DM3

Pratik Sharma

2/27/2022

```
#install.packages('readxl')
#install.packages('readxl')
#install.packages("randomForest")
#install.packages("caret")
#install.packages("ROCR")
#install.packages("corrplot")
library(readxl)
library(tidyverse)
library(tidyr)
library(ggplot2)
library(dplyr)
library(corrplot)
library(apaTables)
library(rpart)
library(rpart.plot)
library(psych)
library(randomForest)
library(caret)
library(ROCR)
library(ISLR)
#install.packages('readxl')
#install.packages("randomForest")
#install.packages("caret")
#install.packages("ROCR")
#Selecting the Retention modeling.xlsx file from the directory
f<-file.choose()</pre>
Retention modeling <- read excel(f)</pre>
#Retention_modeling <- read_excel("Retention modeling.xlsx", sheet = 2)</pre>
##View(Retention_modeling)
rm1 <- Retention_modeling</pre>
ogdata <- Retention modeling
View(rm1)
rm1 <- rm1[-(2390:2392),,drop=FALSE]
ogdata <- ogdata[-(2390:2392),,drop=FALSE]
rm1$Retained.in.2012. <- as.factor(ifelse(rm1$Retained.in.2012. == 1, "Retain</pre>
ed" , "Not Retained"))
```

```
#For better visualization of the graph following changes were made to the SchoolGradeType Ele
mentary->Elementary", "E->E; "Middle->Middle", "M->M"; "High->High", "H->H rm1$Schoo
lGradeType <-
#"Undefined->Undefined", "U->U";"Middle->Undefined", "M->U";"Elementary->Middle", "E->M";"Mi
ddle->High", "M->H"; "Elementary->High", "E->H"; "Elementary->Undefined", "E->U
replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Elementary->Elementary", "E->E")
rm1$SchoolGradeType <-</pre>
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Middle->Middle", "M->M")
rm1$SchoolGradeType <-
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "High->High", "H->H")
rm1$SchoolGradeType <-
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Undefined->Undefined", "U->U")
rm1$SchoolGradeType <-
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Middle->Undefined", "M->U")
rm1$SchoolGradeType <-
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Elementary->Middle", "E->M")
rm1$SchoolGradeType <-
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Middle->High", "M->H")
rm1$SchoolGradeType <-</pre>
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Elementary->High", "E->H")
rm1$SchoolGradeType <-
  replace(rm1$SchoolGradeType,
          rm1$SchoolGradeType == "Elementary->Undefined", "E->U")
```

#The data frame was also modified to Replace the Income.Level (P1,P2,P3,P4) with P this was done to eliminate multiple subcategories for the Income level (A,B,C,D...P)Income Level A,B,C,D,E à Low , Income Level F,G,H,I,J,K,L à Medium ,Income Level M,N,O,P,Q àHigh

```
rm1$Is.Non.Annual. <- as.factor(ifelse(rm1$Is.Non.Annual. == 1, "Yes" , "No")
)
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "P1", "P")
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "P3", "P")
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "P4", "P")
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "P5", "P")
rm1$Income.Level <- replace(rm1$Income.Level == "Z", "Unclassified")</pre>
```

```
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "Q", "High"
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "P", "High"</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "0", "High"</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "N", "High"</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "M", "High"
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "L", "Mediu
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "K", "Mediu
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "J", "Mediu
m")
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "I", "Mediu</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "H", "Mediu</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "G", "Mediu
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "F", "Mediu</pre>
m")
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "E", "Low")</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "D",
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "C", "Low")</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "B", "Low")</pre>
rm1$Income.Level <- replace(rm1$Income.Level, rm1$Income.Level == "A", "Low")</pre>
#We found that Group. State column was majorly divided into two categories which was similar t
o the categorical variable Region and hence was removed from the analysis
# Group.State=AK,AL,AR,AZ,Bermuda,CA,CO,CT,FL,IA,ID,IL,IN,KS,MD,MN,MS,NC,NE,N
J,NM,
# NV, NY, OK, OR, PA, TN, TX, UT, VA, WA
# Group.State=GA, HI, KY, LA, MA, MI, MO, NH, OH, PR, SC, SD, WI
```

#Data cleaning of the data set all 56 variables

#We found out that the Date Columns did not show significant relation with the Target Variable, and it made more sense to work with the duration column

removing redundant columns with dates and irrelevant info.

```
rm1 <- rm1[,-c(1 ,9 ,10, 11,12 ,17,18,21,37,39,40)]
rm1 <- rm1[,-c(4)]
##data.frame(colnames(rm1)) #Returns column index numbers in table format,df=
DataFrame name</pre>
```

Removed ID, Departure.Date, Return.Date, Deposit.Date,

#Special.Pay, Early.RPL, Latest.RPL

#A MODE function was created to calculate the mode for replacing the NA values for numerical variables and replacing the most occurring value for Categorical values

#Writing functions for mode

```
find_mode <- function(x)
{
    u <- unique(x)
    tab <- tabulate(match(x, u))
    u[tab == max(tab)]
}

#Checking NA/Null and replacing with with mean/mode - > from.grade

sum((rm1$From.Grade) == 'NA')

## [1] 127

modeFG <- find_mode(rm1$From.Grade)
    rm1$From.Grade <- replace(rm1$From.Grade,(rm1$From.Grade) == 'NA',modeFG)

#Checking NA/Null and replacing with with mean/mode - > To grade

sum((rm1$To.Grade) == 'NA')

## [1] 150

modeTG <- find_mode(rm1$To.Grade)
    rm1$To.Grade <- replace(rm1$To.Grade,((rm1$To.Grade) == 'NA'),modeTG)</pre>
```

```
###Data Cleaning
#Checking NA/Null and replacing with with mean/mode - > Travel.type
sum((rm1$Travel.Type) == 'N')
## [1] 2
modeTT <- find mode(rm1$Travel.Type)</pre>
rm1$Travel.Type <- replace(rm1$Travel.Type , rm1$Travel.Type == 'N' , modeTT)</pre>
#N replaced with mode
sum(is.na(rm1$Poverty.Code))
## [1] 599
modepc <- find_mode(rm1$Poverty.Code)</pre>
rm1$Poverty.Code <- replace(rm1$Poverty.Code,is.na(rm1$Poverty.Code)==TRUE,</pre>
                             modepc)
sum((rm1$CRM.Segment) == 'NA')
## [1] 4
modecrms <- find_mode(rm1$CRM.Segment)</pre>
rm1$CRM.Segment <- replace(rm1$CRM.Segment,(rm1$CRM.Segment) == 'NA',modecrms
)
sum(is.na(rm1$MDR.Low.Grade))
## [1] 68
modemlg <- find_mode(rm1$MDR.Low.Grade)</pre>
rm1$MDR.Low.Grade <- replace(rm1$MDR.Low.Grade,is.na(rm1$MDR.Low.Grade)==TRUE</pre>
                              modemlg)
sum(is.na(rm1$MDR.High.Grade))
## [1] 0
sum((rm1$MDR.High.Grade) == 'NA')
```

```
## [1] 68
modemhg <- find mode(rm1$MDR.High.Grade)</pre>
rm1$MDR.High.Grade <- replace(rm1$MDR.High.Grade,rm1$MDR.High.Grade== 'NA',
                               modemhg)
sum(is.na(rm1$Total.School.Enrollment))
## [1] 91
meantse <- round(mean(rm1$Total.School.Enrollment,na.rm=TRUE))</pre>
rm1$Total.School.Enrollment <-
  replace(rm1$Total.School.Enrollment,
          is.na(rm1$Total.School.Enrollment)==TRUE,meantse)
sum(is.na(rm1$Income.Level))
## [1] 62
modeil <- find mode(rm1$Income.Level)</pre>
rm1$Income.Level <- replace(rm1$Income.Level,is.na(rm1$Income.Level)==TRUE,mo
deil)
sum((rm1$DifferenceTraveltoFirstMeeting) == 'NA')
## [1] 337
meandtfm <-
  round(mean(as.numeric(rm1$DifferenceTraveltoFirstMeeting), na.rm=TRUE))
rm1$DifferenceTraveltoFirstMeeting <-</pre>
  replace(rm1$DifferenceTraveltoFirstMeeting,
                             rm1$DifferenceTraveltoFirstMeeting == 'NA', meandt
fm)
sum(is.na(rm1$DifferenceTraveltoLastMeeting))
## [1] 0
sum((rm1$DifferenceTraveltoLastMeeting) == 'NA')
## [1] 337
meandtlm <- round(mean(as.numeric(rm1$DifferenceTraveltoLastMeeting),na.rm=TR</pre>
rm1$DifferenceTraveltoLastMeeting <- replace(rm1$DifferenceTraveltoLastMeetin</pre>
g,
                             rm1$DifferenceTraveltoLastMeeting == 'NA', meandtf
m)
```

```
sum(is.na(rm1$FPP.to.School.enrollment))
## [1] 0
sum((rm1$FPP.to.School.enrollment) == 'NA')
## [1] 91
meanftse <- round(mean(as.numeric(rm1$FPP.to.School.enrollment),na.rm=TRUE))</pre>
rm1$FPP.to.School.enrollment <- replace(rm1$FPP.to.School.enrollment,</pre>
                            rm1$FPP.to.School.enrollment == 'NA',meanftse)
rm1$SchoolSizeIndicator <-
  sapply(rm1$SchoolSizeIndicator, as.character, na.rm=TRUE)
sum(is.na(rm1$SchoolSizeIndicator))
## [1] 91
modessi <-
  find_mode((rm1$SchoolSizeIndicator))
rm1$SchoolSizeIndicator <-
  replace(rm1$SchoolSizeIndicator,is.na(rm1$SchoolSizeIndicator) == TRUE,mode
ssi)
unique(rm1$SchoolSizeIndicator)
## [1] "L" "S-M" "M-L" "S"
```

Cpoy of frame for RF

```
rm2 <- rm1
rm1$From.Grade <- as.factor(rm1$From.Grade)
rm1$To.Grade <- as.factor(rm1$To.Grade)
rm1$Travel.Type <- as.factor(rm1$Travel.Type)

rm1$Poverty.Code <- as.factor(rm1$Poverty.Code)
rm1$Region <- as.factor(rm1$Region)
rm1$CRM.Segment <- as.factor(rm1$CRM.Segment)
rm1$School.Type <- as.factor(rm1$School.Type)
rm1$MDR.Low.Grade <- as.factor(rm1$MDR.Low.Grade)
rm1$MDR.High.Grade <- as.factor(rm1$Income.Level)
rm1$SPR.Product.Type <- as.factor(rm1$SPR.Product.Type)
rm1$SPR.New.Existing <- as.factor(rm1$SPR.New.Existing)

rm1$DifferenceTraveltoFirstMeeting <- as.numeric(rm1$DifferenceTraveltoFirstMeeting)</pre>
```

```
rm1$DifferenceTraveltoLastMeeting <- as.numeric(rm1$DifferenceTraveltoLastMee
ting)
rm1$SchoolGradeTypeLow <- as.factor(rm1$SchoolGradeTypeLow)
rm1$SchoolGradeTypeHigh <- as.factor(rm1$SchoolGradeTypeHigh)
rm1$SchoolGradeType <- as.factor(rm1$SchoolGradeType)
rm1$GroupGradeTypeLow <- as.factor(rm1$GroupGradeTypeLow)
rm1$GroupGradeTypeHigh <- as.factor(rm1$GroupGradeTypeHigh)
rm1$GroupGradeType <- as.factor(rm1$GroupGradeType)
rm1$DepartureMonth <- as.factor(rm1$DepartureMonth)
rm1$MajorProgramCode <- as.factor(rm1$MajorProgramCode)
rm1$FPP.to.School.enrollment <- as.numeric(rm1$FPP.to.School.enrollment)
rm1$MajorProgramCode <- as.factor(rm1$MajorProgramCode)
rm1$SchoolSizeIndicator <- as.factor(rm1$SchoolSizeIndicator)</pre>
```

#Plotting the graphs of the analysis we performed for various num and categorical variables

• Second Graph shows that for Is.Non.Annual \Rightarrow No i.e. the chances of Retaining STC is more if the program is Annual

• The non-retained schools are maximum for Small School Size Indicators.

ANALYSIS:

Group that has travelled with STC before has more chances of Retention as compared to the ones which has not travelled

Analysis

Income Level High and Medium have the better retention as compared to Low and Unclassified.

Enrollment vs Trips retained

Retained.in.2012.

```
p7
## $stats
        [,1]
               [,2]
##
## [1,]
         36
               19.0
## [2,]
         300
              424.5
## [3,]
         535 648.0
## [4,]
        752 850.0
## [5,] 1425 1486.0
##
## $n
## [1]
       938 1451
##
## $conf
##
            [,1]
                     [,2]
## [1,] 511.6818 630.3509
## [2,] 558.3182 665.6491
##
## $out
## [1] 1688 2159 1500 2778 1853 1602 2098 1606 1470 2850 2050 3100 2300 1559
1558
## [16] 2175 2000 2441 1785 3000 2169 2700 2765 2169 1800 1769 3000 1563 2120
2165
## [31] 2520 2235 2087 2375 2351 2000 1871 1606 1844 1693 2393 1555 1590 1514
## [46] 2127 3600 3200 3200 1693 1600 1538 1611 1554 1625 2200 1700 3990 2000
1500
```

```
## [61] 1500 1974 3600 1494 1700 1528 1587 1500 3700 1497 1500 1558 1712 1672
1500
## [76] 2300 2168
##
## $group
2 2 2
## [77] 2
##
## $names
## [1] "Not Retained" "Retained"
Retained = rm1[which(rm1[,44]=='Retained'),]
Not_Retained = rm1[which(rm1[,31]=="Not Retained"),]
plot(rm1[,44],main="Retention Rate",ylab="Number",
 xlab= "Target Variable Type")
```

Retention Rate

Target Variable Type

```
#Finding the correlation
# plotting correlation between numeric variables
#table(is.na(rmNew))
#is.na(rmNew)
rmcorr2 <- select_if(rm1, is.numeric)</pre>
```

```
rmcorr3 <- as.numeric(rm1$Retained.in.2012.)
rmcorr2 <- cbind(rmcorr2,rmcorr3)

df.cor = cor(rmcorr2)
corrplot(df.cor)</pre>
```


apa.cor.table(rmcorr2, "APA correlation Table3.doc")

Below are the screenshots from the APA table that was generated for all the numerical variables

Table XX

Means, standard deviations, and correlations with confidence intervals

Variable	M	SD	1	2	3	4	5	6	7
1. Days	4.58	1.43							
2. Tuition	1615.22	645.10	.77** [.76, .79]						
3. FRP.Active	16.87	16.94	04 [08, .00]	23** [26,19]					
4. FRP.Cancelled	3.31	3.68	.06**	01	.46**				
TRI Cancelled			[.02, .10]	[05, .03]	[.43, .49]				
5. FRP.Take.up.per cent.	0.57	0.23	.07**	.18**	.27**	.18**			
			[.03, .11]	[.14, .21]	[.23, .31]	[.14, .22]			
6. Cancelled.Pax	4.81	4.66	.05** [.01, .09]	03 [07, .01]	.38** [.35, .42]	.85** [.84, .86]	.05** [.01, .09]		
7. Total.Discount.P ax	2.95	2.88	00	22**	.70**	.32**	10**	.35**	
			[04, .04]	[26,18]	[.68, .72]	[.29, .36]	[13,06]	[.31, .38]	
8. Parent.Meeting.	0.86	0.35	.14**	.16**	.07**	.13**	.18**	.10**	.03

Flag			[.10, .18]	[.12, .20]	[.03, .11]	[.09, .17]	[.14, .22]	[.06, .14]	[01, .07]		
9. Total.School.En rollment	648.34	403.81	.13**	.14**	.09**	.13**	.05*	.15**	.10**	.06**	
Tomicik			[.09, .17]	[.10, .18]	[.05, .13]	[.09, .17]	[.01, .09]	[.11, .19]	[.06, .14]	[.02, .10]	
10. EZ.Pay.Take.Up .Rate	0.21	0.16	.07**	.10**	.11**	.11**	.26**	.00	02	.14**	
Raic			[.03, .11]	[.06, .14]	[.07, .15]	[.07, .15]	[.23, .30]	[04, .04]	[06, .02]	[.10, .18]	
11. School.Sponsor	0.11	0.31	22**	25**	.08**	03	20**	03	.05**	16**	
			[26,18]	[28,21]	[.04, .12]	[07, .01]	[24,16]	[07, .01]	[.01, .09]	[20,12]	
12. FPP	31.30	29.13	12** [16,08]	36** [40,33]	.82** [.80, .83]	.34** [.31, .38]	15** [19,11]	.36** [.32, .39]	.84** [.83, .85]	03 [07, .01]	
13. Total.Pax	34.25	31.59	11** [15,07]	36** [39,32]	.82** [.80, .83]	.34** [.31, .38]	15** [18,11]	.36** [.32, .39]	.87** [.86, .88]	02 [06, .02]	
14. NumberOfMeeti ngswithParents	1.10	0.61	.13**	.15**	.00	.11**	.14**	.09**	02	.73**	
ngawiun arenta			[.09, .17]	[.11, .19]	[04, .04]	[.07, .15]	[.10, .18]	[.05, .13]	[06, .02]	[.71, .75]	
15. DifferenceTrave ItoFirstMeeting	262.07	73.70	.08**	.12**	11**	.03	.06**	.04	11**	.00	
normanyleeting			[.04, .12]	[.08, .15]	[15,07]	[01, .07]	[.01, .09]	[00, .08]	[15,07]	[04, .04]	

16. DifferenceTrave ItoLastMeeting	233.64	51.02	.01	.05*	11** [15,07]	00 [04, .04]	.02	.02	10** [14,07]	23** [26,19]
4.5			[102, 102]	[.02, .05]	[.25, .57]	[,]	[.02, .00]	[.02, .00]	[,]	[.20, .25]
17. SingleGradeTrip Flag	0.56	0.50	12**	18**	.21**	.06**	06**	.02	.19**	05*
1 lag			[16,08]	[22,14]	[.17, .25]	[.02, .10]	[10,02]	[02, .06]	[.15, .22]	[09,01]
18.										
FPP.to.School.e nrollment	0.06	0.08	11**	27**	.39**	.09**	13**	.10**	.41**	06**
monnent			[15,07]	[30,23]	[.35, .42]	[.05, .13]	[17,09]	[.06, .14]	[.38, .45]	[10,02]
19. FPP.to.PAX	0.90	0.05	17** [21,13]	29** [33,26]	.26** [.22, .30]	.05* [.00, .09]	11** [15,07]	.03 [01, .07]	03 [07, .01]	07** [11,03]
20. Num.of.Non_FP P.PAX	2.95	2.88	00	22**	.70**	.32**	10**	.35**	1.00**	.03
P.PAX			[04, .04]	[26,18]	[.68, .72]	[.29, .36]	[13,06]	[.31, .38]	[1.00, 1.00]	[01, .07]
21. rmcorr3	1.61	0.49	05* [09,01]	12** [16,08]	.25** [.21, .29]	.07** [.03, .11]	02 [06, .02]	.05* [.01, .09]	.22** [.18, .25]	02 [06, .02]

Note. M and SD are used to represent mean and standard deviation, respectively. Values in square brackets indicate the 95% confidence interval for each correlation. The confidence interval is a plausible range of population correlations that could have caused the sample correlation (Cumming, 2014). * indicates p < .05. ** indicates p < .01.

#Decision Tree

```
#Data partitioning into train and Test data
```

We have created a function that calculates all the evaluation matrices and gives the result in one go

```
###Functions for Evaluation metrics
EvaluationMatrix <- function(TP,FP,FN,TN)
{
Accuracy <- (TP+TN)/(TP+TN+FP+FN)
Precision <- TP/(TP + FP)
Recall <- TP/(TP +FN)
Fscore <- 2*(Recall * Precision) / (Recall + Precision)
FPR <- F/(TN+FP)

EVM <-cbind(Accuracy,Precision,Recall,Fscore,FPR)
}
#This is the decision tree plotted for all the other variables vs target variable
## Decision Tree 1

set.seed(35)</pre>
```

```
indx <- sample(2, nrow(rm1), replace = T, prob = c(0.6, 0.4))
train <- rm1[indx == 1 , ]
test \leftarrow rm1[indx == 2,]
#nrow(train)/nrow(rm1)
#nrow(test)/nrow(rm1)
myFormula = Retained.in.2012. ~ .
myTree <- rpart(myFormula , data = train)</pre>
print(myTree)
## n= 1398
##
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
##
    1) root 1398 555 Retained (0.39699571 0.60300429)
      2) SingleGradeTripFlag< 0.5 618 216 Not Retained (0.65048544 0.34951456
##
)
        4) Is.Non.Annual.=Yes 190 24 Not Retained (0.87368421 0.12631579) *
##
        5) Is.Non.Annual.=No 428 192 Not Retained (0.55140187 0.44859813)
##
##
         10) SPR.New.Existing=NEW 249 68 Not Retained (0.72690763 0.27309237
)
           20) FPP< 21.5 174 34 Not Retained (0.80459770 0.19540230) *
##
##
           21) FPP>=21.5 75 34 Not Retained (0.54666667 0.45333333)
             42) DepartureMonth=April, June, March 61 21 Not Retained (0.65573
770 0.34426230)
##
               84) CRM.Segment=1,10,2,4,6,8 45 10 Not Retained (0.77777778 0
.2222222) *
               85) CRM.Segment=5,7 16 5 Retained (0.31250000 0.68750000) *
##
##
             43) DepartureMonth=February, May 14
                                                  1 Retained (0.07142857 0.92
857143) *
##
         11) SPR.New.Existing=EXISTING 179 55 Retained (0.30726257 0.6927374
3) *
      3) SingleGradeTripFlag>=0.5 780 153 Retained (0.19615385 0.80384615)
##
##
        6) Is.Non.Annual.=Yes 33 6 Not Retained (0.81818182 0.18181818) *
        7) Is.Non.Annual.=No 747 126 Retained (0.16867470 0.83132530) *
##
rpart.plot(myTree)
```



```
# prob of positive and negative class
##predict(myTree, data = train)

# finding the error rate for train data
pred_train1 <- predict(myTree, data = train , type = "class")
mean(train$Retained.in.2012. != pred_train1)

## [1] 0.1866953

##length(pred_train1)
##length(rm1$Retained.in.2012.)

# finding the error rate for test data
pred_test1 <- predict( myTree, data1 = test , type = "class")
mean(test$Retained.in.2012. != pred_test1)

## [1] 0.4484979

##view(pred_test1)</pre>
```

```
## Evaluation Matrix
DTMatrix1 <-table(actual=as.factor(train$Retained.in.2012.), pred = pred test
1)
DTMatrix1
##
                 pred
## actual
                  Not Retained Retained
##
     Not Retained
                           368
                                    187
                                    769
##
     Retained
                            74
FinalEVM1 <- EvaluationMatrix(DTMatrix1[1,1], DTMatrix1[2,1],DTMatrix1[1,2],</pre>
                              DTMatrix1[2,2])
FinalEVM1
        Accuracy Precision Recall
## [1,] <mark>0.8133047</mark> 0.8325792 <mark>0.6630631</mark> 0.7382146
summary(myTree)
## Call:
## rpart(formula = myFormula, data = train)
##
     n = 1398
##
             CP nsplit rel error
                                    xerror
## 1 0.33513514
                     0 1.0000000 1.0000000 0.03296201
## 2 0.06216216
                     1 0.6648649 0.6648649 0.02969438
## 3 0.03783784
                     3 0.5405405 0.5405405 0.02765765
## 4 0.01081081
                     4 0.5027027 0.5171171 0.02721143
## 5 0.01000000
                     7 0.4702703 0.5261261 0.02738561
##
## Variable importance
## SingleGradeTripFlag
                               From.Grade
                                                 Is.Non.Annual.
                                                                   SPR.New.Exi
sting
                    25
##
                                         16
                                                             16
13
##
       SchoolGradeType SchoolGradeTypeHigh
                                                      Total.Pax
FPP
##
                                                              2
2
##
           CRM.Segment
                             Program.Code
                                                 DepartureMonth
                                                                         FRP.A
ctive
##
                     2
                                          2
                                                              1
    Num.of.Non FPP.PAX Total.Discount.Pax
##
                     1
##
## Node number 1: 1398 observations, complexity param=0.3351351
     predicted class=Retained
                                   expected loss=0.3969957 P(node) =1
##
##
  class counts: 555 843
```

```
##
      probabilities: 0.397 0.603
##
     left son=2 (618 obs) right son=3 (780 obs)
     Primary splits:
##
##
         SingleGradeTripFlag < 0.5</pre>
                                        to the left, improve=142.34810, (0
missing)
##
         Is.Non.Annual.
                                       RL, improve=116.46010, (0 missing)
                             splits as
                                       LLLLRLLLRL, improve=110.41770, (0 mis
##
         From.Grade
                             splits as
sing)
         FPP
                             < 23.5
                                        to the left, improve= 65.86060, (0
##
missing)
                             splits as RL, improve= 65.40623, (0 missing)
##
         SPR.New.Existing
##
     Surrogate splits:
                             splits as LLRLRLLLRL, agree=0.845, adj=0.650, (
##
         From.Grade
0 split)
         SchoolGradeType
                             splits as RLLLLLRLL, agree=0.718, adj=0.362, (
##
0 split)
         SchoolGradeTypeHigh splits as
                                                   agree=0.695, adj=0.309, (
##
                                       RLRL,
0 split)
                                                   agree=0.670, adj=0.254, (
##
         Is.Non.Annual.
                             splits as
                                        RL,
0 split)
                                                   agree=0.666, adj=0.244, (
##
         SPR.New.Existing
                            splits as
                                        RL,
0 split)
##
## Node number 2: 618 observations,
                                       complexity param=0.06216216
     predicted class=Not Retained expected loss=0.3495146 P(node) =0.442060
1
##
      class counts:
                      402
                             216
##
      probabilities: 0.650 0.350
##
     left son=4 (190 obs) right son=5 (428 obs)
##
     Primary splits:
##
         Is.Non.Annual.
                                 splits as
                                            RL, improve=27.33455, (0 missing)
##
         MDR.Low.Grade
                                 splits as
                                           -RLLLLRRLLLL, improve=16.20208, (
0 missing)
         GroupGradeType
                                splits as LLLLRLLRRLLLR, improve=16.15899,
##
(0 missing)
         GroupGradeTypeLow
                                splits as LLLRLR, improve=14.99374, (0 miss
##
ing)
##
         Total.School.Enrollment < 320.5
                                            to the left, improve=14.81133,
(0 missing)
    Surrogate splits:
##
##
         Program.Code
                                        RR, agree=0.709, adj=0.053, (0 split)
         DifferenceTraveltoFirstMeeting < 435</pre>
                                                   to the right, agree=0.709
, adj=0.053, (0 split)
         School.Sponsor
                                                   to the right, agree=0.707
                                        < 0.5
##
, adj=0.047, (0 split)
##
        MajorProgramCode
                                       splits as LRRR, agree=0.704, adj=0.0
37, (0 split)
         FPP.to.School.enrollment
                                       < 0.1981229 to the right, agree=0.699
, adj=0.021, (0 split)
```

```
##
## Node number 3: 780 observations,
                                        complexity param=0.03783784
     predicted class=Retained
                                   expected loss=0.1961538 P(node) =0.557939
##
9
##
       class counts:
                       153
                             627
##
      probabilities: 0.196 0.804
     left son=6 (33 obs) right son=7 (747 obs)
##
##
     Primary splits:
         Is.Non.Annual.
##
                                       RL, improve=26.66477, (0 missing)
                            splits as
         FPP
##
                            < 21.5
                                        to the left,
                                                       improve=22.57009, (0 mi
ssing)
         Total.Pax
                            < 23.5
                                        to the left,
                                                       improve=21.80439, (0 mi
##
ssing)
##
         FRP.Active
                            < 16.5
                                        to the left,
                                                       improve=16.93157, (0 mi
ssing)
                                        to the left, improve=16.51989, (0 mi
##
         Total.Discount.Pax < 2.5
ssing)
     Surrogate splits:
##
##
         Program.Code splits as RRLRRRRRR-RRRRRRR-RR---RRRRR, agree=0.959, a
dj=0.03, (0 split)
##
## Node number 4: 190 observations
##
     predicted class=Not Retained expected loss=0.1263158 P(node) =0.135908
4
##
       class counts:
                       166
                              24
##
      probabilities: 0.874 0.126
##
## Node number 5: 428 observations,
                                       complexity param=0.06216216
##
     predicted class=Not Retained expected loss=0.4485981 P(node) =0.306151
6
##
       class counts:
                       236
                             192
      probabilities: 0.551 0.449
##
##
     left son=10 (249 obs) right son=11 (179 obs)
     Primary splits:
##
##
         SPR.New.Existing
                                       RL, improve=36.67776, (0 missing)
                            splits as
         FPP
                                        to the left, improve=21.34238, (0 mi
##
                            < 21.5
ssing)
##
         Total.Pax
                            < 23.5
                                        to the left,
                                                       improve=21.34238, (0 mi
ssing)
         FRP.Active
                            < 19.5
                                        to the left,
                                                       improve=19.84926, (0 mi
##
ssing)
##
         Total.Discount.Pax < 3.5
                                        to the left,
                                                       improve=16.35588, (0 mi
ssing)
     Surrogate splits:
##
         Program.Code splits as LLR--RLRRLLLR-LLRRRRLLLL-LLL, agree=0.638, a
##
dj=0.134, (0 split)
##
         CRM. Segment splits as LLLLRLRLLLL, agree=0.626, adj=0.106, (0 spli
t)
##
         FRP.Active
                      < 15.5
                                  to the left, agree=0.624, adj=0.101, (0 sp
lit)
```

```
##
         Total.Pax < 34.5
                                  to the left, agree=0.624, adj=0.101, (0 sp
lit)
         FPP
                                  to the left, agree=0.621, adj=0.095, (0 sp
##
                      < 31.5
lit)
##
## Node number 6: 33 observations
     predicted class=Not Retained expected loss=0.1818182 P(node) =0.023605
15
##
       class counts:
                        27
##
      probabilities: 0.818 0.182
##
## Node number 7: 747 observations
     predicted class=Retained
                                   expected loss=0.1686747 P(node) =0.534334
##
8
##
       class counts:
                       126
                             621
##
      probabilities: 0.169 0.831
##
## Node number 10: 249 observations, complexity param=0.01081081
     predicted class=Not Retained expected loss=0.2730924 P(node) =0.178111
##
6
##
       class counts:
                       181
                              68
      probabilities: 0.727 0.273
##
##
     left son=20 (174 obs) right son=21 (75 obs)
##
     Primary splits:
##
         FPP
                                                    to the left,
                                                                  improve=6.9
                                        < 21.5
73461, (0 missing)
                                        < 25.5
                                                    to the left,
         Total.Pax
                                                                  improve=6.9
40597, (0 missing)
                                                    to the left, improve=6.3
##
         FRP.Active
                                        < 22
69250, (0 missing)
         DifferenceTraveltoFirstMeeting < 244.5
                                                   to the right, improve=6.0
72753, (0 missing)
                                        splits as RLL--LRRRR, improve=5.9496
##
         To.Grade
07, (0 missing)
    Surrogate splits:
##
         Total.Pax
                            < 23.5
##
                                        to the left, agree=0.996, adj=0.987,
(0 split)
##
         FRP.Active
                            < 12.5
                                        to the left, agree=0.867, adj=0.560,
(0 split)
         Total.Discount.Pax < 2.5
                                        to the left, agree=0.855, adj=0.520,
##
(0 split)
##
         Num.of.Non FPP.PAX < 2.5
                                        to the left, agree=0.855, adj=0.520,
(0 split)
                            splits as LR-, agree=0.779, adj=0.267, (0 split)
##
         Travel.Type
##
## Node number 11: 179 observations
##
     predicted class=Retained
                                   expected loss=0.3072626 P(node) =0.128040
1
##
       class counts:
                        55
                             124
      probabilities: 0.307 0.693
```

```
##
## Node number 20: 174 observations
     predicted class=Not Retained expected loss=0.1954023 P(node) =0.124463
##
5
##
      class counts:
                      140
                             34
##
      probabilities: 0.805 0.195
##
## Node number 21: 75 observations,
                                      complexity param=0.01081081
     predicted class=Not Retained expected loss=0.4533333 P(node) =0.053648
07
##
                       41
                             34
      class counts:
##
      probabilities: 0.547 0.453
     left son=42 (61 obs) right son=43 (14 obs)
##
##
     Primary splits:
##
         DepartureMonth
                                 splits as LR-LLR, improve=7.775207, (0 mis
sing)
         Total.School.Enrollment < 296
##
                                             to the left, improve=6.842705,
(0 missing)
         FPP.to.School.enrollment < 0.1140436 to the right, improve=5.623069,
##
(0 missing)
                                 splits as LR---RRL--RL--LL-----RR, im
         Program.Code
prove=5.180022, (0 missing)
         From.Grade
                                 splits as LL-LLLRLRL, improve=4.425844, (0
##
missing)
     Surrogate splits:
##
##
         Poverty.Code
                       splits as -LLLLR, agree=0.840, adj=0.143, (0 split)
##
                       splits as LLRL, agree=0.840, adj=0.143, (0 split)
         School.Type
##
        To.Grade
                       splits as LLL--L-RLL, agree=0.827, adj=0.071, (0 spl
it)
        Cancelled.Pax < 1.5
                                   to the right, agree=0.827, adj=0.071, (0
##
split)
        MDR.High.Grade splits as -L-L---LLLLR, agree=0.827, adj=0.071, (0 s
##
plit)
## Node number 42: 61 observations,
                                      complexity param=0.01081081
     predicted class=Not Retained expected loss=0.3442623 P(node) =0.043633
##
76
##
      class counts:
                       40
                             21
##
     probabilities: 0.656 0.344
##
     left son=84 (45 obs) right son=85 (16 obs)
##
     Primary splits:
                                 splits as LL-L-LRLRL-, improve=5.110428, (
##
         CRM.Segment
0 missing)
         Total.School.Enrollment < 296
                                             to the left, improve=4.714897,
##
(0 missing)
##
         GroupGradeType
                                 splits as --LL-LRLRLLLR, improve=4.198992,
(0 missing)
         FPP.to.School.enrollment < 0.1439773 to the right, improve=3.915984,
##
(0 missing)
   FRP.Cancelled
                                 < 5.5 to the left, improve=3.892203,
```

```
(0 missing)
    Surrogate splits:
##
##
         GroupGradeTypeLow
                                 splits as LLLLLR, agree=0.836, adj=0.375,
(0 split)
         GroupGradeTypeHigh
                                            LLLR, agree=0.836, adj=0.375, (0
##
                                 splits as
split)
         GroupGradeType
                                  splits as --LL-LLLLLLR, agree=0.836, adj=
##
0.375, (0 split)
         FPP.to.School.enrollment < 0.0040625 to the right, agree=0.836, adj=
0.375, (0 split)
                                  splits as RR---LLR--LL---LR, ag
         Program.Code
ree=0.820, adj=0.312, (0 split)
## Node number 43: 14 observations
     predicted class=Retained
                                   expected loss=0.07142857 P(node) =0.01001
##
431
##
      class counts:
                         1
                              13
##
      probabilities: 0.071 0.929
##
## Node number 84: 45 observations
##
     predicted class=Not Retained expected loss=0.2222222 P(node) =0.032188
84
##
      class counts:
                        35
                              10
##
      probabilities: 0.778 0.222
##
## Node number 85: 16 observations
     predicted class=Retained
                                   expected loss=0.3125 P(node) =0.01144492
##
##
      class counts:
                         5
                              11
     probabilities: 0.312 0.688
```

Decision tree with numeric variables

```
set.seed(35)
indx <- sample(2, nrow(rm1), replace = T, prob = c(0.6, 0.4))
train <- rm1[indx == 1 , ]</pre>
test \leftarrow rm1[indx == 2 , ]
myFormulanum = Retained.in.2012. ~ Tuition + FRP.Active +School.Sponsor +
  FPP+ Total.Pax + SingleGradeTripFlag + Total.Discount.Pax
myTreenum <- rpart(myFormulanum , data = train ,method="class")</pre>
print(myTreenum)
## n= 1398
## node), split, n, loss, yval, (yprob)
         * denotes terminal node
##
##
## 1) root 1398 555 Retained (0.3969957 0.6030043)
     2) SingleGradeTripFlag< 0.5 618 216 Not Retained (0.6504854 0.3495146)
      4) Total.Discount.Pax< 3.5 508 155 Not Retained (0.6948819 0.3051181)
```

```
*
## 5) Total.Discount.Pax>=3.5 110 49 Retained (0.4454545 0.5545455) *
## 3) SingleGradeTripFlag>=0.5 780 153 Retained (0.1961538 0.8038462) *
rpart.plot(myTreenum)
```



```
predict(myTreenum, data = train)
##
        Not Retained Retained
## 1
           0.1961538 0.8038462
## 2
           0.1961538 0.8038462
           0.4454545 0.5545455
## 3
## 4
           0.6948819 0.3051181
           0.6948819 0.3051181
## 5
## 6
           0.1961538 0.8038462
           0.1961538 0.8038462
## 7
## 8
           0.1961538 0.8038462
## 9
           0.1961538 0.8038462
           0.1961538 0.8038462
## 10
## 11
           0.1961538 0.8038462
## 12
           0.1961538 0.8038462
## 13
           0.1961538 0.8038462
## 14
           0.1961538 0.8038462
## 15
           0.1961538 0.8038462
## 16
           0.4454545 0.5545455
## 17
           0.4454545 0.5545455
```

```
## 18
           0.1961538 0.8038462
##p <- predict(myTreenum,rm1,type="class")</pre>
# finding the error rate for train data
pred_trainnum <- predict( myTreenum , data = train , type = "class")</pre>
mean(train$Retained.in.2012. != pred trainnum)
## [1] 0.2553648
# finding the error rate for test data
pred testnum <- predict( myTreenum , data1 = test , type = "class")</pre>
mean(test$Retained.in.2012. != pred_testnum)
## [1] 0.4613734
## Levels: Not Retained Retained
## Evaluation Matrix
DTMatrixnum <- table(actual=train$Retained.in.2012., pred = pred_testnum)</pre>
DTMatrixnum
##
                 pred
## actual
                  Not Retained Retained
##
     Not Retained
                           353
                                     202
##
     Retained
                           155
                                     688
FinalEVMnum <-
  EvaluationMatrix(DTMatrixnum[1,1],DTMatrixnum[2,1],
                   DTMatrix1[1,2], DTMatrixnum[2,2])
FinalEVMnum
         Accuracy Precision
                                Recall
## [1,] 0.7527115 0.6948819 0.6537037 0.6736641
summary(myTreenum)
## Call:
## rpart(formula = myFormulanum, data = train, method = "class")
##
     n = 1398
##
             CP nsplit rel error
                                     xerror
                                                  xstd
                     0 1.0000000 1.0000000 0.03296201
## 1 0.33513514
## 2 0.02162162
                     1 0.6648649 0.6648649 0.02969438
## 3 0.01000000
                     2 0.6432432 0.6702703 0.02977135
## Variable importance
## SingleGradeTripFlag
                                  Total.Pax
                                                             FPP Total.Discoun
t.Pax
```

```
##
                    60
                                         11
                                                             11
8
##
            FRP.Active
                                    Tuition
##
##
## Node number 1: 1398 observations,
                                         complexity param=0.3351351
                                    expected loss=0.3969957 P(node) =1
##
     predicted class=Retained
##
       class counts:
                       555
                             843
##
      probabilities: 0.397 0.603
##
     left son=2 (618 obs) right son=3 (780 obs)
     Primary splits:
##
##
         SingleGradeTripFlag < 0.5</pre>
                                      to the left,
                                                     improve=142.34810, (0 mis
sing)
         FPP
##
                             < 23.5
                                       to the left,
                                                     improve= 65.86060, (0 mis
sing)
                             < 25.5
                                       to the left,
                                                     improve= 64.89708, (0 mis
##
         Total.Pax
sing)
                                                     improve= 47.74499, (0 mis
##
         FRP.Active
                             < 16.5
                                      to the left,
sing)
##
         Total.Discount.Pax < 2.5
                                       to the left,
                                                     improve= 44.74524, (0 mis
sing)
##
     Surrogate splits:
##
         Total.Pax
                            < 17.5
                                     to the left,
                                                    agree=0.623, adj=0.147, (0
split)
         FPP
                                     to the left, agree=0.622, adj=0.144, (0
                            < 16.5
##
split)
         FRP.Active
                            < 9.5
                                     to the left, agree=0.602, adj=0.099, (0
##
split)
##
         Total.Discount.Pax < 1.5</pre>
                                     to the left, agree=0.583, adj=0.057, (0
split)
##
         Tuition
                            < 2268
                                     to the right, agree=0.581, adj=0.052, (0
split)
##
## Node number 2: 618 observations,
                                        complexity param=0.02162162
     predicted class=Not Retained expected loss=0.3495146 P(node) =0.442060
##
1
       class counts:
##
                       402
                             216
##
      probabilities: 0.650 0.350
##
     left son=4 (508 obs) right son=5 (110 obs)
##
     Primary splits:
         Total.Discount.Pax < 3.5
                                     to the left,
##
                                                    improve=11.250870, (0 miss
ing)
                                                    improve= 9.479772, (0 miss
##
         Total.Pax
                            < 25.5
                                     to the left,
ing)
         FPP
                                     to the left, improve= 8.567690, (0 miss
##
                            < 21.5
ing)
##
         FRP.Active
                            < 29.5
                                     to the left, improve= 8.098361, (0 miss
ing)
##
         Tuition
                            < 1235.5 to the right, improve= 3.526777, (0 miss
ing)
```

```
##
     Surrogate splits:
##
         Total.Pax < 42.5
                             to the left, agree=0.900, adj=0.436, (0 split)
##
                    < 39.5
                             to the left, agree=0.892, adj=0.391, (0 split)
                             to the left, agree=0.869, adj=0.264, (0 split)
##
         FRP.Active < 28.5
##
                    < 371.5 to the right, agree=0.827, adj=0.027, (0 split)</pre>
         Tuition
##
## Node number 3: 780 observations
     predicted class=Retained
                                   expected loss=0.1961538 P(node) =0.557939
##
9
##
       class counts:
                       153
                             627
##
      probabilities: 0.196 0.804
##
## Node number 4: 508 observations
##
     predicted class=Not Retained expected loss=0.3051181 P(node) =0.363376
3
##
       class counts:
                       353
                             155
##
      probabilities: 0.695 0.305
##
## Node number 5: 110 observations
     predicted class=Retained
##
                                   expected loss=0.4454545 P(node) =0.078683
83
##
       class counts:
                        49
                              61
      probabilities: 0.445 0.555
```

Decision Tree myTreenum2


```
# finding the error rate for train data
pred trainnum2 <- predict( myTreenum2 , data = train , type = "class")</pre>
mean(train$Retained.in.2012. != pred_trainnum2)
## [1] 0.1866953
# finding the error rate for test data
pred_testnum2 <- predict( myTreenum2 , data = test , type = "class")</pre>
mean(test$Retained.in.2012. != pred_testnum2)
## [1] 0.4484979
## Evaluation Matrix
DTMatrixnum2 <- table(actual=train$Retained.in.2012., pred = pred_testnum2)</pre>
DTMatrixnum2
                  pred
##
## actual
                   Not Retained Retained
     Not Retained
                             368
                                       187
##
     Retained
                              74
                                       769
FinalEVMnum2 <- EvaluationMatrix(DTMatrixnum2[1,1], DTMatrixnum2[2,1],</pre>
                                   DTMatrixnum2[1,2],DTMatrixnum2[2,2])
FinalEVMnum2
         Accuracy Precision
                                 Recall
                                            Fscore
## [1,] <mark>0.8133047</mark> 0.8325792 <mark>0.6630631</mark> 0.7382146
```

Random Forest

```
library(randomForest)
rf<- randomForest(Retained.in.2012.~., data = rm2, mtry = sqrt(ncol(rm2)-1),
                   ntree = 300,proximity = T,importance = T)
print(rf)
#We have passed all the variables from the dataset rm2 while applying Random
Forest.
Below are evaluation matrices highlighted from the R output
##
## Call:
## randomForest(formula = Retained.in.2012. ~ ., data = rm2, mtry = sqrt(nco
              1), ntree = 300, proximity = T, importance = T)
##
                  Type of random forest: classification
##
                        Number of trees: 300
## No. of variables tried at each split: 7
##
           OOB estimate of error rate: 19.76%
## Confusion matrix:
                Not Retained Retained class.error
## Not Retained
                         675
                                  263
                                        0.2803838
## Retained
                         209
                                 1242
                                        0.1440386
## The OOB error rate of our random forest model is .1972
attributes(rf)
## $names
                          "type"
## [1] "call"
                                             "predicted"
                                                               "err.rate"
## [5] "confusion"
                                             "oob.times"
                                                               "classes"
                          "votes"
## [9] "importance"
                          "importanceSD"
                                            "localImportance" "proximity"
## [13] "ntree"
                          "mtry"
                                             "forest"
                                            "terms"
## [17] "test"
                          "inbag"
##
## $class
## [1] "randomForest.formula" "randomForest"
plot(rf)
```

rf

#The red cures is the error rate for the positive class that is **retained**, green curve for the negative class that is **not retained**. And black curve indicates error rate for OOB

```
##rf$err.rate
   important variables based on MeanDecreaseAccuracy.
library("dplyr")
IMP <- importance(rf, type = 1)</pre>
IMP
                                   MeanDecreaseAccuracy
##
## Program.Code
                                                5.981816
## From.Grade
                                               13.853810
## To.Grade
                                                9.297925
## Is.Non.Annual.
                                               44.992248
## Days
                                                4.436340
## Travel.Type
                                                3.714249
## Tuition
                                                9.312343
## FRP.Active
                                               16.164282
## FRP.Cancelled
                                                6.486094
## FRP.Take.up.percent.
                                                8.548106
## Cancelled.Pax
                                                5.447301
## Total.Discount.Pax
                                                8.597315
## Poverty.Code
                                                5.885952
```

```
## Region
                                               4.020956
## CRM.Segment
                                              10.131317
## School.Type
                                               4.009359
## Parent.Meeting.Flag
                                               1.265172
## MDR.Low.Grade
                                               4.809387
## MDR.High.Grade
                                              10.605804
## Total.School.Enrollment
                                              13.129944
## Income.Level
                                               1.591752
## EZ.Pay.Take.Up.Rate
                                               6.005964
## School.Sponsor
                                               6.028242
## SPR.Product.Type
                                               3.993427
                                              31.426084
## SPR.New.Existing
## FPP
                                              17.030262
## Total.Pax
                                              18.369903
## NumberOfMeetingswithParents
                                               1.253938
## DifferenceTraveltoFirstMeeting
                                               6.159915
## DifferenceTraveltoLastMeeting
                                               3.468803
## SchoolGradeTypeLow
                                               4.751578
## SchoolGradeTypeHigh
                                               6.539745
## SchoolGradeType
                                               8.718688
## DepartureMonth
                                               2.444905
## GroupGradeTypeLow
                                               4.561715
## GroupGradeTypeHigh
                                               7.380710
## GroupGradeType
                                               4.732097
## MajorProgramCode
                                               1.739418
## SingleGradeTripFlag
                                              23.550554
## FPP.to.School.enrollment
                                               2.999440
## FPP.to.PAX
                                               9.086139
## Num.of.Non FPP.PAX
                                               9.837632
## SchoolSizeIndicator
                                               6.394895
#We also tried to see the more important variable by setting a threshold on
mean decrease accuracy > 10
subset(IMP, IMP[] > 10)
##
                           MeanDecreaseAccuracy
## From.Grade
                                        13.85381
## Is.Non.Annual.
                                        44.99225
## FRP.Active
                                        16.16428
## CRM.Segment
                                        10.13132
## MDR.High.Grade
                                        10.60580
## Total.School.Enrollment
                                        13.12994
## SPR.New.Existing
                                        31.42608
## FPP
                                        17.03026
## Total.Pax
                                        18.36990
## SingleGradeTripFlag
                                        23.55055
##filter(IMP, MeanDecreaseAccuracy >= 10)
varImpPlot(rf)
```

rf

#Below are a few instances printed for proximity calculated for Random Forest

```
rf$proximity
##
            1
                     2
                             3
                                     4
                                              5
                                                      6
## 1
      1.00000000 0.00000000 0.02439024 0.00000000 0.00000000 0.00000000
##
  2
      0.00000000 1.00000000 0.16279070 0.00000000 0.00000000 0.00000000
##
  3
      ##
  4
      ##
  5
      ##
  6
      ##
  7
      0.00000000 0.00000000 0.00000000 0.02325581 0.02040816 0.04651163
##
  8
      0.00000000 0.00000000 0.02500000 0.02941176 0.00000000 0.00000000
##
  9
      0.02777778 0.05405405 0.06818182 0.00000000 0.02272727 0.00000000
## 10
      0.05128205 0.03225806 0.12765957 0.00000000 0.06818182 0.00000000
##
 11
      0.06250000 0.02564103 0.06818182 0.00000000 0.02127660 0.00000000
##
  12
      0.06976744 0.00000000 0.13953488 0.00000000 0.09090909 0.00000000
##
 13
      0.00000000 0.16216216 0.08333333 0.00000000 0.00000000 0.00000000
##
  14
      0.05882353 0.05128205 0.28260870 0.00000000 0.00000000 0.00000000
##
  15
      0.11428571 0.00000000 0.11428571 0.00000000 0.00000000 0.00000000
##
  16
      0.00000000 0.03225806 0.12765957 0.00000000 0.01785714 0.00000000
##
  17
      0.00000000 0.03125000 0.06818182 0.00000000 0.02000000 0.00000000
##
  18
      19
##
      0.05714286 0.00000000 0.14634146 0.00000000 0.02127660 0.00000000
##
  20
      0.00000000 0.00000000 0.03921569 0.00000000 0.03921569 0.00000000
##
  33
      ##
  34
      ##
  35
      0.00000000 0.00000000 0.10256410 0.00000000 0.25000000 0.06060606
## 36
      0.00000000 0.00000000 0.05128205 0.00000000 0.15909091 0.18181818
```

```
0.00000000 0.00000000 0.10638298 0.00000000 0.12195122 0.10810811
## 37
## 38
  ##
## 19
  0.00000000 0.00000000 0.00000000 0.01886792 0.20408163 0.00000000
## 20
  ## 21
  0.00000000 0.00000000 0.02564103 0.00000000 0.21428571 0.00000000
## 22
  ##
23
  ## 24
  25
  0.0222222 0.00000000 0.00000000 0.02631579 0.04255319 0.00000000
##
## 26
  0.00000000 0.00000000 0.00000000 0.07894737 0.00000000 0.00000000
## 27
## 28
  0.00000000 0.00000000 0.02941176 0.00000000 0.06382979 0.00000000
## 29
  ## 30
  ## 31
  ##
32
  33
  0.03846154 0.00000000 0.00000000 0.02564103 0.00000000 0.00000000
##
##
34
  ## 35
  ## 36
## 37
  ## 38
  ## 39
  ## 40
  ## 41
  0.05405405 0.00000000 0.05405405 0.00000000 0.00000000 0.00000000
##
   1843
      1844
         1845
           1846
              1847
## 1
  ## 2
## 3
  ## 4
  ## 5
## 6
  ## 7
  ## 8
  ## 9
## 10
  ## 11
  ## 12
  ## 13
## 14
  ## 15
  ## 16
  ## 17
  ## 18
## 19
  ## 20
  ## 21
  ## 22
  ##
```

```
## 16
## 17
    0.00000000 0.09090909 0.13793103 0.00000000 0.00000000 0.00000000
## 18
    0.00000000 0.15909091 0.07894737 0.00000000 0.00000000 0.000000000
## 19
## 20
    ## 21
    0.00000000 0.19512195 0.07142857 0.00000000 0.00000000 0.00000000
## 22
    0.08571429 0.00000000 0.00000000 0.02777778 0.05555556 0.00000000
##
 23
    ## 24
    0.00000000 0.00000000 0.02631579 0.00000000 0.00000000 0.00000000
##
 25
## 26
    27
    ##
##
 28
    0.00000000 0.02173913 0.02941176 0.00000000 0.00000000 0.00000000
## 29
    0.00000000 0.26190476 0.08333333 0.00000000 0.00000000 0.00000000
## 30
    ## 31
    0.00000000 0.13953488 0.02380952 0.00000000 0.00000000 0.00000000
##
 32
    0.00000000 0.17500000 0.02702703 0.00000000 0.00000000 0.00000000
##
 33
    ##
 34
    ## 35
    0.00000000 0.18421053 0.12121212 0.00000000 0.00000000 0.00000000
 36
    ##
##
 37
    0.00000000 0.13043478 0.08108108 0.00000000 0.00000000 0.00000000
## 38
    ## 39
    0.00000000 0.04545455 0.02564103 0.00000000 0.00000000 0.00000000
## 40
    0.00000000 0.17777778 0.02777778 0.00000000 0.00000000 0.00000000
## 41
    0.00000000 0.00000000 0.11428571 0.00000000 0.00000000 0.00000000
##
       2383
             2384
                   2385
                        2386
                              2387
## 1
    ## 2
    0.0000000 0.00000000 0.02857143 0.02857143 0.00000000 0.00000000
## 3
    0.00000000 0.00000000 0.07142857 0.02439024 0.00000000 0.00000000
    ## 4
## 5
    0.00000000 0.00000000 0.07142857 0.00000000 0.02702703 0.00000000
## 6
    ## 7
    ## 8
    ## 9
    0.00000000 0.00000000 0.00000000 0.02439024 0.00000000 0.00000000
## 10
    ## 11
    0.00000000 0.00000000 0.00000000 0.02083333 0.00000000 0.00000000
## 12
    ## 13
## 14
    ## 15
    ## 16
    0.00000000 0.00000000 0.02941176 0.07317073 0.00000000 0.00000000
## 17
## 18
    0.00000000 0.00000000 0.00000000 0.02777778 0.00000000 0.00000000
## 19
    0.00000000 0.00000000 0.04545455 0.02222222 0.00000000 0.00000000
## 20
    0.00000000 0.00000000 0.02500000 0.00000000 0.00000000 0.00000000
## 21
## 22
    ## 23
```

```
## 24
     0.00000000 0.00000000 0.02173913 0.00000000 0.00000000 0.00000000
## 25
     0.00000000 0.00000000 0.00000000 0.17500000 0.00000000 0.00000000
## 26
     ## 27
     ## 28
     0.00000000 0.00000000 0.02941176 0.00000000 0.00000000 0.00000000
## 29
     0.00000000 0.00000000 0.02325581 0.00000000 0.00000000 0.00000000
## 30
     ##
 31
     ## 32
     0.00000000 0.00000000 0.00000000 0.02631579 0.00000000 0.00000000
## 33
     ## 34
     ## 35
     0.00000000 0.00000000 0.02564103 0.00000000 0.00000000 0.00000000
##
     36
## 37
     0.00000000 0.00000000 0.11363636 0.02439024 0.00000000 0.00000000
## 38
     0.00000000 0.00000000 0.02857143 0.00000000 0.00000000 0.00000000
## 39
     ## 40
     ## 41
     0.00000000 0.00000000 0.00000000 0.02325581 0.00000000 0.00000000
##
         2389
## 1
     0.00000000
## 2
     0.05714286
## 3
     0.10416667
## 4
     0.00000000
## 5
     0.0222222
## 6
     0.00000000
## 7
     0.00000000
## 8
     0.00000000
## 9
     0.02127660
## 10
     0.02777778
## 11
     0.04347826
## 12
     0.05128205
## 13
     0.04347826
## 14
     0.04545455
## 15
     0.04255319
## 16
     0.15217391
## 17
     0.00000000
## 18
     0.00000000
## 19
     0.04545455
## 20
     0.00000000
## 21
     0.04878049
## 22
     0.00000000
## 23
     0.00000000
## 24
     0.02083333
## 25
     0.00000000
## 26
     0.00000000
## 27
     0.00000000
## 28
     0.02777778
## 29
     0.02083333
## 30
     0.02127660
## 31
     0.02631579
```

```
## 32
       0.06451613
## 33
        0.00000000
## 34
       0.00000000
## 35
       0.02040816
## 36
       0.05263158
## 37
       0.02127660
## 38
       0.00000000
## 39
       0.06521739
## 40
       0.02325581
## 41
        0.02564103
## [ reached getOption("max.print") -- omitted 2348 rows ]
#We have implemented random forest with the important variable based on the
above analysis
rf3 <- randomForest(Retained.in.2012. ~ From.Grade + To.Grade +
                      Is.Non.Annual.+ FRP.Active+ CRM.Segment+ MDR.High.Grade
+ Total.School.Enrollment + SPR.New.Existing + FPP + Total.Pax +
 SingleGradeTripFlag + FPP.to.PAX, data = rm2,
                   mtry = sqrt(ncol(rm1)-1), ntree = 300,
                   proximity = T, importance = T)
print(rf3)
##
## Call:
## randomForest(formula = Retained.in.2012. ~ From.Grade + To.Grade +
s.Non.Annual. + FRP.Active + CRM.Segment + MDR.High.Grade +
                                                                Total.School
.Enrollment + SPR.New.Existing + FPP + Total.Pax +
                                                        SingleGradeTripFlag +
FPP.to.PAX, data = rm2, mtry = sqrt(ncol(rm1) - 1), ntree = 300, proximi
tv = T, importance = T)
                  Type of random forest: classification
##
##
                        Number of trees: 300
## No. of variables tried at each split: 7
Below are the evaluation matrices that show the increased error rate
##
          OOB estimate of error rate: 20.85%
## Confusion matrix:
               Not Retained Retained class.error
##
## Not Retained
                         667
                                  271
                                        0.2889126
## Retained
                         227
                                1224
                                       0.1564438
rf4 <- randomForest(Retained.in.2012. ~ Is.Non.Annual.+SPR.New.Existing + Sin
gleGradeTripFlag, data = rm2,
                   mtry = sqrt(ncol(rm2)-1), ntree = 300,
                  proximity = T, importance = T)
```

```
print(rf4)
##
## Call:
## randomForest(formula = Retained.in.2012. ~ Is.Non.Annual. + SPR.New.Exist
           SingleGradeTripFlag, data = rm2, mtry = sqrt(ncol(rm2) -
ntree = 300, proximity = T, importance = T)
                  Type of random forest: classification
##
                        Number of trees: 300
## No. of variables tried at each split: 3
Based on our recommendations, we see that OOB error rate for RF is this model
is 19.84%.
           OOB estimate of error rate: 19.84%
## Confusion matrix:
                Not Retained Retained class.error
## Not Retained
                         629
                                  309
                                        0.3294243
## Retained
                         165
                                 1286
                                        0.1137147
head(rf$predicted)
##
              1
                           2
                                        3
                                                                   5
                                                      4
6
                                 Retained Not Retained
                                                            Retained Not Retai
##
       Retained
                    Retained
ned
## Levels: Not Retained Retained
head(rf$votes)
##
     Not Retained Retained
## 1
       0.2244898 0.7755102
## 2
       0.3750000 0.6250000
## 3 0.2689076 0.7310924
## 4
     0.6132075 0.3867925
## 5
        0.2601626 0.7398374
## 6
       0.8301887 0.1698113
ind <- sample(2, nrow(rm1), replace = T, prob = c(0.7, 0.3))
trainrf <- rm2[ind == 1, ]</pre>
Validation <- rm2[ind == 2, ]</pre>
pr.err <- c()
for(mt in seq(1,ncol(trainrf)))
library(randomForest)
rf1 <- randomForest(Retained.in.2012.~.,data = trainrf, ntree = 100,
mtry = ifelse(mt == ncol(trainrf),
mt-1, mt))
```

```
predicted <- predict(rf1, newdata = Validation, type = "class")</pre>
pr.err <- c(pr.err,mean(Validation$Retained.in.2012. != predicted))</pre>
bestmtry <- which.min(pr.err)</pre>
bestmtry
## [1] 26
# Plotting confusion matrix
rfMAT <- table(rf$predicted, rm2$Retained.in.2012., dnn = c("Predicted", "Act
ual"))
## Calculating Accuracy , Precision, Recall and Fscore
rfEVALMAT <- EvaluationMatrix(rfMAT[2,2], rfMAT[1,2],rfMAT[2,1],</pre>
rfMAT[1,1])
rfEVALMAT
         Accuracy Precision Recall
                                          Fscore
## [1,] 0.8024278 0.8559614 0.8252492 0.8403248
# plotting confusion Matrix
confusionMatrix(rf$predicted, rm2$Retained.in.2012., positive = "Not Retained
")
## Confusion Matrix and Statistics
##
##
                 Reference
                  Not Retained Retained
## Prediction
    Not Retained
                            675
                                     209
##
##
     Retained
                            263
                                    1242
##
##
                  Accuracy : 0.8024
##
                    95% CI: (0.7859, 0.8182)
       No Information Rate: 0.6074
##
       P-Value [Acc > NIR] : < 2e-16
##
##
##
                     Kappa: 0.5815
##
##
   Mcnemar's Test P-Value : 0.01471
##
##
               Sensitivity: 0.7196
```

```
##
                Specificity: 0.8560
##
            Pos Pred Value : 0.7636
##
            Neg Pred Value : 0.8252
                 Prevalence: 0.3926
##
##
            Detection Rate: 0.2825
##
      Detection Prevalence : 0.3700
         Balanced Accuracy: 0.7878
##
##
          'Positive' Class : Not Retained
##
##
score <- rf$votes[, 2]</pre>
pred <- prediction(score, rm2$Retained.in.2012.)</pre>
### plotting Gain chart
```

Plotting Gain chart

```
perf <- performance(pred, "tpr", "rpp")
plot(perf)</pre>
```


#plotting ROC curve

```
perf <- performance(pred, "tpr", "fpr")
pred</pre>
```

```
## A prediction instance
## with 2389 data points
plot(perf)
```


Finding area under the curve (AUC)

```
auc <- unlist(slot(performance(pred, "auc"), "y.values"))
auc</pre>
```

[1] 0.8647852

• #For the case, we choose "Recall" as the evaluation matrix.

Even though the cost of loss is not defined :

- Because of the loss to miss out on a school that would have actually retained and was not approached because it was falsely marked as not retained is MORE
- as compared to missing out on a school that was actually not retained and was still approached.