Cryptography and Network Security (CS435/890BN)

Part Eight (Key Management)

Key Management and Distribution

- topics of cryptographic key management / key distribution are complex
 - cryptographic, protocol & management issues
- symmetric schemes require both parties to share a common secret key
- public key schemes require parties to acquire valid public keys
- have concerns with doing both

Key Distribution

- symmetric schemes require both parties to share a common secret key
- issue is how to securely distribute this key
- whilst protecting it from others
- frequent key changes can be desirable
- often secure system failure due to a break in the key distribution scheme

Key Distribution

- given parties A and B have various key distribution alternatives:
 - 1. A can select key and physically deliver to B
 - third party can select & physically deliver key to A & B
 - 3. if A & B have communicated previously can use previous key to encrypt a new key
 - 4. if A & B have secure communications with a third party C, C can relay key between A & B

Key Distribution Task

Key Hierarchy

- > typically have a hierarchy of keys
- > session key
 - temporary key
 - used for encryption of data between users
 - for one logical session then discarded
- ➤ master key
 - used to encrypt session keys
 - shared by user & key distribution center

Key Hierarchy

Key Distribution Scenario

Key Distribution Issues

- hierarchies of KDC's required for large networks, but must trust each other
- session key lifetimes should be limited for greater security
- use of automatic key distribution on behalf of users, but must trust system
- use of decentralized key distribution
- controlling key usage

Hierarchical Key Control

- For communication among entities within the same local domain, the local KDC is responsible for key distribution
 - If two entities in different domains desire a shared key, then the corresponding local KDC's can communicate through a global KDC
- The hierarchical concept can be extended to three or more layers
- Scheme minimizes the effort involved in master key distribution because most master keys are those shared by a local KDC with its local entities
 - Limits the range of a faulty or subverted KDC to its local area only

Session Key Lifetime

For connection-oriented protocols one choice is to use the same session key for the length of time that the connection is open, using a new session key for each new session

A security manager must balance competing considerations:

For a connectionless protocol there is no explicit connection initiation or termination, thus it is not obvious how often one needs to change the session key

The more frequently session keys are exchanged, the more secure they are

The distribution of session keys delays the start of any exchange and places a burden on network capacity

Decentralized Key Distribution

- 1. A issues a request to B for a session key and includes a nonce, N_1 .
- 2. B responds with a message that is encrypted using the shared master key. The response includes the session key selected by B, an identifier of B, the value $f(N_1)$, and another nonce, N_2 .
- 3. Using the new session key, A returns $f(N_2)$ to B.
- Note: A decentralized approach requires that each end system be able to communicate in a secure manner with all potential partner end systems for purposes of session key distribution. Thus, there may need to be as many as [n (n - 1)]/2 master keys for a configuration with n end systems.

Controlling Key Usage

- The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the number of keys that must be manually managed and distributed
- It also may be desirable to impose some control on the way in which automatically distributed keys are used
 - For example, in addition to separating master keys from session keys, we may wish to define different types of session keys on the basis of use

Key Controls

- Associate a tag with each key
 - For use with DES and makes use of the extra 8 bits in each 64-bit DES key
 - The eight non-key bits ordinarily reserved for parity checking form the key tag
 - Because the tag is embedded in the key, it is encrypted along with the key when that key is distributed, thus providing protection

Drawbacks:

- The tag length is limited to 8 bits, limiting its flexibility and functionality
- Because the tag is not transmitted in clear form, it can be used only at the point of decryption, limiting the ways in which key use can be controlled

Symmetric Key Distribution Using Public Keys

- > public key cryptosystems are inefficient
 - so almost never use for direct data encryption
 - rather use to encrypt secret keys for distribution

Simple Secret Key Distribution

- Merkle proposed this very simple scheme
 - allows secure communications
 - no keys before/after exist

Man-in-the-Middle Attack

➤ this very simple scheme is vulnerable to an active man-in-the-middle attack

Public-Key Distribution of Secret Keys with Confidentiality and Authentication

Hybrid Key Distribution

- > retain use of private-key KDC
- > shares secret master key with each user
- > distributes session key using master key
- > public-key used to distribute master keys
 - especially useful with widely distributed users
- > rationale
 - performance
 - backward compatibility

Distribution of Public Keys

- Several techniques have been proposed for the distribution of public keys. Virtually all these proposals can be grouped into the following general schemes:
 - -public announcement
 - publicly available directory
 - public-key authority
 - public-key certificates

Public Announcement

- users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user

Publicly Available Directory

- can obtain greater security by registering keys with a public directory
- directory must be trusted with properties:
 - contains {name,public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- still vulnerable to tampering or forgery

Public-Key Authority

- improve security by tightening control over distribution of keys from directory
- has properties of directory
- and requires users to know public key for the directory
- then users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed
 - may be vulnerable to tampering

Public-Key Authority

Public-Key Certificates

- certificates allow key exchange without real-time access to public-key authority
- > a certificate binds identity to public key
 - usually with other info such as period of validity, rights of use etc
- with all contents signed by a trusted Public-Key or Certificate Authority (CA)
- ➤ can be verified by anyone who knows the public-key authorities public-key

Public-Key Certificates

X.509 Certificates

- Part of the X.500 series of recommendations that define a directory service
 - The directory is, in effect, a server or distributed set of servers that maintains a database of information about users
- X.509 defines a framework for the provision of authentication services by the X.500 directory to its users
 - Was initially issued in 1988 with the latest revision in 2012
 - Based on the use of public-key cryptography and digital signatures
 - Does not dictate the use of a specific algorithm but recommends RSA
 - Does not dictate a specific hash algorithm
- Each certificate contains the public key of a user and is signed with the private key of a trusted certification authority
- X.509 defines alternative authentication protocols based on the use of public-key certificates

Public-Key Certificate Use

Certificates

Created by a trusted Certification Authority (CA) and have the following elements:

- Version
- Serial number
- Signature algorithm identifier
- Issuer name
- Period of validity
- Subject name
- Subject's public-key information
- Issuer unique identifier
- Subject unique identifier
- Extensions
- Signature

Figure 14.15 X.509 Formats

Obtaining a Certificate

User certificates generated by a CA have the following characteristics:

- Any user with access to the public key of the CA can verify the user public key that was certified
- No party other than the certification authority can modify the certificate without this being detected
- Because certificates are unforgeable, they can be placed in a directory without the need for the directory to make special efforts to protect them
 - In addition, a user can transmit his or her certificate directly to other users
- Once B is in possession of A's certificate, B has confidence that messages it encrypts with A's public key will be secure from eavesdropping and that messages signed with A's private key are unforgeable

CA Hierarchy

- → if both users share a common CA then they are assumed to know its public key
- otherwise CA's must form a hierarchy
- use certificates linking members of hierarchy to validate other CA's
 - each CA has certificates for clients (forward) and parent (backward)
- > each client trusts parents certificates
- enable verification of any certificate from one CA by users of all other CAs in hierarchy

Certificate Revocation

- Each certificate includes a period of validity
 - Typically a new certificate is issued just before the expiration of the old one
- It may be desirable on occasion to revoke a certificate before it expires, for one of the following reasons:
 - The user's private key is assumed to be compromised
 - The user is no longer certified by this CA
 - The CA's certificate is assumed to be compromised
- Each CA must maintain a list consisting of all revoked but not expired certificates issued by that CA
 - These lists should be posted on the directory

X.509 Version 3

- Version 2 format does not convey all of the information that recent design and implementation experience has shown to be needed
- Rather than continue to add fields to a fixed format, standards developers felt that a more flexible approach was needed
 - Version 3 includes a number of optional extensions
- The certificate extensions fall into three main categories:
 - Key and policy information
 - Subject and issuer attributes
 - Certification path constraints

Each extension consists of:

Key and Policy Information

- These extensions convey additional information about the subject and issuer keys plus indicators of certificate policy
- A certificate policy is a named set of rules that indicates the applicability of a certificate to a particular community and/or class of application with common security requirements

Included are:

- Authority key identifier
- Subject key identifier
- Key usage
- Private-key usage period
- Certificate policies
- Policy mappings

Certificate Subject and Issuer Attributes

- These extensions support alternative names, in alternative formats, for a certificate subject or certificate issuer
- Can convey additional information about the certificate subject to increase a certificate user's confidence that the certificate subject is a particular person or entity
- The extension fields in this area include:
 - Subject alternative name
 - Issuer alternative name
 - Subject directory attributes

Certification Path Constraints

- These extensions allow constraint specifications to be included in certificates issued for CAs by other CAs
- The constraints may restrict the types of certificates that can be issued by the subject CA or that may occur subsequently in a certification chain
- The extension fields in this area include:
 - Basic constraints
 - Name constraints
 - Policy constraints

