REDES NEURAIS

A arquitetura da rede Multilayer Perceptron (MLP)

TÓPICOS

- Limitações dos modelos lineares
- 2. Redes com múltiplas camadas
- Interpretação do problema XOR
- 4. Topologias alternativas

- Como separar as duas classes?
- 2. Não é possível com uma fronteira linear
- 3. Neurônios lineares criam apenas uma fronteira de separação linear

REDES COM MULTIPLAS CAMADAS

- Redes com apenas uma camada só representam funções linearmente separáveis
- Redes de múltiplas camadas solucionam essa restrição
- retropropagação foi um dos motivos para o ressurgimento do interesse pela área de O desenvolvimento do algoritmo de redes neurais, na década de 80

REDES COM MULTIPLAS CAMADAS

CONTUDO, APENAS SE UTILIZARMOS FUNÇÕES DE ATIVAÇÃO **NÃO-LINEARES**

$$y_1 = x_1 w_1$$

$$y_2 = y_1 w_2$$
 $y_2 = x_1 w_1 w_2$

$$w_c = w_2 w_1$$

$$y_2 = x_1 w_c$$

O NEURÔNIO MCP - Revisitando

REDE MLP

REDE COM 3 CAMADAS

- Duas ocultas (escondidas)
- Uma camada de saída

FUNÇÕES DE ATIVAÇÃO

Diversas:

- Linear
- Degrau (Heaviside)
- Sigmoide Logística
- Tangente Hiperbólica
- ReLU (e variações)
- Softmax
- Dentre outras (Ver Cap. 4.1 Livro Dive Into Deep Learning)

FUNÇÃO LINEAR E DEGRAU

$$f(x) = x$$

$$f(x) = \begin{cases} 1 & \text{se } x > 0 \\ 0 & \text{caso contrario} \end{cases}$$

Fonte: https://pt.d2l.ai/chapter_multilayer-perceptrons/mlp.html

SIGMOIDE LOGISTICA

TANGENTE HIPERBÓLICA

Fonte: https://pt.d2l.ai/chapter_mul tilayer-perceptrons/mlp.html

RECTIFIED LINEAR UNIT - ReLU

Fonte: https://pt.d2l.ai/chapter_mul tilayer-perceptrons/mlp.html

FUNÇÃO SOFTMAX

- Converte a saída padrão em uma distribuição de probabilidad
- Utilizada em problemas de classificação com múltiplas classe

$$f(y) = \frac{\exp(y)}{\sum_k \exp(y_k)}$$

RETOMANDO O PROBLEMA XOR

0

0

0

Qual é a configuração necessária?

>	0	1	1	0
x ₂	0	1	0	1
x_1	0	0	П	1

y ₃	0	Н	П	0
y ₁	خ	ċ.	<i>د</i> -	<i>د</i> .
x ₂	0	Н	0	⊣
x ₁	0	0	1	Н

	70 TO 10 TO	* S. S. S. S.		
y ₃	0	1	1	0
V ₁	0	C	<i>د</i> .	ر. ،
X ₂	0	1	0	П
X ₁	0	0	1	1

y ₃	0	П	1	0
V ₁	0	0	0	1
X ₂	0	1	0	1
X ₁	0	0	П	1

O que o neurônio N1 representa?

x_1	X ₂	y ₁	y ₃
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- A saída y1 é 1 apenas quando as duas entradas estiverem ativas (=1)
- Porta Lógica AND (E-Lógico)

 $(b+x_1w_1+x_2w_2)$

 $y_2 =$

O QUE A REDE MLP FAZ?

transformação do problema original em um problema linearmen Resolve problemas não-linearmente separáveis a partir da separável (camada a camada)

TOPOLOGIAS ALTERNATIVAS

Fonte: Wilamowski (2009), IEEE Industrial Electronics Magazine Disponível em: https://www.eng.auburn.edu/~wilambm/pap/

O QUE VIMOS?

- única camada e com múltiplas camadas Entendemos a limitação das redes com lineares
- Conhecemos a rede MLP e a função dos neurônios das camadas ocultas
- Vimos como a rede MLP resolve o problema XOR

PROXIMA VIDEOAULA

- retropropagação (backpropagation) Aprenderemos a treinar uma rede MLP com o algoritmo de
- Entenderemos a derivação do algoritmo de retropropagação

ATÉ A PRÓXIMA!