

Lógica, teoría de números y conjuntos

Taller Nash #4

- 1. Sea R un relación en \varnothing . Demuestre que R es reflexiva, irreflexiva, simétrica, antisimétrica y transitiva.
- 2. Sean $m, n \in \mathbb{Z}$ y R la relación en \mathbb{Z} definida por

$$nRm \text{ sii } |n-m| \leq 2$$

Encuentre cuáles de las cinco propiedades cumple R. Demuestre las propiedades que cumple y refute, mediante un contraejemplo, las propiedades que no cumple.

- 3. Sean R y S son relaciones de equivalencia en un conjunto A.
 - a. Demuestre que $R \cap S$ también es una relación de equivalencia.
 - b. ¿Es $R \cup S$ una relación de equivalencia?
- 4. Demuestre por contrarrecíproca las siguientes proposiciones:
 - a. Sea $x \in \mathbb{R}$. Si x > 0 entonces $x + \frac{1}{x} \ge 2$.
 - b. Sea $n \in \mathbb{Z}$. Si n^3 es par entonces n es par.
 - c. Sean $m, n \in \mathbb{Z}$. Si mn es impar entonces m y n son impares.
- 5. Sean A y B conjuntos. Demuestre que $A \subseteq B$ sii $A B = \emptyset$.