

Travaux dirigés Traitement d'images n°3

Histogrammes et lookup tables

-Master 1-

Exercice 1. Histogrammes et images en niveaux de gris

1. Affichage

- (a) Récupérez le fichier tp03.zip.
- (b) Ouvrez le fichier tp03/tp03_ex01.cpp et exécutez le. Ce programme converti une image en niveaux de gris, affiche l'image et son histogramme. Testez ce programme avec une image. Lire le code.

2. Histogrammes

(a) Trouvez des images sur internet telle que leur histogramme soit :

► Exercice 2. Normalisation d'images

- 1. Ouvrez le fichier tp03/tp03_ex02.cpp et exécutez le. Ce programme applique une lookup table LUTplop à une image en niveau de gris. Testez le.
- 2. Quelle fonction cette lookup table représente-t-elle?
- 3. Inspirez-vous de LUTplop pour gérérer une lookup table qui, appliquée à l'image, normalise son histogramme. L'image finale utilise alors toute la dynamque disponible (de 0 à 255). Vous utiliserez la formule :

$$\mathtt{I}'(x,y) = \frac{\mathtt{I}(x,y) - \mathtt{I}_{\min}}{\mathtt{I}_{\max} - \mathtt{I}_{\min}} \cdot 255$$

et le prototype suivant :

cv::Mat LUTimageNormalize(const cv::Mat &image);

▶ Exercice 3. Egalisation d'histogramme

1. Faites une fonction qui calcule l'histogramme cumulé d'une image en niveaux de gris. La fonction aura le prototype suivant :

```
cv::Mat computeCumulatedHistogramGS(const cv::Mat &imageGS);
```

2. Faites une fonction calculant une LUT qui, appliquée à une image, égalise sont histogramme. Vous utiliserez la formule suivante :

$$\mathrm{LUT}(x) = \frac{255}{w \times h} \mathrm{H}_c(x)$$

La fonction aura le prototype suivant :

```
cv::Mat generateLUThistogramNormalize(const cv::Mat &imageGS);
```

3. Testez votre fonctions sur l'image théCafé.png.