From prehistoric time to the futuristic age of Al

A human genetic perspective

Linh Tran
University of Arizona

Presenter Financial Disclosure

I do not have any relationships to report within the last 24 months with ACCME defined ineligible companies.

Unlabeled/Investigational Uses

I will not be discussing unlabeled/investigational uses of medical devices or pharmaceuticals during this presentation.

Study the past if you would define the future.

Confucius

Modern human

Adapted from Enard & Petrov (2018) Cell

Up to 4% of Eurasian descent genomes are of Neanderthals origin

Adapted from Enard & Petrov (2018) Cell

Some Neanderthals-originated variants are associated with disease risk

Modern human

The past, present, and future within our genomes

The past, present, and future within our genomes

PLOS GENETICS

Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data

Ryan N. Gutenkunst 🗖, Ryan D. Hernandez, Scott H. Williamson, Carlos D. Bustamante

Published: October 23, 2009 • https://doi.org/10.1371/journal.pgen.1000695

dadi: diffusion approximation for demographic inference

PLOS GENETICS

Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data

Ryan N. Gutenkunst , Ryan D. Hernandez, Scott H. Williamson, Carlos D. Bustamante

Published: October 23, 2009 • https://doi.org/10.1371/journal.pgen.1000695

Connie Sun, Travis Struck, Mathews Sajan

2020

dadi: diffusion approximation for demographic inference

donni: demography optimization via neural network inference Tran et al. (BioRxiv 2023)

Distribution of fitness effects (DFE)

2017

dadi

fit-dadi Kim et al. (Genetics)

- Mutations associated with diseases are likely deleterious
- The DFE quantifies the portion of deleterious mutations along with their average affect
- Significant implications for the design and interpretation of GWAS

The SIGMA Type 2 Diabetes Consortium (2014) Nature

Data (SNP)

Distribution of fitness effects (DFE)

2017

2020 2

2023

dadi Gutenkunst et al. (PLOS Genetics)

fit-dadi Kim et al. (Genetics) donni Tran et al. (BioRxiv)

DFEnn

Data (SNP)

Flagel et al. MBE (2018)

Courtesy: The Wizard of Oz (1939)

Preliminary results

Summary

- Genomic data contain a wealth of information about our genetic past and disease risk
- Deep neural networks are powerful and effective tools for extracting insights from genomic data
- donni: computationally efficient inference of population history with uncertainty quantification
- DFEnn: informative genomic data representation and processing with convolutional neural network

Int@arizona.edu

Segregating sites