

Massey University, Multivariate Analysis for Big Data

Exploring the Customer Churning with multivariate statistics analysis

ID: 24002398

Name: Thai Minh Nguyen

Course Coordinator: Dr Matthew Pawley

Table of Contents

Ab	stract	<i>3</i>
1.	Introduction	4
2.	Data Source and Methodology	4
	2.1. Data Source	
	2.2. Methodology for analysis	
<i>3</i> .	Data Analysis	5
	Cluster Analysis	
	Correspondence Analysis	
	Canonical Correlation Analysis	
	Discriminant Analysis	10
	Partial Least Squares Analysis	12
4.	Discussion	14
<i>5</i> .	Conclusion	
6.	Appendix	
Bib	oliography	21

Abstract

The analysis examined a fictional telecom company's customer churn dataset, utilizing multivariate statistical techniques including Cluster Analysis, Correspondence Analysis, Canonical Correlation Analysis, Discriminant Analysis, and Partial Least Squares analysis. Results revealed a prominent customer group comprising young individuals opting for Fiber Optic internet service with month-to-month contracts, exhibiting infrequent need for tech support. Younger customers with partners but no dependents were found to be more likely to use streaming services, while those with dependents were less likely to use internet services. Discriminant analysis, utilizing all variables except the insignificant ones (PhoneService and OnlineBackup), resulted in a misclassification rate of 24.22%. Key predictors of churn included relationship status (having partners and dependents or not), tenure, streaming TV and movie usage, paperless billing, monthly charges, fiber optic service adoption, month-to-month or one-year contracts, and electronic check payment method. OnlineSecurity, DeviceProtection, and Streaming TV exhibited a strong positive correlation with tenure.

1. Introduction

The main objective of this project was to gain a better understanding of the relationship between customers' attributes and the services they use, specifically regarding their likelihood to churn, using multivariate statistical techniques. The techniques utilized in this report include Cluster Analysis, Correspondence Analysis, Canonical Correlation Analysis, Discriminant Analysis, and Partial least squares analysis.

2. Data Source and Methodology

2.1. Data Source

The dataset utilized for analysis tracks a fictional teleo company's customer churn based on various factors. It is comprised of 21 columns and 7032 rows. Each row represents a customer, each column contains the customer's attributes described in the column (Kaggle, n.d.).

Variables	Definition
customerID	Customer ID
gender	Whether the customer is a male or a female
SeniorCitizen	Whether the customer is a senior citizen or not (1, 0)
Partner	Whether the customer has a partner or not (Yes, No)
Dependents	Whether the customer has dependents or not (Yes, No)
tenure	Number of months the customer has stayed with the company
PhoneService	Whether the customer has a phone service or not (Yes, No)
MultipleLines	Whether the customer has multiple lines or not (Yes, No, No phone service)
InternetService	Customer's internet service provider (DSL, Fiber optic, No)
OnlineSecurity	Whether the customer has online security or not (Yes, No, No internet service)
OnlineBackup	Whether the customer has online backup or not (Yes, No, No internet service)
DeviceProtection	Whether the customer has device protection or not (Yes, No, No internet service)
TechSupport	Whether the customer has tech support or not (Yes, No, No internet service)
StreamingTV	Whether the customer has streaming TV or not (Yes, No, No internet service)
StreamingMovies	Whether the customer has streaming movies or not (Yes, No, No internet service)
Contract	The contract term of the customer (Month-to-month, One year, Two year)
PaperlessBilling	Whether the customer has paperless billing or not (Yes, No)
PaymentMethod	The customer's payment method (Electronic check, Mailed check, Bank transfer (automatic), Credit card

MonthlyCharges	The amount charged to the customer monthly
TotalCharges	The total amount charged to the customer check
Churn	Whether the customer churned or not (Yes or No)

The data was downloaded as a CSV file and imported to the SAS dataset. Moreover, because most of the columns were categories, the other version of the dataset was generated by using Python. The other version converted the column with Yes or No to 0 and 1. If there were more than 2 options, I converted these columns to dummy variables. For example, The Contract column has 3 unique values Month-to-month, One year, and Two year, which were converted to Contract Month-to-month, Contract OneYear, and Contract TwoYear with values 0 and 1.

2.2. Methodology for analysis

Most of the techniques used for analysis are done by SAS procedure. It included:

- Proc cluster
- Proc corresp
- Proc cancorr
- Proc discrim
- Proc pls

3. Data Analysis

Cluster Analysis

Cluster analysis was conducted to find the group of customers that are the most similar in terms of their attributes. The cluster analysis uses the CLUSTER procedure to hierarchically cluster the observations in a SAS dataset by using the Centroid Method (SAS, The CLUSTER Procedure, n.d.). Because the data consists of interval and nominal data types, I use the DISTANCE procedure to calculate the distance matrix with the method DGOWER, which is equal to 1 minus GOWER (SAS, The DISTANCE Procedure, n.d.) before inputting the distance matrix to proc cluster in SAS.

Figure 1: Criteria for the Number of Clusters

By using the pseudo F statistics (Caliński, 1974) and t-square statistics (Duda, 1974), I chose 7 clusters. From the group bar chart Figure 2 below, we can see that Cluster 1 (orange bar) is the group of young people, who choose Fiber Optic Internet service with month-to-month contracts and they do not often need Tech Support.

Figure 2: Cluster Visualization

Correspondence Analysis

The Correspondence Analysis (SAS, The CORRESP Procedure, n.d.) was used to explore the association between customer attributes such as Gender, Senior, having Dependents, and having a Partner with entertainment purposes such as streaming TV and movies. First, determine that there is a statistically significant association. The Cramer's V (IBM, 2024) of the two tables is larger than 0.7, which means there are strong associations between customer attributes and streaming activities.

From Figure 4 and Figure 5, there is a clear distinction between the points using streaming services, not using streaming, and no internet services. In the row point, the No point was close to the centroid, it contributes almost nothing to the inertia of dimension one. The Yes and No internet service points are far from the centroid. They make relatively large contributions to the chi-square statistic and the inertia of dimension one. The two interpretations of dimension one show the association between being younger, having a partner but not having dependents with using streaming services, and being younger and having dependents with no internet service. The dimension 2 shows the association between both young and senior females who having no partner with no use streaming TV and movies.

Figure 3: Cramer's V

Figure 4: Correspondence Analysis with StreamingTV

Figure 5: Correspondence Analysis with StreamingMovies

Canonical Correlation Analysis

The Canonical Correlation Analysis (SAS, The CANCORR Procedure, n.d.) was used to explore the relationship between the services, that the telecom company provided such as online security protection, online backup, streaming, internet service, and phone service with the loyalty of customers, such as the tenure and churn variables.

Figure 6: CCA Hypothesis Test

Because the p-value is lower than 0.0001, we can reject the null hypothesis that all the canonical correlations are simultaneously zero from the multivariate statistics.

	Canonical Structure					
	Correlations Between the SERVICE and Their Canonical Variables					
				S1	S2	l
	PhoneService		0.00	91	0.0454	l
	OnlineSecurity		0.34	81	0.4020	1
	OnlineBackup DeviceProtection		0.36	46	0.5743	
			0.36	16	0.6037	1
	TechSupport		0.34	41	0.4096	1
	StreamingTV		0.25	50	0.7490	1
	StreamingMovies		0.26	16	0.7508	1
	PhoneService		0.00	91	0.0454	1
	InternetService_DSL		0.06	00	-0.3256	l
	InternetService_Fiber optic		-0.06	83	0.8839	1
	Correlations Between the LOY	ALTY and	Their Car	onical \	/ariables	1
			L1		L2	l
	tenure		0.9838		0.1792	ı
		tenure				
	Churn_binary		-0.5142		0.8577	
			-0.5142		0.8577	
			-0.5142		0.8577	
orre	elations Between the SERVICE a	nd the Car		riables		ALTY
orre		nd the Car		riables L1		ALTY
		nd the Car			of the LOY	
hon	elations Between the SERVICE a	nd the Car		Li	of the LO	L2
hon nlin	elations Between the SERVICE a	nd the Car		L1 0.0055	of the LOY	L2 0.0172
hon nlin nlin	eService	nd the Car		L1 0.0055 0.2085	of the LOY	L2 0.0172 0.1522
hon nlin nlin	eService eSecurity eBackup	nd the Car		0.0055 0.2085 0.2183	of the LOY	L2 0.0172 0.1522 0.2174
hon nlin nlin evic	elations Between the SERVICE a eService eSecurity eBackup eProtection	nd the Car		0.0055 0.2085 0.2183 0.2166	of the LOY	L2 0.0172 0.1522 0.2174 0.2285
hon nlin nlin evic ech!	eservice eservity eBackup seprotection Support	nd the Car		0.0055 0.2085 0.2183 0.2166 0.2061	of the LOY	L2 0.0172 0.1522 0.2174 0.2285 0.1551
hon nlin evic echt trea	eservice eservity eBackup seprotection Support mingTV	nd the Car		0.0055 0.2085 0.2183 0.2166 0.2061 0.1527	(((((((((((((((((((L2 0.0172 0.1522 0.2174 0.2285 0.1551 0.2836
hon nlin evic echl trea trea	eservice esecurity eBackup eProtection Support mingTV mingMovies	nd the Car		L1 0.0055 0.2085 0.2183 0.2166 0.2061 0.1527 0.1566	(((((((((((((((((((0.0172 0.1522 0.2174 0.2285 0.1551 0.2836 0.2842
hon nlin evic echi trea trea trea	eservice esecurity eBackup eProtection Support mingTV mingMovies eService	nd the Car	nonical Va	L1 0.0055 0.2085 0.2183 0.2166 0.2061 0.1527 0.1566 0.0055	of the LO	0.0172 0.1522 0.2174 0.2285 0.1551 0.2836 0.2842 0.0172
hon nlin evic echi trea trea trea	eService eSecurity eBackup support mingTV mingMovies eService pservice_DSL	nd the Car	nonical Va	L1 0.0055 0.2085 0.2183 0.2166 0.2061 0.1527 0.1566 0.0055 0.0359	of the LO	0.0172 0.1522 0.2174 0.2285 0.1551 0.2836 0.2842 0.0172
hon nlin evic ech! trea trea trea terr	eService eSecurity eBackup seProtection Support mingTV mingMovies eService netService_DSL tetService_Fiber optic		nonical Va	L1 0.0055 0.2085 0.2183 0.2166 0.2061 0.1527 0.1566 0.0055 0.0359 -0.0409	of the LOY	L2 0.0172 0.1522 0.2174 0.2285 0.1551 0.2836 0.2842 0.0172 0.1233 0.3346
hon nlin evic ech! trea trea trea terr	eService eSecurity eBackup support mingTV mingMovies eService pservice_DSL		nonical Va	L1 0.0055 0.2085 0.2183 0.2166 0.2061 0.1527 0.1566 0.0055 0.0359 -0.0409	of the LOY	L2 0.0172 0.1522 0.2174 0.2285 0.1551 0.2836 0.2842 0.0172 0.1233 0.3346
hon nlin evic ech! trea trea trea terr	eService eSecurity eBackup eProtection Support mingTV mingMovies eService netService_Fiber optic		nonical Va	0.0055 0.2085 0.2183 0.2166 0.2061 0.1527 0.1566 0.0055 0.0359 -0.0409	of the LOY	0.0172 0.1522 0.2174 0.2285 0.1551 0.2836 0.2842 0.0172 0.1233 0.3346

Figure 7: Canonical Structure

Canonical structure output in Figure 7, shows that OnlineBackup, DeviceProtection, StreamingTV, Movies, and Fiber Optic Internet Services were highly correlated with S2, and Tenure and Churn had a high correlation with L1 and L2 respectively. Only the Tenure had a strong positive correlation with S1, while there is not any strong correlation between Service variables with L1 or L2.

	Canonical	Redundancy A	nalysis				
Standardized Variance of the SERVICE Explained by							
		r Own I Variables	The Op Canonical				
Canonical Variable Number	Proportion	Cumulative Proportion	Canonical R-Square	Proportion	Cumulative Proportion		
1	0.0645	0.0645	0.3586	0.0231	0.0231		
2	0.3040	0.3685	0.1433	0.0436	0.0667		
		0.3685	0.7400		0.0667		
	rdized Variand	3,000	0.7400	ed by	0.0667 pposite I Variables		
	rdized Variand	ce of the LOYA	0.7400	ed by	pposite		
Standa	rdized Variand Their Canonica	ce of the LOYA r Own I Variables Cumulative	LTY Explaine	ad by The O Canonica	pposite I Variables Cumulative		

Figure 8: Redundancy Analysis

The standardized variance output of the Redundancy Analysis was intercepted because not all of the indicators are of the same scale. The Redundancy Analysis also shows that only 6.7% of the variance of service variables was explained by the Loyalty variable, while 27% of the variance of Loyalty variables was explained by the service variables.

Discriminant Analysis

This section uses all the variables from customers' attributes to which service they use to classify the customer churn or not. Firstly, I used the Stepwise Discriminant Analysis (SAS, The DISCRIM Procedure, n.d.) to remove the unimportant variables, that was PhoneService and OnlineBackup.

The variables selected in the above step were used for analysis. The test for homogeneity of covariance matrices was done. Because the Chi-Square value is smaller than 0.0001, we reject the hypothesis that the covariance matrices are homogeneous. Quadratic discriminant analysis is more appropriate than linear discriminant analysis.

	Stepwise Selection Summary									
Step	Number In	Entered	Removed	Partial R-Square	F Value	Pr > F	Wilks' Lambda	Pr < Lambda	Average Squared Canonical Correlation	Pr>
1	1	Contract_Month-to-month		0.1641	1382.34	<.0001	0.83589163	<.0001	0.16410837	<.0001
2	2	InternetService_Fiber optic		0.0556	414.68	<.0001	0.78939337	<.0001	0.21060663	<.0001
	3	tenure		0.0390	285.86	<.0001	0.75858677	<.0001	0.24141323	<.0001
	4	PaymentMethod_Electronic check		0.0164	117.07	<.0001	0.74617508	<.0001	0.25382492	<.0001
5	5	StreamingMovies		0.0081	57.14	<.0001	0.74016504	<.0001	0.25983496	<.0001
6	6	PaperlessBilling		0.0043	30.53	<.0001	0.73696736	<.0001	0.26303264	<.0001
	7	SeniorCitizen		0.0031	22.18	<.0001	0.73465095	<.0001	0.26534905	<.0001
	8	OnlineSecurity		0.0027	18.70	<.0001	0.73270257	<.0001	0.26729743	<.0001
	9	InternetService_No		0.0039	27.38	<.0001	0.72986145	<.0001	0.27013855	<.0001
10	10	TechSupport		0.0046	32.18	<.0001	0.72653669	<.0001	0.27346331	<.0001
	11	OnlineBackup		0.0018	12.45	0.0004	0.72525283	<.0001	0.27474717	<.0001
12	12	Contract_One year		0.0013	9.34	0.0023	0.72429057	<.0001	0.27570943	<.0001
13	13	StreamingTV		0.0009	6.57	0.0104	0.72361406	<.0001	0.27638594	<.0001
14	14	PhoneService		0.0009	6.10	0.0136	0.72298705	<.0001	0.27701295	<.0001
15	15	MultipleLines		0.0020	13.97	0.0002	0.72155232	<.0001	0.27844768	<.0001
16	16	Dependents		0.0005	3.81	0.0509	0.72116093	<.0001	0.27883907	<.0001
17	17	MonthlyCharges		0.0005	3.24	0.0721	0.72082891	<.0001	0.27917109	<.0001
18	16		PhoneService	0.0002	1.38	0.2399	0.72097067	<.0001	0.27902933	<.0001
19	15		OnlineBackup	0.0001	0.69	0.4046	0.72104195	<.0001	0.27895805	<.0001

Figure 9: Stepwise Discriminant Analysis

The DISCRIM Procedure
Test of Homogeneity of Within Covariance Matrices

Figure 10: Test of Homogeneity

Figure 11 shows that the quadratic discriminant analysis had a misclassification rate of 24.22%.

Number of Observations and Percent Classified into Churn					
From Churn	No	Yes	Total		
No	3903	1271	5174		
	75.43	24.57	100.00		
Yes	435	1434	1869		
	23.27	76.73	100.00		
Total	4338	2705	7043		
	61.59	38.41	100.00		
Priors	0.73463	0.26537			

Error Count Estimates for Churn						
	No	Yes	Total			
Rate	0.2457	0.2327	0.2422			
Priors	0.7346	0.2654				

Figure 11: Misclassification summary

Partial Least Squares Analysis

Partial least squares analysis was conducted to see how the variables are correlated with the Churn. PLS procedure (SAS, The PLS Procedure, n.d.) using leave one out cross-validation and van der Voet's T-square test for the number of factors.

Cross Validation for the Number of Extracted Factors						
Number of Extracted Factors	Root Mean PRESS	T**2	Prob > T**2			
0	1.000142	601.5331	<.0001			
1	0.878996	118.0803	<.0001			
2	0.865048	49.46976	<.0001			
3	0.858534	25.98504	<.0001			
4	0.856449	17.71468	<.0001			
5	0.85494	12.17006	0.0010			
6	0.854241	9.93134	0.0020			
7	0.853593	8.97534	0.0020			
8	0.852618	4.874591	0.0290			
9	0.852075	2.540388	0.1060			
10	0.85164	0.507858	0.4710			
11	0.851536	0.004305	0.9480			
12	0.851531	0	1.0000			
13	0.851542	0.176654	0.6600			
14	0.851543	0.170015	0.6920			
15	0.851545	0.214693	0.6450			

Minimum root mean PRESS	0.8515
Minimizing number of factors	12
Smallest number of factors with p > 0.1	9

Figure 12: Cross Validation of Extracted Factors - Churn

The minimum PRESS occurs at 12 factors. However, the CVTEST option returns a nonsignificant T2 (where alpha=0.1) at 9 factors. Figure 13 shows that the variables that are important to classifying churn are having partners and dependents or not, tenure, streaming TV and movies, paperless billing, monthly charges, using Fiber Optic service, contract month-to-month and one year, and payment method using an electronic check.

Figure 13: PLS Important Variables

The other analysis is between all variables and the tenure, which is the number of months people stay with the company. Figure 14 shows that the model required a minimum of ten extracted factors.

Figure 14: Cross Validation of Extracted Factors – Tenure

Figure 15: Correlation Loading Plot

The correlation loading plot in Figure 15 shows that tenure is positively correlated with Factor 1 and Factor 2. OnlineSecurity, DeviceProtection, and StreamingTV are most strongly correlated with Factor 1 and are well predicted by the factors.

4. Discussion

The Cluster Analysis shows the main group of customers is the group of young people, who choose Fiber Optic Internet service with month-to-month contracts and they do not often need Tech Support. The Correspondence Analysis explores the group of customer attributes to the services that telecom company provides. I found that the younger, having a partner but not having dependents would use streaming services, and being younger and having dependents would not use internet service. The Canonical Correlation Analysis was used to find the relationship between the group of services variable and the group of loyalty such as the churn and tenure. The discriminant analysis indicated that using all variables while removing the two unimportant variables, would be misclassified 24.22% of the total population. The partial least squares highlight the list of the important variables are having partners and dependents or not, tenure, streaming TV and movies, paperless billing, monthly charges, using Fiber Optic service, contract month-to-month and one-year, and payment method using electronic checks. The PLS model between all variables and tenure shows that OnlineSecurity, DeviceProtection, and StreamingTV are highly correlated with the tenure variable.

5. Conclusion

The main objective of this report was to explore the customer data of the telecom company from the customer attributes to the services they used. Several methods were used to explore the multivariate dataset, including Cluster Analysis, Correspondence Analysis, Canonical Correlation Analysis, Discriminant Analysis, and Partial least squares analysis.

6. Appendix

```
proc print DATA=data.churn(obs=10);
run;
data data.churn3;
set data.churn2;
       if Churn='No' then Churn_binary=0;
       else Churn binary=1;
run;
proc standard data=data.churn3 mean=0 std=1 out=churn4;
run;
*Correspondence Analysis;
data data.addons;
       set data.churn;
       group=SeniorCitizen || Partner || Dependent || Gender;
run;
proc freq data=data.addons;
       tables group*StreamingMovies/chisq;
run;
proc corresp data=data.Churn cross=rows observed rp short;
       tables SeniorCitizen Partner Dependents Gender, StreamingTV;
run;
```

```
proc corresp data=data.Churn cross=rows observed rp short;
       tables SeniorCitizen Partner Dependents Gender, StreamingMovies;
run;
*Distance;
proc distance data=data.churn method=DGOWER absent=0 out=data.gower;
       VAR interval(tenure MonthlyCharges) Nominal(gender--Dependents PhoneService--
PaymentMethod);
      id CustomerID;
run;
ods graphics on;
proc cluster data=data.gower method=CEN ccc pseudo print=15 outtree=tree;
id CustomerID;
run;
proc tree data=tree noprint n=7 out=out;
id CustomerID;
run;
proc sort data=data.churn;
by CustomerID;
run;
proc sort data=out;
by CustomerID;
run;
```

```
data clus;
 merge data.churn out;
 by CustomerID;
run;
*Plot;
proc sgplot data=clus;
vbar SeniorCitizen / group = Cluster groupdisplay = Cluster;
run;
proc sgplot data=clus;
vbar InternetService / group = Cluster groupdisplay = Cluster;
run;
proc sgplot data=clus;
vbar Contract / group = Cluster groupdisplay = Cluster;
run;
proc sgplot data=clus;
vbar TechSupport / group = Cluster groupdisplay = Cluster;
run;
proc sgplot data=clus;
vbar PhoneService / group = Cluster groupdisplay = Cluster;
run;
```

```
* Canonical Correlation Analysis;
proc cancorr data=data.churn3
  vprefix=S vname=Service
  wprefix=L wname=Loyalty;
       var PhoneService OnlineSecurity--StreamingMovies PhoneService InternetService DSL-
-"InternetService Fiber Optic"n;
 with tenure Churn binary;
run;
proc cancorr data=data.churn3 out=churn cancorr red
  vprefix=S vname=Service
       wprefix=L wname=Loyalty
       ncan=2;
       var PhoneService OnlineSecurity--StreamingMovies PhoneService InternetService DSL-
-"InternetService Fiber Optic"n;
       with tenure Churn binary;
run;
* Canonical Discriminant Analysis;
proc stepdisc data=data.churn2 method=stepwise;
       class Churn;
       var gender--monthlycharges InternetService DSL "InternetService Fiber Optic"n
"Contract Month-to-month"n
       "Contract One year"n "PaymentMethod Bank transfer (aut"n--
"PaymentMethod Electronic check"n;
run;
```

```
proc discrim data=data.churn2 pool=test slpool=.05;
       class Churn;
       priors prop;
       var & STDVAR;
run;
*partial;
proc pls data = data.churn3 method = pls(algorithm=nipals)
cv=one cvtest(seed=608789001)
plot=(vip xyscores xscores parmprofiles dmod);
model tenure = gender--Dependents PhoneService--MonthlyCharges InternetService DSL
"InternetService Fiber Optic"n "Contract Month-to-month"n
       "Contract One year"n "PaymentMethod Bank transfer (aut"n--
"PaymentMethod Electronic check"n;
run;
proc pls data = data.churn3 method = pls(algorithm=nipals)
cv=one cvtest(seed=608789001)
plot=(vip xyscores xscores parmprofiles dmod);
model Churn binary = gender--MonthlyCharges InternetService DSL "InternetService Fiber
Optic"n "Contract Month-to-month"n
       "Contract One year"n "PaymentMethod Bank transfer (aut"n--
"PaymentMethod Electronic check"n;;
run;
```

Bibliography

- SAS. (n.d.). *The CLUSTER Procedure*. From https://documentation.sas.com/doc/en/statug/15.2/statug_cluster_details01.htm
- SAS. (n.d.). *The DISTANCE Procedure*. From https://documentation.sas.com/doc/en/statug/15.2/statug_distance_syntax01.htm#statug.d istance.methodopt
- Caliński, T. (1974). A Dendrite Method for Cluster Analysis.
- Duda, R. (1974). Pattern classification and scene analysis.
- IBM. (2024). *Cramér's V*. From https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=terms-cramrs-v
- Kaggle. (n.d.). *Telco Customer Churn*. From https://www.kaggle.com/datasets/blastchar/telco-customer-churn/data
- SAS. (n.d.). *The CORRESP Procedure*. From https://documentation.sas.com/doc/ko/pgmsascdc/9.4 3.4/statug/statug corresp toc.htm
- SAS. (n.d.). *The CANCORR Procedure*. From https://documentation.sas.com/doc/ko/pgmsascdc/9.4_3.4/statug/statug_cancorr_toc.htm
- SAS. (n.d.). *The DISCRIM Procedure*. From https://documentation.sas.com/doc/ko/pgmsascdc/9.4 3.4/statug/statug discrim toc.htm
- SAS. (n.d.). *The PLS Procedure*. From https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_pls_syntax01.htm #statug.pls.pls_prc_methodopt