Данные

Типы:

- 1) Изображения
- 2) Видео
- 3) Табличные
- 4) Текстовые
- 5) Звуковые

Источники:

- 1) Наборы данных от заказчика
- 2) Медицинские организации
- 3) Государственные структуры
- 4) Банки
- 5) Научные исследования

Машинное обучение

Машинное обучение (Machine Learning) - область искусственного интеллекта. Data-driven подход, полагающийся на поиск закономерностей в имеющихся размеченных или неразмеченных данных. Идея в том, чтобы не программировать алгоритм решения задачи вручную, а "выучить" его из данных.

Машинное обучение разделяется на несколько основных подходов:

- Обучение с учителем (supervised learning)
 - Классификация (classification)
 - Регрессия (regression)
 - Ранжирование (learning to rank)
- Обучение без учителя (unsupervised learning)
 - о Кластеризация (clustering)
- Уменьшение размерности (dimensionality reduction)
- Обучение с частичным привлечением учителя (semi-supervised learning)
- Обучение с подкреплением (reinforcement learning)

Метрики качества

Метрики качества для классификации:

- 1) Accuracy
- 2) Confussion matrix, recall, precision, F1
- 3) ROC AUC

Метрики качества для регрессии:

- 1) Mean Absolute Error (MAE)
- 2) Mean Squared Error (MSE)
- 3) Root Mean Squared Error (RMSE)

Метрики качества для ранжирования:

1) Kendall's tau

Тренировочные, валидационная, тестовые данные

Train – данные для обучения,

Valid – данные для проверки модели при обучении,

Test – данные для проверки модели после обучения.

Исходный набор данных делится на Train/Valid в соотношении 90%/10% или 80%/20%.

Валидация дает понять насколько хорошо обучена модель и нет ли переобучения

Использовать одни и те же данные для обучения и тестирования недопустимо, т.к. модель должна знать, как будет работать метод на новых данных.

Перекрёстная проверка (cross validation)

Проводим тестирование для каждого метода ML. Результаты всех 4 тестов складываем и выбираем лучший метод:

Была произведена **Четырехкратная перекрестная проверка** (**4-Fold Cross Validation**). В общем случае число блоков произвольное.

Также возможна поэлементная перекрестная проверка (Leave One Out Cross Validation).

Confusion matrix

Пусть есть 2 класса объектов $y_true \in \{0,1\}$ и их предсказанные значения $y_pred \in \{0,1\}$

Confusion matrix (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html):

True Negative (TN)	False Positive (FP)
False Negative (FN)	True Positive (TP)

True Negative Классификатор верно классифицировал 0 как 0 Классификатор ложно классифицировал 0 как 1 Классификатор ложно классифицировал 1 как 0 Классификатор верно классифицировал 1 как 1

True Negative == предсказан 0 (Negative), и предсказан верно (True)

 $C_{i,i}$ – количество объектов класса i, которым предсказан класс j

Confusion matrix

3 класса объектов $y_true \in \{0,1,2\}$ и их предсказанные значения $y_pred \in \{0,1,2\}$

	0	2	0	0
y_true(i)	1	0	0	1
	2	1	→ 0	2

 $C_{i, j}$ – количество объектов класса i, которым предсказан класс j

Метрики

Пусть есть 2 класса объектов $y_true \in \{0,1\}$ и их предсказанные значения $y_pred \in \{0,1\}$

True Negative (TN)	False Positive (FP)
False Negative (FN)	True Positive (TP)

Accuracy – доля правильных ответов

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision (точность) — отношение количества объектов целевого класса, которые классифицированы как объекты этого класса, к общему количеству объектов, которые классифицированы как объекты этого класса.

$$precision = \frac{TP}{TP + FP}$$

Recall (полнота) — отношение количества объектов, которые классифицированы как объекты целевого класса, к общему количеству объектов этого класса.

$$recall = \frac{TP}{TP + FN}$$

Среднее гармоническое f1_score

$$f1_score = \frac{2*(precission*recall)}{precission+recall}$$

В https://habr.com/company/ods/blog/328372/ и https://en.wikipedia.org/wiki/Confusion_matrix сопfusion matrix составлена с другим порядком элементов.

metrics

from sklearn import metrics

```
y_pred = model.predict_classes(X_test_nn, batch_size=1)
mtrs = metrics.classification_report(y_test_oh_n, y_pred)
print(mtrs)
```

	precision	recall	f1-score	support
0	0.99	1.00	1.00	160
1	1.00	1.00	1.00	160
2	1.00	0.99	1.00	160
avg / total	1.00	1.00	1.00	480

Meтрики: https://habr.com/company/ods/blog/328372/