Evaluation

Division into training and test sets

- Fixed
 - Leave out random N% of the data
- k-fold Cross-Validation
 - Select K folds without replace
- Leave-One-Out Cross Validation
 - Special case
- Related: Bootstrap
 - Generate new training sets by sampling with replacement

Leave-one-out cross-validation (LOOCV)

For each training example (x_i, y_i)

Train a classifier with all training data except (x_i, y_i)

Test the classifier's accuracy on (x_i, y_i)

LOOCV accuracy = average of all n accuracies

Twitter Assignment:

To evaluate your term-sentiment model, one recommendation was to

- 1) leave out one term from AFINN.txt,
- 2) let your model assign it a sentiment score, and
- 3) compare your score with the AFINN score.

Do this for many terms, and you get a pretty good idea of the effectiveness of your model

Accuracy

Confusion Matrix

	Predicted +	Predicted -
True +	a	b
True -	C	a

Accuracy = (a+d)/(a+b+c+d)

Evaluation: Accuracy isn't always enough

- How do you interpret 90% accuracy?
 - You can't; it depends on the problem
- Need a baseline:
 - Base Rate
 - Accuracy of trivially predicting the most-frequent class
 - Random Rate
 - Accuracy of making a random class assignment
 - Might apply prior knowledge to assign random distribution
 - Naïve Rate
 - Accuracy of some simple default or pre-existing model
 - Ex: "All females survived"

Confusion Matrix

$$lift = \frac{a/(a+b)}{(a+c)/(a+b+c+d)}$$

$$lift = \frac{\% positives > threshold}{\% dataset > threshold}$$

Confusion Matrix

	Predicted +	Predicted -
True +	a	b
True -	С	d

a/(a+c) a/(a+b) Precision:

Recall:

ROC Plot

- "Receiver Operator Characteristic"
 - Historical term from WW2
 - Used to measure accuracy of radar operators

Confusion Matrix

Sensitivity =
$$a/(a+b)$$

$$1 - Specificity = 1 - d/(c+d)$$

