Basics of Convex Optimization

Shusen Wang

UC Berkeley

Convex Set

Definition (Convex Set).

A set \mathcal{C} is convex if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and any $\eta \in (0, 1)$, the point $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$ is also in \mathcal{C} .

A convex set \mathcal{C} .

Convex Set

Definition (Convex Set).

A set \mathcal{C} is convex if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and any $\eta \in (0, 1)$, the point $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$ is also in \mathcal{C} .

A convex set \mathcal{C} .

A non-convex set.

Convex Set: Examples

Definition (Convex Set).

A set \mathcal{C} is convex if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{C}$ and any $\eta \in (0, 1)$, the point $\eta \mathbf{x} + (1 - \eta)\mathbf{y}$ is also in \mathcal{C} .

Convex Function

Definition (Convex Function).

- Let \mathcal{C} be a convex set and $f: \mathcal{C} \mapsto \mathbb{R}$ be a function.
- f is convex if for any $\mathbf{w}_1, \mathbf{w}_2 \in \mathcal{C}$ and any $\eta \in (0, 1)$,

$$f(\eta \mathbf{w}_1 + (1 - \eta)\mathbf{w}_2) \leq \eta f(\mathbf{w}_1) + (1 - \eta)f(\mathbf{w}_2).$$

Convex Function: Examples

Definition (Convex Function).

- Let \mathcal{C} be a convex set and $f: \mathcal{C} \mapsto \mathbb{R}$ be a function.
- f is convex if for any $\mathbf{w}_1, \mathbf{w}_2 \in \mathcal{C}$ and any $\eta \in (0, 1)$,

$$f(\eta \mathbf{w}_1 + (1 - \eta)\mathbf{w}_2) \leq \eta f(\mathbf{w}_1) + (1 - \eta)f(\mathbf{w}_2).$$

- Examples of convex functions:
 - Linear function $f(\mathbf{w}) = \mathbf{a}^T \mathbf{w} + \mathbf{b}$. (Here $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{a} \in \mathbb{R}^d$, and $b \in \mathbb{R}$.)
 - Vector norm $f(\mathbf{w}) = \big| |\mathbf{w}| \big|_p$ for all $p \ge 1$. (Defined on \mathbb{R}^d)
 - Vector norm $f(\mathbf{w}) = |\mathbf{w}||_{n}^{p}$ for all $p \ge 1$. (Defined on \mathbb{R}^{d})
 - Exponential $f(w) = e^w$. (Defined on \mathbb{R})
 - Sum of convex functions $f(\mathbf{w}) = f_1(\mathbf{w}) + \dots + f_k(\mathbf{w})$.

Convex Function: Properties

Properties of convex function:

1. $f(\mathbf{w}_0) + \nabla f(\mathbf{w}_0)^T (\mathbf{w} - \mathbf{w}_0) \le f(\mathbf{w})$. (Assume f is differentiable).

Convex Function: Properties

Properties of convex function:

- 1. $f(\mathbf{w}_0) + \nabla f(\mathbf{w}_0)^T(\mathbf{w} \mathbf{w}_0) \le f(\mathbf{w})$. (Assume f is differentiable).
- 2. The Hessian matrix is everywhere positive semi-definite: $\nabla^2 f(\mathbf{w}) \ge \mathbf{0}$. (Assume f is twice differentiable).
 - $\mathbf{H} \in \mathbb{R}^{d \times d}$ is positive semi-definite for all $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^T \mathbf{H} \mathbf{x} \geq 0$.

Convex Optimization

Convex Optimization

Definition (Convex Optimization).

- Convex optimization: $\min_{\mathbf{w}} f(\mathbf{w})$; s. t. $\mathbf{w} \in \mathcal{C}$.
 - 1. \mathcal{C} (feasible set) is convex set,
 - 2. f (objective function) is convex function.

Convex Optimization: Examples

Definition (Convex Optimization).

• Convex optimization: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

Examples:

- Least squares regression: $\min_{\mathbf{w}} ||\mathbf{X}\mathbf{w} \mathbf{y}||_2^2$.
- Logistic regression: $\min_{\mathbf{w}} \sum_{j} \log(1 + \exp(-y_{j}\mathbf{w}^{T}\mathbf{x}_{j}))$.
- SVM: $\min_{\mathbf{w},b} ||\mathbf{w}||_2^2 + \lambda \sum_j [1 y_j(\mathbf{w}^T \mathbf{x}_j + b)]_+$.
- LASSO: $\min_{\mathbf{w}} \left| |\mathbf{X}\mathbf{w} \mathbf{y}| \right|_{2}^{2}$; $s.t. \left| |\mathbf{w}| \right|_{1} \le t$.

Local and Global Optima

Convex Optimization: Property

Definition (Convex Optimization).

• Convex optimization: $\min_{\mathbf{w}} f(\mathbf{w})$; s.t. $\mathbf{w} \in \mathcal{C}$.

• **Property**: Every local minimum is global minimum.

Subgradient and Subdifferential

Non-Differentiable Functions

• Example of non-differentiable functions: f(w) = |w|

$$\frac{\partial f}{\partial w} = \begin{cases} +1, & \text{if } w > 0; \\ \text{undefined,} & \text{if } w = 0; \\ -1, & \text{if } w < 0. \end{cases}$$

Subgradient of Convex Function

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \ge \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Subgradient of Convex Function

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \ge \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Subgradient of Convex Function

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \ge \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Example:
$$f(w) = |w|$$

• $\partial f(3) = \{1\}.$

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Example: f(w) = |w|

- $\partial f(3) = \{1\}.$
- $\partial f(-0.1) = \{-1\}.$

Definition (Subgradient). A vector \mathbf{v} is called a subgradient of \mathbf{f} at \mathbf{w}_0 if for any \mathbf{w} , $\mathbf{f}(\mathbf{w}) \geq \mathbf{f}(\mathbf{w}_0) + \mathbf{v}^T(\mathbf{w} - \mathbf{w}_0)$.

Definition (Subdifferential). The set containing all the subgradients of f at \mathbf{w}_0 is called the subdifferential. Denote the set by $\partial f(\mathbf{w}_0)$.

Example: f(w) = |w|

- $\partial f(3) = \{1\}.$
- $\partial f(-0.001) = \{-1\}.$
- $\partial f(0) = [-1, 1].$

A Property of Convex Optimization

```
Let f be a convex function.
```

```
Property: \mathbf{w}^* = \min_{\mathbf{w}} f(\mathbf{w}) \quad \longleftrightarrow \quad 0 \in \partial f(\mathbf{w}^*).
```

```
Example: \min_{w} \{ f(w) = |w + 5| \}
```

- $\partial f(-5) = [-1, 1].$
- Obviously $0 \in \partial f(-5)$.
- $w^* = -5$ minimizes f.