Series 5a

Throughout this series, let $T \in (0, \infty)$, let $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ be a stochastic basis, and let $W : [0,T] \times \Omega \to \mathbb{R}$ be a one-dimensional standard $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ -Brownian motion.

1. Milstein Scheme for One-Dimensional SDEs

Let $\xi \in \mathbb{R}$, let $\mu : \mathbb{R} \to \mathbb{R}$ be globally Lipschitz continuous, and let $\sigma \in C^1(\mathbb{R}; \mathbb{R})$. Consider the SDE

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t, \quad t \in [0, T], \quad X_0 = \xi.$$

 $\textbf{a)} \ \ \, \text{Let} \, \, M,N \in \mathbb{N}. \, \, \text{Write a Matlab function Milstein1D}(T,\xi,\mu,\sigma,\sigma',W) \, \, \text{with these inputs:} \\ \, \, T \in (0,\infty), \, \xi \in \mathbb{R}, \, \mu \colon \mathbb{R}^M \to \mathbb{R}^M, \, \sigma \colon \mathbb{R}^M \to \mathbb{R}^M, \, \sigma' \colon \mathbb{R}^M \to \mathbb{R}^M, \, W \in \mathbb{R}^{(N+1)\times M}, \\ \, \text{which returns} \, \, M \, \, \text{realizations} \, \, Y_N^N(\omega_i) \, \, (i=1,2,\ldots,M) \, \, \text{of the Milstein approximation} \, \, Y_N^N \, \, \text{for} \, \, X_T.$

Here: μ , σ , and σ' are function handles, and $W \in \mathbb{R}^{(N+1)\times M}$ is a realisation of M independent 1-dimensional Brownian motions sampled at equally spaced time points $\{n\Delta t \mid n=0,\ldots,N\}$, i.e.

$$W^{:,i} = (W_0, W_{\Delta t}, W_{2\Delta t}, \dots, W_{(N-1)\Delta t}, W_{N\Delta t})(\omega_i)$$
 $(i = 1, 2, \dots, M).$

Hint: You may modify the solution EulerMaruyama.m from Series 4a.

b) Investigate the strong error of the Milstein scheme for the one-dimensional SDE

$$dX_t = X_t dt + \log(1 + X_t^2) dW_t, \quad t \in [0, 1], \quad X_0 = 1,$$
(1)

using $M=10^5$ realisations and $N=N_\ell=10\cdot 2^\ell$ time steps for $\ell\in\{0,1,\ldots,4\}$. To this end:

- for each $\ell \in \{0, 1, ..., 4\}$, generate M realizations $Y_{N_{\ell}}^{N_{\ell}}(\omega_i)$ (i = 1, ..., M) of the Milstein approximation $Y_{N_{\ell}}^{N_{\ell}}$ for X_T ;
- for each $\ell \in \{0, 1, \dots, 4\}$, compute Monte Carlo approximations for the following expectations:

$$\mathbb{E}[|Y_{N_{\ell}}^{N_{\ell}} - X_{T}|] \approx \frac{1}{M} \sum_{i=1}^{M} |Y_{N_{\ell}}^{N_{\ell}}(\omega_{i}) - X_{T}| \quad \text{and} \quad \mathbb{E}[|Y_{N_{\ell}}^{N_{\ell}} - X_{T}|^{2}]^{\frac{1}{2}} \approx \left(\frac{1}{M} \sum_{i=1}^{M} |Y_{N_{\ell}}^{N_{\ell}}(\omega_{i}) - X_{T}|\right)^{\frac{1}{2}}.$$

Report on the experimental rates of strong convergence in L^1 and L^2 . Use a numerical solution of the SDE at level $\ell = 7$ as an approximation of the exact solution.

(You may use the provided template Milstein_SDE.m.)

c) Repeat question b) for the following SDE and comment on the results:

$$dX_t = X_t dt + \sin(1 + X_t^2) dW_t, \quad t \in [0, T], \quad X_0 = 1.$$
 (2)

2. Positivity and Simulation of the CIR Process via Drift-Implicit Milstein

Let $a, b, \sigma_v > 0$ and $v_0 \ge 0$. Consider the Cox-Ingersoll-Ross process, given as solution to the SDE

$$dV_t = a(b - V_t)dt + \sigma_v \sqrt{V_t} dW_t, \quad V_0 = v_0, \quad t \in [0, T].$$
(3)

It can be shown (e.g., using the Yamada-Watanabe theorem) that the SDE (3) admits a unique solution (up to indistinguishability).

a) Let $N \in \mathbb{N}$. Assume that [0, T] is discretised using a uniform temporal mesh with N+1 nodes, i.e. with time step size $\Delta t = T/N$. The *drift-implicit Milstein scheme* for the stochastic process V with step size Δt and initial value $V_0^N = V_0 > 0$ is given, for $n = 0, \ldots, N-1$, by

$$V_{n+1}^{N} = V_{n}^{N} + a(b - V_{n+1}^{N})\Delta t + \sigma_{v}\sqrt{V_{n}^{N}}(W_{t_{n+1}} - W_{t_{n}}) + \frac{\sigma_{v}^{2}}{4}\left((W_{t_{n+1}} - W_{t_{n}})^{2} - \Delta t\right).$$

Show that if $4ab \ge \sigma_{\mathbf{v}}^2$, then $P(V_n^N > 0) = 1$ for all $n \in \{0, \dots, N\}$.

b) Write a Matlab functio DriftImplicitMilstein $(T, N, v_0, a, b, \sigma_v)$ with inputs $T \in (0, \infty), N \in \mathbb{N}$, $v_0, a, b, \sigma_v > 0$, and output a realization of the drift-implicit Milstein scheme $\{V_0^N, V_1^N, \dots, V_N^N\}$ for the Cox-Ingersoll-Ross process V. Then, plot a sample path of the stochastic process V using the following parameter choices: $T = 1, N = 10^3, v_0 = 0.5, a = 2, b = 0.5$ and $\sigma_v = 0.25$.

3. Integrability and Proof Verification for the Kolmogorov Backward Equation

We adopt the full setting of Theorem 5.1.1 in the lecture notes with d = m = 1. Furthermore, we assume that there exists a constant c > 0 such that, for any $t \in [0, T]$ and $x \in \mathbb{R}$,

$$\sup_{s \in [t,T]} \big\| \mu(X_s^{t,x}) \big\|_{L^9(P;|\cdot|)} + \sup_{s \in [t,T]} \big\| \sigma(X_s^{t,x}) \big\|_{L^9(P;|\cdot|)} < c \quad \text{and} \quad \sup_{s \in [0,T]} \sup_{z \in \mathbb{R}} \frac{|\partial_2 u(s,z)|}{(1+|z|)^3} \leq c,$$

where ∂_2 denotes the partial derivative with respect to the second (spatial) argument of u.

Show that for any $t \in [0,T]$, $x \in \mathbb{R}$, and $h \ge 0$ such that $t+h \le T$,

$$\int_{t}^{t+h} \mathbb{E}_{P}\left[\left(\sigma(X_{s}^{t,x}) \cdot \partial_{2} u(t+h, X_{s}^{t,x})\right)^{2}\right] ds < \infty, \tag{4}$$

and verify the identity (5.11) in the proof of Theorem 5.1.1.

Submission Deadline: Wednesday, 04 December 2024, by 2:00 PM.