第1章 无穷级数

无穷级数是数学分析三大组成部分之一。

无穷级数是研究函数的工具〈研究性质

表示函数 研究性质 数值计算

无穷级数

数项级数 函数项级数 幂级数 Fourier级数

1.1 数项级数

- 1.1.1 数项级数的概念和性质
- 1.1.2 正项级数及其判别法
- 1.1.3 一般项级数及其判别法

1.1.1 数项级数的概念和性质

1、数项级数的概念

引例 用圆内接正多边形面积逼近圆面积.

依次作圆内接正 3×2^n $(n=0,1,2,\cdots)$ 边形,设 a_0 表示

内接正三角形面积, a_k 表示边数增加时增加的面积, 则圆内接正

3×2" 边形面积为

$$a_0 + a_1 + a_2 + \cdots + a_n$$

 $n \to \infty$ 时,这个和逼近于圆的面积 A.

即

$$A = a_0 + a_1 + a_2 + \dots + a_n + \dots$$

定义1: 给定一个数列 u_1 , u_2 , u_3 , …, u_n , … 将各项依次相加, 简记为 $\sum_{n=1}^{\infty} u_n$, 即

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \dots + u_n + \dots$$
 (1)

称上式为无穷级数,其中第n项 u_n 叫做级数的一般项,

级数的前n项和

$$S_n = \sum_{k=1}^n u_k = u_1 + u_2 + u_3 + \dots + u_n$$

称为级数的部分和.

定义2: 若 $\lim_{n\to\infty} S_n = S$ 存在,则称无穷级数

收敛,并称 S 为级数的和,记作 $S = \sum_{n=1}^{\infty} u_n$

若 $\lim_{n\to\infty} S_n$ 不存在,则称无穷级数<mark>发散</mark>.

当级数收敛时,称差值

$$r_n = S - S_n = u_{n+1} + u_{n+2} + \cdots$$

为级数的余项.

显然 $\lim_{n\to\infty} r_n = 0$

例1. 讨论等比级数(又称几何级数)

$$\sum_{n=0}^{\infty} a q^n = a + a q + a q^2 + \dots + a q^n + \dots \quad (a \neq 0)$$

(q称为公比)的敛散性.

解: 1) 若 q≠1,则部分和

$$S_n = a + aq + aq^2 + \dots + aq^{n-1} = \frac{a - aq^n}{1 - q}$$

当|q|<1时,由于 $\lim_{n\to\infty}q^n=0$,从而 $\lim_{n\to\infty}S_n=\frac{a}{1-q}$

因此级数收敛,其和为 $\frac{a}{1-q}$;

当q > 1时,由于 $\lim_{n \to \infty} q^n = \infty$,从而 $\lim_{n \to \infty} S_n = \infty$,

因此级数发散.

2). 若
$$|q|=1$$
,则
 当 $q=1$ 时, $S_n=na\to\infty$,因此级数发散;
 当 $q=-1$ 时,级数成为
 $a-a+a-a+\cdots+(-1)^{n-1}a+\cdots$

因此
$$S_n = \begin{cases} a, & n \text{ 为奇数} \\ 0, & n \text{ 为偶数} \end{cases}$$

从而 $\lim_{n\to\infty} S_n$ 不存在, 因此级数发散.

综合 1)、2)可知, |q|<1时, 等比级数收敛; $|q|\geq 1$ 时, 等比级数发散.

例2. 判别下列级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$$
; (2) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

(2)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

解:(1)

$$S_n = \ln \frac{2}{1} + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n}$$
$$= (\ln 2 - \ln 1) + (\ln 3 - \ln 2) + \dots + (\ln (n+1) - \ln n)$$

$$=\ln(n+1) \to \infty \quad (n \to \infty)$$

所以级数(1)发散;

技巧:

利用"拆项相消"求和

(2)
$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)}$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1} \to 1 \quad (n \to \infty)$$

所以级数(2)收敛,其和为1.

技巧:

利用"拆项相消"求和

2、级数的基本性质

性质1. 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛于 S, 即 $S = \sum_{n=1}^{\infty} u_n$,则各项

乘以常数 c 所得级数 $\sum cu_n$ 也收敛,其和为 cS.

证:
$$\Leftrightarrow S_n = \sum_{k=1}^n u_k$$
, 则 $\sigma_n = \sum_{k=1}^n c u_k = c S_n$,

$$\therefore \lim_{n\to\infty} \sigma_n = c \lim_{n\to\infty} S_n = c S$$

这说明 $\sum_{n=1}^{\infty} c u_n$ 收敛,其和为 c S.

说明: 级数各项乘以非零常数后其敛散性不变.

性质2. 设有两个收敛级数
$$S = \sum_{n=1}^{\infty} u_n$$
, $\sigma = \sum_{n=1}^{\infty} v_n$

则级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 也收敛, 其和为 $S \pm \sigma$.

(收敛级数可逐项相加或减)

证:
$$\Leftrightarrow S_n = \sum_{k=1}^n u_k, \ \sigma_n = \sum_{k=1}^n v_k, \ \bigcup$$

$$\tau_n = \sum_{k=1}^n (u_k \pm v_k) = S_n \pm \sigma_n \to S \pm \sigma \quad (n \to \infty)$$

这说明级数 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 也收敛, 其和为 $S \pm \sigma$.

说明:

- (1) 性质2表明收敛级数可逐项相加或减.
- (2) 若两级数中一个收敛一个发散,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 必发散. (用反证法可证)

但若二级数都发散,
$$\sum_{n=1}^{\infty} (u_n \pm v_n)$$
 不一定发散.

例如,取
$$u_n = (-1)^{2n}$$
, $v_n = (-1)^{2n+1}$,
$$\overline{m} u_n + v_n = 0$$

性质3. 在级数前面加上或去掉**有限项**, 不会影响级数的敛散性.

证: 将级数 $\sum_{n=1}^{\infty} u_n$ 的前 k 项去掉,所得新级数 $\sum_{n=1}^{\infty} u_{k+n}$

的部分和为

$$\sigma_n = \sum_{l=1}^n u_{k+l} = S_{k+n} - S_k$$

由于 $n\to\infty$ 时, σ_n 与 S_{k+n} 极限状况相同, 故新旧两级数敛散性相同.

当级数收敛时, 其和的关系为 $\sigma = S - S_k$.

类似可证前面加上有限项的情况.

性质4. 收敛级数加括弧后所成的级数仍收敛于原级数的和.

证: 设收敛级数 $S = \sum_{n=1}^{\infty} u_n$, 若按某一规律加括弧, 例如 $(u_1 + u_2) + (u_3 + u_4 + u_5) + \cdots$

则新级数的部分和序列 σ_m ($m=1,2,\cdots$)为原级数部分和序列 S_n ($n=1,2,\cdots$)的一个子序列,因此必有

$$\lim_{m\to\infty}\sigma_m=\lim_{n\to\infty}S_n=S$$

用反证法可证

推论: 若加括弧后的级数发散, 则原级数必发散.

注意: 收敛级数去括弧后所成的级数不一定收敛.

例如, $(1-1)+(1-1)+\cdots=0$,但 $1-1+1-1+\cdots$ 发散.

例3.判断级数的敛散性:

$$\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1} + \frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{4}+1} + \cdots$$

解: 考虑加括号后的级数

$$\left(\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1}\right) + \left(\frac{1}{\sqrt{3}-1} - \frac{1}{\sqrt{3}+1}\right) + \left(\frac{1}{\sqrt{4}-1} - \frac{1}{\sqrt{4}+1}\right) + \cdots$$

$$a_n = \frac{1}{\sqrt{n}-1} - \frac{1}{\sqrt{n}+1} = \frac{2}{n-1}$$

$$\therefore \sum_{n=2}^{\infty} a_n = 2\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散,从而原级数发散.

3、级数收敛的必要条件

设收敛级数
$$S = \sum_{n=1}^{\infty} u_n$$
,则必有 $\lim_{n \to \infty} u_n = 0$.

$$\mathbf{iE:} \ u_n = S_n - S_{n-1}$$

$$\therefore \lim_{n \to \infty} u_n = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$$

可见: 若级数的一般项不趋于0,则级数必发散.

例如,
$$\frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \dots + (-1)^{n-1} \frac{n}{n+1} + \dots$$
,其一般项为
$$u_n = (-1)^{n-1} \frac{n}{n+1}$$

当n→∞时, u_n 不趋于0, 因此这个级数发散.

注意: $\lim_{n\to\infty} u_n = 0$ 并非级数收敛的充分条件.

例如, 调和级数
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

虽然
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n} = 0$$
,但此级数发散.

事实上,假设调和级数收敛于S,则

$$\lim_{n\to\infty} (S_{2n} - S_n) = 0$$

矛盾! 所以假设不真.

例4 判断级数
$$\sum_{n=1}^{\infty} \frac{\left(n + \frac{1}{n}\right)^n}{n^{n + \frac{1}{n}}}$$
 的敛散性.

解因为

$$\lim_{n \to \infty} \frac{\left(n + \frac{1}{n}\right)^n}{n^{n + \frac{1}{n}}} = \lim_{n \to \infty} \frac{\left(n + \frac{1}{n}\right)^n}{n^n n^{\frac{1}{n}}} = \lim_{n \to \infty} \frac{\left[\left(1 + \frac{1}{n^2}\right)^{n^2}\right]^n}{n^{\frac{1}{n}}} = 1 \neq 0$$

所以由级数收敛的必要条件知原级数发散.

例5. 判断下列级数的敛散性, 若收敛求其和:

(1)
$$\sum_{n=1}^{\infty} \frac{e^n n!}{n^n}$$
; (2) $\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2 + 2n}$; (3) $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$.

解: (1) 令
$$u_n = \frac{e^n n!}{n^n}$$
, 则
$$\frac{u_{n+1}}{u_n} = \frac{\frac{e^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{e^n n!}{n^n}} = \frac{e}{(1+\frac{1}{n})^n} > 1 \quad (n=1,2,\cdots)$$

故
$$u_n > u_{n-1} > \cdots > u_1 = e$$

从而 $\lim_{n\to\infty} u_n \neq 0$, 这说明级数(1) 发散.

$$\frac{1}{n^3 + 3n^2 + 2n} = \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \frac{(n+2) - n}{n(n+1)(n+2)}$$

$$= \frac{1}{2} \left[\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right] \quad (n=1, 2, \dots)$$

$$S_n = \sum_{k=1}^n \frac{1}{k^3 + 3k^2 + 2k} = \frac{1}{2} \sum_{k=1}^n \left[\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)} \right]$$

$$= \frac{1}{2} \left[\frac{1}{1 \cdot 2} - \frac{1}{(n+1)(n+2)} \right]$$
 进行拆项相消

$$\therefore \lim_{n\to\infty} S_n = \frac{1}{4},$$
 这说明原级数收敛, 其和为 $\frac{1}{4}$.

$$S_{n} = \frac{1}{2} + \frac{3}{2^{2}} + \frac{5}{2^{3}} + \dots + \frac{2n-1}{2^{n}}$$

$$S_{n} - \frac{1}{2}S_{n}$$

$$S_{n} = \frac{1}{2} + \frac{3}{2} + \frac{5}{2^{2}} + \dots + \frac{2n-1}{2^{n}} + \dots + \frac{3}{2^{n}} + \dots + \frac{5}{2^{n}} + \dots$$

$$= \left(\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n}\right) - \left(\frac{1}{2^2} + \frac{3}{2^3} + \frac{5}{2^4} + \dots + \frac{2n-1}{2^{n+1}}\right)$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} - \frac{2n-1}{2^{n+1}}$$

$$= \frac{1}{2} + \frac{1}{2} \frac{1 - \frac{1}{2^{n-1}}}{1 - \frac{1}{2}} - \frac{2n - 1}{2^{n+1}} = \frac{1}{2} + 1 - \frac{1}{2^{n-1}} - \frac{2n - 1}{2^{n+1}}$$

$$\therefore S_n = 3 - \frac{1}{2^{n-2}} - \frac{2n-1}{2^n}, \text{ it } \lim_{n \to \infty} S_n = 3,$$

这说明原级数收敛,其和为3.

4. 级数收敛的Cauchy准则

定理1(柯西准则) 级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充要条件是:

任给正数 ε , 总存在正整数 N, 使得当 m > N 以及对任意的正整数 p 都有

$$|u_{m+1}+u_{m+2}+\cdots+u_{m+p}|<\varepsilon.$$

根据定理1以及数列发散的充要条件,可以立刻写出级数发散的充要条件是:存在某正数 ε_0 ,对任何正整数N,总存在正整数 m_0 (>N)和 p_0 ,有

$$\left|u_{m_0+1}+u_{m_0+2}+\cdots+u_{m_0+p_0}\right| \geq \varepsilon_0.$$

例6 讨论调和级数
$$1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$$
 的敛散性.

解 取 $\varepsilon_0 = \frac{1}{2}$,对任何正整数 N 只要 m > N 和 p = m

就有
$$|u_{m+1} + u_{m+2} + \dots + u_{2m}| = \left| \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m} \right|$$

$$\geq \left| \frac{1}{2m} + \frac{1}{2m} + \dots + \frac{1}{2m} \right| = \frac{1}{2},$$

因此调和级数发散.

例7 运用级数收敛的柯西准则证明级数 $\sum_{n^2}^{1}$ 收敛.证 由于

$$\begin{aligned} & \left| u_{m+1} + u_{m+2} + \dots + u_{m+p} \right| \\ &= \frac{1}{(m+1)^2} + \frac{1}{(m+2)^2} + \dots + \frac{1}{(m+p)^2} \\ &< \frac{1}{m(m+1)} + \frac{1}{(m+1)(m+2)} + \dots + \frac{1}{(m+p-1)(m+p)} \\ &= \left(\frac{1}{m} - \frac{1}{m+1} \right) + \left(\frac{1}{m+1} - \frac{1}{m+2} \right) + \dots + \left(\frac{1}{m+p-1} - \frac{1}{m+p} \right) \end{aligned}$$

$$=\frac{1}{m}-\frac{1}{m+p}<\frac{1}{m}.$$

因此,对任意
$$\varepsilon > 0$$
,可取 $N = \begin{bmatrix} \frac{1}{\varepsilon} \\ \varepsilon \end{bmatrix}$, 当 $m > N$ 及任意正

整数
$$p$$
,由上式可得 $\left|u_{m+1}+u_{m+2}+\cdots+u_{m+p}\right|<\frac{1}{m}<\varepsilon$,

依级数收敛的柯西准则, 知级数 $\sum_{n^2}^{1}$ 收敛.

注 级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 的收敛性已由例2的证明过程所显示.