מבני נתונים ומבוא לאלגוריתמים

נושא 4

מיון מהיר, הוכחת נכונות של אלגוריתמים Quick-Sort, proof of correctness

בתוכנית

פרק 7 בספר הלימוד

• נלמד על האלגוריתם מיון מהיר (Quick-Sort), ועל אלגוריתם החלוקה (Partition).

:נראה שתי גרסאות של מיון מהיר

1. בסיסי 2. אקראי (בהמשך הקורס נראה גרסה נוספת)

- "נכיר את המושג "אלגוריתמים אקראיים"
 - של מיון (stability) פלמד מהי יציבות •

• נלמד מהי הוכחת נכונות (correctness) של אלגוריתם

<u> Quick-Sort – מיון מהיר</u>

- פותח ע"י C.A.R. Hoare ב-1962, בהיותו בן
- <u>בדומה</u> למיון מיזוג אלגוריתם רקורסיבי, עובד בשיטת הפרד-משול-צרף
 - <u>בשונה</u> ממיון מיזוג •
- י ממיין במקום בכל רגע מחוץ (in-place), כלומר $\Theta(1)$ איברים מאוחסנים בכל רגע מחוץ למערך הקלט.
 - עושה את כל העבודה לפני הקריאות הרקורסיביות (שלב ה- Divide):
 מחלק את המערך לשני חלקים (לאו דווקא חצאים!).

מקרה טוב	ממוצע	מקרה גרוע	גרסה
		$\Theta(n^2)$	בסיסית
$\Theta(n\log n)$	$\Theta(n\log n)$	$\Theta(n^2)$	אקראית
		$\Theta(n \log n)$	דטרמיניסטית

נלמד שלוש גרסאות: •

• אלגוריתם מהיר מאוד באופן מעשי

בהמשך הקורס

<u>הרעיון</u>

n בגודל A בגודל

1. <u>" הפרד "</u>

- * מתוך המערך x (pivot) מתוך בחר
- ביניהם x ביניהם >x ו- x ביניהם חלק את A לשני אזורים:

≤x	> <i>X</i>	X	≤ <i>X</i>	≤ <i>X</i>	≤X	≤ <i>X</i>	> <i>X</i>		≤ <i>X</i>	X	> <i>x</i>	>X				
1							\overline{n}	•	1					\overline{q}		\overline{n}

2. <u>" משול "</u>

- $A[1\mathinner{.\,.} q\hbox{-} 1]$ מיין רקורסיבית את -
- $A[q+1 \dots n]$ מיין רקורסיבית את -

3. <u>" צרף "</u>

! כלום, המערך ממוין -

גרסה	הציר (בכל שלב) נבחר מתוך תת המערך עליו עובדים:
בסיסית	כאיבר הימני ביותר
אקראית	כאיבר אקראי
דטרמיניסטית	כחציון

A -יכול להיות איבר שכלל אינו בx יכול שנראה, x

<u>האלגוריתם</u>

Quick-Sort (A, p, r)

- 1. **if** p < r
- 2. $q \leftarrow \operatorname{Partition}(A, p, r)$
- 3. Quick-Sort (A, p, q-1)
- 4. Quick-Sort (A, q+1, r)

הקלט: מערך A, גבול שמאלי pוגבול ימני r

: (חוא גודל המערך) הקריאה הראשית (חוא גודל המערך) Quick-Sort (A, 1, n)

?מהו תנאי העצירה

החלוקה - Partition

Partition(A, p, r)

1. $x \leftarrow A[r]$ 2. $i \leftarrow p - 1$ 3. $\mathbf{for} \ j \leftarrow p \ \mathbf{to} \ r - 1$ 4. $\mathbf{if} \ A[j] \le x$ 5. $i \leftarrow i + 1$ 6. $\mathbf{exchange} \ A[i] \leftrightarrow A[j]$ 7. $\mathbf{exchange} \ A[i + 1] \leftrightarrow A[r]$ 8. $\mathbf{return} \ i + 1$

<u>החלוקה – הדגמה דינאמית</u>

```
Partition(A, p, r)

1. x \leftarrow A[r]

2. i \leftarrow p - 1

3. for j \leftarrow p to r - 1

4. if A[j] \leq x

5. i \leftarrow i + 1

6. exchange A[i] \leftrightarrow A[j]

7. exchange A[i + 1] \leftrightarrow A[r]

8. return i + 1
```

בסיום החלוקה:

- נמצא במקומו הסופי. x
- ייתכן שאחד האזורים ריק. •

<u>הוכחת נכונות של אלגוריתמים</u>

כדי להוכיח שאלגוריתם עובד נכון (כלומר לכל קלט חוקי מפיק את הפלט הרצוי), עלינו להוכיח 2 דברים:

- **1.** עצירה לכל קלט חוקי, האלגוריתם עוצר לאחר מספר סופי של פעולות
- 2. <u>נכונות הפלט</u> לכל קלט חוקי, כאשר האלגוריתם עוצר, הפלט שהוא מספק הוא הפלט המצופה

.Quick-Sort נדגים כעת הוכחת נכונות של

דוגמה נוספת להוכחת נכונות (של מיון בועות) נמצאת לקראת סוף המצגת.

<u>הוכחת נכונות של מיון מהיר - עצירה</u>

<u>:1 טענה</u>

.(מסתיים לאחר זמן סופי) Quick-Sort

הוכחה:

- בודאי עוצר, שכן הוא מבצע מספר סופי של איטרציות שכל אחת סופית, ועוד מספר Partition קבוע של פעולות.
 - תנאי העצירה של Quick-Sort הוא מערך בגודל 1. בכל קריאה רקורסיבית גודל הבעיה קטן ממש (לפחות ב- 1) לכן לאחר מספר סופי של שלבי רקורסיה (שכל אחד סופי) נגיע לתנאי העצירה.

מ.ש.ל. (טענה 1)

<u>הוכחת נכונות של מיון מהיר - החלוקה</u>

Partition(A, p, r)

- 1. $x \leftarrow A[r]$
- 2. $i \leftarrow p-1$
- 3. **for** $j \leftarrow p$ **to** r 1
- 4. **if** $A[j] \leq x$
- 5. $i \leftarrow i + 1$
- 6. exchange $A[i] \leftrightarrow A[j]$
- 7. exchange $A[i+1] \leftrightarrow A[r]$
- 8. **return** i + 1

- נמצא במקומו הסופי x
- משמאלו איברים שאינם גדולים ממנו
 - מימינו איברים שגדולים ממנו

לשם הוכחת טענה 2 ננסח ונוכיח תכונה שמתקיימת בתחילת כל איטרציה של הלולאה בשורות 3-6. תכונה כזו מכונה <u>שמורת לולאה</u> (loop invariant).

שמורת הלולאה בשורות 3-6:

בתחילת כל איטרציה, לכל אינדקס k במערך:

$$A[k] \le x$$
 אז $p \le k \le i$ א. אם

$$A[k]>x$$
 אז $i+1\leq k\leq j-1$ ב. אם

$$A[r] = x$$
 .

<u>הוכחת נכונות של מיון מהיר - החלוקה</u>

שמורת הלולאה בשורות 3-6:

בתחילת כל איטרציה, לכל אינדקס k במערך:

$$A[k] \le x$$
 אז $p \le k \le i$ א. אם $A[k] > x$ אז $i+1 \le k \le j-1$ ב. אם $A[r] = x$ ג.

Partition(A, p, r)

- 1. $x \leftarrow A[r]$
- 2. $i \leftarrow p-1$
- 3. **for** $j \leftarrow p$ **to** r 1
- 4. **if** $A[j] \leq x$
- 5. $i \leftarrow i + 1$
- 6. exchange $A[i] \leftrightarrow A[j]$
- 7. exchange $A[i+1] \leftrightarrow A[r]$
- 8. return i+1

11

הוכחת שמורת הלולאה (באינדוקציה על מספר האיטרציה):

בסיס: בתחילת האיטרציה הראשונה, א'+ב' מתקיימים באופן ריק, ג' מתקיים בגלל שורה 1.

בעד: נניח ששמורת הלולאה התקיימה בתחילת איטרציה m כלשהי, ונוכיח שהיא מתקיימת גם בתחילת m+1.

אם A[j]>x אז רק מקדמים את j לכן תכונה ב' ממשיכה להתקיים, ואין פגיעה בתכונות א' ו- ג'. אם A[j]>x אם אם $A[j]\leq x$ אז בזכות ההחלפה בשורה 6 עדיין $A[i]\leq x$ (עם ה- i החדש) לכן תכונה א' ממשיכה להתקיים, ואין פגיעה בתכונה ג'. ועדיין A[j-1]>x (עם ה- A[j-1]>x)

A[r] = x וגם A[i+1..r-1] > x וגם $A[p..i] \le x$ סיום הלולאה: בסוף האיטרציה האחרונה j=r, כלומר

<u>הוכחת נכונות של מיון מהיר - החלוקה</u>

Partition(A, p, r)

- 1. $x \leftarrow A[r]$
- 2. $i \leftarrow p-1$
- 3. **for** $j \leftarrow p$ **to** r 1
- 4. **if** $A[j] \leq x$
- 5. $i \leftarrow i + 1$
- 6. exchange $A[i] \leftrightarrow A[j]$
- 7. exchange $A[i+1] \leftrightarrow A[r]$
- 8. return i + 1

<u>2 המשך הוכחת טענה</u>

כאמור בשקף הקודם, מהוכחת שמורת הלולאה נובע שהמצב בסיום הלולאה הוא כזה:

מהחלפה בשורה 7 נובעת נכונות טענה 2:

מ.ש.ל. (טענה 2)

<u>הוכחת נכונות של מיון מהיר</u>

Quick-Sort (A, p, r)

- 1. if p < r
- 2. $q \leftarrow \operatorname{Partition}(A, p, r)$
- 3. Quick-Sort (A, p, q-1)
- 4. Quick-Sort (A, q+1, r)

<u>3 טענה</u>

A ממיין את Quick-Sort (A, 1, n)

<u>הוכחה (באינדוקציה על n:</u>

n=1 בסיס: עבור n=1 האלגוריתם נכון (מדוע?).

k < n ממיין נכון מערכים בגודל Quick-Sort -צעד: נניח ש

 $A[k_1] \leq A[q] < A[k_2]$: $q+1 \leq k_2 \leq r$ לפי <u>טענה 2,</u> בסיום שורה 2 מתקיים שלכל $p \leq k_1 \leq q-1$ ולכל $p \leq k_1 \leq q-1$ ו- A[q+1..r] ו- A[q+1..r] ו- A[q+1..r] ו- A[q+1..r] משני הנ"ל נובע, שבסיום A[q+1..r] המערך A[q+1..r] ממוין.

מ.ש.ל. (טענה 3)

בזאת הסתיימה הוכחת הנכונות של מיון מהיר, QED.

<u>גרסה אחרת של חלוקה</u>

```
Hoare-Partition (A, p, r)
      x \leftarrow A[p]
   i \leftarrow p-1
    j \leftarrow r + 1
     while TRUE
5.
            repeat j \leftarrow j - 1
6.
            until A[j] \le x
7.
            repeat i \leftarrow i + 1
            until A[i] \ge x
8.
9.
            if i < j
                 exchange A[i] \leftrightarrow A[j]
10.
            else return j
11.
```

בסיום החלוקה:

- מצא במקומו הסופי? x נמצא בהכרח
 - האם ייתכן שאחד האזורים ריק?

ראו בעיה 7-1 בספר הלימוד.

?Quick-Sort - איזה שינוי צריך לבצע ב

החלוקה המקורית שחיבר HOARE:

<u>ניתוח זמן ריצה</u>

 $\Theta(n)$ סיבוכיות הזמן של החלוקה (לא משנה איזו גרסה) היא

<u>המקרה הגרוע</u>

כאשר החלוקה בכל שלב של הרקורסיה היא בלתי מאוזנת באופן הקיצוני ביותר:

- n-1 בגרסה הראשונה של החלוקה: איזור אחד בגודל 0 והשני בגודל -
 - ? HOARE בגרסת

זה קורה כאשר איבר הציר הוא המינימום או המקסימום של תת-המערך, בכל שלב.

<u>תרגיל</u>: הדגימו את ריצתו של מיון מהיר על מערך ממוין, ועל מערך ממוין הפוך.

$$T(n) = T(n-1) + T(0) + \Theta(n) = \Theta(n^2)$$

<u>המקרה הטוב</u>

כאשר החלוקה <u>בכל שלב</u> של הרקורסיה היא מאוזנת: חלוקה לשני חצאים בערך.

$$T(n) = 2T(n/2) + \Theta(n) = \Theta(n\log n)$$

<u>זמן ריצה ממוצע</u>

<u>זמן ריצה ממוצע</u>

 $\Theta(n \log n)$ טענה: זמן הריצה הממוצע של מיון מהיר הוא

מה פירוש זמן ריצה ממוצע (או תוחלת זמן ריצה)? ממוצע זמני הריצה של אלגוריתם על פני כל הקלטים האפשריים שלו בגודל n.

את הטענה הנ"ל לא נוכיח (הוכחה בספר הלימוד), אבל נסביר אותה אינטואיטיבית: בריצה כלשהי של מיון מהיר ישנה תערובת של חלוקות "גרועות" וחלוקות "טובות". נניח לשם פשטות שיש רק חלוקות גרועות <u>ביותר</u> וטובות <u>ביותר</u>, ושהן מופיעות

<u>לסירוגיו</u> בזו אחר זו. אז זמן הריצה הממוצע שקול לזמן הריצה במקרה הטוב:

O(n-2)/2 אותו O(n-2)/2 אותו O(n-2)/2 אותו O(n-2)/2 אותו O(n-2)/2 אותו O(n-1)/2 א

אלגוריתמים אקראיים

- אלגוריתם אקראי הוא אלגוריתם שעושה שימוש <u>במחולל מספרים אקראיים</u> (random-number generator).
- היתרון של אלגוריתם <u>אקראי</u> לעומת אלגוריתם <u>דטרמיניסטי</u> (לא אקראי) הוא חסינות בפני "יריב מרושע" שמכיר את פרטי האלגוריתם ויכול לייצר קלט שיהווה מקרה גרוע.
 - בפועל רוב סביבות התכנות מציעות <u>מחולל מספרים פסידו-אקראיים</u> כלומר אלגוריתם דטרמיניסטי (לא אקראי) שמחזיר מספרים שנראים סטטיסטית אקראיים מספיק.
 - קיימים שני סוגים של אלגוריתמים אקראיים:

לאס וגאס: האלגוריתם תמיד מחזיר תוצאה נכונה, אבל הבחירות האקראיות משפיעות על זמן הריצה והוא עלול להיות גדול (מיון מהיר האקראי הוא כזה).

מונטה קארלו: זמן הריצה לא מושפע מהבחירות האקראיות, אבל האלגוריתם עלול להחזיר תוצאה שגויה (ההסתברות לכך חסומה – לכל היותר ½)

<u>מיון מהיר האקראי</u>

Random-Partition (A, p, r)

- 1. $i \leftarrow \text{Random}(p, r)$
- 2. exchange $A[r] \leftrightarrow A[i]$
- 3. **return** Partition (A, p, r)

Random-Quick-Sort (A, p, r)

- 1. if p < r
- 2. $q \leftarrow \text{Random-Partition}(A, p, r)$
- 3. Random-Quick-Sort (A, p, q-1)
- 4. Random-Quick-Sort (A, q+1, r)

למיון מהיר האקראי אותם סדרי

גודל של זמני ריצה.

כאן אפשר לדבר גם על זמן ריצה ממוצע, כאשר <u>הממוצע הוא על פני</u> <u>ההגרלות שמבצע האלגוריתם (על</u> <u>אותו קלט)</u>.

שאלה: מהי ההסתברות להתרחשות המקרה הגרוע?

.2/n הסיכוי שבשלב הראשון ייבחר המינימום/מקסימום כציר הוא

2/(n-1) בשלב השני:

2/(n-i+1) : i - a

 $2^{n-1}/n!$ סה"כ הסיכוי לכך שבכל שלב ייבחר המינימום/מקסימום הוא

<u>יציבות של מיון</u>

עוד תכונה לפיה ניתן להשוות בין אלגוריתמי מיון היא היציבות (stability). נאמר שמיון היא <u>יציב</u> (stable) אם הוא שומר על סדר יחסי של איברים בעלי מפתחות זהים.

 $3 \ 1 \ 3' \ 0 \ 5 \ 3" \rightarrow 0 \ 1 \ 3 \ 3' \ 3" \ 5$

?האם מיון מהיר הוא יציב

• מה לגבי מיון מיזוג? מיון בועות? מיון הכנסה? ...

<u>הגבלת עומק מחסנית הרקורסיה של מיון מהיר</u>

כאמור מיון מהיר הוא מיון במקום (in-place) – כלומר $\Theta(1)$ איברים מאוחסנים בכל רגע מחוץ למערך הקלט.

אבל זהו אלגוריתם רקורסיבי – משאבי הזיכרון שהוא דורש תלויים גם במחסנית הרקורסיה.

מהו עומק הרקורסיה של מיון מהיר:

- במקרה הגרוע?
- ?במקרה הטוב
 - ?בממוצע

ניתן להקטין את עומק מחסנית הרקורסיה, באמצעות טכניקה שנקראת <u>"העלמת רקורסיית זנב"</u>.

- רקורסיית זנב הוא מצב בו הפעולה האחרונה שמבצע אלגוריתם היא קריאה רקורסיבית.
 - ניתן להחליף קריאה זו באיטרציה.

(tail recursion) העלמת רקורסית זנב

בעייה 7-4 בספר הלימוד

נתבונן בגרסה הבאה של מיון מהיר, בה הקריאה הרקורסיבית השנייה על החלק הימני הוחלפה באיטרציה של לולאה:

```
Quick-Sort'(A, p, r)

1. while p < r

2. do \blacktriangleright partition and sort left sub-array

3. q \leftarrow Partition (A, p, r)

4. Quick-Sort'(A, p, q - 1)

5. p \leftarrow q + 1
```

<u>:הערה</u>

בקומפיילרים מודרניים מימוש של העלמת <u>רקורסיית זנב</u> (tail recursion) נעשה אוטומטית.

- א. נמקו מדוע גרסה זו עובדת נכון.
- $\Theta(n)$ ב. תארו מקרה שבו עומק מחסנית הרקורסיה הוא
- ג. הציעו שינוי ל- 'QuickSort כך שעומק מחסנית הרקורסיה יוגבל במקרה הגרוע ל- (Θ(log*n*), ללא פגיעה בסיבוכיות הזמן של האלגוריתם.

(tail recursion) העלמת רקורסית זנב

<u>פתרון</u>

א. למעשה Quick-Sort' ו- Quick-Sort עושות בדיוק אותו דבר:

 $A[p..q ext{-}1]$ שניהם מתחילים מאותה חלוקה, ואז ישנה קריאה רקורסיבית על

A[q+1..r] אח"כ Quick-Sort מבצעת קריאה רקורסיבית על

A[p..r] במקום זאת מציבה $p \leftarrow q+1$ ואח"כ קוראת לעצמה עם Quick-Sort'

כך ששתי השגרות מטפלות באותם תת-מערכים ובאותו סדר בדיוק.

- תקרא לעצמה בכל פעם עם תת-Quick-Sort' ב. אם בכל פעם הציר הוא המקסימום אז פעם $\Theta(n)$ קריאות רקורסיביות:

```
Quick-Sort'(A, 1, n)
```

Quick-Sort'(*A*, 1, *n*-1)

Quick-Sort'(*A*, 1, *n*-2)

. . .

Quick-Sort'(A, 1, 1)

.(בסדר עולה) הדבר מתרחש כאשר המערך A כבר ממוין

(tail recursion) העלמת רקורסית זנב

<u>פתרון</u>

בכל איטרציה עם תת-המערך עם ick-Sort' בכל איטרציה עם תת-המערך. הרעיון הוא לבצע את הקריאה הרקורסיבית ל-

```
Quick-Sort" (A, p, r)
      while p < r
1.
2.
                 ▶ partition and sort the small sub-array first
3.
                 q \leftarrow \text{Partition}(A, p, r)
                 if q - p < r - q
4.
5.
                        Quick-Sort" (A, p, q - 1)
6.
                        p \leftarrow q + 1
7.
                 else Quick-Sort" (A, q + 1, r)
8.
                        r \leftarrow q - 1
```

גודל התת-מערך בכל קריאה הוא לכל היותר מחצית מהגודל הנוכחי, ולכן מספר הקריאות (ומכאן שעומק המחסנית) הוא $\Theta(\log n)$ במקרה הגרוע.

זמן הריצה של המיון לא נפגע, שכן אותן חלוקות נעשות ואותם תתי-מערכים מטופלים (רק אולי בסדר שונה כעת).

<u>דוגמה נוספת להוכחת נכונות - מיון בועות</u>

נדגים הוכחת נכונות על מיון בועות:

```
Bubble-Sort(A, n)

1. for i \leftarrow 1 to n

2. for j \leftarrow n downto i+1

3. if A[j] < A[j-1]

4. exchange A[j] \square A[j-1]
```

- 1. <u>עצירה:</u> ברור שהאלגוריתם עוצר כי כל לולאה מבצעת מספר סופי של איטרציות ובכל איטרציה מספר סופי של פעולות.
- 2. נכונות הפלט: ננסח תכונות שמתקיימת בתחילת כל אחת מהלולאות (שמורות לולאה):

,4-1 שבשורות **for** -שמורת הלולאה החיצונית: בהתחלת כל איטרציה של לולאת ה- A שבשורות A מכיל את A מכיל את A האיברים הקטנים ביותר ב- A בסדר ממוין.

,4-2 שבשורות **for-שמורת הלולאה הפנימית**: בהתחלת כל איטרציה של לולאת ה-**for** שבשורות A[j..n] האיבר המינימלי בתת-מערך

<u>נכונות של מיון בועות – לולאה פנימית</u>

```
Bubble-Sort(A, n)

1. for i \leftarrow 1 to n

2. for j \leftarrow n downto i+1

3. if A[j] < A[j-1]

4. exchange A[j] \square A[j-1]
```

```
,4-2 שבשורות for שמורת הלולאה הפנימית: בהתחלת כל איטרציה של לולאת ה-A[j..n] האיבר המינימלי בתת-מערך A[j..n]
```

אתחול: בתחילת האיטרציה הראשונה j=n ; התת-מערך מטרך איבר אחד בלבד, לכן שמורת הלולאה מתקיימת.

תחזוקה: נניח ששמורת הלולאה הפנימית מתקיימת בהתחלת איטרציה כלשהי, כלומר A[j] הוא האיבר המינימלי בתת-מערך A[j], אחרי ההשוואה בשורה 3, אם A[j], מתבצעת גם ההחלפה קמינימלי בתת-מערך שבשורה 4; בסוף האיטרציה הזו (ובהתחלת האיטרציה הבאה), A[j-1] הוא האיבר המינימלי בתת-מערך A[j-1], כלומר שמורת הלולאה מתקיימת גם בתחילת האיטרציה הבאה.

. A[i..n] אחרי ביצוע האיטרציה האחרונה j=i האיבר ; j=i האיבר j=i

<u>נכונות של מיון בועות – לולאה חיצונית</u>

```
Bubble-Sort(A, n)

1. for i \leftarrow 1 to n

2. for j \leftarrow n downto i+1

3. if A[j] < A[j-1]

4. exchange A[j] \square A[j-1]
```

,4-1 שבשורות **for** שמורת הלולאה החיצונית: בהתחלת כל איטרציה של לולאת הA שבשורות A מכיל את A התת-מערך A מכיל את A מכיל את A האיברים הקטנים ביותר ב-A

אתחול: לפני האיטרציה הראשונה, i=1 והתת-מערך A[1..i-1] ריק, לכן שמורת הלולאה מתקיימת באופן ריק.

A[1..i-1] תחזוקה: נניח ששמורת הלולאה החיצונית מתקיימת בהתחלת האיטרציה ה-i, כלומר התת-מערך i-1 מכיל את i-1 האיברים הקטנים ביותר בסדר ממוין; כפי שראינו, הלולאה הפנימית מעבירה את האיבר המינימלי של התת-מערך i-1 לכן, בסוף האיטרציה ה-i (בהתחלת האיטרציה ה-i (בהתחלת האיטרציה ה-i) התת-מערך i-1 מכיל את i-1 האיברים הקטנים ביותר בסדר ממוין, כלומר שמורת הלולאה מתקיימת גם לפני האיטרציה ה-i-1.

סיום: אחרי ביצוע האיטרציה ה-(n-1), התת-מערך A[1..n-1] מכיל את n-1 האיברים הקטנים ביותר בסדר ממוין; אבל אז, A[n] הוא האיבר הגדול ביותר, לכן כל המערך A[1..n] הוא עכשיו ממוין. מ.ש.ל.

שאלות חזרה

- כאשר איבר Partition עבור מערך שכל איבריו שונים זה מזה, איזה ערך של q מחזירה רביריו שונים זה מזה, איזה ערך של A[r] הוא המקסימום? וכאשר הוא המינימום?
 - 2. הדגימו את ריצתו של מיון מהיר על מערך ממוין, שכל איבריו שונים זה מזה. מהי סיבוכיות זמן הריצה במקרה זה?
 - 3. ודאו שאתם מבינים: במיון מהיר, החלוקה של המערך בכל שלב היא דינמית, כלומר: בכל שלב תיתכן חלוקה שונה. זאת בניגוד למיון מיזוג, בו החלוקה היא סטטית (תמיד לשני חצאים).

תשובות לשאלות חזרה

- .(כאשר n הוא גודל המערך). חזיר את הערך Partition .1 כאשר הוא המקסימום, כאשר הוא המינימום, היא תחזיר את הערך n
- $.\Theta(n^2)$ בכל שלב תתבצע חלוקה לאזור שמאלי בגודל n-1, ולאזור ימני ריק. הסיבוכיות

תרגילים

תרגילים נוספים

1. **if** $r-p \ge k$

1. נשנה את שורה 1 באלגוריתם Quick-Sort ל:

. כלומר, לא ממיינים תתי-מערכים בגודל k או פחות

.''k הוא מערך "כמעט ממוין עם שגיאה בגודל Quick-Sort במקרה כזה אומרים שהפלט של

k -וב-n וב-n וב

- 2. הדגימו את ריצתו של מיון מהיר על מערך A[1..n] הממוין בסדר הפוך, שכל איבריו שונים זה מזה. מהי סיבוכיות זמן הריצה במקרה זה?
 - 15. הדגימו את ריצת Partition ואת ריצת Partition ואת ריצת Partition אל מערך שכל מפתחותיו שווים זה לזה.

מהם זמני הריצה של Quick-Sort על מערך שכל מפתחותיו שווים, עם כל אחת מגרסאות החלוקה?

<u>פתרון 1</u>

 $\Theta(n^2 - k^2)$ מקרה גרוע:

 $\Theta(n \log(n/k))$ מקרה טוב:

<u>פתרון 2</u>

בשלב הראשון איבר הציר הוא המינימום: האיבר הראשון והאחרון מתחלפים, וממשיכים עם A[2..n] תת המערך

A[2..n-1] בשלב השני איבר הציר הוא המקסימום: החלוקה לא משנה דבר וממשיכים עם A[2..n-1] השלב השלישי דומה לראשון, והרביעי לשני וכך הלאה.

כללית – בכל שלב מתקבלת חלוקה שאחד האזורים שלה ריק. $\Theta(n^2)$ - זמן הריצה הוא כמו במקרה הגרוע