# Álgebra/Álgebra II Clase 10 - Álgebra de Matrices 2

FAMAF / UNC

20 de abril de 2021

- Objetivos
- Matrices invertibles
  - Definición
  - Propiedades
- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

En esta clase introduciremos y presentaremos

- Las matrices invertibles.
- Las matrices elementales

El tema de esta clase está contenido en las secciones 2.6 y 2.7 del *Apunte* disponibles en classroom, siguiendo la misma numeración.

| Axiomas de $\mathbb R$     | Álgebra de matrices |
|----------------------------|---------------------|
| suma conmutativa           | (0 00               |
| suma asociativa            |                     |
| elemento neutro 🕂          | 0 - 0               |
| opuesto                    | - A = ( P= ) \      |
| multiplicación conmutativa | NO (-a)             |
| multiplicación asociativa  |                     |
| elemento neutro 💩          |                     |
| inverso                    | 9                   |
| DId = (1,0)                | 4                   |

- Objetivos
- Matrices invertibles
  - Definición
  - Propiedades
- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

#### Definición 2.7.1



Sea A una matriz  $n \times n$  con coeficientes en  $\mathbb{K}$ .

Una matriz  $B \in \mathbb{K}^{n \times n}$  es inversa de A si  $BA = AB = \mathrm{Id}_n$ .

En ese caso, diremos que A es invertible.

# Ejemplo (\*)

$$B = \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \text{ es inversa de } A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \text{ pues }$$

$$\left(\begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array}\right) \cdot \left(\begin{array}{cc} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{array}\right) = \left(\begin{array}{cc} 2\frac{3}{7} + \frac{1}{7} & 2\frac{1}{7} - \frac{2}{7} \\ \frac{3}{7} - 3\frac{1}{7} & \frac{1}{7} + 3\frac{2}{7} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Tarea: verificar la multiplicación  $B \cdot A = \mathrm{Id}$ 

#### Definición 2.7.1

Sea A una matriz  $n \times n$  con coeficientes en  $\mathbb{K}$ .

Una matriz  $B \in \mathbb{K}^{n \times n}$  es inversa de A si  $BA = AB = \mathrm{Id}_n$ .

En ese caso, diremos que A es invertible.

# No toda matriz en invertible

Por ejemplo,  $A=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$  no es invertible.

Demostración: supongamos que A es invertible con inversa  $B=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$ .

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & b \\ 0 & 0 \end{pmatrix}$$

$$0 = A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & b \\ 0 & 0 \end{pmatrix}$$

$$0 = A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & b \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & b \\ 0 & 0 \end{pmatrix}$$

# Observación

Para decidir si una matriz  $A \in \mathbb{K}^{n \times n}$  tiene inversa o no y calcularla podemos aplicar el siguiente método.

Armamos la matriz ampliada ("grande")

$$(A|\operatorname{Id}_n)$$

Aplicamos operaciones elementales por filas hasta obtener una matriz de la forma

donde B es MERF y Z es una matriz cuadrada  $n \times n$ .

- **3** Si  $B = \operatorname{Id}$ , entonces A es invertible y  $A^{-1} = Z$ .
- Si  $B \neq \mathrm{Id}$ , entonces A no es invertible.

### Observación

Para demostrar las dos últimas afirmaciones debemos trabajar un poco...



# Proposición 2.7.2

Sea  $A \in \mathbb{K}^{n \times n}(\mathbb{K})$ .

- Si  $B, C \in \mathbb{K}^{n \times n}$  satisfacen que  $BA = \operatorname{Id}_n \bigvee AC = \operatorname{Id}_n$ , entonces B = C.
- 2 si A invertible la inversa es única.

Demostración:

Demostracion:
(A) 
$$B = B \cdot L = B(AC) = [BA]C = [BA]C = [BA]C$$

Gracias a la proposición anterior podemos introducir la siguiente definición y notación.

#### Definición 2.7.3

Sea  $A \in \mathbb{K}^{n \times n}$  invertible. A la única matriz inversa de A la llamamos la matriz inversa de A y la denotamos  $A^{-1}$ .

# Ejemplo $(\star)$

Antes vimos que la matriz  $A=\begin{pmatrix}2&-1\\1&3\end{pmatrix}$  es invertible con

inversa. 
$$A^{-1} = \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix}$$

# Definición 2.7.2

Sea  $A \in \mathbb{K}^{n \times n}$  invertible. A la única matriz inversa de A la llamamos la matriz inversa de A y la denotamos  $A^{-1}$ .

# Ejemplo

 $\operatorname{Id}_n$  es invertible con  $(\operatorname{Id}_n)^{-1} = \operatorname{Id}_n$  pues  $\operatorname{Id}_n \cdot \operatorname{Id}_n = \operatorname{Id}_n$ 

# Observación

La matriz  $\mathrm{Id}_n$  es como el 1 de los números reales.

La matriz  $A^{-1}$  es como el inverso de un numero real no nulo.

- Objetivos
- Matrices invertibles
  - Definición
  - Propiedades
- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

# Teorema 2.7.4

Sean A y B matrices  $n \times n$ .

- ① Si A invertible, entonces  $A^{-1}$  es invertible y su inversa es A, es decir  $(A^{-1})^{-1}=A$ ;
- ② Si A y B son invertibles, entonces AB es invertible y  $(AB)^{-1} = B^{-1}A^{-1}$ .

#### Demostración:

- Debemos comprobar que A satisface la propiedad de ser la inversa de  $A^{-1}$ . Es decir, que muliplicar a ambos lados nos da la indentidad. Esto será directo.
- ② Debemos comprobar que multiplicar a AB por  $B^{-1}A^{-1}$  (tanto a derecha como a izquierda) nos da la identidad. Aquí deberemos usar la asociatividad de la multiplicación.

#### La verficación del item 1:

Por hipotesis  $AA^{-1}=\mathrm{Id}_n \quad \Rightarrow \quad$  la inversa a izquierda de  $A^{-1}$  es A, Por hipotesis  $A^{-1}A=\mathrm{Id}_n \quad \Rightarrow \quad$  la inversa a derecha de  $A^{-1}$  es A,

Verificación del item 2:

$$(B^{-1}A^{-1})AB = B^{-1}(A^{-1}A)B = B^{-1}\operatorname{Id}_n B = B^{-1}B = \operatorname{Id}_n,$$

$$AB(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A\operatorname{Id}_n A^{-1} = AA^{-1} = \operatorname{Id}_n.$$

# Observación

Haciendo inducción, se puede ver que si  $A_1,\dots,A_k$  son invertibles, entonces el producto  $A_1\cdots A_k$  es invertible y su inversa es

$$(A_1 \cdots A_k)^{-1} = A_k^{-1} \cdots A_1^{-1}.$$

# Observación

La suma de matrices invertibles no es necesariamente invertible (Ejercicio 9 del Práctico 3)

- Objetivos
- 2 Matrices invertibles
  - Definición
  - Propiedades
- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

# Definición 2.6.1

Una matriz  $n \times n$  se dice elemental si fue obtenida por medio de una única operación elemental a partir de la matriz identidad  $\mathrm{Id}_n$ 

Como hay tres tipos de operaciones elementales, hay tres tipos de matrices elementales.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
  $\begin{pmatrix} 2 & F_1 \\ 0 & 0 \end{pmatrix}$   $\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ 

# Todas las matrices elementales $2 \times 2$ son:

• Hay dos operaciones del primer tipo. Multiplicar por  $c \neq 0$  la primera fila y multiplicar  $c \neq 0$ . Las matrices elementales correspondiente son

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \xrightarrow{c +} \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{y} \begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix}, \xrightarrow{c +} \begin{bmatrix} c & \rho \\ 0 & 1 \end{bmatrix}$$

② Del 2do tipo también hay dos. Sumar a la fila 2 la fila 1 multiplicada por c y sumar a la fila 1 la fila 2 multiplicada por c son:

Sinalmente, la única permutación que podemos hacer es intercambiar la fila 1 por la fila 2:

$$\left( \begin{array}{c} | D \rangle \\ | D \rangle \end{array} \right) \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$$

A continuación vemos como lucen las matrices elementales de tamaño arbitrario.

El primer tipo de matriz elemental se obtiene tras multiplicar la fila k de  $\mathrm{Id}_n$  por un número real  $c \neq 0$ :

$$\begin{pmatrix} 1 & \cdots & & & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & & & \cdots & 1 \end{pmatrix} \xrightarrow{cF_k} E = \begin{pmatrix} 1 & \cdots & & & 0 \\ \vdots & \ddots & & & \vdots \\ 0 & \cdots & c & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & & \cdots & 1 \end{pmatrix} \leftarrow \mathbf{k}$$

Es una matriz diagonal con todos 1 excepto una c en el lugar k,k. Las entradas de E se pueden definir así

$$[E]_{ij} = \begin{cases} 1 & \text{si } i = j \neq k \\ c & \text{si } i = j = k \\ 0 & \text{si } i \neq j \end{cases}$$

El segundo tipo de matriz elemental se obtiene tras sumar a la fila r de  $\mathrm{Id}_n$  la fila s multpilicada por t:

$$\begin{pmatrix} 1 & \cdots & 0 \\ \vdots & 1 & & \vdots \\ 0 & & \ddots & 0 \\ \vdots & & 1 & \vdots \\ 0 & & & \ddots & 1 \end{pmatrix} \xrightarrow{F_r + tF_s} E = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & 1 & & \ddots \\ & & & \ddots & \\ \vdots & & & 1 & \vdots \\ 0 & & & & 1 \end{pmatrix}$$
 Es la matriz identidad con una  $t$  en el lugar  $r, s$ .

Es la matriz identidad con una t en el lugar r, s. Las entradas de E se pueden definir así

$$[E]_{ij} = \begin{cases} 1 & \text{si } i = j \\ t & \text{si } i = r \text{ y } j = s \\ 0 & \text{en el resto} \end{cases}$$

 ${\sf Aqui} \ r < s. \ {\sf Si} \ r > s, \ {\sf Ia} \ t \ {\sf aparecer\'a} \ {\sf debajo} \ {\sf de} \ {\sf Ia} \ {\sf diagonal principal}.$ 

El tercer tipo de matriz elemental se obtiene tras intercambiar las filas r y s de  $\mathrm{Id}_n$ :

$$\begin{pmatrix} 1 & \cdots & & & & & & \\ \vdots & 1 & & & \vdots & & & & \\ 0 & & \ddots & & & & \\ \vdots & & & & \vdots & & & \\ 0 & & & \cdots & 1 \end{pmatrix} \xrightarrow{F_r \leftrightarrow F_s} E = \begin{pmatrix} 1 & \cdots & & & & 0 \\ \vdots & 0 & & & & & \\ 0 & & \ddots & & & 0 \\ \vdots & & & \ddots & & \\ 0 & & & \cdots & 1 \end{pmatrix}$$

Las entradas de E se pueden definir así

$$[E]_{ij} = \begin{cases} 1 & \text{si } r \neq i = j \neq s \text{ ó } i = r, j = s \text{ ó } i = s, j = r \\ 0 & \text{en el resto} \end{cases}$$

- Objetivos
- Matrices invertibles
  - Definición
  - Propiedades
- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

# Teorema 2.6.2

Sea e una operación elemental por fila y  $E=e(\mathrm{Id}_m)$  la matriz elemental que se obtiene tras aplicar e a la matriz  $\mathrm{Id}_m$ . Sea  $A\in\mathbb{R}^{m\times n}$ . Entonces

$$e(A) = EA$$
,

es decir, la matriz que se obtiene tras aplicarle e a A es igual a la multiplicación EA.

# Ejemplo $2 \times 2$

Veamos el teorema en el caso particular en que e es la operación "Intercambiar la fila 1 y la fila 2" y  $A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$ .

$$\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\xrightarrow{e : f_1 \leftrightarrow f_2}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}$$

$$E = e | Id |$$

# Demostración del Teorema 2.6.2

La prueba se divide en 3 casos, uno por cada tipo de operación elemental.

Si e es multiplicar la fila k por un número real  $c \neq 0$ , entonces ya vimos que  $e(\mathrm{Id}_m)$  es una matriz diagonal con todos 1 excepto una c en el lugar k,k.

Por [Observación 2.5.1], multiplicar por una matriz diagonal a izquierda es multiplicar cada fila por el elemento correspondiente de la diagonal.

En este caso, multiplicamos todas las filas por 1 excepto la fila k por c.

Como queríamos.

# Demostración del Teorema 2.6.2

$$EA = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kj} & \cdots & a_{kn} \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & & \vdots \\ ca_{k1} & \cdots & ca_{kj} & \cdots & ca_{kn} \\ \vdots & & \ddots & \vdots \\ a_{m1} & & \cdots & a_{mn} \end{pmatrix} = e(A)$$

# Demostración del Teorema 2.6.2

La prueba para las otras 2 operaciones usa las fórmulas de la multiplicación y de las entradas de las matrices elementales. Hay que manipular las sumas y los subíndices. No vale la pena hacerlo ahora. Si alguien no sabe que hacer durante esta larga cuarentena le recomiendo hacerlo :)

En el libro esta hecha la prueba para las matrices elementales  $2 \times 2$ .

Recordemos que decimos que B es equivalente por filas a A si B se obtiene a partir de A mediante operaciones elementales por fila.

#### Coroloario 2.6.3

Sean A y B matrices  $m \times n$ . Entonces

• B equivalente por filas a A si y sólo si B=PA donde P es producto de matrices elementales.

Más aún, si  $e_1,e_2,\ldots,e_k$  son operaciones elementales por fila tales que

$$B = e_k(e_{k-1}(\cdots(e_1(A))\cdots)).$$

Entonces  $E_i = e_i(\mathrm{Id})$  son matrices elementales y

$$B = E_k E_{k-1} \cdots E_1 A.$$

# Demostración $(\Rightarrow)$

Si B equivalente por filas a A existen operaciones elementales  $e_1,\ldots,e_k$  tales que

$$\underbrace{(A)} \xrightarrow{e_1} e_1(A) \xrightarrow{e_2} \cdots \xrightarrow{e_{k-1}} e_{k-1}(\cdots e_1(A) \cdots) \xrightarrow{e_k} e_k(e_{k-1}(\cdots e_1(A) \cdots))$$

#### Escrito de otra forma

$$B = e_k(e_{k-1}(\cdots(e_1(A))\cdots))$$

$$= e_k(\mathrm{Id}) \cdot e_{k-1}(\cdots(e_1(A))\cdots)$$

$$= e_k(\mathrm{Id}) \cdot e_{k-1}(\mathrm{Id}) \cdots (\cdots(e_1(A))\cdots)$$

$$\vdots$$

$$= E_k E_{k-1} \cdots E_1 A$$

donde  $E_k = e_k(Id)$ ,  $E_{k-1} = e_{k-1}(Id)$ , ... y  $E_1 = e_1(Id)$ .

Demostración ( $\Leftarrow$ ) Si B=PA, con  $P=E_kE_{k-1}\cdots E_1$  donde  $E_i=e_i(\mathrm{Id}_m)$  es una matriz elemental, entonces (razonamiento similar al anterior)

$$B = PA = E_k E_{k-1} \cdots E_1 A$$

$$= E_k E_{k-1} \cdots e_1 (A)$$

$$\vdots$$

$$= E_k \cdot e_{k-1} (\cdots (e_1(A)) \cdots)$$

$$= e_k (e_{k-1} (\cdots (e_1(A)) \cdots)).$$

- Objetivos
- Matrices invertibles
  - Definición
  - Propiedades
- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

Demostración: Sea  $E=e(\mathrm{Id})$  la matriz elemental correspondiente a la operación elemental e. Por Teorema 2.3.3, existe una operación elemental e' inversa a e. Entonces

Teorem 
$$e'(e(Id)) = Id$$
 $e'(Id)(e(Id)) = Id$ 
 $e'(Eff) = Id$ 
 $e'(Eff) = Id$ 

y también al revés

$$e(e'(\mathrm{Id})) = \mathrm{Id}$$
  
 $e(\mathrm{Id})(e'(\mathrm{Id})) = \mathrm{Id}$   
 $EE' = \mathrm{Id}$ 

Por lo tanto E es invertible y su inversa también es una matriz elemental.



- Matrices invertibles
  - Definición
  - Propiedades

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{LF}} \begin{pmatrix} \text{L} & 0 \\ \text{D} & 1 \end{pmatrix} = E'$$

- Matrices elementales
  - Definición
  - Propiedades
  - Las matrices elementales son invertibles
- 4 ¿Es A invertible?

# Teorema 2.7.6

Sea A matriz  $n \times n$  con coeficientes en  $\mathbb{K}$ . Las siguientes afirmaciones son equivalentes

- *i*) A es invertible,
- ii) A es equivalente por filas a  $\mathrm{Id}_n$ ,
- iii) A es producto de matrices elementales.

Demostración: queremos demostra que i)  $\Leftrightarrow$  ii)  $\Leftrightarrow$  iii) para lo cual es suficiente probar las siguietes implicancias



pues a partir de estas podemos deducir todos los " $\Leftrightarrow$ ". Por ejemplo, "iii)  $\Rightarrow ii$ )" = "iii)  $\Rightarrow ii$ )"

# $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$ $R = M \in \mathbb{R} = M \in \mathbb{R}$

• Existen  $E_1, \ldots, E_k$  matrices elementales tal que  $R = E_1 + E_2 + E_3 + E_4 + E_4 + E_5 + E_6 + E$ 

-inwertible.

- R es MERF e invertible  $\Rightarrow R = \mathrm{Id}_n$  Pues, si no fuera  $\mathrm{Id}$  tendría una fila nula y una matriz con fila nula no puede ser invertible dado que al multiplicarla por cualquier otra matriz obtendremos nuevamente una fila nula.
- A es equivalente por filas a  $R = I_{m}$

# All or Ja

existen  $E_1, \ldots, E_k$  matrices elementales tal que  $E_1, \ldots, E_k A = \operatorname{Id}_n$ 

iii)

• Sean  $F_1$ , ...  $F_k$  las inversas de  $E_1$  ...  $E_k$  respectivamente. Entonces

$$E_1 \cdots E_k A = \operatorname{Id}_n$$

$$F_k \cdots F_1 E_1 \cdots E_k A = F_k \cdots F_1 \operatorname{Id}_n$$

$$A = F_k \cdots F_1$$

 $iii) \Rightarrow i)$  Sea  $A = E_1 E_2, \ldots, E_k$  donde  $E_i$  es una matriz elemental  $(i = 1, \ldots, k)$ . Como cada  $E_i$  es invertible, el producto de ellos es invertible, por lo tanto A es invertible.

# Recordemos que

# Corolario 2.6.3

Sean A y B matrices  $m \times n$ . Entonces

• B equivalente por filas a A si y sólo si B=PA donde P es producto de matrices elementales.

Pegando los teoremas anteriores podemos reescribir el corolario de la siguiente manera

#### Corolario 2.7.7

Sean A y B matrices  $m \times n$ . Entonces

• B equivalente por filas a A si y sólo si B=PA donde P es una matriz invertible.



# Corolario 2.7.8

Sea A matriz  $n \times n$ . Sean  $e_1, \ldots, e_k$  operaciones elementales por filas tal que

$$e_1(e_2(\cdots(e_k(A))\cdots)) = \mathrm{Id}_n$$
.

Entonces, A invertible y



Demostración: A es invertible porque la hipotesis dice que A es equivalente por filas a  $\mathrm{Id}$ .

Si escribimos la hipotesis usando las correspondientes matrices elementales tenemos que  $(E_1 \cdots E_k)A = \mathrm{Id}$ .

Como la inversa es la única con esta propiedades, resulta que

$$A^{-1} = E_1 \cdots E_k = e_1(e_2(\cdots(e_k(I_n))\cdots)).$$

### Observación

El Teorema 2.7.6 y el Corolario 2.7.8 demuestran las afirmaciones 3 y 4 del método enunciado al principio para encontrar la inversa.