

SAR TEST REPORT

Test report No: EMC-FCC-A0021

Type of Equipment: Wi-Fi Portable Phone

Model Name: WP300S

Applicant: Moimstone Co., Ltd.

FCC ID: 2AAKFWP300S

FCC Rule Part: CFR §2.1093

Test standards: IEEE 1528, 2003

ANSI/IEEE C95.1

KDB Publication

Max. SAR(1g): 1.28 W/kg

Test result: Complied

This report details the results of the testing carried out on one sample, the results contained in this testreport do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in anyconfiguration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EMC compliance Ltd. or testing done by EMC compliance Ltd. in connection with distribution or use of the product described in this report must be approved by EMC compliance Ltd. in writing.

Date of receipt: 2015.05.18

<u>Date of testing: 2015.06.19 ~ 6.28</u> <u>Issued date: 2015.06.29</u>

Tested by: Approved by:

Min Kyoung-hoo Choi Cheon-sig

Contents

1. Applicant information	3
2. Laboratory information	4
3. Identification of Sample	5
4.Test Result Summary	6
5. Report Overview	6
6. Test Lab Declaration or Comments	6
7. Applicant Declaration or Comments	6
8. Measurement Uncertainty	7
9. The SAR Measurement System	11
10. System Verification	
11. Operation Configurations	18
12. SAR Measurement Procedures	
13. Test Equipment Information	
14. RF Average Conducted Output Power	22
15. SAR Test Results	23
17. Test Results	43
Annex A. Photographs	53
Annex B. Calibration certificate	65

1. Applicant information

Applicant: Moimstone Co., Ltd.

Address: 65, Heungan-daero 439 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do,

KOREA

Telephone: +82-70-7791-3750

Fax: +82-31-426-9539

E-mail: nunjoa@moimstone.com

Contact name: Yoo Deokjae

Manufacturer: Moimstone Co., Ltd.

Address: 65, Heungan-daero 439 beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do,

KOREA

2. Laboratory information

Address

EMC compliance Ltd.

480-5, Sindong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

TEL: 82 31 336 9919 FAX: 82 505 299 8311

Certificate

KOLAS No.: 231

FCC Site Designation No.: KR0040

FCC Site Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.: 8035A-2

SITE MAP

3. Identification of Sample

EUT Type	Wi-Fi Portable Phone
Brand Name	Moimstone Co., Ltd.
Diana Name	Wolfistone Co., Ltd.
Mode of Operation	WLAN 802.11a/b/g/n
Model Number	WP300S
Serial Number	N/A
Seriai Number	IV/A
Max. Power	18.12 dBm
Tx Freq.Range	2 412 MHz ~ 2 462 MHz
1 0	5 180 MHz ~ 5 825 MHz 2 412 MHz ~ 2 462 MHz
Rx Freq.Range	5 180 MHz ~ 5 825 MHz
Antenna Type	Internal Antenna
Normal Voltage	3.7 V, 1 500 mAh Li-ion
	,
H/W Version	1.0
S/W Version	1.0

Page: 6 of 104

4.Test Result Summary

4.1 WLAN 2.4G

Freq	uency	Average	erage Max. tune			Separation	Measured	Scaled	1 g
MHz	Ch.	Power (dBm)	up power (dBm)	Scaling EUT Factor Position	Distance (mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	SAR Limit (W/kg)	
2437	6	18.72	20.00	1.3428	Left Cheek	0	0.324	0.435	1.6
2437	6	18.72	20.00	1.3428	Back	15	0.096	0.129	1.6

^{*} Contain the results of the worst test SAR including battery.

4.2 WLAN 5G

Frequ	uency Ch.	Average Power	Max. tune up power	Scaling Factor	EUT Position	Separation Distance	Measured 1 g SAR	Scaled 1 g SAR	1 g SAR Limit
WIIIZ	CII.	(dBm)	(dBm)			(mm)	(W/kg)	(W/kg)	(W/kg)
5825	165	17.61	19.00	1.3772	Right Tilt	0	0.914	1.26	1.6
5825	165	17.61	19.00	1.3772	Back	15	0.930	1.28	1.6

^{*} Contain the results of the worst test SAR including battery.

5. Report Overview

This report details the results of testing carried out on the samples listed in section 3, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of EMC compliance Ltd Wireless lab or testing done by EMC compliance Ltd Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by EMC compliance Ltd Wireless lab.

6. Test Lab Declaration or Comments

None

7. Applicant Declaration or Comments

None

8. Measurement Uncertainty

All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/fail criteria.

Uncertainty of SAR equipments for measurement 300 MHz to 3 GHz_HSL

A	ь	С	D	e = f(d, k)	5 0	$i = c \times g/e$	k				
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff				
	(0.3 ~ 3 GHz)	± %			(1 g)	± %, (1 g)					
Aeasurement System											
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00				
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00				
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00				
Linearity	E.2.4	0.60	R	1.73	1	0.35	00				
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	00				
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00				
Readout electronics	E.2.6	0.30	N	1	1	0.30	00				
Response time	E.2.7	0.80	R	1.73	1	0.46	90				
Integration time	E.2.8	2.60	R	1.73	1	1.50	00				
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00				
RF ambient conditions-reflections	E.6.1	3.00	R	1.73	1	1.73	00				
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	00				
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	80				
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	80				
Test Sample Related											
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9				
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5				
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	80				
Phantom and Tissue Par	rameters										
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.10	R	1.73	1	3.52	80				
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5				
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5				
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00				
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	80				
Combined standard uncertainty				RSS		11.00	165				
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		22.00					

Uncertainty of SAR equipments for measurement 3 GHz to 6 GHz_HSL

A	b	c	D	a = 8/3 L)	-	i= /-	L						
A	-	-	_	e = f(d, k)	g	i = c xg/e	k						
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff						
	(3 ~ 6 GHz)	± %			(1 g)	±%, (1 g)							
Measurement System													
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00						
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00						
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00						
Linearity	E.2.4	0.60	R	1.73	1	0.35	00						
Boundary effect	E.2.3	2.00	R	1.73	1	1.15	00						
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00						
Readout electronics	E.2.6	0.30	N	1	1	0.30	00						
Response time	E.2.7	0.80	R	1.73	1	0.46	00						
Integration time	E.2.8	2.60	R	1.73	1	1.50	00						
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00						
KF amolent conditions—	E.6.1	3.00	R	1.73	1	1.73	00						
Probe positioner mechanical tolerance	E.6.2	0.80	R	1.73	1	0.46	œ						
Probe positioning with respect to phantom shell	E.6.3	6.70	R	1.73	1	3.87	00						
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	4.00	R	1.73	1	2.31	8						
Test Sample Related													
Test sample positioning	E.4.2	4.63	N	1	1	4.63	9						
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5						
Output power variation—SAR. drift measurement	6.6.2	5.00	R	1.73	1	2.89	00						
Phantom and Tissue Par	rameters												
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.60	R	1.73	1	3.81	00						
Liquid conductivity-measurement uncertainty	E.3.3	1.50	N	1	0.64	0.96	5						
Liquid permittivity-measurement uncertainty	E.3.3	2.23	N	1	0.6	1.34	5						
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00						
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00						
Combined standard uncertainty				RSS		11.75	225						
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		23.50							

Uncertainty of SAR equipments for measurement 300 MHz to 3 GHz_MSL

A	ь	С	D	e = f(d, k)	g	i = c xg/e	k
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff
	(0.3 ~ 3 GHz)	± %			(1 g)	±%, (1 g)	
Measurement System							
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00
Linearity	E.2.4	0.60	R	1.73	1	0.35	00
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	00
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00
Readout electronics	E.2.6	0.30	N	1	1	0.30	00
Response time	E.2.7	0.80	R	1.73	1	0.46	00
Integration time	E.2.8	2.60	R	1.73	1	1.50	00
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00
reflections	E.6.1	3.00	R	1.73	1	1.73	00
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	00
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	00
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	œ
Test Sample Related							
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	00
Phantom and Tissue Par	rameters						
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.50	R	1.73	1	4.33	00
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	60
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	∞
Combined standard uncertainty				RSS		11.29	183
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		22.57	

Uncertainty of SAR equipments for measurement 3 GHz to 6 GHz_MSL

A	b	С	D	e = f(d, k)	80	i = c x g / e	k				
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff				
	(3 ~ 6 GHz)	± %			(1 g)	±%, (1 g)					
Measurement System											
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00				
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00				
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00				
Linearity	E.2.4	0.60	R	1.73	1	0.35	00				
Boundary effect	E.2.3	2.00	R	1.73	1	1.15	00				
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00				
Readout electronics	E.2.6	0.30	N	1	1	0.30	00				
Response time	E.2.7	0.80	R	1.73	1	0.46	00				
Integration time	E.2.8	2.60	R	1.73	1	1.50	00				
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00				
RF amoient conditions—	E.6.1	3.00	R	1.73	1	1.73	00				
Probe positioner mechanical tolerance	E.6.2	0.80	R	1.73	1	0.46	00				
Probe positioning with respect to phantom shell	E.6.3	6.70	R	1.73	1	3.87	80				
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	4.00	R	1.73	1	2.31	8				
Test Sample Related											
Test sample positioning	E.4.2	4.63	N	1	1	4.63	9				
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5				
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	00				
Phantom and Tissue Par	rameters										
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.90	R	1.73	1	4.56	00				
Liquid conductivity-measurement uncertainty	E.3.3	1.50	N	1	0.64	0.96	5				
Liquid permittivity-measurement uncertainty	E.3.3	2.23	N	1	0.6	1.34	5				
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00				
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00				
Combined standard uncertainty				RSS		12.02	246				
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		24.03					

9. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension foraccommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit
 is battery powered withstandard or rechargeable batteries. The signal is optically transmitted to the
 EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

9.1 Isotropic E-field Probe

EX3DV4 Smallest Isotropic E-Field Probe for Dosimetric Measurements (Preliminary Specifications)

ES3DV3 Isotropic E-Field Probe for Dosimetric Measurements

	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Page: 13 of 104

9.2 Phantom

Twin SAM

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)

Shell Thickness $2 \pm 0.2 \text{ mm}$ (6 ± 0.2 mm at ear point)

Dimensions

Length: 1000 mm

Width: 500 mm

Height: adjustable feet

Filling Volume approx. 25 liters

Wooden Support SPEAG standard phantom table

Accessories Mounting Device and Adaptors

ELI

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased longterm stability.

Material Vinylester, glass fiber reinforced (VE-GF)

Liquid Compatibility Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)

Shell Thickness 2.0 ± 0.2 mm (bottom plate)

Dimensions Major axis: 600 mm Minor axis: 400 mm

Filling Volume approx. 30 liters

Wooden Support SPEAG standard phantom table

Accessories <u>Mounting Device and Adaptors</u>

Page: 14 of 104

9.3 Device Holder for Transmitters

Mounting Devices and Adaptors

Mounting Device for Hand-Held Transmitters

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material: Polyoxymethylene (POM)

MD4LAPV5 - Mounting Device for Laptops and other Body-Worn Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device (Body-Worn) enables testing of ransmitter devices according to IEC 62209-2 specifications. The device holder can be locked for positioning at flat phantom section.

Material: Polyoxymethylene (POM), PET-G, Foam

10. System Verification

10.1 Tissue Verification

The dielectric properties for this Tissue Simulant Liquids were measured by using the SPEAG Model DAK3.5 Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 kHz -8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (22 ± 2) °C.

Freq. (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)	
2 450	HSL2450	Recommended Limit	39.21 ± 5 % (37.25~41.17)	1.79 ± 5 % (1.70~1.88)	22 ± 2	
		Measured, 2015-06-19	39.40	1.86	21.23	
5 200	HSL5000	Recommended Limit	36.00 ± 5 % (34.20~37.80)	4.66 ± 5 % (4.43~4.89)	22 ± 2	
		Measured, 2015-06-20	36.09	4.74	21.72	
5 300	HSL5000	Recommended Limit	35.90 ± 5 % (34.11~37.70)	4.76 ± 5 % (4.52~5.00)	22 ± 2	
		Measured, 2015-06-20	35.94	4.83	21.72	
5 600	MSL5000	Recommended Limit	48.47 ± 5 % (43.62~53.32)	5.77 ± 5 % (5.19~6.34)	22 ± 2	
		Measured, 2015-06-24	47.42	5.85	22.37	
5 200	MSL5000	Recommended Limit	49.01 ± 5 % (46.56~51.46)	5.30 ± 5 % (5.04~5.57)	22 ± 2	
		Measured, 2015-06-25	48.42	5.11	21.73	
5 300	MSL5000	MSL5000	Recommended Limit	48.88 ± 5 % (46.44~51.32)	5.42 ± 5 % (5.15~5.69)	22 ± 2
		Measured, 2015-06-26	48.74	5.25	20.31	
5 800	MSL5000	Recommended Limit	48.20 ± 5 % (45.79~50.61)	6.00 ± 5 % (5.70~6.30)	22 ± 2	
		Measured, 2015-06-26	47.45	6.16	20.31	
5 600	HSL5000	Recommended Limit	$35.50 \pm 5 \%$ (31.95~39.05)	5.07 ± 5 % (4.56~5.58)	22 ± 2	
		Measured, 2015-06-27	35.21	5.23	21.24	
5 800	HSL5000	Recommended Limit	35.30 ± 5 % (33.54~37.07)	5.27 ± 5 % (5.01~5.53)	22 ± 2	
		Measured, 2015-06-27	34.68	5.49	21.24	
2 450	MSL2450	Recommended Limit	52.70 ± 5 % (50.07~55.34)	1.95 ± 5 % (1.85~2.05)	22 ± 2	
		Measured, 2015-06-28	52.29	1.98	21.46	

<Table 1.Measurement result of Tissue electric parameters>

10.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table Table 2. During the tests, the ambient temperature of the laboratory was in the range (22 ± 2) °C, the relative humidity was in the range (50 ± 20) % and the liquid depth above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Page: 17 of 104

Validation	Dipole Ant.	Frequency	Tissue	Limit/Measurement (Normalized to 1 W)			
Kit	S/N	(MHz)	Type		1 g	10 g	
D0450V0	005	2.450	1101.0450	Recommended Limit	52.5 ± 10 %	24.5 ± 10 %	
D2450V2	895 2 450	2 450	HSL2450	M 1 2015 05 10	(47.25~57.75)	(22.05~26.95)	
				Measured, 2015-06-19	54.40	24.60	
D # CYY Y Y	4404	7.0 00	***** ****	Recommended Limit	$76.95 \pm 10 \%$	22.1 ± 10 %	
D5GHzV2	1134	5 200	HSL5000	1 2017 07 20	(69.26~84.65)	(18.99~23.21)	
				Measured, 2015-06-20	73.70	20.50	
				Recommended Limit	81.20 ± 10 %	23.50 ± 10 %	
D5GHzV2	1134	5 300	HSL5000		(73.08~89.32)	(21.15~25.85)	
				Measured, 2015-06-20	85.00	23.50	
				Recommended Limit	79.20 ± 10 %	21.9 ± 10 %	
D5GHzV2	1134	5 600	MSL5000		(71.28~87.12)	(19.71~24.09)	
				Measured, 2015-06-24	85.50	23.60	
		1134 5 200	MSL5000	Recommended Limit	$74.80 \pm 10 \%$	20.9 ± 10 %	
D5GHzV2	1134			Recommended Limit	(67.32~82.28)	(18.81~22.99)	
				Measured, 2015-06-25	76.70	21.30	
		5 300			Recommended Limit	75.5 ± 10 %	21.0 ± 10 %
D5GHzV2	1134		0 MSL5000	Recommended Limit	(67.95~83.05)	(18.90~23.10)	
				Measured, 2015-06-26	81.90	22.60	
				D	76.7 ± 10 %	21.1 ± 10 %	
D5GHzV2	1134	5 800	MSL5000	Recommended Limit	(69.03~84.37)	(18.99~23.21)	
				Measured, 2015-06-26	80.60	22.20	
				D 1.11.	79.6 ± 10 %	22.8 ± 10 %	
D5GHzV2	1134	5 600	HSL5000	Recommended Limit	(71.64~87.56)	(20.52~25.08)	
				Measured, 2015-06-27	86.10	24.00	
				D 1.171.1	77.7 ± 10 %	22.2 ± 10 %	
D5GHzV2	D5GHzV2 1134 5	5 800	HSL5000	Recommended Limit	(69.93~85.47)	(19.98~24.42)	
				Measured, 2015-06-27	81.20	22.70	
				,	50.9 ± 10 %	23.6 ± 10 %	
D2450V2	895	2 450	MSL2450	Recommended Limit	(45.81~55.99)	(21.24~25.96)	
				Measured, 2015-06-28	51.60	23.76	

<Table 2.Test System Verification Result>

Page: 18 of 104

11. Operation Configurations

Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

Page: 19 of 104

12. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surfacedetermines the closest measurement point to phantom surface. The minimum distance of probe sensors surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points toprobe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan hasmeasured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is arequirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r03.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Page: 20 of 104

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5x5x7 points within a cube whose base faces are centered on the maxima found in a preceding area scanjob within the same procedure. When the measurement is done, the Zoom Scan evaluates theaveraged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r03.

			\leq 3 GHz	> 3 GHz	
Maximum zoom scan s	spatial reso	dution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1); between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n\text{-}1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent powerreference measurement within the same procedure, and with the same settings. The Power DriftMeasurement gives the field difference in dB from the reading conducted within the last PowerReference Measurement. This allows a user to monitor the power drift of the device under test within abatch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensionalgrid. In order to get a reasonable extrapolation, the extrapolated distance should not belarger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Annex A.4 Liquid Depth photo to replace

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

13. Test Equipment Information

Test Platform	SPEAG DASY5 Syste	em		
Version	DASY5 : Version 52.8 SEMCAD : Version 14			
Location	EMC compliance Lab			
Manufacture	SPEAG			
Hardware Reference				
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration
Shield Room	Shield Room	None	N/A	N/A
DASY5 Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A
DASY5 Controller	TX90XL Speag	F12/5L7FA1/C/01	N/A	N/A
Phantom	SAM Twin Phantom	1724	N/A	N/A
Mounting Device	Mounting Device	None	N/A	N/A
DAE	DAE4	1342	2014-07-24	2015-07-24
Probes	EX3DV4	3928	2015-01-28	2016-01-28
Dipole Validation Kits	D2450V2	895	2014-07-24	2016-07-24
Dipole Validation Kits	D5GHzV2	1134	2015-05-22	2017-05-22
Network Analyzer	E5071B	MY42403524	2014-07-15	2015-07-15
Dual Directional Coupler	772D	2839A00719	2014-08-29	2015-08-29
Signal Generator	E4438C	MY42080486	2015-01-19	2016-01-19
Power Amplifier	2055-BBS3Q7E9I	1005D/C0521	2015.05.22	2016-07-17
Power Amplifier	5190 FE	1012	2014-08-29	2015-08-29
LP Filter	LA-30N	40058	2014-08-28	2015-08-28
LP Filter	LA-60N	40059	2014-08-28	2015-08-28
Dual Power Meter	E4419B	GB43312301	2014-07-17	2015-07-17
Power Sensor	8481H	3318A19377	2014-08-30	2015-08-30
Power Sensor	8481H	3318A19379	2014-08-30	2015-08-30
Dielectric Assessment Kit	DAK-3.5	1078	2014-08-19	2015-08-19
Humidity/Baro/Temp. Data Recorder	MHB-382SD	73871	2014-08-26	2015-08-26

14. RF Average Conducted Output Power

14.1 Average Conducted Output Power

Mode	Conducted Powers (dBm)						
Wode	2412	2437	2462				
802.11b_1 Mbps	18.94	18.72	18.68				
802.11g_6 Mbps	18.47	18.48	18.61				
802.11n(HT-20)_MCS0	18.45	18.49	18.61				

Mode	Conducted Powers (dBm)											
	5 180	5 200	5 240	5 260	5 300	5 320	5 500	5 580	5 700	5 745	5 785	5 825
802.11a_6 Mbps	17.93	17.88	17.87	17.74	17.83	17.88	18.12	17.97	17.89	17.75	17.69	17.61
802.11n(HT-20)_MCS0	17.85	17.88	17.91	17.86	17.71	17.77	18.10	17.85	17.82	17.73	17.65	17.53

14.2 Max. tune up power

Mode	Target Power (dBm)	Tolerance(dB)	Max. Allowed Power(dBm)
IEEE 802.11b	18.00	± 2	20.00
IEEE 802.11g	18.00	± 2	20.00
IEEE 802.11n(HT-20)	18.00	± 2	20.00
IEEE 802.11a	18.00	± 1	19.00
IEEE 802.11n(HT-20)	18.00	± 1	19.00

Report No.: EMC-FCC-A0021 Page: 23 of 104

15. SAR Test Results

15.1 WLAN 2.4G Head SAR

Frequ	iency	Average	Scaling Elli		caling EUT		Scaled	1 g SAR
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
2437	6	18.72	20.00	1.3428	Right Cheek	0.322	0.432	
2437	6	18.72	20.00	1.3428	Right Tilt	0.309	0.415	1.6
2437	6	18.72	20.00	1.3428	Left Cheek	0.324	0.435	1.6
2437	6	18.72	20.00	1.3428	Left Tilt	0.291	0.391	

- * SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 24 of 104

15.2 WLAN 2.4G Body SAR

Frequ	uency	Average	Max. tune	Scaling	EUT	Separation Distance	Measured	Scaled	1 g SAR Limit
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	(mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	(W/kg)
2437	6	18.72	20.00	1.3428	Front	15	0.081	0.109	
2437	6	18.72	20.00	1.3428	Back	15	0.096	0.129	
2437	6	18.72	20.00	1.3428	Тор	15	0.095	0.128	1.6
2437	6	18.72	20.00	1.3428	Left	15	0.059	0.079	1.6
2437	6	18.72	20.00	1.3428	Right	15	0.049	0.066	
2437	6	18.72	20.00	1.3428	Bottom	15	0.006	0.008	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 25 of 104

15.3 WLAN 5.2G Head SAR

Frequ	uency	Average	Max. tune	Scaling	EUT	Measured	Scaled	1 g SAR
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
5200	40	17.88	19.00	1.2942	Right Cheek	0.619	0.801	
5200	40	17.88	19.00	1.2942	Right Tilt	0.607	0.786	
5200	40	17.88	19.00	1.2942	Left Cheek	0.466	0.603	1.6
5200	40	17.88	19.00	1.2942	Left Tilt	0.523	0.677	1.6
5180	36	17.93	19.00	1.2794	Right Cheek	0.476	0.609	
5240	48	17.87	19.00	1.2972	Right Cheek	0.662	0.859	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 26 of 104

15.4 WLAN 5.2G Body SAR

Frequ	uency	Average	Max.	Caslina	ELIC	Separation	Measured	Scaled	1 g SAR
MHz	Ch.	Power (dBm)	tune up power (dBm)	Scaling Factor	EUT Position	Distance (mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
5200	40	17.88	19.00	1.2942	Front	15	0.083	0.107	
5200	40	17.88	19.00	1.2942	Back	15	0.384	0.497	
5200	40	17.88	19.00	1.2942	Тор	15	0.234	0.303	1.6
5200	40	17.88	19.00	1.2942	Left	15	0.057	0.074	1.0
5200	40	17.88	19.00	1.2942	Right	15	0.075	0.097	
5200	40	17.88	19.00	1.2942	Bottom	15	0.013	0.017	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 27 of 104

15.5 WLAN 5.3G Head SAR

Frequ	uency	Average	Max. tune	Scaling	EUT	Measured	Scaled	1 g SAR Limit
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	1 g SAR (W/kg)	1 g SAR (W/kg)	(W/kg)
5300	60	17.83	19.00	1.3092	Right Cheek	0.663	0.868	
5300	60	17.83	19.00	1.3092	Right Tilt	0.741	0.970	
5300	60	17.83	19.00	1.3092	Left Cheek	0.581	0.761	1.6
5300	60	17.83	19.00	1.3092	Left Tilt	0.642	0.841	1.6
5260	52	17.74	19.00	1.3366	Right Tilt	0.653	0.873	
5320	64	17.88	19.00	1.2942	Right Tilt	0.794	1.03	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 28 of 104

15.6 WLAN 5.3G Body SAR

Frequ	uency	Average	Max.	Caalina		Separation	Measured	Scaled	1 g SAR
MHz	Ch.	Power (dBm)	tune up power (dBm)	Scaling Factor	EUT Position	Distance (mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
5300	60	17.83	19.00	1.3092	Front	15	0.109	0.143	
5300	60	17.83	19.00	1.3092	Back	15	0.566	0.741	
5300	60	17.83	19.00	1.3092	Тор	15	0.310	0.406	1.6
5300	60	17.83	19.00	1.3092	Left	15	0.055	0.072	1.0
5300	60	17.83	19.00	1.3092	Right	15	0.087	0.114	
5300	60	17.83	19.00	1.3092	Bottom	15	0.012	0.016	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 29 of 104

15.7 WLAN 5.5G Head SAR

Frequency		Average	Max. tune	Scaling	EUT	Measured	Scaled	1 g SAR Limit	
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	1 g SAR (W/kg)	1 g SAR (W/kg)	(W/kg)	
5580	116	17.97	19.00	1.2677	Right Cheek	0.822	1.04		
5580	116	17.97	19.00	1.2677	Right Tilt	0.942	1.19		
5580	116	17.97	19.00	1.2677	Left Cheek	0.780	0.989	1.6	
5580	116	17.97	19.00	1.2677	Left Tilt	0.889	1.13	1.6	
5500	100	18.12	19.00	1.2246	Right Tilt	0.799	0.978		
5700	140	17.89	19.00	1.2912	Right Tilt	0.827	1.07		

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 30 of 104

15.8 WLAN 5.5G Body SAR

Frequency		Average	Max.	Caaling	EUT	Separation	Measured	Scaled	1 g SAR
MHz	Ch.	Power (dBm)	tune up power (dBm)	Scaling Factor	Position	Distance (mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
5580	116	17.97	19.00	1.2677	Front	15	0.166	0.210	
5580	116	17.97	19.00	1.2677	Back	15	0.934	1.18	
5580	116	17.97	19.00	1.2677	Тор	15	0.536	0.679	
5580	116	17.97	19.00	1.2677	Left	15	0.057	0.072	1.6
5580	116	17.97	19.00	1.2677	Right	15	0.108	0.137	1.0
5580	116	17.97	19.00	1.2677	Bottom	15	0.020	0.025	
5500	100	18.12	19.00	1.2246	Back	15	0.827	1.01	
5700	140	17.89	19.00	1.2912	Back	15	0.778	1.01	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 31 of 104

15.9 WLAN 5.8G Head SAR

Frequency		Average	Max. tune	Scaling	EUT	Measured	Scaled	1 g SAR Limit	
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	1 g SAR (W/kg)	1 g SAR (W/kg)	(W/kg)	
5785	157	17.69	19.00	1.3521	Right Cheek	0.661	0.894		
5785	157	17.69	19.00	1.3521	Right Tilt	0.782	1.06		
5785	157	17.69	19.00	1.3521	Left Cheek	0.574	0.776	1.6	
5785	157	17.69	19.00	1.3521	Left Tilt	0.666	0.900	1.6	
5745	149	17.75	19.00	1.3335	Right Tilt	0.939	1.25		
5825	165	17.61	19.00	1.3772	Right Tilt	0.914	1.26		

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

Page: 32 of 104

15.10 WLAN 5.8G Body SAR

Frequency		Average	Max.	Caaling	EUT	Separation	Measured	Scaled	1 g SAR
MHz	Ch.	Power (dBm)	tune up power (dBm)	Scaling Factor	Position	Distance (mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
5785	157	17.69	19.00	1.3521	Front	15	0.141	0.191	
5785	157	17.69	19.00	1.3521	Back	15	0.745	1.01	
5785	157	17.69	19.00	1.3521	Тор	15	0.432	0.584	
5785	157	17.69	19.00	1.3521	Left	15	0.020	0.027	1.6
5785	157	17.69	19.00	1.3521	Right	15	0.096	0.130	1.0
5785	157	17.69	19.00	1.3521	Bottom	15	0.019	0.026	
5745	149	17.75	19.00	1.3335	Back	15	0.845	1.13	
5825	165	17.61	19.00	1.3772	Back	15	0.930	1.28	

- * SAR valueswere scaled to the maximum allowed power to determine compliance per KDB Publication 447498D01v05r02.
- * For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.

16. Test System Verification Results

System check for Head 2450 MHz(2015-06-19)

Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.861 \text{ S/m}$; $\varepsilon_r = 39.397$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(7.06, 7.06, 7.06); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe) 2 2/Area Scan (51x61x1): Interpolated grid: dx=2.000 mm, dy=2.000 mm Maximum value of SAR (interpolated) = 19.1 W/kg

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe) 2 2/Zoom Scan (7x7x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 108.4 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

System check for Body 2450 MHz(2015-06-28)

Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.976 \text{ S/m}$; $\varepsilon_r = 52.295$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(7.15, 7.15, 7.15); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe) 2/Area Scan (91x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.3 W/kg

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe) 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.4 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.94 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

System check for Head 5200 MHz(2015-06-20)

Procedure Name: d=10mm, Pin=100mW, f=5200MHz

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.743 \text{ S/m}$; $\varepsilon_r = 36.087$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(5.02, 5.02, 5.02); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5200MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 15.7 W/kg

Configuration/d=10mm, Pin=100mW, f=5200MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.82 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 15.1 W/kg

System check for Body 5200 MHz(2015-06-25)

Procedure Name: d=10mm, Pin=100mW, f=5200MHz

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.111 \text{ S/m}$; $\varepsilon_r = 48.416$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.12, 4.12, 4.12); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5200MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 14.8 W/kg

Configuration/d=10mm, Pin=100mW, f=5200MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 62.55 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 16.3 W/kg

System check for Head 5300 MHz(2015-06-20)

Procedure Name: d=10mm, Pin=100mW, f=5300MHz

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 4.834 \text{ S/m}$; $\varepsilon_r = 35.936$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.85, 4.85, 4.85); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5300MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.0 W/kg

Configuration/d=10mm, Pin=100mW, f=5300MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 64.40 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 39.2 W/kg

SAR(1 g) = 8.5 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

System check for Body 5300 MHz(2015-06-26)

Procedure Name: d=10mm, Pin=100mW, f=5300MHz

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.252 \text{ S/m}$; $\varepsilon_r = 48.742$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(3.93, 3.93, 3.93); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5300MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.3 W/kg

Configuration/d=10mm, Pin=100mW, f=5300MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 63.84 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

System check for Head 5600 MHz(2015-06-27)

Procedure Name: d=10mm, Pin=100mW, f=5600MHz

Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.235 \text{ S/m}$; $\varepsilon_r = 35.214$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3928; ConvF(4.45, 4.45, 4.45); Calibrated: 2015-01-28;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5600MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 17.9 W/kg

Configuration/d=10mm, Pin=100mW, f=5600MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 64.29 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 40.0 W/kg

SAR(1 g) = 8.61 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

System check for Body 5600 MHz(2015-06-24)

Procedure Name: d=10mm, Pin=100mW, f=5600MHz

Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.852 \text{ S/m}$; $\varepsilon_r = 47.417$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3928; ConvF(3.65, 3.65, 3.65); Calibrated: 2015-01-28;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5600MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.4 W/kg

Configuration/d=10mm, Pin=100mW, f=5600MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 63.25 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 36.9 W/kg

SAR(1 g) = 8.55 W/kg; SAR(10 g) = 2.36 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

System check for Head 5800 MHz(2015-06-27)

Procedure Name: d=10mm, Pin=100mW, f=5800MHz

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 5.488 \text{ S/m}$; $\varepsilon_r = 34.679$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.58, 4.58, 4.58); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5800MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.6 W/kg

Configuration/d=10mm, Pin=100mW, f=5800MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.46 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 38.2 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

System check for Body 5800 MHz(2015-06-26)

Procedure Name: d=10mm, Pin=100mW, f=5800MHz

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 6.16 \text{ S/m}$; $\varepsilon_r = 47.446$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(3.89, 3.89, 3.89); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/d=10mm, Pin=100mW, f=5800MHz/Area Scan (91x91x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.8 W/kg

Configuration/d=10mm, Pin=100mW, f=5800MHz/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 63.70 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 34.5 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

17. Test Results

#1

Procedure Name: 802.11b_Ch6_f.2 437_Left Cheek

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.847$ S/m; $\varepsilon_r = 39.455$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3928; ConvF(7.06, 7.06, 7.06); Calibrated: 2015-01-28;

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11b_Ch6_f.2 437_Left Cheek/Area Scan (81x171x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.484 W/kg

Configuration/802.11b_Ch6_f.2 437_Left Cheek/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.09 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.665 W/kg

SAR(1 g) = 0.324 W/kg; SAR(10 g) = 0.179 W/kg

Maximum value of SAR (measured) = 0.475 W/kg

Report No.: EMC-FCC-A0021 Page: 44 of 104

#2

Procedure Name: 802.11b_Ch6_f.2 437_Body Back

Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.968$ S/m; $\varepsilon_r = 52.348$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(7.15, 7.15, 7.15); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11b_Ch6_f.2 437_Body Back/Area Scan (81x161x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.134 W/kg

Configuration/802.11b_Ch6_f.2 437_Body Back/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.414 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.174 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.055 W/kg

Maximum value of SAR (measured) = 0.132 W/kg

Report No.: EMC-FCC-A0021 Page: 45 of 104

#3

Procedure Name: 802.11a_Ch48_f.5 240_Right Cheek

Frequency: 5240 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5240 MHz; $\sigma = 4.767 \text{ S/m}$; $\varepsilon_r = 36.025$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3928; ConvF(5.02, 5.02, 5.02); Calibrated: 2015-01-28;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1342; Calibrated: 2014-07-24

• Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728

• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch48_f.5 240_Right Cheek/Area Scan (91x131x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.18 W/kg

Configuration/802.11a_Ch48_f.5 240_Right Cheek/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.052 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.233 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

Report No.: EMC-FCC-A0021 Page: 46 of 104

#4

Procedure Name: 802.11a_Ch40_f.5 200_Body Back_Gap 15 mm

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.111 \text{ S/m}$; $\varepsilon_r = 48.416$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.12, 4.12, 4.12); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch40_f.5 200_Body Back_Gap 15 mm/Area Scan (71x61x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.746 W/kg

Configuration/802.11a_Ch40_f.5 200_Body Back_Gap 15 mm/Zoom Scan

(9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.836 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.39 W/kg

SAR(1 g) = 0.384 W/kg; SAR(10 g) = 0.141 W/kg

Maximum value of SAR (measured) = 0.727 W/kg

Report No.: EMC-FCC-A0021 Page: 47 of 104

#5

Procedure Name: 802.11a_Ch64_f.5 320_Right Tilt

Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 4.844 \text{ S/m}$; $\varepsilon_r = 35.979$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.85, 4.85, 4.85); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch64_f.5 320_Right Tilt/Area Scan (101x101x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.54 W/kg

Configuration/802.11a_Ch64_f.5 320_Right Tilt/Zoom Scan (7x7x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 0.794 W/kg; SAR(10 g) = 0.292 W/kg

Maximum value of SAR (measured) = 1.47 W/kg

Report No.: EMC-FCC-A0021 Page: 48 of 104

#6

Procedure Name: 802.11a_Ch60_f.5 300_Body Back_Gap 15 mm

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.252 \text{ S/m}$; $\varepsilon_r = 48.742$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(3.93, 3.93, 3.93); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch60_f.5 300_Body Back_Gap 15 mm/Area Scan (71x61x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.13 W/kg

Configuration/802.11a_Ch60_f.5 300_Body Back_Gap 15 mm/Zoom Scan

(9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.118 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 2.04 W/kg

SAR(1 g) = 0.566 W/kg; SAR(10 g) = 0.206 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Report No.: EMC-FCC-A0021 Page: 49 of 104

#7

Procedure Name: 802.11a_Ch116_f.5 580_Right Tilt 2

Frequency: 5580 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5580 MHz; $\sigma = 5.244 \text{ S/m}$; $\varepsilon_r = 35.201$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.45, 4.45, 4.45); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch116_f.5 580_Right Tilt 2/Area Scan (91x131x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.71 W/kg

Configuration/802.11a_Ch116_f.5 580_Right Tilt 2/Zoom Scan (9x9x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.74 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 0.942 W/kg; SAR(10 g) = 0.363 W/kg

Maximum value of SAR (measured) = 1.77 W/kg

Report No.: EMC-FCC-A0021 Page: 50 of 104

#8

Procedure Name: 802.11a_Ch116_f.5 580_Body Back_Gap 15 mm 2

Frequency: 5580 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5580 MHz; $\sigma = 5.84 \text{ S/m}$; $\varepsilon_r = 47.495$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(3.65, 3.65, 3.65); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch116_f.5 580_Body Back_Gap 15 mm 2/Area Scan (71x61x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.88 W/kg

Configuration/802.11a_Ch116_f.5 580_Body Back_Gap 15 mm 2/Zoom Scan

(9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 9.861 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.91 W/kg

SAR(1 g) = 0.934 W/kg; SAR(10 g) = 0.339 W/kg

Maximum value of SAR (measured) = 1.79 W/kg

Report No.: EMC-FCC-A0021 Page: 51 of 104

#9

Procedure Name: 802.11a_Ch165_f.5 825_Right Tilt

Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.504$ S/m; $\varepsilon_r = 34.576$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(4.58, 4.58, 4.58); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch165_f.5 825_Right Tilt/Area Scan (91x131x1): Interpolated

grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.91 W/kg

Configuration/802.11a_Ch165_f.5 825_Right Tilt/Zoom Scan (9x10x12)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.59 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 0.914 W/kg; SAR(10 g) = 0.305 W/kg

Maximum value of SAR (measured) = 1.81 W/kg

Report No.: EMC-FCC-A0021 Page: 52 of 104

#10

Procedure Name: 802.11a_Ch165_f.5 825_Body Back_Gap 15 mm

Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 6.181$ S/m; $\varepsilon_r = 47.33$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(3.89, 3.89, 3.89); Calibrated: 2015-01-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11a_Ch165_f.5 825_Body Back_Gap 15 mm/Area Scan (71x61x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.89 W/kg

Configuration/802.11a_Ch165_f.5 825_Body Back_Gap 15 mm/Zoom Scan

(9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.668 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 4.20 W/kg

SAR(1 g) = 0.930 W/kg; SAR(10 g) = 0.336 W/kg

Maximum value of SAR (measured) = 1.78 W/kg

Annex A. Photographs

Annex A.1 EUT

Front View

Back View

Right side View

Left side View

Top side View

Bottom side View

Annex A.2 Photographs of Test Setup

Photograph of the SAR measurement System

Annex A.3 Test Position

(a) Head_Right Cheek

(b)Head_Right Tilt

(c) Head_Left Cheek

(d) Head_Left Tilt

(e) Body_Front_15 mm

(f)Body_Back_15 mm

(g)Body_Top_15 mm

(h)Body_Left_15 mm

(i)Body_Right_15 mm

(j)Body_Bottom_15 mm

(k) System Check 2 450 MHz

(l) System Check 5 000 MHz

Annex A.4 Liquid Depth

MSL2450

Report No.: EMC-FCC-A0021 Page: 64 of 104

HSL5000

MSL5000

Annex B. Calibration certificate

Annex B.1 Probe Calibration certificate **EX3DV4 SN3928**

Page: 66 of 104

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 3 = 0 (f ≤ 900 MHz in TEM-ceit; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx.y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using snalytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3928_Jan15

Page 2 of 11

January 28, 2015

EX3DV4 - SN:3928

Probe EX3DV4

SN:3928

Manufactured: Calibrated: March 8, 2013 January 28, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3928_Jan15

Page 3 of 11

Page: 68 of 104

EX3DV4-SN:3928

January 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Basic Calibration Parameters

CONTRACTOR STATE OF THE PARTY O	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.50	0.23	0.56	± 10.1 %
DCP (mV) th	101.5	88.2	99.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc* (k=2)
0	CW	W X 0.	0.0	0.0	1.0	0.00	139.7	±2.5 %
	1000	Y	0.0	0.0	1.0		132.2	100
		Z	0.0	0.0	1.0		144.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3928_Jan15

Page 4 of 11

^{*} The uncertainties of NormX.Y.Z do not affect the E^c-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

**Cuncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 69 of 104

EX3DV4- SN:3928

January 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth G (mm)	Unct. (k=2)
300	45.3	0.87	10.81	10.81	10,81	0.09	1.50	± 13.3 %
450	43.5	0.87	9.89	9.89	9.89	0.16	1.50	± 13.3 %
850	41.5	0.92	9,14	9.14	9.14	0.28	1,17	± 12.0 %
900	41.5	0.97	8.95	8.95	8.95	0.23	1,29	± 12.0 %
1750	40.1	1.37	7.93	7.93	7.93	0.62	0.66	± 12.0 %
1900	40.0	1.40	7.69	7.69	7.69	0.79	0.60	± 12.0 %
2300	39.5	1.67	7.25	7.25	7.25	0.40	0.74	± 12.0 %
2450	39.2	1.80	7.06	7.06	7.06	0.62	0.65	± 12.0 %
2600	39.0	1.96	6.79	6.79	6.79	0.45	0.81	± 12.0 %
5200	36.0	4.66	5.02	5.02	5.02	0.40	1.80	± 13.1 %
5300	35.9	4.76	4,85	4.85	4.85	0.40	1.80	±13.1 %
5500	35.6	4.96	4,68	4.68	4.68	0.45	1.80	± 13.1 9
5800	35.5	5.07	4.45	4.45	4.45	0.45	1,80	± 13.1 9
5800	35.3	5.27	4.58	4.58	4.58	0.45	1,80	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. This uncertainty is the RSS of the ConvF uncertainty at casteration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz they validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of issue parameters (and e) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At incommissions below 5 GHz, the validity of issue parameters (and e) as estimated to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target issue parameters.

*Althratiopha are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe to diameter from the boundary.

Certificate No: EX3-3928_Jan15

Page 5 of 11

Page: 70 of 104

EX3DV4-SN:3928

January 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity [†]	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Unct. (k=2)
300	58.2	0.92	10.68	10.68	10.68	0.06	1.20	± 13.3 %
450	56.7	0.94	10.90	10.90	10,90	0.07	1,20	±13.3 %
850	55.2	0.99	9.11	9.11	9.11	0.36	0.95	±12.0 %
900	55.0	1.05	8.83	8.83	8.83	0.30	1.06	± 12.0 %
1750	53.4	1.49	7.67	7.67	7.67	0.74	0.62	±12.0 %
1900	53.3	1.52	7.45	7.45	7.45	0.61	0.67	± 12.0 %
2300	52.9	1.81	7.27	7.27	7.27	0.57	0.69	± 12.0 %
2450	52.7	1.95	7.15	7.15	7.15	0.55	0.71	±12.0 %
2600	52.5	2.16	6.84	6.84	5.84	0.76	0.57	± 12.0 %
5200	49.0	5.30	4.12	4.12	4.12	0.55	1.90	± 13.1 9
5300	48.9	5.42	3.93	3.93	3.93	0.55	1,90	± 13.1 %
5500	48.6	5.65	3.72	3,72	3.72	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.65	3.65	3.65	0.55	1.90	± 13.1 9
5800	48.2	6.00	3.89	3.89	3.89	0.55	1.90	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At hequencies below 3 GHz, the validity of tissue parameters (a and o') can be reliaved to ± 10% if liquid compensation formula is applied to measured SAF values. At hequencies above 3 GHz, the validity of tissue parameters (a and o') is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

*AphseConph are determined during outlibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less that ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe to diameter from the boundary.

Certificate No: EX3-3928_Jan15

Page 6 of 11

EX3DV4- SN:3928 January 28, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3928_Jan15

Page 7 of 11

EX3DV4- SN:3928 January 28, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3928_Jan15

Page 9 of 11

EX3DV4-- SN:3928 January 28, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-112.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3928_Jan15

Page 11 of 11

Annex B.2 DAE Calibration certification

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client EMC Compliance (Dymstec)

Certificate No: DAE4-1342_Jul14

Accreditation No.: SCS 108

Diperi	DAE4 - SD 000 D	M BM - SN: 1342	
referent.	D. 164 CC 000 D	Them with 1976	
alibration procedure(s)	QA CAL-06.v26 Calibration proced	ure for the data acquisition el	ectronics (DAE)
Calibration date:	July 24, 2014		
		nal standards, which realize the physical bibability are given on the following pages	
All calibrations have been condu	cted in the closed laboratory	facility: environment temperature (22 ±	3)°C and humidity < 70%.
N celbrations have been condu Calibration Equipment used (M&	15:5"VVIII 26:00:	facility: environment temperature (22 ±	3)°C and humidity < 70%.
Calibration Equipment used (M& Primary Standards	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)		
alibration Equipment used (M& rimary Standards eithley Multimeter Type 2001 econdary Standards	TE critical for calibration) ID # SN: 0610278	Cali Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house)	Scheduled Calibration Oct-14 Scheduled Check
	ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cai Date (Certificate No.) 01-Oct-13 (No.13976)	Scheduled Calibration Oct-14
Calibration Equipment used (M& Primary Standards Ceithley Multimater Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0810278 ID # SE UWS 053 AA 1001	Cali Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-14 (in house check)	Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15
Calibration Equipment used (M& Primary Standards Ceithley Multimater Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SN: 0610278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Cali Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15 In house check: Jan-15

Certificate No: DAE4-1342_Jul14

Page 1 of 5

Page: 77 of 104

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No; DAE4-1342_Jul14

Page 2 of 5

Page: 78 of 104

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.079 ± 0.02% (k=2)	404.229 ± 0.02% (k=2)	404.193 ± 0.02% (k=2)
Low Range	3.97194 ± 1.50% (k=2)	3.97818 ± 1.50% (k=2)	3.97832 ± 1.50% (k=2)

Connector Angle

36.5°±1°

Certificate No: DAE4-1342_Jul14

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199994.48	-2.71	-0.00
Channel X + Input	20003.12	2.03	0.01
Channel X - Input	-19998.22	2.56	-0.01
Channel Y + Input	199994.97	-2.37	-0.00
Channel Y + Input	20000.20	-0.94	-0.00
Channel Y - Input	-20001.55	-0.79	0.00
Channel Z + Input	199993.69	-3.29	-0.00
Channel Z + Input	20000.13	-0.86	-0.00
Channel Z - Input	-20001.35	-0.58	0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.66	-0.29	-0.01
Channel X + Input	201.58	0.18	0.09
Channel X - Input	-198.71	-0.04	0.02
Channel Y + Input	2001.16	0.25	0.01
Channel Y + Input	201.20	-0.03	-0.02
Channel Y - Input	-199.87	-1.04	0.53
Channel Z + Input	2001.06	0.27	0.01
Channel Z + Input	200.54	-0.49	-0.24
Channel Z - Input	-200.16	-1.24	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.07	9,27
	- 200	-8.96	-10.56
Channel Y	200	0.81	0.58
	- 200	-2.58	-2.76
Channel Z	200	1.15	0.69
	- 200	-2.73	-3.02

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		4.50	-2.81
Channel Y	200	9.68	(6,17
Channel Z	200	10.07	7.09	

Certificate No: DAE4-1342_Jul14

Page: 80 of 104

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15949	15477
Channel Y	16473	14871
Channel Z	15667	14031

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec input 10MQ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.59	-0.36	1.97	0.56
Channel Y	-0.70	-1.87	0.51	0.54
Channel Z	-0.60	-1.90	0.78	0.60

6. Input Offset Current

Nominal input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for Information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Voc)	-7.8	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Voc)	-0.01	-8	-9

Certificate No: DAE4-1342_Jul14

Page 5 of 5

Annex B.3 Dipole Calibration certification D2450V2

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client EMC Compliance (Dymstec)

Certificate No: D2450V2-895 Jul14

Accreditation No.: SCS 108

Object	D2450V2 - SN; 8	95	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	July 24, 2014		
This calibration certificate docur The measurements and the unc	nents the traceability to nati ertainties with confidence p	onal standards, which realize the physical unitrobability are given on the following pages an	its of measurements (SI). d are part of the cartificate.
All calibrations have been condu	ucted in the closed laborator	y facility: environment temperature (22 ± 3)*C	C and humidity < 70%:
Calibration Equipment used (MI	RTE critical for calibration)		
Calibration Equipment used (Mil Primary Standards	RTE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A	ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A	BTE critical for calibration) BD # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Scheduled Calibration Oct-14
	BTE critical for calibration) BD # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Teference 20 dB Attenuator Type-N mismatch combination	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-14 Oct-14 Apr-15
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 09-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Apr-15 Apr-15
Calibration Equipment used (MM Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01818) 03-Apr-14 (No. 217-01918) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Scheduled Calibration Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15
Calibration Equipment used (Mi Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. E83-3205 Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check
Calibration Equipment used (MM Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01818) 03-Apr-14 (No. 217-01918) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Scheduled Calibration Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15
Calibration Equipment used (MM Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. E83-3205, Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Calibration Equipment used (MI Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 30-Dec-13 (No. E83-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheckiled Calibration Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (MM Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	BTE critical for calibration) BD # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. E83-3205, Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D2450V2-895_Jul14

Page 1 of 8

Page: 82 of 104

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurloh, Switzerland

S Schweizerlacher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-895_Jul14

Page 2 of 8

Page: 83 of 104

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	test	****

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	oute :	****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-895_Jul14

Page 3 of 8

Page: 84 of 104

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 1.6 jΩ
Return Loss	- 29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω + 3.7 jΩ	
Return Loss	- 28.7 dB	

General Antenna Parameters and Design

	The state of the s
Electrical Delay (one direction)	1,157 ns

After long term use with 100W rediated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 19, 2012

Certificate No: D2450V2-895_Jul14

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type; D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\epsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Certificate No: D2450V2-895_Jul14

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-895_Jul14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 16.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.39 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.01 W/kg Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-895_Jul14

Page 8 of 8

D5GHzV2

Page: 90 of 104

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

C Service suisse d'étatonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) In the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1134_May15

Page 2 of 16

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5600 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	34.4 ± 6 %	4.45 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May15

Page 3 of 16

Page: 92 of 104

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35,9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.54 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	1	

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.2 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	4.73 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May15

Page 4 of 16

Page: 93 of 104

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	4.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35,3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.6 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May15

Page 5 of 16

Page: 94 of 104

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.43 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		1004

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.53 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW Input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.56 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.60 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May15

Page 6 of 16

Page: 95 of 104

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied:

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.82 mhg/m ± 6 9
Body TSL temperature change during test	< 0.5 °C	****	0004

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

- Control of the Cont	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48,5	5.77 mho/m
Measured Body TSL parameters	(22,0 ± 0,2) °C	46.6 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.97 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May15

Page 7 of 16

Page: 96 of 104

Body TSL parameters at 5800 MHz The following parameters and calculations

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.23 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1134_May15

Page 8 of 16

Return Loss -20.2 dB	Impedance, transformed to feed point	47.9 Ω - 9.4 jΩ
Impedance, transformed to feed point Return Loss Antenna Parameters with Head TSL at 5500 MHz Impedance, transformed to feed point S1.0 Ω - 3.3 jΩ Return Loss Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point Return Loss Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point Return Loss Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point S5.3 Ω - 5.0 jΩ Return Loss Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point Return Loss Antenna Parameters with Body TSL at 5300 MHz Return Loss Antenna Parameters with Body TSL at 5300 MHz		110/00/00/00/00
Antenna Parameters with Head TSL at 5500 MHz Impedance, transformed to feed point 51.0 \Omega - 3.3 \text{ j}\Omega 52.0 dB Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point 54.0 \Omega - 3.9 \text{ j}\Omega 72.0 dB Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point 55.3 \Omega - 25.4 dB Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 \Omega - 5.0 \text{ j}\Omega 72.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 \Omega - 7.7 \text{ j}\Omega 72.1 dB Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	ntenna Parameters with Head TSL at 5300 M	Hz
Antenna Parameters with Head TSL at 5500 MHz Impedance, transformed to feed point 51.0 \Omega - 3.3 \text{ j}\Omega 8 Return Loss -29.2 dB Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point 54.0 \Omega - 3.9 \text{ j}\Omega 7 Return Loss -25.4 dB Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 \Omega - 5.0 \text{ j}\Omega 8 Return Loss -23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 \Omega - 7.7 \text{ j}\Omega 8 Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Impedance, transformed to feed point	49.80 - 7030
Impedance, transformed to feed point 51.0 Ω + 3.3 jΩ Return Loss -29.2 dB Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point 54.0 Ω - 3.9 jΩ Return Loss -25.4 dB Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 Ω - 5.0 jΩ Return Loss -23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω - 7.7 jΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	200 C 100 C	
Return Loss -29.2 dB Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point 54.0 Ω - 3.9 jΩ Return Loss -25.4 dB Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 Ω - 5.0 jΩ Return Loss -23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω - 7.7 jΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	ntenna Parameters with Head TSL at 5500 M	Hz
Antenna Parameters with Head TSL at 5600 MHz Impedance, transformed to feed point 54.0 Ω - 3.9 jΩ Return Loss -25.4 dB Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 Ω - 5.0 jΩ Return Loss -23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω - 7.7 jΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Impedance, transformed to feed point	51 0 O = 3 3 iO
Impedance, transformed to feed point 54.0 \Omega - 3.9 \j\Omega \tau \text{25.4 dB} Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 \Omega - 5.0 \omega \text{Q} \text{Peturn Loss} -23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 \Omega - 7.7 \omega \text{Q} \text{Peturn Loss} -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Return Loss	
Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 Ω = 5.0 μΩ Return Loss +23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω = 7.7 μΩ Return Loss +21.8 dB Antenna Parameters with Body TSL at 5300 MHz	ntenna Parameters with Head TSL at 5600 M	Hz
Antenna Parameters with Head TSL at 5800 MHz Impedance, transformed to feed point 55.3 Ω - 5.0 ½Ω Return Loss - 23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω - 7.7 jΩ Return Loss - 21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Impedance, transformed to feed point	54.0 Q - 3.9 iQ
Impedance, transformed to feed point 55.3 Ω = 5.0 jΩ Return Loss +23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω = 7.7 jΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Return Loss	
Return Loss -23.3 dB Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω - 7.7 μΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	ntenna Parameters with Head TSL at 5800 M	Hz
Antenna Parameters with Body TSL at 5200 MHz Impedance, transformed to feed point 48.0 Ω - 7.7 jΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Impedance, transformed to feed point	55.3 Q = 5.0 iQ
Impedance, transformed to feed point 48.0 Ω - 7.7 jΩ Return Loss -21.8 dB Antenna Parameters with Body TSL at 5300 MHz	Return Loss	
Antenna Parameters with Body TSL at 5300 MHz	ntenna Parameters with Body TSL at 5200 M	Hz
Antenna Parameters with Body TSL at 5300 MHz	Impedance, transformed to feed point	48.0 Q - 7.7 IQ
	Return Loss	
Impedance, transformed to feed point 49.6 Ω - 6.3 j Ω	ntenna Parameters with Body TSL at 5300 Mi	Hz
The state of the s	Impedance, transformed to feed point	49.6.0 - 63.10
Return Loss - 24.0 dB		
Antenna Parameters with Body TSL at 5500 MHz	ntenna Parameters with Body TSL at 5500 Mi	-lz
Impedance, transformed to feed point 51.3 \(\Omega = 1.8 \) i\(\Omega \)	Impedance, transformed to feed point	51.3 Ω - 1.8 iΩ
Return Loss - 33.0 dB	Return Loss	
Impedance, transformed to feed point 51.3 Ω - 1.8 j Ω	Impedance, transformed to feed point	51.3.Ω = 1.8 jΩ

Page: 98 of 104

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	54.4 Ω - 2.3 ΙΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω - 3.6 jΩ
Return Loss	- 23.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.204 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2012	

Certificate No: D5GHzV2-1134_May15

Page 10 of 16

Page: 99 of 104

DASY5 Validation Report for Head TSL

Date: 22.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1134

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.45$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 34.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 1000$ kg/m³, $\sigma = 1000$ 4.73 S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.83$ S/m; $\varepsilon_r = 33.9$; $\rho = 4.73$ S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: $\rho = 1000$ MHz; $\sigma = 4.83$ S/m; $\rho = 1000$ kg/m³, Medium parameters used: $\rho = 1000$ MHz; $\sigma = 4.83$ S/m; $\rho = 1000$ kg/m³, $\rho = 10000$ kg/m³, $\rho = 1000$ kg/m³, $\rho = 1000$ kg/m³, $\rho = 10000$ kg/m³, $\rho = 10000$ 1000 kg/m³ , Medium parameters used: f = 5800 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 33.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated; 30.12.2014, ConvF(5.21, 5.21, 5.21); Calibrated; 30.12.2014, ConvF(5.12, 5.12, 5.12); Calibrated; 30.12.2014, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2014, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.63 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.9 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65,59 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 8.21 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.27 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

Certificate No: D5GHzV2-1134_May15

Page 11 of 16

Page: 100 of 104

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.94 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 18.8 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.63 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kgdΒ 6.00 -12.00 -18.00 24.00 -30.00 0 dB = 17.6 W/kg = 12.46 dBW/kg

Page 12 of 16

Certificate No: D5GHzV2-1134_May15

Page: 102 of 104

DASY5 Validation Report for Body TSL

Date: 21.05.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1134

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.43$ S/m; $\varepsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.56$ S/m; $\epsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5500$ MHz; $\sigma = 55000$ MHz; $\sigma = 5500$ MHz; $\sigma = 55000$ MH 5.82 S/m; $\varepsilon_i = 46.8$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 5.96 \text{ S/m}$; $\varepsilon_i = 46.6$; $\rho = 5.96 \text{ S/m}$; $\varepsilon_i = 46.8$; $\rho = 6.96 \text{ J/m}$; $\epsilon_i = 6.96 \text{ J/m$

1000 kg/m⁵ , Medium parameters used: f = 5800 MHz; $\sigma = 6.23$ S/m; $\epsilon_r = 46.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2014, ConvF(4.78, 4.78, 4.78); Calibrated: 30.12.2014, ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014, ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2014, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.11 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.88 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.6 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.33 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1134_May15

Page 14 of 16

Page: 103 of 104

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.26 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 34.9 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.96 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 17.8 W/kg = 12.50 dBW/kg

Certificate No: D5GHzV2-1134_May15

Page 15 of 16

-END OF REPORT -