B0911005Y-01: Introduction to Theory of Computation

2023 Spring

Homework 4 — April 18

Lecturer: Mingji Xia Completed by: 吉骏雄

第 4.1 次作业: 4.1, 4.2, 4.3, 4.4

4.1 对于图 4.1所示的 DFA M, 回答下列问题, 并说明理由。

图 4.1. 题 4.1 图

- 1. $\langle M, 0100 \rangle \in A_{DFA}$ 是否成立?
- 2. $\langle M,011\rangle \in A_{DFA}$ 是否成立?
- 3. $\langle M \rangle \in A_{DFA}$ 是否成立?
- 4. $\langle M,0100\rangle \in A_{REX}$ 是否成立?
- 5. $\langle M \rangle \in E_{DFA}$ 是否成立?
- 6. $\langle M, M \rangle \in EQ_{DFA}$ 是否成立?

解

- 1. 是. DFA M 的确能够接受字符串 0100.
- 2. 否. DFA M 不接受字符串 0100.
- 3. 否. 输入只有一个 DFA, 没有字符串.
- 4. 否. 输入前半部分是 DFA, 不是正则语言.
- 5. 否. M 接受的语言非空.
- 6. 是. M 和 M 自身接受的语言必然相同.

4.2 考虑一个 DFA 和一个正则表达式是否等价的问题。将这个问题表述为一个语言并证明它是可判定的。

证明 设: $EQ_{D\&R} = \{\langle A, R \rangle \mid A$ 是一个 DFA, R是一个正则表达式, 且 $\forall \omega \in L(A)$, R 派生 ω $\}$. 我们可以构造一个判断此语言的图灵机 M:

M =

- "对于输入 $\langle A, R \rangle$, 其中 A 是一个 DFA, R 是一个正则表达式:
 - 1. 将 R 改写做只含有起始状态、接受状态以及一个从起始状态指向接受状态的箭头的 CNFA, 箭头上的 正则表达式就是 R.
 - 2. 由正则表达式构建出一台对应的 NFAB.
 - 3. 将此 NFAB 转化为 DFAC.
 - 4. 模拟能够判定 EQ_{DFA} 的图灵机, 输入 $\langle A,C\rangle$, 判断这两者能够接收的语言是否相同. 若是, 则接收, 否则拒绝.

"

4.3 设 $ALL_{DFA} = \{\langle A \rangle \mid A$ 是一个 DFA, 且 $L(A) = \Sigma^* \}$. 证明 ALL_{DFA} 是可判定的.

证明 我们可以构造一个判断此语言的图灵机 M:

M =

- "对于输入 $\langle A \rangle$, 其中 A 是一个 DFA:
 - 1. 构造 DFA A', 使得 $L(A') = \overline{L(A)}$. 这是可以做到的事情, 其实只要将接受状态和拒绝状态反转即可.
 - 2. 模拟图灵机 E_{DFA} , 判断 DFA A' 能接收的语言是否为空. 若为空, 则接收, 否则拒绝.

"

4.4 设 $A\varepsilon_{\text{CFG}} = \{\langle G \rangle \mid G$ 是一个生成 ε 的CFG $\}$. 证明 $A\varepsilon_{\text{CFG}}$ 是可判定的.

证明 我们可以构造一个判断此语言的图灵机 M:

M =

- "对于输入 $\langle G \rangle$, 其中 G 是一个 CFG, 它能生成 ε :
 - 1. 将 G 转换为一个与之等价地乔姆斯基文法.
 - 2. 由于乔姆斯基文法仅可能在初始变元引出的法则中派生出 ε , 即唯一可能包含 ε 的规则为 $S \to \varepsilon$, 我们 仅需检查是否有这一条规则. 若有这条规则, 则接收, 否则拒绝.

"