1.15, 1.28, 3.11, 3.12, 3.14

- **1.15** A beam of spin $\frac{1}{2}$ atoms goes through a series of Stern–Gerlach type measurements as follows.
 - a. The first measurement accepts $s_z = \hbar/2$ atoms and rejects $s_z = -\hbar/2$ atoms.
 - b. The second measurement accepts $s_n = \hbar/2$ atoms and rejects $s_n = -\hbar/2$ atoms, where s_n is the eigenvalue of the operator $\mathbf{S} \cdot \hat{\mathbf{n}}$, with $\hat{\mathbf{n}}$ making an angle β in the xz-plane with respect to the z-axis.
 - c. The third measurement accepts $s_z = -\hbar/2$ atoms and rejects $s_z = \hbar/2$ atoms.

What is the intensity of the final $s_z = -\hbar/2$ beam when the $s_z = \hbar/2$ beam surviving the first measurement is normalized to unity? How must we orient the second measuring apparatus if we are to maximize the intensity of the final $s_z = -\hbar/2$ beam?

1.28 Construct the transformation matrix that connects the S_z diagonal basis to the S_x diagonal basis. Show that your result is consistent with the general relation

$$U = \sum_{r} |b^{(r)}\rangle \langle a^{(r)}|.$$

3.11 Use the triangle inequality (1.147) and the definition (3.100) of the density operator ρ to prove that $0 \le \text{Tr}(\rho^2) \le 1$.

which does not depend on the particular observable A is factored out. This motivates us to define the **density operator** ρ as follows:

$$\rho \equiv \sum_{i} w_{i} |\alpha^{(i)}\rangle \langle \alpha^{(i)}|. \tag{3.100}$$

- **3.12** A large collection of spin $\frac{1}{2}$ particles is in a mixture of the two states $|S_z; +\rangle$ and $|S_y; -\rangle$. The fraction of particles in the state $|S_z; +\rangle$ is a. Find the ensemble averages $[S_x]$, $[S_y]$, and $[S_z]$ in terms of a. Confirm that your expression gives the answers you expect for a = 0 and a = 1.
 - **3.14** Consider a one-dimensional simple harmonic oscillator with frequency ω and eigenstates $|0\rangle$, $|1\rangle$, $|2\rangle$,.... A mixed ensemble is formed with equal parts of each of the three states

$$|lpha
angle \equiv rac{1}{\sqrt{2}}\left[|0
angle + |1
angle
ight], \qquad |eta
angle \equiv rac{1}{\sqrt{2}}\left[|1
angle + |2
angle
ight], \qquad ext{and} \qquad |2
angle.$$

Lemma 1 The Schwarz inequality

$$\langle \alpha | \alpha \rangle \langle \beta | \beta \rangle \ge |\langle \alpha | \beta \rangle|^2,$$
 (1.147)

which is analogous to

$$|\mathbf{a}|^2|\mathbf{b}|^2 \ge |\mathbf{a} \cdot \mathbf{b}|^2 \tag{1.148}$$

in real Euclidian space.