

Contents

- 0. Global fibre optic network
- 1. Structure of an optical fibre
- 2. Principle of working
- 3. Numerical aperture
- 4. Types of fibres
- 5. Modes of propagation
- 6. Attenuation and Dispersion
- 7. Fibre parameters

Global Fibre Optic Network

Structure of an Optical Fibre

- Main two parts: core and cladding
- Core has slightly higher refractive index
- Light is fed into the core region

Principle of Working – Total Internal Reflection

Total Internal Reflection and Acceptance Angle

 $\Rightarrow \theta$ should have some "ceiling" value.

This value is called "acceptance angle"

condition for TIR:

$$\theta \le \theta_{\rm C}$$

At
$$\theta = \theta_C$$
, $i = i_0$ and $r = 90^\circ$

Optical Fibre – Cross Sections and Acceptance Cone

Numerical Aperture of an Optical Fibre

$$NA = \sin \theta_c = \sqrt{n_1^2 - n_2^2}$$

$$NA \approx n_1 \sqrt{2\Delta}$$

Types of Fibres

Refractive Index Profile

Ray Propagation in Different Types of Fibres

Mode of Propagation - Concept

- Defined as "allowed" directions for light entering optical fibre
- Fibre does not guide all light even though it is launched within acceptance cone
- Due to restricted space, light undergoes diffraction
- Light waves are in phase only along certain paths
- These paths are the "allowed" directions and called "modes of propagation"

V-number and Number of Modes

 An optical fibre is characterized by another important parameter called as the V-number or normalized frequency. It is given by,

$$V = \frac{2\pi a}{\lambda} \times NA$$

a: radius of core, λ: wavelength of light, NA: numerical aperture

The maximum number of modes supported by the fibre is given by,

$$N_{\rm m} = \frac{V^2}{2}; \qquad SI$$

$$= \frac{V^2}{4}; \qquad GI$$

From electromagnetic theory, it is deduced that

Various Modes of Propagation

Figure of Merits for an Optical Fibres

- Loss of amplitude
- Signal becomes weaker
- Measured in dB/km
- Typical: 0.2-0.3 dB/km

- Loss of synchronization
- Signal is distorted
- Measured in ps/km
- Typical: 100 ps/km

Causes of Attenuation in Fibres

Absorption

- By impurities in fibre (Na, Fe, OH⁻, Cr)
- By fibre itself (intrinsic absorption)

Scattering

Due to non-uniform density of glass (Rayleigh scattering)

Geometric

- Bending of fibre into tighter loops
- Micro-kinks inside fibre

Can be reduced using a highly-controlled manufacturing process

Causes of Dispersion in Fibres

Chromatic Dispersion

Occurs if light of broad spectrum is used

→ Can be reduced using a laser source

Intermodal Dispersion

Occurs due to loss synchronization between light waves

→ Can be reduced using GI or SM fibre

Waveguide Dispersion

Occurs due to induced electric field in cladding

→ Can be reduced by increasing core diameter

Wavelength of the Internet

Attenuation coefficient:
$$\alpha = \frac{1}{L} 10 \log \left(\frac{P_{in}}{P_{out}} \right) dB/km$$

Pulse Dispersion and Bit Rate

Intermodal dispersion for SI:
$$\tau_i = \frac{n_1 L}{c} \Delta$$

Intermodal dispersion for GI:
$$= \frac{n_2 L}{2c} \Delta^2$$

Total dispersion (intermodal + material):
$$\tau = \sqrt{\tau_i^2 + \tau_m^2 + \tau_w^2}$$

Usually, τ_{w} is small compared to other two and ignored

Bit Rate:
$$B \approx \frac{0.7}{\tau}$$
 usually expressed in "MBPS"

Fibre Optic Communication System

Fabrication of Optical Fibres

References

- Optics Ghatak, 6th edition 2017, Mc-Graw Hill India
- Wikipedia (images on slide # 1, 3, 5, 11, 13, 18 and 20)