

CONTENTS

The Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Extraction with Dilute Acid Solutions, and Crop Response to Fertilization. HORACE J. HARPER.....	1
Estimation of Plant Available Phosphate in Soil. P. L. HIBBARD.....	17
Comparisons in the Distribution of Nematode Galls on the Roots of Pineapple Varieties Attacked by the Nematode <i>Heterodera radicicola</i> (Greeff) Müller. HAROLD R. HAGAN.....	29
The Electrometric Determination of Chlorides in Soils by the Silver-Silver Chloride Electrode. E. F. SNYDER.....	43
Base Interchange Induced by Calcium, Magnesium, and Sodium Nitrates in a 6-Foot Column of Soil-subsoil. W. H. MACINTIRE, J. B. YOUNG AND W. M. SHAW.....	49
Soil Acidity as a Phytopedological Factor. A. I. POTAPOV.....	55
Solubility of the Solid Phase of Soil in Water. S. M. DRACHEV.....	75
The Colorimetric Determination of Phosphorus in Citric Acid Extracts of Soils. RITCHIE R. WARD.....	85
The Relation of Caliche to Desert Plants. FORREST SHREVE AND T. D. MALLERY.....	99
Influence of Rye and Oat Straws upon the Growth and Yield of Certain Vegetables. BASIL E. GILBERT AND FREDERICK R. PEMBER.....	115
A Statistical Study of Nitrogen Fixation by Clover Plants. P. W. WILSON, P. WENCK, AND W. H. PETERSON.....	123
Relation Between Carbon Dioxide and Elemental Nitrogen Assimilation in Leguminous Plants. P. W. WILSON, E. B. FRED, AND M. R. SALMON.....	145
Book Reviews.....	167
Influence of Soil Hydrogen-Ion Concentrations on Infection by <i>Heterodera radicicola</i> (Greeff) Müller. G. H. GODFREY AND H. R. HAGAN.....	175
The Duration of Life of the Root Knot Nematode, <i>Heterodera radicicola</i> , in Soils Subjected to Drying. G. H. GODFREY, JULIETTE M. OLIVEIRA, AND ERNA B. H. GITTEL.....	185
Assimilation of Phosphorus and Potassium by Barley Plants Grown According to Neubauer Procedure and in Undiluted Soil. J. W. AMES AND K. KITSUTA.....	197
Influence of Organic Matter on Crop Yield and on Carbon-Nitrogen Ratio and Nitrate Formation in the Soil. A. W. BLAIR AND A. L. PRINCE.....	209
The Degree of Humification in Manures Measured by the Use of Hydrogen Peroxide. J. G. SHRIKHANDE.....	221
Some Observations on Base Exchange in Organic Materials. J. F. MULLER.....	229
Lysimeter Studies: II. The Movement and Translocation of Soil Constituents in the Soil Profile. J. S. JOFFE.....	239
The Aspergillus niger Method of Measuring Available Potassium in Soil. A. MEHLICH, E. TRUOG, AND E. B. FRED.....	259
Photonitrification in Soil. N. R. DHAR, A. K. BHATTACHARYA, AND N. N. BISWAS.....	281
A Soil Temperature Installation. G. ALLEN MAIL.....	285
The Dispersion of Soil-forming Aggregates. CYRUS L. CLARK.....	291
The Effect of Soil Moisture on the Availability of Nitrate, Phosphate, and Potassium to the Tomato Plant. E. M. EMMERT AND F. K. BALL.....	295
The Forest Floor under Stands of Aspen and Paper Birch. F. J. ALWAY AND JOSEPH KITTREDGE, JR.....	307
Soil Profile Studies: V. Mature Podzols. J. S. JOFFE AND C. W. WATSON.....	313
Sixteenth Session of the International Geological Congress.....	333

Influence of Crop Residue Decay on Soil Nitrates. AUSTIN L. PATRICK.....	335
The Effect of Culture Solutions on Growth and Nitrogen Fractions of Oat Plants at Different Stages of their Development. A. C. SESSIONS AND J. W. SHIVE.....	355
Studies on Nitrogen Absorption from Culture Solutions: I. Oats. A. L. STAHL AND J. W. SHIVE.....	375
Lysimeter Studies: III. The Movement and Translocation of Nitrogen and Organic Constituents in the Profile of a Podzolic Soil. J. S. JOPPE.....	401
The Diffusion of Carbon Dioxide through Soils. F. B. SMITH AND P. E. BROWN.....	413
The Iodine Content of the Soil in Kentucky. J. S. MCHARGUE AND D. W. YOUNG.....	425
Studies on Readily Soluble Phosphate in Soils: I. Extraction of Readily Soluble Phosphate from Soils by Means of Dilute Acid Potassium Sulfate (KHSO_4). H. W. LOHSE AND G. N. RUHNKE.....	437
Studies on Readily Soluble Phosphate in Soils: II. The Vertical Distribution of Readily Soluble Phosphate in Some Representative Ontario Soils. H. W. LOHSE AND G. N. RUHNKE.....	459
Further Studies on Nitrogen Absorption from Culture Solutions: II. Buckwheat. A. L. STAHL AND J. W. SHIVE.....	469
The Influence of Legume Versus Non-Legume Crops on the Microbiological Activities in the Soil: II. Nitrification and Cellulose Decomposition. JAMES E. FULLER....	485

ILLUSTRATIONS

PLATES

THE RELATION OF CALICHE TO DESERT PLANTS

Plate 1. Fig. 1. Caliche from uppermost layer (left). The hard surface 1 cm. thick is underlaid by softer material. Hard layer of caliche 5 cm. thick (right).....	113
2. Stone covered with caliche in stalactite form, from roof of small cavity in the soil (left). Recemented type of caliche with many air spaces (right).....	113

INFLUENCE OF ORGANIC MATTER ON CROP YIELD AND ON CARBON-NITROGEN RATIO- AND NITRATE FORMATION IN THE SOIL

Plate 1. Effect of Heavy Applications of Nitrate on Corn.....	219
---	-----

THE ASPERGILLUS NIGER METHOD OF MEASURING AVAILABLE POTASSIUM IN SOIL

Plate 1. Growth of A. niger Culture with Different Soils.....	279
---	-----

A SOIL TEMPERATURE INSTALLATION

Plate 1. Instrument Board for Recording Soil Temperatures.....	289
--	-----

SOIL PROFILE STUDIES: V. MATURE PODZOLS

Plate 1. The Constitution of Profile 2.....	331
---	-----

THE DIFFUSION OF CARBON DIOXIDE THROUGH SOILS

Plate 1. Carbon Dioxide Diffusion Apparatus.....	423
Fig. 1. Parts of diffusion apparatus.....	423
2. Diffusion apparatus assembled.....	423

TEXT-FIGURES

THE EASILY SOLUBLE PHOSPHORUS CONTENT OF SOIL AS DETERMINED BY ELECTRODIALYSIS EXTRACTION WITH DILUTE ACID SOLUTIONS, AND CROP RESPONSE TO FERTILIZATION

Fig. 1. Solubility Curves of Soil Phosphorus Extracted by Electrodialysis.....	6
2. Studies of the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction, and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Alfalfa.....	7
3. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Corn.....	7
4. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction, and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Cotton.....	8
5. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction, and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Oats.....	8

6. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Red Clover.....	8
7. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction, and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Soybeans.....	8
8. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Sweet Clover.....	9
9. Studies on the Easily Soluble Phosphorus Content of Soil as Determined by Electrodialysis, Sulfuric Acid Extraction, and the Bray Test, as Compared with the Response from Field Experiments with Phosphate Fertilizers Applied to Wheat.....	9
 BASE INTERCHANGE INDUCED BY CALCIUM, MAGNESIUM, AND SODIUM NITRATES IN A 6-FOOT COLUMN OF SOIL-SUBSOIL	
Fig. 1. Calcium and Magnesium Outgo.....	51
 SOIL ACIDITY AS A PHYTOPEDOLOGICAL FACTOR	
Fig. 1. Changes in Various Forms of Soil Acidity in a Cedar-pine Forest Soil.....	63
2. Progressive Changes in Hydrolytic and Exchange Acidity in the Soil of a Cedar-pine Forest Association.....	63
 SOLUBILITY OF THE SOLID PHASE OF SOIL IN WATER	
Fig. 1. Solubility of the Soil Complexes in Different Soil Types.....	78
2. Solubility of the Soil Complexes in Different Soil Types.....	79
 THE COLORIMETRIC DETERMINATION OF PHOSPHORUS IN CITRIC ACID EXTRACTS OF SOILS	
Fig. 1. Deviation from Beer's Law in Pure Potassium Phosphate Solutions.....	89
2. Deviation from Beer's Law in a Citric Acid Extract.....	90
3. Effect of Dilution with Water upon the Color of a Standard Solution.....	92
4. Electrolytic Cell for Separation of Iron.....	93
 THE RELATION OF CALICHE TO DESERT PLANTS	
Fig. 1. Arrangement of Caliche in Cans of Soil Used for Determining Rate of Evaporation.....	105
 A STATISTICAL STUDY OF NITROGEN FIXATION BY CLOVER PLANTS	
Fig. 1. Comparison of the Observed Distribution of Milligram Nitrogen Fixed by Clover with Two Theoretical Charlier's Series.....	133
2. Comparison of the Observed Distribution of Number of Nodules on Clover with Two Theoretical Charlier's Series.....	134
 LYSIMETER STUDIES: II. THE MOVEMENT AND TRANSLOCATION OF SOIL CONSTITUENTS IN THE SOIL PROFILE	
Fig. 1. Conductivity Changes in Leachings for 1929-1930 and 1930-1931.....	242
2. Reaction Changes in Leachings for 1929-1930 and 1930-1931.....	242

THE ASPERGILLUS NIGER METHOD OF MEASURING AVAILABLE POTASSIUM IN SOIL

Fig. 1. Relation of Weights of Mycelium to Soluble Potash Added in Nutrient Media (Curve I); Relation of Weights of Mycelium to Potash Extracted from Different Soils by the Mold (Curve II).....	271
2. Comparison of Available Potash by Three Methods in 61 Samples of Soil from Various Parts of United States.....	271

A SOIL TEMPERATURE INSTALLATION

Fig. 1. Plan Showing General Arrangement of Soil Temperature Installation.....	286
2. Details of Construction Inside Buried Wooden Casing.....	287

THE EFFECT OF SOIL MOISTURE ON THE AVAILABILITY OF NITRATE, PHOSPHATE, AND POTASSIUM TO THE TOMATO PLANT

Fig. 1. Cross Section of 2-Gallon Stone Jar Showing Apparatus for Distributing Water Throughout Soil.....	296
2. Nitrate Nitrogen in Mature Tomato Petioles Grown in Soils Containing 10, 20, and 40 Per Cent Moisture.....	301
3. Nitrate Nitrogen in Mature Tomato Petioles Grown in Soils Containing 10, 20, and 40 Per Cent Moisture.....	301
4. Phosphate in Mature Tomato Petioles Grown in Soils Containing 10, 20, and 40 Per Cent Moisture.....	302
5. Phosphate in Mature Tomato Petioles Grown in Soils Containing 10, 20, and 40 Per Cent Moisture.....	302
6. Potassium in Mature Tomato Petioles Grown in Soils Containing 10, 20, and 40 Per Cent Moisture.....	303
7. Potassium in Mature Tomato Petioles Grown in Soils Containing 10, 20, and 40 Per Cent Moisture.....	304

INFLUENCE OF CROP RESIDUE DECAY ON SOIL NITRATES

Fig. 1. Total Amounts of CO ₂ Evolved from Soil Treated with Equal Quantities of Nitrogen in Different Crop Residues.....	345
2. Effect of Plant Residues on Changes in Soil Nitrates when Added in Equal Carbon Amounts.....	347
3. Effect of Addition of Plant Residues on Accumulation of Soil Nitrates.....	349

THE EFFECT OF CULTURE SOLUTIONS ON GROWTH AND NITROGEN FRACTIONS OF OAT PLANTS AT DIFFERENT STAGES OF THEIR DEVELOPMENT

Fig. 1. Graphs Showing the Difference in Percentages of Nitrogen as Ammonia in the Plants of Corresponding Cultures of Series A (at 20 Days) and Series C (at 60 Days).....	363
2. Graphs Showing the Differences in Percentages of Nitrogen as Nitrate in the Plants of Corresponding Cultures of Series A (at 20 Days) and Series C (at 60 Days).....	364
3. Diagram Showing the Relation Between the Osmotic Proportions of the Nitrogen Bearing Salts of the Culture Solutions and the Soluble Organic and the Ammonia Nitrogen in the Plants.....	367
4. Diagram Showing the Relation Between the Osmotic Proportions of the Nitrogen Bearing Salts of the Culture Solutions and the Total Inorganic and the Total Organic Nitrogen in the Plants.....	372

STUDIES ON NITROGEN ABSORPTION FROM CULTURE SOLUTIONS: I. OATS

Fig. 1. Graphs Representing Quantity of Nitrogen as NH_4 , NO_3 , and Total Nitrogen Absorbed, in Milligrams per Culture per Hour, at Different Periods in the Life Cycle of the Oat Plant	382
2. Graphs Showing the Influence of Duration of Absorption Intervals on Nitrogen Absorption Rates without Continuous Renewal of Culture Solutions	384
3. Graphs Showing the Influence of Duration of Absorption Intervals on Nitrogen Absorption Rates with Continuous Renewal of Culture Solutions	386
4. Graphs Representing Quantity of Nitrogen as NH_4 , NO_3 , and Total Nitrogen Absorbed, in Milligrams per Culture per Hour at Different Periods throughout the Life Cycle of the Oat Plant	392
5. Graphs Representing the Rates of Absorption of Nitrogen as NH_4 , NO_3 and Total Nitrogen, in Milligrams per Gram of Dry Plant Material per Hour, at Different Periods throughout the Life Cycle of the Oat Plant	397

THE DIFFUSION OF CARBON DIOXIDE THROUGH SOILS

Fig. 1. Regression Line Showing the Relation of Rate of Diffusion of Carbon Dioxide through Air-dry Soil to the Porosity of the Soil	418
--	-----

THE IODINE CONTENT OF THE SOIL IN KENTUCKY

Fig. 1. Outline Map of Kentucky Showing Location and Approximate Size of Areas in Which Iodine Content of Soils was Determined	426
--	-----

STUDIES ON READILY SOLUBLE PHOSPHATE IN SOILS: I. EXTRACTION OF READILY SOLUBLE PHOSPHATE FROM SOILS BY MEANS OF DILUTE ACID POTASSIUM SULFATE (KHSO_4)

Fig. 1. Soil Phosphate Dissolved in KHSO_4 Solvents of Different Acidities	446
2. The Influence of the Acidity of the Solvent in Dissolving Soil Phosphate by Leaching a Fresh Fertile Garden Soil	447
3. Continued Leaching of a Fresh Fertile Garden Soil with KHSO_4 at a pH Value of 2.00	448
4. Interpolation of the Amount of KHSO_4 to be Added to the KHSO_4 Solvent in Order to Finish at a pH 2.00 in Extracting a Calcareous Soil Sample	454

STUDIES ON READILY SOLUBLE PHOSPHATE IN SOILS: II. THE VERTICAL DISTRIBUTION OF READILY SOLUBLE PHOSPHATE IN SOME REPRESENTATIVE ONTARIO SOILS

Fig. 1. The Distribution of Readily Soluble Soil Phosphate in a Typical Sandy Podzol Soil and in a Typical Brown Forest Soil	461
--	-----

FURTHER STUDIES ON NITROGEN ABSORPTION FROM CULTURE SOLUTIONS: II. BUCKWHEAT

Fig. 1. Graphs Representing Quantity Absorption of Nitrogen as NH_4 , NO_3 , and Total Nitrogen in Milligrams per Culture per Hour at Different Periods in the Active Life Cycle of the Buckwheat Plant	473
2. Graphs Representing Quantity Absorption of Nitrogen as NH_4 , NO_3 , and Total Nitrogen in Milligrams per Culture per Hour at Different Periods throughout the Active Life Cycle of the Buckwheat Plant	478
3. Graphs Representing Rates of Absorption of Nitrogen as NH_4 , NO_3 , and Total Nitrogen in Milligrams per Gram of Dry Plant Material, at Different Periods throughout the Active Life Cycle of the Buckwheat Plant	481

