EIE4512 - Digital Image Processing Edge Detection

音 を 中 又 入 字 (木 圳)
The Chinese University of Hong Kong, Shenzhen

Zhen Li
lizhen@cuhk.edu.cn
School of Science and Engineering
The Chinese University of Hong Kong, Shen Zhen
March 5 -- 7, 2019

Edge detection

Convert a 2D image into a set of curves

- Extracts salient features of the scene
- More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Edge detection

How can you tell that a pixel is on an edge?

Profiles of image intensity edges

Edge detection

- 1. Detection of short linear edge segments (edgels)
- 2. Aggregation of edgels into extended edges (maybe parametric description)

Edgel detection

- Difference operators
- Parametric-model matchers

Edge is Where Change Occurs

Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero.

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The discrete gradient

How can we differentiate a *digital* image f[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

How would you implement this as a cross-correlation?

The Sobel operator

Better approximations of the derivatives exist

The Sobel operators below are very commonly used

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

Gradient operators

- (a): Roberts' cross operator (b): 3x3 Prewitt operator
- (c): Sobel operator (d) 4x4 Prewitt operator

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:

Laplacian of Gaussian

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

 $abla^2$ is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Optimal Edge Detection: Canny

Assume:

- Linear filtering
- Additive iid Gaussian noise

Edge detector should have:

- Good Detection. Filter responds to edge, not noise.
- Good Localization: detected edge near true edge.
- Single Response: one per edge.

Optimal Edge Detection: Canny (continued)

Optimal Detector is approximately Derivative of Gaussian.

Detection/Localization trade-off

- More smoothing improves detection
- And hurts localization.

This is what you might guess from (detect change) + (remove noise)

original image (Lena)

norm of the gradient

thresholding

thinning (non-maximum suppression)

Non-maximum suppression

Check if pixel is local maximum along gradient direction

· requires checking interpolated pixels p and r

Hysteresis

Check that maximum value of gradient value is sufficiently large

- drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

Effect of σ (Gaussian kernel size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Scale

Smoothing

Eliminates noise edges.

Makes edges smoother.

Removes fine detail.

(Forsyth & Ponce)

fine scale high threshold

Scale space (Witkin 83)

Properties of scale space (w/ Gaussian smoothing)

- edge position may shift with increasing scale (σ)
- two edges may merge with increasing scale
- an edge may not split into two with increasing scale

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

smoothed – original (scaled by 4, offset +128)

filter demo

Gaussian - image filter

Laplacian of Gaussian

An edge is not a line...

How can we detect *lines*?

Finding lines in an image

Option 1:

- Search for the line at every possible position/orientation
- What is the cost of this operation?

Option 2:

Use a voting scheme: Hough transform

Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image

Connection between image (x,y) and Hough (m,b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b
- What does a point (x_0, y_0) in the image space map to?
 - A: the solutions of b = $-x_0m + y_0$
 - this is a line in Hough space

Hough transform algorithm

Typically use a different parameterization

$$d = x cos\theta + y sin\theta$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Hough transform algorithm

Typically use a different parameterization

$$d = x cos\theta + y sin\theta$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image

for
$$\theta$$
 = 0 to 180

$$d = x cos\theta + y sin\theta$$
H[d, θ] += 1

- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = xcos\theta + ysin\theta$ What's the running time (measured in # votes)?