计算物理第二次作业 作业解答

隋源 2000011379

Oct 29th 2022

由于本报告涉及大量图表,为了不影响阅读,将部分图表附在最后。

1. 不同方法求解线性方程组

两种方法求出的解如下表所示(计算结果由 equation.py 给出)

X	x_1	x_2	x_3	x_4
GEM	$1-7 \times 10^{-14}$	$1 + 4 \times 10^{-14}$	$1+2\times10^{-14}$	$1\text{-}1.2\times10^{-14}$
Cholesky	$1\text{-}11\times10^{-14}$	$1 + 7 \times 10^{-14}$	$1+3\times10^{-14}$	$1-2 \times 10^{-14}$

可以看出高斯消元法更为精确。Cholesky 分解得到的上三角矩阵为(计算结果由 equation.py 给出)

$$A = \begin{pmatrix} 0.2236068 & 0.3130495 & 0.2683282 & 0.2236068 \\ & 0.0447214 & -0.0894427 & -3 \times 10^{-16} \\ & & 0.1414214 & 0.2121320 \\ & & & 0.0707107 \end{pmatrix}$$

2. 不同边界条件的样条函数

首先写出三次样条函数的二阶导(定义 x_i 处的矩为 M_i , $h_i = x_i - x_{i-1}$)

$$S''_{\Delta}(Y;x) = \begin{cases} M_0 \frac{x_1 - x}{h_1} + M_1 \frac{x - x_0}{h_1}, & x \in [x_0, x_1] \\ M_1 \frac{x_2 - x}{h_2} + M_2 \frac{x - x_1}{h_2}, & x \in [x_1, x_2] \end{cases}$$

依次积分

$$S'_{\Delta}(Y;x) = \begin{cases} -M_0 \frac{(x_1 - x)^2}{2h_1} + M_1 \frac{(x - x_0)^2}{2h_1} + A_1, & x \in [x_0, x_1] \\ -M_1 \frac{(x_2 - x)^2}{2h_2} + M_2 \frac{(x - x_1)^2}{2h_2} + A_2, & x \in [x_1, x_2] \end{cases}$$

$$S_{\Delta}(Y;x) = \begin{cases} M_0 \frac{(x_1 - x)^3}{6h_1} + M_1 \frac{(x - x_0)^3}{6h_1} + A_1 x + B_1, & x \in [x_0, x_1] \\ M_1 \frac{(x_2 - x)^3}{6h_2} + M_2 \frac{(x - x_1)^3}{6h_2} + A_2 x + B_2, & x \in [x_1, x_2] \end{cases}$$

代入条件 $S_{\Delta}(Y;x_i)=y_i$, i=0,1,2 共四个方程, 解出 A_1,A_2,B_1,B_2

$$A_1 = \frac{y_1 - y_0}{h_1} - \frac{h_1}{6}(M_1 - M_0), \quad A_2 = \frac{y_2 - y_1}{h_2} - \frac{h_2}{6}(M_2 - M_1)$$

$$B_1 = \frac{x_1 y_0 - x_0 y_1}{h_1} - \frac{h_1}{6} (x_1 M_0 - x_0 M_1), \quad B_2 = \frac{x_2 y_1 - x_1 y_2}{h_2} - \frac{h_2}{6} (x_2 M_1 - x_1 M_2)$$

此时 $S_{\Delta}(Y;x)$ 中仅有 M_i 未知。代入 $S'_{\Delta}(Y;x)$ 连续条件,得到一个连续方程:

$$M_1 \frac{h_1 + h_2}{3} + M_0 \frac{h_1}{6} + M_2 \frac{h_2}{6} = \frac{y_2 - y_1}{h_2} - \frac{y_1 - y_0}{h_1}$$

还剩两个方程由边界条件给出。下面讨论不同边界条件的情形。

(a) 若边界条件为

$$M_0 = 0, \quad M_2 = 0$$

代入可得

$$M_1 = \frac{3}{h_1 + h_2} \left(\frac{y_2 - y_1}{h_2} - \frac{y_1 - y_0}{h_1} \right)$$

由此解析解完全确定(利用上面 $S_{\Delta}(Y;x)$ 和 M_i, A_i, B_i 的式子分布表示)。 $f(x) = \cos(x^2)$, $x_0 = 0, x_1 = 0.6, x_2 = 0.9$ 的数值结果为

$$S_{\Delta}(Y;x) = \begin{cases} -0.66156x^3 + 0.13132x^2 + 0.00000x + 1.00000, & x \in [0.0, 0.6] \\ +1.32313x^3 - 3.57245x^2 + 2.27479x + 0.57131, & x \in [0.6, 0.9] \end{cases}$$

(b) 若边界条件为

$$S'_{\Lambda}(Y; x_0) = y'_0, \quad S'_{\Lambda}(Y; x_2) = y'_2$$

代入可得

$$M_{1} = \frac{2}{h_{1} + h_{2}} \left[3 \left(\frac{y_{2} - y_{1}}{h_{2}} - \frac{y_{1} - y_{0}}{h_{1}} \right) - (y'_{2} - y'_{0}) \right]$$

$$M_{0} = \frac{3}{h_{1}} \left(\frac{y_{1} - y_{0}}{h_{1}} - y'_{0} \right) - \frac{1}{h_{1} + h_{2}} \left[3 \left(\frac{y_{2} - y_{1}}{h_{2}} - \frac{y_{1} - y_{0}}{h_{1}} \right) - (y'_{2} - y'_{0}) \right]$$

$$M_{2} = \frac{3}{h_{2}} \left(y'_{2} - \frac{y_{2} - y_{1}}{h_{2}} \right) - \frac{1}{h_{1} + h_{2}} \left[3 \left(\frac{y_{2} - y_{1}}{h_{2}} - \frac{y_{1} - y_{0}}{h_{1}} \right) - (y'_{2} - y'_{0}) \right]$$

由此解析解完全确定(利用上面 $S_{\Delta}(Y;x)$ 和 M_i, A_i, B_i 的式子分布表示)。 $f(x) = \cos(x^2)$, $x_0 = 0, x_1 = 0.6, x_2 = 0.9$ 的数值结果为

$$S_{\Delta}(Y;x) = \begin{cases} -0.62916x^3 + 0.19943x^2 + 0.00000x + 1.00000, & x \in [0.0, 0.6] \\ -1.12484x^3 - 1.09166x^2 - 0.53534x + 1.10707, & x \in [0.6, 0.9] \end{cases}$$

3. 不同阶数的 Chebyshev 展开

首先进行变换 t = 2x - 3,使得函数满足 chebyshev 展开要求

$$y = \log_2(x) = \log_2(t+3) - 1, \quad t \in [-1, 1]$$

0-4 阶 0-6 阶多项式的系数如下表所示(计算结果由 chebyshev.py 给出)

	c_0	$c_1(\times 10^{-1})$	$c_2(\times 10^{-2})$	$c_3(\times 10^{-3})$	$c_4(\times 10^{-4})$	$c_5(\times 10^{-5})$	$c_6(\times 10^{-5})$
n=5	1.08621323	4.95054630	-4.24687058	4.85587890	-6.12817783		
n=7	1.08621321	4.95054673	-4.24689766	4.85768198	-6.25078598	8.57567965	-1.19963549

对不同 x 值的多项式函数值进行计算(计算结果由 chebyshev.py 给出)并作图**如图 1 所示**。可以看到 Chebyshev 多项式近似效果很好。0-4 阶相对误差在 10^{-4} 量级,0-6 阶相对误差在 10^{-6} 量级。

4.Runge 效应

- (a) 使用 Newton 法进行内插,得到 20 阶多项式的系数和不同 x 值的多项式的值(计算结果由 newton.py 给出),并列数据表和数据图**如图 2 所示**。可以看到 x 较小时近似的较好,|x|>0.5 后开始误差变大直至发散。即多项式内插 Runge 函数的能力较差。
- (b) 计算 0-20 阶 Chebyshev 多项式的系数和不同 x 值的多项式的值(计算结果由 chebyshev.py 给出),并列数据表和数据图**如图 3 所示**可以看到明显比多项式内插结果要好,相比原函数有微小的震荡差。
- (c) 计算 21 点样条函数的系数和不同 x 值的多项式的值(计算结果由 spline.py 给出),并列数据表和数据图**如图 4 所示**。可以看到近似结果相当好,比前两种方法误差更小。

5. 样条函数在计算机绘图中的应用

(a) 样点列表如下

\overline{t}	0	1	2	3	4	5	6	7	8
ϕ	0.00000	0.78540	1.57080	2.35619	3.14159	3.92699	4.71239	5.49779	6.28319
x	0.00000	0.20711	0.00000	-1.20711	-2.00000	-1.20711	0.00000	0.20711	0.00000
y	0.00000	0.20711	1.00000	1.20711	0.00000	-1.20711	-1.00000	-0.20711	0.00000

(b) 分别对 x-t 和 y-t 进行 8 点样条函数计算,得到函数系数和不同 t 值的多项式的值(计算结果由 spline.py 给出)。三次样条函数如下

$$\begin{split} S_{[0,1]}(X;t) &= -0.03849504t^3 + 0.00000000t^2 + 0.24560182t + 0.000000000\\ S_{[1,2]}(X;t) &= -0.22173837t^3 + 0.54973000t^2 - 0.30412818t + 0.18324333\\ S_{[2,3]}(X;t) &= +0.33966208t^3 - 2.81867273t^2 + 6.43267728t - 4.30796030\\ S_{[3,4]}(X;t) &= +0.27730360t^3 - 2.25744635t^2 + 4.74899813t - 2.62428116\\ S_{[4,5]}(X;t) &= -0.27730360t^3 + 4.39783998t^2 - 21.8721472t + 32.8705793\\ S_{[5,6]}(X;t) &= -0.33966208t^3 + 5.33321729t^2 - 26.5490337t + 40.6653901\\ S_{[6,7]}(X;t) &= +0.22173837t^3 - 4.77199090t^2 + 34.0822154t - 80.5971081\\ S_{[7,8]}(X;t) &= +0.03849504t^3 - 0.92388092t^2 + 7.14544554t - 17.7446451\\ S_{[0,1]}(Y;t) &= +0.17349516t^3 + 0.00000000t^2 + 0.03361162t + 0.00000000\\ S_{[1,2]}(Y;t) &= -0.28168934t^3 + 1.36555350t^2 - 1.33194188t + 0.45518450\\ S_{[2,3]}(Y;t) &= -0.21831066t^3 + 0.98528137t^2 - 0.57139762t - 0.05184500\\ S_{[3,4]}(Y;t) &= +0.32650484t^3 - 3.91805812t^2 + 14.1386209t - 14.7618635\\ S_{[4,5]}(Y;t) &= -0.21831066t^3 + 4.25417437t^2 - 26.7225416t + 53.3400740\\ S_{[5,6]}(Y;t) &= -0.28168934t^3 + 5.39499075t^2 - 33.5674399t + 67.0298705\\ S_{[7,8]}(Y;t) &= +0.17349516t^3 - 4.16388375t^2 + 33.3446816t - 89.0984130 \end{split}$$

- (c) 根据得到的样条函数作图如图 5 所示
- (d) 曲率为

$$K = \frac{|f''(t)|}{[1 + f'(t)^2]^{3/2}} = \frac{|x''(t)y'(t) - x'(t)y''(t)|}{[x'(t)^2 + y'(t)^2]^{3/2}}$$

由于三次样条插值保证了插值函数 f 二阶导数的连续性,而曲线的曲率 K 依赖于函数的一阶导和二阶导,因此三次样条保证了曲线曲率在各个采样点是连续的,从而保证了插值曲线的整体光滑。

图 1: 0-4 阶和 0-6 阶 Chebyshev 多项式近似 $\log_2(x)$ 结果

X	-1	-0.95	-01.9	-0.85	-0.8	-0.75
多项式值	0.03846	-39.95245	0.04706	3.45496	0.05882	-0.44705
原函数值	0.03846	0.04244	0.04706	0.05246	0.05882	0.06639
差值	0.00000	-39.99489	0.00000	3.40250	0.00000	-0.51344
-0.7	-0.65	-0.6	-0.55	-0.5	-0.45	-0.4
0.07547	0.20242	0.10000	0.08066	0.13793	0.17976	0.20000
0.07547	0.08649	0.10000	0.11679	0.13793	0.16495	0.20000
0.00000	0.11594	0.00000	-0.03613	0.00000	0.01481	0.00000
-0.35	-0.3	-0.25	-0.2	-0.15	-0.1	-0.05
0.23845	0.30769	0.39509	0.50000	0.63676	0.80000	0.94249
0.24615	0.30769	0.39024	0.50000	0.64000	0.80000	0.94118
-0.00771	0.00000	0.00485	0.00000	-0.00324	0.00000	0.00131
0	0.05	0.1	0.15	0.2	0.25	0.3
1.00000	0.94249	0.80000	0.63676	0.50000	0.39509	0.30769
1.00000	0.94118	0.80000	0.64000	0.50000	0.39024	0.30769
0.00000	0.00131	0.00000	-0.00324	0.00000	0.00485	0.00000
0.35	0.4	0.45	0.5	0.55	0.6	0.65
0.23845	0.20000	0.17976	0.13793	0.08066	0.10000	0.20242
0.24615	0.20000	0.16495	0.13793	0.11679	0.10000	0.08649
-0.00771	0.00000	0.01481	0.00000	-0.03613	0.00000	0.11594
0.7	0.75	0.8	0.85	0.9	0.95	1
0.07547	-0.44705	0.05882	3.45496	0.04706	-39.95245	0.03846
0.07547	0.06639	0.05882	0.05246	0.04706	0.04244	0.03846
0.00000	-0.51344	0.00000	3.40250	0.00000	-39.99489	0.00000

图 2: 20 阶 Newton 法内插近似 Runge 函数结果

Х	0.99720	0.98607	0.9 7 493	0.95290	0.93087	0.89845
多项式值	0.03867	0.03391	0.04038	0.04828	0.04412	0.04072
原函数值	0.03867	0.03951	0.04038	0.04219	0.04412	0.04721
差值	0.00000	-0.00560	0.00000	0.00609	0.00000	-0.00649
0.86603	0.82393	0.78183	0.73100	0.68017	0.62175	0.56332
0.05063	0.06269	0.06142	0.06181	0.07958	0.10275	0.11194
0.05063	0.05564	0.06142	0.06964	0.07958	0.09377	0.11194
0.00000	0.00704	0.00000	-0.00783	0.00000	0.00898	0.00000
0.49860	0.43388	0.36432	0.29476	0.22190	0.14904	0.07452
0.12795	0.17524	0.24458	0.31526	0.43290	0.64295	0.88818
0.13860	0.17524	0.23158	0.31526	0.44823	0.64295	0.87809
-0.01065	0.00000	0.01300	0.00000	-0.01533	0.00000	0.01009
0.00000	-0.07452	-0.14904	-0.22190	-0.29476	-0.36432	-0.43388
1.00000	0.88818	0.64295	0.43290	0.31526	0.24458	0.17524
1.00000	0.87809	0.64295	0.44823	0.31526	0.23158	0.17524
0.00000	0.01009	0.00000	-0.01533	0.00000	0.01300	0.00000
-0.49860	-0.56332	-0.62175	-0.68017	-0.73100	-0.78183	-0.82393
0.12795	0.11194	0.10275	0.07958	0.06181	0.06142	0.06269
0.13860	0.11194	0.09377	0.07958	0.06964	0.06142	0.05564
-0.01065	0.00000	0.00898	0.00000	-0.00783	0.00000	0.00704
-0.86603	-0.89845	-0.93087	-0.95290	-0.97493	-0.98607	-0.99720
0.05063	0.04072	0.04412	0.04828	0.04038	0.03391	0.03867
0.05063	0.04721	0.04412	0.04219	0.04038	0.03951	0.03867
0.00000	-0.00649	0.00000	0.00609	0.00000	-0.00560	0.00000

图 3: 0-20 阶 Chebyshev 多项式近似 Runge 函数结果

х	-1	-0.95	-01.9	-0.85	-0.8	-0.75
多项式值	0.03846	0.04253	0.04706	0.05243	0.05882	0.06639
原函数值	0.03846	0.04244	0.04706	0.05246	0.05882	0.06639
差值	0.00000	0.00009	0.00000	-0.00003	0.00000	0.00000
-0.7	-0.65	-0.6	-0.55	-0.5	-0.45	-0.4
0.07547	0.08647	0.10000	0.11679	0.13793	0.16486	0.20000
0.07547	0.08649	0.10000	0.11679	0.13793	0.16495	0.20000
0.00000	-0.00001	0.00000	0.00000	0.00000	-0.00008	0.00000
-0.35	-0.3	-0.25	-0.2	-0.15	-0.1	-0.05
0.24627	0.30769	0.38942	0.50000	0.64317	0.80000	0.93887
0.24615	0.30769	0.39024	0.50000	0.64000	0.80000	0.94118
0.00011	0.00000	-0.00082	0.00000	0.00317	0.00000	-0.00231
0	0.05	0.1	0.15	0.2	0.25	0.3
1.00000	0.93887	0.80000	0.64317	0.50000	0.38942	0.30769
1.00000	0.94118	0.80000	0.64000	0.50000	0.39024	0.30769
0.00000	-0.00231	0.00000	0.00317	0.00000	-0.00082	0.00000
0.35	0.4	0.45	0.5	0.55	0.6	0.65
0.24627	0.20000	0.16486	0.13793	0.11679	0.10000	0.08647
0.24615	0.20000	0.16495	0.13793	0.11679	0.10000	0.08649
0.00011	0.00000	-0.00008	0.00000	0.00000	0.00000	-0.00001
0.7	0.75	0.8	0.85	0.9	0.95	1
0.07547	0.06639	0.05882	0.05243	0.04706	0.04253	0.03846
0.07547	0.06639	0.05882	0.05246	0.04706	0.04244	0.03846
0.00000	0.00000	0.00000	-0.00003	0.00000	0.00009	0.00000

图 4: 21 点三次样条函数近似 Runge 函数结果

图 5: 8 点样条曲线近似心脏线结果