Algorithmen und Datenstrukturen Blatt 12 Aufgabe 1

Die obere Grafik zeigt das Vorgehen mit Kruskals Algorithmus und die untere Grafik Prim.

<u>Die Einzelschritte zu Kruskal:</u>

von	nach	Gewicht	Gesamtgewicht	Inselgroesse	Farbe in Grafik
v_3	v_4	+1	=1	neue Insel	hellgrün, oben rechts
v_4	v_5	+1	=2	Insel-Extension: 3	hellgrün, oben rechts
v_0	v_8	+3	=5	neue Insel	hellgrün, unten links
v_2	v_7	+3	= 8	neue Insel	hellgrün, unten links
v_1	v_8	+4	= 12	Insel-Extension: 3	hellgrün, unten links
v_7	v_8	+4	= 16	Insel-Join: $3+2=5$	hellgrün, unten links
v_1	v_3	+5	= 21	Insel-Join: $5+3=8$	dunkelgrün, oben
v_2	v_6	+6	= 27	Insel-Extension: 9	dunkelgrün, unten

Die Einzelschritte zu Prim:

Die Einzelschritte zu Prim:									
-	von	nach	Gewicht	Gesamtgewicht	Heap-Root	Heap-Left	Heap-Right	Farbe	
	v_0	v_8	+3	= 3	$v_1:4$	$v_2:12$	$v_7:4$	hellgrün	
	v_8	v_1	+4	=7	$v_7:4$	$v_2:12$	$v_3:5$	hellgrün	
	v_8	v_7	+4	= 11	$v_2:3$	$v_3:5$	$v_6:17$	hellgrün	
	v_7	v_2	+3	= 14	$v_3:5$	$v_4:14$	$v_6:6$	hellgrün	
	v_1	v_3	+5	= 19	$v_4:1$	$v_6:6$	_	dunkelgrün	
	v_3	v_4	+1	= 20	$v_5:1$	$v_6:6$	_	dunkelgrün	
	v_4	v_5	+1	= 21	$v_6:6$	_	_	dunkelgrün	
	v_2	v_6	+6	= 27	_	_	_	dunkelgrün	

Die Grafik zeigt die Pointer-Umbiegungen beim Heapify. Details sind als Dokumentation im Quellcode angegeben.

Dijksta-Algorithmus Step-by-Step:

s	v_1	v_2	v_3	v_4	Heap-Root	Heap-Left	Heap-Right	Farbe
0	12	8	2	x	$v_3:2$	$v_1:12$	$v_2: 8$	blau
					$v_2 : 8$	$v_1:12$	_	
	8	7		4	$v_4:4$	$v_1 : 8$	$v_2:7$	lila
					$v_2:7$	$v_1 : 8$	_	
	5	5			$v_1 : 5$	$v_2 : 5$	_	rot
					$v_2 : 5$		_	

Algorithmen und Datenstrukturen Blatt 12 Aufgabe 4a

Warum kann Dijkstra nicht mit negativen Zahlen umgehen?

Dijkstra markiert Knoten als erledigt, was bei negativen Gewichten falsch sein kann. Lösung ist einfach: Die Erledigt-Markierungen einfach erst gar nicht implementieren.

Algorithmen und Datenstrukturen Blatt 12 Aufgabe 4b

Warum kann man nicht das Minimum abziehen und so negative Zahlen eliminieren?

Graph-Skizze:

$$[S] - > [A] - > [B] - > [C] < -[S]$$

Adjazenz-Kosten-Matrix (von Zeile nach Spalte):

	S	A	B	C	\sum	Ergebnis
S	X	+6	-	+4	+0	
A	-	X	-3	-	+6	
B	-	-	X	-2	+3	
C	-	-	-	X	+1	langer Weg ist besser (als 4)

Subtrahiert man nun überall das Minimum, also - -3, also +3, erhält man:

	S	A	B	C	\sum	Ergebnis
S	X	+9	-	+7	+0	
A	-	X	+0	-	+9	
B	-	-	X	+1	+9	
C	-	-	-	X	+7	kurzer Weg ist besser (als 10)

Also: Modifizierter Algorithmus liefert anderes Ergebnis

Ergebnis: Algorithmus ist falsch.