Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 3

B. In the Claims

Please cancel claims 1-5, 9-10, 12-17, 19-20, 24-27, 29-31, 33, 36-37, 41-53, 55-58, 61-65, 67-72, 75-78, 81-89, 100-104, 107-110, 112-116, 118-121, 124-128, 131-135, and 138-173 without prejudice. Upon entry of the amendment, the listing of claims will be as follows replacing all prior listings.

1-5 (Canceled)

6. (Currently amended) A Ccompounds of formula G, where:

wherein:

- a) R₁ is selected from the group consisting of alkyl, substituted alkyl and aryl;
- b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and
- c) $R_3 = R_4 = R_6 = R_7 = \text{hydrogen}$, or R_3 , R_4 , R_6 , R_7 are selected such that three out of four are hydrogen and the fourth is selected from the group consisting of alkyl, substituted alkyl and aryl.
- 7. (Currently amended) The compound of claim 6, wherein the compound includes all All stereoisomers of a compound of formula G, wherein R_1 = ethyl and $R_2 = R_3 = R_4 = R_5 = R_6 = R_7$ = hydrogen, including (2R,3R)-2-Allyloxy-3-hydroxy-pent-4-enoic acid ethyl ester, (2S,3S)-2-

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 4

PATENT Attorney Docket No.: AUSP1100-1

Allyloxy-3-hydroxy-pent-4-enoic acid ethyl ester, (2R,3S)-2-Allyloxy-3-hydroxy-pent-4-enoic acid ethyl ester, and (2S,3R)-2-Allyloxy-3-hydroxy-pent-4-enoic acid ethyl ester.

8. (Currently amended) A process for preparing compound of formula **H** comprising contacting compound of formula **G** under conditions suitable to produce compound of formula **H**, where:

$$R_3$$
 R_4
 R_5
 R_6
 R_7
 R_6
 R_7
 R_8
 R_8

wherein:

- a) R₁ is selected from the group consisting of alkyl, substituted alkyl and aryl;
- b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- c) $R_3 = R_4 = R_6 = R_7 = \text{hydrogen, or } R_3, R_4, R_6, R_7 \text{ are selected such that three out of four are hydrogen and the fourth is selected from the group consisting of alkyl, substituted alkyl and aryl: and$
- d) R₉ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl and hydroxyl protecting group.

9-10. (Canceled).

11. (Currently amended). A <u>The process according to claim 8</u>, where <u>in carboxylic ester of formula G is contacted with a ring-closing metathesis catalyst selected from the group consisting of 2,6-diisopropylphenylimidoneophylidene molybdenum (IV) bis-(tert-butoxide), 2,6-diisopropylphenylimidoneophylidene molybdenum (IV) bis-(hexafluoro-tert-butoxide), 2,6-</u>

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 5

diisopropylphenylimidoneophylidene[racemic-BIPHEN] molybdenum (IV), 2,6-

PATENT

Attorney Docket No.: AUSP1100-1

diisopropylphenylimidoneophylidene[(R)-(+)-BIPHEN] molybdenum (IV), 2,6-diisopropylphenylimidoneophylidene[(S)-(-)-BIPHEN] molybdenum (IV), bis-(tricyclohexylphosphine)benzylidine ruthenium (IV) dichloride, bis-(tricyclohexylphosphine)-3-methyl-2-butenylidene ruthenium (IV) dichloride, bis-(tricyclopentylphosphine)benzylidine ruthenium (IV) dichloride, bis-(tricyclopentylphosphine)-3-methyl-2-butenylidene ruthenium (IV) dichloride, tricyclohexylphosphine-(1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene)-benzylidine ruthenium (IV) dichloride, tricyclohexylphosphine-(1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene)-benzylidine ruthenium (IV) dichloride, (1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene)-2-isopropoxyphenylmethylene ruthenium (IV) dichloride, (tricyclopentylphosphine)-2-isopropoxyphenylmethylene ruthenium (IV) dichloride, and (tricyclopentylphosphine)-2-methoxy-3-naphthylmethylene ruthenium (IV) dichloride under conditions suitable to produce compound of formula H.

12-17 (Canceled).

18. (Currently amended). A <u>The</u> process according to claim 8, where in R_1 = ethyl, and R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_9 = hydrogen, or R_1 = ethyl, and R_6 = methyl, and R_2 = R_3 = R_4 = R_5 = R_7 = R_9 = hydrogen, or R_1 = ethyl, and R_6 = phenyl, and R_2 = R_3 = R_4 = R_5 = R_7 = R_9 = hydrogen.

19-20. (Canceled).

21. (Currently amended). A Ccompounds of formula H, where:

$$\begin{array}{c}
H \\
CO_2R_1 \\
R_2 \\
R_5
\end{array}$$

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 6

PATENT

Attorney Docket No.: AUSP1100-1

wherein:

a) R₁ is selected from the group consisting of alkyl, substituted alkyl and aryl;

- b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and
- c) R₉ is selected from the group consisting of hydrogen, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl and hydroxyl protecting group.
- 22. (Currently amended) The compound of claim 21, wherein the compound includes all All stereoisomers of a compound of formula \mathbf{H} , wherein R_1 = ethyl and R_2 = R_5 = R_9 = hydrogen, or R_1 = ethyl and R_2 = R_5 = hydrogen and R_9 = acetyl, including (2R,3R)-3-hydroxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2S,3S)-3-hydroxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2R,3S)-3-hydroxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2R,3R) 3-acetoxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2R,3S) 3-acetoxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2R,3S) 3-acetoxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2S,3R) 3-acetoxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2S,3R) 3-acetoxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester.
- 23. (Currently amended) A process for preparing compound of formula **H** comprising contacting compound of formula **I** with a resolving enzyme and an acylating agent under suitable conditions to produce optically pure 3,6-dihydro-2H-pyran of formula **H**, where:

$$\begin{array}{c} H \\ H \\ R_2 \\ R_5 \\ I \end{array} \begin{array}{c} CO_2R_1 \\ R_2 \\ R_5 \\ R_5 \end{array} \begin{array}{c} H \\ CO_2R_1 \\ R_2 \\ R_5 \end{array}$$

wherein:

a) R₁ is selected from the group consisting of alkyl, substituted alkyl and aryl;

In re Application of: Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 7

- b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and
- c) R₉ is selected from the group consisting of hydrogen, alkylcarbonyl, substituted alkylcarbonyl and arylcarbonyl.

24-27. (Canceled).

28. (Currently amended). A The process according to claim 23, wherein the resolving enzyme enzymatic resolution comprises an enzyme-catalyzed transesterification of a compound of formula I, wherein the enzymatic resolution includes the use of a lipase, esterase, peptidase, acylase or protease enzyme of mammalian, plant, fungal or bacterial origin is selected from the group consisting of Lipase Amano lipase PS-D (immobilized lipase from Pseudomonas cepacia), Amano Lipase PS-C (immobilized lipase from Pseudomonas cepacia), Roche Chirazyme L-3 (lipase, lyophilizate, from Candida Rugosa), Roche Chirazyme L-3 (purified lipase, lyophilizate, from Candida Rugosa), Roche Chirazyme L-3 (purified lipase, carrier-fixed, carrier 2, lyophilizate, from Candida rugosa), Roche Chirazyme L-5 (lipase, solution, from Candida antartica, type A), Roche Chirazyme L-5 (lipase, lyophilizate, from Candida antartica, type A), Roche Chirazyme L-5 (lipase, carrier-fixed, carrier 1, lyophilizate, from Candida antartica, type A), Roche Chirazyme L-10 (lipase, lyophilizate, from Alcaligines sp.), Altus Biologics 8 (lipase from Mucor meihei) and Altus Biologics 27 (lipase from Alcaligenes sp.), and wherein the acylating agent is selected from the group consisting of ethyl acetate, vinyl acetate, vinyl propionate, vinyl butyrate, isopropenyl acetate, 1-ethoxyvinyl acetate, trichloroethyl butyrate, trifluoroethyl butyrate, trifluoroethyl laureate, S-ethyl thiooctanoate, biacetyl monooxime acetate, acetic anhydride, succinic anhydride, amino acid and diketene, and where the reaction is carried out between 0°C and 40°C in a solvent or in mixtures of solvents selected from the group consisting of acetonitrile, dichloromethane, dichloroethane, diethyl ether, dioxane, tetrahydrofuran, dimethyl formamide, dimethyl acetamide, N-methylpyrrolidine, dimethyl

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 8

sulfoxide, benzene, toluene, dichlorobenzene, xylene, methanol, ethanol, isopropanol and water and wherein the optically pure 3,6-dihydro-2H-pyran H is isolated by the use of at least one method selected from the group consisting of chromatography, crystallization, re-crystallization and distillation.

PATENT

Attorney Docket No.: AUSP1100-1

29-31. (Canceled).

- 32. (Currently amended). A <u>The</u> process according to claim 23, where<u>in</u> R₁ is ethyl, R₂ and R₅ are hydrogen, and R₉ is selected from the group consisting of hydrogen and acetyl, <u>and</u> wherein the substituted 3,6-dihydro-2H-pyran H selected from the group consisting of (2R,3R) 3-acetoxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, (2S,3S) 3-hydroxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester, and (2R,3S) 3-hydroxy-3,6-dihydro-2H-pyran-2-carboxylic acid ethyl ester.
- 33. (Canceled).
- 34. (Currently amended). A process for preparing compound of formula **J**₂ comprising contacting compound of formula **H** under conditions suitable to produce a substituted tetrahydropyran of formula **J**, where:

wherein:

a) R_1 is selected from the group consisting of alkyl, substituted alkyl and aryl;

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 9

b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and

PATENT

Attorney Docket No.: AUSP1100-1

- c) R₉ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group.
- 35. (Currently amended). A <u>The process according to claim 34</u>, wherein the compound of formula H is contacted with any suitable mixtures of compounds selected from the group consisting of osmium tetroxide, potassium permanganate, thallium acetate, potassium periodate, silver acetate, N-methylmorpholine oxide, trimethylamine oxide, tert-butyl peroxide, iodine, potassium ferricyanide, pyridine, quinuclidine, dihydroquinine acetate, dihydroquinidine acetate, dihydroquinine anthraquinone-1,4-diyl diether ((DHQ)₂AQN), dihydroquinine phthalazine-1,4-diyl diether ((DHQ)₂PYR), dihydroquinidine anthraquinone-1,4-diyl diether ((DHQD)₂AQN), dihydroquinidine phthalazine-1,4-diyl diether ((DHQD)₂PHAL), dihydroquinidine 2,5-diphenyl-4,6-pyrimidinediyl diether ((DHQD)₂PYR), tetraethyl ammonium hydroxide, tetraethyl ammonium acetate, and N,N,N'N'-tetramethylethylene diamine under conditions suitable to produce compound of formula J.

36-37. (Canceled).

- 38. (Currently amended). A <u>The</u> process according to claim 34, where \underline{in} R_1 = ethyl, and R_2 = R_5 = hydrogen and R_9 = acetyl, or R_1 = ethyl, and R_2 = R_5 = hydrogen.
- 39. (Currently amended). A Ccompounds of formula J, where:

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 10

Attorney Docket No.: AUSP1100-1

PATENT

wherein:

a) R₁ is selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;

- b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and
- c) R₉ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, substituted alkylcarbonyl, alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group[[.]],

₩<u>with</u> the <u>further</u> proviso that:

- 1. Setereoisomers (2R,3R,4S,5S), (2R,3S,4S,5R), (2R,3R,4R,5R), (2R,3R,4S,5R), (2S,3R,4R,5R) cannot do not have R_1 = hydrogen or methyl and R_2 = R_5 = R_9 = hydrogen
- 2. Setereoisomer (2S,3S,4R,5R) eannot does not have R_1 = hydrogen or methyl and $R_2 = R_5 = R_9 = \text{hydrogen}[[:]]$.
- 40. (Currently amended). The Geompounds according to claim 39, wherein the compound of formula **J** is selected from the group consisting of (1R,2R,3R,4R) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1R,2R,3S,4S) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1S,2S,3R,4R) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1R,2S,3R,4R) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1R,2S,3R,4R) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1S,2R,3R,4R) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1S,2R,3R,4R) 3-acetoxy-4,5-dihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1R,2R,3R,4R) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 11

ethyl ester, (1S,2S,3R,4R) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1S,2S,3S,4S) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1R,2S,3R,4R) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1S,2R,3R,4R) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, (1S,2R,3R,4R) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester, and (1S,2R,3S,4S) 3-4,5-trihydroxy-tetrahydropyran-2-carboxylic acid ethyl ester.

41-53. (Canceled).

54. (Currently amended). A Ccompounds of formula K, where:

$$R_{10}O$$
 R_{2}
 $R_{11}O$
 R_{5}
 $R_{10}O$

wherein:

- a) R₁ is selected from the group consisting of alkyl, substituted alkyl and aryl;
- b) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- c) R₉, R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group[[.]],

<u>Wwith the further proviso that</u>

1. Setereoisomers (2R, 3R, 4S, 5S), (2R, 3S, 4S, 5R), (2R, 3R, 4R, 5R), (2R, 3R, 4S, 5R), (2S, 3R, 4R, 5R), (2S, 3S, 4R, 5S), (2R, 3S, 4R, 5S) cannot do not have $R_1 =$ methyl and $R_2 = R_5 =$ hydrogen and $R_9 = R_{10} = R_{11} =$ acetyl;

PATENT

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 12

- 2. Sstereoisomers (2R, 3R, 4S, 5S), (2R, 3S, 4S, 5R), (2R, 3R, 4R, 5R), (2R, 3R, 4S, 5R), (2S, 3R, 4R, 5R), (2S, 3S, 4R, 5R) cannot do not have R_1 = methyl and R_2 = $R_5 = R_9 = R_{10} = R_{11} = \text{hydrogen}[[.]];$
- 3. Sstereoisomers (2R, 3R, 4S, 5S), (2R, 3S, 4S, 5R), (2R, 3R, 4R, 5R), (2R, 3R, 4S, 5R), (2S, 3R, 4R, 5R), (2S, 3S, 4R, 5R) cannot do not have $R_1 = R_2 = R_5 = R_9 = R_{10} = R_{11} = \text{hydrogen};$
- 4 2. Setereoisomers (2S, 3S, 4R, 5R), (2R, 3S, 4R, 5R) eannot do not have $R_1 = R_{10} = R_{11} = \text{methyl}$ and $R_2 = R_5 = \text{hydrogen}$ and $R_9 = \text{acetyl}$;
- $\underline{5}$ 3. Setereoisomers (2S, 3S, 4R, 5R), (2R, 3S, 4R, 5R) eannet do not have $R_1 = R_{10} = R_{11} = \text{methyl}$ and $R_2 = R_5 = \text{hydrogen}$ and $R_9 = \text{benzoyl}$;
- <u>6</u> 4. <u>Ss</u>tereoisomer (2S, 3R, 4R, 5S) <u>cannot</u> <u>does not</u> have $R_1 = R_2 = R_5 = \text{hydrogen}$ and $R_9 = R_{10} = R_{11} = \text{acetyl}$; and
- $\underline{7}$ 5. Setereoisomer (1S, 4R, 5R, 8S) eannot does not have R_1 = methyl R_2 = R_5 = R_{11} = hydrogen and R_9 = R_{10} = benzyl.

55-58. (Canceled).

59. (Currently amended). A Ccompounds of formula L, where:

wherein:

a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 13

b) R₉ and R₁₀ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group[[.]],

$\underline{\mathbf{W}}\underline{\mathbf{w}}$ ith the further proviso that:

- 1. Setereoisomer (1S, 4R, 5R, 8S) cannot does not have $R_2 = R_5 = R_9 = R_{10} = \frac{1}{2}$
- 2. Setereoisomer (1S, 4R, 5R, 8S) eannot does not have $R_2 = R_5 = R_{10} = \text{hydrogen}$ and $R_9 = \text{benzoyl}$;
- 3. Setereoisomer (1S, 4R, 5R, 8S) cannot does not have $R_2 = R_5 = \text{hydrogen}$ and $R_9 = R_{10} = \text{benzoyl}$; and
- 4. Sstereoisomer (1S, 4R, 5R, 8S) eannot does not have $R_2 = R_5 = \text{hydrogen and } R_9 = R_{10} = \text{benzyl}$.
- 60. (Currently amended). The Compound according to claim 59, wherein the compound of formula L is selected from the group consisting of (1R,4S,5S,8R)-8-acetoxy-4-hydroxy-2,6-dioxa-bicyclo[3.2.1]octan-7-one), and (1R,4S,5S,8R)-4,8-hydroxy-2,6-dioxa-bicyclo[3.2.1]octan-7-one.

61-65. (Canceled).

66. (currently amended) A compound of formula M, where

Μ

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 14

wherein:

a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;

- b) R₉ and R₁₀ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group[[.]]; and
- c) R₁₂ = alkyl, substituted alkyl, aryl, hydroxy, alkyloxy, substituted alkyloxy, aryloxy, amino, alkylamino, arylamino, nitrogen containing saturated heterocyclic compound, O-protected amino acid and solid support[[.]].

₩with the further proviso that:

- 1. Setereoisomers (2R, 3R, 4S, 5S), (2R, 3S, 4S, 5R), (2R, 3R, 4R, 5R), (2R, 3R, 4S, 5R), (2S, 3R, 4R, 5R), (2S, 3S, 4R, 5R) eannot do not have R_{12} = hydroxy and R_2 = $R_5 = R_9 = R_{10}$ = hydrogen[[,]];
- 2. Sstereoisomers (2R, 3R, 4S, 5S), (2R, 3S, 4S, 5R), (2R, 3R, 4R, 5R), (2R, 3R, 4S, 5R), (2S, 3R, 4R, 5R), (2S, 3S, 4R, 5R) cannot do not have R_{12} = methoxy and R_2 = $R_5 = R_9 = R_{10} = \text{hydrogen}[[,]];$
- 3. Setereoisomers (2R, 3R, 4S, 5S), (2R, 3S, 4S, 5R), (2R, 3R, 4R, 5R), (2R, 3R, 4S, 5R), (2S, 3R, 4R, 5R), (2S, 3S, 4R, 5S) eannot do not have R_{12} = amino and R_2 = $R_5 = R_9 = R_{10} = \text{hydrogen}[[,]];$ and
- 4. Sstereoisomer (1S, 4R, 5R, 8S) cannot does not have $R_2 = R_5 = \text{hydrogen and } R_9$ = $R_{10} = \text{benzyl and } R_{12} = \text{methoxy}$.

67-71. (Canceled).

72. (Currently amended) A compound of formula N, where:

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 15

PATENT Attorney Docket No.: AUSP1100-1

 R_2 R_5 R_5

wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and
- b) R₉ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group,

Wwith the <u>further</u> proviso that for compounds of formula N, stereoisomers (2R,3S), (2S,3R) and (2R,3R) eannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$.

73. (Currently amended). The <u>compound of claim 72, wherein</u> the compound is the (2S,3S) stereoisomer of formula N, where<u>in</u> $R_2 = R_5 = R_9 = \text{hydrogen}$ ((2S,3S)-2-Hydroxymethyl-3,6-dihydro-2H-pyran-3-ol).

74. (Currently amended). A Ccompounds of formula O, where:

$$\begin{array}{c}
H \\
H \\
R_2 \\
R_5
\end{array}$$

$$\begin{array}{c}
OR_{13} \\
OR_{9}
\end{array}$$

wherein:

a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 16

b) R₉ is selected from the group consisting of alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group; and

PATENT

Attorney Docket No.: AUSP1100-1

c) R₁₃ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, alkylcarbonyl, arylcarbonyl, and hydroxyl protecting group.

Wwith the further proviso that for the Compounds of formula O,

- 1) Setereoisomers (2R,3S), (2S,3R) and (2R,3R) cannot do not have $R_9 = R_{13} =$ acetyl;
- Setereoisomer (2R,3S) eannot does not have $R_9 = 2$ -bromoallyl and $R_{13} = \text{tert-butyldimethylsilyl}$;
- 3) Setereoisomer (2R,3S) eannot does not have $R_9 = 2$ -bromobenzyl and $R_{13} = \text{tert-butyldimethylsilyl}$;
- 4) Setereoisomer (2R,3S) cannot does not have $R_0 = 2$ -bromocyclopent-1-ene and $R_{13} = \text{tert-butyldimethylsilyl}$;
- Setereoisomer (2R,3S) eannot does not have $R_9 = 2$ -bromocyclohex-1-ene and $R_{13} = \text{tert-butyldimethylsilyl}$;
- Setereoisomer (2R,3S) eannot does not have R_9 = trichloromethylimidate [C(=NH)CCl₃] and R_{13} = acetyl;
- 7) Sstereoisomer (2R,3S) eannot does not have R_9 = trichloromethylimidate [C(=NH)CCl₃] and R_{13} = tert-butyldimethylsilyl;
- 8) Setereoisomer (2R,3S) eannot does not have $R_9 = 4$ -methoxyphenylaminocarboxy [4-CH₃OC₆H₄NHC(=O)] and $R_{13} = \text{benzoyl}$;
- 9) Sstereoisomer (2R,3S) eannot does not have $R_9 = 4$ -methoxyphenylaminocarboxy [4-CH₃OC₆H₄NHC(=O)] and $R_{13} = \text{tert-butyldimethylsilyl}$;
- 10) Setereoisomer (2S,3R) eannot does not have $R_9 = \text{allyl}$ and $R_{13} = \text{tosyl}$;
- 11) Setereoisomer (2R,3R) cannot does not have $R_9 = R_{13} = \text{benzoyl}$;

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 17

12) Setereoisomer (2R,3R) eannot does not have $R_9 = 2$ -bromoallyl and $R_{13} = \text{tert-butyldimethylsilyl}$.

75-78. (Canceled).

79. (Currently amended). A Ccompounds of formula P, where:

$$R_2$$
 R_5
 R_5
 R_5
 R_5

Ρ

wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl; and
- b) R₉ and R₁₃ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group[[.]].

<u>Wwith the further proviso that:</u>

- 1. Setereoisomer (1S,4R,5R,6R) cannot does not have R_9 = hydrogen and R_{13} = tert-butyldimethylsilyl; and
- 2. Setereoisomer (1S,4R,5R,6R) cannot does not have R_9 = hydrogen and R_{13} = tert-butyldiphenylsilyl.
- 80. (Currently amended). The compound of claim 79, wherein the compound is selected from the group of the Sstereoisomers (1R,4S,5S,6S), (1S,4S,5S,6R), (1R,4R,5R,6S), (1R,4S,5R,6S), (1S,4R,5S,6R), (1S,4S,5R,6R), (1R,4R,5S,6S) of compounds of formula \mathbf{P} , where \mathbf{n} R₂ = R₅ = R₉ = hydrogen and R₁₃ = tert-butyldimethylsilyl.

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 18

81-89. (Canceled).

90. (Currently amended). A Ccompounds of formula Q, where:

PATENT

Attorney Docket No.: AUSP1100-1

wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- b) R₉ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group[[.]];
- c) $R_{13} = -C(O)OR^8$, wherein R^8 is selected from the group consisting of alkyl, substituted alkyl and aryl and more specifically R_8 is selected from the group consisting of methyl, methoxymethyl, 9-fluorenylmethyl, ethyl, 2,2,2-trichloromethyl, 1,1-dimethyl-2,2,2-trichloroethyl, 2-(trimethylsilyl)ethyl, 2-(phenylsulfonyl)ethyl, isobutyl, tert-Butyl, vinyl, allyl, 4-nitrophenyl, benzyl, 2-nitrobenzyl, 4-nitrobenzyl, 4-methoxybenzyl, 2,4-dimethoxybenzyl, 3,4-dimethoxybenzyl, 2-(methylthiomethoxy)ethyl, 2-dansenylethyl, 2-(4-nitrophenyl)ethyl, 2-(2,4-dinitrophenyl)ethyl, 2-cyano-1-phenylethyl, thiobenzyl and 4-ethoxy-1-naphthyl[[.]];
- d) R₁₄ is selected from the group consisting of hydrogen, halogen, alkyl, substituted alkyl, aryl, heteroaryl, saturated heteroaryl, cyano, azido, amino, alkylamino, arylamino, hydroxy, alkoxy, aryloxy, alkylthio, arylthio, alkylcarboxy,

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 19

arylcarboxy, N-protected amino acid, O-protected amino acid and a solid support[[.]]; and

- e) R_{15} = hydrogen.
- 91. Currently amended) The Compounds according to claim 90, where $\underline{in} R_{13} = -Si(R^8)_3$, where $\underline{in} R^8$ is selected from the group consisting of alkyl, substituted alkyl and aryl, and \underline{more} specifically R_{13} is $\underline{further}$ selected from the group consisting of trimethylsilyl, triethylsilyl, triisopropylsilyl, dimethylsiopropylsilyl, dimethylsilyl, tert-butyldimethylsilyl, tert-butyldiphenylsilyl, tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl, di-tert-butylmethylsilyl, tris(trimethylsilyl)silyl, (2-hydroxystyryl)diisopropylsilyl, tert-butylmethoxyphenylsilyl, and tert-butoxydiphenylsilyl,

Wwith the further proviso that:

- 1. Setereoisomer (2R,3S,4R) eannot does not have R_9 = benzyl and R_2 = R_5 = R_{14} = hydrogen and R_{13} = tert-butyldimethylsilyl[[.]];
- 2. Sstereoisomer (2R,3S,4R) cannot does not have $R_9 = R_2 = R_5 = R_{14} = \text{hydrogen}$ and $R_{13} = \text{tert-butyldimethylsilyl[[.]]};$
- 3. Setereoisomer (2R,3S,4R) cannot does not have $R_9 = R_2 = R_5 = R_{14} = \text{hydrogen}$ and $R_{13} = \text{tert-butyldiphenylsilyl[[.]]}$;
- 4. Sstereoisomer (2R,3S,4S,5S) cannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{tert-butyldiphenylsilyl}$ and $R_{14} = \text{p-toluenecarboxy}[[.]]$;
- 5. Setereoisomer (2R,3S,4S,5S) cannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{tert-butyldimethylsilyl}$ and $R_{14} = \text{tricholoroacetamide}[[.]];$ and
- 6. Sstereoisomers (2R,3S,4S,5R) and (2S,3R,4R,5S) eannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{tert-butyldimethylsilyl}$ and $R_{14} = 5,6$ -dichlorobenzimidazole.

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 20

92. (Currently amended) The Compounds according to claim 90, wherein R₁₃ is selected from the group consisting of benzyl, 2-nitrobenzyl, 2-trifluoromethylbenzyl, 4-methoxybenzyl, 4-nitrobenzyl, 4-chlorobenzyl, 4-bromobenzyl, 4-cyanobenzyl, 4-phenylbenzyl, 4-acylaminobenzyl, 4-azidobenzyl, 4-(methylsulfinyl)benzyl, 2,4-dimethoxybenzyl, 4-azido-3-chlorobenzyl, 3,4-dimethoxybenzyl, 2,6-dichlorobenzyl, 2,6-difluorobenzyl, 1-pyrenylmethyl, diphenylmethyl, 4,4'-dinitrobenzhydryl, 5-benzosuberyl, triphenylmethyl (trityl), α-naphthyldiphenylmethyl, (4-methoxyphenyl)-diphenyl-methyl (MMT), di-(p-methoxyphenyl)-phenylmethyl, tri-(p-methoxyphenyl)methyl, 4-(4'-bromophenacyloxy)-phenyldiphenylmethyl, 4,4',4"-tris(4,5-dichlorophtalimidophenyl)methyl, 4,4',4"-tris(levulinoyloxyphenyl)methyl, 4,4'-dimethoxy-3"-[N-(imidazolylmethyl)]trityl, 4,4'-dimethoxy-3"-[N-(imidazolylmethyl)carbamoyl]trityl, 1,1-bis(4-methoxyphenyl)-1'-pyrenylmethyl, 4-(17-tetrabenzo[a,c,g,I]fluorenylmethyl)-4,4'-dimethoxytrityl, 9-anthryl, 9-(9-phenyl)xanthenyl, and 9-(9-phenyl-10-oxo)anthryl,

PATENT

Attorney Docket No.: AUSP1100-1

$\underline{\mathbf{w}}$ with the <u>further</u> proviso that:

- 1. Setereoisomer (2R, 3S, 4S, 5R) eannot does not have $R_2 = R_5$ = hydrogen and R_9 = benzoyl and R_{13} = (4-methoxyphenyl)-diphenyl-methyl and R_{14} = N-(9H-purin-6-yl)-benzamide[[.]];
- 2. Sstereoisomer (2R, 3S, 4S, 5R) cannot does not have $R_2 = R_5$ = hydrogen and R_9 = benzoyl and R_{13} = (4-methoxyphenyl)-diphenyl-methyl and R_{14} = 1H-pyrimidine-2,4-dione[[.]];
- 3. Setereoisomer (2R, 3S, 4S, 5R) cannot does not have $R_2 = R_5 = \text{hydrogen}$ and $R_9 = \text{benzoyl}$ and $R_{13} = (4\text{-methoxyphenyl})\text{-diphenyl-methyl}$ and $R_{14} = N\text{-}(2\text{-oxo-1}, 2\text{-dihydro-pyrimidin-4-yl})\text{-benzamide}[[.]];$
- 4. Sstereoisomer (2R, 3S, 4S, 5R) cannot does not have $R_2 = R_5 = \text{hydrogen}$ and $R_9 = \text{benzoyl}$ and $R_{13} = (4\text{-methoxyphenyl})\text{-diphenyl-methyl}$ and $R_{14} = N, N$ -dimethyl-N'-(6-oxo-6,9-dihydro-1H-purin-2-yl)-formamidine[[.]];

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 21

- 5. Setereoisomer (2R, 3S, 4R) eannot does not have $R_2 = R_5 = R_9 = R_{14} = \text{hydrogen}$ and $R_{13} = \text{triphenylmethyl}[[.]]$;
- 6. Setereoisomer (2R, 3S, 4S) cannot does not have $R_2 = R_5 = R_9 = R_{14} = \text{hydrogen}$ and $R_{13} = \text{benzyl}[[.]];$
- 7. Setereoisomers (2R, 3S, 4R, 5R) and (2R, 3S, 4R, 5S) eannot do not have $R_2 = R_5$ = R_9 = hydrogen and R_{13} = triphenylmethyl and R_{14} = hydroxy[[.]]; and
- 8. Setereoisomer (2R, 3R, 4R) and (2S, 3S, 4S) cannot does not have $R_2 = R_9 = R_{14}$ = hydrogen and R_5 = methyl and R_{13} = triphenylmethyl.
- 93. (Currently amended) The Compounds according to claim 90, wherein R₁₃ is selected from the group consisting of alkyl, substituted alkyl and aryl and more specifically R₁₃ is selected from the group consisting of methyl, tert-butyl, allyl, propargyl, p-chlorophenyl, p-methoxyphenyl, pnitrophenyl, 2,4-dinitrophenyl, 2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl, methoxymethyl, methylthiomethyl, (phenyldimethylsilyl)methoxymethyl, benzyloxymethyl, p-methoxybenzyloxymethyl, p-nitrobenzyloxymethyl, o-nitrobenzyloxymethyl, (4-methoxyphenoxy)methyl, guaiacolmethyl, tert-butoxymethyl, 4-pentenyloxymethyl, tert-butyldimethylsiloxymethyl, thexyldimethylsiloxymethyl, tert-butyldiphenylsiloxymethyl, 2-methoxyethoxymethyl, 2,2,2trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-(trimethylsilyl)ethoxymethyl, menthoxymethyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 1-[2-(trimethylsilyl)ethoxy]ethyl, 1methyl-1-ethoxyethyl, 1-methyl-1-benzyloxyethyl, 1-methyl-1-benzyloxy-2-fluoroethyl, 1methyl-1-phenoxyethyl, 2,2,2-trichloroethyl, 1-dianisyl-2,2,2-trichloroethyl, 1,1,1,3,3,3hexafluoro-2-phenylisopropyl, 2-trimethylsilylethyl, 2-(benzylthio)ethyl, 2-(phenylselenyl)ethyl, tetrahydropyranyl, 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4methoxytetrahydropyranyl, 4-methoxytetrahydrothiopyranyl, 4-methoxytetrahydropyranyl S,Sdioxide. 1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl, 1-(2-fluorophenyl)-4methoxypiperidin-4-yl, 1,4-dioxan-2-yl, tetrahydrofuranyl, and tetrahydrothiofuranyl,

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 22

₩with the <u>further</u> proviso that:

- 1. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{allyl}$ and $R_{14} = \text{hydroxyl}[[.]]$;
- 2. Compounds of formula Q cannot do not have $R_2 = R_5 = \text{hydrogen}$ and $R_9 = R_{13} = \text{methyl}$ and $R_{14} = \text{methoxy}[[.]]$;
 - 3. Setereoisomer (2R,3S,4R,5S) eannot does not have $R_2 = R_5 = \text{hydrogen and } R_9 = R_{13} = \text{methyl and } R_{14} = \text{methoxy}[[.]];$
 - 4. Setereoisomer (2R,3S,4R,5S) eannot does not have $R_2 = R_5 = \text{hydrogen and } R_9 = \text{benzyl and } R_{13} = \text{methyl and } R_{14} = \text{hydroxy}[[.]];$
 - 5. Setereoisomer (2R,3S,4R,5S) cannot does not have $R_2 = R_5 = \text{hydrogen and } R_9 = \text{benzyl and } R_{13} = \text{methyl and } R_{14} = \text{methoxy}[[.]];$
 - 6. Setereoisomer (2R,3S,4S,5S) cannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{methyl}$ and $R_{14} = \text{methoxy}[[.]]$; and
 - 7. Setereoisomer (2R, 3S, 4R) cannot does not have $R_2 = R_5 = R_{14} = \text{hydrogen}$ and $R_9 = R_{13} = \text{methyl}$.
- 94. The Compounds according to claim 90, where \underline{in} $R_{13} = -C(O)R^8$, where \underline{in} R^8 is selected from the group consisting of alkyl, substituted alkyl and aryl and more specifically R_8 is selected from the group consisting of hydrogen, methyl, ethyl, tert-butyl, adamantyl, crotyl, chloromethyl, dichloromethyl, trichloromethyl, trifluoromethyl, methoxymethyl, triphenylmethoxymethyl, phenoxymethyl, 4-chlorophenoxymethyl, phenylmethyl, diphenylmethyl, 4-methoxycrotyl, 3-phenylpropyl, 4-pentenyl, 4-oxopentyl, 4,4-(ethylenedithio)pentyl, 5-[3-bis(4-methoxyphenyl)hydroxymethylphenoxy]- 4-oxopentyl, phenyl, 4-methylphenyl, 4-nitrophenyl, 4-fluorophenyl, 4-chlorophenyl, 4-methoxyphenyl, 4-phenylphenyl, 2,4,6-trimethylphenyl, α -naphthyl, and benzoyl,

Wwith the further proviso that:

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 23

- 1. Setereoisomer (2R,3S,4R,5R) eannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{acetyl}$ and $R_{14} = \text{N-acetamido}[[.]]$;
- 2. Sstereoisomer (2R,3R,4S,5S) eannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{acetyl}$ and $R_{14} = \text{acetoxy}[[.]]$;
- 3. Sstereoisomer (2R,3S,4R) cannot does not have $R_2 = R_5 = R_{14} = \text{hydrogen and } R_9$ = $R_{13} = \text{tert-butylcarbonyl}[[.]];$
- 4. Sstereoisomer (2R,3S,4R) eannot does not have $R_2 = R_5 = R_9 = R_{14} = \text{hydrogen}$ and $R_{13} = 1$ -naphthoyl[[.]];
- 5. Setereoisomer (2R,3S,4R) cannot does not have $R_2 = R_5 = R_9 = R_{14} = \text{hydrogen}$ and $R_{13} = 2\text{-naphthoyl}[[.]]$;
- 6. Sstereoisomer (2R,3S,4R) cannot does not have $R_2 = R_5 = R_9 = R_{14} = \text{hydrogen}$ and $R_{13} = \text{benzoyl}[[.]]$;
- 7. Sstereoisomer (2R,3S,4R) cannot does not have $R_2 = R_5 = R_9 = R_{14} = \text{hydrogen}$ and $R_{13} = 4\text{-methoxybenzoyl}[[.]];$
- 8. Sstereoisomer (2R, 3S, 4S, 5R) cannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = 3,4,5$ -trihydroxybenzoyl and $R_{14} = (3,4,5$ -trihydroxyphenyl)carboxy[[.]];
- 9. Setereoisomer (2R, 3S, 4R, 5R) eannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{benzoyl}$ and $R_{14} = \text{phenylcarboxy}[[.]]$;
- 10. Setereoisomer (2R, 3R, 4R, 5R) cannot does not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{benzoyl}$ and $R_{14} = \text{phenylcarboxy}[[.]]$;
- 11. Setereoisomer (2R, 3S, 4R, 5R) cannot does not have $R_2 = R_5 = \text{hydrogen and } R_9$ = $R_{13} = \text{benzoyl and } R_{14} = \text{phenylcarboxy[[.]]}$;
- 12. Setereoisomer (2R, 3S, 4R, 5R) cannot does not have $R_2 = R_5 = \text{hydrogen}$ and $R_9 = R_{13} = \text{benzoyl}$ and $R_{14} = \text{hydroxy}[[.]]$;

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 24

- 13. Sompounds of formula Q eannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = 3-(3,4,5-\text{trimethoxyphenyl})$ acryloyl and $R_{14} = \text{hydroxy}[[.]]$.
- 14. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen and } R_{13} = \text{formyl and } R_{14} = \text{hydroxy}[[.]]$;
- 15. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = \text{ethylcarbonyl}$ and $R_{14} = \text{hydroxy}[[.]]$;
- 16. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{14} = \text{hydroxy}$ and $R_{13} = \text{aminomethylcarbonyl}[[.]]$;
- 17. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{14} = \text{hydroxy}$ and $R_{13} = 10$ -aminodecylcarbonyl[[.]];
- 18. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen and } R_{14} = \text{hydroxy and } R_{13} = 5\text{-aminopentylcarbonyl}[[.]];$
- 19. Geompounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen and } R_{14} = \text{hydroxy and } R_{13} = \text{succinoyl}[[.]]; and$
- 20. Compounds of formula Q cannot do not have $R_2 = R_5 = R_9 = \text{hydrogen}$ and $R_{13} = 3,4,5$ -trihydroxybenzoyl and $R_{14} = \text{hydroxy}$.
- 95. (Currently amended) The Compounds of formula Q according to claim 90, wherein:

$$\begin{array}{c|c} H & O & OR_{13} \\ \hline R_{14} & OR_{15} \\ \hline R_{2} & OR_{15} \\ \end{array}$$

Q

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- b) R₉, R₁₃ are independently selected from the group consisting of hydrogen, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl and hydroxyl protecting group.

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 25

c) R_{14} is cyano[[.]]; and

- d) R₁₅ is selected from the group consisting of hydrogen, trimethylsilyl, tertbutyldimethylsilyl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl and hydroxyl protecting group.
- 96. (Currently amended) The Ccompounds of formula Q according to claim 90, wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- b) R₉, R₁₃ and R₁₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl, trimethylsilyl, tert-butyldimethylsilyl and hydroxyl protecting group[[.]]; and
- c) R₁₄ is selected from the group consisting of alkylthio and arylthio.

₩with the further proviso that:

- 1. Setereoisomer (2R,3R,4S,5R) and (2R,3R,4S,5S) cannot does not have $R_2 = R_5 =$ hydrogen, $R_9 = R_{13} = R_{15} =$ acetyl, and $R_{14} =$ ethylthio[[.]];
- 2. Sstereoisomer (2R,3R,4S,5R) and (2R,3R,4S,5S) cannot does not have $R_2 = R_5 =$ hydrogen, $R_9 = R_{13} = R_{15} =$ acetyl, and $R_{14} =$ n-propylthio[[.]];
- 3. Setereoisomers (2R,3S,4S,5R) and (2R,3S,4S,5S) eannot do not have $R_2 = R_5 = R_9 = R_{13} = R_{15} = \text{hydrogen and } R_{14} = \text{benzylthio}[[.]]; \text{ and}$

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 26

4. Setereoisomers (2R,3R,4S,5R) and (2R,3R,4S,5S) eannot do not have $R_2 = R_5 = R_5$ hydrogen, $R_9 = R_{13} = R_{15} = \text{acetyl}$, and $R_{14} = \text{benzylthio}$.

97. (Currently amended) The Ccompounds of formula Q according to claim 90, wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- b) R₉ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl, trimethylsilyl, tertbutyldimethylsilyl, and hydroxyl protecting group[[.]];
- c) R₁₃ is selected from the group consisting of alkyl, substituted alkyl, aryl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl, trimethylsilyl, tertbutyldimethylsilyl and hydroxyl protecting group[[.]];
- d) R₁₅ is hydrogen; and
- e) R₁₄ is NHR₁₈ where R₁₈ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl and amino protecting group[[.]],

$\underline{\mathbf{W}}\underline{\mathbf{w}}$ ith the <u>further</u> proviso that:

- 1. Setereoisomers (2R,3S,4R,5R) eannot do not have $R_2 = R_5 = R_9 = R_{15} = hydrogen$, $R_{13} = acetyl$, and $R_{14} = acetamido[[.]]$; and
- 2. Setereoisomers (2R,3S,4S,5S) and (2R,3R,4R,5S) cannot do not have $R_2 = R_5 = R_9 = R_{15} = \text{hydrogen}$, $R_{13} = \text{tert-butyltrimethylsilyl}$, and $R_{14} = \text{trichloroacetamido}$.

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 27

Attorney Docket No.: AUSP1100-1

PATENT

98. (Currently amended) The Ccompounds of formula Q according to claim 90, wherein:

- R₂ and R₅ are independently selected from the group consisting of hydrogen, a) alkyl, substituted alkyl and aryl;
- R₉ and R₁₅ are independently selected from the group consisting of hydrogen, b) alkyl, substituted alkyl, aryl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl, trimethylsilyl, tert-butyldimethylsilyl and hydroxyl protecting group[[.]];
- c) R₁₃ is selected from the group consisting of alkyl, substituted alkyl, aryl, alkylcarbonyl, substituted alkylcarbonyl, arylcarbonyl, trimethylsilyl, tertbutyldimethylsilyl and hydroxyl protecting group. [[.]]; and
- R₁₄ is selected from the group consisting of phathalimide, substituted phathlimide, d) maleimide, substituted maleimide and NR₁₈R₁₉ where R₁₈ and R₁₉ are independently selected from the group consisting of alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl, heteroaryl, saturated heteroaryl and amino protecting group and R_{18} and R_{19} maybe taken together with the nitrogen to which they are attached forming a cyclic system containing 3 to 10 carbon atoms with at least one substituent as defined for a substituted alkyl[[.]],

Wwith the further proviso that:

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 28

- 1. Setereoisomer (2R,3R,4R,5S) cannot does not have $R_2 = R_5 = \text{hydrogen}$, $R_9 = R_{13} = R_{15} = \text{acetyl}$, and $R_{14} = \text{phthalimido}[[.]]$;
- 2. Setereoisomer (2R,3S,4R,5S) eannot does not have $R_2 = R_5 = R_9 = R_{13} = R_{15} = R_{15}$ hydrogen, and R_{14} = dimethylamino hydrogen chloride[[.]];
- 3. Setereoisomer (2R,3S,4R,5S) cannot does not have $R_2 = R_5 = R_9 = R_{13} = R_{15} = R_{15}$ hydrogen, and R_{14} = trimethylaminoiodide[[.]]; and
- 4. Sstereoisomer (2R,3S,4R,5S) eannot does not have $R_2 = R_5 = R_9 = R_{13} = R_{15} = R_{15}$ hydrogen, and $R_{14} = N,N$ -(benzyloxycarboxy)methylamino.
- 99. (Original) All stereoisomers of the compounds selected from the group consisting of 5-benzylamino-2-(tert-butyldimethylsilanyloxymethyl)-tetrahydropyran-3,4-diol, 2-(tert-butyldimethylsilanyloxymethyl)-5-(3-methoxyphenylamino)-tetrahydropyran-3,4-diol, 2-hydroxymethyl-5-phenylsulfanyl-tetrahydropyran-3,4-diol, 6-(tert-butyldimethylsiloxymethyl)-5-hydroxy-4(-trimethylsiloxy)-tetrahydropyran-3-carbonitrile, 6-(tert-butyldimethylsiloxymethyl)-5-hydroxy-4(-tert-butyldimethylsiloxy)-tetrahydropyran-3-carbonitrile, 5-benzyloxy-2-(tert-butyldimethylsilanyloxymethyl)-tetrahydropyran-3,4-diol, 2-(tert-butyldimethylsilanyloxymethyl)-tetrahydropyran-3,5-diol, and 5-azido-2-(tert-butyldimethylsilanyloxymethyl)-tetrahydropyran-3,4-diol.

100-104. (Canceled).

105. (Currently amended). A Ccompounds of formula S, where:

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 29

Attorney Docket No.: AUSP1100-1

PATENT

wherein R_2 , R_5 , R_{16} and R_{17} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl,

₩with the further proviso that:

- 1. Setereoisomer (4aR,8aS) cannot does not have $R_2 = R_5 = R_{16} = hydrogen$ and $R_{17} = phenyl;$ and
- 2. Sstereoisomer (4aR,8aS) cannot does not have $R_2 = R_{16} = \text{hydrogen}$, $R_5 = (4-\text{methoxyphenyl})$ -diphenylmethoxymethyl and $R_{17} = \text{phenyl}$.

106. (Currently amended). The <u>compound of claim 105</u>, wherein the compound includes all All stereoisomers of compounds of formula S, wherein $R_2 = R_5 = \text{hydrogen}$ and $R_{16} = R_{17} = \text{methyl}$, wherein the specifically compounds is selected from the group consisting of (4aR,8aR)-2,2-dimethyl-4,4a,6,8a-tetrahydropyrano[3,2-d][1,3]dioxine, <math>(4aS,8aS)-2,2-dimethyl-4,4a,6,8a-tetrahydropyrano[3,2-d][1,3]dioxine, (4aR,8aS)-2,2-dimethyl-4,4a,6,8a-tetrahydropyrano[3,2-d][1,3]dioxine, and <math>(4aS,8aR)-2,2-dimethyl-4,4a,6,8a-tetrahydropyrano[3,2-d][1,3]dioxine.

107-110. (Canceled).

111. (Currently amended). A Ccompounds of formula T, where:

٦

wherein R₂, R₅, R₁₆ and R₁₇ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl,

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 30

₩with the <u>further</u> proviso that:

- Setereoisomer (1aR,3aR,7aR,7bR) eannot does not $R_2 = R_5 = R_{16} = hydrogen$ and $R_{17} = phenyl$;
- Setereoisomer (1aS,3aR,7aR,7bS) cannot does not have $R_2 = R_5 = R_{16} = hydrogen$ and $R_{17} = phenyl;$ and
- 3) Sstereoisomer (1aR,3aS,7aS,7bR) cannot does not have $R_2 = R_5 = R_{16} = hydrogen$ and $R_{17} = phenyl$.

112-116. (Canceled).

117. (Currently amended). A Ccompounds of formula U, where:

wherein:

- a) R₂, R₅, R₁₆ and R₁₇ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and ary[[.]];
- b) R₁₄ is selected from the group consisting of hydrogen, halogen, alkyl, substituted alkyl, aryl, heteroaryl, saturated heteroaryl, cyano, azido, amino, alkylamino, arylamino, hydrazino, alkylhydrazino, arylhydrazino, alkylcarbonylhydrazino, arylcarbonylhydrazino, hydroxy, alkoxy, aryloxy, alkylthio, arylthio, alkylcarboxy, arylcarboxy, N-protected amino acid, O-protected amino acid and a solid support[[.]];

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 31

c) R₁₅ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group,

<u>Wwith the further proviso that:</u>

- 1) $\underline{\text{Hi}} f R_{16}$ is methyl then R_{17} cannot be is not methyl;
- 2) $\underline{\text{Hi}} f R_{16}$ is hydrogen then R_{17} cannot be is not phenyl;
- 3) $\underbrace{\text{lif } R_2 = R_5 = R_{15} = R_{16} = \text{hydrogen and } R_{14} = \text{hydroxy then } R_{17} \text{ eannot be is not } 3-\text{nitrophenyl}[[.]];}$
- 4) $\underbrace{\text{Lif } R_2 = R_5 = R_{14} = R_{15} = R_{16} = \text{hydrogen then } R_{17} \text{ cannot be is not 4-} \\ \text{nitrophenyl}[[.]];$
- 5) $\underbrace{\text{Hif } R_2 = R_5 = R_{14} = R_{15} = R_{16} = \text{hydrogen then } R_{17} \text{ eannot be is not 4-}}_{\text{methoxyphenyl}[[.]];}$
- 6) $\underbrace{\text{Fif } R_2 = R_5 = R_{16} = \text{hydrogen and } R_{14} = \text{methoxy and } R_{15} = \text{methyl then } R_{17} = \text{methyl$
- 7) $\underline{\text{Hi}}f R_2 = R_5 = R_{15} = R_{16} = \text{hydrogen and } R_{14} = \text{hydroxy then } R_{17} = \frac{1}{100} = \frac{1}{$

118-121. (Canceled).

122. (Currently amended). A Ccompounds of formula V, where:

V

wherein:

Hong et al.

Attorney Docket No.: AUSP1100-1

PATENT

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 32

a) R₂, R₅, R₁₆ and R₁₇ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl[[.]]; and

b) R₁₀ and R₁₁ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group.

Wwith the <u>further</u> proviso that:

- 1. Let R_{16} is methyl then R_{17} cannot be is not methyl;
- 2. $\underline{\text{Hi}} f R_{16}$ is hydrogen then R_{17} cannot be is not phenyl;
- 3. $\underbrace{\text{lif } R_2 = R_5 = R_{10} = R_{11} = R_{16} = \text{hydrogen then } R_{17} \text{ eannot be is not } 3-\text{nitrophenyl}[[.]];}$
- 4. $\underbrace{\text{Lif } R_2 = R_5 = R_{16} = \text{hydrogen and } R_{14} = \text{hydroxy then } R_{17} = \frac{\text{cannot be is not } 4 \text{methoxyphenyl}[[.]]; and}$
- 5. $\underbrace{\text{Hi}}_{1}f R_2 = R_5 = R_{16} = \text{hydrogen and } R_{10} = R_{11} = \text{methyl then } R_{17} = \frac{1}{1} = \frac{1}{1$
- 123. (Currently amended). The <u>compound of claim 122, wherein the compound includes all All</u> stereoisomers of compound of formula V, wherein $R_2 = R_5 = R_{10} = R_{11} = \text{hydrogen}$ and $R_{16} = R_{17} = \text{methyl}$, and compounds selected from the group consisting of (4aS,7R,8R,8aR)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol, (4aS,7S,8S,8aR)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol, (4aR,7R,8R,8aS)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol, (4aR,7S,8S,8aR)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol, (4aS,7S,8S,8aS)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol, and (4aR,7R,8R,8aR)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol, and (4aR,7R,8R,8aR)-2,2-dimethyl-hexahydropyrano[3,2-d][1,3]dioxine-7,8-diol.

Hong et al.

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 33

124-128 (Canceled).

129. (Currently amended). A Ccompounds of formula W, where:

$$R_3$$
 R_4
 R_5
 O
 CH_2OR_{20}
 OR_9
 R_6
 R_7

PATENT

Attorney Docket No.: AUSP1100-1

wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- b) $R_3 = R_4 = R_6 = R_7 = \text{hydrogen or } R_3, R_4, R_6, R_7 \text{ are selected such that three out of four are hydrogen and the fourth is selected from the group consisting of alkyl, substituted alkyl and aryl; and$
- c) R₉ and R₂₀ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkylcarbonyl, substituted alkylcarbonyl, aryl, arylcarbonyl and hydroxyl protecting group,

₩with the further proviso that:

- Setereoisomer (2R,3R) eannot does not have $R_3 = R_4 = R_6 = R_7 = R_9 = R_{20} =$ hydrogen;
- Setereoisomer (2R,3R) cannot does not have $R_3 = R_4 = R_6 = R_7 = \text{hydrogen}$ and $R_9 = R_{20} = \text{benzoyl}$:
- Setereoisomer (2R,3R) cannot does not have $R_3 = R_4 = R_7 = R_9 = R_{20} = hydrogen$ and $R_6 = methyl$:
- 4) Setereoisomer (2R,3R) cannot does not have $R_3 = R_4 = R_7 = \text{hydrogen and } R_6 = \text{methyl and } R_9 = R_{20} = \text{benzoyl}; \text{ and}$

Hong et al.

PATENT Attorney Docket No.: AUSP1100-1

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 34

5) Iif R_{20} = benzyl then R_3 , R_4 , R_6 , R_7 , R_9 cannot be is not hydrogen.

130. (Currently amended) The <u>compound of claim 129</u>, wherein the compound includes all All stereoisomers of compound of formula W, where<u>in</u> R_1 = ethyl and R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_9 = hydrogen and compounds selected from the group consisting of (2S,3S)-2-allyloxy-pent-4-ene-1,3-diol, (2R,3S)-2-allyloxy-pent-4-ene-1,3-diol.

131-135. (Canceled).

136. (Currently amended). A Ccompounds of formula X, where:

$$R_{3}$$
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{17}

wherein:

- a) R₂ and R₅ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl;
- b) $R_3 = R_4 = R_6 = R_7 = \text{hydrogen or } R_3, R_4, R_6, R_7 \text{ are selected such that three out of four are hydrogen and the fourth is selected from the group consisting of alkyl, substituted alkyl and aryl; and$
- c) R₁₆ and R₁₇ are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl and aryl.
- 137. The <u>compound of claim 129</u>, wherein the <u>compound includes all All</u> stereoisomers of compounds of formula X, where<u>in</u> $R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = \text{hydrogen and } R_{16} = R_{17} = \text{hydrogen and } R_{16} = R_$

Hong et al.

PATENT Attorney Docket No.: AUSP1100-1

Application No.: Not Yet Assigned

Filed: July 13, 2005

Page 35

methyl, and compounds selected from the group consisting (5R,6R)-5-allyloxy-2,2-dimethyl-4vinyl-[1,3]dioxane, (5S,6S)-5-allyloxy-2,2-dimethyl-4-vinyl-[1,3]dioxane, (5S,6R)-5-allyloxy-2,2-dimethyl-4-vinyl-[1,3]dioxane, and (5R,6S)-5-allyloxy-2,2-dimethyl-4-vinyl-[1,3]dioxane.

138-173. (Canceled).