Circulation (2pt)

1. Circulation

Calculer la circulation du champs de gradient ∇f où $f(x,y) = x^2y^3 + \exp(41)$ le long du segment de droite entre le point (7,1) et le point (5,2). On donnera un arrondi à 10^{-2} près.

151 ✓

2. Circulation

Calculer la circulation du champs de gradient ∇f où $f(x,y) = x^3y^2 + \exp(18 \ln 2)$ le long du segment de droite entre le point (3,1) et le point (5,2). On donnera un arrondi à 10^{-2} près.

473 ✓

3. Circulation

Calculer la circulation du champs de gradient ∇f où $f(x,y) = 2x^3y^3 + \exp(20\pi)$ le long du segment de droite entre le point (2,1) et le point (4,2). On donnera un arrondi à 10^{-2} près.

1008 ✓

4. Circulation

Calculer la circulation du champs de gradient ∇f où $f(x,y) = \frac{x^3y^2}{2} + \exp(40)$ le long du segment de droite entre le point (2,2) et le point (-1,2). On donnera un arrondi à 10^{-2} près.

-18 ✓

Integrale de surface (4pt)

1. Intégrale de surface

Calculer $I = \iint_D \exp(x+y) dx dy$ où $D = \{(x,y) \in \mathbb{R}^2, |x|+|y| \le 1\}.$

- (a) $I = e 1/e \checkmark$
- (b) I = 1 + e
- (c) I = 2 ch 1
- (d) Aucune des autres réponses

2. Intégrale de surface

Calculer $I = \iint_D (x+2y) dx dy$ où D est le triangle de sommet (1,0), (0,1) et (0,-1).

- (a) I = 1/3 \checkmark
- (b) I = 1/12
- (c) I = 1/6
- (d) I = 3/2
- (e) Aucune des autres réponses

3. Intégrale de surface

Calculer $I=\int\int_D xydxdy$ où D est le où D est le trapèze limité par les droites $\{y=0\},\,\{y=1\},\,\{y=2-x\}$ et $\{y=1+x/2\}$

- (a) I = 7/24
- (b) I = 1/12
- (c) I = 5/24
- (d) I = 3/2
- (e) Aucune des autres réponses

Integration le long d'une courbe (4pt)

1. Calcul de longueur

Calculer la longueur de la courbe $y = x^{3/2}$ pour $x \in [0, 1]$.

- (a) $\frac{13^{\frac{3}{2}}-8}{27}$ \checkmark (b) $\sqrt{6} \left(\frac{5}{2} \ln 3 1\right)$ (c) $\frac{7}{4}$ (d) $\frac{1}{2}$ (e) $\frac{2}{5}$

- (f) Aucune des autres réponses

2. Integrale curviligne

Calculer l'intégrale $\int_{\Gamma} \ln(x+y+z)ds$ où Γ est le segment de droite joignant le point (1,1,1) au point (2,3,4). Indication: calculer la dérivée $x \mapsto x \ln(x) - x$ définie pour tout x > 0.

(a)
$$\sqrt{6} (15 \ln 3 - 6)$$

- (b) $\sqrt{6} \left(\frac{5}{2} \ln 3 1 \right)$ (c) $\sqrt{14} \left(15 \ln 3 6 \right)$ (d) $\sqrt{14} \left(\frac{5}{2} \ln 3 1 \right) \checkmark$ (e) Aucune des autres réponses