Cellular Respiration

1) Glycolysis

```
C_6H_{12}O_6+2ADP+2NAD 
ightarrow 2C_3H_4O_3+4ATP+2ADP+2NADH Glucose + 2 ATP + 4 ADP + 2 NAD+ 
ightarrow 2 Pyruvic Acid + 4 ATP + 2 ADP + 2 NADH
```

Simplified:

```
C_6H_{12}O_6	o 2C_3H_4O_3
Glucose 	o 2 Pyruvic Acid + energy
```

- Happens outside the Mitochondria in the cytoplasm
- Phosphorelates 2 ADP to 2 ATP
- Reduces 2 NAD
- The process requires two ATP to begin
- All cellular respiration, both aerobic and anaerobic, goes through glycolysis

Aerobic respiration

```
C_6H_{12}O_6+6O_2+36ADP 
ightarrow 6CO_2+6H_2O+36ATP
Glucose + Oxygen + ADP 
ightarrow Carbon Dioxide + Water + ATP
```

- Cellular respiration is different from breathing
- Cellular respiration is a chemical reaction to break down glucose to release energy
- it is aerobic because of the presence of oxygen
- Each glucose produces 38 ATP, it is very efficient

Overview of processes after Glycolysis

```
C_3H_4O_3+1ADP+4NAD+1FAD\to 3CO_2+1ATP+4NADH+1FADH Pyruvic Acid + 1 ADP + 4 NAD + 1 FAD \to 3 Carbon Dioxide + 1 ATP + 4 NADH + 1 FADH2
```

Simplified:

```
C_3H_4O_3 
ightarrow 3CO_2
Pyruvic Acid 
ightarrow 3 Carbon Dioxide + Energy
```

Steps in Aerobic respiration

1) Glycolysis

2) Formation of Acetyl CoA (optional learning)

 $C_3H_4O_3+C_{21}H_{36}N_7O_{16}P_3S+NAD \to CO_2+C_{23}H_{38}N_7O_{17}P_3S+NADH$ Pyruvic Acid + CoA + NAD+ \Rightarrow Carbon Dioxide + Acetyl CoA + NADH

Simplified:

$$C_3H_4O_3+CoA o CO_2+ACoA$$

Pyruvic Acid + CoA o Carbon Dioxide + Acetyl CoA + Energy

- Not part of the Krebs cycle, it happens before
- · Gets the Pyruvic acid ready to be used in the krebs cycle
- Performed by the Pyruvate dehydrogenase

3) Krebs Cycle (Citric Acid cycle or TCA)

Overview of the Kerbs Cycle

$$C_{23}H_{38}N_7O_{17}P_3S + 4NAD + 1FAD \rightarrow C_{21}H_{36}N_7O_{16}P_3S + 2CO_2 + 4NADH + 1FADH$$

Acetyl CoA + 4 NAD + 1 FAD \rightarrow CoA + 2 Carbon Dioxide + 4 NADH + 1 FADH

Simplified:

$$CoA$$
– $C_2H_2O \rightarrow CoA + 2CO_2 + 4NADH + 1FADH$
Acetyl CoA \rightarrow CoA + 2 Carbon Dioxide + 4 NADH + 1 FADH

- Happens inside the Mitochondria
 - In the mitochondrial Matrix
- Reduces 4 NAD and 1 FAD to 4 NADH and 1 FADH

Steps in the Kerbs Cycle (optional learning)

1) Formation of Citrate

1. Formation of the Citryl CoA

$$C_{23}H_{38}N_7O_{17}P_3S+C_4H_2O_5 o C_{27}H_{42}N_7O_{22}P_3S$$

Acetyl CoA + Oxaloacetate (4C) o Citryl CoA

Simplified:

$$CoA$$
– C_2H_2O + $C_4H_2O_5$ \to CoA – $C_6H_6O_6$
Acetyl CoA + Oxaloacetate (4C) \to Citryl CoA

2. Formation of the Citrate

$$C_{27}H_{42}N_7O_{22}P_3S+H_2O o C_{21}H_{36}N_7O_{16}P_3S+C_6H_5O_7+H$$
 Citryl CoA + Water o CoA + Citrate + Hydrogen

Simplified:

$$AoC$$
– $C_6H_6O_6+H_2O \rightarrow CoA+C_6H_5O_7$
Citryl CoA + Water \rightarrow CoA + Citrate

Overview

$$C_{23}H_{38}N_7O_{17}P_3S+C_4H_2O_5+H_2O\to C_{21}H_{36}N_7O_{16}P_3S+C_6H_5O_7+H$$

Acetyl CoA + Oxaloacetate (4C) + Water \to CoA + Citrate (6C) + Hydrogen

Simplified:

$$CoA$$
– C_2H_2O + $4C$ \rightarrow CoA + $6C$
Acetyl CoA + Oxaloacetate (4C) \rightarrow CoA + Citrate (6C)

2) Formation of Isocitrate

$$C_6H_5O_7 \rightarrow C_6H_5O_7$$

Citrate \Rightarrow Isocitrate

- The Chemical formula is the same, but the bonds are in different places
- This process consists of removing the water molecule and readding it in a different place

3) Formation of α -ketoglutarate and oxidation of Isocitrate

$$C_6H_5O_7+NAD \to C_5H_4O_5+CO_2+NADH$$

Isocitrate (6C) + NAD $\to \alpha$ -glutenate (5C) + Carbon Dioxide + NADH

Simplified:

$$6C \rightarrow 5C + CO_2$$
 Isocitrate (6C) $\rightarrow \alpha$ -glutenate (5C) + Carbon Dioxide + NADH

Produces 1 NADH

4) Formation of Succinyl CoA and oxidation of the ketoglutarate

$$C_5H_4O_5+NAD+C_{21}H_{36}N_7O_{16}P_3S \to C_{25}H_{40}N_7O_{19}P_3S+CO_2+NADH$$
 $lpha$ -glutenate (5C) + NAD + CoA o Succinyl CoA + Carbon Dioxide + NADH

Simplified:

$$5C + CoA \rightarrow CoA$$
– $C_4H_4O_3 + CO_2$
 $lpha$ -glutenate (5C) + CoA $ightarrow$ Succinyl CoA + Carbon Dioxide + NADH

Produces 1 NADH

5) Formation of Succinate

$$C_{25}H_{40}N_7O_{19}P_3S + ADP \rightarrow C_4H_4O_4 + CoA + ATP$$

Succinyl CoA + ADP \rightarrow Succinate (4C) + CoA + ATP

Simplified:

$$CoA$$
– $C_4H_4O_3 \rightarrow 4C + CoA + ATP$
Succinyl CoA \Rightarrow Succinate (4C) + CoA + ATP

- ATP production is actually from GDP→GTP, which's phosphate group gets moved to an ADP, making it an ATP
- Produces 1 ATP

6) Production of Fumarate and oxidation of Succinate

$$C_4H_4O_4 + FAD \rightarrow C_4H_2O_4 + FADH_2$$

Succinate (4C) + FAD \rightarrow Fumarate (4C) + FADH2

Simplified:

$$4C + FAD \rightarrow 4C + FADH_2$$

Succinate (4C) + FAD \rightarrow Fumarate (4C) + FADH2

Produces 1 FADH2

7) Production of Malate

$$C_4H_2O_4 + H_2O
ightarrow C_4H_4O_5$$

Fumarate (4C) + Water $ightarrow$ Malate (4C)

Simplified:

$$4C + H_2O \rightarrow 4C$$
 Fumarate (4C) + Water $ightarrow$ Malate (4C)

8) Production of Oxaloacetate and oxydation of Malate

$$C_4H_4O_5 + NAD
ightarrow C_4H_2O_5 + NADH$$

Malate (4C) + NAD $ightarrow$ Oxaloacetate (4C) + NADH

Simplified:

$$4C + NAD \rightarrow 4C + NADH$$

Malate (4C) + NAD \Rightarrow Oxaloacetate (4C) + NADH

Produces 1 NADH

4) Electron Transport Chain

The Hydrogen and electrons from the Hydrogen carriers (NADH + FASH) are released, which creates a **positive concentration gradient**, which forces the **ATP Synthase** to produce ATP from ADP.

- Happens inside the Mitochondria
 - In the inner mitochondrial membrane (crystae)
- The 4 Complexes remove Hydrogen from the Hydrogen carriers
 - Complex 1 converts NADH to NAD+
 - Complex 2 converts FADH2 to FAD
 - Complex 3 uses additional energy from complex 1 and 3 to pump additional protons (hydrogen ions) to the Intermembrane Space
 - Complex 4 helps produce Water using Hydrogen and Oxygen
- The positive proton gradient of the Intermembrane Space pushes the ATP synthase to produce ATP from ADP
 - The process of making ATP takes the Hydrogen from the Intermembrance space back into the Matrix
- Additionally, Oxygen will bond with the uncharged Hydrogen to take away extra Hydrogen

Carrier	ATP produced	
NADH	3 (or 2.5) ATP	
FADH	2 (or 1.5) ATP	

Aerobic Respiration Summary

-	Number of ATP produced	Number of NADH produced	Number of FADH produced
-	-	NADH	FADH
Glycolysis	2 ATP	2 NADH	0 FADH
Krebs Cycle	2 ATP	8 NADH	2 FADH
Electron Transport Chain	-	х3	x2
Total ATP produced	4ATP	30 ATP	4 ATP
Grand Total			38 ATP

Anaerobic respiration

Animal Cells (Lactic Acid Fermentation)

$$C_6H_{12}O_6
ightarrow 2C_3H_6O_3+2ATP$$

Glucose $ightarrow$ Lactic acid + Chemical Energy

- Very ineffecient, only produces 2 ATP
- When you accumulate lactic acid, it is called oxygen debt, because you owe oxygen to your body (lactic acid)
- Lactic acid is harmful to your body
- Is only used in emergencies to quickly make energy
- This whole process is called Fermentation

NADH+ regeneration

$$C_3H_4O_3 + 2NADH \rightarrow C_3H_6O_3 + 2NAD$$

Pyruvic Acid + 2 NADH \Rightarrow Lactic Acid + 2NAD

Simplified:

$$C_3H_4O_3
ightarrow C_3H_6O_3 + 2NAD$$

Pyruvic Acid $ightarrow$ Lactic Acid + 2 NAD

- Converts the Pyruvic Acid into Lactic Acid
- Recycles the NADH back to NAD+ so that it can be reused in Glycolysis

Anaerobic Respiration Summary

- Happens outside the Mitochondria
- Phosphrelates 2 ADP to 2 ATP
- The process requires two ATP to begin (Glycolysis)

-	Number of ATP produced	Number of H-carriers produced
-	-	NADH
Glycolysis	2 ATP	2 NADH
NAD+ regeneration	-2 NADH	
Grand Total	2 ATP	

Repaying the Oxygen Debt

$$C_3H_6O_3+3O_2
ightarrow 3CO_2+3H_2O$$

Lactic acid + Oxygen $ightarrow$ Carbon Dioxide + Water

- Break down lactic acid by adding oxygen
- Does not produce any energy at all

- Aerobic process
- Having Lactic Acid is called having an Oxygen debt

Yeast Cells (Alcoholic Fermentation)

$$C_6H_{12}O_6
ightarrow 2C_2H_6O + 2CO_2 + 2ATP$$

Glucose $ightarrow$ Ethanol + Carbon Dioxide + Chemical Energy

- Very ineffecient, only produces 2 ATP
- Ethanol is toxic to yeast, and cannot be reversed
 - The Oxygen debt cannot be reversed
- Is only used in emergencies to quickly make energy
- Happens outside the Mitochondria
- The process requires two ATP to begin, and makes 4 ATP, making a net gain of 2
 ATP

Steps of fermentation

1) Pyruvate Oxidation

$$C_3H_4O_3
ightarrow C_2H_4O + CO_2$$

Pyruvic acid $ightarrow$ Acetaldehyde + Carbon Dioxide

2) NAD+ Regeneration

$$C_2H_4O + 2NADH
ightarrow C_2H_6O + 2NAD$$
 Acetaldehyde + 2 NADH $ightarrow$ Ethanol + 2NAD

Simplified:

$$C_2H_4O
ightarrow C_2H_6O + 2NAD$$
 Acetaldehyde $ightarrow$ Ethanol + 2 NAD

Anaerobic Respiration Summary

-	Number of ATP produced	Number of H-carriers produced
-	-	NADH
Glycolysis	2 ATP	2 NADH
Further Fermentation		-2 NADH
Grand Total	2 ATP	