

Complete Data Science and Machine Learning Using Python

By Jitesh Khurkhuriya

Understanding Data, Variables/Features

Understanding The Variables Using a Dataset

Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	CreditHistory	Property_Area	Status
LP001002	Male	No	0	No	\$5,849.00		60	1	Urban	Υ
LP001003	Male	Yes	1	No	\$4,583.00	\$128.00	120	1	Rural	N
LP001005	Male	Yes	0	Yes	\$3,000.00	\$66.00	60	1	Urban	Υ
LP001006	Male	Yes	2	No	\$2,583.00	\$120.00	60	1	Urban	Υ

Understanding The Variables Using a Dataset

Loan_ID	Gender	Married	Dependents	Self_Employed	Income	LoanAmt	Term	CreditHistory	Property_Area	Status
LP001002	Male	No	0	No	\$5,849.00		60	1	Urban	Υ
LP001003	Male	Yes	1	No	\$4,583.00	\$128.00	120	1	Rural	N
LP001005	Male	Yes	0	Yes	\$3,000.00	\$66.00	60	1	Urban	Υ
LP001006	Male	Yes	2	No	\$2,583.00	\$120.00	60	1	Urban	Υ

Types of Variables

- Predictor/Independent
 - Gender
 - Married
 - Dependents
 - Self_Employed
 - Income
 - LoanAmt
 - Term
 - CreditHistory
 - PropertyArea
- Target/Dependent
 - Status

Data Type

- Character/String
 - Gender
 - Married
 - Self_Employed
 - Property_Area
 - Status
- Numeric
 - Dependents
 - Income
 - LoanAmt
 - Term
 - CreditHistory

Central Tendency of Data

Central Tendency

Single value that attempts to describe the whole data using a central point or central location of the data.

Central Tendency of Data

Central Tendency

Mean

Median

• Mode

• Others – Geometric mean, Harmonic Mean, Weighted Arithmetic Mean

Mean

Applicant	Loan Amount
Jitesh	\$ 24,000
John	\$ 18,000
Frans	\$ 34, 000
Danny	\$ 40,000
Cecile	\$ 24,000
Scott	\$ 16,000
Alex	\$ 29,000

Mean =
$$\frac{24000 + 18000 + 34000 + 40000 + 24000 + 16000 + 29000}{7}$$

$$= \frac{151000}{7}$$

Mean =
$$$25,167$$

Median

Applicant	Loan Amount
Jitesh	\$ 24,000
John	\$ 18,000
Frans	\$ 34, 000
Danny	\$ 40,000
Cecile	\$ 24,000
Scott	\$ 16,000
Alex	\$ 29,000

Median = \$24,000

Mode

Applicant	Loan Amount
Jitesh	\$ 24,000
John	\$ 18,000
Frans	\$ 34, 000
Danny	\$ 40,000
Cecile	\$ 24,000
Scott	\$ 16,000
Alex	\$ 29,000

Outliers

Experience	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 19,000
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

Effect of Outliers

Experience	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 7,556
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

\$ 6,915	← Mean →	\$ 7,678
. ,		

$$$7,200 \leftarrow Median \rightarrow $7,200$$

Experience	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 19,000
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

© Jitesh Khurkhuriya

Measure of Dispersion

Central Tendency

Spread in Data

Spread in Data

Day	Temperature
1	20
2	21
3	19
4	20
5	21
6	19
7	20
Total	140

Day	Temperature
1	22
2	23
3	21
4	18
5	19
6	17
7	20
Total	140

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31
Total	140

$$Mean = 20$$
 $Median = 20$

$$Mean = 20$$
 $Median = 20$

$$Mean = 20$$
 $Median = 20$

Measure of Dispersion

- Variance
- Standard Deviation
- Percentile
- Range
- Interquartile range

Variance and Standard Deviation

Day	X	$X - \overline{X}$	$(X-\overline{X})^2$
1	20	0	0
2	21	1	1
3	19	-1	1
4	20	0	0
5	21	1	1
6	19	-1	1
7	20	0	0

Average =
$$4/7 = 0.57$$

Variance,
$$\sigma^2 = 0.57$$

$$\sigma = 0.7559$$

$$Mean = X = 20$$

Variance and Standard Deviation

Day	Temperature		
1	20		
2	21		
3	19		
4	20		
5	21		
6	19		
7	20		

$$\sigma = 0.7559$$

$$Mean = X = 20$$

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31

$$\sigma = 7.67$$

$$Mean = X = 20$$

What is Percentile?

The value <u>below</u> which a <u>given percentage of observations</u> in a <u>group</u> of observations falls...

– Wikipedia

Percentile

- Arrange the data in an order
- Calculate the percentage of observations or data points below a particular value.

What is the 80th Percentile Observation?

Total Observations * 0.8

Row Number	Salary	
1	\$ 3,725	
2	\$ 4,155	
3	\$ 4,627	
4	\$ 5,147	
5	\$ 5,718	
6	\$ 6,347	
7	\$ 7,039	
8	\$ 7,210	
9	\$ 7,423	
10	\$ 7,556	
11	\$ 8,369	
12	\$ 8,810	
13	\$ 8,940	
14	\$ 9,200	
15	\$ 9,458	

Range

Difference between the highest and lowest value...

Range

Day	Temperature
1	20
2	21
3	19
4	20
5	21
6	19
7	20

Day	Temperature
1	22
2	23
3	21
4	18
5	19
6	17
7	20

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31

$$Mean = 20$$

 $Range = 2$

$$Mean = 20$$

$$Range = 6$$

$$Mean = 20$$
 $Range = 20$

Inter Quartile Range (IQR)

How to Show Numerical Data?

Visualize Numerical Data

- Frequency Table
- Histogram
- Bar Chart
- Boxplot

Frequency Table

1223
3434
4545
6798
2311
4321
5600
10345
900
2687
3450
6700
2340
3600
5632
7900

0-2000	2-4000	4-6000	6-8000	> 8000
1223	3434	4545	6798	10345
900	2311	4321	6700	
	2687	5600	7900	
	3450	5632	0,,	
	2340	1 - 1 ILIE		
	3600	Mo.		
	1/2-			
2	6	4	3	1

Histogram

1223
3434
4545
6798
2311
4321
5600
10345
900
2687
3450
6700
2340
3600
5632
7900

Bar Chart

1223
3434
4545
6798
2311
4321
5600
10345
900
2687
3450
6700
2340
3600
5632
7900

Box Plot

Correlation

Number of cigarettes smoked

Stress Level

Statistically Correlated

- Strength of the correlation Coefficient of Correlation
- Direction of correlation Sign of the Coefficient

Pearson Correlation Coefficient $r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_x^* \sigma_y^*}$

Correlation Coefficient

	Height X	Weight Y	<u> </u>	Y – <u>Y</u>	$(X - \overline{X}) * (Y - \overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

$$r = \frac{1821.875}{(8-1) * 10.155 * 25.651}$$

$$r = 0.96$$

Correlation Coefficient

Scatter Plot

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

$$r = \frac{1821.875}{(8-1) * 10.155 * 25.651}$$

$$r = 0.96$$

Variance

Average of the <u>squared difference</u> of the data from the <u>Mean</u>.

Variance,
$$S_x^2 = \frac{\sum (x - \overline{x})^* (x - \overline{x})}{(N-1)}$$

Variance of X with respect to X.

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$

Variance of X with respect to Y.

Pearson Correlation Coefficient
$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N-1)} * \sigma_x * \sigma_y = \frac{Covar (x, y)}{\sigma_x * \sigma_y}$$

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$

Variance of X with respect to Y.

	Height X	Weight Y	<u> </u>	Y – <u>Y</u>	$(X - \overline{X}) * (Y - \overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1)}$$

Covar
$$(x, y) = \frac{1821.875}{(8-1)}$$

Covar
$$(x, y) = 260.27$$

- Non-Standardised method of correlation
- Can be positive or negative

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1)}$$

Covar
$$(x, y) = \frac{1821.875}{(8-1)}$$

Covar
$$(x, y) = 260.27$$

Covariance Matrix

	Height X	Weight Y	<u> </u>	Y – <u>Y</u>	(X – X) * (Y – Y)
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

	X	У	
X	Covariance (x, x)	Covariance(x, y)	
У	Covariance (y, x)	Covariance (y, y)	

Covariance Matrix

	Height X	Weight Y	<u> </u>	Y – <u>Y</u>	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

Variance – Covariance Matrix

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1)}$$

Covariance Matrix

	Height X	Weight Y	<u> </u>	Y – <u>Y</u>	(X – X) * (Y – Y)
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

	X	У
X	103.125	260.27
У	260.27	710.26

Variance – Covariance Matrix

Covariance Applications

 Using Covariance matrix as Transformation Matrix to get Eigenvectors and EigenValues Financial Portfolio Management

Complete Data Science and Machine Learning Using Python

Thank You!