PLOT:

2D plot of a polynomial function:(The interval notation of {x,min,max} defines the domain.)

 $In[72]:= Plot[x^2 + 2x + 1, \{x, -10, 10\}]$

RegionPlot: PLot a 2D region for a set of inequalities. (&& = and)

ln[73]:= RegionPlot[Reduce[$\{x^2 + y < 2 & x + y < 1\}$], $\{x, -3, 3\}$, $\{y, -3, 3\}$]

You can add "Legend" in the given plot

lor[74]:= Plot[{x^3, x^2, x}, {x, -2, 2}, PlotLegends \rightarrow "Expressions"]

Filling a plot to visualize the area under a curve

In[75]:= Plot[1 / x, {x, -3, 3}, Filling \rightarrow Axis]

You can combine different plot types with show:

 $\label{eq:local_$

 $ln[77] = Plot[Sin[x], \{x, 0, 10\}]$

 $ln[78]:= Plot[Tan[x], \{x, 0, 10\}]$

Trigonometry: Basic trigonometry function

$$In[79]:= Sin[x]/Cos[x] == Tan[x]$$

Out[79]= True

In[80]:= ArcTan[1]

Out[80]=

for pi, use esc pi esc

In[81]:=
$$Sin[\pi/2]$$

Out[81]= 1

In[82]:= Sin[90 °]

Out[82]= 1

You can expand trigonometric functions using expand (or reduce)

In[83]:= TrigExpand[Sin[2 x]]

Out[83]= 2 Cos[x] Sin[x]

Out[84]=
$$2 \sin \left[\frac{\pi}{4} - x \right] \sin \left[\frac{\pi}{4} + x \right]$$

Solve can be used to solve the trigonometric equations like:

$$ln[85]:=$$
 Solve [Cos[x]^2 + Sin[x]^2 == x]

Out[85]=
$$\{\{x \rightarrow 1\}\}$$

Specify a domain for solutions:

$$ln[86]:=$$
 Solve[{Tan[x] == 1, 0 < x < 2 Pi}]

Out[86]=
$$\left\{ \left\{ x \rightarrow \frac{\pi}{4} \right\}, \left\{ x \rightarrow \frac{5\pi}{4} \right\} \right\}$$

Polar Coordinates

ln[87]:= PolarPlot[Sin[2 θ] + Cos[2 θ], { θ , 0, 2Pi}]

Display polar axes instead:

In[95]:= PolarPlot[Sin[2 θ] + Cos[2 θ], { θ , 0, 2Pi},

PolarAxes → Automatic, PolarTicks → {0°, 90°, 180°, 270°}]

Convert Cartesian co-ordinates to polar: (r, θ)

Out[96]=
$$\left\{\sqrt{2}, \frac{\pi}{4}\right\}$$

Exponential & Logarithms

Exponential constant as E. Log gives the natural logarithm of an expression:

In[97]:=
$$Log[E^2]$$

Out[97]= 2

To calculate the log base 2:

Out[98]= **6**

In order to make a plot on a logarithmic scale:

In[99]:= LogPlot[E^x , {x, 1, 5}]

Make both axes logarithmic:

ln[100]:= LogLogPlot[$x^2 + x^3$, {x, 1, 100}]

