

1. Introduction to BIG DATA

Petra KAFERLE DEVISSCHERE

DevOps & SRE

Governance

Before we start...

- Data Scientist @ Adaltas
- theory, labs
- exam (5 questions, 1h)

Cloud Computing

Data Science

Where is data coming from?

- Machines: sensors
- People: social media
- Organisations: transactions

Where is data coming from?

- Machines: sensors
- People: social media
- Organisations:

transactions

https://www.researchgate.net/figure/How-Data-Uncertainty-is-increasing-Source-2_fig1_329755755

Characteristics of big data

https://seekingalpha.com/article/4350544-splunk-strong-prospects-for-for eseeable-future

Characteristics of big data - 6 Vs

The six Vs of big data

Big data is a collection of data from various sources, often characterized by what's become known as the 3Vs: volume, variety and velocity.

Over time, other Vs have been added to descriptions of big data:

VOLUME	VARIETY	VELOCITY	VERACITY	VALUE	VARIABILITY
The amount of data from myriad sources.	The types of data: structured, semi-structured, unstructured.	The speed at which big data is generated.	The degree to which big data can be trusted.	The business value of the data collected.	The ways in which the big data can be used and formatted.
0000	€\$\$ <u>*</u>	9			

6 Vs of big data: Volume

- Size
- Several big datasets or many small data chunks
- Challenge: storage, ETL, analytics

6 Vs of big data: Variety

- Complexity, heterogeneity
- Different types: photos, text, GPS...
- Coming in real-time or not
- Different media for the same data: audio of speech, transcript of the speech

6 Vs of big data: Velocity

- Speed:
 - of creating
 - storing
 - analysing data
- A lot of applications are based on real-time response (Uber, recommendation systems...)

6 Vs of big data: Veracity

- Quality
- Data can be noisy and biased
- Strongly depends on the data source

6 Vs of big data: Variability

- The data is continuously changing
- Example: if you change the product, the customer's choice might change; evolution of a web page

6 Vs of big data: Value

- The data is valuable, if it brings the value to the business
- To achieve that, we need a lot of different teams of people working together

Getting value from big data

Better results with bigger datasets than with more precise ML algorithms.

How to process this data?

- Public cloud: AWS, Amazon, Google cloud
- Private cloud: OVH
- On-premise

Scaling

2. Hadoop Ecosystem

Hadoop cluster

Hadoop Ecosystem

HDFS

Data Modes Stores the data and return it on reque

YARN

MapReduce

- Operates on key-value pairs
- Map applies an operation to all elements
- Reduce summarizes the results
- Writes the intermediate results to the disk -> slow
- Hive: SQL-like queries on top of MapReduce

Why Hadoop?

- Scalable
- Can gracefully recover from crashes or hardware failures
- Ability to handle different data types (from 6 Vs: Variety)
- Multiple jobs and/or users can use it at the same time
- Active open-source community with more than 100 projects