CS 302.1 - Automata Theory

Lecture 09

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

Pumping Lemma for CFL: If L is Context Free, then there exists p > 0 (pumping length), such that, for any $w \in L$ of length $|w| \ge p$, w can be split into five parts, i.e. w = uvxyz satisfying the following conditions:

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^i x y^i z \in L$, $\forall i \ge 0$

Closure properties of CFLs

CFLs are closed under

- Union
- Star
- Concatenation

CFLs are NOT closed under

- Complementation
- Intersection

For DCFLs

- NOT closed Union
- Closed under complementation
- NOT closed under intersection

- A Turing machine is a FSM that has access to a infinite tape as its memory.
- The infinite tape contains in it, the input string followed by Blanks (indicated by B)
- The Turing machine can both read from the tape and write in it – one cell at a time, using a Read/Write head.
- The Read/Write head can move to the Left or to the Right again one cell at a time.

1 1 1 0 1 B B B B B B B B

- Replaces the symbol of the current cell in the tape with a new one
- Transitions from one state to another (or remains where it was)
- The Read/Write head moves either to the Left or to the Right

- A Turing machine is an FSM that has access to a infinite tape as its memory.
- The infinite tape contains in it, the input string followed by Blanks (indicated by B)
- The Turing machine can both read from the tape and write in it – one cell at a time, using a Read/Write head.
- The Read/Write head can move to the Left or to the Right again one cell at a time.

- Replaces the symbol of the current cell in the tape with a new one
- Transitions from one state to another (or remains where it was)
- The Read/Write head moves either to the Left or to the Right

- A Turing machine is an FSM that has access to a infinite tape as its memory.
- The infinite tape contains in it, the input string followed by Blanks (indicated by B)
- The Turing machine can both read from the tape and write in it – one cell at a time, using a Read/Write head.
- The Read/Write head can move to the Left or to the Right again one cell at a time.

- Replaces the symbol of the current cell in the tape with a new one
- Transitions from one state to another (or remains where it was)
- The Read/Write head moves either to the Left or to the Right
- Whenever the computation reaches an accept/reject state the TM accepts or rejects the input string (halts)

- A Turing machine is an FSM that has access to a infinite tape as its memory.
- The infinite tape contains in it, the input string followed by Blanks (indicated by B)
- The Turing machine can both read from the tape and write in it – one cell at a time, using a Read/Write head.
- The Read/Write head can move to the Left or to the Right again one cell at a time.

- Replaces the symbol of the current cell in the tape with a new one
- Transitions from one state to another (or remains where it was)
- The Read/Write head moves either to the Left or to the Right
- Whenever the computation reaches an accept/reject state the TM accepts or rejects the input string (halts)

- In a way these "added features" give TMs their power. (eg: ability to write on the tape)
- Notice: acceptance/rejection of a run is not tied to the input.
- Auxiliary computation can be performed as much as needed, even when the input string has been scanned

- Replaces the symbol of the current cell in the tape with a new one
- Transitions from one state to another (or remains where it was)
- The Read/Write head moves either to the Left or to the Right
- Whenever the computation reaches an accept/reject state the TM accepts or rejects the input string (halts)

- In a way these "added features" give TMs their power. (eg: ability to write on the tape)
- Notice: acceptance/rejection of a run is not tied to the input.
- Auxiliary computation can be performed as much as needed, even when the input string has been scanned

So, given a TM M and an input ω ,

 $M(\omega)$ accepts if $\omega \in L(M)$

 $M(\omega)$ rejects if $\omega \notin L(M)$

 $M(\omega)$ runs infinitely if $\omega \notin L(M)$

 q_{rej}

TM halts and accepts/rejects on reaching these states

- Replaces the symbol of the current cell in the tape with a new one
- Transitions from one state to another (or remains where it was)
- The Read/Write head moves either to the Left or to the Right
- Whenever the computation reaches an accept/reject state the TM accepts or rejects the input string (halts)

- In a way these "added features" give TMs their power. (eg: ability to write on the tape)
- Notice: acceptance/rejection of a run is not tied to the input.
- Auxiliary computation can be performed as much as needed, even when the input string has been scanned

Turing machines are named after **Alan Turing**. In 1936, gave a negative answer to Hilbert's *Entscheidungsproblem* (Decision problem) — *Are all decision problems decidable?*

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real

Turing claimed that anything "humanly computable" can be simulated by his machines

Turing machines are named after **Alan Turing**. In 1936, gave a negative answer to Hilbert's *Entscheidungsproblem* (Decision problem) — *Are all decision problems decidable?*

By A. M. TURING.

[Received 28 May, 1936.—Read 12 November, 1936.]

The "computable" numbers may be described briefly as the real

Turing claimed that anything "humanly computable" can be simulated by his machines

- Turing assumed that the human brain to be a finite state machine with a finite number of states
- Consider such a human being working on a problem with a notebook, pencil and an eraser.
- The pages of the notebook are laid out on the tape each cell consists of one page, with a finite amount of information.
- Whatever the human being does with the notebook, can be simulated on the TM: reading, writing, erasing (writing a blank), moving left or right to a new page etc.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

While moving left, when an X is encountered, the head should move right until the next 0 to be marked is encountered \Rightarrow We need rules like (X, X, R)

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

While moving left, when an X is encountered, the head should move right until the next 0 to be marked is encountered \Rightarrow We need rules like (X, X, R)

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

While moving right, when a Y is encountered, the head should move right as that's where the next $\mathbf{1}$ to be marked is

 \Rightarrow We need rules like (Y, Y, R)

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

While moving left, when a Y is encountered, the head should keep moving left as those 1's have been marked already \Rightarrow We need rules like (Y, Y, L)

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say *X*)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

At this stage the head should move right to look for the next 0 to mark, but finds *Y*

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

At this stage the head should move right and looks for the next 0 to mark, but finds *Y*

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for L could look something like this:

- Mark the first 0 (by replacing it with some special symbol say X)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

We will try to develop the basic idea in designing the Turing Machine for this language. Note that L = CFL.

Idea: An accepting run of a TM for *L* could look something like this:

- Mark the first 0 (by replacing it with some special symbol say *X*)
- Continue to move to the right until the first 1 is encountered.
- Mark the first 1 (by replacing it with some special symbol say Y)
- Continue to move left until you encounter the second 0 (its to the right of the X you had marked before)
- Continue to move right until you encounter a second 1 (its to the right of the Y you had marked before)
- Go on repeating this, until there all the 0's and 1's have been marked (with X and Y).
- Accept if there are no 0's or 1's left in the tape.

This is when the TM decides to accept the input string.

Example: Let $L = \{0^n 1^n | n \ge 1\}$

All missing transitions lead to the reject state and the input is rejected when this state is reached.

- We will start off with the TM for $\{0^n1^n\}$ and construct the TM for $\{0^n1^n2^n\}$
- Very similar to the TM for $\{0^n1^n\}$, except now the FSM would count the number of 2's as well. So it marks the 2's with another symbol (say Z)

- We will start off with the TM for $\{0^n1^n\}$ and construct the TM for $\{0^n1^n2^n\}$
- Very similar to the TM for $\{0^n1^n\}$, except now the FSM would count the number of 2's as well. So it marks the 2's with another symbol (say Z)

- We will start off with the TM for $\{0^n1^n\}$ and construct the TM for $\{0^n1^n2^n\}$
- Very similar to the TM for $\{0^n1^n\}$, except now the FSM would count the number of 2's as well. So it marks the 2's with another symbol (say Z)

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

• Continue to go right to mark the next 2 with a Z.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

• Continue to go right to mark the next 2 with a Z.

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's, 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's, 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's, 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's, 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a \mathbb{Z} .
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's, 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

or

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

All the missing transitions lead to a reject state and so any input not of the form $\{0^n1^n2^n\}$ is rejected.

Example: Let $L = \{0^n 1^n 2^n | n \ge 1\}$

- Continue to go right to mark the next 2 with a Z.
- Skip all the 1's and move right/ Also, move across (to the right) the Z's already marked.
- Mark a new 2 with a Z and start moving left.
- Keep moving left until an X is encountered.
- Either repeat this process if there are 0's,
 1's or 2's left to mark

or

- Skip across the Y's and Z's to the right end of the tape until a blank is found.
- Move left and accept the input string.

 $CFL \subseteq Language \ recognized \ by \ TM$

Formally, a Turing Machine is a 7-tuple (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}) where

- Q is a finite set called the states.
- Σ is the set of input *alphabets* not containing the blank symbol B.
- Γ is the *tape alphabet*, where $B \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$.
- $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R\}$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $q_{accept} \in Q$ is the *accepting state*.
- $q_{reject} \in Q \{q_{accept}\}\$ is the **reject state.**

Configuration of a TM: Combination of the current state, the current tape contents and the current head location.

Formally, it is a triple: (q, a, x), where $q \in Q$, $a \in (\Sigma \cup \Gamma)^*$, $x \in Z_+$

At each step, the Turing machine configuration changes. We say C_1 **yields** C_2 if the TM changes from C_1 to C_2 in one step.

Formally, a Turing Machine is a 7-tuple (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}) where

- Q is a finite set called the states.
- Σ is the set of input *alphabets* not containing the blank symbol B.
- Γ is the *tape alphabet*, where $B \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$.
- $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R\}$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $q_{accept} \in Q$ is the *accepting state*.
- $q_{reject} \in Q \{q_{accept}\}\$ is the **reject state.**

Configuration of a TM: Combination of the current state, the current tape contents and the current head location.

At each step, the Turing machine configuration changes. We say C_1 **yields** C_2 if the TM changes from C_1 to C_2 in one step.

A TM M accepts w if there exists a sequence of configurations C_1 to C_k , where

- C_1 is the start configuration M on w.
- Each C_i yields C_{i+1} .
- C_k is an accepting configuration

Language recognized a TM M:

$$L(M) = \{w | M \text{ accepts } w\}$$

Start configuration:

Accept configuration:

$$XXXYYYBBBBB...$$
 $\uparrow_{q_{accept}}$

Reject configuration:

$$\begin{array}{c} X\,X\,X\,Y\,Y\,0\,B\,B\,B\,B\,\dots \\ \uparrow \\ q_{reject} \end{array}$$

Formally, a Turing Machine is a 7-tuple (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}) where

- Q is a finite set called the states.
- Σ is the set of input **alphabets** not containing the blank symbol B.
- Γ is the *tape alphabet*, where $B \subseteq \Gamma$ and $\Sigma \subseteq \Gamma$.
- $\delta: Q \times \Gamma \mapsto Q \times \Gamma \times \{L, R\}$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $q_{accept} \in Q$ is the *accepting state*.
- $q_{reject} \in Q \{q_{accept}\}\$ is the **reject state.**

A TM M accepts w if there exists a sequence of configurations C_1 to C_k , where

- C_1 is the start configuration M on w.
- Each C_i yields C_{i+1} .
- C_k is an accepting configuration

Language recognized a TM M:

 $L(M) = \{w | M \text{ accepts } w\}$

Configuration of a TM:

- Combination of the current state, the current tape contents and the current head location.
- At each step, the Turing machine configuration changes. We say C_1 yields C_2 if the TM changes from C_1 to C_2 in one step.

Next Lecture

Various TM model variants: Robustness of the standard TM model

Thank You!