Mixed effects models 2 "Space is the place" - Sun Ra

Samuel Robinson, Ph.D.

December 17, 2020

Motivation

- How do I check if model results are valid?
 - Residual checks
 - Hypothesis testing
- What if my response variable is non-normal?
 - Generalized linear mixed models (GLMMs)
- Sampling over time or space
 - "Continuous" random effects
- Christmas-themed exercise!

Mixed effect model example

Let's go back to our earlier example:

 $lmer(y \sim x + (x|site), data = dat)$

- We're interested in predicting *y* using *x* (fixed effects)
- Data was collected at a number of sites, which may affect y
- Effect of each site is normally distributed (random intercept)
- Effect of site on slope of x is normally distributed (random slope)

Validation

• Similar to linear models, but we *also* check whether the random intercepts are normally distributed

Hypothesis testing

Is this fixed effect important? (e.g. ANOVA)

- Use likelihood-based test via drop1 (likelihood ratio test, AIC)
- Be careful to fit model with REML = FALSE!

```
lmm1 <- update(lmm1,REML=FALSE) #Refit model using ML rather than REML
drop1(lmm1,test='Chisq') #x has a strong effect</pre>
```

Hypothesis testing (cont.)

How do I know this effect is different from x? - Use Wald Z-test (2-sided p-value from Z-test)

```
## x
## 0.004659069
```

 glht from library(multcomp) works with lmer models if you are comparing between coefficients (e.g. "Is treatment A different from B and C?")

What if my response variable is non-normal?

Linear model (LM)

$$\hat{y} = X\beta$$
 $y \sim Normal(\hat{y}, \sigma)$

 Linear mixed effects model (LMM)

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\beta} + U\boldsymbol{\zeta}$$

 $\mathbf{y} \sim Normal(\hat{\mathbf{y}}, \boldsymbol{\sigma})$
 $\boldsymbol{\zeta} \sim Normal(0, \sigma_{site})$

Generalized linear model (GLM)

$$logit(\hat{\phi}) = X\beta$$
 $y \sim Binomial(\hat{\phi})$

 Generalized linear mixed effects model (GLMM)

$$logit(\hat{\phi}) = X\beta + U\zeta$$
 $y \sim Binomial(\hat{\phi})$ $\zeta \sim Normal(0, \sigma_{site})$

How do I fit GLMMs?

 glmer and glmer.nb from library(lme4) work for Binomial, Poisson, and Negative Binomial data

```
library(lme4)
glmm1 <- glmer.nb(y2~x+(x|site),data=dat) #Negative binomial GLMM
summary(glmm1) #glmer.nb takes a LONG time to run</pre>
```

- glmmTMB from library(glmmTMB) works for those above, plus a bunch of others
 - e.g. Zero-inflation, Beta-binomial, Spatial Models

```
library(glmmTMB)
glmm2 <- glmmTMB(y2~x+(x|site),data=dat,family=nbinom2())
summary(glmm2) #Similar results, but quicker</pre>
```

Fitting GLMMs - glmer.nb

Fitting GLMMs - glmmTMB

```
## Family: nbinom2 (log)
## Formula:
                v2 ~ x + (x | site)
## Data: dat
##
##
       AIC
              BIC logLik deviance df.resid
     627.8 646.2 -307.9 615.8
##
                                         154
##
## Random effects:
##
## Conditional model:
## Groups Name Variance Std.Dev. Corr
## site (Intercept) 1.43543 1.1981
                     0.02892 0.1701 0.92
##
          x
## Number of obs: 160, groups: site, 16
##
## Overdispersion parameter for nbinom2 family (): 5.12
##
## Conditional model:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.34132 0.32172 1.061 0.2887
## Y
              0.11026 0.04697
                                  2.348 0.0189 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual checks on glmmTMB models

- Extract residuals and make your own plots, or use simulateResiduals from library(DHARMa) (see here)
- DHARMa also has useful functions for checking overdispersion and zero-inflation (found here)

DHARMa residual diagnostics

Partial residual plots for glmmTMB models

 ggpredict() from library(ggeffects) works with glmmTMB models

Spatial and Temporal Random Effects

"My data were sampled over time or over a geographic area (or both). Can I just use day or site as a random effect?"

- Short answer: "Yes"
- Long answer: You might be able to do better, because of the 1st Law of Geography:

"... everything is related to everything else, but near things are more related than distant things." Waldo Tobler

- If you have spatial or temporal information, this can help R to estimate random effects more accurately
 - Can improve prediction accuracy (smaller p-values)
 - Can give you hints about the underlying causal mechanisms

Temporal or Spatial Data

- Correlation is often present in temporal data or spatial data; causes may be unknown or "uninteresting"
- Usually we are interested in accounting for these patterns, in order to better estimate the "interesting" patterns on top of them

Covariance

- Normal distributions 1 don't just have a single σ , but a matrix of values
- If our data y are independent, then it looks like this:

$$y \sim Normal(M, \Sigma)$$

$$\mathbf{M} = [\mu_1, \mu_2, \mu_3]$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$

- Zeros mean " μ_1 , μ_2 , & μ_3 aren't related to each other"
- Diagonal elements = variance, off-diagonal = covariance

¹Multivariate Normal

Covariance and Correlation

In real life, things may not be independent from each other. For example:

- $\sigma = 2$ (variance $= \sigma^2 = 4$)
- μ_1 and μ_2 are strongly correlated (r=0.7), but μ_3 is not related to anything (r=0). Shown here as a *correlation matrix* (R):

$$\mathbf{R} = \begin{bmatrix} 1 & 0.7 & 0 \\ 0.7 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 When multiplied by the variance, this becomes the covariance matrix (Σ)

$$\Sigma = \begin{bmatrix} \sigma^2 \times 1 & \sigma^2 \times 0.7 & \sigma^2 \times 0 \\ \sigma^2 \times 0.7 & \sigma^2 \times 1 & \sigma^2 \times 0 \\ \sigma^2 \times 0 & \sigma^2 \times 0 & \sigma^2 \times 1 \end{bmatrix} = \begin{bmatrix} 4 & 2.8 & 0 \\ 2.8 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Gaussian Process Modelling

- We can model covariance between things as a function of distance, either in time or space
- Squared-exponential is fairly common²:

$$\Sigma = covariance$$

$$\Sigma = variance \times correlation$$

$$\Sigma = \sigma^2 \times e^{-\rho^2 Dist^2}$$

• Instead of finding a single σ value, R now looks for σ (maximum covariance) and ρ (decay with distance)

²Also common: AR-1 (temporal processes), Matérn (spatial processes)

Spatial random effects

- Say that we collected data at 16 sites, and we're interested in the effect of y on x
- Let's first fit a model with a random intercept for site

If we plot the intercepts for each site, we see that they are clustered:

