MOVE-R: OPTIMIZING THE R-INDEX

Symposium on Experimental Algorithms 2024 · Nico Bertram, Johannes Fischer and Lukas Nalbach

Text Indexing

Text index: data structure for a string T to answer count and locate queries

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern *P* occur in *T*?
- Locate query: At which positions does the pattern P occur in T?

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern *P* occur in *T*?

Queries

ightharpoonup T = acbbcacbc

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count guery: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern *P* occur in *T*?

Queries

T = acbbcacbc

ightharpoonup count(bc) = 2

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- ► Locate query: At which positions does the pattern *P* occur in *T*?

Queries

- T = acbbcacbc
- ightharpoonup count(bc) = 2
- **locate**(ac) = {1, 6}

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern P occur in T?
- Compressed Text Index: utilizes information redundancy in repetitive strings ⇒ lower memory footprint

Repetitive Strings

- ► T₁ = bbccaaaaccbbaaaa
- $T_2 = ATCGATCGAT$

Oueries

- T = acbbcacbc
- ightharpoonup count(bc) = 2
- ▶ **locate**(\underline{ac}) = {1, 6}

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern P occur in T?
- ► Compressed Text Index: utilizes information redundancy in repetitive strings ⇒ lower memory footprint

Repetitive Strings

- ► T₁ = bbccaaaaccbbaaaa
- $T_2 = ATCGATCGATCGAT$
- in practice: DNA, log files, versioned documents, natural language

Queries

- ightharpoonup T = acbbcacbc
- ightharpoonup count(bc) = 2
- **locate**(\underline{ac}) = {1, 6}

BWT-based Text Indexes

- ► Text *T* of length *n*
- Suffix $T_i = T[i, n]$

BWT-based Text Indexes

- ► Text *T* of length *n*
- Suffix $T_i = T[i, n]$
- Lexicographical order \prec (i.e. $abc \prec acb$)
- ► Suffix array SA[1..n], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$

Burrows Wheeler Matrix (BWM)

T = acbcbac\$

i	SA	
1	8	
2	6	
3	1	
4	5	
5	3	
6	7	
7	4	
8	2	

BWT-based Text Indexes

- ► Text *T* of length *n*
- ▶ Suffix $T_i = T[i, n]$
- Lexicographical order \prec (i.e. $abc \prec acb$)
- ► Suffix array SA[1..*n*], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$
- rot(T,i) = T[i,n]T[1,i)

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

BWT-based Text Indexes

- ► Text *T* of length *n*
- ▶ Suffix $T_i = T[i, n]$
- Lexicographical order \prec (i.e. $abc \prec acb$)
- ► Suffix array SA[1..*n*], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$
- rot(T, i) = T[i, n]T[1, i)
- ▶ Burrows Wheeler Transform (BWT) = last (**L**) column of the BWM

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a
<u> </u>		_		a

BWT-based Text Indexes

- ► Text *T* of length *n*
- ▶ Suffix $T_i = T[i, n]$
- Lexicographical order \prec (i.e. $abc \prec acb$)
- ► Suffix array SA[1..n], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$
- ► Burrows Wheeler Transform (BWT) = last (L) column of the BWM
- ► SA-interval [b, e] of P stores occurrences of P in T

SA-Interval

- P = ac has SA-interval [2, 3]
- \Rightarrow P occurs at SA[2, 3] = [6, 1] in T

Burrows Wheeler Matrix (BWM)

- T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a
	2 3 4 5 6 7	1 8 2 6 3 1 4 5 5 3 6 7 7 4	1 8 \$ 2 6 a 3 1 a 4 5 b 5 3 b 6 7 c 7 4 c	1 8 \$ acbcba 2 6 a c\$acbc 3 1 a cbcbac 4 5 b ac\$acb 5 3 b cbac\$a 6 7 c \$acbcb 7 4 c bac\$ac

Compressed BWT-based Text Indexes

- Let r = # equal-letter runs in L, $\sigma = \#$ distinct characters in T, $\omega = \text{word-width of the word-RAM}$, m = length of the pattern
- ► r-index [6]:
 - ightharpoonup O(r) space
 - Implements functions LF and Φ in $O(\log \log_{\omega} n/r)$ time
 - Count: $O(m \log \log_{\omega}(\sigma + n/r))$ time
 - Locate: additional $O(occ \log \log_{\omega}(n/r))$ time

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

Compressed BWT-based Text Indexes

- Let r = # equal-letter runs in L, $\sigma = \#$ distinct characters in T, $\omega = \text{word-width of the word-RAM}$, m = length of the pattern
- r-index [6]:
 - ightharpoonup O(r) space
 - Implements functions LF and Φ in $O(\log \log_{\omega} n/r)$ time
 - Count: $O(m \log \log_{\omega}(\sigma + n/r))$ time
 - Locate: additional $O(occ \log \log_{\omega}(n/r))$ time
- OptBWTR [8] (not yet implemented):
 - $\triangleright O(r)$ space
 - Implements functions LF and Φ in O(1) time using move data structures
 - ightharpoonup Count: $O(m \log \log_{\omega} \sigma)$ time
 - Locate: additional O(occ) time

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

Compressed BWT-based Text Indexes

- Let r=# equal-letter runs in L, $\sigma=\#$ distinct characters in T, $\omega=$ word-width of the word-RAM, m= length of the pattern
- r-index [6]:
 - ightharpoonup O(r) space
 - Implements functions LF and Φ in $O(\log\log_{\omega}n/r)$ time
 - Count: $O(m \log \log_{\omega}(\sigma + n/r))$ time
 - Locate: additional $O(occ \log \log_{\omega}(n/r))$ time
- OptBWTR [8] (not yet implemented):
 - $\triangleright O(r)$ space
 - ► Implements functions LF and Φ in O(1) time using move data structures
 - Count: $O(m \log \log_{\omega} \sigma)$ time
 - Locate: additional O(occ) time
- Is the improved time complexity reflected in practice?

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

Our Contribution

- Move-r: practically optimized implementation of OptBWTR
 - Practically optimized implementation and construction of the move data structure and other index data structures
 - Practically optimized count- and locate algorithms
 - More optimizations

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

Our Contribution

- Move-r: practically optimized implementation of OptBWTR
 - Practically optimized implementation and construction of the move data structure and other index data structures
 - Practically optimized count- and locate algorithms
 - More optimizations
- Compared with the resp. fastest other index:
 - 2x-35x (typ. 15x) faster queries
 - o.8x-2.5x (typ. 2x) larger index
 - ► 0.9-2x (typ. 2x) faster construction with 1-3 (typ. 3x) lower memory usage

Burrows Wheeler Matrix (BWM)

- ightharpoonup T = acbcbac\$
- ightharpoonup i-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

Backward Search (Step)

- ► Given SA-interval [b, e] of P
- ► Compute SA-interval of *cP*

Backward Search (Step)

- ► Given SA-interval [b, e] of P
- Compute SA-interval of cP
- ▶ LF(i) = position of SA[i] 1 in SA (shift rotation down by 1)

Backward Search (Step)

- ► Given SA-interval [b, e] of P
- Compute SA-interval of cP
- LF(i) = position of SA[i] 1 in SA (shift rotation down by 1)

Locate Query

- Compute values of SA in the SA-interval
- ▶ Implement function $\Phi(SA[i]) = SA[i-1]$
- ightharpoonup Can be implemented in O(r) space [6]

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- ightharpoonup Recall r = number of runs in L
- \Rightarrow LF can be divided into r intervals

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L
- \Rightarrow LF can be divided into r intervals

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L
- \Rightarrow LF can be divided into r intervals

$$I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k) \text{ with } d_i = p_{i+1} - p_i \text{ and } n+1 = p_k + d_k$$

$$I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k) \text{ with } d_i = p_{i+1} - p_i \text{ and } n + 1 = p_k + d_k$$

- $I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k) \text{ with } d_i = p_{i+1} p_i \text{ and } n + 1 = p_k + d_k$
- ► Input intervals $[p_i, p_i + d_i)$
- Corresponding output intervals $[q_i, q_i + d_i)$ have the same lengths d_i and do not overlap

- $I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k)$ with $d_i = p_{i+1} p_i$ and $n + 1 = p_k + d_k$
- ► Input intervals $[p_i, p_i + d_i)$
- Corresponding output intervals $[q_i, q_i + d_i)$ have the same lengths d_i and do not overlap
- \Rightarrow Represents function $f_I(i) = q_x + i p_x$, where $i \in [p_x, p_x + d_x)$

Move Data Structure and Move Query

Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$

Move Data Structure and Move Query

- Move(*i*, *x*) = (*i'*, *x'*) with $i' = f_I(i)$ and $i' ∈ [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_i

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j

Move Query

 $M_{idx} = [1, 1, 1, 1, 1]$

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j

Move Query

- $M_{idx} = [1, 1, 1, 1, 1]$
- \blacktriangleright Move(4, 1) = (12, 3)

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j
- Runtime $O(\# input intervals starting in [q_X, q_X + d_X)) = O(r)$

Move Query

- $M_{idx} = [1, 1, 1, 1, 1]$
- ightharpoonup Move(4, 1) = (12, 3)

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j
- Runtime $O(\# input intervals starting in [q_X, q_X + d_X)) = O(r)$
- \Rightarrow Limit to O(a) for $a \ge 2$

Move Query

- $M_{idx} = [1, 1, 1, 1, 1]$
- ightharpoonup Move(4, 1) = (12, 3)

a-balanced Disjoint Interval Sequence

Output interval $[q_x, q_x + d_x)$ is a-heavy \Leftrightarrow $\geq 2a$ input intervals start in $[q_x, q_x + d_x)$

a-balanced Disjoint Interval Sequence

- Output interval $[q_x, q_x + d_x)$ is a-heavy \Leftrightarrow $\geq 2a$ input intervals start in $[q_x, q_x + d_x)$
- I is a-heavy ⇔ there is an a-heavy output interval in I
- ightharpoonup a-balanced \Leftrightarrow not a-heavy

a-balanced Disjoint Interval Sequence

- Output interval $[q_x, q_x + d_x)$ is a-heavy \Leftrightarrow $\geq 2a$ input intervals start in $[q_x, q_x + d_x)$
- I is a-heavy ⇔ there is an a-heavy output interval in I
- ightharpoonup a-balanced \Leftrightarrow not a-heavy

Balancing Algorithm

- ► Iteratively splits *a*-heavy output intervals
- ightharpoonup Terminates as soon as I is a-balanced

a-balanced Disjoint Interval Sequence

- Output interval $[q_x, q_x + d_x)$ is a-heavy \Leftrightarrow $\geq 2a$ input intervals start in $[q_x, q_x + d_x)$
- I is a-heavy ⇔ there is an a-heavy output interval in I
- ightharpoonup a-balanced \Leftrightarrow not a-heavy

Balancing Algorithm

- ► Iteratively splits *a*-heavy output intervals
- Terminates as soon as I is a-balanced
- Let t' = number of splits, and k' = k + t'
- $\Rightarrow k' \le k \frac{a}{a-1} \le 2k = O(k)$

General Approach

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position *u*
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

General Approach

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

Details

- Use balanced search trees (B-Trees) for input and output intervals
- $\Rightarrow O(k \log k)$ time, O(1) space

Index Data Structures

- $|M^{LF}| = r'$ move data structure for LF
- ightharpoonup L'[1..r'] bwt characters of input intervals in M^{LF}
- $ightharpoonup |RS_{L'}| = O(r')$ rank-select data structure for L'

Backward Search

Index Data Structures

- $|M^{LF}| = r'$ move data structure for LF
- ightharpoonup L'[1..r'] bwt characters of input intervals in M^{LF}
- $Arr |RS_{L'}| = O(r')$ rank-select data structure for L'

Backward Search (Step)

▶ given SA-interval [b, e] of P

Index Data Structures

- $|M^{LF}| = r'$ move data structure for LF
- ightharpoonup L'[1..r'] bwt characters of input intervals in M^{LF}
- $ightharpoonup |RS_{L'}| = O(r')$ rank-select data structure for L'

Backward Search (Step)

- ▶ given SA-interval [b, e] of P
- 1. compute b' and e' with L' and $RS_{L'}$ (maintain input interval indexes $\hat{b}, \hat{e}, \hat{b}', \hat{e}'$ of b, e, b', e')

Index Data Structures

- $|M^{LF}| = r'$ move data structure for LF
- ightharpoonup L'[1..r'] bwt characters of input intervals in M^{LF}
- $ightharpoonup |RS_{L'}| = O(r')$ rank-select data structure for L'

Backward Search (Step)

- ▶ given SA-interval [b, e] of P
- 1. compute b' and e' with L' and $RS_{L'}$ (maintain input interval indexes $\hat{b}, \hat{e}, \hat{b}', \hat{e}'$ of b, e, b', e')
- 2. compute SA-interval of cP with M^{LF}

Index Data Structures

- $|M^{LF}| = r'$ move data structure for LF
- ightharpoonup L'[1..r'] bwt characters of input intervals in M^{LF}
- $Arr |RS_{L'}| = O(r')$ rank-select data structure for L'
- ▶ $|M^{\Phi}| = r''$ move data structure for Φ
- \triangleright SA_{Φ}[1..r'] (will be defined later) \rightarrow for locate

Backward Search (Step)

- ▶ given SA-interval [b, e] of P
- 1. compute b' and e' with L' and $RS_{L'}$ (maintain input interval indexes $\hat{b}, \hat{e}, \hat{b}', \hat{e}'$ of b, e, b', e')
- 2. compute SA-interval of cP with M^{LF}

Definitions

- $e_i = \text{end of SA-interval of } P_{i+1}$
- $e'_i = \text{L.select}(P[i], \text{L.rank}(P[i], e_i))$
- \hat{e}'_{i} = index of M^{LF}-input interval containing e'_{i}

Definitions

- e_i = end of SA-interval of P_{i+1}
- $ightharpoonup e'_i = \text{L.select}(P[i], \text{L.rank}(P[i], e_i))$
- $\hat{e}'_{i} = \text{index of M}^{LF} \text{input interval containing } e'_{i}$
- y = index of the last iteration in the backward search, where $L[e_i] \neq P[i]$ holds (c = P[y])

Definitions

- $ightharpoonup e_i = ext{end of SA-interval of } P_{i+1}$
- $ightharpoonup e'_i = L.select(P[i], L.rank(P[i], e_i))$
- \hat{e}'_{i} = index of M^{LF}-input interval containing e'_{i}
- y = index of the last iteration in the backward search, where $L[e_i] \neq P[i]$ holds (c = P[y])

Observation

For $i \in [0, y)$, $L[e_i] = P[i]$ implies $e'_i = e_i = LF(e'_{i+1})$

Definitions

- $ightharpoonup e_i = ext{end of SA-interval of } P_{i+1}$
- $ightharpoonup e'_i = L.select(P[i], L.rank(P[i], e_i))$
- \hat{e}'_{i} = index of M^{LF}-input interval containing e'_{i}
- y = index of the last iteration in the backward search, where $L[e_i] \neq P[i]$ holds (c = P[y])

Observation

- For $i \in [0, y)$, $L[e_i] = P[i]$ implies $e'_i = e_i = LF(e'_{i+1})$
- \Rightarrow By ind. $e_0 = LF^y(e'_y) \Leftrightarrow SA[e_0] = SA[e'_y] y$

General Procedure

- We want to compute $SA[e_0] = k y = SA[e_y'] y$ and the index x'' of the M^{Φ} -input interval containing k y
- \Rightarrow Then we can compute SA[b_0 , e_0] with $e_0 b_0$ Φ -move queries

- Obs.: there is an M^{Φ} -output interval starting with k
- 1. Compute index $x = SA_{\Phi}[\hat{e}'_{y}]$ of the M^{Φ} -input interval starting with v
- 2. Compute $k y = M_q^{\Phi}[x] y$

- ightharpoonup Obs.: there is an M^{Φ} -output interval starting with k
- 1. Compute index $x = SA_{\Phi}[\hat{e}'_{y}]$ of the M^{Φ} -input interval starting with v
- 2. Compute $k y = M_q^{\Phi}[x] y$
- 3. Compute index $x' = \mathbf{M}_{\mathrm{idx}}^{\Phi}[x]$ of the \mathbf{M}^{Φ} -input interval containing k

- ▶ Obs.: there is an M^{Φ} -output interval starting with k
- 1. Compute index $x = SA_{\Phi}[\hat{e}'_{y}]$ of the M^{Φ} -input interval starting with v
- 2. Compute $k y = M_q^{\Phi}[x] y$
- 3. Compute index $x' = M_{idx}^{\Phi}[x]$ of the M^{Φ} -input interval containing k
- 4. Compute x'' with a $O(\log y) = O(\log m)$ -time exponential search over the M^{Φ} -input intervals

- ▶ Obs.: there is an M^{Φ} -output interval starting with k
- 1. Compute index $x = SA_{\Phi}[\hat{e}'_{y}]$ of the M^{Φ} -input interval starting with v
- 2. Compute $k y = M_q^{\Phi}[x] y$
- 3. Compute index $x' = M_{idx}^{\Phi}[x]$ of the M^{Φ} -input interval containing k
- 4. Compute x'' with a $O(\log y) = O(\log m)$ -time exponential search over the M^{Φ} -input intervals
- 5. Compute $SA[b_0, e_0]$ with $e_0 b_0$ Φ -move queries

Comparison with OptBWTR

- We can compute $SA[e_0]$ and x'' in $O(\log m)$ time and with $O(\log m)$ cache misses
- ▶ OptBWTR: O(m) time and 3m cache misses

Comparison with OptBWTR

- We can compute $SA[e_0]$ and x'' in $O(\log m)$ time and with $O(\log m)$ cache misses
- ▶ OptBWTR: O(m) time and 3m cache misses
- ► $SA_{\Phi}[1..r']$ requires $r'\lceil \log r'' \rceil$ bits
- OptBWTR: stores two arrays $SA^+[1..r']$ and $SA^+_{index}[1..r']$ ($r'(\lceil \log n \rceil + \lceil \log r'' \rceil)$ bits)

Optimizations

► Faster rank-select data structure for $RS_{L'}$ using hybrid (compressed and uncompressed) bit-vectors with rank-select support

Optimizations

- Faster rank-select data structure for RS_L, using hybrid (compressed and uncompressed) bit-vectors with rank-select support
- Faster construction of M_{idx} and SA_{Φ} with perm. π of [1,k'], s.t. $q_{\pi[1]} < q_{\pi[2]} < ... < q_{\pi[k']}$

Optimizations

- Faster rank-select data structure for RS_L, using hybrid (compressed and uncompressed) bit-vectors with rank-select support
- Faster construction of M_{idx} and SA_{Φ} with perm. π of [1, k'], s.t. $q_{\pi[1]} < q_{\pi[2]} < ... < q_{\pi[k']}$
- Smaller representation of the Move Data Structure (store M_{offs} [1..k'] instead of M_q [1..k'])

Illustration

Optimizations

- Faster rank-select data structure for RS_L, using hybrid (compressed and uncompressed) bit-vectors with rank-select support
- Faster construction of M_{idx} and SA_{Φ} with perm. π of [1, k'], s.t. $q_{\pi[1]} < q_{\pi[2]} < ... < q_{\pi[k']}$
- Smaller representation of the Move Data Structure (store Moffs [1..k'] instead of Mg [1..k'])

Optimizations

- Faster rank-select data structure for RS_L, using hybrid (compressed and uncompressed) bit-vectors with rank-select support
- Faster construction of M_{idx} and SA_{Φ} with perm. π of [1, k'], s.t. $q_{\pi\lceil 1 \rceil} < q_{\pi\lceil 2 \rceil} < ... < q_{\pi\lceil k' \rceil}$
- Smaller representation of the Move Data Structure (store $M_{offs}[1..k']$ instead of $M_{q}[1..k']$)
- Reducing cache misses caused by array-lookups:
 - Interleaving arrays where possible

Optimizations

- Faster rank-select data structure for RS_L, using hybrid (compressed and uncompressed) bit-vectors with rank-select support
- Faster construction of M_{idx} and SA_{Φ} with perm. π of [1, k'], s.t. $q_{\pi[1]} < q_{\pi[2]} < ... < q_{\pi[k']}$
- Smaller representation of the Move Data Structure (store M_{offs} [1..k'] instead of M_q [1..k'])
- Reducing cache misses caused by array-lookups:
 - Interleaving arrays where possible
 - Variable word-width byte-aligned arrays (use the minimum necessary number of bytes per entry)

- Faster rank-select data structure for RS_L, using hybrid (compressed and uncompressed) bit-vectors with rank-select support
- Faster construction of M_{idx} and SA_{Φ} with perm. π of [1, k'], s.t. $q_{\pi[1]} < q_{\pi[2]} < ... < q_{\pi[k']}$
- Smaller representation of the Move Data Structure (store Moffs [1..k'] instead of Ma [1..k'])
- Reducing cache misses caused by array-lookups:
 - Interleaving arrays where possible
 - Variable word-width byte-aligned arrays (use the minimum necessary number of bytes per entry)

Tested Indexes

- ♦ move-r (static, Big-BWT [2])
- r-index [6] (static, Big-BWT [2])
- ▲ online-rlbwt [1] (dynamic)
- rcomp-glfig [7] (dynamic)

```
Tested Indexes

♦ move-r (static, Big-BWT [2])

□ r-index [6] (static, Big-BWT [2])

Δ online-rlbwt [1] (dynamic)

• rcomp-glfig [7] (dynamic)

* r-index-f [3] (static, Big-BWT [2])

Δ block-rlbwt-2 [5] (static, grlBWT [4])

+ block-rlbwt-v [5] (static, grlBWT [4])

× block-rlbwt-r [5] (static, grlBWT [4])
```

Tested Indexes

- ♦ move-r (static, Big-BWT [2])
- r-index [6] (static, Big-BWT [2])
- △ online-rlbwt [1] (dynamic)
- rcomp-glfig [7] (dynamic)
- * r-index-f [3] (static, Big-BWT [2])
- ↓ block-rlbwt-2 [5] (static, grlBWT [4])
- + block-rlbwt-v [5] (static, grlBWT [4])
- \times block-rlbwt-r [5] (static, grlBWT [4]) \int

Measured Texts

Medsared rexts					
text	size [GB]	σ	n/r	r'/r	r"/r
einstein.en.txt	0.47	139	1611.18	1.23	1.49
sars2	84.19	80	686.57	1.38	1.06
dewiki	68.72	210	345.80	1.23	1.35
chr19	58.57	52	272.20	1.06	2.00
english	2.21	239	3.36	1.19	1.20

More Information

- ho $n/r \approx$ compressibility
- $ightharpoonup \sigma$ = alphabet size
- $r', r'' = \text{number of intervals in } M^{LF}/M^{\Phi} \text{ (for } a = 2)$

only count

Tested Indexes

- ♦ move-r (static, Big-BWT [2])
- r-index [6] (static, Big-BWT [2])
- △ online-rlbwt [1] (dynamic)
- rcomp-glfig [7] (dynamic)
- * r-index-f [3] (static, Big-BWT [2])
- ↓ block-rlbwt-2 [5] (static, grlBWT [4])
- + block-rlbwt-v [5] (static, grlBWT [4])
- + block-flbwl-v [5] (Static, gitbwi [4])
- \times block-rlbwt-r [5] (static, grlBWT [4]) \int

Measured Texts

measured rexts					
text	size [GB]	σ	n/r	r'/r	r"/r
einstein.en.txt	0.47	139	1611.18	1.23	1.49
sars2	84.19	80	686.57	1.38	1.06
dewiki	68.72	210	345.80	1.23	1.35
chr19	58.57	52	272.20	1.06	2.00
english	2.21	239	3.36	1.19	1.20

More Information

- ho $n/r \approx$ compressibility
- $ightharpoonup \sigma$ = alphabet size
- $r', r'' = \text{number of intervals in } M^{LF}/M^{\Phi} \text{ (for } a = 2)$
- a = 8 is the optimal trade-off between space and query throughput

 \Rightarrow The following measurements use a = 8

▶ Experimental Evaluation

only count

Tested Indexes

- ♦ move-r (static, Big-BWT [2])
- r-index [6] (static, Big-BWT [2])
- △ online-rlbwt [1] (dynamic)
- rcomp-glfig [7] (dynamic)
- * r-index-f [3] (static, Big-BWT [2])
- ↓ block-rlbwt-2 [5] (static, grlBWT [4])
- + block-rlbwt-v [5] (static, grlBWT [4])
- \times block-rlbwt-r [5] (static, grlBWT [4]) \int

Test System

- 2x AMD EPYC 7452 (32/64x 2.35-3.35GHz, 2/16/128MB L1/2/3 cache)
- ► 1TB 3200 MT/s DDR4 RAM
- ► GCC 9.4.0 with flags "-march=native -DNDEBUG -Ofast"
- ▶ Ubuntu 18.04.6

Measured Texts

Measured Texts						
text	size [GB]	σ	n/r	<i>r'</i> / <i>r</i>	r"/r	
einstein.en.txt	0.47	139	1611.18	1.23	1.49	
sars2	84.19	80	686.57	1.38	1.06	
dewiki	68.72	210	345.80	1.23	1.35	
chr19	58.57	52	272.20	1.06	2.00	
english	2.21	239	3.36	1.19	1.20	

More Information

- ho $n/r \approx$ compressibility
- $ightharpoonup \sigma$ = alphabet size
- $r', r'' = \text{number of intervals in } M^{LF}/M^{\Phi} \text{ (for } a = 2)$
- a = 8 is the optimal trade-off between space and query throughput
- \Rightarrow The following measurements use a = 8

▶ Experimental Evaluation

only count

Summary

- 2x-35x (typ. 15x) faster queries
- o.8x-2.5x (typ. 2x) larger index
- 0.9-2x (typ. 2x) faster construction with 1-3x (typ. 2x) lower memory usage

Bibliography

- [1] Hideo Bannai, Travis Gagie, and Tomohiro I. "Refining the r-index". In: Theoretical Computer Science 812 (2020), pp. 96–108.
- [2] Christina Boucher et al. "Prefix-Free Parsing for Building Big BWTs". In: 18th International Workshop on Algorithms in Bioinformatics WABI. 2018, 2:1–2:16.
- [3] Nathaniel K. Brown, Travis Gagie, and Massimiliano Rossi. "RLBWT Tricks". In: 20th International Symposium on Experimental Algorithms SEA. 2022, 16:1–16:16.
- [4] Diego Díaz-Domínguez and Gonzalo Navarro. "Efficient Construction of the BWT for Repetitive Text Using String Compression". In: 33rd Annual Symposium on Combinatorial Pattern Matching CPM. 2022, 29:1–29:18.
- [5] Diego Díaz-Domínguez et al. "Simple Runs-Bounded FM-Index Designs Are Fast". In: 21st International Symposium on Experimental Algorithms SEA. 2023, 7:1–7:16.
- [6] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. "Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space". In: Journal of the ACM 67.1 (2020), 2:1–2:54.
- [7] Takaaki Nishimoto, Shunsuke Kanda, and Yasuo Tabei. "An Optimal-Time RLBWT Construction in BWT-Runs Bounded Space". In: 49th International Colloquium on Automata, Languages, and Programming ICALP. 2022, 99:1–99:20.
- [8] Takaaki Nishimoto and Yasuo Tabei. "Optimal-Time Queries on BWT-Runs Compressed Indexes". In: 48th International Colloquium on Automata, Languages, and Programming ICALP. 2021, 101:1–101:15.