ESCOLA BRASILEIRA DE ECONOMIA E FINANÇAS - EPGE

Luciano Fabio Busatto Venturim

Econometrics 1 - Problem Set 1

Rio de Janeiro 4th Quarter - 2021 **Question 1**: Assume that $y_i = x_i'\beta + u_i$. Using $E(u_i|z_i) = 0$, prove that

$$E(z_i(y_i - x_i'\beta)) = 0$$

Solution: By the Law of Iterated Expectations, $E(z_i(y_i-x_i'\beta))=E(z_iu_i)=E(E(z_iu_i|z_i))=E(z_iE(u_i|z_i))=E(0)=0.$

Question 2: Suppose you have some i.i.d. data (x_i, y_i) . Due to your economic expertise and experience, you strongly suspect that the relationship between x_i and y_i is $y_i = \beta log(x_i) + u_i$. You assume that $E(u_i|x_i) = 0$.

- 1. Following the steps outlined in class, set up the moment equations for a Method of Moments estimation to get at the parameter β .
- 2. Solve for the β_{MM} estimator.

Solution:

- 1. Let $g_i(\beta) = y_i \beta log(x_i)$. We have that $E(g_i(\beta)) = E(y_i \beta log(x_i)) = E(u_i) = E(E(u_i|x_i)) = E(0) = 0$, and since $\beta \in \mathbb{R}$, the model is just-identified. Thus the moment equation is $\frac{1}{n} \sum_{i=1}^n g_i(\beta_{\text{MM}}) = 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^n (y_i \beta_{\text{MM}} log(x_i)) = 0$.
- 2. Solving for β_{MM} , we get $\beta_{\text{MM}} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} log(x_i)}$.

.

Question 3: Remember that instead of x as the factor in a moment equation E(xu)=0, we can pick some other transformation f, as long as the transformation does not depend on y, i.e, E(f(x)u)=0. The non-linear least squares estimator $\beta_{\rm NLLS}$ is defined as an estimator that minimizes the residual sum of squares

$$\min_{\beta} RSS(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - g(x_i, \beta))^2$$

Assume that g is differentiable in β . Show that the first order condition of this minimization problem is equivalent to a Method of Moments estimation where as a 'convenient transformation' f of x_i you pick $f = \frac{\partial g}{\partial \beta}$.

Solution: The First Order Conditions are

$$\frac{-2}{n} \sum_{i=1}^{n} \frac{\partial g(x_i, \beta_{\text{NLLS}})}{\partial \beta} (y_i - g(x_i, \beta_{\text{NLLS}})) = 0 \Leftrightarrow$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\partial g(x_i, \beta_{\text{NLLS}})}{\partial \beta} (y_i - g(x_i, \beta_{\text{NLLS}})) = 0$$

With $f=\frac{\partial g(x_i,\beta)}{\partial \beta}$ and assuming $E(u_i|x_i)=0$, we have that $E(\frac{\partial g(x_i,\beta)}{\partial \beta}u_i)=0$, by the Law of Iterated Expectations, so $E(\frac{\partial g(x_i,\beta)}{\partial \beta}(y_i-g(x_i,\beta))=0$. Note that the model is just-identified. Now, using the sample moments, we have $\frac{1}{n}\sum_{i=1}^n\frac{\partial g(x_i,\beta_{\rm MM})}{\partial \beta}(y_i-g(x_i,\beta_{\rm MM}))=0$. See that the equations are the same, thus $\beta_{\rm NLLS}=\beta_{\rm MM}$.

Question 4: Assume $y_i = x_i'\beta + u_i$ and $E(u_i|x_i) = 0$ for a i.i.d. sample $\{(x_1, y_1), \dots, (x_n, y_n)\}$. Prove that the MM estimator is consistent.

Solution: Let $f: \mathbb{R}^q \to \mathbb{R}^q$ and β_{MM} the MM estimator that solves the equation $\frac{1}{n} \sum_{i=1}^n f(x_i)(y_i - x_i'\beta_{MM}) = 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^n f(x_i) x_i'\beta_{MM} = \frac{1}{n} \sum_{i=1}^n f(x_i) y_i \Leftrightarrow \beta_{MM} = \left(\frac{1}{n} \sum_{i=1}^n f(x_i) x_i'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n f(x_i) y_i\right).$ Assuming that $E(f(x_i)x_i)$ is invertible, since $\{(x_i,y_i)\}_{i=1,\dots,n}$ are i.i.d, by the Law of Large Numbers, $\beta_{MM} \stackrel{P}{\longrightarrow} (E(f(x_i)x_i'))^{-1} E(f(x_i)y_i)$. Now, $y_i = x_i'\beta + u_i \Rightarrow f(x_i)y_i = f(x_i)x_i'\beta + f(x_i)u_i$. By the Law of Iterated Expectations, $E(f(x_i)y_i|x_i) = E(f(x_i)x_i'|x_i)\beta + E(f(x_i)u_i|x_i) = E(f(x_i)x_i'|x_i)\beta \Rightarrow E(f(x_i)y_i|x_i) = E(f(x_i)x_i'|x_i)\beta \Rightarrow E(f(x_i)y_i|x_i) = E(f(x_i)x_i'|x_i)\beta \Rightarrow E(f(x_i)y_i)$, and we have established that plim $\beta_{MM} = \beta$.

Question 5: Can an estimator be unbiased **and** inconsistent? Find an example or argue verbally.

Solution: An estimator can be unbiased and inconsistent. Let $\{x_i\}_i$ be i.i.d Bernoulli with parameter $p=\frac{1}{2}$, i.e, $x_i=0$ with probability $\frac{1}{2}$ and $x_i=1$ with probability $\frac{1}{2}$. Thus, $\mu=E(x_i)=\frac{1}{2}$. Consider now the estimator $\hat{\mu}=x_1$ for all n. We have that $E(\hat{\mu})=\mu$, but $P(|\hat{\mu}-\mu|>\epsilon)=0$

 $P(|x_1 - \mu| > \epsilon) = 1$ for $\epsilon < \frac{1}{2}$ and all n. Therefore, $\hat{\mu}$ is not consistent for μ , even though is unbiased.