Linear Algebra I Exam Solution 2007 - F. J. Wright Note Title 03/01/2007

AB does not exist.

$$BA = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 2c \\ y \end{pmatrix} = \begin{pmatrix} 2c + 3y \\ 2c + 4y \end{pmatrix}$$

$$A^{T}C = (3c y) (1 3 5)$$

$$A^{TC} = (xy)(135)$$

= (x+2y, 3x+4y, 5x+6y)

$$B^{T}C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 5 & 11 & 17 \\ 11 & 25 & 39 \end{pmatrix}$$
 CB^{T} does not exist

A2 By Laplace escausion about the middle column,
$$|A| = -2(1-2) = 2$$
.

The matrix of minors of A is (-2 0 2).

-4 -1 2
0 -1 0

Hence
$$A^{-1} = 1$$
 $\begin{pmatrix} -2 & 4 & 0 \\ \hline 2 & 0 & -1 & 1 \\ \hline 2 & -2 & 0 \end{pmatrix}$

Check:
$$A^{T}A = 1 \begin{pmatrix} -2 & 4 & 0 \\ 0 & -1 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \\ 2 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

2/		
AЗ	The firsts row of A is the sum of the letwo, so the rank of A is less than 3. It two rows are clearly linearly moleperal since none is a scalar multiple of ano Hence rank (A) = 2.	ast Any lens ther!
	The vector oc is 3-dimensional, so the solution space of Aoc=0 has dimension $3-2=1$.	
	The augmented matrix $(A, b) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	
	It is still the case that the first now sum of the last two but any two re are thinearly independents, as rank (A,	6) = 2
	Since rank (A) = rank (A, S), the equal $Ax = b$ has a solution.	
A+(a)	$R^{3} = \left\{ \left(x, y, z \right) \mid x, y, z \in \mathbb{R} \right\}$ $\left(x, y, z \right) + \left(x, y, z' \right) = \left(x, x, y + y', z + z' \right)$ $a\left(x, y, z \right) = \left(x, y, z' \right) = \left(x, y, z' \right)$ $a\left(x, y, z \right) = \left(x, y, z' \right)$	3
	OEU and u+veu Vyveu and kueu Vkelk, ueu.	3
	$\left\{ \left(x, y, z \right) \in \mathbb{R}^3 \mid x + y + z = 0 \right\}$	(1)

```
A5(a) \( \frac{1}{2} \) \( k_1 \nabla_1 \), \( k_1 \in | \k_1 \) \( k_2 \in | \k_1 \)
   (b) SCV is a spanning set for V if every vector in V is a linear combination of vectors in S.
  (c) Suppose

(2c, y, z) = a(1, 2, 3) + b(2, 3, 1) + c(3, 1, 2) + d(1, 1, 1).

Then 3c = a + 2b + 3c + d(1)
                  y = 2a + 3b + c + d
2 = 3a + b + 2c + d
       Eliminate a: y-20c = -b-5c-d (2)
                          2-30c=-56-7c-2d
       Eliminate 6: (z-3x)-5(y-2x)=18c +3d
      \Rightarrow 18c = 7 > c - 5y + z - 3d
From (2) 18b = -5(18c) - 18d - 18(y - 2>c)
= -35 > c + 25y - 5z + 15d - 18d - 18y + 36x
= -35 > c + 25y - 5z + 15d - 18d - 18y + 36x
         = x + 7y - 5z - 3d
       From (1), 18a = 18sc - 2 (186) - 3 (18c) - 18d
         = 1820 - 200 -14y +10z +6d
                  - 21x +15y-3z+9d-18d
         =-5x + y + 7z^{0} - 3d
       Hence, for any values of sc, y, z and d, q, b, c can be found, so any (sc, y, z) & R3 is a linear combination of the vectors in the
```

4	
A6(a)	S is linearly dependent if $\sum k, v = 0$ $v \in S$, has a solution for the $k \in K$ other than $k = 0$ $\forall i$
	Suppose S is linearly dependents and $k_i \neq 0$. Then $v_i = 1$ $\sum_{i \neq j} k_i v_i$.
	Suppose $v = \sum_{i \neq j} k_i v_i$. Then $\sum_i k_i v_i = 0$. Where $k_i = -1$.
(८)	(1,2,3) + (2,3,1) + (3,1,2) = (6,6,6) = 6(1,1,1) i.e. (1,1,1) is a linear combination of the other vectors in the set, so by parts (6) the set is linearly dependent.
	$x(u+v) = x(u) + x(v) + u, v \in U$ and $x(ku) = kx(w) + u \in U, k \in K$.
	$\beta x : U \rightarrow T$, $(\beta x)(u) = \beta (x(u)) \forall u \in U$ provided $V = S$
(c)	$(\beta \times) (u + v) = \beta (x (u + v))$ $= \beta (x (u)) + \beta (x (v)) $ by linearity of β $= \beta (x (u)) + \beta (x (v)) $ by linearity of β $= \beta (x (u)) + \beta (x (v)) $ by linearity of β $= \beta (x (u)) $ by

AP (a)
$$\langle 2c, y \rangle = \sum_{i=1}^{3} \times_{i} y_{i}$$
 $\|2c\| = 1/\langle 2c, 2c \rangle \text{ or } / \sum_{i=1}^{3} \times_{i}^{2}$

(b) $\{x_{i}\}$ is an orthonormal set of vectors

if $\langle x_{i}, x_{i} \rangle = \{0\}$ if $y_{i} \neq y_{i}$ if $y_{i} \neq y_{i}$

(c) $(x_{i}, y_{i}, z_{i}) = \{0\}$ if $y_{i} \neq y_{i}$ if $y_{i} \neq y_{i}$

(d) $(x_{i}, y_{i}, z_{i}) = \{0\}$ if $y_{i} \neq y_{i} \neq y_{i}$

(e) $(x_{i}, y_{i}, z_{i}) = \{0\}$ if $y_{i} \neq y_{i} \neq y_{i}$

So a choice for $y_{i} = \{0\}$ is and $\{1, -1, 0\}$ multiplied to $\{1, -1, 0\}$ if $\{1, -1, 0\}$ is and $\{1, -1, 0\}$ multiplied to $\{1, -1, 0\}$ in $\{1, -1, 0\}$ is $\{1, -1, -2\}$.

Normalizing $y_{i} = y_{i}$ is $\{1, -1, 0\}$, $\{1, -1, 0\}$ if $\{1,$

(d) $\ker(x) = \{(x, y, z) \mid x \in y = 0, y - z = 0, z + x = 0\}$ The constraints imply y = -x, z = y. Hence $\ker(x) = \{(x, -x, -x) \mid x \in \mathbb{R} \}$ so a basis set for $\ker(x)$ is $\{(1, -1, -1)\}$

 $\lim_{x \to \infty} (x) = \{ (x + y, y - z, z + z) \mid x \in \mathbb{R} \}$ $= \{ x \in (1, 0, 1) + y \in (1, 1, 0) + z \in (0, -1, 1) \mid x \in \mathbb{R} \}$ $= \{ (1, 0, 1), (1, 1, 0), (0, -1, 1) \}.$ Hence $\{ (1, 0, 1), (1, 1, 0), (0, 1, 1) \}.$ Hence

Vectors in ker(α) n im(α) must have the form a(1,-1,-1) = b(1,0,1) + c(1,1,0), $a,b,c \in \mathbb{R}$ Hence a = b + c $\Rightarrow a = b = c = 0$ -a = b

Hence ker (x) n in (x) = {0} and ker (x) + in (x) is a direct sum.

 $ker(x) \oplus im(x) = ((1,-1,-1), (1,0,1), (1,1,0))$ (1,-1,-1) + (1,0,1) + (1,1,0) = 3(1,0,0), Hence $ker(x) \oplus im(x) = ((1,0,0), (1,0,1), (1,1,0))$ = ((1,0,0), (0,1,0), (0,0,1))

Actematurely, show that {(1,-1,-1), (1,0,1), (1,1,0)} spand R3

```
BZ(a) If \propto (u_i) = \sum_{i=1}^{n} a_i v_i then A is the
                         rectangular away of coefficients with a: Elk in row i and column j. (2)
           (b) 8(u_1) = \beta(x(u_1)) = \beta(x_1 + 2x_2 + x_3)
= \beta(x_1) + 2\beta(x_2) + \beta(x_3)
= (\omega_1 + 2\omega_2) + 2(\omega_1 - \omega_2) + (-\omega_1 + \omega_2)

\begin{aligned}
&= 2\omega + \omega \\
&= (\omega_1 + 2\omega_2) - (-\omega_1 + \omega_2) \\
&= (\omega_1 + 2\omega_2) + (\omega_1 - \omega_2) - (-\omega_1 + \omega_2) \\
&= (\omega_1 + 2\omega_2) + (\omega_1 - \omega_2) - (-\omega_1 + \omega_2) \\
&= (\omega_1 + 2\omega_2) + (\omega_2 - \omega_2) - (-\omega_1 + \omega_2)
\end{aligned}

            (e) A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & -4 \end{pmatrix}.
           (d) C = BA, the product of the matrices B \lambda A.

BA = (1 | 1 | -1)(1 | 1 | -1) = (2 | 2 | 1) = C.

(2 | -1 | 1)(2 | 0 | 1) = (3)
         (e) u = xcu_1 + yu_2 + zu_3

Y(u) = xY(u_1) + yY(u_2) + zY(u_3)

= x(2w_1 + w_2) + y(2w_1 + w_2) + z(w_1 - 4w_2)

= (2x + 2y + z)w_1 + (xc + y - 4z)w_2

Thus Y(xc, y, z) = (2x + 2y + z, x + y - 4z) 3

or C(x) = (2z_1) + (xc_1) = (2x_1 + 2y_2 + z)

C(x) = (2z_1 + 2y_2 + z)

C(x) = (2z_1 + 2y_2 + z)

C(x) = (2z_1 + 2y_2 + z)

C(x) = (2x_1 + 2y_2 + z)
```


10/	
•	
B3 (a)	A bases set is a linearly molependents
	The dimension is the number of elements
	A basis set is a linearly independent Spanning set. The dimensions is the number of elements in a basis set.
(6)	The row rank is the dimension of the vector space spanned by the rows as vectors.
(c)	(i) Interchange two rows.
	(ii) Add a multiple of one now to another now. (iii) Multiply a now by a non-zero scalar.
(d)	(i) The order of the vectors in a spanning set is not significant.
	(ii) Let {v.} be the set of row vectors and lets k. be scalars. Suppose kv. is added to v. where kis a scalar. The linear combination
	v. where kis a scalar The linear
	combination
	k v + k. (v. + kv.) + + kv. + is the same as
	be the same as
	k v + + k, v + + (k.k+k.) v. + Hence any linear combination of the new vectors is also a linear combination of the sld ones, so both sets span the same space.
	vectors is also a linear combination of the
	sid mes, so som sets span the same space.
	(iii) The linear combination k: (kv.)
	a vector by a non-zero scalar can be
	compensated by adjusting the coefficient and
	so does not change the space spanned. (2)

11/

(e) Put the vectors into a matrix and use elementary rour operations to reduce its to echelon form. The resulting nonzero vectors form a basis for the row space.

l	2	4	ι .	3	\longrightarrow	Ī	2	4	l .	3 ~	7
2	-	3	2	0	R-7R -2R	•		•		-6	
H				-4	$R_2 \rightarrow R_2 - 2R_1$ $R_3 \rightarrow R_3 - 2R_1$	1		73			
i I				3	Ry > Ry + R	1				6	
3	ſ	7	6	3	$R_s \rightarrow R_s - 3R$					-6_	
L				لم	13 13					~	

There is no need to take this any further. It is now obvious the R4 = -R2 and R5 = R2 and That the first three rows are linearly independents. Hence a suitable basis selis

 $\{(1,2,4,1,3),(0,-5,-5,3,-6),(0,1,-13,-2,-10)\}$

6

12 B4(a) An orthogonal matrix R satisfied RRT = RTR = I. The standard inner product in Rⁿ is

(x, y) = xty.

Then {Rx, Ry} = (Rx)^T (Ry) = xt^T R^T Ry

= xt^T y = {x, y}. (b) Let A be a real symmetric matrix with eigenvectors x, y and corresponding eigenvalued λ , μ , so Ac=hoc, $Ay=\mu y$ Then $y^TAc=\lambda y^Tc$ and $c^TAy=\mu xy$. Transposing the second equation, using $A^T=A$, and subtracting gives $O=(\lambda-\mu)y^Tc$. Distinct eigenvalues means $\lambda \neq \mu$, hence $y^Tx=0$ and the eigenvectors are orthogonal (c) If an non real symmetric matrix A has n distinct eigenvalues & Then it has n corresponding onthogonal eigenvectors x. Nomalize the eigenvectors and put them is the columns of an n×n matrix R, which is therefore an orthogonal matrix.

A>c = 1>c => AR = RA where A'is a diagonal matrix with 1 in sequence on the principal diagonal. Then

RTAR = A' is diagonal since RT = RT. A is the matrix A under a change of basis corresponding to the orthogonal matrix R.

Hence
$$R = 1$$
 (0 1 -2), $A' = (3 0 0)$
 $\sqrt{15} (0 2 1)$, $A' = (3 0 0)$
 $\sqrt{15} (0 0 0)$

Optional check - no marks:

$$R^{T}AR = \frac{1}{5} \begin{pmatrix} 0 & 0 & \sqrt{5} \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} -4 & 2 & 0 \\ 2 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & -2 \\ 0 & 2 & 1 \\ -2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 75 & 0 & 0 \\ 15 & 0 & 0 \end{pmatrix}$$

$$\frac{1}{5}\begin{pmatrix} 0 & 0 & \sqrt{5} & 0 & 0 & 10 \\ 1 & 2 & 0 & 0 & 0 & -5 \\ -2 & 1 & 0 & 3 & 5 & 0 & 0 \end{pmatrix}$$

$$\frac{1}{5}\begin{pmatrix} 15 & 0 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & -25 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -5 \end{pmatrix}$$