Approximate Inference in Bayesian Networks

Chapter 14 – Part II

Inference by Sampling

- Key Idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior P'
 - Show that this converges to the true probability P
- If we could sample from a variable's (posterior probability), we could estimate its (posterior) probability

X	count		X	probability
<i>X</i> ₁	n_1			,
:	:	\leftrightarrow	X_1	n_1/m
			:	:
X_k	n_k		X_k	n_k/m
total	m		- '/\	K / ***

Sampling from an empty network

```
function PRIOR-SAMPLE(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1,\dots,X_n) \mathbf{x} \leftarrow an event with n elements for i=1 to n do x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i)) given the values of Parents(X_i) in \mathbf{x} return \mathbf{x}
```


Sampling from an empty network

Probability that PRIORSAMPLE generates a particular event

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i)) = P(x_1 \dots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$
$$= S_{PS}(x_1, \dots, x_n)$$
$$= P(x_1, \dots, x_n)$$

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: $\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n)$

Rejection Sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j=1 to N do  x \leftarrow \text{Prior-Sample}(bn)  if x is consistent with e then  N[x] \leftarrow N[x] + 1 \text{ where } x \text{ is the value of } X \text{ in } x  return NORMALIZE(N[X])
```

```
E.g., estimate \mathbf{P}(Rain|Sprinkler=true) using 100 samples 27 samples have Sprinkler=true Of these, 8 have Rain=true and 19 have Rain=false.
```

```
\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle
```

Similar to a basic real-world empirical estimation procedure

Rejection Sampling - Example

Fi Al Sm

Re

Le

Observe Sm = true, Re = true

Ta

	s_1	false	true	false	true	false	false
	<i>s</i> ₂	false	true	true	true	true	true
(Ta) (Fi)	s ₃	true	false	true	false		
$\mathcal{A}\mathcal{A}$	<i>S</i> ₄	true	true	true	true	true	true
Al Sm	 S ₁₀₀₀	false	false	false	false		
Le	P(sm) = 0.02 P(re sm) = 0.32 How many samples are rejected?						

How many samples are used?

Analysis of Rejection Sampling

```
\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X,\mathbf{e}) (algorithm defn.)

= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) (normalized by N_{PS}(\mathbf{e}))

\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) (property of PRIORSAMPLE)

= \mathbf{P}(X|\mathbf{e}) (defn. of conditional probability)
```

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting aka Importance Sampling

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
   local variables: W, a vector of weighted counts over X, initially zero
   for j = 1 to N do
        \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn)
        \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in x
   return Normalize(W[X])
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
   \mathbf{x} \leftarrow an event with n elements; w \leftarrow 1
   for i = 1 to n do
        if X_i has a value x_i in e
              then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
              else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
   return x, w
```


Analysis of Likelihood Weighting

Sampling probability for WEIGHTEDSAMPLE is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

Note: pays attention to evidence in **ancestors** only ⇒ somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$$

$$= \prod_{i=1}^{l} P(z_i|parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i|parents(E_i))$$

$$= P(\mathbf{z}, \mathbf{e}) \text{ (by standard global semantics of network)}$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

	Ta	Fi	Αl	Le	Weight
$\overline{s_1}$	true	false	true	false	0.01×0.01
<i>s</i> ₂	false	true	false	false	0.9×0.01
<i>s</i> ₃	false	true	true	true	0.9×0.75
<i>S</i> ₄	true	true	true	true	0.9×0.75
s_{1000}	false	false	true	true	0.01×0.75

$$P(sm|fi) = 0.9$$

 $P(sm|\neg fi) = 0.01$
 $P(re|le) = 0.75$
 $P(re|\neg le) = 0.01$

Markov Chain Monte Carlo

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
   local variables: N[X], a vector of counts over X, initially zero
                       {\bf Z}, the nonevidence variables in bn
                      x, the current state of the network, initially copied from e
   initialize x with random values for the variables in Y
   for j = 1 to N do
        for each Z_i in Z do
            sample the value of Z_i in x from \mathbf{P}(Z_i|mb(Z_i))
                 given the values of MB(Z_i) in \mathbf{x}
            N[x] \leftarrow N[x] + 1 where x is the value of X in x
   return Normalize(N[X])
```

Can also choose a variable to sample at random each time

Markov Chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

MCMC

Estimate $\mathbf{P}(Rain|Sprinkler = true, WetGrass = true)$

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.

E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

$$\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true)$$
= Normalize(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Sampling the Markov Network

Markov blanket of Cloudy is Sprinkler and Rain Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

$$P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$$

Easily implemented in message-passing parallel systems, brains

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large: $P(X_i|mb(X_i))$ won't change much (law of large numbers)

Summary of Inference Methods

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables