Sistemas Embebidos I

Ano letivo 2014/2015 – Semestre de Inverno

Projeto – Sistema de controlo de temperatura

Objetivo

O trabalho de projeto da unidade curricular SE1 visa a realização de um sistema autónomo para monitorização e controlo da temperatura ambiente, a utilizar em ambientes com necessidades de temperatura controlada.

Arquitetura

O sistema a desenvolver, cujo diagrama de blocos é apresentado na Figura 1, será implementado sobre a placa de desenvolvimento da Olimex LPC-H2106 [D2] que inclui um microcontrolador LPC2106 [D4]. O sistema usará como interface com o utilizador três botões de pressão PTS645SM95-2 LFS [D7] (U, D e OK) e um mostrador LCD MC1602C [D5], com 2 linhas de 16 caracteres que é baseado no controlador HD44780 [D5]. Para monitorização da temperatura será utilizado o termómetro digital DS1631[D12] com interface I2C, enquanto que o controlo da temperatura será realizado recorrendo a módulos externos de aquecimento e de arrefecimento ligados às saídas H e C.

Figura 1 - Diagrama de blocos do sistema a desenvolver

Funcionamento

Pretende-se que a aplicação a desenvolver apresente dois modos de funcionamento distintos (o modo normal e o modo de manutenção) e torne o sistema autónomo, ou seja, deve executar automaticamente após a ligação da energia elétrica.

No modo normal, o sistema deve monitorizar constantemente a temperatura ambiente com o objetivo de a manter dentro do intervalo $[t_{min}, t_{máx}]$, em que $t_{máx} \ge t_{min}$. Para tal, o sistema deverá ativar a saída \mathbf{H} sempre que o valor da temperatura ambiente for inferior a t_{min} , ou a saída \mathbf{C} quando o valor da temperatura for superior a $t_{máx}$. Se 1 minuto após a ativação destas saídas o valor da temperatura ambiente ainda não estiver dentro dos parâmetros estabelecidos, o sistema deverá ativar o sinal de alarme (saída \mathbf{A}). Este sinal é desativado pressionando o botão \mathbf{OK} .

Neste modo de funcionamento, o sistema deverá manter um registo das temperaturas monitorizadas na memória Flash interna do microcontrolador. Este registo deverá ter capacidade para armazenar o valor da temperatura, no formato "dia - hora: valor temperatura", no início de cada hora ao longo de uma semana. O sistema deverá ainda afixar no mostrador LCD os valores da temperatura atual, de $t_{máx}$, de t_{min} , da data e da hora atuais durante 5 seg, sempre que os botões \mathbf{U} ou \mathbf{D} são pressionados. O mostrador LCD deve encontrar-se desligado o restante tempo.

O modo de manutenção permite definir os parâmetros do sistema ($t_{máx}$, t_{min} , valor atual do relógio e do calendário) e consultar o registo de temperaturas. O sistema entra neste modo de funcionamento

quando os botões U e **D** são pressionados simultaneamente durante mais de 2 seg. Seguidamente, estes botões possibilitam a navegação no seguinte menu principal, em que botão **OK** é utilizado para selecionar a opção pretendida:

- 1 Definir o valor de t_{máx};
- 2 Definir o valor de t_{min};
- 3 Acertar o relógio;
- 4 − Acertar o calendário;
- 5 Visualizar o registo de temperaturas;
- 6 Sair do modo manutenção.

Nos submenus 1 a 5, os botões de pressão U e D, quando pressionados, promovem o incremento e o decremento dos valores de referência de temperatura ($t_{máx}$ e t_{min}), dos campos do relógio (horas e minutos) e dos campos do calendário (ano, mês e dia). O botão OK promove a mudança do campo a acertar, confirmando o seu valor, e no último campo implementa o retorno ao menu principal.

No submenu 6, os botões de pressão U e **D** permitem visualizar o registo seguinte ou o registo anterior do registo de temperaturas. O botão **OK** termina a visualização e retorna ao menu principal.

Todos os valores alterados devem ser guardados na memória Flash interna do microcontrolador aquando da saída do modo de manutenção.

Calendarização

O trabalho deve ser entregue até às 0h do dia 18 de Janeiro de 2015 via plataforma Thoth. Aquando da sua submissão deverá entregar um relatório sucinto do trabalho realizado, a listagem do código desenvolvido com a respetiva documentação (geração de documentação utilizando o Doxygen) e os esquemas elétricos das ligações utilizadas.

Nota: Na realização deste trabalho pode utilizar o código desenvolvido nos trabalhos de laboratório.

Referências

As referências indicadas no documento estão disponíveis na página da unidade curricular SE1 na plataforma Thoth (secção Bibliografia).