	Metody Numeryczne – Projekt 2 Układy równań liniowych - sprawozdanie Agnieszka Delmaczyńska 184592 Informatyka, semestr 4, grupa 1
	1. Opis realizowanego zagadnienia 1. Wstęp W ramach pierwszego projektu należało zaimplementować metody iteracyjne Jacobiego i Gaussa-Seidla oraz metodę bezpośrednią faktoryzacji LU do rozwiązywania układów równań liniowych, które powstają w wyniku dyskretyzacji równań różniczkowych i są
	powszechnie stosowane w różnych zagadnieniach techniczno-informatycznych. 2. Konstrukcja układu równań Układ równań ma następującą postać: Ax = b gdzie A jest macierzą systemową, b jest wektorem pobudzenia, natomiast x jest wektorem rozwiązań reprezentującym szukaną wielkość fizyczną. U projekcie będę działała na tych wartościach w funkcjach pomocniczych i tworzących, a w funkcji main dla czytelności nazwę je odpowiednio matrix_A, vector_b i vector_of_solutions_x.
	 Na potrzeby testów przyjmuję, że A jest tzw. macierzą pasmową o rozmiarze N × N , gdzie N ma wartość 9cd, c jest przedostatnią cyfrą numeru mojego indeksu, natomiast d ostatnią (184592) c: 9 d: 2 N:992
	$\mathbf{A} = \begin{bmatrix} a1 & a2 & a3 & 0 & 0 & 0 & 0 & \dots & 0 \\ a2 & a1 & a2 & a3 & 0 & 0 & 0 & \dots & 0 \\ a3 & a2 & a1 & a2 & a3 & 0 & 0 & \dots & 0 \\ 0 & a3 & a2 & a1 & a2 & a3 & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & a3 & a2 & a1 \end{bmatrix},$
	Macierz A zawiera więc pięć diagonali - główna z elementami a1, dwie sąsiednie z elementami a2 i dwie skrajne diagonale z elemetnami a3. • Prawa strona równania to wektor b o długości N . • W wyniku rozwiązania układu równań otrzymujemy wektor x 3. Wektor residuum Jest to wektor, który określa, w której iteracji algorytm powinien si,ę zatrzymać. Ma on postać: res^(k) = Ax^(k) - b
	Za pomocą jego normy euklidesowej możemy obliczyć jaki błąd wynosi wektor x. Jeśli algorytm zbiegnie się do dokładnego rozwiązania, residuum powinno być wektorem zerowy. Używam w projekcie kryterium stopu: 10^(-9). 2. Implementacja W projekcie używam kilku dodatkowych bibliotek: time do wyznaczania czasu, math do obliczeń matematycznych, matplotlib do wyświetlania wykresów i sys, os.
[14]:	<pre>import time import math from matplotlib import pyplot import sys, os</pre> <pre>Zadanie A</pre>
	Stworzyłam macierz A , która wygląda następująco:
	$A = \begin{bmatrix} -1 & -1 & 10 & -1 & -1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & -1 & 10 & -1 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & -1 & -1 & 10 \end{bmatrix}$
[15]:	Poniżej funkcje, z których będę korzystać pomocniczo do wykonywania operacji na macierzach i wektorach oraz pozostałe do tworzenia macierzy i wektora i nie tylko. # stwórz macierz A def create_matrix_A(N, a1) -> list: a2 = a3 = -1 matrix_A = [] for i in range(N):
	<pre>row = [] for j in range(N): if j == i: row.append(al) elif (j == i - 1 and j >= 0) or (j == i + 1 and j <= N): row.append(a2) elif (j == i - 2 and j >= 0) or (j == i + 2 and j <= N): row.append(a3) else: row.append(0) matrix_A.append(row) return matrix_A</pre>
	<pre># funkcja do tworzenia wektora def create_vector_b(N) -> list: f = 4 b = [math.sin(n * (f + 1)) for n in range(N)] return b # funkcja do wymnożenia macierzy przez wektor def dot_product(A, b) -> list: copy_a = copy_matrix(A)</pre>
	<pre>copy_b = copy_vector(b) temp = [0 for _ in range(len(copy_a))] for i in range(len(copy_a)): for l in range(len(copy_a[0])): temp[i] += copy_a[i][l] * copy_b[l] return temp # funkcja do odejmowania od siebie wektorów def sub_vectors(a, b) -> list: temp = copy_vector(a)</pre>
	<pre>for i in range(len(temp)): temp[i] -= b[i] return temp # funkcja do kopiowania wektora def copy_vector(_vector): copy = [] for element in _vector: copy.append(element)</pre>
	<pre>return copy # funkcja do kopiowania macierzy def copy_matrix(_matrix): copy = [] for row in _matrix: create_new_row = [] for element in row:</pre>
	<pre>copy.append(create_new_row) return copy # funkcja do wyliczenia normy z residuum def norm_residuum(vector) -> float: count = 0 for element in vector: count += element ** 2 return math.sqrt(count)</pre>
	<pre># wygeneruj wektor zer def vec_zeros(length): vector = [] for _ in range(length): vector.append(0) return vector</pre>
	<pre># wygeneruj macierz zer def matrix_zeros(x_position, y_position): matrix = [] for _ in range(y_position): row = [] for _ in range(x_position): row.append(int(0)) matrix.append(row) return matrix</pre>
	<pre>def stdout_block_print(): sys.stdout = open(os.devnull, 'w') def stdout_enable_print(): sys.stdout = sysstdout</pre> Zadanie B
[16]:	Zaimplementowane metody Jacobiego i Gaussa-Seidl'a. Poniżej w wywołaniu sprawdzenie ile iteracji potrzebuje każda z nich, dla układu równań z podpunktu A, żeby otrzymać normę z wektora residuum równą 10–9. Poniżej porównany czas trwania algorytmów. def jacobi_method(A, b) -> float: # startujemy czas do wykonania pomiaru time_start = time.time()
	# ustawiamy początkowy licznik iteracji na 0iterations = 0 # tworzymy wektor tymczasowych rozwiązań, który jest długości rozmiaru macierzy A i wypełniony jest zerantemporary_vector_of_solutions_x = vec_zeros(len(b)) # tworzymy wektor rozwiązań, do którego wpisujemy stworzony uprzednio wektor zer o dł. Avector_of_solutions_x = vec_zeros(len(b)) # wykonuj algorytm dopóki warunki są spełnione
	<pre>while True: for i in range(len(A)): # wyciągamy wartość 'i' z wektora b z takiego samego indeksu co macierz A</pre>
	# odjęcie iloczynu elementu macierzy A z elementem wektora rozwiązań xget_value -= A[i][j] *vector_of_solutions_x[j] # aktualizujemyget_valueget_value /= A[i][i] # aktualizujemy temporary_vector_of_solutions_x[i] o nową wartość, która w tym # wektorze początkowo miała wartość 0temporary_vector_of_solutions_x[i] =get_value # ostatecznie po wykonaniu się zewnętrznej pętli kopiujemy zawartość tymczasowego wektora # do wykonywania operacji do ostatecznego wektora rozwiązańvector_of_solutions_x
	vector_of_solutions_x = copy_vector(temporary_vector_of_solutions_x) # liczymy residuum:
	iterations += 1 except: print('Błąd') print("") print(" Metoda Jacobiego") print(" ************************************
	<pre>print("") print() # zwróć czas wykonania algorytmu return time.time()time_start def gauss_seidel_method(A, b) -> float: # startujemy czas do wykonania pomiarutime_start = time.time()</pre>
	<pre># ustawiamy początkowy licznik iteracji na 0iterations = 0 # tworzymy wektor rozwiązań, wypełniony początkowo zeramivector_of_solutions_x = vec_zeros(len(b)) try: # wykonuj algorytm dopóki warunki są spełnione while True: for i in range(len(A)):</pre>
	<pre># wyciągamy wartość 'i' z wektora b z takiego samego indeksu co macierz Aget_value = b[i] for j in range(len(A)): # sprawdzamy, czy wartości i oraz j są różne if i != j: # jeśli ten warunek jest spełniony, to aktualizujemy naszą wartość poprzez # odjęcie iloczynu elementu macierzy A z elementem wektora rozwiązań x get_value -= A[i][j] *vector_of_solutions_x[j] # aktualizujemy get value</pre>
	get_value /= A[i][i] # w miejsce i-tego elementu wektora wstawiamy obliczaną wartośćget_value vector_of_solutions_x[i] =get_value # liczymy residuum: residuum (iterations) = Ax(iterations) - b vector_residuum = sub_vectors(dot_product(A,vector_of_solutions_x), b) # kryterium stopu to norma z residuum o wartości mniejszej niż 10-9 if norm_residuum(vector_residuum) < pow(10, -9): break
	<pre># aktualizacja liczby iteracji potrzebnych do wykonania się algorytmu i osiągnięcia wyznaczonej niterations += 1 except: print('Błąd') print("") print(" Metoda Gaussa-Seidl'a") print(" **************")</pre>
	<pre>print(" 1) Czas wykonania: ", time.time()time_start) print(" 2) Liczba potrzebnych iteracji: ",iterations) print("</pre>
[17]:	<pre>def create_LU(A) -> (list, list): # tworzymy macierz trójkatna dolna N = len(A) matrix_L = [[1 if x == y else 0 for x in range(N)] for y in range(N)] # tworzymy macierz trójkatna górna matrix_U = matrix_zeros(len(A), len(A))</pre> <pre>for i in range(N):</pre>
	<pre>for i in range(N): for j in range(i + 1): matrix_U[j][i] += A[j][i] for iters in range(j): matrix_U[j][i] -= matrix_L[j][iters] * matrix_U[iters][i] for j in range(i + 1, N): for iters in range(i):</pre>
	<pre>matrix_L[j][i] -= matrix_L[j][iters] * matrix_U[iters][i] matrix_L[j][i] += A[j][i] matrix_L[j][i] /= matrix_U[i][i] return matrix_L, matrix_U def LU_method(A, b) -> float: # startujemy czas do wykonania pomiaru</pre>
	time_start = time.time() N = len(A) # tworzymy wektor rozwiązań, wypełniony początkowo jedynkami vector_of_solutions_x = [1 for _ in range(N)] # tworzymy wektor rozwiązań, wypełniony początkowo zerami vector_y = [0 for _ in range(N)] # tworzymy macierze matrix_L, matrix_U matrix_L, matrix_U = create_LU(A)
	<pre># Ly = b for i in range(N): temporary = b[i] for j in range(i): temporary -= matrix_L[i][j] * vector_y[j] vector_y[i] = temporary / matrix_L[i][i] # Ux = y for i in range(N - 1, -1, -1):</pre>
	<pre>temporary = vector_y[i] for j in range(i + 1, N): temporary -= matrix_U[i][j] * vector_of_solutions_x[j] vector_of_solutions_x[i] = temporary / matrix_U[i][i] # liczymy residuum: residuum (iterations) = Ax(iterations) - b vector_residuum = sub_vectors(dot_product(A, vector_of_solutions_x), b) print("</pre>
[42].	<pre>print(" Metoda LU") print(" ************************** print(" 1) Czas wykonania: ", time.time()time_start) print(" 2) Norma z residuum:", norm_residuum(vector_residuum)) print("</pre>
[12]:	<pre>ifname == "main": # Zadanie B N = 992 a1 = 10 matrix_A = create_matrix_A(N, a1) vector_b = create_vector_b(N) time_jac = jacobi_method(matrix_A, vector_b) time_gauss = gauss_seidel_method(matrix_A, vector_b)</pre>
	Metoda Jacobiego ************** 1) Czas wykonania: 7 2) Liczba potrzebnych iteracji: 18
	Metoda Gaussa-Seidl'a ************** 1) Czas wykonania: 5 2) Liczba potrzebnych iteracji: 13
[19]:	Zadanie C Tworzę układ równań netodami Jacobiego i Gaussa-Seidel'a dla a1 = 3 , a2 = a3 = -1 i N = 9cd , natomiast wektor b pozostawiam bez zmian. Czy metody iteracyjne dla takich wartości zbiegają się? Odp.: Nie, wyskakuje błąd. # Zadanie C
[19]:	<pre>N = 992 a1 = 3 matrix_A = create_matrix_A(N, a1) vector_b = create_vector_b(N) time_jac = jacobi_method(matrix_A, vector_b) time_gauss = gauss_seidel_method(matrix_A, vector_b)</pre> Blad
	Metoda Jacobiego ************** 1) Czas wykonania: 468.2310948371887 2) Liczba potrzebnych iteracji: 1264 Błąd
	Metoda Gaussa-Seidl'a ************** 1) Czas wykonania: 188.0521903038025 2) Liczba potrzebnych iteracji: 521
[22]:	Implementuję wyżej metodę bezpośredniego rozwiązania układów równań liniowych: metodę faktoryzacji LU i stosuję ją do przypadku C. Wynik normy jest bliski 0, potwierdza to dokładność algorytmu. # Zadanie D N = 992 a1 = 3
	<pre>matrix_A = create_matrix_A(N, a1) vector_b = create_vector_b(N) time_lu = LU_method(matrix_A, vector_b) Metoda LU ************************************</pre>
	Zadanie E Tworzę wykres zależności czasu trwania poszczególnych algorytmów od liczby niewiadomych N = {100, 500, 1000, 2000, 3000} dla przypadku z punktu A.
n []:	<pre># Zadanie E time_jacobi = [] time_gauss = [] time_LU = [] N = [100, 500, 1000, 2000, 3000] a1 = 10</pre>
[]:	<pre>stdout_block_print() for n in N: print("Rozmiar N:", n) matrix_A = create_matrix_A(n, al) vector_b = create_vector_b(n) time_jacobi.append(jacobi_method(matrix_A, vector_b)) time gauss.append(gauss seidel method(matrix_A, vector_b))</pre>
	<pre>time_LU.append(LU_method(matrix_A, vector_b)) stdout_enable_print() pyplot.plot(N, time_jacobi, label="Jacobi", color="red") pyplot.plot(N, time_gauss, label="Gauss-Seidl", color="green") pyplot.plot(N, time_LU, label="LU", color="blue") pyplot.legend() pyplot.grid(True) pyplot.ylabel('Czas wykonania (s)') pyplot.xlabel('Liczba niewiadomych N') pyplot.title('Wykres czasu wykonania od liczby niewiadomych N') pyplot.show()</pre>
	Wykres czasu wykonania od liczby niewiadomych N 1400 Jacobi 1200 Gauss-Seidl
	(s) 1000 + 1000
	(onania (s)