Homework 11 Honors Analysis I

Homework 11

ALECK ZHAO

December 6, 2017

Chapter 11: The Space of Continuous Functions

1. For each n, let Q_n be the set of all polygonal functions that have nodes at k/n, $k = 0, \dots, n$., and that take on only rational values at those points. Check that Q_n is a countable set, and hence that the union of the Q_n 's is a countable dense set in C[0,1].

Proof. If $f \in Q_n$, then f has n+1 nodes. These nodes uniquely define f and each node can take on any value in \mathbb{Q} , so there is a natural bijection between Q_n and \mathbb{Q}^{n+1} . Since \mathbb{Q}^{n+1} is countable, it follows that Q_n is countable.

Then $Q = \bigcup_{n=0}^{\infty} Q_n$ is a countable union of countable sets, and thus countable.

7. If p is a polynomial and $\varepsilon > 0$, prove that there is a polynomial q with rational coefficients such that $||p-q||_{\infty} < \varepsilon$ on [0,1].

Proof. Suppose $p = a_0 + a_1 x + \dots + a_n x^n$ where $a_i \in \mathbb{R}$ for each i. Let $\varepsilon > 0$. Then since \mathbb{Q} is dense in \mathbb{R} , we can find $b_0, b_1, \dots, b_n \in \mathbb{Q}$ such that $0 < a_i - b_i < \frac{\varepsilon}{n+1}$ for each i. Let $q = b_0 + b_1 x + \dots + b_n x^n$. Since $x \in [0, 1]$, the max of the polynomial occurs at x = 1, so

$$||p - q||_{\infty} = ||(a_0 - b_0) + (a_1 - b_1)x + \dots + (a_n - b_n)x^n||_{\infty}$$

$$= (a_0 - b_0) + (a_1 - b_1) + \dots + (a_n - b_n)$$

$$< (n+1) \cdot \frac{\varepsilon}{n+1} = \varepsilon$$

as desired. \Box

9. Let \mathcal{P}_n denote the set of polynomials of degree at most n, considered as a subset of C[a,b]. Clearly \mathcal{P}_n is a subspace of C[a,b] of dimension n+1. Also, \mathcal{P}_n is closed in C[a,b]. How do you know that \mathcal{P} , the union of all of the P_n , is not all of C[a,b]? That is, why are there necessarily non-polynomial elements in C[a,b]?

Solution. If \mathcal{P} was all of C[a, b], then there are no continuous functions that aren't polynomials. However, $\sin x$ cannot be represented as a polynomial. If it could, then it would have finitely many roots, since polynomials are finite degree, but the roots of $\sin x$ are $2\pi k$ for $k \in \mathbb{Z}$. Thus, \mathcal{P} is not all of C[a, b]. \square

- 12. Let p_n be a polynomial of degree m_n , and suppose that $p_n \Rightarrow f$ on [a, b], where f is not a polynomial. Show that $m_n \to \infty$.
- 14. Let $f \in C[a, b]$ be continuously differentiable, and let $\varepsilon > 0$. Show that there is a polynomial p such that $||f p||_{\infty} < \varepsilon$ and $||f' p'||_{\infty} < \varepsilon$. Conclude that $C^{(1)}[a, b]$ is separable.

Homework 11 Honors Analysis I

Proof. Given f, there exists a polynomial q such that $||f'-q||_{\infty} < \varepsilon/(b-a)$ by WAT. Let p be the anti-derivative of q, with p(a) = q(a). Then

$$||f - p||_{\infty} = \sup_{x \in [a,b]} |f(x) - p(x)| = \sup_{x \in [a,b]} \left| \int_{a}^{x} (f'(t) - q(t)) dt \right|$$

$$\leq \sup_{x \in [a,b]} \int_{a}^{x} |f'(t) - q(t)| dt \leq (b - a) ||f' - q||_{\infty}$$

$$< (b - a) \cdot \frac{\varepsilon}{b - a} = \varepsilon$$

as desired. \Box

- 27. Let T be a trig polynomial. Prove:
 - (a) If T is an even function, then T can be written using only cosines.

Proof. If T is even, then we have

$$T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

$$T(-x) = a_0 + \sum_{k=1}^{n} (a_k \cos(-kx) + b_k \sin(-kx)) = a_0 + \sum_{k=1}^{n} (a_k \cos kx - b_k \sin kx)$$

$$T(x) = T(-x) \implies \sum_{k=1}^{n} b_k \sin kx = -\sum_{k=1}^{n} b_k \sin kx \implies \sum_{k=1}^{n} b_k \sin kx = 0$$

$$\implies T(x) = a_0 + \sum_{k=1}^{n} a_k \cos kx$$

Thus T can be written using only cosines.

(b) If T is an odd function, then T can be written using only sines.

Proof. If T is even, then we have

$$T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)$$

$$-T(-x) = -a_0 - \sum_{k=1}^{n} (a_k \cos(-kx) + b_k \sin(-kx)) = -a_0 + \sum_{k=1}^{n} (-a_k \cos kx + b_k \sin kx)$$

$$T(x) = -T(x) \implies a_0 + \sum_{k=1}^{n} a_k \cos kx = -\left(a_0 + \sum_{k=1}^{n} a_k \cos kx\right) \implies a_0 + \sum_{k=1}^{n} a_k \cos kx = 0$$

$$\implies T(x) = \sum_{k=1}^{n} b_k \sin kx$$

Thus T can be written using only sines.