1

Sample LATEXDocument with a Figure

G V V Sharma*

Consider a triangle with vertices,

$$\mathbf{A} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} -4 \\ 6 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} \tag{1}$$

I. VECTORS

Parameter	Value	Description
m _{AB}	$\begin{pmatrix} -7 \\ 5 \end{pmatrix}$	Direction vec of AB
m _{BC}	$\binom{5}{3}$	Direction vec of BC
m _{CA}	$\begin{pmatrix} 2 \\ -8 \end{pmatrix}$	Direction vec of CA
A - B	5.831	Lenght of AB
B - C	5.831	Lenght of BC
C - A	5.831	Lenght of CA
$rank \begin{pmatrix} 1 & 1 & 1 \\ A & B & C \end{pmatrix}$	3	non-collinear
n _{AB}	$\binom{5}{7}$	Normal vec of AB
n _{BC}	$\begin{pmatrix} 3 \\ -5 \end{pmatrix}$	Normal vec of BC
n _{CA}	$\begin{pmatrix} -8 \\ -2 \end{pmatrix}$	Normal vec of CA
Area	23	Area of $\triangle ABC$
cos(A)	0.761	cosine of $\angle A$
cos(B)	0.398	cosine of $\angle B$
cos(C)	0.291	cosine of $\angle C$

TABLE I.1 Vectors

Fig. I.1. Triangle generated using python

II. MEDIAN

Parameter	Value	Description
D	$\begin{pmatrix} -1.5\\ 2.5 \end{pmatrix}$	Midpoint AB
Е	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	Midpoint BC
F	$\begin{pmatrix} 0.5 \\ -1.5 \end{pmatrix}$	Midpoint CA
n _{AD}	(6.5) (4.5)	normal vec AD
$n_{ m BE}$	$\begin{pmatrix} -1 \\ -6 \end{pmatrix}$	normal vec BE
n _{CF}	$\begin{pmatrix} -5.5 \\ 1.5 \end{pmatrix}$	normal vec CF
G	$\begin{pmatrix} -0\\0.333 \end{pmatrix}$	Centroid
$\frac{BG}{GE}$		Ratio of BG and GE
$\begin{array}{c} \underline{BG} \\ \underline{GE} \\ \underline{CG} \\ \underline{GF} \\ \underline{CG} \\ \underline{GF} \end{array}$	2	Ratio of CG and GF
CG GF		Ratio of CG and GF
$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ A & D & G \end{pmatrix}$	2	A, D, G collinear
A - F	(3.5)	Direction vec of AF
$\mathbf{E} - \mathbf{D}$	(-2.5)	Direction vec of ED
TABLE II.2		

CENTROID

Fig. II.2. Medians generated using python

Fig. III.3. Altitudes generated using python

III. ALTITUDE

Parameter	Value	Description
D_1	$\begin{pmatrix} -1.059 \\ 2.764 \end{pmatrix}$	altitude foot from A
E ₁	$\begin{pmatrix} 1.412 \\ 2.353 \end{pmatrix}$	altitude foot from B
$\mathbf{F_1}$	$\begin{pmatrix} -2.108 \\ -0.351 \end{pmatrix}$	altitude foot from C
n_{AD_1}	$\binom{5}{3}$	normal vec AD_1
$\mathbf{n}_{\mathrm{BE}_1}$	$\begin{pmatrix} 2 \\ -8 \end{pmatrix}$	normal vec BE_1
n _{CF1}	$\begin{pmatrix} -7 \\ 5 \end{pmatrix}$	normal vec CF_1
Н	$\begin{pmatrix} -0.522 \\ 1.870 \end{pmatrix}$	Orthocenter

TABLE III.3 Orthocenter

IV. PERPENDICULAR BISECTOR

n _{OA}	$\begin{pmatrix} -3.56 \\ -2.74 \end{pmatrix}$	Direction vec of OA
n _{OB}	(1.43) (4.26)	Direction vec of OB
n _{OC}	(4.43) -0.74)	Direction vec of OC
0	$\begin{pmatrix} 0.261 \\ -0.435 \end{pmatrix}$	Circumcenter
$ \mathbf{A} - \mathbf{O} $		Norm of OA
$ \mathbf{B} - \mathbf{O} $		Norm of OB
$ \mathbf{C} - \mathbf{O} $	4.496	Norm of OC
R		Circumradius
∠BAC	40.42°	Angle ∠BAC
∠BOC	80.85°	Angle ∠BOC

TABLE IV.4 CIRCUMCENTER

Fig. IV.4. Perpendicular bisectors generated using python

Fig. IV.4. Circumcircle generated using python

V	Angular	RISECTOR
٧.	ANGULAK	DISECTOR

n_{IA}	$\begin{pmatrix} -4.85 \\ -3.30 \end{pmatrix}$	Direction vec of IA
n_{IB}	$\begin{pmatrix} 0.15 \\ 3.70 \end{pmatrix}$	Direction vec of IB
\mathbf{n}_{IC}	$\begin{pmatrix} 3.15 \\ -1.30 \end{pmatrix}$	Direction vec of IC
I	$\begin{pmatrix} -0.30\\ 0.85 \end{pmatrix}$	Incenter
D_3	$\begin{pmatrix} -1.35 \\ 2.59 \end{pmatrix}$	POC with AB
E ₃	(1.66) (1.34)	POC with BC
F ₃	$\begin{pmatrix} -1.48 \\ -0.80 \end{pmatrix}$	POC with CA
$ \mathbf{D}_3 - \mathbf{O} $		Norm of OD ₃
$ \mathbf{E_3} - \mathbf{O} $		Norm of OE_3
$ \mathbf{F_3} - \mathbf{O} $	2.03	Norm of OF_3
r		Inradius
∠BAI		Angle ∠ <i>BAI</i>
∠CAI	20.21°	Angle ∠CAI

TABLE V.5 Incircle

Fig. V.5. Incircle generated using python