w03-Lec

Mathematics and Computer Science:

Numbers

for 204111

by Kittipitch Kuptavanich

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Integers

$$1, 2, 3, 4, \ldots, 101, 102, \ldots, n, \ldots, 2^{32582657} - 1, \ldots$$

- Integer หรือจำนวนเต็ม
- เริ่มจากจำนวนนับ (Natural/Counting Number)
- Then we add o (zero), defined as

$$o + any integer n = o + n = n + o = n$$

- Negative integer: -n, defined as
 - -n is the number which when added to n gives zero

$$n + (-n) = (-n) + n = 0$$

commutative

Simple Rules for Integers

For integers a and b

- 1. a + b = b + a
- 2. $a \times b = b \times a \text{ or } ab = ba$
- $3. -a \times b = -ab$
- 4. $(-a) \times (-b) = ab$
- 5. a^k = shorthand for a multiplied by itself k times.

$$3^4 = 3 \times 3 \times 3 \times 3$$

Note: $a^n \times a^m = a^{n+m}$

6. $n^0 = 1$

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Factors and Primes

• Many integers are products (ผลคูณ) of smaller integers, for example

$$2 \times 3 \times 7 = 42$$

- Here 2, 3 and 7 are called the <u>factors</u> (ตัวประกอบ) of 42
- <u>factorization</u> = การแยกตัวประกอบ

Factors and Primes [2]

Not all integers have factors such as

$$3, 5, 7, 11, 13, \ldots, 2^{216091}$$
-1, . . .

- These number are called primes (จำนวนเฉพาะ)
- พิจารณาการหาร (division)
 - ในกรณีหารไม่ลงตัว จะเหลือเศษของการหาร (remainder)

$$9 = 2 \times 4 + 1$$

Factors and Primes [3]

• เมื่อน้ำ 9 มาหารด้วย 4 จะเหลือเศษ 1

$$9 = 2 \times 4 + 1$$

• For any integers x and y

$$y = k \times x + r$$

- ullet where r is the remainder (เศษของการหาร)
 - กรณี r เป็น o (ศูนย์) เรากล่าวได้ว่า \underline{x} หาร \underline{y} ลงตัว (x เป็น ตัวหาร)
 - หรือ y หาร<mark>ด้วย</mark> x ลงตัว
 - ullet x divides y หรือ $x\mid y$ โดยเส้นตั้งใช้แสดงการหารลงตัว
 - ullet เช่น $2\mid 128$ หรือ $7\mid 49$ (*ตัวหารอยู่ด้านหน้า)
 - กรณี 3 หาร 4 ไม่ลงตัว แทนด้วยสัญลักษณ์ 3 ∤ 4

Factorization

• ในการหาตัวประกอบของ integer n เราสามารถใช้ $\bar{\rho}$ วิธีการลองหาร $\bar{\rho}$ ด้วยจำนวนเฉพาะ

$$k = 2, 3, 5, 7, 11, 13, \dots$$

- ถ้า n หารด้วย k ลงตัว $\longrightarrow k$ เป็น factor ของ n
 - ullet ทำการหารอีกครั้งด้วย k
- ullet ถ้า n หารด้วย k ไม่ลงตัว
 - ลองจำนวนเฉพาะตัวถัดไป

Factorization [2]

• ตัวอย่าง 2394

List of primes: 2, 3, 5, 7, 11, 13,

more at: http://primes.utm.edu/lists/small/1000.txt

- 1. 2394/2 = 1197
- 2. Can't divide by 2 again so try 3
- 3. 1197/3 = 399
- 4. 399/3 = 133
- 5. Can't divide by 3 again so try 5
- **6.** Can't divide by 5 so try 7
- 7. 133/7 = 19 (19 is prime so we are done)

$$2394 = 2 \times 3 \times 3 \times 7 \times 19$$

Factorization [3]

Notes:

- จำนวนเฉพาะมีมากมายไม่จำกัด
- เป็นไปไม่ได้ ที่จะมี list ของจำนวนเฉพาะทั้งหมด
- หรือไม่สามารถหา list ของจำนวนเฉพาะได้
- Solution:
 - ใช้เลขคี่ตัวถัดไป จากตัวหารปัจจุบัน
 - ทำไมถึงไม่ใช้เลขคู่?
- ทฤษฎี : ตัวประกอบเฉพาะ<u>ตัวแรก</u>ของจำนวนเต็มใด ๆ จะต้องมีค่า น้อยกว่าหรือเท่ากับรากที่สองของจำนวนเต็มนั้น ๆ
 - Why?
 - ดังนั้นหากตัวหาร k มากกว่า \sqrt{n} แล้วยังไม่สามารถหา k ที่ $k\mid n$ แสดงว่า n เป็นจำนวนเฉพาะ (ควรหยุดหาตัวประกอบต่อ)

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Modular Arithmetic | 1 |

- Operator ที่ใช้ในการหาร กรณีสนใจเศษของการ หาร คือ modulo หรือ mod
 - Operator: % (C/C++, Java, python)
- The operator simply gives the remainder after division. For example,
- 1. $25 \mod 4 = 1 \underline{\text{because}} \ 25 \div 4 = 6 \underline{\text{remainder 1}}.$
- 2. $19 \mod 5 = 4 \underline{\text{because}} \ 19 = 3 \times 5 + 4.$
- 24 mod 5 = 4.
 99 mod 11 = 0.

Modular Arithmetic [2]

- We will ignore cases with negative number for now.
- These results can be written in a different ways

$$25 = 1 \mod 4$$
 OR $25 \mod 4 = 1$

We will use this notation in this class

- Modular arithmetic is sometimes called clock arithmetic.
- 47 mod 4
 - Going around 11 times
 - And $\frac{3}{4}$
 - Stops at 3

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

The Euclidean Algorithm

• ในคณิตศาสตร์ ตัวหารร่วมมาก หรือ ห.ร.ม.

(อังกฤษ: greatest common divisor: gcd) ของจำนวนเต็มสองจำนวนซึ่งไม่เป็นศูนย์พร้อมกัน คือจำนวนเต็มที่มากที่สุดที่หารทั้งสองจำนวนลงตัว เช่น

- gcd ของ 15 และ 25 คือ 5
- The Euclidean algorithm for finding the gcd is one of the oldest algorithms known, it appeared in Euclid's Elements around 300 BC.

Image: http://www.glogster.com/codster72011/fun-facts-about-euclid/

Euclid

The Euclidean Algorithm [2]

- ullet ให้ a เป็นจำนวนเต็ม ขนาดเล็กกว่า b.
- 1. ให้ b เป็นตัวตั้ง a เป็นตัวหาร
- **2.** ถ้าเศษจากการหาร r คือ O, b คือผลคูณของ a (and we are done. a is the gcd)
- 3. ถ้าเศษไม่ใช่ $\mathbf{O},$ นำ $\overset{\circ}{a}$ มาหารด้วยเศษ r ดังกล่าว
- 4. ทำซ้ำข้อ 1 3 จน เศษ $m{r}$ จากการหารเป็น $f{O}$
- 5. เศษ r ตัวสุดท้ายที่ไม่ใช่ $\mathbf O$ คือ \gcd

$$gcd(a, b) \times lcm(a, b) = a \times b$$

The Euclidean Algorithm [3]

For example 246 and 72

So the gcd of 246 and 72 is 6

The Euclidean Algorithm [4]

Now let's try 1071 and 462

• So the gcd is

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Rationals and Reals

• จำนวนตรรกยะ (rational number) คือจำนวนที่สามารถ เขียนในรูป $\frac{P}{Q}$ where P and Q are integers. Examples are:

$$\frac{1}{2} \frac{3}{4} \frac{7}{11} \frac{7}{6}$$

• สำหรับจำนวนเต็ม n, except zero, จะมี inverse (อิน เวอร์ส), ในรูป $\frac{1}{n}$ โดยมีคุณสมบัติคือ

$$n \times \frac{1}{n} = \frac{1}{n} \times n = 1$$

• เมื่อคูณ $\frac{1}{n}$ ด้วย m จะได้เศษส่วน $\frac{m}{n}$. These are called rational numbers

Rationals and Reals [2]

 นอกจากนี้ ยังมีตัวเลขที่ไม่ใช่ทั้งจำนวนเต็ม และ ไม่ใช่จำนวนตรรกยะ เช่น √2 ที่ไม่สามารถเขียนให้ อยู่ในรูปเศษส่วนได้ เรียกว่า จำนวนอตรรกยะ (irrational numbers)

- จำนวนจริง (real numbers)
 - Irrational: π , $\sqrt{2}$, $\sqrt{3}$, ...
 - Rational: $-3.4, \frac{3}{4}, 9.454545...,...$
 - Integer: -2, 5, -9, 0, ...
 - Whole: 0, 1, 2, 3, ...
 - Natural: 1, 2, 3, ...

Image: http://leferemath.weebly.com/rational-numbers.html

Notations

เครื่องหมายอื่น ๆ

- ullet If x is less than (น้อยกว่า) y
 - then we write x < y. If there is a possibility that they might be equal then $x \le y$ (น้อยกว่าหรือ เท่ากับ)
 - We can also write y > x or $y \ge x$
 - y is greater than (มากกว่า) x or greater than or equal to (มากกว่าหรือเท่ากับ) x

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Notations [2]

- Floor function (ฟังก์ชันพื้น) of a real number x, denoted by $\lfloor x \rfloor$ or floor(x), เป็นฟังก์ชันที่ให้ผลลัพธ์เป็นจำนวนเต็มที่ มากที่สุดที่น้อยกว่า หรือเท่ากับ x เช่น
 - floor(2.7) หรือ $\lfloor 2.7 \rfloor$ มีค่าเท่ากับ 2
 - 🛂 มีค่าเท่ากับ 5
 - แต่ floor(-3.6) หรือ [-3.6] มีค่าเท่ากับ -4
 - ปัดลงไปทาง<u>ด้านซ้าย</u>ของเส้นจำนวนหากไม่ใช่ integer
- Ceiling function (ฟังก์ชันเพดาน) $\lceil x \rceil$ ทำหน้าที่ตรงข้ามกับ floor
 - ceiling(2.7) หรือ $\lceil 2.7 \rceil$ มีค่าเท่ากับ 3
 - ปัดขึ้นไปทาง<u>ด้านขวา</u>ของเส้นจำนวนหากไม่ใช่ integer

Notations [3]

- The absolute value (ค่าสัมบูรณ์ หรือ modulus) of x written |x| is just x when $x \ge 0$ and -x when x < 0 so |2| = 2 and |-6| = 6
- The famous result about the absolute value is that for any x and y

$$|x+y| \le |x| + |y|$$

Notations [4]

- We met a^b when we discussed integers and in the same way we can have x^y when x and y are not integers e.g. $2.5^{3.67}$ or $0.25^{1/2}$
- Note however that

```
a^{o} =1 for all a except zero

o^{b} = 0 for all values of b where b > 0

o^{o} is undefined mathematically (in python/C you might get 1)
```

Numbers

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal

Number Systems

- ระบบจำนวนที่เราคุ้นเคยและพบมากที่สุดใน ชีวิตประจำวันคือเลขฐาน 10 (Decimal System)
- 3459 is shorthand (รูปย่อ) for

$$3 \times 1000 + 4 \times 100 + 5 \times 10 + 9$$
OR
$$3 \times 10^{3} + 4 \times 10^{2} + 5 \times 10^{1} + 9 \times 10^{0}$$

• ตำแหน่ง (position) ของตัวเลขมีความสำคัญ

Number Systems [2]

- เราทราบว่า $10^3 = 1000$ กรณีเลขยกกำลังเป็นจำนวน ลบ (negative) เช่น 10^{-3} หมายถึงเศษส่วนในรูป $\frac{1}{10^3}$
- ในเลขฐานสิบ เราใช้จุดทศนิยม (Decimal Point)
 และตำแหน่งตัวเลขหลังจุดทศนิยมเพื่อแสดง
 เศษส่วนในกรณีที่มีส่วนเป็น 10ⁿ
- เราสามารถเขียน **123.456** ในรูป 1 × 10² + 2 × 10¹ + 3 × 10⁰ + + +4 × 10⁻¹ + 5 × 10⁻² + 6 × 10⁻³

Decimal Point

Number Systems [3]

- Today the common number systems are
 - Decimal number system: ใช้สัญลักษณ์ 0 9; ฐาน (base) 10
 - Binary number system: ใช้สัญลักษณ์ 0,1; ฐาน 2
 - Hexadecimal number system: ใช้สัญลักษณ์ 0-9 และ A-F; ฐาน 16
 - here $A \equiv 10$, $B \equiv 11$, $C \equiv 12$, $D \equiv 13$ $E \equiv 14$, $F \equiv 15$.
 - Octal number system: ใช้สัญลักษณ์ 0-7; ฐาน 8

Binary

• เช่นเดียวกันกับในกรณีเลขฐาน 10 ที่ตำแหน่งแต่ละ ตำแหน่งแทน 10ⁿ ในระบบเลขฐานสอง แต่ละ ตำแหน่งแทนด้วย 2ⁿ

Decimal		in powers of 2	power of 2			2	Binary number
number			3	2	1	0	
8		2^{3}	1	0	0	0	1000
7	_	$2^2 + 2^1 + 2^0$	0	1	1	1	111
6	=	$2^2 + 2^1$	0	1	1	0	110
5	=	$2^2 + 2^0$	0	1	0	1	101
4	_	2^2	0	1	0	0	100
3		$2^1 + 2^0$	0	0	1	1	11
2	=	2^{1}	0	0	1	0	10
1	=	2°	0	0	0	1	1

Why Binary

- รูปแบบของเลขฐาน 2 ประกอบด้วยเลข 0 และ 1
 - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- เลข 0 และ 1 สามารถตีความได้เป็นสถานะ เปิด/ปิด ของกระแสไฟฟ้า
 - การส่งสัญญาณในคอมพิวเตอร์เป็นการไหลของ กระแสไฟฟ้า

Digital Data

- ข้อมูลต่าง ๆในระบบคอมพิวเตอร์ มีลักษณะดังนี้
 - ระดับไฟฟ้า binary physical states (high or low voltages, etc.)
 - สามารถแปลความหมายได้ในรูปแบบบิต (bit -1s and 0s)

• เราสามารถแปลความหมายบิต เพื่อเก็บข้อมูลประเภทต่าง ๆ เช่น integers, real numbers, text, ...

Binary Conversion Wa Marinday

- เราสามารถใช้ modulo (การ หารเอาเศษ) ในการเปลี่ยน เลขฐาน 10 เป็นเลขฐาน 2 ตัวอย่างเช่น 88
- เมื่อ x/2 = 0 ให้เขียน column สุดท้ายจากล่างขึ้นบน
- จะได้ว่า
 - 88₁₀ = 1011000₂
- วิธีนี้สามารถใช้ แปลงเลข ฐาน 10 เป็นฐานอื่น ๆ เช่นกัน

Binary Conversion [2]

Let's try with 95

There are 10 types of people.
Those who understand binary and those who don't.

Binary Conversion Tips

• ในกรณีการแปลงเลขฐาน 10 จำนวนที่ไม่มากนักเป็นฐาน 2 เราอาจใช้วิธีการลบเลขแทน

28	2 ⁷	2 6	2 ⁵	2 ⁴	2 ³	2 ²	2^{1}	20
256	128	64	32	16	8	4	2	1

- เช่น 213
- เช่น 213 * จากตารางพบว่า 213 มากกว่า 2⁷ (1 ตามด้วย 0 ทั้งหมด 7 ตัว)
 - ใส่ 1 _ _ _ _ _ _
- เหลือ 213 128 = 85
 - พบว่า 85 มากกว่า 2⁶
 - ใส**่ 1** 1
- เหลือ 85 64 = 21
 - พบว่า 21 มากกว่า 2⁴
 - ใส**่ 1 1 1**

- เหลือ 21 16 = 5
 - พบว่า 5 มากกว่า 2²
 - ใส่ 1 1 _ 1 _ 1
- เหลือ 5 4 = 1
 - ใส่ 1 1 _ 1 _ 1 _ 1
 - ได้ 1101 0101

Fractional Binary Numbers

• เลขเศษส่วนฐานสอง **Binary Point** (จุดทวินิยม) b_{-n-1} b_{-n} b_{-2} 1/4 1/8 $1/2^{n-1}$

Fractional Binary Numbers [2]

- การเปลี่ยนเลขทศนิยม จากฐาน 10 เป็น ฐาน 2 เราจะใช้ฟังก์ชัน floor
- เมื่อ x × 2 = 1 ให้เขียน
 column สุดท้ายจาก<u>บน</u>
 ลงล่าง
- จะได้ว่า
 - $0.6875_{10} = 0.1011_2$

 $[x\cdot x]$ 0.1415 0,4295 0.4245 1.2735 0102113 0.8205 0.2735 2.4615 0.8205 1.3895 0.4615 1,1535 0.3845 0.1535

x · 3

Fractional Binary Numbers [3]

- Let's try with 0.4
- ในบางกรณีเราจะได้ ทศนิยมไม่รู้จบ
- 0.4₁₀ =

Fractional Binary Numbers [4]

- ในระบบเลขฐาน 2 นั้นมีข้อจำกัด
 - แทนค่าจริงของตัวเลขได้ เฉพาะตัวเลขที่สามารถเขียน ในรูป $x \times 2^y$ เท่านั้น
 - นอกจากนั้นจะเป็น<u>ค่าประมาณ</u> ความใกล้เคียงกับค่า จริง<u>ขึ้นกับ</u>จำนวนตำแหน่งที่ใช้แสดงค่า
 - ตำแหน่งหลังจุดทศนิยมมาก = ค่าใกล้เคียงจำนวนจริงมากขึ้น

Fractional Binary Numbers [5]

Representation	Value	Decimal
0.0_{2}	$\frac{0}{2}$	0.0_{10}
0.01_{2}	$\frac{1}{4}$	0.25_{10}
0.010_2	$\frac{2}{8}$	0.25_{10}
0.0011_2	$\frac{3}{16}$	0.1875_{10}
0.00110_2	$\frac{6}{32}$	0.1875_{10}
0.001101_2	$\frac{13}{64}$	0.203125_{10}
0.0011010_2	$\frac{26}{128}$	0.203125_{10}
0.00110011_2	$\frac{51}{256}$	0.19921875_{10}

Conversion Exercise 1

เติมตารางต่อไปนี้ให้สมบูรณ์

Fractional value	Binary representation	Decimal representation
$\frac{1}{8}$	0.001	0.125
$\frac{3}{4}$ $\frac{25}{16}$		
	10.1011	
	1.001	
		5.875
		3.1875

Addition in Binary

• การบวกเลขในเลขฐาน 2 มีลักษณะคล้ายในฐาน 10

Subtraction in Binary

การลบเลขในเลขฐานสองมีลักษณะคล้ายในฐาน 10 หากตัวตั้งในหลักใด ๆ ไม่พอสำหรับการลบ ก็ให้
 "ขอยืม" จากหลักถัดไป

Multiplication in Binary

การคูณเลขฐาน 10

ตัวตั้ง	8	7	6	5	2	1			
ตัวคูณ	7	8	3					×	
คูณ 7	6	4	7	9	7	8			
ขยับซ้าย 1 ตำแหน่งแล้วคู่ใน 8		4	2	4	5	0	0	1	
ขยับซ้าย 2 ตำแหน่งแล้วคู่ณ 3			4	3	0	7	7	3	
ผลบวกสามบรรทัด	6	8	3	7	3	6	8	4	

การคูณเลขฐาน 2

			1	0	0	1	1	1	0	Multiplicand
×							1	0	1	Multiplier
			1	0	0	1	1	1	0	times 1
		0	0	0	0	0	0	0		Shift left one and times 0
	1	0	0	1	1	1	0			Shift left two and times 1
	1	1	0	0	0	0	1	1	0	Add to get the product

Tips

<u>ข้อสังเกต</u>

$$111_2 = 7$$
 and $111_2 \times 2 = 14 = 1110_2$
 $101_2 = 5$ and $101_2 \times 2 = 10 = 1010_2$

• การคูณเลขใด ๆ ในฐาน 2 ด้วย 2 ให้ขยับเลขนั้นไปทางซ้าย
1 ตำแหน่งแล้วเติม 0

Octal

- การเปลี่ยนเลขฐาน 2 เป็นฐาน 8 (= 2³) ให้แบ่งเลขฐานเป็น กลุ่ม กลุ่มละ 3 ตัวเริ่มจากหลัก 2º
- เช่น 11000010001
- แล้วจึงเปลี่ยนเลขในแต่ละกลุ่มเป็นค่าในฐาน 10 (0-7)

```
0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111
```

Hexadecimal

- การเปลี่ยนเลขฐาน 2 เป็นฐาน 16 (= 2⁴) ให้แบ่งเลข ฐานเป็นกลุ่ม กลุ่มละ 4 ตัวเริ่มจากหลัก 2⁰
- เช่น 0101111010110101010
- แล้วจึงเปลี่ยนเลขในแต่ละกลุ่มเป็นค่าในเลขฐาน 16

Conversion Exercise

28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º
256	128	64	32	16	8	4	2	1

Fill in the missing entries

Decimal	Binary	Hexadecimal
0	0000 0000	0x00
167		
62		
188		
	0011 0111	
	1000 1000	
	1111 0011	
		0x52
		OxAC
		0xE7

Final Notes

[Math] is a little like programming, it takes time to understand a lot of code and you never understand how to write code by just reading a manual - you have to do it!

Mathematics is exactly the same, you need to do it.

Homework

• Memorize these table

2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2º
256	128	64	32	16	8	4	2	1

		imo ary
He	r Dec	ima nary
0	0	0000
1	0 1 2 3 4 5 6 7 8	0001
2	2	0010
3	ന	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
0 1 2 3 4 5 6 7 8 9 A B C D E	10 11 12 13 14 15	1100
D	13	1101
Е	14	1110
F	15	1011 1100 1101 1110 1111

Summary

- Integers
- Factors and Primes
- Modular Arithmetic
- The Euclidean Algorithm
- Rational and Reals
- Ceiling and Floor functions
- Number Systems: decimal, binary, octal, hexadecimal