

Single Layer Perceptron

Simple Deep Learning Model

First Neuromorphic Approach for solving problems

Simple and Intuitive

Basic of MLP / CNN / RNN ···

-Main Goal [Predict Rings of Abalone]

Before The Begin…

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Regression

: Regression analysis is a set of statistical processes for estimating the relationships between a dependent variableand one or more independent variables

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Mean Square Error

:MSE(Mean Square Error) used measure of the differences between values (sample or population values) predicted by a model or an estimator and the values observed.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
.

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Loss Function (Cost Function)

: Maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event. An optimization problem seeks to minimize a loss function

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Gradient Descent Algorithm

: Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Gradient Descent Algorithm

: Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

$$x_{i+1} = x_i - \alpha \frac{\partial f(x)}{\partial x}$$

Gradient Descent Algorithm

: Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

$$x_{i+1} = x_i - \alpha \frac{\partial f(x)}{\partial x}$$

Why Not?

$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$$

Gradient Descent Algorithm

: Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

$$x_{i+1} = x_i - \alpha \frac{\partial f(x)}{\partial x}$$

Why Not?

$$x_{i+1} = x_i - \alpha \frac{df(x)}{dx}$$

Complex

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Backward Propagation

: Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function.

Loss Function Gradient
$$=\frac{\partial L}{\partial x}$$

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Partial derivative

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial x} \to differential \ equation$$

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Hyperparameter

: hyperparameter is a parameter whose value is used to control the learning process. By contrast, the values of other parameters (typically node weights) are derived via training.

Keywords

Regression

Mean Square Error

Loss Function

Gradient Descent Algorithm

Backward Propagation

Partial derivative

Hyperparameter

Non-linear Information

Non-linear Information & One-hot Vector

Label Encoding

Food Name	Categorical #	Calories
Apple	1	95
Chicken	2	231
Broccoli	3	50

One Hot Encoding

Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Non-linear Information & One-hot Vector

-Main Goal [Predict Rings of Abalone]

Welcome Back!

-Main Goal [Predict Rings of Abalone]

-Main Goal [Predict Rings of Abalone]

- Implement

Abablone_exec

```
import numpy as np
import csv
import time

np.random.seed(1234)
def randomize(): np.random.seed(time.time())
```

```
RND_MEAN = 0
RND_STD = 0.0030
LEARNING_RATE = 0.001
```

- Implement

Abablone_exec

```
def abalone_exec(epoch_count=10, mb_size=10, report=1):
    load_abalone_dataset()
    init_model()
    train_and_test(epoch_count, mb_size, report)
```

- Implement

Abablone_exec

Init_model

```
def init_model():
    global weight, bias, input_cnt, output_cnt
    weight = np.random.normal(RND_MEAN, RND_STD,[input_cnt, output_cnt])
    bias = np.zeros([output_cnt])
```

- Implement

Abablone_exec

Init_model

Load_abalone_dataset

```
def load_abalone_dataset():
    with open('../../data/chapOI/abalone.csv') as csvfile:
        csvreader = csv.reader(csvfile)
        next(csvreader, None)
        rows = []
        for row in csvreader:
            rows.append(row)

global data, input_cnt, output_cnt
    input_cnt, output_cnt = 10, 1
    data = np.zeros([len(rows), input_cnt+output_cnt]))

for n, row in enumerate(rows):
    if row[0] == 'I': data[n, 0] = 1
    if row[0] == 'M': data[n, 1] = 1
    if row[0] == 'F': data[n, 2] = 1
    data[n, 3:] = row[1:]
```

- Implement

Abablone_exec

Init_model

Load_abalone_dataset

Train_and_test

```
def train_and_test(epoch_count, mb_size, report):
    step_count = arrange_data(mb_size)
    test_x, test_y = get_test_data()
    for epoch in range(epoch_count):
        losses, accs = [], []
        for n in range(step_count):
            train_x, train_y = get_train_data(mb_size, n)
            loss, acc = run_train(train_x, train_y)
            Tosses.append(Toss)
            accs.append(acc)
        if report > 0 and (epoch+1) % report == 0:
            acc = run_test(test_x, test_y)
            print('Epoch {}: loss={:5.3f}, accuracy={:5.3f}/{:5.3f}'. #
                  format(epoch+1, np.mean(losses), np.mean(accs), acc))
    final_acc = run_test(test_x, test_y)
    print('\|nFinal Test: final accuracy = \{:5.3f\}'.format(final_acc))
```

- Implement

Abablone_exec

Init_model

Load_abalone_dataset

Train_and_test

Arrange_data

Get_train_data

Get_test_data

```
def arrange_data(mb_size):
   global data, shuffle_map, test_begin_idx
   shuffle_map = np.arange(data.shape[0])
   np.random.shuffle(shuffle_map)
   step_count = int(data.shape[0] * 0.8) // mb_size
   test_begin_idx = step_count * mb_size
   return step_count
def get_test_data():
   global data, shuffle_map, test_begin_idx, output_cnt
   test_data = data[shuffle_map[test_begin_idx:]]
   return test_data[:, :-output_cnt], test_data[:, -output_cnt:]
def get_train_data(mb_size, nth):
   global data, shuffle_map, test_begin_idx, output_cnt
   if nth == 0:
       np.random.shuffle(shuffle_map[:test_begin_idx])
   train_data = data[shuffle_map[mb_size*nth:mb_size*(nth+1)]]
   return train_data[:, :-output_cnt], train_data[:, -output_cnt:]
```

- Implement

Abablone_exec

Init_model

Load_abalone_dataset

Train_and_test

Arrange_data

Get_train_data

Get_test_data

Run_train

Run_test

```
def run_train(x, y):
    output, aux_nn = forward_neuralnet(x)
    loss, aux_pp = forward_postproc(output, y)
    accuracy = eval_accuracy(output, y)

G_loss = 1.0
G_output = backprop_postproc(G_loss, aux_pp)
    backprop_neuralnet(G_output, aux_nn)

return loss, accuracy

def run_test(x, y):
    output, _ = forward_neuralnet(x)
    accuracy = eval_accuracy(output, y)
    return accuracy
```

- Implement

Abablone_exec

Forward_neuralnet

Backprop_neuralnet

```
def forward_neuralnet(x):
    global weight, bias
    output = np.matmul(x, weight) + bias
    return output, x

def backprop_neuralnet(G_output, x):
    global weight, bias
    g_output_w = x.transpose()

G_w = np.matmul(g_output_w, G_output)
    G_b = np.sum(G_output, axis=0)

weight -= LEARNING_RATE * G_w
bias -= LEARNING_RATE * G_b
```

- Implement

Abablone_exec Init_model Load_abalone_dataset Train_and_test Arrange_data Get_train_data Get_test_data Run_train Run_test Forward_neuralnet Backprop_neuralnet Forward_postproc Backprop postproc def forward_postproc(output, y): diff = output - y square = np.square(diff) loss = np.mean(square) return loss, diff def backprop_postproc(G_loss, diff): shape = diff.shape g_loss_square = np.ones(shape) / np.prod(shape) g_square_diff = 2 * diff $g_diff_output = 1$ G_square = g_loss_square * G_loss G_diff = g_square_diff * G_square G_output = g_diff_output * G_diff return G_output

- Implement Abablone_exec Init_model Load_abalone_dataset Train_and_test Arrange_data Get_train_data Get_test_data Run_train Run_test Forward_neuralnet Backprop_neuralnet Forward_postproc Backprop_postproc Eval_accuracy Forward_postproc Forward_neuralnet Eval_accuracy

- Implement

```
Epoch 9740: loss=4.750, accuracy=0.842/0.837
Epoch 9760: loss=4.750, accuracy=0.842/0.838
Epoch 9780: loss=4.750, accuracy=0.842/0.838
Epoch 9800: loss=4.750, accuracy=0.842/0.838
Epoch 9820: loss=4.750, accuracy=0.842/0.837
Epoch 9840: loss=4.750, accuracy=0.842/0.837
Epoch 9860: loss=4.750, accuracy=0.842/0.838
Epoch 9880: loss=4.750, accuracy=0.842/0.838
Epoch 9800: loss=4.749, accuracy=0.842/0.838
Epoch 9920: loss=4.749, accuracy=0.842/0.838
Epoch 9940: loss=4.749, accuracy=0.842/0.838
Epoch 9960: loss=4.749, accuracy=0.842/0.838
Epoch 9980: loss=4.749, accuracy=0.842/0.838
Epoch 9980: loss=4.749, accuracy=0.842/0.838
Epoch 10000: loss=4.749, accuracy=0.842/0.838
Epoch 10000: loss=4.749, accuracy=0.842/0.838
```

DeepUser Single Layer Perceptron

THANKS