Introducción al Procesamiento de Señales Curso 2013

Clase 5

Javier G. García

10 de septiembre de 2013

Representación de SVID en términos de impulsos

"Cualquier" secuencia se puede escribir como:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
 (1)

$$=\sum_{k=-\infty}^{\infty}\delta[k]x[n-k] \tag{2}$$

Recordar lo que significa la suma de (1):

$$x[n] = \ldots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \ldots$$

Representación de SVID en términos de impulsos

$$x[n] = \dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \dots$$

o, gráficamente

Representación de SVID en términos de impulsos

Resumen: podemos "armar" una secuencia punto a punto

- SVID como combinación lineal de secuencias elementales
- Espacio de secuencias: se puede definir un espacio de secuencias infinito -contable- dimensional.
- ▶ Base: las deltas de Kronecker desplazadas son las secuencias elementales o funciones de base $\{\delta[n-k]\}_{k=-\infty}^{\infty}$
- Coordenadas: son los valores (x[k]) que multiplican a cada función de base

Representación de SVIC en términos de impulsos

Un paralelo formal con las SVID. Compare. "Cualquier" función se puede escribir como:

$$x(t) = \int_{-\infty}^{\infty} x(\sigma) \delta(t - \sigma) d\sigma$$

La ecuación hermana

$$x(t) = \int_{-\infty}^{\infty} x(t - \sigma) \delta(\sigma) d\sigma$$

es una identidad trivial.

- Notar que $x(t) = x(t) \int_{-\infty}^{\infty} \delta(t \sigma) d\sigma = \int_{-\infty}^{\infty} x(t) \delta(t \sigma) d\sigma$ y lleva a pensar en $x(\sigma) \delta(t \sigma) = x(t) \delta(t \sigma)$; pero esta igualdad es sólo cierta en sentido distribucional
- ¡Ya no es posible interpretar como una suma de un número contable de términos!

Representación de SVIC en términos de impulsos

$$x(t) = \int_{-\infty}^{\infty} x(\sigma) \delta(t - \sigma) d\sigma$$

De manera gráfica,

Representación de SVIC en términos de impulsos

Resumen: podemos "armar" una función punto a punto (pero de forma "no-numerable" y teniendo que recurrir a distribuciones: convénzase por qué)

- SVIC como combinación lineal de funciones elementales
- Espacio de funciones: se puede definir un espacio de funciones infinito dimensional.
- Base: no hay expectativas de que las deltas de Dirac desplazadas sean funciones de base. P.ej.: no se pueden multiplicar como para intentar alguna definición de ortogonalidad

Sistemas Lineales

Recordamos al operador que representa a un sistema:

$$\begin{cases} y(t) = \mathcal{H}\{x(\cdot)\}(t) & \text{VIC} \\ y[n] = \mathcal{H}\{x[\cdot])\}[n] & \text{VID} \end{cases}$$

Sistema Lineal: es homogéneo y aditivo.

O de manera equivalente, satisface el

Principio de Superposición: para 2 constantes cualesquiera $a,b\in\mathbb{R}$ y dos entradas arbitrarias $x_1(t), x_2(t)\in\mathcal{C}_e$, se forma $x(t)=ax_1(t)+bx_2(t)$. Sean $y_1(t)=\mathcal{H}\{x_1(\cdot)\}(t)$ e $y_2(t)=\mathcal{H}\{x_2(\cdot)\}(t)$, entonces \mathcal{H} satisface el principio de superposición si cumple

$$y(t) = \mathcal{H}\{x(\cdot)\}(t) = ay_1(t) + by_2(t)$$

Similar para sistemas discretos

Convolución discreta 1

Ingredientes:

- Sistemas lineales discretos (manejan SVID) con operador
 H que satisface el principio de superposición. Tanto para SLID como SLVD.
- Representación de SVID en términos de impulsos

$$x[n] = \sum_{k=-\infty}^{\infty} x[n-k]\delta[k] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

▶ Aplicando \mathcal{H} , en la igualdad de la derecha se puede interpretar a $x[k]\delta[n-k]$ como una secuencia con un impulso en k de amplitud x[k].

$$y[n] = \mathcal{H}\left\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\right\}[n] = \sum_{k=-\infty}^{\infty} x[k]\mathcal{H}_{k}\{\delta[\cdot]\}[n]$$

Convolución discreta 2

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] \mathcal{H}_k \{\delta[\cdot]\}[n] =$$
$$= \sum_{k=-\infty}^{\infty} x[k] \bar{h}[n,k]$$

donde $\bar{h}[n, k]$ es la respuesta impulsional: la respuesta observada en el instante n a un impulso (de Kronecker) aplicado en el instante k.

Convolución discreta SVT

Ejemplo:

$$x[n] = \sum_{k=-1}^{1} x[k] \delta[n-k] \operatorname{con} x[-1] = -2, x[0] = 5, x[1] = 2$$

$$y[n] = \sum_{k=-1}^{1} x[k]\bar{h}[n,k]$$

Convolución discreta SVT

Invarianza al desplazamiento

Si se trata de un SLID,

$$\bar{h}[n,k] = \bar{h}[n-1,k-1] = \bar{h}[n-k,0]$$

y no es necesario que la respuesta impulsional tenga 2 índices.

Basta con describir la *separación* entre el instante de observación de la salida y el de aplicación de la delta:

$$\bar{h}[n-k,0] \triangleq h[n-k]$$

Convención: dar la h como si se aplicara la δ en n=0. Finalmente

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{m=-\infty}^{\infty} x[n-m]h[m]$$

Observe el *cambio de variables* en la suma: m = n - k

Notación: SLID
$$y[n] = \{x * h\}[n]$$

Convolución gráfica

Papeles deslizantes

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

- 1. Dibujar x[k] y dejar fija.
- 2. Obtener $h[\cdot]$.
- 3. Reflejar h[·].
- 4. Desplazar el origen de *h* al punto de observación *n*.
- 5. Multiplicar muestra a muestra y sumar, da y[n].
- 6. Repetir 4) y 5) hasta tener todos los puntos deseados.

Notar: roles intercambiables de x y h

$$y[n] = \sum_{m=-\infty}^{\infty} x[n-m]h[m]$$

Convolución gráfica

Por ejemplo, queremos y[-3]

Convolución gráfica – cont.

Si queremos y[0]

Si queremos y[5]

Causalidad

Duración de y: duración de x más duración de h menos 1.

Aplicando $\delta[n]$ (impulso en cero); la respuesta es h[n] = 0; n < 0. El SLID es causal \Leftrightarrow respuesta impulsional unilateral a derecha.

$$y[n] = \sum_{m=-\infty}^{\infty} x[n-m]h[m] = \sum_{m=0}^{\infty} x[n-m]h[m]$$
$$= \sum_{m=-\infty}^{\infty} h[n-m]x[m] = \sum_{m=-\infty}^{n} h[n-m]x[m]$$

Si además, x[n] fuera unilateral a derecha ($x[n] \equiv 0$; n < 0)

$$y[n] = \sum_{m=0}^{n} h[n-m]x[m]$$

Convolución continua

Ingredientes:

- Sistemas lineales continuos (manejan SVIC) con operador H que satisface el principio de superposición. Tanto para SLIT como SLVT.
- Representación de SVIC en términos de impulsos

$$x(t) = \int_{-\infty}^{\infty} x(\sigma) \delta(t - \sigma) d\sigma$$

▶ Aplicando \mathcal{H} se puede interpretar a $x(\sigma)\delta(t-\sigma)$ como una señal con un impulso (Dirac) en σ de área $x(\sigma)$

$$y(t) = \mathcal{H}\left\{x(\cdot)\right\}(t) = \mathcal{H}\left\{\int_{-\infty}^{\infty} x(\sigma)\delta(t-\sigma)\,d\sigma\right\}(t)$$

• Más hipótesis adicionales, definiendo $\bar{h}(t,\sigma) = \mathcal{H}_{\sigma}\{\delta(\cdot)\}(t)$.

Convolución continua 2

Resulta:

$$y(t) = \int_{-\infty}^{\infty} x(\sigma) \bar{h}(t, \sigma) d\sigma$$

▶ SLIT: $\bar{h}(t, \sigma) \triangleq h(t - \sigma)$ luego

$$y(t) = \int_{-\infty}^{\infty} x(\sigma)h(t-\sigma)d\sigma = \int_{-\infty}^{\infty} h(\lambda)x(t-\lambda)d\lambda$$

► Causalidad: $h(t) \equiv 0$; t < 0 luego

$$y(t) = \int_{-\infty}^{t} x(\sigma)h(t-\sigma)d\sigma = \int_{0}^{\infty} h(\lambda)x(t-\lambda)d\lambda$$

> si además la señal de entrada se aplica en cero, o sea es unilateral a derecha, $x(t) \equiv 0$; t < 0

$$y(t) = \int_0^t x(\sigma)h(t-\sigma)d\sigma = \int_0^t h(\lambda)x(t-\lambda)d\lambda$$

SLIT - Convolución gráfica

Papeles deslizantes

$$y(t) = \int_{-\infty}^{t} x(\sigma)h(t-\sigma)d\sigma$$

- 1. Dibujar x(t) y dejar fija.
- 2. Obtener $h(\cdot)$.
- 3. Reflejar $h(\cdot)$.
- 4. Desplazar el origen de h al punto de observación t.
- 5. Multiplicar punto a punto e integrar, da y(t).
- 6. Repetir 4) y 5) hasta tener todos los puntos deseados.

Notar: roles intercambiables de x y h

$$y(t) = \int_0^\infty h(\sigma)x(t-\sigma)d\sigma$$

Propiedades de la Convolución

Válidas tanto para SLIT como SLID:

Conmutativa: $y = \{x * h\} = \{h * x\}$. Intercambiabilidad entre respuesta impulsional y entrada.

Asociativa:

$$y_2 = \{x * h_1 * h_2\} = \{\underbrace{\{x * h_1\}}_{y_1} * h_2\} = \{x * \underbrace{\{h_1 * h_2\}}_{h}\}.$$
 $h = h_1 * h_2 = h_2 * h_1$ es el sistema equivalente a uno serie.

Distributiva: $y = \{x * \underbrace{\{h_1 + h_2\}}\} = \underbrace{\{x * h_1\}}_{y_1} + \underbrace{\{x * h_2\}}_{y_2}\}.$ $h = h_1 + h_2 \text{ es el sistema equivalente a un paralelo.}$

Estabilidad de SLID 1

Teorema: Un SLID es estable en sentido EA/SA sii su respuesta impulsional es absolutamente sumable; es decir

existe
$$0 < K_h < \infty$$
 tal que $\sum_{k=-\infty}^{\infty} |h[k]| \le K_h$

Demostración: 1) "ida" y 2) "vuelta".

1) h abs. sumable es suficiente:

Sea una entrada acotada por $0 < K_e < \infty$, o sea $|x[n]| \le K_e$ para todo n. El módulo de la salida es

$$|y[n]| = \left| \sum_{k=-\infty}^{\infty} x[k]h[n-k] \right| \le \sum_{k=-\infty}^{\infty} |x[k]||h[n-k]| \le K_e \left(\sum_{k=-\infty}^{\infty} |h[n-k]| \right) \le K_e K_h$$

tomando $K_V = K_e K_h$ la salida resulta acotada.

Estabilidad de SLID 2

2) h abs. sumable es necesaria: sistema EA/SA $\Rightarrow h$ es abs. sumable.

 \Leftrightarrow h NO es abs. sumable \Rightarrow sistema NO es EA/SA.

Mostraremos una entrada acotada que, suponiendo que h NO es abs. sumable, dará y[n] no acotada.

Sea $x[n] \triangleq h[-n]/|h[-n]|$ luego $|x[n]| \leq K_e = 1$ para todo n. Observemos la salida en n = 0

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[0-k] = \sum_{k=-\infty}^{\infty} \frac{h[-k]}{|h[-k]|}h[-k]$$
$$= \sum_{k=-\infty}^{\infty} |h[-k]|$$

que no está acotada por hipótesis. Hemos encontrado que la salida en el instante n=0 no está acotada con una entrada acotada. Por lo tanto, el sistema no es estable EA/SA.

Estabilidad de SLIT 1

Paralelo a SLID:

Teorema: Un SLIT es estable en sentido EA/SA sii su respuesta impulsional es absolutamente integrable, es decir,

existe un
$$0 < K_h < \infty$$
 tal que $\int_{-\infty}^{\infty} |h(\tau)| d\tau \le K_h$

Demostración: similar a la de SLID.

Repase las ideas de la demostración para SLID, haciendo ésta para SLIT.

¿Y si el sistema fuera VT (tanto C como D)?

Ecuaciones diferenciales - 1

SLIT – ecns diferenciales ordinarias de coeficientes constantes (EDOLCC)

Forma general:

$$\sum_{i=0}^{N} a_i \frac{d^i y(t)}{dt^i} = \sum_{j=0}^{M} b_j \frac{d^j x(t)}{dt^j}$$

- Demuestre linealidad e invarianza en el tiempo.
- ▶ Restricciones técnicas $N \ge M$, diferenciabilidad de x(t).
- Aún si x(t) es unilateral a derecha de t_0 la EDOLCC se integra para $t \ge t_0$ por causalidad.
- ▶ *PERO* también se pueden integrar para $t \le t_0$.
- ► Condiciones iniciales CI $y(t_0), \frac{dy}{dt}(t_0), \frac{d^2y}{dt^2}(t_0), ..., \frac{d^{N-1}y}{dt^{N-1}}(t_0)$

Ecuaciones diferenciales - 2

- La solución de las EDOLCC es $y(t) = y_{homogenea}(t) + y_{particular}(t)$
- $y_h \equiv 0$ si las CI son nulas.
- y_p es la solución particular, da el término forzado o sea la convolución de x con la respuesta impulsional h.
- Note que y_p incluye tanto régimen transitorio como régimen permanente.
- La respuesta impulsional h(t) se obtiene resolviendo

$$\sum_{i=0}^{N} a_i \frac{d^i h(t)}{dt^i} = \sum_{j=0}^{M} b_j \delta^{(j)}(t)$$

con condiciones iniciales nulas.

- ▶ Usando la transformada \mathcal{L} de Laplace: $H(s) = \mathcal{L}\{h\}(s)$.
- ► Transferencia H(s) racional, es decir $\frac{b(s)}{a(s)}$ donde $a(\cdot)$, $b(\cdot)$ son polinomios en la variable de Laplace s.

Ecuaciones en diferencias - 1

SLID – ecns en diferencias lineales de coeficientes constantes (EDILCC)

Forma general:

$$\sum_{i=0}^{N} a_{i}y[n-i] = \sum_{j=0}^{M} b_{j}x[n-j]$$

- Demuestre linealidad e invarianza al deslizamiento.
- Aún si x[n] es unilateral a derecha de n_0 la EDILCC se "integra" para $n \ge n_0$ por causalidad.
- ▶ *PERO* también se pueden "integrar" para $n \le n_0$.
- ► Condiciones iniciales CI $y[n_0 1]$, $y[n_0 2]$, ..., $y[n_0 N]$.
- La solución de las EDILCC es $y[n] = y_{homogenea}[n] + y_{particular}[n] = y_h[n] + y_p[n]$

Ecuaciones en diferencias – 2

- $y_h \equiv 0$ si las CI son nulas.
- y_p es la solución particular, da el término forzado o sea la convolución de x con la respuesta impulsional h.
- ► Note que *y_p* incluye tanto régimen transitorio como régimen permanente.
- ► La respuesta impulsional *h*[*n*] se obtiene resolviendo

$$\sum_{i=0}^{N} a_i h[n-i] = \sum_{j=0}^{M} b_j \delta[n-j]$$

con CI nulas h[-1] = 0, h[-2] = 0, ..., h[-N] = 0.

ver resolverla es muy "sencillo"!!

$$h[n] = \frac{1}{a_0} \left\{ -\sum_{i=1}^{N} a_i h[n-i] + \sum_{j=0}^{M} b_j \delta[n-j] \right\}$$

Ecuaciones en diferencias - 3

- ▶ hagamos $a_0 = 1$ por simplicidad
- fácil, pero laborioso:

$$h[0] = -0 + b_0 = b_0$$

$$h[1] = -a_1b_0 + b_1$$

$$h[2] = -a_1(-a_1b_0 + b_1) + b_2 = a_1^2b_0 - a_1b_1 + b_2$$
.....

y así siguiendo...

- ▶ Veremos transformada \mathcal{Z} y calcularemos $H(z) = \mathcal{Z}\{h\}(z)$.
- ▶ H(z) resultará la transferencia discreta del SLID y resulta *racional*, es decir $\frac{b(z)}{a(z)}$ donde $a(\cdot)$, $b(\cdot)$ son polinomios en la variable z.

Ecuaciones de estado

1. Para SLIT

$$\begin{cases} \dot{s}(t) = As(t) + Bx(t) \\ y(t) = Cs(t) + Dx(t) \end{cases}$$

- ▶ con CI $s(t) = s_0$.
- ▶ $s \in \mathbb{R}^N$ y A es de $N \times N$, B de $N \times 1$ y C de $1 \times N$.
- 2. Para SLID

$$\begin{cases} s[n+1] = Fs[n] + Gx[n] \\ y[n] = Hs[n] + Dx[n] \end{cases}$$

- ► con CI $s[0] = s_0$.
- ▶ con $p = \max\{N, M\}$, $s \in \mathbb{R}^p$ y F es de $p \times p$, G de $p \times 1$ y H de $1 \times p$.

Diagramas en bloque - SLID - Elementos

D: "delay" o retardo

Diagramas en bloque - SLID - Ejemplo 1

Respuesta impulsional finita (en inglés FIR, por *finite impulse response*):

$$y[n] = b_0x[n] + b_1x[n-1]$$

Respuesta impulsional: $h[0] = b_0$; $h[1] = b_1$; h[2] = 0 y h[n] = 0; $n \ge 2$.

Diagrama en bloque:

Generalización: SLID con N = 0 y M > 0, se denota MA o de "promedios móviles" (en inglés)

Diagramas en bloque - SLID - Ejemplo 2

Respuesta impulsional infinita (en inglés IIR, por *infinite impulse response*):

$$y[n] - ay[n-1] = b_0x[n]$$

Respuesta impulsional: $h[0] = b_0$; $h[1] = ab_0$; $h[2] = a^2b_0$ y $h[n] = a^nb_0$; $n \ge 0$.

Diagrama en bloque:

Generalización: SLID con N > 0 y M = 0, se denota AR o "auto-regresivo"

Diagramas en bloque - SLID - Ejemplo 3

Respuesta impulsional infinita (IIR):

$$a_0y[n] + a_1y[n-1] = b_0x[n] + b_1x[n-1] \Rightarrow$$

$$\Rightarrow y[n] = \frac{1}{a_0} \{-a_1y[n-1] + b_0x[n] + b_1x[n-1]\}$$

Resp. impulsional: $h[0] = \frac{b_0}{a_0}$; $h[1] = \frac{-a_1b_0}{a_0^2} + \frac{b_1}{a_0}$; $h[2] = \dots$

Diagrama en bloque:

Generalización: SLID con N > 0 y M > 0, se denota ARMA o "autorregresivo – promedios móviles" (en inglés).

Diagramas en bloque - SLID - General 1

Respuesta impulsional infinita:

$$y[n] = \frac{1}{a_0} \left(-\sum_{i=1}^{M} a_i y[n-1] + w[n] \right)$$
$$w[n] = \sum_{i=0}^{M} b_i x[n-1]$$

Diagrama en bloque: Realización tipo I

Diagramas en bloque - SLID - General 2

Usando conmutatividad

Los bloques correspondientes de cada columna llevan la misma señal: ¡juntémoslos!.

Diagramas en bloque - SLID - General 3

Realización tipo II

Menor número de retardos (estados). ¿Es el mínimo? (a Control Moderno).

Diagramas en bloque - SLIT

De manera totalmente similar con *sumas* y *multiplicadores* por constantes.

En lugar de retardos irían diferenciadores ⇒ "ruidosos".

Se usan integradores

$$x(t) \qquad \qquad \int \qquad y(t) = \int_{-\infty}^{t} x(\lambda) \, d\lambda$$

Diagramas en bloque - SLIT - General

