Experiment 2: Temperatures for Gain 250

Madeleine Allen, Edward Piper 2/7/2019

Experiment 2: Johnson Noise 1

Recording the resistor values measured during lab.

```
#everything will be in ohms
short < -.03
shortError<-.001
k20<-20090
k20error<-1
k35 <- 35230 #secretly 35.2 but that would be an ugly variable name
k35error<-1
k100 <- 100700
k100error <- 1
k10 <- 999.05
k10error<- .01
k1 <- 998.17
k1error <- .01
k48 <- 48650 #secretly 48.7k but again that would be an ugly variable name
k48error<- 1
resistors<-c(k1,k10,k20,k35, k48,k100)
resistorserror<-c(k1error, k10error, k20error, k35error, k48error, k100error)
```

Import Band Voltage measurements from experiment 2

experiment2data<-read.csv("/Users/mallen/Documents/128AL/JohnsonNoise128AL/experiment2data2.csv")

Calculate Vmeas, V, and Vsystem

```
Vsys<- experiment2data[1,7] #first row 7th column
VsysError <- experiment2data[1,9]

Vmeask1<- (experiment2data[2,7])
Vmeask10<-experiment2data[3,7]
Vmeask20 <-experiment2data[4,7]
Vmeask32<-experiment2data[5,7]
Vmeask48<-experiment2data[6,7]
Vmeask100<-experiment2data[7,7]

Vmeas<-c(Vmeask1, Vmeask10, Vmeask20, Vmeask32, Vmeask48, Vmeask100)

#need to redo the error later (2/5)</pre>
```

```
VmeasError<-sqrt((sum(experiment2data[2:7,9])^2))

V<- sqrt(-Vsys^2+Vmeas^2)
Verror<- sqrt(VmeasError^2+ VsysError^2)</pre>
```

Calculating G

```
capacitance <-87.875*(10^-12)
capacitanceError <-.594*(10^-12)</pre>
#df is just the x componenent
riemanSum <- function(fa,fb){</pre>
  area <-0.5*(125)*(fb-fa)+fa*125
  return(area)
#resistors<-read.csv("experiment2data1.csv")</pre>
C = capacitance
integrand <- data.frame(</pre>
  gain[2]/(1+(2*pi*C*vin1$x*short)^2),
  gain[2]/(1+(2*pi*C*vin1*x*k1)^2),
  gain[2]/(1+(2*pi*C*vin1$x*k10)^2),
  gain[2]/(1+(2*pi*C*vin1*x*k20)^2),
  gain[2]/(1+(2*pi*C*vin1$x*k35)^2),
  gain[2]/(1+(2*pi*C*vin1$x*k48)^2),
  gain[2]/(1+(2*pi*C*vin1$x*k100)^2)
area <- data.frame(
  G1 = 0,
  G2 = 0,
  G3 = 0,
  G4 = 0,
  G5 = 0.
  G6 = 0,
  G7 = 0
for(i in 1:length(integrand))
    for(1 in 1:398)
      if(is.na(integrand[l+1,i]))
      {
        break
      }
      else
        area[i] <- area[i]+ riemanSum(integrand[l,i],integrand[l+1,i])</pre>
      }
    }
}
```

```
area2error=sqrt((capacitance/capacitanceError)^2+(resistors/resistorserror)^2)
```

So this returns a gain value G for each resistor (called "area")

Plotting R as a function of V², kB, and G

```
kb<- 1.38064852 *10^-23 #m2 kg s-2 K-1
area2<-area[2:7] #take away the short's data
y_value<- (V^2)/(4*kb*area^2) #area is the vector that contains all G's
#prepare data for graphing
resistors2 <-resistors[1:6]
y<- unlist(y_value, use.names=FALSE)
#I'll try finding temperatures
Temperature <- ((V^2)/(4*kb*area2*resistors2))/100
Temperature2<-unlist(Temperature, use.names = FALSE)/10</pre>
Temperature2[2] <- Temperature2[2]/10 #error in data inputting caused 2nd term to be 10* every other term
print(Temperature2) #these are the correct values
## [1] 273.7115 273.9131 282.8623 272.9220 279.5173 288.2244
#resistor as the x axis and the other term as the y axis.
resistors3<-resistors2[1:6]*1000
resistors3error <- resistors3*sqrt((V^2/Verror^2)+((area2/area2error)^2))
fit <-lm(y~0+resistors3)
library(ggplot2)
qplot(unlist(resistors3),unlist(y))+geom_errorbar(aes(x=unlist(resistors3), ymin=unlist(y-resistors3err
  geom_smooth(method="lm", se=FALSE, fullrange=TRUE, level=0.95)+labs(title = "Resistance as a function
```

Resistance as a function of Gain and Voltage with a 1D Fit

summary(fit)

```
##
## Call:
## lm(formula = y ~ 0 + resistors3)
##
## Residuals:
##
                                 3
   -11712456 2451354901 -51896125 -441199967 -288402464 279836274
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## resistors3 285.445
                           9.486
                                   30.09 7.6e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.129e+09 on 5 degrees of freedom
## Multiple R-squared: 0.9945, Adjusted R-squared: 0.9934
## F-statistic: 905.5 on 1 and 5 DF, p-value: 7.603e-07
plot(fit$residuals, main = "Residuals of the fit line", ylab= "Residuals")
```

Residuals of the fit line

that the reported estimate for the temperatures of the resistors is 285.445, or 285 to our best estimates. If the room temperature was 20.5 as recorded, then the value for absolute 0 in Kelvin is -264.5. We expected to find -273.15.