EE359 – Lecture 2 Outline

Announcements

- 1st HW posted, due next Thursday at 5pm.
- Discussion section starts next week.
- No class Oct. 12-14, makeup 10/2 and 10/9, 12-1:05, here
- Review of Last Lecture
- Signal Propagation Overview
- Path Loss Models
 - Free-space Path Loss
 - Ray Tracing Models
 - Simplified Path Loss Model
 - Empirical Models

Lecture 1 Review

- Course Information
- Wireless Vision
- Technical Challenges
- Multimedia Requirements
- Current Wireless Systems
- Spectrum Regulation and Standards

Propagation Characteristics

- Path Loss (includes average shadowing)
- Shadowing (due to obstructions)
- Multipath Fading

Path Loss Modeling

- Maxwell's equations
 - Complex and impractical
- Free space path loss model
 - Too simple
- Ray tracing models
 - Requires site-specific information
- Empirical Models
 - Don't always generalize to other environments
- Simplified power falloff models
 - Main characteristics: good for high-level analysis

Free Space (LOS) Model

- Path loss for unobstructed LOS path
- Power falls off :
 - Proportional to d²
 - Proportional to λ² (inversely proportional to f²)

Ray Tracing Approximation

- Represent wavefronts as simple particles
- Geometry determines received signal from each signal component
- Typically includes reflected rays, can also include scattered and defracted rays.
- Requires site parameters
 - Geometry
 - Dielectric properties

Two Path Model

- Path loss for one LOS path and 1 ground (or reflected) bounce
- Ground bounce approximately cancels LOS path above critical distance
- Power falls off
 - Proportional to d² (small d)
 - Proportional to d⁴ (d>d_c)
 - Independent of λ (f)

General Ray Tracing

- Models all signal components
 - Reflections
 - Scattering
 - Diffraction

- Requires detailed geometry and dielectric properties of site
 - Similar to Maxwell, but easier math.
- Computer packages often used

Simplified Path Loss Model

- Used when path loss dominated by reflections.
- Most important parameter is the path loss exponent γ , determined empirically.

$$P_r = P_t K \left\lceil \frac{d_0}{d} \right\rceil^{\gamma}, \qquad 2 \le \gamma \le 8$$

Empirical Models

- Okumura model
 - Empirically based (site/freq specific)
 - Awkward (uses graphs)
- Hata model
 - Analytical approximation to Okumura model
- Cost 136 Model:
 - Extends Hata model to higher frequency (2 GHz)
- Walfish/Bertoni:
 - Cost 136 extension to include diffraction from rooftops

Commonly used in cellular system simulations

Main Points

- Path loss models simplify Maxwell's equations
- Models vary in complexity and accuracy
- Power falloff with distance is proportional to d² in free space, d⁴ in two path model
- General ray tracing computationally complex
- Empirical models used in 2G simulations
- Main characteristics of path loss captured in simple model P_r=P_tK[d₀/d]^γ