Sztuczna inteligencja

Dominik Lau

13 kwietnia 2023

1 Wstęp

Celem projektu było zaimplementowanie i przeanalizowanie dwóch algorytmów interpolacji na wybranych profilach wysokościowych - metody wykorzystującej wielomian Lagrange oraz metody z funkcjami sklejanymi trzeciego stopnia. Do implementacji wykorzystano język *Python* oraz biblioteki *matplotib*, *pandas*.

2 Teoria

W obu przypadkach zakładamy, że mamy pewien zestaw n+1 punktów

$$(x_0, y_0)$$

$$(x_1, y_1)$$

$$\dots$$

$$(x_n, y_n)$$

i chcemy znaleźć taką funkcję F(x), że

$$\forall_{i=0..n} F(x_i) = y_i$$

dobrze określającą, jakie wartości przyjmują y w punktach $x \notin \{x_0, ..., x_n\}$

2.1 Metoda Lagrange

W metodzie tej funkcja F ma postać

$$F(x) = \sum_{i=0}^{n} y_i \phi_i(x)$$

gdzie

$$\phi_i(x) = \prod_{j=0, j \neq i}^{n+1} \frac{x - x_j}{x_i - x_j}$$

jest **bazą Lagrange'a**. Metoda ta zwraca takie same wyniki jak metoda Vandermonde, jednak nie musimy rozwiązywać układu równań liniowych

2.2 Metoda krzywych sklejanych 3. stopnia

w tej metodzie funkcja F ma postać

$$F(x) = S_i(x); x \in [x_i, x_{i+1}]$$

czyli przedstawiamy ją jako szereg połączonych wielomianów $S_i(x)$ takich, że

$$deq(S_i) = 3$$

w celu uzyskania układów równań, z których pozyskamy współczynniki $S_i(x)$ przyjmujemy założenia

$$S_{i}(x_{i}) = y_{i}$$

$$S_{i}(x_{i+1}) = y_{i+1}$$

$$S'_{j-1}(x_{i}) = S'_{j}(x_{i}); x = 1..n - 1$$

$$S''_{j-1}(x_{i}) = S''_{j}(x_{i}); x = 1..n - 1$$

$$S''_{0}(x_{0}) = 0$$

$$S''_{n-1}(x_{n}) = 0$$

znalezienie wielomianów Ssprowadza się do rozwiązania powyższego układu równań

3 Wybrane profile wysokościowe

Do analizy wybrano następujące profile wysokościowe

- ścieżkę Yoshidy na górę Fuji jedno duże wzniesienie
- trasę Al. Ujazdowskie-Łazienki-Solec trasa głównie płaska
- trasę wokół centrum Słupska wiele nagłych (ale niedużych) wzniesień
- 4 Trasa na górę Fuji
- 5 Trasa w Warszawie
- 6 Trasa wokół centrum Słupska
- 7 Źródła
 - Wikipedia-Spline