WHAT WE CLAIM IS:

1. A compound of Formula I:

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}

I

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and

 R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a $C_{3\text{--}10}$ cycloalkyl group; and

one of Z and Y is NR³ and the other of Z and Y is CHR⁴;

wherein R^3 and R^4 are independently selected from the group consisting of hydrogen, oxo, acyl, thioacyl, and R^5 ; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO2R^9$; and $-SO3R^9$;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl;

haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-SC^{13}$; -

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbf{R}^7 and \mathbf{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and RW are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

one or more R⁶ radicals are independently selected from the group consisting of R⁵, hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl;

hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-S(O)2R^{13}$; $-SO_3R^{13}$; $-S^+R^{13}R^{14}A^-$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; -OM; $-SO_2COM^{13}R^{14}$; $-NR^{14}C(O)R^{13}$; $-C(O)NR^{13}R^{14}$; -C(O)OM; $-COR^{13}$; $-OR^{18}$; $-S(O)NR^{13}R^{14}$; $-NR^{13}R^{18}$; $-NR^{18}OR^{14}$; $-N^+R^{13}R^{14}R^{15}A^-$; $-PR^{13}R^{14}$; $-P(O)R^{13}R^{14}$; $-P^+R^{13}R^{14}R^{15}A^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2 OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴; -P¹³R¹⁴;

wherein the R⁶ radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR

 13 -; -P(O)R 13 -; -PR 13 R 14 ; -P $^+$ R 13 R 14 A $^-$; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; or -P(O)R 9 -; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R^{18} alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R³, R⁴ and R⁶ is R⁵; and provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt;
- (c) the ${\ensuremath{R}}^5$ moiety comprises a phosphonic acid group or at least two carboxyl groups; or
- (d) the R⁵ moiety comprises a polyethylene glycol group having a molecular weight of at least 1000.

2. A compound of Claim 1 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO2R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R⁷ and R⁸ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl;

alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein ${\rm R}^{16}$ and ${\rm R}^{17}$ are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

3. A compound of claim 2 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(O)R¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R^9 , R^{10} , and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are

attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 10 R 11 A-; -S $^{+}$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

4. A compound of claim 3 wherein R⁵ is:

$$\mathbb{R}^{19}$$
 IIA

wherein R¹⁹ is as defined in Claim 3.

5. A compound of claim 3 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 3.

6. A compound of claim 3 wherein:

 R^3 is R^{5} ; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

- 7. A compound of claim 3 wherein:
- R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .
- 8. A compound of claim 3 wherein:
- R^3 is R^{5} ; and

 R^4 is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -P(O)R 13 R 14 ; -NR 13 R 14 R 15 A $^{-}$; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; and $-CO2R^7$; and -

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 10 R 11 A-; -S $^{+}$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one

or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation.

9. A compound of claim 3 wherein:

 R^3 is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 R 14 R 15 A $^{-1}$; -P(O)R 13 R 14 ; -P(O)R 14 R 15 R 14 R 15 A $^{-1}$; -P(OR 13)OR 14 ; -S $^{+1}$ R 14 R 15 R 14 R 15 A $^{-1}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one

or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; -CO

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 10 R 11 A-; -S $^{+}$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -So-; -SO-; -SO₂-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein ${\rm R}^{16}$ and ${\rm R}^{17}$ are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

10. A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR $^{13}R^{14}$, - NR $^{13}C(\mathrm{O})R^{14}$, -OC(O)NR $^{13}R^{14}$, and -NR $^{13}SO_2R^{14}$, and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}\text{-}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

11. A compound of claim 3 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR $^{13}R^{14}$, - NR $^{13}C(\rm O)R^{14}$, -OC(O)NR $^{13}R^{14}$, and -NR $^{13}SO_2R^{14}$, and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

12. A compound of claim 10 wherein R⁵ is:

$$\mathbb{R}^{19}$$
 IIA

wherein R¹⁹ is as defined in Claim 10.

13. A compound of claim 10 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 10.

14. A compound of claim 10 wherein R¹⁹ is selected from the group consisting of:

$$O$$
 $R = 1000 \text{ MW PEG}$

$$O$$
 S
 O
 CO_2H
 O
 CO_2H
 O

15. A compound of claim 3 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

16. A compound of claim 3 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from alkyl.

17. A compound of claim 3 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

- 18. A compound of claim 3 wherein j is 1 or 2.
- 19. A compound of claim 3 wherein j is 2.
- 20. A compound of claim 3 wherein R^{1A} and R^{1B} are hydrogen.
- 21. A compound of claim 3 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl.
- 22. A compound of claim 3 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 23. A compound of claim 3 wherein R^{2A} and R^{2B} are the same alkyl.
 - 24. A compound of claim 3 wherein R^{2A} and R^{2B} are each n-butyl.
 - 25. A compound of claim 3 wherein one of R^{2A} and R^{2B} is ethyl and the other of

R^{2A} and R^{2B} is n-butyl.

- 26. A compound of claim 3 wherein one or more R^6 are independently selected from methoxy and dimethylamino.
 - 27. A compound of claim 3 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

28. A compound of claim 3 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

29. A compound of claim 1 corresponding to Formula IA:

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}

IA

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, oxo, acyl, thioacyl, and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SCO_1R^9$; $-SCO_2R^9$; and $-SO_3R^9$;

wherein the R^5 alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ radical optionally may be further substituted with one or more radicals selected from the group — consisting of -CN; halogen; hydroxy; oxo;

alkyl; cycloalkyl; alkenyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; and $-CO2R^7$; a

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group

consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarmoniumalkyl; aminoalkyl; aminoalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; aminocarbonylalkyl; aminocarbonylalkyl;

alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R^6 radicals are independently selected from the group consisting of R^5 , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+$ R 13 R 14 A $^-$; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2 OM; -SO2NR 13 R 14 ; -NR 14 C(O)R 13 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)NR 13 R 14 ; -NR 13 R 18 ; -NR 18 OR 14 ; -N $^+$ R 13 R 14 R 15 A $^-$; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^6 alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^+$ R 9 R 11 R 12 A $^-$; -S $^+$ R 9 R 10 A $^-$; and carbohydrate residue; and wherein the R 6 quaternary heterocyclyl radical optionally may be

substituted with one or more radicals selected from the group consisting of halogen; - CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 15 R 14 ; -P 15 R 14 R 15 A $^{-}$; -P (OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R^{18} is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R^{18} alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^3 , R^4 and R^6 is R^5 ; and

provided that the R^5 alkyl, cycloalkyl, aryl, heterocyclyl, and $-OR^9$ radicals are not substituted with $-O(CH_2)_{1-4}NR'R''R'''$ wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge; and/or
- (b) the R^5 moiety comprises a quaternary ammonium group or a quaternary amine salt; and/or
 - (c) the R⁵ moiety comprises at least two carboxy groups.
- 30. A compound of Claim 29 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO2R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -P(O)R¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; and $-CO(COR^7)$; and -CO

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -PR 7 -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein ${\bf R}^{\bf 7}$ and ${\bf R}^{\bf 8}$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one

or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein ${\rm R}^{16}$ and ${\rm R}^{17}$ are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

31. A compound of claim 30 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R^{19} are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -

 $NR^{13}SONR^{14}R^{15}; -NR^{13}SO_{2}NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P(OR^{13})OR^{14}; -S^{+}R^{13}R^{14}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}A^{-};$

wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A-; -S-; -SO-; -SO2-; -S⁺R⁷A-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A-; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -

 $S(O)R^9$; $-SO2R^9$; $-SO3R^9$; $-CO2R^9$; and $-CONR^9R^{10}$; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarderocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-;

 $-S^+R^9R^{10}A$ -; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein ${\rm R}^{16}$ and ${\rm R}^{17}$ are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

32. A compound of claim 31 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 31.

33. A compound of claim 31 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 31.

34. A compound of claim 31 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen and alkyl.

35. A compound of claim 31 wherein:

 R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .

36. A compound of claim 31 wherein:

 R^3 is R^{5} ; and

 R^4 is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and $-OR^9$;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SO 13 ; -SO 13 ; -SO 13 ; -SO 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -

$$\begin{split} &\text{CO2R}^{13}; \text{-OM}; \text{-SO2OM}; \text{-SO2NR}^{13}R^{14}; \text{-C(O)NR}^{13}R^{14}; \text{-C(O)OM}; \text{-COR}^{13}; \text{-} \\ &\text{NR}^{13}\text{C(O)R}^{14}; \text{-NR}^{13}\text{C(O)NR}^{14}R^{15}; \text{-NR}^{13}\text{CO}_2R^{14}; \text{-OC(O)R}^{13}; \text{-OC(O)NR}^{13}R^{14}; \text{-} \\ &\text{NR}^{13}\text{SOR}^{14}; \text{-NR}^{13}\text{SO}_2R^{14}; \text{-NR}^{13}\text{SONR}^{14}R^{15}; \text{-NR}^{13}\text{SO}_2\text{NR}^{14}R^{15}; \text{-PR}^{13}R^{14}; \text{-P(O)R}^{13}R^{14}; \text{-P(O)R}^{$$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁴ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO2R^9$; $-SO3R^{16}$; $-CO2R^{16}$; $-CONR^9R^{10}$; $-SO2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein ${\rm R}^{16}$ and ${\rm R}^{17}$ are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation.

37. A compound of claim 31 wherein:

R³ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R³ alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -

 $\begin{array}{l} NR^{13}R^{14}; -SR^{13}; -S(O)R^{13}; -SO2R^{13}; -SO3R^{13}; -NR^{13}OR^{14}; -NR^{13}NR^{14}R^{15}; -CO2R^{13}; -OM; -SO2OM; -SO2NR^{13}R^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SONR^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -P(OR^{13})OR^{14}; -S^+R^{13}R^{14}A^-; \text{ and } -N^+R^{13}R^{14}R^{15}A^-; \\ \text{and} \end{array}$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl;

carboalkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 R^{11} and R^{12} together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; acarboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be

substituted with one or more radicals selected from the group consisting of halogen; - CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO2R^9$; $-SO3R^{16}$; $-CO2R^{16}$; $-CONR^9R^{10}$; $-SO2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

38. A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR $^{13}R^{14}$, - NR $^{13}C(O)R^{14}$, -OC(O)NR $^{13}R^{14}$, and -NR $^{13}SO_2R^{14}$, and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group

consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

39. A compound of claim 31 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR $^{13}R^{14}$, - NR $^{13}C(\rm O)R^{14}$, -OC(O)NR $^{13}R^{14}$, and -NR $^{13}SO_2R^{14}$, and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}\text{-}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups

selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

40. A compound of claim 38 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 38.

41. A compound of claim 38 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 38.

42. A compound of claim 38 wherein R^{19} is selected from the group consisting of:

$$O$$
 N
 CO_2H
 CO_2H

$$CO_2H$$
 CO_2H
 CO_2H

43. A compound of claim 38 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

44. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

45. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

46. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

47. A compound of claim 38 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

 R^3 is selected from from hydrogen and alkyl; and R^4 is R^5 .

- 48. A compound of claim 38 wherein j is 1 or 2.
- 49. A compound of claim 38 wherein j is 2.
- 50. A compound of claim 38 wherein R^{1A} and R^{1B} are hydrogen.
- 51. A compound of claim 38 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 52. A compound of claim 38 wherein R^{2A} and R^{2B} are independently selected from the group consisting C_{1-6} alkyl.
 - 53. A compound of claim 38 wherein R^{2A} and R^{2B} are the same alkyl.
 - 54. A compound of claim 38 wherein R^{2A} and R^{2B} are each n-butyl.
- 55. A compound of claim 38 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 56. A compound of claim 38 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 57. A compound of claim 38 wherein is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

58. A compound of claim 38 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

59. A compound of claim 42 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

60. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

61. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

62. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

63. A compound of claim 42 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 64. A compound of claim 42 wherein j is 1 or 2.
- 65. A compound of claim 42 wherein j is 2.
- 66. A compound of claim 42 wherein R^{1A} and R^{1B} are hydrogen.
- $67. \ \ A \ compound \ of \ claim \ 42 \ wherein \ R^{2A} \ and \ R^{2B} \ are \ independently selected$ from the group consisting of hydrogen and $C_{1\text{-}6}alkyl.$
- 68. A compound of claim 42 wherein R^{2A} and R^{2B} are independently selected from the group consisting $C_{1\text{-6}}$ alkyl.
 - 69. A compound of claim 42 wherein R^{2A} and R^{2B} are the same alkyl.
 - 70. A compound of claim 42 wherein R^{2A} and R^{2B} are each n-butyl.

- 71. A compound of claim 42 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 72. A compound of claim 42 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 73. A compound of claim 42 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R⁶ are independently selected from methoxy and dimethylamino.

74. A compound of claim 42 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

75. A compound of claim 1 corresponding to Formula IB:

$$(R^6)_m$$
 R^{1A}
 R^{1B}
 R^{2A}
 R^{2B}

IB

wherein:

j is 0, 1 or 2; and

m is 0, 1, 2, 3 or 4; and

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, and aralkyl; or

 R^{2A} and R^{2B} together with the carbon atom to which they are attached form a C_{3-7} cycloalkyl group; and

R³ and R⁴ are independently selected from the group consisting of hydrogen, oxo, acyl, thioacyl and R⁵; and

wherein R^5 is selected from the group consisting of alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; $-OR^9$; $-SR^9$; $-SO2R^9$; and $-SO3R^9$;

wherein the R⁵ alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; and quaternary heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2 OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)R¹⁴; -NR¹³CO2R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -NR¹³SO2R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(O)R¹³OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl,

wherein the aikyl, polyaikyl, naloaikyl, nydroxyaikyl, cycloaikyl, aikenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl,

and polyether substituents of the R^5 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 radical optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a

cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl;

alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -So-; -SO-; -SO₂-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

one or more R⁶ radicals are independently selected from the group consisting of R⁵, hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2 OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)NR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R⁶ alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹

; $-SO_2R^9$; $-SO_3R^{16}$; $-CO_2R^{16}$; $-CO_3R^9R^{10}$; $-SO_2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{11}R^{12}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^6 quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2 OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴; -P¹³R¹⁴;

wherein the R^6 radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -

 $\begin{array}{l} {\rm OR}^9; \ -{\rm NR}^9 {\rm R}^{10}; \ -{\rm N}^+ {\rm R}^9 {\rm R}^{11} {\rm R}^{12} {\rm A}^-; \ -{\rm SR}^9; \ -{\rm SO}({\rm OR}^9; \ -{\rm SO}_2 {\rm R}^9; \ -{\rm SO}_3 {\rm R}^9; \ -{\rm CO}_2 {\rm R}^9; \ -{\rm CO}_3 {\rm R}^9; \ -{\rm CO}_$

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^3 , R^4 and R^6 is R^5 ; and

provided that the R^5 alkyl, cycloalkyl, aryl, and heterocyclyl, and -OR 9 radicals are not substituted with -O(CH $_2$) $_{1.4}$ NR'R''R''' wherein R', R'' and R''' are independently selected from hydrogen and alkyl; and

provided that at least one of the following conditions is satisfied:

- (a) the R⁵ moiety possesses an overall positive charge;
- (b) the R⁵ moiety comprises a quaternary ammonium group or a quaternary amine salt; and
 - (c) the R⁵ moiety comprises at least two carboxy groups.
- 76. A compound of Claim 75 wherein R^5 is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2OM; -SO2NR $^{13}R^{14}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -NR $^{13}C(O)R^{14}$; -NR $^{13}C(O)R^{14}R^{15}$; -NR $^{13}CO_2R^{14}$; -OC(O)R 13 ; -OC(O)NR $^{13}R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}SO_2R^{14}$; -NR $^{13}R^{14}R^{15}$; -NR $^{13}R^{14}R^{15}$; -PR $^{13}R^{14}R^{15}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; -P(OR $^{13}OR^{14}$; -S $^+R^{13}R^{14}A^-$; and -N $^+R^{13}R^{14}R^{15}A^-$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R⁵ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^5 aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene;

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl;

wherein R^9 , R^{10} , and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{\mathrm{R}}^{11}$ and $\ensuremath{\mathrm{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

77. A compound of claim 76 wherein R⁵ is:

wherein

k is 0, 1, 2, 3 or 4; and

one or more R¹⁹ are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl;

heterocyclylalkyl; polyether; $-OR^{13}$; $-NR^{13}R^{14}$; $-SR^{13}$; $-S(O)R^{13}$; $-SO_2R^{13}$; $-SO_3R^{13}$; $-NR^{13}OR^{14}$; $-NR^{13}NR^{14}R^{15}$; $-CO_2R^{13}$; -OM; $-SO_2OM$; $-SO_2NR^{13}R^{14}$; $-C(O)NR^{13}R^{14}$; -C(O)OM; $-COR^{13}$; $-NR^{13}C(O)R^{14}$; $-NR^{13}C(O)NR^{14}R^{15}$; $-NR^{13}CO_2R^{14}$; $-OC(O)R^{13}$; $-OC(O)NR^{13}R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-NR^{13}SO_2R^{14}$; $-P^+R^{13}R^{14}R^{15}A^-$; $-P^+R^{13}R^{14}R^{15}A^-$; $-P^+R^{13}R^{14}R^{15}A^-$; and $-N^+R^{13}R^{14}R^{15}A^-$; and

wherein the R¹⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R¹⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino;

carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\sf R}^{11}$ and ${\sf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein ${\bf R}^{14}$ and ${\bf R}^{15}$ together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo;

oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; $-OR^{16}$; $-NR^9R^{10}$; $-N^+R^9R^{10}R^WA^-$; $-SR^{16}$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^{16}$; $-CO_2R^{16}$; $-CO_2R^{16}$; $-CO_2R^{16}$; $-SO_2NR^9R^{10}$; $-PO(OR^{16})OR^{17}$; $-P^9R^{10}$; $-P^+R^9R^{10}R^{11}A^-$; $-S^+R^9R^{10}A^-$; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

78. A compound of claim 77 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 77.

79. A compound of claim 77 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 77.

80. A compound of claim 77 wherein:

R³ is R⁵; and

 R^4 is selected from the group consisting of hydrogen and alkyl.

81. A compound of claim 77 wherein:

 R^3 is selected from the group consisting of hydrogen and alkyl; and R^4 is R^5 .

82. A compound of claim 77 wherein:

R³ is R⁵; and

R⁴ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^4 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SOR 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 R 15 A-; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A-; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A-; and -N $^+$ R 13 R 14 R 15 A-; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CO2R 7 ; -CO2R 7 ; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^4 radical optionally may have one or more carbons

replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{R^{11}}$ and $\ensuremath{R^{12}}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one

or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein $\ensuremath{R^{16}}$ and $\ensuremath{R^{17}}$ are independently selected from the group consisting of R 9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation.

83. A compound of claim 77 wherein:

R³ is selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, and -OR⁹;

wherein the R^3 alkyl; cycloalkyl; aryl; heterocyclyl radical is substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 R 14 R 15 A $^{-}$; -P(O)R 13 R 14 ; -P $^{+}$ R 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; and -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³ radical optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR7; -NR7R8; -SR7; -S(O)R7; -SO2R7; -SO3R7; -CO2R7; -CO2R7; -CONR7R8; -N+R7R8R9A-; -P(O)R7R8; -PR7R8; -P+R7R8R9A-; and -P(O)(OR7)OR8; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl,

alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^3 radical optionally may have one or more carbons replaced by -O-; -NR 7 -; -N $^+$ R 7 R 8 A $^-$ -; -S-; -SO-; -SO2-; -S $^+$ R 7 A $^-$ -; -P(O)R 7 -; -P $^+$ R 7 R 8 A $^-$ -; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are

attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR 16 ; -NR 9 R 10 ; -N $^+$ R 9 R 10 R w A $^-$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^+$ R 9 R 10 R 11 A-; -S $^+$ R 9 R 10 A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^4 is R^5 .

84. A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

85. A compound of claim 77 wherein:

 R^{19} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, and alkylheterocyclylalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}\text{-}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R¹¹ and R¹² are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

86. A compound of claim 84 wherein R⁵ is:

$$\mathbb{R}^{19}$$
 IIA

wherein R¹⁹ is as defined in Claim 84.

87. A compound of claim 84 wherein R⁵ is:

wherein R¹⁹ is as defined in Claim 84.

88. A compound of claim 84 wherein R¹⁹ is selected from the group consisting of:

$$CO_2H$$
 CO_2H
 CO_2H

$$O$$
 S
 O
 CO_2H
 O
 CO_2H
 O

89. A compound of claim 84 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

90. A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

 R^{2A} and R^{2B} are independently selected from alkyl.

91. A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

92. A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is R⁵; and

R⁴ is selected from hydrogen and alkyl.

93. A compound of claim 84 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

- 94. A compound of claim 84 wherein j is 1 or 2.
- 95. A compound of claim 84 wherein j is 2.
- 96. A compound of claim 84 wherein R^{1A} and R^{1B} are hydrogen.
- 97. A compound of claim 84 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl.
- 98. A compound of claim 84 wherein R^{2A} and R^{2B} are independently selected from the group consisting $C_{1\text{-}6}$ alkyl.

- 99. A compound of claim 84 wherein R^{2A} and R^{2B} are the same alkyl.
- 100. A compound of claim 84 wherein R^{2A} and R^{2B} are each n-butyl.
- 101. A compound of claim 84 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 102. A compound of claim 84 wherein one or more R⁶ are independently selected from methoxy and dimethylamino.
 - 103. A compound of claim 84 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

 \boldsymbol{R}^{2A} and \boldsymbol{R}^{2B} are n-butyl; and

one or more \mathbb{R}^6 are independently selected from methoxy and dimethylamino.

104. A compound of claim 84 wherein

j is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

105. A compound of claim 88 wherein:

j is 2;

 R^{1A} and R^{1B} are independently selected from hydrogen and alkyl; and R^{2A} and R^{2B} are independently selected from hydrogen and alkyl.

106. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from alkyl.

107. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen; and

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl.

108. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

 R^3 is R^5 ; and

R⁴ is selected from hydrogen and alkyl.

109. A compound of claim 88 wherein:

j is 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are independently selected from ethyl, propyl and butyl;

R³ is selected from from hydrogen and alkyl; and

 R^4 is R^5 .

110. A compound of claim 88 wherein j is 1 or 2.

- 111. A compound of claim 88 wherein j is 2.
- 112. A compound of claim 88 wherein R^{1A} and R^{1B} are hydrogen.
- 113. A compound of claim 88 wherein R^{2A} and R^{2B} are independently selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl.
- 114. A compound of claim 88 wherein R^{2A} and R^{2B} are independently selected from the group consisting $C_{1\text{--}6}$ alkyl.
 - 115. A compound of claim 88 wherein R^{2A} and R^{2B} are the same alkyl.
 - 116. A compound of claim 88 wherein R^{2A} and R^{2B} are each n-butyl.
- 117. A compound of claim 88 wherein one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl.
- 118. A compound of claim 88 wherein one or more \mathbb{R}^6 are independently selected from methoxy and dimethylamino.
 - 119. A compound of claim 88 wherein

i is 1 or 2;

R^{1A} and R^{1B} are hydrogen;

R^{2A} and R^{2B} are n-butyl; and

one or more R^6 are independently selected from methoxy and dimethylamino.

120. A compound of claim 88 wherein

j is 1 or 2; $R^{1A} \text{ and } R^{1B} \text{ are hydrogen;}$ one of R^{2A} and R^{2B} is ethyl and the other of R^{2A} and R^{2B} is n-butyl; and one or more R^6 are independently selected from methoxy and dimethylamino.

121. A compound of Formula III:

$$R^{21}$$
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

wherein:

 R^{2C} and R^{2D} are independently selected from C_{1-6} alkyl; and R^{20} is selected from the group consisting of halogen and R^{23} ;

 $R^{21} \text{ is selected from the group consisting of hydroxy, alkoxy, and } R^{23}; \text{ and } \text{ wherein } R^{23} \text{ is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR^{13}; -NR^{13}R^{14}; -SR^{13}; -S(O)R^{13}; -SO2R^{13}; -SO3R^{13}; -NR^{13}OR^{14}; -NR^{13}NR^{14}R^{15}; -CO2R^{13}; -OM; -SO2OM; -SO2NR^{13}R^{14}; -C(O)NR^{13}R^{14}; -C(O)OM; -COR^{13}; -NR^{13}C(O)R^{14}; -NR^{13}C(O)NR^{14}R^{15}; -NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -NR^{13}SONR^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -P(O)R^{13}OR^{14}; -S^+R^{13}R^{14}A^-; \text{ and } -N^+R^{13}R^{14}R^{15}A^-; \text{ a$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{23} aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{23} aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{\mathrm{R}}^{11}$ and $\ensuremath{\mathrm{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A^{-} is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{22} is unsubstituted phenyl or R^{23} ; or a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{20} , R^{21} and R^{22} is R^{23} .

122. A compound of Claim 121 wherein R²³ is:

wherein

p is 0, 1, 2, 3 or 4; and

one or more R²⁴ are independently selected from the group consisting of

halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; -OM; -SO2OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -NR 13 C(O)R 14 ; -NR 13 C(O)NR 14 R 15 ; -NR 13 CO2R 14 ; -OC(O)R 13 ; -OC(O)NR 13 R 14 ; -NR 13 SOR 14 ; -NR 13 SO2R 14 ; -NR 13 SONR 14 R 15 ; -NR 13 SO2NR 14 R 15 ; -PR 13 R 14 ; -P(O)R 13 R 14 ; -P $^+$ R 13 R 14 R 15 A $^-$; -P(OR 13)OR 14 ; -S $^+$ R 13 R 14 A $^-$; and -N $^+$ R 13 R 14 R 15 A $^-$; and

wherein the R²⁴alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary

heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; $-CONR^7R^8$; $-N^+R^7R^8R^9A$ -; $-P(O)R^7R^8$; $-PR^7R^8$; $-P^+R^7R^8R^9A$ -; and $-P(O)(OR^7)OR^8$; and

wherein the R^{24} alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N +R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl;

alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\rm R}^{11}$ and ${\rm R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl;

alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^W A⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^{9} and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

123. A compound of claim 122 wherein R²³ is:

wherein R²⁴ is as defined in Claim 122.

124. A compound of claim 122 wherein R²³ is:

$$\mathbb{R}^{24}$$
 IVB

wherein R²⁴ is as defined in Claim 122.

125. A compound of claim 122 wherein:

 R^{24} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}\text{-}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

126. A compound of claim 125 wherein R²³ is:

$$\mathbb{R}^{24}$$
 IVA

wherein R²⁴ is as defined in Claim 125.

127. A compound of claim 125 wherein R²³ is:

$$\mathbb{R}^{24}$$
 IVB

wherein R²⁴ is as defined in Claim 125.

128. A compound of claim 125 wherein \mathbb{R}^{24} is selected from the group consisting of:

$$O$$
 N
 CO_2H
 CO_2H

129. A compound of claim 122 wherein:

R^{2C} and R^{2D} are independently selected from ethyl and n-butyl;

R²⁰ is chloro; and

 R^{21} is selected from the group consisting of hydroxy and methoxy.

130. A compound of claim 122 wherein:

R^{2C} and R^{2D} are n-butyl;

R²⁰ is chloro; and

 R^{21} is selected from the group consisting of hydroxy and methoxy.

131. A compound of claim 122 wherein:

one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl;

R²⁰ is chloro; and

 R^{21} is selected from the group consisting of hydroxy and methoxy.

132. A compound of claim 122 wherein R^{2C} and R^{2D} are the same alkyl.

- 133. A compound of claim 122 wherein R^{2C} and R^{2D} are each n-butyl.
- 134. A compound of claim 122 wherein one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl.
 - 135. A compound of claim 125 wherein:

R^{2C} and R^{2D} are independently selected from ethyl and n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

136. A compound of claim 125 wherein:

R^{2C} and R^{2D} are n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

137. A compound of claim 125 wherein:

one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl;

R²⁰ is chloro; and

R²¹ is selected from the group consisting of hydroxy and methoxy.

- 138. A compound of claim 125 wherein R^{2C} and R^{2D} are the same alkyl.
- 139. A compound of claim 125 wherein R^{2C} and R^{2D} are each n-butyl.
- 140. A compound of claim 125 wherein one of R^{2C} and R^{2D} is ethyl and the other of R^{2C} and R^{2D} is n-butyl.

141. A compound of Formula V:

$$R^{26}$$
 R^{25}
 R^{27}
 R^{2E}
 R^{2F}

wherein:

 R^{2E} and R^{2F} are independently selected from $C_{1\text{-}6}$ alkyl; and

 R^{25} and R^{26} are independently selected from the group consisting of hydrogen, alkoxy, and R^{28} ;

wherein R^{28} is aryl substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R 13; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R 14; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SO₂R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R²⁸ aryl optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl;

quaternary heterocyclyl; $-OR^7$; $-NR^7R^8$; $-SR^7$; $-S(O)R^7$; $-SO2R^7$; $-SO3R^7$; $-CO2R^7$; and $-CO2R^7$; and -

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{28} aryl optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸ A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R^9 , R^{10} , and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 $\ensuremath{\mathsf{R}}^{11}$ and $\ensuremath{\mathsf{R}}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl;

heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarerocyclylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one

or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation; and

 R^{27} is unsubstituted phenyl or R^{28} ; or a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{25} , R^{26} and R^{27} is R^{28} .

142. A compound of Claim 141 wherein R²⁸ is:

wherein

r is 0, 1, 2, 3 or 4; and

one or more R²⁹ are independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -

$$\begin{split} NR^{13}CO_{2}R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_{2}R^{14}; -NR^{13}SO_{2}R^{14}; -NR^{13}SO_{2}R^{14}; -NR^{13}SO_{2}R^{14}R^{15}; -NR^{13}SO_{2}NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P(O)R^{13}OR^{14}; -S^{+}R^{13}R^{14}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}A^{-}; -R^{+}R^{13}R^{14}R^{15}A^{-}; -R^{+}R^{13}R^{14}A^{-}; -R^{+}R^{13}R^{14}R^{15}A^{-}; -R^{+}R^{13}R^{14$$

wherein the R²⁹alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and wherein the R²⁹ alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and

alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N +R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl;

cycloalkenyl; haloalkyl; hydroxyalkyl; cyanoalkyl; $-OR^9$; $-NR^9R^{10}$; $-SR^9$; $-S(O)R^9$; $-SO_2R^9$; $-SO_3R^9$; $-CO_2R^9$; and $-CONR^9R^{10}$; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶;

-CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein $\mathbf{A}^{\scriptscriptstyle{\mathsf{T}}}$ is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

143. A compound of claim 142 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 142.

144. A compound of claim 142 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 142.

145. A compound of claim 142 wherein:

 R^{29} is independently selected from the group consisting of -OR 13 , -NR 13 R 14 , -NR 13 C(O)R 14 , -OC(O)NR 13 R 14 , and -NR 13 SO2R 14 , and

wherein R^{13} , R^{14} , and R^{15} are independently selected from the group consisting of alkyl, polyether, aryl, quaternary heterocycle, arylalkyl, heterocyclylalkyl, quaternary heterocyclylalkyl, alkylheterocyclylalkyl, and alkylammoniumalkyl,

wherein alkyl optionally has one or more carbons replaced by O or $\text{N}^+\text{R}^9\text{R}^{10}\text{A}$, and

wherein R^{13} , R^{14} , and R^{15} are optionally substituted with one or more groups selected from the group consisting of hydroxy, carboxy, alkyl, quaternary heterocyclylalkyl, $-SR^9$, $-S(O)R^9$, $-S(O)_2R^9$, $-S(O)_3R^9$, $-NR^9R^{10}$, $-N^+R^9R^{11}R^{12}A^-$, $-CONR^9R^{10}$, and $-PO(OR^{16})OR^{17}$, and

wherein R^9 and R^{10} are independently selected from the group consisting of hydrogen, alkyl, heterocyclylalkyl, carboxyalkyl, carboxyalkyl, and carboxyalkylheterocycle; and

wherein R^{11} and R^{12} are independently alkyl; and

wherein A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation.

146. A compound of claim 145 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 145.

147. A compound of claim 145 wherein R²⁸ is:

wherein R²⁹ is as defined in Claim 145.

148. A compound of claim 145 wherein R²⁹ is selected from the group consisting of:

$$\begin{array}{c} Cl_{-} \\ Cl_{-} \\ CO_{2}H \\ CO_{3}H \\ CO_{2}H \\ CO_{2}H \\ CO_{2}H \\ CO_{3}H \\ CO_{2}H \\ CO_{2}H \\ CO_{3}H \\ CO_{4}H \\ CO_{5}H \\ C$$

$$\begin{array}{c} O \\ N \\ H \\ \end{array}$$

$$\begin{array}{c} O \\ S \\ O \\ \end{array}$$

$$\begin{array}{c} O \\ S \\$$

149. A compound of claim 142 wherein:

 R^{2E} and R^{2F} are independently selected from ethyl and n-butyl; and

R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.

150. A compound of claim 142 wherein:

R^{2E} and R^{2F} are n-butyl; and

R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.

151. A compound of claim 142 wherein:

one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and R^{25} and R^{26} are independently selected from hydrogen and methoxy.

- 152. A compound of claim 142 wherein R^{2E} and R^{2F} are the same alkyl.
- 153. A compound of claim 142 wherein R^{2E} and R^{2F} are each n-butyl.
- 154. A compound of claim 142 wherein one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl.
 - 155. A compound of claim 145 wherein:

 R^{2E} and R^{2F} are independently selected from ethyl and n-butyl; and R^{25} and R^{26} are independently selected from hydrogen and methoxy.

156. A compound of claim 145 wherein:

R^{2E} and R^{2F} are n-butyl; and

R²⁵ and R²⁶ are independently selected from hydrogen and methoxy.

157. A compound of claim 145 wherein:

one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and

 R^{25} and R^{26} are independently selected from hydrogen and methoxy.

158. A compound of claim 145 wherein R^{2E} and R^{2F} are the same alkyl.

159. A compound of claim 145 wherein R^{2E} and R^{2F} are each n-butyl.

160. A compound of claim 145 wherein one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl.

161. A compound of claim 142 wherein: one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; R^{25} and R^{26} are hydrogen; and R^{27} is:

wherein r is 1 and R^{29} is as defined in claim 142.

162. A compound of claim 142 wherein: one of R^{2E} and R^{2F} is ethyl and the other of R^{2E} and R^{2F} is n-butyl; and R^{25} and R^{26} are methoxy; and R^{27} is:

wherein r is 1 and R^{29} is as defined in claim 142.

163. A compound of Formula VII:

$$(Q)_{i}$$
 R^{1C}
 R^{1D}
 R^{2G}
 R^{2H}
 R^{2H}
 R^{2H}
 R^{2H}

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, evcloalkyl, cycloalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a C_{3-10} cycloalkyl group; and

one of E and F is NR^{30} and the other of E and F is CHR^{31} ;

wherein R³⁰ and R³¹ are independently selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, -OR⁹, and R³²;

wherein the R³⁰ and R³¹ alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -NR¹³CO₂R¹⁴; -OC(O)R¹³; -OC(O)NR¹³R¹⁴; -NR¹³SOR¹⁴; -NR¹³SO₂R¹⁴; -NR¹³SONR¹⁴R¹⁵; -NR¹³SO₂NR¹⁴R¹⁵; -PR¹³R¹⁴; -P(O)R¹³R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; -P(OR¹³)OR¹⁴; -S⁺R¹³R¹⁴A⁻; and -N⁺R¹³R¹⁴R¹⁵A⁻; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein R^7 and R^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyaryl; carboxyheterocyclyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^wA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R^{13} , R^{14} , and R^{15} alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylheterocyclylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$; -S-; -SO-; -SO $_2$ -; -S $^+$ R 9 A $^-$ -; -PR

 9 -; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^{32} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X- R^{33} or -O-X- R^{33} and wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond;

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups;

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR 13 ; -NR $^{13}R^{14}$; -SR 13 ; -S(O)R 13 ; -S(O)2R 13 ; -SO3R 13 ; -S $^+R^{13}R^{14}A^-$; -NR $^{13}OR^{14}$; -NR $^{13}NR^{14}R^{15}$; -CO2R 13 ; -OM; -SO2 OM; -SO2NR $^{13}R^{14}$; -NR $^{14}C(O)R^{13}$; -C(O)NR $^{13}R^{14}$; -C(O)OM; -COR 13 ; -OR 18 ; -S(O)nNR $^{13}R^{14}$; -NR $^{13}R^{18}$; -NR $^{18}OR^{14}$; -N $^+R^{13}R^{14}R^{15}A^-$; -PR $^{13}R^{14}$; -P(O)R $^{13}R^{14}$; -P $^+R^{13}R^{14}R^{15}A^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 : -P $^{+}$ R 9 R 11 R 12 A $^{-}$; -S $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -SCO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO2-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO2-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or

more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO₂R⁹; -SO₃R⁹; -CO₂R⁹; -CO₂R⁹; -CONR⁹R¹⁰; -SO₂OM; -SO₂OM; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R³⁰, R³¹ and R³⁴ is R³².

164. A compound of Claim 163 wherein R^{32} is phenyl substituted with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O) $_s$ -alkyl-(C=O) $_t$; and

a covalent bond;

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

165. A compound of Claim 164 wherein R^{32} is phenyl substituted at the paraposition with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O) $_s$ -alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

166. A compound of Claim 164 wherein R³² is phenyl substituted at the metaposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)s-alkyl-O-;

 $-(C=O)_s$ -alkyl- $(C=O)_t$; and

a covalent bond; and

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1;

167. A compound of claim 164 wherein:

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl.

168. A compound of claim 165 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

169. A compound of claim 164 wherein R^{32} is phenyl substituted with a radical selected from the group consisting of:

170. A compound of claim 164 wherein:

i is 2;

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen and alkyl.

171. A compound of claim 164 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

R^{2G} and R^{2H} are independently selected from alkyl.

172. A compound of claim 164 wherein:

i is 2;

 R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from ethyl, propyl and butyl.

- 173. A compound of claim 164 wherein i is 1 or 2.
- 174. A compound of claim 164 wherein i is 2.
- 175. A compound of claim 164 wherein R^{1C} and R^{1D} are hydrogen.
- 176. A compound of claim 164 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and $C_{1\text{-}6}$ alkyl.
- 177. A compound of claim 164 wherein R^{2G} and R^{2H} are independently selected from the group consisting $C_{1\text{-}6}$ alkyl.
 - 178. A compound of claim 164 wherein R^{2G} and R^{2H} are the same alkyl.
 - 179. A compound of claim 164 wherein R^{2G} and R^{2H} are each n-butyl.
- 180. A compound of claim 164 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 181. A compound of claim 164 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 182. A compound of claim 164 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen;

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

183. A compound of claim 164 wherein

i is 1 or 2;

 R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R^{34} are independently selected from methoxy and dimethylamino.

184. A compound of claim 163 corresponding to Formula VIIA:

$$(Q)_{i} \qquad R^{1D}$$

$$R^{2G}$$

$$R^{2H}$$

$$R^{34}$$

$$R^{30}$$

$$R^{30}$$

$$R^{30}$$

$$R^{30}$$

$$R^{30}$$

$$R^{30}$$

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a $C_{3\text{--}7}$ cycloalkyl group; and

 R^{30} and R^{31} are independently selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, $-OR^9$, and R^{32} ;

wherein the R³⁰ and R³¹ alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R ¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R ¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -

$$\begin{split} NR^{13}CO_2R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_2R^{14}; -\\ NR^{13}SONR^{14}R^{15}; -NR^{13}SO_2NR^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^+R^{13}R^{14}R^{15}A^-; -\\ P(OR^{13})OR^{14}; -S^+R^{13}R^{14}A^-; \text{ and } -N^+R^{13}R^{14}R^{15}A^-; \text{ and} \end{split}$$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R³⁰ and R³¹ radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR⁷; -NR⁷R⁸; -SR⁷; -S(O)R⁷; -SO2R⁷; -SO3R⁷; -CO2R⁷; -CONR⁷R⁸; -N⁺R⁷R⁸R⁹A-; -P(O)R⁷R⁸; -PR⁷R⁸; -P⁺R⁷R⁸R⁹A-; and -P(O)(OR⁷)OR⁸; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein \mathbb{R}^7 and \mathbb{R}^8 are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R^9 , R^{10} , and R^W are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\rm R}^{11}$ and ${\rm R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R¹³ and R¹⁴ together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarenocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl;

carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR ⁹-; -P⁺R⁹R¹⁰A⁻-; -P(O)R⁹-; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^{32} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³³ or -O-X-R³³ and wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2 OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³

R¹⁴; -P⁺R¹³R¹⁴R¹⁵A⁻; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 11 R 12 A $^{-}$; -S $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR 13 ; -NR 13 R 14 ; -SR 13 ; -S(O)R 13 ; -SO2R 13 ; -SO3R 13 ; -NR 13 OR 14 ; -NR 13 NR 14 R 15 ; -CO2R 13 ; OM; -SO2 OM; -SO2NR 13 R 14 ; -C(O)NR 13 R 14 ; -C(O)OM; -COR 13 ; -P(O)R 13 R 14 ; -P 13 R 14 ; -P 13 R 14 ; -P 13 R 14 R 15 A $^{-}$; -P(OR 13)OR 14 ; -S $^{+}$ R 13 R 14 A $^{-}$; -N $^{+}$ R 13 R 14 R 15 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R^{18} alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{30} , R^{31} and R^{34} is R^{32} .

185. A compound of Claim 184 wherein R^{32} is phenyl substituted with -N(H)- X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O) $_s$ -alkyl-(C=O) $_t$; and

a covalent bond; and

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

186. A compound of Claim 185 wherein R^{32} is phenyl substituted at the paraposition with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O) $_s$ -alkyl-O-;

-(C=O) $_s$ -alkyl-(C=O) $_t$; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

187. A compound of Claim 185 wherein R³² is phenyl substituted at the meta-position with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

188. A compound of claim 185 wherein:

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl.

189. A compound of claim 185 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

190. A compound of claim 185 wherein R³² is phenyl substituted with a radical selected from the group consisting of:

191. A compound of claim 185 wherein:

i is 2;

 $R^{\rm IC}$ and $R^{\rm ID}$ are independently selected from hydrogen and alkyl; and $R^{\rm 2G}$ and $R^{\rm 2H}$ are independently selected from hydrogen and alkyl.

192. A compound of claim 185 wherein:

i is 2;

 R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from alkyl.

193. A compound of claim 185 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

 R^{2G} and R^{2H} are independently selected from ethyl, propyl and butyl.

- 194. A compound of claim 185 wherein i is 1 or 2.
- 195. A compound of claim 185 wherein i is 2.
- 196. A compound of claim 185 wherein R^{1C} and R^{1D} are hydrogen.
- 197. A compound of claim 185 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 198. A compound of claim 185 wherein R^{2G} and R^{2H} are independently selected from the group consisting C_{1-6} alkyl.
 - 199. A compound of claim 185 wherein R^{2G} and R^{2H} are the same alkyl.
 - 200. A compound of claim 185 wherein R^{2G} and R^{2H} are each n-butyl.
- 201. A compound of claim 185 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 202. A compound of claim 185 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 203. A compound of claim 185 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen;

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

204. A compound of claim 185 wherein

i is 1 or 2;

 R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R^{34} are independently selected from methoxy and dimethylamino.

205. A compound of claim 163 corresponding to Formula VIIB:

$$(R^{34})_{l}$$

$$R^{30}$$

$$R^{1C}$$

$$R^{2G}$$

$$R^{2H}$$

$$R^{31}$$
VIIB

wherein:

i is 0, 1 or 2; and

1 is 0, 1, 2, 3 or 4; and

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, aryl and aralkyl; or

 R^{2G} and R^{2H} together with the carbon atom to which they are attached form a $C_{3\mbox{--}7}$ cycloalkyl group; and

 R^{30} and R^{31} are independently selected from the group consisting of hydrogen; oxo; alkyl; cycloalkyl; aryl; heterocyclyl; acyl, thioacyl, $-OR^9$, and R^{32} ;

wherein the R³⁰ and R³¹ alkyl; cycloalkyl; aryl; heterocyclyl radicals are independently substituted with one or more radicals independently selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; polyalkyl; haloalkyl; hydroxyalkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -NR¹³C(O)R¹⁴; -NR¹³C(O)NR¹⁴R¹⁵; -

$$\begin{split} NR^{13}CO_{2}R^{14}; -OC(O)R^{13}; -OC(O)NR^{13}R^{14}; -NR^{13}SOR^{14}; -NR^{13}SO_{2}R^{14}; -NR^{13}SO_{2}R^{14}; -NR^{13}SO_{2}R^{14}; -NR^{13}SO_{2}R^{14}R^{15}; -PR^{13}R^{14}R^{15}; -PR^{13}R^{14}; -P(O)R^{13}R^{14}; -P^{+}R^{13}R^{14}R^{15}A^{-}; -P(O)R^{13}OR^{14}; -S^{+}R^{13}R^{14}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}A^{-}; \text{ and } -N^{+}R^{13}R^{14}R^{15}A^{-}; -P(O)R^{13}OR^{14}; -P^{+}R^{13}R^{14}A^{-}; -P(O)R^{13}R^{14}R^{15}A^{-}; -P(O)R^{13}R^{14}R^{15}A^{$$

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may be further substituted with one or more radicals selected from the group consisting of -CN; halogen; hydroxy; oxo; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclyl; -OR 7 ; -NR 7 R 8 ; -SR 7 ; -S(O)R 7 ; -SO2R 7 ; -SO3R 7 ; -CO2R 7 ; -CONR 7 R 8 ; -N $^+$ R 7 R 8 R 9 A-; -P(O)R 7 R 8 ; -PR 7 R 8 ; -P $^+$ R 7 R 8 R 9 A-; and -P(O)(OR 7)OR 8 ; and

wherein the alkyl, polyalkyl, haloalkyl, hydroxyalkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, quaternary heterocyclyl, arylalkyl, heterocyclylalkyl, and polyether substituents of the R^{30} and R^{31} radicals optionally may have one or more carbons replaced by -O-; -NR⁷-; -N⁺R⁷R⁸A⁻-; -S-; -SO-; -SO2-; -S⁺R⁷A⁻-; -PR⁷-; -P(O)R⁷-; -P⁺R⁷R⁸A⁻-; or phenylene; and

wherein ${\bf R}^7$ and ${\bf R}^8$ are independently selected from the group consisting of hydrogen; and alkyl; and

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of hydrogen; alkyl; cycloalkyl; alkenyl; alkynyl; aryl; heterocyclyl; alkylammoniumalkyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboxyalkyl; carboxyalkyl; carboxyalkyl; amino; alkylamino; carboxyalkylamino; alkoxyalkylamino; and acyl; and

wherein R^{11} and R^{12} are independently selected from the group consisting of hydrogen; -CN; halogen; oxo; alkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; carboxyalkyl; alkoxyalkyl; carboalkoxyalkyl; cycloalkyl; cycloalkyl; cycloalkyl; cycloalkyl; haloalkyl; hydroxyalkyl; cyanoalkyl; -OR 9 ; -NR 9 R 10 ; -SR 9 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 9 ; -CO2R 9 ; and -CONR 9 R 10 ; or

 ${\bf R}^{11}$ and ${\bf R}^{12}$ together with the carbon atom to which they are attached form a cyclic ring; and

wherein R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen; alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether; or

wherein R^{13} and R^{14} together with the nitrogen atom to which they are attached form a mono- or polycyclic heterocyclyl that is optionally substituted with one or more radicals selected from the group consisting of oxo, carboxy, and quaternary salts; or

wherein R^{14} and R^{15} together with the nitrogen atom to which they are attached form a cyclic ring; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylaminocarbonylalkyl; alkylaminocarbonylalkyl; carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; sulfo; oxo; alkyl; haloalkyl; hydroxyalkyl; sulfoalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; quaternary heterocyclylalkyl; carboxy; carboxyalkyl; guanidinyl; -OR¹⁶; -NR⁹R¹⁰; -N⁺R⁹R¹⁰R^WA⁻; -SR¹⁶; -S(O)R⁹; -SO2R⁹; -SO3R¹⁶; -CO2R¹⁶; -CONR⁹R¹⁰; -SO2NR⁹R¹⁰; -PO(OR¹⁶)OR¹⁷; -P⁹R¹⁰; -P⁺R⁹R¹⁰R¹¹A-; -S⁺R⁹R¹⁰A-; and carbohydrate residue; and

wherein the R¹³, R¹⁴, and R¹⁵ alkyl; haloalkyl; cycloalkyl; polyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; quaternary heterocyclylalkyl; alkylarylalkyl; alkylarylalkyl; alkylammoniumalkyl; aminoalkyl; aminocarbonylalkyl; alkylaminocarbonylalkyl;

carboxyalkylaminocarbonylalkyl; and polyether radicals optionally may have one or more carbons replaced by -O-; -NR 9 -; -N $^+$ R 9 R 10 A $^-$ -; -S-; -SO-; -SO₂-; -S $^+$ R 9 A $^-$ -; -PR 9 -; -P $^+$ R 9 R 10 A $^-$ -; -P(O)R 9 -; phenylene; carbohydrate residue; amino acid residue; peptide residue; or polypeptide residue; and

wherein R^{16} and R^{17} are independently selected from the group consisting of R^9 and M; and

wherein A is a pharmaceutically acceptable cation and M is a pharmaceutically acceptable cation; and

 R^{32} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X- R^{33} or -O-X- R^{33} and wherein:

X is selected from the group consisting of:

-(C=O)s-alkyl-;

-(C=O)s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)s-alkyl-(C=O)t; and

a covalent bond; and

R₃₃ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

s and t are independently 0 or 1; and

one or more R^{34} radicals are independently selected from the group consisting of R^{32} , hydrogen; halogen; -CN; -NO2; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -S(O)2R¹³; -SO3R¹³; -S⁺R¹³R¹⁴A⁻; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; -OM; -SO2 OM; -SO2NR¹³R¹⁴; -NR¹⁴C(O)R¹³; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -OR¹⁸; -S(O)nNR¹³R¹⁴; -NR¹³R¹⁸; -NR¹⁸OR¹⁴; -N⁺R¹³R¹⁴R¹⁵A⁻; -PR¹³R¹⁴; -P(O)R¹³

 R^{14} ; - $P^+R^{13}R^{14}R^{15}A^-$; amino acid residue; peptide residue; polypeptide residue; and carbohydrate residue;

wherein the R^{34} alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; acyloxy radicals optionally may be further substituted with one or more radicals selected from the group consisting of halogen; -CN; oxo; -OR 16 ; -NR 9 R 10 ; -N $^{+}$ R 9 R 10 R w A $^{-}$; -SR 16 ; -S(O)R 9 ; -SO2R 9 ; -SO3R 16 ; -CO2R 16 ; -CONR 9 R 10 ; -SO2NR 9 R 10 ; -PO(OR 16)OR 17 ; -P 9 R 10 ; -P $^{+}$ R 9 R 11 R 12 A $^{-}$; -S $^{+}$ R 9 R 10 A $^{-}$; and carbohydrate residue; and

wherein the R^{34} quaternary heterocyclyl radical optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; -NO2; oxo; alkyl; cycloalkyl; polyalkyl; haloalkyl; hydroxyalkyl; alkenyl; alkynyl; aryl; heterocyclyl; arylalkyl; heterocyclylalkyl; polyether; -OR¹³; -NR¹³R¹⁴; -SR¹³; -S(O)R¹³; -SO2R¹³; -SO3R¹³; -NR¹³OR¹⁴; -NR¹³NR¹⁴R¹⁵; -CO2R¹³; OM; -SO2 OM; -SO2NR¹³R¹⁴; -C(O)NR¹³R¹⁴; -C(O)OM; -COR¹³; -P(O)R¹³R¹⁴; -P¹³R¹⁴; -P¹³R¹⁴; -P¹³R¹⁴, -P¹³R¹

wherein the R^{34} radicals comprising carbon optionally may have one or more carbons replaced by -O-; -NR¹³-; -N⁺R¹³R¹⁴A⁻-; -S-; -SO-; -SO₂-; -S⁺R¹³A⁻-; -PR ¹³-; -P(O)R¹³-; -PR¹³R¹⁴; -P⁺R¹³R¹⁴A⁻-; phenylene; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; polypeptide residue; carbohydrate residue; amino acid residue; peptide residue; polypeptide residue; carbohydrate residue; and polyalkyl optionally may have one or more carbons replaced by -O-; -NR⁹-; -N⁺R⁹R¹⁰A⁻-; -S-; -SO-; -SO₂-; -S⁺R⁹A⁻-; -PR⁹-; -P⁺R⁹R¹⁰A⁻-; or -P(O)R⁹-; and

wherein R¹⁸ is selected from the group consisting of alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl; and

wherein the R¹⁸ alkyl; alkenyl; alkynyl; aryl; heterocyclyl; quaternary heterocyclyl; arylalkyl; heterocyclylalkyl; acyl; alkoxycarbonyl; arylalkoxycarbonyl; and heterocyclylalkoxycarbonyl radicals optionally may be substituted with one or more radicals selected from the group consisting of halogen; -CN; NO₂; oxo; -OR⁹; -NR⁹R¹⁰; -N⁺R⁹R¹¹R¹²A⁻; -SR⁹; -S(O)R⁹; -SO2R⁹; -SO3R⁹; -CO2R⁹; -CONR⁹R¹⁰; -SO2OM; -SO2NR⁹R¹⁰; -PR⁹R¹⁰; -P(OR¹³)OR¹⁴; -PO(OR¹⁶)OR¹⁷; and -C(O)OM; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof; provided that at least one of R^{30} , R^{31} and R^{34} is R^{32} .

206. A compound of Claim 205 wherein R^{32} is phenyl substituted with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

 $-(C=O)_s$ -alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

207. A compound of Claim 206 wherein R^{32} is phenyl substituted at the paraposition with -N(H)-X- R^{33} or -O-X- R^{33} wherein:

X is selected from the group consisting of:

-(C=O) $_s$ -alkyl-;

-(C=O)_s-alkyl-NH-;

-(C=O) $_s$ -alkyl-O-;

-(C=O)_s-alkyl-(C=O)_t; and

a covalent bond; and

 ${
m R}^{33}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

208. A compound of Claim 206 wherein R³² is phenyl substituted at the metaposition with -N(H)-X-R³³ or -O-X-R³³ wherein:

X is selected from the group consisting of:

-(C=O)_s-alkyl-;

-(C=O)s-alkyl-NH-;

-(C=O)_s-alkyl-O-;

-(C=O)s-alkyl-(C=O)t; and

a covalent bond; and

 R_{33} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

s and t are independently 0 or 1.

209. A compound of claim 206 wherein:

 R^{30} is R^{32} ; and

R³¹ is selected from the group consisting of hydrogen and alkyl.

210. A compound of claim 206 wherein:

 R^{30} is selected from the group consisting of hydrogen and alkyl; and R^{31} is R^{32} .

211. A compound of claim 206 wherein R³² is phenyl substituted with a radical selected from the group consisting of:

212. A compound of claim 206 wherein:

i is 2;

 R^{1C} and R^{1D} are independently selected from hydrogen and alkyl; and R^{2G} and R^{2H} are independently selected from hydrogen and alkyl.

213. A compound of claim 206 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

R^{2G} and R^{2H} are independently selected from alkyl.

214. A compound of claim 206 wherein:

i is 2;

R^{1C} and R^{1D} are hydrogen; and

 \boldsymbol{R}^{2G} and \boldsymbol{R}^{2H} are independently selected from ethyl, propyl and butyl.

- 215. A compound of claim 206 wherein i is 1 or 2.
- 216. A compound of claim 206 wherein i is 2.
- 217. A compound of claim 206 wherein R^{1C} and R^{1D} are hydrogen.
- 218. A compound of claim 206 wherein R^{2G} and R^{2H} are independently selected from the group consisting of hydrogen and C_{1-6} alkyl.
- 219. A compound of claim 206 wherein R^{2G} and R^{2H} are independently selected from the group consisting $C_{1\text{-}6}$ alkyl.
 - 220. A compound of claim 206 wherein R^{2G} and R^{2H} are the same alkyl.
 - 221. A compound of claim 206 wherein R^{2G} and R^{2H} are each n-butyl.
- 222. A compound of claim 206 wherein one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl.
- 223. A compound of claim 206 wherein one or more R³⁴ are independently selected from methoxy and dimethylamino.
 - 224. A compound of claim 206 wherein

i is 1 or 2;

R^{1C} and R^{1D} are hydrogen;

R^{2G} and R^{2H} are n-butyl; and

one or more R³⁴ are independently selected from methoxy and dimethylamino.

225. A compound of claim 206 wherein

i is 1 or 2;

 R^{1C} and R^{1D} are hydrogen; one of R^{2G} and R^{2H} is ethyl and the other of R^{2G} and R^{2H} is n-butyl; and one or more R^{34} are independently selected from methoxy and dimethylamino.

226. A compound of Formula VIII:

$$R^{36}$$
 R^{35}
 R^{37}
VIII

wherein:

 R^{2I} and R^{2J} are independently selected from C_{1-6} alkyl; and R^{35} is selected from the group consisting of halogen and R^{38} ; R^{36} is selected from the group consisting of hydroxy, alkoxy, and R^{38} ;

wherein R^{38} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)-X-R³⁹ or -O-X-R³⁹ and wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-;

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O)_u-alkyl-(C=O)_v; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

u and v are independently 0 or 1; and

R³⁷ is unsubstituted phenyl or R³⁸; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof;

provided that at least one of R³⁵, R³⁶ and R³⁷ is R³⁸.

227. A compound of Claim 226 wherein R³⁸ is phenyl substituted with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O)_u-alkyl-(C=O)_v; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

228. A compound of Claim 227 wherein R³⁸ is phenyl substituted at the paraposition with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-;

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O)_u-alkyl-(C=O)_v; and

a covalent bond; and

R³⁹ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

229. A compound of Claim 227 wherein R³⁸ is phenyl substituted at the metaposition with -N(H)-X-R³⁹ or -O-X-R³⁹ wherein:

X is selected from the group consisting of:

-(C=O)_u-alkyl-;

-(C=O)_u-alkyl-NH-;

-(C=O)_u-alkyl-O-;

-(C=O) $_u$ -alkyl-(C=O) $_v$; and

a covalent bond; and

 ${
m R}^{39}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

u and v are independently 0 or 1.

230. A compound of claim 227 wherein R^{38} is phenyl substituted with a radical selected from the group consisting of:

231. A compound of claim 227 wherein:

R^{2I} and R^{2J} are independently selected from ethyl and n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

232. A compound of claim 227 wherein:

R^{2I} and R^{2J} are n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

233. A compound of claim 227 wherein:

one of R^{2I} and R^{2J} is ethyl and the other of R^{2I} and R^{2J} is n-butyl;

R³⁵ is chloro; and

R³⁶ is selected from the group consisting of hydroxy and methoxy.

- 234. A compound of claim 227 wherein R^{2I} and R^{2J} are the same alkyl.
- 235. A compound of claim 227 wherein R^{2I} and R^{2J} are each n-butyl.

236. A compound of claim 227 wherein one of R^{2I} and R^{2J} is ethyl and the other of R^{2I} and R^{2J} is n-butyl.

237. A compound of Formula IX:

$$R^{41}$$
 R^{40}
 R^{40}
 R^{42}
 R^{2K}
 R^{2K}
 R^{2L}

wherein:

 R^{2K} and R^{2L} are independently selected from C_{1-6} alkyl; and

 R^{40} and R^{41} are independently selected from the group consisting of hydrogen, alkoxy, and R^{43} ;

wherein R^{43} is selected from the group consisting of cycloalkyl, aryl and heterocyclyl, wherein said cycloalkyl, aryl and heterocyclyl are substituted with -N(H)- $X-R^{44}$ or -O- $X-R^{44}$ and wherein:

X is selected from the group consisting of:

 $-(C=O)_a$ -alkyl-;

-(C=O)_a-alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

R⁴⁴ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides, wherein said monosaccharides, disaccharides, and polysaccharides may be protected with one or more sugar protecting groups; and

a and b are independently 0 or 1: and

R⁴² is unsubstituted phenyl or R⁴³; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof;

provided that at least one of R^{40} , R^{41} and R^{42} is R^{43} .

238. A compound of Claim 237 wherein R^{43} is phenyl substituted with -N(H)- $X-R^{44}$ or -O- $X-R^{44}$ wherein:

X is selected from the group consisting of:

-(C=O)a-alkyl-;

-(C=O)_a-alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

 R^{44} is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

239. A compound of Claim 238 wherein R⁴³ is phenyl substituted at the paraposition with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ wherein:

X is selected from the group consisting of:

-(C=O)_a-alkyl-;

-(C=O)_a-alkyl-NH-;

-(C=O)_a-alkyl-O-;

-(C=O)_a-alkyl-(C=O)_b; and

a covalent bond; and

 $\ensuremath{R^{44}}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

240. A compound of Claim 238 wherein R⁴³ is phenyl substituted at the metaposition with -N(H)-X-R⁴⁴ or -O-X-R⁴⁴ wherein:

X is selected from the group consisting of:

-(C=O) $_a$ -alkyl-;

-(C=O)_a-alkyl-NH-;

-(C=O) $_a$ -alkyl-O-; -(C=O) $_a$ -alkyl-(C=O) $_b$; and

a covalent bond; and

 $\ensuremath{R^{44}}$ is selected from selected from the group consisting of monosaccharides, disaccharides, and polysaccharides; and

a and b are independently 0 or 1.

241. A compound of claim 238 wherein R^{43} is phenyl substituted with a radical selected from the group consisting of:

242. A compound of claim 238 wherein:

 R^{2K} and R^{2L} are independently selected from ethyl and n-butyl; and R^{40} and R^{41} are independently selected from hydrogen and methoxy.

243. A compound of claim 238 wherein:

R^{2K} and R^{2L} are n-butyl; and

R⁴⁰ and R⁴¹ are independently selected from hydrogen and methoxy.

244. A compound of claim 238 wherein:

one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are independently selected from hydrogen and methoxy.

- 245. A compound of claim 238 wherein R^{2K} and R^{2L} are the same alkyl.
- 246. A compound of claim 238 wherein R^{2K} and R^{2L} are each n-butyl.
- 247. A compound of claim 238 wherein one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl.

- 249. A compound of claim 238 wherein: one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are hydrogen.
- 250. A compound of claim 238 wherein: one of R^{2K} and R^{2L} is ethyl and the other of R^{2K} and R^{2L} is n-butyl; and R^{40} and R^{41} are methoxy.
- 251. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula I according to any one of claims 1 to 120, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
- 252. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula III according to any one of claims 121 to 140, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
- 253. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula V according to any one of claims 141 to 162, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
- 254. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula VII according to any one of claims 163 to 225, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
- 255. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of

Formula VIII according to any one of claims 226 to 236, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

- 256. A method of treating a hyperlipidemic condition in a subject comprising administering to the subject a therapeutically effective amount of a compound of Formula IX according to any one of claims 237 to 250, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
- 257. The method of claim 251 wherein the hyperlipidemic condition is atherosclerosis.
- 258. A pharmaceutical composition comprising a compound of Formula I according to any one of claims 1 to 120 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable carrier.
- 259. A pharmaceutical composition comprising a compound of Formula III according to any one of claims 121 to 140 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.
- 260. A pharmaceutical composition comprising a compound of Formula V according to any one of claims 141 to 162 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.
- 261. A pharmaceutical composition comprising a compound of Formula VII according to any one of claims 163 to 225 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable carrier.
- 262. A pharmaceutical composition comprising a compound of Formula VIII according to any one of claims 226 to 236 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.

263. A pharmaceutical composition comprising a compound of Formula IX according to any one of claims 237 to 250 or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmceutically acceptable carrier.