CO367, Course Notes

Transcribed by Louis Castricato

October 19, 2018

Introduction

Mathematical Optimization or Mathematical Programming Informally: Find a best solution to the model of a problem *best* according to a given objective/criterion Applications include

- 1. Operations research
 - (a) Scheduling + Planning
 - (b) Supply Chain Management
 - (c) Vehicular Routing
 - (d) Power Grid Optimization
- 2. Statistics and Machine Learning
 - (a) Curve FItting
 - (b) Classification, Clustering, SVM,...
 - (c) Deep Learning
- 3. Finance
- 4. Optimal Control
- 5. Biology

 $(OPT) \min f(x) s.t.$

$$g_i(x) \le 0$$
, for $i \in \{1, 2, 3, \dots, m\}$

Remarks

- a. $\max f(x) = -(\min f(x))$
- b. $\{x \in \mathbb{R}^n : g(x) \ge 0\} = \{x \in \mathbb{R}^n : -g(x) \le 0\}$
- c. $\{x \in \mathbb{R}^n : g(x) \ge b\} = \{x \in \mathbb{R}^n : -g(x) b \le 0\}$

Classification of Problems - 1

- if $f(x) = 0, \forall x \in \mathbb{R}^n \implies (OPT)$ is a feasibility problem
- if we have m=0 constraints \implies (OPT) is an unconstrained optimization problem

Classification of Problems - 2

Q: Why do we need f and g? A: In abscence of hyp. on f and g, (OPT) is unsolvable.

Note: "Black box" optimization framework

All that is given is an oracle function that can compute values of $f(x) \forall x$ in the domain of f

Example: consider

$$\min f(x)$$
s.t. $g(x) \le 0$, for $i \in [1, m] \cap \mathbb{N}$

$$h(x) \le 0$$

$$h(x)$$
, when $x \in \mathbb{Z}^n$, do: 0
$$h(x)$$
, do: 1

in other words, we only want integral solutions.

Definition 0.1. Discrete Optimization: When the constraint of OPT restrict to a lattice, we have a discrete optimization problem

Definition 0.2. Continuous: A function $f: D \mapsto \mathbb{R}$ is continuous over D $(f \in C^k(D))$ if all its k^{th} derivatives are continuous over D.

Consider the following examples

$$f(x)$$
 when $x \ge 2$, do: 1
 $f(x)$, do: -1

Then f(x) is not continuous.

In another example we have g(x), do: abs(x-2). Then $g(x) \in C^0$.

Definition 0.3. Gradient: Let $f \in C^1(D)$ for $D \subseteq \mathbb{R}^n$. The gradient is $\nabla f : D \mapsto \mathbb{R}^n$ if it satisfies $\nabla f \in C^0(D)$ and is given by $\nabla f(x) = \begin{bmatrix} \frac{\delta f}{\delta x_1(x)} \dots \frac{\delta f}{\delta x_n(x)} \end{bmatrix}$.

Definition 0.4. Hessian: Let $f \in C^2(D)$ for $D \subseteq \mathbb{R}^n$. Its Hessian is $\nabla^2 f : D \mapsto \mathbb{R}^n$. It satisfies $\nabla^2 f \in C^0(D)$ and is given by

$$\nabla^2 f = \begin{bmatrix} \frac{\delta f(x)}{\delta x_1 \delta x_1} & \dots & \frac{\delta f(x)}{\delta x_n \delta x_1} \\ \vdots & \ddots & \vdots \\ \frac{\delta f(x)}{\delta x_1 \delta x_n} & \dots & \frac{\delta f(x)}{\delta x_n \delta x_n} \end{bmatrix}$$

Definition 0.5. Linear: A function $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$ is linear if $\exists c \in \mathbb{R}^n$ where $f(x) = c^T x, \forall x \in D$. Then $\nabla f(x) = c$ and $\nabla^2 f(x) = 0$.

remark: if f, g_i are linear, then OPT is a linear programming function.

Linear Algebra 1

A vector and matrix norm.

Definition 1.1. Norm: A norm $\|\cdot\|$ on \mathbb{R}^n assigns a scalar $\|x\|$ to every $x \in \mathbb{R}^n \ s.t.$

- 1. $||x|| \ge 0, \forall x \in \mathbb{R}^n$
- 2. $||cx|| = |c|||x||, \forall x \in \mathbb{R}^n \forall c \in \mathbb{R}$
- 3. $||x|| = 0 \iff x = 0$
- 4. $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}^n$

 L^k norm $||x|| = \left(\sum (x_i)^k\right)^{\frac{1}{k}}$ in particular,

- 1. Manhattan Norm = L_1
- 2. Euclidean Norm = L_2
- 3. Infinite Norm = $L_{\infty} = \max(|x_i|)$

Schwartz inequality: $\forall x, y \in \mathbb{R}^n$

 $|x^T y| \le ||x||_2 \cdot ||y||_2$

Theorem 1.1. Pythagorean Theorem: If $x, y \in \mathbb{R}$ are orthogonal then $||x+y||^2 = ||x||^2 + ||y||^2$ under L_2 .

Definition 1.2. Matrix Norm: Given a vector norm $\|\cdot\|$, the induced magtrix norm associates a scalar ||x|| to all $A \in \mathbb{R}^{n \times n}$

$$||A|| = \max ||Ax|| \text{ where } ||x|| = 1$$

Property of Matrix norm:

 $||A||_2 = \max ||Ax||_2 = \max |y^T Ax|$, where $||x||_2 = 1$ and $||y||_2 = 1$.

Proof is trivial by schwartz inequality.

$$||A|| = ||A^T||_2$$

TFAE: ¹

- 1. A is nonsingular
- 2. A^T is nonsingular
- 3. $\forall x \in \mathbb{R}^n \text{ if } x \neq 0 \text{ then } Ax \neq 0.$
- 4. $\forall b \in \mathbb{R}^n, \exists x \in \mathbb{R}^n \text{ s.t. } Ax = b \text{ and } x \text{ is unique}$
- 5. The columns of A are linearly independent
- 6. The rows of A are linearly independent

¹The following are equivalent

- 7. A unique inverse of A exists
- 8. If B is a matrix s.t. an inverse of B exists, then $(AB)^{-1} = A^{-1}B^{-1}$

Definition 1.3. Eigenvalue: The characteristic polynomial $\Phi: \mathbb{R} \to \mathbb{R}$ of $A \in \mathbb{R}^{n \times n}$ is $\Phi(\lambda) = \det(A - \lambda I)$. It has n complex roots, the eigenvalues of A. Given an eigenvalue λ of A, $x \in \mathbb{R}^n$ is its corresponding eigenvector of A if $Ax = \lambda x$.

Properties: Given $A \in \mathbb{R}^{n \times n}$

- 1. λ is an eigenvalue $\iff \exists$ a corresponding eigenvector x.
- 2. A is simuglar \iff it has a zero eigenvalue
- 3. If A is triangular, then its eigenvalues are its diagonal elements
- 4. If $S \in \mathbb{R}^{n \times n}$ is nonsingular and $B = SAS^{-1}$ then A and B have the same eigenvalues.
- 5. If the eigenvalues of A are $\{\lambda_1, \ldots, \lambda_n\}$ then
 - (a) the eigenvalues of A + cI are $c + \lambda_1, \ldots, c + \lambda_n$.
 - (b) the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$. This also holds for k = -1.
 - (c) the eigenvalues of A^T are the same as the eigenvalues of A.

Definition 1.4. Spectral Radius: The spectral radius $\rho(A)$ of $A \in \mathbb{R}^{n \times n}$ is the maximum magnitude of its eigenvalues.

Property:

Lemma 1.2. For any induced norm, $\|\cdot\|$, $\rho(A) \leq \|A^k\|^{\frac{1}{k}} \ \forall k \in \mathbb{N}$

Proof: By defn, $||A^k|| = \max ||A^ky|| = \max \frac{||A^ky||}{||y||}$, where ||y|| = 1. Let λ be an eigenvalue of A, and x its eigenvector. Then

$$||A^k|| \ge \frac{||A^k x||}{||x||} = \frac{||A^{k-1} A x||}{||x||} = \frac{A^{k-1} \lambda x}{||x||} = \dots = \frac{||\lambda^k x||}{||x||} = \frac{(|\lambda^k|||x||)}{||x||} = ||\lambda^k||$$

So for any eigenvalue, $||A^k|| \ge |\lambda^k| \implies ||A^k||^{\frac{1}{k}} \ge \lambda \implies \rho(A) \le ||A^k||^{\frac{1}{k}}$.

Lemma 1.3. For any induced norm, $\|\cdot\|$, $\lim_{k\to\infty} \|A^k\|^{\frac{1}{k}} = \rho(A)$. Furthermore, $\lim_{k\to\infty} A^k = A$ iff $\rho(A) \leq 1$.

Proof: Exercise!

Symmetrix Matricies:

Property: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

1. its eigenvalues are real

- 2. its eigenvectors are mutually orthongal
- 3. assume its eigenvectors are normalized. Let (λ_i, v_i) refer to an eigenpair. Then $A = \sum \lambda_i x_i x_i^T$.

Proof: Exercise!

Lemma 1.4. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, then $||A||_2 = p(A)$.

Proof: from before, $\rho(A) \leq \|A^k\|^{\frac{1}{k}}$ and in particular we have that $p(A) \leq \|A\|_2$. Now all we need to do is show that $p(A) \geq \|A\|_2$. As the eigenvectors x_i $i = 1, \ldots, n$ of C are mutually orthogonal we can write any $y \in \mathbb{R}^n$ as $y = \sum \beta_i x_i$ for some $\beta \in \mathbb{R}^n$.

By pythagoras' theorem, $||y||_2 = \sum \beta_i^2 \cdot ||x||_2^2$. Hence $Ay = A \sum \beta_i^2 \cdot ||x||_2^2 = \sum \beta_i \lambda_i x_i$. Again we can apply pythagoras'

$$||Ay||_{2}^{2} = ||\sum \beta_{i}\lambda_{i}x_{i}||_{2}^{2}$$

$$= \sum \beta_{i}\lambda_{i}^{2}||x||_{2}^{2}$$

$$= \sum |\lambda_{i}|^{2} \cdot |\beta_{i}|^{2} \cdot ||x||_{2}^{2}$$

$$\leq \sum \rho(A)^{2}|\beta_{i}|^{2}||x||_{2}^{2}$$

$$= \rho(A)^{2} \sum |\beta_{i}|^{2}||x||_{2}^{2}$$

$$= \rho(A)^{2}||y||_{2}^{2}$$

This then implies that

$$||A||_2 \le \rho(A)||y||_2$$

$$\implies A = \max \frac{||Ay||_2}{||y||_2} \le \frac{(\rho(A)||y||_2)}{||y||_2}, \text{ where } y \ne 0$$

$$\implies ||A||_2 \le \rho(A)$$

Therefore $||A||_2 = \rho(A)$.

Lemma 1.5. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, with eigen values $\lambda_1 \leq \ldots \leq \lambda_n \in \mathbb{R}$. Then $\forall y \in \mathbb{R}^n$ we have that $\lambda_1 ||y||_2^2 \leq y^T A y \leq \lambda_n ||y||_2^2$.

Proof: Express y as $\sum \beta_i x_i$, i = 1, ..., n where $\beta_i \in \mathbb{R}$, x_i are orthongal eigenvectors of A. Firstly:

$$y^{T}Ay = (\sum \beta_{i}x_{i})^{T}(\sum \beta_{i}\lambda_{i}x_{i}) = \sum \beta_{i}^{2}\lambda_{i}||x_{i}||_{2}^{2}$$

WLOG, assume that $\|x_i\|_2=1$ by normalization. So $y^TAy=\sum \lambda \beta_i^2$. Secondly: $\|y\|_2^2=\sum \beta_i^2$

$$\sum \lambda_1 \beta_1^2 \le \sum \lambda_i \beta_i^2 \le \sum \lambda_n \beta_n^2 \implies \lambda_1 \|y\|_2^2 \le y^T A y \le \lambda_n \|y\|_2^2.$$

Lemma 1.6. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, then $||A^k||_2 = ||A||_2^k$.

Proof:

Since A is symmetric, we have that $(A^k)^T = A^k$ and $||A^k||_2 = \rho(A^k)$. So $\rho(A^k) = \rho(A)^k$. Therefore $||A||_2^k = ||A^k||_2$.