

Machine Learning

機器學習

中正大學 資訊工程學系

Chen-Kuo Chiang (江 振 國) ckchiang@cs.ccu.edu.tw

AI研發方向的推動浪潮

- 科技部 投下 50 億 AI 計畫
 - •「AI創新研究中心」-台大、交大、清大及成大
 - 科技部「AI創新研究中心專案計畫」
- 經濟部工業局
 - 「AI智慧製造產創平台」
 - •「智慧機械創新創業推動計畫」
- •教育部
 - •補助「人工智慧技術與應用領域系列課程」計畫
 - 推動「全國智慧製造大數據分析競賽」

產業界-定義「智慧製造」的未來

這一次 我們再定義

智慧製造的未來

二〇一四年底,鼎新已開始積極佈局「智慧製造、全補 路零售、微企互聯網、三大戰略方向,全力打造以提升 客戶「應用價值」為核心之的發展路徑,於二○一五年 七月正式發布:「智通天下」的戰略目標,並升級成「 一線、三環、互聯」的戰略目標。

基於「一線三環互聯」的全景戰略,實現產業資源分享 與協同,與智慧製造系統整合聯盟商,共同打造產業聯 盟牛熊系,彈件支撑企業在網路發展下跨界融合的創新 營運模式轉變;致力成為台灣乃至亞洲的工業4.0智慧 製造方案整合者與規劃者。

智慧製造最重要的目的, 到底是什麽?

举力成本提高等因素迫使著製造業要 迎接未來挑戰,將物聯網技術融入了 製造,就變成智慧製造。

當產品在市場上有任何回饋,可以從 生產領域去追蹤到產品, 是在什麼時 候、是在哪一企業、哪一條生產線、 哪一設備、當時生產條件如何,能夠 把這個資訊有效出聯。智慧製造能確 曹逵到管理更及時、品質更提高,帶 來客戶滿意,當然最重要目的是帶來 企業競爭力。

很多企業提出的要求, 就是往工業4.0方向走, 其追求的本質為何?

丁業4.0的議題被勢烈討論,而背後 代表即是勞動力減少,以自動化設備 取代高重複性或高危性的工作,解決 人力成本調源、技術斷層以及確保品 質穩定的未來趨勢,因此SI系統整 合商也是狺波轉型變革的一環。

丁業4.0時代機台不僅要會説話,彼 此之間的訊息環要聯誦。如何達到共 通,就是靠雲瑞或是靠整合資料庫的 收集,而目前企業所追求的,仍是回 歸管理的本質議題。

楊植彬 董事長

客製風暴來襲, 企業必須要擁有什麼樣的思維?

「現在客製化接單,一定要有的思維 ,就是製造服務化!」製造服務化的 思維轉變已經勢不可擋, 改變並非單 一個人或者單一職能所能支撑, 東統 以研發作為轉型創新的關鍵第一步, **串聯孕廠資訊化連結,從採購、生管** 、製造更整合到產銷與生產,建置涌 透的資訊整合的應用環境。而效益主 要顯現在文管圖面流程的簡化, 绣禍 模組化管理,加快設計、採購、發包 、 生產速度, 效率提升六十%。

產業界-定義「智慧製造」的未來

面對製造業的產業環境改變,可以借助MES達到什麼幫助?

面對智強產業環境,企業主關心的是,要如何借助MCS來達到生。 要如何借助MCS來達到生。 電製貼的智慧人程度,透過有效 蒐集、管理製造工廠內快速多變 的訊息,轉變管理決策依據,加 速應變與回應速度。MCS運作不 只是把各站系統作業資訊化,不 同模組間應要彼此串聯,生產製 透過程中各站資訊等(彼此對話 ,獎過MCS平台講詢。

台灣製造業未來一定要注重生產 透明化,能夠即時透過生產履歷 掌握生產現況,回饋到客戶需求 上,增加企業價值。

翔威國際 周世杰 副總經理

實踐智慧製造手法很多, 但首要思考的是?

其實智慧製造實施的手法很多, 並不是只有花大錢去購買自動化 機合;有些企業反而適合從流程 優化改善者手,就能快速到同 樣效益。不能過於盲從,其思維方 白應以思爾合整及檢測資訊整合 無難的需求每極層。

要去思考,工業4.0的重點,是要 建立工業的互聯網,協調不同層 面的企業資源,整合相關運籌系統,一旦資訊透通,智慧化將應 運而生。

創為精密 趙書華 總經理

面對工業4.0,該如何與國際接軌?

為穩健組織管理體質打下基礎,創造 高效交期;創為精密成立自動化小組 先行呼應政府生產力4.0計劃,邁向智 慧生產管理,逐步穩固市場競爭力。

「公司走到什麼程度,就應該做什麼事情。以前都是人工安排、控管進度,但人為一定會有失誤,所以開始慢慢整合企業資源,從ERP到SFT廠區生產組徵,最後導入APS。」

排程系統化,大幅減少人工作業時間 ,以前人工排出一版生產計畫時間約 需半天,現在只需半小時。另外還有 交期回覆速度,「以前回覆客戶通常 要兩天,現在只需八小時。」

映泰集團 許迪翔 協理

想要邁向智慧製造, 第一步該如何選擇?

「幾年前映泰根本不清楚什麼是智 慧製造,我要分享的是,不是我們 跑得比大家快,而是我們在邁向智 慧製造的過程,所得到的效益與收 穫。」

第一步必須回歸根本、從資訊打底 開始做起,一旦將整個公司的基礎 資訊系統都突設完成,未來不管公 司評估要往哪個方向做改善。只要 選擇週當的措施配合,轉型智慧製 議絕對不是問題。「打好基礎絕對 是成功的必然過程」」

學術界的深度學習研發趨勢

• 資工系

- 深度學習應用於影像、視訊、文字、語音、音樂、虛擬實境
- · AI深度學習正在改寫SoC晶片設計
- · 結合視覺與深度學習邁向AI的嵌入系統新紀元
- •深度解讀深度學習在IoT大資料和流分析中的應用
- JeffDean用深度學習顛覆計算機系統結構設計
- 其他領域
 - •醫學、農業、交通、空汙檢測防治、機械、美術、文學

深度學習的古詩生成機器人

百峰丘壑远, 度处访彻居。 药鸟鸣檐际, 九礼覆石池。

AI人工智能少女即時為你寫情詩

「微軟小冰」經過6000分鐘訓練,學習519位現代詩人的作品,現在她只要從一幅圖像獲取靈感,就能寫詩。

我尋夢失眠

康橋 新鮮的 未經三月之蕙風已不追蹤 在夢裏我已不追蹤 我是一座長橋 你可望之人 我所鮮的愛情 将希望之光投射到你 也不知道是風

全球首次!AI畫作於紐約拍賣

- 人工智慧技術創作了這幅名為 《Edmond de Belamy》的繪畫, 畫中是一位名為愛德蒙·貝拉米 的男子肖像,充滿迷幻氣息
- 全球首幅被拍賣的AI畫作,而 佳士得給這幅作品的估價在 7000到10000美元之間。
- 不同與其他人物肖像畫,這幅作品可以模仿人類提供的一系列圖像,並將14世紀至20世紀的數千幅肖像錄入,讓AI系統自己學習。

AI音樂創作

- AIVA (Artificial Intelligence Virtual Artist)
 - 1 hour music collection

Journey on the Deep Dream

2018未來科技展 - AI機器人寫書法

AI & 深度學習技術的新浪潮

還有更多更多的應用

如果你不會機器學習,你即將被這個時代淘汰!!!

經歷簡介

- 2017人工智慧/資料科學 年會 演講邀請
 - 包含Alpha Go 發明人黃士傑 博士、Google總經理簡立峰先生...
- •2018台灣人工智慧學校
 - 演講教學場次
- 2018 新竹科學園區 科管局 & 自強基金會
 - 人工智慧與機器學習系列課程
- •2018/2019教育部全國智慧製造大數據分析競賽評審
- 2019經濟部工業局產業創新平台新任審查委員

本學期課程概要

•機器學習三大法寶

SVM

Deep Learning

Adaboosting

法寶一:深度學習 (Deep Learning)

•大腦模型法

• Deep Learning is a new area of Machine Learning research.

• Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and

text.

法寶二:支援向量機 Support Vector Machine (SVM)

• 眾志成城法

- SVM became famous by finding the maximum decision margin via many support vectors.
- SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.

法寶三:自適應學習法 (Adaboosting)

•三個臭皮匠法

- It can be used in conjunction with many other types of learning algorithms to improve performance.
- The output of the other learning algorithms ('weak learners') is combined into a weighted sum that represents the final output of the boosted classifier.

本學期課程目標

- •學習如何使用各種機器學習方法(入門)
 - 目標:熟悉工具或範例程式,知道如何使用
- 清楚何時該使用何種機器學習方法 (進階)
 - 目標:針對不同問題與應用,選擇最佳的機器學習方法
- •了解機器學習方法的理論基礎(中階)
 - 目標:清楚機器學習方法的設計原理
- •研究新的、或改進現有機器學習方法(高階)
 - 目標:針對不同問題,發展新的方法

熟悉深度學習的三大方向

•了解深度學習的理論與基礎

從最基礎的模型出發,了解深度學習方法如何演進堆疊,達到今日功能強大的效果,如何解釋與設計深度模型龐大的架構與功能,讓深度學習模型不再是黑盒子。

熟悉深度學習的三大方向

- 熟悉深度學習的模型變形與相關應用
 - •介紹捲積神經網路模型(CNN)、遞歸神經網路 (RNN)、長短期記憶模型(LSTM)與生成對抗網 路(GAN)、深度剩餘網路(Residual Network)、深 度密集網路(Dense Network),與這些模型如何應 用在影像辨識、語音處理、文字辨識及其他應用。

熟悉深度學習的三大方向

- 迎接訓練深度模型的挑戰與解決之道
 - 訓練深度模型容易遇到過度擬合的問題,導致模型訓練失敗,這門課將以實例介紹避免模型訓練過度擬合的技巧,與訓練大型深度學習模型的方法。

Tentative Course Syllabus

課程大綱	項目概要
機器學習簡介	二元分類問題、分類器的種類、如何訓練分類器、機 器學習與其相關領域
線性迴歸分析、非線性迴歸分 析、邏輯迴歸分析	From binary classification to regression problem,
深度學習理論基礎	Perceptron Learning, Multilayer Perceptron, Backpropagation Algorithm, Deep Neural Network.
如何設計深度學習模型與架構	了解決定模型優劣的因素、改進模型的策略、如何改 善訓練資料、逼近深度模型的最佳解

課程大綱	項目概要
深度學習模型與其變形在 文字、影像、語音、視訊 的應用	捲積神經網路模型(Convolutional Neural Network)、遞歸神經網路(Recurrent Neural Network)、長短期記憶模型(Long Short Term Memory)、深度剩餘網路(Deep Residual Network)、深度密集網路(Deep Dense Network)、生成對抗網路(Generative Adversarial Networks)
如何訓練深度學習模型	了解模型訓練過度擬合(Overfitting)的問題、避免模型訓練過度擬合的七大技巧、如何訓練適用於嵌入式系統的深度學習模型、如何訓練多目標、多功能大型的深度學習架構
支援向量機(SVM)	Hyperplane Classifiers, Optimal Separating Hyperplane, Kernel Functions, Support Vector Machine
適應增強演算法 (Adaboosting)	Bagging演算法、Boosting演算法、Adaboosting演算法、適用 問題分析

選修這門課的理由…

- •學術研究上最熱門的機器學習方法(不被淘汰)
 - 國際頂尖會議CVPR運用深度學習的論文佔30%以上
- •利用機器學習,發揮自己最大的創意(自我追求)
 - 探索機器學習的極限與創新應用
- 業界需求最新機器學習人才(職涯突破)
 - 組織深度學習的團隊做計畫研發
- 充足的運算資源 (老師火力支援)
 - 工學院提供深度學習運算伺服器

機器學習競賽

- Kaggle
 - 為期一個月~一年
 - 獎金30000美金以上
 - 辨識率排行榜

2019教育部智慧製造數據競賽

•2018/10/27於東海大學體育館舉辦全國智慧製造大數據分析競賽決賽,企業贊助總獎金高達200萬。

- •新創與研究機構組(兩題)
- •大專與研究生組(兩題)

AI 人才養成 & 就業實戰

·邀請AI新創公司資深經理

- •以畢業生獲取AI職缺高薪
 - 如何建構履歷
 - •如何調整心態、準備面試

A result-oriented marketing manager with over 9 years of experience in project management, business planning, sales, digital marketing, communication & media/public relations, social media and event/press conference.

課堂即時提問 & 回答

教學概要

- 評量方式:
 - 程式作業 20%
 - 論文報告 15%
 - 期中考 20%
 - 期末考 20%
 - 期末程式 25%

• 參考教科書:

- Learning from Data, Yaser Abu-Mostafa, Malik Magdon-Ismail and Hsuan-Tien Lin.
- Introduction to Machine Learning, third edition, Ethem Alpaydin.
- Pattern Classification, Richard O. Duda,
- Machine Learning, Tom. Mtichell, McGraw-Hill, 1997.