DAFTAR ISI

DAFT	AR ISI	i
DAFT	AR GAMBAR	ii
DAFT	AR TABEL	ii
BAB 1	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan Kegiatan	2
1.4	Luaran	2
1.5	Manfaat Kegiatan	2
BAB 2	TINJAUAN PUSTAKA	3
2.1	Sensor YL-39 dan YL-69	3
2.2	Sensor DHT11	3
2.3	Sensor TEMT6000	4
2.4	Solenoid Valve	4
2.5	Modul Wifi ESP32 dengan Arduino	4
2.6	Blynk IoT Server	5
BAB 3	TAHAPAN PELAKSANAAN	6
3.1	Metode Pelaksanaan	
3.2	Rancangan Sistem	7
3.3	Rancangan UI/UX (User-Interface / User Experience)	8
3.4	Alir Kerja Sistem	
BAB 4	BIAYA DAN JADWAL KEGIATAN	9
4.1	Anggaran Biaya	9
4.2	Jadwal Kegiatan	9
DAFT	AR PUSTAKA	10
LAMP	IRAN	11
	piran 1. Biodata Ketua, Anggota dan Dosen Pembimbing	
Lam	piran 2. Justifikasi Anggaran	17
Lam	piran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	18
Lam	piran 4. Surat Penyataan Ketua Pelaksana	19
Lam	piran 5. Gambaran Teknologi yang Hendak Dikembangkan	20

DAFTAR GAMBAR

Gambar 2.1 Sensor YL-39 dan YL-69	3
Gambar 2.2 Sensor DHT11	3
Gambar 2.3 Sensor TEMT6000	4
Gambar 2.4 Solenoid Valve ½ Inch 12V	4
Gambar 2.5 ESP32 dengan Arduino	4
Gambar 2.6 Alur kerja Bylink	5
Gambar 3.1 Diagram Alir Model Pelaksanaan	5
Gambar 3.2 Rancangan Sistem	5
Gambar 3.3 Mock-Up Tampilan Aplikasi	5
Gambar A.1 Konfigurasi Komponen Perangkat Keras IoT	20
Gambar A.2 Alur Perangkat Lunak IoT	20
DAFTAR TABEL	
Tabel 4.1 Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	9

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Membangun rasa empati terhadap orang lain tidak memerlukan pengalaman yang serupa, rasa empati dapat timbul pada siapa saja selama individu tersebut merasakan "emosi" yang sama (Brown, 2012). Masalah yang memanggil hati masyarakat baru-baru ini ialah dampak kebakaran hutan dan lahan (karhutla) yang melanda berbagai daerah di Indonesia. Masyarakat menganggap, desakan berupa demonstrasi kepada pemerintah untuk segera mempertanggungjawabkan permasalahan karhutla dapat memberikan hasil yang cukup signifikan terhadap penanggulangan lingkungan hutan dan lahan. Faktanya, diperlukan aksi nyata seperti Lembaga Swadaya Masyarakat (LSM) untuk secara langsung merawat lingkungan hidup. Namun, sayangnya, gerakan yang dapat dilakukan terbatas karena sedikitnya bantuan masyarakat. Tidak mudah bagi masyarakat untuk dapat terlibat langsung dalam penanggulangan terkait lingkungan dan lahan. Menurut William McRaven pada bukunya yang berjudul "Make Your Bed", memulai perubahan yang besar perlu diawali dari permulaan yang kecil (McRaven, 2017). Dalam konteks ini, jika kita ingin berbicara mengenai perubahan hutan dan lahan Indonesia, mulai dari ranah yang lebih kecil seperti taman kota.

Sesuai arahan UU No. 26 tahun 2007 tentang Penataan Ruang, untuk mengurangi dampak karhutla, setiap kota paling sedikit memiliki 30 persen Ruang Terbuka Hijau (RTH) dari luas wilayah kota. Menurut Kementrian Pekerjaan Umum dan Perumahan Rakyat (PUPR), Danis Hidayat, dari 174 kota di Indonesia, hanya 12 kota yang sudah memenuhi RTH 30 persen (Rahadian, 2019). Pemerintah terus menambah luas RTH di seluruh kota Indonesia, namun penambahan ini tidak diiringi dengan perawatan dan pemeliharaan yang konsisten. Alhasil, banyak RTH yang dibiarkan mengering dan mati (Fatah, 2019).

Hal kecil yang dapat dilakukan masyarakat untuk mengatasi masalah lingkungan dan lahan yaitu bantuan secara moral dan materiil. Secara moral, dengan membantu melestarikan taman di tiap kota, kita secara langsung telah memelihara ruang hijau hingga 30% wilayah tiap kota. Secara materiil, dengan memberi bantuan berupa donasi untuk mendorong pergerakan LSM, kita secara tidak langsung telah berkontribusi dalam pemeliharaan lingkungan. Namun, sejauh ini masyarakat seakan acuh tak acuh dalam merawat taman dengan anggapan bahwa perawatan taman adalah tanggung jawab pemerintah. Selain itu, masyarakat tidak memiliki cara yang mudah dan terpercaya untuk menyalurkan bantuan materiil.

Penggalangan dana publik melalui daring (*crowdfunding*) bukanlah perihal baru dalam kehidupan era ini. *Crowdfunding* banyak bergerak dalam bidang donasi dan bantuan sosial, salah satu platform yang cukup dikenal masyarakat di Indonesia adalah Kitabisa.com. Kitabisa.com menawarkan jasa penyaluran dana dari masyarakat kepada pengurun dana. Berdasarkan data yang didapatkan oleh Galuh Tunggadewi Sahid dalam penelitiannya terhadap Kitabisa.com, tingkat kesuksesan penyaluran dana hanya sebesar 16,08% (Sahid, et al., 2017). Setalah dianlisis, terdapat dua kekurangan yang belum dapat ditutup oleh jasa penyaluran dana sejenis Kitabisa.com sehingga menurunkan keinginan masyarakat untuk berkontribusi. Pertama, dalam segi keterpercayaan. Penggalangan dana diusung oleh akun-akun luar yang validasinya tidak dapat diketahui terkecuali badan atau organisasi yang memang dikenal masyarakat seperti Badan Amil Zakat Nasional (BAZNAS). Kedua, dalam segi output. Sebagai pendonasi, tentu masyarakat ingin

melihat secara langsung dampak apa yang dihasilkan dari bantuan materiilnya, ada batasan hari yang harus dilalui dengan jenjang waktu berbeda sesuai dengan kompleksitas proyek yang dilaksanakan.

Pengaplikasian teknologi berbasis *Internet of Things* (IoT) dalam beberapa dekade terakhir mengalami peningkatan yang sangat cepat dan diprediksi akan terus meningkat hingga tahun 2025 (Columbus, 2016). Peningkatan ini didasari oleh kemampuannya untuk dapat dikendalikan dari jarak yang jauh secara *real-time*. Melihat kondisi RTH yang kering kurang terawat, pengaplikasian IoT penyiram taman yang dilengkapi oleh sensor kelembaban dapat menjadi solusi untuk secara konsisten menjaga tanaman pada RTH tidak kering.

Melihat tingginya keinginan untuk berempati pada masyarakat akan pelestarian hutan dan kurangnya perhatian terhadap RTH di Indonesia, kami menawarkan Lestari.In: Aplikasi Urun Dana Pelestarian Hutan melalui Penyiraman RTH berbasis IoT. Alih-alih penyiraman RTH dilakukan secara otomatis, prototipe dari teknologi ini dapat memunculkan lokasi penyiram tanaman (*sprinkler*) pada RTH yang dilengkapi oleh sensor kelembapan sehingga pengguna dapat menyiram taman dari jarak jauh secara langsung dan berdonasi untuk LSM pelestarian hutan pada waktu yang bersamaan dengan satu sentuhan pada layar gawai. Bentuk donasi yang dilakukan berupa uang elektronik yang terintegrasi sehingga dapat memudahkan alur donasi.

1.2 Rumusan Masalah

- 1. Bagaimana rancang bangun sistem *crowdfunding* dan IoT untuk mengurun dana kepada pelestarian hutan dan merawat RTH pada waktu yang bersamaan?
- 2. Bagaimana mengintegrasikan sistem IoT dengan sistem *crowdfunding* yang mudah digunakan?

1.3 Tujuan Kegiatan

Tujuan dari kegiatan ini adalah untuk mengimplementasikan teknologi multifungsi sebagai *crowdfunding* pelestarian hutan melalui penyiraman RTH berbasis IoT.

1.4 Luaran

Luaran yang diharapkan dari kegiatan ini yaitu:

- 1. *Draft* paten alur sistem Lestari.In
- 2. Hak cipta perangkat lunak komputer (software) aplikasi Lestari.In
- 3. Purwarupa teknologi multifungsi sebagai *crowdfunding* pelestarian hutan melalui penyiraman RTH berbasis IoT
- 4. Publikasi ilmiah dari teknologi Lestari.In

1.5 Manfaat Kegiatan

Manfaat dari rancang bangun ini untuk menghasilkan teknologi multifungsi sebagai *crowdfunding* pelestarian hutan melalui penyiraman RTH berbasis IoT yang mudah digunakan dan dapat dipercaya sebagai penyalur donasi.

BAB 2 TINJAUAN PUSTAKA

2.1 Sensor YL-39 dan YL-69

Sensor YL-39 dan YL-69 merupakan sensor kombinasi yang dapat menghitung kandungan kadar air atau kelembaban yang ada didalam tanah. YL-69 merupakan modul *probe detector* yang berfungsi untuk mengambil data kadar air yang ada didalam tanah. YL-39 merupakan modul pengkondisian sinyal yang memiliki fungsi melakukan pemrosesan data yang didapatkan dari modul YL-69 dan juga sebagai *interface* antara modul dengan perangkat mikrokontroler.

Gambar 2.1 Sensor YL-39 dan YL-69

(Sumber: https://www.hackster.io/nekhbet/using-the-yl-39-yl-69-soil-humidity-sensor-with-arduino-968268)

2.2 Sensor DHT11

Sensor DHT11 merupakan sensor yang dapat mengukur 2 parameter lingkungan sekaligus, yakni suhu dan kelembaban udara. Dalam sensor ini terdapat sebuah thermistor tipe NTC (*Negative Temperature Coefficient*) untuk mengukur suhu, sebuah sensor kelembaban tipe resistif dan mikrokontroler 8-bit yang mengolah kedua sensor tersebut. Sensor DHT11 tepat digunakan pada purwarupa Lestari.In karena memiliki *sampling rate* 1 Hz atau dapat membaca satu data dalam satu detik

Gambar 2.2 Sensor DHT11

(Sumber: https://www.adafruit.com/product/386)

2.3 Sensor TEMT6000

TEMT6000 merupakan modul sensor yang bekerja untuk mengukur intensitas cahaya yang ada dilingkungannya. Sensor ini merupakan phototransistor yang konsep kerjanya mirip dengan transistor NPN, yaitu semakin besar cahaya yang masuk pada *base* maka semakin banyak pula arus yang mengalir dari *collector* ke *emitter*. Hal ini menandakan besarnya cahaya yang tertangkap oleh sensor.

Gambar 2.3 Sensor TEMT6000

(Sumber: http://robojax.com/learn/arduino/?vid=robojax_TEMT6000_phot otransistor)

2.4 Solenoid Valve

Solenoid Valve merupakan keran air elektrik yang memanfaatkan medan magnet untuk membuka dan menutup katup pipanya. Ketika diberi tegangan, solenoid akan menarik katup solenoid valve sehingga pipa terbuka dan begitu sebaliknya saat tidak ada arus dan tegangan maka koil ini akan merenggang seperti semula. Untuk mengendalikan catu daya dari solenoid valve ini, kita dapat menggunakan relay yang berfungsi sebagai switch dari solenoid valve.

Gambar 2.4 Solenoid Valve ½ Inch 12V

(Sumber: https://www.autobotic.com.my/elelectric-solenoid-valve-1-2-12v)

2.5 Modul Wifi ESP32 dengan Arduino

ESP32 merupakan sebuah modul wifi sekaligus mikrokontroler yang digunakan untuk menghubungkan antara perangkat sensor dan jaringan internet. Pada purwarupa modul ESP32 ini digunakan untuk membuat Lestari.In karena dalam satu modul sudah terdapat modul wifi dan mikrokontroler Arduino. Arduino digunakan untuk mengambil data dari sensor (YL-39, YL-69, DHT11, dan TEMT6000) dan menggerakan *solenoid valve*.

Gambar 2.5 ESP32 dengan Arduino

(Sumber: http://esp32.net/)

2.6 Blynk IoT Server

Blynk merupakan aplikasi berbasis IoT yang berperan sebagai medium untuk komunikasi antara Arduino dan pengguna dengan menggunakan kanal Wi-Fi sebagai media pengiriman informasi. Blynk mendukung serangkaian macam perangkat keras dan perangkat lunak yang dibutuhkan oleh Arduino sehingga para pengembang dapat membuat program tanpa menghiraukan spesifikasi dan serangkaian konfigurasi yang harus dilakukan untuk melakukan komunikasi degan server. Keunggulan lain yang didapatkan dari Blynk adalah layanan Cloud untuk menampung informasi yang didapatkan dari arduino dan mengirimkan informasi ke pengguna melalui internet, sehingga pengguna tidak perlu berada pada jaringan yang sama untuk mendapatkan informasi dari arduino.

Gambar 2.6 Alur kerja Bylink

(Sumber: https://www.slashgear.com/blynk-builds-apps-for-any-arduino-project-27366311/)

BAB 3 TAHAPAN PELAKSANAAN

3.1 Metode Pelaksanaan

Model pelaksanaan yang diterapkan dalam proses pembuatan purwarupa Lestari.In adalah model *Lean Startup*. Model ini biasa digunakan dalam melakukan pendekatan saintifik terhadap pengembangan purwarupa untuk mendapatkan hasil yang tepat guna sesuai kebutuhan calon pemberi dana. Implementasi dari model Lean Startup terdiri dari 3 tahap iteratif:

Gambar 3.1 Diagram Alir Model Pelaksanaan (Sumber: Data Pribadi)

1. Build Prototype (Membangun prototipe)

Tahapan ini terdiri dari perancangan dan pembangunan dua bagian utama dari prototipe sederhana yang sudah merepresentasikan fungsionalitas Lestari.In.

- a. Modul *Smart Garden*, perancangan ini meliputi modul sensor yang ditanamkan pada setiap taman target.
- b. Infrastuktur IoT, perancangan ini meliputi pengembangan aplikasi gawai, komputer server, pengadaan jaringan internet pada taman, dan arsitektur IoT yang memungkinkan nilai dari teknologi Lestari.in tersampaikan pada Pemerintah dan masyarakat.

2. *Measure Data* (Mengevaluasi produk)

Pada tahap ini, dilakukan uji coba purwarupa secara langsung kepada pengguna. Hal ini dilakukan untuk mendapatkan evaluasi dari pengguna. Yaitu, kebutuhan masyarakat untuk merasakan pengalaman aplikasi Lestari.In sebaik dan senyaman mungkin.

3. Learn New Ideas (Mendapatkan ide baru dari hasil evaluasi)

Dari evaluasi oleh pengguna pada tahap sebelumnya, didapatkan berbagai macam ide baru untuk mengembangkan prototipe agar lebih baik lagi. Pengembangan Modul *Smart Garden* berfokus pada keandalan dan kelayakan data sensor yang dihasilkan. Sedangkan, pengembangan infrastruktur IoT berfokus pada keandalan dan kemudahan komunikasi informasi sensor antar *stakeholder*.

3.2 Rancangan Sistem

Sistem Lestari.In terdiri atas dua bagian utama, yaitu modul *Smart Garden* dan infrastuktur IoT. Konstruksi modul *Smart Garden* dibangun berdasarkan pengembangan kit *Smart Garden* oleh (Penzenstadler & Plojo, 2018) sedangkan infrastruktur IoT dikembangkan berdasarkan konsep IoT *smart garden* oleh (Thamaraimanalan & Vivekk, 2018).

Gambar 3.2 Rancangan Sistem (Sumber: Data Pribadi)

3.3 Rancangan UI/UX (*User-Interface / User* Experience)

Status kelembaban tanah dibagi atas 3 kategori warna yaitu hijau yang berarti kelemababan tanah baik, kuning untuk kelembaban tanah kurang baik, dan merah untuk kelembaban tanah buruk. Saat sensor mendeteksi bahwa kelambaban tanah disekitarnya kurang baik atau buruk, informasi akan dikirimkan menuju *enduser* untuk ditampilkan pada aplikasi dan perlu adanya tindakan dari *end-user* agar kelembaban taman menjadi baik. Apabila *end-user* menekan *icon* dari *sprinkler* yang berwarna kuning atau merah maka *sprinkler* yang ada ditaman tersebut akan menyala dan menyiram tanaman yang ada disekitarnya sampai status kelembaban yang ada ditaman tersebut menjadi hijau. Selain itu, saat *end-user* menekan *icon splinkler* maka *end-user* juga mendonasikan uang elektronik untuk pelestarian hutan dan *maintenance* perawatan RTH.

Gambar 3.3 *Mock-Up* Tampilan Aplikasi (Sumber: Data Pribadi)

3.4 Alir Kerja Sistem

Setelah modul *Smart Garden* dan infrastruktur IoT purwarupa sudah diintegrasikan menjadi satu sistem, alir kerja sistem dari sisi pengguna adalah sebagai berikut:

- 1. Pengguna mengunduh aplikasi **Lestari.In**.
- 2. Pengguna melihat antarmuka peta taman-taman yang dapat didonasikan.
- 3. Pengguna dapat memonitor taman dan kondisi agrikulturnya.
- 4. Pengguna dapat langsung mendonasikan Rp 100 terhadap taman yang dipilih
- 5. Jika pengguna mendonasikan: *sprinkler* pada taman akan secara otomatis menyiram tanaman dan kondisi agrikultur secara *real-time* terbarukan.
- 6. Selesai.

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1 Anggaran Biaya

No.	Jenis Pengeluaran	Biaya
1.	Perlengkapan yang Diperlukan	Rp 5.850.000
2.	Bahan Habis Pakai	Rp 900.000
3.	Perjalanan	Rp 1.050.000
4.	Lain-Lain	Rp 1.950.000
	Total	Rp 9.750.000

(Sumber: Data Pribadi)

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan				
NO	Jenis Regiatan		2	3	4	5
	Tahap 1: Build Prototype (M	lembang	un proto	tipe)		
1.1	Studi Literatur					
1.2	Merancang Perangkat Lunak					
1.3	Merancang Perangkat Keras					
1.4	Persiapan Alat					
1.5	Pembuatan Perangkat Lunak					
1.6	Pembuatan Perangkat Keras					
	Tahap 2: Measure Data (M	engevalı	ıasi prod	luk)		
2.1	Menguji Coba Sistem IoT					
2.2	Menguji Coba Aplikasi					
	Tahap 3: Learn New Ideas (Mendapat	kan ide t	oaru dari	hasil ev	valuasi)	
3.1	Mengembangkan Perangkat Lunak					
3.2	Mengembangkan Perangkat Keras					
3.3	3 Evaluasi Prototipe Akhir					
Tahap 4: Penulisan Laporan						
4.1	Perlindungan dan Publikasi					
4.1	Purwarupa					
4.2	Penulisan Laporan Akhir					

(Sumber: Data Pribadi)

DAFTAR PUSTAKA

Brown, B., 2012. Daring Greatly: How the Courage to Be Vulnerable Transforms the Way We Live, Love, Parent, and Lead. New York: s.n.

Columbus, L., 2016. Roundup Of Internet Of Things Forecasts And Market Estimates, s.l.: Forbes Media LLC.

Fatah, D., 2019. Biaya hingga Triliunan, Taman di Jakarta masih Banyak yang Rusak, Jakarta: IndoPos.

McRaven, W. H., 2017. Make Your Bed: Little Things That Can Change Your Life...And Maybe the World. New York: Grand Central Publishing.

Penzenstadler, B. & Plojo, J., 2018. The DIY Resilient Smart Garden Kit. LIMITS'18. *LIMITS'18*.

Rahadian, L., 2019. *Ruang Terbuka Hijau yang Masih Terpinggirkan di Indonesia* [Interview] (23 April 2019).

Thamaraimanalan, T. & Vivekk, S., 2018. Smart Garden Monitoring System Using IOT. *Open Access Quarterly International Journal*, pp. 186-192.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pembimbing

A. Biodata Ketua Kelompok

A. Identitas diri

1.	Nama Lengkap	Refanka Nabil Assalam
2.	Jenis Kelamin	Laki – Laki
3.	Program Studi	Teknik Elektro
4.	NIM	1606870944
5.	Tempat dan Tanggal Lahir	Bandung, 21 Juli 1998
6.	Alamat E-mail	refankanabil@gmail.com
7.	Nomor Telepon/HP	081293719841

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Elektro Fakultas Teknik Universitas Indonesia 2017 (IME FT UI 2017)	Badan Pengurus PIPTEK	Januari 2017, FT UI
2	Himpunan Mahasiswa Islam Koordinator Komisariat UI (HMI KORKOM UI)	Ketua Departemen Media	Juli 2018, Depok
3	Ikatan Mahasiswa Elektro Fakultas Teknik Universitas Indonesia 2018 (IME FT UI 2018)	Badan Pengurus Harian PIPTEK	Januari 2018, FT UI
4	World Telecommunication Day IEEE-SBUI	Ketua Pelaksana	Mei 2019, FT UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Finalis Tahap 1 <i>Shell</i> <i>Ideas360</i>	Shell Global	2017
2	Pemenang Hibah Pengembangan Prototipe Innovaction	Direktorat Inkubator dan Inovasi Bisnis UI (DIIB UI)	2017
3	Finalis Open Innovation IMERI 2018	IMERI (Indonesian Medical Education and Research Institute)	2018
4	Juara peserta terfavorit PKM-KC PIMNAS ke-31	Kemenristekdikti	2018
5	Finalis PKM-T PIMNAS ke-32	Kemenristekdikti	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 6 November 2019 Ketua,

Refanka Nabil Assalam

1606870944

B. Biodata Anggota Kelompok ke-1

A. Identitas diri

1.	Nama Lengkap	Fathul Muin	
2.	Jenis Kelamin	Laki – Laki	
3.	Program Studi .	Teknik Elektro	
4.	NIM	1606831123	
5.	Tempat dan Tanggal Lahir	Surabaya, 15 September 1998	
6.	Alamat E-mail	fathul806@gmail.com	
7.	Nomor Telepon/HP	082194404280	

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Ikatan Mahasiswa Elektro Fakultas Teknik Universitas Indonesia 2017 (IME FT UI 2017)	Badan Pengurus LITBANG	Januari 2017, FT UI
2	Universitas Indonesia Goes to Celebes	Sekretaris Umum	Januari 2018, Sulawesi Selatan
3	Tim Robotika Universitas Indonesia	Ketua Tim Muatan Roket Autonomous Rocket Research	Agustus 2018 - Agustus 2019, UI
4	Festival Budaya dan Nusantara Sulawesi Selatan	State Manager	Maret 2019, UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Finalis Komurindo Kombat 2018-2019	Lembaga Penerbangan dan Antariksa Nasional	2018/2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 6 November 2019 Anggota Tim,

Fathul Muin 1606831123

C. Biodata Anggota Kelompok ke-2

A. Identitas diri

1.	Nama Lengkap	Alifa Azzahra Hardian
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Akuntansi
4.	NIM	1906388205
5.	Tempat dan Tanggal Lahir	Bekasi, 13 Maret 1999
6.	Alamat E-mail	Alifa.azzahra1303@gmail.com
7.	Nomor Telepon/HP	081382454705
	riomor rereponitin	001302131703

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Himpunan Mahasiswa Islam Koordinator Komisariat UI (HMI KORKOM UI)	Anggota	Oktober 2019, FEB UI
2	Social Festival 2019 FSI FEB UI	Staff Main Event	Oktober 2019, FEB UI

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 28 Oktober 2019 Anggota Tim,

Alifa Azzahra Hardian 1906388205

D. Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Ajib Setyo Arifin, ST., MT., Ph.D.
2	Jenis Kelamin	Pria
3	Program Studi	Teknik Elektro
4	NIDN	0020128605
5	Tempat dan Tanggal Lahir	Kebumen, 20 Desember 1986
6	E-mail	ajib@eng.ui.ac.id
7	Nomor telepon	+62 81294465462

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Institusi	Universitas	Universitas	Keio University,
	Indonesia	Indonesia	Jepang
Jurusan	Teknik Elektro	Teknik Mesin	Teknik Mesin
Tahun Masuk-	2005-2009	2009-2011	2012-2015
Lulus			

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Sinyal dan Sistem	Wajib	3
2	Teknik Pengkodean dan Aplikasi	Wajib	3
3	Probabilitas dan Proses Stokastik	Wajib	3
4	Matematika Terapan	Wajib	3
5	Topik Khusus Telekomunikasi	Pilihan	2
6	Jaringan Komunikasi Pita Lebar	Wajib	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
	Sistem Deteksi Penangkap Ikan Ilegal	Ristekdikti	2017-2019
	Menggunakan Jaringan Sensor Nirkabel		
	Dalam Rangka Mendukung Visi		
	Maritim Indonesia		

2	Pemodelan dan Optimasi Sistem Komunikasi Nirkbel untuk Deteksi	UI	2019
3	Objek Bergerak Pengembangan IoT untuk Smart City dan Kebutuhan Spektrumnya	UI	2018
4	Pengembangan Algoritma Resource Allocation, Vertical Handover, dan Routing pada Sistem Komunikasi Nirkabel	UI	2018
5	PERMODELAN, UJICOBA, DAN APLIKASI NARROWBAND IoT PADA 5G	Rsitekdikti	2017
6	Permodelan dan Evaluasi Implementasi e-SIM dan TV White Space di Indonesia	UI	2017
7	Permodelan dan Evaluasi Sistem Komunikasi Nirkabel untuk Generasi ke-5 (5G) Berbasis Full-Duplex	UI	2016

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
	Peningkatan Debit Air untuk Kebutuhan Rumah Tangga dan MCK dengan system Pompa Hybrid di Desa Krakal	DRPM UI	2017

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Karsa Cipta.

Depok, 6 November 2019 Dosen Pendamping,

(Ajib Setyo Arifin, ST., MT., Ph.D.) NIDN 0020128605

Lampiran 2. Justifikasi Anggaran

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)
Soil Moisture Sensor			
Module Soil Moisture Meter	3 buah	70.000	210.000
Module (YL-39 + YL-69)			
DHT11 basic temperature-	2 harah	100,000	300.000
humidity sensor + extras	3 buah	100.000	
Ambient Light Sensor	3 buah	80.000	240.000
Breakout - TEMT6000	3 buan	80.000	240.000
12v/24v/220v 2-way			
Normally Closed Electric	3 buah	200.000	600.000
Solenoid Valve 1/2" 3/4"			
FireBeetle ESP32 IOT			
Microcontroller (Supports	3 buah	350.000	1.050.000
Wi-Fi & Bluetooth)			
Baterai Li-Po 2S 1500 mAh	3 buah	150.000	450.000
Pope Canberra Sprinkler	3 buah	350.000	1.050.000
Soldering Iron	1 buah	150.000	150.000
Multimeter	1 buah	550.000	550.000
Lisensi Xamarin Cross	5	250.000	1.250.000
Platform Indie	periode	230.000	1.230.000
Sub T	5.850.000		
340 1	3 tal (21 P)		
2. Bahan Habis	Volume	Harga Satuan (Rp)	Nilai (Rp)
		Harga Satuan (Rp)	
2. Bahan Habis	Volume		Nilai (Rp)
2. Bahan Habis Filamen 3D Printer	Volume 2 rol	300.000	Nilai (Rp) 600.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper	Volume 2 rol 2 buah	300.000 75.000	Nilai (Rp) 600.000 150.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper	Volume 2 rol 2 buah 15 buah	300.000 75.000	Nilai (Rp) 600.000 150.000 150.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T	Volume 2 rol 2 buah 15 buah otal (Rp) Volume	300.000 75.000 10.000 Harga Satuan (Rp)	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp)
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan	Volume 2 rol 2 buah 15 buah otal (Rp)	300.000 75.000 10.000	Nilai (Rp) 600.000 150.000 150.000 900.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali	300.000 75.000 10.000 Harga Satuan (Rp) 50.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan	Volume 2 rol 2 buah 15 buah otal (Rp) Volume	300.000 75.000 10.000 Harga Satuan (Rp)	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp)
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali	300.000 75.000 10.000 Harga Satuan (Rp) 50.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali 5 kali	300.000 75.000 10.000 Harga Satuan (Rp) 50.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan Sub T	Volume 2 rol 2 buah 15 buah Volume 10 kali 5 kali cotal (Rp)	300.000 75.000 10.000 Harga Satuan (Rp) 50.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000 750.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan Sub T 4. Lain-lain	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali 5 kali Total (Rp) Volume	300.000 75.000 10.000 Harga Satuan (Rp) 50.000 150.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000 750.000 1.050.000 Nilai (Rp)
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan Sub T 4. Lain-lain Kesekretariatan Pembuatan Laporan Publikasi atau Pengajuan	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali 5 kali Total (Rp) Volume 1	300.000 75.000 10.000 Harga Satuan (Rp) 50.000 150.000 Harga Satuan (Rp) 200.000 250.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000 750.000 1.050.000 Nilai (Rp) 200.000 250.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan Sub T 4. Lain-lain Kesekretariatan Pembuatan Laporan	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali 5 kali Total (Rp) Volume 1	300.000 75.000 10.000 Harga Satuan (Rp) 50.000 150.000 Harga Satuan (Rp) 200.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000 750.000 Nilai (Rp) 200.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan Sub T 4. Lain-lain Kesekretariatan Pembuatan Laporan Publikasi atau Pengajuan Hak Cipta dan Paten	Volume 2 rol 2 buah 15 buah Total (Rp) Volume 10 kali 5 kali Total (Rp) Volume 1	300.000 75.000 10.000 Harga Satuan (Rp) 50.000 150.000 Harga Satuan (Rp) 200.000 250.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000 750.000 1.050.000 Nilai (Rp) 200.000 250.000
2. Bahan Habis Filamen 3D Printer Gulungan Timah Kabel Jumper Sub T 3. Perjalanan Biaya Pengiriman Bahan dan Peralatan Uji Coba Teknologi di Lapangan Sub T 4. Lain-lain Kesekretariatan Pembuatan Laporan Publikasi atau Pengajuan Hak Cipta dan Paten Sub T Tot	Volume 2 rol 2 buah 15 buah 16 total (Rp) Volume 10 kali 5 kali Cotal (Rp) Volume 1 1 1 1 Cotal (Rp) al (Rp)	300.000 75.000 10.000 Harga Satuan (Rp) 50.000 150.000 Harga Satuan (Rp) 200.000 250.000	Nilai (Rp) 600.000 150.000 150.000 900.000 Nilai (Rp) 300.000 750.000 1.050.000 Nilai (Rp) 200.000 250.000 1.500.000 1.950.000 9.750.000

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/ NPM	Program Studi	Bidang Ilmu	Alokasi Waktu	Uraian Tugas
1.	Refanka Nabil Assalam/ 1606870944	Teknik Elektro	UI/UX Aplikasi Gawai	25 Jam/ minggu	 Melakukan koordinasi antar anggota Mendesain dan merancang UI/UX aplikasi Gawai Melakukan pengujian userfriendly pada end-user
2.	Fathul Muin/ 1606831123	Teknik Elektro	Elektronika dan Instrumentasi	25 Jam/ minggu	 Mendesain dan membangun sistem IoT Melakukan uji coba teknologi di lapangan Mengurus draft paten dan hak cipta prototipe
3.	Alifa Azzahra Hardian/ 1906388205	Akuntansi	Proses Transaksi Crowdfunding	20 Jam/ minggu	 Melakukan pengujian dan evaluasi proses transaksi Mengurus laporan akhir dan perihal administratif

Kampus Salemba Jl. Salemba Raya No 4, Jakarta 10430 Kampus Depok Kampus Universitas Indonesia Depok 16424 Tel. 62.21. 7867 222/7884 1818 Fax. 62.21. 7884 9060 Email pusadmui@ui.ac.id | www.ui.ac.id

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Refanka Nabil Assalam

NIM

: 1606870944 Program Studi: Teknik Elektro

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Lestari.In: Aplikasi Urun Dana Pelestarian Hutan melalui Penyiraman RTH berbasis IoT yang diusulkan untuk tahun anggaran 2020 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini. maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Depok, 27 November 2019

Dosen Pendamping,

(Ajib Setyo Arifin, ST., MT., Ph.D.)

NIDN. 0020128605

Yang menyatakan,

5AFF868136086

(Refanka Nabil Assalam)

NIM.1606870944

Mengetahui,

Nemahasiswaa WERSITAIniversitas Indonesia Direktur Kemahasiswaan

NUK. 0508050277

Lampiran 5. Gambaran Teknologi yang Hendak Dikembangkan

Gambar A.1 Konfigurasi Komponen Perangkat Keras IoT

Gambar A.2 Alur Perangkat Lunak IoT