

Python으로 배우는

소프트웨어 원리

Appendix 06. 토끼, 거북이, 달팽이 경주 Graphic -Turtle모듈 활용-

01. 터틀 그래픽스 모듈의 활용

l. 터틀 그래픽스 모듈

• 파이썬을 설치할 때 기본으로 제공되는 터틀 그래픽스라는 모듈을 이용하면 캔버스에 원하는 모양을 그리는 그래픽 프로그램을 간단하게 작성 가능

Ⅱ. 터틀의 기본 사용법

• 좌표를 이용한 위치 이동뿐 아니라 픽셀pixel 단위로 거리를 지정하여 거북이를 움직일 수도 있음

02. Turtle Graphics Method (1)

[Method 활용]

표 6-3 그리기 동작과 회전 관련 메소드

메소드명	동작	예시	인수 설명
forward(), fd()	앞으로 이동	turtle.forward(100) turtle.fd(100)	픽셀 단위의 거리
backward(), back()	뒤로 이동	turtle.back(100)	픽셀 단위의 거리
left(), lt()	왼쪽으로 회전	turtle.left(90)	회전 각도
right(), rt()	오른쪽으로 회전	turtle.rt(90)	회전 각도
circle()	원 그리기	turtle.circle(50) turtle.circle(50, 180)	반지름 반지름과 각도
speed()	그리기 속도 설정	turtle.speed(10)	0에서 10 사이의 수

02. Turtle Graphics Method (2)

[Method 활용]

표 6-4 펜과 색상 설정 관련 메소드

메소드명	동작	예시	인수 설명
pendown(), pd(), down()	펜을 내려 그리기 준비	turtle.pd()	-
penup(), pu(), up()	펜을 올려 그리지 않기	turtle.pu()	-
shape()	펜 모양 설정	turtle.shape('turtle')	'arrow', 'circle', 'classic', 'square', 'triangle', 'turtle',
pensize(), width()	펜 두께 설정	turtle.pensize(5)	정수, 값이 클수록 두꺼워짐
pencolor()	펜 색상 설정	turtle.pencolor('red')	색상 이름
color()	펜 색상과 채우기 색상 설정	<pre>turtle.color('white', 'yellow')</pre>	(펜 색, 채우기 색) 순서로 색상 이름 입력
<pre>bigin_fill() ~ end_fill()</pre>	도형의 색 채우기	turtle.begin_fill() turtle.circle(100) #원 그리기 turtle.end_fill()	_

02. Turtle Graphics Method (3)

[Method 활용]

표 6-5 캔버스와 윈도우 설정 관련 메소드

메소드명	동작	예시	인수 설명
setup()	캔버스 크기 설정	turtle.setup(800, 600)	폭(가로)과 높이(세로)
title()	터틀 윈도우의 제목 설정	turtle.title('Painter')	_
write()	캔버스에 출력하기	turtle.write("ABCDEFG")	문자나 숫자 등
clear()	그림 모두 지우기	turtle.clear()	=
reset()	그림을 지우고, 위치와 색상 설정 초기화	turtle.reset()	_
done()	터틀 윈도우를 닫지 않고 그리기 종료	turtle.done()	=
exitonclick()	마우스를 클릭하면 터틀 윈도우 닫기	turtle.exitonclick()	_
bye()	터틀 윈도우 닫기	turtle.bye()	

03. 실습: Turtle Module 활용

[실습] Turtle Module로 구현: 토끼와 거북이 경주

- ◆ 토끼와 거북이가 달리기 시합을 한다. 토끼는 1분에 45m를 달리고, 거북이는 1분에 11m를 달린다.
 - 거북이와 토끼의 최초 위치 값을 키보드로 입력 받는다.
 - 매 분별로 토끼와 거북이의 위치를 표시(경과 분수 포함)
 - ❖ Ch06-xyShift좌표.py 코드 참고

[실습] 축 이동된 xy 좌표 그리기 (1)

Ch06-xyShift좌표.py

```
import turtle as t
w wsize = 1600 #window 가로 크기 pixel
w_hsize = 900 #window 세로 크기 pixel
win = t.getscreen() #Window screen 객체 생성
win.setup(w_wsize, w_hsize)
I_shift = 400 #x축 left로 shift pixel 값
d shift = 100 #v축 down으로 shift pixel 값
##Shift된 new x-좌표 구하기
def newx(x=0):
  global I shift
  return (x - | shift)
##Shift된 new y-좌표 구하기
def newy(y=0):
  global d_shift
  return (y - d shift)
```

```
##[함수] (x1, y1) - (x2, y2) 직선 그리기
def line(x1, y1, x2, y2):
  t.up()
  t.goto(x1, y1)
  t.down()
  t.goto(x2, y2)
##[함수] (x,y)에 텍스트 쓰기
def txtwrite(x, y, text):
   t.up()
   t.goto(x, y)
   t.down()
   t.write(text)
```

[실습] 축 이동된 xy 좌표 그리기 (2-1)

Ch06-xyShift좌표.py

```
##[함수] x, y축 좌표 그리기
def draw xy(wsize, step):
   line(-wsize, 0, wsize, 0) # x축 라인
   line(0, -wsize, 0, wsize) # y축 라인
   for i in range(-wsize, wsize, step):
      line(i, -5, i, 5) # x축 눈금
      if i! = 0:
         txtwrite(i-10, -20, i)
   for i in range(-wsize, wsize, step):
      line(-5, i, 5, i) # y축 눈금
      if i!= 0:
         txtwrite(10, i-5, i)
```

```
##...... 메인 시작......##
##변수 초기화
wsize = 500 #x축 길이
step = 100 #눈금 간격 pixel
## x, y축 좌표 그리기
t.hideturtle()
t.speed(0)
draw xy(wsize, step)
t.exitonclick() #실행 창을 닫지 않도록
##......메인 끝......##
```

[실습] 축 이동된 xy 좌표 그리기 (2-2)

Ch06-xyShift좌표.py

▶ x축 라인을 그릴 때 축 이동된 y(newy(0))에 그림

```
##[함수] x, y축 좌표 그리기(추이동된
                                                      ##...... 메인 시작......##
def draw_xy(wsize, hsize, step);
                                                     ##변수 초기화
   line(-wsize, newy(0), wsize, newy(0)) # x축 라인
                                                      wsize = int(w_wsize / 2) #x(+)축 길이
   line(newx(0), -hsize, newx(0), hsize) # y축 라인
                                                      hsize = int(w_hsize / 2) #y(+)축 길이
                                                      step = 100 #눈금 간격 pixel
  for i in range(0, -wsize, -step):
     line(i, newy(-5), i, newy(5)) #x(-)축 눈금
      txtwrite(i-10, newy(0)-20, i-newx(0))
                                                      ## x, y축 좌표 그리기
   for i in range(step, wsize, step):
                                                      t.hideturtle()
                                 #x(+)축 눈금
      line(i, newy(-5), i, newy(5))
                                                      t.speed(0)
     txtwrite(i-10, newy(0)-20, i-newx(0))
   for i in range(0, -hsize, -step):
                                                      draw xy(wsize, hsize, step)
                                 #y(-)축 눈금
      line(newx(-5), i, newx(5), i)
      txtwrite(newx(0)+10, i-10, i-newy(0))
                                                      t.exitonclick() #실행 창을 닫지 않도록
   for i in range(step, hsize, step):
                                                      ##......##
      line(newx(-5), i, newx(5), i) #y(+)축 눈금
      txtwrite(newx(0)+10, i-10, i-newy(0))
```

03. 실습: Turtle Module 활용

[실습] Turtle Module로 구현: 토끼와 거북이 경주

- ◆ 토끼는 1분에 45m를 달리고, 거북이는 1분에 11m를 달린다.
 - 거북이와 토끼의 최초 위치 값을 키보드로 입력 받는다.
 - 매 분별로 토끼와 거북이의 위치를 표시(경과 분수 포함)
 - 토끼와 거북이를 독자적 행동이 가능한 객체를 생성하여 해결
 - ❖ Ch06-xyShift좌표.py 코드 참고

##다이알로그 윈도우로 값 입력

p_ttl = int(t.numinput("위치 값 입력", "거북이 위치(정수: -200~1000)? ")) #turtle 최초 위치 p_rbt = int(t.numinput("위치 값 입력", "토끼 위치(정수: -200~1000)? ")) #rabbit 최초 위치

[실습] 토끼와 거북이 경주 (1)

```
##......메인 시작.....##
##변수 초기화
I_shift = 400 #x축 left로 shift pixel 값
d shift = 100 #y축 down으로 shift pixel 값
wsize = int(w_wsize / 2) #x(+)축 길이
hsize = int(w hsize / 2) #y(+)축 길이
step = 100
## x, y축 좌표 그리기
t.hideturtle()
t.speed(0)
draw_xy(wsize, hsize, step)
```

[실습] 토끼와 거북이 경주 (2)

```
##토끼. 거북이 객체 생성하기
ttl = t.Turtle() #turtle 객체 생성
ttl.hideturtle()
ttl.penup()
ttl.shape('turtle')
ttl.color('red')
rbt = t.Turtle() #rabbit 객체 생성
rbt.hideturtle()
rbt.penup()
rbt.shape('triangle')
rbt.color('blue')
##게임시작
p_ttl = int(t.numinput("위치 값 입력", "거북이 위치(정수: -200~1000)? "))
                                                                 #turtle 최초 위치
p_rbt = int(t.numinput("위치 값 입력", "토끼 위치(정수: -200~1000)? ")) #rabbit 최초 위치
run game(ttl, rbt, p ttl, p rbt)
t.exitonclick() #실행 창을 닫지 않도록
##.....##
```

turtle.numinput(title, prompt, default=None, minval=None, maxval=None)

[실습] 토끼와 거북이 경주 (3)

```
##[함수] turtle-rabbit running game
def run_game(ttl, rbt, p_ttl, p_rbt) :
  #turtle 상태 설정
  ttl.speed('fastest')
  ttl.goto(newx(p_ttl), newy(0))
  ttl.showturtle()
  ttl.pendown()
  ttl.speed('slowest')
  #rabbit 상태 설정
  rbt.speed('fastest')
  rbt.goto(newx(p_rbt), newy(50))
  rbt.pendown()
  rbt.showturtle()
  rbt.speed('slowest')
```

[도전-1] 토끼와 거북이 경주 (완성)

```
min = 0
while p rbt <= p ttl:
  min += 1
  p rbt += 45
  p ttl += 11
  #두 객체 이동 처리
  rbt.pensize(
                         ) #펜사이즈 번갈아 굵기 조절
  ttl.pensize(
                             #펜사이즈 번갈아 굵기 조절
  rbt.forward(45)
  ttl.forward(11)
 #위치 표시하기
 txtwrite(newx(p_rbt), newy(120), '['+str(min)+']') #rabbit 경과 시간(min)
                                                             #rabbit 위치(m)
 txtwrite(newx(p_rbt), newy(100), p_rbt)
 txtwrite(newx(p_ttl), newy(-50-(15*min)), '['+str(min)+'] '+str(p_ttl)) #turtle 위치(m)
```

03. 실습: Turtle Module 활용

[실습] 달팽이 우물에서 탈출하기

- ◆ 우물에 빠진 달팽이가 우물 밖으로 빠져나오는데 걸리는 기간 출력
 - 우물의 깊이 (달팽이의 최초 위치) 값을 키보드로 입력 받는다.
 - 하루마다 한번싹 달팽이의 위치를 표시(경과 일수 포함)
 - 목표에 근접해서는 남은 거리만 올라가고, 다 올라가서 오른쪽으로 90도 회전
 - ❖ Ch06-xyShift좌표.py 코드 참고

[실습] 달팽이 우물에서 탈출하기 (1)


```
##변수 초기화
I shift = 0 #x축 left로 shift pixel 값
d shift = -200 #y축 down으로 shift pixel 값
wsize = int(w wsize / 2) #x-축 (+)축 길이
hsize = int(w_hsize / 2) #y-축 (+)축 길이
step = 100 #눈금 간격 pixel
## x, y축 좌표 그리기
t.hideturtle()
t.speed(0)
draw xy(wsize, hsize, step)
```

[실습] 달팽이 우물에서 탈출하기 (2)

```
##토끼, 거북이 객체 생성하기
dal = t.Turtle() #turtle 객체 생성
dal.hideturtle()
dal.penup()
dal.shape('turtle')
dal.color('red')
##게임시작
p_dal = int(t.numinput("위치 값 입력", "우물 깊이 값 입력(cm, 양수)?"))
run_game(dal, p_dal)
```

[실습] 달팽이 우물에서 탈출하기 (3)

```
##[함수] running game
def run_game(dal, p_dal) :
  p_dal = -p_dal #높이를 깊이로 환산
  dal.speed('fastest')
  dal.goto(newx(0), newy(p_dal))
  dal.left(90)
  dal.showturtle()
  dal.pendown()
  dal.speed('slowest')
  line(newx(-200), newy(p_dal), newx(0), newy(p_dal)) # x축 바닥 라인
```

[실습] 달팽이 우물에서 탈출하기 (4)

```
#달팽이 이동 처리
 height = 0 # 우물 밖 목표 위치(cm)
 days = 0
 while p dal < height:
    days += 1
    dal.pensize(1)
    p dal += 55
    dal.forward(55)
    txtwrite(newx(50), newy(p_dal), '[' + str(days) + '] ' + str(p_dal)) # 달팽이 현재 위치(m)
    print("%2d일째>%5dcm" % (days, p_dal), end=" ")
    if p dal >= height:
      break
                                                           1일째> -345cm > -358cm
    p dal -= 13
                                                           2일째> -303cm > -316cm
    dal.pensize(3)
                                                           3일째> -261cm > -274cm
    dal.backward(13)
                                                           4일째> -219cm > -232cm
    print(">%5dcm" % (p_dal))
                                                           5일째> -177cm > -190cm
                                                           6일째> -135cm > -148cm
 print(" n>>%d일만에 탈출 성공" % days)
                                                           7일째> -93cm > -106cm
                                                           8일째> -51cm > -64cm
                                                           9일째> -9cm > -22cm
                                                          10일째> 33cm
                                                          >>10일만에 탈출 성공
```

[도전-2] 달팽이 우물에서 탈출하기 (완성)

Ch06-xy달팽이.py

- ◆ 우물에 빠진 달팽이가 우물 밖으로 빠져나오는데 걸리는 기간 출력
 - 우물의 깊이 (달팽이의 최초 위치) 값을 키보드로 입력 받는다.
 - 하루마다 한번싹 달팽이의 위치를 표시(경과 일수 포함)
 - 목표에 근접해서는 남은 거리만 올라가고, 다 올라가서 오른쪽으로 90도 회전

```
#달팽이 이동 처리
                                                 Pvthon Turtle Graphics
 height = 0 # 우물 밖 목표 위치(cm)
 days = 0
 while p dal < height:
    days += 1
                                                                        [8] -51
    dal.pensize(1)
    p dal += 55
    dal.forward(55)
    txtwrite(newx(50), newy(p_dal), '[' + str(days) + '] ' + str(p_dal)) # 달팽이 현재 위치(m)
    print("%2d일째>%5dcm" % (days, p_dal), end=" ")
    if p_dal >= height:
      break
    p dal -= 13
    dal.pensize(3)
    dal.backward(13)
    print(">%5dcm" % (p dal))
  print(" n>>%d일만에 탈출 성공" % days)
```

Thank You!

[Python]