МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт компьютерных технологий и информационной безопасности Кафедра Математического обеспечения и применения ЭВМ

ОТЧЁТ

по лабораторной работе №1 по курсу «МКиОДП»

Выполнили: студенты группы КТмо1-3 Куприянова А.А. Шепель И.О.
Проверил: ассистент кафедры МОП ЭВМ Жиглатый А.А.
Оценка
«»2017 г.

Задание и цель работы

Цель: ознакомление с новым алгоритмом построения сплайновой кривой, базирующимся на дельта-преобразованиях второго порядка.

Задание: разработать и реализовать на компьютере программу построения и графического отображения интерполирующих одномерных сплайновых кривых на основе дельта-преобразований второго порядка в соответствии с заданным вариантом.

Вариант №1: дельта-сплайны с различным изменением шага дискретизации дискретизации (в функции от t) между узлами интерполяции.

Математические основы построения сплайнов на основе дельтапреобразований второго порядка

В качестве сплайна на основе дельта-преобразований второго порядка (дельта-сплайна) будем понимать локально независимую одномерную функцию, проходящую через узлы интерполяции, которые задают общую форму кривой, обладающую гладкостью первого порядка. Локальная независимость означает, что значения отсчетов фрагмента сплайна между базовыми отсчетами можно определять независимо от других фрагментов сплайна. Эта функция характеризуется следующим краевым условиям и особенностями:

- фрагменты соседних сплайнов пересекаются (конечная точка одного фрагмента совпадает с начальной точкой следующего фрагмента);
- первые производные двух последовательно идущих фрагментов сплайна равны в точке (узле) их соединения, что гарантирует гладкость перехода от одного фрагмента к другому.
- модуль второй производной интерполирующей функции (кванта преобразования) между узлами интерполяции являются постоянной величиной.
- на интервале между узлами имеется два участка знакопостоянства (с противоположными знаками) кванта преобразования.

В общем случае участок сплайна между соседними отсчетами включает две траектории (рис. 1.1), которые реализуют участки «разгона» (траектория B) и «торможения» (траектория A).

Здесь Y(t) – интерполирующая функция; \ddot{Y} – значение второй производной (кванта преобразования); t_{Π} – точка переключения знака кванта преобразования; $Y(t_A), \dot{Y}(t_A), \dot{Y}(t_B), \dot{Y}(t_B)$ – краевые условия в узлах интерполяции; T – интервал между узлами интерполяции; D – расположение точки t_{Π} переключения знака кванта преобразования.

Рисунок 1. Интерполяционная кривая, включающая траектории A и B

В качестве исходных данных для расчёта сплайна используются значения отчётов в узлах интерполяции и интервалы между узлами. Возможно также априорное задание значений производных в узлах, а так же значения шага дискретизации Δt формируемой интерполируемой кривой на интервале между узлами.

Алгоритмически решение данной задачи можно представить в виде следующей последовательности действий:

- 1. Определение (при необходимости) $\dot{Y}_{\scriptscriptstyle A}$ и $\dot{Y}_{\scriptscriptstyle B}$, шага Δt ;
- 2. Нахождение параметров P (модуль кванта преобразования) и D;
- 3. Построение собственно сплайна на основе найденных параметров.

Алгоритм построения сплайновой кривой на основе дельта-преобразований второго порядка

В ходе выполнения лабораторной работы был разработан следующий алгоритм построения сплайновой кривой:

- 1. Задаются (считываются из файла) следующие данные:
 - t_n и y_n , $n = \overline{(0, N-1)}$ базовые отсчёты;
 - K_n количество шагов дискретизации для каждого из участка сплайна.
- 2. Для каждого базового отсчёта рассчитываются значения первых производных в базовых отсчётах. Производные в крайних точках принимаются равными нулю. Во всех остальных точках производные рассчитываются согласно следующему алгоритму:

В случае, если для промежуточного узла y_n выполняются соотношения

$$y_{n-1} \leq y_n, y_{n+1} \leq y_n$$

$$y_{n-1} \ge y_n, y_{n+1} \ge y_n,$$

то принимать $\dot{y}_n = 0$.

В противном случае значения производных в узлах определять как среднее арифметическое двух производных для узлов слева и справа от узла y_n в соответствии с выражением

$$\dot{y}_n = \frac{1}{2} \left(\frac{y_n - y_{n-1}}{t_n - t_{n-1}} + \frac{y_{n+1} - y_n}{t_{n+1} - t_n} \right).$$

3. Для каждого сплайна рассчитывается длина участка сплайна:

$$T_n = t_{n+1} - t_n,$$

а также шаг дискретизации ∇t_n :

$$\nabla t_n = \frac{T_n}{K_n}$$
.

4. Считая шаг дискретизации ∇t_n постоянным в пределах участка сплайна, программа рассчитывает массив t аргументов функции Y(t) интерполяционной кривой:

$$t_{i}, i = \overline{(0, I)}, I = \sum_{n=0}^{N-1} K_{n}.$$

5. Рассчитывается сама сплайновая кривая, то есть массив Y значений функции Y(t):

$$Y_i$$
, $i = \overline{(0,I)}$,

а также массив D – расстояние от правой точки сплайна до точки переключения кванта преобразования.

Формулы расчёта параметров для каждого сплайна:

$$L = y_{n+1} - y_n - 0.5T_n \dot{y}_{n+1} + \dot{y}_n;$$

$$P_n = \frac{-L - sign L \sqrt{L^2 + 0.25T_n^2 \dot{y}_{n+1} - \dot{y}_n^2}}{0.5T_n^2};$$

$$D_n = \frac{\dot{y}_{n+1} - \dot{y}_n + T_n P_n}{2P_n};$$

$$t_{\Pi} = t_{n+1} - D_n;$$

Построение участка n сплайна:

Из левого узла сплайна (траектория B) строится кривая с шагом ∇t_n до точки t_n переключения кванта преобразования. Расчет выполняется по формуле:

$$Y t = y_n + \dot{y}_n t - \frac{t^2 P_n}{2}, t \in [0; t_n - t_n - 0].$$

Далее кривая строится от точки t_n до правого узла сплайна (траектория A) с тем же шагом ∇t_n . Расчет выполняется по формуле:

$$Y t = y_{n+1} - \dot{y}_{n+1} T_n - t + \frac{T_n - t^2 P_n}{2}; \quad t \in [t_n - t_n + 0; T_n];$$

6. Производится запись в файл данных массивов Y и t.

7. По данным массивов Y и t строится график интерполяционной кривой. Также на графике отображаются базовые отсчёты и точки переключения кванта преобразования.

Выводы о проделанной работе

В ходе выполнения лабораторной работы был разработан и реализован на языке Python алгоритм построения сплайновой кривой на основе дельтапреобразований второго порядка.

Результаты работы программы

Для тестовых входных данных

 $t_n = [0, 20, 35, 47, 56, 63, 69, 80, 90, 120],$

 $y_n = [100, 90, 110, 60, 45, 10, -30, 15, 45, 200],$

 $K_n = [3, 7, 8, 5, 3, 5, 7, 5, 9]$

программа выдаёт следующий результат в выходной файл:

t	y(t)
0.0	100.0
6.66666666666667	97.77777777777
13.33333333333334	92.222222222223
20.0	90.0
22.142857142857142	90.81632653061224
24.285714285714285	93.26530612244898
26.428571428571427	97.3469387755102
28.57142857142857	102.65306122448979
30.71428571428571	106.73469387755101
32.857142857142854	109.18367346938776
35.0	110.0
36.5	108.91543659920963
38.0	105.66174639683854
39.5	100.23892939288669
41.0	92.64698558735412
42.5	82.88591498024081
44.0	73.08825360316146
45.5	65.45956340079037
47.0	60.0
48.8	55.80533008588991

50.5999999999994	53.72132034355964
52.399999999999	52.77867965644037
54.1999999999999	49.94466991411011
56.0	45.0
58.3333333333333	35.87333594346394
60.6666666666667	24.048899329411334
63.0	10.0
64.2	0.9598245749008356
65.4	-11.638421174107815
66.60000000000001	-21.839298299603506
67.80000000000001	-27.9598245749009
69.0	-30.0
70.57142857142857	-28.82446118696839
72.14285714285714	-25.297844747873558
73.71428571428571	-19.42015068271551
75.28571428571428	-11.191378991494236
76.85714285714285	-0.8450123949836605
78.42857142857142	8.253032615539754
80.0	15.0
82.0	21.422090963963463
84.0	26.506545674035664
86.0	31.34193917444918
88.0	37.50215146027896
90.0	45.0
93.3333333333333	61.151048543483
96.6666666666666	82.38197195170982
99.99999999999	108.69277022468046
103.3333333333333	136.50156419070197
106.6666666666664	159.3610010820492
109.999999999997	177.14056310865263
113.333333333333	189.84025027051223
116.6666666666666	197.46006256762803
120.0	200.0

и рисует график (рисунок 2). На графике голубым цветом обозначена построенная сплайновая кривая, сплошными вертикальными линиями обозначены границы участков сплайна, пунктирными — точки переключения кванта преобразования.

Рисунок 2. – Результат работы программы

Листинг программы

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def read_data(fname): #чтение данных из файла
    df = pd.read csv(fname, sep=" ", escapechar="#")
    in val = df.values
    tn = in val[:, 0]
    yn = in val[:, 1]
   Kn = in val[:, 2]
   Kn = Kn[\sim np.isnan(Kn)]
   Kn = np.array(Kn, dtype=np.int16)
    return tn, yn, Kn
def write data(fname, t, Y): #запись данных в файл
    "y(t)" : Y}
    out df.to csv(fname, sep="\t", index=False)
def steps(tn): # вычисление длин участков сплайна и величины шага
дискретизации для каждого сплайна
    N = yn.shape[0]
    for i in range (N - 1):
        if i == (N - 1):
            T[i] = tn[N] - tn[N - 1]
            T[i] = tn[i+1] - tn[i]
        dt[i] = (T[i]*1.0)/((Kn[i])*1.0)
    return T, dt
def get_t(dt, Kn): #вычисление аргументов сплайна
```

```
ind = 0
   N = dt.shape[0] + 1
   PointCnt = Kn.sum()
   t = np.zeros(PointCnt + 1)
    t[PointCnt] = tn[N - 1]
    for i in range (N - 1):
        for j in range((Kn[i])):
            if ind >= PointCnt:
               break
            if j == 0:
               t[ind] = tn[i]
               ind = ind + 1
               continue
            else:
               t[ind] = t[ind - 1] + dt[i]
            ind = ind+1
    return t
def calc dy(yn, tn): #вычисление производных
   N = yn.shape[0]
    dy = np.zeros(N)
    for i in range (1, N-1):
        if (yn[i-1] < yn[i] > yn[i+1] or yn[i-1] > yn[i] < yn[i+1]):
           dy[i] = 0
        else:
           dy[i] = (yn[i] - yn[i-1]) / (tn[i] - tn[i-1]) + (yn[i+1] -
yn[i])/(tn[i+1]-tn[i])
   dy /= 2
   return dy
def calc spline2D(yn, tn, dy, T, Kn, t, dt): #построение сплайна
    ind = 0
   N = yn.shape[0]
    P = np.zeros(N - 1)
   D = np.zeros(N - 1)
    PointCnt = Kn.sum()
    Y = np.zeros(PointCnt + 1)
    for i in range (N-1):
       dy[i], 2))) / (0.5*T[i]*T[i])
        if P[i] == 0 \text{ or } L == 0:
           D[i] = 0
        else:
           D[i] = (dy[i+1]-dy[i]+T[i]*P[i]) / (2*P[i])
        tp = tn[i + 1] - D[i]
        for j in range((Kn[i])):
           if ind >= PointCnt:
               break
            if j == 0:
               Y[ind] = yn[i]
               ind = ind + 1
               continue
            tL = 1.0 * (t[ind] - tn[i])
            if t[ind] < tp:
               Y[ind] = yn[i] + dy[i] * tL - (tL * 1.0 * tL * P[i]) / 2.0
           else:
               tR = T[i] - tL
               Y[ind] = yn[i + 1] - dy[i + 1] * tR + pow(tR, 2) * P[i] / 2.0
            ind = ind + 1
    Y[PointCnt] = yn[N - 1]
    return Y, D
def print spline2D(t, Y, tn, D): #построение графика
```

```
plt.plot(t,Y, marker="", markersize="4", c="C")
    for i, v in enumerate(tn):
        plt.axvline(v, ls="-", c="R")
        if i == 0:
            continue
        plt.axvline(tn[i] - D[i-1], ls="--", c="B")
    plt.show()
tn, yn, Kn = read data("in.txt")
N = yn.shape[0]
dy = np.zeros(N)
dy = calc_dy(yn, tn)
#параметры сплайнов
T = np.zeros(N - 1)
dt = np.zeros(N-1, float)
P = np.zeros(N - 1)
D = np.zeros(N - 1)
T, dt = steps(tn)
t = get t(dt, Kn)
Y, D = \overline{\text{calc spline2D}}(yn, tn, dy, T, Kn, t, dt)
write_data("out.txt", t, Y)
print_spline2D(t, Y, tn, D)
```