

- What is Iris?
- Iris demo
- Using Iris for novel analysis
- Opportunities for combining Iris with other tools

Audience of this talk:

Those who write code to do data analysis and visualisation

What is

Iris?

CF Metadata
NetCDF Climate and Forecast Metadata Convention

What is

Iris?

netCDF GRIB PP

Loading a cube

```
>>> import iris
>>> air temp = iris.load cube(filename,
                                 'air temperature')
>>> print(air temp)
air temperature / (K) (latitude: 73; longitude: 96)
Scalar coordinates:
                            1000.0 hPa
  pressure:
   time: 1998-12-01 00:00:00, bound=(1994-12-01 00:00:00,
                                     1998-12-01 00:00:00)
Attributes:
   STASH: m01s16i203
   source: Data from Met Office Unified Model
```


Plotting with matplotlib

```
>>> import matplotlib.pyplot as plt
>>> import iris.quickplot as qplt
```

```
>>> qplt.pcolormesh(air_temp, cmap='RdBu_r')
>>> plt.gca().coastlines()
```


Output:

- PNG
- PDF
- PS

• ...

Regridding and interpolation

Typically, Iris takes cubes as input, and returns cubes as output.

Maps with cartopy

Maps in Iris are drawn by cartopy, a python package developed to solve common dateline and pole problems seen with traditional mapping libraries.


```
>>> from cartopy.crs as ccrs
>>> ax = plt.axes(projection=ccrs.NorthPolarStereo())
>>> qplt.pcolormesh(air_temp_euro, cmap='RdBu_r')
>>> ax.coastlines('50m')
>>> ax.gridlines()
```


MOGREPS-G Cyclone Database

An algorithm to identify and track fronts and cyclonic features, based on:

Hewson, T.D. & H.A. Titley, 2010: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteorol. Appl., 17, 355-381.

Implementing the algorithm

Load the phenomenon

Regrid and interpolate data to specific to vertical levels

Iris

 Compute isolines for locating phenomenon + isosurfaces for masking phenomenon, based on thresholds from paper

 Compute intersection of isosurfaces and isolines to identify cyclonic features

Shapely

Classify cyclonic features based on phenomenon values

Visualise cyclonic features and the underlying diagnostics

Barotropic Lows

Frontal Waves

Diminutive Waves

Visualise fronts as a spaghetti plot

The Python ecosystem

Opportunities within Python

Recent GIS tools:

- Shapely
- Cartopy
- Fiona
- RasterIO
- QGIS

http://scitools.org.uk/cartopy/docs/latest/examples/hurricane_katrina.html

A recent publication combining shapely and Iris to assess the skill of seasonal prediction of Hurricane landfall frequencies in the North Atlantic:

Camp, J., Roberts, M., MacLachlan, C., Wallace, E., Hermanson, L., Brookshaw, A., Arribas, A., Scaife, A. A., Mar. 2015. Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quarterly Journal of the Royal Meteorological Society

Opportunities within Python

Large data manipulation:

- Cython
- Numba
- Biggus
- Dask

Tools to optimise slow for-loops using static typing and JIT compilation for C-like performance

Opportunities within Python

Large data manipulation:

- Cython
- Numba
- Biggus
- Dask

Biggus example:

```
>>> print(data)
<Array shape=(80640, 4, 144, 192)
dtype=dtype('float32') size=33.22 GiB>
```

```
>>> stats = [biggus.mean(data, axis=0),
biggus.max(data, axis=0),
biggus.min(data, axis=0)]
```

>>> biggus.ndarrays(stats)

Result in ~4m45s on an Intel Xeon E5520 with 8GiB memory, bound by I/O not CPU.

Iris is using Biggus for many of it operations. This means that we can load, analyse and save cubes way beyond the available system memory.

Installing Iris

conda install iris --channel SciTools

Conda can be downloaded as part of "miniconda": http://conda.pydata.org/miniconda.html

Questions

Links from presentation: github.com/pelson/ecmwf-vis-2015

Twitter: @pypelson