Neural Network Final Project Report

The project for this course will be to build an artificial neural network from the ground up.

Presented by -Ajinkya Rode -NUID 001221702 Ketul Shukla- NUID 001225292

Introduction-

In this project we have developed a classic neural network example of recognizing handwritten digits using the MNIST dataset. The network can be trained and tested using this dataset provided in supporting files folder.

Unit Test for the experiment:

Below is the screenshot of successfully completed unit tests. It contains four tests which are.

- 1. Test Weight Function class's compute method.
- 2. Test Sigmoid Function class's compute method.
- 3. Test Error Function class's compute method and compute Output method.
- 4. Test Neuron creation and its parameters such as output and error.
- 5. Test Connection creation and its parameters such as weight, to Neuron and from Neuron that connection is.
- 6. Test Output Neuron creation and its parameters such as target setting and getting it.

Observations:

The error rate (percentage wrong) and number of examples we have run, which is displayed in console also, csv file gets created with these details for training and test results as well. Also, the csv data is described using excel graphs provide in report below. The csv files are provided in supporting documents folder. Console shows the percentage accuracy at the end of testing the neural network.

Below is the console screenshots while training and testing

Below is the data snippet of training result and test result.

1	no of Examples	current Step Error	1	no of Examples	current Step Error
2	100	0.010309278	2	100	0.539529066
3	200		3	200	0.483865403
4	300		4	300	0.458967926
			5	400	0.411609134
5	400	0.030927835	6	500	0.357739762
6	500		7	600	0.328034013
7	600	0.030927835	8	700	0.29612139
8	700	0.056701031	9	800	0.238060099
9	800	0.051546392	10	900	0.198529593
10	900	0.025773196	11	1000	0.214034835
11	1000	0.051546392	12	1100	0.243661957
12	1100	0.06185567	13	1200	0.193130479
13	1200	0.046391753	14	1300	0.226891296
14	1300	0.077319588	15	1400	0.176419604
15	1400		16	1500	0.17069824
16	1500		17	1600	0.15545909
17	1600		18	1700	0.147996666
			19	1800	0.099235396
18	1700	0.036082474	20	1900	0.151888237
19	1800	0.056701031	21	2000	0.139284322
20	1900	0.036082474	22	2100	0.143637808
21	Test Result report +	0.07216/0/0	4	▶ Train_Result	+
4	Test_Result_report +			Train_riodait	

Below is the complete data represented on a graph. The X axis in both the graph is the Number of examples and Y axis is the error rate.

Graph while training the Neural network

Graph while testing the Neural Network

Conclusion:

The train result graph shows the error rate goes from 0.5 to below 0.1 as we train the network with number of examples. As the number of examples are increasing then the error rate goes on reducing. While the Test result shows the error rate is below 0.1. It ranges from 0 to 0.09. As we have trained our developed network it can now guess accurately handwritten digits using the MNIST dataset. The percentage accuracy we calculated it shows is 99.84%.