SONY

ACX705AKM

6.92cm Diagonal Reflective Color LCD Module

Description

The ACX705AKM is a 6.92cm diagonal active matrix reflective color TFT-LCD module with a front light unit and a driving board. This module provides low power consumption which is realized by built-in 3-bit digital interface circuitry.

Features

Number of dots: 240 × RGB × 160
 Dot size: 80µm × 240µm
 High reflectivity: (25% typ.)

• High contrast ratio: (13:1 typ. at the condition of turning off the front light)

• Number of colors: 512

 Low power consumption (47mW typ.) with a driving board composed of a LCD controller IC, a reference driver IC and a DC-DC convertor

· Built-in 3-bit digital interface circuitry

Compact size

• Thin and bright front light unit

Element Structure

 Active matrix TFT-LCD panel with built-in peripheral driving circuitry using low temperature polycrystalline silicon transistors

Number of dots

Total number of dots: 242×3 (H) \times 162 (V) = 117,612 Number of active dots: 240×3 (H) \times 160 (V) = 115,200

Dimensions

Module dimensions: $71.4 \text{mm} \times 52.0 \text{mm} \times 4.8 \text{mm}$ (t) (parts area 6.5 mm (t) max.)

Effective display dimensions: 57.6mm (H) × 38.4mm (V)

Applications

PDA, etc.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Absolute Maximum Ratings (Ta = 25°C, Vss = 0V)

 Supply voltage 	Vcc1	Vss - 0.3 to +5.5	V
	Vcc2	Vss - 0.3 to +5.5	V
 Input voltage 	Vı	Vss - 0.3 to $Vcc2 + 0.3$	V
 Storage temperature 	Tstg	-30 to +70	°C
 LED current 	lled	(as below)	

Recommended Operating Conditions

 Supply voltage 	Vcc1	3.50 to 4.20	V
	Vcc2	2.55 to 3.15	V
Operating temperature	Topr	-10 to +60	°C

Pin Location of Panel Block

The FPC pin assignment is described in on page 5. The location of Pin 1 is shown below.

Module Configuration

This module is composed of a reflective color TFT-LCD panel, a front light unit and a driving board as shown in the figure below.

Block Diagram

The block diagram of this LCD module is shown below.

Pin Description

Pin No.	Symbol	Description
1	MIC1	
2	MIC2	
3	Vcc1	+3.8V power supply
4	Vcc1	+3.8V power supply
5	GND	Ground
6	GND	Ground
7	R0	Red data input (LSB)
8	R1	Red data input
9	R2	Red data input (MSB)
10	G0	Green data input (LSB)
11	G1	Green data input
12	G2	Green data input (MSB)
13	В0	Blue data input (LSB)
14	B1	Blue data input
15	B2	Blue data input (MSB)
16	Hsync	Hsync input
17	Vsync	Vsync input
18	S/D	Shut down
19	MCK	Master clock (4.2MHz)
20	Vcc2	+3.0V power supply
21	LED V _{DD}	LED VDD
22	LED GND	LED GND

S/D

There are input for power up/down sequence.

Power Up Sequence

Power Down Sequence

Electrical Characteristics

Item	-	Symbol	Min.	Тур.	Max.	Unit	Pins
Complement		Vcc1	3.50	3.80	4.20	V	Vcc1
Supply voltage		Vcc2	2.55	3.00	3.15	V	Vcc2
Ripple voltage		VRF	_	_	100	mV	Vcc1
lancit valtage 4		V _{H1}	2.0	_	_	V	MCK
Input voltage 1		VL1	_	_	0.7	V	(LVTTL level input)
		Vt+	_	_	2.2	V	All input pins excluding MCK
Input voltage 2		Vt-	0.5	_		V	(LVTTL level Schmitt trigger
		Vt+ - Vt-	0.2	_	_	V	input)
Supply current	Supply current		_	15	_	mA	LED VDD
Input current 1	VI = Vcc2		_	_	1.0	μA	All input ping
VI = 0V		IL1	_	_	1.0	μΑ	All input pins
Current consumpti	O mand a second the		_	11.0	17.0	mA	Vcc1
Current consumpti	OH	Icc2	_	1.6	4.0	mA	Vcc2
Total power consu	mption	Р	_	47	77	mW	
Ctondby ourrant		Icc1s	_	0.1	10	μΑ	
Standby current		Icc2s	_	40	200	μΑ	
MCK frequency		fmck	_	3.26	4.20	MHz	
Horizontal frequen	су	fh	_	12.0	15.4	kHz	
Vertical frequency		fv	_	60.0	77.2	Hz	
Data input pin capa	acitance	Cdata	_	_	20	pF	R0 to R2, G0 to G2, B0 to B2
Hsync input pin capacitance		Chsde	_	_	20	pF	Hsync
Vsync input pin capacitance		Cvs	_	_	20	pF	Vsync
MCK input pin cap	acitance	Cmck	_	_	20	pF	MCK
S/D input pin capa	citance	Csd	_	_	20	pF	S/D

 $^{^{\}ast}$ 8-pixel \times 8-pixel Black and White checker pattern

Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Master clock period	tclk	1	_	_	tclk
MCK width high	tch	_	0.5	_	tclk
MCK width low	tcl	_	0.5	_	tclk
Data setup to MCK falling edge	tds	10	_	_	ns
Data hold from MCK falling edge	tdh	15	_	_	ns
Hsync setup to MCK falling edge	thss	10	_	_	ns
Hsync pulse width low	thsw	9	_	16	tclk
Vsync falling edge to Hsync falling edge phase difference	tvhde	254	_	269	tclk
Vsync pulse width low	tvsw	2	_	20	line

Operating Condition of Front Light

Item	Symbol	Min.	Тур.	Max.	Unit
LED current	lled	_	15	_	mΑ

Lamp Life

The lamp life shall be greater than 50 hours. The operating lamp life is defined as having ended when the illumination of light has reached 50% of the initial value.

Color Combination Table

	Color		Data signal								
	Color	Gray scale	R0	R1	R2	G0	G1	G2	В0	B1	B2
Standard color	Black Blue Green Cyan	_ _ _	0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 0 1 1	0 0 1 1	0 1 0 1	0 1 0 1	0 1 0 1
	Red Magenta Yellow White	_ _ _ _	1 1 1 1	1 1 1 1	1 1 1 1	0 0 1 1	0 0 1 1	0 0 1 1	0 1 0 1	0 1 0 1	0 1 0 1
Red	Black	0 1 2 3 4 5 6 7	0 1 0 1 0 1 0	0 0 1 1 0 0 1 1	0 0 0 0 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Green	Black ↑ Dark ↑ ↓ Bright ↓ Green	0 1 2 3 4 5 6 7	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 1 0 1 0 1 0	0 0 1 1 0 0 1	0 0 0 0 1 1 1	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
Blue	Black	0 1 2 3 4 5 6 7	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 1 0 1 0 1 0	0 0 1 1 0 0 1 1	0 0 0 0 1 1 1

Color Coding

The color filters are coded in vertical stripe arrangement.

The shaded area is used for the dark border around the display.

Scanning Direction

The scanning direction for the horizontal period and for the vertical period are A and B respectively as shown below.

These scanning directions are from a front view.

Electro-optical Characteristics

Ta = 25°C, With front light turning off

Item		Symbol	Min.	Тур.	Max.	Unit	Notes	
Reflectivity		R	20	25	_	%	1	
Contrast ratio		CR	10	13	_		2	
White obrometicity	х	xfloff	0.28	0.30	0.32	CIE	3	
White chromaticity	У	yfloff	0.29	0.31	0.33	CIE		
Bospones time	rise	Tr	_	5	40	ms	4	
Response time	fall	Tf	_	10	40	ms	4	
Viewing angle	Top-Bottom	VAtb	90	100	_	degree (°)	5	
Viewing angle	Left-Right	VAIr	100	120	_	degree (°)	S	

Ta = 25°C, With front light turning on (Iled = 15mA)

Item		Symbol	Min.	Тур.	Max.	Unit	Notes
Luminance		Lcfl	3.3	5	_	cd/m²	6
Luminance uniformity		Flunif	_	1.3	1.7		7
White obrometicity	x	xflon	0.27	0.32	0.37	CIE	3
White chromaticity	у	yflon	0.27	0.32	0.37	CIE	3

Notes:

Reflectivity (R)

In the Measurement system-1 (see Fig. 1 (a), (b)), calculate the reflectance factor by using the formula (1).

 $R = R \text{ (White)} = \frac{\text{Output from the "White" displayed panel}}{\text{Output from the reflectance standard}} \times \text{reflectance factor of the reflectance standard} \dots (1)$

2. Contrast ratio with front light turned off (CR)

In the Measurement system-1 (see Fig. 1 (a), (b)), measure the reflectance factor of "White" and "Black" respectively and calculate by using the formula (2).

$$CR = \frac{R \text{ (White)}}{R \text{ (Black)}} \dots (2)$$

3. White chromaticity

In the Measurement system-2 (see Fig. 2), measure the white chromaticity. The illumination source and viewing area are D65 and 2° respectively.

4. Response time

In the Measurement system-3 (see Fig. 3), measure the electro-optical response time.

5. Viewing angle

In the Measurement system-1 (see Fig. 1 (c)), viewing area is defined by the area which makes the CR ≥ 2.

6. Luminance

In the Measurement system-4 (see Fig. 4), measure the luminance and calculate using the following formula (3).

Lcfl = (Luminance (1) + Luminance (3) + Luminance (5) + Luminance (7) + Luminance (9))/5 ...(3)

7. Luminance uniformity

In the Measurement system-4 (see Fig. 4), measure the luminance and calculate using the following formula (4).

Flunif = Luminance (maximum spot)/Luminance (minimum spot) ...(4)

Basic Measurement Conditions

(1) Driving voltage

Typical condition

(2) Measurement temperature

+25°C unless otherwise specified.

(3) Measurement point

One point on the center of the panel unless otherwise specified.

(4) Light source and viewing area

D65 and 2°

(5) Display "White": All R, G and B signal data are high (signal amplitude across the liquid crystal: ±1.0V). Display "Black": All R, G and B signal data are low (signal amplitude across the liquid crystal: ±4.5V).

Fig. 1. Measurement system-1

Fig. 2. Measurement system-2

Fig. 3. Measurement system-3

(a) The apparatus for luminance measurement

(b) The spot locations for luminance measurement

Fig. 4. Measurement system-4

Image Persistence

Display a completely white screen for 20 minutes and continuously display the test pattern shown below for a minimum of two hours. Then display a completely white screen. A visible image of the box pattern shall not persist more than two seconds viewed through 2% ND filter. Pattern is black box 80 pixels wide and 120 pixels in length at minimum luminance, centered horizontally and vertically in the active area. The remainder of the screen is white.

Cross Modulation

Cross modulation (cross talk) shall be inspected with following test pattern with 2% ND filter. Pattern is black box 80 pixels wide and 120 pixels in length at minimum luminance, centered horizontally and vertically in the active area. The remainder of the screen is 50% gray.

There shall be no visible difference of luminance around the black box through 2% ND filter.

Notes on Handling

(1) Static charge prevention

Be sure to take the following protective measures. TFT-LCD panels are easily damaged by static charges.

- a) Use non-chargeable gloves, or simply use bare hands.
- b) Use an earth-band when handling.
- c) Do not touch any electrodes of a panel.
- d) Wear non-chargeable clothes and conductive shoes.
- e) Install grounded conductive mats on the working floor and working table.
- f) Keep panels away from any charged materials.
- g) Use ionized air to discharge the panels.

(2) Protection from dust and dirt

- a) Operate in a clean environment.
- b) Do not touch the front light surface. The surface is easily scratched.
- c) Use ionized air to blow dust off the panel.

(3) Others

- a) Do not twist or bend the flexible PC board especially at the connecting region because the board is easily deformed.
- b) Do not drop the module.
- c) Do not twist or bend the module.
- d) Keep the module away from heat sources.
- e) Do not dampen the module with water or other solvents.
- f) Avoid storage or using the module at high temperature or high humidity, as this may result in damage.

Package Outline Unit: mm

