Monocular Depth Estimation

Bjørnar Birkeland, André Håland, Torkil Solheim

The Problem

- Estimate accurate depth from a single image
- Crucial step in detection, segmentation,
 scene reconstruction,
 3D object recognition

Approaches

- Traditional (not single image)
 - Stereo images
 - Multiple frames from moving camera
 - Multiple static images with different lighting conditions
- Encoder decoder, recently typically DCNN
- Feature extraction; loses resolution
- Possible solutions:
 - Multi-scale networks
 - Skip connections
 - deconvolutional networks

Multi-Scale Local Planar Guidance

State-of-the-art 2019 (late August)

High level overview

- Input: single image
- Output: depth map

Main steps

- Feature extraction
- Segmentation
 - ASPP
- Find plane representations
 - Local Planar Guidance Layers (LPG)
 - Planes can be represented mathematically
 - Finds the depth of the plane from the images perspective

Architecture

- Encoding-decoding scheme
- Encoding
 - Dense Feature
 Extractor
 - Contextual information extractor (ASPP)
- Decoding
 - Local Planar
 Guidance trained to recognize planes
 - Three different LPGs are used and combined.

Main contribution - key idea

- Key idea
 - Define a more direct and explicit relation between internal features and the final output
- Local Planar Guidance Layers
 - New method
 - Main contribution

Contextual Information Extraction

- Semantic segmentation
- Atrous convolution
 - Increase receptive field while keeping the feature map resolution unchanged.
- Atrous Spatial Pyramid Pooling
 - Concatenate feature maps with different dilation rates
 - Neurons in output feature map contain multiple receptive field sizes

Local Planar Guidance Layers

- "Guide features to the full resolution with the local planar assumption, and use them together to get the final depth estimation"
- Given a feature map of size H/k, the layer estimate plane coefficients that fits a k×k patch on the full resolution H.
- Each layer only estimates local depths, and concatenated together, a global depth estimation is achieved.

Local Planar Guidance Layers

- Reduce channels by a factor of 2 until it reaches 4
- Assuming square input, this results in H/k × H/k × 4 feature map (4D plane coefficients)

 Coefficients are split in two ways to ensure constraints on plane coefficients

Local depth estimation

$$\tilde{c}_i = \frac{n_4 \sqrt{u_i^2 + v_i^2 + 1}}{n_1 u_i + n_2 v_i + n_3},$$

- (n_1, n_2, n_3, n_4) is the estimated plane coefficients (u_i, v_i) are normalized coordinate of pixel i

Sources

- [1] Lee et al., 2019, "From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation"
- [2] Yang et al., 2018, "DenseASPP for Semantic Segmentation in Street Scenes"

Plane image:

http://www.songho.ca/math/plane/plane.html (21.10.19)