Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Calculus and Applications

Module Code: MATH40004

Date: 12/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	
Q3	√
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered
- Trainiboi	7410470104

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

(i)
$$f(x) = f(0) + f'(0) \cdot x + f''(0) \cdot (x^{2}) + \dots + \frac{f''(0) \cdot x^{2}}{n!} + \dots + \frac{f''(0) \cdot x^{2}}{n!} + Rn$$

$$R_{n} = \int_{0}^{x} \frac{(x-t)^{n}}{n!} f'''(t) dt$$

$$\int_{0}^{\infty} \frac{(x-t)}{n!} f(t) dt$$

$$f(x) = e^{x}$$
 $f'(x) = e^{x}$ $f(x) = 1$
Using Taylors than we get

$$e^{\frac{1}{2}} = \sqrt{e} \approx 1 + \frac{1}{2} + \frac{1}{4 \cdot 2!} + \frac{1}{8 \cdot 3!} + \frac{1}{4000} + \frac{1}{4000} + \frac{1}{4000} + \frac{1}{2} + \frac{1}{8} + \frac{1}{98}$$

$$= \boxed{\frac{79}{2}}$$

$$\lim_{x\to 0} \frac{e^{\sin x} - x - 1}{1 - (\cos x)} = \lim_{x\to 0} \frac{\left(e^{\sin x} - x - 1\right)}{\left(1 - (\cos x)^{\frac{1}{2}}\right)} = \lim_{x\to 0} \frac{\left(e^{\sin x} - x - 1\right)}{\sin x} = \lim_{x\to 0} \frac{\left(e^{\sin x} - x - 1\right)}{\sin$$

$$\lim_{x \to 0} \frac{\left(e^{\sin x} \cdot (\cos x - 1)\right)^{1}}{\left(\sin(x)\right)^{1}} = \lim_{x \to 0} \frac{-e^{\sin(x)} \left(\sin(x) - \cos^{2}(x)\right)}{\cos(x)} = \frac{-e^{0} \left(0 - 1\right)}{1} = \frac{-1(-1)}{1}$$

CID: 01738166 MATH40004 Guestion 3 Page 2

$$\frac{1}{2\eta} = \frac{1}{2\eta} = \frac{1}{2\eta} = \frac{1}{3\eta}$$

(fi) Notice
$$f(x) = -1(-x) = 1$$
 denotion is odd = 1 $a_n = 0$

$$b_n = 2 \int_0^\infty f(x) \sin(nx) dx$$

$$f(x) = \int_0^\infty f(x) \sin(nx) dx$$

$$6n = \frac{2}{\pi} \int_{0}^{\infty} \sin(nx) dx = \frac{2}{\pi} \left[-\frac{\cos(nx)}{n} \right]_{0}^{\pi} = \frac{2}{\pi} \left(\frac{1 - \cos(n\pi t)}{n} \right) = \begin{cases} 0 & n \text{ even} \\ \frac{4}{n\pi t} & n \text{ odd} \end{cases}$$

$$27 J(x) = \frac{4}{31} \left(\sin(x) + \sin(3x) + \dots \right)$$

(iii)
$$J(\frac{11}{2}) = 1 = \frac{4}{3} \left(\frac{\sin(\frac{11}{2})}{3} + \frac{\sin(\frac{3n}{2})}{3} + \frac{\sin(\frac{5n}{2})}{5} \right)$$

=) $\frac{1}{3} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{2}{2} \frac{[-1]^n}{(2\mu + 1)}$

$$=)\frac{1}{u}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{2}{\kappa_{=0}}\frac{[-1)^{\kappa}}{(2\kappa_{1})}$$