STAT401 HW3

김정현

```
Q1.
options(digits=4)
mu \leftarrow c(2, -1)
sigma \leftarrow matrix(c(2, 2, 2, 5), byrow = TRUE, nrow = 2)
eigen_result <- eigen(sigma)</pre>
(a)
a11 = round(eigen_result$vectors[1, 1],4)
a12 = round(eigen_result$vectors[2, 1],4)
a21 = round(eigen_result$vectors[1, 2],4)
a22 = round(eigen_result$vectors[2, 2],4)
cat(paste("PC 1:",a11, "x_1 + ", a12, "x_2"))
## PC 1: 0.4472 x_1 + 0.8944 x_2
cat("\n")
cat(paste("PC 2:", a21, "x_1 + ", a22, "x_2"))
## PC 2: -0.8944 x 1 + 0.4472 x 2
First PC: Y_1 = 0.4472X_1 + 0.8944X_2 Second PC: Y_1 = -0.8944X_1 + 0.4472X_2
(b)
round(eigen_result$values[1]/sum(eigen_result$values),4)
## [1] 0.8571
The proportion of total population variance explained by first PC is 0.8571.
```

```
(c)
i = 2
j = 1
cat("Correlation between X_2 and Y_1 : ",sqrt(eigen_result$values[j])*a12 /
sqrt(sigma[i,i]))
## Correlation between X_2 and Y_1 : 0.9798
```

Correlation between X_2 and Y_1 is 0.9798.

```
(d)
obs <- matrix(c(3,1), byrow = T, nrow = 2)
a1 <- matrix(c(a11, a12), byrow = F, nrow = 1)
a1 %*% (obs-mu)
## [,1]
## [1,] 2.236</pre>
```

The PC score for first principal component is 2.236 (same with $\sqrt{5}$).

```
(e)
pc1 <- mu[2] - a12/ a11 * mu[1]
pc2 <- mu[2] - a22/ a21 * mu[1]
plot(mu[1],mu[2], xlim=c(-4,4), ylim=c(-3,3), xlab='X1', ylab='X2')
abline(h=-1); abline(v=2)
abline(pc1, a12 / a11, col='blue')
abline(pc2, a22 / a21, col='red')
text(mu[1]+0.3, 3, "X1") ;text(4, mu[2]+0.3, "X2")
text(4, 2, "Y1", col='blue'); text(-3, 1, "Y2", col='red')</pre>
```


Since λ_1 is the largest eigenvalue, the major axis lie on direction a_1 and the minor axis lie on direction a_2 .

```
Q2.
```

```
# Mean vector
x_bar \leftarrow c(95.5, 164.4, 55.7, 93.4, 18.0, 31.1)
# Covariance matrix
S <- matrix(c(3266, 1344, 732, 1176, 163, 238,
              1344, 722, 324, 537, 80, 118,
              732, 324, 179, 281, 39, 57,
              1176, 537, 281, 475, 64, 95,
              163, 80, 39, 64, 10, 14,
              238, 118, 57, 95, 14, 21), nrow = 6, byrow = TRUE)
(a)
q2.pca.cov = princomp(covmat = S)
summary(q2.pca.cov)
## Importance of components:
##
                           Comp.1
                                    Comp.2
                                              Comp.3
                                                       Comp.4
                                                                 Comp.5
Comp.6
                          66.9242 12.33604 5.679053 2.813162 1.1730752
## Standard deviation
6.545e-01
## Proportion of Variance 0.9585 0.03257 0.006902 0.001694 0.0002945
9.166e-05
                           0.9585 0.99102 0.997920 0.999614 0.9999083
## Cumulative Proportion
1.000e+00
```

The data can be summarized by 1 dimension (with cumulative proportion approximate 95.8%), which is smaller than 6 dimensions.

```
(b)
```

```
std_devs <- sqrt(diag(S))</pre>
R <- matrix(nrow = 6, ncol = 6)</pre>
for (i in 1:6) {
  for (j in 1:6) {
    R[i, j] <- S[i, j] / (std_devs[i] * std_devs[j])</pre>
  }
}
rownames(R) <- colnames(R) <- c("X1", "X2", "X3", "X4", "X5", "X6")</pre>
print(R)
##
          X1
                  X2
                         X3
                                 X4
                                         X5
                                                X6
## X1 1.0000 0.8752 0.9574 0.9442 0.9019 0.9088
## X2 0.8752 1.0000 0.9013 0.9170 0.9415 0.9583
## X3 0.9574 0.9013 1.0000 0.9637 0.9218 0.9297
## X4 0.9442 0.9170 0.9637 1.0000 0.9286 0.9512
```

The data can be summarized by 1 dimension (with cumulative proportion approximate 94.3%), which is smaller than 6 dimensions.

(c)

The proportion of total variance has similar value. However, the eigen values and eigen vector are different since scaling is made in correlation matrix.

Q3.

Since the variance has difference in scale (especially in Symptoms), it is better to use correlation matrix R.

```
(b)
q3.pca = prcomp(radio, scale = T)
round(q3.pca$rotation, 3)

## PC1 PC2 PC3 PC4 PC5
## X1 0.445 0.231 0.608 0.603 0.127
## X2 0.432 0.572 0.117 -0.679 0.105
## X3 0.356 -0.779 0.333 -0.342 0.196
## X4 0.463 -0.039 -0.665 0.231 0.537
## X5 0.523 -0.105 -0.252 0.077 -0.804
```

```
(c)
summary(q3.pca)

## Importance of components:

## PC1 PC2 PC3 PC4 PC5

## Standard deviation 1.691 0.916 0.812 0.624 0.5030
```

```
## Proportion of Variance 0.572 0.168 0.132 0.078 0.0506 ## Cumulative Proportion 0.572 0.739 0.871 0.949 1.0000
```

- 1) By total proportion of variance: Since adding second proportion explains over 70% variance, choosing 2 principal components is appropriate.
- 2) By using scree plot: By drawing the scree plot, choosing 2 principal components is appropriate.

screeplot(q3.pca, type = "1")

3) By choosing variance larger than 1: Choosing 1 principal component is appropriate. Therefore, using 2 principal component is appropriate.

(d)

- 1) First principal component explains the overall effect of 5 variables.
- 2) Second principal component: By considering the absolute value of coefficients larger than 0.2, exclude Food-consumed and appetite. Then, the second principal component can be interpreted as active reason (Symptom, Activity) against non-active reason (Sleep).

Since 2 PC explain 73.95% of total sample variance, the data is summarized with 2 PC given in this data.