```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
```

Pagrindinė dalis

Naudojamas I-oje dalyje išsaugotas csv failas su apdorotu 'esoph' duomenų rinkiniu.

```
In [2]: df = pd.read_csv('esoph_df.csv')
df
```

Out[2]:		agegp	alcgp	tobgp	ncases	ncontrols	cases_ratio
	0	30	20	5	0	40	0.0
	1	30	20	15	0	10	0.0
	2	30	20	25	0	6	0.0
	3	30	20	30	0	5	0.0
	4	30	60	5	0	27	0.0
	•••						
	83	80	60	30	1	1	50.0
	84	80	100	5	1	1	50.0
	85	80	100	15	1	1	50.0
	86	80	120	5	2	2	50.0
	87	80	120	15	1	1	50.0

88 rows × 6 columns

Paskaičiuojama koreliacijos matrica atmetus 'ncontrols' ir 'ncases' stulpelius

```
In [3]: corr_matrix = df.loc[:,~df.columns.isin(['ncontrols','ncases'])].corr()
    corr_matrix
```

Out[3]:		agegp	alcgp	tobgp	cases_ratio
	agegp	1.000000	-0.013670	-0.068779	0.587032
	alcgp	-0.013670	1.000000	-0.045684	0.506651
	tobgp	-0.068779	-0.045684	1.000000	0.050709
	cases_ratio	0.587032	0.506651	0.050709	1.000000

```
In [4]: sns.heatmap(corr_matrix, annot=True)
```

Out[4]: <Axes: >

Toliau naudojamas 'esoph' duomenų rinkinys su nepakeistomis kategorijų reikšmėmis. Pavaizduojamos stulepilinės diagramos.

```
In [5]: df2 = pd.read_csv('esoph_df2.csv')
    df2
```

Out[5]:		agegp	alcgp	tobgp	ncases	ncontrols	cases_ratio
	0	25-34	0-39g/day	0-9g/day	0	40	0.0
	1	25-34	0-39g/day	10-19	0	10	0.0
	2	25-34	0-39g/day	20-29	0	6	0.0
	3	25-34	0-39g/day	30+	0	5	0.0
	4	25-34	40-79	0-9g/day	0	27	0.0
	•••						
	83	75+	40-79	30+	1	1	50.0
	84	75+	80-119	0-9g/day	1	1	50.0
	85	75+	80-119	10-19	1	1	50.0
	86	75+	120+	0-9g/day	2	2	50.0
	87	75+	120+	10-19	1	1	50.0

88 rows × 6 columns

```
In [6]: mean_cases_ratio_by_agegp = df2.groupby('agegp')['cases_ratio'].mean().reset_index()

plt.bar(mean_cases_ratio_by_agegp['agegp'], mean_cases_ratio_by_agegp['cases_ratio'],color = "green")

plt.title("Mean Cases Ratio by Age Group")
plt.xlabel("Age Group")
plt.ylabel("Mean Cases Ratio")

plt.show()
```

Mean Cases Ratio by Age Group


```
In [7]: mean_cases_ratio_by_alcgp = df2.groupby('alcgp')['cases_ratio'].mean().reset_index().sort_values(by = 'cases_ratio')
    plt.bar(mean_cases_ratio_by_alcgp['alcgp'], mean_cases_ratio_by_alcgp['cases_ratio'],color = "blue")
    plt.title("Mean Cases Ratio by Alcohol Group")
    plt.xlabel("Alcohol Group")
    plt.ylabel("Mean Cases Ratio")
    plt.show()
```

Mean Cases Ratio by Alcohol Group


```
In [8]: mean_cases_ratio_by_tobgp = df2.groupby('tobgp')['cases_ratio'].mean().reset_index()

plt.bar(mean_cases_ratio_by_tobgp['tobgp'], mean_cases_ratio_by_tobgp['cases_ratio'],color = "yellow")

plt.title("Mean Cases Ratio by Tobaco Group")
plt.xlabel("Tobaco Group")
plt.ylabel("Mean Cases Ratio")

plt.show()
```


10-19

Tobaco Group

Papildoma dalis

0-9g/day

0

Remiantis amžiaus, alkoholio ir tobako grupėmis, apmokomas tiesinės regresijos modelis paskaičiuoti vėžio susirgimų santykį.

30+

20-29

```
In [9]: X = df[['agegp', 'alcgp','tobgp']]
y = df['cases_ratio']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state = 0)

model = LinearRegression()
model.fit(X_train, y_train);
```

Jvertinamas modelio tikslumas

```
In [10]: y_pred = model.predict(X_test)
    print(f'R^2 score: {r2_score(y_test, y_pred)}')

    coefficients = model.coef_
    column_names = X.columns
    for col_name, coef in zip(column_names, coefficients):
        print(f'Coefficient for {col_name}: {coef}')

    R^2 score: 0.6310980503621302
    Coefficient for agegp: 0.6550317157754454
    Coefficient for alcgp: 0.258778833005511
    Coefficient for tobgp: 0.21166518388434427
```

Pavyzdinis spėjimas, remiantis duotais duomenimis