WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		(11) International Publication Number: WO 93/13226
C12Q 1/68	A1	43) International Publication Date: 8 July 1993 (08.07.93
(21) International Application Number: PCT/US (22) International Filing Date: 21 December 1992		CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL
(30) Priority data: 07/813,589 23 December 1991 (23.17)	2.91)	Published With international search report.
(71) Applicant: CHIRON CORPORATION [US/U Horton Street, Emeryville, CA 94608 (US).		
(72) Inventors: KOLBERG, Janice, A.; 131 Scotts Val Hercules, CA 94547 (US). URDEA, Michael Bunce Meadow Road, Alamo, CA 94507 (US)	, S. ; 1	ò
(74) Agents: PARK, Freddie, K. et al.; Morrison & 755 Page Mill Road, Palo Alto, CA 94304 (US		
(54) Title: HAV PROBES FOR USE IN SOLUTIO	N PHA	E SANDWICH HYBRIDIZATION ASSAYS

(57) Abstract

Novel DNA probe sequences for detection of HAV in a sample in a solution phase sandwich hybridization assay are described. Amplified nucleic acid hybridization assays using the probes are exemplified.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				MR	Mauritania
AT	Austria	FR	France	MW	Malawi
AU	Australia	GA	Gabon	*****	
BB	Barbailus	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN-	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
		HU	Hungary	PL	Poland
BG	Bulgaria	IE	Ireland	PT	Portugal
BJ	Benin	iT	lialy	RO	Romania
BR	Brazil	JP	Japan	RU	Russian Federation
CA	Canada	_	Democratic People's Republic	SD	Sudan
CF	Central African Republic	КP		SE.	Sweden
CC	C'ongo		of Korea	SK	Slovak Republic
CH	Switzerland	KR	Republic of Knrea	SN	Senegal
CI	C'őte d'Ívaire	KZ	Kazakhstan	SU	Soviet Union
CM	Саписоки	1.1	Liechtenstein	TD	(Thad
cs	Czechuslovakia	LK	Sri Lanka		
cz	Czech Republic	1.U	f.osembourg	TG	Togo
DΕ	Germany	MC	Munaco	UA	Ukraine
DK	Denmark	MG	Madagascar	us	United States of America
	Spain	MI.	Mali	VN	Viet Nam
ES		MN	Mungolia		
FI	Finland				

PCT/US92/11348

5

20

25

30

35

HAV PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS DESCRIPTION

Technical Field

This invention is in the field of nucleic acid hybridization assays. More specifically, it relates to novel nucleic acid probes for detecting Hepatitis A Virus (HAV).

15 Background Art

Hepatitis A virus is an RNA virus belonging to the picornavirus family and is thought to be responsible for at least 38% of all reported cases of hepatitis. Cohen et al. (J. Virol. 61:50-59, 1987) described the complete nucleotide sequence of wild-type Hepatitis A virus and compared the sequence with laboratory-adapted HAV strains and with other picornaviruses, finding most amino acid differences occurred in the capsid region, whereas most nucleotide differences occurred randomly throughout the genome.

Commonly owned U.S. 4,868,105 describes a solution phase nucleic acid sandwich hybridization assay in which analyte nucleic acid is first hybridized in solution to a labeling probe set and to a capturing probe set in a first vessel. The probe-analyte complex is then transferred to a second vessel that contains a solid-phase-immobilized probe that is complementary to a segment of the capturing probes. The segments hybridize to the immobilized probe, thus removing the complex from solution. Having the analyte in the form of an immobilized complex facilitates subsequent separation steps in the assay. Ultimately, single stranded segments

Ð

30

35

of the labeling probe set are hybridized to labeled probes, thus permitting the analyte-containing complex to be detected via a signal generated directly or indirectly from the label.

Commonly owned European Patent Application 5 (EPA) 883096976 discloses a variation in the assay described in U.S. 4,868,105 in which the signal generated by the labeled probes is amplified. The amplification involves the use of nucleic acid multimers. multimers are branched polynucleotides that are 10 constructed to have a segment that hybridizes specifically to the analyte nucleic acid or to a nucleic acid (branched or linear) that is bound to the analyte and iterations of a second segment that hybridize specifically to the labeled probe. In the assay 15 employing the multimer, the initial steps of hybridizing the analyte to label or amplifier probe sets and capturing probe sets in a first vessel and transferring the complex to another vessel containing immobilized nucleic acid that will hybridize to a segment of the 20 capturing probes are followed. The multimer is then hybridized to the immobilized complex and the labeled probes in turn hybridized to the second segment iterations on the multimer. Since the multimers provide a large number of sites for label probe attachment, the 25 signal is amplified. Amplifier and capture probe sequences are disclosed for Hepatitis B virus, Neisseria gonorrhoeae, penicillin and tetracycline resistance in N. gonorrhoeae, and Chlamydia trachomatis.

Commonly owned copending application Serial No. 558,897, filed 27 July 1990, describes the preparation of large comb-type branched polynucleotide multimers for use in the above-described solution phase assay. The combs provide greater signal enhancement in the assays than the smaller multimers.

15

20

25

30

35

Disclosure of the Invention

One aspect of the invention is a synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HAV comprising a first segment having a nucleotide sequence substantially complementary to a segment of HAV nucleic acid, and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide acid multimer.

Another aspect of the invention is a synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HAV comprising a first segment having a nucleotide sequence substantially complementary to a segment of HAV nucleic acid; and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase.

Another aspect of the invention is a solution sandwich hybridization assay for detecting the presence of HAV in a sample, comprising

- (a) contacting the sample under hybridizing conditions with an excess of (i) an amplifier probe oligonucleotide comprising a first segment having a nucleotide sequence substantially complementary to a segment of HAV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) a capture probe oligonucleotide comprising a first segment having a nucleotide sequence that is substantially complementary to a segment of HAV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;
- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound to the solid phase;

-4-

(d) contacting the product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

₽

(e) removing unbound multimer;

5

20

25

30

35

- (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the solid phase complex product of step (g).

Another aspect of the invention is a kit for the detection of HAV comprising a kit for the detection of HAV in a sample comprising in combination

- (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment having a nucleotide sequence substantially complementary to a segment of HAV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;
- (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment having a nucleotide sequence that is substantially complementary to a segment of HAV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;
- (iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of

PCT/US92/11348

WO 93/13226

-5-

second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and (iv) a labeled oligonucleotide.

5 Modes for Carrying Out the Invention

Definitions

10

15

20

25

30

35

"Solution phase nucleic acid hybridization assay" intends the assay techniques described and claimed in commonly owned U.S. Patent No. 4,868,105 and EPA 883096976.

A "modified nucleotide" intends a nucleotide monomer that may be stably incorporated into a polynucleotide and which has an additional functional group. Preferably, the modified nucleotide is a 5'-cytidine in which the N'-position is modified to provide a functional hydroxy group.

An "amplifier multimer" intends a branched polynucleotide that is capable of hybridizing simultaneously directly or indirectly to analyte nucleic acid and to a multiplicity of polynucleotide iterations (i.e., either iterations of another multimer or iterations of a labeled probe). The branching in the multimers is effected through covalent bonds and the multimers are composed of two types of oligonucleotide units that are capable of hybridizing, respectively, to analyte nucleic acid or nucleic acid hybridized to analyte nucleic acid and to a multiplicity of labeled probes. The composition and preparation of such multimers are described in EPA 883096976 and U.S. Serial No. 558,897 filed 27 July 1990, the disclosures of which are incorporated herein by reference.

The term "amplifier probe" is intended as a branched or linear polynucleotide that is constructed to have a segment that hybridizes specifically to the analyte nucleic acid and iterations of a second segment that hybridize specifically to an amplifier multimer.

10

15

20

25

30

35

The term "capture probe" is intended as an oligonucleotide having a segment substantially complementary to a nucleotide sequence of the target DNA and a segment that is substantially complementary to a nucleotide sequence of a solid-phase-immobilized probe.

"Large" as used herein to describe the combtype branched polynucleotides of the invention intends a molecule having at least about 15 branch sites and at least about 20 iterations of the labeled probe binding sequence.

"Comb-type" as used herein to describe the structure of the branched polynucleotides of the invention intends a polynucleotide having a linear backbone with a multiplicity of sidechains extending from the backbone.

A "cleavable linker molecule" intends a molecule that may be stably incorporated into a polynucleotide chain and which includes a covalent bond that may be broken or cleaved by chemical treatment or physical treatment such as by irradiation.

All nucleic acid sequences disclosed herein are written in a 5' to 3' direction. Nucleotides are designated according to the nucleotide symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. All nucleotide sequences disclosed are intended to include complementary sequences unless otherwise indicated.

Solution Phase Hybridization Assay

The general protocol for the solution phase sandwich hybridizations is as follows. The analyte nucleic acid is placed in a microtiter well with an excess of two single-stranded nucleic acid probe sets:

(1) a set of capture probes, each having a first binding sequence substantially complementary to the analyte and a second binding sequence that is substantially complementary to nucleic acid bound to a solid support,

-7-

for example, the well surface or a bead, and (2) a set of amplifier probes (branched or linear), each having a first binding sequence that is capable of specific binding to the analyte and a second binding sequence that is capable of specific binding to a segment of the multimer. The resulting product is a three component nucleic acid complex of the two probes hybridized to the analyte by their first binding sequences. The second binding sequences of the probes remain as single-stranded segments as they are not substantially complementary to the analyte. This complex hybridizes to the immobilized probe on the solid surface via the second binding sequence of the capture probe. The resulting product comprises the complex bound to the solid surface via the duplex formed by the oligonucleotide bound to the solid surface and the second binding sequence of the capture probe. Unbound materials are then removed from the surface such as by washing.

10

15

20

25

30

35

The amplification multimer is then added to the bound complex under hybridization conditions to permit the multimer to hybridize to the available second binding sequence(s) of the amplifier probe of the complex. The resulting complex is then separated from any unbound multimer by washing. The labeled oligonucleotide is then added under conditions which permit it to hybridize to the complementary oligonucleotide units of the multimer. The resulting immobilized labeled nucleic acid complex is then washed to remove unbound labeled oligonucleotide, and read.

The analyte nucleic acids may be from a variety of sources, e.g., biological fluids or solids, and may be prepared for the hybridization analysis by a variety of means, e.g., proteinase K/SDS, chaotropic salts, etc.

Also, it may be of advantage to decrease the average size of the analyte nucleic acids by enzymatic, physical or chemical means, e.g., restriction enzymes, sonication, chemical degradation (e.g., metal ions), etc. The frag-

10

15

20

25

30

35

ments may be as small as 0.1 kb, usually being at least about 0.5 kb and may be 1 kb or higher. The analyte sequence is provided in single-stranded form for analysis. Where the sequence is naturally present in single-stranded form, denaturation will not be required. However, where the sequence may be present in double-stranded form, the sequence should be denatured. Denaturation can be carried out by various techniques, such as alkali, generally from about 0.05 to 0.2 M hydroxide, formamide, salts, heat, enzymes, or combinations thereof.

The first binding sequences of the capture probe and amplifier probe that are substantially complementary to the analyte sequence will each be of at least 15 nucleotides, usually at least 25 nucleotides, and not more than about 5 kb, usually not more than about 1 kb, preferably not more than about 100 nucleotides. They will typically be approximately 30 nucleotides. They will normally be chosen to bind to different sequences of the analyte. The first binding sequences may be selected based on a variety of considerations. Depending upon the nature of the analyte, one may be interested in a consensus sequence, a sequence associated with polymorphisms, a particular phenotype or genotype, a particular strain, or the like.

The number of different amplifier and capture probes used influences the sensitivity of the assay, because the more probe sequences used, the greater the signal provided by the assay system. Furthermore, the use of more probe sequences allows the use of more stringent hybridization conditions, thereby reducing the incidence of false positive results. Thus, the number of probes in a set will be at least one capture probe and at least one amplifier probe, more preferably two capture and two amplifier probes, and most preferably 5-100 capture probes and 5-100 amplifier probes.

5

10

15

20

25

30

35

-9-

Oligonucleotide probes for HAV were designed by aligning the RNA sequences of five HAV isolates available from GenBank. Regions of greatest homology were chosen for capture probes, while regions of lesser homology were chosen as amplifier probes. Thus, as additional strains or isolates of HAV are made available, appropriate probes made be designed by aligning the sequence of the new strain or isolate with the nucleotide sequences used to design the probes of the present invention, and choosing regions of greatest homology for use as capture probes, with regions of lesser homology chosen as amplifier probes. The probe sequences of the presently preferred probe sets are contiquous and roughly correspond to nucleotides 1-1300 of the HAV genome. The nucleotide sequences of the presently preferred probe sets are shown in the examples.

The second binding sequences of the capture probe and amplifier probe are selected to be substantially complementary, respectively, to the oligonucleotide bound to the solid surface and to a segment of the multimer and so as to not be encountered by endogenous sequences in the sample/analyte. The second binding sequence may be contiguous to the first binding sequence or be spaced therefrom by an intermediate noncomplementary sequence. The probes may include other noncomplementary sequences if desired. These noncomplementary sequences must not hinder the binding of the binding sequences or cause nonspecific binding to occur.

The capture probe and amplifier probe may be prepared by oligonucleotide synthesis procedures or by cloning, preferably the former.

It will be appreciated that the binding sequences need not have perfect complementarity to provide homoduplexes. In many situations, heteroduplexes will suffice where fewer than about 10% of the bases are mismatches, ignoring loops of five or more nucleotides.

10

15

20

25

30

35

Accordingly, as used herein the term "complementary" intends exact complementarity wherein each base within the binding region corresponds exactly, and "substantially complementary" intends 90% or greater homology.

The labeled oligonucleotide will include a sequence substantially complementary to the repeated oligonucleotide units of the multimer. The labeled oligonucleotide will include one or more molecules ("labels"), which directly or indirectly provide a detectable signal. The labels may be bound to individual members of the substantially complementary sequence or may be present as a terminal member or terminal tail having a plurality of labels. Various means for providing labels bound to the oligonucleotide sequences have been reported in the literature. See, for example, Leary et al., Proc. Natl. Acad. Sci. USA (1983) 80:4045; Renz and Kurz, Nucl. Acids Res. (1984) 12:3435; Richardson and Gumport, Nucl. Acids Res. (1983) 11:6167; Smith et al., Nucl. Acids. Res. (1985) 13:2399; Meinkoth and Wahl, Anal. Biochem. (1984) 138:267. The labels may be bound either covalently or non-covalently to the substantially complementary sequence. Labels which may be employed include radionuclides, fluorescers, chemiluminescers, dyes, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, enzyme subunits, metal ions, and the like. Illustrative specific labels include fluorescein, rhodamine, Texas red, phycoerythrin, umbelliferone, luminol, NADPH, α -8-galactosidase, horseradish peroxidase, alkaline phosphatase, etc.

The ratio of capture probe and amplifier probe to anticipated moles of analyte will each be at least stoichiometric and preferably in excess. This ratio is preferably at least about 1.5:1, and more preferably at least 2:1. It will normally be in the range of 2:1 to 10^6 :1. Concentrations of each of the probes will generally range from about 10^{-5} to 10^{-9} M, with sample nucleic

5

10

15

20

25

30

35

-11-

acid concentrations varying from 10⁻²¹ to 10⁻¹² M. The hybridization steps of the assay will generally take from about 10 minutes to 20 hours, frequently being completed in about 1 hour. Hybridization can be carried out at a mildly elevated temperature, generally in the range from about 20°C to 80°C, more usually from about 35°C to 70°C, particularly 65°C.

The hybridization reactions are usually done in an aqueous medium, particularly a buffered aqueous medium, which may include various additives. Additives which may be employed include low concentrations of detergent (0.01 to 1%), salts, e.g., sodium citrate (0.017 to 0.17 M), Ficoll, polyvinylpyrrolidone, carrier nucleic acids, carrier proteins, etc. Nonaqueous solvents may be added to the aqueous medium, such as dimethylformamide, dimethylsulfoxide, alcohols, and formamide. These other solvents are generally present in amounts ranging from 2 to 50%.

The stringency of the hybridization medium may be controlled by temperature, salt concentration, solvent system, and the like. Thus, depending upon the length and nature of the sequence of interest, the stringency will be varied.

Depending upon the nature of the label, various techniques can be employed for detecting the presence of the label. For fluorescers, a large number of different fluorometers are available. For chemiluminescers, luminometers or films are available. With enzymes, a fluorescent, chemiluminescent, or colored product can be provided and determined fluorometrically, luminometrically, spectrophotometrically or visually. The various labels which have been employed in immunoassays and the techniques applicable to immunoassays can be employed with the subject assays.

Kits for carrying out amplified nucleic acid hybridization assays according to the invention will comprise in packaged combination the following reagents:

-12-

the amplifier probe or set of probes; the capture probe or set of probes; the amplifier multimer; and an appropriate labeled oligonucleotide. These reagents will typically be in separate containers in the kit. The kit may also include a denaturation reagent for denaturing the analyte, hybridization buffers, wash solutions, enzyme substrates, negative and positive controls and written instructions for carrying out the assay.

The following examples further illustrate the invention. These examples are not intended to limit the invention in any manner.

EXAMPLES

Example I

Synthesis of Comb-type Branched Polynucleotide

This example illustrates the synthesis of a
comb-type branched polynucleotide having 15 branch sites
and sidechain extensions having three labeled probe
binding sites. This polynucleotide was designed to be
used in a solution phase hybridization as described in
EPA 883096976.

All chemical syntheses of oligonucleotides were performed on an automatic DNA synthesizer (Applied Biosystems, Inc., (ABI) model 380 B). Phosphoramidite chemistry of the beta cyanoethyl type was used including 5'-phosphorylation which employed Phostel^m reagent (ABN). Standard ABI protocols were used except as indicated. Where it is indicated that a multiple of a cycle was used (e.g., 1.2 cycle), the multiple of the standard amount of amidite recommended by ABI was employed in the specified cycle. Appended hereto are the programs for carrying out cycles 1.2 and 6.4 as run on the Applied Biosystems Model 380 B DNA Synthesizer.

15

20

25

A comb body of the following structure was first prepared:

(RGTCAGTp-5')₁₅

wherein X' is a branching monomer, and R is a periodate cleavable linker.

The portion of the comb body through the 15 (TTX') repeats is first synthesized using 33.8 mg aminopropyl-derivatized thymidine controlled pore glass (CPG) (2000 Å, 7.4 micromoles thymidine per gram support) with a 1.2 cycle protocol. The branching site nucleotide was of the formula:

15

10

30

where R2 represents

15

20

25

30

35

For synthesis of the comb body (not including sidechains), the concentration of beta cyanoethylphosphoramidite monomers was 0.1 M for A, C, G and T, 0.15 M for the branching site monomer E, and 0.2 M for Phostel[®] reagent. Detritylation was done with 3% trichloroacetic acid in methylene chloride using stepped flowthrough for the duration of the deprotection. At the conclusion the 5' DMT was replaced with an acetyl group.

Cleavable linker R and six base sidechain extensions of the formula 3'-RGTCAGTp (SEQ ID NO:1) were synthesized at each branching monomer site as follows. The base protecting group removal (\mathbb{R}^2 in the formula above) was performed manually while retaining the CPG support in the same column used for synthesizing the comb body. In the case of \mathbb{R}^2 = levulinyl, a solution of 0.5 M hydrazine hydrate in pyridine/glacial acetic acid (1:1 v/v) was introduced and kept in contact with the CPG support for 90 min with renewal of the liquid every 15 min, followed by extensive washing with pyridine/glacial acetic acid (1:1 v/v) and then by acetonitrile. After the deprotection the cleavable linker R and six base sidechain extensions were added using a 6.4 cycle.

In these syntheses the concentration of phosphoramidites was 0.1 M (except 0.2 M R and PhostelTM reagent; R was 2-(4-(4-(2-Dimethoxytrityloxy)ethyl-)phenoxy 2,3-di(benzoyloxy)-butyloxy)phenyl)ethyl-2-cyanoethyl-N,N-diisopropylphosphoramidite).

Detritylation is effected with a solution of 3% trichloroacetic acid in methylene chloride using continuous flowthrough, followed by a rinse solution of toluene/chloromethane (1:1 v/v). Branched polynucleotide chains were removed from the solid supports automatically in the 380B using the cycle "CE NH3." The ammonium hydroxide solution was collected in 4 ml screw-capped Wheaton vials and heated at 60°C for 12 hr to remove all base-protecting groups. After cooling

to room temperature the solvent was removed in a Speed-Vac evaporator and the residue dissolved in 100 µl water. 3' backbone extensions (segment A), sidechain extensions and ligation template/linkers of the following structures were also made using the automatic synthesizer:

3' Backbone extension 3'-TCCGTATCCTGGGCACAGAGGTGCp-5' (SEQ ID NO:2)

Sidechain extension 3'-GATGCG(TTCATGCTGTTGGTGTAG)₃-5' (SEQ ID NO:3)

Ligation template for linking 3' backbone

extension 3'-AAAAAAAAAAGCACCTp-5' (SEQ ID NO:4)

Ligation template for linking sidechain
extension 3'-CGCATCACTGAC-5' (SEQ ID NO:5)

20

25

30

-16-

The crude comb body was purified by a standard polyacrylamide gel (7% with 7 M urea and 1X TBE running buffer) method.

The 3' backbone extension and the sidechain extensions were ligated to the comb body as follows. 5 comb body (4 pmole/ μ 1), 3' backbone extension (6.25 pmole/ μ l), sidechain extension (93.75 pmole/ μ l), sidechain linking template (75 pmoles/ μ l) and backbone linking template (5 pmole/ μ l) were combined in 1 mM ATP/ 5 mM DTT/ 50 mM Tris-HCl, pH 8.0/ 10 mM MgCl $_2$ / 2 mM 10 spermidine, with 0.5 units/ μ l T4 polynucleotide kinase. The mixture was incubated at 37°C for 2 hr, then heated in a water bath to 95°C, and then slowly cooled to below 35°C over a 1 hr period. 2 mM ATP, 10 mM DTT, 14% polyethylene glycol, and 0.21 units/µl T4 ligase were added, and the mixture incubated for 16-24 hr at 23°C. The DNA was precipitated in NaCl/ethanol, resuspended in water, and subjected to a second ligation as follows. The mixture was adjusted to 1 mM ATP, 5 mM DTT, 14% polyethylene glycol, 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 2 mM spermidine, 0.5 units/ μ l T4 polynucleotide kinase, and 0.21 units/ μ l T4 ligase were added, and the mixture incubated at 23°C for 16-24 hr. Ligation products were then purified by polyacrylamide gel electrophoresis.

After ligation and purification, a portion of the product was labeled with 32P and subjected to cleavage at the site of R achieved by oxidation with aqueous NaIO4 for 1 hr. The sample was then analyzed by PAGE to determine the number of sidechain extensions incorporated by quantitating the radioactive label in the bands on the The product was found to have a total of 45 labeled probe binding sites.

15

20

25

10

15

-17-

Example II

Procedure for HAV Assay

A "15 X 3" amplified solution phase nucleic acid sandwich hybridization assay format was used in this assay. The "15 x 3" designation derives from the fact that the format employs two multimers: (1) an amplifier probe having a first segment (A) that binds to HAV and a second segment (B) that hybridizes to (2) an amplifier multimer having a first segment (B*) that hybridizes to the segment (B) and fifteen iterations of a segment (C), wherein segment C hybridizes to three labeled oligonucleotides.

The amplifier and capture probe segments and their respective names used in this assay were as follows.

HAV Amplifier Probes

HAV.6 (SEQ ID NO:6)
ATAGAAGTATTAGCCTAAGAGGTTTCACCCGTA

- 20 HAV.7 (SEQ ID NO:7)

 CCGCCGCTGTTRCCCTATCCAARGCATCTCTTC

 HAV.8 (SEQ ID NO:8)

 TGAATGGTTTTTGTCTTAACAACTCACCAATAT

 HAV.9 (SEQ ID NO:9)
- 25 GCATCCACTGGATGAGAGYCAGTCCTCCGGCGT

 HAV.10 (SEQ ID NO:10)

 CTARAGACAGCCCTGACARTCAATCCACTCAAT

 HAV.11 (SEQ ID NO:11)

 TTGCCCTAAGCACAGAGAGGTCTGRRATTAARC
- 30 HAV.12 (SEQ ID NO:12)
 TCTCACAGRATCCCATTTAAGGCCAAATGRTGT
 HAV.13 (SEQ ID NO:13)
 AAGAACAGTCCAGCTGTCAATGGAGGGAYCCCC
 HAV.14 (SEQ ID NO:14)
- 35 GTACCTCAGAGGCAAACACCACATAAGGCCCCA
 HAV.15 (SEQ ID NO:15)
 TTTAAGAATGAGGAAAAACCTAAATGCCCCTGA

HAV.16 (SEQ ID NO:16) GGAAAATWCCTTGTYTRGACATRTTCATTATTR HAV.17 (SEQ ID NO:17) ACAGGATGTGGTCAAGRCCACTCCCRACAGTCT HAV. 18 (SEQ ID NO: 18) GAATCATTTGCTCTTCCTCAATRTCTGCCAAAG HAV. 19 (SEQ ID NO: 19) AAGCWCCAGTCACTGCAGTCCTAWCAACKGAYT HAV.20 (SEQ ID NO:20) GAACTGAAGATTGRTCCACAGAAGTRAARTAAG 10 HAV.21 (SEQ ID NO:21) GTTCAAYYTGRTGTRAKCCAACCTCAGCWGTAT HAV.22 (SEQ ID NO:22) TWGAACYRGGTTTATCAACAGAGGTTYTCAARG HAV.23 (SEQ ID NO:23) 15 GAATCARGAAAAYTTYTCYCCCTGAGTYYTCT HAV.24 (SEQ ID NO:24) ADAGAGCATGTGTAGTRAGCCAATCWGCAGAAT HAV.25 (SEQ ID NO:25) RTTTCACCACRTCCAATTTTGCAACTTCATGRA 20 HAV.26 (SEQ ID NO:26) **AMCCTTGRACRGCAAACTGCTCATTRTAYARTA** HAV.27 (SEQ ID NO:27) TGCCAAATCTTGCATATGTRTGGTATCTCAACA

HAV Capture Probes

HAV.1 (SEQ ID NO:28)

CGCAACGGCCAGAGCCTAGGGCAAGGGGAGAGC

HAV.2 (SEQ ID NO:29)

30 CTCCATGCTAATCATGGAGTTGACCCCGCCGGG

HAV.3 (SEQ ID NO:30)

AMACATCTGYGTCCCCAATTTAGACTCCTACAG

HAV.4 (SEQ ID NO:)31

GARAGCCAAGTTWACACTGCAAGGTGACGTYCC

35 HAV.5 (SEQ ID NO:32)

GCCTACCCCTTGTGGAAGATCAAAGAGRTTCAT

HAV.28 (SEQ ID NO:33)

PCT/US92/11348

-19-

ARGGTGTRGGRTTTATCTGAACTTGAATYTCAA
HAV.29 (SEQ ID NO:34)
GAACCATRGCACARATYARYCCYCCYTGYTGRA
HAV.30 (SEQ ID NO:35)

5 AKGATGCTATHGAACCATARCTYTGGTCACYAG
HAV.31 (SEQ ID NO:36)
TGCAATTTAACARACCATGAGGATAAACAGTCA
HAV.32 (SEQ ID NO:37)
ATGGAACCTTTATTCTAACYACATTGTTRATRT

10

Each amplifier probe contained, in addition to the sequences substantially complementary to the HAV sequences, the following 5' extension complementary to a segment of the amplifier multimer,

AGGCATAGGACCCGTGTCTT (SEQ ID NO:38).

Each capture probe contained, in addition to the sequences substantially complementary to HAV RNA, a downstream sequence complementary to DNA bound to the solid phase (XT1*),

20

25

30

35

15

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:39).

Microtiter plates were prepared as follows. White Microlite 1 Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from Dynatech Laboratories, Inc. Each well was filled with 200 μ l 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200 μ l 1 N NaOH and incubated at room temperature for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has an average length of 309 amino acids and contains 155 amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/1X PBS to a final concentration of 0.1

10

15

20

25

30

35

mg/ml (pH 6.0). 100 μ L of this solution was added to each well. The plate was wrapped in plastic to prevent drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

The following procedure was used to couple the oligonucleotide XT1* to the plates. Synthesis of XT1* was described in EPA 883096976. 20 mg disuccinimidyl suberate was dissolved in 300 μ l dimethyl formamide 26 OD_{260} units of XT1* was added to 100 μ 1 coupling buffer (50 mM sodium phosphate, pH 7.8). coupling mixture was then added to the DSS-DMF solution and stirred with a magnetic stirrer for 30 min. An NAP-25 column was equilibrated with 10 mM sodium phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the equilibrated NAP-25 column. DSS-activated XT1* DNA was eluted from the column with 3.5 ml 10 mM sodium phosphate, pH 6.5. 5.6 OD260 units of eluted DSSactivated XT1* DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. 50 μ l of this solution was added to each well and the plates were incubated overnight. plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. 200 μ L of 0.2N NaOH containing 0.5% (w/v) SDS was added to each well. The plate was wrapped in plastic and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

The HAV-infected cell culture (100% HAV infected FRhK4 cell line) and the uninfected cell culture (FRhK4 cell line) were prepared as follows.

Cells were trypsinized in STV (equal parts 0.25% trypsin and 1:2000 versene (Sigma Chemical Co.) in

5

10

15

20

25

30

35

-21-

PBS) and resuspended in 5 ml of the medium (DMEM with 20% FBS) the cells were grown in. The cells were then counted in a hemocytometer and diluted to 10^5 cells/10 μ l, 10^4 cells/10 μ l, 10^3 cells/10 μ l, and 10^2 cells/10 μ l.

A cocktail of the HAV-specific amplifier and capture probes was prepared in a proteinase K solution prepared by first adding 10 mg proteinase K to 5 ml capture diluent (53 mM Tris-HCl, pH 8.0/10.6 mM EDTA/1.3% SDS/16 μ g/ml sonicated salmon sperm DNA/5.3X SSC/1 mg/ml proteinase K/ 7% formamide). The cocktail contained 50 fmoles of each probe in 30 μ l buffer. 30 μ l of this solution was added to each well. 10 μ l of the appropriate dilution of the uninfected and infected cells as described above was then added to each well. Plates were covered and agitated to mix samples, then incubated at 65°C overnight.

The next morning the plates were cooled at room temperature for 10 minutes. The contents of each well were aspirated to remove all fluid, and the wells were washed 2X with washing buffer (0.1% SDS/0.015 M NaCl/0.0015 M sodium citrate). Amplifier multimer was then added to each well (20 fmoles/well in 4X SSC/0.1% SDS/0.5% Blocking Reagent (Boehringer Mannheim, catalog No. 1096 176)). After covering plates and agitating to mix the contents in the wells, the plates were incubated for 15 min at 65° C.

After a further 5-10 min period at room temperature, the wells were washed as described above.

Alkaline phosphatase label probe, disclosed in EP 883096976, was then added to each well (20 fmoles/well in 40 μ l 4X SSC/0.1% SDS/0.5% Blocking Reagent). After incubation at 55°C for 15 min, and 5-10 min at room temperature, the wells were washed twice as above and then 3x with 0.015 M NaCl/0.0015 M sodium citrate.

An enzyme-triggered dioxetane (Schaap et al., <u>Tet. Lett.</u> (1987) 28:1159-1162 and EPA Pub. No. 0254051) obtained from Lumigen, Inc., was employed. The detection

-22-

procedure was as follows. 30 μ l Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and incubated at 37°C for 40 min.

Plates were then read on a Dynatech ML 1000 luminometer (Dynatech Laboratories, Inc.). Output was given as the full integral of the light produced during the reaction.

Results are shown in the Table below. Results for each standard sample are expressed as the difference between the mean of the negative control plus two standard deviations and the mean of the sample minus two standard deviations (delta). If delta is greater than zero, the sample is considered positive. These results indicate a sensitivity of about 103-104 HAV molecules.

Table

	Sample	Amount	<u>Delta</u>
20	#=====================================		
	uninfected cells	. 10 ⁵	
	uninfected cells	10 ⁴	-0.26
	uninfected cells	10 ³	-0.25
25	uninfected cells	10 ²	-0.16
	HAV-infected cells	10 ⁵	15.52
	HAV-infected cells	10 ⁴	2.59
	HAV-infected cells	10 ³	-0.09
	HAV-infected cells	10 ²	-0.03

Modifications of the above-described modes for carrying out the invention that are obvious to those of skill in biochemistry, nucleic acid hybridization assays, and related fields are intended to be within the scope of the following claims.

35

30

10

PCT/US92/11348

-23-

SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: Kolberg, Janice A. Urdea, Michael S.
	(ii)	TITLE OF INVENTION: HAV PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS
	(iii)	NUMBER OF SEQUENCES: 39
10	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Morrison & Foerster (B) STREET: 545 Middlefield Road, Suite 200 (C) CITY: Menlo Park (D) STATE: California (E) COUNTRY: USA (F) ZIP: 94025
15	(V)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
20	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: UNKNOWN (B) FILING DATE: (C) CLASSIFICATION:
	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Fitts, Renee A. (B) REGISTRATION NUMBER: P35,136 (C) REFERENCE/DOCKET NUMBER: 22300-20237.00
25	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 415-327-7250 (B) TELEFAX: 415-327-2951 (C) TELEX: 706141
30	(2) INFO	RMATION FOR SEQ ID NO:1:
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	TGACTGN	•
	(2) INFORMATION FOR SEQ ID NO:2:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
10	CGTGTGGAGA CACGGGTCCT ATGCCT	26
	(2) INFORMATION FOR SEQ ID NO:3:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	GATGTGGTTG TCGTACTTGA TGTGGTTGTC GTACTTGATG TGGTTGTCGT ACTTGCGTAG	60
20	(2) INFORMATION FOR SEQ ID NO:4:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	TCCACGAAAA AAAAAA	16
20	(2) INFORMATION FOR SEQ ID NO:5:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35		
	(vi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	•

-25-

	CAGTCACTAC GC	12
	(2) INFORMATION FOR SEQ ID NO:6:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
10	ATAGAAGTAT TAGCCTAAGA GGTTTCACCC GTA	33
	(2) INFORMATION FOR SEQ ID NO:7:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
20	CCGCCGCTGT TRCCCTATCC AARGCATCTC TTC	33
25	(2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
•	TGAATGGTTT TTGTCTTAAC AACTCACCAA TAT	33
30	(2) INFORMATION FOR SEQ ID NO:9:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
GCATCCACTG GATGAGAGYC AGTCCTCCGG CGT	33
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
CTARAGACAG CCCTGACART CAATCCACTC AAT	33
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
TO TO NO.11.	
• •	33
	33
(2) INFORMATION FOR SEQ ID NO:12:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TCTCACAGRA TCCCATTTAA GGCCAAATGR TGT	33
(2) INFORMATION FOR SEQ ID NO:13:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(2) INFORMATION FOR SEQ ID NO:10: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: CTARAGACAG CCCTGACART CAATCCACTC AAT (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: TTGCCCTAAG CACAGAGAGG TCTGRRATTA ARC (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: TCTCACAGRA TCCCATTAA GGCCAAATGR TGT (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

	(X1) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	AAGAACAGTC CAGCTGTCAA TGGAGGGAYC CCC	3:
	(2) INFORMATION FOR SEQ ID NO:14:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
-	GTACCTCAGA GGCAAACACC ACATAAGGCC CCA	3:
	(2) INFORMATION FOR SEQ ID NO:15:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	·
	TTTARGAATG AGGAAAAACC TAAATGCCCC TGA	3:
	(2) INFORMATION FOR SEQ ID NO:16:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
30	GGAAAATWCC TTGTYTRGAC ATRTTCATTA TTR	3.
30	(2) INFORMATION FOR SEQ ID NO:17:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	ACAGGATGTG GTCAAGRCCA CTCCCRACAG TCT	33
	(2) INFORMATION FOR SEQ ID NO:18:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	GAATCATTTG CTCTTCCTCA ATRTCTGCCA AAG	33
	(2) INFORMATION FOR SEQ ID NO:19:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	CROWNING PROGREDWION. SPO. ID NO.19.	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	33
	AAGCWCCAGT CACTGCAGTC CTAWCAACKG AYT	35
	(2) INFORMATION FOR SEQ ID NO:20:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
30	GAACTGAAGA TTGRTCCACA GAAGTRAART AAG	33
30	(2) INFORMATION FOR SEQ ID NO:21:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	GTTCAAYYTG RTGTRAKCCA ACCTCAGCWG TAT	33
	(2) INFORMATION FOR SEQ ID NO:22:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	TWGAACYRGG TTTATCAACA GAGGTTYTCA ARG	33
	(2) INFORMATION FOR SEQ ID NO:23:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
20	GAATCARGAA AAAYTTYTCY CCCTGAGTYY TCT	33
	(2) INFORMATION FOR SEQ ID NO:24:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
30	ADAGAGCATG TGTAGTRAGC CAATCWGCAG AAT	33
30	(2) INFORMATION FOR SEQ ID NO:25:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
	RTTTCACCAC RTCCAATTTT GCAACTTCAT GRA	33
	(2) INFORMATION FOR SEQ ID NO:26:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	AMCCTTGRAC RGCAAACTGC TCATTRTAYA RTA	33
	(2) INFORMATION FOR SEQ ID NO:27:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	33
20	TGCCAAATCT TGCATATGTR TGGTATCTCA ACA	
20	(2) INFORMATION FOR SEQ ID NO:28:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	CGCAACGGCC AGAGCCTAGG GCAAGGGGAG AGC	33
30	(2) INFORMATION FOR SEQ ID NO:29:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

-31-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	CTCCATGCTA ATCATGGAGT TGACCCCGCC GGG	33
	(2) INFORMATION FOR SEQ ID NO:30:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	AMACATCTGY GTCCCCAATT TAGACTCCTA CAG	33
	(2) INFORMATION FOR SEQ ID NO:31:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
20	GARAGCCAAG TTWACACTGC AAGGTGACGT YCC	33
	(2) INFORMATION FOR SEQ ID NO:32:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
30	GCCTACCCCT TGTGGAAGAT CAAAGAGRTT CAT	33
	(2) INFORMATION FOR SEQ ID NO:33:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

-32-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	ARGGIGIRGG RITTATCIGA ACTIGAATYI CAA	33
	(2) INFORMATION FOR SEQ ID NO:34:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	GAACCATRGC ACARATYARY CCYCCYTGYT GRA	33
	(2) INFORMATION FOR SEQ ID NO:35:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
20	AKGATGCTAT HGAACCATAR CTYTGGTCAC YAG	33
	(2) INFORMATION FOR SEQ ID NO:36:	•
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
30	TGCAATTTAA CARACCATGA GGATAAACAG TCA	33
30	(2) INFORMATION FOR SEQ ID NO:37:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(D) Incorposi: Timear	

-33-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
	ATGGAACCTT TATTCTAACY ACATTGTTRA TRT	33
	(2) INFORMATION FOR SEQ ID NO:38:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
	AGGCATAGGA CCCGTGTCTT	20
	(2) INFORMATION FOR SEQ ID NO:39:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
20	CTTCTTTGGA GAAAGTGGTG	20
25		
30		

Listings of All

Cycles, Procedures, and Sequences

Used to Synthesize the 15X Comb

Contained on the 3½" floppy disk for the 380B DNA Synthesizer

FILE NAME	LAST ACCE	SS DAT	E CREATED	FILE NAME	LAST ACCESS	DATE CREATED
		F	ILE TYPE±	SYNTHESIS CYC	LE	
6.4XSC-5 1.2XD-6 ssceaf3 10ceaf3 10hpaf3 10rnaaf3 cef3 10hpf3 10rnaf3 ceaf1 hpaf1 rnaaf1 sscef1 10cef1 rnaf1	08 27, 1 08 27, 1 01 07, 1	991 08 990 01 990 01 990 01 990 01 990 01 990 01 990 01 990 01	27, 1991 27, 1991 07, 1990 07, 1990	5.4XS-5 1.2X-6 ceaf3 hpaf3 rnaaf3 sscef3 10cef3 rnaf3 ssceaf1 10ceaf1 10hpaf1 10rnaaf1 cef1 10hpf1	08 27, 1991 08 27, 1991 01 07, 1990 01 07, 1990	08 27, 1991 08 27, 1991 01 07, 1990 01 07, 1990
		F	ILE TYPE:	BOTTLE CHANGE	PROCEDURE	
bc 18 bc 16 bc 14 bc 12 bc 10 bc 8a bc 6 bc 4 bc 2	07 01; 1 07 01, 1	986 07 986 07 986 07 986 07 986 07 986 07 986 07	01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986 01, 1986	be 17 be 15 be 13 be 11 be 9 be 7 be 5 be 3 be 1	07 01, 1986 07 01, 1986	07 01, 1985 07 01, 1985 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986 07 01, 1986
deprce deprhp deprna	'08 27, 1 19 08, 1 10 08, 1 10 08, 1	991 08 990 10 990 10 990 10	27, 1991 08, 1990 08, 1990 08, 1990 ILE TYPE:	CE NH3 deprce10 deprhp10 deprne10		08 27, 1991 10 08, 1990 10 08, 1990 10 08, 1990
			ILE TYPE:	SHUT-DOWN PRO	CEDURE [®]	
clean003	W/ WI, I		01, 1986 TLE TYPE:	DNA SEQUENCES		
15X-2	08 27 , 1			_ iex-1		08 27, 1991

	-	ISTTON	STEP	STEP ACTIVE FOR BASES	SAFE .
STEP		NCTION	HIME	A G C T 5 G 7	STEP
NUMBER	#_	NAME			
•	10	#18 To Waste	3	Yes Yes Yes Yes Yes Yes Yes	Yes .
1 2	9	\$18 To Column	10	Yes Yes Yes Yes Yes Yes	Yes
	2	Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes
3	1	Block Flush	3	Yes Yes Yes Yes Yes Yes Yes	Yes
4 5	5	Advance FC	ī	Yes Yes Yes Yes Yes Yes Yes	Yes
	_	Phos Prep	3	Yes Yes Yes Yes Yes Yes Yes	Yes
6	20	Group 1 On	ī	Yes Yes Yes Yes Yes Yes Yes	Yes
7	+45	TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	Yes
8	90	B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes	Yes
9	19	TET To Column	'4	Yes Yes Yes Yes Yes Yes	Yes
10	90		1	Yes Yes Yes Yes Yes Yes	Yes
11	-46	Group 1 Off	i	Yes Yes Yes Yes Yes Yes Yes	Yes
12	+47	Group 2 On	10	Yes Yes Yes Yes Yes Yes	Yes
13	90	TET To Column	8	Yes Yes Yes Yes Yes Yes	Yes
14	20	B+TET To Col 2	4	Yes Yes Yes Yes Yes Yes	Yes
15	90	TET To Column	1	Yes Yes Yes Yes Yes Yes	Yes
16	-48	Group 2 Off	i	Yes Yes Yes Yes Yes Yes	Yes
17	+49	Group 3 On	-	Yes Yes Yes Yes Yes Yes	Yes
18	90	TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
19	21	B+TET To Col 3	8	Yes Yes Yes Yes Yes Yes Yes	Ya
20	90	TET To Column	4	103 1003 103 103 100 100	
S				Yes Yes Yes Yes Yes Yes	Yes
21	-50	Group 3 Off	1	Yes Yes Yes Yes Yes Yes	Yes
22	4		15	Yes Yes Yes Yes Yes Yes	Yes
23	+45	Group 1 On	1	Yes Yes Yes Yes Yes Yes	Yes
24	90	TET To Column	18	Yes Yes Yes Yes Yes Yes	Yes
25	19	B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes	Yes
26	90	TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
27	-46	Group 1 Off	1	Yes Yes Yes Yes Yes Yes	Yes
28	+47	Group 2 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
29	98	TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
36	¹ 2 8	B+TET To Col Z	8	Yes Yes Yes Yes Yes Yes Yes	Yes
31	98	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
32	-48	Group 2 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
33	+49	Group 3 On	1	Yes Yes Yes 165 165 165 165	Yes
34	98	TET To Column	18	Yes Yes Yes Yes Yes Yes	Yes
35	21	B+TET To Col 3	, 8	Yes Yes Yes Yes Yes Yes Yes	Yes
36	90	TET To Column	4	Yes Yes Yes Yes Yes Yes	Yes
37	-58	Group 3 Off	1	Yes Yes Yes Yes Yes Yes	Yes
3 8	4	Wait	3 0	Yes Yes Yes Yes Yes Yes	Yes
39	+45	Group 1 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes .
48	90	TET To Column	10	Yes Yes Yes Yes Yes Yes	Yes
41	19	B+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes	Yes-
42	98	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	Yes
43	-46	Group 1 Off	1	Yes Yes Yes Yes Yes Yes	163

STEP NUMBER	FU #	NCTION NAME	STEP IIME	<u> </u>	STEP G	ACT:	(VE I	FOR 1	BASE	5 . 7	SAFE STEP
					.,	V	V	V	V = -	v = -	
44	+47	Group Z On	= .1		Yes	_		_		_	Yes
45	90	TET To Column	10		Yes						Yes
46	20	B+TET To Col 2	8		Yes						Yes
47	90	TET To Column	4		Yes						Yes
48	-48	Group 2 Off	1		Yes						Yes
49	+49	Group 3 On	1		Yes						Yes
50	90	TET To Column	10		Yes						Yes
SI	. 21	B+TET To Col 3	8		Yes	_					Yes
52	90	TET To Column	4		Yes				_		Yes
53	-50	Group 3 Off	1		Yes						Yes
54	4	Wait	30		Yes		•				Yes
55	+45	Group 1 On	1		Yes						Yes
56	90	TET To Column	10		Yes						Yes
57	19	8+TET To Col 1	8		Yes						Yes
58	90	TET To Column	4		Yes						Yes
59	-46	Group 1 Off	1		Yes					•	Yes
60	+47	Group 2 On	1		Yes						Yes
61	90	TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
62	Z 0	B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
63	90	TET To Calumn	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
64	-48	Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
65	+49	Group 3 Om	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
66	90	TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
67	21	B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
68	90	TET To Column	4		Yes						Yes
69	-50	Group 3 Off	· 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
70	4	Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
71	+45	Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
72	90	TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
73	19	B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
74	90	TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
75	-46	Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
76	+47	Group 2 On	1							Yes	Yes
77	90	TET To Column	10		Yes						Yes
78	20	B+TET To Col 2	8							Yes	Yes
79	90	TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
80	-48	Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
81	+49	Group 3 On	1		Yes						Yes
82	90	TET To Column	' 10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
83	21	B+TET To Cal 3	8							Yes	Yes
84	90	TET To Column	4							Yes	Yes
85	-50	Group 3 Off	1							Yes	Yes
86	4	Wait	30							Yes	Yes
87	+45	Group 1 On	1							Yes	Yes
88	98	TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes_

STEP NUMBER*	FUI #	NCTION NAME	STEP TIME	STEP ACTIVE FOR BASES A 6 C T 5 6 7	SAFE STEP
25	19	B+TET To Col 1	_ 8	Yes Yes Yes Yes Yes Yes Yes	s Yes
89	90	TET To Column	= 4	Yes Yes Yes Yes Yes Yes Yes	es Yes
90	-45	Group 1 Off	t	Yes Yes Yes Yes Yes Yes Yes	Yes .
91	+47	Group Z On	t	Yes Yes Yes Yes Yes Yes Yes	s Yes
9Z 93	90	TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	s Yes
	20	B+TET To CoI 2	8	Yes Yes Yes Yes Yes Yes Yes	s Yes
94	90	TET To Column	4.	Yes Yes Yes Yes Yes Yes Yes	es Yes
95 96	· -48	Group 2 Off	1	Yes Yes Yes Yes Yes Yes Yes	es Yes
97	+49	Group 3 On	t	Yes Yes Yes Yes Yes Yes Yes	es Yes
98	90	TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	s Yes
99	21	B+TET To Col 3	8	Yes Yes Yes Yes Yes Yes Yes	es Yes
100	90	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	s Yes
101	- 5 0	Group 3 Off	1	Yes Yes Yes Yes Yes Yes Yes	s Yes
102	4	Wait	30	Yes Yes Yes Yes Yes Yes Yes	s Yes-
103	+45	Group 1 On	1	Yes Yes Yes Yes Yes Yes Yes	s Yes
104	90	TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	s Yes
105	19	8+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes	s Yes
105	90	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	s Yes
107	-46	Group 1 Off	t	Yes Yes Yes Yes Yes Yes Yes	s Yes
108	+47	Group 2 On	1	Yes Yes Yes Yes Yes Yes Yes	s Yes
109	90	TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	es Yes
110	20	B+TET To Col 2	8	Yes Yes Yes Yes Yes Yes Yes	s Yes
111	90	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	es Yes es Yes
112	-48	Group Z Off	ſ	Yes Yes Yes Yes Yes Yes Yes	s Yes
113	+49	Group 3 On	1	Yes Yes Yes Yes Yes Yes Yes	
114	98	TET To Column	10	Yes Yes Yes Yes Yes Yes Yes	es Yes
115	21	B+TET To Col 3	8	Yes Yes Yes Yes Yes Yes Yes	
116	90	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	s Yes
117	-50	Group 3 Off	t	Yes Yes Yes Yes Yes Yes Yes	es Yes
118	4	Wait	30	Yes Yes Yes Yes Yes Yes Yes	
119	+45	Group 1 On	. 1	Yes Yes Yes Yes Yes Yes Yes	
120	98	TET To Calumn	10	Yes	
121	119	8+TET To Col 1	8	Yes Yes Yes Yes Yes Yes Yes Yes	
122	98	TET To Column	4	Yes Yes Yes Yes Yes Yes Yes	
123	-46	Group 1 Off	1	Yes Yes Yes Yes Yes Yes Y	
124	+47	Group Z On	1	Yes Yes Yes Yes Yes Yes Y	
125	98	TET To Column	16	Yes Yes Yes Yes Yes Yes Y	es Yes
126	20	B+TET To Col 2	, 8	Yes Yes Yes Yes Yes Yes Y	es Yes
127	98	TET To Column	4	Yes Yes Yes Yes Yes Yes Y	es Yes
128	-48	Group 2 Off	! 1.	Yes Yes Yes Yes Yes Yes Y	es Yes
129	+49	Group 3 On		Vas Vas Yes Yes Yes Yes Y	es Yes
136	96	TET To Column	10°	Ves Yes Yes Yes Yes Yes Y	es Yes'
131	21	B+TET To Col 3	4	Yes Yes Yes Yes Yes Yes Y	63 165
132	98	TET To Column	ĩ	Yes Yes Yes Yes Yes Y	es Yes -
133	-50	Group 3 Off	t		•

⁽Continued next page.)

STEP	EII	NCTION	STEP		TEP	ACT	IVE I	OR I	BASES	3	SAFE
NUMBER*	#		TIME						6		STEP.
HOHOLIN		(40) (6	<u> </u>								. بنجست
134	4	Wait	<i>=</i> 30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
135	10	#18 To Waste	S						Yes		Yes
136	Z	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
137	1	Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
138	81	#15 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
139	13	#15 To Column	22						Yes		Yes
140	10	#18 To Waste	5-	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
141	. 4	Wait	· 30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
1.42	2	Reverse Flush	6						Yes		Yes
143	1	Block Flush	4						Yes		Yes
144	9	#18 To Column	10						Yes		Yes
145	34	Flush to Waste	5						Yes		Yes
145	9	#18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
147	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
148	9	#18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
149	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
150	9	\$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
151	ž	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
152	1	Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
153	33	Cycle Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
154	6	Waste-Port	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
155	37	Relay 3 Pulse	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
156	82	#14 To Waste	. 3						Yes		Yes
157	30	#17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
158	10	#18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
159	9	#18 To Column	20						Yes		Yes
160	11	\$17 To Column	60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
161	14	214 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
162	2	Reverse Flush	7	Yes	Yes	Yes	Yes	Yes	yes.	Yes	No
163	11	\$17 To Column	15						Yes		No
154	34	Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
165	11	\$17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
166	١ 2	Reverse Flush	5						Yes		No
167	14	\$14 To Column	20 ⁻						Yes		No
168	. 34	Flush to Waste	10						Yes		No
169	7	Waste-Bottle	1						Yes		Yes
170	9	\$18 To Column	10						Yes		Yes
171	2	Reverse Flush	5						Yes		Yes
172	9	\$18 To Column	10						Yes		Yes
173	Z		5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
174	9		10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
175	2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
175	1	Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

				· CAN			ELL	40.00	ι
	-					3 8	,	المواجعين	
STEP	Fut	NCTION	STEP		EP ACTI			_	SAFE ·
NUMBER		NAME	TIME	<u>.as</u>	5 C	5	6		STEP
					1144		. ٧	v	V
1	10	#18 To Waste	3	Yes Ye	es Yes	Yes Te	5 TES	165 Va-	Yes * Yes
2	9	#18 To Column	10	Yes Ye	es Yes	Yes Ye	15 TC5	185 V	Yes
3	2	Reverse Flush	S	Yes Ye	es Yes	Tes Te	:5 165	165	Yes
4	-1	Block Flush	3	Yes Ye	es Yes	Yes Ye	s res	165 V	res Yes
5	5	Advance FC	1	Yes Ye	es Yes	Yes Ye	s res	165	Yes
6	· 28	Phos Prep	· 3	Yes Ye	es Yes	Yes Ye	:5 Te5	163 V	Yes
7	+45	Group 1 On	1	Yes Y	es Yes	Yes Te	3 Tes	165	Yes
8	90	TET To Column	10	Yes Ye	es Yes	Tes Te	:5 TC5	163 Yaa	Yes
9	19	B+TET To Col 1	8	Yes Y	es Yes	Tes Te	:5 165	res Var	Yes
10	90	TET To Column	4	Yes Ye	es Yes	Yes Te	S Tes	165	Yes
11	-46	Group Off	l	Yes Y	es Yes	Yes Ye	25 T C 5	Yes	Yes-
12	+47	Group 2 On	1	Yes Y	es Yes	Yes Ye	:S Tes	165	Yes
13	90	TET To Column	10	Yes Y	es Yes	Yes Ye	S 765	765	Yes
14	20	B+TET To Col 2	8	Yes Y	es Yes	Yes Te	25 TE5	163	Yes
15	90	TET To Column	4	Yes Y	es Yes	Yes Ye	35 TC3	163	Yes
16	-48	Group 2 Off	1	Yes Y	es Yes	Yes Ye	es res	165	Yes
17	+49	Group 3 On	1	Yes Y	es Yes	Yes Ye	es res	165	Yes
18	90	TET To Column	10	Yes Y	es Yes	Yes Ye	s tes	165	Yes
19	21	B+TET To Col 3	8	Yes Y	es Yes	Yes Ye	es res	165	Yes
20	98	TET To Column	4	Yes Y	es Yes	Yes Ye	25 725	Vas	Yes
21	-50	Group 3 Off	1	Yes Y	es Yes	Yes Ye	25 T 65	163	Yes
22	4	Wait	15	Yes Y	es Yes	Yes Ye	35 Tes	163	Yes
23	+45	Group 1 On	1	Yes Y	es Yes	Yes T	95 163	169	Yes
24	90	TET To Column	10	Yes Y	es Yes	Yes Y	es res	Yes	Yes
25	19	B+TET To Col 1	8	Yes Y	es Yes	Yes Y	es Yes	165	Yes
26	90	TET To Column	4	Yes Y	es Yes	Yes Y	85 TG5	163	Yes
27	-46	Group 1 Off	1	Yes Y	es Yes	Yes Y	es, 165	163	Yes
28	+47	Group 2 On	1	Yes Y	es Yes	Yes Y	es 165	163	Yes
29	90	TET To Column	10	, Yes Y	es Yes	Yes Y	85 165	Ves	Yes
30	28	B+TET To Col 2	8	Yes Y	es Yes	Yes Y	es 185	103	Yes
3t	' 98	TET To Column	4	Yes Y	es Yes	Yes T	es 165	Ves	Yes
32	-48	Group 2 Off	1	Yes Y	es Yes	Yes T	es 165	Ves	Yes
33	+49	Group 3 On	1	Yes Y	es Yes	Yes T	es 165	Vas	Yes
34	90	TET To Column	10	Yes Y	es Yes	Yes Y	65 165	VAS	Yes
35	21	B+TET To Col 3	8	Yes Y	es Yes	Yes Y	65 (GS	Yes	Yes
36	98	TET To Column	. 4	Yes Y	es Yes	Tes T	es Ves	Yes	Yes
37	-50	-Group 3 Off	1	Yes Y	es Yes	Tes T	22 (23	Yes	Yes
38	4	Weit	30	Yes Y	es Yes	765 T	es ves	Yes	Yes
39	+45	Group I On	1	Yes	les Yes	Tes I	es Ves	Yes	Yes
40	98	TET To Column	10	Yes Y	res Yes Yes Yes	195 I	SA VAS	Yes	Yes
41	19	B+TET To Col 1	8	Yes Y	res res res Yes	Ves V	Ad Vac	Yes	Yes
42	. 98	TET To Column	4	Tes Y	res res Yes Yes	Tes I	oe Yee	Yes	Yes_
-43	-46	Group 1 Off	1	Yes 1	tes tes	169 1	U3 . U3		- 3

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES A 6 C T 5 6 7	SAFE STEP
44	+47 Group 2 On	= 1 -	Yes Yes Yes Yes Yes Yes	Yes
45	90 TET To Colum	in 10	Yes Yes Yes Yes Yes Yes	Yes
46	20 B+TET To Col	_	Yes Yes Yes Yes Yes Yes	Yes
47	90 TET To Colum		Yes Yes Yes Yes Yes Yes	Yes
48	-48 Group 2 Off	1	Yes Yes Yes Yes Yes Yes	Yes
49	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes	Yes
50	90 TET To Colum	in 10	Yes Yes Yes Yes Yes Yes	Yes
51	· 21 B+TET To Col	. 3 ' 8	Yes Yes Yes Yes Yes Yes	Yes
52	90 TET To Colum	ın 4	Yes Yes Yes Yes Yes Yes Yes	Yes
53	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes	Yes
54	4 Walt	30	Yes Yes Yes Yes Yes Yes	Yes
55	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes	Yes
56	90 TET To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
57	19 8+TET To Col	. 1 8	Yes Yes Yes Yes Yes Yes	Yes
58	90 TET To Colum	nn 4	Yes Yes Yes Yes Yes Yes Yes	Yes
59	-46 Group 1 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
60	+47 Group 2 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
61	90. TET To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
62	20 S+TET To Co		Yes Yes Yes Yes Yes Yes	Yes
63	90 TET To Colum		Yes Yes Yes Yes Yes Yes	Yes
64	-48 Group 2 Off	1	Yes Yes Yes Yes Yes Yes	Yes
65	+49 Group 3 On	1	Yes Yes Yes Yes Yes Yes	Yes Yes
66	90 TET To Colu	_	Yes Yes Yes Yes Yes Yes Yes	Yes
67	21 B+TET To Co.		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes
68	90 TET To Colu		Yes Yes Yes Yes Yes Yes	Yes
69	-50 Group 3 Off	1	Yes Yes Yes Yes Yes Yes	Yes
70	4 Wait	30	Yes Yes Yes Yes Yes Yes Yes	Yes
71	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes	Yes
72	90 TET To Colu		Yes Yes Yes Yes Yes Yes	Yes
73	19 8+TET To Co.		Yes Yes Yes Yes Yes Yes	Yes
74	90 TET To Colu	mn + 1	Yes Yes Yes Yes Yes Yes	Yes
75	-46 Group 1 Off	1.	Yes Yes Yes Yes Yes Yes	Yes
76	1+47 Group Z On	•	Yes Yes Yes Yes Yes Yes	Yes
77	99 TET To Colu	_	Yes Yes Yes Yes Yes Yes	Yes
78	20 B+TET To Co	•	Yes Yes Yes Yes Yes Yes	Yes
79	90 TET To Colu -48 Group 2 Off	• • • • • • • • • • • • • • • • • • • •	Yes Yes Yes Yes Yes Yes	Yes
86	+49 Group 3 On	•	Yes Yes Yes Yes Yes Yes	Yes
81 97	90 TET To Colu	nn '10	Yes Yes Yes Yes Yes Yes	Yes
82 83	ZI S+TET To Co	• • • • • • • • • • • • • • • • • • • •	Yes Yes Yes Yes Yes Yes Yes	Yes
84	90 TET To Colu	• •	Yes Yes Yes Yes Yes Yes Yes	Yes
85	-50 Group 3 Off	• • • •	Yes Yes Yes Yes Yes Yes	Yes
86	4 Wait	30	Yes Yes Yes Yes Yes Yes Yes	Yes
87	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
88	98 TET To Colu	mn , 10	Yes Yes Yes Yes Yes Yes Yes	Yes

	~	ICTTON	STEP	STEP	ACTIVE FOR BASES	SAFE
STEP	_	NCTION	TIME		C T 5 6 7	STEP
NUMBER	<u>-#-</u>	NAME	11119		-	
89	19	B+TET To Col !	- 8	Yes Yes	Yes Yes Yes Yes Yes	Yes
90	90	TET To Column	4		Yes Yes Yes Yes Yes	Yes
91	-46	Group 1 Off	1	Yes Yes	Yes Yes Yes Yes Yes	Yes-
92	+47	Group 2 On	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
93	90	TET To Column	10	Yes Yes	Yes Yes Yes Yes Yes	Yes
	20	B+TET To Col 2	8	Yes Yes	Yes Yes Yes Yes Yes	Yes
94	90	TET To Column	4	Yes Yes	Yes Yes Yes Yes Yes	Yes
95	· -48	Group 2 Off	i	Yes Yes	Yes Yes Yes Yes Yes	Yes '
	_	Group 3 On	i	Yes Yes	Yes Yes Yes Yes Yes	Yes
97	+49	TET To Column	10	Yes Yes	Yes Yes Yes Yes Yes	Yes
98	90	B+TET To Col 3	.0	Yes Yes	Yes Yes Yes Yes Yes	Yes
99	21		. 4	Yes Yes	Yes Yes Yes Yes Yes	Yes
100	90	TET To Column	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
101	-50	Group 3 Off	30	Yes Yes	Yes Yes Yes Yes Yes	Yes
102	4	Wait	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
103	+45	Group I On	10	Yes Yes	Yes Yes Yes Yes Yes	Yes
104	90	TET To Column	8	Ves Ves	Yes Yes Yes Yes Yes	Yes
105	19	B+TET To Col 1	4	Vac Vac	Yes Yes Yes Yes Yes	Yes
106	90	TET To Column	1	Ves Ves	Yes Yes Yes Yes Yes	Yes
107	-46	Group 1 Off	1	Ves Ves	Yes Yes Yes Yes Yes	Yes
108	+47	Group 2 On		Yes Ves	Yes Yes Yes Yes Yes	Yes
109	98	TET To Column	10	Ves Ves	Yes Yes Yes Yes Yes	Yes
110	20	B+TET To Col 2	8	Ves Ves	Yes Yes Yes Yes Yes	Yes
111	90	TET To Column	4	Yes Ves	Yes Yes Yes Yes Yes	Yes
112	-48	Group 2 Off	1	Ves Ves	Yes Yes Yes Yes Yes	Yes
113	+49	Group 3 On	•	Ves Ves	Yes Yes Yes Yes Yes	-Yes
114	90	TET To Column	1.0	Ves Ves	Yes Yes Yes Yes Yes	Yes
115	21	B+TET To Col 3	8 4	Var Var	Yes Yes Yes Yes Yes	Yes
116	90	TET To Column		Ves Ves	Yes Yes Yes Yes Yes	Yes
117	-50	Group 3 Off	1 30	Ves Ves	Yes Yes Yes Yes Yes	Yes
118	4	Wait		Ves Ves	Yes Yes Yes Yes Yes	Yes
119	+45	Group 1 On	1	193 193	Yes Yes Yes Yes Yes	Yes
120	90	TET To Column	10	Ves Ves	Yes Yes Yes Yes Yes	Yes
121	19	B+TET To Col 1	8 4	Ves Ves	Yes Yes Yes Yes Yes	Yes
122	98	TET To Column		Vac Vac	Yes Yes Yes Yes Yes	Yes
123	-45	Group 1 Off	1	Yes Yes	Yes Yes Yes Yes Yes	Yes .
124	+47	Group 2 On	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
125	90	TET To Column	10	7 Ye	Yes Yes Yes Yes Yes	Yes
126	20	B+TET To Col Z	8	Yes Yes	Yes Yes Yes Yes Yes	Yes
127	98	TET To Column	' 4	165 16:	s Yes Yes Yes Yes Yes	Yes
128	-48	Group 2 Off	1	705 70	s Yes Yes Yes Yes Yes	Yes
129	+49	Group 3 On	1	705 70	s Yes Yes Yes Yes Yes	Yes
130	90	TET To Column	10	785 783	yes Yes Yes Yes Yes	· Yes
131	21	B+TET To Col 3	8	795 18	F Yes Yes Yes Yes Yes	Yes
132	90	TET To Column	4	105 10	s Yes Yes Yes Yes Yes	Yea_
133	-50	Group 3 Off	t	185 18	3 163 169 169 160 160	

NUMBER* # NAME TIME A G C T S G 7 134 4 Wait 30 Yes	Yes Yes Yes
134 4 Wait 30 Yes Yes Yes Yes Yes Yes Yes	Yes Yes
	Yes Yes
176 16 Can Dana 7 Van Van Van Van Van Van	Yes
136 10 #18 To Weste 3 Yes Yes Yes Yes Yes Yes Yes	Yes
137 · 2 Reverse Flush 5 Yes Yes Yes Yes Yes Yes Yes	
138 1 Block Flush 4 Yes Yes Yes Yes Yes Yes Yes	Yes
139 91 Cap To Column 22 Yes Yes Yes Yes Yes Yes Yes	Yes
140 10 \$18 To Weste 3 Yes Yes Yes Yes Yes Yes Yes	Yes
141 4 Wait 30 Yes Yes Yes Yes Yes Yes Yes	Yes
142 2 Reverse Flush 5 Yes Yes Yes Yes Yes Yes Yes	Yes
143 1 Block Flush 4 Yes Yes Yes Yes Yes Yes Yes	Yes
144 81 \$15 To Weste 3 Yes Yes Yes Yes Yes Yes Yes	Yes
145 13 #15 To Column 22 Yes Yes Yes Yes Yes Yes Yes	Yes
146 10 \$18 To Weste 5 Yes Yes Yes Yes Yes Yes Yes	Yes
147 4 Wait 30 Yes Yes Yes Yes Yes Yes Yes Yes	Yes.
148 2 Reverse Flush 6 Yes Yes Yes Yes Yes Yes Yes	Yes
149 1 Block Flush 4 Yes Yes Yes Yes Yes Yes Yes Yes	Yes
150 9 #18 To Column 10 Yes Yes Yes Yes Yes Yes Yes	
151 34 Flush to Waste 5 Yes Yes Yes Yes Yes Yes Yes	Yes
152 9 \$18 To Column 10 Yes Yes Yes Yes Yes Yes Yes	
153 2 Reverse Flush 5 Yes Yes Yes Yes Yes Yes Yes Yes	
154 9 \$18 To Column 10 Yes Yes Yes Yes Yes Yes Yes Yes	
155 2 Reverse Flush 5 Yes Yes Yes Yes Yes Yes Yes Yes	
156 9 #18 To Column 10 Yes Yes Yes Yes Yes Yes Yes Yes	_
157 2 Reverse Flush 5 Yes	
158 1 Block Flush 4 Yes Yes Yes Yes Yes Yes Yes Yes	
159 33 Cycle Entry 1 Yes Yes Yes Yes Yes Yes Yes Yes	
160 6 Weste-Port 1 Yes Yes Yes Yes Yes Yes Yes	
161 37 Relay 3 Pulse 1 . Yes Yes Yes Yes Yes Yes Yes Yes	
162 82 #14 To Waste 3 Yes Yes Yes Yes Yes Yes Yes	
163 30 \$17 To Waste 3 Yes Yes Yes Yes Yes Yes Yes Yes	
164 10 \$18 To Waste 5 Yes Yes Yes Yes Yes Yes Yes Yes	
165 9 \$18 To Column 20 Yes Yes Yes Yes Yes Yes Yes Yes	
166 '11 \$17 To Column 60 Yes Yes Yes Yes Yes Yes Yes	
167 14 \$14 To Column 20 Yes	
168 2 Reverse Flush 7 Yes	
169 11 \$17 To Column 15 Yes Yes Yes Yes Yes Yes Yes Yes	
170 34 Flush to Weste 5 Yes Yes Yes Yes Yes Yes Yes Yes	
174 11 \$17 To Column 15 Yes	
172 Z Reverse Flush S Yes	
173 14 \$14 To Column 29 Yes	
174 34 Flush to Waste 10 Yes	
175 7 Waste-Bottle 1 Yes Yes Yes Yes Yes Yes Yes Yes	
176 9 \$18 To Column 10 Yes	
177 2 Reverse Flush S Yes	
178 9 \$18 To Column 10 Yes Yes Yes Yes Yes Yes Yes	

⁽Continued next page.)

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES A G C T 5 6 7	SAFE STEP
179	2 Reverse Flush	<u> </u>	Yes Yes Yes Yes Yes Yes Yes	Yes
180	9 \$18 To Calumn	10	Yes Yes Yes Yes Yes Yes Yes	Yes
181	2 Reverse Flush	5	Yes Yes Yes Yes Yes Yes	Yes .
187	i Block Flush	3	Yes Yes Yes Yes Yes Yes Yes	Yes

STEP	FU	NCTION	STEP		ACTIVE FOR 8		SAFE
NUMBER	#_	NAME	HME	<u>A 6</u>	C T 5	<u> 5</u> 7	STEP
		•					
1	10	#18 To Waste	2		Yes Yes Yes		Yes
2	9	#18 To Column	9		Yes Yes Yes		Yes
3	2		5		Yes Yes Yes		Yes
4	1	8lock Flush	3		Yes Yes Yes		Yes
5	5		. 1		Yes Yes Yes		Yes
6	· 28	Phos Prep	3		Yes Yes Yes		Yes
7	+45	Group 1 On	1		Yes Yes Yes		Yes
8	90	TET To Column	8		Yes Yes Yes		Yes
9	19	8+TET To Col 1	8		Yes Yes Yes		
10	90	TET To Column	3		Yes Yes Yes		Yes
11	19	B+TET To Col 1	· 3		Yes Yes Yes		Yes
12	90	TET To Column	3		Yes Yes Yes		Yes
13	19	8+TET To Col 1	3		Yes Yes Yes		Yes
14	9	#18 To Column	1		Yes Yes Yes		Yes
15	-46	Group 1 Off	i		Yes Yes Yes		Yes
18	+47	Group 2 On	1		Yes Yes Yes		Yes
17	10	#18 To Waste	4	Yes Yes	Yes Yes Yes	Yes Yes	Yes
18	1	Block Flush	3		Yes Yes Yes		Yes
19	90	TET To Column	8		Yes Yes Yes		Yes
20	20	B+TET To Col 2	8	Yes Yes	Yes Yes Yes	Yes Yes	Yes
21	90	TET To Column	3		Yes Yes Yes		Yes
22	20	B+TET To Col 2	3		Yes Yes Yes		Yes
23	90	TET To Column	, 3		Yes Yes Yes		Yes
24	20	8+TET To Col 2	3	Yes Yes	Yes Yes Yes	Yes Yes	Yes
25	9	#18 To Column	1		Yes Yes Yes		Yes
26	-48	Group 2 Off	1		Yes Yes Yes		Yes
27	+49	Group 3 On	1	Yes Yes	Yes Yes Yes	Yes Yes	Yes
28	10	\$18 To Weste	4		Yes Yes Yes		Yes
29	1	Block Flush	3		Yes Yes Yes		Yes
30	90	TET To Column	6		Yes Yes Yes		Yes
31	1 21	B+TET To Col 3	8		Yes Yes Yes		Yes
32	98	TET To Column	3		Yes Yes Yes		Yes
33	21	8+TET To Col 3	3		Yes Yes Yes		, Yes
34	98	TET To Column	3		Yes Yes Yes		Yes
35	21	8+TET To Col 3	3	Yes Yes	Yes Yes Yes	Yes Yes	Yes
36		\$18 To Column	1		Yes Yes Yes		Yes
37	-50	Group 3 Off	' 1	Yes Yes	Yes Yes Yes	Yes Yes	Yes
38	4	Weit	20	Yes Yes	Yes Yes Yes	Yes Yes	Yes
39	2	Reverse Flush	5			Yes	Yes
40	10		2			Yes	Yes
41	9		9			Yes	Yes
42	. 2	Reverse Flush	5			Yes	Yes
43	16	\$18 To Waste	3		•	Yes	Yes_

STEP	FU	NCTION	STEP	. s				OR E	ASES			IFE.
NUMBER	#	NAME	TIME	<u>A</u>	<u> </u>	<u></u>	<u> </u>	_5_	6	. 7	51	EP
									.,			
44	1	Block Flush	- 3						Yes			es
45	+45	Group 1 On	1						Yes			'es
46	90	TET To Column	8						Yes			es "
47	19	8+TET To Col 1	6						Yes			es .
48	90	TET To Column	3 3						Yes			es
49	19	B+TET To Col 1	3						Yes			'es
50	90	TET To Column	3						Yes			es.
51	- 19	B+TET To Col !	3						Yes			es.
52	9	#18 To Column	1						Yes			(es
53	-46	Group 1 Off	1						Yes			es
54	+47	Group 2 On	1						Yes			es.
55	10	\$18 To Waste	4						Yes			es
55	1	Block Flush	3						Yes			es
57	90	TET To Column	6						Yes			es
58	20	B+TET To Col 2	6						Yes			es .
59	90	TET To Column	3 3						Yes			es :
5 0	20	B+TET To Col 2	3						Yes		,	es :
61	90	TET To Column	3						Yes		Y	es .
62	20	B+TET To Col 2	3						Yes			res .
52 53	9	\$18 To Column	ī						Yes		Y	es
64	-48	Group 2 Off	t						Yes	5		Ye
		01 944 2 ,411	•									
s 65	+49	Group 3 On	1						Yes			'es
65	10	\$18 To Waste	4						Yes			es
67	1	Block Flush	3						Yes			es
68	90	TET To Column	6						Yes		•	(es
69	21	8+TET To Col 3	6						Yes		,	es
	90	TET To Column	3						Yes		3	/es
70	21	B+TET To Col 3	3					_	Yes		,	íes
71	90	TET To Column	3					•	Yes		,	es :
72	21	8+TET To Col 3	3						Yes		•	(es
73	9	#18 To Column	ī						Yes		1	fes
74		Group 3 Off	i						Yes		1	íes
75 76	·-50	Wait	20						Yes		3	es :
76 ***	4	Cap Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	•	(es
77	16 2	Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1	Yes
78	1	8lock Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1	es :
79	-		12	Yes	Yas	Yes	Yes	Yes	Yes	Yes	1	Yes
80	91	•	' 3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	•	Yes
81	10		8	Yes	Yas	Yes	Yes	Yes	Yes	Yes	•	Yes
82	4	= =	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	•	Yes
83	2		3	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes
84	81		10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	•	Yes '
85	13		3	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes
86	10		15	Yes	Yes	Yas	Yes	Yes	Yes	Yes		Yes_
87	4		5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	,	Yes *
. 88	Z	Reverse Flush	3									

STEP	FUNC		STEP						BASES	_	SAFE
NUMBER	<u># N</u>	AME	TIME	<u>A</u>	6	<u> </u>	<u> </u>	_5_	_6_		STEP
89	9 \$	18 To Column	= 9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
90	_	lush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
91	9 #	18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
92		everse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
93		18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
94	•	everse Flush	5	Yes	Yes	Yes.	Yes	Yes	Yes-	Yes	Yes
95	•	lock Flush	3						Yes		Yes
96 .		vole Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
97		18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
98		everse Flush	Š						Yes		Yes
99		aste-Port	<u></u>						Yes		Yes
100		17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
101	•••	17 To Column	7						Yes		No
102	• • •	lush to Waste	i						Yes		No
103		17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
104		lush to Waste	i						Yes		No
105	•	17 To Column	7						Yes		No
105		lush to Waste	ì						Yes		No
107	•	17 To Column	ż						Yes		No
108		lush to Waste	i						Yes		No
109		17 To Column	7						Yes		No
110		lush to Waste	<u> </u>						Yes		No
111	• • •	17 To Column	7						Yes		No
112		lush to Waste	S						Yes		No .
113		18 To Column	9						Yes		No
114	•	lush to Waste	. 7						Yes		No
115		aste-Bottle	i						Yes		Yes
116	•	18 To Column	9						Yes		Yes
117		everse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
118		18 To Column	9						Yes		Yes
119		everse Flush	Š	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
120		lock Flush	3						Yes		Yes

STEP	- FUNCTION	STEP	STEP ACTIVE FOR BASES	SAFE ,
NUMBER	# NAME	<u>IIHE</u>	A 6 C T 5 6 7	SIEF
	10 \$18 To Waste	2	Yes Yes Yes Yes Yes Yes Yes	Yes,
1	10 \$18 To Waste 9 \$18 To Column		Yes Yes Yes Yes Yes Yes Yes	Yes
2 3	2 Reverse Flush		Yes Yes Yes Yes Yes Yes Yes	Yes
4	1 Block Flush	3	Yes Yes Yes Yes Yes Yes Yes	Yes
5	5 Advance FC	1	Yas Yes Yes Yes Yes Yes Yes	Yes
6	- 28 Phos Prep	3	Yes Yes Yes Yes Yes Yes Yes	Yes
7	+45 Group 1 On	1	Yes Yes Yes Yes Yes Yes Yes	Yes
8	90 TET To Column	6	Yes Yes Yes Yes Yes Yes Yes	Yes
9	19 B+TET To Col	_	Yes Yes Yes Yes Yes Yes Yes	Yes
10	90 TET To Column	1 3	Yes Yes Yes Yes Yes Yes Yes	Yes
11	19 B+TET To Col		Yes Yes Yes Yes Yes Yes Yes	Yes
12	90 TET To Column		Yes Yes Yes Yes Yes Yes Yes	Yes Yes
13	19 B+TET To Col		Yes Yes Yes Yes Yes Yes Yes	Yes
14	9 #18 To Column		Yes Yes Yes Yes Yes Yes	Yes
15	-46 Group 1 Off	1	Yes Yes Yes Yes Yes Yes	Yes
15	+47 Group 2 On	1	Yes	Yes
17	10 \$18 To Waste	4	Yes Yes Yes Yes Yes Yes Yes	Yes
18	1 Block Flush	3	Yes Yes Yes Yes Yes Yes Yes	Yes
19	90 TET To Column		Yes Yes Yes Yes Yes Yes Yes	Yes
20	20 B+TET To Col		Yes Yes Yes Yes Yes Yes	Yes
21	90 TET To Column		Yes Yes Yes Yes Yes Yes	Yes
22	20 B+TET To Col		Yes Yes Yes Yes Yes Yes	Yes
23	90 TET To Column		Yes Yes Yes Yes Yes Yes	Yes
24	20 B+TET To Col	4	Yes Yes Yes Yes Yes Yes	Yes
25	9 \$18 To Column	n !	Yes Yes Yes Yes Yes Yes	Yes
26	-48 Group 2 Off	1	Yes Yes Yes Yes Yes Yes Yes	Yes
27	+49 Group 3 On	4	Yes Yes Yes Yes Yes Yes	Yes
Z8	10 \$18 To Waste	3	Ves Yes Yes Yes Yes Yes Yes	Yes
29	1 Block Flush 98 TET To Column	_	Yes Yes Yes Yes Yes Yes Yes	Yes
30		•	Yes Yas Yes Yes Yes Yes Yes	Yes
31	' 21 B+TET To Colum	_	Yes Yes Yes Yes Yes Yes Yes	Yes
32 33	21 B+TET To Col		Yes Yas Yes Yes Yes Yes Yes	Yes
34	90 TET To Colum	_	Yes Yes Yes Yes Yes Yes Yes	Yes
35	21 B+TET To Col	•	Yes Yes Yes Yes Yes Yes Yes	Yes Yes
35 35	g \$18 To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
37	-50 Group 3 Off	, t	Yes Yes Yes Yes Yes Yes Yes	Yes
38	4 Wait	20	Yes Yes Yes Yes Yes Yes Yes	Yes
39	16 Cap Prep	3	Yes Yes Yes Yes Yes Yes	Yes
40	2 Reverse Flus	h 5	Yes Yes Yes Yes Yes Yes Yes	Yes?
41	! Block Flush	3	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes
42	91 Cap To Colum		Yes Yes Yes Yes Yes Yes Yes	Yes
43	10 \$18 To Weste		Yes Yes Tes Tes Tes Tes	, 0.5-

⁽Continued next page.)

STEP		NCTION	STEP		ACTIVE FOR BASES	SAFE
NUMBER	_#_	NAME	TIME	<u>A G</u>	C T 5 6 7	STEE
44	4	Wait	= 8	Yes Yes	Yes Yes Yes Yes Yes	Yes
45	2	Reverse Flush	5		Yes Yes Yes Yes Yes	Yes
46	91	#15 To Weste	3	_	Yes Yes Yes Yes Yes	Yes
47	13	\$15 To Column	10		Yes Yes Yes Yes Yes	Yes
48	10	#18 To Weste	3		Yes Yes Yes Yes Yes	Yes
49	4	Wait	15	Yes Yes	Yes Yes Yes Yes	Yes
50	2	Reverse Flush	5	Yes Yes	Yes Yes Yes Yes	Yes
51	. 9	#18 To Column	· 9	Yes Yes	Yes Yes Yes Yes Yes	Yes
52	34	Flush to Waste	5	Yes Yes	Yes Yes Yes Yes	Yes
53	9	#18 To Column	9	Yes Yes	Yes Yes Yes Yes Yes	Yes
54	2	Reverse Flush	5	Yes Yes	Yes Yes Yes Yes Yes	Yes
55	9	#18 To Column	9	Yes Yes	Yes Yes Yes Yes Yes	Yes
56	2	Reverse Flush	5	Yes Yes	Yes Yes Yes Yes	Yes
57	1	Block Flush	3		Yes Yes Yes Yes Yes	Yes
58	33	Cycle Entry	1	Yes Yes	Yes Yes Yes Yes Yes	Yes
59	9	#18 To Column	9	Yes Yes	Yes Yes Yes Yes	Yes
60	Z	Reverse Flush	5		Yes Yes Yes Yes	Yes
61	6	Waste-Port	1		Yes Yes Yes Yes	Yes
62	30	#17 To Waste	3		Yes Yes Yes Yes	Yes
63	11	#17 To Column	7		Yes Yes Yes Yes	No
64	34	Flush to Waste	1		Yes Yes Yes Yes	No
65	11	\$17 To Column	7		Yes Yes Yes Yes Yes	No
66	34	Flush to Waste	1		Yes Yes Yes Yes Yes	No
67	11	#17 To Column	7		Yes Yes Yes Yes Yes	No
68	34	Flush to Weste	1		Yes Yes Yes Yes Yes	No
69	11	#17 To Column	7		Yes Yes Yes Yes	No
70	34	Flush to Weste	1		Yes Yes Yes Yes Yes	No
71	1.1	#17 To Column	7		Yes Yes Yes Yes	No
72	34	Flush to Weste	1		Yes Yes Yes Yes	No
73	1.1	#17 To Column	7		Yes Yes Yes Yes Yes	No
74	34	Flush to Waste	· 5		Yes Yes Yes Yes	No
75	. 9	#18 To Column	9		Yes Yes Yes Yes	No
76	' 34	Flush to Waste	7		Yes Yes Yes Yes	No
77	7	Waste-Bottle	1		Yes Yes Yes Yes	Yes
78	9	#18 To Column	9		Yes Yes Yes Yes Yes	Yes
79	2	Reverse Flush	5		Yes Yes Yes Yes Yes	Yes
80	9	\$18 To Column	9		Yes Yes Yes Yes Yes	Yes
81	2		, 5		Yes Yes Yes Yes Yes	Yes
82	1	Block Flush	. 3	Yes Yes	Yes Yes Yes Yes Yes	Yes

STEP NUMBER		NCTION NAME	STEP FIME		STEP G			OR E		5 	SAFE , STEP
1	10	#18 To Waste	2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes,
•		#18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2 3	2	Reverse Flush	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	. 1	Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	16	Cap Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5 6		Cap To Column	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	91	#18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	10		4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	1	Block Flush	300	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	4	Wait	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	16	Cap Prep	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	91	Cap To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12		#18 To Waste	4	Vac	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	1	Block Flush	•	V	Yes	Vas	Yes	Yes	Yes	Yes	Yes
14	4	Wait	300	163	Yes	Vas	Yes	Yes	Yes	Yes	Yes
15	2	Reverse Flush	10	165	Yes	163	V	V	Yes	Yes	Yes
16		#18 To Waste	3	163	Yes	163	V	Vac	Vac	Yes	Yes
17		\$18 To Column	15	Yes	Yes	163	163	Vac	705 Vas	Ves	Yes
18	2	Reverse Flush	10	Yes	Yes	res	163	163	163 V	Ves	Yes
19	9	#18 To Column	15	, Yes	Yes	Yes	765	163	7	Yes	Yes
20	2	Reverse Flush	10	Yes	Yes	Yes	Tes	163	183	163	Yes
21		#18 To Column	15	Yes	Yes	Yes	Yes	Tes	163	783	Yes
22		Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	765	183	Yes
23	9	\$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Tes	res	Yes
24		Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
25	9	\$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25 25		Reverse Flush	60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	1	Block Flush	5	Yes	Yes	Yes	Yes	Yeş	Yes	Yes	Yes

•

STEP	FL	JNCTION	STEP	STE	ACTIVE	FOR BASES	SAFE
NUMBER	_#_	NAME	I I ME	A G	C T	5 6 7	STEP
f ·	2	Reverse Flush	60	Yes Ye	s Yes Ye	s Yes Yes Yes	Yes
2	27	#10 To Collect	17	Yes Ye	s Yes Ye	s Yes Yes Yes	Yes
3	10	#18 To Waste	5	Yes Yes	s Yes Ye	s Yes Yes Yes	Yes
4	1	Block Flush	5	Yes Ye	s Yes Ye	s Yes Yes Yes	Yes
5	4	Wait	. 660	Yes Yes	yes Ye	s Yes Yes Yes	Yes
6 .	27	#10 To Collect	18	Yes Ye	s Yes Ye	s Yes Yes Yes	Yes
7	10	#18 To Waste	5	Yes Yes	yes Ye	s Yes Yes Yes	Yes
8	1	Block Flush	5	Yes Yes	yes Ye	s Yes Yes Yes	Yes
9	4	Wait	660	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
10	27	#10 To Collect	18	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
11	10	#18 To Waste	5	Yes Yes	yes Ye	s Yes Yes Yes	Yes
12	1	Block Flush	5	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
13	4	Wait	660	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
14	27	#10 To Collect	17	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
15	10	#18 To Waste	5	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
16	1	Block Flush	5	Yes Yes	Yes Ye	s.Yes Yes Yes	Yes
17	4	Wait	650	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
18	8	Flush To CLCT	9	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
19	27	#10 To Collect	14	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
20	8	Flush To CLCT	9	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
21	2	Reverse Flush	60			s Yes Yes Yes	Yes
22	ī	Block Flush	4	Yes Yes	Yes Ye	s Yes Yes Yes	Yes
23	10	#18 To Waste	5			s Yes Yes Yes	Yes
24	9	#18 To Column	30			s Yes Yes Yes	Yes
25	2		50			s Yes Yes Yes	Yes
26	ī	Block Flush	10			s Yes Yes Yes	Yes
27	42	#10 Vent	Ž			s Yes Yes Yes	Yes

Alfrotection course to tras

STEP	FUNCTION	STEP	STEP ACTIVE FOR BASES	SAFE ,
NUMBER	# NAME	TEME	A 6 C T 5 6 7	STEP -
•	28 Phos Frep	10	Yes Yes Yes Yes Yes Yes	Yes .
	52 A To Waste	5	Yes Yes Yes Yes Yes Yes	Yes
2	53 6 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
3		5	Yes Yes Yes Yes Yes Yes Yes	Yes
4		Š	Yes Yes Yes Yes Yes Yes Yes	Yes
5	SS T To Waste	· 5	Yes Yes Yes Yes Yes Yes Yes	Yes
5	· SS #5 To Weste	5	Yes Yes Yes Yes Yes Yes	Yes
7	57 #6 To Waste	S	Yes Yes Yes Yes Yes Yes	Yes
8	58 #7 To Waste	8	Yes Yes Yes Yes Yes Yes	Yes
9	61 TET To Waste	10	Yes Yes Yes Yes Yes Yes	Yes
10	10 #18 To Waste		Yes Yes Yes Yes Yes Yes	Yes
11	16 Cap Prep	10	Yes Yes Yes Yes Yes Yes	Yes
12	59 Cap A To Waste	5	Yes Yes Yes Yes Yes Yes	Yes
13	60 Cap B To Waste	5	Yes Yes Yes Yes Yes Yes	Yes
14	Bi #15 To Waste	8	Yes Yes Yes Yes Yes Yes	Yes
15	82 #14 To Waste	8	Yes yes yes yes yes	Yes
16	30 #17 To Waste	10	Yes Yes Yes Yes Yes Yes	Yes
17	10 #18 To Waste	15	Yes Yes Yes Yes Yes Yes	Yes
18	1 Block Flush	. 15	Yes Yes Yes Yes Yes Yes	163

S'- GET GIT TES TIE TIE TIE TIE TIE TIE TIE

DNA SEQUENCE VERSION Z.00

SEQUENCE NAME: 15X-2

SEQUENCE LENGTH: 10

Aug 27, 199 DATE: 14:05 TIME:

COMMENT:

5'- 77T GAC TG5 T -3'

PCT/US92/11348

5

10

-54-

<u>Claims</u>

 A synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HAV comprising

a first segment comprising a nucleotide sequence substantially complementary to a segment of HAV nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide acid multimer,

wherein the HAV nucleic acid segment is selected from the group consisting of

```
ATAGAAGTATTAGCCTAAGAGGTTTCACCCGTA (SEQ ID NO:6),
         CCGCCGCTGTTRCCCTATCCAARGCATCTCTTC (SEQ ID NO:7),
15
         TGAATGGTTTTTGTCTTAACAACTCACCAATAT (SEQ ID NO:8),
         GCATCCACTGGATGAGAGYCAGTCCTCCGGCGT (SEQ ID NO:9),
         CTARAGACAGCCCTGACARTCAATCCACTCAAT (SEQ ID NO:10),
         TTGCCCTAAGCACAGAGAGGTCTGRRATTAARC (SEQ ID NO:11),
          TCTCACAGRATCCCATTTAAGGCCAAATGRTGT (SEQ ID NO:12),
20
         AAGAACAGTCCAGCTGTCAATGGAGGGAYCCCC (SEQ ID NO:13),
         GTACCTCAGAGGCAAACACCACATAAGGCCCCA (SEQ ID NO:14),
          TTTAAGAATGAGGAAAAACCTAAATGCCCCTGA (SEQ ID NO:15),
         GGAAAATWCCTTGTYTRGACATRTTCATTATTR (SEQ ID NO:16),
         ACAGGATGTGGTCAAGRCCACTCCCRACAGTCT (SEQ ID NO:17),
25
          GAATCATTTGCTCTTCCTCAATRTCTGCCAAAG (SEQ ID NO:18),
          AAGCWCCAGTCACTGCAGTCCTAWCAACKGAYT (SEQ ID NO:19),
          GAACTGAAGATTGRTCCACAGAAGTRAARTAAG (SEQ ID NO:20),
          GTTCAAYYTGRTGTRAKCCAACCTCAGCWGTAT (SEQ ID NO:21),
          TWGAACYRGGTTTATCAACAGAGGTTYTCAARG (SEQ ID NO:22),
30
          GAATCARGAAAAYTTYTCYCCCTGAGTYYTCT (SEQ ID NO:23),
          ADAGAGCATGTGTAGTRAGCCAATCWGCAGAAT (SEQ ID NO:24),
          RTTTCACCACRTCCAATTTTGCAACTTCATGRA (SEQ ID NO:25),
          AMCCTTGRACRGCAAACTGCTCATTRTAYARTA (SEQ ID NO:26), and
          TGCCAAATCTTGCATATGTRTGGTATCTCAACA (SEQ ID NO:27).
35
```

-5 **5**-

2. The synthetic oligonucleotide of claim 1, wherein said second segment comprises

AGGCATAGGACCCGTGTCTT (SEQ ID NO:38).

5

15

- 3. A synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HAV comprising
- a first segment comprising a nucleotide

 10 sequence substantially complementary to a segment of HAV

 nucleic acid; and
 - a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase, wherein said first segment is selected from the group consisting of

```
CGCAACGGCCAGAGCCTAGGGCAAGGGGAGAGC (SEQ ID NO:28),
CTCCATGCTAATCATGGAGTTGACCCCGCCGGG (SEQ ID NO:29),
AMACATCTGYGTCCCCAATTTAGACTCCTACAG (SEQ ID NO:30),

GARAGCCAAGTTWACACTGCAAGGTGACGTYCC (SEQ ID NO:31),
GCCTACCCCTTGTGGAAGATCAAAGAGRTTCAT (SEQ ID NO:32),
ARGGTGTRGGRTTTATCTGAACTTGAATYTCAA (SEQ ID NO:33),
GAACCATRGCACARATYARYCCYCCYTGYTGRA (SEQ ID NO:34),
AKGATGCTATHGAACCATARCTYTGGTCACYAG (SEQ ID NO:35),

TGCAATTTAACARACCATGAGGATAAACAGTCA (SEQ ID NO:36), and
ATGGAACCTTTATTCTAACYACATTGTTRATRT (SEQ ID NO:37).
```

4. The synthetic oligonucleotide of claim 3, wherein said second segment comprises

30

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:39).

PCT/US92/11348

5

10

5. A set of synthetic oligonucleotides useful as amplifier probes in a sandwich hybridization assay for HAV comprising two oligonucleotides,

wherein each oligonucleotide comprises:

a first segment comprising a nucleotide sequence substantially complementary to a segment of HAV nucleic acid; and

a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide acid multimer,

wherein said HAV nucleic acid segment is selected from the group consisting of

```
ATAGAAGTATTAGCCTAAGAGGTTTCACCCGTA (SEQ ID NO:6),
          CCGCCGCTGTTRCCCTATCCAARGCATCTCTTC (SEQ ID NO:7),
15
         TGAATGGTTTTTGTCTTAACAACTCACCAATAT (SEQ ID NO:8),
         GCATCCACTGGATGAGAGYCAGTCCTCCGGCGT (SEQ ID NO:9),
         CTARAGACAGCCCTGACARTCAATCCACTCAAT (SEQ ID NO:10),
         TTGCCCTAAGCACAGAGAGGTCTGRRATTAARC (SEQ ID NO:11),
         TCTCACAGRATCCCATTTAAGGCCAAATGRTGT (SEQ ID NO:12),
20
         AAGAACAGTCCAGCTGTCAATGGAGGGAYCCCC (SEQ ID NO:13),
         GTACCTCAGAGGCAAACACCACATAAGGCCCCA (SEQ ID NO:14),
         TTTAAGAATGAGGAAAAACCTAAATGCCCCTGA (SEQ ID NO:15),
         GGAAAATWCCTTGTYTRGACATRTTCATTATTR (SEQ ID NO:16),
         ACAGGATGTGGTCAAGRCCACTCCCRACAGTCT (SEQ ID NO:17),
25
         GAATCATTTGCTCTTCCTCAATRTCTGCCAAAG (SEQ ID NO:18),
         AAGCWCCAGTCACTGCAGTCCTAWCAACKGAYT (SEQ ID NO:19),
         GAACTGAAGATTGRTCCACAGAAGTRAARTAAG (SEQ ID NO:20),
         GTTCAAYYTGRTGTRAKCCAACCTCAGCWGTAT (SEQ ID NO:21),
         TWGAACYRGGTTTATCAACAGAGGTTYTCAARG (SEQ ID NO:22),
30
         GAATCARGAAAAYTTYTCYCCCTGAGTYYTCT (SEQ ID NO:23),
         ADAGAGCATGTGTAGTRAGCCAATCWGCAGAAT (SEQ ID NO:24),
         RTTTCACCACRTCCAATTTTGCAACTTCATGRA (SEQ ID NO:25),
         AMCCTTGRACRGCAAACTGCTCATTRTAYARTA (SEQ ID NO:26), and
         TGCCAAATCTTGCATATGTRTGGTATCTCAACA (SEQ ID NO:27).
35
```

-57-

6. The synthetic oligonucleotide of claim 5, wherein said second segment comprises

AGGCATAGGACCCGTGTCTT (SEQ ID NO:38).

5

10

15

7. A set of synthetic oligonucleotides useful as capture probes in a sandwich hybridization assay for HAV comprising two oligonucleotides,

wherein each oligonucleotide comprises:

- a first segment comprising a nucleotide sequence substantially complementary to a segment of HAV nucleic acid; and
 - a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

wherein said HAV nucleic acid segment is selected from the group consisting of

CGCAACGGCCAGAGCCTAGGGCAAGGGGAGAGC (SEQ ID NO:28),

20 CTCCATGCTAATCATGGAGTTGACCCCGCCGGG (SEQ ID NO:29),

AMACATCTGYGTCCCCAATTTAGACTCCTACAG (SEQ ID NO:30),

GARAGCCAAGTTWACACTGCAAGGTGACGTYCC (SEQ ID NO:31),

GCCTACCCCTTGTGGAAGATCAAAGAGRTTCAT (SEQ ID NO:32),

ARGGTGTRGGRTTTATCTGAACTTGAATYTCAA (SEQ ID NO:33),

25 GAACCATRGCACARATYARYCCYCCYTGYTGRA (SEQ ID NO:34),

AKGATGCTATHGAACCATARCTYTGGTCACYAG (SEQ ID NO:35),

TGCAATTTAACARACCATGAGGATAAACAGTCA (SEQ ID NO:36), and

ATGGAACCTTTATTCTAACYACATTGTTRATRT (SEQ ID NO:37).

8. The synthetic oligonucleotide of claim 7, wherein said second segment comprises

CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:39).

30

5

10

20

35

-58-

9. A solution sandwich hybridization assay for detecting the presence of HAV in a sample, comprising

- (a) contacting the sample under hybridizing conditions with an excess of (i) amplifier probes comprising the set of synthetic oligonucleotides of claim 5 and (ii) a capture probe oligonucleotide comprising a first segment comprising a nucleotide sequence that is substantially complementary to a segment of HAV RNA and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;
- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound to the solid phase;
 - (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;
 - (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the solid 30 phase complex product of step (g).
 - 10. A solution sandwich hybridization assay for detecting the presence of HAV in a sample, comprising (a) contacting the sample under hybridizing conditions with an excess of (i) an amplifier probe oligonucleotide comprising a first segment comprising a nucleotide sequence substantially complementary to a segment of HAV RNA and a

5

15

-59-

second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) a set of capture probes comprising the set of synthetic oligonucleotides of claim 7:

- (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;
- (c) thereafter separating materials not bound to
 10 the solid phase;
 - (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;
 - (e) removing unbound multimer;
- (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;
 - (g) removing unbound labeled oligonucleotide; and
- (h) detecting the presence of label in the solid 25 whase complex product of step (g).
 - 11. A kit for the detection of HAV in a sample comprising in combination
- (i) a set of amplifier probe oligonucleotides
 30 wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HAV nucleic acid and a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;
 - (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first

PCT/US92/11348

5

10

segment comprising a nucleotide sequence that is substantially complementary to a segment of HAV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

(iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and at least one second oligonucleotide unit that is substantially complementary to a labeled oligonucleotide; and

(iv) a labeled oligonucleotide.

- 12. The kit of claim 11, further comprising instructions for the use thereof.
- 13. The kit of claim 11, wherein said set of amplifier probe oligonucleotides comprises the set of synthetic oligonucleotides of claim 5.
- 20 14. The kit of claim 11, wherein said set of capture probe oligonucleotides comprises the set of synthetic oligonucleotides of claim 7.

25

30

35

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/11348

1	SSIFICATION OF SUBJECT MATTER :C12Q 1/68				
US CL	:436/6	anianal alassification and IRC	,		
	to International Patent Classification (IPC) or to both	national classification and IPC			
	LDS SEARCHED locumentation searched (classification system follower	thy classification symbols)			
935/78	436/5,6,91,235.1; 436/501; 536/22.1,23.1,24.2,24.3				
Documental	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched		
Electronic o	data base consulted during the international search (na	me of data base and, where practicable	, search terms used)		
i	DLINE, CAS, WPI, BIOTECH ABS, BIOSIS, GEN				
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Y	US, A, 4,828,979 (Klevan et al.) 09 M but especially column 5, lines 17-37.	ay 1989, see entire document	1-14		
Y	US, A, 4,868,105 (Urdea et al.) 19 document.	September 1989, see entire	1-14		
Y	Y Journal of Virology, Volume 61, Number 1, issued January 1987, Cohen et al., "Complete Nucleotide Sequence of Wild-Type Hepatitis A Virus: Comparison with Different Strains of Hepatitis A				
	Virus and Other Picornaviruses", pages 50-59, see especially the abstract and Figure 1 on pages 52-55.				
		•			
X Furth	ner documents are listed in the continuation of Box C	See patent family annex.			
	ecial categories of cited documents:	"T" later document published after the inte date and not in conflict with the applic	ation but cited to understand the		
	cument defining the general state of the art which is not considered be part of particular relevance	principle or theory underlying the inv	rention		
	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone	e claimed invention cannot be red to involve an inventive step		
cit	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	"Y" document of particular relevance; the	us claimed invention cannot be		
.O. qo	ecial reason (as specified) cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other suc	step when the document is h documents, such combination		
P do	cans cument published prior to the international filing date but later than a minimum date also insert	being obvious to a person skilled in the "&" document member of the same patent			
	e priority date claimed actual completion of the international search	Date of mailing of the international sec	arch report		
31 March	•	0 9 APR 1993			
Name and r Commissio Box PCT	mailing address of the ISA/US mer of Patents and Trademarks	Authorized officer	Kunga for		
Washington	n, D.C. 20231	ARDIN MARSCHEL			
Facsimile N	io. NOT APPLICABLE	Telephone No. (703) 308-0196			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/11348

	ution). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 4,894,228 (Purcell et al.) 16 January 1990, see especially Figures 1A-II.	1-14
Y	US, A, 4,894,325 (Englehardt et al.) 16 January 1990, see especially column 8, line 43, through column 11, line 4.	1-14
Y	Proceedings of the National Academy of Sciences, Volume 80, issued October 1983, Ticehurst et al., "Molecular cloning and characterization of hepatitis A virus cDNA", pages 5885-5889, see especially the abstract and the sequence on page 5889 in Figure 5.	1-14
Y	Journal of Virology, Volume 63, Number 11, issued November 1989, Brown et al., "Characterization of a Simian Hepatitis A Virus (HAV): Antigenic and Genetic Comparison with Human HAV", pages 4932-4937, see especially the abstract and Figure 4 on page 4935.	1-14
Y	Journal of Virology, Volume 54, Number 2, issued May 1985, Linemeyer et al., "Molecular Cloning and Partial Sequencing of Hepatitis A Viral cDNA", pages 247-255, see especially the abstract and the sequence on page 252.	1-14
A	Applied and Environmental Microbiology, Volume 52, Number 4, issued October 1986, Jiang et al., "Detection of Hepatitis A Virus in Seeded Estuarine Samples by Hybridization with cDNA Probes", pages 711-717, see especially the abstract.	1-14
A	Journal of Virology, Volume 61, Number 3, issued March 1987, Lemon et al., "Genomic Heterogeneity among Human and Nonhuman Strains of Hepatitis A Virus", pages 735-742, see especially the abstract.	1-14
	Journal of Clinical Microbiology, Volume 27, Number 5, issued May 1989, Jiang et al., "In Situ Hybridization for Quantitative Assay of Infectious Hepatitis A Virus", pages 874-879, see especially the abstract.	1-14
	Journal of Clinical Microbiology, Volume 22, Number 6, issued December 1985, Jansen et al., "Combined Immunoaffinity cDNA-RNA Hybridization Assay for Detection of Hepatitis A Virus in Clinical Specimens", pages 984-989, see especially the abstract.	1-14
	Applied and Environmental Microbiology, Volume 53, Number 10, issued October 1987, Jiang et al., "Detection of Hepatitis A Virus by Hybridization with Single-Stranded RNA Probes", pages 2487-2495, see especially the abstract.	1-14

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/11348

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No		
A	Journal of General Virology, Volume 67, issued 1986, Ross et al., "Molecular Cloning of cDNA from Hepatitis A Virus Strain HM-175 after Multiple Passages in-vivo and in-vitro", pages 1741-1744, see especially the summary on page 1741.			
A	Journal of Virological Methods, Volume 31, issued January 1991, Shieh et al., "Detection of hepatitis A virus and other enteroviruses in water by ssRNA probes", pages 119-136, see especially the summary on page 119-120.	1-14		
A	Journal of Virological Methods, Volume 3, issued 1981, Von Der Helm et al., "Cloning of Hepatitis A Virus Genome", pages 37-43, see especially the abstract.	1-14		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the	items checked:
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	: • • •
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POO	OR QUALITY
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.