Machine Learning (6.867) – Topic models

David Sontag

Massachusetts Institute of Technology

Lecture 17, Nov. 9, 2017

Course announcements

- HW3 due this Tuesday, 11/14
- No recitation this Friday but there is an exercise for the week
- Readings on course information sheet have been updated (TBDs filled in)
- Readings for today's lecture:
 - Applications of Topic Models, Boyd-Graber, Hu, Mimno, in Foundations and Trends in Information Retrieval, 2017 (Sections 1 & 9)
 - Available for free within MIT

Today's lecture: outline

- Warm up: topic mixture models
 - General case of EM algorithm
 - Example derivation for topic mixture models
- Latent Dirichlet allocation
- Extensions of the basic approach
 - Polylingual topic models
 - Author-topic model
- Using topic models inference and learning
 - Approximate inference
 - SGD with black-box variational inference

Expectation maximization

Algorithm is as follows:

- Write down the **complete log-likelihood** $\log p(\mathbf{x}, \mathbf{z}; \theta)$ in such a way that it is linear in \mathbf{z}
- ② Initialize θ_0 , e.g. at random or using a good first guess
- Repeat until convergence:

$$\theta_{t+1} = \arg\max_{\theta} E_{p(\mathbf{z}|\mathbf{x};\theta_t)}[\log p(\mathbf{x}, \mathbf{Z}; \theta)]$$

- Notice that $\log p(\mathbf{x}, \mathbf{Z}; \theta)$ is a random function because \mathbf{Z} is unknown
- By linearity of expectation, objective decomposes into expectation terms and data terms
- "E" step corresponds to computing the objective (i.e., the expectations)
- "M" step corresponds to maximizing the objective

Application to mixture models

- Example of "plate" notation for graphical models
 - Variables within a plate are replicated in a conditionally independent manner
- This model is a type of (discrete) mixture model
 - Called multinomial naive Bayes (a word can appear multiple times)
 - Document is generated from a single topic
- Notation: we will use both K and T to denote number of topics

EM for mixture models

• The complete likelihood is $p(\mathbf{w}, \mathbf{Z}; \theta, \beta) = \prod_{d=1}^{D} p(\mathbf{w}_d, Z_d; \theta, \beta)$, where

$$p(\mathbf{w}_d, Z_d; \theta, \beta) = \theta_{Z_d} \prod_{i=1}^{N} \beta_{Z_d, w_{id}}$$

Trick #1: re-write this as

$$p(\mathbf{w}_d, Z_d; \theta, \beta) = \prod_{k=1}^K \theta_k^{1[Z_d = k]} \prod_{i=1}^N \prod_{k=1}^K \beta_{k, w_{id}}^{1[Z_d = k]}$$

EM for mixture models

• Thus, the complete log-likelihood is:

$$\log p(\mathbf{w}, \mathbf{Z}; \theta, \beta) = \sum_{d=1}^{D} \left(\sum_{k=1}^{K} 1[Z_d = k] \log \theta_k + \sum_{i=1}^{N} \sum_{k=1}^{K} 1[Z_d = k] \log \beta_{k, w_{id}} \right)$$

• In the "E" step, we take the expectation of the complete log-likelihood with respect to $p(\mathbf{z} \mid \mathbf{w}; \theta^t, \beta^t)$, applying linearity of expectation, i.e.

$$E_{p(\mathbf{z}|\mathbf{w};\theta^t,\beta^t)}[\log p(\mathbf{w},\mathbf{z};\theta,\beta)] =$$

$$\sum_{d=1}^{D} \left(\sum_{k=1}^{K} p(Z_d = k \mid \mathbf{w}; \theta^t, \beta^t) \log \theta_k + \sum_{i=1}^{N} \sum_{k=1}^{K} p(Z_d = k \mid \mathbf{w}; \theta^t, \beta^t) \log \beta_{k, w_{id}} \right)$$

ullet In the "M" step, we maximize this with respect to heta and heta

EM for mixture models

- Just as with complete data, this maximization can be done in closed form
- First, re-write expected complete log-likelihood from

$$\sum_{d=1}^{D} \left(\sum_{k=1}^{K} p(Z_d = k \mid \mathbf{w}; \theta^t, \beta^t) \log \theta_k + \sum_{i=1}^{N} \sum_{k=1}^{K} p(Z_d = k \mid \mathbf{w}; \theta^t, \beta^t) \log \beta_{k, w_{id}} \right)$$

to

$$\sum_{k=1}^{K} \log \theta_{k} \sum_{d=1}^{D} p(Z_{d} = k \mid \mathbf{w}_{d}; \theta^{t}, \beta^{t}) + \sum_{k=1}^{K} \sum_{w=1}^{W} \log \beta_{k,w} \sum_{d=1}^{D} N_{dw} p(Z_{d} = k \mid \mathbf{w}_{d}; \theta^{t}, \beta^{t})$$

We then have that

$$\theta_{k}^{t+1} = \frac{\sum_{d=1}^{D} p(Z_{d} = k \mid \mathbf{w}_{d}; \theta^{t}, \beta^{t})}{\sum_{\hat{k}=1}^{K} \sum_{d=1}^{D} p(Z_{d} = \hat{k} \mid \mathbf{w}_{d}; \theta^{t}, \beta^{t})}$$

Latent Dirichlet allocation (LDA)

 Topic models are powerful tools for exploring large data sets and for making inferences about the content of documents

 Many applications in information retrieval, document summarization, and classification

LDA is one of the simplest and most widely used topic models

Generative model for a document in LDA

1 Sample the document's **topic distribution** θ (aka topic vector)

$$\theta \sim \text{Dirichlet}(\alpha_{1:T})$$

where the $\{\alpha_t\}_{t=1}^T$ are fixed hyperparameters. Thus θ is a distribution over T topics with mean $\theta_t = \alpha_t / \sum_{t'} \alpha_{t'}$

② For i = 1 to N, sample the **topic** z_i of the i'th word

$$z_i | \theta \sim \theta$$

 \odot ... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i|z_i\sim\beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

Generative model for a document in LDA

① Sample the document's **topic distribution** θ (aka topic vector)

$$\theta \sim \text{Dirichlet}(\alpha_{1:T})$$

where the $\{\alpha_t\}_{t=1}^T$ are hyperparameters. The Dirichlet density, defined over $\Delta = \{\vec{\theta} \in \mathbb{R}^T : \forall t \; \theta_t \geq 0, \sum_{t=1}^T \theta_t = 1\}$, is:

$$p(\theta_1,\ldots,\theta_T) \propto \prod_{t=1}^T \theta_t^{\alpha_t-1}$$

For example, for T=3 ($\theta_3=1-\theta_1-\theta_2$):

Generative model for a document in LDA

 \odot ... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i|z_i \sim \beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

Example of using LDA

(Blei, Introduction to Probabilistic Topic Models, 2011)

"Plate" notation for LDA model

Variables within a plate are replicated in a conditionally independent manner

Comparison of mixture and admixture models

- Model on left is a mixture model
 - Called multinomial naive Bayes (a word can appear multiple times)
 - Document is generated from a single topic
- Model on right (LDA) is an admixture model
 - Document is generated from a <u>distribution</u> over topics

Demo

Explore topic models of:

- Politics over time
- State-of-the-union addresses
- Literary studies (explanation)
- Wikipedia

Today's lecture: outline

- Warm up: topic mixture models
 - General case of EM algorithm
 - Example derivation for topic mixture models
- Latent Dirichlet allocation
- Extensions of the basic approach
 - Polylingual topic models
 - Author-topic model
- Using topic models inference and learning
 - Approximate inference
 - SGD with black-box variational inference

Polylingual topic models (Mimno et al., EMNLP '09)

- Goal: topic models that are aligned across languages
- Training data: corpora with multiple documents in each language
 - EuroParl corpus of parliamentary proceedings (11 western languages; exact translations)
 - Wikipedia articles (12 languages; not exact translations)
- How to do this?

Polylingual topic models (Mimno et al., EMNLP '09)

Learned topics

DA	centralbank europæiske ecb s lån centralbanks
DE	zentralbank ezb bank europäischen investitionsbank darlehen
EL	τράπεζα τράπεζας κεντρική εκτ κεντρικής τράπεζες
ΕN	bank central ecb banks european monetary
ES	banco central europeo bce bancos centrales
FI	keskuspankin ekp n euroopan keskuspankki eip
FR	banque centrale bce européenne banques monétaire
ΙT	banca centrale bce europea banche prestiti
NL	bank centrale ecb europese banken leningen
PT	banco central europeu bce bancos empréstimos
SV	centralbanken europeiska ecb centralbankens s lån

Learned topics

- DA børn familie udnyttelse børns børnene seksuel
- DE kinder kindern familie ausbeutung familien eltern
- EL παιδιά παιδιών οικογένεια οικογένειας γονείς παιδικής
- EN children family child sexual families exploitation
- ES niños familia hijos sexual infantil menores
- FI lasten lapsia lapset perheen lapsen lapsiin
- FR enfants famille enfant parents exploitation familles
- IT bambini famiglia figli minori sessuale sfruttamento
- NL kinderen kind gezin seksuele ouders familie
- PT crianças família filhos sexual criança infantil
- SV barn barnen familjen sexuellt familj utnyttjande

Discussion

- How would you use this?
- How could you extend this?

Author-topic model (Rosen-Zvi et al., UAI '04)

- Goal: topic models that take into consideration who the authors are
- Training data: corpora with label for who wrote each document
 - Papers from NIPS conference from 1987 to 1999
 - Twitter posts from US politicians
- Why do this?
- How to do this?

Author-topic model (Rosen-Zvi et al., UAI '04)

Figure 1: Generative models for documents. (a) Latent Dirichlet Allocation (LDA; Blei et al., 2003), a topic model. (b) An author model. (c) The author-topic model.

x denotes the author of a single word

Most likely author for a topic

TOPIC 31	
WORD	PROB.
SPEECH	0.0823
RECOGNITION	0.0497
HMM	0.0234
SPEAKER	0.0226
CONTEXT	0.0224
WORD	0.0166
SYSTEM	0.0151
ACOUSTIC	0.0134
PHONEME	0.0131
CONTINUOUS	0.0129
AUTHOR	PROB.
Waibel_A	0.0936
Makhoul_J	0.0238
De-Mori_R	0.0225
Bourlard_H	0.0216
Cole_R	0.0200
Rigoll_G	0.0191
Hochberg_M	0.0176
Franco_H	0.0163
Abrash_V	0.0157
Movellan_J	0.0149

TOPIC 61	
WORD	PROB.
BAYESIAN	0.0450
GAUSSIAN	0.0364
POSTERIOR	0.0355
PRIOR	0.0345
DISTRIBUTION	0.0259
PARAMETERS	0.0199
EVIDENCE	0.0127
SAMPLING	0.0117
COVARIANCE	0.0117
LOG	0.0112
AUTHOR	PROB.
Bishop_C	0.0563
Williams_C	0.0497
Barber_D	0.0368
MacKay_D	0.0323
Tipping_M	0.0216
Rasmussen_C	0.0215
Opper_M	0.0204
Attias_H	0.0155
Sollich_P	0.0143
Schottky_B	0.0128

TOPIC 71	
WORD	PROB.
MODEL	0.4963
MODELS	0.1445
MODELING	0.0218
PARAMETERS	0.0205
BASED	0.0116
PROPOSED	0.0103
OBSERVED	0.0100
SIMILAR	0.0083
ACCOUNT	0.0069
PARAMETER	0.0068
AUTHOR	PROB.
Omohundro_S	0.0088
Zemel_R	0.0084
Ghahramani_Z	0.0076
Jordan_M	0.0075
Sejnowski_T	0.0071
Atkeson_C	0.0070
Bower_J	0.0066
Bengio_Y	0.0062
Revow_M	0.0059
Williams_C	0.0054

TOPIC 100		
WORD	PROB.	
HINTON	0.0329	
VISIBLE	0.0124	
PROCEDURE	0.0120	
DAYAN	0.0114	
UNIVERSITY	0.0114	
SINGLE	0.0111	
GENERATIVE	0.0109	
COST	0.0106	
WEIGHTS	0.0105	
PARAMETERS	0.0096	
AUTHOR	PROB.	
Hinton_G	0.2202	
Zemel_R	0.0545	
Dayan_P	0.0340	
Becker_S	0.0266	
Jordan_M	0.0190	
Mozer_M	0.0150	
Williams_C	0.0099	
de-Sa_V	0.0087	
Schraudolph_N	0.0078	

Perplexity as a function of number of observed words

Today's lecture: outline

- Warm up: topic mixture models
 - General case of EM algorithm
 - Example derivation for topic mixture models
- Latent Dirichlet allocation
- Extensions of the basic approach
 - Polylingual topic models
 - Author-topic model
- Using topic models inference and learning
 - Approximate inference
 - SGD with black-box variational inference

Posterior Inference

• The posterior of the latent variables given the documents is

$$p(\beta, \theta, \mathbf{z} \,|\, \mathbf{w}) = \frac{p(\beta, \theta, \mathbf{z}, \mathbf{w})}{\int_{\beta} \int_{\theta} \sum_{\mathbf{z}} p(\beta, \theta, \mathbf{z}, \mathbf{w})}.$$

- We can't compute the denominator, the marginal $p(\mathbf{w})$
- We use approximate inference
 - Monte-carlo methods (e.g. Gibbs sampling)
 - 2 Variational algorithms (e.g. mean-field)

A Generic Class of Models

$$p(\beta, \mathbf{z}, \mathbf{x}) = p(\beta) \prod_{i=1}^{n} p(z_i, x_i \mid \beta)$$

- The observations are $\mathbf{x} = x_{1:n}$.
- The **local** variables are $\mathbf{z} = z_{1:n}$.
- The **global** variables are β .
- The *i*th data point x_i only depends on z_i and β .

Compute
$$p(\beta, \mathbf{z} \mid \mathbf{x})$$
.

Variational Inference

Minimize KL between $q(\beta, \mathbf{z}; \boldsymbol{\nu})$ and the posterior $p(\beta, \mathbf{z} \mid \mathbf{x})$.

The Evidence Lower Bound

$$\mathcal{L}(
u) = \mathbb{E}_q \left[\log p(eta, \mathbf{z}, \mathbf{x}) \right] - \mathbb{E}_q \left[\log q(eta, \mathbf{z}; oldsymbol{
u}) \right]$$

- KL is intractable; VI optimizes the evidence lower bound (ELBO) instead.
 - It is a lower bound on $\log p(\mathbf{x})$.
 - Maximizing the ELBO is equivalent to minimizing the KL.
- The ELBO trades off two terms.
 - The first term prefers $q(\cdot)$ to place its mass on the MAP estimate.
 - The second term encourages $q(\cdot)$ to be diffuse.
- Caveat: The ELBO is not convex.

Mean-field Variational Inference

- We need to specify the form of $q(\beta, \mathbf{z})$.
- The mean-field family is fully factorized,

$$q(\beta, \mathbf{z}; \lambda, \phi) = q(\beta; \lambda) \prod_{i=1}^{n} q(z_i; \phi_i).$$

 To learn, we do stochastic gradient ascent on the evidence lower bound (ELBO),

$$\mathcal{L}(\lambda, \phi) = \mathbb{E}_q \left[\log p(\beta, \mathbf{z}, \mathbf{x}) \right] - \mathbb{E}_q \left[\log q(\beta, \mathbf{z}) \right].$$

Mean-field Variational Inference for LDA

- The local variables are the per-document variables θ_d and \mathbf{z}_d .
- The global variables are the topics β_1, \ldots, β_K .
- The variational distribution is

$$q(\beta, \boldsymbol{\theta}, \mathbf{z}) = \prod_{k=1}^{K} q(\beta_k; \lambda_k) \prod_{d=1}^{D} q(\theta_d; \gamma_d) \prod_{n=1}^{N} q(z_{d,n}; \phi_{d,n})$$