INDEX

Sr. No	Date	Practical	Page No.	Sign.	
		Write a MATLAB program to generate the following elementary signals:			
1		i) Unit step sequence iv) Sine signal			
		ii) Unit step signal v) Cosine signal			
		iii) Unit ramp signal vi) Exponential signal			
		Write a MATLAB program to generate the following sequences:			
2		i) $0.5*n*cos(2*\Pi*n+(\Pi/4))$ ii) $x1=cos((2*\Pi*n)/256)$			
		$x2=\cos((6*\prod*n)/256)$ x=x1+x2			
3		Write a MATLAB program to illustrate:			
		i) The effect of up-sampling in frequency domain.			
		ii) The effect of Interpolation process.			
4		Write a MATLAB program to illustrate Moving Average Filter for signal smoothing.			
5		Write a MATLAB program to find the linear convolution of two sequences.			
		i) Without using MATLAB convolution function.			
		ii) Using MATLAB function.			
6		Write a MATLAB program to obtain			
		i) Partial fraction expansion of rational Z-transform.			
		ii) Z-transform from partial fraction expansion.			
		iii) Power series expansion of Z-transform.			
		iv) Stability test for Z-transform			
7		Write a MATLAB program to obtain:			
,		i) N-point DFT of sequence.			
		ii) N-point IDFT of sequence.			
		iii) Linear convolution by DFT			
		Write a MATLAB program to design following Butterworth filters.			
8					
		i) Low Pass Filter iii) Band Pass Filter .			
		ii) High Pass Filter iv) Band Reject Filter.			
9		Write a MATLAB program to design following Chebyshev-I filters.			
		i) Low Pass Filter iii) Band Pass Filter.			
		ii) High Pass Filter. iv) Band Reject Filter			
		Write a MATLAB program to design following Chebyshev-I filters.			
10		i) Low Pass Filter iii) Band Pass Filter.			
		ii) High Pass Filter iv) Band Reject Filter			
		Write a MATLAB program to design FIR filter using following window.			
11		i) Rectangular window. iv) Blackman window.			
		ii) Kaiser window. v) Hanning window.			
		iii) Bartlett window. vi) Hamming window.			

Date:	
i jate.	
Daic.	

Practical No.: 1

Aim: Write a MATLAB program to generate the following elementary signals:

- iv) Unit step sequence
 iv) Sine signal
 v) Cosine signal
 vi) Unit ramp
 vi) Exponential signal
- (i) MATLAB program to generate Unit Step sequence.

(ii) MATLAB program to generate Unit Step signal.

(iii) MATLAB program to generate Unit ramp Signal.

```
n=input ('Enter the length of the sequence N= ');
t=0:n;
y=t;
plot(t,y);
ylabel ('Amplitude');
xlabel ('Time Index');
TITLE ('Ramp Signal');
```


(iv) MATLAB program to generate Sine Wave Signal.

```
f= input('enter the frequency in hertz of the sine wave');
t=0:.0001:5;
y=sin(2*pi*f*t);
plot(t,y);
ylabel ('Amplitude');
xlabel ('Time Index');
```


(v) MATLAB program to generate Cosine Wave Signal.

```
f= input('enter the frequency in hertz of the sine wave');
t=0:.0001:5;
y=cos(2*pi*f*t);
plot(t,y);
ylabel ('Amplitude');
xlabel ('Time Index');
TITLE ('cosine wave');
```


(vi) MATLAB program to generate Exponential signal Signal.

```
n=input('Enter the duration of the signal N = ');
a=input ('Enter the scaling factor a = ');
t=0:.1:n-1;
y=exp(a*t);
```

```
plot(t,y);
ylabel ('Amplitude');
xlabel ('Time Index');
TITLE ('Exponential Signal');
```


Date:	
Date.	

Practical No.: 2

Aim: Write a MATLAB program to generate the following sequences.

a)
$$0.5*n*cos(2*\Pi*n+(\Pi/4))$$

b) $x1=cos((2*\Pi*n)/256)$

$$x2 = \cos((6*\Pi*n)/256)$$

$$x=x1+x2$$

MATLAB Program.

- % Matlab program <cosine_signal.m>
- % This program is for generating the given cosine signal

```
clc; %Clear the window close all; %Close all files clear all; %Clear the screen m=0:1:100; %Range of n y=cos(.05*((2*pi*n)+(pi/4))); x=.5.*n.*y stem(n,x); grid on; title('Cosine signal (.5ncos(2npi+(pi/4)))'); xlabel('n -->'); ylabel('x -->');
```

MATLAB Figure:

MATLAB Program.

```
% Matlab program <addition_of_signal.m>
```

% This program is for adding the given two cosine signal

```
clc;
                                                              %Clear the window
                                                              %Close all files
close all;
clear all;
                                                              %Clear the screen
n=0:1:256
                                                              %Range of n
x1=\cos(2*pi*n/256);
subplot(3,1,1);
stem(n,x1);
grid on;
title ('Cosine signal (cos(2npi/256))');
xlabel('n -->');
ylabel('x1 -->');
x2 = \cos(6*pi*n/256);
subplot(3,1,2);
stem(n,x2);
grid on;
title ('Cosine signal (cos(6npi/256))');
xlabel('n -->');
ylabel('x2 -->');
```

```
x=x1+x2;
subplot(3,1,3);
stem(n,x);
grid on;
title ('Addition of two given signal');
xlabel('n -->');
ylabel('x = x1+x2 -->');
```

MATLAB Figure:

CONCLUSION: