Sneaky Spikes

Uncovering Stealthy Backdoor Attacks in SNNs

with Neuromorphic Data

Gorka Abad, Oğuzhan Ersoy, Stjepan Picek, and Aitor Urbieta

Neuromorphic Data 8 Spiking Neural Networks

Neuromorphic data

Neuromorphic data

Time-encoded data.

Asynchronous.

More efficient than DL.

GPT-3 took weeks to train using 190,000 kWh [1].

SNNs are 12.2x more energy efficient, achieving the similar performance [1].

Backdoor Attacks

Backdoor Attacks [1]

Label

Clean Data

STOP

DO NOT ENTER

SPEED LIMIT

Prediction

STOP

DO NOT ENTER

SPEED LIMIT

Backdoor Attacks [1]

Label

Clean Data

STOP

DO NOT ENTER

SPEED LIMIT

SPEED LIMIT

STOP

DO NOT ENTER

SPEED LIMIT

Backdoor Attacks [1]

Label

Clean Data

Prediction

STOP

DO NOT ENTER

SPEED LIMIT

SPEED LIMIT

STOP

DO NOT ENTER

SPEED LIMIT

SPEED LIMIT

[1] Gu, Tianyu, et al. "Badnets: Evaluating backdooring attacks on deep neural networks." *IEEE Access* 7 (2019): 47230-47244.

3.
Backdoor
Attacks in
SNNs

Backdoor Attacks in SNNs

Backdoor Attacks in SNNs

Backdoor Attacks in SNNs

Static Backdoors

Static Backdoors

Excellent performance when the trigger is the **corners**. No matter the polarity (color).

When placed in the middle, the performance depends on the dataset.

Static triggers are visible.

Moving Backdoors

Moving Backdoors

More difficult than static.

Great performance no matter the location. Even in the **middle**. No matter the polarity (color).

Moving triggers are (sometimes) visible.

Smart Backdoors

Smart Backdoors

What polarity makes a better backdoor?

If background polarity
 (background color), the attack works better in the most active area.

What parts are easier to attack?

 Overall, the least active area is easier to attack.

DENOISING

DEEPFAKE

Original Face A

Original Face B

Original Face A

Reconstructed Face A

Reconstructed Face B

Reconstructed Face B from A

Simultaneously train the classifier and the autoencoder.

The autoencoder is trained to maximize the backdoor and clean accuracy.

The classifier is trained on **clean** and **backdoor** data.

The backdoor effect is controlled by α .

LEFT HAND CLOCKWISE

LEFT HAND CLOCKWISE

LEFT HAND CLOCKWISE

ARM ROLL

CLEAN

NOISE

0.1x

PROJECTED NOISE

BACKDOOR IMAGE

CLEAN NOISE 0.1x **PROJECTED** NOISE **BACKDOOR IMAGE**

High stealthiness (SSIM and MSE).

The backdoor images cannot be detected by humans.

The backdoor performance is good in all tested cases.

4. Defenses

Defenses

Moving

Dynamic

5.
Challenge

Challenges and future work

Conclusions

We investigated different backdoor approaches for SNNs.

We found that **static** backdoor is **easy** to use but does not make much sense to use since we use moving data.

When using **moving** triggers, we found that the **least active** area of the image is **easier** to attack than the most active one.

Dynamic attacks create an invisible moving pattern that is unique for each image and indistinguishable from the clean image.

We **adapted** defenses common in DL, but they do not work.

Wide range of options for neuromorphic triggers.

- Only in some frames?
- Are they usable in physical contexts?

Thank you!

- Gorka Abad
- 📞 abad.gorka@ru.nl
- gorkaabad.github.io

Paper & Code

gorkaabad.github.io

