アルゴリズム論1

第7回: プッシュダウンオートマトン (2)

関川 浩

2016/06/01

第4回から第7回の目標

第4回から第7回の目標

正規表現と fa: よくできたシステムだが能力が低い

より能力が高いシステムを導入する

- 文脈自由文法 (第 4, 5 回)
- プッシュダウンオートマトン (第 6,7回)

第7回の目標:

- プッシュダウンオートマトンの設計 (前回からの続き)
- 文脈自由文法とプッシュダウンオートマトンの等価性

- ① プッシュダウンオートマトンの設計 (前回からの続き)
 - 例題 3
 - pda による fa の模倣
 - 例題 4
- 2 文脈自由文法とプッシュダウンオートマトンの等価性
 - cfg と pda の等価性の証明の方針
 - 例題 5
 - 状態数 1 の pda
 - cfg と pda の等価性

- ① プッシュダウンオートマトンの設計(前回からの続き)
- 2 文脈自由文法とプッシュダウンオートマトンの等価性

例題 3 (1/6)

例題 3

 $\{0^m1^n\mid m,n\geq 1\;(m\neq n)\}$ を認識する pda を構成せよ

解答 (1/5)

以下で言及しないパターンの場合は<mark>停止して非受理</mark> たとえば:

- 入力記号列が ε の場合
- m > n とゲスした場合の記号ゲスモードで 1 を読んだ場合
- m < n とゲスした場合のポップモードで 0 を読んだ場合
- . . .

例題 3 (2/6)

解答 (2/5)

最初に m > n であるか m < n であるかをゲス (m = n) の場合は非受理となるように設計)

- (1) m > n (0 の方が多い) とゲスした場合 スタックに触らず入力ヘッドを動かして (これで m = n を排除) 記号ゲスモードに入る
 - 記号ゲスモード現在読んでいる 0 が右端の 0 から n 番目か否かをゲス

yes: スタックの Z_0 を 0 に書き換え 0 チェックモードへ移行 **no**: 記号ゲスモードを続行

例題 3 (3/6)

解答 (3/5)

- 0 チェックモード0 を読めばそれをスタックにプッシュし現モードを続行1 を読めばポップして 1 チェックモードへ移行
- 1 チェックモード1 を読めばポップして現モードを続行

スタック動作後ヘッド移動前 のスタックの状態

例題 3 (4/6)

解答 (4/5)

- (2) m < n (1 の方が多い) とゲスした場合 スタックの Z_0 を 0 に書き換え入力ヘッドを動かして 積み上げモードヘ
 - 積み上げモード 0 を読めばそれをスタックに積み上げ, 現モード続行 1 を読めばスタックに触らず入力ヘッドを動かして (これで m=n を排除) 記号ゲスモードへ

例題 3 (5/6)

解答 (5/5)

記号ゲスモード

読んでいる 1 が右端の 1 から m 番目か否かをゲス

yes: その 1 からポップモードに入って,

1を読むたびにスタックの記号をポップする

no: 記号ゲスモードを続行

右端の1からm番目とゲス m個 m個 0.....11.....1

スタック動作後ヘッド移動前 のスタックの状態

例題 3 (6/6)

注意

もし,

 $\{0^m1^n \mid m, n \ge 0 \ (m \ne n)\}$ を認識する pda を構成せよ

とすると,

- 0^m (n=0) の場合)
- 1^n (m=0 の場合)

も受理しなければいけないので、複雑になる

pda による fa の模倣

pda: fa に補助記憶装置を追加したもの ⇒ fa を模倣できる

● <mark>受理条件</mark>に注意 入力を読み終わったときにちょうどスタックが空 しかし、今読んでいる記号がテープの右端か否かは不明

解決策: ゲスを利用

M: 与えられた dfa

T: M を模倣する pda

T はスタックには触らず, M の状態遷移を模倣しながら, 現在の記号がテープの右端か否かをゲス

yes: その記号を読んだ行先が M の受理状態なら Z_0 をポップ

no: 模倣を続行

注: pda が決定性なら fa を模倣できない (ゲスが使えない) ⇒ pda は決定性と非決定性で言語を認識する能力が異なる

例題 4 (1/7)

例題 4

 $L = \{x \mid x \in \{a,b\}\{a,b\}^*$ かつ x = yy と書けない $\}$ を認識する pda M を構成せよ

注: $\{a,b\}^* \setminus L = \{zz \mid z \in \{a,b\}^*\}$ は文脈自由言語ではない (第 5 回の例題 3)

解答 (1/5)

 $x \in L \iff x$ は以下のいずれかの条件を満たす

- (i) |x| は奇数
- (ii) |x| は偶数で、 $x=a_1\ldots a_na_{n+1}\ldots a_{2n}$ としたときある i に対して $a_i\neq a_{n+i}$
- (ii) の異なる記号を d_1 , d_2 とする

例題 4 (2/7)

解答 (2/5)

M は最初に条件 (i), (ii) のどちらが満たされるかゲスする

(1) 条件 (i) を満たすとゲスした場合 奇数チェックモードに入る |x| が奇数か否かは fa でチェック可能なので, それを模倣

$$\Longrightarrow \overbrace{s_0} \xrightarrow{a,b} \overbrace{s_1}$$

スタック動作後 ヘッド移動前の スタックの状態

例題 4 (3/7)

解答 (3/5)

- (2) 条件 (ii) を満たすとゲスした場合 (1/3)
 - d_1 ゲスモード M は現在の記号が d_1 かどうかをゲス

no: 1個の記号をプッシュしてこのモードを続行

yes: その記号がaかbかを有限状態を利用して記憶し、スタックには触らず d_2 ゲスモードへ

例題 4 (4/7)

解答 (4/5)

- (2) 条件(ii) を満たすとゲスした場合(2/3)
 - d_2 ゲスモード 記号を一つずつポップしながら入力記号を読み飛ばす Z_0 が現れたら, d_1 のときと同様に d_2 をゲス

no: 1個の記号をプッシュしてこのモードを続行

yes: 記憶している d_1 の値と違っていればスタックの記号を一つポップして排出モードへ同じなら停止して非受理

スタック動作後 ヘッド移動前の スタックの状態

例題 4 (5/7)

解答 (5/5)

- (2) 条件(ii) を満たすとゲスした場合(3/3)
 - 排出モード 記号を一つ読むごとにスタックの記号を一つポップ

スタック動作後 ヘッド移動前の スタックの状態

例題 4 (6/7)

注意 (1/2)

(ii) の場合に, d_1 をゲスしたあと, 中央右隣をゲスする方法 (「自然」な方法) ではうまくいかない

- 両方のゲスが当たったときは問題ない
- 中央右隣のゲスがはずれた場合, たとえば,

abaaaabaaa

で左から 2 番目 (b) を d_1 とゲス 5 番目 (a) を中央右隣と ゲスした場合, 受理してしまう (6 番目 (a) が d_2)

例題 4 (7/7)

注意 (2/2)

中央右隣のゲスがはずれたことが確認できれば問題ない

- ⇒ 中央左隣までの記号数をスタックに蓄える必要がある
- $\Longrightarrow l_1$ の情報が取り出せなくなってしまう

- ① プッシュダウンオートマトンの設計 (前回からの続き)
- 2 文脈自由文法とプッシュダウンオートマトンの等価性

cfg と pda の等価性の証明の方針

- pda の重要性: cfg との等価性受理条件や非決定性も cfg に合わせるため
- cfg と pda の等価性の証明
 - pda の有限状態は一つで十分であることを示す アイディア: スタック記号に有限状態の情報を載せる
 - ② 1 状態の pda は cfg とほとんど同じ

例題 5 (1/3)

例題 5

 $\{xx^{\mathbf{R}} \mid x \in \{a,b\}\{a,b\}^*\}$ を認識する 1 状態の pda を構成せよ

解答 (1/2)

前回は, 二個の状態 s_0 と s_1 を使用して, 積み上げモードとチェックモードを区別

今回は, スタックの先頭記号で区別

- 積み上げモード: A', B' (先頭より下は A, B)
- チェックモード: *A*, *B*

例題 5 (2/3)

解答 (2/2)

• 状態遷移関数:

$$\begin{array}{ll} \delta(s_0,a,Z_0) = \{(s_0,A')\}, & \delta(s_0,b,Z_0) = \{(s_0,B')\}, \\ \delta(s_0,a,A') = \{(s_0,A'A),(s_0,\varepsilon)\}, & \delta(s_0,b,A') = \{(s_0,B'A)\}, \\ \delta(s_0,a,B') = \{(s_0,A'B)\}, & \delta(s_0,b,B') = \{(s_0,B'B),(s_0,\varepsilon)\}, \\ \delta(s_0,a,A) = \{(s_0,\varepsilon)\}, & \delta(s_0,b,B) = \{(s_0,\varepsilon)\} \end{array}$$

上記に現れないものは ∅

• 1 状態になると, cfg とほとんど同じ 対応: $(s_0, \alpha) \in \delta(s_0, c, D) \Longleftrightarrow D \rightarrow c\alpha$

$$Z_0 \rightarrow aA',$$
 $Z_0 \rightarrow bB',$ $A' \rightarrow aA'A, A' \rightarrow a,$ $A' \rightarrow bB'A,$ $B' \rightarrow aA'B,$ $B' \rightarrow bB'B, B' \rightarrow b,$ $A \rightarrow a,$ $B \rightarrow b$

例題 5 (3/3)

導出例:

$$Z_0 \Rightarrow aA' \Rightarrow abB'A \Rightarrow abaA'BA \Rightarrow abaaA'ABA$$

 $\Rightarrow abaaaA'AABA \Rightarrow abaaaaAABA \Rightarrow abaaaaaABA$
 $\Rightarrow abaaaaaBA \Rightarrow abaaaaaabA \Rightarrow abaaaaaaba$

導出途中の abaA'BA に対応

定理 1 (1/3)

定理 1

与えられた pda に対して、同じ言語を認識する状態数 1 の pda が構成できる

証明のアイディア (1/3)

スタック記号に情報を載せるアイディアのみ示す

M: 与えられた pda

M が入力記号 a, b, c を,

- 状態を p, q, r と推移しながら読み,
- その間にスタックに B をプッシュし 直後にポップしたとする

定理 1 (2/3)

証明のアイディア (2/3)

 M_s : M を模倣する 1 状態の pda

- スタック記号は (s_1, C, s_2) s_1, s_2 : M の状態 C: M のスタック記号
- M の状態が q で B をプッシュするときに, M_s では (q, B, r) をプッシュ同時に, それまでの先頭記号の第 1 成分を書き換え (この記号が次に先頭になったときの M の状態をゲス)

定理 1 (3/3)

証明のアイディア (3/3)

- 第 3 成分は, ゲスが正し かったか否かの判定に必要
 - 第1,2成分と入力記号 から次の状態を求めて 第3成分と比較する
 - 第3成分がないと, ゲス の確認にポップが必要 ポップすると, 正解が 不明に

cfg と pda の等価性 (1/2)

定理 2

cfg と pda は等価

証明 (1/2)

● pda M から cfg G を構成

M を 1 状態の pda $M_1 = (\{s\}, \Sigma, \Gamma, \delta, s, Z_0)$ に直す $G = (\Gamma, \Sigma, P, Z_0)$, ただし,

$$P = \{A \to a\alpha \mid (s, \alpha) \in \delta(s, a, A)\}\$$

とすると, $x \in \Sigma^*$ に対して,

M が x を受理 \iff M_1 が x を受理 \iff $x \in L(G)$

cfg と pda の等価性 (2/2)

証明 (2/2)

• cfg G から pda M を構成

$$G$$
 を Greibach 標準形 $G_1=(V,\Sigma,P,S)$ に直す $M=(\{s\},\Sigma,V,\delta,s,S)$, ただし,

$$(s, \alpha) \in \delta(s, a, A) \iff (A \to a\alpha) \in P$$

とすると,
$$x \in \Sigma^*$$
 に対して,

$$x \in L(G) \Longleftrightarrow M が x を受理$$

注意

注意

 L_1 , L_2 が Σ 上の正規言語のとき, 以下も正規言語

- L₁ ∪ L₂ (第 1 回の定理 1)
- L₁ ∩ L₂ (第 2 回の定理 1)
- ∑* \ L₁ (第 2 回の定理 3)

 L_1 , L_2 が Σ 上の文脈自由言語のとき,

L₁ ∪ L₂ は文脈自由言語 (第 4 回の定理 1)

しかし,以下は文脈自由言語とは限らない

- L₁ ∩ L₂ (第 5 回 p. 33 の例)
- ∑* \ L₁ (第 5 回の例題 3, 今回の例題 4, 定理 2)