**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

- 1 *M* ← {}
- 2 repeat
- P ← conjunto de caminhos aumentantes alternantes  $p_1, p_2, ..., p_k$
- $4 \qquad M \leftarrow M \oplus \bigcup_{p \in P} p$
- 5 **until**  $P = \{\}$
- 6 return M

**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

- $1 M \leftarrow \{\}$
- 2 repeat
- P ← conjunto de caminhos aumentantes alternantes  $p_1, p_2, ..., p_k$
- $4 \qquad M \leftarrow M \oplus \bigcup_{p \in P} p$
- 5 **until**  $P = \{\}$
- 6 return M

# Algoritmo 28: Algoritmo de Hopcroft-Karp detalhado.

**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

$$1 D_v \leftarrow \infty \ \forall \ v \in V$$

2 
$$mate_v \leftarrow \mathbf{null} \ \forall v \in V$$

 $3 m \leftarrow 0$ 

5

4 while 
$$BFS(G, mate, D) = true do$$

4 write 
$$DFS(G, mate, D) = true do$$

foreach  $x \in X$  do

if 
$$mate_x = null$$
 then

if 
$$DFS(G, mate, x, D) = true$$
 then

$$m \leftarrow m + 1$$

## Algoritmo 28: Algoritmo de Hopcroft-Karp detalhado.

**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

$$1 D_v \leftarrow \infty \ \forall \ v \in V$$

2 
$$mate_v \leftarrow \mathbf{null} \ \forall v \in V$$

$$3 m \leftarrow 0$$

4 while 
$$BFS(G, mate, D) = true do$$

foreach 
$$x \in X$$
 do
$$| \text{ if } mate_x = null \text{ then }$$

5

6

if 
$$DFS(G, mate, x, D) = true$$
 then

 $m \leftarrow m + 1$ 

| X       | Υ   |
|---------|-----|
| Ana     | 1,3 |
| Bruno   | 4,5 |
| Carol   | 2,3 |
| Diego   | 3,4 |
| Eduardo | 3   |

| 1 | Comprar carne.         |
|---|------------------------|
| 2 | Comprar cerveja.       |
| 3 | Arrumar o ambiente.    |
| 4 | Preparar uma playlist. |
| 5 | Assar a carne.         |





2

3

4

Ε

5



**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

- $1 M \leftarrow \{\}$
- 2 repeat
- P ← conjunto de caminhos aumentantes alternantes  $p_1, p_2, ..., p_k$
- $4 \qquad M \leftarrow M \oplus \bigcup_{p \in P} p$
- 5 **until**  $P = \{\}$
- 6 return M







Ε DFS P={(B,5), (D, 4), (E, 3)} В

**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

- $1 M \leftarrow \{\}$
- 2 repeat
- 3  $P \leftarrow \text{conjunto de caminhos aumentantes alternantes } p_1, p_2, ..., p_k$ 4  $M \leftarrow M \oplus \bigcup_{p \in P} p$
- $\begin{array}{c|c}
  \mathbf{4} & M \leftarrow M \oplus \bigcup_{p \in P} p \\
  \mathbf{5} & \mathbf{until} \ P = \{\}
  \end{array}$
- 6 return M

$$M \leftarrow \{(A,1), (B, 4), (C, 2), (D, 3)\} \oplus \cup \{(B,5), (D, 4), (E, 3)\}$$

 $M = \{(A,1), (B,5), (C,2), (D,4), (E,3)\}$ 



P = {}

**Input** : um grafo bipartido não-dirigido e não-ponderado  $G = (V = X \cup Y, E)$ 

- $1 M \leftarrow \{\}$
- 2 repeat
- 3  $P \leftarrow \text{conjunto de caminhos aumentantes alternantes } p_1, p_2, ..., p_k$
- $4 \qquad M \leftarrow M \oplus \bigcup_{p \in P} p$
- 5 **until**  $P = \{\}$
- 6 return M

 $M = \{(A,1), (B,5), (C,2), (D,4), (E,3)\}$