IMPLEMENTASI DATA PANEL SPASIAL TERHADAP TINGKAT PRODUK DOMESTIK REGIONAL BRUTO DI PROVINSI BALI

Ni Made Ary Dharma Widya Astuti[§], Made Susilawati², Ni Luh Putu Suciptawati³

¹Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: darmaary40@gmail.com]

²Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: mdsusilawati@unud.ac.id]

³Program Studi Matematika, Fakultas MIPA – Universitas Udayana [Email: suciptawati@unud.ac.id]

§ Corresponding Author

ABSTRACT

Gross Regional Domestic Product (GRDP) is an economic indicator to see the economic movements of a region during a certain period, whether based on current and constant price. Economic activities in a region use the GRDP calculation based on current prices by industrial base year 2010. In 2019, Bali's economic growth increased by 5.63%, exceeding national economic growth of 5.02%. Using spatial panel data in analysis consists of common effect model, fixed individual effect model, fixed time effect model, random effect model, and spatial lag fixed effect model. The best model to modeling GRDP Bali Province is spatial lag fixed effect which has a difference in constant values at any time, with R² of 99.41 percent, the remaining is explained by other variables not examined

Keywords: GDRP, Bali Province, Spatial panel data

1. PENDAHULUAN

Keberhasilan pembangunan pada suatu wilayah dilihat berdasarkan tingkat pertumbuhan ekonominya. Pertumbuhan ekonomi memiliki peran yang penting terhadap kemajuan suatu wilayah, sehingga kondisi perekonomian diharapkan terus membaik dari tahun ke tahun (BPS Provinsi Bali, 2019). Laju pertumbuhan ekonomi dilihat dari indikator ekonomi yaitu indikator ekonomi regional atau produk domestik regional bruto (PDRB). Pada indikator itu akan menampilkan informasi mengenai pergerakan ekonomi yang di hasilkan suatu wilayah.

PDRB ialah banyaknya total nilai tambah produk serta jasa akhir diperoleh setiap seluruh usaha dalam suatu wilayah (Bank Indonesia, 2019). PDRB mempunyai dua ketegori seperti PDRB atas dasar berlaku yang dipakai untuk struktur ekonomi di suatu daerah. Terdapat juga PDRB atas dasar harga konstan dipakai melihat pergerakan laju ekonomi secara menyeluruh pada setiap tahunnya (BPS Bali, 2019). Kegiatanan perekonomian di suatu wilayah menggunakan perhitungan atas dasar harga berlaku, sehingga mengetahui prioritas dari jenis-jenis lapangan usaha di suatu daerah.

Tahun dasar PDRB terjadi perubahan sebanyak dari kali mulai tahun 1960:1973:1983:1993:2000: dan terakhir tahun 2010. Selain mengalami perubahan tahun dasar, PDRB juga mengalami perkembangan kategori sektor yang semula sembilan kategori menjadi 17 kategori sektor menurut lapangan usaha. Perkembangan pertumbuhan ekonomi Bali setiap tahunnya mengalami peningkatan. Pada pertumbuhan ekonomi Bali tahun 2019 meningkat sebesar 5,63% melebihi pertumbuhan ekonomi nasional yang hanya sebesar 5,02% (BPS Provinsi Bali, 2019). Berdasarkan PDRB atas dasar harga berlaku tahun 2019 Kabupaten Badung memiliki PDRB tertinggi sebesar 62.794,84 miliar rupiah dibandingkan Kabupaten Bangli hanya sebesar 6.999,41 miliar rupiah.

ISSN: 2303-1751

Penelitian Haryanto & Saryono (2018) merupakan penelitian menggunakan PDRB di sektor konstruksi Jawa Timur. Kesimpulan pada penelitian tersebut diperoleh faktor-faktor yang berpengaruh signifikan terhadap PDRB sektor konstruksi yaitu pendapatan asli daerah dan indeks pembangunan manusia. Penelitian yang dilakukan oleh Widiadnyani et al (2019) menggunakan pendekatan regresi data panel

untuk memodelkan angka partisipasi sekolah jenjang SMA sederajat di Bali. Hasil dari penelitian tersebut diperoleh model terbaik yaitu *fixed individual effect* dengan R^2 = 61,49%. Penelitian memakai data panel spasial, salah satunya dilakukan oleh Lasdiyanti et al (2019) untuk memodelkan *human development index with spatial panel data*. Hasil dari penelitian tersebut memperoleh model *spatial error fixed effect* dengan R^2 = 99,99%.

Data panel gabungan terdahap data cross section dan juga data time series (Gujarati & Porter. 2009). Gabungan tersebut akan menghasilkan tingginya varianbilitas, dan juga besarnya degree of freedom (Baltagi, 2005). panel memiliki Model data beberapa pendekatan seperti model common effect yang menjadi pendekatan sederhana, karena tidak memperhatikan perbedaan unit cross section dan juga unit time series. Terdapat juga model fixed effect yang estimasinya memakai penambah dummy variabel untuk melihat beda intersep, sedangkan model random effect mengatasi kelemahan fixed effect model dengan penambahan variabel error terms pada model

Regresi data panel dapat dikembangkan dengan melibatkan efek ruang atau bisa dikenal sebagai model regresi data panel spasial. Matriks pembobot pada regresi spasial menjadi hal utama dalam pemodelan, yang digunakan untuk menggambarkan hubungan antar wilayah yang berdekatan. Efek spasial sering terjadi antara suatu wilayah dengan wilayah lain yang saling bertetanggan, agar mengetahui adanya efek spasial dilakukan dengan dependensi spasial yang terdiri dari model spatial lag yang memiliki kebergantungan pada variabel respon, spatial dan model error memiliki kebergantungan terhadap galat antarlokasi.

Adanya pengamatan pada unit cross section yang serupa serta menambahkan unsur kedudukan akan memungkinkan terjadi kebergantungan terhadap pengamatan, sehingga terjadi kemungkinan amatan suatu kedudukan dipengaruhi oleh kedudukan yang menjadi tetangganya. Penelitian ini bertujuan untuk mengetahui model PDRB Provinsi Bali dengan mengunakan metode data panel spasial dan sektor-sektor lapangan usaha apa saja yang menjadi prioritas terhadap PDRB Bali.

2. METODE PENELITIAN

2.1 Jenis dan Sumber Data

Menggunakan data sekunder, dengan amatan yang diteliti berupa PDRB berdasarkan atas dasar harga berlaku menurut lapangan usaha. Diperoleh sumber dari Badan Pusat Statistik berupa data tahun dari tahun 2010 sampai tahun 2019 di masing-masing kabupaten/kota Provinsi Bali.

2.2 Variabel Penelitian

Variabel respon berupa data PDRB berdasarkan atas dasar harga berlaku, sedangkan variabel bebas menggunakan sektorsektor menurut lapangan usaha diambil di Badan Pusat Statistik dengan sektor pertambangan tidak dilibatkan karena tidak memiliki nilai.

2.3 Metode Analisis Data

Tahapan pertama sebelum memodelkan PDRB Provinsi Bali yaitu, pada penelitian ini variabel penelitian sebanyak 17 variabel sesuai dengan kategori sektor PDRB menurut lapangan usaha, sehingga variabel penelitian lebih banyak dibandingkan jumlah cross section yang hanya terdiri kabupaten/kota di Bali. Untuk melakukan analisis, model random effect mengharuskan jumlah unit cross section harus melebihi jumlah variabel penelitian oleh karena itu, dilakukan penghilangan variabel yang memiliki korelasi tinggi karena sudah dapat diwakilkan oleh variabel lainnya sehingga pengaruhnya akan sama. Tahapan selanjutnya, dalam memodelkan sebagai berikut:

- 1. Melakukan estimasi model yaitu model *common effect* (CEM), model *fixed effect* (FEM), dan model *random effect* (REM).
- a. Model *common effect*Model ini mengasumsikan koefisien *slope*dan intersep konstan antar individu dan
 waktu. Menggunakan metode *ordinanary least squares* untuk melakukan estimasi
 parameter (Baltagi, 2005). Bentuk
 persamaan model adalah:

$$Y_{it} = \alpha + \sum_{k=1}^{K} \beta_k X_{kit} + u_{it};$$

$$i = 1, 2, \dots, N; \ t = 2010, 2011, \dots, T$$

b. Model fixed effect

Model tersebut mengasumsi untuk koefisien *slope* konstan antar individu dan juga waktu, namun intersep berbeda antar individu (Gujarati & Porter, 2009). Perbedaan intersep mengakibatkan adanya penambahan *dummy* variabel pada model. Model *fixed effect* membentuk dua model yaitu model *fixed individual effect* yang *dummy* variabelnya terdiri atas sembilan kabupaten/kota, dengan bentuk persamaan model adalah:

$$Y_{it} = \sum_{j=1}^{N} D_{jt} \alpha_j + \sum_{k=1}^{K} \beta_k X_{kit} + u_{it};$$

$$j = 1, 2, \dots, N ; t = 2010, \dots, T$$

dengan D_{it} bernilai 1 jika j = i

Sedangkan model *fixed time effect dummy* variabelnya terdiri atas tahun 2010; 2011; 2012; 2013; 2014; 2015; 2016; 2017; 2018; dan 2019. Bentuk persamaan model adalah:

$$Y_{it} = \sum_{s=1}^{N} D_{is} \alpha_s + \sum_{k=1}^{K} \beta_k X_{kit} + u_{it}$$

$$; s = 1, 2, \dots, N \; ; t = 2010, 2011, \dots, T$$
dengan D_{is} bernilai 1 jika $s = t$

c. Model random effect

Model ini untuk menangani permasalahan pada FEM. Penambahan *dummy* variabel pada model *fixed effect* akan menghalangi model aslinya, sehingga terdapat penambahan variabel *error term* pada model. Bentuk persamaan model adalah:

$$Y_{it} = \alpha_i + \sum_{k=1}^{K} \beta_k X_{kit} + w_{it};$$

 $i = 1, 2, \dots, N; \ t = 2010, \dots, T$

dengan w_{it} merupakan gabungan galat yaitu $u_{it} + \varepsilon_i$

- 2. Melakukan pemilihan model data panel menggunakan uji Chow untuk melihat keberadaan intersep, dan juga melakukan pemilihan model regresi data panel menggunakan uji Hausman.
- 3. Melakukan pengujian signifikan parameter dengan menggunakan uji F (simultan) dan uji t (parsial).
- 4. Menetapkan matriks pembobot, yang pada penelitian ini menggunakan metode *queen contiguity* dengan bentuk matriks sebagai berikut (LeSage, 1999):

W =										
/No	Kab./Kota	1	2	3	4	5	6	7	8	9 \
/ 1	Jembrana	0	0,5	0	0	0	0	0	0,5	0
2	Tabanan	0,3	0	0,33	0	0	0	0	0,33	0
3	Badung	0	0,2	0	0,2	0	0,2	0	0,2	0,2
4	Gianyar	0	0	0,25	0	0,25	0,25	0	0	0,25
5	Klungkung	0	0	0	0,33	0	0,33	0,33	0	0
6	Bangli	0	0	0,2	0,2	0,2	0	0,2	0,2	0
7	Karangasem	0	0	0	0	0,33	0,33	0	0,33	0
8)	Buleleng	0,2	0,2	0,2	0	0	0,2	0,2	0	0
∖ 9	Denpasar	0	0	0,5	0,5	0	0	0	0	0 /

ISSN: 2303-1751

- 5. Melakukan uji kebergantungan spasial untuk mengetahui adanya pengaruh spasial.
- 6. Melakukan penduga parameter terhadap model spasial yang terpilih.
- 7. Melakukan interpretasi terhadap model hasil akhir.

3. HASIL DAN PEMBAHASAN

3.1 Model Common Effect

Nilai estimasi model *common effect* dimaksud pada Tabel 1.

Tabel 1. Parameter Model Common Effect

Variabel	Para meter	Nilai Estimasi	t_{hit}	p -Value
Intersep	α	-1,043e+03	-2,845	0,005
Pertanian,	β_1	2,018e+00	13,692	< 2,2e-16
kehutanan, dan				
perikanan				
(PKP)				
Industri	β_2	1,972e+00	3,709	0,000
pengolahan (IP)				
Pengadaan	β_3	5,5327e+01	4,854	5,687e-06
listrik dan gas				
(PLG)				
Konstruksi	β_5	4,1432e+00	9,095	4,645e-14
(KTK)				
Transportasi	eta_7	1,3081e+00	16,778	< 2,2e-16
dan				
pergudangan				
(TP)		(0105 01	0.400	0.040
Jasa Perusahaan	β_{12}	6,8105e-01	0,192	0,848
(JPRS)	0	2 5021 - 04	0.500	0.5(2
Jasa Pendidikan	eta_{14}	2,5021e-01	0,580	0,563
(JP)			-	1447.50
			F _{hit}	1447,52
			p_{value}	< 2,22e - 16
			R ²	99,19%

Sumber: Data diolah, 2020

3.2 Model Fixed Effect

Nilai estimasi model *fixed individual effect* dan *fixed time effect* ditunjukkan di Tabel 2. serta Tabel 3.

Tabel 2. Parameter Model Fixed Individual Effect

Variabel	Para	Nilai	thit	p -Value
	meter	Estimasi	nii	•
Jembrana	α_1	-1492,76	-2,419	0,017
Tabanan	α_2	-1103,20	-0,998	0,321
Badung	α_3	2743,34	2,862	0,005
Gianyar	α_4	-2334,48	-1,79!	0,076
Klungkung	α_5	-1003,87	-2,096	0,039
Bangli	α_6	-1427,70	−2,57 ⁴	0,012
Karangasem	α_7	-286,71	-0,311	0,756
Buleleng	α_8	146,06	0,122	0,902
Denpasar	α_9	-893,47	-0,518	0,605
Pertanian,	β_1	1,953	6,049	5,464e-
kehutanan, dan				08
perikanan (PKP)				
Industri	eta_2	2,982	2,326	0,022
pengolahan (IP)				
Pengadaan listrik	$oldsymbol{eta}_3$	60,540	3,565	0,000
dan gas (PLG)				
Konstruksi (KTK)	eta_5	3,381	5,260	1,345e-
				06
Transportasi dan	eta_7	1,075	11,172	< 2,2e-
pergudangan (TP)				16
Jasa Perusahaan	eta_{12}	4,764	0,529	0,598
(JPRS)		0.500	0.66	0.545
Jasa Pendidikan	eta_{14}	-0,523	-0,60	0,545
(JP)				405.000
			F _{hit}	485,032
			p_{value}	< 2,22e
			n ?	<u>-16</u>
			R^2	97,86%

Sumber: Data diolah, 2020

Tabel 3. Parameter Model Fixed Time Effect

Variabel	Para	Nilai	t _{hit}	p -Value
	meter	Estimasi		
2010	α_1	-1436,73	-2,636	0,010
2011	α_2	-989,50	-1,858	0,067
2012	α_3	-1258,47	-2,391	0,019
2013	α_4	-2325,32	-4,266	5.876e-
				05
2014	α_5	-855,81	-1,483	0,142
2015	α_6	-1608,72	-2,44 1	0,017
2016	α_7	-2231,19	-3,071	0,002
2017	α_8	-2553,53	-3,262	0,001
2018	α_9	-2451,11	-3,037	0,003
2019	α_{10}	-2602,01	-3,162	0,002
Pertanian,	β_1	2,319	11,804	< 2,2e-
kehutanan, dan				16
perikanan (PKP)				
Industri	β_2	2,472	4,303	5,145e-
pengolahan (IP)				05
Pengadaan listrik	β_3	74,469	5,056	3,071e-
dan gas (PLG)				06
Konstruksi (KTK)	eta_5	3,724	7,578	8,691e-
				11
Transportasi dan	eta_7	1,357	17,233	< 2,2e-
pergudangan (TP)				16
Jasa Perusahaan (JPRS)	eta_{12}	-0,129	-0.037	0,970
Jasa Pendidikan	β_{14}	-0,386	-0,745	0,458
(JP)	P14	0,500	0,7 4.	0,130
			F _{hit}	1275,36
			p_{value}	< 2,22e-
				16

Sumber: Data diolah, 2020

3.3 Model Random Effect

Nilai estimasi model *random effect* ditunjukkan pada Tabel 4.

Tabel 4. Parameter Model Random Effect

Variabel	Para	Nilai Estimasi	t_{hit}	p -Value
	mete r	Estillasi		
Intersep	α	-723,509	-1,328	0,184
Pertanian,	β_1	1,983	9,223	< 2,2e-
kehutanan, dan perikanan (PKP)				16
Industri pengolahan (IP)	β_2	2,127	2,502	0,012
Pengadaan listrik dan gas (PLG)	β_3	57,470	4,439	9,035e- 06
Konstruksi (KTK)	$oldsymbol{eta}_5$	3,949	7,030	2,057e- 12
Transportasi dan pergudangan (TP)	β_7	1,157	12,961	< 2,2e- 16
Jasa Perusahaan (JPRS)	β_{12}	3,184	0,532	0,594
Jasa Pendidikan (JP)	β_{14}	-0,161	-0,249	0,802
			\boldsymbol{F}_{hit}	4631,51
			p_{value}	< 2,22e
				- 16
			R^2	98,26%

Sumber: Data diolah, 2020

3.4 Uji Chow dan Uji Hausman

1. Uji Chow

Pada uji ini mempertimbangkan intersep, dengan hipotesis sebagai berikut:

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \cdots = \alpha_9$$

 H_1 : ada satu $\alpha_i \neq \alpha_i$

Dari hasil perhitungan, memperoleh nilai $p_{value} = 0.012 < \alpha(0.05)$, maka keputusannya tolak H_0 . Hal ini berarti minimal terdapat satu kabupaten/kota yang memiliki perbedaan intersep. Sehingga model yang cocok yaitu model *fixed time effect*.

2. Uji Hausman

Uji ini akan membandingkan FEM dengan REM, dengan hipotesis sebagai berikut:

 $H_0: E(w_{it}|X_{it}) = 0$

 $H_1: E(w_{it}|X_{it}) \neq 0$

Hasil perhitugan diperoleh, nilai $p_{value} = 0,000 < \alpha(0,05)$. Maka tolak H_0 , yang berarti bahwa model *random effect* tidak konsisten. Sehingga *fixed time effect* yang digunakan untuk analisis selanjutnya.

99,18%

3.4 Uji Signifikan Parameter

Terdiri atas dua tahap pengujian yaitu uji F (simultan) dan uji T (parsial). Pada uji F dengan memperhatikan model yang terpilih yaitu model *fixed time effect* dalam Tabel 3. diperoleh nilai $p_{value} = < 2,22e - 16 < \alpha(0,05)$, maka tolak H_0 . Hal tersebut menunjukkan ada variabel bebas yang berpengaruh terhadap variabel respon.

Pada pengujian menggunakan uji t dengan model *fixed time effect* yang terdapat dalam Tabel 3. diperoleh bahwa pertanian, kehutanan, dan perikanan (PKP), industri pengolahan (IP), pengadaan listrik dan gas (PLG), konstruksi (KTK), serta transportasi, dan pergudangan (TP) memiliki nilai $p_{value} < \alpha(0.05)$, maka tolak H_0 . Maka, kelima variabel tersebut berpengaruh signifikan terhadap PDRB Provinsi Bali.

3.6 Uji Kebergantungan Spasial

Terdapat dua uji yang dilakukan uji pengaruh *lag* spasial dan uji pengaruh *error* spasial yang dilakukan dengan menggunakan *Lagrange Multiplier* (LM). Secara singkat perolehan hasil ditunjukkan pada Tabel 5.

Tabel 5. Hasil Uji *Lagrange Multiplier*

Model	Statistik Uji	р-
	LM	Value
Spatial lag model	0,0081	0,0019
(SAR)		
Spatial error model	3,8681	0,63
(SEM)		

Sumber: Data diolah, 2020

Pada tabel di atas diperoleh model *spatial* lag memiliki $p_{value} < \alpha(0,05)$, maka keputusannya tolak H_0 . Dengan demikian, terdapat kebergantungan spasial terhadap variabel respon.

3.6 Model Spatial Lag Fixed Effect

Nilai estimasi model *random effect* ditunjukkan pada Tabel 6.

Tabel 6. Parameter Model Spatial Lag Fixed Effect

Variabel	Para meter	Nilai Estimasi	Wald	p -Value
Intersep	\hat{eta}_0	22,28	0,053	0,957
Pertanian, kehutanan, dan perikanan (PKP)	\hat{eta}_1	2,2478	13,362	< 2,2e-16
Industri pengolahan (IP)	\hat{eta}_2	1,9470	3,779	0,0001
Pengadaan listrik dan gas (PLG)	\hat{eta}_3	77,1702	6,161	7,213e-10
Konstruksi (KTK)	\hat{eta}_5	4,4152	9,432	< 2,2e-16
Transportasi dan pergudangan (TP)	\hat{eta}_7	1,2156	15,281	< 2,2e-16
Jasa Perusahaan (JPRS)	\hat{eta}_{12}	3,3291	1,060	0,2888
Jasa Pendidikan (JP)	\hat{eta}_{14}	-0,8815	-1,895	0,0580
Autokorelasi Spasial	$\hat{\delta}$	-0,1160	-3,338	0,0008
			R ²	99,41%

Sumber: Data diolah, 2020

Dari hasil p_{value} $\hat{\delta}$ lebih kecil dari pada $\alpha(0,05)$. Hal tersebut, terdapat kebergantungan lag terhadap variabel respon. Memiliki variabel bebas yang signifikan yaitu pertanian, kehutanan, dan perikanan (PKP), industri pengolahan (IP), pengadaan, listrik, dan gas (PLG), konstruksi (KTK), serta transportasi, dan pergudangan (TP) dengan $p_{value} < \alpha(0,05)$.

3.8 Interpretasi Model

Model yang terbentuk pada spatial lag fixed effect sebagai berikut:

$$\begin{split} Y_{it} &= 22,28 - 0,116 \sum_{j=1}^{9} w_{ij} \, Y_{jt} + 2,247 PK P_{it} \\ &+ 1,947 I P_{it} + 77,170 PL G_{it} + 4,415 KT K_{it} \\ &+ 1,215 T P_{it} + 3,329 J PR S_{it} - 0,881 J P_{it} \\ &+ \mu_t + \varepsilon_{it} \quad ; i,j = 1,2,\cdots 9 \\ ; i \neq j \; ; t = 2010,\cdots 2019 \end{split}$$

Model spatial *lag fixed effect* diatas memiliki perbedaan nilai konstanta di setiap waktu, karena terdapat *effect time series*. Nilai pengaruh waktu dapat dilihat dalam Tabel 7.

Tabel 7. Dugaan Pengaruh Waktu

Tahun	Pengaruh
2010	-437.217
2011	129.321
2012	-104.781
2013	-788.504
2014	895.145
2015	371.257
2016	-71.199
2017	-233.860
2018	102.193
2019	137.643

Sumber: Data diolah, 2020

Persamaan model *spatial lag fixed effect* yang berpengaruh signifikan dapat diinterpretasikan sebagai berikut:

- 1. Pada tahun amatan ke-t, koefisien $\delta = -0.116$ bermakna jika nilai PDRB suatu wilayah ke-i akan berkurang sebesar 0,116 kali dari rataan nilai PDRB wilayah yang bertetanggaan terhadap wilayah tersebut.
- 2. Pada tahun amatan ke-t, koefisien $\beta_1 = 2,247$ bermakna ketika pertanian, kehutanan dan perikanan pada suatu kabupaten/kota ke-i meningkat sebesar 1% dibandingkan kabupaten lainnya maka PDRB kabupaten/kota tersebut akan meningkat sebesar 2,247 miliar pada tahun tersebut, dengan asumsi variabel lainnya bernilai tetap dan sama dengan kabupaten/kota lainnya.
- 3. Pada tahun amatan ke-t, koefisien $\beta_2 = 1,947$ bermakna ketika industri pengolahan pada suatu kabupaten/kota ke-i meningkat sebesar 1% dibandingkan kabupaten lainnya maka PDRB kabupaten/kota tersebut akan meningkat sebesar 1,947 miliar pada tahun tersebut, dengan asumsi variabel lainnya bernilai tetap dan sama dengan kabupaten/kota lainnya.
- 4. Pada tahun amatan ke-t, koefisien $\beta_3 = 77,170$ bermakna ketika pengadaan listrik dan gas pada suatu kabupaten/kota ke-i meningkat sebesar 1% dibandingkan kabupaten lainnya maka PDRB kabupaten/kota tersebut akan meningkat sebesar 77,170 miliar pada tahun tersebut, dengan asumsi variabel lainnya bernilai tetap dan sama dengan kabupaten/kota lainnya.

- Pada tahun amatan ke-t, koefisien $\beta_5 = 4{,}415$ bermakna ketika konstruksi pada kabupaten/kota suatu 1% dibandingkan meningkat sebesar kabupaten lainnya maka **PDRB** kabupaten/kota tersebut akan meningkat sebesar 4,415 miliar pada tahun tersebut, dengan asumsi variabel lainnya bernilai tetap dan sama dengan kabupaten/kota lainnva.
- Pada tahun amatan ke-t, koefisien $\beta_7 = 1,215$ bermakna ketika transportasi dan pergudangan pada suatu kabupaten/kota ke−i meningkat sebesar 1% dibandingkan kabupaten lainnya maka PDRB kabupaten/kota tersebut akan meningkat sebesar 1,215 miliar pada tahun tersebut, dengan asumsi variabel lainnya bernilai tetap dan sama dengan kabupaten/kota lainnya.

4. KESIMPULAN DAN SARAN

4.1 Kesimpulan

Model terbaik pada penelitian ini yaitu model *spatial lag fixed effect* dengan R^2 sebesar 99,41%, hal tersebut menunjukkan variabel bebas pada model dapat menjelaskan PDRB Provinsi Bali 99,41%, sedangkan sisanya dijelaskan oleh variabel lain yang tidak diteliti.

Diperoleh variabel bebas yang signifikan mempengaruhi produk domestik regional bruto di Provinsi Bali adalah pertanian kehutanan dan perikanan, industri pengolahan, pengadaan gas dan listrik, konstruksi, serta transportasi dan, pergudangan.

4.2 Saran

Diharapkan untuk lebih memperhatikan sektor-sektor seperti pengadaan listrik dan gas, konstruksi, pertanian kehutanan dan perikanan yang berpengaruh terhadap PDRB Bali, maka dapat dijadikan patokan dalam pengembangan pertumbuhan ekonomi agar tidak mengandalkan bidang pariwisata.

DAFTAR PUSTAKA

Baltagi, B. H., 2005. *Econometric Analysis of Panel Data*. 3rd. England: John Wiley & Sons Ltd.

- Bank Indonesia, 2019. *Produk Domestik Regional Bruto (PDRB)*. Jakarta: Bank Indonesia.
- BPS Bali, 2019. Produk Domestik Regional Bruto Provinsi Bali Menurut Lapangan Usaha 2014-2018. Bali: Badan Pusat Statistik Provinsi Bali.
- BPS Provinsi Bali, 2019. *Pertumbuhan Ekonomi Bali Tahun 2019*. Bali: Badan Pusat Statistik Provinsi Bali.
- Gujarati, D. N. & Porter, D. C., 2009. *Basic Econometrics*. 5th. New York: The McGraw-Hill.
- Haryanto, S. & Saryono, A., 2018. Pemodelan PDRB Sektor Kontruksi di Jawa Timur Tahun 2010-2015 dengan Regresi Data

- Panel. *Jurnal MSA*, Volume 06, No. 2, pp. 1-7.
- Lasdiyanti, M., Kencana, E. N. & Suciptawati, P., 2019. Modeling Human Development Index of Bali with Spatial Panel Data Regression. *European Journal Of Engineering Research And Science*, Volume 4, No. 5, pp. 1-5.
- LeSage, J. P., 1999. *The Theory and Practice of Spatial Econometrics*. United States: University of Toled.
- Widiadnyani, N. L. G., Suciptawati & Susilawati, 2019. Model angka partisipasi sekolah jenjang SMA sederajat di Provinsi Bali. *E-Jurnal Matematika*, Volume 8(3), pp. 179-183.