1. tétel

Sorozatok, sorok, függvények határértéke és folytonossága

Leindler – Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Számsorozatok, vektorsorozatok konvergenciája

Def.: Számsorozatok értelmezése:

A természetes számok halmazán értelmezett függvényt sorozatnak nevezzük.

Ha a szóban forgó függvény értékkészlete R-nek egy részhalmaza, akkor <u>valós</u> <u>számsorozatról</u>, ha C-nek egy részhalmaza, akkor <u>komplex számsorozatról</u> szokás beszélni.

Az olyan sorozatokat amelyek értékkészlete Rⁿ (n-dimenziós euklideszi tér) egy részhalmaza Rⁿ-beli <u>vektorsorozatoknak</u> nevezzük.

Az a sorozattal az $n \in \mathbb{N}$ számhoz rendelt értéket a **sorozat n-edik tagjának**, vagy a sorozat n helyen felvett értékének nevezzük.

Def.: Az olyan sorozatot, amelynek értékei azonos értelmezési tartománnyal rendelkező függvények, <u>függvénysorozatnak</u> nevezzük.

Def.: Korlátosság

Akkor mondjuk, hogy az a = (a_n) valós vagy komplex számsorozat felülről (*alulról*) **korlátos**, ha létezik olyan K (k) szám, hogy minden $n \in \mathbb{N}$ indexre fenáll az $|a_n| \leq K$ egyenlőtlenség, azaz:

 $\exists K \in \mathbb{R} \text{ hogy } \forall n \in \mathbb{N} \text{ a}_n \leq K \ (\exists k \in \mathbb{R} \text{ hogy } \forall n \in \mathbb{N} \text{ } k \leq a_n). \text{ A } K \ (k) \text{ számot a sorozat felső } (alsó) korlátjának nevezzük.$

Def.: Az (a_n) valós számsorozatot **konvergensnek** nevezzük, ha létezik olyan $A \in \mathbb{R}$ valós szám, hogy ennek minden ε>0 sugarú környezetéhez létezik olyan $n_0 \in \mathbb{N}$ küszöbindex, hogy a sorozat minden n_0 -nál nagyobb vagy egyenlő indexű a_n tagja benne van az A szám ε sugarú környezetében, azaz

 $\exists A{\in}\, \texttt{R},\, hogy} \,\, \forall \epsilon{>}0 \,\, val\'os \,\, sz\'amhoz \,\, \exists \,\, n_0{\in}\,\, \texttt{N},\, hogy} \,\, \forall n{\geq}n_0 \,\, indexre \,\, |a_n{-}A|{<}\epsilon.$

Tétel: Ha az (a_n) : $N \rightarrow \mathbb{R}$ sorozat konvergens, akkor egyetlen olyan $A \in \mathbb{R}$ szám létezik, amelyre a konvergencia (előző def.) teljesül. Ezt az A számot az (a_n) sorozat **határétékének** nevezzük: $\lim a_n := A \ (n \rightarrow \infty)$

Def.: Ha az (a_n) sorozat nem konvergens, akkor <u>divergensnek</u> nevezzük.

Def.: Normált tér

 $Az(X, \|.\|)$ normált tér, ha

1. X lineáris tér R felett

- 2. $\|.\|: X \rightarrow \mathbb{R}$ függvény, melyre:
 - a) $||x|| \ge 0 \ (\forall x \in X)$
 - b) $\forall x \in X$: $||x|| = 0 \Leftrightarrow x = 0$
 - c) $\forall x \in X, \ \forall \lambda \in \mathbb{R} \text{ eset\'en } ||\lambda x|| = \lambda ||x||$
 - d) $\forall x,y \in X$ esetén $||x|| + ||y|| \ge ||x+y||$

Def.: Az $(\mathbb{R}^n, \|.\|)$ normált térben az (a_n) : $\mathbb{N} \to \mathbb{R}^n$ vektorsorozat **konvergens**, ha

 $\exists L \in \mathbb{R}^n : \forall \epsilon > 0 \text{ valós számhoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n \geq n_0 \text{ indexre } ||L-a_n|| \leq \epsilon.$

Belátható, hogy normált terekben bármely két norma ekvivalens, ezért a definicióban mindegy, hogy melyik normát használjuk.

Def.: Az olyan konvergens (a_n) számsorozatot, amelyre lim $a_n = 0$, <u>nullsorozatnak</u> vagy zérussorozatnak nevezzük.

Def.: Tágabb értelemben vett határérték

Akkor mondjuk, hogy valós (a_n) számsorozatnak $+\infty$ $(-\infty)$ a határértéke, ha bármilyen $P \in \mathbb{R}$ számhoz van olyan $N \in \mathbb{N}$, hogy minden $n \ge N$ indexre $a_n > P$ $(a_n < P)$.

Def.: Tetszőleges ε >0 számra a $K_{\varepsilon}(+\infty)$:= $(1/\varepsilon, +\infty)$ ($K_{\varepsilon}(-\infty)$:= $(-\infty, -1/\varepsilon)$) halmazt a $+\infty$ ($-\infty$) 1/ ε kezdőpontú ($-1/\varepsilon$ végpontú) "<u>környezetének</u>" nevezzük.

Def.: Sorozat limesz szuperiorja és limesz inferiorja

Tetszőleges a=(a_n) valós számsorozatra legyen

 $\overline{\lim} a_n = \lim \sup a_n =$

- ha a felülről nem korlátos, akkor +∞
- különben lim A_n

 $\lim a_n = \lim \inf a_n =$

- ha a alulról nem korlátos, akkor -∞
- különben lim B_n, ahol

```
A_n = \sup \{ a_k : k=n,n+1,n+2, ... \}

B_n = \inf \{ a_k : k=n,n+1,n+2, ... \}
```

Tétel: Legyen a=(a_n) egy valós számsorozat. Ekkor tetszőleges K $\leq \overline{\lim}$ a ($k \geq \underline{\lim}$ a) számnál a-nak végtelen sok tagja nagyobb (kisebb) és minden L $\geq \overline{\lim}$ a ($1 \leq \underline{\lim}$ a) számnál a-nak csak véges sok tagja nagyobb (kisebb).

Az a sorozatnak akkor és csak akkor van határértéke, ha lim $a = \underline{\lim} a = \lim a$.

Monoton sorozatok

<u>**Def.:**</u> Az a =(a_n) valós számsorozatot novekedőnek (csökkenőnek) nevezzük, ha minden n∈N indexre $a_n \le a_{n+1}$ ($a_n \ge a_{n+1}$). Ha minden n természetes számra $a_n < a_{n+1}$ ($a_n \ge a_{n+1}$) teljesül, akkor az (a_n) sorozatot szigorúan növekedőnek (szigorúan fogyónak, vagy szigorúan csökkenőnek) nevezzük. A növekedő vagy csökkenő sorozatokat tágabb

értelemben <u>monoton</u>, a szigorúan növekedő vagy csökkenő sorozatokat szigorúan monoton sorozatoknak nevezzük.

Jelölések: $(a_n) \land$ -szig. monton növő, $(a_n) \lor$ -szig. monoton fogyó, $(a_n) \nearrow$ - monoton növő, $(a_n) \lor$ - monoton fogyó

Tétel: Ha az (a_n) valós számsorozat monoton növekedő (fogyó), és korlátos, akkor **konvergens**, és

$$\lim a_n = \sup a_n (\lim a_n = \inf a_n)$$

Biz.: Legyen sup $a_n =: A$. Ekkor – a felső határ értelmezése alapján – minden $n \in \mathbb{N}$ számra $a_n \le A$ és tetszőleges $\varepsilon > 0$ számhoz létezik olyan $\mathbb{N} \in \mathbb{N}$, hogy $a_N > A - \varepsilon$. Mivel (a_n) monoton növekedő, azért minden $n \ge \mathbb{N}$ indexre is $a_n > A - \varepsilon$ teljesül. Azt kaptuk tehát, hogy

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \ \forall n \geq N \ A - \varepsilon < a_n \leq A$$

ez pedig azt jelenti, hogy $\lim a_n = A$.

Monoton csökkenő sorozatra analóg módon bizonyítható.

A végtelen numerikus sor fogalma és konvergenciája

Legyen a=
$$(a_n)$$
 egy valós vagy komplex számsorozat. Az $a_1+a_2+a_3...=\sum_{n=1}^{\infty}a_n$ (ezentúl

csak: $\sum a_n$) szimbólumot ("formális végtelen összeget") <u>végtelen numerikus sor</u>nak, vagy végtelen számsornak nevezzük. Az a_n számot a $\sum a_n$ sor n-edik (vagy általános) tagjának nevezzük.

Def.: Az $s_n = a_1 + a_2 + ... + a_n$ $(n \in N)$ egyenlőséggel értelmezett (s_n) sorozatot az $\sum a_n$ sor **részletösszegei sorozatának** nevezzük.

Def.: Akkor mondjuk, hogy Σa_n sor **konvergens**, ha részletösszegeinek sorozata konvergens. A s_n részletösszegek sorozatának határértékét a Σa_n sor összegének nevezzük. Ha az (s_n) sor divergens, akkor azt mondjuk, hogy a Σa_n végtelen sor divergens.

Tétel: Cauchy-féle konvergencia-kritérium

A $\sum a_n$ sor akkor és csak akkor konvergens, ha $\forall \epsilon > 0$ számhoz létezik olyan $N \in \mathbb{N}$, hogy minden $n \ge m \ge N$ indexre $|s_n - s_{m-1}| = |a_m + a_{m+1} + \dots a_n| < \epsilon$.

- **1. következmény:** Ha a $\sum a_n$ sor konvergens akkor (a_n) nullsorozat.
- **2. következmény:** Ha a $\sum a_n$ sor abszolút konvergens, akkor egyben konvergens is.

Def.: Akkor mondjuk, hogy $\sum a_n$ sor **abszolút konvergens**, ha $\sum |a_n|$ sor konvergens.

Pozitív tagú sorok

Def.: Ha minden n természetes számra $a_n \ge 0$, akkor a $\sum a_n$ sort **pozitív tagú sornak** nevezzük.

Ilyen sorok részletösszegeire nyilván

$$s_n = a_1 + a_2 + ... + a_n \le a_1 + a_2 + ... + a_n + a_{n+1} = s_{n+1}$$

teljesül, azért a pozitív tagú sorok részletösszegeinek sorozata monoton növekedő.

Tétel: Pozitív tagú sor akkor és csak akkor konvergens, ha részleösszegeinek sorozata korlátos.

Legyen $\sum a_n$ és $\sum b_n$ pozitív tagú sorok és tegyük fel hogy $a_n \le b_n$. Ekkor e sorok részletösszegeire nyilván $0 \le s_n := a_1 + a_2 + \ldots + a_n \le b_1 + b_2 + \ldots + b_n = :t_n$ teljesül. Ennek alapján (t_n) korlátosságából (t_n) sorozat korlátossága is következik és megfordítva, ha (s_n) nem korlátos, akkor (t_n) sem lehet korlátos.

Ezzel az észrevétellel és az előző tétellel adódik az ún. pozitív tagú sorokra vonatkozó **Összehasonlító kritérium**: Legyen $0 \le a_n \le b_n$. Ekkor, ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ is konvergens, és ha a $\sum a_n$ sor divergens, akkor $\sum b_n$ is divergens.

Azt a tényt, hogy a $\sum a_n$ pozitív tagú sor konvergens, a $\sum a_n < \infty$ szimbólummal jelöljük. Gyök- és hányados-kritérium

<u>Cauchy-féle gyökkritérium:</u> Ha a $\sum a_n$ sorra $\overline{\lim}$ ${}^n \mathbf{J}|a_n| < 1$, akkor $\sum a_n$ abszolút konvergens, $\overline{\lim}$ ${}^n \mathbf{J}|a_n| > 1$ akkor $\sum a_n$ divergens. ($\overline{\lim}$ ${}^n \mathbf{J}|a_n| = 1$ határozatlan eset)

Biz.: Tfh. $\overline{\lim}\ ^n \boldsymbol{J}|a_n| \le 1$ és tekintsünk egy olyan q számot, amelyre $\overline{\lim}\ ^n \boldsymbol{J}|a_n| \le q \le 1$ teljesül. Ekkor a felső határérték ismert tulajdonsága miatt $^n \boldsymbol{J}|a_n| \le q$, vagy ami ezzel ekvivalens $|a_n| \le q^n$ ($0 \le q \le 1$) majdnem minden n-re. Innen a korábban említett összehasonlító kritérium alkalmazásával azt kapjuk, hogy ha $|a_n| \le q^n$ majdnem minden n-re és $\sum q^n \le \infty$, akkor az $\sum a_n$ abszolút konvergens.

Ha $\overline{\lim} \, {}^n \mathcal{J}|a_n| > 1$ a felső határértékre vonatkozó tétel szerint ${}^n \mathcal{J}|a_n| > 1$ végtelen sok n-re. Ebből következik, hogy $|a_n| > 1$ is végtelen sok n-re teljesül, azért (a_n) nem zérussorozat, következésképpen $\sum a_n$ divergens.

D'Alambert-féle hányados kritérium: Tegyük fel, hogy a $\sum a_n$ sor tagjaira, $a_n \neq 0$.

- Ha $\overline{\lim} |a_{n+1}|/|a_n| \le 1$ akkor $\sum a_n$ sor abszolút konvergens, ha pedig
- $\underline{\lim}|a_{n+1}|/|a_n| > 1$, akkor $\sum a_n$ divergens.
- $\underline{\lim}|a_{n+1}|/|a_n| \le 1 \le \overline{\lim}|a_{n+1}|/|a_n|$ határozatlan eset.

Biz.: Tegyük fel először, hogy $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_n| < 1$ és legyen q olyan szám, amelyre $\overline{\lim}|a_{n+1}|/|a_{n+1}| < 1$ és legyen $\overline{\lim}|a_{n+1}| < 1$ és legyen $\overline{\lim}|a_{n+1}| < 1$

$$|a_{N+1}| * |a_{N+2}| \dots |a_{N+n}| \le |a_N| * |a_{N+1}| \dots |a_{N+n-1}| * q^n$$

egyenlőtlenséget kapjuk, ahonnan egyszerűsítés után $|a_{N+n}| \le |a_N| * q^n$ adódik. Innen a már korábban említett összehasonlító kritérium alapján az állítás első része következik.

Legyen most $\underline{\lim}|a_{n+1}|/|a_n| > 1$ és válasszuk a q számot úgy, hogy $\underline{\lim}|a_{n+1}|/|a_n| > q > 1$ teljesüljön. Innen – az also határérték ismert tulajdonsága alapján – következik, hogy van

olyan N \in N szám, hogy minden r \in N indexre $|a_{N+r}| \ge |a_{N+r-1}| > |a_{N+r}|$, vagyis az ($|a_n|$) sorozat a N indextől kezdve monoton növő. Innen következik, hogy lim $a_n \ne 0$, ezért $\sum a_n$ divergens.

Leibniz-típusú sorok

Def.: Legyen
$$0 \le a_{n+1} \le a_n$$
. Ekkor a $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$

(ún. váltakozó előjelű) sort Leibniz-típusú sornak nevezzük.

Tétel: A Leibniz-típusú sor akkor és csak akkor konvergens, ha lim $a_n = 0$.

(Biz.: Leindler-Schipp – Analízis I. 77. oldal, ha kéritek leírom kézzel)

A hatványsor fogalma

Legyen x, $x_0 \in K$ és a = $(a_0, a_1, ..., a_n, ...)$ $(a_n \in K)$ egy tetszőleges sorozat. Az

$$a_0 + a_1 (x-x_0) + a_2(x-x_0)^2 + ... + a_n(x-x_0)^n + ... = \sum_{n=0}^{\infty} a_n(x-x_0)^n (*)$$

alakú végtelen sort <u>hatványsornak</u> nevezzük. Az a_i (i = 0,1,2,...) számokat a hatványsor **együtthatóinak**, az x_0 számot a hatványsor **középpontjának**, az x-et pedig a hatványsor **változójának** szokás nevezni.

Cauchy-Hadamard –tétel:

Tétel: Legyen

R :=

- 0, ha $\overline{\lim}^n \mathbf{J}|\mathbf{a}_n| = +\infty$
- + ∞ , ha $\overline{\lim}^n \mathbf{J}|a_n|=0$
- $1/\overline{\lim} \, {}^{n} \mathcal{J}|a_n|$, különben.

Ekkor a

$$K_R(x_0) := \{x \in K : |x - x_0| < R\}$$

halmaz pontjaiban az (*) sor abszolút konvergens, |x-x₀|>R esetén pedig divergens.

Biz.: Legyen először $|x-x_0| \le R$ és alkalmazzuk a Cauchy-féle gyökkritériumot a (*) sorra. Mivel

$$\overline{\lim}^n \mathbf{J} |a_n(x-x_0)^n| = |x-x_0| \lim^n \mathbf{J} |a_n| = |x-x_0| / R < 1,$$

azért $\sum_{n=0}^{\infty} |a_n| |x-x_0|^n$ konvergens. Ezzel a tétel első állítását igazoltuk.

Ha |x- x₀|>R, akkor – ismét alkalmazva a gyökkritériumot – azt kapjuk, hogy

$$\overline{\lim}^{n} \int |a_{n}(x-x_{0})^{n}| = |x-x_{0}|/R > 1$$

következésképpen ebben az esetben (*) valóban divergens.

A K_R (x_0) környezetet az (*) hatványsor **konvergencia tartományának**, az R-et pedig **a konvergencia sugarának** nevezik.

Következmények:

- 1) Ha R a (*) hatványsor konvergencia sugara és 0<r<R, akkor a $\sum_{n=0}^{\infty} |a_n| r^n$ sor konvergens.
- 2) Ha valamely $x_1 \in K$ pontban a (*) hatványsor konvergens, akkor $|x_0 x_1| \le R$.

Vektor-vektor függvények határértéke és folytonossága

Def.: Az $f \in \mathbb{R}^n \to \mathbb{R}^m$ (n, m>0) függvény **folytonos** $a \in D_f$ pontban, ha

$$\forall \ \epsilon > 0 \ \exists \delta > 0: \ \forall x \in K_{\delta}(a) \cap D_f \ eset\'en \ f(x) \in K_{\epsilon}(f(a)).$$

Def.: Legyen $f \in \mathbb{R}^n \to \mathbb{R}^m$ (n, m>0) függvény és folytonos az $a \in D_f$ pontban. Azt mondjuk, hogy $\exists \lim f \frac{határérték}{f}$, és $\lim f = L \in \mathbb{R}^n$, ha

$$\forall \ \epsilon > 0 \ \exists \delta > 0: \ \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap D_f \text{ esetén } f(x) \in K_{\epsilon}(L).$$

Kompakt halmazon folytonos függvények tulajdonságai:

$$K = R \vee C$$

Def.: A H halmazt <u>zárt</u> halmaznak nevezzük, ha bármely, H elemeiből alkotott konvergens sorozat határértéke is H-hoz tartozik.

Def.: Akkor mondjuk, hogy a K valamely H részhalmaza **kompakt**, ha H korlátos és zárt halmaz.

Tétel: Ha $H \subset K_1$ kompakt és f: $H \to K_2$ folytonos függvény, akkor R_f (a fv. értékkészlete) is kompakt.

• Heine – tétel

Def.: Akkor mondjuk, hogy az $f \in K_1 \rightarrow K_2$ függvény a $H \subset D_f$ halmazon **egyenletesen** folytonos, ha

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x,y \in : |x-y| < \delta : |f(x)-f(y)| < \epsilon.$$

Heine – **tétel:** Ha $H \subset K_1$ kompakt halmaz és és $f: H \to K_2$ folytonos függvény, akkor f a H halmazon egyenletesen folytonos.

• Weierstrass-tétel

<u>Weierstrass-tétel</u>: Ha H⊂K kompakt halmaz és f:H→R folytonos függvény, akkor f-nek van maximuma és minimuma.

• Az inverz függvény folytonossága

Tétel: Legyen $H_1 \subset K_1$ kompakt, $f: H_1 \to H_2 \subset K_2$ pedig egy folytonos bijektív leképezés. Ekkor az $f^1: H_2 \to H_1$ függvény is folytonos.

Bolzano – tétel

Bolzano – tétel: Legyen $[a,b] \subset \mathbb{R}$ és $f:[a,b] \to \mathbb{R}$ folytonos függvény. Ekkor f minden f(a) és f(b) közé eső értéket felvesz, azaz ha pl.: f(a) < f(b), akkor $\forall c \in (f(a),f(b)) \exists \xi \in (a,b): f(\xi) = c$.

Ez a tétel egyszerű következménye a következő lemmának:

Lemma: Ha a ϕ :[a,b] \rightarrow R függvény folytonos és ϕ (a)<0< ϕ (b), akkor van olyan ξ \in (a,b) szám, hogy ϕ (ξ)=0.