

Chimie Organique 1 4TBX 209 U

Théories électroniques, structurales et grands principes de la chimie organique Réactivité de quelques composés aliphatiques et aromatiques

Denis Deffieux (denis.deffieux@u-bordeaux.fr)
Jean-Luc Pozzo (Jl.pozzo@ism.u-bordeaux1.fr)

Objectif : comprendre la réactivité des molécules organiques

Structure de ces molécules

Paul Arnauld:

Chapitres / 1-3

4-5, 12, 26

8-10,12,13-14

Partie I. (5 cours)

Structure géométrique

Liaison chimique:

La liaison covalente du

carbone : structure des alcanes

Isomérie de conformation

Ethane, butan-2-ol

Cyclohexane

Sucres - forme cyclique

Stéréochimie Enantiomérie

Diastéréoisomérie

Partie II. (5 cours)

Introduction à la notion de réactivité - Structure électronique

Types de réactions Profils de réaction

Effets électroniques : Effets inductifs Effets mésomères

Types de réactifs : Bases et Acides Nucléophiles et Electrophiles Intermédiaires réactionnels Partie III. (6 cours)

Réactivité:

- des alcanes
- des alcènes
- des alcynes
- des aromatiques
- des composés halogénés
- des organomagnésiens

Partie II

Chapitre 1 : Description générale de la réaction chimique

1 : Cas de la combustion du méthane

2. Rupture et création de liaisons

La rupture d'une liaison covalente (σ) entre deux partenaires A-B, peut se produire de deux façons :

> soit de façon hétérolytique et les deux électrons de la liaisons sont réassignés à un seul partenaire (B dans le cas ci-dessous) – La réaction est dite ionique ou polaire

$$A \stackrel{\frown}{-} B \longrightarrow A + B$$

> soit de façon homolytique et un électron reste avec chacun des partenaires – la réaction est dite radicalaire

En général, la nature de la rupture (homolytique ou hétérolytique) dépend de la polarisation de la liaison σ

2. Rupture et création de liaisons

Les flèches courbées indiquent les liaisons qui se rompent et celles qui se créent

Une flèche dite « hameçon » indique une rupture homolytique de liaison

Une flèche dite « normale » indique une rupture hétérolytique de liaison

2. Rupture et création de liaisons

Polarisation de la liaison σ et électronégativité

Si la différence d'électronégativité entre deux atomes formant une liaison est supérieur à 0,3 et inférieur à 2.0, la liaison covalente est dite **polarisée** et des charges partielles $\delta(+)$ et $\delta(-)$ sont crées en raison de la distribution non symétrique des électrons de la liaison :

$$\delta(+)$$
 H --- F $\delta(-)$

H 2,2							He
Li 1	Be 1,5	B 2	C 2,5	N 3	O 3,5	F 4	Ne
Na 0,9	Mg 1,3	AI 1,6	Si 1,9	P 2,2	S 2,6	CI 3,2	Ar
K 0,8	Ca 1					Br 3	
						1 2,7	

- ➤ Si les électronégativités sont égales (i.e. la différence d'électronégativité est égale à 0), la liaison covalente est dite non polarisée
- ➤ Si la différence d'électronégativié est égale ou supérieur à 2, la liaison est dite ionique

2. Rupture et création de liaisons

En général, la nature de la rupture (homolytique ou hétérolytique) dépend de la polarisation de la liaison σ

La nature de la rupture peut dépendre également :

Nature des réactifs

- acide-base au sens de Brönsted (AH; B[©])
- acide-base au sens de Lewis (A \square ou A $^{\oplus}$; \vec{B} ou B $^{\ominus}$)
- Nucléophiles, électrophile (Nu[©]; E[⊕])

Intermédiaires réactionnels

- Carbocations, carbanions, radicaux libres (C[⊕]; C[□]; C[□])
- Rôle du solvants
- polaire, apolaire protique, aprotique

2. Rupture et création de liaisons

Réactions radicalaires

- Ce type de réactions est moins fréquent que les réactions de type ionique
- Une espèce radicalaire réagit pour compléter à 8 électrons la couche de valence
 - Une espèce radicalaire peut rompre une liaison d'une autre molécule pour s'associer à un nouveau partenaire donnant un produit de substitution (B substitué par Rad)
 - Une espèce radicalaire peut s'additionner sur un alcène pour donner une nouvelle espèce radicalaire, causant une réaction d'addition

2. Rupture et création de liaisons

Réactions ioniques

- Un électrophile, une espèce pauvre en électrons, se combine avec un nucléophile, une éspèce riche en électrons
- Un nucléophile (Nu-) est une espèce chimique qui fournit les deux électrons qui vont former la nouvelle liaison.
- Un électrophile (E+) est une espèce chimique qui accepte les deux électrons qui vont former la nouvelle liaison.
- Un électrophile est un acide de Lewis acid. Un nucléophile, une base de Lewis
- L'association des deux est indiquée par une flèche qui part du nucléophile et arrive à l'électrophile
 This curved arrow shows that

3. Réactifs électrophiles et nucléophiles

Exemples de réactifs nucléophiles

Anions

F CI Br I
$$^{\circ}$$
HO RO CH₃COO RS $^{\circ}$ R₂N CN

Molécules neutres (présence d'électrons π ou n)

$$H_2O$$
 ROH CH_3COOH RSH R_2NH $=$

3. Réactifs électrophiles et nucléophiles

Exemples de réactifs électrophiles

Cations

$$H^{+}$$
 NO_{2}^{+} $R_{3}^{c}C^{+}$ $R^{+}_{C}=0$ CI^{+} Br^{+} I^{+}

Molécules neutres (présence d'une lacune électronique)

4. Profils de réaction

a. Réaction en une étape ou concertée

La réaction s' accomplie en un **seul acte**, à la suite d' une collision qui déclenche à la fois la rupture et la formation des liaisons et s'accompagne d'un **état de transition ET**. Un tel processus est appelé « **réaction élémentaire** ».

- 4. Profils de réaction
 - a. Réaction en une étape ou concertée

- 4. Profils de réaction
 - a. Réaction en une étape ou concertée

4. Profils de réaction

b. Réaction multiétape ou complexe

Beaucoup de réactions s' effectuent en deux ou plusieurs étapes, par une succession d'actes élémentaire qui conduisent à la formation d'espèces intermédiaires. Ce sont alors « des réactions complexes » ou multi-étapes.

- 4. Profils de réaction
 - b. Réaction multiétape ou complexe

- 4. Profils de réaction
 - b. Réaction multiétape ou complexe

4. Profils de réaction

c. Réaction catalysée

Un catalyseur est un corps qui, par sa présence dans un système capable d'évoluer chimiquement, accélère la transformation sans participer à son bilan et en général sans être modifier lui-même

- il ne change pas la constante d'équilibre (pas d'impact sur △E),
- il diminue l'énergie d'activation Ea (Ea → Ea) et par conséquent le chemin
- Les **enzymes** sont des **catalyseurs** biochimiques

5. Types de réaction

Réaction de substitution

• Dans les **réactions de substitution** un atome ou groupe d'atomes est remplacé par un autre. Le degré de substitution du carbone reste inchangé

5. Types de réaction

Réaction d'addition

• Les **réactions d'addition** impliquent un accroissement du nombre de substituants liés à l'atome de carbone. Le degré de substitution du carbone s'accroît

$$H_3C$$
 $C = CH_2 + Br_2$
 H_3C
 H_3C
 H_3C
 H_4
 $C = CH_2$
 H_4
 H_4
 H_4
 H_5
 H_4
 H_5
 H_5
 H_6
 H_7
 H_8
 H_8

5. Types de réaction

Réaction d'élimination

• Les **réactions d'élimination** impliquent une diminution du nombre de substituants liés à l'atome de carbone. Le degré de substitution du carbone décroît

5. Types de réaction

Réaction de transposition (ou de réarrangement)

• Dans les **réactions de transposition**, il y a réarrangement du squelette carboné

$$O$$
 CH_3
 $acide$
 CH_3
 CH_3

Réaction de Fries

1. Rappel : électronégativité

Apparition de charges partielles $\delta(+)$, $\delta(-)$, dues à la différence d'électronégativité des 2 atomes liés :

H 2,2	δ(+) H F δ(-)						Не
Li 1	Be 1,5	B 2	C 2,5	N 3	O 3,5	F 4	Ne
Na 0,9	Mg 1,3	AI 1,6	Si 1,9	P 2,2	S 2,6	CI 3,2	Ar
K 0,8	Ca 1					Br 3	
						2,7	

- > Polarisation d'une liaison transmise à plusieurs liaisons voisines
- ➤ La polarisation est induite par un atome ou groupe d'atomes (substituant) exerçant un effet inductif

Effet inductif -I (attracteur d'électrons)

Effet inductif +I (donneur d'électrons)

a. Effet inductif -I

Effet électrostatique induit par un substituant (atome ou groupe d'atomes) plus électronégatif que le C (2.5) et qui se propage, avec amortissement, sur 3 à 5 liaisons

$$--\mathbf{C} \overset{\delta'''(+)}{\sim} \overset{\delta''(+)}{\sim} \overset{\delta'(+)}{\sim} \mathbf{C} \overset{\delta(-)}{\sim} \qquad \Sigma \delta = 0$$

2. Effet inductif -I de quelques substituants

→C- F	(3,2) —C-CI	(3) —C-Br	—C (2,7)	C-CXH ₂	→C-CX ₂ H
		-C-OR			
(2,6) —C-SH	-C-SR	_C−CO ₂ H	R'C=N-R	_C-C≣N	CRO
-C-NO-					>c

2. Effet inductif +I

Si le substituent est électro donneur (< 2.2), il développe, une charge partielle positive et il exerce un effet inductif +I

Anions:				
Métals:	(1) —C-Li	(0,9) —C-Na	(1,3) —C- Mg —	(1,6) —C-AI
Non metals:	C-BH ₂	C-BR ₂	(1,8) —C- Si —	
Alkyles	_C−CH ₃	C-C-H H	C-C-R H	C-C-R R

2. Effets inductifs +I et -I

groupes à effet -I (électro-attracteur) :

$$NO_2 > F > COOH > CI > Br > I > OH > C_6H_5$$

groupes à effet +I (électro-donneur) :

$$(CH_3)_3C > (CH_3)_2CH > CH_3CH_2 > CH_3$$

3. Conséquences de l'effet inductif

$$R-C \stackrel{\bigcirc{}}{\bigcirc{}} \qquad \qquad R-C \stackrel{\bigcirc{}}{\bigcirc{}} \qquad \qquad H^+$$

$$Ka = \frac{[H^+] [RCOO^-]}{[RCOOH]} \qquad pKa = -\log(Ka)$$

Un effet -I augmente l'acidité, un effet +I diminue l'acidité

3. Conséquences de l'effet I sur la stabilisation d'une charge

3. Conséquences de l'effet I sur la stabilisation d'une charge Réaction multiétape ou complexe

Postulat de Hammond

- L'intermédiaire réactionnel I est une espèce à courte durée de vie qui n'est généralement pas isolée.
- I est très sensible à son environnement électronique (effet I et M)

3. Conséquences de l'effet I sur la stabilisation d'une charge

Exemple de la substitution nucléophile : SN1

Stabilisation du carbocation par 3 effets + I des méthyles

Il existe dans certains cas un effet stabilisant beaucoup **plus fort** que l'effet inductif : **l'effet mésomère***

*Sauf dans le cas des halogènes

1. Répartition électronique dans les systèmes insaturés

Formule de LEWIS

Carbones hybridés sp²

C-C: 350 kJ/mol

C=C: 610 kJ/mol

Liaisons σ formées par fusion axiale : $sp^2 + sp^2$ (C-C) ou $sp^2 + s$ (C-H)

Liaison π formée par fusion latérale des orbitales p_z non hybridées La règle du recouvrement maximum (stabilisation maximum) nécessite que les orbitales p_z soient parallèles

- \triangleright le squelette σ est plan et rigide
- diastéréoisomérie Z/E

1. Répartition électronique dans les systèmes insaturés

b. Diènes

Penta-1,4-diène

Les liaisons doubles et simples ne sont pas alternées

Buta-1,3-diène

Les liaisons doubles et simples sont alternées

Conclusion

La représentation de LEWIS est insuffisante

- 1. Répartition électronique dans les systèmes insaturés
 - c. Buta-1,3-diène

Orbitales moléculaires π délocalisées (conjugaison)

Conséquences:

- le diène est plus stable
- le squelette σ est plan et rigide car les axes des orbitales p_z sont parallèles (recouvrement maximum)

2. Méthode de la mésomérie

- \triangleright On décrit un composé conjugué par une série de formules limites (type Lewis) où l'on fait apparaître explicitement les électrons σ , π et \mathbf{n} .
- Chaque formule limite a un certain poids dans la description de la formule réelle, représentée par l'hybride de résonance

La formule réelle décrite par **l'hybride de résonance** est plus stable que la formule limite (I) de **14.6** kJ/mol, ce qui est dû à la conjugaison

Chapitre 3 : effets mésomères (+M / -M)

contribution de la formule (I) 88%

contribution de la formule (II)12%

Hybride de résonance

En plus de l'énergie de stabilisation due à la conjugaison de trois doubles liaisons (30 kJ/mol), le benzène bénéficie de la stabilisation due à l'aromaticité : 122 kJ/mol.

L'énergie de conjugaison totale du benzène est donc : 152 kJ/mol

3. Aromaticité

b. généralisation

Pour qu'un système soit aromatique, il faut :

- qu'il soit cyclique, plan, avec conjugaison cyclique
- que chaque atome du cycle soit un centre π (plan, hybridé sp², avec une orbitale \mathbf{p}_{τ} perpendiculaire)
- qu'il ait un nombre d'électrons π ou n conjugués répondant à la règle de Hückel : N = 4n + 2 (n : nombre entier = 0, 1, 2, ...)

Benzène

Pyridine

Pyrrole

lon Pyridinium

Cation cyclopropényle

Anion cyclopentadiène

4. Formules limites

- 1. Le squelette σ est conservé, (il doit être plan pour que la conjugaison soit maximale).
- 2. On déplace les électrons π et n (à caractère π). Si leur nombre est pair : on les déplace par paires. Si leur nombre est impair (radicaux) : on les déplace un par un. (\frown et \frown).
- 3. La **règle de l'octet** doit toujours être respectée pour les éléments de la 2^{ème} période et le plus souvent pour ceux de la 3^{ème}, lorsqu'ils sont liés au carbone.
- 4. On conserve l'appariement des électrons.
- 5. Le système est d'autant plus stabilisé que l'on peut écrire davantage de formules limites significatives de même énergie ou d'énergie proche.
- 6. La formule limite entièrement covalente (de LEWIS) a plus de poids que les formules limites ioniques.
- 7. Parmi les formules limites ioniques, celle qui présente la plus grande séparation de charges contribue le plus.
- **8.** Le poids d'une F. L. ionique est supérieur si les charges portées par les atomes sont en accord avec leur électronégativité.
- 9. L'énergie de conjugaison est la plus grande lorsque toutes les F. L. d'une molécule ou d'un ion sont équivalentes.
- **10.** Les F. L. comportant plus de 2 charges formelles sont négligeables et ce, d'autant plus que les charges sont proches

4. Formules limites

a. Systèmes simples : hétéroatomes multiplement liés

Hybrides de résonance

4. Formules limites

b. Systèmes conjugués

1-Systèmes $\pi^-\sigma^-\pi$

2-Systèmes π - σ -n

$$c = c - ci$$
: $\leftarrow c - ci$:

4. Formules limites

b. Systèmes conjugués

3-Systèmes π - σ -lacune électronique

4. Formules limites

b. Systèmes conjugués

3-Systèmes π - σ -lacune électronique

4-Systèmes n-σ-lacune électronique

4. Formules limites

b. Systèmes conjugués

3-Systèmes π - σ -électron impair

- 5. Substituants à effet mésomère
 - a. Définition

Un substituant à effet mésomère accroît le nombre de centres π d'un système conjugué : il étend la conjugaison

- > Substituants à effet Mésomère +M : \Rightarrow Donneurs d'électrons π ou n
- > Substituants à effet Mésomère -M : \Rightarrow Accepteurs d'électrons π ou n

5. Substituants à effet mésomère

b. Substituants à effet mésomère +M

Hétéroatomes et anions simplement liés

√O-H	√ <mark>Ō</mark> -R	O R	١٥٠	<u></u>
H N-H	H_N-R	R N-R	H O N-C R	∑_VN̄—
Ş −H	Ş <mark>-R</mark>	JE (ISI		
) <u>F</u> I) <u>Br</u> I	____\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

5. Substituants à effet mésomère

c. Substituants à effet mésomère -M

Cations, radicaux et hétéroatomes multiplement liés

5. Substituants à effet mésomère

d. Substituants indifférents à effets mésomères +M ou -M

5. Substituants à effet mésomère

c. Substituants indifférents

La double liaison est-elle +M ou -M ?

Polarisation contraire à la plus grande électronégativité de O (pas le choix)

polarisation en accord avec les électronégativités de C et O

-M possible mais moins important

Les propriétés physiques et chimiques des molécules réelles dépendent en fait de la résultante des 2 effets électroniques

➤ Substituants à effet I et M de même signe : ⇒ ils s'ajoutent

$$+ I, + M : -O^{-}, -NR^{-}, -CR_{2}^{-}$$

➤ Substituants à effet - I et + M en compétition :

$$-NR_2$$
, $-OR$, $-X$ (R = H, Me; X = F, Cl, Br, l)

En général : + M > - I sauf pour les halogènes - I > + M

1. Propriétés acido-basiques

On considère très souvent en chimie organique l'acidité selon Bronsted. Un acide fort donnera une base conjuguée faible et inversement

Acide/base	рКа	
HCI/CI-	- 7	
H ₃ O ⁺	0	
RCOOH/RCOO-	4 à 5	
H ₂ S/HS ⁻	7	
ArSH/ArS⁻	8	
NH ₄ /NH ₃	8.2	
ArOH/ArO-	9 à 11	

Acide/base	рКа	
RSH/RS-	12	
H ₂ O/OH ⁻	14	
ROH/RO-	17 à 20	
ArNH ₂ /ArNH ⁻	25	
NH ₃ /NH ₂ -	33	
H ₂ /H ⁻	35	
CH ₄ /CH ₃ -	40	

> pKa élevé: base forte, acide conjugué faible

pKa faible: base faible, acide conjugué fort

1. Propriétés acido-basiques

- ➤ La force relative des acides et des bases peut être appréhendée par les effets inductifs et mésomères.
- > Plus la charge négative est localisée, plus la base est forte et inversement
- > Plus la vacance positive est localisée, plus l'acide est fort et inversement

2. Réactifs électrophiles et nucléophiles

Force des réactifs électrophiles et nucléophiles

AH
$$\Longrightarrow$$
 H^{+} $+$ A^{-} $Ka = \frac{[H^{+}][A^{-}]}{[AH]}$

Nu $+$ $-\stackrel{\downarrow}{C}-X$ \longrightarrow $-\stackrel{\downarrow}{C}-Nu$ $+$ X^{-} k_{Nu}
 $\stackrel{E}{=}$ $+$ $\stackrel{\downarrow}{>}$ $\stackrel{E}{=}$ $\stackrel{\downarrow}{=}$ $\stackrel{+}{>}$ $\stackrel{\downarrow}{>}$ k_{EI}

- Il y a parallélisme entre pouvoir électrophile (nucléophile) et acidité (basicité)
- Un nucléophile est d'autant plus fort que sa charge est localisée
- Les 4 facteurs qui contribuent à la force d'un nucléophile (électrophile) sont : la charge, l'électronégativité, les interactions stériques et la nature du solvant

2. Réactifs électrophiles et nucléophiles

Force des réactifs électrophiles et nucléophiles

- Un nucléophile chargé est plus fort que son acide conjugué
- ➤ Pour une même période de la classification, le pouvoir nucléophile varie comme la basicité ($R_3C^- > R_3N^- > RO^-$)
- Le pouvoir nucléophile est sensible à l'effet stérique:

```
(CH_3)_3CO^- est plus basique que CH_3O^- (CH_3)_3CO^- est beaucoup moins nucléophile que CH_3O^- ((CH_3)_2CH)_2N^- (LDA) est basique mais pas nucléophile
```

3. Les carbocations

a. Formation

> rupture hétérolytique d'une liaison C-X

Protonation d'une double liaison

3. Les carbocations

b. Stabilité relative

$$H_3C-C_{+}^{CH_3}$$
 > $H_3C-C_{+}^{C+}$ > $H_3C-C_{+}^{C+}$ > $H_4C_{-}^{C+}$ > $H_4C_{-}^{C+}$ > $H_4C_{-}^{C+}$ plus stable

Carbocation allylique

Carbocation benzylique

- 3. Les carbanions
- a. Formation

> Action d'une base sur un hydrogène acide d'une liaison C-H

$$R_3C^-H + B^- \longrightarrow R_3C^- + BH$$

3. Les carbanions

b. Stabilité

anion obtenu à partir des β-dicétones

- 3. Les carboradicals (radicaux)
- a. Formation
 - Dissociation homolytique de la liaison C-X

Addition d'un radical sur la double liaison

Structure

Les radicaux sont en général hybridés sp2 mais une hybridation sp3 est aussi possible

- 3. Les carboradicals (radicaux)
- b. Stabilité

Radical allylique

Radical benzylique