Introducción a la calidad del software

Tema 1.1. Calidad, pruebas y mantenimiento del software

© Luis Fernández Sanz, 2013

CPMS -1 -

CALIDAD DEL SOFTWARE

1.1.1 ¿Qué es la calidad?

Tema 1.1. Calidad, pruebas y mantenimiento del software

© Luis Fernández Sanz, 2013

CPMS -2 -

Definición de calidad

- Escribe tu definición de:
 - Calidad:
 - Aseguramiento de calidad

© Luis Fernández Sanz, 2013

CPMS -3 -

Calidad (expectativas)

CALIDAD DEL SOFTWARE

¿por qué calidad?

- Competencia y supervivencia
 - Satisfacción de clientes
 - Reducir costes
 - Respuesta más temprana al mercado Precio
 - Crecimiento de mercado
 - Incremento de beneficios
 - Objetivos de empleados homogéneos
- Calidad es conformidad (factual o percibida) con los requisitos

© Luis Fernández Sanz, 2013

CPMS -4 -

Hostilidad a la calidad

- Se reconoce por:
 - "los clientes no aprecian la diferencia"
 - "cuesta demasiado para tener precios competitivos"
 - "errar es humano"
 - "los empleados no se preocupan: lo harán bien si quieren"
 - "a nuestra compañía la juzgan por los beneficios, no por la calidad"
 - "aquí no tenemos problemas con la calidad"

© Luis Fernández Sanz, 2013

CPMS -5

CALIDAD DEL SOFTWARE

Historia de la comercialización

- COMERCIALIZACIÓN (Marketing):
 - Hasta siglo XX: máxima calidad, excelencia
 - 1ª ½ siglo XX: mejora métodos producción (masiva: precio bajo)
 - 2ª ½ siglo XX: el cliente decide (adaptación a mercado)
 - No basta con satisfacer al cliente:
 - Hay que fidelizarlo, que repita, que nos recomiende
 - "Es correcto" vs "Te lo recomiendo"
 - Coste de mala calidad: 1 cliente enfadado quita otros 7-11
- No basta con producir y distribuir masivamente
 - Vender es lo importante
 - Sólo se produce con confianza en aceptación
 - Servicios: tangibilidad, experiencias, etc.

© Luis Fernández Sanz, 2013

CPMS -6 -

Evolución del concepto de calidad

 Paso de un concepto rígido de calidad a un concepto relativo (adaptación)

Como la belleza:
"Está en los ojos

del observador"

© Luis Fernández Sanz, 2013

CPMS -9

CALIDAD DEL SOFTWARE

Concepto relativo de calidad

- Concepto relativo apoyado en satisfacción de cliente
- Punto de vista del cliente:
 - Naturaleza del producto
 - Prestigio de materiales
 - Origen de fabricación
 - Método de fabricación
 - Categoría del punto de venta
 - Precio
 - Resultados

© Luis Fernández Sanz, 2013

CPMS -10 -

Concepto popular de calidad

- Calidad, para la gente de la calle, quiere decir:
 - Producto bueno
 - Sinónimo de bien construido o fabricado
 - "Lo mejor"
 - El producto "tiene clase", es elegante
 - Lo contrario de engaño
 - La tienen las cosas caras

© Luis Fernández Sanz. 2013

CPMS -11 -

CALIDAD DEL SOFTWARE

Concepto popular de calidad

- En la calle:
 - Bondad, excelencia:
 - Excelencia (Del lat. excellentĭa). f. Superior calidad o bondad que hace digno de singular aprecio y estimación algo.
 - Comparación: término no usado en solitario ("buena calidad", "mejor calidad",...)
- Diccionario (DRAE):
 - "Propiedad o conjunto de propiedades que inherentes a una cosa, que permiten apreciarla como igual, mejor o peor que las restantes de sus especie"
 - "En sentido absoluto, buena Calidad, superioridad o excelencia".

© Luis Fernández Sanz, 2013

CPMS -12 -

Concepto de calidad

- Superar la confusión en la idea popular: "La calidad puede no ser lo que piensas" (P. Crossby)
- La calidad:
 - No es absoluta
 - Es multidimensional
 - Está sujeta a restricciones
 - Está relacionada con compromisos aceptables
 - Sus criterios no son independientes
 - Ni objetiva ni subjetiva

© Luis Fernández Sanz, 2013

CPMS -13 -

Conflictos de intereses

Usuarios

- · Lo que quiero
- · Respuesta rápida
- · Control de la información
- Disponible ante una petición
- Datos excepcionales, informes
- Reacción ante cambios del negocio
- Mínima comprensión técnica
- Introducir datos una sola vez
- Definiciones comunes
- · Terminales y teclados sencillos

Diseñadores

- Buena especificación
- Técnicamente correcta
- Fácil de mantener
- · Dificultad de daños del usuario
- Desarrollo rápido
- Bien documentado
- CLAVE: no perder de vista las necesidades del cliente
- Datos cor
- · Gran implicación de usuario
- Usuarios bien formados
- Estructura de menús sencilla

...

© Luis Fernández, Sanz., 2013

CPMS -15 -

CALIDAD DEL SOFTWARE

Calidad

- Calidad implica satisfacción del usuario/cliente
- ¿Qué valora un cliente medio?

- Valor/dinero

Producto o servicios satisfactorios

© Luis Fernández Sanz, 2013

CPMS -16 -

Definiciones de la calidad

- Deming: "Conformidad y confiabilidad (dependability)"
- Juran: "Adaptación al objeti
- Con contrato: necesidades especificadas; en otros entornos deben definirse las necesidades
- Crossby asume el concepto d "Cero defectos" Bien la pri
- implícitas Las necesidades pueden variar en el tiempo:
- Una definición formal (ISO
- revisar periódicamente especificación En la literatura: "Aptitud para el uso",

"Satisfacción del cliente", "Conformidad con

- Conjunto de propiedades requisitos"...reflejan sólo facetas de la calidad un producto o servicio que le confieren su aptitud para cumplir los requisitos (necesidades expresadas o expectativas implícitas u obligatorias)

© Luis Fernández Sanz, 2013

CPMS -18 -

Aseguramiento de calidad

CALIDAD DEL SOFTWARE

•Fvitar al tá

- ISO 8402 (UNE 66-001-92):
 - Conjunto de acciones plas necesarias para proporcio que el producto o servicio
- ·Evitar el término "garantía"
- •El aseguramiento no es completo si los requisitos dados no reflejan las necesidades del usuario •Uso:
- · Interno: herramienta de gestión
- Contractual: para confiar en el suministrador que el producto o servicio Implica planificar, medir y supervisar.
- IEEE Std. 610-1991 (SQA: Software Quality Assurance):
 - Diseño sistemático y planificado de las acciones para proporcionar la confianza en que el producto se ajusta a los requisitos técnicos establecidos.
 - Conjunto de actividades diseñadas para evaluar el proceso mediante el cual se desarrolla el producto.

© Luis Fernández Sanz, 2013

CPMS -22 -

1.1.2 El caso peculiar del software

Tema 1.1. Calidad, pruebas y mantenimiento del software

© Luis Fernández Sanz. 2013

CPMS -23 -

CALIDAD DEL SOFTWARE

Un caso especial

- Naturaleza especial del software:
 - Se desarrolla, no se fabrica en sentido clásico
 - Todo el coste en diseño, no en fabricación
 - Producto lógico, sin existencia física
 - No se degrada con el uso
 - Repararlo no es devolverlo al estado original
 - Otros productos: sin errores o rechazados
 - La mayoría es artesanal: se construye a medida, en vez de ensamblar componentes existentes
 - Pero puede reutilizarse

© Luis Fernández Sanz, 2013

CPMS -24 -

Calidad del software

- IEEE Std. 610-1991:
 - Grado en el que un sistema, un componente, o un proceso cumple los requisitos especificados
 - Grado en el que un sistema, un componente, o un proceso cumple las necesidades o expectativas del cliente o el usuario
- Una buena especificación disminuye los requisitos implícitos.

Requisitos

© Luis Fernández Sanz. 2013

CPMS -25 -

CALIDAD DEL SOFTWARE

Mejora de la calidad

- Diferencias entre software y otros productos:
 - No se degrada, corregir no es retornar al estado original, propiedad intelectual, flexibilidad, etc.
- Proceso distinto de fabricación tradicional:
 - Procesos, no aplicable control estadístico, etc.
- Un gran esfuerzo de adaptación

© Luis Fernández Sanz, 2013

CPMS -26

Calidad del software

- Cualquier atributo que interfiera con el uso pretendido es síntoma de calidad pobre
- No sólo en producto final: también en intermedio

DISEÑO

Rendimiento y funcionalidad usuario final

Base de producción para programadores y mantenimiento

• No sólo hay clientes externos, también clientes internos (siguientes fases de desarrollo, explotación,...)

© Luis Fernández Sanz, 2013

CPMS -27

CALIDAD DEL SOFTWARE

Otras definiciones

- Verificación (IEEE Std. 610):
 - Proceso de evaluación de un sistema o componente para determinar si los productos de una fase satisfacen las condiciones impuestas al inicio de la misma
- Definición informal de Boehm:
 - ¿Estamos construyendo correctamente el producto?

© Luis Fernández Sanz, 2013

CPMS -28 -

Otras definiciones

- Validación (IEEE Std.610):
 - El proceso de evaluación de un sistema o un componente durante o al final del proceso de desarrollo para determinar si satisface los requisitos especificados
- Definición informal de Boehm:
 - ¿Estamos construyendo el producto correcto?

?

© Luis Fernández Sanz, 2013

CPMS -29

CALIDAD DEL SOFTWARE

Ciencia → ingeniería

- Computer science → Software engineering
 - Soluciones eficientes, problemas prácticos, entornos reales
 - Eficacia con eficiencia
- Aplicar calidad e ingeniería de software:
 - Superar la confrontación calidad vs productividad
 - Hablar el mismo idioma que los "managers"
 - Objetivos, dinero, mercado, etc.
 - Lograr eficiencia/productividad y demostrarla

© Luis Fernández Sanz, 2013

CPMS -30 -

Mejora de los RRHH

- Factores:
 - Formación académica y preparación profesional
 - Conocimientos y competencias (estudios RENTIC) http://www.uem.es/web/buem/docs/doctrab.htm
 - Cualificación específica en entornos, lenguajes,...
 - Buenas prácticas individuales: PSP
 - Mejoras en densidad de defectos (factor 1,5), etc.
 - Motivación y cultura de calidad, etc.
 - Entorno

© Luis Fernández Sanz. 2013

CPMS -33 -

CALIDAD DEL SOFTWARE

Tecnología

- Opción evidente para mayoría de profesionales:
 - Actividad comercial, novedades constantes, etc.
 - Evolución: técnica, procedimientos, paradigmas, etc.
 - También mejora funcionalidad, integración, etc.
- Posibles dudas sobre datos en mejoras reales de productividad y calidad
 - Verdadera utilidad depende de uso en organización
 - Formación, adaptación, etc.

© Luis Fernández Sanz, 2013

CPMS -34 -

Mejora de procesos

- Mejora de técnicas y métodos de desarrollo
 - Actuación con modelos de procesos
 - CMMi, ISO 15504 (SPICE), etc.
 - -39% defectos (Zubrow, 1994)
 - Ordenación con ISO 9001
 - Dudas (FitzGibbon, 2000)
 - Estándares, metodologías, notaciones
 - METRICA, UML, ISO, IEEE, etc.

© Luis Fernández Sanz. 2013

CPMS -35

CALIDAD DEL SOFTWARE

Factores humanos (y entorno)

- Datos de influencia en productividad (<u>Jones</u>):
 - Mayor influencia de lo negativo que de lo positivo
 - "Las personas son nuestro principal activo"
 - Al menos no ahorrar demasiado

Factores	Influencia positiva (+%)	Influencia negativa (-%)
Experiencia personal	Mucha +55%	Poca -87%
Inexperiencia de gestores	Mucha +65%	Poca -90%
Oficinas	Ergonómicas +15%	Abarrotadas –27%
Horas extra no pagadas	Sí +15%	No 0%
Moral	Alta +7%	Baja –6%
Organización	Jerárquica +5%	Matricial –8%

© Luis Fernández Sanz, 2013

CPMS -36 -

Factores humanos (y entorno)

- Otras reglas:
 - "Incorporar personal a un proyecto retrasado lo retarda más" (Brooks, 1975)
 - Mejor quitar a un programador incompetente que añadir otro adicional (Schulmeyer, 1992)
- Rendimiento de peores y mejores (Schnupp, 1976):

Tamaño de programa	5:1
Tiempo de codificación	25:1
Tiempo requerido para pruebas	26:1
Tiempo de máquina requerido	11:1
Tiempo de ejecución del programa	13:1

© Luis Fernández Sanz. 2013

CPMS -37 -

Calidad del software: niveles

- · Organización:
 - Procesos: CMMi, ISO 15504, ISO 9000, EFQM, etc.
 - Mejoras generales: PSP, TSP, RRHH, formación, cualificación, métodos de trabajo
- Proyecto:
 - SQA (Aseguramiento en el proyecto), planes
 - Técnicas de aseguramiento: gestión de configuración, métricas, pruebas, revisiones y auditorías

© Luis Fernández Sanz. 2013

CPMS -41

Sistema de calidad

- ISO 9000: Conjunto de estructura de la organización, responsabilidades, procedimientos, procesos y recursos para la gestión de la calidad
- Sistema en proporción a los objetivos de calidad
- La dirección es responsable de desarrollar, establecer e implantar un sistema de calidad, que debe:
 - Ser eficaz y comprendido adecuadamente
 - Dar confianza en satisfacer necesidades de clientes
 - Poner más énfasis en prevenir que en detectar

© Luis Fernández Sanz, 2013

CPMS -51

CALIDAD DEL SOFTWARE

Documentación del sistema de calidad (ISO9004)

- Documento principal: MANUAL DE CALIDAD
 - Descripción del sistema de calidad
 - Referencia permanente (Biblia) al implantar y aplicar
- Planes de calidad:
 - Para proyectos
 - Coherentes con el sistema de gestión de calidad
 - Objetivos; autoridad y responsabilidad específica; métodos y procedimientos a aplicar; inspecciones, pruebas, auditorías; método para cambio del plan

© Luis Fernández Sanz, 2013

CPMS -52 -

Certificación de empresa

- Interés de empresas por certificarse:
 - Sectores que obligan para acceder a contratos
 - Publicidad de calidad: moda de certificarse,...
 - Convencimiento de acceder a un nivel superior, desde el mero control y ausencia de tradición
 - Próxima exigencia europea: contratos, barreras de importación, etc.
- Problema:
 - Empresas sin tradición: pasar examen más que mejorar

© Luis Fernández Sanz, 2013

CPMS -56 -

CALIDAD DEL SOFTWARE Mecanismos de calidad Establecer correspondencia entre características de calidad y mecanismos para conseguirlas. Dos tipos de mecanismos: - Para desarrollo y producción - Para control de actividades (métricas) Organismo Contrato Contrato departamento que Usuario final Fabricante explota el software Operación Desarrollo Usø Producto software © Luis Fernández Sanz, 2013 CPMS -59

CALIDAD DEL SOFTWARE A NIVEL DE PROYECTO

- FUNCIÓN DE CALIDAD DEL SOFTWARE
- CALIDAD EN EL PROYECTO: IEEE 1074
- PACS: CREACIÓN, ACTIVIDADES, VyV, GESTIÓN Y ADAPTACIÓN

© Luis Fernández Sanz. 2013

CPMS -61

Proceso de Gestión de la Calidad Software

Actividades a realizar

- Planificar el Aseguramiento de Calidad del Software
- Desarrollar Métricas de Calidad
- Gestionar la Calidad del Software
- Identificar las Necesidades de Mejora de la Calidad

© Luis Fernández Sanz, 2013

CPMS -65

CALIDAD DEL SOFTWARE

Documentación en proyecto

- •Plan de Aseguramiento de Calidad del Software (PACS): IEEE Std. 730
 - -Norma IEEE: proyectos críticos, máximo nivel
 - -Prescribe un formato de plan
- Propósito
- Documentos de referencia
- Gestión: organización, tareas y responsabilidades
- Documentación
- Estándares, prácticas, convenc.
- · Revisiones y auditorías
- Gestión de configuración

- Informes de problemas y acciones correctivas
- · Herramientas, técnicas, métod.
- Control del código
- · Control de medios
- · Control de suministradores
- Recogida, mantenimiento y retención de registros de calid.

© Luis Fernández Sanz, 2013

CPMS -66 -

Planificación del PACS

• IEEE 1074:

- Los objetivos del proyecto deben basarse tanto en las directrices de la organización como en requisitos contractuales
- Identificar patrones sistemáticos y planificados de las acciones necesarias para proporcionar la adecuada confianza en que el producto cumple los requisitos establecidos
- Apoyarse en la descripción del proyecto en el Plan de Proyecto (IEEE 1058)

© Luis Fernández Sanz. 2013

CPMS -67

PVVS (IEEE std.1012)

- Técnicas más empleadas para la V y V
 - Revisiones y auditorías
 - Comprobaciones de compleción, consistencia, exactitud y calidad
 - También trazabilidad de requisitos a lo largo de las fases
 - IEEE std. 1028
 - Pruebas de software
 - Planificación, diseño, especificación de casos, ejecución y evaluación
 - IEEE std. 829 y 1008

© Luis Fernández Sanz, 2013

CPMS -69

CALIDAD DEL SOFTWARE

Otras técnicas de V y V

- Apoyo de herramientas:
 - Herramientas específicas
 - Funcionalidad de herramientas CASE
- Otras técnicas de V y V (IEEE Std. 1012):
 - Análisis de algoritmos
 - Análisis de flujo de control, de flujo de datos
 - Análisis por simulación, ejecución simbólica
 - Monitorización del rendimiento, análisis de tiempos y tamaño

© Luis Fernández Sanz, 2013

CPMS -70 -

¿Debo hacer todo esto?

- Puede parecer demasiada burocracia
- El estándar señala un nivel muy alto, para proyectos críticos
- Debe adaptarse:
 - Plan de calidad
 - Objetivos
 - Documentación

© Luis Fernández Sanz, 2013

CPMS -73 -

CALIDAD DEL SOFTWARE

Preguntas

Señalar la respuesta correcta sobre la calidad:

- a) La política de calidad de la empresa corresponde a la gestión de calidad
- b) Sustituye a plazo y coste como factor de gestión
- c) Se suele insistir en el concepto de garantía de calidad
- d) Ninguna de las anteriores

Señalar la frase correcta para la calidad de software a nivel de proyecto:

- a) Todos los planes de aseguramiento de calidad de software (PACS) deben seguir la norma IEEE 730
- b) Las actividades de calidad en un proyecto deben especificarse en su PACS
- c) IEEE 730 no indica ninguna estructura para el PACS
- d) Ninguna de las anteriores

© Luis Fernández Sanz, 2013

CPMS -74 -

Anexo IEEE 730

Tema 1.1. Calidad, pruebas y mantenimiento del software

© Luis Fernández Sanz. 2013

CPMS -75 -

CALIDAD DEL SOFTWARE

PACS (IEEE std.730)

Propósito

- Productos software a los que se aplica
- Uso del software cubierto por el PACS
- Motivo del PACS: interno o externo
- Documentos base para el PACS

2 Documentos referenciados

- Cualquier documento mencionado en el plan

© Luis Fernández Sanz, 2013

CPMS -76 -

PACS (IEEE std.730)

Gestión

- Organización
 - ACS propio, compartido, personal de desarrollo, etc.
- Tareas
 - Criterios de entrada y de terminación
 - Salidas
 - Especialización del personal
 - Si no se dispone de PGPS, incluir planificación
- Responsabilidades
 - Para cada tarea
 - Delimitar en responsabilidades compartidas

© Luis Fernández Sanz. 2013

CPMS -77

CALIDAD DEL SOFTWARE

PACS (IEEE std.730)

4 Documentación mínima

- Propósito
 - Identificar la documentación que gobierna el desarrollo, la V y V, etc.
 - Señalar los documentos a comprobar
- Mínimo:
 - ERS. DDS, PVVS, Informes VyV, Docs. Usuario
- Otra documentación:
 - Plan de desarrollo, plan de gestión de configuración, manual de estándares y procedimientos
- Otras sugerencias

© Luis Fernández Sanz, 2013

CPMS -78 -

PACS (IEEE std.730)

- Revisiones y auditorías
 - Mínimo
 - Revisión de requisitos
 - Revisión del diseño preliminar
 - Revisión del diseño crítico
 - Revisión del PVVS
 - Auditoría Funcional: código vs. requisitos
 - Auditoría Física: documentación vs. código
 - Auditorías In-Process: consistencia del producto a lo largo del desarrollo
 - Revisiones de gestión: ejecución del PACS

© Luis Fernández Sanz, 2013

CPMS -79

CALIDAD DEL SOFTWARE

PACS (IEEE std.730)

- **6** Gestión de configuración del Software (GCS)
 - Tareas y métodos para una GCS apropiada
 - No necesario si existe Plan GCS
- **⑦** Informes de problemas y acciones correctivas
 - Procedimientos y responsabilidades
- 8 Herramientas, técnicas y metodologías
 - HERRAMIENTAS: Analizadores, drivers de pruebas, monitores de ejecución, etc.
 - MÉTODOS: Inspecciones, traza de requisitos, verificación de diseño y de requisitos,etc.

© Luis Fernández Sanz, 2013

CPMS -80 -

PACS (IEEE std.730)

- **9** Control del código y de su soporte físico. Control de suministradores.
 - Mantener y almacenar las versiones controladas
 - En conjunción con la biblioteca de programas
 - Soporte físico:
 - control de acceso no autorizado
 - prevención de daños o degradación no intencionada
 - Suministradores: control de su ACS
- Registros del proyecto
 - Para tener constancia formal
 - Datos históricos para análisis de tendencias

© Luis Fernández Sanz. 2013

CPMS -81 -