NSR Search Results Page 1 of 5

Visit the **Isotope Explorer** home page!

30 reference(s) found:

Keynumber: 1997VE03

Reference: Appl.Radiat.Isot. 48, 493 (1997) **Authors:** L.Venturini, B.R.S.Pecequilo

Title: Thermal Neutron Capture Cross-Section of ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr and ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr, ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n, γ),E=thermal;

measured E γ ,I γ ; deduced capture σ .

Keynumber: 1987LI05

Reference: Chin.J.Nucl.Phys. 9, 21 (1987)

Authors: Liu Zianfeng, Ho Yukun

Title: Non-Statistical Effects in the Radiative Neutron Capture at the 3s Giant Resonance Region **Keyword abstract:** NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁸Ti, ⁵²Cr, ⁵⁶Fe, ⁶⁴Ni, ⁷⁴Ge(n,γ),E=0.1-3 MeV;

calculated σ(E). ⁴¹Ca, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶⁵Ni, ⁷⁵Ge deduced neutron giant resonance strength.

Statistical, nonstatistical effects.

Keynumber: 1986HI05

Reference: J.Radioanal.Nucl.Chem. 105, 351 (1986) **Authors:** P.Z.Hien, T.K.Mai, T.X.Quang, T.N.Thuy

Title: Determination of k₀-Factors by Thermal Neutron Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁶Mg, ⁵¹V, ⁵⁵Mn, ⁵⁶Fe, ⁶⁴Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁹Ag,

 196 , 202 Hg(n, γ),E=thermal; measured composite nuclear constant. Activation technique.

Keynumber: 1985KO48

Reference: Nucl.Instrum.Methods Phys.Res. B10/11, 1058 (1985) **Authors:** K.Koh, R.Finn, P.Smith, E.Tavano, J.Dwyer, H.Sheh

Title: Activation Analysis Utilizing Byproduct Neutrons of Cyclotron Internal Target Runs

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,2n), ²⁷Al(n,α), ⁵⁶Fe, ⁶⁵Cu, ²⁴Mg, ⁵⁸Ni(n,p),

²³Na, ⁵⁵Mn, ⁶⁴Ni, ⁷¹Ga, ⁸¹Br, ¹⁰⁹Ag, ¹¹⁵In, ¹⁹⁷Au(n,γ),E=thermal-14.4 MeV; measured

thermal, absorption $\sigma_{\text{,}reaction}$ rates. Neutron activation analysis.

Keynumber: 1985KI09

Reference: J.Nucl.Sci.Technol.(Tokyo) 22, 337 (1985)

Authors: Y.Kikuchi, N.Sekine

Title: Evaluation of Neutron Nuclear Data of Natural Nickel and Its Isotopes

Keyword abstract: NUCLEAR REACTIONS Ni, 58 , 60 , 61 , 62 , 64 Ni(n,n), (n,n'), (n, γ), (n,2n), (n,3n), (n,p), (n, α), (n,n'p), (n,n' α), E <20 MeV; calculated σ (E); deduced average capture σ (E). Spherical

optical, statistical models.

Keynumber: 1984WI16

Reference: Nucl.Sci.Eng. 87, 48 (1984)

Authors: K.Wisshak, F.Kappeler, R.L.Macklin, G.Reffo, F.Fabbri

Title: Neutron Capture in s-Wave Resonances of Nickel-64

Keyword abstract: NUCLEAR REACTIONS ⁶⁴Ni(n, γ),E=10-56 keV; measured capture γ yield vs E;

deduced Maxwellian average σ . ⁶⁵Ni deduced s-wave resonances $\Gamma\gamma$, strength function.

NSR Search Results Page 2 of 5

Kevnumber: 1983WIZN **Reference:** KfK-3582 (1983)

Authors: K. Wisshak, F. Kappeler, R.L. Macklin, G. Reffo, F. Fabbri

Title: Neutron Capture s-Wave Resonances of ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁶⁴Ni(n,γ),E=13.9-33.8 keV; measured capture yield vs E.

E. ⁶⁵Ni deduced resonances, Γn , $\Gamma \gamma$, $(g\Gamma n\Gamma \gamma/\Gamma)$, s-, p-wave strength functions.

Kevnumber: 1983WIZK **Reference:** NEANDC(E)-242U, Vol.V, p.4 (1983) Authors: K. Wisshak, F. Kappeler, R. L. Macklin, G. Reffo

Title: Neutron Capture in s-Wave Resonances of ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁶⁴Ni(n,γ),E=10-50 keV; measured capture yield vs E.

⁶⁵Ni deduced s-wave resonance capture Γγ.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹. 30Si, 31P, 32, 33, 34, 36S, 35, 37Cl, 36, 38, 40Ar, 39, 40, 41K, 40, 42, 43, 44, 46, 48Ca, 45Sc, 46, 47, 48, 49, 50Ti, 50, 51V, 50, 52, 53, 54Cr, 55Mn, 54, 56, 57, 58Fe, 59Co, 58, 60, 61, 62, 64Ni, 63, 65Cu, 64, 66, 67Zn(n,γ), $(n,p),\,(n,\alpha),\,(p,\gamma),\,(p,n),\,(p,\alpha),\,(\alpha,\gamma),\,(\alpha,n),\,(\alpha,p),\,{}^{70}Zn(p,\gamma),\,(p,n),\,(p,\alpha),\,(\alpha,\gamma),\,(\alpha,n),\,(\alpha,p),E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Kevnumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, 32, 33, 34S,Cl, 35, 36, 37Cl,Ar, 36, 38, 40Ar,K, 39, 40, 41K,Ca, 40, 42, 43, 44, 46, 48Ca, 45, 46Sc,Ti, 46, 47, 48, 49, 50Ti,V, 50, 51V,Cr, 50, 52, 53, 54Cr,Fe, 54, 56, 57, 58Fe, 59Co,Ni, 58, 59, 60, 61, 62, 64Ni,Cu, 63, 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n, γ), (n,n), (n, α),E=thermal; evaluated σ ,radiative capture resonance integrals.

Keynumber: 1978VE06

Reference: Nucl. Phys. A299, 429 (1978) Authors: R. Vennink, W. Ratynski, J. Kopecky

Title: Circular Polarization of Neutron Capture γ-Rays from Ca, Ti, Fe and Ni

Keyword abstract: NUCLEAR REACTIONS ⁴²Ca, ⁴⁴Ca, ⁴⁶Ti, ⁵⁶Fe, ⁵⁸Fe, ⁶⁴Ni(polarized n,γ).E=th;

measured γ-CP. ⁴³Ca, ⁴⁵Ca, ⁴⁷Ti, ⁵⁷Fe, ⁵⁹Fe, ⁶⁵Ni levels deduced J. Enriched targets.

Keynumber: 1977VEZQ

Coden: REPT INDC(SEC)-62/L,P140,Vennink

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Fe, ⁶⁴Ni(polarized n,γ); measured CP γ. ⁵⁹Fe, ⁶⁵Ni

levels deduced J,π .

Keynumber: 1977IS01

NSR Search Results Page 3 of 5

Reference: Z.Phys. A281, 365 (1977)

Authors: A.F.M.Ishaq, A.Robertson, W.V.Prestwich, T.J.Kennett

Title: Thermal Neutron Capture in Isotopes of Nickel

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n, γ),E=th; measured E γ ,I γ . ⁵⁹, ⁶¹, ⁶³, ⁶⁵Ni

deduced levels.

Keynumber: 1977ABZS

Coden: REPT INDC(SEC)-62/L,P137,Abrahams

Keyword abstract: NUCLEAR REACTIONS ⁵¹V, ⁵⁸Fe, ⁶⁴Ni(n,γ); measured CP γ. ⁵²V, ⁵⁹Fe, ⁶⁵Ni

levels deduced J,π .

Keynumber: 1975BE07

Reference: Nucl. Phys. A240, 29 (1975)

Authors: H.Beer, R.R.Spencer

Title: keV Neutron Radiative Capture and Total Cross Section of ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, and ⁶², ⁶⁴Ni **Keyword abstract:** NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n,γ),E=5-200 keV; ⁵⁰, ⁵²Cr, ⁵⁴Fe, ⁶², ⁶⁴Ni(n,t),E=10-300 keV; measured σ(E,Eγ),σ(E,Et). ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni

deduced resonances, J, L, n-width, γ -width. Enriched targets.

Keynumber: 1974HAXO **Coden:** REPT USNDC-11 P11

Keyword abstract: NUCLEAR REACTIONS ¹⁰⁸, ¹¹⁰Pd, ¹⁴⁶Nd, ⁵⁰Cr, ⁶⁴Ni(n,γ),E=not given;

measured σ .

Keynumber: 1974BEXF

Coden: REPT KFK-2063,CRL

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n,γ),E <300 keV;

measured $\sigma(E,E\gamma)$. ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁵, ⁵⁸Fe, ⁶³, ⁶⁵Ni deduced resonances.

Keynumber: 1973KNZK

Coden: REPT COO-3058-39 P18 mf

Keyword abstract: NUCLEAR REACTIONS 58 Fe, 64 Ni(n, γ),E=20-100 eV; 54 Fe, 61 Ni(n, γ),E=10-200

keV; measured σ.

Keynumber: 1973BEWY

Coden: REPT EANDC(E)157-U,P1

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁷Fe, ⁵⁰, ⁵², ⁵³Cr, ⁶², ⁶⁴Ni(n, γ),E=5-200 keV;

measured σ .

Keynumber: 1972HOYH

Coden: REPT COO-3058-27,P14

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁸Fe, ⁶¹, ⁶⁴Ni(n,X), (n,γ),E=0.1-35 keV; measured

 $\sigma(E)$, $\sigma(nT)(E)$. 55, 59 Fe, 62, 65 Ni deduced resonances.

Keynumber: 1972CO31

Reference: Phys.Rev. C6, 1650 (1972)

Authors: S.Cochavi, W.R.Kane

Title: Study of the Gamma Rays from Thermal-Neutron Capture in Ni⁶⁴

NSR Search Results Page 4 of 5

Keyword abstract: NUCLEAR REACTIONS 62 , 64 Ni(n,γ),E=thermal; measured Eγ,Iγ,γγ-coin; deduced Q. 65 Ni deduced levels,γ-branching.

Keynumber: 1972BEVV **Coden:** REPT KFK-1676 P3

Keyword abstract: NUCLEAR REACTIONS ⁵⁰, ⁵², ⁵³Cr, ⁵⁴, ⁵⁷Fe, ⁶², ⁶⁴Ni(n, γ); measured σ (E).

Keynumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt (n,γ),E=thermal; measured σ.

Keynumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹Br, ⁸¹Br, ⁸⁹Y, ¹⁰⁷, ¹⁰⁹Ag, ¹¹⁵In, ¹²¹, ¹²³Sb, ¹²⁷I, ¹³⁹La, ¹⁵¹Eu, ¹⁹⁶, ¹⁹⁸Pt (n,γ).E=thermal; measured σ; deduced resonance integrals.

Keynumber: 1971GIZQ

Coden: REPT CEA-N-1500, J Girard, 4/27/72

Keyword abstract: NUCLEAR REACTIONS ⁶⁴Ni(n,γ), measured Eγ,Ιγ,γγ-coin; deduced Q. ⁶⁵Ni

deduced levels, y-branching.

Keynumber: 1971GIZL **Reference:** ZfK-215 (1971)

Authors: P.Gippner, H.-U.Jager, W.Rudolph

Title: Verleich von (d,p)- und (n, γ)-Reaktionen an den Nukliden ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni und ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹, ⁶¹,

⁶³, ⁶⁵Ni deduced levels.

Kevnumber: 1971AUZV

Coden: REPT EANDC(E) 140 U,P87,12/30/71

Keyword abstract: NUCLEAR REACTIONS 64 Ni, 175 Lu(n, γ),E=thermal; measured E γ ,I γ . 65 Ni

deduced levels,γ-branching. ¹⁷⁶Lu deduced transitions.

Keynumber: 1971AR39

Reference: Phys.Scr. 4, 89 (1971)

Authors: S.E.Arnell, R.Hardell, A.Hasselgren, C.-G.Mattsson, O.Skeppstedt

Title: Thermal Neutron Capture in ⁵⁰Ti and ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS 50 Ti, 64 Ni(n, γ),E=thermal; measured E γ ,I γ ; deduced Q.

⁵¹Ti, ⁶⁵Ni deduced levels. Ge(Li) pair,anti-Compton spectrometer.

Keynumber: 1969HO12

NSR Search Results Page 5 of 5

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n,γ), E=0.1-200 keV; measured σ (E). ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance

parameters.

Keynumber: 1968EMZX **Coden:** REPT ORNL-4343,P71

Keyword abstract: NUCLEAR REACTIONS ⁶⁴Ni, ²⁰⁸Pb(n,γ)E=thermal; measured σ.
