

Instituto Tecnológico de Buenos Aires

Trabajo Práctico N° 3

Teoría de Circuitos I 25.10

Grupo N° 5

Juan Bautista Correa Uranga Juan Ignacio Caorsi Rita Moschini

Legajo: 65532 Legajo: 67026

Legajo: 65016

Resumen

Índice

l Intr	roducción Instrumental															
1.2.	Marco teórico															
	arrollo															
2.1.	Procedimiento	٠.														
	Mediciones .															
2.3.	Cálculos															
2.4	Análisis															

1. Introducción

1.1 Instrumental

1.2 Marco teórico

2. Desarrollo

2.1 Procedimiento

2.2 Mediciones

- $R_f = 215\Omega$
- $R_{V_{max}} = 9980 \Omega$
- $R_{V_{min}} = 2\Omega$
- $R_L = 0.8\Omega$
- $L \approx 1mH$

Capacitor de C = 470 pF

- \blacksquare Valor de la resistencia variable tal que el amortiguamiento era crítico: $R_{critico}=1,9k\Omega$
- \blacksquare Tiempo τ en que la salida llegaba a 3,175 V cuando R_V tomaba su valor máximo: $\tau=5,75\mu s$
- Salida cuando $t = 5\tau$: V=3,175 V

Capacitor de C = 47 pF

- \blacksquare Valor de la resistencia variable tal que el amortiguamiento era crítico: $R_{critico}=3,47k\Omega$
- Tiempo τ en que la salida llegaba a 3,175 V cuando R_V tomaba su valor máximo: $\tau=32,25\mu s$
- Tiempo en que la salida llegaba a 5,24 V $(5V\pm0,05V)$ cuando R_V tomaba su valor mínimo: $t=14,3\mu s$
- \blacksquare Tiempo en que la salida llegaba a 4,888 V $(5V\pm0,05V)$ con ambas resistencias cortocircuitadas: $t=22,25\mu s$

2.3 Cálculos

Cálculo del valor de la resistencia variable tal que el amortiguamiento es crítico:

catco.
$$\alpha_{serie} = \omega_0 \Rightarrow \frac{R}{2L} = \frac{2L}{\sqrt{LC}} \Rightarrow R = \frac{2L}{\sqrt{LC}} \land R_f + R_V + R_L \Rightarrow R_V = R - R_f - R_L$$
 Cálculo del valor de τ para $R_V = R_{V_{max}} = 9980\Omega$ $\tau = \frac{1}{\alpha} = \frac{2L}{R_f + R_V + R_L}$

Capacitor de C = 470 pF Valor de la resistencia variable tal que el amortiguamiento fuera crítico: $R_{critico}=2,702k\Omega$

Capacitor de C = 47 pF Valor de
$$\tau$$
 para $R_V = R_{V_{max}} = 9980\Omega$: $\tau = \frac{2\cdot 10^-3}{215+9989+0.8}$ $\tau = 0,91616\mu s$

Valor de la resistencia variable tal que el amortiguamiento fuera crítico: $R_{critico}=9,010k\Omega$

Resultados

Capacitor de C = 47 pF

2.4 Análisis

3. Conclusiones