

Automate best practices and operational health for your AWS resources

Julien Simon, Principal Technical Evangelist, AWS @julsimon Maarten Mortier, CTO, Showpad @maartengm

23/05/2017

What to expect from this session

Learn about Showpad's journey to full cloud automation

 Learn how to customize health alerts and automate remediation actions and with the Personal Health Dashboard

Learn how to automate best practices with Trusted Advisor

It probably started like this...

A few clicks in the console later....

And before you know it...

Sales Enablement SaaS Platform

Content Distribution and Content Usage Analytics

250 employees worldwide (SF, Portland, Ghent, London)

€25m ARR

Migrating to the AWS cloud

Azure On-Premise VM-Based AWS
Container Orchestration
w/ Kubernetes

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE EFFICIENT BEFORE YOU'RE SPENDING MORE TIME THAN YOU SAVE? (ACROSS FIVE YEARS)

		50/DAY	5/DAY	DAILY	WEEKLY	MONTHLY	YEARLY
HOW MUCH TIME YOU SHAVE OFF	1 SECOND	1 DAY	2 Hours	30 MINUTES	4 MINUTES	1 MINUTE	5 SECONDS
	5 SECONDS	5 DAYS	12 Hours	2 HOURS	21 MINUTES	5 MINUTES	25 SECONDS
	30 SECONDS	4 WEEKS	3 DAYS	12 HOURS	2 Hours	30 MINUTES	2 MINUTES
	1 MINUTE	8 WEEKS	6 DAYS	1 DAY	4 HOURS	1 HOUR	5 MINUTES
	5 MINUTES	9 MONTHS	4 WEEKS	6 DAYS	21 HOURS	5 HOURS	25 MINUTES
	30 MINUTES		6 MONTHS	5 WEEKS	5 DAYS	1 DAY	2 Hours
	1 HOUR		IO MONTHS	2 MONTHS	IO DAYS	2 DAYS	5 HOURS
	6 HOURS				2 MONTHS	2 WEEKS	1 DAY
	1 DAY					8 WEEKS	5 DAYS

Key Areas of Automation

Change Management Incident Management Success Management

Change Management

Managing Infrastructure Changes
Managing Infrastructure Needs (Autoscale)
Managing Code Changes (Test Automation)
Detecting Changes, CVE, ...


```
module "vpc" {
 source = "../../modules/aws/vpc"
 name = "${var.name}-vpc"
       = "${lookup(module.vpc info.vpc cidr, var.environment)}"
module "public_subnet" {
           = "${var.name}-public"
          = "${module.vpc.vpc id}"
 vpc id
           = "${lookup(module.vpc info.public subnets, var.environment)}"
           = "${module.vpc info.azs}"
  ipv6 cidr = "${cidrsubnet(module.vpc.ipv6 cidr,4,0)}"
module "nat" {
                   = "${var.name}-nat"
                   = "${module.vpc info.azs}"
 public subnet ids = "${module.public subnet.subnet ids}"
module "ephemeral subnets" {
                 = "${var.name}-ephemeral"
 vpc id
                 = "${module.vpc.vpc id}"
                 = "${lookup(module.vpc info.ephemeral subnets, var.environment)}"
                 = "${module.vpc info.azs}"
 nat gateway ids = "${module.nat.nat gateway ids}"
                 = "${cidrsubnet(module.vpc.ipv6 cidr.4.1)}"
 ipv6 cidr
module "private subnet" {
                 = "../../modules/aws/private subnet"
                 = "${var.name}-private"
 vpc_id
                 = "${module.vpc.vpc id}"
                 = "${lookup(module.vpc info.private subnets, var.environment)}"
                 = "${module.vpc info.azs}"
 nat_gateway_ids = "${module.nat.nat_gateway_ids}"
 ipv6 cidr
                 = "${cidrsubnet(module.vpc.ipv6 cidr.4.2)}"
```

```
+ module.geoip_microservice.aws_lambda_function.geoip_lambda
                                          "<computed>"
   description:
                                          "Query the approximate geographical location of an IP"
    environment.#:
    environment.0.variables.%:
    environment.0.variables.environment: "staging"
   environment.0.variables.region:
                                          "eu-central-1"
   filename:
                                          "/home/jenkins/terraform/terraform/providers/aws/staging/eu_central_1/.t
on.zip"
    function_name:
                                          "geoIP"
   handler
                                          "handler.geoIP"
                                          "<computed>"
    invoke arn:
                                          "<computed>"
   last modified:
                                          "128"
    memory size:
   publish:
                                          "false"
   qualified arn:
                                          "<computed>"
                                          "${aws_iam_role.geoip_lambda.arn}"
   role:
                                          "node;s6.10"
   runtime:
                                          "g6bGERZOXMaz6EKPYg7fd0UctCANOSTv0lH7ocEEt2c="
    source code hash:
   timeout:
    version:
                                          "<computed>"
  module_geoip_microservice.aws_lambda_permission.allow_api_gateway
    action:
                   "lambda:InvokeFunction"
   function name: "geoIP"
                    "apigateway.amazonaws.com"
   principal:
                   "arn; aws; execute-api; ${var, region}: ${module.aws_account.account_id}: ${aws_api_gateway_rest_api
s api gateway resource, geoip gateway path}
    statement_id: "AllowExecutionFromApiGateway"
Plan: 22 to add, 1 to change, 1 to destroy
```


kubernetes

Autoscaling Kubernetes

	Nodes	Pods
Horizontal	# of nodes	# of pods
Vertical	resources for a node	resources for a pod


```
scale up group:
  members: [kubernetes node host]
   # This defines a scale group whose members may be scaled up, incrementing by 1.
    The scale worflow is called when the following criteria are met
     The Hyperkube process total CPU will be more than 3 for a total of 10 seconds.
   # No more than 6 hosts will be allowed.
  policies:
    auto scale up:
      type: scale policy type
     properties:
        policy operates on group: true
        scale limit: 6
        scale direction: '<'
        scale threshold: 8
        service selector: .*kubernetes node host.*.process.hyperkube.cpu.percent
        cooldown time: 60
      triggers:
        execute scale workflow:
          type: cloudify.policies.triggers.execute workflow
          parameters:
           workflow: scale
            workflow parameters:
              delta: 1
              scalable entity name: kubernetes node
              scale compute: true
```

```
Total Pod Memory Allocated: 2048MB
Used Pod Memory: 192
Pod memory Percent: 9%
Used Pod Memory: 357
Pod memory Percent: 17%
Average Pod Memory: 8
```

Lessons learned

Pre-scaling Cache Priming Spot Instances Scheduled Scaling

docker.io/examples/myproject:1.0.1

ID: e64edfe60d2a9c6370c01030c517e9cd1ed2fe49f324fdde881de4170977b1df

OS distribution: Alpine Linux v3.4

VUL	NERABILITI	ES	COMPLIA	ANCE	PROCESS INFO	PACKAGE INFO	HOSTS
ID	TYPE	SI	EVERITY	DESC	RIPTION		
						There is no data	

.../myproject:1.0.1

true

true

true

STATUS

M

 \square

1

0

0

0

HIDE CHART

Q

Q

@

Q

RUNNING EXPLORE

Incident Management

WORK METRICS

THROUGHPUT

SUCCESS

ERROR

PERFORMANCE

RESOURCE METRICS

UTILIZATION

SATURATION

ERROR

AVAILABILITY

EVENTS

CODE CHANGES

ALERTS

SCALING EVENTS

ETC

Lessons learned

Enum & Prioritize Channels Low and High Watermarks Involve CEO on High Severity Channels

Lessons learned

Don't overautomate customer communication

Success Management

Dashboard-First Development

Each Feature gets a Dashboard

Micro-service using **Amazon API Gateway to** push any metrics document out and have historical info

Automation applied to an efficient operation will magnify the efficiency. Automation applied to an inefficient operation will magnify the

Bill Gates

inefficiency.

AWS Health and Personal Health Dashboard

Remediation guidance and knowledge articles

Custom notifications and automated actions

AWS Personal Health Dashboard

AWS Personal Health Dashboard

Available for all AWS customers
 https://phd.aws.amazon.com/

Notifications and actions through CloudWatch Events

Persistent notifications through new navigation bar alerts

Hundreds of operational, billing, security event types

AWS service integrations

Resource and service-level insights into health

RDS

Balancing

Service

CloudTrail

Service-level insights into health

All AWS services

Aws-health-tools

Open Source and community driven on Github https://github.com/aws/aws-health-tools

Customized alerts in response to AWS Health events

Automated actions in response to AWS Health events

How does it work?

Examples

SMS Notifier – Send custom text or SMS notifications.

SNS Topic Publisher – Publish to an SNS topic.

Slack Notifier – Post to a Slack channel.

<u>Instance Store Degraded Drive</u> – Stop or terminate an instance that has a degraded instance store drive.

<u>Disable AWS CodePipeline Stage Transition</u> – Stop deployment when an issue arises.

Health automation: check. Time to optimize!

So what is Trusted Advisor?

AWS Trusted Advisor provides best practices (or checks) in four categories: **cost optimization**, **security**, **fault tolerance**, and **performance** improvement.

Red action strongly recommended Yellow investigation recommended Green no problem detected

AWS Trusted Advisor

Over **50 million** recommendations provided to AWS customers resulted in **\$500m+** in cost savings for users of Trusted Advisor

Let's look at an example

Low Utilization Amazon EC2 Instances 🔔

Warns when EC2 instances appear to be underused.

Alert Criteria

Yellow An instance had 10% or less daily average CPU utilization and 5 MB or less network I/O on at least 4 of the previous 14 days.

Recommended Action

Consider stopping or terminating instances that have low utilization.

Building Automation

Automation Setup – safety first!

Tag resources subject to TA optimization actions.

Create an IAM policy and role for the Lambda function to use.

Setup up a Cloudwatch event rule to trigger the Lambda function.

Setup the Lambda function to take actions recommended by Trusted Advisor.

Cost Optimization

Tag Value Apply filter Tag Key Reset

Cost Optimization Checks

Filter by tag

Low Utilization Amazon EC2 Instances

Refreshed: 4 minutes ago

View

Investigation recommended

Checks the Amazon Elastic Compute Cloud (Amazon EC2) instances that were running at any time during the last 14 days and alerts you if the daily CPU utilization was 10% or less and network I/O was 5 MB or less on 4 or more days.

14 of 17 Amazon EC2 instances have low average daily utilization. Monthly savings of up to \$519.12 might be available by minimizing underutilized instances.

Lots of idle tests instances in us-west-1

Region/AZ	Instance ID	Instance Name	Instance Type	Estimated Monthly	CPU I
us-west-1b	i-acfde06e	us-west-1-Bastion	t2.micro	\$12.24	0.0%
us-west-1b	i-36c3def4	us-west-1-Windows	t2.medium	\$63.36	0.2%
us-west-1c	i-fc28833c	DevOps-Bootcamp	t2.micro	\$12.24	0.4%
us-west-1c	i-102883d0	DevOps-Bootcamp2	t2.micro	\$12.24	0.4%
us-west-1b	i-e9fee32b	DevOps-Bootcamp2	t2.micro	\$12.24	0.4%
us-west-1b	i-fefce13c	DevOps-Bootcamp	t2.micro	\$12.24	0.4%
us-east-1a	i-00e8ad544c9fbffb7	DevOps-Bootcamp	t2.micro	\$9.36	0.4%

Building Automation

Examples available on Github https://github.com/aws/Trusted-Advisor-Tools

Trusted Advisor

SCost Optimization

- ✓ Efficient utilization of resources
- ✓ Idle resource reclamation
- √ Right-sizing reserved EC2 instances

Performance ✓ Correct configuration of services

- ✓ Utilization against AWS Service Limits
- √ High-utilization EC2 instances

- ✓ Logging levels
- ✓ Correct configuration of users, access keys, SSL certificates, and security groups

Fault Tolerance

- ✓ Resource redundancy
- ✓ Scheduled backups
- ✓ Load balancing

Conclusion

Don't stop at automating infrastructure provisioning

You can leverage Trusted Advisor and AWS Health to automate best practices and operational health.

These samples will get you started ©

https://github.com/aws/aws-health-tools

https://github.com/aws/Trusted-Advisor-Tools/

Thank you!

Julien Simon, Principal Technical Evangelist, AWS @julsimon Maarten Mortier, CTO, Showpad @maartengm

