1. Consider the 8-level midrise uniform quantizer covered in the lecture. The quantization boundaries are at $0,\pm\Delta$, $\pm2\Delta$ and the quantization levels are at $\pm\frac{1}{2}\Delta$, $\pm\frac{3}{2}\Delta$ For an input of value 3.8Δ , after quantization, the result will be	
$\bigcirc \frac{9}{2}\Delta$	<u>*</u>
$\bigcirc -\frac{3}{2}\Delta$	÷
\bigcirc $-\frac{5}{2}\Delta$	♣
\odot $\frac{7}{2}\Delta$	<u></u>
2. (Yes or No) Can we perform non-uniform quantization using a uniform quantizer?	1 point
Yes	
○ No	
3. Which of the following statements regarding Vector Quantization (VQ) are correct? Check all that app	ly. 1 point
✓ VQ can be considered as a pattern matching technique.	
☐ The codevectors in VQ are of lower-dimensionality than the input vectors.	
☐ The designed codebook is unique irrespectively of the training vectors.	
✓ Codebook design is an iterative procedure.	
4. For a given image of fixed resolution, how is the number of bits resulted from Vector Quantization (Votathe vector size and the number of codevectors? Larger vector size leads to fewer bits; more codevectors lead to fewer bits Larger vector size leads to fewer bits; fewer codevectors lead to fewer bits Smaller vector size leads to fewer bits; more codevectors lead to fewer bits Smaller vector size leads to fewer bits; fewer codevectors lead to fewer bits	2) related to 1 point
5. Which of the following options are isometries? Check all that apply	1 point
identity	
reflection about the mid-vertical axis	
flipping about the diagonal	
the concatenation of rotation by 90 degrees with rotation by -90 degrees	
6. In a lossy image compression technique such as JPEG, from which of the following does the loss com-	e from? 1 point
O Dividing an image into blocks	
Transformation of image blocks	
Quantization of transformation coefficients	
Run-length coding of quantized coefficients	

- 7. In this problem you will get hands-on experience in JPEG image compression. Follow the instructions below to complete this problem.
- 1 point

- (1) Download the original 8-bit grayscale image <u>here</u>, and load it into a MATLAB array.
- (2) Perform JPEG compression by using the MATLAB function "imwrite". For the purpose of this problem, you need to specify 5 input arguments. The first argument is the MATLAB array containing the input image; the second argument is a string specifying the output file name; the third argument is 'jpg' (including the single quotes); the fourth argument is the string 'quality' (including the single quotes); and the last argument is a number that specifies the quality level used for compression. The quality level is an integer between 0 and 100. For this step, set the quality level to 10. After the function "imwrite" is invoked, a new JPEG image will be created in the location that was specified by you.
- (3) Load the newly created JPEG image into a MATLAB array. Compute the PSNR between the JPEG compressed image and the original image. Note that the image loaded into MATLAB is of type 'uint8' (i.e., 8-bit integer). In order to compute the PSNR, you need to convert these arrays into 'double'.
- (4) Enter the PSNR value (up to 2 decimal points) in the box below.

26.43