

NOTAS EN TEORÍA DE INCERTIDUMBRE

Microeconomía Financiera Octubre 2024-2

Profesor: José D. Gallardo Kú

jgallardo@pucp.edu.pe

Jefes de prácticas: Marcelo Gallardo & Karen Montoya

marcelo.gallardo@pucp.edu.pe a20212185@pucp.edu.pe https://marcelogallardob.github.io/

En estas notas de clase nos proponemos demostrar el teorema de representación de la utilidad esperada. Nos basamos fundamentalmente en Mas-Colell et al. (1995).

1 Preliminares

Definición 1.1. Una lotería es una lista $L=(p_1,\cdots,p_N)$ con $p_n\geq 0$ y $\sum_{n=1}^N p_n=1.1$

Denotamos por \mathcal{L} el espacio de todas las loterías $\Delta(\mathcal{X})$.

Definición 1.2. Una preferencia \succeq sobre \mathscr{L} es continua si y solamente si para cualesquiera $L, L', LL \in \mathscr{L}$, se cumple que

$$\{\alpha \in [0,1] : \alpha L + (1-\alpha)L' \succeq L''\} \subset [0,1]$$
$$\{\alpha \in [0,1] : L'' \succeq \alpha L + (1-\alpha)L'\} \subset [0,1]$$

son cerrados en [0,1] con la topología usual de \mathbb{R} inducida sobre el intervalo [0,1].

Las preferencias sobre $\mathscr L$ son entonces continuas si alteraciones menores en las probabilidades no alteran el orden.

Definición 1.3. \succeq sobre \mathscr{L} cumple el axioma de independencia si $\forall L, L', L'' \in \mathscr{L}$ y $\alpha \in (0,1)$ se tiene que

$$L \succeq L' \Leftrightarrow \alpha L + (1 - \alpha)L'' \succeq \alpha L' + (1 - \alpha)L''.$$

Definición 1.4. $U^e: \mathcal{L} \to \mathbb{R}$ tiene forma de utilidad esperada si existe $(u_1, \dots, u_N) \in \mathbb{R}^N$ tal que $\forall L = (p_1, \dots, p_N) \in \mathcal{L}$

$$U^e(L) = \sum_{n=1}^N p_n u_n.$$

A U^e se le conoce como función de utilidad esperada de von-Neumann-Morgenstern.

 $p_n = \mathbb{P}\{X = x_n\}$, donde x_n es uno de los outcomes y $X : \Omega \to \mathcal{X} = \{x_1, \dots, x_n\}$.

Proposición 1.1. Una función de utilidad $U^e: \mathcal{L} \to \mathbb{R}$ tiene una representación por utilidad esperada si y solamente si es lineal. Esto es,

$$U^e\left(\sum_{k=1}^K \alpha_k L_k\right) = \sum_{k=1}^K \alpha_k U^e(L_k),$$

para cualesquiera $L_1, \dots, L_K \in \mathcal{L}$ y $\alpha_k \geq 0$ tales que $\sum_{k=1}^K \alpha_k = 1$.

Proof. Denotemos por $\delta^n = (0, \dots, 1, \dots, 0)$ a la lotería que le asgina probabilidad 1 al outcome x_n . Entonces, para cualquier $L \in \mathcal{L}$,

$$L = \sum_{n=1}^{N} p_n \delta^n.$$

Entonces, si U^e es lineal,

$$U^{e}(L) = U^{e}\left(\sum_{n=1}^{N} p\delta^{n}\right) = \sum_{n=1}^{N} U^{e}(\delta^{n}) = \sum_{n=1}^{N} p_{n}u_{n}.$$

Por el contrario, si U^e tiene la forma de una función de utilidad esperada, dadas las loterías $L_1, \dots, L_K, L_k = (p_1^k, \dots, p_N^k)$ y $\alpha_1, \dots, \alpha_K$ con $\sum_{k=1}^K \alpha_k = 1$ y $\alpha_k \ge 0$,

$$U^{e}\left(\sum_{k=1}^{K} \alpha_{k} L_{k}\right) = \sum_{n=1}^{N} u_{n}\left(\sum_{k=1}^{K} \alpha_{k} p_{n}^{k}\right) = \sum_{k=1}^{K} \alpha_{k}\left(\sum_{n=1}^{N} u_{n} p_{n}^{k}\right) = \sum_{k=1}^{K} \alpha_{k} U^{e}(L_{k}).$$

Proposición 1.2. Sea $U^e: \mathcal{L} \to \mathbb{R}$ una utilidad de von-Neumann-Morgenstern para \succeq definida sobre \mathcal{L} . Entonces, \tilde{U}^e es otra función de utilidad utilidad de von-Neumann-Morgenstern que representa \succeq si y solo si existen $\beta > 0$ y $\gamma \in \mathbb{R}$ tales que

$$\tilde{U}^e(L) = \beta U^e(L) + \gamma, \ \forall \ L \in \mathscr{L}.$$

Proof. Sean $\overline{L}, \underline{L} \in \mathscr{L}$ tales que $\overline{L} \succeq \underline{L} \succeq \underline{L}$ para toda $L \in \mathscr{L}$. La existencia de dichas loterías viene asegurada por el hecho que el simplex es un compacto y $U^e(\cdot)$ al ser lineal es continua. Si $\overline{L} \sim \underline{L}$, entonces toda función de utilidad es constante y el resultado es inmediato. Supongamos entonces que $\overline{L} \succ \underline{L}$. Entonces,

$$\tilde{U}^e \left(\sum_{k=1}^K \alpha_k L_k \right) = \beta U^e \left(\sum_{k=1}^K \alpha_k L_k \right) + \gamma$$

$$= \beta \left[\sum_{k=1}^K \alpha_k U^e (L_k) \right]$$

$$= \sum_{k=1}^K \alpha_k [\beta U^e (L_k) + \gamma]$$

$$= \sum_{k=1}^K \alpha_k \tilde{U}^e (L_k).$$

De este modo, \tilde{U}^e tiene una forma de utilidad esperada. Ahora bien, sean $\tilde{U}^e(\cdot)$ y $U^e(\cdot)$ con forma de utilidad esperada. Veamos que existen $\beta > 0$ y $\gamma \in \mathbb{R}$ tales que $\tilde{U}^e = \beta U^e + \gamma$. Para ello, sea $L \in \mathscr{L}$ cualquiera y $\lambda_L \in [0,1]$ tal que $U^e(L) = \lambda_L U^e(\overline{L}) + (1-\lambda_L)U^e(\underline{L})$. De este modo,

$$\lambda_L = \frac{U^e(L) - U^e(\underline{L})}{U^e(\overline{L}) - U^e(\underline{L})}.$$

Como $\lambda_L U^e(\overline{L}) + (1 - \lambda_L) U^e(\underline{L}) = U^e(\lambda_L \overline{L} + (1 - \lambda_L) \underline{L})$ y $U^e(\cdot)$ representa a \succeq , $L \sim \lambda_L \overline{L} + (1 - \lambda_L) \underline{L}$. Ahora bien, como \tilde{U}^e también es lineal,

$$\tilde{U}^e(L) = \tilde{U}^e(\lambda_L \underline{L} + (1 - \lambda_L)\overline{L}) = \lambda_L(\tilde{U}^e(\overline{L}) - \tilde{U}^e(\underline{L})) + \tilde{U}^e(\underline{L}).$$

Usando la expresión para λ_L , se deduce que

$$\beta = \frac{\tilde{U}^e(\overline{L}) - \tilde{U}^e(\underline{L})}{U^e(\overline{L}) - U^e(\underline{L})}$$

$$\gamma = \tilde{U}^e(\underline{L}) - U^e(\underline{L}) \left[\frac{\tilde{U}^e(\overline{L}) - \tilde{U}^e(\underline{L})}{U^e(\overline{L}) - U^e(\underline{L})} \right].$$

2 Teorema de la Utilidad Esperada

El teorema que estamos a punto de demostrar (siguiendo como antes a Mas-Colell et al. (1995)), nos dice que si un agente de decisión tiene preferencias sobre el espacio de loterías que satisfacen la propiedad de continuidad y el axioma de independencia, entonces su preferencia puede ser representada por una función de utilidad esperada U^e .

Teorema 1. Suponga que una preferencia racional \succeq sobre \mathscr{L} satisface la propiedad de continuidad y el axioma de independencia. Entonces, \succeq admite una representación por función de utilidad esperada. Esto es, podemos asignar números reales u_1, \dots, u_N de manera que para cualesquiera dos loterías $L, L' \in \mathscr{L}$ con $L = (p_1, \dots, p_n)$ y $L' = (p'_1, \dots, p'_n)$,

$$L \succeq L' \Leftrightarrow \sum_{n=1}^{N} p_n u_n \ge \sum_{n=1}^{N} p'_n u_n.$$

Proof. La prueba se divide en varias etapas. Primero, tomamos \overline{L} y \underline{L} tales que $\overline{L} \succeq L \succeq \underline{L}$ para toda $L \in \mathscr{L}$ (tal y como se hizo en la proposición anterior). Si $\overline{L} \sim \underline{L}$, el resultado es inmediato y trivial. Por ende, supongamos que $\overline{L} \succ \underline{L}$.

1. Paso 1: si $L \succ L'$ y $\alpha \in (0,1)$, entonces $L \succ \alpha L + (1-\alpha)L' \succ L'$. Esto es consecuencia del axioma de independencia:

$$L = \alpha L + (1 - \alpha)L \succ \alpha L + (1 - \alpha)L' \succ \alpha L' + (1 - \alpha)L' = L'.$$

2. **Paso 2:** sean $\alpha, \beta \in [0, 1]$. Entonces $\beta \overline{L} + (1 - \beta)\underline{L} \succ \alpha \overline{L} + (1 - \alpha)\underline{L}$ si y solo si $\beta > \alpha$. Escribamos

$$\beta \overline{L} + (1 - \beta)\underline{L} = \gamma \overline{L} + (1 - \gamma)[\alpha \overline{L} + (1 - \alpha)\underline{L}],$$

con $\gamma = \frac{\beta - \alpha}{1 - \alpha} \in (0, 1]$. Sabemos que $\overline{L} \succ \alpha \overline{L} + (1 - \alpha)\underline{L}$ por el paso 1. Por ende,

$$\gamma \overline{L} + (1 - \gamma)(\alpha \overline{L} + (1 - \alpha)\underline{L}) \succ \alpha \overline{L} + (1 - \alpha)\underline{L}.$$

y por ende $\beta \overline{L} + (1 - \beta)\underline{L} > \alpha \overline{L} + (1 - \alpha)\underline{L}$. Para la conversa, supongamos que $\beta \leq \alpha$. Si son iguales, $\beta \overline{L} + (1 - \beta)\underline{L} \sim \alpha \overline{L} + (1 - \alpha)\underline{L}$. Supongamos entonces que $\beta < \alpha$. Se sigue, por los mismos argumentos, que $\alpha \overline{L} + (1 - \alpha)\underline{L} > \beta \overline{L} + (1 - \beta)\underline{L}$.

- 3. Paso 3: para toda $L \in \mathcal{L}$, existe un único α_L tal que $[\alpha_L \overline{L} + (1 \alpha_L)\underline{L}] \simeq L$. La existencia es consecuencia de la continuidad y la unicidad del paso 2.
- 4. La función $U^e: \mathcal{L} \to \mathbb{R}$ tal que asigna a L el valor α_L es la que representa a \succeq . En efecto, por el paso 3, dadas $L, L' \in \mathcal{L}$

$$L \succeq L' \Leftrightarrow \alpha_L \overline{L} + (1 - \alpha_L) \underline{L} \succeq \alpha_{L'} \overline{L} + (1 - \alpha_{L'}) \underline{L}.$$

Así, $L \succeq L'$ si y solo si $\alpha_L \geq \alpha_{L'}$.

5. **Paso 5:** la función de utilidad $U^e(\cdot)$ que le asigna α_L a $L \in \mathcal{L}$ es lineal, y por ende, tiene la forma de utilidad esperada. Lo que queremos es probar que

$$\forall L, L' \in \mathcal{L}, \ \beta \in [0, 1]: \ U^e(\beta L + (1 - \beta)L') = \beta U^e(L) + (1 - \beta)U^e(L').$$

Por definición, $L \sim U^e(L)\overline{L} + (1 - U^e(L))\underline{L}$ y $L' \sim U^e(L')\overline{L} + (1 - U^e(L'))\underline{L}$. Por ende, aplicando dos veces el axioma de independencia,

$$\beta L + (1 - \beta)L' \sim \beta [U^e(L)\overline{L} + (1 - U^e(L))\underline{L}] + (1 - \beta)L'$$
$$\sim \beta [U^e(L)\overline{L} + (1 - U^e(L))L] + (1 - \beta)[U^e(L')\overline{L} + (1 - U^e(L'))L].$$

Reagrupando términos,

$$\beta L + (1 - \beta)L' \sim [\beta U^e(L) + (1 - \beta)U^e(L')]\overline{L} + (1 - \beta U^e(L) - (1 - \beta)U^e(L'))\underline{L}.$$

De este modo, concluimos que

$$U^{e}(\beta L + (1 - \beta)L') = \beta U(L) + (1 - \beta)U(L').$$

3 Argumento de Separación

Estas notas quedrían incompletas sin presentar una prueba alternativa al Teorema 1, basada en uno de los resultados más notables del Análisis Convexo: el Teorema de Separación.

Nuevamente vamos a considerar que \mathcal{X} es un conjunto finito. Sin embargo, la extensión al caso infinito pasa por elementos de análisis funcional. Sean $L, L' \in \mathcal{L} \subset \mathbb{R}^N$. Por lo tanto, $L - L' \in \mathbb{R}^N$. Considere los conjuntos

$$A = \{L - L' \in \mathbb{R}^N : L \succeq L'\}$$

$$B = \{L - L' \in \mathbb{R}^N : L' \succ L\}.$$

Ciertamente, se cumple que $L'' \succeq L'''$ si y solo si $L'' - L''' \in A$. Del mismo modo, $L''' \succ L''$ si y solo si $L'' - L''' \in B$. Esto para cualesquiera $L'', L''' \in \mathscr{L}$. Ahora bien, el objetivo es probar que tanto A como B son convexos. Esto es consecuencia del axioma de independencia. Supongamos que $L - L', L'' - L''' \in A$ y consideremos para $\alpha \in [0, 1]$

$$\alpha(L - L') + (1 - \alpha)(L'' - L''') = (\alpha L + (1 - \alpha)L'') - (\alpha L' - (1 - \alpha)L''').$$

Entonces, como $L\succeq L'$ y $L''\succeq L'''$, por el axioma de independencia, aplicados 2 veces,

$$\alpha L + (1 - \alpha)L'' \succeq \alpha L' + (1 - \alpha)L'''$$
.

Así $\alpha(L-L')+(1-\alpha)(L''-L''')=(\alpha L+(1-\alpha)L'')-(\alpha L'-(1-\alpha)L''')\in A$. Por un mismo procedimiento, concluimos que B es convexo. Ahora bien, es claro que A es cerrado y B abierto usando la topología que se usa en la definición de continuidad de las preferencias sobre el espacio de loterías. Esto es, una vecindad de $L\in \mathcal{L}$ se define como

$$\bigcup_{L' \in \mathscr{L}} \{ \alpha L + (1 - \alpha) L' : \alpha \in (0, \epsilon_{L'}) \},$$

para $\epsilon_{L'} > 0$. Así, por el teorema de separación, existe un funcional lineal que separa los conjuntos. Este funcional lineal es justamente U^e y es tal que

$$U^{e}(\alpha L + (1 - \alpha)L') = \alpha U^{e}(L) + (1 - \alpha)U^{e}(L').$$

Lima, 4 de Octubre, 2024.

References

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). *Microeconomic Theory*. Oxford University Press, New York.