Problem Set 7

Ekkapot Charoenwanit Efficient Algorithms

Problem 7.1. Greedy Algorithms

The Averaged Minimum Weighted Completion Time Problem can be defined as follows.

Given a set of jobs $S = \{j_1, j_2, ..., j_n\}$, where j_i demands l_i units of CPU time and has weight w_i , find a schedule that minimizes the averaged minimum completion time of the given set of jobs.

The completion time c_i of a job j_i is the time at which j_i completes its execution. Therefore, the averaged weighted completion time C_{avg} is $\frac{1}{n} \sum_{i=1}^{n} w_i \cdot c_i$.

For example, consider a set of three jobs $S = \{j_1, j_2, j_3\}$, where j_1 requires 1 minutes with a weight of 2, j_2 requires 2.5 minutes with a weight of 2, and j_3 requires 4 with a weight of 1.

If we schedule j_1 followed by j_3 and followed by j_2 ,

- the completion time of j_1 is 1 and the weighted completion time of j_1 is $2 \cdot 1 = 2$.
- the completion time of j_3 is 1+4=5 and the weighted completion time of j_3 is $1\cdot 5=5$.
- the completion time of j_2 is 1+5+2.5=8.5 and the weighted completion time of j_2 is $2 \cdot 8.5=17$.

Therefore, the average weighted completion time of this schedule is $\frac{2+5+17}{3} = 11.3$.

- 1) Suppose that all the jobs have equal weights. You may use $w_i = 1$ for all i = 1, 2, ..., n. Show that there is some optimal schedule in which jobs are picked in the increasing order of CPU time.
- 2) Suppose all the jobs demand the same amount of CPU time. Show that there is some optimal schedule in which jobs are picked in the decreasing order of weight.
- 3) Show that there is some optimal schedule in which jobs are picked in the decreasing order of $\frac{w}{l}$ ratio.
- 4) Use a cut-and-paste argument to show that there exists a unique optimal schedule for a set of n jobs, where all jobs j_i have distinct $\frac{w_i}{l_i}$ ratios.

Problem 7.2. Minimum Spanning Tree

1) Apply Prim's algorithm to the following graph.

State the vertex cut (S,V-S) the algorithm uses in each step.

- 2) Show that the Maximum Spanning Tree Problem also exhibits a greedy-choice property.
- 3) How can you compute a maximum spanning tree for a connected graph using Prim's algorithm? What is the additional overhead incurred with this approach? Does this overhead cause the asymptotic behavior to differ from that of Prim's algorithm?
- 4) Find a maximum spanning tree of the graph in 1) using the algorithm you proposed in 3).
- 5) Given a connected **unweighted** graph G = (V, E), how can you find a spanning tree for G using Prim's algorithm?