

PostgreSQL для администраторов и разработчиков

Оптимизация настроек и структуры базы данных для повышения эффективности работы запросов

Меня хорошо видно & слышно?

Защита проекта

Тема: Оптимизация настроек и структуры базы данных для повышения эффективности работы запросов.

Фёдор Сныткин

Специалист группы администрирования БД. АО «АЛСЕКО». Сбор и обработка данных, разработка ПО, тех. сопровождение.

План защиты

Цель и задачи проекта Какие технологии использовались Что получилось Выводы Вопросы и рекомендации

Цель и задачи проекта

Цель проекта: оптимизировать структуру данных произвольного DataSet для оптимальной работы разработанных под его структуру запросов.

- 1. Развернуть виртуальную машину с СУБД и восстановить на ней DataSet (только данные).
- 2. Разработать запросы к DataSet и провести анализ их планов.
- 3. Оптимизировать структуру базы DataSet под разработанные запросы.
- 4. Отработать запросы и провести анализ их производительности.

Какие технологии использовались

- 1. Создание виртуальной машины на Oracle VM Virtual Box
- Установка на VM ОС Ubuntu 22.04.
- 3. Установка PostgreSQL15 и настройка по рекомендациям PGTune.
- **4.** Доп. средства PuTTY, WinSCP, Vim, mc ...

Структара данных базы employees

employee	department
Id	Id
birth_date	dept_name
first_name	
last_name	
gender	
hire_date	

department_employ	ee
employee_id	
department_id	
from_date	
to_date	3

title	- 10
employee_id	
title	· C
from_date	
to_date	

department_manager	
employee_id	
department_id	
from_date	
to_date	

```
select
e.first_name ||' '|| e.last_name AS "Имя сотрудника", Запрос Select
t.title AS "Должность",
 s.amount AS "Зарплата на сегодня в $",
 67690 - s.amount AS "Недостаток в $"
from employees.salary as s
Join employees.employee as e
on s.employee id = e.id
join employees.title as t
on s.employee id = t.employee id
join employees.department employee as de
on e.id = de.employee id
join employees.department as d
on d.id = de.department id
where
  s.from_date >= (select max(from_date) from employees.salary)
   and s.to date = (select max(to date) from employees.salary)
   and t.to date > (select current date)
   and de.to date > (select current date)
   and s.amount < 67690
ORDER BY s.amount limit 10;
```

Результат запроса Select limit 10

Имя сотрудника	•	Зарплата на сегодня в \$	
Woody Porenta	Senior Engineer	40960	
Marc Molenaar	Assistant Engineer	41325	26365
Francoise Emden	Engineer	41595	26095
Margo Gihr	Senior Engineer	42895	24795
Neven Domenig	Staff	43305	24385
Taiji Mullainathan	Staff	44354	23336
Koldo Katzenelson	Assistant Engineer	44775	22915
Ioana Liedekerke	Engineer	44785	22905
Gully Nittel	Staff	45363	22327
Christoper Kropatsch	Engineer	45457	22233
(10 rows)			

```
update employees.salary
set amount = (67690 + (amount/3))
where employee id in
 (select s.employee_id
 from employees.salary as s
  Join employees.employee as e
  on s.employee id = e.id
  join employees.title as t
  on s.employee id = t.employee id
  join employees.department employee as de
  on e.id = de.employee id
  join employees.department as d
  on d.id = de.department id
 where
   s.from date >= (select max(from date) from employees.salary)
   and s.to date = (select max(to date) from employees.salary)
   and t.to date > (select current date)
   and de.to date > (select current date)
   and s.amount < 67690
and from_date >= (select max(from_date) from employees.salary)
and to date = (select max(to date) from employees.salary)
and amount < 67690;
```


Структура индексов для запросов

```
CREATE UNIQUE INDEX idx employee id primary ON employees.employee USING btree (id);
CREATE UNIQUE INDEX idx_department_id_primary ON employees.department USING btree (id);
CREATE INDEX idx title todate ON employees.title USING btree (to date);
CREATE INDEX idx title empid ON employees.title USING btree (employee id);
CREATE INDEX idx salary empid ON employees.salary USING btree (employee id);
CREATE INDEX idx salary todate ON employees.salary USING btree (to date);
CREATE INDEX idx salary fromdate ON employees.salary USING btree (from date);
CREATE INDEX idx salary amount ON employees.salary USING btree (amount);
CREATE INDEX idx department employee to date ON employees.department employee USING btree
(to date);
CREATE INDEX idx department employee depid ON employees.department employee USING btree
(department id);
CREATE INDEX idx department employee employeeid ON employees.department employee USING
btree (employee_id);
```



```
Select
```

```
e.first name AS "Фамилия",
e.last name AS "Имя",
d.dept name AS "Департамент",
t.title AS "Должность",
s.amount AS "Зарплата $",
s.from date AS "выдана от",
s.to date AS "выдана до"
from employees.employee as e
join employees.department employee as de
on e.id = de.employee id
join employees.department as d
on de.department id = d.id
join employees.title as t
on e.id = t.employee id
join employees.salary as s
on e.id = s.employee id
where
e.first name like 'Almudena'
and e.last name like 'Sur%'
and t.to date = (select max(to date) from employees.title)
and s.to date = (select max(to date) from employees.salary);
```

Запрос Select

Результат запроса Select

		Департамент		Зарплата \$ выдана от выдана до
Almudena	Sury	Production Quality Management	Senior Engineer	89888 2002-02-25 9999-01-01
(2 rows)				

Структара данных базы employees нормализована

department
Id
dept_name

titles
title_id
title

department_employee
employee_id
department_id
from_date
to_date

title
employee_id
title_id
from_date
to_date

department_manager
employee_id
department_id
from_date
to_date

```
Select t name AS "Фамилия",
e.first name AS "Фамилия",
e.last name AS "Имя",
d.dept name AS "Департамент",
ts.title AS "Должность",
s.amount AS "Зарплата $",
s.from_date AS "выдана от",
s.to date AS "выдана до"
from employees.employee as eloyee as e
join employees.department_employee as de
on e.id = de.employee id
join employees.department as d
on de.department id = d.id
join employees.title as t
on e.id = t.employee id
join employees.titles as ts
on t.title id = ts.title id
join employees.salary as s
on e.id = s.employee id
Where e.first name like 'Almudena'
and e.last name like 'Sur%'
and t.to_date = (select max(to_date) from employees.title)
and s.to date = (select max(to date) from employees.salary);
```

Запрос Select доработан

Доработана структура индексов

```
CREATE UNIQUE INDEX idx employee id primary ON employees.employee USING btree (id);
CREATE INDEX idx employee firstname lastname ON employees.employee USING btree
(first name, last name);
CREATE UNIQUE INDEX idx department id primary ON employees.department USING btree
(id);
CREATE INDEX idx title todate ON employees.title USING btree (to date);
CREATE INDEX idx title empid ON employees.title USING btree (employee id);
CREATE INDEX idx title titleid ON employees.title USING btree (title id);
CREATE INDEX idx salary empid ON employees.salary USING btree (employee id);
CREATE INDEX idx salary todate ON employees.salary USING btree (to date);
CREATE INDEX idx department employee depid ON employees.department employee USING
btree (department id);
CREATE INDEX idx_department_employee_employeeid ON employees.department_employee
USING btree (employee id);
```


Выводы

- Достижение цели цель достигнута.
- 2. Возникшие проблемы Трудно было понять логику работы оптимизатора.
- Временная оценка 2 недели.
- Личная польза 9 баллов из 10.
- Вопросы по проекту нет.
- 6. Дальнейшее развитие Изучение логики оптимизатора запросов PostgreSql с учетом изменений структуры БД на физическом уровне.

Вопросы и рекомендации

если вопросов нет

Спасибо за внимание!