Who uses Python?

On-line games

Web services

Applications

Science

Instrument control

Embedded systems

What sort of language is Python?

Compiled

Explicitly compiled to machine code

Explicitly compiled to byte code

Implicitly compiled to byte code

Interpreted

Purely interpreted

C, C++, Fortran Java, C#

Python

Shell, Perl

Python commands

print ≠ PRINT

13-01-2023

"Case sensitive"

Python text

Text: a "string" of characters

```
>>> type('Hello, world!')
<class 'str'>
                                          A string of characters
                                          Class: string
                                          Length: 13
                                          Letters
                  1
                    1
                                       d
       13
                             wor
 str
```

How big can a Python integer be?

```
>>> 2**2
4
>>> 4**2
16
>>> 16**2
256
>>> 256**2
65536
>>> 65536**2
```

4294967296

How big can a Python integer be?

>>> **4294967296**2** 18446744073709551616

>>> **18446744073709551616**2** 340282366920938463463374607431768211456

>>> **340282366920938463463374607431768211456**2** 1157920892373161954235709850086879078532699846 65640564039457584007913129639936

>>> 115792089237316195423570985008687907853269 984665640564039457584007913129639936**2

1340780792994259709957402499820584612747936582 0592393377723561443721764030073546976801874298 1669034276900318581864860508537538828119465699 46433649006084096

How big can a Python integer be?

There is no limit! 6115517942711068311340905842728842797915548497829543^^=^4 Except for machine memory

And	exec	Not
Assert	finally	or
Break	for	pass
Class	from	print
Continue	global	raise
def	if	return
del	import	try
elif	in	while
else	is	with
except	lambda	yield

MODEL DEVELOPMENT LIFE CYCLE

STEPS INVOLVED IN EDA

MODEL SELECTION

Missing value Analysis

Why missing values

- Human Error
- Refuse to answer while surveying
- Optional box in questionnaire

Ignore or impute missing value???

- Understand why each value is missing
- Plot bar graph
- Delete observations or variables where you do not intend to impute a value
 - Drop variable
 - Drop observation
 - Consider the variables to impute whose missing values is less than 30%

Name	Weight	Gender	Play Cricket/ Not
Mr. Amit	58	M	Y
Mr. Anil	61	M	Y
Miss Swati	58	F	N
Miss Richa	55		Y
Mr. Steve	55	M	N
Miss Reena	64	F	Y
Miss Rashm	57		Y
Mr. Kunal	57	M	N

Impute missing values

Outlier Analysis

What is an outlier?

 Observations inconsistent with rest of the dataset Global Outlier

Causes of Outliers

- Poor data quality / contamination
- Low quality measurements, malfunctioning equipment, manual error
- Correct but exceptional data

BOX PLOT

$$r = \frac{Cov(X, Y)}{\sigma_x \sigma_y}$$

$$r = \frac{\sum XY}{n \sigma_x \sigma_y}$$

$$r = \frac{\sum XY}{\sqrt{\sum X^2 \sum Y^2}} \quad \begin{array}{c} \text{where} \\ X = x - \bar{x} \\ Y = y - \bar{y} \end{array}$$

r — Correlation Coefficient

 $\sigma_{_{\! X}}$ standard deviation of dataset X

σ_y → standard deviation of dataset Y

Chi-Square test of Independence

- Compares two variables in a contingency table to see if they are related
- Hypothesis Testing

Null Hypo: Two variables are independent

Alternate Hypo: Two variables are not independent

- Uses contingency table for better representation
- Chi-square test can be calculated as

$$c^{2} = \sum_{i=1}^{k} \left\lfloor \frac{(O_{i} - E_{i})^{2}}{E_{i}} \right\rfloor$$

Contd...

Degrees of Freedom

(number of rows - 1)(number of columns - 1)

- Calculate critical value using table
- If Chi-square statistic is greater than Critical value then reject null hypothesis

В	C	D	E	F	G
	(Contigency Tab	ole		
	High School	Bachelors	Masters	Ph.d.	Total
emale	60	54	46	41	201
Male	40	44	53	57	194
Total	100	98	99	98	395

$$c^{2} = \sum_{i=1}^{k} \left\lfloor \frac{(O_{i} - E_{i})^{2}}{E_{i}} \right\rfloor$$

50.88608

DF = (number of rows - 1)(number of columns - 1)

Expected Value						
	High School	Bachelors	Masters	Ph.d.	Total	
Female	50.886	49.868	50.377	49.868	201	
Male	49.114	48.132	48.623	48.132	194	
Total	100	98	99	98	395	

Chi-square test =	8.005907121
Degrees of Freedom =	3
Critical Value with 95% CI =	7.815

	Reject Null Hypothesis as ch-
Result	square test is greater than
	critical value

Expected Value						
	High School	Bachelors	Masters	Ph.d.	Total	
Female	1.632374248	0.342372343	0.380295155	1.576992	201	
Male	1.69126921	0.354720851	0.394013718	1.63387	194	
Total	100	98	99	98	395	

Upper-tail critical values of chi-square distribution with \boldsymbol{v} degrees of freedom

	Prob	ability less	than the	critical	value
ν	0.90	0.95	0.975	0.99	0.999
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125
9	14.684	16.919	19.023	21.666	27.877
10	15.987	18.307	20.483	23.209	29.588
11	17.275	19.675	21.920	24.725	31.264
12	18.549	21.026	23.337	26.217	32.910
13	19.812	22.362	24.736	27.688	34.528
14	21.064	23.685	26.119	29.141	36.123
15	22.307	24.996	27.488	30.578	37.697
16	23.542		28.845	32.000	39.252
17	24.769	27.587	30.191	33.409	40.790
18	25.989	28.869	31.526	34.805	42.312
19	27.204		32.852	36.191	43.820
20	28.412		34.170	37.566	45.315
21	29.615		35.479	38.932	46.797

