

• Initial evidence:

- Emotion neurocircuitry & inflammation
- Th17 cells, asthma, & psychological distress

HYPOTHESES

STUDY DESIGN

^{* *} Airway inflammation measured (daily)

RESULTS

ACUTE STRESS INCREASES CORTISOL

CORTISOL RESPONSE TO STRESS IS ASSOCIATED WITH SALIENCE NETWORK ACTIVATION

p < .05 corrected

Mean Glucose Metabolism (Stress minus Control)

Greater glucose metabolism, in stress vs control

CHRONIC STRESS IMPACTS THE EFFECT OF ACUTE STRESS ON INFLAMMATION

With lower chronic stress, Sputum EOS% increased more but IL17 mRNA expression increased less following acute stress

STRESS-RELATED AMYGDALA ACTIVATION PREDICTS IL-23A AND CCL2 Expression Following

AIRWAY CHALLENGE

p < .05 corrected

Glucose Metabolism in R Amygdala (Stress-Control)

Greater glucose metabolism, in stress vs control

CONCLUSIONS

• Psychosocial stress-evoked cortisol associated with salience network brain activity

- Chronic stress moderated effects of acute stress on airway inflammation
 - which inflammatory pathways AG exposure engages

• Stress-related amygdala activity predicted inflammatory signaling capacity

=> targeted, personalized treatments

THANK YOU!

Work supported by NHLBI (R01 HL123284)

Melissa Rosenkranz, PhD

William Busse, PhD

Danika Klaus, RN

Richard Davidson, PhD

Stephane Esnault, PhD

...and many more!

QUESTIONS/COMMENTS:

please email higgins 5@wisc.edu

THANK YOU (:

EXTRA SLIDES

TH17 CELLS

- Adaptive Immune System → IL-17 (neutrophils)
- Differentiation promoted by IL-23, TNF-a, IL-1 β , IL-21 (requires IL-6 and TGF β)
- Psychological Stress $\rightarrow \uparrow$ IL-23A, IL-1 β , IL-6

Asthma:

- IL-17 in severe asthma; modulates Th2 responses in mild asthma
- EOS (Th2 cells) release IL-1 $\beta \rightarrow$ IL-17 expression

HOW DOES THE BRAIN INFLUENCE THE AIRWAY?

- Distal Mechanism: brain (sub/cortical)
 - In-Between Mechanisms: brainstem
- Proximal Mechanisms:
 - HPA Axis
 - Sympathetic Nervous System
 - Neurogenic Inflammation (Sensory Neuropeptides)

PRIOR EVIDENCE

- Psychosocial Stressor → Increased Cortisol, associated with Airway Inflammation
 Biomarkers
 - Th 17 path (IL-17A, IL-1R1)

- Th2 path (EOS) moderated by chronic stress

(Rosenkranz et al., 2016)

greater cortisol

PRIOR EVIDENCE

- Psychosocial Stressor → Stress Neurocircuitry Activation associated with Airway
 Inflammation Biomarkers
 - Th2 pathway (FeNO) & Th17 cell mRNA (IL23A, IL1R1)

