10 light first first first first from print first firs

20

5

ABSTRACT OF DISCLOSURE

The present invention considers a method for active cancellation using independent component analysis. More particularly, the present invention relates to a method which is operable the independent component analysis technique to an adaptive algorithm that can consider secondary or more higher statistical characteristics.

The conventional active noise cancellation systems mainly use the LMS(Least Mean Square) which considers secondary statistics among input signals.

Being different from the conventional active noise cancellation systems, the present invention provides a method for active noise cancellation using independent component analysis, which makes output signals independent of each other by considering secondary or more higher statistical characteristics.

Therefore, according to the present invention, the improved performances of the noise cancellation systems can be provided compared with the conventional active noise cancellation system which uses the LMS adaptive algorithm.