- Suppose a field \mathbb{F} is given.
- Let V be the vector space of all finite sequences $(a_1, a_2, ...)$ with $a_i \in \mathbb{F}$.
- Finite means only finitely many a_i are non-zero.
- For all $v \in V$ we define the length of the sequence v as the index of the element in the
- ordered sequence for which all the elements with greater index are $0 \in \mathbb{F}$.
- Let V^* be the dual space of V, $V^* = \mathcal{L}(V, F)$.
- ⁷ Claim. V^* is isomorphic to the space F^{∞} of all sequences.
- Thus, there exists an invertible linear map from V^* onto \mathbb{F}^{∞} .
- *Proof.* Denote an arbitrary sequence $(a_1, a_2, \dots) \in \mathbb{F}^{\infty}$ as α .
- Consider the map $\Phi: \mathbb{F}^{\infty} \to V^*$ such that $\alpha \mapsto l_{\alpha}$, where l_{α} is a linear functional defined for $\beta = (b_1, b_2, \dots, b_n, 0, \dots) \in V$ as follows:

$$l_{\alpha}(\beta) = \sum_{i=1}^{n} a_i b_i + \sum_{i=n+1}^{n} a_i 0$$
 (1)

- First we show that l_{α} is linear.
- Suppose $\mathbf{x} = (x_1, x_2, \dots, x_n, 0, \dots) \in V$, and $\mathbf{y} = (y_1, y_2, \dots, y_m, 0, \dots) \in V$.
- Consider $l_{\alpha}(\boldsymbol{x}+\boldsymbol{y})$.

If m = n,

$$l_{\alpha}(\mathbf{x} + \mathbf{y}) = l_{\alpha}((x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_m))$$
 (2)

$$= l_{\alpha}(x_1 + y_1, x_2 + y_2, \dots, x_n + y_m, 0, \dots)$$
(3)

$$= \sum_{i=1}^{n} a_i (x_i + y_i) \tag{4}$$

$$= \sum_{i=1}^{n} (a_i x_i) + \sum_{i=1}^{m} (a_i y_i)$$
 (5)

$$= l_{\alpha}(\boldsymbol{x}) + l_{\alpha}(\boldsymbol{y}) \tag{6}$$

Without loss of generality, suppose now m > n.

$$l_{\alpha}(\mathbf{x} + \mathbf{y}) = l_{\alpha}((x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_m))$$
 (7)

$$= l_{\alpha}(x_1 + x_1, x_2 + x_2, \dots, x_n + y_n, \dots, 0 + y_{n+1}, \dots, 0 + y_m, 0, \dots)$$
 (8)

$$= \sum_{i=1}^{n} a_i(x_i + y_i) + \sum_{i=n+1}^{m} (a_i y_i)$$
(9)

$$= \sum_{i=1}^{n} (a_i x_i) + \sum_{i=1}^{m} (a_i y_i)$$
(10)

$$= l_{\alpha}(\boldsymbol{x}) + l_{\alpha}(\boldsymbol{y}) \tag{11}$$

Now, consider $l_{\alpha}(c\boldsymbol{x})$ for some $c \in \mathbb{F}$.

$$l_{\alpha}(c\mathbf{x}) = \sum_{i=1}^{n} (a_i(cx_i))$$
(12)

$$=c\sum_{i=1}^{n}(a_ix_i) \tag{13}$$

$$= cl_{\alpha}(\boldsymbol{x}) \tag{14}$$

- Thus, l_{α} is additive and homogeneous, and thus linear.
- Then we show that Φ is linear.
- Consider $\Phi(c\alpha + \beta)$, for $c \in \mathbb{F}, \alpha, \beta \in \mathbb{F}^{\infty}$, with $\alpha = (a_1, a_2, \dots) \in V^*$,
- 19 and $\beta = (b_1, b_2, \dots) \in V^*$.
- Let $\gamma = (ca_1 + b_1, ca_2 + b_2, \dots) \in V^*$

Note the following:

$$\Phi(c\alpha + \beta) = \Phi(c(a_1, a_2, \dots) + (b_1, b_2, \dots))$$
(15)

$$= \Phi((ca_1, ca_2, \dots) + (b_1, b_2, \dots))$$
(16)

$$= \Phi(ca_1 + b_1, ca_2 + b_2, \dots) \tag{17}$$

$$=\Phi(\gamma)\tag{18}$$

$$=l_{\gamma} \tag{19}$$

Note also the following:

$$c\Phi(\alpha) + \Phi(\beta) = cl_{\alpha} + l_{\beta} \tag{20}$$

Therefore, for $\boldsymbol{x} = (x_1, x_2, \dots, x_n) \in V$,

$$\Phi(c\alpha + \beta)(\mathbf{x}) = l_{\gamma}(\mathbf{x}) \tag{21}$$

$$= \sum_{i=1}^{n} (ca_i + b_i)x_i + \sum_{j=n+1} (ca_j + b_j)0$$
 (22)

$$= c \sum_{i=1}^{n} (a_i x_i) + c \sum_{j=n+1}^{n} (a_j 0) + \sum_{i=1}^{n} b_i x_i + \sum_{j=n+1}^{n} (b_j 0)$$
 (23)

$$= cl_{\alpha} + l_{\beta} \tag{24}$$

$$= c\Phi(\alpha) + \Phi(\beta) \tag{25}$$

- Thus, Φ is additive and homogeneous. Hence, Φ is linear.
- We prove now that Φ is injective.
- Suppose $\chi = (x_1, x_2, \dots) \in \ker(\Phi)$. Thus, $\Phi(\chi)$ is the zero function, and hence

$$\forall (\boldsymbol{x} \in V) : l_{\boldsymbol{Y}}(\boldsymbol{x}) = 0.$$

- Finally, we prove that Φ is surjective.
- Let $\beta_{\mathbb{F}^{\infty}} = \{\epsilon_1, \epsilon_2, \dots\}$ be the standard basis of \mathbb{F}^{∞} . Note that ϵ_i is an infinite sequence of zeroes but for the i^{th} coordinate, where it is equal to 1.
- For any $\chi = (x_1, x_2, \dots) \in \mathbb{F}^{\infty}$, consider $\Phi(\chi) = l_{\chi}$.
- 34 Since

$$\chi = \sum_{i=1}^{\infty} x_i e_1,$$

while Φ is linear, then

$$l_{\chi} = \Phi(\chi) = \Phi(\sum_{i=1}^{\infty} x_i e_1) = \sum_{i=1}^{\infty} x_i \Phi(e_i) = \sum_{i=1}^{\infty} x_i l_{e_i}.$$

By definition of l_{e_i} , for all $v = (v_1, v_2, \dots, v_n, 0, \dots) \in V$

$$l_{e_i}: v \mapsto v_i,$$

- where v_i is the i^{th} coordinate of v.
- Thus, $l_{e_i}(e_j) = \delta_{ij}$, where δ_{ij} is the Kronecker delta, for $i, j \leq n$,
- and $l_{e_i}(v) = 0$ for i > n and $v \in V$.
- Therefore, $l(e_i) = x_i$ for $i \le n$ and $l(e_i) = 0$ for i > n.
- Suppose now that some l exists in V^* .
- For some $n \in \mathbb{N}$, evaluate l at e_i for all $e_i \in \beta_{\mathbb{F}^{\infty}}$ such that $0 < i \le n$.
- From the argument above, since $l(e_i) = x_i$ for $i \leq n$ and $l(e_i) = 0$ for i > n, while
- 44 $e_i \in \beta_{\mathbb{F}^{\infty}}$, then l is a uniquely defined map Φ from V to \mathbb{F} which maps the sequence
- 45 $(x_1, x_2, \ldots, x_n, 0, \ldots)$ to l. Since l has been chosen arbitriarily, Φ is surjective.
- Since Φ is linear, injective and surjective, then Φ is an isomorphism from F^{∞} to V^* .
- Therefore, V^* is isomorphic to the space F^{∞} of all sequences.