\mathbf{Ymir}

Contents

Globa	al properties of complex analytic spaces	5
1.	Introduction	5
2.	Holomorphically convex hulls	5
3.	Stones	5
4.	Holomorphical separability, holomorphical spreadability and	
	holomorphical convexity	8
5.	Stein spaces	S
Biblic	ography	13

Global properties of complex analytic spaces

1. Introduction

2. Holomorphically convex hulls

Definition 2.1. Let X be a complex analytic space and M be a subset of X, we define the holomorphically convex hull of M in X as

$$\hat{M}^X := \left\{ x \in X : |f(x)| \le \sup_{y \in M} |f(y)| \text{ for all } f \in \mathcal{O}_X(X) \right\}.$$

Proposition 2.2. Let X be a complex analytic space and M be a subset of X. Then the following properties hold:

- $\begin{array}{ll} (1) \ \ \hat{M}^X \ \mbox{is closed in} \ X; \\ (2) \ \ M \subseteq \hat{M}^X \ \mbox{and} \ \ \widehat{\hat{M}^X}^X = \hat{M}^X; \end{array}$
- (3) If M' is another subset of X containing M, then $\hat{M}^X \subseteq \hat{M'}^X$;
- (4) If $f: Y \to X$ is a morphism of complex analytic spaces, then

$$\widehat{f^{-1}(M)}^Y \subseteq \widehat{f^{-1}(\hat{M}^X)};$$

(5) If X' is another complex analytic space and M' is a subset of X', then

$$\widehat{M\times M'}^{X\times X'}\subseteq \hat{M}^X\times \hat{M'}^{X'};$$

(6) If M' is another subset of X and $\hat{M}^X = M, \hat{M'}^X = M'$, then

$$\widehat{M \cap M'}^X = M \cap M'.$$

PROOF. (1), (2), (3), (4), (5) are obvious by definition.

(6) is a consequence of (3).

Example 2.3. Let Q be a compact cube in \mathbb{C}^n for some $n \in \mathbb{N}$, then $\hat{Q}^{\mathbb{C}^n} = Q$.

In fact, by Proposition 2.2(5), we may assume that n=1. Given $p \in \mathbb{C} \setminus Q$, we can take a closed disk $T \subseteq \mathbb{C}$ centered at $a \in \mathbb{C}$ such that $Q \subseteq T$ while $p \notin T$. Consider $z - a \in \mathcal{O}_{\mathbb{C}}(\mathbb{C})$, then

$$|f(p)| > \sup_{q \in Q} |f(q)|.$$

So $p \notin \hat{Q}^{\mathbb{C}}$.

3. Stones

Definition 3.1. Let X be a complex analytic space. A *stone* in X is a pair (P, π) consisting of

(1) a non-empty compact set P in X and

(2) a morphism $\pi: X \to \mathbb{C}^n$ for some $n \in \mathbb{N}$

such that there is a compact tube Q in \mathbb{C}^n and an open set W in X such that $P = \pi^{-1}(Q) \cap W$.

We call $P^0 := \pi^{-1}(\operatorname{Int} Q) \cap W$ the analytic interior of the stone (P, π) . It clearly does not depend on the choice of W.

We observe that $\hat{P}^X \cap W = P$. In fact, $P \subseteq \pi^{-1}(Q)$, so

$$\hat{P}^X \subseteq \pi^{-1}(\hat{Q}^{\mathbb{C}^n}) = \pi^{-1}(Q) = P \cap W = P.$$

Here we applied Proposition 2.2 and Example 2.3.

In general, $P^0 \subseteq \text{Int } P$, but they can be different.

Theorem 3.2. Let X be a Hausdorff complex analytic space and $K \subseteq X$ be a compact subset. Then the following are equivalent:

- (1) There is an open neighbourhood W of K in X such that $\hat{K}^X \cap W$ is compact;
- (2) There is an open relative compact neighbourhood W of K in X such that $\partial W \cap \hat{K} = \emptyset$;
- (3) There is a stone (P, π) in X with $K \subseteq P^0$.

PROOF. (1) \implies (2): This is trivial, in fact, we may assume that W in (1) is relatively compact in X.

(2) \Longrightarrow (3): As \hat{K}^X is closed by Proposition 2.2(1) and $\partial W \cap \hat{K}^X = \emptyset$, given $p \in \partial W$, we can find $h \in \mathcal{O}_X(X)$ such that

$$\sup_{x \in K} |h(x)| < 1 < |h(p)|.$$

We will denote the left-hand side by $|h|_K$. Up to raising h to a power, we may assume that

$$\max\{|\operatorname{Re} h(p)|, |\operatorname{Im} h(p)|\} > 1.$$

As ∂W is compact, we can find finitely many sections $h_1, \ldots, h_m \in \mathcal{O}_X(X)$ so that

$$\max_{j=1,...,m} \{ |\operatorname{Re} h_j|_K, |\operatorname{Im} h_j|_K \} < 1, \quad \max_{j=1,...,m} \{ |\operatorname{Re} h_j(p)|, |\operatorname{Im} h_j(p)| \} > 1.$$

Let

$$Q := \{(z_1, \dots, z_m) \in \mathbb{C}^m : |\operatorname{Re} z_i| \le 1, |\operatorname{Im} z_i| \le 1 \text{ for all } i = 1, \dots, m\}.$$

The sections h_1, \ldots, h_m defines a homomorphism $\pi: X \to \mathbb{C}^m$ by ?? in ??. Obviously, $P = \pi^{-1}(Q) \cap W$ satisfies our assumptions.

(3) \Longrightarrow (1): Let W be the open set as in Definition 3.1. As $\hat{P}^X \cap W = P$ and $K \subseteq P$, we have

$$\hat{K} \cap W \subseteq P \cap W = P$$
.

As P is compact, so is $\hat{K} \cap W$.

Theorem 3.3. Let X be a Hausdorff complex analytic space and $(P, \pi : X \to \mathbb{C}^n)$ be a stone in X. Let Q be the tube in \mathbb{C}^m as in Definition 3.1. Then there are open neighbourhoods U and V of P and Q in X and \mathbb{C}^n respectively with $\pi(U) \subseteq V$ and $P = \pi^{-1}(Q) \cap U$ such that $\pi|_U : U \to V$ is proper.

3. STONES 7

PROOF. Let $W \subseteq X$ be the open set as in Definition 3.1. We may assume that W is relatively compact. Then ∂W and $\pi(\partial W)$ are also compact. As $\partial W \cap \pi^{-1}(Q)$ is empty, we know that $V := \mathbb{C}^n \setminus \pi(\partial W)$ is an open neighbourhood of Q. The set $U := W \cap \pi^{-1}(V) = W \setminus \pi^{-1}(\pi(\partial W))$ is open in X and $\pi(U) \subseteq V$. Observe that $\pi|_U : U \to V$ is proper by Lemma 4.6 in Topology and bornology.

Furthermore,

$$\pi^{-1}(Q) \cap U = \pi^{-1}(Q) \cap \left(W \setminus \left(\pi^{-1}(Q) \cap \pi^{-1}\pi(\partial W)\right)\right).$$

But $\pi^{-1}Q \cap \pi^{-1}\pi(\partial W)$ is empty as $Q \cap \pi(\partial W)$ is. It follows that $\pi^{-1}(Q) \cap U = P$ and hence U is a neighbourhood of P.

Definition 3.4. Let X be a complex analytic space. Let $(P, \pi : X \to \mathbb{C}^n)$, $(P', \pi' : X \to \mathbb{C}^{n'})$ be two stones on X. We say (P, π) is contained in (P', π') if the following conditions are satisfied:

- (1) P lies in the analytic interior of P';
- (2) $n' \geq n$ and there is $q \in \mathbb{C}^{n'-n}$ such that if $Q \subseteq \mathbb{C}^n$, $\mathbb{Q}' \subseteq \mathbb{C}^{n'}$ be the tubes as in Definition 3.1, then

$$Q \times \{q\} \subseteq Q'$$
.

(3) There is a morphism $\varphi: X \to \mathbb{C}^{n'-n}$ such that

$$\pi' = (\pi, \varphi).$$

We formally write $(P, \pi) \subseteq (P', \pi')$ in this case. Clearly, this defines a partial order on the set of stones on X.

Definition 3.5. Let X be a complex analytic space. An exhaustion by stones of X is a sequence $(P_i, \pi_i)_{i \in \mathbb{Z}_{>0}}$ of stones such that

- (1) $(P_i, \pi_i) \subseteq (P_{i+1}, \pi_{i+1})$ for all $i \in \mathbb{Z}_{>0}$;
- (2)

$$X = \bigcup_{i=1}^{\infty} P_i^0.$$

Theorem 3.6. Let X be a Hausdorff complex analytic space. Consider the following conditions:

- (1) There is an exhaustion of X by stones;
- (2) For any compact subset $K \subseteq X$, there is an open set $W \subseteq X$ such that $\hat{K}^X \cap W$ is compact.

Then (1) \implies (2). If X admits a countable basis, then (2) \implies (1).

PROOF. (1) \Longrightarrow (2): It suffices to observe that $K \subseteq P_j^0$ when j is large enough and apply Theorem 3.2.

Assume that X has a countable basis. (2) \Longrightarrow (1): Let (K_i) a compact exhaustion of X. We construct the stones $(P_i, \pi_i)_{i \in \mathbb{Z}_{>0}}$ so that

$$K_i \subset P_i^0$$

for all $i \in \mathbb{Z}_{>0}$ inductively. Let P_1 be an arbitrary stone in X such that $K_1 \subseteq P_1^0$. The existence of P_1 is guaranteed by Theorem 3.2.

Assume that we have constructed $(P_{i-1}, \pi_{i-1} : X \to \mathbb{C}^{n_{i-1}})$ for $i \geq 2$. Let $Q_{i-1} \subseteq \mathbb{C}^{n_{i-1}}$ be the associated tube. By Theorem 3.2 again, take a stone (P_i, π_i^*) :

 $X \to \mathbb{C}^n$) with $K_i \cup P_{i-1} \subseteq P_i^0$. Let $Q_i^* \subseteq \mathbb{C}^n$ be the associated tube. Let W be an open subset of X with

$$P_i = \pi_i^{*,-1}(Q_i^*) \cap W.$$

Choose a tube $Q_i' \subseteq \mathbb{C}^{n_{i-1}}$ with $Q_{i-1} \subseteq \operatorname{Int} Q_i'$ so that

$$\pi_{i-1}(P_i) \subseteq \operatorname{Int} Q_i'$$
.

Let $\pi_i := (\pi_{i-1}, \pi_i^*) : X \to \mathbb{C}^{n_{i-1}+n}$ and $Q_i := Q_i' \times Q_i^*$. Then (P_i, π_i) is a stone and $(P_{i-1}, \pi_{i-1}) \subseteq (P_i, \pi_i)$.

4. Holomorphical separability, holomorphical spreadability and holomorphical convexity

Definition 4.1. Let X be a complex analytic space. We say X is holomorphically separable if for any $x, y \in X$ with $x \neq y$, there is $f \in \mathcal{O}_X(X)$ with $f(x) \neq f(y)$.

Here we regard f as a continuous function $X \to \mathbb{C}$. In particular, a holomorphically separable space is Hausdorff.

Definition 4.2. Let X be a complex analytic space. We say X is holomorphically spreadable if X is Hausdorff and for any $x \in X$, we can find an open neighbourhood U of x in X such that

$$\{y \in U : f(x) = f(y) \text{ for all } f \in \mathcal{O}_X(X)\} = \{p\}.$$

A holomorphically separable space is clearly holomorphically spreadable.

Proposition 4.3. Let X be an irreducible holomorphically spreadable complex analytic space. Then X has countable basis.

The statement of this proposition in [Fis76, Proposition 0.37] is clearly wrong. I do not understand the argument of either [Jur59] or [Gra55], where they claim that this result holds for connected holomorphically spreadable complex analytic spaces.

PROOF. We may assume that X is connected. Recall that by Corollary 8.6 in Local properties of complex analytic spaces, X is locally connected. Let $F: X \to \mathbb{C}^{\mathcal{O}_X(X)}$ be the map sending $x \in X$ to $(f(x))_{f \in \mathcal{O}_X(X)}$. By our assumption, F is continuous and has discrete fibers. In particular, for each $x \in X$, we may assume take finitely many $f_1, \ldots, f_n \in \mathcal{O}_X(X)$ so that the induced morphism $F': X \to \mathbb{C}^n$ is quasi-finite at x. By ?? in ??, we can find a nowhere dense analytic set A in X such that the map $X \setminus A \to \mathbb{C}^n$ induced by F' is quasi-finite. Now we endow $\mathcal{O}_X(X)$ with the compact-open topology. It is a metric space. By Proposition 6.2 in Topology and bornology, $X \setminus A$ has countable basis. It follows that $\mathcal{O}_X(X \setminus A)$ is a separable metric space. Hence, so it $\mathcal{O}_X(X)$. In particular, there is a continous map with discrete fibers

$$X \to \mathbb{C}^{\omega}$$
.

It follows again from Proposition 6.2 in Topology and bornology that X has countable basis. \Box

Definition 4.4. Let X be a complex analytic space. We say X is holomorphically convex if |X| is Hausdorff and for any compact set $K \subseteq X$, \hat{K}^X .

We say X is weakly holomorphically convex if for any quasi-compact set $K \subseteq X$, the connected components of \hat{K}^X are all quasi-compact.

Proposition 4.5. Let X be a holomorphically convex complex analytic space. Then X^{red} is holomorphically convex.

PROOF. This follows immediately from the definition. \Box

Proposition 4.6. Let X be a Hausdorff complex analytic space. Consider the following conditions:

- (1) X is holomorphically convex;
- (2) For any sequence $x_i \in X$ $(i \in \mathbb{Z}_{>0})$ without accumulation points, there is $f \in \mathcal{O}_X(X)$ such that $|f(x_i)|$ is unbounded.

Then $(1) \implies (2)$. The converse is true if X is Lindelöf.

PROOF. (2) \implies (1): For a Lindelöf Hausdorff space, sequential compactness implies compactness.

$$(1) \implies (2): \qquad \Box$$

Corollary 4.7. Let $n \in \mathbb{N}$ and Ω be a domain in \mathbb{C}^n . Assume that for each $p \in \partial \Omega$, there is a holomorphic function f on an open neighbourhood U of $\bar{\Omega}$ such that f(p) = 0 and f is non-zero on Ω . Then Ω is holomorphically convex.

PROOF. Let $x_i \in \Omega$ $(i \in \mathbb{Z}_{>0})$ be a sequence without accumulation points in Ω . We need to construct $f \in \mathcal{O}_{\Omega}(\Omega)$ such that $(|f(x_i)|)_{i \in \mathbb{Z}_{>0}}$ is unbounded. This is clear if x_i itself is unbounded. Assume that x_i is bounded. Then up to passing to a subsequence, we may assume that $x_i \to p \in \partial \Omega$ as $i \to \infty$. The inverse of the function f in our assumption of the corollary works.

5. Stein spaces

Definition 5.1. Let X be a complex analytic space and P be a closed subset of X. We say P is a *Stein set* in X if for any coherent \mathcal{O}_U -module \mathcal{F} for some open neighbourhood U of P in X, we have

$$H^i(P, \mathcal{F}) = 0$$
 for all $i \in \mathbb{Z}_{>0}$.

A coherent \mathcal{O}_P -module is a coherent \mathcal{O}_U -module for some open neighbourhood U of P in X. Two coherent \mathcal{O}_P -modules are isomorphic if there is a small enough open neighbourhood V of P in X such that they are isomorphic when restricted to V. In particular, \mathcal{O}_P denotes the coherent \mathcal{O}_P -module defined by \mathcal{O}_X on X.

The germ-wise notions obviously make sense for coherent \mathcal{O}_P -modules.

The given condition is usually known as Cartan's Theorem B. It implies Cartan's Theorem A:

Theorem 5.2 (Cartan's Theorem A). Let X be a complex analytic space and P be a Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_U -module for some open neighbourhood U of P in X. Then $H^0(P,\mathcal{F})$ generates \mathcal{F}_x for each $x \in P$.

PROOF. Fix $x \in P$. Let \mathcal{M} be the coherent ideal sheaf on U consisting of holomorphic functions vanishing at x. Then $\mathcal{F}\mathcal{M}$ is a coherent \mathcal{O}_U -module. It follows from Theorem B that

$$H^0(P,\mathcal{F}) \to H^0(P,\mathcal{F}/\mathcal{F}\mathcal{M})$$

is surjective. Note that we can identify this map with the natural map

$$H^0(P,\mathcal{F}) \to \mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x$$
.

Let e_1, \ldots, e_m be a basis of $\mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x$. Lift them to $s_1, \ldots, s_m \in H^0(P, \mathcal{F})$. By Nakayama's lemma, s_{1x}, \ldots, s_{mx} generate the $\mathcal{O}_{X,x}$ -module \mathcal{F}_x .

Corollary 5.3. Let X be a complex analytic space and P be a quasi-compact Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_P -module. Then there is $n \in \mathbb{Z}_{>0}$ and an epimorphism

$$\mathcal{O}_P^n \to \mathcal{F}$$
.

PROOF. By Theorem 5.2, we can find an open covering $\{U_i\}_{i\in I}$ of P such that there are homomorphisms

$$h_i: \mathcal{O}_P^{n_i} \to \mathcal{F}$$

for some $n_i \in \mathbb{Z}_{>0}$, which is surjective on U_i for each $i \in I$. By the quasi-compactness of P, we may assume that I is a finite set. Then it suffices to set $n = \sum_{i \in I} n_i$ and consider the epimorphism $\mathcal{O}_P^n \to \mathcal{F}$ induced by the h_i 's.

Theorem 5.4. Let X be a compact analytic space and $P \subseteq X$ be a set with the following properties:

- (1) there is an open neighbourhood U of P in X, a domain V in \mathbb{C}^m for some $m \in \mathbb{N}$ and a finite holomorphic morphism $\tau : U \to V$;
- (2) There exists a compact tube in \mathbb{C}^m contained in V such that $P = \tau^{-1}(Q)$. Then P is a compact Stein set in X.

PROOF. As $P = \tau^{-1}(Q)$ and τ is proper, we see that P is compact.

It remains to show that P is a Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_P -module.

Step 1. We first reduce to the case where \mathcal{F} is defined by a coherent \mathcal{O}_U -module.

Take an open neighbourhood U' of P in X contained in U such that \mathcal{F} is defined by a coherent $\mathcal{O}_{U'}$ -module. By Lemma 4.2 in Topology and bornology, we can take an open neighbourhood V' of Q in V such that $\tau^{-1}(V') \subseteq U'$. The restriction of τ to $\tau^{-1}(V') \to V'$ is again finite.

Step 2. By Leray spectral sequence,

$$H^i(P,\mathcal{F}) \cong H^i(Q,(\tau|_P)_*\mathcal{F})$$

for all $i \geq 0$. By ?? in ??, $(\tau|_P)_*\mathcal{F}$ is a coherent \mathcal{O}_Q -module, so we are reduced to show that Q is a Stein set in \mathbb{C}^m , which is well-known.

Definition 5.5. Let X be a Hausdorff complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. A *Stein exhaustion of* X *relative to* \mathcal{F} is a compact exhaustion $(P_i)_{i\in\mathbb{Z}_{>0}}$ such that the following conditions are satisfied:

- (1) P_i is a Stein set in X for each $i \in \mathbb{Z}_{>0}$;
- (2) the \mathbb{C} -vector space $H^0(P_i, \mathcal{F})$ admits a semi-norm $| \bullet |_i$ such that the restriction map

$$H^0(X,\mathcal{F}) \to H^0(P_i,\mathcal{F})$$

has dense image with respect to the topological defined by $| \bullet |_i$ for each $i \in \mathbb{Z}_{>0}$;

(3) The restriction map

$$H^0(P_{i+1},\mathcal{F}) \to H^0(P_i,\mathcal{F})$$

is bounded for each $i \in \mathbb{Z}_{>0}$;

- (4) Let $i \in \mathbb{Z}_{\geq 2}$. Suppose that $(s_j)_{j \in \mathbb{Z}_{>0}}$ is a Cauchy sequence in $H^0(P_i, \mathcal{F})$, then the restricted sequence $s_j|_{P_{i-1}}$ has a limit in $H^0(P_{i-1}, \mathcal{F})$;
- (5) Let $i \in \mathbb{Z}_{\geq 2}$. If $s \in H^0(P_i, \mathcal{F})$ and $|s|_i = 0$, then $s|_{P_{i-1}} = 0$.

A Stein exhaustion of X is a compact exhaustion of X that is a Stein exhaustion of X relative to any coherent \mathcal{O}_X -module.

Theorem 5.6. Let X be a Hausdorff complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Assume that $(P_i)_{i\in\mathbb{Z}_{>0}}$ is a Stein exhaustion of X relative to \mathcal{F} . Then

$$H^q(X, \mathcal{F}) = 0$$
 for any $q \in \mathbb{Z}_{>0}$.

PROOF. When $q \ge 2$, this follows from the general facts proved in Lemma 5.3 in Topology and bornology. We will assume that q = 1.

We may assume that X is connected. First observe that X is necessarily paracompact. This follows from Proposition 3.2 in Topology and bornology. In particular, we can take a flabby resolution

$$0 \to \mathcal{F} \to \mathcal{G}^0 \to \mathcal{G}^1 \to \cdots$$

Taking global sections, we get a complex

$$0 \to H^0(X, \mathcal{F}) \xrightarrow{i} H^0(X, \mathcal{G}^0) \xrightarrow{d_0} H^0(X, \mathcal{G}^1) \xrightarrow{d_1} H^0(X, \mathcal{G}^2) \xrightarrow{d_2} \cdots.$$

We need to show that $\ker d_1 = \operatorname{Im} d_0$. Let $\alpha \in \ker d_1$. We need to construct $\beta \in H^0(X, \mathcal{G}^0)$ with $d_0\beta = \alpha$.

We take semi-norms $|\bullet|_i$ on $H^0(P_i, \mathcal{F})$ for each $i \in \mathbb{Z}_{>0}$ satisfying the conditions in Definition 5.5. We may furthermore assume that the restriction $H^0(P_{i+1}, \mathcal{F}) \to H^0(P_i, \mathcal{F})$ is a contraction for each $i \in \mathbb{Z}_{>0}$.

For each $j \in \mathbb{Z}_{\geq 2}$, we will construct $\beta_j \in H^0(P_j, \mathcal{G}^0)$ and $\delta_j \in H^0(P_{j-1}, \mathcal{F})$ such that

(1)
$$(d_0|_{P_i})\beta_j = \alpha|_{P_i};$$

(2)
$$(\beta_{j+1} + \delta_{j+1})|_{P_{j-1}} = (\beta_j + \delta_j)|_{P_{j-1}}.$$

It suffices to take $\beta \in H^0(X, \mathcal{G}^0)$ as the section defined by the $\beta_j + \delta_j$'s.

We first construct β_j . Choose a sequence $\beta'_j \in H^0(P_j, \mathcal{G}^0)$ with

$$(d_0|_{P_i})\beta_i' = \alpha|_{P_i}$$

for each $j \in \mathbb{Z}_{>0}$. This is possible because P_j is Stein. We define β_j satisfying Condition (1) for $j \in \mathbb{Z}_{>0}$ inductively. We begin with $\beta_1 = \beta'_1$. Assume that β_1, \ldots, β_j have been constructed. Let

$$\gamma_j' := \beta_{j+1}'|_{P_j} - \beta_j.$$

Then

$$(d_0|_{P_i})\gamma_j' = 0.$$

It follows that $\gamma_i' \in H^0(P_j, \mathcal{F})$. Take $\gamma_j \in H^0(X, \mathcal{F})$ with

$$|\gamma_j' - \gamma_j|_{P_j}|_j \le 2^{-j}.$$

Define

$$\beta_{j+1} = \beta'_{j+1} - \gamma_i|_{P_{j+1}}.$$

Then clearly β_{j+1} satisfies (1).

Next we construct the sequence δ_j .

We observe that for each $j \in \mathbb{Z}_{>0}$,

$$\left|\beta_{j+1}\right|_{P_j} - \beta_j \Big|_j \le 2^{-j}.$$

Let

$$s_k^j := \beta_{j+k}|_{P_i} - \beta_j \in H^0(P_j, \mathcal{F})$$

for all $j \in \mathbb{Z}_{>0}$ and $k \in \mathbb{N}$. By definition,

$$s_k^j - s_{k-1}^{j+1}|_{P_j} = \beta_{j+1}|_{P_j} - \beta_j$$

for all $j \in \mathbb{Z}_{>0}$ and $k \in \mathbb{Z}_{>0}$.

We claim that $(s_k^j|_{P_{j-1}})_k$ converges in $H^0(P_{j-1},\mathcal{F})$ as $k\to\infty$. By our assumption, it suffices to show that $(s_k^j)_k$ is a Cauchy sequence in $H^0(P_j,\mathcal{F})$ for each $j\in\mathbb{Z}_{>1}$. We first compute

$$\left|\beta_{j+l}\right|_{P_j} - \beta_{j+l-1}\left|_{P_j}\right|_i \le \left|\beta_{j+l}\right|_{P_{j+l-1}} - \beta_{j+l-1}\left|_{j+l-1} \le 2^{1-j-l}\right|_{P_j}$$

for all $l \in \mathbb{Z}_{>0}$ and $j \in \mathbb{Z}_{>0}$. As a consequence for $k' > k \ge 1$, we have

$$|s_k^j - s_{k'}^j|_j \le \sum_{l=k+1}^k 2^{1-j-l} \le 2^{1-j+k}.$$

So we conclude our claim.

Let δ_j be the limit of $s_k^j|_{P_{j-1}}$ as $k \to \infty$ for each $j \in \mathbb{Z}_{\geq 2}$. Then

$$\lim_{k \to \infty} \left(s_k^j - s_{k-1}^{j+1} \right) |_{P_{j-1}} = \left(\delta_j - \delta_{j+1} \right) |_{P_{j-1}}$$

for each $j \in \mathbb{Z}_{\geq 2}$. The desired identity is clear.

Recall that compact exhaustion is defined in Definition 5.1 in Topology and bornology.

Theorem 5.7. Let X be a complex analytic space such that X^{red} is Stein and \mathcal{F} be a coherent \mathcal{O}_X -module. Then

(1) for each $x \in X$, the set

$$\{s_x: s \in H^0(X, \mathcal{F})\}$$

generates \mathcal{F}_x over $\mathcal{O}_{X,x}$;

(2) for each $k \ge 1$,

$$H^k(X,\mathcal{F}) = 0.$$

The two assertions are known as Cartan Theorem A and Cartan Theorem B.

Proof.

[Stacks]

Bibliography

- [Fis76] G. Fischer. Complex analytic geometry. Lecture Notes in Mathematics, Vol. 538. Springer-Verlag, Berlin-New York, 1976, pp. vii+201.
- [Gra55] H. Grauert. Charakterisierung der holomorph vollständigen komplexen Räume. *Math. Ann.* 129 (1955), pp. 233–259. URL: https://doi.org/10.1007/BF01362369.
- [Jur59] M. Jurchescu. On a theorem of Stoilow. *Math. Ann.* 138 (1959), pp. 332–334. URL: https://doi.org/10.1007/BF01344153.
- [Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.