Statement: the area under the pulse input to low pass RC circuit is equal to the area under the output waveform.

Proof:

Area under the input waveform(A), $A = 0^{\text{tp}} V dt = V \text{ tp-----}(1)$

Area under the output waveform =A1+A2
$$A1 = {}_{0}\int^{tp}V(1\text{-}e^{\text{-}t/RC})\ dt = V\ tp - V_{P}RC$$

$$A2 = {}_{tp}\int^{\infty}V_{P}e^{\text{-}(t\text{-}tp)/RC}\ dt = V_{P}RC$$

$$A1+A2 = V\ tp\text{----}(2)$$
 Hence proved.

Square wave input: steady state output waveform for square wave input is shown in figure.(operation of the circuit is same as pulse input)

Expressions for $v_{o1} \& v_{o2}$:

We know
$$Vo(t) = Vf + (Vi-Vf) e-(t-tx)/\tau$$

During 0 to T1, $Vo(t) = \mathbf{v_{o1}}$

$$\mathbf{v_{o1}} = V' + (V_1 - V') \text{ e-t/RC}$$

K.Chiranjeevi, Asst. Prof, ECE Dept, GMRIT

at t=T1 ,
$$\mathbf{v_{o1}} = V2$$

so $\mathbf{V2} = V' + (V_1 - V')$ e-T1/RC
similarly $\mathbf{v_{o2}} = V'' + (V_2 - V'')$ e-(t-T1)/RC
at t=T , $\mathbf{v_{o2}} = V1$
so $\mathbf{V1} = V'' + (V_2 - V'')$ e-T2/RC

Symmetrical square wave input:

For symmetrical square wave input T1=T2=T/2

 $V_1 = -V_2$ also V' = V'' = V/2 (by considering average value of input is zero)

Expression for V_1 or V_2 :

We know,

$$V2 = V' + (V_1 - V') e - T1/RC$$

By substituting above values,

$$V2 = (V/2) \tan hx$$

Ramp input:

We know for an low pass RC circuit, $v_i(t) = Vo(t) + R I$, (but I = C d Vo(t)/dt)

$$v_i(t) = Vo(t) + RC d Vo(t)/dt$$

but here $vi(t) = \alpha t$

 $v_i - \alpha t$ $v_i - \alpha t$ $v_i - \alpha t$

 $\alpha t = Vo(t) + RC d Vo(t)/dt$ it is a first order differential equation by solving this equation (or by using laplace transform), $Vo(t) = \alpha t - \alpha RC (1 - e^{-t/RC})$

If time constant is low, $Vo(t) = \alpha t - \alpha RC$

If time constant is high, $Vo(t) = \alpha t^2/2RC$

low pass RC circuit as a integrator:

For low pass RC circuit,

$$v_i(t) = i R + Vo(t)$$

if RC is high then voltage across the capacitor is minimum and output voltage is almost zero . so $v_i(t)$ = R i So $i = v_i(t)/R$

$$Vo(t) = 1/RC \int i dt$$
 since $Vo(t) = 1/c \int i dt$

Hence low pass RC acts as a integrator when RC >>T

It produces triangular waves by taking square wave input.

Problems on low pass RC circuit:

1. A limited ramp of V volts is applied to an RC integrating circuit .what is the peak value of the output waveform for (a) T = RC (b) T = 0.2 RC (c) T = 5 RC .

Solution;

Here Vo(t)= α t- α RC (1- $e^{-t/RC}$) and $\alpha = V/T$

Peak value of output is $Vo(T) = V/T - VRC (1 - e^{-T/RC})/T$

- (a) if T = RC then Vo(T) = 0.368V volts
- (b) if T = 0.2RC then Vo(T) = 0.1V volts
- (c) if T = 5RC then Vo(T) = 0.8013V volts

