

Dual P-Channel 20 V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)		
	$0.490 \text{ at V}_{GS} = -4.5 \text{ V}$	- 1.3 ^a			
- 20	0.640 at V _{GS} = - 2.5 V	- 1.2	1.6 nC		
	0.790 at V _{GS} = - 1.8 V	- 1.0			

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFET
- · PWM Optimized
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

· Load Switch for Portable Devices

Ordering Information: Si1967DH-T1-E3 (Lead (Pb)-free)

Si1967DH-T1-GE3 (Lead (Pb)-free and Halogen-free)

P-Channel MOSFET P-Channel MOSFET

ABSOLUTE MAXIMUM RATIN	Α /			
Parameter		Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	- 20	v	
Gate-Source Voltage		V_{GS}	± 8	v
	T _C = 25 °C		- 1.3 ^a	
Continuous Dunin Comment (T. 150 °C)	T _C = 70 °C		- 1.1	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	- I _D	- 1.0 ^{b, c}	
	T _A = 70 °C		- 0.83 ^{b, c}	A
Pulsed Drain Current	I _{DM}	- 3		
	T _C = 25 °C		- 1	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	- 0.6 ^{b, c}	
Maximum Power Dissipation	T _C = 25 °C		1.25	
	T _C = 70 °C		0.8	w
	T _A = 25 °C	P _D	0.74 ^{b, c}	VV
	T _A = 70 °C		0.47 ^{b, c}	
Operating Junction and Storage Temperature	T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum		
Maximum Junction-to-Ambient ^{b, d}	t ≤ 5 s	R _{thJA}	130	170	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	80	100		

Notes

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. Maximum under steady state conditions is 220 °C/W.

Si1967DH

Vishay Siliconix

Parameter Symbol Test Conditions Min. Typ. Max. Unit Static	SPECIFICATIONS $T_J = 25 ^{\circ}C$,	unless othe	rwise noted					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
V _{DS} Temperature Coefficient ΔV _{DS} (T _J) I _D = 2.50 μA -2.0 m/VPC Cate-Source Threshold Voltage V _{DS} (T _J) V _{DS} = V _{DS} · I _D = -250 μA -0.4 -1.0 V Gate-Source Threshold Voltage V _{DS} = V _{DS} · I _D = -250 μA -0.4 ± 100 N Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 2.0 V, V _{DS} = 8 V ± 100 nA Zero Gate Voltage Drain Current I _{DSS} V _{DS} = -2.0 V, V _{DS} = 0 V, T _J = 85°C - 1.0 γ _{DS} - 2.0 On-State Drain Current ^a I _{D(m)} V _{DS} = -2.0 V, V _{DS} = 0 V, T _J = 85°C - 0.0 - 1.0 On-State Drain Current ^a I _{D(m)} V _{DS} = -4.5 V, I _D = -0.91 A 0.390 0.490 Parain-Source On-State Resistance ^a 9 _{IS} V _{DS} = -10 V, I _D = -0.91 A 0.390 0.490 Forward Transconductance ^a 9 _{IS} V _{DS} = -10 V, I _D = -0.91 A 0.390 0.490 Forward Transconductance ^a 9 _{IS} V _{DS} = -10 V, V _{DS} = 0 V, I = 1 MHz 2.0 5 Dypamic ^b 1 2.0 1.0 2.0 5 Output Capac	Static			I.	•	•		
V _{DS} Temperature Coefficient ΔV _{DS} (T _J) I _D = 2.50 μA -2.0 m/VPC Cate-Source Threshold Voltage V _{DS} (T _J) V _{DS} = V _{DS} · I _D = -250 μA -0.4 -1.0 V Gate-Source Threshold Voltage V _{DS} = V _{DS} · I _D = -250 μA -0.4 ± 100 N Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 2.0 V, V _{DS} = 8 V ± 100 nA Zero Gate Voltage Drain Current I _{DSS} V _{DS} = -2.0 V, V _{DS} = 0 V, T _J = 85°C - 1.0 γ _{DS} - 2.0 On-State Drain Current ^a I _{D(m)} V _{DS} = -2.0 V, V _{DS} = 0 V, T _J = 85°C - 0.0 - 1.0 On-State Drain Current ^a I _{D(m)} V _{DS} = -4.5 V, I _D = -0.91 A 0.390 0.490 Parain-Source On-State Resistance ^a 9 _{IS} V _{DS} = -10 V, I _D = -0.91 A 0.390 0.490 Forward Transconductance ^a 9 _{IS} V _{DS} = -10 V, I _D = -0.91 A 0.390 0.490 Forward Transconductance ^a 9 _{IS} V _{DS} = -10 V, V _{DS} = 0 V, I = 1 MHz 2.0 5 Dypamic ^b 1 2.0 1.0 2.0 5 Output Capac	Drain-Source Breakdown Voltage	V_{DS}	V _{GS} = 0 V, I _D = - 250 μA	- 20			V	
Vasciny Turner Personal Vosition 1 ΔY (Sam) Turner Position (Vosition Properties Continuous Source Prince Policy Position Properties (Prince Policy Position Properties Position Properties Position Properties Position Properties Proper	V _{DS} Temperature Coefficient		J 050 v.A		- 20		mV/°C	
Cate-Source Leakage I_GSS V_DS = 0 V, V_GS = ± 8 V ± 100 nA	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_{J}$	I _D = - 250 μA		2			
Gate-Source Leakage I _{GSS} V _{DS} = 0 V, V _{GS} = ± 8 V	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	- 0.4		- 1.0	V	
2 2 2 2 2 2 2 2 2 2	Gate-Source Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
Con-State Drain Current ^a	Zara Cata Valtaga Drain Current		V _{DS} = - 20 V, V _{GS} = 0 V			- 1	μА	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85 ^{\circ}\text{C}$			- 10		
Drain-Source On-State Resistance and Pasion of Pasi	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 3			Α	
Vos = -1.8 V, Ip = -0.25 A 0.640 0.790			V _{GS} = - 4.5 V, I _D = - 0.91 A		0.390	0.490	1	
Forward Transconductance ⁸ g _{Is} V _{DS} = -1.8 V, I _D = -0.25 A 0.640 0.790	Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -0.8 \text{ A}$		0.500	0.640	Ω	
$ \begin{array}{ c c c c c } \hline \textbf{Dynamic}^b \\ \hline \textbf{Input Capacitance} & \textbf{C}_{liss} \\ \textbf{Output Capacitance} & \textbf{C}_{coss} \\ \textbf{Reverse Transfer Capacitance} & \textbf{C}_{coss} \\ \textbf{Reverse Transfer Capacitance} & \textbf{C}_{rss} \\ \hline \textbf{Total Gate Charge} & \textbf{Q}_{g} \\ \hline \textbf{Gate-Source Charge} & \textbf{Q}_{gs} \\ \textbf{Gate-Source Charge} & \textbf{Q}_{gs} \\ \textbf{Gate Besistance} & \textbf{R}_{g} \\ \textbf{Gate Pasistance} & \textbf{R}_{g} \\ \textbf{Turn-On Delay Time} & \textbf{t}_{d}(on) \\ \textbf{Turn-On Delay Time} & \textbf{t}_{d}(on) \\ \textbf{Rise Time} & \textbf{t}_{f} \\ \textbf{Turn-On Delay Time} & \textbf{t}_{d(on)} \\ \textbf{Rise Time} & \textbf{t}_{f} \\ \textbf{Turn-On Delay Time} & \textbf{t}_{d}(on) \\ \textbf{Rise Time} & \textbf{t}_{f} \\ \textbf{Turn-On Delay Time} & \textbf{t}_{d}(on) \\ \textbf{Rise Time} & \textbf{t}_{f} \\ \textbf{Turn-On Delay Time} & \textbf{t}_{d}(on) \\ \textbf{Rise Time} & \textbf{t}_{f} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} = 1 \textbf{D} \\ \textbf{D} = -0.83 \textbf{A}, \textbf{V}_{GEN} = -4.5 \textbf{V}, \textbf{R}_{g} $			V _{GS} = - 1.8 V, I _D = - 0.25 A		0.640	0.790	1	
$ \begin{array}{ c c c c c }\hline \text{Input Capacitance} & & & & & & & & & & & & & & & & & & &$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 0.91 A		2		S	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic ^b			I.	•	•	•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}			110		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		26			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}			16			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Cata Charres		V _{DS} = - 10 V, V _{GS} = - 8 V, I _D = - 1.1 A		2.6	4.0	nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q_g			1.6	2.4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge				0.36			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge				0.33			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_{g}	f = 1 MHz		7.5		Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			12	20		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r			27	40	ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time				15	25		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				10	15		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			2	5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		V_{DD} = - 10 V, R_L = 12 Ω $I_D \cong$ - 0.83 A, V_{GEN} = - 8 V, R_g = 1 Ω		12	20		
	Turn-Off Delay Time	t _{d(off)}			12	20		
	Fall Time				10	15		
Pulse Diode Forward Current ^a I_{SM} -3.0 Body Diode Voltage V_{SD} $I_{S} = -0.9 \text{ A}$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} 25 50 ns Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_{a} $I_{F} = -0.83 \text{ A}, \text{ dI/dt} = 100 \text{ A/µs}, T_{J} = 25 ^{\circ}\text{C}$	Drain-Source Body Diode Characteristic	s			•	•	•	
Pulse Diode Forward Current ^a I_{SM} -3.0 Body Diode Voltage V_{SD} $I_S = -0.9 A$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_S = -0.83 A$, $dI/dt = 100 A/\mu s$, $T_J = 25 ^{\circ}C$ $I_F = -0.83 A$, $dI/dt = 100 A/\mu s$, $T_J = 25 ^{\circ}C$	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			- 1.0	^	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pulse Diode Forward Current ^a	I _{SM}				- 3.0	A	
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Body Diode Voltage		I _S = - 0.9 A		- 0.8	- 1.2	V	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -0.83 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ 15 30 nC Reverse Recovery Fall Time t_a $I_F = -0.83 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ 12 ns					25	50	ns	
Reverse Recovery Fall Time t_a $I_F = -0.63 \text{ A}, \text{ di/dt} = 100 \text{ A/µs}, I_J = 25 \text{ C}$ 12 ns	Body Diode Reverse Recovery Charge		0		15	30	nC	
ns ns	Reverse Recovery Fall Time		$I_F = -0.83 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, } I_J = 25 \text{ °C}$		12		ns	
	Reverse Recovery Rise Time				13			

Notes:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %

b. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Q_g - Total Gate Charge (nC)

Gate Charge

 $\label{eq:TJ-Junction} T_{J} \text{ - Junction Temperature (°C)}$ On-Resistance vs. Junction Temperature

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

* V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?68784.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08