

Lab Objectives

Implementation of Univariate Linear Regression

Implementation of Multivariate Linear Regression

Implementation of Regularized Linear Regression

Uinvariate Linear Regression

When we train a regression model on a single feature.

 For example: Prediction of blood glucose level using bmi of a person

Equation: y=ax+b

Multivariate Linear Regression

When we train a regression model on multiple features.

 For example: Prediction of blood glucose level using bmi and age of a person

• Equation: $y=a_0x_0+a_1+x_1+a_nx_n+b$

Regularization

Regression Models tend to overfit on large coefficient values (a)

Regularization:

- Technique to prevent overfitting
- Penalize coefficient values by multiplying alpha
 - Choose value of alpha wisely, too large values may lead to underfitting and too small may lead to overfitting
- Two Types of Regularized Linear Regression:
 - Ridge
 - Lasso

Lab Task#01 (Univariate Regression)

- Implement Univariate Regression on wines quality dataset using a single feature fixed acidity, Target variable is quality
 - It means you will predict quality using fixed acidity

Lab Task#02 (Multivariate Regression)

 Implement Linear Regression Algorithm on wines quality dataset using all features

Lab Task#03 Lasso Regression

 Using Lasso Regression determine feature importance: Which features are more important in prediction of wine quality