Automatic Test Grader Using Image Processing And Machine Learning Techniques

Andries Petrus Smit 18183085

Department of Electrical and Electronic Engineering
University of Stellenbosch

Report submitted in partial fulfilment of the requirements of the module Project (E) 448 for the degree Baccalaureus in Engineering in the Department of Electrical and Electronic Engineering at the University of Stellenbosch

Study leader: JA du Preez

B.Eng Electrical and Electronic

December 2017

Acknowledgements

I would like to acknowledge my skripsie leader, JA du Preez, parents and the engineering class of 2017 for their kind contributing to this thesis.

Declaration

I, the undersigned, hereby declare that t	the work contained in this final year
project is my own original work and that	I have not previously in its entirety
or in part submitted it at any university	y for a degree.
Signature	Date

ECSA Exit Level Outcomes Reference

Outcome	Reference	
	Sections	Pages
1. Problem solving: Demonstrate competence to	All	All
identify, assess, formulate and solve convergent		
and divergent engineering problems creatively and		
innovatively.		
5. Engineering methods, skills and tools, includ-	2, 3, 4, 5, 6 & 7	10 - 62
ing information technology: Demonstrate com-		
petence to use appropriate engineering methods,		
skills and tools, including those based on informa-		
tion technology.		
6. Professional and technical communication:	All	All
Demonstrate competence to communicate effec-		
tively, both orally and in writing, with engineering		
audiences and the community at large.		
9. Independent learning ability: Demonstrate	2, 3, 4 & 5	10 - 37
competence to engage in independent learning		
through well developed learning skills.		
10. Engineering professionalism: Demonstrate	8.3 & 8.4	66 - 67
critical awareness of the need to act professionally		
and ethically and to exercise judgment and take		
responsibility within own limits of competence.		

Is die ecsa outcome reg en $\rm EE\ sin?$

For a more detailed review on how the respective outcomes were met in this thesis, please refer to Appendix D.

Abstract

English abstract here.

Uittreksel

Afrikaanse opsomming hier. Alle dokumente moet beide Afrikaans en Engelse opsommings bevat.

Contents

ECSA Outcomes Reference									i
A	bstra	ıct						iv	V
U	ittre	ksel						•	V
Li	ist of	Figur	res					x	i
Li	ist of	Table	es .					xi	i
N	omei	ıclatur	re					xii	i
1	Inti	oduct	ion						1
	1.1	Proble	em background					•	1
	1.2	Proble	em statement						2
	1.3	Projec	ct scope and assumptions						2
	1.4	Projec	ct objectives					. 4	4
	1.5	Resea	rch methodology					. 4	4
	1.6	Graph	hical overview of system					. !	5
		1.6.1	System overview					. !	5
		1.6.2	Graphical representation						5
2	${f Lit}\epsilon$	erature	e Study					,	7
	2.1	Existi	ing systems						7
		2.1.1	Standard OMR techniques					. '	7
	2.2	Addit	cional techniques					. 8	8
		2.2.1	Contour detection					. 9	9
		2.2.2	Character recognition					. 10	0

	2.3	Conclu	usion: System requirements	10
3	Ima	ge Pro	ocessing	11
	3.1	Orient	tation Detection	11
		3.1.1	Initial filtering and orientation detection	12
		3.1.2	Radon Transform	13
		3.1.3	Finding the template	13
	3.2	Bubbl	e detection and processing	16
	3.3	Data 1	processing and grading	17
	3.4	Conclu	usion	17
4	Mac	chine l	learning approach	18
	4.1	Chara	cter recognition using a neural network	18
		4.1.1	Summary	18
		4.1.2	Preprocessing to find individual digit image	19
		4.1.3	Neural Network Classification	22
			4.1.3.1 Introduction	22
			4.1.3.2 The artificial neuron	23
			4.1.3.3 Generating output from an neural network \dots	24
			4.1.3.4 Training of neural network	25
	4.2	Proba	bilistic Graphical Models	26
		4.2.1	Overview	26
		4.2.2	Intended digit model	26
			4.2.2.1 Structure of the graph	26
			4.2.2.2 Estimating the intended digit	28
		4.2.3	Intended answer model	28
			4.2.3.1 Structure of the graph	28
			4.2.3.2 Estimating the intended answer	29
		4.2.4	Student number model	30
			4.2.4.1 Structure of the graph	30
			4.2.4.2 Estimating the student number	30
		4.2.5	Training the model	31
	4.3	Concl	usion	31

5 Analysis of results							
	5.1	Result	s of 25 te	st cases	32		
		5.1.1	Basic sy	stem	33		
			5.1.1.1	Marking statistics	33		
			5.1.1.2	Clashlist	33		
			5.1.1.3	Incorrect automatic graded results	34		
		5.1.2	Complet	se system	34		
			5.1.2.1	Marking statistics	34		
			5.1.2.2	Clashlist	34		
			5.1.2.3	Incorrect automatic graded results	35		
		5.1.3	Analysis	s or results	35		
	5.2	Gradii	ng of tuto	orial tests	36		
		5.2.1	Marking	statistics	36		
		5.2.2	Clashlist	t	36		
		5.2.3	Incorrec	t automatic graded results	36		
		5.2.4	Analysis	s or results	38		
6	Sun	nmary	and con	clusions	39		
	6.1	Projec	et summa	ry	39		
	6.2	How t	his final y	vear project benefits society	39		
	6.3	What	the stude	ent learned	39		
	6.4	Future	e improve	ments onder conclusion?	39		
	6.5	Conclu	usion: Su	mmary and conclusions	39		
Re	efere	nces			40		
\mathbf{A}	Ove	rview	of system	m	41		
	A.1	Systen	n as a wh	ole	41		
	A.2	Derivi	ng the int	tended student entry	42		
		A.2.1	Student	answer	42		
		A.2.2	Student	number	43		
	A.3	Derivi	ng the est	timated digit	45		
В	Imp	lemen	tation/A	Algorithms	47		
	B.1	Deep	Convoluti	onal Neural Network	47		

	CONTENTS
C Validation and results	48
D Outcome compliance	49
E Project plan	51

List of Figures

1.1	Automatic grading template 1	3
1.2	Graphical overview of the system as a whole	6
2.1	Standard OMR template, from VijayaForm (2017)	8
2.2	Corrected answer by crossing out bubbles	9
3.1	Four markers found from applying Radon transforms	12
3.2	Reduced contours in image	14
3.3	Radon transform applied on a 2 dimensional area, from Edoras (2017) $$.	14
3.4	Result in rotation after applying radon transform	15
3.5	Detection of template in image and estimation of bubble locations	16
4.1	Image showing found contours for boxes used for character recognition.	19
4.2	Example image found by doing image processing in main test sheet	20
4.3	The box contour found is normalized to form a rectangular shape. \dots	20
4.4	Box after black lines gets filtered out, found using a Radon transform	21
4.5	Custom segmentation algorithm used to find the main cluster in the	
	remaining image	21
4.6	Area block drawn around segment most probable to belong to the digit.	22
4.7	Image after final translation and normalization is applied	22
4.8	Basic structure of a neural network, from Karpathy (2017)	23
4.9	Example image used as input to the neural network, from Tensorflow	
	(2017)	24
4.10	Graphical setup for determining the intended digit written by a student.	27
4.11	Column with the evidence that gets considered for the calculation of an	
	intended digit	27

LIST OF FIGURES

4.12	Graphical setup of determining student answer	29
4.13	Graphical setup of determining a student answer	30
5.1	Image showing answer with crossed out answers that the system misinterpreted	34
5.2	Student filled in answer with only character information	35
5.3	Crossed out character that confused the grading system	36
5.4	Incorrectly identified answer as 95	38
A.1	System overview	41
A.2	Graphical setup of determining student answer	43
A.3	Graphical setup of determining student number	45
A.4	Graphical setup of determining intended digit	46
D.1	Project plan for the final year project	50
E.1	Project plan for the final year project	52

List of Tables

5.1 Table describing number of clashes in the different catagories. 37

Nomenclature

Acronyms

ANN Artificial neural network

DCNN Deep convolutional neural network

OCR Optical character recognition

OMR Optical mark recognition

PGM Probabilistic graphical model

Symbols

 w_i Weight value at index i.

 x_i Input value at index i.

Chapter 1

Introduction

As modern technology and machine learning techniques advances, it is important for the educational sector to also continuously advance their learning environment. This allows for an ever improving learning experience in and outside the classroom.

1.1 Problem background

In the recent years the Applied Mathematics Department of Stellenbosch Engineering, started observing a decrease of accuracy in grading of tutorial tests, done by a teaching assistants or demi. Students complain on a regular basis about correct answers being marked wrong or even that their answers were totally ignored. To address this problem the Applied Mathematics department proposes to automate the process of grading these tutorial tests.

The head of the department wants a system that can analyse and grade tests written on a specific template. These answer sheets are handed out for the students to fill in their respective answers. The answer sheets are then scanned-in to create a digital copy. The system is tasked with automatically grading all these digital copies and transferring the graded results to a database.

The department will send weekly scanned in sheets, which needs to be graded and the results then sent back to them. This is done in parallel with the development and expansion of the test grading software. For these reasons an agile development methodology is used with a weekly validation test, as the system gets used.

1.2 Problem statement

Given the problem background and stakeholders discussed in the previous section the problem to be solved can be formulated as

Develop and **implement** a automatic test grading system that will reduce marking time and increasing accuracy on the grading of Applied Mathematics tutorial tests, written by students.

1.3 Project scope and assumptions

Initial discussions with the department head revealed that a specific answer sheet template can be used. This allows the custom image processing software to more accurately determine what the student filled in. The template will consist of bubbles that can be coloured in as well as blocks for handwritten digits, as can be seen in Figure 1.1. This template is constructed by the Applied Mathematics Department. Thus the focus of this project is on processing that scanned in document written on the specific template. To use the template the student must fill in his/her student number and answers in the blocks above each category. They are also required to fill in the bubble underneath each digit, corresponding to that specific digit. Additionally a bubble next to each question is provided if a negative sign is required.

Any additional assumptions are specified at the appropriate times throughout this project. Two more templates will also be implemented in later chapters, which will allow for multiple choice questions.

Stellenboso	ch Ui	nivers	ity: .	Appli	ed Ma	athema	tics	B15	4	Tu	toria	al T	est	1	24	Jul	y 201	17
Surname: US Number dsy afuysda fuioysdauoldfj hlfjjdh fljfdkghld- flsj hlfkdj hgsljkfg hsdjfg jkfdsgh lfjksdh gls- fjkdh gljksfhd gljkhd sljkgh lsfjkd hglkjd hglkjh sfdgljksfhd glkjfhd gljkhfd slgjkh fdsljkgh lfdjkh gify osuida fyosuidayf osudiy fousiday fouisyda Student's signature									1 2 3 4 5 6 7 8 9 0	000000000	000000000	00000000	00000000	00000000	0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 2 3 4 5 6 7 8 9	
Questio	n 1	:																
(a)	00000000						1 2 3 4 5 6 7 8 9		(b) - 1 2 3 4 5 6 7 8 9 0	0	000000000	0000000000	0000000	0000000	0000000			1 2 3 4 5 6 7 8 9
Questio	n 2	:																
(a)	000000000						1 2 3 4 5 6 7 8 9		(b) - 1 2 3 4 5 6 7 8 9	0	000000000		0000000	0000000	0000000			1 2 3 4 5 6 7 8 9

Figure 1.1: Automatic grading template 1.

1.4 Project objectives

The problem as stated in section 1.2, is addressed by pursuing the following objectives:

- 1. Do a literature study on the topics of Image Processing, Computer Vision and Character Recognition.
- 2. Develop a *software application* to enable a *user* to grade a large number (approximately 1000) scanned in student tests automatically.
- 3. Do a weekly validation experiment with the software, by grading tutorial test for the department. The results are then used as the student's grade for that test.
- 4. Use an agile development methodology to improving the software in parallel with the grading of weekly tests.
- 5. Add additional software to allow grading of new *templates* and to increase the speed and accuracy of the software.

The objectives are covered in different chapters in the report. Note that each objective (1–5) build on the objective(s) previously listed.

The software must also ease the use of the template for students while also providing precise and useful feedback. To do this every graded result will also include feedback on what answers the student got wrong and what the correct answers were. To increase ease of use, software is developed that provides the luxury to students to only writing down their student numbers. Thus time does not get wasted filling in the student number bubbles. This result is achieved in Chapter 4.2.4.

1.5 Research methodology

To complete the objectives listed in Section 1.4, a agile development methodology is used. The methodology followed comprises of five different phases:

- 1. Identify a new feature or update that needs to be implemented into the software package.
- 2. Do a study on the existing methods to implement this new software.

- 3. Implement and integrate the new software with the current knowledge of the solution.
- 4. Test the software and observe if it is working as planned.
- 5. If the software is not working as planned, revisit steps 2-4 until the new software is working.
- 6. Use version control, for example Git, to save the latest version of the software.

The structure and graphical overview of the software, is presented next. (Vra prof of my wiskude reg is oor hoe die PGM stelsel werk.)

1.6 Graphical overview of system

1.6.1 System overview

When thinking about the system (for template 1), from a philosophical sense, it can fundamentally be represented with 6 information nodes. The student has certain information he/she wants to portray on the paper. This includes the 4 answers and student number he/she wants to write down. Thus those 5 nodes gives rise to the image, representing the last node. This has to be represented in a probabilistic way. This is, because the process of writing answers down and scanning the test sheet in is going to produce a different image every time a test is written, even though the same answers are intended. This graphical model is illustrated in Figure A.1. The unnamed blocks indicate that information processing happens in these steps. For the complete visual overview of the system, again refer to Appendix A.

For a more detailed mathematical derivation of the entire system, refer to Appendix A.

1.6.2 Graphical representation

For this project a graphical approach is followed in representing the software developed. A graphical model in essence allows software to be represented as information (nodes or circles) and relationships (directed arrows). The directions of the arrows represents what information causes other information to be created, thus given a parent to offspring interpretation). An example of such a graph can again be seen in Figure A.1.

Figure 1.2: Graphical overview of the system as a whole.

This allows intuitive reasoning about how the system should operate. An observation is always made in the form of an image and then the system is tasked with predicting what the written answers are. Due to the probabilistic nature of the system a probabilistic component is also needed in this graphical models. Thus a probabilistic graphical model (PGM) is used.

A PGM is in essence the same as a general graphical model. The only difference is that now the information and relationships between information bubbles are probabilistic and not always certain as with general logic graphical models.

A literature study is presented next on methods currently used by existing automatic test grading systems. This will describe in the next chapter.

Chapter 2

Literature Study

In the previous chapter the problem statement and objectives of this project was laid out. Further a brief system overview was also provided. This chapter will provide information about already existing systems and the techniques they use in doing image processing and character recognition on images. Additionally, research on existing libraries, to aid in this project, will also be done.

2.1 Existing systems

A Optical Mark Recognition(OMR) system is a piece of software that is used to extracted hand written information from a filled in form. Each system normally has a specific template that it can extract information from. An template for one of these forms can be seen in Figure 2.1. These systems are generally used when fast and accurate grading of tests are needed. The biggest drawback of these systems are that information can only be portrayed in a very limited manner. On OMR templates there are a bubbles that allows a user to chose between different options to answer. OCR systems are thus excellent for the grading multiple choice type questions. At the moment most of these systems only grade colour-in bubbles and do not interpret characters on the page.

2.1.1 Standard OMR techniques

As can be seen in Figure 2.1, there is normally specific reference blocks on a OMR template. These blocks are included to allow the computer vision and image processing

Figure 2.1: Standard OMR template, from VijayaForm (2017)

algorithms find the orientation of the image more easily.

In an OMR system there are normally two phases to marking an test, as stated in Ivetic & Dragan (2003). The first step is to determine the region within where the answers are located in the image. In this process the system finds the orientation of the template in the image and thus can approximate the location of the bubbles. Normally some preprocessing on a blank template is done beforehand too aid in locating the bubbles. Once the bubbles are found their locations gets stored and processed. The final step is then to calculate the average pixel concentration in the bubbles and estimate whether they have been filled in.

2.2 Additional techniques

The above method allows for grading of tests using a simple OMR system. For the test grader used for the Applied Mathematics tests, there is a need to go beyond such a basic system. In standard OCR, when a student makes a mistake, he/she needs to

Figure 2.2: Corrected answer by crossing out bubbles.

erase the existing answer and write a new answer in. This can be time consuming for a template with 8 bubble row choices per answer. This also increases the probability that the student will make a mistake in the process. Addressing this problem it is determined that two additional options need to be made available. Firstly the student is allowed to cross out answers instead of totally erasing them. An example of this can be seen in Figure 2.2. Then secondly the system needs to be accurate enough to determine the student's student number only by filling in the character blocks above the bubbles. This requirement is addressed by using a PGM in Section 4.2.4. Using optical character recognition (OCR), the bubble information and character information can thus be cross-referenced in an intelligence way, as seen in Section 4.2.

2.2.1 Contour detection

To determine if an answer in a bubble is truly coloured in and not just crossed out, contour detection is needed. This means that the contour around the bubble needs to be detected and used in analysis. In python this can be implemented using the freely available OpenCV library, as referenced in Rosebrock (2016). OpenCV is an image processing library has has highly optimized techniques to find contours in a given image. Given this new contour information the bubbles is can now be assessed by the pixels inside it, as well as its shape. (Verander die image dalk na een wat 'n contour om het)

2.2.2 Character recognition

To further increase the accuracy of the system, Optical Character Recognition (OCR) software will also be need and applied on the characters blocks, present on the templates. Research shows that one preferred way of doing OCR is using TensorFlow. This method is described in Google (2017). TensorFlow is also a python library, but allows the build of instructions to be implemented in efficient c++ code. For this test grader, TensorFlow is used to construct a convolutional neural network. This network will read an image, containing the digit, and predict the probability of each digit.

2.3 Conclusion: System requirements

In conclusion it can be seen that the system will need to incorporate a combination of image processing(OMR) on the bubbles and character recognition on the digits, handwritten by the students. When these different evidence is the considered in combination, a more accurate student answer can be estimated. This will also allow for more convenience for students writing these test, hoekom?. Kyk na oom Johan se raad. Die litriture study moet oor huidige metodes gaan en hul resultate.

Chapter 3

Image Processing

The previous chapter focused on existing methods of grading tests automatically. It was found that most systems only use image processing, without a machine learning component, to grade these test. In this chapter the core techniques behind processing these answer sheets, using image processing, is described. By using only these image processing techniques a reasonably accurate system can already be constructed.

For further improvements in accuracy we will investigate and implement two machine learning approaches. These approaches are discussed in Chapter 4.

3.1 Orientation Detection

As mentioned in Section 2.1.1 there are two main steps in OMR grading. The first challenge with grading a scanned in answer sheet, is finding the orientation of the template in the image. To do this there 2 or more references points must be found on the page. These reference points then allows for the calculation of the template's rotation, offset and size inside the image. In Chapter 2 it was determined that the traditional way to to find this reference points was to include them on the page, in forms of black blocks. This is an effective method of finding the template, but might look a bit less attractive, due to the black blocks on the page.

For this project the markers, reference points, that the software uses are already present on the template paper. These are the two longest horizontal lines as well as the two vertical lines on the comment box, as can be seen in Figure 3.1. Together these lines have enough information to determine 4 reference points, shown in red in

Figure 3.1: Four markers found from applying Radon transforms.

the figure. The reason these lines are chosen as references, are due to the fact that a Radon transform can easily be applied to find them, as seen in Section 3.1.2. Thus the software can successfully find the template even though one of the 4 lines are identified incorrectly. Using the reference points the rotation, offset and size of the template is calculated. But before the orientation of the image can be determined it is a good idea to quickly check if the image might be upside down. This is done to make it easier to find the orientation afterwards. To do this some initial image filtering is firstly required and is discussed in the next section.

3.1.1 Initial filtering and orientation detection

To check if and image is upside down the software first needs to find relevant contours on the page. The contours are then filtered out if it does not loosely match the characteristics of a bubble or character block. This is done in 5 steps:

1. Threshold the image by making all the pixel values either white (lower that the

mean) or black (higher that the mean)

- Do contour analysis on the image to find all the contours, using the python library OpenCV.
- 3. Filter through the contour array to filter out all contours that are not approximately the size and aspect ratios desired.
- 4. Save these contours for later use.
- 5. Determine if more contours lie above the middle of the image. This is true if the image is the right way around. Rotate the image by 180° otherwise.

It is important to note that there are still unwanted contours in the list, but for now this reduced list is sufficient. Once the list is found the software counts the number of contour centrepoints below and above the image center. Figure 3.2 shows the resulting contours found in the image. As can be seen in the figure more bubbles should be below the horizontal center line, for the image to be the right side up. The next step will now be to determine the coordinates of the answers the student wrote down. To do this the template is first located in the image. This process is described in Section 3.1.2.

3.1.2 Radon Transform

(Maak 'n symbols page) The Radon transform is an integral transform that can be represented by a series of line integrals over a function f(x,y). These transforms are commonly used in CT scans. Mathematically this transform is defined as

$$G(r,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x\cos(\theta) + y\sin(\theta) - r) dx dy.$$

Where r represents the perpendicular offset of the line and θ the angle of the line. x and y represents a 2D space within which the function f(x, y) is defined. A visual interpretation of this transform can be seen in Figure 3.3.

3.1.3 Finding the template

In this project a Radon transform is calculated at specific intervals of the gradient. Each gradient interval will thus generate a 1 dimensional array of values corresponding with the pixel intensities along the lines that are being summed, as seen in Figure 3.3.

Figure 3.2: Reduced contours in image.

Figure 3.3: Radon transform applied on a 2 dimensional area, from Edoras (2017)

Figure 3.4: Result in rotation after applying radon transform.

This method is used determine where the 2 horizontal and 2 vertical lines are located, as mentioned in Section 3.1.

To find the first two horizontal lines the Radon transform is applied at a angle of 90° and then incremented by a small amounts for the next transform. Black lines will cause a spike to appear on the Radon transform when it is summing parallel with that black line. Thus by finding the transform angle value that present this maximum value. The rotation of the template can be found. The two maximum values that is recorded at this angle is can then be interpreted as the locations of the two horizontal lines. After the correct angle is found the two vertical lines can be found by applying a Radon transform at a angle 90° clockwise from the previously calculated angle. Those two values then provides the relative locations of the two vertical lines. Now the four reference point shown in Figure 3.1 can be calculated. Once the reference points are found the image is rescaled and orientated to the original template size and orientation for further processing. In Figure 3.4 the corrected image is shown, before it gets processed.

Once the template is found the bubble values and digit blocks can be determined, using reference location. These reference locations were calculated in preprocessing done on an empty template. Figure 3.5 illustrates the final estimation of all the bubbles in the template. The estimated bubble centres are coloured red, while the green points represent the centres of all the remaining contours.

Figure 3.5: Detection of template in image and estimation of bubble locations.

Now that all a list of possible bubble contours are found, the next challenge is to find one contour for each bubble. This is discussed in the next section.

3.2 Bubble detection and processing

To find the location of each bubble in the image, the system simply takes the contour closest to the estimated bubble location. This can be done in an efficient manner by sorting the contours by their locations. Searching through the contours now becomes linear and of complexity O(n), where n is the number of bubbles. This means that the processing time to find these bubbles is linearly related to the number of bubbles in the template image.

Next the data in each contour needs to be processed and stored. The first type of evidence is calculating the average pixel intensity inside the contours. If this value is high the bubble is most likely coloured in or crossed out. The advantage of using the closest contour as the bubble's estimated location, over conventional methods now becomes apparent. In conventional methods an estimated area is calculated where the

bubble is most likely to be located. This becomes problematic if the system needs to know if the bubble has been crossed out, as only data about pixel intensities are present.

Using contour analysis, information about the shape of the bubble entry is also provided. Thus by drawing the smallest possible block around the contour, that still covers every value inside the contour, an area can be calculated. This area becomes large when a answer is crossed out, due to the lines stretching outside the initial bubble. By inspecting the area value, the system can successfully determine if the bubble is filled in and crossed out.

3.3 Data processing and grading

The previous section now allows each bubble to be classified into 3 categories namely, empty, completely filled in and crossed out. An additional category of partially filled in will also be introduced, as it aids grading of tests where students write lightly. An algorithm to determine what bubble was chosen can now be described as follows:

- 1. Count the number of completely filled in answers in each column. Store the position of that entry for later use.
- 2. If there are no completely filled in answers, count the amount of partially filled in answers and override the previous values.
- 3. If the previous result is 0, set the output value for that column to 0.
- 4. If step 2 or 3 presents a value greater that 1, save the answer sheet to a clashlist to be evaluated manually once the automatic grading of the test are completed.

3.4 Conclusion

This chapter provided an overview of a basic automatic test grading system using image processing and computer vision. The system can achieve acceptable results using only these techniques.

The following chapter will focus on applying additional machine learning techniques to further improve the accuracy of grading these test. Two new test templates will also be introduced. (maak seker jy het daaroor gepraat).

Chapter 4

Machine learning approach

The previous chapter briefly described the basic workings of the optical mark recognition (OCR) system inside the automatic test grader. There is still one critical piece of evidence that has not been used with the basic system. This information is the characters that the student writes in the designated boxes.

This next chapter will provide two machine learning approaches to significantly improve the accuracy in identifying digits over the previous standalone basic system, discussed in Chapter 3. An approach to locate and classify hand written characters, provided by the students, using a deep convolutional neural network (DCNN), is firstly described. Next a more accurate method in determining the true digit, student answers and student number, using probabilistic graphical models (PGM), is discussed. This PGM method is found to be accurate enough to determine the student number by only using the character recognition information provided.

4.1 Character recognition using a neural network

4.1.1 Summary

In Chapter 3 only the bubble evidence is considered when estimating what digits the student wrote down. In this section another piece of information is going to be processed to further increase the accuracy of this system. This information is the characters that the students write down in the designated boxes, as shown in Figure 4.1. To process these digits a machine learning approach, called a neural network, is implemented. Once the test sheet is processed all the character digits can be found. A 28 by 28 digit

Figure 4.1: Image showing found contours for boxes used for character recognition.

image is then created for each character found on the page. An example of this is shown in Figure 4.2.

A neural network then processes these digit images and produces an estimate to what digits are most likely to be present in each image.

4.1.2 Preprocessing to find individual digit image

Before each digit can be classified using a neural network, the individual 28 by 28 pixel digits must first be found inside the test sheet. To do this image processing is required. This is done in 6 steps as seen below:

1. Find the contour closest to the expected location of the block, calculated in Section 3.1.3. This is ilustrated in Figure 4.1. The bubbles was already extracted out of the image where they were processed.

Figure 4.2: Example image found by doing image processing in main test sheet.

Figure 4.3: The box contour found is normalized to form a rectangular shape.

- 2. Transform the image to become fully rectangular using OpenCv's four_point_transform method. This method applies a four point perspective transform on the image to reshape it into a rectangular form. An example of the final product can be seen in Figure 4.3.
- 3. Do a horizontal and vertical Radon transform to find and remove the dark box lines on the image, as seen in Figure 4.4. The mathematics behind a Radon transform is described in Section 3.1.2.
- 4. Use the values received from the Radon transform to segment the image into the different boxes.
- 5. Using a custom segmentation algorithm to find the pixels most likely to belong to the digit. This algorithm is developed and implemented using breath first search technique to cluster the image into different segments. The algorithm works by

Figure 4.4: Box after black lines gets filtered out, found using a Radon transform.

Figure 4.5: Custom segmentation algorithm used to find the main cluster in the remaining image.

first searching the image for pixels higher that a threshold value. This value specifies if an pixel is background or belongs to an image segment. Then all the pixels higher that the threshold value gets assigned to a segment. A segment is thus classified as a local region that does not connect to any other segment through pixels higher that a threshold. The segment that most likely represents the digit is then extracted, as seen in Figure 4.5.

- 6. The area that the segment occupies then gets calculated, as seen in Figure 4.6
- 7. Next the image is centred and normalized using the image area as reference. This is seen in Figure 4.7
- 8. The image is then reshaped into a 28 by 28 greyscalled image to be processed by the neural network.

Figure 4.6: Area block drawn around segment most probable to belong to the digit.

Figure 4.7: Image after final translation and normalization is applied.

Each digit on the test sheet is now separated and can be used as input to an neural network. An overview of this neural network will be given next.

4.1.3 Neural Network Classification

4.1.3.1 Introduction

A neural network is a powerful machine learning tool for approximating complex functions. The basic architecture of a neural network can be seen in Figure 4.8. A artificial neural network (ANN) consist of an input, hidden and output layer, as described in Nielsen (2015). A neural network is a simplified approximation of how neurons in the brain works. Each neuron in the network acts as a small processing unit. With a initial input, an output is determined by measuring the last output node, as seen in the Figure. The output can only be determined once each layer have been calculated one after the other.

For this project, a neural network is trained to estimate the probability of which of the 10 digits, from 0 to 9, are most likely present in the input image. The neural

Figure 4.8: Basic structure of a neural network, from Karpathy (2017)

network will take a 2 dimensional array, representing a greyscaled image, as input to the network. Figure 4.9 illustrates an example input of a neural network using and 14 by 14 example image.

For this project a 28 by 28 greyscalled image is used as input. Thus if each pixel represents one value, ranging from 0.0 to 1.0, there is total of 748 input values. The basic workings of a neural network is described in the next section.

4.1.3.2 The artificial neuron

The neuron unit is the small processing unit used to build a neural network. The first step in calculating the output of a neural network is to find the weighted sum of the inputs. All the variables in this network are floating point values. A bias variable is added to allow a neuron to have an offset in its output. The weighted sum of these inputs are added with a bias variable to give,

$$z = \sum_{i=0}^{c} x_i * w_i + b. \tag{4.1}$$

Where c is the number of inputs. x_i and w_i respectively are the input and weight values at index i. b is the biased that enables and offset in the output(z) of the neuron.

The summed value then gets normalize using an sigmoid function, seen in Equation 4.2.

Figure 4.9: Example image used as input to the neural network, from Tensorflow (2017)

$$\sigma(z) = \frac{1}{1 + e^{-z}} \tag{4.2}$$

This artificial neuron thus basically takes in a weighted input with a bais and produces a normalized output sigma(z). By adjusting the weights and bais variable, each neuron can learn to exhibit certain characteristics. This process thus allows different functions to be approximated by changing these weights. If a network of these neurons is used together, as shown in Figure 4.8, complex functions can be trained onto the network. IN the case of this project these weights and biases needs to be set to specific values, to allow the network to best categorize digits from an image. To do this these weights and biases will be trained form training data, as seen in Section 4.1.3.4.

4.1.3.3 Generating output from an neural network

After the 748 input values have been assigned to the network inputs, each of the network's layers can be calculated consecutively one after another. The first coulomb in the hidden layer will thus use the 748 input values and produce a normalize output for each of the neurons in that coulomb. This is done using using the previously mentioned equations 4.1 and 4.2. Once the first layers's outputs are calculated the next layer can be calculated. This process is repeated until all the layers are calculated in the hidden section. The output layer is then calculated using the same method. For the character recognition in the test grader, 10 output neurons are used, corresponding

to the probability of the 10 digits being present. The values observed on the output neurons, gets normalized and used as the probability of each digit being present, using

$$p(i) = \frac{\sigma(z_i)}{\sum_{k=0}^{10} \sigma(z_k)}.$$
 (4.3)

Where p(i) is the probability of digit i being the character in the image. The value $\sigma(z_i)$ is the output of the output neuron at index i.

For a more detailed explanation on the DCNN used in this project, refer to Appendix B.1. (Maak dit dalk dat die neural network in overview hier beskryf word. Soos hoe dit werk as a black box. En dan Verder word die wiskunde agter NN and DCNN agter in die appedix beskryf)

Bv: For a mathematical description on neural networks and DCNN, refere to Appendix B.1.

4.1.3.4 Training of neural network

To train a neural network the MNIST dataset is used. This is a database that has a labelled training set of 60,000 images, and a labelled test set of 10,000 images. Each image has an accompanied label that specifies what digit is in the picture. The neural network is trained by using this training set, to adjust its internal weights and bias variables to more closely represent the labelled training data. The basic idea behind the training method used in a neural network is described in the following steps. For a more detailed description refer to Appendix B.

- 1. Calculate the network's output for each of the training images used in this training round.
- 2. Get the error margin of the network, using a formula that compares the true label of the training image, with the estimated label of the network.
- 3. Calculate the value with which each weight should be changed to reduce the error margin. One method of doing this is using the gradient decent with back propagation algorithms.
- 4. Repeat steps 1-3 until a time or accuracy criteria is met.

classified by the neural network. The new character recognition evidence can now be used in combination with the bubble evidence to make a significantly more accurate estimate for the intended answers from the student. The next step is thus to combine all these individual evidence, in a intelligence way, to make a accurate prediction. A method to achieve this result is described the next section.

4.2 Probabilistic Graphical Models

The final step in determining the students answers is to probabilistically determining the most likely answers, given the bubble and character evidence presented. To do this 3 probabilistic graphical models (PGM) are implemented.

4.2.1 Overview

A probabilistic graphical model (PGM) is a probabilistic graph containing random variables, where the graph expresses the conditional independence structure between these variables. The type of PGM used for this project is a Bayesian network. A Bayesian network models a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). As seen in Figure 4.10, arrows are used to indicate which variables are conditionally dependent on others.

4.2.2 Intended digit model

4.2.2.1 Structure of the graph

The figure should be interpreted in the direction which information flows. Originally a student has a certain digit that he/she wants to portray on the page. This is given by the 'Digit user intended bubble'. There are 10 possible digits to consider and thus the bubble has 10 possible states. The intended digit gives rise to the intended bubbles and character that the student wants to write down. The student might sometimes mistakenly think that the first bubble represents 0 and thus even if the intended digit is 0 the intended bubble might be 1. Thus, this must also be done in a probabilistic manner to compensate for this uncertainty. The intended bubbles and character then produces evidence, as seen in Figure 4.10.

When looking at Figure 4.11, it is observed that there are 11 evidence areas to consider. They are the 10 bubbles and the character block. The process of writing

Figure 4.10: Graphical setup for determining the intended digit written by a student.

Figure 4.11: Column with the evidence that gets considered for the calculation of an intended digit.

down this digit introduces so noise into the system, due to the fact the student is not always going to write down the digit in exactly the same way. Thus the evidence is also probabilistically linked to the 'intended bubble' and 'intended character' parent distribution. This evidence then gets written down on the paper and is what ultimately influences how the image looks. Each of the bubbles can take one of 4 states as evidence. These states are blank, crossed-out, partially coloured in and fully coloured in. The character block evidence is a 28 by 28 greyscale image. Thus it can have 28*28*256 possible states, where 256 is the possible pixel intensities of each pixel. This value with true range 0 to 256, gets converted into a normalized value between 0.0 and 1.0 before it gets assigned as inputs to the neural network.

4.2.2.2 Estimating the intended digit

After the model is constructed the intended digit needs to be estimated, with the image as evidence. This can be done by reasoning from the bottom (image evidence) upwards to the intended digit. The first step is to process the image, using of image processing, to produce more tractable evidence. Producing the bubble evidence from the image is described in Chapter 3. In Section 4.1.2, the process to extract the character evidence from the image is also described. Using the neural network the probability of intended character, given the character box, can be determined. After these steps is completed the intended digit can be estimated using the PGM. This is done by first setting the evidence node to the values calculated when image processing were done on them. The 'intended character' node then gets set to prior calculated through the use of the neural network. After this is done inference is done on the PGM and the resulting probability of each digit is calculated for the 'intended digit node'. The PGM structure can again be seen in Figure 4.10.

4.2.3 Intended answer model

4.2.3.1 Structure of the graph

There are 8 possible columns to use for an answer. The first column represents the sign of an answer. Thus two signs are possible. For each of the remaining 7 columns a number from 0 - 9 can be represented. Thus there are ten possible values for each column. This gives a possible number of values that a answer can take to be $2 * 10^7 =$

Figure 4.12: Graphical setup of determining student answer.

20000000. Each of these states needs to be calculated and becomes computationally intractable. Thus a assumption is needed to reduce the number of possible states. A fair assumption to make, is that all 20000000 possible values are equally likely to be written down. Thus each column digit becomes independent of the another columns values. This means that if a value in one column is known, it does not influence the probabilities of the other columns being a certain value. Thus the number of states to calculate now becomes 2 + 10 * 7 = 72, because each column's states can now be calculated independently. Thus knowing this independent property the answer model can be described as a combination of 7 digit models with a heuristic calculation of the intended sign. This model is illustrated in Figure 4.12.

4.2.3.2 Estimating the intended answer

In the previous section it was found that determining the intended sign and digit for each column the intended answer can be found. Thus the intended digit for each column is calculated separately using the digit model, as described in Section 4.2.3.2. The intended sign is determined heuristically by using the image processing methods described in Chapter 3 to find if the bubble underneath the sign is coloured in. Once this is done the intended answer is determined by combining the estimated sign and digits in the order seen in Figure 4.12.

Figure 4.13: Graphical setup of determining a student answer.

4.2.4 Student number model

4.2.4.1 Structure of the graph

For a student number additional information is present. Knowing the digit value of one column changes the probability of each other column taking a certain value. The reason for this is, because there is only a limit number of student numbers to consider. Thus if the first digit is a 2, only student numbers starting with 2 still have to be considered. To account for this fact an additional node is added above the individual digit probabilities. This node represents the probability of each student number being present in the image and is related to the intended digits. The student number thus produces the intended digits. This node will have +-900 states, depending on the number of student numbers. The student number graph can be seen in Figure A.3.

4.2.4.2 Estimating the student number

Now that the graph has been setup the model can be used to infer the most probable student number. By setting all the bubble evidence and character priors the student number probabilities can be inferred. This model allows for a accurate result, because most student numbers are quite different to one another. It is found that if the student provides only character information and no bubbles are coloured in, the student number can still be estimated reliably. These results is states in Section 5.

4.2.5 Training the model

For this project the conditional probabilities for the intended digit model was found by using training data. From these distributions the answer model can also be constructed due to it only consisting of independent digit models. The probability of a student number given the intended digits was estimated manually.

As seen in Figure 4.10, the digit PGM will include the bubble evidence as well as a prior probability which the neural network provides. Once these values are assigned, the PGM model will infer the intended digit using the conditional probability distributions specified. To do this the conditional probabilities of the PGM, must first be determined from data.

The process of training a PGM is a simple process once enough training set is present. This was done by allowing the initial software, without the PGM model, classify the digits. Thus the training set contains the bubble and neural network outputs as evidence. The training set then also includes the intended bubbles and intended digit, as estimated by the image processing unit. Once all these test data are gathered, the conditional probabilities can be calculated. These probabilities then gets stored and used as prior probabilities in the PGM.

4.3 Conclusion

This chapter looked at two machine learning techniques to improve the accuracy with with the system infers the answers written on each scanned test sheet. A method was shown, using a neural network, to estimate the probability of each digit given only the character box as input. Additionally a approach was discussed, using a PGM, to allow the system to make a final prediction of what the student intended to write down given the bubble and character boxes as evidence.

The following chapter will cover the validation and results of the system from weekly grading done for the Applied mathematics department.

Chapter 5

Analysis of results

In the following chapter a study is described on the accuracy of the test grading system. In the first two sections of this chapter a basic system and complete system is tested using the same datasets. This allows for a accurate interpretation and comparison between the two systems. The first test grading system is implemented using only the image processing techniques, described in Chapter ??. The second system is the final complete system implemented in this project and includes all the machine learning techniques described in Chapter 4. In the last section a description of 3 additional validation tests is given. These tests are done on tutorials written by Applied Mathematics students as is described in the agreement with the department.

Each systems is assessed in the next section under 3 categories. Firstly some marking statistics will be given on the tests grade. The second category describes all the tests, the system appointed to be marked manually, because it was not sure what the correct answer is. In this catagory the tests gets sent to a clashlist. An image, with and interface to input the correct values gets displayed. The user must then look at the image and enter the correct answer. Lastly, all the answers that the system did not assign for manual marking, but identified incorrectly will be described.

5.1 Results of 25 test cases

In this section the results of grading 25 hand picked tests is compared between the two systems. Among the 25 tests there are different categories that tests different aspects

and limitations of the systems. The categories and the number of case included can be seen in the list below:

- 1. Test with crossed out answers(7).
- 2. Test with lightly coloured entries or partially coloured in entries(4).
- 3. Test with negative signed answers(1, but also included under other categories as well).
- 4. Test with no bubbles and only characters filled in for a specific entry field(5)
- 5. Test with no characters filled in and only bubbles for a specific entry field(2)
- 6. Test with data filled in correctly(2).
- 7. Random page with no template on them(2).
- 8. Page with tilted template inside image(2).

These test is specifically chosen, because in combination it approximates all the types of tests the system has to asses. Most of the tests are slightly extreme cases of what students has filled in on tutorial tests.

5.1.1 Basic system

5.1.1.1 Marking statistics

Using this basic system an average time for each test is calculated to be 0.305 seconds.

5.1.1.2 Clashlist

A total of 6 out of the 25 test where reported as clashes. The two random images were both reported in the clash list. Further the one test which only has the student number written in with no bubbles filled in is also reported to the list. The other 3 clashes were reported due to the crossed out bubbles interpreted as still filled in, causing the system to think that two answer were filled in. An example of this can be seen in Figure 5.1.

Figure 5.1: Image showing answer with crossed out answers that the system misinterpreted.

5.1.1.3 Incorrect automatic graded results

There where 4 tests in total that where graded automatically, but wrongly. All of these test were tests that had only character information in atleast one of the answers. An example of this can be seen in Figure 5.2

5.1.2 Complete system

5.1.2.1 Marking statistics

Using this complete system an average time for each test is calculated to be 2.011 seconds.

5.1.2.2 Clashlist

A total of 6 out of the 25 test where reported as clashes. The two random images were both reported in the clash list. One test was reported due to it only having characters written in with no bubbles. Thus even though the system identified every character correctly, it had to low of a percentage faith in its answer and reported it to the clash

Figure 5.2: Student filled in answer with only character information.

list. The final two cases that was reported to the clash list was due to the character recognition determining a crossed out character as the intended character. An example of this is shown in Figure 5.3.

5.1.2.3 Incorrect automatic graded results

There were no automatically graded answers that was done incorrectly.

5.1.3 Analysis or results

As is seen in the section below, the complete systems does not reduce the number of clashes for these 25 images. The complete system sometimes classifies a crossed out character is the intended character in that block. But because it is crossed out the system assigns a low certainty to that value, as the neural network is not to sure which digit it is. A drawback of the completed system is that it takes on average 2.011 seconds to grade a tests. This is due to the student number PGM taking on average 1.5 seconds to infer the correct student number. The complete system had no incorrectly automatically graded answers in contras to the 4 graded wrongly using the basic system. A reason to this is attributed to more evidence that gets considered in the complete system. Thus only if that evidence match up will the system be certain

Figure 5.3: Crossed out character that confused the grading system.

enough to accept its answer as the correct one. In the next section the complete system use used to grade a tutorial written by students.

5.2 Grading of tutorial tests

In this section the complete system is tested on the final tutorial test written by the student class. Thus the final version of the complete system was used in grading the students' tests. To analyse the results student feedback was recorded to locate tests that were graded incorrectly.

5.2.1 Marking statistics

For these tutorial test an average marking time per test of 2.3 seconds was recorded.

5.2.2 Clashlist

In total there were 67 clashes in the 888 tests. These 67 clashes are categorised in Table 5.1:

Number of tests in category	Category description
41	In these tests the system guessed the right values,
	but with a certainty value below 90%. Some of the
	cases was when the student number was only filled
	in the character box. The software always
	identified the correct student number, but was
	below 90% sure of its overall test answer.
15	In these tests the system could not distinguish
	between a crossed out answer and correct answer.
	This is due to the crossed out answer being
	interpreted as a filled in answer.
8	These tests have an answer with only character
	information in them. The system tried to identify
	each answer, but made a mistake in atleast one of the
	digits.
2	These images contained blank papers that did not
	include test templates.
1	In this test the grid of the test paper can not be
	found. Thus the test could not be marked.

Table 5.1: Table describing number of clashes in the different catagories.

Figure 5.4: Incorrectly identified answer as 95.

5.2.3 Incorrect automatic graded results

For this tutorial 888 test were written. To check through every test manually to find mistakes becomes impractical. Thus the students were asked to report any results that were marked wrong by the system. This is all the results that the system decided to automatically grade and in doing so graded the test wrong.

Only 1 result was reported where the software automatically marked the wrong answer to a test. The correct answer was -95.0 and the system marked the answer as 95.0, as seen in Figure 5.4. There might still be test that were marked wrong, but these test(s) were not reported.

For a more detailed description of the results from grading all 4 tutorial tests, refer to Appendix C.

5.2.4 Analysis or results

In conclusion it is noted that the complete system, with its machine learning capabilities, slightly reduces the number of tests that the user must mark manually from the previous basic system. About 7.5% of the tests in the tutorial had to be marked manually, due to the system being unsure of its answers. The system does however have a high probability of grading tests correctly if they are done automatically. A reason for this can be attributed to the fact that the system correlates two pieces of evidence to

predict the correct answer. Thus both the character and bubble information has to be interpreted incorrectly for the system to automatically mark a system wrong.

Chapter 6

Summary and conclusions

6.1 Project summary

In this project an automatic test grading system is developed with the aim of grading student test using a special template. Firstly research was done into excising methods of grading test automatically. It was found that these software packages normally uses only image processing methods to graded bubbles on a paper. For this project additional machine learning capabilities was also built into the system. This allows for a better estimation of what the student wanted to write down on the paper.

6.2 How this final year project benefits society

In the African society there is a great number of individuals who does not have access to quality educational opportunities. The educational systems these individuals do have are normally of pour grade with limited teaching assistance. Educators who are available are not accessible to learners to provide quality education. Automatic Mark Recognition software like the one developed in this project allows for a great number of tests to be assessed automatically in a short time span. This gives educators the power to handle bigger classes and thus provide more learners the opportunity for a better education.

6.3 What the student learned

During the execution of this project, the student learned that time management is important to complete an project in due time. Time management also allows an individual to continuously asses how he/she is doing with respect to a schedule. This not only increases performance, but also self confidence in the final product. Finally the student learned how to develop a software package under a deadline. This project also allowed the student to gain a basic knowledge a a broad range of fields including image processing, neural networks and probabilistic graphical models.

6.4 Future improvements

To increase the speed of grading tests it should be considered to use a faster PGM library to inference the intended student number. This can be done by using Stellenbosch's emdw library. Further increases in test grading speed can be done by only doing image processing on the expected locations of the bubbles. This will bring some extra technical hurdles, but if solved can significantly increase the software's speed. Further the accuracy of the character recognition neural network can be increased by making use of Generative Adversarial Networks(GAN) to train the network on actually classified test results.

6.5 Conclusion: Summary and conclusions

References

```
EDORAS (2017). The inverse radon transform. Image Processing Toolbox. x, 14

GOOGLE (2017). Deep mnist for experts. 10

IVETIC, D. & DRAGAN, D. (2003). Projections based omr algorithm. 8

KARPATHY (2017). Cs231n convolutional neural networks for visual recognition. x, 23

NIELSEN, M.A. (2015). Neural Networks and Deep Learning, vol. 1. Determination Press. 22

ROSEBROCK, A. (2016). Bubble sheet multiple choice scanner and test grader using omr, python and opency. 9

Tensorflow (2017). Mnist for ml beginners. x, 24

VijayaForm (2017). Omr sheet. x, 8
```

Appendix A

Overview of system

In this chapter a graphical and mathematical derivation of the entire system is given.

A.b onder aan i- vir sum over all derivation sit die all teken onder aan die sumation

A.1 System as a whole

As described in Chapter 1, the system can fundamentally be represented with 6 information nodes. These nodes are shown in Figure A.1. The student has certain information he/she wants to portray on the paper. This includes the 4 answers and student number the student wants to write down. Thus those 5 nodes gives rise to the image, representing the last node. Thus fundamentally the system is tasked with working out these 5 conditional probabilities: P(StudentNumber/Image), P(Answer1/Image), P(Answer2/Image), P(Answer3/Image) and P(Answer4/Image). The random vari-

Figure A.1: System overview.

ables StudentNumber and Answer(1 to 3) thus represent all the possible values that the student number and answers possibly can be. The image is a random variable representing the total number of possible states the image can represent. This value is in the order of 1240*1754*256 possible states. To practically represent this further assumptions are made in the following sections.

The aim of the software is to maximize the likelihood of those probability distributions indicating the correct answers. The reason the problem is represented in a probabilistic way is due to the fact that different images are going to be generated every time a test is written. This is true even when the same information is going to be portrayed. Everytime a student writes a test he/she is going to write in different ways. A probabilistic graphical model (PGM) is thus used to describe this system and its inner operations. For a more detailed explanation on PGM's, refer to Section 4.2. The blocks in Figure A.1 represent additional processing that is described in the following sections.

To calculate those 5 probabilities, some more detailed derivations are necessary. These derivations are described in the next section.

A.2 Deriving the intended student entry

A.2.1 Student answer

In Section 4.2.4 it was determined that the student answer can be calculated by combining the intended sign and digits of each column to form an answer. The reason for this could be attributed to the fact that these digits where independent of one another. This means that the intended digit in a certain column is not influenced by what the values in other columns are. In Equation A.1 this independence property can now be seen. To find the most probable answer only P(sign/Image) and P(digit(1-7)/Image) still needs to be calculated. Using the image processing techniques described in Section 3 the P(sign/Image) can simply be determined heuristically by determining the probability of the bubble being coloured in, underneath the sign. Thus the only values yet to calculate is P(digit/Image). This is described in Section A.3.

$$P(Answer/Image) = P(sign/Image) * P(digit1/Image) * \dots * P(digit7/Image)$$
(A.1)

Figure A.2: Graphical setup of determining student answer.

A.2.2 Student number

As state in Section 4.2.4 the assumption of independence does not hold in the case of a student number. The reason for this is, because every 8 digit number is not equally likely to be a student number. Only student numbers that are valid will be considered as a possible state that the student number node can take on. This node will have +-900 states, depending on the number of student numbers. The student number graph can be seen in Figure A.3. Next a derivation for P(studentNumber/Image) is needed.

In the below equations, 'Digits' represents the 8 digit random variables. The first step is to apply Bayes rule as seen in Equation A.2.

$$P(StudentNumber, Digits/Image) = \frac{P(Image/StudentNumber, Digits) * P(StudentNumber, Digits)}{P(Image)}$$
(A.2)

When all the digits are known, the image becomes independent of the student number. This can be seen in Equation A.2. Also the chain rule states that Equation A.4 must be true.

$$P(Image/StudentNumber, Digits) = P(Image/Digits)$$
 (A.3)

$$P(StudentNumber, Digit) = P(Digit/StudentNumber) * P(StudentNumber)$$
(A.4)

Next the Digit random variable is summed out to produce P(studentNumber/Image), as seen in Equation A.5.

$$P(StudentNumber/Image) = \sum_{D}^{All} \frac{P(Image/Digits) * P(Digit/StudentNumber) * P(StudentNumber)}{P(Image)}$$
(A.5)

Applying Bayes rule again the following equality can be presented, as seen in Equation A.6.

$$P(StudentNumber/Image) = P(Image/Digits) = \frac{P(Digits/Image) * P(Image)}{P(Digits)}$$
(A.6)

Thus the result can be seen in Equation A.7. P(StudentNumber) can be taken out of the sum, due to it being independent of Digits.

$$P(StudentNumber/Image) = P(StudentNumber) * \sum_{D}^{All} \frac{P(Digits/Image) * P(Digits/StudentNumber)}{P(Digits)}$$
(A.7)

P(StudentNumber) can be initialized as a equal distribution, because every student number is equal as likely to be in a given test. P(Digits/StudentNumber) is a value that is trained from data. This value symbolizes the probability that the user intended to write down a given digit given that student's student number. This number is thus strongly correlated with the student number. If the first digit of the student number is 1, Digit1 will have a high probability of being 1. The only values that still needs to be calculated are thus P(Digits/Image) = P(Digit1/Image) * ...*. This derivation is covered in the next section.

Figure A.3: Graphical setup of determining student number.

A.3 Deriving the estimated digit

Figure A.4: Graphical setup of determining intended digit.

Appendix B

${\bf Implementation/Algorithms}$

Algorithms used in this project.

B.1 Deep Convolutional Neural Network

Appendix C

Validation and results

Validation and results of this system.

Appendix D

Outcome compliance

Figure D.1: Project plan for the final year project.

Appendix E

Project plan

The final year project plan is shown in Figure E.1. This idea of this Gantt chart plan was to give the student an indication of the progress of the final year project. It was last updated as a final adjustment to the project report.

Figure E.1: Project plan for the final year project.