1.9

Assume for arithmetic, load/store, and branch instructions, a processor has CPIs of 1, 12, and 5, respectively. Also assume that on a single processor a program requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store instructions, and 256 million branch instructions. Assume that each processor has a 2GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number of arithmetic and load/store instructions per processor is divided by 0.7 x p (where p is the number of processors) but the number of branch instructions per processor remains the same.

1.9.1

Find the total execution time for this program on 1, 2, 4, and 8 processors, and show the relative speedup of the 2, 4, and 8 processor result relative to the single processor result.

```
CPIs Arithmetic = 1 Load/Store = 12 Branch = 5
1 proc Arith 1.28e9 L/S 1.28e9 Brch 2.56e8 2GHz

Proc 1 CPU time = (1.28e9*1)+(12*1.28e9)+(5*2.56e8)/2,000,000,000 = 8.9675

Proc 2 CPU time = (1.28e9*1)+(12*1.28e9)+(5*2.56e8)/(2,000,000,000*2) = 4.48375

Proc 4 CPU time = (1.28e9*1)+(12*1.28e9)+(5*2.56e8)/(2,000,000,000*4) = 2.24188

Proc 8 CPU time = (1.28e9*1)+(12*1.28e9)+(5*2.56e8)/(2,000,000,000*8) = 1.12094
```

1.9.3

To what should the CPI of load/store instructions be reduced in order for a single processor to match the performance of four processors using the original CPI values?

CPI of load/store 3 in order to achieve same time as Proc.

1.11

The results of the SPEC CPU2006 bzip2 benchmark running on an AMD Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a reference time of 9650 s.

<u>1.11.1</u>

Find the CPI if the clock cycle time is 0.333 ns.

1.11.3

Find the increase in CPU time if the number of instructions of the benchmark is increased by 10% without affecting the CPI.

1.11.5

Find the change in the SPECratio for this change.