Applying ML and DL to MIMIC Data for Mortality Prediction

Sharang Agarwal (sa62567)

Introduction & Objectives

Assignment Goal: Familiarize with ML/DL techniques for analyzing EHR data and deriving insights for healthcare risk management.

Project Task: Predict in-hospital mortality using MIMIC III data.

Learning Outcomes:

- Apply ML/DL to EHR data.
- Apply ML/DL to identify basic problems in healthcare (like mortality prediction).

Data Sources

Dataset: MIMIC III Clinical Database

Tables Used:

- PATIENTS.csv.gz: Patient demographic information (DOB, GENDER).
- ADMISSIONS.csv.gz: Admission details (ADMITTIME, DISCHTIME, admission type, insurance, etc.), hospital expiration flag.
- DIAGNOSES_ICD.csv.gz: ICD-9 diagnosis codes for each admission.
- ICUSTAYS.csv.gz: ICU stay information (care unit).

Feature Engineering (part 1) - Core Patient & Admission Info

Target Variable (Mortality): Defined using HOSPITAL_EXPIRE_FLAG from the ADMISSIONS table.

Length of Stay (LOS): Calculated from DISCHTIME and ADMITTIME (converted to days). *Note: While calculated, LOS is used as a feature for mortality prediction in this code.*

Age: Calculated using patient DOB and ADMITTIME.

Patient Demographics: Merged GENDER from the PATIENTS table.

Diagnoses (ICD-9 Codes)

Processing:

- Filtered non-alpha codes.
- Extracted the first 3 digits.
- Mapped codes to broader categories (e.g., 'infectious', 'neoplasms', 'circulatory') using predefined ranges.
- **Aggregation:** Grouped diagnosis categories by hospital admission (HADM_ID).
- Transformation: Created binary indicator variables (dummy variables) for each diagnosis category per admission.

Feature Engineering (part 2) - ICU Stays & Merging

ICU Care Unit: Simplified FIRST_CAREUNIT into 'ICU' category.

- Aggregation: Grouped ICU stays by hospital admission (HADM_ID).
- **Transformation:** Created binary indicator for ICU stay per admission.
- Data Merging: Merged processed features from Admissions, Patients, Diagnoses, and ICU stays into a single dataframe based on HADM_ID.

Create one-hot encoding:

- Categorical Variables: Converted features into numerical representations using one-hot encoding.
 - ADMISSION TYPE
 - INSURANCE
 - RELIGION
 - MARITAL_STATUS
 - ETHNICITY
 - GENDER

Exploratory Data Analysis - Categorical features

Feature Engineering (part 2) - ICU Stays and One-hot encoding

ICU Care Unit: Simplified FIRST_CAREUNIT into 'ICU' category.

- Aggregation: Grouped ICU stays by hospital admission (HADM_ID).
- **Transformation:** Created binary indicator for ICU stay per admission.
- Data Merging: Merged processed features from Admissions, Patients, Diagnoses, and ICU stays into a single dataframe based on HADM_ID.

Create one-hot encoding:

- Categorical Variables: Converted features into numerical representations using one-hot encoding.
 - ADMISSION TYPE
 - INSURANCE
 - RELIGION
 - MARITAL_STATUS
 - ETHNICITY
 - GENDER

Data Cleaning & Preprocessing - Feature Selection & Scaling

Feature Selection:

- Calculated correlations between numerical features and the 'MORTALITY' target.
- Selected features with a correlation magnitude greater than 0.005.
- Defined final feature_list.
- Outlier Handling (Age): Capped age at the 90th percentile, replacing higher values with the mean.
- Handling Missing Values: Dropped rows with missing values in the selected feature_list.
- Feature Scaling: Applied MinMaxScaler to scale all features in the final list to a range between 0 and 1.

Exploratory Data Analysis - Final Feature list vs. Mortality (Few diagrams below)

Model training to predict mortality

Data Splitting

- **Method:** Split the data into training (80%) and testing (20%) sets.
- Variables:
 - X train, X test: Scaled features for training and testing.
 - y_train_mortality, y_test_mortality: Target variable (Mortality) for training and testing.

Model 1 - Gradient Boosting Regressor

- **Purpose:** Predict mortality (treated as regression target for GBR in the code, although evaluation uses classification metrics).
- **Implementation:** Used sklearn.ensemble.GradientBoostingRegressor.
- **Training:** Fit the model on the training data (X train, y train mortality).

Model 2 - Deep Learning (Neural Network)

- Architecture:
 - Input Layer: Shape corresponding to the number of features.
 - Hidden Layers: Dense(128, relu), Dense(64, relu), Dense(32, relu).
 - Output Layer: Dense(1, sigmoid) for binary classification.
- Compilation:
 - Optimizer: Adam (learning_rate=0.01).
 - Loss: Binary Crossentropy.
 - Metrics: Accuracy.
- Training: Trained for 10 epochs with a batch size of 32.

Model Evaluation Results for Mortality Prediction

GBM performed slightly better in the iterations.

• GBM:

AUC-ROC: 0.8496

Mean Squared Error: 0.0713

o R-squared: 0.2182

Neural Network:

o AUC-ROC: 0.8472

Mean Squared Error: 0.0736

o R-squared: 0.2182

Extracted feature importances from GBM Model

Code Base link

https://github.com/sharangagarwal/msai ai healthcare/blob/main/assignment MIMIC ML DL.ipynb