Binary Classification Accuracy Measures

Data Mining
Prof. Dawn Woodard
School of ORIE
Cornell University

Outline

1 Announcements

2 Changing the Prediction Threshold

3 Practice Questions

- Questions?
- Step-through debugging in R is provided by the "debug" function. For info, call "help(debug)"
 - Define your function (e.g. "myFun")
 - Call "debug(myFun)"
 - Run your function: "myFun(args)"

Threshold

- In the case of naive Bayes where Y takes two values (for instance, 0 or 1), to predict Y we calculated $Pr(Y = 1 | X_1, ..., X_K)$
- If this was greater than 0.5, we classified as Y = 1. Why?

- If $Pr(Y = 1|X_1,...,X_K) \le 0.5$ we classified as Y = 0
- Note: what we do for the boundary case $Pr(Y = 1 | X_1, ..., X_K) = 0.5$ is an arbitrary choice

6

Threshold

- We talked last time about why it makes more sense in some contexts to use thresholds other than 0.5
- Note: for an outcome with > 2 categories the concept of the decision threshold is more complicated. Today we focus on OUTCOMES WITH 2 CATEGORIES
- These categories are typically named 0 and 1. Y = 1 is also called a "positive," while Y = 0 is called a "negative." For an outcome with values "Yes" and "No", we take Y = 1 to mean "Yes" and Y = 0 to mean "No" by convention.

Applying naive Bayes to the accidents data and using a decision threshold of 0.5 on the test data, the classification % accuracy is 59.5. The classification table for the test data is:

```
Prediction = 0 Prediction = 1

Actual = 0 399 116

Actual = 1 289 196
```

- Here we are making two types of errors
- How many times did we predict Y = 0 when actually Y = 1?
- How many times did we predict Y = 1 when actually Y = 0?

```
Prediction = 0 Prediction = 1

Actual = 0 399 116

Actual = 1 289 196
```

- For what percentage of the records with Y = 1 did we predict Y = 0?
 - This is called the False Negative Rate
- For what percentage of the records with Y = 0 did we predict Y = 1?
 - This is called the False Positive Rate

```
Prediction = 0 Prediction = 1

Actual = 0 399 116

Actual = 1 289 196
```

- For what percentage of the records with Y = 1 did we predict Y = 1?
 - This is called the True Positive Rate
- For what percentage of the records with Y = 0 did we predict Y = 0?
 - This is called the True Negative Rate

- If we lower the threshold from 0.5 to 0.4, should our false positive rate increase or decrease?
 - A. Increase
 - B. Decrease

- If we raise the threshold from 0.5 to 0.7, should our true positive rate increase or decrease?
 - A. Increase
 - B. Decrease

...so the threshold controls the tradeoff between the false positive and false negative rates. You can decrease one by changing the threshold, but the other one will increase.

For the accidents data:

■ With threshold = 0.5 we have

```
Prediction = 0 Prediction = 1

Actual = 0 399 116

Actual = 1 289 196
```

■ With threshold = 0.4 we have

	Prediction = 0	Prediction = 1
Actual = 0	210	305
Actual = 1	136	349

For the accidents data:

■ With threshold = 0.5 we have

	Prediction = 0	Prediction = 1	Total
Actual = 0	399	116	515
Actual = 1	289	196	485

■ With threshold = 0.4 we have

	Prediction = 0	Prediction = 1	Total
Actual = 0	210	305	515
Actual = 1	136	349	485

Why doesn't the threshold affect the row sums?

■ With threshold = 0 what table do we get? (with neighbor)

```
 \begin{array}{cccc} & Prediction = 0 & Prediction = 1 & Total \\ Actual = 0 & & 515 \\ Actual = 1 & & 485 \end{array}
```

What are our false positive and true positive rates?

■ With threshold = 1 what table do we get?

```
 \begin{array}{cccc} & & Prediction = 0 & Prediction = 1 & Total \\ Actual = 0 & & & 515 \\ Actual = 1 & & 485 \end{array}
```

What are our false positive and true positive rates?

Varying the threshold we get the following false positive and true positive rates:

Threshold	False Positive Rate	True Positive Rate
0	1.00	1.00
0.4	0.59	0.72
0.5	0.23	0.40
0.6	0.07	0.17
1	0.00	0.00

- Sketch a plot with the false positive rate on the x-axis and the true positive rate on the y-axis
- The plot should not have threshold on either axis

type of plot is (C) curve:	called a Rec	eiver Operating

Characteristic

What if one classifier has the ROC curve in black and another has the ROC curve in red:

Is one of these classifiers uniformly better than the other? Why?

What if the two classifiers have these curves; is one uniformly better?

- Say we have a classifier, called the "coin-flipping" classifier, that flips a coin to decide whether to predict 0 or 1
- What are the false positive and true positive rates for this classifier?
- Say the coin can be biased, so that it has probability p of being heads
- What are the false positive and true positive rates for this classifier?

What	does the ROC curve look like for this classifier

What does it mean if we have a classifier with the ROC curve in black?

- For any classification method for binary outcome that gives us a prediction of $Pr(Y = 1|X_1,...,X_K)$ (i.e. any statistical classification method), we can alter the threshold in this way to obtain a range of true positive and false positive rates.
- We cannot do this with any classification method that only gives us a prediction of Y = 1 or Y = 0, i.e. many heuristic classification methods.
- This is a big benefit of statistical methods for classification of binary outcomes.

Say we have a classifier with the following ROC curve on the test data:

Say false positive errors are much more costly than false negative errors for this problem.

What threshold might you want to use for prediction?

- **A.** 1.0
- **B.** 0.6
- **C.** 0.5
- **D.** 0.4

What are the FPR and FNR at that threshold?

■ Give an example of a problem where false positive errors are much less costly than false negative errors.

Give an example of a problem where false positive errors are much more costly than false negative errors.

Error Rates

Distinction between false negative probability and false negative rate, etc.:

```
\begin{split} & \text{FNP} = P_{\text{(}}\text{Predict Y} = 1 \mid \text{Actually Y} = 0 \,) \\ & \text{FPR} = \#obs \ w/ \ prediction 1 and Y actually} = 0 \,/ \,obs \\ & \text{w/ actually Y} = 0 \end{split}
```

Error Rates

For a test data set having 10 records with Y = 1 and 15 records with Y = 0, what is the chance of correctly classifying all of them, as a function of the true positive probability t, the false positive probability t, the true negative probability t, and the false negative probability t? Assume independence across observations.

Error Rates

Say the frequency of Y = 1 in the general population is 67%. We select a random person and predict the value of Y for that person, based on their covariates. What is the probability that person has Y = 1 and we predict Y = 0, as a function of our true positive probability t, false positive probability t, true negative probability t, and false negative probability t?