Refine Search

Search Results -

Terms	Documents
6627427.pn.	1

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

Search History

DATE: Friday, March 10, 2006 Printable Copy Create Case

Set Name side by side		Hit Count S	Set Name result set
DB=U	SPT; PLUR=YES; OP=OR		
<u>L5</u>	6627427.pn.	1	<u>L5</u>
DB=PC	GPB; PLUR=YES; OP=OR		
<u>L4</u>	L1 and (AT specific for ethylmalonyl)	1	<u>L4</u>
<u>L3</u>	L1 and (KSQ domain)	1	<u>L3</u>
<u>L2</u>	L1 and (loading module)	1	<u>L2</u>
<u>L1</u>	20030235892	1	<u>L1</u>

END OF SEARCH HISTORY

Hit List

First Hill Generate Collection Print Fwd Refs Bkwd Refs Generate OACS

Search Results - Record(s) 1 through 10 of 91 returned.

1. Document ID: US 7008636 B2

L12: Entry 1 of 91

File: USPT

Mar 7, 2006

US-PAT-NO: 7008636

DOCUMENT-IDENTIFIER: US 7008636 B2

TITLE: 2,3,5-substituted biphenyls useful in the treatment of insulin resistance and

hyperglycemia

DATE-ISSUED: March 7, 2006

PRIOR-PUBLICATION:

DOC-ID DATE

US 20040214869 A1 October 28, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Butera; John A.	Clarksburg	UЛ		US
Caufield; Craig E.	New York	NY		US
Graceffa; Russell F.	Hampton	NH		US
Greenfield; Alexander	Princeton Junction	NJ		us
Gundersen; Eric G.	Plainsboro	NJ		US
Havran; Lisa Marie	Bordentown	NJ		US
Katz; Alan H.	Lawrenceville	NJ		US
Lennox; Joseph R.	Morrisville	NC		US
Mayer; Scott C.	Robbinsville	NJ		US
McDevitt; Robert E.	Somerset	NJ		US

US-CL-CURRENT: 424/433; 514/354, 514/396, 514/415, 514/416, 514/469, 514/571; 546/339, 548/335.1, 548/469, 548/470, 549/471, 562/512, 562/587

Full	Titl	2 Citation	Front	Review	Classification				Claims	KWIC	Draw Des	e ima
•••••			•••••	······································		······	•••••	 	•••••			······
	2.	Documer	nt ID:	US 70	01735 B2							

8...; 2. Document ID. Ob 7001733 D2

L12: Entry 2 of 91 File: USPT Feb 21, 2006

US-PAT-NO: 7001735

DOCUMENT-IDENTIFIER: US 7001735 B2

TITLE: Glucose transporter/sensor protein and uses thereof

DATE-ISSUED: February 21, 2006

PRIOR-PUBLICATION:

DOC-ID DATE

US 20020038464 A1 March 28, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

Charron; Maureen J.

Flushing

ZIP CODE

Katz; Ellen B.

Port Washington

NY NY

US US

US-CL-CURRENT: $\frac{435}{7.23}$; $\frac{435}{6}$, $\frac{435}{7.1}$, $\frac{436}{64}$

Full Title Citation Front Review Classification Date Reference Ciaims KWC Braw Desc Ima

3. Document ID: US 6959048 B1

L12: Entry 3 of 91

File: USPT

Oct 25, 2005

US-PAT-NO: 6959048

DOCUMENT-IDENTIFIER: US 6959048 B1

TITLE: Optimizing link quality by space and time interleaving

DATE-ISSUED: October 25, 2005

INVENTOR-INFORMATION:

ZIP CODE CITY STATE COUNTRY NAME

Horneman; Kari Oulu FI Oulu Katz; Marcos FΙ Ylitalo; Juha Oulu FΙ

US-CL-CURRENT: <u>375/299</u>; <u>455/101</u>, <u>455/103</u>

Full Title Citation Front Review Classification Date Reference Claims KMC Draw Desc Ima

4. Document ID: US 6921650 B1

L12: Entry 4 of 91 File: USPT Jul 26, 2005

US-PAT-NO: 6921650

DOCUMENT-IDENTIFIER: US 6921650 B1

TITLE: Recombinant methods and materials for producing epothilone and epothilone

derivatives

DATE-ISSUED: July 26, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Oakland Julien; Bryan CA Katz; Leonard Hayward CA Khosla; Chaitan Palo Alto CA Tang; Li Foster City CA Ziermann; Rainer San Mateo CA

US-CL-CURRENT: <u>435/76; 435/252.31</u>, <u>435/252.33</u>, <u>536/23.1</u>, <u>536/23.2</u>, <u>536/23.7</u>

Full Title Citation Front Review Classification Date Reference Citatins KMC Draw Desc Ime

5. Document ID: US 6894639 B1

L12: Entry 5 of 91 File: USPT May 17, 2005

US-PAT-NO: 6894639

DOCUMENT-IDENTIFIER: US 6894639 B1

TITLE: Generalized hebbian learning for principal component analysis and automatic target

recognition, systems and method

DATE-ISSUED: May 17, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Katz; Alan Jerry Dallas TX

US-CL-CURRENT: 342/90; 342/159, 342/175, 342/195, 342/27, 342/89, 706/15

Full | Title | Citation | Front | Review | Classification | Date | Reference | Classification | Classification | Date | Classification | Date | Reference | Date |

6. Document ID: US 6885024 B2

L12: Entry 6 of 91 File: USPT Apr 26, 2005

US-PAT-NO: 6885024

DOCUMENT-IDENTIFIER: US 6885024 B2

TITLE: Devices with organic crystallite active channels

DATE-ISSUED: April 26, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Bao; Zhenan Millburn NJ
Katz; Howard Edan Summit NJ
Kloc; Christian South Orange NJ

US-CL-CURRENT: 257/40; 438/99

7. Document ID: US 6870180 B2

L12: Entry 7 of 91 File: USPT Mar 22, 2005

US-PAT-NO: 6870180

DOCUMENT-IDENTIFIER: US 6870180 B2

TITLE: Organic polarizable gate transistor apparatus and method

DATE-ISSUED: March 22, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Dodabalapur; Ananth Millington NJ

Katz; Howard E. Summit NJ

Sarpeshkar; Rahul Arlington MA

US-CL-CURRENT: 257/40; 257/314, 257/405, 257/406, 257/410, 257/411, 257/E29.162,

<u>257/E29.165</u>, <u>257/E29.309</u>, <u>257/E51.007</u>

8. Document ID: US 6858411 B1

L12: Entry 8 of 91 File: USPT Feb 22, 2005

US-PAT-NO: 6858411

DOCUMENT-IDENTIFIER: US 6858411 B1

** See image for Certificate of Correction **

TITLE: Recombinant methods and materials for producing epothilone and epothilone

derivatives

DATE-ISSUED: February 22, 2005

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Julien; BryanOaklandCAKatz; LeonardHaywardCAKhosla; ChaitanPalo AltoCATang; LiFoster CityCAZiermann; RainerSan MateoCA

US-CL-CURRENT: 435/76; 435/183, 435/252.31, 435/252.33, 536/23.1, 536/23.2, 536/23.7

9. Document ID: US 6834294 B1

L12: Entry 9 of 91 File: USPT Dec 21, 2004

US-PAT-NO: 6834294

DOCUMENT-IDENTIFIER: US 6834294 B1

** See image for <u>Certificate of Correction</u> **

TITLE: Methods and systems for providing and displaying information on a keyboard

DATE-ISSUED: December 21, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Katz; Samuel F. Givat Ze'ev
IL

US-CL-CURRENT: $\underline{709}/\underline{203}$; $\underline{341}/\underline{22}$, $\underline{341}/\underline{23}$, $\underline{709}/\underline{217}$, $\underline{709}/\underline{219}$

10. Document ID: US 6832724 B2

L12: Entry 10 of 91 File: USPT Dec 21, 2004

US-PAT-NO: 6832724

DOCUMENT-IDENTIFIER: US 6832724 B2

TITLE: Electro-optical assembly for image projection, especially in portable instruments

DATE-ISSUED: December 21, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Yavid; Dmitriy	St. James	NY		
Wood; Frederick R.	Medford	NY		
Stern; Miklos	Flusing	NY		
Tan; Chinh	Setauket	NY		
Barkan; Edward	Miller Place	NY		
MacGregor; Shane	Forest Hills	NY		
<u>Katz</u> ; Joseph	Stony Brook	NY		

US-CL-CURRENT: <u>235/454</u>; <u>359/201</u>

Full Title Citation Front Review Classification Date Reference	Claims KMC Drau	m Desc - Ir
	wd Refs Generate OAI	500005000000000000 3
Terms	Documents	
L11 and (AT or ACP or KSQ domain)	91	

Display Format: CIT Change Format

Previous Page Next Page Go to Doc#

Hit List

First Hif Generate Collection Print Fwd Refs Bkwd Refs Generate OACS

Search Results - Record(s) 11 through 20 of 91 returned.

11. Document ID: US 6807223 B2

L12: Entry 11 of 91

File: USPT

Oct 19, 2004

US-PAT-NO: 6807223

DOCUMENT-IDENTIFIER: US 6807223 B2

TITLE: Method of performing code synchronization, and receiver

DATE-ISSUED: October 19, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Katz; Marcos Oulu FI

Glisic; Savo Oulu FI

Iinatti; Jari Oulu FI

US-CL-CURRENT: 375/149

Full Title	Citation	Front	Review	Classification	Date	Reference	Claims	KMAC	Drawn Desc	lmə

12. Document ID: US 6777231 B1

L12: Entry 12 of 91

File: USPT

Aug 17, 2004

US-PAT-NO: 6777231

DOCUMENT-IDENTIFIER: US 6777231 B1

TITLE: Adipose-derived stem cells and lattices

DATE-ISSUED: August 17, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Katz; Adam J. Charlottesville VA

Llull; Ramon Mallorca ES

Futrell; William J. Pittsburgh PA
Hedrick; Marc H. Encino CA
Benhaim; Prosper Los Angeles CA
Lorenz; Hermann Peter Los Angeles CA
Zhu; Min Los Angeles CA

US-CL-CURRENT: <u>435/325</u>; <u>435/366</u>

Full Title	Citation	Front Review	Classification	Date Reference Claims KMC Draw Desc
------------	----------	--------------	----------------	-------------------------------------

13. Document ID: US 6771989 B1

File: USPT Aug 3, 2004 L12: Entry 13 of 91

US-PAT-NO: 6771989

DOCUMENT-IDENTIFIER: US 6771989 B1

TITLE: Method of directional radio communication

DATE-ISSUED: August 3, 2004

INVENTOR-INFORMATION:

COUNTRY CITY STATE ZIP CODE NAME

Katz; Marcos Oulu FI FIYlitalo; Juha T Oulu

US-CL-CURRENT: 455/562.1; 455/561, 455/63.1, 455/63.4

Full	Title	Citation Front	Review Classification	n Date Refere	100	Cla	ims KWC	Draw, Desc - 1
***********	***************************************	*************************************	***************************************	***************************************		•••••		***********************

File: USPT Jul 27, 2004 L12: Entry 14 of 91

US-PAT-NO: 6767536

DOCUMENT-IDENTIFIER: US 6767536 B1

** See image for Certificate of Correction **

TITLE: Recombinant Staphylococcus thioredoxin reductase and inhibitors thereof useful as

antimicrobial agents

DATE-ISSUED: July 27, 2004

INVENTOR-INFORMATION:

CITY STATE ZIP CODE NAME COUNTRY Aharonowitz; Yair Hod Hasharon TI. Borovok; Ilya Ariel IL ' Cohen; Gerald Raanana ILUziel; Orit Kfar-Saba IL

Katz; Leonard Oakland CA

US-CL-CURRENT: <u>424/93.42</u>; <u>424/139.1</u>, <u>424/165.1</u>, <u>424/185.1</u>, <u>424/237.1</u>, <u>424/243.1</u>, <u>424/94.1</u>, <u>435/191</u>, <u>435/252.3</u>, <u>435/36</u>, <u>435/471</u>, <u>435/7.33</u>, <u>435/7.7</u>, <u>435/91.1</u>, <u>435/91.5</u>, 435/91.51

Fuli	Title	Citation Front		Classification	 Reference		Cia	ims Ki	WIC	Draw Des	im
			•			 					
********	*********			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	 	***************************************	***************************************			

File: USPT

Jul 20, 2004

L12: Entry 15 of 91

US-PAT-NO: 6765021

DOCUMENT-IDENTIFIER: US 6765021 B2

TITLE: 2,3,5-substituted biphenyls useful in the treatment of insulin resistance and

hyperglycemia

DATE-ISSUED: July 20, 2004

INVENTOR-INFORMATION:

STATE ZIP CODE NAME CITY COUNTRY Butera; John A. NJ Clarkburg Caufield; Craig E. New York NY Graceffa; Russell F. Hampton NH Greenfield; Alexander Princeton Junction NJ Gundersen; Eric G. Plainsboro NJ Havran; Lisa Marie Bordentown NJ Katz; Alan H. Lawrenceville NJ

US-CL-CURRENT: 514/596; 514/476, 514/485, 514/572, 560/19, 560/43, 562/457, 564/48

Morrisville

Somerset

Robbinsville

Full Title Citation Front Review Classification Date Reference Citatins KMC Braw Desc Ims 16. Document ID: US 6751597 B1

L12: Entry 16 of 91

File: USPT

NC

NJ

NJ

Jun 15, 2004

US-PAT-NO: 6751597

Lennox; Joseph R.

McDevitt; Robert E.

Mayer; Scott C.

DOCUMENT-IDENTIFIER: US 6751597 B1

TITLE: System and method for adaptive trade specification and match-making optimization

DATE-ISSUED: June 15, 2004

INVENTOR-INFORMATION:

CITY NAME STATE ZIP CODE COUNTRY Brodsky; Alex Rockville MD Zelivinski; Stanislav Gaithersburg MD Katz; Marcel Rockville MD Rockville Gozhansky; Alan MD Karpishpan; Sonya Rockville MD

US-CL-CURRENT: <u>705/37</u>; <u>705/35</u>

Full Title Citation Front Review Classification Date Reference Citation Citation KMIC Draw Description

17. Document ID: US 6697353 B2

L12: Entry 17 of 91 File: USPT Feb 24, 2004

US-PAT-NO: 6697353

DOCUMENT-IDENTIFIER: US 6697353 B2

TITLE: Voice-over-ATM switch architecture allowing congestion-dependent transport of

silence cells

DATE-ISSUED: February 24, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Bharucha; Behram H. Millburn N.T Farber; Norman Giuffrida; Thomas S.

Kashper; Arik Katz; Steven S. Freehold Middletown Holmdel

Ocean

NJ NJ NJ

NJ

US-CL-CURRENT: 370/352

18. Document ID: US 6681132 B1

L12: Entry 18 of 91

File: USPT

Jan 20, 2004

US-PAT-NO: 6681132

DOCUMENT-IDENTIFIER: US 6681132 B1

TITLE: Sodium magnetic reasonance imaging used in diagnosing tumors and assessing

response to treatment

DATE-ISSUED: January 20, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Katz; Jose Closter NJ
Kline; Richard Paul Riverdale NY
Wu; Edward X. New York NY

US-CL-CURRENT: 600/410; 324/307, 424/9.2, 436/173, 436/63, 436/64

19. Document ID: US 6680937 B1

L12: Entry 19 of 91

File: USPT

Jan 20, 2004

US-PAT-NO: 6680937

DOCUMENT-IDENTIFIER: US 6680937 B1

TITLE: Telecommunications network architecture for transporting fax, voice and data via

an ATM switch including a STM to ATM terminal adapter

DATE-ISSUED: January 20, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Bharucha; Behram H. Millburn N.T Farber; Norman Freehold NJ Giuffrida; Thomas S. Middletown NJ Kashper; Arik Holmdel NJ Katz; Steven S. Ocean NJ

US-CL-CURRENT: <u>370/353</u>; <u>370/230</u>, <u>370/395.61</u>, <u>370/466</u>

20. Document ID: US 6671499 B1

L12: Entry 20 of 91

File: USPT

Dec 30, 2003

US-PAT-NO: 6671499

DOCUMENT-IDENTIFIER: US 6671499 B1

TITLE: Method for directing antenna beam, and transceiver in a mobile communication

system

DATE-ISSUED: December 30, 2003

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY.

Ylitalo; Juha Oulu FI Katz; Marcos Oulu FI

US-CL-CURRENT: 455/101; 375/299, 455/133, 455/506, 455/562.1

uli Title Citation Front Review Classification Date Reference		Claims 10	MC Dra	w. Desc	lm
Clear Generate Collection Print Fwd Refs I	Bkwd Refs	u wene	fate UA	U5	3
Clear Generate Collection Print Fwd Refs Terms	Do	ocuments	rate OA	<u></u>	

Display Format: CIT Change Format

Previous Page Next Page Go to Doc#

Refine Search

Search Results -

Terms	Documents
L11 and (AT or ACP or KSQ domain)	91

Database:

Database:

US Pre-Grant Publication Full-Text Database
US OCR Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

L12

Refine Search

Recall Text
Clear

Interrupt

Search History

DATE: Friday, March 10, 2006 Printable Copy Create Case

Set Name	Query	Hit Count	Set Name
side by side			result set
DB=US	SPT; PLUR=YES; OP=OR		
<u>L12</u>	L11 and (AT or ACP or KSQ domain)	91	<u>L12</u>
<u>L11</u>	L7 and (KSQ domain)	91	<u>L11</u>
<u>L10</u>	L8 and (KSQ domain)	1	<u>L10</u>
<u>L9</u>	L8 and 17	1	<u>L9</u>
<u>L8</u>	revill.in.	28	<u>L8</u>
<u>L7</u>	Katz.in.	2271	<u>L7</u>
<u>L6</u>	L1 and (trixton or tween)	0	<u>L6</u>
<u>L5</u>	6627427.pn.	1	<u>L5</u>
DB=PC	GPB; PLUR=YES; OP=OR		
<u>L4</u>	L1 and (AT specific for ethylmalonyl)	1	<u>L4</u>
<u>L3</u>	L1 and (KSQ domain)	1	<u>L3</u>
<u>L2</u>	L1 and (loading module)	1	<u>L2</u>
<u>L1</u>	20030235892	1	<u>L1</u>

END OF SEARCH HISTORY

Refine Search

Search Results -

Terms	Documents
6033883.pn.	1

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

L6

Refine Search

Recall Text
Clear

Interrupt

Search History

DATE: Friday, March 10, 2006 Printable Copy Create Case

<u>Set Name</u> side by side		Hit Count	Set Name result set
DB=US	PT; PLUR=YE	ES; OP=OR	•
<u>L6</u>	6033883.pn.	1	<u>L6</u>
<u>L5</u>	6066721.pn.	1	<u>L5</u>
<u>L4</u>	5962290.pn.	1	<u>L4</u>
<u>L3</u>	6303342.pn.	1	<u>L3</u>
<u>L2</u>	5672491.pn.	1	<u>L2</u>
<u>L1</u>	6627427.pn.	1	<u>L1</u>

END OF SEARCH HISTORY

Welcome to STN International! Enter x:x LOGINID: SSSPTA1653HXP PASSWORD: TERMINAL (ENTER 1, 2, 3, OR ?):2 * * * * * * * * Welcome to STN International NEWS 1 Web Page URLs for STN Seminar Schedule - N. America "Ask CAS" for self-help around the clock NEWS 2 NEWS 3 DEC 05 CASREACT(R) - Over 10 million reactions available NEWS 4 DEC 14 2006 MeSH terms loaded in MEDLINE/LMEDLINE DEC 14 2006 MeSH terms loaded for MEDLINE file segment of TOXCENTER NEWS 5 NEWS 6 DEC 14 CA/CAplus to be enhanced with updated IPC codes 7 IPC search and display fields enhanced in CA/CAplus with the DEC 21 NEWS IPC reform NEWS 8 DEC 23 New IPC8 SEARCH, DISPLAY, and SELECT fields in USPATFULL/ USPAT2 NEWS 9 JAN 13 IPC 8 searching in IFIPAT, IFIUDB, and IFICDB NEWS 10 JAN 13 New IPC 8 SEARCH, DISPLAY, and SELECT enhancements added to INPADOC NEWS 11 JAN 17 Pre-1988 INPI data added to MARPAT NEWS 12 JAN 17 IPC 8 in the WPI family of databases including WPIFV NEWS 13 JAN 30 Saved answer limit increased NEWS 14 JAN 31 Monthly current-awareness alert (SDI) frequency added to TULSA NEWS 15 FEB 21 STN AnaVist, Version 1.1, lets you share your STN AnaVist visualization results NEWS 16 FEB 22 Status of current WO (PCT) information on STN NEWS 17 FEB 22 The IPC thesaurus added to additional patent databases on STN NEWS 18 FEB 22 Updates in EPFULL; IPC 8 enhancements added NEWS 19 FEB 27 New STN AnaVist pricing effective March 1, 2006 NEWS 20 FEB 28 MEDLINE/LMEDLINE reload improves functionality NEWS 21 FEB 28 TOXCENTER reloaded with enhancements NEWS 22 FEB 28 REGISTRY/ZREGISTRY enhanced with more experimental spectral property data INSPEC reloaded and enhanced NEWS 23 MAR 01 NEWS 24 MAR 03 Updates in PATDPA; addition of IPC 8 data without attributes NEWS 25 MAR 08 X.25 communication option no longer available after June 2006 NEWS EXPRESS FEBRUARY 15 CURRENT VERSION FOR WINDOWS IS V8.01a, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 19 DECEMBER 2005. V8.0 AND V8.01 USERS CAN OBTAIN THE UPGRADE TO V8.01a AT http://download.cas.org/express/v8.0-Discover/ NEWS HOURS STN Operating Hours Plus Help Desk Availability NEWS INTER General Internet Information NEWS LOGIN Welcome Banner and News Items NEWS PHONE Direct Dial and Telecommunication Network Access to STN NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 15:53:58 ON 10 MAR 2006

=> file medline, uspatful, dgene, embase, wpids, fsta, jicst, biosis, biotechds, scisearch

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION

FULL ESTIMATED COST

0.21 0.21.

FILE 'MEDLINE' ENTERED AT 15:54:39 ON 10 MAR 2006

FILE 'USPATFULL' ENTERED AT 15:54:39 ON 10 MAR 2006
CA INDEXING COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'DGENE' ENTERED AT 15:54:39 ON 10 MAR 2006 COPYRIGHT (C) 2006 THE THOMSON CORPORATION

FILE 'EMBASE' ENTERED AT 15:54:39 ON 10 MAR 2006 Copyright (c) 2006 Elsevier B.V. All rights reserved.

FILE 'WPIDS' ENTERED AT 15:54:39 ON 10 MAR 2006 COPYRIGHT (C) 2006 THE THOMSON CORPORATION

FILE 'FSTA' ENTERED AT 15:54:39 ON 10 MAR 2006 COPYRIGHT (C) 2006 International Food Information Service

FILE 'JICST-EPLUS' ENTERED AT 15:54:39 ON 10 MAR 2006 COPYRIGHT (C) 2006 Japan Science and Technology Agency (JST)

FILE 'BIOSIS' ENTERED AT 15:54:39 ON 10 MAR 2006 Copyright (c) 2006 The Thomson Corporation

FILE 'BIOTECHDS' ENTERED AT 15:54:39 ON 10 MAR 2006 COPYRIGHT (C) 2006 THE THOMSON CORPORATION

FILE 'SCISEARCH' ENTERED AT 15:54:39 ON 10 MAR 2006 Copyright (c) 2006 The Thomson Corporation

=> s polyketide synthase gene L1 1362 POLYKETIDE SYNTHASE GENE

=> s l1 and module L4 237 L1 AND MODULE

=> s 14 and (KSQ domain) L6 13 L4 AND (KSQ DOMAIN)

```
=> s 14 and (AT specific for ethylmalonyl coA)
             6 L4 AND (AT SPECIFIC FOR ETHYLMALONYL COA)
=> s 14 and (ACP domain)
            75 L4 AND (ACP DOMAIN)
=> s 18 and 17 and 16
             1 L8 AND L7 AND L6
=> d 19 ti abs ibib tot
      ANSWER 1 OF 1 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN
L9
ΤI
     Novel recombinant host cell (Saccharopolyspora erythraea) comprising
      recombinant biosynthetic pathways for producing precursor (butyryl CoA)
      required for biosynthesis of a product (propyl-6-deoxyerythronolide B);
         recombinant bacterium useful for antibiotic production
AN
      2002-11559 BIOTECHDS
      DERWENT ABSTRACT:
AB
     NOVELTY - A recombinant host cell (I) having one or more expression
      vectors expressing enzymes (II) capable of making product (P) and
      precursor (PR) required for biosynthesis of (P) in (I), where (I): (a) is
      unable to make (P) due to lack of all/part of a biosynthetic pathway
      required to produce PR; or (b) makes (P) in much smaller amounts due to
      PR being present in low amounts in the absence of (II), is new.
           DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the
      following: (1) a recombinant polyketide synthase
      gene (III) that encodes a loading module comprising a
     ketosynthase (KS)Q domain, an acyl transferase (AT) specific
      for ethylmalonyl CoA, and an acyl carrier protein (
      ACP) domain; and (2) a host cell (IV) that comprises
      (III), and a recombinant gene such as recombinant ccr or icm genes.
           WIDER DISCLOSURE - The following are disclosed: (1) a hybrid
     polyketide synthase (PKS) in which the loading module is
      composed of KSQ domain, an ethylmalonyl CoA specific
     AT domain, and an ACP domain, and AT domain specific
      for malonyl CoA; (2) recombinant DNA expression vectors and methods for
     making a polyketide and its required precursors in any host cell; (3)
     methods and genetic constructs for producing a glycosylated and/or
     hydroxylated polyketide compounds directly in the host cell of interest;
      (4) modified polyketide products of PKS which are further modified by
     hydroxylation and glycosylation reaction to exhibit antibiotic activity;
      and (5) novel ketolide compounds, polyketide compounds with potent
     antibiotic activity of significant interest due to activity against
     antibiotic resistant strain of bacteria.
           BIOTECHNOLOGY - Preferred Host Cell: PR is preferably a primary
     metabolite that is produced in a first cell but not in a second
     heterologous cell. (I) comprises one or more expression vectors that
     drive expression of enzymes capable of making a product (polyketide,
     preferably propyl-6-deoxyerythronolide B (6-dEB) synthesized by modular
     polyketide synthase (PKS)) and a precursor (butyryl CoA) required for the
     biosynthesis of the product in the cell. Optionally, (I) is a eryM mutant
     producing a polyketide. Additionally, (I) comprises: (a) recombinant ccr,
     acsA, bdh, and ech genes; (b) recombinant icm, vdh, ccr, acsA, vdh, and
     ech genes; or (c) recombinant icm, ccr, acsA, bdh, and ech genes.
     Preferably propyl-6-dEB is produced by a modular PKS in a host cell
     comprising mutation in eryM gene, involving a precursor biosynthetic
     enzyme such as propionyl CoA decarboxylase that converts propionyl CoA to
     methyl melanoyl CoA. The cell is preferably further modified to
     overexpress a biotin transferase enzyme encoded by the birA gene. (I) is
```

optionally a Streptomyces fradiae cell expressing one or more genes encoding an erythromycin biosynthetic enzyme, and is producing

15-methylerythromycin.

ACTIVITY - Antimicrobial.

MECHANISM OF ACTION - Antibiotic. No suitable data given.

USE - (I) (Saccharopolyspora erythraea cell which does not express a functional eryM gene product) is useful for producing

14,15-propenylerythromycin and/or the corresponding 14,15-propenyl-6-deoxyerythronolide B. The method involves culturing (I) that expresses

deoxyerythronolide B. The method involves culturing (I) that expresses isobutyryl CoA mutase, valine dehydrogenase, butyryl CoA dehydrogenase, and 6-deoxyerythronolide polyketide synthase. The butyryl CoA dehydrogenase is expressed from gene isolated from Clostridum acetobutylicum or Mycobacterium tuberculosis (fadE25) (claimed). (I) is useful for producing polyketides (both macrolide aglycones and their modified derivatives) that are naturally occurring or produced by recombinant DNA technology. The polyketides produced are useful intermediates in formation of compounds with antibiotic or other activity through hydroxylation, epoxidation, and glycosylation reactions. The polyketides are useful as antibiotics and as intermediates in synthesis of other useful compounds such as erythromycin. The erythromycin analogs produced using (I) are used clinically as prokinetic agents to induce phase III of migrating motor complexes, to increase esophageal peristalsis, etc.

ADMINISTRATION - The polyketide compounds are administered orally, topically, parenterally or by inhalation spray. Dosages of the compound range from 0.01-50 (preferably 0.1-10) mg/kg body weight/day.

range from 0.01-50 (preferably 0.1-10) mg/kg body weight/day.

EXAMPLE - Construction of eryM knockout strains and production of 15-methyl-erythromycin was carried out follows. The construction of two recombinant DNA vectors designed to disrupt the eryM gene in Saccharopolyspora erythraea by single crossover was performed by the following method. These vectors can be used to generate a strain of S.erythraea that produces higher titers of 15-methyl erythromycin A or C than does wild-type S.erythraea under the same conditions without the need for the addition of an exogenous diketide. The desired strain differed from the wild-type strain in that intracellular pools of propanoyl-CoA were greatly reduced, pools of butanoyl-CoA were greatly elevated, and pools of methylmalonyl-CoA remain high. Disruption of the eryM gene, which encoded methylmalonyl decarboxylase, caused loss of erythromycin production that can be restored by feeding propionate, methylpropionate, or propanol in a wild-type strain of S.erythraea. The S.erythraea eryM gene was isolated by PCR or the coding region. An internal fragment of the eryM gene was isolated by polymerase chain reaction (PCR) and cloned into the XbaI and HindIII sites of the vectors pWHM3 (a Streptomyces vector) (conferred thiostrepton resistance) and pOJ260 (a Streptomyces vector) (conferred apramycin resistance) or gene disruption. The resulting vectors were propagated in Escherichia coli ET12567 to obtain unmethylated DNA. The above constructs were then introduced into a high-producing S.erythraea strain for gene disruption by homologous recombination. Protoplast transformation of this strain was very difficult, transformants were only obtained only using alkali-denatured, non-methylated DNA of only the pOJ260-derived construct. The transformant stains were grown for DNA isolation and in a standard two-stage shake flask fermentation procedure to evaluate production. Metabolites were quantitated by ion counting in a mass spectrometer relative to a roxithromycin internal standard. Putative eryM knockout transformants were shown to be correct by Southern blot hybridization. The mutant displayed the same morphology as the parent strain, both in liquid medium and on agar plates. The parent strain and two isolates of the eryM- mutant were grown using the shake flask procedure. In addition to the oil plus propanol feed, culture flasks were fed equivalent levels of oil alone, oil plus butanol, oil plus propionate, and oil plus butyrate. The cultures were killed by the propionate and butyrate feeds, and these flasks were discarded. Samples were taken from other flasks each day and the set was analyzed by ion counting. Production of erythromycin A and B by the eryM- mutant was

similar to that of the corresponding wild-type strain when fed oil alone or oil and propanol in rich medium. For both strains, production of erythromycin A and B was depressed with an oil and butanol feed. While knockout of eryM did not reduce production of erythromycin A and B in rich medium in the dramatic way. The high-producing wild-type strain appeared to produce low levels of 15-methyl-erythromycins when butanol was fed instead of propanol. The eryM- mutant produced a higher maximum percentage 15-methyl-erythromycin A and B with an oil and butanol feed compared to the wild-type strain, demonstrating that propionyl CoA levels were reduced in the eryM- strain. (85 pages)

ACCESSION NUMBER: 2002-11559 BIOTECHDS

TITLE: Novel recombinant host cell (Saccharopolyspora erythraea)

comprising recombinant biosynthetic pathways for producing precursor (butyryl CoA) required for biosynthesis of a

product (propyl-6-deoxyerythronolide B);

recombinant bacterium useful for antibiotic production

AUTHOR: KATZ L; REVILL P

PATENT ASSIGNEE: KOSAN BIOSCIENCES INC
PATENT INFO: WO 2001031049 3 May 2001
APPLICATION INFO: WO 1999-US29447 25 Oct 1999
PRIORITY INFO: US 1999-161414 25 Oct 1999

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2002-256023 [30]

=> d his

(FILE 'HOME' ENTERED AT 15:53:58 ON 10 MAR 2006)

```
FILE 'MEDLINE, USPATFULL, DGENE, EMBASE, WPIDS, FSTA, JICST-EPLUS, BIOSIS, BIOTECHDS, SCISEARCH' ENTERED AT 15:54:39 ON 10 MAR 2006
```

```
L1 1362 S POLYKETIDE SYNTHASE GENE
```

L2 0 S L1 AND (ENCODING LOADING MODULE)

L3 0 S L1 AND (ENCODING STARTER MODULE)

L4 237 S L1 AND MODULE

L5 0 S L4 AND (AT AND KSQ AND ACP DOMAINS)

L6 13 S L4 AND (KSQ DOMAIN)

L7 6 S L4 AND (AT SPECIFIC FOR ETHYLMALONYL COA)

L8 75 S L4 AND (ACP DOMAIN) L9 1 S L8 AND L7 AND L6

=> e katz, 1/au

E1 3 KATZ ZEILIG M/AU
E2 14 KATZ ZVI/AU

E3 0 --> KATZ, L/AU

E4 1 KATZAGIANNAKIS J/AU

E5 1 KATZAKIAN/AU. E6 7 KATZAKIAN A/AU

E7 1 KATZAKIAN A J/AU

E8 2 KATZAKIAN ARTHUR/AU

E9 1 KATZAKIAN JOHN/AU

E10 17 KATZAKIAN JR ARTHUR/AU

E11 1 KATZAKIAN TERRY A/AU

E12 3 KATZAMAN R E/AU

=> e revill, p/au

E1 25 REVILL W PETER/AU

E2 2 REVILL WP/AU

E3 0 --> REVILL, P/AU

E4 33 REVILLA A/AU E5 1 REVILLA A D/AU

E6 1 REVILLA A G/AU

```
REVILLA A G JR/AU
E7
E8
                21
                        REVILLA A L/AU
                10 REVILLA A P/AU
1 REVILLA A P DE/AU
1 REVILLA A V JR/AU
2 REVILLA A Z/AU
E9
               10
E10
E11
E12
```

=> d his

L1

(FILE 'HOME' ENTERED AT 15:53:58 ON 10 MAR 2006)

FILE 'MEDLINE, USPATFULL, DGENE, EMBASE, WPIDS, FSTA, JICST-EPLUS, BIOSIS, BIOTECHDS, SCISEARCH' ENTERED AT 15:54:39 ON 10 MAR 2006

1362 S POLYKETIDE SYNTHASE GENE

0 S L1 AND (ENCODING LOADING MODULE) L2 0 S L1 AND (ENCODING STARTER MODULE) L3

237 S L1 AND MODULE L4

0 S L4 AND (AT AND KSQ AND ACP DOMAINS) L5

13 S L4 AND (KSQ DOMAIN)

6 S L4 AND (AT SPECIFIC FOR ETHYLMALONYL COA) 1.7

75 S L4 AND (ACP DOMAIN) L8 1.9 1 S L8 AND L7 AND L6 E KATZ, L/AU E REVILL, P/AU

=> d 17 ti abs ibib tot

ANSWER 1 OF 6 USPATFULL on STN

Production of polyketides TI

Recombinant host cells that comprise recombinant DNA expression vectors AB that drive expression of a product and a precursor for biosynthesis of that product can be used to produce useful products such as polyketides in host cells that do not naturally produce the product or produce the product at low levels due to the absence of the precursor or the presence of the precursor in rate limiting amounts.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER: 2003:335016 USPATFULL TITLE: Production of polyketides

INVENTOR(S): Katz, Leonard, Oakland, CA, UNITED STATES Revill, Peter, Oakland, CA, UNITED STATES

NUMBER KIND DATE ______ PATENT INFORMATION:

US 2003235892 A1 20031225 US 2003-607809 A1 20030627 APPLICATION INFO.:

Division of Ser. No. US 2000-697022, filed on 25 Oct RELATED APPLN. INFO.:

2000, GRANTED, Pat. No. US 6627427

NUMBER DATE -----

PRIORITY INFORMATION: US 1999-161414P 19991025 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: MORRISON & FOERSTER LLP, 3811 VALLEY CENTRE DRIVE,

SUITE 500, SAN DIEGO, CA, 92130-2332

NUMBER OF CLAIMS: EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 2 Drawing Page(s)

LINE COUNT:

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L7 ANSWER 2 OF 6 USPATFULL on STN

Polynucleotides encoding the fkbA gene of the FK-520 polyketide ΤI synthase gene cluster

Host cells comprising recombinant vectors encoding the FK-520 polyketide AΒ synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

2003:251115 USPATFULL ACCESSION NUMBER:

Polynucleotides encoding the fkbA gene of the FK-520 TITLE:

polyketide synthase gene

cluster

INVENTOR (S): Reeves, Christopher, Orinda, CA, UNITED STATES

> Chu, Daniel, Santa Clara, CA, UNITED STATES Khosla, Chaitan, Palo Alto, CA, UNITED STATES Santi, Daniel, San Francisco, CA, UNITED STATES

Wu, Kai, Foster City, CA, UNITED STATES

KIND DATE NUMBER -----US 2003175901 A1 20030918 US 6759536 B2 20040706 PATENT INFORMATION: US 6759536 B2 20040706 US 2001-940316 A1 20010827 Division of C APPLICATION INFO.: 20010827 (9)

Division of Ser. No. US 1999-410551, filed on 1 Oct RELATED APPLN. INFO.:

1999, GRANTED, Pat. No. US 6503737

DATE NUMBER US 1998-102748P 19981002 (60) PRIORITY INFORMATION: US 1999-123810P 19990311 (60) US 1999-139650P 19990617 (60) DOCUMENT TYPE: Utility

FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: MORRISON & FOERSTER LLP, 3811 VALLEY CENTRE DRIVE,

SUITE 500, SAN DIEGO, CA, 92130-2332

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 9 Drawing Page(s)

LINE COUNT: 13940

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 3 OF 6 USPATFULL on STN

Isolated nucleic acids relating to the fkbA gene within the FK-520 ΤI polyketide synthase gene cluster

AB Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER: 2003:6812 USPATFULL

Isolated nucleic acids relating to the fkbA gene within TITLE:

the FK-520 polyketide synthase

gene cluster

INVENTOR(S): Reeves, Christopher, Orinda, CA, United States

> Chu, Daniel, Santa Clara, CA, United States Khosla, Chaitan, Palo Alto, CA, United States

Santi, Daniel, San Francisco, CA, United States

Wu, Kai, Foster City, CA, United States

PATENT ASSIGNEE(S): Kosan Biosciences, Inc., Hayward, CA, United States

(U.S. corporation)

	NUMBER	KIND	DATE	
PATENT INFORMATION:	US 6503737	B1	20030107	(9)
APPLICATION INFO.:	US 1999-410551		19991001	(9)

DOCUMENT TYPE: Utility FILE SEGMENT: GRANTED

PRIMARY EXAMINER: Achutamurthy, Ponnathapura

ASSISTANT EXAMINER: Kerr, Kathleen M

LEGAL REPRESENTATIVE: Wilach, Brenda J., Ring, Christine, Kaster, Kevin

NUMBER OF CLAIMS: 34 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 8 Drawing Figure(s); 9 Drawing Page(s)

LINE COUNT: 13428

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L7 ANSWER 4 OF 6 USPATFULL on STN

Polyketide synthase enzymes and recombinant DNA constructs therefor Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.
ACCESSION NUMBER: 2002:17448 USPATFULL

TITLE: Polyketide synthase enzymes and recombinant DNA

constructs therefor

INVENTOR(S): Reeves, Christopher, Orinda, CA, UNITED STATES

Chu, Daniel, Santa Clara, CA, UNITED STATES Khosla, Chaitan, Palo Alto, CA, UNITED STATES Santi, Daniel, San Francisco, CA, UNITED STATES

Wu, Kai, Foster City, CA, UNITED STATES

	NUMBER	KIND	DATE	
PATENT INFORMATION:	US 2002010328	A1	20020124	
	US 6660862	B2	20031209	
APPLICATION INFO.:	US 2001-825621	A1	20010403	(9)
DOLYMOD YDDIN THO	District of Con-	37- 770	1000 41000	.

RELATED APPLN. INFO.: Division of Ser. No. US 1999-410551, filed on 1 Oct

1999, PENDING

			NUMBER	DATE	
PRIORITY	INFORMATION:	WO	1999-US22886	19991001	
		US	1998-102748P	19981002	(60)
		US	1999-123810P	19990311	(60)
		US	1999-139650P	19990617	(60)

DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: Carolyn A. Favorito, Morrison & Foerster LLP, Suite

500, 3811 Valley Centre Drive, San Diego, CA,

92130-2332

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

20

NUMBER OF DRAWINGS:

9 Drawing Page(s)

LINE COUNT:

4752

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ANSWER 5 OF 6 WPIDS COPYRIGHT 2006 THE THOMSON CORP on STN

Novel recombinant host cell (Saccharopolyspora erythraea) comprising ΤI recombinant biosynthetic pathways for producing precursor (butyryl CoA) required for biosynthesis of a product (propyl-6-deoxyerythronolide B).

AN 2002-256023 [30] WPIDS

2001-308652 [32] CR

AB WO 200131049 A UPAB: 20040202

> NOVELTY - A recombinant host cell (I) having one or more expression vectors expressing enzymes (II) capable of making product (P) and precursor (PR) required for biosynthesis of (P) in (I), where (I):

- (a) is unable to make (P) due to lack of all/part of a biosynthetic pathway required to produce PR; or
- (b) makes (P) in much smaller amounts due to PR being present in low amounts in the absence of (II), is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

(1) a recombinant polyketide synthase

gene (III) that encodes a loading module comprising a ketosynthase (KS)Q domain, an acyl transferase (AT) specific for ethylmalonyl CoA, and an acyl carrier protein (ACP) domain; and

(2) a host cell (IV) that comprises (III), and a recombinant gene such as recombinant ccr or icm genes.

ACTIVITY - Antimicrobial.

MECHANISM OF ACTION - Antibiotic.

No suitable data given.

- USE (I) (Saccharopolyspora erythraea cell which does not express a functional eryM gene product) is useful for producing 14,15propenylerythromycin and/or the corresponding 14,15-propenyl-6deoxyerythronolide B. The method involves culturing (I) that expresses isobutyryl CoA mutase, valine dehydrogenase, butyryl CoA dehydrogenase, and 6-deoxyerythronolide polyketide synthase. The butyryl CoA dehydrogenase is expressed from gene isolated from Clostridum acetobutylicum or Mycobacterium tuberculosis (fadE25) (claimed).
- (I) is useful for producing polyketides (both macrolide aglycones and their modified derivatives) that are naturally occurring or produced by recombinant DNA technology. The polyketides produced are useful intermediates in formation of compounds with antibiotic or other activity through hydroxylation, epoxidation, and glycosylation reactions. The polyketides are useful as antibiotics and as intermediates in synthesis of other useful compounds such as erythromycin. The erythromycin analogs produced using (I) are used clinically as prokinetic agents to induce phase III of migrating motor complexes, to increase esophageal peristalsis, etc.

Dwq.0/2

ACCESSION NUMBER: 2002-256023 [30] WPIDS

CROSS REFERENCE: 2001-308652 [32] DOC. NO. CPI:

C2002-076316

TITLE:

Novel recombinant host cell (Saccharopolyspora erythraea)

comprising recombinant biosynthetic pathways for producing precursor (butyryl CoA) required for

biosynthesis of a product (propyl-6-deoxyerythronolide

B).

DERWENT CLASS:

B03 B04 B05 C06 D16

INVENTOR(S):

KATZ, L; REVILL, P; DAYEM, L; KEALEY, J; SANTI, D

PATENT ASSIGNEE(S): (KOSA-N) KOSAN BIOSCIENCES INC; (DAYE-I) DAYEM L;

(KEAL-I) KEALEY J; (SANT-I) SANTI D; (KATZ-I) KATZ L;

(REVI-I) REVILL P

COUNTRY COUNT:

PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG
WO 2001031049 A2 20010503 (200230) * EN 85

RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ

NL OA PT SD SE SL SZ TZ UG ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE

SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AU 2001012317 A 20010508 (200230)

95

EP 1224317 A2 20020724 (200256) EN

R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT

RO SE SI

US 2002142401 A1 20021003 (200267) US 6627427 B1 20030930 (200367) US 2003235892 A1 20031225 (200408)

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2001031049	A2	WO 2000-US29447	20001025
AU 2001012317	A	AU 2001-12317	20001025
EP 1224317	A2	EP 2000-973861	20001025
		WO 2000-US29447	20001025
US 2002142401	Al Provisional	US 1999-161414P	19991025
	Provisional	US 1999-161703P	19991027
	Provisional	US 2000-206082P	20000518
•	Div ex	US 2000-699136	20001027
		US 2001-942407	20010829
US 6627427	B1 Provisional	US 1999-161414P	19991025
		US 2000-697022	20001025
US 2003235892	Al Provisional	US 1999-161414P	19991025
	Div ex	US 2000-697022	20001025
		US 2003-607809	20030627

FILING DETAILS:

PATENT NO	KIND	PATENT NO
AU 2001012317 EP 1224317 US 2003235892	A Based on A2 Based on A1 Div ex	WO 2001031049 WO 2001031049 US 6627427
PRIORITY APPLN. INFO	: US 1999-161414P 1999-161703P 2000-206082P 2000-699136 2001-942407 2000-697022 2003-607809	19991025; US 19991027; US 20000518; US 20001027; US 20010829; US 20001025; US 20030627

L7 ANSWER 6 OF 6 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN.
TI Novel recombinant host cell (Saccharopolyspora erythraea) comprising recombinant biosynthetic pathways for producing precursor (butyryl CoA)

required for biosynthesis of a product (propyl-6-deoxyerythronolide B); recombinant bacterium useful for antibiotic production

DERWENT ABSTRACT:

NOVELTY - A recombinant host cell (I) having one or more expression vectors expressing enzymes (II) capable of making product (P) and precursor (PR) required for biosynthesis of (P) in (I), where (I): (a) is unable to make (P) due to lack of all/part of a biosynthetic pathway required to produce PR; or (b) makes (P) in much smaller amounts due to PR being present in low amounts in the absence of (II), is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following: (1) a recombinant polyketide synthase gene (III) that encodes a loading module comprising a ketosynthase (KS)Q domain, an acyl transferase (AT) specific for ethylmalonyl CoA, and an acyl carrier protein (ACP) domain; and (2) a host cell (IV) that comprises (III), and a recombinant gene such as recombinant ccr or icm genes.

WIDER DISCLOSURE - The following are disclosed: (1) a hybrid polyketide synthase (PKS) in which the loading module is composed of KSQ domain, an ethylmalonyl CoA specific AT domain, and an ACP domain, and AT domain specific for malonyl CoA; (2) recombinant DNA expression vectors and methods for making a polyketide and its required precursors in any host cell; (3) methods and genetic constructs for producing a glycosylated and/or hydroxylated polyketide compounds directly in the host cell of interest; (4) modified polyketide products of PKS which are further modified by hydroxylation and glycosylation reaction to exhibit antibiotic activity; and (5) novel ketolide compounds, polyketide compounds with potent antibiotic activity of significant interest due to activity against antibiotic resistant strain of bacteria.

BIOTECHNOLOGY - Preferred Host Cell: PR is preferably a primary metabolite that is produced in a first cell but not in a second heterologous cell. (I) comprises one or more expression vectors that drive expression of enzymes capable of making a product (polyketide, preferably propyl-6-deoxyerythronolide B (6-dEB) synthesized by modular polyketide synthase (PKS)) and a precursor (butyryl CoA) required for the biosynthesis of the product in the cell. Optionally, (I) is a eryM mutant producing a polyketide. Additionally, (I) comprises: (a) recombinant ccr, acsA, bdh, and ech genes; (b) recombinant icm, vdh, ccr, acsA, vdh, and ech genes; or (c) recombinant icm, ccr, acsA, bdh, and ech genes. Preferably propyl-6-dEB is produced by a modular PKS in a host cell comprising mutation in eryM gene, involving a precursor biosynthetic enzyme such as propionyl CoA decarboxylase that converts propionyl CoA to methyl melanoyl CoA. The cell is preferably further modified to overexpress a biotin transferase enzyme encoded by the birA gene. (I) is optionally a Streptomyces fradiae cell expressing one or more genes encoding an erythromycin biosynthetic enzyme, and is producing 15-methylerythromycin.

ACTIVITY - Antimicrobial.

MECHANISM OF ACTION - Antibiotic. No suitable data given. USE - (I) (Saccharopolyspora erythraea cell which does not express a functional eryM gene product) is useful for producing 14,15-propenylerythromycin and/or the corresponding 14,15-propenyl-6deoxyerythronolide B. The method involves culturing (I) that expresses isobutyryl CoA mutase, valine dehydrogenase, butyryl CoA dehydrogenase, and 6-deoxyerythronolide polyketide synthase. The butyryl CoA dehydrogenase is expressed from gene isolated from Clostridum acetobutylicum or Mycobacterium tuberculosis (fadE25) (claimed). (I) is useful for producing polyketides (both macrolide aglycones and their modified derivatives) that are naturally occurring or produced by recombinant DNA technology. The polyketides produced are useful intermediates in formation of compounds with antibiotic or other activity through hydroxylation, epoxidation, and glycosylation reactions. The polyketides are useful as antibiotics and as intermediates in synthesis of other useful compounds such as erythromycin. The erythromycin analogs

produced using (I) are used clinically as prokinetic agents to induce phase III of migrating motor complexes, to increase esophageal peristalsis, etc.

ADMINISTRATION - The polyketide compounds are administered orally, topically, parenterally or by inhalation spray. Dosages of the compound range from 0.01-50 (preferably 0.1-10) mg/kg body weight/day.

EXAMPLE - Construction of eryM knockout strains and production of 15-methyl-erythromycin was carried out follows. The construction of two recombinant DNA vectors designed to disrupt the eryM gene in Saccharopolyspora erythraea by single crossover was performed by the following method. These vectors can be used to generate a strain of S.erythraea that produces higher titers of 15-methyl erythromycin A or C than does wild-type S.erythraea under the same conditions without the need for the addition of an exogenous diketide. The desired strain differed from the wild-type strain in that intracellular pools of propanoyl-CoA were greatly reduced, pools of butanoyl-CoA were greatly elevated, and pools of methylmalonyl-CoA remain high. Disruption of the eryM gene, which encoded methylmalonyl decarboxylase, caused loss of erythromycin production that can be restored by feeding propionate, methylpropionate, or propanol in a wild-type strain of S.erythraea. The S.erythraea eryM gene was isolated by PCR or the coding region. An internal fragment of the eryM gene was isolated by polymerase chain reaction (PCR) and cloned into the XbaI and HindIII sites of the vectors pWHM3 (a Streptomyces vector) (conferred thiostrepton resistance) and pOJ260 (a Streptomyces vector) (conferred apramycin resistance) or gene disruption. The resulting vectors were propagated in Escherichia coli ET12567 to obtain unmethylated DNA. The above constructs were then introduced into a high-producing S.erythraea strain for gene disruption by homologous recombination. Protoplast transformation of this strain was very difficult, transformants were only obtained only using alkali-denatured, non-methylated DNA of only the pOJ260-derived construct. The transformant stains were grown for DNA isolation and in a standard two-stage shake flask fermentation procedure to evaluate production. Metabolites were quantitated by ion counting in a mass spectrometer relative to a roxithromycin internal standard. Putative eryM knockout transformants were shown to be correct by Southern blot hybridization. The mutant displayed the same morphology as the parent strain, both in liquid medium and on agar plates. The parent strain and two isolates of the eryM- mutant were grown using the shake flask procedure. In addition to the oil plus propanol feed, culture flasks were fed equivalent levels of oil alone, oil plus butanol, oil plus propionate, and oil plus butyrate. The cultures were killed by the propionate and butyrate feeds, and these flasks were discarded. Samples were taken from other flasks each day and the set was analyzed by ion counting. Production of erythromycin A and B by the eryM- mutant was similar to that of the corresponding wild-type strain when fed oil alone or oil and propanol in rich medium. For both strains, production of erythromycin A and B was depressed with an oil and butanol feed. While knockout of eryM did not reduce production of erythromycin A and B in rich medium in the dramatic way. The high-producing wild-type strain appeared to produce low levels of 15-methyl-erythromycins when butanol was fed instead of propanol. The eryM- mutant produced a higher maximum percentage 15-methyl-erythromycin A and B with an oil and butanol feed compared to the wild-type strain, demonstrating that propionyl CoA levels were reduced in the eryM- strain. (85 pages)

ACCESSION NUMBER: 2002-11559 BIOTECHDS

TITLE: Novel recombinant host cell (Saccharopolyspora erythraea) comprising recombinant biosynthetic pathways for producing precursor (butyryl CoA) required for biosynthesis of a

product (propyl-6-deoxyerythronolide B);

recombinant bacterium useful for antibiotic production

KATZ L; REVILL P

PATENT ASSIGNEE: KOSAN BIOSCIENCES INC

AUTHOR:

PATENT INFO: WO 2001031049 3 May 2001 APPLICATION INFO: WO 1999-US29447 25 Oct 1999 PRIORITY INFO: US 1999-161414 25 Oct 1999

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2002-256023 [30]

=> d his

(FILE 'HOME' ENTERED AT 15:53:58 ON 10 MAR 2006)

FILE 'MEDLINE, USPATFULL, DGENE, EMBASE, WPIDS, FSTA, JICST-EPLUS; BIOSIS, BIOTECHDS, SCISEARCH' ENTERED AT 15:54:39 ON 10 MAR 2006

L1 1362 S POLYKETIDE SYNTHASE GENE

L2 0 S L1 AND (ENCODING LOADING MODULE)

L3 0 S L1 AND (ENCODING STARTER MODULE)

L4 237 S L1 AND MODULE

L5 0 S L4 AND (AT AND KSQ AND ACP DOMAINS)

L6 13 S L4 AND (KSQ DOMAIN)

L7 6 S L4 AND (AT SPECIFIC FOR ETHYLMALONYL COA)

L8 75 S L4 AND (ACP DOMAIN)
L9 1 S L8 AND L7 AND L6

E KATZ, L/AU E REVILL, P/AU

=> s 16 and 18

L10 7 L6 AND L8

=> d 110 ti abs ibib tot

L10 ANSWER 1 OF 7 USPATFULL on STN

TI Recombinant narbonolide polyketide synthase

AB Recombinant DNA compounds that encode all or a portion of the narbonolide polyketide synthase are used to express recombinant polyketide synthase genes in host cells for the production of narbonolide, narbonolide derivatives, and polyketides that are useful as antibiotics and as intermediates in the synthesis of compounds with pharmaceutical value.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER: 2005:30813 USPATFULL

TITLE: Recombinant narbonolide polyketide synthase INVENTOR(S): Ashley, Gary, Alameda, CA, UNITED STATES

Betlach, Melanie C., San Francisco, CA, UNITED STATES

Betlach, Mary, San Francisco, CA, UNITED STATES McDaniel, Robert, Palo Alto, CA, UNITED STATES

Tang, Li, Foster City, CA, UNITED STATES

		NUMBER	KIND	DATE	
PATENT INFORMATION:	US	2005026244	A1	20050203	
APPLICATION INFO.:	US	2004-468828	A1	20040415	(10)
	WO	2002-US5642		20020222	

RELATED APPLN. INFO.: Continuation of Ser. No. US 2001-793708, filed on 22

Feb 2001, PENDING Continuation-in-part of Ser. No. US 2000-657440, filed on 7 Sep 2000, GRANTED, Pat. No. US 6509455 Division of Ser. No. US 1999-320878, filed on

27 May 1999, GRANTED, Pat. No. US 6117659

Continuation-in-part of Ser. No. US 1998-141908, filed

on 28 Aug 1998, GRANTED, Pat. No. US 6503741

Continuation-in-part of Ser. No. US 1998-73538, filed

on 6 May 1998, GRANTED, Pat. No. US 6558942

Continuation-in-part of Ser. No. US 1997-846247, filed

on 30 Apr 1997, GRANTED, Pat. No. US 6391594

DOCUMENT TYPE: Utility APPLICATION FILE SEGMENT:

MORRISON & FOERSTER LLP, 755 PAGE MILL RD, PALO ALTO, LEGAL REPRESENTATIVE:

CA, 94304-1018

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 6 Drawing Page(s)

LINE COUNT: 7804

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 2 OF 7 USPATFULL on STN

ΤI Polyketides and their synthesis

The complete sequence of the gene cluster for the monensin type I AB polyketide synthase, from S. cinnamonensis, is provided. Thus variant polyketides containing monensin-derived elements can be genetically engineered. Furthermore there are novel features, e.g. a regulatory protein mon RI, which are of wide utility.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

2004:280345 USPATFULL ACCESSION NUMBER:

Polyketides and their synthesis TITLE:

INVENTOR(S): Leadley, Peter Francis, Cambridge, UNITED KINGDOM

Staunton, James, Cambridge, UNITED KINGDOM Oliynyk, Mark Yan, Cambridge, UNITED KINGDOM

NUMBER KIND DATE ______ US 2004219645 A1 20041104 US 2002-980217 A1 20020506 (9) WO 2001-GB2072 20010530 PATENT INFORMATION: APPLICATION INFO.:

NUMBER DATE

GB 1999-12563 19990528 PRIORITY INFORMATION:

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: DANN, DORFMAN, HERRELL & SKILLMAN, saet, 1601 MARKET

STREET, PHILADELPHIA, PA, 19103-2307

NUMBER OF CLAIMS: 45 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 4 Drawing Page(s)

LINE COUNT: 8550

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 3 OF 7 USPATFULL on STN

Hybrid glycosylated products and their production and use ΤI The present invention relates to hybrid glycosylated products, and in AB particular, to natural products such as polyketides and glycopeptides, and to processes for their preparation. The invention is particularly concerned with recombinant cells in which a cloned microbial qlycosyltransferase can be conveniently screened for its ability to generate specific glycosylated derivatives when supplied with polyketide, peptide, or polyketide-peptides as substrates. The invention demonstrates that cloned glycosyltransferases when rapidly screened for their ability to attach a range of activated sugars to a range of exogenously supplied or endogenously generated aglycone templates, show a surprising flexibility towards both aglycone and sugar substrates, and that this process allows the production of glycosylated polyketides in good yield. This overcomes the problem not only of supplying novel sugar attachments to individual polyketides, including polyketides altered by genetic engineering, but also of increasing the diversity of polyketide

libraries by combinatorial attachment of sugars.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER: 2003:288667 USPATFULL

Hybrid glycosylated products and their production and TITLE:

Leadlay, Peter Francis, Gaupe Rd Cambridge, UNITED INVENTOR (S):

KINGDOM

Staunton, James, Cambridge, UNITED KINGDOM Gaisser, Sabine, Cambridge, UNITED KINGDOM

KIND DATE NUMBER ______ US 2003203425 A1 20031030 US 2003-257549 A1 20030325 (10) WO 2001-GB1743 20010417 PATENT INFORMATION: APPLICATION INFO.:

NUMBER DATE

GB 2000-9207 20000413 PRIORITY INFORMATION:

DOCUMENT TYPE: Utility FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: DANN, DORFMAN, HERRELL & SKILLMAN, 1601 MARKET STREET,

SUITE 2400, PHILADELPHIA, PA, 19103-2307

NUMBER OF CLAIMS: 57 EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 40 Drawing Page(s) LINE COUNT: 2503

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 4 OF 7 USPATFULL on STN

TI Heterologous production of 15-methyl-6-deoxyerthronolide B

Recombinant host cells that comprise recombinant DNA expression vectors AB that drive expression of a product and a precursor for biosynthesis of that product can be used to produce useful products such as polyketides in host cells that do not naturally produce the product or produce the product at low levels due to the absence of the precursor or the presence of the precursor in rate limiting amounts.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER: 2003:260669 USPATFULL

Heterologous production of 15-methyl-6-TITLE:

deoxyerthronolide B

Katz, Leonard, Oakland, CA, United States INVENTOR(S):

Revill, Peter, Oakland, CA, United States

PATENT ASSIGNEE(S): Kosan Biosciences, Inc., Hayward, CA, United States

(U.S. corporation)

NUMBER KIND DATE -----US 6627427 B1 20030930 US 2000-697022 20001025 PATENT INFORMATION: 20001025 (9) APPLICATION INFO.:

> NUMBER DATE -----

US 1999-161414P 19991025 (60) PRIORITY INFORMATION:

DOCUMENT TYPE: Utility FILE SEGMENT: GRANTED

PRIMARY EXAMINER: Achutamurthy, Ponnathapu ASSISTANT EXAMINER: Kerr, Kathleen

LEGAL REPRESENTATIVE: Morrison & Foerster LLP, Kaster, Kevin

NUMBER OF CLAIMS: 12 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 20 Drawing Figure(s); 20 Drawing Page(s)

LINE COUNT: 3167

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 5 OF 7 USPATFULL on STN

TI Recombinant narbonolide polyketide synthase

Recombinant DNA compounds that encode all or a portion of the narbonolide polyketide synthase are used to express recombinant polyketide synthase genes in host cells for the production of narbonolide, narbonolide derivatives, and polyketides that are useful as antibiotics and as intermediates in the synthesis of compounds with pharmaceutical value.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER:

2003:152931 USPATFULL

TITLE:

Recombinant narbonolide polyketide synthase

INVENTOR(S):

Ashley, Gary, Alameda, CA, UNITED STATES

Betlach, Melanie C., San Francisco, CA, UNITED STATES Betlach, Mary, San Francisco, CA, UNITED STATES McDaniel, Robert, Palo Alto, CA, UNITED STATES

Tang, Li, Foster City, CA, UNITED STATES

	NUMBER	KIND DATE	
PATENT INFORMATION:	US 2003104597	A1 20030605	·
	US 6902913	B2 20050607	
APPLICATION INFO.:	US 2001-793708	A1 20010222	(9)
RELATED APPLN. INFO.:	Continuation-in-p	part of Ser. No.	US 2000-657440, filed
	on 7 Sep 2000, PE	ENDING Division of	of Ser. No. US
	1999-320878, file	ed on 27 May 1999	PATENTED

Continuation-in-part of Ser. No. US 1998-141908, filed on 28 Aug 1998, PENDING Continuation-in-part of Ser.

No. US 1998-73538, filed on 6 May 1998, PENDING

Continuation-in-part of Ser. No. US 1997-846247, filed

on 30 Apr 1997, PENDING

	NUMBER	DATE
PRIORITY INFORMATION:	US 1999-134990P	19990520 (60)
	US 1999-119139P	19990208 (60)
	US 1998-100880P	19980922 (60)
	US 1998-87080P	19980528 (60)
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
	_	_

LEGAL REPRESENTATIVE: Carolyn A. Favorito, Morrison & Foerster LLP, Suite

500, 3811 Valley Center Drive, San Diego, CA, 92130

NUMBER OF CLAIMS: 20 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 6 Drawing Page(s)

LINE COUNT: 4563

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 6 OF 7 USPATFULL on STN

TI DNA encoding methymycin and pikromycin

AB A biosynthetic gene cluster for methymycin and pikromycin as well as a biosynthetic gene cluster for desosamine is provided.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

ACCESSION NUMBER:

2003:106911 USPATFULL

TITLE:

DNA encoding methymycin and pikromycin

INVENTOR (S):

Sherman, David H., St. Louis Park, MN, UNITED STATES

Liu, Hung-Wen, Austin, TX, UNITED STATES
Xue, Yongquan, St. Paul, MN, UNITED STATES

	NUMBER	KIND	DATE		
PATENT INFORMATION:	US 2003073824	A1	20030417		
APPLICATION INFO.:	US 2001-988384	A1	20011119	(9)	
RELATED APPLN. INFO.:	Continuation of	Ser. No	. WO 1999-	US14398,	filed on 25
	Jun 1999, UNKNOW	٧N			

DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: SCHWEGMAN, LUNDBERG, WOESSNER & KLUTH, P.A., P.O. BOX

2938, MINNEAPOLIS, MN, 55402

NUMBER OF CLAIMS: 60 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 164 Drawing Page(s)

LINE COUNT: 10898

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L10 ANSWER 7 OF 7 BIOTECHDS COPYRIGHT 2006 THE THOMSON CORP. on STN'

TI Novel recombinant host cell (Saccharopolyspora erythraea) comprising recombinant biosynthetic pathways for producing precursor (butyryl CoA) required for biosynthesis of a product (propyl-6-deoxyerythronolide B); recombinant bacterium useful for antibiotic production

AN 2002-11559 BIOTECHDS

AB DERWENT ABSTRACT:

NOVELTY - A recombinant host cell (I) having one or more expression vectors expressing enzymes (II) capable of making product (P) and precursor (PR) required for biosynthesis of (P) in (I), where (I): (a) is unable to make (P) due to lack of all/part of a biosynthetic pathway required to produce PR; or (b) makes (P) in much smaller amounts due to PR being present in low amounts in the absence of (II), is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following: (1) a recombinant polyketide synthase gene (III) that encodes a loading module comprising a ketosynthase (KS)Q domain, an acyl transferase (AT) specific for ethylmalonyl CoA, and an acyl carrier protein (ACP) domain; and (2) a host cell (IV) that comprises (III), and a recombinant gene such as recombinant ccr or icm genes.

WIDER DISCLOSURE - The following are disclosed: (1) a hybrid polyketide synthase (PKS) in which the loading module is composed of KSQ domain, an ethylmalonyl CoA specific AT domain, and an ACP domain, and AT domain specific for malonyl CoA; (2) recombinant DNA expression vectors and methods for making a polyketide and its required precursors in any host cell; (3) methods and genetic constructs for producing a glycosylated and/or hydroxylated polyketide compounds directly in the host cell of interest; (4) modified polyketide products of PKS which are further modified by hydroxylation and glycosylation reaction to exhibit antibiotic activity; and (5) novel ketolide compounds, polyketide compounds with potent antibiotic activity of significant interest due to activity against antibiotic resistant strain of bacteria.

BIOTECHNOLOGY - Preferred Host Cell: PR is preferably a primary metabolite that is produced in a first cell but not in a second heterologous cell. (I) comprises one or more expression vectors that drive expression of enzymes capable of making a product (polyketide, preferably propyl-6-deoxyerythronolide B (6-dEB) synthesized by modular polyketide synthase (PKS)) and a precursor (butyryl CoA) required for the biosynthesis of the product in the cell. Optionally, (I) is a eryM mutant producing a polyketide. Additionally, (I) comprises: (a) recombinant ccr, acsA, bdh, and ech genes; (b) recombinant icm, vdh, ccr, acsA, vdh, and ech genes; or (c) recombinant icm, ccr, acsA, bdh, and ech genes. Preferably propyl-6-dEB is produced by a modular PKS in a host cell comprising mutation in eryM gene, involving a precursor biosynthetic

enzyme such as propionyl CoA decarboxylase that converts propionyl CoA to methyl melanoyl CoA. The cell is preferably further modified to overexpress a biotin transferase enzyme encoded by the birA gene. (I) is optionally a Streptomyces fradiae cell expressing one or more genes encoding an erythromycin biosynthetic enzyme, and is producing 15-methylerythromycin.

ACTIVITY - Antimicrobial.

MECHANISM OF ACTION - Antibiotic. No suitable data given.

USE - (I) (Saccharopolyspora erythraea cell which does not express a actional eryM gene product) is useful for producing

functional eryM gene product) is useful for producing 14,15-propenylerythromycin and/or the corresponding 14,15-propenyl-6deoxyerythronolide B. The method involves culturing (I) that expresses isobutyryl CoA mutase, valine dehydrogenase, butyryl CoA dehydrogenase, and 6-deoxyerythronolide polyketide synthase. The butyryl COA dehydrogenase is expressed from gene isolated from Clostridum acetobutylicum or Mycobacterium tuberculosis (fadE25) (claimed). (I) is useful for producing polyketides (both macrolide aglycones and their modified derivatives) that are naturally occurring or produced by recombinant DNA technology. The polyketides produced are useful intermediates in formation of compounds with antibiotic or other activity through hydroxylation, epoxidation, and glycosylation reactions. The polyketides are useful as antibiotics and as intermediates in synthesis of other useful compounds such as erythromycin. The erythromycin analogs produced using (I) are used clinically as prokinetic agents to induce phase III of migrating motor complexes, to increase esophageal peristalsis, etc.

ADMINISTRATION - The polyketide compounds are administered orally, topically, parenterally or by inhalation spray. Dosages of the compound range from 0.01-50 (preferably 0.1-10) mg/kg body weight/day.

EXAMPLE - Construction of eryM knockout strains and production of 15-methyl-erythromycin was carried out follows. The construction of two recombinant DNA vectors designed to disrupt the eryM gene in Saccharopolyspora erythraea by single crossover was performed by the following method. These vectors can be used to generate a strain of S.erythraea that produces higher titers of 15-methyl erythromycin A or C than does wild-type S.erythraea under the same conditions without the need for the addition of an exogenous diketide. The desired strain differed from the wild-type strain in that intracellular pools of propanoyl-CoA were greatly reduced, pools of butanoyl-CoA were greatly elevated, and pools of methylmalonyl-CoA remain high. Disruption of the eryM gene, which encoded methylmalonyl decarboxylase, caused loss of erythromycin production that can be restored by feeding propionate, methylpropionate, or propanol in a wild-type strain of S.erythraea. The S.erythraea eryM gene was isolated by PCR or the coding region. An internal fragment of the eryM gene was isolated by polymerase chain reaction (PCR) and cloned into the XbaI and HindIII sites of the vectors pWHM3 (a Streptomyces vector) (conferred thiostrepton resistance) and pOJ260 (a Streptomyces vector) (conferred apramycin resistance) or gene disruption. The resulting vectors were propagated in Escherichia coli ET12567 to obtain unmethylated DNA. The above constructs were then introduced into a high-producing S.erythraea strain for gene disruption by homologous recombination. Protoplast transformation of this strain was very difficult, transformants were only obtained only using alkali-denatured, non-methylated DNA of only the pOJ260-derived construct. The transformant stains were grown for DNA isolation and in a standard two-stage shake flask fermentation procedure to evaluate production. Metabolites were quantitated by ion counting in a mass spectrometer relative to a roxithromycin internal standard. Putative eryM knockout transformants were shown to be correct by Southern blot hybridization. The mutant displayed the same morphology as the parent strain, both in liquid medium and on agar plates. The parent strain and two isolates of the eryM- mutant were grown using the shake flask procedure. In addition to the oil plus propanol feed, culture flasks were fed equivalent levels of oil alone, oil plus butanol, oil plus propionate, and oil plus butyrate. The cultures were killed by the propionate and butyrate feeds, and these flasks were discarded. Samples were taken from other flasks each day and the set was analyzed by ion counting. Production of erythromycin A and B by the eryM- mutant was similar to that of the corresponding wild-type strain when fed oil alone or oil and propanol in rich medium. For both strains, production of erythromycin A and B was depressed with an oil and butanol feed. While knockout of eryM did not reduce production of erythromycin A and B in rich medium in the dramatic way. The high-producing wild-type strain appeared to produce low levels of 15-methyl-erythromycins when butanol was fed instead of propanol. The eryM- mutant produced a higher maximum percentage 15-methyl-erythromycin A and B with an oil and butanol feed compared to the wild-type strain, demonstrating that propionyl CoA levels were reduced in the eryM- strain. (85 pages)

ACCESSION NUMBER: 2002-11559 BIOTECHDS

TITLE: Novel recombinant host cell (Saccharopolyspora erythraea)

comprising recombinant biosynthetic pathways for producing precursor (butyryl CoA) required for biosynthesis of a

product (propyl-6-deoxyerythronolide B);

recombinant bacterium useful for antibiotic production

AUTHOR: KATZ L; REVILL P

PATENT ASSIGNEE: KOSAN BIOSCIENCES INC
PATENT INFO: WO 2001031049 3 May 2001
APPLICATION INFO: WO 1999-US29447 25 Oct 1999
PRIORITY INFO: US 1999-161414 25 Oct 1999

DOCUMENT TYPE: Patent LANGUAGE: English

OTHER SOURCE: WPI: 2002-256023 [30]