CS 6041 Theory of Computation

Non-context-free language

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

• $A = \{ 0^n 1^n \mid n \ge 0 \}$

Context-free language

- Why A is context-free?
 - G_1 =({S},{0,1}, {S→0S1, S→ε}, S)

A= { 0ⁿ1ⁿ | n≥0 }
 Context-free language

 $\{ 0^{n}1^{n} \mid n \ge 0 \}$

• A= $\{ 0^n 1^n \mid n \ge 0 \}$ Context-free language

B = { aⁿbⁿcⁿ | n≥0 }
 Non-context-free language

C = { ww | w∈{0,1}* }Non-context-free language

Pumping lemma

Suppose A is CFL,

then there exist a number p(the pumping length) where,

if $s \in A$ and $|s| \ge p$, then s = UVXYZ,

Satisfying the following

- 1) ∀i≥0, uvⁱxyⁱz∈A;
- 2) |vy|>0;
- 3) |vxy|≤p.

Parse tree of CFL

Grammar G₁:

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

• Derivation: A \Rightarrow 0A1 \Rightarrow 00A11

$$\Rightarrow$$
 000A111 \Rightarrow 000B111 \Rightarrow 000#111

Pumping lemma

Suppose A is CFL,

then there exist a number p(the pumping length) where,

b is 3 for Grammar G₁:

 $A \rightarrow 0A1$

 $A \rightarrow B$

 $B \rightarrow \#$

Suppose G is A's CFG.

Let b is the longest length of right part of rule (b≥2) in parse tree of G, every node has at most b children.

For parse tree with h height, the length of string which it generates will not longer than bh.

For parse tree with h height, the length of string which it generates will be not longer than bh.

Suppose G has |V| variables, and let $p=b^{|V|+2}$, then for string which length is no less than p, its parse tree height is at least |V|+2

Suppose s is a string, $|s| \ge p$, and s has the minimum leaf nodes in all its parse tree, then

the height of parse tree for s is no less than |V|+2

As the leaf is terminal, so the variable in the path is no less than |V|+1 (due to |V|+2 - 1)

Based on pigeonhole principle, there must be **one variable** that appears more than once.

Suppose the last repeated variable in the path is R

Divide s into uvxyz;

The bottom of R has smaller subtree generating x;

The top of R has larger subtree generating vxy;

As the bottom of R could have the same derivation of the top R, therefore,

∀i≥0, uvⁱxyⁱz∈A

v and y cannot be empty string at the same time

Because if that happens, we can use the smaller subtree to replace the larger subtree to get s.

However, that is contradicted with that the parse tree has the minimum nodes. Thus,

|vy|>0

As the height of subtree generating vxy is no more than |V|+2, (R could be at most as A)

thus maximum length of string this subtree can generate is no more than b|V|+2=p

$$|vxy| \leq p$$

#

• A= $\{ 0^n 1^n \mid n \ge 0 \}$ Context-free language

• B = {
$$a^nb^nc^n | n \ge 0$$
 }

Non-context-free language

•
$$C = \{ ww \mid w \in \{0,1\}^* \}$$

Non-context-free language

1) ∀i≥0, uvⁱxyⁱz∈A;

- 2) |vy|>0;
- 3) |vxy|≤p.

Example: $B=\{a^nb^nc^n \mid n\geq 0\}$

• Proof:

Suppose B is CFL, p is the pumping length,

let s=apbpcp

Then s = uvxyz, that

∀i≥0, uvⁱxyⁱz∈B;

|vy|>0, v and y have at least one kind
of symbol;

|vxy|≤p, v and y have at most two
kinds of symbol;

Example: $B=\{a^nb^nc^n \mid n\geq 0\}$

- 1) ∀i≥0, uvⁱxyⁱz∈A;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

If v and y have one kind of symbol, then in uvⁱxyⁱz (i>1), a/b/c has different numbers;

If v and y have two kinds of symbol, then in uvⁱxyⁱz (i>1), a/b/c has different numbers;

Contradiction.

- A= { 0ⁿ1ⁿ | n≥0 }
 Context-free language
- B = { aⁿbⁿcⁿ | n≥0 }
 Non-context-free language
- $C = \{ a^i b^j c^k \mid 0 \le i \le j \le k \}$ Non-context-free language
- D = { ww | w∈{0,1}* }Non-context-free language

- 1) $\forall i \geq 0$, $uv^i xy^i z \in A$;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

Suppose C is CFL and p is pumping length, let s=appcp.

Then **s=uvxyz**, satisfying that

∀i≥0, uvⁱxyⁱz∈C;

|vy|>0, v and y have at least one symbol;

 $|\mathbf{vxy}| \le \mathbf{p}$, v and y have at most two symbols.

Example: C = { aⁱb^jc^k | 0≤i≤j≤k }

- 1) $\forall i \geq 0$, $uv^i xy^i z \in A$;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

If v and y have one symbol, then

(1) v and y have a, then i≥0, uvⁱxyⁱz ∉ Cbecause the number of a is larger than b and c;

(2) v and y have b, then i≥0, uvⁱxyⁱz ∉ C because the number of b is larger than c;

(3) v and y have c, then uxz ∉ C because the number of c is less than a and b;

Example: C = { aⁱb^jc^k | 0≤i≤j≤k }

- 1) $\forall i \geq 0$, $uv^i xy^i z \in A$;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

If v and y have two symbols (a and b), then i≥0, uvⁱxyⁱz ∉ C because the number of a and b are larger than c;

If v and y have two symbols (b and c), then i=0, uxz ∉ C because the number of c is less than a;

Contradiction!

 $D=\{ww | w \in \{0,1\}^*\}$

- 1) $\forall i \geq 0$, $uv^i xy^i z \in A$;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

Suppose D is CFL and p is the pumping length

Let $s = 0^p 1^p 0^p 1^p$, then s = uvxyz, $|vxy| \le p$, $uv^i xy^i z \in D$

Discuss D depends on the position of vxy

 $D=\{ww | w \in \{0,1\}^*\}$

- 1) ∀i≥0, uvⁱxyⁱz∈A;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

(1) If vxy is at the first half of ww, then

in uv²xy²z, the second-half starts with 1 while the first-half starts with 0

uv²xy²z is not in form of ww. Contradiction!

 $D=\{ww | w \in \{0,1\}^*\}$

- 1) ∀i≥0, uvⁱxyⁱz∈A;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

(2) If vxy is at the second half of ww, then

in uv²xy²z, the second-half ends with 1 while the first-half ends with 0

uv²xy²z is not in form of ww. Contradiction!

$D=\{ww | w \in \{0,1\}^*\}$

- 1) ∀i≥0, uvⁱxyⁱz∈A;
- 2) |vy|>0;
- 3) |vxy|≤p.

• Proof:

(3) If vxy is at the middle of ww containing both 1s and 0s, then $uv^0xy^0z=uxz=0^p\mathbf{1}^i\mathbf{0}^j\mathbf{1}^p~(i< p,j< p)$

0^p1ⁱ0^j1^p is not in form of ww. (First half has more 0 than second half) Contradiction!

CFL operation

- CFL is closure on union (A U B) operation
- Proof:

```
Let L_1 and L_2 be generated by the CFG, G_1 = (V_1, T_1, P_1, S_1) and G_2 = (V_2, T_2, P_2, S_2), respectively
```

Define the CFG, G, that generates $L_1 \cup L_2$ as follows:

```
G = (V_1 \cup V_2 \cup \{S\},

T_1 \cup T_2,

P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\},

S).
```

Review

Design CFG for $\{w \mid w=0^n1^n \text{ or } w=1^n0^n, n\geq 0\}$

Ν

- Design CFG for $\{w \mid w=0^n1^n, n\geq 0\}$
 - \rightarrow G₁=({S₁},{0,1},{S₁ \rightarrow 0S₁1,S₁ \rightarrow ϵ },S₁)
- o Design CFG for $\{w \mid w=1^n0^n, n \ge 0\}$
 - ► $G_2 = (\{S_2\}, \{0,1\}, \{S_2 \rightarrow 1S_2 0, S_2 \rightarrow \epsilon\}, S_2)$

S)

CFL operation

CFL is closure on union (A U B) operation

- CFL is not closure on intersection (A ∩ B) operation
 - A={ $a^nb^nc^m \mid n,m\geq 0$ } is CFL
 - o B={ $a^mb^nc^n | n,m≥0$ } is CFL
 - o A∩B={ $a^nb^nc^n | n \ge 0$ } is not CFL (using pumping lemma)

• CFL is not closure on complement (\overline{A}) operation

CFL operation

• CFL is not closure on complement (\overline{A}) operation

• Proof:

Assume the complement of CFL is also a CFL

Let L₁ and L₂ be two CFLs

Then $\overline{L_1}$ and $\overline{L_2}$ are also two CFLs

Because CFL is closure on union, then $\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$ is also a CFL, contradiction!

Operation on languages

	RL: DFA/NFA/RE	CFL: CFG/PDA	TM
Union	close	close	?
Concatenation	close	close	?
Intersection	close	not close	Ś
Star	close	close	,
Complement	close	not close	?
Boolean operation	close	/	?