Inteligencia Artificial <u>Técnicas de Filtro</u> y Consistencia

Nicolás Rojas-Morales

Departamento de Informática Universidad Técnica Federico Santa María

- Filtrado
- 2 Consistencia
- Consistencia de Nodos
- Consistencia de Arcos
 - Algoritmo AC-1
 - Algoritmo AC-3
 - Observaciones
- 5 Consistencia de Caminos
- 6 K-consistencia
- Ejercicio AC-3
- 8 Consideraciones Importantes

Filtrado: Definición

Proceso de filtrado

- Elimina los elementos que, con seguridad, no pueden ser parte de la solución
- Se espera una simplificación del problema por reducción del espacio de búsqueda
- El problema reducido (P') es equivalente al problema original $(P) \rightarrow \mathbf{No}$ existe pérdida de soluciones
- Como consecuencia, podría detectar ausencia de solución

Consistencia: Definición

Consistencia/Coherencia

- Grado de compatibilidad entre los valores de los dominios y las restricciones
- Niveles de consistencia
 - Consistencia Local (Inicial):
 - Consistencia de Nodos, de Arcos, de Caminos, K-consistencia
 - Consistencia Global (Resolver!)

Definición formal de un CSP

Un conjunto de Variables:

$$X = \{X_1, \dots, X_n\}$$

Un conjunto de Dominios:

$$D=\{D_1,\ldots,D_n\},\,$$

donde D_i es el conjunto finito de los valores posibles de X_i

• Un conjunto de Restricciones:

$$C = \{C_1, \ldots, C_m\},\$$

donde C_i está definida sobre un conjunto de variables $\{X_{il}, \dots, X_{ik}\}$

• Un conjunto de Relaciones:

$$R = \{R_1, \ldots, R_m\},\$$

donde R_i es el conjunto de las combinaciones de valores que satisfacen C_i

• Resolver: Encontrar valor de las variables que satisface todas las restricciones ó Detectar que el problema no tiene solución

Grafo de Restricciones

Ejemplo: Coloreo de Mapas

Colorear los países de un mapa con tres colores disponibles: Rojo, Azul y Verde. Se requiere que países adyacentes sean pintados con un color diferente. Además, el diseñador requiere que Uruguay sea pintado Rojo en el mapa.

Grafo de Restricciones

Ejemplo: Coloreo de Mapas

Colorear los países de un mapa con tres colores disponibles: Rojo, Azul y Verde. Se requiere que países adyacentes sean pintados con un color diferente. Además, el diseñador requiere que Uruguay sea pintado Rojo en el mapa.

Grafo de Restricciones

Ejemplo: Coloreo de Mapas

Grafo de Restriciones Asociado

Consistencia de Nodos

• Algoritmo de consistencia de nodos

```
prodecure NC(X,D,C)
for each X_i \in X do
for each a \in D_i do
if a \notin R then D_i := D_i - \{a\};end if
end for
end for
end procedure
```

Consistencia de Nodos

• Algoritmo de consistencia de nodos

```
prodecure NC(X,D,C)
for each X_i \in X do
for each a \in D_i do
if a \notin R then D_i := D_i - \{a\}; end if
end for
end for
end procedure
```

• La complejidad de NC(X, D, C) es O(n), lineal con respecto a la cantidad de variables

Nodo Consistencia

Ejemplo: Coloreo de Mapas

Grafo de Restriciones Asociado

lacktriangle El color de Uruguay (X_1) en el mapa debe ser Rojo

Definición:

Una variable X_i es arco-consistente ssi: $\forall a \in D_i, \forall X_j \in C_{ij}$ conectado a $X_i, \exists b \in D_j$ tal que $(a,b) \in R_{ij}$

- Definición:
 - Una variable X_i es arco-consistente ssi: $\forall a \in D_i, \forall X_i \in C_{ii}$ conectado a $X_i, \exists b \in D_i$ tal que $(a, b) \in R_{ij}$
- Un problema es arco-consistente ssi todas sus variables son arco-consistentes

- Definición:
 - Una variable X_i es arco-consistente ssi:

$$\forall a \in D_i, \forall X_j \in C_{ij}$$
 conectado a $X_i, \exists b \in D_j$ tal que $(a,b) \in R_{ij}$

- Un problema es arco-consistente ssi todas sus variables son arco-consistentes
- Arco-consistencia supone nodo-consistencia

Filtro por consistencia de arco:
 Eliminar todos los valores que no cumplen con la propiedad

- Filtro por consistencia de arco:
 Eliminar todos los valores que no cumplen con la propiedad
- Para establecer la consistencia de arcos, se propagan las reducciones de dominios hasta obtener un punto fijo

- Filtro por consistencia de arco:
 Eliminar todos los valores que no cumplen con la propiedad
- Para establecer la consistencia de arcos, se propagan las reducciones de dominios hasta obtener un punto fijo
- Un valor es viable si posee un valor compatible dentro de los dominios de las variables unidas por una restricción (soporte).
- Un valor que no es viable será eliminado del dominio de una variable.

Procedimiento REVISE

```
procedure REVISE (X_i, X_j)

DELETE \leftarrow false;

for each a in D_i do;

if there is no such b in D_j such that (a, b) is consistent then

delete a from D_i;

DELETE \leftarrow true;

end if;

end for;

return DELETE;

end REVISE
```

Algoritmo AC-1

```
procedure AC-1 Q \leftarrow \{(X_i, X_j) \text{ in } arcs(G), i \neq j\}; repeat CHANGE \leftarrow false; for each (X_i, X_j) \in Q do CHANGE \leftarrow (REVISE(X_i, X_j) \text{ or } CHANGE); end for until not(CHANGE); end AC-1
```

Algoritmo AC-3

```
procedure AC-3 Q \leftarrow \{(X_i, X_j) \in arcs(G), i \neq j\}; while Q not empty select and delete any arc (X_k, X_m) from Q; if (REVISE(X_k, X_m)) then Q \leftarrow Q \cup \{(X_i, X_k) \text{ such that } (X_i, X_k) \in arcs(G), i \neq k, i \neq m\} end if end while end AC-3
```

Nodo Consistencia

Ejemplo: Coloreo de Mapas

Grafo de Restriciones Asociado

lacksquare El color de Uruguay (X_1) en el mapa debe ser Rojo

Inteligencia Artificial Técnicas de Filtro y Consistencia

Nicolás Rojas-Morales

Departamento de Informática Universidad Técnica Federico Santa María

Nodo Consistencia

Ejemplo: Coloreo de Mapas

Grafo de Restriciones Asociado

lacksquare El color de Uruguay (X_1) en el mapa debe ser Rojo

Observaciones sobre filtrado por consistencia de arcos

- El algoritmo AC-3 no es caro
- Es simple de implementar
- Existe AC-5 que es menor en complejidad pero requiere características de biyección y monoticidad.

Estas herramientas son utilizadas por softwares actuales

Filtrado por consistencia de CAMINOS

• Un par de variables (X_i, X_j) es trayectoria consistente ssi: $\forall (a, b) \in D_i \times D_j, \forall X_k \in X$ conectada a X_i y X_j , $(a, b) \in R_{ij} \exists c \in D_k$, tal que $(a, c) \in R_{ik}$ y $(b, c) \in R_{ik}$

Filtrado por consistencia de CAMINOS

- Un par de variables (X_i, X_j) es trayectoria consistente ssi: $\forall (a, b) \in D_i \times D_j, \forall X_k \in X$ conectada a X_i y X_j , $(a, b) \in R_{ij} \exists c \in D_k$, tal que $(a, c) \in R_{ik}$ y $(b, c) \in R_{jk}$
- Un problema es camino consistente ssi:
 Todos los pares de variables son camino consistentes
- Filtrado por consistencia de caminos:
 Eliminar todos los pares de valores que no cumplan la propiedad

Filtrado por consistencia de CAMINOS

- Un par de variables (X_i, X_j) es trayectoria consistente ssi: $\forall (a, b) \in D_i \times D_j, \forall X_k \in X$ conectada a X_i y X_j , $(a, b) \in R_{ij} \exists c \in D_k$, tal que $(a, c) \in R_{ik}$ y $(b, c) \in R_{jk}$
- Un problema es camino consistente ssi:
 Todos los pares de variables son camino consistentes
- Filtrado por consistencia de caminos:
 Eliminar todos los pares de valores que no cumplan la propiedad
- El algoritmo empieza a ser caro
 - Complejidad es $O(n^3d^5)$ para PC2 (Mackworth,77)
 - Complejidad es $O(n^3d^3)$ para PC3 (Mohr, 86)
- Es más complejo de implementar que AC
- Su aplicación puede agregar restricciones al grafo cambiando la topología
- Conclusión: Poco utilizado

Ejemplo:

Acerca de la k consistencia

- Nodo consistencia (1-consistencia): Consistencia de 1 nodo
- Arco consistencia (2-consistencia): Consistencia entre 2 nodos
- Camino consistencia (3-consistencia): Consistencia entre 3 nodos
- k-consistencia: Consistencia entre k nodos Una red es k-consistente ssi dada cualquier instanciación de k-1 variables, que satisfagan todas las restricciones entre ellas, existe al menos una instanciación de una variable k, tal que se satisfacen las restricciones entre las k variables.
- En general, el chequeo de k-consistencia, supone el chequeo de j-consistencia $\forall j < k \ (\text{k-consistencia fuerte})$

Ejercicio AC-3

Modelamiento Coloreo de grafos (1/2)

- Suponga que desea colorear un automóvil, cuyas partes son:
 - Parachoques
 - Techo
 - Alerones
 - Carrocería
 - Puertas
 - Capot
- Se tiene un conjunto de colores disponibles para colorear dicho automóvil
 - Blanco
 - Rosado
 - Rojo
 - Negro

Sea $A \triangleleft B$ A es más claro que B, entonces:

Blanco ⊲ Rosado, Rosado ⊲ Rojo y Rojo ⊲ Negro.

Modelamiento Coloreo de grafos (2/2)

- Considere las siguientes restricciones
 - El parachoques debe ser blanco
 - El techo debe ser rojo
 - Los alerones no pueden ser blancos ni negros
 - La carrocería, las puertas y el capot deben ser del mismo color
 - El parachoques, el techo y los alerones deben ser más claros que la carrocería

Inteligencia Artificial <u>Técnicas</u> de Filtro y Consistencia

Nicolás Rojas-Morales

Departamento de Informática Universidad Técnica Federico Santa María

Modelamiento Coloreo de grafos (1/2)

- Suponga que desea colorear un automóvil, cuyas partes son:
 - Parachoques
 - Techo
 - Alerones
 - Carrocería
 - Puertas
 - Capot
- Se tiene un conjunto de colores disponibles para colorear dicho automóvil
 - Blanco
 - Rosado
 - Rojo
 - Negro

Sea $A \triangleleft B$ A es más claro que B, entonces:

Blanco ⊲ Rosado, Rosado ⊲ Rojo y Rojo ⊲ Negro.

Modelamiento Coloreo de grafos (2/2)

- Considere las siguientes restricciones
 - El parachoques debe ser blanco
 - El techo debe ser rojo
 - Los alerones no pueden ser blancos ni negros
 - La carrocería, las puertas y el capot deben ser del mismo color
 - El parachoques, el techo y los alerones deben ser más claros que la carrocería

• Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$

• Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$

DominiosDi = {B, R, R, N} = {1, 2, 3, 4}

- Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$
- Dominios $Di = \{B, R, R, N\} = \{1, 2, 3, 4\}$
- Restricciones:
 - El parachoques debe ser blanco XPA = 1

- Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$
- Dominios $Di = \{B, R, R, N\} = \{1, 2, 3, 4\}$
- Restricciones:
 - El parachoques debe ser blanco XPA = 1
 - El techo debe ser rojo XTE = 3

- Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$
- DominiosDi = {B, R, R, N} = {1, 2, 3, 4}
- Restricciones:
 - El parachoques debe ser blanco XPA = 1
 - El techo debe ser rojo
 XTE = 3
 - Los alerones no pueden ser blancos ni negros $XAL \neq 1$ $XAL \neq 4$

- Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$
- Dominios $Di = \{B, R, R, N\} = \{1, 2, 3, 4\}$
- Restricciones:
 - El parachoques debe ser blanco XPA = 1
 - El techo debe ser rojo
 XTE = 3
 - Los alerones no pueden ser blancos ni negros $XAL \neq 1$ $XAL \neq 4$
 - La carrocería, las puertas y el capot deben ser del mismo color XCA = XPU

 XCA = XCAP

 XPU = XCAP

- Variables $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$
- DominiosDi = {B, R, R, N} = {1, 2, 3, 4}
- Restricciones:
 - El parachoques debe ser blanco XPA = 1
 - El techo debe ser rojo
 XTE = 3
 - Los alerones no pueden ser blancos ni negros $XAL \neq 1$ $XAL \neq 4$
 - La carrocería, las puertas y el capot deben ser del mismo color XCA = XPU XCA = XCAP XPU = XCAP
 - El parachoques, el techo y los alerones deben ser más claros que la carrocería

XPA < XCA XTE < XCA XAL < XCA

Variables

 $Xi = \text{Color del que se pinta la parte } i, i \in \{PA, TE, AL, CA, PU, CAP\}$

Dominios

$$Di = \{B, R, R, N\} = \{1, 2, 3, 4\}$$

- Restricciones:
 - El parachoques debe ser blanco XPA = 1
 - El techo debe ser rojo XTF = 3
 - Los alerones no pueden ser blancos ni negros
 - $XAL \neq 1$

 $XAL \neq 4$

- La carrocería, las puertas y el capot deben ser del mismo color
 - XCA = XPII

XCA = XCAP

XPU = XCAP

• El parachoques, el techo y los alerones deben ser más claros que la carrocería

XPA < XCA

XTE < XCAXAL < XCA

$$\mathsf{E.B.} = 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^6 = 4096$$

Grafo

• El parachoques debe ser blanco XPA = 1

• El parachoques debe ser blanco XPA = 1 $DPA = \{1, 2, 3, 4\}$

- El parachoques debe ser blanco XPA = 1 $DPA = \{1, 2, 3, 4\}$
- El techo debe ser rojo XTE = 3

- El parachoques debe ser blanco
 XPA = 1
 DPA = {1, ¾, ¾, ¾}
- El techo debe ser rojo
 XTE = 3
 DTE = {\nldot{\chi}, \nldot{\chi}, 3, \nldot{\chi}}

El parachoques debe ser blanco
 XPA = 1
 DPA = {1, ¾, ¾, ¼}

- El techo debe ser rojo
 XTE = 3
 DTE = {\(\tilde{X}, \(\tilde{X}, 3, \tilde{4} \)}
- Los alerones no pueden ser blancos ni negros $XAL \neq 1$ $XAL \neq 4$

El parachoques debe ser blanco
 XPA = 1
 DPA = {1, ¾, ¾, ¼}

- El techo debe ser rojo
 XTE = 3
 DTE = {\(\tilde{X}, \(\tilde{X}, 3, \tilde{X} \)}
- Los alerones no pueden ser blancos ni negros $XAL \neq 1$ $XAL \neq 4$ $DAL = \{X, 2, 3, X\}$

El parachoques debe ser blanco
 XPA = 1
 DPA = {1, ¾, ¾, ¼}

- El techo debe ser rojo
 XTE = 3
 DTE = {\(\times \), \(\times \), \(\times \), \(\times \), \(\times \).
- Los alerones no pueden ser blancos ni negros $XAL \neq 1$ $XAL \neq 4$ $DAL = \{X, 2, 3, X\}$

$$\mathsf{E.B.} = 1 \cdot 1 \cdot 2 \cdot 4 \cdot 4 \cdot 4 = 128$$

Arco analizado Dominio afectado Q		
		Q

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		
3	(XPU, XCA)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		
3	(XPU, XCA)		
4	(XCA, XPU)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		
3	(XPU, XCA)		
4	(XCA, XPU)		
5	(XPU, XCAP)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		
3	(XPU, XCA)		
4	(XCA, XPU)		
5	(XPU, XCAP)		
6	(XCAP, XPU)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		
3	(XPU, XCA)		
4	(XCA, XPU)		
5	(XPU, XCAP)		
6	(XCAP, XPU)		
7	(XPA, XCA)		

	Arco analizado	Dominio afectado	Q
1	(XCA, XCAP)		
2	(XCAP, XCA)		
3	(XPU, XCA)		
4	(XCA, XPU)		
5	(XPU, XCAP)		
6	(XCAP, XPU)		
7	(XPA, XCA)		
8	(XCA, XPA)	$DCA = \{ \frac{1}{1}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]
9	(XTE, XCA)]

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]
9	(XTE, XCA)]
10	(XCA, XTE)	DCA={ ¹ / ₄ , ¹ / ₄ , 4}	+ (XPA, XCA)]

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]
9	(XTE, XCA)			j
10	(XCA, XTE)	DCA={\(\frac{1}{2}\), \(\frac{1}{3}\), 4}	+ (XPA, XCA)]
11	(XAL, XCA)]

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]
9	(XTE, XCA)			j
10	(XCA, XTE)	DCA={\(\frac{1}{2}\), \(\frac{1}{2}\), \(4\)	+ (XPA, XCA)]
11	(XAL, XCA)]
12	(XCA, XAL)]

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]
9	(XTE, XCA)]
10	(XCA, XTE)	DCA={\(\frac{1}{2}\), \(\frac{1}{2}\), \(4\)	+ (XPA, XCA)]
11	(XAL, XCA)]
12	(XCA, XAL)]
13	(XCAP, XCA)	$DCAP = \{ 1, 2, 3, 4 \}$	+ (XPU, XCAP)	

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)	
9	(XTE, XCA)			j
10	(XCA, XTE)	DCA={\(\frac{1}{2}\), \(\frac{1}{2}\), \(4\)	+ (XPA, XCA)]
11	(XAL, XCA)]
12	(XCA, XAL)]
13	(XCAP, XCA)	$DCAP = \{ \c x, \c x, \c x, \c x \}, \c 4 \}$	+ (XPU, XCAP)]
14	(XPU, XCA)	$DPU = \{ \frac{1}{4}, \frac{1}{2}, \frac{1}{3}, 4 \}$	+ (XCAP, XPU)]

	Arco analizado	Dominio afectado	Q]
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)]
9	(XTE, XCA)]
10	(XCA, XTE)	DCA={2, 3, 4}	+ (XPA, XCA)]
11	(XAL, XCA)]
12	(XCA, XAL)]
13	(XCAP, XCA)	$DCAP = \{ \chi, \chi, \chi, \chi, 4 \}$	+ (XPU, XCAP)]
14	(XPU, XCA)	$DPU = \{ 1, 2, 3, 4 \}$	+ (XCAP, XPU)]
15	(XPA, XCA)]

	Arco analizado	Dominio afectado	Q .
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)
9	(XTE, XCA)		
10	(XCA, XTE)	DCA={\frac{1}{2}, \frac{1}{2}, 4}	+ (XPA, XCA)
11	(XAL, XCA)		
12	(XCA, XAL)		
13	(XCAP, XCA)	$DCAP = \{ 1, 2, 3, 4 \}$	+ (XPU, XCAP)
14	(XPU, XCA)	$DPU = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 4 \}$	+ (XCAP, XPU)
15	(XPA, XCA)		
16	(XPU, XCAP)		

	Arco analizado	Dominio afectado	Q
8	(XCA, XPA)	$DCA = \{ \frac{1}{4}, 2, 3, 4 \}$	+ (XCAP, XCA), (XPU, XCA)
9	(XTE, XCA)		
10	(XCA, XTE)	DCA={\(\frac{1}{2}\), \(\frac{1}{2}\), \(4\)	+ (XPA, XCA)
11	(XAL, XCA)		
12	(XCA, XAL)		
13	(XCAP, XCA)	$DCAP = \{ \chi, \chi, \chi, \chi, 4 \}$	+ (XPU, XCAP)
14	(XPU, XCA)	$DPU = \{ 1, 2, 3, 4 \}$	+ (XCAP, XPU)
15	(XPA, XCA)		
16	(XPU, XCAP)		
17	(XCAP, XPU)		

Grafo

Grafo

 $\mathsf{E.B.} = 1 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 = 2$

Ejemplo

- Nodo consistencia
- Arco consistencia
- Camino consistencia
- 4-consistencia

Consideraciones Importantes

En un CSP binario:

- Si un problema tiene solución, entonces ¿Es arco-consistente?
- Si un problema es arco-consistente, entonces ¿Tiene solución?
- Si un problema es arco-consistente, y todas las variables tienen un sólo valor posible en el dominio, entonces ¿El problema tiene solución?
- Si un problema es k-consistente, entonces ¿ Tiene solución?