Università della Svizzera italiana Year 2015–2016

Calculus

Course Notes

Amedeo Zucchetti February 27, 2017

Cal	.cu	lu	\mathbf{S}	
Cor	ırs	Д	Not	es

${\bf Contents}$

1	Sets, groups and fields	3
2	Spaces	5
3	Sequences	7
4	Series	10
5	Functions and continuity	12
6	Continuous functions and intervals	14
7	Uniform continuity	15
8	Power Series	17
9	Lipschitz continuity	18
10	Differentiability and derivatives	18
11	Integrals	21
12	Antiderivatives (or indefinite integrals)	22

1 Sets, groups and fields

Definition 1.1 (Natural numbers). The set of natural numbers is defined with the following properties

- (i) $1 \in \mathbb{N}$
- (ii) $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N}$ (n+1) is the successor of n)
- (iii) $\nexists n \in \mathbb{N} : n+1=1$ (no number is predecessor of 1)
- (iv) $m, n \in \mathbb{N}$ and $m+1=n+1 \Rightarrow m=n$
- (v) $A \subseteq \mathbb{N}, n \in A \text{ and } n+1 \in A \Rightarrow A = \mathbb{N}$

Definition 1.2 (Group). A set X and an operation \circ form a group (X, \circ) if the following rules are satisfied for all $a, b, c \in X$

- (i) Closure: $a \circ b \in X$
- (ii) Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- (iii) Identity: $\exists !\ 0 \in X : a \circ 0 = 0 \circ a = a$
- (iv) Inverse: $\exists ! (-a) \in X : a \circ (-a) = (-a) \circ a = 0$

The group (X, \circ) is abelian if the following rule is satisfied too

(v) Commutativity: $a \circ b = b \circ a$

Example 1.2.1. (\mathbb{Z}_2, \oplus) is an abelian group (where $\mathbb{Z}_2 = \{0, 1\}$ and \oplus is exclusive or)

- (i) Closure: $0 \oplus 0 = 0$, $0 \oplus 1 = 1$, $1 \oplus 0 = 1$, $1 \oplus 1 = 0$
- (ii) Associativity: we have two elements, so we don't need to prove it
- (iii) Identity: $0 \Rightarrow 0 \oplus 0 = 0$, $1 \oplus 0 = 1$, $0 \oplus 1 = 1$
- (iv) Inverse: $(-1) = 1, (-0) = 0 \Rightarrow 1 \oplus 1 = 0, 0 \oplus 0 = 0$
- (v) Commutativity: $1 \oplus 0 = 1 = 0 \oplus 1$

Example 1.2.2. $(\mathbb{N},+)$ is not a group, since it doesn't have the identity element.

Definition 1.3 (Field). Given a set X, then $(X, +, \cdot)$ is a field if the following are satisfied for all $a, b, c \in X$

- (i) $a+b \in X$ and $a \cdot b \in X$
- (ii) (a+b) + c = a + (b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (iii) $\exists ! \ 0 \in X : a + 0 = 0 + a = a \text{ and } \exists ! \ 1 \in X : a \cdot 1 = 1 \cdot a = a$
- (iv) $\exists ! (-a) \in X : a + (-a) = (-a) + a = 0 \text{ and } \forall a \neq 0, \exists ! a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1$

- (v) a + b = b + a and $a \cdot b = b \cdot a$
- (vi) $a \cdot (b+c) = a \cdot b + a \cdot c$

Example 1.3.1. Proposition: $a \cdot b = 0 \Rightarrow$ either a or b are equal to 0.

Proof: we suppose $b \neq 0$, meaning that $0 = 0 \cdot b^{-1} = (a \cdot b) \cdot b^{-1} = a \cdot (b \cdot b^{-1}) = a \cdot 1 = a \Rightarrow a = 0$ (the same can be done supposing $a \neq 0$).

Example 1.3.2. Proposition: $a \cdot 0 = 0$.

Proof: $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \Rightarrow$ subtracting $(-a \cdot 0)$ from both sides we get $a \cdot 0 + (-a \cdot 0) = a \cdot 0 + a \cdot 0 + (-a \cdot 0) \iff 0 = a \cdot 0$

Definition 1.4 (Rational numbers). $\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0\}$

Remark. $(\mathbb{Q}, +, \cdot)$ is a field.

Definition 1.5 (Ordered Field). Let \leq be an order relation. Then the field $(X, +, \cdot, \leq)$ is an ordered field if the following properties are satisfied for $a, b, c \in X$

- (i) Either $a \leq b$ or $b \leq a$
- (ii) If $a \leq b$ and $b \leq a$, then a = b
- (iii) If $a \leq b$ and $b \leq c$, then $a \leq c$
- (iv) If $a \le b$, then $a + c \le b + c$
- (v) If $a \leq b$ and $0 \leq c$, then $a \cdot c \leq b \cdot c$

Example 1.5.1. Let's take $(\mathbb{Q}, +, \cdot, \leq)$, $a, b \in \mathbb{Q}$. We want to show that if $a \leq b$, then $(-b) \leq (-a)$.

Definition 1.6 (Countable Infinite). A set A is countably infinite if it exists a function $f: A \to \mathbb{N}$ bijective.

Remark. Let A, B sets, then

- If $|A| = |B| \iff$ exists a bijection between A and B
- If $|A| \leq |B| \iff$ exists an injection from A to B
- If $|A| < |B| \iff$ exists an injection, but not a bijection

Proposition 1.1. \mathbb{Z} is countably infinite

Proposition 1.2. \mathbb{Q} is countably infinite.

Proposition 1.3. \mathbb{R} is not countable.

Proposition 1.4. $|\mathbb{R}| = |\mathbb{R}^2|$

Definition 1.7 (Power set). Let A be a set. The power set of A is $2^A = \{A' : A' \subseteq A\}$, the set containing all subsets of A. $|2^A| = 2^{|A|}$

Proposition 1.5. $|2^{\mathbb{N}}| = |\mathbb{R}|$

Proposition 1.6. $\sqrt{2} \notin \mathbb{Q}$

Definition 1.8 (Bounds). Let A, X be sets, such that $A \subseteq X$, and $x \in X$, then

- x is upper bound of A if $a \leq x$, for all $a \in A$
- x is lower bound of A if $x \leq a$, for all $a \in A$

Definition 1.9 (Supremum and infimum). Let A be a set

- \bullet The supremum is the smallest upper bound of A
- \bullet The infimum is the greatest lower bound of A

Definition 1.10 (Maximum and minimum). Let A be a set

- The maximum is the biggest element of A (if $\sup(A) \in A$, then $\max(A) = \sup(A)$)
- The minimum is the smallest element of A (if $\inf(A) \in A$, then $\min(A) = \inf(A)$)

2 Spaces

Definition 2.1 (Topology). Let X be a set. Then $\tau \subseteq 2^X$ is a topology if

- (i) $X \in \tau$
- (ii) $\emptyset \in \tau$
- (iii) $A_{\alpha} \in \tau$, then $\bigcup_{\alpha} A_{\alpha} \in \tau$ (the union of any element of τ is also contained in τ)
- (iv) $A_i \in \tau$, then $\bigcap_{i=1}^n A_i \in \tau$ (any finite intersection of elements of τ is also contained in τ)

Example 2.1.1. Let $X = \{1, 2, 3, 4\}$

- 1. $\tau = \{\emptyset, X\}$ is topology, since $\emptyset \cup X = X \in \tau$ and $\emptyset \cap X = \emptyset \in \tau$.
- 2. $\tau = \{\emptyset, \{2\}, \{2,3\}, X\}$ is topology. The cases with \emptyset and X are trivial. $\{2\} \cup \{2,3\} = \{2,3\} \in \tau$ and $\{2\} \cap \{2,3\} = \{2\} \in \tau$.
- 3. $A = \{\emptyset, \{2\}, \{3\}, X\}$ is not a topology. In fact, $\{2\} \cup \{3\} = \{2, 3\} \notin A$.

Definition 2.2 (Topological space). Let X be a set, τ a topology, then (X,τ) is a topological space.

Definition 2.3 (Neighborhood in a topological space (X,τ)). A set N is a neighborhood of $x \in X$ if there exists a set $U \in \tau$ such that $x \in U$ and $U \subseteq N$.

Definition 2.4 (Metric). Let X be a set, $x, y, z \in X$. The function $d: X \times X \to \mathbb{R}$ is a metric if

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) = 0 \iff x = y$
- (iii) $d(x, z) \le d(x, y) + d(y, z)$

Example 2.4.1. d(x,y) = |x - y|

Example 2.4.2.
$$d(x,y) = ||x-y||_2 = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Definition 2.5 (Metric space). Let X be a set, d be a metric, then (X, d) is a metric space.

Definition 2.6 (Ball in a metric space (X,d)). $B_r(x) = \{y \in X : d(x,y) < r\}$ is a ball of center x and radius r. $B_r(x)$ is subset of X.

Definition 2.7 (Open set in a topological space (X,τ)). A set U is open in (X,τ) if $U \in \tau$.

Definition 2.8 (Open set in a metric space (X,d)). A set U is open in (X,d) if for all $x \in U$ exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$.

Definition 2.9 (Closed set). $C \subseteq X$ is closed if $X \setminus C$ is open. A set is closed if its complement is open.

Proposition 2.1. Let S = (X, x) be a space (x a metric or a topology), then

- (i) X is open in S
- (ii) \emptyset is open in S
- (iii) For all A_{α} open in S, then $\bigcup A_{\alpha}$ is open in S (any union of any open set is also open)
- (iv) For all A_i open in S, then $\bigcap_{i=1}^n A_i$ is open in S (any finite intersection of any open set is also open)

3 Sequences

Definition 3.1 (Sequence). A sequence (x_n) is a function $x : \mathbb{N} \to X$, where $x(n) = x_n$. The elements of a sequence can be listed in an ordered set with repetition

$$(x_n) = (x_1, x_2, x_3, x_4, \ldots)$$

Example 3.1.1. $a_n = n \Rightarrow (a_n) = (1, 2, 3, 4, 5, ...)$

Example 3.1.2. $b_n = \frac{1}{n} \Rightarrow (b_n) = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$

Example 3.1.3. $c_n = (-1)^n \Rightarrow (c_n) = (1, -1, 1, -1, ...)$

Definition 3.2 (Cauchy sequence). A sequence (x_n) is a Cauchy sequence if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x_m) < \varepsilon$, for all $n, m \ge N_{\varepsilon}$. That is, starting from an index N_{ε} all values x_n are contained in an interval $[x_{N_{\varepsilon}} - \varepsilon, x_{N_{\varepsilon}} + \varepsilon]$.

Example 3.2.1. $x_n = \frac{1}{n}$ in (\mathbb{R}, d) , where d(x, y) = |x - y|. We have to find, for each ε , an N that satisfies the definition of Cauchy sequence. Let's take $N \leq n \leq m$. Thanks to the triangle inequality, we can first find that:

$$d(x_n, x_m) = |x_n - x_m| \le |x_n| + |-x_m| = |x_n| + |x_m| = \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| = \frac{1}{n} + \frac{1}{m}$$

Since $N \le n \le m$, then we have $\frac{1}{m} \le \frac{1}{n} \le \frac{1}{N}$:

$$\frac{1}{n} + \frac{1}{m} \le \frac{1}{N} + \frac{1}{N} = \frac{2}{N}$$

Now, in order to satisfy the definition we must have $\frac{2}{N} \leq \varepsilon$, thus $\frac{2}{\varepsilon} \leq N$. This means, starting from $N = \frac{2}{\varepsilon}$ all $d(x_n, x_m)$ will be smaller than ε . In fact, if we take the previous inequality:

$$\left| \frac{1}{n} - \frac{1}{m} \right| \le \frac{2}{N} = \frac{2}{\frac{2}{\varepsilon}} = \varepsilon$$

Note that it is not important if $d(x,y) < \varepsilon$ or $d(x,y) \le \varepsilon$.

Definition 3.3 (Convergence in metric space). (X, d) is a metric space. A sequence (x_n) converges to a limit x if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x) < \varepsilon$, for all $n \ge N_{\varepsilon}$.

Example 3.3.1. $x_n = \frac{1}{n}$ in \mathbb{R} converges to 0. We take $N \leq n$ and $N = \frac{1}{\varepsilon}$

$$|x_n - 0| = |x_n| = \left|\frac{1}{n}\right| = \frac{1}{n} \le \frac{1}{N} = \frac{1}{\frac{1}{\varepsilon}} = \varepsilon$$

Definition 3.4 (Convergence in topological space). (X, τ) is a topological space. A sequence (x_n) converges to a limit x if for all $U \in \tau$ such that $x \in U$, it exists N_U such that $x_n \in U$, for all $n \geq N_U$. That is, x is a limit of a sequence, if all sets of τ that contain x also contain the tail of the sequence.

Example 3.4.1. Let's take $X = \{a, b, c\}, (x_n) = (a, b) \text{ and } \tau = \{\emptyset, \{a\}, X\}.$

- a is not a limit of (x_n) , in fact $\{a\}$ contains a, but doesn't contain the tail of (x_n)
- b and c are limits of (x_n) , in fact $b \in X$ and $c \in X$, and X contains (x_n) (and its tail too)

Proposition 3.1. $x_n \to x$ in $(X,d) \iff$ for all $U \subseteq X$ open exists N_U such that $x_n \in U$, for all $n \ge N_U$.

Theorem 3.2. If a sequence converges to a limit in a metric space, then the limit is unique.

Remark. This isn't true in a topological space. In a topological space, a sequence can converge to multiple limits

Proposition 3.3. $x_n \to x$ in (X, d) metric space, then for all $y \in X$, $d(x_n, y) \to d(x, y)$.

Proposition 3.4 (Properties of real sequences). For all (x_n) , (y_n) such that $x_n \to x$, $y_n \to y$, we have the following properties

- (i) $\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha \lim_{n \to \infty} x_n + \beta \lim_{n \to \infty} y_n$
- (ii) $\lim_{n \to \infty} x_n x_y = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$
- (iii) $\lim_{n \to \infty} \frac{x_n}{x_y} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$

Example 3.4.1. Knowing that $\frac{1}{n} \to 0$, show that $\frac{1}{n^2} \to 0$.

$$\lim_{n \to \infty} \frac{1}{n^2} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n} = 0 \cdot 0 = 0$$

Example 3.4.2. Find the limit of the sequence $\frac{2n^2-3n+2}{n^2+n-1}$.

$$\lim_{n \to \infty} \frac{2n^2 - 3n + 2}{n^2 + n - 1} = \frac{\lim(2n^2 - 3n + 2)}{\lim(n^2 + n - 1)} = \frac{\lim 2 - \lim \frac{3}{n} + \lim \frac{2}{n^2}}{\lim 1 + \lim \frac{1}{n} - \lim \frac{1}{n^2}} = \frac{2 - 0 + 0}{1 + 0 - 0} = 2$$

Definition 3.5 (Bounded sequence). A sequence (x_n) is bounded if exists c such that $|s_n| \leq c$.

Example 3.5.1. $a_n = \frac{1}{n}$ is bounded. We can take c = 1, $\left| \frac{1}{n} \right| = \frac{1}{n} \le 1$, being $a_1 = 1$ the $\sup(a_n)$.

Example 3.5.2. $b_n = (-1)^n$ is bounded. In fact, the values of the sequence are always 1 and -1. If we take c = 1, then $|b_n| = 1 \le 1$.

Example 3.5.3. $x_n = n$ is not bounded, we can prove it by contradiction. We suppose it exists a c such that $|x_n| \le c$. If we take $x_{c+1} = c + 1$, we have $c + 1 \le c \iff 0 \le 1$ contradiction. This means x_n is not bounded.

Definition 3.6 (Monotonic sequence). A sequence is monotonic if

- (x_n) is monotonic increasing if $x_n \leq x_{n+1}$ for all n
- (x_n) is monotonic decreasing if $x_{n+1} \leq x_n$ for all n

Example 3.6.1. $a_n = \frac{1}{n}$ is monotonic decreasing. In fact, $\frac{1}{n+1} \leq \frac{1}{n}$, then $a_{n+1} \leq a_n$.

Example 3.6.2. $b_n = n$ is monotonic increasing. In fact, $b_n = n$ and $b_{n+1} = n+1$. Since $n \le n+1$, then $b_n \le b_{n+1}$.

Example 3.6.3. $c_n = (-1)^n$ is not monotonic. We can take n = 1, then $a_1 \le a_2 \ne a_3$.

Theorem 3.5. If a sequence monotonic and bounded, then the sequence is convergent.

Definition 3.7 (Limit superior and inferior). If (x_n) is a sequence, then

- $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup\{x_k : k \ge n\}$
- $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} \inf\{x_k : k \ge n\}$

Example 3.7.1.

Definition 3.8 (Subsequence). $(x_{n_k}) \subseteq (x_n)$ is a subsequence of (x_n) . Only some terms of a sequence are part of a subsequence.

Example 3.8.1. $x_n = (-1)^n \cdot n$. We take k = 2n, then the subsequence $(x_{n_k}) = (x_{2n})$ of (x_n) takes all the even indexes n of (x_n) :

$$(x_n) = (-1, 2, -3, 4, -5, 6, \dots)$$

 $(x_{2n}) = (2, 4, 6, \dots)$

Theorem 3.6. If $x_n \to x$, then $x_{n_k} \to x$. If a sequence converges, all subsequences converge to the same limit.

Definition 3.9 (Dominant term). x_n is a dominant term if $x_m < x_n$ for all n < m.

Theorem 3.7. Every sequence has a monotonic subsequence.

Theorem 3.8 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Definition 3.10. $X \subseteq \mathbb{R}^n$ is compact $\iff X$ is closed and bounded (this is not true for \mathbb{R}^{∞}).

4 Series

Definition 4.1 (Series). (x_n) is sequence. $s_n = \sum_{k=1}^n x_k$ is a series (also known as the partial sum). A series is the summation of the terms of a sequence.

Definition 4.2 (Convergence of series). $s_n = \sum_{k=1}^n x_k$ a series. $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n x_k = \sum_{n=1}^\infty x_k$.

Example 4.2.1. The following are famous convergent series

- Harmonic: $\sum_{n=1}^{\infty} \frac{1}{n} = +\infty$
- Geometric: $\sum_{n=1}^{\infty} a^n = \begin{cases} \infty & |a| \ge 1\\ \frac{1}{1-a} & |a| < 1 \end{cases}$
- Exponential: $\sum_{n=1}^{\infty} \frac{1}{n!} = e$
- Leibniz: $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} = \frac{\pi}{4}$

Definition 4.3 (Absolute convergence of series). $s_n = \sum_{k=1}^n x_k$ is a series. s_n converges absolutely if

$$\sum_{n=1}^{\infty} |x_k| < \infty$$

Proposition 4.1. Absolute convergence \Rightarrow convergence. If $\sum_{n=1}^{\infty} |x_k| < \infty$, then $\sum_{n=1}^{\infty} x_k < \infty$.

Definition 4.4 (Cauchy criterion for series). $s_n = \sum_{k=1}^n x_k$, and $\sum_{n=1}^\infty x_k < \infty$ is a Cauchy series if for all $\varepsilon > 0$ it exists N such that:

$$\forall N \le m \le n \Rightarrow |s_n - s_m| = \left| \sum_{k=1}^n x_k - \sum_{k=1}^m x_k \right| = \left| \sum_{k=m}^n x_k \right| < \varepsilon$$

Proposition 4.2 (Comparison test). For x_n, y_n sequences and $x_n \geq 0$

(i) If
$$\sum_{n=1}^{\infty} x_k < \infty$$
 and $|y_n| \le x_n \Rightarrow \sum_{n=1}^{\infty} y_k < \infty$

(ii) If
$$\sum_{n=1}^{\infty} x_k = +\infty$$
 and $x_n \le y_n \Rightarrow \sum_{n=1}^{\infty} y_k = +\infty$

Example 4.2.1. $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converges, in fact

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} < \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

Proposition 4.3 (Ratio test). For x_n sequence, $x_n \neq 0$ and $s_n = \sum_{k=1}^n x_k$ series:

- (i) s_n converges absolutely if $\limsup_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| < 1$
- (ii) s_n diverges if $\liminf_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| > 1$

Example 4.3.1. $\sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n$

$$\left|\frac{\left(-\frac{1}{3}\right)^{n+1}}{\left(-\frac{1}{3}\right)^n}\right| = \left|-\frac{1}{3}\right| = \frac{1}{3} \Rightarrow \limsup_{n \to \infty} \frac{1}{3} = \frac{1}{3} < 1 \Rightarrow \text{ converges absolutely}$$

Example 4.3.2. $\sum_{n=1}^{\infty} \frac{n}{n^2 + 3}$

• Ratio test:

$$\limsup_{n \to \infty} \left| \frac{n+1}{(n+1)^2 + 3} \frac{n^2 + 3}{n} \right| = \limsup_{n \to \infty} \frac{n+1}{(n+1)^2 + 3} \frac{n^2 + 3}{n} = 1, \text{ no information}$$

• Comparison test:

$$\frac{n}{n^2 + 3n^2} \le \frac{n}{n^2 + 3} \Rightarrow \frac{n}{n^2 + 3n^2} = \frac{n}{4n^2} = \frac{1}{4} \frac{n}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{4} \frac{n}{n^2} \Rightarrow +\infty = \frac{1}{4} \sum_{n=1}^{\infty} \frac{n}{n^2} \le \sum_{n=1}^{\infty} \frac{n}{n^2 + 3} \Rightarrow \frac{n}{n^2 + 3n^2} = \frac{1}{4} \frac{n}{n^2} \Rightarrow \frac{1}{4} \frac{n}{n^2} \Rightarrow +\infty = \frac{1}{4} \sum_{n=1}^{\infty} \frac{n}{n^2} \le \sum_{n=1}^{\infty} \frac{n}{n^2 + 3} \Rightarrow \frac{n}{n^2 + 3n^2} = \frac{1}{4} \frac{n}{n^2} \Rightarrow \frac{1}{4} \frac{n}{n^2}$$

The series diverges. Sometimes one test can give more information than others.

Proposition 4.4 (Root test). Let $s_n = \sum_{k=1}^n x_k$ a series, $\alpha = \limsup_{n \to \infty} \sqrt[n]{|x_n|}$:

- (i) s_n converges absolutely if $\alpha < 1$
- (ii) s_n diverges if $\alpha > 1$

Example 4.4.1. $\sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n \Rightarrow \limsup_{n \to \infty} \sqrt[n]{-\frac{1}{3}^n} = \limsup_{n \to \infty} \frac{1}{3} = \frac{1}{3} < 1, \text{ the series converges absolutely.}$

Example 4.4.2. $\sum_{n=1}^{\infty} 2^{(-1)^n - n}$ converges, in fact

$$\sqrt[n]{2^{(-1)^n - n}} = \begin{cases} 2^{\frac{1}{n} - 1} & \text{if } n \text{ even} \\ 2^{-\frac{1}{n} - 1} & \text{if } n \text{ odd} \end{cases} \Rightarrow \lim_{n \to \infty} 2^{\frac{1}{n} - 1} = \lim_{n \to \infty} 2^{-\frac{1}{n} - 1} = \frac{1}{2} < 1$$

5 Functions and continuity

Definition 5.1 (Image). Given a function $f: X \to Y$, the image of f is defined as $Im_f(X) = \{f(x) : x \in X\}$. It contains all the images of all elements of X.

Definition 5.2 (Preimage). Given a function $f: X \to Y$, the preimage of f is defined as $PreIm_f(Y) = \{x: f(x) \in Y\}$. It contains all the elements of X that have an image in Y.

Definition 5.3 (Continuity in metric space). $f:(X,d_x)\to (Y,d_y)$ is continuous at $x\in X$ if

$$\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0 : \forall x' \in X, d_x(x, x') < \delta_{\varepsilon} \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Example 5.3.1. Let's take $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x^2 \sin \frac{1}{x} & \text{otherwise} \end{cases}$

We want to prove that f is continuous in 0. Let $\varepsilon > 0$, then $|f(x) - f(0)| = |f(x) - 0| = |f(x)| \le x^2$. If we take $\delta = \sqrt{\varepsilon}$, then

$$|x-0|<\delta\Rightarrow x^2<\delta\Rightarrow |f(x)-f(0)|\leq x^2<\delta^2=\varepsilon\Rightarrow f$$
 is continuous in 0

Remark. Continuity can also be defined as follows

$$\forall \ \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0 : Im_f(B^{d_x}_{\delta\varepsilon}(x)) \subseteq B^{d_y}_{\varepsilon}(f(x))$$

This means that the image of each ball around each x is contained in another ball around f(x).

Definition 5.4 (Continuity in topological space). $f:(X,\tau_x)\to (Y,\tau_y)$ is continuous at $x\in X$ if for all $U\in\tau_y$ such that $f(x)\in U$, then $PreIm_f(U)\in\tau_x$.

Example 5.4.1. Let's take (M, τ_m) , (N, τ_n) , $M = N = \{1, 2\}$, $\tau_m = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, $\tau_m = \{\emptyset, \{1, 2\}\}$.

- Let $f:(M,\tau_m)\to (N,\tau_n)$, such that f(1)=2 and f(2)=1:
 - $PreIm_f(\emptyset) = \emptyset \in \tau_m, PreIm_f(\{1,2\}) = \{1,2\} \in \tau_m \Rightarrow f \text{ is continuous in all } x \in M$
- Let $g:(N,\tau_n)\to (M,\tau_m)$, such that f(1)=2 and f(2)=1:

$$PreIm_q(\{1\}) = \{2\} \notin \tau_n \Rightarrow g \text{ is not continuous}$$

Proposition 5.1. Continuous functions map open sets into open sets.

If $f:(X,d_x)\to (Y,d_y)$ continuous, then $PreIm_f(A)$ is open, for all $A\subseteq Y$ open

Theorem 5.2. Continuous functions map limits to limits

$$f$$
 continuous, $x_n \to x \iff f(x_n) \to f(x)$

Example 5.2.1. Let's take $f(x) = 2x^2 + 1$ and $\lim_{n \to \infty} x_n = x$. Then:

$$\lim_{n \to \infty} 2x_n^2 + 1 = 2\left(\lim_{n \to \infty} x_n\right)^2 + 1 = 2x^2 + 1$$

This means that for $x_n \to x$, then $f(x_n) \to f(x)$. Therefore, f is continuous.

Proposition 5.3. $f,g:\mathbb{R}\to\mathbb{R}$ continuous at $x\Rightarrow f+g$, $f\cdot g$ and $\frac{f}{g}$ (for $g(x)\neq 0$) are continuous at x.

Proposition 5.4. f continuous at x and g continuous at $f(x) \Rightarrow g \circ f = g(f(x))$ is continuous at x.

Definition 5.5 (Contraction). $f:(X,d)\to (X,d)$ is a contraction \iff it exists $0\leq c<1$ such that $d(f(x),f(y))\leq cd(x,y)$, for all $x,y\in X$.

Theorem 5.5 (Banach fixed point). Let's take (X,d) complete (Cauchy \iff convergence) and $f:(X,d)\to (X,d)$ a contraction, then

- (i) $\exists ! \ x^* \in X : f(x^*) = x^*$
- (ii) $x_0 \in X$, $x_{n+1} = f(x_n) \Rightarrow x_n \to x^*$

Definition 5.6 (Convergence of a function). f converges to c at $x_0 \iff$ for all (x_n) such that $x_n \to x_0$ we have $f(x_n) \to c$. We write $\lim_{x \to x_0} f(x) = c$. Moreover

- f converges from above if, for all (x_n) , then $x_0 < x_n$. We write $\lim_{x \to x_n^+} f(x) = c$.
- f converges from below if, for all (x_n) , then $x_n < x_0$. We write $\lim_{x \to x_0^-} f(x) = c$.

Example 5.6.1. Let $f(x) = \frac{1}{x} \Rightarrow \lim_{x \to 0^+} \frac{1}{x} = +\infty$, $\lim_{x \to 0^-} \frac{1}{x} = -\infty$

Example 5.6.2. Let $f(x) = floor(x) \Rightarrow \lim_{x \to 1^+} floor(x) = 1$, $\lim_{x \to 1^-} floor(x) = 0$, but

$$\lim_{x \to \frac{1}{2}^+} floor(x) = \frac{1}{2} = \lim_{x \to \frac{1}{2}^-} floor(x)$$

Proposition 5.6. f continuous at $a \iff \lim_{x \to a} f(x) = f(a)$

Proposition 5.7. $\lim_{x\to a} (fg)(x) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$

6 Continuous functions and intervals

Definition 6.1 (Bounded function). $f: \mathbb{R} \to \mathbb{R}$ is bounded on $X \subseteq \mathbb{R}$ if $Im(X) = \{f(x) : x \in X\}$ is bounded. That is, it exists c such that $|f(x)| \le c$ for all $x \in X$.

Example 6.1.1. $f: \mathbb{R} \to [-1,1], f(x) = \sin(x)$ is bounded on \mathbb{R} , since $|\sin(x)| \le 1$ for all $x \in \mathbb{R}$.

Theorem 6.1 (Extreme value). *If* $f : \mathbb{R} \to \mathbb{R}[a,b]$ *is continuous, then:*

- (i) f is bounded on [a, b]
- (ii) f has a maximum and a minimum on [a, b], meaning that

$$\exists x_{minimizer}, x_{maximizer} \in [a, b] : f(x_{minimizer}) \leq f(x) \leq f(x_{maximizer}), \ \forall \ x \in [a, b]$$

Theorem 6.2 (Intermediate value). f continuous on [a,b], $f(a) < c < f(b) \Rightarrow \exists x \in [a,b] : f(x) = c$.

Definition 6.2 (Darboux function). A Darboux function is a function that satisfies the intermediate value property.

Proposition 6.3. Continuous implies Darboux, but not the opposite.

Example 6.3.1. $f(x) = \begin{cases} \sin(\frac{1}{x}) & x > 0 \\ 0 & x = 0 \end{cases}$ is a Darboux function, but it is not continuous.

Proposition 6.4. Continuous functions map intervals to intervals.

Definition 6.3 (Connectedness). Let (X, τ) a topological space, the $A \subseteq X$ is disconnected if the two equivalent definitions hold

- There exists $U, V \in \tau$ such that:
 - $-(A \cap U) \cap (A \cap V) = \emptyset$, and
 - $-(A \cap U) \cup (A \cap V) = A$, and
 - $-A \cap U \neq \emptyset \neq A \cap V$
- There exists $U, V \subseteq A$ such that:
 - $-A = U \cup V$, and
 - $-\overline{U}\cap V=\emptyset=U\cap\overline{V}$

N.B.: here \overline{U} doesn't mean complementary set of U, but set closure of U. That is, the smallest closed set containing U.

A set is connected if it is not disconnected.

Proposition 6.5. Continuous functions preserve connectedness.

$$f:(X,\tau_x)\to (Y,\tau_y), A\subseteq X$$
 connected in $(X,\tau_x)\Rightarrow Im(A)\subseteq Y$ is connected in (Y,τ_y)

7 Uniform continuity

Definition 7.1 (Uniform continuity). $f:(X,d_x)\to (Y,d_y)$ is uniformly continuous on X if

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 : \forall x, x' \in X : d_x(x, x') < \delta \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Example 7.1.1. $f(x) = \frac{1}{x^2}$ in $[a, +\infty)$, a > 1. To show that f is uniformly continuous, we have to show that for all $\varepsilon > 0$ exists $\delta_{\varepsilon} > 0$ such that for all x, y such that $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. Let $\varepsilon > 0$ and $f(x) - f(y) = \frac{1}{x^2} - \frac{1}{y^2} = \frac{(x+y)(x-y)}{x^2y^2}$. Then, since $a \le x, y \ \forall x, y$:

$$\frac{(x+y)}{x^2y^2} = \frac{x}{x^2y^2} + \frac{y}{x^2y^2} \le \frac{2}{a^3}$$

We chose $\delta = \frac{\varepsilon a^3}{2}$, then:

$$\forall x, y \ge a : |x - y| < \delta \Rightarrow |f(x) - f(y)| = |x - y| \left| \frac{x + y}{x^2 y^2} \right| < \delta \frac{2}{a^3} = \frac{\varepsilon a^3}{2} \frac{2}{a^3} = \varepsilon$$

This means f is uniformly continuous.

Remark. Uniform continuity is different from normal continuity. In normal continuity the δ depends on both ε and x, while in uniform continuity δ depends solely on ε . In fact, f is "normally" continuous on $x_0 \in X$ if:

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon,x_0} > 0 : \forall x \in X : d_x(x_0,x) < \delta \Rightarrow d_y(f(x_0),f(x)) < \varepsilon$$

Theorem 7.1. f continuous on A, closed and bounded \Rightarrow f is uniformly continuous on A.

Theorem 7.2. f uniformly continuous on S, $(s_n) \subseteq S$ is Cauchy sequence $\Rightarrow f(s_n)$ is Cauchy sequence.

Example 7.2.1. $f(x) = \frac{1}{x^2}$ is not uniformly continuous on (0,1). In fact, $s_n = \frac{1}{n}$ is Cauchy, but $f(s_n) = n^2$ is not Cauchy.

Definition 7.2 (Sequence of functions). $(f_n) \subseteq \{f : S \to \mathbb{R}\}$ is a sequence of functions. A sequence of function can converge to a function: $f_n \to f$.

Example 7.2.1. $f_n(x) = \frac{x}{n} \to f(x) = 0$

Definition 7.3 (Pointwise convergence). f_n converges pointwise to $f \iff \lim_{n\to\infty} f_n(x) = f(x)$ for all $x\in S$.

$$\forall \ \varepsilon > 0, x \in S \ \exists \ N_{\varepsilon} : |f_n(x) - f(x)| < \varepsilon$$

Example 7.3.1. $f_n(x) = x^n, x \in [0,1] \Rightarrow f(x) = \begin{cases} 1 & x = 1 \\ 0 & x \neq 1 \end{cases}$. f_n is continuous and f is discontinuous.

Definition 7.4 (infinite norm). $d_{\infty}(f_n, f) = \sup\{|f_n(x) - f(x)|\}$

Definition 7.5 (Uniform convergence). f_n converges uniformly to f if exists N_{ε} such that $d_{\infty}(f_n, f) < \varepsilon$ for all $n \geq N_{\varepsilon}$.

Example 7.5.1. Let $f_n(x) = (1 - |x|)^n$, $x \in (-1,1)$. Then f converges pointwise (but not uniformly) to $f(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$. In fact

- Pointwise convergence For x = 0, $f_n(x) = (1-0)^n = 1$, then $\lim_{n \to \infty} f_n = \lim_{n \to \infty} 1 = 1$. For $x \neq 0$, |x| < 1. This means 1 |x| < 1, then $\lim_{n \to \infty} (1 |x|)^n = 0$.
- Uniform convergence We assume $f_n \xrightarrow{unif.} f$ and we take $\varepsilon = \frac{1}{2}$. Then it exists N such that $|f_n(x) f(x)| < \frac{1}{2}$ for all $x \in (-1,1)$. Let's take $x = 1 2^{-\frac{1}{n}}$, then $1 x = 2^{-\frac{1}{n}}$. Thus $(1-x)^n = (2^{-\frac{1}{n}})^n = \frac{1}{2} \nleq \frac{1}{2} = \varepsilon$. Contradiction, f doesn't converge uniformly to f.

Theorem 7.3. Uniform limit of a continuous function is continuous.

$$f_n(x)$$
 continuous and $f_n(x) \xrightarrow{unif.} f(x) \Rightarrow f(x)$ is continuous

Example 7.3.1. Let $f_n \xrightarrow{unif.} f$ and $g_n \xrightarrow{unif.} g$ on $S \subseteq \mathbb{R}$. Then $f_n + g_n \xrightarrow{unif.} f + g$. In fact

$$\exists N_f: \forall x \in S |f_n(x) - f(x)| < \frac{\varepsilon}{2} \forall n > N_f$$

$$\exists \ N_g: \ \forall \ x \in S \left| g_n(x) - g(x) \right| < \frac{\varepsilon}{2} \ \forall \ n > N_g$$

We take $N = \max\{N_f, N_g\}$. Then

$$|f_n(x) - f(x) + g_n(x) - g(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall \ n \ge N$$

This means $f_n + g_n \xrightarrow{unif.} f + g$.

Example 7.3.2. Let $f_n \xrightarrow{unif.} f$ and $g_n \xrightarrow{unif.} g$ on $S \subseteq \mathbb{R}$. Then $f_n g_n$ doesn't converge uniformly to fg. In fact, let $h_n(x) = \frac{x}{n}$. By contradiction we can prove h_n doesn't converge uniformly to h. Now, if we take $f_n(x) = \frac{1}{n}$ and $g_n(x) = x$ (uniformly convergent), then $f(x)g(x) = \frac{x}{n} = h(x)$ not uniformly convergent. We found a counter example.

Example 7.3.3. Let $f_n(x)$ continuous on [a,b], $f_n(x) \xrightarrow{unif.} f(x)$, $(x_n) \subseteq [a,b]$ and $x_n \to x$. Then, $f_n(x_n) \to f(x)$. To prove it we have to show that exists N such that for all $n \ge N$, then $|f_n(x_n) - f(x)| < \varepsilon$.

(1) $f_n \xrightarrow{unif.} f$, this means it exists N_1 such that $|f_n(y) - f(y)| < \frac{\varepsilon}{2}$, for all $n \ge N_1$ and $y \in [a, b]$. In particular, $|f_n(x_n) - f(x_n)| < \frac{\varepsilon}{2}$.

- (2) Since $f_n(x)$ continuous and $f_n(x) \xrightarrow{unif.} f(x)$, then f(x) is continuous. Then $f(x_n) \to f(x)$, this means it exists N_2 such that for all $n \ge N_2$, then $|f(x_n) f(x)| < \frac{\varepsilon}{2}$.
- (3) We chose $N = \max\{N_1.N_2\}$. Then:

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall \ n \ge N$$

We can conclude that $f_n(x_n) \to f(x)$.

8 Power Series

Definition 8.1 (Power series). Let $(a_n)_{n\geq 0}\subseteq \mathbb{R}$ a sequence. Then $\sum_{n=0}^{\infty}a_nx^n$ is a power series. We have three cases

- The series converges for all $x \in \mathbb{R}$.
- The series converges for x = 0 only.
- The series converges for some bounded interval.

Theorem 8.1. Let $\beta = \limsup \sqrt[n]{|a_n|}$ and $R = \frac{1}{\beta}$ $(R = \infty \text{ if } \beta = 0, R = 0 \text{ if } \beta = \infty)$. Then $\sum_{n=0}^{\infty} a_n x^n$

- Converges for |x| < R.
- Diverges for |x| > R.

The same can be done with $\beta = \limsup \left| \frac{a_n}{a_{n+1}} \right|$.

Example 8.1.1. Let $a_n = 1$. We have the power series $\sum_{n=0}^{\infty} x^n$ and $\beta = \limsup \sqrt[n]{1} = 1$, then R = 1. This means the series converges for $x \in (-1,1)$ and diverges for x such that |x| > 1. Moreover, it diverges for x = 1, since $\sum_{n=0}^{\infty} 1 = +\infty$, and it is not defined for x = -1.

Example 8.1.2. Let $\sum_{n=0}^{\infty} \frac{1}{n} x^n$ a power series. Then $\limsup \left| \frac{a_n}{a_{n+1}} \right| = \limsup \left| \frac{n}{n+1} \right| = 1$, then R = 1. For x = 1 we have the harmonic series $\sum_{n=0}^{\infty} \frac{1}{n}$ wich diverges, for x = -1 we have $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} < \infty$. We can conclude that the power series converges for $x \in [-1, 1)$.

9 Lipschitz continuity

Definition 9.1 (Lipschitz continuity). $f:(X,d_x)\to (Y,d_y)$ is Lipschitz continuous if it exists $c\in [0,+\infty)$ such that $d_y(f(x),f(x'))\leq cd_x(x,x')$.

Proposition 9.1. Lipschitz continuity \Rightarrow uniform continuity.

Example 9.1.1. \sqrt{x} is uniformly continuous but not Lipschitz continuous over [0,1]. We can prove it by contradiction. We assume \sqrt{x} is Lipschitz continuous. This means it exists $c \in [0, +\infty]$ such that for x' = 0, then $|\sqrt{x} - \sqrt{0}| \le c|x - 0| \iff |\sqrt{x}| \le c|x| \iff c \ge \frac{1}{\sqrt{x}}$. For x = 0, then c is not defined. Contradiction.

Theorem 9.2 (Weierstrass approximation). Every continuous function on [a,b] can be uniformly approximated by polynomials on [a,b]

$$\exists (a_n) \subseteq \mathbb{R} : p_n(x) = \sum_{k=1}^n a_k x^k \xrightarrow{unif.} f(x) \ on \ [a,b]$$

Theorem 9.3 (Bernstein polynomials). $b_{m,n}(x) = \binom{n}{m} x^m (1-x)^{n-m}$

$$span\{b_{0,n}(x),...,b_{n,n}(x)\} = \left\{\sum_{k=1}^{n} a_k x^k, a_i \in R\right\}$$

Example 9.3.1.

$$a_0 + a_1 x + a_2 x^2 = b_0 (1 - x)^2 + b_1 2x (1 - x) + b_2 x^2 = b_0 + 2(b_1 - b_0) + (b_0 - 2b_1 + b_2) x^2$$

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1/2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \Rightarrow \begin{cases} b_0 = a_0 \\ b_1 = a_0 + \frac{1}{2} a_1 \\ b_2 = a_0 + a_1 + a_2 \end{cases}$$

Theorem 9.4. $f:[0,1] \to \mathbb{R}$ continuous, then

- $B_n(f)(x) = \sum_{m=0}^{n} f(\frac{m}{n}) b_{m,n}(x)$
- $B_n(f)(x) \to f(x)$ uniformly continuous on [0, 1]

10 Differentiability and derivatives

Definition 10.1 (Derivative). The derivative of a function f at point a is defined as one

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{\varepsilon \to 0} \frac{f(a + \varepsilon) - f(a)}{\varepsilon}$$

Definition 10.2 (Differentiability). f is differentiable if the derivative f' exists.

Example 10.2.1.
$$f(x) = x^2 \Rightarrow \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{(x+\varepsilon)^2 - x^2}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon(2x+\varepsilon)}{\varepsilon} = \lim_{\varepsilon \to 0} 2x + \varepsilon = 2x$$

Example 10.2.2.
$$f(x) = \sqrt{x} \Rightarrow f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{\sqrt{x}\sqrt{a}}{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})} = \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

Example 10.2.3.
$$f(x) = |x| \Rightarrow f'(x) = \lim_{\varepsilon \to 0} \frac{|x + \varepsilon| - |x|}{\varepsilon} = \begin{cases} \lim_{\varepsilon \to 0} \frac{x + \varepsilon - x}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon}{\varepsilon} = 1 & x > 0 \\ \lim_{\varepsilon \to 0} \frac{-x - \varepsilon + x}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{-\varepsilon}{\varepsilon} = -1 & x < 0 \end{cases}$$
Not defined for $x = 0$.

Proposition 10.1. f differentiable at a, then f continuous at a.

Definition 10.3. $f \in \mathcal{C}^k(\mathbb{R})$, f is differentiable k times, and the derivatives are continuous.

Proposition 10.2. Properties of derivatives

- (f+g)'(x) = f'(x) + g'(x)
- (fg)'(x) = f'(x)g(x) + f(x)g'(x)
- $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \quad \forall \ g(x) \neq 0$
- $\bullet \ (g\circ f)'(x)=(g'\circ f)(x)f'(x)=g'(x)f(x)f'(x)$
- $f^{-1}(x)' = \frac{1}{f'(f^{-1}(x))}$

Example 10.2.1. Let $f(x) = e^x$, $f'(x) = e^x$ and $f^{-1}(y) = \ln(y)$. The derivative of $\ln'(y)$ is

$$\ln'(y) = \frac{1}{e^{\ln(y)}} = \frac{1}{y}$$

Definition 10.4 (Local minimizer). x^* is a local minimizer if exists $\varepsilon > 0$ such that $f(x^*) \le f(x)$ for all $x \in (x^* - \varepsilon, x^* + \varepsilon)$. This means, $f(x^*)$ is local minimum (the smallest image in a given interval).

Theorem 10.3. $f: \mathbb{R} \to \mathbb{R}(a,b)$ is differentiable and has a local minimum at $x \Rightarrow f'(x) = 0$.

Theorem 10.4 (Rolle's theorem). Let $f : \mathbb{R} \to \mathbb{R}[a,b]$ differentiable on (a,b) and $f(a) = f(b) \Rightarrow it$ exists $x \in (a,b)$ such that f'(x) = 0.

Theorem 10.5 (Mean value theorem). Let $f : \mathbb{R} \to \mathbb{R}[a,b]$ differentiable on $(a,b) \Rightarrow$ it exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Theorem 10.6 (Second order optimality conditions). Let $f \in C^2(\mathbb{R})$ and f'(x) = 0

- If $f''(x) > 0 \Rightarrow x$ is a local minimum
- If $f''(x) < 0 \Rightarrow x$ is a local maximum
- If $f''(x) = 0 \Rightarrow x$ is an inflection point

Definition 10.5 (Convex vector space). Let A be a vector space, $x, y \in A$ and $t \in [0, 1]$. Then A is convex if $tx + (1 - t)y \in A$.

Definition 10.6 (Convex function). $f: \mathbb{R} \to \mathbb{R}[a,b]$ is convex if for all $x,y \in [a,b]$, $t \in [0,1]$, then

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Theorem 10.7. If f is convex, then global minimum is local minimum.

Theorem 10.8 (Gradient inequality). $f \in \mathcal{C}^1$ is convex $\iff f(x) \geq f(y) + f'(y)(x-y)$

Theorem 10.9 (Newton's method). Newton's method is a way to approximate a local minimum or maximum of a function. $x^{(0)}$ is the initial guess of a local minimum $\Rightarrow x^{(n+1)} = x^{(n)} - \frac{f'(x^{(n)})}{f''(x^{(n)})}$ is a more precise approximation.

Example 10.9.1. $f(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 - x$, $f'(x) = x^3 - x - 1$ and $f''(x) = 3x^2 - 1$. Solve f'(x) = 0, with initial guess 1:

- (1) $x^{(0)} = 1$
- (2) $x^{(1)} = 1 \frac{f'(1)}{f''(1)} = 1.5$
- (3) $x^{(2)} \approx 1.3478$
- (4) $x^{(3)} \approx 1.3252$
- (5) $x^{(4)} \approx 1.32472$
- (6) $x^{(5)} \approx 1.32472$

As we can see, the last two approximation are already close.

Theorem 10.10 (Taylor' series). Taylor series are a way to approximate a function. Let $f \in \mathcal{C}^{\infty}(\mathbb{R})$, then its Taylor series around point x_0 is $T_f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k \approx \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$.

Example 10.10.1. $f(x) = e^x$, the Taylor series around 0 is $T_f(x) = \sum_{k=0}^{\infty} \frac{e^0}{k!} (x-0)^k = \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x \Rightarrow T'_f(x) = e^x$.

Definition 10.7. If $f(x) = T_f(x)$ for all x, then f(x) is analytic.

Example 10.7.1. $f(x) = \sin(x)$, $f'(x) = \cos(x)$, $f''(x) = -\sin(x)$, $f'''(x) = -\cos(x)$, $f^{(4)}(x) = \sin(x)$ has period of four. Then

$$T_f(x) = \sum_{k=0}^{\infty} \frac{x^{4k+1}}{(4k+1)!} - \sum_{k=0}^{\infty} \frac{x^{4k+3}}{(4k+3)!} = \sum_{k=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sin(x)$$

Theorem 10.11 (Taylor's theorem). $f \in \mathcal{C}^{n+1}(\mathbb{R})$, then it exists $\xi \in (a,x)$ such that

$$f(x) = \sum_{k=0}^{n} \left(\frac{f^{(k)}(a)}{k!} (x - a)^k \right) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - a)^{n+1}$$

Where $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} = O((x-a)^{n+1})$ is the error of approximation.

11 Integrals

Definition 11.1 (Partition). Let $f : \mathbb{R} \to \mathbb{R}[a,b], \ \Delta = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$ is a partition of [a,b]. Let $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ and $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$. Then

$$L_{\Delta}(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) m_k, \quad U_{\Delta}(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) M_k$$

 $L(f) = \sup\{L_{\Delta}(f)\}\$ and $U(f) = \inf\{U_{\Delta}(f)\}\$ are the lower and upper Darboux sums.

Example 11.1.1. f(x) = cx on $[0,1] \Rightarrow L(f) = U(f) = \frac{c}{2}$

Example 11.1.2.
$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases} \Rightarrow L(f) = 0 \neq 1 = U(f)$$

Theorem 11.1 (Ross' theorem). f bounded on $[a,b] \Rightarrow L(f) \leq U(f)$

Definition 11.2 (Darboux (Riemann) integral). If L(f) = U(f), then f is Darboux integrable and we call the integral $L(f) = U(f) = \int_a^b f(x) dx$.

Proposition 11.2. f continuous and bounded $\Rightarrow f$ is Riemann integrable.

Proposition 11.3 (Properties of integrals). $f, g : \mathbb{R} \to \mathbb{R}[a, b]$ integrable, $\lambda \in \mathbb{R}$ and $c \in [a, b]$. Then:

- (1) $\int_a^b (\lambda f)(x) dx = \lambda \int_a^b f(x) dx$
- (2) $\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$
- (3) $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$
- (4) If $f(x) \le g(x) \ \forall \ x \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$

Theorem 11.4. If f is monotonic or continuous, then f is integrable.

Theorem 11.5. If f is integrable on [a,b], then |f| is integrable on [a,b] and $\left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx$.

Theorem 11.6 (Mean value theorem for integrals). $f,g:\mathbb{R}\to\mathbb{R}[a,b]$ continuous, $g(x)\geq 0$ for all $x\in [a,b]\Rightarrow it\ exists\ c\in [a,b]$ such that $\int_a^b f(x)g(x)dx=f(c)\int_a^b g(x)dx$

Corollary 11.6.1. $f: \mathbb{R} \to \mathbb{R}[a,b]$ continuous, then it exists $c \in [a,b]$ such that $\int_a^b f(x)dx = f(c)(b-a)$.

12 Antiderivatives (or indefinite integrals)

Definition 12.1 (Antiderivative). $F: \mathbb{R} \to \mathbb{R}[a, b]$ differentiable, is the antiderivative of $f: \mathbb{R} \to \mathbb{R}[a, b]$ if F'(x) = f(x). We write $\int f(x)dx$.

Theorem 12.1 (Fundamental theorem of calculus). $f : \mathbb{R} \to \mathbb{R}[a, b]$ continuous, then f has an unique antiderivative $F(x) = \int_a^x f(t)dt$, with F(a) = 0.

Corollary 12.1.1. $f: \mathbb{R} \to \mathbb{R}[a,b]$, F antiderivative of f, then $\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)$.

Example 12.1.1. $g(x) = \frac{x^{n+1}}{n+1}$, $g'(x) = x^n$. Then $\int x^n dx = \frac{x^{n+1}}{n+1} + c$ and $\int_a^b x^n dx = \frac{b^{n+1} - a^{n+1}}{n+1}$.

Theorem 12.2 (Integration by parts). $f, g : \mathbb{R} \to \mathbb{R} \int a, b \in C^1([a, b]), then$

$$\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x)dx$$

Theorem 12.3 (Integration by substitution). $f: \mathbb{R} \to \mathbb{R} \int a, b \ continuous \ g: \mathbb{R} \to \mathbb{R} \int a, b \in C^1([a,b]),$ then:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(t)dt$$

Example 12.3.1. Substitution from left to right

Let $f(x) = \cos(x^2 + 1)x$, a = 0 and b = 2. We can chose $g(x) = t = x^2 + 1$, then deriving on both sides we obtain g'(x) = dt = 2xdx, hence $\frac{1}{2}g'(x) = \frac{1}{2}dt = xdx$. Now

$$\int_{a}^{b} f(x)dx = \int_{0}^{2} \cos(x^{2} + 1)xdx = \int_{0^{2} + 1}^{2^{2} + 1} \cos(t)\frac{1}{2}dt = \frac{1}{2}\int_{1}^{5} \cos(t)dt = \frac{1}{2}\left(\cos(5) - \cos(1)\right)$$

Example 12.3.2. Substitution from right to left

We want to solve $\int_0^1 \sqrt{1-x^2} dx$. We can chose $x=\sin(t)$, this means (deriving on both sides) that dx=1

 $\cos(t)dt$. Now

$$\int_0^1 \sqrt{1 - x^2} dx = \int_{\arcsin 0}^{\arcsin(1)} \sqrt{1 - \sin^2(t)} \cos(t) dt = \int_0^{\frac{\pi}{2}} \sqrt{\cos^2(t)} \cos(t) dt = \int_0^{\frac{\pi}{2}} \cos^2(t) dt = \frac{\pi}{4}$$