TP 5: HACHEUR DEVOLTEUR VARIATEUR DE VITESSE POUR MACHINE A COURANT CONTINU

Objectif : Il s'agit essentiellement de relever et analyser les formes d'ondes et les caractéristiques d'un hacheur série alimentant une machine à courant continu à flux constant.

Principe du hacheur dévolteur

Débit sur une charge résistive

- 1. Afficher les chronogrammes de $V_{
m ch}(t)$ et $i_{
m ch}(t)$, pour

• 2. Donner les intervalles de conduction des interrupteurs

Si la période est TT, alors :

- K1 conduit pour $0 \le t < \alpha T$
- K2 conduit pour $\alpha T \leq t < T$
- 3. La tension U_{ch} est-elle sinusoïdale ? Alternative ?

le signal n'alterne as entre les valeurs positive et negative alors ce n'est pas sinusoïdal et n'est pas alternative.

• 4. Quelle est sa période?, sa fréquence?

$$T=2s$$
alors $f=\frac{1}{T}=\frac{1}{2}=0.5~\mathrm{Hz}$

- 5. Calculer la valeur moyenne $\langle u_{\rm ch} \rangle$ de $U_{\rm ch}.$

+ 6. Calculer la valeur efficace de $u_{\mathrm{ch}}.$

$$V_{\rm eff} = V_{\rm max} * \sqrt{2} = 100 * \sqrt{2} = 141.421 V$$

Variateur de vitesse

1. Tracer l'allure de la tension de charge u_MCC.

K1 passant : $u_MCC=E=V_DC1$ K2 passant : $u_MCC=0$

- 2. Déterminer l'expression de la valeur moyenne de la tension de charge.
- 3. En déduire la relation liant V_DC, E et α .

- 4. Tracer l'allure de la vitesse du moteur et relever sa valeur en régime permanent.
- 5. Si k=2.25, déterminer la valeur du rapport cyclique me permettant d'avoir une vitesse de $1000 \mathrm{tr/mn}$
- 6. Représenter l'allure du courant i(t) sur une durée de 2T

Dans le troisième graphe, la courbe en blue représente la valeur moyenne de $U_{\rm ch}$ qui se stabilise en $U_{\rm chmoy}=20V$