

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

LMD Examen II

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Lógica y Métodos Discretos.

Curso Académico 2022-23.

Grado Doble Grado en Ingienería Informática y Matemáticas.

Grupo Único.

Profesor Francisco Miguel García Olmedo.

Descripción Convocatoria ordinaria.

Fecha 19 de junio de 2023.

Ejercicio 1. Demuestre que las siguientes recurrencias son dos definiciones equivalentes de una misma sucesión de números naturales, digamos $\{u_n\}_{n\geqslant 1}$.

$$f_1 = 2$$
 $g_1 = 2$ $g_2 = 4$ $g_3 = 8$ $g_4 = 14$ $f_n = f_{n-1} + f_{n-2} + f_{n-3}$ $(n > 3)$ $g_n = 2g_{n-1} - g_{n-4}$ $(n > 4)$

¿Puede decir, razonando la respuesta, cuánto valría el elemento u_{49} ? ¿Puede imaginar un problema combinatorio de tamaño $n \ge 1$ que sea contado por cualquiera de las dos definiciones recurrentes?

Fijado $n \in \mathbb{N}, n \geqslant 5$, tenemos que:

$$f_{n} = f_{n-1} + f_{n-2} + f_{n-3} =$$

$$= 2f_{n-1} - f_{n-1} + f_{n-2} + f_{n-3} =$$

$$= 2f_{n-1} - f_{n-2} - f_{n-3} - f_{n-4} + f_{n-2} + f_{n-3} =$$

$$= 2f_{n-1} - f_{n-4}$$

Además, tenemos que $f_4 = 2 + 4 + 8 = 14 = g_4$, por lo que las dos definiciones coinciden en los primeros cuatro términos. Por tanto, tenemos que:

$$f_n = g_n \quad \forall n \in \mathbb{N} \setminus \{0\}$$

Esta recurrencia cuenta el número de formas de lanzar una moneda n veces sin que aparezca una secuencia de 4 caras seguidas, explicada en esta web.

Ejercicio 2. Establezca y seguidamente resuelva un problema de recurrencia que permita contar el número a_n $(n \ge 2)$ de cadenas de n elementos del conjunto $\{0, 1, 2\}$ (i.e. elementos de 3^n) cumpliendo cada una de ellas la condición de contener un único 0 y un único 1.

Resolvamos en primer este problema mediante un enfoque combinatorio. Para ello, fijado $n \in \mathbb{N}$, $n \ge 2$, tenemos que:

- \blacksquare Hay n formas de elegir la posición del 0.
- Hay n-1 formas de elegir la posición del 1.
- El resto de elementos, n-2, serán el número 2, por lo que hay 1 forma de elegirlos.

Por tanto, tenemos que:

$$a_n = n(n-1) = n^2 - n \quad \forall n \in \mathbb{N}, n \geqslant 2$$

Ahora, establezcamos la recurrencia. Fijado $n \in \mathbb{N}$, $n \ge 2$, tenemos que:

• Si en la posición n hay un 2, entonces hay a_{n-1} formas de completar la cadena.

- Si en la posición n hay un 0, entonces hay n-1 formas de elegir la posición del 1 y 1 forma de elegir el resto de elementos, por lo que hay n-1 formas de completar la cadena.
- Si en la posición n hay un 1, de igual forma hay n-1 formas de completar la cadena.

Por tanto, tenemos que la recurrencia queda establecida como:

$$\begin{cases} a_2 = 2 \\ a_n = a_{n-1} + 2(n-1) \quad \forall n \in \mathbb{N}, n \geqslant 3 \end{cases}$$

Resolvamos ahora la recurrencia lineal no homogénea de primer orden. Tenemos que la ecuación característica es x-1=0, por lo que $\lambda=1$ es la única raíz, con multiplicidad simple. Por tanto, la solución homogénea es:

$$\{a_n^{(h)}\}=c_1\cdot 1^n=c_1\quad \forall n\in\mathbb{N}\qquad (c_1\in\mathbb{C})$$

Respecto a la parte no homogénea, tenemos que $f(n) = 2(n-1) = 1^n(2n-2)$, por lo que una solución particular es:

$$\{a_n^{(p)}\} = n^1 \cdot 1^n \cdot (c_2 n + c_3) = n(c_2 n + c_3) \quad \forall n \in \mathbb{N} \qquad (c_2, c_3 \in \mathbb{C})$$

Para determinar los valores de las constantes, como $\{a_n^{(p)}\}$ es una solución particular, para todo $n \in \mathbb{N}$, $n \ge 2$, tenemos que:

$$a_n = a_{n-1} + 2(n-1) \Longrightarrow n(c_2n + c_3) = (n-1)(c_2(n-1) + c_3) + 2(n-1)$$

Operando, obtenemos para todo $n \in \mathbb{N}, n \geqslant 2$:

$$c_2n^2 + c_3n = c_2(n-1)^2 + (n-1)(2+c_3)$$

$$c_2n^2 + c_3n = c_2n^2 - 2c_2n + c_2 + 2n - 2 + nc_3 - c_3$$

$$0 = -2c_2n + c_2 + 2n - 2 - c_3$$

$$0 = 2n(1-c_2) + c_2 - 2 - c_3$$

Igualando los coeficientes, obtenemos el sistema:

$$\begin{cases} 2(1-c_2) = 0 \Longrightarrow c_2 = 1 \\ c_2 - 2 - c_3 = 0 \Longrightarrow 1 - 2 - c_3 = 0 \Longrightarrow c_3 = -1 \end{cases}$$

Por tanto, la solución particular es:

$$\{a_n^{(p)}\} = n(1 \cdot n - 1) = n(n - 1) \quad \forall n \in \mathbb{N}, \ n \geqslant 2$$

Por tanto, la solución general es:

$$a_n = \{a_n^{(h)}\} + \{a_n^{(p)}\} = c_1 + n(n-1) \quad \forall n \in \mathbb{N}$$
 $(c_1 \in \mathbb{C})$

Para determinar el valor de la constante, tenemos que $a_2 = 2$, por lo que:

$$a_2 = 2 = c_1 + 2(2-1) = c_1 + 2 \Longrightarrow c_1 = 0$$

Por tanto, la solución a la recurrencia es:

$$a_n = n(n-1) \quad \forall n \in \mathbb{N}, \ n \geqslant 2$$

Llegamos efectivamente al mismo resultado que en el enfoque combinatorio.

Ejercicio 3. Considere el conjunto de fórmulas proposicionales Γ siguiente:

$$\Gamma = \{ a \lor b, \\ a \to (c \lor d), \\ (a \land d) \to c, \\ (a \land \neg d) \to e, \\ b \to (d \lor e), \\ (c \lor \neg d) \to e, \\ e \to d \}$$

Considere también la fórmula $\varphi \equiv c \wedge d$. Haciendo uso del algoritmo de Davis&Putman, decida si es cierta o no la afirmación $\Gamma \models \varphi$. En caso de no serlo, caracterice a las asignaciones que servirían para poner de manifiesto ese hecho.

Para resolver este ejercicio, vamos a aplicar el algoritmo de Davis&Putman. Para ello, primero vamos a transformar las fórmulas a su forma normal conjuntiva:

$$\varphi_1 := a \lor b$$

$$\varphi_2 := a \to (c \lor d)$$

$$= \neg a \lor (c \lor d) = \neg a \lor c \lor d$$

$$\varphi_3 := (a \land d) \to c$$

$$= \neg (a \land d) \lor c = \neg a \lor \neg d \lor c$$

$$\varphi_4 := (a \land \neg d) \to e$$

$$= \neg (a \land \neg d) \lor e = \neg a \lor d \lor e$$

$$\varphi_5 := b \to (d \lor e)$$

$$= \neg b \lor (d \lor e) = \neg b \lor d \lor e$$

$$\varphi_6 := (c \lor \neg d) \to e$$

$$= \neg (c \lor \neg d) \lor e = (\neg c \land d) \lor e = (\neg c \lor e) \land (d \lor e)$$

$$\varphi_7 := e \to d$$

$$= \neg e \lor d$$

$$\neg \varphi = \neg (c \land d) = \neg c \lor \neg d$$

Queremos por tanto estudiar la satisfacibilidad del conjunto $\Sigma = \Gamma \cup \{\neg \varphi\}$ mediante el algoritmo de Davis&Putman, cuyo árbol de decisión se muestra en la Figura 1.

Como podemos ver, sin haber terminado el árbol de decisión, ya hemos visto que

$$\Sigma = \{a \lor b; \neg a \lor c \lor d; \neg a \lor \neg d \lor c; \neg a \lor d \lor e; \neg b \lor d \lor e; \neg c \lor e; d \lor e; \neg e \lor d; \neg c \lor \neg d\}$$

$$R4. \lambda = a. v(\neg a) = 1$$

$$\Sigma_1 = \{b; \neg b \lor d \lor e; \neg c \lor e; d \lor e; \neg e \lor d; \neg c \lor \neg d\}$$

$$\Sigma_2 = \{c \lor d; \neg d \lor c; \neg d \lor e; \neg b \lor d \lor e; \neg c \lor e; d \lor e; \neg e \lor d; \neg c \lor \neg d\}$$

$$R2. \lambda = b. v(b) = 1$$

$$\Sigma_1 = \{d \lor e; \neg c \lor e; d \lor e; \neg e \lor d; \neg c \lor \neg d\}$$

$$\Sigma_{11} = \{d \lor e; \neg c \lor e; d \lor e; \neg e \lor d; \neg c \lor \neg d\}$$

$$R3. \lambda = \neg c \text{ es un literal puro. } v(\neg c) = 1$$

$$\Sigma_{111} = \{d \lor e; \neg e \lor d\}$$

$$R3. \lambda = d \text{ es un literal puro. } v(d) = 1$$

$$\Sigma_{1111} = \emptyset$$

Figura 1: Algoritmo de Davis y Putman del Ejercicio 3.

 Σ es satisfacible, con la asignación siguiente:

$$1 = v(b) = v(d)$$
$$0 = v(a) = v(c)$$

El valor de v(e) es indiferente. Por tanto, como Σ es satisfacible, tenemos que $\Gamma \not\models \varphi$.

Ejercicio 4. Demuestre que, para todo conjunto de fórmulas proposicionales $\Gamma \cup \{\varphi\}$ son equivalentes las siguientes afirmaciones:

- 1. $\Gamma \models \varphi$.
- 2. Existe un subconjunto finito de Γ , digamos $\Gamma_{f,\varphi}$, tal que $\Gamma_{f,\varphi} \models \varphi$.

Demostración. Demostramos mediante una doble implicación.

 \Longrightarrow)

 \Leftarrow Supongamos que existe un subconjunto finito $\Gamma_{f,\varphi} \subset \Gamma$ tal que $\Gamma_{f,\varphi} \models \varphi$. Entonces, tenemos que para toda asignación v tal que $v_*(\Gamma_{f,\varphi}) \subset \{1\}$, se tiene que $v(\varphi) = 1$.

Sea entonces v una asignación tal que $v_*(\Gamma) \subset \{1\}$. Como $\Gamma_{f,\varphi} \subset \Gamma$, entonces $v_*(\Gamma_{f,\varphi}) \subset \{1\}$, por lo que $v(\varphi) = 1$ y tenemos que $\Gamma \models \varphi$.

Ejercicio 5. Sea **B** un álgebra de Boole. Demuestre que, para todo $a, b, c \in B$, son equivalentes las siguientes afirmaciones:

1.
$$b = c$$

2.
$$a + b = a + c$$
 y $ab = ac$

Demostración. Demostramos mediante una doble implicación.

 \iff Supongamos que a+b=a+c y ab=ac. Entonces, tenemos que:

$$b = b + 0
= b + (a\overline{a})
= (b + a) \cdot (b + \overline{a})
= (a + c) \cdot (\overline{a} + b)
= (a + c)\overline{a} + (a + c)b
= a\overline{a} + c\overline{a} + ab + cb
= 0 + c\overline{a} + ac + cb
= c(\overline{a} + a + b)
= c(1 + b)
= c \cdot 1
= c .$$

$$b = b \cdot 1
= b + ab
= b + ac
= (b + a)(b + c)
= (a + c)(b + c)
= c + ac
= c(1 + a)
= c \cdot 1
= c .$$

(a) Opción 1.

(b) Opción 2.

 \implies) Como a = a y b = c, entonces trivialmente a + b = a + c y ab = ac.

Ejercicio 6. Sea $f: B_2^5 \to B_2$ la función:

$$f(a, b, c, d, e) = \sum_{i=0}^{\infty} m(2, 3, 7, 10, 12, 15, 27) + \sum_{i=0}^{\infty} d(5, 18, 19, 21, 23)$$

Mediante el algoritmo de Quine-McCluskey, encuentre todas sus expresiones minimales a condición de ser suma de productos.

Generamos los implicantes primos de la función f:

Columna 1			Columna 2			Columna 3		
2	00010	√	{2,3}	0001_	√	{2,3,18,19}	_001_	*
3	00011	√	$\{2,10\}$	0 - 010	*	{3,7,19,23}	_0_11	*
5	00101	\checkmark	$\{2,18\}$	_0010	\checkmark	{5,7,21,23}	_01_1	*
10	01010	\checkmark	{3,7}	00_11	\checkmark			
12	01100	*	${3,19}$	_0011	\checkmark			
18	10010	\checkmark	$\{5,7\}$	001_{-1}	\checkmark			
7	00111	√	{5,21}	_0101	\checkmark			
19	10011	\checkmark	{18,19}	1001_{-}	\checkmark			
21	10101	\checkmark	{7,15}	0_111	*			
15	01111	\checkmark	$\{7,23\}$	_0111	\checkmark			
23	10111	\checkmark	{19,23}	$10_{-}11$	\checkmark			
27	11011	\checkmark	$\{19,27\}$	1_011	*			
			{21,23}	101_1	\checkmark			

Los implicantes primos son, por tanto, los que se han marcado con *. Reducimos la tabla de implicantes primos:

Tras haber llegado a este paso, hemos detectado ya cuatro implicantes primos esenciales. No obstante, para cubrir el minterm 3 tenemos dos opciones, $\{2, 3, 18, 19\}$ y $\{3, 7, 19, 23\}$. Por tanto, las 2 expresiones minimales dadas en forma SOP son:

$$f(a,b,c,d,e) = \overline{a} \ b \ c \ \overline{d} \ \overline{e} + \overline{a} \ \overline{c} \ d \ \overline{e} + \overline{a} \ c \ d \ e + a \ \overline{c} \ d \ e + \overline{b} \ \overline{c} \ d$$

$$f(a,b,c,d,e) = \overline{a} \ b \ c \ \overline{d} \ \overline{e} + \overline{a} \ \overline{c} \ d \ \overline{e} + \overline{a} \ c \ d \ e + a \ \overline{c} \ d \ e + \overline{b} \ d \ e$$

Ejercicio 7. Considere las siguientes fórmulas en un cierto lenguaje de primer orden:

$$\varphi_{1} = q(x) \land \forall y (p(y) \rightarrow r(x, y))$$

$$\varphi_{2} = \forall x (q(x) \rightarrow \exists y (p(y) \land s(x, y)))$$

$$\varphi_{3} = \forall x (\exists y (s(x, y) \land r(x, y)) \rightarrow t(x))$$

$$\varphi_{4} = \exists x (t(x) \land q(x))$$

Diga justificadamente si es cierta o no la siguiente afirmación:

$$\varphi_1, \varphi_2, \varphi_3 \models \varphi_4$$

Veamos que $\varphi_1, \varphi_2, \varphi_3 \not\models \varphi_4$. Sea **A** una estructura tal que:

$$A = \{0, 1\}$$

$$(p)^{\mathbf{A}} = \{0\}$$

$$(q)^{\mathbf{A}} = \{0\}$$

$$(r)^{\mathbf{A}} = \{\langle 0, 0 \rangle\}$$

$$(s)^{\mathbf{A}} = \{\langle 0, 0 \rangle\}$$

$$(t)^{\mathbf{A}} = \{1\}$$

Sea una asignación v tal que v(x) = 0, y consideramos la interpretación $\langle \mathbf{A}, v \rangle$. Veamos qué ocurre con cada una de las fórmulas:

1. Primera fórmula φ_1 :

$$\begin{split} I_{\mathbf{A}}^{v}(\varphi_{1}) &= 1 \Longleftrightarrow I_{\mathbf{A}}^{v}(q(x)) = 1 \text{ y } I_{\mathbf{A}}^{v}(\forall y \left(p(y) \rightarrow r(x,y)\right)) = 1 \\ &\iff v(x) \in (q)^{\mathbf{A}} \text{ y } \forall a \in A, I_{\mathbf{A}}^{v(y|a)}(p(y) \rightarrow r(x,y)) = 1 \\ &\iff v(x) \in (q)^{\mathbf{A}} \text{ y } \forall a \in A, I_{\mathbf{A}}^{v(y|a)}(p(y))I_{\mathbf{A}}^{v(y|a)}(r(x,y)) + I_{\mathbf{A}}^{v(y|a)}(p(y)) + 1 = 1 \\ &\iff v(x) \in (q)^{\mathbf{A}} \text{ y } \forall a \in A, I_{\mathbf{A}}^{v(y|a)}(p(y))I_{\mathbf{A}}^{v(y|a)}(r(x,y)) = I_{\mathbf{A}}^{v(y|a)}(p(y)) \end{split}$$

Por tanto, en primer lugar, tenemos que $v(x) = 0 \in (q)^{\mathbf{A}}$. Veamos qué ocurre con cada $a \in A$:

• Si a = 0, entonces:

$$I_{\mathbf{A}}^{v(y|0)}(p(y)) = 1 \Longleftrightarrow v(y|0)(y) = 0 \in (p)^{\mathbf{A}} \qquad \checkmark$$
$$I_{\mathbf{A}}^{v(y|0)}(r(x,y)) = 1 \Longleftrightarrow \langle v(y|0)(x), v(y|0)(y) \rangle = \langle v(x), 0 \rangle = \langle 0, 0 \rangle \in (r)^{\mathbf{A}} \qquad \checkmark$$

Por tanto, para a = 0 tenemos $1 \cdot 1 = 1$, lo cual es correcto.

• Si a = 1, entonces:

$$I^{v(y|1)}_{\mathbf{A}}(p(y)) = 1 \iff v(y|1)(y) = 1 \in (p)^{\mathbf{A}} \times$$

Por tanto, para a=1 tenemos $0 \cdot I_{\mathbf{A}}^{v(y|1)}(r(x,y))=0$, lo cual es correcto.

Por tanto, tenemos que $I_{\mathbf{A}}^{v}(\varphi_1) = 1$.

2. Segunda fórmula φ_2 :

$$\begin{split} I_{\mathbf{A}}^{v}(\varphi_{2}) &= 1 \Longleftrightarrow I_{\mathbf{A}}^{v}(\forall x \, (q(x) \to \exists y \, (p(y) \land s(x,y)))) = 1 \\ &\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)}(q(x) \to \exists y \, (p(y) \land s(x,y))) = 1 \\ &\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)}(q(x))I_{\mathbf{A}}^{v(x|a)}(\exists y \, (p(y) \land s(x,y))) + I_{\mathbf{A}}^{v(x|a)}(q(x)) + 1 = 1 \\ &\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)}(q(x))I_{\mathbf{A}}^{v(x|a)}(\exists y \, (p(y) \land s(x,y))) = I_{\mathbf{A}}^{v(x|a)}(q(x)) \end{split}$$

Veamos qué ocurre con cada $a \in A$:

• Si a = 0, entonces:

$$I_{\mathbf{A}}^{v(x|0)}(q(x)) = 1 \Longleftrightarrow v(x|0)(x) = 0 \in (q)^{\mathbf{A}} \qquad \checkmark$$
$$I_{\mathbf{A}}^{v(x|0)}(\exists y \, (p(y) \land s(x,y))) = 1 \Longleftrightarrow \exists b \in A, I_{\mathbf{A}}^{v(x|0,y|b)}(p(y) \land s(x,y)) = 1$$

Para el segundo caso, para b=0 tenemos:

$$I_{\mathbf{A}}^{v(x|0,y|0)}(p(y) \wedge s(x,y)) = 1 \Longleftrightarrow \begin{cases} v(x|0,y|0)(x) = 0 \in (p)^{\mathbf{A}} \\ \langle v(x|0,y|0)(x), v(x|0,y|0)(y) \rangle = \langle 0,0 \rangle \in (s)^{\mathbf{A}} \end{cases} \checkmark$$

Por tanto, para a = 0 tenemos $1 \cdot 1 = 1$, lo cual es correcto.

• Si a = 1, entonces:

$$I_{\mathbf{A}}^{v(x|1)}(q(x)) = 1 \Longleftrightarrow v(x|1)(x) = 1 \in (q)^{\mathbf{A}} \times$$

Por tanto, para a=1 tenemos $0 \cdot I_{\mathbf{A}}^{v(x|1)}(\exists y \, (p(y) \land s(x,y))) = 0$, lo cual es correcto.

Por tanto, tenemos que $I_{\mathbf{A}}^{v}(\varphi_2) = 1$.

3. Tercera fórmula φ_3 :

$$I_{\mathbf{A}}^{v}(\varphi_{3}) = 1 \iff I_{\mathbf{A}}^{v}(\forall x (\exists y (s(x,y) \land r(x,y)) \rightarrow t(x))) = 1$$

$$\iff \forall a \in A, I_{\mathbf{A}}^{v(x|a)} (\exists y (s(x,y) \land r(x,y)) \rightarrow t(x)) = 1$$

$$\iff \forall a \in A, \exists b \in A, I_{\mathbf{A}}^{v(x|a,y|b)} ((s(x,y) \land r(x,y)) \rightarrow t(x)) = 1$$

$$\iff \forall a \in A, \exists b \in A, I_{\mathbf{A}}^{v(x|a,y|b)} (s(x,y)) I_{\mathbf{A}}^{v(x|a,y|b)} (r(x,y)) =$$

$$= I_{\mathbf{A}}^{v(x|a,y|b)} (s(x,y)) I_{\mathbf{A}}^{v(x|a,y|b)} (r(x,y)) I_{\mathbf{A}}^{v(x|a,y|b)} (t(x))$$

Para cada $a \in A$, consideramos $b = 1 \in A$. Veamos qué ocurre:

$$I_{\mathbf{A}}^{v(x|a,y|1)}\left(s(x,y)\right) = 1 \Longleftrightarrow \langle v(x|a,y|1)(x), v(x|a,y|1)(y)\rangle = \langle v(x|a)(x), 1\rangle = \langle a, 1\rangle \in (s)^{\mathbf{A}}$$

Esto último no ocurreo, luego, independientemente de $a \in A$, tenemos:

$$0 = 0 \cdot I_{\mathbf{A}}^{v(x|a,y|1)}\left(r(x,y)\right) = 0 \cdot I_{\mathbf{A}}^{v(x|a,y|1)}\left(r(x,y)\right) \cdot I_{\mathbf{A}}^{v(x|a,y|1)}\left(t(x)\right) = 0$$

Esto es correcto, por lo que $I_{\mathbf{A}}^{v}(\varphi_3) = 1$.

4. Cuarta fórmula φ_4 :

$$I_{\mathbf{A}}^{v}(\varphi_{4}) = 1 \iff I_{\mathbf{A}}^{v}(\exists x (t(x) \land q(x))) = 1$$

$$\iff \exists a \in A, I_{\mathbf{A}}^{v(x|a)} (t(x) \land q(x)) = 1$$

$$\iff \exists a \in A, I_{\mathbf{A}}^{v(x|a)} (t(x)) I_{\mathbf{A}}^{v(x|a)} (q(x)) = 1$$

$$\iff \exists a \in A, a \in (t)^{\mathbf{A}} \cap (q)^{\mathbf{A}}$$

Tenemos que:

$$(t)^{\mathbf{A}} \cap (q)^{\mathbf{A}} = \{1\} \cap \{0\} = \emptyset \Longrightarrow I_{\mathbf{A}}^{v}(\varphi_4) = 0$$

En conclusión, tenemos que:

$$I_{\mathbf{A}}^{v}(\varphi_1) = I_{\mathbf{A}}^{v}(\varphi_2) = I_{\mathbf{A}}^{v}(\varphi_3) = 1$$

 $I_{\mathbf{A}}^{v}(\varphi_4) = 0$

Por tanto, concluimos que $\varphi_1, \varphi_2, \varphi_3 \not\models \varphi_4$.

Ejercicio 8. ¿Es cierto que todo grafo (simple) con al menos dos nodos tiene al menos dos vértices con el mismo grado? Si es cierto, dé una demostración; en caso contrario, dé un contraejemplo.

Sea G = (V, A) un grafo simple, y sean $V = \{v_1, \ldots, v_n\}$ los vértices de G, con $n \ge 2$. Como G es simple, entonces no hay lazos ni aristas paralelas. Por tanto, el grado de un vértice v_i , notado por $\deg(v_i)$ es el número de aristas incidentes en v_i . Veamos en primer lugar que:

$$\max_{1 \leqslant i \leqslant n} \deg(v_i) \leqslant n - 1$$

Por contrarrecíproco, supongamos que $\exists i \in \{1, ..., n\}$ tal que $\deg(v_i) \geqslant n$. Entonces, tenemos que v_i tiene al menos n aristas incidentes, por lo que G tiene al menos n aristas. Como |V| = n, entonces G tiene al menos un lazo o dos aristas paralelas, lo cual es una contradicción por ser G simple. Por tanto, tenemos que $\max_{1 \leqslant i \leqslant n} \deg(v_i) \leqslant n-1$. Por tanto, para cada $i \in \{1, ..., n\}$, tenemos que $0 \leqslant \deg(v_i) \leqslant n-1$.

Por contrarrecíproco, supongamos que $\forall i \neq j \in \{1, \ldots, n\}$, se tiene que $\deg(v_i) \neq \deg(v_j)$. Entonces, tenemos que $\deg(v_1), \ldots, \deg(v_n)$ son n enteros distintos en el intervalo [0, n-1]. Salvo una reordenación, para cada $i \in \{1, \ldots, n\}$, podemos suponer que $\deg(v_i) = i-1$. Por tanto, y como $n \geq 2$, consideramos los vértices v_1 y v_n , con $\deg(v_1) = 0$ y $\deg(v_n) = n-1$. No obstante, esto es una contradicción, ya que si $\deg(v_n) = n-1$, debe existir una arista que conecte cada vértice v_i con v_n para $i \in \{1, \ldots, n-1\}$, por lo que $\deg(v_1) \geq 1$.

Por tanto, hemos llegado a una contradicción, por lo que necesariamente se tiene que $\exists i \neq j \in \{1, \dots, n\}$ tal que $\deg(v_i) = \deg(v_j)$.