Équations Différentielles Linéaires d'ordre 1 $_{\text{Corrigé}}$

DARVOUX Théo

Novembre 2023

Crédits : Ibrahim pour tout (j'aime pas les EDL)

\mathbf{E}	xercices.	
	Exercice 11.1	2
	Exercice 11.2	3

Exercice 11.1 $[\Diamond \Diamond \Diamond]$

Résoudre les équations différentielles ci-dessous

1.
$$y' - 2y = 2 \operatorname{sur} \mathbb{R}$$
 2. $(x^2 + 1)y' + xy = x$ 3. $y' + \tan(x)y = \sin(2x) \operatorname{sur} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 4. $y' - \ln(x)y = x^x \operatorname{sur} \mathbb{R}_+^*$ 5. $(1 - x)y' - y = \frac{1}{1 - x} \operatorname{sur} \left[-\infty, 1 \right]$

1. Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda e^{2x} \mid \lambda \in \mathbb{R}\}$

Solution particulière, avec y constante : $S_p: x \mapsto -1$.

Ensemble de solutions : $S = \{\lambda e^{2x} - 1 \mid \lambda \in \mathbb{R}\}.$

2. L'équation se réecrit comme $y' + \frac{x}{x^2+1}y = \frac{x}{x^2+1}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} \mid \lambda \in \mathbb{R}\}$

Solution particulière : $S_p: x \mapsto 1$ est solution évidente.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{\sqrt{x^2+1}} + 1 \mid \lambda \in \mathbb{R}\}.$

3.Soit $I =]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \cos x \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I, \ \lambda'(x)\cos(x) = \sin(2x)$$

 $\iff \forall x \in I, \ \lambda'(x) = \frac{\sin(2x)}{\cos(x)} = 2\sin(x)$
 $\iff \lambda = -2\cos$

Ainsi, $z = -2\cos^2$.

Ensemble de solutions : $S = \{x \mapsto \lambda \cos x - 2\cos^2 x \mid \lambda \in \mathbb{R}\}.$

4. Soit $I = \mathbb{R}_+^*$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \lambda \frac{x^x}{e^x} \mid \lambda \in \mathbb{R}\}$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \lambda'(x) \frac{x^x}{e^x} = x^x$
 $\iff \forall x \in I, \ \lambda'(x) = e^x$
 $\iff \lambda = e^.$

Ainsi, $z: x \mapsto x^x$

Ensemble de solutions : $S = \{x \mapsto \lambda \frac{x^x}{e^x} + x^x \mid \lambda \in \mathbb{R}\}$

5. Soit $I =]-\infty, 1[$. L'équation se réecrit comme $y' - \frac{1}{1-x}y = \frac{1}{(1-x)^2}$.

Solutions de l'équation homogène : $S_0 = \{x \mapsto \frac{\lambda}{1-x} \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

$$z$$
 est solution $\iff \forall x \in I, \ \frac{\lambda'(x)}{1-x} = \frac{1}{(1-x)^2}$ $\iff \forall x \in I, \ \lambda'(x) = \frac{1}{1-x}$ $\iff \forall x \in I, \ \lambda(x) = -\ln(1-x)$

Ainsi, $z: x \mapsto -\frac{\ln(1-x)}{1-x}$.

Ensemble de solutions : $S = \{x \mapsto \frac{\lambda}{1-x} - \frac{\ln(1-x)}{1-x} \mid \lambda \in \mathbb{R}\}$

Exercice 11.2 $[\Diamond \Diamond \Diamond]$

Résoudre sur R_+^* le problème de Cauchy $\begin{cases} y' - \frac{2}{x}y = x^2 \cos x \\ y(\pi) = 0 \end{cases}$. Solution homogène : C

Solution homogène : $S_0 = \{x \mapsto \lambda x^2 \mid \lambda \in \mathbb{R}\}.$

Solution particulière : Soit $u \in S_0$ et $\lambda : I \to \mathbb{K}$ dérivable sur I. On cherche $z = \lambda' u$.

z est solution
$$\iff \forall x \in I \ \lambda'(x)x^2 = x^2 \cos x$$

 $\iff \forall x \in I \ \lambda'(x) = \cos x$
 $\iff \lambda = \sin$

Ainsi, $z: x \mapsto x^2 \sin x$.

Ensemble de solutions : $S = \{x \mapsto \lambda x^2 + x^2 \sin x \mid \lambda \in \mathbb{R}\}$

Conditions initiales : Soit $y \in S$. On a :

$$y(\pi) = 0 \iff \exists \lambda \in \mathbb{R} \mid \lambda \pi^2 + \pi^2 \sin(\pi) = 0$$
$$\iff \lambda \pi^2 = 0$$
$$\iff \lambda = 0$$

L'unique solution de ce problème de Cauchy est donc : $y: x \mapsto x^2 \sin x$.