0.1 H21elective

 $\boxed{\mathbf{A}} \ (1)\tau^2 = \mathrm{id} \ \mathfrak{CBD} \ \sigma^2(a) = -a - b, \\ \sigma^2(b) = a \ \mathtt{LDD} \ \sigma^3 = \mathrm{id} \ \mathfrak{CBS}. \quad \tau \circ \sigma \circ \tau(a) = \tau \circ \sigma(b) = \tau(-a - b) = -a - b = \sigma^2(a), \\ \tau \circ \sigma \circ \tau(b) = \tau \circ \sigma(a) = \tau(b) = \sigma^2(b) \ \mathfrak{CBS}.$

よって $\tau \circ \sigma \circ \tau = \sigma^{-1}$ となるから $G \cong D_3 \cong S_3$ である.

 $(2) au(p)=p, au(q)=q,\sigma(p)=b(-a-b)+b^2+(-a-b)^2=ab+a^2+b^2=p,\sigma(q)=-b(-a-b)(b-a-b)=-ab(a+b)=q$ である. よって G 不変.

 $(3)s_1=a+b, s_2=ab$ とする. $\tau(s_1)=s_1, \tau(s_2)=s_2$ である. τ 不変な元は対称式である. 対称式は基本対称式の多項式として表せるから $\mathbb{C}[s_1,s_2]$ が H 不変な元からなる環である.

 $(4)h(s_1,s_2)=(s_1^2-s_2,-s_1s_2)$ とすれば $h\circ g(a,b)=h\circ (a+b,ab)=(ab+a^2+b^2,-ab(a+b))=f(a,b)$ である.

 $(5)\mathbb{C}[P,X]$ は UFD であるから X^3-PX-Q の既約性はその商体 $\mathbb{C}(P,X)$ における既約性と等しい. $\mathbb{C}(P,X)[Q]$ は体上の多項式環であるから PID である. $\varphi\colon \mathbb{C}(P,X)[Q]\to \mathbb{C}(P,X); Q\mapsto X^3-PX$ とすればこれは環準同型である. $\mathbb{C}(P,X)[Q]/(X^3-X-Q)\cong \mathbb{C}(P,X)$ より (X^3-PX-Q) は素イデアル. したがって X^3-PX-Q は既約である.

よって $X^3 - PX - Q$ は $\mathbb{C}[P, X][Q] = \mathbb{C}[P, Q, X]$ 上で既約.

 $(6)X^3 - (ab + a^2 + b^2)X + ab(a + b) = X^3 - (S_1^2 - S_2)X + S_1S_2 = (X + S_1)(X^2 - S_1X + S_2) = (X + a + b)(X^2 - (a + b)X + ab)$ となるから既約でない。

 $\boxed{\mathrm{B}}\ (1)x^p-q$ はアイゼンシュタインの既約判定法から $\mathbb{Z}[x]$ 上既約である. \mathbb{Z} は UFD であるから $\mathbb{Q}[x]$ 上でも既約. $\zeta_p=\cos \frac{2\pi}{n}+i\sin \frac{2\pi}{n}$ とすると,根は $\zeta_p^i\sqrt[8]{q}\ (i=0,1,\ldots,p-1)$ である.

また $\zeta_p \sqrt[p]{q}/\sqrt[p]{q} = \zeta_p$ であるから $\zeta_p \in K$ である. よって $K = \mathbb{Q}(\zeta_p, \sqrt[p]{q})$ である.

 $(2)\mathbb{Q}(\zeta_p)/Q$ は Galois 拡大であり、Galois 群は $(\mathbb{Z}/p\mathbb{Z})^{\times}$ で与えられる。また $\mathbb{Q}(\sqrt[q]{q})/\mathbb{Q}$ は p 次拡大である。 $\mathbb{Q}(\sqrt[q]{q})\cdot\mathbb{Q}(\zeta_p)=K$ となるから $K/\mathbb{Q}(\zeta_p)$ は p 次拡大である。よって $\mathrm{Gal}(K/\mathbb{Q}(\zeta_p))\cong\mathbb{Z}/p\mathbb{Z}$ である。 $G=\mathrm{Gal}(K/\mathbb{Q})$ とすれば $\mathbb{Q}(\zeta_p)/Q$ は Galois 拡大であるから $\mathrm{Gal}(K/\mathbb{Q}(\zeta_p))\triangleleft G$ である。また推進定理より $K/\mathbb{Q}(\sqrt[q]{q})$ は Galois 拡大で $\mathrm{Gal}(K/\mathbb{Q}(\sqrt[q]{q}))\cong(\mathbb{Z}/p\mathbb{Z})^{\times}$ である。

 $\mathbb{Q}(\sqrt[q]{q})/\mathbb{Q}$ は非自明な中間体をもたないから $\mathbb{Q}(\sqrt[q]{q})\cap\mathbb{Q}(\zeta_p)=\mathbb{Q}$ である. $\operatorname{Gal}(K/\mathbb{Q}(\zeta_p))\cap\operatorname{Gal}(K/\mathbb{Q}(\sqrt[q]{q}))=\operatorname{Gal}(K/K)=1$, $\operatorname{Gal}(K/\mathbb{Q}(\zeta_p))\cdot\operatorname{Gal}(K/\mathbb{Q}(\sqrt[q]{q}))=\operatorname{Gal}(K/\mathbb{Q})=G$ である. よって $G\cong\operatorname{Gal}(K/\mathbb{Q}(\zeta_p))\rtimes\operatorname{Gal}(K/\mathbb{Q}(\sqrt[q]{q}))\cong\mathbb{Z}/p\mathbb{Z}\rtimes(\mathbb{Z}/p\mathbb{Z})^{\times}\cong\mathbb{Z}/p\mathbb{Z}\rtimes\mathbb{Z}/(p-1)\mathbb{Z}$