||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$ задает функцию в \mathbb{C}^n , которая удовлетворяет всем свойствам нормы, кроме одного. Приведите пример.
- 3. Приведите примеры неэквивалентных норм.
- 4. Для векторов $x,y \in \mathbb{R}^n$ выполнено равенство $\|x+y\|_2 = \|x\|_2 + \|y\|_2$. Докажите, что x и y линейно зависимы. Верно ли это, если $\|x+y\|_p = \|x\|_p + \|y\|_p$, $p \neq 2$?
- 5. Докажите, что замкнутый шар $B = \overline{B}(0;1)$ для любой нормы в \mathbb{R}^n обладает следующими свойствами:
 - (a) B компактное множество относительно 2-нормы;
 - (b) если $x, y \in B$ и $0 \le \alpha \le 1$, то $\alpha x + (1 \alpha)y \in B$ (выпуклость);
 - (c) если $x \in B$ и $|\alpha| \le 1$, то $\alpha x \in B$ (уравновешенность);
 - (d) $\exists r > 0 : \{y : ||y||_2 < r\} \subset B$.

Докажите, что если в \mathbb{R}^n взять произвольное множество B, обладающее свойствами (a)-(d), то существует норма, для которой $B = \overline{B}(0;1)$.

6. Дана матрица $A \in \mathbb{R}^{m \times n}$. Докажите, что множество

$$\{y = Ax, \ x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T, \ x_1, x_2, \dots, x_n \ge 0\}$$

замкнуто.

7. Пусть $1 \le p_1 < p_2 < \infty$. Покажите, что оптимальные коэффициенты эквивалентности p_1 и p_2 гельдеровых нормы таковы, что

$$||x||_{p_2} \le ||x||_{p_1} \le n^{\left(\frac{1}{p_1} - \frac{1}{p_2}\right)} ||x||_{p_2}$$

8. Полунормой называется функционал, который удовлетворяет всем свойствам нормы, кроме того, что он может быть равен нулю на ненулевых элементах. Приведите примеры полунормы в \mathbb{C}^n , не являющейся нормой. Докажите, что любая полунорма f(x) в \mathbb{C}^n может быть представлена как

$$f(x) = \|Sx\|$$

для некоторой нормы $\|\cdot\|$ и матрицы S.

- 9. Преднормой называется функционал f(x) в конечномерном пространстве, который удовлетворяет следущим свойствам:
 - (a) $f(x) \ge 0$ и f(x) = 0 тогда и только тогда, когда x = 0 (положительность);
 - (b) $f(\alpha x) = |\alpha| f(x)$ (однородность);
 - (c) f(x) непрерывна (непрерывность).

Докажите, что любая норма является преднормой, а шар $\{x:f(x)\leq 1\}$ и сфера $\{x:f(x)=1\}$ по преднорме являются компактными множествами.

10. Пусть f(x) — преднорма в конечномерном пространстве. Функционал

$$f^{D}(y) = \max_{f(x)=1} \text{Re}(y^{*}x) = \max_{f(x)=1} |y^{*}x|$$

называется $\partial soйcmsehhoй нормой к <math>f$. Покажите, что f^D определена корректно, двойственная норма является нормой и выполнено обобщение неравенства Коши-Буняковского-Шварца

$$|y^*x| \le f(x)f^D(y).$$

11. Пусть норма $\|\cdot\|$ задана на \mathbb{C}^n . Докажите, что для p-нормы дуальной является q-норма, где p и q образуют гельдеровскую пару:

$$\frac{1}{p} + \frac{1}{q} = 1, \quad 1 \le p \le \infty$$

Кроме того, пусть $A \in \mathbb{C}^{n \times n}$ сохраняет p-норму:

$$||Ax||_p = ||x||_p, \quad \forall x \in \mathbb{C}^{n \times n}.$$

Докажите, что в этом и только в этом случае матрица A^T сохраняет q-норму:

$$||A^T x||_q = ||x||_q, \quad \forall x \in \mathbb{C}^{n \times n}.$$

- 12. Покажите, что $\|\cdot\| = \|\cdot\|^D$ тогда и только тогда, когда $\|\cdot\| = \|\cdot\|_2$.
- 13. Пусть f(x) является преднормой в \mathbb{R}^n или \mathbb{C}^n . Обозначим через B единичный шар по преднорме f, а B'' единичный шар по f^{DD} :

$$B = \{x : f(x) \le 1\}, \quad B'' = \{x : f^{DD}(x) \le 1\}$$

Покажите, что

- (a) $f^{DD}(x) \leq f(x)$, то есть $B \subset B''$;
- (b) B'' является замыканием выпуклой оболочки B;
- (c) если f является нормой, то $f^{DD} = f$ и B = B''.
- 14. Докажите, что норма Фробениуса не является операторной нормой.

15. Докажите формулы

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

- 16. Пусть A подматрица матрицы B. Докажите, что $||A||_p \leq ||B||_p$.
- 17. Элементы матриц A и B неотрицательны и $a_{ij} \leq b_{ij}$ для всех i, j. Верно ли, что $||A||_p \leq ||B||_p$?
- 18. Покажите, что если матричная норма равномерно не превосходит некоторой индуцированной матричной нормы, то она совпадает с ней. Напомним, что матричная норма должна дополнительно удовлетворять свойству $||AB|| \le ||A|| ||B||$, а индуцированная норма имеет вид

$$||A||_{\alpha} = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

для некоторой нормы $\|\cdot\|$ (норма в числителе и знаменателе одна и та же). Требуется показать, что если для некоторой матричной нормы $\|\cdot\|_M$ и индуцированной матричной нормы $\|\cdot\|_\alpha$ выполнено, что $\|A\|_M \leq \|A\|_\alpha$ для любой матрицы A, то нормы $\|\cdot\|_M$ и $\|\cdot\|_\alpha$ совпадают. (Подсказка: докажите утверждение для случая, когда $\|\cdot\|_M$ также является индуцированной, а затем постройте норму индуцированную $\|x\|_z = \|xz^*\|_M$).