Devoir 2 : Théorie des champs I (PHY 6812)

Prof. W. Witczak-Krempa

À remettre: mardi 1er novembre, avant le cours.

Valeur : les questions ont le même poids.

1. Causalité.

- a) Dans la preuve que la QFT du champ scalaire respecte la causalité, nous avons utilisé la propriété que x-y peut être envoyé à -(x-y) par une transformation de Lorentz connectée de manière continue à l'identité, en autant que la séparation est du genre espace. Trouvez explicitement cette transformation de Lorentz. Expliquez comment votre construction échoue si $(x-y)^2 > 0$. Ici, d=3.
- **b)** Pour $(x-y)^2 > 0$, donnez une transformation de Lorentz qui envoie $(x-y) \to -(x-y)$. Est-elle connectée de manière continue à l'identité? Pourquoi ne peut-on pas l'utiliser pour montrer que $[\hat{\phi}(x), \hat{\phi}(y)] = 0$ pour une séparation du genre temps?
- 2. Questions diverses. Justifiez toutes vos réponses. Travaillez en 3+1 dimensions.
 - a) Montrez que les opérateurs \hat{a}_{p} commutent entre eux.
 - b) Soit deux observables classiques A et B. Considérons l'observable $\mathcal{O} = AB$. En quantifiant la théorie, il y a une ambiguité potentielle pour $\hat{\mathcal{O}}$ du fait que \hat{A} et \hat{B} ne commutent pas nécessairement. Cette ambiguité pose-t-elle problème pour l'opérateur d'impulsion totale \hat{P} ?
 - c) En travaillant dans le point de vue de Schrödinger avec la théorie de Klein-Gordon, déterminez l'évolution temporelle de l'état $b_0|0\rangle + b_1|p\rangle + b_2|p,q,k\rangle$, où b_i sont des nombres complexes et p,q,k des quadri-vecteurs.
 - d) Est-ce possible de construire un état normalisable dans le sous-espace à 1 particule? Si non, expliquez, si oui, construisez un état normalisé.
- 3. Invariance d'échelle quantique. Soit la QFT du champ scalaire Klein-Gordon sans masse en 3 dimensions spatiales. Considérons une transformation continue :

$$x' = bx, \quad \hat{\phi}'(bx) = b^{-\Delta}\hat{\phi}(x) \tag{1}$$

où b > 0 et Δ sont réels.

a) Déterminez

$$D(x - y) = \langle 0|\hat{\phi}(x)\hat{\phi}(y)|0\rangle \tag{2}$$

$$D_{\pi}(x-y) = \langle 0|\hat{\pi}(x)\hat{\pi}(y)|0\rangle \tag{3}$$

pour des coordonnées générales. Vous devez explicitement évaluer les intégrales. Ces amplitudes sont-elles invariantes de Lorentz? Expliquez.

- b) En demandant que $D(x'-y') = \langle 0|\hat{\phi}'(x')\hat{\phi}'(y')|0\rangle$, déterminez Δ . Comparez votre réponse à celle obtenue dans le devoir 1.
- c) En évaluant D pour des temps égaux, que pouvez-vous conclure à propos de l'étendue spatiale de l'étent $\hat{\phi}(x)|0\rangle$?
- 4. Opérateur de nombre.
 - a) Soit l'opérateur $\hat{n}_{q}=\hat{a}_{q}^{\dagger}\hat{a}_{q}$. Cet opérateur commute-t-il avec l'Hamiltonien de Klein-

Gordon (avec masse générale)? Quelle est son évolution temporelle? Quelle est la conséquence physique de ces résultats?

- b) Quelle est l'action de \hat{n}_q sur les états $|0\rangle, |p\rangle, |p,p'\rangle$.
- c) Définissons l'opérateur de nombre $\hat{N} = \int \frac{d^d \mathbf{q}}{(2\pi)^d} \hat{n}_{\mathbf{q}}$. Quelles sont ses états propres et valeurs propres ?
- d) \hat{N} commute-t-il avec l'Hamiltonien? Quelle est l'évolution temporelle de \hat{N} ? Quelle est la conséquence physique de ces résultats?
- e) On ajoute un terme d'intéraction $\lambda \hat{\phi}^4$ à l'Hamiltonien. L'opérateur \hat{n}_q commute-t-il avec le nouvel Hamiltonien? Quelle est la conséquence physique de ce résultat?
- 5. Peskin & Schroeder problem 2.2. The complex scalar field.