I. Suite arithmétique:

$$\frac{a^{m}}{a^{m}} = a^{m-m}, \quad \frac{a}{b^{m}} = a \times \left(\frac{1}{b}\right)^{m}, \left(a^{m}\right)^{m} = a^{m \cdot m} = \left(a^{m}\right)^{m}$$

II. Suite géométrique:

Santa y

grass soft file

V 42 - 1

ang at the stage of the

e e

PR :Bouzayene.M Résumé de cours : suites réelles 4ème INF(2021)

I/Suite arithmétique:

$$1/\underline{\mathbf{Terme\ g\acute{e}n\acute{e}rale}}: u_n = u_0 + n \times r \quad \text{avec} \begin{cases} u_0: le\ premier\ terme\ de\ la\ suite} \\ r \in IR \\ n \in IN \end{cases}$$

$$2/\underline{\mathbf{Somme}} : \mathbf{S} = u_p + \cdots + u_m = \sum_{k=p}^m u_k$$
$$\mathbf{S} = (\mathbf{m} - \mathbf{p} + 1) \times (\frac{u_p + u_m}{2})$$

Rque: Pour pour montrer qu'une suite est arithmétique il faut montrer que : $u_{n+1} - u_n = r \in IR$

3/Monotonie: (See de variation)

-Si
$$r > 0$$
 on a (u_n) est croissante.

-Si $r < 0$ on a (u_n) est décroissante.

-Si $r = 0$ on a (u_n) est constante.

4/Limite:

-Si r > 0 on a
$$\lim_{n \to +\infty} u_n = +\infty$$

-Si r < 0 on a $\lim_{n \to +\infty} u_n = -\infty$

II /Suite géométrique :

$$1/\underline{\mathbf{Terme\ g\acute{e}n\acute{e}rale}}: u_n = u_0 \times q^n \qquad \text{avec} \begin{cases} u_0 \ le\ premier\ terme\ de\ la\ suite} \\ reIR \\ neIN \end{cases}$$

$$2/\underline{\text{Somme}}: S = u_p + \cdots + u_m = \sum_{k=p}^m u_k$$
$$S = u_p \times \frac{1 - q^{(m-p+1)}}{1 - q}$$

Rque: Pour montrer qu'une suite est géométrique il faut montrer que : $\frac{u_{n+1}}{u_n} = q \in IR$

3/Monotonie: (Seu, Le Virialien)

-Si
$$q > 1$$
 alors (u_n) est croissante.

-Si $q < 1$ alors (u_n) est décroissante.

-Si $q = 1$ alors (u_n) est constante.

4/Limite:

$$\begin{cases} si \quad q > 1 \quad ona \lim_{n \to +\infty} u_n = \begin{cases} +\infty \quad si \quad u_0 > 0 \\ -\infty \quad si \quad u_0 < 0 \end{cases} \\ -1 < q < 1 \quad ona \lim_{n \to +\infty} u_n = 0 \\ Si \quad q \le -1 \quad ona \quad (u_n)n'a \quad pas \ de \ limites \end{cases}$$

III /Limite et ordre :

Soient (u_n) ; $(v_n)et$ (w_n) trois suites réelles

Si a /
$$u_n \le v_n \le w_n$$
 et si $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \alpha \in IR$ alors $\lim_{n \to +\infty} v_n = \alpha$

b/
$$u_n \le v_n$$
 et si $\lim_{n \to +\infty} u_n = +\infty$ alors $\lim_{n \to +\infty} v_n = +\infty$

$$c/u_n \le v_n$$
 et si $\lim_{n \to +\infty} v_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$

VI/Suites récurrentes :

Suite de type : $u_n = f(n)$.

- a) Soit (u_n) une suite de terme général $u_n = f(n)$ tel que f une fonction
- si $_{n\to +\infty}^{lim} f(x)=l$ (1 fini ou infini), alors $_{n\to +\infty}^{lim} u_n=l$
- b) Soit f une fonction définie sur un intervalle I et (u_n) une suite de nombres réelles de I.

Si
$$\lim_{n\to+\infty} u_n = a$$
 et $\lim_{n\to a} f(x) = l$ alors $\lim_{n\to+\infty} f(u_n) = l$ (a et 1 sont finis ou infinis)

VI/Convergence:

- 1 /-Si $\lim_{n\to+\infty} f(u_n) = l \in IR$ alors (u_n) est convergente.
- 2/ -Si (u_n) est croissante et majorée alors elle est convergente.
- 3/ Si (u_n) est décroissante et minorée alors elle est convergente.
- 4/ Si (u_n) est monotone et bornée alors elle est convergente.

Par contre :- $\lim_{n\to+\infty} u_n = +\infty$ si et seulement si (u_n) elle est divergente.

-Si (u_n) n' a pas de limites alors elle est divergente.

Suite de type : $u_n = f(n)$.

Soit I un intervalle non vide et non réduit à un point de IR. f est une fonction définie sur I et (u_n) une suite de nombres réels de I telle que $\lim_{n\to+\infty}u_n=l$ $(l\in IR)$

- -Si f est continue en l , alors la suite $(f(u_n))$ converge vers f(l)
- -Dans le cas ou f(I) I et la suite (u_n) est définie par $u_0 \in I$ et pour tout $n \in \mathbb{N}$; $u_{n+1} = f(n)$ on a :
- Si f est continue en l, alors la suite $(f(u_n))$ converge vers f(l) et f(l) = l

Exercice N°1:

Soit la suite (U) définie par

$$\begin{cases} U_o = \frac{3}{2} \\ U_{n+1} = 5 - \frac{4}{u_n} \end{cases}$$

- 1) a)Calculer U_1 et U_2 . En déduire que la suite (U) n'est ni arithmétique ni géométrique b) Montrer que pour tout $n \in IN$ on a $1 < U_n < 4$
- 2) Etudier les variations de (U_n)
- 3)Déduire que la suite (Un) est convergente et calculer sa limite.
- 3) On définie la suite (V) définie par $V_n = \frac{u_n 4}{u_n 1}$
- a) Montrer que (V) est une suite géométrique dont on précisera la raison et le premier terme
 - b) Calculer V_n en fonction de n puis calculer $\lim_{x\to +\infty} V_n$
 - C) Exprimer U_n en fonction de n . En déduire que $_{x\to +\infty}^{lim}Un$

Exercice N°2:

On considère la suite (u_n) définie sur IN par $\left\{ \begin{aligned} u_0 &= 3 \\ u_{n+1} &= 4(\frac{u_{n-1}}{u_n}) \end{aligned} \right.$

- 1°) a) Vérifier que pour tout $n \in IN$, $u_{n+1} = 4(1 \frac{1}{u_n})$
 - b)Montrer que pour tout $n \in IN$, $u_n > 2$
 - c) Vérifier que $u_{n+1} u_n = \frac{\tau(u_n 2)^2}{u_n}$. En déduire les variations de U
 - d°) En déduire que (u_n) est convergente est calculer sa limite
- 2°) on pose $v_n = \frac{1}{u_n 2}$ pour n ϵIN
 - a)Montrer que (v_n) est une suite arithmétique dont on précisera la raison et le premier terme b)Calculer la limite de (v_n)

Exercice N°3:

I/On considère la suite (Un) définie par

$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{2+3u_n}{2+u_n} \end{cases}$$

1/Montrer que pour tout entier naturel n tel que $0 \le u_n \le 2$

2/Montrer que (u_n) est une suite croissante sur IN

3/En déduire quelle est convergente et calculer sa limite

II/Soit
$$(V_n)$$
 la suite définie par : $V_n = \frac{u_n - 2}{u_n + 1}$

a-Montrer que (v_n) est une suite géométrique dont on déterminera la raison

b-Exprimer v_n puis u_n en fonction de n

c-Déterminer la limite de la suite u_n

Exercice N°4:

On considère la suite U définie sur IN par $U_0=3$ et pour tout n de IN, $U_{n+1}=U_n-2+\frac{4}{U_n}$

1/a) Montrer que pour tout $n \in IN$. $U_n > 2$

b)Montrer que la suite U est décroissante

c)Déduire que la suite U est convergente

2/a)Montrer que pour tout n de IN , $U_{n+1}-2 \le \frac{1}{3}(U_n-2)$

b) En déduire que , pour tout n de IN $\, ,U_n-2\, \leq (\frac{1}{3})^n$

c)Déduire alors la limite de la suite U

3/ On pose $S_n = \sum_{k=0}^{n-1} \frac{1}{U_k}$ pour $n \in IN^*$

a) Montrer que $S_n = \frac{1}{4}U_n - \frac{3}{4} + \frac{1}{2}n$ pour n ϵIN^*

b)En déduire la limite de S_n et de $\frac{S_n}{s_n}$

PR:Bouzayene.M

Comportement asymptotiques

et branches infinies

I/ Asymptote horizontale:

Si $\lim_{x\to +\infty} f(x) = a \in \mathbb{R}$ alors la droite d'équation y = a est une asymptote horizontale à la courbe de f au voisinage de $+\infty$ (Respectivement en $-\infty$)

Application 1: Soit (C_f) la courbe représentative d'une fonction f

Déterminer graphiquement les limites en $+\infty$ et $en - \infty$ et donner une interprétation graphique aux résultats obtenus .

II/ Asymptotes verticales :

Soit f une fonction définies sur $\mathbb{R}/\{a\}$. Alors la droite d'équation : $\chi = a$ est une asymptote verticale à la courbe de f.

Application 2: Soit (C_f) la courbe représentative d'une fonction f

1/Déterminer le domaine de définition de f.

2/ Déterminer les limites aux bornes du domaine de définition

3/ Déterminer les équations des asymptotes à la courbe de f.

III/Asymptotes obliques :

Si
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

La droite d'équation : y = a x + b est une asymptote oblique à la courbe de f au voisinage de $+\infty$ Si et seulement si $\lim_{x \to +\infty} [f(x) - (a x + b)] = 0$ (respectivement en $-\infty$)

Application 3:

Sachant que D est la droité d'équation : y = 2x + 11/Déterminer $\lim_{x \to +\infty} f(x)$; $\lim_{x \to -\infty} f(x)$ 2/a) Déterminer $\lim_{x \to +\infty} [f(x) - (2x+1)]$ et $\lim_{x \to -\infty} [f(x) - (2x+1)]$ b) Interpréter graphiquement le résultat .

IV/Branches paraboliques:

Soit R (O,\vec{i},\vec{j}) un repère orthonormé et (C_f) la représentation graphique de f dans R Si $\lim_{x\to\pm\infty}f(x)=\pm\infty$, la courbe de f admet une branche parabolique. Pour déterminer sa direction on calcule $\lim_{x\to\pm\infty}\frac{f(x)}{x}$

Si $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$ alors la branche parabolique est suivant (OI)

Si $\lim_{x \to +\infty} \frac{f(x)}{x} = \pm \infty$ alors la branche parabolique est suivant (OJ) (même raisonnement en $-\infty$) Si $\lim_{x \to +\infty} \frac{g(x)}{x} = \infty \neq 0$ $\lim_{x \to +\infty} \frac{g(x)}{x} = \infty \neq 0$

 $\infty = y = an$

Application 4:

Soit R $(0,\vec{l},\vec{j})$ un repère orthonormé et (C_f) la représentation graphique de f dans R

1/Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement le résultat

2/a) Déterminer $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to +\infty} \frac{g(x)}{x}$ et interpréter graphiquement le résultat

b) Déterminer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$ et interpréter graphiquement le résultat

Applications

Exercice N°1:

Soit la fonction f définie sur R par $f(x) = \sqrt{x^2 + 6x + 8}$ et (C) sa courbe représentative dans un repère orthogonal du plan

- a)donner le domaine de définition de f
- b) calculer les limites de f en +∞ et en -∞
- c) Déterminer alors $\lim_{x \to +\infty} [f(x) (x+3)]$ et $\lim_{x \to -\infty} [f(x) (x+3)]$
- D)En déduire que la courbe (C) admet deux asymptotes obliques au voisinage de $+\infty$ et de $-\infty$

Exercice N°2

Soit f la fonction définie par $f(x) = -x + \sqrt{x^2 - 4}$

On désigne par (C) sa courbe représentative dans un repère orthonormé (O, \vec{I}, \vec{J})

1/Calculer $\lim_{x \to +\infty} f(x)$

- 2) a)Montrer que pour tout $x \in [2, +\infty[f(x)] = \frac{-4}{\sqrt{-4+x^2}+x}$
- b) En déduire $\lim_{x\to +\infty} f(x)$.Interpréter graphiquement le résultat
- 3/Montrer que la droite Δ :y = -2x est asymptote à (C)

Exercice N°3:

Soit la fonction f définie sur IR^* par $f(x) = \frac{\sqrt{9+x^2}-(x-3)}{x}$

1/Montre que pour tout $x \in]0, +\infty[$ on a $\sqrt{9+x^2}+(x-3)>0$ et $f(x)=\frac{6}{\sqrt{9+x^2}+(x-3)}$

2/Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$ Interpréter graphiquement ces résultats

3/a)Montrer que pour tout
$$x \in]-\infty$$
, 0[$f(x) = -\sqrt{1 + \frac{9}{x^2}} + \frac{3}{x} - 1$

b)En déduire $\lim_{x\to -\infty} f(x)$.Interpréter