61

SEQUENCE LISTING

			UENCE LISTING
(1)	GENERA	L INFORMATION:	
	(i)	APPLICANTS:	Aaron Kaplan et al.
	(ii)	TITLE OF INVENTION:	ENHANCING INORGANIC CARBON FIXATION BY PHOTOSYNTHETIC ORGANISMS
	(iii)	NUMBER OF SEQUENCES:	9
	(iv)	CORRESPONDENCE ADDRESS:	
		(A) ADDRESSEE:	Mark M. Friedman c/o Anthony Castorina
		(B) STREET:	2001 Jefferson Davis Highway, Suite 207
		(C) CITY:	Arlington
		(D) STATE:	Virginia
		(E) COUNTRY:	United States of America
		(F) ZIP:	22202
	(v)	COMPUTER READABLE FORM:	
		(A) MEDIUM TYPE:	1.44 megabyte, 3.5" microdisk
		(B) COMPUTER:	Twinhead Slimnote-890TX
		(C) OPERATING SYSTEM:	MS DOS version 6.2,
			Windows version 3.11
		(D) SOFTWARE:	Word for Windows version 2.0 converted to
			an ASCI file
	(vi)	CURRENT APPLICATION DATA:	
		(A) APPLICATION NUMBER	₹:
		(B) FILING DATE:	
		(C) CLASSIFICATION:	
	(iiv)	PRIOR APPLICATION DATA:	
		(A) APPLICATION NUMBER	₹:
		(B) FILING DATE:	
	(viii)	ATTORNEY/AGENT INFORMATIO	
		(A) NAME:	Friedmam, Mark M.
		(B) REGISTRATION NUMBER	
		(C) REFERENCE/DOCKET N	
	(ix)	TELECOMMUNICATION INFORMA	
		(A) TELEPHONE:	972-3-5625553
		(B) TELEFAX:	972-3-5625554
		(C) TELEX:	
(2)	INFORM	MATION FOR SEQ ID NO:1:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 495	57
		(B) TYPE: nuc	cleic acid
		(C) STRANDEDNESS: dou	able
		(D) TOPOLOGY: lin	near
	(xi)	SEQUENCE DESCRIPTION: SEC	Q ID NO:1:
		AAGCGATC GGGGTCAATC CCAGCGA	
		SATCCCTT TAGCGCCAAG ATTGAGG.	
		CTATCCCG AGGCCGTGAA AGTGGGC	
		AGTCAGCG ATCGCCAGCT TGTTTTT	
		ATTGGGCT AGCCCTCAGT GGCAATG	
		SGGCTGTC GTCCAGTTGG CCCGCTT	
		ACATTCTG CGGCAACTTC AGACCGA	
		CAAGCCCT ACAGTCAGTC CTGCGTG.	
		GCTCTGTG TGGGCCTGGC CTGCAAT GCCACTTC CTGATCCGTA ACCTGCT	
		GCGACTTC CTGATCCGTA ACCTGCT GTAGCAAT CGGCGATCGC ATTCGAG	
		STAGCAAT CGGCGATCGC ATTCGAG ACGGGATG CCCAGACAGC GGCGGAT	
		GGTGCCGG CAGCATGCGA CAAAACC.	
		FTGGGGCG CGGCAAGCCC TTCTATC	
		1100000 COOMMOCCO IICIAIC.	1100 11000 IIICII 100

CGAGTCGCAA CTGATTCAGC ATTACCTCTC AGAGCTGCCC CTAGCTGGCT 750 TTTTCTGTAA TGGCGAAATC GGCCCGATCG CTGGCAGCAC CTACCTGCAT 800 GGCTACACAT CGGTGCTGGC TTTGCTGTCG GCCAAAACTC ACTAGCGCCA 850 GCGAGACCTG ATTGTCGATC TGCTGAGCGC GACTGTAGCG CTGGAAATAG 900 GCCCGGACCT GAGCAGGCGC ATCGGCCAAG CTGACCGTAG TATCACCGTC 950 AGCCACCCC GCCCAGAAAT TCCGCAACAT CGGCAGGAGA GCGATCGCCT 1000 CCGCCTCCGA TAAATTCAAC GGCTCATGGG TCAACAGGCG GATCAAGTAC 1050 TCTGACTGCG ATCGCCATCC ATTCCCGCCG AAAACGTTTG TAAATCAGTC 1100 TTGATCCGGT AGCGATCGCA CCCGACGGGA CTCTAGTTCT AGTTGCCAAC 1150 CTTCAGCGGC AGGTTGTACG GTTCCGAGTC GGTAGGGATG GGGATAGCTG 1200 ACCAAGGAAC CGGTCGTGAC TTCCCAGAGA GCACCTTGCT GACTGGTGGC 1250 TTGGATGTGG AGGTGGCCTG TGAAGATCAC CGAGACGCTG CCCGCTTCGA 1300 GGATTGATCG CAATTCCTCG GCATTTTCTA AGATGTAGCG CTGACCAAGC 1350 GGATGCTGCT GTTGATCGGG CAGATGCTCC AACACATTGT GGTGAATCAT 1400 CACCCAGCGT TGGCTAGCGG TGGAAGTGGC GAGTTCTTGT TGCAGCCAGT 1450 TGAGTTGCGC GCAATCGACT CGCCCCCGAT GCAGTTGATG GCCCGCTTCA 1500 TCAAAAGCGA TCGAATTCAG CGCAAACAGA TCGAGATCCG GTGCGATCGT 1550 GCAGCGATAG TAGGGGCGAT CGCTCGTGAA GCCAAAGTCT TGATAGAGCT 1600 CGACAAACTC GGCCACACCG GTGCGATCGC GATCGCTCGC TGCGGCGGGC 1650 ATATCGTGGT TGCCCGGCAC CACATAGACC GGATAGGGCA ACTGGCGCAA 1700 TTGTTGCAGC AGCCACTGAT GGTTTTCCCG CTCCCCGTGC TGGGTTAAAT 1750 CCCCGGCAG CAACAGGAAG TCCAAATCCA GCGCTGCCAG TTCTGTCAGG 1800 ATTTGCTCAA AAGCCGGAAT GCTGCACTCA ATCAAATGGA AGCGATGGGG 1850 ATGGTGCCAA ATTGTCTGCG GCAGTCCAAT GTGGAGATCG CTCAGCAGCG 1900 CAAATCGAAA CGCTCGGTTC ATTGCCATCC CCTCAGCTAT CGAGCCCGAT 1950 TCTAGGCGAA GCTAGGTCGA GTCCGTTGTC TTCAGTTGCA AGCATTCATG 2000 GCCAGAGTTC GCGTTCGGCA GCACGTCAAT CCGCTCTCTC AGAAATTCCA 2050 AGTGGTCACG ACTTGGCCGG ATTGGCAACA GGTCTATGCG GACTGCGATC 2100 GCCCGCTGCA TTTGGATATT GGCTGTGCTC GCGGGCGCTT TCTGCTGGCA 2150 ATGGCGACAC GACAACCTGA GTGGAATTAT CTGGGGCTGG AAATTCGTGA 2200 GCCGCTGGTA GATGAGGCGA ACGCGATCGC CCGCGAACGT GAACTGACCA 2250 ATCTCTACTA CCACTTCAGC AACGCCAATT TGGACTTGGA ACCGCTGCTG 2300 CGATCGCTGC CGACAGGGAT TTTGCAGCGG GTCAGCATTC AGTTCCCGGA 2350 TCCTTGGTTC AAGAAACGCC ATCAAAAGCG ACGCGTCGTC CAGCCGGAAC 2400 TGGTGCAAGC CCTCGCGACT GCGTTACCTG CTGGTGCAGA GGTCTTTCTG 2450 CAATCCGATG TGCTGGAAGT GCAGGCAGAG ATGTGCGAAC ACTTTGCGGC 2500 GGAACCCCGC TTTCAGCGCA CCTGCTTGGA CTGGCTGCCG GAAAATCCGC 2550 TGCCCGTCCC GACCGAGCGC GAAATTGCCG TTCAAAACAA ACAGTTGCCA 2600 GTCTACCGTG CTCTCTTCAT TCGGCAGCCA GCGGACTAAG CTCTTAAGGC 2650 AAGCGTTGAC GCGATCGCGA TGACTGTCTG GCAAACTCTG ACTTTTGCCC 2700 ATTACCAACC CCAACAGTGG GGCCACAGCA GTTTCTTGCA TCGGCTGTTT 2750 GGCAGCCTGC GAGCTTGGCG GGCCTCCAGC CAGCTGTTGG TTTGGTCTGA 2800 GGCACTGGGT GGCTTCTTGC TTGCTGTCGT CTACGGTTCG GCTCCGTTTG 2850 TGCCCAGTTC CGCCCTAGGG TTGGGGCTAG CCGCGATCGC GGCCTATTGG 2900 GCCCTGCTCT CGCTGACAGA TATCGATCTG CGGCAAGCAA CCCCCATTCA 2950 CTGGCTGGTG CTGCTCTACT GGGGCGTCGA TGCCCTAGCA ACGGGACTCT 3000 CACCCGTACG CGCTGCAGCT TTAGTTGGGC TAGCCAAACT GACGCTCTAC 3050 CTGTTGGTTT TTGCCCTAGC GGCTCGGGTT CTCCGCAATC CCCGTCTGCG 3100 ATCGCTGCTG TTCTCGGTCG TCGTGATCAC ATCGCTTTTT GTCAGTGTCT 3150 ACGGCCTCAA CCAATGGATC TACGGCGTTG AAGAGCTGGC GACTTGGGTG 3200 GATCGCAACT CGGTTGCCGA CTTCACCTCA CGGGTTTACA GCTATCTGGG 3250 CAACCCCAAC CTGCTGGCTG CTTATCTGGT GCCGACGACT GCCTTTTCTG 3300 CAGCAGCGAT CGGGGTGTGG CGCGGCTGGC TCCCCAAGCT GCTGGCGATC 3350 GCTGCGACAG GTGCGAGCAG CTTATGTCTG ATCCTCACCT ACAGTCGCGG 3400 TGGCTGGCTG GGTTTTGTCG CCATGATTTT TGTCTGGGCG TTATTAGGGC 3450 TCTACTGGTT TCAACCCCGT CTACCCGCAC CCTGGCGACG CTGGCTATTC 3500 CCAGTCGTAT TGGGTGGACT AGTCGCGGTG CTCTTGGTGG CGGTGCTTGG 3550 ACTTGAGCCG TTGCGCGTGC GCGTGTTGAG CATCTTTGTG GGGCGTGAAG 3600 ACAGCAGCAA CAACTTCCGG ATCAATGTCT GGCTGCGGT GCTGCAGATG 3650 ATTCAAGATC GGCCTTGGCT GGGCATCGGC CCCGGCAATA CCGCCTTTAA 3700 CCTGGTTTAT CCCCTCTATC AACAGGCGCG CTTTACGGCG TTGAGCGCCT 3750 ACTCCGTCCC GCTGGAAGTC GCGGTTGAGG GCGGACTACT GGGCTTGACG 3800 GCCTTCGCTT GGCTGCTGCT GGTCACGGCG GTGACGGCGG TGCGGCAGGT 3850 GAGCCGACTG CGGCGCGATC GCAATCCCCA AGCCTTTTGG TTGATGGCTA 3900 GCTTGGCCGG TTTGGCAGGA ATGCTGGGTC ACGGTCTGTT TGATACCGTG 3950 CTCTATCGAC CGGAAGCCAG TACGCTCTGG TGGCTCTGTA TTGGAGCGAT 4000 CGCGAGTTTC TGGCAGCCCC AACCTTCCAA GCAACTCCCT CCAGAAGCCG 4050 AGCATTCAGA CGAAAAAATG TAGCGGGCTC CCCAACAAAT TCCTGTGCAC 4100 CCGACTGGAT CCACCACCTA AACTGGATCC CAAAGGTATC CGGTGGATCT 4150 AGGGTCATAA CGAACTCCGA CCGCGATCGC GTCCGCGAAC TGAACCTCCA 4200 TCGCACCGAA GCGGAGTTCG TTAGTCGTTG AAGAGCCAAT GCTAGAGGGG 4250 GCTGCCGAAG CAGTTGGGCT GGAAGCAGGC TGCGAGAAGC CACCCGCATC 4300 CAAGGCAAAG TTCAGCCGAC CTTCCGCAAA GACTACGATC GCCACGGCGG 4350 CTCTGCCAGC TAAGTCAGCG CTGGGTTAGT TGTCATAGCA GTCCGCAGAC 4400 AAGTTAGGAC AACTTCATAG AGGGACTCGC TCAGAGTCAA CAGCCGCTGT 4450 CCGTGGGGGT GCGCAATCAC CCCCACACCC ACGCACTGGG GGACTCGACT 4500 CCCCCAGGCC CCCCGCAACA AGATTTCGGA TAAGGGGCAT CGGCTGAATC 4550 GCGATCGCTG CGGGTAAAAC TAGCCGGTGT TAGCCATGGG TTTGAGACTA 4600 ATCGGCACGG GGCAAAACGT CCTGATTTAT TTGCTCAATG TGATAGGTTA 4650 CATCGTCAAA AACAAGGCCC AAGAGGTAGG AAAAATCACG ACCGCCCAAG 4700 TCCGAGGGCT TTGCTGTTGG GAGCGACCTA GGGCAGACTA GACAGAGCAT 4750 TGCTGTGAGC CAAAGCGCCT TCAATTGCTG GCGGCTGTGG GTTTTTCGGA 4800 GGTTGCCAAA TGAAAGACCT TTTCGTCAAT GTCCTCCGCT ATCCCCGCTA 4850 CTTCATCACC TTCCAGCTGG GTATTTTTTA GTCGATCTAC CAGTGGGTGC 4900 GGCCGATGGT TCGCAACCCA GTCGCGGCTT GGGCGCTGCT AGGCTTTGGA 4950 **GTTTCGA** 4957

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1404

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGACTGTCT GGCAAACTCT GACTTTTGCC CATTACCAAC CCCAACAGTG 50 GGGCCACAGC AGTTTCTTGC ATCGGCTGTT TGGCAGCCTG CGAGCTTGGC 100 GGGCCTCCAG CCAGCTGTTG GTTTGGTCTG AGGCACTGGG TGGCTTCTTG 150 CTTGCTGTCG TCTACGGTTC GGCTCCGTTT GTGCCCAGTT CCGCCCTAGG 200 GTTGGGGCTA GCCGCGATCG CGGCCTATTG GGCCCTGCTC TCGCTGACAG 250 ATATCGATCT GCGGCAAGCA ACCCCCATTC ACTGGCTGGT GCTGCTCTAC 300 TGGGGCGTCG ATGCCCTAGC AACGGGACTC TCACCCGTAC GCGCTGCAGC 350 TTTAGTTGGG CTAGCCAAAC TGACGCTCTA CCTGTTGGTT TTTGCCCTAG 400 CGGCTCGGGT TCTCCGCAAT CCCCGTCTGC GATCGCTGCT GTTCTCGGTC 450 GTCGTGATCA CATCGCTTTT TGTCAGTGTC TACGGCCTCA ACCAATGGAT 500 CTACGGCGTT GAAGAGCTGG CGACTTGGGT GGATCGCAAC TCGGTTGCCG 550 ACTTCACCTC ACGGGTTTAC AGCTATCTGG GCAACCCCAA CCTGCTGGCT 600 GCTTATCTGG TGCCGACGAC TGCCTTTTCT GCAGCAGCGA TCGGGGTGTG 650 GCGCGGCTGG CTCCCCAAGC TGCTGGCGAT CGCTGCGACA GGTGCGAGCA 700 GCTTATGTCT GATCCTCACC TACAGTCGCG GTGGCTGGCT GGGTTTTGTC 750 GCCATGATTT TTGTCTGGGC GTTATTAGGG CTCTACTGGT TTCAACCCCG 800 TCTACCCGCA CCCTGGCGAC GCTGGCTATT CCCAGTCGTA TTGGGTGGAC 850 TAGTCGCGGT GCTCTTGGTG GCGGTGCTTG GACTTGAGCC GTTGCGCGTG 900 CGCGTGTTGA GCATCTTTGT GGGGCGTGAA GACAGCAGCA ACAACTTCCG 950 GATCAATGTC TGGCTGCGG TGCTGCAGAT GATTCAAGAT CGGCCTTGGC 1000

TGGGCATCGG CCCCGGCAAT ACCGCCTTTA ACCTGGTTTA TCCCCTCTAT 1050
CAACAGGCGC GCTTTACGGC GTTGAGCGCC TACTCCGTCC CGCTGGAAGT 1100
CGCGGTTGAG GGCGGACTAC TGGGCTTGAC GGCCTTCGCT TGGCTGCTGC 1150
TGGTCACGGC GGTGACGGCG GTGCGGCAGG TGAGCCGACT GCGGCGCGAT 1200
CGCAATCCCC AAGCCTTTTG GTTGATGGCT AGCTTGGCCG GTTTGGCAGG 1250
AATGCTGGGT CACGGTCTGT TTGATACCGT GCTCTATCGA CCGGAAGCCA 1300
GTACGCTCTG GTGGCTCTGT ATTGGAGCGA TCGCGAGTTT CTGGCAGCCC 1350
CAACCTTCCA AGCAACTCCC TCCAGAAGCC GAGCATTCAG ACGAAAAAAT 1400
GTAG

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH:
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Leu Gly Gly Phe Leu Leu Ala Val Val Tyr Gly Ser Ala Pro Phe

50 55 60

Val Pro Ser Ser Ala Leu Gly Leu Gly Leu Ala Ala Ile Ala Ala

Tyr Trp Ala Leu Leu Ser Leu Thr Asp Ile Asp Leu Arg Gln Ala
80 85 90

Thr Pro Ile His Trp Leu Val Leu Leu Tyr Trp Gly Val Asp Ala
95 100 105

Leu Ala Thr Gly Leu Ser Pro Val Arg Ala Ala Ala Leu Val Gly
110 115 120

Leu Ala Lys Leu Thr Leu Tyr Leu Leu Val Phe Ala Leu Ala Ala
125 130 135

Arg Val Leu Arg Asn Pro Arg Leu Arg Ser Leu Leu Phe Ser Val 140 145 150

Val Val Ile Thr Ser Leu Phe Val Ser Val Tyr Gly Leu Asn Gln 155 160 165

Trp Ile Tyr Gly Val Glu Glu Leu Ala Thr Trp Val Asp Arg Asn 170 175 180

Ser Val Ala Asp Phe Thr Ser Arg Val Tyr Ser Tyr Leu Gly Asn

Pro Asn Leu Leu Ala Ala Tyr Leu Val Pro Thr Thr Ala Phe Ser

200 205 210

Ala Ala Ile Gly Val Trp Arg Gly Trp Leu Pro Lys Leu Leu 215 220 225

215 220 225
Ala Ile Ala Ala Thr Gly Ala Ser Ser Leu Cys Leu Ile Leu Thr

230 235 240 Tyr Ser Arg Gly Gly Trp Leu Gly Phe Val Ala Met Ile Phe Val

245 250 25

Trp Ala Leu Leu Gly Leu Tyr Trp Phe Gln Pro Arg Leu Pro Ala 260 265 270

Pro Trp Arg Arg Trp Leu Phe Pro Val Val Leu Gly Gly Leu Val

275 280 285 Ala Val Leu Leu Val Ala Val Leu Gly Leu Glu Pro Leu Arg Val

290 295 300

Arg	Val	Leu	Ser	Ile	Phe	Val	Gly	Arg	Glu	Asp	Ser	Ser	Asn	Asn
				305					310					315
Phe	Arg	Ile	Asn	Val	Trp	Leu	Ala	Val	Leu	Gln	Met	Ile	Gln	Asp
				320					325					330
Arg	Pro	Trp	Leu	Gly	Ile	Gly	Pro	Gly	Asn	Thr	Ala	Phe	Asn	Leu
				335					340					345
Val	Tyr	Pro	Leu	Tyr	Gln	Gln	Ala	Arg	Phe	Thr	Ala	Leu	Ser	Ala
				350					355					360
Tyr	Ser	Val	Pro	Leu	Glu	Val	Ala	Val	Glu	Gly	Gly	Leu	Leu	Gly
				365					370					375
Leu	Thr	Ala	Phe	Ala	\mathtt{Trp}	Leu	Leu	Leu	Val	Thr	Ala	Val	Thr	Ala
				380					385					390
Val	Arg	Gln	Val	Ser	Arg	Leu	Arg	Arg	Asp	Arg	Asn	Pro	Gln	Ala
				395					400					405
Phe	Trp	Leu	Met	Ala	Ser	Leu	Ala	Gly	Leu	Ala	Gly	Met	Leu	Gly
				410					415					420
His	Gly	Leu	Phe	Asp	Thr	Val	Leu	Tyr	Arg	Pro	Glu	Ala	Ser	Thr
				425					430					435
Leu	Trp	Trp	Leu		Ile	Gly	Ala	Ile	Ala	Ser	Phe	Trp	Gln	Pro
				440					445					450
Gln	Pro	Ser	Lys	Gln	Leu	Pro	Pro	Glu	Ala	Glu	His	Ser	Asp	Glu
				455					460					465
Lys	Met													

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1425

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

				, 110.1.	
ATGGTGTCTC	CCATCTCTAT	CTGGCGATCG	CTGATGTTTG	GCGGTTTTTC	50
CCCCCAGGAA	TGGGGCCGGG	GCAGTGTGCT	CCATCGTTTG	GTGGGCTGGG	100
GACAGAGTTG	GATACAGGCT	AGTGTGCTCT	GGCCCCACTT	CGAGGCATTG	150
GGTACGGCTC	TAGTGGCAAT	AATTTTTATT	GCGGCTCCCT	TCACCTCCAC	200
CACCATGTTG	GGCATTTTTA	TGCTGCTCTG	TGGAGCCTTT	TGGGCTCTGC	250
TGACCTTTGC	TGATCAACCA	GGGAAGGGTT	TGACTCCCAT	CCATGTTTTA	300
GTTTTTGCCT	ACTGGTGCAT	TTCGGCGATC	GCCGTGGGAT	TTTCTCCGGT	350
AAAAATGGCG	GCGGCGTCGG	GGTTAGCGAA	ATTAACAGCT	AATTTATGTC	400
TGTTTCTACT	GGCGGCGAGG	TTATTGCAAA	ACAAACAATG	GTTGAACCGG	450
TTAGTAACCG	TTGTTTTACT	GGTAGGGCTA	TTGGTGGGGA	GTTACGGTCT	500
GCGACAACAG	GTGGACGGGG	TAGAACAGTT	AGCCACTTGG	AATGACCCCA	550
CCTCTACCTT	GGCCCAGGCC	ACTAGGGTAT	ATAGCTTTTT	AGGTAATCCC	600
AATCTCTTGG	CGGCTTACCT	GGTGCCCATG	ACGGGTTTGA	GCTTGAGTGC	650
CCTGGTGGTA	TGGCGACGGT	GGTGGCCCAA	ACTGCTGGGA	GCAACCATGG	700
TGATTGTTAA	$\mathtt{CCTACTCTGT}$	CTCTTTTTTA	CCCAGAGCCG	GGGCGGTTGG	750
CTAGCAGTGC	TGGCCCTGGG	AGCTACCTTC	CTGGCCCTTT	GTTACTTCTG	800
GTGGTTACCC	CAATTACCCA	AATTTTGGCA	ACGGTGGTCT	TTGCCCCTGG	850
CGATCGCCGT	GGCGGTTATA	TTAGGTGGGG	GAGCGTTGAT	TGCGGTGGAA	900
CCGATTCGAC	TCAGGGCCAT	GAGCATTTTT	GCTGGGCGGG	AAGACAGCAG	950
TAATAATTTC	CGCATCAATG	TTTGGGAAGG	GGTAAAAGCC	ATGATCCGAG	1000
CCCGCCCTAT	CATTGGCATT	GGCCCAGGTA	ACGAAGCCTT	TAACCAAATT	1050
TATCCTTACT	ATATGCGGCC	CCGCTTCACC	GCCCTGAGTG	CCTATTCCAT	1100
TTACCTAGAA	ATTTTGGTGG	AAACGGGTGT	AGTTGGTTTT	ACCTGTATGC	1150
TCTGGCTGTT	GGCCGTTACC	CTAGGCAAAG	GCGTAGAACT	GGTTAAACGC	1200
TGTCGCCAAA	CCCTCGCCCC	GGAAGGCATC	TGGATTATGG	GGGCTTTAGC	1250
GGCGATCATC	GGTTTGTTGG	TCCACGGCAT	GGTAGATACA	GTCTGGTACC	1300

GTCCCCGGT GAGCACTTTG TGGTGGTTGC TAGTGGCCAT TGTTGCTAGT 1350 CAGTGGGCCA GCGCCCAGGC CCGTTTGGAG GCCAGTAAAG AAGAAAATGA 1400 GGACAAACCT CTTCTTGCTT CATAA 1425

(2) INFORMATION FOR SEQ ID NO:5:

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

- (A) LENGTH:
 - 474
- TYPE: (B) amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

								, - , -						
		5:	NO:	QID	: SE	гіои	CRIP'	DES	ENCE	SEQUI	!	(xi)		
y Gly	Gly	Phe	Met	Leu	Ser	Arg	Trp	Ile	Ser	Ile	Pro	Ser	Val	Met
15					10					5				
J Leu	Arg	His	Leu	Val	Ser	Gly	Arg	Gly	Trp	Glu	Gln	Pro	Ser	Phe
30					25					20				
Pro	Trp	Leu	Val	Ser	Ala	Gln	Ile	Trp	Ser	Gln	Gly	\mathtt{Trp}	Gly	Val
45					40					35				
e Ile	Phe	Ile	Ile	Ala	Val	Leu	Ala	Thr	Gly	Leu	Ala	Glu	Phe	His
60					55					50				
Leu	Met	Phe	Ile	Gly	Leu	Met	Thr	Thr	Ser	Thr	Phe	Pro	Ala	Ala
75					70					65				
Pro	Gln	Asp	Ala	Phe	Thr	Leu	Leu	Ala	\mathtt{Trp}	Phe	Ala	Gly	Cys	Leu
90					85					80				

Gly Lys Gly Leu Thr Pro Ile His Val Leu Val Phe Ala Tyr Trp

100 Cys Ile Ser Ala Ile Ala Val Gly Phe Ser Pro Val Lys Met Ala

110 115 Ala Ala Ser Gly Leu Ala Lys Leu Thr Ala Asn Leu Cys Leu Phe

125 130 Leu Leu Ala Ala Arg Leu Leu Gln Asn Lys Gln Trp Leu Asn Arg

140

Leu Val Thr Val Val Leu Leu Val Gly Leu Leu Val Gly Ser Tyr 155 Gly Leu Arg Gln Gln Val Asp Gly Val Glu Gln Leu Ala Thr Trp

170 175 Asn Asp Pro Thr Ser Thr Leu Ala Gln Ala Thr Arg Val Tyr Ser

185 190 Phe Leu Gly Asn Pro Asn Leu Leu Ala Ala Tyr Leu Val Pro Met

200 205 Thr Gly Leu Ser Leu Ser Ala Leu Val Val Trp Arg Arg Trp Trp

215 220

Pro Lys Leu Gly Ala Thr Met Val Ile Val Asn Leu Leu Cys 230 235

Leu Phe Phe Thr Gln Ser Arg Gly Gly Trp Leu Ala Val Leu Ala 250

Leu Gly Ala Thr Phe Leu Ala Leu Cys Tyr Phe Trp Trp Leu Pro 265

Gln Leu Pro Lys Phe Trp Gln Arg Trp Ser Leu Pro Leu Ala Ile 275 280 285

Ala Val Ala Val Ile Leu Gly Gly Gly Ala Leu Ile Ala Val Glu

290 295 Pro Ile Arg Leu Arg Ala Met Ser Ile Phe Ala Gly Arg Glu Asp

305 310 315 Ser Ser Asn Asn Phe Arg Ile Asn Val Trp Glu Gly Val Lys Ala

320 Met Ile Arg Ala Arg Pro Ile Ile Gly Ile Gly Pro Gly Asn Glu

335 340 345 Ala Phe Asn Gln Ile Tyr Pro Tyr Tyr Met Arg Pro Arg Phe Thr 355 350 Ala Leu Ser Ala Tyr Ser Ile Tyr Leu Glu Ile Leu Val Glu Thr 365 370 Gly Val Val Gly Phe Thr Cys Met Leu Trp Leu Leu Ala Val Thr 380 385 Leu Gly Lys Gly Val Glu Leu Val Lys Arg Cys Arg Gln Thr Leu 400 Ala Pro Glu Gly Ile Trp Ile Met Gly Ala Leu Ala Ala Ile Ile 415 Gly Leu Leu Val His Gly Met Val Asp Thr Val Trp Tyr Arg Pro 430 Pro Val Ser Thr Leu Trp Trp Leu Leu Val Ala Ile Val Ala Ser 440 445 Gln Trp Ala Ser Ala Gln Ala Arg Leu Glu Ala Ser Lys Glu Glu 455 460 465 Asn Glu Asp Lys Pro Leu Leu Ala Ser 470

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH:

(B) TYPE:

nucleic acid

(C)

STRANDEDNESS: double

(D)

TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGGCTAGCCG CGATCGCGGC CTATTGGGCC C 31

- (2) INFORMATION FOR SEQ ID NO:7:
 - SEQUENCE CHARACTERISTICS: (i)

(A) LENGTH:

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

SEQUENCE DESCRIPTION: SEQ ID NO:7: (xi)

GGGCTAGGGA TCGCGCCTAT TGGGCCC 27

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:

LENGTH:

(A)

26

(B) TYPE: nucleic acid

(C)

STRANDEDNESS: double

(D) TOPOLOGY:

linear

SEQUENCE DESCRIPTION: SEQ ID NO:8: (xi) GGGCTCAGAT CGCGCCTATT GGGCCC 26

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11

(B) TYPE: amino acid

(C) STRANDEDNESS: single

linear

TOPOLOGY: (D) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Gly Leu Ala Ala Ile Ala Ala Tyr Trp Ala Leu

10