# Data Science – Maths – Part - 2

## 2. Maths - Statistics - PART - 2

# Contents

| 1. Usage of mode, median, mean, range & standard deviation? | 2  |
|-------------------------------------------------------------|----|
| 2. Measures of centre                                       | 3  |
| 3. Mode                                                     | 4  |
| 4. Median                                                   | 5  |
| 6. Mean                                                     | 11 |
| 7. Measures of spread                                       | 14 |
| 8. Range                                                    | 15 |
| 9. Standard Deviation                                       | 16 |
| 10. Variance                                                | 26 |

#### 2. Maths - Statistics - PART - 2

MODE MEDIAN MEAN
RANGE STANDARD DEVIATION

#### 1. Usage of mode, median, mean, range & standard deviation?

- ✓ Identifying and describing like how the dataset got distributed
- ✓ These mode, median, mean, range and standard deviation gives the numerical information and distribution about the dataset
- ✓ These also explains about
  - Measures of centre
  - Measures of spread



## 2. Measures of centre

- ✓ Mode
- ✓ Median
- ✓ Mean



#### 3. Mode

- √ Value which is most frequently observed
- ✓ Suppose we have taken random people heights and displayed as below
- ✓ Here 153 value is repeated in 3 times



#### 4. Median

- √ Value that is positioned in the middle of an ordered dataset
- ✓ First we need to keep the data into an order
- ✓ We usually order the dataset into smallest to largest



### **Special cases**

✓ If the dataset is extremely large then it might helpful use the below formula







✓ If number of values are in odd or even number then we do have some special scenarios to find out the median value









#### 6. Mean

- √ The mean is just another name of average
- ✓ Below is the formula which indicates mean of total values



## Sample mean

✓ Below is the formula which indicates mean of sample values

$$\overline{\mathbf{x}} = \frac{\sum x_i}{n}$$







# Data Science – Maths – Part - 2

# 7. Measures of spread

- ✓ Range
- ✓ Standard deviation

## 8. Range

- ✓ Range means difference in between minimum value and maximum value
- ✓ It explains about the data is in between min and max values

```
RANGE = MAX - MIN

= 196 - 139

154

154

155

180

192

196
```



#### 9. Standard Deviation

- ✓ The Standard Deviation is a measure of how spread out numbers.
- ✓ Formula is very simple, It is the square root of the Variance







| x <sub>i</sub> | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ | $s = \frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2}$ |
|----------------|----------------------|--------------------------|-----------------------------------------------------------------------|
| 10             |                      |                          | $s = \sqrt{n-1}$                                                      |
| 12             |                      |                          |                                                                       |
| 16             |                      |                          |                                                                       |
| 19             |                      |                          | $\sum x_i$                                                            |
| 20             |                      |                          | x =                                                                   |



| X <sub>i</sub> | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ | $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ |
|----------------|----------------------|--------------------------|------------------------------------------------------|
| 10             |                      |                          | √ n – 1                                              |
| 12             |                      |                          |                                                      |
| 16             |                      |                          |                                                      |
| 19             |                      |                          |                                                      |
| 20             |                      |                          | $\overline{X} = 15.4$                                |

| X <sub>i</sub> | $ x_i - \overline{x} $ | $(x_i - \overline{x})^2$ | $s = \frac{\sum (x_i - \overline{x})^2}{}$ |
|----------------|------------------------|--------------------------|--------------------------------------------|
| 10             | 10 - 15.4              |                          | $3-\sqrt{n-1}$                             |
| 12             | 12 - 15.4              |                          |                                            |
| 16             | 16 - 15.4              |                          |                                            |
| 19             | 19 - 15.4              |                          |                                            |
| 20             | 20 - 15.4              |                          | $\overline{X} = 15.4$                      |
|                |                        |                          |                                            |

| X <sub>i</sub> | $X_i - \overline{X}$ | $(x_i - \overline{x})^2$ | $s = \frac{\sum (x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$ |
|----------------|----------------------|--------------------------|-------------------------------------------------------------|
| 10             | -5.4                 |                          | n-1                                                         |
| 12             | -3.4                 |                          |                                                             |
| 16             | 0.6                  |                          |                                                             |
| 19             | 3.6                  |                          |                                                             |
| 20             | 4.6                  |                          | $\overline{X} = 15.4$                                       |

| <b>X</b> <sub>i</sub> | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ | $s = \frac{\sum (x_i - x_i)^2}{\sum (x_i - x_i)^2}$ |
|-----------------------|----------------------|--------------------------|-----------------------------------------------------|
| 10                    | -5.4                 | ( -5.4 )2                | J = √ n - 1                                         |
| 12                    | -3.4                 | ( -3.4 )2                |                                                     |
| 16                    | 0.6                  | ( 0.6 )2                 |                                                     |
| 19                    | 3.6                  | ( 3.6 ) <sup>2</sup>     |                                                     |
| 20                    | 4.6                  | ( 4.6 ) <sup>2</sup>     |                                                     |

| $\boldsymbol{x_i}$ | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ | $s = \frac{\sum (x_i - \bar{x})^2}{}$ |
|--------------------|----------------------|--------------------------|---------------------------------------|
| 10                 | -5.4                 | 29.16                    | 3 - √ n - 1                           |
| 12                 | -3.4                 | 11.56                    |                                       |
| 16                 | 0.6                  | 0.36                     |                                       |
| 19                 | 3.6                  | 12.96                    |                                       |
| 20                 | 4.6                  | 21.16                    |                                       |

| $x_i$ | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ | $s = \frac{\sum (x_i - \overline{x})^2}{}$ |
|-------|----------------------|--------------------------|--------------------------------------------|
| 10    | -5.4                 | 29.16                    | √ n – 1                                    |
| 12    | -3.4                 | 11.56                    |                                            |
| 16    | 0.6                  | 0.36                     |                                            |
| 19    | 3.6                  | 12.96                    |                                            |
| 20    | 4.6                  | 21.16                    |                                            |

| Xi | $X_i - \overline{X}$ | $(x_i - \overline{x})^2$ | s =     | 75.2       |
|----|----------------------|--------------------------|---------|------------|
| 10 | -5.4                 | 29.16                    | 3 - √ n | <b>- 1</b> |
| 12 | -3.4                 | 11.56                    |         |            |
| 16 | 0.6                  | 0.36                     |         |            |
| 19 | 3.6                  | 12.96                    |         |            |
| 20 | 4.6                  | 21.16                    |         |            |



| $\boldsymbol{x_i}$ | $X_i - \overline{X}$ | $(x_i - \overline{x})^2$ | 75.2           |
|--------------------|----------------------|--------------------------|----------------|
| ~1                 |                      | (A) A)                   | $s = \sqrt{4}$ |
| 10                 | -5.4                 | 29.16                    | V 4            |
| 12                 | -3.4                 | 11.56                    |                |
| 16                 | -5.4<br>-3.4<br>0.6  | 0.36                     |                |
| 19                 | 3.6                  | 12.96                    |                |
| 20                 | 4.6                  | 21.16                    |                |

| X <sub>i</sub> | $X_i - \overline{X}$ | $(x_i - \overline{x})^2$ | s = | 18.8 |
|----------------|----------------------|--------------------------|-----|------|
| 10             | -5.4<br>-3.4         | 29.16                    | 1   |      |
| 12             | -3.4                 | 11.56                    |     |      |
| 16             | 0.6                  | 0.36                     |     |      |
| 19             | 3.6                  | 12.96                    |     |      |
| 20             | 4.6                  | 21.16                    |     |      |

| X <sub>i</sub> | $X_i - \overline{X}$ | $(x_i - \overline{x})^2$ | s = 4.336 |
|----------------|----------------------|--------------------------|-----------|
| 10             | -5.4                 | 29.16                    |           |
| 12             | -3.4                 | 11.56                    |           |
| 16             | 0.6                  | 0.36                     |           |
| 19             | 3.6                  | 12.96                    |           |
| 20             | 4.6                  | 21.16                    |           |

# WHAT DOES THE STANDARD DEVIATION EVEN TELL US?

# **STANDARD DEVIATION**

HOW CLOSE THE VALUES IN A DATA SET ARE TO THE MEAN









#### 10. Variance

- ✓ The average of squared differences from the mean.
- ✓ Variance is the average of squared differences from the mean
- ✓ By using this we can find how far the data points in a population are from the population mean.



