

Efficient Batch Zero-Knowledge Arguments for Low Degree Polynomials

Jonathan Bootle, Jens Groth University College London

Zero Knowledge Proofs

- Completeness
- Soundness
- Zero-Knowledge

- Proof of Knowledge
- Interactive
- Public-coin

or

Rejects

Statement

Goal: reduce costs for special statements

This Work

$$\lambda \in \{\lambda_1, \dots \lambda_N\}$$

- Efficient for low-depth circuits like set membership and polynomial evaluation $v = h_0 + h_1 u + h_2 u^2 + ... + h_N u^N$
- Works with homomorphic commitments
- Generalises and explains some previous works
- Avoids reductions to general statements

Applications

Set membership proofs

$$\lambda \in \{\lambda_1, \dots \lambda_N\}$$

Polynomial evaluation

$$v = h_0 + h_1 u + h_2 u^2 + \dots + h_n u^N$$

-O(log N) communication, improved constants.
-Tune to get protocol with O(1) commitments

 $-O(\log N/\log\log N)$ communication, asymptotic improvement.

Statement

• Secret witness a

- Public polynomials P and Q
- Commitment c

$$P(a) = 0$$

$$c = com(\mathbf{Q}(\mathbf{a}); r)$$

Example: committed bit

- $\bullet \ P(a) = a(1-a)$
- Q(a) = a
- Proof that c = com(a; r) and $a \in \{0,1\}$

Tweaking Statements

- Secret witness a
- Public tweak b
- Public polynomials P and Q
- Commitment c

$$P(a, b) = 0$$

$$c = com(\mathbf{Q}(\mathbf{a}, \mathbf{b}); r)$$

Polynomial Evaluation Proofs

c = encrypt(u)
d = encrypt(v)

 The prover has secret numbers, u and v

Public Polynomial h

 The prover convinces the verifier that h(u) = v for a public polynomial h

Is
$$h(u) = v$$
?

Polynomial Evaluation Proofs

•
$$a = (1, u, u^2, u^3, ..., u^{\deg(h)})$$

•
$$P(a) = a_2 \cdot (a_1, a_2, ..., a_{\deg(h)-1}) - (a_2, ..., a_{\deg(h)})$$

- b = coefficients of h
- $Q(\boldsymbol{a}, \boldsymbol{b}) = \boldsymbol{a} \cdot \boldsymbol{b} = h(u)$

Batch Proofs

- Secret witnesses
 - $a_{1,1}, ... a_{m,n}$
- Public tweak b
- Public polynomials P and Q
- Commitments $c_1, \dots c_m$

$$P(a_{i,j}, b) = 0$$
 for all i, j

For all
$$i, c_i = com(\mathbf{Q}(\mathbf{a_{i,1}}, \mathbf{b}), ..., \mathbf{Q}(\mathbf{a_{i,n}}, \mathbf{b}); r_i)$$

Polynomial Evaluation Proofs

Previous work	Proof Size	Year
Brands et al	$O(\sqrt{N})$	2007
Bayer, Groth	$O(\log N)$	2013
This Work	$\frac{5\log N}{\log\log N}$	2018

N = degree of polynomial

Arithmetic Circuits

- N multiplication gates
- Prover knows inputs
- Publicly known outputs
- Check inputs give the correct outputs

General Arithmetic Circuit Proofs

Previous work	Proof Size	Year
Cramer, Damgård	O(N)	1997
Groth	$O(\sqrt{N})$	2009
BCCGP	6 log <i>N</i>	2016
Bulletproofs	2 log <i>N</i>	2017

N = degree of polynomial

Is this always the best possible?

General Arithmetic Circuit Proofs

Previous work	Proof Size	Year
Cramer, Damgård	6 <i>N</i>	1997
Groth	$6\sqrt{N}$	2009
BCCGP	$6\log N$	2016
Bulletproofs	$2 \log N$	2017
This Work	5 log <i>N</i>	2018
	log log N	

Overview

Statement

I

Polynomials

P(a, b) = 0, c = com(Q(a, b); r)

$$P(ax + a', b) = \sum_{i} p_{i}^{x^{i}}$$

PolyCommit, PolyEval, PolyVerify

Polynomial Commitments

Protocol

Commitments

Pedersen Commitments

Compressing

Homomorphic

$$a + b = c$$
 \longrightarrow 2 $+$ 2 $=$ 2

- $C = com(m_1, ..., m_k; r) = g_1^{m_1} g_2^{m_2} ... g_k^{m_k} h^r$
- g_1, g_2, \dots, g_k, h random elements of G

Previous Arguments

 Reduce AC-SAT to a scalar-product check

- Compress vectors of length N
- O(log N) communication costs

This Work

$$\mathbf{a} = (1, u, u^2, u^3, ..., u^{\deg(h)})$$

 $\mathbf{P}(\mathbf{a}) = a_2 \cdot (a_1, a_2, ..., a_{\deg(h)-1}) - (a_2, ..., a_{\deg(h)})$

- Works directly with circuits
- Degree and number of inputs determines performance
- Competitive performance for circuits of degree $O(\log N)$ and $O(\log N)$ inputs, but O(N) gates

Proof of Knowledge

$$c = com(a; r)$$

$$P(a) = 0$$

$$P(a) = 0$$
$$Q(a) = a$$

Choose random
$$a', s \in \mathbb{Z}_p$$
 B
Compute $B = com(a'; s)$

$$\boldsymbol{\mathcal{X}}$$

Choose random $x \in \mathbb{Z}_p$

$$f = ax + a'$$
$$z = rx + s$$

$$f$$
, z

Check that
$$com(f; z) = C^x B$$

Committed Bits

- A bit a satisfies a(1-a)=0
- Prover sends f = ax + a' to the verifier
- Embed a(1-a) into some polynomial
- $f(x-f) = a(1-a)x^2 + k_1x + k_2$ for some constants k_1, k_2

• The prover commits to k_1, k_2 beforehand and shows that f(x - f) is actually a polynomial of degree 1

Committed Bits Protocol

$$a \in \{0,1\}$$
$$c = com(a;r)$$

$$a \in \{0,1\} \qquad P(a) = a(1-a)$$
$$c = com(a;r) \qquad Q(a) = a$$

- Commit to a'
- f = aX + a'
- $P(f) = k_1 X + k_2$ Compute $K_1 = com(k_1; t_1)$

Compute $K_2 = com(k_2; t_2)$

commitments

f, z, v

Choose random $x \in \mathbb{Z}_p$

$$f = ax + a'$$

$$z = rx + s$$

$$v = t_1x + t_2$$

Check that $com(f;z) = C^x B$ $com(f(x-f);v)=K_1^x K_2$

Committed Bits Protocol

$$a \in \{0,1\}$$
$$c = com(a; r)$$

$$a \in \{0,1\} \qquad P(a) = a(1-a)$$

$$c = com(a;r) \qquad Q(a) = a$$

Commit to random values to hide witness

Compute coefficients of a polynomial. Commit to them.

commitments

Choose random $x \in \mathbb{Z}_p$

f, z, vSend witness, which is

hidden by adding random values.

Check witness. Check polynomial has degree 1, not 2.

General Recipe

- Commit to secret vector a and random vector a'
- Prover sends f = ax + a' to the verifier
- If P(a) = 0, then P(f) has a zero in the leading x coefficient
- Commit to other coefficients in advance

General Recipe

- $P(f, b) = P(a, b) + \sum_{i} p_{i} x^{i}$
- Make commitments $P_i = com(\mathbf{p}_i)$

• Check com Improve efficiency using polynomial

- Also want t commitment protocol
- $Q(f, b) = Q(a, b) + \sum_{i} q_{i} x^{i}$
- Make commitments $Q_i = com(q_i)$
- Check $com(Q(\mathbf{f}, \mathbf{b}); v) = c \cdot \prod_i Q_i^{x^i}$

General Protocol

P(a,b) = 0 c = com(Q(a,b);r)

Commit to random values to hide witness

Compute coefficients of a polynomial. Commit to them. PolyCommit

commitments 🔀

f, z, v

Choose random $x \in \mathbb{Z}_p$

Send witness, which is hidden by adding random values.

PolyEval

Tuneable parameters

Check witness.
Check polynomials.

PolyVerify

Batch Protocol Idea

- Verify many instances of the same relation in parallel using interpolation
- Evaluate polynomials on single elements

Lagrange Polynomials

- Interpolation points $z_1, ..., z_n$
- $l_i(X) = \prod_{j \neq i} \frac{X Z_j}{Z_i Z_j}$ for $1 \le i \le n$
- $l_i(z_j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$

• Set $l_0(X) = \prod_i (X - z_i)$

Batched Protocol

- Secret vectors $a_{1,1}$, ... $a_{m,n}$
- Prover sends $f_i = \sum_j a_{i,j} l_j(x) + a' l_0(x)$ to the verifier

- If $P(a_{i,j}) = 0$, then $P(f_i) = 0 \mod l_0(x)$
- Use polynomial commitment

Advantages over General Circuit Protocols

 Same or better communication complexity for low-depth circuits

- $O(N) \rightarrow O(\log N)$ cryptographic operations
- $O(\log N) \rightarrow 3$ round protocols
- No special properties needed e.g. key homomorphic commitments

Thanks!