Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA a VIII-a, SOLUŢII ŞI BAREMURI

Problema 1. Să se determine numerele reale pozitive x, y, z care verifică simultan egalitățile $x^2y^2+1=x^2+xy$, $y^2z^2+1=y^2+yz$ și $z^2x^2+1=z^2+xz$.

Problema 2. Numerele reale a, b, c, d, e au proprietatea că

$$|a - b| = 2|b - c| = 3|c - d| = 4|d - e| = 5|e - a|$$
.

Să se arate că numerele a, b, c, d, e sunt egale.

Problema 3. Considerăm prisma patrulateră regulată ABCDA'B'C'D' în care AB = a, $AA' = \frac{a\sqrt{2}}{2}$, iar M este mijlocul muchiei B'C'. Fie F piciorul perpendicularei din B pe dreapta MC. Să se determine măsura unghiului dintre planele (BFD) și (ABF).

Soluție. Planele (BFD) și (ABF) se taie după dreapta BF. Muchiile AB și DC sunt perpendiculare pe planul (BCC'), deci și pe dreapta BF. **1** punct

Problema 4. Numerele naturale a și b verifică relația

$$(a^2 - 9b^2)^2 - 33b = 16. (1)$$

- a) Să se arate că $|a 3b| \ge 1$.
- b) Să se determine toate perechile de numere naturale (a, b) care satisfac relația (1).