Relatório da Atividade 1: Logical Clock

Isabelle Ferreira de Oliveira

CES-27 - Engenharia da Computação 2020

Instituto Tecnológico de Aeronáutica (ITA)

São José dos Campos, Brasil
isabelle.ferreira3000@gmail.com

Resumo—Esse relatório documenta a implementação da simulação de processos rodando e trocando seus relógios lógicos entre si (Logical Clock definido por Lamport). Esses relógios foram tanto escalares quanto vetoriais.

Index Terms—Relógio lógico, Relógio lógico escalar, Relógio lógico vetorial, algoritmo de Lamport

I. IMPLEMENTAÇÃO

A. Tarefa 1: Relógio Lógico Escalar

Essa primeira etapa se tratou da implementação da simulação para o Relógio Lógico Escalar de Lamport, segundo o algoritmo descrito nos slides da aula e conforme o solicitado no roteiro da atividade.

Essa implementação foi feita de forma bastante análoga à maneira das dicas fornecidas no roteiro, principalmente da terceira.

```
func main() {
  initConnections()
  // close connections when it's over
  defer ServConn.Close()
  for i := 0; i < nPorts; i++ {</pre>
    defer AllConn[i].Close()
  // read "processID" from user input
  go readInput(ch)
    // Server
    go doServerJob()
    case processID, valid := <-ch:</pre>
       if valid {
         // update clock
         logicalClock++
         //Client
         if processID == myID {
           fmt.Println("logicalClock
               atualizado:", logicalClock)
           fmt.Println("logicalClock
               enviado:", logicalClock)
           go doClientJob(processID,
               logicalClock)
```

```
} else {
    fmt.Println("Channel closed!")
}
default:
    time.Sleep(time.Second * 1)
}
```

Em uma visão mais superficial do que acontece nesse código, pode-se começar analisando-se a função main(). Nela, primeiramente são iniciadas as conexões de servidores e clientes, a partir da chamada de initConnections(). Nessa função, também é iniciado o relógio lógico desse processo em questão, além de serem setados seu ID, e as portas de todos os processos.

Abaixo, segue-se o código dessa função initConnections().

```
func initConnections() {
  nPorts = len(os.Args) - 2
  // my process
  logicalClock = 0
  auxMyID, err := strconv.Atoi(os.Args[1])
  myID = auxMyID
  myPort = os.Args[myID+1]
  // Server
  ServerAddr, err :=
     net.ResolveUDPAddr("udp", myPort)
  aux, err := net.ListenUDP("udp", ServerAddr)
  ServConn = aux
  // Clients
  for i := 0; i < nPorts; i++ {
    aPort := os.Args[i+2]
    ServerAddr, err :=
        net.ResolveUDPAddr("udp", "127.0.0.1"
        + aPort)
    LocalAddr, err :=
        net.ResolveUDPAddr("udp",
        "127.0.0.1:0")
    auxConn, err := net.DialUDP("udp",
        LocalAddr, ServerAddr)
    AllConn = append (AllConn, auxConn)
}
```

Vale ressaltar também que, para esse código e todos os outros dessa atividade, sempre após a setagem da variável *err*, referente a um possível erro advindo de algumas funções, também era chamada a função CheckError(err), que imprime o erro e interrompe o processo caso houvesse algum erro. Essas chamadas de funções foram suprimidas do relatório a fim de simplificar a apresentação dos códigos, e por entender-se que não se trata da ideia principal dos códigos desenvolvidos.

A função readInput() segue bem semelhante àquela apresenta na Dica 3 do roteiro, com a diferença de aceitar um canal de inteiro ao invés de um canal de string. Assim, a função é capaz de ler o Id que o usuário digitar.

```
func doServerJob() {
  buf := make([]byte, 1024)

n, _, err := ServConn.ReadFromUDP(buf)

aux := string(buf[0:n])
  otherLogicalClock, err := strconv.Atoi(aux)
  fmt.Println("Received", otherLogicalClock)

// updating logical clock
  logicalClock = max(otherLogicalClock,
        logicalClock) + 1
  fmt.Println("logicalClock atualizado:",
        logicalClock)
}
```

```
func doClientJob(otherProcessID int,
    logicalClock int) {
    otherProcess := otherProcessID - 1

    msg := strconv.Itoa(logicalClock)
    buf := []byte(msg)

    _,err := AllConn[otherProcess].Write(buf)
    time.Sleep(time.Second * 1)
}
```

B. Tarefa 2: Relógio Lógico Vetorial

Já essa etapa se tratou da implementação do método act() também da classe DQNAgent de dqn_agent.py. Nesse método, era escolhido e retornado uma ação de acordo com a política ϵ -greedy.

Essa implementação foi feita de forma bastante análoga à maneira do laboratório 12 [3]. Assim, gerou-se um número aleatório entre 0 e 1 e, caso esse valor aleatório seja menor que epsilon, então uma ação aleatória é escolhida; caso contrário, é escolhida a ação gulosa, através do retorno do índice do máximo elemento do array *model.predict(state)[0]*.

C. Reward Engineering

Nesse momento, foi implementado o método reward_engineering_mountain_car() de utils.py, script também fornecido no código base do laboratório. Nesse método, eram calculadas e retornadas as recompensas intermediárias

"artificias", chamadas reward engineering, a fim de tornar o treino mais rápido no ambiente do Mountain Car.

Essa implementação foi feita conforme as equações apresentadas na seção 4.3 do roteiro do laboratório [1], ou seja, assim como apresentado no pseudo-código em Python a seguir.

```
package main
import "fmt"

func main() {
    fmt.Println("Hello World!")
}
```

Os valores de position, start, velocity e next_position também eram fornecidos no roteiro [1], e bastava substituí-los no pseudo-código acima.

D. Treinamento usando DQN

Bastava treinar o modelo implementado, executando o script train_dqn.py, também do código base, e observar os resultados e os gráficos obtidos.

E. Avaliação da Política

Bastava aplicar o modelo implementado no ambiente do Mountain Car, executando o script evaluate_dqn.py, também do código base, e observar a simulação, os resultados e os gráficos obtidos.

II. RESULTADOS E CONCLUSÕES

O summary do modelo implementado em make_model() foi apresentado na Figura 1, e condiz com os requisitos pedidos na Tabela 3 do roteiro do laboratório [1].

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	24)	72
dense_2 (Dense)	(None,	24)	600
dense_3 (Dense)	(None,	3)	75
Total params: 747 Trainable params: 747 Non-trainable params: 0			

Figura 1. Sumário do modelo implementado em Keras.

Já a Figura 2 representa as recompensas acumulativas advindas do treinamento do modelo em 300 episódios. Esse resultado dependem diretamente da correta implementação e funcionamento dos métodos make_model() e act().

Pode-se dizer que esse gráfico condiz com o esperado, uma vez que é possível notar inicialmente recompensas pequenas para os primeiros episódios e, mais ou menos a partir do episódio 80, tornou-se frequente recompensas com valores elevados, chegando a valores próximos de 40, indicando um aprendizado significantemente correto.

Já a aplicação do modelo implementado no ambiente do Mountain Car gerou as Figuras de 3 a 5.

Figura 2. Recompensa acumulativa com o passar dos episódios, no treinamento do modelo para 300 episódios.

A partir da Figura 3, pode-se concluir que a implementação e treino chegaram em resultados satisfatórios, uma vez que grande parte das recompensas acumuladas foi alta, próximas de 40, chegando no final de 30 episódios a uma média de 27.8, conforme apresentado na Figura 4.

Figura 3. Representação em cores da tabela de action-value calculada, para algoritmo de Sarsa.

Por fim, acerca da Figura 5, pode-se observar que:

- Para velocidades para direita, quase unanimamente a
 decisão do carro é continuar para direita. Exclui-se disso
 as situações de posição muito à esquerda e velocidades
 altas, na qual é decidido fazer nada, e de velocidades
 para direita muito baixas, na qual pouquíssimas vezes o
 carro decide ir para esquerda, talvez já se enquadrando
 nas intenções descritas no próximo item.
- Para velocidades para esquerda, as decisões do carro diferem bastante da posição na qual ele se encontra.
 Para posições mais a esquerda, o carro decide continuar indo para esquerda, talvez para pegar impulso da subida e, quando por fim chegar em posições mais a esquerda (consequentemente mais altas) possíveis, decidir ir com velocidade para direita. Já para posições relativamente

	7.720 1.7 707 42.4070 13 0.0
	1/30, time: 107, score: 43.4619, epsilon: 0.0
	2/30, time: 94, score: 41.2016, epsilon: 0.0
	3/30, time: 159, score: 37.1377, epsilon: 0.0
	4/30, time: 85, score: 39.5076, epsilon: 0.0
episode:	
	6/30, time: 101, score: 42.3907, epsilon: 0.0
	7/30, time: 83, score: 39.0879, epsilon: 0.0
episode:	
episode:	
episode:	10/30, time: 159, score: 37.138, epsilon: 0.0
episode:	11/30, time: 167, score: 37.2522, epsilon: 0.0
episode:	12/30, time: 200, score: -18.9488, epsilon: 0.0
episode:	13/30, time: 92, score: 41.0069, epsilon: 0.0
episode:	14/30, time: 95, score: 41.4258, epsilon: 0.0
episode:	15/30, time: 160, score: 37.1562, epsilon: 0.0
episode:	16/30, time: 163, score: 37.2112, epsilon: 0.0
episode:	17/30, time: 113, score: 44.3414, epsilon: 0.0
episode:	18/30, time: 200, score: -19.131, epsilon: 0.0
episode:	19/30, time: 200, score: -19.0591, epsilon: 0.0
episode:	20/30, time: 89, score: 40.3713, epsilon: 0.0
episode:	21/30, time: 90, score: 40.6353, epsilon: 0.0
episode:	22/30, time: 200, score: -18.9305, epsilon: 0.0
episode:	23/30, time: 86, score: 39.6682, epsilon: 0.0
episode:	24/30, time: 200, score: -19.2182, epsilon: 0.0
episode:	25/30, time: 91, score: 40.7233, epsilon: 0.0
episode:	26/30, time: 160, score: 37.1333, epsilon: 0.0
episode:	27/30, time: 85, score: 39.6013, epsilon: 0.0
episode:	28/30, time: 165, score: 37.2369, epsilon: 0.0
episode:	29/30, time: 161, score: 37.1958, epsilon: 0.0
episode:	30/30, time: 200, score: -19.0234, epsilon: 0.0
Mean ret	urn: 27.79701181215042

Figura 4. Recompensa acumulada em função das iterações, para algoritmo de Sarsa.

próximas da posição objetivo, aparecem também decisões de não fazer nada, indicando que o carro irá mais para esquerda e cairá na situação anteriormente descrita, na qual ele decidirá continuar indo para esquerda e pegará o impulso da elevação.

Figura 5. Representação em cores da tabela de greedy-policy calculada, para algoritmo de Sarsa.

Como as decisões aprendidas e tomadas pelo carro fizeram sentido e puderam ser interpretadas satisfatoriamente, podese dizer que a proposta do laboratório foi corretamente implementada e se mostrou satisfatória em resolver o problema proposto.

REFERÊNCIAS

- M. Maximo, "Roteiro: Laboratório 12 Deep Q-Learning". Instituto Tecnológico de Aeronáutica, Departamento de Computação. CT-213, 2019.
- [2] M. Maximo, "Roteiro: Laboratório 8 Imitation Learning com Keras". Instituto Tecnológico de Aeronáutica, Departamento de Computação. CT-213, 2019.

[3] M. Maximo, "Roteiro: Laboratório 12 - Aprendizado por Reforço Livre de Modelo". Instituto Tecnológico de Aeronáutica, Departamento de Computação. CT-213, 2019.