umo Introdução Metodologia Resultados Parciais Impacto Trabalhos futuros
000 00000 000000 0

Previsão do Planejamento Acadêmico

Estudantes: Camilo Rocha, Gabriel Marcolino, Isabela Rodrigues, José Leal, Josué

Machado, Mirella Oliveira, Monique Ramos Orientadores: Prof. Dr. Tiago Palma Pagano Curso: Bacharelado em Engenharia de Computação

17 de dezembro de 2024

FRB short title 17 de dezembro de 2024

 Introdução
 Metodologia
 Resultados Parciais
 Impacto
 Trabalhos futuros

 000
 00000
 00000
 0
 00

Sumário

- 2 Introdução
 - Contextualização
 - Justificativa
 - Objetivo
- 3 Metodologia
 - Desenvolvimento do projeto
 - Dataset e préprocessamento dos dados
 - Dataset e préprocessamento dos dados

- Treinamento e validação
- Implementação dos modelos
- 4 Resultados Parciais
 - Discretização Simples
 - Discretização Trigonométrica

- Janelamento
- 5 Impacto
 - Impacto
- 6 Trabalhos futuros
 - Trabalhos futuros

 Resumo
 Introdução
 Metodología
 Resultados Parciais
 Impacto
 Trabalhos futuros

 ●
 ○○○
 ○○○○
 ○○○○
 ○
 ○○
 ○○

Resumo

O projeto propõe o desenvolvimento de um modelo preditivo baseado em redes neurais para estimar a disponibilidade de disciplinas no próximo semestre, utilizando dados históricos das ofertas de disciplinas.

Palavras-Chave: Redes Neurais, Previsão Temporal, Discretização, Janelamento, Machine Learning, Gestão Acadêmica.

UFRB short title 17 de dezembro de 2024

Resultados Parciais Impacto Trabalhos futuros

O 000 0000 00000 0 00

Contextualização

A gestão de disciplinas em instituições de ensino é um processo complexo que depende de diversos fatores, como a demanda dos alunos, a capacidade dos docentes e a infraestrutura disponível. Erros na previsão da oferta podem gerar conflitos no planejamento, sobrecarga em algumas disciplinas e falta de vagas para os estudantes, impactando negativamente a eficiência acadêmica e a experiência dos alunos.

esumo **Introdução** Metodologia Resultados Parciais Impacto Trabalhos futuros

Justificativa

A previsão eficiente da disponibilidade de disciplinas é fundamental para otimizar o planejamento acadêmico, garantindo o uso adequado de recursos institucionais, como docentes e infraestrutura, e atendendo à demanda dos alunos. Uma gestão inadequada pode resultar em sobrecarga de disciplinas, escassez de vagas e atrasos na formação, prejudicando a experiência acadêmica e a eficiência do sistema. Nesse contexto, o uso de técnicas avançadas, como redes neurais e análise de dados históricos, oferece uma solução inovadora e precisa, tornando o processo mais automatizado e alinhado às necessidades da instituição e dos estudantes.

esumo **Introdução** Metodologia Resultados Parciais Impacto Trabalhos futuros
OO● OOOOO OOOOO O OO

Objetivo

O objetivo deste projeto é desenvolver um modelo preditivo baseado em redes neurais para estimar a disponibilidade de disciplinas no próximo semestre, utilizando dados históricos de ofertas passadas. A proposta busca fornecer uma ferramenta eficiente e automatizada que auxilie no planejamento acadêmico, otimizando a alocação de recursos e melhorando a experiência dos estudantes.

Introdução Metodologia Resultados Parciais Impacto Trabalhos futuros 000 ●0000 000000 0 00

Desenvolvimento do projeto

- Dataset e pré-processamento dos dados
- Desenvolvimento dos modelos
- Treinamento e validação

UFRB short title

Dataset e pré-processamento dos dados

- 10 semestres (2020.1 a 2024.2)
- 33 disciplinas por semestre
- Limpeza e organização dos dados
- Preparação dos dados para as técnicas de treinamento:
 - Normalização com Min-Max Scaling
 - Discretização Simples
 - Discretização Trigonométrica
 - Janelamento Temporal

Resumo Introdução **Metodologia** Resultados Parciais Impacto Trabalhos futuros O 00 00 00 0000 0 00000 0 00

Dataset e pré-processamento dos dados

	ANALISE DE SISTEMAS	ASPECTOS LEGAIS PARA COMPUTACAO	AUTOMACAO INDUSTRIAL	BANCO DE DADOS I	DE	CIRCUITOS DIGITAIS II	COMPILADORES	DESIGN DE INTERFACE	ELETRONICA ANALOGICA I	EMPREENDEDORISMO	
0											
1		0.0	0.0	1.0				0.0			
2											
3											
4											
5				1.0							

Figura 1: Dados

Fonte: Google colab

UFRB short title 17 de dezembro de 2024

Treinamento e validação

- Divisão de dados: 90% treino e 10% teste.
- Algoritmo de otimização: Adam
- 200 épocas
- Métricas: RMSE (Erro Quadrático Médio), MAE e loss.

esumo Introdução **Metodologia** Resultados Parciais Impacto Trabalhos futuros
OOO OOOO OOOOO O OO

Implementação dos modelos

- Desenvolvimento de modelo para as 3 técnicas
- Arquitetura da Rede Neural:
 - Camada de entrada: Dados pré processados para cada técnica
 - Camadas ocultas: Camadas densas com ativação ReLU.
 - Camada de saída: Ativação sigmoid para prever disponibilidade de cada disciplina(0 ou 1).

Resumo Introdução Metodologia Resultados Parciais Impacto Trabalhos futuros
O 000 0000 00000 0 0000

Discretização Simples

Figura 2: Loss discretização simples

Fonte: Google colab

UFRB short title 17 de dezembro de 2024

Discretização Simples

Figura 3: Previsão discretização simples

Fonte: Google colab

UFRB short title 17 de dezembro de 2024 13 / 20

Resumo Introdução Metodologia **Resultados Parciais** Impacto Trabalhos futuros

Discretização Trigonométrica

Figura 4: Loss discretização trigonométrica

Fonte: Google colab

UFRB short title 17 de dezembro de 2024 14 / 20

Discretização Trigonométrica

Figura 5: Previsão discretização trigonométrica

Fonte: Google colab

UFRB short title 17 de dezembro de 2024 15 / 20

Resultados Parciais 000000

Janelamento

Figura 6: Loss janelamento

Fonte: Google colab

UFRB

Janelamento

Figura 7: Previsão janelamento

Fonte: Google colab

UFRB short title 17 de dezembro de 2024

esumo Introdução Metodologia Resultados Parciais **Impacto** Trabalhos futuros

Impacto

O trabalho tem o potencial de gerar um impacto significativo na gestão acadêmica, ao possibilitar previsões mais precisas da oferta de disciplinas. Ao prever quais disciplinas serão mais procuradas, é possível otimizar a alocação de recursos, como professores e salas de aula. Além disso, a previsão da oferta pode garantir que os alunos tenham acesso às disciplinas de que necessitam para completar seus cursos, diminuindo o tempo de espera.

esumo Introdução Metodologia Resultados Parciais Impacto **Trabalhos futuros**

Trabalhos futuros

- Incorporar mais variáveis(ex: demanda de matrículas)
- Buscar mais dados para o dataset

Resumo Introdução Metodologia Resultados Parciais Impacto **Trabalhos futuros** O OOO OOOO OOOOO O

Obrigado(a) pela Atenção!

