Lab 12 - Objects

Goals

- Practice with objects
- Practice with instance variables
- Practice with instance method
- Understanding of Python input and output

Setup

- Create a new .py file in your desired directory
- Use the following naming convention

```
ITP115_l#_lastname_firstname
(replace # with this lab number)
```

• Your new file must begin with comments in the following format (replace the name and email with your actual information):

```
# Name
# ITP 115, Spring 2016
# Lab practical L^ (replace ^ with this lab number)
# USC email
```

Requirements

Your program must perform the following:

- Write a **Die** class and a **main** function that creates two **Die** objects
- In your **Die** class, have the following:
 - o Instance attributes / variables (to be assigned inside init)
 - mResult: holds result of dice roll
 - mNumSides: number of sides of dice
 - o Instance methods
 - __init__(numSides)
 - <u>Input arguments (1)</u>: **numSides**
 - the number of sides you would like your die to have; if no input argument is provided, a default value of 6 should be assigned
 - Output value: none
 - set mNumSides equal to numSides
 - set mResult equal to 0

- roll
 - Input arguments (0): none
 - Output value: the number the die rolled
 - Simulate "rolling" a die by choosing a random number from 1 through mNumSides
 - Store the number of the die rolled internally to mResult
- __str__
 - Input arguments (0): none
 - Output value: mResult as a string
 - Convert mResult to a string and return it
- You will write two additional functions (not part of the class)
 - o main()
 - create two Die objects
 - roll each die
 - Use <u>__str__</u> to print the numbers rolled by each die
 - pass each roll into findSum()
 - print the result of findSum() to the screen
 - o findSum(dieNum1, dieNum2)
 - Input arguments (2): the results of one dice rolled and a second dice rolled
 - Output: the sum dieNum1 and dieNum2

Sample Output

Output 1:

Do you want to use a default dice for your first dice (y/n)?: y Do you want to use a default dice for your second dice (y/n)?: y Dice 1 rolled a 3. Dice 2 rolled a 5. The sum of Dice 1 and Dice 2 is 8.

Output 2:

Do you want to use a default dice for your first dice (y/n)?: y Do you want to use a default dice for your second dice (y/n)?: n How many sides would you like for your second dice? 9 Dice 1 rolled a 4. Dice 2 rolled a 8. The sum of Dice 1 and Dice 2 is 12.

Output 3:

Do you want to use a default dice for your first dice (y/n)?: n How many sides would you like for your first dice? 8 Do you want to use a default dice for your second dice (y/n)?: y Dice 1 rolled a 7. Dice 2 rolled a 6. The sum of Dice 1 and Dice 2 is 13.

Output 4:

Do you want to use a default dice for your first dice (y/n)?: n
How many sides would you like for your first dice? 8
Do you want to use a default dice for your second dice (y/n)?: n
How many sides would you like for your second dice? 8
Dice 1 rolled a 7. Dice 2 rolled a 7.
The sum of Dice 1 and Dice 2 is 14.

Deliverables and Submission Instructions

- A compressed folder (zip file) containing you Python code. This can be done by:
 - a. Windows (you must find the folder on your computer—this can't be done within PyCharm):
 - i. Select your lab file
 - ii. Right click
 - iii. Send to ->
 - iv. Compressed (zipped) folder
 - v. Rename this folder with the following name:

ITP115 l# lastname firstname

(replace # with this assignment number)

- vi. Submit this zipped folder through Blackboard
- b. OSX (you must find the folder on your computer—this can't be done within PyCharm):
 - i. Select your lab file
 - ii. Right click
 - iii. Compress 1 item
 - iv. Rename this folder with the following name:

ITP115_l#_lastname_firstname

(replace # with this assignment number)

v. Submit this zipped folder through Blackboard