Project: Titanic - Machine Learning from Disaster

Overview

- 1. Exploring the data
- 2. Data Cleaning / Preprocessing
- 3. Model Building

using ScikitLearn

using VegaLite

using Statistics

using Distributions

4. Results

```
• md"""
• # Project: Titanic - Machine Learning from Disaster
• ## Overview
• 1) Exploring the data
• 2) Data Cleaning / Preprocessing
• 3) Model Building
• 4) Results
• """
• using Plots
• using CSV
• using DataFrames
```

	PassengerId	Survived	Pclass	Name	Sex	1
1	1	0	3	"Braund, Mr. Owen Harris"	"male"	22.
2	2	1	1	"Cumings, Mrs. John Bradley (Florence	"female"	38.
3	3	1	3	"Heikkinen, Miss. Laina"	"female"	26.
4	4	1	1	"Futrelle, Mrs. Jacques Heath (Lily Ma	"female"	35.
5	5	0	3	"Allen, Mr. William Henry"	"male"	35.
6	6	0	3	"Moran, Mr. James"	"male"	mis
7	7	0	1	"McCarthy, Mr. Timothy J"	"male"	54.
8	8	0	3	"Palsson, Master. Gosta Leonard"	"male"	2.6
9	9	1	3	"Johnson, Mrs. Oscar W (Elisabeth Vilh	"female"	27.
10	10	1	2	"Nasser, Mrs. Nicholas (Adele Achem)"	"female"	14.
m	ore					
891	891	0	3	"Dooley, Mr. Patrick"	"male"	32.

```
begin
    # load Train Data
    path_train = "train.csv"
    data_train = CSV.read(path_train, DataFrame)
    end
```

	Passengerld	Pclass	Name	Sex	Age	Sil
1	892	3	"Kelly, Mr. James"	"male"	34.5	0
2	893	3	"Wilkes, Mrs. James (Ellen Needs)"	"female"	47.0	1
3	894	2	"Myles, Mr. Thomas Francis"	"male"	62.0	0
4	895	3	"Wirz, Mr. Albert"	"male"	27.0	0
5	896	3	"Hirvonen, Mrs. Alexander (Helga E Lin	"female"	22.0	1
6	897	3	"Svensson, Mr. Johan Cervin"	"male"	14.0	0
7	898	3	"Connolly, Miss. Kate"	"female"	30.0	0
8	899	2	"Caldwell, Mr. Albert Francis"	"male"	26.0	1
9	900	3	"Abrahim, Mrs. Joseph (Sophie Halaut E	"female"	18.0	0
10	901	3	"Davies, Mr. John Samuel"	"male"	21.0	2
m	ore					
418	1309	3	"Peter, Master. Michael J"	"male"	missing	1

```
begin
    # load Test Data
    path_test = "test.csv"
    data_test = CSV.read(path_test, DataFrame)
    end
```

Exploring the data

	variable	mean	min	median	max
1	:PassengerId	446.0	1	446.0	891
2	:Survived	0.383838	0	0.0	1
3	:Pclass	2.30864	1	3.0	3
4	:Name	nothing	"Abbing, Mr. Anthony"	nothing	"van Melkebeke, Mr. Philemo
5	:Sex	nothing	"female"	nothing	"male"
6	:Age	29.6991	0.42	28.0	80.0
7	:SibSp	0.523008	0	0.0	8
8	:Parch	0.381594	0	0.0	6
9	:Ticket	nothing	"110152"	nothing	"WE/P 5735"
10	:Fare	32.2042	0.0	14.4542	512.329
11	:Cabin	nothing	"A10"	nothing	"T"
12	:Embarked	nothing	"C"	nothing	"S"

describe(data_train)

	variable	mean	min	median	m
1	:PassengerId	1100.5	892	1100.5	1309
2	:Pclass	2.26555	1	3.0	3
3	:Name	nothing	"Abbott, Master. Eugene Joseph"	nothing	"van Billiard, Ma
4	:Sex	nothing	"female"	nothing	"male"
5	:Age	30.2726	0.17	27.0	76.0
6	:SibSp	0.447368	0	0.0	8
7	:Parch	0.392344	0	0.0	9
8	:Ticket	nothing	"110469"	nothing	"W.E.P. 5734"
9	:Fare	35.6272	0.0	14.4542	512.329
10	:Cabin	nothing	"A11"	nothing	"G6"
11	:Embarked	nothing	"C"	nothing	"S"

describe(<u>data_test</u>)

Data Overview / Plots

Numeric Data

- Age
- SibSp (Siplings and Spouses)
- Parch (Partens and Children)
- Fare

Plots for numeric data

- Histograms to understand distributions
- Correlation Plot

ric_df =		Age	SibSp	Parch	Fare
	1	22.0	1	0	7.25
	2	38.0	1	0	71.2833
	3	26.0	0	0	7.925
	4	35.0	1	0	53.1
	5	35.0	0	0	8.05
	6	missing	0	0	8.4583
	7	54.0	0	0	51.8625
	8	2.0	3	1	21.075
	9	27.0	0	2	11.1333
	10	14.0	1	0	30.0708
	m	ore			
	891	32.0	0	0	7.75

• numeric_df = data_train[:,[:Age,:SibSp,:Parch,:Fare]]

```
hist_Age =
                                                    Survived
   200
                                                    0
                                                    1
 Count of Records
    150
    100
     50
      0
            10
                 20
                      30
                                50
                                     60
                                          70 80
                      Age (binned)
```

```
hist_Age= @vlplot(data=data_train)+
        @vlplot(:bar, x={:Age, bin=true}, y="count()", color={:Survived, type =
        "nominal"})
```



```
hist_Fare =

500
400
400
500
300
100
100
0 60 120 180 240 300 360 420 480
Fare (binned)
```

```
cor_numeric = 4×4 Matrix{Float64}:
                            -0.308247
                                       -0.189119
                                                  0.0960667
                1.0
               -0.308247
                            1.0
                                        0.38382
                                                  0.138329
                                                  0.205119
               -0.189119
                            0.38382
                                        1.0
                0.0960667
                            0.138329
                                        0.205119
                                                  1.0
```

cor_numeric=cor(Matrix(dropmissing(numeric_df)))

GRBackend()

• gr()

Plots.heatmap(names(numeric_df),names(numeric_df),cor_numeric,aspect_ratio = 1)

Categorical

- Survived
- Pclass
- Sex
- (Cabin)
- Embarked

Plots for Categorical Data

· Bar charts to understand balance of classes


```
bar_Embarked =
                                                    Embarked
   500
                                                    null
                                                       С
                                                    Q
 Count of Records 300 200
                                                    S
    100
     0
        0.00
              0.20
                      0.40
                              0.60
                                       0.80
                                            1.00
                   Survived (binned)
```

Other Data

- Name
- Ticket

```
891-element SentinelArrays.ChainedVector{String, Vector{String}}:

"Braund, Mr. Owen Harris"

"Cumings, Mrs. John Bradley (Florence Briggs Thayer)"

"Heikkinen, Miss. Laina"

"Futrelle, Mrs. Jacques Heath (Lily May Peel)"

"Allen, Mr. William Henry"

"Moran, Mr. James"

"McCarthy, Mr. Timothy J"

:

"Rice, Mrs. William (Margaret Norton)"

"Montvila, Rev. Juozas"

"Graham, Miss. Margaret Edith"

"Johnston, Miss. Catherine Helen \"Carrie\""

"Behr, Mr. Karl Howell"

"Dooley, Mr. Patrick"

- data_train.Name
```

891-element SentinelArrays.ChainedVector{String31, Vector{String31}}:
"A/5 21171"
"PC 17599"
"STON/O2. 3101282"
"113803"
"373450"
"330877"
"17463"
:
"382652"
"211536"
"112053"
"W./C. 6607"
"111369"
"370376"

```
    data_train.Ticket
```

```
2×2 Matrix{Float64}:
    1.0     -0.5495
    -0.5495    1.0

• begin
•    # correlation between Pclass and Fare
•    dat = dropmissing(select(data_train, [:Fare, :Pclass]))
•    cor_Pclass_Fare=cor(Matrix(dat))
• end
```



```
begin
gr()
Plots.heatmap(names(dat),names(dat),cor_Pclass_Fare,aspect_ratio = 1)
end
```

Conclusion

Dealing with missing values

The training data set has a total of 891 samples.

- Age
 - o 177 missing values (in training data)
 - \circ replace missing values with mean \pm sd
- Cabin
 - 687 missing values (in training data)
 - don't use Cabin as feature
- Embarked
 - o 2 missing values (in training data)
 - drop missing
- Fare
 - high (negative) correlation with class
 - o if missing: replace with mean for the corresponding class

Feature Selection

Y = Survived

- Exclude:
 - PassengerId
 - Name
 - Ticket
 - Cabin
- Include:
 - o Pclass
 - Sex
 - o Age
 - SibSp and Parch
 - Fare
 - o Embarked

Data Cleaning

```
get_test_data (generic function with 1 method)
```

include("project_functions.jl")

PyObject <class 'sklearn.preprocessing._data.StandardScaler'>

@sk_import preprocessing: StandardScaler

```
0.0
   22.0
            0.1
                 1.0
                       0.0
                            0.0
                                 1.0
                                      0.0
                                           0.0141511
                                                       1.0
                                                            0.0
   38.0
             0.1
                 0.0
                       1.0
                            0.0
                                 0.0
                                      1.0
                                           0.139136
                                                       0.0
                                                            1.0
                                                                 0.0
   26.0
             0.0
                 1.0
                       0.0
                            0.0
                                 0.0
                                      1.0
                                           0.0154686
                                                       1.0
                                                            0.0
                                                                 0.0
   35.0
             0.1
                 0.0
                       1.0
                            0.0
                                 0.0
                                      1.0
                                           0.103644
                                                       1.0
                                                            0.0
                                                                 0.0
                                           0.0157126
   35.0
             0.0
                  1.0
                       0.0
                            0.0
                                 1.0
                                      0.0
                                                       1.0
                                                            0.0
                                                                 0.0
   27.1101
            0.0
                                 1.0
                                      0.0
                                                       0.0
                                                            0.0
                  1.0
                       0.0
                            0.0
                                           0.0165095
                                                                 1.0
            0.0
                 0.0
                       1.0
                            0.0
                                 1.0
                                      0.0
                                           0.101229
                                                            0.0
   54.0
                                                       1.0
                                                                 0.0
   39.0
             0.5
                  1.0
                       0.0
                            0.0
                                 0.0
                                      1.0
                                           0.0568482
                                                       0.0
                                                            0.0
                                                                 1.0
   27.0
             0.0
                 0.0
                       0.0
                            1.0
                                 1.0
                                      0.0
                                           0.0253743
                                                       1.0
                                                            0.0
                                                                 0.0
   19.0
             0.0
                 0.0
                       1.0
                            0.0
                                 0.0
                                      1.0
                                           0.0585561
                                                       1.0
                                                            0.0
                                                                 0.0
   14.1029
            0.3
                  1.0
                       0.0
                            0.0
                                 0.0
                                      1.0
                                           0.0457714
                                                       1.0
                                                            0.0
                                                                 0.0
   26.0
             0.0 0.0
                       1.0
                            0.0
                                 1.0
                                      0.0
                                           0.0585561
                                                       0.0
                                                            1.0
                                                                 0.0
   32.0
             0.0 1.0
                       0.0
                            0.0
                                 1.0 0.0
                                           0.015127
                                                       0.0
                                                            0.0
                                                                 1.0
 train_X_unscaled, train_y = get_final_data(data_train)
scaler_train =
▼ StandardScaler
StandardScaler()
 • scaler_train = StandardScaler().fit(train_X_unscaled)
train_X =
889×11 Matrix{Float64}:
 -0.52731
             0.0578533
                         0.900328
                                   -0.56306
                                                  0.616794
                                                            -0.482711
                                                                        -0.307941
 0.541436
             0.0578533
                        -1.11071
                                    1.77601
                                                 -1.62129
                                                              2.07163
                                                                        -0.307941
-0.260124
           -0.561804
                         0.900328
                                   -0.56306
                                                  0.616794
                                                            -0.482711
                                                                        -0.307941
                                                  0.616794
 0.341046
            0.0578533
                        -1.11071
                                    1.77601
                                                            -0.482711
                                                                        -0.307941
                                                  0.616794
 0.341046
           -0.561804
                         0.900328
                                    -0.56306
                                                            -0.482711
                                                                        -0.307941
 -0.185971
           -0.561804
                         0.900328
                                   -0.56306
                                                 -1.62129
                                                            -0.482711
                                                                         3.24738
 1.61018
            -0.561804
                        -1.11071
                                    1.77601
                                                  0.616794
                                                            -0.482711
                                                                        -0.307941
                                   -0.56306
                                                                         3.24738
 0.608233
             2.53648
                         0.900328
                                                 -1.62129
                                                            -0.482711
-0.193327
           -0.561804
                        -1.11071
                                    -0.56306
                                                  0.616794
                                                            -0.482711
                                                                        -0.307941
            -0.561804
                        -1.11071
                                    1.77601
                                                  0.616794
                                                            -0.482711
                                                                        -0.307941
-0.7277
             1.29717
                         0.900328
                                   -0.56306
                                                  0.616794
                                                            -0.482711
                                                                        -0.307941
-1.05481
                                     1.77601
                                                                        -0.307941
-0.260124
            -0.561804
                        -1.11071
                                                 -1.62129
                                                              2.07163
            -0.561804
                         0.900328
                                   -0.56306
                                                 -1.62129
                                                            -0.482711
                                                                         3.24738
 0.140656
 • train_X = scaler_train.transform(train_X_unscaled)
test_X_unscaled = 418×11 Matrix{Float64}:
                   34.5
                            0.0 1.0 0.0
                                            0.0
                                                 1.0
                                                      0.0
                                                           0.0152816
                                                                       1.0
                                                                            0.0
                   47.0
                                      0.0
                                                 0.0
                                                                       0.0
                            0.1
                                 1.0
                                            0.0
                                                      1.0
                                                           0.0136631
                                                                            1.0
                   62.0
                            0.0
                                       1.0
                                                 1.0
                                                      0.0
                                                           0.0189087
                                                                       1.0
                                                                            0.0
                                 0.0
                                            0.0
                   27.0
                            0.0
                                 1.0
                                       0.0
                                            0.0
                                                1.0
                                                      0.0
                                                           0.0169081
                                                                       0.0
                                                                            1.0
                   22.0
                            0.2
                                 1.0
                                       0.0
                                            0.0
                                                 0.0
                                                      1.0
                                                           0.0239836
                                                                       0.0
                                                                            1.0
                                                                                 0.0
                   14.0
                            0.0
                                 1.0
                                       0.0
                                            0.0
                                                 1.0
                                                      0.0
                                                           0.018006
                                                                       0.0
                                                                            1.0
                                                                                 0.0
                   30.0
                            0.0
                                 1.0
                                       0.0
                                            0.0
                                                 0.0
                                                      1.0
                                                           0.0148912
                                                                       1.0
                                                                            0.0
                                                                                 0.0
                                                 0.0
                   28.0
                            0.0
                                 1.0
                                       0.0
                                            0.0
                                                      1.0
                                                           0.0151758
                                                                       0.0
                                                                            1.0
                                                                                 0.0
                   25.7853
                            0.0
                                 1.0
                                       0.0
                                            0.0
                                                 1.0
                                                      0.0
                                                           0.0157126
                                                                       0.0
                                                                            1.0
                                                                                 0.0
                   39.0
                            0.0
                                 0.0
                                       0.0
                                           1.0
                                                 0.0
                                                      1.0
                                                           0.212559
                                                                       0.0
                                                                            0.0
                                                                                 1.0
                   38.5
                            0.0
                                                 1.0 0.0
                                                                       0.0
                                                                                 0.0
                                 1.0
                                       0.0 \quad 0.0
                                                           0.0141511
                                                                            1.0
                                                      0.0
                                                           0.0157126
                   55.3586
                            0.0
                                  1.0
                                       0.0 \quad 0.0
                                                1.0
                                                                       0.0
                                                                            1.0
                                                                                 0.0
```

0.0 1.0 0.0

0.0436405

0.0

0.0

1.0

, [0, 1, 1, 1, 0, 0, 0,

(889×11 Matrix{Float64}:

18.455

• test_X_unscaled = get_test_data(data_test)

0.2

1.0

0.0

• scaler_test = StandardScaler().fit(test_X_unscaled)

```
test_X = 418×11 Matrix{Float64}:
           0.273794
                                  0.957826
                                            -0.534933
                                                           2.84376
                                                                     -1.35068
                                                                               -0.568142
                     -0.553443
           1.13064
                                           -0.534933
                                                          -0.351647
                                                                     0.74037
                                                                               -0.568142
                      0.105643
                                 0.957826
                                -1.04403
                                            1.86939
                                                           2.84376
                                                                     -1.35068
           2.15885
                     -0.553443
                                                                               -0.568142
          -0.240313
                                          -0.534933
                                                          -0.351647
                                                                      0.74037
                                                                               -0.568142
                     -0.553443
                                 0.957826
         -0.583051
                      0.764728
                                 0.957826
                                           -0.534933
                                                          -0.351647
                                                                     0.74037
                                                                               -0.568142
                                                                     0.74037
         -1.13143
                     -0.553443
                                 0.957826
                                           -0.534933
                                                          -0.351647
                                                                               -0.568142
         -0.0346702 -0.553443
                                 0.957826 -0.534933
                                                           2.84376
                                                                     -1.35068
                                                                               -0.568142
         -0.171765
                     -0.553443
                                 0.957826 -0.534933
                                                          -0.351647
                                                                      0.74037
                                                                               -0.568142
                                                                              -0.568142
         -0.323581
                     -0.553443
                                 0.957826 -0.534933
                                                          -0.351647
                                                                     0.74037
                                                                     -1.35068
           0.582259
                     -0.553443 -1.04403
                                            -0.534933
                                                          -0.351647
                                                                                1.76012
           0.547985
                     -0.553443
                                 0.957826 -0.534933
                                                         -0.351647
                                                                     0.74037
                                                                               -0.568142
           1.7036
                     -0.553443
                                  0.957826
                                           -0.534933
                                                          -0.351647
                                                                     0.74037
                                                                               -0.568142
         -0.826054
                      0.764728
                                  0.957826
                                           -0.534933
                                                          -0.351647
                                                                    -1.35068
                                                                                1.76012
 test_X = scaler_test.transform(test_X_unscaled)
```

Model Building

- Linear Regression
- Ridge Regression
- LASSO Regression
- Logistic Regression
- K Nearest Neighbor
- Decision Tree
- Random Forest
- Naive Bayes

```
• using ScikitLearn .CrossValidation: cross_val_score
```

Crossvalidation Scoring

Linear Regression

```
PyObject <class 'sklearn.linear_model._base.LinearRegression'>
    @sk_import linear_model: LinearRegression

cv_linear = [0.306841, 0.366066, 0.384601, 0.333992, 0.437415]
    cv_linear = cross_val_score(LinearRegression(),train_X,train_y,cv=5)
```

```
• print(mean(cv_linear))

0.36578285815718764 ②

Ridge Regression

PyObject <class 'sklearn.linear_model._ridge.Ridge'>
          @sk_import linear_model: Ridge
```

cv_ridge = [0.306868, 0.366154, 0.384587, 0.334045, 0.437383]

cv_ridge = cross_val_score(Ridge(),train_X,train_y,cv=5)

- print(mean(cv_ridge))

0.36580750089074376 ?

LASSO Regression

PyObject <class 'sklearn.linear_model._coordinate_descent.Lasso'>

• @sk_import linear_model: Lasso

cv_lasso = [-0.0228073, -0.0238521, -0.000177285, -0.00315337, -0.00708916]

cv_lasso = cross_val_score(Lasso(),train_X,train_y,cv=5)

print(mean(cv_lasso))

-0.011415839277551543 ②

Logistic Regression

PyObject <class 'sklearn.linear_model._logistic.LogisticRegression'>

@sk_import linear_model: LogisticRegression

cv_logistic = [0.775281, 0.786517, 0.780899, 0.775281, 0.819209]

cv_logistic = cross_val_score(LogisticRegression(),train_X,train_y,cv=5)

print(mean(cv_logistic))

0.7874373135275821 ②

K Nearest Neighbor

PyObject <class 'sklearn.neighbors._classification.KNeighborsClassifier'>

@sk_import neighbors: KNeighborsClassifier

```
cv_kneighbors = [0.769663, 0.786517, 0.808989, 0.842697, 0.79096]

    cv_kneighbors = cross_val_score(KNeighborsClassifier(), train_X, train_y, cv=5)

 print(mean(cv_kneighbors))
 0.7997651241033454
Decision Tree
PyObject <class 'sklearn.tree._classes.DecisionTreeClassifier'>

    @sk_import tree: DecisionTreeClassifier

cv_destree = [0.696629, 0.780899, 0.803371, 0.769663, 0.745763]
 - cv_destree = cross_val_score(DecisionTreeClassifier(),train_X,train_y,cv=5)
 print(mean(cv_destree))
 0.7592649019234431
                     ②
Random Forest
PyObject <class 'sklearn.ensemble._forest.RandomForestClassifier'>

    @sk_import ensemble: RandomForestClassifier

cv_randforest = [0.752809, 0.780899, 0.859551, 0.797753, 0.80226]
 - cv_randforest = cross_val_score(RandomForestClassifier(),train_X,train_y,cv=5)
 print(mean(cv_randforest))
 0.7986542245921411
                     ②
Naive Bayes
PyObject <class 'sklearn.naive_bayes.GaussianNB'>

    @sk_import naive_bayes: GaussianNB

cv_naibay = [0.752809, 0.775281, 0.780899, 0.820225, 0.813559]
 cv_naibay = cross_val_score(GaussianNB(),train_X,train_y,cv=5)
 print(mean(cv_naibay))
```

Voting Classifier

②

0.7885545610359932

```
PyObject <class 'sklearn.ensemble._voting.VotingClassifier'>

    @sk_import ensemble: VotingClassifier

voting_clf_soft =
                                                      VotingClassifier
            lr
                                                                 dt
                                     knn
  LogisticRegression
                          KNeighborsClassifier
                                                     DecisionTreeClassifier
                                                                                   Randor
   voting_clf_soft = VotingClassifier(estimators = [
       ("lr", LogisticRegression()),
       ("knn", KNeighborsClassifier()),
       ("dt", DecisionTreeClassifier()),
       ("rf", RandomForestClassifier()),
       ("gnb", GaussianNB())],
       voting = "soft")
 voting_clf_hard = VotingClassifier(estimators = [
       ("lr", LogisticRegression()),
       ("knn", KNeighborsClassifier()),
       ("dt", DecisionTreeClassifier()),
       ("rf", RandomForestClassifier()),
       ("gnb", GaussianNB())],
       voting = "hard");
cv_soft = [0.764045, 0.797753, 0.853933, 0.814607, 0.830508]
 cv_soft = cross_val_score(voting_clf_soft,train_X,train_y,cv=5)
          [0.786517, 0.808989, 0.848315, 0.831461, 0.830508]
cv_hard =
 cv_hard = cross_val_score(voting_clf_hard,train_X,train_y,cv=5)
 print(mean(cv_soft))
 0.8121691106455913
 print(mean(cv_hard))
 0.8211578746905349
```

Model Fitting

df_submission =		Passengerld	Survived
	1	892	0
	2	893	0
	3	894	0
	4	895	0
	5	896	1
	6	897	0
	7	898	0
	8	899	0
	9	900	1
	10	901	0
	m	ore	
	418	1309	0

```
submissionfile = "submission.csv"
```

• submissionfile = "submission.csv"

"submission.csv"

CSV.write(submissionfile, df_submission)