Introduction to Categories and Categorical Logic

Vishal Lama

Contents

Chapter 1.	Introduction to	Categories and	Categorical Logic	1
1. Intro-	duction			1

CHAPTER 1

Introduction to Categories and Categorical Logic

1. Introduction

We say that a function $f: X \to Y$ is:

injective if
$$\forall x, x' \in X. f(x) = f(x') \implies x = x',$$

surjective if $\forall y \in Y. \exists x \in X. f(x) = y,$

monic if
$$\forall g, h.f \circ g = f \circ h \implies g = h$$
 (f is left cancellative), epic if $\forall g, h.g \circ f = h \circ f \implies g = h$ (f is right cancellative).

Proposition 1. Let $f: X \to Y$. Then,

- (1) f is injective \iff f is monic.
- (2) f is surjective \iff f is epic.

PROOF. We first show (1).

(\iff) Suppose f is monic. Fix a one-element set $\mathbf{1} = \{\bullet\}$. Then, note that elements $x \in X$ are in 1-1 correspondence with functions $\bar{x} : \mathbf{1} \to X$, defined by $\bar{x}(\bullet) := x$. Then, for all $x, x' \in X$, we have

$$f(x) = f(x')$$

$$\Rightarrow f(\bar{x}(\bullet)) = f(\bar{x'}(\bullet))$$

$$\Rightarrow (f \circ \bar{x})(\bullet) = (f \circ \bar{x'})(\bullet)$$

$$\Rightarrow f \circ \bar{x} = f \circ \bar{x'}$$

$$\Rightarrow \bar{x} = \bar{x'} \text{ (since } f \text{ is monic)}$$

$$\Rightarrow \bar{x}(\bullet) = \bar{x'}(\bullet)$$

$$\Rightarrow x = x'$$

This shows that f is injective.

(\Longrightarrow) Suppose f is injective. Let $f \circ g = f \circ h$ for all $g,h:A \to X$. Then, for all $a \in A$,

$$(f \circ g)(a) = (f \circ h)(a)$$

$$\implies f(g(a)) = f(h(a))$$

$$\implies g(a) = h(a) \text{ (since } f \text{ is injective)}$$

$$\implies g = h$$

This establishes that f is monic. And, we are done.

Exercise 2

Show that $f: X \to Y$ is surjective iff it is epic.