Diophantine Equations and the Euclidean Algorithm

Reading

- Section 5.2
- Section 5.3

Practice Problems

5.2 2-7, 11, 13
Challenge 5.2 (Optional) 14
5.3 1, 2-5, 12, 15
Challenge 5.3 (Optional) 25

Notes

Case of c=gcd

The Euclidean Algorithm allows us to find a solution to the equation

$$ax + by = c$$

where $c=d=\gcd(a,b).$ We can then use this to find a solution for any c divisible by $d=\gcd(a,b).$

Let us take a look at the first few steps in the Euclidean Algorithm:

$$a = q_1 b + r_1$$

$$b = q_2 r_1 + r_2$$

$$r_1 = q_3 r_2 + r_3$$

We will show that all r_1 , r_2 , r_3 are explicit linear combinations of a and b. For r_1 this is clear, as:

$$r_1 = a - q_1 b$$

For r_2 we would use this fact, so we would have:

$$r_2 = b - q_2 r_1 = b - q_2 (a - q_1 b) = (1 + q_1 q_2) b - q_2 a$$

Similarly we can write r_3 as an explicit compination of a and b by using its equation along with the fact that we already have a way to write r_1 and r_2 .

This continues:

In the Euclidean Division algorithm, each remainder r_n is an *explicit* integer linear combination of a and b.

Since the last step is the gcd(a, b), we now have a way of writing gcd(a, b) in an explicit way as an integer linear combination of a and b.

Case of other c's

We already know two things:

- How to find an explicit solution to ax + by = gcd(a, b)
- That the only way that ax + by = c has a solution is if gcd(a, b)|c

We now want to find an explicit solution in the case where gcd(a, b)|c. To do that:

- Write $c = d \gcd(a, b)$, where d is an integer.
- Write $ax + by = \gcd(a, b)$ for some integers x, y.
- Then we have $a(xd) + b(yd) = \gcd(a,b)d = c$ and we have our solution.

So every solution to the $c = \gcd$ case can scale up to a solution of the c case for all those c for which there is a solution in the first place.