UiO Department of Mathematics University of Oslo

Title

Optional Subtitle

Erik Lien Bolager

Master's Thesis, Autumn 2020

The study programme is unspecified. Please consult the documentation for the package masterfrontpage in order to correctly print the colophon:

https://github.com/martinhelso/masterfrontpage

CHAPTER 1

Normalizing Flows

1.1 Introduction

In the recent years Normalizing Flow (NF) has become a popular way to estimate a target distribution by transforming a random variable from a simple distribution such as Gaussian or Uniform. Normalizing flow is a flexible and often computationally cheap way to estimate distributions, which allow for easy sampling and also evaluation of likelihood. The core of NF are invertible functions $f_i: \mathbb{R}^D \to \mathbb{R}^D$, where D is the dimension of the distribution. The functions are often referred to as transformations. To sample with NF, one starts with a sample z^0 from a well known distribution such as Uniform or Gaussian, and then apply sequentially

$$z^{(i)} = f_i(z^{(i-1)}), i = 1, 2, 3, ..., M.$$
(1.1)

M can be one, but are often greater, i.e chain of transformations.