- 1. Let G be a finite group, and let g, h be two elements of G that commute, i.e. gh = hg.
 - (a) Prove that if $\langle g \rangle \cap \langle h \rangle = \{e\}$, then o(gh) is equal to the least common multiple of o(g) and o(h).
 - Suggestion (not to hand in): use part (a) to solve problem 3.1.3 (prove that the order of a permutation is the least common multiple of its disjoint cycle lengths).
 - (b) Prove that gcd(o(g), o(h)) = 1, then $\langle g \rangle \cap \langle h \rangle = \{e\}$, and therefore that o(gh) is the least common multiple of o(g) and o(h).
 - Hint for (b): use Lagrange's theorem.
- 2. Let $G = GL(n, \mathbb{R})$. This problem explores the link between centralizers in G and eigenvectors, generalizing our discussion in class of the centralizer of the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.
 - (a) Let $G = GL(n, \mathbb{R})$, and suppose that $A, B \in G$ are two matrices, with $B \in C_G(A)$. Suppose also that $\lambda \in \mathbb{R}$ is an eigenvalue of A with dim ker $(A - \lambda I) = 1$. Prove that if \vec{v} is an eigenvector of A with eigenvalue λ , then \vec{v} is also an eigenvector of B (not necessarily with the same eigenvalue!).
 - (b) Suppose that A has an eigenbasis $\{\vec{v}_1, \dots, \vec{v}_n\}$ (that is: a basis of \mathbb{R}^n consisting of eigenvectors of A), each element of which has a different eigenvalue (this happens if and only if the characteristic polynomial of A has no repeated roots). Prove that

$$C_G(A) = \{ B \in G : each \ \vec{v_i} \ is \ also \ an \ eigenvector \ of \ B \}.$$

- (This implies that for all $B \in C_G(A)$, the matrices A and B are simultaneously diagonalizable.)
- (c) Deduce from part (b) that if A is a diagonal matrix with all entries on the diagonal distinct, then $C_G(A)$ consists of all diagonal matrices (this directly generalizes the example from class).
- 3. (4.4.6) Give a one sentence proof that conjugacy classes of a group partition the group. Then find all the conjugacy classes of D_8 .
- 4. (4.4.10) Let $G = \{a, b, c, d, e, f\}$, and let $\Omega = \{x, y, z, u, v, w\}$. We know that G is a group and Ω is a set. We also know that G acts on Ω . The following table tells us how every element of G acts on elements of Ω :

	x	y	z	u	v	w
a	w	y	z	v	u	\boldsymbol{x}
b	x	u	z	v	y	w
c	w	v	z	u	y	\boldsymbol{x}
d	x	y	z	u	v	w
e	x	v	z	y	u	w
f	w	u	z	y	v	\boldsymbol{x}

So for example, $c \cdot x = w$, and $c \cdot u = u$.

- (a) What is $(bc) \cdot y$?
- (b) Can you find a subgroup of G with one element? What about a subgroup of G with two elements? What about a subgroup of G with three elements? If the answer is yes, give the elements of the subgroup, and in any case give adequate explanation for your answers.
- (c) Can you find an orbit with three elements?
- (d) Let H be the stabilizer of w in G. If we multiply $c \in G$ by every element of H—that is, find ch for all $h \in H$ —we get what is called a *left coset* of H and denoted by cH. What are the elements of the left coset cH?
- 5. (5.2.1) If H and K are subgroups of G of order 75 and 242 respectively, what can you say about $H \cap K$?
- 6. **(5.2.4)**
 - (a) Let G be a non-cyclic group of order 121. How many subgroups does G have? Why?
 - (b) Can you generalize your result of the previous part?
- 7. (5.2.3) Suppose that a finite group G has an element g with order 7 and an element h with order 11. What is the minimum value of |G|?
- 8. I mentioned in class that an action of a group G on a set Ω is equivalent to a homomorphism $G \to \operatorname{Perm}(\Omega)$. The purpose of this problem is to make that observation more precise.
 - (a) Suppose that $\phi: G \to \operatorname{Perm}(\Omega)$ is a group homomorphism. Prove that the map $G \times \Omega \to \Omega$ defined by the formula

$$g \cdot x = \phi(g)(x)$$

is a group action.

(b) Conversely, suppose that we have a group action of G on Ω . For all $g \in G$, define a map $\phi(g): \Omega \to \Omega$ by $\phi(g)(x) = g \cdot x$. Prove that $\phi(g)$ is a permutation of Ω , hence ϕ is a map $G \to \operatorname{Perm}(\Omega)$. Prove that ϕ is a group homomorphism.

Some other good problems to try for additional practice (but not to hand in): 3.1.3, 4.3.8, 4.4.13, 4.4.16, 5.2.2