Signature-based Gröbner Basis Algorithms in SINGULAR

Christian Eder, Jean-Charles Faugère and Bjarke Hammersholt Roune

May 15, 2014

Input: Ideal $I = \langle f_1, \dots, f_m \rangle$ Output: Gröbner basis G of I

- 1. $G \leftarrow \emptyset$
- **2.** $G \leftarrow G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- **3.** Set $P \leftarrow \{ \operatorname{spol}(f_i, f_j) \mid f_i, f_j \in G, i > j \}$

Input: Ideal $I = \langle f_1, \dots, f_m \rangle$ Output: Gröbner basis G of I

- 1. $G \leftarrow \emptyset$
- **2.** $G \leftarrow G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- **3.** Set $P \leftarrow \{ \operatorname{spol}(f_i, f_j) \mid f_i, f_j \in G, i > j \}$
- **4.** Choose $p \in P$, $P \leftarrow P \setminus \{p\}$

Input: Ideal $I = \langle f_1, \dots, f_m \rangle$ Output: Gröbner basis G of I

- 1. $G \leftarrow \emptyset$
- **2.** $G \leftarrow G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- **3.** Set $P \leftarrow \{ \operatorname{spol}(f_i, f_j) \mid f_i, f_j \in G, i > j \}$
- **4.** Choose $p \in P$, $P \leftarrow P \setminus \{p\}$
 - (a) If $p \xrightarrow{G} 0 \longrightarrow$ no new information Go on with the next element in P.
 - (b) If $p \xrightarrow{G} h \neq 0 \implies$ new information Build new S-pair with h and add them to P. Add h to G. Go on with the next element in P.
- **5.** When $P = \emptyset$ we are done and G is a Gröbner basis of I.

Input: Ideal
$$I = \langle f_1, \dots, f_m \rangle$$

Output: Gröbner basis G of I

- 1. $G \leftarrow \emptyset$
- **2.** $G \leftarrow G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- **3.** Set $P \leftarrow \{ \text{spol}(f_i, f_j) \mid f_i, f_j \in G, i > j \}$
- **4.** Choose $p \in P$, $P \leftarrow P \setminus \{p\}$
 - (a) If $p \xrightarrow{G} 0 \longrightarrow$ no new information Go on with the next element in P.
 - (b) If $p \xrightarrow{G} h \neq 0 \implies$ new information Build new S-pair with h and add them to P. Add h to G. Go on with the next element in P.
- **5.** When $P = \emptyset$ we are done and G is a Gröbner basis of I.

How to predict zero reductions?

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x,y,z]$ and let < denote DRL. Let

$$g_1 = xy - z^2, \quad g_2 = y^2 - z^2$$

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ and let < denote DRL. Let

$$g_1 = xy - z^2, \quad g_2 = y^2 - z^2$$

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$.

$$\implies g_3 = xz^2 - yz^2.$$

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ and let < denote DRL. Let

$$g_1 = xy - z^2, \quad g_2 = y^2 - z^2$$

spol
$$(g_2, g_1) = xg_2 - yg_1 = \mathbf{xy^2} - xz^2 - \mathbf{xy^2} + yz^2$$

= $-xz^2 + yz^2$.

$$\implies g_3 = xz^2 - yz^2.$$

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ and let < denote DRL. Let

$$g_1 = xy - z^2, \quad g_2 = y^2 - z^2$$

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$.

$$\implies g_3 = xz^2 - yz^2.$$

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

We can reduce further using z^2g_2 :

$$-y^2z^2+z^4+y^2z^2-z^4=0.$$

Let
$$I = \langle f_1, \ldots, f_m \rangle$$
.

Let
$$I = \langle f_1, \dots, f_m \rangle$$
.

Idea: Give each $f \in I$ a bit more structure:

▶ Let R^m be generated by $e_1, ..., e_m$ and let \prec be a compatible monomial order on the monomials of R^m .

Let
$$I = \langle f_1, \ldots, f_m \rangle$$
.

- ▶ Let R^m be generated by $e_1, ..., e_m$ and let \prec be a compatible monomial order on the monomials of R^m .
- ▶ Let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that $\overline{e}_i = f_i$ for all i.

Let $I = \langle f_1, \ldots, f_m \rangle$.

- ▶ Let R^m be generated by $e_1, ..., e_m$ and let \prec be a compatible monomial order on the monomials of R^m .
- ▶ Let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that $\overline{e}_i = f_i$ for all i.
- ▶ Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$

Let $I = \langle f_1, \ldots, f_m \rangle$.

- ▶ Let R^m be generated by $e_1, ..., e_m$ and let \prec be a compatible monomial order on the monomials of R^m .
- ▶ Let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that $\overline{e}_i = f_i$ for all i.
- ▶ Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$
- ▶ A signature of f is given by $\mathfrak{s}(f) = \mathsf{lt}_{\prec}(\alpha)$ where $f = \overline{\alpha}$.

Let $I = \langle f_1, \ldots, f_m \rangle$.

- ▶ Let R^m be generated by $e_1, ..., e_m$ and let \prec be a compatible monomial order on the monomials of R^m .
- ▶ Let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that $\overline{e}_i = f_i$ for all i.
- ▶ Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$
- ▶ A signature of f is given by $\mathfrak{s}(f) = \mathsf{lt}_{\prec}(\alpha)$ where $f = \overline{\alpha}$.
- ▶ An element $\alpha \in \mathcal{R}^m$ with $\overline{\alpha} = 0$ is called a syzygy.

Our example again – with signatures and \prec_{pot}

$$g_1 = xy - z^2$$
, $\mathfrak{s}(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $\mathfrak{s}(g_2) = e_2$.

Our example again – with signatures and ≺pot

$$g_1 = xy - z^2$$
, $\mathfrak{s}(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $\mathfrak{s}(g_2) = e_2$.

$$g_3 = \operatorname{spol}(g_2, g_1) = xg_2 - yg_1$$

 $\Rightarrow \mathfrak{s}(g_3) = x\mathfrak{s}(g_2) = xe_2.$

Our example again – with signatures and ≺pot

$$g_1 = xy - z^2$$
, $\mathfrak{s}(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $\mathfrak{s}(g_2) = e_2$.

$$g_3 = \operatorname{spol}(g_2, g_1) = xg_2 - yg_1$$

 $\Rightarrow \mathfrak{s}(g_3) = x \mathfrak{s}(g_2) = xe_2.$

$$spol(g_3, g_1) = yg_3 - z^2g_1$$

$$\Rightarrow \mathfrak{s}\left(spol(g_3, g_1)\right) = y\,\mathfrak{s}(g_3) = xye_2.$$

Our example again – with signatures and ≺pot

$$g_1 = xy - z^2$$
, $\mathfrak{s}(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $\mathfrak{s}(g_2) = e_2$.

$$g_3 = \operatorname{spol}(g_2, g_1) = xg_2 - yg_1$$

 $\Rightarrow \mathfrak{s}(g_3) = x \mathfrak{s}(g_2) = xe_2.$

$$spol(g_3, g_1) = yg_3 - z^2g_1$$

$$\Rightarrow \mathfrak{s}\left(spol(g_3, g_1)\right) = y\mathfrak{s}(g_3) = xye_2.$$

Note that $\mathfrak{s}(\operatorname{spol}(g_3,g_1))=xye_2$ and $\operatorname{Im}(g_1)=xy$.

General idea: Only 1 element per signature.

General idea: Only 1 element per signature.

Several elements with the same signature?

General idea: Only 1 element per signature.

Several elements with the same signature?

Choose 1 and remove the others.

General idea: Only 1 element per signature.

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.

General idea: Only 1 element per signature.

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.

Our task: Keep signatures correct.

 $\alpha \in R^m \implies \overline{\operatorname{polynomial} \overline{\alpha}} \text{ with } \operatorname{lt}(\overline{\alpha}), \operatorname{signature} \mathfrak{s}(\alpha) = \operatorname{lt}(\alpha)$

$$lpha \in \mathit{R}^m \implies \mathsf{polynomial} \ \overline{lpha} \ \mathsf{with} \ \mathsf{lt}(\overline{lpha}), \ \mathsf{signature} \ \mathfrak{s}(lpha) = \mathsf{lt}(lpha)$$

S-pairs/S-polynomials:

$$\operatorname{\mathsf{spol}}\left(\overline{lpha},\overline{eta}
ight) = a\overline{lpha} - b\overline{eta} \implies \operatorname{\mathsf{spair}}(lpha,eta) = alpha - beta$$

$$lpha \in \mathit{R}^m \implies \mathsf{polynomial} \; \overline{lpha} \; \mathsf{with} \; \mathsf{lt}(\overline{lpha}), \, \mathsf{signature} \; \mathfrak{s}(lpha) = \mathsf{lt}(lpha)$$

S-pairs/S-polynomials:

$$\operatorname{spol}\left(\overline{lpha},\overline{eta}
ight)=a\overline{lpha}-b\overline{eta}\implies \operatorname{spair}\left(lpha,eta
ight)=alpha-beta$$

s-reductions:

$$\overline{\gamma} - d\overline{\delta} \implies \gamma - d\delta$$

$$\alpha \in R^m \implies \mathsf{polynomial} \ \overline{\alpha} \ \mathsf{with} \ \mathsf{lt}(\overline{\alpha}), \ \mathsf{signature} \ \mathfrak{s}(\alpha) = \mathsf{lt}(\alpha)$$

S-pairs/S-polynomials:

$$\operatorname{spol}\left(\overline{lpha},\overline{eta}
ight)=a\overline{lpha}-b\overline{eta} \implies \operatorname{spair}\left(lpha,eta
ight)=alpha-beta$$

s-reductions:

$$\overline{\gamma} - d\overline{\delta} \implies \gamma - d\delta$$

Remark

In the following we need one detail from signature-based Gröbner Basis computations:

We pick from P by increasing signature.

$$\mathfrak{s}(lpha)=\mathfrak{s}(eta) \implies ext{Compute 1, remove 1.}$$

$$\mathfrak{s}(\alpha) = \mathfrak{s}(\beta) \implies \mathsf{Compute 1, remove 1.}$$

Sketch of proof

- **1.** $\mathfrak{s}(\alpha-\beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta)$.
- **2.** All S-pairs are handled by increasing signature.
 - \Rightarrow All relations $\prec \mathfrak{s}(\alpha)$ are known:

$$lpha=eta+$$
 elements of smaller signature

S-pairs in signature T

S-pairs in signature T

What are all possible configurations to reach signature *T*?

S-pairs in signature T

What are all possible configurations to reach signature *T*?

S-pairs in signature T

What are all possible configurations to reach signature *T*?

Define an order on $\mathfrak{R}_{\mathcal{T}}$ and choose the maximal element.

Special cases

$$\mathfrak{R}_{\mathcal{T}} = \Big\{ alpha \mid lpha$$
 handled by the algorithm and $\mathfrak{s}(alpha) = \mathcal{T} \Big\}$

Special cases

$$\mathfrak{R}_{\mathcal{T}} = \Big\{ alpha \mid lpha ext{ handled by the algorithm and } \mathfrak{s}(alpha) = \mathcal{T} \Big\}$$

Choose $b\beta$ to be an element of $\mathfrak{R}_{\mathcal{T}}$ maximal w.r.t. an order \leq .

Special cases

$$\mathfrak{R}_{\mathcal{T}} = \Big\{ alpha \mid lpha ext{ handled by the algorithm and } \mathfrak{s}(alpha) = \mathcal{T} \Big\}$$

Choose $b\beta$ to be an element of \mathfrak{R}_T maximal w.r.t. an order \leq .

1. If $b\beta$ is a syzygy

 \implies Go on to next signature.

Special cases

$$\mathfrak{R}_{\mathcal{T}} = \Big\{ alpha \mid lpha ext{ handled by the algorithm and } \mathfrak{s}(alpha) = \mathcal{T} \Big\}$$

Choose $b\beta$ to be an element of \mathfrak{R}_T maximal w.r.t. an order \leq .

- 1. If $b\beta$ is a syzygy \implies Go on to next signature.
- 2. If $b\beta$ is not part of an S-pair \implies Go on to next signature.

Special cases

$$\mathfrak{R}_{\mathcal{T}} = \Big\{ alpha \mid lpha ext{ handled by the algorithm and } \mathfrak{s}(alpha) = \mathcal{T} \Big\}$$

Choose $b\beta$ to be an element of \Re_T maximal w.r.t. an order \leq .

- 1. If $b\beta$ is a syzygy
 - \implies Go on to next signature.
- 2. If $b\beta$ is not part of an S-pair \implies Go on to next signature.

Revisiting our example with \prec_{pot}

$$\left. \begin{array}{c} \mathfrak{s} \left(\mathsf{spol} (g_3, g_1) \right) = \textit{xye}_2 \\ \\ g_1 = \textit{xy} - \textit{z}^2 \\ \\ g_2 = \textit{y}^2 - \textit{z}^2 \end{array} \right\} \Rightarrow \mathsf{psyz} (g_2, g_1) = g_1 e_2 - g_2 e_1 = \textit{xye}_2 + \dots$$

zero reductions (Singular-4-0-0, \mathbb{F}_{32003})

Benchmark	STD	SBA <pot< th=""><th>${f SBA}<_{{f d} ext{-pot}}$</th><th>${f SBA}<_{{f lt}}$</th></pot<>	${f SBA}<_{{f d} ext{-pot}}$	${f SBA}<_{{f lt}}$
cyclic-8	4,284	243	243	671
cyclic-8-h	5,843	243	243	671
eco-11	3,476	0	749	749
eco-11-h	5,429	502	502	749
katsura-11	3,933	0	0	353
katsura-11-h	3,933	0	0	353
noon-9	25,508	0	0	682
noon-9-h	25,508	0	0	682
Random(11,2,2)	6,292	0	0	590
HRandom(11,2,2)	6,292	0	0	590
Random(12,2,2)	13,576	0	0	1,083
HRandom(12,2,2)	13,576	0	0	1,083

Time in seconds (Singular-4-0-0, \mathbb{F}_{32003})

Benchmark	STD	SBA <pot< th=""><th>$\mathbf{SBA} <_{\text{d-pot}}$</th><th>$\mathbf{SBA} <_{\mathrm{lt}}$</th></pot<>	$\mathbf{SBA} <_{\text{d-pot}}$	$\mathbf{SBA} <_{\mathrm{lt}}$
cyclic-8	32.480	44.310	100.780	38.120
cyclic-8-h	38.300	35.770	98.440	32.640
eco-11	28.450	3.450	27.360	13.270
eco-11-h	20.630	11.600	14.840	7.960
katsura-11	54.780	35.720	31.010	11.790
katsura-11-h	51.260	34.080	32.590	17.230
noon-9	29.730	12.940	14.620	15.220
noon-9-h	34.410	17.850	20.090	20.510
Random(11,2,2)	267.810	77.430	130.400	28.640
HRandom(11,2,2)	22.970	14.060	39.320	3.540
Random(12,2,2)	2,069.890	537.340	1,062.390	176.920
HRandom(12,2,2)	172.910	112.420	331.680	22.060

Next steps

- **▶** Singular:
 - ▷ SBA for modules
 - \triangleright SBA over \mathbb{Z} , \mathbb{Z}_n
 - ▷ SBA for non-commutative algebras (PBW)

Next steps

▶ Singular:

- ▷ SBA for modules
- \triangleright SBA over \mathbb{Z} , \mathbb{Z}_n
- ▷ SBA for non-commutative algebras (PBW)
- ▶ New C library for GBs using fast special linear algebra:

 - ▷ Parallelization on CPU, GPU, network
 - ▷ Use group actions on ideals
 - > Specific implementations for dense resp. sparse polynomial systems
 - \triangleright Aiming towards crypto applications (aiming on \mathbf{F}_2 and \mathbf{F}_{2^e} for small e)

References I

- [1] Albrecht, M. and Perry, J. F4/5. http://arxiv.org/abs/1006.4933, 2010.
- [2] Arri, A. and Perry, J. The F5 Criterion revised. Journal of Symbolic Computation, 46(2):1017–1029, June 2011. Preprint online at arxiv.org/abs/1012.3664
- [3] Ars, G. Applications des bases de Gröbner à la cryptographie. PhD thesis, Université de Rennes I. 2005.
- [4] Ars, G. and Hashemi, A. Extended F5 Criteria. Journal of Symbolic Computation, MEGA 2009 special issue, 45(12):1330–1340, 2010.
- [5] Eder, C. Improving incremental signature-based Groebner bases algorithms. ACM SIGSAM Communications in Computer Algebra, 47(1):1–13, 2013. http://arxiv.org/abs/1201.6472.
- [6] Eder, C., Gash, J., and Perry, J. Modifying Faugère's F5 Algorithm to ensure termination. ACM SIGSAM Communications in Computer Algebra, 45(2):70–89, 2011. http://arxiv.org/abs/1006.0318.
- [7] Eder, C. and Perry, J. F5C: A Variant of Faugère's F5 Algorithm with reduced Gröbner bases. Journal of Symbolic Computation, MEGA 2009 special issue, 45(12):1442–1458, 2010. dx.doi.org/10.1016/j.jsc.2010.06.019.
- [8] Eder, C. and Perry, J. Signature-based Algorithms to Compute Gröbner Bases. In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 99–106, 2011.

References II

- [9] Eder, C. and Roune, B. H. Signature Rewriting in Gröbner Basis Computation. In ISSAC 2013: Proceedings of the 2013 international symposium on Symbolic and algebraic computation, pages 331–338, 2013.
- [10] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In ISSAC'02, Villeneuve d'Ascq, France, pages 75–82, July 2002. Revised version from http://fgbrs.lip6.fr/jcf/Publications/index.html.
- [11] Faugère, J.-C. and Joux, A. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. 2729:44–60, 2003.
- [12] Faugère, J.-C., Safey El Din, M., and Spaenlehauer, P.-J. Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity. *Journal of Symbolic Computation*, 46(4):406–437, 2011. Available online 4 November 2010.
- [13] Faugère, J.-C., Safey El Din, M., and Verron, T. On the complexity of Computing Gröbner Bases for Quasi-homogeneous Systems. In *Proceedings of the 38th international* symposium on International symposium on symbolic and algebraic computation, ISSAC '13, pages 189–196, New York, NY, USA, 2013. ACM.
- [14] Faugère, J.-C. and Svartz, J. Solving polynomial systems globally invariant under an action of the symmetric group and application to the equilibria of n vertices in the plane. In Proceedings of the 37th international symposium on International symposium on symbolic and algebraic computation, ISSAC '12, pages 170–178, New York, NY, USA, 2012. ACM.

References III

- [15] Faugère, J.-C. and Svartz, J. Gröbner Bases of ideals invariant under a Commutative group: the Non-modular Case. In Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, pages 347–354. New York, NY, USA, 2013. ACM.
- [16] Faugère, J.-C. and Rahmany, S. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases. In ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC '09, pages 151–158, New York, NY, USA, 2009. ACM.
- [17] Galkin, V. Simple signature-based Groebner basis algorithm. http://arxiv.org/abs/1205.6050, 2012.
- [18] Gao, S., Guan, Y., and Volny IV, F. A new incremental algorithm for computing Gröbner bases. In ISSAC '10: Proceedings of the 2010 international symposium on Symbolic and algebraic computation, pages 13–19. ACM, 2010.
- [19] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases. http://eprint.iacr.org/2010/641, 2010.
- [20] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases (rev. 2011). http://www.math.clemson.edu/~sgao/papers/gvw.pdf, 2011.
- [21] Gash, J. M. On efficient computation of Gröbner bases. PhD thesis, University of Indiana, Bloomington, IN, 2008.

References IV

- [22] Gash, J. M. A provably terminating and speed-competitive variant of F5 F5t. *submitted to the Journal of Symbolic Computation*, 2009.
- [23] Gerdt, V. P. and Hashemi, A. On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases. *Program. Comput. Softw.*, 39(2):81–90, March 2013.
- [24] Gerdt, V. P., Hashemi, A., and M.-Alizadeh, B. Involutive Bases Algorithm Incorporating F5 Criterion. J. Symb. Comput., 59:1–20, 2013.
- [25] Huang, L. A new conception for computing Gröbner basis and its applications. http://arxiv.org/abs/1012.5425, 2010.
- [26] Pan, S., Hu, Y., and Wang, B. The Termination of Algorithms for Computing Gröbner Bases. http://arxiv.org/abs/1202.3524, 2012.
- [27] Pan, S., Hu, Y., and Wang, B. The Termination of the F5 Algorithm Revisited. In ISSAC 2013: Proceedings of the 2013 international symposium on Symbolic and algebraic computation, pages 291–298, 2013.
- [28] Roune, B. H. and Stillman, M. Practical Gröbner Basis Computation. In ISSAC 2012: Proceedings of the 2012 international symposium on Symbolic and algebraic computation. 2012.
- [29] Stegers, T. Faugère's F5 Algorithm revisited. Master's thesis, Technische Univerität Darmstadt, revised version 2007.

References V

- [30] Sun, Y. and Wang, D. K. A generalized criterion for signature related Gröbner basis algorithms. In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 337–344, 2011.
- [31] Sun, Y., Wang, D. K., Ma, D. X., and Zhang, Y. A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras. In ISSAC 2012: Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 351–358, 2012.
- [32] Volny, F. New algorithms for computing Gröbner bases. PhD thesis, Clemson University, 2011.