2 of 2 DOCUMENTS

COPYRIGHT: (C) 2000, JPO

PATENT ABSTRACTS OF JAPAN

2000339098

GET EXEMPLARY DRAWING

December 8, 2000

STORAGE DOMAIN MANAGEMENT SYSTEM

INVENTOR: PANAS MICHAEL G; MERRELL ALAN R; ALTMAIER JOSEPH; LANE JERRY PARKER; TAYLOR JAMES A; PARKS RONALD L; TAYLOR ALASTAIR; NOLAN SHARI J; NESPOR JEFFERY S; HARRIS GEORGE W JR; RICHARD A RUGUOO JR

APPL-NO: 2000085205 (JP 12085205)

FILED: March 24, 2000

PRIORITY: March 25, 1999, 99 276428, United States of America (US); July 2, 1999, 99 346592, United States of America (US); July 2, 1999, 99 347042, United States of America (US); December 6, 1999, 99 455106, United States of America (US); January 12, 2000, 00 482213, United States of America (US)

ASSIGNEE: DELL USA LP, THE

INT-CL: G06F3/06, (Section G, Class 06, Sub-class F, Group 3, Sub-group 06); G06F12/00, (Section G, Class 06, Sub-class F, Group 12, Sub-group 00); G06F15/16, (Section G, Class 06, Sub-class F, Group 15, Sub-group 16)

ABST:

PROBLEM TO BE SOLVED: To simplify the management of a storage system and also to effectively use both flexibility and capability of a storage area network(SAN) architecture by managing the storage resources in a storage network according to a storage domain.

SOLUTION: A storage server 1200 in a network has the client interfaces 1210-1212 which are connected to the client servers 1201-1203 respectively. The storage interfaces 1213 and 1214 are connected to the storage devices 1205-1207 via the communication channels. These connected interfaces 1213 and 1214 are combined with some storages of the server 1200 and provide the physical storages for a storage domain which are managed in the server 1200. The server 1200 can induce a storage transaction by means of the local configuration data. Thus, the storage management is simplified for the client servers.

LOAD-DATE: July 11, 2001

(8)

<u>Tips</u>

Page 1 of 1

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-339098 (P2000-339098A)

(43)公開日 平成12年12月8日(2000.12.8)

(51) Int.Cl. ⁷		識別記号	FI		テーマコード(参考)
G06F	3/06	301	G06F	3/06	301A
	12/00	5 4 5		12/00	545A
	15/16	6 4 0		15/16	6 4 0 L

審査請求 未請求 請求項の数18 OL (全 38 頁)

(21)出願番号	特顧2000-85205(P2000-85205)	(71)出願人	597001637
			デル・ユーエスエイ・エルピー
(22)出願日	平成12年3月24日(2000.3.24)		DELL USA, L. P.
			アメリカ合衆国テキサス州78682-2244,
(31)優先権主張番号	276428		ラウンド・ロック,ワン・デル・ウェイ
(32)優先日	平成11年3月25日(1999.3.25)		(番地なし)
(33)優先権主張国	米国 (US)	(72)発明者	マイケル・ジー・パナズ
(31)優先権主張番号	3 4 7 0 4 2		アメリカ合衆国、カリフォルニア州
(32)優先日	平成11年7月2日(1999.7.2)		94542、ハイワード、レオナ・ドライブ
(33)優先権主張国	米国 (US)		24567
(31)優先権主張番号	3 4 6 5 9 2	(74)代理人	100058479
(32)優先日	平成11年7月2日(1999.7.2)		弁理士 鈴江 武彦 (外4名)
(33)優先権主張国	米国 (US)		
		İ	最終頁に続く

(54) 【発明の名称】 ストレージドメイン管理システム

(57)【要約】

【課題】SANアーキテクチャのフレキイビリティ及び能力を活用しつつストレージシステムの管理を簡素化するシステムを提供する。

【解決手段】ストレージサーバは複数の通信インターフェースを有する。該インターフェースからなる第一のセットはあらゆる種類のデータユーザへの接続を担い、複数の通信インターフェースからなる第二のセットはストレージドメインで使用されるストレージデバイスプール内の各デバイスへの接続を担う。サーバ内のデータ処理リソースをこれら通信インターフェースに接続し、インターフェース間でデータ転送をする。データ処理リソースは複数のドライバモジュール及びこれらをデータパスに連結するよう構成可能なロジックからなる。構成された各データパスは前記複数のドライバモジュールから選択されたドライバモジュールのセットを含む仮想回路として動作する。

(-/

【特許請求の範囲】

【請求項1】 ストレージトランザクションが行われる クライアントの特定に十分な情報を伝えるそれぞれのストレージチャネルプロトコルを実行する一つ以上のクラ イアントおよび一つ以上のストレージシステムを含み、 ストレージネットワークにおけるストレージドメインを 管理するためのシステムにおいて、

前記一つ以上のクライアントおよび一つ以上のストレージシステムの各々一つと通信媒体を介して接続するために選定され、各種通信プロトコルに従って動作する複数の通信インターフェースと、

前記複数のインターフェースに結合され、前記一つ以上のストレージシステムからストレージロケーションセットを、前記一つ以上のクライアントからの少なくとも1つのクライアントセットのためのストレージドメインとして構成するロジックを含み、および特定されたクライアントに対応してストレージドメイン内でストレージトランザクションのルーティングを行うロジックを含む処理ユニットと、

前記複数の通信インターフェース間のストレージトランザクションを共通のフォーマットに変換し、あるいは該トランザクションから共通のフォーマットを変換によって得るロジックと、

不揮発性キャッシュメモリを含み、前記ストレージドメイン内の通信インターフェース間においてストレージトランザクションを共通フォーマットでルーティングする 冗長リソースと、

前記処理ユニットに接続され、前記ストレージドメインを構成する管理インターフェースと、を具備することを 特徴とするストレージドメイン管理システム。

【請求項2】 前記一つ以上のクライアントは、論理ストレージロケーションを特定するのに十分な情報を伝える各々のストレージチャネルプロトコルを実行し、前記論理ストレージロケーションに対応してストレージドメイン内でストレージトランザクションをルーティングするロジックを具備することを特徴とする請求項1に記載のストレージドメイン管理システム。

【請求項3】 ネットワークにおける1つのストレージロケーションから別のストレージロケーションへのデータセット移動を管理するロジックを具備することを特徴とする請求項1に記載のストレージドメイン管理システム。

【請求項4】 前記インターフェースがネットワーク内 の複数のストレージドメインを構成するためのリソース を具備することを特徴とする請求項1に記載のストレージドメイン管理システム。

【請求項5】 ストレージネットワークにおけるストレージリソースの構成及び管理方法において、

ネットワーク内のクライアントおよびストレージリソー ス間に該ネットワークの中間システムをインストール L.

前記中間システムのロジックを用い、論理ストレージ範囲をネットワーク内のクライアントに割り当て、

前記中間システムのロジックを用い、ネットワーク内の ストレージリソースを論理ストレージ範囲に割り当て、 前記クライアントに割り当てられた論理ストレージ範囲 および前記論理ストレージ範囲に割り当てられたストレ ージリソースに従い、中間デバイスを通じてストレージ トランザクションをルーティングすることを特徴とする 方法。

【請求項6】 ストレージトランザクション通信チャネルをサポートする通信インターフェースと、

前記ストレージトランザクションチャネル上で受け取ったストレージトランザクションを内部フォーマットに変換するロジックと、

内部フォーマットのストレージトランザクションを、前記ストレージサーバとの通信における各々のデータストアとの接続を管理する仮想回路にルーティングするロジックと、を具備することを特徴とするストレージサーバ。

【請求項7】 仮想回路は、内部フォーマットを、対応する一つ以上のデータストアに関する一つ以上の通信プロトコルに変換するロジックを具備することを特徴とする請求項6に記載のストレージサーバ。

【請求項8】 対応する各々のデータソースに関する各々の通信プロトコルは、標準的な「インテリジェント入力/出力」 (I_20) メッセージフォーマットに適合するプロトコルを含むことを特徴とする請求項7に記載のストレージサーバ。

【請求項9】 仮想回路にストレージトランザクションをルーティングする前記ロジックはテーブルを含み、前記テーブルは複数のエントリを有し、前記複数のエントリは前記ストレージ通信チャネルで指定されたアドレス範囲と仮想回路の間の対応を示すことを特徴とする請求項6に記載のストレージサーバ。

【請求項10】 仮想デバイスにストレージトランザクションをルーティングする前記ロジックはテーブルを含み、前記テーブルは複数のエントリを有し、前記複数のエントリは仮想回路と各データソースの間の対応を示すことを特徴とする請求項6に記載のストレージサーバ。 【請求項11】 キャッシュを含み、仮想回路が前記キャッシュと通信することを特徴とする請求項6に記載のストレージサーバ。

【請求項12】 各々のデータソースは不揮発性メモリを有することを特徴とする請求項6に記載のストレージサーバ。

【請求項13】 各々のデータストアはハードディスクアレイを有することを特徴とする請求項6に記載のストレージサーバ。

【請求項14】 コンフィギュレーションデータの入力

【請求項15】 前記ユーザインターフェースはグラフィカルユーザインターフェースからなることを特徴とする請求項14に記載のストレージサーバ。

【請求項16】 前記ユーザインターフェースは、前記 ストレージサーバに接続されたタッチスクリーンからな ることを特徴とする請求項14に記載のストレージサーバ。

【請求項17】 ストレージトランザクションのリクエストを発する少なくとも1つのクライアントシステムと、前記クライアントシステムに入り、及び該クライアントシステムから出る1つのクライアント通信チャネルと、複数のストレージデバイスと、複数のストレージデバイスに入り、及び該ストレージシステムから出る各々の通信チャネルと、を有するストレージネットワーク用サーバにおいて、

バスシステムを含むプロセッサと、

前記バスシステムに接続される前記クライアント通信チャネルへのクライアントインターフェースと、

前記バスシステムに接続される各々の通信チャネルへの 複数のインターフェースと、

前記バスシステムに接続される不揮発性キャッシュメモリと、

前記サーバインターフェース上でストレージトランザクションのリクエストを受け取り、前記リクエストされたストレージトランザクションを前記複数のストレージデバイスに導き、前記ストレージトランザクションにおいて使用するよう前記不揮発性キャッシュメモリを割り当てるように前記プロセッサにより制御されるリソースと、を具備することを特徴とするサーバ。

【請求項18】 前記プロセッサにより制御されるリソースは、ストレージトランザクションのためのアクセス許可を認証しおよび検証するプロセスを含むことを特徴とする請求項17に記載のサーバ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、大容量ストレージシステムの分野、特に、インテリジェントなストレージエリアネットワークのストレージトランザクション管理およびそのシステム構成に関する。

[0002]

【従来の技術】いわゆる大容量記憶(ストレージ)システムに大量のデータを記憶させることは一般的となりつつある。大容量ストレージシステムは、通常、データネットワーク上のファイルサーバに連結されるストレージデバイスを含む。ネットワーク内のユーザはファイルサーバと通信してデータにアクセスする。ファイルサーバはデータチャネルを通じて特定のストレージデバイスに接続されているのが一般的であり、データチャネルには

普通、ストレージトランザクション管理用に設計された ポイントツーポイント通信プロトコルが用いられる。

【0003】記憶量と通信ネットワーク内のファイルサーバ数の増加に伴い、ストレージエリアネットワーク(SAN)の概念が提唱されてきた。ストレージエリアネットワークは、ストレージトランザクション用に最適化された通信ネットワーク内の多数の大容量ストレージシステムをつなぎ合わせたもので、例えば、光ファイバチャネルアービトレーティドループ(FC-AL)ネットワークはSANとして実装される。SANは、ストレージシステムのユーザとSAN上にある特定のストレージシステムとの間で行われるいくつものポイントツーポイント通信セッションをサポートする。

【0004】ストレージシステムのファイルサーバおよび他のユーザは、特定の記録媒体と通信するよう構成されている。ストレージシステムを拡張したり、あるいはシステム内で媒体を交換すると、ファイルサーバおよび他のユーザにおいて再度構成が必要となる。また、いわゆるデータ移動作業にデータを1つの装置から別の装置に移す必要が生じると、移動プロセス中はそのデータへのアクセスをブロックしなければならないことが多い。また移動終了後は、ユーザシステムを再構成してからでなければ、新しいシステムからそのデータを利用することができない。

【0005】概して、ストレージシステムとネットワークが複雑化してその規模が大きくなるにつれ、データのユーザ構成の管理、およびストレージシステム自体の構成管理についての問題が倍増する。

[0006]

【発明が解決しようとする課題】本発明は上記事情を考慮してなされたものであり、ストレージシステムの管理を簡素化でき、その一方でSANアーキテクチャのフレキイビリティ及び能力を有効利用できるシステムおよび方法を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明はストレージドメイン管理のためのシステム、方法、およびサーバである。ここでストレージドメイン管理は、既存のストレージエリアネットワークハードウェアのインフラストラクチャ最上位に位置する中央集中的で安全な管理の能力を備えたものをいい、本発明は異機種混在型環境に適した高性能で信頼性の高い上級のストレージ管理を提供する。ストレージドメイン管理は、堅牢なストレージエリアネットワークファブリックの中枢として、新旧の機器を統合し、サーバおよびストレージリソースをネットワークをストレージ管理作業から解放する。また、ホストとしてネットワークベースのアプリケーションを処理し、ストレージエリアネットワークの全コンポーネントを通じてこれらのアプリケーションを活用できるようにする。ストレージドメイン管理によれば、従来のシステ

ムやテクニックではなし得なかった異機種混在型のストレージエリアネットワーク環境の構築、最適化が可能となる。

【0008】本発明は、ストレージドメインに従ってス トレージネットワーク内のストレージリソースを管理す るためのシステムを提供する。このシステムには、通信 媒体を通じてクライアントとストレージシステムおよび ストレージネットワークに接続される複数の通信インタ ーフェースが設置されている。これら複数の通信インタ ーフェースには処理ユニットが接続され、この処理ユニ ットが有するロジックにより、ストレージネットワーク 内にある一つ以上のクライアントのうち少なくとも1つ のクライアントセットに対応するストレージドメインと して、同ネットワーク内の一つ以上のストレージシステ ムから1つのストレージロケーションセットが構成され る。このシステムは、複数の通信インターフェースを通 じたマルチプロトコルサポート、そのプロトコル内のト ランザクション識別子に反応してストレージドメイン内 でストレージトランザクションのルーティングを行うロ ジック、ストレージドメインを構成する管理インターフ ェース、複数の通信インターフェースにわたって実行さ れるストレージトランザクションを複数の通信インター フェースにあるシステム内でルーティングを行うための 共通フォーマットに変換し、およびこの共通フォーマッ トから別のものに変えるためのロジック、ストレージト ランザクションのデータサブジェクトを捕獲するリソー ス、ネットワーク内のあるストレージロケーションから 別のストレージロケーションへのデータ移動を管理する ロジックからなる、変形可能な種々の組み合わせ要素を

【0009】一実施の形態において、本発明のシステム はストレージエリアネットワーク内の中間デバイスとし て、ファイルサーバ等のクライアントプロセッサと、ク ライアント用ストレージドメイン内のストレージリソー スとして使用されるストレージシステムとの間に設置さ れる。ストレージトランザクションは中間デバイスが受 け取り、中間デバイスの構成ロジックによって定められ るストレージドメインの構成に応じて管理される。中間 デバイスは、ストレージエリアネッワーク内の管理サイ トを提供し、これによってフレキシブルな構成、リダン ダンシー、フェイルオーバ、データ移動、捕獲、複数プ ロトコルをサポートできる。さらに、一実施形態におけ る中間デバイスはレガシーシステムエミュレーションを 実行し、ストレージドメインにはクライアント用のレガ シーストレージデバイスが含まれるため、クライアント の再構成が不要となる。

【0010】ストレージドメインは、ネットワーク内のクライアントに論理ストレージ範囲を割り当て、ネットワーク内のストレージリソースをクライアントの論理ストレージ範囲にマッピングすることによって管理され

る。論理ストレージ範囲のクライアントへの割り当ては、中間システムあるいは、ネットワーク内のストレージリソースのクライアントから論理的に独立した、あるいは孤立したその他システムの中でクライアントに割り当てられた論理ストレージ範囲をマッピングすることによって完了する。このように、ストレージドメインマネジャを通じてアクセス可能なストレージリソースのストレージドメインは、ストレージドメインマネジャを中間デバイスとして使うことによって管理される。

【0011】本発明によるストレージサーバは、処理ユ ニット、当該処理ユニットに接続されたバスシステム、 通信インターフェース、当該処理ユニットに接続された オペレーティングシステムからなる。バスシステムには スロットがあり、これはこのスロットに接続されたサー バシャーシ上あるいは通信チャネル上のデータストアへ のインタフェースを受けることができるようになってい る。オペレーティングシステムはバスシステム上の転送 を制御するロジックおよび通信インターフェース上でク ライアントサーバから受け取るストレージトランザクシ ョンを内部フォーマットに変換するロジックのほか、コ ンフィギュレーションデータに応じて内部フォーマット を処理するロジックを提供し、このコンフィギュレーシ ョンデータはトランザクションプロトコル範囲で特定の ストレージユニットに関する通信インタフェース上のス トレージトランザクションを、内部フォーマットを使っ てその範囲に対応する仮想回路にマッピングする。する と、仮想回路はインターフェース内の一つ以上のドライ バを通じた一つ以上の物理データストアへのトランザク ションのルーティングを管理する。また、サーバには物 理的ストレージデバイスをエミュレートするためのリソ ースが含まれるため、クライアントサーバはストレージ トランザクションのためにクライアントサーバの構成を 変更せずに、仮想デバイスにアクセスするための標準的 ストレージトランザクションプロトコルを使うことがで

【0012】本発明の別の要素によれば、ストレージルータが提供され、このストレージルータは第一の通信インタフェース、処理ユニットおよびバスシステムで構成される。バスシステムは処理ユニット、第一の通信インタフェース、別の通信インタフェースに接続されている。処理ユニットはオペレーティングシステムをサポートし、オペレーティングシステムは仮想デバイスのアーキテクチャとエミュレーションを使って、第一の通信インターフェース上で受け取ったストレージトランザクションをコンフィギュレーションデータに応じて別の適当な通信インターフェースに誘導する。

【0013】いくつかの実施形態において、通信インタフェースは光ファイバ媒体へのインタフェースである。 また、実施形態により、通信インタフェースが光ファイ バチャネルアービトレーティドループに適合するドライバを含むものや、標準的な「小型計算機周辺機器インターフェース規格」バージョン3 (SCSI-3)に適合するドライバを含むものもある。

【0014】いくつかの実施形態において、処理ユニットは複数の処理ユニットからなる。いくつかの実施形態において、バスシステムは相互接続されたコンピュータバスで構成され、実施形態によってはコンピュータバスが標準的な「周辺コンボーネント相互接続」(PCI)バスに適合するものもある。いくつかの実施形態において、通信インターフェースはバスシステムに接続される。

【0015】いくつかの実施形態において、ストレージ サーバは不揮発性メモリを有し、またいくつかの実施形態において、不揮発性メモリはフラッシュメモリ等の集積回路不揮発性メモリである。

【0016】いくつかの実施形態において、ストレージサーバはディスクドライブ用コントローラを有し、いくつかの実施形態においてこのコンローラは標準的な「独立ディスクの冗長アレイ」(RAID)プロトコルをサポートする。いくつかの実施形態において、ディスクドライブは光ファイバ媒体によってコントローラと接続され、またいくつかの実施形態において、ディスクドライブは光ファイバ媒体に接続するためのデュアルインタフェースを有する。各ディスクドライブが少なくとも2つのコントローラに接続される実施形態もある。

【0017】実施形態によっては、オペレーティングシステムは通信インターフェース上で受け取ったSCSI-3によるインストラクションとデータを内部フォーマットに変換するためのロジックを含むものや、SCSI-3インストラクションに対応する論理ユニット番号(LUN)を使って、SCSI-3インストラクションとデータがストレージサーバ内にデータストアを有する仮想デバイスに関連付けられるものもある。また、イニシエータSCSI-3識別番号(ID)とLUNを使って、SCSI-3インストラクションとデータがストレージサーバ内にデータストアを有する仮想デバイスに関連付けられる実施形態も可能である。

【0018】いくつかの実施形態において、オペレーティングシステムはストレージサーバの動作とステータスをモニターするためのロジックを有し、また別の実施形態においては、デバイスの故障を扱い、コントロールを冗長コンポーネントに移行させるためのロジックがある。

【0019】本発明は、データを記録、管理するための仮想デバイスと仮想回路をサポートするストレージサーバアーキテクチャを提供する。本発明によるストレージサーバには複数の通信インタフェースが搭載されており、これら複数の通信インタフェースにおける第一のセットはあらゆる種類のデータユーザに接続するためのもので、第二の通信インタフェースセットはストレージデバイス群の各デバイスに接続するためのものである。ス

トレージサーバのデータ処理リソースは複数の通信イン タフェースに接続され、インタフェース間のデータ転送 を可能にする。データ処理リソースは複数のドライバモ ジュールと、ドライバモジュールをデータパスにリンク させる構成可能なロジックからなり、これらは好ましい システムにおいてリダンダンシーを持たせるためにペア で実装される。構成されたデータパスはそれぞれ、複数 のドライバモジュールから選択されたドライバモジュー ルセットを有する仮想回路の役割を果たす。通信インタ フェースで受け取ったデータストレージトランザクショ ンは、構成されたデータパスのひとつにマップされる。 【0020】本発明の別の要素によれば、複数のドライ バモジュールは複数の通信インタフェースにおける1つ の通信インタフェースでサポートされるプロトコルのた めのプロトコルサーバを有する。プロトコルサーバは、 そのインタフェース上のプロトコルに従って特定のスト レージ範囲を識別するターゲット識別子を認識する。特 定のストレージ範囲にアドレスされたトランザクション は、サーバ内の特定の構成済みデータパスにマップされ

【0021】このように構成されたデータパスは仮想ストレージデバイスとして動作する。データのユーザは、特定のストレージデバイス用のプロトコルに従って、ストレージサーバ上の通信インタフェースと通信する。サーバ内では、そのプロトコルによるトランザクションがドライバセットによって実装される仮想ストレージデバイスにマップされる。特定のデータパスで実行されるストレージタスクのセットアップと変更および1つのデータパスから別のデータパスへのストレージ範囲マッピングのセットアップと変更は、ストレージサーバ内でドライバモジュールセットを構成することによって完了する。

【0022】本発明の1つの要素によれば、複数のドライバモジュールは各通信インターフェースを管理する一つ以上のハードウェアドライブモジュールおよび複数の通信インターフェースとは独立してデータパスタスクを実行する一つ以上の内部ドライバモジュールを有する。データパスタスクには、例えばキャッシュメモリ管理、メモリミラーリング管理、メモリパーティション管理、データ移動管理、およびその他のストレージトランザクション管理タスクがある。仮想デバイスアーキテクチャでこの種のデータパスタスクを提供することにより、このようなタスクを管理するためのストレージシステムの構成は本質的にユーザにとってよくわかるものとなる。さらに、上記タスクを実行するように最適化されたストレージサーバに仮想デバイス機能を提供する。とで、性能改善とフレキシビリティの向上が実現する。

【0023】また、本発明の1つの要素によれば、複数のドライバモジュールは、内部メッセージフォーマットに従ってサーバ環境内でデータを通信するためのロジッ

クを有する。受け取ったストレージトランザクションは 内部メッセージフォーマットに変換され、特定のトラン ザクション用構成済みデータパスに入れられる。ある好 ましい実施形態において、プロトコルサーバはプロトコ ル変換および仮想回路マッピングを実行する。

【0024】構成可能なロジックには、コンフィギュレーションデータを受け入れるためのユーザインターフェースと、データパスから構成される各ドライバモジュールセットのテーブルまたはリストを記憶するメモリが含まれる。ひとつの実施形態における構成可能なロジックは、例えば入力信号を受け取るタッチスクリーンを有するディスプレイ上にグラフィカルユーザインターフェースを用いて実装される。グラフィカルユーザインターフェースにより、フレキシブルで使いやすい構成ツールを装備することができる。

【0025】本発明の別の要素によれば、構成ロジック には、仮想回路用データパスを識別するテーブルの形態 でコンフィギュレーションデータを記憶するメモリが含 まれ、ある実施形態におけるこのメモリは、ストレージ システムのリセットや電源切断によってもデータが消失 しない不揮発性メモリの中にテーブルを保持するパーシ ステントテーブルストレージプロセスを使って実現され る。さらに、構成ロジックは、システム内の冗長ハード ウェア上の冗長ドライバモジュールを使って仮想回路用 のデータパスを実装しており、ストレージシステム上の どの故障箇所によっても特定のストレージトランザクシ ョンが妨げられることはない。好ましい実施形態におい て、ストレージドメイン内のリソースは、複数のドライ バモジュールとドライバモジュールをデータパスに連結 する構成可能なロジックからなる仮想回路を使って定義 され、データパスは選好システムにリダンダンシーを持 たせるためにペアで実装される。各構成済みデータパス は、複数のドライバモジュールから選択されたドライバ モジュールセットを有する仮想回路の役割を果たす。通 信インターフェースで受け取ったデータストレージトラ ンザクションは構成されたデータパスのうちの1つにマ ップされ、こうして、ストレージドメインマネジャ内で 管理、構成されるストレージドメイン内で管理される。 【0026】基本的に、ストレージドメイン管理によっ て、ユーザはストレージエリアネットワークの機能を最 大限に利用してビジネス上の問題に対処することができ る。ストレージドメイン管理プラットフォームは各種ス トレージシステムとプロトコルの異種間相互運用性、確 実な中央集中的管理、スケーラビリティと優れた性能、 信頼性、可用性、保守性といった特徴のすべてを、特定 用途向けに作られたひとつのインテリジェントなプラッ トフォーム上で提供することができる。

[0027]

【発明の実施の形態】以下、図面を参照しながら本発明の実施形態を説明する。

【0028】図1(a)は、ストレージドメイン管理を行うインテリジェントなストレージエリアネットワーク(ISAN)サーバ1200を有するネットワークを示す。ストレージエリアネットワーク(SAN)は、クライアントコンピュータ用データストレージサービスを提供するために使用することができる。ストレージエリアネットワークは、ファイルサーバ、ウェブサーバ、エンドユーザコンピュータ等のクライアントコンピュータ用に広帯域、高スループットのストレージを提供するよう最適化されている。好ましい実施形態における本発明によるストレージサーバ1200は、シャーシ上でのデータストレージ、ストレージトランザクションキャッシュサービス、ストレージルーティングおよび仮想デバイス管理を可能にする。

【0029】ネットワーク内のストレージサーバ1200 は、クライアントサーバ1201, 1202,1203にそれぞれ接 続されたクライアントインタフェース1210, 1211, 1212 を有する。ストレージインターフェース1213, 1214は通 信チャネルを通じてストレージデバイス1205, 1206, 12 07に接続され、これらはストレージサーバ1200のいずれ かのストレージと組み合わされると、ストレージサーバ 1200内で管理されるストレージドメイン用の物理的スト レージを提供する。この例における通信チャネル1213 は、ハブ1204を通じてデバイス1205, 1206に接続されて いる。動作中、クライアントインターフェースは、クラ イアントサーバが例えば一つ以上のイニシエータ識別 子、LUN番号等の論理範囲、ターゲットデバイスの識別 子といったストレージドメインを識別できるパラメータ を含むコマンドによってストレージトランザクションを 要求するというプロトコルに従って動作する。ストレー ジサーバ1200は、リクエストされたトランザクションを 仮想デバイスにマップし、この仮想デバイスが物理的ス トレージデバイス間からのトランザクションに使用する よう物理的ストレージを割り当てる。ストレージサーバ 1200はまた、リクエストの中で識別されたターゲットと なる物理的デバイスをエミュレートする資源を有する。 ストレージサーバ1200は、ローカルコンフィギュレーシ ョンデータを使ってストレージトランザクションを誘導 することができ、クライアントサーバ用のストレージ管 理が簡略化される。

【0030】スループットを最大限にするために、ストレージサーバ1200は光ファイバチャネルあるいはギガビットイーサネット等の高速ネットワーク媒体によって、クライアントサーハ1201-1203 に接続される。これらのクライアントサーバ1201-1203は、代表的な構成においては、ネットワークリンクによってエンドユーザコンピュータに接続される。

【0031】図1(a)は、通信リンク109を通じてサーバ1200 に接続された管理インタフェース108を示す。 ステーション108とサーバ1200内のインタフェースから 信号供給を受ける通信リンクは、各種実施形態において 例えばイーサネットネットワークリンク、シリアルポートに接続されたシリアルケーブル、あるいはインターネットバスインターフェースで構成される。

【0032】サーバ1201-1203とストレージデバイス1205-1207の間の通信は、中間デバイスとしてストレージサーバ1200を介し、光ファイバチャネルアービトレーティドループネットワークを通じて行われる。FC-AL上のチャネルは、好ましくは光ファイバチャネル媒体を使った標準的小型計算機および周辺機器インターフェース規格バージョン3 (SCSI-3)、別称、光ファイバチャネルプロトコル(FCP) (例えば、SCSI B X3T10, FCP X3.269-199 X)に準じたプロトコルを使って実現される。別の実施形態においては、各種プロトコルでストレージトランザクションを実行する光ファイバチャネルファブリック上で、インターネットプロトコル等のプロトコルを使うこともできる。ストレージサーバ1200がデータストレージトランザクションの複数のプロトコルをサポートする実施形態もある。

【0033】図1(b)は、インテリジェントなストレージエリアネットワーク(ISAN)サーバのさまざまな用途を示す。ストレージエリアネットワーク(SAN)は、クライアントコンピュータ用のデータストレージサービスを提供するのに使用でき、ファイルサーバまたはウェブサーバ等のクライアントコンピュータ用に広帯域、高スループットのストレージを提供するよう最適化される。ISANサーバはデータの記録再生だけでなく、ストレージルーティング、仮想デバイス管理といった別の機能も提供する。

【0034】図1(b)は、サーバ100A-D, ISANサーバ102A-F, シンサーバ104A-C、ストレージアレイ106を含む。サーバ100A-Dは、UNIXサーバ、Windows^{IM} NTサーバ、NetWare^{IM}サーバ、あるいはその他の種類のファイルサーバ、いずれでもよい。

【 O O 3 5 】 サーバ100A - Dは、ネットワークリンクによってクライアントコンピュータに接続される。ISANサーバ102Aは、ネットワークリンクによってサーバ100Aに連結され、リクエストされたストレージトランザクションを実行することによってサーバ100Aはデータストレージサービスを供給するため、サーバ100AはこのISANサーバ102Aをストレージデバイスのように扱う。ISANサーバ102Aは、代表的なハードディスクドライブまたはハードドライブアレイより多くのストレージを保有することができ、またストレージルータとして使用して、ISANサーバ102Aに接続されたデータストア間のインテリジェントなルーティングを提供することができる。

【0036】ISANサーバ102Aはまた、一般的なハードディスクドライブやハードドライブアレイよりも広帯域でスループットの高いストレージトランザクション処理を行うことができるため、マルチメディアによるデータス

トリームおよびその他の大量データストリームが発する 大量のデマンドを扱うことが可能である。

【0037】最大限のスループットを得るために、ISANサーバ102Aは光ファイバチャネル等の高速ネットワーク媒体によってサーバ100Aに接続してもよい。サーバ100B-Dはネットワークリンクによってクライアントコンビュータに接続され、光ファイバチャネルファブリックによってストレージエリアネットワークはISANサーバ102B-Dとストレージアレイ106を含み、サーバ100B-DとISANサーバ102-B-Dは光ファイバチャネルアービトレーティドループ(FC-AL)用ドライバをサポートする。

【 O O 3 8】FC-AL上でのサーバ100B-Dとストレージデバイス間の通信は、好ましくは光ファイバチャネル媒体を使った標準的小型計算機および周辺機器インターフェース規格バージョン3(SCSI-3)、別称、光ファイバチャネルプロトコル(FCP)(例えば、SCSI B X3T10, FCP X3.269-199X)に準じたプロトコルを使って実現される。別の実施形態においては、各種プロトコルでストレージトランザクションを実行する光ファイバチャネルファブリック108上で、インターネットプロトコル等のプロトコルを使うこともできる。ISANサーバ102Aが複数のプロトコルをサポートする実施形態もある。

【0039】シンサーバ104A-Cはネットワークリンクを 使ってクライアントに接続されるが、データストレージ を提供するためのストレージエリアネットワークは使用 しない。

【0040】ISANサーバ102E-Fはネットワークリンクにより直接クライアントに接続され、中間ファイルサーバはない。ISANサーバ102E-Fは、ファイルサーバ、ウェブサーバその他の処理の機能を提供する特定用途向けプロセッサを提供することもできる。

【0041】図2はストレージエリアネットワークの別 の実施形態を示す。図2において、上記のようなストレ ージディレクタロジックとキャッシュメモリを備えたサ ーバ1250が各種プラットフォーム上のクライアントに接 続されている。これらのプラットフォームは例えばHewl ett-Packardサーバ1255、Sunサーバ1256、SGIサーバ125 7であり、それぞれストレージトランザクション管理用 に異なるプロトコルを実行する。ストレージドメインと して使われる物理的リソースを構成する複数の物理的ス トレージデバイスもまたサーバ1250に接続され、上述の 仮想デバイスアーキテクチャに従ってストレージディレ クタによって管理される。この例における複数の物理的 ストレージデバイスには、Hewlett-Packardプラットフ ォーム1251上のストレージ、Sunプラットフォーム1252 上のストレージ、EMCプラットフォーム1253上のストレ ージがあ。このように、ストレージディレクタロジック を含むサーバは、従来のサーバおよびストレージをヘテ ロジニアス環境でサポートする共有ストレージプールを

作ることができる。複数のストレージデバイスおよびサーバ間の非互換性は、仮想デバイスアーキテクチャを使って、必要に応じてマスキングまたは模造することができる。こうして、真の意味でのストレージエリアネットワーク環境を利用し、ホスト、ファブリック、ストレージの相互運用性の問題をすべて、ストレージサーバレベルで管理することができる。

【0042】仮想デバイスアーキテクチャを使ったスト レージディレクタロジックは、ストレージドメイン構成 を用いてクライアントサーバがストレージにアクセスす る構成に関するひとつのインテリジェントな調整点を提 供する。新たなデバイスを追加したり、既存のデバイス の管理を変える場合でも、ハードウェアの再構成はほと んど、あるいは全く不要となる。ストレージサーバの構 成は、物理的ストレージにあるデータセットのサーバへ のマッピングを自動的に保持することにより、正確な構 成情報とコントロールを提供することができる。物理的 ストレージを常に正確にマッピングすることは、ストレ ージエリアネットワークの管理を大幅に簡略化する。ま た、サーバのストレージディレクタにより、デバイスを オンライン状態にしたままで、古いストレージデバイス から新しいストレージデバイスへデータを移動させるこ とができる。さらに、記録オブジェクトの大きさも、ひ とつのアレイで作ることのできる最大オブジェクトのサ イズによって制限されることがなくなる。複数アレイ は、クライアントサーバ上で実行するホストオペレーテ ィングシステムとは別に、ひとつのストレージオブジェ クトに連結することができる。ストレージディレクタは また、不揮発性キャッシュメモリ内のデータのスナップ ショットを作るといったバックアップおよびテスト動作 を管理でき、例えばクライアントサーバを通じてルーテ ィングすることなく、データをディスクからテープにコ ピーすることにより、データバックアップを管理するこ ともできる。さらには、ローカルキャッシュを使って、 ロストリダンダンシーを有するアレイからデータを移動 し、アレイの修理、再構築中に冗長ストレージを修理 し、データを十分に利用できる状態にすることが可能で ある。共通データセットにアクセスする複数サーバを有 するアプリケーションでは、仮想デバイスアーキテクチ ャを使って拡張可能な単純なソリューションを提供する ように、ストレージサーバ内にロッキングロジックを設 置することができる。

【0043】ストレージサーバ内のストレージディレクタロジックは、サーバとストレージ両方からのキャッシュ需要を統合するため、ストレージエリアネットワークに必要なキャッシュメモリ数が少なくて済む。このシステムは、クライアントサーバまたはストレージシステムのいずれにも、それぞれが内部メモリとして有効に提供できるものよりも多くのキャッシュを割り当てることができる。また、キャッシュはそのシステムを使うアプリ

ケーション用の定義に合わせて、動的あるいは静的に割 り当てられる。

【0044】図3は、本発明による複数の相互接続され たストレージサーバを使った、より過密なストレージエ リアネットワークの例を示す。ストレージサーバ1300, 1301, 1302は、通信チャネル1350, 1351を使って相互接 続され、例えば光ファイバチャネル、ギガビットイーサ ネット、非同期転送モード(ATM)等の高速プロトコルを 使って搭載されている。本実施形態において、ストレー ジサーバはそれぞれストレージディレクタロジックと不 揮発性キャッシュを有する。ストレージサーバ1300, 13 01,1302は、この例においては複数のクライアントサー バ1310 - 1318に接続され、クライアントサーバ1313と13 14はハブ1320を通じてストレージサーバ1301に接続され ている。同様に、クライアントサーバ1316 - 1318は、ハ ブ1321に接続され、ハブ1321はストレージサーバ1302に 接続される。クライアントサーバ1310 - 1318は、先に詳 述したFCP等のストレージチャネルプロトコルを用いて ストレージサーバと通信する。これらのプロトコルによ れば、ストレージトランザクションがリクエストされ、 そのリクエストのイニシエータの識別子、論理ユニット 番号(LUN)、そしてターゲットストレージデバイスの識 別子が伝えられ、ストレージディレクタロジックがこれ らのパラメータを使ってストレージドメイン内の仮想デ バイスにストレージトランザクションをマップする。サ ーバにはまた、ターゲットストレージデバイスをエミュ レートするためのリソースが含まれ、クライアントサー バはそのストレージエリアネットワーク内の複数のスト レージデバイスとスムーズに相互運用できる。

【0045】図3において、複数のストレージデバイス1330-1339はストレージサーバ1300-1302と接続されている。同図中の各種記号はストレージデバイスを示しており、ネットワークがヘテロジニアスで、サーバ1301、1302において仮想デバイスインターフェースによって管理されるさまざまなデバイスを利用できることがわかる。また、通信チャネルを変更することもできる。したがって、ハブ1340、1341、1342がネットワーク内に設けられ、ストレージデバイスとストレージサーバ間で各種の通信プロトコルが利用できるようになっている。[インテリジェントなストレージエリアネットワークサーバ]図4は、本発明によるストレージシステム管理リソースを含む、ある好ましい実施形態におけるストレージサーバのブロック図である。

【0046】ストレージサーバ102は、ユーザおよびその他のデータ処理機能用の通信インターフェースセットを有する接続オプション130とストレージデバイス用の通信インターフェースセットを有するストレージオプション128とを有し、さらに、ハードウェアインターフェース126、オペレーティングシステム124、ブロックストレージインターフェース118、管理インターフェース12

0、プロトコルインターフェース122を有する。接続オプション130は、シリアル接続140、ある実施形態において 構成管理ルーチンをサポートするフロントパネル接続14 2、遠隔管理ステーションとの通信をサポートするイー サネット接続144、ネットワークインターフェース145を 有し、ストレージオプション128は、ドライブアレイ13 2、ソリッドステートドライブ(SSD)134、SCSIインター フェへス136、ネットワークインターフェース138を有す る。SCSIインターフェース136はDVD/CD-R 148に接続され、ネットワークインターフェース138はストレージサーバ1026および/またはストレージ150に接続される。

【0047】接続オプション130は、ストレージサーバ にサーバとクライアントを接続する各種の方法である。 シリアル接続140はネットワーク管理、遠隔管理用モデ ム、中断することのない電源供給メッセージを、フロン トパネル接続142はストレージサーバ102のフロントパネ ルディスプレイとの管理接続を、またイーサネット接続 144は管理プロトコルおよびおそらくはデータ転送用イ ーサネットインターフェースをそれぞれサポートする。 ネットワークインターフェース146は、サーバ上に設置 されるかもしれない多数の高速インターフェースのひと つである。ネットワークインターフェース146が光ファ イバチャネルアービトレーティドループ(FC-AL)用ドラ イバを有する光ファイバチャネルインターフェースであ る実施形態もある。ネットワークインターフェース146 には、光ファイバチャネルプロトコル(FCP)を使って光 ファイバチャネル媒体上でのSCSI-3向けドライバを設け ることも可能である。

【0048】ハードウェアインターフェース126は、特定のハードウェアコンポーネントをインターフェースする。例えば、ネットワークインターフェース146は、構成、診断、動作モニター、健全さとステータスのモニターをサポートするための、特定のネットワークインターフェース向けソフトウェアモジュールセットを搭載する。

【0049】オペレーティングシステム124、テーブル116、インターフェース118-122は、ストレージサーバ102の仮想デバイスとストレージルーティング機能をサポートする。ストレージサーバ102のこれらのコンポーネントは、システム内の構成されたドライバモジュールセットを使って、適当なストレージオプション128と接続オプション130間でストレージトランザクションのルーティングを行う。

【0050】オペレーティングシステム124は、フェイルセーフ機能のほかに、メッセージのルーティング、転送機能も提供し、オペレーティングシステム124によるメッセージルーティング、転送機能は、ストレージサーバ102のコンポーネントの間でストレージトランザクション等のメッセージをルーティングするのに使用される。これらのメッセージには、仮想回路のコンポーネン

ト間の内部フォーマットによるメッセージのほか、他のフォーマットによる制御メッセージが含まれる。

【0051】ブロックストレージインターフェース118 は、ブロックデータの転送をサポートするソフトウェアモジュールを提供する。インターフェース118は、ストライプ型データストレージ、ミラーリングされたデータストレージ、パーティションデータストレージ、メモリキャッシュのストレージ、RAIDストレージもサポートする。サポートされている各種のストレージタイプを連結し、例えばメモリキャッシュとミラーリングされたデータストレージ等、いろいろな組み合わせを作ることもできる。

【0052】プロトコルインターフェース122は、さまざまなプロトコルによるリクエストを変換し、これに応えるソフトウェアモジュールを提供する。ひとつのモジュールセットは、イーサネット接続のレイヤに設置され、ハードウェアドライバ、データリンクドライバ、インターネットプロトコル(IP)ドライバ、転送制御プロトコル(TCP)ドライバ、ユーザデータグラムプロトコル(UDP)ドライバその他のドライバとなる。また別のモジュールセットはFCP用のドライバを提供する。

【0053】管理インターフェース120は、ストレージサーバ102を管理するためのソフトウェアモジュールを提供し、テーブル116へのアクセスを管理するインターフェースのほか、スケジューリング、プロセス調整、システムのモニター、インフォームドコンセントの管理、システムプロセスやイベントの管理といった、ルールに基くシステム管理のためのインターフェースを含む。インフォームドコンセントの管理モジュールは、ストレージサーバ102を構成、維持するためのルールに基く管理策を講じておくことが前提となる。

【0054】 [ストレージトランザクションの操作] ストレージトランザクションは、接続オプション130のいずれかで受け取られる。ストレージトランザクションには、読み出し、書き込みリクエストおよびステータス問い合わせが含まれる。リクエストはブロック指向のものでもよい。

【0055】典型的な読み出しストレージトランザクションは、読み出しコマンドとアドレシング情報で構成される。書き込みストレージトランザクションは、読み出しストレージトランザクションと似ているが、異なるのは、リクエストが送信されるデータ量に関する情報を含み、書き込むデータがこれに続く点である。より具体的には、SCSI-3プロトコルを使い、各デバイスは識別子(1D)を有する。リクエストを発生するマシンは、イニシエータと呼ばれ、リクエストに応えるマシンはターゲットと呼ばれる。この例において、サーバ100Aはイニシエータで1D7を持ち、ストレージサーバ102はターゲットでID6を有する。SCSI-3プロトコルは2つ以上のアドレシングコンボーネント、論理ユニット番号(LUN)、アドレスを

提供する。

【0056】LUNはターゲットIDのサブコンポーネントを特定する。例えば、複合型ハードディスク/テープドライブエンクロージャにおいて、2つのデバイスはひとつのIDを共有するかもしれないが、異なるLUNを有する。第三のアドレシングコンポーネントは、デバイスデータをどこから読み出し、どこに記憶するかというアドレスである。ストレージサーバ102Aはイニシエータごとのベースで仮想LUNを提供するため、ひとつのストレージサーバ102Aは、例えば1万以上の仮想LUNをサポートすることができる。

【0057】ストレージサーバ102Aは、SCSI-3ストレージトランザクションリクエストを、ひとつの仮想LUNに対応する仮想回路にマップする。仮想回路は、一つ以上の仮想デバイスの連続である。仮想デバイスは、ソフトウェアモジュールまたはハードウェアコンポーネント等、一つ以上のデバイスで構成される。例えば、2つのネットワークインターフェースデバイスを組み合わせて仮想デバイスとしたり、同様に、2つのキャッシュデバイスを合わせて1つの仮想デバイスとすることができる。このデザインにより、コンポーネントが故障しても、ストレージサーバ102のストレージトランザクション処理機能に支障が生じることはない。

【0058】仮想回路は、ストレージトランザクションをサポートするのに必要な仮想デバイスで構成される。通常、仮想回路内の第一のコンポーネントは、この例ではFCPであるストレージトランザクション通信チャネルフォーマットからのストレージトランザクションを内部フォーマットに変換するドライバである。このような内部フォーマットのひとつは、インテリジェントな入出力(I_20)ブロックストレージアーキテクチャ(BSA)メッセージフォーマットと同様のものとすることができる。内部フォーマットは、好ましいシステムにおいて、ストレージ媒体と通信チャネルニュートラルである。

【0059】仮想回路の中間仮想デバイスは、キャッシング、ミラーリング、RAIDといったその他の機能も供給する。内部フォーマットはストレージ媒体ニュートラルであるため、中間仮想デバイスは内部フォーマットで動作するように設計されており、同回路内の他の仮想デバイスと相互運用できる。

【0060】仮想回路内の最後の仮想デバイスは通常、ストレージを管理するためのフォーマット変換および通信チャネルドライバである。例えば、ドライブアレイ13 2は、仮想デバイスを形成するようグループ分けされる冗長ハードウェアドライバモジュール(HDM)によって制御される。HDMはSCSI変換にBSAを供給し、HDMはドライブアレイ132を構成するドライブとのインターフェースを扱う。同様に、仮想回路がネットワークインターフェース138上の異なるストレージへのリンクである場合、ストレージデバイス通信チャネルプロトコルにBSAを変

換するのをサポートする仮想デバイスが設けられる。

【0061】ストレージサーバには、オペレーティング システム内および物理的ストレージデバイスをエミュレ ートするクライアントサーバへのインターフェースでの リソースも含まれる。このエミュレーションにより、仮 想デバイスはそのストレージにアクセスするクライアン トサーバにとって、物理的デバイスであるかのように見 える。したがって、クライアントサーバは、ストレージ トランザクション用のSCSIコマンドを使って、FCP等の 標準プロトコルによって通信するよう構成することがで きる。SCSIコマンドを利用する実施形態において、エミ ュレーションにはデバイス識別子を有するSCSIプロトコ ルと、開始サーバによって予測される、あるいはこれに 適合するデバイス能力情報に応じて、問い合わせコマン ドに対応することが関わる。また、SCSIプロトコルによ る読み出し能力コマンドとモードページデータコマンド は、ストレージを用いるクライアントサーバが物理的ス トレージデバイスに関する標準的構成情報に依存でき、 その一方でストレージサーバが、クライアントサーバと のインターフェースで物理的ストレージデバイスをエミ ュレートすることによってクライアントサーバをスプー フし、実際のストレージトランザクションを仮想デバイ スにマップするよう、エミュレーションリソースによっ て取扱われる。エミュレーションリソースにより、仮想 デバイスはイニシエータ、論理ユニット番号(LUN)、タ ーゲットデバイス識別子との組み合わせによって識別す ることができ、ストレージトランザクションをリクエス トにおいて識別された特定の物理的ターゲットデバイス に接続する必要はない。

【0062】図5は、ストレージドメイン管理に用いる ストレージ管理システム151として動作する、図4につ いて示されているようなサーバの機能コンポーネントを 示すブロック図である。システム151は、ストレージマ ネジャオペレーティングシステム152を有する。ストレ ージマネジャオペレーティングシステム152により、機 能コンポーネントはストレージドメインルーティングリ ソース153、レガシーデバイスエミュレーションリソー ス154、データ移動リソース155、リダンダンシー、ホッ トスワップ及びフェイルオーバのリソース156を有す る。ストレージマネジャオペレーティングシステムは、 これらのリソース、オンシャーシキャッシュ157、管理 インターフェース158、そして本実施形態においてはオ ンシャーシストレージアレイ159の通信を調整する。 【0063】キャッシュ157は、本発明の一実施形態に おいて、ストレージトランザクションを安全にサポート するためのソリッドステート不揮発性メモリアレイで構 成される。別の実施形態において、キャッシュ157はさ らに耐故障性を上げるために、冗長アレイを有する。 【0064】システム151には、複数の通信インターフ ェース160-165が設置され、この例において、インター

フェース160はクライアントとストレージ管理システム151間のプロトコルXを、インターフェース161はクライアントとストレージ管理システム151の間のプロトコルYを、インターフェース162はストレージデバイスとストレージ管理システム151の間のプロトコルZを、インターフェース163はストレージデバイスとストレージ管理システムの間のプロトコルAを、インターフェース164はストレージデバイスとストレージ管理システム151の間のプロトコルBを、またインターフェース165はストレージマネジャシステム151とそのネットワーク上の他のストレージ管理システムとの間のプロトコルCを、それぞれ実行するように構成されている。

【0065】図の例において、プロトコルX-ZおよびプロトコルA-Cは、ストレージ管理システム151によってサポートされており、これらのプロトコルは複数の異なるプロトコル、ひとつのプロトコルのバリエーション、あるいは、システムが利用される特定のストレージエリアネットワークに適したすべて同じプロトコルのいずれでもよい。

【0066】ストレージトランザクションは、インター フェース160-165を通じて、それぞれの通信媒体からス トレージ管理システム151の内部リソースへと行われ る。好ましいシステムにおいて、ストレージトランザク ションは、各種のインターフェースの中で、これらのイ ンターフェースによって実行されるプロトコルとは独立 してルーティングするための、システム内部の共通メッ セージングフォーマットに変換される。ストレージドメ インルーティングリソース153は、特定のクライアント デバイスとストレージデバイス用に構成された仮想回路 を使って、ストレージドメイン内でトランザクションを マップする。レガシーエミュレーションリソース154と データ移動リソース155により、新しい機器がネットワ ークに追加されたり、ネットワークから取り外される場 合に、ストレージドメインはストレージ管理システム15 1において再構成される。例えば、新しいストレージデ バイスをネットワークに追加することができ、既存のス トレージデバイス内のデータセットを新しいストレージ デバイスに移動でき、そのデータセットを使用したクラ イアントからのストレージトランザクションは、移動中 およびターゲットエミュレーションを供給することによ って移動が完了した後も、既存のストレージデバイスの 中に残っているかのように見える。リダンダンシー、ホ ットスワップ、フェイルオーバリソース156により耐故 障性が保たれ、高スループットのデータストレージネッ トワークでストレージ管理システム151が連続して動作 できる。[ハードウェアアーキテクチャの概要] 図6 は、インテリジェントなストレージエリアネットワーク (ストレージ)サーバに適したハードウェアアーキテクチ ャの一例を示すブロック図である。ハードウェアアーキ テクチャはリダンダンシーを利用し、分散型ソフトウェ

アシステムをサポートして、ひとつの故障箇所が特定の ストレージトランザクションを妨害することがないよう にしている。

【0067】図6にはストレージサーバ102Aが搭載される。ストレージサーバは、標準的なコンポーネントと標準ベースのデバイスを使いながらも、高い冗長性を実現するよう設計されている。例えば、ストレージサーバ102Aは、標準的な周辺コンポーネント相互接続(PCIの高速バージョンと標準的光ファイバチャネルアービトレーティドループ(FC-AL)インターフェースを採用している。その他各種のプロトコルとインターフェースを使用する実施形態もある。

【 O O 6 8 】ストレージサーバ102Aは、4つの分離した6 4ビット66メガヘルツPCIバス200A-Dを有する。ストレージデバイスとPCIバスのスロットにおけるネットワークインターフェースの構成は多数考えられる。一実施形態において、PCIバスは、SSD PCIバス200A-BとインターフェースPCIバス200C-Dの2グループに分けられ、各グループは上側、下側として指定される2つのバスを有する。各グループにおける上下のバスは冗長サービスを供給するように構成することができる。例えば、下側のSSD PCIバス200Bは上側のSSD PCI バス200A と同じ構成でもよい

【 O O 6 9 】 PCIバス200A-Dはホストブリッジコントローラ (HBC) モジュール202A-Bに接続される。HBCモジュール202A-BはPCIバス200A-Dにまたがり、冗長ブリッジパスとなる。

【 O O 7 O 】SSD PCI バス200A-Bは、ソリッドステートドライブ(SSD)モジュール204A-Gをサポートし、これらのSSDモジュール204A-Gは、フラッシュメモリストア等のソリッドステートストレージデバイスとなる。

【 O O 7 1 】 インターフェースPCIバスは、ネットワークインターフェースコントローラ (NIC) モジュール206A-B、独立ディスクの冗長アレイ (RAID) コントローラ (RAD) モジュール212A-B、および特定用途向け処理 (ASP) モジュール208A-DからHBCモジュール202A-Bへの相互接続を行う。

【 O O 7 2 】ストレージサーバ102Aを外部FC-ALに連結するのに加え、NIC 206A-Bは、光ファイバチャネルハブ (FCH) モジュール214A-Dに連結することができる。FCHモジュール214A-Dは各々、NICモジュール206A-Bの両方に接続され、FC-ALボートを10個ずつ提供し、NICモジュール206A-Bからカスケードされて20ステーションFC-ALハブを提供する。

【 O O 7 3 】 ディスクドライブハブ(DDH) モジュール216 A-Dは冗長FC-ALファブリックを提供し、ディスクドライブをRACモジュール212A-Bに接続する。DDHモジュール21 6A-Dの各々におけるFC-ALファブリックは2つの冗長ループで構成され、これらはDDHモジュールに接続されたすべてのドライブをRACモジュール212A-Bの両方に連結す

る。RACモジュールはDHモジュール216A-D全部の間のループを管理し、DDHモジュール216A-Dはそれぞれディスクドライブ218等、5つのデュアルポートディスクドライブをサポートする。

【 O O 7 4 】システムミッドプレーン(SMP)は図6に示されていない。SMPはパッシブミッドプレーンで、図6に示すように、HBCモジュール202A-B、SSDモジュール204A-H、RACモジュール212A-B、NICモジュール206A-B、FC Hモジュール214A-D、DDHモジュール216A-D、ASPモジュール208A-Dの間の相互接続を実現する。SMPはコンパクトPCIベースで、4つのカスタムコンパクトPCIバス200A-D、RAC-DDH相互接続、NIC-FCH相互接続およびその他ミッドプレーン信号からなる制御バスを有する。さらに、SMPは電源サブシステム(図6では示されていない)からモジュールへ、電圧48V、12V、5V、3.3Vで配電する。

【 O O 7 5 】フロントパネルディスプレイ(FPD)220は、ストレージサーバ102A用のユーザインターフェースを供給する。FPDにはディスプレイデバイスと入力デバイスが含まれ、一実施形態においては、タッチセンシティブの液晶ディスプレイ(LCD)を使って入力機能を有するタッチスクリーンとすることができる。FPD220はHBCモジュール202A-Bと接続され、ステータス表示、構成表示および管理、その他管理機能をサポートする。

【0076】図6には示されていないが、電源およびファンサブシステムにより、冗長AC-DC電源供給、冗長DC-DC電源変換、電源停止用のバッテリーバックアップおよび冗長プッシュプルファンサブシステムが供給される。これらのコンポーネントは、ストレージエリアネットワークを活用する場合に重要となる高い可用性と低いダウンタイムという特徴をサポートする。

【 O O 7 7】ストレージサーバ102Aは他のストレージサーバと連結して、ストレージエリアネットワーク内のひとつのネットワークポートあるいはストレージデバイスに設置されたネットワークのようにすることができる。この接続は、HBCモジュール202A-Bの各々に接続されたFC-AL拡張ポート上で行われる。さらに、HBCモジュール202A-Bは帯域外管理のためにRS232シリアルボートと10/100イーサネットポートを提供する。

【0078】バスシステムには、ストレージサーバ102A 内のすべてのバスが含まれる。この例において、バスシ ステムはホストブリッジコントローラによって相互接続 される4つのPCIバスを有し、また別のインターフェース を行うHBCモジュール内部のPCIバスも有する。スロット は、バスシステム上でインターフェースを受けられるす べての位置を含む。この例において、HBCモジュール外 の4つのPCIバスはそれぞれ4つのインターフェースに対 応することができる。

【0079】インターフェースはカードあるいはスロットに入るその他のデバイスで、インターフェースに接続されるデータストア用のドライバおよびハードウェアを

サポートする。[リダンダンシーとフェイルオーバ]ス トレージサーバ102Aは高いリダンダンシーを提供する。 一実施形態において、冗長NIC, RAC, HBCモジュールが ある。SSDモジュールとドライブはミラーラングをサポ ートする。ドライブはまた、パリティおよびデュアルチ ャネルアクセスもサポートしている。DDHモジュールは それぞれ、RACモジュールへの接続を行うための完全冗 長FC-ALファブリックを含む。フェイルオーバはHBCモジ ュールが扱い、これはストレージサーバ内の他のモジュ・ ールを制御する。この制御はマルチレイヤ式である。 【0080】HBCモジュールのコントロールオーバ第一 レイヤは電源供給制御で、各モジュールは同モジュール 上のCMBコントローラによって制御される個々の電源供 給イネーブル信号を有する。HBCモジュールは冗長性が あるものの、1つのHBCモジュールだけがマスタHCモジ ュールとして動作して、システムを誘導、制御し、他の HBCはスレーブとなる。モジュールをスロットにプラグ 接続すると、その電源供給は当初ディスエーブルされ、 マスターHBCモジュールだけが電源供給をイネーブルで きる。モジュールが誤動作を始め、コマンドに対応しな いと、HBCモジュールはそのモジュールへの電源供給を ディスエーブルする。HBCモジュール用の制御第二レイ ヤは、カード管理バス(CMB)である。各モジュールはCMB に接続されるATMEL AT90S8515 (AVR) マイクロコントロ ーラを有し、HBCモジュールそのものはマスターまたは スレーブとして動作するCMBに接続されるAVRマイクロコ ントローラを有する。CMBマイクロコントローラは、モ ジュール上のメインプロセッサに供給される電源とは別 に、ミッドプレーンへの接続によって電源供給される。 CMBにより、マスターHBCはカードタイプを読み出し、カ ードの有無を判断し、カードにマスク不可割込を送る か、あるいはカードのハードリセットを行うことができ る。モジュールプロセッサとマスターHBCモジュール は、モジュール上のAVRマイクロコントローラのシリア ルポートを通じた通信を行うこともできる。この通信パ スは、PCIが故障した場合に通信を制御するためのバッ クアップとなる。

【0081】HBCモジュール用の制御第三レイヤはPCIバスである。モジュールがPCIバス上の制御プロセスを使って反応しない場合、CMBを通じて質問することができる。それでもモジュールが反応しない場合は、CMBを使ってマスク不可割込を送信し、それでも反応がない場合は、CMBを通じてリセットする。リセット後も依然としてモジュールの反応がない場合、電源を落とし、モジュールを交換せよとの警告を発することができる。[HBCモジュールリダンダンシー] HBCモジュールリダンダンシーとフェイルオーバはシステムリダンダンシーをサポートする。HBCモジュール202A-Bを両方同時に動作させることは可能であるものの、HOST_SEL信号によってマスターに指定できるのは一方だけである。マスターHBCモ

ジュールはPCIバスの全部にPCIバスアービトレーション を供給し、他のモジュールへの電源イネーブルを制御 し、CMBデバイス上のマスターとして認識される。バッ クアップHBCモジュールのPCIバスアービトレーション信 号と電源イネーブルは、HOST_SEL信号によってディスエ ーブルされる。CMBはカードのスレーブCMBまたはFCBデ バイスのそれぞれで、HOST_SEL信号によって切り換えら れ、HOST_SEL信号は抵抗によってシステムミッドプレー ン(SMP)上でプルダウンされ、HBCモジュール202Aがデフ ォルト時のマスターとなる。HBCモジュール202BはHOST_ SEL信号によって自分をマスターとすることもできる が、このようになるのは普通、フェイルオーバ時あるい はHBCモジュール202Aがない場合の立ち上げ時だけであ

【0082】エラー発生の可能性をなくすため、FVCはH OST_SEL信号を駆動し、特定パターンを2ヵ所の離れたメ モリ位置へ書き込むことを要求する。これにより、誤動 作しているHBCモジュール自身がマスターになることが 防止される。HBCモジュールの電源イネーブル信号はど ちらもSMP上で引き下げられ、立ち上げ時に両方のカー ドに電源が供給されるようになる。HBCモジュール202A はHBCモジュール202Bへの電源供給イネーブルを制御 し、これと同様にHBCモジュール202BはHBCモジュール20 2Aへの電源供給イネーブルを制御する。再び、エラー発 生の可能性をなくすため、HBCモジュールの電源供給イ ネーブル信号の駆動には、特定パターンを2ヵ所の離れ たメモリ位置へ書き込むことが必要となる。PCIブリッ ジはデュアルホストをサポートしていない。PCIブリッ ジを特別に構成することにより、両方のHBCモジュール をシステムPCIバス上に構成することができる。両HBCモ ジュール上のPCIブリッジは、ひとつのHBCモジュールが 制御するアドレススペースが他のHBCモジュールのPCIで リッジ上のシステムPCIバス全部にとってローカルなメ モリスペースとしてマップされるように構成される。ひ とつのHBCモジュールが他のPCIアドレススペースを読み 出し、これに書き込もうとすると、エラーか発生する。 また、システムPCIバスへの4つのブリッジが重大なエラ ーの原因となるトランザクションを認識するとエラーが 発生する。したがって、ひとつのHBCモジュールは、シ ステムバス上の他のHBCモジュールへのアクセスを試み るべきではない。

【0083】HBCモジュールはPCIバス上で通信すべきで はないが、HBCモジュールは2つの別個の通信用バス、専 用シリアルポートというバスを有する。専用シリアルポ ートは通信用プライマリパスとなってメッセージを伝 え、他のHBCモジュールのサニティチェックを行う。シ リアルポートが故障した場合、CMBをバックアップとし て使い、どのHBCモジュールが故障したかを判断するこ とができる。 [HBCモジュール立上げシーケンス] HBCモ ジュールはどちらも、システム電源投入時にEVCによっ

てパワーアップされるため、パワーアップ時に他のHBC モジュールがあるかどうかを判断する必要があるが、こ れはCMBを通じて行われる。他にもモジュールがある場 合、HBCモジュール202Aはデフォールト時にマスターと なる。パワーアップ時にHBCモジュール202AがHBCモジュ ール202Bはないと判断した場合、HBCモジュール202Bの カードスロットへの電源供給をディスエーブルするこが できる。これにより、第二のHBCモジュールを追加し、 マスターHBCモジュールのコントロール下でパワーアッ プされる。HBCモジュール202Aが、HBCモジュールが存在 すると判断した場合、シリアルポートを通じた通信が行 われる。パワーアップ時にHBCモジュール202BがHBCモジ ュール202Aはないと判断すると、202B自身がHOST_SEL信 号をセットし、HBCモジュール202Aのカードスロットへ の電源供給をディスエーブルすることにより、マスター HBCモジュールとなる。HBCモジュール202BがHBCモジュ ール202Aの存在を判断すると、HBC Oがシリアルポート を通じた通信を行うまで待たなければならない。所定の 時間が経過しても通信が行われない場合、HBCモジュー ル202Bはフェイルオーバシーケンスを開始する。[HBC モジュールのフェイルオーバシーケンス] HBCモジュー ルはシリアルシンターフェース中、特定の間隔で相互に 通信するはずである。バックアップHBCがマスターHBCと のシリアル通信を行わなくなると、そのCMB上でマスタ 一HBCモジュールとの通信を確立するよう試みるべきで ある。CMB上で通信が確立され、両方のホストが健全で あると、シリアル通信リンクが異常である。両方のカー ドは、どこに故障があるかを判断する診断を行わなけれ ばならず、故障がバックアップHBCモジュール上にあ る、または分離できない場合、アラームをトリガーす る。故障がマスターHBCモジュール上にある、またはCMB 通信が確立できない場合、バックアップHBCモジュール はマスターHBCモジュールの電源を切り、自分がマスタ ーとなる。[ソフトウェアアーキテクチャの概要]スト レージサーバは、他にないような広帯域、高スループッ トおよびストレージサーバのデマンドをサポートするよ うに設計されたオペレーティングステムによってサポー トされる。オペレーティングシステムは、バスシステム 上のデータ転送をスケジュール、制御し、システムを管 理する。多数の異なるオペレーティングシステムとソフ トウェアコンポーネント構成を利用できるものの、ある 実施形態においては、ストレージサーバ用に設計された モジュール性の高いオペレーティングシステムを使用す る。

【0084】図7は、ストレージサーバ用のオペレーテ ィングシステムとサポーティングプログラムのソフトウ ェアモジュールを示すブロック図である。

【0085】図7は、ハードウェアインターフェースモ ジュール900、アラバマ州モビールのAccelerated Techn ologies社製Nucleus Plus^{IM}リアルタイムカーネルモジ

ュール902、ISOSプロトコル管理モジュール904、ストレージサービスモジュール906というオペレーティングシステムコンポーネントを有する。ハードウェアインターフェースモジュール900により、ストレージサーバのソフトウェアコンポーネントはストレージサーバのハードウェアコンポーネントと通信することができる。

【0086】Nucleus Plus^{IM}リアルタイムカーネルモジュール902は、タスク、キュー、信号、タイマー、重要セクションサポートといった基本的オペレーティングシステム機能を提供するのに使用され、ストレージサービスモジュール906によってC++クラスの機能としてストレージサーバのソフトウェアモジュールにエクスポートされる。

【 O O 8 7 】 ISOSモジュール904により、ストレージサーバは入出力用のメッセージングアーキテクチャをサポートする。RAIDコントローラ (RAC) モジュール、ネットワークインターフェースコントローラ (NIC) モジュール、ディル、ソリッドステートドライブ (SSD) モジュール、ディスクドライブハブ (DDH) モジュール、光ファイバチャネルハブ (FCH) モジュール等のハードウェアモジュールはすべて入力/出力プロセッサ (IOP) である。マスターホストブリッジプロセッサ (HBC) モジュールは、ホストとなる。

【0088】ストレージサービスモジュール906は、メッセージングクラスを使ってコンポーネント間の信頼性の高いメッセージ転送をサポートし、デバイスドライバモジュールの動作と仮想デバイス用サポートをサポートする。デバイスドライバモジュール(DDM)と仮想デバイス(VD)はストレージサーバストレージシステムの構成プロックである。ストレージサービスモジュール906は、ストレージトランザクションに対するリクエストをサポートするように構成されている。

【0089】いくつかのアプリケーションにおいては、ストレージサーバ102A等、単独のストレージサーバがオペレーティングシステムモジュール900-906と一緒に作動する数百のDDMを有し、ストレージサーバリクエストに対応する。また別のアプリケーションでは、わずかなDDMをいろいろ組み合わせて使用する。

【0090】ソフトウェアコンポーネントはデバイスドライバモジュール(DDM)として実装されている。主としてハードウェアデバイスにリクエストを送るDDMは中間ドライバモジュール(HDM)と呼ばれ、内部の中間プログラムとして機能するDDMは中間サービスモジュール(ISM)と称される。例えば、SSDモジュールに働くDDMはHDMと呼ばれ、キャッシュ、ミラーリングおよびその他ハードウェアデバイスに直接連結されていないサービスを提供するDDMはISMと呼ばれる。

【0091】単独のDDMが単独のストレージサーバ上で 複数の例示を有することもある。例えば、図7におい て、動作、健全性、ステータスPHSモニター908A-Dとい う4つの例示があり、それぞれNIC 910, RAC 920, HBC 9 30, SSD 940という4つの主要なソフトウェアサブシステムのいずれかに対応する。各DDMは専用のメッセージキューと個別の識別子を有する。例えば、NIC 910上のPHSモニター908Aは、デバイスID (DID) 0となる。各DDMは、DDMが扱うストレージリクエストのクラスをリストし、オペレーティングシステムモジュールは、ストレージリクエストのクラスに基いてDDMにリクエストをルーティングする。リクエストは、リクエストコードまたは仮想デバイス番号によってルーティングできる。

【 O O 9 2】NICソフトウェアサブシステム910は、プロセッササポートHDM 912A, 入力/出力変換ISM 914A およびPHSモニター908Aという3つのDDMを、RACソフトウェアサブシステム920は、プロセッササポートHDM 912B, 入力/出力変換ISM 914BおよびPHSモニター908Bという3つのDDMを、HBCソフトウェアサブシステム930はプロセッササポートHDM 913C, 入力/出力変換ISM 914C、カード管理HDM 916、システムモニターDDM 918、インターネットプロトコルDDM 921、フロントパネルディスプレイDDM 922、特定用途向けプロセッササポートDDM 924、PHSモニター908Cを有する。SSDソフトウェアサブシステム926は、ソリッドステートドライブ管理HDM926とPHSモニター908を有する。フロントパネルディスプレイ950はハイパーテキストマークアップ言語(HTML)クライアント928をサポートする。

【0093】図8~10はさまざまなハードウェアドライバモジュール(HDM)を示し、図11~14は本発明の好ましいアーキテクチャによる各種の内部中間サービスモジュール(ISM)を示す。図15は仮想回路となるデータパスに構成されたドライバモジュールセットの簡略図である。

【0094】図8は、HDM 524を有するネットワークイ ンターフェースカード520を示す。カード520は光ファイ バチャネルネットワークへの物理的インターフェース52 1を有する。この例においてはカリフォルニア州コスタ メサのQlogic Corporation社製ISP 2200A等のQlogicデ バイスであるネットワークインターフェースチップ522 は、物理的インターフェース521に接続され、ライン523 で表わされる通信を発生し、これがHDM 524の中で処理 される。HDM 504はシステム内の他のドライバモジュー ルが使用するよう、通信の条件付けを行い、ライン525 によって表わされる通信はSCSIフォーマットを有する。 ライン526が示す通信は、BSAフォーマットなどのメッセ ージフォーマットを有し、ライン527が示す通信はイン ターネットプロトコル(IP)フォーマットを有する。HDM は図中、「Qlogicドライバ」と表示されたドライバクラ スの例であり、この例ではデバイス識別子DID 401が与 えられている。物理的インターフェースはNIC #1として 識別される。

【0095】図9は、不揮発性集積回路メモリデバイス

のアレイで実装されるストレージデバイス720を示す。H DM 722はアレイ721と接続され、ライン723でのブロック ストレージアーキテクチャ通信をアレイ721からの記録 再生用フォーマットに変換する。この例では、HDM 722 にはデバイス識別子1130が与えられ、物理的インターフ ェースはSSD #4として識別される。

【0096】図10は、図6に示す好ましい実施形態に おける光ファイバチャネルアービトレーティドループア ーキテクチャのストレージサーバシャーシに設置された ディスクドライブアレイ820の構成を示す。図6に示さ れる光ファイバチャネルディスクハブ#0 216A、チャネ ルディスクハブ#1 216B、光ファイバチャネルディスク ハブ#2 216C、光ファイバチャネルディスクハブ#3 216D は、冗長ハブコントロールHDM 821,822に接続されてい

【0097】HDM 821, 822はそれぞれ物理的光ファイバ チャネルアービトレーティドループ接続823、824に接続 される。HDM 821にはデバイス識別子1612、HDM 822には デバイス識別子1613が付与されている。接続823は光フ ァイバチャネルインターフェース825に接続され、イン ターフェース825は、物理的インターフェース840とHDM8 27に接続されるネットワークインターフェースチップ82 6を有する。ISM 828はHDM 827と内部通信パス829に接続 される。ISM 808は、ライン829上のブロックストレージ アーキテクチャ通信をHDM 827用のIOCB通信に変換す る。HDM 827はネットワークインターフェースチップ826 と通信し、チップ826は光ファイバチャネル823を駆動す る。ISM 828にはデバイス識別子1210、HDM 827にはデバ イス識別子1110が付与される。物理的インターフェース 825はRAC #0とラベリングされる。

【0098】光ファイバチャネル接続824は、インター フェース830に接続され、インターフェース830はインタ ーフェース825と同様の構成であり、ネットワークイン ターフェースチップ832によって駆動される物理的光フ ァイバチャネルインターフェース831を有する。ネット ワークインターフェース832は、ライン833で示すチャネ ル上でHDM 834と通信する。HDM 834はチャネル816を通 じてISM 835と通信し、ISM 835はチャネル837上のBSAフ オーマットメッセージへのインターフェースを管理す る。この例において、ISM 835にはデバイス識別子121 1、HDM 834にはデバイス識別子1111が付与され、インタ ーフェース830はRAC #1として識別される。

【0099】図11~14は、データパスに構成するこ とのできる、本発明によるISM の例をいくつか紹介した ものである。

【0100】図11は本発明によるプロトコルサーバモ ジュールの一例であるSCSIターゲットサーバ550を示 す。本発明のストレージサーバを通じて管理されるデー タのユーザが利用する特定のストレージチャネルまたは ネットワークプロトコル用に、同様のプロトコルサーバ

モジュールを利用することができる。ターゲットサーバ 550は、ユーザとの接続用の通信インターフェースに接 続された、図8のHDM等、HDMから入ってくるメッセージ を受け取るメッセージインターフェース551を有する。 この例においては、インターフェース551上のメッセー ジはSCSIフォーマットを有し、別の例でメッセージはす でにBSAアーキテクチャあるいは現在使用中の通信イン ターフェース上のプロトコルに適した別のアーキテクチ ャを持っているかもしれない。サーバ550は、SCSI-BSA トランスレータ553あるいはアンサーローカル機能554に 入るメッセージを変換するスイッチ機能550を有する。 通常、トランスレータ553はメッセージをライン555上の 外に出て行くメッセージとして送る。ライン555上の中 に入るメッセージはトランスレータ556に供給され、こ れが入ってくるBSAメッセージをライン551で用いられる SCSIフォーマットに変換する。

【0101】多くの例において、SCSIターゲットデバイ スは、さらにメッセージをルーティングすることなくロ ーカルアンサーサービス554を使ってSCSIメッセージに 応えることができる。ストレージそのものからの読み出 しまたは書き込みに関係のない多くのステータスメッセ ージはローカルアンサーサービス554が扱う。

【0102】この例におけるターゲットサーバ550は、 クラスSCSIターゲットサーバの例であり、デバイス識別 子500が付与される。SCSIターゲットサーバ550といった プロトコルサーバの機能のひとつは、関連するインター フェース上でのストレージトランザクションの対象とな るストレージ範囲を識別することである。ストレージ範 囲は、以下に詳述するストレージサーバ内の構成ロジッ クを使って仮想回路にマップされる。

【0103】図12は、ミラー管理データパスタスクを 実行するISM 650を示す。ISM 650はデバイス上の内部通 信チャネルに接続されるインターフェース652を有す る。論理プロセッサ652は入ってくる通信およびデータ を受け取り、ミラーリング機能を管理する。ロジック65 2はプライマリドライブ653、セカンダリドライブ654、 第三のドライブ655および予備ドライブ656を含む複数の ドライブインターフェースと通信する。図中では3方向 ミラーリングが示されているが、仮想回路を使い、所望 の数のミラーパスを作り、「N方向」ミラーリングを行う こともできる。「ドライブインターフェース」という言葉 を用いているものの、ミラーリング機能には他のストレ ージデバイスも利用できる。ドライブインターフェース 653-656は、内部通信チャネルを用いて、ミラーリング 機能で使用されるターゲットストレージデバイスと関連 するHDMモジュールと、あるいは特定の仮想回路に適し たその他のISMモジュールと通信する。この例におい て、ミラーISM 650は「ミラー」というクラスの例として 実装され、デバイス識別子10200を与えられている。 【0104】図13はパーティションISM 750を示す。

パーティションISM 750は、他のドライバモジュールから内部通信を受信するインターフェース751および他のドライバモジュールとも通信するインターフェース752を有するほか、ロジックプロセス753、ベースアドレス754とリミットアドレス755を記憶するデータ構造、ドライブインターフェース756を備えている。パーティションロジックプロセス753は、各種ストレージ管理技術に役立つ論理パーティショニング機能を用い、ドライブプロセス756によって識別されるサブジェクトストレージデバイスを構成するため、物理的デバイスが仮想回路における複数の論理デバイスのように見える。この例において、パーティションISM 750は「パーティション」というクラスの一例であり、デバイス識別子10400が付与されている。

【0105】図14はキャッシュISM 850を示す。キャ ッシュISM 850は、ストレージサーバ上の内部メッセー ジ転送構造へのインターフェース851と通信する論理プ ロセッサ853を有する。キャッシュISM 850におけるデー タ構造には、ローカルキャッシュメモリの割り当て85 4、キャッシュ854に保存されたデータを識別するキャッ シュテープル855、ドライブインターフェース856を有す る。ドライブインターフェースはチャネル857上で、キ ャッシュが使用中の特定の仮想回路に関連するHDMと通 信する。一実施形態におけるキャッシュメモリ854はス トレージサーバの中で管理され、別の実施形態におい て、キャッシュは図9について説明したようなアーキテ クチャを有するソリッドステートメモリモジュール等の 高速不揮発性メモリの中に保存することができる。好ま しい実施形態において、キャッシュISM 850は「キャッシ ュ」というクラスの一例として実装され、デバイス識別 子10300が付与される。

【0106】図15は、本発明による複数のドライバモジュールを有する、データパスによって実装される冗長仮想回路の発見的図式である。仮想回路はデータのユーザと通信するための外部インターフェース、ユーザとの通信をドライバモジュールの通信フォーマットに変換するためのプロトコルトランスレータ、ストレージデバイスとの通信インターフェースを含むストレージオブジェクトを有する。データパスタスクを行うストレージオペレータは、トランスレータとストレージオブジェクトの間に設置できる。キャッシュ、ミラー、パーティション等のストレージオペレータとして動作するドライバモジュールの配列は、システムデザイナがストレージサーバによって提供される構成済みロジックを使って最適なものとする。

【0107】図15に示す例において、外部インターフェースはNIC #0によって提供され、これに関連するHDMはブロック1010が示す。プロトコルトランスレータはSC SIターゲットサーバISM 1011、キャッシュ機能はISM 1012、ミラー機能はISM 1013である。ストレージオブジェ

クトはミラー機能1013からアクセスされ、この例においてはブロック1014で示す光ファイバチャネルの基本的デイジー・チェーンインターフェースとその関連HDMあるいは外部LUNインターフェースから選択された物理的ストレージインターフェースセット、ブロック1015および冗長ブロック1016が示すISN/HDMのペアを通じてアクセスされる光ファイバチャネルアービトレーティドループの中のディスクドライブ、ブロック1017が示すソリッドステートストレージデバイスと関連HDM、ブロック1018が示す外部ディスクドライブとのインターフェースおよびこれに関連するISM/HDMのペアで構成される。ディスク(01)、(02)、(03)、(04) 上の個別のHDMモジュールは光ファイバチャネルアービトレーティドループを通じたインターフェース1015および1016との通信を管理する。

【0108】この実施形態において、ミラーモジュール1013はディスク(01),(02),(03)にそれぞれプライマリ、セカンダリ、予備ドライブとしてアクセスし、ミラー機能を果たす。図12に示すミラーモジュールには第三のドライブインターフェースが含まれているが、図15のシステムはこの第三のドライブを使用していない。【0109】この図には、ISMモジュール1020と1021も描かれており、これらは図中の仮想回路のデータパスとは接続されていない。これらのブロックは、仮想回路構造を使用すると、単純にストレージサーバを構成することにより、パーティショニング等の新しいモジュールを追加することができることを示すものである。

【 O 1 1 O 】 冗長データパスはブロック1025で示すインターフェースNIC #1とこれに関連するHDM、ブロック1026で示すSCSIターゲットサーバISM、ブロック1027で示すキャッシュISM、ブロック1028で示すミラーISMで構成される。データストレージデバイスのリダンダンシーは、ミラー機能を使って実現している。冗長ドライバモジュールは、好ましい実施形態において、ストレージサーバにおける個別のIOPの上に分散されている。

【0111】図15に示すように、ドライバモジュールはそれぞれ、図15中のブロック内で括弧書きされた個別のドライバ識別子を有し、ストレージサーバが管理し、ストレージサーバ内の構成可能なロジックで制御するコンフィギュレーションデータベース内のテーブルに基いて構成ロジックをサポートするのに、このデバイス識別子が用いられる。

【0112】好ましいシステムにおいて、構成テーブルは図16および17に描かれているような持続型テーブルドライバによって管理される。図4に戻ると、ストレージサーバ102はテーブル116のようなテーブルにおける管理およびルーティング情報を記憶する。テーブル116は管理インターフェース120からアクセスできる。テーブル116は通常、不揮発性メモリ等の持続型メモリの中に記憶され、冗長的に保持されてフェイルセーフをサポートする。

【0113】図16は、ドライバモジュール構成の基本的アーキテクチャによる、「持続型テーブル」というクラスの一例として実装された持続型テーブルモジュール1400を示す。この持続型テーブルモジュール1400は、テーブルアクセス論理プロセッサ1401、テーブルデータアクセスマネージャ1402を含む各種サポート機能、持続型イメージマネージャ1403、および持続型テーブルインスタンス同期モジュール1404からなる。テーブルデータアクセスマネージャ1402はこの実施形態において、テーブルクラスマネージャ1405と接続され、このテーブルクラスマネージャは、光ファイバチャネルポートIDテーブル14

バイステーブル1410、ストレージロールコールテーブル1411、光ファイバチャネルディスクロールコールテーブル1412、外部LUNテーブル1413、ソリッドステートストレージテーブル1414を含む複数の構成テーブルを管理する。持続型テーブルモジュール1400が管理するテーブルセットの特定の構成は、特定の実装に合わせて変更し、あるクラスのデバイスにとって最適なものとすることが

できる。

06、LUNエクスポートテーブル1407、構成テンプレート

テーブル1408、DDMロールコールテーブル1409、仮想デ

【0114】持続型イメージマネージャ1403とテーブルインスタンス同期マネージャ1404は、図11に示すような持続型データストレージドライバ1420および図示されていない第二の持続型ストレージドライバと通信する。持続型データストレージドライバ1420はHDMとして実装され、これは「持続型ストレージ」というクラスの一例であり、先に説明したドライバモジュールのモデルに従ってデバイス識別子が付与されている。好ましいシステムにおいて、持続型データストレージHDM 1420は、ストレージサーバ内のソリッドステートストレージデバイスと通信し、仮想回路で用いられるデータに高速アクセスすることができる。

【0115】持続型データストレージはこのシステムに関するさまざまな構成情報を保持する。DDMロールコー

ルテーブル1409には、すべてのデバイスドライバモジュール例リストとそれぞれの固有のデバイスIDが含まれる。ストレージロールコールテーブル1411には、ストレージサーバが検出する全能動ストレージデバイスリストが含まれ、このロールコールテーブルは仮想デバイステーブル1410と構成ツールが仮想回路を作成するのに使用する。LUNエスクポートテーブル1407は、ストレージチャネルトランザクション内の特定されたストレージ範囲を仮想回路にマップできるようにする。外部LUNテーブル1413は、ストレージサーバ上の外部ストレージインターフェースを通じて接続されるその他のストレージサーバの中に保持されるストレージの論理ユニットを識別する。

【0116】2つのプライマリテーブルがクライアントへのストレージのエクスポートと、ストレージサーバ102Aのストレージルーティング機能をサポートする。これらのテーブルは、エスクポートテーブル1407と仮想デバイス構成テーブル1410である。

[エクスポートテーブル1407] エクスポートテーブル14 07は、ストレージトランザクションとともに受け取った アドレシングジ用法を仮想回路またはストレージオプションにマップする。光ファイバチャネルインターフェース上のSCSI-3の場合に使用されるアドレシング情報は、イニシエータID、ターゲットLUN、ターゲットアドレスである

【0117】すべてのイニシエータ、あるいはクライアントが多くのLUNを共有するため、ひとつひとつのリクエストを解決するのに必ずしもこの情報のすべてを使用する必要はなく、ほとんどのLUNは、異なる仮想回路を選択するためよりもむしろ仮想回路内のアドレシングを行うために、ターゲットアドレス、例えばストレージデバイス上のオフセットを使用する。この代表的実施形態において、エクスポートテーブル1407は表1のように構成される。

【表1】

プロトコル	プロトコル別アド レッシング(LUN)			
SCSI	0	No	11	NIC 0
SCSI	1	Yes,ID=6	30	NIC 0
SCSI	1	Yes,ID=5	60	NIC 1
SCSI	2	No	12	NIC 0
TCP/IP	port2000	No	70	NIC 0

【0118】エクスポートテーブル1407には、仮想回路の現状、仮想回路の容量その他の情報を記載する別のコラムを含めることができる。一実施形態において、エクスポートテーブル1407は、エクスポートテーブルのコラムで仮想回路全体を列挙する。

【0119】表1は、プロトコルごとのアドレシング情報を使ってリクエストを適当な仮想回路ヘルーティングできることを示している。従って、ポート2000をターゲ

ットとするストレージ範囲を識別するものとして使用するTCPセッションだけが、識別子70を有する仮想デバイスから始まる仮想回路にルーティングされる。

【0120】表1は、あるプロトコルについてひとつの LUNを、ストレージトランザクションのイニシエータに 応じて異なるデバイスに接続できることを示している。 この例において、LUN 1はイニシエータIDに基いて異な る仮想回路にマップされる。また、仮想回路は、「ワー

ルドワイドネーム(WWN)」等、他の種類の識別子に基いて マッピングすることもできる。

【0121】エクスポートテーブルの一例を以下に示

#define EXPORT_TABLE "Export_Table"

struct ExportTable Entry {

rowID ridThisRow:

//表のこの行のrowID

U32 version; //エクスポートテーブルバージョンの記録

U32 size: //エクスポートテーブルサイズの記録(バイト)

CTProtocalType

ProtocolType: //FCP、IPその他

U32 CircuitNumber;

//LUNその他

VDN vdNext:

//パス内で最初の仮想デバイス番号

VDN vdLegacyBsa: //レガシーBSAの仮想デバイス番号

VDN vdLegacyScsi;

//レガシーSCSIの仮想デバイス番号 //エクスポートされたLUN番号

ExportedLUN:

U32 InitiatorId; //ホストID

U32 TargetId; //われわれのID //FCループ番号

U32 FCInstance: String32

Serial Number; //シリアル番号のストリングアレイを使用

Long long

Capacity;

//この仮想回路の容量

U32 FailState:

U32

PrimaryFCTargetOwner:

U32

U32

SecondaryFCTargetOwner;

CTReadyState ReadyState; //カレント状態

CTReadyState DesiredReadyState; //所望の準備状態

String16 WWNName; //ワールドワイドネーム(64または128ビットでIEEEに

登録されたもの)

string32

NAME:

//仮想回路名

#endif

[仮想デバイス構成テーブル] 仮想デバイス構成テーブ ルは、仮想デバイスを、仮想デバイスをサポートするデ バイスドライバに接続する。仮想デバイスは、冗長デザ インをサポートするように設計されているため、仮想デ バイス構成のためのテーブルは仮想デバイス番号をデバ イスモジュールにマップする。一実施形態において、表

2のようなテーブルを使って仮想デバイスがこれをサポ ートするデバイスドライバにマップされる。図15は、 表2で実装される仮想デバイス12から始まる仮想回路を 示したものである。

【表2】

仮想デバイス	プライマリ	代替	パラメータ	ステータス	クラス
1	4000	4001	N/A	プライマリ	持続テーブル
10	1210	1211	SO(00)	代替	FC ディスク
11	500	501	VD(10)	プライマリ	SCS!ターケット
12	500	501	VD(13)	プライマリ	SCSIターケット
13	10300	10301	VD(14)	プライマリ	キャッシュ
14	10200	10201	VD(15,16,null,17)	ブライマリ	ミラー
15	1210	1211	SO(02)	プライマリ	FC ディスク
16	1210	1211	SO(03)	プライマリ	FC ディスク
17	1210	1211	SO(04)	プライマリ	FC ディスク

【0122】表2のように、各仮想デバイスについて、 その仮想デバイスをサポートするプライマリおよび代替 ドライバモジュールに関する情報が提供される。例え ば、表2の2行目では、光ファイバチャネルディスクドラ イブが仮想デバイス(VD)10にマップされる。

【0123】仮想デバイスは仮想デバイスをサポートす

る一つ以上のソフトウェアあるいはハードウェアモジュ ールで構成される。パラメータのコラムは、初期化情報 を提供するのに使用される。VD 10の場合、パラメータ はSO(00)で、これはストレージオプション0を意味す る。各デバイスドライバモジュールのクラスは、クラス ごとのパラメータを有する。ストレージオプションドラ

イバは、特定のストレージユニットを指定するパラメー 夕を使い、ミラードライバやキャッシュドライバといっ た中間ドライバクラスは、仮想回路内の次の仮想デバイ スを指定するパラメータを使用する。このフォーマット によれば、ひとつのデバイスドライバモジュールがパラ メータの設定に基いて複数のデバイスをサポートするこ とができる。表2においては、デバイスドライバ1210は 仮想デバイス10, 15, 16, 17によって使用されている が、それぞれドライバに異なるパラメータを指定する。 ステータスのコラムは、仮想デバイスをサポートするソ フトウェアまたはハードウェアモジュールのステータス を示す。例えば、表2の1行目では、ステータスは「プ ライマリ」であり、これはプライマリデバイスドライ バ、つまりここでは4000が使用されることを意味してい る。表2の2行目のステータスは「代替」であり、これは プライマリデバイスドライバが故障した、あるいは正し く応答していないことを示す。この場合、代替ドライ バ、つまり表2の2行目では1211が使用される。複数の 代替を有するデバイスの場合、ステータスのコラムには 使用されているドライバが表示される。

【0124】例)例えば、接続オプション130のいずれかひとつの上で、SCSIプロトコルを使い、アドレシング情報の中でLUN 2を指定して、ストレージサーバ102Aへとストレージトランザクションが行われる場合について考えてみる。この例において、ストレージサーバ102Aは表1および2のように構成されているものとする。

【0125】ストレージトランザクションを受け取るネットワークインターフェース146等の接続オプションは、ハードウェアデバイスドライバに接続される。ハードウェアデバイスドライバはストレージトランザクションを受け取り、プロトコルに従って、そのプロトコルを扱う適当な仮想デバイスにこれを送る。

【0126】例えば、SCSIストレージトランザクションは、SCSIターゲットクラスの中のデバイスドライバに送られる。同様に、IPストレージトランザクションは、IPターゲットクラスの中のデバイスドライバに送られる。ここで、ストレージトランザクションはSCSI通信プロトコルを使って作られたため、SCSIターゲットデバイスドライバ(DID 500)にルーティングされる。

【0127】SCSIターゲットデバイスドライバはさらにリクエストを分析する。分析ではまず、そのリクエストをどの仮想回路にマップするかを判断する。この判断は、エクスポートテーブル内の情報を使って行われる。この例において、表1は、LUN2を指定するSCSIプロトコルを使用するリクエストは仮想デバイス12から始まる仮想回路にルーティングされるべきであることを示している。一実施形態において、SCSIターゲットリクエストはすべて、ひとつのインターフェースに関する同じSCSIターゲットドライバにルーティングされ、この実施形態では、ターゲットVD 12のパラメータ情報は、SCSIターゲ

ットの第二の仮想デバイスにメッセージをルーティング するよりも、SCSIターゲットデバイスの行動を制御する のに使用される。

【0128】ここでドライバ番号500とされているSCSI ターゲットデバイスはSCSI メッセージを内部フォーマットに変換する。このようなフォーマットの一例が、 I_20 ブロックストレージアーキテクチャ(BSA) フォーマット に基くものである。このフォーマットはデバイスおよび プロトコルニュートラルであり、中間デバイスドライバ はこれを使用できる。リクエストが内部フォーマットと なると、これはパラメータによって示される仮想回路内 の次の仮想デバイスに送られる。ここでは、このパラメータはVD(13)、つまり仮想デバイス13である。

【0129】メッセージはVD 13にルーティングされ、これは冗長キャッシングドライバであり、ここでは1030 0および10301とナンバリングされている。キャッシングドライバはメモリを使ってストレージトランザクションを記憶する。ドライバが使用しているキャッシングアルゴリズムに基いて、ドライバは適当な間隔でストレージトランザクションを仮想回路内の次の仮想デバイスにルーティングする。ここで、次のデバイスはパラメータVD (14)、つまり仮想デバイス14によって示される。

【0130】内部フォーマットにおいて、メッセージは VD 14にルーティングされる。仮想デバイス14は冗長ミ ラーリングドライバを有する。この場合、ドライバ1020 0および10201が使用される。ミラーリングドライバは、 複数のボリュームでミラーリングされたストレージイメ ージを保持するためのミラーリングアルゴリズムを実現 する。このミラーリングドライバは、プライマリ、セカ ンダリおよび第三のストアおよび予備ストアをサポート しているが、他のミラーリングドライバは異なるアルゴ リズムをサポートすることもある。このミラーリングド ライバは、既存のストアと確実に同期される新規ストア を接続する場合もサポートしている。ドライバが使用し ているミラーリングアルゴリズムとミラーリングされた ストアのステータスに基き、ドライバはストレージトラ ンザクションを仮想回路内の適当な仮想デバイスにルー ティングする。プライマリおよび代替ストアがどちらも 機能しているのであれば、ミラードライバはパラメータ VD (15, 16, なし、17)または仮想デバイス15, 16によ ってのみ、このリクエストをプライマリおよびセカンダ リストアにルーティングする。パラメータリストの中の 「なし」とは、この仮想デバイスについては現在、第三 のドライブが使用されていないことを示す。

【0131】ミラーリングドライバは、2つのデバイスに逐次的あるいは並列にストレージトランザクションメッセージをルーティングすることができる。この例において、仮想デバイス15へのメッセージ送信が検討されるが、セカンダリストア、仮想デバイス16にまでこの例を拡張することが可能である。仮想デバイス15は、光ファ

イバチャネルドライブを制御するための冗長ドライバを 有する。ドライバは、例えばBSAからSCSIへ等、内部フ ォーマットをドライバが使用するフォーマットに変換す る。ドライバはまた、ドライブにアドレシング情報も提 供する。ここで、パラメータSO(02)を使って、ストレー ジオプション、この例では光ファイバチャネルドライブ 番号2が選択される。

【0132】このように、ストレージプラットフォーム において、ハードウェア機能(ディスクまたはフラッシ ュメモリ等)とソフトウェア機能(RAIDストライプまたは ミラー等)はすべて、ほとんどの場合にデバイスと呼ば れるソフトウェアドライバを通じてアクセスされる。

【0133】これらのデバイスはペアにされ(このペア を構成する各々のデバイスは別個の基板上で動作し、冗 長性を持たせることが好ましい)、仮想デバイスと呼ば れる。次に仮想デバイスが連結され、各種の構成が出来 上がる。例えば、ミラーデバイスは2つまたは3つのディ スクデバイスに連結できる。このような構成を通じて、 仮想デバイス連鎖が完成する。これらの仮想デバイス連 鎖は、別の構成でも使用可能なBSAタイプのデバイスに 構成されている限り、追加できる。

【O134】仮想デバイス連鎖はFCP/SCSIターゲットサ ーバデバイスに接続され、FCPターゲットドライバの「エ クスポート」に関するLUNエクスポートテーブルの中にマ ッピングされる(つまり、外部からはFCPプロトコルを通 じてアクセスされる)。この時点で、先頭にSCSIターゲ ットサーバデバイスを有する仮想デバイス連鎖は、仮想 回路と呼ばれる。

【0135】仮想回路の構成を司る仮想回路マネージャ ソフトウェアは、SCSIターゲットサーバの「先頭」を仮想 デバイス連鎖に置き、その後FCPターゲットのエクスポ ートテーブルを更新することによって仮想回路をエクス ポートする。このソフトウェアはまた、削除、休止、フ ェイルオーバ動作もサポートする。

【0136】仮想回路マネージャソフトウェアは、各仮 想回路内の全仮想デバイスを1ヵ所にまとめて記載する 仮想回路テーブルVCTを保持する役割も担う。この情報 は、フェイルオーバ、ホットスワップ、シャットダウン 等、多くのシステム動作を実行するのに必要となる。

【0137】初期化を行う場合、仮想回路マネージャソ フトウェアはVCTそのものを持続型テーブルストアの中 で定義し、さらにVCTの挿入、削除その他の変更を聞き 取る。

【0138】新しい仮想回路を作るためには、SCSIター ゲットサーバを例示し、新しいLUNをマップ、エクスポ ートするのに必要な情報をVCT内の記録に入れなければ ならない。仮想回路マネージャは、VCTへの挿入を聞き 取り、その回答を受け取ると、次の動作を行う:

1. 新たに挿入された記録の情報を有効化しようとする。 記録に無効な情報が含まれていると、そのステータスフ

ィールドにはエラーが表示され、それ以上の動作は行わ れない。

2. 新しく挿入された記録によって指定された仮想回路の LUNについて、新しいSCSIターゲットサーバデバイスを

3. 新たな記録のステータスを「例示」とする。

4. 仮想回路に割り当てられるストレージは、ストレージ ロールコールテーブルで使用されるようにフラグが立て られる。

5.エクスポートテーブルが更新され、LUNが新しいSCSI ターゲットサーバに送られる。

仮想回路内の記録が削除されると、仮想回路マネージャ は以下の動作を行う:

- 1.まだ済んでいない場合は仮想回路を休止させ、休止と
- 2. 仮想回路の発送データをエクスポートテーブルから取 り除く。
- 3. 仮想回路の記録から参照されるロールコール記録に不 使用と表示する。
- 4. 仮想回路に関連するSCSIターゲットサーバの例示を除 く。

仮想回路マネージャは、VCTにおける「エクスポート」フ ィールドの変更を聞き取り、VCTの中のいずれかの記録 における「エクスポート」フィールドが「正しい」と設定さ れると、仮想回路マネージャは以下の動作を行う:

1.FCPターゲットのエクスポートテーブルに必要な変更 を行うことにより、仮想回路をエクスポートする。

2.エクスポート動作中に何らかのエラーに遭遇した場 合、VC記録のステータスフィールドが設定され、「エク スポート」フィールドは正しい状態のままとなる。仮想 回路がエクスポートされないと、「エクスポートされた」 というフラグが「間違い」にセットされる。

【0139】仮想回路マネージャは、仮想回路テーブル の「休止」フィールドへの変更を聞き取る。VCTのいずれ かの記録における「休止」フィールドが「正しい」にセット されると、仮想回路マネージャは次の動作を行う:

1.VCが現在エクスポートされている場合、そのエクスポ ートが停止し、「エクスポートされた」というフラグが、 「間違い」にセットされる。

2. 仮想回路内の仮想デバイスのすべてに休止メッセージ が送られる。

3.休止動作中に何らかのエラーに遭遇した場合、VC記録 のステータスフィールドが設定され、「休止」フィールド は正しい状態のままとなる。つまり、仮想回路が休止さ れていないと、「休止された」というフラグが「間違い」に セットされる。

【0140】[ユーザインターフェース] ユーザインタ ーフェースは、本発明によるストレージサーバを構成す る際に表示、使用するためのデータ処理構造によって作 ることができる。画像には、ロゴを表示するためのフィ

ールド、サーバのシャーシに関する基本情報を表示するフィールドおよびアイコンセットを有するウィンドウがあり、これらのアイコンを選択すると、管理アプリケーションを起動することができる。ハードウェアとソフトウェアを管理するルーチン、ユーザアクセスを管理するルーチン、そしてサーバ内の長いプロセスをモニターするルーチンはボタンによって開始される。本発明によれば、サーバに付けられるホストを定義する機能、エクスポートされたLUNを管理されたリソースにマップする機能、管理されたストレージを構成する機能もボタン操作で起動できる。

【0141】このウィンドウには、ユーザ名入力用フィールドとパスワード入力用フィールドを含むユーザログオンダイアログボックスも含まれている。

【0142】[ホットマネージャ]ユーザはボタン操作でホストマネージャを起動する。ここでは、ストレージサーバ用のホスト(サーバ)を決定するための、Javaベースのユーザインターフェース(UI)について説明する。管理ソフトウェアがウィンドウを開くと、ここには、構成、使用する上で利用できる各ホストに関するいくつかのコラムにホスト名、ポート番号、イニシエータIDおよび説明を、入力する表が表示される。これ以外のフィールドには、別のコラムに記載したネットワークインターフェースカード識別子および個別のホスト識別子が含まれる。好ましい例における個別のホスト識別子は、光ファイバチャネルホストに関するワールドワイド番号である。

【0143】ホストマネージャはストレージサーバのJa vaベース管理アプリケーションのサブコンボーネントであり、これによってユーザはNICポートとイニシエータI Dに名称と内容説明を割り当て、LUNの定義プロセスを進めることができる。一般的な機能はマウスのポップアップ、ツールバーボタン、アクションメニューを通じて利用し、例えば新規ホスト追加ボタン、ホスト変更ボタン、ホスト削除ボタン等を使って、既存のホストにアクセスしたり、新ホストを定義することができる。

【0144】ユーザインタフェースは、ホスト情報を表示するためのメニューとテーブル、あるいはその他のグラフィクスで構成される。ユーザがホストマネージャパネルに入ると、テーブルには既存のホストすべてが記入される。ユーザは、テーブル内の行を選択できる。各行には、1つのホストに関する情報が含まれる。次にユーザはホストの変更または削除を選択し、変更を選択すると、ダイアログボックスが現れ、ユーザはホスト名や内容を変えることができる。変更後、OKまたはキャンセルボタンを押す。OKを押すと、その変更がテーブル内に表示され、サーバに送られる。削除を選択すると、ダイアログボックスが現れ、削除されるホストを示すラベルとOKおよびキャンセルボタンが表示される。OKを押すと、そのホストの行がテーブルから削除され、サーバでもこ

の削除が行われる。追加を選択すると、ダイアログボックスが現れ、ユーザはホストに関するすべての情報を追加することができる。OKを押すと、その新ホストに関する新しい行がテーブルに追加され、サーバでもこの追加が実行される。コラムラベルをクリックすれば、コラムをソートできる。

【0145】 [ストレージのマッピング] ユーザはストレージ管理ルーチンを起動することができ、このルーチンで表示される画像には、ストレージの要素を表示する階層化ツリーによる表示構成を示すウィンドウが含まれる。

【0146】ストレージの要素はこのツリー構造を使って定義される(例えば、ミラー→ストライプ→ディスク)。これにより、ユーザはストレージに関するそのユーザの考え方に合った、体系化された方法でそのストレージを構成することができる。ストレージ要素の代表的な種類を以下に示す:

- ミラー
- ストライプ
- 外部LUN
- 内部ディスク
- SSD
- ストレージコレクション
- ストレージパーティション

これらの要素をツリー状に組み立てることにより(例えばMicrosoft Explorerのようなツリーディスプレイを使用する)、ユーザは仮想回路で使用するストレージを前もって構成することができる。各要素はパーティションに分割でき、これらのパーティションを異なる方法で使用することが可能である。例えば、ストライプセットをパーティションに分割し、ひとつのパーティションをひとつのLUNとしてエクスポートし、別のパーティションをミラー内の1つのメンバーとして使用できる(これをさらに分割することも可能)。

【0147】ストレージ要素をパーティションに分割した場合、これらストレージコレクションの中に保存され、このストレージコレクションはパーティションに分けられた要素の子供となる。分割されていない要素については、このパーティションコレクションは存在しない。各パーティションは、それが分割しているストレージの種類、つまりミラーパーティションか、ディスクパーティションか等によって識別される。あるストレージ要素のパーティションは、その要素のパーティションすべてが利用できる(つまり、ストレージの全要素が不使用の状態)場合を除き、ひとつのパーティションにまとめることはできない。このために、ユーザはパーティションに分割されたストレージ要素のうち、使用されていないパーティションだけを有するものを選択し、「アンパーティション」ボタンを押す。

【0148】専用スペアがあると、専用スペアもストレ

ージコレクションの中に保存され、このストレージコレ クションはこれらのスペアが割り当てられた要素の子供 となる。

【0149】したがって、ストレージ要素はそれぞれ が、子供としてパーティションコレクション、スペアコ レクションおよび親となる要素を構成する実際のストレ ージ要素を持ちうる。

【0150】ストレージマネージャはある意味で、サー バ上の接続されたすべてのストレージをリストアップす るストレージロールコールテーブルの内容を表わすもの と言うことができる。利用可能な各ストレージ要素はス トレージツリーの最上部として見られ、例えば、ミラー は利用可能として表示されるが、ミラーの枝を構成する ストライプとディスクはそのミラーに属するため、利用 できない。これらを別の場所で再び利用するには、その ミラーから(したがって、そのミラーから下のストレー ジツリーから)取り除く必要がある。一実施形態におい て、これはWindows NTファイルエクスプローラプログラ ムにおいてファイルをひとつのディレクトリから別のデ ィレクトリに移動する場合と同様に、ドラッグ・アンド・ ドロップによって行う。すべてのストレージ(使用、不 使用)のツリーは、この例のディスプレイでは左半分に 表示され、ストレージの各要素はその種類を示すアイコ ンを持っていたり、また名称やIDを特定する。

【0151】ツリーの下、ウィンドウの右側あるいはそ の他一般的な場所に、利用可能な(不使用の)ストレージ が列挙される。これは、別のストレージ要素あるいは仮 想回路が使っていないすべてのストレージのリストであ る。明白に使用されていないストレージの多くは一般ス ペアプールの中に設置されると予想され、この利用可能 な(使用されていない)ストレージのリストは、ユーザが 新しいストレージツリーを構成する時の材料となる不使 用のストレージ要素を簡単に見つけることができるよう にするための便宜上使用されると予想される。例えば、 ソリードステートストレージデバイス(SSD)のパーティ ションはストライプセット(RAID O)によってミラーリン グされ、このパーティションとストライプセットはどち らも、これらがミラーリングされるまで、利用可能なリ ストの中に含められる。2つのメンバーからミラーが作 られると、このミラーは仮想回路に組み込まれるまで、 利用可能なリストの中に表示される。

【0152】右側には、ユーザがこれをマウスでクリッ クすることによって選択したツリーの要素に関する情報 とパラメータが表示される。利用可能なリストに表示さ れたストレージ要素が選択されると、利用可能リストと ストレージツリーの両方で選択される。

【0153】追加、削除機能が搭載されているため、エ ントリを作ったり、削ったりすることができ、さらに変 更機能により、ユーザインターフェースで提供されるツ ールを使い、ユーザはツリーの中のストレージ要素に関 する「所有者」、「最終修理日」、「内容説明」等のフィール ドを変更することができる。ユーザが自分の追加しよう としているもの(ミラー、ストライプ、ディスク等)を特 定すると、これに適当なコントロールセットが付与され

【0154】内部ディスクと外部LUNについて、ユーザ は名称、サイズ、あるいはメーカー等の項目を指定でき る。ディスクは1個のハードウェアであり、自動的に検 出されるため、内部ディスクを指定することは特殊のケ ースのように思われる。ユーザがディスクを追加するの は、後に追加する何らかのハードウェアのために「プレ ースホルダ」を入れておく場合に限られる。これはSSD基 板についても行われる。

【O155】RAIDアレイの場合はどうなるかというと、 ユーザは特定のRAIDレベルの(当初はミラーかストライ プ)アレイを作りたいと指定し、そのアレイのメンバー となるストレージ要素を指定することができる。これ は、利用可能なストレージ要素のリストからエントリを 選択することによって行われ、アレイ容量はそのメンバ 一の容量によって決定する。すると、アレイのメンバー として使用されるストレージ要素には利用不可とのタグ が付けられ(これらはアレイの一部であるため)、アレイ そのものが利用可能なストレージのリストに追加され る。各RAIDアレイには、メンバーのひとつが故障した場 合のためにそのアレイに割り当てられる専用スペアを設 けることもできる。

【0156】ストレージ要素のパーティショニングも可 能であり、これはパーティションに分割すべき要素を選 択し、ユーザがどのサイズのチャンクを希望するかを指 定することによって行われる。その要素が過去に分割さ れていなければ、これによって2つのパーティションが 作られる。つまり、ユーザが希望したパーティションと ストレージの残り(不使用)のパーティションである。不 使用部分からさらに別のパーティションも作られる。

【0157】各ストレージ要素に関する詳細な表示によ り、利用できる最大限の情報が得られる。好ましいシス テムにおいて表示される項目のひとつは、特定のストレ ージ要素のパーティションがどのような種類のものか (大きさと位置)である。

【0158】[LUNのマッピング] ユーザインターフェ ースの1つのボタンを操作することにより、LUNマップ ルーチンが起動される。LUN(論理ユニット番号)マップ は本質的にLUNとこれに関するデータのリストであり、 名称と説明のリストとして表示され、そのLUNに関連す るVC(仮想回路)がこのディスプレイ上に示される。ユー ザがLUNマップからエントリをひとつ選択し、その詳細 を求めると、これを見ることができる。LUNマップは、 既存のLUNリストを、名称、説明その他のフィールドで 表示する。これらのフィールドには以下のものがある: - 名称

- 内容説明
- エクスポートされた状態
- ホスト
- ストレージ要素

LUNマップにより以下のことが可能となる:

- 各種フィールドに基くソーティング
- フィールドに基くフィルタリング。これは、一度に複数のLUNが動作する場合(例えば、イネーブル/ディスエーブル)のみ必要。
- 削除または編集/ビューのためにLUNを選択
- 新しいLUNの定義と追加
- 既存のLUNのインポート(ハードウェア立上げ時の「学習モード」で行われる)
- メンバーの追加とLUN上でのホットコピーミラープロセス開始
- LUNのエクスポートとアンエクスポート。これが基本的にホストからのデータの流れを開始、停止する。

仮想回路は、ボタン操作で起動できるストレージツリーあるいはホストに接続されるダイアログボックス等その他のグラフィック構成として(ユーザに対して)定義される。ダイアログボックスは、LUNの名称を入力するフィールド、内容説明を入力するフィールド、ターゲットIDを入力するフィールド、エクスポートされたLUNにンする情報を入力するフィールドを含む。ポップアップメニューは、利用可能なホストのリストの場合はホストボタン、利用可能なストレージ要素のリストの場合はストレージボタンで開くことができる。キャッシュ選択ボタンは、チェックボックスとして実装される。

【0159】ストレージツリーは実際にはストレージメンバーのツリーである(例えば、いくつかのストライプセットからなるミラーで、ストライプセットはいくつかのディスクからなる)。ホストは実際には特定のイニシエータIDを有し、NIC上の特定のポートに接続されるサーバである。ユーザはこれを、所定のホストおよび適量の利用可能なストレージを表わす所定のストレージツリーを選択することによって定義できる。

【0160】キャッシュの使用は、チェックボックスを使った「オン」または「オフ」に限定される。ベタのシステムでは、キャッシュのサイズやアルゴリズムの仕様に関するツールを提供する。キャッシュの使用は仮想回路に沿ったデータの流れを妨害することなく、実行中にオン、オフできる。LUNが作られた時のデフォルトは「オン」となる

【0161】LUNマップの一実施形態では、仮想回路を作るのに必要な機能を有し、これはホスト用、ストレージ用2つのコラムを有するマルチコラムテーブルからなる。LUNを作るとこれが自動的にエクスポートされ、「追加」、「変更」、「削除」等の機能が利用できる。

【0162】LUNマップディスプレイで、ホットコピー ミラーが定義される。これは通常、既存のLUNについて 行われるからである。これは、LUNを選択してからミラーの追加を通じて既存のストレージツリーに追加するストレージツリーを選択すること、あるいは既存のミラーを拡張する(例えば2方向から3方向へ)のいずれかのプロセスとなる。

【0163】[データ移動のサポート]図18は、通信リンク14では第一のストレージデバイス11に、また通信リンク14では第二のストレージデバイス12に接続されるストレージネットワークにおける3段階のデータ流れを示す間略図である。中間デバイス10もまた、通信リンク13を通じてクライアントプロセッサに接続され、これによって中間デバイス10は論理アドレスLUN Aのデータにアクセスするためのリクエストを受け取る。

【0164】ストレージサーバ10はバッファとして使用される不揮発性キャッシュメモリ等のメモリ、リンク13上で受け取ったデータアクセスリクエストをリンク14と15でアクセスできるストレージデバイスに転送するためのデータ転送リソースのほか、本発明によるホットコピープロセスを管理するロジックエンジンを有する。このプロセスは、図18に示す3つの段階を考えることによって理解できる。

【0165】ステージ1において、ストレージサーバ10 は転送されるデータセットを特定し、リンク13で受け取 ったすべてのデータアクセスリクエストをリンク14にマ ップしてデバイス11に接続し、このデバイス11がリクエ ストの対象となったデータセットを記憶する。ストレー ジサーバはホットコピープロセスを開始し、ターゲット デバイス、つまりこの例ではデバイス12を特定する制御 信号を受信する。このステップによってステージ2が始 まり、ステージ2でデータセットがバックグラウンドプ ロセスとして第一のデバイス11からストレージサーバ10 を通じて第二のデバイス12に転送される。パラメータが ストレージサーバ10上に保持され、このデータセットが 転送される様子と、クライアントプロセッサからのデー タアクセスリクエストに対するバックグラウンドホット コピープロセスの相対的プライオリティが示される。ホ ットコピープロセスの間、同プロセスの進行状況および リクエストの種類に応じて、データアクセスリクエスト が第一のデバイス11と第二のデバイス12にマップされ る。また、ストレージサーバには、ホットコピープロセ スにプライオリティを与えるためのリソースが含まれ、 ホットコピープロセスのプライオリティが低いと、クラ イアントプロセッサは、そのデータアクセスリクエスト にすぐに対応することができる。ホットコピープロセス のプライオリティが比較的高いと、クライアントプロセ ッサはそのデータアクセスリクエストへの対応がある程 度遅れるが、ホットコピープロセスはより早く完了す

【0166】データセットの転送が完了すると、ステージ3が始まる。ステージ3では、データセットにアドレス

されるクライアントプロセッサからのデータアクセスリ クエストが、通信リンク15を通じて第二のデバイス12に ルーティングされる。ストレージデバイス11はネットワ ークから一緒に排除されるか、別の目的で使うことがで きる。

【0167】ストレージサーバ10は、好ましい実施形態 において、先に説明したストレージドメインマネージャ で構成される。

【0168】ストレージデバイス11と12は、独立したデ バイスあるいはひとつのストレージユニットにおける論 理パーティションからなる。この場合、ホットコピープ ロセスにより、ストレージユニット内のひとつのアドレ スから別のアドレスへとデータが移動する。

【0169】図19、20、21、22は、上述のイン テリジェントなネットワークサーバにおいて実行される ホットコピープロセスのソフトウェアをいくつか示した ものである。ホットコピープロセスに使用する別のスト レージサーバでは、特定のシステムに合わせて構成を超 えることができます。仮想回路、持続型テーブルストレ ージ、ユーザインターフェースの構造に関して、以下の 図を見ながら詳細に説明する。

【0170】図19はホットコピープロセスで使用され る基本的データ構成を示す。第一の構造350は「ユーティ リティ・リクエスト構造体」、第二の構造351は「ユーティ リティ構造体」、第三の構造352は「メンバー構造体」と呼 ぶ。メンバー構造体352は特定の仮想回路とそのステー タスを特定するためのもので、仮想回路の識別子(VDI D)、現在仮想回路が取扱っているデータブロックのブロ ック番号を有する論理ブロックアドレス(LBA)、仮想回 路に関するキューにあるリクエスト数、ステータスパラ メータ等のパラメータが含まれる。

【0171】ユーティリティ構造体351は、現在実行中 のユーティリティ、つまりこの場合であればホットコピ ーユーティリティに関するパラメータを有し、ソースデ ータセット識別子である「ソースID」、ホットコピープロ セス用の1個または複数のデスティネーションストレー ジデバイスの識別子である「デスティネーションID」、そ のユーティリティに関して実行されるリクエストのキュ ー、現在扱われているブロックとそのサイズを示すパラ メータ等のパラメータを記憶する。

【0172】ユーティリティリクエスト構造体350は、 ホットコピープロセスに関するリクエストを、これに関 する各種のパラメータとともに伝える。このパラメータ には、例えばリクエストの状態を示すパラメータである 「ステータス」、そのリクエストをサポートする各種のフ ラグ、対応するユーティリティ構造体へのポインタ、ク ライアントプロセッサからの入力/出力リクエストと比 較したそのリクエストのプライオリティを示すパラメー タ、ソース内のデータセットを特定するソースマスク、 ホットコピープロセスがデータセットをコピーするデス

ティネーションデバイスの位置を特定するデスティネー ションマスク等である。一実施形態において、ひとつの ホットコピーリクエストに関する複数のデスティネーシ ョンマスクがある。図19に示すように、ユーティリテ ィリクエスト構造体の中には論理ブロックアドレス(LB A)が保存され、これは現在扱われているデータセット内 のデータブロックについて、メンバー構造体の中にも保 存される。

【0173】ホットコピープロセスを開始するために は、ユーザの入力を受け入れ、これがユーティリティリ クエスト構造体を作る。ストレージサーバ内の持続型テ ーブルストレージはこの構造体で更新され、ソースおよ びデスティネーションデバイスのステータスとそのデー 夕に関連する仮想回路がチェックされ、ドライバがホッ トコピープロセスを開始し、ステータスパラメータが各 種データ構造の中にセットされる。ホットコピープロセ スの進行状況は、故障時のために持続型テーブルストレ ージの中に保存される。故障が発生した場合、ホットコ ピープロセスは、サーバ内の他のリソースおよび持続型 テーブルストレージ内に保存されていたステータス情報 とデータ構造を使って再開することができる。RAIDモニ ター等、システム内の他のドライバにはホットコピープ ロセスが伝えられる。リクエストは、メンバー構造体に 入る順番を待つ。

【0174】セットアップが完了すると、ホットコピー プロセスをサポートする入力、出力プロセスが開始され る。このホットコピープロセスをサポートする入力、出 カプロセスの相対的プライオリティにより、クライアン トプロセッサが同じデータセットに関する入力、出力リ クエストを実行している状態で、ホットコピープロセス の進行速度を決定する。好ましいシステムにおいては、 クライアントプロセッサからの入力、出力リクエストが 最初に実行される。ホットコピープロセスをサポートす るブロック転送が実行されている場合、クライアントプ ロセッサからの入力または出力リクエストを受け取る と、ブロック転送は原子動作として完了し、クライアン トプロセッサのリクエストが満たされる。別のシステム では、プロセスのプライオリティは異なる技術でも管理 できる。

【0175】ホットコピーを実行する基本的プロセスを 図20に示す。このプロセスは、メンバー構造体のキュ 一の最上位に到達したホットコピーリクエストから始ま る(ステップ360)。次にストレージサーバ内のバッファ が割り当てられ、ブロック転送をサポートする(ステッ プ361)。データセット内の第一ブロックのコピーをバッ ファに移動するメッセージが発行される(ステップ36 2)。現在のブロックは、ホットコピープロセスについて 設定されたプライオリティに従ってバッファに移動され る(ステップ363)。ブロックの移動は、ストレージサー バ内で複数のプロセスによるアクセスを制御するための 適当なメモリロックトランザクションを使って行われ る。次に、ブロックのコピーをバッファから一つ以上の デスティネーションに移動するメッセージが発行される (ステップ364)。このブロックは、ホットコピープロセ スに関するプライオリティに従って、一つ以上のデステ ィネーションに移動される(ステップ365)。ブロックが 移動すると、持続型テーブルストアとプロセスをサポー トするローカルデータ構造は、ホットコピーの進行状況 を示すステータス情報で更新される(ステップ366)。プ ロセスは、データセットの最終ブロックがコピーされた か否かを判断する(ステップ367)。コピーが終了してい なければ、次のブロックのコピーをバッファに移すメッ セージが発行される(ステップ368)。プロセスはステッ プ363にループし、データセットのブロックを引き続き デスティネーションに移動する。ステップ367におい て、データセットの最終ブロックがデスティネーション にうまく移動したと判断された場合、プロセスが終了す る(ステップ369)。

【0176】本発明の一実施形態によれば、デスティネ ーションが複数にわたるホットコピープロセスの場合、 使用されているデスティネーション群の一つ以上のメン バーがプロセス中に故障することがありうる。この場 合、プロセスは動作を続ける一つ以上のデスティネーシ ョンで継続することができ、続けられるプロセスをサポ ートして該当するテーブルの更新が行われる。

【0177】このように、ホットコピー機能は、データ セットをまだダウン状態となっていないひとつのメンバ ーから交換トライブへとコピーするのに使用される。デ ータセットには、ストレージデバイスの内容全体あるい はストレージデバイスの内容の一部が含まれる。ホット コピー機能は、適正にステータスおよびパラメータを管 理しながら、どのレベルのRAIDアレイでも使用できる。 【0178】ホットコピーのパラメータには、プロセス のプライオリティ、ソースメンバーデバイス、デスティ ネーション識別子が含まれる。ホットコピーリクエスト には、ソースメンバー識別子、デスティネーションメン バー識別子、コピーブロックのサイズ、コピーの頻度ま たはプライオリティが含まれる。ホットコピーは、プラ イオリティに従って、一度にひとつのブロックサイズず つ行われる。現在のブロック位置は、上述のようにデー 夕構造内のアレイコンフィギュレーションデータの中に 保存される。ホットコピープロセスは通常の入力および 出力プロセスと同時に実行される。ホットコピーされる ドライブへの書き込みは両方のドライブに行われるた め、ホットコピーが中断または失敗しても、当初のソー スメンバーは有効なままである。ホットコピーが完了す ると、当初のソースメンバーはアレイから外され、シス テムマネジャプログラムによって使用不可と指定され る。同様に、一実施形態において、データセットをサポ ートする仮想デバイスは、新しいデスティネーションを 目指すよう更新される。

【0179】図21及び22は、ホットコピープロセス 実行中にクライアントプロセッサが発行するデータアク セスリクエストを管理するために、ストレージサーバ内 で行われるプロセスを示す。データアクセスリクエスト は、読み出しリクエスト、書き込みリクエスト等のうち 1種類であっても、同じもののバリエーションであって もよい。その他のリクエストとしては、データチャネル 等の管理をサポートするリクエストがある。図21は、 書き込みリクエストを扱うひとつのプロセスを示す。

【0180】書き込みリクエストがキューの最上位に到 達すると、プロセスが始まる(ステップ380)。プロセス は、この書き込みリクエストが現在のホットコピープロ セスの対象となるデータセット内の位置を特定している かどうかを判断する(ステップ381)。これがホットコピ ーされているデータセットの中にある場合、プロセスは 書き込みリクエストが指示されるブロックがすでにその デスティネーションにコピーされているかどうかを判断 する(ステップ382)。もしコピーされていれば、そのデ ータセットが最初に保持されていたストレージデバイス と、一つ以上のデスティネーションストレージデバイス の両方に書き込みを行うメッセージが発行される(ステ ップ383)。次に、入力と出力リクエストのプライオリテ ィに従ってデータが移動され(ステップ384)、プロセス が完了する(ステップ385)。

【0181】ステップ381において、リクエストがデー タセットの中にないと、データセットのソースへの書き 込みを実行するメッセージが発行され(ステップ386)、 この時点でプロセスの流れはステップ384に移る。同様 に、ステップ382において書き込み先となる位置がすで にコピーされていることがわかった場合、ソースデバイ スに書き込みを行うメッセージが発行される(ステップ3

【0182】図22は、ホットコピー中に発生する読み 出しリクエストの取扱いを示す。このプロセスは、読み 出しリクエストが仮想デバイスに関するキューの最上位 に達した時に始まる(ステップ390)。まず、読み出しが ホットコピーの対象となるデータセット内であるかどう かが判断され(ステップ391)、読み出しがデータセット 内であれば、すでに一つ以上のデスティネーションにコ ピーされたブロック内であるかどうかが判断される(ス テップ392)。読み出しが、デスティネーションにすでに コピーされたブロック内である場合、データを新しい位 置から読み出すメッセージが発行される(ステップ39) 3)。別のシステムでは、システム内のデータトラフィッ クの管理に影響する信頼性、スピードその他の要因に応 じて、ソースデバイス、あるいはソースおよびデスティ ネーションデバイスの両方から読み出しが行われる。ス テップ393以降、データはクライアントプロセッサのデ ータアクセスリクエストに関するプライオリティに従っ

【0183】ステップ391において、読み出しリクエストがホットコピーの対象となるデータセット内にはないと判断された場合、ソースデバイスを読み出すメッセージが発行される(ステップ396)。同様に、ステップ392において、読み出しリクエストがまだデスティネーションにコピーされていないブロックにアドレスされていると判断された場合、ソースデバイスからデータを読み出すメッセージが発行される(ステップ396)。ステップ396以降、プロセスはステップ394に戻る。

【0184】ブロックがストレージサーババッファを通 じて移動されている間に、特定のブロック内でデータの 読み出しまたは書き込みリクエストが発生した場合、こ のリクエストの扱いを管理するにはデータロックアルゴ リズムが使用される。例えば、読み出しまたは書き込み リクエストを受け取っている間にホットコピープロセス をサポートして論理ブロックがロックされると、クライ アントプロセッサは、データがロックされているため に、この読み出しまたは書き込みリクエストが拒絶され たという通知を受け取る。クライアントプロセッサに高 いプライオリティを与える別のシステムにおいて、読み 出しまたは書き込みリクエストは続けられ、その一方で ホットコピーをサポートするバッファの中に保持されて いたブロックは削除され、ホットコピーのステータスが リセットされて、そのブロックが移動されていないこと が示される。個々の利用に関する必要に応じて、各種の データロックアルゴリズムを利用できる。

【0185】[ターゲットエミュレーション] 図1乃至 3に示す構成において、ストレージサーバはデータのユ ーザとデータを保存するストレージドメインにおけるス トレージデバイスとの間の中間デバイスとして動作す る。この環境では、レガシーストレージデバイス、つま りサーバを中間デバイスとして挿入する前にあったデバ イスをサポートするために、サーバにはレガシーストレ ージデバイスをエミュレートするリソースが供給され る。このように、サーバがレガシーデバイスとデータの ユーザとの間に挿入されると、サーバは、ユーザとレガ シーデバイスの間で使用されているストレージチャネル プロトコルに従ってレガシーデバイスの論理アドレスを 仮想的に決定する。次にストレージサーバは、受け取っ たレガシーデバイスにアドレスされたすべてのリクエス トをそのプロトコルに従って処理する。さらに、必要な 構成情報をレガシーデバイスから再生し、ローカルメモ リにこの情報を保存して、レガシーデバイスにおいてユ ーザが予想するステータスおよび構成情報が、サーバ内 のローカルリソースを使って供給されるようにする。こ れにより、サーバとレガシーシステムの間の通信を省く ことができ、サーバはストレージチャネルプロトコルに 従ってレガシーデバイスの動作をスプーフし、ストレー

ジネットワークにサーバを追加する際、ユーザの再構成 が不要となる、あるいは大幅に簡略化される。

【0186】[まとめ]ストレージエリアネットワーキング(SAN)は、新しいストレージ中心コンピューティングアーキテクチャである。主に光ファイバチャネルベースのストレージサブシステムとネットワークコンポーネントが利用可能となったことにより、SANは高速データアクセスとデータ移動、よりフレキシブルな物理的構成、ストレージ容量の利用改善、中央集中化されたストレージ管理、オンラインストレージリソースの利用と再構成、ヘテロジニアスな環境を約束する。

【0187】旧来の「ダイレクトアタッチストレージ」モデルにおいて、ストレージリソースはひとつのサーバだけに通じる高速直接物理パスを有し、他のサーバはすべて、LANを通じて間接的にのみ、そのストレージリソースに極めて低速でアクセスしていた。ストレージエリアネットワークは、「ネットワークされた」トボロジーにおいて個々のサーバから個々のストレージリソースに直接高速アクセスパスを提供することにより(光ファイバチャネルを使用)、これを変えている。ネットワークアーキテクチャの導入もまた、ストレージ構成のフレキシビリティを大幅に向上させ、特定のサーバからストレージリソースを分離し、サーバサイドのリソースにほとんど影響を与えずにこれらを管理、構成することを可能にしている。

【0188】SANは今日の環境におけるフレキシビリティとデータアクセスのニーズに応えるための正しいトポロジーを提供する一方で、SANのトポロジーそのものは十分にビジネス上の問題に対処しているとはいえない。単にスイッチ、ハブ、ルータ等のSANファブリックコンポーネントを通じてサーバとストレージリソース間を物理的に接続するだけでは、SANの可能性を十分に実現することはできないが、SANファブリックが、必要とされるセキュリティが保たれた中央集中的なストレージ管理機能を実現するためのハードウェアインフラストラクチャを提供していることは確かである。これら2つの開発を組み合わせて利用することで、新しい環境におけるビジネス上の目標を達成するために不可欠なフレキシビリティが得られ、重要データにいつでもどこでもアクセス可能となる。

【0189】SANハードウェアのインフラストラクチャの上に必要となる管理機能はストレージドメイン管理である。最適なストレージのフレキシビリティと高性能のアクセスを実現するために、ストレージドメイン管理はサーバやストレージデバイスではなく、SANそのものの中に設置するのが最も効率的である。サーバベースおよびストレージベースのリソースを用いるアプローチは、サーバサイドでもストレージサイドでも異機種混合状態を十分にサポートできないため、最適とはいえない。【0190】ストレージドメイン管理は、既存のSANハ

ードウェアインフラストラクチャ上に設置される中央集 中化され、セキュリティの保たれた管理機能であり、ヘ テロジニアスな環境への高性能、高アベイラビリティの 高度なストレージ管理能力を提供する。ストレージドメ イン管理の目的は、従来の機器と新しい機器とを統合 し、サーバおよびストレージリソースをSANとストレー ジ管理タスクから解放し、すべてのSANコンポーネント を通じて利用できるSANベースのアプリケーションをホ ストすることのできる堅牢なSANファブリックの中核を 構成することである。SANはストレージドメイン管理を 使用せずに構築できるが、最適化されたSAN環境を構 築、管理するには、この極めて重要な間能力が必要とな る。

【0191】ストレージドメイン管理の基本要素には以 下のものがある:

- 異機種間の相互運用性
- セキュリティの保たれた中央集中管理
- スケーラビリティとすぐれた性能
- 企業クラスの信頼性、可用性、保守性
- 特定用途に作成されたインテリジェントなプラットフ

ストレージドメイン管理の分野により、顧客はSANの全 能力を活用してビジネス上の問題に対処することが可能 となる。

【0192】サーバとストレージの連結や今日の新たな 事業状況で一般的となった合併買収により、ヘテロジニ アスな環境に対応できることは企業環境において死活問 題である。単独メーカーの製品ラインのためにSAN機能 を提供するような製品セットでは、顧客はSANの全能力 を実現できず、新たなサーバやストレージ製品を追加し てこれを利用してもなお、旧来の機器への投資を保持す る必要があるため、ストレージドメインマネジャは最低 でも光ファイバチャネルとSCSIアタッチメントをサポー トでなければならない。ストレージドメインマネジャは そのうちに導入される新たな技術に適用できるよう進化 していく必要があるため、プラットフォームは確実に成 長し、より広範なマルチプロトコルの接続性が実現す る。SANは中央集中的に管理することのできる大型の仮 想化されたストレージプールを作るため、特にバックア ップ/再生、災害復旧において、従来の「ダイレクトアタ ッチ」ストレージアーキテクチャと比較して、ストレー ジ管理作業が縮小される。SANはすべてのサーバからす べてのストレージへの物理的アクセスパスを効果的に提 供するものの、ストレージがすべて論理的にすべてのサ 一バにアクセスできるとは限らないため、セキュリティ の問題には確実な方法で対処しなければならない。SAN ファブリックメーカーはこれを、「ゾーン」を論理的に定 義することによって行っており、各サーバがそのゾーン 内にあると定義されたデータにしかアクセスできないよ うになっている。明らかに、安全なゾーンあるいはスト

レージ「ドメイン」を定義する能力はストレージドメイン マネジャのひとつの要素である。ポートレベルではなく LUNレベルでゾーン内に含まれるものを定義する等、ド メインをより細かく定義することにより、今後ストレー ジアセットの利用をさらに柔軟に改善することができ

【0193】ストレージドメインマネジャは、メーカー を問わず、接続されたすべてのサーバとストレージを通 じてひとつの管理インターフェースから利用できる、総 合的な中央集中化されたストレージ管理機能を提供す る。中央から、システムアドミニストレータはヘテロジ ニアスなストレージリソース間のデータの移動またはミ ラーリングを管理し、長期にわたり、さまざまなヘテロ ジニアスなストレージリソースに対してこれらの機能を 動的に利用することができる。その結果、大幅なコスト 削減と管理の簡素化が実現する。拡張可能なインテリジ ェントなプラットフォームとして、ストレージドメイン マネジャは完全な中心位置に設置され、接続されたサー バとストレージリソースすべてにわたって利用できるス トレージ管理機能をホストする。

【0194】新たな事業状況によって拍車がかかるスト レージの拡張率からみると、あるSAN環境について、ス トレージ容量はそのライフタイムの中で簡単に100倍に も膨れ上がる。SANの中央知能として位置付けられるス トレージドメインマネジャも、負荷に対応して性能が劣 ることがないよう、急激な成長に適応できなければなら ない。広い動作範囲について、スムーズでコスト効率の よいスケーラビリティを実現するために、構成の拡張と ともに知能も付け加えて行くべきである。インテリジェ ントなプラットフォームにおける大量のデータをキャッ シュメモリに保存する能力により、SAN構成は最適化さ れ、特定用途型の環境における性能が向上する。例え ば、ファイルシステムジャーナルやデータベーステーブ ルインデックスまたはログといった「ホットスポット」が ストレージドメインマネジャそのものの中にある高速ス レージの中にキャッシュされると、ストレージドメイン マネジャを使わずに構築されたより旧式のSAN構成と比 較して、メッセージパスの待ち時間が大幅に短縮され る。オンボードのストレージが大量であることを考える と、データベースとファイルシステム全体が効果的にキ ャッシュされ、性能の大幅改善が実現する。オンボード ストレージ能力はまた、データ移動およびその他のデー 夕移行作業中にデータをステージ分けする上でも重要で ある。前述のように、SANへ移行する主な理由のひとつ は、全体としてのデータへのアクセス可能性を改善する ことである。この新しいストレージアーキテクチャに移 行した結果として故障箇所が1ヵ所でも発生すると、こ れによる利点の多くは実現することができない。このた め、データそのものだけでなく、そのデータまでのアク セスパスも常に利用できる状態になければならない。故

障によるダウンタイムは、自動1/0パスフェイルオーバ、論理ホットスペアリングおよびプラグ接続可能、ホットスワップ可能なコンポーネント等、相対的な内部コンポーネントや機能を使用することによって短縮しなければならない。ダウンタイムは、オンラインファームウェアのアップグレード、ハードウェアとソフトウェアの動的再構成、高性能なバックグラウンドデータ移動等のオンライン管理機能を使ってさらに縮小する必要がある。

【0195】最高レベルの性能を確保するために、ストレージドメインマネジャは、特にそれが必要とされるストレージ関連タスクのために最適化された、特定用途向けに作られたインテリジェントなプラットフォームとするのが好ましい。このプラットフォームは、データ移動とストレージ管理アプリケーションの実行に必要なローカルでの高速ストレージにより裏打ちされ、さまざまなストレージ管理タスクを実行する重大なローカル処理能力をサポートする。

【0196】 インテリジェントなストレージサーバとし て汎用プラットフォームを使用する場合と比較して、特 定用途向けに作られたプラットフォームは、はるかに高 速でより決定的な応答時間を実現するリアルタイムオペ レーティングシステム、メッセージの待ち時間を短縮す る、より効率的なI/Oパスコード、アプリケーションエ ンジンではなくデータムーバエンジンとして最適化され たオペレーティングシステムカーネルを提供する。この 特定用途向けに作成されたプラットフォームは、汎用オ ペレーティングシステムでは得られない、信頼性の高い 画期的なメッセージ送信等のカーネルレベルの機能をサ ポートする。統合パスフェイルオーバ、オンライン管理 および動的再構成等の高アベイラビリティという特徴 は、中核オペレーティングシステムによってサポートさ れる。ヘテロジニアスなSAN環境をサポートするために 最適な場所に知能を持たせることにより、ストレージド メインマネジャはエンドユーザに以下のような業務上の 利点をもたらす:

- ストレージアセットの割り当てと利用の改善
- 急成長する流動的なストレージ環境にコスト効率よく 対応するフレキシビリティ
- オンライン管理と構成を通じた高いアベイラビリティ - ストレージ管理の全体的\$/ギガビットコストを下げ る、より効率的な管理
- 統合SAN環境において各種のサーバとストレージをひ とつにまとめる能力
- 全ストレージリソースを通じて動的に利用できるストージ管理とキャッシング機能を追加することによってJB ODストレージの価値を高める。

【0197】ストレージドメイン管理と同時に採用される堅牢なSANハードウェアインフラストラクチャは、急速かつ予測不能な変化を続ける環境に対応しながらも、

アベイラビリティの高いデータに確実かつ高速にアクセスするというフレキシビリティを提供する。このように実現される中央集中的ストレージ管理パラダイムは、企業にとって他社との競争上の利点を提供する、より効率的で低コストのデータ拡張管理方法である。

【 0 1 9 8 】本発明の各種実施形態に関する上の記述は、例を挙げ、説明するためのものであり、本発明を説明中紹介した具体的形態のみに限定しようとするものではない。さまざまな変更や同等の配置は、当業者には自明である。

[0199]

【発明の効果】以上説明したように、本発明によれば、SANアーキテクチャのフレキイビリティ及び能力を活用しつつストレージシステムの管理を簡素化するシステムを提供できる。

【図面の簡単な説明】

【図1】(a)は、本発明によるストレージサーバをストレージドメイン管理のストレージルータまたはストレージディレクタとして構成したものを含むストレージエリアネットワークを示す図、(b)はインテリジェントなストレージエリアネットワークサーバのいくつかの用途を示す図

【図2】本発明によるストレージサーバをヘテロジニアスなネットワークにおけるストレージドメイン管理のストレージルータまたはストレージディレクタとして構成したものを有する別の構成によるストレージエリアネットワークを示す図

【図3】本発明による複数のストレージサーバを相互に直接通信チャンネルを持たせて構成し、より広範なストレージドメインまたは複数のストレージドメインをサポートするようにした、より複雑なストレージエリアネットワークを示す図

【図4】本発明によるストレージドメイン管理をサポートするストレージサーバのブロック図

【図5】本発明によるストレージドメイン管理をサポートするストレージサーバの別の例を示すブロック図

【図6】インテリジェントなストレージエリアネットワークサーバのハードウェアアーキテクチャのブロック図【図7】インテリジェントなストレージエリアネットワークサーバ用オペレーティングシステムのソフトウェアモジュールおよびサポートプログラムのブロック図

【図8】本発明によるシステムで用いる光ファイバチャネルインターフェース用ハードウェアドライバモジュールの簡略図

【図9】本発明によるハードウェアドライバモジュールを含むソリッドステートストレージシステムの簡略図【図10】本発明によるストレージサーバの一実施形態において用いるディスクドライブの内部アレイの図【図11】ローカルアンサー機能を備えた本発明によるターゲットサーバ内部サービスモジュールの概略図

【図12】 ディスクミラーを利用した内部サービスモジ ュールの図

【図13】パーティション機能を利用した内部サービス モジュールの図

【図14】キャッシュ機能を利用した内部サービスモジ ュールの図

【図15】本発明による仮想回路構成を示す図

【図16】本発明による持続型テーブルストアマネジャ を利用した内部サービスモジュールの図

【図17】本発明による持続型ストレージハードウェア、 ドライバモジュールの概略図

【図18】本発明による、3段階のホットコピーリソー スを有する中間デバイスを備えたネットワークの簡略図 【図19】本発明によるホットコピープロセスを用いた

ドライバの一例において用いられるデータ構成を示す図 【図20】本発明によるドライバによって実行されるホ ットコピープロセスを示すフローチャート

【図21】ホットコピープロセス中の書き込みリクエス トの取扱いを示すフローチャート

【図22】ホットコピープロセス中の読み出しリクエス トの取扱いを示すフローチャート

【符号の説明】

1201, 1202, 1203…クライアントサーバ・

1204…ハブ

1205, 1206, 1207…デバイス

1210, 1211, 1212…クライアントインタフェース

1213, 1214…ストレージインターフェース

【図1】

【図14】

【図2】

【図3】

【図13】

【図7】

【図12】

【図10】

【図11】

【図15】

【図18】

【図19】

【図20】

【図22】

フロントページの続き

(31)優先権主張番号 455106

(32)優先日 平成11年12月6日(1999.12.6)

(33)優先権主張国 米国(US)

(31)優先権主張番号 482213

(32)優先日 平成12年1月12日(2000.1.12)

米国(US) (33)優先権主張国

(71)出願人 597001637

One Dell Way, Round Rock, TX 78682-2244, Unit ed States of Americ a

- (72)発明者 アラン・アール・メレル アメリカ合衆国、カリフォルニア州 94539、フレモント、チェニン・ブラン ク・ドライブ 48835
- (72)発明者 ジョセフ・アルトマイヤー アメリカ合衆国、アイオワ州 52327、リ バーサイド、ファイブハンドレッドフォー ティース・ストリート・エスダブリュ、 3689
- (72)発明者 ジェリー・パーカー・レーン アメリカ合衆国、カリフォルニア州 95136、サン・ジョセ、トニノ・ドライブ 4829
- (72)発明者 ジェームス・エー・テイラー アメリカ合衆国、カリフォルニア州 94550、リバーモア、フロレンス・ロード 1033

- (72) 発明者 ロナルド・エル・パークス アメリカ合衆国、カリフォルニア州 94526、ダンビル、ムスタング・コート 55
- (72)発明者 アラステアー・テイラー アメリカ合衆国、カリフォルニア州 95123、サン・ジョセ、カレロ・アベニュ - 755
- (72)発明者 シャリ・ジェイ・ノラン アメリカ合衆国、カリフォルニア州 95132、サン・ジョセ、ピナクル・ドライ ブ 3470
- (72)発明者 ジェフリー・エス・ネスポー アメリカ合衆国、カリフォルニア州 94566、プリーザントン、コルテ・ベラ・ クルズ 2720
- (72) 発明者 ジョージ・ダブリュ・ハリス・ジュニア アメリカ合衆国、カリフォルニア州 94041、マウンテン・ビュー、ビュー・ス トリート 327
- (72) 発明者 リチャード・エー・ルグォー・ジュニア アメリカ合衆国、ニュー・ハンプシャー州 03051、ハドソン、パインウッド・ロー ド 11