$11n_{77} (K11n_{77})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^3 + u^2 + 2d + u + 1, \ -u^3 + u^2 + 2c - u + 1, \ -u^3 + u^2 + 2b + u + 1, \ u^4 - 2u^3 + 2a + 3, \ u^5 - u^4 + 3u + I_2^u &= \langle -u^3 + 2u^2 + d - 2u + 1, \ -u^3 + 2u^2 + c - 3u + 1, \ -u^3 + 2u^2 + b - 2u + 1, \ 2u^4 - 4u^3 + 4u^2 + a + u, \\ &u^5 - 2u^4 + 2u^3 + u^2 - u + 1 \rangle \\ I_3^u &= \langle u^3 - u^2 + d + 1, \ u^4 - 2u^3 + 2u^2 + c + u - 1, \ u^3 - u^2 + b + 1, \ a + u - 1, \ u^5 - 2u^4 + 2u^3 + u^2 - u + 1 \rangle \\ I_4^u &= \langle -u^4 + 2u^3 + u^2 + 4d - 5u + 2, \ -u^4 + u^2 + 4c - 3u, \ -u^4 + 2u^3 + u^2 + 4b - 5u + 2, \ -3u^4 - u^2 + 4a - 9u, \\ &u^5 - u^3 + 3u^2 - 4 \rangle \\ I_5^u &= \langle d, \ c + 1, \ b, \ a + 1, \ u + 1 \rangle \\ I_6^u &= \langle d + 1, \ c + 1, \ b - 1, \ a, \ u + 1 \rangle \\ I_7^u &= \langle d + b, \ c + b + 1, \ b^2 - ba + b - 1, \ u + 1 \rangle \end{split}$$

$$I_1^v = \langle a, d+1, c+a+1, b-1, v-1 \rangle$$

- * 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^3 + u^2 + 2d + u + 1, \ -u^3 + u^2 + 2c - u + 1, \ -u^3 + u^2 + 2b + u + 1, \ u^4 - 2u^3 + 2a + 3, \ u^5 - u^4 + 3u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{4} + u^{3} - \frac{3}{2} \\ \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} + \frac{1}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} + \frac{3}{2}u^{3} - \frac{1}{2}u^{2} + \frac{1}{2}u - \frac{3}{2} \\ -\frac{1}{2}u^{4} + u^{3} - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{4} + \frac{1}{2}u^{3} + \dots + \frac{1}{2}u - 1 \\ -\frac{1}{2}u^{4} + u^{3} - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u - \frac{1}{2} \\ -\frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{4} - \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{4} - \frac{1}{2}u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{4} - \frac{1}{2}u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{4} - \frac{1}{2}u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{4} - \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{4} - \frac{1}{2}u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^4 + 2u^3 + 2u^2 2u 15$

Crossings	u-Polynomials at each crossing	
c_1, c_4, c_5 c_6, c_7, c_9 c_{10}	$u^5 - u^4 + 3u + 1$	
c_2, c_{11}	$u^5 + u^4 + 6u^3 - 2u^2 + 9u + 1$	
c_3, c_8	$u^5 - 4u^4 + 8u^3 - 8u^2 + 4$	

Crossings	Riley Polynomials at each crossing		
c_1, c_4, c_5 c_6, c_7, c_9 c_{10}	$y^5 - y^4 + 6y^3 + 2y^2 + 9y - 1$		
c_2, c_{11}	$y^5 + 11y^4 + 58y^3 + 102y^2 + 85y - 1$		
c_3, c_8	$y^5 - 32y^2 + 64y - 16$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.629322 + 0.921686I $a = 0.424671 - 0.213935I$		
b = 0.718690 + 0.275250I	1.14410 + 3.50618I	$\begin{bmatrix} -10.79893 - 4.59139I \end{bmatrix}$
c = 0.089368 + 1.196940I		
d = 0.718690 + 0.275250I		
u = -0.629322 - 0.921686I		
a = 0.424671 + 0.213935I		
b = 0.718690 - 0.275250I	1.14410 - 3.50618I	-10.79893 + 4.59139I
c = 0.089368 - 1.196940I		
d = 0.718690 - 0.275250I		
u = 1.29342 + 0.87939I		
a = -0.15409 + 1.68698I		
b = -2.01497 + 0.28960I	6.61272 - 11.96040I	-13.0958 + 6.1649I
c = -0.721553 + 1.168990I		
d = -2.01497 + 0.28960I		
u = 1.29342 - 0.87939I		
a = -0.15409 - 1.68698I		
b = -2.01497 - 0.28960I	6.61272 + 11.96040I	-13.0958 - 6.1649I
c = -0.721553 - 1.168990I		
d = -2.01497 - 0.28960I		
u = -0.328197		
a = -1.54115		
b = -0.407434	-0.709220	-14.2100
c = -0.735630		
d = -0.407434		

II.
$$I_2^u = \langle -u^3 + 2u^2 + d - 2u + 1, -u^3 + 2u^2 + c - 3u + 1, -u^3 + 2u^2 + b - 2u + 1, 2u^4 - 4u^3 + 4u^2 + a + u, u^5 - 2u^4 + 2u^3 + u^2 - u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{4} + 4u^{3} - 4u^{2} - u \\ u^{3} - 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u^{2} + 3u - 1 \\ u^{3} - 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{4} - 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} + 2u^{3} - u^{2} - 2u + 1 \\ u^{4} - 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} - 2u^{2} + 2u - 1 \\ -2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} - 2u^{3} + 2u^{2} - u + 1 \\ -2u^{3} + 3u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} - 2u^{3} + 2u^{2} - u + 1 \\ -2u^{3} + 3u^{2} - u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^3 4u^2 + 6u 12$

Crossings	u-Polynomials at each crossing	
c_1, c_4, c_5 c_{10}	$u^5 - 2u^4 + 2u^3 + u^2 - u + 1$	
c_2, c_{11}	$u^5 + 6u^3 + u^2 - u + 1$	
c_3, c_8	$u^5 + u^4 + 5u^3 + u^2 + 2u - 2$	
c_6, c_7, c_9	$u^5 - u^3 + 3u^2 - 4$	

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_5 c_{10}	$y^5 + 6y^3 - y^2 - y - 1$	
c_2, c_{11}	$y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1$	
c_3, c_8	$y^5 + 9y^4 + 27y^3 + 23y^2 + 8y - 4$	
c_6, c_7, c_9	$y^5 - 2y^4 + y^3 - 9y^2 + 24y - 16$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.833800		
a = -5.23246		
b = -4.63772	-4.49352	-20.9430
c = -5.47152		
d = -4.63772		
u = 0.317129 + 0.618084I		
a = -0.36862 - 1.94340I		
b = -0.134390 + 0.402477I	-1.43849 - 1.10891I	-9.63452 + 2.04112I
c = 0.182739 + 1.020560I		
d = -0.134390 + 0.402477I		
u = 0.317129 - 0.618084I		
a = -0.36862 + 1.94340I		
b = -0.134390 - 0.402477I	-1.43849 + 1.10891I	-9.63452 - 2.04112I
c = 0.182739 - 1.020560I		
d = -0.134390 - 0.402477I		
u = 1.09977 + 1.12945I		
a = -0.015153 + 0.220489I		
b = -1.54675 - 0.05223I	8.62005 - 4.12490I	-10.89396 + 2.15443I
c = -0.446980 + 1.077220I		
d = -1.54675 - 0.05223I		
u = 1.09977 - 1.12945I		
a = -0.015153 - 0.220489I		
b = -1.54675 + 0.05223I	8.62005 + 4.12490I	-10.89396 - 2.15443I
c = -0.446980 - 1.077220I		
d = -1.54675 + 0.05223I		

 $\begin{aligned} \text{III. } I_3^u = \langle u^3 - u^2 + d + 1, \ u^4 - 2u^3 + 2u^2 + c + u - 1, \ u^3 - u^2 + b + 1, \ a + \\ u - 1, \ u^5 - 2u^4 + 2u^3 + u^2 - u + 1 \rangle \end{aligned}$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u+1 \\ -u^{3}+u^{2}-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4}+2u^{3}-2u^{2}-u+1 \\ -u^{3}+u^{2}-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4}-2u^{3}+u^{2}+u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3}+u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4}+2u^{3}-u^{2}-2u+1 \\ u^{4}-2u^{3}+u^{2}+u-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4}+3u^{3}-3u^{2}+2 \\ u^{4}-2u^{3}+u^{2}+u-2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3}+u^{2}+u-2 \\ 2u^{3}-u^{2}+2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3}+u^{2}+u-2 \\ 2u^{3}-u^{2}+2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^3 4u^2 + 6u 12$

Crossings	u-Polynomials at each crossing	
c_1, c_4, c_6 c_7, c_9	$u^5 - 2u^4 + 2u^3 + u^2 - u + 1$	
c_2	$u^5 + 6u^3 + u^2 - u + 1$	
c_3,c_8	$u^5 + u^4 + 5u^3 + u^2 + 2u - 2$	
c_5, c_{10}	$u^5 - u^3 + 3u^2 - 4$	
c_{11}	$u^5 + 2u^4 + u^3 + 9u^2 + 24u + 16$	

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_7, c_9	$y^5 + 6y^3 - y^2 - y - 1$
c_2	$y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1$
c_3, c_8	$y^5 + 9y^4 + 27y^3 + 23y^2 + 8y - 4$
c_5, c_{10}	$y^5 - 2y^4 + y^3 - 9y^2 + 24y - 16$
c_{11}	$y^5 - 2y^4 + 13y^3 - 97y^2 + 288y - 256$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.833800		
a = 1.83380		
b = 0.274898	-4.49352	-20.9430
c = -1.19933		
d = 0.274898		
u = 0.317129 + 0.618084I		
a = 0.682871 - 0.618084I		
b = -0.949895 + 0.441667I	-1.43849 - 1.10891I	-9.63452 + 2.04112I
c = 0.65713 - 1.28074I		
d = -0.949895 + 0.441667I		
u = 0.317129 - 0.618084I		
a = 0.682871 + 0.618084I		
b = -0.949895 - 0.441667I	-1.43849 + 1.10891I	-9.63452 - 2.04112I
c = 0.65713 + 1.28074I		
d = -0.949895 - 0.441667I		
u = 1.09977 + 1.12945I		
a = -0.099771 - 1.129450I		
b = 1.81245 - 0.17314I	8.62005 - 4.12490I	-10.89396 + 2.15443I
c = 0.442538 - 0.454479I		
d = 1.81245 - 0.17314I		
u = 1.09977 - 1.12945I		
a = -0.099771 + 1.129450I		
b = 1.81245 + 0.17314I	8.62005 + 4.12490I	-10.89396 - 2.15443I
c = 0.442538 + 0.454479I		
d = 1.81245 + 0.17314I		

IV.
$$I_4^u = \langle -u^4 + 2u^3 + \dots + 4d + 2, -u^4 + u^2 + 4c - 3u, -u^4 + 2u^3 + \dots + 4b + 2, -3u^4 - u^2 + 4a - 9u, u^5 - u^3 + 3u^2 - 4 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{3}{4}u^{4} + \frac{1}{4}u^{2} + \frac{9}{4}u \\ \frac{1}{4}u^{4} - \frac{1}{2}u^{3} + \dots + \frac{5}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{4}u^{4} - \frac{1}{4}u^{2} + \frac{3}{4}u \\ \frac{1}{4}u^{4} - \frac{1}{2}u^{3} + \dots + \frac{5}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{7}{8}u^{4} - \frac{1}{4}u^{3} + \dots + \frac{23}{8}u - \frac{1}{4} \\ \frac{1}{4}u^{4} - \frac{1}{2}u^{3} + \dots + \frac{5}{4}u - \frac{3}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{8}u^{4} + \frac{1}{4}u^{3} + \dots + \frac{13}{8}u + \frac{5}{4} \\ \frac{1}{4}u^{4} - \frac{1}{2}u^{3} + \dots + \frac{1}{4}u + \frac{3}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{4}u^{4} + \frac{1}{2}u^{3} + \dots + \frac{1}{4}u + \frac{3}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{5}{8}u^{4} + \frac{1}{4}u^{3} + \dots - \frac{9}{8}u + \frac{5}{4} \\ u^{3} - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{5}{8}u^{4} + \frac{1}{4}u^{3} + \dots - \frac{9}{8}u + \frac{5}{4} \\ u^{3} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^3 2u 16$

Crossings	u-Polynomials at each crossing		
c_1, c_4	$u^5 - u^3 + 3u^2 - 4$		
c_2	$u^5 + 2u^4 + u^3 + 9u^2 + 24u + 16$		
c_3, c_8	$u^5 + u^4 + 5u^3 + u^2 + 2u - 2$		
c_5, c_6, c_7 c_9, c_{10}	$u^5 - 2u^4 + 2u^3 + u^2 - u + 1$		
c_{11}	$u^5 + 6u^3 + u^2 - u + 1$		

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 - 2y^4 + y^3 - 9y^2 + 24y - 16$
c_2	$y^5 - 2y^4 + 13y^3 - 97y^2 + 288y - 256$
c_{3}, c_{8}	$y^5 + 9y^4 + 27y^3 + 23y^2 + 8y - 4$
c_5, c_6, c_7 c_9, c_{10}	$y^5 + 6y^3 - y^2 - y - 1$
c_{11}	$y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.10870		
a = 3.93509		
b = 0.274898	-4.49352	-20.9430
c = 0.901960		
d = 0.274898		
u = -1.267020 + 0.176417I		
a = -0.748496 - 0.770461I		
b = -0.949895 - 0.441667I	-1.43849 + 1.10891I	-9.63452 - 2.04112I
c = -0.774241 - 0.107803I		
d = -0.949895 - 0.441667I		
u = -1.267020 - 0.176417I		
a = -0.748496 + 0.770461I		
b = -0.949895 + 0.441667I	-1.43849 - 1.10891I	-9.63452 + 2.04112I
c = -0.774241 + 0.107803I		
d = -0.949895 + 0.441667I		
u = 0.71268 + 1.30259I		
a = -0.219048 + 0.084129I		
b = 1.81245 + 0.17314I	8.62005 + 4.12490I	-10.89396 - 2.15443I
c = 0.323261 - 0.590839I		
d = 1.81245 + 0.17314I		
u = 0.71268 - 1.30259I		
a = -0.219048 - 0.084129I		
b = 1.81245 - 0.17314I	8.62005 - 4.12490I	-10.89396 + 2.15443I
c = 0.323261 + 0.590839I		
d = 1.81245 - 0.17314I		

V.
$$I_5^u = \langle d, c+1, b, a+1, u+1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_5	u-1
c_2, c_4, c_{10} c_{11}	u+1
c_3, c_6, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \\ c_5, c_{10}, c_{11}$	y-1
c_3, c_6, c_7 c_8, c_9	y

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000		
b = 0	-3.28987	-12.0000
c = -1.00000		
d = 0		

VI.
$$I_6^u = \langle d+1, \ c+1, \ b-1, \ a, \ u+1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	u-1
c_2, c_4, c_9	u+1
c_3, c_5, c_8 c_{10}, c_{11}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_7, c_9	y-1
c_3, c_5, c_8 c_{10}, c_{11}	y

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0		
b = 1.00000	-3.28987	-12.0000
c = -1.00000		
d = -1.00000		

VII.
$$I_7^u = \langle d+b, c+b+1, b^2-ba+b-1, u+1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -b-1 \\ -b \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -b+a-1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -b+a-1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -b-2 \\ -b-1 \end{pmatrix}$$

(ii) Obstruction class = -1

 $a_6 = \begin{pmatrix} -b - 1 \\ -b \end{pmatrix}$

 $a_6 = \begin{pmatrix} -b-1\\-b \end{pmatrix}$

- (iii) Cusp Shapes = $a^2 2a 17$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$		
$b = \cdots$	-4.93480	-18.4052 - 0.7878I
$c = \cdots$		
$d = \cdots$		

VIII.
$$I_1^v = \langle a, \ d+1, \ c+a+1, \ b-1, \ v-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_8	u
c_5, c_9, c_{11}	u+1
c_6, c_7, c_{10}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_8	y
$c_5, c_6, c_7 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0		
b = 1.00000	-3.28987	-12.0000
c = -1.00000		
d = -1.00000		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	$u(u-1)^{2}(u^{5}-u^{3}+3u^{2}-4)(u^{5}-2u^{4}+2u^{3}+u^{2}-u+1)^{2}$ $\cdot (u^{5}-u^{4}+3u+1)$
c_2, c_{11}	$u(u+1)^{2}(u^{5}+6u^{3}+u^{2}-u+1)^{2}(u^{5}+u^{4}+6u^{3}-2u^{2}+9u+1)$ $\cdot (u^{5}+2u^{4}+u^{3}+9u^{2}+24u+16)$
c_3,c_8	$u^{3}(u^{5} - 4u^{4} + 8u^{3} - 8u^{2} + 4)(u^{5} + u^{4} + 5u^{3} + u^{2} + 2u - 2)^{3}$
c_4, c_9	$u(u+1)^{2}(u^{5}-u^{3}+3u^{2}-4)(u^{5}-2u^{4}+2u^{3}+u^{2}-u+1)^{2}$ $\cdot (u^{5}-u^{4}+3u+1)$
c_5, c_{10}	$u(u-1)(u+1)(u^5-u^3+3u^2-4)(u^5-2u^4+2u^3+u^2-u+1)^2$ $\cdot (u^5-u^4+3u+1)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_6, c_7, c_9 c_{10}	$y(y-1)^{2}(y^{5}+6y^{3}-y^{2}-y-1)^{2}(y^{5}-2y^{4}+y^{3}-9y^{2}+24y-16)$ $\cdot (y^{5}-y^{4}+6y^{3}+2y^{2}+9y-1)$
c_2, c_{11}	$y(y-1)^{2}(y^{5} - 2y^{4} + 13y^{3} - 97y^{2} + 288y - 256)$ $\cdot (y^{5} + 11y^{4} + 58y^{3} + 102y^{2} + 85y - 1)$ $\cdot (y^{5} + 12y^{4} + 34y^{3} - 13y^{2} - y - 1)^{2}$
c_3,c_8	$y^{3}(y^{5} - 32y^{2} + 64y - 16)(y^{5} + 9y^{4} + 27y^{3} + 23y^{2} + 8y - 4)^{3}$