云南大学 2020 年秋季学期理工类本科 2019 级《概率论与数理统计》期末考试(闭卷)试卷 B

满分: 100 分 考试时间: 120 分钟 任课教师:

学院:	专业:	学号:	姓名:

题号	х	-	四	五	六	七	八	总分
得分				Ši				

/0	1
7号	4
ıv	//

一、填空题 (本大题共 10 小题, 每小题 2 分, 共 20 分)

- 1. 设 A, B, C 为相互独立的三个事件,且 $P(A) = \frac{1}{5}, P(B) = \frac{1}{3}, P(C) = \frac{1}{4}$ 。则 A, B, C 至少有一个发生的概率为____。
- 2. 对 A, B 两事件,设 $P(A) = \frac{1}{4}, P(B|A) = \frac{1}{3}, P(A|B) = \frac{1}{2}, 则: P(A \cup B) = _______。$
- 3. 若 $X_i \sim N(0,1)$, (i=1,2) 则 $Z=2X_1-3X_2 \sim$ ______。
- 4. 对于 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, X 和 Y 相互独立的充要条件是 ______。
- 5.设 $X_1, X_2, ..., X_n$ 是来自总体 $N(\mu, \sigma^2)$ 的样本,X 为样本均值,则 $X_n \sim 1$ 。
- 6. 设随机变量 x 在(1,6)上服从均匀分布,则方程 $t^2 + Xt + 1 = 0$ 有实根的概率为_____。
- 7. 设两个相互独立的事件 A 和 B 都不发生的概率为 $\frac{1}{9}$, A 发生 B 不发生的概率 与 B 发生 A 不发生的概率相等,则: $P(A) = _____$ 。
- 8. 若 $X \sim N(0,1)$, 则 $Y = X^2 \sim$ ______。

9. 若: $\chi^2 \sim \chi^2(5)$,则: $D(\chi^2) =$ ______。

10.设随机变量X的方差为: D(X)=9,则对于任意常数c,

$$D\left(2\,X\,+\,c\right)=\underline{\hspace{1cm}}\quad \circ$$

得分

二、单项选择题(本大题共10小题,每小题2分,共20 分)

1.设两相互独立的随机变量: $X \sim N(0,1)$; $Y \sim N(1,1)$,则下述事件的概率值正确 的是()。

(A)
$$P\{X + Y \le 0\} = \frac{1}{2}$$
 (B) $P\{X + Y \le 1\} = \frac{1}{2}$

(B)
$$P\{X + Y \le 1\} = \frac{1}{2}$$

(C)
$$P\{X - Y \le 0\} = \frac{1}{2}$$

(C)
$$P\{X - Y \le 0\} = \frac{1}{2}$$
 (D) $P\{X - Y \le 1\} = \frac{1}{2}$

2. 设总体: $X \sim N(\mu, \sigma^2)$,其中 μ 、 σ^2 已知而a, b, c未知; X_1, X_2, X_3 是来自总 体 x 的一个样本,则下列表达式中不是统计量的为 (x).

(A)
$$aX_1 + bX_2 + cX_3$$
 (B) min(X_1, X_2, X_3)

(B) min(
$$X_1, X_2, X_3$$
)

(C)
$$\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$$

(D)
$$X_1 + 2\mu$$

3. 设 A, B 为任意两事件,若 P(AB) = 0 ,则下列正确的命题是().

- (A) A 和 B 互不相容(互斥) (B) AB 是不可能事件

- (C) AB 不一定是不可能事件 (D) P(A) = 0 或 P(B) = 0

4. 设 A, B 为两事件,则 P(A-B) = ()

(A)
$$P(A) - P(B)$$

(A)
$$P(A) - P(B)$$
 (B) $P(A) - P(B) + P(AB)$

(C)
$$P(A) - P(AB)$$

(C)
$$P(A) - P(AB)$$
 (D) $P(A) + P(B) + P(AB)$

第2页 共7页

5.	随机变量 x 在区间()取值时,函数: $f(x) = \sin x$ 可成为 x 的概率密度
函数	Ż.
	(A) $\left[0, \frac{\pi}{2}\right]$ (B) $\left[0, \pi\right]$ (C) $\left[0, \frac{3\pi}{2}\right]$ (D) $\left[0, 2\pi\right]$
	设两相互独立的随机变量 <i>x</i> 和 <i>r</i> 的方差分别为 4 和 2,则 3 <i>x</i> + 2 <i>r</i> + 10 的方 (). (A) 8 (B) 26 (C) 38 (D) 44
7.	 (A) 8 (B) 26 (C) 38 (D) 44 若随机变量 X 、 Y 相互独立,则正确结论为(). (A) Cov(X,Y) = 0
	(B) $D(X - Y) = D(X) - D(Y)$
	(C) D(XY) = D(X)D(Y)(D) 以上结论均不正确
8 .	设随机变量 x 的概率密度为: $f(x) = k \cos 2x$ ($x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$) ,则 k 的
值为	g().
	(A) $\frac{1}{2}$ (B) 1 (C) 2 (D) $\frac{1}{4}$
9.	设随机变量 x 和 y 相互独立且分布相同,令 $u = x - y, v = x + y$ 则 u 与 v 间
必有	Ī().
	(A) 不相互独立 (B) $\rho_{uv} \neq 0$
	(C) 相互独立 (D) $\rho_{UV} = 0$
10.	设随机变量 X, Y 的概率密度函数为: $f_x(x) = \{ {}^{\exp(-x)}_0 \ {}^{x>0}_{x \le 0} \ , \ f_y(y) = \{ {}^{\exp(-y)}_0 \ {}^{y>0}_{y \le 0} \ ,$
则(X,Y)的联合概率密度函数为().
	(A) $f(x, y) = \begin{cases} 2 \exp[-(x+y)] & x>0, y<0 \\ 0 & \text{identity} \end{cases}$ (B) $f(x, y) = \begin{cases} \exp[-(x+y)] & x>0, y<0 \\ 0 & \text{identity} \end{cases}$
	(C) $f(x, y) = \begin{cases} e^{\exp(-x) + \exp(-y)} & x > 0, y < 0 \\ 0 & \text{id} \end{cases}$ (D) 以上结论均不正确.

三、证明题 (本大题共2小题,每小题5分,共10分)

得分

四、计算题(本大题共 1 小题,每小题 10 分,共 10 分)

对于一个元件,其正常工作的概率 p 称为该元件的可靠性,而若干元件组成的系统,它能正常工作的概率称为该系统的可靠性。今假设有 2n 个元件组成图示的系统,每个元件的可靠性均为 r(0 < r < 1) ,且各元件工作状况相互独立,求该系统的可靠性。

得分

五、计算题(本大题共2小题,每小题5分,共10分)

设随机变量(X,Y)的概率密度函数为: $f(x,y) = \begin{cases} A \exp[-(2x+y)] & x>0,y>0 \\ 0 & \exists t \geq 0 \end{cases}$

求: (1) 系数 A; (2) $P\{Y \leq X\}$

得分

六、计算题(本大题共1小题,每小题10分,共10分)

求总体 N(20,3) 的容量分别为 10,15 的两独立样本: X_i (i=1,2,...,10); Y_j (j=1,2,...,15) 的样本均值 X_i X_i 之差的绝对值小于0.3 的概率.

得分

七、计算题(本大题共1小题,每小题10分,共10分)

设总体 $X \sim U[a,b]$,

a,b未知。 $X_1,X_2,\cdots X_n$ 是来自总体 X 的

一个样本。试求 a, b 的矩估计量

得分

八、计算题(本大题共1小题,每小题10分,共10分)

设随机变量 X 的概率密度为 $f(x) = \begin{cases} ax^2 + bx + c \\ 0 \end{cases}$ 이 (x) = (

$$E(x) = \frac{1}{2}, D(x) = \frac{3}{20}$$
。 试求系数 a, b, c 。