Compute a family of divergences between discrete graphical models using belief propagation.

$$P = \frac{P_{1,2} \cdot P_{2,3,4} \cdot P_{4,5}}{P_2 \cdot P_4} \quad Q = \frac{Q_{1,3} \cdot Q_{2,3,4} \cdot Q_{4,5}}{Q_3 \cdot Q_4}$$
$$= P_{2,3,4} \cdot P_{1|2} \cdot P_{5|4} \qquad = Q_{2,3,4} \cdot Q_{1|3} \cdot Q_{5|4}$$

$$D_{\mathsf{AB}}^{(\alpha,\beta)}(P,Q) \in \mathcal{O}\Big(n^2\omega(\mathcal{H})\cdot 2^{\omega(\mathcal{H})+1}\Big)$$

Loong Kuan Lee ¹
Nico Piatkowski ²
François Petitjean ¹
Geoffrey I. Webb ¹

¹Monash University ²Fraunhofer IAIS

Scan with a phone, or go to https://lklee.dev/pubs/2023-aaai, to download the full paper and other supplementary materials

Motivation

Compute the divergence between 2 discrete distributions. For instance take the KL divergence:

$$D_{\mathsf{KL}}(P,Q) = \sum_{\mathbf{x} \in \mathcal{X}} P(\mathbf{x}) \log \frac{P(\mathbf{x})}{Q(\mathbf{x})}$$
$$\mathcal{O}(\mathcal{X}) \in \mathcal{O}(2^n)$$

However, complexity is exponential w.r.t. the number of variables, and therefore intractable.

Background

Decomposable Models

Markov networks with a choral graph structure. They have a direct clique tree representation:

Chordal graph

Clique tree

and a closed form expression of its distribution:

$$P = \frac{P_{1,2,3,4} \cdot P_{2,3,4,6} \cdot P_{1,3,4,5}}{P_{2,3,4} \cdot P_{1,3,4}} = P_{1,2,3,4} \cdot P_{6|2,3,4} \cdot P_{5|1,3,4}$$

which more generally has the form:

$$P = \frac{\prod_{\mathcal{C} \in \mathcal{C}} P_{\mathcal{C}}}{\prod_{\mathcal{S} \in \mathcal{S}} P_{\mathcal{S}}} = \prod_{\mathcal{C} \in \mathcal{C}} P_{\mathcal{C}}^{\mathcal{T}}$$

$\alpha\beta$ -divergence

A family of divergences that can express other divergences such as the KL-divergence. We showed that the $\alpha\beta$ -divergence can be expressed as follows:

$$D_{\mathsf{AB}}^{(\alpha,\beta)}(P,Q) = \begin{cases} \sum_{\mathbf{x} \in \mathcal{X}} \frac{1}{2} (\log P(\mathbf{x}) - \log Q(\mathbf{x}))^2 & \alpha, \beta = 0\\ \mathcal{F}^{(1)}(P,Q) + \ldots + \mathcal{F}^{(k)}(P,Q) & \text{otherwise} \end{cases}$$

$$\mathcal{F}[g, h, g^*, h^*](P, Q)$$

$$= \sum_{\mathbf{x} \in \mathcal{X}} \left[g[P](\mathbf{x}) \right] \left[h[Q](\mathbf{x}) \right] \log \left(\left[g^*[P](\mathbf{x}) \right] \left[h^*[Q](\mathbf{x}) \right] \right)$$

where for functional $f \in \{g, h, g^*, h^*\}$:

$$f\left[\prod_{\mathcal{C}\in\mathcal{C}}P_{\mathcal{C}}^{\mathcal{T}}
ight](\mathbf{x})=\prod_{\mathcal{C}\in\mathcal{C}}f\left[P_{\mathcal{C}}^{\mathcal{T}}
ight](\mathbf{x}_{s})$$

Computation when α , $\beta = 0$

For $\omega = \max(\omega(\mathcal{G}_P), \omega(\mathcal{G}_Q))$:

$$D_{AB}^{(0,0)}(P,Q) = \frac{1}{2} \left(\log \prod_{C \in \mathcal{C}(\mathcal{G}_P)} P_{\mathcal{C}}^{\mathcal{T}} - \log \prod_{C \in \mathcal{C}(\mathcal{G}_Q)} Q_{\mathcal{C}}^{\mathcal{T}} \right)^2$$

$$= \frac{1}{2} \left(\sum_{C \in \mathcal{C}(\mathcal{G}_P)} \log P_{\mathcal{C}}^{\mathcal{T}} - \sum_{C \in \mathcal{C}(\mathcal{G}_Q)} \log Q_{\mathcal{C}}^{\mathcal{T}} \right)^2$$

$$\in \mathcal{O}(n^2 \omega 2^{\omega + 1})$$

Computation when $\alpha \neq 0$ or $\beta \neq 0$

Substituting the distribution of decomposable models into \mathcal{F} :

$$\begin{split} \mathcal{F}[g, h, g^*, h^*](P, Q) \\ &= \sum_{\mathcal{C} \in \mathcal{C}(\mathcal{G}_P)} \sum_{\mathbf{x}_{\mathcal{C}} \in \mathcal{X}_{\mathcal{C}}} \log \left(g^* \left[P_{\mathcal{C}}^{\mathcal{T}} \right] (\mathbf{x}_{\mathcal{C}}) \right) \mathsf{SP}_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}}) + \sum_{\mathcal{C} \in \mathcal{C}(\mathcal{G}_Q)} \sum_{\mathbf{x}_{\mathcal{C}} \in \mathcal{X}_{\mathcal{C}}} \log \left(h^* \left[Q_{\mathcal{C}}^{\mathcal{T}} \right] (\mathbf{x}_{\mathcal{C}}) \right) \mathsf{SP}_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}}) \end{split}$$

where:

$$SP_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}}) = \sum_{\mathbf{x} \in \mathcal{X}_{\mathbf{X} - \mathcal{C}}} \left(g[P](\mathbf{x}_{\mathcal{C}}, \mathbf{x}) \right) \left(h[Q](\mathbf{x}_{\mathcal{C}}, \mathbf{x}) \right)$$

$$= \sum_{\mathbf{x} \in \mathcal{X}_{\mathbf{X} - \mathcal{C}}} \left[\prod_{\mathcal{C} \in \mathcal{C}_{P}} g[P_{\mathcal{C}}^{\mathcal{T}}](\mathbf{x}) \right] \left[\prod_{\mathcal{C} \in \mathcal{C}_{Q}} h[Q_{\mathcal{C}}^{\mathcal{T}}](\mathbf{x}) \right]$$

We can then obtain $SP_{\mathcal{C}}(x_{\mathcal{C}})$ using belief propagation. For example:

$$C = \frac{P_{1,2} \cdot P_{2,3,4} \cdot P_{4,5}}{P_2 \cdot P_4}$$

$$= P_{2,3,4} \cdot P_{1|2} \cdot P_{5|4}$$

$$1 \qquad 1 \qquad 4 \qquad -5$$

$$Q = \frac{Q_{1,3} \cdot Q_{2,3,4} \cdot Q_{4,5}}{Q_2 \cdot Q_4}$$

$$= Q_{2,3,4} \cdot Q_{1|3} \cdot Q_{5|4}$$

Computation graph ${\cal H}$

2 1 4 5 Clique tree of \mathcal{H}

Initial factors

$$\psi_{2,3,4} \quad \psi_{2,3,4} \qquad \psi_{2,3,4} = g[P_{2,3,4}] \cdot h[Q_{2,3,4}]$$

$$\psi_{1,2,3} = g[P_{1|2}] \cdot h[Q_{1|3}]$$

$$\psi_{4,5} = g[P_{5|4}] \cdot h[Q_{5|4}]$$

With \mathcal{H} and the factors from $SP_{\mathcal{C}}$ assigned to $\mathcal{C}(\mathcal{H})$, we can then proceed with carrying out belief propagation in order to obtain $SP_{\mathcal{C}}$ for all $\mathcal{C} \in \mathcal{C}(\mathcal{H})$.

This involves propagating the factors assigned to the leaf cliques, up through the clique tree, to the root clique, then down back to the leaves.

 $\mathsf{P}_{2,3,4} = \sum_{\mathbf{x}_1 \in \mathcal{X}_1} \psi_{1,2,3}(\mathbf{x}_1, \mathbf{x}_{2,3})$ $\mu_{2,3} = \sum_{\mathbf{x}_1 \in \mathcal{X}_1} \psi_{1,2,3}(\mathbf{x}_1, \mathbf{x}_{2,3})$ $\mu_{4} = \sum_{\mathbf{x}_5 \in \mathcal{X}_5} \psi_{4,5}(\mathbf{x}_5, \mathbf{x}_4)$ $\mathsf{SP}_{2,3,4} = \psi_{2,3,4} \cdot \mu_{2,3} \cdot \mu_{4}$

$$u_{2,3}(\mathbf{x}_{2,3}) = \sum_{\mathbf{x}_4 \in \mathcal{X}_4} \mathsf{SP}_{2,3,4}(\mathbf{x}_4, \mathbf{x}_{2,3})$$

$$\nu_4(\mathbf{x}_4) = \sum_{\mathbf{x}_{2,3} \in \mathcal{X}_{2,3}} \mathsf{SP}_{2,3,4}(\mathbf{x}_{2,3}, \mathbf{x}_4)$$

$$\mathsf{SP}_{1,2,3} = \psi_{1,2,3} \cdot \nu_{2,3} / \mu_{2,3}$$

 $\mathsf{SP}_{4,5} = \psi_{4,5} \cdot
u_4 / \mu_4$

Conclusion

In conclusion our approach:

• has a final complexity of: $D_{AB}^{(\alpha,\beta)}(P,Q)$ $\in \begin{cases} \mathcal{O}(n^2 \cdot \omega 2^{\omega+1}) & \alpha,\beta=0 \\ \mathcal{O}(n \cdot 2^{\omega(\mathcal{H})+1}) & \text{otherwise} \end{cases}$

as fast as prev. approaches

 $\in \mathcal{O}\left(n^2\omega(\mathcal{H})\cdot 2^{\omega(\mathcal{H})+1}\right)$

- only requires belief propagation
- works on both Bayesian networks and Markov networks via conversion
- can compute a wider array of divergences other than the KL divergence

Runtime comparison with previous approach

Network	previous (secs)		ours (secs)	
	mean	sd	mean	sd
cancer	0.0117	0.0026	0.0132	0.003
earthquake	0.0104	0.0025	0.0075	0.000
survey	0.0140	0.0032	0.0081	0.000
asia	0.0163	0.0001	0.0137	0.000
sachs	0.0464	0.0106	0.0151	0.000
child	0.0778	0.0101	0.0402	0.001
insurance	0.3838	0.0051	0.1590	0.002
water	6.9326	0.0329	7.6454	0.063
mildew	19.326	0.1318	19.459	0.085
alarm	0.3177	0.0099	0.0875	0.001
hailfinder	0.8543	0.0243	0.1672	0.005
hepar2	1.3058	0.0307	0.2403	0.014
win95pts	1.0256	0.0289	0.3538	0.004