Exercicio I - Teoria dos Grafos

João Lucas Lima de Melo

Agosto 2022

Seja $n \in N$. Dizemos que $A \subseteq [n]$ é livre de soma se para todo $x, y \in A$ temos que $x + y \notin A$. Prove que se $A \subseteq [n]$ é livre de soma, então $|A| \le \lceil n/2 \rceil$.

Seja A livre de soma cuja cardinalidade seja descrita por $|A| > \lceil n/2 \rceil$, $m = \max(A)$ e seja $B = \{m - a : a \in A\} \setminus \{0\}$.

Como os elementos $b \in \mathbf{B}$ estão sendo descritos em função de m-a, onde $m, a \in [\mathbf{n}]$, é seguro afirmar que $\forall b \in \mathbf{B}, b \in [\mathbf{n}]$.

Pode-se afirmar que para todo $a \neq m \in A$ existe um $b \in B$. Logo, |A| - 1 = |B|. Por hipótese, $|A| > \lceil n/2 \rceil$. Para a prova, usaremos o menor elemento possível da inequação, assumindo um n par, onde não haveria arredondamento para cima. Portanto, |A| = n/2 + 1.

Dessa forma:

|B| = |A| - 1

 $\Leftrightarrow |\mathbf{B}| = (\mathbf{n}/2 + 1) - 1$

 $\Leftrightarrow |B| = n/2$

Para um $b \in B$ e para $m, a \in A$, temos:

 $b = m - a, \forall a \in A$

 $\Leftrightarrow b + a = m$

Como A é livre de soma, não é possível existir um $b \in B$ somado a um $a \in A$ que resulte em um elemento $m \in A$. Portanto, podemos afirmar $\forall b \in B, b \notin A$, onde A e B são conjuntos disjuntos entre si. Dessa forma, $|[n]| = n \ge |A| + |B|$. No entanto, analisando a cardinalidade dos conjuntos A e B, temos:

|A| + |B|

 \Leftrightarrow (n/2 + 1) + (n/2)

 $\Leftrightarrow 2(n/2) + 1$

 \Leftrightarrow n + 1 > n.

Haveria, portanto, um elemento pertencente simultaneamente a A e B, o que contradiz A ser livre de soma, descrito pela restrição $\forall b \in \mathcal{B}, b \notin \mathcal{A}$.

Portanto, sendo A um subconjunto de [n] livre de soma, $|A| \leq \lceil n/2 \rceil$