Lecture 3: Loss functions and Optimization

Administrative

A1 is due Jan 20 (Wednesday). ~9 days left Warning: Jan 18 (Monday) is Holiday (no class/office hours)

Recall from last time... Challenges in Visual Recognition

Camera pose

Illumination

Deformation

Occlusion

Background clutter

Intraclass variation

Recall from last time... data-driven approach, kNN

Recall from last time... Linear classifier

Recall from last time... Going forward: Loss function/Optimization

	ALP'S		
airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function.
 (optimization)

cat

3.2

1.3

2.2

5.1 car frog

4.9

2.5

-1.7 2.0

-3.1

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

1.3

4.9

2.0

cat

car

frog

Losses:

5.1

-1.7

3.2

2.9

2.2

2.5 -3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

= 2.9

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 3 - 9

11 Jan 2016

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 1.3 4.9 + 1)$
- $+\max(0, 2.0 4.9 + 1)$
- $= \max(0, -2.6) + \max(0, -1.9)$
- = 0 + (
- = (

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$ $+ \max(0, 2.5 - (-3.1) + 1)$
- $= \max(0, 5.3) + \max(0, 5.6)$
- = 5.3 + 5.6
- = 10.9

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L = rac{1}{N} \sum_{i=1}^N L_i$$

$$L = (2.9 + 0 + 10.9)/3$$

= **4.6**

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: what if the sum was instead over all classes?

(including j = y_i)

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what if we used a mean instead of a sum here?

2.2 3.2 1.3 cat 4.9 2.5 5.1 car -3.1 -1.7 2.0 frog 2.9 10.9 Losses:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

Lecture 3 - 15

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: what if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: what is the min/max possible loss?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i the image and where y_i the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

Example numpy code:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L i vectorized(x, y, W):
  scores = W.dot(x)
 margins = np.maximum(0, scores - scores[y] + 1)
  margins[y] = 0
  loss i = np.sum(margins)
  return loss i
```

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

There is a bug with the loss:

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

There is a bug with the loss:

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

		The same of the sa	the second
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

$L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$

Before:

=
$$max(0, 1.3 - 4.9 + 1)$$

+ $max(0, 2.0 - 4.9 + 1)$
= $max(0, -2.6) + max(0, -1.9)$
= $0 + 0$
= 0

With W twice as large:

=
$$max(0, 2.6 - 9.8 + 1)$$

+ $max(0, 4.0 - 9.8 + 1)$
= $max(0, -6.2) + max(0, -4.8)$
= $0 + 0$

Weight Regularization

\lambda = regularization strength (hyperparameter)

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

In common use:

L2 regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

L1 regularization

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2)

$$R(W) = \sum_k \sum_l eta W_{k,l}^2 + |W_{k,l}|$$

Max norm regularization (might see later)

Dropout (will see later)

L2 regularization: motivation

$$egin{aligned} x &= [1,1,1,1] \ & w_1 &= [1,0,0,0] \ & w_2 &= [0.25,0.25,0.25,0.25] \end{aligned}$$

$$w_1^T x = w_2^T x = 1$$

cat **3.2**

car 5.1

frog -1.7

scores = unnormalized log probabilities of the classes.

$$s=f(x_i;W)$$

cat **3.2**

car 5.1

frog -1.7

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

$$s = f(x_i; W)$$

3.2 cat

5.1 car

-1.7 frog

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where
$$s=f(x_i;W)$$

3.2 cat

car

5.1

-1.7 frog

Softmax function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$|L_i| = -\log P(Y=y_i|X=x_i)$$

cat **3.2**

car 5.1

froq -1.7

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

cat **3.2**

car 5.1

froq -1.7

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.

unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Q: What is the min/max possible loss L_i?

unnormalized probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

Q5: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]

and $y_i = 0$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Interactive Web Demo time....

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

Optimization

Recap

- We have some dataset of (x,y)
- We have a **score function**: $s=f(x;W)\stackrel{\text{e.g.}}{=}Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives).

current W:	W + h (first dim):	gradie	ent dW:
[0.34, -1.11, 0.78, 0.12, 0.55,	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55,	[?, ?, ?, ?,	
2.81, -3.1, -1.5, 0.33,] loss 1.25347	2.81, -3.1, -1.5, 0.33,] loss 1.25322	?, ?, ?, ?,]	
Fei-Fei Li & Andrej Karpathy & Justin Johnson		Lecture 3 - 49	11 Jan 2016

W + h (first dim): gradient dW: [0.34 + 0.0001][0.34,**[-2.5**, -1.11, -1.11, 0.78, 0.78, 0.12, 0.12, (1.25322 - 1.25347)/0.00010.55, 0.55, = -2.52.81, 2.81, $\frac{df(x)}{dx} = \lim_{x \to 0} \frac{f(x+h) - f(x)}{f(x+h)}$ -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...?,...] loss 1.25347 loss 1.25322 Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 50 11 Jan 2016

current W:

current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78,	[0.34, -1.11 + 0.0001 , 0.78,	[-2.5, ?, ?,
0.12, 0.55, 2.81, -3.1,	0.12, 0.55, 2.81, -3.1,	?, ?, ?, ?,
-3.1, -1.5, 0.33,] loss 1.25347	-1.5, 0.33,] loss 1.25353	?, ?, ?,]
Fei-Fei Li & Andrei Karpathy & Justin Johnson Lecture 3 - 51 11 Jan		

Jan 2016

gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11 + 0.00010.6, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, (1.25353 - 1.25347)/0.00012.81, 2.81, = 0.6-3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...] ?,...] loss 1.25353 loss 1.25347 Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 52 11 Jan 2016

W + h (second dim):

current W:

current W:	W + h (third dim):	gradient dW:
[0.34,	[0.34,	[- 2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001 ,	?, `
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25347	
Fei-Fei Li & Andrej K	Carpathy & Justin Johnson	Lecture 3 - 53 11 Jan 2

gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, (1.25347 - 1.25347)/0.00012.81, 2.81, = 0-3.1, -3.1, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -1.5, -1.5, 0.33,...0.33,...] loss 1.25347 loss 1.25347

Lecture 3 - 54

11 Jan 2016

W + **h** (third dim):

Fei-Fei Li & Andrej Karpathy & Justin Johnson

current W:

Evaluation the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

```
def eval numerical gradient(f, x):
  a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
 h = 0.00001
 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
 while not it.finished:
   # evaluate function at x+h
    ix = it.multi index
    old value = x[ix]
    x[ix] = old value + h # increment by h
    fxh = f(x) # evalute f(x + h)
   x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
    grad[ix] = (fxh - fx) / h # the slope
    it.iternext() # step to next dimension
  return grad
```

Evaluation the gradient numerically

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

- approximate
- very slow to evaluate

```
def eval numerical gradient(f, x):
  a naive implementation of numerical gradient of f at x
  - f should be a function that takes a single argument
  - x is the point (numpy array) to evaluate the gradient at
 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
 h = 0.00001
 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi index'], op flags=['readwrite'])
 while not it.finished:
   # evaluate function at x+h
    ix = it.multi index
    old value = x[ix]
    x[ix] = old value + h # increment by h
    fxh = f(x) # evalute f(x + h)
   x[ix] = old value # restore to previous value (very important!)
    # compute the partial derivative
    grad[ix] = (fxh - fx) / h # the slope
    it.iternext() # step to next dimension
  return grad
```

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_{k} W_k^2$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+\sum_k W_k^2$$
 $L_i=\sum_{j
eq y_i}\max(0,s_j-s_{y_i}+1)$ $s=f(x;W)=Wx$ want $abla_W L$ Calculus

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

$$\nabla_W L = \dots$$

gradient dW:

current W:

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

<u>In practice:</u> Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.**

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Mini-batch Gradient Descent

only use a small portion of the training set to compute the gradient.

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

Example of optimization progress while training a neural network.

(Loss over mini-batches goes down over time.)

Mini-batch Gradient Descent

only use a small portion of the training set to compute the gradient.

```
Vanilla Minibatch Gradient Descent
while True:
  data batch = sample training data(data, 256) # sample 256 examples
  weights grad = evaluate gradient(loss fun, data batch, weights)
  weights += - step size * weights grad # perform parameter update
```

Common mini-batch sizes are 32/64/128 examples e.g. Krizhevsky ILSVRC ConvNet used 256 examples

we will look at more fancy update formulas (momentum, Adagrad, RMSProp, Adam, ...)

The effects of different update form formulas

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

(image credits to Alec Radford)

Aside: Image Features

Example: Color (Hue) Histogram

Example: HOG/SIFT features

8x8 pixel region, quantize the edge orientation into 9 bins

(image from vlfeat.org)

Example: HOG/SIFT features

8x8 pixel region, quantize the edge orientation into 9 bins

Many more: GIST, LBP, Texton, SSIM, ...

(image from vlfeat.org)

Next class:

Becoming a backprop ninja and Neural Networks (part 1)