Linguagens Formais e Autômatos

Expressões Regulares

Felipe Cunha

- Até agora foram vistas duas formas de se especificar uma linguagem regular
 - Usando notação de conjuntos
 - Aplicação: desenvolvimento da teoria
 - Desenhando um diagrama de estados em forma de grafo
 - Aplicação: processo de concepção de um reconhecedor
- Uma nova forma de especificar linguagem regular é através de expressões regulares, mediante uma expressão que a denota
 - Aplicação: na teoria para manipulações formais e na prática para referência compacta a conjunto de palavras (editores de texto e comandos de sistema operacional)

• Dado um AF M, seria possível obter uma formulação linear para L(M)? Ou seja, seria possível obter uma expressão r que denotasse L(M)?

Sim, através de uma expressão regular!

- Dada uma expressão regular, é possível criar um AF que reconhece a linguagem denotada por ela
 - Logo, a família das linguagens denotadas por expressões regulares é exatamente a família das linguagens regulares

- Uma expressão regular (ER) sobre um alfabeto Σ é definida recursivamente como:
 - a) \varnothing , λ e a para qualquer $a \in \Sigma$ são expressões regulares; tais ER's denotam, respectivamente, os conjuntos \varnothing , $\{\lambda\}$ e $\{a\}$
 - b) Se r e s são expressões regulares, então são expressões regulares: (r+s), (rs) e r*; tais ER's denotam, respectivament $L(r) \cup L(s)$, L(r)L(s) e L(r)*

Um conjunto que pode ser denotado por uma ER é usualmente denominado **conjunto regular**.

Exemplo de Expressões Regulares

• Exemplos de ERs sobre o alfabeto $\Sigma = \{0, 1\}$ e os conjuntos regulares denotados por elas

ER	Linguagem denotada
Ø	Ø
λ	$\{\lambda\}$
(01)	$\{0\}\{1\} = \{01\}$
(0+1)	$\{0\} \cup \{1\} = \{0,1\}$
((0+1)(01))	$\{0,1\}\{01\} = \{001,101\}$
0*	$\{0\}^* = \{0^n \mid n \ge 0\}$
(0+1)*	$\{0,1\}^* = \Sigma^*$
$(((0+1)^*1)(0+1))$	$\{0,1\}^*\{1\}\{0,1\}$

Omissão de Parênteses

- Uma ER com muitos parênteses torna díficil sua escrita e compreensão. Algumas regras para omissão de parênteses:
 - a) Como a união é associativa, pode-se escrever $(r_1 + r_2 + ... + r_n)$, omitindo-se os parênteses internos
 - Ex.: ((0 + (11)) + 1) ou $(0 + ((11) + 1)) \rightarrow (0 + (11) + 1)$
 - b) Idem para concatenação, já que também é associativa
 - Ex.: $((01)((00)1)) \rightarrow (01001)$
 - c) Se a expressão tem parênteses externos, esses podem ser omitidos
 - Ex.: $a) \rightarrow 0 + (11) + 1$ $b) \rightarrow 01001$
 - d) Precedência: Fecho de Klene > Concatenação > União
 - Ex. $(0 + (10^*)) \rightarrow 0 + 10^*$

Obtenção de ER que Denote L

• Seja L o conjunto das palavras sobre $\{a,b\}$ com pelo menos um b?

Como obter uma expressão regular que denote uma linguagem *L*?

Obtenção de ER que Denote L

 Seja L o conjunto das palavras sobre {a, b} com pelo menos um b?

Primeira abordagem: tentar visualizar a linguagem como um todo, utilizando **não-determinismo** quando possível

 Ex.: uma palavra de L tem um b que é precedido de zero ou mais símbolos (inclusive de b's: nãodeterminismo) e seguido por zero ou mais símbolos

$$(a+b)^*b(a+b)^*$$

Um mesmo conjunto pode ser denotado por várias ER's?

Obtenção de ER que Denote L

• Seja L o conjunto das palavras sobre $\{a, b\}$ com pelo menos um b?

Segunda abordagem: visualizar como as palavras podem ser construídas deterministicamente, da esquerda para direita ou da direita para esquerda

 Ex.: da esquerda para direita → pertence a L quando se encontra um b

$$a^*b(a+b)^*$$

 Ex.: da direita para esquerda → pertence a L quando se encontra um b

$$(a+b)^*ba^*$$

Equivalência entre ER's

- Conforme visto, um conjunto pode ser denotado por várias expressões regulares
- A notação r = s é comum para duas expressões regulares r e s que denotam uma mesma linguagem

$$L(r) = L(s)$$

- Às vezes pode ser interessante obter uma ER "mais simples", no sentido de visualizar com mais facilidade a linguagem por ela denotada
 - As propriedades de união, concatenação e fecho de Kleene permitem obter ER's equivalentes, eventualmente mais simples

Equivalência entre ER's

Algumas equivalências entre ER's

Equivalência entre ER's

- Qualquer equivalência que não envolva fecho de Kleene pode ser derivada a partir das propriedades 1 a 7, mais as propriedades de associatividade de união e concatenação
- Quando envolve fecho de Kleene não há um conjunto finito de equivalência das quais se pode derivar qualquer outra
- Existem várias equivalências que são redundantes (podem ser obtidas através de outras)

$$\varnothing^* = (r\varnothing)^*$$
 , por 5
= $\lambda + r(\varnothing r)^*\varnothing$, por 10
= $\lambda + \varnothing$, por 5
= λ , por 2

Simplificação de ER's

 Exemplo de uma série de simplificações de uma ER utilizando as equivalências da tabela, onde as subexpressões simplificadas em cada passo estão sublinhadas

$$(00^* + 10^*)0^*(1^* + 0)^* = (0 + 1)0^*0^*(1^* + 0)^* , \text{ por } 6$$

$$= (0 + 1)0^*(1^* + 0)^* , \text{ por } 15$$

$$= (0 + 1)0^*(1 + 0)^* , \text{ por } 17$$

$$= (0 + 1)0^*(0 + 1)^* , \text{ por } 19$$

Simplificação de ER's

- Novas equivalências podem ser obtidas considerando as propriedades de:
 - justaposição: concatenação
 - +: união
 - *: fecho de Kleene
- Por exemplo:
 - $(r + rr + rrr + rrrr)^* = r^*$
 - $\underline{((0(0+1)1+11)0^*(00+11))^*}(0+1)^* = (0+1)^*$ Como é da forma $\underline{r}(0+1)^*$, onde r denota um conjunto de palavras sobre o alfabeto que contém λ , então não precisa analisar r!
 - $r^*(r + s^*) = r^*s^*$

Linguagens Regulares

- Toda expressão regular denota uma linguagem regular
 - a) É possível construir AF's para os elementos primitivos dos conjuntos regulares: \varnothing , λ e para cada $a \in \Sigma$

b) Dados AF's para L_1 e L_2 é possível construir AF's para $L_1 \cup L_2$, L_1L_2 , L_1^*

Diagrama ER

• Um diagrama ER sobre Σ é um diagrama de estados cujas arestas, ao invés de serem rotuladas com símbolos do alfabeto Σ , são rotuladas com ER's sobre Σ

- Do estado e há transição para e' sob w, se e somente se, $w \in L((0+1)1(0+1)^*0)$, ou seja, o segundo símbolo de w é 1 e o último é 0
 - Ex.: As menores palavras são 010 e 110

Toda linguagem regular é denotada por alguma expressão regular

Seja um AFD
$$M = (E, \Sigma, \delta, i, \{f_1, f_2, ..., f_n\})$$

- $L_1(M) \cup L_2(M) \cup ... \cup L_n(M)$, tal que $L_k(M) = \{ w \in \Sigma^* | \delta(i, w) = f_k \}$
- Seja p_k uma expressão regular para $L_k(M)$, então L(M) seria denotada por $p_1 + p_2 + ... + p_k$

Obtenção de Expressão Regular

- Para obter uma expressão regular a partir de um AFN $M = (E, \Sigma, \delta, I, F)$
 - 1. Obter AFN λ $M' = (E', \Sigma, \delta, i, \{f\})$ equivalente a M tal que:
 - a) $i \notin \delta(e, a)$ para todo par $(e, a) \subseteq E' \times \Sigma$
 - b) $\delta(f, a) = \emptyset$ para todo $a \in \Sigma$
 - 2. Obter diagrama ER a partir de M' substituindo transições de e para e' sob $s_1, s_2, ..., s_n$ por uma só transição de e para e' sob $s_1 + s_2 + ... + s_n$

Obtenção de Expressão Regular

• Para obter uma expressão regular a partir de um AFN $M = (E, \Sigma, \delta, I, F)$

3. Eliminar um a um os estados do diagrama ER com exceção dos estados i e f_k

Simular todas passagens po
 e para cada par de estados
 [e₁, e₂] tais que há transição
 de e₁ para e e de e para e₂
 (e₁ ≠ e e e₂ ≠ e)

• Se havia transição de e_1 para e_2 sob s substituir por transição de e_1 para e_2 sob s + $\mathbf{r}_1\mathbf{r}_2^*\mathbf{r}_3$

• Considere o AFD que reconhece a linguagem $L = \{w \in \{a,b\}^* \mid |w| \text{ \'e impar e } w \text{ cont\'em exatamente um b}\}$

Como eliminar os estados $p\theta$ e il?

Síntese

• AF's, ER's e GR's são formalismos alternativos para **linguagens regulares**

Transformações entre formalismos