SPRAWOZDANIE - LABORATORIUM NR 4

Macierzowy niesymetryczny problem własny - wyznaczanie modów własnych niejednorodnej struny w 1D

Tomasz Kasprzak, 23 marca 2020

1 Wstęp teoretyczny

Kolejne zajęcia poświęcone zostały rozwiązywaniu problemu własnego na przykładzie niejednorodnej struny.

Jej dynamike możemy opisać równaniem falowym:

$$\frac{N}{\rho(x)}\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2 \psi}{\partial t^2},\tag{1}$$

w którym $\psi = \psi(x,t)$ - funkcja opisująca wychylenie struny w czasie i przestrzeni, N - naciąg struny oraz $\rho(x)$ - liniowy rozkład gęstości. Po wykonaniu podstawienia i separacji zmiennych otrzymujemy równanie różniczkowe zależne tylko od położenia:

$$-\frac{N}{\rho(x)}\frac{\partial^2 u}{\partial x^2} = \lambda u. \tag{2}$$

Określamy odległość pomiędzy węzłami:

$$\Delta x = \frac{L}{n+1}. (3)$$

A także położenie w przestrzeni:

$$x_i = -\frac{L}{2} + \Delta x \cdot (i+1), \quad i = 0, 1, 2, ..., n-1.$$
 (4)

Następnie dokonujemy dyskretyzacji równania poprzez podstawienie trójpunktowego ilorazu różnicowego za drugą pochodną. W ten sposób otrzymujemy problem własny (5), w którym kolejne elementy macierzowe opisane są wzorem (6).

$$A\mathbf{u} = \lambda \mathbf{u},\tag{5}$$

$$A_{i,j} = (-\delta_{i,j+1} + 2\delta_{i,j} - \delta_{i,j-1}) \cdot N/(\rho_i \Delta x^2),$$
(6)

gdzie:

$$\delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$
 (7)

2 Zadanie

Do naszego zadania należało obliczenie pierwiastków z 6 kolejnych, najmniejszych wartości własnych dla każdej wartości parametru $\alpha \in [0, 100]$, z krokiem $\Delta \alpha = 2$ oraz obliczenie wektorów własnych odpowiadających 6 najniższym wartościom własnym dla $\alpha = 0$ i $\alpha = 100$. Przy przyjętych parametrach:

$$L = 10, n = 200, \rho(x) = 1 + 4\alpha x^2, N = 1,$$

należało sporządzić wykresy wektorów własnych dla $\alpha=0$ i $\alpha=100$ oraz wykres $\omega=\sqrt{\lambda}=f(a).$

3 Wyniki

Rysunek 1: Wykres wartości pierwiastków z 6 najmniejszych wartości własnych w funkcji α , $\omega_k = \sqrt{\lambda_k}$.

Rysunek 2: Wykresy wektorów własnych odpowiadających 6 najmniejszym wartościom własnym

4 Wnioski

Do rozwiązania problemu używamy double-shift $Francis\ method$, zaimplementowanego w bibliotece GSL jako procedura o nazwie $gsl_eigen_nonsymmv$. Używając obecnego w nim rozkładu QR możemy przeprowadzić te operacje stabilniej niż w przypadku algorytmu LR, używającego rozkładu LU.