Section 2.5 Exercises

David Piper

September 28, 2020

2.31 (a) Given the open sentences P(x): |x| = 4 and Q(x): x = 4 over the domain $S = \{-4, -3, 1, 4, 5\}$. We have the following truth values for $P(x) \implies Q(x)$ for each $x \in S$.

$$P(-4) \Longrightarrow Q(-4)$$
 $T \Longrightarrow F$
False.

 $P(-3) \Longrightarrow Q(-3)$
 $F \Longrightarrow F$
True.

 $P(1) \Longrightarrow Q(1)$
 $F \Longrightarrow F$
True.

 $P(4) \Longrightarrow Q(4)$
 $T \Longrightarrow T$
True.

 $P(5) \Longrightarrow Q(5)$
 $F \Longrightarrow F$
True.

(b) Given the open sentences $P(x): x^2=16$ and Q(x): |x|=4 over the domain $S=\{\,-6,-4,0,3,4,8\,\}$. We have the following truth

values for $P(x) \implies Q(x)$ for each $x \in S$.

$$P(-6) \implies Q(-6)$$
 $F \implies F$
True.

 $P(-4) \implies Q(-4)$
 $T \implies T$
True.

 $P(0) \implies Q(0)$
 $F \implies F$
True.

 $P(3) \implies Q(3)$
 $F \implies F$
True.

 $P(4) \implies Q(4)$
 $T \implies T$
True.

 $P(8) \implies Q(8)$
 $F \implies F$
True.

 $P(8) \implies F$
True.

 $P(8) \implies F$
True.

(c) Given the open sentences P(x): x>3 and Q(x): 4x-1>12 over the domain $S=\{0,2,3,4,6\}$. We have the following truth

values for $P(x) \implies Q(x)$ for each $x \in S$. $P(0) \implies Q(0)$ $F \implies F$ True. $P(2) \implies Q(2)$ $F \implies F$ True. $P(3) \implies Q(3)$ $F \implies F$ True. $P(4) \implies Q(4)$ $T \implies T$ True. $P(6) \implies Q(6)$ $T \implies T$ True.

2.33 (a) Given the open sentences $P(x,y): x^2-y^2=0$ and Q(x,y): x=y over the domain $S=\{(1,-1),(3,4),(5,5)\}$. We have the following truth values for $P(x,y) \implies Q(x,y)$ for each given values of x and y.

$$P(1,-1) \implies Q(1,-1)$$

$$T \implies F$$
False.
$$P(3,4) \implies Q(3,4)$$

$$F \implies F$$
True.
$$P(5,5) \implies Q(5,5)$$

$$T \implies T$$
True.

(b) Given the open sentences P(x,y): |x| = |y| and Q(x,y): x = y over the domain $S = \{(1,2), (2,-2), (6,6)\}$. We have the following truth values for $P(x,y) \implies Q(x,y)$ for each given values of x and y.

$$P(1,2) \implies Q(1,2)$$
 $F \implies F$
True.

 $P(2,-2) \implies Q(2,-2)$
 $T \implies F$
False.

 $P(6,6) \implies Q(6,6)$
 $T \implies T$
True.

(c) Given the open sentences $P(x,y): x^2+y^2=1$ and Q(x,y): x+y=1 over the domain $S=\{(1,-1),(-3,4),(0,-1),(1,0)\}$. We have the following truth values for $P(x,y)\Longrightarrow Q(x,y)$ for each given values of x and y.

$$P(1,-1) \Longrightarrow Q(1,-1)$$
 $F \Longrightarrow F$
True.

 $P(-3,4) \Longrightarrow Q(-3,4)$
 $F \Longrightarrow T$
True.

 $P(0,-1) \Longrightarrow Q(0,-1)$
 $T \Longrightarrow F$
False.

 $P(1,0) \Longrightarrow Q(1,0)$
 $T \Longrightarrow T$
True.