Regression and Multivariate Analysis

Prasanta K. Jana, IEEE Senior Member

Department of Computer Science and Engineering Indian Institute of Technology (ISM), Dhanbad E-mail: prasantajana@iitism.ac.in

Regression

- A predictive modeling technique where the target variable to be estimated is continuous.
- Applications
 - Predicting a stock market.
 - Forecasting amount of precipitation in a region.
 - Projecting total sale of a company etc.

Preliminaries

Let D be a data set that contains N observations:

i.e.,
$$D = \{(\mathbf{x}_i, y_i) | i = 1, 2,, N\}$$

 $\mathbf{x}_i = \mathsf{Set}$ of attributes of ith observations(explanatory variables)

 $y_i = \mathsf{Target} \; (\mathsf{response} \; \mathsf{variable})$

• Regression is the task of learning a target function f that maps each attribute set \mathbf{x} into a continuous valued output y.

Preliminaries

- The goal of regression is to find a target function that can fit the input data with minimum error
- The error function for a regression task can be expressed as:

Absolute Error
$$=\sum_{i}\left|y_{i}-f\left(\mathbf{x}_{i}\right)\right|$$
 Squared Error $=\sum_{i}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}$

Simple Linear Regression

- The data corresponds to measurements of heat flux and skin temperature of a person during sleep
- Predict the skin temperature of a person based on the heat flux measurements generated by a heat sensor

Heat Flux	Skin Temperature	Heat Flux	Skin Temperature	Heat Flux	Skin Temperature
10.856	31.002	6.3221	31.581	4.3917	32.221
10.617	31.021	6.0325	31.618	4.2951	32,259
10.183	31.058	5.7429	31.674	4.2469	32.296
9.7003	31.095	5.5016	31.712	4.0056	32.334
9.852	31.133	5.2603	31.768	3.716	32.391
10.088	31:188	5.1638	31.825	3.523	32.448
9.459	31.226	5.0673	31.862	3.4265	32,505
8.3972	31.263	4.9708	31,919	3.3782	32.543
7.6251	31.319	4.8743	31.975	3,4265	32.6
7.1907	31.356	4,7777	32.013	3.3782	32,657
7.046	31.412	4.7295	32.07	3.3299	32.696
6.9494	31.468	4.633	32.126	3.3299	32,753
6.7081	31.524	4.4882	32.164	3.4265	32.791

Simple Linear Regression

• The two-dimensional scatter plot shows that there is a strong linear relationship between the two variables

Measurements of heat flux and skin temperature of a person.

 Suppose we wish to fit the following linear model to the observed data:

$$f(x) = w_1x + w_0 : w_1, w_0$$
 are regression coefficients

Applying method of least square

$$SSE = \sum_{i=1}^{N} [y_i - f(x_i)]^2 = \sum_{i=1}^{N} [y_i - w_1 x_i - w_0]^2$$

$$SSE = Sum \text{ of the Square Error}$$

ullet Optimizing by partial derivative with respect to w_0 & w_1

$$\frac{\partial E}{\partial w_0} = -2 \sum_{i=1}^{N} [y_i - w_1 x_i - w_0] = 0$$

$$\frac{\partial E}{\partial w_1} = -2 \sum_{i=1}^{N} [y_i - w_1 x_i - w_0] x_i = 0$$

Summarizing above equations by matrix equation(normal equation)

$$\begin{pmatrix} N & \sum_{i} x_{i} \\ \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \end{pmatrix} \begin{pmatrix} w_{0} \\ w_{1} \end{pmatrix} = \begin{pmatrix} \sum_{i} y_{i} \\ \sum_{i} x_{i} y_{i} \end{pmatrix}$$

Values based on above data

$$\begin{split} \sum_{i} x_{i} &= 229.9 \text{ , } \sum_{i} x_{i}^{2} = 1569.2, \sum_{i} y_{i} = 1249.9, \sum_{i} x_{i} y_{i} = 7279.7 \\ \begin{pmatrix} \hat{w_{0}} \\ \hat{w_{1}} \end{pmatrix} &= \begin{pmatrix} 39 & 229.9 \\ 229.9 & 1569.2 \end{pmatrix}^{-1} \begin{pmatrix} 1242.9 \\ 7279.7 \end{pmatrix} \\ &= \begin{pmatrix} 0.1881 & -0.0276 \\ -0.0276 & 0.0047 \end{pmatrix}^{-1} \begin{pmatrix} 1242.9 \\ 7279.7 \end{pmatrix} \\ &= \begin{pmatrix} 33.1699 \\ -0.2208 \end{pmatrix} \end{split}$$

• The linear model that best fits the data in terms of minimizing the SSE is f(x)=33.17-0.22x

A linear model that fits the data given 🚙 👢 👢 💍 💂

• The above **normal equations** can be expressed as follows:

$$w_0 = \frac{1}{N} \left(\sum y_i - w_1 \sum x_i \right)$$

i.e,
$$w_0 = \bar{y} - w_1 \bar{x}$$

$$w_1 = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{N \sum x_i^2 - (\sum x_i)^2}$$

i.e,
$$w_1 = \frac{\sum x_i y_i - N \bar{x} \bar{y}}{\sum x_i^2 - N(\bar{x})^2}$$

• The **normal equations** can also be expressed as follows:

$$\begin{split} \hat{w_0} &= \bar{y} - \hat{w_1}\bar{x} \\ \hat{w_1} &= \sigma_{xy}/\sigma_{xx} \\ \bar{x} &= \frac{\sum_i x_i}{N}, \bar{y} = \frac{\sum_i y_i}{N} \\ \sigma_{xy} &= \sum_i (x_i - \bar{x})(y_i - \bar{y}) \\ \sigma_{xx} &= \sum_i (x_i - \bar{x})^2 \\ \sigma_{yy} &= \sum_i (y_i - \bar{y})^2 \end{split}$$

• Linear model that results in the minimum squared error

$$f(x) = \bar{y} + \frac{\sigma_{xy}}{\sigma_{xy}} [x - \bar{x}]$$

Sample Python Code to implement normal equations for **Single Variate** having X-Values and Y-Values as follows:

$$X=[1,2,3,4,5] Y=[3,4,6,5,6]$$

Comment is Shown by :

```
:Importing Python Libraries
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt

:Storing Value as numpy Array
xs = np.array([1,2,3,4,5], dtype=np.float64)
ys = np.array([3,4,6,5,6], dtype=np.float64)
:Mean Calculation
Ymean=mean(ys)
Xmean=mean(xs)
```



```
:sigma_xy Calculation as per equation
sigma_xy=0
for i in range(len(xs)):
temp=(xs[i]-Xmean)*(ys[i]-Ymean)
sigma_xy=sigma_xy+temp
:sigma_xx Calculation as per equation
sigma_xx=0
for i in range(len(xs)):
  temp=(xs[i]-Xmean)*(xs[i]-Xmean)
  sigma_xx=sigma_xx+temp
:Defining Scale of X-axis and Y-axis as 0 to 10 for plotting
plt.axis([0, 10, 0, 10])
```



```
:Calculation of Y Value for the given x Value
def best_fit_slope_and_intercept(x):
  m = (sigma_xy/sigma_xx)
  Y=Ymean+m*(x-Xmean)
  return Y
:Decalaring an Array having values 0,1,2,...,9
Xs=np.arange(10)
:Calculating the Predicted value for Xs array and storing in
    array Y_Pred
Y_Pred=np.zeros((10))
for i in range(len(Xs)):
  temp=Xs[i]
  Y_Pred[i]=best_fit_slope_and_intercept(temp)
```



```
:Plotting the Sample Data
plt.xlabel("X-Axis") : Labelling the X-Axis
plt.ylabel("Y-Axis") : Labelling the Y-Axis
plt.plot(xs, ys, color='r', linestyle='dotted', linewidth = 3,
marker='^', markersize=7)
: Plotting the Predicted Data
plt.plot(Xs, Y_Pred, color='green', linestyle='dashed',
    linewidth = 3, marker='o', markerfacecolor='blue',
    markersize=5)
Y = best_fit_slope_and_intercept(8)
print("Predicted value of Linear Regression : ",Y )
: Marking the Predicted Point
plt.plot(8, Y, color='r', linestyle='dashed', linewidth = 3,
marker='P', markerfacecolor='blue', markersize=12)
plt.show()
```


A Linear Model that fits the Sample Data

• The Point referred by * showing the Prediction Point

Mannual Calculation: Least Square Method

Linear model that results in the minimum squared error

$$f(x) = \bar{y} + \frac{\sigma_{xy}}{\sigma_{xx}} [x - \bar{x}]$$

• Linear model using in above program

$$f(x) = 4.8 + \frac{7.0}{10.0}[x - 3.0]$$

$$f(x) = 2.7 + 0.7x$$

$$f(8) = 2.7 + 0.7 \times 8 = 8.3$$

Modified Code using Co-Variance

```
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt
xs = np.array([1,2,3,4,5], dtype=np.float64)
ys = np.array([3,4,6,5,6], dtype=np.float64)
Ymean=mean(ys)
Xmean=mean(xs)
temp= 4*np.cov(xs,vs)
Comment : Calling Co-Variance Library Using Parent Numpy as np
       and Storing value in matrix temp[2,2] where :
       temp[0,0]=sigma_xx temp[0,1]=sigma_xy=temp[1,0]
       temp[1,1]=sigma_vy and Cov(x, y)= sigma_xy/(n-1)
```



```
sigma_xy=temp[0,1]
sigma_xx=temp[0,0]
def best_fit_slope_and_intercept(x):
  m = (sigma_xy/sigma_xx)
  Y=Ymean+m*(x-Xmean)
  return Y
Y = best_fit_slope_and_intercept(8)
print("Predicted value of Linear Regression : ",Y )
Predicted value of Linear Regression: 8.3
Practice Question:
```

X: 2 4 6 8 Y: 3 7 5 10

Ans: y=1.5 + 0.95x

Multivariate Linear Regression

 The normal equations can be written in a more compact form using following matrix notations.

Let
$$\mathbf{X} = (\mathbf{1} \ \mathbf{x})$$
 where $\mathbf{1} = (1, 1, 1, ...)^T$ and $\mathbf{x} = (x_1, x_2, ..., x_N)^T$

$$\mathbf{X}^T\mathbf{X} = \begin{pmatrix} \mathbf{1}^T\mathbf{1} & \mathbf{1}^T\mathbf{x} \\ \mathbf{x}^T\mathbf{1} & \mathbf{x}^T\mathbf{x} \end{pmatrix} = \begin{pmatrix} N & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{pmatrix}$$

• if $\mathbf{y} = (y_1, y_2, ..., y_N)^T$, we can show that

$$\begin{pmatrix} \mathbf{1} & \mathbf{x} \end{pmatrix}^T \mathbf{y} = \begin{pmatrix} \mathbf{1}^T \mathbf{y} \\ \mathbf{x}^T \mathbf{y} \end{pmatrix} = \begin{pmatrix} \sum_i y_i \\ \sum_i x_i y_i \end{pmatrix}$$

Multivariate Linear Regression

$$\mathbf{X}^T\mathbf{X}\Omega = \mathbf{X}^T\mathbf{y}$$
 where $\Omega = (w_0, w_1)^T$

ullet Parameter Ω can be solved as follows:

$$\Omega = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

• If the attribute set consists of d explanatory attributes $(x_i, x_2, ..., x_d)$ **X** becomes an $N \times d$ design matrix:

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & \dots & x_{2d} \\ \dots & \dots & \dots & \dots \\ 1 & x_{N1} & x_{N2} & \dots & x_{Nd} \end{pmatrix}$$

while $\Omega = (w_0, w_1, ..., w_{d-1})^T$ is a d-dimensional vector.

Python Code: Multivariate Linear Regression

• The dataset for this code is taken from: https://drive.google.com/open?id=1mVmGNx6cbfvRHC_DvF12ZL3wGLSHD9f_

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
dataset = pd.read_csv('Filepath')
dataset.head()
X = dataset[['Petrol_tax', 'Average_income', 'Paved_Highways',
    'Population_Driver_licence(%)']]
y = dataset['Petrol_Consumption']
```

Python Code: Multivariate Linear Regression

Output:

Mean Absolute Error: 42.26510251178464 Mean Squared Error: 2675.8793569754102 Root Mean Squared Error: 51.72890253016596