## Práctica Nº 17: Vuelta Atrás (*Backtracking*) Estructuras de Datos y de la Información 2º ITIS y 3º de Teleco + ITIS

## Backtracking: El problema del corte máximo

Dado un grafo ponderado y no dirigido  $G = \{V, A, W\}$ , donde V es el conjunto de vértices, A es el conjunto aristas y W es el conjunto de pesos  $w_{ij}$  asociados a cada arista  $(i, j) \in A$ , con  $i, j \in V$ , el problema del corte máximo consiste en encontrar una partición del conjunto de vértices V de G en dos subconjuntos disjuntos  $V = \{V1, V2\}$ :  $V1 \cap V2 = \emptyset$  y  $V1 \cup V2 = V$ , tal que se **maximice la suma de los pesos de las aristas cuyos extremos se encuentran en subconjuntos distintos**. En la siguiente figura se representa gráficamente un posible corte sobre un grafo G y su solución asociada.



En el ejemplo anterior, la bipartición de *V* en *V*1 y *V*2 produce el siguiente valor numérico del corte:

$$cutValue = 3 + 4 + 5 + 6 = 18$$

En general, se tiene que cualquier corte se puede calcular mediante la expresión:

$$cutValue(V1, V2) = \sum_{\forall i \in V1; \forall j \in V2} w_{ij}$$

Se pide implementar un algoritmo de vuelta atrás que proporcione una solución al problema.