填空

- ▶ 输入当前日期(当天日期) ctrl+; , 系统时间 Ctrl+Shift+;
- ▶ 工作表的单元格中输入(360),此单元格按默认格式会显示-360
- ► 某一列有 0, 1, 2···15 共 16 个数据, 点击"自动筛选"后出现下拉箭头, 如果我们选择下拉箭头中的"6".则 15 个数据只剩下 **1** 个数据("6" 这一个数据)。
- ▶ 求样本方差函数 var , 求样本标准差(标准偏差) stdev
- ▶ 连接运算符号 &
- 数据位数太长,自动改为 科学计数
- ▶ =AND() 同时成立输出 TRUE,=OR()只要有一个成立输出 TRUE
- ▶ 单元格的地址是由<u>行号</u>和<u>列标</u>两部分组成
- ▶ 绝对地址引用符号 \$
- ▶ 产生一个大于等于 0 且小于 1 的均匀分布的随机数函数 rand ()
- ▶ 产生 0 到 10 随机整数函数 randbetween (0, 10)
- ▶ 生成 0 到 10 随机整数的公式是 **=RANDBETWEEN(0,10)**
- ▶ 生成 0 到 10 随机数的公式是=RAND()*10
- ▶ 求最大值,函数 =MAX();求总和,函数 =SUM()
- ▶ 求总体算术平均数的函数是 AVERAGE
- ▶ 求总体方差的函数是 VAR.P
- ▶ 求总体标准差的函数是 STDEV.P

计算平均值 average

平均数分析 means

中位数 media

几何平均数 Geomean ()

公式必须以 = 开头

生成平均值为 50, 标准差为 10 的正态分布的随机数的公式为=NORM.INV(RAND(),50,10) 极差=最大-最小

清除——去掉的是单元格的内容格式和标注,但单元格保留;

二位散点图,清除某组(对)数据,相应的数据点消失

删除——扣除掉整个单元格

删除工作表中与图标链接的数据时,图表 自动删除相应的数据点

修改某个数据,与该数据有关的图表 也做相应改变

删除整个工作表,选中要删除的工作表标签,再选择"编辑"菜单中"删除工作表"命令 安装分析数据库——【工具】【加载宏】【分析工具库】

不能完成聚类分析

A1 和 B1 分别为 20 和 40,若对单元格 C1 输入公式"=A1&B1"则 C1 的值为 **2040** A1 公式 =SUM(B1:F6), B 列删除后 A1 公式变为 **=SUM(B1:E6)**

不属于汇总方式 <mark>极差</mark>

B1 输入公式=A\$5, 公式复制到 D1 后, 变为 =C\$5

5个处理,每个处理重复4次,比较处理对结果影响的差异显著性

Excel 方差分析-单因素方差分析

SPSS 【分析】-【比较平均值】-【单因素 ANOVA 测验】

两列数据进行组群比较(或者一个 5 一个 4) 数据分析 - t-检验 - 双样本等方差假设 求算相关系数函数 correl or pearson (correl (两列数据相关系数) 和 pearson 两个函数)

MAX 函数正确 (256, 56) (A5: A12) (A1: B6,C2,58,65) 错误 (A5,A12:65)

逆矩阵 =MINVERSE(范围) 后 Ctrl+Shift+Enter

7. 将一个新育成的小麦品种和当地对照品种在 6 个地点进行试验, 测验新育成小麦品种的产量是否显著高于当地对照品种。试验所得结果如下图所示输入到 Excel 中, 若

完成测验,	则在分析工具库中选择	(L)	
-------	------------	-----	--

	A	В	C	D	E	F	G	Н
1	地点	1	2	3	4	5	6	
2	新育成品种	8. 45	8. 67	7. 95	8.13	8. 68	9.11	
3	对照品种	8. 25	8. 56	8.19	7. 96	8.14	8. 87	
4								

A、t-检验:双样本等方差假设

B、t-检验:双样本异方差假设

C/t-检验: 成对双样本平均值

D、z-检验: 双样本平均值

9. 将一种生长激素配成 M_1, M_2, M_3, M_4, M_4 五种浓度,并用 H_1, H_2, H_3 三种时间浸渍某大豆品种的种子,45 天后得各处理每一植株的平均干物重(克)于下表。如作方差分析,可在 Excel 的分析工具库中选择() 进行。

1	A	В	C	D
1		浸渍时间1複	浸渍时间2得	浸渍时间3
2	浓度1	13	14	14
3	浓度2	12	12	13
4	浓度3	3	3	3
5	浓度4	10	9	10
6	浓度5	21	5	4

A. 方差分析: 单因素方差分析

B. 方差分析: 可重复双因素分析

S. 方差分析: 无重复双因素分析

▶ F-检验 双样本方差

☑ 如下图所示,在假定在 MS Excel 中输入矩阵 A 和矩阵 B. 如果在 B7 单元格中计算矩阵 A 和矩阵 B 的乘积,则输入公式(B)。

选定整个工作表 单击左上方行列坐标的交叉点

【自动筛选】命令后,会在清单上的 字段名处 出现下拉式按钮图标 拟合最优多元线性回归方程,【回归】 向后筛选法

7. 在 Excel 中,在 A1: D4 单元格区域中存在矩阵,欲得到矩阵的行列式的值,则输入公式 ()。

 $A_{\sim} = MMULT(A1,D4)$

B = MMULT(A1:D4)

C = MDETERM(A1,D4)

D = MDETERM(A1:D4)

3. 设在如下工作表中输入了一个班 50 个同学的成绩数据,如图所示。为求出 50 个同

	D2	*	ħ.		
(3)	A	В	C	D.	E
1	编号	课程1	课程2	平均分	等级
2	1	70	80		
3	2	67	60		1
4	3	60	39		
5	4	90	98		
6	5	84	72		1
7	6	73	90		1

学的平均成绩,先在单元格 D2 中输入公式 (),然后将公式从 D2 复制 到单元格区域 D3: D51 即可。

A = (70+80)/2

B. AVERAGE (70, 80)

C. = AVERAGE (B2+C2)

D. = AVERAGE (B2, C2)

4. 上题中若将平均成绩 85-100 分之间的同学等级评定为优,将 65-84 分的评定为良,将 0-64 的评定为差,可对上题中的 E2 单元格中输入公式(),然后将 E2 中的公式复制到单元格区域 E3: E51。

A. IF ((70, 80)>=85, "优", IF ((70, 80)>65), "良", "差"))

(平均分>=85, "优", IF (平均分>65, "良", "差")) C/ IF (D2>=85, "优", IF (D2>65, "良", "差"))

D. IF (D2>=85, 优, IF (D2>65, 良, 差))

SPSS 全称 Statistical Package for the Social Sciences 统计产品和服务解决方案

SPSS 数据编辑窗口(显示报表、图形——结果输出窗口)包含

查看变量内容——data view 数据视图工作表

修改变量特性——variable view 变量视图工作表

选取个体的菜单指令 goto case ; 选取变数菜单指令 goto variable

SPSS 两个菜单进行数据文件整理: 数据 (Data) ——观察值整理;

转换(Transform)——变量处理

观察值排序——**个案排序(Sort Cases)**;增加观察值——**添加个案**;

插入新个体数据——插入个案;插入变数——插入变量

数据重新排序【数据】—【个案排序】,转置【数据】—【转置】

原有变数基础上计算产生新变数——计算变量(compute);

删除某个变数 cut or del

对原变量进行必要转换【Transform】 Compute

变量函数计算 【Transform】【Compute variable】

频数资料加权【Data】Weight cases

描述性统计【Analyze】-descriptive statistics

频数【Analyze】-【Descriptive Statistics】-【Frequences】

方差(复选项)【Analyze】 - 【Descriptive Statistics】 - Variance

标准差【Analyze】 - 【Descriptive Statistics】 - standard deviation

标准误【Analyze】 - 【Descriptive Statistics】 - Std. Error of Mean

平均数 mean

聚类分析【Analyze】-classify

系统聚类 【Classify】 - Hierarchical Cluster

非线性回归 【Regression】-Nonliner

用【Frequences】分析, 【Statistics】计算中位数 Median , 计算方差 Variance 多项式回归 curve estimation

包含全部变数的多元线性回归分析采用的变数选择方式 enter

SPSS 每行代表一个个体,每列代表一个变量

数据文件保存 .sav . 结果文件保存 .spv

【One-Way ANOVA】进行单因素方差分析,

【Dependent List】——定义单因素方差分析因变量

用于多重比较的按钮 post hoc

定义两两比较显著水平 significance

既能进行方差分析,又能进行协方差分析 General linear model

绘制图形,条形图【Graphs】【Legacy Dialogs】中的 bar 指令

(【图形】【旧对话框】【条形图】)

饼图 pie 指令

散点图 【Graphs】 【Legacy Dialogs】 【scatter/dot】

直方(次数分布)图 【Graphs】【Legacy Dialogs】【Histogram】

可在图上获取线性或简单非线性方程

graghs 下方有 chart builder 以及 legacy dialogs

横向合并文件,两数据文件事先按关键变量值 升序排列

有三种基本的变量类型,分别为数值型,字符型和日期型。

数据视图工作表的数值 数值型、序数型、名称型

One-Samples T Test 过程用于进行样本所在总体均数与已知总体均数的比较。

单样本 t 测验 【Analyze】【Compare means】【One-Sample T Test】

独立样本 t 测验 【Analyze】【Compare means】【Independent samples t test】

两配对样本 【Analyze】【Compare means】【Paired sample t test】

方差分析 【Analyze】【Compare means】【One way ANOVA】

Paired-Samples T Test——多对双胞胎心智发展水平的测试

可以直接使用 delete 键进行变量或个体的删除

正确: IF (E2>60,"及格","不及格")

SPSS 打开 excel 文件主要方式 直接打开、使用数据库查询

能直接导入.txt 格式文件、能直接打开.sav 格式文件、不能将数据存成 excel 格式

不能导入 excel 特定(部分)区域的数据

大题

描述性统计

- 测得 10 株某品种杂交水稻单株的株高,依次为: 105、107、110、109、106、107、112、111、108、105。试进行描述性统计分析,要求计算的统计数至少包括: 平均数、最大值、最小值、方差和标准差。
- (1)请写出利用 SPSS 解决该问题的数据录入方式和简单的操作步骤。(10 分)
- (2) 请写出解决该问题的 Excel 操作步骤。(10分)
- 1、(1) SPSS 的数据录入方式:

株高	
105	
107	
110	
109	
106	
107	
112	
111	
108	
105	

SPSS 操作步骤:

执行【Analyze】【Compare Means】【Descriptives】

【Variable (s) 】框: 株高

单击【Options】按钮

选中【mean】、【maximum】、【minimum】、【variance】、【standard deviation】

复选项

第5页共10页

单击 Continue

(2) Excel 操作步骤:

数据录入在 A2:A11 单元格区域:

株高	
105	110
107	1
110	1
109	
106	
107	
112	
111	Ī

108

Excel 操作步骤:

单击【数据】-【数据分析】

选中【描述统计】, 单击【确定】按钮

【输入区域】: \$A\$2:\$A\$11

【输出区域】框: \$C\$2

选中【汇总统计】复选项

单击【确定】按钮

双样本 t 测验 (不同)

- 1、为分析去越对玉米产量的影响, 选定 6 个小区对玉米进行去雄, 并测定产量结果 (kg) 分别为, 62、70、66、64、68、72, 对不去越的玉米产量在同等条件下进行测定, 7 个小区的测定结果分别为 62、50、56、54、64、62、60、试测验去增对玉米的产量 是否有是否签件, **
- (1) 请写出利用 SPSS 解决该问题的数据录入方式和简单的操作步骤。 (10 分) ~
- (2) 请写出解决该问题的 Excel 操作步程。 (10 分) ++

(1) 数据格式: 4

样本(2	产量中	样本は	产量の	62
163	6242	243	6213	a
142	7043	263	50+3	42
I 62	6613	243	560	0 V
102	6442	2+3	5443	2
163	6843	242	64+3	e)
163	72±3	243	6242	43
	0	1243	-60F	2 0

SPSS 操作步骤: "
[Analyze] [Compare Means] [Independent-Samples T Test] "
Test Variable[s] 框: "量"
Grouping Variable 框: 样本。
Define groups...

单击 Define groups 接钮
Group1: 键入 1。
Group2: 键入 2。
Continues

ОК

双样本 t 测验 (配对)

2. 调查种植密度(低、高)对水稻亩产量的影响,得到如下试验结果。试测验种植密

度高低对水稻产量是否有显著影响?

种植密度		10	亩产量	(kg)	110.79		
低	600	620	650	700	655	700	
高	700	680	690	695	645	705	

请采用 SPSS、SAS 和 Excel 三种常用统计软件中的任意一种解决该问题,写出相应的数据录入格式,操作步骤、命令或程序。(10 分)

2、(1) SPSS 的数据录入方式:

亩产量	种植密度
600	1
620	1
650	1
700	1
655	1
700	1
700	2
680	2
690	2
695	2
645	2
705	2

SPSS 操作步骤:

执行【Analyze】【Compare Means】【Independent-Samples T Test】

【Test Variables】框:产量

【Grouping Variable】框:种植密度

单击【Define Groups】按钮

【Group1】框: 1

【Group2】框: 2

单击【Continue】

按钮单击【OK】按钮

(3) Excel 的步骤:

单击【数据】-【数据分析】

选中【t-检验:双样本等方差假设】,单击【确定】按钮

选择【变量1的区域】

选择【变量2的区域】

【假设平均差】框: 0

选中【标志】复选项

选择【输出区域】框

9 单击【确定】按钮

2. 研究 4 种不同栽培方式对棉花铃重 (g) 的影响, 得结果如下表:

栽培方式	铃重 (g)				
露地栽培(A)	3.3	2.9	3.1	3.5	3.3
地膜栽培(B)	4.4	4.6	4.8	4.2	4.7
地膜移栽(C)	3.7	4.3	3.9	4.0	4.1
地膜移栽去早蕾(D)	4.9	5.1	4.7	4.8	5.0

试进行方差分析,并采用 Tukey 方法对不同栽培方式的棉花铃重进行多重比较。

- (1) 请写出利用 SPSS 解决该问题的数据录入方式和简单的操作步骤。 (10 分)
- (2) 请写出解决该问题的 SAS 程序。(10分)
- (1) SPSS 数据录入:

铃重	分组	SPSS 步骤:
3.3	1	[Analyze]
		[Compare Means]
2.9	1	[One-way ANOVA]
3.1	1	Dependent List 框: 铃重
*		Factor 框: 分组·
3.5	1	Post Hoc: 选中 Tukey
3.3	1	Continue
3.3		OK
4.4	2	The second secon
		或者
		[Analyze]
4.8	4	[General linear model]
		[Univariate]
5.0	4	Dependent Variable 框: 铃頂
		Fixed Factor: 分針
		Post Hoc: 选中 Tukey
		Continue
		ОК

- 1. 某小麦当地品种的干粒重为 34g, 现自外地引入一高产品种, 分别在 8 个小区进行种
- 植, 其千粒重如下表所示:

小区	千粒重 (g)
1	35.6
2	37.6
3	33.4
4	35.1
5	32.7
6	36.8
7	35.9
8	34.6

翔系

试分析引进的高产品种和当地品种的千粒重有无显著差异。

- (1) 请写出利用 SPSS 解决该问题的数据录入方式和简单的操作步骤。(10分)
- (2) 请写出解决该问题的 SAS 程序。(10分)

(I)SPSS 数据录入格式

千粒重

35.6

37.6 33.4

35.1 32.7

36.8 35.9 34.6 SPSS 步骤:

[Analyze]

[Compare Means]

[One-Samples T Test]

Test Variable[s]框: 株高 Test value 框: 34

OK

二因多随机仓组

3. 有一 AB 二因素小麦产量试验, A1、A2、A3 为三个品种, B1、B3、B3 为三个密度, 重复 2 次, 随机区组试验设计。小区产量如下表, 试进行方差分析并给出 LSD 法多重比较结果。

品种	密度	区组I	区组II
	B1	8	7
A1	B2	7	8
	B3	6	5
	B1	9	9
A2	B2	7	9
	B3	8	7
A3	B1	7	7
	B2	8	7
	B3	10	9

(1)请写出利用 SPSS 解决该问题的数据录入方式和简单的操作步骤。(10分)

3、(1) SPSS 的数据录入方式:

1	1	1	8	
2	1	1	7	
1	ce 13	2	7	
2	1	2	8	
1	1	3	6	
2	1	3	5	
1	2	1	9	
2	2	1	9	
1	2	2	7	
2	2	2	9	
1	2	3	8	
2 2		3	7	
1	3	1	7	
2	3	1	7	
1 3		2	8	
2 3		2	7	
1	3	3	10	
2 3		3	9	

SPSS 操作步骤:

[Analyze], [General Linear Model], [Univariate]

Dependent Variable 框: 产量

Fixed Factor[s]框: 品种、密度、区组

Model...

⊙Custom

Model 框: 区组、品种、密度、品种×密度。

Continue

Post Hoc

Post Hoc test for 框: 品种、密度

√LSD

Continue

3/3/4 2/7 4 2/7 1/2关和回归分析。

X	25	28	30	32	34	35	37
Y	13	14	18	19	20	21	20

请采用 SPSS、SAS 和 Excel 三种常用统计软件中的任意两种解决该问题,写出相应的 数据录入格式,操作步骤、命令或程序。(20分)

4、(1) SPSS 的数据录入方式

温度	干重
25	13
28	14
30	18
32	19
34	20
35	21
37	20

SPSS 操作步骤: 回归分析 [Analyze], [Regression], [Linear] Dependent 框: 干重 Independent 框: 温度 单击 Statistics 按钮 选中 Continue 按钮 单击 OK 按钮 相关分析 [Analyze], [Correlate], [Bivariate] Variables 框:温度、干重 单击 Options 按钮 选中 Means and standard deviations 复选项 单击 Continue 按钮 单击 OK 按钮

(3) Excel 操作步骤:

将温度值依次录入在 A2:A8 区域,对应的干重输入在 B2:B8 单元格区域

温度	干重	
25	13	
28	14	
30	18	
32	19	
34	20	
35	21	
37	20	

单击【数据】-【数据分析】

选中【相关系数】,单击【确定】按钮

【输入区域】: \$A\$1:\$B\$11

【分组方式】: 选中【逐列】单选项

选中【标志位于第一行】复选项

【输出区域】框: \$E\$4

单击【确定】按钮

选中【回归】,单击【确定】按钮

【Y值输入区域】: \$B\$1:\$B\$11

【X值输入区域】: \$A\$1:\$A\$11

选中【标志】复选项

【输出区域】框: \$A\$13

选中【残差】-【标准残差】-【残差图】-【线性拟合图】复选项

单击【确定】按钮

3. 一家皮鞋零售店将其连续 12 个月的库存占用资金情况、广告投入费用、员工薪酬以及销售额等方面的数据作了一个汇总,如下表所示(单位: 万元),该皮鞋店老板试图根据这些数据找到销售额与其他 3 个变量之间的关系,以便进行销售额预测,并为未来的预算工作提供参考。根据这些数据,利用向前筛选法,建立最优线性回归模型。

月份	库存资金额	广告投入	员工薪酬总额	销售额
	X_1	X_2	X ₃	Y
1	75	30	21	1090
2	77	31	21	1133
3	80	33	22	1242
4	76	29	21	1003
5	79	32	21	1283
6	81	27	21	1012
7	98	24	21	1098
8	67	23	21	826
9	74	33	22	1003
10	151	27	24	1554
11	90	45	23	1199
12	102	42	24	1483

- (1)请写出利用 SPSS 解决该问题的数据录入方式和简单的操作步骤。(10分)
- (2) 请写出解决该问题的 SAS 程序。(10分)

3、(1) SPSS 的数据录入方式

X1	X2	X3	Y
75	30	21	1090
77	31	21	1133
80	33	22	1242
76	29	21	1003
79	32	21	1283
81	27	21	1012
98	24	21	1098
67	23	21	826
74	33	22	1003
151	27	24	1554
90	45	23	1199
102	42	24	1483

简单的操作步骤如下:

执行【Analyze】【Regression】【Linear】

【Dependent】框:y

【Independent】框:x1、x2、x3

【Method】框:Forward 单击【Statistics】按钮

丰田 [Statistics] 及田

选中【Descriptives】复选项

单击【Continue】按钮

单击【OK】按钮