

В этой работе совершенно отсутствуют какие бы то ни было чертежи. Излагаемые мною методы не требуют ни построений, ни геометрических или механических рассуждений; они требуют только алгебраических операций, подчиненных планомерному и однообразному алгоритму.

—Предисловие к "Аналитической механике"

Рис. 1: Жозеф Луи Лагранж

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

 $f(x) \to \min_{x \in S}$

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

Стационарные точки

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется **допустимым множеством** (или **бюджетным множеством**).

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется **допустимым множеством** (или **бюджетным множеством**).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

• Точка x^* является глобальным минимумом, если $f(x^*) \le f(x)$ для всех $x \in S$.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

- Точка x^* является глобальным минимумом, если $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется **допустимым множеством** (или **бюджетным множеством**).

Мы говорим, что задача имеет решение, если бюджетное множество, в котором достигается минимум или инфимум данной функции, **не пусто**: $x^* \in S$.

- Точка x^* является глобальным минимумом, если $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

- $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.
 - Мы называем точку x^* **стационарной точкой** (или критической точкой), если $\nabla f(x^*) = 0$. Любой локальный минимум дифференцируемой функции должен быть стационарной точкой.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

- $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.
 - Мы называем точку x^* **стационарной точкой** (или критической точкой), если $\nabla f(x^*) = 0$. Любой локальный минимум дифференцируемой функции должен быть стационарной точкой.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

- $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.
 - Мы называем точку x^* **стационарной точкой** (или критической точкой), если $\nabla f(x^*) = 0$. Любой локальный минимум дифференцируемой функции должен быть стационарной точкой.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

 $f(x) \to \min_{x \in S}$

Множество S обычно называется **допустимым множеством** (или **бюджетным множеством**).

- $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.
 - Мы называем точку x^* стационарной точкой (или критической точкой), если $\nabla f(x^*)=0$. Любой локальный минимум дифференцируемой функции должен быть стационарной точкой.

Теория

Рис. 2: Иллюстрация различных стационарных (критических) точек

$$f(x) \to \min_{x \in S}$$

Множество S обычно называется допустимым множеством (или бюджетным множеством).

- $f(x^*) \le f(x)$ для всех $x \in S$.
- Точка x^* является **локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) \leq f(x)$ для всех $x \in N \cap S$.
- Точка x^* является **строгим локальным минимумом**, если существует окрестность N точки x^* такая, что $f(x^*) < f(x)$ для всех $x \in N \cap S$ с $x \neq x^*$.
 - Мы называем точку x^* **стационарной точкой** (или критической точкой), если $\nabla f(x^*) = 0$. Любой локальный минимум дифференцируемой функции должен быть стационарной точкой.

1 Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

1 Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T\nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

і Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0,$$
 для всех $t \in [0,T]$

1 Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $\nabla f(x^*) \neq 0$. Определим вектор $p = -\nabla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0$$
, для всех $t \in [0,T]$

Для любого $\bar{t} \in (0,T]$, мы имеем по теореме Тейлора, что

$$f(x^*+ar t p)=f(x^*)+ar t\, p^T\,
abla f(x^*+tp),$$
 для некоторого $\,t\in(0,ar t)$

і Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*)
eq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0,$$
 для всех $t \in [0,T]$

Для любого $\bar t\in(0,T]$, мы имеем по теореме Тейлора, что $f(x^*+\bar tp)=f(x^*)+\bar t\,p^T\,\nabla f(x^*+tp),\ для\ некоторого\ t\in(0,\bar t)$

Следовательно,
$$f(x^* + \bar{t}p) < f(x^*)$$
 для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

1 Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*)
eq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0$$
, для всех $t \in [0,T]$

Для любого $ar t\in (0,T]$, мы имеем по теореме Тейлора, что $f(x^*+ar tp)=f(x^*)+ar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in (0,ar t)$

Следовательно,
$$f(x^* + \bar{t}p) < f(x^*)$$
 для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

1 Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*)
eq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0$$
, для всех $t \in [0,T]$

Для любого $ar t\in (0,T]$, мы имеем по теореме Тейлора, что $f(x^*+ar tp)=f(x^*)+ar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in (0,ar t)$

Следовательно,
$$f(x^* + \bar{t}p) < f(x^*)$$
 для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

1 Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*)
eq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$

Поскольку ∇f непрерывна в окрестности x^* , существует скаляр T>0 такой, что

$$p^T
abla f(x^* + tp) < 0$$
, для всех $t \in [0,T]$

Для любого $ar t\in (0,T]$, мы имеем по теореме Тейлора, что $f(x^*+ar tp)=f(x^*)+ar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in (0,ar t)$

Следовательно,
$$f(x^* + \bar{t}p) < f(x^*)$$
 для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*) \neq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$
 Поскольку ∇f непрерывна в окрестности x^* , существует скаляр $T>0$ такой, что

тоскольку
$$\sqrt{f}$$
 непрерывна в окрестности x , существует скаляр $T>0$ такои, чт $p^T \nabla f(x^*+tp) < 0$. для всех $t \in [0,T]$

Для любого $\bar t\in(0,T]$, мы имеем по теореме Тейлора, что $f(x^*+\bar tp)=f(x^*)+\bar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in(0,\bar t)$

Следовательно, $f(x^* + \bar{t}p) < f(x^*)$ для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*) \neq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$
 Поскольку ∇f непрерывна в окрестности x^* , существует скаляр $T>0$ такой, что

тоскольку
$$\sqrt{f}$$
 непрерывна в окрестности x , существует скаляр $T>0$ такои, чт $p^T \nabla f(x^*+tp) < 0$. для всех $t \in [0,T]$

Для любого $\bar t\in(0,T]$, мы имеем по теореме Тейлора, что $f(x^*+\bar tp)=f(x^*)+\bar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in(0,\bar t)$

Следовательно, $f(x^* + \bar{t}p) < f(x^*)$ для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

Необходимое условие оптимальности первого порядка

Если x^st - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*) \neq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$
 Поскольку ∇f непрерывна в окрестности x^* , существует скаляр $T>0$ такой, что

тоскольку
$$\sqrt{f}$$
 непрерывна в окрестности x , существует скаляр $T>0$ такои, чт $p^T \nabla f(x^*+tp) < 0$. для всех $t \in [0,T]$

Для любого $\bar t\in(0,T]$, мы имеем по теореме Тейлора, что $f(x^*+\bar tp)=f(x^*)+\bar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in(0,\bar t)$

Следовательно, $f(x^* + \bar{t}p) < f(x^*)$ для всех $\bar{t} \in (0,T]$. Мы нашли направление из x^* вдоль которого f убывает, поэтому x^* не является локальным минимумом, что приводит к противоречию.

1 Необходимое условие оптимальности первого порядка

Если x^* - локальный минимум и f непрерывно дифференцируема в открытой окрестности, то

$$\nabla f(x^*) = 0$$

Доказательство

Предположим от противного, что $abla f(x^*)
eq 0$. Определим вектор $p = -
abla f(x^*)$ и заметим, что

$$p^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$$
 Поскольку ∇f непрерывна в окрестности x^* , существует скаляр $T>0$ такой, что

Поскольку
$$\nabla f$$
 непрерывна в окрестности x , существует скаляр $T>0$ такои, чт $p^T \nabla f(x^*+tp) < 0$. для всех $t \in [0,T]$

Для любого $\bar t\in(0,T]$, мы имеем по теореме Тейлора, что $f(x^*+\bar tp)=f(x^*)+\bar t\,p^T\,\nabla f(x^*+tp),\ \text{для некоторого}\ \ t\in(0,\bar t)$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Вектор $d \in \mathbb{R}^n$ является допустимым

Общее условие локальной оптимальности первого порядка

направлением в точке $x^* \in S \subseteq \mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S \subseteq \mathbb{R}^n$ и функция $f: \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

Вектор $d \in \mathbb{R}^n$ является допустимым

Общее условие локальной оптимальности первого порядка

направлением в точке $x^* \in S \subseteq \mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S \subseteq \mathbb{R}^n$ и функция $f: \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.

Вектор $d \in \mathbb{R}^n$ является допустимым

Общее условие локальной оптимальности первого порядка

направлением в точке $x^* \in S \subseteq \mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S \subseteq \mathbb{R}^n$ и функция $f: \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в окрестности x^* .

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d > 0$.
- 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x-x^*) \geq 0, \forall x \in S.$$

Вектор $d \in \mathbb{R}^n$ является допустимым

Общее условие локальной оптимальности первого порядка

направлением в точке $x^* \in S \subseteq \mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S \subseteq \mathbb{R}^n$ и функция $f: \mathbb{R}^n \to \mathbb{R}$. Предположим, что $x^* \in S$ является точкой локального минимума для fнад S, и предположим далее, что fнепрерывно дифференцируема в окрестности x^* .

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d > 0$.
- 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x-x^*) \geq 0, \forall x \in S.$$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}$. Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

направления $d \in \mathbb{R}^n$ в x^*

выполняется $\nabla f(x^*)^{\top}d \geq 0.$ 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$f(x)=x_1+x_2 o \min_{x_1,x_2\in \mathbb{R}^2}$$

 $\langle -\nabla f(x^{\star}), d \rangle \leq 0$

 x^{\star} - optimal

Рис. 4. Общее условие докальной оптимальности первого поря**я**к**№ •**

 $\langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S.

Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}.$ Предположим, что $x^*\in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности $x^*.$

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, \hat{S} выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

$$egin{aligned} \langle -
abla f(x^\star), d
angle \leq 0 \ x^\star ext{- optimal} \end{aligned}$$

 $egin{aligned} \langle abla f(x^\dagger), d
angle \leq 0 \ x^\dagger ext{- not optimal} \end{aligned}$

 $f \to \min_{x,y,z}$

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}$.

Предположим, что $x^* \in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

 $\langle -\nabla f(x^{\star}), d \rangle \leq 0$

 x^* - optimal

 $f o \min_{x,y,z}$

Рис 4. Общее условие докальной оптимальности первого поряжкя •

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}$.

Предположим, что $x^* \in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

 $\langle -\nabla f(x^{\star}), d \rangle \leq 0$

 x^* - optimal

 $f o \min_{x,y,z}$

Рис 4. Общее условие докальной оптимальности первого поряжкя •

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}$.

Предположим, что $x^* \in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

 $\langle -\nabla f(x^{\star}), d \rangle \leq 0$

 x^* - optimal

 $f o \min_{x,y,z}$

Рис 4. Общее условие докальной оптимальности первого поряжкя •

Общее условие локальной оптимальности первого порядка

Вектор $d\in\mathbb{R}^n$ является допустимым направлением в точке $x^*\in S\subseteq\mathbb{R}^n$, если малые шаги вдоль d не выводят нас за пределы S. Пусть $S\subseteq\mathbb{R}^n$ и функция $f:\mathbb{R}^n\to\mathbb{R}$.

Предположим, что $x^* \in S$ является точкой локального минимума для f над S, и предположим далее, что f непрерывно дифференцируема в окрестности x^* .

- 1. Тогда для любого допустимого направления $d \in \mathbb{R}^n$ в x^* выполняется $\nabla f(x^*)^\top d \geq 0$.
- 2. Если, кроме того, S выпукло, то

$$\nabla f(x^*)^\top (x - x^*) \ge 0, \forall x \in S.$$

 $\langle -\nabla f(x^{\star}), d \rangle \leq 0$

 x^* - optimal

 $f o \min_{x,y,z}$

Рис 4. Общее условие докальной оптимальности первого поряжкя •

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

Пример задачи с ограничениями-неравенствами

$$f(x)=x_1^2+x_2^2 \quad g(x)=x_1^2+x_2^2-1$$

$$f(x)\to \min_{x\in\mathbb{R}^n}$$
 s.t. $g(x)<0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

•
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $f = \lim_{i \to \infty} \lambda_i^* \ge 0, i = 1, \dots, m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\nabla_{\nu}L(x^{r},\lambda^{r},\nu^{r}) = 0$ $\int_{\mathbf{m}} d\mathbf{k}^{*} \geq 0, i = 1,\dots,m$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\bullet \ \nabla_{\nu}L(x^*,\lambda^*,\nu^*)=0$

$$\begin{split} f_0(x) &\to \min_{x \in \mathbb{R}^n} \\ \text{s.t.} \ f_i(x) &\le 0, \ i=1,\dots,m \\ h_i(x) &= 0, \ i=1,\dots,p \end{split}$$

Данная формулировка является общей задачей математического программирования.

Решение включает в себя построение лагранжиана:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

Необходимые условия

- $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$ • $\nabla_x L(x^*, \lambda^*, \nu^*) = 0$
- $\sum_{\nu} E(x^{*}, \lambda^{*}, \nu^{*}) = 0$ $\sum_{i} f \operatorname{-mid}_{i}^{*} \geq 0, i = 1, \dots, m$

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

Адверсариальные атаки

Определение: Адверсариальные атаки используются для обмана моделей DL путем добавления небольших возмущений к входным данным. Мы можем сформулировать это как задачу оптимизации с ограничениями, где целью является минимизация/максимизация функции потерь при сохранении возмущения в определенных пределах (ограничение нормы).

Метод FGSM (быстрого знака градиента) является самым простым таким методом, который генерирует adversarial examples путем применения небольшого возмущения в направлении градиента функции потерь. Формально:

$$x' = x + \varepsilon \cdot \mathrm{sgn}(\nabla_x L(x,y)), \text{s.t. } ||x - x'|| \leq \varepsilon$$

Таким образом, мы выполняем градиентный подъем на изображении (== максимизация потерь по отношению к этому изображению).

