Definitions

- 1.) Given a topological space X, a continuous path in X is a continuous mapping $\gamma:[0,1]\to X$. Given two points $x,x'\in X$, a path γ connects them if $\gamma(0)=x$ and $\gamma(1)=x'$.
- 2.) A topological space X is path-connected if for all $x, x' \in X$, there exists a continuous path that connects x and x'.
- 3.) Let X be a topological space and \sim be an equivalence relation on X defined as follows:

$$x \sim x' \iff x \text{ is path connected to } x' \text{ in } X$$

We define $\pi_0(X)$ to be the topological space X/\sim .

4.) \mathbb{R}^m is homeomorphic to $\mathbb{R}^n \iff m = n$.

Proofs

- a.) Let [x] = [x'] for some $x, x' \in X$, then there exists a continuous path γ in X where $\gamma(0) = x$ and $\gamma(1) = x'$. Let $y, y' \in Y$ where y = f(x) and y' = f(x'), and define $\gamma' = f \circ \gamma$. We know f and γ are continuous, thus γ' is continuous. In addition, we know that $\gamma'(0) = f(\gamma(0)) = f(x) = y$ and $\gamma'(1) = f(\gamma(1)) = f(x') = y'$, thus γ' is a path that connects y and y', thus $y \sim y' \implies [y] = [y'] \implies [f(x)] = [f(x')]$, thus f_{\sharp} is a well defined function.
- b.) Let $x \in X$, then $(g \circ f)_{\sharp}([x]) = [(g \circ f)(x)] = [g(f(x))]$. We can also see that $(g_{\sharp} \circ f_{\sharp})([x]) = g_{\sharp}(f_{\sharp}([x])) = g_{\sharp}([f(x)]) = [g(f(x))]$, thus $(g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$.
- c.) Let $[x] \in X/\sim$, then $(\mathrm{id}_X)_{\sharp}([x]) = [x]$. We can also see that $\mathrm{id}_{\pi_0(X)}([x]) = [x]$, thus $(\mathrm{id}_X)_{\sharp} = \mathrm{id}_{\pi_0(X)}$.
- d.) Let $[x], [x'] \in X/\sim$ where $f_{\sharp}([x]) = f_{\sharp}([x'])$, then we know that [f(x)] = [f(x')], thus $f(x) \sim f(x')$, thus there exists a path γ in Y that connects f(x) and f(x'). Using a similar argument to before, it is easy to show that $\gamma' = f^{-1} \circ \gamma$ is a path in X that connects x to x', thus $x \sim x'$, thus [x] = [x'], thus f_{\sharp} is injective. Next, let $[y] \in Y/\sim$, then $f_{\sharp}([f^{-1}(y)]) = [f(f^{-1}(y))] = [y]$, thus f_{\sharp} is surjective, and thus bijective.