ADC programming

By: Yehia M. Abu Eita

Outlines

- Introduction
- ADC calculations
- Types of ADC
- Block diagram
- ATmega32 ADC registers
- Steps to program ATmega32 ADC

Introduction

- ADC is acronym for <u>A</u>nalog to <u>D</u>igital <u>C</u>onverter.
- It is used to convert analog signals into digital signals.
- To convert analog signal to digital:
 - Sample and Hold
 - Quantization
 - Encoding
- Sampling rate:
 - It is number of samples per second, F_s>=2F_m (Nyquist Criteria)
- ADC resolution:
 - It is how much **precision** can an ADC convert

ADC calculations

$$\Delta = \frac{V_{ref}}{2^n} (Step \ size)$$

$$V_{digital} = number of steps$$

$$V_{Analog} = V_{digital} \times \Delta$$

Flash ADC

- The fastest ADC
- It has constant conversion time
- Expensive
- Large size

Single-slope ADC

- Fast conversion time
- Conversion time directly proportional with V_{in}

Dual-slope ADC

- Slow conversion time
- Conversion time directly proportional with V_{in}

Successive approximation ADC

Block diagram

- Multi-channel ADC
- 10-bit ADC
- Differential inputs
- Internal 2.5 Volts

ATmega32 ADC registers

ADMUX -	ADC Mu	ltiplexer	Selection	n Regist	er				
Bit	7	6	5	4	3	2	1	0	
	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ADCSRA	– ADC C	ontrol ar	d Status	Registe	r A				
Bit	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SFIOR -	Special F	unctionI	O Registe	r					
Bit	7	6	5	4	3	2	1	0	
	ADTS2	ADTS1	ADTS0	-	ACME	PUD	PSR2	PSR10	SFIOR
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

ADCL and	ADCH -	The AD	C Data R	egister					
ADLAR	= 0								
Bit	15	14	13	12	11	10	9	8	
	_	-	-	-	-	-	ADC9	ADC8	ADC
	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADC
2	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

ADLAR	= 1								
Bit	15	14	13	12	11	10	9	8	.00
	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
	ADC1	ADC0	1 -	-	-	-	-	-	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

Steps to program ATmega32 ADC

Initialization

- Set ADC pin to be input, **DDRA** register
- Choose ADC channel, Vref, mode, and left or right adjusted register, ADMUX register
- Enable the ADC, choose prescaler, and enable or disable interrupts, **ADCSRA** register

Read ADC channel:

- Choose channel to read, ADMUX register
- Start conversion, ADCSRA register
- Wait for conversion to complete, **ADCSRA** register
- Read the digital value and convert to analog, ADCH and ADCL registers

Summary

- You are now familiar with the ADC
- You must remember that the digital value may have error, it is called quantization error, that can not be recovered
- The most commonly used ACD is the successive approximation ADC
- ADCs are used to get data from the analog sensors so your code can take decisions according to these readings