Shenzhen-Nagoya workshop on Quantum Science

Center functor and condensation theory

Jiaheng Zhao

Academy of Mathematics and System Sciences, Chinese Academy of Sciences

zhaojiaheng171@mails.ucas.ac.cn

September 11, 2023

Introduction

In this talk I will introduce the notion of a relative center functor, which generalizes Kong and Zheng's work on center functors[Kong-Zheng:2107.03858]. I will develop the calculus of condensable algebras, by which I mean a pair of adjunction between codimension 2 condensations and codimension 1 condensations.

Preliminaries on separable n-categories

This talk relies heavily on the language of separable n-categories developed by Kong and Zheng[Kong-Zheng:2011.02859]. I will first introduce some necessary notions and terminology. Throughout this talk we work over the field $\mathbb C$ of complex numbers.

- ullet A **separable** n-category ${\mathcal C}$ a linear n-category such that
 - 1. C is Karoubi complete (aka condensation complete[Gaiotto-Johnson-Freyd:1905.09566]);
 - 2. $\mathcal C$ is fully dualizable (in a suitable Morita category).
- The collection of all separable n-categories, linear functors and higher morphisms form a separable (n+1)-category, which we denote by (n+1)Vec. We use the convention that 0Vec = \mathbb{C} , and 1Vec = Vec, i.e. the category of finite dimensional vector spaces.
- There is a pair of adjunction $\Sigma: \mathrm{Alg}_{\mathbb{E}_{m+1}}(n\mathrm{Vec}) \leftrightarrows \mathrm{Alg}_{\mathbb{E}_m}((n+1)\mathrm{Vec}): \Omega$, where Σ sends a \mathbb{E}_{m+1} -monoidal separable (n-1)-category $\mathcal C$ to its condensation completion $\Sigma\mathcal C$, while Ω sends a \mathbb{E}_m -monoidal separable n-category $\mathcal D$ to

Preliminaries on separable n-categories

- We have $\Sigma(n\mathrm{Vec}) = (n+1)\mathrm{Vec}$ and $\Omega((n+1)\mathrm{Vec}) = n\mathrm{Vec}$. In particular, there is a simple but astonishing formula $n\mathrm{Vec} = \Sigma^n\mathbb{C}$, which says that **everything can be obtained by iteratedly condensing** \mathbb{C} , **the field of complex numbers**.
- A \mathbb{E}_1 -monoidal separable n-category is called a **multi-fusion** n-category; a \mathbb{E}_2 -monoidal separable n-category is called a **braided multi-fusion** n-category. We say that a (braided) multi-fusion n-category is (**braided**) fusion if its tensor unit is simple.
- Let \mathcal{A},\mathcal{B} be indecomposable multi-fusion n-categories. We say that a separable \mathcal{A} - \mathcal{B} -bimodule \mathcal{M} is **closed** if the canonical linear monoidal functor $\mathcal{A} \boxtimes \mathcal{B}^{\mathrm{rev}} \to \mathrm{Fun}(\mathcal{M},\mathcal{M})$ is invertible. We say that \mathcal{A} is **non-degenerate** if the \mathcal{A} - \mathcal{A} -bimodule \mathcal{A} is closed.

Preliminaries on separable n-categories

- Let \mathcal{A}, \mathcal{B} be braided fusion n-categories. A **multi-fusion** \mathcal{A} - \mathcal{B} -**bimodule** is a multi-fusion n-category \mathcal{X} equipped with a linear braided monoidal functor $\psi_{\mathcal{X}}: \mathcal{A} \boxtimes \overline{\mathcal{B}} \to \mathfrak{Z}_1(\mathcal{X})$. We say that \mathcal{X} is **closed** if $\psi_{\mathcal{X}}$ is invertible. We say that \mathcal{A} is **non-degenerate** if the multi-fusion \mathcal{A} - \mathcal{A} -bimodule \mathcal{A} is closed.
- A multi-fusion \mathcal{A} -module is equivalent to a separable algebra in $\Sigma \mathcal{A}$.
- An (n+1)D (spacetime dimension) anomaly-free topological order \mathcal{A} can be described in terms of the following equivalent ways:
 - 1 . A braided fusion (n-1)-category $\mathbb C$, whose objects correspond to codimension 2 defects of $\mathbb A$.
 - 2 . A fusion n-category $\Sigma \mathcal{C}$, whose objects correspond to codimension 1 defects of \mathcal{A} .

Let us fix a non-degenerate multi-fusion n-category \mathcal{C} . Let \mathcal{M}, \mathcal{N} be separable left \mathcal{C} -modules, we use $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{N})$ to denote the separable n-category of \mathcal{C} -module functors. When $\mathcal{M}=\mathcal{N}$, the functor category $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}, \mathcal{M})$ is multi-fusion.

Notation

We use $\operatorname{LMod}^{\operatorname{ind}}_{\mathfrak C}((n+1)\operatorname{Vec})$ to denote the 1-category where an object is an indecomposable separable left $\mathfrak C$ -module, and a morphism is an equivalence class of $\mathfrak C$ -module functors.

Notation

We use $\mathcal{F}us_n^{\mathrm{cl}}$ to denote the symmetric monoidal 1-category where an object is a non-degenerate fusion n-category \mathcal{A} and a morphism $\mathcal{A} \to \mathcal{B}$ is an equivalence class of pairs (\mathcal{M},X) where \mathcal{M} is a closed \mathcal{B} - \mathcal{A} -bimodule, and X is a non-zero object of \mathcal{M} .

Relative E_0 -center functor

For a left \mathcal{C} -module \mathcal{M} , the left \mathcal{C} -module structure is equivalent to a monoidal functor $F:\mathcal{C}\to \operatorname{Fun}(\mathcal{M},\mathcal{M})=\mathfrak{Z}_0(\mathcal{M}).$ $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ is nothing but the E_1 -centralizer $\mathfrak{Z}_1(\mathcal{C},\operatorname{Fun}(\mathcal{M},\mathcal{M})).$ When \mathcal{M} is separable, $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ is a non-degenerate multi-fusion category. We can view $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ as "the E_0 -center of \mathcal{M} relative to \mathcal{C} ". Geometrically, the relationship between \mathcal{C} , \mathcal{M} and $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ is demonstrated in the following diagram:

Theorem

Let C be a non-degenerate fusion n-category. We may define a relative center functor

$$\mathfrak{Z}_0^{rel}: \mathrm{LMod}_{\mathfrak{C}}^{\mathrm{ind}}((n+1)\mathrm{Vec}) \to \mathcal{F}us_n^{\mathrm{cl}}$$

which sends a indecomposable separable left \mathbb{C} -module \mathbb{M} to the non-degenerate fusion category $\operatorname{Fun}_{\mathbb{C}}(\mathbb{M},\mathbb{M})$ and sends a \mathbb{C} -module functor $F:\mathbb{M}\to\mathbb{N}$ to the pair $(\operatorname{Fun}_{\mathbb{C}}(\mathbb{M},\mathbb{N}),F)$

Proof.

It suffices to check functoriality. We have

$$\operatorname{Fun}_{\operatorname{\mathcal C}}({\mathcal N},{\mathcal P})\boxtimes_{\operatorname{Fun}_{\operatorname{\mathcal C}}({\mathcal N},{\mathcal N})}\operatorname{Fun}_{\operatorname{\mathcal C}}({\mathcal M},{\mathcal N})\simeq\operatorname{Fun}_{\operatorname{\mathcal C}}({\mathcal M},{\mathcal P}).$$

Relative E_1 -center functor

Notation

Let $\mathcal{BF}us_n^{\mathrm{cl}}$ denote the symmetric monoidal 1-category where an object is an non-degenerate braided multi-fusion n-category and a morphism $\mathcal{A} \to \mathcal{B}$ is an equivalence class of closed multi-fusion \mathcal{B} - \mathcal{A} -bimodules.

Notation

Let $\mathcal C$ be a non-degenerate braided monoidal fusion (n-1)-category, so that $\Sigma \mathcal C$ is a non-degenerate fusion n-category. Let $\mathcal M \mathcal F us_{\mathcal C}^{\mathrm{ind}}$ be the 1-category whose objects are indecomposable multi-fusion $\mathcal C$ -modules. A morphism $\mathcal M \to \mathcal N$ is an equivalence class of separable $\mathcal C$ -central $\mathcal M$ - $\mathcal N$ -bimodule $\mathcal L$.

Theorem

The assignment $\mathcal{M} \mapsto \mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{M}))$ together with the assignment $_{\mathcal{M}}\mathcal{L}_{\mathcal{N}} \mapsto \operatorname{Fun}_{\mathcal{M}|\mathcal{N}}^{\mathcal{C}}(\mathcal{L},\mathcal{L}) := \Omega(\operatorname{Fun}_{\Sigma\mathcal{C}}(\Sigma\mathcal{M},\Sigma\mathcal{N}), -\otimes_{\mathcal{M}}\mathcal{L})$ define a functor $\mathfrak{Z}_1^{rel} : \mathcal{MF}us_{\mathcal{C}}^{\operatorname{ind}} \to \mathcal{BF}us_{n-1}^{\operatorname{cl}}$

Proof.

Our assignments coincide with the composition

$$\mathcal{MF}us_{\mathbb{C}}^{\mathrm{ind}} \xrightarrow{\Sigma} \mathrm{LMod}_{\Sigma\mathbb{C}}^{\mathrm{ind}}((n+1)\mathrm{Vec}) \xrightarrow{\mathfrak{Z}_{0}^{\mathrm{rel}}} \mathcal{F}us_{n}^{\mathrm{cl}} \xrightarrow{\Omega} \mathcal{BF}us_{n-1}^{\mathrm{cl}}$$

Calculus of condensable algebras

Recall that, for a braided fusion n-category $\mathbb C$, a multi-fusion $\mathbb C$ -module is the same as a separable algebra object in the fusion (n+1)-category $\Sigma \mathbb C$.

Notation

We use $\mathrm{Alg}^{\mathrm{sep}}_{\mathbb{E}_1}(\Sigma\mathfrak{C})$ to denote the category where an object is a separable algebra in the fusion (n+1)-category $\Sigma\mathfrak{C}$, and a morphism is an equivalence class of algebra homomorphisms.

Given $\mathcal{M}, \mathcal{N} \in \mathrm{Alg}^{\mathrm{sep}}_{\mathbb{E}_1}(\Sigma\mathcal{C})$, our theory of relative center functor allows us to give a geometric construction of an algebra homomorphism $\mathcal{M} \to \mathcal{N}$ in $\Sigma\mathcal{C}$. This construction is inspired by Kong and Zheng's work_[Kong-Zheng:2107.03858].

Proposition

Let $\mathcal{M}, \mathcal{N} \in Alg_{\mathbb{E}_1}^{sep}(\Sigma \mathcal{C})$, then

• Let $F: \mathcal{M} \to \mathcal{N}$ be an algebra homomorphism in $\Sigma \mathbb{C}$. Then we have an equivalence of algebras in $\Sigma \mathbb{C}$:

$$\operatorname{Fun}_{\mathcal{M}|\mathcal{N}}^{\mathcal{C}}(\mathcal{N},\mathcal{N})\boxtimes_{\mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{M}))}\mathcal{M}\simeq\mathcal{N},\quad f\boxtimes_{\mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{M}))}X\mapsto fF(X).$$

• Conversely, suppose we are given a multi-fusion $\mathfrak{Z}_2(\mathfrak{C},\mathfrak{Z}_1(\mathfrak{M}))$ -module \mathcal{E} and an equivalence $\phi: \mathcal{E} \boxtimes_{\mathfrak{Z}_2(\mathfrak{C},\mathfrak{Z}_1(\mathfrak{M}))} \mathfrak{M} \simeq \mathfrak{N}$ of algebras in $\Sigma\mathfrak{C}$, then the composition $\mathfrak{M} \xrightarrow{\mathbb{I}_{\mathcal{E}} \boxtimes_{\mathfrak{Z}_2(\mathfrak{C},\mathfrak{Z}_1(\mathfrak{M}))} \mathrm{Id}_{\mathfrak{M}}} \mathcal{E} \boxtimes_{\mathfrak{Z}_2(\mathfrak{C},\mathfrak{Z}_1(\mathfrak{M}))} \mathfrak{M} \overset{\phi}{\simeq} \mathfrak{N} \text{ defines a algebra homomorphism from } \mathfrak{M} \text{ to } \mathfrak{N}.$

Moreover, these constructions are inverse to each other.

According the proposition, an algebra homomorphism $F: \mathcal{M} \to \mathcal{N}$ is equivalent to the following data: a multi-fusion $\mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{N}))$ - $\mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{M}))$ bimodule \mathcal{L} such that $\mathcal{L} \boxtimes_{\mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{M}))} \mathcal{M} \simeq \mathcal{N}$ as multi-fusion \mathcal{C} -modules. Physically, this means a gapped domain wall \mathcal{L} such that the dimensional reduction of $(\mathcal{L},\mathfrak{Z}_2(\mathcal{C},\mathfrak{Z}_1(\mathcal{M})),\mathcal{M})$ is \mathcal{N} :

Calculus of condensable algebras

Let us return to the 1-categorical case. Fix a non-degenerate braided fusion category \mathcal{C} , recall that a $(\mathbb{E}_{2}$ -) **condensable algebra** in \mathcal{C} is a connected commutative separable algebra. We use $\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{2}}(\mathcal{C})$ to denote the category of condensable algebras and algebra homomorphisms. We use $\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{1}}(\Sigma\mathcal{C})$ to denote the category of condensable algebras and (equivalence classes of) algebra homomorphisms.

Define a functor

$$\operatorname{RMod}_{-}(\mathcal{C}): \operatorname{Alg}^{\operatorname{con}}_{\mathbb{E}_{2}}(\mathcal{C}) \to \operatorname{Alg}^{\operatorname{con}}_{\mathbb{E}_{1}}(\Sigma\mathcal{C})$$

$$A \mapsto \operatorname{RMod}_{A}(\mathcal{C})$$

$$(f: A \to B) \mapsto - \otimes_{A} {}_{f}B_{B}$$

Here the left A-module structure on B is induced by the algebra homomorphism f.

We will define a functor in the reverse direction. Let \mathfrak{Z} be the following functor

$$\mathfrak{Z}: \mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_1}(\Sigma\mathfrak{C}) \to \mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_2}(\mathfrak{C})$$
$$(F: \mathfrak{C} \to \mathfrak{M}) \mapsto [\mathbb{1}_{\mathfrak{M}}, \mathbb{1}_{\mathfrak{M}}]_{\mathfrak{C}}$$

It is well known that the internal hom $[\mathbb{1}_{\mathcal{M}},\mathbb{1}_{\mathcal{M}}]_{\mathcal{C}}$ is equipped with a canonical structure of condensable algebra in $\mathbb{C}_{[\mathsf{Davydov-M\"uger-Nikshych-Ostrik:1009.2117v2]}$. This algebra has an interesting geometric construction: we do dimensional reduction to the "bubble" in \mathbb{C} , as is depicted in the following picture

I will now explain the action of \mathfrak{Z} on morphisms. Given an algebra homomorphism $F: \mathcal{M} \to \mathcal{N}$, recall that this can be given by a gapped domain wall \mathcal{L} :

We define $\mathfrak{Z}(F)$ to be the dimensional reduction of the following object in \mathfrak{C} :

What does this have to do with an algebra homomorphism from $A=[\mathbb{1}_{\mathbb{M}},\mathbb{1}_{\mathbb{M}}]_{\mathbb{C}}$ to $B=[\mathbb{1}_{\mathbb{N}},\mathbb{1}_{\mathbb{N}}]_{\mathbb{C}}$? Let us observe this "bubble"

This object has the following properties:

- The dimension reduction of this "bubble" is *B*, hence it acquires an algebra structure;
- This object is equipped a canonical left *A*-action, and this left action is compatible with the algebra structure, in an obvious sense.

Then, we could see that such a left A-module structure on B is equivalent to an algebra homomorphism $f: A \to B$! This completes our definition of the functor \mathfrak{Z} .

Now I will claim the main result, without writing down more details.

Theorem

Let \mathcal{C} be a non-degenerate braided fusion category. There is a pair of adjunction

$$\mathrm{RMod}_{-}(\mathcal{C}):\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{2}}(\mathcal{C})\leftrightarrows\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{1}}(\Sigma\mathcal{C}):\mathfrak{Z}$$

Such that $\mathrm{RMod}_{-}(\mathfrak{C})$ is fully faithful, and $\mathfrak{Z} \circ \mathrm{RMod}_{-}(\mathfrak{C}) = \mathrm{Id}_{\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{2}}(\mathfrak{C})}$. Using some mathematical terminology, we say that $\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{2}}(\mathfrak{C})$ is a coreflective localization of $\mathrm{Alg}^{\mathrm{con}}_{\mathbb{E}_{1}}(\Sigma\mathfrak{C})$.

Thank You For Listening!