

# CS 615 – Deep Learning

**Basic Architectures** 

Slides adapted from material created by E. Alpaydin Prof. Mordohai, Prof. Greenstadt, Pattern Classification (2<sup>nd</sup> Ed.), Pattern Recognition and Machine Learning



## Objectives

- Example architectures:
  - Regression (linear regression)
  - Binary Classification (logistic classification)
  - Multi-Class Classification
  - ANNs/MLPs



#### Linear Regression Architecture

- Let's actually start building, optimizing (learning/training), and using some common architectures.
- We'll start off with one called linear regression.
- Linear regression is used to compute a continuous value is as the weighed some of the inputs.
- To that end, its architecture is as follows:
  - Input layer.
  - Fully connected layer with one output.
  - Squared error objective function.





#### Linear Regression

- Let's perform forward-backwards propagation on this architecture using batched gradient learning.
- We will assume we have an observation matrix X that has N observations, with D features per observation (so X is a  $N \times D$  matrix) and that we have a column vector of target values, Y.
- Let's start with forward propagation!
  - $H^{(1)} = Input(X)$ 
    - $H^{(1)}$  is a  $N \times D$  matrix z-scored with the training data
  - $H^{(2)} = FC(H^{(1)}) = H^{(1)}W + b$ 
    - $H^{(2)}$  is now a  $N \times 1$  matrix
  - $\hat{Y} = H^{(2)}$ 
    - All done forward propagating. Of course,  $\widehat{Y}$  is also a  $N \times 1$  matrix.



#### Linear Regression

- Time to backwards propagate!
- Output layer:

• 
$$\delta = \frac{\partial J}{\partial \hat{Y}} = 2(\hat{Y} - Y)$$

- $\delta$  is now a  $N \times 1$  matrix
- Fully connected layer

• 
$$\frac{\partial J}{\partial W} = \delta \cdot \frac{\partial \hat{Y}}{\partial W}$$

- But we'll compute  $\frac{\partial J}{\partial W}$  as  $\frac{\partial J}{\partial W} = \frac{1}{N} H^{(1)}^T \delta \in \mathbb{R}^{D \times 1}$
- Update  $W = W + \eta \left( -\frac{\partial J}{\partial W} \right)$



#### Linear Regression

#### Continued from prior slide

• 
$$\frac{\partial J}{\partial b} = \delta \cdot \frac{\partial \hat{Y}}{\partial b}$$

- Again, since we're doing a batch, we'll compute it  $\frac{\partial J}{\partial b}$  as the mean of  $H^{(1)}$  over the observations.
- Update  $b = b + \eta \left( -\frac{\partial J}{\partial b} \right)$

• 
$$\delta = \delta \cdot \frac{\partial \hat{Y}}{\partial X} = \delta \cdot W^T$$

- Since  $\delta$  is a  $N \times 1$  matrix and  $W^T$  is a  $1 \times D$  matrix, this is a  $N \times D$  matrix
- Now we're at the input layer, so we're all done!



#### Linear Regression Example

- Let's do an example an actual quantitative!
- We are given exam data for 25 students.
- This data includes their score on exam 1, exam 2, exam 3, and the final exam.
- Our goal is to build a system that can take the exam 1, exam 2, exam 3 data a predict the final exam score.
- Since the final exam score is continuous, this is a regression problem.
- Model:

 $Final = w_1Exam1 + w_2Exam2 + w_3Exam3 + b$ Note: Final exam out of 200

| 73 | 80 | 75  | 152 |
|----|----|-----|-----|
| 93 | 88 | 93  | 185 |
| 89 | 91 | 90  | 180 |
| 96 | 98 | 100 | 196 |
| 73 | 66 | 70  | 142 |
| 53 | 46 | 55  | 101 |
| 69 | 74 | 77  | 149 |
| 47 | 56 | 60  | 115 |
| 87 | 79 | 90  | 175 |
| 79 | 70 | 88  | 164 |
| 69 | 70 | 73  | 141 |
| 70 | 65 | 74  | 141 |
| 93 | 95 | 91  | 184 |
| 79 | 80 | 73  | 152 |
| 70 | 73 | 78  | 148 |
| 93 | 89 | 96  | 192 |
| 78 | 75 | 68  | 147 |
| 81 | 90 | 93  | 183 |
| 88 | 92 | 86  | 177 |
| 78 | 83 | 77  | 159 |
| 82 | 86 | 90  | 177 |
| 86 | 82 | 89  | 175 |
| 78 | 83 | 85  | 175 |
| 76 | 83 | 71  | 149 |
| 96 | 93 | 95  | 192 |
|    |    |     |     |

EXAM3

**FINAL** 

EXAM1

EXAM2



## Example

- Validation Set: The first 8 samples
- Training Set: The rest (next 17 samples)
- Settings:
  - Seed the random number generate to zero (for reproducibility and debugging)
  - Z-score the data
  - Initialize each parameter to some random number in the range of  $\pm 10^{-4}$
  - Use full batch gradient descent
  - Use learning rate of  $\eta = 10^{-3}$
  - Terminate when change in objective function (SE) is  $< 10^{-4}$

| 73 | 80 | 75  | 152 |
|----|----|-----|-----|
| 93 | 88 | 93  | 185 |
| 89 | 91 | 90  | 180 |
| 96 | 98 | 100 | 196 |
| 73 | 66 | 70  | 142 |
| 53 | 46 | 55  | 101 |
| 69 | 74 | 77  | 149 |
| 47 | 56 | 60  | 115 |
| 87 | 79 | 90  | 175 |
| 79 | 70 | 88  | 164 |
| 69 | 70 | 73  | 141 |
| 70 | 65 | 74  | 141 |
| 93 | 95 | 91  | 184 |
| 79 | 80 | 73  | 152 |
| 70 | 73 | 78  | 148 |
| 93 | 89 | 96  | 192 |
| 78 | 75 | 68  | 147 |
| 81 | 90 | 93  | 183 |
| 88 | 92 | 86  | 177 |
| 78 | 83 | 77  | 159 |
| 82 | 86 | 90  | 177 |
| 86 | 82 | 89  | 175 |
| 78 | 83 | 85  | 175 |
| 76 | 83 | 71  | 149 |
| 96 | 93 | 95  | 192 |
|    |    |     |     |

EXAM3

EXAM1

EXAM2

**FINAL** 



#### Results

• Model:

$$Final = 3.81Exam1 + 4.45Exam2 + 10.17Exam3 + 166.51$$

- Number of epochs: 4,537
- Final training mean squared error: 5.89
- Final validation mean squared error: 8.55





### **Evaluating Regression**

- While we're at it, let's talk a little more about reporting error for regression.
- Using the mean of the squared error isn't that logical/natural.
- Instead, we typically think of the square root of this.
- This is known as the *root mean squared error (RMSE)*:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2} = \sqrt{\frac{1}{N} (Y - \widehat{Y})^T (Y - \widehat{Y})}$$

• If we're interested in a scale-independent metric, perhaps we look at the mean absolute percent errors:

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{Y_i - \widehat{Y}_i}{Y_i} \right|$$



• The next common architecture we'll look at is logistic regression.

• Logistic regression is commonly used for binary classification.

• Its architecture consists of:

Input Layer

Fully Connected Layer (single output)

Logistic Activation Layer

Log Loss Objective Function

 Let's do a similar exercise to what we just did!





- We'll once again do batch gradient learning and our X and Y matrices will have the same shapes.
- However, now our Y matrix will have values of either zero or one (for binary classification)
- Ok, off to forward propagation!
  - $H^{(1)} = Input(X)$ 
    - $H^{(1)}$  is a  $N \times D$  matrix z-scored with the training data
  - $H^{(2)} = FC(H^{(1)}) = H^{(1)}W + b$ 
    - $H^{(2)}$  is now a  $N \times 1$  matrix
  - $H^{(3)} = Sigmoid(H^{(2)})$ 
    - $H^{(3)}$  has the same shape as  $H^{(2)}$ , i.e  $N \times 1$
  - $\hat{Y} = H^{(3)}$ 
    - All done forward propagating. Of course,  $\hat{Y}$  is also a  $N \times 1$  matrix.



- Time to backwards propagate!
- Output layer:

• 
$$\delta = \frac{\partial J}{\partial \hat{Y}} = \frac{1 - Y}{1 - \hat{Y}} - \frac{Y}{\hat{Y}}$$

- $\delta$  is now a  $N \times 1$  matrix
- Logistic/Sigmoid activation layer

• 
$$\delta = \delta \circ \frac{\partial H^{(3)}}{\partial H^{(2)}}$$

• Since  $\delta \in \mathbb{R}^{N \times 1}$  and  $\frac{\partial H^{(3)}}{\partial H^{(2)}} \in \mathbb{R}^{N \times 1}$ , when we do the Hadamard product, we get a matrix  $\in \mathbb{R}^{N \times 1}$ 



- Fully connected layer
  - Update the weights:

• 
$$\frac{\partial J}{\partial W} = \frac{1}{N} H^{(1)^T} \cdot \delta$$

- Since  $H^{(1)}^T$  is a  $D \times N$  matrix and  $\delta$  is a  $N \times 1$  matrix, this is a  $D \times 1$  matrix
  - NOTE: This is the same size as W!
  - NOTE: This multiplication did the sum of the gradients for us!

• Update 
$$W = W + \eta \left( -\frac{\partial J}{\partial W} \right)$$

• 
$$\frac{\partial J}{\partial b} = \frac{1}{N} \sum_{n=1}^{N} \delta_n$$

• Where  $\delta_n$  is the  $n^{th}$  row of the incoming gradient.

• Update 
$$b = b + \eta \left( -\frac{\partial J}{\partial b} \right)$$

• 
$$\delta = \delta \cdot W^T$$

- Since  $\delta$  is a  $N \times 1$  matrix and  $W^T$  is a  $1 \times D$  matrix, this is a  $N \times D$  matrix
- Now we're at the input layer, so we're all done!



## Logistic Regression Example

• Let's classifying whether a person will buy a product or not

|      | Y   | X-Variables |        |         |         |           |           |       |        |
|------|-----|-------------|--------|---------|---------|-----------|-----------|-------|--------|
|      |     |             |        |         |         |           | (Omit-    | Prev  | Prev   |
| Obs. |     |             | Is     | Is      | Has     | Is Pro-   | ted Vari- | Child | Parent |
| No.  | Buy | Income      | Female | Married | College | fessional | ables)    | Mag   | Mag    |
| 1    | 0   | 24000       | 1      | 0       | 1       | 1         |           | 0     | 0      |
| 2    | 1   | 75000       | 1      | 1       | 1       | 1         |           | 1     | 0      |
| 3    | 0   | 46000       | 1      | 1       | 0       | 0         |           | 0     | 0      |
| 4    | 1   | 70000       | 0      | 1       | 0       | 1         |           | 1     | 0      |
| 5    | 0   | 43000       | 1      | 0       | 0       | 0         |           | 0     | 1      |
| 6    | 0   | 24000       | 1      | 1       | 0       | 0         |           | 0     | 0      |
| 7    | 0   | 26000       | 1      | 1       | 1       | 0         |           | 0     | 0      |
| 8    | 0   | 38000       | 1      | 1       | 0       | 0         |           | 0     | 0      |
| 9    | 0   | 39000       | 1      | 0       | 1       | 1         |           | 0     | 0      |
| 10   | 0   | 49000       | 0      | 1       | 0       | 0         |           | 0     | 0      |
| -    |     |             | -      |         | -       |           |           | -     |        |
| -    |     |             |        |         |         |           |           | -     |        |
| -    | -   |             | -      |         | -       | -         |           | -     |        |
| 654  | 0   | 10000       | 1      | 0       | 0       | 0         |           | 0     | 0      |
| 655  | 1   | 75000       | 0      | 1       | 0       | 1         |           | 0     | 0      |
| 656  | 0   | 72000       | 0      | 0       | 1       | 0         |           | 0     | 0      |
| 657  | 0   | 33000       | 0      | 0       | 0       | 0         |           | 0     | 0      |
| 658  | 0   | 58000       | 0      | 1       | 1       | 1         |           | 0     | 0      |
| 659  | 1   | 49000       | 1      | 1       | 0       | 0         |           | 0     | 0      |
| 660  | 0   | 27000       | 1      | 1       | 0       | 0         |           | 0     | 0      |
| 661  | 0   | 4000        | 1      | 0       | 0       | 0         |           | 0     | 0      |
| 662  | 0   | 40000       | 1      | 0       | 1       | 1         |           | 0     | 0      |
| 663  | 0   | 75000       | 1      | 1       | 1       | 0         |           | 0     | 0      |
| 664  | 0   | 27000       | 1      | 0       | 0       | 0         |           | 0     | 0      |
| 665  | 0   | 22000       | 0      | 0       | 0       | 1         |           | 0     | 0      |
| 666  | 0   | 8000        | 1      | 1       | 0       | 0         |           | 0     | 0      |
| 667  | 1   | 75000       | 1      | 1       | 1       | 0         |           | 0     | 0      |
| 668  | 0   | 21000       | 0      | 1       | 0       | 0         |           | 0     | 0      |
| 669  | 0   | 27000       | 1      | 0       | 0       | 0         |           | 0     | 0      |
| 670  | 0   | 3000        | 1      | 0       | 0       | 0         |           | 0     | 0      |
| 671  | 1   | 75000       | 1      | 1       | 0       | 1         |           | 0     | 0      |
| 672  | 1   | 51000       | 1      | 1       | 0       | 1         |           | 0     | 0      |
| 673  | 0   | 11000       | 0      | 1       | 0       | 0         |           | 0     | 0      |

KidCreative.csv



#### Logistic Regression Example

- Design decisions:
  - Randomize (shuffle rows) data
  - Use 2/3 training, 1/3 validation
  - Z-score features using training data
  - Initialize parameters to random values in the range  $\pm 10^{-4}$
  - Terminate when change in mean of the log loss of the training data is less than  $10^{-6}$
  - Full batch
  - Set the learning rate to  $\eta = 10^{-3}$



### Example

- Number of epochs: 39,639
- Final training mean log loss: 0.18
- Final validation mean log loss: 0.19





## **Evaluating Classifiers**

- Of course, the log-loss isn't really all that natural of a thing to think about as far as quality of a system.
- And the root mean error doesn't really make sense when we have categorical/enumerated targets.
- The most natural way to evaluate a classifier is to report the percentage of observations you "got right".
- We call this the accuracy.

Validation Accuracy: ~92%

Training Accuracy: 93%





- What if we have several classes?
  - We call this multi-class classification
- We could create several binary classifiers and do a one-vs-one scheme.
- But is there a convenient way to do this in a single system?
- Yes, that's where the cross-entropy objective function comes it.
- Recall that the cross-entropy objective function compares two probability distributions.
- So, our predictions and our targets must be valid distributions.
- We can convert our predictions to a valid distribution using a softmax activation layer!
- To convert our targets to valid distributions, we do something called *one-hot encoding*.



#### One-Hot Encoding

- To convert our target class labels to a distribution we can do one-hot encoding.
- With one-hot encoding we convert our target class vector into a target class **matrix** with *K* columns, one per class.
- We want each row to be a valid distribution (sum to one, all values in [0,1]), so to do this we just put zeros everywhere and then a value of one in the column pertaining to the target class.
- Example:
  - What is the one-hot encoding for the target labels:  $Y = [0,1,0,2]^T$ ?



- Let's wrap up with another common multi-class classification architecture:
  - Input layer
  - Fully connected layer (one output per class)
  - Softmax activation layer
  - Cross-entropy objective function
- And let's go through our drill again!





- We'll once again do batch gradient learning.
- Our X matrix will still be a  $N \times D$  matrix, but now our Y matrix is a  $N \times K$  one-hot encoded binary matrix.
- And the weights in our fully connected layer are now  $W \in \mathbb{R}^{(D \times K)}$ ,  $b \in \mathbb{R}^{(1 \times K)}$
- Very well then, off to forward propagation!
  - $H^{(1)} = Input(X)$ 
    - $H^{(1)}$  is a  $N \times D$  matrix z-scored with the training data
  - $H^{(2)} = FC(H^{(1)}) = H^{(1)}W + b$ 
    - $H^{(2)}$  is now a  $N \times K$  matrix
  - $H^{(3)} = Softmax(H^{(2)})$ 
    - $H^{(3)}$  has the same shape as  $H^{(2)}$ , i.e  $N \times K$
  - $\hat{Y} = H^{(3)}$ 
    - All done forward propagating. Of course,  $\hat{Y}$  is also a  $N \times K$  matrix.



- Time to backwards propagate!
- Output layer:

• 
$$\delta = \frac{\partial J}{\partial \hat{Y}} = -\frac{Y}{\hat{Y}}$$

- Due to multiple outputs,  $\delta$  is now a  $N \times K$  matrix
- Softmax activation layer
  - No weights to update

• 
$$\delta = \delta \otimes \frac{\partial H^{(3)}}{\partial H^{(2)}}$$

- Since the gradient of the softmax function is a tensor, we used the tensor product.
- Since  $\delta \in \mathbb{R}^{N \times K}$  and  $\frac{\partial H^{(3)}}{\partial H^{(2)}} \in \mathbb{R}^{N \times K \times K}$ ,  $\delta \otimes \frac{\partial H^{(3)}}{\partial H^{(2)}} \in \mathbb{R}^{N \times K}$



- Fully connected layer
  - Update the weights:

• 
$$\frac{\partial J}{\partial W} = \frac{1}{N} H^{(1)^T} \cdot \delta$$

- Since  $H^{(1)}^T$  is a  $D \times N$  matrix and  $\delta$  is a  $N \times K$  matrix, this is a  $D \times K$  matrix
  - NOTE: This is the same size as W!

• Update 
$$W = W + \eta \left( -\frac{\partial J}{\partial W} \right)$$

• 
$$\frac{\partial J}{\partial b} = \frac{1}{N} \sum_{n=1}^{N} \delta_n$$

- Since  $\delta$  is a  $N \times K$  matrix, this is a  $1 \times K$  matrix
- Update  $b = b + \frac{\eta}{N} \left( -\frac{\partial J}{\partial h} \right)$
- Backpropagate:

• 
$$\delta = \delta \cdot W^T$$

- Since  $\delta$  is a  $N \times K$  matrix and  $W^T$  is a  $K \times D$  matrix, this is a  $N \times D$  matrix
- Now we're at the input layer, so we're all done!



- How do we evaluate multi-class classification.
- We'll stick with accuracy.
- Given the output for an observation  $\hat{y} \in \mathbb{R}^{1 \times K}$ , we choose our "best guess" for the correct class as the maximum of these values:

$$\hat{y}^* = argmax(\hat{y})$$

- Let  $\hat{Y}^*$  be our best guess for each class.
- Then we just compute the percentage of times our guess was correct!

$$accuracy = \frac{1}{N} \sum_{n=1}^{N} \left( Y_n = \hat{Y}_n^* \right)$$



### Example

- Same example as the w/logistic regression, but one-hot encoded the target values (so Y now has two columns).
- All the same hyperparameters.
- Number of epochs: 25,738
- Final training mean cross entropy: 0.10
- Final validation mean cross entropy: 0.11
- Final training accuracy: 93.5%
- Final validation accuracy: 92%





- From an evolutionary standpoint, the previous architectures acted as building blocks for artificial neural networks (ANNs), which acted as the building blocks for deep networks.
- In fact, ANNs could be considered some of the first deep networks.





- Originally, the structure of ANNs were "inspired" by the brain
  - Many interconnections between neurons (think connected layers)
  - Simple processing within neurons (think activation functions)
- But in the context of what we're doing, it's really just another assembly of our modules!





29

- A basic ANN has an architecture of:
  - 1. Input Layer
  - 2. Fully connected layer
  - 3. Activation Layer
  - 4. Fully Connected Layer
  - 5. Activation Layer
  - 6. Output Layer (w/ objective function)





- However, most literature group a sequence of a fully connected layer followed by an activation layer.
- If this is connected to the output, then this is what they call the output layer.
- Otherwise, this sequence is considered a *hidden layer*.
  - This are "hidden" since they are neither the input or the output (which are the two things we have access to in a "black box" model).







## Multi-Layer Perceptron (MLP)

• An ANN with multiple hidden layers is often referred to as a *multi-layer perceptron (MLP)*.







#### MLP Design Decisions

- With multiple layers, there's much responsibility!?
  - How many layers?
  - How many outputs in each non-output fully-connected layer?
  - What activation function to use at each layer?
- Unfortunately, making these decisions, for now, is largely based on empirical results.





#### References

- Textbook
  - Chapter 6 Deep Feedforward Networks