CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

Two-Level Systems

TWO-LEVEL NETWORKS

TWO TYPES OF TWO-LEVEL NETWORKS:

AND-OR $\mathbf{NETWORK} \Leftrightarrow \mathsf{SUM} \ \mathsf{OF} \ \mathsf{PRODUCTS} \ (\mathsf{NAND-NAND} \ \mathsf{NETWORK})$ OR-AND $\mathbf{NETWORK} \Leftrightarrow \mathsf{PRODUCT} \ \mathsf{OF} \ \mathsf{SUMS} \ (\mathsf{NOR-NOR} \ \mathsf{NETWORK})$

Figure 5.2: AND-OR and OR-AND NETWORKS.

$$E(x_2, x_1, x_0) = x_2' x_1' x_0 + x_2 x_1 + x_1 x_0'$$

$$E(x_2, x_1, x_0) = (x_2' + x_1)(x_1 + x_0')(x_2 + x_1' + x_0)$$

ļ

MINIMAL TWO-LEVEL NETWORKS

- 1. INPUTS: UNCOMPLEMENTED AND COMPLEMENTED
- 2. FANIN UNLIMITED
- 3. SINGLE-OUTPUT NETWORKS
- 4. MINIMAL NETWORK:

MINIMUM NUMBER OF GATES WITH MINIMUM NUMBER OF INPUTS

(

NETWORKS WITH DIFFERENT COST

EQUIVALENT BUT DIFFERENT COST BOTH MINIMAL SP AND PS MUST BE OBTAINED AND COMPARED

kARNAUGH MAPS

- 2-DIMENSIONAL ARRAY OF CELLS
- $n \text{ VARIABLES} \longrightarrow 2^n \text{ CELLS}$
- REPRESENTING SWITCHING FUNCTIONS
- REPRESENTING SWITCHING EXPRESSIONS
- GRAPHICAL AID IN SIMPLIFYING EXPRESSIONS

K-Map with one variable

x 0 1

x

K-Map with two variables

K-Map with two variables

$$F = x_1 x_0' + x_1' x_0'$$

K-Map with two variables

$$F = x_1 x_0 + x_1' x_0'$$

K-Map with three variables

K-Map with three variables

$$F = x_2 x_1 x_0 + x_2 x_1 x_0' + x_2 x_1' x_0'$$

K-Map with four variables

K-Map with four variables

$$F=x_3x_2x_1x_0+x_3x_2x_1x_0'$$

 $+x_3x_2x_1'x_0'$

K-Map with five variables

Clicker Question

Which Expression does present the k-map?

		x_0				
a)	$F=x_3x_2^{'}x_1^{'}x_0+x_3^{'}x_2x_1x_0^{'}$	0	0	0	0	S. J.
_ •	$F = x_3 x_2 x_1 x_0 + x_3 x_2 x_1 x_0$	0	1	0	0	ll r
		0	0	1	0	$ ^{\lambda_2}$
	$F = x_3 x_2 x_1 x_0 + x_3' x_2 x_1' x_0' x_3$	0	0	0	0	
u)	$F = x_3 x_2 x_1 x_0' + x_3' x_2 x_1 x_0'$		x_1			
e)	none					

Presenting switching Function (SOP) using K-Map

F=

Indexing K-Map

Simplifying Sum of Products

- 1. MINTERM m_j CORRESPONDS TO 1-CELL WITH LABEL j.
- 2. PRODUCT TERM OF n-1 LITERALS \longleftrightarrow RECTANGLE OF TWO ADJACENT 1-CELLS

$$x_3x_2x_1'x_0 + x_3x_2'x_1'x_0 = m_{13} + m_9$$

Simplifying Sum of Products

3. PRODUCT TERM OF n-2 LITERALS \longleftrightarrow RECTANGLE OF FOUR ADJACENT 1-CELLS

$$x_3x_2'x_1'x_0 + x_3x_2'x_1x_0 + x_3x_2x_1'x_0 + x_3x_2x_1x_0$$

$$= m_9 + m_{11} + m_{13} + m_{15}$$

4. PRODUCT TERM OF n-s LITERALS \longleftrightarrow RECTANGLE OF 2^s ADJACENT 1-CELLS

Simplifying Sum of Products

SUM OF PRODUCTS

represented in a K-map by the union of rectangles

$$E(x_3, x_2, x_1, x_0) = x_3' x_2 x_1 + x_2' x_1 x_0 + x_0'$$

Simplifying Sum of Products - Examples

Simplifying Sum of Products - Examples

Simplifying Sum of Products - Examples

Clicker Question

Simplify this expression using k-map

$$F = x_3 x_2 x_1^{'} x_0 + x_3 x_2 x_1 x_0^{'} + x_3 x_2 x_1 x_0 + x_3 x_2 x_1^{'} x_0^{'}$$

a)
$$F = x_3 x_2^{'} x_1^{'} x_0 + x_3^{'} x_2 x_1 x_0^{'}$$

b)
$$F=x_3x_2x_1x_0+x_3x_2x_1'x_0'$$

c)
$$F=x_3x_2$$

$$d) F=x_3x_2x_1$$

e) none

Simplify this expression using k-map

$$F = x_2 x_1 x_0 + x_2 x_1 x_0 + x_1 x_0$$

a)
$$F=x_{2}^{'}x_{1}^{'}x_{0}+x_{2}x_{1}x_{0}^{'}$$

b)
$$F=x_2x_0'+x_1x_0'$$

c)
$$F=x_1x_2$$

d)
$$F = x_0 x_2 x_1$$

e) none

Presenting switching Function (POS) using K-Map

F=

Simplifying PRODUCT of SUMs - Examples

Clicker Question

Which one is the simplest correct expression?

a)
$$F=x_{2}x_{1}x_{0}+x_{2}x_{1}x_{0}$$

b)
$$F=x_2x_1x_0+x_2x_1x_0$$

c)
$$F=x_1+x_0$$

d) $F=x_2+x_1$

none

MINIMAL TWO-LEVEL GATE NETWORK DESIGN: EXAMPLE

Input:
$$x \in \{0, 1, 2, ..., 9\}$$
, coded in BCD as

$$\underline{x} = (x_3, x_2, x_1, x_0), \ x_i \in \{0, 1\}$$

Output: $z \in \{0, 1\}$

Function:
$$z = \begin{cases} 1 & \text{if } x \in \{0, 2, 3, 5, 8\} \\ 0 & \text{otherwise} \end{cases}$$

THE VALUES {10,11,12,13,14,15} ARE "DON'T CARES"

MIN SP:
$$z = x_2'x_1 + x_2'x_0' + x_2x_1'x_0$$

MIN PS: $z = (x_2' + x_1')(x_2' + x_0)(x_2 + x_1 + x_0')$

EXAMPLE 5.15

Input: $x \in \{0, 1, 2, ..., 15\}$

represented in binary code by $\underline{x} = (x_3, x_2, x_1, x_0)$

Output: $z \in \{0, 1\}$

Function: $z = \begin{cases} 1 & \text{if } x \in \{0, 1, 3, 5, 7, 11, 12, 13, 14\} \\ 0 & \text{otherwise} \end{cases}$

THE K-MAP:

min SP: $z = x_3'x_0 + x_3'x_2'x_1' + x_2x_1'x_0 + x_3x_2x_0' + x_2'x_1x_0$ min PS: $z = (x_3' + x_2 + x_1)(x_3 + x_2' + x_0)(x_2 + x_1' + x_0)(x_3' + x_2' + x_1' + x_0')$ COST(PS) < COST(SP)

