Examen de Septiembre:

1. Calcule I', V' e I_o.

Q1, Q2:
$$V_{BF-7AD} = 0.68V$$
, $\beta = 249$

M1, M2:
$$I_{DS} = k (V_{GS} - V_T)^2$$
 (Sat.)
con k=4 mA/V² y V_T= 1V
M3, M4: $I_{SD} = k (V_{SG} - V_T)^2$ (Sat.)
con k=7/3 mA/V² y V_T= 1V

El circuito continúa por $\rm I_o$, pero no ha sido dibujado. Esta es la razón de que no se pueda comprobar el estado de Q2 y M4. Supóngalos en Z.A.D. y saturación respectivamente.

- 2. Explique cómo se puede medir la β_R (β de zona activa inversa) con un polímetro como los del laboratorio.
- 3. Halle el valor lógico de las salidas S_1 , S_2 , S_3 , S_4 y S_2 en función de las entradas A, B y C.

4. Calcule V_1 , V_2 , V_3 y V_o . La alimentación de los amplificadores operacionales es $\pm 12V$.

Puntuación aproximada: 3,6 - 0,4 - 2,7 - 3,3