Email: cckisby@iu.edu **Phone:** +1 609 455 0673

Caleb Schultz Kisby

Neuro-Symbolic AI Researcher

GitHub: ais-climber LinkedIn: [Link]

EDUCATION

Ph.D. Candidate, Computer Science (in progress)

Fall 2018 - Present

Indiana University

Concentration: Neuro-Symbolic AI

B.S. Computer Science and Mathematics

Spring 2018

University of South Carolina

GPA: 3.97

GPA: 3.75

EXPERIENCE

Research Assistant

Spring 2022 - Present

Indiana University Fall 2018 - Spring 2019

• Supported by a DoD Trusted AI grant for which I co-wrote the grant proposal. See Projects listed below.

Teaching Assistant

Indiana University

Summer 2019 - Fall 2021

• Planned and taught recitations for Theory of Computation, Honors Discrete Math, and Intro to Programming.

PROJECTS

à la Mode: Neural Network Model Checking & Building

[GitHub]

- Independently developed a suite for verifying and building neural networks via symbolic constraints (using Tensorflow).
- Proved that the neuro-symbolic translation at the heart of the program is formally sound (see FLAIRS paper below).

Notakto Player [GitHub][Report]

- Supplemented the AlphaZero CNN with light knowledge-based features to better play Thane Plambeck's Notakto (AlphaZero alone fails to learn a winning strategy for this game — see the linked Report).
- Wrote testbed code (using Tensorflow) to compare the supplemented net against the original AlphaZero net.

An Efficient & Light Cardinality Reasoner

[GitHub]

- Proved completeness for a computationally light logic that reasons about cardinalities with intersection in polynomial time.
- o Collaborated with co-authors on proof (see AAAI paper below); Independently implemented model-building in Python.

COBB: Case-Based Confidence for Black Box Predictions

[GitHub]

[pdf]

• Co-developed a hybrid neuro-symbolic system that uses a case-based reasoner to assess confidence and explain a neural network's predictions (using Scikit-Learn). Larry Gates and I divided all work evenly. (See ICCBR paper below.)

Sense-Able: Obstacle Sensor for Visually Impaired

[GitHub][Tutorial]

- Collaborated with a team to develop a proof-of-concept LIDAR sensor for our clients at P. B. Mumola, Ph.D., LLC.
- Wrote Qt front-end application & object detection code in C++; Independently wrote a tutorial for the LIDAR SDK.

SKILLS

Machine Learning. Deep Neural Networks, Reinforcement Learning, Tensorflow, SciKit-Learn, NLP (Word2Vec, NLTK)

Symbolic AI. Knowledge Representation & Reasoning, Model Building, First-Order & Modal Logics, Natural Language Semantics

Languages. Python, C++, C, Java, Agda, SQL (Postgres), Lisp (Racket), Haskell, Prolog, Lean

Other Tools. Git, LaTeX, TexMacs, Jupyter Notebook (Google Colab), Visual Studio Code, Emacs, Linux

PUBLICATIONS

ICCBR 2019

FLAIRS 2022	The Logic of Hebbian Learning	[pdf]
	with Saúl A. Blanco and Lawrence Moss. Presented at FLAIRS 2022, Jensen Beach FL.	
	Nominated for Best Student Paper.	
AAAI 2020	Logics for Sizes with Union or Intersection	[pdf]
	with Saúl A. Blanco, Alex Kruckman, and Lawrence Moss. Presented at AAAI'20, New York NY	

CBR Confidence as a Basis for Confidence in Black Box Systems with Lawrence Gates and David Leake. Presented at ICCBR 2019, Otzenhausen Germany.