

Statistical Thinking (ETC2420/ETC5242)

Associate Professor Catherine Forbes

Week 8: Bayesian inference for numerical data and decision rules

Learning Goals for Week 8

- Review Bayesian statistical thinking
- Apply Bayes theorem with continuous priors
- Consider loss functions and decision rules
- Construct credibility factors

Assigned reading for Week 8:

 Chapter 2 in *Doing Bayesian Data Analysis*, by J. K. Kruschke (same as for Week 7)

Remember where we are...

- Week 7: Transition to Bayesian Thinking
- Bayesian inference is an alternative to Frequentist inference
- Use probability to describe subjective belief,
 - update that belief after observing new information
 - via Bayes theorem:

- We have so far looked at applications where the parameter is defined over a set of possible discrete values:
 - ▶ Manufacturer who made shirt $M \in \{M_1, M_2, M_3\}$
 - ▶ Coin with probability of head $p \in \{p_1, p_2, \dots, p_K\}$
 - ▶ Intended word $W \in \{W_1, W_2, W_3\}$
 - ▶ Insurance claims $\theta \in \{\theta_L, \theta_M, \theta_H\}$
- $lue{}$ In these cases we normalise *Likelihood* imes *Prior* by making *Posterior* sum to 1

Bayes theorem with a continuous parameter

- Now we consider continuous $\theta \in \Theta \subseteq \mathbb{R}$
- Bayes theorem still holds:

$$f(\theta \mid \textit{Data}) = \frac{\mathcal{L}_n(\theta) f(\theta)}{\int_{\Theta} \ \mathcal{L}_n(\theta) f(\theta) \ d\theta}$$

$$\Rightarrow$$
 Posterior \propto Likelihood \times Prior

- How will we compute the normalising constants? (i.e. the integrals)
- We will find our posteriors using:
 - math "tricks" (algebra for conjugate priors)
 - simulation (a Markov chain Monte Carlo technique)
- Aims:
 - Fit simple statistical models using Bayesian method (alternative to the MLE)
 - Obtain posterior probability intervals (alternative to confidence interval from CLT or bootstrap)
 - Construct forecast distribution (alternative to MLE)
- Start with the simple Binomial model under a Uniform(0,1) prior

Bayes theorem for Binomial observation, with a Uniform(0,1) prior

Now consider prior belief for $p \in (0,1)$ is **continuous** *Uniform*(0,1)

- Again assume data X = x (number of heads in n coin tosses)
- Prior density? f(p) = 1, for $p \in (0, 1)$
- Calculate posterior density:

$$f(p|x) = \frac{P(X = x|p)f(p)}{f(x)} = \frac{\binom{n}{x} p^{x} (1-p)^{n-x} (1)}{\int_{0}^{1} \binom{n}{x} p^{x} (1-p)^{n-x} (1) dp}$$

Notice the denominator does not depend on p

$$f(x) = \int_0^1 f(x|p)f(p)dp = \int_0^1 \binom{n}{x} p^x (1-p)^{n-x} dp$$

And $\binom{n}{x}$ also does not depend on p

5

Bayes theorem for Binomial observation, with a Uniform(0,1) prior

So this posterior simplifies to

$$f(p|x) \propto p^{x}(1-p)^{n-x} (\times 1)$$

- \blacksquare Notice the symbol \propto
 - It means ("is proportional to")
 - ightharpoonup \Rightarrow we can drop all factors in $\mathcal{L}(p) \times f(p)$ that **do not depend** on p

$$f(p|x) \propto \mathcal{L}(p) f(p)$$

Do you recognize what distribution $f(p|x) \propto p^x (1-p)^{n-x}$ is??

- This is a Beta(x + 1, n x + 1) distribution!
- We didn't actually need to do the integration!
- Just need to recognize the distribution!

Beta distribution (from week 6)

If a random variable X has a $Beta(\alpha, \beta)$ distribution, the pdf is

$$f(x\mid\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, \quad x\in(0,1) \text{ for } \alpha>0,\beta>0$$

- Parameters $\alpha > 0$ and $\beta > 0$
- Generalisation of a continuous uniform on $x \in (0,1)$ (Uniform is $Beta(\alpha=1,\beta=1)$)

The Beta-Binomial Conjugate Pair

In fact there is a more general result:

- If we assume a $Beta(\alpha, \beta)$ prior distribution for p in a \$Binomial(n,p)\$ model
- the corresponding **posterior** distribution will be $Beta(\tilde{\alpha} = \alpha + x, \ \tilde{\beta} = \beta + (n x))$

$$f(p \mid x) \propto {n \choose x} p^{x} (1-p)^{n-x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

- **NOTE!** Here *p* is the random variable, and *x* is fixed!
- In this special situation, the posterior density function and the likelihood function
- Combine to produce a posterior density from the same distributional family as the prior
 - with different hyper-parameter values
- We call such prior-likelihood combinations a conjugate pair

The Beta-Binomial Conjugate Pair

If you start with the general form of **Bayes' theorem**:

Posterior ∝ Likelihood × Prior

How to recognise the posterior distribution?

- Drop all constants
- 2 Simplify algebra
- Look at the remaining functional form
- 4 Identify hyper-parameter values

$$\begin{array}{ll} f(p\mid x) & \propto & \rho^x (1-\rho)^{n-x} \ p^{\alpha-1} (1-\rho)^{\beta-1} \\ & \propto & \rho^{x+\alpha-1} (1-\rho)^{n-x+\beta-1} \\ & \propto & \rho^{\tilde{\alpha}-1} (1-\rho)^{\tilde{\beta}-1} \\ & \propto & \mathsf{density} \ \mathsf{of} \ \mathit{Beta}(\tilde{\alpha}=\alpha+x, \tilde{\beta}=\beta+n-x) \end{array}$$

- so if prior is Beta(1,1) and $X \sim Binomial(n,p)$, then the posterior is $Beta(\tilde{\alpha}=1+x,\ \tilde{\beta}=1+n-x)$
- Under Uniform(0,1) prior, if x = 8 Heads from n = 10 tosses, posterior is Beta(9,3)

Beta posterior from Uniform prior and X = 8 from Binomial(n = 10, p)

Bayes theorem for continuous random variables

- \blacksquare We are interested in the unknown parameter, θ
- Choose **prior density** $f(\theta)$, before we see any data
- Choose a **model** $f(x|\theta)$ that reflects belief about X given θ
- After observing data X = x, update belief by calculating **posterior density** $f(\theta|x)$, using Bayes' theorem:

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)} \propto f(x|\theta)f(\theta)$$

- where $f(x) = \int_{\theta} f(x|\theta) \pi(\theta) d\theta$ (a constant)
- Then follow steps 1-4 to recognise the posterior distribution (if possible)

Bayes theorem for continuous parameter and i.i.d. data

- Recall when $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} F_{X|\theta}$,
- the likelihood function is given by:

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta), \text{ for all } \theta \in \Theta$$

So given a **prior pdf** $f(\theta)$, the posterior pdf satisfies:

$$f(\theta|x_1,x_2,\ldots,x_n) = \frac{L(\theta)f(\theta)}{\int_{\Omega} L(\theta)f(\theta) d\theta} \propto L(\theta)f(\theta)$$

That is, the posterior density satisfies **posterior** \propto **likelihood** \times **prior**

Note that get same posterior using $X \sim Binomial(n, p)$ or $X_1, X_2, \dots, X_n \stackrel{i.i.d.}{\sim} Bernoulli(p)$ (why?)

Some proposed benefits of the Bayesian approach

The posterior (or prior if no data!) tells us:

- What are the plausible values for the parameter of interest?
 - ▶ This is precisely what we want to know!
- Estimate parameters: Can use any suitable measure of central tendency directly (e.g. mean, median)
 - This type of information is intuitive
- Quantify uncertainty: Use credible (= probability) intervals
 - Use quantiles of the posterior distribution
 - No (difficult to interpret) confidence intervals!
- Can use Bayes' theorem to adapt the given "prior" distribution in light of additional evidence
 - Use to further update posterior if new information arrives!
 - Just treat first posterior as a new prior
- No need for *p*-values or significance levels as measures of evidence
 - We can directly provide probabilities about any hypotheses of interest
 - (Not covered in this unit)

Possible negatives of the Bayesian approach

Parameters treated as a random variable, even if they are really a constant

(Probabilities express uncertainty in the parameter value, so need not truly be "random")

Probability distributions express subjective belief

- not "objective"
- (though there may have been some earlier analysis that has informed this opinion)

Conjugate Priors

Computing posterior distributions can be difficult

- \blacksquare multivariate θ
- high dimensional data X

Special case: Conjugate Prior

- A class of special cases where calculation is easy
- Prior and likelihood function share the same kernel functional form

Definition: Let $\mathcal F$ denote the class of probability density (or mass) functions $f(x\mid\theta)$ indexed by θ . A class $\mathcal C$ of prior distributions is a **conjugate family** for $\mathcal F$ if the posterior distribution is in the class $\mathcal C$ for all $f\in\mathcal F$, all priors in $\mathcal C$, and all x in the sample space.

- Some (univariate) Prior-Likelihood conjugate pairs
 - Beta-Binomial
 - Beta-Bernoulli
 - Gamma-Poisson
 - Gamma-Exponential
 - Normal-Normal (mean)

Conjugate Prior-Likelihood Pairs

Beta-Binomial

X = number of successes in n Bernoulli trials

$$\begin{array}{lll} \textit{Likelihood}: & \textit{X} \mid \theta & \sim & \textit{Binomial}(\textit{n}, \theta) & \Rightarrow & \theta \mid \textit{X} = \textit{x} \sim \textit{Beta}(\alpha + \textit{x}, \beta + \textit{n} - \textit{x}) \\ \textit{Prior}: & \theta & \sim & \textit{Beta}(\alpha, \beta) \end{array}$$

Beta-Bernoulli

$$X_i = \begin{cases} 1 & \text{if 'success'} \\ 0 & \text{if 'failure'} \end{cases}$$

$$X_1, X_2, \dots, X_n \mid \theta \sim Bernoulli(\theta) \Rightarrow \theta \mid x_{1:n} \sim Beta(\alpha + n\overline{x}, \beta + n - n\overline{x})$$

 $\theta \sim Beta(\alpha, \beta)$

Notes:

- $x_{1:n} = \{x_1, x_2, \dots, x_n\}$
- $n\overline{x} = \sum_{i=1}^{n} x_i$
- $\sum_{i=1}^{n} N_i$ \Rightarrow Same posterior in these two cases (just slightly different notation!)

Beta-Binomial Conjugate Pair

$$f\left(\theta|X\right) \quad \propto \quad \underbrace{\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}}_{\text{prior pdf}} \theta^{\alpha-1} \left(1-\theta\right)^{\beta-1} \cdot \underbrace{\left(\begin{array}{c} n \\ x \end{array}\right) \theta^{x} \left(1-\theta\right)^{n-x}}_{\text{likelihood function}}$$

$$\propto \quad \underbrace{\theta^{\alpha-1} \left(1-\theta\right)^{\beta-1} \cdot \theta^{x} \left(1-\theta\right)^{n-x}}_{\text{prior kernel}}$$

$$\propto \quad \underbrace{\theta^{\alpha+x-1} \left(1-\theta\right)^{\beta+n-x-1}}_{\text{posterior kernel}}$$

$$\propto \quad \underbrace{\frac{\Gamma\left(\alpha+\beta+n\right)}{\Gamma\left(\alpha+x\right)\Gamma\left(\beta+n-x\right)}}_{\text{normalising constant}} \cdot \underbrace{\theta^{\alpha+x-1} \left(1-\theta\right)^{\beta+n-x-1}}_{\text{posterior kernel}}$$

$$\Rightarrow \quad \underbrace{Beta\left(\alpha+x,\beta+n-x\right)}_{\text{posterior}}$$

Beta-Bernoulli Conjugate Pair

■ Here $X_1, X_2, ..., X_n \mid \theta \stackrel{i.i.d}{\sim} Bernoulli(\theta)$

$$f\left(\theta|x_{1},x_{2},\ldots,x_{n}\right) \propto \underbrace{\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}\theta^{\alpha-1}\left(1-\theta\right)^{\beta-1}}_{\textbf{prior pdf}} \cdot \underbrace{\prod_{i=1}^{n}\theta^{x_{i}}(1-\theta)^{1-x_{i}}}_{\textbf{likelihood function}}$$

$$\propto \underbrace{\theta^{\alpha-1}(1-\theta)^{\beta-1}}_{\textbf{prior kernel}} \cdot \underbrace{\theta^{\sum_{i=1}^{n}x_{i}}(1-\theta)^{n-\sum_{i=1}^{x}}}_{\textbf{likelihood kernel}}$$

$$\propto \underbrace{\theta^{\alpha+n\overline{x}-1}(1-\theta)^{\beta+n-n\overline{x}-1}}_{\textbf{posterior kernel}}$$

$$\propto \underbrace{\frac{\Gamma\left(\alpha+\beta+n\right)}{\Gamma(\alpha+n\overline{x})\Gamma(\beta+n-n\overline{x})}}_{\textbf{normalising constant}} \cdot \underbrace{\theta^{\alpha+n\overline{x}-1}\left(1-\theta\right)^{\beta+n-n\overline{x}-1}}_{\textbf{posterior kernel}}$$

$$\Rightarrow \boxed{\textit{Beta}\left(\alpha + n\overline{x}, \beta + n - n\overline{x}\right)}$$

Other Univariate Conjugate Prior-Likelihood Pairs?

Gamma-Poisson

$$\begin{array}{ccc} \theta & \sim & \mathsf{Gamma}(\alpha,\beta) \\ X_1,X_2,\ldots,X_n \mid \theta & \stackrel{i.i.d.}{\sim} & \mathsf{Poisson}(\theta) & \Rightarrow & \theta \mid X_1,...X_n \sim \mathsf{Gamma}(\alpha+n\overline{x},\beta+n) \end{array}$$

 β is a 'rate' parameter.

Gamma-Exponential

$$\begin{array}{ccc} \lambda & \sim & \textit{Gamma}(\alpha,\beta) \\ \textbf{X}_1,\textbf{X}_2,\dots,\textbf{X}_n \mid \lambda & \stackrel{\textit{i.i.d.}}{\sim} & \textit{Exponential}(\lambda) & \Rightarrow & \lambda \mid \textbf{X}_1,\dots\textbf{X}_n \sim \textit{Gamma}(\alpha+n,\beta+n\overline{\textbf{x}}) \end{array}$$

 β is a 'rate' parameter.

Normal-Normal (mean only)

$$\begin{array}{ccc} \mu & \sim & \mathcal{N}(\mu_p, \tau^2) \\ X_1, X_2, \dots, X_n \mid \mu & \overset{i.i.d.}{\sim} & \mathcal{N}(\mu, \sigma^2) & \Rightarrow & \mu \mid X_1, \dots X_n \sim \mathcal{N}(\tilde{\mu}_p, \tilde{\sigma}_p^2) \end{array}$$

Gamma-Poisson Conjugate Pair

$$\theta \sim Gamma(\alpha, \beta) \text{ and } X_1, X_2, \dots, X_n \mid \theta \overset{i.i.d.}{\sim} Poisson(\theta)$$

$$f\left(\theta|X_{1},X_{2},\ldots,X_{n}\right) \propto \underbrace{\frac{\beta^{\alpha}}{\Gamma\left(\alpha\right)}\theta^{\alpha-1}e^{-\theta\beta}}_{\textbf{prior pdf}} \cdot \underbrace{\prod_{i=1}^{n}\frac{\theta^{x_{i}}e^{-\theta}}{x_{i}!}}_{\textbf{likelihood function}}$$

$$\propto \underbrace{\frac{\theta^{\alpha-1}e^{-\theta\beta}}{\textbf{prior kernel}} \cdot \underbrace{\theta^{\sum_{i=1}^{n}x_{i}}e^{-n\theta}}_{\textbf{likelihood kernel}}$$

$$\propto \underbrace{\frac{\theta^{\alpha+n\overline{x}-1}e^{-(\beta+n)\theta}}{\textbf{posterior kernel}}}_{\textbf{posterior kernel}}$$

$$\propto \underbrace{\frac{(\beta+n)^{\alpha+n\overline{x}}}{\Gamma\left(\alpha+n\overline{x}\right)}}_{\textbf{normalising constant}} \cdot \underbrace{\frac{\theta^{\alpha+n\overline{x}-1}e^{-(\beta+n)x}}{\textbf{posterior kernel}}}_{\textbf{posterior}}$$

$$\Rightarrow \underbrace{\begin{bmatrix} Gamma\left(\alpha+n\overline{x},\beta+n\right) \end{bmatrix}}_{\textbf{posterior}}$$

Gamma-Exponential Conjugate Pair

$$\lambda \sim \textit{Gamma}(\alpha, \beta) \text{ and } X_1, X_2, \dots, X_n \mid \lambda \stackrel{\textit{i.i.d.}}{\sim} \textit{Exp}(\lambda)$$

$$f\left(\lambda|X_{1},X_{2},\ldots,X_{n}\right) \propto \underbrace{\frac{\beta^{\alpha}}{\Gamma\left(\alpha\right)}\lambda^{\alpha-1}e^{-\lambda\beta}}_{\textbf{prior pdf}} \cdot \underbrace{\prod_{i=1}^{n}\lambda e^{\lambda x_{i}}}_{iikelihood function}$$

$$\propto \underbrace{\lambda^{\alpha-1}e^{-\lambda\beta} \cdot \lambda^{n}e^{-n\overline{x}\lambda}}_{\textbf{prior kernel}}$$

$$\propto \underbrace{\lambda^{\alpha+n-1}e^{-\left(\beta+n\overline{x}\right)\lambda}}_{\textbf{posterior kernel}}$$

$$\propto \underbrace{\frac{(\beta+n\overline{x})^{\alpha+n}}{\Gamma\left(\alpha+n\right)} \cdot \underbrace{\lambda^{\alpha+n-1}e^{-\left(\beta+n\overline{x}\right)\lambda}}_{\textbf{posterior kernel}}$$

$$\Rightarrow \underbrace{Gamma\left(\alpha+n,\beta+n\overline{x}\right)}_{\textbf{posterior}}$$

Normal-Normal Conjugate Pair

$$\mu \sim N(\mu_p, \tau^2)$$
 and $X_1, X_2, \dots, X_n \mid \mu \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$

$$f\left(\mu|X,\sigma^{2}\right) \propto \underbrace{\left(2\pi\tau^{2}\right)^{-1}e^{-\frac{1}{2\tau^{2}}\left(\mu-\mu_{p}\right)^{2}}}_{\text{prior pdf}} \cdot \underbrace{\prod_{i=1}^{n}\left(2\pi\sigma^{2}\right)^{-1}e^{-\frac{1}{2\sigma^{2}}(x_{i}-\mu)^{2}}}_{\text{likelihood function}}$$

$$\propto e^{-\frac{1}{2\tau^{2}}\left(\mu-\mu_{p}\right)^{2}-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}}$$

$$\propto e^{-\frac{1}{2}\left[\frac{1}{\tau^{2}}\left(\mu-\mu_{p}\right)^{2}+\frac{1}{\sigma^{2}}\left[(n-1)s^{2}+n(\overline{x}-\mu)^{2}\right]\right]}$$

$$\propto e^{-\frac{1}{2}\left[\frac{1}{\tau^{2}}\left(\mu^{2}-2\mu\mu_{p}+\mu_{p}^{2}\right)+\frac{n}{\sigma^{2}}\left(\overline{x}^{2}-2\mu\overline{x}-\mu^{2}\right)\right]}$$

$$\propto e^{-\frac{1}{2}\left[\left(\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}}\right)\mu^{2}-2\mu\left(\frac{\mu_{p}}{\tau^{2}}+\frac{n\overline{x}}{\sigma^{2}}\right)\right]}$$

$$= -\frac{1}{2}\left(\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}}\right)\left[\left(\mu^{2}-\frac{\left(\frac{\mu_{p}}{\tau^{2}}+\frac{n\overline{x}}{\sigma^{2}}\right)}{\left(\frac{1}{\tau^{2}}+\frac{n}{\sigma^{2}}\right)}\right)^{2}\right]$$

Normal-Normal (continued)

$$\propto \left(2\pi\tilde{\tau}^2\right)^{-1} e^{-\frac{1}{2\tilde{\tau}^2}(\mu-\tilde{\mu_p})^2}$$

$$\Rightarrow \mu \mid X = \{x_1, x_2, \dots, x_n\}, \sigma^2 \sim \boxed{N\left(\tilde{\mu}_p, \tilde{\tau}^2\right)}_{\text{posterior}}$$

where

$$\tilde{\mu}_{p} = \frac{n\overline{x}\tau^{2} + \mu_{p}\sigma^{2}}{\sigma^{2} + n\tau^{2}}$$

$$= \left(\frac{n\tau^{2}}{\sigma^{2} + n\tau^{2}}\right)\overline{x} + \left(\frac{\sigma^{2}}{\sigma^{2} + n\tau^{2}}\right)\mu_{p}$$

$$\tilde{\tau}^{2} = \frac{\tau^{2}\sigma^{2}}{\sigma^{2} + n\tau^{2}}$$

Basic elements of decision theory

Decision theory is concerned with determining the optimal strategies for taking actions.

- lacksquare denotes a **state of nature** (usually unknown)
- lacksquare Θ is the set of all possible states of nature
- Decision a is called an action
- \blacksquare \mathcal{A} is the set of **all possible actions**
- Require a **loss function** $L(\theta, a)$ defined over all $(\theta, a) \in \Theta \times A$.

Use principles of decision theory to determine **how to use** the posterior distribution

■ Will depend on the application setting

When estimating a parameter, actions are estimators $a=\widehat{\theta}(X)$ (usually functions of data X)

$$\Rightarrow A \equiv \Theta$$
.

The **Squared Error Loss** function is given by

$$L(\theta, \widehat{\theta}) = (\theta - \widehat{\theta})^2$$

Bayes estimators minimise posterior expected loss

From a Bayesian perspective, θ is treated as random

- \Rightarrow we use the posterior probability distribution to characterise belief
 - let $f(\theta \mid X)$ denote
 - \blacktriangleright the posterior pdf, when θ is a continuous random variable, or
 - lacktriangle the posterior probability (mass) function, when heta is a discrete random variable

A **Bayes estimator**, denoted $\widehat{\theta}_{Bayes}$ is the estimator that minimises the posterior expected loss, i.e.

$$\widehat{\theta}_{\textit{Bayes}} = \arg\min_{\widehat{\theta} \in \Theta} E[L(\theta, \widehat{\theta})] = \arg\min_{\widehat{\theta} \in \Theta} \int_{\Theta} L(\theta, \widehat{\theta}) f(\theta \mid X) d\theta$$

Common loss functions and the corresponding Bayes estimators

Squared error loss: $L(\theta, \widehat{\theta}) = (\theta - \widehat{\theta})^2$

lacksquare Bayes estimator is the **posterior mean** $\widehat{ heta}_{\mathit{Bayes}} = \mathit{E}(\theta \mid \mathit{X})$

Why?

Posterior expected loss is

$$\varphi(\widehat{\theta}) = E[(\theta - \widehat{\theta})^2 \mid X]$$

= $\widehat{\theta}^2 - 2\widehat{\theta}E[\theta \mid X] + E[\theta^2 \mid X]$

 \Rightarrow If we differentiate with respect to $\widehat{\theta}$ and solve for the root of the first derivative. . .

$$\varphi'(\widehat{\theta}) = 2\widehat{\theta} - 2E[\theta \mid X] + 0$$

$$\Rightarrow \widehat{\theta} = E[\theta \mid X]$$

Credibility Factors

Notice that in the normal-normal problem,

$$\tilde{\mu}_{p} = \left(\frac{n\tau^{2}}{\sigma^{2} + n\tau^{2}}\right) \overline{X} + \left(\frac{\sigma^{2}}{\sigma^{2} + n\tau^{2}}\right) \mu_{p}$$

It turns out that in many cases (all we consider) we can write the posterior mean as a linear combination of

- a (sensible!) estimator based solely on data (e.g. an MLE), and
- the prior mean

This means we can interpret the estimator $\widehat{\theta}_{\mathit{Bayes}}$ as a trade-off between two reasonable alternatives

- a (sensible!) estimator based solely on data (e.g. an MLE), and
- a (sensible!) estimator based on judgement and prior knowledge

Definition: A so-called **credibility factor** for an estimator that linearly combines a data-based estimator $\widehat{\theta}(X)$ with a non-data-based estimator, $\widehat{\theta}_{prior}$, is the relative weight Z given to the data-based estimator.

Credibility Factor Example 2: Beta-Binomial

Suppose $X \mid \theta \sim Binomial(n, \theta)$

And we take **conjugate prior** $\theta \sim \textit{Beta}(\alpha, \beta)$, having prior mean $\frac{\alpha}{\alpha + \beta}$

$$\Rightarrow$$
 the **posterior is** $Beta(\tilde{\alpha} = \alpha + x, \tilde{\beta} = \beta + n - x)$

Taking

- **the sample proportion** $\frac{x}{n}$ as the data-based estimator, and
- lacksquare the **prior mean** $rac{lpha}{lpha+eta}$ as the estimator based on prior knowledge,
- \Rightarrow it can be shown that the posterior mean $rac{ ilde{lpha}}{ ilde{lpha}+ ilde{eta}}=rac{lpha+x}{lpha+eta+n}$ satisfies

$$\frac{\tilde{\alpha}}{\tilde{\alpha} + \tilde{\beta}} = Z\left(\frac{x}{n}\right) + (1 - Z)\left(\frac{\alpha}{\alpha + \beta}\right),\,$$

when the credibility factor $Z = \left(\frac{n}{\alpha + \beta + n}\right)$

Credibility Factor Example 3: Gamma-Exponential

Suppose $X_1, X_2, \dots, X_n \mid \lambda \stackrel{i.i.d}{\sim} Exponential(\lambda)$

And we take **conjugate prior** $\lambda \sim Gamma(\alpha, \beta)$

$$\Rightarrow$$
 posterior $\lambda \mid x_1, x_2, \dots, x_n \sim Gamma(\tilde{\alpha} = \alpha + n, \tilde{\beta} = \beta + n\overline{x})$

Taking

- lacksquare the MLE $\hat{\lambda}_{\textit{MLE}} = (\overline{\textit{x}})^{-1}$ as the data-based estimator, and
- lacksquare the prior mean $E[\lambda]=rac{lpha}{eta}$ as the estimator based on prior knowledge,
- \Rightarrow the posterior mean $rac{ ilde{lpha}}{ ilde{eta}}=rac{lpha+n}{eta+n\overline{x}}$ satisfies

$$\frac{\alpha+n}{\beta+n\overline{x}}=Z\left(\frac{1}{\overline{x}}\right)+(1-Z)\frac{\alpha}{\beta},$$

when the **credibility factor** $Z=\left(rac{n\overline{x}}{n\overline{x}+eta}
ight)$

Compare with Frequentist?

Frequentist also try to minimise expected squared error loss

But expectation taken with respect to $f(X \mid \theta)$

- Can't find unique solution
- Need to combine with other strategies

e.g. Squared error loss

Expected loss: (average over X, with θ fixed)

$$E_{X}[L(\theta,\widehat{\theta}(X)) \mid \theta] = E_{X}[(\theta - \widehat{\theta}(X))^{2}]$$

$$= E_{X}[(\theta - E_{X}[\widehat{\theta}(X)] + E_{X}[\widehat{\theta}(X) \mid \theta] - \widehat{\theta}(X))^{2}]$$

$$= E_{X}[(\theta - E_{X}[\widehat{\theta}(X))^{2}] + E_{X}[\widehat{\theta}(X) - E_{X}[\widehat{\theta}(X)])^{2}]$$

$$= Bias^{2} + Variance$$

⇒ "Bias - Variance Trade-off"

Other loss functions

Absolute loss

$$L(\theta, \widehat{\theta}) = \left| \theta - \widehat{\theta} \right|$$

 \Rightarrow Bayes estimator is the posterior median

(Why?)

Asymmetric loss functions also possible