

The objective of this question is to calculate the volume of solid generated by revolution of a planar region. Before proceeding into the solution, it is advised to check the theoretical part behind it.

 $y = x^2$ is a upward facing parabola with vertex (0,0).

x = 2 is a straight line.

The straight line x=2 intersects the curve $y=x^2$ on (2,4)

According to the question, we are supposed to revolve the region around the x-axis. On Revolving around the x- axis, a solid of revolution is obtained.

Remember that, the volume of the solid of revolution formed by revolving region around the x-axis is given by,

$$\mathbf{V} = \pi \int_a^b f^2(x) - g^2(x) \, dx$$
, where $f(x)$ is the upper curve and $g(x)$ is the lower curve and $x \in [a,b]$.

In this case, the upper function is $f(x) = x^2$ and lower function is g(x) = 0 and $x \in [0, 2]$.

$$V = \pi \int_{a}^{b} f^{2}(x) - g^{2}(x) dx$$

$$= \pi \int_{0}^{2} (x^{2})^{2} dx$$

$$= \pi \int_{0}^{2} x^{4} dx$$

$$= \pi \left[\frac{x^{5}}{5} \right]_{0}^{2}$$

$$= \pi \cdot \left(\frac{2^{5}}{5} \right)$$

$$= \frac{32\pi}{5} \text{ cubic units}$$