

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV INFORMAČNÍCH SYSTÉMŮ DEPARTMENT OF INFORMATION SYSTEMS

SYNTAKTICKÁ ANALÝZA ZALOŽENÁ NA NĚKOLIKA GRAMATIKÁCH

PARSING BASED ON SEVERAL GRAMMARS

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

ONDŘEJ KOUMAR

AUTHOR

VEDOUCÍ PRÁCE

prof. RNDr. ALEXANDR MEDUNA, CSc.

SUPERVISOR

BRNO 2024

Do tohoto odstavce bude zapsán výtah (abstrakt) práce v českém (slovenském) jazyce.
Abstract Do tohoto odstavce bude zapsán výtah (abstrakt) práce v anglickém jazyce.
Klíčová slova Sem budou zapsána jednotlivá klíčová slova v českém (slovenském) jazyce, oddělená čárkami.
Keywords Sem budou zapsána jednotlivá klíčová slova v anglickém jazyce, oddělená čárkami.

KOUMAR, Ondřej. Syntaktická analýza založená na několika gramatikách. Brno, 2024. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Vedoucí

Abstrakt

Citace

práce prof. RNDr. Alexandr Meduna, CSc.

Syntaktická analýza založená na několika gramatikách

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana X... Další informace mi poskytli... Uvedl jsem všechny literární prameny, publikace a další zdroje, ze kterých jsem čerpal.

Ondřej Koumar 18. března 2024

Poděkování

V této sekci je možno uvést poděkování vedoucímu práce a těm, kteří poskytli odbornou pomoc (externí zadavatel, konzultant apod.).

Obsah

1	Úvod	4
2	Abstrakt	
3	Základy teorie formálních jazyků3.1 Abeceda, řetězec a jazyk	6 6 6 6
4	Důležité pojmy syntaktické analýzy [[rozdelit na vice kapitol? srazit nektere pojmy do jedne sekce/rozdelit do vice? jake dalsi pojmy doplnit?]] 4.1 Derivační krok 4.2 Množiny potřebné k sestrojení LL tabulky 4.3 LL tabulka 4.4 Zásobníkový automat 4.5 Prediktivní syntaktická analýza 4.6 Precedenční tabulka 4.7 Precedenční syntaktická analýza 4.8 Abstraktní syntaktický strom	77 77 77 88 88 88 88
5	Cooperating distributed gramatický systém 5.1 Derivační krok v CDGS	9 9 10
6	Představení jazyka Koubp [[opet si nejsem jisty nazvem + co vsechno vubec napsat?]] 6.1 Gramatický systém definujíci syntax jazyka Koubp	11 12 12 12 12 12
7	Implementace syntaktického analyzátoru pro jazyk Koubp [[Urcite rozdelit na vice sekci, co pripadne z projektu doplnit?]] 7.1 Hlavní myšlenky	13 13

Literatura						
8	Záv	ěr	14			
		Abstraktní syntaktický strom				

Seznam obrázků

$\mathbf{\acute{U}vod}$

Abstrakt

Základy teorie formálních jazyků

- 3.1 Abeceda, řetězec a jazyk
- 3.2 Chomského hierarchie
- 3.3 Bezkontextová gramatika

Definice 1. Bezkontextová gramatika je čtveřice G = (N, T, P, S), kde:

- N je konečná množina neterminálních symbolů,
- T je konečná množina terminálních symbolů,
- P je konečná množina přepisovacích pravidel ve tvaru $A \to x, \, A \in N$ a $x \in (N \cup \Sigma)^*,$
- $S \in N$ je výchozí symbol gramatiky.

[[derivacni krok sem misto k syntakticke analyze?]]

3.4 Konečný automat

Definice 2.

3.5 [[doplnit vice veci?]]

Důležité pojmy syntaktické analýzy [[rozdelit na vice kapitol? srazit nektere pojmy do jedne sekce/rozdelit do vice? jake dalsi pojmy doplnit?]]

4.1 Derivační krok

Myšlenka *derivačního kroku* je aplikovat pravidlo z množiny pravidel bezkontextové gramatiky, čímž se část původního řetězce přepíše na novou.

Definice 3. Nechť G=(N,T,P,S) je BKG, $u,v\in(N\cup T)^*$ a $p=A\to x\in P$. Potom uAv přímo derivuje uxv za použití p v G, zapsáno $uAv\Rightarrow uxv[p]$, zjednodušeně $uAv\Rightarrow uxv$.

Sekvence derivačních kroků

[[definici jsem nasel v prezentacich ifj, nicmene to nevypada nejformalneji; bude stacit nebo radsi z literatury?]]

4.2 Množiny potřebné k sestrojení LL tabulky

Je možné říci, že G provádí derivační krok z uAv do uxv.

[[tady by mohlo byt Empty(x), First(x), Follow(x), Predict(x) + algoritmy projejich sestaveni?]]

4.3 LL tabulka

[[algoritmus pro sestaveni tabulky?]]

4.4 Zásobníkový automat

Zásobníkový automat je rozšíření konečného automatu, popsaného v definici 2, o zásobník, matematicky přesněji o zásobníkovou abecedu a počáteční symbol na zásobníku.

Definice 4. Zásobníkový automat (ZA) je sedmice $M = (Q, \Sigma, \Gamma, R, s, S, F)$, kde:

- Q je konečná množina stavů,
- Σ je vstupní abeceda,
- Γ je zásobníková abeceda,
- R je konečná množina pravidel tvaru $Apa \to wq$, kde $A \in \Gamma$, $p, q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$,
- $s \in Q$ je počáteční stav,
- $S \in \Gamma$ je počáteční symbol na zásobníku,
- $F \subseteq Q$ je množina koncových stavů.

Rozšířený zásobníkový automat

Původní zásobníkový automat lze rozšírit o další chování. Například o možnost čtení více symbolů ze zásobníku než původního jednoho, tedy při přechodech mezi stavy měnit celé řetězce na vrcholu zásobníku.

Definice 5. Rozšířený zásobníkový automat (RZA) je sedmice $M=(Q,\Sigma,\Gamma,R,s,S,F)$, kde:

- $Q, \Sigma, \Gamma, s, S, F$ jsou definovány stejně jako u ZA,
- R je konečná množina pravidel ve tvaru $vpa \to wq$, kde $v, w \in \Gamma^*, p, q \in Q, a \in \Sigma \cup \{\varepsilon\}$.

4.5 Prediktivní syntaktická analýza

4.6 Precedenční tabulka

[[algoritmus pro sestrojeni tabulky?]]

4.7 Precedenční syntaktická analýza

4.8 Abstraktní syntaktický strom

Cooperating distributed gramatický systém

[[nejsem si jisty prekladem, zatim nechavam v anglictine, ale vypada to divne]] Cooperating distributed gramatický systém (CDGS) stupně n je systém gramatik, které mezi sebou sdílejí množinu neterminálů i terminálů a startovací symbol.

Definice 6. CDGS je n-tice $\Gamma = (N, T, S, P_i, \dots, P_n)$ pro $1 \le i \le n$, kde:

- N, T, a S jsou definovány stejně jako v definici 1,
- P_i je konečná množina pravidel ve tvaru $A \to x$, kde A i x jsou definovány stejně jako v definici 1, nazývaná komponentou systému,
- i-tá gramatika systému se zapisuje jako $G_i = (N, T, S, P_i)$

Alternativní definice pro CDGS je $\Gamma = ((N, T, S, P_1), \dots, (N, T, S, P_n)).$

[[staci takovyto popis? mam se vyhnout vysvetlovani "vlastnimi slovy"nebo je naopak dobre, ze pred definici +- uvedu, o co se jedna?]]

5.1 Derivační krok v CDGS

Notace derivačního kroku v CDGS je

$$x_i \Rightarrow^f y$$
,

což znamená, že řetězec $x \in (N \cup T)^*$ derivuje řetězec $y \in (N \cup T)^*$ v *i*-té komponentě za použití derivačního režimu f.

Derivační režimy

Prvním a nejpřirozenějším příkladem je režim * [[Jak tento režim nazvat?]]. V tomto případě stačí, aby řetězec y byl derivovatelný z řetězec x v i-té komponentě, zapsáno $x \Rightarrow^* y$ v $G_i = (N, T, P_i, S)$.

Podobným příkladem je režim ukončovací, který spočívá v nutné derivaci řetězce v dané komponentě, dokud je to možné. Značí se písmenem t. Jsou dvě nutné podmínky, aby y bylo derivovatelné z x v komponentě G_i režimem t.

- 1. $x \Rightarrow^* y$ v $G_i = (N, T, P_i, S)$ v dané komponentě lze posloupností derivačních kroků získat řetězec y z řetězec x,
- 2. $y \Rightarrow z$ pro všechna $z \in (N \cup T)^*$ není jiný další řetězec, který by z y šel odvodit.

Další derivační režimy:

- alespoň k derivací, tedy $x_i \Rightarrow^{\geq k} y$,
- nejvíce k derivací, tedy $x_i \Rightarrow^{\leq k} y$,
- právě k derivací, tedy $x_i \Rightarrow^{=k} y$,

kde $k \in \mathbb{N} \cup \{0\}$ a i symbolizuje i-tou komponentu gramatického systému.

Derivační režimy mohou být reprezentovány jako množina, což pomůže definovat další pojmy v následující podkapitole o generovaných jazycích.

Definice 7. Nechť $k \in \mathbb{N}$ a *, t představují derivační režimy.

Potom množina $D = \{*, t\} \cup \{\le k, \ge k, = k\}$ reprezentuje derivační režimy použitelné v CD gramatických systémech.

5.2 Jazyk generovaný CD gramatickým systémem

Než bude definován samotný jazyk, je vhodné definovat pomocnou množinu, která reprezentuje možné derivace z řetězců.

Definice 8. Necht $\Gamma = (N, T, S, P_i, \dots, P_n)$.

Potom $F(G_j, u, f) = \{v : u_j \Rightarrow^f v\}, 1 \leq j \leq n, f \in D, u \in (N \cup T)^*$ je množina všech řetězců v derivovatelných z u v j-té komponentě za použití derivačního režimu f.

Definice 9. Necht $\Gamma = (N, T, S, P_i, \dots, P_n)$.

Jazyk generovaný systémem Γ za derivačního režimu $f, L_f(\Gamma) = \{w \in T^* : \text{existují} v_0, v_1, \ldots, v_m \text{ takové, že } v_k \in F(G_{j_k}, v_{k-1}, f), 1 \leq k \leq m, 1 \leq j_k \leq n, v_0 = S, v_m = w \text{ pro } m \geq 1\}.$

[[jsou definice v tomto formatu v poradku?]]

Výsledný řetězec w, který vznikl postupnou derivací startovacího symbolu v_0 . Měl několik mezikroků, které jsou reprezentovány řetězci v_1,\ldots,v_{m-1} . Každý řetězec v_k , kde $1\leq k\leq m$ byl zderivován z řetězce v_{k-1} v komponentě G_{j_k} , kde $1\leq j_k\leq n$ za derivačního režimu f.

Představení jazyka Koubp [[opet si nejsem jisty nazvem + co vsechno vubec napsat?]]

Jazyk *Koubp* je založený na jazyce IFJ22, který je podmnožinou jazyka PHP 8, jenž byl specifikován v rámci zadání projektu do předmětu Formální jazyky a překladače v akademickém roce 2022/2023. [[idealne citovat zadaní projektu?]]

Některé aspekty jazyků jsou společné. Oba dva jazyky jsou strukturované, podporují definici proměnných a funkcí. Hlavní tělo programu se skládá z prolínání sekvence příkazů a definic funkcí, které se mohou vzájemně rekurzivně volat. Neexistuje funkce main(), jak lze nalézt například u jazyka C [1]. V uživatelem definovaných funkcích může být větvení, iterace a další běžné konstrukce. Veškeré proměnné jsou lokální, i v rámci hlavního těla programu. Soubory se zdrojovým kódem nelze slučovat a vytvářet tak jediný modul, který by bylo možné zkompilovat. [[doplnit veci, ktere nejsou spolecne (nezabihat do detailu, vse bude specifikovano v podkapitolach)]]

6.1 Gramatický systém definujíci syntax jazyka Koubp

Indexace neterminálů a význam pro implementaci Deadlock mezi neterminály statement a codeBlock

6.2 Deklarace a definice funkcí

6.3 Příkazy

Přiřazení

Větvení

Cyklus while

Cyklus for

6.4 Výrazy

Operátory

Priorita operátorů

Volání funkcí

6.5 Vestavěné funkce

Vstupně-výstupní funkce

Funkce pro typovou konverzi

Funkce pro prácí s řetězci

Implementace syntaktického analyzátoru pro jazyk Koubp [[Urcite rozdelit na vice sekci, co pripadne z projektu doplnit?]]

- 7.1 Hlavní myšlenky
- 7.2 Lexikální analýza a nástroj Flex
- 7.3 Syntaktická analýza
- 7.4 Abstraktní syntaktický strom

Závěr

Literatura

[1] International Organization for Standardization (ISO). ISO/IEC 9899:2018, Programming languages - C. International Organization for Standardization (ISO), 2018. Dostupné z: https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2310.pdf.