

Corrigé examen final

INF2010

Sigle du cours

	taenajication de t etadiani(e)									
Nom:				Prénom	ı :					
Signatu	ire:			Matricu	ıle :		Groupe:			
	Sig	gle et titre du c	cours				Groupe	Trimestre		
II	NF2010 – Struc	tures de doni	nées et	t algorith	nmes		Tous	20141		
		Professeur					Local	Téléphone		
Ettor	re Merlo, respo	nsable / Tare	k Oulo	d Bachir	, chargé		M-5028	7128 / 5193		
	Jour	D	ate			Dur	ée	Heures		
	Samedi	19 avı	ril 201	4		2h3	30	13h30-16h00		
	Documentation Calculatrice									
⊠ Auc	eune		☐ A	ucune			T			
Tou	te		Т	outes			Les cellulaires, électroniques o	, agendas ou téléavertisseurs		
⊠ Voi	r directives parti	culières	⊠N	lon progr	ammable		sont interdits.			
			Direc	ctives par	ticulières					
		outes vos re	épons	ses doiv	ent être fa	aites	s sur le que	cahier comme stionnaire. Le		
nt	Cet examen contient 6 questions sur un total de 15 pages (excluant cette page)									
orta	La pondération de cet examen est de 40 %									
Important	Vous devez rép	oondre sur :	⊠ le qı	uestionna	aire 🗌 le ca	ahier	les deux			
I	Vous devez remettre le questionnaire : 🖂 oui 🗌 non									

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

Question 1 : Monceaux

(20 points)

Pour cette question, vous pouvez vous référez au code Java de l'Annexe 1.

a) (2 pts) Dessinez le monceau contenu en mémoire dans le tableau ci-après. Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

Indice	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Contenu	-	14	21	18	36	35	27	42	70	45	63	90	63	81	49	56

Votre réponse :

- b) Considérez la fonction changeKey(int location, int newKey) donnée à l'Annexe 1 permettant de modifier la clé d'une entrée du monceau.
- b.1) (2 pts) Quelle est la complexité asymptotique de cette fonction en pire cas ? Justifiez clairement votre réponse. Une réponse non justifiée ne sera pas considérée.

En pire cas, cette fonctions a une complexité $O(\lg(n))$ car la percolation vers le bas et l'insertion ont un pire cas en $O(\lg(n))$.

b.2) (2 pts) Quelle est la complexité asymptotique de cette fonction en meilleur cas ? Justifiez clairement votre réponse. Une réponse non justifiée ne sera pas considérée.

En meilleur cas, cette fonctions a une complexité O(1) car la percolation vers le bas et l'insertion ont un meilleur cas en O(1). Ce cas survient par exemple lorsqu'on change la clé de la dernière entrée pour une clé supérieure ou égale à sa clé courante.

c) (3 pts) En vous fiant au code donné à l'Annexe 1, dessinez le monceau résultant de l'appel : BinaryHeap (values 1, true)

Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau. Le tableau values_1est le suivant:

Indice	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Contenu	36	18	45	81	63	27	90	70	21	35	42	63	14	49	56

Monceau résultant :

d) (3 pts) En vous fiant au code donné à l'Annexe 1, dessinez le monceau résultant de l'appel : BinaryHeap (values 1, false)

Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

Le tableau values_1 est le suivant:

Indice	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Contenu	36	18	45	81	63	27	90	70	21	35	42	63	14	49	56

Monceau résultant :

- e) Dessinez l'état du monceau de la question 1.c) suite à deux appels consécutifs à deleteRoot():
 - e.1) (1 pts) Monceau résultant du premier deleteRoot(). Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

e.2) (1 pts) Monceau résultant du second deleteRoot(). Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

- f) Dessinez l'état du monceau de la question 1.d) suite à deux appels consécutifs à deleteRoot():
 - f.1) (1 pts) Monceau résultant du premier deleteRoot(). Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

f.2) (1 pts) Monceau résultant du second deleteRoot(). Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

g) (4 pts) Exécutez changeKey(15, 15) sur le monceau suivant construit après un appel : BinaryHeap(values_2). Indiquez dans les cases les valeurs de value et key de l'objet Entry contenues dans le monceau.

Le tableau values_2 est le suivant:

Indice	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Contenu	15	16	15	30	29	15	16	31	30	30	39	16	15	16	17

Question 2: Recherche de patron

(14 points)

On vous demande de retrouver le patron P[1:8] =« eenne » dans un texte.

a) (4 pnts) Dessiner le diagramme d'états de l'automate à états finis permettant de ce faire :

Les arcs non représentés renvoient à 0

b) (4 pnts) Donner la table de transitions de l'automate recherché.

q∖a	e	n	Autre
0	1	0	0
1	2	0	0
2	2	3	0
3	1	4	0
4	5	0	0
5	2	0	0

c) (6 pts) Quels seront respectivement le ou les états les plus visités et le ou les états les moins visités par l'automate une fois arrivé à la fin tu texte suivante.

T[1:34] = « eeeeeeeennneneeeenneeenneee»

Aidez-vous de la table suivante:

T[i]	e	e	e	e	e	e	e
q	1	2	2	2	2	2	2
T[i]	e	n	n	n	e	n	e
q	2	3	4	0	1	0	1
T[i]	e	e	e	e	n	n	e
q	2	2	2	2	3	4	5
T[i]	e	e	e	n	n	e	e
q	2	2	2	3	4	5	2
T[i]	e	n	n	e	e	e	
q	2	3	4	5	2	2	

Le ou les états les plus visités : 2, visité 18 fois

Le ou les états les moins visités : 0. visité 2 fois, (Autre réponse acceptée, 0 1 et 5, visités 3 fois si on considère l'état initial de l'automate)

Question 3: Programmation dynamique

(15 points)

a) (10 points) En utilisant l'algorithme vu en classe, donnez la longueur de la PLSC des séquences de caractères X = "abcbcaacbabc" et Y = "bbacbabcbcabca".

Aidez-vous du tableau donné ci-après. Inscrivez votre réponse à la page suivante.

X\Y		a	b	c	b	c	a	a	c	b	a	b	c
	0	0	0	0	0	0	0	0	0	0	0	0	0
b	0	H, 0	D, 1	G, 1	D, 1					D, 1		D, 1	
b	0		D, 1		D, 2	G, 2				D		D	
a	0	D, 1	Н, 1				D, 3	D			D		
c	0			D, 2		D, 3	Н, 3		D				D
b	0		D		D, 3	G, 3	Н, 3			D		D	
a	0	D					D	D, 4			D		
b	0		D		D			Н, 4		D		D	
c	0			D		D			D, 5				D
b	0		D		D					D, 6		D	
c	0			D		D			D	Н, 6			D
a	0	D					D	D			D, 7		
b	0		D		D					D		D, 8	
c	0			D		D			D				D, 9
a	0	D					D	D			D		Н, 9

Longueur de la PLSC : bbaacbabc

PLCS trouvée: 9

b) (5 pts) Il existe une autre PLSC pour les séquences X et Y que celle trouvée à la question 3.a. Donnez-la:

2^e PLCS: bcbacbabc

3^e PLCS: acbacbabc

Question 4: Programmation dynamique

(20 points)

On désire trouver le parenthésage idéal pour multiplier les matrices A_1 à A_5 permettant de minimiser le nombre de multiplications (scalaires) à effectuer. Les matrices sont dimensionnées comme suit :

$$A_1: 2 \times 1$$
; $A_2: 1 \times 1$; $A_3: 1 \times 3$; $A_4: 3 \times 1$; $A_5: 1 \times 6$

Considérez les tables **m** et **s** obtenue par l'exécution de l'algorithme dynamique vu en cours.

m	1	2	3	4	5
1	0	2	8	12	24
2		0	3	10	16
3			0	3	15
4				0	18
5					0

s	1	2	3	4	5
1		1	2	1	4
2			2	2	4
3				3	4
4					4
5					

Compléter cette table pour répondre aux questions suivantes :

 $\underline{Rappel}: m[i,j] = min\{m[i,k] + m[k+1,j] + p_{i-1}p_k, p_j \} \ pour \ k = i \ \grave{a} \ j-1, \ sachant \ que \ la \ matrice \ A_i \ a \ une \ dimension \ p_{i-1} \ x \ p_i.$

a) (3 pts) Donnez le parenthésage optimal pour multiplier A₁ à A₃. Donnez son coût.

Parenthésage optimal: (A_1 A_2) A_3

Coût: 8

b) (4 pts) Donnez le parenthésage optimal pour multiplier A₁ à A₄. Donnez son coût.

Parenthésage optimal: A_1 (A_2 (A_3 A_4))

Coût: 12

c) (5 pts) Donnez le parenthésage optimal pour multiplier A₁ à A₅. Donnez son coût.

Parenthésage optimal: (A_1 (A_2 (A_3 A_4)) A_5

Coût: 24

d) (8 pts) Si A_1 , A_2 et A_3 étaient des matrices 2×2 , 2×3 et 3×3 respectivement, quel serait le parenthésage optimal pour multiplier A_1 à A_4 ? Quel serait son coût? Aidez-vous des matrices suivantes pour répondre à la question.

m	1	2	3	4	5
	•	_		_	
1	0	12	30	19	
2		0	18	15	
3			0	9	
4				0	
5					0

s	1	2	3	4	5
1		1	2	1	
2			2	2	
3				3	
4					4
5					

Parenthésage optimal: A_1 (A_2 (A_3 A_4)

Coût: 19

Question 5: Ordre topologique

(13 points)

a) (7 pts) Donnez l'ordre topologique du graphe suivant en appliquant l'algorithme utilisant une file vu en classe.

$$V = \{A, B, C, D, E, F, G\}$$

$$E = \{(A, D), (C, F), (D, F), (D, G), (E, B), (E, C)\}$$

Nœud	1	2	3	4	5	6	7
A	0	-	-	-	-	-	-
В	1	1	0	•	-	•	•
С	1	1	0	•	-	•	•
D	1	0	-	-	-	-	-
Е	0	-	-	-	-	-	-
F	2	2	2	1	1	0	•
G	1	1	1	0	-	•	•
Entrée	A, E	D	B, C	G	-	F	-
Sortie	A	E	D	В	C	G	F

Ordre trouvé (débuter la numérotation à 1):

Nœud	A	В	C	D	Е	F	G	
Ordre:	1	4	5	3	2	7	6	

b) (6 pts) Ce graphe admet au moins trois autres ordres topologiques. Donnez-les. D'autres tables vous sont fournies à l'Annexe 2. Utilisez-les si nécessaire.

Ordre alternatif #1:

Nœud	A	В	С	D	Е	F	G
Ordre:	1	5	4	3	2	6	7

Ordre alternatif #2:

Nœud	A	В	С	D	Е	F	G
Ordre:	2	3	4	5	1	6	7

Ordre alternatif #3:

Nœud	A	В	С	D	Е	F	G
Ordre:	2	4	3	5	1	6	7

Question 6: Arbre sous-tendant minimum

(18 points)

Donnez les arbres sous-tendant minimum obtenus par les algorithmes de Boruvka, Prim (le noeud de départ étant A) et de Kruskal. Respectez l'ordre alphabétique pour effectuer vos traitements (pour visiter les composantes, les nœuds voisins ou les arêtes). Utilisez les tables fournies pour ce faire (le remplissage des tables compte dans l'attribution des points pour la question, sauf dans Boruvka ou seule la réponse finale compte).

Par Boruvka:

Par Prim:

Prim:

Nœud	Distance	Parent	Connu?
A	∞ , 0	-	√
В	∞, 1	A	V
С	∞, 1	В	V
D	∞, 1	C	√
Е	∞, 1	A	V
F	∞, 2	В	√
G	∞, 1	C	√
Н	∞, 1	D	\checkmark
I	∞, 1	E	√
J	∞, 2	G	√
K	∞, 1	G	√
L	∞, 2, 1	G, H	√

Par Kruskal:

Kruskal:

Arête	Poids	Retenue?
(A,B)	1	$\sqrt{}$
(A,E)	1	V
(B, C)	1	V
(B, F)	2	V
(C, D)	1	V
(C, G)	1	V
(D, H)	1	V
(E, F)	2	
(E, I)	2	1
(E, J)	2	
(F, G)	2	
(F, J)	2	
(G, H)	1	
(G, J)	1	
(G, K)	1	V
(G, L)	2	
(H, L)	1	V
(I, J)	2	
(J, K)	1	
(K, L)	1	