

Analysis of transfer learning to transfer process knowledge when processing different materials

Weibo Zhao, B. Sc.

Supervisor: Yannik Lockner, M. Sc.

13.10.2020

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

Motivation of applying transfer learning in injection molding Conventional deep learning approach

Objective

To analyse the possibility to transfer knowledge between processes where different materials are being utilized.

Motivation of applying transfer learning in injection molding Conventional deep learning approach

Objective

To analyse the possibility to transfer knowledge between processes where different materials are being utilized.

Machine settings

Material properties

Deep Neural Network(DNN)

Motivation of applying transfer learning in injection molding Conventional deep learning approach

Objective

To analyse the possibility to transfer knowledge between processes where different materials are being utilized.

Challenges

- Require large amount of process data
- High training effort of the fitting models in the changes of production process

Conducting experiments with a new material

Source dataset

Large process databank of multiple materials

Target dataset

Several data points of a new material

Conducting experiments with a new material

Source dataset

Large process databank of multiple materials

- Related but different
- Same feature space
- Different distribution

Target dataset

Several data points of a new material

Comparison of conventional DNN and DNN with transfer learning

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

Material series, polymer classes, manufacturers and amount

APEC

Polycarbonate Company: Covestro Amount: 13

PLEXIGLAS

Polymethylmethacrylat Company: Evonik Amount: 10

03

ULTRAMID

Polyamid Company: BASF Amount: 9

VALOX

Polybutylenterephthalat Company: Sabic Amount: 4

ULTEM

Polyetherimid Company: Sabic Amount: 6

SABIC PP

Polypropylene Company: Sabic Amount: 17

[URL01]

Input and output variables of DNN model based on injection moulding simulation

60 materials, 77 experiments for each one

6 machine settings:

Holding pressure. [bar]

Holding pressure time [s]

Melt temperature [°C]

Cavity wall temperature [°C]

Cooling time

Injection flow rate [cm³/s]

[s]

220 material properties:

Solid density [kg/m³]

Melt density [kg/m³]

• Thermal conductivity $[W/m \cdot {}^{\circ}C]$

.

5 quality values:

Part weight [g]

Length [mm]

Height [mm]

Width [mm]

Angle [°]

Toy building block with 4×2 studs

[Hei17]

Input and output variables of DNN model based on injection moulding simulation

60 materials, 77 experiments for each one

6 machine settings:

- Holding pressure. [bar]
- Holding pressure time [s]
- Melt temperature [°C]
- Cavity wall temperature [°C]
- Cooling time
- Injection flow rate [cm³/s]

[s]

220 material properties:

- Solid density [kg/m³]
- Melt density [kg/m³]
- Thermal conductivity $[W/m \cdot {}^{\circ}C]$

.

Some features are not related

5 quality values:

- Part weight [g]
- Length [mm]
- Height [mm]
- Width [mm]
- Angle [°]

Toy building block with 4×2 studs

[Hei17]

Input and output variables of DNN model based on injection moulding simulation

60 materials, 77 experiments for each one

6 machine settings:

- Holding pressure. [bar]
- Holding pressure time [s]
- Melt temperature [°C]
- Cavity wall temperature [°C]
- Cooling time
- Injection flow rate [cm³/s]

[S]

220 material properties:

- Solid density [kg/m³]
- Melt density [kg/m³]
- Thermal conductivity [W/m ⋅ °C]

Some features are not related

Part weight [g]

5 quality values:

- Length [mm]
- Height [mm]
- Width [mm]
- · Angle [°]

Toy building block with 4×2 studs

Apply feature ranking method

[Hei17]

Feature importance score ranking for prediction of part weight

Feature importance score ranking for prediction of part weight

Feature importance score ranking for prediction of part weight

Analysis of 5 important influence factors

Summary of the dataset

6 machine settings

44 material properties

Deep Neural Network(DNN)

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

Structure of deep neural network (DNN)

Structure of DNN with transfer learning (DNN-TL)

- Base DNN: without transfer and ensemble
- DNN-EL: with ensemble learning
- DNN-TL: with transfer learning
- DNN-ETL: with both transfer and ensemble

- Better performance
- High standard deviation

- Best performance 0.9207
- Low standard deviation

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer learning performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

 To simplify the model, we don't consider ensemble learning but mainly focus on transfer learning, namely DNN-TL model

Experiment setup: scenario 2

[YCB+14]

Experiment setup: scenario 3

[YCB+14]

Experiment setup: scenario 3

[YCB+14]

Experiment setup overview

Improvement percentage of R² value due to transfer learning

Improvement percentage of R² value due to transfer learning

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer learning performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

Application in finding best machine settings

Trial of machine settings based on:

- Recommendations of material supplier
- Experience, intuition of the operator

[Hei17]

Part weight prediction of random machine settings combination

Proposed DNN-ETL model

Prediction result of 10000 samples

Output of process condition recommender system

Example experiment

Current machine setting parameters

No.	Melt	Cavity	Press	Cool	Flow	Hold
	temp.	temp.	time	time	rate	press
1	245	48	1	1.5	43	490

Output of process condition recommender system

Example experiment

Current machine setting parameters

No.	Melt	Cavity	Press	Cool	Flow	Hold
	temp.	temp.	time	time	rate	press
1	245	48	1	1.5	43	490

Final recommend conditions

No.	Melt	Cavity temp.	Press time	Cool time	Flow rate	Hold press
1	246	67	0.2	1.8	32	480
2	249	64	0.2	2	49	610
_				_	. •	
3	245	42	0.7	2.4	44	480
•	•	•	•	•	:	•
10	245	55	1.1	1.9	53	600

Outline

- Motivation of applying transfer learning
- Dataset description and feature ranking
- Construction of DNN-ETL model
- Transfer learning performance analysis
- Application scenario of DNN-ETL
- Conclusion and outlook

[URL00]

Conclusion and outlook

Develop DNN-ETL model

R² test score is 0.9207 and it surpasses the state-of-the-art performance of 0.90 [TGH+18]

Analyse the improvement due to transfer learning

An average improvement of 9.36 % of R² value can be achieved compared to DNN without transfer learning.

Apply feature ranking method

Five most important features: solid density, holding pressure, thermal conductivity, no flow temperature and ejection temperature

Conclusion and outlook

Develop DNN-ETL model

R² test score is 0.9207 and it surpasses the state-of-the-art performance of 0.90 [TGH+18]

Analyse the improvement due to transfer learning

An average improvement of 9.36 % of R² value can be achieved compared to DNN without transfer learning.

Apply feature ranking method

Five most important features: solid density, holding pressure, thermal conductivity, no flow temperature and ejection temperature

Two datasets with same feature space

"when to transfer"

"what to transfer"

Conclusion and outlook

Develop DNN-ETL model

R² test score is 0.9207 and it surpasses the state-of-the-art performance of 0.90 [TGH+18]

Analyse the improvement due to transfer learning

An average improvement of 9.36 % of R² value can be achieved compared to DNN without transfer learning.

Apply feature ranking method

Five most important features: solid density, holding pressure, thermal conductivity, no flow temperature and ejection temperature

Two datasets with same feature space

 Test whether the marginal distributions of two domains are similar

Das Institut für Kunststoffverarbeitung Nachwuchs. Netzwerk. Innovationen.

Thank you for your attention.

I am happy to answer your questions.

Weibo Zhao

Telefon: +49 1637640827

E-Mail: weibo.zhao@rwth-aachen.de

References

- [Hei17]: Heinisch, J.: From simulation to injection moulding machine Optimized process setup based on machine learning citation. *International Mold Conference Bucheon*, 2017
- [OBL14]: OQUAB, M.; BOTTOU, L.; LAPTEV, I.; SIVIC, J.: Learning and transferring mid-level image representations using convolutional neural networks. *Proceedings of* the IEEE conference on computer vision and pattern recognition, 1717-1724, 2014
- [TGH+18]: TERCAN, H.; GUAJARDO, A.; HEINISCH, J.; THIELE, T., HOPMANN, C.; MEISEN, T.: Transfer-Learning: Bridging the Gap Between Real and Simulation Data for Machine Learning in Injection Moulding, *Proc. CIRP*,72, 185–190, 2018
- [TS09]: TORREY, L.; SHAVLIK, J.: Transfer Learning. Handbook of Research on Machine Learning Applications. IGI Global, 2009
- [URL00]: N.N.: Injection moulding machine,
 https://www.seasongroup.com/manufacturing-services/plastic-injection-molding/
- [URL01]: N.N.: PLEXIGLAS Zuschnitt nach Maß. URL: https://kunststoffplattenonline.de/plexiglas/, 24.09.2020
- [YCB+14]: YOSINSKI, J.; CLUNE, J.; BENGIO, Y.; LIPSON, H.: How transferable are features in deep neural networks? Conference of Advances in Neural Information Processing Systems. 3320-3328, 2014

Data visualization of the part weight of the six material classes

Material class [-]

Different part weight distribution of six material classes

Qualitative depiction of 2ⁿ-Experiment (n=3) plan including star and center point

 77 times of Machine settings combination

Central composite design (CCD) of experiments:

- Full-factorial experimental design
 (64-point cube) 2⁶
- Star points outside the cube (12 points)
- Central point

Feature ranking by ensemble learning method

Splitting source dataset into 5 folds according to material classes

Possible advantages due to transfer learning

Possible advantages due to transfer learning

Difference of frozen weights and fine tuning

Generation of input features

Thesis figures

Mögliche Vorteile durch Transferlernen

Verbesserung des R2-Werts durch Transferlernen bei Vorhandensein weniger Daten der APEC-Materialdomäne

Trainingsdatenanteil am Gesamtdatensatz [%]

Possible advantages due to transfer learning

Improvement of the R² value by transfer learning in presence of few data from the APEC material domain

Research methodology approach

Depiction of an injection moulding machine

Influence factors of product quality in injection moulding

[STT+08]

Process setup by means of machine learning

Design of experiments

Injection moulding simulation

Model construction

Optimisation

A practical view of a machine learning system

Methods of machine learning

[Mit97]

Model performance influenced by number of training epohcs

[GBC16]

Comparison of underfitting, appropriate fitting and overfitting

[FW95]

Cross validation

[JH15]

Hyperparameter tuning

[BB12]

Different concepts of single task learning and multitask learning

Single task learning

Multitask learning

One perceptron of the layer l

[JZL18]

Stucture of deep neural network (DNN)

Difference between momentum update and Nesterov momentum update

Momentum update

Nesterov momentum update

[SMD13]

Fundamental approach of transfer learning

[OBL14]

Categorization of transfer learning approaches

Distinction between transfer learning and multi-task learning

[TS09]

Component dimensions of the 4×2 toy building block

Qualitative depiction of 2ⁿ-Experiment (n=3) plan including star and center point

Data visualization of the part weight of the six material classes

Material class [-]

Feature importance score ranking for prediction of part weight

Structure of the deep neural network with transfer learning

Prediction result of the base model

Comparison of single task, multitask and ensemble learning

Splitting source task into 5 folds for pre-training DNN models

Model structure of transfer learning with ensemble learning

Model comparison of R² value

Overview of the experimental treatments and controls

Difference of AnB and AnB+ transfer learning model

Effect of the number of transferred layers on transfer learning

Effect of the training dataset size on transfer learning

Different part weight distribution of six material classes

Effect of the number of source datasets on transfer learning

