California Wildfire Feature Engineering

Owners: Sam Neuschwander, Abigail Witt, Spencer Zwiener

Additional information about all datasets, features, and joins can be found in the "Project Writeup" document.

```
import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import preprocessing
plt.rcParams['figure.figsize'] = [40, 40]
# display all columns
pd.set_option('display.max_columns', None)
```

Transmission Lines Data

```
In [2]: # read in shapefile of Transmission Lines
shp_df = gpd.read_file('Transmission_Line.shp')
```

Curation Step 1: To ensure our transmission lines only consists of lines that were created prior to the wildfires, in our wildfire dataset, we are removing any transmission lines data with a Creator_Date after 2014-04-01

```
In [3]: # First keeping an object of our outliers, so we can see what was removed.
    shp_df_outliers = shp_df.loc[shp_df['Creator_Da'] > '2014-04-01']

In [4]: # Filtering to transmission lines data with a Creator_Date after 2014-04-01
    shp_df = shp_df.loc[shp_df['Creator_Da'] < '2014-04-01']

In [5]: # View Transmission data (post '2014-04-01')
    shp_df.head()</pre>
```

In [7]: shp_df.plot()
Out[7]: <AxesSubplot:>

Out[5]:	OBJECTI	ID I	Name	kV	kV_Sort	Owner	Status	Circuit	Туре	Legend	Length_Mil
	0		AMP 115kV	115	115.0	AMP	Operational	Single	ОН	Other_110_161kV	2.0
	1	2	AMP 115kV	115	115.0	AMP	Operational	Single	ОН	Other_110_161kV	3.0
	2	3	AMP 115kV	115	115.0	AMP	Operational	Single	ОН	Other_110_161kV	1.0
	3	4	AMP 115kV	115	115.0	АМР	Operational	Single	ОН	Other_110_161kV	1.0
	4	5	ANZA 34kV	34	34.0	ANZA	Operational	Single	ОН	Other_33_92kV	24.0 1
4											•
In [6]:	# Looking shp_df.sh			et s	ize						
Out[6]:	(6789, 21)									

Curation Step 2: filter data to only Overhead powerlines (OH) as the others do not pose a threat of wildfire (underground or underwater)

```
In [8]: # filter data to only Overhead powerlines (OH) as the others do not pose a threat of w
  oh_df = shp_df.loc[shp_df['Type'] == 'OH']

In [9]: oh_df.plot()
Out[9]: <AxesSubplot:>
```

Out[10]:

In [10]: # Looking at dataset size oh_df.shape (6662, 21)

Creating Buffer of 200 Meters that will be used to analyze Wildfires that are within transmission lines

In [11]: # creating a buffer aroud the powerlines. This will help when merging with wildfires n buffered_oh = oh_df.buffer(200) # converting the buffered polygon from a geoseries, to a geodataframe. buffered_oh = gpd.GeoDataFrame(geometry=buffered_oh)

plt.show()

```
In [12]:
           # viewing the data
           buffered_oh
Out[12]:
                                                     geometry
              0 POLYGON ((-13607826.280 4547379.955, -13607380...
              1 POLYGON ((-13613614.310 4548105.534, -13613630...
              2 POLYGON ((-13613623.671 4548511.067, -13613624...
              3 POLYGON ((-13613312.050 4549705.819, -13613313...
              4 POLYGON ((-12994264.451 3989303.082, -12994194...
           6808 POLYGON ((-13650667.027 4959966.625, -13650678...
           6809 POLYGON ((-13631097.569 4955268.974, -13631100...
           6810 POLYGON ((-13630523.582 4954736.549, -13630596...
           6811 POLYGON ((-12705691.078 4068341.189, -12705689...
           6812 POLYGON ((-13362510.066 4215965.879, -13362223...
          6662 rows × 1 columns
           # confirming type
In [13]:
           type(buffered_oh)
          geopandas.geodataframe.GeoDataFrame
Out[13]:
           #plot the lines and the buffers (the buffer is too small to show, can increase the siz
In [14]:
           ax = buffered_oh.plot(color = 'red')
           oh_df.plot(ax=ax, color = 'blue')
```


Wildfire Data

```
In [15]: # read in shapefile of Wildfires, filtered to only the data within our boundbox -- pro
incidents_df = gpd.read_file('Incidents.shp')

In [16]: fire_shp_df = incidents_df
fire_shp_df.shape

Out[16]: (286411, 95)
```

Curation Step 1: Filter to wildfires in California

```
In [18]: # Filtering dataset to only California Wildfires.
fire_shp_df = fire_shp_df.loc[fire_shp_df['POOState'] == 'US-CA']
```

Curation Step 2: Filter out the outliers

```
In [19]: # First keeping an object of our outliers, so we can see what was removed.
    fire_shp_df_outliers = fire_shp_df.loc[fire_shp_df['FireDiscov'] < '2014-01-01']

In [20]: # Cleaning up data. Two incidents had dates that looked to be outliers. Likely key err fire_shp_df = fire_shp_df.loc[fire_shp_df['FireDiscov'] > '2014-01-01']

In [21]: fire_shp_df.plot()
Out[21]: <AxesSubplot:>
```


In [22]: fire_shp_df.shape
Out[22]: (72552, 95)

In [23]: shp_df.crs

```
<Projected CRS: EPSG:3857>
Out[23]:
         Name: WGS 84 / Pseudo-Mercator
         Axis Info [cartesian]:
         - X[east]: Easting (metre)
         - Y[north]: Northing (metre)
         Area of Use:
         - name: World between 85.06°S and 85.06°N.
         - bounds: (-180.0, -85.06, 180.0, 85.06)
         Coordinate Operation:
         - name: Popular Visualisation Pseudo-Mercator
         - method: Popular Visualisation Pseudo Mercator
         Datum: World Geodetic System 1984 ensemble
         - Ellipsoid: WGS 84
         - Prime Meridian: Greenwich
In [24]: fire_shp_df.crs
Out[24]: <Geographic 2D CRS: EPSG:4326>
         Name: WGS 84
         Axis Info [ellipsoidal]:
         - Lat[north]: Geodetic latitude (degree)
         - Lon[east]: Geodetic longitude (degree)
         Area of Use:
         - name: World.
         - bounds: (-180.0, -90.0, 180.0, 90.0)
         Datum: World Geodetic System 1984 ensemble
         - Ellipsoid: WGS 84
         - Prime Meridian: Greenwich
```

Curation Step 3: Update the coordinate reference system (CRS) to 3857 so that we can use meters as a distance measurement and have a common CRS with Transmission Lines data

```
In [25]: # Updating CRS of Wildfire data
         fire shp df = fire shp df.to crs('epsg:3857')
In [26]: fire_shp_df.crs
Out[26]: <Projected CRS: EPSG:3857>
         Name: WGS 84 / Pseudo-Mercator
         Axis Info [cartesian]:
         - X[east]: Easting (metre)
         - Y[north]: Northing (metre)
         Area of Use:
         - name: World between 85.06°S and 85.06°N.
         - bounds: (-180.0, -85.06, 180.0, 85.06)
         Coordinate Operation:
         - name: Popular Visualisation Pseudo-Mercator
         - method: Popular Visualisation Pseudo Mercator
         Datum: World Geodetic System 1984 ensemble
         - Ellipsoid: WGS 84
         - Prime Meridian: Greenwich
```

Join 1: Joing curated wildfire data to the curated, buffered Transmission lines using spatial join, within predicate

 Within means that the resulting geodataframe will contain rows where the geometries from wildfires are completely within the geometries of the buffered transsission lines

http://shapely.readthedocs.io/en/latest/manual.html#binary-predicates

• This is required because the geometry component of the wildfire dataset is a Point

```
In [27]:
          # Joining the widlfires to the transmission lines
          join_df = gpd.sjoin(fire_shp_df, buffered_oh, how='left', predicate='within')
          # shows that our data has now changed, sjoin worked
In [28]:
          join_df.shape
          (77768, 96)
Out[28]:
          # getting a sense for how many sjoins occurred by counting the number of unique occurr
In [29]:
          join_df['index_right'].nunique()
          2025
Out[29]:
          Feature 1: Close to Lines
In [30]:
         # creating a feature to mark a column as Y/N if they fall within proximity of Transmis
          # Initialing the New Feature to 'N'
          join_df['CloseToLines'] = 'N'
          # Changing new feature to 'Y' if it was within a powerline from our spatial join (inde
          join_df.loc[join_df['index_right'].notnull(), 'CloseToLines'] = 'Y'
In [31]: # view the new feature
          join_df.head()
            OBJECTID SourceOID ABCDMisc ADSPermiss Containmen ControlDat CreatedByS IncidentSi I
Out[31]:
          0
                    1
                        7747595
                                              DEFAULT
                                                             NaN
                                                                                 lacocad
                                                                                             NaN
                                      NaN
                                                                        NaN
          1
                    2
                        6384391
                                      NaN
                                              DEFAULT
                                                             NaN
                                                                        NaN
                                                                                firecode
                                                                                             NaN
          2
                    3
                         1383752
                                      NaN
                                              DEFAULT
                                                             NaN
                                                                        NaN
                                                                                firecode
                                                                                             NaN
          3
                       22499589
                                      NaN
                                              DEFAULT
                                                             NaN
                                                                        NaN
                                                                                   cfcad
                                                                                             NaN
                       23869477
                                      NaN
                                              DEFAULT
                                                             NaN
                                                                        NaN
                                                                                 lacocad
                                                                                             NaN
```

```
In [32]: # ploting the transmission lines, and wildfires that fell within close proximity to th
ax = join_df[join_df['CloseToLines'] == 'Y'].plot(color='red')
oh_df.plot(ax=ax,color='blue')
plt.show()
```


Outlier Data

 This is the data that was removed from our Tranmission Line dataset and our Wildfire Dataset In [33]: # Transmission Line Data Outliers
shp_df_outliers

Out[33]

]: _		OBJECTID	Name	kV	kV_Sort	Owner	Status	Circuit	Туре	Legend	Le
	104	105	ESJ 250kV	250	250.0	ESJ	Proposed	Single	ОН	Other_200_287kV	
	105	106	ESJ 500kV	500	500.0	ESJ	Proposed	Single	ОН	Other_345_500kV	
	290	291	IID 230kV	230	230.0	IID	Operational	Double	ОН	IID_230kV	
	291	292	IID 230kV	230	230.0	IID	Operational	Double	ОН	IID_230kV	
	292	293	IID 230kV	230	230.0	IID	Operational	Double	ОН	IID_230kV	
	429	430	LADWP 230kV	230	230.0	LADWP	Proposed	Single	ОН	LADWP_220_287kV	
	3480	3481	PG&E 230kV	230	230.0	PG&E	Proposed	Single	ОН	PG&E_230kV	
	3481	3482	PG&E 230kV	230	230.0	PG&E	Operational	Double	ОН	PG&E_230kV	
	5729	5730	SCE 115kV	115	115.0	SCE	Operational	Single	ОН	SCE_115_161kV	
	5730	5731	SCE 115kV	115	115.0	SCE	Operational	Double	ОН	SCE_115_161kV	
	5731	5732	SCE 220kV	220	220.0	SCE	Operational	Single	ОН	SCE_220_230kV	
	5732	5733	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	

	OBJECTID	Name	kV	kV_Sort	Owner	Status	Circuit	Туре	Legend	Le
5733	5734	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5734	5735	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5735	5736	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5736	5737	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5737	5738	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5738	5739	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5739	5740	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5740	5741	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5741	5742	SCE 500kV	500	500.0	SCE	Operational	Single	ОН	SCE_500kV	
5742	5743	SCE 500kV	500	500.0	SCE	Operational	Double	ОН	SCE_500kV	
5743	5744	SCE 220kV	220	220.0	SCE	Operational	Double	ОН	SCE_220_230kV	
5744	5745	HARRY ALLEN- ELDORADO	NaN	NaN	NaN	Unknown	NaN	NaN	NaN	

	OBJECTID	Name	kV	kV_Sort	Owner	Status	Circuit	Туре	Legend	Le
5745	5747	SCE 220kV	220	220.0	SCE	Operational	Single	ОН	SCE_220_230kV	
5746	5748	SCE 115kV	115	115.0	SCE	Operational	Double	ОН	SCE_115_161kV	
5747	5749	SCE 115kV	115	115.0	SCE	Operational	Double	ОН	SCE_115_161kV	
5748	5750	SCE 115kV	115	115.0	SCE	Operational	Double	ОН	SCE_115_161kV	
5749	5751	SCE 66kV	66	66.0	SCE	Operational	Double	ОН	SCE_33_69kV	
5750	5752	SCE 66kV	66	66.0	SCE	Operational	Single	UG	SCE_33_69kV	
5751	5753	SCE 66kV	66	66.0	SCE	Operational	Single	UG	SCE_33_69kV	
5752	5754	SCE 66kV	66	66.0	SCE	Operational	Single	UG	SCE_33_69kV	
5753	5755	SCE 66kV	66	66.0	SCE	Operational	Single	UG	SCE_33_69kV	
6112	6117	SDG&E 230kV	230	230.0	SDG&E	Operational	Double	ОН	SDG&E_230kV	
6113	6118	SDG&E 230kV	230	230.0	SDG&E	Operational	Double	UG	SDG&E_230kV	

In [34]: # Wildfire Dataset
fire_shp_df_outliers

C	Out[34]:		OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	Incident
		38346	38357	7621579	NaN	DEFAULT	NaN	NaN	wildcad	Na
		71283	71312	15936788	NaN	DEFAULT	NaN	NaN	firecode	Na
4										•

Weather Data

- California Average Temperatures
- California Precipitation
- Monthly grain for both

Join 2: Temporal join betwen the California Average Temperatures and California Precipiation data to make Weather Data

```
In [35]: avg_temp_cali = pd.read_csv('avg_temp_california.csv', delimiter=',', header=4)
    precip_cali = pd.read_csv('precipitation_california.csv', delimiter=',', header=4)
    weather_df = avg_temp_cali.merge(precip_cali,on='Date',how='inner',suffixes=('.avgTemp')
    # merge on the date column because they are the same date format
    # performing an inner join because we want data only for the months where we have both
    weather_df['Date']=weather_df['Date'].astype(str)
    weather_df.columns=['Date','Average Temperature','Temperature Anomaly','Precipitation'
    weather_df.head()
```

Out[35]:		Date	Average Temperature	Temperature Anomaly	Precipitation	Precipitation Anomaly
	0	200001	45.8	3.5	5.09	0.84
	1	200002	47.2	1.9	6.93	3.08
	2	200003	50.2	1.4	1.92	-1.29
	3	200004	57.8	3.8	1.80	0.17
	4	200005	63.9	3.2	0.94	0.06

```
In [55]: # copy dataframe for plotting
    precip_cali_plot = precip_cali.copy()

# Convert 'Date' column to datetime format
    precip_cali_plot['Date'] = pd.to_datetime(precip_cali_plot['Date'], format='%Y%m')

# Set 'Date' column as the index
    precip_cali_plot.set_index('Date', inplace=True)

# setting the figure and axes
    fig,ax = plt.subplots(figsize=(10, 6))

# plotting the first plot
```

```
line1 = ax.plot(precip_cali_plot.index, precip_cali['Value'], color='tab:blue', label
ax.set_ylabel('Precipitation')

#using twinx to generate another y axes and plotting
ax2 = ax.twinx()
line2 = ax2.plot(precip_cali_plot.index, precip_cali['Anomaly'], color='tab:red', labe(ax2.set_ylabel('Anomaly'))

plt.title('Precipitation')

# Legend
lines = line1 + line2
labels = [line.get_label() for line in lines]
plt.legend(lines, labels, loc='upper right')
```

Out[55]: <matplotlib.legend.Legend at 0x2d06e6da340>


```
In [56]: # copy dataframe for plotting
avg_temp_cali_plot = avg_temp_cali.copy()

# Convert 'Date' column to datetime format
avg_temp_cali_plot['Date'] = pd.to_datetime(avg_temp_cali_plot['Date'], format='%Y%m')

# Set 'Date' column as the index
avg_temp_cali_plot.set_index('Date', inplace=True)

#setting the figure and axes
fig,ax = plt.subplots(figsize=(10, 6))

#plotting the first plot
line1 = ax.plot(avg_temp_cali_plot.index, avg_temp_cali_plot['Value'], color='tab:gray
ax.set_ylabel('Avg Temperature')

#using twinx to generate another y axes and plotting
ax2 = ax.twinx()
line2 = ax2.plot(avg_temp_cali_plot.index, avg_temp_cali_plot['Anomaly'], color='tab:c
ax2.set_ylabel('Anomaly')
```

```
plt.title('Avg Temperature')

# Legend
lines = line1 + line2
labels = [line.get_label() for line in lines]
plt.legend(lines, labels, loc='upper right')
```

Out[56]: <matplotlib.legend.Legend at 0x2d0119bf550>


```
In [36]: # Plotting the Time Series Weather Anamoly Data

plt.figure(figsize=(15, 6))
plt.plot(weather_df['Date'], weather_df['Temperature Anomaly'], label='Temperature Anomaly'], label='Precipitation'

plt.plot(weather_df['Date'], weather_df['Precipitation Anomaly'], label='Precipitation'

plt.xlabel('Date')
plt.ylabel('Value')
plt.title('Temp and Precip Anomalies Over Time')
plt.xticks(weather_df['Date'][::24])
plt.legend()
plt.show()
```


In [37]: weather_join = join_df.copy() # making a copy of the join_df to use to merge to the we
weather_join.head()

Out[37]:		OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	IncidentSi	С
	0	1	7747595	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
	1	2	6384391	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	2	3	1383752	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	3	4	22499589	NaN	DEFAULT	NaN	NaN	cfcad	NaN	
	4	5	23869477	NaN	DEFAULT	NaN	NaN	lacocad	NaN	

Feature for a merge: Fire Discovery Date

```
In [38]: # Extracting Data
weather_join['Date']= weather_join['FireDiscov'].str.slice(stop=4) +weather_join['FireDiscov'].str.slice(stop=4) +weather_join['
```

Out[38]:		OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	IncidentSi	С
	0	1	7747595	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
	1	2	6384391	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	2	3	1383752	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	3	4	22499589	NaN	DEFAULT	NaN	NaN	cfcad	NaN	
	4	5	23869477	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
4										

Join 3: Temporal join between the weather data and wildfires using year and month (shown in the cell after the 'Feature 2' cell)

Out[39]:		OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	IncidentSi	
	0	1	7747595	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
	1	2	6384391	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	2	3	1383752	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	3	4	22499589	NaN	DEFAULT	NaN	NaN	cfcad	NaN	
	4	5	23869477	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
4										•

Feature 2: Wildfire Count Per Temperature Feature

```
In [40]: weather_merge= weather_merge.groupby(['Date'])['OBJECTID'].count()
    weather_merge=weather_merge.reset_index()
    weather_merge= weather_merge.merge(weather_df,on='Date',how='inner')
    weather_merge.columns = ['Date','Wildfire Count Per Month','Average Temperature','Temput Weather_merge['Fire Count Per Temp']=weather_merge['Wildfire Count Per Month']/weather display(weather_merge)
```

	Date	Wildfire Count Per Month	Average Temperature	Temperature Anomaly	Precipitation	Precipitation Anomaly	Fire Count Per Temp
0	201404	5	57.7	3.7	1.06	-0.57	0.086655
1	201405	87	64.6	3.9	0.35	-0.53	1.346749
2	201406	367	71.9	3.6	0.06	-0.29	5.104312
3	201407	793	78.4	3.7	0.22	0.04	10.114796
4	201408	445	74.9	1.2	0.45	0.21	5.941255
•••							
110	202306	2071	66.7	-1.6	0.40	0.05	31.049475
111	202307	3022	78.9	4.2	0.02	-0.16	38.301648
112	202308	1996	75.8	2.1	0.79	0.55	26.332454
113	202309	1329	68.0	-0.5	0.59	0.14	19.544118
114	202310	1253	62.1	2.6	0.45	-0.75	20.177134

115 rows × 7 columns

Feature 3: Wildfire Count Per Precipitation

In [41]: # Now to add a similar feature, showing the wildfirecount per precipitation anomaly
 weather_merge['Fire Count Per Precip']=weather_merge['Wildfire Count Per Month']/weath
 display(weather_merge)

	Date	Wildfire Count Per Month	Average Temperature	Temperature Anomaly	Precipitation	Precipitation Anomaly	Fire Count Per Temp	Fire Count P Prec
0	201404	5	57.7	3.7	1.06	-0.57	0.086655	4.71698
1	201405	87	64.6	3.9	0.35	-0.53	1.346749	248.57147
2	201406	367	71.9	3.6	0.06	-0.29	5.104312	6116.66666
3	201407	793	78.4	3.7	0.22	0.04	10.114796	3604.5454
4	201408	445	74.9	1.2	0.45	0.21	5.941255	988.88888
•••								
110	202306	2071	66.7	-1.6	0.40	0.05	31.049475	5177.50000
111	202307	3022	78.9	4.2	0.02	-0.16	38.301648	151100.00000
112	202308	1996	75.8	2.1	0.79	0.55	26.332454	2526.5822
113	202309	1329	68.0	-0.5	0.59	0.14	19.544118	2252.5423
114	202310	1253	62.1	2.6	0.45	-0.75	20.177134	2784.44444

115 rows × 8 columns

Feaure 4: Extreme Weather Index

In [42]: weather_merge['Extreme Weather Index']=preprocessing.scale(weather_merge['Temperature
display(weather_merge)

	Date	Wildfire Count Per Month	Average Temperature	Temperature Anomaly	Precipitation	Precipitation Anomaly	Fire Count Per Temp	Fire Count P Prec
0	201404	5	57.7	3.7	1.06	-0.57	0.086655	4.71698
1	201405	87	64.6	3.9	0.35	-0.53	1.346749	248.57147
2	201406	367	71.9	3.6	0.06	-0.29	5.104312	6116.66666
3	201407	793	78.4	3.7	0.22	0.04	10.114796	3604.5454
4	201408	445	74.9	1.2	0.45	0.21	5.941255	988.88888
•••								
110	202306	2071	66.7	-1.6	0.40	0.05	31.049475	5177.50000
111	202307	3022	78.9	4.2	0.02	-0.16	38.301648	151100.00000
112	202308	1996	75.8	2.1	0.79	0.55	26.332454	2526.5822
113	202309	1329	68.0	-0.5	0.59	0.14	19.544118	2252.5423
114	202310	1253	62.1	2.6	0.45	-0.75	20.177134	2784.44444

115 rows × 9 columns

```
In [43]: # Plotting Wildfire Count and Extreme WEather Index
fig, ax1 = plt.subplots(figsize=(15, 6))

ax1.plot(weather_merge['Date'], weather_merge['Wildfire Count Per Month'], label='Wild
ax1.set_xlabel('Date')
ax1.set_ylabel('Wildfire Count', color='red')
ax1.tick_params('y', colors='red')
ax1.tick_label_format()

ax2 = ax1.twinx()
ax2.plot(weather_merge['Date'], weather_merge['Extreme Weather Index'], label='Extreme
ax2.set_ylabel('Extreme Weather Index', color='blue')
ax2.tick_params('y', colors='blue')

plt.title('Monthly Wildfires and Extreme Weather Index')
plt.xticks(weather_merge['Date'][9::12])
plt.show()
```


Feauture 5: Bucket Wildfire Size

```
bucketed_df = join_df.copy()
bucketed_df=bucketed_df.dropna(subset=['FinalAcres'])
acres_ranges = [0, 119, 10000000000] # using 119 as average acres burned by wildfires i
categories = ['Below Average', 'Above Average']
bucketed_df['Y/N Above Average'] = pd.cut(bucketed_df['FinalAcres'], bins=acres_ranges,
display(bucketed_df)
```

	OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	Inci		
44716	44731	21031590	NaN	FIREREPORTING	2021-10-11	2021-10-11	cfcad	221		
49724	49741	6938378	NaN	DEFAULT	NaN	NaN	cfcad			
72909	72938	23870201	NaN	DEFAULT	2022-11-29	NaN	cfcad			
82318	82350	23844619	NaN	DEFAULT	2022-07-08	2022-07-11	cfcad			
82337	82373	23862544	NaN	DEFAULT	2022-09-26	2022-09-26	cfcad			
•••										
286299	344801	28066130	NaN	DEFAULT	2023-11-16	2023-11-16	cfcad			
286305	344808	28066137	NaN	DEFAULT	2023-11-16	2023-11-16	cfcad			
286334	344841	28066170	NaN	DEFAULT	2023-11-17	2023-11-17	cfcad			
286348	344865	28066194	NaN	DEFAULT	2023-11-17	2023-11-17	cfcad			
286383	344901	28066230	NaN	DEFAULT	2023-11-17	NaN	cfcad			
7488 rows × 98 columns										

7488 rows × 98 columns

Join 4: Joining the Weather data to the fire data tha contains the 'Close to Lines' feature

In [45]: wildfire_df = join_df.copy() # making a copy to not disrupt other features if cells lo
 wildfire_df['Date'] = wildfire_df['FireDiscov'].str.slice(stop=4) +wildfire_df['FireDiscov'].str.slice(stop=4) +wildfire_df['FireDiscov'].str

Out[45]:		OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	IncidentSi	
	0	1	7747595	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
	1	2	6384391	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	2	3	1383752	NaN	DEFAULT	NaN	NaN	firecode	NaN	
	3	4	22499589	NaN	DEFAULT	NaN	NaN	cfcad	NaN	
	4	5	23869477	NaN	DEFAULT	NaN	NaN	lacocad	NaN	

In [46]: wildfire_df = wildfire_df.merge(weather_merge, on='Date',how='inner',suffixes=('_left'
doing inner merge because only want rows that have data for both the weather that mc
wildfire_df.head()

Out[46]:

	OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	IncidentSi	[
0	1	7747595	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
1	618	7681575	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
2	1313	7636376	NaN	DEFAULT	NaN	NaN	wildcad	1.0	
3	1406	7731174	NaN	DEFAULT	NaN	NaN	cfcad	NaN	
4	1524	7657574	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
									•

Feature 6: Extreme Weather and Close to Line Features

```
In [47]:

'''

Adding two features, one that shows if the fire was close to a transmission line and t listed as extreme for that month, and one that indicates if the fire was not close to weather was classified as still extreme.

wildfire_df['Extreme Weather and Close to Transmission']= np.where((wildfire_df['Extrewildfire_df['Extrewildfire_df['Extrewildfire_df]'Extrewildfire_df.head())
```

Out[47]:

	OBJECTID	SourceOID	ABCDMisc	ADSPermiss	Containmen	ControlDat	CreatedByS	IncidentSi	C
0	1	7747595	NaN	DEFAULT	NaN	NaN	lacocad	NaN	_
1	618	7681575	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
2	1313	7636376	NaN	DEFAULT	NaN	NaN	wildcad	1.0	
3	1406	7731174	NaN	DEFAULT	NaN	NaN	cfcad	NaN	
4	1524	7657574	NaN	DEFAULT	NaN	NaN	lacocad	NaN	
									•

Possible Next Step

We want to see how extreme weather interacts with transmission lines and wildfires.

-- to do this we can see if the proportion of wildfires started under extreme weather circumstances is higher near transmission lines than further away from transmission lines.

```
In [48]: prop_near_lines = (wildfire_df['Extreme Weather and Close to Transmission']== True).su
prop_near_lines
Out[48]: 0.6375347029428096

In [49]: prop_not_near_lines = (wildfire_df['Extreme Weather and not Close to Transmission']==
prop_not_near_lines
Out[49]: 0.6343324065911711
```

As we can see above, the proportion of wildfire in extreme weather conditions near powerlines (.637) is very close to the proportion of wildfires in extreme weather conditions, not near powerlines (.634), meaning extreme weather may not effect transmission line fire any more than any other type of wildfire. However, there is further analysis that could take place. We could reduce our buffer for wildfires near transmission lines to see if we get a more

accurate representation of wildfires started by transmission lines, then rerun our numbers.