Lecture 23 Priority Queue

November 04, 2021 Thursday

PRIORITY QUEUE

- In many situations we can not follow FIFO.
 - Consider elder citizens waiting in the Queue.
 - Fire Brigade waiting in Queue to pass through the toll booth.
 - In a sequence of processes, process P₂ may need to be executed before process P₁ for the proper functioning of a program.
- In such situations, a modified queue termed as "priority queue" is needed.
- Elements are *dequeued* according to their priority and according to their queue position.

PRIORITIZE BASIS?

- There are multiple choices for prioritizing one item over the others.
 - Frequency of Use
 - Birthday Date
 - Salary
 - Position Status
 - Age
 - Marks in an exam
 - Consider CSS, NTS, GAT etc.

PRIORITY QUEUE OPERATIONS

- Same operations as Queue but with modified implementation
 - o clear()
 - Clears the queue, with deleting all the elements.
 - isEmpty()
 - Returns true if there is no element in the queue, false otherwise.
 - o isFull()
 - Returns true if there is no space for another element.
 - peek()
 - returns the elements with highest priority, without deleting it.

PRIORITY QUEUE OPERATIONS

- Same operations as Queue but with modified implementation
 - enqueue (element, priority)
 - inserts the element having some value v, and priority p.
 - dequeue ()
 - returns the element with highest priority and removes it from the queue.
 - \circ updatePriority ()
 - allows to update the priority of any element in the queue.

PRIORITY QUEUE | ENQUEUE

- For enqueue we may choose to insert the element in the array according to its priority.
 - This will cost O (n) steps.
 - Priority queue will always be sorted (according to priority) after every enqueue.
- If we want to enqueue as items come.
 - Enqueue will cost O (1) step.
 - Priority queue will not be sorted at any moment.

PRIORITY QUEUE | DEQUEUE

- Dequeue on the priority queue which is already sorted for priority
 - will take only one step O (1).
- Dequeue on the priority queue which is not sorted
 - We now have to search the top priority element in the unsorted elements queue.
 - This will cost O (n).

TIME COMPLEXITY

- Another way is to have two lists
 - Short ordered list
 - An unordered list
- The elements in the sorted list depends on a threshold priority.
- It may result in an empty list in some cases.
 - Dynamic change in threshold may be required to have some elements in sorted list.
- Another way is always having same number of elements in the sorted list.
 - \circ \sqrt{n} is a good candidate.
 - \circ Dequeuing is immediate and enqueue takes on average **O** (\sqrt{n})