PRÁCTICO 4 LENGUAJES FORMALES: Minimización de estados.

Mauricio Velasco

- 1. Sea $\Sigma = \{a, b\}$. Encuentre las clases de equivalencia de la relación \simeq_L para los siguientes lenguajes $L \subseteq \Sigma^*$:
 - a) $L = \{x \in \Sigma^* : x \text{ contiene al menos una ocurrencia de aababa} \}$
 - $b) \ L = \{xx : x \in \Sigma^*\}$
- 2. Para cada uno de los lenguajes del ejercicio anterior encuentre el automata óptimo que acepta a L.
- 3. Una palabra $z \in \Sigma^*$ se llama libre de cuadrados si NO puede escribirse como z = uvvw para $u, v, w \in \Sigma^*$ con $v \neq \epsilon$. (por ejemplo perro y papa no son palabras libres de cuadrados). Demuestre que si $|\Sigma| \geq 2$ entonces el lenguaje que consiste de las palabras libres de cuadrados en Σ^* NO es un lenguaje regular.
- 4. Demuestre que las expresiones regulares $aa(a \cup b)^* \cup (bb)^*a^*$ y $(ab \cup ba \cup a)^*$ NO describen el mismo lenguaje de dos maneras. Aplicando sobre ellas un algoritmo general y encontrando una cadena generada por una y no por la otra.