Contents

1	Feri	romagnetism and the Ising Model	2
	1.1	Ferromagnetism	2
	1.2	Ising Model	2
		1.2.1 Joint Density of States	2
		1.2.2 Thermodynamics	2
		1.2.3 Relevance	2
2	Mo	nte Carlo Methods Applied to the Ising Model	4
	2.1	Metropolis	4
		2.1.1 Critical Slowing Down	4
	2.2	Wang-Landau	4
		2.2.1 Algorithm	4
		2.2.2 Variations	4
		2.2.3 Success and Limitations	4
3	Flat	Scan Sampling	5
	3.1	Background	5
	3.2	Algorithm	Ę
	3.3	Implementations	Ę
		3.3.1 Single Core	Ę
		3.3.2 MPI	Ę
	3.4	Validation and Convergence	Ę
	3.5	Performance	Ę
		3.5.1 Amdhal's Law and Parallel Scaling	Ę
	3.6	Comparison with Wang-Landau Sampling	Ę
4	$Th\epsilon$	ermodynamics and Finite Size Scaling	6
5	Cor	uclusion and Future Work	7

Ferromagnetism and the Ising Model

1.1 Ferromagnetism

- 1.2 Ising Model
- 1.2.1 Joint Density of States
- ${\bf 1.2.2} \quad {\bf Thermodynamics}$
- 1.2.3 Relevance

Ferromagnetic Phase T < Tc Low Entropy

Paramagnetic Phase T > Tc High Entropy

Monte Carlo Methods Applied to the Ising Model

- 2.1 Metropolis
- 2.1.1 Critical Slowing Down
- 2.2 Wang-Landau
- 2.2.1 Algorithm
- 2.2.2 Variations
- 2.2.3 Success and Limitations

Flat Scan Sampling

- 3.1 Background
- 3.2 Algorithm
- 3.3 Implementations
- 3.3.1 Single Core
- 3.3.2 MPI
- 3.4 Validation and Convergence
- 3.5 Performance
- 3.5.1 Amdhal's Law and Parallel Scaling
- 3.6 Comparison with Wang-Landau Sampling

Thermodynamics and Finite Size Scaling

Chapter 5 Conclusion and Future Work