

Teste de Matemática

2021

10.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos.

(cinco páginas)

VERSÃO 1

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Não é permitido o uso de máquina de calcular.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

1. Considere a função f, de domínio $\mathbb{R}\setminus\{0\}$, definida por $f(x)=\frac{1}{x}$.

Qual das seguintes afirmações é falsa?

- (A) $f(2+\sqrt{3}) = 2-\sqrt{3}$
- **(B)** g(x) = f(x-1) é uma função de domínio $\mathbb{R} \setminus \{1\}$
- (c) $f(7^{-30}) = -7^{30}$
- **(D)** $f(2) = \frac{1}{2}$
- **2.** Na *Figura 1* estão representadas, num referencial ortonormado do plano, as retas r, s e p, definidas respetivamente pelas equações

$$y = x + 1$$
, $y = -5x + 18$ e $y = 2$

(A)
$$y \ge 2 \lor (y \ge x + 1 \land y \ge -5x + 18)$$

(B)
$$y \ge 2 \land (y \ge x + 1 \lor y \ge -5x + 18)$$

(C)
$$(y \ge 2 \lor y \ge x + 1) \land y \ge -5x + 18$$

(D)
$$y \ge 2 \land y \ge x + 1 \land y \ge -5x + 18$$

- **3.** Considere o polinómio $P(x) = (x-1)^2(x+2)$.
 - **3.1** Considere f a função, de domínio \mathbb{R} , definida pelo polinómio dado.

Construa para essa função, uma tabela de sinais e em seguida comente as seguintes afirmações:

- I) O gráfico de f interseta o eixo Ox em três pontos distintos;
- II) $f(x) > 0 \Leftrightarrow x \in]-2, +\infty[$;
- **III)** f(1) é o mínimo absoluto.
- **3.2** Determine o resto da divisão inteira do polinómio P(x+1) por x+3.
- **4.** Considere, num plano munido de um referencial ortonormado, os pontos A(1,-1), B(3,-4) e C(-1,2).

Qual das seguintes afirmações é verdadeira?

- (A) Um vetor diretor da reta AB tem coordenadas (2,3).
- **(B)** O declive da reta $AB \in -\frac{2}{3}$.
- **(C)** Uma equação vetorial da reta $AB \in (x, y) = (1, -1) + k(2, 3), k \in \mathbb{R}$.
- (D) A equação reduzida da reta r, paralela à reta AB e que passa no ponto C é $y=-\frac{3}{2}x+\frac{1}{2}$.

5. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = (x-1)^2 + 2$ e o respetivo gráfico num referencial ortonormado Oxy.

Sabe-se que

- O ponto V é o vértice da parábola que representa graficamente a função;
- O ponto *B*, distinto de *V*, pertence ao gráfico da função *f*;
- Os vetores \vec{v} e \vec{b} , vetores de posição dos pontos V e B, respetivamente, são colineares.

Determine as coordenadas do ponto B.

Sugestão: Note que $\overrightarrow{v} = \overrightarrow{OV}$ e $\overrightarrow{b} = \overrightarrow{OB}$

- **6.** Na Figura 2 está representada, num referencial ortonormado do plano, a reta BC de equação y=-x+1
 - O ponto C tem abcissa $\frac{1}{2} a$ e o ponto B tem de abcissa $\frac{1}{2} + a$, em que $a \in \left[0, \frac{1}{2}\right]$.

Sabendo que a área do triângulo $[\mathit{OCP}]$ é m e a área triângulo $[\mathit{OBP}]$ é n, o valor de m+n é:

Figura 2

(A)
$$\frac{1}{2}$$

(C)
$$\frac{1}{3}$$

(D)
$$\frac{1}{4}$$

- **7.** No referencial ortonormado da *Figura 3* está representado:
 - O gráfico da função f, definida em \mathbb{R} , por $f(x) = x^2$;
 - O ponto $A\left(0, \frac{1}{4}\right)$;
 - O ponto *B* de abcissa 1 que pertence ao gráfico da função.
 - **7.1** Mostre que a circunferência de diâmetro [AB] é tangente ao eixo das abcissas.
 - **7.2** Determine, em \mathbb{R} , o conjunto solução da condição

$$f(x) < 5x - 6$$

Apresente o conjunto na forma de intervalo.

Figura 3

8. O gráfico da função f, definida em \mathbb{R} por f(x) = 1 + |x + 3| é:

(A)

(B)

(C)

(D)

9. No referencial ortonormado do plano da *Figura 4* está representado o losango [*OABC*].

Sabe-se que:

- O ponto *A* tem coordenadas (3, 0);
- $y = \frac{1}{3}x$ é uma equação da reta OB.

Determine a área do losango [OABC].

Figura 4

Sugestão: Comece por considerar as coordenadas do ponto B.

- 10. Considere, num referencial ortonormado do espaço,
 - os pontos A(1,1,3), B(5,-3,0), C(3,-1,4) e D(-1,3,6)
 - As retas $AB \in CD$ de equações $(x, y, z) = (1, 1, 3) + k(4, -4, -3), k \in \mathbb{R}$ e $(x, y, z) = (3, -1, 4) + k(-4, 4, 2), k \in \mathbb{R}$, respetivamente.
 - **10.1** Justifique que (-7, 9, 9) são as coordenadas do ponto comum às duas retas. Diga, justificando, se as duas retas são ou não complanares.
 - **10.2** Admita que um *drone* parte do ponto A e segue no sentido de $\overrightarrow{AB} = (4, -4, -3)$ e outro *drone* parte do ponto C e segue no sentido de $\overrightarrow{CD} = (-4, 4, 2)$.

Averigue se há a possibilidade de os drones colidirem.

11. Considere na Figura 5 um referencial 0xyz e nele representado o paralelepípedo retângulo [CBGIHFDA].

Figura 5

A(1, -2, 5), C(5, -2, 1), H(2, -1, 6) e B(4, 0, 0) são vértices do paralelepípedo.

- **11.1** Determine as coordenadas do vértice D do paralelepípedo (ponto que não se visualiza na figura).
- **11.2** A reta AC está contida num plano paralelo a um dos planos coordenados. Uma equação desse plano que contém AC é:

(
$$\Delta$$
) $x=4$

(B)
$$y = 0$$

(C)
$$z = -4$$

(A)
$$x = 4$$
 (B) $y = 0$ (C) $z = -4$ (D) $y = -2$

FIM

Questã	1.	2.	3.1	3.2	4.	5.	6.	7.1	7.2	8.	9.	10.1	10.2	11.1	11.2	TOTAL
Cotaçã	8	8	19	18	8	18	8	19	19	8	10	16	16	17	8	200

Teste de Matemática

2021

10.º ano de Escolaridade

Duração da Prova: 90 minutos. | Tolerância: 30 minutos. (cinco páginas)

VERSÃO 2

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

As cotações dos itens encontram-se no final do enunciado da prova.

Não é permitido o uso de máquina de calcular.

Na resposta aos itens de **escolha múltipla**, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

PROIBIDA A REPRODUÇÃO OU DIVULGAÇÃO TOTAL OU PARCIAL POR QUALQUER MEIO. O PRESENTE ENUNCIADO É PROPRIEDADE DA SOCIEDADE PORTUGUESA DE MATEMÁTICA E A SUA DIVULGAÇÃO É SUSCEPTÍVEL DE CAUSAR GRAVES PREJUÍZOS À SPM E ÀS SUAS ESCOLAS ASSOCIADAS. OS RESPONSÁVEIS SERÃO PROCESSADOS CIVIL E CRIMINALMENTE PELOS PREJÍZOS CAUSADOS.

1. Considere a função f, de domínio $\mathbb{R}\setminus\{0\}$, definida por $f(x)=\frac{1}{x}$.

Qual das seguintes afirmações é falsa?

- (A) $f(7^{-30}) = -7^{30}$
- **(B)** g(x) = f(x-1) é uma função de domínio $\mathbb{R} \setminus \{1\}$
- **(B)** $f(2+\sqrt{3})=2-\sqrt{3}$
- **(D)** $f(2) = \frac{1}{2}$
- **2.** Na *Figura 1* estão representadas, num referencial ortonormado do plano, as retas r, s e p, definidas respetivamente pelas equações

$$y = x + 1$$
, $y = -5x + 18$ e $y = 2$

Qual é a condição que define a região sombreada?

- (A) $y \ge 2 \lor (y \ge x + 1 \land y \ge -5x + 18)$
 - **(B)** $(y \ge 2 \lor y \ge x + 1) \land y \ge -5x + 18$
- (C) $y \ge 2 \land (y \ge x + 1 \lor y \ge -5x + 18)$
 - **(D)** $y \ge 2 \land y \ge x + 1 \land y \ge -5x + 18$
- **3.** Considere o polinómio $P(x) = (x-1)^2(x+2)$.
 - **3.1** Considere f a função, de domínio \mathbb{R} , definida pelo polinómio dado.

Construa para essa função, uma tabela de sinais e em seguida comente as seguintes afirmações:

- I) O gráfico de f interseta o eixo Ox em três pontos distintos;
- II) $f(x) > 0 \Leftrightarrow x \in]-2, +\infty[$;
- III) f(1) é o mínimo absoluto.
- **3.2** Determine o resto da divisão inteira do polinómio P(x+1) por x+3.
- **4.** Considere, num plano munido de um referencial ortonormado, os pontos A(1,-1), B(3,-4) e C(-1,2).

Qual das seguintes afirmações é verdadeira?

- (A) Um vetor diretor da reta AB tem coordenadas (2,3).
- **(B)** O declive da reta $AB \, \acute{\rm e} \frac{2}{3}$.
- **(C)** Uma equação vetorial da reta $AB \in (x, y) = (1, -1) + k(2, 3), k \in \mathbb{R}$.
- (D) A equação reduzida da reta r, paralela à reta AB e que passa no ponto C é $y=-\frac{3}{2}x+\frac{1}{2}$.

5. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = (x-1)^2 + 2\,$ e o respetivo gráfico num referencial ortonormado Oxy.

Sabe-se que

- O ponto V é o vértice da parábola que representa graficamente a função;
- O ponto *B*, distinto de *V*, pertence ao gráfico da função *f*;
- Os vetores \overrightarrow{v} e \overrightarrow{b} , vetores de posição dos pontos V e B respetivamente, são colineares.

Determine as coordenadas do ponto B.

Sugestão: Note que $\overrightarrow{v} = \overrightarrow{OV}$ e $\overrightarrow{b} = \overrightarrow{OB}$

6. Na Figura 2 está representada, num referencial ortonormado do plano, a reta BC de equação y=-x+1

Sabendo que a área do triângulo $[\mathit{OCP}]$ é m e a área triângulo $[\mathit{OBP}]$ é n, o valor de m+n é:

(B)
$$\frac{1}{2}$$

(C)
$$\frac{1}{3}$$

C

- O gráfico da função f , definida em \mathbb{R} , por $f(x)=x^2$;
- O ponto $A\left(0, \frac{1}{4}\right)$;
- O ponto B de abcissa 1 que pertence ao gráfico da função.
- **7.1** Mostre que a circunferência de diâmetro [AB] é tangente ao eixo das abcissas.
- **7.2** Determine, em \mathbb{R} , o conjunto solução da condição

$$f(x) < 5x - 6$$

Apresente o conjunto na forma de intervalo.

Figura 2

Figura 3

8. O gráfico da função f, definida em \mathbb{R} por f(x) = 1 + |x - 3| é:

(A)

(B)

(C)

(D)

9. No referencial ortonormado do plano da *Figura 4* está representado o losango [*OABC*].

Sabe-se que:

- O ponto *A* tem coordenadas (3, 0);
- $y = \frac{1}{3}x$ é uma equação da reta OB.

Determine a área do losango [OABC].

Sugestão: Comece por considerar as coordenadas do ponto B.

- 10. Considere, num referencial ortonormado do espaço,
 - os pontos A(1,1,3), B(5,-3,0), C(3,-1,4) e D(-1,3,6)
 - As retas $AB \in CD$ de equações $(x, y, z) = (1, 1, 3) + k(4, -4, -3), k \in \mathbb{R}$ e $(x, y, z) = (3, -1, 4) + k(-4, 4, 2), k \in \mathbb{R}$, respetivamente.
 - **10.1** Justifique que (-7, 9, 9) são as coordenadas do ponto comum às duas retas. Diga, justificando, se as duas retas são ou não complanares.
- **10.2** Admita que um *drone* parte do ponto A e segue no sentido de $\overrightarrow{AB} = (4, -4, -3)$ e outro *drone* parte do ponto C e segue no sentido de $\overrightarrow{CD} = (-4, 4, 2)$.

Averigue se há a possibilidade de os drones colidirem.

11. Considere na Figura 5 um referencial Oxyz e nele representado o paralelepípedo retângulo [CBGIHFDA].

Figura 5

A(1,-2,5) , C(5,-2,1), H(2,-1,6) e B(4,0,0) são vértices do paralelepípedo.

- **11.1** Determine as coordenadas do vértice D do paralelepípedo (ponto que não se visualiza na figura).
- **11.2** A reta AC está contida num plano paralelo a um dos planos coordenados. Uma equação desse plano que contém AC é:

(
$$\Delta$$
) $x = 4$

(A)
$$x = 4$$
 (B) $y = -2$ (C) $z = -4$ (D) $y = 0$

(C)
$$z = -4$$

(D)
$$v = 0$$

FIM

(Questão	1.	2.	3.1	3.2	4.	5.	6.	7.1	7.2	8.	9.	10.1	10.2	11.1	11.2	TOTAL
(Cotação	8	8	19	18	8	18	8	19	19	8	10	16	16	17	8	200