Linkage Tests in American Pima Cotton¹

E. L. Turcotte and Carl V. Feaster²

ABSTRACT

The results of 42 linkage tests involving six American Pima cotton (Gossypium barbadense L.) mutants and 15 mutants of G. hirsutum L. are reported. Forty of the tests gave no significant evidence of linkage and two tests indicated linkage. A dominant Pima male-sterile mutant (Msp) was found to be linked with one of a pair of duplicate factors for glandless (gl_s) with 9.38 \pm 0.98% recombination and with naked seed (N_s) with 13.95 \pm 1.89% recombination. Msp was not allelic with the dominant male-sterile genes Ms_s and Ms_s. The gene symbol, Ms₁₀, is proposed for the character Pima male-sterility in place of the currently used symbol Msp.

Additional index words: Gossypium barbadense L., Linkage groups, Allelism.

THE testing of mutant genes for linkage in American Pima cotton (Gossypium barbadense L.) is a continuing project. Plants with mutant genes are found in field plantings of Pima cotton. These Pima mutant genes are tested for linkage among themselves and with marker genes in G. hirsutum L. This paper reports the results of linkage tests involving six mutants in Pima cotton and 15 mutants in G. hirsutum. The results are from tests made since the last summary reported by Turcotte and Feaster in 1972.

MATERIALS AND METHODS

The genes tested for linkage are listed in Table 1. F₁, F₂, and, in some cases, testcross populations were used. As seed became available, segregating populations were grown and scored in progeny rows in a field nursery or in 15-cm pots in a greenhouse at Phoenix, Ariz. Prior experience with linkage studies in cotton (Kohel et al., 1977) showed no reciprocal cross ef-

Table 1. Marker gene, phenotype, and linkage group of 23 genes in cotton used for linkage tests reported in the present study.

Marke gene	r Phenotype	Linkage group	Reference
yg₂†	Yellow-green plant color	I	Kohel, 1973
Lº	Okra leaf	II	Kohel, 1972
cr‡	Crinkled dwarf	II	Turcotte & Feaster, 1972
Dw	Dirty white lint	III	Kohel et al., 1965
\mathbf{R}_{1}	Red plant color	III	Kohel, 1972
yg.†	Yellow-green plant color	III	Kohel, 1973
H,	Pilose	IV	Kohel, 1972
Lc ₂	Brown lint-2	IV	Kohel et al., 1965
gl,†	Glandless plant	v	Kohel, 1972
fg	Frego bract	VI	Kohel, 1972
gl _a †	Glandless plant	IX	Kohel, 1972
\mathbf{p}_{1}	Cream pollen	ΧI	Turcotte & Feaster, 1972
N,	Naked seed	XIII	Kohel et al., 1977
cu	Cup leaf	Independent	Kohel, 1972
Ms.	Male-sterility	Independent	Kohel, 1972
Ms,	Male-sterility	Independent	Kohel, 1973
Msp‡	Male-sterility	Independent	Turcotte & Feaster, 1972
p ₂ ‡	Orange pollen	Independent	Turcotte & Feaster, 1972
rs‡	Rudimentary stigma	Independent	Turcotte & Feaster, 1972
Ru‡	Rugate leaf	Independent	Turcotte & Feaster, 1972
\mathbf{v}_{i}	Virescent-1 plant color	Independent	Kohel, 1972
v,	Virescent-2 plant color	Independent	Kohel, 1973
v,‡	Virescent-7 plant color	Independent	Turcotte & Feaster, 1973

[†] Recessive duplicate genes.

fects, and reciprocal crosses were not made in the present study. Not all possible cross combinations were made. Linkage studies are a continuing project, and data from several combinations either have been reported previously or are yet to be reported. Linkage was detected by Chi-square analysis. Confidence

limits for recombination values were estimated by the maximum likelihood method (Allard, 1956).

RESULTS AND DISCUSSION

Results of the linkage tests are given in Table 2. Forty-two combinations were tested for association. Forty tests gave nonsignificant Chi-square values for

Table 2. Summary of linkage tests involving six Pima mutant genes and 16 mutant genes of G. hirsutum. In each combination the upper figure is the population size and the lower figure is recombination percent. F. populations are in regular type, and testcross populations are in italics. Combinations reported previously are shown by -. Untested combinations are blank.

Tester	Pima mutant genes tested								
genes	Msp	p,	rs	Ru	v,	cr			
yg ₁ yg ₂		154 64	120 78	225 56					
Lº	-	_	-	<i>89</i> 53	169 42				
$\mathbf{R}_{_{1}}$	-	-	-	-	397 51	-			
Н,	227 49	<i>155</i> 49	111 55	276 50	<i>411</i> 51	-			
gl ₂ gl ₈	<i>566</i> 08	-		_	-				
fg		216 48	159 45	99 67	246 54				
\mathbf{p}_{ι}	-	-	-	-	133 49				
N,	<i>337</i> 14	<i>304</i> 50	<i>75</i> 47	88 57	154 56	_			
cu	<i>85</i> 61	204 47	192 45		233 44				
Ms₄			<i>219</i> 51	<i>91</i> 63	264 47				
\mathbf{v}_1	292 52		112 45	484 52	-	· _			
\mathbf{v}_{2}		154 49	150 47						
Msp		••	-	-	-	-			
$\mathbf{p_s}$				-	-	-			
rs				239 53	-	-			
Ru					-	-			
V ₇						409 50			
Lc₂		<i>70</i> 49			<i>155</i> 55	-			
Dw		100 49			214 43				

[‡] Pima mutant genes.

¹ Cooperative investigations of USDA, SEA-AR and the Plant Sciences Dep., Univ. of Arizona, Tucson, Ariz. Arizona Agric. Exp. Stn. Journal Paper No. 2904. Received 17 July 1978.
² Research geneticist and research agronomist, USDA, SEA-AR, Univ. of Arizona Cotton Res. Ctr., Phoenix, AZ 85040.

Genotype	No. plants	Source	Chi-square
Msp-Gl ₂ -Gl ₃ -	286	Msp vs. msp	1.59
Msp-gl,gl,gl,gl,	12	Gl ₂ /Gl ₃ vs. gl ₂ gl ₂	0.29
mspmspGl ₂ -Gl ₃ -	144	Linkage	134.56
mspmspgl,gl,gl,gl,	124		
	566		
Recombination %		7.98 ± 1.08	
Msp-Gl ₂ -gl ₃ gl ₄	18	Msp vs. msp	0.61
Msp-gl,gl,gl,gl,	94	Gl, vs. gl,	0.27
mspmspGl ₂ -gl ₂ gl ₃	104	Linkage	108.47
mspmspgl,gl,gl,gl,	_20		
	236		
Recombination %		16.10 ± 2.39	
Msp-gl ₂ gl ₂ Gl ₂ -	58	Msp vs. msp	0.00
Msp-gl,gl,gl,gl	58	Gl. vs. gl.	0.04
mspmspgl,gl,Gl,-	59	Linkage	0.04
mspmspgl,gl,gl,gl,	56	Ü	
	231		
Recombination %		49.35 ± 3.29	
Ms ₄ -Gl ₂ -Gl ₃ -	39	Ms, vs. ms,	0.09
Ms ₄ -gl ₂ gl ₂ gl ₃	11	Gl./Gl. vs. gl.gl.	0.16
ms,ms,Gl3-Gl3-	40	Linkage	0.08
ms,ms,gl,gl,gl,gl,	<u>13</u>		
	103		
Recombination %		47.45 ± 4.26	
Ms,-Gl,-Gl,-	84	Ms, vs. ms,	0.06
Ms,-gl,gl,gl,gl,	57	Gl ₂ /Gl ₃ vs. gl ₃ gl ₃	19.04
ms,ms,Gl,-Gl,-	93	Linkage	2.76
ms,ms,gl,gl,gl,gl	44	•	
	278		
Recombination %		56.63 ± 2.58	
Msp-N ₁ -	27	Msp vs. msp	0.24
Msp-n ₁ n ₁	146	N_1 vs. n_1	0.07
mspmspN ₁ -	144	Linkage	175.22
mspmspn,n,	20	-	
	337		
Recombination %		13.95 ± 1.89	

linkage, indicating that the genes tested were on separate chromosomes or that linkage was not detected if the genes were on the same chromosome. Two tests with significant Chi-square values showed linkage between Pima male-sterile (Msp) and glandless (gl_2gl_3) and between Pima male-sterile and naked seed (N_1) . Detailed analyses of these linkages are presented in Table 3.

The initial linkage tests between Pima male-sterile and glandless involved a glandless stock homozygous for the recessive genes gl_2 and gl_3 . A recombination value of 7.98 \pm 1.08% was obtained from these data, but the test did not show if the linkage was between Msp and gl_2 or Msp and gl_3 . We then tested Msp and two monomeric stocks with the gland genotypes $Gl_2Gl_2gl_3gl_3$ and $gl_2gl_2Gl_3Gl_3$. Results from these tests

showed the Msp was independent of the gl_3 locus and linked with the gl_2 locus, with a recombination percent of 16.10 ± 2.39 . A combined recombination percent of 9.38 ± 0.98 was obtained with data from all tests showing linkage.

The association between Msp and gl_2 is a new linkage in cotton. The gl_2 locus has been located in the A genome and forms linkage group V (Kohel, 1972) with the genes ne_1 , one of a pair of duplicate genes conditioning nectariless, and bw_1 , one of a pair of duplicate genes conditioning withering bracts. The gene order of linkage group V has not been determined.

The allelism of Pima male-sterile (Msp) with the dominant male-sterile genes Ms4 and Ms7 cannot be determined directly, because sterility prevents them from being crossed. The results of linkage tests between Ms_4 and gl_2gl_3 and between Ms_7 and gl_2gl_3 (Table 3) showed no association. Because Msp has been associated with gl_2 , it follows that Msp should not be allelic with either Ms4 or Ms7. Msp has not been assigned a gene symbol (Turcotte and Feaster, 1972) in accordance with current rules for genetic nomenclature in cotton (Kohel, 1973). We now propose the name Male sterile-11 with the gene symbol Ms11 for this dominant male-sterile trait in Pima cotton.

The second test with a significant Chi-square value for linkage involved Msp and N_1 . As shown in Table 3, a recombination percent of 13.95 \pm 1.89 was obtained. These data indicate that N_1 is also a member of linkage group V, along with Ms_{11} , gl_2 , ne_1 , and bw_1 . Kohel et al. (1977) reported a linkage between N_1 and Leaf fleck (Lf), with 9.52% recombination. They designated this association to be linkage group XIII. Neither N_1 nor Lf has been tested with marker genes of linkage group V. It would appear from our data that Lf might be in linkage group V. This matter remains to be resolved.

4350635, 1979, 1, Downloaded from https://acsess.onlinelibrary.wiley.com/doi/10.2135/copps:i1979.0011 183X00190001000x by North Carolina State Universit, Wiley Online Library on [21.07.2023]. See the Terms and Conditions (https://oinelibrary.wiley.com/terms-ad-conditions) on Wiley Online Library for rules of tase; OA articles are governed by the applicable Cerewise Commons

REFERENCES

Allard, R. W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:

Kohel, R. J. 1972. Linkage tests in Upland cotton, Gossypium hirsutum L. II. Crop Sci. 12:66-69.

———. 1973. Genetic nomenclature in cotton. J. Hered. 64:

291-295.

-, C. F. Lewis, and M. N. Christiansen. 1977. The identification of a new mutant and linkage group in cotton. J. Hered. 68:65-66.

and T. R. Richmond. 1965. Linkage tests in