

Zakaj naj mi bo mar za probabilistično programiranje?

- Temelj statističnega modeliranja in probabilističnega strojnega učenja.
- · Prihodnost "podatkovnega inženirstva".
- Obvezno orodje za vsakega, ki se želi resno ukvarjati s kvantitativno analizo podatkov!

Oris vsebine

- 1 Negotovost in probabilistično razmišljanje,
- 2 statistično modeliranje,
- 3 probabilistično programiranje,
- 4 programski jezik Stan,
- **5** praktični del.

Predpostavljamo znanje programiranja in osnovno razumevanje verjetnosti.

3

Interaktivni test opreme za delavnico

1 del

Negotovost in probabilistično razmišljanje

5

Q: Ali bo naslednji teden v Ljubljani deževalo?

Q: Kako toplo (°C) bo jutri opoldne v Ljubljani?

Naravni jezik je nekonsistenten, nenatačnen in premalo ekspresiven za resno kvantitativno delo!

- **Dobra novica** Primeren jezik so že razvili!
- Slaba novica Gre za teorijo verjetnosti matematiki se ne moremo izogniti.
- **Dobra novica** Ni se nam potrebno naučiti niti vse dodiplomske verjetnosti¹ potrebujemo le verjetnost kot jezik, računal pa bo računalnik.

¹ Kar pa ne pomeni, da nam ne bo koristilo! Verjetnost je osnova kvantitativne analize podatkov.

9

Gramatika verjetnosti

Verjetnost P (pogosto Pr) je funkcija, ki dogodkom prireja numerične vrednosti in zadošča tem aksiomom:

A1
$$P(A) \geq 0$$
.

A2
$$P(\Omega) = 1$$
.

A3 $P(A_1 \cup A_2 \cup A_3 \cup ...) = \sum_{i=1}^{\infty} P(A_i),$

za poljubno sekvenco disjunktnih dogodkov.

Definicija **pogojne verjetnosti**:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Porazdelitve

- Porazdelitve so elementarni izrazi probabilističnega razmišljanja in
- osnovni gradniki statističnih modelov.
- Porazdelitve so v skladu s pravili teorije verjetnosti, zato so konsistentne in natančne probabilistične izjave.
- Več, kot vemo o porazdelitvah, bolj bogato se lahko izražamo.

11

Beseda na dan... | Bernoulli | Bernoulli

Bernoullijeva porazdelitev

distribution	pmf	mean	variance
Bernoulli(p)	$p^{x}(1-p)^{1}$ x ; $x=0,1$; $p\in(0,1)$	p	p(1-p)

Q: Ali bo naslednji teden v Ljubljani deževalo?

13

Normalna (Gaussova) porazdelitev

Q: Kako toplo (°C) bo jutri opoldne v Ljubljani?

15

Normalna (Gaussova) porazdelitev

Q: Kako toplo (°C) je bilo na današnji dan pred 50 leti?

Porazdelitev Beta

$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta-1)}$	α		
	$\frac{\alpha}{\alpha+\beta}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; \ x \in (0,1), \ \alpha,\beta > 0$	$\operatorname{Beta}(\alpha,\beta)$
		2.5 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
		1.5	

17

Porazdelitev Beta

Q: Kolikšna je verjetnost, da naslednji teden v LJ dežuje?

Preizkus probabilističnega razmišljanja

To so izidi 10 metov (morda nepoštenega) konvanca:

ccgccgcccg (?)

Q1: Je enajsti met cifra ali grb?

Q2: Kolikšna je verjetnost *p*, da na tem kovancu pade grb?

Q3: Je kovanec pošten? Poštenost je npr., da je p med 48% and 52%.

19

V razmislek...

Verjetnost je koherenten in natančen jezik za izražanje negotovosti:

- Če ne sledimo zakonom verjetnosti, nas nihče ne bo razumel!
- Sicer pa so probabilistične izjave lahko subjektivne ali navidez popolnoma nesmiselne.
- Precej naravno nam je, da imamo verjetnostno mnenje o stvareh, ki niso naključne. Naključje je samo eden izmed virov negotovosti (in ne preveč pogost).

Uporaba verjetnosti za izražanje negotovosti je bistvo bayesovskega pogleda na statistišno sklepanje!

2 del Statistično modeliranje

21

Model = Hipoteza, kako so nastali naši podatki.

Ni modeliranja brez modela.

23

Ne, resno, ni.

Q: Zapišite 1 metodo iz statistike ali strojnega učenja, ki se uporablja za napovedovanje, razpoznavanje vzorcev, gručenje, testiranje hipotez, ipd.

25

Zaporedje enic in ničel (= podatki):

100100101011011001111111111111111

Statistični model (= poskus statistične interpretacije):

Zaporedje je nastalo s 30 neodvisnimi meti kovanca z neznano verjetnostjo enice θ .

Predhodno mnenje o parametrih modela:

Nimam pojma, koliko je θ , zato ne bom izrazil preference do nobene vrednosti θ .

Statistično sklepanje (= učenje):

Pri vseh the predpostavkah in upoštevajoč zakone verjetnosti, kakšno mora biti moje mnenje o 0, ko vidim podatke?

Zaporedje enic in ničel (= podatki):

100100101011011001111111111111111

$$y_1,\ldots,y_n \qquad \qquad y_i\in\{0,1\}$$

Statistični model (= poskus statistične interpretacije):

Zaporedje je nastalo s 30 neodvisnimi meti kovanca z neznano verjetnostjo enice θ .

$$y_1, y_2, \dots, y_n | \theta \sim_{iid} Bernoulli(\theta)$$

Predhodno mnenje o parametrih modela:

Nimam pojma, koliko je θ , zato ne bom izrazil preference do nobene vrednosti θ .

$$heta \sim \textit{Beta}(1,1)$$

Statistično sklepanje (= učenje):

Pri vseh the predpostavkah in upoštevajoč zakone verjetnosti, kakšno mora biti moje mnenje o θ , ko vidim podatke?

$$p(\theta|y) = \frac{p(\theta, y)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

$$\theta|y_1,\ldots,y_n\sim Beta(\sum y_i+1,n-\sum y_i+1)$$

27

Naše mnenje o θ **prej** in **potem**, ko smo videli zaporedje, ki vsebuje 20 enic in 10 ničel.

29

3 del

Probabilistično programiranje

Probabilistični programski jezik (PPL) je programski jezik, ki je zasnovan za opisovanje probabilističnih modelov in računsko sklepanje iz teh modelov.

Vir: Wikipedia

31

Probabilistični programski jezik nam omogoča, da se osredotočimo na modeliranje in preskočimo matematične in računske probleme pri sklepanju.

Dva primera imperativnega programiranja

```
1 # Bubble Sort
  2 - sort <- function(x) {
  3
      n \leftarrow length(x)
      for (k in n:2) {
  6
        i <- 1
        while (i < k) {
  8 -
          if (x[i] > x[i+1]) {
           temp <- x[i+1]
x[i+1] <- x[i]
x[i] <- temp
  9
 10
 11
 12
          i <- i + 1
 13
 14
 15
 16
 17 }
```

```
🦈 🗇 🙎 🔒 🗌 Source on Save 🔍 🔏 🕶 📳
 1 # Generate 30 Bernoulli variables
  2 * bernoulli <- function(p) {
 3
      x <- c()
 4
      for (i in 1:30) {
 5 +
       if (runif(1) > p) {
 6 +
 7
         x < -c(x, 0)
        } else {
 8 -
 9
         x < -c(x, 1)
10
11
12
13 }
14
```

33

Imperativno programiranje

in Statistično modeliranje

Source on Save | Q Z + [] # Generate 30 Bernoulli variables 1 2 * bernoulli <- function(p) { 3 x <- c() 4 5 + for (i in 1:30) { if (runif(1) > p) { x < -c(x, 0)} else { 8 -9 x < -c(x, 1)10 11 12 X 13 } 14

```
y_1, \dots, y_n y_i \in \{0, 1\} y_1, y_2, \dots, y_n | \theta \sim_{\mathsf{iid}} \mathsf{Bernoulli}(\theta) \theta \sim \mathsf{Beta}(1, 1)
```

- Podane imamo vhodne podatke in parametre,
- sprogramiramo algoritem, ki generira zahtevane izhodne podatke.
- Podane imamo vhodne in izhodne podatke,
- · opišemo generator, ki naj bi generiral podatke,
- sklepamo o najbolj verjetnih vrednostih parametrov.

Odmor

koda za drugi del:

https://github.com/bstatcomp/Stan-Intro-Workshop

35

4 del

Programski jezik Stan

Kaj je Stan?

- Orodje za učinkovito Bayesovo statistično modeliranje.
- Najlažje ga uporabljamo preko vmesnikov (na primer RStan, PyStan, ...).
- Stan je "compiled" jezik, to pomeni, da se statistični model preslika v c++ kodo, ki se nato pred uporabo prevede (zato je potrebno pred uporabo modela malo počakati).

37

Obvezni bloki vsakega Stan programa

- data blok v katerem s pomočjo spremenljivk deklariramo vhodne podatke. Vrednosti vhodnih podatkov pripravi uporabnik/razvijalec, običajno v programskem jeziku, ki ga uporabljamo kot vmesnik.
- parameters blok v katerem deklariramo parametre, ki jih želimo oceniti (kateri parametri našega statističnega modela nas zanimajo). Stan preko vmesnika (na primer RStan) vrne vrednosti parametrov nazaj v izhodiščni programski jezik.
- model opis statističnega modela.

```
Primer komentarja, ki obsega

več vrstic.

*/

data {
    // tukaj definiramo vhodne podatke
}

parameters {
    // parametri modela, ki jih želimo oceniti
}

model {
    // sem spada statistično modeliranje
}
```

Osnovni tipi spremenljivk

• int – celo število int a;

• real – realno število real b;

• seznam (array) – seznam celih ali realnih števil int a[10]; real b[n];

• matrika (matrix) – 2D seznam [vrstice, stolpci] int A[10, 10];

• vector – vektor realnih števil (optimiziran seznam) vector[n] v;

• **simplex** – vektor pozitivnih realnih števil, ki se seštejejo v 1 simplex[n] s;

• (skoraj) vsem spremenljivkam lahko določimo zgornjo in spodnjo mejo real<lower=0> sigma; real<lower=0, upper=1> success_rate;

39

Porazdelitve

- Bernoulli (y ~ bernoulli(theta);
 - **y** je vektor "uspehov" (1) in "neuspehov" (0) **θ** (theta) predstavlja verjetnost uspeha
- beta

normal
 y ~ normal(mu, sigma);

y je vektor realnih števila μ, σ sta upanje oziroma varianca

 porazdelitve uporabimo tudi za vnanašnje predznanja o določenih parametrih modela

5 del Praktični primeri

41

Izjemno kratek uvod v R

Problem #1

V datoteki **basketball_shots.csv** so podatki o metih na koš. Vsak košarkaš je 60 krat vrgel na koš običajne velikosti, nato pa še 60 krat na koš z manjšim obsegom.

Zanima nas:

- 1) Primerjava med uspešnostjo košarkaša #1 ter košarkaša #2:

 - kako prepričani smo v to ugotovitev,
 kolikšna je razlika v uspešnosti?
- 2) Primerjava med metanjem na običajni ter manjši obroč za košarkaša #1.

Namigi:

Za modeliranje uspešnosti uporabi Bernoullijevo porazdelitev. Predznanje v model lahko vnesemo s pomočjo Beta porazdelitve.

43

Naš prvi model – meti na koš

Naš prvi model – meti na koš

• data

```
n – število metov
y – rezultat meta (0 – nespešen met, 1 – uspešen)
```

parameters

theta – parameter Bernoulli distribucije, ki ocenjuje uspešnost

model

predznanje (prior) opis modela

```
data {
  int<lower=1> n;
  int y[n];
}

parameters {
  real<lower=0,upper=1> theta;
}

model {
  // prior
  theta ~ beta(1,1);

for (i in 1:n) {
   y[i] ~ bernoulli(theta);
}
```

45

Prior za parameter theta

brez

"flat" porazdelitev na intervalu $[-\infty, \infty]$

• beta(1, 1)

beta(4, 2)

Problem #2

V datoteki **temperature.csv** so podatki o temperaturi, za Slovenijo imamo podatke o povprečni temperature za vsak mesec med 1901 in 2015.

Zanima nas ali je bila temperature julija (najbolj vroč mesec) med leti 1970-1985 nižja kot med leti 2000 in 2015?

- Kako prepričani smo v to trditev?
- Za koliko je bila temperature nižja?

Namig:

Za modeliranje uspešnosti uporabi normalno porazdelitev - $N(\mu, \sigma)$.

47

Problem #3

V datoteki **temperature.csv** so podatki o temperaturi. Za Slovenijo imamo podatke o povprečni temperaturi za vsak mesec med 1901 in 2015, za Finsko pa med 2000 in 2015.

Zanima nas:

- 1) Ali julijska temperatura skozi čas na Finskem narašča?
 - Kakšno je naše zaupanje v napovedi modela, zakaj?
 - Kako lahko ta problem rešimo?
- 2) Ali julijska temperatura skozi čas v Sloveniji narašča?
- 3) Kakšna bo temperaturla leta 2019, kakšna 2070? Kakšna je verjetnost, da bo leta 2019 oziroma 2070 pričakovana temepratura višja od 25°C?

Namig:

. Za modeliranje uspešnosti uporabi normalno linearno regresijo – normalni linearni model, kjer je μ porazdelitve linearno odvisno (a + bx) od leta (x).

Problem #4

Novo nastalo zagonsko podjetje nas je najelo, da jim pomagamo pri dveh pomembnih odločitvah: (ob predpostavki, da želijo maksimizirati svoj dobiček)

- 1) Kam vlagati sredstva (razvoj, marketing ali administracija)?
- 2) Kje naj imajo svoje prostore (na voljo imajo Florido, Kalifornijo in New York)?

S pomočjo analiziranja podatkov iz datoteke **50_startups.csv** jim pomagaj pri odločitvi. V datoteki se nahajajo podatki o 50 zagonskih podjetjih (kako so vlagali denar, kje imajo pisarno ter koliko so zaslužili).

Namig

Nadgradi linearno normalno regresijo iz prejšnjega problema.
Odvisna spremenljivka (profit) je odvisna od več atributov (research, marketing, ...) – vhod X je torej matrika.
Za vsak atribut želimo svojo beta (b) vrednost – parameter b je torej vektor.
Iz kategorične spremenljivke (state) naredimo več binarnih spremenljivk.

49

Problem #5

Parlamentarne stranke se odločajo ali bi razpisale predčasne volitve ali ne, na podlagi zadnje javno mnenjske raziskave (**elections.csv**) jim pomagja pri tej odločitvi. Naročnika zanima:

- 1) Ocena uspešnosti za vse stranke.
- 2) Kakšna je verjetnost, da bo stranka po volitvah imela več sedežev v državnem zboru?
- 3) Kakšna je verjetnost, da ima po volitvah trenutna koalicija (LMŠ, SAB, SD, DeSUS in SMC) večino?
- 4) Kakšna je verjetnost, da ima po volitvah trenotna opozicija (SDS, SLS, NSi in SNS) večino?

Namigi:

Uporabite Bernoulli-beta model (problem #1) – tukaj ima vsaka stranka svoj parameter theta. Namesto vektorja za thete lahko uporabite simplex – ta poskrbi, da se verjetnosti seštejejo v 1. Večina v slovenskem državnem zboru pomeni več kot 44 sedežev (algoritem za izračun sedežev je v R datoteki). Večina algoritmov (izračun sedežev, primerjava s trenutnim stanjem) je že pripravljenih.