

Silicate Ceramics

• Silicate : Si + O + 기타 원소

• Structure: SiO₄⁴⁻ tetrahedron is easier than unit cell

• Si-O 결합: 공유결합성 (49%) → 방향성, 결합에너지↑

Table 3.2 For Several Ceramic Materials, Percent Ionic Character of the Interatomic Bonds

	Percent Ionic		
Material	Character		
CaF ₂	89		
MgO	73		
NaCl	67		
Al_2O_3	63		
SiO_2	51		
Si_3N_4	30		
ZnS	18		
SiC	12		

SiO₄⁴⁻ tetrahedron(사면체)

Crystal Structure of SiO₂

SiO₂: silicon dioxide or silica

 ${\rm for}\;{\rm SiO_2}$

Si⁴⁺: 0.041 nm

O²⁻: 0.140 nm

$$\frac{r_{\text{Si}^{4+}}}{r_{\text{O}^{2-}}} = 0.293 \Rightarrow$$
 가능한 배위수 비 \rightarrow 4:2, 2:1

- ※ 배위수를 최대로 하려는 경향 있슴
 - ⇒ ∵ 이온주위에 반대 전하의 이온을 효율적으로 배치 가능
 - ∴ 가장 안정한 4:2 배위를 가짐
 - ⇒ Si⁴⁺ 이온 주위에 4개의 O²⁻ 이온 배치
 - ⇒ O²⁻ 이온 주위에 2개의 Si⁴⁺ 이온 배치
 - ⇒ 크리스토발라이트 (cristobalite)구조

Carbon

→ 같은 탄소 원소로만 이루어져 있으나 상(결정구조)이 다른 단체

흑연 (graphite)

다이아몬드 (diamond) Polymorphism (Allotropy)

「플러렌 (fullerene)

흑연 다이아몬드 플러렌

Graphite

원자좌표: 000, $00\frac{1}{2}$, $\frac{1}{3}\frac{2}{3}$ 0, $\frac{2}{3}\frac{1}{3}\frac{1}{2}$

(0001)면 적층 → ABABAB or ACACAC

배위수 = 3개

최인접원자까지의 거리 = $\frac{1}{\sqrt{3}}a$ \rightarrow 0.142 nm

층간거리 = 0.335nm → C = 2× 층간거리 →층상구조(윤활제)

Diamond

원자좌표: $000, \ \frac{1}{4} \frac{1}{4} \frac{1}{4}$ 최인접원자까지의 거리 $= \frac{\sqrt{3}}{4} a$ 정사면체 \rightarrow 배위수 = 4

(111)면 적층 → CAABBCCAABBC

APF
$$=\frac{\sqrt{3}\pi}{16} = 0.34$$
 (bcc의 반)

면심입방의 다이아몬드 영진 → 면심입방의 1/41/41/4 변위 구조

(예) Si, Ge, Sn...

Fullerenes

- C₆₀ (탄소원자 60개로 이루어진 구조)
- 1985년 Richard E. Smalley 발견
- 미국 건축가 Buckminster Fuller가 창안한 geodesic dome과 유사하여 이름을 따옴
 - → "Buckminsterfullerene"
 - → "Buckyball" 또는 "Fullerene"

Nanotube

• Electrical Properties

• Mechanical Properties:

Fig. 1 Crystal structures of the different allotropes of carbon. (Left to right) Three-dimensional diamond and graphite (3D); two-dimensional graphene (2D); one-dimensional nanotubes (1D); and zero-dimensional buckyballs (0D). (Adapted and reprinted with permission from 66. © 2002 Prentice Hall.)

crystal system

Table 3.6 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha=\beta=\gamma=90^{\circ}$	2 2 2
Hexagonal	$a = b \neq c$	$lpha=eta=90^\circ$, $\gamma=120^\circ$	
Tetragonal	$a = b \neq c$	$lpha=eta=\gamma=90^\circ$	2 3 3
Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	2 July 2
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c 3 b
Monoclinic	$a \neq b \neq c$	$lpha=\gamma=90^{\circ} eqeta$	c b
Triclinic	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	

Crystallographic Directions

- ※모든 격자점은 동등한 주위 환경을 가지므로 모두 원점이 될 수 있다.
 - → 기준축의 설정이 관건

Crystallographic Plane

- → [hkl] 방향에 수직인 면 또는 세 축과의 교차 형태로 표현
- → 임의의 격자면이 원점에서 각각거리 a/h, b/k, c/l 만큼 떨어져 세 축과 만날 때 이 격자면을 (h k l)면이라 함. h, k, l 은 정수
- → 축과의 교점까지의 거리비의 역수를 간단한 정수비로 표현

$$\begin{array}{cccc}
x & y & 2 \\
 & \frac{a}{2} & \frac{2b}{3} & \frac{c}{1} \\
 & \frac{a}{4} & \frac{b}{3} & \frac{c}{2} \\
 & \Rightarrow & (4 \ 3 \ 2) \ 면
\end{array}$$

- ※ 축과 만나지 않는 경우
 - → 거리(∞)비의 역수 = 0
 - → (h k 0), (h 0 0) 등과 같이 표현

격자면 (321)

equivalent plane

※모든 격자점은 동등한 주위 환경을 가지므로 모두 원점이 될 수 있다.

→ 기준축의 설정이 관건

5-13 (010) planes in cubic structures. (a) Simple cubic. (b) bcc. (c) fcc. [Note that the 020 planes included for bcc and fcc are equivalent to (010) planes.]

5-14 (110) planes in cubic structures. (a) Simple cubic. (b) bcc. (c) fcc. [The 220 planes included for fcc are equivalent to (110) planes.]

5-15 ($\overline{1}11$) planes in cubic structures. (a) Simple cubic. (b) bcc. (c) fcc. Negative intercepts are indicated by bars above the index. [The $\overline{2}22$ planes included for bcc are equivalent to ($\overline{1}11$) planes.]

※모든 격자점은 동등한 주위 환경을 가지므로 모두 원점이 될 수 있다.

→ 기준축의 설정이 관건

- ※ 격자면 (lattice plane) vs. 결정면 (crystal plane)
 - 격자면 : (h k l) ≠ (nh nk nl) → ∵ 면간격이 다름
 - 결정면 : h, k, l 이 공약수를 갖지 않도록 표현 → 평행한 면들의 대표 (h k l) = (nh nk nl)
- ※ 면족 (group, family) or 면형 (form)
 - ⇒ { h k l } 로 표시
 - 예) 단순 입방정 {100} → 6개 동가면 (∵ 4개의 3회 회전대칭에 의해) (100), (010), (001) (100), (010), (001)

 - ⇒ 다중도 (multiplicity): 면족에 속하는 격자면의 수

hcp

$$a_1 = a_2 \neq c$$

 $a = b = 90^{\circ} \neq g = 120^{\circ}$

4축 좌표계로 표현 a₁ = a₂ = a₃ ≠ c

- ⇒ Miller-Bravais 지수 (4개의 지수) 이용
- 격자방향 (lattice direction)

$$U = u - t$$

$$V = v - t$$

$$W = w$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v) = -\frac{1}{3}(U + V)$$

2차원 상에서

3축 좌표계: $\vec{r} = U\vec{a}_1 + V\vec{a}_2$

4축 좌표계: $\vec{r} = u\vec{a}_1 + v\vec{a}_2 + t\vec{a}_3$

 \Rightarrow $t\vec{a}_3$ 를 x_1 방향과 x_2 방향으로 분해 $t\vec{a}_3 = -(t\vec{a}_1 + t\vec{a}_2)$

$$\vec{r} = u\vec{a}_1 + v\vec{a}_2 + t\vec{a}_3 = u\vec{a}_1 + v\vec{a}_2 - (t\vec{a}_1 + t\vec{a}_2)$$

$$= (u - t)\vec{a}_1 + (v - t)\vec{a}_2$$

$$= U\vec{a}_1 + V\vec{a}_2$$

$$U = u - t$$

$$V = v - t$$

$$W = w$$

$$U+V = (u-t)+(v-t) = (u+v)-2t$$

$$= -3t \qquad (\because t = -(u+v))$$

$$\therefore t = -\frac{1}{3}(U+V)$$

$$u = U+t = U - \frac{1}{3}(U+V) = \frac{1}{3}(2U-V)$$

$$v = V+t = V - \frac{1}{3}(U+V) = \frac{1}{3}(2V-U)$$

$$u = \frac{1}{3}(2U - V)$$

$$v = \frac{1}{3}(2V - U)$$

$$t = -(u + v) = -\frac{1}{3}(U + V)$$

※ 육방정계의 방향은 3축 좌표계 (Miller 지수)를 이용하는 것이 편리

3축 좌표계	4축 좌표계	
[100]	[2110]	
[210]	[1010]	
[110]	[1120]	
[010]	[1210]	

- ⇒ Miller-Bravais 지수 (4개의 지수) 이용
- 격자면 (lattice plane)

$$h+k=-i$$

$$a_1$$
 a_2 c 거리비 \rightarrow -1 1/2 ∞

$$h = -1, k = 2, l = 0$$

$$h + k = 1 = -i$$

$$\therefore i = -1$$

⇒ Miller-Bravais 지수 = (1210)

- 육방정계의 격자면은 Miller-Bravais 지수를 이용하는 것이 유리
 - → 동가의 격자면 표현에 편리 예) (1120), (1210)

family/form

5-20 Miller-Bravais indices. (a) $\{10\overline{1}1\}$ form. This form also includes six more planes which produce an inverted hexagonal pyramid below the basal plane. (b) $\{11\overline{2}0\}$ form. The form includes $(11\overline{2}0)$, $(\overline{1}210)$, $(\overline{1}210)$, and $(2\overline{1}10)$ planes to complete a hexagonal prism. The unit cell is enclosed by $\{10\overline{1}0\}$ and $\{0001\}$ planes.

(110) 격자면

Crystalline / noncrystalline

- 단결정 (single crystal)
 - → 전체 고체 결정내의 원자의 주기적, 규칙적 배열에 전혀 결함이 없는 경우
 - → 성장이 어려움

FIGURE 3.32 Photograph showing several single crystals of fluorite, CaF₂. (Smithsonian Institution photograph number 38181P.)

- 다결정 (polycrystal)
 - → 여러 개의 결정립(grain)들로 이루어진 결정체
 - → 결정립계(grain boundary) 형성

• 이방성 (anisotropy)

- → 물성이 결정학적 방위에 따라 달라지는 방향성
- → 결정학적 방위에 따라 원자 또는 이온 간격이 달라지는 것에 관계
- → 결정의 이방성은 결정구조의 대칭성에 의존
 - **⇒ 대칭성 ↓ → 이방성 ↑ (∴ 삼사정 → 이방성이 큼)**
- → 단결정에서 잘 나타나며 다결정에서는 결정립의 무작위 배열로 등방성 (isotropic)을 띰
- → 선택적 우선배향을 한 다결정 ⇒ 집합조직 (texture)

Table 3.7 Modulus of Elasticity Values for Several Metals at Various Crystallographic Orientations

	Modulus of Elasticity (GPa)		
Metal	[100]	[110]	[111]
Aluminum	63.7	72.6	76.1
Copper	66.7	130.3	191.1
Iron	125.0	210.5	272.7
Tungsten	384.6	384.6	384.6

Source: R. W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd edition. Copyright © 1989 by John Wiley & Sons, New York. Reprinted by permission of John Wiley & Sons, Inc.

- 비정질 (noncrystalline materials)
 - → 고체 결정내의 원자배열에 주기성, 규칙성이 적은 경우
 - → amorphous 또는 supercooled liquids

예) SiO₂

결정질 SiO₂

비정질 SiO₂

Silica Glasses

- → 비정질 silica (SiO₂)
- → fused silica 또는 vitreous silica

Network modifier

- → 양이온이 network을 조절
- → CaO, Na₂O

Intermediates

- → Si를 대체, network을 안정화
- \rightarrow TiO₂, Al₂O₃

X-ray Diffraction

Bragg's Law

$$n\lambda = \overline{SQ} + \overline{QT}$$

$$n\lambda = d_{hkl} \sin \theta + d_{hkl} \sin \theta$$

$$= 2d_{hkl} \sin \theta$$

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Ex) The lattice parameter of Fe = 0.2866 nm,

 λ of X-ray source = 0.1790nm

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$d_{hkl} = \frac{0.2866}{\sqrt{2^2 + 2^2 + 0^2}} = 0.1013nm$$

$$\sin \theta = \frac{n\lambda}{\sqrt{2^2 + 2^2 + 0^2}} = 0.3013nm$$

$$\sin \theta = \frac{n\lambda}{2d_{hkl}} = 0.884$$

$$\theta = \sin^{-1}(0.884) = 62.13^{\circ}$$