Métodos Computacionales, S6C3

Deben subir los archivos:
ApellidoNombre_cuerdayTambor.cpp.
Plots_cuerdayTambor.py
y
cuerdayTambor.mk

Estos deben estar comprimidos en ApellidoNombre_S6C3.zip y deben descomprimirse en un directorio ApellidoNombre_S6C3.

1. (points) Ecuación de onda en una dimensión.

En la primera parte deben solucionar la ecuación de onda:

$$\frac{\partial^2 \phi(t, x)}{\partial t^2} = c^2 \frac{\partial^2 \phi(t, x)}{\partial x^2} \tag{1}$$

La cuerda tiene:

Longitud = 1.0m

Tome:

dx = 0.005 m

c = 300.0 m/s

Tome como tiempo final 0.1 segundos

La condiciones iniciales del caso 1 y 2 son las descritas en clase:

Elongación de la cuerda en reposo con amplitud:

A0=0.01m en el centro de la cuerda

Caso 1:

Para esta primera parte, tome condiciones de frontera fijas.

Caso 2:

Repita lo anterior para un extremo fijo y un extremo libre

Caso 3:

Finalmente, simule el caso en que la cuerda está incialmente en reposo y en su posición de equilibrio (amplitud cero para todos los puntos). Para este caso, simule un extremo fijo y un extremo cuya amplitud varía periódicamente asi: $A_{frontera} = A0*np.cos(3.0*c*t*np.pi/(L))$.

En python debe graficar 3 gráficas (una para cada caso). En dichas graficas debe graficar amplitud en función de la posición para varios instantes de tiempo.

El archivo cuerdayTambor.mk debe incluir todas las dependencias y reglas y permitir hacer las graficas necesarias.

Todo debe estar también en un repositorio en GitHub cuyo enlace debe ser enviado por sicua.

2. (points) Ecuación de onda en dos dimensiones.

En la segunda parte deben solucionar la ecuación de onda en dos dimensiones:

$$\frac{\partial^2 \phi(t, x, y)}{\partial t^2} = c^2 \frac{\partial^2 \phi(t, x, y)}{\partial x^2} + c^2 \frac{\partial^2 \phi(t, x, y)}{\partial y^2}$$

(2)La membrana tiene:

Lados de =1.0m

Tome:

dx = 0.005m

c = 300.0 m/s

Tome como tiempo final 0.1 segundos

Tome como condiciones inicales una gaussiana con amplitud A0 y sigma de 0.1.

En python debe graficar en 3D la amplitud en función de la posición para varios instantes de tiempo.

El archivo cuerdayTambor.mk debe incluir todas las dependencias y reglas y permitir hacer las graficas necesarias.

Todo debe estar también en un repositorio en GitHub cuyo enlace debe ser enviado por sicua.