Cálculo Diferencial e Integral I

Aula 15: Teorema do valor médio

Turma Online - Prof. Rogério Mol

Universidade Federal de Minas Gerais

 $1^{\underline{\mathrm{o}}}$ semestre /2020

Teorema

Suponha f(x) contínua no intervalo [a,b] e diferenciável em (a,b). Se f(a)=f(b), então existe $c\in (a,b)$ tal que f'(c)=0.

Teorema

Suponha f(x) contínua no intervalo [a,b] e diferenciável em (a,b). Se f(a) = f(b), então existe $c \in (a,b)$ tal que f'(c) = 0.

Demonstração.

Se f é função constante, não há nada a mostrar, pois f'(c) = 0 para todo $c \in (a, b)$.

Suponha que exista $x \in (a, b)$ tal que f(x) > f(a) = f(b). A função f possui um máximo absoluto c, e nesse caso, esse máximo está em (a, b). Como f é diferenciável em (a, b), necessariamente f'(c) = 0.

O caso em que existe $x \in (a, b)$ tal que f(x) < f(a) = f(b) é tratado de forma análoga.

Exemplo. Se s = f(t) é a função posição de uma partícula em movimento retilíneo e, em dois instantes distintos a e b, a partícula ocupa a mesma posição (f(a) = f(b)), então existe um instante c entre a e b em que a velocidade é nula (f'(a) = 0).

- **Exemplo.** Se s = f(t) é a função posição de uma partícula em movimento retilíneo e, em dois instantes distintos a e b, a partícula ocupa a mesma posição (f(a) = f(b)), então existe um instante c entre a e b em que a velocidade é nula (f'(a) = 0).
- **Exemplo.** Demonstre que a equação $x^3 + x 1 = 0$ tem exatamente uma solução real.

- **Exemplo.** Se s = f(t) é a função posição de uma partícula em movimento retilíneo e, em dois instantes distintos a e b, a partícula ocupa a mesma posição (f(a) = f(b)), então existe um instante c entre a e b em que a velocidade é nula (f'(a) = 0).
- **Exemplo.** Demonstre que a equação $x^3 + x 1 = 0$ tem exatamente uma solução real.

Solução. Considere $f(x) = x^3 + x - 1 = 0$.

f(0) = -1 < 0 e f(1) = 1 > 0 \Rightarrow existe $c \in (0,1)$ tal que f(c) = 0 pelo Teorema do valor intermediário.

Se existissem dois pontos c_1 e c_2 tais que $f(c_1) = f(c_2) = 0$, o Teorema de Rolle garantiria a existência de um ponto entre c_1 e c_2 onde f'(x) se anula.

Porém, $f'(x) = 3x^2 + 1 > 0$ para todo valor de x.

Teorema

Suponha f(x) contínua no intervalo [a,b] e diferenciável em (a,b). Então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema

Suponha f(x) contínua no intervalo [a,b] e diferenciável em (a,b). Então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Em outras palavras:

- existe um ponto $c \in (a, b)$ onde a taxa de variação instantânea coincide com a taxa de variação média de f(x) no intervalo [a, b].
- existe um ponto $c \in (a, b)$ tal que a reta tangente ao gráfico de f(x) no ponto (c, f(c)) é paralela à reta secante ao gráfico pelos pontos (a, f(a)) (b, f(b)).

Demonstração.

Considere a função h definida como

$$h(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right)$$

(ou seja, estamos fazendo a diferença entre f(x) e a função linear cujo gráfico é a reta secante por (a, f(a)) e (b, f(b)).

A função h(x) é contínua em [a, b] e diferenciável em (a, b).

Além disso, h(a) = h(b) = 0.

Pelo Teorema de Rolle, existe $c \in (a, b)$ tal que h'(c) = 0.

Porém

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Portanto

$$h'(c) = 0$$
 \Rightarrow $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Exemplo. Suponha que s = f(t) seja a função posição de um objeto em movimento retilíneo. Dados dois instantes distintos a e b, o Teorema do valor médio diz que para algum intante c entre a e b, a velocidade instantânea em c será igual à velocidade média entre os tempos a e b. Por exemplo, se o objeto percorre 180 km em 2 h, então em algum instante sua velocidade será de 90 km/h.

Teorema

Se f'(x) = 0 para todo $x \in (a, b)$, então f é constante em (a, b).

Teorema

Se f'(x) = 0 para todo $x \in (a, b)$, então f é constante em (a, b).

Demonstração.

Sejam $x_1, x_2 \in (a, b)$, com $x_1 < x_2$.

Pelo Teorema do valor médio, existe $c \in (x_1, x_2)$ tal que

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Porém, f'(c) = 0 e, portanto, $f(x_1) = f(x_2)$.

Provamos que f assume o mesmo valor em quaisquer dois pontos de (a, b). Portanto, f é função constante.

Como consequência do teorema anterior, temos:

Corolário

Se g'(x) = f'(x) para todo $x \in (a, b)$, então existe uma constante c tal que g(x) = f(x) + c para todo $x \in (a, b)$.

Como consequência do teorema anterior, temos:

Corolário

Se g'(x) = f'(x) para todo $x \in (a, b)$, então existe uma constante c tal que g(x) = f(x) + c para todo $x \in (a, b)$.

Demonstração.

Considere a função h(x) = g(x) - f(x).

Temos

$$h'(x) = g'(x) - f'(x) = 0$$
 para todo $x \in (a, b)$.

Pelo teorema, existe uma constante $c \in \mathbb{R}$ tal que h(x) = c para todo $x \in (a, b)$, o que demonstra o resultado.

Exemplo. Demonstre a identidade

$$\operatorname{arcsen}(x) + \operatorname{arccos}(x) = \frac{\pi}{2}$$
 para todo $x \in [-1, 1]$.

Exemplo. Demonstre a identidade

$$\operatorname{arcsen}(x) + \operatorname{arccos}(x) = \frac{\pi}{2} \text{ para todo } x \in [-1, 1].$$

Demonstração.

Defina $f(x) = \arcsin(x) + \arccos(x)$.

Temos

$$f'(x) = \arcsin'(x) + \arccos'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0.$$

Portanto, f(x) é constante.

Por outro lado,
$$f(0) = \arcsin(0) + \arccos(0) = 0 + \pi/2 = \pi/2$$

