

ORGANISATION AND SHARING OF NEUROIMAGING DATA

BIDS and pieces – the theory

Tibor Auer

INTRODUCTION

Who is Tibor?

Lecturer in Biological Psychology and Research Methods

My journey

- MD
 - Undergraduate research in neuropathology

- PhD in clinical neuroscience: neuroimaging techniques in various clinical conditions
- Post-doctoral experience in neuromodulation intervention (NFT, tACS)
- Neuroinformatician (research computing, scalable pipelines, open-source development)
 - Developing, training, and supporting robust and reliable methods

LEARNING OUTCOMES

Understand BIDS

- What it is
- What the key components are
- Where you can get help

Want to use BIDS

- Why you should use it
- How it can help your research

LEARNING OUTCOMES

BIDS raw data for MRI

- fMRI (task and rest)
- sMRI (qMRI)
- DW-MRI
- ASL

• BIDS for ...

- MEG, EEG, iEEG
- PET
- NIRS
- Microscopy
- Physiology
- Psychophysics
- Genetics

Derived data

Information explosion

 Neuroimaging field generates an increasing amount of data

<u>Nature</u>

Information explosion

- Neuroimaging field generates an increasing amount of data
- Most neuroimaging data are complex (i.e., multidimensional, hierarchical, structured)
- No consensus on how to represent common concepts and similarities, e.g., in experimental designs and data types

 \downarrow

 Software tools and researcher organize and describe their data in their own way

Fragmented data management

- Sharing requires rearranging/reformatting the data
- Validating (accuracy, completeness) against what?

Data-unaware workflows

- Requires manual input
- Analysis scripts must be adapted to the data
- + Complex workflows (integrating different tools)

sonian.com

- Reduced efficiency
- Lack of transparency (data and workflow)
 - Difficult to document
 - Harder to detect errors

Lack of reproducibility

Big Data Driving Business | Segittur

- Lack of reproducibility → Translation gap
 - Increasing volume of neuroimaging findings in mental health

- Limited success in, e.g., identifying reliable biomarkers (Nikolaidis et al., 2022, Botvinik-Nezer and Wager, 2022)
 - Limited guidance in methodology
 - Unstable and irreproducible workflows
 - Confounded variability
 - Limited confidence in the accuracy

[Smith, 2012]

Neuroimaging/psychology (Aarts et al., 2015)

Cancer research (Begley and Ellis, 2012)

Social sciences (Breznau et al., 2022)

. .

SOLUTIONS

Field-specific solutions

- Harmonization of neuroimaging
 - Data management (e.g., BIDS) DataLad)

Data processing and analysis (e.g., aa, reproa, nipype)

Reporting methodology (e.g., COBIDAS, CRED-nf, ContES)

Recording provenance (e.g., NIDM, BIDS-Prov)

Introduction

- Brain Imaging Data Structure (BIDS)
 - Standard for organizing results of a human neuroimaging experiment.
 - http://bids.neuroimaging.io, https://bids-specification.readthedocs.io

Introduction

- Brain Imaging Data Structure (BIDS)
 - Standard for organizing results of a human neuroimaging experiment.
 - http://bids.neuroimaging.io, https://bids.neuroimaging.io, https://bids-specification.readthedocs.io

Governance

- Developed by the community
- Managed by the Maintainers Group
- Approved by the Steering group
- Endorsed by the INCF

Introduction

- Advantages for
 - User: Software aware of the data structure → less manual entry
 - Group leader: More than one person working on the same data over time
 - Developer: Data structure can be expected
 - Database: Easier to manage and share data
 - Most databases already accept BIDS: <u>OpenNEURO</u>
 - Some journals require data sharing
 - Validator tool

- ✓ Efficiency
- ✓ Transparency
- ✓ Reproducibility

Principles

Definitions

- Organisation levels (folder/file structure)
 - Subject: "A person or animal participating in the study (participant)."

- Session: "A logical grouping of neuroimaging and behavioural data consistent across subjects."
- Run: "An uninterrupted repetition of data acquisition with the same acquisition parameters."

- Data type: "A functional group of different types of data." ≠ modality
 - anat, beh, dwi, eeg, fmap, func, meg, perf, ...

Principles

Definitions

- Identifiers (folder/file name elements)
 - Suffix: Can correspond to modality, acquisition type, group, ...
 - E.g.: T1w, bold, dwi, eeg, meg, events, physio
 - Entities: key-value pairs
 - Name: Context
 - Key: Compression of the entity name
 - Value: Specifier
 - Index: "A nonnegative integer with consistent indentation." ordinal rather than scalar
 - Label: An alphanumeric value
 - E.g.: "sub-control01", "dir-AP", "mt-on", "part-phase", "echo-1", "acq-hippocampus", ...

Principles

Motivations

- Some metadata is better than no metadata
- Don't rely on external software or complicated file formats
 - Clause for acquisitions: keep the original or use legacy/common format
- Aim to capture most of experiments but give space to extend the standard format

- Some metadata is better than no metadata (+ redundancy)
 - Folder structure
 - Filename

```
sub-control01/
                                                dwi/
                                                 sub-control01 dwi.nii.gz
 anat/
                                                 sub-control01 dwi.bval
  sub-control01 T1w.nii.gz
                                                 sub-control01 dwi.bvec
  sub-control01 T1w.json
                                                fmap
  sub-control01_T2w.nii.gz
                                                 sub-control01 phasediff.nii.gz
  sub-control01 T2w.json
                                                 sub-control01_phasediff.json
 func/
                                                 sub-control01 magnitude1.nii.gz
  sub-control01 task-nback bold.nii.gz
                                                sub-control01 scans.tsv
  sub-control01 task-nback bold.json
  sub-control01 task-nback events.tsv
                                              README
  sub-control01 task-nback cont-physio.tsv
                                              CHANGES
  sub-control01 task-nback cont-physio.json
                                              dataset_description.json
  sub-control01_task-nback_sbref.nii.gz
                                              participants.tsv
```


- Don't rely on external software or complicated file formats
 - JSON-files for key-value pairs (MUST have for some acquisitions, e.g., fMRI)

```
"RepetitionTime": 3.0,
"EchoTime": 0.03,
"FlipAngle": 78,
"SliceTiming": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
            1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8],
"InPlanePhaseEncodingDirection": "AP"
"TaskName": "nback"
```

- Don't rely on external software or complicated file formats
 - Use of tab separated files for tabular data (participant, sessions, scans and event descriptor).

```
participant_id age sex
sub-001 34 M
Sub-002 12 F
Sub-003 33 F
```

```
filename acq_time
func/sub-control01_task-nback_bold.nii.gz 1877-06-15T13:45:30
func/sub-control01_task-motor_bold.nii.gz 1877-06-15T13:55:33
meg/sub-control01_task-rest_split-01_meg.nii.gz 1877-06-15T12:15:27
meg/sub-control01_task-rest_split-02_meg.nii.gz 1877-06-15T12:15:27
```

```
onset duration trial_type ResponseTime
1.2 0.6 go 1.435
5.6 0.6 stop 1.739
...
```

- Don't rely on external software or complicated file formats
 - Use of legacy text file formats for b vectors/values

```
-0.552828 0.0480948 0.980937 -0.24275 -0.292642 0.085518 0.470646 -0.865701 0.226775 0.334443 0.727534 -0.552828 -0.625823 0.353667 -0.853084 0.516586 -0.766369 -0.125754 -0.149251 0.937341 -0.124163 -0.36458 -0.552828 0.579767 0.445586 -0.905294 -0.282606 -0.731609 0.676757 0.171374 -0.59121 -0.46017 0.845645 -0.552828 -0.130717 0.975624 -0.288147 0.655193 -0.442479 -0.471845 0.638596 -0.642432 0.850936 -0.240808 -0.552828 -0.578162 0.100487 -0.924592 -0.0210952 -0.764669 0.197294 0.405727 0.859032 0.380277 -0.6891 -0.552828 0.430722 0.0366712 -0.540564 0.775224 0.0646129 -0.978577 0.199971 0.678143 -0.448761 0.849148 -0.552828
```

- Don't rely on external software or complicated file formats
 - Keep the original or use legacy/common format for acquisitions
 - (MRI) imaging data: NIfTI (can be gzipped)
 - MEG data: native format
 - .ds folder for CTF
 - (split) .fif for Elekta
 - EEG data: one of the common formats
 - EDF, BrainVision, EEGLAB, Biosemi
 - Behavioural: TSV

Special cases

ASL

- Data:
 - *_asl.nii[.gz]: 4D data
 - *_m0scan.nii[.gz]: calibration scan (can be part of the *_asl)
 - *_aslcontext.tsv: annotation of volumes

```
volume_type
control
label
...
```

Metadata (MUST have): JSON

```
"ArterialSpinLabelingType": "PCASL",
"PostLabelingDelay": 0,
"BackgroundSuppression": "true",
"MOType": "Separate",
"LabelingDuration": 1,
"SliceTiming": [
        0.1,
        0.2,
        0.3,
"RepetitionTimePreparation": 4.55
```

Special cases

Physiology

Data: headerless gzipped TSV

```
34 110 0
44 112 0
23 100 1
...
```

- Required metadata fields
 - SamplingFrequency: in Hz
 - StartTime: in seconds, in relation to the start of neural data acquisition (can be negative)

Metadata (MUST have): JSON

```
"SamplingFrequency": 100.0,
"StartTime": -22.345,
"Columns": ["cardiac", "respiratory", "trigger"],
"cardiac": {
    "Description": "continuous pulse measurement",
    "Units": "mV"
   },
"respiratory": {
   "Description": "continuous breathing measurement",
    "Units": "mV"
   },
"trigger": {
    "Description": "continuous measurement of the scanner pulse",
    "Units": "arbitrary"
```

- Aim to capture most of experiments but give space to extend the standard format
 - Make certain folder hierarchy levels optional for simplicity
 - e.g.: single session, inherited parameters and events
 - Supports multiple types of anatomical scans
 - Supports fMRI: both task based and resting state
 - Supports sparse fMRI(via slice timing)
 - Supports multiple fieldmap formats for dual-echo and dual phase-encoding direction (top-up)
 - Allows for arbitrary files not covered by the spec to be included
 - BIDS Extension Proposal Check first before going creative!
 https://bids.neuroimaging.io/get_involved.html#extending-the-bids-specification
 https://bids-extensions.readthedocs.io

Support

- Official BIDS Starter Kit: https://bids-standard.github.io/bids-starter-kit
 - Videos, tutorials
 - Pointers to resources
- Look for examples in databases
 - COINS, LORIS, **OpenfMRI**, SciTran, XNAT, ...
- Community
 - Neurostars: https://neurostars.org/tag/bids
 - Google Mailing List: https://groups.google.com/g/bids-discussion

Support

Tools and pipelines

- Conversion
 - Comprehensive solution: HeuDiConv works best for site with naming conventions
 - Converters producing BIDS-compatible metadata: dcmi2nix allows more flexibility
- Validation: https://bids-standard.github.io/bids-starter-kit/validator.html
 - Browser-based: https://bids-standard.github.io/bids-validator
 - Command line tool: https://github.com/bids-standard/bids-validator
- Processing
 - SPM, EEGLAB, FieldTrip, ...
 - Automatic Analysis, C-PAC, Nipype, Reproducibility Analysis, ...
 - BIDS Apps: http://bids-apps.neuroimaging.io

Support

BIDS Apps

- A container image
 - Contains the whole pipeline
 - Contains all dependencies
 - Preconfigured and ready-to-run
 - Docker PC
 - Singularity Cluster
- Standardised
 - BIDS dataset as input
 - Same core set of arguments
- Open with version control
 - https://github.com/BIDS-Apps
 - https://hub.docker.com/r/bids

Available BIDS Apps

All apps

aa	version v0.2.0	circleci failing	last commit may	open issues 5
afni_proc	version v0.0.2	circleci failing	last commit may	open issues 3
CPAC	version v1.0.1a_22	circleci failing	last commit may	open issues 10
DPARSF	version v4.3.12	circleci failing	last commit may	open issues 2
example	version v0.0.7	circleci failing	last commit may	open issues 6
freesurfer	version v6.0.1-6.1	circleci failing	last commit may	open issues 15
HCPPipelines	version v4.3.0-3	circleci failing	last commit may	open issues 15
SPM	version v0.0.21	circleci passing	last commit may	open issues 3
fmriprep	version v23.1.3	circleci passing	last commit june	open issues 304
dmriprep	version v0.5.0	circleci failing	last commit september 2021	open issues 25
mriqc	version v23.1.0	circleci failing	last commit june	open issues 78

QUESTIONS?

