Continued to the continued of the contin	the back and	බස්තාහිර පළාත් අධාා ගීගම ගැසාගොස් සම Department of Educati	வித் திணைக்கள்	තුව <u> </u>	and demands of the first of the control of the cont
	(),	අවසාන වා නුණ්ගුඹුනි Third Term	1 மதிப்பீடு - 41	020	
න් ශීය yú nde) 10	ອື່ອລວ uncto Subject	ගණිතය	පතුර බේණ Pape	ரத்தாள் } I	කාලය නැහළ වැය 02 Time
2345425		0 12	77.		
	5	නම / විභාග අංකය	· ·		
10		6-1-3 2 0-1		W	
	00			2214 3232 2	

වැදගත් :

- 💠 මෙම පුශ්න පතුය පිවු 8කින් සමන්විත ය.
- මෙම පිටුවෙන් තුන්වැනි පිටුවේත් නියමිත ස්ථානවල ඔබේ විශාග අංකය නිවැරදිව ලියන්න.
- ප්‍රශ්න සියල්ලව ම පිළිතුරු මෙම ප්‍රශ්න පත්‍රයේ ම සපයන්න.
- පිළිතුරත් එම පිළිතුර ලබාගත් ආකාරයත් දැක්වීමට ඒ ඒ පුශ්තය අවිත් තබා ඇති ඉඩ පුමාණය පුයෝජනයට ගන්න.
- පිළිතුරු සැපයීමේ දී අදාළ පියවර සහ නිවැරදී ඒකක දැක්වීම අවශා ය.
- A කොටසෙහි අංක I සිට 25 තෙක් එක් එක් පුශ්නයට ලකුණු 02 බැගින් ද B කොටසෙහි එක් එක් පුශ්නයට ලකුණු 10 බැගින් ද ලැබේ.
- 💠 කවුවැඩ සඳහා ගිස් කඩදාපි ලබා ගත හැකිය.

පරික්ෂකවරයාගේ පුයෝජනය සඳහා පමණි

	පුශ්න අංක	୯କ୍କ
A	1 - 25	
r	1	
	2	
В	3	
	4	
55 U	5	
English (t)	මුළු එකතුව	
E 600	************	 කළේ

A කොටස පුශ්න සියල්ලට ම මෙම පතුයේ ම පිළිතුරු සපයන්න.

- (01) මිනිසුන් හතර දෙනෙකුට දින 6කට පුමාණවත් වන ආහාර මිනිසුන් 12 දෙනෙකුට දින කියකට පුමාණවත් ද?
- (02) සංඛ්‍යා දෙකක කුඩා පොදු ගුණාකාරය 12x²) වේ. ඉන් එක් සංඛ්‍යාවක් 4x² නම් අනෙක් සංඛ්‍යාව විය හැකි සංඛ්‍යාව තෝරා යටින් ඉරක් අඳින්න.
 - (i) 6x²y
- (ii) $3x^2y$
- (iii) 12y2
- (iv) 8xy

(03) මේහි දක්වෙන වෙන් රූපයේ (A∩B) මහින් දක්වෙන පුදේශය අඳුරු කරන්න.

- (04) සුළු කරන්න. $\frac{1}{2y} + \frac{1}{3y}$
- (05) මෙම රුපයේ $a+b=160^\circ$ ක් නම් b හි අගය සොයන්න.

(06) හිස්තැන් පුරවන්න.

$$32 = 2$$

$$\log_{2} 32 = \square$$

(07) එක්තරා සංඛාාවක වර්ගමුලයේ පළමු සන්නිකර්ෂණය 5.4 නම් එම සංඛාාව කවර පූර්ණ වර්ග සංඛාා දෙක අතර පිහිටයි ද?

- (08) විසඳන්න. $\frac{1}{a} 1 = 2$
- (09) රූපයේ දී ඇති තොරතුරු ඇසුරින් x හි අගය සොයන්න.

- (10) මල්ලක එක සමාන රතුපාව, නිල්පාව හා කොලපාව වීදුරු බෝල සමාන ගණනක් ඇත. මල්ලේ ඇති මුළු වීදුරු බෝල ගණන 9 ක් නම් මල්ලෙන් ඉවනට ගන්නා බෝලයක් රතු පාට එකක් වීමේ සම්භාවිතාව සොයන්න.
- (11) රූපයේ දක්වෙන ඝනකයේ පැත්තක දිග 5cm ක් නම් ඝනකයේ මුළු පෘෂ්ඨ වර්ගඵලය සොයන්න.

- (12) x²-5x-14 ද්වීපද සාධක දෙකක ගුණිතයක් ලෙස ලියා දක්වන්න.
- (13) රූපයේ දක්වෙන වෘත්තයේ කේන්දය O වේ. AOB = 100° නම් OAB හි අගය සොයන්න.

(14) රූපයේ දක්වෙන අර්ධ වෘත්තයේ පරිමිතිය 36cm කි. එහි අරය 7cmක් නම් එහි වාප කොටසේ දිග සොයන්න.

(15)	පහත සඳහන් වාකා නිවැරදි නම ඉදිරියේ ඇති කොටුව තුල (√) ලකුණ ද වැරදි නම (×) ලකුණ
RVCC 16	ද මයාදන්න.
	(i) සමාන්තරාසුයක සියළුම පාද සමාන වේ.
	(ii) රොම්බසයක විකර්ණ එකිනෙක ලම්බකව සම්වජේදනය වේ.
(16)	සිසුන් තිදෙනෙකුගේ ස්කන්ධ පිළිවෙලින් 42kg, 45kg හා 39kg වේ. ඔවුන් තිදෙනාගේ මධානා
	ස්කන්ධය සොයන්න.
83	
U,	DE NE DESERTE DE COMPANIE DE C
(17)	යතුරුපැදි කරුවෙකුගේ චලිතය දක්වීම සඳහා අඳින ලද දුර කාල පුස්නාරය රූප සටහනේ
	දක්වේ. ඔහුගේ මධායක වේගය ගණනය කරන්න. දුර (km) 🛧
	80
	60
	40
	20
	0 i i j j j j j j j j j j j j j j j j j
	(පැය)
(18)	රූපයේ දී ඇති තොරතුරු අනුව x හි අගය සොයන්න.
	\sim
	\star 's
2	
	\sim
(19)	රූපයේ දක්වෙන වෘත්තයේ කේන්දුය O වේ.
(19)	OAC = 50° නම් x හා y අගයන් සොයන්න.
- 2	OAC = 50 Sie x shi'y quadh eutadish.
	(km () 0 x)
	$A^{\downarrow \downarrow \downarrow \downarrow}$ B
	, , , , , , , , , , , , , , , , , , ,
-	
- 6	V &
(20)	රූපයේ දුක්වෙන සරල රේඛීය පුස්තාරයේ 🕺 🛴
	අනුකුමණය සොයන්න. 4
365	
100	
*	$\xrightarrow{\circ}$ x

- (21) ධාරිතාව 1540 cm² ක් වූ සෘජු වෘත්ත සිලින්ඩරයක හරි අඩක් ජලය පිරි ඇත. එහි හරස්කඩ වර්ගඵලය 154cm² ක් නම් ජල කුඳේ උස සොයන්න.
- (22) රූපයේ දක්වෙන වෘත්තයේ කේන්දුය O වේ. O සිට AB ට ඇඳි ලම්බය OD වේ. රූපයේ දක්නට ඇති. අංගසම තිකෝණ යුගලයක් නම්කර අංගසම වන අවස්ථාව ලියා දක්වන්න.

- (23) $-\frac{2}{3} \times \le 4$ අසමානතාව විසඳන්න.
- (24) ආනයනික වීදුලි උපකරණයක් සඳහා 12 දීක තීරු බදු පුතිශතයක් අය කිරීමෙන් පසු භාණ්ඩයේ වටිනාකම රු. 4200කින් ඉහල ගියේ නම් භාණ්ඩයේ ආනයනික වටිනාකම කීය ද?

(25) AB සහ AC රේඛාවලට සමදුරින් අර්ධ වෘත්තය මන පිහිටන්නා වූ ලක්ෂාය සොයා ගැනීමට අදාල නිර්මාණවල දල සටහන ඇඳ අදාල ලක්ෂාය P ලෙස සලකුණු කරන්න.

B කොටස පුශ්න සියල්ලව ම මෙම පනුයේ ම පිළිතුරු සපයන්න.

- (01) භාජනයක් සම්පූර්ණයෙන් ජලයෙන් පිරි ඇත. ඉන් 3/8 ක් ස්නානය සඳහා යොදා ගන්නා ලදි. ඉතිරියෙන් 2/2 ක් රෙදි සේදීමට භාවිතා කරන ලදී.
 - (i) ස්තානයෙන් පසු ඉතිරි වූ ජල පුමාණය භාජනයෙන් කවර භාගයක් ද?
 - (ii) රෙදි සේදීමට භාවිතා කල ජල පුමාණය භාජනයේ මුළු ධාරිතාවෙන් කොපමණ කොටසක් ද?
 - (iii) ස්නානයෙන් හා රෙදි සේදිමෙන් පසු භාජනයේ ඉතිරි වූ ජල පුමාණය භාජනයේ මුළු ධාරිතාවෙන් කොපමණ කොටසක් ද?
 - (iv) භාජනයේ ඉතිරි වූ ජල පුමාණය 18 ් ක් නම් රෙදි සේදීමට යොදාගත් ජල පුමාණය ලීවර කිය ද?
- (02) (a) පළාත් පාලන ආයතනයක් එම බල පුදේශය තුල පිහිටි වාර්ෂික වටිනාකම රු. 120 000ක් ලෙස තක්ෂේරු කර ඇති ගොඩනැගිල්ලක් සඳහා කාර්තුවකට රු. 1200ක වරිපනම් බදු මුදලක් අය කරයි.
 - (i) ගොඩනැගිල්ල සඳහා වසරකට ගෙවිය යුතු වරිපනම් බදු මුදල කොපමණ ද?
 - (ii) අයකර ඇති වරිපනම් බදු ප්‍රතිශතය කොපමණ ද?
 - (iii) වර්ෂයක ජනවාරි මස 31 දිනට පෙර වාර්ෂික වර්පනම් බදු මුදල එකවර ගෙවූ විට 10%ක වට්ටමක් හිමි වේ නම් එසේ එකවර ගෙවීමට සිදුවන වරිපනම් බදු මුදල කොපමණ ද?

(b) කාණුවක් කැපීම සඳහා මිනිසුන් 6 දෙනෙකුට දින 8ක් ගත වේ යැයි ඇස්තමේන්තු කර ඇත. මිනිසුන් දෙදෙනකු අඩුවෙන් එම කාර්යය නිම කිරීමට දින කීයක් ගත වේ ද? (03) රූපයේ දැක්වෙන්නේ සෘජුකෝණාසුාකාර පිහිනුම A නවාකයක සහ කේන්දික් ඛණ්ඩ හැඩති ඓදිකාවක දල සටහනකි. පිහිනුම භවාකයේ දිග එහි පළල 7m මෙන් තුන් ගුණයක් වේ.

- (i) කේන්දික බණ්ඩ කොටසේ වාප දිග සොයන්න.
- (ii) ඉහත පිහිනුම් නවාකය හා වේදිකාව වටා විසිතුරු බල්බ වැලක් සවිකිරීම සඳහා මිල දී ගත යුතු බල්බ වැලේ අවම දිග කොපමණ ද?
- (iii) BCD වේදිකාවේ වර්ගඵලය සොයන්න.
- (iv) වේදිකාවේ වර්ගඵලයට සමාන වර්ගඵලයෙන් යුත් AEFG නම් සෘජුකෝණාසු හැඩැති වේදිකාවක් ඉදි කලහොත් EF දිග කොපමණ ද?

(04) පහත වගුවේ දක්වෙන්නේ ඇගයීමක් සඳහා පත්තියක සිසුන් පිරිසක් ලබාගත් ලකුණු හා සිසුන් සංඛාාව පිළිබඳ තොරතුරු වේ.

ගණන ලකුණු	සිසුන් සංබාහව	ඉක්ත්දික ඛණ්ඩයේ කෝණය
11 - 20	8	
21 - 30	10	
31 - 40	12	
41 - 50	15	

- (i) පත්තියේ සිටින මුළු සිසුන් ගණන කොපමණ ද?
- (ii) ඉහත තොරතුරු වට ප්‍රස්තාරයක දක්වීමට එක් සිසුවෙකු නිරුපණය කල යුතු කේන්දික ඛණ්ඩයේ කෝණය ගණනය කරන්න.
- (iii) ඉහත වගුවේ හිස්තැන් සම්පූර්ණ කරන්න.
- (iv) එම තොරතුරු ඉහත දී ඇති වෘත්තය මත නිරූපණය කරන්න.

- (05) (a) මල්ලක් තුල රතුපාව බැලුම් බෝල 3ක් සහ නිල්පාට බැලුම්බෝල 2ක් ඇත. අමල් අහමු ලෙස මල්ලෙන් ඉවතට බැලුමක් ගෙන බලා එය ආපසු දමා තවන් බැලුමක් මල්ලෙන් ඉවතට ගනු ලබයි.
 - මෙම පරීක්ෂණයෙන් ලැබිය හැකි සියළු පුනිඵල ඇතුලන් නියැදී අවකාශය පහත කොටු දල තුල නිරූපණය කරන්න.

දෙවන ගැනීම

පළමු ගැනීම

- (ii) ඉවතට ගනු ලබන බැලුම බෝල දෙකම එකම වර්ණය වීමේ සිදුවීම ඉහත කොටු දල තුල වටකොට දක්වන්න.
- (iii) එම සිදු වීමේ සම්භාවිතාව සොයන්න.

(b) ඉහත අමල් විසින් කරන ලද පරීක්ෂණයෙන් ලැබීය හැකි සියළු පුනිඵල ඇතුලත් නියැදි අවකාශය නිරූපණය කිරීම සඳහා අඳින ලද අසම්පූර්ණ රුක් සටහනක් පහත දක්වේ.

- ඉහත රුක් සටහනේ අතු මත අදාල සම්භාවිතා ලියා දක්වන්න.
- (ii) ඉවතට ගත් බැලුම් බෝල දෙක වෙතස් වර්ණ වලින් ලැබීමේ සම්භාවිතාව රුක් සටහන ඇසුරින් සොයන්න.

සංගු හ සිසියම ඇමයිය 121 Child objetember all All Rights Reserved බස්නාහිර පළාත් අධ්යාපන දෙපාර්තමේන්ගුව, மேல் மாகாணக் கல்வித் திணைக்கை 🤉 Department of Education - Western Province අවසාන වාර ඇගයීම -2020ஆண்டிறுதி மதிப்பீடு Third Term Evaluation පවශ විෂයය ගේ ශිය) පැය 03 வினாத்தாள் } II STOW 10 ගණිතය யாடம் தரம் Subject Grade

- A කොටයින් පුශ්න පහකුත් B කොටසින් පුශ්න පහකුත් තෝරාගෙන පුශ්න දහයකට පිළිතුරු සපයන්න.
- 💠 එක් එක් පුශ්නයකට ලකුණු 10 බැගින් මෙම පුශ්න පනුයට ලකුණු 100ක් හිමිවේ.
- φ අරය r ද උස h ද වූ සිලින්ඩරයක පරිමාව πr²h ඉව.

A කොටස

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

- (01) (a) සුළු කරන්න. $2\frac{1}{3} \div 1\frac{3}{5}$ න් $1\frac{1}{4}$
 - (b) මෝටර් රථයක් ආනයනයේ දී 60%ක තීරු බදු මුදලක් ගෙවීමට ආනයනකරුට සිදු වූ අතර ඔහු විසින් 15%ක ලාභයක් ලැබෙන සේ මෝටර් රථය විකිණීමට අදහස් කර ඇත. මෝටර් රථයේ ආනයනික මිල රු. 2 500 000 ක් වූයේ නම ආනයනකරු විසින් මෝටර් රථය විකිණීමට ලකුණු කල මිල කීය ද?

(02) $y=3-x^2$ ශිතයේ පුස්තාරය ඇඳීම සඳහා සකස් කරන ලද අසම්පූර්ණ අගය වගුවක් පහත දක්වේ.

· x	-3	-2	-1	0	1	2	3
У	-6	-1	2	3	·	-1	-6

- (a) (i) වගුවේ හිස්තැන් පුරවන්න.
 - (ii) සම්මත අක්ෂ පද්ධතිය මත සුදුසු පරිමාණයක් යොදා ගනිමින් ඉහත වර්ගජ ශිුතයේ ප්‍රස්තාරය ප්‍රස්තාර කඩදාසියක් මත අඳින්න.
- (b) පුස්තාරය ඇසුරින්...

 - (ii) y=0 වන සමීකරණයේ මූල සොයන්න.
 - (iii) ශිතය ධනව වැඩිවන x හි පරාසය ලියන්න.
 - (iv) ඉහත ශිතය ඒකක එකකින් පහලට විස්ථාපනය කලවිට ලැබෙන ශිතයේ සමීකරණය ලියන්න.

- (03) (i) x²+4λ 12 හි සාධක සොයන්න.
 - (ii) x²-4 හා x²+4x-12 යන ප්‍රකාශනවල කුඩා පොදු ගුණාකාරය සොයන්න.

(iii) සුළු කරන්න.
$$\frac{1}{x^2-4} - \frac{1}{x^2+4x-12}$$

(04) (a) ව්සඳන්න.

$$5x - 2y = 10$$

$$2x + 3y = 23$$

(b) (i) රූපයේ දක්වෙන තිකෝණයේ වර්ගඵලය 33cm² ක් නම් දී ඇති මිනුම් ඇසුරින් වර්ගජ සමීකරණයක් ගොඩ නගන්න.

- (ii) වර්ගජ සමීකරණය විසඳීමෙන් නිකෝණයේ ලම්බ උස සොයන්න.
- (05) (a) ගොඩනැගිල්ලක පාමුල සිට 10m ක් ඇතින් සිටින පුද්ගලයකුට ගොඩනැගිල්ල මුදුනේ ආරෝහණ කෝණය 60° ක් ලෙස පෙනුනි. පුද්ගලයාගේ උස නොසලකා හැර පරිමාණ රූපයක් ඇඳීමෙන් ගොඩනැගිල්ලේ උස සොයන්න.
 - (b) 60kmh ක වේගයෙන් ගමන් ගන්නා දුම්රියකට 80m ක් දිග පාලමක් පසු කිරීමට තත්පර 12ක් ගත වූයේ නම් දුම්රියේ දිග ගණනය කරන්න.
- (06) පසුගිය මාසය තුල එක්තරා වසංගත රෝගයකට ගොදුරු වුත රෝගීන් සමූහයකගේ වයස පිළිබඳ රැස්කරන ලද තොරතුරු පහත වගුවේ දක්වේ.

වයස (අවු) .	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
රෝගීන් ගණන	2	5	9	15	-10	6	-3

- (i) මෙම වනාප්තියේ මාත පත්තිය කුමක් ද?
- (ii) (30 40) පන්තියේ මධ්‍ය අගය උපකල්පිත මධ්‍යත්‍ය ලෙස ගෙන රෝගයට ගොදුරු වූ රෝගියකුගේ මධ්‍යත්‍ය වයස ගණනය කරන්න.
- (iii) මෙම සමීක්ෂණයට අනුව රෝගයට ගොදුරු වූ වයස අවුරුදු 40ට වැඩි අයගේ ප්‍රතිශතය සොයන්න.

. B කොටස පුශ්න පහකට පමණක් පිළිතුරු පපයන්න.

- (07) පළමු පදය 7 වූ සමාත්තර ශ්‍රේධීයක 12 වන පදය 62 වේ.
 - (i) සමාන්තර ලේඪයේ පොදු අන්තරය සොයා එම ලේඨියේ 10 වන පදය සොයන්න.
 - (ii) ලේඪයේ මුල් පද 6 හි ඓකාය සොයන්න.
- (08) පහත දක්වෙන නිර්මාණය සඳහා cm/mm පරිමාණයක් සහිත සරල දාරයක් හා කවකවුවක් පමණක් භාවිත කරන්න. නිර්මාණ රේඛා පැහැදිලිව දක්වන්න.
 - (i) AB = 8cm ද ABC = 90 ද BC = 6cm ද වූ ABC නිකෝණය නිර්මාණය කරන්න.
 - (ii) AC හා BC රේඛා දෙකට සම දුරින් ගමන් කරන ලක්ෂායක පථය නිර්මාණය කරන්න.
 - (iii) AC රේඛාවේ ලම්බ සමච්ඡේදකය නිර්මාණය කරන්න.
 - (iv) ඉහත (ii) හා (iii) හි නිර්මාන රේඛා ඡේදනය වන ලක්ෂසය O ලෙස නම්කර අරය OC වූ වෘත්තය අඳින්න.
 - (v) එම වෘත්තයේ අරය මැත ලියන්න.
- (09) ABCD සමාන්තරාසුයේ AC විකර්ණයකි. B සහ D සිට AC විකර්ණයට ඇඳි ලම්බ පිළිවෙලින් BP හා DQ වේ.

- රූපය පිටපත් කරගෙන ඉහත දී ඇති දත්ත රූපය තුල ලකුණු කර ADQ හා BCP තිකෝණ අංගසම වන බව සාධනය කරන්න.
- (ii) හේතු පැහැදිලිව දක්වමින් BPDQ සමාන්තරාසුයක් වන බව සාධනය කරන්න.
- (10) O කේන්දුය වූ වෘත්තයේ පරිධිය මත A, B හා C ලක්ෂා පිහිටා ඇත.
 - (i) AC වෘත්ත චාපය මගින් කේන්දයේ ආපාතිත කෝණය හා වෘත්ත පරිධිය මත ආපාතිත කෝණය තම් කරන්න.
 - (ii) අර්ධ වෘත්තයේ කෝණය තම් කර එහි විශාලත්වය ලියා දක්වන්න.
 - (iii) AOC = 2BCO බව සාධනය කරන්න.
 - (iv) ඉහත සාධනය සඳහා ඔබ විසින් යොදාගත් පුමේයයක් නිවැරදිව ලියා දක්වන්න.

ලෝහ අපතේ නොයන සේ අරය අ ද උස h ද වූ සිලින්ඩරයක් තනතු ලැබේ.

- ප්‍රිස්මයේ පරිමාව a හා b ඇසුරෙන් ලියා දක්වන්න.
- (ii) සිලින්ඩරයේ උස $(h) = \frac{b}{\pi}$ බව පෙන්වන්න.
- (iii) $b=12~{
 m cm}$ ද $\pi=3.142$ ද ලෙස ගෙන ලහු වගුව ඇසුරෙන් h හි අගය සොයන්න.
- (12) පෞද්ගලික පන්තියක් සඳහා සහභාගී වූ ළමුන් 100ක් අතුරින් 60 දෙනෙක් ගැහැනු ළමුන් වූ අතර පන්ති සඳහා මෝටර්රථවලින් පැමිණි ළමුන් ගණන 32ක් විය. ඔවුන් අතුරින් මෝටර් රථවලින් පැමිණි ගැහැනු ළමුන් ගණන 20ක් නම්.
 - (i) ඉහත කොරතුරු ඇසුරින් පහත වෙන් රූපය සම්පූර්ණ කරන්න.

- (ii) මෝටර් රථවලින් පැමිණි පිරිමි ළමුන් ගණන සොයන්න.
- (iii) මෝටර් රථවලින් නොපැමිණි පිරීම් ළමුන් ගණන දක්වෙන පෙදෙස අඳුරු කර දක්වන්න.
- (iv) මෝටර් රථවලින් පැමිණි සියළුම ළමුන් ගැහැනු ළමුන් වූයේ නම් එම තොරතුරු ඇතුලන් වෙනත් වෙන් රූපයක් අඳින්න.

බස්නාතිර පළාත් අධනපන දෙපාර්තමේන්තුව

අවසාන වාර පරීකෂණය - 2020 ගණිතය - 10 ශුේණිය

I හා II පිළිතුරු පතුය

II පතුය			1 1	1	
11 Ogw			(iii) $\frac{1}{(x-2)(x+2)} - \frac{1}{(x-2)(x+6)}$	1	
(01) (a) $\frac{7}{3} \div \frac{8}{5}$ $\frac{5}{4}$			$= \frac{(x+6) - (x+2)}{(x-2)(x+2)(x+6)}$	1	
$= \frac{7}{3} \div \frac{8}{5} \text{ as } \frac{5}{4} \longrightarrow$	1			-	
5 5 1			$= \frac{x+6-x-2}{(x-2)(x+2)(x-6)}$	1	
$= \frac{7}{3} \times \frac{1}{2} \longrightarrow$	1		, , , , , , , , , , , , , , , , , , , ,		
$=\frac{7}{6}$	1		$= \frac{4}{(x-2)(x+2)(x-6)} \longrightarrow$	1	$\left \begin{array}{c} 4 \end{array} \right $
$= 1\frac{1}{6} \longrightarrow$	1				10
- 1 6	1	(4)	(04) (a) $15x - 6y = 30 \longrightarrow (3) \longrightarrow$	1	
(b) \emptyset_7 . 2 500 000 $\times \frac{60}{100}$	1		$4x + 6y = 46 \longrightarrow (4) \longrightarrow$	1	
Ø ₇ . 1 500 000 →	1		19x = 76		
			x = 4	1	
o ₇ . 4 000 000	1		$4 \times 4 + 6y = 46$	1	
	1		$y = 5 \longrightarrow$	1	(4)
⊘ ₇ . 600 000 →	1		$(b)(i) \frac{1}{2} \times (x+5) \times x = 33 \implies$	I	
♂ ₇ . 4 000 000 + 600 000			$x^2 + 5x = 66$ $x^2 + 5x - 66 = 0 \longrightarrow$	1	
Ø ₇ . 4 600 000 →	1	6		1	2
		10	(ii) $(x-6)(x+11)=0$ → $x=6$ ⊚න3 $x=-11$	2	
(02) (a) (i) $y = 3 - x^2$			ලම්බ උස = 6cm	1	(4)
$= 3 - 1^2$			Gew Cm oun	1	
= 2	1	(1)			10
(ii) අක්ෂ ලකුණු කිරීමට →	1		(05)(a) පරිමාණය ලිවීමට	1	
ලක්ෂාය ලකුණු කිරීමට →	1		තිරස් රේඛාව ඇඳීමට	1	
සුමට වකුය ඇඳීමට>	1	(3)	60° කෝණය ලකුණු කිරීමට	1	
(b) (i) 3	1	1	රූපය සම්පූර්ණ කිරීමට	1	
(ii) x = 1.7 ∞ x = -1.7 →	1+1	(2)	ගොඩනැගිල්ලේ උස සෙවීමට	1	(5)
			(b) දුම්රිය තත් $12\ $ දී $\ \ \ = \frac{60 \times 1000 \times 12}{60 \times 1000}$	2	
(iii) -1.7 ත් 0 ත් අතර			ගමන් කල දුර $\Big\} = {60 \times 60}$		
මන් -1.7 < x < 0 →	1+1	2	= 200m	1	
			දුම්රිමය් දිග = 200 - 80 – 120m	1	
(iv) $y = 2 - x^2$	1	(1)	= 120m	1	(5)
(02) (1) (2) (+ (1)	_	10			10
(03) (i) $(x-2)(x+6)$	2	2			H
(ii) $x^2 - 4 = (x - 2)(x + 2)$	2				
$x^2 + 4x - 12 = (x - 2)(x + 6)$					
1	2		I .		1 1

- 03 -

					Ī				
(06) (i)	(30 - 40	0)			1	1	(08) (i) AB රේඛාව ඇඳීමට	1	
(ii)	X	d	f	$f \times d$			90° කෝණය නිර්මාණයට	1	
	5	-30	2	-60			BC රේඛාව නිර්මාණයට →		
	15	-20	5	-100			ABC තිුකෝණය නිර්මාණයට	I	$\left \begin{pmatrix} 4 \end{pmatrix} \right $
	25	-10	9	-90			(ii)AĈB හි සමච්ඡේදකය	2	
	35	0	15	0			නිර්මාණයට	2	$ 2\rangle$
	45 55	+10 +20	10 6	+100 +120			(iii) AC රේඛාවේ ලම්බ	1	1
	65	+30	3	+90			සමච්ඡේදකය නිර්මාණයට		
			50	+ 60			(iv) කේන්දුය O ලෙස නම් කිරීමට වෘත්තය ඇඳීමට ————	1	
	x තීරය	ə —			1		(v) අරය මැන ලිවීමට ————	1	(2) (1)
	d තීරය	ə —			1		(v) 400 9(3) 6090	1	<u> </u>
1	fd තීරය	o —	Σ	`fd	1				10
මධ) පනපය	වයස =	$A + \frac{2}{3}$	$\frac{\Sigma f}{\Sigma f}$			(09) (i) D		
			a. (6	60 \			P		
		= .	35 + (-	$\left(\frac{50}{50}\right) \rightarrow$	2		1 1 1	2	
		=	35 + 1.	2	1		$A \xrightarrow{Q} B$	2	
			36.2	2.6	1		_	1	
	10		අවුරුදු	36 →	1	$ 7\rangle$	$AD = BC$ (සම්මුඛ පාද) \longrightarrow	1	
(b)	$\frac{19}{50} \times$	100%			1		$D\widehat{A}Q = B\widehat{C}P$ (ඒකාන්තර Δ) \longrightarrow	1	
	38 %				1	2	$\mathbf{AQD} = \mathbf{BPC}$ (ලම්බක) \longrightarrow	1	
						10	$\therefore \ \mathrm{ADQ} \ \Delta \equiv \mathrm{BCP}\Delta \ ($ කෝ.කෝ.පා $)$	1	6
(07) (i)	T = a +	(n = 1)	ı d —		1		(ii) DQP = BPQ (ලම්බක) →	1	
			ď		1		DQ / / BP (ඒකාන්තර ∡)→		
	$T_{12} = a - 62 = 7$				1		DQ = BP (අනුරූප අංග) →		
	55 = 11						∴ BPDQ ं කි. (සම්මුඛ පාද		
	5 = d				1		යුගලයක් සමාන හා		
	$T_{10} = a -$	+ 9d ·			1		සමාන්තර වීම) →	1	(4)
	= 7 -	+ 9 × 5			1				10
	= 7 -	+ 45					$igg(10)(i)$ කේන්දුයේ ආපාතිත $= \hat{AOC}$	1	
	= 52				1	6	7		
(ii)	$S_n = -$	$\frac{n}{2}$ {2a	ı + (n -	1) d}	1		පරිධිය මත ආපාතිත කෝණය	1	2
	$S_6 = \frac{1}{2}$	$\frac{6}{2}$ {2	× 7 + 5	\times 5	1		(ii) AĈB	1	
		{14 + 2		,			$A\hat{C}B = 90^{\circ}$	1	2
		`			1		(iii) OB = OC (අරය) ———	1	
		17 —			1	4	$ m O\hat{B}C = m O\hat{C}B$ (සමද්වීපාද Δ)	1	
	1	•		•	1	\vdash	$A\hat{O}C = 2 O\hat{B}C \longrightarrow$	1	
						10	∴AÔC = 2 OĈB වේ. → හෝ සුදුසු වෙනත් සාධනයකට	1	$\left \begin{array}{c} 4 \end{array} \right $
						- 04 -	10 ශේණීය - ගණිතය - බස්නාහිර පළාත - පිළි		

(iv) අදාල පුමේයයක් ලියා දක්වීමට	2	2 10	(12) (i) 100 E මෝටර් ජරවලින්		
(11) (i) හරස්කඩ වර්ගඵලය = $\frac{1}{2} \times a \times 2a$ = a^2 \longrightarrow පිස්මයේ පරිමාව = $a^2 \times b$ = a^2b \longrightarrow (ii) $\pi r^2 h = a^2 b$ $h = \frac{b}{\pi}$ \longrightarrow (iii) $h = \frac{12}{3.14}$ $\log h = \lg 12 - \lg 3.14$ \longrightarrow = $1.0792 - 0.4969$ \longrightarrow = 0.5823 \longrightarrow	1 1 1	3	වන් රූපය නම් කිරීමට \rightarrow එක් එක් කොටසේ අවයව ලියා දක්වීම \rightarrow (ii) 12 \rightarrow (iii) ϵ	1 4 1	(5) (1)
h = antilog 0.5823 $h = 3.822$	1	<u>(5)</u>	26 40	3	310