International Rectifier

PRELIMINARY

IRF7201

HEXFET® Power MOSFET

- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

Absolute Maximum Ratings

	Parameter	Max.	Units	
V_{DS}	Drain- Source Voltage	30	V	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	7.3		
I _D @ T _C = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.8	Α	
I _{DM}	Pulsed Drain Current ①	58	1	
P _D @T _C = 25°C	Power Dissipation	2.5	w	
P _D @T _C = 70°C	Power Dissipation	1.6	¬ "	
	Linear Derating Factor	0.02	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
V_{GSM}	Gate-to-Source Voltage Single Pulse tp<10µs	30	V	
E _{AS}	Single Pulse Avalanche Energy@	70	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R_{qJA}	Maximum Junction-to-Ambient®		50	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
DV _{(BR)DSS} /DT _J	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.030	7.7	V _{GS} = 10V, I _D = 7.3A ④
TUS(on)	Statio Brain to Godine Off Resistance			0.050	W	$V_{GS} = 4.5V, I_D = 3.7A$ ④
V _{GS(th)}	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g _{fs}	Forward Transconductance	5.8			S	V _{DS} = 15V, I _D = 2.3A
1	Drain-to-Source Leakage Current			1.0		$V_{DS} = 24V, V_{GS} = 0V$
I _{DSS}	Dialit-to-Source Leakage Guiterit			25	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
loss	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage			100	11/	$V_{GS} = 20V$
Qg	Total Gate Charge		19	28		I _D = 4.6A
Q _{gs}	Gate-to-Source Charge		2.3	3.5	nC	$V_{DS} = 24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		6.3	9.5		V _{GS} = 10V, See Fig. 10 ④
t _{d(on)}	Turn-On Delay Time		7.0			V _{DD} = 15V
t _r	Rise Time		35			$I_D = 4.6A$
t _{d(off)}	Turn-Off Delay Time		21		ns	$R_G = 6.2W$
t _f	Fall Time		19			$R_D = 3.2W$, $\textcircled{4}$
C _{iss}	Input Capacitance		550			V _{GS} = 0V
Coss	Output Capacitance		260		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		100			f = 1.0MHz, See Fig. 9

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions				
Is	Continuous Source Current			0.5		MOSFET symbol				
	(Body Diode)	_		2.5	_	showing the				
I _{SM}	Pulsed Source Current		58		 0				A	integral reverse
	(Body Diode) ①			58		p-n junction diode.				
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 4.6$ A, $V_{GS} = 0$ V ③				
t _{rr}	Reverse Recovery Time	I	48	73	ns	$T_J = 25^{\circ}C, I_F = 4.6A$				
Q _{rr}	Reverse RecoveryCharge		73	110	nC	di/dt = 100A/μs ③				

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② V_{DD} = 15V, starting T_J = 25°C, L = 6.6mH R_G = 25 \overline{w} , I_{AS} = 4.6A. (See Figure 8)
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- ④ Pulse width £ 300µs; duty cycle £ 2%.
- ⑤ When mounted on 1 inch square copper board, t<10 sec

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

V_{GS}, Gate-to-Source Voltage (V)

Fig 2. Typical Output Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

0.20
0.20
0.15
0.15
0.15
VGS = 4.5V
VGS = 10V

Fig 5. Normalized On-Resistance Vs. Temperature

Fig 6. On-Resistance Vs. Drain Current

Fig 8. Maximum Avalanche Energy Vs. Drain Current

www.irf.com

4

V_{GS}, Gate-to-Source Voltage (V) 12 8 0 10 15 25 30 QG, Total Gate Charge (nC)

 $V_{DS} = 24V$

 $V_{DS} = 15V$

20

16

 $I_D = 4.6A$

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

SO-8 Package Details

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
- (6) DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE...

DIM	INC	HES	MILLIMETERS			
	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
В	.014	.018	0.36	0.46		
С	.0075	.0098	0.19	0.25		
D	.189	.196	4.80	4.98		
Е	.150	.157	3.81	3.99		
е	.050 E	BASIC	1.27 E	.27 BASIC		
e1	.025 E	BASIC	0.635	BASIC		
Н	.2284	.2440	5.80	6.20		
K	.011	.019	0.28	0.48		
L	0.16	.050	0.41	1.27		
θ	0°	8°	0°	8°		

RECOMMENDED FOOTPRINT

Part Marking

EXAMPLE: THIS IS AN IRF7101

Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 9/98