Feature Selection Backward Elimination

UTKARSH GAIKWAD

CLASS STARTING SHARP AT 8:05 PM

Need for feature selection

More the numbers of features more complex the model

Underfit and Overfit

Overfitting Complex Model 100,200					
Train MSE	0		Train R2	1	
Test MSE	12300000		Test R2	0.6	
Underfitting Model, Simple 1-2 features					
Train MSE	1234131		Train R2	0.7	
Test MSE	1241334		Test R2	0.6	

Backward Elimination process

Y ~ X1, X2, X3,, Xn

Model Performance Improved Drop one more feature

Model Performance Decreased Stop the feature selection process

R2 Adjusted

Adjusted
$$R^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$

Where

R² Sample R-Squared

N Total Sample Size

p Number of independent variable

R2 Adj Calculation

N	100	
р	10	
R2	0.95	

Num	4.95	
Den	89	
R2_adj	0.9444	

$$\begin{array}{c} Adjusted \ R^2 = 1 - \frac{(1-R^2)(N-1)}{N-p-1} \\ \\ \text{Where} \\ \\ R^2 \text{Sample R-Squared} \\ N \ \text{Total Sample Size} \\ p \ \text{Number of independent} \\ \text{variable} \end{array}$$

Thank you

PING ME ON SKYPE FOR ANY QUERIES