Introduction to Computer Programing C++ Real Problem

National Taiwan University
Dept. of Chemical Engineering
Prof. Chengche Hsu

Performing Differentiation

1. How to perform differentiation?

$$f'(x0) = ???$$

2. How small dx should be?

Find:
y'(1), y'(-4), and y'(4)
for
$$y=x^3 - 8x^2 - 6x + 50$$

Finding the real root(s) of a function

y-f(x₀)=f'(x₀)(x-x₀), it intersects with x axis at $x_1=x_0$ -f(x₀)/f'(x₀)

. . . .

$$x_{i+1}=x_i-f(x_i)/f'(x_i)$$

For any given function f(x):

- Start from x0 (initial guess)
- Find the tangent line at (x₀, f(x₀))
- Find new x1, and the tangent line at $(x_1, f(x_1))$
- Repeat the above steps until $x_i \sim x_{i+1}$

Notes:

- Requires a "reasonably close guess"
- Does not guarantee finding the (closest) root.

4

Test Your Understanding

- Find root(s) for
 - $y=x^3 8x^2 6x + 50$
 - Question: How to guarantee that all real roots are found?
- Using a "for" loop, find the roots for the following functions. Please plot using Excel first, then test using multiple initial guesses. Please use 10 iterations (i=1~10), and display the new x after each iteration.
 - $y=x^3-5x^2+3x+5$
 - $y=x^3-5x^2+3x+5-exp(x)/3$.

Performing Numerical Integration

Test Your Understanding

- Find the approximated value of $\int_{-2}^{2} \sin(x) dx$ with 100 increments and compare with the actual number.
- Find the approximated value of $\int_0^2 x^2 dx$ with 100 increments and compare with the actual number.
- Find the approximated value of $\int_2^4 \exp(x) * x^2 dx$ with 100 increments.
- Ask user to input a positive number t, and find approximated value of $\int_0^t x^2 dx$ with 100 increments and compare with the actual number.

- Calculate erf(0.1) with 10 increments between 0 and 0.1
- Find n needed such as the error for erf(0.1) is within 0.001 of the actual number
- Ask the user to input x, then output erf(x)

Error function is defined as:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) \, \mathrm{d}t$$

	Notes	for	error	fun	ction:
--	-------	-----	-------	-----	--------

- Complementary error function erfc(x)=1-erf(x)
- Error function is the solution of a 1D transient heat transfer problem.

X	x erf(x)		erf(x)	
0	0	1	0.842 700 793	
0.02	0.022 564 575	1.1	0.880 205 07	
0.04	0.045 111 106	1.2	0.910 313 978	
0.06	0.067 621 594	1.3	0.934 007 945	
0.08	0.090 078 126	1.4	0.952 285 12	
0.1	0.112 462 916	1.5	0.966 105 146	
0.2	0.222 702 589	1.6	0.976 348 383	
0.3	0.328 626 759	1.7	0.983 790 459	
0.4	0.428 392 355		0.989 090 502	
0.5	0.520 499 878	1.9	0.992 790 429	
0.6	0.603 856 091	2	0.995 322 265	
0.7	0.677 801 194	2.1	0.997 020 533	
8.0	0.742 100 965	2.2	0.998 137 154	
0.9	0.796 908 212	2.3	0.998 856 823	
1	0.842 700 793	0.4	0.000 044 400	

Terminal Velocity of Falling Particles

Based on the force balance on a spherical particle, the terminal velocity in a fluid is given:

$$v_t = \sqrt{\frac{4g(\rho_p - \rho)D_p}{3C_D\rho}}$$

v₊ is the terminal velocity $q=9.8m/s^2$

ρ: fluid density in kg/m³

D_n: particle diameter in m

C_D: drag coefficient

 $Re=D_p v_t \rho / \mu$

$$C_D = \frac{24}{Re}$$
 for $Re < 0.1$

$$\rho_p$$
: particle density in kg/m^3 $C_D = \frac{24}{Re}(1 + 0.14Re^{0.7})$ for $0.1 \le Re \le 1000$

$$C_D = 0.44$$
 for $1000 < Re \le 350000$

$$C_D = 0.19 - 8 \times 10^4 / Re$$
 for $350000 < Re$

Find the v_t for a coal particle (ρ_p =1800 kg/m^3, D_n =0.208*10⁻³ m) falling in water (ρ =994.6 kg/m³, μ =8.931*10⁻⁴ kg/m.s)

How to Solve – Strategy

$$v_t = v_t(C_D)$$

 $C_D = C_D(Re) = C_D(v_t)$

For their given forms, substitute v_t into C_D or C_D into v_t are not practical.

Solving this problem "iterately"

How to find vt?

Note: You'll need the ReCD(x) you created earlier.

Solving for vt

- 1. Machine precision monitor v_t at each iteration?
- 2. Count number of iterations done How to do this?
- 3. Is it necessary to do so many iterations?
- 4. How to set the new criteria such if the variation is within 0.01% then give the result?