ON THE EXISTENCE OF DISTORTION MAPS ON ORDINARY ELLIPTIC CURVES

DENIS CHARLES

1. Introduction

An important problem in cryptography is the so called Decision Diffie-Hellman problem (henceforth abbreviated DDH). The problem is to distinguish triples of the form (g^a, g^b, g^{ab}) from arbitrary triples from a cyclic group $G = \langle g \rangle$. It turns out that for (cyclic subgroups of) the group of m-torsion points on an elliptic curve over a finite field, the DDH problem admits an efficient solution if there exists a suitable endomorphism called a distortion map (which can be efficiently computed) on the elliptic curve.

Suppose m is relatively prime to the characteristic of a finite field \mathbb{F}_q , then the group of m-torsion points on an elliptic curve E/\mathbb{F}_q , denoted E[m], is isomorphic to $(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})$. Fix an elliptic curve E/\mathbb{F}_q and a prime ℓ that is not the characteristic of \mathbb{F}_q . Let P and Q generate the group $E[\ell]$. A distortion map on E is an endomorphism ϕ of E such that $\phi(P) \notin \langle P \rangle$. A distortion map can be used to solve the DDH problem on the group $\langle P \rangle$ as follows: Given a triple R, S, T of points belonging to the group generated by P, we check whether $\mathbf{e}_{\ell}(R,\phi(S)) = \mathbf{e}_{\ell}(P,\phi(T))$, where \mathbf{e}_{ℓ} is the Weil pairing on the ℓ -torsion points. It follows from well known properties of the Weil pairing that this check succeeds if and only if R = aP, S = bP and T = abP. Under the assumptions that P and Q are both defined over \mathbb{F}_{q^k} , where k is not large (say, bounded by a fixed polynomial in $\log(q)$), and that ϕ can be computed in polynomial time, the DDH problem can be solved in polynomial time using this idea. If P and Q are not eigenvectors for the Frobenius map, then in many cases one can use the trace map as a distortion map (see [GR04]). For this reason, we will concentrate only on the subgroups that are Frobenius eigenspaces.

It is known that distortion maps exist on supersingular elliptic curves ([Ver01, GR04]), and that distortion maps that do not commute with the Frobenius do not exist on ordinary elliptic curves (see [Ver01] or [Ver04] Theorem 6). The latter implies that distortion maps do not exist for ordinary elliptic curves with embedding degree > 1. The embedding degree, (say) k, is the order of q in the group $(\mathbb{Z}/\ell\mathbb{Z})^*$. A theorem of Balasubramanian and Koblitz ([BK98] Theorem 1) says that if $E(\mathbb{F}_q)$ contains an ℓ -torsion point and k > 1, then $E[\ell] \subseteq \mathbb{F}_{q^k}$. Thus, the only remaining cases where the existence of Distortion maps is not known are the cases when the embedding degree k is 1. If the embedding degree is 1 and $E(\mathbb{F}_q)$ contains an ℓ -torsion point, then there are two possibilities: either $E[\ell](\mathbb{F}_q)$ is cyclic or $E[\ell] \subseteq E(\mathbb{F}_q)$. In the former situation there are no distortion maps (by [Ver04] Theorem 6). However, the Tate pairing can be used to solve DDH efficiently in this case (see the comments in [GR04] following Remark 2.2). Thus, the only case in which the question of the existence of a distortion map remains open is when $E[\ell] \subseteq E(\mathbb{F}_q)$. In this article we characterize the existence of distortion maps for this case.

2. The Proof

Let k be a finite field, $\mathbb{F}_q \supseteq k$ and E/k be an ordinary elliptic curve. Suppose ℓ is a prime such that $E[\ell] \subseteq \mathbb{F}_q$ but no point of exact order ℓ is defined over a smaller field.

To study the existence of distortion maps, we study the reduction of the ring $\operatorname{End}(E)$ modulo ℓ . Our principal tool is the following observation: If $\alpha \in \operatorname{End}(E)$ has field polynomial $f(x) \in \mathbb{Z}[x]$, then $f \mod \ell$ is the characteristic equation of the action of α on $E[\ell]$.

Let π be the q-th power Frobenius endomorphism on E and let $\phi^2 - t\phi + q = 0$ be its characteristic equation. We know that $t \equiv 2 \mod \ell$ and $q \equiv 1 \mod \ell$ as the full ℓ -torsion is defined over \mathbb{F}_q .

1

Let $\mathcal{O} = \operatorname{End}(E)$, $K = \mathcal{O} \otimes \mathbb{Q}$ and \mathcal{O}_K the maximal order in K. We have the inclusions $\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K$. Since $t^2 - 4q = 0 \mod \ell$ we have that ℓ divides the product $[\mathcal{O} : \mathbb{Z}[\pi]][\mathcal{O}_K : \mathcal{O}]\operatorname{Disc}(K)$. The existence of distortion maps splits into cases depending on whether $\ell|[\mathcal{O}_K : \mathcal{O}]$ or $\ell|\operatorname{Disc}(K)$. Indeed, if $\ell|[\mathcal{O}_K : \mathcal{O}]$ there are no distortion maps, since the reduction modulo ℓ of every endomorphism is just multiplication by scalar.

In the following we assume that $\ell \not\mid [\mathcal{O}_K : \mathcal{O}]$ so that the conductor of \mathcal{O} is prime to ℓ . Under this assumption we have that the residue class rings

$$\mathcal{O}_K/(\ell) \cong \mathcal{O}/(\ell)$$
.

Suppose that $\ell \not\mid \operatorname{Disc}(K)$ and that ℓ is *inert* in \mathcal{O}_K , then $\mathcal{O}/(\ell) \cong \mathbb{F}_{\ell^2}$. Let $\alpha \in \mathcal{O}$ be an endomorphism such that $\alpha \mod(\ell)$ does not lie in \mathbb{F}_{ℓ} . Then the action of α on $E[\ell]$ is irreducible since its characteristic equation is irreducible over \mathbb{F}_{ℓ} . Now α gives us a distortion map on $E[\ell]$ since no subgroup of order ℓ of $E[\ell]$ is stabilized by α .

Now if $\ell \not\mid \operatorname{Disc}(K)$ and ℓ is split in \mathcal{O}_K , then $\mathcal{O}/(\ell) \cong \mathbb{F}_{\ell}[X]/(X-a)(X-b) \cong (\mathbb{Z}/\ell\mathbb{Z})^2$ (where $a \neq b$). The action of any $\alpha \in O_K$, that corresponds to the image of X in $\mathbb{F}_{\ell}[X]/(X-a)(X-b)$ under the isomorphism, is conjugate to $\begin{pmatrix} \gamma & 0 \\ 0 & \delta \end{pmatrix}$. Thus, distortion maps exist for all but two of the subgroups of $E[\ell]$.

Suppose that $\ell|\operatorname{Disc}(K)$ so that ℓ is $\operatorname{ramified}$ in \mathcal{O}_K , then $\mathcal{O}/(\ell) \cong \mathbb{F}_{\ell}[X]/(X-a)^2$. Consider the map $\alpha \in \mathcal{O}$ that corresponds to the image of X in the ring $\mathbb{F}_{\ell}[X]/(X-a)^2$. The action of α on $E[\ell]$ is conjugate to $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$. Note that $\beta \neq 0$, for if $\beta = 0$ then $\mathcal{O}/(\ell) \cong \mathbb{Z}/\ell\mathbb{Z}$, but we know that \mathcal{O} is rank 2 over $\mathbb{Z}/\ell\mathbb{Z}$ since ℓ is ramified in \mathcal{O}_K and does not divide the conductor of \mathcal{O} . Thus, distortion maps exist for all but one subgroup of $E[\ell]$.

In summary, we have:

Theorem 2.1. Let k be a finite field, $\mathbb{F}_q \supseteq k$ and E/k be an ordinary elliptic curve whose endomorphism ring is \mathcal{O} , an order in an imaginary quadratic field \mathcal{O} . Suppose ℓ is a prime such that $E[\ell] \subseteq \mathbb{F}_q$ but no point of exact order ℓ is defined over a smaller field.

- (1) If $\ell \mid [\mathcal{O}_K : \mathcal{O}]$ there are no distortion maps.
- (2) If $\ell \not\mid [\mathcal{O}_K : \mathcal{O}] \mathrm{Disc}(K)$ and
 - (a) ℓ is inert in \mathcal{O}_K , then there are distortion maps for every (order ℓ) subgroup of $E[\ell]$;
 - (b) ℓ is split in \mathcal{O}_K , then all but two subgroups of $E[\ell]$ have distortion maps.
- (3) If $\ell \not\mid [\mathcal{O}_K : \mathcal{O}]$ and $\ell \mid \mathrm{Disc}(K)$ so that ℓ is ramified in \mathcal{O}_K , then all (except one) subgroups of $E[\ell]$ have distortion maps.

3. Examples

In this section, we give examples to illustrate that all the cases in Theorem 2.1 do occur.

Example 3.1. Consider the elliptic curve $E: y^2 = x^3 + x$ over \mathbb{Q} . E has complex multiplication by $\mathbb{Z}[\imath]$ and has good reduction at all odd primes. Let p be a prime such that $p \equiv 1 \mod 4$, \tilde{E} be the reduction of E modulo p, and let $\imath^2 = -1 \mod p$. Then $\tilde{E}[2] \subseteq \tilde{E}(\mathbb{F}_p)$ and $\tilde{E}[2]$ is $\{0_{\tilde{E}}, (0,0), (\imath,0), (-\imath,0)\}$ where $0_{\tilde{E}}$ is the identity element. The map $[\imath]$ is an endomorphism that sends $(x,y) \mapsto (-x,\imath y)$. It is easy to see that the map $[\imath]$ preserves the subgroup $\langle (0,0) \rangle$ and interchanges the remaining two subgroups, of order 2, of $\tilde{E}[2]$. Note, that Deuring's reduction theorem tells us that $\operatorname{End}(\tilde{E}) \cong \mathbb{Z}[i]$. Furthermore, in this case the subring $\mathbb{Z}[\pi]$ generated by the Frobenius is usually a smaller ring. Indeed, if t is the trace of Frobenius and $t^2 - 4p = -4b^2$, then the conductor of the order $\mathbb{Z}[\pi]$ is b. Now b is at least 2, since $t \equiv 2 \mod 4$, so (t/2) is odd and we must have $p = (t/2)^2 + b^2$. Thus, case (3) of Theorem 2.1 applies and matches with what we observe for the 2-torsion.

Example 3.2. (Suggested by anonymous reviewer). Let E be the curve over \mathbb{F}_{701} given by the equation $y^2 = x^3 - 35x + 98$. Then $\operatorname{End}(E) = \mathbb{Z}[\frac{1+\sqrt{-7}}{2}]$ which is the maximal order in $\mathbb{Q}(\sqrt{-7})$. The order $\mathbb{Z}[\pi]$

has conductor 10 in End(E). The 5-torsion is \mathbb{F}_{701} rational, and moreover, 5 is inert in End(E). Theorem 2.1 (2a) shows that every subgroup of E[5] admits a distortion map. Indeed, the map corresponding to multiplication by $\alpha = \frac{1+\sqrt{-7}}{2}$ is given by ([Sil94] Chapter II, Proposition 2.3.1 (iii))

$$[\alpha](x,y) = \left(\alpha^{-2} \left(x - \frac{7(1-\alpha)^4}{x + \alpha^2 - 2}\right), \alpha^{-3} y \left(1 + \frac{7(1-\alpha)^4}{(x + \alpha^2 - 2)^2}\right)\right).$$

Let us check this for the group generated by the 5-torsion point P (with affine coordinates) P = (224, 31). Since $\alpha = 386 \in \mathbb{F}_{701}$, this tells us that $[\alpha](P) = (173, 194)$. One checks that the Weil pairing $\mathbf{e}_5(P, [\alpha](P)) = 464 \neq 1$. Thus, $[\alpha]$ works as a distortion map for the group generated by P.

Now the 5-torsion of E is generated by P and the point Q = (573, 450). A similar computation shows that $[\alpha](Q) = (463, 495)$. Also, $\mathbf{e}_5(Q, [\alpha]Q) = 89 \neq 1$. Again, this shows that $[\alpha]$ works as a distortion map.

Given these calculations it is not hard to find the matrix of the action of $[\alpha]$ on E[5] relative to the basis P, Q

$$[\alpha] = \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix}.$$

The characteristic polynomial of this matrix is irreducible modulo 5 and thus the action on E[5] is irreducible.

Example 3.3. One can use the elliptic curve E from Example 3.2 to illustrate case (2b) of Theorem 2.1. This time we look at E[2] (also contained in \mathbb{F}_{701}) which is generated by the points P=(319,0) and Q=(389,0). The prime 2 splits completely in $\operatorname{End}(E)$. The proof of Theorem 2.1 tells us that the characteristic polynomial of the action of the endomorphism $[\alpha]$ has two distinct roots and would work as a distortion map for all but two subgroups of E[2]. Now the minimal polynomial α is $x^2 - x + 2$ and modulo 2 this splits as x(x+1). Thus the action of $[\alpha]$ on E[2] will have two eigenvectors, with eigenvalues 0 and 1 respectively. It is easy to check given the formula for $[\alpha]$ that indeed $[\alpha](P) = 0_E$ and $[\alpha](Q) = Q$.

Example 3.4. In this example we illustrate that case (1) of Theorem 2.1 also occurs. Consider the curve E/\mathbb{Q} given by the Weierstrass equation

$$y^2 = x^3 - \frac{3375}{121}x + \frac{6750}{121}.$$

The j-invariant of E is $2^43^35^3$ and the conductor of E is 108900. E has CM by the order of conductor 2 in $\mathbb{Q}(\sqrt{-3})$. Thus $\operatorname{End}(E) \cong \mathbb{Z} + 2\mathcal{O}_K$ where $\mathcal{O}_K = \mathbb{Z} + \frac{1}{2}(1+\sqrt{-3})\mathbb{Z}$. E has good reduction at the prime 13 and one sees that the reduction \tilde{E} has \mathbb{F}_{13} -rational 2-torsion. Now $\operatorname{End}(\tilde{E}) \cong \operatorname{End}(E)$ by the Deuring reduction theorem ([Lan87] Chapter 13 §4, Theorem 12), but $\operatorname{End}(\tilde{E}) \mod 2 \cong (\mathbb{Z}/2\mathbb{Z})$ and so there are no distortion maps.

References

- [BK98] Balasubramanian, R.; Koblitz, N.; The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone Algorithm, Journal of Cryptology, Vol. 11, No. 2, 141-145, 1998.
- [GR04] Galbraith, S.; Rotger. V.; Easy decision Diffie-Hellman groups, LMS J. Comput. Math., 7, 201-218, 2004.
- [Lan87] Lang, S.; Elliptic Functions, 2nd ed., Graduate Texts in Math., vol. 112, Springer-Verlag, 1987.
- [Sil94] Silverman, J.; Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Math. Vol. 151, Springer-Verlag, 1994.
- [Ver01] Verheul, E., R.; Evidence that XTR is more secure than supersingular elliptic curve cryptosystems, EUROCRYPT 2001, Lecture Notes in Computer Science, 2045, Springer-Verlag, 195-201, 2001.
- [Ver04] Verheul, E., R.; Evidence that XTR is more secure than supersingular elliptic curve cryptosystems (Journal version), Journal of Cryptology, Vol. 17, No. 4, 277-296, 2004.