5.1.2. Эффект Комптона

Виктория Стренадко

Цель работы: Исследовать энергетический спектр γ -квантов с помощью сцинтилляционного спектрометра, рассеянных на графите. Определить энергию рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Теоретическая часть

В составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного иззлучения. Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов(фотонов), имеющих энергию $h\nu$ и импульс $p=\frac{\hbar\omega_0}{c}$.

Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: фотона и свободного электрона. Изначально γ -квант имел начальную энергию $\hbar\omega_0$ и $\frac{\hbar\omega_0}{c}$ — импульс.

$$\hbar\omega_0 + mc^2 = \gamma mc^2 + \hbar\omega_1 \tag{1}$$

$$\frac{\hbar\omega_0}{c} = \gamma mv\cos\phi + \frac{\hbar\omega_1}{c}\cos\theta \tag{2}$$

$$\gamma m v \sin \phi = \frac{\hbar \omega_1}{c} \sin \theta \tag{3}$$

$$\Delta \lambda = \lambda_1 - \lambda_0 = \Lambda_k (1 - \cos \theta) \tag{4}$$

Экспериментальная установка

Блок-схема установки изображена на рис. 3. Источником излучения 1 служит $^{137}\mathrm{Cs}$, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Ход работы

- 1. Настроили все измерительные приборы.
- 2. Записали результаты имерений.

Таблица 1

θ	t	N	1/N	1-cos θ
0	160	862	0,00116009	0
30	275	710	0,00140845	0,13384191
10	110	881	0,00113507	0,01517689
20	153	755	0,0013245	0,06024687
40	97	652	0,00153374	0,23372811
50	104	575	0,00173913	0,35687355
60	105	508	0,0019685	0,49954031
70	150	439	0,0022779	0,65739791
80	160	398	0,00251256	0,82565477
90	167	362	0,00276243	0,99920367
100	187	326	0,00306748	1,17277674
110	149	302	0,00331126	1,34110539
120	246	278	0,00359712	1,4990802

3. На основании выражений для эффекта Комптона, а имено энергии отклонившихся гамма-квантов от угла, по изменению положения фотопиков сцинтилляционных мы можем определить энергию частиц на которых происходит отклонение.

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta) \tag{5}$$

, где A — неизвестный коэффициент пропорциональности между $\epsilon(\theta)$ и номером канала $N(\theta)$, соответствующего вершине фотопика при указанном θ .

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_\gamma \frac{N(0)}{N(0) - N(90)}$$
 (6)

4. Используя экспериментальные результаты из таблицы 1, построим график по формуле(5), откладывая по оси абцисс величину $(1-\cos\theta)$, а по оси ординат величину $\frac{1}{N}$. Проведем через полученные точки наилучшую прямую и вычислим ошибку измерений.

5. Посчитаем ошибку измерений:

$$\sigma_{N_{90}} = 2.7 \tag{7}$$

$$\sigma_{N_0} = 14.4 \tag{8}$$

$$\sigma_{N_0 - N_{90}} = 15.3 \tag{9}$$

$$\sigma_{N_0 - N_{90}} = 15.3 \tag{9}$$

$$\varepsilon_E = \sqrt{\left(\frac{\sigma_{N_{90}}}{N_{90}}\right)^2 + \left(\frac{\sigma_{N_0 - N_{90}}}{N_0 - N_{90}}\right)^2} = 3.9\%$$

6. Вычислим энергию покоя частицы, на которой происходит комптоновское рассеяние первичных γ - квантов:

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = (480, 8 \pm 18, 8)$$
кэВ (11)

, где известно, что $E_{\gamma} = 661, 6$ кэВ.

Вывод:

Мы исследовали энергетический спектр γ -квантов с помощью сцинтилляционного спектрометра, рассеянных на графите. Также определили энергию покоя частиц, на которых происходит комптоновское рассеяние : $E = 480, 8 \pm 18, 8$ КэВ. Погрешность обуславливается возможным влиянием других работающих установок и неточное определение канала фотопика (наличие не бесконечно узкой ширины, вероятность для гамма-кванта совершить многократное рассеяние).