| Limits as x -> ±∞ - horizontal asymptotes                                   |
|-----------------------------------------------------------------------------|
| Limits as f(x) -> ±∞ as x->a - vertical asymptotes                          |
|                                                                             |
| Definition: lim P(x) = L                                                    |
| V20 110111011 , x-100                                                       |
| If for all 9>0 there exists an NEIR such that it                            |
| if x>N then  f x)-L  < 9                                                    |
|                                                                             |
| lim f(x)=L                                                                  |
|                                                                             |
| If for all 9>0 there exists an NEIR such that it if x < N then  f x -L  < 9 |
| 11 7 = 10 1Ven   1 (A) L  1 7                                               |
| Ex.                                                                         |
| $\lim_{x \to a} e^{-x} = 0$                                                 |
| e-x                                                                         |
|                                                                             |
|                                                                             |
|                                                                             |
| Asymptotes                                                                  |
|                                                                             |
| Ix lim f(x)= L or lim f(x)= L,                                              |
| y = L is a horizontal asymptote of f(x)                                     |
|                                                                             |
| Infinite limits                                                             |

if for all m > 0 there exists a real number N such that if x > N then f(x) > m



Also:
$$\frac{|a \times a|}{|a \times b|} = \frac{|a|(|a \times b|)}{|a \times b|} = \frac{|a|(|a \times b|)}{|a \times b|} = \frac{|a|(|a \times b|)}{|a \times b|} = 0$$

$$\frac{|a \times a|}{|a \times b|} = \frac{|a \times b|}{|a \times b|} = 0$$

$$\frac{|a \times b|}{|a \times b|} = \frac{|a \times b|}{|a \times b|} = 0$$

$$\frac{|a \times b|}{|a \times$$

| $Ex.2.$ $\lim_{x\to\infty}\frac{x^p}{e^x}=0$ for $p>0$                                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| let u = ex -> x = Inlu)  => lim (Inlu) = 0                                                                                                                                            |  |
| Therefore  (Inx)P<< xP< ex                                                                                                                                                            |  |
| Vertical asymptote - x approaches a finite point, function approaches infinity                                                                                                        |  |
| Definition:                                                                                                                                                                           |  |
| lim f(x) = s if for all M>0 there exists a 8>0 such that if a < x < a+8 then f(x)>M                                                                                                   |  |
| $\lim_{x\to a^{-}} f(x) = \infty  \text{if}  \text{for all } M>0  \text{there exists}$ $\alpha  \delta > 0  \text{such that if } \alpha - \delta < x < \alpha  \text{then } f(x) > M$ |  |
| $\lim_{X \to 0} f(x) = \infty$ If left hand limit and right hand limit axist                                                                                                          |  |
| If left hand limit and right hand limit exist  (Note: saying a limit = ∞ means it doesn't exist and gets infinitely large)                                                            |  |
| Definition of vertical asymptotes  If $\lim_{x \to a^{\pm}} F(x) = \pm \infty$ , then $x = a$ is a vertical                                                                           |  |
| asymptote of f                                                                                                                                                                        |  |

| Ex. $\frac{(x+7)(x-7)}{(x-3)(x-2)}$ approaches -4                        |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Since as $x \to 3^{+}$ , $\frac{(x+7)(x-7)}{(x-3)(x-2)} < 0$             |  |  |  |  |  |  |  |
| (x-5) (x-1)                                                              |  |  |  |  |  |  |  |
| Ex. 2. $f(x) = \frac{e^x}{e^{x-1}}$                                      |  |  |  |  |  |  |  |
| Vertical asymptotes                                                      |  |  |  |  |  |  |  |
| If x=0, denominator is undefined                                         |  |  |  |  |  |  |  |
| $\lim_{x \to 0} f(x) = 2$ $VA: x = 0$                                    |  |  |  |  |  |  |  |
| VA: x = 0                                                                |  |  |  |  |  |  |  |
| Harizantal columptatos                                                   |  |  |  |  |  |  |  |
| Horizontal asymptotes $ \frac{1}{\sqrt{M}} \frac{e^{x}}{e^{x} - 1} = 1 $ |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
| (Kinda intuitively based on ratio of numerator : denominator)            |  |  |  |  |  |  |  |
| $\lim_{x \to -\infty} \frac{e^x}{e^{x-1}} = 0$                           |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |
|                                                                          |  |  |  |  |  |  |  |