projectSiegen | Summary

May 12, 2015

1 May 7-12

1.1 Impressions

- I started with reading about Modular Variables from 'Dynamical quantum non-locality', a perspective paper from Nature Physics. The paper basically talks about how modular variables capture the essence of a quantum state in a way that no other variable we've considered so far does. It relates this to non-locality in quantum mechanics. This non-locality however is not the one usually considered in the context of say the singlet state. The point they make is that this non-locality arises from the equations of motion (Heisenberg picture), which are non-local themselves (since operators are involved). I found the paper is simple, subtle and interesting.
- Next I started reading a paper titled 'Quantum interference experiments, modular variables and weak measurements' from IOP Science. This I was told is an elaboration of the perspective paper. However, I didn't complete this for I hadn't frozen the topic yet.
- I talked to a person named 'Roope' at the group and his work came across as rather fascinating. I was impressed by his work; it is related to 'measurement equivalent of mixed state'. You make a certain kind of measurement with a certain classical probability. With this type of measurement operators, he was able to show that for compatibility, commutation is not the best criterion. Of course compatability means that the two measurement can be done simultaneously without affecting each other. He gave a good example from his paper 'Joint Measureablity of Generalized Measurements Implies Classicality', PRL to illustrate the points. His main result was unification of the concept of steering with that of his test of joint measurement, viz. compatibility.
- Modular variables are discussed quite neatly in the book by Aharonov et. al., titled 'Quantm Paradoxes: Quantum Theory for the Perplexed'. I read the first few pages, which are a delight to read (about how paradoxes help, classification of paradoxes etc.). I read the main chapter related to modular variables. I still have some small doubts which I'll clarify soon. Other than that, I have a good basic idea of the concept.
- I talked to 'Costentino' who basically told me that his work revolves around looking at Bells inequalities in more complicated systems. I didn't find that particularly attractive. I also talked to 'Nicolai' and he told me he works on finding interesting states. The kind of states he/they look for are such that the sub systems (partially traced) are separable but the entire state is 'genuinely entangled' (this is the region of state space excluding separable and after tracing entangled states). He talked about witnesses and an algorithm to find an optimal witness and an optimal state correspondingly, recursively, starting from a random initial state matrix. This was ok, but again, not very appealing to me. And last person for the (that) day, I talked to 'Marius' and he told me about how he studies bell's inequalities in decaying particles, and his system of choice was Kions. Again, it maybe non trivial and hard, but didn't come accross as worth pursuing.