

1996 Index of Wind Wave Directional Spectra Measured at Harvest Platform

by Charles E. Long

| Management | Man

Approved For Public Release; Distribution Is Unlimited

19971016 061

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

1996 Index of Wind Wave Directional Spectra Measured at Harvest Platform

by Charles E. Long

U.S. Army Corps of Engineers **Waterways Experiment Station** 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers

Washington, DC 20314-1000

Under

Work Unit 32484

Waterways Experiment Station Cataloging-in-Publication Data

Long, Charles E.

1996 index of wind wave directional spectra measured at Harvest Platform / by Charles E. Long: prepared for U.S. Army Corps of Engineers.

93 p.: ill.; 28 cm. — (Miscellaneous paper; CHL-97-9) Includes bibliographic references.

1. Wind waves — California — Point Conception — Statistics. 2. Ocean waves — California — Point Conception — Statistics. 3. Water waves — California — Point Conception — Statistics. 4. Frequency spectra. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Coastal and Hydraulics Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Series: Miscellaneous paper (U.S. Army Engineer Waterways Experiment Station); CHL-97-9. TA7 W34m no.CHL-97-9

Contents

Preface	V
1—Introduction	1
2—Directional Gauge	3
Gauge Location and Array Geometry	3
3—Primary Data Analysis	6
Error Checking	9
4—Characterizing Parameters 1	6
Wave Height, Peak Frequency, and Peak Direction 10 Circular Moment Parameters 11 Quartile Parameters 12 Summary of Parameters 20	7 8
5—Accessing Spectra	1
6—Summary	2
References	3
Appendix A: Table of Collection Times and Bulk Parameters	1
Appendix B: Time Series Graphs of Bulk Parameters B	1
Appendix C: Listing of FORTRAN Computer Program	1
Appendix D: Listing of Sample Data File	1

Appendix E: Notation	 E1
SF 298	

Preface

This report indexes parameters of and describes means of access to a series of wind wave frequency-direction spectral observations made with a six-element, high-resolution directional wave gauge at Texaco Oil Company's Harvest Platform. The work was motivated by a need to publicize these results so they can be used by all investigators interested in natural wind wave energy distributions at a deepwater site near the exposed California coast. This effort was authorized by Headquarters, U.S. Army Corps of Engineers (HQUSACE), under Civil Works Coastal Navigation Hydrodynamics Program Research Work Unit 32484, "Directionality of Waves in Shallow Water." Funds were provided through the Coastal and Hydraulics Laboratory (CHL), U.S. Army Engineer Waterways Experiment Station (WES), under the program management of Ms. Carolyn M. Holmes, CHL. Messrs. John H. Lockhart, Jr., Charles Chesnutt, and Barry W. Holliday were HQUSACE Technical Monitors.

This report was prepared by Dr. Charles E. Long, under the direct supervision of Mr. William A. Birkemeier, Chief, Field Research Facility (FRF), CHL, and Mr. Thomas W. Richardson, Chief, Engineering Development Division (EDD), CHL. General supervision was provided by Dr. James R. Houston and Mr. Charles C. Calhoun, Jr., Director and Assistant Director, CHL, respectively.

Mr. David D. McGehee, Prototype Measurement and Analysis Branch, EDD, CHL, was instrumental in coordinating the efforts of CHL and the State of California in data archiving and gauge maintenance by the Coastal Data Information Program (CDIP) at Scripps Institution of Oceanography (SIO). Data transfer between SIO and the FRF was coordinated under the direction of Dr. Richard J. Seymour, CDIP, with particularly helpful assistance from Ms. Julianna Thomas, CDIP.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

In late December 1992, a high-resolution directional wave measuring system became fully operational on Texaco Oil Company's Harvest Platform to make long-term observations of the deep-ocean wind wave climate in the vicinity of the Southern California Bight (Figure 1). Such observations are necessary to

Figure 1. Southern California Bight and location of Harvest Platform

provide ground truth for interpreting satellite imagery of the ocean surface, test evolution and propagation models of open-ocean wind waves, and establish seaward boundary conditions for models of wave propagation and transformation from deep water to coastal regions. The purpose of this report is to encourage broad use of these observations by parametrically describing 1,610 wind wave frequency-direction spectral estimates obtained in calendar year 1996, and identifying a means whereby an investigator can access these spectra. These results are from the fourth year of collection, which is the final year of high-resolution analysis performed under this project. Results from the first three years are de-

scribed by Long (1995a, 1996, 1997). Raw data collection and conventional analysis continue to be conducted, as from the beginning, by the Coastal Data Information Program (CDIP), Ocean Engineering Research Group, Center for Coastal Studies, Scripps Institution of Oceanography, La Jolla, CA. More information about CDIP, including their analysis of Harvest Platform data for the period covered by this report, can be found on the World Wide Web at:

http://cdip.ucsd.edu

For completeness, this report briefly describes the directional gauge geometry and data collection scheme (Chapter 2), error checking procedures and basic directional estimation algorithm (Chapter 3), and definitions of parameters used to characterize the observations (Chapter 4). Appendix A contains a table of these characterizing parameters, and acts as an index for the 1996 database. Time series graphs of these parameters are presented in Appendix B. Chapter 5 describes how data can be obtained as well as the data format and file-naming scheme. Data format is illustrated in Appendix C, which lists a FORTRAN program that can read a data file, and Appendix D, which shows a sample data file.

2 Directional Gauge

Gauge Location and Array Geometry

As indicated in Figure 1, Harvest Platform is located about 20 km (10.8 n.m.) west of Point Conception, California, in water with a mean depth of 202 m (663 ft). Waves originating in the greater Pacific Ocean can reach the platform via relatively unobstructed paths from the north, west, and south. The mean water depth ensures deepwater wave conditions for waves with lengths shorter than about 400 m (1,312 ft), or frequencies higher than about 0.06 Hz. Spectra reported herein are processed at frequencies between 0.04 and 0.16 Hz, so it is likely that directional spectra for frequencies between 0.04 and 0.06 Hz are affected somewhat by refraction.

Directional wave detection is normally achieved with a spatial array of six subsurface pressure gauges mounted on the Harvest Platform framework. Figure 2 shows a plan view of relative gauge positions, and the array orientation in a geophysical reference frame. Gauge spacing takes advantage of the maximum horizontal dimensions of Harvest Platform, and allows directional estimation for waves in the frequency band noted in the previous paragraph. All gauges are mounted at a depth of 15.72 m (51.57 ft) below mean sea level, which ensures they will not protrude through the sea surface under extreme wave conditions that have been observed at this site. To avoid aliasing in directional estimation, the lower resolution wavelength limit is two times the shortest lag spacing of the array. In the Harvest Platform array, this limit is 45.4 m (149.0 ft), which corresponds to a wave frequency of about 0.18 Hz. Signal analysis used in this report was limited further to 0.16 Hz to be conservatively clear of aliasing effects.

Pressure Gauges and Data Path

Individual sensors were Model TJE absolute pressure sensors manufactured by Sensotec Transducer Company with operating ranges of 0 to 100 psia (0 to 689.5 kPa), and a manufacturer's stated accuracy of ± 0.1 percent of full scale. The six gauges on Harvest Platform were sampled simultaneously at 1 Hz,

¹ Personal communication, 1991, Dr. R. J. Seymour, CDIP.

Figure 2. Dimensions and orientation of the Harvest Platform array

digitized, and then fed to a concentrator where the set of samples was buffered. Buffered signals were periodically transmitted to shore through a telephone connection, and ultimately stored as collection files on the main computer of CDIP. Each collection time series is 8,192 sec (2 hr 16 min 32 sec) in length.

Data processing for results presented in this report was not performed at the CDIP site, and so is independent of the processing done and published by that group (Scripps Institution of Oceanography, *Monthly reports*). Data collections were transferred to the Field Research Facility (FRF) of the U.S. Army Engineer Waterways Experiment Station's Coastal and Hydraulics Laboratory for processing by high-resolution techniques that are different from those used by CDIP. Data transfer was accomplished over an electronic network.

Collection Schedule and Data Set Size

Collections were made eight times daily, at approximately 3-hr intervals. Nominal collection start times were 0200, 0500, 0800, 1100, 1400, 1700, 2000, and 2300 Greenwich Mean Time (GMT). Actual collection start times varied by several minutes on either side of these nominal start times because the amount of time required to establish a phone link varied from collection to collection. There are several periods of several days duration where collections are virtually continuous. These occur when CDIP shifts to a collection mode intended to detect tsunami waves, and result in up to 12 directional spectral estimates daily instead of the normal eight.

Data discussed in this report covers 1996 up to September 17, at which time data collection ceased for a major overhaul of the Harvest Platform array, and after which the high-resolution data analysis project ended. Of the possible 2,088 collections during this period (assuming eight collections per day), a total of 1,610 collections were acquired and processed as frequency-direction spectra. A number of collections were lost because of the inability to establish or maintain electrically clean phone links to the concentrator on Harvest Platform. An additional number of collections were not processed because data did not satisfy error-checking constraints described in Chapter 3 of this report.

3 Primary Data Analysis

Primary data processing was done by checking data quality through a series of spectral intercomparisons, and, for data of sufficient quality, computing frequency-direction spectra. All steps rely on Fourier analysis of pressure gauge time series data, and subsequent computation of cross-spectral densities. A discussion of error-checking procedures then leads logically to the subsequent steps involved in frequency-direction spectral computation.

Error Checking

The first step in data processing is computation of discrete estimates of frequency autospectra of pressure signals, and surface-corrected cross-spectral densities of signals from all pairs of gauges. Cross spectra are denoted in complex form as $C_{ij}(f_n) - iQ_{ij}(f_n)$, where $C_{ij}(f_n)$ is the coincident spectrum, $Q_{ij}(f_n)$ is the quadrature spectrum, $Q_{ij}(f_n)$ and $Q_{ij}(f_n)$ is the quadrature spectrum, $Q_{ij}(f_n)$ and $Q_{ij}(f_n)$ is the quadrature spectrum, $Q_{ij}(f_n)$ are indices ranging in value from 1 to 6 that refer to the gauge numbers shown in Figure 2, and $Q_{ij}(f_n)$ is the $Q_{ij}(f_n)$, and, if surface corrected with the linear wave pressure response function (Dean and Dalrymple 1984), are identically equal to $Q_{ij}(f_n)$. All spectra are computed using Welch's method (Welch 1967) with standard Fourier analysis techniques (Bendat and Piersol 1971).

In a collection, the 8,192-sec time series from each gauge is analyzed in 15 half-lapped segments of 1,024 sec duration. Each segment is demeaned, tapered with a variance-preserving window, and converted to the frequency domain with a discrete Fourier transform. At this point, the analysis is split into two parts: estimates of pressure autospectra from each gauge at depth, and estimates of surface-corrected cross spectra of sea surface displacement. Raw cross-spectral estimates are formed for all gauge pairs using temporally corresponding transformed segments of pressure data corrected to represent sea surface displacement. Raw autospectral estimates are formed for each of the 15 transform segments for each individual gauge. At the error-checking stage, autospectral estimates are not surface corrected.

¹ For convenience, symbols and abbreviations are listed in the notation (Appendix E).

For both autospectra and cross spectra, smooth estimates are formed by averaging raw estimates over all 15 segments, and averaging results over 10 adjacent frequency bands. Final resolution frequency bandwidth is df = 0.00977 Hz, and the pass band of frequencies ranges from 0.044 to 0.162 Hz, which corresponds to (N =) 13 discrete frequency bands. Degrees of freedom for spectral estimates range from 160 to about 200, depending on the extent to which the second halves of time series segments are correlated with the first halves (Welch 1967).

Autospectral intercomparisons

One part of error checking is a graphic intercomparison of signal means and autospectra, an example of which is shown in the lower left graph of Figure 3. Frequency autospectral estimates of data from all six pressure gauges are plotted on the same set of axes from the first resolvable frequency band out to the temporal Nyquist frequency. If a pressure gauge is malfunctioning, its autospectrum will deviate obviously from the main group of curves. In the example shown in Figure 3, data from gauge 3 are clearly deviate and thus were not used in directional estimates for that collection.

The small inset graph in the lower left graph of Figure 3 is an analysis of signal means. The closely packed group of symbols of nearly constant value represents the deviations of the segment means from the median of the set of segment means for each of the 15 segments. If a gauge develops signal drift problems, it will be obvious as a symbol that deviates from the main group of symbols. Triangle symbols in the small inset graph show the deviation of the indicated water surface from mean sea level (gauge height off the bottom plus median of gauge mean depths for each segment minus the total long-term mean ocean depth of 202 m), and is therefore an indication of tide stage at Harvest Platform for each of the 15 segments in a collection.

Coherence and phase comparisons

The next step in error checking is computation of a dimensionless cross spectrum $M_{ii}(f_n)$, defined by

$$M_{ij}(f_n) = \frac{C_{ij}(f_n) - iQ_{ij}(f_n)}{\sqrt{C_{ii}(f_n)} \sqrt{C_{ij}(f_n)}}$$
(1)

Equation 1 is used in error checking in the form of coherence and phase estimates. Coherence of signals from gauges i and j at discrete frequency f_n is

$$\Gamma_{ij}^{2}(f_{n}) = |M_{ij}(f_{n})|^{2}$$
(2)

Signal phase difference of gauge i relative to gauge j at frequency f_n is

Figure 3. Autospectral intercomparison and frequency-direction spectral estimate

$$\phi_{ij}(f_n) = \tan^{-1}\left(\frac{\operatorname{Im}[M_{ij}(f_n)]}{\operatorname{Re}[M_{ij}(f_n)]}\right)$$
(3)

where Re[] and Im[] are the real and imaginary parts, respectively, of the entity contained in square brackets.

Signals from multiple pairs of gauges having redundant lag (or spatial separation) vectors in a uniform wave field are expected to have identical cross spectra.

In the Harvest Platform array there are several such sets of pairs as can be seen in Figure 2. In terms of coherences and phases, one would expect

$$\Gamma_{14}(f_n) = \Gamma_{23}(f_n) = \Gamma_{56}(f_n)$$
 $\Phi_{14}(f_n) = \Phi_{23}(f_n) = \Phi_{56}(f_n)$ (4)

as well as

$$\Gamma_{12}(f_n) = \Gamma_{43}(f_n) \qquad \qquad \phi_{12}(f_n) = \phi_{43}(f_n)$$
 (5)

and

$$\Gamma_{15}(f_n) = \Gamma_{46}(f_n)$$
 $\Phi_{15}(f_n) = \Phi_{46}(f_n)$ (6)

Figure 4 is an example of coherence and phase comparisons, showing graphs of the functions named in Equations 4, 5, and 6 (upper, middle, and lower sets of graphs in Figure 4, respectively). This type of error checking is useful for isolating cases where a data point is dropped during telephone transmission from the data buffer, resulting in an apparent temporal shift of data from one gauge relative to data from the other gauges. Such a shift causes a significant phase error in cross spectra, and normally is readily apparent in a graphic display like Figure 4. Multiple gauge failures during 1996 made this test less useful than in other years because there were seldom enough redundant gauge pairs for an intercomparison. This test was retained during 1996, however, because it still contained useful information. For example, Figure 4 shows low coherence between gauges 2 and 3, and also between gauges 4 and 3, suggesting that data from gauge 3 were suspect, and reinforcing the conclusion derived from the frequency spectra shown in Figure 3.

The combined effects of intercomparing frequency autospectra and coherence and phase functions for the pressure gauge array on Harvest Platform provide clear indications of faulty or suspect data. In previous years (Long 1995a, 1996), when such conditions were detected in a collection, frequency-direction spectra were not computed. With the failure of gauge 6 early in 1995 (Long 1997), and the sporadic behavior of gauges 3 and 5 in 1996, this strict constraint was relaxed to optimize use of available data. For 1996, frequency-direction spectra were computed as long as at least three noncolinear gauges were functioning.

Frequency-Direction Spectra

Estimates of frequency-direction spectra are made using the iterative maximum likelihood estimator (IMLE) developed by Pawka (1983). Estimates are made by iterative approximations of directional distribution functions $D(f_n, \theta_m)$, which are related to corresponding frequency-direction spectra $S(f_n, \theta_m)$ by

$$D(f_n, \theta_m) = \frac{S(f_n, \theta_m)}{S(f_n)} \tag{7}$$

Figure 4. Sample coherence and phase function comparisons

where θ_m is a discrete angle indicating the direction from which wave energy arrives, measured counterclockwise from true north (Figure 2), and $S(f_n)$ is the (surface-corrected) frequency spectrum. The direction index m ranges from

m=1 to m=M=181, while direction ranges from $\theta_1=-180$ deg to $\theta_{181}=180$ deg in steps of $d\theta=2$ deg. The directional distribution function has the property

$$\sum_{m=1}^{M} D(f_n, \theta_m) d\theta = 1$$
 (8)

which must be satisfied in all estimates.

The lowest order estimate is the maximum likelihood estimate described by Davis and Regier (1977), which takes the form

$$D_0(f_n, \theta_m) = \frac{a_0}{d\theta \sum_{i=1}^{I} \sum_{j=1}^{I} M_{ij}^{-1}(f_n) e^{i\vec{k}_n(\theta_m) \cdot (\vec{x}_i - \vec{x}_j)}}$$
(9)

where a_0 is a factor of order 1 that is used to satisfy Equation 8, I is the number of gauges, the $M_{ij}^{-1}(f_n)$ are elements of the inverse of the dimensionless cross-spectral matrix defined by Equation 1, $\vec{k}_n(\theta_m)$ is wave number vector, and \vec{x}_i and \vec{x}_j are coordinate position vectors of gauges i and j, respectively. The wave number vector $\vec{k}_n(\theta_m)$ is

$$\vec{k}_n(\theta_m) = k_n \cos \theta_m \, \hat{e}_x + k_n \sin \theta_m \, \hat{e}_y \tag{10}$$

where \hat{e}_x and \hat{e}_y are spatial coordinate unit vectors in the x- and y-directions, respectively, and k_n is wave number vector magnitude, which is related with gravitational acceleration g to frequency f_n and water depth d through the linear wave dispersion relation

$$4 \pi^2 f_n^2 = g k_n \tanh k_n d \tag{11}$$

As used in this report, horizontal coordinates are such that x increases to the north, and y increases to the west.

An IMLE result is achieved by iterating through several computational steps. At the r^{th} iteration, an estimate ${}^rM_{ij}(f_n)$ of the observed cross-spectral matrix $M_{ij}(f_n)$ is computed from the previous directional distribution function estimate $D_{r-1}(f_n,\theta_m)$ by

$${}^{r}M_{ij}(f_{n}) = \sum_{m=1}^{M} D_{r-1}(f_{n}, \theta_{m}) e^{i\vec{k}_{n}(\theta_{m})\cdot(\vec{x}_{i} - \vec{x}_{j})} d\theta$$
 (12)

A new intermediate directional distribution function estimate $D_r'(f_n, \theta_m)$ is computed using the cross-spectral matrix of Equation 12 in the expression

$$D_{r}'(f_{n}, \theta_{m}) = \frac{a_{r}}{d\theta \sum_{i=1}^{I} \sum_{j=1}^{I} {^{r}M_{ij}^{-1}(f_{n}) e^{i\vec{k}_{n}(\theta_{m})\cdot(\vec{x}_{i} - \vec{x}_{j})}}$$
(13)

where a_r is adjusted so that Equation 8 is satisfied for $D_r'(f_n, \theta_m)$, and ${}^rM_{ij}^{-1}(f_n)$ are elements of the inverse of the matrix defined by Equation 12. A correction is found for $D_r'(f_n, \theta_m)$ by first computing

$$\lambda_r(f_n, \theta_m) = 1 - \frac{D_r'(f_n, \theta_m)}{D_0(f_n, \theta_m)} \tag{14}$$

and then finding a new directional distribution function estimate $D_r(f_n, \theta_m)$ from

$$D_r(f_n, \theta_m) = D_r'(f_n, \theta_m) \left[1 + \frac{|\lambda_r(f_n, \theta_m)|^{\beta+1}}{\gamma \lambda_r(f_n, \theta_m)} \right]$$
(15)

The parameters β and γ in Equation 15 control the rate of convergence of the estimator. As used by Pawka (1983), the values $\beta = 1$ and $\gamma = 5$ were used for all estimates discussed in this report.

In each iterative loop, a convergence check ϵ_r is computed as the sum of the squares of the magnitudes of the differences of elements of the estimated cross spectrum of Equation 12 and the measured cross spectrum of Equation 1. This takes the form

$$\epsilon_r = \sum_{i=1}^{I} \sum_{j=1}^{I} | {}^{r} M_{ij}(f_n) - M_{ij}(f_n) |^2$$
 (16)

Iteration continues as long as ϵ_r decreases between successive iterations, or until an upper limit R of iterations has been completed. In computations reported herein, R = 30.

Equations 9 to 16 form the basis of the IMLE technique. For the iteration r that satisfies the convergence check, the frequency-direction spectrum at frequency f_n is formed from

$$S(f_n, \theta_m) = S(f_n) D_r(f_n, \theta_m)$$
(17)

The complete frequency-direction spectrum is formed when Equations 9 through 17 are evaluated for all frequencies.

An example of such a spectrum is illustrated in Figure 3. The upper graph is a three-dimensional plot of $S(f_n, \theta_m)$, and the lower right graph is a contour plot of the spectrum. The right panel in the three-dimensional plot is a linear graph of the discrete frequency spectrum $S(f_n)$, which is related to the frequency-direction spectrum through Equations 7 and 8 by

$$S(f_n) = \sum_{m=1}^{M} S(f_n, \theta_m) d\theta$$
 (18)

The left panel in the three-dimension plot is a linear graph of the direction spectrum $S(\theta_m)$, which is the directional analog of the frequency spectrum. The direction spectrum is defined by

$$S(\theta_m) = \sum_{n=1}^{N} S(f_n, \theta_m) df$$
 (19)

Because $S(\theta_m)$ represents total wave energy in each direction bin, it is a particularly useful function from which to derive direction-sensitive characterizing parameters for a given frequency-direction spectrum as a whole. A set of such characterizing parameters is defined in Chapter 4.

Special Notes for 1996

As noted previously, gauge 6 (Figure 2) failed during 1995, and was not repaired during the time covered by this report. Also, gauges 3 and 5 behaved somewhat sporadically following a large storm along the U.S. west coast in December 1995, and data from gauge 3 became unusable in the final week of February 1996. The storm disrupted communication with Harvest Platform, and repairs to the communication system were not effected until the second week of February 1996. With a major overhaul of the Harvest Platform array in September 1996, and subsequent conclusion of data analysis by FRF, the effective period of nearly continuous data coverage during 1996 was from 8 February to 17 September.

Within that time frame, the number of gauges with satisfactory data varied from three to five. Figure 5 illustrates which gauges were used for analysis in all collections processed by the FRF during 1996. From 8 to 22 February, most collections had five satisfactory gauges. After 22 February, data from gauge 3 consistently failed data quality checks, reducing the total number of potentially useful gauges to four. In much of March and April, and sporadically through the rest of the year, data from gauge 5 failed data quality checks, reducing the number of useful gauges to three, with analysis being performed using data from

Figure 5. Time line of Harvest Platform gauges used for analysis

gauges 1, 2, and 4. For the remainder of the time shown in Figure 5, the usefully functioning array consisted of gauges 1, 2, 4, and 5.

As a result of the reduced number of functioning gauges, especially where there are only three, the advantages of high-resolution techniques over conventional analysis (e.g., as done by CDIP) are nearly lost. Frequency-direction spectra based on IMLE analysis of data from three pressure gauges will have attributes comparable to those that would be obtained by the method of Oltman-Shay

and Guza (1984) for data from a heave-pitch-roll buoy. Directional parameters, such as mean wave direction, are comparable in accuracy to those reported by CDIP, and directional distribution functions should be used with some caution.

4 Characterizing Parameters

To effect a summary description of the Harvest Platform database, frequency-direction spectra are characterized with a set of parameters. These descriptors are called bulk parameters because they are derived from extremal or integral properties of spectra, and so represent only part of the frequently more complicated directional structure of the wind wave field. A more exhaustive treatment of directional spectral structure at Harvest Platform is given by Long (1995b). For the purposes of the present report, nine parameters are used. These parameters are: characteristic wave height, peak frequency, two measures of characteristic direction, two measures of directional spread, two measures of asymmetry of directionally distributed wave energy, and a measure of kurtosis of directional distributions. This chapter contains the mathematical definitions of these parameters.

Wave Height, Peak Frequency, and Peak Direction

Characteristic wave height H_{mo} is defined using the conventional definition of four times the standard deviation of sea surface displacement. H_{mo} can be defined in terms of the full frequency-direction spectrum, the frequency spectrum defined by Equation 18, or the direction spectrum defined by Equation 19. A definition that relates all of these entities is

$$\frac{H_{mo}^{2}}{16} = \sum_{m=1}^{M} \sum_{n=1}^{N} S(f_{n}, \theta_{m}) df d\theta = \sum_{n=1}^{N} S(f_{n}) df = \sum_{m=1}^{M} S(\theta_{m}) d\theta$$
 (20)

It should be noted that H_{mo} reported herein is lower than what would be found in conventional analysis because directional computations were truncated at 0.16 Hz instead of the nominal 0.3-Hz limit for wind waves. Consequently, contributions to H_{mo} from high-frequency parts of wind wave spectra are not represented.

Peak frequency f_p is defined as the discrete frequency at which the frequency spectrum $S(f_n)$ is maximum. This definition is conventional, in that it is the usual characteristic frequency defined for nondirectional gauges. For convenience, Appendix A lists both f_p and its inverse, peak period T_p (= $1/f_p$).

Peak direction θ_p is defined as the direction of maximum variance density in the directional distribution associated with the peak frequency. In symbols, θ_p is the discrete direction at which $S(f_p, \theta_m)$ is a maximum. It is interpreted as the direction of the most energetic waves at the frequency containing the greatest overall energy.

Circular Moment Parameters

Kuik, van Vledder, and Holthuijsen (1988) proposed a useful set of parameters that define mean wave direction, directional spread, skewness, and kurtosis based on circular moments of directional distribution functions. Though derived for directional distributions at individual frequencies, the definitions can be applied to any directional distribution function. For the purposes of characterizing a frequency-direction spectrum as a whole, the direction spectrum $S(\theta_m)$, as defined by Equation 19, is used herein because it represents total wave energy in any given direction arc.

To define a directional distribution function (one that integrates to unit area) from the direction spectrum, $S(\theta_m)$ must be normalized by its own area. By Equation 20, this area is identically $\frac{1}{16}H_{mo}^2$, so the appropriate directional distribution function is

$$D(\theta_m) = \frac{16}{H_{mo}^2} S(\theta_m) \qquad m = 1, 2, ..., M$$
 (21)

Circular moments in terms of $D(\theta_m)$ adapted from definitions by Kuik, van Vledder, and Holthuijsen (1988) are

$$m_1 = \sum_{m=1}^{M} \cos(\theta_m - \theta_0) D(\theta_m) d\theta$$
 (22)

$$n_1 = \sum_{m=1}^{M} \sin(\theta_m - \theta_0) D(\theta_m) d\theta$$
 (23)

$$m_2 = \sum_{m=1}^{M} \cos(2\theta_m - 2\theta_0) D(\theta_m) d\theta$$
 (24)

$$n_2 = \sum_{m=1}^{M} \sin(2\theta_m - 2\theta_0) D(\theta_m) d\theta$$
 (25)

where θ_0 is the mean direction defined by requiring $n_1 = 0$. With this constraint, Equation 23 can be solved to find

$$\theta_0 = \tan^{-1} \left[\frac{\sum_{m=1}^{M} D(\theta_m) \sin \theta_m d\theta}{\sum_{m=1}^{M} D(\theta_m) \cos \theta_m d\theta} \right]$$
(26)

With θ_0 determined by Equation 26, moments m_1 , m_2 , and m_2 can be computed from Equations 22, 24, and 25, respectively.

Kuik, van Vledder, and Holthuijsen (1988) define a measure of directional spread (herein called *circular width*) σ as

$$\sigma = (2 - 2 m_1)^{1/2} \tag{27}$$

a measure of asymmetry of a directional distribution (circular skewness) y as

$$\gamma = \frac{-n_2}{\left(\frac{1}{2} - \frac{1}{2} m_2\right)^{3/2}} \tag{28}$$

and a measure of the flatness of a directional distribution (circular kurtosis) & as

$$\delta = \frac{6 - 8 \, m_1 + 2 \, m_2}{\left(2 - 2 \, m_1\right)^2} \tag{29}$$

Quartile Parameters

Two parameters that are modestly more intuitive than the corresponding circular parameters, and are also useful for characterizing spread and asymmetry in a directional distribution function are the *quartile spread* $\Delta\theta$ and *quartile asymmetry* A used by Long and Oltman-Shay (1991). The concept is based on the fact that any directional distribution function integrates to unity such that an integral from the direction of minimum energy $\theta_{m_{min}}$ (where m_{min} is the discrete direction index at which minimum energy occurs) to any arbitrary angle creates a function $I(\theta_m - \theta_{m_{min}})$ that increases monotonically from zero to an upper limit of unity. The directions at which this integral (interpolated as necessary from discrete data) has the values $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ are the first quartile, median, and third

quartile directions of the directional distribution, respectively. Differences among these directions then provide information about the spread and asymmetry of the distribution.

Using $D(\theta_m)$ as a representative directional distribution function, the integral function is

$$I(\theta_m - \theta_{m_{min}}) = \sum_{l=m_{min}}^m D(\theta_l) d\theta$$
 (30)

where θ_l is the dummy discrete independent variable of summation, and the cyclic nature of the distribution function is employed if necessary. Quartile directions satisfy

$$I(\theta_{25\%} - \theta_{m_{min}}) = 0.25 \tag{31}$$

$$I(\theta_{50\%} - \theta_{m_{min}}) = 0.50 \tag{32}$$

and

$$I(\theta_{75\%} - \theta_{m_{min}}) = 0.75 \tag{33}$$

A measure of directional spread $\Delta\theta$ is the span of the two middle quartiles

$$\Delta\theta = \theta_{75\%} - \theta_{25\%} \tag{34}$$

and has the specific interpretation that it is the arc subtending the central 50 percent of the energy distribution.

A measure of asymmetry of a distribution is the ratio of the directional width of the third quartile to that of the second quartile. By taking the natural logarithm of this ratio, a symmetric distribution has an asymmetry parameter A near zero, and that for a skewed distribution acquires a positive or negative sign if the skewness is toward larger or smaller angles, respectively. The asymmetry parameter is thus defined as

$$A = \ln \left[\frac{\theta_{75\%} - \theta_{50\%}}{\theta_{50\%} - \theta_{25\%}} \right]$$
 (35)

Summary of Parameters

The nine bulk parameters $(H_{mo}, f_p, \theta_p, \theta_0, \sigma, \gamma, \delta, \Delta\theta, \text{and } A)$ defined here are useful for classifying general wind wave energy distributions. For reference as an index of processed data from the 1996 collection year, these parameters are listed in Appendix A, and plotted as time series in Appendix B. Graphs in Appendix B provide an overview of the directional wave climate at Harvest Platform, and specific parametric values can be determined from the listing in Appendix A. An evaluation of the accuracy of these parameters, relationships among these parameters, and examples of frequency-direction spectra classified by ranges of these parameters are given by Long (1995b).

5 Accessing Spectra

Frequency-direction spectra computed from Harvest Platform data are currently stored on electro-optical media in binary, unformatted form, and so are not "on-line" in the sense of common data networks. Nonetheless, an individual interested in obtaining these spectra can readily do so by communicating with the FRF via:

Surface mail

Chief, Field Research Facility

1261 Duck Road

Kitty Hawk, NC 27949-4472

Telephone

(919) 261-3511

FAX

(919) 261-4432

or any of the following internet addresses:

c.long@cerc.wes.army.mil c.baron@cerc.wes.army.mil w.birkemeier@cerc.wes.army.mil

On request, all or part of the spectral database can be converted to 80-column ASCII format and copied either to portable magnetic tape media or to an anonymous file transfer protocol (ftp) account that is accessible through common computer networks. Data will be in the form of a set of files with one spectral estimate per file. Files will be named HPyymmddhhmm.ASC, where yymmdd represents year, month, and day, and hhmm represents hour and minute (GMT) of a collection start time from which a spectrum is estimated. For convenience, dates and times of parameter listings in Appendix A are in the yymmdd and hhmm mnemonic forms.

On receipt by a user, spectral data files can be read using the format statements shown in the sample FORTRAN program listed in Appendix C. The header of the FORTRAN program listing identifies all the variables contained in a data file. For reference, Appendix D is a listing of a sample data file, and shows locations of variables within the file.

6 Summary

This is the fourth and final of a series of reports describing results from a high-resolution directional wave gauge installed on the Texaco Oil Company Harvest Platform. The purpose of this gauge is long-term monitoring of the directional wind wave climate at a deepwater site that can be used to represent open ocean conditions for waves approaching the coast of southern California. This report indexes parameters of and describes a means of access to 1,610 frequency-direction spectral observations made during calendar year 1996.

The primary intent of this report is to publicize these observations so that they can be used by researchers interested in seaward boundary conditions in coastal wave propagation models, studies of ocean wave evolution, comparison studies with locally deployed low-resolution directional wave gauges, and ground truth in remote sensing research. Improved knowledge resulting from such studies will enhance abilities to model the physics of open ocean wave processes, and the consequent nearshore wave climate required in coastal engineering computations as such waves propagate landward.

References

- Bendat, J. S., and Piersol, A. G. (1971). Random data: Analysis and measurement procedures. Wiley-Interscience, New York.
- Davis, R. E., and Regier, L. A. (1977). "Methods for estimating directional wave spectra from multi-element arrays," *Journal of Marine Research* 35, 453-77.
- Dean, R. G., and Dalrymple, R. A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs, NJ.
- Kuik, A. J., van Vledder, G. Ph., and Holthuijsen, L. H. (1988). "A method for the routine analysis of pitch-and-roll buoy wave data," *Journal of Physical Oceanography* 18, 1020-34.
- Long, C. E. (1995a). "1993 annual index of wind wave directional spectra measured at Harvest Platform," Miscellaneous Paper CERC-95-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . (1995b). "Directional wind wave characteristics at Harvest Platform," Technical Report CERC-95-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . (1996). "1994 annual index of wind wave directional spectra measured at Harvest Platform," Miscellaneous Paper CERC-96-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . "1995 annual index of wind wave directional spectra measured at Harvest Platform," in preparation, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Long, C. E., and Oltman-Shay, J. M. (1991). "Directional characteristics of waves in shallow water," Technical Report CERC-91-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Oltman-Shay, J., and Guza, R. T. (1984). "A data-adaptive ocean wave directional spectrum estimator for pitch and roll type measurements," *Journal of Physical Oceanography* 14, 1800-10.

- Pawka, S. S. (1983). "Island shadows in wave directional spectra," *Journal of Geophysical Research* 88, 2579-91.
- Scripps Institution of Oceanography. *Monthly reports*. Coastal Data Information Program, University of California, San Diego.
- Welch, P. D. (1967). "The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms," *IEEE Transactions on Audio and Electroacoustics* AU-15, 70-3.

Appendix A Table of Collection Times and Bulk Parameters

	Table A1 Collection Times and Bulk Parameters												
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	γ	δ	Δθ deg	A		
960208 960208	2012 2234	2.78 2.74	0.083 0.083	12.0 12.0	80 78	78 78	0.41 0.42	-0.09 0.10	6.68 7.37	23 20	-0.08 0.04		
960209 960209 960209 960209 960209 960209 960209	0134 0435 0734 1035 1334 1634 1934 2234	2.59 2.87 2.72 2.61 3.06 3.20 2.97 2.61	0.064 0.064 0.064 0.064 0.074 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	74 76 76 78 76 82 84 86	75 78 78 80 79 82 84 84	0.44 0.40 0.39 0.39 0.38 0.38 0.36	0.33 0.21 0.33 0.32 0.14 0.14 0.16	7.27 7.52 8.80 9.24 9.41 9.29 10.30	22 22 20 20 19 19 17	0.13 0.08 0.13 0.05 0.18 -0.02 -0.01		
960210 960210 960210 960210 960210 960210 960210 960210	0132 0434 0734 1034 1331 1634 1934 2234	2.60 2.75 2.60 2.53 2.68 2.81 2.72 2.51	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	78 82 82 84 82 82 80 80	82 83 83 82 78 77 75	0.39 0.38 0.37 0.39 0.41 0.39 0.39	0.35 0.24 0.05 0.27 0.22 0.09 0.23 0.25	9.59 9.61 9.86 9.44 8.68 7.82 8.28 7.55	20 19 19 18 19 23 22 24	0.14 0.06 0.02 -0.08 -0.03 -0.11 -0.12 -0.09		
960211 960211 960211 960211 960211 960211 960211 960212 960212 960212 960212	0133 0435 0734 1034 1335 1635 1935 2308 0134 0434 0734 1008	2.27 2.51 2.25 2.01 1.94 1.64 1.60 1.58 1.50 1.53 1.63	0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	70 84 78 82 76 74 84 70 80 74 72	75 77 75 76 76 76 72 72 77 74	0.42 0.39 0.40 0.47 0.46 0.46 0.47 0.47	0.45 0.30 0.47 0.22 0.67 0.48 0.58 0.42 1.58 0.52 0.63	7.88 7.93 8.43 5.71 7.20 6.83 5.68 6.00 5.38 5.82 7.72 7.86	25 25 22 32 24 24 32 27 32 25 22 20	0.14 -0.28 -0.13 -0.24 -0.10 0.05 -0.18 0.06 -0.20 0.13 0.04 0.08		
									(S	heet 1	of 31)		

Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	d
960212 960212 960212 960212	1333 1624 1933 2233	1.95 2.11 2.15 2.27	0.054 0.054 0.064 0.064	18.5	78 78 78 78	76 77 78 78	0.44 0.44 0.45 0.40	0.32 0.26 0.49 0.17	7.85 8.81	4
960213 960213 960213 960213 960213 960213	0133 0430 0726 1057 1330 2230	2.31 2.66 2.42 2.26 2.10 1.98	0.064 0.064 0.064 0.064 0.064 0.064		80 76 72 80 78 70	78 78 75 77 77 75	0.43 0.40 0.41 0.41 0.43 0.42	-0.07 0.08 0.37 0.45 0.42 1.02	9.10	1 1 2 1 1 2
960214 960214 960214 960214	0127 0430 0730 1030 1334 1634 1935 2235	1.90 1.87 1.77 1.46 1.49 1.39 1.43	0.074 0.074 0.074 0.064 0.074 0.074 0.074	13.6 13.6 13.6 15.6 13.6 13.6 13.6	72 78 68 72 74 64 64 70	75 76 74 75 75 72 72 74	0.43 0.51 0.43 0.49 0.46 0.50 0.51	0.81 0.86 1.44 1.59 1.13 1.63 1.47	8.69 7.36 9.52 7.94 7.93 7.24 6.69 6.92	21 24 19 20 22 25 27 20
960215 960215 960215 960215 960215	0203 0434 0734 1035 1634 1934 2235	1.43 1.35 1.30 1.22 1.35 1.39	0.074 0.074 0.083 0.074 0.083 0.054 0.054	13.6 13.6 12.0 13.6 12.0 18.5 18.5	70 68 70 68 68 66 66	74 76 79 85 92 89 96	0.53 0.60 0.57 0.63 0.59 0.60 0.66	1.27 1.16 1.14 0.93 0.40 0.67 0.23	5.80 5.24 5.04 3.71 3.53 3.50 2.73	27 32 34 44 49 50 61
960216 960216 960216 960216 960216 960216	0135 0435 0735 1058 1334 1634 1932 2232	1.81 1.80 1.75 1.67 1.69 1.79 1.88 1.99	0.054 0.064 0.064 0.064 0.064 0.064 0.064	18.5 15.6 15.6 15.6 15.6 15.6 15.6	70 64 66 60 64 60 68 68	102 108 104 102 101 99 101 102	0.66 0.75 0.74 0.76 0.74 0.74 0.68 0.67	0.27 0.04 0.09 0.16 0.38 0.40 0.30 0.28	2.20 1.92 1.92 1.93 1.99 2.05 2.40 2.20	65 79 79 81 76 74 66
960217 (960217 (960217 (960217 (1960217	0134 0434 0734 1034 1331 1637 1934 2234	1.94 1.93 2.11 2.21 2.13 2.25 2.51 3.25	0.064 0.064 0.074 0.064 0.074 0.074 0.074 0.074	15.6 15.6 13.6 15.6 13.6 13.6 13.6	66 68 80 82 82 86 88 90	102 100 99 95 96 94 93 91	0.69 0.66 0.58 0.49 0.49 0.47 0.44 0.40	0.40 0.49 0.30 0.48 0.43 0.74 0.45	2.18 2.60 3.26 4.68 4.82 5.53 6.13 7.62	68 57 43 32 32 26 23 20
960218 0 960218 1 960218 1 960218 1	0135 0434 0735 1335 1635 1935	3.63 3.25 3.03 2.99	0.064 0.074 0.074 0.074 0.074 0.074 0.074	15.6 13.6 13.6 13.6 13.6 13.6 12.0	88 84 82 92 92 88 100	89 87 86 88 88 88 88	0.33 0.37 0.37 0.42 0.44 0.47	0.21 0.46 0.36 -0.26 -0.17 -0.06 0.02	11.47 10.13 9.14 6.73 5.99 4.90 4.93	13 17 18 22 26 31 33
960219 0 960219 1 960219 1	0134 0434 1034 1332 1634	2.56 2.74 2.53	0.083 0.083 0.074 0.074 0.074	12.0 12.0 13.6 13.6 13.6	76 80 66 66 66	83 82 76 78 84	0.46 0.49 0.49 0.52 0.52	0.39 0.66 0.48 0.85 0.67	5.63 5.77 4.94 5.02 4.67	29 29 36 34 37

Table	Table A1 (Continued)												
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	А		
960219	1935	2.39	0.074	13.6	74	86	0.54	0.35	4.47	38	0.24		
960219	2235	2.80	0.083	12.0	64	82	0.49	0.35	4.56	37	0.03		
960220	0134	2.79	0.083	12.0	74	83	0.50	0.35	4.02	41	0.17		
960220	0434	2.62	0.093	10.7	66	84	0.55	0.47	4.03	43	0.32		
960220	0734	2.31	0.074	13.6	64	85	0.57	0.73	4.14	43	0.39		
960220	1034	2.46	0.074	13.6	72	82	0.52	0.59	4.57	38	0.07		
960220	1335	2.23	0.083	12.0	60	79	0.55	0.96	4.66	38	0.22		
960220	1657	2.32	0.083	12.0	66	80	0.53	0.79	4.76	36	0.25		
960220	1934	2.83	0.093	10.7	64	74	0.51	0.75	4.79	34	0.31		
960220	2235	3.29	0.083	12.0	62	73	0.48	1.02	5.56	32	0.64		
960221 960221 960221 960221 960221 960221 960221	0134 0434 0735 1035 1335 1723 1935	3.29 2.72 2.32 2.41 2.88 3.06 2.80	0.083 0.083 0.083 0.083 0.093 0.093	12.0 12.0 12.0 12.0 10.7 10.7	60 72 72 62 64 64 76	74 78 79 74 71 70 74	0.47 0.49 0.54 0.52 0.45 0.47	0.76 1.00 1.39 1.24 1.11 0.89 0.65	5.30 6.03 5.78 5.73 6.54 6.20 5.13	33 29 28 33 24 29 34	0.18 0.15 0.32 0.34 0.33 0.23 -0.14		
960222	0135	3.17	0.083	12.0	68	73	0.47	0.47	5.49	29	0.19		
960222	0435	3.83	0.083	12.0	64	66	0.43	0.93	6.88	26	0.08		
960222	1933	3.29	0.064	15.6	60	61	0.46	0.62	7.02	22	0.18		
960222	2236	3.26	0.064	15.6	58	60	0.44	0.76	7.45	20	0.15		
960223 960223 960223 960223 960223 960223 960223 960223	0135 0436 0735 1036 1336 1635 1935 2235	3.41 3.52 3.55 3.12 2.80 2.56 2.50 2.66	0.064 0.074 0.074 0.074 0.074 0.083 0.074 0.083	15.6 13.6 13.6 13.6 13.6 12.0 13.6	58 54 54 54 54 44 50 54	60 59 56 53 55 54 56 55	0.45 0.45 0.42 0.48 0.50 0.54 0.50	0.96 0.84 0.90 0.93 0.88 1.15 0.74	7.89 6.23 8.40 7.17 6.61 5.95 6.11 5.55	20 26 20 30 29 34 35 30	0.19 0.42 0.12 0.07 0.05 0.50 0.21 0.10		
960224	0135	2.79	0.083	12.0	52	55	0.54	0.75	5.28	32	0.13		
960224	0435	2.62	0.083	12.0	52	57	0.53	0.76	5.55	33	0.18		
960224	0735	2.35	0.083	12.0	46	54	0.54	1.12	5.51	34	0.37		
960224	1034	2.22	0.083	12.0	32	50	0.56	1.18	6.04	37	0.26		
960224	1333	2.46	0.083	12.0	30	47	0.56	0.97	5.18	41	0.47		
960224	1635	3.11	0.074	13.6	42	47	0.50	1.00	5.92	28	0.38		
960224	1935	3.58	0.074	13.6	50	47	0.46	0.72	6.52	29	-0.11		
960225	0135	3.56	0.064	15.6	54	53	0.46	0.61	7.45	25	-0.21		
960225	0735	4.04	0.074	13.6	52	52	0.40	0.80	9.33	18	0.00		
960225	1333	3.46	0.083	12.0	58	56	0.47	0.48	7.27	26	-0.27		
960225	1636	3.61	0.083	12.0	54	56	0.48	0.48	6.28	29	0.05		
960225	1936	3.63	0.064	15.6	54	55	0.46	0.42	6.81	25	-0.01		
960225	2243	3.82	0.064	15.6	52	55	0.45	0.75	7.50	21	0.17		
960226 960226 960226 960226 960226 960226 960226	0136 0435 0736 1055 1635 1938 2238	3.69 3.74 3.62 3.33 3.39 3.37 3.31	0.074 0.074 0.074 0.074 0.083 0.074 0.083	13.6 13.6 13.6 13.6 12.0 13.6 12.0	52 50 50 50 50 30 72	58 56 55 55 57 54 54	0.46 0.46 0.45 0.46 0.49 0.51 0.50	0.79 0.91 0.75 0.80 0.48 0.33 0.32	6.64 6.77 6.80 6.45 5.25 4.45 5.19	24 25 25 31 42 39	0.31 0.37 0.34 0.40 0.30 0.06 -0.18		
960227	0138	3.13	0.083	12.0	54	56	0.48	0.55	6.68	24	0.13		
960227	0438	2.92	0.083	12.0	50	54	0.49	0.87	6.64	26	0.16		
960227	0739	2.64	0.093	10.7	56	52	0.50	0.70	6.64	31	-0.12		
									(Si	heet 3	of 31)		

Table A1 (Continued)												
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А	
960227 960227 960227 960227 960227	1101 1338 1638 1938 2238	2.48 2.44 2.48 2.37 2.19	0.083 0.093 0.093 0.093 0.093	12.0 10.7 10.7 10.7 10.7	48 50 30 28 46	52 54 53 52 59	0.49 0.49 0.55 0.59 0.53	0.89 1.25 0.59 0.66 0.91	7.66 7.24 4.41 4.47 5.40	26 24 47 46 32	0.19 0.21 0.50 0.20 0.26	
960228 960228 960228 960228 960228 960228	0138 1139 1338 1638 1938 2238	2.10 2.66 2.90 2.72 2.36 2.26	0.093 0.064 0.083 0.093 0.064 0.074	10.7 15.6 12.0 10.7 15.6 13.6	40 62 46 48 46 52	57 57 55 56 58 58	0.54 0.47 0.45 0.47 0.50 0.48	0.96 0.77 1.13 1.39 1.32 1.12	5.61 7.05 6.97 7.69 6.51 7.72	35 27 25 24 28 25	0.21 -0.42 0.41 0.35 0.56 0.35	
960229 960229 960229 960229 960229 960229	0138 0438 0738 1338 1938 2238	2.05 1.95 1.81 1.75 1.88 1.90	0.074 0.074 0.074 0.093 0.093 0.054	13.6 13.6 13.6 10.7 10.7 18.5	50 54 68 68 56 56	59 60 64 62 70 72	0.51 0.50 0.56 0.63 0.57 0.55	1.41 1.47 1.38 1.11 1.22 0.70	6.91 6.93 6.59 5.63 4.81 4.61	27 26 29 34 31 36	0.20 0.27 -0.12 -0.04 0.32 0.14	
960301 960301 960301 960301 960301 960301	0438 0738 1038 1338 1938 2238	2.25 2.05 2.02 1.72 1.47 1.48	0.054 0.054 0.054 0.064 0.064 0.064	18.5 18.5 18.5 15.6 15.6 15.6	50 54 76 84 78 82	66 70 72 74 78 81	0.50 0.53 0.59 0.58 0.59 0.54	1.03 0.85 0.70 0.42 0.79 0.37	5.90 5.22 4.56 4.48 4.71 4.68	33 36 41 39 29 29	0.29 0.28 -0.14 -0.48 -0.19 -0.21	
960302 960302 960302 960302 960302 960302 960302 960302	0138 0438 0738 1038 1338 1638 1938 2238	1.29 1.13 1.03 1.00 1.02 1.09 1.22 1.29	0.064 0.064 0.064 0.064 0.064 0.074 0.074	15.6 15.6 15.6 15.6 15.6 13.6 13.6	86 90 84 88 88 116 124	84 86 94 100 103 107	0.61 0.63 0.65 0.60 0.61 0.54 0.51	0.43 0.34 0.75 0.56 0.42 -0.05 -0.06 -0.26	4.04 3.62 3.85 4.47 3.78 4.46 4.86 4.66	36 43 34 31 39 37 37 38	-0.13 -0.38 -0.05 0.20 0.55 -0.06 -0.18 -0.66	
960303 960303 960303 960303 960303 960303 960303 960303	0138 0438 0738 1038 1338 1637 1936 2247	1.36 1.55 1.81 2.19 2.21 2.02 1.86 1.81	0.074 0.074 0.074 0.083 0.083 0.093 0.083 0.093	13.6 13.6 13.6 12.0 12.0 10.7 12.0 10.7	126 94 86 96 96 88 88 92	109 106 100 101 98 96 98 99	0.51 0.46 0.48 0.39 0.43 0.45 0.45 0.50	-0.11 0.44 0.58 0.37 0.17 0.49 0.58 0.30	4.60 5.55 5.27 7.80 6.46 5.94 4.84 5.07	39 33 35 21 24 26 32 32	-0.29 0.61 0.91 0.35 0.18 0.25 0.55 0.22	
960304 960304 960304 960304 960304 960304 960304	0138 0438 0736 1056 1339 1634 2237	1.71 1.55 1.61 1.75 1.92 2.18 2.17	0.083 0.083 0.093 0.054 0.054 0.054	12.0 12.0 10.7 18.5 18.5 18.5	94 78 80 70 76 74 72	99 95 96 90 86 81 81	0.49 0.55 0.59 0.60 0.49 0.44 0.50	0.36 0.36 0.31 0.61 0.73 1.48 1.04	5.25 4.41 3.80 4.14 5.31 7.31 6.27	31 38 43 43 29 16 23	0.16 0.23 0.31 0.49 0.77 0.81 0.70	
960305 960305 960305 960305 960305 960305 960305	0138 0438 0737 1009 1331 1652 1723	2.31 2.70 3.02 3.43 4.06 3.92 3.88	0.054 0.093 0.093 0.083 0.083 0.083 0.083	18.5 10.7 10.7 12.0 12.0 12.0 12.0	72 72 72 72 72 72 70 72	80 77 76 77 77 75 76	0.49 0.44 0.43 0.44 0.41 0.42 0.46	1.08 0.90 0.61 0.65 0.48 0.44 0.42	5.85 7.05 6.58 6.68 7.08 5.33 5.94	26 22 23 23 21 27 29	0.63 0.32 0.20 0.31 0.37 0.21	
						<u>_</u>	1		(Sh	eet 4	of 31)	

Table	A1 (0	Contin	ued)								-
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A
960305 960305	1938 2238	3.83 3.50	0.083 0.083	12.0 12.0	72 68	74 75	0.40 0.42	0.41 0.52	7.47 6.62	20 24	0.09 0.41
960306 960306 960306 960306 960306 960306 960306	0208 0435 0738 1115 1333 1732 1938 2235	3.49 3.34 2.97 3.00 2.95 2.80 2.37 2.08	0.083 0.083 0.093 0.093 0.093 0.093 0.093	12.0 12.0 10.7 10.7 10.7 10.7 10.7	70 74 76 70 58 44 72 58	77 77 75 75 72 68 67 71	0.45 0.44 0.48 0.47 0.49 0.52 0.55 0.55	0.30 0.22 0.16 0.24 0.45 0.39 0.46 0.77	4.92 5.71 4.87 4.75 4.82 4.34 4.55 4.25	31 29 33 35 35 42 41 37	0.20 0.08 -0.03 0.12 0.20 0.02 -0.14 0.49
960307 960307 960307 960307 960307 960307 960307	0138 0438 0738 0908 1038 1359 1634 1938	1.83 1.55 1.30 1.23 1.09 0.90 0.79 0.76	0.103 0.074 0.074 0.074 0.074 0.074 0.074	9.7 13.6 13.6 13.6 13.6 13.6 13.6	52 46 54 54 54 44 42 38	74 75 74 76 82 86 92 98	0.60 0.64 0.67 0.71 0.76 0.83 0.84 0.88	0.56 0.55 0.80 0.77 0.67 0.50 0.21 0.31	4.14 3.43 3.35 3.02 2.63 2.41 1.97 2.04	44 51 49 56 66 76 87 90	0.06 0.04 0.43 0.55 0.61 0.11 0.20 0.24
960308 960308 960308 960308 960308 960308	0905 1042 1338 1638 1938 2236	0.89 1.00 1.23 1.34 1.51 1.69	0.074 0.083 0.074 0.074 0.083 0.083	13.6 12.0 13.6 13.6 12.0 12.0	90 92 88 84 90 94	100 98 94 94 97 100	0.62 0.59 0.55 0.57 0.51 0.48	0.89 0.82 0.62 0.82 0.61 0.52	3.87 4.30 4.83 4.82 5.17 5.53	39 37 36 36 32 29	0.44 0.18 0.19 0.51 0.34 0.33
960309 960309 960309 960309 960309 960309	0138 0438 0738 1031 1333 1638	1.74 1.82 1.69 1.61 1.61	0.083 0.083 0.093 0.083 0.093 0.093	12.0 12.0 10.7 12.0 10.7 10.7	136 140 96 88 72 98	109 117 98 97 96 97	0.95 0.93 0.52 0.54 0.55 0.54	-0.14 -0.41 0.32 0.63 0.28 0.20	2.14 2.26 4.60 4.62 3.91 4.06	88 84 36 38 44 40	-0.85 -1.15 0.02 0.34 0.08 0.05
960310 960310 960310 960310 960310 960310	0136 0437 0736 1803 1931 2231	1.51 1.57 1.57 1.80 1.83 2.02	0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	140 116 154 140 140 84	114 104 119 116 117 96	0.96 0.56 1.11 0.95 0.96 0.49	-0.40 0.06 -0.46 -0.41 -0.36 0.58	2.16 4.15 1.88 2.20 2.15 5.22	89 41 114 86 88 32	-1.17 -0.18 -0.77 -1.03 -1.05 0.27
960311 960311 960311 960311 960311 960311 960311	0124 0433 0733 0805 1106 1338 1934 2234	2.22 2.61 2.67 2.65 2.43 2.20 2.03 1.90	0.074 0.083 0.083 0.083 0.083 0.083 0.083 0.083	13.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0	136 140 84 148 78 86 92 82	104 104 89 103 92 91 92 89	1.06 0.98 0.45 1.22 0.48 0.53 0.56 0.53	-0.16 -0.11 0.33 -0.17 0.44 0.30 0.09 0.46	2.05 1.96 5.56 1.58 4.68 4.51 4.40 4.34	98 95 28 131 36 35 36 36	-0.31 -0.81 0.19 -0.82 0.29 0.13 -0.01
960312 960312 960312 960312 960312 960312 960312	0135 0434 1338 1635 1713 1940 2238	1.87 1.96 2.92 3.69 3.90 4.68 4.13	0.083 0.083 0.083 0.113 0.103 0.093 0.083	12.0 12.0 12.0 8.9 9.7 10.7 12.0	76 74 90 108 108 74 76	87 86 90 90 90 85 84	0.54 0.52 0.48 0.48 0.48 0.44	0.45 0.71 0.16 -0.04 -0.01 0.25 0.25	4.39 4.83 4.82 3.78 3.70 4.32 4.88	37 35 35 41 41 33 31	0.26 0.37 -0.04 -0.21 -0.12 0.18 0.24
960313	0138	3.93	0.093	10.7	82	85	0.64	1.00	5.78	26	0.12
									(Si	heet 5	of 31)

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A	
960313 960313 960313 960313 960313 960313	0435 0506 1339 1638 1708 1939 2238	4.74 4.80 4.65 3.81 3.78 3.56 3.30	0.083 0.083 0.083 0.083 0.083 0.083 0.093	12.0 12.0 12.0 12.0 12.0 12.0 10.7	24 54 52 52 52 52 50 52	37 71 66 68 68 65 65	0.80 0.54 0.50 0.52 0.53 0.52 0.52	2.46 0.01 0.69 0.50 0.55 0.88 0.76	4.01 3.44 4.11 3.83 3.70 4.38 4.50	36 45 36 40 42 36 36	0.87 0.02 0.64 0.50 0.58 0.72 0.60	
960314 960314 960314 960314 960314 960314 960314	0138 0206 0438 1042 1353 1638 1938 2238	3.30 3.42 3.26 2.67 2.16 2.05 2.06 2.02	0.093 0.093 0.083 0.093 0.093 0.093 0.093 0.103	10.7 10.7 12.0 10.7 10.7 10.7 10.7 9.7	34 52 50 52 60 58 64 56	54 64 61 64 73 76 75 69	0.61 0.55 0.52 0.55 0.60 0.60 0.59	0.83 0.65 1.04 1.18 0.84 0.78 0.52 0.77	3.29 4.11 4.79 4.91 4.11 3.80 3.87 4.29	52 40 34 34 42 45 43 39	1.00 0.72 0.77 0.55 0.41 0.51 0.21 0.19	
960315 960315 960315 960315 960315 960315 960315	0136 0438 0738 1038 1338 1538 1936 2238	2.08 2.00 2.05 1.94 1.97 2.13 2.28 2.52	0.103 0.064 0.064 0.064 0.064 0.064 0.064	9.7 15.6 15.6 15.6 15.6 15.6 15.6	68 64 68 72 70 68 70	69 73 72 74 75 74 73 71	0.54 0.56 0.52 0.55 0.51 0.49 0.51 0.49	1.11 0.94 1.01 0.90 1.09 1.30 0.91 0.29	5.10 4.59 5.31 4.86 6.08 6.76 5.25 5.24	32 36 30 31 23 20 27 28	0.12 0.27 0.43 0.31 0.08 0.12 0.44 0.11	
960316 960316 960316 960316 960316 960316 960316	0135 0438 0738 1036 1336 1635 1934 2235	2.62 2.60 2.31 2.60 2.57 2.42 2.29 2.38	0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.083	13.6 13.6 13.6 13.6 13.6 13.6 13.6 12.0	70 72 68 76 76 68 58 66	68 69 67 67 65 62 64 64	0.48 0.51 0.53 0.53 0.54 0.52 0.58 0.54	0.32 0.26 0.25 -0.05 0.05 0.24 0.37 0.20	6.03 5.04 4.48 3.85 3.85 4.31 3.73 4.25	25 30 34 38 41 36 41 36	-0.09 -0.16 -0.06 -0.16 -0.39 -0.22 0.13 -0.03	
960317 960317 960317 960317 960317 960317 960317	0138 0438 0733 1038 1336 1635 1938 2236	2.29 2.07 1.95 1.83 1.69 1.73 1.55 1.70	0.074 0.083 0.083 0.083 0.093 0.093 0.093	13.6 12.0 12.0 12.0 10.7 10.7 10.7	66 64 60 50 58 48 50 64	63 65 65 63 60 60 64 61	0.50 0.55 0.55 0.58 0.58 0.58 0.60 0.59	0.34 0.48 0.54 0.64 0.55 0.74 0.72	4.65 4.40 4.26 4.05 4.44 4.34 3.95 3.71	34 37 37 41 38 40 40	-0.13 0.00 0.15 0.17 0.05 0.24 0.32 -0.02	
960318 960318 960318 960318 960318 960318 960318 960318	0134 0436 0736 1037 1210 1335 1635 1931 2232	1.92 1.99 1.91 1.95 2.04 2.13 2.08 2.01 2.14	0.093 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054	10.7 18.5 18.5 18.5 18.5 18.5 18.5 18.5	84 78 80 82 82 80 76 82 78	64 64 70 75 73 73 69 74 75	0.56 0.58 0.54 0.51 0.50 0.49 0.50 0.54	0.42 0.71 0.58 0.22 0.01 0.17 0.59 0.42 0.44	3.99 4.65 5.14 5.58 5.70 6.00 5.81 5.04 6.60	44 40 35 28 27 26 28 30 23	-0.10 -0.26 -0.63 -0.60 -0.68 -0.65 -0.52 -0.54 -0.14	
960319 960319 960319 960319 960319 960319	0135 0435 0735 1035 1333 2235	2.40 2.33 2.07 2.16 2.11 2.27	0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6	78 78 72 76 80 70	75 75 73 74 75 71	0.41 0.45 0.45 0.45 0.46 0.47	0.21 0.29 0.72 0.30 0.05 0.52	7.84 7.43 7.32 6.73 5.96 6.60		-0.18 -0.25 0.02 -0.05 -0.11 0.05	
									(Sh	eet 6	of 31)	

Table	Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A	
960320 960320 960320 960320 960320 960320 960320 960320	0135 0435 0733 1035 1407 1635 1935 2235	2.48 2.77 2.88 3.03 3.46 3.44 3.02 2.88	0.074 0.064 0.064 0.074 0.074 0.074 0.074 0.083	13.6 15.6 15.6 13.6 13.6 13.6 13.6	68 66 66 60 62 62 62 58	67 61 63 64 61 60 63 61	0.47 0.43 0.43 0.48 0.41 0.43 0.47	0.58 0.61 0.53 0.87 0.54 0.62 0.49 1.34	6.16 7.01 7.90 6.09 7.11 7.99 6.96 6.62	26 25 21 24 22 20 21 22	-0.07 -0.35 -0.24 0.23 -0.04 -0.14 -0.04	
960321 960321 960321 960321 960321 960321 960321	0136 0435 0735 1035 1335 1637 2236	2.91 3.24 2.81 2.82 2.88 2.79 2.26	0.083 0.074 0.074 0.074 0.083 0.083 0.083	12.0 13.6 13.6 13.6 12.0 12.0	56 54 56 54 56 50 60	61 58 60 61 60 57 66	0.48 0.46 0.49 0.52 0.54 0.56 0.60	1.25 1.66 1.26 1.42 1.30 1.29	6.36 7.56 6.54 5.80 5.30 5.02 4.67	23 19 24 25 28 32 31	0.19 0.15 0.19 0.37 0.23 0.25 0.28	
960322 960322 960322 960322 960322	0135 0436 1229 1637 2236	2.43 2.71 2.48 2.73 2.87	0.054 0.054 0.054 0.064 0.132	18.5 18.5 18.5 15.6 7.6	54 46 78 52 54	64 59 68 59 45	0.60 0.54 0.56 0.60 0.61	0.93 1.19 0.95 0.69 0.74	4.18 5.11 4.59 3.97 3.88	35 33 32 42 46	0.21 0.34 -0.02 0.02 -0.03	
960323 960323 960323 960323 960323 960323 960323	0136 0436 0732 1035 1358 1636 1936 2229	3.12 2.77 2.42 2.32 2.32 2.43 2.25 1.89	0.132 0.123 0.123 0.132 0.064 0.123 0.123 0.064	7.6 8.2 8.2 7.6 15.6 8.2 8.2	24 46 46 54 56 48 50 48	47 56 58 57 62 60 60 65	0.58 0.57 0.56 0.64 0.63 0.64 0.70	0.91 0.97 1.33 1.08 1.06 1.33 1.76	4.19 4.23 4.99 4.03 4.05 4.21 4.06 3.18	43 40 35 42 41 38 36 46	0.08 0.17 0.25 -0.08 0.06 0.24 0.30 0.34	
960324 960324 960324 960324 960324 960324	0133 0431 0850 1633 1936 2236	1.75 1.93 1.76 1.67 1.62 1.41	0.064 0.074 0.074 0.064 0.064 0.064	15.6 13.6 13.6 15.6 15.6	54 52 48 38 46 170	74 69 70 75 77 93	0.83 0.75 0.81 0.94 0.98 1.04	1.48 2.00 2.02 1.26 1.25 0.41	2.81 3.61 3.15 2.11 2.02 1.47	58 39 50 112 116 123	0.92 0.83 1.01 1.44 1.54 0.97	
960325 960325 960325 960325 960325	0436 0736 1034 1938 2237	1.20 1.34 1.16 1.45 1.95	0.064 0.064 0.064 0.162 0.152	15.6 15.6 15.6 6.2 6.6	168 170 172 54 12	121 101 109 76 49	1.01 1.04 1.07 0.97 0.86	-0.61 0.15 -0.08 0.79 1.48	1.66 1.35 1.36 1.99 3.03	116 125 125 108 64	-1.11 0.71 0.06 0.76 0.28	
960326 960326 960326 960326 960326	0137 1035 1637 1936 2236	1.92 1.65 1.48 1.61 1.65	0.132 0.142 0.064 0.064 0.074	7.6 7.0 15.6 15.6 13.6	14 62 80 76 76	50 72 100 100 101	0.89 0.86 0.83 0.76 0.73	1.65 1.04 0.15 0.59 0.67	2.83 2.51 2.10 2.39 2.58	67 71 80 69 62	0.45 0.41 0.48 0.84 0.69	
960327 960327 960327 960327 960327 960327 960327 960327	0135 0436 0736 1036 1333 1638 1935 2234	1.80 1.79 1.81 1.82 1.82 1.65 1.61	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6	82 82 78 78 76 34 78 70	101 96 92 93 93 94 96 90	0.65 0.61 0.60 0.60 0.63 0.84 0.63	0.89 0.85 0.91 1.28 1.00 1.25 0.59 0.17	3.07 3.90 3.89 4.16 3.47 3.24 3.47 2.73	46 39 38 35 43 56 45 63	0.60 0.30 0.40 0.48 0.63 0.85 0.32 0.05	
									(S	heet 7	of 31)	

Table	Table A1 (Continued) Time H_{mo} f_{p} T_{p} θ_{p} θ_{0} $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A	
960328 960328 960328 960328 960328	1036 1335 1635 1936 2236	1.60 1.55 1.53 1.96 2.94	0.083 0.083 0.054 0.162 0.132	12.0 12.0 18.5 6.2 7.6	76 72 70 92 34	88 87 89 73 53	0.60 0.60 0.62 0.66 0.60	0.94 0.92 0.80 0.12 0.56	4.08 4.14 4.00 3.05 3.44	36 37 41 52 48	0.41 0.37 0.39 -0.08 0.35	
960329 960329 960329 960329 960329 960329	0438 0736 1036 1336 1634 1934 2236	2.13 2.02 1.90 1.75 1.62 1.52	0.132 0.064 0.064 0.064 0.064 0.064 0.083	7.6 15.6 15.6 15.6 15.6 15.6 12.0	60 62 60 58 66 64 68	67 73 71 68 72 78 76	0.58 0.55 0.57 0.56 0.61 0.58 0.55	0.23 0.37 0.64 0.67 0.56 0.63 0.75	3.55 4.05 3.76 3.94 3.69 3.93 4.65	45 40 43 40 43 40 33	0.04 0.19 0.27 0.37 0.16 0.24	
960330 960330 960330 960330 960330 960330	0136 0755 1031 1331 1936 2236	1.59 1.46 1.32 1.15 1.00 0.76	0.093 0.093 0.093 0.093 0.074 0.074	10.7 10.7 10.7 10.7 13.6 13.6	68 68 66 70 66 74	79 80 81 82 87 90	0.56 0.58 0.61 0.62 0.69 0.69	0.86 0.66 0.75 0.84 0.70 0.68	4.49 3.90 3.48 3.67 3.15 3.19	34 40 44 42 50 49	0.35 0.25 0.40 0.39 0.36 0.40	
960331 960331 960331 960331 960331 960331	0436 0736 1032 1334 1635 1934 2234	0.88 0.88 0.90 0.88 0.87 0.85 0.87	0.074 0.074 0.074 0.074 0.083 0.064 0.064	13.6 13.6 13.6 13.6 12.0 15.6	74 76 82 76 80 162 76	96 99 101 105 103 114 110	0.76 0.74 0.76 0.77 0.77 0.78 0.80	0.70 0.56 0.40 0.41 0.59 0.03 0.20	2.56 2.56 2.35 2.20 2.47 2.06 1.95	63 64 71 79 70 80 84	0.72 0.61 0.58 0.84 0.88 0.34 0.63	
960401 960401 960401 960401 960401 960401	0134 0427 0851 1332 1635 1934 2234	0.85 0.85 0.85 0.83 0.81 0.84 0.90	0.083 0.074 0.074 0.074 0.074 0.074	12.0 13.6 13.6 13.6 13.6 13.6 13.6	76 80 166 162 78 80 72	116 119 123 119 118 115 112	0.81 0.78 0.80 0.73 0.83 0.80 0.76	0.11 0.11 -0.13 0.01 0.19 0.23 0.04	2.03 2.17 2.05 2.22 2.17 2.40 2.39	83 78 82 73 83 76 72	0.36 0.25 -0.17 0.22 0.30 0.32 -0.08	
960402 960402 960402 960402 960402 960402 960402	0134 0429 0849 1035 1334 1632 1935 2230	1.04 1.17 1.34 1.51 1.86 2.32 2.83 2.98	0.074 0.142 0.132 0.132 0.123 0.103 0.093 0.083	13.6 7.0 7.6 7.6 8.2 9.7 10.7 12.0	120 106 100 98 98 96 94 102	112 104 94 93 95 93 93	0.73 0.66 0.58 0.55 0.52 0.46 0.45 0.47	-0.07 0.20 0.38 0.48 0.41 0.02 -0.31 -0.64	2.48 3.15 3.82 4.29 4.83 5.48 5.26 4.86	67 47 38 34 30 27 28 30	-0.06 -0.01 -0.11 -0.09 -0.11 -0.16 -0.06 -0.31	
960403 960403 960403 960403 960403 960403 960403	0858 0956 1123 1314 1632 1935 2230	2.71 2.65 2.56 2.56 2.53 2.58 2.70	0.083 0.083 0.083 0.093 0.093 0.152 0.142	12.0 12.0 12.0 10.7 10.7 6.6 7.0	92 94 92 86 96 72 74	81 80 79 80 73 70 70	0.53 0.54 0.55 0.53 0.56 0.58 0.59	-0.28 -0.13 -0.17 -0.22 0.02 -0.02 0.03	3.66 3.36 3.34 3.94 3.43 3.37 3.26	39 44 44 38 47 46 44	-0.46 -0.34 -0.37 -0.20 -0.20 -0.31 -0.30	
960404 960404 960404 960404 960404 960404	1026 1138 1408 1639 1814 1937	1.91 1.94 1.94 2.01 2.01 1.91	0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6	46 52 92 90 68 70	73 72 74 75 73 70	0.63 0.60 0.58 0.58 0.58 0.62	0.29 0.27 0.24 0.02 0.33 0.49	3.15 3.26 3.65 3.86 3.78 3.77	43 41	0.00 0.09 -0.10 -0.39 0.10 -0.06	
	(Sheet 8 of 31)											

Table	Table A1 (Continued) Time H_{res} f_{o} f_{o} θ_{o} θ_{o} $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A	
960404	2237	1.80	0.064	15.6	76	71	0.62	0.35	3.83	41	-0.30	
960405 960405 960405 960405 960405 960405 960405 960405 960405	0133 0431 0856 1037 1233 1503 1648 1809 1939 2107	1.68 1.91 1.61 1.69 1.53 1.65 1.68 1.59 1.59	0.064 0.064 0.064 0.074 0.074 0.074 0.132 0.074 0.074	15.6 15.6 15.6 13.6 13.6 7.6 13.6 13.6	78 82 70 52 44 76 66 74 66 66	71 73 72 71 67 65 66 67	0.62 0.56 0.58 0.62 0.59 0.58 0.60 0.60	0.09 0.21 0.46 0.47 0.51 0.29 0.31 0.43 0.71 0.68	3.49 3.51 4.11 3.86 3.56 3.98 3.82 3.91 4.03 4.27	48 45 36 44 48 42 40 42 40 33	-0.28 -0.22 0.02 -0.03 -0.01 -0.41 -0.07 -0.20 -0.07	
960406 960406 960406 960406 960406 960406 960406 960406 960406	0004 0136 0307 0957 1207 1337 1504 1639 2006 2237	1.58 1.63 1.77 2.07 2.28 2.63 2.92 2.76 2.55 2.38	0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6	70 66 70 62 62 66 68 70 70 68	75 72 70 66 64 66 68 69 70	0.62 0.58 0.53 0.47 0.45 0.43 0.41 0.40 0.41	0.26 0.59 0.63 0.96 0.77 0.53 0.66 0.40 0.65	4.11 4.91 6.59 6.44 6.78 7.65 9.50 9.03 7.57	35 38 34 23 23 24 20 16 16 20	0.30 0.17 -0.06 0.15 0.09 -0.01 -0.01 -0.01 0.09	
960407 960407 960407 960407 960407 960407 960407	0137 0437 0803 1036 1337 1824 1937 2237	2.66 2.82 2.76 2.24 2.21 2.13 2.04 1.82	0.074 0.074 0.074 0.074 0.074 0.083 0.083 0.083	13.6 13.6 13.6 13.6 12.0 12.0	66 68 66 66 70 70 72 80	72 71 68 70 75 75 75 75	0.42 0.45 0.42 0.47 0.48 0.51 0.53 0.55	0.59 0.51 0.98 0.84 0.49 0.64 0.60	7.10 7.26 9.04 6.85 5.82 5.36 5.02 4.90	24 24 19 24 27 31 33 34	0.25 0.24 0.11 0.15 0.19 0.11 0.13 -0.20	
960408 960408 960408 960408 960408 960408 960408 960408 960408	0136 0209 0436 0738 1122 1405 1704 1943 2243	1.77 1.77 1.86 1.78 1.42 1.45 1.35 1.35	0.083 0.083 0.083 0.093 0.083 0.093 0.083 0.083	12.0 12.0 12.0 10.7 12.0 12.0 10.7 12.0	64 60 58 56 54 68 64 64 68	75 75 73 68 79 80 82 85 91	0.56 0.56 0.56 0.69 0.65 0.69 0.70	0.72 0.91 0.93 1.37 0.73 0.77 0.79 0.88 0.75	4.56 5.34 4.67 5.16 3.04 3.59 3.11 3.23 3.01	35 35 38 33 54 42 49 48 50	0.32 0.27 0.34 0.52 0.39 0.35 0.32 0.33	
960409 960409 960409 960409 960409 960409 960409	0141 0443 0743 1043 1343 1642 1939 2246	1.41 1.49 1.37 1.33 1.43 1.55 1.45	0.074 0.083 0.083 0.083 0.083 0.083 0.083	13.6 12.0 12.0 12.0 12.0 12.0 12.0	62 52 56 50 50 46 50 52	85 81 85 84 83 82 84 88	0.72 0.73 0.78 0.76 0.77 0.84 0.85 0.83	0.95 1.05 0.97 0.94 1.03 0.81 0.83 0.82	2.97 2.90 2.67 2.63 2.75 2.14 2.25 2.39	51 56 60 62 58 83 83 74	0.35 0.60 0.57 0.40 0.31 0.89 0.85 0.40	
960410 960410 960410 960410 960410 960410 960410	0145 0446 0746 1346 1643 1946 2244	2.25 2.86 2.98 2.95 3.50 3.29 3.28	0.152 0.132 0.132 0.132 0.123 0.123 0.123	6.6 7.6 7.6 8.2 8.2 8.2	88 38 48 40 34 30 30	76 68 62 64 57 54 54	0.69 0.67 0.64 0.59 0.57 0.58 0.61	0.53 0.80 1.01 1.04 0.92 0.81 1.01	3.25 3.24 3.75 4.30 4.36 4.30 4.34	52 49 46 41 41 44 46	-0.40 -0.07 0.21 -0.01 -0.02 -0.02 0.11	
		<u>! </u>	1	<u> </u>		<u>. </u>	<u> </u>		<i>(</i> S	heet S	9 of 31)	

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	А	
960411 960411 960411 960411 960411 960411 960411	0446 0745 1046 1347 1645 1946	2.56 2.04 1.67 1.72 1.82 1.88 2.10 1.87	0.132 0.152 0.152 0.142 0.162 0.142	7.6 6.6 6.6	36 44 42 40 42 34 34 36	59 68 73 74 78 67 59 63	0.67 0.75 0.80 0.79 0.74 0.77 0.71	1.46 1.43 1.22 1.13 0.76 0.84 1.06	3.33 2.81 2.76 2.88 2.82 3.52	47 53 61 62 59 63 53 52	0.45 0.71 0.39 0.23 -0.22 0.13 0.16 0.18	
960412 960412 960412 960412 960412 960412 960412	0446 0743 1044 1346 1642	1.85 1.93 1.76 1.75 1.99 2.88 3.23 3.18	0.142 0.142 0.142 0.142 0.152 0.132 0.132 0.064	7.0 7.0 7.0 7.0 6.6 7.6 7.6 15.6	36 34 40 40 70 70 62 60	62 59 63 66 61 52 46 50	0.74 0.72 0.74 0.69 0.65 0.58 0.54	1.48 1.28 1.47 0.92 0.83 0.55 0.57 0.49	3.43 3.54 3.67 3.53 3.93 3.90 4.38 5.34	53 51 50 53 47 47 42 35	0.76 0.41 0.48 0.32 -0.13 -0.25 -0.26	
960413 960413 960413 960413	0144 1725 1941 2244	3.44 2.24 1.99 2.29	0.074 0.083 0.083 0.074	13.6 12.0 12.0 13.6	60 58 64 60	53 62 60 62	0.47 0.54 0.57 0.49	0.64 0.93 0.99 1.14	6.60 6.28 5.51 6.99	27 27 32 21	-0.37 0.00 -0.12 0.03	
960414 960414 960414 960414 960414 960414 960414	0144 0444 0744 1046 1343 1646 1945 2246	2.37 2.10 1.90 1.81 1.58 1.43 1.36 1.27	0.074 0.083 0.083 0.083 0.083 0.083 0.083	13.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0	62 64 64 56 50 46 54 70	63 63 67 71 67 70 75	0.47 0.55 0.55 0.60 0.61 0.67 0.65 0.65	0.97 0.98 1.24 1.06 0.93 0.88 0.59 0.86	6.89 5.77 5.87 4.45 4.56 3.84 3.49 4.07	23 30 27 37 40 47 50 40	-0.05 -0.07 0.08 0.31 0.22 -0.03 0.18 0.24	
960415 960415 960415 960415 960415 960415	0146 0446 0746 1046 1346 1645	1.33 1.72 2.32 3.36 3.18 3.36	0.083 0.083 0.074 0.064 0.064	12.0 12.0 13.6 15.6 15.6 15.6	70 70 68 74 72 72	75 74 71 74 75 75	0.63 0.50 0.42 0.36 0.40 0.38	1.34 2.34 2.11 1.00 1.05 1.34	4.68 7.96 11.72 14.08 10.73 12.22	28 15 11 10 13	0.17 0.10 0.08 0.00 0.17 0.20	
960416 960416 960416 960416 960416 960416	0720 0957 1345 1645 1946 2245	2.81 2.67 2.58 2.43 2.34 2.28	0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	70 68 70 72 74 70	75 73 74 75 74 74 74	0.45 0.46 0.48 0.48 0.50 0.47	1.06 1.14 0.80 0.47 0.30 0.68	7.86 8.07 6.35 6.91 6.27 7.02	18 16 25 21 22 19	0.38 0.39 0.24 0.31 0.08 0.31	
960417 960417 960417 960417 960417 960417	0146 0446 1059 1344 1645 1946 2245	2.54 3.59 4.07 3.85 3.46 2.72 2.95	0.074 0.074 0.064 0.064 0.064 0.064 0.074	13.6 13.6 15.6 15.6 15.6 15.6 13.6	68 70 70 68 70 68 64	72 71 67 67 69 69	0.48 0.38 0.38 0.40 0.43 0.47 0.43	0.54 0.15 0.17 0.40 0.25 0.79 1.16	6.91 10.04 10.13 9.02 8.89 8.11 9.24	16	0.32 0.22 -0.30 -0.18 -0.11 0.22 0.40	
960418 960418 960418 960418	0144 0444 0747 0950	3.40	0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6	64 66 64 62	70 71 66 66	0.40 0.43 0.51 0.49	1.20 0.59 0.29 0.80	9.66 6.95 5.00 5.36	14 22 27 26	0.40 0.45 0.19 0.22	
960419	1000	2.78	0.074	13.6	66	68	0.63	0.33	4.56	33	0.22	
							· · · · · · · · · · · · · · · · · · ·		(Shee	et 10 d	of 31)	

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А	
960419 960419 960419 960419	1333 1635 1933 2235	3.03 3.47 3.12 2.90	0.074 0.083 0.074 0.074	13.6 12.0 13.6 13.6	60 84 64 56	60 79 68 55	0.47 0.51 0.72 1.01	0.72 -0.95 -0.02 0.20	6.34 6.37 3.74 2.42	23 18 40 78	-0.10 -0.37 0.38 -0.26	
960420 960420 960420 960420 960420	0733 1034 1634 1935 2235	2.75 2.98 3.61 3.28 3.16	0.074 0.074 0.083 0.083 0.083	13.6 13.6 12.0 12.0 12.0	58 48 84 64 86	61 51 68 59 81	0.73 0.80 0.69 0.65 0.63	0.18 0.84 -0.16 -0.04 -0.79	3.30 3.59 3.43 4.81 4.44	47 38 52 37 30	0.12 -0.02 -0.21 -0.28 -0.11	
960421 960421 960421 960421 960421 960421 960421	0135 0433 0734 1034 1335 1635 1935 2234	3.06 2.95 2.99 3.15 3.18 3.03 2.56 2.04	0.074 0.074 0.083 0.074 0.074 0.083 0.074 0.083	13.6 13.6 12.0 13.6 13.6 12.0 13.6	62 58 64 58 86 48 58 56	58 61 68 59 81 55 65 64	0.48 0.77 0.75 0.55 0.52 0.67 0.82 0.81	0.63 0.56 0.33 0.96 -0.72 0.92 0.25 0.99	5.97 3.72 3.84 6.22 5.76 4.51 2.71 3.56	29 39 43 21 24 31 72 39	-0.16 0.20 0.26 0.03 -0.15 0.30 0.00 0.61	
960422 960422 960422 960422 960422 960422	0135 0435 0735 1426 1646 1925	1.77 1.92 1.97 1.93 1.95 1.92	0.083 0.083 0.083 0.093 0.083 0.083	12.0 12.0 12.0 10.7 12.0 12.0	50 48 48 46 54 62	56 52 62 69 69 68	0.77 0.90 0.63 0.75 0.70 0.67	0.82 0.75 2.04 1.51 1.50 1.72	3.50 3.23 5.12 3.26 3.66 4.23	37 41 32 47 41 32	0.43 0.16 0.24 0.44 0.15 0.09	
960423 960423 960423 960423 960423 960423	0902 1034 1518 1636 1936 2236	2.03 1.92 1.71 1.75 2.00 2.00	0.064 0.064 0.074 0.074 0.074 0.083	15.6 15.6 13.6 13.6 13.6 12.0	68 80 64 62 66 62	70 75 74 76 72 68	0.71 0.67 0.61 0.66 0.55 0.57	0.82 0.73 1.65 1.49 1.71 1.91	3.57 4.34 4.69 3.92 5.82 5.45	42 28 28 35 24 24	0.06 -0.45 0.46 0.61 0.28 0.26	
960424 960424 960424 960424 960424 960424 960424 960424 960424	0137 0436 0737 0850 0905 1134 1336 1636 1937 2236	2.04 2.23 2.33 2.37 2.63 2.77 3.18 3.57 3.30	0.083 0.093 0.093 0.064 0.064 0.083 0.074 0.074 0.074	12.0 10.7 10.7 15.6 15.6 12.0 13.6 13.6 13.6	64 64 64 64 60 60 62 66 64	70 68 66 65 65 64 63 64 67 65	0.53 0.59 0.54 0.54 0.53 0.50 0.47 0.43 0.43	1.82 1.53 1.05 0.91 1.06 1.16 1.12 1.42 0.77	6.27 5.08 5.42 5.34 5.74 6.58 7.51 8.64 8.10	22 26 26 28 25 21 21 17 20 20	0.21 0.13 0.02 0.01 0.02 0.15 0.10 0.18 0.08	
960425 960425 960425 960425 960425 960425 960425	0133 0436 0734 1037 1629 1937 2237	3.22 3.30 3.27 3.22 3.07 3.31 3.17	0.074 0.074 0.074 0.074 0.083 0.074 0.074	13.6 13.6 13.6 13.6 12.0 13.6	60 68 66 60 60 60 62	63 68 66 62 61 61 62	0.43 0.46 0.46 0.45 0.44 0.43	0.63 0.13 0.20 0.58 0.41 0.45 0.29	7.14 5.95 5.50 6.23 6.16 6.81 7.60	21 25 26 24 25 23 20	0.16 0.02 0.03 0.10 0.07 0.09 -0.07	
960426 960426 960426 960426 960426 960426	0137 0437 0737 1037 1335 1636 2232	3.01 3.10 3.12 3.01 2.73 2.81 2.98	0.083 0.074 0.074 0.083 0.083 0.083	12.0 13.6 13.6 12.0 12.0 12.0	60 62 62 60 62 62	58 59 60 61 59 60 62	0.42 0.43 0.43 0.40 0.45 0.43	0.47 0.50 0.41 0.41 0.69 0.56 0.46	7.15 7.18 7.44 8.44 6.91 7.68 7.52	22 23 22 20 25 21 22	-0.10 -0.02 -0.07 -0.08 -0.11 -0.18 -0.02	
									(Sh	eet 11	of 31)	

Table	A1 (Conti	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
960427 960427 960427 960427 960427 960427 960427	0134 0434 0734 1035 1336 1634 1936 2236	3.25 3.34 3.68 3.90 3.98 3.59 3.54 3.71	0.083 0.083 0.093 0.083 0.083 0.083 0.083	12.0 12.0 10.7 12.0 12.0 12.0 12.0	60 58 60 56 56 56 56 56	60 61 62 58 57 58 61 63	0.41 0.44 0.41 0.42 0.42 0.44 0.49 0.50	0.75 0.61 0.92 0.94 1.01 1.52 1.77	8.18 6.97 7.94 8.04 7.86 8.36 6.54 6.08	20 24 21 20 21 19 21 25	-0.06 0.07 0.04 0.04 0.01 0.03 0.20 0.30
960428 960428 960428 960428 960428 960428	0136 0434 1357 1611 1911 2212	3.69 3.48 3.63 3.17 2.96 2.57	0.083 0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0 12.0	30 54 58 60 60 62	41 59 60 62 66 69	0.54 0.53 0.50 0.53 0.54 0.56	1.69 1.88 1.75 1.66 1.85 1.79	5.92 6.22 6.77 6.13 6.09 5.68	23 24 23 26 23 24	0.55 0.18 0.07 0.07 0.25 0.37
960429 960429 960429 960429 960429 960429 960429	0109 0752 1037 1335 1513 1637 1937 2237	2.42 2.33 2.18 2.16 2.03 1.84 1.72 1.65	0.083 0.083 0.103 0.103 0.103 0.113 0.113	12.0 12.0 9.7 9.7 9.7 8.9 9.7 8.9	58 56 54 60 64 64 56	64 62 65 72 73 71 72 73	0.58 0.60 0.70 0.67 0.71 0.72 0.79 0.78	1.95 2.51 1.94 1.72 1.52 1.52 1.80 1.81	5.60 5.65 3.95 3.92 3.53 3.55 3.11 3.06	25 21 33 33 37 40 48 50	0.25 0.23 0.57 0.47 0.40 0.34 0.87 1.13
960430 960430 960430 960430 960430 960430 960430	0137 0437 0908 1037 1438 1636 1936 2236	1.47 1.45 1.34 1.29 1.24 1.21 1.28 1.43	0.113 0.064 0.064 0.064 0.074 0.074 0.083 0.083	8.9 15.6 15.6 13.6 13.6 12.0 12.0	56 54 52 52 54 54 56 52	76 79 82 87 85 92 80 72	0.79 0.87 0.89 0.91 0.91 0.92 0.88 0.79	1.39 1.31 1.19 0.88 1.02 0.66 1.33 1.85	2.81 2.35 2.15 1.91 2.04 1.78 2.35 3.14	60 94 102 106 103 105 96 49	0.91 1.48 1.62 1.35 1.40 1.16 1.53
960501 960501 960501 960501 960501	0134 0436 0735 1115 1530	1.53 1.54 1.47 1.52 1.73	0.093 0.093 0.083 0.083 0.093	10.7 10.7 12.0 12.0 10.7	52 46 48 48 50	67 62 62 65 58	0.73 0.76 0.73 0.78 0.66	2.18 2.31 2.49 2.42 2.64	3.88 3.78 4.13 3.59 5.36	35 37 34 37 29	0.64 0.59 0.59 0.90 0.24
960502 960502 960502 960502	0756 1017 1636 1935	1.52 1.49 1.34 1.20	0.132 0.113 0.123 0.132	7.6 8.9 8.2 7.6	52 48 52 52	62 59 64 67	0.75 0.79 0.82 0.91	3.30 3.16 2.79 2.38	4.43 4.17 3.67 2.93	24 24 29 72	0.40 0.59 0.58 1.54
960503 960503 960503 960503 960503 960503	0658 0958 1335 1632 1935 2235	1.49 1.40 1.36 1.53 1.53 1.73	0.142 0.142 0.142 0.142 0.142 0.132	7.0 7.0 7.0 7.0 7.0 7.0	32 58 56 26 50 54	61 66 64 57 57 56	0.81 0.90 0.85 0.80 0.78 0.71	2.53 2.30 2.44 2.25 2.67 3.14	3.58 2.90 3.25 3.58 3.83 4.97	43 64 48 50 36 27	0.25 0.80 0.43 0.30 0.26 0.00
960504 960504 960504 960504 960504 960504 960504	0136 0436 0736 1035 1336 1636 1936 2236	1.82 1.91 1.88 1.73 1.61 1.55 1.54 1.26	0.132 0.123 0.132 0.132 0.142 0.142 0.123 0.162 0.113	7.6 8.2 7.6 7.6 7.0 8.2 6.2 8.9	50 58 58 32 30 32 56 40	53 55 55 56 56 56 56 58 69	0.72 0.71 0.71 0.76 0.80 0.77 0.78 0.94	3.05 2.37 2.56 2.65 2.90 2.69 3.01 1.90	4.74 4.60 4.66 4.11 3.94 4.07 4.09 2.44		0.08 -0.19 -0.07 0.11 0.15 0.12 0.10 1.86
									(She	et 12	of 31)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А
960505 960505 960505 960505 960505 960505	0436 0735 1036 1336 1633 1932 2236	1.29 1.20 1.22 1.11 1.07 1.07	0.162 0.152 0.113 0.074 0.074 0.162 0.162	6.2 6.6 8.9 13.6 13.6 6.2 6.2	54 56 46 54 36 58 54	67 71 65 75 60 76 70	0.93 0.93 0.90 0.99 1.04 0.94	1.93 1.67 2.56 1.54 1.74 1.56	2.68 2.48 2.97 2.17 2.40 2.31 2.62	78 97 71 115 104 106 88	1.10 1.36 1.45 1.68 1.38 1.64 1.65
960506 960506 960506 960506 960506	0136 0736 1036 1636 1934	1.26 1.45 1.40 1.33 1.33	0.162 0.152 0.152 0.152 0.152	6.2 6.6 6.6 6.6	54 54 54 52 60	62 55 54 59 59	0.90 0.69 0.71 0.73 0.69	2.23 2.85 2.66 1.31 1.06	2.85 4.84 4.46 3.53 3.68	71 27 33 46 44	0.98 -0.23 -0.08 0.29 -0.06
960508 960508 960508 960508	1459 1637 1937 2237	1.08 1.01 0.93 1.16	0.132 0.132 0.162 0.162	7.6 7.6 6.2 6.2	28 38 32 30	56 57 69 37	0.80 0.83 0.82 0.70	1.59 1.45 0.94 1.47	3.26 3.02 2.68 4.80	57 62 65 24	0.57 0.54 0.23 0.18
960509 960509 960509 960509 960509 960509 960509	0136 0437 0736 1037 1336 1634 2236	1.32 1.65 1.75 1.95 1.97 1.82 2.36	0.152 0.132 0.142 0.132 0.132 0.123 0.123	2 7.6 34 50 0.59 1.92 5.25 34 0.54 2 7.0 34 48 0.57 1.77 5.30 34 0.62 2 7.6 34 46 0.53 1.59 5.92 33 0.53 2 7.6 26 44 0.56 1.66 5.75 36 0.32 3 8.2 22 45 0.58 1.27 5.00 41 0.23							
960510 960510 960510 960510 960510 960510 960510	0136 0736 1036 1335 1635 1936 2235	2.37 2.19 2.03 2.00 1.82 1.77 1.87	0.123 0.123 0.123 0.132 0.132 0.132 0.132	8.2 8.2 8.2 7.6 8.9 7.6 8.2	30 38 44 44 48 50 56	46 48 49 48 51 54	0.46 0.49 0.48 0.52 0.52 0.54 0.53	1.17 1.87 2.26 1.84 2.09 1.95 1.96	7.24 7.58 8.69 7.26 7.70 7.26 6.93	31 27 23 29 24 27 29	0.09 0.28 0.18 0.20 0.08 0.08
960511 960511 960511 960511 960511 960511 960511	0136 0435 0735 1036 1332 1636 1936 2235	1.93 1.44 1.23 1.21 1.15 1.16 1.06	0.123 0.123 0.132 0.142 0.142 0.142 0.142 0.142	8.2 8.2 7.6 7.0 7.0 7.0 7.0	58 52 52 54 58 50 52 176	55 55 56 65 69 66 76 88	0.50 0.62 0.72 0.76 0.92 0.82 0.95 0.97	1.97 3.37 3.13 3.01 1.95 2.18 1.60 0.82	7.82 6.39 4.98 4.09 2.98 3.27 2.29 1.78	27 22 28 27 50 43 108 116	-0.27 0.01 0.13 0.41 0.67 0.57 1.80 1.45
960512 960512 960512 960512 960512 960512 960512	0135 0435 1035 1332 1633 1935 2236	0.87 0.84 1.20 1.23 1.18 1.23	0.152 0.064 0.152 0.152 0.152 0.064 0.152	6.6 15.6 6.6 6.6 6.6 15.6	62 178 56 60 36 58 62	90 101 75 75 90 78 72	0.97 0.99 0.87 0.85 0.99 0.91	0.84 0.33 1.24 1.59 0.21 1.23 1.39	1.81 1.61 2.43 2.73 1.64 2.27 2.81	114 116 77 66 112 93 63	1.44 0.76 1.00 1.16 0.41 1.15 0.56
960513 960513 960513 960513 960513 960513 960513	0136 0436 0736 1036 1340 1636 1936 2236	1.61 1.85 1.96 1.76 1.80 1.71 1.54	0.142 0.132 0.132 0.132 0.142 0.132 0.142 0.152	7.0 7.6 7.6 7.6 7.0 7.6 7.0 6.6	32 64 50 30 30 28 26 32	62 58 59 60 61 61 71	0.71 0.64 0.64 0.72 0.72 0.75 0.76 0.81	1.71 1.93 2.35 1.67 1.52 1.51 1.52 1.05	3.91 4.66 5.38 4.02 3.46 3.27 3.58 2.70	47 36 30 45 47 52 50 65	0.02 -0.01 0.19 -0.12 -0.01 0.18 0.00 0.27
	(Sheet 13 of 31)										

Table A1 (Continued) Time H_{mo} f_p T_p θ_q θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _ρ deg	θ _o deg	σ	γ	δ	Δθ deg	А
960514 960514 960514 960514 960514 960514 960514	0136 0436 0736 1033 1335 1635 1934 2236	1.43 1.28 1.16 1.13 1.11 1.09 1.08 0.99	0.152 0.074 0.074 0.074 0.074 0.074 0.064 0.074	6.6 13.6 13.6 13.6 13.6 13.6 15.6	26 28 74 76 74 78 72 76	67 81 89 107 101 105 112 112	0.82 0.85 0.84 0.85 0.80 0.82 0.82 0.82	1.21 0.71 0.79 0.35 0.53 0.38 0.16 0.14	2.76 2.21 2.23 2.27 2.34 2.17 1.90 2.09	67 86 82 81 77 79 84 84	0.03 0.32 0.97 0.64 0.87 0.84 0.50
960515 960515 960515 960515 960515 960515 960515	0135 0436 0754 1034 1336 1635 1936 2235	1.00 0.97 1.03 1.05 1.08 1.05 1.07	0.074 0.074 0.064 0.064 0.074 0.074 0.064 0.054	13.6 13.6 15.6 15.6 13.6 13.6 15.6 18.5	80 70 154 168 168 170 174 170	108 114 122 124 120 127 137 133	0.82 0.83 0.86 0.87 0.84 0.85 0.89	0.23 0.12 -0.22 -0.27 -0.09 -0.44 -0.75 -0.73	2.01 1.94 2.03 1.95 2.04 2.01 2.08 1.97	82 86 82 87 83 86 95	0.68 0.14 -0.90 -0.35 0.19 -0.66 -1.09
960516 960516 960516 960516 960516 960516 960516	0135 0435 0735 1035 1335 1635 1935 2237	1.19 1.30 1.46 1.70 1.82 1.84 1.86 2.00	0.054 0.054 0.054 0.064 0.064 0.064 0.064	18.5 18.5 18.5 15.6 15.6 15.6 15.6	166 170 174 174 176 176 176 178	128 137 136 128 132 134 137 135	0.93 0.87 0.86 0.85 0.82 0.84 0.83	-0.67 -1.01 -0.89 -0.36 -0.54 -0.67 -0.64 -0.61	1.88 2.13 2.15 2.05 2.28 2.18 2.34 2.23	100 96 89 86 77 82 77 82	-1.21 -1.59 -1.32 -0.20 -0.07 -0.35 -0.37 -0.67
960517 960517 960517 960517 960517 960517	0136 0435 0735 1036 1335 1936 2235	1.96 1.83 2.19 2.23 2.08 1.81 1.80	0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6	172 168 96 94 96 92 80	134 130 127 124 129 132 131	0.84 0.81 0.78 0.78 0.79 0.78 0.90	-0.47 -0.24 0.08 0.46 -0.01 -0.19 -0.04	2.08 2.17 2.08 2.10 2.06 2.15 2.36	83 77 78 80 80 80 80 83	-0.59 -0.27 1.01 1.22 0.49 -0.38 -0.41
960518 960518 960518 960518 960518 960518 960518	0136 0501 1101 1336 1636 1935 2236	1.74 1.60 1.61 1.63 1.69 1.68 2.37	0.064 0.074 0.064 0.074 0.113 0.064 0.093	15.6 13.6 15.6 13.6 8.9 15.6 10.7	176 174 178 74 90 86 72	130 131 117 112 108 108 84	0.75 0.75 0.85 0.80 0.76 0.76 0.61	-0.15 -0.14 0.11 0.28 0.43 0.36 1.66	2.30 2.22 1.82 1.97 2.31 2.13 4.35	75 75 93 84 69 75 27	-0.09 0.06 0.47 0.64 1.04 1.02 0.70
960519 960519 960519 960519 960519 960519	0204 0435 1101 1335 1659 1935 2302	3.56 3.61 3.54 3.32 3.67 3.49 3.25	0.083 0.074 0.074 0.074 0.074 0.074 0.074	12.0 13.6 13.6 13.6 13.6 13.6 13.6	72 76 74 72 70 70 70	78 80 77 75 73 73 71	0.46 0.45 0.44 0.46 0.44 0.46	1.69 1.57 1.96 1.45 0.98 0.86 1.10	7.55 7.30 8.70 7.59 7.33 6.78 6.95	16 17 13 16 18 18	0.24 0.17 0.15 0.13 0.34 0.29 0.13
960520 960520 960520 960520 960520 960520	0136 0504 0736 1053 1336 1636 1936 2236	3.06 2.84 2.81 2.70 2.72 2.96 3.00 2.71	0.083 0.074 0.074 0.083 0.083 0.083 0.132 0.132	12.0 13.6 13.6 12.0 12.0 12.0 7.6 7.6	70 72 70 72 68 76 76 76	71 71 69 66 63 64 64 64	0.53 0.52 0.50 0.53 0.55 0.55 0.55	0.94 0.49 0.34 0.46 0.64 0.34 0.15 0.24	5.76 5.13 5.57 5.02 4.93 4.28 4.49 4.40	39 38	-0.01 -0.14 -0.09 -0.45 -0.40 -0.43 -0.72 -0.82
<u> </u>									(Shee	et 14	of 31)

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	А	
960521 960521 960521 960521 960521 960521 960521	0135 0434 0807 1041 1333 1636 1936 2300	2.34 2.19 1.90 1.73 1.62 1.50 1.37	0.132 0.142 0.142 0.093 0.093 0.103 0.113 0.093	7.6 7.0 7.0 10.7 10.7 9.7 8.9 10.7	78 78 80 80 76 68 86 86	67 65 66 67 72 78 83 92	0.60 0.58 0.63 0.66 0.65 0.69 0.70	0.51 0.69 0.90 0.81 1.04 1.06 0.89	4.20 4.36 4.08 3.71 4.14 3.57 3.44 2.82	41 43 45 45 37 40 39 47	-0.64 -0.50 -0.37 -0.35 -0.28 0.06 -0.22 0.53	
960522 960522 960522 960522 960522 960522 960522 960522	0136 0434 0736 1036 1335 1658 1936 2235	1.20 1.13 1.73 2.41 2.80 2.79 2.99 3.47	0.093 0.103 0.103 0.103 0.132 0.113 0.113	10.7 9.7 9.7 9.7 7.6 8.9 8.9 9.7	82 80 88 78 76 74 82 78	100 97 80 71 68 69 70 62	0.80 0.80 0.59 0.57 0.55 0.57 0.56	0.80 0.75 0.78 0.32 0.17 0.26 0.33 0.52	2.42 2.39 4.28 4.42 4.22 3.81 3.92 4.13	77 76 34 34 37 38 39 42	1.25 0.98 -0.17 -0.35 -0.56 -0.24 -0.44	
960523 960523 960523 960523 960523 960523	0158 0436 0735 1036 1957 2236	3.41 3.36 3.13 3.04 3.32 3.57	0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7	64 38 58 36 40 46	59 58 58 54 53 52	0.53 0.51 0.54 0.55 0.51 0.49	0.94 0.75 0.89 1.21 1.15 1.24	4.77 4.70 5.41 4.87 5.39 5.79	37 38 29 38 35 31	-0.02 -0.03 -0.03 0.28 0.34 0.20	
960524 960524 960524 960524 960524 960524 960524 960524	0157 0435 0735 1036 1335 1701 1934 2231	3.59 3.02 3.14 3.12 3.14 2.94 2.54 2.31	0.103 0.093 0.093 0.093 0.093 0.093 0.103 0.093	9.7 10.7 10.7 10.7 10.7 10.7 9.7 10.7	52 50 48 40 40 46 44 42	53 55 54 48 49 52 52 53	0.46 0.50 0.47 0.50 0.50 0.51 0.54 0.61	1.46 1.69 1.61 1.56 2.04 2.28 2.18 2.23	7.10 6.82 7.27 6.43 6.74 7.21 6.64 5.39	26 25 28 25 25 22 25 30	0.04 0.21 0.26 0.27 0.32 0.36 0.41 0.69	
960525 960525 960525 960525 960525 960525 960525 960525	0135 0457 0735 1036 1357 1635 1935 2236	2.15 2.18 2.32 2.04 2.18 2.27 2.31 2.16	0.103 0.103 0.103 0.103 0.113 0.103 0.093 0.093	9.7 9.7 9.7 9.7 8.9 9.7 10.7	48 50 48 46 50 48 46 46	60 60 59 61 57 55 53	0.62 0.59 0.57 0.62 0.60 0.57 0.56 0.63	2.43 2.10 2.21 2.22 2.26 3.10 2.83 2.53	5.26 5.40 5.88 5.15 5.70 6.87 6.94 5.62	27 28 31 25 18 21 27	0.64 0.56 0.58 0.67 0.28 0.44 0.46 0.36	
960526 960526 960526 960526 960526 960526	0735 1035 1336 1635 1935 2233	1.60 1.54 1.46 1.47 1.50	0.103 0.103 0.103 0.113 0.113 0.113	9.7 9.7 9.7 8.9 8.9	46 48 46 44 48 48	62 66 69 70 65 68	0.74 0.75 0.80 0.84 0.75 0.77	2.33 2.07 1.89 1.75 2.30 1.93	4.00 3.56 2.97 2.83 3.65 3.30	37 42 60 69 35 44	1.04 1.33 1.59 1.32 0.99 0.94	
960527 960527 960527 960527 960527 960527 960527	0157 0435 0735 1035 1337 1635 1933 2236	1.67 1.91 2.32 2.75 2.99 3.36 3.39	0.113 0.083 0.132 0.083 0.093 0.093 0.083 0.083	8.9 12.0 7.6 12.0 10.7 10.7 12.0 12.0	46 50 50 48 46 48 46 48	64 64 60 54 52 51 52 52	0.75 0.71 0.65 0.56 0.54 0.49 0.53 0.51	2.15 2.07 2.29 2.63 3.13 3.68 3.53 3.39	3.68 3.90 4.75 6.46 7.42 9.19 7.84 8.30	36 34 29 22 20 15 16 16	0.72 0.57 0.42 0.27 0.37 0.12 0.24 0.12	
960528	0136	3.34	0.083	12.0	46	51	0.48	3.30	9.13	16	0.31	
									(Sh	eet 15	of 31)	

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	Υ	δ	Δθ deg	А	
960528	0736	2.98	0.083	12.0	48	53	0.52	3.39	8.23	16	0.16	
960528	1030	3.44	0.083	12.0	46	51	0.52	3.99	8.27	14	0.32	
960528	1331	3.30	0.083	12.0	44	49	0.54	3.59	7.70	17	0.31	
960528	1630	3.05	0.093	10.7	44	49	0.54	3.61	8.10	16	0.23	
960528	1931	2.81	0.093	10.7	48	52	0.57	3.05	6.92	19	0.08	
960529	0430	2.94	0.093	10.7	46	51	0.55	3.47	7.32	18	0.30	
960529	0825	2.63	0.103	9.7	44	52	0.62	3.12	5.87	24	0.31	
960529	1331	2.76	0.103	9.7	42	50	0.54	3.09	7.24	20	0.37	
960529	1631	2.68	0.093	10.7	44	49	0.55	3.39	7.63	19	0.17	
960529	2231	2.36	0.103	9.7	44	52	0.61	2.89	5.89	23	0.33	
960530	0431	2.56	0.103	9.7	46	50	0.54	2.88	7.15	23	0.18	
960530	0732	2.26	0.103	9.7	48	52	0.61	2.78	5.92	27	0.11	
960530	1630	2.50	0.103	9.7	44	51	0.58	2.83	6.47	23	0.42	
960530	1930	2.68	0.103	9.7	44	54	0.66	2.92	5.29	29	0.34	
960530	2230	2.70	0.103	9.7	46	54	0.63	3.02	5.70	26	0.38	
960531	0130	2.66	0.103	9.7	42	55	0.68	2.86	4.85	32	0.75	
960531	0729	2.46	0.113	8.9	44	54	0.65	2.68	5.30	31	0.34	
960531	1028	2.35	0.123	8.2	38	54	0.73	2.72	4.41	37	0.65	
960531	1928	2.17	0.132	7.6	42	59	0.79	2.12	3.47	47	0.46	
960531	2228	2.10	0.132	7.6	52	61	0.83	2.24	3.28	46	0.36	
960601 960601 960601 960601 960601 960601	0128 0428 0728 1028 1329 1629 1929	2.18 2.08 2.05 1.80 1.73 1.79 1.63	0.123 0.123 0.132 0.142 0.142 0.142 0.142	8.2 8.2 7.6 7.0 7.0 7.0 7.0	50 34 60 30 34 32 62	58 57 64 67 66 62 63	0.72 0.72 0.81 0.97 0.90 0.89 0.89	2.32 2.29 2.00 1.72 1.88 2.40 2.29	4.34 4.22 3.24 2.33 2.75 3.05 3.05	38 41 44 117 69 54 53	0.21 0.20 0.16 1.37 0.72 0.49 0.20	
960602	0429	1.32	0.142	7.0	52	98	1.05	0.44	1.42	123	1.38	
960602	0729	1.36	0.142	7.0	46	84	1.02	1.03	1.76	124	1.55	
960602	1329	1.20	0.074	13.6	-178	113	1.04	0.06	1.39	123	0.45	
960602	1629	1.20	0.142	7.0	72	91	0.96	0.93	1.92	113	1.18	
960602	2229	1.16	0.074	13.6	58	107	1.03	0.34	1.55	116	0.93	
960603	0129	1.15	0.074	13.6	64	95	0.96	0.89	1.88	108	1.74	
960603	0429	1.24	0.074	13.6	64	95	0.93	0.90	1.94	105	1.75	
960603	0729	1.29	0.083	12.0	66	82	0.83	1.61	2.80	62	1.44	
960603	1628	1.28	0.083	12.0	64	73	0.80	2.17	3.44	35	0.51	
960603	1929	1.35	0.083	12.0	62	71	0.79	1.94	3.45	39	0.43	
960603	2230	1.39	0.083	10.7	66	73	0.75	1.98	3.68	32	0.25	
960604	0130	1.47	0.142	7.0	70	76	0.77	1.32	3.08	40	0.17	
960604	0430	1.54	0.132	7.6	66	66	0.73	2.15	4.23		0.03	
960604	0729	1.87	0.132	7.6	54	60	0.61	1.76	5.37		0.02	
960604	1630	1.97	0.113	8.9	68	57	0.61	1.74	5.34		-0.08	
960604	1929	1.96	0.123	8.2	66	56	0.62	1.47	4.98		-0.27	
960604	2229	2.04	0.123	8.2	58	56	0.60	1.80	5.51		-0.14	
960605 960605 960605 960605 960605 960605 960605	0130 0429 0729 1030 1331 1631 1931 2231	1.80 2.05 1.96	0.113 0.113 0.113 0.113 0.103 0.103 0.103 0.103	8.9 8.9 8.9 8.9 9.7 9.7 9.7	56 60 52 50 48 46 46 46	59 61 57 59 60 59 58 64	0.54 0.60 0.63 0.66 0.66 0.65 0.63 0.68	2.32 1.96 2.30 2.42 2.33 2.12 2.32 2.03	6.70 5.44 5.32 4.74 4.71 4.54 5.01 4.00	22 28 28 26 25 33 28 33	0.09 -0.02 0.10 0.46 0.85 0.80 0.54 0.83	
							<u> </u>		(She	et 16 d	of 31)	

Table A1 (Continued) Time $H_{}$ f_{-} f_{-} θ_{-} θ_{0} $\Delta\theta$														
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	А			
960606 960606 960606 960606 960606 960606 960606	0131 0432 0731 1031 1331 1631 1931 2232	1.52 1.47 1.60 1.57 1.58 1.62 1.54	0.103 0.103 0.113 0.113 0.123 0.123 0.123	9.7 9.7 8.9 8.9 8.2 8.2 8.2	50 48 48 50 44 46 40 44	70 77 67 65 62 62 62 58	0.73 0.81 0.75 0.71 0.75 0.72 0.74 0.68	1.79 1.07 1.69 1.97 1.62 1.87 1.91 2.29	3.38 2.38 3.16 3.62 3.31 3.84 3.46 4.19	44 84 50 37 45 37 41 31	1.38 1.76 1.33 1.17 0.94 0.67 0.80 0.61			
960607 960607 960607 960607 960607 960607 960607	0131 0431 0731 1031 1331 1632 1929 2231	1.31 1.34 1.26 1.42 1.46 1.56 1.61	0.113 0.123 0.123 0.123 0.123 0.113 0.113	8.9 8.2 8.2 8.2 8.9 8.9 8.9	50 48 44 40 40 38 38	64 65 62 57 58 51 51	0.72 0.76 0.79 0.73 0.74 0.71 0.66 0.64	2.20 1.93 1.60 1.79 1.95 1.88 2.41 2.44	3.85 3.39 3.02 3.32 3.69 3.86 4.79 5.04	31 41 60 46 42 41 32 32	0.98 1.29 1.47 1.30 0.85 0.79 0.63 0.54			
960608 960608 960608 960608 960608 960608 960608	0131 0431 0730 1032 1331 1630 1931 2231	1.87 1.69 1.90 2.07 1.93 1.86 1.81	0.103 0.083 0.093 0.083 0.132 0.103 0.093 0.113	9.7 12.0 10.7 12.0 7.6 9.7 10.7 8.9	42 46 42 58 56 48 56	53 58 58 55 57 59 59	0.59 0.59 0.59 0.56 0.58 0.58 0.61 0.59	0.59 2.09 5.81 27 0.3 0.59 2.29 5.99 28 0.7 0.56 1.78 5.85 30 -0.2 0.58 1.47 5.30 30 0.0 0.58 1.64 5.60 32 0.7 0.61 1.63 5.12 36 0.0 0.59 1.34 5.11 36 -0.7						
960609 960609 960609 960609 960609 960609 960609	0131 0431 0731 1031 1331 1631 1931 2232	1.90 1.95 2.10 2.16 2.26 2.33 2.55 2.91	0.103 0.103 0.103 0.113 0.103 0.113 0.113	9.7 9.7 9.7 8.9 9.7 8.9 8.9	54 56 62 46 62 42 44 38	61 60 59 55 59 59 55	0.59 0.55 0.53 0.51 0.54 0.54 0.53	1.73 2.12 1.50 1.92 1.21 1.66 1.52 1.28	5.25 6.36 6.66 6.85 5.23 5.68 5.83 5.49	32 25 28 26 35 31 31 32	0.18 0.16 -0.13 0.17 -0.03 0.18 0.14 -0.03			
960610 960610 960610 960610 960610 960610 960610 960610 960610 960610	0131 0425 0532 0633 0729 0926 1329 1527 1727 1929 2127 2327	3.08 2.75 2.65 2.62 2.60 2.57 2.83 2.76 2.66 2.48 2.48 2.37	0.103 0.103 0.103 0.103 0.113 0.113 0.113 0.113 0.113 0.113	9.7 9.7 9.7 9.7 8.9 8.9 8.9 8.9 8.9	66 70 66 64 60 54 46 64 40 36 40	57 58 60 59 58 59 54 52 67 54 54	0.48 0.52 0.52 0.52 0.51 0.51 0.49 0.52 0.76 0.56 0.57	0.98 1.04 1.16 1.34 1.53 1.40 1.35 1.00 0.38 1.33 1.59	5.52 5.08 5.68 5.84 6.36 5.84 5.77 5.28 2.73 4.96 5.26 4.85	33 36 30 29 27 28 29 36 68 36 32 37	-0.10 -0.28 -0.42 -0.19 -0.12 0.16 0.22 -0.14 0.64 0.23 0.34 0.25			
960611 960611 960611 960611 960611 960611 960611 960611 960611	0129 0327 0729 0842 1122 1329 1527 1727 1929 2127 2327	2.46 2.47 2.48 2.34 2.26 2.25 2.13 2.19 2.23 2.14 2.15	0.113 0.113 0.123 0.123 0.132 0.123 0.123 0.123 0.123 0.123 0.113 0.103	8.9 8.9 8.2 7.6 8.2 8.2 8.2 8.9 9.7	32 30 34 56 36 62 70 68 64 66 46	51 52 52 54 58 60 65 63 64 62 61	0.57 0.56 0.57 0.58 0.60 0.58 0.62 0.60 0.61 0.63	1.29 1.24 1.57 1.54 1.51 1.52 1.29 1.29 1.76 1.69 1.95	4.90 5.01 5.17 4.98 4.78 5.01 4.45 4.98 5.06 4.78 4.85	38 40 35 36 38 34 38 35 31 35	0.01 0.17 0.21 0.03 -0.08 -0.09 -0.22 -0.31 -0.16 -0.07 0.19			
	<u>L</u>	<u> </u>							(Sh	eet 17	of 31)			

Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A
960612 960612 960612 960612 960612 960612 960612 960612 960612	0129 0327 0527 1225 1329 1527 1727 1929 2127 2327	2.17 2.12 2.15 2.17 2.22 2.24 2.27 2.20 2.20	0.113 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103	8.9 8.9 9.7 9.7 9.7 9.7 9.7 9.7	66 68 38 46 46 42 42 46 46	63 63 58 57 57 54 51 51 51	0.61 0.60 0.62 0.56 0.57 0.57 0.58 0.59 0.58 0.61	1.78 1.72 2.06 2.30 2.16 2.31 2.68 3.00 2.64 2.45	4.92 5.15 5.16 6.32 5.87 5.99 6.42 6.71 6.45 5.67	33 33 34 27 30 30 26 23 25 30	-0.10 -0.31 0.11 0.59 0.69 0.63 0.39 0.32 0.25
960613 960613 960613 960613 960613 960613 960613 960613 960613 960613	0129 0324 0525 0729 0927 1127 1328 1527 1724 1929 2127 2327	2.20 2.32 2.32 2.15 2.30 2.24 2.21 2.16 2.31 2.35 2.40 2.32	0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	46 40 42 46 46 46 40 48 40 38 38	56 56 54 52 52 52 54 53 52 50 48 49	0.61 0.56 0.58 0.57 0.54 0.55 0.57 0.57 0.57 0.53 0.55	2.43 2.36 2.27 2.49 2.22 2.31 2.34 1.75 1.78 1.93 1.98	5.40 6.13 5.75 6.29 6.70 6.50 6.37 5.63 5.38 6.03 6.58 6.02	31 28 31 26 25 25 26 32 32 28 27 31	0.53 0.37 0.45 0.41 0.21 0.22 0.17 0.22 0.17 0.31 0.31
960614 960614 960614 960614 960614 960614 960614 960614 960614	0129 0327 0527 0729 0927 1127 1329 1629 1929 2229	2.27 2.30 2.05 1.91 1.92 2.02 2.17 2.40 2.32 2.45	0.113 0.113 0.113 0.113 0.103 0.103 0.103 0.103 0.103 0.093	8.9 8.9 8.9 9.7 9.7 9.7 9.7 9.7	34 40 44 40 44 42 40 48 46 46	51 54 53 55 51 53 51 51	0.55 0.53 0.54 0.55 0.56 0.53 0.51 0.47 0.49 0.45	1.85 1.45 1.74 2.05 2.28 2.33 1.84 1.54 1.81	5.84 5.67 5.91 6.17 6.17 6.91 6.61 7.41 7.18 8.65	33 33 31 30 27 25 29 27 26 21	0.42 0.29 0.33 0.33 0.32 0.32 0.29 0.25 0.21 0.42
960615 960615 960615 960615 960615 960615 960615	0129 0429 0729 1029 1329 1629 1929 2228	2.37 2.48 2.34 2.35 2.22 2.48 2.48 2.40	0.093 0.103 0.103 0.103 0.113 0.103 0.103 0.093	10.7 9.7 9.7 9.7 8.9 9.7 9.7 10.7	40 46 40 52 40 44 40 46	50 51 49 51 50 50 47 50	0.48 0.45 0.47 0.44 0.49 0.43 0.43	1.59 1.21 1.44 1.36 1.57 1.46 1.67	6.89 7.00 6.96 8.29 7.04 7.70 8.35 8.49	28 29 28 26 28 25 22 21	0.31 0.28 0.25 -0.06 0.44 0.26 0.25 0.21
960616 960616 960616 960616 960616	0130 0429 0729 1029 1327 1628 1929 2229	2.73 2.72 2.74 2.50 2.36 2.20 2.21 2.14	0.093 0.093 0.093 0.093 0.093 0.103 0.103 0.103	10.7 10.7 10.7 10.7 10.7 9.7 9.7 9.7	44 40 44 42 48 46 48 46	51 49 47 45 50 47 47 49	0.42 0.40 0.40 0.40 0.38 0.41 0.44	1.15 1.14 1.04 1.38 1.56 1.31 0.88 1.18	7.70 7.94 7.88 9.33 11.41 9.24 6.92 7.75	23 25 24 20 18 21 29 23	0.40 0.22 0.14 0.21 0.13 0.05 -0.03 0.19
960617 960617 960617 960617 960617	0129 0429 0729 1029 1329 1629 1929	2.12 2.10 2.10 2.21 2.18 2.67 2.86	0.093 0.103 0.093 0.093 0.103 0.103 0.103	10.7 9.7 10.7 10.7 9.7 9.7 9.7	48 50 42 42 50 42 46	52 53 50 48 49 47 48	0.43 0.44 0.43 0.44 0.45 0.43	1.27 1.11 1.11 1.18 1.06 0.92 0.81	8.40 7.65 7.05 7.54 7.44 6.62 7.44	20 22 27 26 24 28 25	0.21 0.08 0.36 0.25 -0.08 0.18 0.03
									(Shee	et 18 (of 31)

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ _o deg	σ	Y	δ	Δθ deg	A
960617	2229	3.03	0.103	9.7	48	49	0.39	0.82	7.49	25	-0.01
960618 960618 960618 960618 960618 960618 960618	0129 0429 0729 1029 1329 1629 1929 2228	3.06 2.74 2.89 2.75 2.78 2.76 2.76 2.68	0.103 0.103 0.103 0.113 0.103 0.103 0.103	9.7 9.7 9.7 8.9 9.7 9.7 9.7	50 48 48 48 48 48 50	49 48 46 49 48 50	0.40 0.42 0.39 0.39 0.44 0.42 0.42	0.93 1.24 1.18 1.57 1.40 1.27 1.27	7.86 8.62 9.00 10.83 8.80 8.75 8.49 8.47	24 22 22 20 21 20 20 21	-0.07 -0.07 0.02 -0.12 -0.02 -0.12 0.05 0.09
960619 960619 960619 960619 960619 960619	0127 0427 0727 1028 1327 1927 2227	2.69 2.53 2.33 2.18 2.01 1.93 1.65	0.103 0.113 0.113 0.103 0.103 0.113 0.113	9.7 8.9 8.9 9.7 9.7 8.9	48 52 48 50 52 50 50	51 55 52 54 56 57 57	0.45 0.48 0.46 0.47 0.50 0.52 0.55	1.48 1.15 1.25 1.38 1.78 1.19	8.12 6.80 7.91 7.87 7.74 6.09 6.49	20 25 22 22 20 28 27	0.16 0.14 0.20 0.18 0.23 0.38 0.19
960620 960620 960620 960620 960620 960620	0127 0427 0727 1627 1928 2227	1.61 1.52 1.58 1.74 1.84 2.12	0.113 0.123 0.123 0.132 0.132 0.132	8.9 8.2 8.2 7.6 7.6 7.6	58 56 54 52 32 38	61 59 57 52 46 47	0.52 0.56 0.57 0.63 0.55 0.50	1.90 1.79 1.20 0.79 1.22 1.13	7.52 6.44 5.54 4.69 5.60 5.94	22 23 31 35 34 32	0.18 0.15 0.09 -0.08 0.68 0.15
960621 960621 960621 960621 960621 960621 960621	0127 0427 0727 1027 1327 1627 1927 2227	2.23 2.24 2.12 1.81 1.87 1.87 1.80 2.10	0.132 0.123 0.123 0.123 0.123 0.132 0.123 0.123	7.6 8.2 8.2 8.2 7.6 8.2 8.2	34 32 34 38 36 54 40 36	45 47 47 52 49 52 53 51	0.46 0.46 0.47 0.51 0.50 0.50 0.49	1.36 1.16 1.22 1.45 1.34 1.00 1.21	7.43 6.65 6.79 6.79 6.62 6.08 6.43 4.93	28 31 31 32 33 31 36	0.07 0.15 0.30 0.42 0.38 0.03 0.21 0.25
960622 960622 960622 960622 960622 960622 960622	0127 0427 0726 1027 1327 1627 1927 2227	2.37 2.23 2.02 2.04 2.09 2.14 2.25 2.16	0.113 0.113 0.113 0.103 0.103 0.103 0.103	8.9 8.9 9.7 9.7 9.7 9.7	36 42 48 44 40 42 42	46 50 54 51 51 51 53 52	0.46 0.45 0.43 0.45 0.46 0.45 0.45	1.23 1.05 0.87 1.34 1.08 1.26 0.93 1.04	5.90 6.09 7.02 7.49 5.92 6.42 5.94 6.70	28 29 27 24 28 25 28 27	0.46 0.34 0.21 0.50 0.58 0.43 0.45
960623 960623 960623 960623 960623 960623 960623	0127 0427 0725 1027 1327 1627 1926 2227	1.89 1.82 1.89 1.85 1.88 1.83 1.74	0.103 0.103 0.103 0.113 0.113 0.113 0.113	9.7 9.7 9.7 8.9 8.9 8.9 8.9	46 82 48 48 44 44 46 50	51 68 52 56 53 50 56 57	0.42 0.83 0.42 0.44 0.45 0.47 0.46 0.43	1.23 0.13 1.29 1.19 1.34 1.41 1.49	8.58 2.95 8.22 8.03 7.96 7.09 7.64 8.08	22 66 21 24 24 23 24 21	0.31 -0.21 0.28 0.52 0.32 0.27 0.49 0.32
960624 960624 960624 960624 960624 960624	0126 0426 0726 1026 1326 1630 1927	2.14 2.03 1.79 1.75 1.38 1.13 0.94	0.113 0.123 0.123 0.132 0.142 0.152 0.152	8.9 8.2 8.2 7.6 7.0 6.6 6.6	50 52 50 44 48 50 44	51 54 52 51 55 58 67	0.39 0.45 0.52 0.52 0.58 0.68 0.80	1.35 1.54 1.10 1.72 1.47 1.44	9.81 8.05 6.09 6.54 5.64 4.41 3.11	21 20 26 22 32 39 56	0.02 0.05 0.01 0.36 0.20 0.22 0.68
									(She	eet 19	of 31)

Table A1 (Continued)												
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	A	
960624	2227	0.82	0.162	6.2	40	73	0.88	1.30	2.55	73	0.68	
960625 960625 960625 960625 960625 960625 960625	0126 0427 0727 1319 1619 1919 2219	0.77 0.75 0.91 0.96 0.91 0.87 0.88	0.162 0.162 0.162 0.162 0.162 0.113 0.113	6.2 6.2 6.2 6.2 6.2 8.9	60 44 48 48 50 50 52	80 74 69 69 77 88 81	0.96 0.91 0.91 0.83 0.94 0.98 0.90	0.81 1.25 1.53 2.01 1.49 0.93 1.10	2.16 2.39 2.47 3.09 2.34 1.87 2.20	101 86 82 53 98 111 96	0.97 0.93 1.18 1.20 1.55 1.31 1.32	
960626 960626 960626 960626 960626 960626 960626	0119 0419 0719 1019 1319 1619 1919 2219	0.86 0.86 0.87 0.92 0.95 0.95 1.00	0.113 0.113 0.083 0.083 0.123 0.123 0.123	8.9 8.9 12.0 12.0 8.2 7.6 8.2 8.2	44 54 52 44 52 54 58 66	91 97 93 100 92 94 101 91	0.97 0.97 0.97 1.00 0.95 0.95 0.95	0.75 0.57 0.72 0.37 0.81 0.66 0.43 0.79	1.76 1.64 1.73 1.62 1.84 1.77 1.70	112 111 110 115 104 106 103 96	1.16 1.26 1.25 0.75 1.20 1.14 0.99	
960627 960627 960627 960627 960627 960627 960627	0117 0419 0719 1019 1319 1619 1919 2219	1.09 1.01 0.98 0.96 0.89 0.89 0.90	0.123 0.132 0.064 0.064 0.064 0.064 0.064	8.2 7.6 15.6 15.6 15.6 15.6 15.6	46 74 60 68 180 -178 158 164	85 101 111 118 120 120 131 127	0.90 0.92 0.94 0.93 0.95 0.95 0.91	1.04 0.46 0.14 -0.10 -0.20 -0.24 -0.74	2.15 1.76 1.62 1.65 1.65 1.74 1.96	95 101 104 103 106 104 99 94	1.06 1.02 0.48 -0.45 -0.41 -0.47 -1.35 -0.75	
960628 960628 960628 960628 960628 960628 960628 960628	0119 0419 0719 1019 1323 1623 1923 2223	0.97 0.92 0.98 1.02 1.23 1.54 1.75	0.064 0.064 0.064 0.064 0.162 0.152 0.142	15.6 15.6 15.6 15.6 15.6 6.2 6.6 7.0	160 168 162 64 74 64 64 64	130 122 119 114 99 75 70 65	0.88 0.93 0.89 0.88 0.85 0.78 0.73	-0.70 -0.28 -0.17 0.01 0.55 1.68 1.68 1.73	1.95 1.79 1.80 1.73 1.98 3.21 3.51 4.24	95 99 95 95 92 42 35 32	-1.23 -0.47 -0.41 -0.12 1.12 0.36 0.17 -0.08	
960629 960629 960629 960629 960629 960629 960629	0123 0423 0723 1023 1323 1623 1923 2223	1.85 1.70 1.83 1.72 1.77 1.74 1.76 1.85	0.074 0.074 0.074 0.083 0.142 0.083 0.083 0.132	13.6 13.6 13.6 12.0 7.0 12.0 12.0 7.6	68 62 60 66 56 74 70	71 71 65 68 70 69 71 69	0.64 0.71 0.66 0.66 0.65 0.64 0.63 0.62	1.55 1.86 1.73 1.92 1.51 1.28 1.58 1.58	4.51 4.03 4.49 4.73 4.23 4.71 4.83 4.96	32 36 36 33 39 35 29 31	0.00 0.12 0.06 0.08 0.40 -0.07 -0.03 -0.07	
960630 960630 960630 960630 960630 960630 960630	0123 0423 0723 1023 1323 1623 1923 2223	2.02 2.07 2.03 2.10 2.17 2.41 2.27 2.28	0.123 0.123 0.113 0.113 0.113 0.113 0.103 0.054	8.2 8.9 8.9 8.9 8.9 9.7 18.5	78 76 66 60 42 58 54 164	70 70 67 68 63 63 72 85	0.61 0.64 0.66 0.78 0.69 0.90 0.83 0.90	1.23 1.44 1.92 2.18 1.94 0.91 1.36 1.01	4.44 4.32 4.57 3.90 4.17 2.88 2.83 1.91	37 35 33 30 39 51 56 110	-0.27 -0.25 -0.05 0.28 0.33 0.51 0.74 1.71	
960701 960701 960701 960701 960701	0123 0423 0731 1023 1323	2.14	0.054 0.054 0.054 0.054 0.054	18.5 18.5 18.5 18.5 18.5	60 168 38 48 44	88 93 60 99 94	0.86 0.90 1.02 1.00 0.98	1.11 0.80 1.57 0.38 0.56	2.13 1.78 2.43 1.42 1.58	103 108 104 116 115	1.73 1.42 2.06 1.22 1.09	
									(She	et 20	of 31)	

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ_p deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
960701 960701 960701	1623 1923 2223	2.16 2.13 1.83	0.054 0.054 0.064	18.5 18.5 15.6	56 56 58	86 83 90	0.92 0.91 0.92	1.04 1.20 0.91	1.94 2.06 1.82	110 108 107	1.55 1.77 2.01
960702 960702 960702 960702 960702	0123 0737 1022 1623 1923	1.75 1.67 1.74 1.78 1.78	0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6	60 162 168 168 168	100 98 105 94 107	0.92 0.96 0.98 0.99 1.02	0.46 0.43 0.19 0.44 -0.01	1.63 1.54 1.41 1.45 1.34	103 109 113 119 116	1.46 1.27 1.05 1.12 0.74
960703 960703 960703 960703 960703 960703 960703	0123 0423 0723 1023 1331 1811 1923 2223	1.60 1.66 1.56 1.60 1.49 1.44 1.40	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	48 50 50 48 52 164 44 60	92 90 91 99 95 85 79	0.97 0.96 0.97 1.01 0.97 1.02 0.98 0.95	0.58 0.75 0.70 0.37 0.58 0.84 1.24	1.58 1.64 1.61 1.39 1.53 1.85 2.08 2.23	114 115 114 119 115 118 113 101	1.28 1.59 1.51 1.20 1.37 1.10 1.19
960704 960704 960704 960704 960704 960704	0123 0743 1023 1323 1623 1923 2223	1.47 1.96 1.96 2.07 2.31 2.13 1.93	0.074 0.123 0.123 0.132 0.132 0.132 0.132	13.6 8.2 8.2 7.6 7.6 7.6 7.6	60 34 58 56 54 28 30	86 61 59 56 53 52 56	0.92 0.73 0.72 0.70 0.68 0.72 0.76	1.11 2.48 2.43 2.29 2.06 1.88 1.70	2.00 4.12 4.35 4.53 4.68 4.17 3.62	104 37 35 36 37 46 48	1.72 0.07 -0.10 0.08 0.00 0.29 0.02
960705 960705 960705 960705 960705	0656 1023 1323 1623 1923	2.28 2.34 2.19 2.38 2.21	0.123 0.113 0.113 0.103 0.103	8.2 8.9 8.9 9.7 9.7	72 30 30 40 50	59 54 52 50 52	0.60 0.57 0.59 0.54 0.59	1.02 1.15 1.54 1.63 1.30	4.38 4.99 5.49 6.32 5.32	43 42 38 32 35	-0.42 -0.07 0.06 0.20 0.04
960706 960706 960706 960706 960706 960706 960706	0423 0723 1023 1323 1623 1923 2223	1.88 1.88 1.93 1.74 1.51 1.65	0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	46 54 46 44 42 44	55 54 61 54 54 53 53	0.55 0.55 0.80 0.57 0.60 0.58 0.56	1.84 1.85 0.63 1.88 2.42 1.47 1.76	6.08 6.06 3.26 5.86 6.10 5.40 5.95	26 27 46 26 25 36 30	0.58 0.48 0.35 0.38 0.63 0.52 0.55
960707 960707 960707 960707 960707 960707 960707 960707	0123 0423 0723 1023 1323 1623 1923 2223	1.45 1.32 1.29 1.28 1.37 1.26 1.23 1.28	0.113 0.103 0.103 0.103 0.103 0.103 0.103 0.113	8.9 9.7 9.7 9.7 9.7 9.7 9.7 8.9	42 44 46 44 44 48 42	53 55 57 55 51 54 55 55	0.60 0.61 0.62 0.58 0.58 0.64 0.66	2.11 2.02 1.80 2.23 2.39 2.56 1.67	5.84 5.50 5.14 6.07 6.51 5.67 4.88 5.22	30 34 35 26 25 27 27 33	0.49 0.67 0.62 0.54 0.40 0.38 0.34 0.69
960708 960708 960708 960708 960708 960708 960708	0123 0423 0723 1022 1623 1923 2223	1.28 1.13 1.06 1.10 1.07 1.14 1.40	0.113 0.103 0.103 0.113 0.113 0.113	8.9 9.7 9.7 8.9 8.9 8.9	42 44 44 48 46 52 52	53 55 55 57 57 58 55	0.62 0.68 0.65 0.66 0.70 0.62 0.54	2.18 2.02 2.20 2.06 1.89 2.23 2.00	5.59 4.64 5.27 5.21 4.53 5.57 6.57	30 35 28 28 31 25 25	0.64 0.54 0.27 0.31 0.46 0.22 0.16
960709 960709	0123 0423	1.61 1.55	0.113 0.113	8.9 8.9	48 46	53 52	0.47 0.51	1.94 2.32	8.37 7.62	22 21	0.22 0.26
									(Sh	eet 21	of 31)

Table	Table A1 (Continued) Time H_{mo} f_p T_p θ_p θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	A	
960709 960709 960709 960709 960709 960709	1033 1323 1623 1917	1.54 1.71 2.02 2.10 2.17 2.50	0.113 0.113 0.093	8.9	54 46 48 50 52 54	51 51 50 52 53 51	0.81 0.49 0.41 0.41 0.41 0.39	0.89 1.70 1.61 1.81 1.68 0.77	4.13 7.74 10.46 11.38 11.64 10.24	37 22 18 16 16 21	-0.16 0.26 0.12 0.11 -0.05 -0.19	
960710 960710 960710 960710 960710 960710 960710	0423 0722 1021 1621	2.72 2.46 2.16 2.45 2.29 2.08 1.81	0.093 0.093 0.093 0.093 0.093 0.093 0.093	10.7 10.7 10.7 10.7 10.7 10.7 10.7	54 54 56 52 48 54	51 53 52 51 56 56	0.39 0.41 0.45 0.40 0.43 0.43 0.49	1.14 1.19 1.46 1.84 1.56 2.90 2.89	11.02 10.62 9.81 12.58 11.18 12.79 9.89	20 18 17 15 19 12 14	-0.16 -0.21 -0.22 -0.03 0.09 0.02 0.04	
960711 960711 960711 960711 960711 960711	0121 0421 0715 1021 1321 1921 2221	1.92 1.79 1.64 1.49 1.47 1.28 1.10	0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	56 52 52 52 52 48 48 48	56 55 55 56 53 56 61	0.44 0.52 0.55 0.63 0.64 0.74	2.42 2.66 3.72 3.42 4.05 3.72 2.73	11.04 8.61 8.24 6.44 6.50 4.92 3.55	14 17 13 16 16 20 33	-0.02 0.07 0.14 0.13 0.18 0.34 0.55	
960712 960712 960712 960712 960712 960712 960712	0121 0421 0721 1021 1319 1621 1921 2221	1.15 1.17 1.19 1.12 1.02 1.03 1.10 0.93	0.103 0.113 0.113 0.113 0.113 0.113 0.113	9.7 8.9 8.9 8.9 8.9 8.9 8.9	50 42 40 48 36 44 42 42	61 57 56 66 62 59 55	0.77 0.77 0.78 0.88 0.91 0.83 0.86 0.97	2.82 2.76 2.82 2.12 2.27 2.76 2.95 1.82	4.09 4.15 4.07 2.95 2.86 3.59 3.59 2.40	28 34 36 58 68 39 38 110	0.47 0.53 0.73 1.02 1.22 0.75 0.56 1.74	
960713 960713 960713 960713 960713 960713 960713	0121 0421 0721 1021 1321 1621 1921 2221	0.92 0.90 0.98 0.97 1.07 1.23 1.15 1.10	0.113 0.123 0.113 0.113 0.113 0.113 0.113	8.9 8.2 8.9 8.9 8.9 8.9	44 40 38 40 34 32 40 44	70 69 61 63 53 53 52 55	0.98 0.95 0.87 0.92 0.83 0.73 0.80 0.77	1.65 1.72 2.37 2.18 2.95 2.47 2.63 2.45	2.23 2.41 3.05 2.75 3.70 4.38 3.83 3.97	117 106 57 87 40 42 35 37	1.67 1.55 1.19 1.70 0.80 0.67 0.63 0.28	
960714 960714 960714 960714 960714 960714 960714	0121 0421 0721 1021 1321 1621 1921 2221	1.04 1.01 1.11 1.11 1.10 1.20 1.16 1.13	0.113 0.074 0.074 0.074 0.074 0.074 0.083 0.083	8.9 13.6 13.6 13.6 13.6 13.6 12.0	36 50 52 50 50 48 50 48	49 62 56 57 60 58 58 59	0.78 0.79 0.74 0.79 0.78 0.71 0.74 0.76	2.38 2.18 2.98 2.97 3.17 3.23 3.35 2.99	4.15 3.57 4.45 4.03 4.12 4.87 4.62 4.26	38 40 29 31 24 24 22 28	0.84 0.67 0.20 0.27 0.46 0.28 0.42 0.51	
960715 960715 960715 960715 960715 960715	0121 0721 1321 1621 1927 2221	1.12 1.08 1.09 1.01 1.03 0.96	0.083 0.083 0.103 0.083 0.093 0.093	12.0 12.0 9.7 12.0 10.7	46 44 44 38 52 54	60 60 61 62 70 85	0.82 0.82 0.85 0.86 0.86 0.98	2.95 2.93 2.54 2.33 1.91 1.13	3.71 3.64 3.42 3.16 2.87 1.91	36 38 41 52 60 115	0.96 1.01 0.82 0.88 1.10 1.96	
960716 960716 960716	0121 0421 0721	1.01	0.093 0.103 0.093	10.7 9.7 10.7	52 42 48	81 77 79	0.93 0.93 0.94	1.27 1.41 1.44		106 110 112	1.87 1.54 1.72	
									(Shed	et 22 d	of 31)	

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ _o deg	σ	Υ	δ	Δθ deg	А
960716 960716 960716 960716	1017 1316 1915 2216	1.00 1.00 1.08 1.14	0.093 0.093 0.093 0.093	10.7 10.7 10.7 10.7	46 42 46 40	86 91 88 71	1.03 1.03 1.03 1.02	0.99 0.64 0.90 1.77	1.67 1.52 1.63 2.08	123 125 123 128	1.93 1.26 1.76 2.24
960717 960717 960717 960717 960717 960717	0116 0416 1016 1316 1916 2216	1.25 1.60 1.68 1.63 1.68 1.40	0.093 0.103 0.103 0.103 0.113 0.064	10.7 9.7 9.7 9.7 8.9 15.6	44 46 44 40 42 44	65 61 58 59 58 76	0.90 0.80 0.82 0.86 0.83 1.01	2.44 3.17 3.24 2.81 3.06 1.48	2.81 3.76 3.74 3.28 3.64 2.03	94 32 33 49 37 120	2.29 1.03 1.17 1.53 0.86 1.99
960718 960718 960718 960718 960718 960718 960718 960718	0116 0416 0716 0816 1016 1323 1616 1916 2216	1.50 1.63 1.65 1.71 1.59 1.47 1.59 1.81 1.90	0.113 0.064 0.132 0.132 0.132 0.142 0.142 0.132 0.123	8.9 15.6 7.6 7.6 7.6 7.0 7.0 7.6 8.2	42 38 38 40 40 42 36 36 46	70 68 66 64 67 70 60 55	0.97 0.94 0.92 0.91 0.90 0.92 0.86 0.77 0.70	1.86 1.79 1.96 2.30 2.14 1.88 2.50 2.65 3.37	2.29 2.40 2.59 2.80 2.77 2.56 3.23 4.02 5.06	118 100 97 79 79 94 54 41 24	2.24 1.66 1.59 1.57 1.40 1.52 0.87 0.48 0.21
960719 960719 960719 960719 960719 960719 960719 960719	0116 0416 0716 1022 1316 1616 1914 2216	2.04 2.06 1.98 1.95 1.70 1.67 1.71	0.123 0.113 0.113 0.113 0.113 0.113 0.113	8.2 8.9 8.9 8.9 8.9 8.9 8.9	42 40 42 40 44 44 40	48 50 51 52 55 56 53 51	0.64 0.62 0.65 0.71 0.65 0.60	2.81 3.06 2.75 2.86 2.55 2.01 2.21 2.71	5.78 6.24 5.87 5.50 4.73 5.02 5.95 6.24	27 25 29 32 33 35 31 29	0.22 0.44 0.49 0.55 0.39 0.48 0.58
960720 960720 960720 960720 960720 960720 960720 960720	0116 0416 0716 1016 1316 1616 1916 2216	1.78 1.84 1.82 1.87 1.89 1.98 1.79	0.103 0.103 0.103 0.103 0.103 0.113 0.113	9.7 9.7 9.7 9.7 9.7 8.9 8.9	40 42 44 40 42 38 46	49 53 55 53 51 49 49 53	0.58 0.56 0.51 0.54 0.55 0.51 0.52 0.59	2.79 2.01 2.47 2.23 2.32 2.34 2.14 3.08	7.05 6.38 7.87 7.06 7.25 7.97 7.49 6.87	23 30 25 27 26 21 27 24	0.58 0.83 0.50 0.46 0.43 0.35 0.41
960721 960721 960721 960721 960721 960721 960721 960721	0116 0416 0716 1016 1316 1616 1916 2216	1.44 1.39 1.38 1.38 1.46 1.28 1.49	0.113 0.113 0.113 0.113 0.113 0.113 0.103 0.103	8.9 8.9 8.9 8.9 8.9 9.7 9.7	46 44 32 50 50 44 44 42	55 55 45 59 56 56 55	0.64 0.66 0.76 0.71 0.65 0.74 0.70	3.18 3.69 2.18 3.35 3.77 3.06 3.92 3.96	6.09 5.94 4.82 4.94 6.21 4.63 5.34 5.69	25 25 31 25 21 28 23 22	0.47 0.58 0.76 0.44 0.35 1.02 0.81 0.59
960722 960722 960722	0116 0416 0716	1.46 1.38 1.38	0.113 0.103 0.113	8.9 9.7 8.9	50 48 44	57 59 56	0.66 0.72 0.75	4.36 3.36 3.91	6.00 4.85 4.76	17 23 25	0.50 0.58 0.62
960724 960724 960724 960724 960724 960724	0925 1017 1317 1617 1917 2217	1.98 1.90 2.02 2.02 1.83 2.06	0.054 0.054 0.054 0.054 0.054 0.054	18.5 18.5 18.5 18.5 18.5 18.5	162 162 162 160 160 160	153 153 154 156 151 149	0.70 0.74 0.72 0.68 0.80 0.79	-3.84 -3.32 -3.66 -3.76 -3.28 -3.30	5.09 4.52 5.03 5.54 4.08 3.94	13 15 10 15 20 17	-0.43 -0.44 -0.27 -0.01 -0.49 -0.89
]	<u> </u>				<u> </u>	(Sh	eet 23	3 of 31)

A23

Table	A1 (Contir	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
960725 960725 960725 960725 960725 960725 960725	0117 0417 0717 1017 1315 1617 1915 2223	1.99 1.84 1.85 1.94 1.88 1.76 1.64	0.054 0.054 0.054 0.054 0.064 0.064 0.064	18.5 18.5 18.5 18.5 15.6 18.5 15.6	164 164 162 164 164 166 164 168	153 155 152 153 155 158 158 161	0.74 0.77 0.75 0.78 0.76 0.66 0.68	-3.38 -3.28 -2.97 -3.21 -3.10 -4.07 -3.20 -3.16	4.36 4.24 4.18 4.02 4.37 5.95 5.44 4.96	14 15 18 17 19 12 15	-0.64 -0.53 -0.41 -0.51 -0.31 -0.28 -0.17 -0.33
960726 960726 960726 960726 960726 960726 960726	0117 0417 0715 1017 1317 1617 1917 2217	1.57 1.61 1.39 1.41 1.39 1.36 1.28	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	170 170 166 168 164 172 164 180	159 162 156 151 146 148 142 154	0.72 0.68 0.77 0.84 0.90 0.92 0.95 0.90	-2.99 -3.39 -2.48 -2.38 -2.21 -2.15 -1.29 -1.91	4.54 5.47 3.86 3.21 2.79 2.66 2.16 2.71	22 19 27 40 90 102 109 78	-0.42 -0.33 -0.28 -0.85 -2.03 -1.98 -1.79 -1.44
960727 960727 960727 960727 960727 960727 960727	0117 0717 1017 1317 1615 1917 2217	1.34 1.16 1.14 1.05 1.08 1.02	0.064 0.064 0.074 0.074 0.074 0.074	15.6 15.6 13.6 13.6 13.6 13.6	172 174 172 170 170 -180 168	142 154 148 151 137 132 148	0.94 0.84 0.91 0.88 0.98 1.01 0.88	-1.32 -2.03 -2.09 -2.18 -1.11 -0.64 -1.96	2.06 3.05 2.70 2.98 1.92 1.66 2.73	111 45 90 48 115 119 79	-1.87 -0.77 -1.63 -0.79 -1.79 -1.13 -1.63
960728 960728 960728 960728 960728 960728	0417 0717 1017 1317 1915 2224	0.89 0.93 0.97 0.90 0.88 0.86	0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6	166 172 170 174 170 174	152 152 144 146 157 151	0.83 0.90 0.96 0.95 0.78 0.90	-1.97 -2.22 -1.75 -2.01 -2.24 -2.14	3.27 2.92 2.36 2.57 3.89 2.92	38 60 114 93 32 60	-0.68 -1.46 -1.82 -1.30 -0.62 -1.21
960729 960729 960729 960729 960729 960729	0117 0417 0717 1317 1617 1917	0.84 0.78 0.78 0.80 0.85 0.82	0.074 0.064 0.064 0.064 0.064 0.064	13.6 15.6 15.6 15.6 15.6 15.6	168 172 178 174 174 176	150 154 157 156 146 140	0.85 0.84 0.81 0.85 0.93 1.00	-1.90 -1.79 -1.86 -2.21 -1.62 -0.98	3.05 3.06 3.29 3.23 2.38 1.89	50 53 49 45 102 114	-0.66 -1.14 -0.91 -1.09 -1.77 -1.54
960730 960730 960730 960730 960730 960730 960730 960730	0117 0417 0717 1017 1317 1617 1917 2217	0.83 0.85 0.85 0.85 0.81 0.79 0.84 0.82	0.064 0.064 0.064 0.074 0.074 0.074 0.074	15.6 15.6 13.6 13.6 13.6 13.6 13.6	170 176 178 56 44 42 34 60	131 118 116 107 101 97 81 82	1.00 1.05 1.04 1.02 1.06 1.04 1.02 0.95	-0.89 -0.31 -0.09 0.22 0.35 0.51 1.08 1.22	1.71 1.36 1.35 1.40 1.50 1.51 1.84 2.12	119 126 122 119 121 123 123 106	-1.73 -0.99 -0.52 1.02 0.78 1.15 1.37 1.79
960731 960731 960731 960731 960731 960731 960731	0117 0417 0717 1029 1317 1615 1917 2217	0.86 0.85 0.84 0.85 0.90 1.14 1.37 1.57	0.162 0.162 0.132 0.132 0.113 0.123 0.103 0.103	6.2 6.2 7.6 7.6 8.9 8.2 9.7 9.7	52 62 54 48 44 34 48 50	77 78 68 68 66 53 52 53	0.91 0.92 0.87 0.90 0.90 0.74 0.65 0.63	1.45 1.35 2.13 1.99 2.06 2.77 2.56 2.79	2.40 2.28 3.01 2.72 2.77 4.29 5.41 5.88	96 103 54 80 76 37 31 26	1.41 1.28 0.83 1.54 1.30 0.53 0.15 0.09
960801 960801	0117 0417	1.69 1.71	0.113 0.123	8.9 8.2	44 40	56 53	0.62 0.58	2.05 1.95	5.21 5.76	31 32	0.40 0.70
									(She	et 24	of 31)

Table	A1 ((Contin	ued)					-			
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _p deg	θ ₀ deg	σ	γ	δ	Δθ deg	A
960801 960801 960801 960801 960801 960801	0717 1017 1317 1617 1917 2217	1.68 1.79 1.74 2.09 2.13 1.96	0.113 0.113 0.132 0.123 0.132 0.123	8.9 8.9 7.6 8.2 7.6 8.2	42 40 40 34 34 48	55 54 54 49 54 52	0.58 0.65 0.64 0.61 0.57 0.56	2.20 2.35 2.19 1.74 1.34 1.88	5.98 5.18 5.13 5.21 5.35 6.12	32 34 34 37 39 31	0.54 0.62 0.52 0.46 0.13 0.15
960802 960802 960802 960802 960802 960802 960802	0117 0417 0717 1017 1317 1615 1915 2217	1.80 1.83 1.65 1.65 1.53 1.68 1.81	0.132 0.113 0.123 0.132 0.132 0.113 0.113	7.6 8.9 8.2 7.6 7.6 8.9 8.9	30 34 36 44 44 32 36 50	41 47 49 58 57 49 50 55	0.64 0.58 0.59 0.62 0.65 0.65 0.62	2.07 2.68 3.07 2.19 3.24 2.42 2.90 3.15	5.66 6.42 6.69 5.66 5.75 5.54 6.18 5.53	26 29 29 35 27 36 31 25	0.80 0.82 0.63 0.55 0.59 0.58 0.23
960803 960803 960803 960803 960803 960803 960803	0117 0417 0717 1017 1317 1617 1917 2217	1.92 2.35 2.29 1.96 1.58 1.52 1.79	0.103 0.113 0.113 0.113 0.123 0.123 0.132 0.132	9.7 8.9 8.9 8.2 8.2 7.6 7.6	46 38 44 38 48 46 36 52	54 47 48 46 52 52 47 51	0.59 0.58 0.51 0.58 0.63 0.67 0.61	3.81 2.04 3.67 3.56 4.18 2.52 2.16 2.81	7.59 7.37 9.91 7.80 7.07 5.56 6.33 6.77	21 25 19 24 17 29 32 26	0.38 0.64 0.19 0.34 0.26 0.25 0.26 -0.16
960804 960804 960804 960804 960804 960804 960804	0117 0417 0717 1017 1317 1617 1917 2217	1.86 1.84 1.52 1.69 1.61 1.49	0.123 0.132 0.142 0.113 0.123 0.113 0.113	8.2 7.6 7.0 8.9 8.2 8.9 8.9	52 46 46 42 50 48 34 40	52 52 62 56 61 63 57 60	0.56 0.58 0.81 0.77 0.77 0.83 0.85 0.91	2.24 3.10 3.06 3.27 3.98 3.22 3.27 3.61	7.19 7.27 4.02 4.49 4.53 3.85 3.90 3.42	23 23 39 35 26 38 45 47	-0.06 0.32 0.57 0.60 0.38 0.70 0.62 0.94
960805 960805 960805 960805 960805 960805 960805	0117 0417 0717 1019 1317 1617 1917 2217	1.33 1.29 1.31 1.31 1.13 1.04 1.06 0.93	0.123 0.103 0.123 0.132 0.132 0.132 0.132 0.142	8.2 9.7 8.2 7.6 7.6 7.6 7.6	44 -174 -176 56 -174 -174 36 32	69 104 93 75 100 96 71 76	1.01 1.12 1.06 1.00 1.16 1.09 1.01 1.05	2.80 0.49 0.93 2.27 0.70 0.79 1.93 1.67	2.57 1.32 1.63 2.42 1.42 1.59 2.35 2.12	130 136 131 128 138 133 123 133	2.23 1.36 1.54 1.91 1.65 1.40 1.47
960806 960806 960806 960806 960806 960806 960806 960806	0117 0417 0717 1016 1317 1617 1917 2217	1.05 0.96 0.97 0.91 0.96 0.95 0.98 1.02	0.123 0.123 0.132 0.132 0.142 0.142 0.142 0.142	8.2 8.2 7.6 7.6 7.0 7.0 7.0	44 42 36 40 36 40 36 48	79 78 88 84 83 93 91 80	1.04 1.05 1.09 1.07 1.07 1.10 1.03	1.55 1.44 0.77 1.02 1.10 0.63 0.72 1.07	2.01 1.94 1.57 1.76 1.72 1.52 1.69 2.12	130 131 135 131 132 132 120 105	1.76 1.66 1.20 1.35 1.52 1.16 1.16
960807 960807 960807 960807 960807 960807 960807	0117 0417 0717 1017 1317 1617 1917 2217	1.04 1.08 1.18 1.25 1.38 1.31 1.29	0.123 0.123 0.123 0.113 0.113 0.123 0.113	8.2 8.2 8.9 8.9 8.9 8.9 8.9 8.9	34 42 50 42 42 40 46 32	72 73 73 67 62 68 77 78	0.95 0.93 0.91 0.89 0.89 0.92 0.98 1.01	1.67 1.68 1.82 1.95 2.55 1.98 1.59	2.39 2.44 2.59 2.79 3.10 2.64 2.24 2.02	106 100 92 69 60 93 115 118	1.29 1.51 1.74 1.23 1.42 1.63 1.56 1.23
	(Sheet 25 of 31)										

Table	A1 (Conti	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀	σ	Y	δ	Δθ deg	А
960808 960808 960808 960808 960808 960808 960808	0417 0717 1015 1317 1617 1917	1.25 1.24 1.29 1.19 1.18 1.26 1.25	0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	36 42 44 46 44 62 56 62	77 88 94 87 87 100 99	0.98 1.00 0.97 0.98 0.95 0.99 0.97	1.24 0.83 0.54 0.95 0.94 0.57 0.50 0.47	2.09 1.78 1.68 1.94 2.01 1.71 1.74 1.78	110 115 111 110 105 112 109 101	1.20 1.21 0.91 1.16 1.06 0.91 0.93 0.90
960809 960809 960809 960809 960809 960809 960809	0117 0417 0717 1017 1317 1617 1917 2217	1.30 1.32 1.38 1.47 1.59 1.61 1.56	0.064 0.064 0.064 0.064 0.142 0.054 0.054	15.6 15.6 15.6 7.0 18.5 18.5	64 52 166 58 48 168 56 168	93 95 103 90 83 105 95 100	0.95 0.94 0.97 0.93 0.93 1.00 0.97	0.77 0.64 0.25 0.82 0.96 0.16 0.64	1.87 1.79 1.51 2.02 2.16 1.50 1.71 1.52	103 106 113 100 99 116 112 109	1.34 1.06 0.74 1.39 1.02 0.48 1.37 1.34
960810 960810 960810 960810 960810 960810 960810	0117 0417 0717 1017 1317 1617 2217	1.76 1.60 1.45 1.49 1.53 1.50 1.56	0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6	170 42 164 166 170 170 170	95 98 132 122 98 111 106	0.97 1.00 0.90 0.95 1.03 1.02 0.95	0.57 0.33 -1.01 -0.58 0.34 -0.03 0.18	1.57 1.43 2.10 1.62 1.45 1.42 1.48	115 119 97 108 122 120 109	1.29 0.89 -1.76 -1.46 0.88 0.01 0.87
960811 960811 960811 960811 960811 960811 960811	0117 0417 0717 1017 1318 1617 1917 2217	1.49 1.37 1.36 1.27 1.38 1.47 1.37	0.064 0.064 0.064 0.064 0.064 0.064 0.064	15.6 15.6 15.6 15.6 15.6 15.6 15.6	172 168 170 168 172 174 170 174	105 105 135 127 117 114 110 95	0.98 1.03 0.97 1.00 1.04 1.07 1.02 1.03	0.27 0.08 -1.07 -0.72 -0.24 -0.10 -0.08 0.52	1.52 1.34 1.87 1.65 1.35 1.29 1.35 1.47	113 122 111 114 120 125 119 122	0.99 0.42 -2.10 -1.71 -0.60 -0.14 -0.11 1.42
960812 960812 960812 960812 960812 960812 960812	0117 0417 0717 1026 1317 1617 1917 2217	1.61 1.61 1.55 1.61 1.59 1.61 1.44 1.49	0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	58 32 48 42 42 28 54 48	81 70 72 62 59 62 69 63	0.93 0.97 0.98 0.91 0.88 0.95 0.95 0.88	1.22 1.89 1.66 2.41 2.66 2.15 1.83 2.48	2.10 2.34 2.20 2.85 3.11 2.60 2.38 3.07	107 119 117 80 53 102 115 50	1.62 1.61 2.00 1.63 1.29 1.34 1.58 0.86
960813 960813 960813 960813 960813 960813 960813	0117 0417 0717 1015 1317 1617 1917 2217	1.34 1.36 1.37 1.48 1.41 1.41 1.43	0.123 0.123 0.093 0.093 0.103 0.103 0.113 0.123	8.2 8.2 10.7 10.7 9.7 9.7 8.9 8.2	54 60 56 58 54 60 56 60	68 67 63 65 60 58 59 62	0.89 0.88 0.87 0.82 0.81 0.76 0.77	1.90 2.18 2.64 2.55 2.86 2.44 2.69 2.51	2.74 2.97 3.24 3.36 3.85 4.16 4.17 4.38	71 51 41 31 31 35 33 29	1.08 0.62 0.49 0.31 0.19 -0.28 -0.02 -0.03
960814 960814 960814 960814 960814 960814 960814	0117 0417 0717 1018 1317 1617 1915	1.66 1.64 1.61	0.123 0.123 0.123 0.123 0.123 0.123 0.123	8.2 8.2 8.2 8.2 8.2 8.2 8.2	58 54 52 48 42 34 56	60 57 53 56 52 53 52	0.69 0.62 0.64 0.68 0.64 0.61 0.62	2.58 2.53 2.34 2.53 1.97 2.15 2.26	4.76 5.75 5.47 4.86 5.12 5.91 5.83	32 28 32 30 35 34 33	0.03 0.05 0.00 0.32 0.21 0.05 -0.20
									(She	et 26	of 31)

A26

Table	A1 (0	Contin	ued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _p deg	θ _o deg	σ	γ	δ	Δθ deg	A
960814	2217	1.36	0.123	8.2	44	52	0.66	3.00	5.55	28	0.27
960815 960815 960815 960815 960815 960815 960815	0117 0417 0717 1017 1317 1617 1917 2217	1.31 1.26 1.44 1.38 1.34 1.37 1.43	0.123 0.123 0.123 0.132 0.132 0.083 0.083 0.083	8.2 8.2 7.6 7.6 12.0 12.0	44 40 36 52 44 40 54 56	52 55 51 55 51 52 56 60	0.63 0.64 0.58 0.63 0.61 0.64 0.65	2.79 2.50 2.25 2.59 2.47 2.27 2.16 3.44	5.77 5.34 6.25 5.78 6.04 5.62 5.59 5.07	27 33 31 28 30 34 32 25	0.39 0.51 0.32 0.11 0.28 0.55 -0.01 0.14
960816 960816 960816 960816 960816 960816 960816	0117 0417 0717 1017 1317 1617 1917 2217	1.15 1.18 1.36 1.38 1.23 1.08 1.26 1.32	0.113 0.093 0.103 0.103 0.103 0.113 0.123 0.113	8.9 10.7 9.7 9.7 9.7 8.9 8.2 8.9	44 48 50 44 42 42 44 48	56 61 56 68 65 59 62	0.76 0.83 0.83 0.81 0.95 0.88 0.74 0.81	3.92 4.63 4.04 4.12 2.02 2.73 3.13 3.64	4.86 4.23 4.10 4.46 2.85 3.36 4.84 4.20	27 28 31 33 70 56 35 33	0.63 0.70 0.55 0.88 1.06 1.18 0.46 0.53
960817 960817 960817 960817 960817 960817 960817	0117 0417 0717 1017 1317 1617 1917 2217	1.21 1.04 1.21 1.33 1.30 1.23 1.28 1.39	0.113 0.113 0.113 0.113 0.113 0.113 0.113	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	52 44 42 50 50 44 42 48	67 66 65 64 65 70 63 58	0.82 0.85 0.87 0.78 0.79 0.78 0.71	3.28 2.27 2.55 3.02 2.48 1.81 1.80 2.05	3.85 3.38 3.26 4.11 3.76 3.51 4.25 4.18	31 48 52 30 37 49 41 40	0.74 0.96 1.14 0.68 0.86 0.57 0.29 0.38
960818 960818 960818 960818 960818 960818 960818	0117 0417 0717 1017 1317 1617 1917 2217	1.41 1.45 1.54 1.87 1.99 1.93 1.83	0.113 0.113 0.113 0.103 0.103 0.103 0.113 0.103	8.9 8.9 9.7 9.7 9.7 8.9 9.7	46 40 42 38 46 38 36 34	62 58 57 54 53 52 51 53	0.71 0.67 0.62 0.58 0.55 0.57 0.56 0.63	1.77 2.07 1.97 1.71 2.37 1.67 1.65	4.11 4.58 5.16 5.76 6.88 5.41 5.67 5.13	38 36 34 34 24 36 36 39	0.58 0.76 0.51 0.29 0.29 1.03 0.76 0.22
960819 960819 960819 960819 960819 960819 960819	0117 0417 0717 1029 1317 1617 1915 2217	1.58 1.66 1.70 1.92 1.92 1.66 1.63	0.103 0.103 0.103 0.103 0.103 0.103 0.103	9.7 9.7 9.7 9.7 9.7 9.7 9.7	50 44 48 42 46 46 38 36	57 52 60 52 51 54 54 56	0.61 0.54 0.57 0.55 0.56 0.55 0.57	2.00 3.09 1.75 1.79 2.04 2.35 1.85	5.74 7.78 6.13 6.95 7.24 7.56 6.13 5.75	29 19 30 29 25 24 34 37	0.22 0.59 0.40 0.54 0.20 0.30 0.58 0.18
960820 960820 960820 960820 960820 960820 960820 960820	0117 0417 0717 1017 1317 1617 1917 2217	1.56 1.64 1.95 1.79 1.63 1.68 1.70	0.113 0.113 0.142 0.132 0.132 0.132 0.132	8.9 8.9 7.0 7.6 7.6 7.6 7.6	50 50 40 56 54 40 58 60	57 57 52 55 55 52 53 53	0.59 0.56 0.52 0.50 0.57 0.55 0.55	1.89 1.88 1.78 1.87 1.83 1.62 1.53	5.65 6.61 6.80 7.87 6.55 6.40 5.90 6.02	32 28 31 25 30 31 33 34	0.14 0.18 0.23 -0.05 0.00 0.13 -0.06 0.00
960821 960821 960821 960821	0117 0417 0717 1017	1.65 1.80 1.92 1.94	0.132 0.132 0.123 0.123	7.6 7.6 8.2 8.2	62 58 50 52	57 55 53 53	0.55 0.50 0.46 0.52	1.56 1.73 1.91 2.03	6.46 7.56 8.40 7.83	29 29 23 24	-0.20 -0.27 0.03 0.03
	(Sheet 27 of 31)										

Table	A1 (Contir	nued)								
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A
960821 960821 960821 960821	1317 1617 1917 2217	1.82 1.84 1.81 1.93	0.123 0.132 0.123 0.123	8.2 7.6 8.2 8.2	56 54 52 56	51 53 53 56	0.50 0.52 0.51 0.54	1.96 2.12 1.53 1.85	7.90 7.78 6.97 6.47	26 23 27 24	-0.13 -0.07 -0.05 -0.11
960822 960822 960822 960822 960822 960822 960822	0117 0417 0717 1018 1317 1617 1917 2217	1.86 1.77 2.16 2.13 2.08 2.08 2.01 1.90	0.123 0.123 0.113 0.113 0.113 0.113 0.113	8.2 8.2 8.9 8.9 8.9 8.9 8.9	56 56 50 48 50 56 54 54	56 59 54 54 55 57 62 64	0.52 0.58 0.51 0.56 0.58 0.61 0.63	2.52 2.85 3.06 3.40 3.23 3.18 2.67 2.42	7.57 6.73 8.35 7.39 7.03 6.29 5.59 5.50	21 22 20 20 20 23 25 27	-0.05 0.03 0.11 0.22 0.18 -0.11 0.31 0.21
960823 960823 960823 960823 960823 960823	0417 0717 1317 1617 1917 2217	1.45 1.33 1.42 1.42 1.24 1.26	0.123 0.074 0.123 0.123 0.123 0.132	8.2 13.6 8.2 8.2 8.2 7.6	54 58 54 56 64 62	72 74 68 67 81 76	0.80 0.84 0.80 0.79 0.90 0.81	2.36 2.24 2.69 2.29 1.72 2.14	3.36 3.10 3.67 3.73 2.62 3.23	41 49 36 41 76 44	0.95 1.20 0.69 0.42 1.26 0.82
960824 960824 960824 960824 960824 960824 960824	0117 0417 0717 1017 1317 1617 1917 2217	1.25 1.16 1.08 1.04 1.00 1.03 0.91 0.97	0.123 0.074 0.074 0.074 0.074 0.132 0.074 0.074	8.2 13.6 13.6 13.6 7.6 13.6 13.6	56 54 52 56 56 38 54 48	73 73 83 83 81 72 78 77	0.84 0.89 0.95 0.94 0.95 0.90 0.94	2.50 2.05 1.26 1.31 0.88 1.83 1.73 1.53	3.19 2.85 2.13 2.18 2.21 2.70 2.54 2.52	48 71 107 108 96 71 90 83	1.17 1.54 1.40 1.38 0.87 0.89 1.48 1.12
960825 960825 960825 960825 960825 960825 960825	0117 0717 1017 1317 1617 1917 2217	1.03 0.86 0.87 0.81 0.82 0.86 0.80	0.083 0.083 0.083 0.083 0.083 0.083 0.083	12.0 12.0 12.0 12.0 12.0 12.0 12.0	60 48 48 50 48 54 56	71 74 82 71 69 70 72	0.87 0.87 0.88 0.82 0.82 0.79 0.80	1.90 1.35 1.15 1.77 1.96 1.91 1.82	3.04 2.65 2.37 3.08 3.27 3.43 3.33	50 70 89 54 50 43 46	0.76 0.84 1.09 0.86 0.76 0.79 0.77
960826 960826 960826 960826 960826 960826 960826	0117 0417 0717 1017 1317 1617 2217	0.87 0.93 0.94 0.88 0.86 0.85 0.82	0.093 0.093 0.093 0.093 0.093 0.093 0.093	10.7 10.7 10.7 10.7 10.7 10.7 10.7	52 48 48 50 50 34 48	67 62 62 63 71 48 67	0.72 0.66 0.68 0.69 0.71 0.76	1.87 2.13 2.27 2.16 1.40 1.60 1.88	4.12 4.88 4.65 4.47 3.75 4.09 3.46	36 33 33 33 46 38 44	0.49 0.32 0.45 0.56 0.50 1.17 0.69
960827 960827 960827 960827 960827 960827 960827 960827	0117 0417 0717 1016 1317 1617 1917 2218	0.85 0.87 0.82 0.91 1.12 1.41 1.62 1.40	0.113 0.103 0.123 0.162 0.162 0.152 0.152 0.152	8.9 9.7 8.2 6.2 6.2 6.6 6.6	46 64 58 58 52 76 58 50	75 80 81 74 74 67 57	0.75 0.81 0.85 0.79 0.76 0.65 0.65 0.72	1.40 1.46 1.33 1.68 1.18 1.06 1.26 1.85	3.32 2.80 2.53 3.35 3.32 4.01 4.37 4.17	47 58 75 45 50 44 42 41	0.11 0.79 1.12 0.87 0.36 -0.05 0.00 0.24
960828 960828 960828 960828 960828	0117 0417 0717 1018 1317	1.42 1.46 1.45 1.19 1.04	0.152 0.142 0.142 0.142 0.142 0.064	6.6 7.0 7.0 7.0 7.0	38 72 56 50 46	69 71 67 72 91	0.82 0.69 0.78 0.86 1.01	1.27 1.73 2.01 1.67 0.87	2.86 4.11 3.54 2.82 1.82	60 39 45 64 119	0.21 0.02 0.33 0.90 1.13
									(She	et 28	of 31)

Table	Table A1 (Continued) Time H_{mo} f_0 T_0 θ_0 θ_0 $\Delta\theta$											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	γ	δ	Δθ deg	А	
960828 960828 960828	1617 1917 2217	0.94 0.94 1.17	0.064 0.064 0.074	15.6 15.6 13.6	56 70 70	111 106 95	0.98 0.95 0.88	0.31 0.45 1.08	1.52 1.69 2.17	114 103 94	0.78 1.25 1.91	
960829 960829 960829 960829 960829 960829 960829 960829	0117 0417 0717 1017 1317 1617 1915 2217	1.52 1.42 1.64 1.70 1.83 1.86 1.77	0.142 0.142 0.142 0.103 0.103 0.123 0.113	7.0 7.0 7.0 9.7 9.7 8.2 8.9	74 66 58 56 72 72 76 80	81 70 72 77 73 73 80	0.76 0.80 0.73 0.69 0.63 0.60 0.66 0.72	1.56 1.92 2.38 2.08 1.44 1.51 1.47	3.40 3.20 4.22 4.46 4.88 5.22 4.40 4.03	34 44 33 34 29 31 33 34	0.42 1.09 0.44 0.58 0.18 0.00 -0.22 -0.02	
960830 960830 960830 960830 960830 960830 960830 960830	0117 0417 0717 1017 1317 1617 1917 2217	1.48 1.64 1.73 1.79 1.93 1.88 1.77	0.123 0.132 0.142 0.093 0.132 0.132 0.123 0.093	8.2 7.6 7.0 10.7 7.6 7.6 8.2 10.7	74 74 70 62 58 54 68 72	78 78 76 73 73 69 71 76	0.67 0.68 0.70 0.67 0.65 0.64 0.68	1.88 1.79 1.96 1.68 1.72 1.77 2.25	4.67 4.40 4.31 4.55 4.78 5.20 4.79 4.15	26 31 32 32 35 36 33 32	0.10 0.10 0.24 0.42 0.47 0.04 0.05 0.08	
960831 960831 960831 960831 960831 960831	0117 0417 0717 1017 1317 1917 2217	2.25 2.41 2.24 1.96 1.99 2.08 1.81	0.123 0.113 0.113 0.113 0.113 0.083 0.083	8.2 8.9 8.9 8.9 12.0	64 56 38 56 60 62 60	66 64 43 70 71 66 68	0.61 0.58 0.72 0.84 0.70 0.72	2.26 2.29 0.64 2.37 2.16 3.47 2.85	6.24 6.45 5.56 3.52 4.47 5.11 4.71	23 26 20 42 33 24 26	0.09 0.35 0.51 0.75 0.31 0.19 0.42	
960901 960901 960901 960901 960901 960901 960901	0117 0417 0717 1017 1317 1617 1917 2217	1.77 1.94 1.91 1.60 1.49 1.98 2.02	0.093 0.123 0.093 0.103 0.123 0.103 0.103	10.7 8.2 10.7 9.7 8.2 9.7 9.7 9.7	62 54 52 52 60 54 58 56	71 63 63 71 77 64 63 66	0.76 0.66 0.74 0.86 0.80 0.68 0.71 0.73	2.62 3.20 3.48 2.66 2.41 3.20 3.04 3.25	4.29 5.94 4.83 3.32 3.53 5.33 5.06 4.69	26 22 28 45 36 24 25 23	0.49 0.49 0.61 0.94 0.96 0.40 0.23 0.56	
960902 960902 960902 960902 960902 960902 960902	0117 0417 0717 1017 1317 1617 2217	1.67 1.72 1.63 1.57 1.52 1.62 1.39	0.103 0.103 0.103 0.103 0.103 0.103 0.093	9.7 9.7 9.7 9.7 9.7 9.7	56 56 56 52 52 54 54	70 71 74 71 83 81 91	0.79 0.79 0.82 0.88 0.96 0.92 0.99	2.64 2.61 2.35 2.54 1.45 1.68 1.00	3.71 3.70 3.24 3.07 2.13 2.44 1.80	28 31 46 60 111 104 115	0.90 1.03 1.53 1.72 2.06 1.99 1.90	
960903 960903 960903 960903 960903	0118 0417 0717 1017 1317 2217	1.45 1.45 1.44 1.49 1.35 1.34	0.064 0.093 0.064 0.093 0.064 0.064	15.6 10.7 15.6 10.7 15.6 15.6	52 54 50 50 54 50	91 87 88 82 107 98	0.98 0.96 1.00 0.97 1.00 1.03	0.90 1.16 1.08 1.37 0.23 0.57	1.73 1.96 1.80 2.06 1.45 1.50	114 111 118 114 114 123	1.84 2.02 1.99 2.11 0.88 1.39	
960904 960904 960904 960904 960904	0417 0717 1017 1617 1917	1.21 1.23 1.18 1.19 1.20	0.074 0.074 0.064 0.064 0.074	13.6 13.6 15.6 15.6 13.6	170 178 178 174 172	111 116 118 132 136	1.03 1.06 1.07 1.00 0.97	0.01 -0.10 -0.08 -0.71 -0.88	1.45 1.39 1.36 1.68 1.81	119 123 124 114 111	0.14 0.05 -0.38 -1.48 -1.69	
									(Sh	eet 29	of 31)	

Table A1 (Continued)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p sec	θ _ρ deg	θ ₀ deg	σ	Y	δ	Δθ deg	A
960905 960905 960905 960905 960905 960905 960905	0117 0417 0717 1017 1317 1617 1917 2217	1.90 2.17 1.90 1.77 1.79 1.84 2.01 1.91	0.132 0.132 0.132 0.132 0.132 0.132 0.132	7.6 7.6 7.6 7.6 7.6 7.6 7.6	46 50 56 50 52 54 56 62	56 54 58 61 59 60 62 62	0.77 0.72 0.78 0.82 0.81 0.76 0.75	2.53 2.96 2.03 2.47 2.61 2.53 2.23 1.87	3.90 4.59 3.59 3.47 3.65 4.03 3.92 4.18	38 31 41 38 38 32 33 36	0.26 0.05 -0.06 0.71 0.28 0.21 0.24 -0.13
960906 960906 960906 960906 960906 960906	0117 0417 0717 1017 1315 1917 2217	2.01 2.17 2.10 2.18 2.00 1.78 1.74	0.113 0.123 0.123 0.113 0.103 0.113 0.113	8.9 8.2 8.2 8.9 9.7 8.9 8.9	56 56 54 50 52 48 56	58 54 56 55 58 59 64	0.72 0.59 0.66 0.66 0.77 0.78 0.78	2.15 2.37 2.49 2.56 2.42 2.83 2.18	4.45 6.01 5.16 5.43 3.99 3.97 3.68	33 27 28 25 36 32 37	0.05 -0.29 -0.06 0.19 0.27 0.44 0.45
960907 960907 960907 960907 960907 960907 960907	0117 0417 0717 1017 1317 1617 1917 2217	1.64 1.40 1.35 1.51 1.47 1.34 1.43	0.123 0.123 0.113 0.123 0.123 0.123 0.123	8.2 8.9 8.2 8.2 8.2 8.2 8.2	58 56 56 58 56 60 62 56	64 70 65 63 62 75 70	0.79 0.88 0.83 0.76 0.89 0.90 0.83 0.82	2.66 2.16 2.12 2.21 1.08 1.78 1.95 1.92	3.86 2.97 3.32 4.25 3.09 2.73 3.33 3.38	34 54 43 26 52 71 37 42	0.30 1.00 0.68 0.29 0.28 1.44 0.46 0.97
960908 960908 960908 960908 960908 960908 960908	0117 0717 1017 1317 1617 1917 2217	1.31 1.18 1.00 1.04 1.06 1.07 0.98	0.123 0.132 0.132 0.132 0.132 0.054 0.054	8.2 7.6 7.6 7.6 7.6 18.5 18.5	62 56 66 68 66 64 64	64 65 82 77 73 71 75	0.85 0.86 0.95 0.91 0.91 0.89 0.88	1.96 1.93 1.28 1.44 1.47 1.43	3.23 3.09 2.30 2.58 2.62 2.63 2.65	48 50 100 76 70 72 62	-0.05 0.49 1.55 1.14 0.57 0.69 1.00
960909 960909 960909 960909 960909 960909	0117 0417 0717 1014 1317 1917 2217	1.08 1.09 0.99 1.15 1.20 1.24	0.054 0.132 0.132 0.064 0.064 0.064	18.5 7.6 7.6 15.6 15.6 15.6	68 66 68 58 64 66 56	70 62 63 68 66 69 63	0.85 0.86 0.84 0.88 0.76 0.74 0.65	1.36 1.45 1.74 1.46 1.66 1.83 1.84	2.94 2.89 3.23 2.77 3.72 3.93 5.04	49 62 52 61 32 29 25	0.06 0.03 -0.09 0.54 0.01 0.14
960910 960910 960910 960910 960910 960910 960910	0117 0417 0717 1017 1317 1617 1917	1.39 1.26 1.12 1.21 1.22 1.25 1.25	0.074 0.074 0.074 0.074 0.074 0.074 0.074	13.6 13.6 13.6 13.6 13.6 13.6	58 60 62 56 60 64 60	63 65 66 60 62 66 65	0.67 0.69 0.73 0.73 0.69 0.62 0.66	1.69 2.07 1.89 1.89 1.45 1.98 1.73	4.51 4.57 4.10 4.12 4.30 5.24 4.56	26 23 30 33 33 24 29	0.03 0.12 0.05 0.11 -0.01 0.03 0.14
960911 960911 960911 960911 960911 960911 960911	0117 0417 0717 1017 1317 1617 1917 2217	1.20 1.16 1.01 1.05 1.11 1.05 1.00	0.083 0.074 0.074 0.083 0.083 0.083 0.083 0.083	12.0 13.6 13.6 12.0 12.0 12.0 12.0	60 64 68 56 54 60 64 60	66 70 70 67 69 62 73 74	0.67 0.65 0.72 0.77 0.72 0.69 0.77 0.74	1.43 1.59 1.43 1.43 1.44 1.34 1.08 1.28	4.01 4.46 3.62 3.56 3.59 4.11 2.97 3.17	31 26 33 43 39 37 51 48	0.19 0.20 0.12 0.46 0.36 0.06 0.43 0.66
960912	0117	0.92	0.083	12.0	56	75	0.77	1.35	2.97	54	1.11
(Sheet 30 of 31)											

Table A1 (Concluded)											
Date	Time GMT	H _{mo} m	f _p Hz	T _p	θ _ρ deg	θ ₀ deg	σ	Υ	δ	Δθ deg	A
960912 960912 960912 960912 960912 960912 960912	0417 0717 1017 1317 1617 1917 2218	0.88 0.84 0.78 0.82 0.89 0.83 0.80	0.093 0.093 0.093 0.093 0.093 0.093 0.103	10.7 10.7 10.7 10.7 10.7 10.7 9.7	56 70 68 56 56 58 60	74 77 86 87 86 83 85	0.81 0.83 0.83 0.81 0.87 0.85 0.81	1.21 1.01 0.88 0.76 0.80 1.16 0.99	2.72 2.56 2.53 2.24 2.22 2.38 2.52	65 70 76 83 89 84 78	1.13 0.71 1.34 1.06 1.14 1.53 1.44
960913 960913 960913 960913 960913 960913 960913	0117 0417 0717 1017 1317 1617 1917 2217	0.78 0.89 0.90 1.15 1.57 1.93 1.79	0.093 0.103 0.074 0.083 0.074 0.083 0.083	10.7 9.7 13.6 12.0 13.6 12.0 12.0	64 60 62 62 60 60 60	88 78 78 73 69 67 66 67	0.82 0.75 0.71 0.59 0.51 0.47 0.50 0.52	1.04 1.55 1.59 1.73 1.81 1.69 1.31	2.56 3.31 3.50 5.38 6.85 7.96 6.52 6.58	78 46 36 25 22 19 23 21	1.58 1.04 0.81 0.37 0.55 0.40 0.35 0.36
960914 960914 960914 960914 960914 960914 960914	0117 0417 0717 1017 1317 1617 1917 2217	1.79 1.75 1.52 1.41 1.40 1.39 1.48 1.43	0.083 0.083 0.083 0.083 0.093 0.093 0.093	12.0 12.0 12.0 12.0 10.7 10.7 10.7	58 56 60 60 52 54 52	63 63 63 62 58 56 58	0.55 0.48 0.54 0.55 0.55 0.57 0.58 0.59	1.07 1.47 1.17 1.06 1.19 1.19 1.16 1.29	6.23 7.73 6.30 6.15 5.75 5.24 4.91 5.02	23 18 24 24 27 32 36 33	0.40 0.29 0.25 0.07 0.16 0.21 0.08 0.21
960915 960915 960915 960915 960915 960915 960915	0117 0417 0717 1017 1317 1617 1917 2217	1.40 1.45 1.44 1.35 1.38 1.47 1.44	0.162 0.103 0.162 0.103 0.103 0.103 0.103	6.2 9.7 6.2 9.7 9.7 9.7 9.7	52 58 50 58 58 58 58 54	59 60 57 62 65 62 57 55	0.57 0.60 0.58 0.61 0.59 0.55 0.57	1.12 1.04 1.21 1.05 1.42 1.22 1.23	5.31 4.86 4.91 4.67 5.43 5.57 5.48 5.95	32 36 36 35 28 30 32 29	0.14 0.05 0.19 0.10 0.37 0.10 -0.16 0.06
960916 960916 960916 960916 960916 960916 960916	0117 0417 0717 1017 1316 1617 1917 2217	1.98 2.28 2.29 2.17 2.15 2.44 2.70 2.89	0.152 0.142 0.142 0.132 0.093 0.123 0.123 0.083	6.6 7.0 7.6 10.7 8.2 8.2 12.0	56 54 54 50 50 46 54	53 55 51 53 57 55 53	0.49 0.64 0.45 0.46 0.48 0.44 0.45	0.82 0.57 0.96 0.90 0.80 0.97 0.58 0.81	6.23 4.30 6.64 7.72 6.41 6.94 5.34 7.93	29 39 28 24 28 24 31 24	-0.10 -0.12 -0.20 -0.09 0.24 0.24 0.26 -0.04
960917 960917 960917 960917 960917	0117 0417 0717 1017 1317	2.82 2.64 2.77 2.74 2.88	0.103 0.083 0.074 0.074 0.074	9.7 12.0 13.6 13.6 13.6	54 50 50 52 48	54 52 52 53 51	0.40 0.42 0.41 0.42 0.41	0.90 1.08 0.99 0.90 1.15	9.74 9.22 9.78 9.37 10.48	19 20 18 17 17	-0.01 0.07 0.07 0.08 0.11
(Sheet 31 of 31)											

Appendix B Time Series Graphs of Bulk Parameters

Figure B1. Bulk data for February 1996 (Continued)

Figure B1. (Concluded)

Figure B2. Bulk data for March 1996 (Continued)

Figure B2. (Concluded)

Figure B3. Bulk data for April 1996 (Continued)

Figure B3. (Concluded)

Figure B4. Bulk data for May 1996 (Continued)

Figure B4. (Concluded)

Figure B5. Bulk data for June 1996 (Continued)

Figure B5. (Concluded)

Figure B6. Bulk data for July 1996 (Continued)

Figure B6. (Concluded)

Figure B7. Bulk data for August 1996 (Continued)

Figure B7. (Concluded)

Figure B8. Bulk data for September 1996 (Continued)

Figure B8. (Concluded)

Appendix C Listing of FORTRAN Computer Program

```
program readascii
c Sample FORTRAN program containing statements necessary to read
c ASCII files of Harvest Platform frequency-direction spectra.
  This example reads a file called HPyymmddhhmm.ASC, where the
c string yymmddhhmm is a date/time group entered by the user.
c In other applications, the I/O statements may need modification
  to suit a user's system.
  Variable names, units and meanings are:
f(nf)..[Hz] frequency at index nf
  angle(na)..[degrees CCW from true north] direction at index na from
             which wave energy is arriving
      sf(nf)..[m^2/Hz] frequency spectral density at f(nf)
 ddf(nf,na)..[deg^(-1)] directional distribution function at f(nf)
             and angle(na), which is the frequency-direction
             spectral density at f(nf) and angle(na) normalized by
             sf(nf)
c fds(nf,na)..[m^2/(Hz*deg)] frequency-direction spectrum at f(nf)
             and angle(na), computed from ddf(nf,na) and sf(nf)
    gpat(nf)..gauge pattern used at f(nf)
    iter(nf)..# of IMLE iterations for convergence at f(nf)
    datetime..[character*10] Date and Greenwich Mean Time of
             beginning of data collection in the order year,
             month, day, hour, minute, and in the form
             yymmddhhmm (2-digit year, no blanks in any field)
        Hmo..[m] Energy-based characteristic wave height equal
             to 4*sigma, where sigma^2 is the variance of sea
             surface displacement
         fp..[Hz] frequency at peak of frequency spectrum
        thp..[deg] direction at peak of directional distribution
              at f(nf) = fp
      ifimle..algorithm flag: [1]=IMLE estimate, [0]=MLE estimate
С
       istot..[sec] duration of data collection
С
       sfrq..[Hz] data sampling frequency
```

Figure C1. Listing of FORTRAN Computer Program (Sheet 1 of 3)

```
ifwindo..windowing flag: [0]=no windowing of data segments,
  С
                [1]=segments windowed (Kaiser-Bessel window)
       ifdtrnd..detrending flag: [0]=no detrending, [1]=linear trend
  С
 С
               removed from data segments
         nfft..# of points in each data ensemble
  С
        nensb..# of half-lapped segments of cross-spectral computations
 С
 C
        nband..# of raw frequency bands averaged in frequency smoothing
        idgfr..degrees of freedom in cross-spectral computations
 С
 С
               (based on contiguous segments only)
 С
         nfrq..number of output frequency bands, equals range of index
 С
 С
              nf
 С
        delfs..[Hz] output frequency bandwidth
         nang..number of output angle bins, equals range of index na
 С
 С
       delang. [deg] output angle bin width
 c
         dmin..[m] minimum ensemble segment water depth at reference
 С
 С
              gauge 'rname' during collection
         dbar..[m] mean water depth at gauge 'rname' during collection
 С
 С
         dmax..[m] maximum ensemble segment water depth at reference
 С
               gauge 'rname' during collection
 C
        rname..[character*5] reference gauge id for depth computations
 С
 С
       character*5
                          rname
       character*6
                       gpat(13)
       character*10
                       indattim,
                                      datetime
       character*80
                         infile
       dimension
                          f(13),
                                        sf(13),
                                                   iter(13)
      dimension
                                  ddf(13,181), fds(13,181)
                     angle(181),
 С
   get file-naming date/time group from user
 С
      write(*,'(2x,''Enter date/time group (yymmddhhmm)...'')')
      read(*,'(a10)') indattim
                                                   !date/time string
С
   define input data file
С
С
      infile='HP'//indattim(1:10)//'.ASC'
С
   open, read, and close data file
С
С
      open(10, file=infile, status='old', form='formatted')
С
      read(10,
        '( a10,
                    f10.2, f10.5, f10.1,
                                               ī10,
                                                       i10,
           f10.5,
                     i10,/, i10,
                                      i10,
                                               i10,
                                                       i10,
            i10.
                     i10,
                           f10.5,
                                      i10,/, f10.1, f10.2,
                    f10.2,
     &
           f10.2,
                            5x,a5)')
        datetime,
                     Hmo,
                               fp,
                                      thp, ifimle, istot,
     &
           sfrq, ifwindo, ifdtrnd,
                                     nfft,
                                           nensb, nband,
           idgfr,
                    nfrq,
                           delfs,
                                     nang, delang,
                                                     dmin,
           dbar,
                    dmax,
                            rname
С
      read(10,'(10f8.1)') (angle(na),na=1,nang)
С
      do 10 nf=1,nfrq
       read(10,
          '( i10,
                   f10.5, f10.6,
                                      4x,a6,
                                                i10)')
             íf,
                   f(nf), sf(nf), gpat(nf), iter(nf)
       read(10, (8f10.7)) (ddf(nf,na),na=1,nang)
10
     continue
С
     close(10)
```

Figure C1. (Sheet 2 of 3)

Figure C1. (Sheet 3 of 3)

Appendix D Listing of Sample Data File

9606030429	1.	.24 0.	07373	66.0	1			.00000	1
0	10	024	15	10	160)	13 C	.00977	181
2.0	200.	.84 2	01.11	201.47	20201				
	-178.0	-176.0	-174.0	-172.0	-170.0	-168.0	-166.0	-164.0	-162.0
	-158.0	-156.0	-154.0	-152.0	-150.0	-148.0	-146.0	-144.0	-142.0
	-138.0	-136.0	-134.0		-130.0	-128.0	-126.0	-124.0	-122.0
	-118.0	-116.0	-114.0		-110.0	-108.0	-106.0	-104.0	-102.0
-100.0	-98.0	-96.0	-94.0		-90.0	-88.0	-86.0		
-80.0	-78.0	-76.0	-74.0		-70.0	-68.0	-66.0		
-60.0	-58.0	-56.0	-54.0		-50.0	-48.0	-46.0		
-40.0	-38.0	-36.0	-34.0	_	-30.0	-28.0	-26.0		
-20.0	-18.0	-16.0	-14.0		-10.0	-8.0	-6.0		
			6.0		10.0	12.0	14.0		
0.0	2.0	4.0			30.0	32.0	34.0		
20.0	22.0	24.0	26.0						
40.0	42.0	44.0	46.0		50.0	52.0	54.0		
60.0	62.0	64.0	66.0		70.0	72.0	74.0		
80.0	82.0	84.0	86.0		90.0	92.0	94.0		
100.0	102.0	104.0	106.0		110.0	112.0	114.0		
120.0	122.0	124.0	126.0		130.0	132.0	134.0		
140.0	142.0	144.0	146.0		150.0	152.0	154.0		
160.0	162.0	164.0	166.0	168.0	170.0	172.0	174.0	176.0	178.0
180.0									
1	0.044	443 0.0	04243	1245	30		.		
0.0005763	0.00059	914 0.00	06230 0	.0006664	0.0007198	0.0007	7812 O.C	0008489 0	.0009206
0.0009941	0.0010	570 0.00	11373 0	.0012027	0.0012612	0.0013	111 0.0	013509 0	.0013797
0.0013967	0.00140	0.00	13936 0	.0013739	0.0013426	0.0013	007 O.C	012489	.0011885
0.0011209	0.00104	474 0.00	109695 0	.0008888	0.0008068	0.0007	'248 0.C	006444 0	.0005667
0.0004929	0.00042	240 0.00	03605 0	.0003031	0.0002520	0.0002	2072 0.0	0001688 0	.0001362
0.0001092	0.00008	370 0.00	00693 0	.0000552	0.0000442	0.0000	358 0.0	000294 0	.0000247
0.0000214	0.0000	191 0.00	00177 0	.0000171	0.0000172	0.0000	182 0.0	000200 0	.0000228
0.0000270	0.00003	329 0.00	00411 0	.0000522	0.0000670	0.0000	865 0.0	0001118 0	.0001441
0.0001847	0.00023	345 0.00	02946 0	.0003657	0.0004479	0.0005	410 0.0	0006442 0	.0007562
0.0008749	0.00099	779 0.00	11220 0	.0012440	0.0013601	0.0014	667 0.0	015600 0	.0016367
0.0016937	0.00172	286 0.00	17397 0	.0017265	0.0016890	0.0016	286 0.0	015476 0	.0014492
0.0013376	0.0012	171 0.00	10924 0	.0009683	0.0008490	0.0007	7377 0.0	006374 0	.0005494
0.0004748	0.0004	135 0.00	03649	.0003282	0.0003027	0.0002	2875 0.0	002822	.0002868
0.0003016	0.0003	276 0.00	03661	0004188	0.0004878	0.0005	753 0.0	006833	.0008133
0.0009662	0.0000	417 n nr	13384 0	.0015536	0.0017833	0.0020	222 0.0	022644	.0025029
0.0027309	0.0011	411 N N	131273 (0032832	0.0034039	0.0034	856 0.0	035259	.0035236
0.0027309	0.0027	7,1 0.00 742 n na	72722 0	0032032	0.0034057	0.0037	7345 0 0	025198	.0022997
0.0020813	0.0033	717 N N	116777	0015071	0.0027501	0.0027	7318 n n	0011411	0010845
0.0020813	0.0010	111 O.OC	1117/6	1 0017710	0.001555	0.0012	2064 0 0	1026166	0035426
0.0010661	0.0010	763 U.UU	711740 C	0124577	0.0013093	5 U USUS	2020 0.0	1249272 (1 028312/
0.0048923	0.006/	701 U.UL	73004 l	0.014073/	0.0102290	0.UZUC	1724 N (7547616 C	0.0203124
0.0303810	0.0507.	390 0.02	173132 L	0.0203/13	0.0224393	0.0101	1320 U.U	1117760 C	0.0103070
0.0074852					0.0018798		0.000	שמטוטנ	.0000002

Figure D1. Listing of sample data file (Sheet 1 of 6)

```
2 0.05420 0.087420
                                  1245
                                                 30
  0.0093371 0.0091097 0.0088281 0.0085379 0.0082113 0.0078311 0.0073940 0.0069050
  0.0063756 0.0058211 0.0052585 0.0047015 0.0041627 0.0036516 0.0031745 0.0027360
 0.0023382 0.0019816 0.0016654 0.0013881 0.0011472 0.0009402 0.0007640 0.0006156
 0.0004919 0.0003899 0.0003067 0.0002396 0.0001861 0.0001438 0.0001109 0.0000854
 0.0000659 0.0000511 0.0000400 0.0000317 0.0000255 0.0000210 0.0000177 0.0000154
 0.0000138 0.0000128 0.0000124 0.0000124 0.0000128 0.0000137 0.0000151 0.0000170
 0.0000196 0.0000230 0.0000272 0.0000325 0.0000389 0.0000467 0.0000558 0.0000663
 0.0000784 0.0000919 0.0001068 0.0001231 0.0001404 0.0001587 0.0001776 0.0001968
 0.0002161 0.0002351 0.0002534 0.0002708 0.0002869 0.0003015 0.0003143 0.0003251
 0.0003336 0.0003398 0.0003434 0.0003444 0.0003429 0.0003387 0.0003319 0.0003227
 0.0003112 0.0002975 0.0002820 0.0002650 0.0002466 0.0002274 0.0002076 0.0001877
 0.0001680 0.0001489 0.0001307 0.0001136 0.0000979 0.0000838 0.0000713 0.0000604
 0.0000512 0.0000435 0.0000371 0.0000321 0.0000281 0.0000252 0.0000231 0.0000218
 0.0000213 0.0000215 0.0000225 0.0000243 0.0000272 0.0000314 0.0000372 0.0000450
 0.0000553 0.0000688 0.0000863 0.0001086 0.0001368 0.0001717 0.0002145 0.0002662
 0.0003278 0.0003999 0.0004833 0.0005783 0.0006850 0.0008032 0.0009322 0.0010713
 0.0012190 0.0013738 0.0015334 0.0016954 0.0018570 0.0020149 0.0021658 0.0023059
 0.0024315 0.0025391 0.0026258 0.0026892 0.0027277 0.0027417 0.0027330 0.0027048
 0.0026631 0.0026149 0.0025691 0.0025361 0.0025262 0.0025513 0.0026241 0.0027576
 0.0029663 0.0032663 0.0036744 0.0042071 0.0048780 0.0056970 0.0066647 0.0077711
 0.0089946 0.0103000 0.0116407 0.0129605 0.0141996 0.0152946 0.0161868 0.0168241
 0.0171694 0.0172027 0.0169254 0.0163660 0.0155798 0.0146386 0.0136276 0.0126332
 0.0117216 0.0109398 0.0103037 0.0098068 0.0095067
         3 0.06396 0.677806
                                1245
                                               -30
 0.0133541 0.0127109 0.0118723 0.0110908 0.0103875 0.0097649 0.0092146 0.0087223
 0.0082725 0.0078517 0.0074494 0.0070576 0.0066717 0.0062889 0.0059079 0.0055291
 0.0051530 0.0047810 0.0044143 0.0040548 0.0037041 0.0033641 0.0030364 0.0027231
 0.0024258 0.0021461 0.0018857 0.0016456 0.0014267 0.0012296 0.0010541 0.0008999
 0.0007660 0.0006512 0.0005539 0.0004724 0.0004048 0.0003493 0.0003041 0.0002677
 0.0002386 0.0002156 0.0001976 0.0001837 0.0001732 0.0001655 0.0001601 0.0001566
 0.0001545 0.0001538 0.0001540 0.0001550 0.0001566 0.0001586 0.0001609 0.0001635
 0.0001661 0.0001688 0.0001715 0.0001741 0.0001766 0.0001789 0.0001812 0.0001832
 0.0001852 0.0001870 0.0001887 0.0001902 0.0001916 0.0001930 0.0001942 0.0001953
0.0001964 0.0001973 0.0001982 0.0001991 0.0001998 0.0002005 0.0002011 0.0002016
0.0002020 0.0002023 0.0002025 0.0002025 0.0002024 0.0002021 0.0002017 0.0002011
0.0002003 0.0001993 0.0001982 0.0001970 0.0001958 0.0001946 0.0001936 0.0001929
0.0001927 0.0001933 0.0001948 0.0001977 0.0002023 0.0002092 0.0002189 0.0002321
0.0002497 0.0002725 0.0003017 0.0003386 0.0003845 0.0004407 0.0005086 0.0005892
0.0006831 0.0007902 0.0009099 0.0010406 0.0011800 0.0013253 0.0014731 0.0016198
0.0017619 0.0018960 0.0020190 0.0021285 0.0022221 0.0022984 0.0023559 0.0023941
0.0024123 0.0024105 0.0023890 0.0023484 0.0022897 0.0022143 0.0021240 0.0020210
0.0019082 0.0017884 0.0016652 0.0015418 0.0014220 0.0013089 0.0012057 0.0011148
0.0010384 0.0009781 0.0009352 0.0009110 0.0009066 0.0009234 0.0009636 0.0010294
0.0011242 0.0012518 0.0014167 0.0016240 0.0018790 0.0021873 0.0025544 0.0029853
0.0034848 0.0040567 0.0047038 0.0054277 0.0062282 0.0071027 0.0080456 0.0090468
0.0100911 0.0111562 0.0122116 0.0132182 0.0141286 0.0148898 0.0154486 0.0157594
0.0157943 0.0155512 0.0150585 0.0143723 0.0137761
        4 0.07373 4.418999
                                1245
0.0129854 0.0113708 0.0092356 0.0073297 0.0057543 0.0045100 0.0035509 0.0028194
0.0022622 0.0018359 0.0015073 0.0012516 0.0010505 0.0008906 0.0007621 0.0006578
0.0005722 0.0005014 0.0004422 0.0003924 0.0003500 0.0003138 0.0002826 0.0002556
0.0002320 0.0002113 0.0001930 0.0001767 0.0001623 0.0001493 0.0001377 0.0001272
0.0001177 0.0001092 0.0001014 0.0000944 0.0000880 0.0000823 0.0000772 0.0000726
0.0000686 0.0000651 0.0000622 0.0000597 0.0000578 0.0000564 0.0000555 0.0000551
0.0000553 0.0000560 0.0000571 0.0000588 0.0000609 0.0000635 0.0000665 0.0000698
0.0000735 0.0000773 0.0000813 0.0000854 0.0000894 0.0000935 0.0000974 0.0001012
0.0001047 0.0001081 0.0001113 0.0001143 0.0001171 0.0001197 0.0001221 0.0001245
0.0001267 0.0001289 0.0001311 0.0001333 0.0001356 0.0001379 0.0001404 0.0001431
0.0001459 0.0001490 0.0001523 0.0001560 0.0001600 0.0001645 0.0001694 0.0001748
0.0001808 0.0001875 0.0001949 0.0002032 0.0002125 0.0002229 0.0002347 0.0002480
0.0002633 0.0002808 0.0003011 0.0003249 0.0003531 0.0003868 0.0004277 0.0004780
0.0005407 0.0006202 0.0007223 0.0008554 0.0010309 0.0012647 0.0015784 0.0020002
0.0025656 0.0033160 0.0042935 0.0055314 0.0070386 0.0087811 0.0106671 0.0125450
0.0142235 0.0155118 0.0162667 0.0164279 0.0160244 0.0151533 0.0139491 0.0125506
0.0110786 0.0096270 0.0082613 0.0070218 0.0059292 0.0049890 0.0041968 0.0035413
0.0030075 0.0025789 0.0022389 0.0019721 0.0017649 0.0016056 0.0014845 0.0013936
```

Figure D1. (Sheet 2 of 6)

```
0.0013268 0.0012791 0.0012465 0.0012263 0.0012162 0.0012146 0.0012206 0.0012333
0.0012526 0.0012785 0.0013113 0.0013517 0.0014005 0.0014589 0.0015288 0.0016122
0.0017119\ 0.0018315\ 0.0019756\ 0.0021503\ 0.0023635\ 0.0026258\ 0.0029509\ 0.0033571
0.0038686 0.0045163 0.0053382 0.0063779 0.0076758 0.0092510 0.0110655 0.0129749
0.0146929 0.0158255 0.0160206 0.0151681 0.0139766
            0.08350 2.047490
                                  1245
0.0090132 0.0081665 0.0068378 0.0054904 0.0042910 0.0033071 0.0025396 0.0019576
0.0015222 0.0011975 0.0009546 0.0007716 0.0006322 0.0005250 0.0004415 0.0003757
0.0003232 0.0002809 0.0002464 0.0002181 0.0001945 0.0001747 0.0001580 0.0001438
0.0001316 0.0001210 0.0001118 0.0001037 0.0000965 0.0000902 0.0000845 0.0000794
0.0000748 0.0000706 0.0000667 0.0000632 0.0000599 0.0000568 0.0000540 0.0000514
0.0000489 0.0000466 0.0000445 0.0000426 0.0000409 0.0000393 0.0000380 0.0000369
0.0000361 0.0000355 0.0000352 0.0000352 0.0000356 0.0000362 0.0000372 0.0000386
0.0000403 0.0000424 0.0000448 0.0000475 0.0000504 0.0000536 0.0000569 0.0000603
0.0000639 0.0000674 0.0000710 0.0000745 0.0000780 0.0000815 0.0000849 0.0000883
0.0000917 0.0000951 0.0000986 0.0001021 0.0001058 0.0001097 0.0001138 0.0001181
0.0001228 0.0001279 0.0001335 0.0001396 0.0001464 0.0001539 0.0001622 0.0001716
0.0001822 0.0001940 0.0002075 0.0002229 0.0002406 0.0002609 0.0002844 0.0003118
0.0003440 0.0003821 0.0004277 0.0004826 0.0005496 0.0006322 0.0007352 0.0008654
0.0010322 0.0012484 0.0015321 0.0019082 0.0024102 0.0030825 0.0039802 0.0051663
0.0067022 0.0086283 0.0109362 0.0135385 0.0162533 0.0188206 0.0209584 0.0224341
0.0231229 0.0230231 0.0222308 0.0208997 0.0191974 0.0172785 0.0152726 0.0132826
0.0113847 0.0096329 0.0080616 0.0066885 0.0055166 0.0045373 0.0037336 0.0030836
0.0025639 0.0021513 0.0018251 0.0015672 0.0013631 0.0012007 0.0010710 0.0009666
0.0008822 0.0008136 0.0007576 0.0007119 0.0006748 0.0006449 0.0006213 0.0006031
0.0005900 0.0005817 0.0005779 0.0005788 0.0005844 0.0005952 0.0006116 0.0006344
0.0006647\ 0.0007038\ 0.0007537\ 0.0008170\ 0.0008973\ 0.0009993\ 0.0011296\ 0.0012971
0.0015141 0.0017973 0.0021690 0.0026575 0.0032963 0.0041183 0.0051417 0.0063437
0.0076250 0.0087881 0.0095673 0.0097334 0.0094265
        6 0.09326 0.220654
                                 1245
0.0095076 0.0087508 0.0076903 0.0066444 0.0056739 0.0048111 0.0040667 0.0034369
0.0029107 \ 0.0024742 \ 0.0021130 \ 0.0018143 \ 0.0015668 \ 0.0013611 \ 0.0011894 \ 0.0010454
0.0009241 0.0008213 0.0007337 0.0006588 0.0005942 0.0005384 0.0004899 0.0004475
0.0004103 0.0003775 0.0003485 0.0003226 0.0002995 0.0002787 0.0002600 0.0002431
0.0002277 0.0002137 0.0002008 0.0001890 0.0001781 0.0001680 0.0001587 0.0001501
0.0001421 0.0001347 0.0001279 0.0001217 0.0001160 0.0001108 0.0001062 0.0001022
0.0000987 0.0000958 0.0000936 0.0000919 0.0000908 0.0000903 0.0000904 0.0000911
0.0000922 0.0000939 0.0000959 0.0000984 0.0001011 0.0001040 0.0001071 0.0001103 0.0001136 0.0001168 0.0001200 0.0001232 0.0001263 0.0001293 0.0001322 0.0001351
0.0001380 0.0001409 0.0001438 0.0001468 0.0001500 0.0001533 0.0001568 0.0001606
0.0001647 0.0001691 0.0001740 0.0001794 0.0001853 0.0001919 0.0001992 0.0002074
0.0002165 0.0002267 0.0002381 0.0002509 0.0002654 0.0002818 0.0003004 0.0003217
0.0003461 0.0003743 0.0004071 0.0004453 0.0004904 0.0005438 0.0006077 0.0006844
0.0007774 0.0008904 0.0010284 0.0011972 0.0014034 0.0016544 0.0019577 0.0023203
0.0027475 0.0032418 0.0038012 0.0044184 0.0050802 0.0057680 0.0064590 0.0071287
0.0077528 0.0083098 0.0087823 0.0091582 0.0094302 0.0095957 0.0096554 0.0096133
0.0094754 0.0092494 0.0089449 0.0085733 0.0081475 0.0076819 0.0071919 0.0066930
0.0062002 0.0057265 0.0052825 0.0048758 0.0045108 0.0041890 0.0039097 0.0036705
0.0034679 0.0032982 0.0031575 0.0030424 0.0029498 0.0028771 0.0028226 0.0027846
0.0027623 0.0027552 0.0027631 0.0027865 0.0028260 0.0028827 0.0029582 0.0030546
0.0031745\ 0.0033211\ 0.0034985\ 0.0037117\ 0.0039664\ 0.0042695\ 0.0046289\ 0.0050532
0.0055506 0.0061283 0.0067895 0.0075295 0.0083311 0.0091578 0.0099498 0.0106246
0.0110869 0.0112510 0.0110673 0.0105416 0.0099655
        7 0.10303 0.063353
                                  1245
0.0049716 0.0043811 0.0036759 0.0030746 0.0025728 0.0021598 0.0018224 0.0015477
0.0013241 0.0011415 0.0009919 0.0008687 0.0007666 0.0006815 0.0006101 0.0005498
0.0004986 0.0004547 0.0004170 0.0003844 0.0003560 0.0003311 0.0003091 0.0002897
0.0002725 0.0002570 0.0002431 0.0002306 0.0002192 0.0002087 0.0001992 0.0001903
0.0001821 0.0001744 0.0001672 0.0001604 0.0001540 0.0001478 0.0001419 0.0001362 0.0001308 0.0001255 0.0001204 0.0001155 0.0001108 0.0001063 0.0001021 0.0000981
0.0000944 0.0000911 0.0000882 0.0000859 0.0000840 0.0000828 0.0000822 0.0000825
0.0000835 0.0000855 0.0000883 0.0000922 0.0000971 0.0001030 0.0001098 0.0001176
0.0001262 0.0001355 0.0001454 0.0001556 0.0001660 0.0001765 0.0001869 0.0001971
0.0002070 0.0002166 0.0002258 0.0002346 0.0002431 0.0002513 0.0002593 0.0002671
0.0002749 0.0002828 0.0002908 0.0002990 0.0003076 0.0003166 0.0003262 0.0003366
0.0003477 0.0003599 0.0003732 0.0003879 0.0004043 0.0004225 0.0004431 0.0004664
0.0004931 0.0005240 0.0005601 0.0006027 0.0006537 0.0007153 0.0007909 0.0008845
```

Figure D1. (Sheet 3 of 6)

```
0.0010021 0.0011513 0.0013424 0.0015892 0.0019096 0.0023263 0.0028673 0.0035646
  0.0044511 0.0055552 0.0068910 0.0084481 0.0101804 0.0120021 0.0137917 0.0154076
  0.0167104 0.0175867 0.0179671 0.0178346 0.0172223 0.0162039 0.0148796 0.0133606
  0.0117559 0.0101616 0.0086539 0.0072856 0.0060868 0.0050677 0.0042232 0.0035383
  0.0029924 0.0025636 0.0022308 0.0019754 0.0017815 0.0016363 0.0015297 0.0014537
  0.0014023 0.0013707 0.0013557 0.0013548 0.0013661 0.0013885 0.0014215 0.0014650
  0.0015191 0.0015847 0.0016628 0.0017551 0.0018634 0.0019905 0.0021395 0.0023144
 0.0025197 0.0027611 0.0030449 0.0033784 0.0037689 0.0042237 0.0047479 0.0053426
  0.0060012 0.0067051 0.0074193 0.0080897 0.0086457 0.0090103 0.0091176 0.0089335
  0.0084685 0.0077775 0.0069431 0.0060533 0.0053933
             0.11279 0.048882
                                   1245
                                                 30
 0.0033814 0.0032315 0.0030117 0.0027778 0.0025399 0.0023067 0.0020845 0.0018774
 0.0016877 0.0015162 0.0013627 0.0012262 0.0011054 0.0009988 0.0009048 0.0008219
 0.0007487 0.0006840 0.0006267 0.0005757 0.0005303 0.0004896 0.0004530 0.0004201
 0.0003902 0.0003630 0.0003382 0.0003155 0.0002945 0.0002751 0.0002571 0.0002403
 0.0002246 0.0002098 0.0001959 0.0001827 0.0001702 0.0001584 0.0001471 0.0001363
 0.0001261 0.0001164 0.0001071 0.0000984 0.0000901 0.0000824 0.0000751 0.0000685
 0.0000624 0.0000568 0.0000519 0.0000476 0.0000440 0.0000409 0.0000385 0.0000368
 0.0000357 0.0000353 0.0000356 0.0000367 0.0000386 0.0000413 0.0000451 0.0000499
 0.0000557 0.0000628 0.0000710 0.0000805 0.0000910 0.0001025 0.0001149 0.0001280
 0.0001416 0.0001556 0.0001697 0.0001839 0.0001980 0.0002119 0.0002256 0.0002391
 0.0002523 0.0002654 0.0002784 0.0002913 0.0003043 0.0003175 0.0003309 0.0003447
 0.0003590 0.0003740 0.0003899 0.0004068 0.0004251 0.0004449 0.0004666 0.0004907
 0.0005177 0.0005482 0.0005834 0.0006243 0.0006725 0.0007303 0.0008006 0.0008875
 0.0009965 0.0011353 0.0013146 0.0015494 0.0018608 0.0022779 0.0028407 0.0036024
 0.0046310 0.0060062 0.0078100 0.0101053 0.0129007 0.0161092 0.0195146 0.0227720
 0.0254601 0.0271804 0.0276686 0.0268706 0.0249497 0.0222271 0.0190867 0.0158855
 0.0128935 0.0102738 0.0080927 0.0063460 0.0049873 0.0039525 0.0031758 0.0025980
 0.0021704 0.0018550 0.0016227 0.0014523 0.0013279 0.0012382 0.0011749 0.0011317
 0.0011043 0.0010893 0.0010842 0.0010873 0.0010973 0.0011133 0.0011347 0.0011611
 0.0011924 0.0012286 0.0012698 0.0013164 0.0013688 0.0014275 0.0014930 0.0015661
 0.0016476 0.0017381 0.0018385 0.0019495 0.0020718 0.0022057 0.0023513 0.0025080
 0.0026744 0.0028480 0.0030252 0.0032005 0.0033671 0.0035163 0.0036389 0.0037253
 0.0037672 0.0037585 0.0036968 0.0035840 0.0034705
            0.12256 0.041419
                                  1245
0.0021392 0.0020510 0.0019176 0.0017733 0.0016263 0.0014832 0.0013488 0.0012260
 0.0011161 0.0010194 0.0009353 0.0008629 0.0008009 0.0007481 0.0007033 0.0006653
0.0006331 0.0006059 0.0005829 0.0005635 0.0005471 0.0005333 0.0005215 0.0005116
0.0005031 0.0004959 0.0004897 0.0004843 0.0004796 0.0004753 0.0004715 0.0004679
0.0004645 0.0004612 0.0004579 0.0004545 0.0004509 0.0004471 0.0004430 0.0004386
0.0004337 0.0004284 0.0004225 0.0004159 0.0004088 0.0004010 0.0003924 0.0003832
0.0003734 0.0003630 0.0003521 0.0003410 0.0003297 0.0003186 0.0003079 0.0002978
0.0002887 0.0002808 0.0002744 0.0002695 0.0002664 0.0002651 0.0002657 0.0002682
0.0002724 0.0002783 0.0002859 0.0002949 0.0003054 0.0003171 0.0003301 0.0003443
0.0003597 0.0003763 0.0003942 0.0004134 0.0004341 0.0004564 0.0004805 0.0005065
0.0005348 0.0005654 0.0005986 0.0006348 0.0006741 0.0007170 0.0007636 0.0008143
0.0008696 0.0009296 0.0009949 0.0010658 0.0011429 0.0012266 0.0013177 0.0014170
0.0015254 0.0016444 0.0017757 0.0019217 0.0020858 0.0022722 0.0024867 0.0027371
0.0030332 0.0033878 0.0038172 0.0043410 0.0049827 0.0057681 0.0067243 0.0078750 0.0092355 0.0108054 0.0125600 0.0144447 0.0163717 0.0182242 0.0198669 0.0211623
0.0219907 0.0222680 0.0219589 0.0210828 0.0197108 0.0179550 0.0159525 0.0138457
0.0117651 0.0098152 0.0080670 0.0065578 0.0052957 0.0042671 0.0034460 0.0028001
0.0022975 0.0019086 0.0016085 0.0013769 0.0011977 0.0010587 0.0009504 0.0008658
0.0007995 0.0007476 0.0007071 0.0006759 0.0006524 0.0006353 0.0006238 0.0006174
0.0006156 0.0006182 0.0006251 0.0006364 0.0006523 0.0006730 0.0006988 0.0007302
0.0007679 0.0008123 0.0008643 0.0009246 0.0009940 0.0010732 0.0011629 0.0012633
0.0013742 0.0014948 0.0016231 0.0017560 0.0018890 0.0020158 0.0021291 0.0022209
0.0022836 0.0023109 0.0022996 0.0022495 0.0021896
            0.13232 0.120572
                                 1245
0.0004042 0.0004205 0.0004425 0.0004648 0.0004871 0.0005089 0.0005303 0.0005508
0.0005704 0.0005890 0.0006065 0.0006228 0.0006381 0.0006522 0.0006652 0.0006771
0.0006878 0.0006972 0.0007054 0.0007121 0.0007173 0.0007207 0.0007223 0.0007217
0.0007189 0.0007137 0.0007061 0.0006958 0.0006828 0.0006672 0.0006490 0.0006282
0.0006050 0.0005796 0.0005522 0.0005231 0.0004926 0.0004610 0.0004288 0.0003963
0.0003639 0.0003319 0.0003009 0.0002710 0.0002427 0.0002162 0.0001916 0.0001691
0.0001488 0.0001307 0.0001147 0.0001007 0.0000887 0.0000784 0.0000697 0.0000624
0.0000564 0.0000516 0.0000477 0.0000447 0.0000425 0.0000411 0.0000403 0.0000402
```

Figure D1. (Sheet 4 of 6)

```
0.0000407 0.0000420 0.0000440 0.0000468 0.0000505 0.0000554 0.0000617 0.0000697
0.0000797 0.0000924 0.0001084 0.0001288 0.0001546 0.0001875 0.0002296 0.0002834
0.0003521 0.0004399 0.0005514 0.0006920 0.0008674 0.0010828 0.0013425 0.0016476
0.0019954 0.0023774 0.0027788 0.0031790 0.0035539 0.0038792 0.0041343 0.0043065
0.0043923 0.0043978 0.0043366 0.0042266 0.0040877 0.0039388 0.0037968 0.0036758
0.0035879 0.0035433 0.0035518 0.0036237 0.0037712 0.0040093 0.0043572 0.0048387
0.0054831 0.0063240 0.0073967 0.0087329 0.0103518 0.0122479 0.0143775 0.0166471
0.0189096 0.0209741 0.0226298 0.0236821 0.0239924 0.0235088 0.0222789 0.0204398
0.0181891 0.0157443 0.0133050 0.0110258 0.0090043 0.0072840 0.0058658 0.0047237
0.0038184 0.0031074 0.0025509 0.0021148 0.0017716 0.0014996 0.0012821 0.0011065
0.0009634 0.0008456 0.0007479 0.0006660 0.0005971 0.0005386 0.0004888 0.0004463
0.0004098 0.0003785 0.0003516 0.0003286 0.0003089 0.0002921 0.0002780 0.0002662
0.0002566 0.0002488 0.0002429 0.0002387 0.0002360 0.0002349 0.0002353 0.0002372
0.0002406 0.0002454 0.0002518 0.0002597 0.0002692 0.0002802 0.0002928 0.0003070
0.0003227 0.0003399 0.0003584 0.0003782 0.0003936
            0.14209 0.530311
                                 1245
       11
0.0001098 0.0001165 0.0001261 0.0001365 0.0001476 0.0001592 0.0001712 0.0001834
0.0001957 0.0002078 0.0002194 0.0002304 0.0002405 0.0002495 0.0002572 0.0002633
0.0002678 \ 0.0002705 \ 0.0002712 \ 0.0002700 \ 0.0002669 \ 0.0002619 \ 0.0002551 \ 0.0002468
0.0002371 0.0002264 0.0002149 0.0002029 0.0001907 0.0001786 0.0001667 0.0001552
 0.0001443 \ 0.0001340 \ 0.0001244 \ 0.0001156 \ 0.0001075 \ 0.0001001 \ 0.0000933 \ 0.0000870 
0.0000813 0.0000761 0.0000712 0.0000667 0.0000625 0.0000586 0.0000549 0.0000514
0.0000481 \ 0.0000450 \ 0.0000420 \ 0.0000393 \ 0.0000367 \ 0.0000343 \ 0.0000321 \ 0.0000301
0.0000283 0.0000267 0.0000253 0.0000241 0.0000231 0.0000223 0.0000217 0.0000213
0.0000211 0.0000212 0.0000215 0.0000220 0.0000230 0.0000243 0.0000260 0.0000284
0.0000316 0.0000357 0.0000412 0.0000484 0.0000581 0.0000713 0.0000894 0.0001144
0.0001496 0.0001994 0.0002707 0.0003730 0.0005191 0.0007257 0.0010116 0.0013939
0.0018807 0.0024608 0.0030959 0.0037210 0.0042587 0.0046429 0.0048394 0.0048536
0.0047213 0.0044924 0.0042156 0.0039300 0.0036627 0.0034302 0.0032413 0.0031007
0.0030110 0.0029749 0.0029964 0.0030820 0.0032424 0.0034933 0.0038576 0.0043670
0.0050641 0.0060028 0.0072469 0.0088624 0.0109021 0.0133798 0.0162373 0.0193160
0.0223488 0.0249897 0.0268824 0.0277497 0.0274680 0.0260999 0.0238689 0.0210943
0.0181109 0.0152016 0.0125608 0.0102892 0.0084105 0.0068975 0.0056974 0.0047503
0.0039998 0.0033984 0.0029088 0.0025028 0.0021601 0.0018664 0.0016119 0.0013898
0.0011955 0.0010256 0.0008777 0.0007493 0.0006387 0.0005439 0.0004632 0.0003947
0.0003370 0.0002886 0.0002480 0.0002142 0.0001860 0.0001626 0.0001432 0.0001271
0.0001139 0.0001029 0.0000939 0.0000866 0.0000808 0.0000761 0.0000725 0.0000699
0.0000682 0.0000672 0.0000670 0.0000676 0.0000689 0.0000709 0.0000737 0.0000772
0.0000816 0.0000868 0.0000929 0.0000999 0.0001057
       12 0.15186 0.827381
                               1245
0.0002309 0.0002386 0.0002498 0.0002620 0.0002752 0.0002893 0.0003042 0.0003197
0.0003358 0.0003521 0.0003685 0.0003848 0.0004007 0.0004161 0.0004306 0.0004443
0.0004568 0.0004681 0.0004782 0.0004871 0.0004947 0.0005012 0.0005066 0.0005112
0.0005149 0.0005179 0.0005203 0.0005222 0.0005238 0.0005251 0.0005260 0.0005268
0.0005272 0.0005273 0.0005271 0.0005263 0.0005249 0.0005226 0.0005194 0.0005149
0.0005090 0.0005014 0.0004921 0.0004809 0.0004678 0.0004529 0.0004363 0.0004184
0.0003993 0.0003795 0.0003595 0.0003395 0.0003200 0.0003013 0.0002836 0.0002671
0.0002519 0.0002382 0.0002260 0.0002152 0.0002059 0.0001980 0.0001915 0.0001864
0.0001826 0.0001802 0.0001792 0.0001796 0.0001816 0.0001851 0.0001903 0.0001976
0.0002071 0.0002191 0.0002342 0.0002530 0.0002763 0.0003049 0.0003404 0.0003844
0.0004391 0.0005075 0.0005934 0.0007018 0.0008387 0.0010116 0.0012288 0.0014984
0.0018255 0.0022081 0.0026321 0.0030678 0.0034738 0.0038092 0.0040488 0.0041918
0.0042579 0.0042764 0.0042762 0.0042805 0.0043058 0.0043637 0.0044619 0.0046065
0.0048022 0.0050537 0.0053654 0.0057414 0.0061853 0.0066995 0.0072842 0.0079363
0.0086489 0.0094099 0.0102018 0.0110027 0.0117872 0.0125290 0.0132028 0.0137864
0.0142621 0.0146159 0.0148378 0.0149206 0.0148598 0.0146538 0.0143054 0.0138231
0.0132218 0.0125226 0.0117514 0.0109365 0.0101049 0.0092805 0.0084820 0.0077222
0.0070085 0.0063436 0.0057269 0.0051558 0.0046265 0.0041355 0.0036797 0.0032572
0.0028671 0.0025094 0.0021844 0.0018924 0.0016332 0.0014059 0.0012088 0.0010397
0.0008958 0.0007742 0.0006719 0.0005862 0.0005146 0.0004549 0.0004050 0.0003635
0.0003289 0.0003000 0.0002760 0.0002561 0.0002397 0.0002263 0.0002154 0.0002067
0.0002000 0.0001951 0.0001917 0.0001898 0.0001893 0.0001900 0.0001920 0.0001952
0.0001996 0.0002051 0.0002118 0.0002196 0.0002262
       13 0.16162 0.772112 1245
0.0000875 0.0000972 0.0001107 0.0001241 0.0001365 0.0001468 0.0001539 0.0001571
0.0001560 0.0001508 0.0001420 0.0001307 0.0001180 0.0001048 0.0000922 0.0000806
0.0000704 0.0000616 0.0000542 0.0000482 0.0000432 0.0000392 0.0000361 0.0000335
```

Figure D1. (Sheet 5 of 6)

Appendix D Listing of Sample Data File

```
0.0000315 0.0000300 0.0000288 0.0000278 0.0000271 0.0000266 0.0000262 0.0000260
0.0000259 0.0000259 0.0000261 0.0000264 0.0000270 0.0000278 0.0000289 0.0000305
0.0000325 0.0000353 0.0000388 0.0000434 0.0000492 0.0000564 0.0000651 0.0000751
0.0000861 0.0000974 0.0001080 0.0001166 0.0001222 0.0001242 0.0001223 0.0001171
0.0001094 0.0001002 0.0000903 0.0000806 0.0000715 0.0000633 0.0000562 0.0000501
0.0000450 0.0000408 0.0000374 0.0000347 0.0000327 0.0000314 0.0000306 0.0000303
0.0000307 0.0000317 0.0000334 0.0000359 0.0000396 0.0000447 0.0000517 0.0000615
0.0000753 0.0000951 0.0001240 0.0001675 0.0002345 0.0003406 0.0005118 0.0007912
0.0012438 0.0019525 0.0029845 0.0043185 0.0057678 0.0070058 0.0077360 0.0078644
0.0075101 0.0068825 0.0061661 0.0054765 0.0048685 0.0043586 0.0039443 0.0036164
0.0033646 0.0031809 0.0030611 0.0030057 0.0030210 0.0031212 0.0033312 0.0036911
0.0042628 0.0051375 0.0064414 0.0083318 0.0109677 0.0144432 0.0186818 0.0233354
0.0277579 0.0311233 0.0326770 0.0320190 0.0292692 0.0250267 0.0201387 0.0154042
0.0113592 0.0082185 0.0059500 0.0043953 0.0033694 0.0027138 0.0023120 0.0020860
0.0019861 0.0019816 0.0020529 0.0021851 0.0023636 0.0025689 0.0027735 0.0029408
0.0030283 0.0029977 0.0028285 0.0025299 0.0021411 0.0017189 0.0013174 0.0009730
0.0007004 0.0004969 0.0003511 0.0002494 0.0001793 0.0001312 0.0000982 0.0000752
0.0000592 0.0000479 0.0000398 0.0000340 0.0000300 0.0000271 0.0000253 0.0000242
0.0000238 0.0000240 0.0000249 0.0000264 0.0000286 0.0000315 0.0000354 0.0000403
0.0000463 0.0000537 0.0000625 0.0000728 0.0000814
```

Figure D1. (Sheet 6 of 6)

Appendix E Notation

<u>Text</u>	Appendix C	
$a_0^{}$		Normalizing coefficient in maximum likelihood estimate (MLE)
a_{r}		Normalizing coefficient for r^{th} iteration in iterative maximum likelihood estimator (IMLE)
\boldsymbol{A}		Quartile asymmetry parameter
	angle(na)	Element na of an array that represents direction coordinates
$C_{ij}(f_n)$		Coincident spectral density between gauges i and j at frequency f_n
d		Water depth
	datetime	Ten-character string that contains date and time
	dbar	Mean water depth
	ddf(nf,na)	Array element representing the directional distri- bution function at frequency f(nf) and direction angle(na)
dθ	delang	Direction increment
df	delfs	Frequency increment
	dmax	Maximum segment-averaged water depth in a collection

Appendix E Notation E1

<u>Text</u> <u>Appendix C</u>

	dmin	Minimum segment-averaged water depth in a collection
$D(\theta_m)$		Directional distribution function based on $S(\theta_m)$
$D(f_n, \theta_m)$		Directional distribution function at frequency f_n and direction θ_m
$D_0(f_n, \theta_m)$		MLE estimate of directional distribution function at frequency f_n
$D_r(f_n, \theta_m)$		IMLE estimate of directional distribution func- tion at frequency f_n after r^{th} iteration
$D_r'(f_n,\theta_m)$		Intermediate, uncorrected IMLE estimate of directional distribution function at frequency f_n during r^{th} iteration
$\hat{\boldsymbol{e}}_{_{X}}$		Unit vector in the x-direction
$oldsymbol{\hat{e}}_{_{\mathcal{Y}}}$		Unit vector in the y-direction
	fds(nf,na)	Array element representing the frequency-direction spectrum at frequency f(nf) and direction angle(na)
f_n		n^{th} frequency of a set of N discrete frequencies
	f(nf)	Element of an array that represents frequency
f_p	fp	Peak frequency
g		Gravitational acceleration
	gpat(nf)	Element of an array of six-character strings that represent working gauge patterns
hhmm		Mnemonic for time of day
H_{mo}	Нто	Characteristic wave height

<u>Text</u>	Appendix C	
i		Complex notation $\sqrt{-1}$ [in exponent or on main equation line]
		Gauge index [as subscript]
	idgfr	Degrees of freedom in cross-spectral estimation
	ifdtrnd	Flag indicating whether or not data have been detrended
	ifimle	Flag indicating if maximum likelihood or iterative maximum likelihood estimation is used
	ifwindo	Flag indicating whether or not data segments have been windowed
	istot	Total number of seconds duration of a time series
	iter(nf)	Number of iterative maximum likelihood iterations used to compute directional distribution at frequency f(nf)
I		Number of gauges in an array
$I(\theta_m - \theta_{m_{min}})$		Cumulative distribution function
Im[]		Imaginary part of complex entity contained in brackets
j		Gauge index [as subscript]
$k_n^{}$		Magnitude of wave number vector associated with n^{th} discrete frequency
$\vec{k}_n(\theta_m)$		Wave number vector for wave direction θ_m at n^{th} discrete frequency
I		Summation index
m	na	Index associated with discrete direction
m_1		First cosine moment of $D(\theta_m)$
m_2		Second cosine moment of $D(\theta_m)$

<u>Text</u>	Appendix C	
m_{min}		Index of discrete direction at which wave energy is minimum
M	nang	Integer number of discrete directions
$M_{ij}(f_n)$		Element of dimensionless matrix of cross spectra between gauges i and j at frequency f_n
$M_{ij}^{-1}(f_n)$		Element of inverse of $M_{ij}(f_n)$
${}^{r}M_{ij}(f_n)$	•	Estimate of element of dimensionless matrix of cross spectra between gauges i and j at frequency f_n during r^{th} IMLE iteration
${}^rM_{ij}^{-1}(f_n)$		Element of inverse of ${}^{r}M_{ij}(f_n)$
n	nf	Index associated with discrete frequency
n_1		First sine moment of $D(\theta_m)$
n_2		Second sine moment of $D(\theta_m)$
	nband	Number of frequency bands averaged in spectral estimation
	nensb	Number of segments into which a data record is divided during spectral estimation
	nfft	Number of data points in a data segment
N	nfrq	Integer number of discrete frequencies
$Q_{ij}(f_n)$		Quadrature spectral density between gauges i and j at frequency f_n
r		Iteration count for IMLE
	rname	Five-character string denoting reference gauge
R		Upper limit of IMLE iterations
Re[]		Real part of complex entity contained in brackets

<u>Text</u>	Appendix C	
	sf(nf)	Element nf of an array that represents the frequency spectrum
	sfrq	Sampling frequency
$S(f_n)$		Frequency spectral density at frequency f_n
$S(\theta_m)$		Direction spectral density at direction θ_m
$S(f_n, \theta_m)$		Frequency-direction spectral density at frequency f_n and direction θ_m
	thp	Peak direction of directional distribution at frequency fp
T_p		Peak period
x		Horizontal coordinate increasing northward
$ec{m{x}}_i$		Horizontal position vector of gauge i
$ec{oldsymbol{x}}_{j}$		Horizontal position vector of gauge j
у		Horizontal coordinate increasing westward
yymmdd		Mnemonic for date
β		Exponential convergence rate parameter in IMLE
γ		Convergence rate coefficient in IMLE
		Circular skewness
$\Gamma_{ij}^2(f_n)$		Coherence of signals from gauges i and j at frequency f_n
δ		Circular kurtosis
Δθ		Quartile directional spread parameter
ϵ_{r}	•	Convergence check parameter at r^{th} IMLE iteration

<u>Text</u>	Appendix C	
Θ_0		Mean direction
$\theta_{25\%}$		First quartile direction of cumulative distribution function
$\theta_{50\%}$.		Median direction of cumulative distribution function
θ _{75%}		Third quartile direction of cumulative distribution function
Θ_{l}		<i>l</i> th discrete direction
$\theta_{_m}$	·	m^{th} direction of a set of M discrete directions
$\theta_{m_{min}}$		Direction of minimum energy
$\theta_{\scriptscriptstyle p}$		Peak direction
$\lambda_r(f_n, \theta_m)$		IMLE correction factor at the r^{th} iteration
σ		Circular width parameter
$\Phi_{ij}(f_n)$		Cross-spectral phase between gauges i and j at frequency f_n

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information, Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

Suite 1204, Arlington, VA 22202-4302, and to	the Office of Management and Budget, Pape	work neduction Floject (0704-0188), W	asinigton, DC 20000
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DA	TES COVERED
	August 1997	Final report	
4. TITLE AND SUBTITLE 1996 Index of Wind Wave Di	rectional Spectra Measured at	Harvest Platform	5. FUNDING NUMBERS
Charles E. Long			
7. PERFORMING ORGANIZATION NAM U.S. Army Engineer Waterwa 3909 Halls Ferry Road, Vicks	B. PERFORMING ORGANIZATION REPORT NUMBER Miscellaneous Paper CHL-97-9		
sponsoring/monitoring agence U.S. Army Corps of Engineer Washington, DC 20314-1000	10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES Available from National Tec	hnical Information Service, 5	285 Port Royal Road, Sprin	gfield, VA 22161.
12a. DISTRIBUTION/AVAILABILITY STA	ATEMENT		12b. DISTRIBUTION CODE
Approved for public release			
13. ABSTRACT (Maximum 200 words) This report indexes characte direction spectra observed at the about the 200-m depth contous spatial array of six pressure gasestimator (IMLE). Nine parampeak frequency, peak direction parameters (directional spread fourth and final in a series of a early September when the array	r approximately 20 km west of uges, data from which are proneters are defined, listed, and an asymmetry) derived from the and asymmetry are summarizing It is approximately to the province of	vest Platform during calendary for Point Conception, Califor occassed with an iterative may graphed in time series form an direction, width, skewnes in quartile points of direction MLE-based directional spec	r year 1996. Located at nia, the platform supports a ximum likelihood directional characteristic wave height, s, and kurtosis), and two nal spectra. This report is the
	· · · · · · · · · · · · · · · · · · ·		
14. SUBJECT TERMS Deep water	Wave climate		15. NUMBER OF PAGES
Frequency-direction spectra	93		
• • •			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT