1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

$X - \bar{X}$	$ x-ar{x} $
3.5	3.5
-6.5	6.5
-2.5	2.5
5.5	5.5
=======	======
	$\sum x - \bar{x} = 18$
	3.5 -6.5 -2.5

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{18}{4}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
153	11	121
137	-5	25
142	0	0
135	-7	49
143	1	1
=======	=======	=======
$\sum x = 710$ $\bar{x} = 142$		$\sum (x - \bar{x})^2 = 196$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{196}{5 - 1}}$$
$$= \sqrt{49}$$
$$= \boxed{7}$$