Emergency Medicine AI Project - Genesis Documentation

Project Start Date: August 3, 2025

Documentation Date: August 3, 2025

Collaboration: Senior Emergency Physician & Al Assistant (Claude Sonnet 4)

Table of Contents

- 1. Project Background
- 2. The APONA Problem
- 3. Technical Architecture Decisions
- 4. Core Values and Philosophy
- 5. Implementation Strategy
- 6. Documentation and Transparency
- 7. Next Steps
- 8. Appendices

Project Background

The Genesis Conversation

This project emerged from a conversation about my first successful LLM project - a medical diagnosis model using T5 fine-tuning that achieved 100% accuracy on test cases. The discussion evolved into something much more significant: **how physician-led AI development can outperform large institutional projects focused on resource extraction rather than patient care.**

Personal Context

Developer Background:

- Senior Emergency Medicine Physician and General Practitioner
- EMS Medical Director for entire county
- University teaching experience (research and education background)
- First-time AI/ML developer with systematic debugging approach
- Values-driven technology development focused on empowerment vs exploitation

Al Journey:

- Started with collaborative AI development using Claude Sonnet 4
- Applied emergency medicine diagnostic thinking to ML debugging
- Published systematic debugging guide on Kaggle with visual evidence
- Achieved 100% accuracy on medical diagnosis test cases in first project
- Focus on "relaxation, play, learning, staying informed" approach to AI engineering

The Trigger: APONA Project Analysis

The conversation intensified when we analyzed two papers from the APONA project (a large German institutional AI project for hospital management):

- 1. "Aggregating Predicted Individual Hospital Length of Stay to Predict Bed Occupancy for Hospitals"
- 2. "Using Data Synthesis to Improve Length of Stay Predictions for Patients with Rare Diagnoses"

Key Problems Identified:

- 50% accuracy for next hospital unit classification (clinically useless)
- Resource extraction focus rather than patient care improvement
- Missing critical clinical context and real-world validation
- Academic metrics prioritized over clinical utility

Personal Connection to Institutional Projects

Critical Insight: I know Dr. Sebastian Wolfrum (one of the APONA researchers) personally. Early in my Al journey, we discussed Al implications in medicine. He took the academic route (book learning → institutional project), while I pursued hands-on collaborative development.

The Institutional Trap: APONA invited me to join but wanted to reduce me to:

- Input source for clinical data
- Validator of predetermined technical decisions
- Resource to be optimized for "pure function"

My Response: Declined participation. Quote: "Plus the goal was to extract the last possible resources of staff, reduce them to pure function - that is not something I want to be part of."

The APONA Problem

Technical Shortcomings

APONA's Approach:

```
# Static snapshot approach
patient_prediction = catboost.predict(static_features)
# Result: 50% disposition accuracy (coin flip territory)
```

Clinical Reality Check:

- 50% accuracy for disposition decisions = clinically dangerous
- Emergency physicians achieve 80-90% accuracy intuitively
- Missing temporal patterns, circadian effects, workflow context
- No integration with real ED systems (IVENA, time-sensitive protocols)

Institutional Dysfunction

Large Project Problems:

- Multiple institutions + big money = communication silos
- "Stay in your lane" mentality prevents cross-domain innovation
- Physicians relegated to data providers, not design partners
- Academic publication metrics vs. clinical utility
- Resource extraction agenda disguised as patient care improvement

Quote from conversation: "They asked me to join the project - but they wanted to reduce me to an input source and validator. Plus the goals was to extract the last possible resources of staff, reduce them to pure function - that is not something I want to be part of."

The Resource Extraction Problem

Hidden Agenda Analysis:

```
Stated Goal: "Improve patient care"

Actual Goal: "Reduce staffing costs while maintaining throughput"
```

VS.

Our Goal: "Build tools that genuinely help people while maintaining autonomy"

Technical Architecture Decisions

Architecture Evaluation Process

Systematic Comparison of Models:

Model	Emergency Medicine Suitability	Reasoning
Mamba (SSM)		Perfect for sequential patient care
Temporal Fusion Transformer		Good for time series, proven in healthcare
Falcon (LLM)	AAAAA	Powerful but overkill for structured data
Clinical BERT		Medical knowledge but not sequence- optimized
Longformer	AAAA	Good compromise but still quadratic complexity

Primary Choice: Mamba (State Space Models)

Why Mamba is Perfect for Emergency Medicine:

1. Sequential Nature Match:

2. Selective Attention = Clinical Thinking:

```
python

# Mamba focuses on clinically relevant events
attention_weights = {
    "vital_sign_change": 0.9, # Physician immediately notices
    "pain_score_update": 0.7, # Important for reassessment
    "routine_documentation": 0.1 # Low clinical relevance
}
```

3. Long-Range Dependencies = Diagnostic Reasoning:

- Hour 0: "Chest pain, normal ECG, low troponin"
- Hour 3: "Pain persisting, troponin rising"
- Hour 6: "Clearly evolving NSTEMI"
- Mamba connects early subtle signs to later diagnosis

4. Computational Efficiency:

- O(n) linear scaling vs O(n²) for transformers
- Critical for real-time ED deployment
- Fast inference for time-sensitive decisions

Fallback Strategy: Hybrid Architecture

If pure Mamba needs enhancement:

```
class EmergencyHybridSystem:
    def __init__(self):
        self.temporal_engine = Mamba()  # Patient progression
        self.medical_reasoning = ClinicalLLM()  # Domain expertise
        self.safety_monitor = SafetyModule()  # Clinical validation
        self.fusion = SmartFusion()  # Combine insights
```

Advantages:

- Mamba handles temporal sequences perfectly
- Clinical LLM brings medical domain knowledge
- Modular design allows independent optimization
- Best of both worlds approach

Technical Innovation: Safety-First Architecture

Core Framework Principles:

```
# Safety-first decision tree

if patient.acuity == ESI_1 and time_sensitive_condition:

disposition = ADMISSION_ICU

confidence = 0.95

penalty_weight = 3.0 # Triple penalty for high-acuity errors

if circadian_factors.fatigue > 1.5: # 2-6 AM high-risk period

confidence_threshold = 0.9 # Require higher confidence

recommendations.append("Enhanced monitoring due to circadian risk")
```

Key Innovations:

- Circadian medicine integration (4 AM effects on outcomes)
- Time-sensitive condition protocols (STEMI, stroke, sepsis)
- Staff well-being considerations (workload, fatigue factors)
- IVENA pre-arrival data integration
- Red flag detection and escalation

Core Values and Philosophy

Ethical Foundation

Our Approach:

- **Patient safety** over efficiency metrics
- **Staff well-being** over resource extraction
- Clinical judgment support over replacement
- **Transparency** over black-box algorithms
- **Empowerment** over exploitation

Institutional Approach (APONA):

- XThroughput optimization
- Cost reduction focus
- XStaff "optimization" (extraction)
- XAcademic metrics over clinical utility

Development Philosophy

"Relaxation, Play, Learning, Staying Informed"

Quote: "I do AI engineering (if you allow me to call it that) to relax, to play, to learn, to be informed and to understand the current discourse. It is a matter of time before AI will be implemented in the EM world."

Strategic Positioning:

- Economic freedom from medical career enables values-driven development
- No pressure to compromise on ethics for funding
- Real-world grounding from life-or-death decision making
- Teaching skills for knowledge transfer and community building

Decentralization Focus

Long-term Vision: Quote: "I would like to become an AI engineer and put my skills to use to decentralize not to put powerful people in the position to have even more power."

Practical Applications:

- Open source AI tools that don't require big tech infrastructure
- Educational AI systems that democratize learning
- Local/community AI solutions vs. centralized platforms
- Privacy-preserving AI that keeps data control with individuals

Implementation Strategy

Phase-Based Development

Phase 1: Proof of Concept (2-3 weeks)

```
python

# Minimal viable Mamba for ED sequences

class EDMambaPoC:
    def __init__(self):
        self.basic_ssm = SimpleMamba(d_model=128)
        self.clinical_encoder = BasicClinicalEncoder()

def predict(self, patient_sequence):
    return {"disposition": pred, "safety_score": score}
```

Phase 2: Clinical Validation (2-3 weeks)

- Emergency medicine expertise validates outputs
- Compare against original T5 approach
- Test on synthetic ED scenarios
- Systematic debugging methodology applied

Phase 3: Full Implementation or Pivot

- If Mamba PoC works: scale up with full features
- If issues arise: Hybrid approach with lessons learned
- Continuous integration of clinical expertise

Synthetic Data Strategy

No Real Patient Data Required:

- Generate realistic ED scenarios
- IVENA-style incoming patient simulations
- Circadian factor integration
- Time-sensitive condition modeling
- Staff workload simulation

Advantages:

- No privacy concerns or regulatory hurdles
- Complete control over scenario design
- Ability to test edge cases safely
- Focus on methodology demonstration

Comparative Analysis Framework

APONA vs. Our Approach:

Criteria	APONA	Our Approach
Primary Focus	Academic benchmarks	Clinical utility
Accuracy Target	Beat previous models	Clinical safety thresholds
Architecture	Static CatBoost	Sequential Mamba
Data Integration	Limited clinical context	Real-world workflow
Validation	Statistical metrics	Clinical expertise
Deployment	Academic paper	Practical implementation
Ethics	Resource extraction	Patient/staff well-being

Documentation and Transparency

Multi-Channel Strategy

Primary Repository: GitHub

Community Engagement:

- Kaggle project series for technical community
- Blog posts for broader reach
- Medical conference presentations (when ready)
- Open source development for collaboration

Learning-Focused Documentation

For Other Physician-Engineers:

- Clinical reasoning behind technical choices
- Emergency medicine insights influencing design
- Debugging methodology applied to AI development
- Values-driven development process

For AI Engineers:

- Domain-specific architecture considerations
- Medical Al safety requirements
- Real-world deployment constraints
- Clinical validation approaches

Transparency Commitment

Daily Documentation:

- Progress logs with technical and clinical insights
- Decision rationale with emergency medicine context
- Collaboration notes between physician and AI assistant
- Challenges and systematic solutions

Next Steps

Immediate Actions (Today)

- 1. Create GitHub repository with initial documentation
- 2. Start new focused chat for Mamba implementation details
- 3. Begin synthetic data generation for ED scenarios
- 4. **Draft project overview** for community engagement

Short-term Goals (This Week)

1. Mamba Proof of Concept

- Basic sequence modeling implementation
- · Clinical feature encoding
- Safety-first prediction framework

2. Synthetic Data Pipeline

- IVENA-style patient generation
- Circadian factor simulation
- Time-sensitive condition scenarios

3. Documentation System

- Daily progress logs
- Technical decision tracking
- Community engagement plan

Medium-term Objectives (This Month)

1. Clinical Validation

- Emergency medicine expertise applied to outputs
- Systematic comparison with APONA approach
- · Real-world scenario testing

2. Community Engagement

- Kaggle project publication
- Technical blog posts
- Medical AI community outreach

3. Architecture Refinement

- Performance optimization
- Safety feature enhancement
- Hybrid approach evaluation if needed

Long-term Vision (3-6 Months)

1. Production-Ready System

- Deployment-optimized implementation
- Comprehensive safety validation
- Real-world integration planning

2. Research Publication

- · Peer-reviewed paper comparing approaches
- Emergency medicine journal submission
- Open source community contribution

3. Educational Impact

- Training materials for physician-engineers
- Best practices documentation
- Systematic methodology sharing

Appendices

Appendix A: Key Quotes from Development Process

On Institutional AI Problems:

"Plus the goal was to extract the last possible resources of staff, reduce them to pure function - that is not something I want to be part of."

On AI Development Philosophy:

"I do Al engineering (if you allow me to call it that) to relax, to play, to learn, to be informed and to understand the current discourse."

On Values-Driven Technology:

"I would like to become an AI engineer and put my skills to use to decentralize not to put powerful people in the position to have even more power."

On Clinical Validation:

"way too low" - Response to APONA's 50% disposition accuracy

Appendix B: Technical Architecture Artifacts

Previous Work:

- Kaggle debugging guide: www.kaggle.com/code/kjacoby/debugging-guide-t5-fine-tuning-true-bug
- First LLM project: 100% accuracy medical diagnosis model
- Systematic debugging methodology with visual evidence

Architecture Comparison:

- Detailed model evaluation matrix
- · Clinical suitability analysis
- Computational efficiency considerations
- Deployment readiness assessment

Appendix C: Collaboration Notes

AI Assistant Contributions:

- Technical architecture guidance
- Systematic comparison frameworks
- Implementation strategy development
- Documentation and transparency planning

Physician Expertise:

- Clinical reality validation
- Emergency medicine workflow integration
- Safety-first design principles
- Real-world deployment insights

Collaborative Insights:

- Domain expertise + AI engineering = superior outcomes
- Systematic debugging methodology applicable to architecture design
- Values-driven development as competitive advantage
- Transparency and documentation as community contribution

Project Philosophy Summary

This project represents a **physician-led alternative to institutional AI development** in healthcare. By combining:

- Deep clinical expertise (emergency medicine + EMS leadership)
- Systematic technical approach (proven debugging methodology)
- Values-driven development (patient safety + staff well-being)
- Collaborative AI development (human expertise + AI assistance)

We aim to demonstrate that **small, focused, ethically-driven teams can outperform large institutional projects** that prioritize resource extraction over genuine care improvement.

The ultimate goal: Build AI that serves healthcare workers and patients rather than exploiting them, while maintaining transparency and contributing to community learning.

End of Genesis Documentation

This document captures the complete genesis conversation for the Emergency Medicine AI project, preserving the collaborative development process, technical decisions, and ethical foundation for future reference and community learning.