

FUNGIZIDE MISCHUNGEN ZUR BEKÄMPFUNG VON REISPATHOGENEN

Beschreibung

5 Die vorliegende Erfindung betrifft fungizide Mischungen, enthaltend als aktive Komponenten

1) das Triazolopyrimidinderivat der Formel I,

10 und

2) Phosphorige Säure H₃PO₃,
ihre Alkali- oder Erdalkaliscalze oder sie freisetzende Derivate II

15 in einer synergistisch wirksamen Menge.

Außerdem betrifft die Erfindung ein Verfahren zur Bekämpfung von Schadpilzen mit
Mischungen der Verbindung I mit der Verbindung II und die Verwendung der Verbin-
dung I mit der Verbindung II zur Herstellung derartiger Mischungen sowie Mittel, die
20 diese Mischungen enthalten.

Die Verbindung I, 5-Chlor-7-(4-methyl-piperidin-1-yl)-6-(2,4,6-trifluorophenyl)-[1,2,4]tri-
azolo[1,5-a]pyrimidin, ihre Herstellung und deren Wirkung gegen Schadpilze ist aus der
Literatur bekannt (WO 98/46607).

25

Mischungen von Triazolopyrimidinderivaten mit anderen Wirkstoffen sind allgemein aus
EP-A 988 790 und US 6 268 371 bekannt.

Die in EP-A 988 790 beschriebenen synergistischen Mischungen werden als fungizid
30 wirksam gegen verschiedene Krankheiten von Getreide, Obst und Gemüse, insbeson-
dere Mehltau an Weizen und Gerste oder Grauschimmel an Äpfeln beschrieben. Die
aus US 6 268 371 bekannten Mischungen werden als besonders vorteilhaft gegen
Reiskrankheiten einsetzbar beschrieben.

Phosphorige Säure ist das eigentlich wirksame Abbauprodukt der seit langem im Markt etablierten Wirkstoffe Ethyolphosphonat (common name: Fosethyl) IIa und Ethyolphosphonat Aluminiumsalz (common name: Fosethyl-Aluminium) IIb.

IIa

IIb

- 5 Die Herstellung und die fungizide Wirkung des Esters IIa und des entsprechenden Aluminiumsalzes IIb ist aus der Literatur bekannt (FR 22 54 276).

Im Hinblick auf eine wirkungsvolle Bekämpfung von Schadpilzen bei möglichst geringen Aufwandmengen lagen der vorliegenden Erfindungen Mischungen als Aufgabe 10 zugrunde, die bei verringelter Gesamtmenge an ausgebrachten Wirkstoffen eine verbesserte Wirkung gegen Schadpilze zeigen (synergistische Mischungen).

Demgemäß wurden die eingangs definierten Mischungen gefunden. Es wurde außerdem gefunden, dass sich bei gleichzeitiger gemeinsamer oder getrennter Anwendung 15 der Verbindung I und der Verbindung II oder bei Anwendung der Verbindung I und der Verbindung II nacheinander Schadpilze besser bekämpfen lassen als mit den Einzelverbindungen.

Die Mischungen der Verbindung I und der Verbindung II bzw. die gleichzeitige gemeinsame oder getrennte Verwendung der Verbindung I und der Verbindung II zeichnen 20 sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der *Ascomyceten*, *Deuteromyceten*, *Oomyceten* und *Basidiomyceten*. Sie können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.

25 Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Bananen, Baumwolle, Gemüsepflanzen (z.B. Gurken, Bohnen und Kürbisgewächse), Gerste, Gras, Hafer, Kaffee, Kartoffeln, Mais, Obstpflanzen, Reis, Roggen, Soja, Tomaten, Wein, Weizen, Zierpflanzen, Zuckerrohr und einer Vielzahl von Samen.

30 Insbesondere eignen sie sich zur Bekämpfung der folgenden pflanzenpathogenen Pilze: *Blumeria graminis* (echter Mehltau) an Getreide, *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen, *Podosphaera leucotricha* an Äpfeln, *Uncinula necator* an Reben, *Puccinia*-Arten an Getreide, *Rhizoctonia*-Arten an Baumwolle, Reis und Rasen, *Ustilago*-Arten an Getreide und Zuckerrohr, *Venturia inaequalis* an Äpfeln, *Bipolaris*- und *Drechslera*-Arten an Getreide, Reis und Rasen, *Septoria nodorum* an Weizen, *Botrytis cinerea* an Erdbeeren, Gemüse, Zierpflanzen und Reben, *My-*

cosphaerella-Arten an Bananen, Erdnüssen und Getreide, *Pseudocercospora herpotrichoides* an Weizen und Gerste, *Pyricularia oryzae* an Reis, *Phytophthora infestans* an Kartoffeln und Tomaten, *Pseudoperonospora*-Arten an Kürbisgewächsen und Hopfen, *Plasmopara viticola* an Reben, *Alternaria*-Arten an Gemüse und Obst sowie *Fusarium*- und *Verticillium*-Arten.

5 Besondere Bedeutung haben die erfindungsgemäßen Mischungen für die Bekämpfung von Schadpilzen an Reispflanzen und an deren Saatgut, wie *Bipolaris*- und *Drechslera*-Arten, sowie *Pyricularia oryzae*. Insbesondere eignen sie sich zur Bekämpfung der 10 Braunfleckenkrankheit des Reises, die durch *Cochliobolus miyabeanus* verursacht wird.

In Reis sind andere Pathogene typisch als in Getreide oder Obst. *Pyricularia oryzae* 15 und *Corticium sasakii* (syn. *Rhizoctonia solani*) sind die Erreger der bedeutendsten Krankheiten von Reispflanzen. *Rhizoctonia solani* ist das einzige landwirtschaftlich bedeutende Pathogen innerhalb der Unterklasse *Agaricomycetidae*. Dieser Pilz befällt die Pflanze nicht wie die meisten anderen Pilze über Sporen, sondern über eine Myzelinfektion.

20 Die erfindungsgemäßen Mischungen sind außerdem im Materialschutz (z.B. Holzschutz) anwendbar, beispielsweise gegen *Paecilomyces variotii*.

Bevorzugt setzt man bei der Bereitstellung der Mischungen die reinen Wirkstoffe I und II ein, denen man je nach Bedarf weitere Wirkstoffe gegen Schadpilze oder andere 25 Schädlinge wie Insekten, Spinntiere oder Nematoden, oder auch herbizide oder wachstumsregulierende Wirkstoffe oder Düngemittel beimischen kann.

Als weitere Wirkstoffe im voranstehenden Sinne kommen insbesondere Wirkstoffe ausgewählt aus den folgenden Gruppen in Frage:

- 30 • Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
• Aminderivate wie Aldimorph, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Tridemorph,
• Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyprodinil,
• Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder 35 Streptomycin,
•azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimenol, Triadimenol, Triflumizol, Triticonazol,

- Dicarboximide wie Myclozolin,
- Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
- Heterocyclische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Farnoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Probenazol, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Tiadnil, Tricyclazol, Triforine,
- Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl,
- Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- Schwefel,
- Sonstige Fungizide wie Acibenzolar-S-methyl, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Methylisothiocyanat, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
- Strobilurine wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Pyraclostrobin oder Trifloxystrobin,
- Sulfensäurederivate wie Captafol, Captan, Diclofluanid, Folpet,
- Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

In einer Ausführungsform der erfindungsgemäßen Mischungen werden den Verbindungen I und II ein weiteres Fungizid III oder zwei Fungizide III und IV wie voranstehend genannt, beigemischt.

- Besonders bevorzugt sind Mischungen, in denen Captafol, Captan, Diclofluanid, Folpet, Maneb, Mancozeb, Metiram, Thiram oder Zineb als Wirkstoff III vorliegen.
- Mischungen enthaltend die Verbindungen I und II, insbesondere IIb, sind bevorzugt, die gewünschtenfalls eine Komponente III enthalten können.
- Die Verbindung I und die Verbindung II können gleichzeitig gemeinsam oder getrennt oder nacheinander aufgebracht werden, wobei die Reihenfolge bei getrennter Applikation im allgemeinen keine Auswirkung auf den Bekämpfungserfolg hat.
- Die Verbindung I und die Verbindung II werden üblicherweise in einem Gewichtsverhältnis von 100:1 bis 1:100, vorzugsweise 10:1 bis 1:20, insbesondere 5:1 bis 1:10 angewandt. Die vorgenannten Verhältnisse und die nachfolgenden Angaben beziehen sich insbesondere auf die Verbindung I und Fosetyl-Aluminium IIb. Bei Verwendung

5.

von Phosphoriger Säure II, ihrer Alkali- oder Erdalkalisalzen oder Fosethyl IIA können die Mengen der Komponente (2) entsprechend dem geringeren Molekulargewicht entsprechend zu verringert werden.

- 5 Die Aufwandmengen der erfindungsgemäßen Mischungen liegen je nach Art der Verbindung und des gewünschten Effekts bei 5 g/ha bis 2500 g/ha, vorzugsweise 50 bis 2000 g/ha, insbesondere 50 bis 1000 g/ha.

Die Aufwandmengen für die Verbindung I liegen entsprechend in der Regel bei 1 bis 10 1000 g/ha, vorzugsweise 10 bis 900 g/ha, insbesondere 20 bis 750 g/ha.

Die Aufwandmengen für die Verbindung IIb liegen entsprechend in der Regel bei 1 bis 2500 g/ha, vorzugsweise 10 bis 1000 g/ha, insbesondere 20 bis 750 g/ha.

- 15 Bei der Saatgutbehandlung werden im allgemeinen Aufwandmengen an Mischung von 1 bis 1000 g/100 kg Saatgut, vorzugsweise 1 bis 200 g/100 kg, insbesondere 5 bis 100 g/100 kg verwendet.

20 Sofern für Pflanzen pathogene Schadpilze zu bekämpfen sind, erfolgt die getrennte oder gemeinsame Applikation der Verbindung I und der Verbindung II oder der Mischungen aus den Verbindung I und der Verbindung II durch Besprühen oder Bestäuben der Samen, der Pflanzen oder der Böden vor oder nach der Aussaat der Pflanzen oder vor oder nach dem Auflaufen der Pflanzen. Bevorzugt erfolgt die Anwendung der Verbindungen durch Besprühen der Blätter.

- 25 Die erfindungsgemäßen Mischungen, bzw. die Verbindungen I und II können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensions, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige 30 Verteilung der erfindungsgemäßen Verbindung gewährleisten.

35 Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstreichen des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butyrolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester.
- 40 Grundsätzlich können auch Lösungsmittelgemische verwendet werden,

- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfosäure, Naphthalinsulfosäure, Phenolsulfosäure, Dibutylnaphthalinsulfosäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfonierte Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfosäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfaktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylool, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubmittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nusschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% der Wirkstoffe. Die Wirkstoffe werden dabei in ei-

ner Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

5

A) Wasserlösliche Konzentrate (SL)

10 Gew.-Teile der Wirkstoffe werden in Wasser oder einem wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

10

B) Dispergierbare Konzentrate (DC)

20 Gew.-Teile der Wirkstoffe werden in Cyclohexanon unter Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.

15

C) Emulgierbare Konzentrate (EC)

15 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

20

D) Emulsionen (EW, EO)

40 Gew.-Teile der Wirkstoffe werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

E) Suspensionen (SC, OD)

20 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffssuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

F) Wasserdispergierbare und wasserlösliche Granulate (WG, SG)

50 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

G) Wasserdispergierbare und wasserlösliche Pulver (WP, SP)

40 75 Gew.-Teile der Wirkstoffe werden unter Zusatz von Dispergier- und Netzmitteln so-

wie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

2. Produkte für die Direktapplikation

5

H) Stäube (DP)

5 Gew. Teile der Wirkstoffe werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubmittel.

10 I) Granulate (GR, FG, GG, MG)

0,5 Gew.-Teile der Wirkstoffe werden fein gemahlen und mit 95,5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtröcknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

15 J) ULV- Lösungen (UL)

10 Gew.-Teile der Wirkstoffe werden in einem organischen Lösungsmittel z.B. Xylo gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

20 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubmitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfundungsgemäßen Wirkstoffe gewährleisten.

25 Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

35

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

- 5 Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel werden üblicherweise zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt.

- 10 Die Verbindungen I und II, bzw. die Mischungen oder die entsprechenden Formulierungen werden angewendet, indem man die Schadpilze, die von ihnen freizuhaltenden Pflanzen, Samen, Böden, Flächen, Materialien oder Räume mit einer fungizid wirksamen Menge der Mischung, bzw. der Verbindungen I und II bei getrennter Ausbringung, 15 behandelt. Die Anwendung kann vor oder nach dem Befall durch die Schadpilze erfolgen.

- 20 Die fungizide Wirkung der Verbindung und der Mischungen lässt sich durch folgende Versuche zeigen:

- 25 Die Wirkstoffe wurden getrennt oder gemeinsam als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

- Anwendungsbeispiel - Wirksamkeit gegen die Braunfleckenkrankheit des Reises verursacht durch *Cochliobolus miyabeanus* bei protektiver Behandlung
- 30 Blätter von in Töpfen gewachsenen Reiskeimlingen der Sorte "Tai-Nong 67" wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht.. Am folgenden Tag wurden die Pflanzen mit einer wässrigen Sporensuspension von *Cochliobolus miyabeanus* inkuliert. Anschließend wurden die Versuchspflanzen in Klimakammern bei 22 - 24°C und 95 - 99 % relativer Luftfeuchtigkeit für 35 6 Tage aufgestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blättern visuell ermittelt.

- 40 Die Auswertung erfolgt durch Feststellung der befallenen Blattflächen in Prozent. Diese Prozent-Werte wurden in Wirkungsgrade umgerechnet.

10

Der Wirkungsgrad (W) wird nach der Formel von Abbot wie folgt berechnet:

$$W = (1 - \alpha/\beta) \cdot 100$$

- 5 α entspricht dem Pilzbefall der behandelten Pflanzen in % und
 β entspricht dem Pilzbefall der unbehandelten (Kontroll-) Pflanzen in %

Bei einem Wirkungsgrad von 0 entspricht der Befall der behandelten Pflanzen demjenigen der unbehandelten Kontrollpflanzen; bei einem Wirkungsgrad von 100 weisen 10 die behandelten Pflanzen keinen Befall auf.

Die zu erwartenden Wirkungsgrade der Wirkstoffmischungen werden nach der Colby Formel [R.S. Colby, Weeds 15, 20-22 (1967)] ermittelt und mit den beobachteten Wirkungsgraden verglichen.

- 15 Colby Formel:

$$E = x + y - x \cdot y / 100$$

- E zu erwartender Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Mischung aus den Wirkstoffen A und B in den Konzentrationen 20 a und b
 x der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs A in der Konzentration a
 y der Wirkungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffs B in der Konzentration b

25

Tabelle A - Einzelwirkstoffe

Beispiel	Wirkstoff	Wirkstoffkonzentration in der Spritzbrühe [ppm]	Wirkungsgrad in % der unbehandelten Kontrolle
1	Kontrolle (unbehandelt)	-	(90% Befall)
2	I	4	33
3	IIb (Fosethyl-Al)	16 1	0 0

Tabelle B – erfindungsgemäße Mischungen

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
4	I + IIb 4 + 1 ppm 4:1	67	33

Beispiel	Wirkstoffmischung Konzentration Mischungsverhältnis	beobachteter Wirkungsgrad	berechneter Wirkungsgrad*)
5	I + IIb 4 + 16 ppm 1:4	89	33

*) berechneter Wirkungsgrad nach der Colby-Formel

Aus den Ergebnissen der Versuche geht hervor, dass der beobachtete Wirkungsgrad in allen Mischungsverhältnissen höher ist, als nach der Colby-Formel vorausberechnet.

Patentansprüche

1. Fungizide Mischungen, enthaltend

5 1) das Triazolopyrimidinderivat der Formel I,

und

10 2) Phosphorige Säure H₃PO₄,
ihre Alkali- oder Erdalkalisalze oder sie freisetzende Derivate II

in einer synergistisch wirksamen Menge.

15 2. Fungizide Mischungen gemäß Anspruch 1, enthaltend als Verbindung II
Fosethyl-Aluminium der Formel IIb20 3. Fungizide Mischungen gemäß einem der Ansprüche 1 oder 2, enthaltend die
Verbindung der Formel I und die Verbindung der Formel II in einem Gewichts-
verhältnis von 100:1 bis 1:100.25 4. Mittel, enthaltend einen flüssigen oder festen Trägerstoff und eine Mischung ge-
mäß einem der Ansprüche 1 bis 3.5. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, dass man
die Pilze, deren Lebensraum oder die vor Pilzbefall zu schützenden Pflanzen,
den Boden oder Saatgüter mit einer wirksamen Menge der Verbindung I und der
Verbindung II gemäß Anspruch 1 behandelt.30 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man die Verbindun-
gen I und II gemäß Anspruch 1 gleichzeitig, und zwar gemeinsam oder getrennt,
oder nacheinander aus bringt.

13

7. Verfahren nach Ansprüchen 5 und 6, dadurch gekennzeichnet, dass reispathogene Schadpilze bekämpft werden.
8. Verfahren nach Anspruch 5 bis 7, dadurch gekennzeichnet, dass man die Mischung gemäß einem der Ansprüche 1 bis 3 in einer Menge von 5 g/ha bis 2500 g/ha aufwendet.
- 5 9. Verfahren nach Ansprüchen 5 bis 7, dadurch gekennzeichnet, dass man die Mischung gemäß einem der Ansprüche 1 bis 3 in einer Menge von 1 bis 10 1000 g/100 kg Saatgut anwendet.
10. Saatgut, enthaltend die Mischung gemäß Ansprüchen 1 bis 3 in einer Menge von 1 bis 1000 g/100 kg.
- 15 11. Verwendung der Verbindung I und der Verbindung II gemäß Anspruch 1 zur Herstellung eines zur Bekämpfung von Schadpilzen geeigneten Mittels.