# Prüfung A: Schleifen, Modularer Programmentwurf, 4AB

Donnerstag, 28. Oktober 2021

| Zeit: | 40 | Minuten |
|-------|----|---------|
|       |    |         |

max. Punktezahl: 19

Hilfsmittel: keine, ohne Laptop, Farbtabelle wird bei Bedarf abgegeben

| Name: | Losunger     | Total Punkte: |              |                   | Note:          |  |  |
|-------|--------------|---------------|--------------|-------------------|----------------|--|--|
|       | O collow     | red           |              |                   |                |  |  |
|       | ugellow gold | magenta       | navy<br>blue | green  dark green | ☐ white ☐ grey |  |  |
|       | orange       | purple        | cyan         | sienna            | black          |  |  |

## Aufgabe 1 (3 Punkte)

Theorie-Fragen:

a) Was versteht man unter dem "modularen Programmentwurf" in der Programmierung? Nenne

- zwei Vorteile dieses Konzepts? (vgl. Seik 29)

  Ein Programm ans sinnvollen Bauskinen zusammense ken

   eindenlige Namen für überschanbere Programmlich

   inbersichtlicher

   einfache medifizieren/hornigiera

   einfacher Code wieder vorwenden
- b) Welche Datentypen kennen wir bisher in Python? Illustriere diese mithilfe von Beispielen.

integer -> Canze Zahh -123

float -> Kommazahler 1.23

String -> Zeicherhetten "Text123"

# Aufgabe 2 (3 Punkte)

Notiere, was die Codezeile ausgibt. Nutze pro Zeichen (Symbole, Leerzeichen etc.) genau ein Häuschen.



print("HH" \*3 + "\nJJ"\*2)







print("sqrt(9) ist \ngleich", sqrt(9))



sgrt13)

ab ship

Sqrt(9) = 3

#### Aufgabe 3 (4 Punkte)

Zeichne die Graphik, welche durch folgenden Code gezeichnet wird rechts daneben in den freien Platz. Die Richtungen und Grössenverhältnis sollen dabei möglichst korrekt sein. Nutze das Lineal oder Geodreieck für die Zeichnung.

```
from gturtle import *
 2
   makeTurtle()
   setPenColor("black")
   setPenWidth(1)
   repeat 5:
 8
        forward (30)
 9
        right (90)
10
        forward (10)
11
12
        setPenColor("red")
13
        setPenWidth(3)
14
15
        repeat 3:
16
             forward (20)
17
             left(120)
18
19
        setPenColor("black")
20
        setPenWidth(1)
21
22
        penUp()
23
        forward (20)
24
        penDown()
25
        forward (10)
26
        left (90)
27
28
   hideTurtle()
```

Forse/Brein (0.T)

Roks Dreisch (1) (falsch Wind 0.75

repeat T (1) (nicht auf ganzer

Wird/Lange (1)

Losy (0.5)



#### Aufgabe 4 (5 Punkte)

Bearbeite folgende Aufgaben zu folgendem Code

a) Der Code beinhaltet Fehler, weshalb das Programm gar nicht korrekt läuft. Behebe diese. Den ersten findest Du, wenn Du die folgende Fehlermeldung beachtest:

12 makeTurtle()
13 Der Name 'makeTurtle' ist nicht definiert oder falsch geschrieben.
14 Hast du das 'gturtle'-Modul geladen?

b) Ergänze die Lücken \_\_\_\_, sodass die nebenstehende Graphik entsteht

c) Gib zwei möglichst notwendige Verbesserungen an zur Art und Weise wie der Code geschrieben ist (Formatierung, Effizienz etc.). Beachte: Kommentare musst Du keine hinzufügen.

def test(): left (45) 2 repeat 30: 3 Forward (3) right(\_3\_ 5 right (90) repeat 30: forward (3)  $right(_{\underline{3}}$ 9 right(/35\_) 10 11 ArdeTurtle() 12 repent 4: 13 forward (100) 14 15 16 17

#### Aufgabe 5 (4 Punkte)

Notiere möglichst guten Programmcode, damit folgende Figur gezeichnet wird.



- Die einzelnen Symbole bestehen aus drei Strecken der Länge 10 und einer Strecke der Länge 20.
- Der Punkt unten am Symbol kann mittels dot (5) gemacht werden.
- Die Punkte sind horizontal und vertikal jeweils 40 auseinander.

### Beachte für diese Programmieraufgabe:

- 1. Benutze die Häuschen um eine saubere Formatierung zu erreichen.
- 2. Kommentare müssen keine gesetzt werden.



Mehr Platz auf der nächsten Seite.

