MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (9 punti) Si risolva il problema di schedulazione con m=2 macchine, misura di prestazione C_{max} e i seguenti tempi di esecuzione sulle due macchine

	Job	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8
ĺ	p_{1i}	9	8	5	2	12	4	5	10
I	p_{2i}	7	6	6	3	14	3	4	11

Si indichi sia la schedulazione ottima che il valore ottimo del problema. È vero che facendo crescere a 4 il valore p_{24} la posizione del job J_4 non cambierebbe nella schedulazione ottima? È vero che facendo crescere a 4 il valore p_{14} la posizione del job J_4 cambierebbe solo di un'unità nella schedulazione ottima?

ESERCIZIO 2. (10 punti) Sia data la rete G = (V, A) con

$$V = \{1, 2, 3, 4, 5\}$$

$$A = \{(1,2), (1,3), (1,4), (2,3), (2,5), (3,4), (3,5), (4,5)\}$$

con i seguenti costi unitari di trasporto c_{ij} e capacità d_{ij}

arco	(1,2)	(1,3)	(1,4)	(2,3)	(2,5)	(3,4)	(3, 5)	(4,5)
c_{ij}	15	2	2	8	21	11	6	5
d_{ij}	10	1	3	9	3	8	7	6

e i seguenti valori b_i associati ai nodi

nodo	1	2	3	4	5
b_i	+5	0	0	0	-5

Verificare che alla terna

$$B = \{(1,2), (2,3), (3,4), (4,5)\}$$
 $N_0 = \{(1,3), (1,4), (2,5), (3,5)\}$ $N_1 = \emptyset$.

corrisponde una soluzione di base ammissibile e partire da questa per determinare una soluzione ottima e il valore ottimo per questo problema. Cosa succederebbe se la capacità dell'arco (3,5) viene fatta scendere a 1?

ESERCIZIO 3. (6 punti) Si descriva il funzionamento dell'algoritmo greedy per il problema dell'albero di supporto a peso minimo e se ne dimostri la correttezza.

ESERCIZIO 4. (6 punti) Si illustri, dimostrandone correttezza e complessità, l'algoritmo per il probelma di schedulazione con m = 1 macchina e misura di prestazione \bar{C} .