1 Task 1

1.1 Tools

Overleaf

1.2 Task description

Task 1

You should find an absolute velocity and coriolis acceleration, and absolute acceleration of particle M at the time $t = t_1$.

Needed variables:

OM =
$$s_r(t) = f_3(t) = 2t^3 + 3t$$
;
 $\phi(t) = f_2(t) = \frac{1}{24}\pi t^2$;

$$t_1 = 2$$
, $R = 15$.

Task 1 (Yablonskii (eng) K-5)

1.3 Task explanation

As I understand, rigit body D moves in a translatory motion, since R from points O1 and O2 is the same value and both φ are the same. So the movement of point O is the same as the movement of a points A and B. Also this means that point M moves only in x axis. If ϕ is $\frac{1}{24}\pi t^2$ then $\omega = \phi' = \frac{1}{12}\pi t$. Since point M moves at itself in terms of point O, it gives us an option to treat motion of point M as a plane motion (rotation motion of point O around some stable point + translatory motion of point M depends on point O position). So using formula $r_B = r_A + A_\phi \rho_B$ where ρ_B is R, ϕ function is given, and r_B is what we need to find velocity and acceleration of a point M. Since it'll take long time to calculate meanwhile a lot of space too, I'll trust calculator on this one:

$$\begin{bmatrix} 2x^3 + 3x \\ 0 \end{bmatrix}^+ \begin{bmatrix} \cos\left(\frac{\pi x^2}{24}\right) & -\sin\left(\frac{\pi x^2}{24}\right) \\ \sin\left(\frac{\pi x^2}{24}\right) & \cos\left(\frac{\pi x^2}{24}\right) \end{bmatrix}^* \begin{bmatrix} 15\cos\left(\frac{\pi x^2}{24}\right) \\ 15\sin\left(\frac{\pi x^2}{24}\right) \end{bmatrix}$$
Упростите выражение
$$\begin{bmatrix} 2x^3 + 3x \\ 0 \end{bmatrix}^+ \begin{bmatrix} 15\cos\left(\frac{\pi x^2}{12}\right) \\ 15\sin\left(\frac{\pi x^2}{12}\right) \end{bmatrix}$$
Вычислить
$$\begin{bmatrix} 2x^3 + 3x \\ 0 \end{bmatrix}^+ \begin{bmatrix} 15\cos\left(\frac{\pi x^2}{12}\right) \\ 15\sin\left(\frac{\pi x^2}{12}\right) \end{bmatrix}$$
Решение
$$\begin{bmatrix} 2x^3 + 3x + 15\cos\left(\frac{\pi x^2}{12}\right) \\ 15\sin\left(\frac{\pi x^2}{12}\right) \end{bmatrix}$$

$$\begin{bmatrix} 2x^3 + 3x + 15\cos\left(\frac{\pi x^2}{12}\right) \\ 15\sin\left(\frac{\pi x^2}{12}\right) \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ y \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\begin{bmatrix} x$$

And now we can finally ery try to calculate absolute velocity by solution shown on the second picture upper. Here is solution:

$$\begin{bmatrix} \frac{4}{dt}(2x^2 + 3) \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{\sin(\frac{\pi x^2}{24})}{(\frac{\pi x}{24})} & -\frac{\cos(\frac{\pi x^2}{24})}{(\frac{\pi x}{24})} & -\frac{\sin(\frac{\pi x^2}{24})}{(\frac{\pi x}{24})} & -\frac{\sin(\frac{\pi x^2}{24})}{(\frac{\pi x}{24})} & -\frac{\sin(\frac{\pi x^2}{24})}{(\frac{\pi x}{24})} \end{bmatrix} = \begin{bmatrix} 1 \cos(\frac{\pi x^2}{24}) & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{12} & -\frac{\sin(\frac{\pi x^2}{24})}{(\frac{\pi x}{24})} & -\frac{\pi x^2}{12} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{12} & -\frac{\pi x^2}{12} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{12} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} \\ \frac{\pi x^2}{24} & -\frac{\pi x^2}{24} &$$

To find $a^{cor} = 2\omega_{tr} \times v^{rel}$ and $v^{rel} = (\dot{x}_B i' + \dot{y}_B j' + \dot{z}_B k')$

2 Task 2

2.1 Tools

Overleaf, Google Collab

2.2 Link to simulation:

Click here!

2.3 Task description

Task 2 (Coding)

You should find:

- 1. simulate this mechanism (obtain all positions);
- 2. Find absolute, transport and relative velocities and accelerations for *M*;
- 3. Find t, when M reaches O point;
- 4. draw plots v_{rel} , v_{tr} , a_{tr} , a_{rel} , a respect to time.

Needed variables:

$$\phi_e = f_1(t) = 0.2t^3 + t;$$

 $OM = s_r = f_2(t) = 5\sqrt{2}(t^2 + t);$
 $a = 60, \ \alpha = 45.$

Task 2 (Yablonskii (eng) K-6)

2.4 Task explanation

Since $\alpha=45$, the triangle OQO1 is isosceles, so O1O = O1Q. The angle between O1Q and x-axis is 90. create movements for points Q and O knowing the distance a and ϕ . Connect points Q and O to complete body D. We know the changing of point M position along line OQ through the time so we find vector OQ and its' unit segment, then multiplying it by length OM at a certain time. And that's basically all the work regarding simulation.

2nd question is at which time point M will reach point Q and that's very easy, we just find constant distance OQ (since at this point OQ will be equal OM) with the usage of the Pythagorean theorem. $OQ = a\sqrt{2} = 60\sqrt{2}$. And now

just solve the equation $f_2(t) = 5\sqrt{2}(t^2 + t) = 60\sqrt{2}$ which leads us to solution t = 3. We also have negative root but we don't talk about negative time.

About v_r, v_t, a_t and a_r where r - relative motion and t - transport motion. $v_B^t = v_A + \omega_t \times \rho_B$ and $v_B^r = (\dot{x}_B i' + \dot{y}_B j' + \dot{z}_B k')$, resulting in $v_B = v_B^r + v_B^t$. Now about accelerations: $a_B^t = a_A + a_{BA}^\epsilon + a_{BA}^\omega$ and $a_B^r = a_B^\tau + a_B^n$. It's easier to calculate a_B as the sum of \dot{v}^t and \dot{v}^r

2.5 Plots

2.6 Screenshots

