A diagram editor to mechanise categorical proofs

Ambroise Lafont

CoqPL, 20 January 2024

Naming convention

Yet Another Diagram Editor

I will refer to my editor as **YADE**, or <u>Coreact</u>-**YADE**.

ANR Project¹ (2023 - 2027): Coq-based Rewriting: Towards Executable Applied Category Theory

How to test the editor

A web app that runs locally in your browser

https://amblafont.github.io/graph-editor/index.html

A standalone desktop program

- Embeds the web app using electron
- Additional features (mechanisation)

Related software: Quiver

"a modern, graphical editor for commutative and pasting diagrams, capable of rendering high-quality diagrams for screen viewing, and exporting to LaTeX via tikz-cd."

Comparison with quiver

About the same size (around 10k of LoC)

	Quiver	YADE
Programming Languages	Languages JavaScript 90.7% CSS 5.3% TeX 2.4% Other 1.6%	 Languages Elm 72.6% TeX 8.5% TypeScript 4.7% JavaScript 1.5%
Styling options	+	-
User-friendly	+	-
Editing features	-	+ Tabs, copy & paste, find & replace, expand selection to connected components,
LaTeX export	yes	yes¹

Comparison with quiver

About the same size (around 10k of LoC)

	Quiver	YADE
Programming Languages	Languages JavaScript 90.7% CSS 5.3% TeX 2.4% Other 1.6%	Languages • Elm 72.6% • HTML 12.7% • TeX 8.5% • TypeScript 4.7% • JavaScript 1.5%
Styling options	+	-
User-friendly	+	-
Editing features	-	+ Tabs, copy & paste, find & replace, expand selection to connected components,
LaTeX export	yes	yes¹
Mechanisation features	-	+

⁶

Architecture

(+ Coq library for custom notations)

Natural transformations compose:

If $\alpha: F \Rightarrow G$ and $\beta: G \Rightarrow H$ are natural, then so is $(\beta_c \circ \alpha_c: Fc \to Hc)_c$

Automatic generation?

Computer-friendly proof

Architecture

(+ Coq library for custom notations)

Building the diagrammatic proof interactively

- 1) Select a subdiagram
- 2) Create a proof node, labelled with the Coq tactic naturality.
- ⇒ Coq (in vscode) checks that this tactic solves the goal:

al: unnamed arrow

$$Hf \circ n_a = nb \circ _$$

- ⇒ The diagram gets completed in YADE:
 - The unnamed arrow is instantiated by Coq's inferred instantiation
 - The proof node is marked as validated (indicated by a green √)

Another related software for mechanisation: Luc Chabassier's interface¹ for diagrammatic proofs

- Automatic layout (limited manual editing)
- Proof tactics (including invoking a lemma)

Demo¹ of YADE

(Based on the category theory library of Hierarchy Builder + custom tactics & notations)

A distributive law $\delta: TS \Rightarrow ST$ between two monads S and T induces a monad structure on ST.

Let us show that the induced multiplication $STST \stackrel{S\delta T}{\to} SSTT \stackrel{\mu^S \mu^T}{\to} ST$ is associative.

Proof generation: sketch of the algorithm

1) Save all subdiagrams as rewrite rules: "top right branch" → "bottom left branch"

(1)
$$u \rightarrow p_1 \circ m$$

(2) $p_2 \circ m \rightarrow v$
(3) $f \circ p_1 \rightarrow g \circ p_2$

2) Identify the top right branch of the outer diagram.

$$f \circ u$$

3) Use greedily the rewrite rules until reaching the bottom left branch (1) for (2) (3) (3) (3) (4) (4) (5) (4)

$$f \circ u \rightarrow^{(1)} f \circ p_1 \circ m \rightarrow^{(3)} g \circ p_2 \circ m \rightarrow^{(2)} g \circ v$$

4) Remember the rewrite steps and generate the coq proof script accordingly. If a Coq proof is provided inside a subdiagram, use it to justify the rewrite step.

