Predictive World Models: Faithfulness, Interactiveness and Planning

Ziwei Liu

Nanyang Technological University

What is a World Model?

Discussion Prompt ✓ Which is harder: predicting dynamics or generating visuals?

Definition: A **World Model** is a digital engine that encodes knowledge of the environment and simulates its dynamics, with two key components.

- 1. **Predictor** learns physical laws & future states
- 2. **Generator (Renderer)** renders states into realistic video

Motivation

(Physical & Mental World Model ?)

Prediction & Planning in World Model

- Video generation: good visual fidelity but lacks physics and reasoning
- Real-world needs → predict the future, long-horizon planning
- Vision = key for agents to see, predict, and act (language-centric to vision-centric)
- True world models = simulate dynamics (<u>3D & 4D</u>) + support decisions (<u>digital & physical</u>)

From Generation to Prediction

From Generation → Prediction

- Generator: ensures visual consistency
- **Predictor**: models temporal dynamics
- Prediction Task: anticipate next world state

Takeaway

Discussion:

What is the right information flow? Implicit modeling or explicit modeling?

Diffusion Model

Pixel-Level Learning

Reasoning

Initial state: $S_0=E(I)$

State transition: $S_{t+1}=F(S_t, I)$

Frame rendering: $V_{t+1}=R(S_{t+1})$

From Generation to Prediction

From Generation → Prediction

- Generator: ensures visual consistency
- **Predictor**: models temporal dynamics
- Prediction Task: anticipate next world state

Takeaway

Discussion:

What is the right information flow? Implicit modeling or explicit modeling?

Pixel-Level Learning

Lots of confusion about what a world model is. Here is my definition:

Given:

- an observation x(t)
- a previous estimate of the state of the world s(t)
- an action proposal a(t)
- a latent variable proposal z(t)

A world model computes:

- representation: h(t) = Enc(x(t))
- prediction: s(t+1) = Pred(h(t), s(t), z(t), a(t))

Where

- Enc() is an encoder (a trainable deterministic function, e.g. a neural net)
- Pred() is a hidden state predictor (also a trainable deterministic function).
- the latent variable z(t) represents the unknown information that would allow us to predict exactly what happens. It must be sampled from a

distribution or or varied over a set. It parameterizes the set (or distribution) of plausible predictions.

Architectures for Generator + Predictor (Unified Model ?)

Typical Architectures

Component	Methods	Examples	
Generator 📽	Diffusion Models / Autoregressive	High-Quality Videos	
Predictor 🍳	Latent Transition / Physics-Informed 3D State Dynamics		
Joint Models 🔗	UniSim, Drive-WM, Cosmos, Genie	Unified World Models	

Key Insight:

Generator + Predictor must be tightly coupled

Discussion:

Should we build them separately or as one unified model?

How Planning Emerges (CoT?)

From Prediction to Planning

• **Prediction**: Anticipate the *next state*

Planning: Chain of Predictions to achieve goals

Applications:

Autonomous Driving: Predict trajectories of cars & pedestrians, then plan safe driving.

Robotics: Plan navigation / action steps.

Gaming / Agents: Predict opponent moves and plan strategies accordingly.

Discussion:

The Five Levels of AGI

ANTHROP\C

Al System Level

Level of AGI

Al Safety Level (ASL)

Level 1	Chatbots Al with conversational language 有语言对话能力的 Al	Emerging equal to or somewhat better than an unskilled human 相当于一个不熟练的新人	ASL-2 Present Large Models 当前的大模型	
Level 2	Reasoners human-level problem solving 人类水准的问题解决能力	Competent at least 50th percentile of skilled adults 有能力的 - 具备 50% 的成年人的能力	ASL-3 Significantly higher risk 大幅增加灾难性误用风险 或显示出低级别自主能力的系统	
Level 3	Agents systems that can take actions 系统可以执行动作	Expert at least 90th percentile of skilled adults 专家级 - 具备 90% 的成年人的能力		
Level 4	Innovators Al that can aid in invention Al 将能自己发明创新	Virtuoso at least 99th percentile of skilled adults 大师级 - 具备 99% 的成年人的能力	ASL-4+ Speculative 推測而已,与现有系統相差太远,可能涉 灾难性误用可能性和自主性的质的升级	
Level 5	Al that can do the work of an organization Al 可以融入组织工作 or 自成组织	Superhuman outperforms 100% of humans 超人 - 100% 超越人类的能力	ASL-5 + Doomer 毁灭者	

The Four Generations of World Model

From Video Generation Towards	Generation 1	Generation 2	Generation 3	Generation 4	
World Model	Superficial Faithfulness	Consistent Faithfulness	Physically Intrinsic Faithfulness		
Faithfulness	Short Video	Long Video	Longer or Infinite Video	Arbitrary Long Video	
	Basic Text-Video Consistency	Perfect Text-Video and Temporal Consistency			
	Basic Motion Generation	Stable Motion Generation High-Fidelity Motion Generation			
		Basic Physical World	Intrinsic Physical World	Perfect Physical World	
Interactiveness	Low-Level Interactiveness	Semantic and Navigational Interactiveness	Real-Time and Local Interactiveness	Global and Multi-Modal Interactiveness	
	Low Flexibility Control	High Flexibility Control		Flexible and Multi-Modal Control	
	Basic Condition-Video Consistency	on-Video Consistency Perfect Condition-Video Consistency			
	Simple Dynamics	Basic Subject-Centric Dynamics	Perfect Local Control	Perfect Global Control	
	Basic Pixel-Level Interaction	3D and Semantic-Level Interaction			
		Semi-Real-Time Interaction	nteraction Real-Time Interaction		
	Without Obvious	Simple Task Planning	Complex Task Planning	Stochasticity Planning	
	Planning Ability	Few Action Steps	Multiple Action Steps	Infinite Action Steps	
Planning		Single-Scene Planning Multi-View and Multi-Scene Planning			
		Basic Task-Oriented Planning	Regular Physical World Planning	Stochasticity Planning	
			Self-Evolving in mesoscopic spatiotemporal scale	Self-Evolving in Multiple spatiotemporal scale	

Open Challenges

Coupling of Generator & Predictor

Unified Model Needed?

Long-Horizon Consistency vs.

Efficiency

Accuracy vs Computational Resources

Stochasticity-Aware Planning

Handle Multiple Futures

Evaluation & Benchmarks

Need Better Metrics

Conclusion & Call for Discussion

- The field of world models is evolving from generation \rightarrow prediction \rightarrow planning.
- Integration of prediction and planning is key to building more robust and intelligent systems.
- Time (GMT-5) Programme 09:20 - 09:30 Opening Remarks We look forward to **further discussion and insights** in Mini3DV. Invited Talk: Scaling Foundation World Models as a Path to Embodied AGI 09:40 - 10:20 More Resources: https://world-model-tutorial.github.io/ Invited Talk: Physics-Grounded World Models: Generation, Interaction, and Evaluation 10:40 - 11:20 11:20 - 13:30 Lunch Break Invited Talk: Breaking the Algorithmic Ceiling in Pre-Training with an Inference-first Perspective [Abstract] [Speaker Bio] [Slides] 13:30 - 14:10 Chief Scientist at Luma Al 14:10 - 14:20 Invited Talk: An Introduction to Kling and Our Research towards More Powerful Video Generation Mode 14:20 - 15:00 Invited Talk: Streaming Perception: Towards Learning Structured Models of the World [Abstract] [Speaker Bio] 15:10 - 15:50 15:50 - 16:00 Invited Talk: Scaling World Models for Agents [Abstract] [Speaker Bio] [Slides] 16:00 - 16:40 ssistant Professor, New York University

Ending Remarks (Lucky Draw)