Modelos lineales generalizados

CEPAL

7/3/2022

Lectura de la base

```
encuesta <- readRDS("../Data/encuesta.rds")
data("BigCity", package = "TeachingSampling")</pre>
```

Definir diseño de la muestra con srvyr

```
library(srvyr)

diseno <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk,
    nest = T
)
```

definir nuevas variables

```
diseno <- diseno %>% mutate(
   pobreza = ifelse(Poverty != "NotPoor", 1, 0),
   desempleo = ifelse(Employment == "Unemployed", 1, 0))
```

Tablas de doble entrada para el tamaño

	Sex	factor(pobreza)0	factor(pobreza)1	se1	se2
Female	Female	48010	31180	2206	3001
Male	Male	42310	28766	2093	2239

```
(tab <- svytable(~pobreza + Sex, design = diseno))</pre>
```

pobreza/Sex	Female	Male
0	48010	42310
1	31180	28766

Tablas de doble entrada para el proporción

```
(tab_pobreza_sexo <- svyby(~factor(pobreza), ~Sex,
    FUN = svymean, design = as.svrepdesign(diseno),
    se=F, na.rm=T, ci=T, keep.var=TRUE))</pre>
```

	Sex	factor(pobreza)0	factor(pobreza)1	se1	se2
Female	Female	0.6063	0.3937	0.0304	0.0304
Male	Male	0.5953	0.4047	0.0270	0.0270

<pre>prop.table(tab,</pre>	margin	=	2
----------------------------	--------	---	---

pobreza/Sex	Female	Male
0	0.6063	0.5953
1	0.3937	0.4047

$$\hat{\pi}_{rc} = \frac{n_{r+}}{n_{++}} \times \frac{n_{+c}}{n_{++}}$$

$$\chi^2_{pearsom} = n_{++} \times \sum_r \sum_c \left(\frac{(p_{rc} - \hat{\pi}_{rc})^2}{\hat{\pi}_{rc}} \right)$$

$$G^2 = 2 \times n_{++} \times \sum_r \sum_c p_{cr} \times \ln\left(\frac{p_{rc}}{\hat{\pi}_{rc}}\right)$$

donde, R es el número de filas y C representa el número de columnas, la prueba tiene $(R-1)\times(C-1)$ grados de libertad.

$$\chi^2_{(R-S)} = \chi^2_{(Pearson)}/GDEFF$$

$$G_{(R-S)}^2 = G^2/GDEFF$$

con GDEFF el efecto generalizado del diseño, esta dado por

$$GDEFF = \frac{\sum_{r} \sum_{c} (1 - p_{rc}) d^{2} (p_{rc}) - \sum_{r} (1 - p_{r+}) d^{2} (p_{r+}) - \sum_{c} (1 - p_{+c}) d^{2} (p_{+c})}{(R - 1) (C - 1)}$$

$$F_{R-S,Pearson} = \chi^2_{R-S} / \left[(R-1) (C-1) \right] \sim F_{(R-1)(C-1),(R-1)(C-1)df}$$

$$F_{R-S,LRT} = G_{R-S}^2 / (C-1) \sim F_{(C-1),df}$$

donde C es el número de columnas de la tabla cruzada

Prueba de independencia ChiSq

```
summary(tab, statistic = "Chisq")
         Sex
##
## pobreza Female Male
##
        0 48010 42310
##
        1 31180 28766
##
##
   Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## X-squared = 0.33, df = 1, p-value = 0.6
```

```
summary(tab, statistic = "F")
         Sex
##
## pobreza Female Male
##
        0 48010 42310
##
        1 31180 28766
##
## Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## F = 0.35, ndf = 1, ddf = 119, p-value = 0.6
```

Estadístico de Wald

$$Q_{wald} = \hat{oldsymbol{Y}}^t \left(oldsymbol{H} \hat{oldsymbol{V}} \left(\hat{oldsymbol{N}}
ight) oldsymbol{H}^t
ight)^{-1} \, \hat{oldsymbol{Y}}$$

donde,

$$\hat{\mathbf{Y}} = (\hat{\mathbf{N}} - \mathbf{E})$$

es un vector de $R \times C$ de diferencias entre los recuentos de celdas observadas y esperadas, esto es, $\hat{N}_{rc} - E_{rc}$

La matriz $\hat{H}\hat{V}(\hat{N})\hat{H}^t$, representa la matriz de varianza-covarianza estimada para el vector de diferencias.

Estadístico de Wald

La matriz \boldsymbol{H} es la inversa de la matriz \boldsymbol{J} dada por:

$$oldsymbol{J} = -\left[rac{\delta^2 \ln PL(oldsymbol{B})}{\delta^2 oldsymbol{B}}\right] \mid oldsymbol{B} = \hat{oldsymbol{B}}$$

$$\sum_{h} \sum_{a} \sum_{i} x_{hai}^{t} x_{hai} w_{hai} \hat{\pi}_{hai} \left(\boldsymbol{B} \right) \left(1 - \hat{\pi}_{hai} \left(\boldsymbol{B} \right) \right)$$

Bajo la hipótesis nula, el estadístico

$$Q_{wald} \sim \chi^2_{(R-1)\times(C-1)}$$

Estadístico de Wald

$$F_{wald} = Q_{wald} \times \frac{df - (R-1)(C-1) + 1}{(R-1)(C-1)df} \sim F_{(R-1)(C-1),df - (R-1)(C-1) + 1}$$

```
summary(tab, statistic = "Wald")
##
         Sex
## pobreza Female Male
##
        0 48010 42310
##
        1 31180 28766
##
##
   Design-based Wald test of association
##
## data: NextMethod()
## F = 0.35, ndf = 1, ddf = 119, p-value = 0.6
```

Prueba de independencia adjWald

```
summary(tab, statistic = "adjWald")
##
         Sex
## pobreza Female Male
##
        0 48010 42310
##
        1 31180 28766
##
##
   Design-based Wald test of association
##
## data: NextMethod()
## F = 0.35, ndf = 1, ddf = 119, p-value = 0.6
```

Prueba de independencia lincom

```
summary(tab, statistic = "lincom")
##
         Sex
## pobreza Female Male
##
        0 48010 42310
##
        1 31180 28766
##
##
   Pearson's X^2: asymptotic exact distribution
##
## data: NextMethod()
## X-squared = 0.33, p-value = 0.6
```

Prueba de independencia saddlepoint

```
summary(tab, statistic = "saddlepoint")
##
         Sex
## pobreza Female Male
##
        0 48010 42310
##
        1 31180 28766
##
##
   Pearson's X^2: saddlepoint approximation
##
## data: NextMethod()
## X-squared = 0.33, p-value = 0.6
```

$$\log(p_{ijk}) = \mu + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_{ij}^{XY},$$

donde:

- $ightharpoonup p_{ijk} =$ la proporción esperada en la celda bajo el modelo.
- $\blacktriangleright \ \mu = \log(p_0) = \frac{1}{\# \ de \ celdas}$

```
mod1 <- svyloglin(~pobreza+Sex + pobreza:Sex , diseno)
(s1 <- summary(mod1))

## Loglinear model: svyloglin(~pobreza + Sex + pobreza:Sex
## coef se p
## pobreza1  0.20437 0.05676 0.0003172
## Sex1  0.05174 0.02119 0.0146150
## pobreza1:Sex1 0.01144 0.01933 0.5538109</pre>
```

```
mod2 <- svyloglin(~pobreza+Sex, diseno)
(s2 <- summary(mod2))

## Loglinear model: svyloglin(~pobreza + Sex, diseno)
## coef se p
## pobreza1 0.20497 0.05690 0.0003157
## Sex1 0.05405 0.01919 0.0048540</pre>
```

```
## Analysis of Deviance Table
## Model 1: y ~ pobreza + Sex
## Model 2: y ~ pobreza + Sex + pobreza:Sex
```

Deviance= 0.3254 p= 0.555

Score= 0.3254 p= 0.5549

anova(mod1, mod2)

Modelo de regresión logistica

con

$$g(\pi(x)) = logit(\pi(x)) = z = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = B_0 + B_1 x_1 + \dots + B_p x_p$$
$$\hat{\pi}(\mathbf{x}) = \frac{\exp\left(\mathbf{X}\hat{\mathbf{B}}\right)}{1 - \exp\left(\mathbf{X}\hat{\mathbf{B}}\right)} = \frac{\exp\left(\hat{B}_0 + \hat{B}_1 x_1 + \dots + \hat{B} x_p\right)}{1 - \exp\left(\hat{B}_0 + \hat{B}_1 x_1 + \dots + \hat{B} x_p\right)}$$

 $PL(\mathbf{B} \mid X) = \prod_{i=1}^{n} \left\{ \pi(x_i)^{y_i} (1 - \pi(x_i))^{1-y_i} \right\}^{w_i}$

 $\pi\left(x_{i}\right) = \frac{\exp\left(x_{i}\boldsymbol{B}\right)}{1 - \exp\left(x_{i}\boldsymbol{B}\right)}$

 $var\left(\hat{\boldsymbol{B}}\right) = \boldsymbol{J}^{-1}var\left(S\left(\hat{\boldsymbol{B}}\right)\right)\boldsymbol{J}^{-1}$

 $S\left(B
ight) = \sum_{i} \sum_{j} w_{hai} \boldsymbol{D}_{hai}^{t} \left[\left(\pi_{hai}\left(\boldsymbol{B}
ight)\right) \left(1 - \pi_{hai}\left(\boldsymbol{B}
ight)\right) \right]^{-1} \left(y_{hai} - \pi_{hai}\left(\boldsymbol{B}
ight)\right)$

$$g(\pi(x)) = logit(\pi(x)) = z = ln(-1)$$

Prueba de Wald para los parámetros del modelo

$$G = -2 \ln \left[rac{L \left(\hat{eta}_{MLE}
ight)_{reduced}}{L \left(\hat{eta}_{MLE}
ight)_{full}}
ight]$$
 $\hat{\psi} = \exp \left(\hat{B}_1
ight)$

 $CI(\psi) = \exp\left(\hat{B}_j \pm t_{df,1-\frac{\alpha}{2}} se\left(\hat{B}_j\right)\right)$

Tablas de contingencia

Sex	pobreza	se	ci_l	ci_u
Female Male	0.3937 0.4047	0.0304 0.0270	0.3342 0.3518	000

Zone	pobreza	se	ci_l	ci_u
Rural	0.4206	0.0485	0.3255	0.5157
Urban	0.3789	0.0269	0.3261	0.4317

Region	pobreza	se	ci_l	ci_u
Norte	0.4213	0.0522	0.3189	0.5236
Sur	0.3079	0.0539	0.2023	0.4136
Centro	0.2509	0.0461	0.1606	0.3411
Occidente	0.3980	0.0385	0.3226	0.4734
Oriente	0.5453	0.0768	0.3948	0.6957

Prueba de independencia ChiSq

```
## Pearson's X^2: Rao & Scott adjustment
pobreza_sex <- svychisq(</pre>
  formula = ~pobreza + Sex, design = diseno)
pobreza_Zona <- svychisq(</pre>
  formula = ~pobreza + Zone, design = diseno)
pobreza_Region <- svychisq(</pre>
  formula = ~pobreza + Region, design = diseno)
bind_rows( tidy( pobreza_sex),
           tidy(pobreza Zona),
           tidy(pobreza Region)) %>%
  dplyr::select(-method)
```

ndf	ddf	statistic	p.value
1.000	119.0	0.3506	0.5549
1.000	119.0	0.5730	0.4505
3.194	380.1	4.2241	0.0049

Modelo log lineal ajustado

term	estimate	std.error	statistic	p.value
(Intercept)	-0.3664	0.2486	-1.4735	0.1434
SexMale	0.0455	0.0713	0.6384	0.5245
Zone Urban	0.0634	0.2134	0.2970	0.7670
RegionSur	-0.5031	0.3229	-1.5582	0.1220
RegionCentro	-0.7999	0.3249	-2.4619	0.0153
RegionOccidente	-0.0990	0.2663	-0.3719	0.7107
RegionOriente	0.5019	0.3759	1.3349	0.1846

Plot de la distribución de los betas

Modelo log lineal ajustado

```
bind_cols(
data.frame(exp_estimado = exp(coef(mod_loglin))),
as.data.frame(exp(confint(mod_loglin)))
)
```

	exp_estimado	2.5 %	97.5 %
(Intercept)	0.6933	0.4236	1.1345
SexMale	1.0466	0.9087	1.2054
ZoneUrban	1.0654	0.6981	1.6262
RegionSur	0.6046	0.3189	1.1463
RegionCentro	0.4494	0.2361	0.8554
RegionOccidente	0.9057	0.5344	1.5349
RegionOriente	1.6518	0.7843	3.4787

Estadístico de Wald sobre los parámetros regTermTest(model = mod_loglin, ~Sex)

Wald test for Sex

in svyglm(formula = pobreza ~ Sex + Zone + Region, desi
family = quasibinomial)
F = 0.4076 on 1 and 113 df: p= 0.52
regTermTest(model = mod_loglin, ~Zone)

Wald test for Zone
in svyglm(formula = pobreza ~ Sex + Zone + Region, des:
family = quasibinomial)

In Svygim(Tormula = poble2a | Sex + Zone + Region, des
family = quasibinomial)
F = 0.08823 on 1 and 113 df: p= 0.77
regTermTest(model = mod_loglin, ~Region)

regTermTest(model = mod_loglin, ~Region)
Wald test for Region
in svyglm(formula = pobreza ~ Sex + Zone + Region, desi

in svygim(formula = pobreza ~ Sex + Zone + Region ## family = quasibinomial)
F = 4.33 on 4 and 113 df: p= 0.0027

Efecto del modelo.

Efecto del modelo.

Modelo log lineal ajustado con interacciones

term	estimate	std.error	statistic	p.value
RegionCentro	-0.7863	0.3539	-2.2217	0.0284
RegionSur	-0.5432	0.3776	-1.4383	0.1532
SexMale:RegionOriente	0.2616	0.1866	1.4022	0.1637
(Intercept)	-0.3196	0.2623	-1.2183	0.2257
RegionOriente	0.3780	0.3854	0.9809	0.3288
SexMale:RegionOccidente	0.1648	0.1779	0.9261	0.3564

Modelo log lineal ajustado con interacciones

tab_mod %>% slice(7:12)

term	estimate	std.error	statistic	p.value
RegionOccidente	-0.1796	0.2849	-0.6304	0.5297
SexMale	-0.0470	0.1105	-0.4257	0.6712
SexMale:ZoneUrban	-0.0548	0.1357	-0.4037	0.6872
SexMale:RegionSur	0.0817	0.2103	0.3884	0.6985
ZoneUrban	0.0869	0.2330	0.3731	0.7098
SexMale:RegionCentro	-0.0391	0.2059	-0.1897	0.8499

Plot de la distribución de los betas

plot_summs(mod_loglin_int, mod_loglin, scale = TRUE, plot.or)

Modelo log lineal ajustado

	exp_estimado	2.5 %	97.5 %
(Intercept)	0.7264	0.4319	1.2219
SexMale	0.9541	0.7665	1.1876
ZoneUrban	1.0908	0.6874	1.7312
RegionSur	0.5809	0.2748	1.2280
RegionCentro	0.4555	0.2259	0.9187
RegionOccidente	0.8356	0.4750	1.4698
RegionOriente	1.4594	0.6799	3.1328
SexMale:ZoneUrban	0.9467	0.7234	1.2389
SexMale:RegionSur	1.0851	0.7152	1.6463
SexMale:RegionCentro	0.9617	0.6395	1.4463
SexMale:RegionOccidente	1.1791	0.8287	1.6778
SexMale:RegionOriente	1.2990	0.8974	1.8802

Estadístico de Wald sobre los parámetros regTermTest(model = mod_loglin_int, ~Sex)

Wald test for Sex

design = diseno, family = quasibinomial)
F = 0.1812 on 1 and 108 df: p= 0.67

regTermTest(model = mod_loglin_int, ~Zone)

Wald test for Zone
in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex
design = diseno, family = quasibinomial)

in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex

design = diseno, family = quasibinomial)
F = 0.1392 on 1 and 108 df: p= 0.71

regTermTest(model = mod_loglin_int, ~Region)

Wald test for Region
in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex
design = diseno, family = quasibinomial)

F = 3.14 on 4 and 108 df: p = 0.017

Estadístico de Wald sobre los parámetros

```
regTermTest(model = mod_loglin_int, ~Sex:Zone)
## Wald test for Sex:Zone
## in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex
      design = diseno, family = quasibinomial)
## F = 0.163 on 1 and 108 df: p = 0.69
regTermTest(model = mod_loglin_int, ~Sex:Region)
## Wald test for Sex:Region
   in svyglm(formula = pobreza ~ Sex + Zone + Region + Sex
      design = diseno, family = quasibinomial)
##
## F = 0.7353 on 4 and 108 df: p = 0.57
```


Modelo log lineal ajustado con Q_Weighting

```
fit_wgt <- lm(wk ~ Sex + Zone + Region , data = encuesta)</pre>
wgt hat <- predict(fit wgt)</pre>
encuesta %<>% mutate(wk2 = wk/wgt hat)
diseno_qwgt <- encuesta %>%
  as_survey_design(
    strata = Stratum,
    ids = PSU,
    weights = wk2,
   nest = T
```

Modelo log lineal ajustado con Q_Weighting

Modelo log lineal ajustado con Q_Weighting

term	estimate	std.error	statistic	p.value
(Intercept)	-0.3611	0.2519	-1.4334	0.1545
SexMale	0.0287	0.0683	0.4200	0.6753
ZoneUrban	0.0750	0.2023	0.3706	0.7116
RegionSur	-0.5103	0.3194	-1.5976	0.1129
RegionCentro	-0.8081	0.3215	-2.5136	0.0134
RegionOccidente	-0.1033	0.2671	-0.3867	0.6997
RegionOriente	0.5025	0.3796	1.3238	0.1882

Plot de la distribución de los betas

Modelo log lineal ajustado

(Intercept) 0.6969 0.4231 1.1 SexMale 1.0291 0.8989 1.1	
SexMale 1.0291 0.8989 1.1	7.5 %
	.1479
ZoneUrban 1.0779 0.7220 1.6	.1782
	.6092
RegionSur 0.6003 0.3188 1.1	.1303
RegionCentro 0.4457 0.2357 0.8	.8427
RegionOccidente 0.9019 0.5312 1.5	.5310
RegionOriente 1.6528 0.7792 3.5	.5062

Estadístico de Wald sobre los parámetros regTermTest(model = mod_loglin_qwgt, ~Sex)

Wald test for Sex

##

in svyglm(formula = pobreza ~ Sex + Zone + Region, des: family = quasibinomial) ## ## F = 0.1764 on 1 and 113 df: p = 0.68regTermTest(model = mod_loglin_qwgt, ~Zone)

Wald test for Zone ## in svyglm(formula = pobreza ~ Sex + Zone + Region, des:

family = quasibinomial) ## ## F = 0.1374 on 1 and 113 df: p = 0.71

regTermTest(model = mod loglin qwgt, ~Region) ## Wald test for Region

in svyglm(formula = pobreza ~ Sex + Zone + Region, des: family = quasibinomial)

F = 4.225 on 4 and 113 df: p = 0.0032

