ADAPTING PRETRAINED MODELS FOR MACHINE TRANSLATION

Aditya Kurniawan

MOTIVATIONS

Pre-trained Models

- We want to benefit from the knowledge that was gathered in the pre-trained models
- 2. We want to benefit from the potential performance boost from pre-trained models

Fine-tuning with Adapters

- More stable and robust than naïve fine-tuning
- 2. Improves efficiency of fine-tuning large pre-trained models

GOALS

QUALITY OF PRE-TRAINED MODELS

Investigate the quality of pre-trained models when fine-tuned with adapters

EFFECTIVENESS OF ADAPTERS

- 2. Investigate the importance of adapters in encoder or decoder
- 3. Investigate the importance of the actual weights in the pre-trained models when fine-tuned with adapters
- 4. Investigate techniques to reduce the original pre-trained BERT model size when fine-tuned with adapters

METHODOLOGY

ADAPTER MODULE (PFEIFFER ET AL. 2020)

Fine-tuning Process

- I. Seed model is firstly pre-trained on source domain data / source task.
- 2. During fine-tuning stage only adapter parameters are trained.

Bottleneck layer with reduction ratio = R

TRANSFORMER (VASWANI ET AL. 2017)

BERT (DEVLIN ET AL 2018)

What we used from BERT?:

- Pre-trained weights
- Hyperparameters
 - Number of layers
 - Attention head numbers
 - etc

BERT diagram from Devlin et al. 2018

TASKS AND DATASET

	LANGUAGE MODEL (PRE-TRAINING)			MACHINE TRANSLATION (BASELINE EXP I)			MACHINE TRANSLATION (FINE-TUNING)		
	TRAIN	DEV	TEST	TRAIN	DEV	TEST	TRAIN	DEV	TEST
IWSLT 2014	V	V	٧	V	V	V	V	V	V
IWSLT 2014 + WMT 2019 (500K)	V	X	X	V	X	X	X	X	X
IWSLT 2014 + WMT 2019 (2M)	V	X	X	V	X	X	X	X	X

ADAPTERS IN MACHINE TRANSLATION

EXPERIMENTS FOR GOAL NO. I

ADDING MORE DATA FOR TRAINING

- Adding more data when training from scratch without adapters doesn't always help
- In contrast with the baseline, when adding more data to the pre-training we can see benefit where the performance of 2m exceeds the 500k

RANDOM PRE-TRAINED VS BASELINE

The performance of the random pretrained is actually not that bad if compared to the baseline that trained with 2 millions sentence pairs

ADAPTERS EFFECTIVENESS IN MACHINE TRANSLATION

EXPERIMENTS FOR GOALS NO. 2, 3, AND 4

ADAPTERS POSITION (ENCODER VS DECODER)

- Green vs Orange line: removing adapters on the decoder learns faster in the beginning but has no impact on the final performance
- **Red**: removing adapters on the encoder reduces the performance to the baseline level (blue line)

RANDOMLY SET WEIGHTS ON DECODER

- Using random weights on the decoder has better performance than in the encoder
- The drops when the adapter is removed from the encoder
- Using random set weights on encoder results in the same behaviour but lower performance

USING FEWER WEIGHTS: ZBERT AND ZSBERT

Original BERT

$$W = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 5 & 10 \\ 7 & 8 & 9 \end{bmatrix}$$

 $2 \quad 0 \quad 3$ zbert $7 \quad 0 \quad 9$

zsbert $W' = \begin{bmatrix} 2 & 3 \\ 4 & 10 \\ 7 & 9 \end{bmatrix}$

Rows = Neurons Columns = Features

BASELINE

Removing BERT weights arbitrarily clearly has a detrimental impact to the model's performance

BERT SIZE REDUCTION

- Adapters help but not much to recover the performance back to baseline
- Eventually the adapters in ZSBERT manage to outperform ZBERT

BERT SIZE REDUCTION WITH SMALLER REDUCTION RATIO

Name	# Trained Variables	# Untrained Variables	# Total Variables
Adapters ratio 16	7.74M	95.14M	102.88M
Adapters ratio 8	8.17M	95.14M	103.32M
Adapters ratio 4	9.00M	95.14M	104.20M
Adapters ratio 2	10.83M	95.14M	105.98M
Adapters ratio 1	14.38M	95.14M	109.52M
Normal BERT	28.99M	218.81M	247.80M

- Reducing the reduction ratio helps to recover the performance
- Even though more weights are added, the total variables are still way fewer than the original BERT

CONCLUSION

- Investigate the quality of pre-trained models when fine-tuned with adapters
 - ✓ Incorporating more data in pre-training helps the final performance after fine-tuning [compared to training the model from scratch]
 - ✓ Fine-tuning adapters with random pre-trained models achieves on-par performance [compared to training the models from scratch with larger data]

CONCLUSION

- Investigate the importance of adapters in encoder or decoder
 - ✓ Adapters on the encoder side are more important than in the decoder
- Investigate the importance of pre-trained weights in the pre-trained models when fine-tuned with adapters
 - ✓ The actual pre-trained weights are more important in the encoder. Interestingly, when the adapters were injected only to the decoder, the performance dropped to zero.
- Investigate techniques to reduce the original pre-trained BERT weights size with adapters
 - ✓ ZSBERT can match the performance of the baseline when the reduction ratio is not big.

WHAT DID I LEARN?

- Manage to complete 8 different types of experiments
- Adapting code from huggingface for the experiments (both LM and MT)
- Understanding the inside implementation of transformer for debugging
- Learn to integrate the huggingface with WANDB for better training monitoring

Q&A