Домашня Робота #1 з Фінансового Аналізу

Захаров Дмитро

18 лютого, 2025

1 Задача 1

Умова 1.1. Дано матрицю наслідків

$$Q = \begin{pmatrix} 5 & -2 & 6 & -5 & 9 & 4 \\ 7 & 5 & 5 & -3 & 8 & 1 \\ 1 & 3 & -1 & 10 & 5 & 2 \\ 9 & -6 & 7 & 1 & 3 & -4 \end{pmatrix}$$

Побудувати матрицю ризиків R, а також здійснити вибір рішення за правилами Вальда, Севіджа и Гурвіца (з параметром $\alpha=0.65$).

Розв'язання. Спочатку знайдемо максимальні доходи:

$$\hat{q}_1 = 9, \hat{q}_2 = 5, \hat{q}_3 = 7, \hat{q}_4 = 10, \hat{q}_5 = 9, \hat{q}_6 = 4.$$

Будуємо матрицю ризиків:

$$R = \begin{pmatrix} 4 & 7 & 1 & 15 & 0 & 0 \\ 2 & 0 & 2 & 13 & 1 & 3 \\ 8 & 2 & 8 & 0 & 4 & 2 \\ 0 & 11 & 0 & 9 & 6 & 8 \end{pmatrix}$$

Правило Вальда. Вибираємо $a_{i_0} = \max_i \min_j q_{ij}$. Позначимо $a_i := \min_j q_{ij}$, тоді $a_1 = -5$, $a_2 = -3$, $a_3 = -1$, $a_4 = -6$. Видно, що максимум відповідає значенню $a_3 = -1$, тому обираємо рішення $i_0 = 3$.

Правило Гурвіца. Вибираємо

$$a_{i_0}(\alpha) = \max_i \left\{ \alpha \max_j q_{ij} + (1 - \alpha) \min_j q_{ij} \right\}.$$

Мінімуми ми вже знайшли: $a_1=-5, a_2=-3, a_3=-1, a_4=-6$. Тепер знайдемо максимуми $b_i:=\max_j q_{ij}$: $b_1=9, b_2=8, b_3=10, b_4=9$. Позначимо $c_i:=\alpha b_i+(1-\alpha)a_i$. Отримаємо:

$$c_1 = 0.65 \cdot 9 + 0.35 \cdot (-5) = 4.1,$$

 $c_2 = 0.65 \cdot 8 + 0.35 \cdot (-3) = 4.15,$
 $c_3 = 0.65 \cdot 10 + 0.35 \cdot (-1) = 6.15,$
 $c_4 = 0.65 \cdot 9 + 0.35 \cdot (-6) = 3.75.$

Отже маємо $a_{i_0}(\alpha)=6.15$, тому обираємо рішення $i_0=3$. Правило Севіджа. Знаходимо $c_i:=\max_j r_{ij}$:

$$c_1 = 15$$
, $c_2 = 13$, $c_3 = 8$, $c_4 = 11$

Маємо знайти мінімум з цих значень: $a_{i_0}=8$, тому обираємо рішення $i_0=3$.

2 Задача 2

Умова 2.1. Розглянемо фінансову операцію, яку пов'язано з випадковим доходом ξ_1 :

$$\Pr[\xi_1 = 3.2] = 0.1, \Pr[\xi_1 = 4.5] = 0.3, \Pr[\xi_1 = 6.2] = 0.3, \\ \Pr[\xi_1 = 8.0] = 0.2, \Pr[\xi_1 = 10.5] = 0.1$$

та фінансову операцію, що пов'язано із доходом ξ_2 :

$$\Pr[\xi_2 = 4.5] = 0.2, \Pr[\xi_2 = 5.2] = 0.2, \Pr[\xi_2 = 8.5] = 0.2,$$

 $\Pr[\xi_2 = 10.3] = 0.2, \Pr[\xi_1 = 11.7] = 0.2$

- Знайти ефективність та ризик обох фінансових операцій.
- Чи можна надати перевагу однієї з цих фінансових операцій лише за ефективністю і ризиком?
- Припустимо, що ξ_1 та ξ_2 незалежні випадкові доходи. Знайти ефективність та ризик суми $\xi_1+\xi_2$.
- Розглянемо фінансову операцію, випадковий дохід від якої описується величиною ξ_1 . Проведіть диверсифікацію ризику цієї операції так, щоб ризик знизився втричі, розглянувши кілька незалежних випадкових величин, що мають тий самий розподіл, що і ξ_1 .
- Розглянемо фінансову операцію, випадковий дохід від якої описується величиною ξ_2 . Провести, якщо це можливо, геджування ризику у вигляді додавання величини $\xi_3 = a\xi_2 + b$, лінійно залежної від ξ_2 .

Розв'язання.

Пункт (а). Маємо наступні ефективності:

$$\mathbb{E}[\xi_1] = \sum_i \Pr[\xi_1 = x_i] x_i = 6.18, \quad \mathbb{E}[\xi_2] = \sum_i \Pr[\xi_2 = x_i] x_i = 8.04$$

Для ризику рахуємо математичні сподівання квадратів:

$$\mathbb{E}[\xi_1^2] = \sum_i \Pr[\xi_1 = x_i] x_i^2 = 42.456, \quad \mathbb{E}[\xi_2^2] = \sum_i \Pr[\xi_2 = x_i] x_i^2 = 72.504$$

Ризики:

$$\sigma[\xi_1] = \sqrt{\mathbb{E}[\xi_1^2] - \mathbb{E}[\xi_1]^2} = \sqrt{4.2636} \approx 2.06,$$

$$\sigma[\xi_2] = \sqrt{\mathbb{E}[\xi_2^2] - \mathbb{E}[\xi_2]^2} = \sqrt{7.8624} \approx 2.80$$

Пункт (б). Не можна, оскільки хоч друга операція має більше ефективність, але має більший ризик.

Пункт (в). Математичне сподівання суми можна знайти без використання умови на незалежність:

$$\mathbb{E}[\xi_1 + \xi_2] = \mathbb{E}[\xi_1] + \mathbb{E}[\xi_2] = 14.22$$

Для ризику вже потрібно використовувати умову на незалежність:

$$\sigma[\xi_1 + \xi_2] = \sqrt{\sigma[\xi_1]^2 + \sigma[\xi_2]^2} = \sqrt{12.126} \approx 3.48$$

Пункт (г). Нехай η_1,\dots,η_n — незалежні випадкові величини, що мають той самий розподіл, що і ξ_1 . Введемо у розгляд випадкову величину $\zeta:=\frac{1}{n}\sum_{j=1}^n\eta_j$. В такому разі будемо мати таке саме математичне сподівання $\mathbb{E}[\zeta]=\mathbb{E}[\xi_1]=6.18$, але ризик буде зменшуватися: $\sigma[\zeta]=\sigma[\xi_1]/\sqrt{n}$. Щоб він зменшився втричі, потрібно взяти n=9 випадкові величини.

Пункт (д). Маємо $\xi_3=a\xi_2+b$. Для геджування ризику потрібно накласти умову $\mathbb{E}[\xi_3]=0$, себто $a\mathbb{E}[\xi_2]+b=0$, звідки $b=-a\mathbb{E}[\xi_2]$. Дисперсія, у свою чергу:

$$Var[\xi_2 + \xi_3] = Var[(1+a)\xi_2 + b] = (1+a)^2 Var[\xi_2]$$

Потрібно, аби $\mathrm{Var}[\xi_2+\xi_3]<\mathrm{Var}[\xi_2]$, себто $(1+a)^2<1$. Тому, достатньо обрати будь-який $a\in(-2,0)$. Оберемо a=-1. В такому разі $b=\mathbb{E}[\xi_2]=8.04$ і тоді $\xi_3=-\xi_2+8.04$.