

اصول و مبانی برنامهنویسی

مجید شبیری کارشناسی ارشد Tا، گرایش شبکه از دانشگاه صنعتی امیر کبیر

سیستمهای اعداد و کدینگ اطلاعات

سر فصل مطالب

- ۱ کد اسکی (ASCII) کد اسکی
- ۹) کدایسکی (۱۱۹۲۱)
- (Unicode) يونيكد
- ۱۱) واحدهای حافظه در کامپیوتر

- ۱) سیستم اعداد چیست؟
- (Decimal) سیستم اعداد دسیمال (۲
 - ۳) سیستم اعداد باینری (Binary)
 - ۴) سیستم اعداد اکتال (Octal)
- (Hexadecimal) سیستم اعداد هگز (ا
 - تبدیلات در سیستم اعداد φ
 - ۷) سیستم کد گذاری چیست؟

سیستم اعداد چیست؟

- کامپیو تر ماشینی است که تنها قادر به تشخیص سیگنالهای الکتریکی میباشد.
- برنامهنویس چطور می تواند دستورات (دستورالعمل) خود را به شکل سیگنالهای الکتریکی به کامپیوتر انتقال دهد؟!
 - ساده ترین سیستم برای تشخیص دستورالعملها به کمک سیگنالهای الکتریکی، سیستم دوحالته on-off است.
 - o حالت on: با سطح ولتار 1 نمایش داده می شود.
 - o حالت off: با سطح ولتار 0 نمایش داده می شود (البته نه صفر واقعی بلکه سطح ولتار کمتر از 1)
 - این سیستم منجر به ابداع یک سیستم عددی به نام سیستم اعداد باینری (دودویی) شد.

سیستم اعداد چیست؟

- به تکنیکهای نمایش اعداد و کار با اعداد، سیستم اعداد گفته می شود.
- در سیستم اعداد دودویی، همه دادههای ورودی و دستورالعملها به شکل 0,1 به کامپیوتر انتقال داده می شود.
 - سیستم عددی باینری برای کاربر یک سیستم سطح بالا (بالاتر از سیگنال) محسوب می شود.
- ولی همچنان کار کردن با 0,1 برای برنامهنویس ساده نبوده و محاسبات و تبدیلات متعدد باینری برای کاربر، زمانبر است.
 - بنابراین، برای راحتی بیشتر برنامه نویسان، سیستمهای عددی دیگری نیز ابداع شد.

انواع سيستم اعداد

- سیستم اعداد **باینری** (مبنای ۲)
- ۰ سیستم اعداد اکتال (مبنای ۸)
- سیستم اعداد دسیمال (مبنای ۱۰)
- صیستم اعداد هگزا دسیمال (مبنای ۱۶)
- پیاده سازی سیستم های عددی غیر باینری، نیاز به سطوح ولتاژ بیشتر داشته و برای حفظ سادگی، فقط سیستم باینری در کامپیوتر پیاده سازی شده است.
- سیستم باینری، امروزه به عنوان سیستم اعداد اصلی کامپیوترها مورد استفاده قرار گرفته و دادههای نمایش داده شده در سیستمهای عددی غیر باینری نیز در زمان کامپایل به سیستم باینری (0,1) ترجمه میشوند.

سیستم اعداد دسیمال (Decimal)

■ سیستم اعداد دسیمال، بر مبنای ۱۰ بوده و شامل ارقام 0 تا 9 میباشد و هر مقداری را می توان با ترکیبی از ارقام 0 تا 9 نمایش داد.

این سیستم عددی، یک سیستم positional value است. یعنی ارزش هر رقم، بستگی به موقعیت قرار گیری آن رقم دارد.

10 ⁵	10 ⁴	10 ³	10 ²	10 ¹	10 ⁰

734: value of **7**: 700 \downarrow 7 × 100 \downarrow 7 × 10²

971 : value of **7** : 70 ي 7×10 ي 7×10^{1}

207 : value Of 7: 7 يا 7×1 يا 7×1

سیستم اعداد باینری (Binary)

■ سیستم اعداد باینری، بر مبنای ۲ بوده و شامل ارقام 0 و 1 می باشد و هر مقداری را می توان با ترکیبی از ارقام 0 و 1 نمایش داد.

■ به هر رقم باینری یک **بیت** (bit) گفته می شود.

ارزش عددی Least Significant Bit - LSB سمت راست ترین رقم - بیت با کمترین ارزش عددی

سمت چپترین رقم – بیت با بیشترین ارزش عددی : Most Significant Bit – \mathbf{MSB}

سیستم آعداد باینری (Binary)

■ این سیستم عددی، یک سیستم positional value است. یعنی ارزش هر رقم، بستگی به موقعیت قرار گیری آن رقم دارد.

2 ⁵ 2 ⁴	23	22	21	20
-------------------------------	----	----	----	----

■ معادل دسیمال یک عدد باینری عبارت است از مجموع حاصل ضرب هر رقم در ارزش موقعیتی آن رقم.

$$11010_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$
$$= 16 + 8 + 0 + 2 + 0$$
$$= 26_{10}$$

سیستم اعداد اکتال (Octal)

- سیستم اعداد اکتال، بر مبنای ۸ بوده و شامل ارقام 0 تا 7 می باشد و هر مقداری را می توان با ترکیبی از ارقام 0 تا 7 نمایش داد.
 - این سیستم عددی نیز یک سیستم positional value است. یعنی ارزش هر رقم، بستگی به موقعیت قرار گیری آن رقم دارد.

	8 ⁵	84	83	8 ²	81	80
- 1						

$$726_8 = 7 \times 8^2 + 2 \times 8^1 + 6 \times 8^0$$
$$= 448 + 16 + 6$$
$$= 470_{10}$$

سیستم اعداد هگز (Hexadecimal)

- سیستم اعداد هگز، بر مبنای ۱۶ بوده و شامل ارقام 0 تا 9 و حروف A تا F (معادل 10 تا 15) می باشد.
- این سیستم عددی نیز یک سیستم positional value است. یعنی ارزش هر رقم، بستگی به موقعیت قرار گیری آن رقم دارد.

16 ⁵ 16 ⁴	16 ³	16 ²	16 ¹	16 ⁰
---------------------------------	-----------------	-----------------	-----------------	-----------------

$$27FB_{16} = 2 \times 16^{3} + 7 \times 16^{2} + 15 \times 16^{1} + 11 \times 16^{0}$$

= $8192 + 1792 + 240 + 11$
= 10235_{10}

■ برای تبدیل مقادیر در هر کدام از سیستمهای عددی باینری، اکتال و هگز به دسیمال کافی است حاصل ضرب ارقام آن در ارزش مکانی شان را با

هم جمع كنيم تا به معدل دسيمال آن برسيم.

2 ⁵	24	23	2 ²	21	20

$$110102 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20$$
$$= 16 + 8 + 0 + 2 + 0$$
$$= 2610$$

$$726_8 = 7 \times 8^2 + 2 \times 8^1 + 6 \times 8^0$$
$$= 448 + 16 + 6$$
$$= 470_{10}$$

$$27FB_{16} = 2 \times 16^{3} + 7 \times 16^{2} + 15 \times 16^{1} + 11 \times 16^{0}$$

= $8192 + 1792 + 240 + 11$
= 10235_{10}

تبدیل دسیمال به باینری

■ برای تبدیل دسیمال به باینری، تقسیمات متوالی بر ۲ همراه با ثبت و نگهداری باقیماندهها انجام می شود تا وقتی که به خارج قسمت صفر برسیم.

■ سپس آخرین باقیمانده را در LSB و به همین ترتیب ادامه میدهیم و اولین باقیمانده نیز در MSB قرار می گیرد.

		Remainder	
2	43		
2	21	1	MSB
2	10	1	†
2	5	0	
2	2	1	
2	1	0	
	0	1	LSB

$$43_{10} = 101011_2$$

تبدیل دسیمال به اکتال

■ برای تبدیل دسیمال به اکتال، تقسیمات متوالی بر ۸ همراه با ثبت و نگهداری باقیماندهها انجام می شود تا وقتی که به خارج قسمت صفر برسیم.

■ سپس آخرین باقیمانده را در LSB و به همین ترتیب ادامه می دهیم و اولین باقیمانده نیز در MSB قرار می گیرد.

	Remainder							
8	473							
8	59	1	MSD					
8	7	3	†					
	0	7	LSD					

 $473_{10} = 731_8$

تبدیل دسیمال به هگز

برای تبدیل دسیمال به اکتال، تقسیمات متوالی بر ۱۶ همراه با ثبت و نگهداری باقیماندهها انجام می شود تا وقتی که به خارج قسمت صفر برسیم.

■ سپس آخرین باقیمانده را در LSB و به همین ترتیب ادامه میدهیم و اولین باقیمانده نیز در MSB قرار می گیرد.

Remainder		
	423	16
7	26	16
А	1	16
1 1	0	

 $423_{10} = 1A7_{16}$

تبدیل باینری به اکتال

- برای تبدیل باینری به اکتال، از LSB شروع می کنیم و ارقام عدد را به صورت ۳ رقمی جدا می کنیم.
- اگر گروه آخر تعداد ارقامش کمتر از ۳ بود صفر قرار میدهیم. سپس به جای هر گروه، معادل اکتال آن را مینویسیم.

 $1011001010_{12} = 2625_8$

تبدیل اکتال به باینری

■ برای تبدیل اکتال به باینری، به جای هر رقم اکتال، معادل باینری آنرا به صورت ۳ رقمی مینویسیم.

Octal Digit	0	1	2	3	4	5	6	7
Binary Equivalent	000	001	010	011	100	101	110	111

 $54673_8 = 101100110111011_2$

تبدیل باینری به هگز

- برای تبدیل باینری به هگز، از LSB شروع می کنیم و ارقام عدد را به صورت ۴رقمی جدا می کنیم.
- اگر گروه آخر تعداد ارقامش کمتر از ۴ بود صفر قرار میدهیم. سپس به جای هر گروه، معادل هگز آن را مینویسیم.

■ مثال

 $10110110101_2 = DB5_{16}$

تبدیل هگز به باینری

■ برای تبدیل هگز به باینری، به جای هر رقم هگز، معادل باینری آنرا به صورت ۴ رقمی مینویسیم.

3AB2₁₆ = 11101010110010₂

جدول معادل سازی سیستمهای اعداد

HEXADECIMAL	DECIMAL	OCTAL	BINARY
0	0	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011
4	4	4	0100
5	5	5	0101
6	6	6	0110
7	7	7	0111
8	8	10	1000
9	9	11	1001
А	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
E	14	16	1110
F	15	17	1111

سیستمهای کدگذاری اطلاعات (Coding)

- به مجموعه کاراکترهای عددی و غیر عددی مورد استفاده در کامپیوتر، کدهای alphanumeric گفته می شود.
 - حروف الفبا
 - عملگرهای ریاضی
 - علائم نگارشی
 - علائم و نشانه گذاریهای خاص
 - کامپیو تر باید بتوانند همه این مقادیر را تشخیص دهد.
- هرچند کامپیوتر فقط قادر به تشخیص 0,1 است ولی اعداد دیگر نیز به کمک تبدیلات سیستم های عددی، قابل تبدیل به 0,1 هستند.
 - همچنین برای **کاراکترهای غیرعددی** نیز می توان برای هر کاراکتر، یک معادل عددی در نظر گرفت.
 - به تکنیک معادلسازی کاراکترها با یک مقدار عددی، سیستم کدگذاری اطلاعات (coding) گفته می شود.

کد اسکی (ASCII)

American Standard Code for Information Interchange (ASCII)

- سیستم کد ASCII پر کاربردترین سیستم کدینگ اطلاعات است.
 - کد اسکی یک کد ۷ بیتی است که دارای ۱۲۸ کد میباشد.

- 26 upper case letters (A-Z)
- 26 lower case letters (a-z)
- راعداد ۱۰ تا ۱۹ digits (۹
- o 7 punctuation marks (علائم نگارشی)
- o 20 to 40 special characters (علائم خاص)

کد اسکی (ASCII)

ASCII Code - Character to Binary

0	0011	0000	1	0100	1001	b	0110	0010	v	0111	0110
1	0011	0001	J	0100	1010	c	0110	0011	w	0111	0111
2	0011	0010	K	0100	1011	d	0110	0100	х	0111	1000
3	0011	0011	L	0100	1100	e	0110	0101	у	0111	1001
4	0011	0100	М	0100	1101	f	0110	0110	z	0111	1010
5	0011	0101	N	0100	1110	g	0110	0110			
6	0011	0110	0	0100	1111	h	0110	1000	;	0011	1010
7	0011	0110	Р	0101	0000	i	0110	1001	;	0011	1011
8	0011		Q	0101	0001	j	0110	1010	?	0011	1111
9	0011		R	0101	0010	k	0110	1011	•	0010	1110
9	0011	1001	S	0101	0011	1	0110	1100	,	0010	1111
			Т	0101	0100	m	0110	1101	!	0010	0001
Α	0100	0001	U	0101	0101	n	0110	1110	χ°	0010	1100
В	0100	0010	٧	0101	0110	0	0110	1111	,,	0010	0010
C	0100	0011	W	0101	0111	р	0111	0000	(0010	1000
D	0100	0100	Χ	0101	1000	q	0111	0001)	0010	1001
Ε	0100	0101	Υ	0101	1001	r	0111	0010	space	0010	0000
F	0100	0110	Z	0101	1010	s	0111	0 0 1 1			
G	0100	0111				t	0111	0100			
Н	0100	1000	a	0110	0001	u	0111	0101			

سیستم کدینگ ISCII

Indian Script Code for Information Interchange (ISCII)

■ سیستم کدینگ ISCII برای پشتیبانی **زبانهای هندی** روی کامپیوتر توسعه داده شد.

- Devanagari
- Tamil
- Bangla
- Gujarati
- Gurmukhi
- Tamil
- Telugu

سیستم کدینگ Unicode

- یونیکد یک سیستم کدینگ بین المللی است که برای پشتیبانی زبانهای مختلف طراحی شده است.
- قبلاً برای هر زبان، از یک سیستم کدینگ جداگانه استفاده می شد که موجب بروز تصادم و ناسازگاری می شد.
- یونیکد، بدون توجه به زبان یا پلتفرم و برنامه، برای هر کاراکتر یا سمبول یک مقدار عددی منحصر بفرد در نظر گرفته است.
- یونیکد تا حد زیادی مشابه ASCII است. با این تفاوت که اسکی فقط برای زبان انگلیسی بود ولی یونیکد، تمام زبانها را پشتیبانی می کند.

واحدهای حافظه در کامپیوتر

- کوچکترین واحد اندازه گیری حافظه در کامپیوتر، بیت (bit) است.
 - جدول تبدیل واحدهای حافظه

```
1 byte (B) = 8 bits
```

1 Kilobytes (KB) = 1024 bytes

1 Megabyte (MB) = 1024 KB

1 Gigabyte (GB) = 1024 MB

1 Terabyte (TB) = 1024 GB

1 Petabyte (PB) = 1024 TB

1 Exabyte (EB) = 1024 PB

1 Zettabyte = 1024 EB

1 Yottabyte (YB) = 1024 ZB

اصول و مبانی برنامهنویسی

مجيد شبيري

کارشناسی ارشد IT، گرایش شبکه از دانشگاه صنعتی امی*ر* کبیر

