

Universidade de São Paulo Instituto de Física de São Carlos - IFSC

FCM 0410 Física para Engenharia Ambiental

Aplicações das Leis de Newton

Prof. Dr. José Pedro Donoso

Agradescimentos

O docente da disciplina, Jose Pedro Donoso, gostaria de expressar o seu agradecimento a Flávia O. S. de Sá Lisboa pelo auxílio na montagem da página /web/ da disciplina.

Parte das figuras utilizadas nos slides foram obtidas do texto "Fisica" de P.A. Tipler e G. Mosca, através do acesso às paginas para os professores das editora LTC (Livros Técnicos e Científicos).

Atrito: a força de atrito estático f_s se opõe a força F aplicada sobre a caixa

©2008 by W.H. Freeman and Company

Atrito: área microscópica de contato entre as superfícies

Física Halliday, Resnick, Walker Gráfico da força de atrito exercida sobre a caixa pelo piso em função da força aplicada: a força de atrito cinético independe da força horizontal

©2008 by W.H. Freeman and Company

Table 5-1 Approximate Values of Frictional Coefficients

Materials	$\mu_{ extsf{s}}$	μ_{k}
Steel on steel	0.7	0.6
Brass on steel	0.5	0.4
Copper on cast iron	1.1	0.3
Glass on glass	0.9	0.4
Teflon on Teflon	0.04	0.04
Teflon on steel	0.04	0.04
Rubber on concrete (dry)	1.0	0.80
Rubber on concrete (wet)	0.30	0.25
Waxed ski on snow (0°C)	0.10	0.05

Ao abrir o livro lentamente, a moeda começa escorregar, em θ = $\theta_{\rm max}$ O coeficiente de atrito estático é $\mu_{\rm e}$ = $\tan\theta_{\rm max}$

©2008 by W.H. Freeman and Company

Diagrama de corpo livre para a moeda na capa do livro

©2008 by W.H. Freeman and Company

Exemplo: puxando um trenó considerando atrito estático e cinético

©2008 by W.H. Freeman and Company

Diagrama de corpo livre para o trenó

©2008 by W.H. Freeman and Company

Atrito: carros e freios antibloqueio (freios ABS)

Movimento em trajetória curva

©2008 by W.H. Freeman and Company

Vista de cima de um disco de metal que se move com **v** constante em uma trajetória circular de raio **R**. A força centrípeta que age sobre o corpo é a tração **T** da corda

*Física*Halliday, Resnick, Walker

Curvas inclinadas

©2008 by W.H. Freeman and Company

Um carro faz uma curva compensada (inclinada) com velocidade constante

*Física*Halliday, Resnick, Walker

(*b*)

Exemplo: percorrendo uma curva inclinada

©2008 by W.H. Freeman and Company

O centro de massa

©2008 by W.H. Freeman and Company

Posição do centro de massa de um sistema de 2 partículas

Exemplo: centro de massa de uma molécula de água

©2008 by W.H. Freeman and Company

Exemplo: centro de massa de uma folha de compensado

©2008 by W.H. Freeman and Company

Exemplo de movimento do centro de massa

©2008 by W.H. Freeman and Company