Illinois U. Library

UNITED STATES ATOMIC ENERGY COMMISSION

Nuclear Science Abstracts

NEW NUCLEAR DATA

July 15, 1955 — September 30, 1955

Volume 9 No. 18B

Technical Information Service, Oak Ridge, Tennessee

NEW NUCLEAR DATA

The printing of this publication has been approved by The Director of the Bureau of the Budget, August 3, 1954.

Compiled by the Nuclear Data Group National Research Council

K. Way, D. N. Kundu, C. L. McGinnis, and R. van Lieshout

Readers: B. Crasemann, University of Oregon; R. W. Fink, University of Arkansas; J. M. Hollander, University of California; W. E. Meyerhof, Stanford University; H. Pomerance, Oak Ridge National Laboratory; and J. R. Stehn, Knolls Atomic Power Laboratory.

Table 1 - Radioactivity, Levels, Abundances, Moments

Table 2 - Neutron Cross Sections

Table 3-Ground State Q's

INTRODUCTION

This issue of Nuclear Science Abstracts, Volume 9, No. 18B, contains the third 1955 quarterly list of new nuclear data. The data summarized here have come to hand since the preparation of the 1955 semi-annual cumulation which was published in Volume 9, No. 12B. The 1955 annual cumulation will appear early in 1956 in Volume 9, No. 24B, The 1952, 1953, and 1954 annual cumulations are contained in Volume 6, No. 24B; Volume 7, No. 24B; and Volume 8, No. 24B, respectively. These cumulations are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., for \$0.25 each. (Send check or money order but not stamps.) The reporting of information in all the New Nuclear Data lists is continuous. Any apparent gaps in coverage are due to oversights or to delays in the receipt of certain journals

and are filled in as promptly as possible.

Nuclear Data Cards: As the current literature is surveyed, the new nuclear results are first printed on 3- by 5-in. cards which are collected into sets of 100 to 150 cards each month. Individuals, laboratories, or libraries may subscribe to the card sets directly by applying to the Publications Office, National Research Council, 2101 Constitution Avenue, N.W., Washington 25, D. C. The price, based on actual mechanical costs, is currently \$20 per year domestic and \$30 per year foreign (air mail postage included for foreign but not for domestic subscriptions.)

The Nuclear Data Group, which is sponsored by the National Research Council, is supported by the U.S. Atomic Energy Commission and the National Bureau of Standards.

CONVENTIONS

All energies are given in Mev and all cross sections in barns unless otherwise stated in the tabular material.

Numerals in italics, following measured values, are the errors (as reported by the authors) in the last figures of the values. In cases where confusion seems possible, the conventional \pm is used.

Magnetic moments are reported as before without diamagnetic correction. They are based on $\mu(H) = 2.79267$ and the substandards listed by H. Walchli, ORNL-1469.

In writing reactions, the upper right hand superscript denoting A, the mass number of the target nucleus, is given without parentheses when the target was monoisotopic or when enriched (or depleted) material was used to establish the identity of the reacting isotope. It is given in parentheses when natural material was used but when the identity of the reacting isotope was strongly suggested by its predominating abundance, the observed reaction energy, or the activity or yield of the end product. It is given in parentheses with a question mark when the target A was assigned by systematics, elimination, etc. For instance, "B10(d,p)" means that the proton groups from the deuteron bombardment of B10 were identified by comparing effects in B10 enriched and natural B samples. "B11(d,p)" means that the assignment to B11 was made by using B11 depleted and natural B samples. "C(12)(d,p)" means that natural C was used to study the reaction, but, because of the 99% abundance of C^{12} , the reaction observed was assumed to take place in that isotope. In the reaction "Sn $^{(116)}$ (n,p)13 5 In," the Sn isotope was identified by the In product. "Te $^{(1257)}$ (d,p)Te $^{(1267)}$ " indicates that from the trend of Q values in the region, the experimenters believed that their measured Q most likely belonged to the indicated reaction,

When a $\underline{\text{method of production}}$ of a radioactive nucleus is given, the lowest bombarding energy used by the experimenter is indicated; e.g., Ag(20-Mev p).

The large black dots on the <u>decay</u> schemes are used to indicate experimentally established coincidences. α , β , or γ rays entering a level and dotted at their arrowheads have been shown to be in coincidence with gamma rays leaving the same level and dotted at their origins. In case of a simple cascade, the dots of the incoming and outgoing rays are superimposed. Dashes are used for doubtful radiations or levels.

For the light nuclei, energy levels in the compound nucleus are usually tabulated rather than the resonant energy of the bombarding particle. The binding energy of the bombarding particle in the compound nucleus is taken from the table of F. Ajzenberg, T. Lauritsen, Revs. Modern Phys. 27, 77(1955) for Z < 11 and from P. M. Endt, J. C. Kluyver, Revs. Modern Phys. 26, 95(1954) for Z from 11 to 20.

ABBREVIATIONS

a	absorption	Be(γ,n)	measurement by detection of
α βγ	absorption of β 's in coincidence		photoneutrons from Be
	with γ's	B _n ,B _p	neutron, proton binding energy,
a ce	absorption of conversion elec- trons		i.e., energy necessary to re- move particle from nucleus
a coin	absorption of photoelectrons be- tween counters in coincidence	$eta \gamma(heta)$	angular correlation of β 's and γ 's in coincidence
α	total γ-ray conversion coeffi-	calc	calculated from experimental
	cient, N _e /N _y		work reported elsewhere
$\alpha_{K}, \alpha_{L}, \ldots$	γ-ray conversion coefficient for	cc	cloud chamber
	electrons ejected from the K, L, shell	CcW	Cockcroft Walton accelerator
$\alpha_0, \alpha_1, \ldots$	α to g.s., first excited state,	ce	conversion electrons
	of residual nucleus	chem	chemical separation of product
В	band spectra method		following reaction
B(E2)	reduced E2 excitation probability	Ср	Compton electrons
	in barns ² (upward transition)	cryst	crystal spectrometer

d	(1) deuteron, (2) descendant of,	M1,M2,	magnetic dipole, magnetic quad-
	(3) days, when used as super-	Stranger D	rupole,
	script	mb	millibarns
$d,p(\theta)$	angular distribution of protons	Mic	microwave method
	with respect to deuteron beam	mir	measurement by total reflection
$D(\gamma,n),D(\gamma,p)$	measurement by detection of		of neutron beam from mirror
	photoneutrons or photoprotons		surface
-sale missing	from deuterium	ms	mass spectrometer
Ē	average energy	μ	(1) magnetic moment in units of
\mathbf{E}_0	resonance energy		nuclear magnetons, (2) mi-
$E_{\beta}, E_{\gamma}, \dots$	energy of β ray, energy of γ ray,		cron, 10 ⁻⁴ cm
		μ_3	magnetic octupole moment in
Edis	disintegration energy		units of nuclear magneton
EA	electrostatic analyzer		barns
E1,E2,	electric dipole, electric quadru-	μs	microseconds
	pole,	ν	neutrino
eA	Auger electron	osc	pile oscillator method
el	elastic scattering	p	(1) proton, (2) predecessor of
€	(1) electron capture, (2) frac-	pr	electron-positron pair
	tional transition probability	p res	proton resonance. Magnetic field
	for decay process observed		standardized by means of pro-
€K,€L	electron capture from K, L shell		ton resonance frequency
$\eta(\theta)$	$[W(\theta)-W(\pi/2)]/W(\pi/2)$, a meas-	para	paramagnetic resonance method
	ure of asymmetry in angular	parentheses	parentheses are put around val-
	distributions, where $W(\theta)$ is		ues which are given for identi-
	the count at angle θ		fication purposes
f	fission, in abbreviations for	pc	proportional counter
	methods of production or de-	ре	photoelectrons
77. 77	tection	ppl	photoplates or emulsions
F-K	Fermi-Kurie β energy distribu-	primes	primes indicate inelastically
/0 70)	tion plot	_	scattered particles
$\gamma(\theta, T)$	numbers of γ's as function of angle and temperature	q	electric quadrupole moment in units of barns
ara Ray May may	$\gamma\gamma$, $\beta\gamma$, $\alpha\gamma$, or ny coincidences.	quad res	quadrupole resonance method
$\gamma\gamma$, $\beta\gamma$, $\alpha\gamma$, $n\gamma$	$(0.123 \ \gamma) \ (0.246 \ \gamma, \ 0.325 \ \gamma)$	Q	reaction energy in Mev
	means 0.123 γ in coincidence	S	(1) spectrometer method, (2)
	with 0.246 γ and 0.325 γ	5	seconds, when used as super-
g	gyromagnetic ratio		script
γ±	annihilation radiation	s coh	coherent scattering
r	resonance half-width (the whole	S	atomic spectra measurement
	width at half-maximum)	scin	1 crystal scintillation counter
GM	Geiger-Müller counter	scin Cp	2 crystal scintillation counter
g.s.	ground state	scin pr	3 crystal scintillation counter
I	(1) nuclear induction magnetic	sd	double focusing spectrometer
*	resonance method	sl	lens spectrometer
IB	internal bremsstrahlung	sl ce	conversion electrons measured
			in lens spectrometer
ic	ionization chamber	st	strong
IT	isomeric transition	Sπ	180° spectrometer
J	spin in units $h/2\pi$	sπ pr	180° pair spectrometer
K/L	$\alpha_{\rm K}/\alpha_{\rm L}$	σ	cross section in barns
Z -	angular momentum of particle	σ_0	cross section at resonance en-
	absorbed into or picked up		ergy, E ₀
	from nucleus	$\sigma_{\mathbf{a}}$	absorption cross section
Lin	linear accelerator	σ_t	total cross section
M	molecular or atomic beam res-	Σ scin	scintillation counter used to sum
	onance method		energy of transitions in cas-

medium intensity

m

cade

t	(1) triton, H ³ , (2) total cross sec-	w,vw	weak, very weak
	tion when used under σ in cross section list	Y_{γ}, Y_{p}, \dots	yield of γ rays, yield of protons,
trans	transmission	%	% of disintegrations
T	(1) isotopic spin; (2) temperature	†	relative numbers. When used in
τ	half life in units indicated		connection with γ rays, rela-
$ au_1, au_2$	half life of upper, lower state		tive numbers of photons, not
$\tau_{\beta\beta}, \tau_{\epsilon\epsilon}$	half life for double β , double ϵ decay		photons plus conversion elec- trons, are meant
$ au_{\gamma}(E2)$	partial half-life for de-excitation by E2 γ transition (downward transition)	+,-	even, odd parity when used in connection with level proper- ties
th VdG	thermal Van de Graaff accelerator	Standard journa	al abbreviations are used.

TABLE 1 - RADIOACTIVITY, LEVELS, ABUNDANCES, MOMENTS

 σ [Cl³⁷ (ν , e⁻) A³⁷] <2×10⁻¹⁸b for fission ν R. Davis, Jr., Phys. Rev. 97, 766; 99, 664 (1955).

He⁴ E_d^2 (d,n) $E_d = 0.10$ ppl E_d^2 d,n(θ) for $0^{\circ} < \theta < 150^{\circ}$ $\eta(\pi) = 0.48 \pm 0.09$

J.C.Fuller, G.C.Ralph, Phys. Rev. 98, 248A (1955).

He⁵ Level Li⁽⁶⁾ (d, He³) $E_d = 14.4$ $\approx 2.1^*$ g.s. Q = 0.91 9 Li⁽⁷⁾ (d, σ) 32* g.s. Q = 14.26 9 *mb/sterad at 12.3°, 11.2° c.m. resp.

S.H.Levine, R.S.Bender, J.N.McGruer, Phys. Rev. 97, 1249 (1955).

 $\mathrm{H}^3\left(\mathrm{d},\gamma\right)$ $\mathrm{E_d}$ = 0.16 scin

G.A.Sawyer, L.C.Burkhardt, Phys. Rev. 98, 1305 (1955).

 $H^{2}(t, \alpha) \qquad \qquad E_{t} = 1.5 \text{ pc}$ $\int d\sigma = 0.280 8 \qquad \qquad t, \alpha(\theta)$

A.Hemmendinger, H.V.Argo, Phys. Rev. 98, 70 (1955).

> S.H.Levine, R.S.Bender, J.N.McGruer, Phys. Rev. 97, 1249 (1955); 95, 640A (1954).

P.Cuer, D.Magnac-Valette, G.Baumann, Compt. rend. 240, 1880 (1955). Li⁴ H(He³, He³) $E_{He}^{3} = 14.9$ ppl He³, He³(θ) shows minimum near 90°c.m.

Li⁶ μ +0.821921 I $^3_{\text{stable}}^3 \nu(\text{L1}^6)/\nu(\text{H}^2) = 0.958638~38$ H.E.Walchii, ORNL-1775 (1954).

Levels L1⁽⁷⁾ (d,t) $E_d = 14.4$ s 32.4^* g.s. $l_n = 1$ d,t(θ) 16.0^* (2.19) $l_n = 1$ *mb/sterad at 11°, 16° c.m. resp.

S.H.Levine, R.S.Bender, J.N.McGruer, Phys. Rev. 97, 1249 (1955); 95, 640A (1954).

*From phase shift analysis of broad anomaly from $E_{\rm d}=3$ to 4.62. This analysis suggests odd additional levels above 5 Mev.

A.Galonsky, R.A.Douglas, W.Haeberli, M.T. McEllistrem, H.T.Richards, Phys. Rev. 98, 586, 590 (1955); 96, 824A; 93, 928A (1954).

Li 7 μ +3.256003 I stable +3.256003 H.E.Walchil, ORNL-1775 (1954).

Level $\text{Li}^{(7)}$ (d, t) Li^6 g.s. and 2.19 level g.s. $l_n = 1$ See Li^6 $\text{Li}^{(7)}$ (d, He³) He^6 g.s. and 1.71 level g.s. $l_p = 1$ See He^6

S.H. Levine, R.S. Bender, J.N. McGruer, Phys. Rev. 97, 1249 (1955).

```
Li7
```

L1⁽⁶⁾ (d,p) $E_d = 14.4$ s d.p.(θ) Levels g. s. 12.8* g.s. $l_n = 1$ (0.478) $l_n = 1$ $d, p(\theta)$ 9.2* < 7* (4.61) not observed 32.0* 6.56 0 = 0.91

*mb/sterad at 18°.17.5°. < 20°. 12.3° c.m. resp.

> Li (7) (d, d') E, = 14.4 g.s.

(0.478) $l_d = 2$ 7.7* · d, d' (0) 8.8* 4.62 4 1_d = ?

*mb/sterad at 32°, 47° c.m. resp.

S.H.Levine, R.S.Bender, J.N.McGruer, Phys. Rev. 97, 1249 (1955); 95, 640A (1954).

 $\text{Li}^{(7)}(\alpha,\alpha'\gamma)$ $E_{\alpha}=5.3$ Level scin

No other v observed

R.J.Breen, M.R.Hertz, Phys. Rev. 98, 599

Be9 (d, a) L17-a+t $E_d = 1.25$ Levels 4.6 ppl 30° 6.6 Magnetic field No 5.5 level found for t separation

P. Cuer, J. Jung, J. phys. radium 16, 385(1955).

Li8 5 0.845

 $\text{L1}^{(7)}(d,p)$ $\text{E}_{d} = 14.4$ 26.1* ln = 1 g.s. d, p(θ) 0.974 15 2n = 1 10.2* 0 = -1.162 mb/sterad at 8°, 2° c.m. resp.

S.H.Levine, R.S.Bender, J.N.McGruer, P. Rev. 97, 1249 (1955); 95, 640A (1954).

E, <3.8 ppl Li (6) (t. D) Level 0.7 2 Q = 0.10 One event

P.Cuer, D.Magnac-Valette, G.Baumann, Compt. rend. 240, 1880 (1955).

Be 3 53.6d

Li (7) (p, n) $E_p = 2.5$ to 2.9 He³(n,p) detector Levels 100+ g.s. 3+ to 8+ (0.43) at forward angles σ(0.43 level)/c(g.s.) increases with E

R. Batchelor, Proc. Phys. Soc. 68A, 452 (1955).

 $B^{10}(p,\alpha)$ $E_p = 18; 60^{\circ}, 90^{\circ}, 120^{\circ}$ g.s. $Q = 1.07 \ 10$ 1c Levels 0.49 10 4.72 8 6.27 10 7.21 10 14.6 3

Phys. Rev. 98, 1289 (1955); 95,

Be7 53.6d

Capture y's L16 (p. 2) 35+ 0.43 2 35+ 5.40 15 65± 5.90 15

+Photons/100 Li⁶ captures σ for cascade = 0.7 μ b at E₀ = 0.415

(6.35) $E_p = 0.18 \text{ to } 0.415$ 0.43 γ yield as f(E_p) gives $(2J+1)\Gamma_{\gamma}=1.0$ 3 for cascade transition from this level

 $E_p = 0.300$

S.Bashkin, R.R.Carlson, Phys. Rev. 97, 1245; 98, 230A (1955).

Be⁸ ~10-16s

Be9 (d, t) $E_d = 0.58$ to 1.40 g.s. $d, t(\theta)$ See Be⁹

M.K.Jurić, Phys. Rev. 98, 85 (1955); Bull. Inst. Nuclear Sci., Boris Kidrich 5, 7 (1955); 3, 139 (1953).

Li (7) (d,n) E = 2 Levels pc, scin $l_{p} = 1$ $l_{p} = 1$ $d,n(\theta)$

C.C.Trail, C.H.Johnson, Phys. Rev. 98, 249A

B(11) (p, a1)2a $E_p = 0.163$ Level (2.9) J = $\bar{2}$ $\alpha, \alpha(\theta)$

E.H.Geer, E.B.Nelson, E.J.Wolicki, Phys. Rev. 98, 241A (1955).

Be9 (d, t) Levels E_d = 1.25 ppl 30° q. s. Magnetic field 2.8 for t separation

No other level with energy < 2.8

P.Cuer, J.Jung, J. phys. radium 16, 385(1955).

Levels

 $B^{(11)}(p,\alpha) = 2.61$ $E_d = 1.43$ ~0° $E_d = 2.09$ $E_d = 2.39$ 108° B¹⁰ (d, α) 60°,90°, 108° 60°,108° $E_d = 3.18$ g. s.

10°,90°

2.94

No other level with energy < 8 Several thousand counts for each E, AE ~0.1

R.E.Holiand, D.R.Inglis, R.E.Maim, F.P.Mooring, Phys. Rev. 99, 92; 98, 240A (1955).

Levels

Li (7) (d, n) E, = 0.88 ppl 120° g.s. 2.1 ?

[~0.8 2.9 4.1

5.3

W.M.Gibson, Phil. Mag. 46, 807 (1955).

Be⁸ Levels $L1^{(7)}$ (d,n) $E_d = 0.686$ $\sim 10^{-16}$ g.s. ppl 90°,115°,145° ~ 3 5.4 ?
7.5

M.A.Ihsan, Phys. Rev. 98, 689 (1955); Proc. Phys. Soc. 68A, 393 (1955).

> M.K.Jurić, Phys. Rev. 98, 85 (1955); Bull. Inst. Nuclear Sci., Boris Kidrich 5, 7 (1955); 3, 139 (1953).

*Low intensity (especially at 90°) and large natural widths

L.L.Lee, Jr., D.R. inglis, Phys. Rev. 99, 96 (1955).

> M.K.Jurić, Phys. Rev. 98, 85 (1955); Bull. Inst. Nuclear Sci., Boris Kidrich 5, 7 (1955); 3, 139 (1953).

H.B. Willard, J.K.Bair, J.D. Kington, Phys. Rev. 98, 669 (1955).

B γ B $(n, ? \gamma)$ E = 4.5 scin w 0.70 Not found for E = 1.3 2.20 ε

G.L.Griffith, Phys. Rev. 98, 579 (1955).

89 Levels $C^{(12)}(p,\alpha)$ E = 18; 60°, 90°, 120° g.s. $Q = -7.58\ 10$ 1c 2.39 8

No other level with energy < 7.9 observed

d.S.Reynolds, Phys. Rev. 98, 1289 (1955); 95, 639A (1954). BIO 5 5 stable Levels Be⁹(d,n) $E_d = 0.695$ ppl g.s. (0.72) (1.74) (2.15) (3.58) $l_0 = 1$

 $d, n(\theta)$ shows stripping for 3.58 level only

J.Génin, Compt. rend. 240, 2514 (1955).

Levels Be 9 (d,n) E_d = 0.860 ppl g.s. Q = 4.54 θ 0.75 θ 1.79 θ 2.23 θ 3.77 θ 1 = 1

 $d, n(\theta)$ shows stripping for 3.77 level only

L.L.Green, J.P.Scanion, J.C.Willmott, Proc. Phys. Soc. 68A, 386 (1955).

Level Be⁹ (p, γ) E_p = 0.15 to 0.52 6.86 E_o= 0.307* scin(E_{γ}> 2.5)

No resonance found for E_p = 0.49
Yield for E_y > 5.6 shows non-resonant rise
*From Breit-Wigner fit with corrections for target thickness, barrier penetration

U.Lönsjö, O.Os, R.Tangen, Phys. Rev. 98, 727 (1955).

V's Be⁹ (p, γ) E = 0.255 to 0.495 6.89 level (E_p = 0.33) J = 1 ~5+ 0.41 2 scin 100+ 0.72 2 27+ 1.03 3 5+ 1.43 3 45++ 4.70 15 scin pr 100++ 5.1 1 40++ 6.0 1 15++ 6.70 15

R.R.Cartson, E.B.Nelson, Phys. Rev. 98, 1310 (1955); 95, 641A (1954).

Bil Level $C^{(12)}(t,\alpha)$ $E_t \le 3.8$ ppl $5 6 \sigma \le 0.01$ g.s. Q = 3.85 Two events

P.Cüer, D. Magnac-Valette, G. Baumann, Compt. rend. 240, 1880 (1955).

Level $B^{(11)}(n,n^{\dagger}\gamma)$ $E_n = 4.5; \gamma scin$

G.L.Griffith, Phys. Rev. 98, 579 (1955).

 ${\rm E}^{\rm 10} \, ({\rm n,n}) \qquad {\rm E_n} = {\rm 0.55,1.00,1.50}$ Phase shifts found from ${\rm n,n}(\theta)$

H.B. Willard, J.K.Bair, J.D. Kington, Phys. Rev. 98, 669 (1955).

BII 6 stable

Levels

Be9 (d. t) $E_d = 0.58$ to 1.40 E = 0.62 to 1.40 Be9 (d, p)

Level . Ed* 16.79 ? 1.19 (d, p) 16.87 ? 1.28** (d, t)

*E, values for maxima in forward peak intensities which may mean resonance. See also Berthelot et al., Stratton et al, 017

1.40

** (t yield) / (p yield) has maximum

M.K.Jurić, Phys. Rev. 98, 85 (1955); Bull. Inst. Nuclear Sci., Borls Kidrich 5, 7 (1955); 3, 139 (1953).

 ${\rm Be}^9({\rm d},\gamma)$ ${\rm E}_{\rm d}=1.5$

σ < 2×10-5

 $Pr^{141}(\gamma,n)$ detection

(d.p)

H.R.Allan, N.Sarma, Proc. Phys. Soc. 68A, 535 (1955).

812 7 0.035

B11 (n, n) $E_n = 0.2$ to 1.50 Levels Sao* Level 7.5 (3.76)(0.43)2 (4.53)(1.28)*From n, n(8)

H.B.Willard, J.K.Bair, J.D.Kington, Phys. Rev. 98, 669 (1955).

CII 6 5 20.4m

B10 (p, a)

No resonances for E = 0.08 to 0.205, 115° $\sigma(E_p = 0.200) = 0.66 \pm 0.09$ mb assuming α 's are isotropic Magnetic analyzer

G.G.Bach, D.J.Livosey, Phil. Mag. 46, 824 (1955).

C12 6 6 stable

Levels

B11 (d, n) $E_d = 0.60$ scin g.s. $l_0 = 1$ d, $n(\theta)$ (4.43) n(0) ~sym. about 90°

A.Ward, P.J.Grant, Proc. Phys. Soc. 68A, 637 (1955).

 $Be^{9}(\alpha,n\gamma)$ 4.45

 $E_{\alpha} = 5.3$ y scin

No other y observed

R.J.Breen, M.R.Hertz, Phys. Rev. 98, 599 (1955).

C(12) (n, n'y) E = 14 $\sigma = 0.24$ 4.4 scin pr

No other γ with 1.6 < E $_{\gamma}$ < 5.5

M.E.Battat, E.R.Graves, Phys. Rev. 97, 1266 (1955).

16.97 7

6.012 stable

 $B^{11}(d,n)$ $E_d = 0.8$ pp1 Levels 11+ g.s. Q=13.81 d-n(8)* 28+ 4.40 $d.n(\theta)$

Γ=0.3 7+ 7.63 384 9.71

d,n(8)*

 $E_p = 1.9$ to 2.7

s 90°

+Relative n peak group intensities at 95° *Similar, probably show stripping

M. A. Ihsan, Proc. Phys. Soc. 68A, 393 (1955).

Level B(11) (p,a)Be8 2.9 level 16.10 J = 2 $\alpha_{,\alpha}(\theta)$ $E_{p} = 0.163$ Data at E = 0.29 not explained by pure 1-, 2-, or 3+ C¹² state

E.H.Geer, E.B.Nelson, E.J.Wolicki, Phys. Rev. 98, 241A (1955).

B(11) (p,α) Levels 17.76 18.34

R.E.Molland, D.R.Inglis, R.E.Malm, F.P.Mooring, Phys. Rev. 99, 92 (1955).

C(12) (7, Po) Resonance 21.5 peak

No p group to B11 2.14 level (<25% of pa)

A.K.Mann, W.E.Stephens, D.H.Wilkinson, Phys. Rev. 97, 1184; 98, 241A (1955).

 $C^{(12)}(\gamma, 3a)$ $E_{\gamma} \le 330$ Resonance ~25 42 stars observed peaks ~30

No other resonances below 100 Mev

S. D. Softky, Phys. Rev. 98, 173 (1955).

C(12) (y, 3a) Resonance E < 100 27 $\sigma_{\rm max} \sim 0.25 \text{ mb}$

A.M.Gurevitsch, Paper 2205, E.T.H.Zurich (1953); Phys. Abstr. 58, #3103 (1954).

C13 6 7 stable

C⁽¹²⁾ (d,p) E_d=1.86 to 3.45 ic, several angles q. s.

Forward peak intensity varies markedly as E_d goes through resonances (see N¹⁴)

K.W.Jones, M.T.WcEllistrem, R.A.Douglas, D.F. Herring, E.Sliverstein, Phys. Rev. 98, 241A (1955).

Level $B^{(10)}(\alpha, p\gamma)$ 3.68

v scin

R.J. Breen, M.R. Hertz, Phys. Rev. 98, 599 (1955).

C13 6 7

 γ C⁽¹²⁾ (d,p γ) E_d = 4.0 sl pr 4.0° 3.76 2 No Doppler corrections 4.5° 3.86 2

No $\gamma^{\rm t}$ s with 3.9 $^{\rm c}{\rm E}_{\gamma}$ $^{\rm c}$ 5.8 ($^{\rm c}$ 10% of 3.86 γ) *Average σ in mb for ${\rm E}_{\rm p}$ *0 to 4.0

R.D.Bent, T.W.Bonner, R.F.Sippel, Phys. Rev. 98, 1237 (1955).

 $C^{(12)}(n,n)$ $E_n = 0.55, 1.00, 1.50$ Phase shifts found from $n, n(\theta)$

H.B. Willard, J.K. Bair, J.D. Kington, Phys. Rev. 98, 669 (1955).

c(12) (n,n) Levels $E_n = 1.9$ to 3.8 Level E 6.87 2.08 22 2.95 7.67 3/2 2 8.32 3.62 2 3/2

Phase shift analysis of $n, n(\theta)$ C recoil Old results corrected and extended

R.Budde, P.Huber, Helv. Phys. Acta 28, 49 (1955); 27, 512A (1954).

Levels C⁽¹²⁾(n) E_n = 4.4 to 5.5, 9.57 7.5 to 8.7 9.95 12.17 12-13 broad peak

R.L.Becker, R.B.Perkins, H.H.Barschall, Phys. Rev. 99, 1646A (1955).

 $\mathrm{Be}^{9}(\alpha,\gamma) \qquad \qquad \mathrm{E}_{\alpha} = 1.6$ $\sigma < \mathrm{gamma}^{-5} \qquad \qquad \mathrm{scin}$

H.R.Allan, N.Sarma, Proc. Phys. Soc. 68A, 535 (1955).

c14 6 8 ∼5600^y

 γ . C¹³ (d,p γ)

0.811 3 E_d = 2.6° sl pe
6.120 25 E_d = 1.42 sl Cp
6.73 4 E_d = 1.9 sl Cp
No Doppler corrections *Threshold at 1.9

R.J.Mackin, Jr., W.B.Mims, W.R.Milis, Jr., Phys. Rev. 98, 43 (1955); 93, 950A (1954).

 γ C¹³ (d,p γ) E_d = 2.4 sl pr 4.1,52* 6.14 3 No Doppler corrections 25,26* 6.72 3

No 6.9 γ (<10% of 6.72 γ) *Average σ in mb for E_d = 1 to 2, 3.4 to 4

R.D.Bent, T.W.Bonner, R.F.Sippel, Phys. Rev. 98, 1237 (1955); 95, 649A (1954).

Level $C^{(12)}(t,p)$ $E_t < 3.8$ ppl 6.1 Q=-1.5 One event Expected reaction to C^{14} g.s. not observed

P.Cuer, D.Magnac-Valette, G.Baumann, Compt. rend. 240, 1880 (1955). NI4 7 7 stable

+0.0071

Calculated from q coupling of HCN* using self-consistent field wave function

A.Bassomplerre, Compt. rend. 240, 285 (1955); *SImmons, et al., Phys. Rev. 77, 77 (1951).

Levels $C^{13}(d,n)$ $E_d = 0.86$ ppl g.s. 2.34 7 4.02 7 5.02 7 $l_n = 0$ $d, n(\theta)$

 $d, n(\theta)$ shows stripping for 5.02 level only

L.L.Green, J.P.Scanion, J.C.Willimott, Proc. Phys. Soc. 68A, 386 (1955).

Level $N^{(14)}(p,p^{i}\gamma)$ γ (2.31) $\tau \sim 2 \times 10^{-13} \text{s}$ γ scin Doppler effect $\Delta E/E \sim 0.01$

J.Thirion, R.Barioutaud, Compt. rend. 240, 2136 (1955).

Level $B^{(11)}(\alpha, n\gamma)$ $E_a = 5.3$ 2.36 γ scin

R.J.Breen, M.R.Hertz, Phys. Rev. 98, 599 (1955).

 $C^{13}(d,n\gamma)$ sl pr 19* 3.42 3 3.71 5 N¹⁴ or C¹³? 3.94 6 N¹⁴ or C¹³? 5.3* 3.3* 4.48 4 N14, C14, or B11? Ed = 2.0 3.5* 9.7* 4.96 3 5.12 4 11* 9.1* 5.74 3 6.53 4 3.3*,9.7** 7.09 3 $E_{d} = 4.0$ 8.2** 7.34 4

*Average σ in mb for E_d = 1.0 to 2.0 **Average σ in mb for E_d = 3.4 to 4.0 No Doppler corrections

R.D.Sent, T.W.Bonner, R.F.Sippel, Phys. Rev. 98, 1237 (1955); 95, 649A (1954).

*Relative yield at E_d = 1.42 No Doppler corrections

R.J. Mackin, Jr., W.B. Mims, W.R. Mills, Jr., Phys. Rev. 98, 43 (1955); 93, 950A (1954).

N14 $C^{(12)}(d,\gamma)$ $E_d^{-1}(d,\gamma)$ $Pr^{141}(\gamma,n)$ detection 7 0<10-6 stable

H.R. Allan, N. Sarma, Proc. Phys. Soc. 68A, 535

N(14) (%n) Resonance 10mN13 and 10.8 ? peaks Γ~0.3 n's detected 11.5

12.7

B.G. Chidley, L.Katz, Phys. Rev. 99, 1646A

Γ~1

C(12) (d,p) E_d=1.86 to 3.45 Levels ic. several angles 12.02 12.27 12.41 12.76 12.55 12.84 12.61 12.92

K.W.Jones, M.T.McEllistrem, R.A.Demglas, D.F. Herring, E.Silverstein, Phys. Rev. 98, 241A (1955).

 $B^{10}(a,p_0)$ $E_a=1.4$ to 2.4 ic Levels $B^{10}(\alpha,n)$ Mn act. and n scin n/p α , $(n \text{ or } p)(\theta)$ $2.3 \ 2 \ 1-0.9 \ \cos^2(\theta)$ 12.69 $1-0.5 \cos^2(\theta)$ 13.15 ~1

E.S.Shire, R.D.Edge, Phil. Mag. 46, 640 (1955).

N15 $B^{11}(\alpha, n)$ $E_a = 1.4$ to 2.4 Levels 7 8 stable $a, n(\theta)$ scin 12.10 Strong forward and back 12.15 ∼Isotropic 12.49 Strong forward

E.S.Shire, R.D.Edge, Phil. Mag. 46, 640 (1955).

015 $N^{(14)}(p,p'+2.31\gamma)$ Levels 8 7 $E_p = 3$ to 4.9 scin ii.01 3 $\Gamma = 0.082$ 2.1 m II.07 3 Г<0.015 11.97 4

R.Barloutaud, Compt. rend. 240,

016 $F^{19}(p,\alpha\gamma)$ E_p = 3.7 sl pr 6.10 4 No Doppler corrections 8 8 2.7* stable 3.7* 6.99 4 No γ 's with 7.5 \leq E $_{\gamma}$ \leq 11 (\leq 10% of 6.99 γ) *Average σ in mb for $E_p = 0$ to 3.7

R.D.Bent, T.W.Bonner, R.F.Sippel, Phys. Rev. 98, 1237 (1955).

016 016 (y,p) Resonance E_ò25 peaks st 14.7 stable ppl 30° to 150° 19.6 W 20.6 Tal

22.4*

st

*p groups also to N^{15} 5.3 and 6.3 levels

W.E.Stephens, A.K.Mann, B.J.Patton, E.J. Winhold, Phys. Rev. 98, 839 (1955).

017 $0^{(16)}(d,p)$ $E_d = 0.58 \text{ to } 1.40$ Level 8 9 g.s. $d,p(\theta)$ ppl stable

Forward peak intensity (1 = 2?) is greatest for E_d = 0.98, 1.14 See Fl8

M.K.Jurić, Phys. Rev. 98, 85 (1955); M.K.Jurić, M.M.Petrović, Bull. Inst. Nuclear Sci., Boris Kidrich 5, 1 (1955).

 $0^{(16)} (d,p) E_{d} = 2.6, 3.0, 3.3, 3.4$ $g.s. I_{n} = 2^{*} d, p(\theta) pc$ Levels 1 = 0** (0.87)

*Forward peak intensity greatest for $E_A = 3.01$, **3.4**3 (near resonances). See $F^{1.8}$. **Distribution shifts with E_d but no general trend observed

Absolute values of σ given

T.F.Stratton, J.M.Biair, K.F.Famularo, R.V. Stuart, Phys. Rev. 98, 629 (1955).

 $0^{(10)}(d,p)$ $E_d = 1.6 \text{ to } 2.2$ (0.87) $I_n = 0$ $d, p(\theta)$ pp1 Level

Forward peak intensity greatest at resonance, E = 2.06

A.Berthelot, R.Cohen, E.Cotton, H.Faraggi, T.Grjebine, A.Leveque, V.Naggiar, M.Roclawski-Conjeaud, D.Szteinsznaider, J. phys. radium 16, 241 (1955).

 $0^{(16)}(d,p\gamma)$ E_d = 2.6 sl pe 0.869 3 No Doppler correction

R.J.Mackin, Jr., W.B.Mims, W.R.Mills, Jr., Phys. Rev. 98, 43 (1955).

c(13) (a,n) $E_a = 1.6$ to 3.8 Levels 8.06 0°,90° ~8.21 8.51 8.34* 8.70 8.41 8.91 8.47 8.96

*Observed at 90° only

R.B.Walton, R.L.Becker, J.D.Clement, M.S. Zucker, Phys. Rev. 99, 1649A (1955).

 $0^{17}(d,p)$ E₄ = 1.4, 2.0; 90° Levels g.s. not observed s 1.977 0 = 3.861 16 2.445 Q = 3.393 16

M.D.Holmgren, T.D.Hanscome, D.K.Willett, Phys. Rev. 98, 241A (1955).

 $0^{18} (d, p)$ $E_d = 1.4, 2.0; 90^\circ$ Levels g.s. Q=1.735 8 0.094 8 1.471 13

H.D.Holmgren, T.D.Hanscome, D.K.Willett, Phys. Rev. 98, 241A (1955).

018 (d,p) $E_d = 3.01$ s Level (1.47) Q=0.3 2 ppl $\sigma(5^{\circ}) = 0.213 \text{ b/sterad } l_{n} = 0$ $d,p(\theta)$

T.F.Stratton, J.M.Blair, K.F.Famularo, R.V. Stuart, Phys. Rev. 98, 629 (1955); 96, 825A (1954).

F18 9 1.87h

0(16) (t,n) 1.85^h 2 σ given for $E_+ = 0.7$ to 2.1

N.Jarmie, Phys. Rev. 98, 41 (1955).

Levels

See 017 0(16) (d.p) 8.39 ? E_d = 0.98* ppl

8.53 ? E_d = 1.14°
*E_d values for maxima in forward peak intensities which may mean resonance. See also Berthelot et al, Stratton et al, 017.

M.K.Jurić, Phys. Rev. 98, 85 (1955); M.K. Jurić, M.M.Petrović, Bull. Inst. Nuclear Sci., Boris Kidrich 5, 1 (1955).

Levels

 $0^{(16)}$ (d,p) $E_d = 1.6$ to 2.2 pc E * p group Level 9.0 ? 1.7 ? P1 ? 9.33 2.06

*From angular distribution integrations

A.Berthelot, R.Cohen, E.Cotton, H.Faraggi, T.Grjebine, A.Leveque, V.Naggiar, M.Roclawski-Conjeaud, D.Steinsznalder, J. phys. radium 16, 241 (1955).

Levels

0(16) (d, p) $E_d = 2.2$ to 3.8 Eop group Level 10.09 2.93 Po DC 53° Po 10.50 3.39 10.74 3.67 Po

See 0^{17} for $d_{\theta}p(\theta)$ results

T.F.Stratton, J.M.Blair, K.F.Famularo, R.V. Stuart, Phys. Rev. 98, 629 (1955).

F 19 stable

 $F^{19}(p,p^*\gamma)$ E_p = 0.7 to 1.8; scin Levels γ_1 0.110 2 **0.1975** 15 ϵ B(E2) = 0.009 $p, \gamma_1(\theta)$ ~isotropic for all E_p $p, \gamma_2(\theta)$ 2,5/2,1/2 or 2,3/2,1/2 possible C.A.Barnes, Phys. Rev. 97, 1226 (1955).

F19 (n, n'2) Level E. = 4.5 scin 1.34 3 8.10 γ attributed to 0¹⁶ production G.L.Griffith, Phys. Rev. 98, 579 (1955).

 $F^{19}(n,n'\gamma)$ $E_n \le 1.8$ γ scin Level 1.57 Threshold for 1.37 y

J.J. Van Loef, D.A. Lind, Phys. Rev. 98, 224A (1955).

F20 9 11 12^s

F19 (n) Resonances $E_n = 1$ to 160 kev J 1 [(kev) E (kev) 27 ~0.25 1 1 or 2 49.7 ≥1 1 or 2 2.5 99.5 ≥1 1 or 2 12.5

C.T.Hibdon, A.Langsdorf, Jr., Phys. Rev. 98, 223A (1955); verbal report.

Ne²⁰ stable

F19 (d, n 7) Levels $E_d \le 2$ 11.69 scin 11.87

From breaks in γ yield at $E_d = 1.15$, 1.35 J.W.Butler, Phys. Rev. 98, 241A (1955).

F19(p,p'y) Levels y scin $\sigma(mb)$ $\sigma(mb)$ Level Γ (kev) 0.109 γ 0.197 γ (0.669)(13.505)(7.5) 20 < 0.2* (0.780)(13.511) ~10 < 0.2* ~ 5 (0.831)(13.659)(8.3) < 0.2* ~ 8 (0.845)(13.673)23 ~ 2 < 0.3* (0.873)(13.699) (5.2) < 0.3* 90 (0.900)(13.725)(4.8) < 0.3* ~20 (13.758)(8.0) 150 <1* (1.092)(13.907) (<1.2) >13 >100 (1.137)(13.950) (3.7) < 0.4* ~20 14.057 ~80 1.250 17 1.7 (1.290)(14.005)(19) < 1* 3 1.346 14.169 4.5 17 27 1.372 14.173 15 26 40 1.422 14.222 190 7 1.610 <2* 14.400 ~5 14.447 1.660 3 ≤2* 1.700 14.485 38 17

*Upper limit of resonance portion

C.A.Barnes, Phys. Rev. 97, 1226 (1955).

Ne ²²	γ	F ¹⁹ (α, pγ)	E _a =5.3 scin	Mg ²⁴	Na 23 (p, γ)	scin, 90° J=2 ⁺
stable	st	1.51	SCIII	stable	$(8.03\gamma)(4.24\gamma)(\theta)$ J=2, 2,	
	0 1 0	D. Walter Physics	00 800		$(8.11\gamma)(4.24\gamma)(\theta)$ J = 3, 2,	
	R.J.Breen, M.! (1955).	R.Hertz, Phys. (Rev. 98, 599		$\frac{12.00 \text{ level}}{12.00 \text{ level}} = 0.31$	10 J=2
					$\Gamma(6.74\gamma) = 0.015$ $\Gamma(7.76\gamma) = 0.066$	
Na ²²		Mg ⁽²⁴⁾ (19-Mev d,α) chem		$\Gamma(10.6\gamma) = 0.044$	
11 11 2.6 ^y	$\epsilon / \beta^{+} = 0.122 1$		£ + /Ne ²² atoms		p, (1.38, 2.86, 3.88, 4.24, 6.74, 7	
2.0-		asured by gas c ate measured by			$(10.6\gamma)(1.38\gamma)(\theta)$ J=2, 2, 12.20 level E ₂ =0.51	
	t emission r	ate measured by	497 Carl, SCIII		$\Gamma(6.94\gamma) = 0.011$	0-1
	R.A.Allen, W. Munday, P.Rea	E.Burcham, K.F. sbeck. Proc. Ph	Chackett, G.L. ys. Soc. 68A, 681		Γ (7.96 γ) = 0.022	
	(1955).	,	,		$\Gamma(10.8\gamma) = 0.089$	
					p, $(1.38, 7.96, 10.8 \gamma^{\dagger} s)(\theta)$ $(10.8 \gamma)(1.38 \gamma)(\theta)$ J = 1, 2,	0
	€/β+=0.065 9		e _• /β ⁺ a, 4π GM		12.27 level E = 0.5	
		les results with	A''		$\Gamma(7.01\gamma) = 0.016$	
			tion and detec-		$\Gamma(8.03\gamma) = 0.051$	
	tion uncerta	inty			$\Gamma(10.9 \gamma) = 0.027$ p, $(1.38, 2.86, 3.88, 4.24, 7.01, 8$	1.06.10.9 2's)(e)
	G.Charpak, J.	phys. radium 10	i, 62 (1955).		$(10.9 \gamma)(1.38 \gamma)(\theta)$ J = 2, 2, 0	
					$(8.03\gamma)(4.24\gamma)(\theta)$ J = 2, 2, 0	
Na ²³		+2.216124	I		12.35 level E ₀ = 0.6	379 J=3 ⁺
11 12	$\nu (\text{Na}^{23}) / \nu (\text{H}^2)$		^		$\Gamma(7.09\gamma) = 0.063$	
stable		00N1 3335 130EH	1		$\Gamma(8.11\gamma) = 0.13$ $\Gamma(11.0\gamma) = 0.033$	
	Note Walchil,	ORNL-1775 (1954	, .		p, (1.38, 4.24, 7.09, 8.11, 11.0)	y's)(θ)
					$(11.0\gamma)(1.38\gamma)(\theta)$ J=2, 2,	
	Q.	+0.100 11 (or	-0.836 28) M		(8.11 γ)(4.24 γ)(θ) J=3, 2, * 0.593 resonance with J=2	
	H.L.Porl, 1.1	Rabi, B.Senitz	ky, Phys. Rev. 98,		that in $Na^{23}(p,a)$ at this en	
	611 (1955); 9	7, 838 (1955).			P.J.Grant, J.G.Rutherglen, F. Hutchinson, Proc. Phys. Soc.	C.Flack, G.W. 68A, 369 (1955).
Na ²⁴	τ	14.90 ^h 5	differential ic			
11 13 15 ^h	I Taballan I		14 119 (1088)	Mg ²⁶	γ Na ²³ (a, a' γ)	E_ = 5.3
19	U. 100attem, U.	. phys. radium	10, 40 (1999).	12 14	0.43*	scin
				stable	, , 1,13	
					st 1.83	
	7	Ne ⁽²²⁾ (d, γ)	$E_d = 1.6$ $15^h Na^{24}$		st 2,57	
	$\sigma < 4 \times 10^{-7}$		15"Na"		*May be due to $Na^{23}(\alpha, p\gamma)$	
	43 OF 83	Sarma, Proc. Phi	s. Soc. 68A, 535		R.J.Breen, M.R.Hertz, Phys. (1955).	Rev. 98, 599
	(1999).					
				A1 24	τ . 2.10 ⁸ 4 M	ig ⁽²⁴⁾ (20-Mev p,n)
Na ²⁵	au	60 ^S 2	Mg(~16-Mev n)	13 11	a (~10 ⁻² %) ~2	scir
11 14 62 ⁸	γ	0.41 1	0.59 1 scin	2.18	½ + w ~8.5	scir
02		0.46 1	0.98 1		γ 40+ 1.39 3	scii
	No γ with E _γ ^	0.10-0.12			32 ⁺ 2.73 6	
		W.S.Koski, Phys	. Rev. 98, 1307		15+ 4.22 10	
	(1955).				6+ 5.35 10 7 + 7.12 10	
Mg	Level	Mg(n,n'γ)	E _n ~2.7		N.W.Glass, J.R.Richardson, P 1251 (1955).	nys. Rev. 98,
12	γ	0.438	1.34 scin			
		0.555	1.91	A1 ²⁵	Mg(2)	⁴⁾ (0.225-Mev p, γ)
		0.688	2.08 2.44	13 12		linear (E _B >1.3) sl
		1.00		7.6°	No y	seli
	L.A.Rayburn,	D.L.Lafferty, T (1955); 95, 637	.W.Hahn, Phys.		B.Elbek, B.S.Madsen, Phil. M (1955).	ag. 46, 663
	Kev. 98, 101	127771, 77, 031	v (1334/e			

```
A1<sup>26</sup>
13 13
6.7<sup>s</sup>
                                                                             P<sup>31</sup>
                                             Mg<sup>25</sup> (0.391-Mev p, y)
                                                                                                           +1-130500
                                                                                                                                                  T
            B+
                                                                                         \nu(P^{31})/\nu(Na^{23}) = 1.530366 40
                                3.21 3 F-K linear (E<sub>8</sub>>1.3) sl
            No y
                                                                 scin
                                                                                         H.E. Walchii. ORNL-1775 (1954).
            B.Elbek, B.S. Madsen, Phil. Mag. 46, 663 (1955).
                                                                                                            P31 (y, n)
                                                                                                                                          2.5mp30
                                                                                         Levels*
  A1 27
                              +3,638360
                                                                                                           12.58 7
13 14
           \nu(\text{Al}^{27})/\nu(\text{Na}^{23}) = 0.985055 12
                                                                                                           12.75 8
stable
                                                                                                           12.90 8
            H.E. Walchil. ORNL-1775 (1954).
                                                                                                           13.18 10**
                                                                                                           13.38 10
                                                                                         Threshold = 12.33 5
                                Al 27 (n, n'y)
                                                    E ~2.7
                                                                                         *Sharp breaks in activation curve
                                                                                         **May be due to n group to 0.8 P30 level
                               0.422
                                                    1.69
                                                                scin
                               0.843
                                                    2.10
                                                                                         R.Basile, C.Schuhl, Compt. rend. 240, 2399, 2512 (1955).
                               0.988
           L.A.Rayburn, D.L.Lafferty, T.M.Hahn, Phys. Rev. 98, 701 (1955); 95, 637A (1954).
                                                                               P32
                                                                                                                                            \gamma^{\pm}\gamma^{\pm}
                                                                                         e */e < 1.3x10 7
                                                                             15 17
                                                                             14.3d
                                                                                         A.B. Milojević, V.Z. Winterstelger, Bull. Inst.
Nuclear Sci., Boris Kidrich 5, 19 (1955).
                                Al^{27}(n,n'\gamma)
                                                    E = 4.5
                               0.84 2
                                                                 scin
                               1.02 3
                               2.27 6
                                                                             P<sup>34</sup>
                                                                                                           2.10 S<sup>(34)</sup> (fast n,p); scin
                               3.10 8
                                                                                                            4.0
                                                                              12.48
                                                                                         No 3.22 γ
            G.L.Griffith, Phys. Rev. 98, 579 (1955).
                                                                                         E.Bleuler, H.Morinaga, Phys. Rev. 99, 658 (1955); verbal report.
                                Al<sup>27</sup> (n, n')
                                                      E, = 15.4; 90°
            Levels
                               3.0 12
                                                                 scin
                                                                              s<sup>37</sup>
                               4.0 11
                                                                                                               A(40) (n. a)
                                                                                          Levels
                                                                                                                                         E_n = 14.8
                               5.8 10
                                                                                                  1.0+
                                                                                                              g.s. Q = -2.5 I.
                                                                                                                                        Argon
                               8.1 7
                                                                               5.0<sup>m</sup>
                                                                                                  1.4+
                                                                                                              1.3 1
                                                                                                                                        filled ic
                                                                                                  2.2+
                                                                                                              2.2 1
           R.Ramanna, N.Veeraraghaven, P.K.lyengar,
Nuovo Cim. 10, 623 (1955).
                                                                                                   1.2+
                                                                                                              2.7 1
                                                                                                    1+
                                                                                                              3.5 ?
                                                                                          \sigma \sim 30 \mu b for g.s. transition
                                                                                         E. H. Bellamy, F. C. Flack, Phila Mag. 46, 341 (1955).
  Si 30
                                 Al^{27}(\alpha, p\gamma)
                                                              E_a = 5.3
14 16
stable
                                1.25
                                                                 scin
                                 2.28
                                 3.55
                                                                              C1 32
                                                                                                             0.306<sup>S</sup> 4
                                                                                                                             S(32) (20-Mev p,n)
           R.J.Breen, M.R.Hertz, Phys. Rev. 98, 599 (1955).
                                                                                             (~10-2%)
                                                                                                                                               scin
                                                                               0.315
                                                                                          R+
                                                                                                             7.5 and others (E_{\beta} \le 7.5) scin
                                                                                                  ~50%
                                                                                                  ~ 50%
                                                                                                             9.5 4
p28
                               0.280<sup>S</sup> 10 Si (28) (20-Mev p, n)
           4
                                                                                                    70%
                                                                                                                                               scin
                                                                                                             2.21 3
                    ~50% 10.6 4
                                                                 scin
                                                                                                  ~10%
                                                                                                             2.77 8 or 3.79
0.28 S
                                                                                                    7%
                                                                                                             4.27 8
                               others (E_R < 9)
                    ~50%
                                                                                                    14%
                                                                                                            4.77 4
                      75+
                               1.79 2
                                                                 scin
                                                                                          N.W.Glass, J.R.Richardson, Phys. Rev. 98, 1251 (1955).
                               2.6 2 ?
                               4.44 5
                      10+
                               4.93 8 ?
                               6.14 10
                               6.70 12
                                                                             C134
                                                                                                                        Cl (35) (p,pn); scin
                                                                                                             1.15
                               7.04 10
                                                                                                             2.10
                               7.59 15
                                                                             32.4m
                                                                                         (1.15\gamma)(2.10\gamma)(\theta) J=2<sup>+</sup>, 2<sup>+</sup>, 0<sup>+</sup>
           No \alpha (<3x10<sup>-3</sup>% 1f E<sub>2</sub>>0.75)
                                                                                         M.E.Handier, J.R.Richardson, Phys. Rev. 98,
281A (1955).
           N.W.Glass, d.R.Richardson, Phys. Rev. 98, 1251
(1955).
```

C1 ³⁴ 17 17 32.4 ^m	γ	2.10 3.22 4.0	scin	K ⁴⁰ 19 21 1.3×10 ^{9y}	Resonances	K ³⁹ (n) E _o (kev)	E _n = 2 Γ(kev)	to 120 kev Li(p,n)
	E-Bleuler, H.Mc (1955); verbal	orinaga, Phys. Rev. 99, report.	658			23 43 58 58	0.3 0.6 0.8	
Cl ³⁵ 17 18 stable	$\mu = \nu (C1^{35}) / \nu (H^2) =$	+0.820905 = 0.638302 8	I			96 110		
	H.E.Walchii, O	RNL-1775 (1954).			L.A.Toller, of Rev. 99, 620	.R.Patterson (1955).	, H.W.News	on, Phys.
C1 36 17 19 4.4×10 ⁵	$\nu(\text{Cl}^{36})/\nu(\text{H}^2) =$ P.B.Sogo, C.D.	Jeffries, Phys. Rev. 98,	I 1316	K ⁴² 19 23 12.5 ^h	γ 10.8%* *γ rate from from 477 cou	(1.53) Ra calibrate unter. See a	dic, total	(pile n,γ) l β rate
	(1955); 99, 613) A (1995)			E.W.Emery, N. (1955).	Veall, Proc.	Phys. Soc	. 68A, 346
	g(Cl ³⁶)/g(Cl ³⁵)	-0.017	Mic	_K 43	Levels	A ⁴⁰ (a,p)		E _a = 7.4
	q(Cl ³⁶)/q(Cl ³⁵) L.C. Aamodt, P.O (1955).	= 0.2117 <i>27</i> C.Fletcher, Phys. Rev. 9	8, 1317	19 24 22 ^h			-3.36 3	ppl 90°
		10			R.B.Schwartz, Rev. 99, 655A	, J.W.Corbett \ (1955); pri	y W.W.Wats	on, Phys.
A37 18 19 34 d	€ _L /€ _K = 0.092 -	10 5 (theory, 0.082) large, Xe-fi	lled pc			,		
	M.Langevin, P. (1955).	Radvanyī, Compt. rend. 2	41, 33	\$c ⁴⁰ 21 19 0.22 ⁸	τ β^+ γ No α ; no other	0.22 ^S 3 9.0 4 3.75 4 er strong γ	Ca ⁽⁴⁰⁾ (2	scin
K39 19 20 stable	Levels	$A^{36}(\alpha, p)$. $E_{\alpha} = 7.4$ q. s. $Q = -1.28$ 3 2.48 3 2.87 3	ppl 9 0°		N.W.Glass, J. 1251 (1955).		n, Phys. Re	v. 98,
		J.W.Corbett, W.W.Watson, (1955); priv. comm.	Phys.	Sc ⁴⁵ 21 24 stable	No γ with ${\tt E}_{\gamma}$	Sc ⁴⁵ (p, p)	(אי	E _p ≤2.75 scin
					H.Mark, C.Mc		Goodman, Ph	ys。 Rev.
K ⁴⁰ 19 21 1.3×10 ^{9y}		1.33×10 ^{9y} 3 0.133×10 ^{9y} 2 ec g K and 2.96±0.04 γ'	a a	Sc ⁴⁶	/4 40 a \/ 0 a 0 a	- Mal - T - 4		anta '
		from 5 K salts counted		21 25 84 ^d	(1.12 γ)(0.89) Graph of $\eta(\theta)$	given (π/2	< θ <π); η	
	A.D.Suttle,Jr., 921 (1955).	, W.F.Libby, Anal. Chem.	27,		ToHayashî, Mo Japan 10, 334		AURI, U. PI	198. 50C.
				T;49 22 27 stable	Resonances	Ti 48 (n) E ₀ (kev) J 18 1/2 38 1/2 53 1/2	<u>ι</u> Γ(κ	4
	H.A.Shillibeer 32, 681 (1954)	, R.D.Russell, Can. J. P	hys.		C.T.Hibdon, A 223A (1955);			Rev. 98,

Ti⁵¹ β 2.13 3 F-K linear (E $_{\beta}$ >0.7)sl 22 29 5.8 γ 100+ 0.32 scin 1.5+ 0.45-0.7 $\gamma\gamma$ scin (0.32 γ)(>1.9 β) (0.32 γ)(0.45 < E $_{\gamma}$ <0.7) No β with E $_{\beta}$ >2.1 (<5%) No 0.93 γ (<6+) γ (51) (fast n,p) chem; Ti⁵⁰(d,p) Th.Mayer-Kuckuk, H.Daniel, Z.Naturf. 10a, 168 (1955).

 $\beta^{-} \qquad 2.17 \qquad 4 \qquad \text{scin} \\ \gamma \qquad 100^{+} \qquad 0.325 \qquad \qquad \text{scin} \\ 6^{+} \qquad 0.935 \qquad 15 \\ (2.17 \,\beta)(0.325 \,\gamma) \\ \text{No } 2.55 \,\beta \qquad (<20\%) \qquad \text{No } 0.48 \,\gamma \qquad (<3+)$

M.J.Sterk, R.H.Nussbaum, A.H.Wapstra, Physica 21, 441 (1955).

Ti⁵⁰ (pile n, y) 5.80^M 3 T B-1,50 5 scin 2.13 3 F-K linear($E_{\beta} > 1.5$) 95.8+ 0.323 2 scin 0.605 4 1.4+ 4.2+ 0.928 5 (1.50 b)(0.928 v) $(2.13 \beta)(0.323 \gamma)$ $(0.323 \gamma)(0.605 \gamma)$ No other yy No 0.48 γ (<0.4+)

M.E.Bunker, J.W.Starner, Phys. Rev. 97, 1272 (1955).

 v^{50} μ +3.34128 I v^{23} 27 $v^{(V^{50})}/v^{(H^2)}$ =0.649518 8

H.E. Waichii, ORNL-1775 (1954).

 $v^{5|}$ Level $v^{(5|1)}(p,p^{\dagger}\gamma)$ $v^{5|}$ $v^{5|}$ Scin 0.325

H. Mark, C. McClelland, C. Goodman, Phys. Rev. 98, 1245 (1955).

R.K.Sheline, J.R.Wilkinson, Phys. Rev. 99, 165 (1955); 98, 1538 (1955).

 $\frac{\text{cr51}}{24}$ $\frac{\gamma}{27}$ 9.8% (0.32) $\alpha_{\text{K}} = 1.5 \times 10^{-3}$ M1 scin

M.E.Bunker, J.W.Starner, Phys. Rev. 97, 1272 (1955); *priv. comm.

H.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955).

Mn⁵⁵ Levels Mn⁵⁵ (p,p¹ γ) E = 2.1; γ scin 25 30 0.131* ϵ B(E2) = 0.087 stable 0.975**

*Yield curve given for E $_{\rm p}$ = 0.55 to 2.5 **May be due to Mn 55 (p, n $\gamma)$

H.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955).

Fe 26 Fe (n, n') Levels $E_{n} = 4.4$ ppl 90° 0.08+ g. s. 0.036+ 0.8 0.021+ 2.0 0.012+ 2.6 10.020+ 3.0 +barns/sterad at 90°

> B.Jennings, J.Weddeli, I.Alexeff, R.L.Heliens, Phys. Rev. 98, 582 (1955); 95, 6364 (1954); 99, 621 (1955).

γ Fe(n,n'γ) E_n = 4.5
0.85 2 scin
1.20 3
1.73 4
2.05
2.50
3.52 9

G.L.Griffith, Phys. Rev. 98, 579 (1955).

Fe 26	Levels	Fe (n, n') E _n = 15 ~1.9 scin 9 4.5 11 5.8 10 7.6 8		$ g(\text{Co}^{58}\text{g.s.})/g(\text{Co}^{60}\text{g.s.}) = \text{constant for all} $
	R.Ramanna, N Nuovo Cim. 1	.Veeraraghavan, P.K.lyengar, 0, 623 (1955).		J.C.Wheatley, D.F.Griffing, R.D.Hill, Phys. Rev. 99, 334 (1955).
Fe ⁵⁵	Levels	$\text{Im}^{55}(p,n\gamma)$ $E_p = 2.1; \gamma \text{ sc}$ 0.420	Co ⁵⁹ In 27 32 stable	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2.9 ^y		0.505 0.650 ? 0.975*		H.Mark, C.McClelland, C.Goodman Phys. Rev. 98, 1245 (1955).
	*May also be	due to Mn ⁵⁵ (p,p' γ)	60	
	H.Mark, C.Mc 98, 1245 (19	Cielland, C.Goodman, Phys. Rev. 551.	Co ⁶⁰ 27 33 5.2 ^y	$ \mu \qquad \text{4.3 } 2^{\circ} \qquad \gamma(\theta, \mathbf{T}); \text{ scin} \\ (1.17 \gamma + 1.33 \gamma)(\theta, \mathbf{T}) \mathbf{J} = 4, \; 2, \; 0 \\ \text{*Assuming J } (\mathbf{Co}_{\bullet}^{60}) \mathbf{g.s.} = 5$
Fe ⁵⁶ 26 30	γ	Fe ⁽⁵⁶⁾ (n, n' γ) E _n = 1.77 (0.85) J = 2+ n, γ (θ)	O.J.Poppema, M.J.Steenland, J.A.Beun, C.J. Gorter, Physica 21, 233 (1955).
		, D.A.Lind, Phys. Rev. 98, 224A 621 (1955); verbal report.		$(1.17 \gamma)(1.33 \gamma)(\theta)$ J = 4, 2, 0 Both γ *s E2
	Resonances Graph of yie	$\text{Mn}^{55}(p,p^1+0.131\gamma)$ γ so ld given for $E_p = 0.55$ to 2.5	in	S.Colombo, A.Rossi, A.Scotti, Nuovo Cim. 1, 522 (1955).
	N.Mark, C.Mc 98, 1245 (19	Cleliand, C.Goodman, Phys. Rev. 551.	Ni59 28 31 7.5×10 ⁴⁹	Resonances N1 ⁵⁸ (n) $E_n = 1$ to 160 kev $\frac{E_0}{E_0} = \frac{1}{E_0} = \frac{1}{E_$
Fe ⁵⁷ 26 31 stable	Level	Fe ⁵⁷ (p, p' γ) E = 0.58; γ so (0.137) ϵ B (E2) \sim 0.015	ein	16 1/2 0 or 1~2 65 1/2 0 2.9 144 1/2 0 ~4
	H.R.Lemmer, Phys. Soc. 6	O.J.A.Segaert, M.A.Grace, Proc. 8A, 701 (1955).		160 1/2 0 ~4 C.T.Hibdon, A.Langsdorf, Phys. Rev. 98, 223A (1955); verbal report.
Co ⁵⁶	11	0.00	_	
27 29	<i>µ</i>	2.8 9* $\gamma(\theta,T)$; sci		
77 d	γ	(0.845) $\triangle J = 2$ (1.24) $\triangle J = 2.0$	Cu 63	μ +2.220586 Ι
		(1.24) $\Delta J = 2$, 0 (1.75) $\Delta J = 1$	29 34 stable	$\nu (\text{Cu}^{63}) / \nu (\text{Na}^{23}) = 1.002008 \ 16$
		(2.30) (2.60) $\Delta J = 1$ (3.25) $\Delta J = 0$, 2	212010	H.E.Weichil, ORNL-1775 (1954).
	*Assuming J =	4		
		, C.Whittle, J.A.Beun, A.N.Didde M.J.Steenland, Physica 21, 117	ens	Level $Cu^{63}(p,p^{1}\gamma) = E_{p}^{2.2}; \gamma \text{ scin}$ 0.67 z
				C.E.Weiler, J.C.Grosskreutz, Phys. Rev. 99, 655A (1955); priv. comm.
co ⁵⁷ 27 30 270 d	γ	Fe ⁽⁵⁶⁾ (18-Mev d, n) of 0.0144 1 α = 15 ± 1 pc, so		
270		(0.123)	Cu 64	τ 12.80 ^h 3 differential ic
	(0.0144 γ)(0. x(0.123 γ + 0	(0.137) 08% from absence of γ^{\pm}) 123 γ) delay = 1.0×10 ^{-7*} 1 0.137 γ) delay < 5×10 ^{-8*} sal shows 0.014 γ follows 0.123	29 35 cin 13 ^h	J.Toballem, J. phys. radium 16, 48 (1955).
	No € to g.s.	or 0.014 level in Fe ⁵⁷ (<14%) x/γ , $x\gamma/\gamma$ so	cin 29 36	μ +2.378967 I $\nu(\mathrm{Cu}^{65})/\nu(\mathrm{H}^1)$ = 0.283954 4
	H.R.Lemmer, Phys. Soc. 6	O.J.A.Segaert, M.A.Grace, Proc. 88, 701 (1955).	stable	H.E.Walchil, ORNL-1775 (1954).

```
30 Zn 61
                                                                               As<sup>77</sup>
                                1.5<sup>m</sup> 1 N1<sup>58</sup> (18-Mev \alpha.n)
                                                                                                                         As^{(76)} (pile n, \gamma)
 31
1.5<sup>m</sup>
                                                                                                                                                 chem
            B+
                                                                                                   0.13+
                                                                                                              0.086 1
                                                                                                                                                 scin
                                4.9 5
                                                                   scin
                                                                                38.7h
                                                                                                              0.160 5
                                                                                                   0.26+
            No strong y
                                                                                                    2.5+
                                                                                                              0.245 2
            p 3.3hCu
                                                                                                    0.8+
                                                                                                              0.525 5
            J.B. Cumming, Phys. Rev. 99, 1645A (1955).
                                                                                           No \gamma with 0.02 <E_<0.08 (<0.2+)
                                                                                           0.033 y attributed to iodine escape peak
                                                                                           0.020 y attributed to external bremsstrahlung
   Zn 64
                                 Cu<sup>63</sup> (p, γ)
                                                              E_{p} = 1.9
                                                                                           No (0.086\,\gamma)(0.08\,\leq E_{\gamma}\,<0.7)
No (0.160\,\gamma)(0.03\,\leq E_{\gamma}\,<0.4) (0.245\,\gamma)(0.270\,\gamma?)
3.0
    34
                                          40+
                                0.78 2
                                                     2.07 2
                                                                  scin
stable
                                                     2.27
                      100+
                                0.97 2
                                             40+
                                                                                           +Photons per 100 disintegrations
                       17†
                                1.16 2
                                                     3.84 ?
                       29+
                                1.30 2
                                                     5.64
                                                                                           H.Langevin, J. phys. radium 16, 238 (1955).
            Many others with 5.6 < E, < 10
            (0.97 \gamma)(0.78 \gamma, 1.16 \gamma, 1.30 \gamma, 2.07 \gamma, 2.47 \gamma)
                                                                               Se<sup>75</sup>
                                                                                                                        As<sup>75</sup> (22-Mev d, 2n)
                                                                                                                                                 chem
            C.E.Weller, J.C.Grosskreutz, Phys. Rev. 99, 655A (1955); priv. comm.
                                                                                                              5/2
                                                                                                                                      OCSe<sup>75</sup>
                                                                                                                                                  Mic
                                                                                127<sup>d</sup>
                                                                                                             +1.1 2
                                                                                           q(Se^{75})/q(Se^{79}) = 1.2578 6
   Zn66
                                 cu65 (p, y)
                                                               E_{p} = 1.9
30 36
                                0.83 2
                                                     2.75 2
                                                                  scin
                                                                                           L.C.Aamodt, P.C.Fletcher, Phys. Rev. 98, 1224 (1955); 94, 789A (1954).
 stable
                                1.04 2
                                                     3.76 2
                                1.37 2
                                                     4.12 2
                                2.17 2
                                                     4.33 2
                                2.41 ?
                                                     4.52 2
            Many others with 4.5 \le E_{\chi} \le 10
                                                                                 Se77
                                                                                                             +0.5324786
                                                                               34 43
             (1.04 \gamma)(0.83 \gamma, 1.03 \gamma, 1.37 \gamma, 2.17 \gamma, 2.75 \gamma)
                                                                                           \nu (\mathrm{Se}^{77}) / \nu (\mathrm{H}^2) = 1.242100 \ 19
                                                                               stable
            No 3.41 %
                                                                                           H.E. Walchii. ORNL-1775 (1954).
            C.E.Weiler, J.C.Grosskreutz, Phys. Rev. 99, 655A (1955); priv. comm.
   Ga<sup>69</sup>
                                                                                 Br76
                               +2.010809
                                                                                                              17.5h
                                                                                                                                        Kr76 source
 31 38
            \nu (\text{Ga}^{6.9}) / \nu (\text{Na}^{23}) = 0.907349 20
                                                                               35 41
17<sup>h</sup>
 stable
                                                                                                               0.20 ?
                                                                                                                                   0.85 ?
                                                                                                                                                scin
             H.E. Walchii, ORNL-1775 (1954).
                                                                                                               0.56
                                                                                                                                  ~1.2 (double)
                                                                                                               0.66
                                                                                           A 1.86 \gamma with \tau \sim 30 was observed in a ms
  Ga71
                                                                                             sample of Kr76 (+Br76)
                              +2.554922
31 40
            \nu (Ga^{71}) / \nu (Na^{23}) = 1.152872.8
stable
                                                                                           S. Thulin, Arkiv Fysik 9, 137 (1955).
            H.E. Waichil, ORNL-1775 (1954).
  As<sup>70</sup>
                                            Cu (125-Mev N14)
                              47<sup>m</sup> 2
                                                                  chem
 3 37
52<sup>m</sup>
                                                                                 Br79
                                                                                                             +2.098991
           B+
                                1.35 3
                       67+
                                            F-K linear
                                                                               35 44
                                                                                          \nu (Br^{79})/\nu (Na^{23}) = 0.947140 9
                       33+
                                2.45 4
                                            F-K linear
                                                                               stable
                                                                                           H.E. Walchil, ORNL-1775 (1954).
                                1-07 4
            Other peaks at 1.5, 2.15, 2.75, 3.25
            A.E. Souch, Proc. Phys. Soc. 68A, 760 (1955).
                                                                                 Br81
  As 76
                                                                                                             +2.262597
                                                                     87
                     2.5%
                               0.36
                                                                               35 46
                                                                                           \nu(Br^{61})/\nu(Na^{23}) = 1.020965 14
33 43
                    16.0%
                               1.76
                                                                               stable
 26.5h
                               2.41
                    31.0%
                                                                                           H.E. Walchii, ORNL-1775 (1954).
                                               \Delta J = 2, yes shape
                    50.5%
                                2.965 10
                     100+
                               0.549 4
                                                         scin, sl pe
                       20+
                                0.643 6
                       21+
                                1.200 8
                                                                               Kr76
                                                                                                                 Br<sup>(79)</sup> (60-Mev p, 4n)
                                                                                                                                             chem; ms
                        21
                               1.402 15
                                                                                                           ~10.5h
                                                                                9.71
                       4+
                                2.053 18
                                                                                                                                    0.316
                                                                                                              0.028
                                                                                                                                                 scin
            (1.76 \beta)(1.20 \gamma)
                                     (2.41 \beta)(0.55 \gamma)
                                                                  scin
                                                                                                              0.093
                                                                                                                                    0.40
            (0.55\gamma)(0.64\gamma, 2.05\gamma, 1.4\gamma?)
                                                                                                              0.267
            (1.20 \gamma)(1.40 \gamma) No \gamma (1.7 \le E_{\gamma} \le 1.8)
                                                                                          No B+
                                                                                                                                                 scin
            J.D.Kurbatov, 8.8.Murray, M.Sakai, Phys. Rev. 98, 674 (1955).
                                                                                           S. Thulin, Arkiv Fysik 9, 137 (1955).
```

No (ce_K 0.606 γ)(E_{γ} > 0.04)

Decay scheme is proposed

S. Thulin, Arkiv Fysik 9, 137 (1955).

```
36 Kr77
                                                                                              Kr85
                                         Br (79) (50-Mev p. 3n) chem: ms
                                                                                                          J
                                                                                                                                 9/2
                                                                                                                                                               U(n,f) S
                                      1.2h
                                                                                            36 49
  1.1h
                                                                                                                               -1.001
                                                                                                                                               from \mu_{85}/\mu_{83} = 1.035 2
                                                                                             10.3 y
              B+
                            7+
                                      0.85
                                                                                 sl
                                                                                                                                               from q_{85}/q_{83} = 1.66 10
                                                                                                          a -
                                                                                                                                +0.25
                           32+
                                      1 - 67
                                                                                                          E.Rasmussen, V.Middelboe, Z. Phys. 144, 160
                           61+
                                      1.86
                                                      K/LM
                        ~36*
                                      0.0242 5
                                                        1.3
                                                                            sì ce
                         100*
                                     0.1076 8
                                                                                                                                                      U(n, f) chem; ms
                          45*
                                     0.1311 10
                                                        8.2
                                                                                                          B
                                                                                                                                 0.672 7
                                                                                                                                                \Delta J = 2, yes shape sl
                          26*
                                     0.1493 10
                       ~0.2*
                                     0.246 3
                                                                                                          \gamma
                                                                                                                                 0.517 5
                       ~0.2*
                                     0.281
                                                                                                          S. Thulin, Arkiv Fysik 9, 137 (1955).
                       ~0.4*
                                     0.313 1
              S. Thulin, Arkiv Fysik 9, 137 (1955).
                                                                                              Kr85
                                                                                                                                                      U(n.f)
                                                                                                                                                                   chem: ms
                                                                                            36 49
                                                                                                                                 0.824 8
                                                                                                                                                                            81
                                                                                             4.4h
                                                                                                          V
                                                                                                                                (0.305) K/LM = 6.2
                                                                                                                                                                       sd ce
                                     0.665
                                                                             scin
                                     0.870
                                                                                                          S. Thulln, Arkiv Fysik 9, 137 (1955).
              (0.685 \gamma)(ce_{\kappa} \ 0.1312 \gamma, ce_{\kappa} \ 0.149 \gamma, \sim 0.14 \gamma)
              No (0.665 y)(ce, 0.108 y)
              €KIB+ = 0.2
                                                                                              K r87
                                                                                                                                                      U(n, f)
                                                                                                                                                                  chem: ms
              *ce, per 1000 \beta*
                                                                                            36 51
                                                                                                                      25%
                                                                                                                                 1.3
                                                                                                                                                                      sl By
                                                                                              78 m
              S. Thuiin, Arkiv Fysik 9, 137 (1955).
                                                                                                                    ≤ 10%
                                                                                                                              \sim3.3
                                                                                                                    > 65%
                                                                                                                                (3.8)
                                                                                                                                               ≤ 6+
                                                                                                                                0.403 4
                                                                                                                                                         2.05 5
                                                                                                                    100+
36 Kr79
                                                                                                                      19+
                                                                                                                                0.847 9
                                                                                                                                                42+
                                                                                                                                                         2.57 4
                                     Br<sup>(79)</sup> (25-Mev d, 2n)
                                                                      chem:
 36 43
34.5<sup>h</sup>
                                                                                                                                 1.75 ?
             -B+
                          ~7+
                                     0.325 20
                                                                                                          (1.3 \, \cancel{\varepsilon})(2.57 \, \cancel{\gamma}) \quad (1.3 \, \cancel{\varepsilon}, \, 3.8 \, \cancel{\varepsilon})(0.403 \, \cancel{\gamma})
                                                                                                                                                                    sl.scin
                          93+
                                     0.598 5
                                                        F-K linear
                                                                                                          (\sim 3.3 \beta)(0.847 \gamma)
                                                K/LM
                                                                             K/LM
                                                                                                          (0.403 \gamma)(2.57 \gamma) No (0.403 \gamma)(0.847 \gamma)
                                                                                                                                                                         scin
                         100*
                                     0.0445 7.2
                                                              9*
                                                                   0.3069 9.4
                            4*
                                                                                                          S. Thulin, Arkiv Fysik 9, 137 (1955).
                                                           0.2*
                                     0.0840 5 ?
                                                                    0.3455
                           15*
                                     0.1361
                                                             3*
                                                                   0.3892
                            1*
                                     0.1805
                                                            15*
                                                                   0.3977
                            6*
                                     0.2086
                                                6.9
                                                           0.3*
                                                                   0.5259
                                                                                              Kr88
                           17*
                                                                                                                                                      U(n,f) chem; ms
                                     0.2173 10.6
                                                            9*
                                                                    0.6064 7.8
                                                                                           36 52
                           51*
                                     0.2613
                                                                                                                      20+
                                               8.0
                                                           0.4*
                                                                    0.8334
                                                                                                                                0.166
                                                                                                                                                               sl ce, scin
                                                                                            2.77h
                                                                                                                     100+
                                                                                                                                0.191
                                                                                                                                                40+
                            6*
                                     0.2998 10.8
                                                                                                                                                         1.55
                                                                           sd ce
              *Relative intensity ce,
                                                                                                                      14+
                                                                                                                                0.36
                                                                                                                                                         1.85 ?
                                                                                                                      £5+
                                                                                                                                0.845
                                                                                                                                             ≤ 50+
                                                                                                                                                         2.19
              (ce_{\kappa} 0.044 \gamma) \gamma delay < 0.3^{\mu s}
                                                                                                                    < 10+
                                                                                                                                1.19 ?
                                                                                                                                            100+
                                                                                                                                                         2.40
                                                                                                          \begin{array}{lll} (\text{ce}_{\text{K}} \text{ 0.191}\,\gamma)/\,(\text{ce}_{\text{K}} \text{ 0.028}\,\gamma) &\sim \text{0.05} \\ (\text{0.191}\,\gamma)(\,\sim\!0.5\,\cancel{\xi},\sim\!2.5\,\cancel{\xi}) & (\text{ce}_{\text{K}} \text{ 0.028}\,\gamma)(\sim\!0.5\,\cancel{\xi}) \end{array}
              No (ce_K 0.084 \gamma)(E_{\gamma} > 0.3) No (0.598 \beta)\gamma
              (ce<sub>K</sub> 0.044 \gamma)/e<sub>AK</sub> = 0.03 \beta + /e<sub>AK</sub> = 0.25 sl

\epsilon_{\rm K}/\beta + = 10.8 ± 2.0 (recalculated using K fluo-
                                                                                                          (0.191 \gamma)(2.19 \gamma) (ce 0.028 \gamma)(0.166 \gamma, 2.19 \gamma)
                                                                                                         No (ce 0.028 \gamma)(0.191 \gamma, 2.40 \gamma)
                 rescence yield = 0.63)
                                                                                                         No (0.191 \gamma)(0.845 \gamma, 2.40 \gamma)
              So Thullin, J. Moreau, H. Atterling, Arkiv
Fysik 8, 229 (1954).
                                                                                                          S. Thulin, Arkiv Fysik 9, 137 (1955).
                                                Br<sup>(79)</sup> (d. 2n) chem:
                                                                               ms
              B+
                           9+
                                                                   sl. sl \beta\gamma
                                    0.330
                                                                                              Rb85
                                                                                                                               +1.348217
                          91+
                                    (0.598)
                                                                                sl
                                                                                           37 48
                                                                                                          \nu (Rb<sup>85</sup>) /\nu(H<sup>2</sup>) = 0.628985 5
              (0.330 \, \beta)(E_{\gamma} > 0.08)
                                                                                            stable
              (ce_{K} \ 0.044 \gamma)(E_{\gamma} \le 0.22)

(ce_{K} \ 0.084 \gamma)(E_{\gamma} \ge 0.04)
                                                                                                          H.E. Walchii, ORNL-1775 (1954).
              (ce_{K}^{\prime} 0.136 \gamma)(E_{\gamma}^{\prime} \le 0.27)
              (ce_{K} \ 0.261 \ \gamma)(E_{\gamma} \le 0.30)
```

Rb86 18.64 d 4 37 49 Followed 8 samples for 7 to 9 half-lives 18.7d J.B. Niday, Phys. Rev. 98, 42 (1955).

				MEW NOC	LEAK DATA	,				19
Rb86 3' 49 18.7 ^d	y 6.5%* Observed for *y rate from from 477 cou	(i.08) ∼4 half-li Ra calibra	ited ic, total	4π β,1c	γ88 39 49 0.4 ^{ms}	τ No β ⁺ γ τ from	$(no \ \gamma^{\pm})$	3.7x10 ⁻⁴ : 0.395 5	S 3 85 K/LM = 8.4 α~0.02	dZr source scin scin E3
	E.W. Emery, J. 175, 34 (1955 Phys. Soc. 68	E.S.Bradie 5); E.W.Eme 3A, 346 (19	y, N.Veall, N Ty, N.Veall, 55).	lature Proc.		E.K.Hy 97, 12	de, M.G. 55 (195)	Florence,	A.E.Larsh,	hys. Rev.
	β 15% 85% γ J.taberrique- radium 16, 34	~0.73 1.770 10 1.08	Rb ⁽⁸⁵⁾ (pile n F-K linear $\Delta J = 2$, yes sl Lederer, J. p	sd $\beta\gamma$ nape sd scin	y90 39 51 64.2 ^h	No pho ce cor nucl	tons wirespond.ear pair	ing to $E_{\gamma} =$	< 2.26 5 (< 5x10 ⁻⁴ , 1.75 (0.00 2%) suggest (5%) and 0 ⁺ →0 ⁺ s1
	β 15% 5% 80% 7 W L.E.Killion, tion Abstr. 1	0.935 1.083	ΔJ = 2, yes sh University,	sm pe	γ 9 Ι 39 52 57 ^d	No oth		57.5 ^d 5 0.36 2 (1.55) 1.190 5 with 0.1<2		n, f) chem a βγ 4π pc scin, ic 0.01%)
Rb87 37 50 6.2×10 ¹⁰ y	$\mu \ u ({ m Rb}^{87}) / u ({ m Na}^2 \ H.E. Walchii,$		41 8	· I	Z r 40	H.Mark	ith E _y < , C.McC 45 (195	lelland, C	γ) .Goodman, Ph	E _p ≤2.75 scin ys. Rev.
Rb88 37 51 17.8 ^m	γ 60+ 100+ 4+ S.Thulin, Ark	0.908 1.85 2.18 3	U(n, f) ch <10† 2.76 0.2† 4.2 1 , 137 (1955).	em; scin		γ	î €€Î+h.	Zr(n,?) 0.92 2.20 3.27	·) • 98, 579 (1	E _n = 4.5 scin
\$r ⁹⁰ 38 52 28 ^y	τ D.M.Wiles, R. 133 (1955). τ G.W.Reed, Phy	~30 ^y	n, Can J. Phy Specific act	ivity; ms	Zr⁹⁵ 40 55 65	γ	nr, R.D.	0.722	$a_{\rm K} \sim 1.6 \times 10^{-3}$	sl ce,pe E2,M1
γ 88 39 49 105 ^d	π K.F.Flynn, L. quoted by G.W (1955). (0.91 γ)(1.87 γ (0.91 γ)(1.87 γ J = 37, 2*,	Sr ^{(ξ} γ)(θ) J=3 _ε γ)(t_) cons:	38) (18-Mev d, 3 , 2, 0 or 3, 1 Istent with	327 2n) c hem	Nb90 41 49 15 ^h	(0.14) No (2.2 Absence	, 1.14 γ 2 γ)(K x e of 2.2	ray, 0.14 γ after	$Zr(20-Me^{-1})$ $2.14\gamma(1.14\gamma)$ $3.14\gamma(1.14\gamma)$ $3.14\gamma(1.14\gamma)$ $3.14\gamma(1.14\gamma)$ $3.14\gamma(1.14\gamma)$ $3.14\gamma(1.14\gamma)$	scin scin
	G.R.Bishop, J. 89 (1955).	.P.Perez y	Jorba, Phys.	Rev. 98,		H.B.Mai (1955).		K.Hyde, Pt	n <u>y</u> s. Rev. 98,	79, 261A

Nb ⁹⁰ τ 24 ^S 3 5.7 hMo source chem Nb ⁹³ Level Nb ⁹³ (p.p ¹ γ) E _p 24 ^S γ 0.120 σ _K ~ 0.5 x/γ scin K/LM = 3.6 ± 0.2 sd ce d 5.7 hMo K/LM = 3.6 ± 0.2 sd ce d 5.7 hMo C.P. Swann, J. Franklin inst. 259, H.B. Mathur, E.K. Hyde, Phys. Rev. 98, 79, 261A (1955). Nb ⁹⁴ τ 1.8 x 10 4 y 4 Nb ⁹³ (1.9 x 10 y 4 1 53	
K/LM = 3.6 \pm 0.2 sd ce d 5.7 hMo D.M. Van Patter, M.A. Rothman, C.E. C.P. Swann, J. Franklin Inst. 259, H.B. Mathur, E.K. Hyde, Phys. Rev. 98, 79, 261A (1955). Nb94 τ I.8x10 4y 4 Nb93 (1 49 0.015 5 5.7 hMo source 41 53 2.7x10 4y 6 0.5-0.6 0.015 γ 0.726	E _p) y scin
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mandeville, 261 (1955).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(th n, y) chem
0.015° γ 0.250 K/LM = 5.2 ± 0.2 sd, scin γ 0.726	a a
0.903	scin
5.7 ^h Mo ⁹⁰ I.65	
M.A.Rollier, E.Saeland, A.Morpurg	0.
A.Cagileris, Acta Chem. Scandinav (1955).	
1.15 Mo 90 ND Y J (80-Mev	p,4n) chem
⁴² ⁴⁸ β ⁺ 1.15 10	scin
γ (0.120)	See 24°Nb
24 ⁵	See 0.015 Nb
No $(0.120 \gamma)(0.250 \gamma, \gamma^{\pm})$	scin
$_{15^{\rm h}}$ Nb90 (0.250 γ) γ^{\pm} delay 0.01-0.02 $^{\rm s}$ p 15 $^{\rm h}$ Nb chem	
H.B.Mathur, E.K.Hyde, Phys. Rev. 98, 79, 261A (1955). H.B.Mathur, E.K.Hyde, Phys. Rev.98	, 79 (1955).
Nb ⁹¹ Zr ⁽⁹⁰⁾ (16-Mev d,n) chem	
ϵ Zr K x ray crit a Mo ⁹⁴ Level Nb ⁹³ (p, γ) E	=2.75 to 4.0
02 No β^{+} (<0.1%) scin +2 52 γ (Nb ⁹¹) 10+ 0.104 1 K/LM = 2.1 sl ce, scin 92 0.87	γ scin
$\gamma({ m Zr}^{91})$ 51 \dagger I.21 Scin D.W.Van Patter, M.A.Rothman, C.E. (1.21 γ)(Zr K x ray) C.P.Swann, J.Franklin inst. 259,	Mandeville, 261 (1955).
R.W.Hayward, D.D.Hoppes, H.Ernst, Phys. Rev. 98, 231A (1955); verbal report.	
	E _p = 2.9; γ scir
Nb ⁹² $Zr^{(91)}$ (14→Mev d,n) chem 42 53 0.212 3 ϵ B(E2) = (41 51 ϵ Zr K x ray crit a stable	.041
10° No £ + (<0.01%) Scin (1955).	lev. 99, 112
γ 1.3+ 0.900 scin 97.8+ 0.934	
2.2+ 1.83	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,=2.5; y scir
R.W. Hayward, D. D. Hoppes, H. Ernst, Phys. Rev. H. Hart C. McClelland, C. Goodman.	Phys. Rev.
98, 231A (1955); verbal report. 98, 1245 (1955); 99, 617A (1955).	
Nb ⁹³ q -0.4 <i>3</i> 8	
Mo Level Mo''' $(p_*p_*\gamma)$ E.	$\alpha = 3.0; \ \gamma \text{ scin}$ ($\alpha = 0.001$)
stable *Yield not corrected for Mo ⁹⁶ O.	
q -0.2 1 S P.H.Stelson, F.K.McGowan, Phys. 1	lev. 99, 112
K.Murakawa, Phys. Rev. 98, 1285 (1955).	
$\text{Nb}^{93}(\mathfrak{p},\mathfrak{p}^{\dagger}\gamma)$ $\text{E}_{\mathfrak{p}} \leq 2.75$ Mo^{99} $(0.74 \gamma)(0.14 \gamma, 0.18 \gamma) \text{ delay 3.5} \pm$	0.3x10 ^{-9s}
No γ with $E_{\gamma} < 0.6$ $\frac{42}{68}$ $\frac{57}{68}$	scin
H.Mark, C.McClelland, C.Goodman, Phys. Rev. P.Lehmann, J.Miller, Compt. rend. 98, 1245 (1955).	240, 1525

```
Mo 100
                             Mo^{(100)}(p,p'\gamma) = 3.0; \gamma scin
                                                                           Rh 102 2
           Level
                                                                                                      0.125
                                                                                                                                       scin.
42 58
                             0.540 7 \tau = 9.5^{\mu\mu\xi} (\alpha = 0.004)
                                                                         45 57
                                                                                                      0.195
 stable
                                                                                                      0.475
           P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112
                                                                                                      0.630
                                                                                                      0.720
                                                                                                      0.780
                                                                                                      1.08
                              Mo^{(100)}(p,p'\gamma) E_p = 2.5; \gamma scin
           Level
                                                                                    (0.125 \gamma)(0.195 \gamma) x(all \gamma's)
                             0.525
                                                                                    (0.475 y)/5 += 10
                                                                                                                            \gamma \gamma^{\pm}(\theta) scin
           H. Mark, C. McCleiland, C. Goodman, Phys. Rev. 98, 1245 (1955).
                                                                                    L.Dick, R.Foucher, N.Perrin, M.Vartapetian, Compt. rend. 240, 1335 (1955).
Ru<94
                                                                           Rh103
                                52<sup>S</sup> 10
                                             Mo (42-Mey a)
                                                                                                     -0.08791 7*
                                                                                                                         Metallic Rh I
                                                                         45 58
                                                                                    \nu(Rh^{103})/\nu(H^2) = 0.205574.7
                                                              scin
           \gamma (or \gamma^{\pm})
                                                                          stable
                                                                                    *Corrected for Knight shift for metal
           Mass assignment from yield as f(E,)
                                                                                    P.B.Sogo, C.D.Jeffries, Phys. Rev. 98, 1316, 265A (1955).
           A.H.W.Aten, Jr., T.de Vries-Hamerling, Physica 21, 544 (1955).
                                                                                    Levels
                                                                                                        Rh^{103}(p,p'\gamma) E<sub>p</sub> = 2.1 to 3.9
                                                                                                0.30 level J = 3/2^-
  Ru 103
 59
40<sup>d</sup>
                      28%
                              0.128 4
                                                               sl
                                                                                                       0.305 5
                                                                                                                   \epsilon B(E2) = 0.20
                                                                                                                                     scin
                     70%
                               0.202 2
                                                                                                                   E2/M1=0.032 or 1.37
                     ~1%
                               0.374 20 ?
                                                                                                                                    p.\gamma(\theta)
                               0.695 15
                     ~1%
                                                                                                                J = 5/2
                                                                                                                                    p, \gamma(\theta)
                                                                                                0.36 level
                               0.055
                                                              scin
                               0.297
                                                             sl pe
                                                                                                       0.065 3
                               0.323
                                                             sl pe
                                                                                             100+
                                                                                                      0.365 5
                                                                                                                 €B(E2) = 0.36
                               0.366
                                                             sl pe
                                                                                    P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112,
                               0.498
                                                              scin
                               0.610
                                                              scin
           H.H.Forster, A.Rosen, Nuovo Cim. 1, 972;
Phys. Rev. 98, 1172 (1955); verbal report.
                                                                           Rh103
                                                                                                                                  d 17dPd
                                                                                                       0.04025 \alpha_{y} = 40
                                                                             58
                                                                                                                    K/L = 0.09
                                                                                                                                    sl ce
                                                                           57m
                                                                                    P.Avignon, A.Michalowicz, R.Bouchez, J. phys. radium 16. 404 (1955).
  Rh 102
                             Ru K x ray
                                                    pc, crit a
                                                       scin
                     541
  210 d
                             0.125 3
                             0.200 4
                                                    0.72 2
                     58+
                                            ~15+
                                                                           Rh 105
                                                                                                             Ru<sup>(104)</sup> (pile n,\gamma \beta) chem
                             0.475 5
                                            < 10+
                                                     0.79 2
                     80+
                                                                         45 60
                                                                                            ~ 85%
                                                                                                      0.247 5 F-K linear
                                                                                                                                     \operatorname{sd} \beta \gamma
                     26+
                             0.635 5
                                             56+
                                                     1.08 1
                                                                          36.5h
                                                                                            ~35%
                                                                                                      0.560 5
           Other \gamma's with E_{\gamma} > 1.1 No 0.086 \gamma, 0.353 \gamma
           (0.475\gamma)/E^{+} > 20' (0.475\gamma)/(K \times ray) = 0.8
                                                                                           ~25%
                                                                                                      0.3105 \alpha = 0.02
                                                                                   No 0.063 y (photons < 0.1%)
                                                                                                                             scin, sd ce
           P.Avignon, Compt. rend. 240, 176 (1955).
                                                                                   J.Laberrique-Frolow, Compt. rend. 240, 287
                                                                           Pd 103
                                                                                                             Rh<sup>103</sup> (28-Mev d, 2n) chem
                                            Ru (28-Mev d)
                                                             chem
                                                                           57
17<sup>13</sup>
                                                                                            2.1+
                                                                                                      0.0402 5 See 57 Rh
                                                                                                                                      scin
                             0.123
                                                              scin
                                                                                                                  a_{\rm w} > 10^4 K/L~1 sl ce
                                                                                          0.005+
                                                                                                      0.0530
                             0.195
                                                                                           0.04+
                                                                                                      0.065 1
                             0.479
                                                                                                      0.298 2
                                                                                            0.3+
                             0.633
                                                                                                      0.324 2 a_{\rm K} \sim 10 K/L\sim 10
                                                                                           ~0.1+
                             0.710
                                                                                            2.1+
                                                                                                      0.362 3
                             0.880 ?
                                                                                                      0.498 4
                                                                                            0.45+
                                     Double?
                             1.07
                                                                                    +Photons/100 Rh K x rays
                             1.50
                                                                                    No 0.26 y, no 0.611 y
                             1.72
          No 0.086 %, 0.353 %
                                                                                                     (CONTINUED)
           D.Bas, H.Bosch, Compt. rend. 240, 294 (1955).
```


P.Avignon, A.Michalowicz, R.Bouchez, J. phys. radium 16, 404; 14, 637 (1955).

PdIO4 46 58 stable

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 98, 1308 (1955); 99, 617A (1955).

Level Pd (104)

Pd⁽¹⁰⁴⁾ (p,p' γ) E_p=3.5; γ scin 0.575 10 τ =8.3 μ μ s (α =0.004)

P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112 (1955).

Pd 105

Pd¹⁰⁵ $(\alpha, \alpha^{i}\gamma)$ E_{α} = 6.0; γ scin 0.266 5 ϵ B (E2) = 0.013 0.433 7 = 0.18

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 98, 1308 (1955); 99, 617A (1955).

γ

 $Pd^{105}(p,p^{\dagger}\gamma)$ $E_p = 2.5; \gamma scin$ 0.270 $\epsilon B(E2) = 0.0084$ 0.430 = 0.057

M.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955); 99, 617A (1955).

Pd106 46 60 stable

Level $Pd^{1.06}(\alpha, \alpha^{1}\gamma) = E_{\alpha} = 6.0$; γ scin 0.510 8 $\tau = 11^{\mu\mu_3}$ ($\alpha = 0.006$)

G.M. Temmer, N.P. Heydenburg, Phys. Rev. 98, 1308 (1955); 99, 617A (1955).

Level

P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112, 127 (1955).

Pd106 46 60 Level $Pd^{106}(p,p^{\dagger}\gamma) = E = 2.8; \gamma \text{ scin}$ 0.500 $\tau = 50^{\mu\mu s} p^{\bullet} (\alpha = 0.006)$

H.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955); 99, 617A (1955). Pd 08

Level $Pd^{108}(\alpha, \alpha'\gamma) = E_a = 6.0; \gamma \text{ scin}$ $0.424 6 \tau = 27^{\mu\mu s} (\alpha = 0.009)$

G.M. Temmer, N.P. Heydenburg, Phys. Rev. 98, 1308 (1955); 99, 617A (1955).

Level

Pd⁽¹⁰⁸⁾ (p,p' γ) E = 2.5; γ scin 0.445 5 τ = 15 μ es (α = 0.009) J = 2 $^{+}$ p, γ (θ)

P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112, 127 (1955).

Level

Pd¹⁰⁸ (p,p⁴ γ) E_p = 2.8; γ scin 0.425 τ = 100 μ

H.Mark, C.McCielland, C.Goodman, Phys. Rev. 98, 1245 (1955); 99, 617A (1955).

Pd110

Level $Pd^{110}(p,p^{*}\gamma) = E = 2.8; \gamma scin \\ 0.365 \tau = 170^{\mu\mu s}$

H.Wark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955); 99, 617A (1955)

Level

Pd⁽¹¹⁰⁾ (p,p⁺ γ) E = 2.9; γ scin 0.380 5 τ = 38 $^{\mu\mu}$ (α = 0.014) J = 2+ p, γ (θ)

P.H.Steison, F.K.McGowan, Phys. Rev. 99, 112 (1955).

Level

Pd¹¹⁰ $(\alpha, \alpha^{\dagger} \gamma)$ E = 6.0; γ scin 0.370 5 $\tau = 44^{\mu\mu s}$ $(\alpha = 0.014)$

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 98, 1508 (1955); 99, 617A (1955).

Pd 12 6 66 21^h

 $\beta^- \qquad 0.28 \ 2 \qquad a \ \beta \gamma \\ \gamma \qquad 0.0185 \ 5^* \qquad \text{scin} \\ (0.28 \ \beta)(0.018 \ \gamma) \qquad \text{(M. scin} \\ \text{*Not identical with Ag K x ray} \qquad \text{crit a}$

R.H.Nussbaum, A.H.Wapstra, M.J.Sterk, R.E.W. Kropveld, Physica 21, 77 (1955).

Ag

 $\frac{\text{Ag(p,p'\gamma)}}{\sim 0.32 \text{ levels}^{\circ} \text{ J} = 3/2^{-}} = \frac{\text{E}_{\text{p}} = 2.5}{\text{p,} \gamma(\theta)}$ $\frac{0.325 \text{ } \epsilon \text{B(E2)}}{\text{0.325 } s \text{ } \epsilon \text{B(E2)}} = 0.22 \text{ scin}$

0.325 δ ϵ B(E2) = 0.22 scin E2/M1 = 0.036 or 1.3 p, $\gamma(\theta)$

~0.42 levels* J = 5/2 p, $\gamma(\theta)$ 4.5† 0.104 3 scin

100† 0.427 5 \in B(E2) = 0.36 *Averages for Ag¹⁰⁷ and Ag¹⁰⁹ levels

P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112, 127 (1955).

A g 47	Levels	0.315 ∈B(E2) = 0 0.418 = 0	0.086	Cd 48 63 48.7 ^m	$\eta(\pi)$ studied a	Cd^{110} (pile n) $\gamma(\theta)$ $\eta(\pi) = 0.07$ scin is function of delay between two effect of quadrupole interaction
	98, 1245 (195)	alland, C.Goodman, 51; 98, 249A (1955).	Phys. Rev.			Iller, Compt. rend. 240, 298
	γ L.A.Rayburn.	0.696 2. 0.795 2.	E _n ~2.7 .99 scin .13 .32 .54	Cd 12 48 64 stable	Level	Cd ¹¹² $(\alpha, \alpha^1 \gamma)$ E _c = 6.0; γ scin 0.620 9 τ = 4.5 μ α (α = 0.003)
	Rev. 98, 701		, , , , , , , ,		1308 (1955); 9	9, 6174 (1955).
Ag 108 47 61 2.3 ^m	Resonance	Ag ⁽¹⁰⁷⁾ (n) E (16.60 ev) $\sigma_0 = 73$ $T = 0$ $\Gamma = 0.11$ 1	= 9 to 20 ev 00 chopper \(\Gamma / \Gamma = 0.35 5 \)		Level	Cd ¹¹² (p,p ^e γ) E = 2.8, γ scin 0.610 $\tau = 28^{\mu\mu_5}$ ($\alpha = 0.003$)
	C.Sheer, J.Moo	ore, Phys. Rev. 98,	565 (1955).		98, 1245 (1955	elland, C.Goodman, Phys. Rev.); 99, 617A (1955).
Ag 110 47 63 270 d	γ RaCaRohra RaDe	0.657 $a_{ m K}\!\sim\!2$ x 10°	E2,M1	Cd ¹¹³ 48 65 stable	Levels	$Cd^{113}(\alpha,\alpha'\gamma)$ $E_{\alpha}^{*}6.0; \gamma scin$ 0.290 $5 \in B(E2) = 0.080$ 0.550? < 0.14
	(1955).		,0, 1200		G.M.Temmer, N. 1308 (1955); 9	P.Heydenburg, Phys. Rev. 98, 9, 6174 (1955).
Ag 63	Resonance	Ag ⁽¹⁰⁹⁾ (n) E_n (5.19 ev) $\sigma_0 = 22e_0$ $r = 1$ $\Gamma = 0.13.2$ Γ_0			Level	Cd ¹¹³ (p,p' γ) $E_p = 2.8$; γ scin 0.290 $\epsilon B(E2) = 0.058$
	C.Sheer, J.Mod	re, Phys. Rev. 98,	565 (1951).		H.Mark, C.McCI 98, 1245 (1955 (1955).	elland, C.Goodman, Phys. Rev. 1; 98, 249A(1955); 99, 617A
Ag112 47 65 3. 2 ^h	γ 100+ 8+ 20+ 9+	21 ^h Pd 0.618 5 6+ 1.10 5 9+ 1.39 4 4+ 1.62 6 2+	source chem 1.83 8 scin 2.11 4 2.51 6 2.79 8	Cd ⁴ 48 66 stable		Cd ¹¹⁴ $(\alpha, \alpha^{i}\gamma)$ E $_{\alpha}^{=}$ 8.0; γ scin 0.550 8 τ = 8 $^{\mu\mu}$ \$ $(\alpha$ = 0.0045) P.Heydenburg, Phys. Rev. 98, 9, 617A (1955).
		A.H. Wapstra, M.J.St , Physica 21, 77 (1				
Cd110	Level	$\operatorname{Cd}^{110}(a,a^{\dagger}\gamma)$ E_{a}	= 6.0; γ scin		Level	Cd ¹¹⁴ (p, p ¹ γ) E_p = 2.8; γ scin 0.545 τ = 41 μ s (α = 0.0045)
ц8 62 stable	G.M.Temmer, N. 1308(1955); 99	0.654 9 $\tau = 3.8^{\mu\mu s}$ P. Heydenburg, Phys. P. 617A (1955).	$\alpha = 0.003$		H.Mark, C.McCl 98, 1245 (1955 (1955).	elland, C.Goodman, Phys. Rev. 1; 98, 249A (1955); 99, 617A
Cd 48 63 	Level	Cd ¹¹¹ (α, α, γ) E ₀ 0.340 $\beta \in B(E2) = 0$		Cd ¹¹⁶ 48 68 stable	Level	Cd ¹¹⁶ $(\alpha, \alpha^{1} \gamma)$ $E_{\alpha}^{=} 6.0; \gamma$ scin 0.508 θ $\tau = 11^{\mu\mu s}$ $(\alpha = 0.0055)$
	G.M.Temmer, N. 1308 (1955); 9	P.Heydenburg, Phys. 9, 617A (1955).	Rev. 98,			P.Heydenburg, Phys. Rev. 98, 9, 617A (1955).
	Level	Cd ¹¹¹ (p,p'γ) E 0.330 ∈B(E2) = 0		in115 49 66 6×10 ¹⁴ y	Level	In ⁽¹¹⁵⁾ (p,p' γ) E=3.0; γ scin 0.500 $\in B$ (E2) = 0.058
	H.Mark, C.McC! 98, 1245 (1955	elland, C.Goodman, 1; 99, 617A (1955).	Phys. Rev.		H.Mark, C.McCl 98, 1245 (1955	elland, C.Goodman, Phys. Rev.).

In ¹¹⁶	Personances In ⁽¹¹⁵⁾ (n) cryst E_{α} (ev) σ_{α} Γ_{α} (ev) Γ (ev)	1127 53 74	Level $I^{127}(p,p'\gamma)$ $E_p = 2.0$; γ scin
13 ^{\$}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	stable	H.Mark, C.McCielland, C.Goodman, Phys. Rev. 98, 1245 (1955).
	H.H.Landon, V.L.Sallor, Phys. Rev. 98, 225A, 1267 (1955).		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Xe ¹³⁵ 54 81	β^- ~3% 0.550 U(n, f) ms; sl β 7 97% (0.910)
Sn 50		9•2 ^h	γ 100+ 0.250 scin ~0.1+ 0.36
	H.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955).		3+ 0.604 σ (0.550 β)(0.60 γ) (ce _k 0.250 γ)(0.36 γ) all No (ce _k 0.250 γ)(0.60 γ)
\$b 51			S.Thulin, Arkiv Fysik 9, 137 (1955); Phys. Rev. 94, 734 (1954).
	H.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955).		
		Xe ¹³⁸ 54 84	γ 100+ 0.42 2 1.78 3 sci
\$b ¹²² 51 71 2.75 ^d	γ 0.570 $\alpha_{K} = 7 \times 10^{-3}$ sl ce, pe K/LM = 2.3 ± 0.4 E2, M1	± 1	20 [†] 0.51 2 2.01 3 S.Thulin, Arkiv Fysik 9, 137 (1955).
,	R.C.Rohr, R.D.Blrkhoff, Phys. Rev. 98, 1266 (1955).		
Sb 122	${ m Sb}^{121}$ (pile ${ m n},\gamma$)	Cs 128	β ⁺ 3† 1.5 d 2.4 ^d Ba sl 30† 2.5
51 71 3.5 ^m	γ 0.0607 scin, $s\tau$ ce 0.0753 E3, H3 from τ of 3.5	3 • 8 ^m	70† 3.0 $\beta^*/\epsilon = 3.1$
	(0.0607 + 0.0753 y) x scin J.M.LeBianc, J.M.Cork, S.B.Burson, Phys. Rev.		γ 0.445 α=0.016 scin,sl ce 0.980
	98, 39 (1995).		J.M.Hollander, M.I.Kalkstein, Phys. Rev. 98, 260A (1955).
Te 52	Te $(p,p'\gamma)$	Cs ¹²⁹	Cs ¹³³ (80-Mev p,p 4n) chem
	H.Mark, C.McClelland, C.Goodman, Phys. Rev. 98, 1245 (1955).	55 74 31 h	γ 0.365 6 scin
			B.L.Robinson, R.W.Fink, Phys. Rev. 98, 231A (1955); verbal report.
126 53 73 13.3 ^d	Te ¹²⁶ (14-Mev d,2n), I ¹²⁷ (fast n,2n) chem β^- 5.8% 0.385 5 sl $\beta\gamma$ 29% 0.865 5 sl $\beta\gamma$	122	
	9.3% i.250 10 $\Delta J = 2$, yes shape sl	0s 132 55 77 6.2d	au Cs ¹³³ (80-Mev p,pn) chem
	0.96% 1.110 20 $\Delta J = 2$, yes shape sl		7 1000† 0.669 3 scin
	γ 34% 0.386 2 α _κ =0.017 sl ce 5.0% 0.48 1 scin 33% 0.65 1		8† 1.26 2 $(0.669\gamma)(E_{\gamma}>0.7)$ No $(0.669\gamma)(1.26\gamma)$ No \in to g.s. $(<20\%)$ $x\gamma/\gamma$
	3.6% 0.75 2 0.8% 0.86 2 <0.5% (1.42)		B.L.Robinson, R.W.Fink, Phys. Rev. 98, 231A (1955).
	$\epsilon_{\rm K}/0.65\gamma$ = 1.46 (Te K x ray/0.65 γ) scin,pc		
	(0.386 γ)(0.48 γ) (0.65 γ)(0.75 γ) scin (0.65 γ , 0.75 γ) \mathbf{x} (0.65 γ) γ^{\pm}	Cs 133	μ +2.56421 I

L.Koerts, P.Macklin, B.Farrelly, R.van Lleshout, C.S.Wu, Phys. Rev. 98, 1230, 11724 (1955).

cs¹³³ μ +2.56421 55 ⁷⁸ ν (Cs¹³³)/ ν (H²) *0.854496 18 H.E. Walchil, ORNL-1775 (1954).

								•
Cs 134 55 79 2.3 ^y	<i>β</i> ⁻	0.335 0.64	sl $\beta\gamma$	La140 57 83 40.2 ^h	γ	0.489	$\alpha_{\rm K} \sim 5 \times 10^{-3}$ K/LM = 4.2 ± 1.4	sl ce,pe E1,E2
	γ	~0.60 0.80 1.35	scin	,,,,	R.C.Rohr, F (1955).	R.D.Birkhoff	, Phys. Rev. 98	, 1266
	$(0.335\beta, 0.64)$		sl, scin					
		>0.95) (0.6				$60 \gamma)(\theta) J = 60 \gamma)(\theta) J =$	3, 1, 0 or 3, 2 4, 2, 0	o scin
	G.Bertolini, Nuovo Cim. 1,	M.Bettonî, E.Laz 746 (1955).	zarini,		(0.328 + 0.4 with 3,4+, levels at 2	85 + 0.815 γ) 2 ⁺ , 0 ⁺ or ν .42, 2.09, 1	(1.60 γ)(consider the constant of the const	stent O* for
Cs ¹³⁸			17 ^m Xe ¹³⁸ source		G.R.Bishop, 89 (1955).	d.P.ferez y	Jorba, Phys. R	ev. 98,
55 83 33 ^m	γ 20†	0.128 6	scin					
22	20†	0.460 5 100+	1.44 2					
	3† 25†	0.55 1 20† 0.98 2 10†	2.24 3 2.68 3	Pr142	β- 2.8%	0.70 15		α βγ
				59 83	97.2%	2.12 10		8
	S.Thulln, Arki	lv Fysik 9, 137	(1955).	2,112	γ 100+	1.61 2		scin
					No 0.134 γ No 0.624 γ	1:	0.329 γ (<7+) γ with E $_{\gamma}$ >1.6	
					M.J.Sterk,	R.H.Nussbaum	, H.Cerfontain,	
Ba128	ϵ	Cs ¹³³ (10	6-Mev p, 6h) chem		Physica 21,	541 (1955).		
56 72 2.4d	γ ~20%	0.270 α=	0.35 scin, sl ce					
				Pm 147	τ ,	2.52 ^y 8		ms
	260A (1955).	M.l.Kalkstein,	Phys. Rev. 98,	61 86 2.6 y		9 abundance	ratios in fissi age by 5.6 ^y	
					F.A. Nainthe	M.J.Parkor	, J.A.Petruska,	R.H.
Ba133		0.070.00	t stor software		Tomlinson,	Čan. J. Chem	33, 830 (1955).
56 77	γ 26+	0.072 2 a _K = 2. 0.082 0.290	4 x/y scin yy					
	74+	0.362		Sm 151	_	~93 ^y		
		γ , 0.082 γ) (0. due to conversion uming $\alpha_{\rm k} = 1.6$ fo		62 89 ~93 y		9 abundance	ratios in fissi age by 6.49	ms lon
	E N	ompt. rend. 240,			E.A.Meialka	. M.J.Parker	r, J.A.Petruska,	R.H.
	H. Cangevin, C.	imple lends 240,	207 (177)		Tomlinson,	Can. J. Chem	n. 33, 830 (1955	;);
	(0.36 γ)(0.082 ·	γ) delay = 6.0 ± (0.4×10 ⁻⁹³ scin	150				
	F.Lehmann, J.	Miller, Compt.	rend. 240, 1525	63 89	γ(0.122γ)	delay = 1.4x	10-93	
	(1955) .		,	23 ^y	A.W.Sunyar,	Phys. Rev.	98, 653 (1955).	
Ba140		0.541 $\alpha_{\nu} = 6$	×10 ⁻³ sl ce, pe					
56 84	γ		5.2±0.5 E2		Resonances	B1 (151)	(n)	cryst
13 ^d						E (ev)	$\sigma_{o} = \frac{\Gamma_{\gamma}(ev)}{\Gamma_{\gamma}(ev)}$	Γ(ev)
	R.C.Rohr, R.D. (1955).	Birkhoff, Phys.	Rev. 98, 1200			0.327	1,840 0.070±10	0.070
							1,500 0.093±3 1,640 0.094±3	0.093
La139	Q	+0.6 2	S		H.H.Landon, 1267 (1955)		Phys. Rev. 98,	225A,
	K.Hurakawa, Pl	nys. Rev. 98, 12	85 (1955)					
	q ·	~0.3 1	8	Eu154	γ(0.123γ)	delay = 1.2x1	0-9*	
		andal Maturant	H2 120(1055)	63 91 16 ^y	A.W. Sugar	Phys. Rev.	98, 653 (1955).	
	Gatumrs, A.St	euder, Maturwiss	. 42, 120(1955).	10.	, conjer,			

*(ce_K 0.281 γ)/(ce_K 0.395 γ) = 0.30 $(0.072 \beta)(0.281 \gamma, 0.395 \gamma) \text{ delay } < 6x 10^{-88}$ $(0.350 \,\beta)(0.113 \,\gamma) \, \text{delay} < 2 \times 10^{-9}$

H. de Waard, Phit. Mag. 46, 445 (1955).

 $(0.281 \gamma)(0.113 \gamma)(\theta)$ J = 9/2, 9/2, 7/2 with quadrupole/dipole = 0.02* for 0.281 γ J = 7/2, 9/2, 7/2with quadrupole/dipole = 0.14* for 0.281 γ *Using E2/M1 = 0.3 for 0.113 y (See deWaard

L. Skerlind, B. Hartmann, T. Wiedling, Phil. Mag. 46, 448 (1955).

Pu²³⁹ (n, f) chem; scin 0.113 0.143 0.283 ~0.40 $(0.283 \gamma)(0.113 \gamma, K x ray)$ $(0.113 \gamma)(K x ray)$

J.R. Grover, UCRL-2841 (1954).

above)

0.113 1 $\alpha_{\kappa} = 2.4 \ \gamma x/\gamma \gamma$; scin 58+ 0.282 100+ 0.396 $(0.282 \gamma)(0.113 \gamma, K x ray)$ No (0.396 γ)γ

(CONTINUED)

N.Marty, Compt. rend. 240, 963 (1955).

Lu 175 Lu (175) (p.p17) E, = 2.6 Levels 71 104 0.112 3 scin stable 0.240 7

C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955).

72 H f Hf(p,p'\gamma'\gamma) $E_p = 4.0$; γ scin ~ 0.090 $\tau = 100^{\mu\mu s}*$ $(\alpha = 6.1)$ Levels *Average half-life for 0.087, 0.091, and 0.092 levels of Hf176, Hf178, and Hf180 resp.

P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112 (1955).

Hf176 Hf176 (p,p17) E, = 1.5 Level 72 104 0.087 3 scin stable C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955).

Hf177 Hf¹⁷⁷ (p, p'γ) E, = 2.6 Levels 72 105 0.112 3 scin stable 0.235 7

C.McCielland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955).

Hf178 Hf¹⁷⁸ (p, p¹γ) Tal81 $Ta^{181}(\gamma,\gamma')$ Level $E_{p} = 1.5$ 72 106 (0.61) $\tau = 20.5^{\mu s}$ 4 stable stable C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955). T.F. Godlove, d.G. Carver, Phys. Rev. 99, 1634A (1955). Hf179 Hr179 (p. p. 7) Levels $E_{\rm p} = 2.6$ Ta 182 $\gamma(0.100\gamma)$ delay=1.3x10⁻⁹\$ 72 107 0-122 4 scin 73 109 stable 111^d A.W.Sunyar, Phys. Rev. 98, 653 (1955); 95, 626A (1964). 0.250 15 C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955). Ta181 (n) Resonance 4.30 ev $\sigma_0 \Gamma^2 = 49.7$ Hf180 Hf180 (p. p*γ) T.F.Godiove, J.G.Carver, Phys. Rev. 99, 1634A 72 108 0.092 3 scin stable C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955). Tal 83 5.0^d 1 W(< 50-Mev n) chem 73 110 ~30% ~0.15 Hf181 E2 M1 ~70% 0.6 scin 72 109 77(0) (0.132) 100% 46 d 100+ $0.060 + K \times ray$ (0.135)20% 80% 20+ 0.110 (0.345) 100% 201 0.160 (0.480) 97% 124 0.210 $(0.132 \gamma)(0.480 \gamma)(\theta)$ J = 1/2, 5/2, 7/2 40+ 0.240 $(0.345 \gamma)(0.135 \gamma)(\theta)$ J = 5/2. 9/2. 7/270+ 0.320 H.Paul, Purdue University, Dissertation Abstr. 15, 855 (1955). A.J. Poe, Phil. Mag. 46, 611 (1955). Ta¹⁸⁴ 8.7h 1 W184 (fast n,p) chem $(0.132\gamma)(0.480\gamma)$ delay = 1.0×10^{-88} scin 8.7h ~30% ~0.15 L.Dick, R.Foucher, N.Ferrin, H.Vartapetian, Compt. rend. 240, 1335 (1955). ~70% 1.26 7 scin 40+ K x ray 35± 0.300 30+ 0.110 100+ 0.405 10+ 0.160 17+ 0.780 10+ 0.210 90+ 0.890 Ta 180 $(K \times ray)(0.093\gamma)$ delay=1.4×10^{-9s} ROT 0.240 50+ 1.180 A.W.Sunyar, Phys. Rev. 98, 653 (1955); 95, 6264 (1954). 8.15h F.D.S.Butement, A.J.Poë, Phil. Mag. 46, 482 (1955). Ta¹⁸⁵ W¹⁸⁶ (≤50-Mev n,pn) Ta¹⁸¹ Ta¹⁸¹ (p, p'γ) 49.5^m 15 Levels $E_p = 1.4 \text{ to } 5.0$ 49 m 0.137 level ~30% ~0.15 stable $\epsilon B (E2) = 2.5$ (0.137)scin ~70% 1.72 scin 100+ 0.060 + K x ray 0.303 level 28+ 0.125 (0.166)E2/M1 = 0.25 $p, \gamma(\theta)$ 71+ 0.175 (0.303) $\epsilon B(E2) = 0.62$ 18+ 0.235 P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112 A.J. Poe, Phil. Mag. 46, 611 (1955). ~ 0.112 $\tau = 780^{\mu\mu s}$ ~ 1166 Levels Ta¹⁸¹ (p, p 'γ) Levels *Average half-life for the 0.100,0.112, and 0.138 4 0.124 levels of W^{182} , W^{184} , and W^{186} resp. 0.300 9 P.M.Stelson, F.K.McGowan, Phys. Rev. 99, 112 C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955).

```
w179
                                                                                 w185 2
                                               Ta<sup>181</sup> (32-Mev p. 3n)
                                                                                                                                        W(pile n, y)
                                                                               74 111
74 105
            No activity with 2^{m} \le \tau \le 25^{m}
                                                                                                     17+
                                                                                                              0.060 + K x rays ?
                                                                                                                                                 scin
                                                                                73<sup>d</sup>
                                                                                                    100+
                                                                                                              0.134
            S.D.Softky, Phys. Rev. 98, 736, 280A (1955).
                                                                                           (0.080 \ \gamma + 0.134 \ \gamma) = 0.11
                                                                                           A.M.Mijatovic, Bull. Inst. Nuclear Sci.,
Boris Kidrich 4, 75 (1954).
  W180
                                                Ta<sup>181</sup> (13-Mev p. 2n)
74 106
                                 0.0055<sup>S</sup> 3
                                               not by W(32-Mev p)
0.0068
                                 0.22 ?
                                                                  scin
                                                                                 Re185
                                                                                                               Re<sup>185</sup> (p, p'γ)
                                                                                           Levels
                               \sim 0.35
                                                                               75 110
                                                                                                               0.130 4
                                                                               stable
            S.D.Softky, Phys. Rev. 98, 736, 280A (1955).
                                                                                                               0.290 17
                                                                                           C.McClelland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955).
  W181
            No \beta^+ no ce
                                                                     Sì
74 107
            No \sim 0.15\gamma (< 10^{-3}\% of K x ray)
                                                                  scin
 140<sup>d</sup>
            (L \times ray)/(K \times ray) = 0.391
                                                                                 Re 186
                                                                                                   0.05%
                                                                                                            ~0.3
                                                                                                                                              sl \beta \gamma
              from which \epsilon_{\rm L}/\epsilon_{\rm K} = 1.54
                                                                               75 111
                                                                                                                                           sl Ey, pc
                                                                                                     24%
                                                                                                              0.934*
               and Edis = 0.92 9
                                                                                3.8d
                                                                                                     76%
                                                                                                               1.0715* 10
                                                                                                                                                sl,pc
                                                                                           (E_R = 0.9) (0.137 \gamma)(\theta) \quad \eta(\pi) = +0.13
            A.Bisi, S.Terrani, L.Zappa, Nuovo Cim. 1, 651
                                                                                           *F-K plot non-linear, not \Delta J = 2, yes shape
                                                                                           Different ratio of matrix elements are needed
                                                                                             to fit angular correlation and \beta spectrum
  W183
                                                           W(fast n)
74 109
                     100+
                               0.060 +K x ray
                                                                  scin
 5 . 5 s
                                                                                           F.T.Porter, M.S.Freedman, T.B.Novey, F.Wagner, Jr., Phys. Rev. 98, 214 (1955); Phys. Rev. 99, 671A (1955); verbal report.
                      25+
                               0.105
                      10+
                               0.155
            A.J.Pow, Phil. Mag. 46, 611 (1955).
                                                                                 de 187
                                                                                                               Re^{187}(p,p'\gamma)
                                                                                           Levels
  w! 83
                                                                                                               0.139 4
                              +0.115 1*
                                              Metallic W
                                                                                 2
                                                                                                               0.320 19
74 109
           \nu(W^{183})/\nu(H^2) = 0.27395 3
stable
            *Corrected for Knight shift for metal
                                                                                           C.McCielland, H.Mark, C.Goodman, Phys. Rev. 97, 1191 (1955); 98, 249A (1955).
           P.B.Sogo, C.D.Jeffries, Phys. Rev. 98, 1316, 265A (1955).
                                                                                 Re | 88
                                                                                           \beta(0.155\gamma) delay = 7\times10^{-10}s
                                 W^{(183)}(p, p^{i}\gamma) = E_{p} = 4.0; \gamma \text{ scir.}
                                                                               75 113
            Level
                                                                                16.9h
                               0.295 5 \epsilon B(E2) = 0.27
                                                                                           A. W. Sunyar, Phys. Rev. 98, 653 (1955); 95. 626A (1954).
            P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112
                                                                                 Re 190
                                                                                                                       Os (192) (21-Mev d, a) chem
  w185
                                                            1184 (n, y)
                               1.62<sup>m</sup> 5
                                                                               75 115
                                                                                                                       Os (190) (fast n,p)
74 111
                                                                                2.8 m
                     100+
                               0.060 + K \times ray ?
 1.6m
                                                                                                                2.8<sup>m</sup> 5
                      50+
                               0.130
                                                                                           B
                                                                                                                1.7 3
                       50+
                               0.165
                                                                                                                0.191
                                                                                                                                                  scin
                                                                                                 ~10+
            (0.165 \gamma)(0.130 \gamma, K \times ray)
                                                                                                 ~10t
                                                                                                                0.392
            Not d 49<sup>m</sup>Ta (<0.6%)
                                                                   chem
                                                                                                                0.569
                                                                                                 ~10+
                                                                                                  ~3+
                                                                                                                0.830
            A.J.Poë, Phil. Mag. 46, 611 (1955).
                                                                                           E<sub>2</sub>/β~1.5 Mev
                                                                                           A.H.W.Aten, dr., G.D.deFeyfer, Physica 21, 543 (1955).
  w185
                                                  W(184) (pile n,γ)
                       10+
                               (0.370)
                       90+
                               0.426 3
  73 d
                     2.4+
                                0.0556 1 a_1 \sim 3 M1 pc, scin
                                                                               0s<sup>187</sup>
                   ~0.7+
                                                                                                              1/2
           No 0.13 %, 0.29 y
                                                                  scin
                                                                                                             +0.12 4
                                                                                stable
            A.8isi, S.Terrani, L.Zappa, Nuovo Cim. 1, 291 (1955).
                                                                                           K.Murakawa, Phys. Rev. 98, 1285 (1955).
```

1r187	au	iu ^h 2	d 2.5 ^h Pt	chem	Pt189		Ir ⁽¹⁹¹⁾ (18	3-Mev p, 3n) chem
77 110	7 1007	0.135 10		scin	78 111 10.5 ^h	τ		42 ^m Au p 11 ^d Ir
	110 † 80 †	0.300 10 0.435 15			10.5	γ	0.14 1 ~0.55 ?	≥0.55 ? scin ~0.70 ?
	W.G.Smith, 1258, 262A	J.M.Hollander, (1955).	Phys. Rev. 98	,		W.G.Smith, J. 1258, 262A (1	M.Hollander, Phy	
1r188		_{In} (191)	(32.Mev p,p3n)	chem				
77 111 41 ^h	τ	ulh "	d 10.3dPt		Pt191	τ	3.0 ^d 3	d 3 ^h Au che
41"	γ 90·		u 10.5 Ft	chem	78 113 3.0 ^d	γ ~50+	0.125 10	sci
	601				3.0	~40 †	0.175 10	
	1001	• 0. 625 15				20+	0.265 10	
	W.G.Smith, 1258, 262A	J.M.Hollander, (1955).	Phys. Rev. 98;	,		100+ 80+ 20+ 170+	0.355 10 0.405 10 0.445 20 0.530 10	
Ir189		Ir (191	(25-Mev p, p2n) chem		170 T	0.530 10	
77 112	au	11d 2	d 10.5hP			W.G.Smith, J. 1258, 262A ()	M.Hollander, Phy	s. Rev. 98,
11-	γ	~0.135 ? 0.245 10		scin		12,00 202A 10	.,,,,.	
	W.G.Smith, 6	J.M.Hollander,	Phys. Rev. 98	,		γ (0.082 γ) de γ (0.129 γ) de	elay=3.8x10 ^{+ys} elay<0.5x10 ^{-9s}	
						A.W.Sunvar.	Phys. Rev. 98, 65	33 (1955).
1-194			Ir ¹⁹³ (pile			,,	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
77 117 19 ^h	β	0.74 0.94		n βγ				
		1.88		n βγ n βγ	P+194	Level	P+ (194) (p. p.10	y) E _p = 5.0; γ sci
	γ (200†)	0.295	1.28 ?	scin	78 116 stable	Tevel	0.330 5 $\tau = 38$	$3^{\mu\mu s}$ ($\alpha = 0.074$)
	1000+	0.325 1 0.635	8† 1.45 1.58 ?				F.K.McGowan, Phy	s. Rev. 99, 112
	100 †	0.640 0.93	9† 1.77 2† 2.00			(1955).		
	85^{+} $(0.74 \beta)(1.14$ $(0.94 \beta)(0.93$		0.325 γ)	scin scin		Level	Pt ¹⁹⁴ (p,p*))	E _p = 3.0; γ scin
	(0.325 γ)(0.2	95 γ, 0.93 γ, 1. 295 γ, 0.325 γ,				C.McClelland,	. H.Mark, C.Goods	nan, Phys. Rev.
	(0.64 \gamma)(0.63 (0.295 \gamma)(0.33					97 1191 (195	51; 94, 1437A (1	.9541.
	No (0.325 γ)(1					Level	Pt(194) (p,p*)	y) E _p = 2.5 to 5.0
		.45 y in coinc	idence with				(0.330)	γ scir
	0.325 y 0		D. Comp. 6. Bhus	0			large deviation Rev. 91, 1578 (19	
	98, 94, 1185	le, d. Varma, 1 A (1955).	sosarat, rnyso	Kev.		P.H.Stelson,	F.K.McGowan, Phy	rs. Rev. 98, 249A
Pt187	au	2.5 ^h 5	Ir(120-Mev p)	chem				
78 109	1		Ir(32-Mev p)	chem				
2.5 ^h	W.G.Smith, J.	M.Hollander, F	p 12 ^h Ir hys. Rev. 98,	chem	Pt ¹⁹⁵ 78 117 stable	γ	Pt ⁽¹⁹⁵⁾ (p,p') 0.100 3 0.130 3	γ) E _p = 5.0; γ scir 0.210 3 0.240 3
	1258, 262Å (:	19551.				P. N. Steleon	F.K.McGowan, Phy	
Pt 188		(191) (32-Mev p,4n)	ahar		(1955).		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
78 110	τ	10.0 ^d 3	o 41 ^h Ii					
10.3 ^d	y 100†	0.195 10						
	10† 30†	0.275 10 ~0.40				Level	Pt ¹⁹⁵ (p, p'γ) 0.210 δ	E _p = 3.0; γ scin
	W.G.Smith, J 1258, 262A (.M. Hollander, 1955).	Phys. Rev. 98,			C.McCielland, 97, 1191 (195	H.Mark, C.Goodm 51; Phys. Rev. 9	an, Phys. Rev. 1, 760 (1953).

				401					
Pt 196	Level	Pt ⁽¹⁹⁶⁾ (p,p	'γ) E = 5.0; γ scin	Au 191 79: 112			Pt (13	O-Mev p)	chem
stable		0.358 δ τ = J =		3 h	au	3.0 ^h 5	d 57	mHg p	3.0dPt
					γ .	10+ 0.14 2	4+	0.48 2	scin
	P.H.Stelson, 127 (1955).	, F.K.McGowan, F	hys. Rev. 99, 112,			60 † 0.30 1	10+	0.60 2	
					x	100+ K x ray	,		
					No evi	dence for 18h or	1 ^d Au ¹⁹¹	from yie	e1d
	Level	Pt196 (p.p.)) Ε ₂ = 3.0; γ scin		of 3	.OdPt			
		0.360 11	- р		W.G.Sm	ith, J.W.Holland	er. Phys.	Rev. 98	
	C McClelland	I N. Mark C. Goo	dman, Phys. Rev.		1258,	262Å (1955).			
	97, 1191 (19		uman, rnys. Rev.						
				Au 197	Levels	Au ¹⁹⁷ (n nioù E	4 0 1	TO E O
	V	Dr (196) /	10) E = 0 E to E 0	79 118	revers	0.077 level	ון ענע	E _p = 1.6 1	scin
	Level	(0.360)	(γ) E _p = 2.5 to 5.0 γ scin	stable	2 not	observed	€B(E2) <	0.03	
	$p, \gamma(\theta)$ shows	s large deviation	· ·		,	0.268 level	-5(22)	0.00	
	See Phys. 1	Rev. 91, 1578 (1	.953)		γ	0.191 3	€B(E2) =	0.18	
	P.H.Stelson	F.K.McGowan.	hys. Rev. 98, 249A		No 0.0		,		
	(1955).	, , , , , , , , , , , , , , , , , , , ,	.,			0.277 level	$J = 5/2^{+}$	1	$\rho, \gamma(\theta)$
					γ.	0.277 3	E2/M1~(0.6]	$\gamma(\theta)$
Pt 197	04-						€B (E2) =	0.25	
78 119	$\beta(0.077\gamma)$	$lelay = 1.9 \times 10^{-9}$			Level	0.550 level	J = 7/2+		$\gamma(\theta)$
18 ^h	A.W.Sunyar,	Phys. Rev. 98,	653 (1955).		γ	2.6+ (0.273)	0 - 1/2		
					/	2.6+ (0.277)			γγ ίγ γγ ίγ
						100+ 0.550 5	€B (E2) =	0.46	scin
Pt198	Level	Pt(198) (p.1	o'γ) E _s = 5.0; γ scin		No 0.28				γγΙγ
78 120			$19^{\mu\mu s}$ (a = 0.042)		No 0.47	73 γ (< 3 †)			scin
stable		J =	$p, \gamma(\theta)$			lson, F.K.McGowa	n, Phys.	Rev. 99,	112,
			hys. Rev. 99, 112,		127 (19	,,,,,			
	127 (1955).								
					0.4	Au ¹⁹⁷ (1	n.n!o/\ 1	E _n = 2.5;	v ecin
	Level	Pt ¹⁹⁸ (p,p')) E _n = 3.0; γ scin		γ	0.25		.38	y SCIII
		0.425 13				0.54		.98	
	C.McClellan	d. H.Mark, C.Goo	dman, Phys. Rev.		,	0.98			
	97, 1191 (1	9551; 98, 2494	1955).		(0.25) No (0.	$y)(0.98 \gamma, 1.38 \gamma, 54.202)$	1.98γ	2	Escin
					140 (0.	O± 77 7 .			
Au 187		m			V.E.Sc.	herrer, W.R.Faus 8, 224A (1955).	t, B.A.All	lison, Pl	nys.
79 108	τ	~15 ^m F	ot(130-Mev p) chem p 2.5 ^h Pt chem			.,			
~15 ^m			p 200 re citaii						
	W.G.Smith, 1258, 262A	J.M.Hollander, [[1955].	hys. Rev. 98,	Au 198	au	2.686 ^d	5 d	ifferent	ial ic
		,		79 119					
				2.70 ^d	J. Toba	ilem, J. phys. r	adium 16,	48 (195	51.
881 uA	au	~10 ^m	Pt (130-Mev p) chem						
79 109	·		p 10.3dPt chem		Resona	ance Au ¹⁹⁷	(n) E	=0.4 to	15 ev
~10 ^m	W C Smish	J.M.Hollander,	hue Pau 98		100010	4.906		n	cryst
	1258, 262Å	(1955).	nya. keva 70,				Γ=0.14	40 3	
							σ ₀ = 37	7,000 500)
100							$\Gamma_{\gamma} = 0.0$	124 3	
Au 189	au		chem		R.E.Wo	ood, H.H.Landon, 19 (1955).	V.L.Sailo	r, Phys.	Rev.
42 ^m		1	Ca ¹⁸¹ (C ¹² , 4n) · chem		98, 63	19 (1955).			
		d	~20 ^m Hg p 10.5 ^h Pt						
	γ ~10 †	0.135 10	scin	HgIMO		Ann	¹⁹⁷ (120-Me	ev p. 9n)	chem
	100+	0.290 10		80 109	τ	20 ^m 10		o 42 ^m Au	chem
		>0.80 ?		~20 ^m					
	W.G.Smith, a 1258, 262A	I.M.Hollander, P	hys. Rev. 98,		W.G.Sm 1258.	lth, J.W.Holland 262A (1955).	er, Phys.	Rev. 98,	
	22,00, 2024								

T1204 Hg191 7 55^m 10 p 3h Au chem Tl (203) (10-Mev d, p) Them 2.50^y 3 Au¹⁹⁷ (120-Mev p, 7n) chem 57^m No 4.09 activity W.G.Smith, J.M.Hollander, Phys. Rev. 98, 1258, 262A (1955). Counted for 10 years Identified with previously known 4 T1204 L.T.Cheng, V.C.Ridoifo, M.L.Pool, D.N.Kundu, Phys. Rev. 98, 231A (1955). Hg | 98 $Hg^{(198)}(\gamma,\gamma)$ Au¹⁹⁸ at 1125°C Level 77(0) (0.411) J = 2stable $\tau = 2.3 \times 10^{-11}$ 4.26y 6 differential ic T1 (203) (pile n, y) chem F.R. Metzer, W.B. Todd, Phys. Rev. 95, 853 (1954); 97, 1258 (1955); 98, 11874 (1955). J. Toballem, J. Robert, J. phys. radium 16, 340 Hg^{20 |} +0.45 4 K.Murakawa, Phys. Rev. 98, 1285 (1955). stable $Tl^{(203)}$ (pile n, γ) **0.765** 10 $\triangle J = 2$, yes shape* sl Hg²⁰² Hg(202) (y, y) Tl202 at 1000°C Level Hg K x ray scin 80 e_K/ /3=0.003 (0.439) J=2 $\gamma\gamma(\theta)$ sl 496 stable $\tau = 2.4 \times 10^{-11}$ s $\rm e_{AL}/e_{AK}\sim 4$ F.R.Metzger, Phys. Rev. 98, 200 (1955). $(0.0464 \text{ ce})/\beta = 0.001 \text{ but no } 0.060\gamma, 0.130\gamma$ No 0.37 \(< 0.01%) *Spectrum deviates from $\Delta J = 2$, yes shape below 0.4 Mev (excess of β 's \sim 5%) Hg²⁰³ 100% 0.214 2 F-K linear sd $\beta \gamma$, sd T.Yuasa, J.Laberrigue-Froiow, L.Fauvrais, J. phys. radium 16, 39, 165 (1955); Compt. rand. 238, 1500 (1954). <4×10-3% (0.493)sd ce 0.279 $a_{\rm K} = 0.21$ K: L: M = 14: 4: 1 30% M1 70% E2 No ce between 0.01 and 0.16 (<0.7%) 71 205 Levels N.Marty, Compt. rend. 240, 291 (1955). Tl (205) (p. p17) $E_{p} = 4.0$ T1 (205) (a, a'y) $E_a = 4.0$ stable 0.205 level scin 0.205 3 $\alpha = 0.9 \pm 0.5$ $\gamma \gamma / \gamma$ T1 203 $\nu(\text{Tl}^{205})/\nu(\text{Tl}^{203}) = 1.009816$ 22 $\epsilon B(E2) = 0.072$ 81 122 0.815 level stable H. E. Walchii, ORNL-1775 (1955). 0.205 3 0.410 5 $(0.205 \gamma)(0.410 \gamma)$ T1 (203) (p.p'y) $E_{p} = 4.0$ Levels E = 4.0 T1 (203) (a, a17) P.H. Stelson, F.K. McGowan, Phys. Rev. 99, 112, 616A (1955). 0.279 level 0.279 3 ϵ B(E2) = 0.11 scin 0.682 level Th $^{(205)}$ (p,p' γ) E_p = 3.0 to 4.6 0.205 μ ϵ B(E2) = 0.037 scin scin 0.279 3 0.410 5 0.410 6 (0.279 \gamma)(0.410 \gamma) R.Barloutaud, T.Grjebine, M.Riou, Compt. rend. 240, 1207 (1955).

P.H.Steison, F.K.McGowan, Phys. Rev. 99, 112, 616A (1955).

R.Barloutaud, T.Grjebine, M.Riou, Compt. rend. 240, 1207 (1955).

0.410 6

T1 (203) (p,p' γ) E_p = 3.0 to 4.6 0.280 ϵ B(E2) = 0.10 scin γ 0.12 81 128 0.45 2.2^m 1.56 (0.12 γ)(0.45 γ , 1.56 γ)

1.Periman, F.Stephens, F.Asaro, Phys. Rev. 98, 262A (1955).

scin

83 124 $\gamma(0.570\gamma)$ delay < 4×10^{-10} s Pb Pb(n,n'y) $E_{n} = 4.5$ scin 0.79 2 8.09 A.W. Sunyar, Phys. Rev. 98, 653 (1955). 1.36? 2.70 2 G.L.Griffith, Phys. Rev. 98, 579 (1955). 100+ 0.570 scin. 77+ 1.07 Pb204 $(0.375\gamma)(0.898\gamma)$ delay $< 8x10^{-10}$ 9.2+ 1.77* 122 $(0.57\gamma)(1.07\gamma, 1.77\gamma)$ 68^m A.W.Sunyar, Phys. Rev. 98, 653 (1955). $(1.77\gamma^*)(0.57\gamma)(\theta)$ J = 7/2, 5/2, 1/2 *E2/M1 = 0.007 or J = 9/2, 5/2, 1/2 *M3/E2 = 0.034Pb206 (K x ray)(0.57 γ)/(0.57 γ) indicates $\epsilon_{\rm K}$ to 82 124 0.57 level in 2.8% disintegrations stable No (K x ray) $(1.07\gamma, 1.77\gamma)$ P.H.Stelson, F.K.McGowan, Phys. Rev. 99, 112, No 0.70 γ (<0.5+) No 1.46 γ (<0.2+) 616A (1955). No γ with 0.10>E $_{\gamma}$ >0.50 N.H.Lazar, E.D.Klema, Phys. Rev. 98, 710, 1186A (1955). Pb207 $pb^{207}(p,p'\gamma)$ $E_p = 4.5$; γ scin 0.57 I $\tau = 100^{\mu\mu s}$ $(\alpha = 0.021)$ Level 82 125 stable P.H.Stefson, F.K.McGowan, Phys. Rev. 99, 112, 616A (1955). Bi 210 B1²⁰⁹(p) E = 1 to 55 kev Resonances 83 127 E (kev) 1* [(ev)* E (kev) 2.6×106y <1 16 Pb $^{(207)}$ (n,n' γ) E = 1.4 to 3.2 Graph of σ for excitation of 0.82 level 2.2 0 << 100 34 11.8* 47 given from threshold (1.6) to 3.2 y scin C.T.Hibdon, A.Langsdorf, Jr., Phys. Rev. 98, 223A (1955): *verbai report. -P.H.Stelson, E.C.Campbell, Phys. Rev. 97, 1222 Pb210 Bi214 19.40^y 35 differential ic >5+ 2.56 25 a By 128 83 131 (3.17)10+ 197 J. Tobailem. J. phys. radium 16, 235 (1955). 19.7m No (3.17 β) γ R.A.Ricci, G.Trivero, Nuovo Cim. 1, (1955); Rend. Acad. nazi. Lincel 17, (1954). ≥90% 0.017 2 4π scin $\beta(0.047\gamma)$ delay<3x10⁻⁹⁸ G.M.Lewis, Proc. Phys. Soc. 68A, 735 (1955). 322+ 1.76 sc1n 100+ 2.20 48+ 2.42* *2.48 ±0.12 photons per 100 disintegrations by Pb212 10.643h 12 source addition comparison with Ra standard 130 10.6h J.Tobailem, J.Robert, J. phys. radium 16, 115 (1955). G.Backenstoss, K.Wohlleben, Z.Naturf. 10a, 384 (1955). At210 $\gamma(0.047\gamma)$ delay=1.5x10^{-9s} Bi 206 $\gamma(0.803\gamma)$ delay $<5 \times 10^{-10}$ s 85 125 123 A.W.Sunyar, Phys. Rev. 98, 653 (1955); 95, 626A (1954). A.W. Sunyar, Phys. Rev. 98, 653 (1955). Ra²²³ < 5* < 0.020 ppl Bi 207 88 135 Pb (206) (10-Mev d, n) chem 10* 0.020-0.027 11.7d 8.0y g 0.027-0.092 56* 29* >0.092 Counted for 11 years Identified with previously known ~50 Bi207 *Relative intensity of ce in indicated energy from study of γ spectrum range B.F.Bayman, N.A.S.Ross, Proc. Phys. Soc. 68A, 110 (1955). L.T.Cheng, V.C.Ridolfo, M.L.Pool, D.N.Kundu, Phys. Rev. 98, 231A (1955).

										33		
Ra225 88 137 14.8 ^d Ra226 88 138 1620 ^y	262A (1955). γ *Using 5.7% fo	$ au^< 2$ $ au^>$	=0.62 5 .22 2	pp1	Th ²³⁰ 90 140 8.0×10 ⁴ y	α in α in α for α and α in	$y)(\theta)$ $y)(\theta)$ level pincide x , y	ence with freliac, p., phys. radiu 38, 1409, 1	2; 14\(\gamma\) sho \(\cap 0.14\(\gamma\) Falk-Val m 16, 12 656 (195	5 (1955);		
	M.K.Jurić, D.A Nuclear Sci.,	I.Stanojević, Bul Boris Kidrich, 5	1. Inst. , 15 (1955	1.		286 (195)		, (011110111	, 00mpc	101100 2409		
Ac227 89 138 22 ^y	μ Q M.Fred, F.S.T Rev. 98, 1514	+1.1 -1.7 omkins, W.F.Megge (1955).	rs, Phys.	8	Th 232 90 142 1.4x10 ¹⁰ 9	γ P.H.Stel (1955).	son, F	Th ²³² (p, p 0.053 3 0.760 10 7		E _p = 5.0 scin		
	au	21.6 ^y 4	different	ial ic								
	J.Toballem, J. phys. radium 16, 48 (1955).											
	x 5%* No 0.037y (photo K x ray of Complete convedisintegrati	L x ray oton observed but if La carrier) rsion of ~0.016γ ons suggested /(0.05 γ of Fr ²²³	assigned	scin	pa23! 91 140 34,300 ^y	1	.3% .3% 10% .5%		27% 28% 23% 8.7%	(4.938) s 5.001 5.018 5.046 Phys. Rev. 98,		
_{Th} 227		ichalowicz, M.Ric m 16, 344 (1955). L ₁ :L ₂	•	lac,	u235 92 143 7.1×10 ⁸ y	J K.L.Vand Soc. Ame	er Slu F. 45,	7/2 1s, J.R.Mch 65 (1955)	ially, d	S		
90 137 18.2 ^d	γ	s ce	U238 τ 4.507x10 ^{9y} 9 92 146 From (1503 α's)/(min mg natural U) ass relative abundances: 99.28, 0.715, 0 α's: 1, 0.046, 1 for U ²³⁸ , U ²³⁵ , U ²³⁴ A.F. Kovarik, N.I. Adams, Phys. Rev. 98, (1955).				715, 0.0058 5,U ²³⁴ resp.					
	L ₁ >>L ₂ ,L ₃	0.2863 0.3048* 0.3128* 0.3347* Sy studied=0.335 K/L ₁ = 7 to 9. Rosenblum, M.Vali 9 (1954).	$K/L_2 \sim 1$		Np 234 93 141 4.4 ^d	τ β^+ $\beta^+/\epsilon = 5 \times 1$ R.J. Prest	~(10 ⁻⁴ twood,	U ²³⁵ 1.4 ^d 1 1.8 H.L.Smith, Rev. 98, 1	C.I.Bro	trochoid s		

93 Np²³⁹ 98.Cf246 ~20% 0.343 15 22% Cm (40-Mev a) chem: s scin $\beta \gamma$ delay 6.711 $0.105\gamma + K \times ray$ 78% 6.753 89% 1.5d 2.33d ~0.044 $\alpha = 1000$ scin $(0.34 \beta) \gamma \text{ delay = 0.193}^{\mu s}$ 0.014+ 0.103 scin No γ precedes 0.193 μ s delay γγ delay $\alpha(L \times ray, 0.042 \gamma, 0.103 \gamma)$ Decay scheme proposed +Photons/100 a's O.Engelkemeir, L.B.Magnusson, Phys. Rev. 99, 135 (1955). J.P. Hummel, F.S. Stephens, dr., F. Asaro, A. Chetham-Strode, i. Periman, Phys. Rev. 98, 22 (1955). Am 241 L*12-95 146 20.7 0.0265 470 y Fm254 0.0326 3.2 1.6 15% (7.18)ax/a 100 154 0.0428 5.0 3.1 4.5 ~0.9 3.2h 0.0424 a = 7500.02+ scin 0.0554 ~0.4 ~0.3 0.028+ 0.094 2 0.0592 22 3.5 (ce 0.043 γ) (0.026 γ) delay= 6x10⁻⁸ s d 37hE $\alpha(L \times ray, 0.042\gamma)$ sl ce +Photons/100 a's (ce 0.043γ) (0.059γ) delay= $6x10^8$ (ce 0.028γ) (0.033γ) delay $< 4x10^{-9}$ s F. Asaro, F. S. Stephens, Jr., S. G. Thompson, I. Periman, Phys. Rev. 98, 19, 260A (1955). $(ce\ 0.055\gamma)(ce\ 0.043\gamma,\ ce\ 0.059\gamma)$ No ce 0.0987 (<0.5*) No (ce 0.033γ)(ce 0.059γ) *ce/100 a's Fm²⁵⁶ E^{255} (pile $n, \gamma \beta$) chem J.F. Turner, Phil. Mag. 46, 687 (1955). 100 156 7 for spontaneous fission 3 to 4 hours $\sim_{\mathfrak{L}} \mathfrak{h}$ G.R.Choppin, B.G.Harvey, S.G.Thompson, A.Ghiorso, Phys. Rev. 98, 1519 (1955). Am²⁴³ 95 148 1.1% 5.169 8 11.5% 5.224 8800 y 87.1% 5.267 Mv²⁵⁶ 0.16% 5.309 $\sim 0.5^{h}$ E²⁵³ (41-Mev a.n) chem 0.17% 5.340 No a ~0.5h $(5.267a)(0.075\gamma)(\theta)$ J=5/2, 3/2, 1/2 A.Ghiorso, B.G.Harvey, G.R.Choppin, S.G. Thompson, G.T.Seaborg, Phys. Rev. 98, 1518 (1955). f.Stephens, J. Hummel, F.Asaro, I.Periman, Phys. Rev. 98, 261A (1955).

TABLE 2 — NEUTRON CROSS SECTIONS

Absorption cross sections for neutron energies marked "th" (thermal) have been determined, from measurements in a thermal neutron flux, in terms of the cross section value of a "standard" for neutrons of velocity 2200 m/sec, or energy~0.025 ev. The standard used, when clearly stated by the experimenter, is given just after the reference and is generally one known to have a thermal absorption cross section with

1/v energy dependence. If the nucleus whose cross section is being measured also has a cross section with 1/v dependence, the cross section found for it by comparison with the standard will, of course, be a cross section for 2200 m/sec. If not, and the dependence often is not known, the value found by the comparison is $\overline{\sigma v}/2200$.

			Value of						Value of		
Target	Energy	σ	o or sao		Ref.	Target	Energy	σ	o or sao		Ref.
		- FEET - SHIELD				-		2020	177720		
Н	105	el (θ)	graph		55T17	Sc ⁴⁵	0.0015 -	t	graph		55P08
	137	el(θ)	graph		55T17		5000 ev				
H ²	0.2-22	t	table	n scin	55861						
	109-169	t	table		55A24	Ti	4.0	t-el	1.28 9	sphere	55B08
							4.1	el (θ)	graph	n scin	55W27
He	14.3	el(θ)	graph	cc	55508		4.1	t	3.7	n scin	55W27
							4.1	t-Jel(θ)	1.2 2	n scin	55W27
Li(7)	0.5-1.7	n, n' + 0.48y	graph	y scin	55F10	Mn ⁵⁵	0.0253ev	n.v	13.2	2.58 ^h Mn	55D17
	0.0-1.7	11,11 . 0.40)	grapn	, sein	00110	7		n,n'+0.857	graph	y scin	55F09
								,	3	, 50211	00.00
Be	4.0	t-el	0.62 5	sphere	55B08	Fe	0.85-1.2	n, n' + 0.84 y	graph	y scin	55F09
	4.1	el (θ)	graph	n scin	55W27		1.0	t-el	0.41 4	sphere	55B08
	4.1	t	1.96	n scin	55W27		4.0	t-el	1.42 7	sphere	55B08
Tight.	4.1	$t-\int el(\theta)$	0.6 1	n scin	55W27		4.1	el (θ)	graph	n scin	55W27
Be ⁷	th	n, p	5.3×104	8 1c	55H34		4.1	t	3.6	n scin	55W27
	th	n,a	<1	1c	55H34		4.1	t-[el(θ)	1.5 2	n scin	55W27
							4.4	el (90°)	0.076 20		55J08
C	1.0	t-el	-0.09 14	sphere	55B08		4.4	n, 3.4n' (90°)	0.036 10		55J08
11	2.7	el(θ)	graph	n scin	55L31		4.4	n, 2.2n' (90°)	0.021 7	ppl	55J08
	4.0	t-el	0.04 8	sphere	55B08		4.4	n, 1.6n' (90°)	0.012 6	ppl	55J08
	4.1	el(θ)	graph	n scin	55W27		4.4	n. 1.2n' (90°)	0.020 13	ppl	55J08
	4.1	t	1.88	n scin	55W27		14	t-el	1.27 4	sphere	55021
	4.1	$t-[el(\theta)]$	0.08 10	n scin	55W27		14	k(t-e1)*	0.07 3	sphere	55021
	4.4	el (90°)	0.06 2	ppl	55J08			K(O CI)	0.07	Sprice	00021
	14	t-el	0.601 6	sphere	55G21	Ni	4.0	t-el	1.35 9	sphere	55B08
	14	k(t-el)*	0.08 2	sphere	55021	California to	7.0	0 01	11.00	opiici	00200
c12	14	n,n'+4.47	0.05 2	scin pr	55B58	Cu	1.0	t-el	0.21 5	sphere	55B08
	7.4	11,11 1 2.4 7	0.24	SCIII PI	00000	Cu	4.0	t-el	1.60 7	sphere	55B08
							14	t-el	1.42 5	sphere	55021
N ,	0.80-1.5	4 el(θ)	graph		55F27			k(t-e1)*	0.24 2	sphere	55021
								spallation	table	Sprice	55023
0	109-169	ť	table		55A24			for each of		g	00000
								101 0001 01	io produce	GELVE .	
Na ²³	14.1	n. 2n	0.014 2	2.6 Na	55P28	Zn	1.0	t-el	0.10 6	sphere	55B08
							4.0	t-e1	1.69 6	sphere	55B08
Mg	2.77	$el + inel(\theta)$	graph		55004		4.1	el(θ)	graph	n scin	55W27
	-						4.1	t	3.7	n scin	55W27
A127	1.0	t-el	0.04 8	sphere	55B08		4.1	t-[el(θ)	1.7 2	n scin	55W27
	2.7	el (θ)	graph	n scin	55L31		14	t-el	1.46 3	sphere	55021
	4.0	t-el	0.75 5	sphere	55B08		14	k(t-el)*	0.11 4	sphere	55G21
	4.1	el (θ)	graph	n scin	55W27						
	4.1	t	2.3	n scin	55W27	Zr	1.5	n,n'+0.93y	~0.8	y scin	55033
	4.1	t-[el(θ)	0.7 2	n scin	55W27		4.0	t-el	1.56 7	sphere	55B08
	14	t-el	1.00 1	sphere	55021		4.1	el(θ)	graph	n scin	55W27
	14	k(t-el)*	0.21 1	sphere	55021		4.1	t	4.1	n scin	55W27
							4.1	$t-\int el(\theta)$	1.8 2	n scin	55W27
S	2.7	$el(\theta)$	graph	n scin	55L31		4.4	el (90°)	0.096 24	ppl	55W11
							4.4	n, 2.2n' (90°)	0.009 4	ppl	55W11
A ⁴⁰	14.8	n,a	~3x10 ⁻⁵	10	55B78		4.4	n, 1.6n' (90°)	0.008 4	ppl	56W11

Ag	1.0	t-el	1.61 16	sphere	55B08	E ²⁵⁵	pile	8.	~40	Fm ²⁵⁶	55030
	4.0	t-el	2.05 10	sphere	55B08	OFF				27/	
	13 to 1		graph		55B14	Fm255	pile	8.	< 100	Fm ²⁵⁶	55030
	14	t-el	1.82 2	sphere	55021						
	14	k(t-e1)*	0.72 3	sphere	55G21						
1 129	E THE TA		PAGINTER IN			* k(t-	-e1) = n, 2	n + 2 n	, 3 n - captu	re	
Cd	1.0	t-el	0.99 8	sphere	55B08						
	4.0	t-el	2.05 10	sphere	55B08						
	4.1	el(θ)	graph	n scin	55W27	55 A 24	R. Alphonce	, A-Joh	ansson, A.E.T.	aylor, G.Tit	ell,
	4.1	to the	Hord Half hi	n scin	55W27		Phil. Mag.	40, 29	5 (1955).		
	4.1	$t-jel(\theta)$	2.1 2	n scin	55W27	55808	J.R.Beyste	r, R.L.	Henkel, R.A.N	obles, Phys.	200
	14	t-el	1.95 2	sphere	55021		Rev. 97, 5				
	14	k(t-e1)*	0.98 2	sphere	55021	55814	T.W.Bonner Phys. Rev.	97, 98	a, A. Fernande: 5 (1955).	z, M.Mazani,	
Sm	1.0	t-el	0.07 5	sphere	55B08	55858	M.E.Battat	, E.R.G	raves, Phys.	Rev. 97, 126	56,
	4.0	t-el	2.09 10	sphere	55B08		(1955).				
	4.1	el (θ)	graph	n scin	55W27	55878	E. H. Bellam	y, F.C.	Flack, Phil.	Mag. 46, 343	
	4.1	t	4.3	n scin	55W27		(1955).				
	4.1	$t-\int el(\theta)$	2.1 2	n scin	55W27	55C23	G. H. Colema	n, H.A.	Tewer, Phys.	Rev. 99, 288	3
	14	t-el	1.96 5	sphere	55021		(1955).				
150	14	k(t-el)*	1.04 2	sphere	55021	55C30	G.R. Choppi	n, B.G.	Harvey, S.G.T	hompson,	
Sm 150	th	n, y	66,000	ms	55M52		A. Ghiorso,	Phys.	Rev. 98, 1519	(1955).	
Sm 152	th	n,y	12,000	ms	55M52	55005	E. der Mat	eosian,	Phys. Rev. 9	7, 1023 (19	55).
Ta 181	4.1	el (0)	graph	n scin	55W27	55017	J. DeJuren,	J.Chin	, Phys. Rev.	99, 191 (19	9551.
	4.1	t	6.4	n scin	55W27	55F09	J.M.Freema	n, Phil	. Mag. 46, 12	(1955).	
	4.1	t-[el(θ)	2.7 2	n scin	55W27	55F10	J M Erooma	- A M	Lane, B.Rose,	Phil Ham	u.6
Ta 182	pile	n,y	13×10 ³ 4	5 ^d Ta	55M19	99110	17 (1955).		Lane, D. Kose,	THIII May.	40,
	th	n, y	47 x1 03 5	5 ^d Ta	55D05	55F27	d I Fowler	C H .I	ohnson, Phys.	Pau 98 7	28
						7200 01	(1955).	,	011113011, 111,33	Kev. 70, 11	
W	4.0	t-el	2.6 2	sphere	55B08	55621	E. P. Geaves	P.W. D	avis, Phys. R	ev 97 1201	
	4.1	el(θ)	graph	n scin	55W27	,,,,,	(1955).	,	avrs, Trys. N	1, 120	1
	4.1	t	6.4	n scin	55W27	55G29	R. I. Graham	P. F. R	ell, L.Yaffe,	J.S. Geiner	
	4.1	t-el(θ)	2.4 3	n scin	55W27	,,,,,	Phys. Rev.	99, 16	46 (1955).	or or deriger;	
7144						55G33	J.B.Guerns	ev. Phy	s. Rev. 98, 1	210A (1955).	
Au 197	1.0	t-el	1.63 10	sphere	55B08						
	4.0	t-el	2.75 12	sphere	55B08				Mag. 46, 381		
	4.1	el (θ)	graph	n scin	55W27	55008	B.Jennings	, J. Wed	dell, l. Alexe 2 (1955).	ff, R.L.Hel	lens,
	4.1	t	7.1	n scin	55W27		rhys. Kev.	98, 58	2 (1955).		
	4.1	$t-\int el(\theta)$	2.7 3	n scin	55W27	55L31	R.N.Little	, Jr.,	B. P. Leonard,	Jr., J.T.	
	14	t-el	2.44 2	sphere	55G21		(1955).	, L.O.V	incent, Phys.	Kev. 90, 0)4
100	14	k(t-el)*	1.76 4	sphere	55G21	55M19	I I Howard	E 0		I W N D	
Au 198	th	n,γ	26x10 ³ 1	3.16d Au	55029	20M14	Phys. Rev.	97, 10	hm, P.Marmier 07 (1955).	, 0	ona,
						55M52			Parker, J.A.P	etrucke P	il.
Pb	1.0	t-el	0.23 4	sphere	55B08)) =)2			. Chem. 33, 8		
	4.0	t-el	1.84 8	sphere	55B08	55004					
	4.1	el(θ)	graph	n scin	55W27	33004	Fis. 4, 1	(1955).	W.E.Millett,	Nev. Mexical	14
	4.1	a to	7.8	n scin	55W27	55.000			oc. Phys. Soc	- 68A 10V	119551
	4.1	t-jel(θ)	1.9 3	n scin	55W27	99106	N.U. Fatten	den, rr	oc. rnys. soc	. 00x, 10+	117777.
	10 to 1	$5 el(\theta)$	graph	n scin	55R20	55P28	R.J.Prestw	ood, Ph	ys. Rev. 98,	47 (1955).	
	13 to 1	6 t	graph		55B14	55R20	W.d.Rhein,	Phys.	Rev. 98, 1300	(1955).	
	14	t-el	2.49 2	sphere	55021	55508			hys. Soc. 68A		100
(207	14	k(t-e1)*	1.76 4	sphere	55G21						
Pb (207	1.4-3.	1 n, n'γ	graph	0.82°Pb	55841	55541	P.H.Stelso (1955).	n, F.K.	McGowan, Phys	. Rev. 97, 1	222
Bi 209	1.0	t-el	0.12 4	sphere	55B08	55861		ve, R.L	-Henkel, Phys	. Rev. 98, 6	666
	4.0	t-el	1.98 10	sphere	55B08		(1955).				
	4.1	el(θ)	graph	n scin	55W27	55T17	J.J. Thresh	er, R.G	.P. Voss, R. WI	Ison, Proc.	Phys.
	4.1	t	7.9	n scin	55W27		Soc. 229,	492 (19	551.		
	4.1	$t-\int el(\theta)$	2.2 3	n scin	55W27				nnings, R.L.H	ellens, Phys	3.
	14	t-el	2.53 2	sphere	55021		Rev. 99, 6	21A (19	551.		
	14	k(t-el)*	1.86 2	sphere	55021	55W27	M. Walt, J.	R. Beyst	er, Phys. Rev	. 98, 677 ()	1955).

TABLE 3 - GROUND STATE Q'S

Q values are defined by the conservation equation, $M_1+M_2=M_3+M_4+Q$ or $Q=E_3+E_4-E_1-E_2$ where the M's are the rest masses and the E's the kinetic energies of the reacting particles. Ground state Q's are those measured when the product particles are left in their lowest energy states. If the most energetic emitted particle has escaped detection, the true ground state Q is greater than the value given.

The energy standard used, when clearly stated by the experimenter, is mentioned with the reference. Usually the energy measurement for only one particle, either the incident or emitted light particle, presents difficulties. It is the standard used for this particle that is given.

N. B. A uniform policy for denoting the use of enriched or monoisotopic material is now in use in all four New Nuclear Data tables. This policy is described in the section on Conventions just following the introduction. Briefly, parentheses around the A value indicate natural material, no parentheses enriched or monoisotopic material.

Reaction	Value		Source Detector		Ref.	Reaction		Value		Source Detector		Ref.
								Value		Dec		Tel.
Li ⁽⁶⁾ (d, He ³)He ⁽⁵⁾		9	Сус	8	55L24	Fe ⁵⁴ (γ,		-13.65	5	βtron	9 ^m Fe	55B88
Li ⁶ (p,d)Li ⁵	- 3.0		Cyc po	e, scin	55L09	Fe ⁵⁴ (d,		7.18	7	Сус	pc	55M24
Li(7) _{(d,α)He} (5)	14.26	9	Сус	s	55L24	Fe ⁵⁶ (d,		5.49	8	Сус	pc	55M24
. 8 U						Fe ⁵⁷ (d,	p)Fe ^{DB}	7.89	7	Сус	pc	55M24
Be ⁸ — 2He ⁴	0.090		CcW	DC	55T03	107	106					
Be ⁹ (d, n)B ¹⁰	4.54	6	CcW	ppl	55024	Ag 107 (7	, n)Ag ¹⁰⁶	- 9.57	7	β tron	24 ^m Ag	55B88
-104 >- 7												
$8^{10}(p,\alpha)8e^{7}$	1.07	10	Сус	pc	55R16	55 A 0 3	F. Ajzenbe	rg, A.Rubin	, d-G	i-Likely,	, Phys.	Rev.
B ¹¹ (d, n)C ¹²	13.81		CcW	ppl	55106		99, 654A	(1955).				
$c(12)_{(p,\alpha)B}(9)$						55B26	C.B.Blghai 99, 631A	n, K.W.Alla (1955).	n, E.	Almqvist	t, Phys.	Rev.
****	- 7.58	10	Сус	pc	55R16	55832		e, W.C.Cobb	, Phy	s. Rev.	99, 644	A
$c^{(12)}(t,\alpha)B^{(11)}$	3.85			ppl	55017	(1955).						
C ¹³ (d, n)N ¹⁴	5.41	6	CcW	ppl	55024	55B78	E.H.Bellar (1955); b:	ny, F.C.Fla ased on E _a	(Po21	hil. Mag	j. 46, 3	41
0 ¹⁸ (d,p)0 ¹⁹	1 705		77.10		557700		R.Basile,	C.Schuhl,	Compt	. rend.		
0.2(a, p)0.2	1.735	8	VdG	S	55H28			10, 2512 (1				
F ¹⁹ (t,p)F ²¹	6.03	10	227	.scin	55B26	55888	R. Basile,	C.Schuhl, alibration Cu63, Agl0	takin	ys. radi	um 16, threshol	372 ds of
F ¹⁹ (a, n) Na ²²			Cyc pc		55D04		9.07 resp.	· Cuos, Agro	y as	18.73, 1	15.60, 1	0.01,
r (cc, n) na	- 2.0		CyC	рс	55104	55C17 P.Cuer, D		D.Magnac-Vallette, G.Baumann, Compt. 0, 1880 (1955).				
Mg(24)(d,a)Na(22)	1,953	12	CcW	s	55B32	FERRI					. 07 0	E 0 4
mg (u, w) na ·	1.333	16	COM	3	OODOD	55004	(1955).	, A.R. Quint	on, r	nys. Rev	. 91, 2	924
p31(y,n)p30	-12.33	5	Btron	2.5 ^m P	55B82	55624		J.P.Scani			ott, Pr	oc.
P ³¹ (a, n) C1 ³⁴	- 5.7		Cyc	pc	55D04	55H28			68A, 386 (1955). n, T.D. Hanscome, D. K. Willett, Phys.			Phun
(6,11/01	- 3.7		0,0	Ju	00204		Rev. 98,	214A (1955)		, D. K.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rnysa
\$34(p,n)C134	6.1		Сус	ppl	55A03	55106	M.A.Ihsan,	, Proc. Phy	s. So	c. 68A,	393 (19	551.
σ (ρ, ιι / σ ι			0,0	PP-	55,155	55 L 0 9	J.G.Likely	y, Phys. Re	v. 98	, 1538A	(1955).	
A36(a,p)K39	- 1-28	3	Сус	ppl	55827	55 L24	5-H-Levine 97, 1249	e, R.S.Bend	er, J	. N. McGru	er, Phy	s. Rev.
$A(40)_{(n,\alpha)}S(37)$	- 2.5	1	CcW	ic	55B78			land, F.B.S	hull.	A.J.Flw	vn. 8.Z	eldman.
A ⁴⁰ (a, p) K ⁴³	- 3.36	3	Сус	ppl	55527	,,	Phys. Rev.	99, 655A	(1955).	,,	
(-1,-7,-						55 PO7	H.S.Plend! (1955).	, F.E.Stel	gert,	Phys. R	lev. 98,	1538A
K(39) (a, p)Ca(42)	- 0.19	2	Сус	рс	55807	55R16		lds, Phys.	Rev.	98, 1289	(1955)	; based
K(41)(a,p)Ca(44)	0.98	10	Сус	pc	55807		on Ea (Po2)	lds, Phys. L2) = 8.78.				
						55507	J.P. Schift	fer, Phys.	Rev.	97, 428	(1955).	
Ca(40)(d, n)Sc(41)	- 0.60	5	Сус	ppl	55P07	55827	R.B. Schwar Rev. 99, 6	tz, J.W.Co 555A (1955)	rbett.	, W.W.Wa	itson, P	hys
Ca(43) (d,p)Ca(44)		7	Сус	pć	55807			Proc. Phy		c. 68A,	204 (19	551.
				-								

	10 TO WAY	
	10.0	