

Fig. 3.1 State space reconstruction methodology. State space reconstruction is based on $x(t) = h[s(t)] = h[f^t[s(0)]]$ where h[] is a function $h: M \to \mathbb{R}$, defined on the trajectory s(t). f is the true dynamical system, $f: M \to M$, defined as evolution function and f^t , with time evolution $t \in \mathbb{N}$ which is the t-th iteration of f that corresponds to an initial position $s(0) \in M$. The time-delay embedding represented as the Φ , maps the original d-dimensional state s(t) into the m-dimensional uniform time-delay embedding matrix $\mathbf{X}(t)$. The transformation map Ψ maps $\mathbf{X}(t)$ into a new state y(t) of dimensions n < m. (A) M-dimensional state space (e.g. Lorenz system); (B) Delayed copies of 1-dimensional x(t) from the Lorenz system; (C) m-dimensional reconstructed state space with m and τ , and (D) y(t) is the n-dimensional reconstructed state space. The total reconstruction map is represented as $\Xi = \Psi \circ \Phi$ where Φ is the delay reconstruction map and Ψ is the coordinate transformation map. This figure is adapted from the work of Casdagli et al. (1991); Quintana-Duque (2012); Uzal et al. (2011) and R code to reproduce the figure is available from Xochicale (2018).