School on Column Generation: Stabilized Column Generation

Jacques Desrosiers

HEC Montréal & GERAD, Canada

Guy Desaulniers

Polytechnique Montréal & GERAD, Canada

Marco Lübbecke

RWTH Aachen University, Germany

MULTIPLE DEPOT VEHICLE SCHEDULING PROBLEM (MDVSP)

MDVSP: NOTATION

K: set of depots

N: set of scheduled tasks (no time windows)

 t_i : time at which service must start for task $i \in N$

 s_i : service duration for task $i \in N$

 t_{ij} : time to go from node i to node j, for $i, j \in N \cup K$

A: set of arcs; $(i, j) \in A$ if $t_i + s_i + t_{ij} \le t_j$, for $i, j \in N \cup K$

 Ω^k : set of paths from and to depot $k \in K$

 c_p^k : cost of path $p \in \Omega^k$

 $a_{ip}^{k} = 1$ if path $p \in \Omega^{k}$ covers task $i \in N$; 0 otherwise

 v^k : available number of vehicles at depot $k \in K$

MDVSP: SET PARTITIONING FORMULATION

$$Z_{M} = \min \sum_{k \in K} \sum_{p \in \Omega^{k}} c_{p}^{k} \lambda_{p}^{k}$$

$$\sum_{k \in K} \sum_{p \in \Omega^{k}} a_{ip}^{k} \lambda_{p}^{k} = 1, \quad i \in N$$

$$\sum_{p \in \Omega^{k}} \lambda_{p}^{k} \leq v^{k}, \quad k \in K$$

$$\lambda_{p}^{k} \text{ binary}, \quad k \in K, p \in \Omega^{k}$$

PRIMAL DEGENERACY

MDVSP R 800 (4)	cpu total	cpu mp			# SP cols	
standard CG	4178.4	3149.2	1029.2	509	37579	926161

Tailling off effect of the objective function

PRIMAL DEGENERACY

MDVSP R 800 (4)	cpu total	cpu mp			# SP cols	
standard CG	4178.4	3149.2	1029.2	509	37579	926161

 Master problem requires more than 75% of total cpu time

IMPACT OF PERFECT DUAL INFORMATION ON CG

Problem R800 (4)	Opt sol	Init sol	cpu total	# CG iter	# SP cols	# MP
standard	1915589.5	800000000	4178.4	509	37579	926161
dual boxes						
100		2035590.5	835.5	119	9368	279155
10		1927590.5	117.9	35	2789	40599
1		1916790.5	52.0	20	1430	8744
0.1		1915710.5	<i>47.5</i>	19	1333	8630
0.01	1915589.1	1915602.5	37.3	17	1145	6288

IMPACT OF PERFECT DUAL INFORMATION ON CG

Problem R800 (4)	Opt sol	Init sol	cpu total	# CG iter	# SP cols	# MP
standard	1915589.5	800000000	4178.4	509	37579	926161
dual boxes				any let		
100		2035590.5	835.5	119	9368	279155
10		1927590.5	117.9	35	2789	40599

DUAL-OPTIMAL INEQUALITIES

Valério de Carvalho, Using extra dual cuts to accelerate column generation for the Cutting Stock problem, Informs Journal on Computing (2004).

• Small items (i=1,...,m) are ranked:

$$l_1 > l_2 > l_3 > \dots \Rightarrow \pi_1 \ge \pi_2 \ge \pi_3 \ge \dots$$

Additionally:

$$l_i \ge l_j + l_k \Longrightarrow \pi_i \ge \pi_j + \pi_k$$

At most 2m dual constraints (or primal columns) inserted a priori.

DUAL-OPTIMAL INEQUALITIES / PRIMAL COLUMNS

Generated cutting patterns	a	pr	ior	i cc	lui	mn	S
	1				1		
	-1	1				1	
		-1	1				
			-1				
				• • • •	4		
					-1	4	
					- 1	- 1	
						_1	
						_ '	

Total cpu time reduced by 40%.

TRIPLETS (501 ITEMS) EACH ROLL IS CUT INTO EXACTLY TWICE WITHOUT WASTE

Standard CG

124.2 iterations

$$\pi_1 \ge \pi_2 \ge \pi_3 \ge \dots$$

113.3 iterations

information

Perfect dual
$$\pi_i = \ell_i / L, \quad i = 1,...,m$$

12.2 iterations

(Average over 10 problems)

LP COLUMN GENERATION

Columns

Dual Multipliers

COLUMN GENERATOR

Stopping rule?

Optimality of Dual Multipliers

DUAL BOXES

min
$$cx - d_1y_1 + d_2y_2$$

$$Ax - y_1 + y_2 = b$$

$$x \ge 0$$

$$y_1 \ge 0, y_2 \ge 0$$

$$Relaxed Primal$$

$$max b\pi$$

$$\pi A \le c$$

$$d_1 \le \pi \le d_2$$

$$Restricted Dual$$

Surplus & Slack Variables

DEGENERACY & PERTURBATION

Primal

$$min cx$$

$$Ax = b$$

$$x \ge 0$$

$$\min cx$$

$$Ax - y_1 + y_2 = b$$

$$x \ge 0$$

$$0 \le y_1 \le \varepsilon_1, 0 \le y_2 \le \varepsilon_2$$
Relaxed Prima

Alternative

Perturbed Primal

Surplus & Slack Variables

PERTURBATION & DUAL BOXES

Primal

$$min cx$$

$$Ax = b$$

$$x \ge 0$$

$$\min cx$$

$$Ax - y_1 + y_2 = b$$

$$x \ge 0$$

$$0 \le y_1 \le \varepsilon_1, 0 \le y_2 \le \varepsilon_2$$

$$\min (cx - d_1y_1 + d_2y_2)$$

$$Ax - y_1 + y_2 = b$$

$$x \ge 0$$

$$y_1 \ge 0, y_2 \ge 0$$

Relaxed Primal

Relaxed Primal

STABILIZED PRIMAL PROBLEM

$$Ax = b$$
$$x \ge 0$$

$$x \ge 0$$

Primal

min
$$cx - d_1y_1 + d_2y_2$$

$$Ax - y_1 + y_2 = b$$

$$x \ge 0$$

$$0 \le y_1 \le \varepsilon_1, \quad 0 \le y_2 \le \varepsilon_2$$

Stabilized Primal

SP

STABILIZED PRIMAL & DUAL PROBLEMS

min
$$cx - d_1y_1 + d_2y_2$$

$$Ax - y_1 + y_2 = b \quad \pi$$

$$y_1 \leq \varepsilon_1 \quad -\omega_1 \leq 0$$

$$y_2 \leq \varepsilon_2 \quad -\omega_2 \leq 0$$

$$x \geq 0, y_1 \geq 0, y_2 \geq 0$$

Stabilized Primal SP

$$\max b\pi - \omega_1 \varepsilon_1 - \omega_2 \varepsilon_2$$

$$\pi A \le c$$

$$d_1 - \omega_1 \le \pi \le d_2 + \omega_2$$

$$\omega_1 \ge 0, \omega_2 \ge 0$$

Stabilized Dual SD

INTERPRETATION IN DUAL SPACE

Figure 1: 5-piecewise linear dual penalty function

Figure 1: 5-piecewise linear dual penalty function

MDVSP: SOLUTION STRATEGY

- 1. Preprocessing
 - Assignment problem: Single depot approximation
 - Lower bound Z_L
 - Optimal number of vehicles v^*
 - Transportation problem to derive a primal integer solution
 - Upper bound Z_U
 - \bullet Arc elimination based reduced cost greater than $Z_U Z_L$
 - Estimation of dual multipliers for all tasks
- 2. Stabilization procedure

STABILIZATION PROCEDURE FOR PROBLEM P

- Initialize approximation problems SP & SD
 - Stability center
 - Trust region without penalties
 - Penalties outside the trust region (3 to 5 pieces)
- Solve stabilized problems SP & SD until P is feasible
 - Otherwise update problems SP & SD
 - Stability center, trust region and penalties

Problem R 800 (4) standard	Opt sol 1915589.5	Init sol 800000000	cpu tot 4178.4	cpu mp	cpu sp	# CG iter	# SP cols	# MP itr 926161
delta = 100	1910009.0	2035590.5	835.5	609.1	226.4	119		279155
network pi		2014429.8	1097.1	518.5				324959
network pi +	network sol	1891386.0	439.2	216.2	223.0	112	4749	153420
			BOF F		000			
		% reduction	89.5	93.1	78.3	78.0	87.4	83.4
			9.5 tim	es fa	ster			

Opt sol	Init sol	cpu tot	cpu mp	cpu sp	# CG iter	# SP cols	# MP itr
1852571.5	800000000	3562	886	2676	422	33280	672726
	1870487.8	241	110	131	63		
	% reduction	93.2	87.6	95.1	85.1		
	14.8	time	es fas	ter			

PERFECT DUAL INFORMATION: APPLICATIONS

• Useful in the context of Lagrangean Relaxation to recover primal feasibility (fractional)

- Useful to perform Crossover from an interior point solution to an extreme point solution
- H. Ben Amor, J. Desrosiers, and F. Soumis
 Recovering an optimal LP basis from an optimal dual solution,

 Operations Research Letters (2006)

CROSSOVER: LARGE CREW ROSTERING INSTANCES

	Constraints	Variables
pb1	12 351	126 326
pb2	12 310	129 046
pb3	13 190	146 013
pb4	13 433	151 654
pb5	13 550	162 914
pb6	13 451	156 839
pb7	13 254	148 025
pb8	13 424	154 205
pb9	13 598	163 707
pb10	13 310	155 313

- CPLEX7.5 primal simplex algorithm fails to solve any of these 10 problems in less than 18000 seconds on a Entreprise 10000 solaris2.7 400MHZ machine (64 CPU, RAM=64G).
- The dual simplex needed less than 5000 seconds for two problems and failed to solve one within 18,000 seconds. The seven others require between 8,000 and 13,000 seconds.
- The problems are rather better solved by combining the CPLEX Barrier algorithm with a primal or dual crossover method based on problem simplifications followed by a primal or dual simplex algorithm, as proposed in Bixby and Saltzman (2002).
- For the interior point algorithm, we used values 10⁻⁸ and 10⁻¹⁰ for the optimality parameter; in both cases, all problems were solved in less than 1900 seconds.

Barrier 10⁻⁸

Crossover	CrPrimal	CrDual
pb1	188	72
pb2	20	1183
pb3	327	435
pb4	8166	2568
pb5	59	2645
pb6	***	1797
pb7	270	1092
pb8	1036	1876
pb9	78	2811
pb10	37	3011
Avg	1834.7	1749
StdD	3350.1	1027.6
Min	20	72
Max	***	3011

Barrier 10 ⁻⁸					
Crossover	CrPrimal	CrDual	BoxPrimal	Box Dual	
pb1	188	72	80	132	
pb2	20	1183	98	208	
pb3	327	435	189	171	
pb4	8166	2568	249	321	
pb5	59	2645	313	322	
pb6	***	1797	242	229	
pb7	270	1092	162	148	
pb8	1036	1876	205	235	
pb9	78	2811	205	265	
pb10	37	3011	290	426	
Avg	1834.7	1749	203.3	245.7	
StdD	3350.1	1027.6	75.5	90.8	
Min	20	72	80	132	
Max	***	3011	313	426	

Barrier 10 ⁻⁸					
Crossover	CrPrimal	CrDual	BoxPrimal	BoxDual	BoxCrPrimal
pb1	188	72	80	132	9
pb2	20	1183	98	208	13
pb3	327	435	189	171	26
pb4	8166	2568	249	321	35
pb5	59	2645	313	322	45
pb6	***	1797	242	229	86
pb7	270	1092	162	148	22
pb8	1036	1876	205	235	20
pb9	78	2811	205	265	43
pb10	37	3011	290	426	30
Avg	1834.7	1749	203.3	245.7	32.9
StdD	3350.1	1027.6	75.5	90.8	22.1
Min	20	72	80	132	9
Max	***	3011	313	426	86

Ba				_	-10
Ba	rri	<i>ler</i>	' 7	U	

Crossover	CrPrimal	CrDual	BoxPrimal	BoxDFual	BoxCrPrimal			
pb1	101	15	79	129	7			
pb2	***	27	85	218	7			
pb3	605	69	146	124	43			
pb4	232	2121	192	162	16			
pb5	89	2819	231	234	25			
pb6	72	2328	201	175	22			
pb7	192	1025	147	152	13			
pb8	1405	1407	168	198	15			
pb9	7190	1957	238	308	23			
pb10	4159	2832	218	261	15			
Avg	2123.5	1460	170.5	196.1	18.6			
StdD	2944.5	1127.2	56.5	59.5	10.5			
Min	72	15	79	124	7			
Max	***	2832	238	308	43			

Efficient... and so simple!

	Barrier 10 ⁻⁸	Barrier 10 ⁻⁸	Barrier 10 ⁻¹⁰	Barrier 10 ⁻¹⁰	Barrier 10 ⁻⁸	Barrier 10 ⁻¹⁰
Crossover	CrPrimal	CrDual	CrPrimal	CrDual	BoxCrPrimal	BoxCrDual
Netlib 500 (59)	0.05	0.14	0.05	0.14	0.04	0.05
Netlib 1000 (14)	0.12	0.13	0.12	0.14	0.14	0.13
Netlib 2000 (9)	0.24	0.36	0.24	0.26	0.31	0.27
Netlib 3000 (1)	0.10	0.10	0.10	0.10	0.10	0.10
Netlib 4000 (1)	6.40	2.00	5.10	84.90	2.60	0.80
(ennington 5000 (9)	0.41	0.43	0.50	0.40	0.36	0.34
nnington 10000 (4)	1.70	1.75	1.63	1.73	1.20	1.20
nnington 30000 (5)	2.58	2.78	2.54	2.62	2.52	1.94
Avg	0.367	0.402	0.357	1.212	0.305	0.257
StdD	0.865	0.656	0.77	8.433	0.612	0.455