Network Centrality Part 2

Saptarshi Ghosh
Department of CSE, IIT Kharagpur
Social Computing course, CS60017

Includes material borrowed from various online sources, including slides by Lada Adamic and slides from University of Ioannina

CENTRALITY IN LARGE DIRECTED GRAPHS (WEB GRAPH)

Requirements for Web search

- Results of Web search need to consider
 - Relevance to query
 - Importance / authoritativeness
 - Location / time of query
 - Recency of page
 - ... and many others
- Initial days of the Web: only relevance to query was used to rank webpages
 - Ranking algorithms easily spammed by manipulating the text on spam webpages

Need to consider authoritativeness

- Importance / authoritativeness centrality on the Web graph (webpages are nodes, hyperlinks are directed edges)
- An edge from node p to node q denotes endorsement
 - Node p endorses/recommends/confirms the authority/centrality/importance of node q
 - May not be always true (e.g., all pages on a website linking to the Copyright page) but mostly true
 - Use the graph of recommendations to assign an authority value to every node

The Web as a Directed Graph

Hypothesis 1: A hyperlink between pages denotes a conferral of authority (quality signal)

Hypothesis 2: The text in the anchor of the hyperlink on page A describes the target page B

How to compute node centrality on Web?

- First attempt: indegree of webpages used to rank pages according to importance
 - Easily gamed by spammers creating their own webpages
- Subsequent better algorithms: HITS and PageRank

HITS algorithm

- Hyperlink-Induced Topic Search, by Kleinberg
- Two types of important pages on the Web
 - Authority: has authoritative content on a topic
 - Hub: pages which link to many authoritative pages, e.g., a directory or catalog
 - A good hub is one which links to many good authorities
 - A good authority node is one which is pointed to by many good hubs

The hope

HITS

- HITS computes two scores for each page p
 - Authority score: sum of hub scores of all pages which point to p
 - Hub score: sum of authority scores of all pages which p
 points to
- Iterative algorithm
 - The definitions of hubs and authorities are "circular" in nature
 - A series of iterations run, until the scores of all pages converge

HITS run on a query-dependent sub-graph

- Meant to run on a (sub)set of pages that are relevant to a given query
 - □ Top N pages relevant to query retrieved based on content → called the root set
 - □ Add to the root set all pages that are linked from it or that links to it
 → base set
 - Sub-graph of all nodes in base set → focused sub-graph

HITS run on a query-dependent sub-graph

- Why is the root set not sufficient?
- Motivation of building base set
 - A good authority page may not contain the query term
 - Hubs describe authorities through the anchor text / text surrounding hyperlinks

Visualization: hubs & authorities

HITS Algorithm

Find focused sub-graph G of pages relevant to given query

for each page p in G:

p.auth \leftarrow 1, p.hub \leftarrow 1

do until convergence

for each page p in G

p.hub $\leftarrow \Sigma$ r.auth for all pages r which p links to

p.auth $\leftarrow \Sigma$ q.hub for all pages q which link to p

Normalize hub and auth scores for all pages

Check convergence of scores

Output pages with highest authority scores and hub scores

Normalization of scores

- Scores need to be normalized after each iteration
- Different normalization schemes proposed
 - Normalize so that score vectors sum to 1
 - Normalization factor F: square root of sum of squares of current scores of all pages; divide score of each page by F at the end of each iteration

Checking for convergence

- Various convergence criteria used
 - Fixed number of iterations
 - Iterate until scores do not change appreciably from one iteration to the next (compute difference of score vectors from previous and current iterations)
 - Iterate until rankings of pages do not change

HITS Algorithm (again)

Find focused sub-graph G of pages relevant to given query for each page p in G:

p.auth \leftarrow 1, p.hub \leftarrow 1

do until convergence

for each page p in G

p.hub $\leftarrow \Sigma$ r.auth for all pages r which p links to

p.auth $\leftarrow \Sigma$ q.hub for all pages q which link to p

Normalize hub and auth scores for all pages

Check convergence of scores

Output pages with highest authority scores and hub scores

Matrix version of HITS

- Matrices / vectors
 - A: adjacency matrix of web graph. (u, v)-th element is 1 if page u links to page v
 - h: vector of hub scores of all pages
 - a: vector of authority scores of all pages
- $h \leftarrow A.a$ $a \leftarrow A^T.h$

HITS – summary

- HITS is guaranteed to converge
- Reasonably efficient for large Web-scale graphs, since updates involve local operations only
- Still, not very popularly used. Why?

HITS – summary

- HITS is guaranteed to converge
- Reasonably efficient for large Web-scale graphs, since updates involve local operations only
- Still, not very popularly used. Why?
 - Easy for a spam page to obtain high hub score (just by following many authorities)
 - Hubs often transit to authorities
 - Search engines themselves become hubs

PageRank

- By Larry Page and Sergey Brin
- Problem in measuring importance by indegree
 - Not all in-links are same
 - \blacksquare How important are those pages which link to page p?
- PageRank of a page
 - A measure of the 'authority value' of the page
 - Independent of query
 - One of many factors used by Google to rank pages

Idea of PageRank

- Good authorities should be pointed to by other good authorities
 - Arr PR $_{\nu}$ of page (node) ν is a function of the sum of PRs of all those pages which point to ν
- Each node u distributes its authority value equally among all those nodes to which u points
 - □ If page u links to 4 pages, u contributes $PR_u/4$ to the PR of each of those 4 pages

$$PR_v = \sum_{u \to v} \frac{1}{d_{out}(u)} PR_u$$

Equations for PR (here $w_v \sim PR_v$)

$$w_1 = 1/3 w_4 + 1/2 w_5$$
 $w_2 = 1/2 w_1 + w_3 + 1/3 w_4$
 $w_3 = 1/2 w_1 + 1/3 w_4$
 $w_4 = 1/2 w_5$
 $w_5 = w_2$

$$w_v = \sum_{u \to v} \frac{1}{d_{out}(u)} w_u$$

Iterative algorithm used to solve such a system of equations (multiple iterations until convergence)

PageRank computation

```
/* initialization */
for all nodes u in G: d(u) \leftarrow 1/N, where N = \#nodes
for all nodes u in G: PR(u) \leftarrow d(u)
/* iteration */
do until PR vector converges
  for all nodes u in G
       for all nodes \nu that links to \mu
            t = \sum PR(v) / out-degree(v)
                                                      a to be
       PR(u) \leftarrow a * t + (1-a) * d(u)
                                                      explained later
   normalize scores
   check for convergence
end
```

Theoretical basis of PageRank

- Random walks on a graph
 - □ Start from a node chosen uniformly at random with prob $\frac{1}{N}$
 - From the node you are in, pick one of the outgoing links uniformly at random
 - Move to the destination node of the chosen link
 - Repeat
- The Random Surfer model
 - Users wander on the web, following links
 - Nodes visited more frequently in this random walk are web-pages with higher PR

Step 4...

Equations for Random Walk

Question: what is the probability p_i^t of being at node i after t steps?

$$p_1^0 = \frac{1}{5} \qquad p_1^t = \frac{1}{3}p_4^{t-1} + \frac{1}{2}p_5^{t-1}$$

$$p_2^0 = \frac{1}{5} \qquad p_2^t = \frac{1}{2}p_1^{t-1} + p_3^{t-1} + \frac{1}{3}p_4^{t-1}$$

$$p_3^0 = \frac{1}{5} \qquad p_3^t = \frac{1}{2}p_1^{t-1} + \frac{1}{3}p_4^{t-1}$$

$$p_4^0 = \frac{1}{5} \qquad p_4^t = \frac{1}{2}p_5^{t-1}$$

 $p_5^0 = \frac{1}{5} \qquad p_5^t = p_2^{t-1}$

The equations are the same as those for the PageRank computation

Equations for PR (again)

$$w_1 = 1/3 w_4 + 1/2 w_5$$
 $w_2 = 1/2 w_1 + w_3 + 1/3 w_4$
 $w_3 = 1/2 w_1 + 1/3 w_4$
 $w_4 = 1/2 w_5$
 $w_5 = w_2$

$$w_v = \sum_{u \to v} \frac{1}{d_{out}(u)} w_u$$

Iterative algorithm used to solve such a system of equations (multiple iterations until convergence)

Theoretical basis of PageRank

- The random walk defines a Markov chain
 - A discrete time stochastic process following Markov property (next state depends only on current state)
 - N states corresponding to the N nodes; chain is at one of the states at any given time-step
 - □ $N \times N$ transition probability matrix $P : P_{ij}$ is the probability that state at next time-step is j, given current state is i

$$\forall i, j, P_{ij} \in [0, 1]$$
 $\forall i, \sum_{j=1}^{N} P_{ij} = 1.$

An example

An example

- P is a stochastic matrix
 - Every element is in [0, 1]
 - Sum of every row is 1
 - Largest eigenvalue is 1
 - Has a principal left eigenvector corresponding to its largest eigenvalue

Another example

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

Transition matrix for random surfer

- How to derive the transition matrix for the random surfer on the Web graph?
- Adjacency matrix of Web graph
 - $A_{ij} = 1$ if there is a hyperlink from page *i* to page *j*
 - $A_{ij} = 0$ otherwise
- Derive transition matrix P of Markov chain from A

Some practical challenges

- Web graph (or any graph) can have
 - Dead-ends or sink nodes
 nodes with no out-edges

	0	1/2	1/2	0	0
	0	0	0	0	0
P =	0	1	0	0	0
	1/3 1/2	1/3 0	1/3	0	0
	1/2	0	0	1/2	0

Some practical challenges

Web graph (or any graph) can have

Loops

Transition matrix for random surfer

- Derive transition matrix P of Markov chain from A
 - □ If a row of A has no 1's, replace each element by 1/N
 - For all other rows: divide each 1 by the number of 1's in the row
 - Multiply the resulting matrix by a
 - Add (1-a)//V to every entry of the resulting matrix

Dealing with sink nodes

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

Dealing with sink nodes

As if synthetic edges are inserted from the sink node to every other node in the graph

	0	1/2	1/2	0	0
	1/5	1/5 1	1/5	1/5	1/5
P'=	0	1	0	0	0
	1/3	1/3 0	1/3	0	0
	1/2	0	0	1/2	0

Dealing with loops

- As if synthetic edges are inserted to enable jump from any node to any other node in the graph
- Teleportation: jump to any random node with probability 1/N

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

Why teleportation?

- Convergence of PageRank is guaranteed only if
 - The transition probability matrix P is irreducible, i.e., all transitions have a non-zero probability
 - In other words, if the graph (on which random surfing is taking place) is strongly connected
- To ensure convergence
 - To nodes with out-degree 0, add an outgoing edge to every node
 - Damp the walk by factor a, by adding a complete set of outgoing edges, with weight (1-a)/N, to all nodes

Transition matrix for random surfer: Recap

- Derive transition matrix P of Markov chain from A
 - □ If a row of A has no 1's, replace each element by 1/N
 - For all other rows: divide each 1 by the number of 1's in the row
 - Multiply the resulting matrix by a
 - □ Add (1-a)//V to every entry of the resulting matrix

Given P, how to compute PageRank?

- Vector x (dimension N): probability distribution of surfer's position at any time
 - \Box At t = 0: one entry in x is 1, rest are 0
 - \Box At t = 1: xP
 - □ At t = 2: $(xP)P = xP^2$
 - ...
- Steady-state $x = \Pi$ gives the PageRank scores
 - □ At steady-state: \(\pi\)P = \(\pi\)
 - □ In other words, at steady state: $\Pi P = 1.\Pi$

Given P, how to compute PageRank?

- Vector x (dimension N): probability distribution of surfer's position at any time
 - \Box At t = 0: one entry in x is 1, rest are 0
 - \Box At t = 1: xP
 - □ At t = 2: $(xP)P = xP^2$
 - **-** ...
- Steady-state $x = \Pi$ gives the PageRank scores
- PageRank scores obtained as the principal left eigenvector of P (corresponding to eigenvalue 1)

PageRank computation

- Need to compute principal left eigenvector of a stochastic matrix
- Several numerical methods, e.g., power iteration
- Difficult to compute for matrices of the size of the Web graph; iterative method (already discussed) can be more efficient

Theoretical basis of PageRank: Recap

- Random surfer model
 - Start at a node, execute a random walk on Web graph
 - At each step, proceed from current node u to a randomly chosen node that u links to
 - Teleport: jump to any random node with probability 1/N
 - At a node with no outgoing links, teleport
 - At a node that has outgoing links
 - Follow standard random walk with probability a where 0<a<1
 - Teleport with probability (1-a)
- Nodes visited more frequently in this random walk are web-pages with higher PR

PageRank computation: Recap

```
/* initialization */
for all nodes u in G: d(u) \leftarrow 1/N, where N = \#nodes
for all nodes u in G: PR(u) \leftarrow d(u)
/* iteration */
do until PR vector converges
   for all nodes u in G
       for all nodes \nu that links to \mu
            t = \sum PR(v) / \text{out-degree}(v)
       PR(u) \leftarrow a * t + (1-a) * d(u)
   normalize scores
   check for convergence
end
```

Practical challenges

- All links $u \rightarrow v$ do not signify a vote for v
 - E.g., links to a copyright page from all pages in a website
- Attempts to spam PageRank: link spam farms or link farms
 - A target page (whose PR the spammer wants to boost)
 - A number of boosting pages, which link to the target page, link to each other and also to external pages
 - Hijacked links links accumulated from pages outside the link farm

Example link farm

Figure 2: A web of good (white) and bad (black) nodes.

PageRank computation

```
/* initialization */
for all nodes u in G: d(u) \leftarrow 1/N, where N = \#nodes
for all nodes u in G: PR(u) \leftarrow d(u)
/* iteration */
do until PR vector converges
  for all nodes u in G
       for all nodes \nu that links to \mu
            t = \sum PR(v) / out-degree(v)
       PR(u) \leftarrow a * t + (1-a) * d(u)
   normalize scores
   check for convergence
end
```

Biased PageRank

■ Instead of using the uniform vector $d(u) \leftarrow 1/N$ for all nodes u, use a non-uniform preference vector:

```
d(u) = 1 / |S|, for all u \in S
= 0 otherwise
```

- Implication for random surfer:
 - With probability a, follow standard random walk
 - With probability (1-a), teleport to a node in S, where the particular node in S is chosen randomly

Biased PageRank

■ Instead of using the uniform vector $d(u) \leftarrow 1/N$ for all nodes u, use a non-uniform preference vector:

```
d(u) = 1 / |S|, for all u \in S
```

= 0 otherwise

- Implication for random surfer:
 - With probability a, follow standard random walk
 - With probability (1-a), teleport to a node in S, where the particular node in S is chosen randomly
- Bias the ranks towards nodes that are closer to nodes with a larger value in the preference vector

Topic-sensitive PageRank [Haveliwala, WWW 2002]

- Webpages are classified into various topics (16)
 Open Directory Project high-level categories)
- Computes PageRank for a particular topic of interest

- For category c_j
 - \neg T_j is the set of websites for category C_i
 - Modified te

$$v_{ji} = \begin{cases} \frac{1}{|T_j|} & i \in T_j, \\ 0 & i \notin T_j. \end{cases}$$

TrustRank [Gyongyi, VLDB 2004]

- Aims to rank trusted pages higher, and push untrusted pages down in the rankings
- Assumes
 - A way of knowing trusted nodes: oracle
 - Trusted (good) nodes will only link to other good nodes but this assumption is violated in the real Web
 - Bad nodes will link to other bad nodes and good nodes
- Run PageRank by biasing the preference vector towards a set of trusted nodes

TrustRank vs. PageRank

Figure 10: Bad sites in PageRank and TrustRank buckets.