ORF526 - Problem Set 3

Bachir EL KHADIR

October 3, 2015

bls

Question 1

- a) $\cap_{n\in\mathbb{N}}A_n^c$
- b) $\cap_{m \in \mathbb{N}} \cup_{m < n} A_n$
- c) $(\bigcap_{m \in \mathbb{N}} \bigcup_{m \le n} A_n)^c = \dots$
- d) $\bigcap_{i,j\in\mathbb{N},i\neq j} \left(A_i \cap A_j \cap \left(\bigcup_{n\neq i,n\neq j} A_j^c \right) \right)$
- e) This event can be expressed as " Φ nevr occurs at even times", ie $\cap_{n\in\mathbb{N}}A_{2n}^c$

Question 2

- $\varepsilon \subseteq \sigma(\varepsilon)$, so $\{f^{-1}(A) : A \in \varepsilon\} \subseteq \{f^{-1}(A) : A \in \sigma(\varepsilon)\}$. since the RHS is already a σ -algebra (showed in class), $\sigma\{f^{-1}(A) : A \in \varepsilon\} \subseteq \{f^{-1}(A) : A \in \sigma(\varepsilon)\}$
- Let's note $B := \sigma\{f^{-1}(A) : A \in \varepsilon\}$, and $C := \{A : f^{-1}(A) \in B\}$.
 - − C is a σ-algebra containing ε , so $\sigma(\varepsilon) \subseteq C$
 - As a consequence, for every $A \in \sigma(\varepsilon)$, $A \in C$, ie $f^{-1}(A) \in B$.

We have just proved that $\{f^{-1}(A): A \in \sigma(\varepsilon)\} \subseteq B$

Question 3

- $X = \lim_n X_n = \lim_n \sup_{k \ge n} X_k$
- $X \le x \text{ eq } \exists n \, \forall k \ge n X_k \le x$
- $\{X \le x\} = \bigcup_{n \in \mathbb{N}} \cap_{k \ge n} \{X_k \le x\}$

Question 4

• Let's call $Q = P(\{1, .., n\})$. For i = 1..n:

$$A_i = \bigcup_{I \subseteq Q, i \in I} (\bigcap_{k \in I} A_k) \cap (\bigcap_{k \in I^c} A_k^c)$$

Note that this a union of disjoint sets.

Let's call $I_i := \{I \in Q : \sum_{i \in I} a_i = x_i\}$, ie the different possible combinations for the A_i where $\omega \in \Omega$ can be so that its image by f equals x_i .

Written differently, $\{f = x_i\} = \bigcup_{I \in I_i} \bigcap_{k \in I_i} A_k \cap \bigcap_{k \in I_i^c} A_k^c$. And as result of the sets being disjoint:

$$\mu(f = x_i) = \sum_{I \in I_i} \mu(\bigcap_{k \in I_i} A_k \cap \bigcap_{k \in I_i^c} A_k^c)$$

Note that any sum index by some $I \in Q$ in finite because $|I| \le n$, and this we can rearrange the sums in any order.

$$\begin{split} \sum_{i=1}^m x_i \mu(f = x_i) &= \sum_{i=1}^m x_i \sum_{I \in I_i} \mu(\bigcap_{k \in I} A_k \cap \bigcap_{k \in I^c} A_k^c) \\ &= \sum_{i=1}^m \left(\sum_{I \in I_i} (\sum_{k \in I} a_k) \mu(\bigcap_{k \in I} A_k \cap \bigcap_{k \in I^c} A_k^c) \right) \\ &= \sum_{I \in Q} (\sum_{k \in I} a_k) \mu(\bigcap_{k \in I} A_k \cap \bigcap_{k \in I^c} A_k^c) & \text{because } Q = \bigcup_{k=1..m} I_i \\ &= \sum_{i=1..n} \sum_{I \in Q, i \in I} a_i \mu(\bigcap_{k \in I} A_k \cap \bigcap_{k \in I^c} A_k^c) & \text{By rearranging the sum} \\ &= \sum_{i=1..n} a_i \sum_{I \in Q, i \in I} \mu(\bigcap_{k \in I} A_k \cap \bigcap_{k \in I^c} A_k^c) & \\ &= \sum_{i=1..n} a_i \mu(A_i) \end{split}$$

• Let's first prove that if a set A has measure 1, for all measurable sets B, $\mu(A \cap B) = \mu(B)$. This holds because

$$\mu(B) \ge \mu(A \cap B) = 1 - \mu(A^c \cup B^c) \ge 1 - \mu(B^c) = \mu(B)$$

Let's now prove that $f(\omega) = g(\omega)$. Let x in the set on the left

 $\mu(\{g=x\}) \ge \mu(\{g=x\} \cap \{f=x\}) = \mu(\{f=x\} \cap \{f=g\}) = \mu(\{f=x\})$ Symmetrically, we prove that $\mu(\{f=x\}) \ge \mu(\{g=x\})$, and thus this two quantities are equal.

This proves that in the sum $\sum_{x \in f(\Omega)} x \mu(f = x)$ there is a term that is non zero, $\mu(\{f = x\}) = \mu(\{g = x\}) \neq 0$, and $x \in g(\Omega)$. Since all quantities are positive, this means, $\sum_{x \in f(\Omega)} x \mu(f = x) \leq \sum_{x \in g(\Omega)} x \mu(g = x)$, and by symmetry: $\sum_{x \in f(\Omega)} x \mu(f = x) = \sum_{x \in g(\Omega)} x \mu(g = x)$