Minimum Core Masses for Giant Planet Formation

Ana-Maria Piso¹

Andrew Youdin², Ruth Murray-Clay^{1,3}

¹Harvard-Smithsonian Center for Astrophysics ²Steward Observatory, University of Arizona ³University of California Santa Barbara

Giant planet formation requires fast core growth

Marois+2010

Core Accretion at high planetesimal accretion rates yields steady state

=> M_{atm} is a function of M_{core}

High planetesimal accretion

ONE M_{atm} for each M_{core}

=> ONE core mass for which M_{atm} ~ M_{core} = "critical core mass"

Planetesimal accretion is not constant at a given location throughout disk life

e.g., Pollack+96, Ikoma+00

Planetesimal accretion is not constant at a given location throughout disk life

e.g., Pollack+96, Ikoma+00

Low planetesimal accretion regime

⇒Atmospheric evolution dominated by

Kelvin-Helmholtz contraction

Kelvin-Helmholtz contraction

M_{atm} is a function of time

=> EVERY core can have $M_{atm} \sim M_{core}$

⇒"critical core mass"

 $M_{crit} = M_{core}$ for which $M_{atm}(t_{disk}) \sim M_{core}$

GOAL

Determine the minimum core mass, M_{crit} , to form a giant planet during the disk lifetime in the low planetesimal accretion regime when atmosphere dominated by KH contraction

Calculate M_{crit} with
REALISTIC EQUATION OF STATE (EOS)
REALISTIC DUST OPACITIES

Model Assumptions

- Negligible planetesimal accretion => solid core of fixed mass M_c
- Atmosphere is embedded in the gas disk, spherically symmetric and in hydrostatic balance

 Two layer atmosphere: inner convective region and outer radiative region

Constant luminosity throughout the radiative region

Static profiles connected by global cooling equation

$$\nabla_{ad} = \left(\frac{d\ln T}{d\ln P}\right)_{ad}$$

Adiabatic gradient relates *P*, *T*, *rho* => determines atmospheric profile and parametrizes EOS

Atmospheric evolution and M_{crit} are highly dependent on

DUST OPACITY

Atmospheric evolution and M_{crit} are highly dependent on

DUST OPACITY

H₂ spin isomers ↑↑ ORTHOHYDROGEN and ↑↓ PARAHYDROGEN can be in **thermal equilibrium** or **fixed ratio**

Variations in ∇_{ad} due to non-ideal EOS effects INCREASE M_{crit}

Atmospheric evolution and M_{crit} are highly dependent on

DUST OPACITY

Atmospheric evolution and M_{crit} are highly dependent on

DUST OPACITY

Grain growth opacity DECREASES M_{crit}

```
dN/ds \sim s^{-p}

p = 3.5

s_{\text{max}} = 1 \text{ cm}
```


Grain growth opacity DECREASES M_{crit}

 $dN/ds \sim s^{-p}$ p = 3.5 $s_{\text{max}} = 1 \text{ cm}$

M_{crit}:

~8 M_E @ 5 AU ~5 M_E @ 100 AU

Coagulation p=2.5 may decrease M_{crit} by up to one order of magnitude!

Summary

- H₂ dissociation and variable occupation of H₂ rotational states INCREASE M_{crit} when compared to an ideal gas polytrope
- Grain growth opacity DECREASES M_{crit} compared to ISM opacity
- $M_{crit} \sim 8 M_{E}$ at 5 AU and $\sim 5 M_{E}$ at 100 AU for a realistic EOS with H_{2} spin isomers in thermal equilibrium and grain growth opacity with standard collisional cascade (p=3.5) and $s_{max}=1$ cm
- M_{crit} may decrease by up to one order of magnitude if coagulation is taken into account (p=2.5)