$12a_{0295} (K12a_{0295})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3u^{45} - 6u^{44} + \dots + b + 3, \ -7u^{45} + 17u^{44} + \dots + 2a - 14, \ u^{46} - 3u^{45} + \dots + 4u - 2 \rangle \\ I_2^u &= \langle 33684u^{32}a - 254577u^{32} + \dots + 7807a - 17533, \ 2u^{32}a - 5u^{32} + \dots - 4a + 3, \ u^{33} + 2u^{32} + \dots - 2u - 1 \rangle \\ I_3^u &= \langle -u^2 + b - u + 1, \ u^3 + 2a + u - 2, \ u^4 - u^2 + 2 \rangle \\ I_4^u &= \langle b - 1, \ a + 1, \ u + 1 \rangle \\ I_5^u &= \langle b + 1, \ a + 1, \ u - 1 \rangle \\ I_6^u &= \langle b, \ a + 1, \ u - 1 \rangle \\ I_7^u &= \langle b - 1, \ a, \ u - 1 \rangle \\ I_8^u &= \langle -u^3 - u^2 + b - 1, \ u^3 + u^2 + a - u, \ u^4 + 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v + 1 \rangle \end{split}$$

* 9 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 125 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 3u^{45} - 6u^{44} + \dots + b + 3, -7u^{45} + 17u^{44} + \dots + 2a - 14, u^{46} - 3u^{45} + \dots + 4u - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{7}{2}u^{45} - \frac{17}{2}u^{44} + \dots + 10u + 7 \\ -3u^{45} + 6u^{44} + \dots + 7u - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{3}{2}u^{45} + \frac{7}{2}u^{44} + \dots + 4u - 2 \\ u^{45} - 2u^{44} + \dots - 3u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{9} - 2u^{7} + 3u^{5} - 2u^{3} + u \\ -u^{9} + u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}u^{45} - \frac{7}{2}u^{44} + \dots - 5u + 3 \\ -u^{45} + 2u^{44} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} + 1 \\ -u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{3}{2}u^{45} - \frac{3}{2}u^{44} + \dots - 3u - 1 \\ 2u^{45} - 7u^{44} + \dots - 7u + 7 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^{45} 8u^{44} + \cdots 2u + 4$

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$u^{46} + 19u^{45} + \dots + 19u + 1$
c_2, c_5, c_6 c_{12}	$u^{46} + u^{45} + \dots - 3u - 1$
c_3	$u^{46} + 3u^{45} + \dots - 1200u - 194$
c_4, c_9	$u^{46} - 3u^{45} + \dots + 4u - 2$
c ₇	$u^{46} - 21u^{45} + \dots - 27796u + 2962$
c_8, c_{10}	$u^{46} + 15u^{45} + \dots + 24u + 4$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{46} + 29y^{45} + \dots - 83y + 1$
c_2, c_5, c_6 c_{12}	$y^{46} - 19y^{45} + \dots - 19y + 1$
c_3	$y^{46} - 3y^{45} + \dots - 95192y + 37636$
c_4, c_9	$y^{46} - 15y^{45} + \dots - 24y + 4$
<i>c</i> ₇	$y^{46} + 9y^{45} + \dots - 47342296y + 8773444$
c_8, c_{10}	$y^{46} + 33y^{45} + \dots - 448y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.987506 + 0.181737I		
a = 0.353118 - 0.157922I	-0.01578 + 1.44584I	-12.13380 - 1.16212I
b = 1.104500 + 0.248593I		
u = -0.987506 - 0.181737I		
a = 0.353118 + 0.157922I	-0.01578 - 1.44584I	-12.13380 + 1.16212I
b = 1.104500 - 0.248593I		
u = 0.624787 + 0.751761I		
a = 0.501815 - 1.195750I	-1.03505 - 2.62041I	-12.25047 + 5.62134I
b = 0.27921 + 1.52890I		
u = 0.624787 - 0.751761I		
a = 0.501815 + 1.195750I	-1.03505 + 2.62041I	-12.25047 - 5.62134I
b = 0.27921 - 1.52890I		
u = 0.932010 + 0.249601I		
a = -0.114325 - 0.813437I	0.48280 - 3.89081I	-12.3138 + 7.4640I
b = -0.108703 + 0.755311I		
u = 0.932010 - 0.249601I		
a = -0.114325 + 0.813437I	0.48280 + 3.89081I	-12.3138 - 7.4640I
b = -0.108703 - 0.755311I		
u = 1.03795		
a = -0.425099	-5.06706	-16.3430
b = 0.441184		
u = -0.656480 + 0.675086I		
a = 0.421198 + 0.564603I	-0.056532 - 0.529762I	-9.92309 + 2.36241I
b = 0.364479 - 0.548670I		
u = -0.656480 - 0.675086I		
a = 0.421198 - 0.564603I	-0.056532 + 0.529762I	-9.92309 - 2.36241I
b = 0.364479 + 0.548670I		
u = 0.957126 + 0.460438I		
a = -0.173508 + 1.059270I	-2.47921 + 5.69529I	-15.9789 - 3.1429I
b = 0.660431 - 0.373019I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.957126 - 0.460438I		
a = -0.173508 - 1.059270I	-2.47921 - 5.69529I	-15.9789 + 3.1429I
b = 0.660431 + 0.373019I		
u = -1.069760 + 0.055455I		
a = -0.606557 - 0.782831I	-6.77795 - 3.22325I	-19.8771 + 4.6627I
b = 0.110005 - 0.642276I		
u = -1.069760 - 0.055455I		
a = -0.606557 + 0.782831I	-6.77795 + 3.22325I	-19.8771 - 4.6627I
b = 0.110005 + 0.642276I		
u = -1.064240 + 0.153207I		
a = -0.689961 + 0.702318I	-4.26259 + 11.90660I	-17.9405 - 9.1988I
b = -1.50763 - 0.88276I		
u = -1.064240 - 0.153207I		
a = -0.689961 - 0.702318I	-4.26259 - 11.90660I	-17.9405 + 9.1988I
b = -1.50763 + 0.88276I		
u = 0.687563 + 0.827125I		
a = -3.10547 - 1.38060I	2.36760 + 11.90970I	-10.87368 - 6.80495I
b = 3.34622 - 0.75008I		
u = 0.687563 - 0.827125I		
a = -3.10547 + 1.38060I	2.36760 - 11.90970I	-10.87368 + 6.80495I
b = 3.34622 + 0.75008I		
u = 0.863194 + 0.660192I		
a = 0.498220 - 0.862239I	1.90782 - 2.56381I	-6.43986 + 3.61212I
b = 0.078376 + 0.670779I		
u = 0.863194 - 0.660192I		
a = 0.498220 + 0.862239I	1.90782 + 2.56381I	-6.43986 - 3.61212I
b = 0.078376 - 0.670779I		
u = 0.726882 + 0.813399I		
a = 2.23393 + 0.39337I	6.48924 + 0.76026I	-5.47164 + 1.79704I
b = -2.01663 + 0.93850I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u =	= 0.726882 - 0.813399I			
a =	= 2.23393 - 0.39337I	6.48924 - 0.76026I	-5.47164 - 1.79704I	
b =	= -2.01663 - 0.93850I			
u =	= -0.761471 + 0.808932I			
a =	= -1.55718 + 1.35768I	7.06928 - 2.51400I	-5.65805 + 2.94720I	
	= 2.01414 + 0.41223I			
u =	= -0.761471 - 0.808932I			
a =	=-1.55718-1.35768I	7.06928 + 2.51400I	-5.65805 - 2.94720I	
	= 2.01414 - 0.41223I			
u =	= -0.815580 + 0.797638I			
a =	= 2.73888 - 0.86284I	4.61938 + 8.64883I	-8.79522 - 7.48354I	
	= -2.59337 - 1.69608I			
u =	= -0.815580 - 0.797638I			
a =	= 2.73888 + 0.86284I	4.61938 - 8.64883I	-8.79522 + 7.48354I	
<u>b</u> =	= -2.59337 + 1.69608I			
u =	0.0000=== 0.000000=			
	= -0.527497 + 0.683258I	-3.55351 - 9.40266I	-16.3537 + 9.9962I	
	= -0.730063 + 0.019372I			
u =	0.000 0.00000-			
	= -0.527497 - 0.683258I	-3.55351 + 9.40266I	-16.3537 - 9.9962I	
	= -0.730063 - 0.019372I		_	
	= -0.991896 + 0.659941I			
a =	0.1_0000 0.1_000	-1.04556 + 5.73841I	-11.05429 - 7.34426I	
	= -0.026130 - 0.933046I			
	= -0.991896 - 0.659941I	1 0 1550 5 500 15	11 05 400 - 5 0 4400 5	
a =	0.22000	-1.04556 - 5.73841I	-11.05429 + 7.34426I	
	= -0.026130 + 0.933046I			
	= -0.929854 + 0.761506I	4.00000 0.700007	0.00040 + 0.440077	
	= -1.21193 + 2.23762I	4.26620 - 2.79398I	-9.33642 + 2.11087I	
	= 3.11564 - 0.90437I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.929854 - 0.761506I		
a = -1.21193 - 2.23762I	4.26620 + 2.79398I	-9.33642 - 2.11087I
b = 3.11564 + 0.90437I		
u = 1.016200 + 0.678830I		
a = 1.28721 - 0.66759I	-2.18659 - 2.82834I	-14.4909 + 0.I
b = 0.11699 + 1.72866I		
u = 1.016200 - 0.678830I		
a = 1.28721 + 0.66759I	-2.18659 + 2.82834I	-14.4909 + 0.I
b = 0.11699 - 1.72866I		
u = -0.973166 + 0.747201I		
a = 1.45384 - 1.05199I	6.41991 + 8.35794I	-7.07346 - 8.25317I
b = -2.40070 - 0.28498I		
u = -0.973166 - 0.747201I		
a = 1.45384 + 1.05199I	6.41991 - 8.35794I	-7.07346 + 8.25317I
b = -2.40070 + 0.28498I		
u = 0.994894 + 0.735728I		
a = -1.01818 - 2.04408I	5.66935 - 6.57875I	-7.01388 + 3.35805I
b = 2.40436 + 0.51843I		
u = 0.994894 - 0.735728I		
a = -1.01818 + 2.04408I	5.66935 + 6.57875I	-7.01388 - 3.35805I
b = 2.40436 - 0.51843I		
u = 1.019120 + 0.727882I		
a = 2.04434 + 2.70103I	1.3568 - 17.7372I	-12.0000 + 11.5303I
b = -3.96989 - 0.01287I		
u = 1.019120 - 0.727882I		
a = 2.04434 - 2.70103I	1.3568 + 17.7372I	-12.0000 - 11.5303I
b = -3.96989 + 0.01287I		
u = 0.420136 + 0.618183I		
a = 0.091569 + 0.240275I	-2.09088 + 4.75292I	-12.79925 - 4.51898I
b = 0.775179 - 0.545225I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.420136 - 0.618183I		
a = 0.091569 - 0.240275I	-2.09088 - 4.75292I	-12.79925 + 4.51898I
b = 0.775179 + 0.545225I		
u = 0.175033 + 0.649364I		
a = -0.38522 + 1.64160I	-0.25533 - 9.46021I	-10.70549 + 7.71683I
b = 0.405182 + 0.541225I		
u = 0.175033 - 0.649364I		
a = -0.38522 - 1.64160I	-0.25533 + 9.46021I	-10.70549 - 7.71683I
b = 0.405182 - 0.541225I		
u = 0.045128 + 0.600618I		
a = 0.796115 - 1.095320I	3.23919 + 1.06884I	-5.04128 - 2.43336I
b = -0.290859 - 0.327309I		
u = 0.045128 - 0.600618I		
a = 0.796115 + 1.095320I	3.23919 - 1.06884I	-5.04128 + 2.43336I
b = -0.290859 + 0.327309I		
u = -0.454468		
a = 0.512306	-0.646543	-15.2580
b = 0.297284		

II.
$$I_2^u = \langle 33684u^{32}a - 254577u^{32} + \dots + 7807a - 17533, \ 2u^{32}a - 5u^{32} + \dots - 4a + 3, \ u^{33} + 2u^{32} + \dots - 2u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.156182au^{32} + 1.18040u^{32} + \dots - 0.0361987a + 0.0812951 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0987940au^{32} - 0.489797u^{32} + \dots + 0.728290a + 1.20993 \\ 0.228199au^{32} + 1.59843u^{32} + \dots - 0.339819a - 0.210575 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{9} - 2u^{7} + 3u^{5} - 2u^{3} + u \\ -u^{9} + u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.00898127au^{32} - 0.408163u^{32} + \dots + 1.42984a - 0.162734 \\ 0.228199au^{32} + 1.59843u^{32} + \dots - 0.339819a - 0.210575 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} + 1 \\ -u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0361987au^{32} + 2.08130u^{32} + \dots + 1.25544a - 0.472103 \\ 2u^{31} - 10u^{29} + \dots - au - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} = 4u^{32} - 20u^{30} - 4u^{29} + 72u^{28} + 16u^{27} - 180u^{26} - 56u^{25} + 360u^{24} + 128u^{23} - 580u^{22} - 248u^{21} + 772u^{20} + 384u^{19} - 848u^{18} - 500u^{17} + 760u^{16} + 548u^{15} - 532u^{14} - 496u^{13} + 264u^{12} + 372u^{11} - 52u^{10} - 220u^9 - 48u^8 + 92u^7 + 56u^6 - 24u^5 - 28u^4 - 4u^3 + 4u^2 - 10u^2 + 34u^2 - 34u^2$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{66} + 36u^{65} + \dots + 492u + 49$
c_2, c_5, c_6 c_{12}	$u^{66} + 2u^{65} + \dots - 32u - 7$
c_3	$(u^{33} + u^{31} + \dots - 8u - 1)^2$
c_4, c_9	$(u^{33} + 2u^{32} + \dots - 2u - 1)^2$
	$(u^{33} + 6u^{32} + \dots + 128u + 23)^2$
c_8, c_{10}	$(u^{33} + 10u^{32} + \dots - 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{66} - 12y^{65} + \dots - 14116y + 2401$
c_2, c_5, c_6 c_{12}	$y^{66} - 36y^{65} + \dots - 492y + 49$
<i>c</i> ₃	$(y^{33} + 2y^{32} + \dots - 2y - 1)^2$
c_4, c_9	$(y^{33} - 10y^{32} + \dots - 2y - 1)^2$
<i>C</i> ₇	$(y^{33} + 14y^{32} + \dots - 2062y - 529)^2$
c_8, c_{10}	$(y^{33} + 26y^{32} + \dots + 6y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.014300 + 0.118417I		
a = -0.526921 + 0.504523I	-6.89406 + 3.13953I	-20.3425 - 5.3611I
b = -1.16627 - 1.84224I		
u = -1.014300 + 0.118417I		
a = -1.16439 - 0.93165I	-6.89406 + 3.13953I	-20.3425 - 5.3611I
b = -0.343946 - 0.462272I		
u = -1.014300 - 0.118417I		
a = -0.526921 - 0.504523I	-6.89406 - 3.13953I	-20.3425 + 5.3611I
b = -1.16627 + 1.84224I		
u = -1.014300 - 0.118417I		
a = -1.16439 + 0.93165I	-6.89406 - 3.13953I	-20.3425 + 5.3611I
b = -0.343946 + 0.462272I		
u = -0.877024 + 0.414488I		
a = 0.264209 + 0.985853I	-0.262282 - 0.735872I	-12.67313 - 0.76984I
b = 0.172888 - 0.597335I		
u = -0.877024 + 0.414488I		
a = -0.147704 - 0.570462I	-0.262282 - 0.735872I	-12.67313 - 0.76984I
b = 0.899250 + 0.290937I		
u = -0.877024 - 0.414488I		
a = 0.264209 - 0.985853I	-0.262282 + 0.735872I	-12.67313 + 0.76984I
b = 0.172888 + 0.597335I		
u = -0.877024 - 0.414488I		
a = -0.147704 + 0.570462I	-0.262282 + 0.735872I	-12.67313 + 0.76984I
b = 0.899250 - 0.290937I		
u = 1.039060 + 0.162429I		
a = -0.574713 - 0.703403I	-1.75770 - 6.51294I	-14.8938 + 5.9887I
b = -1.17278 + 1.02414I		
u = 1.039060 + 0.162429I		
a = 0.456077 + 0.016656I	-1.75770 - 6.51294I	-14.8938 + 5.9887I
b = 1.178570 - 0.286332I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.039060 - 0.162429I		
a = -0.574713 + 0.703403I	-1.75770 + 6.51294I	-14.8938 - 5.9887I
b = -1.17278 - 1.02414I		
u = 1.039060 - 0.162429I		
a = 0.456077 - 0.016656I	-1.75770 + 6.51294I	-14.8938 - 5.9887I
b = 1.178570 + 0.286332I		
u = 0.705062 + 0.789522I		
a = 0.16155 - 1.51310I	-0.79038 + 2.85888I	-11.96531 - 3.31371I
b = 1.09869 + 1.85563I		
u = 0.705062 + 0.789522I		
a = -2.85859 - 2.52886I	-0.79038 + 2.85888I	-11.96531 - 3.31371I
b = 3.42979 + 0.01935I		
u = 0.705062 - 0.789522I		
a = 0.16155 + 1.51310I	-0.79038 - 2.85888I	-11.96531 + 3.31371I
b = 1.09869 - 1.85563I		
u = 0.705062 - 0.789522I		
a = -2.85859 + 2.52886I	-0.79038 - 2.85888I	-11.96531 + 3.31371I
b = 3.42979 - 0.01935I		
u = -0.752029 + 0.757937I		
a = -0.20561 + 1.43451I	0.112103 + 0.911954I	-9.65130 - 3.13722I
b = 1.55176 - 1.42868I		
u = -0.752029 + 0.757937I		
a = 3.32131 + 0.09950I	0.112103 + 0.911954I	-9.65130 - 3.13722I
b = -1.95320 - 2.11555I		
u = -0.752029 - 0.757937I		
a = -0.20561 - 1.43451I	0.112103 - 0.911954I	-9.65130 + 3.13722I
b = 1.55176 + 1.42868I		
u = -0.752029 - 0.757937I		
a = 3.32131 - 0.09950I	0.112103 - 0.911954I	-9.65130 + 3.13722I
b = -1.95320 + 2.11555I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.930115		
a = -1.58086	-5.02884	-16.7130
b = -0.257939		
u = 0.930115		
a = -0.0786238	-5.02884	-16.7130
b = 1.80245		
u = 0.906723 + 0.575511I		
a = -1.40173 + 0.68737I	-4.48415 - 2.21654I	-18.1634 + 2.4842I
b = 1.36348 - 0.94558I		
u = 0.906723 + 0.575511I		
a = -0.09683 + 1.72632I	-4.48415 - 2.21654I	-18.1634 + 2.4842I
b = -1.322680 + 0.118060I		
u = 0.906723 - 0.575511I		
a = -1.40173 - 0.68737I	-4.48415 + 2.21654I	-18.1634 - 2.4842I
b = 1.36348 + 0.94558I		
u = 0.906723 - 0.575511I		
a = -0.09683 - 1.72632I	-4.48415 + 2.21654I	-18.1634 - 2.4842I
b = -1.322680 - 0.118060I		
u = -0.703249 + 0.821130I		
a = 1.96275 - 0.43057I	4.82578 - 6.26770I	-7.81018 + 3.24511I
b = -1.87462 - 0.57170I		
u = -0.703249 + 0.821130I		
a = -2.82714 + 1.57243I	4.82578 - 6.26770I	-7.81018 + 3.24511I
b = 3.17494 + 0.60153I		
u = -0.703249 - 0.821130I		
a = 1.96275 + 0.43057I	4.82578 + 6.26770I	-7.81018 - 3.24511I
b = -1.87462 + 0.57170I		
u = -0.703249 - 0.821130I		
a = -2.82714 - 1.57243I	4.82578 + 6.26770I	-7.81018 - 3.24511I
b = 3.17494 - 0.60153I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.789844 + 0.799846I		
a = -1.08493 - 1.02737I	6.34781 - 3.04389I	-6.17382 + 2.90426I
b = 1.39311 - 0.44605I		
u = 0.789844 + 0.799846I		
a = 2.75022 + 0.72353I	6.34781 - 3.04389I	-6.17382 + 2.90426I
b = -2.50757 + 1.57404I		
u = 0.789844 - 0.799846I		
a = -1.08493 + 1.02737I	6.34781 + 3.04389I	-6.17382 - 2.90426I
b = 1.39311 + 0.44605I		
u = 0.789844 - 0.799846I		
a = 2.75022 - 0.72353I	6.34781 + 3.04389I	-6.17382 - 2.90426I
b = -2.50757 - 1.57404I		
u = -0.963141 + 0.632636I		
a = 0.708655 + 1.042530I	-1.26824 + 5.40417I	-13.1681 - 6.2152I
b = 0.261323 - 1.067210I		
u = -0.963141 + 0.632636I		
a = 0.264954 - 0.626134I	-1.26824 + 5.40417I	-13.1681 - 6.2152I
b = -0.793319 - 0.573051I		
u = -0.963141 - 0.632636I		
a = 0.708655 - 1.042530I	-1.26824 - 5.40417I	-13.1681 + 6.2152I
b = 0.261323 + 1.067210I		
u = -0.963141 - 0.632636I		
a = 0.264954 + 0.626134I	-1.26824 - 5.40417I	-13.1681 + 6.2152I
b = -0.793319 + 0.573051I		
u = -0.600852 + 0.549903I		
a = 0.601180 + 0.828746I	-0.353626 - 0.577287I	-10.91131 + 0.00847I
b = -0.013590 - 0.731533I		
u = -0.600852 + 0.549903I		
a = 0.0498087 + 0.0120002I	-0.353626 - 0.577287I	-10.91131 + 0.00847I
b = 0.754916 + 0.119020I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.600852 - 0.549903I		
a = 0.601180 - 0.828746I	-0.353626 + 0.577287I	-10.91131 - 0.00847I
b = -0.013590 + 0.731533I		
u = -0.600852 - 0.549903I		
a = 0.0498087 - 0.0120002I	-0.353626 + 0.577287I	-10.91131 - 0.00847I
b = 0.754916 - 0.119020I		
u = -0.965280 + 0.710510I		
a = 1.58839 - 0.20834I	-0.54191 + 4.66940I	-11.13674 - 2.61989I
b = -0.92369 - 1.80389I		
u = -0.965280 + 0.710510I		
a = -0.75089 + 2.83490I	-0.54191 + 4.66940I	-11.13674 - 2.61989I
b = 2.70961 - 1.66384I		
u = -0.965280 - 0.710510I		
a = 1.58839 + 0.20834I	-0.54191 - 4.66940I	-11.13674 + 2.61989I
b = -0.92369 + 1.80389I		
u = -0.965280 - 0.710510I		
a = -0.75089 - 2.83490I	-0.54191 - 4.66940I	-11.13674 + 2.61989I
b = 2.70961 + 1.66384I		
u = 0.950716 + 0.751979I		
a = 0.994748 + 0.610801I	5.85251 - 2.78863I	-7.09178 + 2.57820I
b = -1.70633 + 0.12370I		
u = 0.950716 + 0.751979I		
a = -1.20786 - 2.30306I	5.85251 - 2.78863I	-7.09178 + 2.57820I
b = 3.04193 + 0.84808I		
u = 0.950716 - 0.751979I		
a = 0.994748 - 0.610801I	5.85251 + 2.78863I	-7.09178 - 2.57820I
b = -1.70633 - 0.12370I		
u = 0.950716 - 0.751979I		
a = -1.20786 + 2.30306I	5.85251 + 2.78863I	-7.09178 - 2.57820I
b = 3.04193 - 0.84808I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.998168 + 0.717071I		
a = 1.71463 - 0.23872I	-1.67944 - 8.54919I	-13.8165 + 8.1542I
b = -0.48172 + 2.14666I		
u = 0.998168 + 0.717071I		
a = 3.01380 + 2.02593I	-1.67944 - 8.54919I	-13.8165 + 8.1542I
b = -4.03037 + 0.96164I		
u = 0.998168 - 0.717071I		
a = 1.71463 + 0.23872I	-1.67944 + 8.54919I	-13.8165 - 8.1542I
b = -0.48172 - 2.14666I		
u = 0.998168 - 0.717071I		
a = 3.01380 - 2.02593I	-1.67944 + 8.54919I	-13.8165 - 8.1542I
b = -4.03037 - 0.96164I		
u = -1.009690 + 0.731074I		
a = -1.04859 + 1.84188I	3.89061 + 12.09090I	-9.56427 - 8.11579I
b = 2.16527 - 0.25007I		
u = -1.009690 + 0.731074I		
a = 2.11702 - 2.33765I	3.89061 + 12.09090I	-9.56427 - 8.11579I
b = -3.76945 - 0.18941I		
u = -1.009690 - 0.731074I		
a = -1.04859 - 1.84188I	3.89061 - 12.09090I	-9.56427 + 8.11579I
b = 2.16527 + 0.25007I		
u = -1.009690 - 0.731074I		
a = 2.11702 + 2.33765I	3.89061 - 12.09090I	-9.56427 + 8.11579I
b = -3.76945 + 0.18941I		
u = -0.129012 + 0.620035I		
a = 0.848786 + 0.874401I	1.97739 + 4.07711I	-7.27799 - 3.88410I
b = -0.502349 + 0.193772I		
u = -0.129012 + 0.620035I		
a = 0.01854 - 1.69641I	1.97739 + 4.07711I	-7.27799 - 3.88410I
b = 0.209851 - 0.482305I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.129012 - 0.620035I		
a = 0.848786 - 0.874401I	1.97739 - 4.07711I	-7.27799 + 3.88410I
b = -0.502349 - 0.193772I		
u = -0.129012 - 0.620035I		
a = 0.01854 + 1.69641I	1.97739 - 4.07711I	-7.27799 + 3.88410I
b = 0.209851 + 0.482305I		
u = 0.159946 + 0.484229I		
a = -0.0999950 + 0.0977691I	-3.28246 - 1.28200I	-12.00329 + 5.16805I
b = 1.209480 - 0.222381I		
u = 0.159946 + 0.484229I		
a = 0.48900 + 2.99039I	-3.28246 - 1.28200I	-12.00329 + 5.16805I
b = 0.174771 + 0.129985I		
u = 0.159946 - 0.484229I		
a = -0.0999950 - 0.0977691I	-3.28246 + 1.28200I	-12.00329 - 5.16805I
b = 1.209480 + 0.222381I		
u = 0.159946 - 0.484229I		
a = 0.48900 - 2.99039I	-3.28246 + 1.28200I	-12.00329 - 5.16805I
b = 0.174771 - 0.129985I		

III.
$$I_3^u = \langle -u^2 + b - u + 1, \ u^3 + 2a + u - 2, \ u^4 - u^2 + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{3} - \frac{1}{2}u + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + 2 \\ 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ -u^{2} + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{3} + u^{2} - 1 \\ u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} - \frac{1}{2}u + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 20$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_{2}, c_{6}	$(u+1)^4$
$c_3,c_4,c_7 \ c_9$	$u^4 - u^2 + 2$
c ₈	$(u^2 - u + 2)^2$
c_{10}	$(u^2 + u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2 - y + 2)^2$
c_8,c_{10}	$(y^2 + 3y + 4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.978318 + 0.676097I		
a = 0.713457 - 1.154170I	-2.46740 - 5.33349I	-18.0000 + 5.2915I
b = 0.47832 + 1.99897I		
u = 0.978318 - 0.676097I		
a = 0.713457 + 1.154170I	-2.46740 + 5.33349I	-18.0000 - 5.2915I
b = 0.47832 - 1.99897I		
u = -0.978318 + 0.676097I		
a = 1.28654 - 1.15417I	-2.46740 + 5.33349I	-18.0000 - 5.2915I
b = -1.47832 - 0.64678I		
u = -0.978318 - 0.676097I		
a = 1.28654 + 1.15417I	-2.46740 - 5.33349I	-18.0000 + 5.2915I
b = -1.47832 + 0.64678I		

IV.
$$I_4^u = \langle b-1, a+1, u+1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_4 \\ c_5, c_7, c_8 \\ c_{11}, c_{12}$	u-1
c_2, c_6, c_9 c_{10}	u+1

Crossings		Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	-6.57974	-24.0000
b = 1.00000		

V.
$$I_5^u = \langle b+1, a+1, u-1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -24

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_8 \\ c_9, c_{11}, c_{12}$	u-1
c_2, c_3, c_4 c_6, c_7, c_{10}	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6	y-1	
c_7, c_8, c_9 c_{10}, c_{11}, c_{12}		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-6.57974	-24.0000
b = -1.00000		

VI.
$$I_6^u = \langle b, \ a+1, \ u-1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_5	u		
c_3, c_4, c_6 c_9, c_{12}	u-1		
c_7, c_8, c_{10} c_{11}	u+1		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5	y		
c_3, c_4, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-4.93480	-18.0000
b = 0		

VII.
$$I_7^u = \langle b-1,\ a,\ u-1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_8 c_{10}	u+1
$c_2, c_3, c_4 \ c_5, c_9$	u-1
c_6, c_{11}, c_{12}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_8, c_9, c_{10}	y-1
c_6, c_{11}, c_{12}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-4.93480	-18.0000
b = 1.00000		

VIII.
$$I_8^u = \langle -u^3 - u^2 + b - 1, \ u^3 + u^2 + a - u, \ u^4 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - u^{2} + u \\ u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - 2u^{2} + u + 1 \\ u^{3} + 2u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u^{2} \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + u^{2} - u \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + u^{2} - u \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	$(u-1)^4$
$\begin{matrix}c_3,c_4,c_7\\c_9\end{matrix}$	$u^4 + 1$
c_5, c_{12}	$(u+1)^4$
c_8, c_{10}	$(u^2+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2+1)^2$
c_8, c_{10}	$(y+1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 1.41421 - 1.00000I	-1.64493	-16.0000
b = 0.29289 + 1.70711I		
u = 0.707107 - 0.707107I		
a = 1.41421 + 1.00000I	-1.64493	-16.0000
b = 0.29289 - 1.70711I		
u = -0.707107 + 0.707107I		
a = -1.41421 + 1.00000I	-1.64493	-16.0000
b = 1.70711 - 0.29289I		
u = -0.707107 - 0.707107I		
a = -1.41421 - 1.00000I	-1.64493	-16.0000
b = 1.70711 + 0.29289I		

IX.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	u-1
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	u
c_5, c_{12}	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_5 c_6, c_{11}, c_{12}	y-1	
c_3, c_4, c_7 c_8, c_9, c_{10}	y	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u(u-1)^{11}(u+1)(u^{46}+19u^{45}+\cdots+19u+1)$ $\cdot (u^{66}+36u^{65}+\cdots+492u+49)$
c_2, c_6	$u(u-1)^{6}(u+1)^{6}(u^{46}+u^{45}+\cdots-3u-1)$ $\cdot (u^{66}+2u^{65}+\cdots-32u-7)$
c_3	$u(u-1)^{3}(u+1)(u^{4}+1)(u^{4}-u^{2}+2)(u^{33}+u^{31}+\cdots-8u-1)^{2}$ $\cdot (u^{46}+3u^{45}+\cdots-1200u-194)$
c_4, c_9	$u(u-1)^{3}(u+1)(u^{4}+1)(u^{4}-u^{2}+2)(u^{33}+2u^{32}+\cdots-2u-1)^{2}$ $\cdot (u^{46}-3u^{45}+\cdots+4u-2)$
c_5, c_{12}	$u(u-1)^{7}(u+1)^{5}(u^{46}+u^{45}+\cdots-3u-1)$ $\cdot (u^{66}+2u^{65}+\cdots-32u-7)$
c_7	$u(u-1)(u+1)^{3}(u^{4}+1)(u^{4}-u^{2}+2)(u^{33}+6u^{32}+\cdots+128u+23)^{2}$ $\cdot (u^{46}-21u^{45}+\cdots-27796u+2962)$
c_8	$u(u-1)^{2}(u+1)^{2}(u^{2}+1)^{2}(u^{2}-u+2)^{2}$ $\cdot ((u^{33}+10u^{32}+\cdots-2u+1)^{2})(u^{46}+15u^{45}+\cdots+24u+4)$
c_{10}	$u(u+1)^{4}(u^{2}+1)^{2}(u^{2}+u+2)^{2}(u^{33}+10u^{32}+\cdots-2u+1)^{2}$ $\cdot (u^{46}+15u^{45}+\cdots+24u+4)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y(y-1)^{12}(y^{46} + 29y^{45} + \dots - 83y + 1)$ $\cdot (y^{66} - 12y^{65} + \dots - 14116y + 2401)$
c_2, c_5, c_6 c_{12}	$y(y-1)^{12}(y^{46} - 19y^{45} + \dots - 19y + 1)$ $\cdot (y^{66} - 36y^{65} + \dots - 492y + 49)$
c_3	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}(y^{33}+2y^{32}+\cdots-2y-1)^{2}$ $\cdot (y^{46}-3y^{45}+\cdots-95192y+37636)$
c_4, c_9	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}(y^{33}-10y^{32}+\cdots-2y-1)^{2}$ $\cdot (y^{46}-15y^{45}+\cdots-24y+4)$
C ₇	$y(y-1)^{4}(y^{2}+1)^{2}(y^{2}-y+2)^{2}$ $\cdot (y^{33}+14y^{32}+\cdots-2062y-529)^{2}$ $\cdot (y^{46}+9y^{45}+\cdots-47342296y+8773444)$
c_8,c_{10}	$y(y-1)^{4}(y+1)^{4}(y^{2}+3y+4)^{2}(y^{33}+26y^{32}+\cdots+6y-1)^{2}$ $\cdot (y^{46}+33y^{45}+\cdots-448y+16)$