

<u>Help</u>

sandipan_dey ~

<u>Calendar</u> **Discussion** <u>Course</u> **Progress** <u>Dates</u> <u>Notes</u>

☆ Course / Unit 4: Matrices and Linearization / Recitation 14: Solving Linear Systems

(1)

Next > < Previous</pre>

1. More Determinants

□ Bookmark this page

■ Calculator

Hide Notes

Recitation due Sep 15, 2021 20:30 IST

Practice

Using the 2×2 determinant

3/3 points (graded)

Let's use the determinant to answer a question about linear systems.

Consider the system:

$$-4x + cy = 4$$
$$cx - y = 1$$

- 1. Suppose c=1. Which of the following applies?
 - there is no solution
 - there is a unique solution
 - there are multiple solutions
- 2. Find the largest possible value of c such that the corresponding matrix is not invertible.

✓ Answer: 2

- c =2
- 3. For that value of c, which of the following applies?
 - there is no solution
 - there is a unique solution
 - there are multiple solutions

Solution:

- The matrix $\begin{pmatrix} -4 & 1 \ 1 & -1 \end{pmatrix}$ has determinant ${f 3}$, which is not ${f 0}$. This means the matrix is invertible, and so there is a unique solution.
- The determinant of $\begin{pmatrix} -4 & c \\ c & -1 \end{pmatrix}$ is $4-c^2$. Thus the determinant equals zero for $c=\pm 2$. Therefore the answer is c=2.
- 3. (Using elimination) Adding twice the second equation to the first equation yields 0=6. Since this is not possible, there is no solution.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Hide Notes

Determinant for 3×3

In lecture, we saw how to compute the determinant of a 2×2 matrix. In this section, we will compute the determinant of a 3 imes 3 matrix. Recall that the determinant is important because it has to be nonzero in order for the matrix to be invertible. Computing the full inverse of a 3×3 matrix is a little complicated, so we will just focus on the determinant for now.

We use absolute value bars for the determinant of a matrix:

$$|A| = \det(M). \tag{5.85}$$

For example,

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc. \tag{5.86}$$

What should be the determinant of a 3×3 matrix?

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = ? \tag{5.87}$$

Determinant in 3×3

take b2 times c3 minus c2 times b3, and this times that minus this times that, and so on.

So in fact, that's a total of six terms in here.

And maybe some of you have already

seen a different formula for 3 x 3 determinants where you

actually have the six terms.

It's the same definition.

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

To find the determinant of a 3×3 matrix, we have the following formula.

⊞ Calculator

Determinant Formula Structure

0:00 / 0:00 2.0x X CC Start of transcript. Skip to the end.

PROFESSOR: So, how to remember the structure of this formula.

Well, it's called-- this is called an expansion according

to the first row.

So we're going to take the entries in the first row-- a 1,

a 2, a 3--

and for each of them we get a term. Namely, we multiply it by a 2 by 2

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

Video

Download video file

How to Remember

The formula is easier to remember if you can see where each term comes from. In the first term, a_1

we see the determinant of the submatrix obtained by deleting the row and column containing a_1 . The same pattern is true for the terms with a_2 and a_3 , except for the (easily forgotten!) minus sign in front of a_2 . By remembering this pattern, you can remember the entire formula.

Determinant Practice

1 point possible (graded)

Compute the following determinant.

$$egin{bmatrix} 2 & 3 & 3 \ 2 & 4 & 5 \ 1 & 1 & 2 \ \end{bmatrix} =$$

Submit

Show all posts

You have used 0 of 5 attempts

1. More Determinants

Topic: Unit 4: Matrices and Linearization / 1. More Determinants

Hide Discussion

by recent activity >

Add a Post

[Staff] formula error (5.88)

I know it's covered in the video right below, but it looks like the third piece of the formula in 5.88 is incorred

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>