DIGITALE SCHALTUNGEN

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

INHALT DER VORLESUNG

■ Grundlagen

- ☐ Beschreibungen über "0" und "1" (Boolesche Algebra)
- □ Beschreibungen von Schaltungen

■ Speichern

- ☐ Sequentielle Schaltungen
- □ Speicherelemente

■ Steuern

- ☐ Endliche Automaten
- ☐ Synthese von Steuerwerken

■ Rechnen

- ☐ Darstellung von Zahlen
- □ Digitale Schaltungen für Addition, Subtraktion, Multiplikation

■ Entwerfen

- ☐ Synthese von allgemeinen Schaltungen
- ☐ Logikminimierung

INHALT DER VORLESUNG

- Grundlagen
 - Beschreibungen über "0" und "1" (Boolesche Algebra)
 - Beschreibungen von Schaltungen
- **■** Speichern
 - ☐ Sequentielle Schaltungen
 - Speicherelemente

- **■** Steuern
 - ☐ Endliche Automaten
 - ☐ Synthese von Steuerwerken

- Rechnen
 - □ Darstellung von Zahlen
 - Digitale Schaltungen für Addition, Subtraktion, Multiplikation
 - Entwerfen
 - ☐ Synthese von allgemeinen Schaltungen
 - Logikminimierung

SCHALTKREIS

- Hier: kombinatorische Schaltkreise
- Gerichteter, zyklenfreier Graph
- Knoten repräsentieren
 - ☐ Primäre Eingänge
 - □ Primäre Ausgänge
 - ☐ Gatter (i.d.R. basierend auf vorher festgelegter Gatterbibliothek)
- Kanten repräsentieren
 - □ Signale zwischen den Gattern bzw. primären Eingängen/Ausgängen
- Gängige Kostenmaße
 - □ Anzahl der Gatter (Größe)
 - ☐ Tiefe, d.h. Zahl der Gatter auf dem längsten Pfad von einem primären Eingang zu einem primären Ausgang (Geschwindigkeit)

ADDITION _____

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)
Institut für Integrierte Schaltungen
Abteilung für Schaltkreis- und Systementwurf

ADDIERER

<u>Gegeben</u>: 2 positive Binärzahlen $\langle a \rangle = \langle a_{n-1} \dots a_0 \rangle$ und $\langle b \rangle = \langle b_{n-1} \dots b_0 \rangle$, Eingangsübertrag c aus $\{0,1\}$

> Gesucht: Schaltkreis, der Binärdarstellung s von <a> + + c berechnet

Wegen $\langle a \rangle + \langle b \rangle + c \leq 2 \times (2^n - 1) + 1 = 2^{n+1} - 1$ genügen n+1 Ausgänge des Schaltkreises.

DER HALBADDIERER (HA)

Der Halbaddierer dient zur Addition zweier

1-Bit-Zahlen ohne Eingangsübertrag.

Er berechnet die Funktion:

```
ha: B^2 \rightarrow B^2

mit ha(a_0, b_0) = (s_1, s_0)

mit 2s_1 + s_0 = a_0 + b_0
```


FUNKTIONSTABELLE DES HA

a_0	b_0	ha ₁	ha
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Folglich:

$$ha_0 = a_0 \oplus b_0 \qquad ha_1 = a_0 \wedge b_0$$

SCHALTKREIS EINES HALBADDIERERS

Kosten und Tiefe eines HA:

C(HA) = 2, depth(HA) = 1

DER VOLLADDIERER (FA)

Der Volladdierer dient zur Addition zweier

1-Bit-Zahlen mit Eingangsübertrag.

Er berechnet die Funktion:

fa:
$$B^3 o B^2$$

mit $fa(a_0, b_0, c) = (s_1, s_0)$
mit $2s_1 + s_0 = a_0 + b_0 + c$

FUNKTIONSTABELLE DES FA

a_0	b_0	C	fa ₁	fa ₀
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

VOLLADDIERER ALS FUNKTION VON HAS

Aus der Tabelle folgt:

$$fa_0 = a_0 \oplus b_0 \oplus c = ha_0(c, ha_0(a_0, b_0))$$

$$fa_1 = a_0 \wedge b_0 \vee c \wedge (a_0 \oplus b_0)$$

= $ha_1(a_0, b_0) + ha_1(c, ha_0(a_0, b_0))$

Kosten und Tiefe eines FA:

$$C(FA) = 5$$
, $depth(FA) = 3$

SCHALTKREIS EINES VOLLADDIERERS

REALISIEREN DER SCHULMETHODE: CARRY RIPPLE ADDIERER (*CR*)

Hierarchisches Vorgehen:

(induktive Definition)

Für n=1: $CR_1 = FA$

Für n>1: Schaltkreis CR_n wie folgt definiert

Bezeichnung:

Bezeichne den Eingangsübertrag mit c_1 , den Übertrag

von Stelle i nach i+1 mit c;

AUFBAU EINES CARRY RIPPLE ADDIERERS

SCHALTBILD DES N-CARRY RIPPLE ADDIERERS (CR_N)

DATEN EINES CARRY RIPPLE ADDIERERS

Kosten eines CR_n :

$$C(CR_n) = n \cdot C(FA) = 5n$$

Tiefe eines CR_n :

$$depth(CR_n) = 3 + 2(n-1)$$

Schaltbild eines n-Bit-Addierers:

SUBTRAKTION

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

BEHAUPTUNG

Zur Addition von (*n*+1)-Bit Zweierkomplementzahlen kann man (*n*+1)-Bit-Binäraddierer benutzen.

Der Test, ob das Ergebnis durch eine (n+1)-Bit-Zweierkomplementzahl darstellbar ist, d. h. ob das Ergebnis aus $R_n = \{-2^n, ..., 2^{n-1}\}$ ist, lässt sich zurückführen auf den Test $c_n = c_{n-1}$.

SUBTRAHIERER

Wegen
$$-[b]=[\overline{b}]+1$$
 kann $[a]-[b]$ zurückgeführt werden auf $[a]+[\overline{b}]+1$.

- → Schaltkreis für Subtrahierer aus Addiererschaltkreis
- → kombinierter Addierer/Subtrahierer

BEISPIEL

$$[a] = [0110] = 6_{10}, \quad [b] = [0111] = 7_{10}, \quad [\overline{b}] = [1000]$$

SCHALTBILD EINES SUBTRAHIERERS

SCHALTBILD FÜR EINEN ADDIERER/SUBTRAHIERER

MULTIPLIKATION

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

MULTIPLIZIERER

■ Multiplikation zweier Bits

$$B_0 * A_0 = B_0 A_0$$

 \Rightarrow Und-Verknüpfung

■ Multiplikation einer mehrstelligen Zahl mit einem Bit

$$(B_1,B_0) * A_0 = (B_1A_0, B_0A_0)$$

⇒ Und-Verknüpfung der Stellen mit dem Bit

MULTIPLIZIERER

■ Multiplikation zweier mehrstelliger Zahlen

$$(B_1, B_0) * (A_1, A_0)$$

$$= (B_1, B_0) * A_0 + (B_1, B_0) * A_1 * 2$$

$$= (B_1, A_0, B_0, A_0) + (B_1, A_1, B_0, A_1, 0)$$

- □ Berechnung der Teilprodukte $(B_{n-1},...B_0)^*A_i$, mit $0 \le i < n$
- Stellengerechte Summenbildung
- ☐ Teilprodukt mit A, muss um i Stellen nach links verschoben werden

MULTIPLIZIERER

- Verschiedene Varianten möglich
 - ☐ Vollständig parallele Schaltung
 - ☐ Bildung und Aufsummieren der Teilprodukte nacheinander
 - ☐ Mischformen

VEREINFACHTE DARSTELLUNG

■ Und-Verknüpfung von *B* mit *A*_i

Beispiel: 1011 * 0101

Beispiel: 1011 * 0101

MULTIPLIZIERER: ALTERNATIVE STRUKTUR

- Beginn bei Teilprodukt mit MSB von A
- Ungünstiger, da unregelmäßige Struktur

DIVISION

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

DIVISION #1

Beispiel:

 $11_{10}/3_{10} = 3_{10} \text{ Rest } 2_{10}$

DIVISION #2

- Dividend: A2n-stellige Zahl
- Divisor: Bn-stellige Zahl

Beides positive Zahlen

- Vorgehensweise
- B von A stellengerecht subtrahieren (also beim MSB von A beginnen)
- 2. Berechnung der Subtraktion liefert n+1 Stellen (2er-Komplement)
 - a) Ergebnis negativ (Vorzeichen-Bit 1):
 A unverändert übernehmen, 0 ins Ergebnis übernehmen
 - b) Ergebnis positiv (Vorzeichen-Bit 0): Betroffene Stellen von A ändern, 1 ins Ergebnis übernehmen
- A um eine Stelle nach links schieben
- 4. Bei 1. fortfahren, bis alle Stellen behandelt sind

DIVIDIERER

Schaltung

- A_H übernimmt nur das Ergebnis der Subtraktion wenn Vorzeichen positiv
- Rest verbleibt in A_H nach n+1 Takten

- A=65₁₀=0100 0001₂, B=7₁₀=0111₂
- \blacksquare Q=9₁₀=1001₂, R=A_H=2₁₀=0010₂

■ 1. Stelle berechnen

■ 2. Stelle berechnen

■ 3. Stelle berechnen

■ 4. Stelle berechnen

■ "5." Stelle berechnen

Beispiel 2:

- A=129₁₀=1000 0001₂, B=13₁₀=1101₂
- \blacksquare Q=9₁₀=1001₂, R=A_H=12₁₀=1100₂

■ 1. Stelle berechnen

■ 1. Stelle berechnen

- A=240₁₀=1111 0000₂, B=15₁₀=1111₂
- \blacksquare Q=16₁₀=10000₂, R=A_H=0₁₀=000₂

- A=240₁₀=1111 0000₂, B=15₁₀=1111₂
- \blacksquare Q=16₁₀=10000₂, R=A_H=0₁₀=000₂

PROBLEME

- MSB des Quotienten muss berücksichtigt werden
 - □ signalisiert Überlauf
 - □ Tritt auf, wenn $A_H \ge B$
- n+1. Position von A_H muss ebenfalls berücksichtigt werden
 - □ A_H kann so immer größer als B werden
 - ☐ Zusatz-Bit kann am Ende nicht 1 sein

KORRIGIERTE SCHALTUNG

VARIANTEN

- Subtraktion von B durch 2er-Komplement-Addition
 - ☐ Zusätzliche Stelle in B für Komplement-Darstellung vorsehen (kann wegfallen, da immer 1)
 - □ Zusätzliche Stelle in A für Vorzeichen nicht erforderlich (da immer positiv)
- Variante ohne "Rückstellen des Restes möglich"
- Voll parallele Version der Division möglich (eigener Subtrahierer für jeden Zeitschritt)

