intro

- \bullet foreshadowing/context: under all prob computations are $sample\ spaces$
- rarely work with sample spaces directly, unless they're simple (heads/tails)
 - (so, we start here)

what is prob?

- objective prob: long run freq of occurrence (eg heads in coin flip)
 - often called frequentist/classical methods.
 - ▶ used more often in undergrad CMU
- subjective prob: a possibly informed belief in rate of occurrence of event
 - ightharpoonup can called bayesian

set notation

- $A\supset B, A\subset B, A\cup B, A\cap B, \overline{A}$ aka A^C
- let the set of all experimental outcomes $\Omega = A \cup \overline{A}$
- $A \cap B = \emptyset \Longrightarrow A$ and B are mutually exclusive aka disjoin
- distributive/associative laws
- de morgan's $(\overline{A \cup B} = \overline{A} \cap \overline{B}, \text{ etc})$

what are experiments?

- make observations
- passive: just collect data
- active: control setting
- sample space (Ω)
 - two coins tossed? $\Omega = \{HH, HT, TH, TT\}$
 - HH is simple event
 - TH is compound event ("at least one tail")
 - free throws until miss? $\Omega = \{M, HM, HHM, ...\}$
 - relative freqs of above? don't know! need more info

probability

sample space probabilities

• conditional probability: A, when we know B

this effectively reduces the sample space from I to B

Assume oreas represent probabilities:

P(ANB)

$$P(AIB) = \frac{P(AAB)}{P(B)}$$

- A and B are independent
 - iff $P(A \mid B) = P(A)$
 - iff $P(B \mid A) = P(B)$

- iff $P(A \cap B) = P(A)P(B)$
- if there are three events, A and B are conditionally independent
 - if $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

The following is an example of independence as rendered on a Venn diagram:

Let A, B, and C be three separate events in Ω , all of which have non-zero probability of occurring. A and B are conditionally independent if

The following shows conditional independence and dependence as rendered on a Venn diagram:

• multiplicative law:

$$\begin{split} P(A \cap B) &= P(A)P(B \mid A) = P(B)P(A | B) \\ &= 0 \text{ if } A, B \text{ disjoint} \\ &= P(A)P(B) \text{ if } A, B \text{ independent} \end{split}$$

We can generalize this result to *n* events $\{A_1, \dots, A_n\}$:

$$P(A_1 \cap \dots \cap A_n) = P(A_1 \mid A_2 \cap \dots \cap A_n) P(A_2 \cap \dots \cap A_n)$$

$$= P(A_n) \prod_{i=1}^{n-1} P(A_i \mid A_{i+1} \cap \dots \cap A_n) P(A_3 \cap \dots \cap A_n) P(A_3 \cap \dots \cap A_n) P(A_4 \cap \dots \cap A_n)$$

$$= P(A_n) \prod_{i=1}^{n-1} P(A_i \mid A_{i+1} \cap \dots \cap A_n) P(A_4 \cap \dots \cap A_n) P(A_4 \cap \dots \cap A_n)$$

$$= P(A_n) \prod_{i=1}^{n-1} P(A_i \mid A_{i+1} \cap \dots \cap A_n) P(A_4 \cap \dots \cap A_n) P(A_4 \cap \dots \cap A_n)$$

• additive law:

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\ &= P(A) + P(B) \text{ if } A, B \text{ disjoint} \\ &= P(A) + P(B) - P(A)P(B) \text{ if } A, B \text{ independent} \end{split}$$

- decision trees: good for when probabilities change
 - eg picking colored balls without replacement, not like probability of heads of fair coin
 - → Example: you pull three balls out from an urn which has two red and three black balls, without replacement. (a) What is the probability that the second ball drawn is red? (b) What is the probability that the second ball drawn is red, if the third ball drawn is black?

- for these next two, let $\{B_i\}$ be a partition of Ω .
- law of total probability.

$$P(A) = \sum_{i=1}^k P(A|B_i)P(B_i)$$

- "probability of B_1 , then times the probability that i landed in A, in B_1 , etc etc"
- ightharpoonup helpful when given conditional probs but not A itself
- Bayes' Rule:

$$P\big(B_j|A\big) = \frac{P\big(A|B_j\big)P\big(B_j\big)}{\sum_{i=1}^k P(A|B_i)P(B_i)} = \frac{P\big(A|B_j\big)P\big(B_j\big)}{P(A)}$$

→ Example: The Monty Hall Problem. This problem is named for the long-time host of the game show Let's Make a Deal. The simple version goes as follows: you are shown three doors; behind two of the doors are goats and behind the other is a car. You choose a door (say Door #1). Monty Hall then opens, say, Door #3 to reveal a goat, and asks you if you want to switch to Door #2.

So: do you stick with Door #1 or switch to Door #2?

Assume Door #1 has been selected.

Mondy will not open the door the cor is behind.

Whot is P(c2103)?

$$P(c_{2}|o_{3}) = \frac{P(o_{3}|c_{2})P(c_{1})}{P(o_{3})} = \frac{P(o_{3}|c_{2})P(c_{2})}{P(o_{3}|c_{2})P(c_{2}) + P(o_{3}|c_{1})P(c_{1})}$$

$$\Rightarrow P(c_2 | o_3) = \frac{1 - \frac{1}{3}}{1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{2}{3}$$

> change your pick to Door # 2!

other probability paradigm??

• need better paradigm for continuous situations/nondiscrete outcomes: random variables, prob distributions

- random variable: like a function, maps events in Ω to, eg, real number line (the output meters ran maybe)
 - ▶ but think of random variables as their outputs
 - can have diff random variables for same experiment: number of tails observed, number of heads, whether not heads observed
 - denoted with uppercase Latin eg X, P(X = x)
 - ► NO INHERENT NOTION OF PROBABILITY!
- \bullet functions of random variables are random variables! statistics are functions of data are random variables
- properties of discrete and continuous prob distributions

	Discrete	Continuous
Name	pmf: probability mass function	pdf: probability density function
Symbol	$p_X(x)$	$f_X(x)$
Properties	$0 \leq p_X(x) \leq 1$	$f_X(x) \geq 0$
	$\sum_{\text{all }x} p_X(x) = 1$	$\int_{\text{all }x} f_X(x) dx = 1$
	$P(a \le X \le b) = \sum_{x \in [a,b]} p_X(x)$	$P(a \leq X \leq b) = \int_a^b f_X(x) dx$
	$P(a < X < b) = \sum_{x \in (a,b)} p_X(x)$	$P(a < X < b) = \int_a^b f_X(x) dx$
	$E[X] = \sum_{\text{all } x} x p_X(x)$	$E[X] = \int_{\operatorname{all}x} x f_X(x) dx$
(law of unconscious statistician)	$E[g(x)] = \sum_{\text{all } x} g(x) p_X(x)$	$E[g(x)] = \int_{\text{all } x} g(x) f_X(x) dx$

- expected value operator $E[X] = \mu_X$, mean of the distribution X was sampled from
 - E[cX] = cE[X]
 - E[c] = c
 - E[x + y] = E[x] + E[y]
- variance operator $V[X] = \sigma^2$
 - $V[X] = E[(x \mu)^2] = \text{(simplifies to) } E[X^2] (E[X])^2$
 - apparently V[x+y] = V[x] + V[y]??? sep 18 class example 2
 - variance is not width, but the square of the width, think about units of V[X] vs units of E[X]
- translation/scaling's effects on mean and variance: $(X \to X + b)$
 - E[X + b] = E[X] + b (translation shifts mean)
 - E[aX] = aE[X] (scaling shifts mean multiplicatively)
 - V[X + b] = V[X] (translation doesn't effect width)
 - $V[aX] = a^2V[X]$ (scaling widens exponentially, verify via shortcut formula)

- cumulative distribution function (cdf)
 - ightharpoonup accumulated prob up to x, inclusive

	Discrete	Continuous	
Symbol	$F_X(x)$	$F_X(x)$	
Definition	$F_X(x) = \sum_{y \leq x} p_Y(y)$	$F_X(x) = \int_{-\infty}^x f_Y(y) dy$	
Limiting Properties	for both, $F_X(-\infty)=0$ and $F_X(\infty)=1$		
Reln to pmf/pdf	$p_X(x)$ is magnitude of jump in $F_X(x)$ at coord x	$f_X(x) = \frac{d}{dx} F_X(x)$	
Reln to Quantile q	$X=\min\{x:F_X(x)\geq q\}$	inverse cdf, $X = F_X^{-1}(q)$	
Reln to Prob. Over Range	It's complicated.	$\begin{split} &P(a \leq X \leq b) \\ &= P(a < X < b) \\ &= F_X(b) - F_X(a) \end{split}$	

• inverse cdf: given total prob q to left of (and including) some x_0 , what is x_0 ?

	input	output
cdf	x_0	q
inverse cdf	q	x_0

families of distributions

- up till now, practice problems have fixed θ in equations, we often have to find it. (use law of total prob)
- deriving from Law of Total Prob $(P(A) = \sum_{i=1}^k P(A|B_i)P(B_i))$ if we know
 - $p_{X|\theta}(x|\theta)$
 - with θ weights from $p_{\Theta}(\theta)$,

$$p_X(x) = \sum_{\theta} p_{X|\theta}(x|\theta) p_{\Theta}(\theta)$$

- if θ is continuous, we may just use an integral
 - Now, what happens if X is a continuous random variable?

Discrete
$$\Theta$$
: $f_{x}(x) = \frac{\sum_{\text{all } \Theta} f_{\text{xlo}}(x|\Theta) p_{\Theta}(\Theta)}{\int_{\text{all } \Theta} f_{\text{xlo}}(x|\Theta) f_{\Theta}(\Theta) d\Theta}$
Continuous Θ : $f_{x}(x) = \int_{\text{all } \Theta} f_{\text{xlo}}(x|\Theta) f_{\Theta}(\Theta) d\Theta$

```
• plotting such a pdf: f_X(x) = \int_0^\infty \theta x^{\theta-1} \cdot e^{-\theta} d\theta
  x < - seq(0.001, 1, by=0.001)
  f.X <- rep(NA,length(x))</pre>
  f <- function(theta,x) {</pre>
    return(theta*x^(theta-1)*exp(-theta))
  for ( ii in 1:length(x) ) { # we loop over x's indices (1, 2, ..., length(x))
    f.X[ii] <- integrate(f,0,Inf,x=x[ii])$value</pre>
  # Now let's plot!
  library(ggplot2)
  df <- data.frame(x,f.X)</pre>
  ggplot(data=df,mapping=aes(x=x,y=f.X)) +
    geom line(col="firebrick") +
    ylim(c(0,3)) +
    ylab(expression(f[X]*"(x)"))
```

data sampling code

- inverse-transform sampling
 - 1. sample a $q \in (0,1)$. (e.g. runif(), random uniform)
 - 2. plug q into $x = F_X^{-1}(q)$, record x
 - 3. repeat n times for a sample size of n
- rejection sampling
 - 1. choose finite domain [a,b] for $f_X(x)$ that's good enough
 - 2. let $\max(f_X(x)) = m$
 - 3. repeat until n samples recorded:
 - 1. randomly sample $x' \in [a, b]$ and $y' \in [0, m]$.
 - 2. if $y' \leq f_X(x')$, keep the data point otherwise, reject it and continue
- see media/data_sampling.Rmd

statistics

- iid: independent and identically distributed
- reiterating: these are just functions of observed data
 - $Y = X_1 + \cos(X_2) \frac{X_{37}}{\pi}$ is a statistic, but not informative

 - $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{1}$ is as well, and is informative of μ $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{1} \overline{X} \right)^{2}$ is informative of σ^{2}
- statistics are random variables!!!
 - ▶ drawn from sampling distributions (which are just pmfs/pdfs)file:
- sample mean, stddev, range, median
- $E[\overline{X}] = E[X], V[\overline{X}] = \frac{V[X]}{n}$ hold for all distributions
- standard error is the width of the distribution; the standard deviation of a statistic; $\sqrt{V[Y]}$, where Y is a random variable/sampling distribution/pmf or pdf for a statistic
- expected value of the sample variance S^2 is σ^2 after LOTS of math

- ▶ this is Wednesday: Statistics and Sampling Distributions class example 1
- why is $\frac{1}{n-1}$ there? create an unbiased example of the population estimate??

likelihood function

- the likelihood function quantifies how likely a θ is given our data
- let it be defined:

$$\mathcal{L}\Big(\theta \mid \vec{X}\Big) = \prod_{i=1}^{n} f_X(x_i \mid \theta)$$

for continuous data, simply using $p_X(x_i \mid \theta)$ for discrete

notice that

- why? in inference, we want to estimate θ given data! so we maximize \mathcal{L} for θ
- to make math easier, we use the log-likelihood $\ellig(\theta\mid\vec{X}ig)=\log\mathcal{L}ig(\theta\mid\vec{X}ig)$

bias and variance

- bias: $B[\hat{\theta}] = E[\hat{\theta} \theta] = E[\hat{\theta}] \theta$ estimator biased: $B[\hat{\theta}] = 0$, unbiased $B[\hat{\theta}] \neq 0$
- variance: $V[\hat{\theta}]$ (recall defin above)
- mean-squared error (MSE): MSE $\left[\hat{\theta}\right] = E\left[\left(\hat{\theta} \theta\right)^2\right] \underset{\text{simpl to}}{=} V\left[\hat{\theta}\right] + \left(B\left[\hat{\theta}\right]\right)^2$
 - select "best" estimator by taking the one with lowest MSE

Maximum Likelihood Estimation

- procedure (it's literally just AP Calc maximization):
 - 1. find $\mathcal{L}(\theta \mid \vec{X})$
 - 2. find $\ell(\theta \mid \vec{X})$
 - 3. compute $\ell'(\theta \mid \vec{X})$, partial or normal with respect to θ
 - 4. solve the above equal to 0 for θ , now called $\hat{\theta}_{\text{MLE}}$ (also replace x_i with X_i)
- this does not work with domain-specifying parameters (e.g. $f_X(x) = \frac{1}{\theta}$ for $x \in [0, \theta]$)
- property of MLEs: invariance property

- if $\theta' = g(\theta)$, then $\hat{\theta}'_{\text{MLE}} = g(\hat{\theta}_{\text{MLE}})$
- e.g., .0 what

more abt confidence intervals

 $P(\hat{\theta}_L \leq \theta \leq \hat{\theta}_R)$ where the theta HATS are the r.v.s!

point estimates dont need sampling distributions! point estimates do!

when doing the math, finding lower and upper bound should be the same thing except having a swapped q

erm.

we skipped a bunch of notetaking. it's exam 3 time.

review of point estimation

- moment gen fin $M_X(t) = E[e^{tX}]$
 - if $Y = b + \sum_{i=1}^n a_i X_i$, then $M_Y(t) = e^{bt} \sum_{i=1}^n M_{X_i}(a_i t)$
 - ► match mgfs to match distributions
 - used for CIs and HTs
 - sum of n indep normal r.v.s is a normal r.v.
 - sample mean of n iid normal r.v.s is a normal r.v.
 - standardized normal r.v. $\left(\frac{x-\mu}{\sigma}\right)$ is a standard normal r.v.
 - sum of n squared standard normal r.v.s is χ^2 distr for n deg of freedom
- general transformations of single random variable
 - given $f_X(x)$ and U = g(X), what is $f_U(u)$?

 - sqre of one std normal r.v. is χ^2 for 1 d.o.f.
 - ▶ in part, allows derivation of t distr.
- distribution of $T=\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}\stackrel{d}{\to} Z\sim N(0,1)$ as $n\to\infty$
- performance of point estimators
 - bias: $B[\hat{\theta}] = E[\hat{\theta} \theta] = E[\hat{\theta} \theta]$ (if bias tends to 0, asymptotically biased.)
 - variance: $V[\hat{\theta}]$

 - ► mean-squared error: $\text{MSE}\left[\hat{\theta}\right] = \left(B\left[\hat{\theta}\right]\right)^2 + V\left[\hat{\theta}\right]$ ► consistency: tldr, whether $\text{MSE}\left[\hat{\theta}\right] \to 0$ as $n \to \infty$
- how can we get a good point estimator? Maximum Likelihood Estimation!
 - asymptotically unbiased
 - invariance property: $\widehat{g(\theta)}_{\text{MLE}} = g(\hat{\theta}_{\text{MLE}})$
 - ightharpoonup maximuze l (log-likelihood function)

Cramer-Rao Lower Bound (CRLB) on variance

- valid when n iid data from dist whose domain no depend on θ and $\hat{\theta}$ unbiased.
- $V[\hat{\theta}] \ge \frac{1}{I_n(\theta)} = \frac{1}{n \cdot I(\theta)}$
- where the Fischer information $I(\theta) = -E\left[\frac{\delta^2}{\delta\theta^2}\log f_X(x\mid\theta)\right]$ (p_X for discrete)

Central Limit Theorem

- what if non-normal distributions but want infer about pop mean?
 - ▶ point estimates unaffected: don't need distr
 - ► CIs and HTs *are*, need sampl distrs.
- $\overline{X} \xrightarrow{d} Y \sim N(\mu, \frac{\sigma^2}{n})$
- ex: n = 100 iid data from unknown dist with $\mu = 20, \sigma^2 = 4$. Find $P(19.8 \le \overline{X} \le 20.2)$
- ex: How many iid data do we need to draw from a dist with $\mu = 10, \sigma^2 = 2$ for $P(\overline{X} < 10.2) > 0.9$?

Confidence Intervals for norm dist parameters

- review:
 - two sided CI: a random interval that fulfills $P\left(\hat{\theta}_L \leq \theta \leq \hat{\theta}_H\right) = 1 \alpha$
 - coverage: $100(1-\alpha)\%$ of eval'd intervals overlap θ
 - compute by: find statistic Y with a y_{obs} , solve $F_Y(y_{\text{obs}} \mid \theta) = q$ for parameter (θ) , finding q from the CI table
- now we must know how to uniroot it out
- ex: We draw n = 100 iid data from unknown distribution with mean μ . have $\overline{x}_{obs} = 10, S^2 = 9$. find 95% two side CI for μ .

trick! invoke CLT and just treat S as σ , proceed as expected with uniroot for compute step.

• ex: n = 8 iid data from normal with mean μ , variance σ^2 . have $s_{\text{obs}}^2 = 6$. What is 90% upper bound on σ^2 ?

Hypothesis Tests again as well

- review:
 - preconceived notion about dist param θ (e.g. normal mean), state that null hypothesis.
 - select a statistic Y that informs θ , write down sampl dist given null, and see if y_{obs} is consistent with null sampl distr.
- if y_{obs} falls in a rejection region, decide to reject null (otherwise, fail to reject)
 - $P(\text{reject null} \mid \text{null true}) = \alpha \leftarrow \text{user-set Type I error}$
 - $P(\text{fail to reject null } | \theta \text{ arb}) = \beta \leftarrow \text{Type II error (function of } \alpha, \theta)$
 - $P(\text{reject null} \mid \theta \text{ arb}) = 1 \beta = \text{power}$
- Kolmorgorov-Smirnov (KS) test
 - H_0 : observed data are from some continuous distribution
 - ${}^{\blacktriangleright}$ or H_0 : two datasets are from same continuous distribution

Some details on the KS test are to be found in the book, but the gist is the following:

① The test statistic is $D_n = \sup_{x \in X_n} \left| \frac{F_{X_n}(x) - F_{X_n}(x)}{Cdf} \right|$ ② Under the null, largest specified Vn Da is sampled from a Kalmogarav distribution

> = "largest difference be aween what we observe and what we expect under the null"

empirical

cds of observed

data (dots in plot)

- Shapiro-Wilk test
 - ► stronger (more powerful) test
 - only for whether data are normally distributed
 - limited to $n \leq 5000$ data

lecture on p-value, power, the normal mean

- setting: let's say we want a hypothesis test about μ after get n iid data (we assume/know normally distr)
- null/alt hypotheses:

$$H_0: \mu = \mu_0$$

$$H_A: \mu < \mu_0$$
 (lower-tail)

$$\mu \neq \mu_0$$
 (two-tail)

$$\mu > \mu_0$$
 (upper-tail)

- most common test statistic
 - $Y = \overline{X}$
 - where $E[Y] = \mu$, increases with μ
- what is sampl dist for that statistic?
 - σ^2 known: $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ or $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ σ^2 unknown: $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1}$
- do what with these dists?
 - solve for rr boundaries: $F_{\overline{X}}(\overline{x}_{\mathrm{RR}} \mid \mu_0) = q$

- we fix μ_0 so we solve via qnorm(), not uniroot().
- use table!
- do we need $\overline{x}_{\mathrm{RR}}, t_{\mathrm{RR}}$ to decide reject/not?
 - no! the p-value exists!
- p-value: prob that we observe y_{obs} or "more extreme" statistic value, if H_0 is correct.
 - if E[Y] incr with θ , then ...
 - lower: $p = P(Y \le y_{\text{obs}} \mid H_0)$
 - upper: $p = P(Y \ge y_{\text{obs}} \mid H_0)$
 - lower: $p = 2 \cdot \min[P(Y \le y_{\text{obs}} \mid H_0), P(Y \ge y_{\text{obs}} \mid H_0)]$
 - can use cdf codes (e.g. pnorm())
 - if $y_{\text{obs}} = y_{\text{RR}}$, then $p = \alpha$
 - if H_0 is correct, then $p \sim \text{Uniform}(0,1)$, then $P(p \leq \alpha) = \int_0^{\alpha} dp = \alpha$ (think abt it! :3)
 - $p \neq$ prob that null correct! this makes no sense!
 - select α before p. don't p hack.
- ex: n=9 iid data from normal with mean μ and variance $\sigma^2=16$, $\overline{x}_{\rm obs}=11$, $\alpha=0.05$. Find p if $H_0: \mu = \mu_0 = 10$ vs $H_A: \mu > \mu_0$
- test power: prob that we reject null given any (arb) value for θ
 - power(θ) = $P(\text{reject null } | \theta)$
 - implies $power(\theta = \theta_0) = \alpha$
 - y_{RR} NOT needed to compute p but IS needed to compute power.

lecture on normal population variance

- setting: let's say we want a hypothesis test about σ^2 after get n iid data (we assume/know normally distr)
- null/alt hypotheses:

$$H_0:\sigma^2=\sigma_0^2$$

$$H_A: \sigma^2 < \sigma_0^2$$
 (lower-tail)

$$\sigma^2 \neq \sigma_0^2$$
 (two-tail)

$$\sigma^2 > \sigma_0^2$$
 (upper-tail)

- most common test statistic
 - $Y = S^2$
 - where $E[Y] = \sigma^2$, increases with σ^2
- what is sampl dist for that statistic?

 - $S^2 \sim ????$ (can be derived) $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$
- do what with these dists?
 - solve for rr boundaries: $F_W\Big(\frac{(n-1)S_{\rm RR}^2}{\sigma_0^2} \mid \sigma_0^2\Big) = q$
 - ► solve via p/q chisq(), not uniroot().
 - use table!

TODO these have really weird examples, go check them out

Simple Linear Regression

- predictor/indep/explanatory/feature vs response/dependent/target
- general model: $Y_i \mid x_i = f(x_i) + \varepsilon_i$
- in simple linear regression, $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
 - (note: linear means linear in parameters. ... $b_1 X_i^2$... is linear)
- $E[Y_i] = \beta_0 + \beta_1 X_i$
- $V[Y_i] = \sigma^2$ by assumption
- each observed Y_i is random variable sampled from **some** distribution w/ mean 0, constant variance σ^2
- the regresion line is $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = \text{expected value of } Y_i : 0$
- residuals are $e_i = Y_i \hat{Y}_i = Y_i \hat{\beta}_0 \hat{\beta}_1 x_i$
- convention: estimate beta params by minimizing sum of squared errors (SSE) = $\sum_{i=1}^{n} e_i^2$
 - ▶ both beta hats via SSE are unbiased, consistent estimators
- some R interpretation thus far:

- is there a significant reln bt x and Y?
 - $H_0: \beta_1 = 0$ $H_A: \beta_1 \neq 0$
- to test this, we finally need that distributional assumption (usually, the normal)
- i.e., our error assumptions are now:
 - $E[\varepsilon_i] = 0$
 - $\quad {\bf \cdot} \ V[\varepsilon_i] = \sigma^2$
 - $\varepsilon_i \sim N$ for mu and sigma above
- correlation bt two r.v.s is $\rho_{XY} = \frac{\text{Cov}(X,Y)}{\sqrt{V[X]V[Y]}}, |\rho_{XY}| \leq 1.$

- ► Cov covered in Ch 6, later
- ρ from 0 (no correlation) to ± 1 (perfect correlation)
- estimated by Pearson correlation coefficient, R.
- R^2 : coefficient of determination; proportion of variability in Y_i accounted for by model
- more R interpretation: (TODO: what does the t value and p value mean?)

ANOVA

- $Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$ where i: group; j: datum within group i
 - ightharpoonup is the effect of each group in the discrete explanatory
 - $\varepsilon_{ij} \sim N(0, \sigma^2)$ (normality assumption required)
 - test: null is all tau same, alt is at least one tau differs.
- ANOVA intuition:

Before getting into the math, we will build intuition about the role that variance plays here:

- math time:
 - ▶ uhhhhhhhhhh shucks

Binomial Distribution

- statistical process: seq of r.v.s, can be spatially/temporally linked
- consider n coin flips, each with prob p of heads. let X be number of heads in k flips. thus: results: $Y_1, Y_2, ..., Y_k \leftarrow$ a Bernoulli process

$$Y_i \sim \text{Bernoulli}(p), p_Y(y) = \left\{ \substack{p & \text{if } y = 1 \\ 1 - p & \text{if } y = 0} \Longrightarrow X = \sum_{i = 1}^k Y_i \right.$$

X is the binomial!

- the binomial pmf governs binomial experiments, where:
 - 1. number of trials k fixed
 - 2. trial can only succeed or fail
 - 3. success prob. p fixed
 - 4. outcomes independent
- the binomial pmf, probability of x successes in fixed k trials, is defined

$$p_X(x) = \binom{k}{x} p^x (1-p)^{k-x} = \frac{k!}{x!(k-x)!} p^x (1-p)^{k-x}, x \in \{0,1,...,k\}$$

- ▶ "what is prob. roll one 6 in four rolls?"
- E[X] = kp, V[X] = kp(1-p)
- ► R codes: _binom()
- the negative binomial pmf, probability of x failures in fixed s successes, is defined

$$\begin{aligned} p_X(x) &= \binom{x+s-1}{x} p^{s-1} (1-p)^x \cdot p &= \binom{x+s-1}{x} p^s (1-p)^x, x \in \mathbb{N} \\ & x \text{ failures in first} & \text{success} \\ & s-1 \text{ trials} & \text{in last} \end{aligned}$$

- "what is prob. team A gets 4 wins in six games?"
- $E[X] = s(1-p)/p, V[X] = s(1-p)/p^2$

► R codes: nbinom()

binomial cdf/mgf

- note that we have pmfs. thus, for X binomial, $F_X(x) = \sum_{y=0}^{\lfloor x \rfloor} {k \choose y} p^y (1-p)^{k-y}$
- observe:

$$\begin{split} P(4 \le X \le 5) &= p_X(4) + p_X(5) \\ &= P(X \le 5) - P(X \le 3) \\ &= F_X(5) - F_X(3) \end{split}$$

crazy stuff. can be simpler to just find which masses lie in range, and sum.

- notes 02 scan wtf are we on abt again about inverse cdfs
- after finding mgf of binom and sum of binoms, we may conclude:

if Y is a sum of n
$$\operatorname{Binom}(k, p)$$
,
 $Y \sim \operatorname{Binom}(nk, p)$

- ► reasonable: 4 single coin flips same as 1 four-trial coin flips
- the mean \overline{X} is WEIRD.
 - ► mgf can't find distribution
 - given binom data, it's just easier to do inference on $\sum X_i$ than \overline{X} , with identical results
- notes 02 scan wtf do we know of mean dist? some weird $f_{\overline{X}}(\overline{x}) = \binom{nk}{n\overline{x}} p^{n\overline{x}} (1-p)^{nk-n\overline{x}}$ for $\overline{x} \in \left\{0, \frac{1}{n}, \frac{2}{n}, ..., k\right\}$ thing ...

Order Statistics

- "resistant statistics" like medians can be cool. can we find its sampl. dist?
- consider sorting n iid data $\{X_1,...,X_n\}$ into an ordered set $\left\{X_{(1)},...,X_{(n)}\right\}$
 - sample range would be $X_{(n)}-X_{(1)},$ sample median $X_{\left(\frac{n+1}{2}\right)}$ (if n odd)

Sufficient Statistics and the Minimum Variance Unbiased Estimator (MVUE)

sufficient statistics

- captures all info about θ contained in a data sample
 - i.e. no other stat will provide additional info about θ
- not unique! remember for binom, \overline{X} and $\sum X_i$ can both be used for inference
 - functions of suff. stats. are suff.
- note: ancillary statistics don't depend on θ .
 - e.g. S^2 depends on σ^2 but NOT μ ; thus, when inferring μ , S^2 is ancillary
- to identify a suff stat:

$$\mathcal{L}(\theta \mid \vec{x}) = q(\theta, \vec{x}) \cdot h(\vec{x})$$

split likelihood fn into all terms with θ and all without. $(h(\vec{x})$ can be 1.)

suff stat will be in $g(\vec{x}, \theta)$.

 \rightarrow Example: Let $\{X_1, \ldots, X_n\}$ be n iid data drawn from the following distribution with parameter θ :

$$f_X(x) = \theta x^{\theta-1}$$

where $x \in [0, 1]$ and $\theta > 0$. What is a sufficient statistic for θ ?

$$\mathcal{L}(\Theta|\vec{X}) = \prod_{i=1}^{n} \Theta \times_{i}^{\Theta^{-1}} = \Theta^{\circ}(\prod_{i=1}^{n} X_{i})^{\Theta^{-1}} \cdot 1 \Rightarrow \bigvee_{i=1}^{n} X_{i} \text{ is the}$$

$$= \bigcup_{i=1}^{n} X_{i} \text{ is the}$$

• what if, eg, joint sufficient statistic: $\sum X_i^2$ and $\sum X_i$? beyond scope of class, but can be used ig.

MVUE

- so far, finding a point estimator is either
 - 1. define ourselves
 - 2. or let MLE find one
- MLE review:
 - ► consistent i.e. asymptotically unbiased!
 - \triangleright room for improvement? what about ALWAYS unbiased (all n) and small variance?
- MVUE summary
 - ► MVUE has smallest variance of all unbiased estimators.
 - i.e. if MVUE doesn't achieve CRLB, no unbiased estimator of θ will.
 - ► but it doesn't always exist + MLE easier to derive/simulate
 - and it does NOT have invariance property $\left(\widehat{g(\theta)}_{\text{MVUE}} \neq g(\hat{\theta}_{\text{MVUE}})\right)$
- to derive MVUE:
 - 1. find a sufficient statistic U for θ
 - (technically should show U is *minimally* suff. and *complete*. we can just assume these true in this course, though.)
 - 2. derive $E[Y] = g(\theta)$ and "fix" s.t. $E[h(Y)] = \theta$ where h(Y) becomes the MVUE (???)
 - e.g. MVUE for μ in a normal?. we know $\sum X_i$ suff, so

$$\begin{split} E\left[\sum_{i=1}^{n}X_{i}\right] &= \sum_{i=1}^{n}E[X_{i}] = \sum_{i=1}^{n}\mu = n\mu \\ \Longrightarrow E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] &= \mu \\ \Longrightarrow \hat{\mu}_{\text{MVUE}} &= \overline{X} \end{split}$$