HN27C301P/FP Series

131072-word x 8-bit CMOS One Time Electrically Programmable ROM

The HN27C301P Series are 131072-word × 8-bit one time electrically programmable ROM. Initially, all bits of the HN27C301P/FP Series are in the "1" state (output high).

Data is introduced by selectively programming "0" into the desired bit location. This device is packaged in 32 pin plastic package, therefore, this device cannot be rewritten and erased.

Features

High speed

Access time 200/250 ns (max.)

Low power dissipation

Active mode 50 mW/MHz (tvp.)

Standby mode 5 µW (typ.)

- Single power supply +5V ± 5%
- Fast High-Reliability program mode and Fast High-Reliability page program mode

Program voltage: +12.5V DC

Fast High-Reliability programming available

- Static No clocks required
- Inputs and output TTL compatible during both read and program modes.

Ordering Information

Type No.	Access time	Package		
HN27C301P-20	200ns	600 mil 32 pin		
HN27C301P-25	250ns	Plastic DIP		
HN27C301FP-20	200ns	32 pin		
HN27C301FP-25	250ns	Plastic SOP		

Pin Description

	Pin name	Function
	A0 - A16	Address
l	/O0 - I/O7	Input/Output
	CE	Chip enable
	ŌĒ	Output enable
	v _{cc}	Power supply
	V _{PP}	Programming power supply
	V _{SS}	Ground
	PGM	Programming enable
	NC	No connection

@HITACHI

Pin Arrangement

Block Diagram

Mode Selection

Mode	₹ (22)	ŌĒ (24)	PGM (31)	V _{PP} (1)	V _{CC} (32)	I/O (13 – 15, 17 – 21)
Read	$\frac{v_{iL}}{v_{iL}}$	V _{IL}	v _{IH}		V _{CC}	Dout
Output Disable	V _{IL}	V _{IH}	V _{IH}	V _{CC}	V _{CC}	High Z
Standby	V _{IH}	х	х	v _{cc}	v _{cc}	High Z
Program	V _{IL}	V _{IH}	VIL	V _{PP}	v _{cc}	Din
Program Verify	V _{IL}	VIL	v _{IH}	V _{PP}	v _{cc}	Dout
Page Data Latch	v_{iH}	V _{IL}	V _{IH}	V _{PP}	v _{cc}	Din
Page Program	VIH	V _{IH}	V _{IL}	V _{PP}	v _{cc}	High Z
	VIL	V _{IL}	VIL			
Program Inhibit	$\overline{v_{1L}}$	v _{IH}	V _{IH}	- - V _{РР}	v	Hint 7
	VIH	VIL	VIL	- • РР	v_{cc}	High Z
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	v _{IH}	VIH	-		

Note) 1. X: Don't care,

Absolute Maximum Ratings

Symbol	Value	Unit
Vin, Vout	-0.6*2 to +7.0	v
V _{PP}	-0.6 to +13.0	V
v_{cc}	-0.6 to +7.0	v
Topr	0 to +70	°C
T _{stg}	-55 to +125	°C
Tbias	-10 to +80	°C
	V _{in} , V _{out} V _{PP} V _{CC} T _{opr} T _{stg}	V _{in} , V _{out} -0.6*2 to +7.0 Vpp -0.6 to +13.0 V _{CC} -0.6 to +7.0 T _{opr} 0 to +70 T _{stg} -55 to +125

Notes) *1. With respect to V_{SS} *2. -1.0 V for pulse width \leq 50 ns

Read Operation

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5V ± 5%, V_{PP} = V_{CC})

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input Leakage Current	ILI	_	_	2	μA	V _{in} = 5.25V
Output Leakage Current	l _{LO}			2	μA	$V_{out} = 5.25V/0.45V$
Vpp Current	I _{PP1}		1	20	μA	V _{PP} = 5.5V
V _{CC} Current	ISBI	-	-	1	m A	ĒĒ = V _{IH}
ACC Cantent	I _{SB2}		1	20	μA	CE =V _{CC} ±0.3V
	I _{CC1}		-	30	mA	$\overrightarrow{CE} = \overrightarrow{V}_{IL}$, $I_{out} = 0 \text{mA}$
V _{CC} Current	I _{CC2}	-	-	30	mA	$f = 5 \text{ MHz}, l_{out} = 0 \text{mA}$
	I _{CC3}	_		15	mA	f = 1 MHz, I _{out} = 0mA
Input Low Voltage	V _{IL}	-0.3*1	-	0.8	V	
Input High Voltage	V _{IH}	2.2	-	V _{CC} +1*2	v	
Output Low Voltage	V _{OL}	_	-	0.45	V	I _{OL} = 2.1mA
Output High Voltage	V _{ОН}	2.4	-	_	V	I _{OH} = -400μA

Notes)

~1.0V for pulse width \leq 50ns. V_{CC} + 1.5V for pulse width \leq 20ns. If V_{IH} is over the specified maximum value, read operation cannot be

AC Characteristics $I(Ta = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 5\%, V_{PP} = V_{CC})$

	Symbol	Sample 1 HN27C301P-20		HN27C	301P-25	** **	Test conditions
Item	Symbol	Min	Max	Min	Max	– Unit	rest conditions
Address to output delay	†ACC	-	200	-	250	ns	CE=OE=V _{IL}
CE to output delay	^t CE	-	200	-	250	ns	OE = VIL
OE to output delay	tOE	10	70	10	100	ns	CE = V _{1L}
OE high to output float	tDF	0	50	0	60	ns	CE= V _{IL}
Address to output hold	tОН	0	-	0	-	ns	CE=OE=VIL

Note) tpF is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Switching Characteristics

Test Condition

Input Pulse Levels:

0.45V to 2.4V

Input Rise and Fall Time:

≤ 20ns

Output Load:

1 TTL Gate + 100pF

Reference Levels for Measuring Timing: Inputs; 0.8V and 2.0V

Outputs: 0.8V and 2.0V

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input Capacitance	C _{in}	_		10	pF	V _{in} = 0V
Output Capacitance	Cout	-		15	pF	V _{out} = 0V

Fast High-Reliability Programming

This device can be applied the Fast High-Reliability Programming algorithm shown in following flowchart. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

DC Programming Characteristics (Ta = 25° C ± 5° C, V_{CC} = $6V \pm 0.25V$, V_{PP} = $12.5V \pm 0.3V$)

20112					• •		
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	
Input Leakage Current	ILI	_	-	2	μA	$V_{in} = 6.25 V/0.45 V$	
Output Low Voltage during Verify	V _{OL}	-	-	0.45	V	l _{OL} = 2.1mA	
Output High Voltage during Verify	V _{OH}	2.4	-		v	I _{OH} = -400μA	
V _{CC} Current (Active)	I _C C	-	_	30	mA		
Input Low Level	VIL	-0.1*5	-	0.8	V		
Input High Level	V _{IH}	2.2	-	V _{CC} +0.5 *6	V		
V _{PP} Supply Current	Ipp	-	-	40	mA	$\overline{CE} = \overline{PGM} = V_{IL}$	
					_		

- Notes) *1. V_{CC} must be applied before V_{PP} and removed after V_{PP}.

 *2. V_{PP} must not exceed 13V including overshoot.

 - *3. An influence may be had upon device reliability if the device is installed or removed while Vpp=12.5V.
 - *4. Do not alter Vpp either VIL to 12.5V or 12.5V to V_{IL} when \overline{CE} = Low. *5. -0.6V for pulse width ≤ 20 ns.

 - *6. If VIH is over the specified maximum value, programming operation cannot be guaranteed.

AC Programming Characteristics

 $(Ta = 25^{\circ}C \pm 5^{\circ}C, V_{CC} = 6V \pm 0.25V, V_{PP} = 12.5V \pm 0.3V)$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address Setup Time	tAS	2	_	_	μs	
OE Setup Time	toes	2	_	_	μs	
Data Setup Time	t _{DS}	2	_	-	μs	
Address Hold Time	taH	0	-	_	μs	
Data Hold Time	t _{DH}	2	_	_	μs	
OE to Output Float Delay	tDF*1	0	_	130	ns	
Vpp Setup Time	tvps	2		_	μs	
V _{CC} Setup Time	tvcs	2	_	_	μs	
PGM Pulse Width during Initial Programming	tpw	0.19	0.2	0.21	ms	
PGM Pulse Width during Over Programming	tOPW*2	0.19	_	5.25	ms	
CE Setup Time	tCES	2	_	_	μз	
Data Valid from OE	t _{OE}	0	_	150	ns	

Notes) *1. tpf is defined as the time at which the output achieves the open circuit condition and data is no longer driven.
*2. Refer to the programming flowchart for topw.

, , ,

Switching Characteristics

Input Pulse Levels:

0.45V to 2.4V

Input Rise and Fall Time:

≤ 20ns

Reference Levels for Measurement Timing:

Inputs; 0.8V and 2.0V Outputs: 0.8V and 2.0V

Program Program Verify Address LAS tah Data In Stable Data Out Valid Data . IDS ton tor V_{PP} V_{PP} tvrs Vcc+1 v_{cc} v_{cc} tvcs CE PGM toE IOES ŌE.

Fast High-Reliability Page Programming

This device can be applied the Fast High-Reliability Page Programming algorithm shown in following flowchart This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

DC Programming Characteristics (Ta = 25°C ± 5°C, V_{CC} = 6V ± 0.25V, V_{PD} = 12.5V ± 0.3V)

Symbol	Min	Тур	Max	Unit	Test Conditions
I _{LI}	_	-	2	μА	$V_{in} = 6.25 V/0.45 V$
VOL	-	_	0.45	v	I _{OL} = 2.1mA
v _{OH}	2.4	-		V	l _{OH} = -400μA
I _{CC}	-	-	30	mA	
VIL	-0.1*5	_	0.8	v	
VIH	2.2	-	V _{CC} +0.5 *6	V	
lpp	-		50	mA	$\overline{CE} = \overline{OE} = V_{IH}, \overline{PGM} = V_{IH}$
	I _{LI} V _{OL} V _{OH} I _{CC} V _{IL} V _{IH}	I _{LI} - V _{OL} - V _{OH} 2.4 I _{CC} - V _{IL} -0.1*5 V _{IH} 2.2	I _{LI}	ILI - - 2 VOL - - 0.45 VOH 2.4 - - ICC - - 30 VIL -0.1*5 - 0.8 VIH 2.2 - V _{CC} +0.5*6	I _{L1} - - 2 μA V _{OL} - - 0.45 V V _{OH} 2.4 - - V I _{CC} - - 30 mA V _{IL} -0.1*5 - 0.8 V V _{IH} 2.2 - V _{CC} +0.5*6 V

- Notes) *1. V_{CC} must be applied before V_{PP} and removed after V_{PP}.
 - *2. Vpp must not exceed 13V including overshoot.
 - *3. An influence may be had upon device reliability if the device is installed or removed while Vpp=12.5V.
 - *4. Do not alter Vpp either V_{IL} to 12 5V or 12.5V to V_{IL} when CE=Low.
 *5. -0.6V for pulse width ≤ 20ns

 - *6. If VIH is over the specified maximum value, programming operation cannot be guaranteed.

AC Programming Characteristics

 $(Ta = 25^{\circ}C \pm 5^{\circ}C, V_{CC} = 6V \pm 0.25V, V_{PP} = 12.5V \pm 0.3V)$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address Setup Time	tAS	2	-	_	μs	
OE Setup Time	toes	2	_		μs	
Data Setup Time	t _{DS}	2	-	-	μs	-
Address Hold Time	t _A H	0	_	-	μs	
	tAHL	2	-		μs	
Data Hold Time	^t DH	2	_	-	μs	
OE to Output Float Delay	t _{DF} *1	0	_	130	ns	
V _{PP} Setup Time	tvps	2	_	-	μs	
V _{CC} Setup Time	tvcs	2		-	μs	
PGM Pulse Width during Initial Programming	1 _{PW}	0.19	0.20	0.21	ms	
PGM Pulse Width during Over Programming	topw*2	0.19	-	5.25	ms	
CE Setup Time	t _{CES}	2	-	-	μs	
Data Valid from OE	^t OE	0		150	ns	
OE Pulse Width during Data Latch	tLW	1			μs	
PGM Setup Time	t _{PGMS}	2	-	-	μs	
CE Hold Time	^t CEH	2	_	-	μs	
OE Hold Time	tOEH	2		-	μs	

Notes) *1. tpf is defined as the time at which the output achieves the open circuit condition and data is no longer driven *2. Refer to the programming flowchart for topw.

Switching Characteristics

Test Condition

Input Pulse Levels:

0.45V to 2.4V

Input Rise and Fall Time:

≤ 20ns

Reference Levels for Measuring Timing: Inputs; 0.8V and 2.0V $\,$

Outputs; 0.8V and 2.0V

Recommended Screening Conditions

Before mounting, please make the screening (baking

without bias) shown in the right,

Recommended Screening conditions

TIMING WAVEFORM

• Word Mode (BHE = 'V_{IH}') or Byte Mode (BHE = 'V_{II}') (1)

NOTES:

- 1. t_{DHA}, t_{DHC}, t_{DHO}; determined by faster.
- 2. t_{AA}, t_{ACE}, t_{OE}; determined by slower.
- 3. t_{CLZ}, t_{OLZ}; determined by slower.

• Word Mode, Byte Mode Switch (2)

NOTES:

- 1. \overline{CE} and \overline{OE} are enable $A_{19} \sim A_0$ are valid.
- 2. $D_{1S}/A-1$ pin is in the output state when BHE is high, \overline{CE} and \overline{OE} are enable. Therefore, the input signals of opposite phase to the output must not apply to them.