DSC 1408 Representation Learning

Lecture 05 | Part 1

Change of Basis Matrices

Changing Basis

Suppose
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1 \hat{e}^{(1)} + a_2 \hat{e}^{(2)}$$
.

- $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ form a new, **orthonormal** basis \mathcal{U} .
- ► What is $[\vec{x}]_{\mathcal{U}}$?
- ► That is, what are b_1 and b_2 in $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$.

Exercise

Find the coordinates of \vec{x} in the new basis:

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$\vec{x} = (1/2, 1)^{T}$$

Change of Basis

- Suppose $\hat{u}^{(1)}$ and $\hat{u}^{(2)}$ are our new, **orthonormal** basis vectors.
- We know $\vec{x} = x_1 \hat{e}^{(1)} + x_2 \hat{e}^{(2)}$
- We want to write $\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)}$
- Solution

$$b_1 = \vec{x} \cdot \hat{u}^{(1)}$$
 $b_2 = \vec{x} \cdot \hat{u}^{(2)}$

Change of Basis Matrix

Changing basis is a linear transformation

$$\vec{f}(\vec{x}) = (\vec{x} \cdot \hat{u}^{(1)})\hat{u}^{(1)} + (\vec{x} \cdot \hat{u}^{(2)})\hat{u}^{(2)} = \begin{pmatrix} \vec{x} \cdot \hat{u}^{(1)} \\ \vec{x} \cdot \hat{u}^{(2)} \end{pmatrix}_{\mathcal{U}}$$

We can represent it with a matrix

$$\begin{pmatrix} \uparrow & \uparrow \\ f(\hat{e}^{(1)}) & f(\hat{e}^{(2)}) \\ \downarrow & \downarrow \end{pmatrix}$$

Example

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$f(\hat{e}^{(1)}) = f(\hat{e}^{(2)}) = A = 0$$

Observation

► The new basis vectors become the **rows** of the matrix.

Example

Multiplying by this matrix gives the coordinate vector w.r.t. the new basis.

$$\hat{u}^{(1)} = (\sqrt{3}/2, 1/2)^{T}$$

$$\hat{u}^{(2)} = (-1/2, \sqrt{3}/2)^{T}$$

$$A = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$$

$$\vec{x} = (1/2, 1)^{T}$$

Change of Basis Matrix

- Let $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ form an orthonormal basis \mathcal{U} .
- The matrix U whose **rows** are the new basis vectors is the **change of basis** matrix from the standard basis to U:

$$U = \begin{pmatrix} \leftarrow \hat{u}^{(1)} \to \\ \leftarrow \hat{u}^{(2)} \to \\ \vdots \\ \leftarrow \hat{u}^{(d)} \to \end{pmatrix}$$

Change of Basis Matrix

- If *U* is the change of basis matrix, $[\vec{x}]_{ij} = U\vec{x}$
- ► To go back to the standard basis, use U^T :

$$\vec{x} = U^T[\vec{x}]_{\mathcal{U}}$$

Exercise

Let U be the change of basis matrix for \mathcal{U} . What is U^TU ?

Hint: What is $U^{T}(U\vec{x})$?

DSC 1408 Representation Learning

Lecture 05 | Part 2

Diagonalization

Matrices of a Transformation

Let $\vec{f}: \mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation

The matrix representing \vec{f} wrt the **standard basis** is:

$$A = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ \vec{f}(\hat{e}^{(1)}) & \vec{f}(\hat{e}^{(2)}) & \cdots & \vec{f}(\hat{e}^{(d)}) \\ \downarrow & \downarrow & \downarrow & \downarrow \end{pmatrix}$$

Matrices of a Transformation

If we use a different basis $\mathcal{U} = \{\hat{u}^{(1)}, ..., \hat{u}^{(d)}\}$, the matrix representing \vec{f} is:

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

► If
$$\vec{y} = A\vec{x}$$
, then $[\vec{y}]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$

Diagonal Matrices

Diagonal matrices are very nice / easy to work with.

- Suppose A is a matrix. Is there a basis \mathcal{U} where $A_{\mathcal{U}}$ is diagonal?
- Yes! If A is symmetric.

The Spectral Theorem¹

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

Eigendecomposition

If A is a symmetric matrix, we can pick d of its eigenvectors $\hat{u}^{(1)}, ..., \hat{u}^{(d)}$ to form an orthonormal basis.

- Any vector \vec{x} can be written in terms of this eigenbasis.
- ► This is called its **eigendecomposition**:

$$\vec{x} = b_1 \hat{u}^{(1)} + b_2 \hat{u}^{(2)} + ... + b_d \hat{u}^{(d)}$$

Matrix in the Eigenbasis

- Claim: the matrix of a linear transformation \vec{f} , written in a basis of its eigenvectors, is a diagonal matrix.
- The entries along the diagonal will be the eigenvalues.

Why?

$$A_{\mathcal{U}} = \begin{pmatrix} \uparrow & \uparrow & \uparrow & \uparrow \\ [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} & [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} & \cdots & [\vec{f}(\hat{u}^{(d)})]_{\mathcal{U}} \end{pmatrix}$$

$$\vec{f}(\hat{u}^{(1)}) = \lambda_1 \hat{u}^{(1)}$$
, so $[\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} = (\lambda_1, 0, ..., 0)^T$.

$$\vec{f}(\hat{u}^{(1)}) = \lambda_1 \hat{u}^{(1)}, \text{ so } [\vec{f}(\hat{u}^{(1)})]_{\mathcal{U}} = (\lambda_1, 0, ..., 0)^T.$$

$$\vec{f}(\hat{u}^{(2)}) = \lambda_2 \hat{u}^{(2)}, \text{ so } [\vec{f}(\hat{u}^{(2)})]_{\mathcal{U}} = (0, \lambda_2, ..., 0)^T.$$

Matrix Multiplication

- We have seen that matrix multiplication evaluates a linear transformation.
- In the standard basis:

$$\vec{f}(\vec{x}) = A\vec{x}$$

In another basis:

$$[\vec{f}(\vec{x})]_{\mathcal{U}} = A_{\mathcal{U}}[\vec{x}]_{\mathcal{U}}$$

Diagonalization

- Another way to compute $\vec{f}(x)$, starting with \vec{x} in the standard basis:
 - 1. Change basis to the eigenbasis with *U*.
 - 2. Apply \vec{f} in the eigenbasis with the diagonal A_{ij} .
 - 3. Go back to the standard basis with U^{T} .
- That is, $A\vec{x} = U^T A_{1/2} U \vec{x}$. It follows that $A = U^T A_{1/2} U$.

Spectral Theorem (Again)

- Theorem: Let A be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix U and a diagonal matrix Λ such that $A = U^T \Lambda U$.
- The rows of U are the eigenvectors of A, and the entries of Λ are its eigenvalues.
- U is said to diagonalize A.

DSC 1408 Representation Learning

Lecture 05 | Part 3

Dimensionality Reduction

High Dimensional Data

- Data is often high dimensional (many features)
- Example: Netflix user
 - Number of movies watched
 - Number of movies saved
 - Total time watched
 - Number of logins
 - Days since signup
 - Average rating for comedy
 - Average rating for drama
 - •

High Dimensional Data

- More features can give us more information
- But it can also cause problems
- ► **Today**: how do we reduce dimensionality without losing too much information?

More Features, More Problems

- Difficulties with high dimensional data:
 - 1. Requires more compute time / space
 - 2. Hard to visualize / explore
 - 3. The "curse of dimensionality": it's harder to learn

Experiment

- On this data, low 80% train/test accuracy
- Add 400 features of pure noise, re-train
- Now: 100% train accuracy,58% test accuracy
- Overfitting!

Task: Dimensionality Reduction

- We'd often like to reduce the dimensionality to improve performance, or to visualize.
- We will typically lose information
- ▶ Want to minimize the loss of useful information

Redundancy

Two (or more) features may share the same information.

Intuition: we may not need all of them.

Today

- Today we'll think about reducing dimensionality from \mathbb{R}^d to \mathbb{R}^1
- Next time we'll go from \mathbb{R}^d to $\mathbb{R}^{d'}$, with $d' \leq d$

Today's Example

- Let's say we represent a phone with two features:
 - ► x₁: screen width
 - \triangleright x_2 : phone weight
- Both measure a phone's "size".
- Instead of representing a phone with both x_1 and x_2 , can we just use a single number, z?
 - Reduce dimensionality from 2 to 1.

First Approach: Remove Features

- Screen width and weight share information.
- ▶ **Idea:** keep one feature, remove the other.
- ► That is, set new feature $z = x_1$ (or $z = x_2$).

Removing Features

- Say we set $z^{(i)} = \vec{x}_1^{(i)}$ for each phone, *i*.
- Observe: $z^{(4)} > z^{(5)}$.
- Is phone 4 really "larger" than phone 5?

Removing Features

- Say we set $z^{(i)} = \vec{x}_2^{(i)}$ for each phone, *i*.
- Observe: $z^{(3)} > z^{(4)}$.
- ► Is phone 3 really "larger" than phone 4?

Better Approach: Mixtures of Features

- ▶ **Idea**: z should be a combination of x_1 and x_2 .
- One approach: linear combination.

$$z = u_1 x_1 + u_2 x_2$$
$$= \vec{u} \cdot \vec{x}$$

 $u_1, ..., u_2$ are the mixture coefficients; we can choose them.

Normalization

- Mixture coefficients generalize proportions.
- ► We could assume, e.g., $|u_1| + |u_2| = 1$.
- But it makes the math easier if we assume $u_1^2 + u_2^2 = 1$.
- ► Equivalently, if $\vec{u} = (u_1, u_2)^T$, assume $\|\vec{u}\| = 1$

Geometric Interpretation

- ightharpoonup z measures how much of \vec{x} is in the direction of \vec{u}
- If $\vec{u} = (1,0)^T$, then $z = x_1$
- If $\vec{u} = (0, 1)^T$, then $z = x_2$

Choosing \vec{u}

- Suppose we have only two features:
 - \rightarrow x_1 : screen size
 - \triangleright x_2 : phone thickness
- \triangleright We'll create single new feature, z, from x_1 and x_2 .
 - Assume $z = u_1 x_1 + u_2 x_2 = \vec{x} \cdot \vec{u}$
 - Interpretation: z is \bar{a} measure of a phone's size
- ► How should we choose $\vec{u} = (u_1, u_2)^T$?

Example

- $ightharpoonup \vec{u}$ defines a direction
- $\vec{z}^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$ measures position of \vec{x} along this direction

Example

- Phone "size" varies most along a diagonal direction.
- Along direction of "max variance", phones are well-separated.
- Idea: u should point in direction of "max variance".

Our Algorithm (Informally)

- ▶ **Given**: data points $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$
- ightharpoonup Pick \vec{u} to be the direction of "max variance"

Create a new feature, z, for each point:

$$z^{(i)} = \vec{x}^{(i)} \cdot \vec{u}$$

PCA

- ► This algorithm is called Principal Component Analysis, or PCA.
- ► The direction of maximum variance is called the **principal component**.

Exercise

Suppose the direction of maximum variance in a data set is

$$\vec{u} = (1/\sqrt{2}, -1/\sqrt{2})^{\mathsf{T}}$$

Let

$$\vec{x}^{(1)} = (3, -2)^T$$

 $\vec{x}^{(2)} = (1, 4)^T$

What are $z^{(1)}$ and $z^{(2)}$?

Problem

How do we compute the "direction of maximum variance"?

DSC 1408 Representation Learning

Lecture 05 | Part 4

Covariance Matrices

Variance

We know how to compute the variance of a set of numbers $X = \{x^{(1)}, ..., x^{(n)}\}$:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu)^2$$

The variance measures the "spread" of the data

Generalizing Variance

If we have two features, x_1 and x_2 , we can compute the variance of each as usual:

$$Var(x_1) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_1^{(i)} - \mu_1)^2$$

$$Var(x_2) = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_2^{(i)} - \mu_2)^2$$

 \triangleright Can also measure how x_1 and x_2 vary together.

Measuring Similar Information

- Features which share information if they vary together.
 - A.k.a., they "co-vary"
- Positive association: when one is above average, so is the other

Negative association: when one is above average, the other is below average

Examples

- Positive: temperature and ice cream cones sold.
- Positive: temperature and shark attacks.
- Negative: temperature and coats sold.

Centering

First, it will be useful to center the data.

Centering

Compute the mean of each feature:

$$\mu_j = \frac{1}{n} \sum_{1}^{n} \vec{x}_j^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \begin{pmatrix} \vec{x}_1^{(i)} - \mu_1 \\ \vec{x}_2^{(i)} - \mu_2 \\ \vdots \\ \vec{x}_d^{(i)} - \mu_d \end{pmatrix}$$

Centering (Equivalently)

Compute the mean of all data points:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \vec{x}^{(i)}$$

Define new centered data:

$$\vec{z}^{(i)} = \vec{x}^{(i)} - \mu$$

Exercise

Center the data set:

$$\vec{x}^{(1)} = (1, 2, 3)^T$$

 $\vec{x}^{(2)} = (-1, -1, 0)^T$
 $\vec{x}^{(3)} = (0, 2, 3)^T$

One approach is as follows².

Cov
$$(x_i, x_j) = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

- For each data point, multiply the value of feature *i* and feature *i*, then average these products.
- This is the **covariance** of features *i* and *j*.

²Assuming centered data

Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

Assume the data are centered.

Covariance =
$$\frac{1}{7} \sum_{i=1}^{7} \vec{x}_{1}^{(i)} \times \vec{x}_{2}^{(i)}$$

- ► The **covariance** quantifies extent to which two variables vary together.
- Assume we have centered the data.
- ► The **sample covariance** of feature *i* and *j* is:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Exercise

True or False: $\sigma_{ij} = \sigma_{ji}$?

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_{i}^{(k)} \vec{x}_{j}^{(k)}$$

Covariance Matrices

- ▶ Given data $\vec{x}^{(1)}, ..., \vec{x}^{(n)} \in \mathbb{R}^d$.
- The sample covariance matrix C is the $d \times d$ matrix whose ij entry is defined to be σ_{ii} .

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

Observations

- Diagonal entries of C are the variances.
- ► The matrix is **symmetric**!

Note

Sometimes you'll see the sample covariance defined as:

$$\sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} \vec{x}_i^{(k)} \vec{x}_j^{(k)}$$

- Note the 1/(n-1)
- This is an **unbiased** estimator of the population covariance.
- Our definition is the maximum likelihood estimator.
- ► In practice, it doesn't matter: $1/(n-1) \approx 1/n$.
- For consistency, in this class use 1/n.

Computing Covariance

- ► There is a "trick" for computing sample covariance matrices.
- Step 1: make $n \times d$ data matrix, X
- Step 2: make Z by centering columns of X
- ► Step 3: $C = \frac{1}{n}Z^{T}Z$

Computing Covariance (in code)³

```
>>> mu = X.mean(axis=0)
>>> Z = X - mu
>>> C = 1 / len(X) * Z.T @ Z
```