Structural Patterns Heuristics via Fork Decomposition

Michael Katz Carmel Domshlak

Technion, IE&M

ICAPS-08

Introduction

Abstraction

Projections

Abstractions

Performance

Context

Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Classical Planning

Planning task is 5-tuple $\langle V, A, C, s^0, G \rangle$:

- *V*: finite set of finite-domain state variables
- A: finite set of actions of form \(\rangle \text{pre}, \text{eff} \) \(\rangle \text{preconditions/effects; partial variable assignments} \)
- $C: A \mapsto \mathbb{R}^{0+}$ captures action cost
- s^0 : initial state (variable assignment)
- G: goal description (partial variable assignment)

Introduction

.

i rojections

Abstractions

enomiano

Summarv

Context

Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Cost-Optimal Planning

Given: planning task $\Pi = \langle V, A, s^0, G \rangle$

Find: operator sequence $a_1 \dots a_n \in A^*$

transforming s^0 into some state $s_n \supseteq G$,

while minimizing $\sum_{i=1}^{n} C(a_i)$

Approach: A* + admissible heuristic $h: S \mapsto \mathbb{R}^{0+}$

Introduction

Abstractions

eriormano

Summarv

Context

Abstraction-based Admissible Heuristics for Cost-Optimal Classical Planning

Abstraction heuristics

Heuristic estimate is goal distance in abstracted state space S^\prime

Well-known: projection (pattern database) heuristics

Here we: both generalize and enhance them

Introduction

Abstractions

eriorinano

Transition Graphs

Transition graph

TG-structure $T = (S, L, Tr, s^0, S^*)$:

- S: finite set of states
- L: finite set of transition labels
- $Tr \subseteq S \times L \times S$: labelled transitions
- $s^0 \in S$: initial state
- $S^* \subseteq S$: goal states

Transition graph $\langle \mathcal{T}, arpi angle$:

- \bullet T: TG-structure with labels L
- transition cost function $\varpi: L \mapsto \mathbb{R}^{0+}$

Transition graph $(2,\omega)$.

Introduction

Abstractions

Frojections

Structural Abstractions

'erformanc

ummary

(Transition graph of planning task defined in the obvious way.)

Transition Graphs

Transition graph

TG-structure $T = (S, L, Tr, s^0, S^*)$:

- S: finite set of states
- L: finite set of transition labels
- $Tr \subseteq S \times L \times S$: labelled transitions
- $s^0 \in S$: initial state
- $S^{\star} \subseteq S$: goal states

Transition graph $\langle \mathcal{T}, \varpi \rangle$:

- T: TG-structure with labels L
- transition cost function $\varpi: L \mapsto \mathbb{R}^{0+}$

(Transition graph of planning task defined in the obvious way.)

Abstractions

Projections

Structural Abstractions

ertormance

(Additive) Abstractions

Definition (additive abstractions)

Additive abstraction of transition graph $\langle \mathcal{T}, \varpi \rangle$ is $\{\langle \langle \mathcal{T}_i, \varpi_i \rangle, \alpha_i \rangle\}_{i=1}^m$ where

- $\langle \mathcal{T}_i, \varpi_i \rangle$: transition graph
- ullet α_i maps states of \mathcal{T} to states of \mathcal{T}_i such that
 - initial state maps to initial state
 - goal states map to goal states
- holds $\sum_{i=1}^m d(\alpha_i(s), \alpha_i(s')) \leq d(s, s')$

Abstraction heuristic:

$$h(s) = \sum_{i=1}^{m} d(\alpha_i(s), S_i^{\star})$$
 is (trivially) admissible

Introductio

Abstractions

Projection:

Structural Abstractions

'erformanc

Summarv

Projections

Widely-exploited idea: projections

→ map states to abstract states with perfect hash function

Definition (projection)

Projection $\Pi^{[V']}$ to variables $V' \subseteq V$: homomorphism α where $\alpha(s) = \alpha(s')$ iff s and s' agree on V'

Each $a \in A$ satisfies $C(a) \ge \sum_{i=1}^m C_i(a^{[V_i]})$

Introduction

Abstractions

Projections

Abstractions

Performance

Problems of Projections

No tricks: abstract spaces are searched exhaustively

- \sim must keep number of reflected variables in each projection small $(\leq O(\log(|V|)))$
- → (often) price in heuristic accuracy in long-run

Introduction

Abstractions

Projections

Structural Abstractions

²erformance

Structural Abstraction Heuristics: Main Idea

Objective

(Katz & D, 2008a):

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

• guarantee abstract space can be searched (implicitly) in poly-time

Introduction

Abstractions

Projections

Structural Abstractions

'erformance

Summanı

Structural Abstraction Heuristics: Main Idea

Objective

(Katz & D, 2008a):

Instead of perfectly reflecting a few state variables, reflect many (up to $\Theta(|V|)$) state variables, BUT

• guarantee abstract space can be searched (implicitly) in poly-time

Introduction

Abstractions

Projections

Structural Abstractions

Performance

Summary

How

Abstracting Π by an instance of a tractable fragment of cost-optimal planning

- not many such known tractable fragments
- should find more, and useful for us!

Running Example Adapted from Malte Helmert

$$V = \{p_1, p_2, c_1, c_2, c_3, t\}$$

$$dom(p_1) = dom(p_2) = \{A, B, C, D, E, F, G, c_1, c_2, c_3, t\}$$

$$dom(c_1) = dom(c_2) = \{A, B, C, D\}$$

$$dom(c_3) = \{E, F, G\}$$

$$dom(t) = \{D, E\}$$

$$s^0, G \mapsto \text{ see picture}$$

$$A \mapsto \text{ loads, unloads, single-segment movements}$$

Introductio

Structural

Abstractions

renormance

Fork-Decomposition (Additive Abstractions)

IIItroduction

Abstraction

Projections Structural

Abstractions

Performance

Summary

+ ensuring proper action cost partitioning

Forks and Inverted Forks are Hard ...

- Even non-optimal planning for problems with fork and inverted fork causal graphs is NP-complete (Domshlak & Dinitz, 2001).
- ② Even if the domain-transition graphs of all variables are strongly connected, optimal planning for forks and inverted forks remains NP-hard (Helmert, 2003-04).

IIItioductio

Abstractions

Projections

Structural Abstractions

Performance

→ Shall we give up?

Tractable Cases of Planning with Forks

Theorem (forks)

Cost-optimal planning for fork problems with root $r \in V$ is poly-time if

- (i) |dom(r)| = 2, or
- (ii) for all $v \in V$, we have |dom(v)| = O(1),

IIItroductioi

Abstractions

Projections

Structural Abstractions

Performanc

Summary

Theorem (inverted forks)

Cost-optimal planning for (1-dependent) inverted fork problems with root $r \in V$ is poly-time if |dom(r)| = O(1).

Mixing Causal-Graph & Variable-Domain Decompositions

Introduction

Abstraction

Projections Structural

Abstractions

Performance

Summary

+ ensuring proper action cost partitioning

Back to our example

Introductio

Abstraction

Projections

Abstraction

Performance

Informative?

(Intractable) Fork Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\text{max}} = 8$ $h^2 = 13$ $h^{\mathfrak{F}} = 15$

- h_{max} (Bonet & Geffner, 2001)
- h^2 (Haslum & Geffner, 2000)

Introduction

Abstractions

Projections

Structural Abstractions

Performance

·....

Informative?

(Intractable) Fork Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\text{max}} = 8$ $h^2 = 13$ $h^{\mathfrak{P}} = 15$

(Tractable) Fork + Variable-Domains Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\text{max}} = 8$ $h^2 = 13$ $h^{33} = 16$

introduction

Abstractions

Projections

Structural Abstractions

Performance

Summary

Hmm ... what?

Further abstraction gives a more precise estimate??

Informative?

(Intractable) Fork Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\text{max}} = 8$ $h^2 = 13$ $h^{\mathfrak{FI}} = 15$

(Tractable) Fork + Variable-Domains Decomposition

$$d(s^0, S_G) = 19$$
 $h_{\text{max}} = 8$ $h^2 = 13$ $h^{\mathfrak{I}} = 16$

IIILIOGUCLIOI

Abstractions

Projections

Abstractions

Performance

ummarv

Hmm ... yes, that is possible!

Variable-domains abstraction may eliminate certain dependencies between the variables \sim less dependencies \sim less action representatives \sim less action cost erosion \sim (potentially) higher estimate

Performance Evaluation

Option 1: Empirical evaluation

Implement h, plug into A^* , test (comparatively) on standard benchmark suites

- © standard approach, per-problem-instance comparison
- ② no conclusions a la

"h expands fewer nodes than h' on a benchmark suite X"

Introduction

Abstractions

Projections

Structural

Performance

Performance Evaluation

Option 1: Empirical evaluation

Implement h, plug into A^* , test (comparatively) on standard benchmark suites

Option 2: Asymptotic performance analysis (Helmert and Mattmüller, 2008)

Given suite \mathcal{D} and heuristic h, find a value $\alpha(h, \mathcal{D}) \in [0, 1]$ such that

- (i) for all states s in all problems $\Pi \in \mathcal{D}$, $h(s) \geq \alpha(h, \mathcal{D}) \cdot h^*(s) + o(h^*(s))$
- (ii) there exist $\{\Pi_n\}_{n\in\mathbb{N}}\subseteq\mathcal{D}$ and solvable states $\{s_n\}_{n\in\mathbb{N}}$ with $s_n\in\Pi_n$, $\lim_{n\to\infty}h^*(s_n)=\infty$, and $h(s_n)\leq\alpha(h,\mathcal{D})\cdot h^*(s_n)+o(h^*(s_n))$

Introduction

Abstraction

Projections

Structural Abstractions

Performance

Asymptotic Performance Ratios

Selected benchmark suites

Domain	h^+	h^k	h^{PDB}	h_{add}^{PDB}	$h^{\mathfrak{F}}$	$h^{\mathfrak{I}}$	$h^{\mathfrak{FI}}$
GRIPPER	2/3	0	0	2/3	2/3	1/2	2/3
LOGISTICS	3/4	0	0	1/2	1/2	1/2	1/2
Blocksworld	1/4	0	0	0	0	0	0
MICONIC	6/7	0	0	1/2	5/6	1/2	1/2
SATELLITE	1/2	0	0	1/6	1/6	1/6	1/6

ratios for h^+ , h^k , $h^{\rm PDB}$, $h^{\rm PDB}_{\rm add}$ are by Helmert and Mattmüller, 2008.

Introduction

.

Structural

_ .

Performance

Asymptotic Performance Ratios

Selected benchmark suites

Domain	h^+	h^k	h^{PDB}	h_{add}^{PDB}	$h^{\mathfrak{F}}$	$h^{\mathfrak{I}}$	$h^{\mathfrak{FI}}$
GRIPPER	2/3	0	0	2/3	2/3	1/2	2/3
Logistics	3/4	0	0	1/2	1/2	1/2	1/2
Blocksworld	1/4	0	0	0	0	0	0
MICONIC	6/7	0	0	1/2	5/6	1/2	1/2
SATELLITE	1/2	0	0	1/6	1/6	1/6	1/6

 $h_{\mathsf{add}}^{\mathsf{PDB}}$: optimal, manually-selected set of projections

 $h^{
m FI}$: non-parametric set of abstractions basic variable-domain abstractions to binary/ternary

Introduction

. . .

Structural Abstractions

Performance

Summary

What we do

From small projections to large structural abstractions

Future work

- more tractability results for cost-optimal planning!
- optimization of variable-domains abstraction
- approximation-oriented structural patterns
- ...
- implementation and empirical evaluation

Introductio

Abstractions

Projections

Abstractions

Performance