11.01.2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年12月12日

出 願 番 号 Application Number:

特願2003-415354

[ST. 10/C]:

[JP2003-415354]

出 願
Applicant(s):

宇部興産株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 2月18日

1) 11]

BEST AVAILABLE COPY

出証番号 出証特2005-3012047

【書類名】 【整理番号】 特許願 TTP100839 特許庁長官殿

【あて先】 【国際特許分類】

C08F136/06 C08L 9/00

【発明者】

【住所又は居所】 千葉県市原市五井南海岸8番の1 宇部興産株式会社千葉石油化

学工場内

【氏名】

朝倉 好男

【発明者】

プロ』 【住所又は居所】 千葉県市原市五井南海岸8番の1 宇部興産株式会社千葉石油化

学工場内

【氏名】

岡部 恭芳

【特許出願人】

【識別番号】 00000206

【氏名又は名称】 宇部興産株式会社

【代表者】 常見 和正

【手数料の表示】

【予納台帳番号】 012254 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

【請求項1】

(1) 平均の単分散繊維結晶の短軸長が 0.2μ m以下、アスペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170C以上であるシンジオタクチックー1, 2 -ポリブタジエン結晶樹脂(以下、SPB樹脂と略) $1\sim50$ 重量部、および、(2) ゴム分100重量部

からなるビニル・シスーポリブタジエンゴム組成物であって、

該SPB樹脂が、溶解度パラメーターが8.5以下である炭化水素系溶媒を用いた重合により製造され、該SPB樹脂の重合において、少なくとも1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物を添加されたことを特徴とするビニル・シスーポリブタジエンゴム組成物。

【請求項2】

該溶解度パラメーターが8.5以下である炭化水素系溶媒が、シクロヘキサンであること を特徴とする請求項1に記載のビニル・シスーポリブタジエンゴム組成物。

【請求項3】

該少なくとも1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物が、エポキシ基、エーテル基、カルボキシル基、エステル基、水酸基、または、カルボニル基を含有する化合物であることを特徴とする請求項1~2に記載のビニル・シスーポリブタジエンゴム組成物。

【請求項4】

請求項1~3に記載のビニル・シスーポリブタジエンゴム組成物を用いることを特徴とするタイヤ用ブタジエンゴム組成物。

【発明の名称】新規なブタジエンゴム組成物

【技術分野】

[0001]

本発明は、特定の構造を有する短繊維状であり、かつ、融点が170℃以上であるシンジオタクチック1,2ーポリブタジエン結晶樹脂(以下、SPB樹脂と略)と、ゴム分からなるビニル・シスポリブタジエンゴム組成物に関する。

【背景技術】

[0002]

ポリブタジエンは、いわゆるミクロ構造として、1,4 - 位での重合で生成した結合部分 (1,4 - 構造)と1,2 - 位での重合で生成した結合部分 (1,2 - 構造)とが分子鎖中に共存する。1,4 - 構造は、更にシス構造とトランス構造の二種に分けられる。一方、1,2 - 構造は、ビニル基を側鎖とする構造をとる。

[0003]

従来、SPB樹脂とゴム分からなるビニル・シスポリブタジエンゴム組成物の製造方法は、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、nーヘキサン、nーヘプタンなどの脂肪族炭化水素、シクロヘキサン、シクロペンタンなどの脂環族炭化水素、及びこれらのハロゲン化族炭化水素、例えばクロルベンゼン、塩化メチレンなどの不活性有機溶媒で行われてきた。これらの溶媒を用いると重合溶液の粘度が高く撹拌、伝熱、移送などに問題があり、溶媒の回収には過大なエネルギーが必要であった。又、前記溶媒は毒性の為、発癌作用の為に環境にとって非常に危険性のあるものであった。

[0004]

上記の製造方法としては、前記の不活性有機溶媒中で水,可溶性コバルト化合物と一般式 $A1R_nX_{3-n}$ (但しRは炭素数 $1\sim 6$ のアルキル基,フェニル基又はシクロアルキル基であり,Xはハロゲン元素であり,nは $1.5\sim 2$ の数字)で表せる有機アルミニウムクロライドから得られた触媒を用いて1,3ーブタジエンをシス1,4重合してBRを製造して,次いでこの重合系に1,3ーブタジエン及び/または前記溶媒を添加するか或いは添加しないで可溶性コバルト化合物と一般式 $A1R_3$ (但しRは炭素数 $1\sim 6$ のアルキル基,フェニル基又はシクロアルキル基である)で表せる有機アルミニウム化合物と二硫化炭素とから得られるシンジオタクチック1,2重合触媒を存在させて1,3-ブタジエンをシンジオタクチック1,2重合(以下,1,2重合と略す)する方法(例えば、特公昭49-17666号公報(特許文献2)参照)は公知である。

[0005]

また、例えば、特公昭62-171号公報(特許文献3),特公昭63-36324号公報(特許文献4),特公平2-37927号公報(特許文献5),特公平2-38081号公報(特許文献6),特公平3-63566号公報(特許文献7)には、二硫化炭素の存在下又は不在下に1,3-ブタジエンをシス1,4重合して製造したり,製造した後に1,3-ブタジエンと二硫化炭素を分離・回収して二硫化炭素を実質的に含有しない1,3-ブタジエンや前記の不活性有機溶媒を循環させる方法などが記載されている。更に特公平4-48815号公報(特許文献8)には配合物のダイスウェル比が小さく,その加硫物がタイヤのサイドウォールとして好適な引張応力と耐屈曲亀裂成長性に優れたゴム組成物が記載されている。

[0006]

また、特開 2000-44633 号公報(特許文献 9)には、n-プタン,シス2-プテン,トランス-2-プテン,及びプテン-1 などの C4 留分を主成分とする不活性有機溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有するシンジオタクチック 1, 2-ポリプタジエンは短繊維結晶であり、短繊維結晶の長軸長さの分布が繊維長さの <math>98% 以上が 0. 6μ m未満であり、70% 以上が 0. 2μ m未満であることが記載され、得られたゴム組成物はシス1, 4ポリプタジエンゴム(以下, BRと略す)の

成形性や引張応力、引張強さ、耐屈曲亀裂成長性などを改良されることが記載されている

[0007]

しかしながら、用途によっては、種々の特性が改良されたゴム組成物が求められていた

[0008]

【特許文献1】特公昭49-17666号公報

【特許文献2】特公昭49-17667号公報

【特許文献3】特公昭62-171号公報

【特許文献4】特公昭63-36324号公報

【特許文献5】特公平2-37927号公報

【特許文献6】特公平2-38081号公報

【特許文献7】特公平3-63566号公報

【特許文献8】特公平4-48815号公報

【特許文献9】特開2000-44633号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、上記の状況下で、特にタイヤのサイドウォール部補強ゴムとして要望される 好適な弾性率と耐屈曲亀裂成長性等の向上、更にランフラットタイヤ等で要望されるゴム の酸化劣化性低減によるランフラット走行時の発熱抑制等を改良した新規なゴム組成物を 提供すること及びゴムの加工性を改良することによるタイヤ製造時の作業性の改善を目的 とする。

【課題を解決するための手段】

[0010]

本発明は、(1)平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以下 であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170℃以 上であるシンジオタクチック 1,2 ーポリブタジエン結晶樹脂(以下、SPB樹脂と略)1 ~50重量部、および、(2)ゴム分100重量部

からなるビニル・シスーポリブタジエンゴム組成物であって、

該SPB樹脂が、溶解度パラメーターが8.5以下である炭化水素系溶媒を用いた重合に より製造され、該SPB樹脂の重合において、少なくとも1個以上の酸素結合を含有する 有機化合物及び/又は高分子化合物を添加されたことを特徴とするビニル・シスーポリブ タジエンゴム組成物に関する。

[0011]

また、本発明は、該溶解度パラメーターが8.5以下である炭化水素系溶媒が、シクロへ キサンであることを特徴とする上記のビニル・シスーポリブタジエンゴム組成物に関する

[0012]

また、本発明は、該少なくとも1個以上の酸素結合を含有する有機化合物及び/又は高分 子化合物が、エポキシ基、エーテル基、カルボキシル基、エステル基、水酸基、または、 カルボニル基を含有する化合物であることを特徴とする上記のビニル・シスーポリプタジ エンゴム組成物に関する。

[0013]

また、本発明は、上記のビニル・シスーポリブタジエンゴム組成物を用いることを特徴と するタイヤ用ブタジエンゴム組成物に関する。 に関する。

【発明の効果】

[0014]

本発明のビニル・シスーポリブタジエンゴムは、溶解度パラメーターが8.5以下である 出証特2005-3012047 炭化水素系溶媒を用いて製造され、かつ酸素結合を含有する有機化合物及び/又は高分子 化合物を添加する為、従来のビニル・シスポリブタジエンゴムに比ベシンジオタクチック 1,2-ポリブタジエン結晶樹脂とゴム分との界面親和性が向上し、且つシンジオタクチ ック1,2ーポリブタジエン結晶樹脂の分散径が小さくなることにより、高シスシスポリ ブタジエンゴムの優れた特性を保持し、且つ配合物のダイスウェル比(スウェル比)が小さ く、その加硫物がタイヤのサイドウォールとして好適な弾性率を示し、更に加硫物の耐屈 曲亀裂成長性が非常に良好で、且つ窒素ガスや酸素ガスの加硫物へのガス透過が小さい値 を示すため、タイヤの空気漏れや酸化劣化の低減が可能である。従がって、本発明のビニ ル・シスポリブタジエンゴムをサイドウォールの素材として使用したタイヤは、優れた高 速耐久性を示す。また、この配合物のダイスウェル比が低いことから、優れた押出し加工 性を示し、タイヤ製造の作業性が向上する。

【発明を実施するための最良の形態】

[0015]

本発明のゴム組成物は、(1) 平均の単分散繊維結晶の短軸長が 0.2 μm以下、アス ペクト比が10以下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、 かつ、融点が170℃以上であるシンジオタクチック1,2ーポリブタジエン結晶樹脂(以下、SPB樹脂と略)1~50重量部、および、(2)ゴム分100重量部からなる。

[0016]

上記の(1)成分のSPB樹脂は、平均の単分散繊維結晶の短軸長が0.2 μm以下、好 ましくは、 $0.1 \mu m$ 以下であり、また、アスペクト比が10以下、好ましくは、8以下で あり、且つ平均の単分散繊維結晶数が10以上、好ましくは、15以上の短繊維状であり 、かつ、融点が170℃以上、好ましくは、190~220℃である。

[0017]

(2) ゴム分としては、下記の特性を有するシス1, 4ーポリプタジエンが好ましい。 シス1,4-構造含有率が一般に90%以上,特に95%以上で,ムーニー粘度(ML 1+4 100℃, 以下, MLと略す) 10~130, 好ましくは15~80であり, トル エン溶液粘度(センチポイズ/25℃,以下、T-cpと略す)は30~200、好ましくは30 ~100であり、実質的にゲル分を含有しない。

[0018]

(1)成分のSPB樹脂と(2)ゴム分の割合は、(2)ゴム分100重量部に対して(1) 成分SPB樹脂が1~50重量部、好ましくは、1~30重量部である。上記範囲外で あると、BR中のSPB樹脂の短繊維結晶が大きくなり、特長となる弾性率・耐屈曲亀裂 成長性・酸化劣化性等が発現し難く、また加工性の悪化などの問題がある。

[0019]

上記のゴム組成物は、以下の製造方法で好適に得られる。

溶解度パラメーター(以下、SP値と略)が8.5以下である炭化水素系溶媒を用いた重 合により製造される。溶解度パラメーターが8.5以下である炭化水素系溶媒としては,

例えば、脂肪族炭化水素、脂環族炭化水素であるn-ヘキサン(SP値:7.2)、n-ペンタン (SP値:7.0)、 n-オクタン (SP値:7.5)、シクロヘキサン (SP値:8 .1)、n-ブタン(SP値:6.6)等が挙げられる。中でも、シクロヘキサンなどが好ま しい。

これらの溶媒のSP値は、ゴム工業便覧(第四版、社団法人:日本ゴム協会、平成6年 1月20日発行;page721) などの文献で公知である。

[0020]

SP値が8.5よりも大きい溶媒を使用すると、BR中へのSPBの短繊維結晶の分散状 態が本発明の如く形成されないので、優れたダイスウェル特性や高引張応力、引張強さ、 高屈曲亀裂成長性能を発現しないので好ましくない。

次に1,3-ブタジエンと前記溶媒とを混合して得られた混合媒体中の水分の濃度を調節 する。水分は前記媒体中の有機アルミニウムクロライド1モル当たり、好ましくは0.1

~10モル、特に好ましくは0.2~10モルの範囲である。この範囲以外では触媒活性 が低下したり、シス1、4構造含有率が低下したり、分子量が異常に低下又は高くなった り、重合時のゲルの発生を抑制することができず、このため重合槽などへのゲルの付着が 起り,更に連続重合時間を延ばすことができないので好ましくない。水分の濃度を調節す る方法は公知の方法が適用できる。多孔質濾過材を通して添加・分散させる方法(特開平 4-85304号公報)も有効である。

[0022]

水分の濃度を調節して得られた溶液には有機アルミニウムクロライドを添加する。一般式 AlR_nX_{3-n}で表される有機アルミニウムクロライドの具体例としては,ジエチルアル ミニウムモノクロライド,ジエチルアルミニウムモノプロマイド,ジイソプチルアルミニ ウムモノクロライド、ジシクロヘキシルアルミニウムモノクロライド、ジフェニルアルミ ニウムモノクロライド,ジエチルアルミニウムセスキクロライドなどを好適に挙げること ができる。有機アルミニウムクロライドの使用量の具体例としては、1、3ーブタジエン の全量1モル当たり0.1ミリモル以上、特に0.5~50ミリモルが好ましい。

[0023]

次いで、有機アルミニウムクロライドを添加した混合媒体に可溶性コバルト化合物を添 加してシス1,4重合する。可溶性コバルト化合物としては、SP値が8.5以下である炭 化水素系溶媒を主成分とする不活性媒体又は液体1,3-ブタジエンに可溶なものである か又は、均一に分散できる、例えばコバルト(II)アセチルアセトナート、コバルト(II I)アセチルアセトナートなどコバルトのeta -ジケトン錯体,コバルトアセト酢酸エチル エステル錯体のようなコバルトのβ-ケト酸エステル錯体, コバルトオクトエート, コバ ルトナフテネート, コバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバル ト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化 コバルト錯体などを挙げることができる。可溶性コバルト化合物の使用量は1,3-ブタ ジエンの1モル当たり0.001ミリモル以上、特に0.005ミリモル以上であること が好ましい。また可溶性コバルト化合物に対する有機アルミニウムクロライドのモル比(A l / C o) は 1 0 以上であり、特に 5 0 以上であることが好ましい。また,可溶性コバ ルト化合物以外にもニッケルの有機カルボン酸塩、ニッケルの有機錯塩、有機リチウム化 合物を使用することも可能である。

[0024]

シス 1 , 4 重合する温度は 0 \mathbb{C} を超える温度 \sim 1 0 0 \mathbb{C} , 好ましくは 1 0 \sim 1 0 0 \mathbb{C} 、更 に好ましくは20~100℃までの温度範囲で1,3-ブタジエンをシス1,4重合する 。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。シス1,4重合後のポ リマー濃度は5~26重量%となるようにシス1,4重合を行うことが好ましい。重合槽 は1槽、又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内にて溶液を攪 拌混合して行う。重合に用いる重合槽としては高粘度液攪拌装置付きの重合槽,例えば特 公昭40.2645号に記載された装置を用いることができる。

[0025]

本発明のシス1, 4重合時に公知の分子量調節剤, 例えばシクロオクタジエン, アレン, メチルアレン (1,2-ブタジエン) などの非共役ジエン類, 又はエチレン, プロピレン ブテン-1などのα-オレフィン類を使用することができる。又重合時のゲルの生成を更に抑制するために公知のゲル化防止剤を使用することができる。シス1, 4-構造含有 率が一般に90%以上, 特に95%以上で, ムーニー粘度 (ML1+4, 100℃, 以下 ,MLと略す)10~130,好ましくは15~80であり,実質的にゲル分を含有しな

[0026]

前記の如くして得られたシス1,4重合反応混合物に1,3-ブタジエンを添加しても添 加しなくてもよい。そして,一般式AlR3 で表せる有機アルミニウム化合物と二硫化炭 素,必要なら前記の可溶性コバルト化合物を添加して1,3ーブタジエンを1,2重合し て沸騰 n ーヘキサン可溶分99~50重量%とH. Iが1~50重量%とからなるビニル

[0027]

1,2重合する温度は0~100℃,好ましくは10~100℃,更に好ましくは20~ 100℃までの温度範囲で1,3-ブタジエンを1,2重合する。1,2重合する際の重合 系には前記のシス重合液100重量部当たり1~50重量部,好ましくは1~20重量部 の1,3-ブタジエンを添加することで1,2 重合時の1,2-ポリブタジエンの収量を増 大させることができる。重合時間(平均滞留時間)は10分~2時間の範囲が好ましい。 1,2重合後のポリマー濃度は9~29重量%となるように1,2重合を行うことが好まし い。重合槽は1槽,又は2槽以上の槽を連結して行われる。重合は重合槽(重合器)内に て重合溶液を攪拌混合して行う。1,2重合に用いる重合槽としては1,2重合中に更に高 粘度となり、ポリマーが付着しやすいので高粘度液攪拌装置付きの重合槽、例えば特公昭 40-2645号公報に記載された装置を用いることができる。

[0028]

1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物としては、エーテル 基、エポキシ基、カルボキシル基、エステル基、水酸基、カルボニル基を含有する化合物 であることが好ましい。具体的化合物として、例えば酸無水物、脂肪族アルコール、芳香 族アルコール、脂肪族エーテル・芳香族エーテル、脂肪族カルボン酸・芳香族カルボン酸 ・不飽和カルボン酸、脂肪族カルボン酸エステル・芳香族カルボン酸エステル・不飽和カ ルボン酸エステル、フェノール樹脂、ナイロン樹脂、ポリウレタン、ポリエチレングリコ ール、エポキシ化ポリブタジエン、ポリエステル、エポキシ化スチレンブタジエン共重合 体、ポリアリールエーテル、などが挙げられる。

[0029]

1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物を重合系に添加するこ とにより、ビニル・シスポリブタジエンゴムのマトリックス成分であるシスポリブタジエ ンとSPB樹脂の界面親和性が変化し、結果としてSPB樹脂の繊維結晶の単分散化及び ビニル・シスポリブタジエンゴムの諸物性の向上に効果がある。

[0030]

添加量は、得られたビニル・シスポリブタジエンゴムに対して0.01~20重量部、 好ましくは0.01~10重量部の範囲ある。添加方法は特に限定するものでなく、ビニ ル・シスポリブタジエンゴムを製造するシス1,4重合時あるいは1,2重合時、及び/ または、ビニル・シスポリブタジエンゴムの重合終了時でも良い。好ましくは、1,2重 合時の添加である。添加後、好ましくは、10分~3時間攪拌する。好ましくは、<math>10分~30分である。

[0031]

重合反応が所定の重合率に達した後、常法に従って公知の老化防止剤を添加することがで きる。老化防止剤の代表としてはフェノール系の2, 6-ジーt-ブチルーpークレゾー ル (BHT), リン系のトリノニルフェニルフォスファイト (TNP), 硫黄系の4.6-ビス(オクチルメチル)-0-クレゾール、ジラウリル-3,3'-チオジプロピオネート(TPL)などが挙げられる。単独でも2種以上組み合わせて用いてもよく,老化防止剤の 添加はVCR100重量部に対して0.001~5重量部である。次に重合停止剤を重合 系に加えて停止する。例えば重合反応終了後, 重合停止槽に供給し, この重合溶液にメタ ノール、エタノールなどのアルコール、水などの極性溶媒を大量に投入する方法、塩酸、 硫酸などの無機酸、酢酸、安息香酸などの有機酸、塩化水素ガスを重合溶液に導入する方

[0032]このようにして得られたVCRは沸騰 n - ヘキサン可溶分99~50重量%とH.Ⅰが1 ~50重量%とからなり、沸騰n-ヘキサン可溶分はミクロ構造が90%以上のシス1, 4 - ポリブタジエンであり、H. Iの融点が170~220℃のSPBDである。MLは 20~150, 好ましくは25~100である。

[0033]

VCR中に分散したSPBDはBRマトリックス中に微細な結晶として単分散化した形態 で部分的に分散し、凝集構造を有する大きなSPBD繊維結晶と共存している。そして、 この単分散化した微細な繊維結晶はマトリックスゴム成分との界面親和性を向上させる。 この単分散繊維結晶の平均短軸長は 0.2 μm以下、アスペクト比は 10以下であり、且 つ平均の単分散繊維結晶数が10以上の短繊維状である。一方、従来のVCRは大きな凝 集構造を有するSPBD繊維結晶が殆どで、単分散繊維結晶数は5以下であった。

[0034]

このようにして得られたVCRを分離取得した残部の未反応の1,3-ブタジエン,不活 性媒体及び二硫化炭素を含有する混合物から蒸留により1,3ープタジエン,不活性媒体 として分離して、一方、二硫化炭素を吸着分離処理、あるいは二硫化炭素付加物の分離処 理によって二硫化炭素を分離除去し,二硫化炭素を実質的に含有しない1,3-プタジエ ンと不活性媒体とを回収する。また,前記の混合物から蒸留によって3成分を回収して, この蒸留から前記の吸着分離あるいは二硫化炭素付着物分離処理によって二硫化炭素を分 離除去することによっても、二硫化炭素を実質的に含有しない1、3ープタジエンと不活 性媒体とを回収することもできる。前記のようにして回収された二硫化炭素と不活性媒体 とは新たに補充した1、3-ブタジエンを混合して使用される。

[0035]

本発明による方法で連続運転すると、触媒成分の操作性に優れ、高い触媒効率で工業的に 有利にVCRを連続的に長時間製造することができる。特に, 重合槽内の内壁や攪拌翼, その他攪拌が緩慢な部分に付着することもなく、高い転化率で工業的に有利に連続製造で きる。

[0036]

本発明により得られるVCRは単独でまたは他の合成ゴム若しくは天然ゴムとブレンドし て配合し、必要ならばプロセス油で油展し、次いでカーボンブラックなどの充填剤、加硫 剤,加硫促進剤その他通常の配合剤を加えて加硫し、タイヤ用として有用であり、サイド ウォール、または、トレッド、スティフナー、ビードフィラー、インナーライナー、カー カスなどに、その他、ホース、ベルトその他の各種工業用品等の機械的特性及び耐摩耗性 が要求されるゴム用途に使用される。また、プラスチックスの改質剤として使用すること もできる。

[0037]

本発明により得られるVCRに前記の配合剤を加えて混練した組成物は、従来のベンゼン ,トルエン,ヘキサン,シクロヘキサン,クロルベンゼンなどの溶媒を使用した方法で得 られたVCRに比較してダイスウェル比(押出し時の配合物の径とダイオリフィス径の比) が指数換算で30以下に低下(値が低下すると優れる)し、押出加工性に優れている。

[0038]

また、本発明により得られるVCR組成物(配合物)を加硫すると硬度や引張応力が向上 する。特に100%引張応力の向上が著しく、前記従来の方法で得られたVCRに比較し て指数換算で40前後増加(値が増加すると優れる)し、補強効果が大幅に改善される。更 に屈曲亀裂成長が著しく改善され、指数換算で30前後増加(値が増加すると優れる)し、 屈曲亀裂を抑制する効果を発現する。また、ランフラットタイヤ等で要求される耐熱物性 としては酸素等のガス透過性が、同様に従来の方法で得られたVCRに比較して指数換算 で5前後低下(値が低下すると優れる)し、酸化劣化に伴う発熱を抑制する効果を示す。

[0039]

そして、上記の諸物性の発現には、VCR中に分散したSPBDはBRマトリックス中に 微細な結晶として単分散化した形態で部分的に分散し、凝集構造を有する大きなSPBD 繊維結晶と共存している必要がある。即ち、BRマトリックス中の単分散化SPB樹脂は 、平均の単分散繊維結晶の短軸長が0.2μm以下であり、また、アスペクト比が10以 下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が17 0℃以上である必要がある。これらの範囲外では上記の特長ある諸物性は発現されない。 更にSP値が8.5以下の範囲から外れる炭化水素系重合溶媒の使用及び(または)少なくと も1個以上の酸素結合を含有する有機化合物及び/又は高分子化合物を使用しない場合に は、BRマトリックス中に、最適に単分散化したSPB樹脂の形態作製は困難になる。

[0040]

本発明のゴム組成物は、前記各成分を通常行われているバンバリー、オープンロール、 ニーダー、二軸混練り機などを用いて混練りすることでも得られる。

[0041]

本発明のゴム組成物には、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロ セスオイル、亜鉛華、ステアリン酸など、通常ゴム業界で用いられる配合剤を混練しても よい。

[0042]

加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシ ウムなどの金属酸化物などが用いられる。

[0043]

加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グ アニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサン テート類などが用いられる。

[0044]

老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫 黄系及び燐系などが挙げられる。

[0045]

充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻 土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。

[0 0 4 6]

プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよ V,

[0047]

以下に本発明に基づく実施例について具体的に記載する。

[0048]

評価項目と実施条件

混練方法

下記手順に準じて混練する。

[一次配合]

混練装置:バンバリーミキサー(容量1.7L)

回転数:77rpm

スタート温度:90℃

混練手順:

0分; VCR投入

0分;フィラー投入

3分;ラムを上げて掃除(15秒)

5分;ダンプ

ダンプ物は引き続き10インチロールにて1分間巻き付け、3回丸め通し後、シート出し した。コンパウンドは2時間以上冷却後、次の手順に準じて二次配合を行った。

[0049]

[二次配合]

前記一次配合終了後、下記手順に準じて二次配合を行った。

混練装置:10インチロール ロール温度:40~50℃

ロール間隙: 2 mm

混練手順:

- 0分;ダンプ物の巻き付け及び硫黄・加硫促進剤の投入 (1)
- 2分:切り返し (2)
- 3分;三角取り・丸め通し後、シート出し (3)

[0050]

加硫時間

測定装置;JSRキュラストメーター2F型

測定温度;150℃

測定時間; t 9 0 × 2, × 3 を加硫時間とした。

加硫条件

加硫装置;プレス加硫 加硫温度; 150℃

[0051]

[素ゴム物性評価]

ミクロ構造は、赤外吸収スペクトル分析によって行った。シス740cm-1、トラン ス 9 6 7 c m⁻¹ 、ビニル 9 1 0 c m⁻¹ の吸収強度比からミクロ構造を算出した。

[0052]

ムーニー粘度 (ML₁₊₄) は、JIS K6300に準拠して測定した。

[0053]

トルエン溶液粘度 (T c p) は、ポリマー2.28gをトルエン50mlに溶解した後、 標準液として粘度計校正用標準液(JIS 28 8 0 9)を用い、キャノンフェンスケ粘度計N o. 400を使用して、25℃で測定した。

[0054]

シンジオタクチック 1,2ーポリブタジエンの分子量の尺度 η s p / c : 測定温度は135℃、使用溶媒はオルトジクロルベンゼン

[0055]

シンジオタクチック 1,2 -ポリブタジエンの融点は、示差走査熱量計(DSC)の吸熱 曲線のピークポイントにより決定した。

[0056]

[配合物物性]

ダイスウェル

測定装置;モンサント社製加工性測定装置 (MPT)

ダイ形状;円形

L/D; 1 , 10 (D=1.5 mm)

測定温度;100℃

せん断速度; 100sec⁻¹

[0057]

[加硫物物性]

硬度及び引張強度は、JIS-K-6301に規定されている測定法に従って測定した。

[0058]

屈曲亀裂成長性は上島製作所製の亀裂試験機を用いて、ASTM D813に従い、試験 片の亀裂が15mm以上の長さに成長するまでの屈曲回数を測定した。

[0059]

ガス透過性はJISK71,26に規定されている測定法に従って測定した。

[0060] 【表1】

配合量(phr)	
100	
50	
10	<u> </u>
5	
2	
1	
1	
1.5	
170.5	
	100 50 10 5 2 1 1 1 1.5

【実施例1】

[0061]

窒素ガスで置換した内容30Lの攪拌機付ステンレス製反応槽中に、脱水シクロヘキサン (SP値8.1)18kgに1.3-プタジエン1.6kgを溶解した溶液を入れ、コバルトオクトエー ト 4 mm o 1、ジエチルアルミニウムクロライド84mmol及び1.5-シクロオクタジエン7 0 mmolを混入、25℃で30分間攪拌し、シス重合を行った。得られたポリマーのMLは3 1、T-cpは57、ミクロ構造は1,2構造10%、トランス-1,4構造0.9%、シス1,4 構造98.1%であった。シス重合後、直ちに重合液にトリエチルアルミニウム90 mmol及び ニ硫化炭素50mmolを加え、25℃で60分間攪拌し、1,2重合を行った。その後、得られ た重合生成液にエポキシ化ポリプタジエン(粘度33,000mPa·s)0.5重量%を加え、60 ℃で1時間攪拌を行った。重合終了後、重合生成液を4,6-ビス(オクチルチオメチル) -0-クレゾール1重量%を含むメタノール18Lに加えて、ゴム状重合体を析出沈殿さ せ、このゴム状重合体を分離し、メタノールで洗浄した後、常温で真空乾燥した。この様 にして得られたビニル・シスポリプタジエンゴムの収率は82%、 η sp/C=1.5、 であり、ビニル・シスポリプタジエンゴムに含まれる短軸長 0. 2 μm以下の短分散 S P B繊維結晶の数は23個で、アスペクト比は10、融点は20.2℃であった。

[0062]

表2にビニル・シスポリブタジエンゴム組成物の素ゴムデータを示した。

[0063]

			実施	比較例		_			
		1	2	3	4	11	2	_	
		エホ・キシ化	アリルエーテル	エホ。キシ化	エホ。キシ化		エポキシ化	_ _	
添加剤の種類		PB	コホ・リマー	PB	PB	未添加	PB PB	_{-	
	添加量(wt%)		1	1	5		1	_	
			<u></u>	←	←	←		_	
	マトリックスBR (A) のML						<u> </u>	_	
	T-cp (cp)		←	←	←	←	←	į	
ミクロ構造	Cis	57 98. 1	←	←	←	←	<u></u>		
(%)	Trans	0. 9	←	←	←	←	←	_	
(/0/	Vinyl	1	←	←	←	←	←		
SPB(B)の		202	202	201	202	201	201		
ミクロ構造	Cis	0.6	←	+	←	←	←	}	
	Trans	0.6		+	←	←	←	L.	
(%)	Vinyl	98.8		←	←	←	←		
70		1.5	-	←	←	←	<u>←</u>	Ш	
	ηsp/c		 `						
	単分散SPB繊維結晶数		Ì	ł	ł	1	ł		
	短軸長0.2 μ以下の数 400 μ ² 当り		16	20	29	4	3	\sqcup	
	単分散SPBの7スペクト比		8	10	9	13	15	4_	
新 合次	重合溶媒の種類		シクロヘキサン	nーヘキサン	シクロヘキサン	シクロヘキサン	ヘ゛ンセ゛ン	4-1	
	SP値		8.1	7.2	8.1_	8.1	9.1	1	
(A)/(B)		8.1 Dec-88	←	 	←	←	←	1	
(A) / (D)		1 200 00					単分散SPB		
信	備考		単分散SPB繊維結晶数多い				繊維結晶数少ない		

[0064]

表3にビニル・シスポリブタジエンゴム組成物の配合物及び加硫物データを示した。

【0065】

	【表3】								
									H
		実施例							
-		1 2 3 4		1	1 2				
配合物物性(指数)									
h* /71	- N. I	L/D=1				L/D=1			備考
タ イス!		70		71	75	100		99	指数小が優
100 sec ⁻¹ 70 73 71 75 100 99 指数小分號 加硫物物性(指数)									
					06	100	100	指数大が優	
硬		107	107	107			100	101	同上
M10	00	141	138	139	140			100	
T	3	109 107 107 107		107		" : -			
E	3	101	102	100	100		100	100	
Ti		104	104	103	103		100	101	
屈曲亀		133	135	129	132		100	103	指数大が優
カンス透り		95	95	95	1	36	100	100	指数小が優
過性	N ₂	93	93	92	 	94	100	100	同上
	02	1 <u> </u>		<u> </u>					

【書類名】要約書

【要約】

【課題】 タイヤのサイドウォール部補強ゴムとして要望される好適な弾性率と耐屈曲亀 裂成長性等の向上、更にランフラットタイヤ等で要望されるゴムの酸化劣化性低減による ランフラット走行時の発熱抑制等を改良した新規なゴム組成物を提供すること及びゴムの 加工性を改良することによるタイヤ製造時の作業性の改善を目的とする。

【解決手段】 (1) 平均の単分散繊維結晶の短軸長が0.2μm以下、アスペクト比が10以 下であり、且つ平均の単分散繊維結晶数が10以上の短繊維状であり、かつ、融点が170℃ 以上であるSPB樹脂1~50重量部、および、(2)ゴム分100重量部からなるゴム組成物 であって、該SPB樹脂が、溶解度パラメータが8.5以下である炭化水素系溶媒を用いた 重合により製造され、該SPB樹脂の重合において、少なくとも1個以上の酸素結合を含 有する有機化合物及び/又は高分子化合物を添加されたことを特徴とするゴム組成物。

【選択図】 なし

認定・付加情報

特許出願の番号

特願2003-415354

受付番号

50302053906

書類名

特許願

担当官

第六担当上席

0095

作成日

平成15年12月15日

<認定情報・付加情報>

【提出日】

平成15年12月12日

特願2003-415354

出願人履歴情報

識別番号

[000000206]

1. 変更年月日 [変更理由] 住 所

氏 名

2001年 1月 4日

住所変更

山口県宇部市大字小串1978番地の96

宇部興産株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP04/018417

International filing date:

02 December 2004 (02.12.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2003-415354

Filing date: 12 December 2003 (12.12.2003)

Date of receipt at the International Bureau: 03 March 2005 (03.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.