HOMEWORK SET #4 Based on lectures 5 - 6

1. Prove that for all x > 0

$$\left(\frac{1}{x} - \frac{1}{x^3}\right)\phi(x) < 1 - \Phi(x) < \frac{1}{x}\phi(x).$$

- 2. Let Z_1, \ldots, Z_n be i.i.d. $N(0, \sigma^2)$ and write $U_i = \max(\min(Z_i, 1), -1)$. In what follows t > 0.
 - (a) Prove $P(\sum_{i=1}^{n} Z_i > nt) \le \frac{\sigma \exp(-\frac{nt^2}{2\sigma^2})}{\sqrt{2\pi n} t}$.
 - (b) Prove $P(\sum_{i=1}^{n} U_i > nt) \le \exp(-\frac{nt^2}{2})$.
 - (c) Find EU_i and prove $Var U_i \leq \sigma^2$.
 - (d) Prove $P(\sum_{i=1}^{n} U_i > nt) \le \exp(-\frac{nt^2}{2\sigma^2 + 4t/3})$.
- 3. Let X_1, \ldots, X_n be any sample (not necessarily independent) from a distribution with common mean μ and variance σ^2 . Define $\bar{X}_n = \sum_{i=1}^n X_i/n$.
 - (a) Find $E(\bar{X}_n)$.
 - (b) Prove or disprove: $Var\bar{X}_n \to 0$ as $n \to \infty$.
- 4. Let X_1, \ldots, X_n be an i.i.d. sample from uniform (0,1) distribution. Find the $EX_{(k)}$.
- 5. Let X_1, \ldots, X_{4n} be an i.i.d. sample from exponential(β) distribution. Find the joint distribution of $(\frac{X_{(n)}+X_{(3n)}}{2}, X_{(3n)}-X_{(n)})$.
- 6. Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with density $\frac{1}{x^2}I_{(1,\infty)}(x)$. Is EX_k finite? What about $EX_{(k)}$? (Hint: The answer might be different for different k.)
- 7. Let X_1, \ldots, X_n be i.i.d. sample from a distribution with density f(x). Fix i < j < k and find the formula for the joint density $f_{X_{(i)}, X_{(j)}, X_{(k)}}(s, u, v)$.
- 8. Let X_1, \ldots, X_n be i.i.d. from Geometric(p) distribution.

- (a) Set (for this problem part only) $n=10, p=\frac{1}{4}$. Find $P(X_{(3)}=X_{(5)}=3)$.
- (b) Fix $1 \le i < j \le n$. Find the probability mass function $f_{X_{(i)},X_{(j)}}(a,b)$.
- 9. From the book 5.15, 5.21, 5.24.