

LO Ousmane, Ingénieur Machine Learning

01

INTRODUCTION

02

ANALYSES DESCRIPTIVES

03

MACHINE LEARNING ET MODELISATION 04

CONCLUSION

01

INTRODUCTION

Problématique, hypothèses et pistes d'exploration

Contexte de l'étude

Objectif: Être une ville neutre en émissions de gaz à effets de serre pour 2050

Données: Deux jeux de données sur les bâtiments non-résidentiels (2016)

Prédire la consommation d'énergie

 Prédire les émissions de CO2 Intérêt de l'utilisation du score ENERGY STAR

02

ANALYSES EXPLORATOIRES

Analyses statistiques descriptives univariées et bivariées

Analyses univariées

Répartition des types bâtiments

Concentration des bâtiments non résidentiels dans le centre-ville.

WordCloud de LargestPropertyUseType

cartographie des bâtiments

Analyses bivariées

Analyses bivariées

Consommation d'énergie

Var.	Coef. de corrélation
PropertyGFATotal	0.57
NumberofFloors	0.37
NumberofBuildings	0.25

Emissions de CO₂

Var.	Coef. de corrélation
PropertyGFATotal	0.41
NumberofFloors	0.16
NumberofBuildings	0.29

03

MODELISATION

Recherche d'un algorithme de régression

Méthodologie

- Pré-traitement des données :
 - Création de deux jeux de données
 - Séparation des variables catégorielles et numériques
 - Variables catégorielles : Imputer → Mode OneHotEncoding
 - Variables numériques : *Imputer* → Médiane *StandardScaler*
 - Création d'un pipeline de pré-traitement
- Tests de plusieurs modèles de machine learning :
 - Linéaire (ElasticNet. SVR) et ensembliste (Random Forest, XGBoost, Adaboost, etc.)
- Recherche des hyperparamètres les plus optimisés :
 - Grille de recherche + Validation croisée
- Evaluation du modèle :
 - MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), RMPSE (% de RMSE), MAPE (Mean Absolute Percentage Error) & R² (Coefficient de détermination)
- Enregistrement dans un pipeline :
 - Pré-traitement + modèle avec hyperparamètres

Prédiction de la consommation d'énergie

Test de plusieurs modèles

- Test de plusieurs modèles
- Avec des hyperparametres
- Utilisation de Train_Score, CV_Score et le Time_train pour choisir un modèle

Modèle	Train_Score	cv_scores_mean_	Time_train
Dummyregressor	0.000000	-0.005198	0.001828
ElasticNet	0.586888	0.493729	62.300573
SVR	0.823467	0.629986	104.970582
Randomforest	0.955960	0.667582	165.141325
Xgboost	0.814295	0.679769	61.886445

- Problème de régression non linéaire
- Modèle Choisit
- > XGBOOST

Algorithme final: Sans score Energy Star

Hyperparamètres de l'algorithme

Feature	importance	S
---------	------------	---

Hyperparamètres	Valeurs
max_features	sqrt
min_samples_leaf	1
n_estimators	500

Features	Score
Social/Meeting Hall	0.17
Supermaker/Grocery Store	0.056
Residential Care Facility	0.056
Library	0.047
Prison/incarceration	0.041

Evaluation du modèle

Analyse des résidus

Evaluation des performances

MAE: 0.29

• **MSE**: 0.18 (log²)

• **RMSE**: 0.42 (log)

• **RMPSE**: 0.10%

• **MAPE**: 0.02%

• **R**²: 0.77

Evaluation du modèle : Avec score Energy Star

Analyse des résidus

Evaluation des performances

Matrice Sane Engravetar Score Avec Engravetar Score

Metrics	Sans_Ene	rgystar_score	Avec_Energystar_score
MAE		0.457619	0.396760
MSE		0.377220	0.302177
RMSE		0.614183	0.549706
RMPSE		0.117217	0.117600
MAPE		0.031766	0.027462
R2		0.771503	0.816960

Ajout du score Energy Star :

Amélioration de certaines performances

Prédiction des émissions de CO2:

- 1) Sans score Energy Star
- 2) Avec score Energy Star

Sans score Energy Star

- Test de plusieurs modèles
- Avec des hyperparametres
- Utilisation de Train_Score, CV_Score et le Time_train pour choisir un modèle

Modèle	Train_Score	cv_scores_mean_	Time_train
Dummyregressor	0.000000	-0.015829	0.004520
ElasticNet	0.369774	-0.012258	105.306370
SVR	0.033236	0.045810	128.915853
Randomforest	0.947423	0.654253	180.560164
Xgboost	0.965571	0.396291	58.278413

- Problème de régression non linéaire
- · Choix d'un modèle ensembliste
- RandomForest

Algorithme final: Sans score Energy Star

Feature importances

Features	Score
Courthouse	0.207
Urgence Care/Clinic/Other outpatient	0.200
Strip Mall	0.190
Worship Facility	0.141
Social/Meeting Hall	0.089
Supermarket/Grocery store	0.073

Evaluation du modèle : Sans score Energy Star

Analyse des résidus

Evaluation des performances

MAE: 94.32

• **MSE**: 39523.70

• **RMSE**: 198.81

• **RMPSE**: 85.28%

MAPE: 3.01%

 $R^2: 0.74$

Avec score Energy Star

- Test de plusieurs modèles
- Avec des hyperparametres
- Utilisation de Train_Score, CV_Score, RMSE et le Time_train pour choisir un modèle

	Modèle	Train_Score	cv_scores_mean_	Time_train
0	Dummyregressor	0.000000	-0.015829	0.001609
1	ElasticNet	0.687900	0.096731	102.289907
2	SVR	0.034863	0.051037	119.195480
3	Randomforest	0.958341	0.644010	195.568701
4	Xgboost	0.969908	0.415196	63.506404

- Problème de régression non linéaire
- Choix d'un modèle ensembliste
- RandomForest

Evaluation du modèle : Avec score Energy Star

Analyse des résidus

Evaluation des performances

Metrics Sans_Energystar_Score Avec_EnergyStar_Score

MAE	94.320177	90.822672
MSE	39523.696470	39396.408882
RMSE	198.805675	198.485286
RMPSE	85.282324	81.072727
MAPE	3.015336	2.826937
R2	0.742367	0.743197

Ajout du score Energy Star :

Amélioration de certaines performances

04 CONCLUSION

Choix du modèle à

déployer

Concernant la consommation d'énergie :

- Informations suffisantes pour la mise en place d'une prédiction
- Modèle avec de bonnes performances (77% de variance expliquée, 0.1% d'erreur dans les prédictions)

Concernant les émissions de CO2 :

- Ajout du score Energy Star : Amélioration de certaines performances
- Beaucoup de valeurs manquantes → Imputation par la médiane
- Peu d'intérêt d'utiliser le score Energy Star
- Performances moins bonnes que pour la consommation d'énergie
- Manque d'informations pour construire ce modèle ?

Merci pour votre attention!