Wykład 1, 04.10.2010

- 1. Lemat o minimaxie $\sup_{\pi} \inf_{\delta} L(\pi, \delta) \leq \inf_{\delta} \sup_{\pi} L(\pi, \delta)$, gdzie $L : \Pi \times \Delta \to \mathbb{R}$.
- 2. Gra ma wartość, jeśli $\sup_{\pi} \inf_{\delta} L(\pi, \delta) = \inf_{\delta} \sup_{\pi} L(\pi, \delta)$.
- 3. δ^* jest **minimaxowa**, jeśli $\sup_{\pi} L(\pi, \delta^*) = \inf_{\delta} \sup_{\pi} L(\pi, \delta)$.
- 4. π^* jest **maximinowe**, jeśli $\inf_{\delta} L(\pi^*, \delta) = \sup_{\pi} \inf_{\delta} L(\pi, \delta)$.
- 5. δ^* jest π^* -optymalna (π^* -bayesowska), jeśli $L(\pi^*, \delta^*) = \inf_{\delta} L(\pi^*, \delta)$.
- 6. (π^*, δ^*) jest **siodłem** (punktem siodłowym, in. punktem równowagi Nasha) gry, jeśli $\forall \pi, \delta \ L(\pi, \delta^*) \leq L(\pi^*, \delta^*) \leq L(\pi^*, \delta)$, in. $\sup_{\pi} L(\pi, \delta^*) = L(\pi^*, \delta^*) = \inf_{\delta}(\pi^*, \delta)$.
- 7. **Tw.** o siodle Ustalmy π^*, δ^*). N.w.s.r.:
 - (a) $\sup_{\pi} L(\pi, \delta^*) \leq \inf_{\delta} L(\pi^*, \delta)$
 - (b) (π^*, δ^*) jest siodłem
 - (c) (π^*, δ^*) jest siodłem i δ^* jest π^* -optymalne
 - (d) π^* jest maximinowe, δ^* jest minimaxowa i gra ma wartość
 - (e) π^* jest maximinowe, δ^* jest minimaxowa i gra ma wartość = $L(\pi^*,\delta^*)$
- 8. Wniosek Jeżeli δ^* jest t. że ma stałe ryzyko tzn. $\forall \pi_1, \pi_2 \ L(\pi_1, \delta^*) = L(\pi_2, \delta^*)$ oraz $\exists \pi *$ t. że δ^* jest π^* -optymalna, to (π^*, δ^*) jest siodłem.
- 9. H zb. czystych strategii natury ($\theta \in H$ nieznany parametr rozkładu prawdopodbieństwastwa), A zb. czystych strategii statystyka ($a \in A$ akcje statystyka). Zrandomizowane strategie natury (zbiór $\Pi = H^*$); zrandomizowane strategie statystyka ($\Delta = A^*$); funkcja straty z przestrzeni zrandomizowanych.
- 10. **Def.** $L(\pi, \delta) = E_{\pi \times \delta} L(\theta, a)$.
- 11. **Twierdzenie von Neumanna** Jeżeli mamy grę (H,A,L) ze skończonymi zb. H i A, to gra (H^*,A^*,L) ma punkt siodłowy.

Wykład 2, 11.10.2010

- 12. **Oznaczenia**: H zbiór czystych strategii natury, A zbiór akcji statystyka, X przestrzeń obserwacji (polska), $\{P_{\theta}: \theta \in H\}$ rozkłady prawdopodobieństwa na $X, X \sim P_{\theta}, L: H \times A \to \mathbb{R}$ funkcja straty, $\Pi = \{\pi: \text{rozkład prawdopodobieństwa na } H\}=H^*$, D zbiór reguł decyzyjnych, D^* rodzina rozkładów prawdopodobieństwa na zbiorze wszystich reguł decyzyjnych (niezrandomizowanych).
- 13. Reguła decyzyjna (czysta strategia statystyka, np. estymator, test) d: $x \in X \to d(x) \in A$.
- 14. **Ryzyko:** $R(\theta, d) = E_{\theta}L(\theta, d(X)) = \int_X L(\theta, d(x))P_{\theta}(dx)$.
- 15. Gra (H, D, R) zamiast (H, A, L), gdzie $D = \{d : X \to A \text{ mierzalne, takie}$ że ryzyko $R(\theta, d)$ jest dobrze zdefiniowane $\}$; $R : H \times D \to \mathbb{R}$.
- 16. Ryzyko bayesowskie $f(\pi, d) = \int_H R(\theta, d)\pi(d\theta)$.
- 17. Gra: niezdrandomizowana (H, D, R), gra zrandomizowana (H^*, D^*, R^*) , d^* zrandomizowana reguła decyzyjna.
- 18. $R^*(\pi, d^*) = \int_D r(\pi, d) d^*(dd)$
- 19. $\delta: X \to A^*$ zbiór rozkładów prawdopodobieństwa na $A, x \in X \to \delta(x)$ miara probabilistyczna na zbiorze akcji A. $r(\pi, \delta) = \int_X \int_X \int_A L(\theta, a) \delta(x, da) P_{\theta}(dx) \pi(d\theta).$
- 20. **Tw. Walda-Wolfowitza** Dla każdej reguły zrandomizowanej $d^* \in D^*$ istnieje reguła behawiorystyczna $\delta \in \tilde{D}$ taka że $R^*(\pi, d^* = r(\pi, \delta))$.
- 21. **Zbiór ryzyka dwie hipotezy proste** $\{R(\cdot,d), d \in D\} = \}(\alpha(d), \beta(d)),$ $d \in D\}$, gdzie $\alpha(d) = R(0,d) = \int_{\{x:d(x)=1\}} p_0(x)dx$ błąd I rodzaju, $\beta(d) = R(1,d) = \int_{\{x:d(x)=0\}} p_1(x)dx$ błąd drugiego rodzaju. Albo też: $\alpha(\delta) = \int_X \delta(x)p_0(x)dx$, $\beta(\delta) = \int_X (1-\delta(x))p_1(x)dx$.

Wykład 3, 18.10.2010

- 22. **Oznaczenia c.d.:** d przestrzeń niezrandomizowanych reguł, Δ przestrzeń zrandomizowanych (behawiorystycznych) reguł decyzyjnych $x \in X \to \delta(x)$ miara probabilistyczna na A.
 - $R: H \times \Delta \to \mathbb{R}, R(\theta, \delta) = \int_X \int_A L(\theta, a) \delta(x, da) P_{\theta}(dx).$
- 23. **Def.** $\delta_1 \leq \delta_2 \Leftrightarrow \forall_{\theta} \ R(\theta, \delta_1) \leqslant R(\theta, \delta_2), \ \delta_1 \prec \delta_2 \Leftrightarrow \delta_1 \leq \delta_2 \ i \ \exists_{\theta} \ R(\theta, \delta_1) < R(\theta, \delta_2), \ \delta_1 \sim \delta_2 \Leftrightarrow \delta_1 \leq \delta_2 \ i \ \delta_2 \leq \delta_1.$
- 24. **Def.** $C \subseteq \Delta$, mówimy, że C jest klasą **zupełną**, jeśli $\forall \delta \notin C \exists_{\delta' \in C}$ taka że $\delta' \prec \delta$. C jest klasą **istotnie zupełną**, jeśli $\forall_{\delta} \exists_{\delta' \in C}$ taka że $\delta' \preceq \delta$.
- 25. **Def.** Reguła δ jest **dopuszczalna**, jeśli nie istnieje reguła ściśle lepsza od niej tzn. nie istnieja δ' taka że $\delta' \prec \delta$. Oznaczenie: Adm rodzina reguł dopuszczalnych.
- 26. Lemat jeśli C jest zupełna, to $Adm \subseteq C$.
- 27. Lemat Jeśli C jest istotnie zupełna, $\delta \in Adm \backslash C$, to $\exists \delta' \in C, \ \delta' \sim \delta$.
- 28. **Def. Zbiór ryzyk:** $R = \{R(\delta) : \delta \in \Delta\} \subseteq \mathbb{R}^k$.
- 29. Stw. R jest wypukły, domknięty i ograniczony.
- 30. **Def. Reguła** δ **jest bayesowska** względem rozkładu a priori π na H, jeśli $r(\pi, \delta) = \inf_{\delta} R(\pi, \delta)$.
- 31. **Stw.** Jeśli reguła δ jest bayesowska względem π , $(\pi_i > 0 \ \forall i)$, to $\delta \in Adm$.
- 32. **Stw.** Jeżeli reguła δ jest dopuszcz
lna,
a to jest bayesowska względem pewnego rozkładu a priori
 $\pi.$
- 33. **Def.** Jeżeli $Z \subset \mathbb{R}^k$ jest wypukły, domknięty, ograniczony, to dolny brzeg tego zbioru określamy $\lambda(Z) := \{\alpha : Z \cap Q_\alpha = \{a\}\}.$
- 34. Uwaga $\lambda(Z) \subseteq \delta(Z)$.
- 35. Lemat Każdy domknięty, wypukły, ograniczony zbiór Z ma $\lambda(Z) \neq \emptyset$.

Wykład 4, 25.10.2010

- 36. **Tw. Rao-Blackwella** Mamy zbiór $A \in \mathbb{R}^d$. $L(\theta, a)$ wypukła funkcja a dla każdego $\theta \in \Theta$. Niech T będzie statystyką dosteczną dla rodziny P_{θ} . $d \in D$ (niezrandomizowana decyzja) $\Rightarrow d_0(x) = E(d(X)|T=t)$ jest nie gorsza niż d.
- 37. **Def. Statystyka dostateczna** $T: X \to \mathbb{R}^d$. $\forall A \in B(X) \ P_{\theta}(X \in A | T = t)$ nie zależy od $\theta \Leftrightarrow f_{\theta}(x) = g_{\theta}(T(X))h(X)$ kryterium faktoryzacji, g_{θ} zależy od θ przez statystykę.
- 38. **Twierdzenie** Mamy $A = (-\infty, \infty)$, $\forall \theta \in \Theta \ L(\theta, a)$ jest wypukła. $\exists \theta_0$ taka że $L(\theta_0, a) \to \infty$, $|a| \to \infty$, to klasa reguł niezrandomizowanych jest istotnie zupełna dla (Θ, D, R) .
- 39. Uwaga $L(\theta_0, a) \ge c|a| + b \ \forall a \in A$.
- 40. **Twierdzenie o rozdzielaniu zbiorów wypukłych** Jeśli $U, W \in \mathbb{R}^d$ są wypukłe i $int U \cap int W = \emptyset$, to $\exists \bar{\pi} \in \mathbb{R}^d$, $\pi \neq 0$ takie że $\pi(u) \leqslant c \leqslant \pi(w)$ $\forall u \in U \ \forall w \in W \ \{u : \pi(u) = c\}.$

Wykład 5, 08.11.2010

41. Rodziny wykładnicze $f_{\theta}(x) = exp\{ < \phi(\theta), T(x) > -A(\theta) \} h(x)$, gdzie $\theta \in \Theta \subset \mathbb{R}^k$.

Naturalna parametryzacja rodziny wykładniczej.: $\eta = \phi(\theta), f_{\eta}(x) = exp\{<\eta, T(x)>-A(\eta)\}h(x).$

42. Przykład

Weźmy X_1, \ldots, X_n obserwacji, $x|\theta \sim f_{\theta}(x), f_{\theta}(x) = exp\{<\theta, T(x) - A(\theta)\}h(x)$ - rozkład obserwacji

 $\theta|\mu,\nu,\,\nu\in\mathbb{R}^k,\,\nu\in\mathbb{R}$ - k+1 parametrów, $\Pi(\theta)=\exp\{<\theta,\mu>-\nu A(\theta)\}$ - rozkład a priori

 $f_{\theta}(x_1,\ldots,x_n) \sim exp\{<\theta,\sum T(x_i>-nA(\theta)\}$ - rozkład łączny $\Pi(\theta|x,\mu,\nu)=f_{\theta}(x_1,\ldots,x_n)\Pi(\theta|\mu,\nu)=exp\{<\theta,\mu+\sum T(x_i)>-(n+\nu)A(\theta)\}$ - rozkład a posteriori

Rozdkłady a priori i a posteriori są sprzężone.

43. Funkcje tworzące momenty ${}^mT(x)^{(t)} = Ee^{\langle t,T(x)\rangle}$.

Wykład 6, 15.11.2010

44. Model hierarchiczny (bayesowski). Łańcuchy Markowa: algorytm Metropolisa - Hastingsa, próbnik Gibbsa.

Wykład 7, 22.11.2010

- 45. Gra w kodowanie.
- 46. **Podstawy statystyki bayesowskiej** konstrukcja modelu bayesowskiego: X przestrzeń obserwacji

 $\{P_{\theta}: \theta \in \Theta\}$ - rodzina rozkładów prawdopodobieństwa na X (niewiele tracimy od razu posługując się gęstościami)

 μ - miara na X (mamy σ ciało)

 f_{θ} - gęstość P_{θ} względem μ ; $P_{\theta}(A) = \int_A f_{\theta}(x)\mu(dx)$

 Θ - przestrzeń parametrów π - rozkład prawdopodobieństwa na Θ

 ν - miara na Θ

 π - gęstość π względem ν (a priori).

- 47. **Def.** $f(\theta, x) = (df)\pi(\theta)f_{\theta}(x)$ łączna gęstość na $\Theta \times X$ względem miary $\nu \times \mu$.
- 48. $f(x|\theta) = \frac{f(\theta,x)}{\pi(\theta)} = f_{\theta}(x)$ Wzór Bayesa, rozkład a posteriori $(\pi_x(\theta))$: $f(\theta|x) = \frac{f(x|\theta)\cdot\pi(\theta)}{f(x)}$ - rozkład łączny w liczniku; gdzie $f(x) = \int_{\Theta} f_{\theta}(x)\pi(\theta)\nu(d\theta)$.
- 49. **Model statystyczny** podanie rodziny rozkładów prawdopodobieństwa zależnych od θ . **Model bayesowski** rozkład łączny, dwuwymiarowy.
- 50. $L(\theta, a)$ argumenty: parametr i akcja, ktorą podejmujemy, $L: \Theta \times A \to \mathbb{R}$, gdzie A zbiór akcji. **Reguła zrandomizowana** $\delta: X \to A$.
- 51. Reguła jest π^* -bayesowska, jeśli minimalizuje ryzyko bayesowskie, tzn. jeśli $r(\pi, \delta_{\pi})\inf_{\delta} r(\pi, \delta)$.
- 52. R ryzyko niebayesowskie $R(\theta, \delta) = E_{\theta}L(\theta, \delta(x)) = \int_{X} L(\theta, \delta(x)) f_{\theta}(x) \mu(dx) = E[L(\theta, \delta(x)) | \nu = \theta].$
- 53. Ryzyko bayesowskie $r(\pi, \delta) = EL(\nu, \delta(x)) = \int_{\Theta} R(\theta, \delta)\pi(\theta)\nu(d\theta) = \int_{\Theta} \int_{X} L(\theta, \delta(x))f_{\theta}(x)\mu(dx)\pi(\theta)\nu(d\theta) = (*).$
- 54. Podstawowe tw. statystyki bayesowskiej Jeżeli $\forall x \; \exists a^* = \delta^*(x)$ taka że $E[L(\nu, \delta^*(x)) | X = x] = \inf_{a \in A} E(L(\delta, a) | X = x)$ to δ^* jest regułą bayesowską. $E[L(\nu, a) | X = x] = \int_{\Theta} L(\theta, a) \pi_x(\theta) d\theta$ w zadaniach chcemy minimalizować tą całkę (po skorzystaniu z tw. Fubiniego mamy, że $(*) = r(\pi, \delta) = \int_X \int_{\Theta} L(\theta, \delta(x)) \pi_x(\theta) d\theta f(x) dx$).
- 55. Optymalna regula a priori $a^* = argmin \int_{\Theta} L(\theta, a) \pi(\theta) d\theta$.

Wykład 8, 29.11.2010

- 56. Teorio-decyzyjne podstawy analizy dyskryminacyjnej: obserwujemy obiekt należący do jednej z podpopulacji $1, \ldots, k$ i mamy zdecydować, do której należy na podstawie obserwowanych cech $X = (X_1, \ldots, X_d)$, np. diagnoza medyczna, bankowość, rozpoznawanie symboli.
- 57. Matematycznie:

X - wektor losowy w \mathbb{R}^d X ma w podpopulacji i rozkład f_i (gęstość)

 π_i - prawdopodobieńtwo a priori, że obiekt należy do i-tej podpopulacji $\pi_1 + \pi_k = 1$. Zakładamy, że f_1, \ldots, f_k i π_1, \ldots, π_k - znane.

 $\Theta = \{1, \ldots, k\}, \ \theta = i$. Musimy wybrać, z którego rozkładu prawdopodobieństwa pochodzi obserwacja, z której podpopulacji: $A = \Theta$ lub $A = \Theta \cup \{0\}$ (0 - zawieszanie decyzji)

Funkcja strat - macierz $L(i, j), i \in \Theta, j \in A$.

- 58. **Wzór Bayesa** (dyskretna wersja): $\pi(i|x) = \frac{f_i(x)\pi_i}{f(x)}$, $f(x) = \sum_{i=1}^k f_i(x)\pi_i$.
- 59. Reguła klasyfikacyjna $\delta: X \to A$.
- 60. Ryzyko bayesowskie $r(\pi, \delta) = r(\delta) = EL(I, \delta(X)) = \sum_{i=1}^{k} \pi_i \int_X f_i(x) L(i, \delta(x)) dx.$
- 61. Reguła bayesowska δ^* minimalizująca ryzyko bayesowskie.
- 62. Ryzyko a posteriori $\sum_{i=1}^k \pi(i|x)L(i,j) \to \min j \in A$.
- 63. Wniosek (podstawowa reguła bayesowska) $\delta^*(x) = \arg\min_j \sum_{i=1}^k \pi(i|x) L(i,j).$
- 64. **Klasyczny przykład** (wielowymiarowe rozkłady normalne): lda ($f_i = N(\mu_i, V)$), qda ($f_i = N(\mu_i, V_i)$ =- dwie podstawowe funkcje.
- 65. Obszar decyzyjny $D_j = \{x : \delta^*(x) = j\}.$
- 66. Estymacja nieznanych rozkładów w klasach f_i .

Wykład 9, 06.12.2010

- 67. **Modele liniowe** Predykcja: $X = (X_1, ..., X_n)$, Y zmienna losowa. SSzukamy $Y = h(X) = c_0 + \sum_{i=1}^n c_i X_i$.
- 68. **Def.** $\hat{Y} = h(X)$ jest **najlepszym liniowym predyktorem Y (BLP(Y))**, jeśli:
 - $h: \mathbb{R}^N \to \mathbb{R}$ jest funkcją liniową
 - $E(Y h(X))^2 \le E(Y g(X))^2$, $\forall g : \mathbb{R}^n \to \mathbb{R}$, liniowa
- 69. **Twierdzenie** $\hat{Y} = h(X) = c_0 + \sum_{i=1}^n c_i X_i$ jest BLP(Y), jeśli (c_0, c_1, \dots, c_n) spełniają układ równań:

$$\begin{cases} \sum_{i=1}^{n} Cov(X_i, X_k) = Cov(X_k, Y), & k = 1, \dots, n \\ c_0 = EY - \sum_{i=1}^{n} c_i EX_i. \end{cases}$$

- 70. **Def.** $\hat{Y} = g(X)$ jest **nieobciążonym predyktorem Y**, jeśli $E_m(Y g(X)) = 0 \ \forall m$.
- 71. Def. $\hat{Y} = BLUP(Y)$ best linear unbiased predictor, jeśli:
 - h(X) jest nieobciażony
 - $h: \mathbb{R}^n \to \mathbb{R}$ jest funkcją liniową
 - $E_m(Y h(X))^2 \leq E_m(Y g(X))^2$, $\forall g(X) = \tilde{Y}$ nieobciążony, liniowy.
- 72. Uwaga $Y \to m$, to $BLUP \to BLUE$.
- 73. **Def.** $\hat{m} = g(X)$ nazywamy **nieobciążonym estymatorem m**, jeżeli $E_m g(X) = m.$
- 74. **Def.** $\hat{m} = BLUE(m)$, jeśli:
 - jest liniową funkcją
 - jest nieobciążony
 - $Var_m h(X) \leq Var_m g(X) \ \forall g(X) = \tilde{m}$ nieobciążony, liniowy.
- 75. Od tej pory przyjmujemy założenia:
 - (i) $E_m X_i = E_m Y = m$
 - (ii) $Cov_m(X_i, X_k) = Cov(X_i, X_k)$
 - (iii) $Cov_m(X_i, Y) = Cov(X_i, Y)$.
- 76. **Twierdzenie** Przy warunkach (i)–(iii) $h(X) = c_0 + \sum_{i=1}^n c_i X_i$ jest BLUP(Y), jeżeli:
 - (W1): $c_0 = 0$, $\sum_{i=1}^n c_i = 1$
 - (W2): $\exists \lambda \in \mathbb{R} \sum_{i=1}^{n} c_i Cov(X_i, X_k) Cov(X_k, Y) = \lambda, \ k = 1, \dots, n.$
- 77. **Twierdzenie** Przy warunkach (i) (iii), jeżeli BLP(Y) = h(X, m) i jeżeli uda nam siępoliczyć $\hat{m} = BLUE(m)$, to $BLUP(Y) = h(X, \hat{m})$.

Wykład 10, 13.12.2010 Predykcja/liniowa predykcja

78. Predyktory (od najlepszego do najgorszego):

- **BP** najlepszy predyktor wśród wszystkich funkcji X; $r^*(x) = E(Y|X)$ wartość oczekiwana a posteriori w modelach bayesowskich. Trzeba znać rozkłady prawdopodobieństwa $f_{\theta}(x)$, $\pi(\theta)$, $E(\theta_i|X_{i1}, \ldots, X_{in_i})$.
- **BLP** best linear predictor, najlepszy predyktor wśród liniowych, $r^* = bx^* + a^*$. $b^* = \frac{COV(Y,X)}{VarX}$, $a^* = EY b^*$. Dla $X = \mathbb{R}^n \ r^*(x) = a^* + \sum_{i=1}^n b_i^* x_i$. Wówczas skalarnie:

$$\begin{split} & \sum_{i=1}^n b_i^* Cov(X_i, X_k = Cov(X_k, Y), \ k=1,\ldots,n, \\ & a^* = EY - \sum_{i=1}^n b_i^* EX_i. \\ & BLP(X_{n+1}) = BLP(\mu(\theta)) = z\bar{X} + (1-z)m, \ \text{gdzie} \ \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i, \\ & z = \frac{na^2}{na^2 + s^2} \text{ - współczynnik zaufania.} \\ & \text{Trzeba znać } a^2, \ s^2, \ m. \end{split}$$

- **BLUP** trzeba znać komponenty wariancyjne (i BLUE best linear unbiased estimator)
- EBLUP nic nie trzeba znać, trzeba wierzyć w model.
- 79. **Model bayesowski** podstawowy model statystyki bayesowskiej:

$$(X_1, \ldots, X_n, X_{n+1}) \sim_{i.i.d.} f_{\theta}(\cdot)$$

 $\pi(\cdot)$ - gęstość a priori θ : $f(\theta, x_1, \ldots, x_n, x_{n+1}) = \pi(\theta)\pi_i f_{\theta}(x_i)$.
Dobrze jest operować skrótami: $u(\theta) = E(X_i|\theta) = \int x_i f_{\theta}(x_i) dx_i$.
 $\sigma^2(\theta) = Var(X_i|\theta)$
 $m = E\mu(\theta) = EX_i$
Komponenty wariancyjne, $VarX_i = s^2 + a^2$:
 $a^2 = Var\mu(\theta)$
 $s^2 = E\sigma^2(\theta) = \int \sigma^2(\theta)\pi(\theta)d\theta$.

Wykład 11, 20.12.2010

80. Model Bühlmanna Strauba:

• $\theta_1, X_{11}, \ldots, X_{1n_1}$

. .

$$\theta_p, X_{p1}, \dots, X_{pn_p}$$

gdzie X_{ij} - szkody j-tego klienta w i-tym roku, θ_j - zmienna strukturalna dla j-tego wiersza

- założenie bayesowskie, łączny rozkład: $f((\theta_j),(x_{ji})) = \prod_j \pi(\theta_j \prod_i f_{\theta_i}(x_{ji}))$
- empiryczne podejście bayesowskie: $\mu(\theta_j = E(X_{ji}|\theta_j, \frac{\sigma^2(\theta_j)}{w_{ji}} = Var(X_{ji}|\theta_j), m = EX_{ji} = E\mu(\theta), s^2 = E\sigma^2(\theta_i), a^2 = Var\mu(\theta_i).$
- $BLP(\mu(\theta_j)) = z_j \bar{X}_j + (1 z_j)m$, gdzie $\bar{X}_j = \sum_{i=1}^{n_j} \frac{w_{ji}}{w_j} X_{ji}$, $z_j = \frac{w_j \cdot a^2}{w_j \cdot a^2 + s^2}$ współczynnik zaufania $BLUE(m) = \sum_j \frac{z_j}{z} \bar{X}_j$ (trzeba znać s^2 i a^2) $BLUP(\mu(\theta_j)) = z_j \bar{X}_j + (1 z_j \hat{m} \text{ (jw.)}$ $EBLUP(\mu(\theta_j)) = \hat{z}_j \bar{X}_j + (1 \hat{z}_j) \tilde{m}$, gdzie $z_j = \frac{w_j \cdot \hat{a}^2}{w_i \cdot \hat{a}^2 + \hat{s}^2}$, $\tilde{m} = \sum_j \frac{\hat{z}_j}{\hat{z}} \bar{X}_j$

81. Estymacja komponentów wariancyjnych

 $(\tilde{m} - m z \text{ dwoma daszkami}).$

- $SSW = \sum_{j} \sum_{i} w_{ji} (X_{ji} \bar{X}_{j})^2$, $E(SSW) = (n. p)s^2$, nieobciążony estymator s^2 : $\hat{s}^2 = \frac{1}{n.-p} SSW$
- $SSB = \sum_{j} w_{j} \cdot (\bar{X}_{j} \bar{X})^{2}$, gdzie $\bar{X} = \sum_{j} \frac{w_{j}}{w_{..}} \bar{X}_{j} = \sum_{j} \sum_{i} \frac{w_{ji}}{w_{..}} X_{ji}$, $\hat{a}^{2} = \frac{w_{w..}}{w_{..} \sum_{j} w_{j}^{2}} (SSB \frac{p-1}{n.-p} SSW)$
- metoda oparta na pseudoestymatorach (REML) $\tilde{a}^2 = \frac{1}{p-1} \sum_{j=1}^p z_j (\bar{X}_j \hat{m})^2$, $E\tilde{a}^2 = a^2$.

82. Modele liniowe mieszane:

 $X_{ji} = m + (\mu(\theta_j) - m) + (X_{ji} - \mu(\theta_j)) = m + u_j + \varepsilon_{ji}$, gdzie:

 $Eu_j=0, E\varepsilon_{ji}=0, u$ z ε nieskorelowane i między sobą też, $Varu_j=a^2, Var\varepsilon_{ji}=\frac{s^2}{w_j}$.

Model rozkłada się na addytywne efekty: m (odpowiada za średnią ogólną - liczba); u_j (odpowiada za odchyłki wierszowe - zmienna losowa); ε_{ji} (odpowiada za odchyłki pojedynczej obserwacji z wiersza - błąd losowy)

83. Model jednokierunkowej klasyfikacji z efektami losowymi, mieszany model liniowy $y = X\beta + Zu + \varepsilon$.

Po skalaryzacji: $l^T \beta + k^T u = \sum_{i=1}^p l_i \beta_i + \sum_{j=1}^q k_j u_j = \mu$ Szukamy $BLP(\mu)$, $BLUP(\mu)$, $BLUE(l^T \beta)$ a potem $BLP(\mu)$ (lemat z ćwiczeń).

Wykład 12, 03.01.2011

- 84. Bayesowska rekonstrukcja obrazów (image restoration) (S, E), gdzie S zbiór wierzchołków (piksli), E zbiór krawędzi, $s \in S$, $t \in S$, $s \sim t \equiv \{s,t\} \in E$, $\delta t = \{s \sim t\}$. A alfabet kolorów, $x:S \to A$, x konfiguracja (obraz), $x = (x_s, s \in S)$, $x \in X = A^s$.
- 85. Rozkład Gibbsa $\pi(x) = \frac{1}{Z_{\beta}} e^{-\beta H(x)}$, H(x) energia, $\beta = 1/T$, T temperatura, $Z_{\beta} = \sum_{x \in X} e^{-\beta H(x)}$.
- 86. **Idea**: Wybieramy π rozkład Gibbsa, jako rozkład a priori na X. Obraz "prawdziwy", "idealny": $x \in X$; "zaszumiony", "zniekształcony": $y \in Y = B^S$.
- 87. **Def. Rozkład Gibbsa** z interakcjami między najbliższymi sąsiadami: $H(x) = \sum_{s \sim t} J_{st}(x_s, x_t) + \sum_s h_s(x_s)$. $\pi(x|y)\alpha f(y|x)\pi(x)$ rozkład a posteriori.
- 88. Próbnik Gibbsa $H(x) = \sum_{s \sim t} J(x_s, x_t) + \sum_s h_s(x_s), \pi(x_s | x_{-s}) = \pi(x_s | x_{\delta_s}).$

Wykład 13, 10.01.2011

- 89. Bayesowski model rekonstrukcji obrazów:
 - wiarogodność: $f(y|x) = \pi_{s \in S} f(y_s|x_s)$
 - rozkład a priori (rozkład Gibbsa): $\pi(x) = \frac{1}{Z_{\beta}} \exp[-\beta \sum_{s \sim t} J(x_s, x_t)]$
 - rozkład a posteriori: $\pi(X|y) = \frac{1}{Z_{\beta}^p} exp[-\beta \sum_{s \sim t} J(x_s, x_t) + \sum_s h(x_s|y_s)]$ $(h(x_s|y_s) = h_s(x_s)), \ \pi(x|y) = \pi(x) \cdot f(y|x), \ h(x_s|y_s) = log f(y_s|x_s)$ (było: $\sum_s h_s(x_s) =: \sum_s ln f(y_s|x_s) = log f(y|x)$).
- 90. Cel obliczanie rozkładu a posteriori: $\pi(x_s = a|x_{-s}, y) = \pi(x_s = a|x_{-s}) = \frac{1}{Z_{\beta(s)}} exp[-\beta \sum_{t:t\sim s} J(a, x_t) + h_s(a)] = \pi(x_s = a|x_{\delta s}).$
- 91. **Próbnik Gibbsa** podstawowe narzędzie w statystyce bayesowskiej. Należy do rodziny MCMC (Markov Chain Monte Carlo).
- 92. MCMC podstawy teoretyczne

X - dowolny (skończony dla uproszczenia), π - rozkłąd "docelowy" (a posteriori, $\pi(x) = P(X = x), x \in X$)

- Generujemy łańcuch Markowa $X_0, X_1, \ldots, X_n, \ldots$ na X taki że $P(X_n = x) \to_{n \to \infty} \pi(x), X_n \to_{n \to \infty} \pi.$
- Własność Markowa $P(X_{n+1}=y|X_n=x,X_{n-1},\ldots,X_0=x_0)=P(X_{n+1}=y|X_n=x)=P(x,y)$. W klasycznym MCMC posługujemy się jednorodnymi łańcuchami Markowa. P(x,y) prawdopodobieństwo przejścia, X przestrzeń konfiguracji.
- **Def.** π jest **rozkładem stacjonarnym** dla P, jeśli $\pi^T P = \pi^T$, tzn. $\pi(y) = \sum_{x \in X} \pi(x) P(x, y) \ (X_n \sim \pi \Rightarrow \pi, \ P(X_{n+1} = y) = \sum_{x \in X} P(X_n = x) \cdot P(X_{n+1} = y | X_n = x)).$
- Uwaga Jeśli $X_0 \sim \pi$ to $X_0, X_1, \ldots, X_n, \ldots$ jest procesem stacjonarnym, w szczególności $X_n \sim \pi$.
- Twierdzenie (ergodyczne) Jeżeli X jest skończona, π jest rozkłądem stacjonarnym, łańcuch jest nieprzywiedlny i nieokresowy to $P(X_n = x) \rightarrow_{n\to\infty} \pi(x) \ \forall x$ dla dowolnego rozkładu początkowego $X_0 \sim \pi_0$.
- Twierdzenie odwrotne Jeśli $P(X_n = x) \to_{n \to \infty} \pi_{\infty}(x) \ \forall x$, to $\pi^T P = \pi_{\infty}^T$ (rozkład stacjonarny).
- P jest **nieprzywiedlny**, jeśli $\forall x, y \in X \ \exists n \ P^n(x, y) > 0 \ (P^n(x, y) = P(X_n = y | X_0 = x)).$
- Łańcuch nieprzywiedlny jest **nieokresowy**, jeśli $\forall x, y \in X \ \exists n_0 \forall n \geqslant n_0$ $P^n(x, y) > 0$ (można dojść po dowolnej liczbie kroków, byle dostatecznie dużej).

- Twierdzenie MPWL $g: X \to \mathbb{R}$ $\frac{1}{n} \sum_{i=0}^{n-1} g(X_i) \to_{n\to\infty} E_{\pi}g = \sum_{x\in X} g(x)\pi(x)$ p.n. dla dowolnego rozkładu początkowego.
- Twierdzenie CTG $\sqrt{n}(\frac{1}{n}\sum_{i=0}^{n-1}g(x_i)-E_{\pi}g)\to_d N(0,\sigma_{as}^2(g)).$ $\sigma_{as}^2(g)=Var_{\pi}g(X)+2\sum_{n=1}^{\infty}Cov_{\pi}(g(X_0,g(X_n)).$
- **Def.** P jest π -odwracalna, jeśli $\pi(x)P(x,y) = \pi(y)P(y,x)$.
- Łańcuch stacjonarny jest **odwracalny**, jeśli: $P(X_n = x, X_{n+1} = y) = P(X_n = y, X_{n+1} = x)$ $(X_0, X_1, \dots, X_n) = {}^d (X_n, X_{n-1}, \dots, X_0).$
- Stwierdzenie Jeśli P jest π -odwracalna to $\pi^T P = \pi^T$.

93. Algorytm Metropolisa-Hastingsa

- Mamy prawdopodobieństwa przejścia Q = (Q(x, y)) takie, że umiemy generować łańcuch Markowa o przejściach Q. Zakładamy symetrię Q(x, y) = Q(y, x). Rozkład U(X) (jednostajny) jest stacjonarny.
- Krok algorytmu $(X_n = x)$:
 - 1) Gen $Y \sim Q(x,\cdot)$ - generowanie "propozycji"
 - 2) Obliczamy $a(x, Y) = \frac{\pi(Y)}{\pi(x)} \wedge 1$
 - 3) z prawdopodbieństwem a(x, Y) bierzemy $X_{n+1} := Y$ (akceptacja), 1 a(x, Y) bierzemy $X_{n+1} := x$ (odrzucenie).
- Modyfikacja Hastingsa: Q nie musi być symetryczna: $a(x,Y)=\frac{\pi(Y)Q(Y,X)}{\pi(X)Q(x,Y)}\wedge 1.$
- Łańcuch Metropolisa-Hastingsa ma prawdopodobieństwa przejścia $P(x,y) = Q(x,y)a(x,y) \ (y \neq x).$
- Twierdzenie P jest π -odwracalny.
- Wniosek Jeśli Q jest nieprzywiedlna i π nie jest jednostajny to łańcuch Metropolisa-Hastingsa zmierza do π : $P(X_n = x) \to_{n \to \infty} \pi(x)$.
- Uwaga Jeśli P(x,x) > 0 (po jednym kroku) to łańcuch jest nieokresowy.
- Uwaga Jeżeli $\pi_{\beta}(x) = \frac{1}{Z_{\beta}} e^{-\beta H(x)}$ i $\beta \to \infty$, to $\pi_{\beta}(x) = \frac{1}{|X_{min}|}$, gdy $H(x) = H_{min}$ lub 0 gdy $H(x) > H_{min}$. $H_{min} = \min_{x \in X} H(x)$, $X_{min} = \{x : H(x) = H_{min}\}$.
- Symulowane wyżarzanie (simulated annealing, $Met + \beta \rightarrow \infty$).

Wykład 14, 17.01.2011

94. Bayesowski model rekonstrukcji obrazów:

$$x \in X = A^S$$
, $x = (x_s)_{s \in S}$, $\pi(x) = \frac{1}{Z}e^{-H(x)}$
 $H(x) = \beta \sum_{s \sim t} J(x_s, x_t) + \sum_s h(x_s|y_s)$
 $h(x_s|y_s) = log f(y_s|x_s)$, $J(x_s, x_t) = \psi(|x_s - x_t|)$.

95. Szum Piossonowski:

- $x_s \in \mathbb{R}_+ = (0, \infty), X = \mathbb{R}_+^s, x_s$ intensywności rozkładu Poissona
- $y_s|x_s \sim Poiss(x_s)$, $f(y_s|x_s) = e^{-x_s} \frac{x_s^{y_s}}{y_s!}$, $y_s \in \{0, 1, ...\}$, $h(x_s|y_s) = -x_s + y_s log x_s$
- $x_s = \lambda(x_s), \lambda = (\lambda(1), \dots, \lambda(k))$ paleta intensywności, $z_s \in \{1, \dots, k\}$ etykiety intensywności
- wprowadza się dodatkowe zmienne, które ułatwiają obliczenia; zmienne pomocnicze (z, λ) , $z = \varepsilon^s$ etykietki umieszczenie etykietek w węzłach; $\lambda = \mathbb{R}_+^\varepsilon$ umieszczenie intensywności w etykietkach, $x_s = \lambda(z_s)$
- energia Pottsa=energia a priori (rozkład a priori na z)+energia a posteriori; rozkład a priori na λ jest rozkładem jednostajnym (na prostej) $H(z,\lambda) = \beta \sum_{st} 1(z_s \neq z_t) + \sum_s [-\lambda(z_s) + y_s \log \lambda(z_s)]$
- Próbnik Gibbsa $z \sim \pi(z|\lambda) \ (\pi(z_s|z_{-s},\lambda)), \ \lambda \sim \pi(\lambda|z), \ \lambda \ \text{ustalone}.$
- 96. **PET** positron emission tomography.