Projet 7 OpenClassrooms - Implémentez un modèle de scoring

RISQUE DE DÉFAILLANCE DU CRÉDIT IMMOBILIER

Objectifs

- Développer un modèle de scoring de la probabilité de défaut de paiement d'un client pour étayer la décision d'accorder ou non un prêt à un client potentiel
- Construire un dashboard interactif à destination des gestionnaires de la relation client permettant d'interpréter les prédictions faites par le modèle, et d'améliorer la connaissance client des chargés de relation client.

Variable cible:

- 1 client ayant des difficultés de paiement : il/elle a eu un retard de paiement de plus de X jours sur au moins une des Y premières échéances du prêt dans notre échantillon
- 0 tous les autres cas

Les données

- Sources de données variées (données comportementales, données provenant d'autres institutions financières, ...)
 - o application.csv
 - o bureau.csv
 - bureau balance.csv
 - POS_CASH_balance.csv
 - credit card balance.csv
 - o installments payments.csv
- Feature engineering (extrait d'un kernel Kaggle)
 - Cleaning
 - Calcul de nouvelles variables
 - min, max, mean, sum, var
 - Encodage de variables catégorielles
 - Concaténation (par ID du client)
- Ajout d'une étape de cleaning personnelle
 - Drop lignes dupliquées si il y en a
 - o Remplacer les valeurs infinies par Nan
 - o Drop les colonnes où il y a trop de Nan

Sommaire

- Preprocessing
- Resampling
- Modélisation, Optimisation et Évaluation
- Présentation API et dashboard
 - Mise en production d'une api (mise en place avec Flask, déployée sur Heroku) prédisant l'accord d'un prêt ou non avec score
 - o Mise en production d'un dashboard (mis en place et déployé sur streamlit) qui appelle l'api
 - Présentation du dashboard
 - Analyse de l'importance global des critères
 - Analyse de l'importance local des critères et visualisation

Preprocessing

- DataFrame: (307507, 341)
- Separation train and test data (70% / 30%)
- Séparation entre les variables continues et les variables discrètes

- Application de Simple Imputer pour remplacer les Nan selon 2 stratégies:
 - Si la variable est continue, on remplace Nan par la valeur la plus fréquente pour cette variable.
 - Si la variable est discrète, on remplace Nan par la moyenne des valeurs pour cette variable.
- Application de RobustScaler pour scaler les données contenant de nombreux outliers

Resampling

Données largement déséquilibrées

- 92 % des données sont des clients à qui on accorde le prêt (classe 0 majoritaire)
- 8 % des données sont des clients à qui on refuse le prêt (classe 1 minoritaire)

Processus de rééquilibrage

- Sur-échantillonnage synthétique (SMOTE pour Synthetic Minority Oversampling Technique)
 - o Produit des observations minoritaires ressemblantes mais distinctes de celles déjà existantes.
- Sous-échantillonnage aléatoire (random undersampling) des observations majoritaires
 - Retire aléatoirement des observations majoritaires

Résultat

• Rééquilibrage à 60% / 40% pour la répartition des classes

Modélisation

- Modèle baseline : DummyClassifier classique avec comme stratégie "uniform"
 - Résultat faible de 0.5
- Choix des modèles à entraîner:
 - Random Forest Classifier
 - Light GBM CLassifier

Optimisation

- Optimisation selon 2 métriques:
 - Score ROC AUC
 - Métrique métier (F-beta score)
- Attribuer fallacieusement la classe 1 à un client, c'est perdre un bénéfice potentiel
- Attribuer fallacieusement la classe 0 à un client, c'est perdre de l'argent.
- Formule $F_{eta} = (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$

beta plus grand que 1 (F1 score), fixé à 2

Paramètres à optimiser

- Random Forest Classifier
 - n_estimators: nombre d'arbres dans la forêt (100, 130, 160)
 - max_depth: La profondeur maximale de l'arbre (2 à 5)
 - criterions: fonction pour mesurer la qualité d'une division (gini, entropy)

- Light GBM Classifier
 - n_estimators: Nombre d'arbres dans la forêt (100, 500, 1000)
 - max_depth: La profondeur maximale de l'arbre (2 à 5)
 - o **num_leaves**: Feuilles d'arbre maximales (20, 25, 30)
 - learning_rate: Augmentation du taux d'apprentissage(0.1, 0.3, 0.5)
 - o pos_scale_weight = 12

Comparaison des modèles

• Scores pour le RFC

Score auc: 0.93

Score f beta: 0.86

• Scores pour le LightGBM

Score auc: 0.97

Score f beta: 0.96

On garde le modèle LightGBM, au dessus pour les 2 scores

Evaluation du meilleur modèle LightGBM Classifier

- Cross validation des données train pour vérifier la stabilité du score et la généralisation du modèle
 - Stabilisation à 0.99 pour le score ROC AUC (5 splits)
 - Stabilisation à 0.90 pour le score f-2 (5 splits)

- Scores des données test pour contrôler la cohérence
 - Test accuracy score: 0.71
 - Test roc auc score: 0.74
 - Test precision score: 0.17
 - Test recall score: 0.64
 - o Test f1 score: 0.26
 - Test f2 score: 0.41

Présentation

- API https://api-flask-projet-home-credit.herokuapp.com
- Dashboard https://share.streamlit.io/ludo13009/projet-7-home-credit-oc/main/app.py

Conclusion

- Résultats
- Limites
- Améliorations