7630 – Autonomous Robotics Introduction to Bayesian Estimation

Cédric Pradalier

Today

Outline

Bayesian Estimation

Examples

Homework

Bayesian Fusion

Assumptions

- ► A variable X is being estimated
- ▶ A set of observations $\{Z_i\}$ correlated with X are being made.

$$P(X Z_1 ... Z_n) = P(X) \prod_{i=1}^n P(Z_i|X)$$
 (1)

$$P(X|Z_1 \ldots Z_n) \propto P(X) \prod_{i=1}^n P(Z_i|X)$$
 (2)

Bayesian Fusion: Gaussians

Assumptions

▶ All distributions are Gaussian: $P(X) \to \mathcal{N}(\mu_0, \Sigma_0)$, $P(Z_i|X) \to \mathcal{N}(\nu_i, \sigma_i)$.

$$P(X|Z_1 \ldots Z_n) \propto P(X) \prod_{i=1}^n P(Z_i|X)$$
 (3)

▶ Hence $P(X|Z_1...Z_n)$ is Gaussian $\mathcal{N}(\mu_n, \Sigma_n)$.

$$\log P(X|Z_1 \dots Z_n) = \log P(X) + \sum_{i=1}^n \log P(Z_i|X) + Cst$$

Bayesian Fusion: Gaussians

Assumptions

$$\blacktriangleright \ P(X) \to \mathcal{N}(\mu_0, \Sigma_0), \ P(Z_i|X) \to \mathcal{N}(\nu_i = h(x), \sigma_i).$$

$$\log P(X|Z_1 \dots Z_n) = \log P(X) + \sum_{i=1}^n \log P(Z_i|X) + Cst$$

$$(\mu_n - x)^T \Sigma_n^{-1} (\mu_n - x) = (\mu_0 - x)^T \Sigma_0^{-1} (\mu_0 - x)$$

$$+ \sum_{i=1}^n (\nu_i - h(x))^T \sigma_i^{-1} (\nu_i - h(x)) + Cst$$

Bayesian Fusion Special Cases

$$h(x) = x$$
 and $n = 1$

$$(\mu_{1} - x)^{T} \Sigma_{1}^{-1} (\mu_{1} - x)$$

$$= (\mu_{0} - x)^{T} \Sigma_{0}^{-1} (\mu_{0} - x) + (\nu_{1} - x)^{T} \sigma_{1}^{-1} (\nu_{1} - x) + Cst$$

$$\mu_{1}^{T} \Sigma_{1}^{-1} \mu_{1} + 2\mu_{1}^{T} \Sigma_{1}^{-1} x + x^{T} \Sigma_{1}^{-1} x$$

$$= \mu_{0}^{T} \Sigma_{0}^{-1} \mu_{0} + 2\mu_{0}^{T} \Sigma_{0}^{-1} x + x^{T} \Sigma_{0}^{-1} x$$

$$+ \nu_{1}^{T} \sigma_{1}^{-1} \nu_{1} + 2\nu_{1}^{T} \sigma_{1}^{-1} x + x^{T} \sigma_{1}^{-1} x + Cste$$

Hence

$$\begin{array}{rcl} \Sigma_1^{-1} & = & \Sigma_0^{-1} + \sigma_1^{-1} \\ \mu_1 & = & \Sigma_1 \left(\Sigma_0^{-1} \mu_0 + \sigma_1^{-1} \nu_1 \right) \end{array}$$

Bayesian Fusion Special Cases

$$h(x) = x$$
 and $n = 1$

$$\begin{array}{rcl} \Sigma_1^{-1} & = & \Sigma_0^{-1} + \sigma_1^{-1} \\ \mu_1 & = & \Sigma_1 \left(\Sigma_0^{-1} \mu_0 + \sigma_1^{-1} \nu_1 \right) \end{array}$$

Can be rewritten as:

$$K = \Sigma_0 (\Sigma_0 + \sigma_1)^{-1}$$

$$\Sigma_1 = (I - K)\Sigma_0$$

$$\mu_1 = \mu_0 + K (\nu_1 - \mu_0)$$

Bayesian Fusion Special Cases

$$h(x) = Hx$$
 and $n = 1$

$$K = \Sigma_0 H^T (H \Sigma_0 H^T + \sigma_1)$$

$$\Sigma_1 = (I - KH) \Sigma_0$$

$$\mu_1 = \mu_0 + K (\nu_1 - H \mu_0)$$

$$h(x)$$
 non linear and $n=1$
$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = \Sigma_0 H^T \left(H \Sigma_0 H^T + \sigma_1 \right)^{-1}$$

$$\Sigma_1 = (I - KH) \Sigma_0$$

$$\mu_1 = \mu_0 + K \left(\nu_1 - h(\mu_0) \right)$$

Maximum A Posteriori (MAP)

▶ We are just interested in the maximum of $P(X|Z_1...X_n)$, i.e. μ_n .

$$\arg \max_{X} P(X|Z_{1} \dots Z_{n}) = \arg \min_{X} \log P(X|Z_{1} \dots Z_{n})$$

$$= \arg \min_{X} (\mu_{0} - x)^{T} \Sigma_{0}^{-1} (\mu_{0} - x)$$

$$+ \sum_{i=1}^{n} (\nu_{i} - h(x))^{T} \sigma_{i}^{-1} (\nu_{i} - h(x))$$

 Weighted least-square minimisation (or regression), non-linear if h is non-linear.

Recursive Bayesian Fusion

Assumptions

- ► A variable *X* is being estimated
- ▶ A set of observations $\{Z_i\}$ correlated with X are being made over time.
- ▶ We denote $Bel_k(X) = P(X|Z_1 ... Z_k)$.

$$Bel_k(X) = P(X|Z_1 ... Z_k) \propto P(X) \prod_{i=1}^k P(Z_i|X)$$
$$= \left[P(X) \prod_{i=1}^{k-1} P(Z_i|X)\right] P(Z_k|X)$$
$$= P(Z_k|X) \cdot Bel_{k-1}(X)$$

Recursive Bayesian Fusion, Gaussian Assumption

Assumptions

$$Bel_k(X) = P(Z_k|X) \cdot Bel_{k-1}(X)$$

- ▶ Bel_k is Gaussian $\rightarrow \mathcal{N}(x_k, P_k)$
- ▶ $P(Z_k|X)$ is Gaussian $\to \mathcal{N}(h(X),R)$

This is Gaussian Bayesian fusion with n = 1:

$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = P_{k-1}H^T (HP_{k-1}H^T + R)^{-1}$$

$$P_k = (I - KH)P_{k-1}$$

$$x_k = x_{k-1} + K(z_k - h(x_{k-1}))$$

Recursive Bayesian Filter

Assumptions

- \blacktriangleright A variable X_k is being estimated at time k
- A set of observations {Z_i} correlated with X are being made over time.
- ▶ A model of changes of X_k is available as $P(X_k|X_{k-1}, U_{k-1})$.
- ▶ We denote $Bel_k(X_k) = P(X_k|Z_1 \ldots Z_k, U_1 \ldots U_k) = P(X_k|\mathcal{Z}_k, \mathcal{U}_k)$.

Recursive Bayesian Filter

Bayesian inference:

$$Bel_{k}(X_{k}) = P(X_{k}|\mathcal{Z}_{k}, \mathcal{U}_{k}) \propto P(Z_{k}|X_{k}\mathcal{U}_{k}, \mathcal{Z}_{k-1})P(X_{k}|\mathcal{U}_{k}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k})P(X_{k}|\mathcal{U}_{k}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k}) \int_{X_{k-1}} P(X_{k}|\mathcal{U}_{k}, \mathcal{Z}_{k-1}, X_{k-1})P(X_{k-1}|\mathcal{U}_{k}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k}) \int_{X_{k-1}} P(X_{k}|\mathcal{U}_{k-1}, X_{k-1})P(X_{k-1}|\mathcal{U}_{k-1}, \mathcal{Z}_{k-1})$$

$$= P(Z_{k}|X_{k}) \int_{X_{k-1}} P(X_{k}|\mathcal{U}_{k-1}, X_{k-1})Bel_{k-1}(X_{k-1})$$

Important: know how to derive that.

Recursive Bayesian Filter: (Extended) Kalman Filter

Assumptions

$$Bel_{k-1}(X_k) = \int_{X_{k-1}} P(X_k|X_{k-1})Bel_{k-1}(X_{k-1})$$

 $Bel_k(X_k) = P(Z_k|X) \cdot Bel_{k-1}(X_k)$

- ▶ Bel_k is Gaussian $\rightarrow \mathcal{N}(x_k, P_k)$
- ▶ $P(X_k|X_{k-1})$ is Gaussian $\to \mathcal{N}(f(X), Q)$
- ▶ $P(Z_k|X_k)$ is Gaussian $\to \mathcal{N}(h(X), R)$

(Extended) Kalman Filter: Prediction Stage

Assumptions

$$Bel_{k-1}(X_k) = \int_{X_{k-1}} P(X_k|X_{k-1})Bel_{k-1}(X_{k-1} \to \mathcal{N}(\bar{x}_k, \bar{P}_k))$$

▶ $P(X_k|X_{k-1})$ is Gaussian $\to \mathcal{N}(f(X_{k-1}, U_{k-1}), Q)$

$$A = \frac{\partial f}{\partial x} \longrightarrow \text{Jacobian}$$

$$B = \frac{\partial f}{\partial u} \longrightarrow \text{Jacobian}$$

$$\bar{x}_k = f(x_{k-1}, u_{k-1})$$

$$\bar{P}_k = AP_{k-1}A^T + (BQ_uB^T) + Q$$

(Extended) Kalman Filter, Observation stage

Assumptions

$$Bel_k(X_k) = P(Z_k|X_k) \cdot Bel_{k-1}(X_k)$$

- ▶ $Bel_{k-1}(X_k)$ is Gaussian $\to \mathcal{N}(\bar{x}_k, \bar{P}_k)$
- ▶ $Bel_k(X_k)$ is Gaussian $\to \mathcal{N}(x_k, P_k)$
- ▶ $P(Z_k|X)$ is Gaussian $\to \mathcal{N}(h(X),R)$

This is Gaussian Bayesian fusion:

$$H = \frac{\partial h}{\partial x} \longrightarrow \text{Jacobian}$$

$$K = \bar{P}_k H^T (H \bar{P}_k H^T + R)^{-1}$$

$$P_k = (I - KH) \bar{P}_k$$

$$x_k = \bar{x}_{k-1} + K (z_k - h(\bar{x}_{k-1}))$$

Outline

Bayesian Estimation

Examples

Homework

Objectives

Kalman Filter

- ▶ Understand the important matrices
- ► Design your own filter
- ▶ Use cases for robotics

System 1: Argos Float

Description

- ► Float buoy
- ► GPS measurement every second

Objective

System 2: GPS Navigation system

Description

- ► GPS Navigation system in a car
- ► GPS measurement every second

Objective

System 3: Integrated GPS Navigation system

Description

- ► GPS Navigation system in a car
- ► Rear wheel displacement measure (e.g. differential)

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} \frac{\Delta s_L + \Delta s_R}{2} \\ 0 \\ \frac{\Delta s_R - \Delta s_L}{e} \end{bmatrix}$$
 (4)

► GPS measurement every second

Objective

System 4: Integrated GPS Navigation system

Description

- ► GPS Navigation system in a car
- ► Speed and steering measurement

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ \frac{v \tan(\beta)}{L} \end{bmatrix}$$
 (5)

▶ GPS measurement every second

Objective

System 5: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation with orientation, in body frame

$$Z_i = \begin{bmatrix} x_i \\ y_i \\ \theta_i \end{bmatrix} \tag{6}$$

Objective

System 6: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation: position only in body frame

$$Z_i = \left[\begin{array}{c} x_i \\ y_i \end{array} \right] \tag{7}$$

Objective

System 6b: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- Differential wheel measurement
- ► Known feature observation: range and bearing in body frame

$$Z_i = \left[\begin{array}{c} \rho_i \\ \beta_i \end{array} \right] \tag{8}$$

Objective

System 7: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- ▶ Differential wheel measurement
- ► Known feature observation, bearing only in body frame

$$Z_i = \left[\begin{array}{c} \beta_i \end{array} \right] \tag{9}$$

Objective

System 8: Indoor Navigation system

Description

- ► Indoor robot (e.g. Roomba)
- ▶ Differential wheel measurement
- ► Known feature observation, range only in body frame

$$Z_i = \left[\begin{array}{c} \rho_i \end{array} \right] \tag{10}$$

Objective

System 9: Underwater system

Description

- ► Torpedo-shaped robot
- ► Lift-drag based motion model
- ► Known feature observation, range only (e.g. sonar pinger)

$$Z_i = \left[\begin{array}{c} \rho_i \end{array} \right] \tag{11}$$

Objective

System 10: Feature mapper

Description

- ► Indoor robot
- ► Known localisation
- ▶ Observation of *n* features with known lds.
- ▶ Observation type: range, bearing, position, pose...

Objective

► Map estimation

System 11: Feature-based SLAM

Description

- ► Indoor robot
- ▶ Unknown localisation
- ▶ Observation of k features with known lds.
- ▶ Observation type: range, bearing, position, pose...

Objective

► Localisation and Map estimation

System 12: Extrinsic calibration

Description

- ▶ Indoor robot with k sensors.
- ▶ Known localisation
- ▶ Joint observation of one feature with *k* sensors.
- ▶ Observation type: range, bearing, position, pose...

Objective

- ► Sensor position with respect to reference frame (e.g. sensor 1)
- Detection of loose sensors.

System 13: auto-calibration

Description

- ▶ Indoor robot with 1 sensor.
- ▶ Differential motion model integrating wheel diameter

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix} = \begin{bmatrix} \frac{r_L \Delta \theta_L + r_R \Delta \theta_R}{2} \\ 0 \\ \frac{r_R \Delta s_R - r_L \Delta s_L}{e} \end{bmatrix}$$
(12)

▶ Observation type: range, bearing, position, pose... with respect to known map.

Objective

- \blacktriangleright Auto-estimate wheel diameter r_L and r_R and inter-wheel spacing e
- ▶ Puncture detection.

Outline

Bayesian Estimation

Examples

Homework

Mapping

Objectives

- ► Estimate the landmark positions knowing (perfectly) the pose of the robot observing them.
- ► Kalman Filter

Solution

- ▶ Write the the equation of the Kalman Filter (50%)
- ► Manage new landmarks in a list (50%)

Localisation

Objectives

- ▶ Localise the robot based on landmark measurements and odometry.
- ► Extended Kalman Filter

Solution

- ► Write the correct jacobian (90%)
- ► Fill-in the TODO section and test it (10%)

SLAM

Objectives

- ► Localise the robot AND build a map of landmarks based on landmark measurements and odometry.
- ► Extended Kalman Filter

Solution

- ▶ Write the correct jacobian (90%)
- ► Fill-in the TODO section and test it (10%)