Adaptive boundary for out-of-domain detection can add substantial performance boost when combined with metric learning.

Paper name: Metric Learning and Adaptive Boundary for Out-of-Domain Detection

Authors: Petr Lorenc and Tommaso Gargiani and Jan Pichl and Jakub Konrád and Petr Marek and Ondřej Kobza and Jan Šedivý

Main parts of our algorithm

- Metric learning
 - maximizes interclass variance and minimizes intraclass variance of our examples in the vector space
 - Large margin cosine loss
 - Triplet loss

Adaptive decision boundary

Example dialog

Agent: Do you travel a lot? User: Yes, I do. (IND)

Agent: Great! Do you travel alone?

User: I like Valencia much more than Barcelona. (OOD)

Out-of-domain utterances $F_i(C_{IND}, C_{OOD}, r_i) = \frac{\sum_{x \in C_{OOD}} (d(x, c_i) - r_i)}{\sum_{\forall s, s \neq i} n_s} + \frac{\sum_{x \in C_{IND}} (d(x, c_i) - r_i)}{n_i} * \beta_i$ In-domain utterances Proposed threshold Number of utterances

Table 1: Results on CLINC150 dataset. Mean of own measurements based on USE-TRAN where \pm is standard deviation

Method	25% known ratio		50% known ratio		75% known ratio	
	Accuracy	F1	Accuracy	F 1	Accuracy	F 1
MSP	47.02	47.62	62.96	70.41	74.07	82.38
DOC	74.97	66.37	77.16	78.26	78.73	83.59
OpenMax	68.50	61.99	80.11	80.56	76.80	73.16
DeepUnk	81.43	71.16	83.35	82.16	83.71	86.23
ADB	87.59	77.19	86.54	85.05	86.32	88.53
ODIST	89.79	UNK	88.61	UNK	87.70	UNK
Our_{LMCL}	91.81 ± 0.11	85.90 ± 0.08	88.81 ± 0.15	89.19 ± 0.09	88.54 ± 0.05	92.21 ± 0.10
$Our_{Triplet}$	90.28 ± 0.07	84.82 ± 0.14	88.89 ± 0.03	89.44 ± 0.04	87.81 ± 0.11	91.72 ± 0.17

Table 2: Results on BANKING77 dataset. Mean of own measurements based on USE-TRAN where \pm is standard deviation

Method	25% known ratio		50% known ratio		75% known ratio	
	Accuracy	$\mathbf{F1}$	Accuracy	F1	Accuracy	$\mathbf{F1}$
MSP	43.67	50.09	59.73	71.18	75.89	83.60
DOC	56.99	58.03	64.81	73.12	76.77	83.34
OpenMax	49.94	54.14	65.31	74.24	77.45	84.07
DeepUnk	64.21	61.36	72.73	77.53	78.52	84.31
ADB	78.85	71.62	78.86	80.90	81.08	85.96
ODIST	81.69	UNK	80.90	UNK	82.79	$\overline{\text{UNK}}$
Our _{LMCL}	85.71 ± 0.13	78.86 ± 0.10	83.78 ± 0.14	84.93 ± 0.08	84.40 ± 0.21	88.39 ± 0.11
Our _{Triplet}	82.71 ± 0.34	70.02 ± 0.18	81.83 ± 0.15	83.07 ± 0.15	81.82 ± 0.08	86.94 ± 0.09

More information and source code:

