1. Prove or disprove the following claim: There exists a subset of \mathbb{R} that is closed and not bounded.

Solution:

The statement is true. Consider \mathbb{R} , which is a subset of \mathbb{R} . Let (x_n) be a convergent sequence that converges to x such that $x_n \in \mathbb{R}$ for all n. By definition $x \in \mathbb{R}$, thus \mathbb{R} is closed. Seeking contradiction, assume that \mathbb{R} is bounded and that α is its upper bound. Then clearly $\alpha > 0$, but we also have that $1 + \alpha > \alpha$ where $1 + \alpha \in \mathbb{R}$, but this contradicts that α is an upper bound. Thus it must be that \mathbb{R} is unbounded. Therefore we have shown a subset of \mathbb{R} (namely \mathbb{R}) that is closed and unbounded.

2. Prove that if S is a non-empty subset of a bounded set T, then

$$\inf T \le \inf S \le \sup S \le \sup T$$

Solution:

 $s \leq \sup S$ for all $s \in S$ and $t \leq \sup T$ for all $t \in T$ by definition of supremum. Since $S \subseteq T$ for all $s \in S$, $s \in T$ hence $s \leq \sup T$ for all $s \in S$. Notice that $\sup T$ is an upper bound for S, thus $\sup S \leq \sup T$ since $\sup S$ is the *least* upper bound. inf $S \leq s$ for all $s \in S$ and $\inf T \leq t$ for all $t \in T$ by definition of infimum. Since $S \subseteq T$ for all $s \in S$, $s \in T$ thus $\inf T \leq s$. Notice that $\inf T$ is a lower bound for S, thus $\inf T \leq \inf S$ since $\inf S$ is the *greatest* lower bound. Combining the inequalites we get that

$$\inf T \le \inf S \le s \le \sup S \le \sup T$$

3. Let S be a nonempty subset of \mathbb{R} . Prove that $-\sup S = \inf -S$ where $-S = \{-s | s \in S\}$

Solution:

For all $s \in S$ we have

$$s \le \sup S \Longrightarrow -s \ge -\sup S$$

Thus $-\sup S$ is a lower bound for -S. So we have that

$$-\sup S \le \inf -S$$

since inf -S is the greatest lower bound. For all $-s \in -S$ we have that

$$\inf -S \le -s \Longrightarrow -\inf -S \ge s$$

Notice that $-\inf -S$ is an upper bound for S. Thus

$$\sup S < -\inf -S \Longrightarrow -\sup S > \inf -S$$

So we have shown that $-\sup S \leq \inf -S$ and that $-\sup S \geq \inf -S$ thus

$$-\sup S = \inf -S$$

4. Use results we have already established to prove that if (s_n) and (t_n) are convergent, $s = \lim s_n$, $t = \lim t_n \neq 0$, and t_n is non-zero for all n, then $\left(\frac{s_n}{t_n}\right)$ converges to $\frac{s}{t}$

Solution:

$$\lim_{n\to\infty}\frac{s_n}{t_n}=\lim_{n\to\infty}s_n\cdot\frac{1}{t_n}=\lim_{n\to\infty}s_n\cdot\lim_{n\to\infty}\frac{1}{t_n}=s\cdot\frac{1}{t}=\frac{s}{t}$$

We proved multiplication limit law in class and from previous HW we proved that if (x_n) converges to $x \neq 0$ and x_n is non-zero for all n, then $\left(\frac{1}{x_n}\right)$ converges to $\frac{1}{x}$. Which I applied to $\left(\frac{1}{t_n}\right)$