

In [154... import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

In [155... df=pd.read_csv('/content/Website Analysis.csv')

In [156... df.head()

Out[156...

		Session primary channel group (Default channel group)	Date + hour (YYYYMMDDHH)	Users	Sessions	Engaged sessions	Average engagement time per session	Engaged sessions per user
	0	Direct	2024041623	237	300	144	47.53	0.61
1	1	Organic Social	2024041719	208	267	132	32.10	0.63
	2	Direct	2024041723	188	233	115	39.94	0.61
3	Organic Social	2024041718	187	256	125	32.16	0.67	
	4	Organic Social	2024041720	175	221	112	46.92	0.64

In [157... df.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3182 entries, 0 to 3181
        Data columns (total 10 columns):
             Column
                                                                      Non-Null Count Dty
        pe
             Session primary channel group (Default channel group) 3182 non-null
         0
                                                                                      obj
        ect
         1
             Date + hour (YYYYMMDDHH)
                                                                      3182 non-null
                                                                                      int
        64
                                                                      3182 non-null
         2
             Users
                                                                                      int
        64
                                                                      3182 non-null
         3
             Sessions
                                                                                      int
        64
         4
             Engaged sessions
                                                                      3182 non-null
                                                                                      int
        64
         5
             Average engagement time per session
                                                                      3182 non-null
                                                                                      flo
        at64
                                                                      3182 non-null
         6
             Engaged sessions per user
                                                                                      flo
        at64
         7
             Events per session
                                                                      3182 non-null
                                                                                      flo
        at64
                                                                      3182 non-null
         8
             Engagement rate
                                                                                      flo
        at64
                                                                      3182 non-null
         9
             Event count
                                                                                      int
        64
        dtypes: float64(4), int64(5), object(1)
        memory usage: 248.7+ KB
In [169... df.duplicated().sum()
Out[169... np.int64(0)
```

Converting data type in their format

```
In [158... df.rename(columns={'Date + hour (YYYYMMDDHH)': 'Datehour','Session primary cha
df['Datehour'] = pd.to_datetime(df['Datehour'], format='%Y%m%d%H', errors='coe
df['Hour']=df['Datehour'].dt.hour
In [159... df.head()
```

Out[159...

	channel group	Datehour	Users	Sessions	Engaged sessions	Average engagement time per session	Engaged sessions per user	Ever p sessi
0	Direct	2024-04-16 23:00:00	237	300	144	47.53	0.61	4.
1	Organic Social	2024-04-17 19:00:00	208	267	132	32.10	0.63	4.
2	Direct	2024-04-17 23:00:00	188	233	115	39.94	0.61	4.
3	Organic Social	2024-04-17 18:00:00	187	256	125	32.16	0.67	4.
4	Organic Social	2024-04-17 20:00:00	175	221	112	46.92	0.64	4.

In [160... df.describe()

Out[160...

	Datehour	Users	Sessions	Engaged sessions	Average engagement time per session
count	3182	3182.000000	3182.000000	3182.000000	3182.000000
mean	2024-04-20 01:17:07.278441216	41.935889	51.192646	28.325581	66.644717
min	2024-04-06 00:00:00	0.000000	1.000000	0.000000	0.000000
25%	2024-04-13 02:15:00	20.000000	24.000000	13.000000	32.105000
50%	2024-04-20 02:00:00	42.000000	51.000000	27.000000	49.020000
75%	2024-04-26 22:00:00	60.000000	71.000000	41.000000	71.487500
max	2024-05-03 23:00:00	237.000000	300.000000	144.000000	4525.000000
std	NaN	29.582258	36.919962	20.650569	127.200681

1) What patterns or trends can you observe in website sessions and users over time?

```
In [161... sns.set_style("whitegrid")
In [162... plt.figure(figsize=(10,5))
    df.groupby('Datehour')[['Sessions','Users']].sum().plot(ax=plt.gca())
    plt.title('Website Sessions and Users Over Time')
    plt.xlabel('Date')
    plt.ylabel('Count')
    plt.show()
```


2. Which marketing channel brought the highest number of users to the website, and how can we use this insight to improve traffic from other sources?

```
In [163...
plt.figure(figsize=(10,5))
srt_arr= df.groupby('channel group')['Users'].sum().sort_values(ascending=Fals
sns.barplot(x='channel group',y='Users',data=df,palette='Set2', order=srt_arr)
plt.title('Users by Channel Group')
plt.xlabel('Channel Group')
plt.xticks(rotation=45)
plt.ylabel('Users')
```

```
/tmp/ipython-input-1363848384.py:3: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same e ffect.
    sns.barplot(x='channel group',y='Users',data=df,palette='Set2', order=srt_ar r)
```

Out[163... Text(0, 0.5, 'Users')

3. Which **channel** has the highest **average engagement time**, and what does that tell us about user behavior and content effectiveness?

```
In [164... plt.figure(figsize=(10,5))
    aaar_sor=df.groupby('channel group')['Average engagement time per session'].me
    sns.barplot(x='channel group',y='Average engagement time per session',data=df,
    plt.title('Average Engagement Time by Channel Group')
    plt.show()
```

/tmp/ipython-input-441278341.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same e ffect.

sns.barplot(x='channel group',y='Average engagement time per session',data=d
f,palette='Set2',order=aaar sor)

Average Engagement Time by Channel Group

4. How does engagement rate vary across different traffic channels?

5. Which **channels** are driving more **engaged sessions** compared to non-engaged ones, and what strategies can improve engagement in underperforming channels?

```
session_df = df.groupby('channel group')[['Sessions','Engaged sessions']].sum(
In [166...
         session df['Non-engaged'] = session df['Sessions'] - session df['Engaged sessi
         session df['Engagement Rate (%)'] = (session df['Engaged sessions'] / session
         session df = session_df.sort_values('Engagement Rate (%)', ascending=False)
         plt.figure(figsize=(10,5))
         x = np.arange(len(session_df))
         plt.bar(x-0.2, session_df['Engaged sessions'], 0.4, label='Engaged', color='se
         plt.bar(x+0.2, session df['Non-engaged'], 0.4, label='Non-engaged', color='sal
         plt.xticks(x, session df['channel group'], rotation=45)
         plt.title('Engaged vs Non-engaged Sessions by Channel')
         plt.xlabel('Channel Group')
         plt.ylabel('Sessions')
         plt.legend()
         plt.tight layout()
         plt.show()
```


6. At what hours of the day does each channel drive the most traffic?

```
In [167... heatmap_data = df.groupby( ["Hour", "channel group"]) ["Sessions"].sum(). unst
    plt.figure(figsize=(12, 6))
    sns.heatmap(heatmap_data, cmap="YlGnBu", linewidths =.5, annot=True, fmt='.0f'
    plt.title(" Traffic by Hour and Channel")
    plt.xlabel("Channel Group")
    plt.ylabel("Hour of Day")
    plt.show()
```

Traffic by Hour and Channel									
0	1684	0	1311	3917	6	1204	26		
П	1196	0	984	2108	5	923	12		
2	887	1	804	1537	2	755	13	- 3500	
m	771	0	606	1249	2	560	11		
4	666	1	535	1081	2	495	6		
2	679	0	506	951	1	453	8	- 3000	
9	768	0	639	1171	1	565	17	- 2500	
7	889	0	778	1524	2	743	10		
00	1078	0	938	1886	4	862	13		
ر ه	1347	0	1269	2390	4	1192	19		
Day 10	1621	0	1649	2834	9	1648	30		
of [1892	0	1839	3069	8	1790	31	- 2000	
	1881	0	1871	2842	7	1763	34		
Hour 13 12	1806	0	1758	2691	5	1623	22		
1 41	1803	0	1964	2866	7	1723	36	- 1500	
15	1809	0	1898	3250	8	1644	38	1500	
16	1802	0	1709	3325	9	1589	33		
17	1774	0	1598	3188	6	1575	24	- 1000	
18	1937	0	1844	3157	6	1620	29	1000	
19	2062	1	1887	3469	12	1660	38		
2019	2062	0	1924	3206	10	1762	32	- 500	
21	2059	0	1838	3323	11	1799	26	300	
22	2149	0	1814	3027	12	1744	31		
23	2581	0	1409	2566	2	1298	20	- 0	
	Direct Email Organic Search Organic Social Organic Video Referral Unassigned Channel Group								

7. Is there any correlation between high traffic (sessions) and high engagement rate over time?

```
In [168... df_plot = df.groupby("Datehour") [["Engagement rate", "Sessions"]].mean().rese

plt.figure(figsize=(10, 5))
plt.plot(df_plot["Datehour"], df_plot["Engagement rate"], label="Engagement ra
plt.plot(df_plot["Datehour"], df_plot["Sessions"], label="Sessions", color="bl
plt.title(" | Engagement Rate vs Sessions Over Time")
plt.xlabel("DateHour")
plt.legend()
plt.grid(True)
plt.show()
```


Conclusion

- 1. **Website sessions and users over time:** Sessions and users generally rise during peak hours or campaign periods, showing consistent daily and weekly usage patterns.
- 2. **Highest user-driving channel:** The channel with the most users (e.g., Organic Search or Direct) is the key traffic source; focusing similar strategies on weaker channels can boost their performance.
- 3. **Channel with highest average engagement time:** Channels with longer engagement time indicate high-quality, relevant content and

- more interested visitors content from these channels should guide future strategy.
- 4. **Engagement rate across channels:** Engagement rate varies widely; some channels attract more active users, while others bring more casual or one-time visitors.
- 5. **Engaged vs non-engaged sessions:** A few channels drive most engaged sessions; underperforming ones need better targeting, more personalized content, and optimized landing experiences.
- 6. **Traffic by hour of day:** Traffic peaks during specific hours (often midday or evening), suggesting when audiences are most active ideal times for campaign launches or updates.
- 7. **Correlation between traffic and engagement rate:** There's usually a weak to moderate positive correlation higher traffic can increase engagement, but quality of content and user experience matter more.