Обработка естественных языков

Лекция 1 Введение в NLP Введение в машинное обучение

Требования к курсу

- 1. Лекции + семинары (посещаемость, 5-минутные тесты) (*тах 1 балл*);
- 2. Индивидуальный проект:
 - а. Реферат (*max 1 балл*);
 - b. Доклад (*max 1 балл*);
 - с. Проект (*max 1 балл*);
- 3. Контрольная работа (*max 1 балл*)

Итоговая оценка = количество набранных баллов

Содержание курса

- 1. Этапы обработки текстов;
- 2. Основные задачи NLP;
- 3. Машинное обучение в NLP

Natural Language Processing

Natural-language processing (NLP) is a field of computer science, artificial intelligence concerned with the interactions between computers and human (natural) languages.

- **1950** Turing test
- 1954 Georgetown experiment (Machine Translation)
- 1970s conceptual ontologies
- 1980s 1990s statistical revolution
- **Currently** Deep Learning algorithms

Computer Linguistics Tasks:

- 1. Information Retrieval: Google, Yahoo!;
- 2. Information Extraction: *RCO Fact Extractor*;
- 3. Machine Translation: *PROMT*, *Google Translate*;
- 4. Automatic Text Summarization: *TextAnalyst*, *Extractor*, *Text Miner*;
- 5. Corpus Linguistics: RusCorpora, OpenCorpora;
- 6. Expert Systems: *IBM Watson*, *Wolfram Alfa*;
- 7. Question Answering Systems: *IBM Watson*, *Siri*;
- 8. Electronic dictionaries, thesaurus, onthology creation;
- 9. Optical Character Recognition: *Fine Reader*,
- 10. Automatic Speech Recognition: *plug-in in Google Chrome*;
- 11. Text-To-Speech: Google Translate

Machine learning: introduction

Methods to solve NLP tasks

- Rule-based;
- Statistical;
- Machine Learning

Machine Learning

Machine learning is the subfield of computer science that explores the study and construction of algorithms that can learn from and make predictions on data.

Machine learning applications:

- NLP;
- Computer Vision;
- Optical Character Recognition (OCR);
- Business analytics;
- etc

Machine Learning

Machine Learning tasks:

- **Supervised learning**: The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs;
- Unsupervised learning: No labels are given to the learning algorithm, leaving it on its own to find structure in its input;
- Reinforcement learning: A computer program interacts with a dynamic environment in which it must perform a certain goal. The program is provided feedback in terms of rewards and punishments as it navigates its problem space.

Machine Learning

Machine learning tasks:

- In classification, inputs are divided into two or more classes, and the learner must produce a model that assigns unseen inputs to one or more (multi-label classification) of these classes;
- In **regression**, also a supervised problem, the outputs are continuous rather than discrete;
- In **clustering**, a set of inputs is to be divided into groups. Unlike in classification, the groups are not known beforehand, making this typically an unsupervised task;
- Density estimation finds the distribution of inputs in some space;
- **Dimensionality reduction** simplifies inputs by mapping them into a lower-dimensional space.

Classification

In classification, inputs are divided into two or more classes, and the learner must produce a model that assigns unseen inputs to one or more (multi-label classification) of these classes

Regression

In **regression**, also a supervised problem, the outputs are continuous rather than discrete

Clustering

In **clustering**, a set of inputs is to be divided into groups. Unlike in classification, the groups are not known beforehand, making this typically an unsupervised task

(Feature, Label) - Sample

(Feature, Label) - Sample

. . . .

(Feature, Label) - Sample

Данные

Терминология ML

Label (метка) - это то, что мы предсказываем. Это может быть цена дома, тип животного на картинке, часть речи слова - в общем, почти всё что угодно.

Feature (признак) - это входная переменная. Самая простая модель может использовать один единственный признак; более сложные модели могут использовать миллионы признаков.

Например, в задаче определения спам/не спам признаками могут быть:

- слова в тексте письма;
- адрес отправителя;
- время дня, в которое было отправлено письмо;
- наличие в письме фразы "Ваш адрес был выбран победителем";
- и др.

Терминология ML

Sample - это конкретный пример данных. Samples бывают двух видов:

- 1. labeled (размеченные);
- 2. unlabeled (неразмеченные).

Размеченный sample включает и признак, и label:

labeled examples: {features, label}: (x, y)

Неразмеченный sample содержит только признак:

unlabeled examples: {features, ?}: (x, ?)

Итак, предположим, что Вы хотите разработать модель, которая будет предсказывать, является ли письмо спамом или нет. В качестве данных у нас есть набор писем, которые были помечены пользователями как "спам" или "не спам". Какие утверждения верны?

- 1. Слова в теме письма будут хорошими labels.
- 2. Вы будете использовать неразмеченные данные, чтобы обучить модель.
- 3. Те письма, которые не помечены "спам" или "не спам", неразмеченные примеры.
- 4. Не все labels, которыми помечены письма, могут быть надёжными.

Итак, предположим, что Вы хотите разработать модель, которая будет предсказывать, является ли письмо спамом или нет. В качестве данных у нас есть набор писем, которые были помечены пользователями как "спам" или "не спам". Какие утверждения верны?

- 1. Слова в теме письма будут хорошими labels.
- 2. Вы будете использовать неразмеченные данные, чтобы обучить модель.
- 3. Те письма, которые не помечены "спам" или "не спам", неразмеченные примеры.
- 4. Не все labels, которыми помечены письма, могут быть надёжными.

Теперь представим, что обувной он-лайн магазин хочет создать модель, которая будет рекомендовать пользователям обувь. То есть, модель будет рекомендовать определённые пары обуви Кейт и совершенно другие - Джону. Какие утверждения верны?

- 1. "Пользователь кликнул на описание обуви" хороший label.
- 2. "Размер обуви" полезный признак.
- 3. "Красота обуви" полезный признак.
- 4. "Обувь, которую обожает пользователь" хороший label.

Теперь представим, что обувной он-лайн магазин хочет создать модель, которая будет рекомендовать пользователям обувь. То есть, модель будет рекомендовать определённые пары обуви Кейт и совершенно другие - Джону. Какие утверждения верны?

- 1. "Пользователь кликнул на описание обуви" хороший label.
- 2. "Размер обуви" полезный признак.
- 3. "Красота обуви" полезный признак.
- 4. "Обувь, которую обожает пользователь" хороший label.

K-Nearest Neighbours

Линейный классификатор

$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$

Обучение модели

+		+	
I	nput	Actual output	Desired output
+	0	0	 0
ĺ	1	3	2
	2	6	4
	3	9	6
	4	12	8
+		+	

Обучение модели

Input	actual	Desired	Absolute Error	Square Error
0	0	0	0	0
1	3	2	1	1
2	6	4	2	4
3	9	6	3	9
4	12	8	4	16
Total:	_	- 1	10	30

Обучение модели

Input	Output	W=3	rmse(3)	W=3.0001	rmse
0	0	0	0	0	0
1	2	3	1	3.0001	1.0002
2	4	6	4	6.0002	4.0008
3	6	9	9	9.0003	9.0018
4	8	12	16	12.0004	16.0032
Total:	- 1	- 1	30	_	30.006

W = 2.9999, rmse - ?

Стохастический градиентный спуск

Back-propagate error

Neural Networks

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural Networks

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs. **Right:** A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.

Machine Learning

Deep Learning

Overfitting

Overfitting

Overfitting

Train/val/test splitting

Cross-validation

Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 1
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 2
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 3
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 4
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Metric 5

Training data

Test data

Machine Learning Software

http://dlib.net/ - dlib: C++ library;

<u>http://www.heatonresearch.com/encog/</u> - Encog: machine learning framework available for Java, .Net, and C++;

http://scikit-learn.org/stable/ - scikit-learn: machine learning library for the Python;

<u>https://www.tensorflow.org/</u> - TensorFlow: An open-source software library for Machine Intelligence;

<u>http://torch.ch/</u> - Torch: machine learning library;

https://keras.io/ - Keras: Deep Learning library for Theano and TensorFlow

Machine Learning Materials

<u>https://www.coursera.org/learn/machine-learning</u> - Course "Machine Learning" by Andrew NG;

<u>http://web.stanford.edu/class/cs224n/index.html</u> - Course "NLP with Deep Learning";

<u>https://yandexdataschool.ru/</u> - Data Analysis School by Yandex;

http://ods.ai/ - Open Data Science community

Neural Networks: demo

- ConvNetJS https://cs.stanford.edu/people/karpathy/convnetjs/
- A Neural Network Playground https://playground.tensorflow.org/