

Introdução

Interrupção é o recurso que permite ao microcontrolador interromper a execução do programa principal para atender a uma solicitação "urgente" gerada por um dispositivo externo ou por um periférico.

Por exemplo, se houve uma mudança de estado em um pino, ou se um byte de dados chegou na porta serial, ou se um temporizador transbordou, ou se a conversão foi concluída no ADC, etc.; estes são todos os casos típicos ou interrupções comuns que podem ser ativadas no microcontrolador.

Introdução

Considere que o microcontrolador deve acender um LED quando um botão é pressionado.

- O instante em que o botão é pressionado é absolutamente imprevisível da perspectiva do microprocessador / programa em execução.
- Há duas abordagens para se tratar um evento de natureza assíncrona:
 - ✓ Varredura
 - ✓ Interrupção

Introdução

No processo de varredura, deve-se aguardar a execução da rotina ou instrução que verifica o estado da chave.

É um recurso de implementação simples, porém desperdiça ciclos de execução do processador.

Caso o recurso de interrupção esteja disponível, passa a ser a melhor alternativa.

- Neste caso, o processador suspende o programa em execução e desvia para a rotina de serviço de interrupção (*Interrupt Service Routine*, ISR).

Introdução

Tipos de Interrupções

Cada periférico no microcontrolador pode gerar uma ou mais interrupções internas.

- Há também interrupções associadas a eventos externos.
- Interrupções mascaráveis: cada interrupção possui um bit de habilitação que precisa ser ativado juntamente com o Global Interrupt Enable (bit no registrador de status para que interrupções ocorram). Para isso, utilize a linha de código "sei()".
- Interrupções fixas: cada interrupção é mapeada para um endereço fixo de memória.
- As interrupções são desabilitadas automaticamente quando uma ISR está sendo executada.

Entretanto, é possível habilitá-las manualmente dentro da ISR e assim permitir que interrupções sejam atendidas durante a execução da ISR.

Inate

Tipos de Interrupções

		Interrupt	ISR C	
Pri.	Address	Source	Function Name	Description
1	0x0000	RESET		System reset (power-on)
2	0x0002	INT0	INTO_vect	External Interrupt Request 0
3	0x0004	INT1	INT1_vect	External Interrupt Request 1
4	0x0006	PCINT0	PCINTO_vect	Pin Change Interrupt Request 0
5	0x0008	PCINT1	PCINT1 vect	Pin Change Interrupt Request 1
6	0x000A	PCINT2	PCINT2_vect	Pin Change Interrupt Request 2
7	0x000C	WDT	WDT_vect	Watchdog Time-out Interrupt
8	0x000E	TIMER2 COMPA	TIMER2_COMPA_vect	Timer/Counter2 Compare Match A
9	0x0010	TIMER2 COMPB	TIMER2_COMPB_vect	Timer/Counter2 Compare Match B
10	0x0012	TIMER2 OVF	TIMER2_OVF_vect	Timer/Counter2 Overflow
11	0x0014	TIMER1 CAPT	TIMER1_CAPT_vect	Timer/Counter1 Capture Event
12	0x0016	TIMER1 COMPA	TIMER1_COMPA_vect	Timer/Counter1 Compare Match A
13	0x0018	TIMER1 COMPB	TIMER1_COMPB_vect	Timer/Counter1 Compare Match B
14	0x001A	TIMER1 OVF	TIMER1_OVF_vect	Timer/Counter1 Overflow

Tipos de Interrupções

A rotina de interrupção em C deve ser definida na forma:

ISR (INT0_vect) {
}

	1	Interrupt	ISR C	
Pri.	Address	Source	Function Name	Description
15	0x001C	TIMERO COMPA	TIMERO_COMPA_vect	Timer/Counter0 Compare Match A
16	0x001E	TIMERO COMPB	TIMERO_COMPB_vect	Timer/Counter0 Compare Match B
17	0x0020	TIMERO OVF	TIMERO_OVF_vect	Timer/Counter0 Overflow
18	0x0022	SPI, STC	SPI_STC_vect	SPI Serial Transfer Complete
19	0x0024	USART, RX	USART_RX_vect	USART Receive Complete
20	0x0026	USART, UDRE	USART_UDRE_vect	USART Data Register Empty
21	0x0028	USART, TX	USART_TX_vect	USART Transmit Complete
22	0x002A	ADC	ADC_vect	ADC Conversion Complete
23	0x002C	EE READY	EE_READY_vect	EEPROM Ready
24	0x002E	ANALOG COMP	ANALOG_COMP_vect	Analog Comparator
25	0x0030	TWI	TWI_vect	2-wire Serial Interface
26	0x0032	SPM READY	SPM_READY_vect	Store Program Memory Ready

Tipos de Interrupções

As interrupções externas são interrupções geradas por dispositivos externos ao microcontrolador. Podem ser de dois tipos:

- Interrupções geradas nos pinos INT0 e INT1: permitem um número maior de configurações e têm maior prioridade. Podem ser ativadas nas bordas de subida, descida, em ambas ou por nível lógico baixo do sinal de interrupção.

São configuradas através dos registradores EICRA e EIMSK.

Quando disparadas, ativam *flags* no registrador EIFR.

- <u>Pin Change Interrupts</u>: têm menor prioridade que as anteriores e podem ser ativadas quando há uma mudança de nível em um dos 23 pinos PCINT. São configuradas por meio dos registradores PCMSK0, PCMSK1, PCMSK2 e PCICR.

Flags no registrador PCIFR indicam quando essas interrupções são ativadas.

EICRA – External Interrupt Control Register A

Bit	7	6	5	4	3	2	1	0	
(0x69)	-	i — i	-	-	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	A)
Initial Value	0	0	0	0	0	0	0	0	

Table 13-1. Interrupt 1 Sense Control

ISC11	ISC10	Description	
0	0	The low level of INT1 generates an interrupt request.	
0	1	Any logical change on INT1 generates an interrupt request.	
1	0	The falling edge of INT1 generates an interrupt request.	
1	1	The rising edge of INT1 generates an interrupt request.	

Table 13-2. Interrupt 0 Sense Control

ISC01	ISC00	Description	
0	0	The low level of INT0 generates an interrupt request.	
0	1	Any logical change on INT0 generates an interrupt request.	
1	0	The falling edge of INT0 generates an interrupt request.	
1	1	The rising edge of INT0 generates an interrupt request.	

EIMSK – External Interrupt Mask Register

- INTO External Interrupt Request 0 Enable: quando em nível alto, habilita a geração de interrupções a partir do pino INTO.
 - (É necessário que a interrupção global também esteja ativa).
- INT1 External Interrupt Request 1 Enable: quando em nível alto, habilita a geração de interrupções a partir do pino INT1.
 - (É necessário que a interrupção global também esteja ativa).

EIMSK – External Interrupt Mask Register

EIMSK – External Interrupt Mask Register												
Bit	7	6	5	4	3	2	1	0	_			
0x1D (0x3D)	-	-	-	-	-	-	INT1	INT0	EIMSK			
Read/Write	R	R	R	R	R	R	R/W	R/W				
Initial Value	0	0	0	0	0	0	0	0				

EIFR – External Interrupt Flag Register

Sinaliza quando INTO e INT1 foram disparadas.

- INTF0 External Interrupt Flag 0: quando ocorre a condição de ativação de INT0, de acordo com as configurações em EICRA, esse bit assume nível alto.
- <u>INTF1 External Interrupt Flag 1:</u> quando ocorre a condição de ativação de INT1, de acordo com as configurações em EICRA, esse bit assume nível alto.

EIFR – External Interrupt Flag Register

EIFR – External Interrupt Flag Register											
Bit	7	6	5	4	3	2	1	0			
0x1C (0x3C)	-	-	-	-	-	-	INTF1	INTF0	EIFR		
Read/Write	R	R	R	R	R	R	R/W	R/W			
Initial Value	0	0	0	0	0	0	0	0			

PCICR - Pin Change Interrupt Control Register

Habilita as interrupções PCI0, 1 e 2.

- -PCIEO Pin Change Interrupt Enable 0: habilita interrupções geradas pelos pinos PCINT 0 a 7.
- -PCIE1 Pin Change Interrupt Enable 1: habilita interrupções geradas pelos pinos PCINT 8 a 14.
- -PCIE2 Pin Change Interrupt Enable 2: habilita interrupções geradas pelos pinos PCINT 16 a 23.

PCMSKn – Pin Change Mask Register n (n = 0, 1 ou 2)

PCMSK2 – Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	_
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCM
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

PCIFR – Pin Change Interrupt Flag Register

Sinaliza quando PCI0, PCI1 e PCI2 foram disparadas.

- PCIF0 Pin Change Interrupt Flag 0: quando ocorre uma mudança de nível lógico em qualquer um dos pinos PCINT[7:0] dispara uma interrupção, PCIF0=1.
- PCIF1 Pin Change Interrupt Flag 1: quando ocorre uma mudança de nível lógico em qualquer um dos pinos PCINT[14:8] dispara uma interrupção, PCIF1=1.
- PCIF2 Pin Change Interrupt Flag 2: quando ocorre uma mudança de nível lógico em qualquer um dos pinos PCINT[23:16] dispara uma interrupção, PCIF2=1

PCIFR – Pin Change Interrupt Flag Register

Bit	7	6	5	4	3	2	1	0	
0x1B (0x3B)	-	-	-	-	-	PCIF2	PCIF1	PCIF0	PCIFR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Exercícios

Prof. João Magalhães

Horário de Atendimento:

• Segunda-feira: 17h30

• Quinta-feira: 19h30

E-mail: joao.magalhaes@inatel.br

Celular: (35) 99895-4450

Linkedin: https://www.linkedin.com/in/joaomagalhaespaiva/

