Chapitre 0

Raisonnement par récurrence

I. Propriété mathématique

Définition:

Une **propriété mathématique** est une phrase, écrite ou non avec des symboles mathématiques, qui contient un verbe et qui est soit vraie soit vraie soit fausse.

Remarque:

Lorsque la propriété concerne un entier naturel n, on peut la noter P(n),

Exemples:

- Une égalité, $P(n): 1+2+...+n=\frac{n(n+1)}{2}$.
- Une inégalité, P(n): $(1+\pi)^n \ge 1+n\pi$.
- Une phrase, P(n): n^3-n est un multiple de 3.

II. Raisonnement par récurrence

1) Exemple

Soit (u_n) la suite définie sur \mathbb{N} par $u_n = 4^n - 1$.

On a donc:

$$u_0 = 0$$
 ; $u_1 = 3$; $u_2 = 15$; $u_3 = 63$; $u_4 = 255$; $u_5 = 1023$...

On remarque que tous ces nombres sont des multiples de 3.

On peut conjecturer que :

$$P(n)$$
: u_n est un multiple de 3

La démonstration de ce résultat repose sur un type de raisonnement appelé raisonnement par récurrence.

2) <u>Le principe de récurrence</u>

Soit P(n) une propriété dépendant d'un entier n et $n_0 \in \mathbb{N}$.

Si l'on démontre les deux étapes suivantes :

- **Initialisation** : P(n) est vraie pour un entier n_0
- **Hérédité**: pour tout entier $k \ge n_0$, « P(k) est vraie » implique « P(k+1) est vraie »

alors, on peut conclure que P(n) est vraie pour un entier $n \ge n_0$,

Le schéma suivant illustre le principe de récurrence.

Initialisation	Hérédité
$P(n_0)$ est vraie	pour tout entier $k \ge n_0$, « $P(k)$ est vraie » \Rightarrow « $P(k+1)$ est vraie »

Conclusion: $P(n_0)$ vraie $\Rightarrow P(n_0+1)$ vraie $\Rightarrow P(n_0+2)$ vraie $\Rightarrow \dots \Rightarrow P(n)$ vraie

3) Raisonnement par récurrence

Soit P(n) une propriété dépendant d'un entier n et $n_0 \in \mathbb{N}$.

Pour démontrer que P(n) est vraie pour tout entier $n \ge n_0$, on procède ainsi

- Initialisation : On vérifie que $P(n_0)$ est vraie (c'est-à-dire que la propriété est vraie au rang n_0)
- **Hérédité** : on démontre, pour tout entier $k \ge n_0$, l'implication :

$$P(k)$$
 vraie $\Rightarrow P(k+1)$ vraie

Pour cela, on considère un entier quelconque k, avec $k \ge n_0$, et on suppose que P(k) est vraie (c'est-à-dire que l'on suppose que la propriété est vraie au rang k). C'est l'**hypothèse** de récurrence.

On démontre alors que P(k + 1) est vraie (c'est-à-dire que la propriété est vraie au rang k + 1) en utilisant l'hypothèse de récurrence,

• Conclusion : On conclut, d'après le principe de récurrence, que P(n) est vraie pour tout entier $n \ge n_0$.

Remarque:

L'initialisation se fait souvent pour $n_0 = 0$ ou $n_0 = 1$. On vérifie donc que P(0) ou P(1) est vraie.

Exemple:

Soit $n \in \mathbb{N}$. On pose P(n) la propriété : « $4^n - 1$ est multiple de 3 ».

Démontrons, par récurrence, que la propriété est vraie pour tout entier $n \in \mathbb{N}$.

• Initialisation:

$$4^{0}-1=1-1=0=3\times0$$
. Donc $4^{0}-1$ est bien multiple de 3.

Ainsi P(0) est vraie.

• Hérédité :

Soit $k \in \mathbb{N}$, quelconque fixé, tel que $4^k - 1 = 3 \times p$, avec p entier. (il s'agit de l'hypothèse de récurrence),

Pour cet entier k quelconque et fixé, on remarque que :

$$4^{k+1}-1=4\times 4^k-1=(3+1)\times 4^k-1=3\times 4^k+(4^k-1)$$
.

Or d'après l'hypothèse de récurrence : $4^k - 1 = 3 \times p$. On en déduit donc que :

$$4^{k+1}-1=3\times 4^k+3\times p=3\times (4^k+p)=3\times p'$$
, avec p'entier.

Donc $4^{k+1}-1$ est multiple de 3.

On a montré que, si P(k) est vraie, alors P(k+1) l'est aussi.

• Conclusion:

La propriété P(n) est vraie au rang $n_0 = 0$ et elle est héréditaire pour $k \ge 0$ donc P(n) est vraie pour tout entier naturel $n \ge 0$.

Remarques:

Il est important de respecter les étapes de la démonstration.

- La phase d'initialisation est indispensable.
 - Par exemple, la proposition : « 2^n est un multiple de 3 » est héréditaire pourtant elle est fausse.
- La conclusion termine le raisonnement en combinant les étapes d'initialisation et d'hérédité.

La propriété est vraie au rang n_0 (initialisation) et elle est héréditaire à partir du rang n_0 donc la propriété est vraie au rang $n_0 + 1$.

La propriété est vraie au rang $n_0 + 1$ et elle est héréditaire à partir du rang n_0 donc la propriété est vraie au rang $n_0 + 2$.

. . .

En procédant ainsi, pas à pas, on peut conclure que la propriété est vraie pour n'importe quel entier $n \ge n_0$.