Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Кафедра «Прикладная математика»

Лабораторная работа №1

по дисциплине «Методы вычислений»

Методы численного решения обыкновенных дифференциальных уравнений

Выполнили студенты группы ФН12-61 Голубев А.А. Зинченко И.В.

Марчевский И.К. Приняли

Кузьмина К.С.

1. Ответы на контрольные вопросы

1. Сформулируйте условия существования и единственности решения задачи Коши для обыкновенных дифференциальных уравнений. Выполнены ли они для Вашего варианта задания?

Рассмотрим задачу Коши для системы ОДУ

$$u' = f(x, u), \quad x > x_0, \quad u(x_0) = u_0,$$

где u(x) и f(x,u) — вектор - функции, параметр x_0 и вектор u_0 считаются заданными. Пусть функция f(x,u) определена и непрерывна в области:

$$D = \{(x, u) : |x - x_0| \le a, |u_i - u_0^i| \le b, i = \overline{1, n}\}.$$

Векторная функция f(x,u) удовлетворяет в области D условию Липшица относительно u, если для двух произвольных точек (x,y),(x,z) ее координатные функции $f_i(x,u)$ удовлетворяют неравенствам

$$|f_i(x,y) - f_i(x,z)| \le L \sum_{j=1}^n |y_j - z_j|, \quad i = \overline{1,n}$$

где L > 0 — постоянная Липшица.

Теорема Коши. Пусть в области D функции $f_i(x, u), i = \overline{1, n}$, определены, непрерывны и удовлетворяют условию Липшица относительно $u = (u_1, ..., u_n)$. Тогда на некотором отрезке $[x_0 - h, t_0 + h]$, где

$$h = \min\left(a, \frac{b}{M}\right), \quad M = \max_{i=\overline{1,n}} \ \max_{(x,u) \in D} \ |f_i(x,u)|,$$

существует, и притом единственное решение задачи Коши, удовлетворяющее заданным начальным условиям.

Заданием нашего варианта служит уравнение нелинейного осциллятора с несимметричной упругой характеристикой:

$$\begin{cases} \ddot{y} + \alpha \dot{y} + ky + \gamma y^3 = B \cos(\omega t), \\ \alpha = 0.4, \gamma = -0.061, k = 1.0, B = 0.115, \omega = 0.5904, \\ t = 0...100, \\ y(0) = 0.1, \dot{y}(0) = -0.3. \end{cases}$$

Преобразуем ОДУ второго порядка в систему ОДУ

$$\begin{cases} \dot{u}_1 = u_2, \\ \dot{u}_2 = -\alpha u_2 - k u_1 - \gamma u_1^3 - B \cos(\omega x), \\ \alpha = 0.4, \gamma = -0.061, k = 1.0, B = 0.115, \omega = 0.5904, \\ t = 0...100, \\ u_1(0) = 0.1, u_2(0) = -0.3. \end{cases}$$

Докажем разрешимость задачи Коши для задачи нашего варианта. Если вектор-функция f(x,u) непрерывно дифференцируема по $u_1, u_2, ... u_n$, то условие Липшица выполняется с постоянной L тогда и только тогда, когда матрица Якоби $f'_u(x,u)$ удовлетворяет неравенству $||f'_u(x,u)|| \le L$.

$$J_{f_u'} = \begin{pmatrix} 0 & 1 \\ -k - 3\gamma u_1^2 & -\alpha \end{pmatrix}$$

Для $\forall b$ и a=100 функция f определена и непрерывна в области D. Исходя из начальных условий, $u_1(0)=0.1$ и $u_2(0)=-0.3$ и в силу непрерывности f и ограниченности x ($x \le 100$) следует, что $|u_i|$ ограничены. Максимальная норма якобиана

$$||J||_M = 2 \max\{0, 1, -k - 3\gamma u_1^2, -\alpha\}$$

является ограниченной величиной. Следовательно, условие Липшица для функции f(x,u) выполняется, значит выполняются условия теоремы Коши.

2. Что такое фазовое пространство? Что называют фазовой траекторией? Что называют интегральной кривой?

 Φ азовое пространство — пространство, на котором представлено множество всех состояний системы, каждому состоянию системы соответствует точка фазового пространства.

Фазовая кривая — кривая в фазовом пространстве, составленная из точек, представляющих состояние системы. Фазовая кривая описывает эволюцию системы.

Интегральные кривые — это семейство кривых, которые являются решением ОДУ (системы ОДУ). Конкретная интегральная кривая, является решением соответствующей задачи Коши.

3. Каким порядком аппроксимации и точности обладают методы, рассмотренные в лабораторной работе?

- 1) Явный и неявный методы Эйлера имеют первый порядок аппроксимации
- 2) Симметричная схема и метод Рунге Кутты второго порядка имеют второй порядок аппроксимации
- 3) Методы Рунге Кутты четвертого порядка, Адамса Башфорта, прогноза и коррекции имеют четвертый порядок аппроксимации.

4. Какие задачи называются жесткими? Какие методы предпочтительны для их решения? Какие из рассмотренных методов можно использовать для решения жестких задач?

Система ОДУ u' = Au с постоянной матрицей A называется жесткой, если:

- 1) все собственные числа матрицы А имеют отрицательную действительную часть;
- 2) число

$$S = \frac{\max\limits_{1 \leqslant k \leqslant m} |\mathrm{Re}\,\lambda_k|}{\min\limits_{1 \leqslant k \leqslant m} |\mathrm{Re}\,\lambda_k|}$$

велико. Число S также называется числом жесткости системы.

Для решения жестких задач используют A - устойчивые методы, т.е. методы, область устойчивости которых содержит левую полуплоскость. Чаще всего используется полностью неявный метод Гира. Среди рассмотренных в лабораторной работе методов, можно использовать неявный метод Эйлера и симметричную схему.

5. Как найти $\vec{y}_1, \vec{y}_2, \vec{y}_3$ для того, чтобы реализовать алгоритм прогноза и коррекции?

Для реализации метода прогноза и коррекции необходимо найти первые три шага самостартующим методом соответствующего порядка (в данном случае — четвертого).

6. Какой из рассмотренных алгоритмов является менее трудоемким? Какой из рассмотренных алгоритмов позволяет достигнуть заданную точность, используя наибольший шаг интегрирования? Какие достоинства и недостатки рассмотренных алгоритмов Вы можете указать?

Из рассмотренных алгоритмов наименее трудоемким является явный метод Эйлера. Для вычисления y_{n+1} необходимо вычислить значение функции f(t,y) в предыдущей точке, т.е. $f(t_n, y_n)$, Недостаток явного метода Эйлера заключается в первом порядке аппроксимации.

В случае неявного метода Эйлера требуется решать систему (в общем случае) нелинейных уравнений относительно y_{n+1} на каждой итерации. К недостаткам можно отнести все тот же порядок аппроксимации, что и в случае явного метода Эйлера.

Симметричная схема имеет второй порядок точности, но является неявным методом, поэтому так же приходится решать систему нелинейных уравнений относительно y_{n+1} .

Методы Рунге — Кутты являются явными самостартующими методами, поэтому их легко программировать, однако они не являются A – устойчивыми.

Метод Адамса — Башфорта 4-го порядка является явным методом, однако он не самостартующий, поэтому необходимо вычислять первых три значения методом соответствующего порядка аппроксимации (например методом Рунге — Кутты четвертого порядка). К недостаткам относится отсутствие А-устойчивости.

Метод прогноза и коррекции 4-го порядка точности является явным методом. Аналогично предыдущему методу для построения метода прогноза и коррекции необходимо найти первые три шага с помощью другого метода соответствующего порядка. Метод является $A(\alpha)$ устойчивым.

7. Какие алгоритмы, помимо правила Рунге, можно использовать для автоматического выбора шага?

В качестве алгоритма для автоматического выбора шага можно использовать ме-

тод Рунге — Кутта — Фельберга, который позволяет оценивать погрешность решения без применения двойного пересчета.

Метод одновременно находит решения четвертого и пятого порядков точности, разность этих двух решений служит оценкой погрешности для метода пятого порядка. Найденная оценка может использоваться для корректирования величины шага.

2. Результаты расчетов

2.1. Проверка порядков аппроксимации методов

Проверим порядки аппроксимации методов на примере решения системы ОДУ, которая описывает колебания шарика на пружине. Исходные данные: $t_0=0, T=3, m=0.3, k=20$.

0.010.0004 0.050.002 δ_1 δ_2 δ_3 δ_4 Явный м. Эйлера 2.24390.31234240.0342230.04213753Неявный м. Эйлера 0.9934870.266610.05678060.0124416 1.47428×10^{-6} Симметричная схема 0.01924530.0007982060.0000319295 2.55445×10^{-6} 0.00151760.0000638701Р-К. 2-го порядка 0.040425 7.32438×10^{-14} Р-К. 4-го порядка 2.6633×10^{-8} $5.244322917 \times 10^{-11}$ 0.00001613 2.13747×10^{-12} А-Б. 4-го порядка 1.11126×10^{-6} $1.74234239 \times 10^{-9}$ 0.000423138 2.13225×10^{-13} П-К. 4-го порядка 8.47057×10^{-8} 1.344395×10^{-10} 0.00004329

Таблица 1. Таблица погрешностей

Для удобства запишем таблицу с отношением погрешностей, ячейки которой содержат отношение $\frac{\delta_i}{\delta_{i+1}}$, (i=1,3). Если метод имеет p-ый порядок, то справедливо приближенное равенство $\frac{\delta_i}{\delta_{i+1}} \approx (\frac{\tau_i}{\tau_{i+1}})^p$.

Явный м. Эйлерм	7.01315	5.13501	5.01249
Неявный м. Эйлера	3.72824	4.61244	4.1276
Симметричная схема	24.9311	24.999	25.42
Р-К. 2-го порядка	26.031	26.0348	25.0455
Р-К. 4-го порядка	626.34	625.31	541.853
А-Б. 4-го порядка	624.111	624.143	625.253

672.5435

628.9548

613.463

П-К. 4-го порядка

Таблица 2. Таблица отношений

Фазовые траектории данной задачи, полученные с помощью трех разных методов, имеют вид:

Рис. 2.1. Явный метод Эйлера

Рис. 2.2. Неявный метод Эйлера

Рис. 2.3. Симметричная схема

2.2. Численное исследование особых точек

Построим фазовые траектории с различными начальными условиями вблизи особых точек системы.

Тест $N_{\underline{0}}1$

$$\begin{cases} \dot{x} = 2x + y^2 - 1, \\ \dot{y} = 6x - y^2 + 1. \end{cases}$$

Особые точки: (0,1) — седло, (0,-1) — фокус.

Рис. 2.4. Фазовые траектории около точки (0,1)

Рис. 2.5. Фазовые траектории около точки (0,-1)

Тест N_2 2

$$\begin{cases} \dot{x} = 1 - x^2 - y^2, \\ \dot{y} = 2x. \end{cases}$$

Особые точки: (0,1) — центр, (0,-1) — седло.

Рис. 2.6. Фазовые траектории около точки (0,1)

Рис. 2.7. Фазовые траектории около точки (0,-1)

Построим фазовую траекторию для системы трех ОДУ.

Тест №3

$$\begin{cases} \dot{x} = \sigma(y - x), \\ \dot{y} = x(r - z) - y, \\ \dot{z} = xy - bz, \end{cases}$$

при значении параметров: $\sigma = 10, r = 28, b = \frac{8}{3}$.

Рис. 2.8. Фазовая траектория системы из 3-х уравнений

Тест $N_{2}4$

Уравнение нелинейного осциллятора с несимметричной упругой характеристикой:

$$\begin{cases} \ddot{y} + \alpha \dot{y} + ky + \gamma y^3 = B \cos(\omega t), \\ \alpha = 0.4, \gamma = -0.061, k = 1.0, B = 0.115, \omega = 0.5904, \\ t = 0...100, \\ y(0) = 0.1, \dot{y}(0) = -0.3. \end{cases}$$

Рис. 2.9. Фазовая траектория колебаний нелинейного осциллятора

2.3. Исследование трудоемкости методов

T			<i>–</i> 0
Таолина з	Оптимальный шаг	в зависимости	от требуемой точности
таолица о.	OHITHMANDHDIH HIAI	D Submonmooth	of the femon to mouth

arepsilon	10^{-2}	10^{-4}	10^{-7}
Явный м. Эйлера	$3.81 \cdot 10^{-5}$	$3.64 \cdot 10^{-7}$	$3.7 \cdot 10^{-10}$
Неявный м. Эйлера	$3.8 \cdot 10^{-5}$	$3.8 \cdot 10^{-7}$	$3.7 \cdot 10^{-10}$
Симметричная схема	0.008	$6 \cdot 10^{-4}$	$2.19 \cdot 10^{-5}$
Р-К. 2-го порядка	0.004	$3.65 \cdot 10^{-4}$	$1.5 \cdot 10^{-5}$
Р-К. 4-го порядка	0.045	0.018	$2.7 \cdot 10^{-3}$
А-Б. 4-го порядка	0.018	0.014	$1.04 \cdot 10^{-3}$
П-К. 4-го порядка	0.035	0.011	$2.06 \cdot 10^{-3}$

По результатам таблицы можно сделать вывод, что наименее трудоемким является метод Адамса 4 порядка. Он показывает лучший результат по сравнению с методом прогноза и коррекции. При $\varepsilon=10^{-7}$ наименее трудоемок метод прогноза и коррекции.

С помощью метода Рунге-Кутты 4 порядка точности можно достичь заданной точности, используя наибольший шаг.

2.4. Автоматический выбор шага

Рис. 2.10. Изменение решения с заданным шагом в зависимости от повышения точности

Информация о шагах представлена в файле "autostep.txt". Решение задачи с грузиком методом Рунге-Кутты 4 порядка. Исходный шаг — 0.5, заданная точность — 1e-8.