$E(s^{\prime 2}) = \frac{h \cdot i}{h} \nabla^2 \neq \sigma^2 \rightarrow biare.$ $E(S^2) = \frac{n_{-1}}{n_{-1}} \sigma^2 = \sigma^2$ unbiase. N is large enough if N>30 (N+715 & N->15-) The error of estimation = \(\in = 16-01 \) of RV Prob that M-20 < Y < M+20. Distribution Probability. Normal 0,9544 /.0 Uniform Capmential 0.7502. aiven b= 200 = 2 Pa (Punbine -) op= [Pa] the prob that b<2 \PL > 0.95. Interval estimator: A ryle specifying the method to Calculate two numbers that form the endpoints of the interval. Confidence coefficient? The probability. Hat q (rundown)

soft confidence inteptal will enclose & is called

the confidence coefficient.

- > Yi) Date

contidence coefficient identifies the fraction of the time in repeated sampling, that the intervals constructed will contain the target parameter 10.

If P(ô, $\leq \theta \leq \hat{\theta}_{M}) = [I-a] \rightarrow \text{contidence coefficient}$,

Two side confidence intervals P(0, $\leq \theta \leq \theta_{M})$.

One side confidence intervals P(0, $\leq \theta \leq \theta_{M})$.

Check pivotal method at this Page. P411-P414.

We use $\hat{\theta} + Z_{M} = \hat{\theta}_{M}$ for large sample est.

e.j. $\rho_1 - \rho_2 \pm Z_2^{\alpha} \int \frac{\rho_1 t_1}{\rho_1} + \frac{\rho_2 t_2}{\eta_2} \qquad (q_1 = 1 - \rho_2)$ maybe. $f \pm Z_2^{\alpha} \left(\frac{\sigma}{\sqrt{s}}\right) \approx f \pm Z_2^{\alpha} \left(\frac{s}{\sqrt{\eta}}\right)$.

For small interval: $P(-t^{\alpha} \le 7 \le t^{\alpha})$ two side: $Y \pm t^{\alpha} \left(\frac{S}{5\pi}\right) \in (5\pi)$ one side: $P(T \le t^{\alpha}) = 1 - \alpha$.

Y-M & ta Y-L & Sta Y-Sta & LA

	No.
	Date · .
$\int_{0}^{\infty} P\left(Y-ta\left(\frac{s}{\sqrt{n}}\right) \leq h\right) = -\alpha .$	
large interval: $Z = \frac{(\gamma_1 - \gamma_2) - (M_1 - M_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Phare 12
Constract common variance 52;	- V
Given Yu, Yin Yin, Yin, Yin, Yin, Yin, (xx) = = = = = = = = = = = = = = = = = = =	
Pooled square estimator:	
Sp2 = = = (1 - 1) + = 1 (1 - 1) NITHZ-Z	$= \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_1^2}{2}$
NITN2-Z	nithz-1
$W = \frac{(n_1 + n_2 - 2) 5p^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (Y_{ii} - Y_{i})}{\sigma^2}$	4 E ((2) - 1/2)
is the sum of 2 independent X	-dist RV
with (n,-1), (n2-1) at.	
dt of W= nitn=- 1 50	
T= = [(7,-7) - (1,-1,0)].	(n/+m2-2) Sp2
= (7,-7,) - (/n,-/n)	
Sp J to the Mith (M2)	n,-2) of

Date

Estimate confidential interval for
$$\sigma^2$$

Given $S^2 = \frac{1}{n-1} \frac{S}{n\tau} (\gamma_1 - \overline{\gamma})^2$

then $\chi^2 \in (n-1)S^2$

$$P \left[\begin{array}{c} \chi_{2}^{2} \leq \frac{(n-1)\zeta^{2}}{\sigma^{2}} \leq \chi_{\nu}^{2} \end{array} \right] = 1 - \alpha.$$

$$P \left[\begin{array}{c} \chi_{1-\frac{\alpha}{2}} \leq \frac{(n-1)\zeta^{2}}{\sigma^{2}} \leq \chi_{\nu}^{2} \end{array} \right] = 1 - \alpha.$$

Jufficient statistics an unbiased estimator with small Variance is or can be made to be a furction of a sufficient statistic.

2-fficiency: Given two unbigged estimator O_1 , O_2 of O_3 note Var of O_1 , O_2 as $V(O_1)$, $V(O_2)$, then efficiency of O_1 relative to O_2 , $eff(O_1,O_2)$ $eff(O_1,O_1) = \frac{V(O_2)}{V(O_3)}$

No.
Date · · ·
it eff $(0_1^1, 0_1^1) < 1 \longrightarrow P_{VL} < 0_2^1$.
else >1 > Pick of.
Consistency: P(x-p < E) = 1 When n-s+10.
it true, I is a consistent Estimator of P./
Tonverger in Probability to P.
3注大量实验结果一类个P值
estimator on is Considert estimator if.
$\lim_{n\to\infty} P(\lfloor \hat{Q}_n - \theta \rfloor \leq \underline{\xi}) = \lfloor$
lin V(on) = 0 (unbjased on consistent.
Proof: let Y be any independent var with
[(γ)= μ & V(γ)= σ² < ∞
By Tcheby sheff's theorem:
- (1/-M) > (0) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$(+ \theta)$ unbluse $\rightarrow E(\theta_n) = 0$.
So f (ô - 0 > k on) = k2
(et /2 = 2
001
p(10n-41>2)=p(10n-01>[2] Vion
\(\frac{1}{\sigma_0^2}\) \(\frac{1}{\sigma_0^2}\) \(\frac{2}{\sigma_0^2}\)