# ${\bf DescriptivStatistics}$

July 15, 2020

# 1 Reminder on descriptiv statistics

Comparison between the histogram and boxplot

### 1.1 Histogram

## Histogram of X



It's the default version of R. Possible to change the story by tuning the histogram.



It's possible to define specific function to calculate the best numbers of bins (by default "Strudge" function)

# 1.2 Boxplot



# 1.3 Histogram + Boxplot





## 1.4 Scatter and Pair plot

### 1.4.1 Scatter plot



Add a categorical variable on colour and pattern



### Here we can UNDERSTAND the datas

### 1.5 Multivariate data

Iris: 4 continuous variable which are all measured in centimeters => boxplot possible



More variance on length then Width High variance on Petal.length ....

Try to do the same with histogram  $\dots$ 



<sup>\*\*</sup> BUT difficult to read, and not the same bins, ....

## 1.6 Pair plot



We can see groups, linear dependency

### 1.7 Multivariate numerical indicators

Mean vector colMeans

covariance matrix

|                                    |              | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|------------------------------------|--------------|--------------|-------------|--------------|-------------|
| A matrix: $4 \times 4$ of type dbl | Sepal.Length | 0.6856935    | -0.0424340  | 1.2743154    | 0.5162707   |
|                                    | Sepal.Width  | -0.0424340   | 0.1899794   | -0.3296564   | -0.1216394  |
|                                    | Petal.Length | 1.2743154    | -0.3296564  | 3.1162779    | 1.2956094   |
|                                    | Petal.Width  | 0.5162707    | -0.1216394  | 1.2956094    | 0.5810063   |

The covariance matrix can't be easely interpreted

### correlation matrix

|                                    |              | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|------------------------------------|--------------|--------------|-------------|--------------|-------------|
| A matrix: $4 \times 4$ of type dbl | Sepal.Length | 1.0000000    | -0.1175698  | 0.8717538    | 0.8179411   |
|                                    | Sepal.Width  | -0.1175698   | 1.0000000   | -0.4284401   | -0.3661259  |
|                                    | Petal.Length | 0.8717538    | -0.4284401  | 1.0000000    | 0.9628654   |
|                                    | Petal.Width  | 0.8179411    | -0.3661259  | 0.9628654    | 1.0000000   |

Correlation matrix is easier to interprete. Here :

- $\bullet\,$  petal. width and petal.length are highly correlated
- $\bullet\,$  petal.length and sepal.length also

## 2 The Learning process - Importance to evaluate

### 2.1 The Dataset to evaluate



### 2.2 Learning step



## 2.3 Prediction step



Fit is not perfect : it should be a y=x line

### 2.3.1 Calculation of Learning Error Step

8.49549897408271

\*\*Not good BUT optimistic!

## 2.4 The learning process - with "minimal setup"

### 2.4.1 Learning step



### 2.4.2 Evaluation Step

### 2.4.3 Error level Step

7.21923485650683

### 2.5 Evaluation with a more complexe model - naive method

Let's try a complexe model (x^6)

<sup>\*\*</sup>The error increases from 11 to 12



Now the error is really lower on the learning set ... but still to optimistic

### 2.5.1 with a the training set + evaluation

2.96609553450826

This error is more realistic

2.5.2 searching the best model: increasing the number of variable x^i of the model



207

2.5.3 For Learning Error, the best model is with  $x^20$  (in fact the model fit better and better when increasing the complexity

2.5.4 For training Error, the best model is with x<sup>6</sup>, which is more realistic

2.6 Learning process - with "leave one out method"

2.30038251159155



<sup>\*\*</sup>The error found here : 2.31, can be relied on.

 ${\bf 2.6.1} \quad {\bf Comparing \ errors \ between \ evaluation \ done \ on \ training, \ done \ by \ split \ method, }$ 

