В. И. Тарханов, Р. М. Садриев

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет

В. И. Тарханов, Р. М. Садриев

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

Учебное пособие

для студентов, обучающихся по специальностям: 15100165, 15020165, 19020165, 19060165

УДК 621.882(075) ББК 34.441я7 Т22

Рецензенты:

Кафедра № 8 Ульяновского высшего военно-технического училища (военного института) МО РФ (зав. кафедрой кандидат технических наук, доцент А. В. Юдин);

доктор технических наук, профессор В. Г. Артемьев

Утверждено редакционно-издательским советом университета в качестве учебного пособия

Т22 Тарханов, В. И.

Резьбовые соединения: Учебное пособие / В. И. Тарханов, Р. М. Садриев. – Ульяновск : УлГТУ, 2009. – 60 с.

Излагаются методы расчета и основы конструирования резьбовых соединений, которые отражают новые международные и национальные стандарты РФ.

Пособие предназначено для студентов, изучающих детали машин и основы конструирования (специальности 15100165 «Технология машиностроения», 15020165 «Машины и технология обработки металлов давлением», 19020165 «Автомобиле- и тракторостроение», 19060165 «Автомобили и автомобильное хозяйство») и преподавателей, ведущих указанную дисциплину.

Работа подготовлена на кафедре «Основы проектирования машин» УлГТУ.

УДК 621.882(075) ББК 34.441я7

[©] Тарханов В. И., Садриев Р. М., 2009

[©] Оформление. УлГТУ, 2009

ВВЕДЕНИЕ

Приступая к выполнению задания, необходимо изучить тему «Резьбовые соединения» по учебнику [1, с. 90–122], а также повторить тему «Резьбы, резьбовые изделия и соединения» по учебному пособию [8] и справочнику [3].

Затем следует ознакомиться с заданной конструкцией резьбового соединения и исходными данными, внимательно просмотреть материал по резьбовым соединениям в учебниках [1, 2] и в рекомендуемой к задаче дополнительной литературе. По этим данным легко выяснить особенности конструирования и расчета заданного резьбового соединения.

Расчётно-графическую работу «Расчёт и основы конструирования резьбовых соединений» следует выполнить на сброшюрованных листах белой бумаги формата A4 (297х210 мм). На титульном листе должны быть написаны чертёжным шрифтом или напечатаны на принтере: наименование расчётно-графической работы, номер задачи и варианта, шифр учебной группы, фамилия и инициалы студента и консультанта, дата выполнения работы.

Расчеты и пояснения следует выполнить разборчивым почерком, чернилами или пастой. Высота букв и цифр должна быть не менее 3,5 мм, а высота цифровых и буквенных индексов — не менее 2,5 мм. Пояснения к расчетам необходимо изложить кратко, текст должен быть четким и не допускать различных толкований. Сокращение слов в тексте не допускается, за исключением общепринятых. При выполнении расчета сначала записывают формулу в буквенных обозначениях. Далее вместо символов подставляют в формулу их численные значения в последовательности, соответствующей символической записи формулы, строго соблюдая правила размерности. Не допускается при вычислении сокращать зачеркиванием подставленные в формулу численные значения. Затем записывают результаты вычислений с указанием размерности. Окончательные размеры необходимо принять по стандартам на соответствующие крепежные изделия [табл. П. 1 – П. 14].

Эскиз конструкции и расчетную схему резьбового соединения следует выполнить карандашом с применением чертежных инструментов и расположить по тексту расчета. Если по условию расчета не требуется конструктивного изображения крепежных деталей, то допускается их упрощенное изображение [8]. На эскизе конструкции и на расчетной схеме размеры и силы должны быть обозначены теми же буквами, которые применяются в расчетных формулах.

После расчета необходимо начертить в масштабе на отдельном листе групповое резьбовое соединение (если разрабатывалась его конструкция) с упрощенным изображением крепежных деталей. Рядом следует начертить в масштабе 1:1 одиночное соединение с изображением крепежных деталей, написать их условные обозначения и нанести функциональные размеры расположения крепежных деталей. Конструктивные решения и справочные данные должны сопровождаться ссылками на литературу. Список использованной литературы необходимо привести в конце работы.

1. ПРОЧНОСТЬ РЕЗЬБОВЫХ СОЕДИНЕНИЙ

1.1 Основные крепежные резьбы

В крепежных деталях (болтах, винтах, шпильках и гайках) применяется однозаходная треугольная метрическая резьба по ГОСТ 9150–2002 (рис. 1.1).

Рис. 1.1. Профиль метрической резьбы общего назначения

Основные геометрические параметры метрической резьбы:

d — наружный диаметр наружной резьбы;

 $d_{\it I}$ — внутренний диаметр наружной резьбы (по точке перехода боковой стороны к впадине);

 d_2 – средний диаметр наружной резьбы (ширина впадины равна толщине выступа);

 d_3 – внутренний диаметр по дну впадины наружной резьбы;

 D, D_1 и D_3 – соответственно наружный, внутренний и средний диаметры внутренней резьбы;

 α – угол профиля: α = 60°;

P – шаг резьбы;

H – высота исходного треугольника: $H = 0.5\sqrt{3} P$;

 H_1 – рабочая высота профиля: $H_1 = 5H/8$;

R — радиус впадины наружной резьбы: R = H/6 = 0.144P.

Стандартами предусмотрено производство крепежных деталей с крупным и мелким шагом резьбы (табл. 1.1). В качестве основной принята резьба с крупным шагом. Резьба с мелким шагом применяется при необходимости облегчения затяжки и стопорения соединения.

	Таблица 1.1
Диаметры и шаги метрической резьбы крепежных изде	лий
(по ГОСТ 8724–2002), мм	

диаметр		езьбы о	зьбы Диаметр резьбы		Шаг резьбы <i>Р</i>		
резьбы <i>d</i>	крупный	мелкий	d	крупный	мелкий		
3	0,5	_	(18)	2,5	1,5		
(3,5)	0,6		20	2,5	1,5		
4	0,7	ı	(22)	2,5	1,5		
5	0,8		24	3	2		
6	1	ı	(27)	3	2		
8	1,25	1	30	3,5	2		
10	1,5	1,25	36	4	2		
12	1,75	1.25	(39)	4	2		
(14)	2	1,5	42	4,5	2		
16	2	1,5	48	5	2		

Примечание: Диаметры резьб, заключенные в скобки, применять не рекомендуется.

Согласно стандартам площадь поперечного сечения резьбового стержня (рис. 1.2) болтов винтов и шпилек выражают через площадь круга с расчетным диаметром

$$d_p = 0.5(d_2 + d_3),$$

где d_2 — средний диаметр; d_3 — внутренний диаметр по дну впадины.

Однако, расчетный диаметр резьбового стержня легче вычислить по размерам наружного диаметра d и шага P , т. е.

$$d_p = d - 0.938P$$
.

Тогда расчетная площадь поперечного сечения резьбового стержня равна

$$A_p = \frac{\pi d_p^2}{\Delta}$$

Рис. 1.2. Площадь поперечного сечения резьбового стерня

В условиях, где требуется повышенная усталостная прочность резьбовых соединений, необходимо применять метрическую резьбу с профилем MJ по ГОСТ 30892–2002. Профиль резьбы MJ является модификацией профиля метрической резьбы общего назначения (см. рис. 1.1) и отличается от него увеличенным диаметром внутренней резьбы D_I и увеличенным до R=0.18P радиусом закругления впадины наружной резьбы. В этой связи увеличились по сравнению с резьбой общего назначения диаметр по дну впадины d_3 и внутренний диаметр наружной резьбы d_I .

Для крепежных деталей с диаметрами d от 1,6 до 7 мм рекомендуются резьбы с крупным шагом, а для деталей с диаметрами от 8 до 39 мм — резьбы с мелким шагом (табл. 1.2).

Таблица 1.2 Диаметры и шаги метрической резьбы с профилем MJ для крепежных изделий (по ГОСТ 30892–2002), мм

Диаметр	Шаг	Диаметр	Шаг	Диаметр	Шаг
резьбы	резьбы	резьбы	резьбы	резьбы	резьбы
d	P	d	P	d	P
1,6	0,35	7	1	22	1,5
2	0,4	8	1	24	2
2,5	0,45	10	1,25	27	2
3	0,5	12	1,25	30	2
3,5	0,6	14	1,5	33	2
4	0,7	16	1,5	36	2
5	0,8	18	1,5	39	2
6	1	20	1,5		

1.2. Механические свойства резьбовых деталей

По показателям статической прочности резьбовые детали разделяют на классы прочности (табл. 1.3 и 1.4).

Обозначение класса прочности болта, винта и шпильки включает два числа, разделенные точкой. Первое число, умноженное на 100, представляет собой номинальное значение предела прочности на растяжение σ_B в МПа. Произведение этих двух чисел, умноженное на 10, равняется номинальному значению предела текучести на растяжение σ_T (или $\sigma_{0.2}$) в МПа.

Минимальный предел текучести $\sigma_{T min}$ и минимальный предел прочности на растяжение $\sigma_{B min}$ равны соответствующим номинальным значениям или превышают их. Например, для болта класса прочности 5.8:

$$\begin{split} \sigma_{B\,min} &= 520M\Pi a > \sigma_B = 5\cdot 100 = 500M\Pi a; \\ \sigma_{T\,min} &= 420M\Pi a > \sigma_T = 5\cdot 8\cdot 10 = 400M\Pi a. \end{split}$$

Таблица 1.3 Механические характеристики резьбовых деталей с крупной резьбой

	по ГОСТ Р	гы и шпилькі 52627–2006 8-1 : 1999)		п	Гайл 30 ГОСТ Р 5 (ИСО 898-	2628–2006	
16	Механические свойства					резьбы мм	
Класс прочности	$\sigma_{\scriptscriptstyle B},$ МПа	σ_T , МПа не менее	E, %	Класс прочности	наим.	Наиб.	Тип
3.6	330	190	30	4	1.0	40	1
4.6	400	240	25	4 5	18 3	48 48	1 1
4.8	420	340	16		3	46	
5.6	500	300	22	5			
5.8	520	420	12] 3	3	48	1
6.8	600	480	9	6			
8.8	800	640	14	8	3	48	1
0.0	800	040	14	8	18	36	2
9.8	900	720	12	9	3	16	2
10.9	1040	940	10	10	3	48	1
12.9	1220	1100	9	12	3	16	1
12.9	1220	1100	9	12	3	48	2

Примечания: 1. Номинальный размер высоты гайки типа 1 $m \ge 0.8~d$, высоты гайки типа 2 $m \ge 0.93~d$.

Класс прочности гайки обозначают числом, указывающим наибольший класс прочности болта, с которым она может свинчиваться в соединении.

Разрушение резьбового соединения при перегрузке может произойти либо вследствие разрыва стержня болта, либо из-за срыва резьбы гайки или болта. Разрыв стержня болта случается, как правило, внезапно и сопровождается резким звуком — разрушенный болт можно легко заметить и своевременно заменить. Срыв резьбы обычно совершается постепенно и его трудно обнаружить, значит существует опасность, что в соединении находится болт или гайка с поврежденной резьбой. К тому же, соединение при срыве резьбы часто становится неразъемным, так как гайку невозможно отвернуть ключом. Следовательно, резьбовое соединение целесообразно конструировать так, чтобы при его перегрузке разрушение всегда происходило по стержню болта.

Однако из-за наличия многих переменных факторов, влияющих на стойкость резьбы к срыву (прочность материала болта и гайки, зазоры в резьбе, размеры гайки под ключ и т. д.), потребуется непомерно большая высота m гайки, чтобы гарантировать разрушение болтов именно по стержню во всех случаях перегрузки резьбовых соединений.

^{2.} В резьбовых соединениях допускается заменять гайки низших классов прочности на гайки более высоких классов прочности.

Таблица 1.4 Механические характеристики резьбовых деталей с мелкой резьбой

	по ГОСТ Р	ты и шпилькі 52627–2006 8-1 : 1999)		п	Гай 10 ГОСТ Р 5 (ИСО 898-	2628–2006		
	Mexa	нические св	ойства			р резьбы мм		
Класс прочности	$\sigma_{\scriptscriptstyle B},$ МПа	$\sigma_{\scriptscriptstyle T}$, МПа	£, %	Класс прочности	наим.	наиб.	Тип	
		не менее						
3.6	330	190	30	<u> </u>				
4.6	400	240	25	_				
4.8	420	340	16	5	5	8	48	1
5.6	500	300	22				0	10
5.8	520	420	12					
6.8	600	480	9	6				
0.0	000	(40	1.4	0	8	48	1	
8.8	800	640	14	8	8	16	2	
9.8	900	720	12	10	8	16	1	
10.0	1040	0.40	1.0	10	8	16	1	
10.9	1040	940	10	10	8	48	2	
12.9	1220	1100	9	12	8	16	2	

Примечания: 1. Номинальный размер высоты гайки типа 1 $m \ge 0.8~d$, высоты гайки типа 2 $m \ge 0.93~d$.

Анализ прочности резьбовых изделий различных размеров на сопротивление срыву резьбы показал, что следует отказаться от твердо установленных относительных высот гаек, например, m/d=0.8. Имеются два типа таких гаек. Шестигранные гайки типа 1 [табл. П. 8] применяются для классов прочности 4, 5, 6, 8, 10 и 12 (до М 16). Высокие гайки типа 2 (ИСО 4033 : 1999) примерно на 10% выше, чем обычные гайки типа 1; они предназначены для классов прочности 9 и 12 (свыше М 16). Предусмотрены также альтернативные варианты.

1.3. Маркировка классов прочности резьбовых деталей

Данная маркировка является обязательной для деталей с диаметром резьбы $d \ge 5\,$ мм. При маркировке используются символы обозначения классов прочности резьбовых деталей, при этом точку в маркировочном символе допускается опускать. Для болтов, винтов и гаек небольших размеров предусмотрены символы маркировки по системе циферблата (табл. 1.5 и 1.6), а для шпилек допускается применять символы, приведенные в табл. 1.7.

^{2.} В резьбовых соединениях допускается заменять гайки низших классов прочности на гайки более высоких классов прочности.

Таблица 1.5 Система циферблата для маркировки болтов и винтов

Класс прочности	3.6	4.6	4.8	5.6	5.8
Символ маркировки					

Продолжение табл. 1.5

Класс прочности	6.8	8.8	9.8	10.9	12.9
Символ маркировки			•		

Таблица 1.6

Система циферблата для маркировки гаек

Класс прочности	4	5	6	8
Символ маркировки				

Продолжение табл.1.6

			продолжение таол.т.о
Класс прочности	9	10	12
Символ маркировки			

Таблица 1.7 Альтернативные символы для маркировки шпилек

Класс прочности	5.6	8.8	9.8	10.9	12.9
Символ маркировки	_	0	+		Δ

Итак, внедрение классов прочности болтов, винтов, шпилек и гаек совместно с требованиями к маркировке резьбовых деталей обеспечивает четкую классификацию несущей способности сборочного соединения болт—гайка в условиях статического нагружения.

1.4. Затяжка и стопорение резьбовых деталей

Большое значение для прочности резьбовых деталей имеет установление и контроль силы начальной затяжки. Применяют следующие основные способы контролируемой затяжки резьбовых соединений:

- 1) шкальными моментными ключами (рис. 1.3a), в которых информацию о крутящем моменте получают по деформации упругого элемента, определяемой по шкале;
- 2) ключами предельного момента (рис. 1.3б), которые регулируются на воспроизведение установленного значения крутящего момента;

Рис. 1.3. Ключи моментные: a — шкальный; б — предельный

3) измерением угла поворота гайки относительно болта (шпильки).

Наиболее точно сила затяжки контролируется с помощью измерения удлинения болта.

Многообразие видов нагружения и условий эксплуатации резьбовых соединений привело к необходимости в различных механических устройствах, препятствующих самоотвинчиванию болтов, винтов и гаек.

Стопорение дополнительным трением выполняется силовым замыканием на резьбу (контргайки и др.), а также упругими элементами, которые повышают сцепление на опорной поверхности гайки или головки винта (шайбы пружинные, шайбы стопорные с наружными зубьями и др.).

Наиболее старым средством стопорения резьбовых соединений является применение контргайки, т. е. второй гайки. При установке одной гайки (рис. 1.4a) витки резьбы гайки соприкасаются с нижними сторонами профиля резьбы болта. В результате установки и достаточной затяжки контргайки (рис. 1.4δ) контакт витков в основной гайке происходит по верхним сторонам профиля. Если момент затяжки контргайки больше момента затяжки основной гайки, то дополнительное трение обеспечивается. Взаимная затяжка гаек обусловливает сохранение сил трения при разгрузке болта от осевой силы.

Рис. 1.4. Распределение зазоров в резьбовых соединениях: a — гайкой; δ — гайкой с контргайкой

Широкое применение получили пружинные шайбы (рис. 1.5a), которые повышают сцепление между гайкой, шайбой и деталью благодаря врезанию острых срезов шайбы в торец гайки и плоскость детали. Недостатком пружинных шайб является некоторая несоосность силы, растягивающей болт. Этого недостатка лишены осесимметричные шайбы (рис. 1.5a) с внутренними и наружными зубьями [табл. Π . Π . Π . Π . Π . Π . Π .

Стопорение дополнительным трением допускает фиксацию резьбовой детали в любом угловом положении. Следовательно, основным достоинством такого стопорения является возможность выполнения бесступенчатой затяжки резьбовых соединений.

Рис. 1.5. Стопорение шайбами: a – пружинной; δ – с внутренними зубьями

Стопорные шайбы с запирающими элементами, которые отгибают при сборке [табл. П. 13 и П. 14] обеспечивают только ступенчатое регулирование силы затяжки (рис. 1.6 и 1.7). Притом, вторичное использование стопорной детали с запирающим элементов, который нужно отгибать при разборке соединения, как правило, не допускается.

Стопорение местным пластическим деформированием (кернением или расклепыванием конца болта, выступающего из гайки) применяется лишь тогда, когда резьбовое соединение не требуется разбирать в эксплуатации.

Рис. 1.6. Способы установки стопорных шайб с лапкой

Рис. 1.7. Способы установки стопорных шайб с носком

В существующих методах сборки резьбовых соединений требуются стопорные детали большом механические В количестве широком ассортименте. К тому же, механические стопорные устройства, как правило, не уплотнения должного И защиты от коррозии сопрягаемых поверхностей резьбовых деталей. Проблему онжом разрешить применения анаэроботвердеющих материалов, в частности, анаэробных клеев.

Анаэробные клеи представляют собой однокомпонентные составы, отвердение которых происходит в отсутствие кислорода. Анаэробные клеи характеризуются стабильностью при хранении в небольших емкостях из полиэтилена, пропускающего воздух.

Анаэробные составы рационально применять для склеивания деталей из стали, чугуна и латуни. При склеивании в результате инициирования химического процесса полимеризации за счет ионов соединяемых металлов образуются трехмерные структуры полимера. На неактивную металлическую поверхность, которая не вызывает начала процесса полимеризации, необходимо предварительно нанести специальный активатор.

Анаэробные клеи рекомендуется использовать при сборке резьбовых соединений для обеспечения их стопорения, герметичности и защиты от коррозии. В процессе сборки резьбового соединения анаэробный клей нужно выдавить из пластикового тюбика непосредственно на резьбу болта или гайки. Во время завинчивания клей заполняет все полости в резьбовом соединении, и после завинчивания в результате отвердения анаэробного состава получается твердая пластмасса. По необходимости резьбовое соединение можно разобрать обычным ручным инструментом.

2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

2.1. Резьбовые соединения с болтами, устанавливаемыми в отверстиях с зазором

Расчет резьбового соединения в случае установки болтов с зазором включает в себя две связанные между собой задачи: определение силы начальной затяжки болтов и оценку их прочности.

На первом этапе расчета соединения определяют потребную силу начальной затяжки болтов. В резьбовом соединении, нагруженном нормальной к плоскости стыка силой и опрокидывающими моментами, потребную силу затяжки болтов определяют по одному из условий:

предотвращение раскрытия стыка с учетом коэффициента основной нагрузки и с запасом по плотности v [2, c. 89];

обеспечение жесткости соединения путем ограничения наименьшего напряжения в стыке σ_{min} [1, c.116];

сохранение герметичности соединения цилиндр-крышка с уплотнительной прокладкой [1, с.117].

Коэффициент основной нагрузки в упрощенном расчете обычно принимают в пределах 0,2–0,25 в соединениях стальных деталей [2, с. 100], 0,35–0,4 в соединениях деталей из серого чугуна и алюминиевого сплава [2, с. 88]. В уточненном расчете (по указанию в задании) коэффициент основной нагрузки определяют по податливости болта и соединяемых деталей [1, с. 114, 115; 2, с. 89, 90].

В резьбовом соединении, нагруженном силами и моментом в плоскости стыка, потребную силу затяжки болтов определяют из условия несдвигаемости (которое зависит от жёсткости соединяемых деталей) с запасом сцепления **S** [1, c.112].

Если внешние нагрузки одновременно раскрывают стык и сдвигают соединяемые детали, то потребную силу затяжки болтов определяют отдельно по каждому условию и принимают её наибольшее значение.

Температурные деформации деталей, вызываемые изменением температуры окружающей среды (см. задание), могут привести к изменению силы начальной затяжки болтов и напряжений в стыке, что следует учитывать при расчёте [5, с. 19, 202].

На втором этапе оценивают прочность резьбового соединения. Для этого записывают условие прочности наиболее нагруженного болта соединения. В проектном расчёте из условия прочности получают выражение для определения одного из неизвестных значений: требуемой площади опасного сечения болта, числа болтов или допускаемого напряжения растяжения в болте. В случае двух и более неизвестных в условии прочности болта предварительно задаются недостающими значениями, а затем оценивают правильность их выбора. Если

условие прочности имеет сложное выражение, то искомое значение проще определить подбором.

Прочность болта, винта и шпильки при постоянной нагрузке обусловливается площадью поперечного сечения резьбы и классом прочности. Отметим, что согласно стандартам площадь поперечного сечения резьбы болтов определяют как площадь круга с расчётным диаметром

$$d_p = 0.5(d_2 + d_3) \approx d - 0.938P$$
,

где d — наружный диаметр резьбы; d_2 — средний диаметр резьбы; d_3 — внутренний диаметр по дну впадин резьбы болта; P — шаг резьбы.

Допускаемые напряжения растяжения в резьбе болтов при постоянных нагрузках

$$\left[\sigma_{p}\right] = \frac{\sigma_{T}}{S_{T}},$$

где σ_T – предел текучести материала, находят из табл. 1.3 и 1.4 в зависимости от класса прочности болтов; S_T – коэффициент безопасности при постоянной нагрузке, выбирают в зависимости от способа контроля силы затяжки, марки стали и диаметра резьбы болтов [1, с. 110; 2, с. 95, табл. 8.4].

Класс прочности и высоту гаек выбирают в зависимости от класса прочности болтов, с которыми они свинчиваются (см. табл. 1.3 и 1.4).

Разработку конструкции резьбового соединения следует выполнять одновременно с его расчётом, так как многие размеры, необходимые для расчёта, можно определить только из чертежа (рис. 2.1).

Рис. 2.1. Установка болта

К тому же поэтапное вычерчивание в масштабе 1:1 конструкции в процессе расчёта служит проверкой этого расчёта. При вычерчивании резьбового соединения обязательно следует показывать зазоры между

стержнем болта и отверстиями деталей, запасы резьбы и запасы глубины сверления. Длину болта l и длину резьбы b определяют по месту соединения и округляют по ГОСТу 7798-70 [табл. П. 1], обеспечив необходимый выход конца болта из гайки k_l и запас резьбы t (см. рис. 2.1). Размер E для размещения гайки (или головки болта) выбирают с учётом возможности поворота её гаечным ключом.

Пример 2.1

Двухступенчатый соосный редуктор крепят к чугунной плите с помощью 6-ти шпилек, которые проходят с зазором через отверстия диаметра d_0 в лапах редуктора. Требуется определить размеры и классы прочности шпилек и гаек, коэффициент основной нагрузки, потребную силу начальной затяжки шпилек из условия нераскрытия стыка.

Исходные данные: T_1 = 80 H·м, T_2 = 1250 H·м, F_1 = 250 H, F_2 = 8000 H, h_1 = 135 мм, a_1 = 50 мм, a_2 = 73 мм, b_1 = 240 мм, b = 200 мм, b_2 = 130 мм, c_1 = 370 мм, c = 160 мм, c_2 = 98 мм, d = 18 мм, число шпилек d = 6.

Решение. 1. Конструкция места установки шпильки

Определяем размеры шпильки и гайки по месту соединения и вычерчиваем конструкцию в масштабе 1:1.

Предварительное значение наружного диаметра резьбы шпильки

$$d' = \frac{d_o}{l,l} = \frac{18}{l,l} = 16.4 \text{ MM},$$

принимаем [табл. Π . 6] резьбу M16 с диаметром d=16 мм и шагом P=2 мм. Размеры гайки [табл. Π . 8] с резьбой M16:

$$m = 14.8 \text{ mm}; \quad D_1 = 0.925S = 0.925 \cdot 24 = 22.2 \text{ mm}.$$

Необходимый выход конца шпильки из гайки

$$k'_1 = 0.3d = 0.3 \cdot 16 = 4.8$$
 MM,

и необходимый запас резьбы

$$t' = 0.5d = 0.5 \cdot 16 = 8$$
 MM.

Требуемая длина шпильки (без ввинчиваемого конца)

$$l' = h + m + k'_1 = 20 + 14.8 + 4.8 = 39.6 \text{ MM},$$

принимаем [табл. П. 6] l=40 мм, тогда фактический выход конца шпильки из гайки

$$k_1 = l - h - m = 40 - 20 - 14.8 = 5.2$$
 mm.

Требуемая длина резьбы гаечного конца шпильки

$$l_0' = l - h + t' = 40 - 20 + 8 = 28 \text{ MM},$$

принимаем [табл. П. 6, примечание 2]

$$l_o = l - 0.5d - 2P = 40 - 0.5 \cdot 16 - 2 \cdot 2 = 28 \text{ MM},$$

тогда фактический запас резьбы $t=l_o-m-k_I=28-14,8-5,2=8$ мм. Длина конца шпильки, ввинчиваемого в плиту из серого чугуна [табл. Π . 5]

$$l_1 = 1,25d = 1,25 \cdot 16 = 20$$
 MM.

Эскиз места установки шпильки в масштабе 1:1

2. Податливость шпильки

Модуль упругости стали $E_{u} = 2 \cdot 10^{5} \, \mathrm{M}\Pi \mathrm{a}.$

Расчётная длина шпильки [1, с. 114]

$$l_{uu} = h + 0.5 (m + l_{1}) = 20 + 0.5(14.8 + 20) = 37.4$$
 mm.

Длина гладкой части шпильки $l_c = l - l_o = 40 - 28 = 12$ мм.

Длина резьбовой части, входящей в расчётную длину шпильки

$$l_p = l_m - l_c = 37,4 - 12 = 25,4$$
 MM.

Площадь поперечного сечения гладкого стержня с диаметром $d_c = 16$ мм

$$A_c = \frac{\pi d_c^2}{4} = \frac{3.14 \cdot 16^2}{4} = 201 \text{ mm}^2.$$

Расчётный диаметр (см. с. 5) резьбы М16 с шагом P=2 мм $d_p=d-0.938P=16-0.938\cdot 2=14.124$ мм.

Площадь поперечного сечения резьбы шпильки

$$A_p = \frac{\pi d \frac{2}{p}}{4} = \frac{3,14 \cdot 14,124^2}{4} = 156,7 \text{ mm}^2.$$

Податливость шпильки [2, с. 114]

$$\lambda_{u} = \frac{1}{E_{u}} \left(\frac{l_{C}}{A_{C}} + \frac{l_{p}}{A_{p}} \right) = \frac{1}{2 \cdot 10^{5}} \left(\frac{12}{201} + \frac{25,4}{156,7} \right) = 1,11 \cdot 10^{-6} \frac{MM}{H}.$$

3. Податливость деталей

Модуль упругости серого чугуна $E_{o}=1.2\cdot 10^{5}\,\mathrm{M}\Pi$ а. Податливость детали в соединении шпилькой [1, с. 114] при tg $\alpha=0,4$

$$\lambda_{\partial} = \frac{4h}{\pi [(D_1 + 0.4h)^2 - d_0^2] E_{\partial}} = \frac{4 \cdot 20}{3.14 (22.2 + 0.4 \cdot 20)^2 - 18^2 (1.2 \cdot 10^5)} = 3.61 \cdot 10^{-7} \frac{MM}{H}.$$

4. Коэффициент основной нагрузки

$$\chi = \frac{\lambda_{o}}{\lambda_{uu} + \lambda_{o}} = \frac{3.61 \cdot 10^{-7}}{1.11 \cdot 10^{-6} + 3.61 \cdot 10^{-7}} = 0.245.$$

5. Расчётная схема группового резьбового соединения

Изображаем плоскость стыка и определяем координаты центра масс его площади О. По правилам статики переносим в центр масс площади стыка отрывающую силу

$$F = F_2 + F_1 = 8000 + 250 = 8250 H$$

и определяем опрокидывающие моменты:

$$M_x = T_2 - T_1 + (F_1 + F_2)(c - c_2) =$$

= $1250 - 80 + (250 + 8000)(0.16 - 0.098) = 1682 \text{ H·m};$

$$M_y = F_2(a_2 + 0.5b) - F_1(a_1 + 0.5b) =$$

= $8000(0.073 + 0.5 \cdot 0.2) - 250(0.05 + 0.5 \cdot 0.2) = 1347 \text{ H·m.}$

6. Сила затяжки шпилек

Условие нераскрытия стыка в точке N

$$\sigma_{min} = \frac{zF_{3am}}{A_{cm}} - (1 - \chi) \left[\frac{F}{A_{cm}} + \frac{M_x \cdot 0.5c_I}{J_x} + \frac{M_y \cdot 0.5b_I}{J_y} \right] > 0.$$

Площадь стыка $A_{cm} = (b_1 - b_2)c_1 = (240 - 130)370 = 407000$ мм².

Моменты инерции площади стыка относительно осей координат:

$$J_x = \frac{(b_1 - b_2)c_1^3}{12} = \frac{(240 - 130)370^3}{12} = 4,643 \cdot 10^8 \,\text{mm}^4;$$

$$J_y = \frac{c_1 \left(b_1^3 - b_2^3\right)}{12} = \frac{370 \left(240^3 - 130^3\right)}{12} = 3,585 \cdot 10^8 \,\text{Mm}^4.$$

Запас по плотности стыка [2, с. 89] для постоянных нагрузок v = 1,6. Потребная сила затяжки шпилек из условия нераскрытия стыка с запасом v:

$$\begin{split} F_{3am} &= \frac{v(1-\chi)}{z} \Bigg[F + 0.5 A_{cm} \Bigg(\frac{M_x c_1}{J_x} + \frac{M_y b_1}{J_y} \Bigg) \Bigg] = \frac{1.6 (1-0.245)}{6} \times \\ &\times \Bigg[8250 + 0.5 \cdot 40700 \Bigg(\frac{1.682 \cdot 10^6 \cdot 370}{4.643 \cdot 10^8} + \frac{1.347 \cdot 10^6 \cdot 240}{3.585 \cdot 10^8} \Bigg) \Bigg] = 10847 H \,. \end{split}$$

7. Класс прочности шпилек

Условие прочности наиболее нагруженной шпильки 1 соединения

$$\sigma_{_{9KB}} = \frac{1,3F_{_{3am}}}{A_p} + \chi \left| \frac{F}{zA_p} + \frac{M_x c}{J_{ux}} + \frac{M_y \cdot 0,5b}{J_{uy}} \right| \leq \left[\sigma_p \right].$$

Моменты инерции площади сечений резьбы всех шпилек соединения относительно осей координат [1, с. 116]:

$$J_{ux} = \sum A_p y_i^2 = 4A_p c^2 = 4 \cdot 156,7 \cdot 160^2 = 1,6 \cdot 10^7 \text{ mm}^4;$$

$$J_{uy} = \sum A_p x_i^2 = 6A_p (0.5b)^2 = 6 \cdot 156,7 (0.5 \cdot 200)^2 = 9.4 \cdot 10^6 \text{ mm}^4.$$

Требуемые допускаемые напряжения растяжения в шпильках находим из условия прочности наиболее нагруженной шпильки

$$\left[\sigma_{p}\right] = \frac{1,3 \cdot 10847}{156,7} + 0,245 \left[\frac{9250}{6 \cdot 156,7} + \frac{1,682 \cdot 10^{6} \cdot 160}{1,6 \cdot 10^{7}} + \frac{1,347 \cdot 10^{6} \cdot 0,5 \cdot 200}{9,4 \cdot 10^{6}}\right] = 100M\Pi a.$$

Коэффициент безопасности при постоянной нагрузке шпилек из углеродистой стали с d = 16мм без контроля силы затяжки [1, с. 110]

$$S_T = 2.5$$
.

Необходимый предел текучести углеродистой стали шпилек

$$\sigma_T' = \left[\sigma_p\right] S_T = 100 \cdot 2,5 = 250 \text{ MHa}.$$

Принимаем (см. табл. 1.3) шпильки класса прочности 5.6 с пределом текучести $\sigma_T = 300 M\Pi a$

8. Класс прочности гаек

Для свинчивания со шпильками класса прочности 5.6 выбираем (см. табл. 1.3) гайки класса прочности 5 типа 1.

9. Эскиз места установки шпильки в масштабе 1:1 с конструктивным изображением и условным обозначением шпильки [табл. П. 5 и П. 6] и гайки [табл. П. 8]

2.2. Резьбовые соединения с болтами, устанавливаемыми в отверстиях без зазора

Резьбовые соединения с болтами, устанавливаемыми в отверстиях соединяемых деталей без зазора, могут быть нагружены силами и моментом в плоскости стыка. При расчёте прочности соединения не учитывают силы трения в стыке и не определяют силу затяжки болтов. Выполняя расчёт, прежде всего из условия равновесия, определяют силу, сдвигающую наиболее нагруженный болт. Затем записывают условие прочности на срез наиболее нагруженного болта соединения. В проектном расчёте из условия прочности болта получают выражение для определения одного из неизвестных значений: требуемого диаметра стержня болта или допускаемого напряжения на срез стержня болта. В случае двух неизвестных в условии прочности болта

предварительно задаются одним из них с последующей оценкой правильности выбора.

Прочность болта обусловливается диаметром стержня [табл. П. 3] и классом прочности (см. табл. 1.3 и 1.4).

Предел текучести материала, используемый при выборе допускаемых напряжений для расчёта стержня болтов на срез [1, с. 110; 2, с. 96], берут в зависимости от класса прочности болтов (см. табл. 1.3 и 1.4). Размеры болтов выбирают по требуемому диаметру стержня d_1 [табл. П. 3]. Длину болта l определяют по месту соединения, обеспечивая запас резьбы не менее 2P.

При соединении тонкостенных деталей необходим дополнительный расчёт на смятие стержня болта и стенок отверстий деталей, аналогичный расчёту заклёпочных соединений [1, с. 76; 2, с. 77]. Допускаемые напряжения смятия определяют по более слабому материалу болта или детали, обычно принимают $\left[\sigma_{\scriptscriptstyle CM}\right] = 0.8~\sigma_{\scriptscriptstyle T}$ для стали и $\left[\sigma_{\scriptscriptstyle CM}\right] = (0.4 \div 0.5)~\sigma_{\scriptscriptstyle B}$ для чугуна.

Пример 2.2

Косынка и полоса, изготовленные из стали марки Ст3, соединены болтами, которые установлены в отверстиях без зазора. Требуется определить размеры и классы прочности болтов и гаек.

Исходные данные: $F = 11 \ \kappa H \ , h_1 = 9 \ \text{мм} \ , h_2 = 9 \ \text{мм} \ ,$ число болтов z = 2

Решение. 1. Сила, сдвигающая один болт при центральном нагружении

$$Q = \frac{F}{z} = \frac{11000}{2} = 5500H.$$

2. Условие прочности стержня болта на срез [1, с.112]

$$Q \le \frac{\pi d_c^2}{4} \left[\tau_{cp} \right].$$

Предварительно выбираем (см. табл. 1.3) болты класса прочности 5.8 с пределом текучести материала $\sigma_T = 420 M\Pi a$. Допускаемые напряжения среза в стержне болта [1, с. 110]

$$[\tau_{cp}] = 0.25\sigma_T = 0.25 \cdot 420 = 105M\Pi a$$
.

Требуемый диаметр стержня болта из условия прочности на срез

$$d'_{I} = \sqrt{\frac{4Q}{\pi [\tau_{cp}]}} = \sqrt{\frac{4 \cdot 5500}{3,14 \cdot 105}} = 8,17 \text{ mm},$$

принимаем [табл. П. 3] $d_1 = 9$ мм, резьбу М8 с шагом P = 1,25 мм.

- 3. Выбираем (см. табл. 1.3) гайки класса прочности 5 для свинчивания с болтами класса прочности 5.8. Высота гайки [табл. Π . 8] с резьбой M8 равна m = 6.8 мм.
- 4. Выбираем по месту соединения и проверяем возможность установки болта М8 [табл. П. 3] с размерами:

$$l = 30 \text{ mm}, l_2 = 15 \text{ mm}, \ l_3 = 2 \text{ mm}, \ C = 0.5 \text{ mm}, \ W = 1.6 \text{ mm}.$$

Выход конца резьбы из гайки

 $k_1=l-h_1-h_2-m-l_3=30-9-9-6,8-2=3,2$ мм, что больше необходимого выхода (см. рис. 2.1) $k_1=0,3d=0,3\cdot 8=2,4$ мм. Запас резьбы $m_1=h_1+h_2-l_2=9+9-15=3$ мм, что больше необходимого запаса резьбы (см. с. 21) $m_1=2P=2\cdot 1,25=2,5$ мм.

5. Условие прочности на смятие стенок отверстий [1, с. 76]

$$Q \leq Sd_c[\sigma_{cM}]$$
.

Наименьшая высота контакта стержня болта с одной деталью

$$S = l_2 - c - h_1 = 15 - 0.5 - 9 = 5.5 \text{ MM}$$
.

Предел текучести [1, с. 29] стали марки Ст3 $\sigma_T = 200 M\Pi a$. Допускаемые напряжения смятия для более слабого материала деталей (см. с. 21)

$$[\sigma_{cM}] = 0.8\sigma_T = 0.8 \cdot 200 = 160M\Pi a$$
.

Условие прочности на смятие выполняется

$$Q = 5500H < 5.5 \cdot 9 \cdot 160 = 7920H$$
.

6. Эскиз места установки болта в масштабе 1:1 с конструктивным изображением и условным обозначением болта [табл. Π . 3] и гайки [табл. Π . 8]

Пример 2.3

Косынка и полоса, изготовленные из стали марки Ст. 3, соединены болтами, которые установлены в отверстиях с зазором. Требуется определить размеры и классы прочности болтов и гаек.

Исходные данные:

$$Q = 11 \ \kappa H$$
 , $h_1 = 9 \ \text{мм}$, $h_2 = 9 \ \text{мм}$, число болтов $z = 2$

Решение. 1. Конструкция места установки болта

Определяем размеры деталей и изображаем конструкцию в масштабе 1:1.

Предварительно выбираем болт М16 с размерами [табл. П. 1]: диаметр резьбы d=16 мм, шаг резьбы P=1,5 мм, длина болта l=40 мм и резьбы b=40 мм. Высота шестигранной гайки М16х1,5 [табл. П. 8] m=14,8 мм.

Требуемый диаметр отверстий в соединяемых деталях

$$d_0^1 = 1.1d = 1.1 \cdot 16 = 17.6$$
 мм, принимаем $d_0 = 18$ мм.

Выход конца болта из гайки (см. рис. 2.1)

 $k_1 = l - h_1 - h_2 - m = 40 - 9 - 9 - 14,8 = 7,2$ мм, что больше необходимого выхода $k_1' = 0,3d = 0,3 \cdot 16 = 4,8$ мм.

Запас резьбы $t = h_1 + h_2 - (l - b) = 9 + 9 - (40 - 40) = 18$ мм,

что больше необходимого запаса резьбы $t' = 0.5d = 0.5 \cdot 16 = 8$ мм.

Эскиз места установки болта в масштабе 1:1

2. Потребная сила затяжки болта по условию несдвигаемости соединяемых деталей [1, с. 111]

$$F_{3am} = \frac{SQ}{zif} = \frac{2 \cdot 11000}{2 \cdot 1 \cdot 0.2} = 55000 \text{ H},$$

где S=2 — запас сцепления во избежание сдвига[1, с. 112]; i=1 — число стыков, стягиваемых болтами; f=0,2 — коэффициент сцепления для сухих стальных поверхностей [1, с. 111].

3. Класс прочности болтов

Условие прочности болта при затяжке

$$\sigma_{_{\mathfrak{I}KB}} = \frac{1.3F_{_{\mathfrak{I}AM}}}{A_{_{p}}} \leq \left[\sigma_{_{p}}\right].$$

Расчетный диаметр резьбового стержня (см. с. 5)

$$d_p = d - 0.938P = 16 - 0.938 \cdot 1.5 = 14.6 \text{ MM}.$$

Расчетная площадь поперечного сечения резьбового стержня

$$A_p = \frac{\pi d_p^2}{4} = \frac{3,14 \cdot 14,6^2}{4} = 167,4 \text{ mm}^2.$$

Требуемые допускаемые напряжения растяжения в болтах из условия прочности при затяжке

$$\left[\sigma_{p}\right]' = \frac{1.3 \cdot 55000}{167.4} = 427 \,\mathrm{MHa}.$$

Коэффициент безопасности при постоянной нагрузке болтов с контролем силы затяжки [1, с. 110] S = 1,5.

Необходимый предел текучести стальных болтов

$$\sigma'_{m} = [\sigma_{p}] S = 427 \cdot 1,5 = 640 \text{ M}\Pi a,$$

принимаем (см. табл. 1.4) болты класса прочности 8.8 с минимальным пределом текучести σ_T = 640 мм.

4. Класс прочности гаек

Для свинчивания с болтами класса прочности 8.8 выбираем (см. табл. 1.4) гайки класса прочности 8.

5. Эскиз места установки болта в масштабе 1:1 с конструктивным изображением и обозначением болта [табл. П. 1] и гайки [табл. П. 8].

2.3. Контрольные вопросы

- 1. В каких случаях целесообразно применять резьбу с мелким шагом?
- 2. Чем отличается профиль резьбы MJ от профиля метрической резьбы общего назначения?
- 3. В каких условиях необходимо применять метрическую резьбу с профилем MJ?
- 4. Как обозначаются классы прочности болтов, винтов, шпилек и гаек из углеродистых и легированных сталей?
- 5. Что характеризуют числа в обозначении класса прочности болта, например класс прочности 4.8?
- 6. Что указывает число в обозначении класса прочности гайки, например класс прочности 8?
 - 7. Как выбирают класс прочности гаек?
- 8. По каким условиям определяют потребную силу затяжки при установке болтов с зазором и без зазора?
 - 9. Какими методами контролируют силу затяжки болтов?
- 10. Почему момент затяжки контргайки должен быть больше, чем момент затяжки основной гайки?
 - 11. Какими способами стопорят резьбовые соединения?
 - 12. Что является недостатком стопорения пружинными шайбами?
- 13. Каково основное достоинство стопорения резьбовой детали дополнительным трением?
- 14. Для каких резьбовых изделий предусмотрены символы маркировки классов прочности по системе циферблата?
- 15. Как определяют расчётную площадь поперечного сечения резьбы болтов, винтов и шпилек?
- 16. По каким опасным сечениям рассчитывают прочность болтов, устанавливаемых в отверстиях с зазором и без зазора?
- 17. Как определяют эквивалентное напряжение в болте, установленном с затяжкой?
 - 18. Что называется коэффициентом основной нагрузки?
- 19. Какую часть длины учитывают при определении податливости болта, винта и шпильки?
 - 20. В какой форме определяют податливость деталей?
- 21. Какие факторы учитывают при выборе допускаемых напряжений растяжения для болтов, винтов и шпилек?
- 22. Какова наименьшая длина запаса резьбы и выхода конца болта из гайки?
- 23. Для какой цели предусмотрен цилиндрический выступ на конце болтов для отверстий из-под развёртки?
- 24. Каково наибольшее предельное значение коэффициента полезного действия самотормозящейся резьбы при завинчивании?

3. ЗАДАЧИ И ВАРИАНТЫ ЗАДАНИЙ

Задача 1

Крышка крепится к фланцу аппарата, внутри которого рабочее давление p, с помощью z болтов. Герметичность соединения обеспечивается сжатой прокладкой. Требуется определить размеры и классы прочности болтов и гаек (учесть скручивание стержня болтов при затяжке), а также потребную силу начальной затяжки болтов из условия герметичности соединения [1, с. 116,117].

Рис. 3.1. Герметичное соединение крышки с фланцем

Таблица 3.1 Данные для герметичного соединения

Попомотрум	Варианты									
Параметры	1	2	3	4	5	6	7	8		
D_{l} , mm	465	570	670	770	875	975	1075	1175		
D_2 , MM	437	542	640	740	847	945	1045	1145		
h, MM	52	72	88	58	93	114	136	98		
p, MПa	0,25	0,8	1,6	0,6	2	1	1,25	0,4		
Z	16	20	24	28	32	36	40	44		
Материал прокладки	Картон	Алюми- ний	Медь	Паронит	Сталь	Второ- пласт	Медь	Резина		

Сварной барабан ленточного конвейера соединён с фланцами болтами, которые установлены с зазором в отверстиях фланцев барабана. Требуется определить число болтов z, их размеры и классы прочности, а также потребную силу начальной затяжки болтов по условию несдвигаемости соединяемых деталей. При разработке конструкции резьбового соединения следует принять $h=0.8\ d$.

Рис. 3.2. Приводной барабан

Данные для приводного барабана

Таблица 3.2

Параметры		Варианты							
	1	2	3	4	5	6	7	8	
D, mm	440	640	800	520	880	560	720	480	
D_{θ} , mm	110	160	200	130	220	140	180	120	
<i>b</i> , мм	5	7	8	6	8	6	7	5	
F_{l} , кН	4	10	16	6	20	7	12	5	
F_2 , кН	1,5	3,5	5	2,5	6	3	4	2	
Резьба, <i>d</i>	-	M27	-	M24	-	M20	-	M24	
Z	4	-	8	-	8	6	6	4	
Класс прочности	5.6	4.8	-	5.8	-	-	8.8	-	

Сварной кронштейн крепят к стальной балке с помощью 8-ми болтов, установленных в отверстиях с зазором, и двух штифтов, установленных в отверстиях без зазора. Требуется определить размеры и классы прочности болтов и гаек, потребную силу начальной затяжки болтов по условию нераскрытия стыка. Следует принять $h=0,15\,D$; $h_1=0,2\,D$; $D_2=0,7\,D$; $D_o=D+3d$; $D_1=D+5d$. В условии возможного перекоса опорных поверхностей под гайкой и головкой болтов рекомендуется применять болты из пластичных материалов классов прочности 3.6,4.6,5.6.

Рис. 3.3. Крепление сварного кронштейна

Таблица 3.3 Данные для крепления кронштейна

Параметры	Варианты							
	1	2	3	4	5	6	7	8
<i>F</i> , кН	6	7	9	12	16	25	30	40
l_{l} , MM	300	350	400	500	550	400	325	350
l_2 , MM	400	600	500	500	450	450	400	400
D, mm	80	100	120	140	160	170	180	200
Резьба, <i>d</i>	M20	-	M24	-	M27	-	M30	-
Класс								
прочности	-	3.6	-	4.6	-	5.6	-	5.6
болтов								

Фланцевый электродвигатель крепят к опорному фланцу корпуса с помощью z болтов, установленных с зазором в отверстиях диаметра d_0 . Требуется определить размеры и классы прочности болтов и гаек, потребную силу начальной затяжки болтов из условий нераскрытия стыка и несдвигаемости фланцев.

Рис. 3.4. Крепление фланцевого электродвигателя

Таблица 3.4 Данные для соединения фланцев

Параметры		Варианты							
	1	2	3	4	5	6	7	8	
Т, Н∙м	290	49	480	16	958	195	161	648	
F, H	2130	870	2750	520	3870	1760	1650	3190	
<i>т</i> , кг	160	43	275	21	550	190	97	340	
l, mm	315	390	380	150	460	330	245	400	
<i>b</i> , мм	70	84	90	35	90	75	60	90	
h, mm	18	14	18	10	20	18	18	20	
D_{I} , mm	350	250	450	200	550	400	350	550	
D, mm	300	215	400	165	500	350	300	500	
D_2 , MM	250	180	350	130	450	300	250	450	
d_0 , MM	19	15	19	12	19	19	19	19	
Z	4	4	8	4	8	4	4	8	

Стальной корпус опор блока для каната натяжного устройства крепят к сварной раме с помощью 4-х болтов, установленных в отверстиях с зазором. Следует принять $l_1 = l + 4d; \ b_1 = b + 4d; \ b_2 = b - 4d; \ h = 1,2d$. Требуется определить размеры и классы прочности болтов и гаек, потребную силу начальной затяжки болтов из условий нераскрытия стыка и несдвигаемости корпуса.

Рис. 3.5. Натяжное устройство

Данные для крепления натяжного устройства

Таблица 3.5

Параметры	Варианты								
	1	2	3	4	5	6	7	8	
<i>F</i> , кН	14	32	17	52	26	11	42	20	
H, mm	200	270	210	330	260	180	300	220	
l, mm	100	140	105	170	130	90	160	110	
<i>b</i> , мм	150	210	160	250	200	140	240	170	
Резьба, <i>d</i>	M16	-	-	M30	1	-	-	M20	
Класс прочности болтов	ı	5.6	-	-	5.8	-	-	-	

Электродвигатель крепят к чугунной плите с помощью 4-х шпилек, которые проходят с зазором через отверстия диаметра d_0 в лапах электродвигателя. Требуется определить размеры и классы прочности шпилек и гаек, потребную силу начальной затяжки шпилек из условия нераскрытия стыка.

Рис. 3.6. Крепление электродвигателя к плите

Данные для крепления электродвигателя

Таблица 3.6

Параметры		Варианты							
	1	2	3	4	5	6	7	8	
$T_{,}$ H·M	12	290	49	480	16	195	161	648	
F, H	500	2200	870	2800	700	1800	1650	3200	
a, mm	55	163	93	203	75	176	130	219	
l, mm	80	210	140	257	100	203	140	311	
l_1 , MM	108	270	188	333	140	263	188	387	
b_{l} , mm	135	330	220	413	175	354	276	451	
b, mm	100	254	160	318	125	279	216	356	
b_2 , MM	65	180	100	223	75	204	156	261	
H, mm	63	160	100	200	80	180	132	225	
<i>h</i> , мм	8	18	12	20	10	18	13	22	
d_0 , мм	7	15	12	19	10	15	12	19	

Планетарный редуктор крепят к стальной раме с помощью 4-х шпилек, которые проходят с зазором через отверстия диаметра d_0 в лапах редуктора. Требуется определить размеры и классы прочности шпилек и гаек, потребную силу начальной затяжки шпилек из условия нераскрытия стыка.

Рис. 3.7. Крепление редуктора к раме

Таблица 3.7 Данные для крепления редуктора

Параметры	Варианты							
Параметры	1	2	3	4	5	6	7	8
$T_{I_{\bullet}}\mathbf{H}\cdot\mathbf{M}$	4	19	7	14	10	8	16	5
<i>Т</i> ₂ , Н·м	125	1250	250	710	500	360	1000	180
F_{l} , H	400	1250	500	710	630	560	1000	450
F_2 , H	2800	9500	4000	6700	5600	4750	8000	3350
a_1 , MM	103	117	103	115	113	110	108	103
α ₂ , MM	52	92	64	86	86	75	86	58
l, mm	130	250	170	220	210	190	230	150
l_1 , MM	175	310	215	275	265	240	285	195
b_1 , MM	195	350	225	300	270	250	330	210
<i>b</i> , мм	155	280	180	240	220	200	260	165
b_2 , MM	106	210	130	175	160	140	195	110
<i>h</i> , мм	18	34	22	30	30	27	32	20
d_0 , MM	19	24	19	24	24	21	24	19

Шкиф ременной передачи установлен на стальной втулке, разгружающей вал от изгибающего момента сил натяжения ремня. Разгрузочную втулку крепят к чугунному корпусу болтами с шестигранной головкой, которые проходят через отверстия во фланце втулки с зазором. Под фланец втулки установлен набор тонких металлических прокладок, предназначенных для регулирования радиально-упорных подшипников качения. Размеры фланца D_{ϕ} и D_{I} , число болтов, диаметры резьбы болтов d и отверстий d_{0} следует принять по рекомендациям [4, с. 167]. Соединение нагружено опрокидывающим моментом от силы натяжения ремней F и отрывающей силой F_{a} , действующей со стороны подшипника качения. Требуется определить размеры и класс прочности болтов, потребную силу начальной затяжки болтов из условия обеспечения жёсткости стыка с набором металлических регулировочных прокладок [1, с. 116].

Рис. 3.8. Установка шкива на разгрузочной втулке

Таблица 3.8 Данные для крепления разгрузочной втулки

Пополенти	Варианты										
Параметры	1	2	3	4	5	6	7	8			
<i>F</i> , кН	5,5	7,7	6,5	5	7	9	6	8,4			
F_{α} , кН	1,4	2,2	2	1	2,5	3	1,8	2,7			
l, mm	80	160	120	80	140	200	100	180			
D, mm	90	130	110	80	120	150	100	140			
<i>h</i> , мм	12	14	13	12	14	15	13	15			
k, mm	1,5	2,5	2	1,5	2,5	3	2	3			

Прижимные крышки подшипников вала червячного колеса крепят к корпусу болтами с шестигранной головкой, которые проходят с зазором через отверстия на фланцах крышек. Регулирование радиально — упорных подшипников качения и червячного зацепления выполняют набором тонких металлических прокладок, устанавливаемых под фланцы крышек. Резьбовое соединение нагружено отрывающей силой F_a , действующей на крышку со стороны наружного кольца подшипника. Размеры крышки D_{ϕ} , D_{I} , δ_{I} , число болтов, диаметры резьбы болтов d и отверстий d_0 следует принять по рекомендациям [4, с. 168]. Требуется определить размеры и класс прочности болтов, потребную силу начальной затяжки болтов по условию обеспечения жёсткости стыка [1, с. 116].

Рис. 3.9. Крепление крышек подшипников

Таблица 3.9 Данные для крепления прижимных крышек

Параметры		Варианты									
	1	2	3	4	5	6	7	8			
$F_{a,}$, к ${ m H}$	1	5	10	18	3	7	15	21			
D, MM	52	80	110	150	62	90	130	160			
k, mm	1,5	2	2,5	3	1,7	2	2,6	4			

Откидные болты с левой и правой резьбой и стяжная муфта нагружены осевой силой F и крутящим моментом завинчивания. Расстояние a между осями поворота откидных болтов может изменяться от a_{min} до a_{max} . Требуется определить размеры и класс прочности откидных болтов [табл. Π . 4], а также размеры стяжной муфты.

Рис. 3.10. Стяжное устройство

Таблица 3.10

Параметры		Варианты								
	1	2	3	4	5	6	7	8		
<i>F</i> , кН	9	15	37	60	64	85	140	24		
α_{max} , MM	260	290	400	400	520	480	550	360		
α_{min} , MM	210	210	290	290	370	410	450	250		
Резьба, <i>d</i>	M10	-	-	M20	-	M30	-	-		
Класс										
прочности	-	6.8	-	-	6.8	-	-	5.8		
откидных										
болтов										

Данные для стяжного соединения

Алюминиевый корпус подшипника крепят к чугунной плите с помощью двух стальных шпилек, установленных с зазором в отверстиях лап корпуса. Требуется определить коэффициент основной нагрузки, потребную силу начальной затяжки шпилек по условию нераскрытия стыка, размеры и классы прочности шпилек и гаек с учётом возможности повышения температуры Δt [5, c.19, 202].

Рис. 3.11. Крепление корпуса подшипника

Таблица 3.11 Данные для крепления корпуса подшипника

Параметры		Варианты									
	1	2	3	4	5	6	7	8			
<i>F</i> , кН	25	6	37	15	34	12	42	17			
l_1 , MM	230	115	290	180	260	160	310	200			
l, mm	180	85	230	140	205	125	240	155			
l_2 , MM	130	55	170	100	150	90	170	110			
<i>b</i> , мм	52	30	66	46	62	42	68	46			
h, mm	27	14	33	19	31	17	39	21			
d_0 , mm	17	11	20	14	17	13	22	15			
Резьба, <i>d</i>	M16	M10	M18	M12	M16	M12	M20	M14			
Δt , 0 C	50	60	40	55	46	50	60	45			

Фланцевый электродвигатель крепят к опорному фланцу корпуса с помощью z стальных болтов, которые проходят с зазором через отверстия диаметра d_0 на фланцах из алюминиевого сплава. Требуется определить коэффициент основной нагрузки, размеры и классы прочности болтов и гаек, потребную силу начальной затяжки болтов из условия несдвигаемости фланцев с учётом возможности понижения температуры Δt [5, c. 19, 202].

Рис. 3.12. Крепление фланцевого двигателя

Таблица 3.12 Данные для фланцевого соединения

Параметры		Варианты									
	1	2	3	4	5	6	7	8			
Т, Н∙м	650	165	200	50	960	16	480	300			
D_{I} , mm	550	350	400	250	550	200	450	350			
D, mm	500	300	350	215	500	165	400	300			
D_2 , mm	450	250	300	180	450	130	350	250			
h, mm	20	18	18	14	20	10	18	18			
d_0 , MM	19	19	19	15	19	12	19	19			
Δt , 0 C	60	50	40	55	45	60	50	40			
Z	8	4	4	4	8	4	8	4			

Поперечно — свертная муфта передаёт вращающий момент T. Полумуфты соединены с помощью z болтов, установленных с зазором в отверстиях жестких фланцев. Требуется определить размеры и класс прочности болтов и гаек, потребную силу начальной затяжки болтов по условию несдвигаемости полумуфт с жёсткими фланцами [1, c.112].

Рис. 3.13. Фланцевая муфта

Таблица 3.13 Данные для соединения фланцев

Параметры		Варианты									
	1	2	3	4	5	6	7	8			
Т, Н∙м	63	400	160	630	32	250	1000	125			
D_{I} , mm	100	150	130	170	80	140	180	112			
D_2 , MM	36	60	46	80	30	52	90	40			
D, mm	42	75	56	92	35	63	105	50			
l, mm	12	22	17	24	10	20	25	15			
Z	4	6	4	6	4	4	6	4			
Резьба, <i>d</i>	-	-	M12	-	M8	-	M16	-			
Класс											
прочности	4.8	-	-	5.6	-	5.8	-	-			
болтов											

Чугунный корпус подшипника качения крепят к стальной раме с помощью двух шпилек, установленных с зазором в отверстиях лап корпуса. Требуется определить размеры и классы прочности шпилек и гаек, потребную силу начальной затяжки шпилек по условию нераскрытия стыка и несдвигаемости корпуса.

Рис. 3.14. Крепление корпуса подшипника

Таблица 3.14 Данные для крепления корпуса подшипника

Параметры		Варианты									
	1	2	3	4	5	6	7	8			
<i>F</i> , кН	5	12	4	9	6	15	5	19			
α, \dots^0	50	45	40	35	30	25	20	15			
H, mm	68	110	52	98	58	102	36	80			
l_1 , MM	200	310	160	260	180	290	115	230			
l, mm	155	240	125	205	140	230	85	180			
l_2 , MM	110	170	90	150	100	170	55	130			
<i>b</i> , мм	46	68	42	62	46	66	30	52			
h, mm	21	39	17	31	19	33	14	27			
d_0 , MM	15	22	13	17	14	20	11	17			

Сварной кронштейн крепят к стальной стойке с помощью 6-ти шпилек, установленных с зазором в отверстиях равнополочных уголков (ГОСТ 8509-93). Следует принять $\delta = 3S$, t = h/2 + d, H = h + 5d, c = b + 2S. Требуется определить размеры и классы прочности шпилек и гаек, потребную силу начальной затяжки болтов из условий нераскрытия стыка и несдвигаемости кронштейна.

Рис. 3.15. Крепление кронштейна

Таблица 3.15 Данные для крепления кронштейна

Попомотрия				Вари	анты			
Параметры	1	2	3	4	5	6	7	8
<i>F</i> , кН	9	18	4	22	6	16	20	12
l, mm	600	750	500	800	500	750	800	600
h, mm	120	160	80	170	90	165	180	130
Резьба, <i>d</i>	M20	-	1	M27	M16	1	1	M20
Уголок	90x	125x	75x	140x	75x	100x	125x	100x
	90x8	125x10	75x7	140x12	75x8	100x10	125x10	100x10
Класс								
прочности	-	-	6.8	-	-	8.8	-	-
шпилек								

Широкие полки уголков (ГОСТ 8510-93) консольной балки можно крепить к стенкам швеллеров (ГОСТ 8240-89) стойки двумя способами: 1) болтами, устанавливаемыми в отверстиях с зазором; 2) болтами для отверстий из-под развёртки (ГОСТ 7817-80), устанавливаемыми по посадке H7 / k6. Уголки, швеллеры и накладки толщиной $h \approx S$ изготовлены из стали марки Ст3. Требуется определить расположение болтов и гаек для двух видов соединений, а также обосновать более рациональный вариант крепления балки.

Рис. 3.16. Крепление консольной балки

Таблица 3.16 Данные для крепления балки

Параметры		Варианты									
	1	2	3	4	5	6	7	8			
<i>F</i> , кН	7	8	3	18	7	12	6	5			
l, mm	160	390	510	100	310	215	310	265			
№ швеллера	20	27	20	27	24	27	22	20			
Уголок	70x45	100x63	75x50	80x50	90x56	90x56	80x50	70x45			
	x4,5	x6	x5	x6	x5,5	x6	x5	x5			

Приложение Справочные таблицы

Таблица П. 1 Болты с шестигранной головкой класса точности В, исполнение 1 (по ГОСТ 7798-70)

				Размеры, мм					
Диаметр	Шаг ре	езьбы	Размер	Диаметр	Высота	Длина болта l			
резьбы	P	1	≪под	описанной	головки	и резьбы <i>b</i>			
D	круп-	мел-	ключ»	окружности	k	l = b	l	b	
	ный	кий	S	e			-		
6	1	_	10	10,9	4	8–20	25–90	18	
8	1,25	1	13	14,2	5,3	8–25	30–100	22	
10	1,5	1,25	16	17,6	6,4	10-30	35–200	26	
12	1,75	1,25	18	19,9	7,5	14–30	35–260	30	
14	2	1,5	21	22,8	8,8	16–35	40–300	34	
16	2	1,5	24	26,2	10	18–40	45–300	38	
18	2,5	1,5	27	29,6	12	20–45	50-300	42	
20	2,5	1,5	30	33	12,5	25–50	55–300	46	
22	2,5	1,5	34	37,3	14	28–55	60–300	50	
24	3	2	36	39,6	15	32–60	65–300	54	
27	3	2	41	45,2	17	35–65	70–300	60	
30	3,5	2	46	50,9	18,7	40–70	75–300	66	
36	4	3	55	60,8	22,5	50-85	90–300	78	
42	4,5	3	65	71,3	26	55-100	110-300	90	
48	5	3	75	82,6	30	65–110	120–300	102	

Примечания: 1. Размер l в указанных пределах брать из ряда чисел: 8, 10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300.

2. Пример условного обозначения болта с диаметром резьбы d=12 мм, длиной l=60 мм, с крупным шагом резьбы и полем допуска 6g, класса прочности 5.8, с размером «под ключ» S=18 мм, без покрытия:

Болт M12-6g×60.58 (S18) ГОСТ 7798-70.

То же, с мелким шагом резьбы:

Болт M12×1,25 – 6g×60.58 (S18) ГОСТ 7798-70.

Таблица П. 2 Болты с шестигранной головкой класса точности A, исполнение 1 (по ГОСТ 7805-70)

	Размеры, мм										
Диаметр	Шаг	(под описа		Высота	Длина бо	лта <i>l</i> и резі	ьбы <i>b</i>				
резьбы <i>d</i>	резьбы Р	«ноо ключ» S	описанной окружности <i>е</i>	головки k	l = b	l	b				
3	0,5	5,5	6	2	4–12	14–30	12				
4	0,7	7	7,7	2,8	6–14	16–60	14				
5	0,8	8	8,8	3,5	6–16	20–80	16				
6	1	10	11,1	4	8–20	25–90	18				
8	1.25	13	14,4	5,3	8–25	30–100	22				
10	1,5	16	17,8	6,4	10–30	35–150	26				
12	1,75	18	20	7,5	14–30	35–150	30				
16	2	24	26,8	10	20–40	45–150	38				
20	2,5	30	33,6	13	25–50	55–150	46				
24	3	36	40,3	15	35–60	65–150	54				
30	3,5	46	51,6	19	40–70	75–150	66				
36	4	55	61,7	23	50-80	90–150	78				
42	4,5	65	73	26	55–100	110–150	90				
48	5	75	84,3	30	65–110	120–150	102				

Примечания: 1. Размер l в указанных пределах брать из ряда чисел: 4, 5, 6, 8, 10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300.

2. Пример условного обозначения болта с диаметром резьбы d=12 мм, длиной l=60 мм, с крупным шагом резьбы и полем допуска 6g, класса прочности 5.8, с размером «под ключ» S=18 мм, без покрытия:

Болт M12-6g×60.58 (S18) ГОСТ 7805-70.

Таблица П. 3 Болты с шестигранной уменьшенной головкой класса точности А для отверстий из под развертки, исполнение 2a (по ГОСТ 7817-80)

	Размеры, мм									
Диаметр резьбы	Шаг ре <i>Р</i>		Pas	вмеры сте	ржня болт	га	Размеры головки болта			
d	круп- ный	мел- кий	d_{I}	d_2	W	l_3	S	e	k	
6	1	_	7	4	1	1,5	10	11	4	
8	1,25	1	9	5,5	1,6	2	12	13,2	5,5	
10	1,5	1,25	11	7	2	2,5	14	15,5	7	
12	1,75	1,25	13	8,5	3	3	17	18,9	8	
(14)	2	1,5	15	10	3	3,5	19	21,2	9	
16	2	1,5	17	12	3	4	22	24,5	10	
(18)	2,5	1,5	19	13	3	4,5	24	26,8	12	
20	2,5	1,5	21	15	3	5	27	30,1	13	
(22)	2,5	1,5	23	17	3	5,5	30	33,5	14	
24	3	2	25	18	3	6	32	35,8	15	
(27)	3	2	28	21	3	6,7	36	40,3	17	
30	3,5	2	32	23	3	7,5	41	45,9	19	
36	4	3	38	28	3	9	50	56,1	23	
42	4,5	3	44	33	3	10,5	60	67,4	26	
48	4,5	3	50	38	3	12	70	78,6	30	

Продолжение табл. П. 3

		Размеры, мм													
Длина				Дли	іна гла	адкой	части	l_2 пр	и диа	метре	резьб	бы <i>d</i>			
болта	-	8	10	12	(14)	1.6	(10)	20	(22)	24	(27)	20	36	42	48
l	6	8	10	12	(14)	16	(18)	20	(22)	24	(27)	30	30	42	48
(18)	6	_	_	_	_	_	-	_	_	_	_	_	_	_	_
20	8	_	_	_	_	_	_	_	_	_	_	_	_	_	_
(22)	10	_	_	_	_	_	_	_	_	_	_	_	_	_	_
25	13	_	_	_	_	_	_	_	_	_	_	_	_	_	_
28	16	13	_	_	_	_	_	_	_	_	_	_	_	_	_
30	18	15	12	_	_	_	-	_	_	_	_	_	_	_	_
(32)	20	17	14	10	_	_	_	_	_	_	_	_	_	_	_
35	23	20	17	13	_	_	_	_	_	_	_	_	_	_	_
(38)	23	20	18	16	_	_	_	_	_	_	_	_	_	_	_
40	25	22	20	18	15	_	_	_	_	_	_	_	_	_	_
(42)	27	24	22	20	17	_	_	_	_	_	_	_	_	_	_
45	30	27	25	23	20	17	_	_	_	_	_	_	_	_	_
(48)	33	30	28	26	23	20	_	_	_	_	_	_	_	_	_
50	35	32	30	28	25	22	_	_	_	_	_	_	_	_	_
55	40	37	35	33	30	27	26	23	20	_	_	_	_	_	_
60	45	42	40	38	35	32	30	28	25	22	_	_	_	_	_
65	50	47	45	43	40	37	35	33	30	27	_	_	_	_	_
70	55	52	50	48	45	42	40	38	35	32	28	_	_	_	_
75	60	57	55	53	50	47	45	43	37	37	33	25	_	_	_
80	_	62	60	58	55	52	50	48	45	42	38	30	_	_	_
85	_	_	65	63	60	57	55	53	50	47	43	35	_	_	_
90	_	_	70	68	65	62	60	58	55	52	48	40	35	_	
(95)	_	_	75	73	70	67	65	63	60	57	53	45	40	_	_
100	_	_	80	78	75	72	70	68	65	62	58	50	45	_	_
(105)	_	_	85	83	80	77	75	73	70	67	63	55	50	_	_
110	_	_	85	82	80	78	75	72	70	65	62	60	55	45	_
(115)	_	_	90	87	85	83	80	77	75	70	67	65	60	50	_
120	_	_	95	92	90	88	85	82	80	75	72	70	65	55	50
130	_	_	_	102	100	98	95	92	90	85	82	80	75	65	60
140	_	_	_	112	110	108	105	102	100	95	92	90	85	75	70
150	_	_	_	122	120	118	115	112	110	105	102	100	95	85	80
160	_	_	_	142	130	128	125	122	120	115	112	110	105	95	90
170	_	_	_	152	140	138	135	132	130	125	122	120	115	105	100
180	_	_	_	_	150	148	145	142	140	135	132	130	125	115	110
190	_	_	_	_	160	158	155	152	150	145	142	140	135	125	120
200	_	_	_		170	168	165	162	160	155	152	150	145	135	130

Примечания: 1. Размеры длин болтов, заключенные в скобки, применять не рекомендуется.

2. Пример условного обозначения болта исполнения 2a, с диаметром резьбы d=12 мм, с крупным шагом резьбы и полем допуска 6g, длиной l=35 мм, класса прочности 5.8, без покрытия:

Болт 2a M12-6g×35.58 ГОСТ 7817-80.

То же, с мелким шагом резьбы:

Болт 2a M12×1,25 – 6g×35.58 ГОСТ 7817-80.

Таблица П. 4

Болты откидные класса точности В исполнений:

- 1 болты с круглой головкой;
- 2 болты с круглой головкой и отверстием под шплинт;
- 3 болты с вилкой

(по ГОСТ 3033-79)

Продолжение табл. П. 4

	Размеры, мм									
Диаметр резьбы <i>d</i>	L	l_o	l_{I}	l_2	d_{I}	d_2	В	b_{I}	b_2	b_3
10	60; 60; 70	35; 40; 45	16	10	8	12	16	16	8	3,8
12	60; 70; 75; 80	35; 40; 45; 50	18	12	10	15	20	20	10	4,8
14	65; 70; 75; 80 85; 90; 95; 100	30; 35; 40; 45 50; 55; 60; 70	22	14	12	18	24	24	12	5,8
16	80; 85; 90 95; 100; 110	40; 45; 50 55; 60; 70	26	16	14	20	28	28	14	6,8
20	110; 125; 140	60; 70; 80	34	20	18	24	36	36	18	8,8
24	140; (160; 180) 200	70; (80) 90	42	24	20	28	40	46	22	11,7
30	160; 180; 200	80; 90; 100	52	30	25	35	52	60	30	14,7
36	180: 200	90: 100	60	36	30	42	64	68	34	16.7

П р и м е ч а н и я: Пример условного обозначения откидного болта класса точности В, исполнения 1, диаметром резьбы d=6 мм с полем допуска 6g, длиной L=32 мм, класса прочности 4.6, без покрытия:

Болт В. M6-6g×32.46 ГОСТ 3033-79.

То же, исполнения 3

Болт В. 3M6-6g×32.46 ГОСТ 3033-79.

То же, для левой резьбы

Болт В. M6LH-6g×32.46 ГОСТ 3033-79.

Таблица П. 5 **Перечень шпилек общего применения**

Длина ввин-	Γ	OCT	
чиваемого резьбового конца	Класс точности В	Класс точности А	Область применения
$l_I = Id$	22032-76	22033-76	Для ввинчивания в резьбовые отверстия в стальных, бронзовых и латунных деталях с относительным удлинений $\delta_5 \geq 8\%$ и деталях из титановых сплавов
$l_1 = 1,25d$	22034-76	22053-76	Для ввинчивания в резьбовые отверстия в деталях из ковкого и серого чугуна. Допускается применять для
$l_1 = 1,6d$	22036-76	22037-76	ввинчивания в резьбовые отверстия в стальных и бронзовых деталях с $\delta_5 \geq 8\%$
$l_1 = 2d$	22038-76	22039-76	Для ввинчивания в резьбовые отверстия в деталях из легких сплавов.
$l_1 = 2.5d$	22040-76	22041-76	Допускается применять для ввинчивания в резьбовые отверстия в стальных деталях
_	22042-76	22043-76	Шпильки с двумя одинаковыми по длине резьбовыми концами для деталей с гладкими отверстиями

Таблица П. 6 Шпильки с ввинчиваемым концом классов точности A и B (по Γ OCT 22032-76 – Γ OCT 22041-76)

	Размеры, мм										
Диаметр резьбы	Шаг ре <i>Р</i>			Длина ввинчиваемого конца $l_{\it l}$							
d	крупный	мелкий	1 <i>d</i>	1,25 <i>d</i>	1,6 <i>d</i>	2 <i>d</i>	2,5 d	. шпильки <i>l</i>			
3	0,5	_	3	4	5	6	7,5	10–160			
4	0,7	_	4	5	6,5	8	10	14–160			
5	0,8	_	5	6,5	8	10	12	16–160			
6	1	_	6	7,5	10	12	16	16–160			
8	1,25	1	8	10	14	16	20	16–200			
10	1,5	1,25	10	12	16	20	25	16–200			
12	1,75	1,25	12	15	20	24	30	25–220			
(14)	2	1,5	14	18	22	28	35	25–220			
16	2	1,5	16	20	25	32	40	35–220			
(18)	2,5	1,5	18	22	28	36	45	35–220			
20	2,5	1,5	20	25	32	40	50	40–240			
(22)	2,5	1,5	22	28	35	44	55	45–240			
24	3	2	24	30	38	48	60	45–240			
(27)	3	2	27	35	42	54	68	55–260			
30	3,5	2	30	38	48	60	75	60–260			
36	4	3	36	45	56	72	88	70–300			
42	4,5	3	42	52	68	84	105	80–300			
48	5	3	48	60	76	95	120	80–300			

Продолжение табл. П. 6

Диаметр	Į	Длина шпильки l и длина резьбы гаечного конца l_o									
резьбы <i>d</i>	l	l_o	l	l_o	l	l_o					
3	10–14	×	16–120	12	130–160	18					
4	14–16	×	18–120	14	130–160	20					
5	16–18	×	20–120	16	130–160	22					
6	16–22	×	25–120	18	130–160	24					
8	16–25	×	28–120	22	130-200	28					
10	16–32	×	35–120	26	130-200	32					
12	25–35	×	38–120	30	130-220	36					
(14)	25–40	×	42–120	34	130-220	40					
16	35–45	×	48–120	38	130–220	44					
(18)	35–50	×	55–120	42	130-220	48					
20	40–55	×	60–120	46	130-240	52					
(22)	45–60	×	65–120	50	130–240	56					
24	45–65	×	70–120	54	130–240	60					
(27)	55–70	×	75–120	60	130–260	66					
30	60–80	×	85–120	66	130-260	72					
36	70–90	×	95–120	78	130-300	84					
42	80–105	×	110–120	90	130-300	96					
48	80–120	×	130–200	108	220–300	121					

Примечания: 1. Размеры, заключенные в скобки применять не рекомендуется.

- 2. Знаком × отмечены шпильки с длиной резьбы гаечного конца $l_o = l 0.5d 2P\,.$
- 3. Размеры в указанных пределах брать из ряда чисел: 10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300.

Пример условного обозначения шпильки с диаметром резьбы d=16 мм, с крупным шагом P=2 мм, с полем допуска 6g, длиной l=120 мм, класса прочности 5.8, без покрытия:

Шпилька M16-6g×120.58 ГОСТ 22032-76.

То же, с мелким шагом P = 1.5 мм:

Шпилька $M16 \times 1,5 - 6g \times 120.58$ ГОСТ 22032-76.

Таблица П. 7 Шпильки для деталей с гладкими отверстиями классов точности А и В (по ГОСТ 22042-76, ГОСТ 22043-76)

	Размеры, мм										
Диаметр резьбы	Шаг ре <i>Р</i>	зьбы	Длина шпильки l и резьбового конца l_o								
d	крупный	мелкий	l	l_o	l	l_o	l	l_o			
3	0,5	_	30–120	12	130-200	18	220-300	31			
4	0,7	_	35-120	14	130-200	20	220-300	33			
5	0,8	_	40-120	16	130-200	22	220-300	35			
6	1	_	45-120	18	130-200	24	220-300	37			
8	1,25	1	55-120	22	130-200	28	220-300	41			
10	1,5	1,25	65–120	26	130-200	32	220-300	45			
12	1,75	1,25	75–120	30	130-200	36	220-360	49			
(14)	2	1,5	90–120	34	130-200	40	220-360	53			
16	2	1,5	95–120	38	130-200	44	220-500	57			
(18)	2,5	1,5	100-120	42	130-200	48	220-500	61			
20	2,5	1,5	105–120	46	130-200	52	220-500	65			
(22)	2,5	1,5	120	50	130-200	56	220-500	69			
24	3	2	_	_	130-200	60	220-500	73			
(27)	3	2	_	_	140-200	66	220-500	79			
30	3,5	2	_	_	170-200	72	220-500	85			
36	4	3	_	_	190-200	84	240-500	97			
42	4,5	3	_	_	_	_	240-500	109			
48	5	3	_	_	_	_	260-500	121			

Примечания: 1. Размеры, заключенные в скобки, применять не рекомендуется.

2. Размеры в указанных пределах брать из ряда чисел: 10 12 14 16 20 25 30 35 40 45 50 55 60 65 70 75 80 85

10, 12, 14, 16, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300.

Пример условного обозначения болта с диаметром резьбы d=10 мм, с крупным шагом P=1.5 мм, с полем допуска 6g, длиной l=200 мм, класса прочности 5.8 без покрытия:

Шпилька M10-6g×200.58 ГОСТ 22042-76.

То же, с мелким шагом P = 1,25 мм:

Шпилька $M12 \times 1,25 - 6g \times 200.58$ ГОСТ 22043-76.

Таблица П. 8 Гайки шестигранные класса точности В исполнение 1 (по ГОСТ 5915-70)

Размеры, мм									
Диаметр	Шаг	резьбы	Размер	Диаметр описанной	Высота				
резьбы			«под ключ»	окружности	m				
d	крупный	мелкий	S	е	TT .				
3	0,5	_	5,5	5,9	2,4				
(3,5)	0,6	_	6	6,4	2,8				
4	0,7	_	7	7,5	3,2				
5	0,8	_	8	8,6	4,7				
6	1	_	10	10,9	5,2				
8	1,25	1	13	14,2	6,8				
10	1,5	1,25	16	17,6	8,4				
12	1,75	1,25	18	19,9	10,8				
(14)	2	1,5	21	22,8	12,8				
16	2	1,5	24	26,2	14,8				
(18)	2,5	1,5	27	29,6	16,4				
20	2,5	1,5	30	33,0	18,0				
(22)	2,5	1,5	34	37,3	19,8				
24	2,5	2	36	39,6	21,5				
(27)	3	2	41	45,2	23,6				
30	3,5	2	46	50,9	25,6				
36	4	3	55	60,8	31,0				
42	4,5	3	65	71,3	34,0				
48	5	3	75	82,6	38,0				

Примечание: Размеры гаек, заключенные в скобки применять не рекомендуется.

Пример условного обозначения гайки с диаметром резьбы d=12 мм, крупным шагом и полем допуска резьбы 6H, класса прочности 5, без покрытия:

Гайка М12-6Н.5 ГОСТ 5915-70.

То же, с мелким шагом резьбы:

Гайка M12×1,25 – 6H.5 ГОСТ 5915-70.

Таблица П. 9 Гайки шестигранные высокие класса точности В исполнение 1 (по ГОСТ 15523-70)

	Размеры, мм										
Диаметр	Шаг	резьбы	Размер	Диаметр описанной	Высота						
резьбы <i>d</i>	крупный	мелкий	«под ключ» S	окружности <i>е</i>	т						
3	0,5	_	5,5	5,9	3,6						
4	0,7	_	7	7,5	4,8						
5	0,8	_	8	8,6	6						
6	1	_	10	10,9	7,2						
8	1,25	1	13	14,2	9,6						
10	1,5	1,25	16	17,6	12						
12	1,75	1,25	18	19,9	14						
(14)	2	1,5	21	22,8	17						
16	2	1,5	24	26,2	19						
(18)	2,5	1,5	27	29,6	22						
20	2,5	1,5	30	33,0	24						
(22)	2,5 3	1,5	34	37,3	26						
24	3	2	36	39,6	29						
(27)	3	2	41	45,2	32						
30	3,5	2 2	46	50,9	36						
36	4	3	55	60,8	43						
42	4,5	3	65	71,3	50						
48	4,5 5	3	75	82,6	58						

Примечание: Размеры гаек, заключенные в скобки, применять не рекомендуется.

Пример условного обозначения гайки с диаметром резьбы d=12 мм, крупным шагом и полем допуска резьбы 6H, класса прочности 5, без покрытия:

Гайка М12-6Н.5 ГОСТ 15523-70.

То же, с мелким шагом резьбы:

Гайка M12×1,25 – 6H.5 ГОСТ 15523-70.

Таблица П. 10

Шайбы пружинные, исполнение 1 (по ГОСТ 6402-70)

			Размеј	ры, мм						
		Типы шайб								
Диаметр резьбы болта, винта, шпильки	d	Легкие шайбы (Л)		Нормальные шайбы (Н)	Тяжелые шайбы (Т)	Особо тяжелые шайбы (ОТ)				
		b	S	b = s	b = s	b = s				
3	3,1	1	0,8	0,8	1	_				
4	4,1	1,2	0,8	1	1,4	_				
5	5,1	1,2	1	1,2	1,6 2	_				
6	6,1	1,6	1,2	1,4 2	2	_				
8	8,2	2	1,6 2	2	2,5 3	_				
10	10,2	2,5	2	2,5		3,5				
12	12,2	3,5	2,5 3	3	3,5	4				
14	14,2	4	3	3,2	4	4,5 5				
16	16,3	4,5	3,2 3,5	3,5	4,5 5	5				
18	18,3	5		4		5,5				
20	20,5	5,5	4	4,5	5,5	6				
22	22,5	6	4,5	5	6	7				
24	24,5	6,5	4,8	5,5	7	8				
27	27,5	7	5,5	6	8	9				
30	30,5	8	6	6,5	9	10				
36	36,5	10	6	8	10	12				
42	42,5	12	7	9	12	_				
48	48,5	12	7	10	_	_				

Пример условного обозначения нормальной пружинной шайбы из стали 65Г для болта, винта, шпильки диаметром резьбы 12 мм:

Шайба 12 65Г ГОСТ 6402-70.

То же с легкой пружинной шайбы:

Шайба 12Л 65Г ГОСТ 6402-70.

Таблица П. 11 Шайбы стопорные с внутренними зубьями (по ГОСТ 10462-81)

Размеры, мм										
			Испо	лнение	1	Исполнение 2				
Диаметр резьбы крепежной детали	d	D	S	Н	Число зубьев <i>Z</i>	D	S	Н	Число зубьев <i>Z</i>	
3	3,2	7	0,3	0,9	7	7	0,4	0,75	6	
4	4,2	9	0,4	1,2	7	9	0,5	0,95	6	
5	5,2	10	0,7	1,75	8	10,5	0,5	1	6	
6	6,3	12	0,7	1,75	9	12,5	0,6	1,1	7	
8	8,4	14	0,8	2	10	15,5	0,8	1,5	8	
10	10,5	17	1	2,5	11	18	0,9	1,7	9	
12	12,5	19	1,2	2,75	12	21	1	1,9	10	
14	14,5	22	1,4	3,2	12	24,1	1	2	10	
16	16,5	24	1,4	3,2	14	27	1,2	2,2	10	
18	18,5	27	1,7	3,75	14	30	1,2	2,2	12	
20	21	30	1,7	3,75	14	33	1,2	2,3	12	
22	23	32	1,7	3,75	16	35	1,5	2,5	12	
24	25	36	1,7	3,75	16	40	1,5	2,7	12	

Пример условного обозначения стопорной шайбы с внутренними зубьями исполнения 1, для крепежной детали с диаметром резьбы 12 мм, из стали 65Г, с покрытием цинковым с хроматированием, толщиной слоя 6 мкм:

Шайба 12. 65Г. 016 ГОСТ 10462-81.

То же исполнения 2, без покрытия:

Шайба 2. 12. 65Г-1 ГОСТ 10462-81.

Таблица П. 12 Шайбы стопорные с наружными зубьями (по ГОСТ 10463-81)

	Размеры, мм										
Диаметр			Испо.	пнение	1		Испо.	лнение 2			
резьбы крепежной детали	d	D	S	Н	Число зубьев <i>Z</i>	D	S	Н	Число зубьев <i>Z</i>		
3	3,2	7	0,3	0,9	8	7	0,4	0,6	8		
4	4,2	9	0,4	1,2	9	8,8	0,5	1	8		
5	5,2	10	0,7	2,1	10	10,2	0,5	1,1	9		
6	6,3	12	0,7	2,1	12	12,2	0,6	1,2	9		
8	8,4	14	0,8	2,2	16	15,4	0,8	1,7	10		
10	10,5	17	1	2,5	16	18	0,9	1,9	10		
12	12,5	19	1,2	3	18	21	1	1,9	12		
14	14,5	22	1,4	3	18	23,6	1	2	12		
16	16,5	24	1,4	3,2	20	26,5	1,2	2,3	12		
18	18,5	27	1,7	3,7	22	30	1,2	2,6	12		
20	21	30	1,7	3,9	22	33	1,2	2,4	14		
22	23	32	1,7	3,9	22	35	1,5	2,9	14		
24	25	36	1,7	3,9	22	38	1,5	3	14		

Пример условного обозначения стопорной шайбы с наружными зубьями исполнения 1, для крепежной детали с диаметром резьбы 12 мм, из стали 65Γ , с покрытием цинковым с хроматированием, толщиной слоя 6 мкм:

Шайба 12. 65Г. 016 ГОСТ 10463-81.

То же исполнения 2, без покрытия:

Шайба 2. 12. 65Г-1 ГОСТ 10463-81.

Таблица П. 13

Шайбы стопорные с лапкой (по ГОСТ 13463-77)

	Размеры, мм									
Диаметр резьбы болта <i>d</i>	d_I	d_2	В	B_I	L	L_I	S			
3	3,2	5,5	3	4	12	5	0,5			
4 5	4,3	7	4	5	14	6	0,5			
	5,3	8	5	6	16	7,5	0,5			
6 8	6,4	10	6	7,5	18	9	0,8			
8	8,4	14	8	9	20	11	1			
10	10,5	17	10	10	22	13	1			
12	13	19	12	12	28	15	1			
14	15	22	12	12	28	17	1			
16	17	24	15	15	32	20	1			
18	19	27	18	18	36	22	1			
20	21	30	18	18	36	24	1			
22	23	32	20	20	42	25	1			
24	25	36	20	20	42	28	1			
27	28	41	24	24	48	30	1,6			
30	31	46	26	26	52	32	1,6			
36	37	55	30	30	60	38	1,6			
42	43	65	36	36	70	42	1,6			
48	50	75	40	40	80	50	1,6			

Пример условного обозначения шайбы для шестигранной гайки или болта с шестигранной головкой диаметром резьбы d=12 мм, из материала группы 03, с покрытием 01, толщиной 6 мкм:

Шайба 12. 03. 016 ГОСТ 13463-77.

То же исполнения 2:

Шайба 2. 12. 03. 016 ГОСТ 13463-77.

Таблица П. 14

Шайбы стопорные с носком (по ГОСТ 13465-77)

	Размеры, мм										
Диаметр		Шайба									носка
резьбы болта <i>d</i>	d_{I}	d_2	В	B_I	L	L_{I}	L_2	S	A	d_3	h
3	3,2	5,5	2,4	4	4,5	5	7,5	0,5	4,3	3	5
4 5	4,3	7	2,4	5	5,5	6	8,5	0,5	5,3	3	5 5 5
5	5,3	8	3,4	6	7	7,5	10	0,5	6,8	4	
6	6,4	10	3,4	7,5	7,5	9	11,5	0,8	7,3	4	6
8	8,4	14	3,4	9	8,5	11	12,5	1	8,1	4	6
10	10,5	17	4,4	10	10	13	14	1	9,6	5	6
12	13	19	4,4	12	12	15	16	1	11,5	5	6
14	15	22	4,4	12	12	17	16	1	11,5	5	6
16	17	24	5,4	15	15	20	20	1	14,5	6	8
18	19	27	6	18	18	22	24	1	17,5	7	8
20	21	30	6	18	18	24	24	1	17,5	7	8
22	23	32	7	20	20	25	26	1	19,5	8	8 8
24	25	36	7	20	20	28	26	1	19,5	8	8
27	28	41	8	24	22	30	28	1,6	21,2	9	8
30	31	46	8	26	25	32	32	1,6	24,2	9	10
36	37	55	11	30	30	38	38	1,6	29,2	12	10
42	43	65	11	36	36	42	44	1,6	35,3	12	10
48	50	75	13	40	40	50	50	1,6	39,2	14	12

Пример условного обозначения шайбы для шестигранной гайки или болта с шестигранной головкой диаметром резьбы d=12 мм, из материала группы 03, с покрытием 01, толщиной 6 мкм:

Шайба 12. 03. 016 ГОСТ 13465-77.

То же исполнения 2:

Шайба 2. 12. 03. 016 ГОСТ 13465-77.

ЗАКЛЮЧЕНИЕ

В настоящей работе изложены современные методы расчета и основные резьбовых соединений наземной принципы конструирования Нормируемые механические свойства резьбовых деталей приведены в соответствие с новыми национальными и международными стандартами. Показано, что внедрение классов прочности болтов, винтов, шпилек и гаек совместно с требованиями к маркировке резьбовых деталей обеспечивает четкую классификацию несущей способности сборочного соединения болтгайка в условиях статического нагружения. Обоснована необходимость в применении метрической резьбы с профилем МЈ в условиях, где требуется повышенная усталостная прочность резьбовых соединений. Рассмотрены контролируемой способы стопорения резьбовых основные затяжки И соединений

Даны методические указания по выполнению расчетно-графических работ, которые сопровождаются примерами. В учебное пособие включены апробированные задачи и варианты заданий. Справочные таблицы приложения восполняют недостающее количество современной справочной литературы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Решетов Д. Н. Детали машин: Учебник для студентов машиностроит. и механич. спец. вузов. 4-е изд., перераб. и доп. М.: Машиностроение, 1989. 496 с.
- 2. Иосилевич Г. Б. Детали машин: Учебник для студентов машиностроит. спец. вузов. М.: Машиностроение, 1988. –368 с.
- 3. Анурьев В. И. Справочник конструктора машиностроителя: в 3 т. Т. 1 / Под ред. И. Н. Жестковой. 9-е изд., перераб. и доп. М.: Машиностроение, 2006. 927 с.
- 4. Дунаев П. Ф., Леликов О. П. Конструирование узлов и деталей машин. Учеб. пособие для техн.. спец. вузов. 9-е изд. М: Издательский центр «Академия», 2006. 496 с.
- 5. Сборник задач по сопротивлению материалов / Под ред. А. С. Вольмира. М.: Наука, 1984. 408 с.
- 6. Биргер И. А., Иосилевич Г. Б. Резьбовые соединения. М.: Машиностроение, 1973.-256 с.
- 7. Якушев А. И., Мустаев Р. Х., Мавлютов Р. Р. Повышение прочности и надежности резьбовых соединений. М: Машиностроение, 1979. 215 с.
- 8. Бударин А. М. Разъемные соединения деталей: Учебное пособие для студентов машиностроительных направлений обучения. Ульяновск: УлГТУ, 2000. 79 с.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ПРОЧНОСТЬ РЕЗЬБОВЫХ СОЕДИНЕНИЙ	4
1.1. Основные крепежные резьбы	4
1.2. Механические свойства резьбовых деталей	6
1.3. Маркировка классов прочности резьбовых деталей	8
1.4. Затяжка и стопорение резьбовых деталей	10
2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАСЧЕТНО- ГРАФИЧЕСКИХ РАБОТ	14
2.1. Резьбовые соединения с болтами, устанавливаемыми в отверстиях с зазором	14
2.2. Резьбовые соединения с болтами, устанавливаемыми в отверстиях без зазора	20
2.3. Контрольные вопросы	25
3. ЗАДАЧИ И ВАРИАНТЫ ЗАДАНИЙ	26
Приложение. Справочные таблицы	42
ЗАКЛЮЧЕНИЕ	59
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	59

Учебное издание

ТАРХАНОВ Виктор Иванович, САДРИЕВ Роберт Мансурович

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

Учебное пособие

Формат 60×84/16. Усл. печ. л. 3,53. Тираж 150 экз.

Ульяновский государственный технический университет 432027, г. Ульяновск, ул. Сев. Венец, д. 32.

Типография УлГТУ, 432027, г. Ульяновск, ул. Сев. Венец, д. 32.