

## **COURSEPACK (Fall 2023-24)**

## **SCHEME**

The scheme is an overview of work-integrated learning opportunities and gets students out into the real world. This will show what a course entails.

| Course Title         | Advanced Data Structures and Algorithms |           |                    | Cou         | rse T                                | Гуре      | Integra               | ted                                  |      |  |
|----------------------|-----------------------------------------|-----------|--------------------|-------------|--------------------------------------|-----------|-----------------------|--------------------------------------|------|--|
| Course Code          | E2UC503C                                |           |                    | Clas        | SS                                   |           |                       |                                      |      |  |
|                      | Activity                                | Credits   | Credit Hours       |             |                                      | mber      |                       | of Assessment i<br>emester Weightage |      |  |
|                      | Lecture                                 | 3         | 3                  | Clas        | ses p                                | er s      | emester               | weigii                               | tage |  |
| Instruction delivery | Tutorial                                | 0         | 0                  | <u> </u>    | rial                                 | tical     | <b>5</b> .            |                                      |      |  |
| J                    | Practical                               | 1         | 2                  | Theory      | Tutorial                             | Practical | Self-<br>study        | CIE                                  | SEE  |  |
|                      | Self-study                              | 1         | 10                 |             |                                      |           | <b>0</b> 1 <b>0</b> 1 |                                      |      |  |
|                      | Total                                   | 5         | 15                 | 45          | 0                                    | 30        | 150                   | 50%                                  | 50%  |  |
| Course Lead          | Dr. Anupam K                            | lumar     | Course             | Dr.         | Naba                                 | anita     | Mahata                | a                                    |      |  |
|                      | Sharma                                  |           | Coordinator        |             |                                      |           |                       |                                      |      |  |
| Names                |                                         | Theory    | '                  |             |                                      | Pr        | actical               |                                      |      |  |
| Course               | Nabanita Maha                           |           |                    | Nal         | oanit                                | a Ma      |                       |                                      |      |  |
| Instructors          | Vipul Narayan                           |           |                    |             |                                      |           |                       |                                      |      |  |
|                      | Vijayant Pawa                           |           |                    | _           | Vipul Narayan<br>Vijayant Pawar      |           |                       |                                      |      |  |
|                      | Biswa Mohan                             |           |                    |             | Biswa Mohan Sahoo                    |           |                       |                                      |      |  |
|                      | Gopal Chandra                           | Go        | Gopal Chandra Jana |             |                                      |           |                       |                                      |      |  |
|                      | Alok Kumar                              |           |                    |             | Alok Kumar                           |           |                       |                                      |      |  |
|                      | Mohd. Arquan                            | n         |                    | Mo          | Mohd. Arquam                         |           |                       |                                      |      |  |
|                      | Abdul Mazid                             |           |                    | Ab          | Abdul Mazid                          |           |                       |                                      |      |  |
|                      | Anupam Kuma                             | ar Sharma |                    | An          | Anupam Kumar Sharma                  |           |                       |                                      |      |  |
|                      | Aditya Kishor                           | e Saxena  |                    | Ad          | Aditya Kishore Saxena                |           |                       |                                      |      |  |
|                      | Krishna Kant A                          | Agrawal   |                    |             | Krishna Kant Agrawal                 |           |                       |                                      |      |  |
|                      | Gyanendra Ku                            | mar       |                    | Gy          | anen                                 | dra K     | Lumar                 |                                      |      |  |
|                      | Pragya                                  |           |                    |             | gya                                  |           |                       |                                      |      |  |
|                      | Shivani Goswa                           | ami       |                    |             |                                      |           | vami                  |                                      |      |  |
|                      | Abdul Aleem                             |           |                    |             |                                      | leen      | 1                     |                                      |      |  |
|                      | Ravi Kumar                              |           |                    |             | vi Ku                                |           |                       |                                      |      |  |
|                      | Vimal Kumar                             |           |                    | Vimal Kumar |                                      |           |                       |                                      |      |  |
|                      | G. Sakthi                               |           |                    |             | G. Sakthi                            |           |                       |                                      |      |  |
|                      | Abhist Kumar                            |           |                    |             |                                      | Kuma      |                       |                                      |      |  |
|                      | Vimal Kumar<br>Himanshu Verma<br>Pragya |           |                    |             | Vimal Kumar                          |           |                       |                                      |      |  |
|                      |                                         |           |                    |             | Himanshu Verma                       |           |                       |                                      |      |  |
|                      |                                         |           |                    |             | Pragya                               |           |                       |                                      |      |  |
|                      | Gyanendra Ku                            |           |                    |             | Gyanendra Kumar<br>Biswa Mohan Sahoo |           |                       |                                      |      |  |
|                      | Biswa Mohan                             |           |                    |             |                                      |           |                       |                                      |      |  |
|                      | Aditya Kishor                           | e saxena  |                    |             | Aditya Kishore Saxena                |           |                       |                                      |      |  |
|                      | Abdul Mazid                             |           |                    | Ab          | Abdul Mazid                          |           |                       |                                      |      |  |



| Vijayant Pawar         | Vijayant Pawar         |
|------------------------|------------------------|
| Vipul Narayan          | Vipul Narayan          |
| Raghvendra Ajay Mishra | Raghvendra Ajay Mishra |
|                        |                        |

#### **COURSE OVERVIEW**

An advanced course in data structures and algorithms typically builds upon the foundational knowledge of basic data structures and algorithms. It delves deeper into more complex data structures and advanced algorithmic techniques. This course explores advanced data structures and algorithmic techniques used in computer science and software development. It focuses on the design, analysis, and implementation of data structures and algorithms for solving complex computational problems efficiently.

### PREREQUISITE COURSE

| PREREQUISITE COURSE<br>REQUIRED     | YES                      |                                |
|-------------------------------------|--------------------------|--------------------------------|
| If, yes please fill in the Details. | Prerequisite course code | Prerequisite course name       |
|                                     |                          | Data Structure and algorithms. |

#### **COURSE OBJECTIVE**

- 1. To study and implement complex data structures.
- 2. To learn advanced algorithm design paradigms and techniques.
- 3. To study and analyze algorithms for solving complex problems.
- 4. To apply the knowledge gained to implement and analyze algorithms and data structures in programming assignments and projects.

## **COURSE OUTCOMES(COs)**

After the completion of the course, the student will be able to:

| CO No.    | Course                                                                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
|           | Outcomes                                                                                                                                  |
| E2UC503.1 | Explain the concept of Dynamic memory management, priority queue, hashing,                                                                |
|           | backtracking, graphs, dynamic programming, and greedy algorithms.                                                                         |
|           | Apply dynamic programming, greedy algorithms, and backtracking to solve real world problems.                                              |
| E2UC503.3 | Analyze the problem for suitable data structures and algorithms.                                                                          |
|           | Develop a project based on dynamic programming, greedy algorithms, backtracking, and hashing evaluating the scenario as per requirements. |

## **BLOOM'S LEVEL OF THE COURSE OUTCOMES**

Bloom'staxonomy is a set of hierarchical models used for the classification of educational learning objectives into levels of complexity and specificity. The learning domains are cognitive, affective, and



## psychomotor.

## **COMPREHENSIVE**

| CO No.     | Remember KL1 | Understand KL 2 | Apply KL 3 | Analyse KL 4 | Evaluate KL 2 | Create KL 6 |
|------------|--------------|-----------------|------------|--------------|---------------|-------------|
| E2UC 503.1 |              |                 |            |              |               |             |
| E2UC 503.2 |              |                 |            |              |               |             |
| E2UC 503.3 |              |                 |            |              |               |             |
| E2UC 503.4 |              |                 |            |              | $\sqrt{}$     |             |

#### PROGRAM OUTCOMES (POs): AS DEFINED BY CONCERNED THE APEX BODIES

**PO1** Computing Science knowledge: Apply the knowledge of mathematics, statistics, computing science and information science fundamentals to the solution of complex computer application problems.

**PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex computing science problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and computer sciences.

**PO3 Design/development of solutions:** Design solutions for complex computing problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

**PO4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

**PO5 Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern computing science and IT tools including prediction and modeling to complex computing activities with an understanding of the limitations.

**PO6 IT specialist and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional computing science and information science practice.

**PO7** Environment and sustainability: Understand the impact of the professional computing science solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**PO8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the computing science practice.

**PO9 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**PO10 Communication:** Communicate effectively on complex engineering activities with the IT analyst community and with society at large, such as, being able to comprehend and write



effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**PO11 Project management and finance:** Demonstrate knowledge and understanding of the computing science and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**PO12 Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

## PROGRAMME SPECIFIC OUTCOME (PSO):

## The students of Computer Science and Engineering shall:

**PSO1:** Have the ability to work with emerging technologies in computing requisite to Industry 4.0.

**PSO2:** Demonstrate Engineering Practice learned through industry internship and research project tosolve live problems in various domains

#### **COURSE ARTICULATIONMATRIX**

The Course articulation matrix indicates the correlation between Course Outcomes and Program Outcomes and their expected strength of mapping in three levels (low, medium, and high).

| COs#/<br>POs | P01 | P02 | P03 | P04 | P05 | 90d | PO7 | P08 | P09 | PO10 | P011 | PO12 | PS01 | PSO2 |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| E2UC 503.1   | 1   |     |     |     |     |     |     |     |     |      |      |      |      | 1    |
| E2UC 503.2   | 2   | 2   |     |     |     |     |     |     |     |      |      |      |      | 1    |
| E2UC 503.3   |     | 2   | 1   |     |     |     |     |     |     |      |      |      |      | 1    |
| E2UC 503.4   | 1   | 1   | 1   | 1   | 2   |     |     |     |     |      |      |      | 1    | 2    |

**Note:** 1-Low, 2-Medium, 3-High

#### **COURSE ASSESSMENT**

The course assessment patterns are the assessment tools used both in formative and summative examinations.

| Type of course | CIE                           |    |                       | Total | Marks | Final Marks     |
|----------------|-------------------------------|----|-----------------------|-------|-------|-----------------|
|                | Lab@<br>(Work<br>+<br>Record) |    | Course based project^ | CIE   | SEE   | CIE*0.5+SEE*0.5 |
| Comprehensive  |                               | 50 | 25                    | 100   | 100   | 100             |



## @Lab Work-15 marks + Lab Record-10 marks

^ Typical Rubric for the Course-based project

| Type of      | Preliminary | Technical | Technical | Viva-voce |
|--------------|-------------|-----------|-----------|-----------|
| Assessment   | Project     | Seminar 1 | Seminar 2 |           |
| Tools        | Plan        |           |           |           |
| Course-based | 05          | 05        | 05        | 10        |
| Project Work |             |           |           |           |

#### **COURSE CONTENT**

### THEORY+ PRACTICAL

#### **Contents**

## Theory

**Arrays:** Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D, 2-D, 3-D, Sparse Matrices and their representations.

**Linked lists:** Implementation of Singly Linked Lists. Operations on Linked List. Insertion, Deletion, Traversal.

**Stacks**: List Implementation of Stack, Application of stack: infix, Prefix and Postfix Expressions, infix to postfix expression, Evaluation of postfix expression,

**Recursion**- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search, Tower of Hanoi.

Queues: Operations on Queue: Create, Add, Delete, Full & Empty,

**Searching**, Index Sequential Search, Concept of Hashing & Collision resolution Techniques used in Hashing.

**Tree:** Linked List Representation, Binary Search Tree, Tree Traversal algorithms: In-order, Preorder, and Post-order, Constructing Binary Tree from given Tree Traversal, Operation of Insertion, Deletion, Searching Modification of data in Binary Search. Concept & Basic Operations for AVL Tree, B+ tree. Implementation of Quad tree and Oct Tree

**Graph**: Representations: Adjacency Matrices, Adjacency List, Graph Traversal: Depth First Search & Breadth First Search.

**Minimum Cost Spanning Trees:** Prims and Kruskal algorithm. Shortest Path algorithm: Warshal Algorithm.

**Dynamic Programming:** Elements of dynamic programming, Longest common subsequence, Optimal binary search trees, 0/1 Knapsack.

**Greedy Algorithms:** Elements of the greedy strategy, Offline caching, Fractional knapsack

Back Tracking: Sum of subset, N queens' problem



Bipartite Graphs: Maximum bipartite matching, The stable-marriage problem

**Trie** Data structure, Trie insert and search

Bitonic Sort and Radix sort

## Lab (To be implemented in Java and Python)

Write a program to implement Stack operations using linked list implementation of Stack.

Write a program to implement Tower of Hanoi.

Write a program for to convert infix expression to postfix and evaluate it.

Write a program to implement Queue operations using linked list implementation.

Write a program to implement Binary Search Tree.

Write a program to traverse a binary tree using PRE-ORDER, IN-ORDER, POST-ORDER traversal techniques.

Write a program to construct a binary tree using given tree traversal.

Write a program for B+ Tree

Write a program to implement AVL Tree.

Write a program to implement Quad Tree.

Write a program to implement Oct Tree.

Write a program to traverse a graph using breadth-first search (BFS).

Write a program to traverse a graph using depth-first search (DFS).

Write a program for Kruskal's algorithm for a given graph

Write a program for Prim's algorithm for a given graph

Write a program for all pairs shortest path.

Write a program for Longest Common Subsequence.

Write a program for 0/1 knapsack.

Write a program for fractional knapsack.

Write a program to implement N queens' problem.

Write a program to insert and delete in Trie data structure.

Write a program to implement Bitonic sort.

Write a program to implement Radix sort.



## LESSON PLAN FOR COMPREHENSIVE COURSES

FOR THEORY 15 weeks \* 3 Hours = 45 Classes) (1credit = 1Lecture Hour) FOR PRACTICAL 15 weeks \* 2Hours = 30 Hours lab sessions (1 credit = 2 lab hours)

| SL-<br>No | Topic for Delivery                                                                                                                    | Tutorial/ Practical<br>Plan | Skill                                                          | Competency                                                                                                                |  |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1         | Arrays: Definition, Single and<br>Multidimensional Arrays,<br>Representation of Arrays: Row<br>Major Order, and Column Major<br>Order | Theory                      |                                                                |                                                                                                                           |  |  |  |
| 2         | Derivation of Index Formulae for 1-D, 2-D array                                                                                       | Theory                      |                                                                |                                                                                                                           |  |  |  |
| 3         | Derivation of Index Formulae<br>for 3D array, Sparse Matrices,<br>and their representations                                           | Theory                      |                                                                |                                                                                                                           |  |  |  |
| 4         | Write a program to implement                                                                                                          | Practical                   |                                                                | Student will<br>be able to<br>apply data<br>structure<br>concepts<br>using static<br>and dynamic<br>memory<br>allocation. |  |  |  |
| 5         | Stack operations using linked list implementation of Stack.                                                                           | Practical                   |                                                                |                                                                                                                           |  |  |  |
| 6         | Implementation of Singly<br>Linked Lists                                                                                              | Theory                      | understand<br>concepts of<br>array, stack,<br>and linked list. |                                                                                                                           |  |  |  |
| 7         | Operations on Linked List:<br>Insertion, Deletion, Traversal                                                                          | Theory                      |                                                                |                                                                                                                           |  |  |  |
| 8         | Linked list Implementation of Stack                                                                                                   | Theory                      |                                                                |                                                                                                                           |  |  |  |
| 9         | Write a program to implement                                                                                                          | Practical                   |                                                                |                                                                                                                           |  |  |  |
| 10        | Tower of Hanoi.                                                                                                                       | Practical                   |                                                                |                                                                                                                           |  |  |  |
| 11        | Infix to postfix expression, Evaluation of postfix expression                                                                         | Theory                      |                                                                |                                                                                                                           |  |  |  |



| 12 | Recursion: Principles of recursion, Tail recursion                                                      | Theory    |                                                |                                          |  |  |  |
|----|---------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|------------------------------------------|--|--|--|
| 13 | Removal of recursion Problem solving using iteration and recursion with examples such as binary search  | Theory    |                                                |                                          |  |  |  |
| 14 | Write a program for to convert                                                                          | Practical |                                                |                                          |  |  |  |
| 15 | infix expression to postfix and evaluate it.                                                            | Practical |                                                |                                          |  |  |  |
| 16 | recursion examples: Tower of Hanoi.                                                                     | Theory    |                                                | Student will be able to                  |  |  |  |
| 17 | Queues: linked implementation<br>of queues Operations on Queue:<br>Create, Add, Delete, Full &<br>Empty | Theory    | understand<br>recursion, and<br>queue, hashing | apply<br>recursion,<br>queue,<br>hashing |  |  |  |
| 18 | Index Sequential Search                                                                                 | Theory    |                                                | concepts in complex problems.            |  |  |  |
| 19 | Write a program to implement                                                                            | Practical |                                                |                                          |  |  |  |
| 20 | Queue operations using linked list implementation.                                                      | Practical |                                                |                                          |  |  |  |
| 21 | Concept of Hashing & Collision resolution Techniques used in Hashing.                                   | Theory    |                                                |                                          |  |  |  |
| 22 | Linked List Representation,<br>Binary Search Tree,                                                      | Theory    |                                                |                                          |  |  |  |
| 23 | Operation of Insertion, Deletion,<br>Searching Modification of data<br>in Binary Search.                | Theory    |                                                |                                          |  |  |  |
| 24 | Write a program to implement                                                                            | Practical | understand<br>tree data                        | Student will be able to                  |  |  |  |
| 25 | Binary Search Tree.                                                                                     | Practical | structure,<br>balanced tree                    | solve<br>problems                        |  |  |  |
| 26 | Tree Traversal algorithms: Inorder, Pre-order, and Post-order,                                          | Theory    | - (AVL), Quad and Oct tree.                    | using tree data structure.               |  |  |  |
| 27 | Constructing Binary Tree from given Tree Traversal,                                                     | Theory    |                                                |                                          |  |  |  |
| 28 | Concept & Basic Operations for AVL Tree                                                                 | Theory    |                                                |                                          |  |  |  |



| 29 | Write a program to traverse a binary tree using PRE-ORDER,                          | Practical |                                                   |                                           |
|----|-------------------------------------------------------------------------------------|-----------|---------------------------------------------------|-------------------------------------------|
| 30 | IN-ORDER, POST-ORDER traversal techniques.                                          | Practical |                                                   |                                           |
| 31 | Insertion in AVL trees                                                              | Theory    |                                                   |                                           |
| 32 | Deletion in AVL trees                                                               | Theory    |                                                   |                                           |
| 33 | Implementation of Quad tree and Oct Tree                                            | Theory    |                                                   |                                           |
| 34 | Write a program to construct a                                                      | Practical |                                                   |                                           |
| 35 | binary tree using given tree traversal.                                             | Practical |                                                   |                                           |
| 36 | Introduction B+ tree, insertion and Deletion in B+ tree                             | Theory    |                                                   |                                           |
| 37 | Data Structure for Graph<br>Representations: Adjacency<br>Matrices, Adjacency List, | Theory    |                                                   |                                           |
| 38 | Graph Traversal: Depth First<br>Search, Breadth First Search                        | Theory    |                                                   | Student will be able to                   |
| 39 |                                                                                     | Practical | 1                                                 |                                           |
| 40 | Write a program for B+ Tree                                                         | Practical | understand                                        |                                           |
| 41 | Graph Traversal: Breadth First<br>Search                                            | Theory    | graph data<br>structure and                       |                                           |
| 42 | Spanning Trees, Minimum Cost<br>Spanning Trees: Prim's<br>algorithm                 | Theory    | its traversal,<br>spanning tree<br>and conversion | apply graph<br>algorithms in<br>problems. |
| 43 | Kruskal algorithm                                                                   | Theory    | of graph to MST.                                  |                                           |
| 44 | Write a program to implement                                                        | Practical |                                                   |                                           |
| 45 | AVL Tree.                                                                           | Practical |                                                   |                                           |
| 46 | Shortest Path algorithm:<br>Warshal's Algorithm                                     | Theory    |                                                   |                                           |
| 47 | Elements of dynamic programming                                                     | Theory    | understand<br>dynamic                             | Student will be able to                   |
| 48 | Longest common subsequence                                                          | Theory    | programming,                                      | apply a                                   |
| 49 | Write a program to implement Quad Tree.                                             | Practical | longest<br>common<br>subsequence,                 | concepts of dynamic programming           |
| 50 | Write a program to implement Oct Tree.                                              | Practical | 0/1 knapsack,<br>greedy                           | greedy<br>method, back                    |
| 51 | Optimal binary search trees (1)                                                     | Theory    | method,                                           | tracking, trie                            |



| 52 | Optimal binary search trees (2)                                       | Theory    | backtracking,         | data structure    |
|----|-----------------------------------------------------------------------|-----------|-----------------------|-------------------|
| 53 | 0/1 knapsack problem                                                  | Theory    | Bipartite graph, trie | in<br>programming |
| 54 | Write a program to traverse a graph using breadth-first search (BFS). | Practical | datastructure pro     | problems.         |
| 55 | Write a program to traverse a graph using depth-first search (DFS).   | Practical |                       |                   |
| 56 | Elements of the greedy strategy                                       | Theory    |                       |                   |
| 57 | Offline caching                                                       | Theory    |                       |                   |
| 58 | Fractional knapsack                                                   | Theory    |                       |                   |
| 59 | Write a program for Kruskal's algorithm for a given graph             | Practical |                       |                   |
| 60 | Write a program for Prim's algorithm for a given graph                | Practical |                       |                   |
| 61 | Back Tracking, Sum of subset                                          | Theory    |                       |                   |
| 62 | N queens' problem                                                     | Theory    |                       |                   |
| 63 | Bipartite graph, maximum bipartite matching                           | Theory    |                       |                   |
| 64 | Write a program for all pairs shortest path.                          | Practical |                       |                   |
| 65 | Write a program for Longest Common Subsequence.                       | Practical |                       |                   |
| 66 | The stable-marriage problem                                           | Theory    |                       |                   |
| 67 | Trie Data structure                                                   | Theory    |                       |                   |
| 68 | Trie insert and search                                                | Theory    |                       |                   |
| 69 | Write a program for 0/1 knapsack.                                     | Practical |                       |                   |
| 70 | Write a program to implement N queens' problem.                       | Practical |                       |                   |
| 71 | Trie delete                                                           | Theory    |                       |                   |
| 72 | Radix Sort                                                            | Theory    |                       |                   |
| 73 | Bitonic Sort                                                          | Theory    |                       |                   |
| 74 | Write a program to insert and delete in Trie data structure.          | Practical |                       |                   |
| 75 | Write a program to implement<br>Bitonic sort, radix sort              | Practical |                       |                   |



## **BIBLIOGRAPHY**

- ☐ **Text Book** Corman, Introduction to Algorithms
- □ Reference Books
  - R. Kruse etal, "Data Structures and Program Design in C", Pearson Education
  - G A V Pai, "Data Structures and Algorithms", TMH

Journals/Magazines/Govt. Reports/Gazatte/Industry Trends (Two Numbers)

- □ Webliography
  - https://www.geeksforgeeks.org/advanced-data-structures/
  - <a href="https://github.com/topics/advanced-data-structures">https://github.com/topics/advanced-data-structures</a>

#### **☐** SWAYAM/NPTEL/MOOCs Certification

- <a href="https://www.coursera.org/specializations/data-structures-algorithms">https://www.coursera.org/specializations/data-structures-algorithms</a>.
- <u>https://www.codespaces.com/best-data-structures-and-algorithms-courses-classes.html#3-data-structures-and-algorithms-nanodegree-certification-udacity</u>

•

#### PROBLEM-BASED LEARNING

Exercises in Problem-based Learning (Assignments) (Min 45 Problems\*)

| SNo | Problem                                                                         | KL |
|-----|---------------------------------------------------------------------------------|----|
| 1   | 2–Sum Problem: Finding two numbers in an array that add up to a given target    | К3 |
|     | value.                                                                          |    |
| 2   | Longest Common Subsequence Problem: Finding longest subsequence which is        | K4 |
|     | common in all given input sequences.                                            |    |
| 3   | Maximum Subarray Problem: Finding a contiguous subarray with the largest        | K3 |
|     | sum, within a given one-dimensional array A[1n] of numbers.                     |    |
|     | Coin Change Problem: Finding the number of ways to make sum by using            | K3 |
| 4   | different denominations from an integer array of coins[] of size N representing |    |
|     | different types of denominations and an integer sum.                            |    |
| 5   | 0–1 Knapsack Problem: Restrict the number of copies of each kind of item to     | K4 |
|     | zero or one.                                                                    |    |
| 6   | Subset Sum Problem: Checking if there is a subset of the given set whose sum    | K3 |
| 0   | is equal to the given sum.                                                      |    |
| 7   | Longest Palindromic Subsequence Problem: Finding a maximum-length               | K3 |
| /   | subsequence of a given string that is also a Palindrome.                        |    |
|     | Matrix Chain Multiplication Problem: Finding the most efficient way to          | K4 |
| 8   | multiply these matrices together such that the total number of element          |    |
|     | multiplications is minimum.                                                     |    |
| 9   | Longest Common Substring Problem: A set of strings can be found by building     | K3 |



|    | a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.                                                                    |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 10 | Rod Cutting Problem: A rod is given of length n. Another table is also provided, which contains different size and price for each size. Determine the maximum price by cutting the rod and selling them in the market.        | К3 |
| 11 | Word Break Problem: You will be given a string, say "s", and a dictionary of strings say "wordDict". You have to return true if s can be segmented into a space-separated sequence of one or more dictionary words.           | K3 |
| 12 | Edit Distance Problem: Quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other.                | K4 |
| 13 | Chess Knight Problem: A knight starting at any square of the board and moving to the remaining 63 squares without ever jumping to the same square more than once.                                                             | К3 |
| 14 | Partition Problem: A given set can be partitioned in such a way, that sum of each subset is equal.                                                                                                                            | К3 |
| 15 | 3–Partition Problem: Deciding whether a given multiset of integers can be partitioned into triplets that all have the same sum.                                                                                               | К3 |
| 16 | Snake and Ladder Problem: Write a function that returns the minimum number of jumps to take top or destination position. You can assume the dice you throw results in always favor of you means you can control the dice.     | K4 |
| 17 | Largest Consecutive Subarray Problem: Finding out the largest sum of the consecutive numbers of the array.                                                                                                                    | К3 |
| 18 | Dutch National Flag Problem: The flag of the Netherlands consists of three colors: white, red, and blue. The task is to randomly arrange balls of white, red, and blue such that balls of the same color are placed together. | К3 |
| 19 | Knight's Tour Problem: a puzzle where a chess knight is placed on an empty chess board and the goal is to move the knight to every square on the board exactly once without re-visiting any squares.                          | К3 |
| 20 | Maximum Sum Submatrix Problem: A 2D array arr[][] of dimension N*M is given, the task is to find the maximum sum sub-matrix from the matrix arr[][].                                                                          | K3 |
| 21 | Longest Palindromic Substring Problem: Finding a maximum-length contiguous substring of a given string that is also a palindrome.                                                                                             | K4 |
| 22 | Job Sequencing Problem: You have a single processor operating system and a set of jobs that have to be completed with given deadline constraints.                                                                             | K3 |
| 23 | N–Queens Problem: Placing N chess queens on an N×N chessboard so that no two queens attack each other.                                                                                                                        | К3 |
| 24 | Maximum Product Subarray Problem: Find the contiguous subarray within the array which has the largest product of its elements. You have to report this maximum product.                                                       | K3 |
| 25 | Longest Repeated Subsequence Problem: Find the length of the longest repeating subsequence in a given string such that the two subsequences don't have the same original string character at the same position.               | К3 |
| 26 | 3–Sum Problem: Given an array and a value, find if there is a triplet in array whose sum is equal to the given value. If there is such a triplet present in array, then print the triplet and return true. Else return false. | К3 |



| 27 | Shortest Common Super Sequence Problem: Given two strings X and Y of lengths m and n respectively, find the length of the smallest string which has both, X and Y as its sub-sequences.                                                                                                                                                                                                                                                                                                                                   | K4 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 28 | Longest Alternating Subarray Problem: Given an array containing positive and negative elements, find a subarray with alternating positive and negative elements, and in which the subarray is as long as possible.                                                                                                                                                                                                                                                                                                        | К3 |
| 29 | 4–Sum Problem: Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that $a + b + c + d = target$ we need to find all unique quadruplets in the array which gives the sum of target.                                                                                                                                                                                                                                                                                   | К3 |
| 30 | K-Partition Problem: Partitioning an array of positive integers into k disjoint subsets that all have an equal sum, and they completely cover the set.                                                                                                                                                                                                                                                                                                                                                                    | K3 |
| 31 | Minimum Sum Partition Problem: Given a set of positive integers S, partition set S into two subsets, S1 and S2, such that the difference between the sum of elements in S1 and S2 is minimized. The solution should return the minimum absolute difference between the sum of elements of two partitions.                                                                                                                                                                                                                 | K3 |
| 32 | Wildcard Pattern Matching Problem: We have a string and a pattern then we have to compare the string with a pattern that whether the pattern matches with a string or not                                                                                                                                                                                                                                                                                                                                                 | К3 |
| 33 | Maximum Overlapping Intervals Problem: Print the maximum number of overlap among these intervals at any time.                                                                                                                                                                                                                                                                                                                                                                                                             | K3 |
| 34 | Graph Coloring Problem: Assigning colors to the vertices such that no two adjacent vertexes have the same color.                                                                                                                                                                                                                                                                                                                                                                                                          | К3 |
| 35 | Longest Increasing Subsequence Problem: Given an array arr[] of size N, the task is to find the length of the Longest Increasing Subsequence (LIS).                                                                                                                                                                                                                                                                                                                                                                       | K4 |
| 36 | Pots of Gold Game Problem: Two players X and Y are playing a game in which there are pots of gold arranged in a line, each containing some gold coins. They get alternating turns in which the player can pick a pot from one of the ends of the line. The winner is the player who has a higher number of coins at the end. The objective is to maximize the number of coins collected by X, assuming Y also plays optimally. Return the maximum coins X could get while playing the game. Initially, X starts the game. | K3 |
| 37 | Activity Selection Problem: Selection of non-conflicting activities that needs to be executed by a single person or machine in a given time frame.                                                                                                                                                                                                                                                                                                                                                                        | K3 |
| 38 | Longest Alternating Subsequence Problem: One wants to find a subsequence of a given sequence in which the elements are in alternating order, and in which the sequence is as long as possible.                                                                                                                                                                                                                                                                                                                            | К3 |
| 39 | Longest Consecutive Subsequence Problem: First sort the array and find the longest subarray with consecutive elements. After sorting the array and removing the multiple occurrences of elements, run a loop and keep a count and max (both initially zero).                                                                                                                                                                                                                                                              | K4 |
| 40 | Weighted Interval Scheduling Problem: A value is assigned to each executed task and the goal is to maximize the total value. The solution need not be unique.                                                                                                                                                                                                                                                                                                                                                             | K3 |
| 41 | Longest Bitonic Subarray Problem: Find a subarray of a given sequence in which the subarray's elements are first sorted in increasing order, then in decreasing order, and the subarray is as long as possible.                                                                                                                                                                                                                                                                                                           | К3 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |



| 42 | Water Jugs Problem: You are given two jugs, a 4-gallon one and a 3-gallon one, a pump which has unlimited water which you can use to fill the jug, and the             | K4 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | ground on which water may be poured. Neither jug has any measuring markings on it. How can you get exactly 2 gallons of water in the 4-gallon jug?                     |    |
| 43 | Hat Check Problem: Given a positive number n, find the total number of ways in which n hats can be returned to n people such that no hat makes it back to its owner.   | К3 |
| 44 | Merging Overlapping Intervals: Start from the first interval and compare it with all other intervals for overlapping.                                                  | K4 |
| 45 | Longest Common Prefix (LCP) Problem: An array of strings is the common prefix between 2 most dissimilar strings.                                                       | K4 |
| 46 | Maximum Product Rod Cutting Problem: Get the maximum product by making a cut at different positions and comparing the values obtained after a cut.                     | K4 |
| 47 | Box Stacking Problem: Pile up boxes one on top of the other so that you form the maximum height of box pile-up.                                                        | K4 |
| 48 | Maximum Product Subset Problem: Given an integer array, find the maximum product of its elements among all its subsets.                                                | K4 |
| 49 | Maximum Independent Set Problem: Finding the largest independent set in a graph, where an independent set is a set of vertices such that no two vertices are adjacent. | K4 |

# STUDENT-CENTEREDLEARNING (SELF-LEARNING TOWARDS LIFE-LONG-LEARNING)

Self-Learning (it's a typical course-based project to be carried out by a whole class in groups of four students each; they should exhibit higher level KLs)

The students, in a group, are expected to conceive an idea based on the content (objectives/outcomes) and apply suitable knowledge to demonstrate their learning.

## A) COURSE-BASED PROJECT (Psychomotor skills) (Min 45 Projects\*)

To enhance their skill set in the integrated course, the students are advised to execute course-based **design projects**. Some sample projects are given below:

| SNo | Suggested<br>Projects     | KL |
|-----|---------------------------|----|
| 1   | Snake Game                | K5 |
| 2   | Sudoku                    | K5 |
| 3   | To-Do list                | K5 |
| 4   | Social Media Network      | K6 |
| 5   | Phonebook                 | K5 |
| 6   | Library Management System | K6 |
| 7   | Maze                      | K5 |



| 8  | Music Playlist                 | K5 |
|----|--------------------------------|----|
| 9  | Calendar                       | K5 |
| 10 | Student Grade Checker          | K5 |
| 11 | Flight Route Planner           | K5 |
| 12 | Spell Checker                  | K5 |
| 13 | Web Crawler                    | K5 |
| 14 | File Compression Tool          | K6 |
| 15 | Real-Time Trafic Analysis      | K5 |
| 16 | Shopping Cart App              | K5 |
| 17 | Word Frequency Counter         | K5 |
| 18 | Online Bookstore               | K6 |
| 19 | Decision Support System        | K5 |
| 20 | Banking System                 | K5 |
| 21 | Tic-Tac-Toe                    | K5 |
| 22 | Memory Matching Game           | K5 |
| 23 | Tower of Hanoi Puzzle          | K5 |
| 24 | Crossword Puzzle               | K6 |
| 25 | Hangman                        | K5 |
| 26 | Real Estate Property Search    | K5 |
| 27 | Email Spam Filter              | K6 |
| 28 | Contacts directory System      | K5 |
| 29 | LIBRARY MANAGEMENT SYSTEM      | K5 |
| 30 | Travelling Agency Project In C | K5 |
| 31 | Traffic Light Implementation   | K6 |
| 32 | Tic Tac Toe Game               | K5 |
| 33 | Telephone Directory Project    | K5 |
| 34 | Restaurant billing Project     | K5 |
| 35 | Travelling Agency Project      | K5 |
| 36 | Hospital Management System     | K5 |
| 37 | Restaurant billing Project     | K5 |
| 38 | Travelling Agency Project      | K5 |



| 39 | Banking Management System Project  | K5 |
|----|------------------------------------|----|
| 40 | Train Reservation System           | K5 |
| 41 | Supermarket Billing System Project | K5 |
| 42 | Cruise Management Project          | K6 |
| 43 | Diabetes Analysis Project          | K6 |
| 44 | Calendar Application               | K6 |
| 45 | 3D Bounce game                     | K6 |

## B) SELF-LEARNINGTHROUGH MOOCs (Cognitive Skills): Certification

- 1. "Algorithms Specialization" by Stanford University on Coursera: This specialization covers multiple courses on algorithms and data structures, including "Divide and Conquer, Sorting, and Searching" and "Graph Search, Shortest Paths, and Data Structures."
- 2. "Data Structures and Algorithms" by University of California San Diego & National Research University Higher School of Economics on Coursera: This course covers essential data structures and algorithms, and the programming assignments are often in C++.
- 3. "Data Structures and Algorithms The Complete Masterclass" on Udemy: This course covers a wide range of data structures and algorithms topics using C++ and includes coding exercises.
- 4. "Mastering Data Structures & Algorithms using C and C++" on Udemy: Another comprehensive course that covers data structures and algorithms with a focus on C and C++ programming languages.
- 5. "Data Structures and Algorithms in C++" by Coding Blocks on YouTube: This is a free YouTube series that covers data structures and algorithms in C++.