2021 Fall AMC 10B Problems/Problem 13

Contents

- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Solution 3 (With two different endings)
- 5 Video Solution by Interstigation
- 6 See Also

Problem

A square with side length 3 is inscribed in an isosceles triangle with one side of the square along the base of the triangle. A square with side length 2 has two vertices on the other square and the other two on sides of the triangle, as shown. What is the area of the triangle?

- (A) $19\frac{1}{4}$ (B) $20\frac{1}{4}$ (C) $21\frac{3}{4}$ (D) $22\frac{1}{2}$ (E) $23\frac{3}{4}$

Solution 1

Let's split the triangle down the middle and label it:

We see that $\triangle ADG \sim \triangle BEG \sim \triangle CFG$ by AA similarity. $BE=rac{3}{2}$ because \overline{AK} cuts the side length of the square in half; similarly, CF=1. Let CG=h: then by side ratios,

$$\frac{h+2}{h} = \frac{\frac{3}{2}}{1} \implies 2(h+2) = 3h \implies h = 4$$

Now the height of the triangle is AG=4+2+3=9. By side ratios,

$$\frac{9}{4} = \frac{AD}{1} \implies AD = \frac{9}{4}$$

The area of the triangle is $AG \cdot AD = 9 \cdot \frac{9}{4} = \frac{81}{4} = \boxed{B}$

~KingRavi

Solution 2

By similarity, the height is $3+\frac{3}{1}\cdot 2=9$ and the base is $\frac{9}{2}\cdot 1=4.5$. Thus the area is $\frac{9\cdot 4.5}{2}=20.25=20\frac{1}{4}$, or $\boxed{(\mathbf{B})}$.

~Hefei417, or 陆畅 Sunny from China

Solution 3 (With two different endings)

This solution is based on this figure: Image:2021_AMC_10B_(Nov)_Problem_13,_sol.png Denote by O the midpoint of AB.

Because
$$FG=3$$
 , $JK=2$, $FJ=KG$, we have $FJ=rac{1}{2}$.

We observe
$$\triangle ADF \sim \triangle FJH$$
 . Hence, $\frac{AD}{FJ} = \frac{FD}{HJ}$. Hence, $AD = \frac{3}{4}$. By symmetry, $BE = AD = \frac{3}{4}$.

Therefore,
$$AB=AD+DE+BE=rac{9}{2}$$
 .

Because O is the midpoint of AB, $AO=\dfrac{9}{4}$.

We observe
$$\triangle AOC \sim \triangle ADF$$
 . Hence, $\frac{OC}{DF} = \frac{AO}{AD}$. Hence, $OC = 9$.

Therefore,
$$Area \ \triangle ABC = \frac{1}{2}AB \cdot OC = \frac{81}{4} = 20\frac{1}{4}$$
.

Therefore, the answer is $(\mathbf{B}) \ 20\frac{1}{4}$

~Steven Chen (www.professorchenedu.com)

Alternatively, we can find the height in a slightly different way.

Following from our finding that the base of the large triangle $AB=rac{9}{2}$, we can label the length of the altitude of riangle CHI as x

. Notice that
$$\triangle CHI \sim \triangle CAB$$
 . Hence, $\frac{HI}{AB} = \frac{x}{CO}$. Substituting and simplifying,
$$\frac{HI}{AB} = \frac{x}{CO} \Rightarrow \frac{2}{\frac{9}{2}} = \frac{x}{x+5} \Rightarrow \frac{x}{x+5} = \frac{4}{9} \Rightarrow x = 4 \Rightarrow CO = 4+5 = 9$$
. Therefore, the area of the

triangle is
$$\frac{\frac{9}{2} \cdot 9}{2} = \frac{81}{4} = \boxed{ (B) \ 20\frac{1}{4} }$$

~mahaler

Video Solution by Interstigation

https://www.youtube.com/watch?v=mq4e-s9ENas

See Also

2021 Fall AMC 10B (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c13))	
Preceded by Problem 12	Followed by Problem 14
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15	5 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25
All AMC 10 Problems	and Solutions

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_Fall_AMC_10B_Problems/Problem_13&oldid=170767"

Copyright © 2022 Art of Problem Solving