ANTICIPATING MENSTRUAL MIGRAINE USING DEEP LEARNING

Final Year Project

TEAM – 12

- Pranav Polavarapu 19BTRCR008
- Sushil Bokade 19BTRCR017
- Sai Keerthi Chelluri 19BTRCR036
- Sai Sharanya Y 19BTRCR043

Guide:

Prof. Mohammed Zabeeulla A N

OBJECTIVES

- This project aims to build an automated system that identifies, classifies, and anticipates an occurrence of Menstrual Migraine in women. This is based on the severity of symptoms that a woman experiences like throbbing, periods, Nausea, visual disturbances, intensity, & many more.
- The data collected from a woman is cleaned & modeled into the Deep Learning Classification system that identifies the type of migraine occurring (Menstrual | Non-Menstrual | Others)
- This classification system can be integrated with period-tracking applications and cloud-based systems to scale up the impact created on a woman's health.
- The project enables women to consider prior precautions & medication in cases of menstrual-related migraines.

ABSTRACT

Menstrual Migraines are headaches that occur without any typical aura or sensory disturbances. They can be labeled as 'Migraine without Aura'. A woman could undergo menstrual migraine just before or during her period starts. This is majorly due to the drop in estrogen levels in the body. Menstrual migraines can be intense, & they must be identified accurately & treated separately from regular ones. Anticipating Menstrual Migraines using Deep Learning methodology can help women in taking precautions beforehand and aid in improving their health.

LITERATURE REVIEW

No. (Author)	Name	Methodology	Drawbacks			
1 (Alkan A)	Use of K-means clustering in migraine detection by using EEG records under flash stimulation	EEG signals are pre-processed & analysed using Histograms. Features are set to K-means algorithm for detecting migraine.	Based upon analysing brain wave signals. Requires resources and is inefficient.			
2 (Subasi A, Tuncel D)	Analysis of repetitive flash stimulation frequencies and record periods to detect migraine using ANN	Flash stimulation is based on frequency analysis in EEGs. Frequency ranges in Hz are used to determine migraine at beta-bands	Complex process of analysing frequencies over time. Requires long duration and equipment to just detect migraine.			
3 (Akben SB, Subasi A, Kiymik MK)	Comparison of artificial neural network and support vector machine classification methods in diagnosis of migraine by using EEG	Frequency spectrums are classified using ANN & SVMs. Detecting migraine among headache symptoms, using triggering factors.	<u>Similar to</u> the previous ones			
4 (Andrew Charles)	The Migraine Aura	Basic mechanisms of migraine aura and its clinical significance based upon evidence from human studies and animal models.	Only intended to identify migraine with Aura (unrelated to non-aura migraines)			
5 (Catherine, Nathan)	Migraine classification using magnetic resonance imaging resting	Used ML techniques to develop biomarkers for rs-fMRI data	Just provided insights upon pain circuits in the brain that acted as biomarkers to identify migraine patients			

6 (Wei-Ta Chen, Cing-Yan)	Migraine classification by ML with functional near-infrared spectroscopy during the mental arithmetic task	Subjects' haemoglobin in the brain was measured using fNIRS during mental attacks	fNIRS & haemoglobin analysis is not quite the easy or standard way to quickly identify the types of migraine.
7 (Yolanda Garcia-Chimeno, Juan Carlos)	Automatic migraine classification via feature selection committee and ML techniques over imaging and questionnaire data	Diffusion tensor Images & questionnaires like IQ were used to enable feature selection & Multiple ML techniques.	DTI images & IQ questionnaires are a complex process to create classification models. Lot of scope for optimization
8 (Konrad Jackowski)	Migraine Diagnosis Support System Based on Classifier Ensemble	Ensemble pool of elementary classifiers are combined to increase accuracy in identifying migraine from regular headaches	Does not provide any insights into types of migraines based on aura, and null on menstrual-related migraines
9 (Paola Sanchez) [Existing System - Base Paper]	Automatic migraine classification using artificial neural networks	Designs & tests an early classification system to classify 7 different types of migraines using ANN	No significant EDA performed. Increased dimensions and incomprehensible correlations among the variables. Leaves scope for efficient system to be built over neural networks (other than old MLP Classifier)
10 (Stephen D Silverstein)	Diagnosis and Treatment of the Menstrual Migraine Patient	Provides medical diagnostic criteria for women having migraine without Aura.	Provides a perspective into post-identification procedures & treatments for women with menstrual migraine.

PROPOSED SYSTEM

METHODOLOGY

- ➤ We propose an efficient methodology to accurately classify the headaches into 3 major types. Our primary focus would be on identifying menstrual migraines from regular migraines so that one can anticipate its occurrence for prior treatment properly.
- ➤ Data shall be collected from public health repositories, physicians, and women who are experiencing a variety of symptoms relating to headaches or migraines. This data is pre-processed and maintained neatly in a comprehensible format.
- ➤ The data is comprised of numerous quantifiable and simple but important symptoms that a woman would experience. Ex Nausea, Visual aura, Intensity level, Frequency, Period status, etc.
- ➤ All the symptoms and severities are scaled and encoded into simpler values for efficient processing by the models.
- ➤ Data undergoes thorough Exploratory Analysis to identify correlations, impacts and insignificances of the variables present at hand. This is done in a visual manner for better understanding of the data.
- Finally, the important features are identified, and they are ready to be fed into a Deep Learning- based Neural network Classifier.

- The classifier system is built using Neural Networks for categorizing multiple classes effectively. Each layer is added in a sequential format, with the correct parameters relating to the shape of the input & output data.
- > Right activations and loss functions are chosen for productive multi-class classification.
- > Final set of model and its hyperparameters are tuned using methods like cross validation.
- ➤ This system is intended to be integrated into a period-tracking system for efficient User-Interface and easy healthcare.

Work done so for

*	Age	Duration	Frequency	Location	Character	Intensity	Nausea	Vomit	Phonophobia	Photophobia	 Hypoacusis	Diplopia	Visual_defect
0	30							0			0	0	0
1	50										0		0
2	53										0	0	0
3	45							0			0	0	0
4	53							0			0	0	0

EXPERIMENTAL RESULTS

```
#Defining our Base Model
def baseline_model():
    # Create model here
    model = Sequential()
    model.add(Dense(14, input_dim = 24, activation = 'relu'))  # Rectified Linear
    model.add(Dense(14, activation = 'relu'))
    model.add(Dense(14, activation = 'relu'))
    model.add(Dense(3, activation = 'softmax'))  # Softmax for multi-class classification
    # Compile model here
    model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
    return model

[] #Create Keras Classifier to use predefined base model
    estimator = KerasClassifier(build_fn = baseline_model, epochs = 100, batch_size = 10, verbose = 0)

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: KerasClassifier is depreca

[] # KFold Cross Validation
    kfold = KFold(n_splits = 5, shuffle = True, random_state = seed)

[] # Object to describe the result
    results = cross_val_score(estimator, x, y, cv = kfold)
    # Result
    print("Result: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

Result: 99.75% (0.56%)
```

```
# Adding the input layer and the first hidden layer.
classifier.add(Dense(units=13, kernel_initializer='uniform', activation='relu', input_dim=24))
classifier.add(Dense(units=13, kernel initializer='uniform', activation='relu'))
# Adding the last and final output layer...
classifier.add(Dense(units=1, kernel_initializer='uniform', activation='softmax'))
# Compiling the ANN...
classifier.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
# Fitting the ANN to the Training set...
classifier.fit(X_train, y_train, batch_size=10, epochs=100)
30/30 [=========== ] - 0s 1ms/step - loss: 0.0000e+00 - accuracy: 0.1533
Epoch 34/100
30/30 [=============] - 0s 1ms/step - loss: 0.0000e+00 - accuracy: 0.1533
30/30 [============ ] - 0s 1ms/step - loss: 0.0000e+00 - accuracy: 0.1533
30/30 [============] - 0s 2ms/step - loss: 0.0000e+00 - accuracy: 0.1533
30/30 [======] - 0s 1ms/step - loss: 0.0000e+00 - accuracy: 0.1533
```

REFERENCES

- 1. Ahmet, Alkan, and Batuhan Akben Selahaddin. "Use of k-means clustering in migraine detection by using EEG records under flash stimulation." *International Journal of Physical Sciences* 6, no. 4 (2011): 641-650.
- 2. Akben, Selahaddin Batuhan, Abdulhamit Subasi, and Deniz Tuncel. "Analysis of repetitive flash stimulation frequencies and record periods to detect migraine using artificial neural network." *Journal of medical systems* 36, no. 2 (2012): 925-931.
- 3. Akben, Selahaddin Batuhan, Abdülhamit Subaşı, and Mahmut Kemal Kıymık. "Comparison of artificial neural network and support vector machine classification methods in diagnosis of migraine by using EEG." In *2010 IEEE 18th Signal Processing and Communications Applications Conference*, pp. 637-640. IEEE, 2010.
- 4. Charles, Andrew. "The migraine aura." Continuum: Lifelong Learning in Neurology 24, no. 4 (2018): 1009-1022.
- 5. Chong, Catherine D., Nathan Gaw, Yinlin Fu, Jing Li, Teresa Wu, and Todd J. Schwedt. "Migraine classification using magnetic resonance imaging resting-state functional connectivity data." *Cephalalgia* 37, no. 9 (2017): 828-844.
- 6. Ang, Kai Keng, Cuntai Guan, Kerry Lee, Jie Qi Lee, Shoko Nioka, and Britton Chance. "A brain-computer interface for mental arithmetic task from single-trial near-infrared spectroscopy brain signals." In 2010 20th International Conference on Pattern Recognition, pp. 3764-3767. IEEE, 2010.
- 7. Garcia-Chimeno, Yolanda, Begonya Garcia-Zapirain, Marian Gomez-Beldarrain, Begonya Fernandez-Ruanova, and Juan Carlos Garcia-Monco. "Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data." *BMC medical informatics and decision making* 17, no. 1 (2017): 1-10.
- 8. Jackowski, Konrad, Dariusz Jankowski, Dragan Simić, and Svetlana Simić. "Migraine diagnosis support system based on classifier ensemble." In *International conference on ICT innovations*, pp. 329-339. Springer, Cham, 2014.
- 9. Sanchez-Sanchez, Paola A., José Rafael García-González, and Juan Manuel Rúa Ascar. "Automatic migraine classification using artificial neural networks." *F1000Research* 9 (2020).
- 10. Silberstein, Stephen D., and Susan L. Hutchinson. "Diagnosis and treatment of the menstrual migraine patient." *Headache: The Journal of Head and Face Pain* 48 (2008): S115-S123.

mank you.