Análise de dados em

Summarize

• Frequency table: frequency of each value

```
> table(esoph$agegp)

25-34 35-44 45-54 55-64 65-74 75+
15 15 16 16 15 11
```

Mode: the most frequent value

```
> sort(table(esoph$agegp), decreasing = TRUE)
45-54 55-64 25-34 35-44 65-74 75+
16 16 15 15 15 11
```

Contingency tables: cross-frequency of values for two variables

```
> table(esoph$agegp,esoph$alcgp)

0-39g/day 40-79 80-119 120+
25-34 4 4 3 4
35-44 4 4 4 4
55-64 4 4 4 4
65-74 4 3 4 4
75+ 3 4 2 2
```

Before start!

Ggplot2 - install.package("ggplot2")
Esquisse - install.package("esquisse")

Data Explorer - install.package("DataExplorer")

Overview

- EDA
- Visualization
- Correlation
- Test Hypothesis

Exploration Data Analysis

Exploratory data analysis (EDA) is used by data scientists to analyze and investigate data sets and summarize their main characteristics. We can do this

- Summarize
- Visualize
- Correlation
- Test Hypothesis

Summarization

- summary
- group_by
 - mean
 - sd
 - sum
 - quantiles
 - ...functions that aggregate

- Mean (or sample mean) sensitive to extreme values
- Median: It is the 50th-precentile, i.e. the value above (below) which there are 50% of the values in the data set
- Mode: It is the most common (more frequently occurring) value in a set of values. Note that the mode can be applied to categorical variables
 - Variance sensitive to extreme values
- Standard Deviation sensitive to extreme values

$$\sigma_{x}^{2}$$

$$\sigma_X = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu_X)^2}$$

- Inter-quartile Range (IQR)
 - It is the difference between the 3rd (Q3) and 1st (Q1) quartiles
 - Q1 is the number below which there are 25% of the values
 - Q3 is the number below which there are 75% of the values

Categorical Variables

- Barplots
- Piecharts
- . . .

Numeric Variables

- Histograms
- QQ Plots
- Boxplots
- . . .

Line plot is a chart which displays information as a series of data points called 'markers' connected by straight line segments.

Barplots

- The main purpose is to display a set of values as heights of bars
- It can be used to display the frequency of occurrence of different values of a categorical variable

Piecharts

- Have the same purpose as bar plots but with information in the form of a pie.
- Are not so good for comparison purposes

Histograms

- The main purpose is to display how the values of a continuous variable are distributed
- It is obtained as follows:
 - first, the range of the variable is divided into a set of bins (intervals of values)
 - then, the number of occurrences of values on each bin is counted
 - then, this number is displayed as a bar

Problems with Histograms

- Histograms may be misleading in small data sets
- The shape of the histogram depends on the number of bins
- How are the limits of the bins chosen? There are several algorithms for this.

Density plots

Some of the problems of histograms can be tackled by smoothing the estimates of the distribution of the values. That is the purpose of kernel density estimates

Boxplots

- Box plot provide an interesting summary of a variable distribution
- For instance, they inform us of the interquartile range and of the outliers (if any)

Scatterplots

• The natural graph for showing the relationship between two numeric variables

ggplot2

ggplot2 is a system for declaratively creating graphics, based on <u>The Grammar of Graphics</u>. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.

Cheat sheet:

https://www.maths.usyd.edu.au/u/UG/SM/STAT3022/r/current/Misc/data-visualization-2.1.pdf

Gallery:

https://r-graph-gallery.com/

ggplot2

Esquisse is an R package which creates easy ggplot charts through a drag and drop interface

https://cran.r-project.org/web/packages/esquisse/vignettes/get-started.html

1) Open Esquisse

2) Select data.frame

- 2) Select variables for each plot component
 - X X axis
 - Y Y axis

fill - fill the area with different color for different values color - line with different color for different values size - size of the points increase if value increases group - group plots each categorical value facet - create differents plots for each categorical value

3) Plot type

4) See plot and change some parameters

Finally, get the code to produce the plot

Correlation

Pearson Correlation Coefficient (ρ):

- measures the linear correlation between two variables;
- it has a value between +1 and -1.

> cor(iris\$Petal.Length, iris\$Sepal.Length, method = "pearson")
[1] 0.8717538

Correlation

Spearman Rank-Order Correlation Coefficient:

- measures the strength and direction of monotonic association between two variables;
- two variables can be related according to a type of non-linear but still monotonic relationship.


```
> cor(iris$Petal.Length, iris$Sepal.Length, method = "spearman")
[1] 0.8818981
```

cor(datasets::iris[,c(1,2,3,4)])

Hypothesis Tests

Does this sample of data follows a normal distribution?

The null and alternative hypothesis of an Shapiro-Wilk are:

H0: test is that the population is normally distributed.

H1: test is that the population isn't normally distributed.


```
> shapiro.test(mtcars$mpg)

Shapiro-Wilk normality test

data: mtcars$mpg
W = 0.94756, p-value = 0.1229
```

A statistically significant test result (P > 0.05) means that the test hypothesis should not be rejected.

Hypothesis Tests

ANOVA (one-sided) to help us answer the question: "Is the length sepal 3 species of iris?".

The null and alternative hypothesis of an ANOVA are:

H0: μ setosa=μ versicolor=μ virginica (⇒ the 3 species are equal in terms of Sepal length)

H1: at least one mean is different (⇒ at least one species is different from the other 2 species in terms of Sepal length)

A statistically significant test result ($P \le 0.05$) means that the test hypothesis is false or should be rejected. A P value greater than 0.05 means that no effect was observed.

Data Explorer

DataExplorer create reports about a data.frame

There are 3 main goals for DataExplorer:

- 1. Exploratory Data Analysis (EDA)
- 2. Feature Engineering
- 3. Data Reporting

> library("DataExplorer")
> DataExplorer::create_report(iris)

https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html

Data Profiling Report

- Basic Statistics
- Raw Counts
- Percentages
- Data Structure
- Missing Data Profile
- Univariate Distribution
 - Histogram
 - Bar Chart (with frequency)
- QQ Plot
 Correlation Analysis
- Correlation Analysis
- Principal Component Analysis

Basic Statistics

Raw Counts

Name	Value
Rows	150
Columns	5
Discrete columns	1
Continuous columns	4
All missing columns	0
Missing observations	0
Complete Rows	130
Total observations	750
Memory allocation	7.8 Kb

Percentages

