Project Description – Zovid-301 Infection Simulator

Currently, a city called Enrangel is suffering from Zovid-301. Our task is to investigate the data collected in Enrangel and make an exposure prediction, in order to implement an email warning system to alert the residents in Enrangel.

The data definition of each table is as follows:

Table Name	Attributes and Data Ty	/pes	Notes
(PK/FK)			
audience	Name	VARCHAR	All the audience
	id_Number	NUMERIC	information who
	row_Number	NUMERIC	watched the
	seat_Number	NUMERIC	movie on one
	auditorium_Number	NUMERIC	day.
census	id_Number	NUMERIC	Residents'
	city	VARCHAR	information in
	latitude	NUMERIC	Erangel.
	longitude	NUMERIC	
zovid301test	id_Number	NUMERIC	Records of the
	result	VARCHAR	Zovid-301 test.
	date	DATE	
hospital_info	hospital_ID	NUMERIC	Eight hospital
	city	VARCHAR	information in
	latitude	NUMERIC	major cities in
	longitude	NUMERIC	Erangel.
assigned_hospital	city	VARCHAR	Residents in
	hospital_ID	NUMERIC	different cities
			are assigned to
			nearest hospitals
			in Erangel.
patient_info	name	VARCHAR	Records of the
	id_Number	NUMERIC	patients

	gender	VARCHAR	information in
	height_cm	NUMERIC	Erangel.
	weight_kg	NUMERIC	
positive_cases	id_Number	NUMERIC	Positive cases
	case_Number	NUMERIC	happened in
	discharge_Date	DATE	Erangel.
positive_physical_exam	case_Number	NUMERIC	Physical exam
	vital_cap	NUMERIC	information for
	metabolism	NUMERIC	all positive cases
	exam_date	DATE	in Erangel.
positive_billing_info	case_Number	NUMERIC	Billing
	bill_Amount	NUMERIC	information for
	bill_Status	VARCHAR	all positive cases
			in Erangel.
patients_physical_exam	id_Number	NUMERIC	Physical exam
	vital_cap	NUMERIC	information for
	metabolism	NUMERIC	all patients in
	exam_date	DATE	Erangel.

Task 1: SQL queries

<u>Step 1:</u>

Calculate the age of each resident and add a column "age" into the census table with their ages.

Step 2:

Calculate the BMI of each resident and add a column "bmi" into the census table with their BMI.

$$ext{BMI} = rac{m}{h^2}$$

BMI = body mass index

m = mass (in kilograms)

h = height (in meters)

Step 3:

Use the result from the closest physical exam date and calculate the body fitness score. Then, add the score into column "score" into the census table.

body fitness score =
$$\left[\frac{vital-cap}{5250} + \frac{metabolism}{2800} + \left(1 - \frac{|age-25|}{75}\right) + \left(1 - \frac{|bmi-23|}{30}\right)\right] \times 25$$

* Use the average body fitness score from all the residents for someone who missed some of the information required to calculate the body fitness score. Do not include the residents who don't have the body fitness score when you calculate the average.

Step 4:

Add the zovid-301 test result and body fitness score into column "test_result" and "score" into the audiences table. Then, export the audiences table as .csv.

Task 2: C++

You are required to use C++ to implement an alert system in order to make an exposure prediction.

exposure time (sec) =
$$\lfloor body \ fitness \ score \times \ 0.06 \ \rfloor$$

Step 1:

There are a total of 6 auditoriums in the database. In an auditorium, each seat can have one of three situations:

- An empty seat;
- An audience who is received negative in zovid-301 test;
- An audience who is received positive in zovid-301 test;

Every second, any audience who receives a positive result will start to infect another negative result audience that is adjacent (4-directionally). Return the minimum number of seconds that must elapse until all the audiences have been infected. If this is impossible, return -1 instead.

Auditorium Seating Map:

Assume all audiences' body fitness score is 100 in both of the examples. Example 1:

Output: 24

Example 2:

Output: 12

Step 2:

Generate a .csv file called alert_info that includes three columns which has all the audience's information that are potentially in danger. Sort the ExposureTime in a decreasing order.

Output for Example 1:

1	A	В	С
1	Name	id_Number	ExposureTime
2	Aaron Eytcn1	xxxxxxxxxxxxx	24
3	Aaron Eytcn2	xxxxxxxxxxxxx	24
4	Aaron Eytcn3	xxxxxxxxxxxx	24
5	Aaron Eytcn4	xxxxxxxxxxxxx	18
6	Aaron Eytcn5	xxxxxxxxxxxx	18
7	Aaron Eytcn6	xxxxxxxxxxxx	12
8	Aaron Eytcn7	xxxxxxxxxxxxx	6
9	Aaron Eytcn8	xxxxxxxxxxxxx	6
10			

Output for Example 2:

4	Α	В	С
1	Name	id_Number	ExposureTime
2	Aaron Eytcn1	xxxxxxxxxxxxx	12
3	Aaron Eytcn2	xxxxxxxxxxxx	6
4	Aaron Eytcn3	xxxxxxxxxxxx	6
5	Aaron Eytcn4	xxxxxxxxxxxx	6
6	Aaron Eytcn5	xxxxxxxxxxxx	6
7	Aaron Eytcn6	xxxxxxxxxxxx	6