Simulation and Analysis of 1D Wave Propagation under Various Physical Models

Dario Liotta

Dipartimento di Fisica e Astronomia Galileo Galilei

September 6th 2025 Course of **Quantum Information and Computing** Academic Year 2024/2025

Numerical methods for differential equations

2/14

Numerical methods for differential equations

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing boundary conditions on $\partial\Omega$.

Introduction to the problem

Solving a **PDE** means to find a function u such that

$$\mathcal{L}u = f$$

where \mathcal{L} is a differential operator and f is a source term.

The equation holds in a domain Ω and is completed by prescribing **boundary conditions** on $\partial\Omega$.

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

Galerkin methods rely on a weak formulation

 \bullet Multiply by a test function v and integrate over the entire domain

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} f v d\Omega$$

• Integrate by parts the left hand side

$$-\int_{\Omega} (\Delta u) v d\Omega = \int_{\Omega} \nabla u \cdot \nabla v d\Omega - \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

$$\int_{\Omega} \nabla u \cdot \nabla v d\Omega = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds$$

About the test function

The test function v is introduced to check whether the PDE is satisfied on average throughout the domain.

The problem becomes to find u such that

$$a(u,v) = F(v) \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega \qquad \text{is a bilinear form}$$
$$F(v) = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds \qquad \text{is a linear functions}$$

About the test function

The test function v is introduced to check whether the PDE is satisfied on average throughout the domain.

The problem becomes to find u such that

$$a(u, v) = F(v) \qquad \forall v \in V$$

where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega \qquad \text{is a bilinear form}$$
$$F(v) = \int_{\Omega} f v d\Omega + \int_{\partial \Omega} \frac{\partial u}{\partial n} v ds \qquad \text{is a linear functional}$$

Benefits of the weak formulation

Strong formulation	Weak formulation
$u\in C^2(\Omega)$	$u,v\in H^1(\Omega)^*$
Holds pointwise in Ω	Holds on average on Ω
Derivatives exist classically	Derivatives exist in the distributional sense

In short: weak formulation requires less regularity

$$w \in H^1(\Omega) = \left\{ w \in L^2(\Omega) \mid \nabla w \in L^2(\Omega)^d \right\}$$

 $^{^*}H^1(\Omega)$ is a **Sobolev space** of functions with square-integrable first derivatives:

Benefits of the weak formulation

Strong formulation	Weak formulation
$u\in C^2(\Omega)$	$u,v\in H^1(\Omega)^{\pmb *}$
Holds pointwise in Ω	Holds on average on Ω
Derivatives exist classically	Derivatives exist in the distributional sense

In short: weak formulation requires less regularity

$$w \in H^1(\Omega) = \left\{ w \in L^2(\Omega) \mid \nabla w \in L^2(\Omega)^d \right\}$$

^{*} $H^1(\Omega)$ is a **Sobolev space** of functions with square-integrable first derivatives:

On boundary conditions

Another difference lies in the boundary condition prescription.

v = 0 on $\partial\Omega \Rightarrow$ cancels boundary term (no information available on $\frac{\partial u}{\partial x}$)

 ${m v}$ free on $\partial\Omega$

u = q enforced on $\partial \Omega$ (final solution)

 $\frac{\partial u}{\partial x} = h$ naturally enters weak form

On boundary conditions

Another difference lies in the boundary condition prescription.

v = 0 on $\partial \Omega \Rightarrow$ cancels boundary term (no information available on $\frac{\partial u}{\partial x}$)

u = a enforced on $\partial \Omega$ (final solution)

Neumann becomes natural condition

v free on $\partial \Omega$

 $\frac{u}{h} = h$ naturally enters weak form

On boundary conditions

Another difference lies in the boundary condition prescription.

v = 0 on $\partial \Omega \Rightarrow$ cancels boundary term (no information available on $\frac{\partial u}{\partial n}$)

 $\boldsymbol{u} = \boldsymbol{g}$ enforced on $\partial \Omega$ (final solution)

 \boldsymbol{v} free on $\partial\Omega$

 $\frac{\partial u}{\partial n} = h$ naturally enters weak form

Shape functions

Galerkin methods allow to find an approximate solution

$$u_h \in V_h \subset H^1(\Omega)$$
 where V_h is a finite-dimensional space

In this framework, the goal is to find u_h such that

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

A basis of function $\{\phi_i\}$ is chosen to express u_h and to use it as <u>test</u>:

$$u_h = \sum_{j=1}^{N} u_j \phi_j \implies a \left(\sum_{j=1}^{N} u_j \phi_j, \phi_i \right) = F(\phi_i) \qquad \forall i = 1, \dots, N$$

Functions ϕ_i model the solution \longrightarrow shape functions

Shape functions

Galerkin methods allow to find an approximate solution

$$u_h \in V_h \subset H^1(\Omega)$$
 where V_h is a finite-dimensional space

In this framework, the goal is to find u_h such that

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

A basis of function $\{\phi_i\}$ is chosen to express u_h and to use it as <u>test</u>:

$$u_h = \sum_{j=1}^{N} u_j \phi_j \implies a \left(\sum_{j=1}^{N} u_j \phi_j, \phi_i \right) = F(\phi_i) \qquad \forall i = 1, \dots, N$$

Functions ϕ_i model the solution \longrightarrow shape functions

Shape functions

Galerkin methods allow to find an approximate solution

$$u_h \in V_h \subset H^1(\Omega)$$
 where V_h is a **finite-dimensional** space

In this framework, the goal is to find u_h such that

$$a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

A basis of function $\{\phi_i\}$ is chosen to express u_h and to use it as <u>test</u>:

$$u_h = \sum_{j=1}^{N} u_j \phi_j \implies a \left(\sum_{j=1}^{N} u_j \phi_j, \phi_i \right) = F(\phi_i) \qquad \forall i = 1, \dots, N$$

Functions ϕ_i model the solution \longrightarrow shape functions

Final expression

By linearity of $a(\cdot, \cdot)$, the problem reduces to a **finite linear system**:

$$\sum_{j=1}^{N} u_{j} a\left(\phi_{j}, \phi_{i}\right) = F\left(\phi_{i}\right) \qquad \forall i = 1, \dots, N$$

$$\downarrow \downarrow$$

$$A \boldsymbol{u} = \boldsymbol{F}$$

$$A_{i,j} = a(\phi_j, \phi_i)$$
 form the **stiffness** $u = (u_1, \dots, u_N)^T$ is the **vector of un** $\mathbf{F} = (F(\phi_1), \dots, F(\phi_N))^T$ is the **load vector**

Final expression

By linearity of $a(\cdot, \cdot)$, the problem reduces to a **finite linear system**:

$$\sum_{j=1}^{N} u_{j} a\left(\phi_{j}, \phi_{i}\right) = F\left(\phi_{i}\right) \qquad \forall i = 1, \dots, N$$

$$\downarrow \downarrow$$

$$A \boldsymbol{u} = \boldsymbol{F}$$

where

$$A_{i,j} = a\left(\phi_{j}, \phi_{i}\right)$$
 form the stiffness matrix $\mathbf{u} = \left(u_{1}, \ldots, u_{N}\right)^{T}$ is the vector of unknowns $\mathbf{F} = \left(F\left(\phi_{1}\right), \ldots, F\left(\phi_{N}\right)\right)^{T}$ is the load vector

Mesh discretization

FEM approach consists in the subdivision of the domain in a so-called **mesh**

This choice brings several advantages:

- Good approximation of complex geometries
- Better capture of local effects
- Possibility of adaptive refinement
- Natural construction of a global solution

Mesh discretization

 \mathbf{FEM} approach consists in the subdivision of the domain in a so-called \mathbf{mesh}

This choice brings several advantages:

- Good approximation of complex geometries
- Better capture of local effects
- Possibility of adaptive refinement
- Natural construction of a **global solution**

Elements

Elements

<u>Elements</u>

Finite Element Method

Application examples

Manual mesh refinement of a wrench using different element types

Image from COMSOL Multiplysics Cyclopedia, "Finite Element Mesh Refinement", 21st of February 2017

Mesh of a wheel rim composed of tetrahedrons in green, bricks in blue and prisms in pink

Image from COMSOL Multiplysics Blog, "Meshing Your Geometry: When to Use the Various Element Types", Walter Frei, 4th of November 2013

Choice of a local basis functions

Exploitation of compact support

- Leads to sparse matrices
- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

- Leads to sparse matrices
- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

- Leads to sparse matrices
- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

Mesh division into sub-domains

Choice of a local basis functions

Exploitation of **compact support**

- Leads to sparse matrices
- Allows local interpolation
- Enhances numerical stability
- Enables efficient parallelization

FEniCS library

A leading software platform for finite element computations is **FEniCS**.

