Lecture 13: Dynamic Programming II

Michael Dinitz

Introduction

Today: two more examples of dynamic programming

- ► Longest Common Subsequence (strings)
- Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Longest Common Subsequence

Definitions

String: Sequence of elements of some alphabet $(\{0,1\}, \text{ or } \{A-Z\} \cup \{a-z\}, \text{ etc.})$

Definition: A sequence $Z = (z_1, \ldots, z_k)$ is a *subsequence* of $X = (x_1, \ldots, x_m)$ if there exists a strictly increasing sequence (i_1, i_2, \ldots, i_k) such that $x_{i_j} = z_j$ for all $j \in \{1, 2, \ldots, k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

Allowed to skip positions, unlike substring!

Definitions

String: Sequence of elements of some alphabet $(\{0,1\}, \text{ or } \{A-Z\} \cup \{a-z\}, \text{ etc.})$

Definition: A sequence $Z = (z_1, \ldots, z_k)$ is a *subsequence* of $X = (x_1, \ldots, x_m)$ if there exists a strictly increasing sequence (i_1, i_2, \ldots, i_k) such that $x_{i_j} = z_j$ for all $j \in \{1, 2, \ldots, k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

Allowed to skip positions, unlike substring!

Definition: In *Longest Common Subsequence* problem (LCS) we are given two strings $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_n)$. Need to find the longest Z which is a subsequence of both X and Y.

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, ..., x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, ..., y_j)$ (so $Y = Y_n$)

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, ..., x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, ..., y_j)$ (so $Y = Y_n$)

Definition: Let OPT(i,j) be longest common subsequence of X_i and Y_j

So looking for optimal solution OPT = OPT(m, n)

Last time **OPT** denotes value of solution, here denotes solution. Be flexible in notation

First and most important step of dynamic programming: define subproblems!

▶ Not obvious: **X** and **Y** might not even be same length!

Prefixes of strings

- $X_i = (x_1, x_2, ..., x_i)$ (so $X = X_m$)
- $Y_j = (y_1, y_2, ..., y_j)$ (so $Y = Y_n$)

Definition: Let OPT(i,j) be longest common subsequence of X_i and Y_j

So looking for optimal solution OPT = OPT(m, n)

Last time **OPT** denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Second step of dynamic programming: prove optimal substructure

▶ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let
$$Z = (z_1, ..., z_k)$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$).

1. If
$$x_i = y_i$$
:

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let
$$Z = (z_1, ..., z_k)$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$).

1. If
$$x_i = y_i$$
: then $z_k = x_i = y_i$ and $Z_{k-1} = OPT(i-1, j-1)$

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, ..., z_k)$ be an LCS of X_i and Y_j (so Z = OPT(i, j)).

- 1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$:

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, ..., z_k)$ be an LCS of X_i and Y_j (so Z = OPT(i, j)).

- 1. If $x_i = y_i$: then $z_k = x_i = y_i$ and $Z_{k-1} = OPT(i-1, j-1)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$: then Z = OPT(i-1,j)

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, \ldots, z_k)$ be an LCS of X_i and Y_j (so Z = OPT(i, j)).

- 1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$: then Z = OPT(i-1,j)
- 3. If $x_i \neq y_i$ and $z_k \neq y_i$:

Second step of dynamic programming: prove optimal substructure

Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let $Z = (z_1, ..., z_k)$ be an LCS of X_i and Y_j (so Z = OPT(i, j)).

- 1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$
- 2. If $x_i \neq y_i$ and $z_k \neq x_i$: then Z = OPT(i-1,j)
- 3. If $x_i \neq y_i$ and $z_k \neq y_i$: then Z = OPT(i, j-1)

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$.

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction

Michael Dinitz

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction

Part 2: Suppose $Z_{k-1} \neq OPT(i-1, j-1)$.

Case 1: If
$$x_i = y_j$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction

- **Part 2**: Suppose $Z_{k-1} \neq OPT(i-1, j-1)$.
- \implies $\exists W$ LCS of X_{i-1}, Y_{i-1} of length $> k-1 \implies \geq k$
- \implies (W, a) common subsequence of X_i, Y_j of length > k
 - Contradiction to Z being LCS of X_i and Y_i

Case 2: If
$$x_i \neq y_j$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Case 2: If
$$x_i \neq y_i$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1} , $Y_j \implies |Z| \leq |OPT(i-1,j)|$

Case 2: If
$$x_i \neq y_i$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1} , $Y_j \implies |Z| \leq |OPT(i-1,j)|$

$$OPT(i-1,j)$$
 a common subsequence of X_i, Y_j

$$\implies |OPT(i-1,j)| \le |OPT(i,j)| = |Z|$$
 (def of $OPT(i,j)$ and Z)

Case 2: If
$$x_i \neq y_i$$
 and $z_k \neq x_i$ then $Z = OPT(i-1,j)$

Proof.

Since $z_k \neq x_i$, Z a common subsequence of X_{i-1} , $Y_j \implies |Z| \leq |OPT(i-1,j)|$

OPT(i-1,j) a common subsequence of X_i, Y_j

$$\implies |OPT(i-1,j)| \le |OPT(i,j)| = |Z|$$
 (def of $OPT(i,j)$ and Z)

$$\implies$$
 $Z = OPT(i-1,j)$

Case 3: If
$$x_i \neq y_j$$
 and $z_k \neq y_j$ then $Z = OPT(i, j-1)$

Proof.

Symmetric to Case 2.

Structure Corollary

Corollary

$$OPT(i,j) = \begin{cases} \varnothing & \text{if } i = 0 \text{ or } j = 0, \\ OPT(i-1,j-1) \circ x_i & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(OPT(i,j-1), OPT(i-1,j)) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Structure Corollary

Corollary

$$OPT(i,j) = \begin{cases} \emptyset & \text{if } i = 0 \text{ or } j = 0, \\ OPT(i-1,j-1) \circ x_i & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(OPT(i,j-1), OPT(i-1,j)) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Gives obvious recursive algorithm

Can take exponential time (good exercise at home!)

Dynamic Programming!

- ▶ Top-Down: are problems getting "smaller"? What does "smaller" mean?
- ▶ Bottom-Up: two-dimensional table! What order to fill it in?

Dynamic Programming Algorithm

```
LCS(X,Y) {
   for(i = 0 to m) M[i, 0] = 0;
   for(j = 0 to n) M[0, j] = 0;
   for(i = 1 to m) {
      for(\mathbf{i} = \mathbf{1} to \mathbf{n}) {
          if(x_i = y_i)
             M[i, j] = 1 + M[i - 1, j - 1];
          else
              M[i,j] = \max(M[i,j-1],M[i-1,j]);
   return M[m, n];
```

Dynamic Programming Algorithm

```
LCS(X,Y) {
   for(i = 0 to m) M[i, 0] = 0;
   for(j = 0 to n) M[0, j] = 0;
   for(i = 1 to m) {
       for(\mathbf{i} = \mathbf{1} to \mathbf{n}) {
          if(x_i = y_i)
              M[i, j] = 1 + M[i - 1, j - 1];
          else
              M[i,j] = \max(M[i,j-1],M[i-1,j]);
   return M[m, n];
```

Running Time: O(mn)

Theorem

$$M[i,j] = |OPT(i,j)|$$

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: $i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)|$

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: $i+j=0 \implies i=j=0 \implies M[i,j]=0=|OPT(i,j)|$

Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i,j] = 0 = |OPT(i,j)|

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case:
$$i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)|$$

Inductive Step: Divide into three cases

- 1. If i = 0 or j = 0, then M[i,j] = 0 = |OPT(i,j)|
- 2. If $x_i = y_i$, then M[i,j] = 1 + M[i-1,j-1] = 1 + |OPT(i-1,j-1)| = |OPT(i,j)|

Theorem

$$M[i,j] = |OPT(i,j)|$$

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case:
$$i + j = 0 \implies i = j = 0 \implies M[i,j] = 0 = |OPT(i,j)|$$

Inductive Step: Divide into three cases

- 1. If i = 0 or j = 0, then M[i,j] = 0 = |OPT(i,j)|
- 2. If $x_i = y_j$, then M[i,j] = 1 + M[i-1,j-1] = 1 + |OPT(i-1,j-1)| = |OPT(i,j)|
- 3. If $x_i \neq y_i$, then

$$M[i,j] = \max(M[i,j-1], M[i-1,j])$$
 (def of algorithm)
= $\max(|OPT(i,j-1)|, |OPT(i-1,j)|)$ (induction)
= $|OPT(i,j)|$ (structure thm/corollary)

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 14.4

Optimal Binary Search Trees

Problem Definition

Input: probability distribution / search frequency of keys

- ▶ n distinct keys $k_1 < k_2 < \cdots < k_n$
- ▶ For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^n p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Problem Definition

Input: probability distribution / search frequency of keys

- ▶ n distinct keys $k_1 < k_2 < \cdots < k_n$
- ▶ For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^n p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $depth_T(k_i) + 1$ (say depth of root = 0)

 \implies $E[\text{cost of search in } T] = \sum_{i=1}^{n} p_i(depth_T(k_i) + 1)$

Problem Definition

Input: probability distribution / search frequency of keys

- ▶ n distinct keys $k_1 < k_2 < \cdots < k_n$
- ▶ For each $i \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^n p_i = 1$)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $depth_T(k_i) + 1$ (say depth of root = 0)

$$\implies$$
 $E[\text{cost of search in } T] = \sum_{i=1}^{n} p_i(depth_T(k_i) + 1)$

Definition:
$$c(T) = \sum_{i=1}^{n} p_i(depth_T(k_i) + 1)$$

Problem: Find search tree **T** minimizing cost.

Natural approach: greedy (make highest probability key the root). Does this work?

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

 $E[\text{cost of search in } T] \ge \Omega(n)$

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > \dots p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

 $E[\text{cost of search in } T] \ge \Omega(n)$

Balanced search tree: $E[\cos t] \le O(\log n)$

Intuition

Suppose root is k_r . What does optimal tree look like?

Intuition

Suppose root is k_r . What does optimal tree look like?

Subproblems

Definition

Let OPT(i,j) with $i \le j$ be optimal tree for keys $\{k_i,k_{i+1},\ldots,k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a(depth_T(k_a) + 1)$

By convention, if i > j then OPT(i,j) empty So overall goal is to find OPT(1,n).

Subproblems

Definition

Let OPT(i,j) with $i \le j$ be optimal tree for keys $\{k_i,k_{i+1},\ldots,k_j\}$: tree T minimizing $c(T) = \sum_{a=i}^{j} p_a(depth_T(k_a) + 1)$

By convention, if i > j then OPT(i,j) empty So overall goal is to find OPT(1,n).

Theorem (Optimal Substructure)

Let k_r be the root of OPT(i,j). Then the left subtree of OPT(i,j) is OPT(i,r-1), and the right subtree of OPT(i,j) is OPT(r+1,j).

Proof Sketch of Optimal Substructure

Definitions:

- Let T = OPT(i,j), T_L its left subtree, T_R its right subtree.
- ▶ Suppose for contradiction $T_L \neq OPT(i, r-1)$, let T' = OPT(i, r-1) $\implies c(T') < c(T_L)$ (def of OPT(i, r-1))
- Let \hat{T} be tree get by replacing T_L with T'

Proof Sketch of Optimal Substructure

Definitions:

- Let T = OPT(i,j), T_L its left subtree, T_R its right subtree.
- Suppose for contradiction $T_L \neq OPT(i, r-1)$, let T' = OPT(i, r-1) $\implies c(T') < c(T_L)$ (def of OPT(i, r-1))
- Let \hat{T} be tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$ Contradicts T = OPT(i, i)

Proof Sketch of Optimal Substructure

Definitions:

- Let T = OPT(i,j), T_L its left subtree, T_R its right subtree.
- ▶ Suppose for contradiction $T_L \neq OPT(i, r-1)$, let T' = OPT(i, r-1) $\implies c(T') < c(T_L)$ (def of OPT(i, r-1))
- Let \hat{T} be tree get by replacing T_L with T'

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$

Contradicts T = OPT(i, j)

Symmetric argument works for $T_R = OPT(r+1,j)$

Cost Corollary

Corollary

$$c(OPT(i,j)) = \sum_{a=i}^{j} p_a + \min_{i \le r \le j} (c(OPT(i,r-1)) + c(OPT(r+1,j)))$$

Let k_r be root of OPT(i, j)

$$\begin{split} c(OPT(i,j)) &= \sum_{a=i}^{j} p_{a}(depth_{OPT(i,j)}(k_{a}) + 1) \\ &= \sum_{a=i}^{r-1} (p_{a}(depth_{OPT(i,r-1)}(k_{a}) + 2)) + p_{r} + \sum_{a=r+1}^{j} p_{a}(depth_{OPT(r+1,j)}(k_{a}) + 2) \\ &= \sum_{a=i}^{j} p_{a} + \sum_{a=i}^{r-1} (p_{a}(depth_{OPT(i,r-1)}(k_{a}) + 1)) + \sum_{a=r+1}^{j} p_{a}(depth_{OPT(r+1,j)}(k_{a}) + 1) \\ &= \sum_{i=1}^{j} p_{a} + c(OPT(i,r-1)) + c(OPT(r+1,j)). \end{split}$$

Cost Corollary

Corollary

$$c(OPT(i,j)) = \sum_{a=i}^{j} p_a + \min_{i \le r \le j} (c(OPT(i,r-1)) + c(OPT(r+1,j)))$$

Let k_r be root of OPT(i, j)

$$c(OPT(i,j)) = \sum_{a=i}^{j} p_{a}(depth_{OPT(i,j)}(k_{a}) + 1)$$

$$= \sum_{a=i}^{r-1} (p_{a}(depth_{OPT(i,r-1)}(k_{a}) + 2)) + p_{r} + \sum_{a=r+1}^{j} p_{a}(depth_{OPT(r+1,j)}(k_{a}) + 2)$$

$$= \sum_{a=i}^{j} p_{a} + \sum_{a=i}^{r-1} (p_{a}(depth_{OPT(i,r-1)}(k_{a}) + 1)) + \sum_{a=r+1}^{j} p_{a}(depth_{OPT(r+1,j)}(k_{a}) + 1)$$

$$= \sum_{a=i}^{j} p_{a} + c(OPT(i,r-1)) + c(OPT(r+1,j)).$$

Same logic holds for any possible root ⇒ take min

Michael Dinitz Lecture 13: Dynamic Programming II

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \le j \end{cases}$$

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \le j \end{cases}$$

Top-Down (memoization): are problems getting smaller?

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \le j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Fill in table **M**:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \le j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j - i.

Fill in table **M**:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \le j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! $\mathbf{j} - \mathbf{i}$ decreases in every recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j - i.

▶ Base case: if j - i < 0 then M[i,j] = OPT(i,j) = 0

Fill in table M:

$$M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right) & \text{if } i \le j \end{cases}$$

Top-Down (memoization): are problems getting smaller? Yes! j - i decreases in every recursive call.

Correctness. Claim M[i,j] = c(OPT(i,j)). Induction on j - i.

- ▶ Base case: if j i < 0 then M[i,j] = OPT(i,j) = 0
- ▶ Inductive step:

$$M[i,j] = \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right)$$
 (alg def)
$$= \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + c(OPT(i,r-1)) + c(OPT(r+1,j)) \right)$$
 (induction)
$$= c(OPT(i,j))$$
 (cost corollary)

Michael Dinitz

Algorithm: Bottom-up

What order to fill the table in?

▶ Obvious approach: for(i = 1 to n - 1) for(j = i + 1 to n) Doesn't work!

Algorithm: Bottom-up

What order to fill the table in?

- ▶ Obvious approach: for(i = 1 to n 1) for(j = i + 1 to n) Doesn't work!
- ► Take hint from induction: **j i**

```
OBST {
   Set M[i, j] = 0 for all i > i;
   Set M[i, i] = p_i for all i
   for(\ell = 1 to n - 1) {
       for(i = 1 to n - \ell) {
           i = i + \ell
           M[i,j] = \min_{i \le r \le j} \left( \sum_{a=i}^{j} p_a + M[i,r-1] + M[r+1,j] \right);
   return M[1, n];
```

Correctness: same as top-down

Running Time:

Correctness: same as top-down

Running Time:

table entries:

Correctness: same as top-down

Running Time:

• # table entries: $O(n^2)$

Correctness: same as top-down

Running Time:

- # table entries: $O(n^2)$
- ► Time to compute table entry **M**[i,j]:

Correctness: same as top-down

Running Time:

- \blacktriangleright # table entries: $O(n^2)$
- ▶ Time to compute table entry M[i,j]: O(j-i) = O(n)

Correctness: same as top-down

Running Time:

- \blacktriangleright # table entries: $O(n^2)$
- ▶ Time to compute table entry M[i,j]: O(j-i) = O(n)

Total running time: $O(n^3)$

Bonus Content

Obvious Question: Robustness.

▶ What if given distribution is *wrong*?

Want algorithm that gives a solution with cost a function of true optimal cost, "distance" between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. *Binary Search Trees with Distributional Predictions*. NeurIPS '24