Лекция 13 Управление ресурсами вычислительных систем

Ефимов Александр Владимирович E-mail: alexandr.v.efimov@sibguti.ru

Курс «Архитектура вычислительных систем» СибГУТИ, 2019

Типовая архитектура вычислительного кластера

Производительность: $10^0 - 10^2$ PFlops

Количество вычислительных узлов: $10^3 - 10^5$ штук

Время наработки на отказ: 10⁰ – 10² часов

Уровни вычислительного средства

Распределенная операционная система

Распределённая ОС существует как единая операционная система в масштабах вычислительной системы.

Распределённая ОС, динамически и автоматически распределяет работы по различным машинам системы для параллельной обработки.

Семейство ОС UNIX

Режимы функционирования ВС

Поток параллельных задач

Мультизадачные режимы

Обслуживание потоков задач

Генерация подсистем в пределах ВС

- Техника теории игр
- Стохастическое программирование

Обработка наборов задач

Формирование расписаний решения параллельных задач

Точные, эвристические и стохастические методы и алгоритмы для задач с фиксированными рангами

Классификация задач

Кто	Когда определяют число?	
определяет	до начала	в процессе
число?	решения	решения
Пользователь	Жесткая (фиксированная) rigid	изменяющаяся evolving
СУР	масштабируемая moldable	уступчивая malleable

Проблемы при решении задач на ВС

- Распараллелить программу
- Организовать отказоустойчивое выполнение
- Эффективно вложить задачу в структуру системы, т.е. расположить ветви параллельной программы по вычислителям так, чтобы взаимодействие между ними занимало минимум времени.

```
$ cat test.job

#PBS -N Job_Name

#PBS -q Batch_Name

#PBS -l nodes=1:ppn=6

mpiexec ./mpiprog
```

Решение задач на ВС

Система управления ресурсами SLURM

Состояния вычислительного узла

Состояния задачи

Алгоритм планирования

- 1. Наступление события планирования.
- 2. Сервер отправляет команду планировщику.
- 3-4. Планировщик запрашивает информацию о состоянии ресурсов.
- 5-6. Планировщик запрашивает информацию о задачах.

```
/* Планирование */
/* First Come First Served (FCFS)*/
/* Backfilling */
```

- 7. Планировщик отправляет запрос на решение задачи серверу.
- 8. Отправка задачи на вычислительные узлы.

Запуск параллельных программ

Мультикластерные ВС

GRIDWAY

Децентрализованное управление

Литература

Хорошевский В.Г. Архитектура вычислительных систем.

Учебное пособие. – М.: МГТУ им. Н.Э. Баумана, 2005; 2-е издание, 2008.

Хорошевский В.Г. Инженерные анализ функционирования вычислительных машин и систем. – М.: "Радио и связь", 1987.