Outline

Context-Free Grammar and Pushdown Automata 01204213 Theory of Computation

Jittat Fakcharoenphol

Kasetsart University

July 27, 2021

Outline

- 1 CFG
- Normal forms
- Pushdown automata
- 4 Equivalence between PDAs and CFG
- **⑤** CFGs ⇒ PDAs

Review: An example

Grammar G₁

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Start with $A \Rightarrow 0A1$ (rule 1) $\Rightarrow 00A11$ (rule 1) $\Rightarrow 00B11$ (rule 2) $\Rightarrow 00\#11$ (rule 3).

This sequence of substitution is called a **derivation**.

A parse tree

A grammar

From previous example, you may notice that the grammar has

- a set of substitution rules (or production rules),
- variables (symbols appearing on the left-hand side of the arrow), and
- terminals (other symbols).

To obtain a derivation, we also need a start variable. (If not specified otherwise, it is the left-hand side of the top rule.)

Language of the grammar

- A grammar describes a language by generating each string of the language.
- For a grammar G, let L(G) denote the language of G.
- $L(G_1) = \{0^n \# 1^n | n \ge 0\}$

A context-free language

A language described by some context-free grammar is called a context-free language.

Definition [context-free grammar]

Definition

A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- V is a finite set called the variables,
- ② Σ is a finite set, disjoint from V, called the **terminals**, (alphabet)
- R is a finite set of rules, with each rule being a variable and a string of variables and terminals, and
- $S \in V$ is the start variable.

More definitions

- Let u, v, and w be strings of variables and terminals, and $A \rightarrow w$ be a rule of the grammar.
- We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$.
- We say that u derives v, written as $u \stackrel{*}{\Rightarrow} v$,
 - if u = v, or
 - if a sequence u_1, u_2, \ldots, u_k exists for $k \geq 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$$
.

$$G_3=(\{S\},\{a,b\},R,S)$$
, where R is
$$S \to aSb|SS|\varepsilon.$$

Practice

Find a CFG that describes the following language

$$\begin{cases}
a^{i}b^{j}c^{k} \mid i, j, k \geq 0 \\
S \rightarrow S_{1}x_{1} \mid x_{1}S_{2} \qquad x_{1} \rightarrow \varepsilon \mid cx_{1}
\end{cases}$$

$$(i=j) \quad S_{1} \rightarrow aS_{1}b \mid \varepsilon \qquad x_{2} \rightarrow \varepsilon \mid ax_{2}$$

$$(j=k) \quad S_{2} \rightarrow bS_{2}c \mid \varepsilon$$

$$G_4' = (V, \Sigma, R, EXPR)$$
, where $V = \{EXPR\}$,

$$G_4' = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR\},$
- $\Sigma = \{a, +, \times, (,)\},$

$$G_4' = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR\},$
- $\Sigma = \{a, +, \times, (,)\},$
- the rules are

$$\mathit{EXPR} \ \ o \ \ \mathit{EXPR} + \mathit{EXPR} \mid \mathit{EXPR} \times \mathit{EXPR} \mid (\mathit{EXPR}) \mid \mathit{a}$$

Generate some string from G'_{a} .

$$\left(\begin{array}{cc} a+(axa)+a\end{array}\right) \qquad E\Rightarrow (E)\Rightarrow (E+E)\Rightarrow (E+E+E)\Rightarrow \dots$$

Ambiguity

Find a parse tree for $a + a \times a$ in grammar G'_4 .

Ambiguity and leftmost derivation

 A grammar generates a string ambiguously when there exist two parse trees for the string. (Not two derivations)

Ambiguity and leftmost derivation

- A grammar generates a string ambiguously when there exist two parse trees for the string. (Not two derivations)
- A derivation of string w in a grammar G is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.

Ambiguity and leftmost derivation

- A grammar generates a string ambiguously when there exist two parse trees for the string. (Not two derivations)
- A derivation of string w in a grammar G is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.

Definition

A string w is derived ambiguously in context-free grammar G if it has two or more leftmost derivations. Grammar G is ambiguous if it generates some string ambiguously.

$$G_4 = (V, \Sigma, R, EXPR)$$
, where $V = \{EXPR, TERM, FACTOR\}$,

$$G_4 = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR, TERM, FACTOR\},$
- $\Sigma = \{a, +, \times, (,)\},$

$$G_4 = (V, \Sigma, R, EXPR)$$
, where

- $V = \{EXPR, TERM, FACTOR\},$
- $\Sigma = \{a, +, \times, (,)\},$
- the rules are

$$EXPR \rightarrow EXPR + TERM|TERM$$
 $TERM \rightarrow TERM \times FACTOR|FACTOR$
 $FACTOR \rightarrow (EXPR)|a$

CFGs and regular languages (1)

CFG-9 DFA

Can you find a context-free grammar that describes the language recognized by the following DFA?

CFGs and regular languages (2)

Can you find a context-free grammar that describes the language recognized by the following DFA?

Again, think about a "mechanical" procedure for constructing a CFG.

CFGs and regular languages (3)

Any general procedure?

• Since we know that DFAs and NFAs are equivalent, FA=NPA

• Since we know that DFAs and NFAs are equivalent, we can pick one that allow us to prove the property that we want.

- Since we know that DFAs and NFAs are equivalent, we can pick one that allow us to prove the property that we want.
- Again, CFGs is quite general and sometimes we want them to be in a simpler form.

- Since we know that DFAs and NFAs are equivalent, we can pick one that allow us to prove the property that we want.
- Again, CFGs is quite general and sometimes we want them to be in a simpler form.
- One of the forms is called Chomsky normal form.

Noam Chomsky

Avram Noam Chomsky is an American linguist, philosopher, cognitive scientist, political activist, author, and lecturer. [from wikipedia]

From wikipedia. URL:

http://en.wikipedia.org/wiki/Image:Noam_chomsky_cropped.jpg

Chomsky normal form

CNF

A context-free grammar is in **Chomsky normal form** is every rule is of the form

$$A \rightarrow BC$$

where a is any terminal and A, B, and C are any variables,

Chomsky normal form

CNF

A context-free grammar is in **Chomsky normal form** is every rule is of the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

where a is any terminal and A, B, and C are any variables, except that B and C cannot be the start variable.

Chomsky normal form

CNF

A context-free grammar is in **Chomsky normal form** is every rule is of the form

$$A \rightarrow BC$$

$$A \rightarrow a$$

where a is any terminal and A, B, and C are any variables, except that B and C cannot be the start variable.

We also permit the rule $S \rightarrow \varepsilon$, where S is the start variable.

Any CFGs can be converted into CNF

Theorem 1

Any context-free grammar is generated by a context-free grammar in Chomsky normal form.

Any CFGs can be converted into CNF

Theorem 1

Any context-free grammar is generated by a context-free grammar in Chomsky normal form.

We shall not do the full proof, but will show how to do so by example. (See also Example 2.10 on the book.)

Step 1: The start variable cannot be on the right-hand side

- Suppose that *S* is the start variable.
- An example of violated rules: $S \rightarrow aS$, or $A \rightarrow BS$.

Step 1: The start variable cannot be on the right-hand side

- Suppose that *S* is the start variable.
- An example of violated rules: $S \rightarrow aS$, or $A \rightarrow BS$.
- We introduce a new start variable S_0 and add rule

$$S_0 \rightarrow S$$

$$B o aAb|bAcA$$
 $A o c|aA|arepsilon$

$$B o aAb|bAcA$$
 $A o c|aA|arepsilon$

- Remove $A \to \varepsilon$ and on any occurrence of A add new rules where A replaced by ε .
- Resulting rules:

$$B o aAb \Rightarrow \beta \rightarrow aAb | ab$$

$$B o aAb|bAcA$$
 $A o c|aA|arepsilon$

- Remove $A \to \varepsilon$ and on any occurrence of A add new rules where A replaced by ε .
- Resulting rules:

$$B o aAb \Rightarrow B o aAb|ab$$

$$B o aAb|bAcA$$
 $A o c|aA|\varepsilon$

- Remove $A \to \varepsilon$ and on any occurrence of A add new rules where A replaced by ε .
- Resulting rules:

$$B o aAb \Rightarrow B o aAb|ab$$

$$B
ightarrow bAcA \Rightarrow \beta = bcA \left| bAc \right| bc \left| bAcA \right|$$

$$B o aAb|bAcA$$
 $A o c|aA|\varepsilon$

- Remove $A \to \varepsilon$ and on any occurrence of A add new rules where A replaced by ε .
- Resulting rules:

$$B o aAb \Rightarrow B o aAb|ab$$

$$B \rightarrow bAcA \Rightarrow B \rightarrow bAcA|bcA|bAc|bc$$

$$B o aAb|bAcA$$
 $A o c|aA|\varepsilon$

- Remove $A \to \varepsilon$ and on any occurrence of A add new rules where A replaced by ε .
- Resulting rules:

$$B
ightarrow aAb\Rightarrow B
ightarrow aAb|ab$$
 $B
ightarrow bAcA\Rightarrow B
ightarrow bAcA|bcA|bAc|bc$ $A
ightarrow aA\Rightarrow A
ightarrow a|aA$

$$B o aAb|bAcA$$
 $A o c|aA|\varepsilon$

- Remove $A \to \varepsilon$ and on any occurrence of A add new rules where A replaced by ε .
- Resulting rules:

$$B o aAb \Rightarrow B o aAb|ab$$

$$B \rightarrow bAcA \Rightarrow B \rightarrow bAcA|bcA|bAc|bc$$

$$A \rightarrow aA \Rightarrow A \rightarrow aA|a$$

$$C
ightarrow Ba|Ac$$
 $B
ightarrow aAb|bAcA$ $A
ightarrow B|c$

$$C o Ba|Ac$$

 $B o aAb|bAcA$
 $A o B|c$

- Remove $A \rightarrow B$ and on any occurrence of A add new rules where A replaced by B.
- Resulting rules:

$$C
ightarrow Ba|Ac \Rightarrow$$

$$C o Ba|Ac$$

 $B o aAb|bAcA$
 $A o B|c$

- Remove $A \rightarrow B$ and on any occurrence of A add new rules where A replaced by B.
- Resulting rules:

$$C \rightarrow Ba|Ac \Rightarrow C \rightarrow Ba|Ac|Bc$$

$$C o Ba|Ac$$

 $B o aAb|bAcA$
 $A o B|c$

- Remove $A \rightarrow B$ and on any occurrence of A add new rules where A replaced by B.
- Resulting rules:

$$C o Ba|Ac \Rightarrow C o Ba|Ac|Bc$$

$$C o Ba|Ac$$

 $B o aAb|bAcA$
 $A o B|c$

- Remove $A \rightarrow B$ and on any occurrence of A add new rules where A replaced by B.
- Resulting rules:

$$C \rightarrow Ba|Ac \Rightarrow C \rightarrow Ba|Ac|Bc$$

$$B \rightarrow aAb|bAcA \Rightarrow B \rightarrow aAb|aBb|$$

$$C o Ba|Ac$$

 $B o aAb|bAcA$
 $A o B|c$

- Remove $A \rightarrow B$ and on any occurrence of A add new rules where A replaced by B.
- Resulting rules:

$$C o Ba|Ac \Rightarrow C o Ba|Ac|Bc$$

$$B o aAb|bAcA \Rightarrow B o aAb|aBb|bAcA|bBcA|bAcB|bBcB$$

$$C o Ba|Ac$$

 $B o aAb|bAcA$
 $A o B|c$

- Remove $A \rightarrow B$ and on any occurrence of A add new rules where A replaced by B.
- Resulting rules:

$$C \rightarrow Ba|Ac \Rightarrow C \rightarrow Ba|Ac|Bc$$

$$B o aAb|bAcA \Rightarrow B o aAb|aBb|bAcA|bBcA|bAcB|bBcB$$

• Sample rules:

 Split rules into short rules and add more variables to connect them.

- Split rules into short rules and add more variables to connect them.
- Resulting rules:

$$C o abC \Rightarrow$$

$$C \rightarrow abC|asbdB$$

- Split rules into short rules and add more variables to connect them.
- Resulting rules:

$$C \rightarrow abC \Rightarrow C \rightarrow aC_1, C_1 \rightarrow bC$$

$$C \rightarrow abC|asbdB$$

- Split rules into short rules and add more variables to connect them.
- Resulting rules:

$$C \rightarrow abC \Rightarrow C \rightarrow aC_1, C_1 \rightarrow bC$$

$$C \rightarrow asbdB \Rightarrow$$

Step 5: remove rules with terminal

Step 5: remove rules with terminal

• Sample rules:

$$C \rightarrow aC$$

 Replace terminals with new variables and add rules that the new variables derive to that terminals.

Step 5: remove rules with terminal

$$C \rightarrow aC$$

- Replace terminals with new variables and add rules that the new variables derive to that terminals.
- Resulting rules:

$$C \rightarrow AC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Pushdown automata

NFAs power-up

Pushdown automata

- NFAs power-up
- Think of them as NFAs with extra memory, called stack.

NFAs

PDAs

Stacks

b a b a z a

Stacks

A stack is an infinite memory but you can only access the topmost element.

Stacks

A stack is an infinite memory but you can only access the topmost element.

You can pop (put something on top) and push (remove the topmost).

Informally

Can you find an NFA with a stack that recognizes $\{0^n1^n|n\geq 0\}$?

Informally

Can you find an NFA with a stack that recognizes $\{0^n1^n|n\geq 0\}$?

NFA =
$$(Q, Z, J, 9, F)$$

 $S = Q \times \Sigma_e \rightarrow P(Q)$
Now State in put + E

• A stack keeps some data. Let Γ be a stack alphabet.

- A stack keeps some data. Let Γ be a stack alphabet.
- How does a PDA move?

- _/ IM
- A stack keeps some data. Let be a stack alphabet.
- How does a PDA move?
 - It reads some input (can be ε).

- A stack keeps some data. Let Γ be a stack alphabet.
- How does a PDA move?
 - It reads some input (can be ε).
 - It reads the top of the stack (can be ε as well).

- A stack keeps some data. Let Γ be a stack alphabet.
- How does a PDA move?
 - It reads some input (can be ε).
 - It reads the top of the stack (can be ε as well).
 - It changes the state and writes something to the top of the stack.
- Thus, the transition function accepts (q, x, s) where q is a state, x is an input symbol, and s is the top of the stack.

Transition function with stack (1)

- A stack keeps some data. Let Γ be a stack alphabet.
- How does a PDA move?
 - It reads some input (can be ε).
 - It reads the top of the stack (can be ε as well).
 - It changes the state and writes something to the top of the stack.
- Thus, the transition function accepts (q, x, s) where q is a state, x is an input symbol, and s is the top of the stack.
- The transition function returns a set of pairs (q', s') where q' is a new state and s' is the stack symbol written to the stack.

Transition function with stack (2)

- Transition function δ :
 - Domain: $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}$
 - Range: $\mathcal{P}(Q \times \Gamma_{\varepsilon})$

Definition [pushdown automaton]

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ , and F are finite sets, and

- Q is the set of states,
- Γ is the stack alphabet, → ≥+\$
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **6** $F \subseteq Q$ is the set of accept states.

Find a pushdown automaton that recognizes the language

$$\{a^ib^jc^k\mid i,j,k\geq 0 \text{ and } i=j \text{ or } j=k\}$$

Find a pushdown automaton that recognizes the language

$$\{a^ib^jc^k\mid i,j,k\geq 0 \text{ and } i=j \text{ or } j=k\}$$

Test cases:

Find a pushdown automaton that recognizes the language

Find a pushdown automaton that recognizes the language

$$\{ww^{\mathcal{R}}\mid w\in\{0,1\}^*\}$$

Test cases:

Context-free languages

CFL

A language described by some context-free grammar is called a **context-free language**.

Equivalence

Theorem 2

A language is context-free if and only if some pushdown automaton recognizes it.

• Only-if: If a language is context-free, it is recognized by some pushdown automaton.

- Only-if: If a language is context-free, it is recognized by some pushdown automaton.
 - Given a CFG *G*, construct a PDA *P* that recognizes the language generated by *G*.

- Only-if: If a language is context-free, it is recognized by some pushdown automaton.
 - Given a CFG *G*, construct a PDA *P* that recognizes the language generated by *G*.
- If: A language is context-free if it is recognized by some pushdown automaton.

- Only-if: If a language is context-free, it is recognized by some pushdown automaton.
 - Given a CFG *G*, construct a PDA *P* that recognizes the language generated by *G*.
- If: A language is context-free if it is recognized by some pushdown automaton.
 - Given a PDA P, construct a CFG G that generates a language recognized by P.

- Only-if: If a language is context-free, it is recognized by some pushdown automaton.
 - Given a CFG *G*, construct a PDA *P* that recognizes the language generated by *G*.
- **If:** A language is context-free if it is recognized by some pushdown automaton.
 - Given a PDA *P*, construct a CFG *G* that generates a language recognized by *P*. SKIPPED.

Plan for today

Today we'll cover only the only-if part, i.e., given a CFL described by CFG G, we'll construct a PDA P that recognizes G.

Any CFLs can be recognized by PDAs

• Take an example CFG G:

$$S o AB$$

 $A o aAb|\varepsilon$
 $B o cB|c$

• How can we recognize string generated by G?

Any CFLs can be recognized by PDAs

• Take an example CFG G:

$$S o AB$$
 $A o aAb|arepsilon$ $B o cB|c$

- How can we recognize string generated by G?
- Consider aabbccc.

Generating: aabbccc

Maybe we can try to generate it using a PDA:

and aabbccc.

Generating: aabbccc

Maybe we can try to generate it using a PDA:

So, we want to generate a string using a PDA.

• How can we generate the correct derivation?

- How can we generate the correct derivation?
 - We guess the rule.

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory.

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do?

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do? $aAbB \Rightarrow$

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do? $aAbB \Rightarrow aAbB \Rightarrow$

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do? aAbB ⇒ aAbB ⇒ aaAbbB

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do? aAbB ⇒ aAbB ⇒ aaAbbB
 - Okay, why are you stuck at a?

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do? aAbB ⇒ aAbB ⇒ aaAbbB
 - Okay, why are you stuck at a?
 - Because it's not a variable.

- How can we generate the correct derivation?
 - We guess the rule. We always make a correct guess, because PDAs are nondeterministic machines.
- Where should we put the string (and its intermediate derivations)? How can we remember it?
 - A memory. Yes, we have a memory: a stack
- But a stack has a very limited access rule. How can I do the derivation from aAbB ⇒ aaAbbB.
 - What do you want to do? aAbB ⇒ aAbB ⇒ aaAbbB
 - Okay, why are you stuck at a?
 - Because it's not a variable.
 - So, anything we can do to get rid of it?

Generate and match

aabbccc

Generate and match

aabbccc AE

Generate and match

aabbccc S aabbccc AB aabbccc aAbB

aabbccc S
aabbccc AB
aabbccc aAbB
aabbccc aAbB

aabbccc S
aabbccc AB
aabbccc aAbB
aabbccc aAbB
aabbccc aAbB

aabbccc S
aabbccc AB
aabbccc aAbB
aabbccc aAbB
aabbccc aAbBB
aabbccc aaAbbB

aabbccc S
aabbccc AB
aabbccc aAbB
aabbccc aAbB
aabbccc aAbBB
aabbccc aaAbbB
aabbccc aabbB

aabbccc S
aabbccc AB
aabbccc aAbB
aabbccc aAbB
aabbccc aAbBB
aabbccc aaAbbB
aabbccc aabbB
aabbccc aabbB

aabbccc ABaabbccc aAbBaabbccc aAbBaabbccc aabbccc aaAbbB aaAbbB aabbccc aabbB aabbccc aabbccc aabbB aabbccc aabbB

aabbccc ABaabbccc aAbBaabbccc aAbB**a**abbccc **a**abbccc aaAbbB aaAbbB aabbccc aabbB aabbccc aabbccc aabbB aabbccc aabbB aabbcB aabbccc

aabbccc ABaabbccc aAbBaabbccc aAbB**a**abbccc **a**abbccc aaAbbB aaAbbB aabbccc aabbB aabbccc aabbccc aabbB aabbccc aabbB aabbcB aabbccc aabbcB aabbccc

aabbccc ABaabbccc aabbccc aAbBaAbBaabbccc **a**abbccc aaAbbB aabbccc aaAbbB aabbB aabbccc aabbccc aabbB aabbccc aabbB aabbcB aabbccc aabbcBaabbccc aabbccc aabbccB

aabbccc ABaabbccc aabbccc aAbBaAbB aabbccc **a**abbccc aaAbbB aabbccc aaAbbB $\frac{aa}{bb}$ aabbccc aabbccc aabbB aabbccc aabbB aabbcB aabbccc aabbcBaabbccc aabbccc aabbccB aabbccc aabbccB

aabbccc	S
aabbccc	AB
aabbccc	aAbB
a abbccc	a AbB
a abbccc	a aAbbB
aa bbccc	aa AbbB
aa bbccc	aa bbB
aabbccc	aab bB
aabbccc	aabb B
aabbccc	aabbc B
aabbccc	aabbc B
aabbccc	aabbc cB
aabbcc c	aabbcc B
aabbcc c	aabbcc c

5	aabbccc
AB	aabbccc
aAbB	aabbccc
a AbB	a abbccc
a aAbbB	a abbccc
aa AbbB	aa bbccc
aa bbB	aa bbccc
aab bB	aab bccc
aabb B	aabbccc
aabb cB	aabbccc
aabbc B	aabbccc
aabbc cB	aabbccc
aabbcc B	aabbcc c
aabbcc	aabbcc c
aabbccc	aabbccc

- Push empty stack symbol \$ on the stack
- Push start variable on the stack

- Push empty stack symbol \$ on the stack
- Push start variable on the stack
- Repeat

- Push empty stack symbol \$ on the stack
- Push start variable on the stack
- Repeat
- Open Depending on the top of stack:

- Push empty stack symbol \$ on the stack
- Push start variable on the stack
- Repeat
- Open Depending on the top of stack:
- If it's a terminal,
 - — match with the same terminal on the input

- Push empty stack symbol \$ on the stack
- Push start variable on the stack
- Repeat
- Open Depending on the top of stack:
- If it's a terminal,
 - — match with the same terminal on the input
- If it's a variable,
 - — pick some substitution rule and put that on the stack

- Push empty stack symbol \$ on the stack
- Push start variable on the stack
- Repeat
- Open Depending on the top of stack:
- - — match with the same terminal on the input
- — If it's a variable,
 - — pick some substitution rule and put that on the stack
- **1** Until nothing's left on the stack (you'll see \$).
- Accept if \$ is on top of the stack.

Overall structure

Practice:

Practice:

$$au o au$$
a $ertarepsilon$

Formal proof

$$S
ightarrow a T b | b$$

 $T
ightarrow T a | arepsilon$

$$a, a \rightarrow \varepsilon$$
 $b, b \rightarrow \varepsilon$
 $e, s \rightarrow b$
 $e, \varepsilon \rightarrow \tau$
 $e, s \rightarrow b$
 $e, \tau \rightarrow a$
 $e, \tau \rightarrow c$
 $e, \tau \rightarrow c$
 $e, \tau \rightarrow c$