Name: Ayush Panchal

Roll Number: P24DS013

```
In [1]: import pandas as pd
import numpy as np
```

1. Display how many unique areas' average temperature data is provided.

```
In [2]: data = pd.read_csv("Surface_Temperature.csv")
    data.head()

Out[2]: Date AverageTemperature AverageTemperatureUncertainty City Country Latitude Longitude
```

Out[2]:		Date	AverageTemperature	AverageTemperatureUncertainty	City	Country	Latitude	Longitude
	0	1849-01-01	26.704	1.435	Abidjan	Côte D'Ivoire	5.63N	3.23W
	1	1849-02-01	27.434	1.362	Abidjan	Côte D'Ivoire	5.63N	3.23W
	2	1849-03-01	NaN	NaN	Abidjan	Côte D'Ivoire	5.63N	3.23W
	3	1849-04-01	26.140	1.387	Abidjan	Côte D'Ivoire	5.63N	3.23W
	4	1849-05-01	25.427	1.200	Abidjan	Côte D'Ivoire	5.63N	3.23W

```
In [5]: data.shape
Out[5]: (219575, 7)
In [4]: num_of_unique_areas = len(data["City"].unique())
    f"Number of unique areas of which temperature data is provided : {num_of_unique_areas}"
```

 $\operatorname{Out}[4]$: 'Number of unique areas of which temperature data is provided : 100'

2.Encode the area identification fields with the Area ordering displayed as in Q. 1.

```
In [6]: from sklearn.preprocessing import LabelEncoder
        label encoder = LabelEncoder()
         data["Label encoded city"] = label encoder.fit transform(data["City"])
        data.head()
Out[6]:
                 Date AverageTemperature AverageTemperatureUncertainty
                                                                                        Country Latitude Longitude Label encoded city
                                                                               City
                                                                     1.435 Abidjan Côte D'Ivoire
         0 1849-01-01
                                     26.704
                                                                                                    5.63N
                                                                                                              3.23W
                                                                           Abidjan Côte D'Ivoire
         1 1849-02-01
                                     27.434
                                                                                                    5.63N
                                                                                                              3.23W
                                                                                                                                      0
                                                                           Abidjan Côte D'Ivoire
         2 1849-03-01
                                      NaN
                                                                                                    5.63N
                                                                                                              3.23W
                                                                                                                                      0
                                                                           Abidjan Côte D'Ivoire
         3 1849-04-01
                                     26.140
                                                                                                    5.63N
                                                                                                              3.23W
         4 1849-05-01
                                     25.427
                                                                           Abidian Côte D'Ivoire
                                                                                                   5.63N
                                                                                                              3.23W
                                                                                                                                      0
```

3. Display the number of unique rows with the same average temperature value, if any

```
In [10]: avg_temp_col = data["AverageTemperature"]
avg_temp_col = avg_temp_col.dropna()

In [11]: avg_temp_col.shape

Out[11]: (191994,)

In [12]: len(data["AverageTemperature"])
```

```
Out[12]: 219575
In [13]: avg_temp_col = avg_temp_col.drop_duplicates()
    avg_temp_col.shape
Out[13]: (49920,)
In [15]: f"Number of unique rows with the same average temperature value : {avg_temp_col.shape[0]}"
Out[15]: 'Number of unique rows with the same average temperature value : 49920'
```

4. Display for each unique area, display the descriptive statistics.

```
unique cities = data["City"].unique()
         unique cities
Out[16]: array(['Abidjan', 'Addis Abeba', 'Ahmadabad', 'Aleppo', 'Alexandria',
                 'Ankara', 'Baghdad', 'Bangalore', 'Bangkok', 'Belo Horizonte',
                 'Berlin', 'Bogotá', 'Bombay', 'Brasília', 'Cairo', 'Calcutta',
                 'Cali', 'Cape Town', 'Casablanca', 'Changchun', 'Chengdu',
                 'Chicago', 'Chongqing', 'Dakar', 'Dalian', 'Dar Es Salaam',
                 'Delhi', 'Dhaka', 'Durban', 'Faisalabad', 'Fortaleza', 'Gizeh',
                 'Guangzhou', 'Harare', 'Harbin', 'Ho Chi Minh City', 'Hyderabad',
                 'Ibadan', 'Istanbul', 'Izmir', 'Jaipur', 'Jakarta', 'Jiddah',
                 'Jinan', 'Kabul', 'Kano', 'Kanpur', 'Karachi', 'Kiev', 'Kinshasa',
                 'Lagos', 'Lahore', 'Lakhnau', 'Lima', 'London', 'Los Angeles',
                 'Luanda', 'Madras', 'Madrid', 'Manila', 'Mashhad', 'Melbourne',
                 'Mexico', 'Mogadishu', 'Montreal', 'Moscow', 'Nagoya', 'Nagpur',
                 'Nairobi', 'Nanjing', 'New Delhi', 'New York', 'Paris', 'Peking',
                 'Pune', 'Rangoon', 'Rio De Janeiro', 'Riyadh', 'Rome',
                 'Saint Petersburg', 'Salvador', 'Santiago', 'Santo Domingo',
                 'Seoul', 'Shanghai', 'Shenyang', 'Singapore', 'Surabaya', 'Surat',
                 'Sydney', 'São Paulo', 'Taipei', 'Taiyuan', 'Tangshan', 'Tianjin',
                 'Tokyo', 'Toronto', 'Umm Durman', 'Wuhan', 'Xian'], dtype=object)
In [18]: data.groupby(["City"]).describe().T
```

Out[18]:

3]:		City	Abidjan	Addis Abeba	Ahmadabad	Aleppo	Alexandria	Ankara	Baghdad	Ban
	AverageTemperature	count	1596.000000	1498.000000	2060.000000	2107.000000	2133.000000	2146.000000	2081.000000	2092.0
		mean	26.163751	17.519688	26.547694	17.431182	20.347205	10.398004	22.600975	24.8
		std	1.399779	1.215365	4.247763	8.512489	4.558519	8.142198	9.189700	1.8
		min	22.363000	14.528000	17.041000	1.086000	11.253000	-6.195000	4.236000	20.2
		25%	25.108250	16.568000	22.934250	9.420500	15.988000	3.073000	14.007000	23.5
		50%	26.262500	17.288500	27.253000	17.628000	20.628000	10.602000	23.031000	24.5
		75%	27.182250	18.453500	29.585500	25.755500	24.651000	17.905750	31.613000	26.1
		max	29.923000	21.223000	35.419000	32.629000	28.806000	26.044000	38.283000	29.6
	AverageTemperatureUncertainty	count	1596.000000	1498.000000	2060.000000	2107.000000	2133.000000	2146.000000	2081.000000	2092.0
		mean	0.678107	0.827874	0.847150	0.905100	0.825722	0.895382	1.016012	0.7
		std	0.479361	0.480745	0.672429	0.762853	0.707597	0.805486	0.717917	0.7
		min	0.110000	0.133000	0.106000	0.101000	0.102000	0.110000	0.098000	0.0
		25%	0.301000	0.461250	0.368000	0.364000	0.329000	0.355250	0.443000	0.3
		50%	0.503000	0.719000	0.545000	0.596000	0.489000	0.579500	0.749000	0.4
		75%	0.975750	1.095750	1.339000	1.298500	1.274000	1.187500	1.495000	1.0
		max	3.032000	3.841000	5.260000	5.450000	5.001000	6.146000	4.752000	6.2
	Label_encoded_city	count	1968.000000	1956.000000	2352.000000	2352.000000	2352.000000	2352.000000	2328.000000	2352.0
		mean	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	7.0
		std	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
		min	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	7.0
		25%	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	7.0

City	Abidjan	Addis Abeba	Ahmadabad	Aleppo	Alexandria	Ankara	Baghdad	Ban
50%	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	7.0
75%	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	7.0
max	0.000000	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	7.0

24 rows × 100 columns

5. For ALL each unique area, display their distances from each other.

```
In [ ]:
```

6. For ALL each unique area and each year, display the number of missing values, if any.

Out[22]:		Date	AverageTemperature	AverageTemperatureUncertainty	City	Country	Latitude	Longitude	Label_encoded_city	year
	0	1849-01- 01	26.704	1.435	Abidjan	Côte D'Ivoire	5.63N	3.23W	0	1849
	1	1849-02- 01	27.434	1.362	Abidjan	Côte D'Ivoire	5.63N	3.23W	0	1849
	2	1849-03- 01	NaN	NaN	Abidjan	Côte D'Ivoire	5.63N	3.23W	0	1849
	3	1849-04- 01	26.140	1.387	Abidjan	Côte D'Ivoire	5.63N	3.23W	0	1849
	4	1849-05- 01	25.427	1.200	Abidjan	Côte D'Ivoire	5.63N	3.23W	0	1849
In [24]:	da	ta.groupby	/(["year"]).count().	nunique()						
Out[24]:	Av Ci Co La Lo	erageTemp erageTemp	eratureUncertainty ed_city	25 106 106 25 25 25 25 25						
In [25]:	da	ta.groupby	/(["City"]).count().	nunique()						
Out[25]:	Av Co La Lo La ye	erageTempo erageTempo untry titude ngitude bel_encodo	eratureUncertainty ed_city	22 84 84 22 22 22 22 22						

7. Display 2 different visualization plots of average temperature to compare them for years 2001 and 2002 for 2 unique areas with less distance.

```
In [44]: # for year 2001, 2002
          data 2001 = data[data["year"] == 2001]
          data 2002 = data[data["year"] == 2002]
         year data combined = data 2001.merge(data 2002, how="outer")
         year data combined.shape
Out[44]: (2400, 9)
In [45]: city ahm = data[data["City"] == "Ahmadabad"]
         city delhi = data[data["City"] == "Delhi"]
          city merged = city ahm.merge(city delhi, how="outer")
          city merged.head()
Out[45]:
               Date AverageTemperature AverageTemperatureUncertainty
                                                                                City Country Latitude Longitude Label_encoded_city year
              1817-
                                  13.439
                                                                   3.860
                                                                                                           77.27E
                                                                                                                                  26 1817
                                                                               Delhi
                                                                                        India
                                                                                                28.13N
              01-01
              1817-
                                  18.439
                                                                   3.923 Ahmadabad
                                                                                                           72.52E
                                                                                        India
                                                                                                23.31N
                                                                                                                                   2 1817
              01-01
              1817-
                                                                   2.329
                                                                                                                                  26 1817
                                  17.130
                                                                               Delhi
                                                                                        India
                                                                                                28.13N
                                                                                                           77.27E
              02-01
              1817-
                                  21.720
                                                                   2.481 Ahmadabad
                                                                                        India
                                                                                                23.31N
                                                                                                           72.52E
                                                                                                                                   2 1817
              02-01
              1817-
                                  21.991
                                                                   2.105
                                                                               Delhi
                                                                                        India
                                                                                                28.13N
                                                                                                           77.27E
                                                                                                                                  26 1817
              03-01
```

```
In [50]: year_city_combined = year_data_combined.merge(city_merged, how="inner")
    year_city_combined.head()
```

Out[50]:		Date	AverageTemperature	AverageTemperatureUncertainty	City	Country	Latitude	Longitude	Label_encoded_city	year
0		2001- 01-01	19.770	0.512	Ahmadabad	India	23.31N	72.52E	2	2001
	1	2001- 01-01	NaN	NaN	Delhi	India	28.13N	77.27E	26	2001
	2	2001- 02-01	18.882	0.612	Delhi	India	28.13N	77.27E	26	2001
	3	2001- 02-01	22.438	0.571	Ahmadabad	India	23.31N	72.52E	2	2001
	4	2001- 03-01	23.918	0.565	Delhi	India	28.13N	77.27E	26	2001

```
In [56]: import matplotlib.pyplot as plt

plt.style.use("ggplot")
plt.title("Average temperature comparison between ahmedabad and delhi of the year 2001 and year 2001")
plt.xlabel("City names")
plt.ylabel("Temperature value")
plt.bar( year_city_combined["City"],year_city_combined["AverageTemperature"])
plt.show()
```

Average temperature comparison between ahmedabad and delhi of the year 2001 and year 2001


```
In [66]: plt.title("Average temperature disrtibution of ahmedabad and delhi of the year 2001 and year 2001")
    plt.ylabel("Temperature value")
    plt.boxplot(year_city_combined["AverageTemperature"].dropna());
```

Average temperature disrtibution of ahmedabad and delhi of the year 2001 and year 2001

In []: