Title

D. Zack Garza

Table of Contents

Contents

Table of Contents		2	
1	Lect	ture 08: Computing Étale Cohomology	3
	1.1	Čech to Derived Spectral Sequence	3
		Mayer-Vietoris	

Table of Contents

f 1 Lecture 08: Computing Étale Cohomology

Recall the definition of $\check{C}(U/X,\mathcal{F})$ and $\check{C}(X_{\mathrm{\acute{e}t}},\mathcal{F})$ (??).

⚠ Warning 1.0.1

 $\check{H}X_{\text{\'et}}, \mathcal{F} \not\equiv H(X_{\text{\'et}}, \mathcal{F})$ in general, but by a theorem of Milne this is true if X is quasicompact any finite subset is contained in an affine open. This is true if X is quasiprojective.

Remark 1.0.2: There is a version for which this does always work where Čech covers are replaced with **hpyercovers**.

1.1 Čech to Derived Spectral Sequence

Since we have enough injectives, take an injective resolution $\mathcal{F} \to \mathcal{I}^0 \to \cdots$ which is exact and each \mathcal{I}^j is injective. We can apply the Čech complex functor to obtain a double complex

$$\check{C}^{\cdot}(U/X,\mathcal{I}^0) \to \check{C}^{\cdot}(U/X,\mathcal{I}^1) \to \cdots,$$

where the horizontal differentials come from the resolution and the vertical come from the Čech complex. To any double complex, one can associate two spectral sequences. First consider taking horizontal cohomology:

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \check{C}(U/X,\mathcal{I}^1) = \mathcal{I}^0(U \times_X U) \longrightarrow \mathcal{I}^1(U \times_X U) \longrightarrow \cdots \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \check{C}(U/X,\mathcal{I}^0) = \mathcal{I}^0(U) \longrightarrow \mathcal{I}^1(U) \longrightarrow \cdots$$

Taking the vertical cohomology yields

$$E_2^{i,j} = \check{H}^i(U, \mathcal{H}^j(\mathcal{F})),$$

where \mathcal{H}^j is the presheaf $V \mapsto H^j_{\text{\'et}}(V, \mathcal{F})$.

Now we take cohomology in the other order: taking the vertical cohomology collapses to the bottom row, which are global sections, and so

$$E_2^{i,j} = H^i(\Gamma(X,\mathcal{I}))E_{\infty},$$

which is the derived functor cohomology. The spectral sequence thus converges in the following way:

$$\check{H}^i(U,\mathcal{H}^j(\mathcal{F})) \Rightarrow H^{i+j}(X_{\mathrm{\acute{e}t}},\mathcal{F}).$$

Exercise 1.1.1 (Good for getting used to spectral sequences): Show that if $\check{C}(X_{\mathrm{\acute{e}t}}, \cdot)$ is exact on $\mathrm{Sh^{ab}}(X_{\mathrm{\acute{e}t}})$, then $\check{H}^{\cdot} \cong H^{\cdot}$. See Tohoku or Hartshorne, and prove this using the Čech to derived functor spectral sequence.

1.2 Mayer-Vietoris

Proposition 1.2.1(?).

Let $U = U_0 \cup U_1$ with each U_i a Zariski open subset. Then there exists a functorial LES

$$\cdots \to H^s(U,\mathcal{F}) \xrightarrow{\mathrm{Res}} H^s(U_0,\mathcal{F}) \oplus H^s(U_1,\mathcal{F}) \xrightarrow{\mathrm{Res}} H^s(U_0 \cap U_1,\mathcal{F}) \xrightarrow{\delta} H^{s+1}(U,\mathcal{F}) \to \cdots$$

Proof (?)

Apply the Čech to derived spectral sequence to the cover $\mathcal{U} = U_0 \coprod U_1 \to U$. This says take

$$\mathcal{F}(\mathcal{U}) \to \mathcal{F}((\mathcal{U})^{\times_U 2}) \to \mathcal{F}((\mathcal{U})^{\times_U 3}) \to \cdots$$

None of these objects are empty, which doesn't happen with the usual Čech complex of an open cover, where the alternating complex is taken which doesn't see all of these.

Claim: This complex is quasi-isomorphic to the 2-term complex

$$\mathcal{F}(U_0 \mid U_1) = \mathcal{F}(U_0) \times \mathcal{F}(U_1) \to \mathcal{F}(U_0 \cap U_1).$$

Exercise 1.2.2(?): Prove this.

Given thus, E_2 vanishes outside the first 2 columns.

1.2 Mayer-Vietoris 4

_