Lazy Math Instructor

Proseminar: Selected Fun Problems of the ACM Programming Contest

Ludwig Kolesch

University of Tübingen

July 14, 2023

$$(3*a) - c + (b*b)*8$$

The lazy math instructor needs to check arbitrary terms for equivalence. Example term:

Integers

- ▷ non-negative
- ▷ (single-digit)

Variables

⊳ a to z

The lazy math instructor needs to check arbitrary terms for equivalence.

Integers

- ▷ non-negative
- ▷ (single-digit)

Variables ⊳ a to z

$$(3*a) - c + (b*b)*8$$

Brackets

- ▶ matching
- can be nested

Operators

- b +, − and *
 - ▷ equal precedence

More example terms:

• c - 42 * d (left to right evaluation
$$\Rightarrow (c-42)*d$$
)

•
$$7 * ((a*1)+b)$$

• $(7*a) + (7*b)$ equivalent

Problem specification

Input: number n and 2n terms (n pairs)

Output: n lines: "YES" or "NO" to the equivalence of each pair

Plan of attack

How to check arbitrary terms for equivalence?

- Normalize the term into a polynomial (e.g. $3a^2bd 6b^2c^5 + 42$)
- Check if the resulting polynomials are identical
 - Unique ordering of sub-terms inside a polynomial

Plan of attack

How to check arbitrary terms for equivalence?

- Normalize the term into a polynomial (e.g. $3a^2bd 6b^2c^5 + 42$)
- Check if the resulting polynomials are identical
 - Unique ordering of sub-terms inside a polynomial

Example:

Term:	(b * a * b) - (3 * 7) - (a * b * b) + (a * a * a)
Parsed:	$a^3 + -21$
Term:	(a * a * a) - 21
Parsed:	$a^3 + -21$

Parsed polynomials are identical \iff Terms are equivalent.

Polynomial representation

Example polynomial: $3a^2bd - 6b^2c^5 + 42$

Polynomial

$$3a^2bd - 6b^2c^5 + 42$$

Polynomial representation

Example polynomial: $3a^2bd - 6b^2c^5 + 42$

Polynomial representation

Example polynomial: $3a^2bd - 6b^2c^5 + 42$

Unique ordering of summands allows for efficient polynomial comparison.

• Ordering of variables: a < b < c < ... < x < y < z

Unique ordering of summands allows for efficient polynomial comparison.

- Ordering of variables: a < b < c < ... < x < y < z
- Ordering of variable products:
 - By exponent of a primarily (higher exponent first)
 - ullet By exponent of b secondarily
 - .
 - By exponents of z lastly
 - $a^3 < a^2b^2 < a^2b < a^2 < b^2 < b < (None)$

Unique ordering of summands allows for efficient polynomial comparison.

- Ordering of variables: a < b < c < ... < x < y < z
- Ordering of variable products:
 - By exponent of a primarily (higher exponent first)
 - ullet By exponent of b secondarily
 - .
 - ullet By exponents of z lastly
 - $a^3 < a^2b^2 < a^2b < a^2 < b^2 < b < (None)$
- Establishes a unique order for sub-terms of the polynomial

Unique ordering of summands allows for efficient polynomial comparison.

- Ordering of variables: a < b < c < ... < x < y < z
- Ordering of variable products:
 - By exponent of a primarily (higher exponent first)
 - ullet By exponent of b secondarily
 - o ..
 - ullet By exponents of z lastly
 - $a^3 < a^2b^2 < a^2b < a^2 < b^2 < b < (None)$
- Establishes a unique order for sub-terms of the polynomial
- Equivalent terms are represented as identical polynomials

Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

```
Parse("a + b * c") | Split off right sub-term "c" 
Parse("a + b") * Parse("c") | Parse variable "c" 
Parse("a + b") * c
```


Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

```
Parse("a + b * c") | Split off right sub-term "c"

Parse("a + b") * Parse("c") | Parse variable "c"

Parse("a + b") * c | Split off right sub-term "b"

(Parse("a") + Parse("b")) * c | Parse variable "b"

(Parse("a") + b) * c
```


Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

```
Parse("a + b * c") | Split off right sub-term "c" Parse("a + b") * Parse("c") | Parse variable "c" | Split off right sub-term "b" (Parse("a") + Parse("b")) * c | Parse variable "b" (Parse("a") + b) * c | Parse variable "a" | Parse variable "a"
```


Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

```
Parse("a + b * c") | Split

Parse("a + b") * Parse("c") | Parse

Parse("a + b") * c | Split

(Parse("a") + Parse("b")) * c | Parse

(Parse("a") + b) * c | Parse

(a + b) * c | Add

(a + b) * c
```

| Split off right sub-term "c"
| Parse variable "c"
| Split off right sub-term "b"
| Parse variable "b"
| Parse variable "a"
| Add polynomials a and b

Terms should be evaluated left-to-right: $a + b * c \equiv (a + b) * c$ Parse sub-terms right-to-left!

```
Parse("a + b * c") | Split of Parse("a + b") * Parse("c") | Parse Parse("a + b") * c | Split of Parse("a") + Parse("b")) * c | Parse Parse("a") + b) * c | Parse Parse("a") + b) * c | Parse Parse(a + b) * c | Add part Parse(a + b) * c | Multipart Parse(a + b) * c | Multipart Parse(a + b) * c | Par
```

```
| Split off right sub-term "c"
| Parse variable "c"
| Split off right sub-term "b"
| Parse variable "b"
| Parse variable "a"
| Add polynomials a and b
| Multiply polynomials a + b and c
```

How to handle brackets and integers

Brackets can be handled the same way: Split the entire bracket off and perform a recursive call to parse that sub-term first. Integers are treated like variables.

Parse("a +
$$(17 * c)$$
")

How to handle brackets and integers

Brackets can be handled the same way: Split the entire bracket off and perform a recursive call to parse that sub-term first. Integers are treated like variables.

How to handle brackets and integers

Brackets can be handled the same way: Split the entire bracket off and perform a recursive call to parse that sub-term first. Integers are treated like variables.

Parsing algorithm: Alternatives

I used a recursive algorithm to parse the terms into polynomials. Other ideas?

- Iterative instead of recursive
 - Go through the term left-to-right
 - Harder to handle brackets: Would need to store parsed sub-terms in a more complex data structure
- Don't parse into polynomials at all
 - Substitute concrete values for each variable and evaluate
 - ⇒ Very hard to be *sure* that the terms are equivalent
- Other approaches possible

Implementation in C#

Representing polynomials and variable products as objects:

- Custom addition, subtraction, multiplication operators
- Custom equality checks
 - ⇒ Efficient use of built-in types such as dictionaries
- Custom ordering for variable products
 - ⇒ Efficient use of *sorted* dictionaries

Allows for readable code like this:

C# example on how to use the classes

11/12

Any questions?

