

New York City Yellow Taxi Data Traffic Analysis Using Spark

Master in Data Science and Engineering

Big Data

ADRIAN CICAN, FRANCISCO PINTO, JOÃO MATOS JOÃO SOARES, JOÃO VIEIRA, MANUEL SILVA

TABLE OF CONTENTS

02 → 👜

03 → 📳

Overview

Dataset Profiling

Learning Tasks Executed

05 → 📳

Query Tasks Executed Run Time and Scalability Analysis

Conclusions

1. Overview – Our Goal

To Experiment Spark

Understand its advantages

Understand how it scales

Use a large data set (medium-scale for Spark)

Develop a data engineering/science project

1. Overview - Data Set Context

NEW YORK CITY YELLOW TAXI TRIP RECORDS

New York City Yellow Taxis are one of the city's most iconic forms of public transportation. Operated under the supervision of the **New York City Taxi and Limousine Commission (TLC)**, these taxis are licensed to pick up passengers anywhere in the five boroughs but are especially prevalent in Manhattan.

Records include fields capturing pickup and drop-off dates/times, pickup and drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-reported passenger counts.

DATA SOURCE:

HTTPS://WWW.NYC.GOV/SITE/TLC/ABOUT/TLC-TRIP-RECORD-DATA.PAGE

1,45 GB

1. Overview – Task Addressed

Learning Tasks Executed

- L1 Predict the Fare Amount Value
- L2 Predict the Tip Value
- L3 Driver Recommendations
- L4 Trip Profitability Cluster

Query Tasks Executed

- Q1 Time Series Analysis
- Q2 Seasonal Patterns Analysis
- Q3 Day of Week and Hourly Patterns
- Q4 Means of Payment Distribution
- Q5 Taxi Routes Analysis

2. Dataset Profiling – data description

Records from 01-2023 To 02-2025

Total size 1,45 GB

Found 26 parquet files: 1. vellow tripdata 2023-01.parquet 2. vellow tripdata 2023-02.parquet 3. yellow tripdata 2023-03.parquet 4. vellow tripdata 2023-04.parquet 5. yellow tripdata 2023-05.parquet 6. yellow tripdata 2023-06.parquet 7. yellow tripdata 2023-07.parquet 8. vellow tripdata 2023-08.parquet 9. vellow tripdata 2023-09.parquet 10. yellow tripdata 2023-10.parquet 11. yellow tripdata 2023-11.parquet 12. yellow tripdata 2023-12.parquet 13. yellow tripdata 2024-01.parquet 14. vellow tripdata 2024-02.parquet 15. yellow tripdata 2024-03.parquet 16. yellow tripdata 2024-04.parquet 17. yellow tripdata 2024-05.parguet 18. yellow tripdata 2024-06.parquet 19. yellow tripdata 2024-07.parquet 20. yellow tripdata 2024-08.parquet 21. yellow tripdata 2024-09.parquet 22. yellow tripdata 2024-10.parquet 23. yellow tripdata 2024-11.parquet 24. yellow tripdata 2024-12.parquet 25. yellow tripdata 2025-01.parguet

26. yellow tripdata 2025-02.parquet

LOAD

PySpark Data Frame [all_data]

```
# Helper function to extract year and month from filename
                                                                               古 早 i
def extract year month(filename):
   # Extract the filename from the path
   basename = os.path.basename(filename)
   # Extract the year-month part (assuming format: yellow_tripdata_YYYY-MM.parquet)
   date_part = basename.split('_')[2].split('.')[0] # This gives 'YYYY-MM'
    year, month = date_part.split('-')
   return int(year), int(month)
# Load each parquet file with year and month columns
all data = None
file count = 0
# Process 6 files at a time to avoid memory issues
file chunks = [parquet files[i:i + chunk size] for i in range(0, len(parquet files), chunk :
for chunk_index, chunk in enumerate(file_chunks):
   print(f"Processing chunk {chunk index + 1} of {len(file chunks)}...")
    chunk data = None
    for file in chunk:
       year, month = extract_year_month(file)
       # Load the current file
       print(f"Loading {os.path.basename(file)}...")
       current data = spark.read.parquet(file)
       # Add year and month columns
       current data = current data.withColumn("year", lit(year)) \
                                  .withColumn("month", lit(month))
       # Append to the chunk data
       if chunk data is None:
            chunk_data = current_data
           chunk data = chunk data.unionBvName(current data, allowMissingColumns=True)
       file count += 1
    # Append to the all data
    if all data is None:
       all data = chunk data
       all data = all data.unionByName(chunk data, allowMissingColumns=True)
   # Clear the chunk data to free memory
    chunk_data = None
```

print(f"Successfully loaded (file count) parquet files.")

2. Dataset Profiling – data description

FARE AMOUNT PREDICTION

The basic fare amount is calculated taking into account time and distance with a formula like this:

- \$3.00 Initial charge when the ride begins.
- \$0.70 per 1/5 mile when traveling over 12 mph.
- \$0.70 per 60 seconds when traveling at 12 mph or less, or when stopped in traffic.

Imagine you are in the position of a customer and want to know in advance how much the ride will cost, it will be complicated to try to emulate all the exact values. The idea is to provide an easy way to get a g.ood estimation. Also, it can be used to prevent abuse or device malfunction on the fare calculation.

Learning Task Goal

Help **Customers** to better anticipate the cost of a trip and prevent charge abuse by service provider.

FARE AMOUNT PREDICTION

We apply a **Random Forest Regressor** and create a model to predict the expected fare amount given the following variables:

- Trip distance
- Trip duration
- Pick Up Location
- Drop Off Location
- · Rate Code ID
- Pick Up Hour
- Passenger Count
- Day Of Week (pick up)

This can easily be made available by an app.

Results:

RMSE: 2.69

MAE: 0.95

R2: 0.97

Feature Importances:

/ FOO
4500
2819
1041
0404
0027
0011
0006
0001
0001

TIP AMOUNT PREDICTION

Usually, customers give tips to the drivers, and that information is being recorded. We wanted to see if we can construct a model to predict the tip amount given by customers, so an experiment on the human behavior.

Learning Task Goal

To predict the Tip Amount to be expected from a Trip.

TIP AMOUNT PREDICTION

We apply a **Random Forest Regressor** and create a model to predict the expected fare amount given the following variables:

- Fare Amount
- Trip distance
- Trip duration
- Pick Up Location
- Drop Off Location
- Rate Code ID
- Pick Up Hour
- Vendor ID
- Passenger Count
- Day Off Week (pick up)
- is_weekend [added features to base data set]
- is_rush_hour [added feature to base data set]

Results:

RMSE: 2.12

MAE: 1.02

R2: 0.68

Feature Importances:

• • • • • • • • • • • • • • • • • • •	
fare_amount	0.3052
trip_distance	0.1404
trip_duration	0.1083
DOLocationID_ohe	0.0270
PULocationID_ohe	0.0158
pickup_hour	0.0029
VendorID_ohe	0.0026
RatecodeID_ohe	0.0025
passenger_count	0.0005
is_rush_hour	0.0005
pickup_dayofweek	0.0005
is_weekend	0.0003

DRIVER RECOMMENDATIONS

We used data to uncover patterns that can help taxi drivers make smarter decisions about when and where to work.

Learning Task Goal

Help NYC taxi drivers maximize their earnings by identifying

the <u>best times</u> and the <u>best pickup zones</u> to operate.

DRIVER RECOMMENDATIONS

We used data to uncover patterns that can help taxi drivers make smarter decisions about when and where to work.

When is it best to work?

- Hours of the day
- Days of the week
- Months of the year

These patterns help drivers decide what time slots are most profitable; whether, for example, weekend nights are better than weekday afternoons.

DRIVER RECOMMENDATIONS

We used data to uncover patterns that can help taxi drivers make smarter decisions about when and where to work.

Where should drivers position themselves?

• Pickup locations

This helps drivers prioritize zones where passengers pay more on average, or areas with high trip volume.

DRIVER RECOMMENDATIONS

We used data to uncover patterns that can help taxi drivers make smarter decisions about when and where to work.

Which features were <u>not</u> used for prediction?

- <u>Drop-off location</u>: drivers don't know where the passenger is headed when they accept the ride.
- <u>Trip duration</u>: drivers also can't predict how long a trip will take due to variables like traffic or destination choice.
- Passenger count: has no meaningful impact on total fare amount.

Results:

RMSE: \$13.52

R2: 0.64

TRIP PROFITABILITY CLUSTER

- Classify taxi trips based on their profitability, grouping them into three categories (Low, Medium, High)
- These groups were defined using two key metrics:
 - Revenue per Minute the amount of money generated per minute of the trip.
 - o **Revenue per Mile** the amount of money generated per mile traveled.
- The model provides a clear way to analyze and compare different types of trips based on how profitable they are.
- This analysis can help optimize routes, pricing strategies, and resource allocation.

4. Query Tasks Executed

 PERFORMED DATA CLEANING: FILLED MISSING VALUES, REMOVED CORRUPTED OR INVALID RECORDS, AND ENGINEERED NEW FEATURES.

FINAL DATASET SIZE: 85,086,541 ROWS × 25 COLUMNS.

UTILIZED SPARK SQL AND DATA FRAME API FOR QUERYING, ACHIEVING SIMILAR
 PERFORMANCE WITH BOTH APPROACHES (APPROXIMATELY 10-20 SECONDS PER QUERY).

EXPERIMENTED WITH RDDS, BUT PERFORMANCE AND EASE OF USE WERE INFERIOR
 COMPARED TO SPARK SQL AND THE DATA FRAME API.

temporal_data.createOrReplaceTempView("taxi_trips") monthly_data = spark.sql(""" month, year_month, COUNT(*) AS ride count, SUM(fare_amount) AS total_fare, AVG(fare_amount) AS avg_fare, AVG(tip_amount) AS avg_tip, AVG(trip_distance) AS avg_distance, AVG(trip duration minutes) AS avg duration FROM taxi_trips GROUP BY year, month, year_month ORDER BY year, month

4. Time Series Analysis

21.0

20.5

€ 20.0

Average Fare Over Time

```
monthly_data2 = temporal_data.groupBy("year", "month", "year_month") \
    .agg(
    count("*").alias("ride_count"),
    sum("fare_amount").alias("total_fare"),
    avg("fare_amount").alias("avg_fare"),
    avg("tip_amount").alias("avg_tip"),
    avg("trip_distance").alias("avg_distance"),
    avg("trip_duration_minutes").alias("avg_duration")
) \
    .orderBy("year", "month")
```

Total Monthly Revenue

75

2.9

4. Monthly Analysis

Month

Month

\$20.69

\$18.88

4. Hourly Patterns Analysis

payment_distribution = temporal_data.groupBy('payment_type') \
 .agg(count('*').alias('ride_count'),
 avg('tip_amount').alias('avg_tip'),
 avg('fare_amount').alias('avg_fare')) \
 .orderBy(desc('ride_count'))

4. Payment Method Analysis

Top 20 Pickup Locations (2023-2025) JFK Airport Upper East Side South Midtown Center Upper East Side North Midtown East Penn Station/Madison Sq West Times Sq/Theatre District Lincoln Square East LaGuardia Airport Murray Hill Midtown North Upper West Side South Union Sq East Chelsea Clinton East East Village Lenox Hill West Midtown South West Village Gramercy 0.0 0.5 1.0 1.5 3.0 3.5 4.0

Number of Pickups

Q5

4. Top Taxi Routes Analysis

DRIVER RECOMMENDATIONS MODEL

Predictors:

- PULocationI
- DOLocationID
- pickup_hour
- pickup_day_of_week
- pickup_month

Objective Variable: total_amount

Model: Linear Regression

Data: 01/02/2023 to 31/02/2025(1.45 GB)

Train / Test Split: 80% / 20%

KPIs: RMSE, R2, Duration

BASE SPARK SESSION

> Executor Instances - 2

Sets the number of distributed workers (processes) to run tasks.

> Executor Cores - 1

Defines how many parallel tasks each executor can run.

> Executor Memory - 3 GB

Allocates 3 GB of RAM per executor for processing data.

> Shuffle Partitions - 50

Sets number of output partitions during shuffles like joins or aggregations.

DATAPROC

Region: europe-west2

Nº Master Nodes: 1

Nº Worker Nodes: 2

Type of Machine: n4-standard-2

Memory of Master Node: 100 GB

Memory of Worker Nodes: 200 GB

EXECUTOR INSTANCES

Increasing the number of instances did not lead to a reduction in training duration

EXECUTOR CORES

Increasing the number of cores led to huge fall in model performance

EXECUTOR MEMORY

➤ Executor Memory had the **most impact in performance**. 2 GB was **not enough** to get all the results

SHUFFLE PARTITIONS

➤ 100 shuffle partitions seems to be the ideal number.

Model: Random Forest

Data: 10,000,000 lines (≈187 MB)

Nº Trees: 20

Max Depth: 10

> The impact of the configurations is **notable** while applying Random Forest. However, their impact is **not** significant.

Different ML models are affected differently by
 Spark session configurations

❖ More resources ≠ Better performance

Model training performance depends more on pipeline design and data size than on cluster tuning

6. Looking Back and Ahead

Spark is a great tool for dealing with larger datasets

implementation and many other

functionalities

Enables **advanced configuration** of parameters for **parallelization** and usage of clusters, **improving its performance**

Test different functionalities

(Spark Streaming, etc...)

Work with other **cloud clusters** and **technologies** (AWS, Azure, ...)

Continue testing different

spark configurations

Extra (1)

DAT	ΓΑ	SE	Т
DICT	101	NΑF	RY

Field Name	Description				
	A code indicating the TPEP provider that provided the record.				
	1 = Creative Mobile Technologies, LLC				
VendorID	2 = Curb Mobility, LLC				
	6 = Myle Technologies Inc 7 = Helix				
	I - Hellx				
tpep_pickup_datetime	The date and time when the meter was engaged.				
tpep_dropoff_datetime	The date and time when the meter was disengaged.				
passenger_count	The number of passengers in the vehicle.				
trip_distance	The elapsed trip distance in miles reported by the taximeter.				
	The final rate code in effect at the end of the trip.				
	1 = Standard rate 2 = JFK				
	2 = JFK 3 = Newark				
RatecodeID	4 = Nassau or Westchester				
	5 = Negotiated fare				
	6 = Group ride				
	99 = Null/unknown				
	This flag indicates whether the trip record was held in vehicle memory before				
	sending to the vendor, aka "store and forward," because the vehicle did not				
store_and_fwd_flag	have a connection to the server.				
store_and_rwd_nag	Y = store and forward trip				
	N = not a store and forward trip				
PULocationID	TLC Taxi Zone in which the taximeter was engaged.				
DOLocationID	TLC Taxi Zone in which the taximeter was disengaged.				
	A numeric code signifying how the passenger paid for the trip.				
	0 = Flex Fare trip				
	1 = Credit card				
payment type	2 = Cash				
payment_type	3 = No charge 4 = Dispute				
	5 = Unknown				
	6 = Voided trip				
	The time-and-distance fare calculated by the meter. For additional				
fare_amount	information on the following columns, see				
	https://www.nyc.gov/site/tlc/passengers/taxi-fare.page				
extra	Miscellaneous extras and surcharges.				
mta_tax	Tax that is automatically triggered based on the metered rate in use.				
tip_amount	Tip amount – This field is automatically populated for credit card tips. Cash tips are not included.				
tolls_amount	Total amount of all tolls paid in trip.				
improvement surcharge	Improvement surcharge assessed trips at the flag drop. The improvement				
total amount	surcharge began being levied in 2015.				
congestion_surcharge	The total amount charged to passengers. Does not include cash tips. Total amount collected in trip for NYS congestion surcharge.				
	1 0				
airport_fee cbd congestion fee	For pick up only at LaGuardia and John F. Kennedy Airports.				

Extra (2)

Linear Regression Results

timestamp	executor_instances -	evecutor cores	evecutor memory	chuffle partitions	200	duration sec 🔻 r	mea v	r2 🔻
timestamp	executor_mstances			Siluite_partitions M	aqe ·			
2025-05-15 022217	2	1	L 3g	50	VERDADEIRO	935.26	13.5226	0.6406
2025-05-15 141026	2	1	1 2g	50	VERDADEIRO	761.51	86.3736	0.0418
2025-05-15 145543	2	1	L 4g	50	VERDADEIRO	914.03	13.5226	0.6406
2025-05-15 151055	1	1	1 3g	50	VERDADEIRO	881.33	13.5226	0.6406
2025-05-15 152611	3	1	L 3g	50	VERDADEIRO	883.26	13.5226	0.6406
2025-05-15 154139	4	1	1 3g	50	VERDADEIRO	881.41	13.5226	0.6406
2025-05-15 155415	2	2	2 3g	50	VERDADEIRO	726.3	86.3736	0.0418
2025-05-15 161529	2	1	1 3g	100	VERDADEIRO	897.94	13.5226	0.6406
2025-05-15 163210	2	1	l 3g	200	VERDADEIRO	908.89	13.5226	0.6406
2025-05-15 164818	2	1	l <mark>3</mark> g	50	VERDADEIRO	903.05	13.5226	0.6406

Extra (3)

Random Forests Results

timestamp	executor_instances	executor_cores	executor_memory	shuffle_partitions	aqe	duration_sec 🔽	rmse 🔻	r2 🔻
15/05/2025 19:38		2	1 3g	50	VERDADEIRO	250.95	14.5757	0.7239
15/05/2025 20:25		2	1 3g	50	VERDADEIRO	2312.37	273.8961	0.6914
15/05/2025 21:08		2	1 4g	50	VERDADEIRO	2242.49	12.2813	0.6947
15/05/2025 21:46		2	2 3g	50	VERDADEIRO	2192.81	102.1273	0.6705
15/05/2025 22:24		4	1 3g	50	VERDADEIRO	2190.22	13.1926	0.6661
15/05/2025 23:05		2	1 3g	100	VERDADEIRO	2172.35	12.5697	0.6622

Extra (3)

4. Trip Distance and Duration Analysis


```
filtered_trips = temporal_data.filter(
    (col('trip_distance') > 1) &
    (col('trip_distance') < 100) &
    (col('trip_duration_minutes') > 0.1)
    (col('trip_duration_minutes') < 180)
)</pre>
```

```
spark_sum('total_amount').alias('total_revenue'),
       count('*').alias('trip_count')
   .orderBy(desc('total_revenue'))
taxi_zones_spark_df = spark.read.csv('taxi_zone_lookup.csv', header=True, inferSchema=True)
pickup_revenue_with_names = pickup_total_revenue \
```

.join(taxi_zones_spark_df, pickup_total_revenue.PULocationID == taxi_zones_spark_df.LocationID

col('PULocationID'),

col('Zone').alias('Pickup Zone'),

Extra (4)

4. Dropoff Locations Analysis

Extra (4)

4. Ride Duration Analysis by Day of Week and Pickup Location

4. Top Taxi Routes Analysis

Extra (5)

4. Seasonal Patterns Analysis

```
|year|month|year_month|ride_count|
                                             total_fare|
                                                                   avg_fare|
                                                                                                       avg_distance|
                                                                                        avg_tip|
                                                                                                                           avg_duration
2023
               2023-01
                           3041551|5.6809293499999136E7| 18.67773826577267| 3.395069153863128|3.8550892225709075|15.707911572090936
|2023|
          2|
               2023-021
                          2889044| 5.356293198000216E7| 18.54001945972514| 3.413395839593646| 3.871671462947286|
                                                                                                                     16.05701666941325
|2023|
               2023-031
                          3373925 | 6.493803553001208E7 |
                                                         19.24702995176599|3.5254646650419166|3.9082126662562904|
                                                                                                                      16.9267226548715
120231
               2023-041
                          3258108|6.4262514370002165E7|
                                                         19.72387482858216|3.5438779868579915| 4.107034407699152|17.285953238300344|
120231
               2023-051
          51
                           3481359 | 7.048344950999436E7 | 20.245958405896765 |
                                                                              3.642940587284091
                                                                                                  4.24929686653957|18.120959473011467|
120231
               2023-061
                           32756421
                                     6.67575528800055E7|20.379990511785323|3.6288243800774294| 4.381554327365438|17.751439565129143|
120231
          71
               2023-071
                           2875819| 5.794674761000166E7| 20.14965045088083|3.4835162052979665| 4.495323523489583|17.118752918734867|
               2023-081
120231
          81
                          2792783| 5.637390081999958E7|
                                                           20.1855642991237|3.4481105048274827| 4.794695051494969| 17.15581952959787|
               2023-091
120231
          91
                           2817019|5.9496846760002464E7| 21.12049892457327| 3.662685228606327| 4.280863238763646|18.810690568055257|
|2023|
         101
               2023-10|
                          3485005| 7.145478081995162E7|20.503494491385702|3.6707027651338255|3.9189727819609956|10.237202026969594|
|2023|
        11|
               2023-11|
                          3302675| 6.638858278999045E7| 20.10145799692384|3.6580172224051184|3.6405988357918697|18.187871674728743|
|2023|
        12|
               2023-12|
                          3333775| 6.725025828998107E7| 20.17240464337907|3.5611663714574195| 3.686229091645144| 18.21479107018497|
120241
          11
               2024-01|
                          2927046| 5.459636679999159E7| 18.65237744811376| 3.377807923075358|3.6605391374097427|15.658283778253594|
120241
          21
               2024-021
                          2966785 | 5.501609210999343E7 | 18.544010472613763 | 3.3472895642943916 | 3.8729094019281307 | 16.027887140456325 |
|2024|
          31
               2024-031
                                   6.789177168996727E7| 19.26552607644411|3.2430581926310915| 4.515770897470589| 16.72433379975503|
120241
               2024-041
                          3456538 | 6.764551532996994E7 | 19.570308594891753 | 3.282964934859093 | 5.177514481252299 | 17.09623012004201 |
          41
|2024|
          51
               2024-051
                          3663676| 7.462081419995418E7|20.367743817945197| 3.375399833393333| 5.289023802868546|18.074988213115365|
|2024|
                          3477261 | 6.985074654995042E7 | 20.08786414075631 | 3.309345108119753 | 5.2065194099604835 | 17.62986132859797 |
          61
               2024-06|
|2024|
               2024-071
                          3018041 | 6.131815761996715E7 | 20.317204975004366 | 3.325468123197961 | 5.094495154306774 | 17.272310664434485 |
120241
               2024-08
                          2920712 | 6.004947662997191E7 | 20.559876026794804 | 3.327926721294136 | 4.94240735<u>4781552 | 17.405283272253662 |</u>
only showing top 20 rows
```

