HW-3 Math 117

Siddharth Deshpande 10/17/2020

1.3.16

- If we can find a one-to-one function $f: \mathbb{Z} \to \mathbb{N}$ then we have proven that, \mathbb{Z} is equipotent to \mathbb{N} and we have proved that \mathbb{Z} is countable.
- Let us define a function $f: \mathbb{Z} \to \mathbb{N}$ such that:

$$f = \begin{cases} f(0) = 1 \\ f(x) = 2^x & x > 0 \\ f(x) = 3^{-x} & x < 0 \end{cases}$$

- We can now prove that f is one-to-one.

Proof:

Assume f(n) = f(m) = 1. Then, we know by the definition of the function that n = m = 0.

- Assume f(n) = f(m). Without loss of generality, assume that n > 0 and m < 0. Therefore, $2^n = 3^{-m}$. But, by the prime factorization theorem, we know that this is not possible. Therefore, it is a contradiction.
- Assume that n > 0 and m > 0. Then, we know that, $2^n = 2^m$. Therefore, n = m. Similarly, if n < 0 and m < 0, then, $3^{-n} = 3^{-m}$. Therefore, $-n = -m \Rightarrow n = m$.
- Therefore, we have shown that f is one-to-one.
- Furthermore, we have shown that, a one-to-one function exists between \mathbb{Z}

and \mathbb{N} . Therefore, \mathbb{Z} is equipotent to \mathbb{N} . But, we know that \mathbb{N} is a countable set therefore, we have proven that \mathbb{Z} is a countable set.

1.3.18

- We can prove this identity using induction. Let n=2 be the base case (as if n=1, then the product just becomes \mathbb{N}). We know that $\mathbb{N} \times \mathbb{N}$ is countable as the one-to-one function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ can be defined as $g=(m+n)^2+n$. Therefore, we known that the case holds for n=2.
- Now assume that the product of $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$... \mathbb{N} is countable. We need to show that $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$... \mathbb{N} is also countable. Because of our assumption we know that there exists a function $h: \mathbb{N} \times \mathbb{N} \times \mathbb{N}$... $\mathbb{N} \to \mathbb{N} = b$ that is a one-to-one correspondence. Furthermore, define a function $j: \mathbb{N} \times \mathbb{N} \times \mathbb{N}$... $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$... $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$... $\mathbb{N} \times \mathbb{N} \times$
- -Therefore, we have proven by induction that, for any Natural number n, we

1.3.20

To go about proving both, we can first demonstrate that $g \circ f$:

- We can first show that the function is one-to-one. Assume that, $\exists x,y:g(f(x))=g(f(y)).$ Because g is a bijective function, we know that g has a inverse, $g^{-1}:g(g^{-1}(n))=g^{-1}(g(n))=n.$ Now, we can apply the inverse function to both sides to get, $g^{-1}(g(f(x)))=g^{-1}(g(f(y)))\Rightarrow f(x)=f(y).$ By definition, because f is one-to-one, we have that x=y. Therefore, we have proven that $g\circ f$ is one-to-one Now we can show that the function is onto. First of all, because g is surjective, for $z\in C, \exists y\in B: g(y)=z.$ But, because f is surjective, for $y\in B, \exists x\in A: f(x)=y.$ Therefore, $g\circ f(x)=g(f(x))=g(y)=c.$ Therefore, $g\circ f$ is surjective.
- Therefore we have proven that $g \circ f$ is bijective. Now, because both f and g are bijective, we know that both functions have an inverse that we can label f^{-1} and g^{-1} as inverses of f and g respectively. Thus, $f^{-1}: B \to A$ and $g^{-1}: C \to B$. Thus, we need to prove that $f^{-1} \circ g^{-1}$ is also bijective:
 - Similar to the argument we used last time, we can first show the function is one-to-one. Assume $\exists x, y : f^{-1}(g^{-1}(x)) = f^{-1}(g^{-1}(y))$. Because f^{-1} is the inverse of f, we know that $f(f^{-1}(x)) = x$. Therefore, applying the f transformation to both sides we get, $f(f^{-1}(g^{-1}(x))) = x$.

 $f(f^{-1}(g^{-1}(y))) \Rightarrow g^{-1}(x) = g^{-1}(y)$. We can similarly apply the function to g now to get, $g(g^{-1}(x)) = g(g^{-1}(y)) \Rightarrow x = y$ therefore, $f^{-1} \circ g^{-1}$ is one-to-one.

- Now we need to show that the function is surjective. We know that $f^{-1} \circ g^{-1} : C \to A$ therefore, we need to show that, $\forall a \in A, \exists c \in C : f^{-1}(g^{-1}(c)) = a$. To prove this, we need to recall the fact that, the inverse of a bijective function is bijective itself. Therefore, we know that f^{-1} and g^{-1} are both bijective. Because we know this, we need to show that, the image of the composite function is the entire codomain (A):

$$(f^{-1} \circ g^{-1})(C) = f^{-1}(g^{-1}(C))$$

= $f^{-1}(B)$ (because g^{-1} is bijective)
= A (beause f^{-1} is bijective)

- Therefore, we have shown that the image of the composite function is the entire codomain and thus, we have proved that $f^{-1} \circ g^{-1}$ is surjective.

1.3.22

- We can prove that the power set of \mathbb{N} is also uncountable using a similar decimal representation technique used to show that \mathbb{R} is uncountable.

Proof:

- Assume that, $2^{\mathbb{N}}$, the power set of \mathbb{N} is countable. Thus, we know that there exists a bijective function $f: \mathbb{N} \to 2^{\mathbb{N}}$
- We can take the binary approach to writing out the power set of a given set. Therefore, let $A \subseteq \mathbb{N}$. We can represent A as a binary number like $x_1x_2x_3...x_n$ where each $x_n = 1 : n \in A$ and $x_n = 0 : n \notin A$. Thus, if $A = \{2, 3, 6, 7\} = 01100110000...$ Because \mathbb{N} is countable and, we have assumes that $2^{\mathbb{N}}$ is also countable, we know that there exist enumerations for both such sets. Therefore, we can simply assign the function f between two values from each set such as:

```
1 x_{11}x_{12}x_{13}...x_{1n}...

2 x_{21}x_{22}x_{23}...x_{2n}...

\vdots

n x_{n1}x_{n2}x_{n3}...x_{nn}...
```

- We can define a new number $\mathcal{N} = x_{N1}x_{N2}x_{N3}\dots x_{Nn}\dots$ Such that,

each $x_{Nn}, \forall n \in \mathbb{N}$ of \mathcal{N} can be defined like:

$$x_{Nn} = \begin{cases} 1, & x_{nn} = 0 \\ 0, & x_{nn} = 1 \end{cases}$$

- For all $n \in \mathbb{N}$. Therefore, $x_{N1} = 1$ if $x_{11} = 0$ and $x_{N1} = 0$ if $x_{11} = 1$. Similarly, $x_{N2} = 1$ if $x_{22} = 0$ and $x_{N2} = 0$ if $x_{22} = 1$ and the same applies $\forall n \in \mathbb{N}$. By this method, we know that, there exists no such $n \in \mathbb{N}$ such that $f(n) = \mathcal{N}$ as each digit in \mathcal{N} is different than any binary number (and therefore any subset) we have mapped from \mathbb{N} . Therefore, f is not a bijection. But this is a contradiction.
- Therefore, our original assumption that $2^{\mathbb{N}}$ is countable is wrong and therefore, $2^{\mathbb{N}}$ is uncountable and by definition, it is infinite.

1.3.24

Let I be a non-degenrate interval of reals. We will prove by contradiction that I fails to be finite. Suppose that I is finite (countable). Then we know that there exists an enumeration of I, let $\{x_n \mid n \in \mathbb{N}\}$ be an enumeration of I. By Zorn's Lemma and Axiom of choice, we can choose an interval in I $[a_1, b_1]$ which is a closed bounded non-degenerate sub-interval such that $x_1 \notin [a_1, b_2]$. Furthermore, we can choose a subinterval of $[a_1, b_1]$ namely $[a_2, b_2]$ such that $x_2 /n[a_2, b_2]$. We can repeat this process for $[a_n, b_n]_{n=1}^{\infty}$ where for each n we have that, $x_n \notin [a_n, b_n]$. Therefore, we can define a new

set $E = \{a_n \mid n \in \mathbb{N}\}$. Because E has an upper bound b_1 because we know by definition that $b_1 > a_n \forall n \in \mathbb{N}$, by the Completeness Axiom we know that E has a supremum. Let $\sup(E) = x_i$. Therefore, by definition we have that, $a_n < x_i, \forall n \in \mathbb{N}$. But, because $\sup(E) = x_i$, we know that $x_i < b_n, \forall n \in \mathbb{N}$. Because if this wasnt the case, then, $\exists j \in \mathbb{N} : b_j < x_i \Rightarrow x_i \neq \sup(E)$ which would be a contradiction. Therefore $a_n < x_i < b_n, \forall n \in \mathbb{N}$. Therefore, $x_i \in [a_n, b_n], \forall n \in \mathbb{N}$ by definition. But, if $x_i \in [a_1, b_1]$ then we know that there exists some interval $[a_i, b_i], i \in \mathbb{N}$ such that $x_i \notin [a_1, b_1]$. But this is a contradiction to $x_i \in [a_n, b_n], \forall n \in \mathbb{N}$. Therefore, our original assumption must be wrong that I is finite, as that assumption allowed us to have an enumeration of I. Therefore I must be infinite.

1.3.26

- We have to make an important note here. Because we know that, there exist one-to-one correspondence from $(0,1) \to \mathbb{R}$ and $(0,1) \times (0,1) \to \mathbb{R}^2$, we only need to show that there exists one-to-one correspondence between $(0,1) \times (0,1)$ and (0,1). Therefore, if we can find a one-to-one correspondence between these two sets, then we have proven our result as they are respectively equipotent to \mathbb{R}^2 and \mathbb{R} .
- To prove that $(0,1) \times (0,1)$ and (0,1) have the same cardinality we need to define one-to-one correspondence between the two sets. We can first define a one-to-one function $f:(0,1)\times (0,1)\to (0,1)$. One thing we can

do is, we can write down any real number as a string of digits, that is, $x \in (0,1): x = 0.x_1x_2x_3...$ So, given $x,y \in (0,1)$, we can define f such that, $f(x,y) = 0.x_1y_1x_2y_2x_3y_3...$ Because we have defined the function in such a way, we know that the function is one-to-one.

- Now, we can define a function $g:(0,1)\to (0,1)\times (0,1)$. We need to define g such that it is one-to-one and we will have proven our theorem. We can similarly decompose each real into its decimal components. For example, if $x\in (0,1)$, we can display $x=0.x_1x_2x_3\ldots$ And now, we can define g as, $g(x)=(0.x_1x_3x_5\ldots x_{2n-1}\ldots ,0.x_2x_4x_6\ldots x_{2n}\ldots), \forall n\in\mathbb{N}$. By definition, we know that g is also a one-to-one function. Because, if g(x)=g(y) that means $(0.x_1x_3x_5\ldots x_{2n-1}\ldots ,0.x_2x_4x_6\ldots x_{2n}\ldots)=(0.y_1y_3y_5\ldots y_{2n-1}\ldots ,y_2y_4y_6\ldots y_{2n}\ldots),$ which implies that, $x_1x_3x_5\ldots x_{2n-1}\ldots =y_1y_3y_5\ldots y_{2n-1}\ldots$ and $x_2x_4x_6\ldots x_{2n}\ldots =y_2y_4y_6\ldots y_{2n}\ldots$ and because each x_i is a digit, we must have that $x_1=y_1$, $x_2=y_2$ and so on. Therefore we have shown that x=y and thus, g is one-to-one.
- Thus, we have proven that $(0,1) \times (0,1)$ and (0,1) have the same cardinality (are equipotent). But, we also know that (0,1) and \mathbb{R} are equipotent and, $(0,1) \times (0,1)$ and \mathbb{R}^2 are equipotent. Furthermore, we also know that euipotency is a equivalence relationship. Therefore, we have proven that \mathbb{R}^2 and \mathbb{R} are equipotent.