Geometry of k-contact manifolds

Xavier Rivas

XXVI Encuentro de Invierno: Geometría, Dinámica y Teoría de Campos

Zaragoza, January 13–14, 2025

Outline

k-contact forms

A new approach: k-contact distributions

Representing k-contact distributions

References

Outline

k-contact forms

A new approach: k-contact distributions

Representing k-contact distributions

References

k-contact forms

Definition

A k-contact form on an open subset $U \subset M$ is a differential one-form on U taking values in \mathbb{R}^k , let us say $\eta \in \Omega^1(U, \mathbb{R}^k)$, such that

- (1) $\ker \eta \subset \mathrm{T}U$ is a regular non-zero distribution of corank k,
- (2) $\ker d\eta \subset TU$ is a regular distribution of rank k,
- (3) $\ker \eta \cap \ker d\eta = 0$.

If the k-contact form η is defined on M, the pair (M, η) is called a **co-oriented** k-contact manifold and $\ker \mathrm{d} \eta$ is called the **Reeb** distribution of (M, η) .

If, in addition, $\dim M = n + nk + k$ for some $n, k \in \mathbb{N}$ and there exists an integrable distribution \mathcal{V} contained in $\ker \eta$ with $\operatorname{rank} \mathcal{V} = nk$, we say that (M, η, \mathcal{V}) is a **polarised co-oriented** k-contact manifold. We call the distribution \mathcal{V} a **polarisation** of (M, η) .

The case k=1

The condition $\ker \eta \neq 0$ is assumed so as to avoid non-interesting examples and retrieve standard contact geometry in the case k=1.

Consider η to be any non-vanishing one-form on $M=\mathbb{R}$. Thus, $\mathrm{d}\eta=0$ and $\ker\mathrm{d}\eta=\mathrm{T}\mathbb{R}$. Hence, all conditions (1), (2), and (3) are satisfied. Nevertheless, we want a one-contact form to be a contact form and a non-vanishing η on \mathbb{R} is not a contact form since its kernel is not a contact distribution.

Dimension of polarised k-contact manifolds

If (M, η) admits a polarisation \mathcal{V} , then $\dim M = n + nk + k$ for some $n, k \in \mathbb{N}$. Note that

$$n + nk + k = (n+1)(k+1) - 1$$
,

so $\dim M+1$ must be a composite number. Thus, if (M, η, \mathcal{V}) is a polarised k-contact manifold, $\dim M+1$ cannot be a prime number.

Reeb vector fields

Theorem

Let $(M, \eta = \sum_{\alpha=1}^k \eta^{\alpha} \otimes e_{\alpha})$ be a co-oriented k-contact manifold. There exists a unique family of vector fields $R_1, \ldots, R_k \in \mathfrak{X}(M)$, such that

$$\iota_{R_{\alpha}}\eta^{\beta} = \delta^{\beta}_{\alpha}, \qquad \iota_{R_{\alpha}}\mathrm{d}\eta^{\beta} = 0,$$

for $\alpha, \beta = 1, \dots, k$. The vector fields R_1, \dots, R_k commute between themselves, i.e.

$$[R_{\alpha}, R_{\beta}] = 0, \qquad \alpha, \beta = 1, \dots, k.$$

In addition, $\ker d\eta$ is spanned by those vector fields, namely $\ker d\eta = \langle R_1, \dots, R_k \rangle$.

We call **Reeb** k-vector field of (M, η) the integrable k-vector field $\mathbf{R} = (R_1, \dots, R_k)$.

Note that $\mathscr{L}_{R_{\alpha}} \eta = 0$ for every α .

A first example

The manifold $M=(\bigoplus^k \mathrm{T}^*Q)\times \mathbb{R}^k$ has a natural k-contact form

$$\eta_Q = \sum_{\alpha=1}^k (\mathrm{d}z^\alpha - \theta^\alpha) \otimes e_\alpha = \sum_{\alpha=1}^k (\mathrm{d}z^\alpha - p_i^\alpha \mathrm{d}q^i) \otimes e_\alpha,$$

where θ^{α} is the pull-back to M of the Liouville one-form θ of the cotangent bundle T^*Q . Thus, (M, η_Q, \mathcal{V}) is a polarised co-oriented k-contact manifold, where $\mathcal{V} \subset \ker \eta$ is the vertical distribution or the projection $M \longrightarrow Q \times \mathbb{R}^k$ and $\mathrm{rank} \ \mathcal{V} = nk$. In local coordinates,

$$\ker \eta_Q = \left\langle \frac{\partial}{\partial p_i^{\alpha}}, \frac{\partial}{\partial q^i} + p_i^{\alpha} \frac{\partial}{\partial z^{\alpha}} \right\rangle, \qquad \mathcal{V} = \left\langle \frac{\partial}{\partial p_i^{\alpha}} \right\rangle.$$

Hence, $d\eta_Q = (dq^i \wedge dp_i^{\alpha}) \otimes e_{\alpha}$, the Reeb vector fields are $R_{\alpha} = \partial/\partial z^{\alpha}$ for $\alpha = 1, \ldots, k$, and

$$\ker d\eta_Q = \left\langle \frac{\partial}{\partial z^1}, \dots, \frac{\partial}{\partial z^k} \right\rangle.$$

Jet bundles I

Consider the first-order jet bundle $J^1=J^1(M,E)$ of a fibre bundle $E\to M$ of rank k with adapted coordinates $\{x^i,y^\alpha,y^\alpha_i\}$ on an open set U. Its Cartan distribution

$$C = \left\langle \frac{\partial}{\partial x^i} + \sum_{\alpha=1}^k y_i^{\alpha} \frac{\partial}{\partial y^{\alpha}}, \frac{\partial}{\partial y_i^{\alpha}} \right\rangle$$

has rank m(k+1) and it is globally defined. Note that $[\mathcal{C},\mathcal{C}]=\mathrm{T}J^1.$

On the open subset U of J^1 , there exists a k-contact form

$$\eta = \sum_{\alpha=1}^{k} \left(dy^{\alpha} - \sum_{i=1}^{m} y_i^{\alpha} dx^i \right) \otimes e_{\alpha},$$

such that $\ker \eta = \mathcal{C}|_U$. Moreover,

$$\left\langle \frac{\partial}{\partial y^{\alpha}} \right\rangle = \ker \mathrm{d} \boldsymbol{\eta} \,.$$

Jet bundles II

This example is quite interesting due to the fact that, given another set of adapted coordinates $\{\bar{x}^i, \bar{y}^\alpha, \bar{y}^\alpha_i\}$ on \bar{U} to J^1 , the \mathbb{R}^k -valued differential one-form

$$\bar{\boldsymbol{\eta}} = (\mathrm{d}\bar{y}^{\alpha} - \bar{y}_{i}^{\alpha}\mathrm{d}\bar{x}^{i}) \otimes e_{\alpha}$$

is different from η , but

$$\ker \boldsymbol{\eta}|_{U \cap \bar{U}} = \ker \bar{\boldsymbol{\eta}}|_{U \cap \bar{U}} = \mathcal{C}|_{U \cap \bar{U}},$$
$$\left\langle \frac{\partial}{\partial y^{\alpha}} \right\rangle = \ker d\boldsymbol{\eta} \neq \ker d\bar{\boldsymbol{\eta}} = \left\langle \frac{\partial}{\partial \bar{y}^{\alpha}} \right\rangle,$$

and $\ker \bar{\eta} \oplus \ker d\bar{\eta} = T\bar{U}$.

Consequently, locally defined k-contact forms associated with adapted coordinates to J^1 and their differentials do not need to be globally defined, but they share the same kernel given by the Cartan distribution.

Jet bundles III

Let us analyse a simple example given by a fibre bundle $(x,y) \in \mathbb{R}^2 \mapsto x \in \mathbb{R}$. Consider the first-order jet bundle $J^1(\mathbb{R},\mathbb{R}^2)$ with induced variables $\{x,y,\dot{y}\}$. The new adapted coordinates given by

$$\bar{x} = x, \qquad \bar{y} = (1 + x^2)y,$$

lead to a new adapted coordinate system on $J^1(\mathbb{R},\mathbb{R}^2)$ of the form

$$\bar{x} = x$$
, $\bar{y} = (1 + x^2)y$, $\dot{\bar{y}} = (1 + x^2)\dot{y} + 2xy$.

Hence,

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \bar{x}} + 2\frac{\bar{x}\bar{y}}{1 + \bar{x}^2} \frac{\partial}{\partial \bar{y}} + \frac{2}{1 + \bar{x}^2} \left(\bar{y} + \bar{x}\dot{\bar{y}} - \frac{2\bar{x}^2\bar{y}}{1 + \bar{x}^2} \right) \frac{\partial}{\partial \dot{\bar{y}}},$$
$$\frac{\partial}{\partial y} = (1 + \bar{x}^2) \frac{\partial}{\partial \bar{y}} + 2\bar{x}\frac{\partial}{\partial \dot{\bar{y}}}, \qquad \frac{\partial}{\partial \dot{y}} = (1 + \bar{x}^2) \frac{\partial}{\partial \dot{\bar{y}}}.$$

As above, $\langle \partial/\partial y \rangle \neq \langle \partial/\partial \bar{y} \rangle$ at a generic point, while $\bar{\eta} = (1+x^2)\eta$.

For a contact form η on M, one has that $[\ker \eta, \ker \eta] = TM$.

For k-contact forms, only the following result can be ensured.

Proposition

Given a k-contact form η on M, one has that $\ker d\eta$ is an integrable distribution and $[\ker \eta, \ker \eta]_x \supseteq \ker \eta_x$ at every point $x \in M$.

In some particular cases, one has $[\ker \eta, \ker \eta] = TM$ for a k-contact form η , but it is not needed in general as shown in the following example. Notwithstanding, $[\ker \eta, \ker \eta] = TM$ is satisfied for k-contact manifolds with a polarisation.

Example

Let us provide a k-contact form on M such that $[\ker \eta, \ker \eta] \neq TM$. Consider $\mathbb{R}^2_\times \times \mathbb{R}^2$, where $\mathbb{R}_\times = (0, \infty)$, and a global coordinate system $\{x, p, z_1, z_2\}$ in $\mathbb{R}^2_\times \times \mathbb{R}^2$, namely $x, p \in \mathbb{R}_\times, z_1, z_2 \in \mathbb{R}$. If

$$\boldsymbol{\eta} = (\mathrm{d}z_1 - p\,\mathrm{d}x) \otimes e_1 + (\mathrm{d}z_2 - x\,\mathrm{d}p) \otimes e_2,$$

it follows that

$$\ker \boldsymbol{\eta} = \langle X_1 = x \partial_{z_2} + \partial_p, \ X_2 = p \partial_{z_1} + \partial_x \rangle,$$

$$d\eta = dx \wedge dp \otimes e_1 - dx \wedge dp \otimes e_2, \quad \ker d\eta = \langle \partial_{z_1}, \partial_{z_2} \rangle.$$

Then, $\ker \eta \cap \ker d\eta = 0$ with $\ker \eta \neq 0$, corank $\ker \eta = 2$, rank $\ker d\eta = 2$, and

$$[\ker \boldsymbol{\eta}, \ker \boldsymbol{\eta}] = \ker \boldsymbol{\eta} \oplus \langle \partial_{z_1} - \partial_{z_2} \rangle \subsetneq \mathrm{T}(\mathbb{R}^2_{\times} \times \mathbb{R}^2).$$

Note that $[X_1, X_2]$ does not take values in $\ker \eta$ at any point of M, but η is a two-contact form.

Darboux coordinates

Theorem

Consider a polarised co-oriented k-contact manifold (M, η, \mathcal{V}) . Then, there exists around every $x \in M$ a local coordinate system $\{x^i, y^\alpha, y^\alpha_i\}$ such that

$$\boldsymbol{\eta} = (\mathrm{d}y^{\alpha} - y_i^{\alpha} \mathrm{d}x^i) \otimes e_{\alpha}, \quad R_{\beta} = \frac{\partial}{\partial y^{\beta}}, \quad \mathcal{V} = \left\langle \frac{\partial}{\partial y_i^{\alpha}} \right\rangle, \quad \beta = 1, \dots, k.$$

Example

The jet bundle $J^1(M,E)$ is a polarised k-contact manifold with the polarisation

$$\mathcal{V} = \ker \mathrm{T}\pi_1 \cap \ker \boldsymbol{\eta} = \left\langle \frac{\partial}{\partial y_i^{\alpha}} \right\rangle \,,$$

where $\pi_1: J^1(M, E) \longrightarrow M$ is the natural projection.

Outline

k-contact forms

A new approach: k-contact distributions

Representing k-contact distributions

References

k-contact distributions

Definition

A k-contact distribution on M is a distribution $\mathcal{D} \subset TM$ such that, for each point $x \in M$, there is an open neighbourhood $U \ni x$ and a k-contact form η on U such that $\mathcal{D}|_U = \ker \eta$. We say that (M,\mathcal{D}) is a k-contact manifold.

Since a one-contact form is a contact form, a one-contact manifold (M,\mathcal{D}) is a contact manifold.

This means that every associated contact form η , i.e. $\mathcal{D}|_U = \ker \eta$ on an open subset $U \subset M$, satisfies that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form for a unique $n \in \mathbb{N}$. As a consequence, it is said that \mathcal{D} is maximally non-integrable.

Maximal non-integrability

Definition

Let $\mathcal D$ be a regular distribution on M and let $\pi\colon \mathrm{T} M\to \mathrm{T} M/\mathcal D$ be the natural vector bundle projection. Then, $\mathcal D$ is maximally non-integrable in a distributional sense if $\mathcal D\neq 0$ and the vector bundle mapping $\rho\colon \mathcal D\times_M\mathcal D\to \mathrm{T} M/\mathcal D$ over M given by

$$\rho(v, v') = \pi([X, X']_x), \qquad \forall v, v' \in \mathcal{D}_x, \qquad \forall x \in M,$$

where X,X' are vector fields taking values in $\mathcal D$ locally defined around x such that $X_x=v$ and $X_x'=v'$, is non-degenerate.

Note that $\rho(v, v') = -d\eta(v, v')$.

Proposition

Let $\mathcal D$ be a distribution of corank one. Then, $\mathcal D$ is maximally non-integrable in a distributional sense if, and only if, $\mathcal D$ is maximally non-integrable in the contact sense.

Proposition

A regular distribution \mathcal{D} on M is maximally non-integrable if, and only if, for every $x \in M$ there exists an $\zeta \in \Omega^1(U, \mathbb{R}^k)$, where U is an open neighbourhood of x, associated with \mathcal{D} such that $\mathrm{d}\zeta$ is non-degenerate when restricted to $\mathcal{D}|_U$.

Proposition

If (M, η) is a co-oriented k-contact manifold, then $\mathrm{d}\eta$ is non-degenerate when restricted to $\ker \eta$. In other words, $\ker \eta$ is maximally non-integrable.

Since every k-contact distribution is on a neighbourhood U of every point $x \in M$ of the form $(U,\mathcal{D}|_U = \ker \eta)$, it follows that it is maximally non-integrable.

Corollary

Every k-contact distribution is maximally non-integrable.

The maximal non-integrability was introduced by L. Vitagliano. We will see that it is not equivalent be k-contact.

Lie symmetries

Definition

A **Lie symmetry** of a distribution $\mathcal D$ on M is a vector field X on M such that $[X,\mathcal D]\subset\mathcal D$.

Corollary

Every k-contact distribution \mathcal{D} on M admits, on an open neighbourhood U of each point $x \in M$, an integrable k-vector field $\mathbf{S} = (S_1, \ldots, S_k) \in \mathfrak{X}^k(U)$, whose components are Lie symmetries of \mathcal{D} such that

$$\mathcal{D}|_U \oplus \langle S_1, \dots, S_k \rangle = \mathrm{T}U.$$
 (1)

There exist distributions that have k commuting Lie symmetries but are not k-contact distributions (because they are involutive, for instance). We will see that maximal non-integrability is not a sufficient condition for a regular distribution to become k-contact by giving a maximally non-integrable distributions that do not admit k commuting Lie symmetries satisfying (1).

Lie flags

Definition

The **Lie flag** of a distribution $\mathcal{D} \subset TM$ is a series of distributions $\mathcal{D}, \mathcal{D}^{1)}, \mathcal{D}^{2)}, \ldots$ on M, where $\mathcal{D}^{\ell)}$ is the distribution spanned by the Lie brackets of the vector fields taking values in \mathcal{D} and $\mathcal{D}^{\ell-1)}$, namely

$$\mathcal{D}^{\ell)} = [\mathcal{D}, \mathcal{D}^{\ell-1}], \qquad \ell \in \mathbb{N},$$

where we denote $\mathcal{D}^{0)}=\mathcal{D}.$ We call small growth function of the Lie flag of \mathcal{D} the vector function

$$\mathcal{G}_{\mathcal{D}}(x) = (\dim \mathcal{D}_x, \dim \mathcal{D}_x^{(1)}, \dots), \quad \forall x \in M.$$

Lie flags

Since \mathcal{D} is smooth by assumption, the distributions $\mathcal{D}^{\ell)}$ are smooth and $\mathcal{D}^{\ell-1)} \subset \mathcal{D}^{\ell-1)}$ for every $\ell \in \mathbb{N}$.

The sequence $\mathcal{G}_{\mathcal{D}}(x)$ is (not strictly) increasing and stabilises since it is upper-bounded by $\dim M$ at every $x \in M$.

Proposition

Let us define $\mathcal{D} = \ker \eta$ for a k-contact form η , and let R_1, \ldots, R_k be the associated Reeb vector fields. Then, the one-parameter groups of diffeomorphisms of the Reeb vector fields leave invariant the rank of every \mathcal{D}^{ℓ} for $\ell \in \mathbb{N} \cup \{0\}$.

The next example shows that maximal non-integrability is not equivalent to be k-contact.

Example (part 1)

Consider \mathbb{R}^4 endowed with linear coordinates $\{x,y,z,t\}$ and the regular distribution given by

$$\mathcal{D} = \langle X_1 = \partial_x, \ X_2 = \partial_y + (x^3/3 + z^2x + t^2)\partial_z + x\partial_t \rangle.$$

Then,

$$\mathcal{D}^{1)} = \langle X_1, X_2, (x^2 + z^2)\partial_z + \partial_t \rangle,
\mathcal{D}^{2)} = \langle X_1, X_2, (x^2 + z^2)\partial_z + \partial_t, 2x\partial_z, (2x^3z/3 + t - zt^2)\partial_z \rangle.$$

 \mathcal{D}^1) has rank three everywhere, while \mathcal{D}^2) has rank three when x=0 and t(1-zt)=0, and four elsewhere. The space $S\subset\mathbb{R}^4$ defined by x=0 and t(1-zt)=0 has to be invariant relative to the action of the Reeb vector fields if \mathcal{D} is a two-contact distribution. Note that S is a regular submanifold whose tangent space is given by the annihilator of the differential forms

$$\theta^1 = dx$$
, $\theta^2 = (1 - 2zt)dt - t^2dz$.

Example (part 2)

Indeed, $\theta^1 \wedge \theta^2$ does not vanish at any point of \mathbb{R}^4 and the subset x=0 and t(1-zt)=0 is a regular submanifold. If $\mathcal D$ is a two-contact distribution, the Reeb vector fields of any associated k-contact form $\boldsymbol{\eta} \in \Omega^1(U,\mathbb{R}^2)$ must be tangent to S.

In particular, at points where x=0 and t=0, one has that $\mathrm{T}S=\langle\theta^1,\theta^2\rangle^\circ=\langle\partial_y,\partial_z\rangle$. Note that the two Reeb vector fields must span such a subspace, i.e. $\ker\mathrm{d}\boldsymbol{\eta}=\langle\partial_y,\partial_z\rangle$ when x=0 and t=0. But $\mathcal{D}=\langle\partial_x,\partial_y\rangle$ at such points of S, thus if $\mathcal{D}|_U=\ker\boldsymbol{\eta}$, then $\ker\mathrm{d}\boldsymbol{\eta}\cap\ker\boldsymbol{\eta}=\langle\partial_y\rangle$.

This is a contradiction and $\mathcal D$ is not the kernel of any two-contact form. On the other hand, it is immediate that $\rho\colon \mathcal D\times_{\mathbb R^4}\mathcal D\to T\mathbb R^4/\mathcal D$ is non-degenerate and $\mathcal D$ is maximally non-integrable.

Main result

Previous results imply that a k-contact distribution is a maximally non-integrable distribution admitting around each point k commuting Lie symmetries giving a supplementary to the k-contact distribution.

The converse is also true and, in fact, the maximal non-integrability and the existence of k commuting Lie symmetries spanning a supplementary distribution characterise k-contact distributions.

Theorem

A distribution \mathcal{D} on M is a k-contact distribution if, and only if,

- lacksquare $\mathcal D$ is maximally non-integrable and,
- for every $x \in M$, there exists an open neighbourhood $U \ni x$ such that there is an integrable k-vector field $\mathbf{S} = (S_1, \ldots, S_k)$ of Lie symmetries of $\mathcal{D}|_U$ such that

$$\langle S_1,\ldots,S_k\rangle\oplus\mathcal{D}|_U=\mathrm{T}U$$
.

Lie groups

Example

Consider a Lie group G and a basis X_1^L, \ldots, X_r^L of left-invariant vector fields on G and a basis X_1^R, \ldots, X_r^R of right-invariant vector fields.

Let $\mathcal D$ be the distribution spanned by X_1^L and X_2^L . Assume that $[X_1^L,X_2^L] \notin \mathcal D$ and X_3^R,\dots,X_r^R commute among themselves.

Then $\mathcal{D}=\langle X_1^L,X_2^L\rangle$ is a (r-2)-contact distribution of rank two and Reeb vector fields $X_3^R,\ldots,X_r^R.$

Example

One can prove that the Lie group SU(n) is a coorientable n-contact manifold.

Outline

k-contact forms

A new approach: k-contact distributions

Representing k-contact distributions

References

Definition

Two differential one-forms $\zeta, \bar{\zeta} \in \Omega^1(U, \mathbb{R}^k)$ are **compatible** if $\ker \zeta = \ker \bar{\zeta}$ is a regular distribution.

We will now examine whether a form $\zeta \in \Omega^1(U, \mathbb{R}^k)$ admits an associated k-contact form $\eta \in \Omega^1(U, \mathbb{R}^k)$.

Example

Consider \mathbb{R}^4 with Cartesian coordinates $\{x,y,z,p\}$ and $\boldsymbol{\eta}=(\mathrm{d} x-y\,\mathrm{d} p)\otimes e_1+(\mathrm{d} z-p\,\mathrm{d} y)\otimes e_2$. Then,

$$\ker \boldsymbol{\eta} = \left\langle y \frac{\partial}{\partial x} + \frac{\partial}{\partial p}, p \frac{\partial}{\partial z} + \frac{\partial}{\partial y} \right\rangle, \quad \ker \mathrm{d} \boldsymbol{\eta} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial z} \right\rangle$$

and $\ker \mathrm{d} \boldsymbol{\eta} \cap \ker \boldsymbol{\eta} = 0$. If follows that $\boldsymbol{\eta}$ is a two-contact form. Consider now $\boldsymbol{\zeta} = e^z \boldsymbol{\eta}$. In this case, $\ker \boldsymbol{\eta} = \ker \boldsymbol{\zeta}$, but $\mathrm{d} \boldsymbol{\zeta} = \mathrm{d} \zeta^1 \otimes e_1 + \mathrm{d} \zeta^2 \otimes e_2$ has zero kernel since $\mathrm{d}(e^z \boldsymbol{\eta}^1)$ is a symplectic form on \mathbb{R}^4 . Thus, $\ker \mathrm{d} \boldsymbol{\zeta} = 0$ and $\boldsymbol{\zeta}$ is not a two-contact form.

Definition

Every $\zeta\in\Omega^1(U,\mathbb{R}^k)$ associated with a regular distribution gives rise to a non-vanishing differential k-form $\Omega_\zeta=\zeta^1\wedge\cdots\wedge\zeta^k$ on U. A **conformal Lie symmetry of** Ω_ζ is a vector field X on U such that $\mathscr{L}_X\Omega_\zeta=f_X\Omega_\zeta$ for some function $f_X\in\mathscr{C}^\infty(U)$.

Proposition

Let (M, η) be a k-contact manifold and let Ω_{η} be its associated differential k-form, then the Reeb vector fields are Lie symmetries of Ω_{η} . The space of conformal symmetries of Ω_{ζ} , where ζ is compatible with η , is a Lie algebra.

Proposition

One has that $\zeta, \bar{\zeta} \in \Omega^1(U, \mathbb{R}^k)$ with regular kernels are compatible if, and only if, Ω_{ζ} and $\Omega_{\bar{\zeta}}$ are proportional. Moreover, $\ker \zeta = \ker \Omega_{\zeta}$ and a vector field X on U is a Lie symmetry of $\ker \zeta$ if, and only if, X is a conformal Lie symmetry of Ω_{ζ} .

This result implies that X is a conformal Lie symmetry of $\Omega_{\pmb{\eta}}$, if, and only if, $\mathscr{L}_X \eta^\alpha = \sum_{\beta=1}^k f^\alpha_\beta \eta^\beta$ with $\alpha=1,\ldots,k$ for certain functions $f^\alpha_\beta \in \mathscr{C}^\infty(U)$ with $\alpha,\beta=1,\ldots,k$.

Proposition

Let $\zeta \in \Omega^1(M, \mathbb{R}^k)$ have a regular kernel different from zero and suppose that $\mathrm{d}\zeta|_{\ker \zeta \times_U \ker \zeta}$ is non-degenerate. Assume that S_1, \ldots, S_k are conformal commuting Lie symmetries of Ω_ζ with $S_1 \wedge \cdots \wedge S_k \neq 0$ such that $\langle S_1, \ldots, S_k \rangle$ is a supplementary to $\ker \zeta$. Then, ζ admits a compatible k-contact form η .

Theorem

An $\zeta \in \Omega^1(U, \mathbb{R}^k)$ associated with a regular distribution $\mathcal{D} \neq 0$ of corank k is compatible with a k-contact form if, and only if, $\ker \zeta \cap \ker \mathrm{d}\zeta = 0$, while $\ker \mathrm{d}\zeta|_{\ker \zeta \times \ker \zeta} = 0$, and Ω_ζ has k commuting conformal Lie symmetries spanning a supplementary to $\ker \zeta$.

Outline

k-contact forms

A new approach: k-contact distributions

Representing k-contact distributions

References

References

- J. de Lucas, X. Rivas and T. Sobczak, "Foundations on k-contact geometry". Preprint. arxiv:2409.11001
- J. Gaset, X. Gràcia, M. Muñoz-Lecanda, X. Rivas, N. Román-Roy, "A contact geometry framework for field theories with dissipation", *Ann. Phys.* **414**:168092, 2020. doi:10.1016/j.aop.2020.168092
- M. de León, J. Gaset, M. C. Muñoz-Lecanda, X. Rivas and N. Román-Roy, "Multicontact formulation for non-conservative field theories", J. Phys. A: Math. Theor. 56(2):025201, 2023. doi:10.1088/1751-8121/acb575