T320 - Introdução ao Aprendizado de Máquina II:

Redes Neurais Artificiais (Parte IV)

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Na última aula, discutimos como as redes neurais aprendem.
- Vimos que isso é feito através da minimização de uma função de custo.
 - Usamos o erro quadrático médio por questões didáticas, mas existem várias outras funções como por exemplo a *entropia cruzada*, usada para o treinamento de classificadores multi-classe e a *focal loss* para o treinamento de detectores de objetos.
- Aprendemos que a minimização da função de custo é realizada iterativamente com o algoritmo da retropropagação do erro.
- Analisamos como a retropropagação funciona através de um exemplo.
- Nesta aula, iremos discutir algumas visões práticas para o treinamento de redes neurais.

- Podemos dizer que os *elementos básicos do aprendizado de máquina* através de *redes neurais* foram apresentados até aqui.
- Porém, existem importantes aspectos práticos que devem ser comentados de modo que vocês fiquem mais familiarizados com as práticas atuais.
- Portanto, começamos relembrando sobre a questão do *cálculo do vetor gradiente*.

- Conforme vimos anteriormente, a base para o aprendizado de redes MLP é a obtenção do vetor gradiente e o estabelecimento de um processo iterativo de busca dos pesos sinápticos que minimizem a função de custo.
- Vimos que a obtenção do *vetor gradiente* se dá através do processo de *retropropagação do erro*, o qual é dividido em duas etapas:
 - Etapa direta (*forward*) onde se apresenta um exemplo de entrada, x, e obtém-se a resposta da rede e, consequentemente, o *erro de saída*.
 - Etapa reversa (*retropropagação/backpropagation*) em que se calculam as derivadas parciais necessárias ao longo das camadas da rede.

Versões Online, Batch e Minibatch

 Vimos também que se calcula o gradiente associado a cada exemplo de entrada e saída da rede e que a média de todos esses gradientes locais leva ao gradiente estimado para o conjunto total de exemplos.

estimado para o conjunto total de exemplos.
$$\frac{\partial J(x(n) \mid W)}{\partial w_{i,j}^{m}} = \frac{1}{N_{\text{dados}} N_{M}} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_{M}} \frac{\partial e_{j}^{2}(n)}{\partial w_{i,j}^{m}} = \frac{1}{N_{\text{dados}}} \sum_{n=1}^{N_{\text{dados}}} \nabla J_{n}(W).$$

- O *gradiente local*, é a derivada parcial do erro da j-ésima saída da rede para o n-ésimo exemplo de entrada em relação ao peso, $w_{i,j}^m$.
- $\nabla J_n(\mathbf{W})$ é a média dos N_M gradientes locais para o n-ésimo exemplo de entrada.
- No entanto, surge aqui um questionamento importante:
 - O que é melhor, usar a *média dos* N_M *gradientes locais*, $\nabla J_n(W)$, *e já dar um passo de otimização*, ou seja, atualizar os pesos, *reunir o gradiente completo e então dar um passo único e mais preciso* ou *um meio termo*?

- Nesse questionamento, existem duas abordagens opostas: o cálculo *online* (ou seja, exemplo-a-exemplo) e o cálculo em batelada (*batch*) do gradiente.
- Vejamos inicialmente a noção geral de adaptação dos pesos (sinápticos e bias) com o cálculo online do gradiente, como mostra o algoritmo abaixo.
 - ightharpoonup Defina valores iniciais para a matriz de pesos W e um passo de aprendizagem lpha pequeno.
 - ightharpoonup Faça k=0 (épocas), t=0 (iterações) e calcule J(W(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - o Ordene aleatoriamente os exemplos de entrada e saídas correspondentes.
 - Para *l* variando de 1 até *N*, faça:
 - Apresente o *l*-ésimo exemplo de entrada à rede.
 - Calcule $J_l(\mathbf{W}(t))$ e $\nabla J_l(\mathbf{W}(t))$.
 - $W(t+1) = W(t) \alpha \nabla J_l(W(t))$.
 - t = t + 1.
 - o k = k + 1.
 - \circ Calcule J(W(k))

- O outro extremo seria utilizar todo o conjunto de exemplos para calcular o gradiente antes de atualizar os pesos.
- Essa é a ideia por trás da abordagem em *batelada* (*batch*). O algoritmo abaixo ilustra a operação correspondente.
 - ightharpoonup Defina valores iniciais para a matriz de pesos W e um passo de aprendizagem lpha pequeno.
 - Faça k = 0 (épocas) e calcule $J(\mathbf{W}(k))$.
 - > Enquanto o critério de parada não for atendido, faça:
 - Para *l* variando de 1 até *N*, faça:
 - Apresente o l-ésimo exemplo de entrada à rede.
 - Calcule $J_l(\mathbf{W}(k))$ e calcule e armazene $\nabla J_l(\mathbf{W}(k))$.
 - $\circ W(k+1) = W(k) \frac{\alpha}{N} \sum_{l=1}^{N} \nabla J_{l}(W(k)).$
 - o k = k + 1.
 - o Calcule $J(\mathbf{W}(k))$.

- Nas *redes neurais profundas* (ou *deep learning*), usadas com muita frequência em problemas com enormes conjuntos de dados, a regra é adotar o caminho do meio, usando a abordagem com *mini-batches*.
- Nesse caso, a adaptação dos **pesos** é realizada com um gradiente calculado a partir de um conjunto com mais de um e menos de N exemplos.
- OBS.: As amostras que compõem um *mini-batch* devem ser *aleatoriamente* escolhidas a partir do conjunto de treinamento. O algoritmo abaixo ilustra isso.
- \triangleright Defina valores iniciais para a matriz de pesos W, um passo de aprendizagem α pequeno e o tamanho m do mini-batch.
- ightharpoonup Defina m (tamanho do mini-batch), faça k=0 (época) e calcule $J(\mathbf{W}(k))$.
- Enquanto o critério de parada não for atendido, faça:
 - \circ Para l variando de 1 até m, faça:
 - Apresente o *l*-ésimo exemplo de entrada, amostrado aleatóriamente sem reposição do conjunto de treinamento, à rede.
 - Calcule $J_l(\mathbf{W}(k))$ e calcule e armazene $\nabla J_l(\mathbf{W}(k))$.
 - $\circ W(k+1) = W(k) \frac{\alpha}{m} \sum_{l=1}^{m} \nabla J_{l}(W(k)).$
 - o k = k + 1.
 - \circ Calcule $J(\mathbf{W}(k))$.

- Existem vários algoritmos baseados no *gradiente* que podem ser empregados para otimizar os *pesos* de uma rede neural.
- Aqui, vamos nos ater aos métodos mais usuais na literatura moderna, que se encontra bastante focada no *apredizado profundo*.
- ➤ Método do Gradiente Estocástico (Stochastic Gradient Descent, SGD)
 - Nos slides anteriores, nós vimos que o aprendizado online utiliza um único exemplo (tomado aleatóriamente) para estimar o gradiente da função custo.
 - Este tipo de estimador é o que gera a noção de *gradiente estocástico*.
 - Caso utilizemos mini-batches, também teremos uma estimativa do gradiente, o qual, a rigor, seria determinístico apenas se usássemos todos os dados (no caso do batch).
 - Por esse motivo, esses métodos de primeira ordem (ou seja, métodos baseados na derivada parcial de primeira ordem) que aproximam o gradiente, como o online, são conhecidos como métodos de gradiente descendente estocástico.

➤ Redução programada do passo de aprendizagem

- A escolha do passo de aprendizagem, α, é complicada e exige um compromisso entre velocidade de convergência e estabilidade/precisão.
- Pode-se usar α com um valor fixo, mas, geralmente, para o GDE e MB, se adota uma variação decrescente de um valor α_0 a um valor α_τ (i.e., da iteração 0 à τ -ésima iteração):

$$\alpha_j = \left(1 - \frac{j}{\tau}\right)\alpha_0 + \frac{j}{\tau}\alpha_\tau,$$

onde j é o número da iteração de treinamento.

- Após a τ -ésima iteração, deixa-se o valor do passo de aprendizagem fixo, como mostrado na figura ao lado.
- Porém, a definição dos hiperparâmetros α_0 e α_τ , é mais um problema *a ser tratado caso-a-caso*.

Momentum

- O termo momento é adicionado à equação de atualização dos pesos para incorporar informação do histórico de gradientes anteriores.
- Esse termo tem o potencial de *aumentar a velocidade de convergência* das versões online e em mini-lotes e *deixá-las mais estáveis*.
- A atualização dos pesos com o termo momento é dada por

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \boldsymbol{v}$$

onde w são os pesos, v é a velocidade, a qual é atualizada da seguinte forma $v \leftarrow \mu v + (1 - \mu) \nabla J(w)$, Média móvel exponencialmente decrescente.

onde, $\nabla J(w)$ é o *vetor gradiente*, α é o *passo de aprendizagem* e $\mu \in [0,1)$ é o *coeficiente de momento* e determina com que rapidez as contribuições de gradientes anteriores decaem (ou seja, μ é um termo que dita a quantidade de memória).

- Quanto maior for μ, maior será a influência de gradientes anteriores na direção atual e quanto menor, menor a influência de gradientes anteriores.
- lacktriangledown v dá a direção e a velocidade na qual os pesos se movem pelo espaço de pesos.

Momentum

- Em física, *momento* é igual a *massa de uma partícula vezes* sua velocidade. A partícula é o vetor de pesos, w.
- No algoritmo do momento, assumimos que a massa é unitária, então o vetor velocidade v também pode ser considerado como o momento da partícula.
- O termo momento adiciona uma média dos gradientes anteriores à atualização corrente.
 - Quando o gradiente aponta na mesma direção por várias iterações,
 o termo aumenta o tamanho dos passos dados naquela direção.
 - Quando o gradiente muda de direção a cada nova iteração, o termo momento suaviza as variações (figura ao lado).
 - Como resultado, temos convergência mais rápida e oscilação reduzida.

≻Momento de Nesterov

- O método do momento de Nesterov é uma variação do método do momento em que o cálculo do vetor gradiente não é feito em relação ao vetor de pesos w, mas em relação a $w + \mu v$.
- Essa mudança no cálculo do gradiente faz com que o *momento de Nesterov* apresente convergência mais rápida e ajustes mais precisos dos pesos do que o momento clássico.

➤ Modelos com Passo de Aprendizagem Adaptativo

- O passo de aprendizagem é um hiperparâmetro difícil de ser ajustado otimamente e bastante relevante para o sucesso do treinamento de uma rede neural.
- Isso motivou o surgimento de métodos capazes de ajustá-lo dinamicamente.
- Esses métodos ajustam o passo de acordo com o desempenho da rede, i.e., informação dos gradientes passados.
- Além disso, pode-se ter passos diferentes para cada peso do modelo, os quais são atualizados de forma independente.
- Portanto, esses métodos são adequados para redes neurais, onde a superfície de erro é bastante irregular e diferente em diferentes dimensões, tornando a atualização dos pesos mais efetiva.
- Dentre as técnicas mais populares dessa classe estão AdaGrad, RMSProp e Adam.

Inicialização dos Pesos

- Uma vez que os métodos de treinamento de *redes neurais MLP* são iterativos, eles dependem de uma *inicialização dos pesos*.
- Como os métodos são de busca local, a inicialização pode afetar drasticamente a qualidade da solução obtida.
- O ponto de inicialização pode determinar se o algoritmo converge, sendo alguns pontos iniciais tão instáveis que o algoritmo encontra dificuldades numéricas (representações numéricas: underflow e overflow) e falha completamente em convergir (e.g., desaparecimento e explosão dos gradientes).
- O ponto de inicialização também pode fazer com que ocorram variações expressivas na *velocidade de convergência* (e.g., platôs, pontos de sela).
- Uma questão importante da inicialização dos pesos é "quebrar a simetria" entre os nós, ou seja, nós com a mesma função de ativação e conectados às mesmas entradas, devem ter pesos iniciais diferentes, caso contrário, eles terão os mesmos pesos ao longo do treinamento.
- Isso, portanto, sugere uma abordagem de inicialização aleatória.

Inicialização dos Pesos

- Os pesos iniciais são tipicamente obtidos a partir de distribuições gaussianas ou uniformes, não importando muito qual é usada.
- No entanto, a *escala da distribuição inicial* tem um efeito significativo tanto no resultado da otimização quanto na capacidade de generalização da rede.
- A ordem de grandeza desses pesos levanta algumas discussões:
 - Pesos de maior magnitude criam uma maior distinção entre nós (i.e., a quebra de simetria). Por outro lado, isso pode causar problemas de instabilidade.
 - Pesos de maior magnitude favorecem a propagação de informação, porém, por outro lado, causam preocupações do ponto de vista de regularização (overfitting).
 - Pesos de magnitude elevada podem levar os nós com funções de ativação do tipo sigmóide a operarem na região de saturação, comprometendo a convergência do algoritmo (desaparecimento do gradiente).
 - Pesos de magnitude elevada podem levar os nós com funções de ativação do tipo RELU à explosão do gradiente ou dos valores de saída, deixando a rede muito sensível a mudanças dos valores de entrada.
- Portanto, na sequência listamos algumas heurísticas para inicialização dos pesos.

Inicialização dos Pesos

- A ideia por trás destas heurísticas é manter a média das ativações igual a zero e suas variâncias constantes ao longo das várias camadas da rede, pois desta forma evita-se o desaparecimento ou a explosão do gradiente.
- Considerando uma camada com m entradas e n saídas, temos as seguintes **heurísticas** para inicializar os **pesos sinápticos** de seus nós.

Inicialização	Funções de ativação	Distribuição Uniforme $U(-r,r)$	Distribuição Normal $N(0,\sigma^2)$
Xavier/Glorot	Linear (i.e., nenhuma), Tanh, Logística, Softmax	$r = \sqrt{\frac{6}{m+n}}$	$\sigma^2 = \frac{2}{m+n}$
He	ReLU e suas variantes	$r = \sqrt{\frac{6}{m}}$	$\sigma^2 = \frac{2}{m}$
LeCun	SELU	$r = \sqrt{\frac{3}{m}}$	$\sigma^2 = \frac{1}{m}$

• Uma heurística para a inicialização dos *pesos de bias* é inicializá-los com *valores nulos*. Esta heurística é usada pois se mostra bastante eficiente na maioria dos casos.

Redes Neurais MLP com SciKit-Learn

- Como vimos anteriormente, a biblioteca *SciKit-Learn* disponibiliza algumas classes para o treinamento de redes neurais *multi-layer perceptron*.
- Entretanto, suas implementações não são flexíveis e não se destinam a aplicações de larga escala.
 - A biblioteca SciKit-Learn não oferece suporte a GPUs.
- Para implementações de *modelos de aprendizado profundo* escaláveis, muito mais rápidos, flexíveis e baseados em GPU, devemos utilizar bibliotecas como:
 - *Tensorflow*: criada pela equipe *Google Brain* do *Google*.
 - **PyTorch**: criada pela *Meta AI* (antigo *Facebook*).
 - *MXNet*: criada pela *Apache*.
 - *Theano*: criada pela Universidade de Montreal (primeira versão) e mantida posteriormente pela equipe de desenvolvedores do pacote PyMC sob o nome de Aesara.
 - Entre outras: https://scikit-learn.org/stable/related-projects.html#related-projects

Tarefas

- Quiz: "T320 Quiz Redes Neurais Artificiais (Parte VII)" que se encontra no MS Teams.
- Projeto: Projeto #2.
 - Projeto está no github e pode ser feito em grupos de no máximo 3 alunos.
 - Entrega: 25/06/2023 até às 23:59.
 - Leiam os enunciados atentamente.
 - Apenas um integrante do grupo precisa fazer a entrega.
 - Mas não se esqueçam de colocar os nomes de todos os integrantes do grupo.

Obrigado!

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog..

Figuras

Versão Online

$$\frac{\partial J(\boldsymbol{x}(n) \mid \boldsymbol{w}(k))}{\partial w_{i,j}^{m}} = \frac{1}{N_{M}} \sum_{j=1}^{N_{M}} \frac{\partial \left(d_{j}(n) - y_{j}(n) \mid \boldsymbol{w}(k)\right)^{2}}{\partial w_{i,j}^{m}} = \frac{1}{N_{M}} \sum_{j=1}^{N_{M}} \frac{\partial e_{j}^{2}(n \mid \boldsymbol{w}(k))}{\partial w_{i,j}^{m}} = \nabla J_{n}(\boldsymbol{w}(k)).$$