Logistic Regression

Predicting probabilities with an "S" curve

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

Previously, we wanted to predict the price of a house, given its size.

- Previously, we wanted to predict the price of a house, given its size.
- Now, we want to predict if a house costs more than \$450k or not.
 - O Not only that, but we only have access to a set of samples with this information.

- Previously, we wanted to predict the price of a house, given its size.
- Now, we want to predict if a house costs more than \$450k or not.
 - Not only that, but we only have access to a set of samples with this information.
 - Even better, we want a model which gives us the **likelihood** of a house costing more than \$450k

Set of expensive / non-expensive house observations:

Set of expensive / non-expensive house observations:

500

Set of expensive / non-expensive house observations.

Is there anything wrong with this approach? Yes: 1 We could try to use Expensive? (price > \$450K) Linear Regression to fit a linear model. And set a threshold on the response to separate classes. No: 0

1000

1500

Size (ft2)

2000

2500

3000

Set of expensive / non-expensive house observations.

Set of expensive / non-expensive house observations.

- Set of *expensive* / *non-expensive* house observations.
 - Same dataset, but with an added point.

• Set of *expensive* / *non-expensive* house observations.

The old model "thinks" it is making a huge mistake for this point, even though it is getting the class right.

• Set of *expensive* / *non-expensive* house observations.

The old model "thinks" it is making a huge mistake for this point, even though it is getting the class right.

Predicting probabilities

- Set of expensive / non-expensive house observations.
 - We want to learn a model *h*, which gives us the **probability** of a house being expensive, given its size.

Predicting probabilities

- Set of *expensive* / *non-expensive* house observations.
 - \circ We want to learn a model h, which gives us the **probability** of a house being expensive, given its size.

Predicting probabilities

- Set of *expensive* / *non-expensive* house observations.
 - \circ We want to learn a model h, which gives us the **probability** of a house being expensive, given its size.

Logistic Function

- Sigmoid function ("S-shaped" curve):
 - Family of functions which are bounded, differentiable, real and with a non-negative derivative at each point.
- Logistic function (special case of sigmoid):

$$\sigma(x) = \frac{L}{1 + e^{-k(x - x_0)}}$$

• Standard logistic function (L = $1, k = 1, x_0 = 0$):

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- \circ 0 < $\sigma(x)$ < 1 \Rightarrow Can be interpreted as **probability**

Logistic Model

- The relationship is modeled with a *logistic model*:
 - $\vec{x} \in \mathbb{R}^n$ represents the independent variables
 - $y \in \{0, 1\}$ is the dependent variable

$$\hat{y} = \sigma(w_0 + w_1 x_1 + \dots + w_n x_n)$$

Logistic Model

- The relationship is modeled with a *logistic model*:
 - $\vec{x} \in \mathbb{R}^n$ represents the independent variables
 - $y \in \{0, 1\}$ is the dependent variable

$$\hat{y} = \sigma(w_0 + w_1 x_1 + \dots + w_n x_n) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

Same trick as before: $x_0 = 1$

o In other words, we apply a logistic function on top of a linear model.

Logistic Model

- The relationship is modeled with a *logistic model*:
 - $\vec{x} \in \mathbb{R}^n$ represents the independent variables
 - $y \in \{0, 1\}$ is the dependent variable

$$\hat{y} = \sigma(w_0 + w_1 x_1 + \dots + w_n x_n) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

Same trick as before: $x_0 = 1$

- o In other words, we apply a logistic function on top of a linear model.
- Prediction can be interpreted as probability:

$$\hat{y} = P(y = 1 | \vec{x}, \vec{w})$$

$$E = \{ \left(\vec{x}^{(1)}, y^{(1)} \right), \left(\vec{x}^{(2)}, y^{(2)} \right), \dots, \left(\vec{x}^{(m)}, y^{(m)} \right) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1\}$$

$$E = \{ \left(\vec{x}^{(1)}, y^{(1)} \right), \left(\vec{x}^{(2)}, y^{(2)} \right), \dots, \left(\vec{x}^{(m)}, y^{(m)} \right) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1\}$$

• We could use squared-error loss like in linear regression.

$$\mathcal{L}_{E} = \sum_{i} (y^{(i)} - \hat{y}^{(i)})^{2} = \sum_{i} \left(y^{(i)} - \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}^{(i)} \rangle}} \right)^{2}$$

$$E = \{ \left(\vec{x}^{(1)}, y^{(1)} \right), \left(\vec{x}^{(2)}, y^{(2)} \right), \dots, \left(\vec{x}^{(m)}, y^{(m)} \right) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1\}$$

• We could use squared-error loss like in linear regression.

$$\mathcal{L}_{E} = \sum_{i} (y^{(i)} - \hat{y}^{(i)})^{2} = \sum_{i} \left(y^{(i)} - \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}^{(i)} \rangle}} \right)^{2}$$

But this turns out to be a non-convex function

Convex vs. Non-convex

• A function is **convex** if a *segment between* any two points on its graph lies *above* the graph.

Convex vs. Non-convex

• A function is **convex** if a *segment between* any two points on its graph lies *above* the graph.

• $f: X \to Y$ is convex if $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ $\forall x_1, x_2 \in X, \forall t \in [0,1]$

Convex vs. Non-convex

• A function is **convex** if a *segment between* any two points on its graph lies *above* the graph.

- $f: X \to Y$ is convex if $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ $\forall x_1, x_2 \in X, \forall t \in [0,1]$
- A convex function has *only one local minimum* \rightarrow We want error functions to be convex.

$$E = \{ \left(\vec{x}^{(1)}, y^{(1)} \right), \left(\vec{x}^{(2)}, y^{(2)} \right), \dots, \left(\vec{x}^{(m)}, y^{(m)} \right) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1\}$$

• We could use *squared-error loss* like in linear regression:

$$\mathcal{L}_{E} = \sum_{i} (y^{(i)} - \hat{y}^{(i)})^{2} = \sum_{i} \left(y^{(i)} - \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}^{(i)} \rangle}} \right)^{2}$$

○ But this turns out to be a non-convex function ⇒ multiple local minima

$$E = \{ \left(\vec{x}^{(1)}, y^{(1)} \right), \left(\vec{x}^{(2)}, y^{(2)} \right), \dots, \left(\vec{x}^{(m)}, y^{(m)} \right) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1\}$$

• We could use *squared-error loss* like in linear regression:

$$\mathcal{L}_{E} = \sum_{i} (y^{(i)} - \hat{y}^{(i)})^{2} = \sum_{i} \left(y^{(i)} - \frac{1}{1 + e^{-\langle \vec{w}, \vec{x}^{(i)} \rangle}} \right)^{2}$$

- But this turns out to be a **non-convex function** ⇒ multiple local minima
- Using the so-called Cross-entropy or Log-loss works better for logistic regression.

• Cross-entropy for a single example:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \begin{cases} -\log \hat{y}^{(i)} & \text{if } y^{(i)} = 1 \end{cases}$$

Cross-entropy for a single example:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \begin{cases} -\log \hat{y}^{(i)} & \text{if } y^{(i)} = 1\\ -\log(1 - \hat{y}^{(i)}) & \text{if } y^{(i)} = 0 \end{cases}$$

Cross-entropy for a single example:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \begin{cases} -\log \hat{y}^{(i)} & \text{if } y^{(i)} = 1\\ -\log(1 - \hat{y}^{(i)}) & \text{if } y^{(i)} = 0 \end{cases}$$

$$\circ \quad \mathcal{L} \to 0 \text{ as } \hat{y}^{(i)} \to y^{(i)}$$

$$\circ$$
 $\mathcal{L} \to \infty$ as $\hat{y}^{(i)} \to 1 - y^{(i)}$

Loss grows exponentially if model is very confident in the wrong prediction.

Cross-entropy for a single example:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \begin{cases} -\log \hat{y}^{(i)} & \text{if } y^{(i)} = 1\\ -\log(1 - \hat{y}^{(i)}) & \text{if } y^{(i)} = 0 \end{cases}$$

- $\circ \quad \mathcal{L} \to 0 \text{ as } \hat{y}^{(i)} \to y^{(i)}$
- \circ $\mathcal{L} \to \infty$ as $\hat{v}^{(i)} \to 1 v^{(i)}$

Loss grows exponentially if model is very confident in the wrong prediction.

Combining both branches and summing over all samples:

$$\mathcal{L}_{E} = -\sum_{i} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$$

Cross-entropy for a single example:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \begin{cases} -\log \hat{y}^{(i)} & \text{if } y^{(i)} = 1\\ -\log(1 - \hat{y}^{(i)}) & \text{if } y^{(i)} = 0 \end{cases}$$

- $\circ \quad \mathcal{L} \to 0 \text{ as } \hat{y}^{(i)} \to y^{(i)}$
- \circ $\mathcal{L} \to \infty$ as $\hat{v}^{(i)} \to 1 v^{(i)}$

Loss grows exponentially if model is very confident in the wrong prediction.

Combining both branches and summing over all samples:

Regularized Logistic Regression

$$\mathcal{L}_{E} = -\sum_{i} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}) \right] + \lambda \|\vec{w}\|_{2}^{2}$$

• We need to find $\overrightarrow{w_*} = \operatorname*{argmin}_{\overrightarrow{w}} \mathcal{L}_{\mathrm{E}}(\overrightarrow{w})$

- We need to find $\overrightarrow{w_*} = \operatorname*{argmin}_{\overrightarrow{w}} \mathcal{L}_{\mathrm{E}}(\overrightarrow{w})$
- There is no *closed-form solution* for finding the minimum of the log-loss.
 - o i.e. We cannot compute it directly through mathematical operations, like for linear regression
 - We need to use an optimization method.

- We need to find $\overrightarrow{w_*} = \operatorname*{argmin}_{\overrightarrow{w}} \mathcal{L}_{\mathrm{E}}(\overrightarrow{w})$
- There is no *closed-form solution* for finding the minimum of the log-loss.
 - i.e. We cannot compute it directly through mathematical operations, like for linear regression
 - We need to use an optimization method.
- Gradient Descent
 - Gradually go down the slope of the error function

- We need to find $\overrightarrow{w_*} = \operatorname*{argmin}_{\overrightarrow{w}} \mathcal{L}_{\mathrm{E}}(\overrightarrow{w})$
- There is no *closed-form solution* for finding the minimum of the log-loss.
 - o i.e. We cannot compute it directly through mathematical operations, like for linear regression
 - We need to use an optimization method.
- Gradient Descent
 - Gradually go down the slope of the error function
- More complex methods:
 - Conjugate Gradient
 - BFGS
 - L-BFGS

$$\begin{aligned} & \underset{\overrightarrow{w}}{\operatorname{argmin}} \, \mathcal{L}_{\mathrm{E}}(\overrightarrow{w}) = \\ & \underset{\overrightarrow{w}}{\operatorname{argmin}} \left\{ -\sum_{i} \left[y^{(i)} \log \widehat{y}^{(i)} + \left(1 - y^{(i)}\right) \log \left(1 - \widehat{y}^{(i)}\right) \right] + \lambda \|\overrightarrow{w}\|_{2}^{2} \right\} \end{aligned}$$

Dividing an expression by a constant does not change the *argmin*.

$$\begin{aligned} & \underset{\overrightarrow{w}}{\operatorname{argmin}} \, \mathcal{L}_{E}(\overrightarrow{w}) = \\ & \underset{\overrightarrow{w}}{\operatorname{argmin}} \left\{ -\sum_{i} \left[y^{(i)} \log \widehat{y}^{(i)} + \left(1 - y^{(i)} \right) \log \left(1 - \widehat{y}^{(i)} \right) \right] + \lambda \|\overrightarrow{w}\|_{2}^{2} \right\} = \\ & \underset{\overrightarrow{w}}{\operatorname{argmin}} \left\{ -\frac{1}{\lambda} \sum_{i} \left[y^{(i)} \log \widehat{y}^{(i)} + \left(1 - y^{(i)} \right) \log \left(1 - \widehat{y}^{(i)} \right) \right] + \|\overrightarrow{w}\|_{2}^{2} \right\} = \\ & \underset{\overrightarrow{w}}{\operatorname{argmin}} \left\{ -C \sum_{i} \left[y^{(i)} \log \widehat{y}^{(i)} + \left(1 - y^{(i)} \right) \log \left(1 - \widehat{y}^{(i)} \right) \right] + \|\overrightarrow{w}\|_{2}^{2} \right\} \end{aligned}$$

Dividing an expression by a constant does not change the *argmin*.

$$1/\lambda \stackrel{\text{not}}{=} C$$

 More common formulation of regularization for classification problems, because C is easier to interpret ("cost of making a training mistake").

Different Formulation for Loss Function

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{-1, 1\}$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \sigma(\langle \vec{w}, \vec{x} \rangle) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{-1, 1\} \}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \sigma(\langle \vec{w}, \vec{x} \rangle) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = 1 - \sigma(\langle \vec{w}, \vec{x} \rangle) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

We can denote the two classes of binary classification with ± 1

• Likelihood of data:

$$\prod_{i=1}^{m} P(y^{(i)}) = \prod_{i=1}^{m} \frac{1}{1 + e^{-y^{(i)}(\vec{w}, \vec{x}^{(i)})}}$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

• Log-Likelihood of data:
$$\log \left(\prod_{i=1}^{m} \frac{1}{1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}} \right) = -\sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle} \right)$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

- Log-Likelihood of data: $\log \left(\prod_{i=1}^{m} \frac{1}{1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}} \right) = -\sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle} \right)$
- Maximize the log-likelihood of data ⇒

minimize
$$\sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}\right)$$

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

We can denote the two classes of binary classification with +1

- Log-Likelihood of data: $\log \left(\prod_{i=1}^{m} \frac{1}{1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}} \right) = -\sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle} \right)$
- Maximize the log-likelihood of data ⇒

minimize
$$C \sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}\right) + \|\overrightarrow{w}\|_{2}^{2}$$

With regularization

$$E = \{ (\vec{x}^{(1)}, y^{(1)}), (\vec{x}^{(2)}, y^{(2)}), \dots, (\vec{x}^{(m)}, y^{(m)}) \}, \vec{x}^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{-1, 1\}$$

$$P(y = 1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

$$P(y = -1 | \vec{x}, \vec{w}) = \frac{1}{1 + e^{\langle \vec{w}, \vec{x} \rangle}}$$

We can denote the two classes of binary classification with ± 1

- Log-Likelihood of data: $\log \left(\prod_{i=1}^m \frac{1}{1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}} \right) = -\sum_{i=1}^m \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle} \right)$
- Maximize the log-likelihood of data ⇒

minimize
$$C \sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)} \langle \overrightarrow{w}, \overrightarrow{x}^{(i)} \rangle}\right) + \|\overrightarrow{w}\|_{2}^{2}$$

Formulation used by *Scikit-learn*.

Recap

 Logistic Regression uses a logistic function on top of a linear model to establish a relationship between a binary dependent variable and a number of independent variables.

$$\hat{y} = \sigma(\langle \vec{w}, \vec{x} \rangle) = \frac{1}{1 + e^{-\langle \vec{w}, \vec{x} \rangle}}$$

Parameters are obtained by minimizing the Cross-entropy loss:

$$-C\sum_{i} \left[y^{(i)} \log \hat{y}^{(i)} + \left(1 - y^{(i)}\right) \log \left(1 - \hat{y}^{(i)}\right) \right] + \|\vec{w}\|_{2}^{2}$$

or by minimizing the negative log-likelihood of the data:

$$C\sum_{i=1}^{m} \log \left(1 + e^{-y^{(i)}\langle \vec{w}, \vec{x}^{(i)}\rangle}\right) + \|\vec{w}\|_{2}^{2}$$

Considering labels to be +1

Multinomial Logistic Regression

We want to know how likely it is that a certain dog is of one of four breeds.

Weight = 25 kg Height = 46 cm Fur length = 0 Ear length = 3 cm Color = Cream

Labrador Retrieve

We want to know how likely it is that a certain dog is of one of four breeds.

We want to know how likely it is that a certain dog is of one of four breeds.

Collie

Shar Pei

Predictions should sum up to 100%.

- If we have *K* classes, we predict a probability for each class:
 - The prediction $\hat{y}^{(i)}$ becomes array of probabilities.
 - $\hat{y}_k^{(i)}$ is the probability of $\vec{x}^{(i)}$ being class k (e.g. $\hat{y}^{(i)} = [0.1 \quad 0.15 \quad 0.7 \quad 0.05]$)

- If we have *K* classes, we predict a probability for each class:
 - The prediction $\hat{y}^{(i)}$ becomes array of probabilities.
 - $\hat{y}_k^{(i)}$ is the probability of $\vec{x}^{(i)}$ being class k (e.g. $\hat{y}^{(i)} = [0.1 \ 0.15]$

The predicted class is the one with the highest probability.

• If we have *K* classes, we predict a probability for each class:

The predicted class is the one with the highest probability.

- The prediction $\hat{y}^{(i)}$ becomes array of probabilities.
- $\hat{y}_k^{(i)}$ is the probability of $\vec{x}^{(i)}$ being class k (e.g. $\hat{y}^{(i)} = [0.1 \ 0.15]$

• If we have *K* classes, we predict a probability for each class:

The predicted class is the one with the highest probability.

- The prediction $\hat{y}^{(i)}$ becomes array of probabilities.
- $\hat{y}_k^{(i)}$ is the probability of $\vec{x}^{(i)}$ being class k (e.g. $\hat{y}^{(i)} = [0.1 \ 0.15]$

- Multinomial Cross-Entropy:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \sum_{k=1}^{K} y_k^{(i)} \log \hat{y}_k^{(i)}$$

• If we have *K* classes, we predict a probability for each class:

The predicted class is the one with the highest probability.

- The prediction $\hat{y}^{(i)}$ becomes array of probabilities.
- $\hat{y}_k^{(i)}$ is the probability of $\vec{x}^{(i)}$ being class k (e.g. $\hat{y}^{(i)} = [0.1 \ 0.15]$

(e.g.
$$\hat{y}^{(i)} = [0.1 \quad 0]$$

- Multinomial Cross-Entropy:

$$\mathcal{L}(y^{(i)}, \hat{y}^{(i)}) = \sum_{k=1}^{K} y_k^{(i)} \log \hat{y}_k^{(i)}$$

Only one term will be non-zero

- We have a separate weight vector \vec{w}_k for each class.
- Prediction is computed by applying Softmax:

$$\hat{y}_k = \frac{e^{\langle \vec{w}_k, \vec{x} \rangle}}{\sum_{j=1}^K e^{\langle \vec{w}_j, \vec{x} \rangle}}$$

Softmax is a generalization of the logistic function for n-dimensional inputs.

- We have a separate weight vector \vec{w}_k for each class.
- Prediction is computed by applying Softmax:

$$\hat{y}_k = \frac{e^{\langle \vec{w}_k, \vec{x} \rangle}}{\sum_{j=1}^{K} e^{\langle \vec{w}_j, \vec{x} \rangle}}$$

Softmax is a generalization of the logistic function for n-dimensional inputs.

- Even though we have a separate \vec{w}_j for each class, there is only one loss which is minimized.
 - The weight vectors are obtained simultaneously.

Other strategies for multiclass classification

 Another method of having multiple classes is to fit multiple binary classifiers independently and combine their predictions.

Other strategies for multiclass classification

- Another method of having multiple classes is to fit multiple binary classifiers independently and combine their predictions.
- One-versus-rest (OVR), sometimes called (one-versus-all, OVA)
 - \circ Train n classifiers, one for each class, where the negative examples are all the other classes.
 - At inference, run all classifiers and pick the class with the highest margin (most confident)

Other strategies for multiclass classification

- Another method of having multiple classes is to fit multiple binary classifiers independently and combine their predictions.
- One-versus-rest (OVR), sometimes called (one-versus-all, OVA)
 - \circ Train n classifiers, one for each class, where the negative examples are all the other classes.
 - At inference, run all classifiers and pick the class with the highest margin (most confident)
- One-versus-one (OVO)
 - Train n(n-1)/2 classifiers, one for each pair of classes.
 - At inference, run all classifiers and pick the class which was selected by most of them

Logistic Regression in Python

```
from sklearn.linear model import LogisticRegression
clf = LogisticRegression(C = 10) # C is the inverse regularization strength 1/\lambda
clf.fit(X, y)
clf.predict([x]) # prediction for x
clf.predict_proba([x]) # predicted probability for x
clf.decision_function([x]) # value of the decision function before applying logistic: \langle \vec{w}, \vec{x} \rangle
clf.coef_ # w_1, w_2 \dots w_n
clf.intercept_ # w_0
clf = LogisticRegression(multi_class = 'multinomial') # multi_class = {'multinomial', 'ovr'}
```

Conclusions

- Logistic regression uses a logistic function on top of a linear function to establish a relationship between a binary dependent variable and a number of independent variables.
- Logistic Regression is a method for classification.
 - O Name is due to historical reasons and the relation to *linear regression*.
- The prediction can be interpreted as probability.
- The parameters of the model are obtained by minimizing the **cross-entropy loss** or *log-loss*.
 - Another possibility is to maximize the log-likelihood of the data
 - O Since there is no *closed-form solution*, a convex optimization method is used.
- Multinomial cross-entropy can be used to achieve multiclass classification.
 - Other multiclass strategies are OVR and OVO.

History of Logistic Regression

• "The regression analysis of binary sequences (with discussion)."

David Cox, 1958

 "Estimation of the Probability of an Event as a Function of Several Independent Variables."

Strother H. Walker and David B. Duncan, 1967

Keywords

