Estimating graph-based regression coefficients in high-dimensional linear models

Duzhe Wang

Ph.D. Preliminary Exam March 2, 2020

Joint work with Po-Ling Loh

High-dimensional linear models

$$y = X\beta^* + \varepsilon$$

- $X = (X_1, ..., X_N)^T \in \mathbb{R}^{N \times n}$: design matrix with $X_i \in \mathbb{R}^n$
- $y = (y_1, ..., y_N)^T \in \mathbb{R}^N$: response vector
- $\varepsilon = (\varepsilon_1, ..., \varepsilon_N)^T \in \mathbb{R}^N$: additive noise, each component is i.i.d.
- $\beta^* \in \mathbb{R}^n$: true regression coefficients
- High-dimensional setting: $N \ll n$
- Goal: estimate the unknown regression coefficients β^*

• β^* is sparse: very common in real-world applications with high-dimensional settings

Lasso

Tibshirani '96:

$$\hat{\beta}^{\mathsf{lasso}} = \underset{\beta \in \mathbb{R}^n}{\mathsf{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

 Theory of Lasso: For s-sparse regression coefficients, and sub-Gaussian random design and noise,

$$\|\hat{\beta}^{\mathsf{lasso}} - \beta^*\|_2 \leq \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{s\log n}{N}}\right), \quad \|\hat{\beta}^{\mathsf{lasso}} - \beta^*\|_1 \leq \mathcal{O}_{\mathbb{P}}\left(s\sqrt{\frac{\log n}{N}}\right),$$

and

$$\frac{1}{N} \|X(\hat{\beta}^{\mathsf{lasso}} - \beta^*)\|_2^2 \le \mathcal{O}_{\mathbb{P}}\left(\frac{s \log n}{N}\right)$$

• β^* is both sparse and locally constant: common in biology applications, e.g., comparative genomic hybridization data (Tibishirani and Wang '08)

• β^* is both sparse and locally constant: common in biology applications, e.g., comparative genomic hybridization data (Tibishirani and Wang '08)

Fused Lasso

Tibshirani et al. '04:

$$\hat{\beta}^{\mathsf{fl}} = \underset{\beta \in \mathbb{R}^n}{\mathsf{argmin}} \quad \frac{1}{2N} \| y - X\beta \|_2^2 + \lambda_1 \| \beta \|_1 + \lambda_2 \| \Delta_u^{(1)} \beta \|_1,$$

where

$$\Delta_{u}^{(1)} = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix} \in \mathbb{R}^{(n-1)\times n}$$

• β^* is both sparse and smooth: common in macroeconomics, financial time series analysis, and medical sciences (Kim et al. '09)

• β^* is both sparse and smooth: common in macroeconomics, financial time series analysis, and medical sciences (Kim et al. '09)

• β^* is both sparse and smooth: common in macroeconomics, financial time series analysis, and medical sciences (Kim et al. '09)

Smooth-Lasso and Spline-Lasso

Hebiri et al. '11:

$$\hat{\beta}^{\text{smooth}} = \underset{\beta \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\Delta_u^{(1)}\beta\|_2^2$$

• Guo et al. '16:

$$\hat{\beta}^{\mathsf{spline}} = \underset{\beta \in \mathbb{R}^n}{\mathsf{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\Delta_u^{(2)}\beta\|_2^2,$$

where

$$\Delta_u^{(2)} = \left[\begin{array}{cccccc} 1 & -2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & -2 & \cdots & 0 & 0 \\ \vdots & & & \ddots & & \vdots & \vdots \\ 0 & 0 & & \cdots & 1 & -2 & 1 \end{array} \right] \in \mathbb{R}^{(n-2) \times n}$$

- Lasso: a baseline method
- Fused LassoSmooth-LassoAdaptive estimation
- Spline-Lasso

- Lasso: a baseline method
- $\begin{array}{l} \bullet \ \ \, \text{Fused Lasso} \\ \bullet \ \ \, \text{Smooth-Lasso} \end{array} \, \Bigg\} \, \begin{array}{l} \textbf{Adaptive estimation} \end{array}$
- Spline-Lasso
- ullet But these adaptive estimation methods implicitly assume eta^* is formed in a sequence form

- Lasso: a baseline method
- $\begin{array}{l} \bullet \ \ \, \text{Fused Lasso} \\ \bullet \ \ \, \text{Smooth-Lasso} \end{array} \, \Bigg\} \, \begin{array}{l} \textbf{Adaptive estimation} \end{array}$
- Spline-Lasso
- But these adaptive estimation methods implicitly assume β^* is formed in a sequence form
- What if β^* is modeled in the form of a complex graph?

Motivating examples

(a) DTI

Motivating examples

Motivating examples

Outline of the remaining talk

- Graph-based structures
- Adaptive estimation for high-dimensional graph-based linear models
 - Graph-Smooth-Lasso
 - Graph-Spline-Lasso
 - Graph-Piecewise-Polynomial-Lasso (our focus)
- Theory of Graph-Piecewise-Polynomial-Lasso
- Simulation studies
- Ongoing and future work

Introduction: graph theory

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be an undirected graph with $|\mathcal{V}| = n$ and $|\mathcal{E}| = p$.

• Oriented incidence matrix $F \in \{-1,0,1\}^{p \times n}$: If the k-th edge is $(i,j) \in \mathcal{E}$ with i < j, then the k-th row of F is (0,...,-1,....,+1,...,0)

$$F = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Introduction: graph theory

- Laplacian matrix: $L = F^T F \in \mathbb{R}^{n \times n}$
- Graph difference operator of k + 1:

$$\Delta^{(k+1)} = \begin{cases} F^T \Delta^{(k)} = L^{\frac{k+1}{2}} \in \mathbb{R}^{n \times n} & \text{for odd k} \\ F \Delta^{(k)} = F L^{\frac{k}{2}} \in \mathbb{R}^{p \times n} & \text{for even k.} \end{cases}$$

(Wang et al. '16)

 \bullet If ${\cal G}$ is a path graph, then graph difference operator is similar to the usual difference operator

Smoothness

For $k \ge 0$ and $\alpha > 0$, β^* is (k, α) -smooth over the graph \mathcal{G} if

$$\|\Delta^{(k+1)}\beta^*\|_2^2 \le \alpha$$

Smoothness

For $k \ge 0$ and $\alpha > 0$, β^* is (k, α) -smooth over the graph \mathcal{G} if

$$\|\Delta^{(k+1)}\beta^*\|_2^2 \le \alpha$$

- k = 0 recovers the widely used smoothness over graphs (von Luxburg '07)
- Global smoothness
- Analogy of smoothing splines in nonparametric regression (Wahba '90)

Piecewise polynomial

For $k \ge 0$ and s > 0, β^* is (k, s)-piecewise polynomial over the graph \mathcal{G} if

$$\|\Delta^{(k+1)}\beta^*\|_0 \le s$$

Piecewise polynomial

For $k \ge 0$ and s > 0, β^* is (k, s)-piecewise polynomial over the graph \mathcal{G} if

$$\|\Delta^{(k+1)}\beta^*\|_0 \le s$$

- k = 0: piecewise constant; k = 1: piecewise linear; k = 2: piecewise quadratic
- Local smoothness
- Analogy of trend filtering in nonparametric regression (Tibshirani '14)
- Extension to weakly piecewise polynomial structure (W. and Loh '20)

Graph-based adaptive estimation

If β^* is sparse and (k, α) -smooth over $\mathcal G$, then

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\Delta^{(k+1)}\beta\|_2^2$$

Graph-based adaptive estimation

If β^* is sparse and (k, α) -smooth over \mathcal{G} , then

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\Delta^{(k+1)}\beta\|_2^2$$

Graph-Smooth-Lasso:

$$\hat{\beta}^{\mathsf{gsmooth}} = \underset{\beta \in \mathbb{R}^n}{\mathsf{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\Delta^{(1)}\beta\|_2^2$$

Graph-Spline-Lasso:

$$\hat{\beta}^{\mathsf{gspline}} = \underset{\beta \in \mathbb{R}^n}{\mathsf{argmin}} \quad \frac{1}{2N} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\Delta^{(2)}\beta\|_2^2$$

Graph-based adaptive estimation

If β^* is sparse and (k, s)-piecewise polynomial over \mathcal{G} , then

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2N} \| y - X\beta \|_2^2 + \lambda \| \beta \|_1 + \lambda_g \| \Delta^{(k+1)} \beta \|_1$$

- ullet We refer to \hat{eta} as the k-th order Graph-Piecewise-Polynomial-Lasso
- k = 0: Graph-Fused Lasso
- Assume *k* is known for theory, but tune *k* in practice
- Our focus in the remaining talk

Adaptivity of Graph-Piecewise-Polynomial-Lasso

- ullet Assume that the graph ${\cal G}$ has a single connected component
- \widehat{S}_1 : support set of $\Delta^{(k+1)}\hat{\beta}$
- $\Delta_{-\widehat{S}_1}^{(k+1)}$: submatrix of $\Delta^{(k+1)}$ after removing the rows indexed by \widehat{S}_1
- For even k, let $\mathcal{G}_{-\widehat{S}_1}$ be the subgraph induced by removing the edges indexed by \widehat{S}_1
- $oldsymbol{\circ}$ $C_1,...,C_j$: connected components of the subgraph $\mathcal{G}_{-\widehat{S}_1}$
- $\mathbb{1}_n = (1, ..., 1)^T \in \mathbb{R}^n$
- $\mathbb{1}_{C_i} \in \mathbb{R}^n$: indicator vector over connected component C_i

Adaptivity of Graph-Piecewise-Polynomial-Lasso

Theorem (W. and Loh '20)

For even k, the null space of $\Delta_{-\widehat{S}_1}^{(k+1)}$ is

$$\operatorname{span}(\mathbb{1}_n) + \operatorname{span}(\mathbb{1}_n)^{\perp} \cap \left(L^{\frac{k}{2}} + \mathbb{1}_n \mathbb{1}_n^T\right)^{-1} \operatorname{span}(\mathbb{1}_{C_1}, ..., \mathbb{1}_{C_j}).$$

For odd k, the null space of $\Delta_{-\widehat{S}_1}^{(k+1)}$ is

$$\operatorname{span}(\mathbb{1}_n)+\operatorname{span}(\mathbb{1}_n)^\perp\cap\left\{u\in\mathbb{R}^n:u=\big(L^{\frac{k+1}{2}}+\mathbb{1}_n\mathbb{1}_n^T\big)^{-1}v,\quad v_{-\widehat{S}_1}=0\right\}.$$

Adaptivity of Graph-Piecewise-Polynomial-Lasso

Theorem (W. and Loh '20)

For even k, the null space of $\Delta_{-\widehat{S}_1}^{(k+1)}$ is

$$\operatorname{span}(\mathbb{1}_n) + \operatorname{span}(\mathbb{1}_n)^{\perp} \cap \left(L^{\frac{k}{2}} + \mathbb{1}_n \mathbb{1}_n^T\right)^{-1} \operatorname{span}(\mathbb{1}_{C_1}, ..., \mathbb{1}_{C_j}).$$

For odd k, the null space of $\Delta_{-\widehat{S}_1}^{(k+1)}$ is

$$\mathrm{span}(\mathbb{1}_n) + \mathrm{span}(\mathbb{1}_n)^{\perp} \cap \left\{ u \in \mathbb{R}^n : u = \left(L^{\frac{k+1}{2}} + \mathbb{1}_n \mathbb{1}_n^T \right)^{-1} v, \quad v_{-\widehat{S}_1} = 0 \right\}.$$

- k = 0: $\hat{\beta}$ is piecewise constant over connected components $C_1, ..., C_j$
- For general even k, structure of $\hat{\beta}$ is smoothed by multiplying span $(\mathbb{1}_{C_1},...,\mathbb{1}_{C_i})$ by $(L^{k/2} + \mathbb{1}_n \mathbb{1}_n^T)^{-1}$
- For odd k, structure of $\hat{\beta}$ is based on the support set \widehat{S}_1 and the smoother $(L^{(k+1)/2} + \mathbb{1}_n \mathbb{1}_n^T)^{-1}$

Convergence analysis

- X: sub-Gaussian (good) random design matrix
- ε : sub-Gaussian noise
- ε **1** *X*
- Assume β^* is (k, s_1) -piecewise polynomial and s_2 -sparse over a graph $\mathcal G$ with the maximum degree d
- $\lambda \simeq \sqrt{\frac{\log n}{N}}$
- $\lambda_g = \lambda \sqrt{\frac{\nu}{(2d)^{k+1}}}$, where $0 \le \nu < 1$ is a constant

Convergence analysis

Theorem (W. and Loh '20)

Assume $s_2/s_1 \ge \nu$. Then

$$\|\hat{\beta} - \beta^*\|_2 \le \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{s_2 \log n}{N}}\right), \quad \|\hat{\beta} - \beta^*\|_1 \le \mathcal{O}_{\mathbb{P}}\left(s_2\sqrt{\frac{\log n}{N}}\right),$$

and

$$\frac{1}{N} \|X(\hat{\beta} - \beta^*)\|_2^2 \leq \mathcal{O}_{\mathbb{P}}\left(\frac{s_2 \log n}{N}\right).$$

Convergence analysis

Theorem (W. and Loh '20)

Assume $s_2/s_1 \ge \nu$. Then

$$\|\hat{\beta} - \beta^*\|_2 \le \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{s_2 \log n}{N}}\right), \quad \|\hat{\beta} - \beta^*\|_1 \le \mathcal{O}_{\mathbb{P}}\left(s_2\sqrt{\frac{\log n}{N}}\right),$$

and

$$\frac{1}{N} \|X(\hat{\beta} - \beta^*)\|_2^2 \le \mathcal{O}_{\mathbb{P}}\left(\frac{s_2 \log n}{N}\right).$$

- Proof sketch: start with the optimization problem, build the basic inequality, then show restricted eigenvalue condition and requirements for tuning parameters
- Same convergence rates with Lasso
- But our approach is adaptive while Lasso is not

Simulation for structure recovery

Coordinates of β^* correspond to a 2d grid graph with 25 rows and 25 columns. The right figure shows the value of β^* in each node

Simulation for structure recovery (N=250)

(c) Graph-Smooth-Lasso

(d) Graph-Spline-Lasso

Simulation for estimation error

Averages (standard errors) of ℓ_2 estimation error $\|\hat{\beta} - \beta^*\|_2$

	(N, n) = (250, 625)	(N, n) = (375, 625)	(N, n) = (500, 625)
Our approach	0.433 (0.007)	0.345 (0.003)	0.364 (0.002)
Lasso	3.145 (0.077)	0.538 (0.012)	0.381 (0.003)
Graph-Smooth-Lasso	2.288 (0.063)	0.618 (0.016)	0.384 (0.004)
Graph-Spline-Lasso	3.439 (0.017)	3.191 (0.018)	2.990 (0.011)

- Our approach achieved smaller estimation error across all sampling schemes
- Similar performance in other simulation scenarios (W. and Loh '20)

• Variable selection and changepoint detection consistency:

Variable selection and changepoint detection consistency:

Open question

Let S_1 and S_2 be support sets of $\Delta^{(k+1)}\beta^*$ and β^* . We also denote support sets of $\Delta^{(k+1)}\hat{\beta}$ and $\hat{\beta}$ by \widehat{S}_1 and \widehat{S}_2 . Then when are the support sets \widehat{S}_1 and \widehat{S}_2 exactly equal to the true support sets S_1 and S_2 ?

 Statistical inference: unable to directly use Graph-Piecewise-Polynomial-Lasso for statistical inference

- Statistical inference: unable to directly use Graph-Piecewise-Polynomial-Lasso for statistical inference
- Highly correlated design

- Statistical inference: unable to directly use Graph-Piecewise-Polynomial-Lasso for statistical inference
- Highly correlated design
- Numerical algorithm for fast computation: R package

- Statistical inference: unable to directly use Graph-Piecewise-Polynomial-Lasso for statistical inference
- Highly correlated design
- Numerical algorithm for fast computation: R package
- Theory for Graph-Smooth-Lasso and Graph-Spline-Lasso

- Statistical inference: unable to directly use Graph-Piecewise-Polynomial-Lasso for statistical inference
- Highly correlated design
- Numerical algorithm for fast computation: R package
- Theory for Graph-Smooth-Lasso and Graph-Spline-Lasso
- Real-world applications

Takeaway points:

- Significant room for developing new efficient adaptive estimation methods for the graph setting
- Defined Graph-based smoothness and piecewise polynomial structure
- Proposed several adaptive estimation methods for different graph-based structures

Takeaway points:

- Significant room for developing new efficient adaptive estimation methods for the graph setting
- Defined Graph-based smoothness and piecewise polynomial structure
- Proposed several adaptive estimation methods for different graph-based structures

Thank you!

Simulation setup

- Generated each row of the design matrix X from $N(0, I_{n \times n})$
- Generated each ε_i from N(0,0.1)
- Generated y via the linear model
- Tuning parameters: 5-fold cross-validation procedure, which minimized the cross-validated prediction error
- Repeated the simulation 50 times