Information theory

Siddharth Bhat

Contents

0.1 Preliminary definitions

Definition 1 *Entropy*(H): The entropy of a random variable X with probability distribution $p: X \to \mathbb{R}$ is defined as:

$$H(X) \equiv -\sum_{x \in X} p(x) \log p(x) = \mathbb{E}[-\log \circ p]$$

Definition 2 Conditional entropy(H(X|Y)): The conditional entropy of a random variable X with respect to another variable Y is defined as:

$$H(X|Y) \equiv -\sum_{y \in Y} p(y)H(X|Y = y)$$

$$= \sum_{y \in Y} p(y) \sum_{x \in X} -p(x|y) \log p(x|y)$$

$$= \sum_{y \in Y} \sum_{x \in X} -p(y)p(x|y) \log p(x|y)$$

$$= \sum_{y \in Y} \sum_{x \in X} -p(y \land x) \log p(x|y)$$

Definition 3 Kullback-Leibler divergence D(X||Y): The Kullback-Leibler divergence of $X \sim p$ with respect to $X' \sim q$ is:

$$D(X||X') \equiv \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

Note that D(X||X') is not symmetric.

Intuition: extra cost of encoding X if we thought the distribution were X'.

Useful extremal case to remember: Assume X' has q(x) = 0 for some letter $x \in X$. In this case, D(X||X') would involve a term $\frac{p(x)}{0}$, which is ∞ . This is intuitively sensible, since X' has no way to represent x, and hence X' is *infinitely far away from encoding* X. However, In this same case, one could have that X is able to encode all of X'.