Architettura degli Elaboratori

Esercitazione

Su cosa ci esercitiamo oggi?

- Utilizzo di alcuni moduli combinatori nella realizzazione di reti logiche
 - Decodificatore
 - Multiplexer (MUX)
 - Programmable Logic Array (PLA)
 - Read Only Memory (ROM)

Date le tre funzioni logiche F, G, ed H, definite dalla seguente tavola di verità

Α	В	С	F	G	Н
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	1

Progettare un circuito che le realizzi utilizzando un decodificatore e delle porte OR esterne

Α	В	С	F	G	Н
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	1

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$G = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$$

$$H = \overline{A \cdot B \cdot C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Poiché ci sono tre variabili, useremo un decodificatore con 3 input e 2^3 =8 output per generare tutti i possibili mintermini

A	В	C	0	1	2	3	4	5	6	7	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1 0 1 0	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	
			I								

Gli output del decodificatore andranno in input a tre porte OR per generare gli output delle funzioni:

- $F = \overline{A \cdot B \cdot C} + A \cdot \overline{B \cdot C} + A \cdot B \cdot C$
- \rightarrow $G = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$
- \rightarrow H = $\overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$

Gli output del decodificatore andranno in input a tre porte OR per generare gli output delle funzioni:

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

$$\rightarrow$$
 $G = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$

$$\rightarrow$$
 H = $\overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$

Data la funzione logica F, definita dalla seguente tavola di verità

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	1

progettare un circuito che la realizzi utilizzando un opportuno MUX

	Α	В	F
	0	0	0
	0	1	1
Ī	1	0	0
	1	1	1

$$F = \overline{A} \cdot B + A \cdot B$$

Espressione canonica SOP

- Poiché ci sono due variabili (A, B), useremo un MUX con n=2 linee di selezione (s_1, s_0) ed m= 2^n = 2^2 =4 linee di input dati (x_0, x_1, x_2, x_3) , ponendo
 - $> s_1 = A, s_0 = B$
 - > I 4 valori della tavola di verità di F sulle linee di input dati

Poiché la funzione realizzata dal MUX 4:1 è

$$x_0 \overline{s_1} \overline{s_0} + x_1 \overline{s_1} s_0 + x_2 s_1 \overline{s_0} + x_3 s_1 s_0$$

per ottenere la funzione $F = \overline{A} \cdot B + A \cdot B$, ci basta porre $x_0 = 0$, $x_1 = 1$, $x_2 = 0$, $x_3 = 1$

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	1

Α	В	۴
0	0	0
0	1	1
1	0	0
1	1	1

$$F = \overline{A} \cdot B + A \cdot B$$
$$= (\overline{A} + A) \cdot B$$
$$= B$$

Espressione minimale

Poiché F dipende solo da una variabile (B), possiamo usare un MUX con n=1 linea di selezione (s) ed $m=2^n=2^1=2$ linee di input dati (x_0, x_1) , ponendo

I 2 valori possibili per F (0,1) sulle linee di input dati

Poiché la funzione realizzata dal MUX 2:1 è

$$x_0 \overline{s} + x_1 s$$

per ottenere la funzione F = B, ci basta porre $x_0 = 0$, $x_1 = 1$

В	F
0	0
1	1

Realizzare la funzione NAND usando un opportuno MUX

Α	В	$A \cdot B$
0	0	1
0	1	1
1	0	1
1	1	0

$$F = \overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot \overline{B}$$
Espressione canonica SOP

La funzione realizzata dal MUX 4:1 è

$$\times_0$$
 $\overline{S_1}$ $\overline{S_0}$ + \times_1 $\overline{S_1}$ S_0 + \times_2 S_1 $\overline{S_0}$ + \times_3 S_1 S_0

Per ottenere la funzione NAND, ci basta porre $x_0=1$, $x_1=1$, $x_2=1$, $x_3=0$

Realizzare la funzione NOR usando un opportuno MUX

Α	В	A + B
0	0	1
0	1	0
1	0	0
1	1	0

$$F = \overline{A} \cdot \overline{B}$$

Espressione canonica SOP

La funzione realizzata dal MUX 4:1 è

$$\times_0 \overline{S_1} \overline{S_0} + \times_1 \overline{S_1} S_0 + \times_2 S_1 \overline{S_0} + \times_3 S_1 S_0$$

Per ottenere la funzione NOR, ci basta porre $x_0=1$, $x_1=0$, $x_2=0$, $x_3=0$

Tramite un MUX 4:1 e una porta NOT, realizzare la funzione logica

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$$

- NOTA: un MUX 4:1 ha 2 linee di selezione e 4 linee dati
 - > Ma la funzione F ha 3 variabili!
 - Avremmo dovuto usare un MUX 8:1, associando i tre segnali di selezioni alle tre variabili
 - Perché l'esercizio ci chiede di usare un MUX 4:1 invece di un MUX 8:1?

A	В	C	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

La funzione realizzata dal MUX 4:1 è

$$\times_0$$
 $\overline{S_1}$ $\overline{S_0}$ + \times_1 $\overline{S_1}$ S_0 + \times_2 S_1 $\overline{S_0}$ + \times_3 S_1 S_0

Per ottene<u>re</u> la funzione F, ci basta porre $x_0 = \overline{C}$, $x_1 = 0$, $x_2 = 0$, $x_3 = C$

Quando A=B=0, $F=\overline{C}$ Quando A=B=1, F=C

> Realizzare un MUX 4:1 utilizzando tre MUX 2:1

Realizzare un MUX 4:1 utilizzando tre MUX 2:1

Il circuito seguente è equivalente a un MUX 8:1?

Implementare, utilizzando un PLA, le seguenti funzioni logiche

- $F = \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C}$
- \rightarrow G = A·B·C + A· \overline{B} ·C

- \rightarrow F = $\overline{A} \cdot B \cdot C + A \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C}$
- \rightarrow G = A·B·C + A·B·C

$$ightharpoonup F = \overline{A} \cdot B \cdot C + A \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C}$$

$$\rightarrow$$
 G = A·B·C + A·B·C

Date le tre funzioni logiche F, G, ed H, definite dalla seguente tavola di verità

A	В	С	F	G	Н
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	1

Progettare un circuito che le realizzi utilizzando una ROM

Gli output del decodificatore andranno in input a tre porte OR per generare gli output delle funzioni:

$$F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

$$\rightarrow$$
 $G = \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C} + A \cdot \overline{B \cdot C}$

$$\rightarrow$$
 H = $\overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$

Il circuito è lo stesso dell'Esercizio 1

- $F = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$
- \rightarrow $G = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$
- \rightarrow H = $\overline{A} \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$

ROM $2^3 \times 3$

'Il circuito è lo stesso dell'Esercizio 1 (infatti una ROM è costituita da un decodificatore e una catena di porte OR)