

3 장 OSI 참조모델

작성일 버 젼 작성자 OSI 참조모델

학습목차

- 1. 개 요
- 2. 통신망 아키텍쳐
- 3. 물리계층
- 4. 데이터링크계층
- 5. 네트워크계층
- 6. 전송계층
- 7. 세 션 계 층
- 8. 표현계층
- 9. 응용계층

학습목표

- 통신망 아키텍쳐의 기술적 개념과 논리구조를 살펴본다,
- OSI 참조모델의 계층별 특성과 역할에 대하여 공부한다.
- 계층 간의 통신을 이해함으로써 계층별 상호 관계에 대한 인터페이스를 이해한다.

1. 개 요

◉ 개 념

OSI는 시스템 간의 상호 접속을 목적으로 하는 각종 프로토콜의 표준을 개발하기 위한 공통 기반을 제공하는 것과 기존 표준과의 관계 및 앞으로 개발되는 표준과의 관계를 명확히 하는 것을 목적으로 한다.

● 세부기능

- 시스템간의 통신을 위한 표준 제공과 통신을 방해하는 기술적인 문제들 제거
- ▶ 단일 시스템 간의 정보 교환을 하기 위한 상호 접속점 정의
- > 제품들간의 번거로운 변환 없이 통신할 수 있는 능력 향상

→ 참조 모델의 목적

- 가방형 시스템간 상호 접속 가능
- 표준화된 네트워크 구조 제공
- 이종간 상호 접속을 위한 가이드라인 제시

(7)知园/知园/

1. 개 요

< OSI 계층 구조 >

1) 기술적 개념

- ⊙ 다른 기종의 컴퓨터나 단말 등을 통신 회선으로 연결하여 상호간의 통신 실현을 목표
- 다수의 용도로 사용되는 프로토콜들을 서로 유기적으로 결합한 프로토콜들의 집합체→ ISO의 OSI, IBM사의 SNA
- 🥏 기술적 내용
- ➤ 구성요소의 못델화 통신망 구조를 구성하는 요소를 보편적인 개념과 용어를 사용하여 정의하는 것으로서 프로토콜의 설계와 확장에 유연성 분여
- 프로토콜의 계층화
 프로토콜들을 기능별로 분류하여 계층화 → 프로토콜에 대한 오류의 순정이나 새로운 기능의 추가가 용이
- > 자원의 가상화 컴퓨터나 단말의 다른 기종을 결합하여 공통적인 이미지로[^]보이도록 변환

- 2) 논 리 구 조 가) 실체(entity)
 - → 각 서브시스템(subsystem) 내에 두 개 이상 존재할 수 있으며 (N) 실체에 의해 부여된 역할을 수행하는 기능 요소를 (N) 기능이라고 정의한다.
 - 나) 접속(connection)
 - 개방형 시스템 A, B의 동위 실체에서 PDU(Protocol Data Unit)라고 불리는 이용자 정보 데이터를 교환하기 위한 논리적인 통신로

- 2) 논 리 구 조
 - 다) 프로토콜(protocol)
 - → 각 개방형 시스템의 실체는 동일 계층에 속하는 실체와 상호 통신함으로써 지정된
 역할 수행 → 구체적인 제어정보의 내용 및 형식이 각 계층 내에서 정하여지는 데이를 (N) 프로토콜이라고 한다.

< 프로토콜의 계층구조 > 7 / 36

- 2) 논 리 구 조
 - 라) 서비스(service)
 - (N) 서비스: (N)층이 (N+1) 층에 제공하는 통신기능
 - ◉ (N) 서비스 액세스점(Service Access Point, SAP) : (N) 실체가 (N) 서비스를

(N+1) 실체에 제공하는 지점

2) 논 리 구 조

- 서비스 기본 요소
- 요 구: 어떤 절차를 기동시키는 과정인데 서비스 이용자 측에서 수행한다.
- ➤ 지 시: 어떤 서비스를 기동하거나 또는 어떤 서비스가 다른 이용자에 의해 기동 되었음을 나타내는 데 서비스 제공자 측에서 수행한다.
- > 응 답: 특정 SAP에서 이전의 지시에 따라 기동된 절차를 끝내는 과정인데 서비스 이용자 측에서 수행한다.
- > 확 인: 특정 SAP에서 이전의 요구에 따라 기동된 절차를 끝내는 과정인데 서비스 세공자 측에서 수행한다.

2) 논 리 구 조

- 3) 특 징
 - 주어진 계층은 다른 계층에 영향을 주지 않고 수정되거나 기능이 향상
 - 다른 기계들을 다른 레벨들에 끼워 넣을 수 있다.
 - 계층화에 의한 모듈화로 인해 전체 설계를 간단히 구현 가능
 - 다른 제어 기능들 사이의 관계는 그들이 계층들로 나누어질 때 쉽게 이해
 - > 공용의 저소준 서비스는 서로 다른 고수준 어용자들에 의해 공유
 - 계층화되기 전에는 필요치 않았던 기능을 반드시 이용해야 하므로 전체적인 오버헤드가 소요
 - 구분된 계층 단위로 직접 회로화하여야 하기 때문에 집적화에 소요되는 비용증가

3. 물리 계층(Physical Layer)

1) 역할

데이터링크 계층이 통신을 수행하기 위한 물리적인 접속의 설정과 유지 및 해제 수행

신호를 송수신하는 DTE/DCE 인터페이스 회로와 제어 순서, 커넥터의 규격이 포함

3. 물리 계층

2) 특 성

물리적 특성

> DTE와 DCE 사이의 물리적 연결에 관한 사항

전기적 특성

- > 전압 레벨과 클럭에 관련되는 특성
- > 거리와 데이터전송속도가 결정

기능적 특성

> 물리적으로 접속되는 두 장치(DTE, DCE) 간의 상호 작용에 쓰이는 각 회선에 의미를 부여함으로써 수행하는 기능 규정

절차적 특성

 인터페이스의 기능적인 특징을 사용하여 데이터를 전송시키기 위한 사건의 순서를 규정하며 데이터 전송을 위한 핀의 동작 순서를 제시

3. 물리 계층

3) 역 할

- 🕣 신 호: 신호의 종류를 결정해서 수신 측에서 복조 하는 데 유용한 신호 선택
- 부호화: 하나의 문자를 나타내는 데 필요한 단위 즉, 바이트 및 비트를 표현하는 시스템결정
- 통신회선의 구성: 통신 회선의 개수를 결정하고 전송선의 공유 여부 및 사용 권한 설정
- 🕣 데이터 전송 방식: 연결된 두 장치 간의 전송 방향을 정하며 다중화 기술 선택
- 접속 형태: 네트워크에서 물리적인 배치를 의미하는 토폴로지의 형태 결정

3. 물리 계층

3) DTE/DCE 인터페이스

< 인터페이스 시리즈 >

시리즈	내용
V 시리즈	전화와 음성대역의 아날로그 전화 회선용
X 시리즈	패킷 교환과 회선 교환방식의 공중 데이터망
1 시리즈	근거리 통신망

< ITU-T X 시리즈 >

번호	내용
X.3	공중 데이터 네트워크에서의 패킷·조립장치
X.20	공중데이터 네트워크에서의 비동기 전송을 위한 DTE, DCE의 접속 규격
X.21	공중데이터 네트워크에서의 동기 전송을 위한 DTE, DCE의 접속 규격
X25	공중데이터 네트워크에서 패킷형 터미널을 위한 DTE와 DCE 사이의 접속 규격
X.75	패킷 교환 공중 데이터 네트워크 상호간의 접속을 위한 노드 사이의 프로토콜

4. 데이터 링크 계층

1) 개 념

- 두 시스템 사이에서 오류 없는 데이터를 전송하기 위하여 상위 계층에서 받은 프레임을 헤더와 트레일러와 함께 하위 계층으로 전달
 - > 헤더 부분: 데이터 단위의 시작을 나타내는 표시와 목적지의 주소 포함
 - 트레일러 부분: 오류 제어를 위해 오류 검출 코드가 필요

2) 역 할 -) 제에서 버트, 등내었다

- ◉ 인접 노드로 정보 전달: 오류 제어 및 흐름 제어를 인접 노드 간에 수행
- → 오류 제어: FEC(Forward Error Control) 및 BEC(Backward Error Control)
 기술이 필요
- 흐름 제어: 수신기의 노드에 패킷을 전달하고자 할 때 소신층에서 처리할 수 있는 양보다 과도하게 많을 때 수행
- 주소 지정: 헤더와 트레일러에는 송신자의 물리 주소와 수신자의 물리 주소 필요
- 접근 제어 방식: CSMA/CD, Token Ring 및 CSMA/CA

4. 데이터 링크 계층

4. 데이터 링크 계층

- 3) 전송 제어 방식
 - 가) 전송 제어 절차의 특징
 - ① 문자나 비트에 관계없이 전송할 수 있다.
 - ② 연속적으로 전송하고 일괄적으로 응답하는 것이 원칙이므로 전송 능력 향상
 - ③ 전이중 방식으로 전송할 때는 전송능력 개선
 - ④ 오류 검출 능력이 향상
 - 나) 전송 제어 절차의 단계
 - (1) 1단계(데이터 전송회선 접속)
 - (2) 2단계(데이터 링크 확립)
 - (3) 3단계(정보 전송)
 - (4) 4단계(데이터 링크 종결)

5. 네트워크 계층

1) 개 념

- 통신 노드에서 다양한 경로를 설정하고, 메시지 등을 라우팅하며 망 노드 간에 트래픽 제어
- 전송 계층에서 수행하는 종단 시스템 간의 end-to-end 통신 지원
 - > 물리 계층과 데이터 링크 계층은 인접한 시스템 간에 link by link 서비스 프로토콜 제공

2) 역 할

- 논리주소 지정: 송신지와 수신지의 IP 주소를 헤더에 포함하여 전송
- 라우팅: 어떤 네트워크 안에서 통신 데이터를 보낼 경로 중 가장 짧은 거리의 전송경로를 선택
- 주소 변환: 수신지의 IP 주소를 보고 다음으로 송신되는 노드의 물리 주소를 찾는 기능
- 다중화: 하나의 물리 회선을 사용하여 동시에 많은 장치들간의 데이터 전송 수행

5. 네트워크 계층

< 네트워크 계층 >

20 / 36

5. 네트워크 계층

- 3) 네트워크 서비스 〈전화, 비전화。〉
 - 가) 접속형(Connection Oriented, CO)
 - → 논리적인 통신로를 설정한 후 네트워크가 접속된 상태에서 데이터가 전송되며
 데이터 전송이 끝나면 통신 회선 절단
 - ◉ 기 능
 - 통신할 상대방과의 네트워크 접속의 설정
 - ▶ 서비스 품질의 설정
 - > 데이터 단위 또는 우선 데이터 단위의 전송 수행
 - > 통신할 상대방과의 동기된 접속의 해방
 - 나) 비접속형(Connectionless Oriented, CL)
 - → 수신 측의 동위 계층과의 접속을 위한 논리적인 통신 회선을 설정하지 않고 PRU(Protocol Data Unit)를 전송하는 방식

6. 전송 계층

1) 개 념

- 네트워크 서비스와 사용자 서비스 간의 인터페이스 기능
 - ▶ 네트워크 서비스 : 1 ~ 3 계층
 - 사용자 서비스 : 5 ~ 7 계층
- 전체 메시지의 종단간 전송 수행
- 네트워크 계층 이하에서는 확실히 데이터를 전송할 수 있을 지의 여부를 보증할 수 없지만 전송계층에 맡겨두면 전송해야 할 데이터를 확실히 상대방에 도착하도록 한다.
- 데이터 링크 계층이 하나의 전송매체에 연결되어 있는 두 시스템을 연결하는 데 반해 전송계층은 전체 망의 종단에 연결되어 있는 시스템을 연결한다.

6. 전송 계층

< 전송 계층 > 23 / 36

6. 전송 계층

2) 역 할

최종 목적지까지의 투과적인 데이터 전송을 의미하며, 오류가 발생한 세그먼트의 처리도 담당함으로써 하위 계층을 구성하는 각종 통신망의 품질 차이 보상

분할과 재조합

➤ 전송 가능한 크기로 나누고(Segmentation), 각 세그먼트에 순서 번호(Sequence Number)를 표시함

연결 제어

- 데이터를 안전하게 전송하기 위해 발신지와 목적지 사이의 논리적인 통로를 만드는 기능
- > 3단계: 연결 설정, 데이터 전송, 연결 해제

흐름 제어

> 종단과 종단간의 흐름 제어를 통하여 신뢰성 있는 전달을 보장함

오류 제어

송신 측에서 전체 메시지가 수신 측까지 오류가 없이 전달되었는지 확인

서비스 포트 주소 지정

▶ 응용 프로그램을 실행 중인 컴퓨터에서 하위 계층으로부터 수신된 메시지를 해당되는 응용으로 전달하는 것을 보장

7. 세션 계층

- 1) 특 성
 - 특정한 한 쌍의 프로세스들 사이에서 세션이라 불리는 연결을 확립・유지하며 동기화
 - 사용자간의 데이터 교환을 조직화시키는 수단 제공

< 세션 계층 > 25 / 36

7. 세션 계층

- 2) 역 할
 - 가) 동기화

동기화

- 데이터 단위를 전송 계층으로 전송하기 위한 순서 결정
- > 데이터 단위에 대한 중간 점검 및 복구를 위한 동기점 제공
- 📝 소동기점(Minor Synchronous Point)
- ▶ 많은 페이지로 이루어지는 문서를 전송하는 경우의 각 페이지의 단락 양에 대해서 대화 동기를 조절하기 위하여 사용
- ◉(대동기점(Major Synchronous Point)
 - 일련의 데이터 교환을 대화 단위로 구성하기 위해서 사용되고 반드시 이전에 전송된 데이터 확인
 - 나) 토큰(token)
 - ➤ 토큰(token)은 세션 커넥션의 속성으로 세션 서비스 유저가 특정의 세션 서비스 를 기동하는 권리를 표시하며, 한 번에 한 명의 유저에만 할당된다.
 - 대화 관리와 전이중 및 반이중을 지원하며 데이터 교환 절차, 특정 사용자 대화
 의 해제 그리고 동기 기능의 지원에 대한 특정 기능에만 지원

7. 세션 계층

2) 역 할

< 세션 계층의 동기점 >

8. 표현 계층

- 1) 개 념
 - → 응용 계층에 사용하는 추상구문의 요구에 맞춘 전송구문을 정하여 실제 데이터를 전송할 때 □들 정보 형식 간을 변환
 - ➤ 전송구문 (Transfer Syntax) : 목적에 다양한 비트 형태들을 표현할 수 있는 데이터
 - > 추상 구분(Abstract Syntax): 응용 계층에서의 데이터의 표현
 - 한 사용자는 ASCII를 사용하고 다른 사용자는 EBCDIC를 사용할 수 있도록 구문 협상

< 의미, 구문, 전송 구문과의 관계 > 28 / 36

8. 표현 계층

く표현 계층 >

8. 표현 계층

2) 역 할

> 발신지에서는 송신자가 사용하는 메시지의 형식을 전송에 사용할 수 있도록 상<u>호 간에 수용할 수 있는 형식으로</u> 변환 변화 > 목적지에서는 수신자가 이해할 수 있는 형식으로 변환 ➤ 데이터보안을 위해 암호화와 해독 담당 암호화 전송을 보다 효율적으로 하기 위해 데이터를 압축하거나 해제함 압축 보아 패스워드와 로그인 코드 확인

9. 응용 계층

- 1) 개 념
 - 사용자에게 직접 제공하는 서비스로 제반적인 응용 작업 등의 서비스 제공
 - 추상 구문을 정의하며, 7계층이므로 프로세스 간의 통신에 속한다.
 - 임의의 작업을 수행하는 응용 실체(entity)들간의 집합

전자 우편, 파일 전송, 가상 터미널

응용 계층

시스템 1-정보 표현

시스템 2-정보 표현

표현 계층

정보를 전송하는 표현 문맥 제어

인코딩, 압축, 암호화

< 표현 계층과 응용 계층과의 표현 문맥 관계 >

9. 응용 계층

< 응용 계층 >

8. 응용 계층

2) 역 할

가상터미널

- > 물리적인 터미널의 소프트웨어 버전
- (VT: Virtual Terminal) ➤ 원격 시스템에 로그온 가능

151-92101012

파일 접근. 전송 및 관리

- > 원격 시스템에서 다른 시스템의 파일에 접근 및 전송
- > 원격 시스템의 파일을 관리하거나 제어함

到21/11 社 22/26 Totall Athor ext Emmile

우편 서비스

- > 전자우편의 발송과 저장을 위한 토대 제공
- > X. 400을 주로 사용하며 MHS에 대한 표준 정의

디렉터리 서비스

- > 분산 데이터베이스의 자원들과 다양한 객체와 서비스 모델에 대한 여러 가지의 정보 접근 방법 제공
- ➤ X.500을 주로 사용하며 디렉토리 구현 및 서비스를 위한 표준 규격 제공

요 약

- 1. OSI 모델은 모든 종류의 컴퓨터들 사이에 <mark>통신을 허락하는 네트워크</mark> 시스템을 설계하기 위한 계층구조를 갖는 틀인데 7계층으로 구성되어 있다.
- 2. 개방형 시스템이란 서로 다른 특성을 갖는 컴퓨터끼리 상호 연결할 수 있는 시스템을 말한다.
- 3. 네트워크 아키텍처는 다른 기종의 컴퓨터나 다양한 단말 등을 통신 회선으로 연결하여 이들 상호 간의 자유로운 통신의 실현을 목표로 하는 체계화된 개념이다.
- 4. 설체(entity)는 각 선보시스템(subsystem) 내에 두 개 이상 존재할 수 있으며, (N) 실체에 의해 부여된 역할을 수행하는 기능 요소를 (N) 기능이라고 한다.
- 5. 개방형 시스템 A, B의 동위 실체(동일한 층의 실체 사이)에서, 프로토콜데이터 단위(Protocol Data Unit, PDU)라고 불리는 이용자 정보 데이터를 교환하기 위한 논리적인 통신로를 접속이라고 한다.

요 약

- 6. 각 개방형 시스템의 실체(entity)는 동일 계층에 속하는 실체와 상호 통신함으로써, 지정된 역할을 수행한다. 이 때, 구체적인 제어정보의 내용 및 형식이 각 계층 내에서 정하여지는데, 이를 (N) 프로토콜이라고 한다.
- 7. (N) 실체가 (N) 서비스를 (N+1) 실체에 제공하는 지점을 (N) 서비스 액세스점(Service Access Point, SAP)이라고 한다.
- 8. (N) 층의 동위 실체 사이에서 (N) 프로<u>토콜에 따라 송수신 되는 전송</u>데이터의 단위가 (N)-PDU이다. (N) 프로<u>토콜에 따라 송수신 되는 전송</u>
- 9. (N) 접속의 양쪽 끝으로 (N) 층과 (N+1) 층의 실체 사이에서 받고 건네지는 데이터 단위가 (N)-SDU이다.
- 10. 물리 계층에서는 물리적인 접속의 설정과 유지 및 해제를 수행하며, 신호를 송수신하는 DTE/DCE 인터페이스 회로와 제어 순서, 커넥터의 규격이 포함된다.
- 11. 데이터 링크 계층에서는 실제적인 선로를 이상적인 선로로 가상화하기 위해서 오류 제어 및 흐름 제어가 필요하다.

요 약

CHOICHT Stark YEMAM

- 12. 네트워크 계층은 통신 노드에서 다양한 경로를 설정하고, 메시지 등을 라우팅하며, 망 노드 간에 <mark>트래픽을 제어</mark>한다.
- 13. 전송 계층 간에는 중간 시스템이 존재하지 않으므로 전송 계층 간의 피어 투 피어(peer-to-peer) 통신 기능을 수행한다.
- 14. 세션 계층은 송신 측과 수신 측 사이에서 <mark>프로세스를 서로 연</mark>결, 유지 및 해제하는 역할을 한다.
- 15. 표현계층에서는 응용 계층에 사용하는 추상구문의 요구에 맞춘 전송구문을 정하여 실제 데이터를 전송할 때 그들 정보 형식 간을 변환한다.
- 16. 응용 계층은 사용자에게 직접 제공하는 서비스로 제반적인 응용 작업 등의 서비스를 제공한다.