WEEK-4

Movie User Taste Clustering Report

AIML BATCH - Abhienaya Sri

1. Objective

To generate synthetic movie user rating data, reduce its dimensionality, and cluster users based on their movie taste profiles to identify distinct user segments.

2. Data Generation

- Simulated ratings for 100 users on 20 movies.
- Defined 3 synthetic user taste profiles:
 - Profile 1: Likes most movies (mean rating ~4)
 - Profile 2: Dislikes most movies (mean rating ~2)
 - Profile 3: Neutral tastes (mean rating ~3)
- Each user was randomly assigned one of the profiles with added Gaussian noise to simulate individual variation.
- Ratings were clipped to the valid range [1, 5].

3. Data Preprocessing

 Ratings were standardized using StandardScaler to normalize features for clustering and PCA.

4. Dimensionality Reduction

- Applied Principal Component Analysis (PCA) to reduce 20-dimensional ratings to 2
 principal components for visualization.
- The first two components explained approximately **X**% (replace with actual from output) of variance in the data.

5. Clustering

- Used the Elbow method to find the optimal number of clusters K for KMeans.
- Chose **K=3** clusters corresponding to the 3 underlying profiles.

• Applied KMeans clustering on the PCA-transformed data.

6. Results

Cluster Visualization

- Users grouped into 3 distinct clusters visible in PCA space.
- Each cluster corresponds roughly to one of the original taste profiles with some overlap due to noise.

Cluster Statistics

- Cluster counts:
 - Cluster 0: NN users
 - o Cluster 1: NN users
 - o Cluster 2: NN users
- Mean ratings per movie by cluster show distinct preference patterns consistent with original profiles:

Cluster Mean Rating Summary

- 0 High ratings for most movies
- 1 Generally low ratings
- 2 Moderate ratings with some variation

THANK YOU