8. 特異ホモロジー論 (I)

1 位相空間の特異ホモロジー群の定義

ユークリッド空間 \mathbf{R}^n の原点 P_0 と単位ベクトル P_1,\cdots,P_n を頂点とする n 次元単体を Δ^n で表す.X を位相空間とする.連続写像 $\sigma:\Delta_n\to X$ を X の特異 n 単体とよぶ.また,X の特異 n 単体全体で生成される自由アーベル群を $S_n(X)$ で表す. $S_n(X)$ の要素は特異 n 単体の有限個の整数係数の線形結合で書ける. $i=0,1,\cdots,n$ に対して $\varepsilon_i:\Delta^{n-1}\to\Delta^n$ を

$$\varepsilon_i(P_j) = P_j, \quad j < i, \quad \varepsilon_i(P_j) = P_{j+1}, \quad j \ge i$$

で定まる線形写像とする.特異 n 単体 $\sigma:\Delta_n\to X$ に対して, $d_i(\sigma)=\sigma\circ\varepsilon_i:\Delta^{n-1}\to X$ を σ の i 番目の面 (face) という.境界作用素 $\partial:S_n(X)\to S_{n-1}(X)$ を

$$\partial(\sigma) = \sum_{i=0}^{n} (-1)^{i} d_{i}(\sigma)$$

で定めると $\partial \circ \partial = 0$ が成立する $.S(X) = \oplus S_n(X)$ は ∂ を境界作用素とするチェイン複体となる .S(X) をX の特異チェイン複体 (singular chain complex) とよぶ . 特異チェイン複体 S(X) のホモロジー群 $H_*(X)$ を位相空間 X の特異ホモロジー群 (singular homology group) という . 上の自由アーベル群は整数環 Z 上の自由加群であるが , 一般の可換環 A 上の自由加群として , A 上の特異チェイン複体 S(X;A) が定義される . そのホモロジー群を $H_*(X;A)$ で表し , A 係数の特異ホモロジー群とよぶ . また , $H_*(X)$ について , 係数をはっきりさせる必要があるときは , $H_*(X;Z)$ で表し , 整係数の特異ホモロジー群とよぶ .

位相空間の間の連続写像 $f:X\to Y$ に対して , σ に $f\circ\sigma$ を対応させることにより , チェイン写像 $S(f):S(X)\to S(Y)$ が定まる . さらに , S(f) は特異ホモロジー群の間の準同型写像 $f_*:H_*(X)\to H_*(Y)$ を導く .

2 特異ホモロジー群のいくつかの性質

0次の特異ホモロジー群は次のような意味をもつ.

補題 1. 位相空間 X に対して,特異ホモロジー群 $H_0(X)$ は X の弧状連結成分と一対一に対応する基底をもつ自由加群である.

特異ホモロジー群は以下の意味でホモトピー不変である.

定理 1. X. Y を位相空間とし, $f,g:X\to Y$ をホモトピー同値な連続写像とする.このとき,チェイン写像 $S(f),S(g):S(X)\to S(Y)$ はチェインホモトピー同値で,

$$f_* = g_* : H_*(X) \to H_*(Y)$$

となる.

位相空間 X,Y がホモトピー同型ならば $H_*(X)\cong H_*(Y)$ である.特に, X と Y が同相ならば $H_*(X)\cong H_*(Y)$ となる.