例 6.4.18. 重新考虑习题 4.5.28 中的情形, 即有 n 阶复方阵 A 满足 $\operatorname{rank}(A) = 1$. 此时, 存在两个非零列向量 α, β 使得 $A = \alpha \beta^{\mathsf{T}}$, 从而 $\operatorname{tr}(A) = \operatorname{tr}(\alpha \beta^{\mathsf{T}}) = \operatorname{tr}(\beta^{\mathsf{T}}\alpha) = \beta^{\mathsf{T}}\alpha$, 并有 $A^2 = \alpha(\beta^{\mathsf{T}}\alpha)\beta^{\mathsf{T}} = \operatorname{tr}(A)\alpha\beta^{\mathsf{T}} = \operatorname{tr}(A)A$.

在 $\operatorname{tr}(\boldsymbol{A}) \neq 0$ 的条件下, 我们来证明 \boldsymbol{A} 可以对角化. 设 \boldsymbol{x} 是 \boldsymbol{A} 的属于特征值 λ 的特征向量. 由于 $\boldsymbol{A}^2 = \operatorname{tr}(\boldsymbol{A})\boldsymbol{A}$. 右乘 \boldsymbol{x} , 得到 $\lambda^2\boldsymbol{x} = \operatorname{tr}(\boldsymbol{A})\lambda\boldsymbol{x}$. 说明 $\lambda = \operatorname{tr}(\boldsymbol{A})$ 或者为 0. 又由于 \boldsymbol{A} 的特征值之和为 $\operatorname{tr}(\boldsymbol{A})$, 这说明, 特征值 $\operatorname{tr}(\boldsymbol{A})$ 的重数为 1, 特征值 0 的重数为 n-1. 显然 \boldsymbol{A} 关于特征值 $\operatorname{tr}(\boldsymbol{A})$ 的代数重数和几何重数皆为 1, 关于特征值 0 的代数重数和几何重数皆为 n-1. 故矩阵 \boldsymbol{A} 相似于对角阵 $\begin{pmatrix} \operatorname{tr}(\boldsymbol{A}) & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{pmatrix}$.

当然, 若 $\mathrm{tr}(\boldsymbol{A})=0$, 则 \boldsymbol{A} 具有 n 重的特征值 0, 其几何重数为 $n-\mathrm{rank}(-\boldsymbol{A})=n-1$, 从而 \boldsymbol{A} 不可对角化.

例 6.4.19. 讨论下列线性变换的特征值和特征向量:

- (1) 实数域上的线性空间 $\mathbb{R}[x]_n$ 上的线性变换 $\mathcal{B}: f(x) \mapsto xf'(x)$;
- (2) 实数域上的线性空间 $\mathbb{R}[x]_n$ 上的线性变换 $\mathscr{C}: f(x)\mapsto \frac{1}{x}\int_0^x f(t)\,\mathrm{d}t.$
- 解. (1) 对于 m = 0, 1, ..., n, 不难看出 $\mathcal{B}(x^m) = x(mx^{m-1}) = mx^m$. 这说明: x^m 是 \mathcal{B} 属于特征值 m 的一个特征向量. 由于 0, 1, ..., n 为 \mathcal{B} 的 n+1 个不同的特征值, 而 $\mathbb{R}[x]_n$ 的维数为 n+1, 故这是 \mathcal{B} 所有的特征值. 这些特征值的代数重数都是 1, 从而几何重数也都是 1. 这说明, 对于 m = 0, 1, ..., n, \mathcal{B} 属于特征值 m 的特征向量必形如 kx^m , 其中 k 为非零实数.
- (2) 对于 m = 0, 1, ..., n, 不难看出 $\mathcal{C}(x^m) = \frac{1}{x}(\frac{1}{m+1}x^{m+1}) = \frac{1}{m+1}x^m$. 这说明: x^m 是 \mathcal{C} 属于特征值 $\frac{1}{m+1}$ 的一个特征向量. 由于 $1, \frac{1}{2}, ..., \frac{1}{n+1}$ 为 \mathcal{C} 的 n+1 个不同的特征 值,而 $\mathbb{R}[x]_n$ 的维数为 n+1,故这是 \mathcal{C} 所有的特征值. 这些特征值的代数重数都 是 1,从而几何重数也都是 1. 这说明,对于 m = 0, 1, ..., n, \mathcal{C} 属于特征值 $\frac{1}{m+1}$ 的 特征向量必形如 kx^m ,其中 k 为非零实数.

习题 6.4.20. 设 $\mathbb{R}_2[x]$ 表示次数不超过 2 的多项式全体. 记线性变换

$$\varphi: \mathbb{R}_2[x] \to \mathbb{R}_2[x], \quad f(x) \mapsto f(x+1) + f'(x).$$

判断线性变换 φ 是否可对角化.

例 6.4.21. 对于 $n \geq 2$, 计算行列式 $\begin{vmatrix} x_1 & 1_1 & 2_1 & \cdots & n-1 \\ -1_1 & \cdots & \cdots & \cdots & \vdots \\ -2_1 & \cdots & \cdots & \cdots & \cdots & 2 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 1 \\ \vdots & \cdots & \cdots & \cdots & \cdots & 1 \\ 1-n & \cdots & \cdots & -2 & -1 & x \end{vmatrix}$

解. **(解法一)** 若令 $\mathbf{A} = (a_{ij})_{n \times n}$, 其中 $a_{ij} = i - j$, 那么所求就是 \mathbf{A} 的特征多项式 $p_{\mathbf{A}}(x)$. 由于 \mathbf{A} 的列向量组与 $\{(0,1,2,\ldots,n-1)^\mathsf{T},(1,1,\ldots,1)^\mathsf{T}\}$ 等价, \mathbf{A} 的秩为 2, 从而特征值 0 的几何重数为 n-2, 而这意味着其代数重数至少为 n-2. 因此, \mathbf{A} 的特征值可以设为 $\lambda_1,\lambda_2,\lambda_3=\cdots=\lambda_n=0$. 由此看出 $p_{\mathbf{A}}(x)=(x-\lambda_1)(x-\lambda_2)x^{n-2}=x^n+\sigma_2x^{n-2}$ (这儿用到了 $\sigma_1=-\mathrm{tr}(\mathbf{A})=0$ 这一事实). 注意到当 i < j 时, $|\mathbf{A}\binom{i\ j}{i\ j}|=\begin{vmatrix}0&i-j\\j-i&0\end{vmatrix}=(j-i)^2$. 于是, 由注 6.3.19 可知, $\sigma_2=\sum_{i=1}^{n-1}\sum_{j=i+1}^n(j-i)^2$. 这是 1 个 $(n-1)^2$, 2 个 $(n-2)^2$, ..., n-1 个 1^2 的求和. 运用公式 $\sum_{i=1}^n i=\frac{n(n+1)}{2}$, $\sum_{i=1}^n i^2=\frac{n(n+1)(2n+1)}{6}$, 以及 $\sum_{i=1}^n i^3=\frac{n^2(n+1)^2}{4}$, 知 $\sigma_2=\sum_{i=1}^n i(n-i)^2=\frac{n^2(n^2-1)}{12}$.

(解法二)

在上面的 (\star) 这一步, 我们视 x 为未知元, 或者利用连续性, 不妨假定 x 不为 0, 因此可以在这一步除以 x. 化简最后的表达式, 即可.

相似于上三角矩阵 由于不是所有的复方阵都可以对角化, 我们退而求其次, 考虑在相似变换后其它可能的简单情形: 上三角化.

定理 6.4.22 (Schur 定理). 设 A 是数域 F 上的 n 阶方阵, 在 F 中有 n 个特征值

 $\lambda_1, \lambda_2, \dots, \lambda_n$ (不要求互不相等), 那么一定存在 F 上的可逆矩阵 T 使得 $T^{-1}AT$ 为上三角矩阵.

证明. 我们对于 n 用归纳法. n=1 的情形是显然的. 对于一般的 n 阶方阵 \boldsymbol{A} , 不妨设 \boldsymbol{x}_1 是 \boldsymbol{A} 的属于 λ_1 的一个特征向量. 非零向量 \boldsymbol{x}_1 可以扩充为 F^n 的一组基 $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_n$. 将这些列向量按行排列, 得到可逆矩阵 $\boldsymbol{T}_1 = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n) \in F^{n \times n}$. 直接计算, 我们有

$$egin{aligned} oldsymbol{AT}_1 &= oldsymbol{A}(oldsymbol{x}_1, oldsymbol{x}_1, oldsymbol{x}_1, oldsymbol{Ax}_2, \dots, oldsymbol{Ax}_n) = (oldsymbol{\lambda}_1 oldsymbol{x}_1, oldsymbol{x}_1,$$

其中 $A_1 \in F^{(n-1)\times(n-1)}$. 这说明 $T_1^{-1}AT_1$ 为准上三角矩阵 $\begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix}$. 我们观察到,

$$(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n) = p_{\mathbf{A}}(\lambda) = p_{\mathbf{T}_1^{-1}\mathbf{A}\mathbf{T}_1}(\lambda) = (\lambda - \lambda_1)p_{\mathbf{A}_1}(\lambda).$$

这说明 A_1 的特征值为 $\lambda_2, \ldots, \lambda_n$. 由归纳假设, 对于 n-1 阶方阵 A_1 , 存在可逆矩阵 T_2 使得 $T_2^{-1}AT_2$ 为上三角矩阵.

考虑矩阵
$$T = T_1 \begin{pmatrix} 1 & O \\ O & T_2 \end{pmatrix}$$
. 直接计算, 我们有

$$T^{-1}AT = \begin{pmatrix} 1 & O \\ O & T_2^{-1} \end{pmatrix} T_1^{-1}AT_1 \begin{pmatrix} 1 & O \\ O & T_2 \end{pmatrix} = \begin{pmatrix} 1 & O \\ O & T_2^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 & * \\ O & A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & T_2 \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 & * \\ O & T_2^{-1}A_1 \end{pmatrix} \begin{pmatrix} 1 & O \\ O & T_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 & * \\ O & T_2^{-1}A_1T_2 \end{pmatrix}.$$

由归纳假设, 这是一个上三角矩阵矩阵.

推论 6.4.23. 设 A 是数域 F 上的 n 阶方阵, 在 F 中有 n 个特征值 $\lambda_1, \lambda_2, \ldots, \lambda_n$ (不要求互不相等).

- (1) 设 f(x) 是 F 上的多项式, 那么, $f(\lambda_1), f(\lambda_2), \ldots, f(\lambda_n)$ 是 $f(\mathbf{A})$ 的所有特征值.
- (2) 若 A 可逆, 则 $1/\lambda_1, 1/\lambda_2, ..., 1/\lambda_n$ 是 A^{-1} 的所有特征值.

证明. 由于相似变换不改变矩阵的特征值, 我们不妨假定 $\mathbf{A} = (a_{ij})$ 为上三角方阵. 此时, $f(\mathbf{A})$ 也是上三角方阵, 其中对角线上的元素依次为 $f(a_{11}), f(a_{22}), \ldots, f(a_{nn})$. 进一步地, 若 \mathbf{A} 可逆, 则 \mathbf{A}^{-1} 也是上三角方阵, 其对角线上的元素依次为 $1/a_{11}, 1/a_{22}, \ldots, 1/a_{nn}$. 由于上三角方阵的特征值就是其对角线上的元素, 这些论断是显然的.

- **注 6.4.24.** (1) 定理 6.4.22 中的条件在 $F = \mathbb{C}$ 时自动成立, 这说明任何复方阵都复相似于一个上三角矩阵.
 - (2) 用转置运算, 我们可以看出, 复方阵也可以相似于一个下三角矩阵.
 - (3) 显然, 定理中的上三角矩阵的主对角线上的元素就是全部这些特征值, 并且我们的证明可以进一步保证, 这些特征值按照指定的顺序在对角线上来排列.
 - (4) 我们上面定理的证明相对比较粗略. 事实上, 任何复方阵都可以相似于某个若尔当矩阵 (称为该矩阵的若尔当标准形). 这种上三角矩阵可视为原矩阵的相似等价类中的最简形式的代表元. 书上这一块的内容, 感兴趣的学生可以课后自学.
 - (5) 对于上面定理中用来上三角化的可逆复矩阵 T, 我们可以通过正交化的方法, 进一步假定其为一个酉矩阵.

注 6.4.25. 若方阵 A 为实方阵, 并且 n 个复特征值 (带重数) 都是实数, 那么上面的定理说明 A 可以实相似于实的上三角矩阵. 其逆命题也显然成立: 若实矩阵 A 有特征值不是实数, 那么它显然无法实相似于实的上三角矩阵.

事实上, 特征值不全是实数的实方阵 A 只能实相似于某种准上 (或下) 三角阵: 其主对角线上是 2 阶方阵或 A 的特征值, 其中特征值为原实方阵的特征多项式的实根, 2 阶方阵块对应于成对出现的共轭复根. 大致证明思路如下:

- (1) 若 $\lambda = a + bi$ 为实方阵 \boldsymbol{A} 的虚特征值 (故 $b \neq 0$),而 $\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2 i \in \mathbb{C}^n$ 是相应的复特征向量,其中 $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^2$,即有 $\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$. 可以验证 $\boldsymbol{x}_1, \boldsymbol{x}_2$ 在 \mathbb{R} 上线性无关 (留作练习),从而可以扩充为 \mathbb{R}^n 的一组基 $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_n$. 令 $\boldsymbol{P} = (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_n) \in \mathbb{R}^{n \times n}$,由于 $\boldsymbol{A}\boldsymbol{x} = \lambda \boldsymbol{x}$,而 $\boldsymbol{A}\overline{\boldsymbol{x}} = \overline{\lambda}\overline{\boldsymbol{x}}$,故 $\boldsymbol{A}\boldsymbol{x}_1 = a\boldsymbol{x}_1 b\boldsymbol{x}_2$,以及 $\boldsymbol{A}\boldsymbol{x}_2 = b\boldsymbol{x}_1 + a\boldsymbol{x}_2$. 这说明 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} \boldsymbol{A}_1 & * \\ \boldsymbol{O} & * \end{pmatrix}$,其中 $\boldsymbol{A}_1 = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.
- (2) 利用定理 6.4.22 的证明思路不难推出,存在可逆的实矩阵 P 使得 $P^{-1}AP = \begin{pmatrix} A_1 & * \\ & \ddots & \\ & & A_m \end{pmatrix}$ 为准上三角阵,其中的方阵 A_j 为形如 $\begin{pmatrix} a_j & b_j \\ -b_j & a_j \end{pmatrix}$ 的实方阵 (此时, A 有复特征值 $a \pm bi$), 或为由实数 (A 的实特征值) 给出的 1 阶矩阵.

习题 6.4.26. 假定 $\lambda = a + bi$ 为实方阵 \boldsymbol{A} 的虚特征值 (故 $b \neq 0$), 而 $\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2 i \in \mathbb{C}^n$ 是相应的一个复特征向量, 其中 $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^2$. 证明: $\boldsymbol{x}_1, \boldsymbol{x}_2$ 在 \mathbb{R} 上线性无关,

例 6.4.27 (Caylay-Hamilton). 令 A 是复数域上的一个 n 阶方阵, $p_A(\lambda)$ 是 A 的特征多项式. 证明: $p_A(A) = O$.

在给出定理的证明之前, 我们解释一下上面"零化多项式"的意思. 例如在例 6.3.10

中,对于矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,我们有 $p_{\mathbf{A}}(\lambda) = \lambda^3 - 3\lambda^2 - 9\lambda - 5$. 那么,上面的定理指

出

$$p_{\mathbf{A}}(\mathbf{A}) = \mathbf{A}^3 - 3\mathbf{A}^2 - 9\mathbf{A} - 5\mathbf{I}_3 = \mathbf{O}_3.$$

下面, 我们给出 Caylay-Hamilton 定理的证明.

课堂不讲 证明

证明. (思路一) 设 $p_A(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$, 其中特征值 $\lambda_1, \dots, \lambda_s$ 互不相等. 方阵 A 可以相似上三角化, 即存在可逆阵 P, 使得 $PAP^{-1} = J$ 为上三角阵. 此时,

$$p_{\mathbf{A}}(\mathbf{A}) = (\mathbf{A} - \lambda_1 \mathbf{I})^{n_1} \cdots (\mathbf{A} - \lambda_s \mathbf{I})^{n_s}$$

$$= (\mathbf{P}^{-1} \mathbf{J} \mathbf{P} - \lambda_1 \mathbf{I})^{n_1} \cdots (\mathbf{P}^{-1} \mathbf{J} \mathbf{P} - \lambda_s \mathbf{I})^{n_s}$$

$$= (\mathbf{P}^{-1} (\mathbf{J} - \lambda_1 \mathbf{I}) \mathbf{P})^{n_1} \cdots (\mathbf{P}^{-1} (\mathbf{J} - \lambda_s \mathbf{I}) \mathbf{P})^{n_s}$$

$$= \mathbf{P}^{-1} (\mathbf{J} - \lambda_1 \mathbf{I})^{n_1} \cdots (\mathbf{J} - \lambda_s \mathbf{I})^{n_s} \mathbf{P}.$$

通过适当选取可逆阵 P, 我们可以假定 J 为如下的上三角阵:

$$oldsymbol{J} = egin{pmatrix} oldsymbol{J}_1 & * & * & * \ & oldsymbol{J}_2 & * & * \ & & \ddots & dots \ & & oldsymbol{J}_s \end{pmatrix},$$

其中

$$m{J}_i = egin{pmatrix} \lambda_i & * & * & * \ & \lambda_i & * & * \ & & \ddots & dots \ & & \lambda_i \end{pmatrix}, \qquad i = 1, 2, \cdots, s.$$

(在 Schur 定理 6.4.22 的证明中, 我们有挑选特征值的自由, 从而可以假定特征值按上面指定的顺序排列) 此时,

$$(\boldsymbol{J}_i - \lambda_i \boldsymbol{I}_{n_i})^{n_i} = \begin{pmatrix} 0 & * & * & * \\ & 0 & * & * \\ & & \ddots & \vdots \\ & & & 0 \end{pmatrix}^{n_i}.$$

对于 $1 \le k \le n_i$,若记 $(\boldsymbol{J}_i - \lambda_i \boldsymbol{I}_{n_i})^k = \left(s_{x,y}^{(i,k)}\right)_{1 \le x,y \le n_i}$,我们用归纳法可以验证,当 y < x + k 时, $s_{x,y}^{(i,k)} = 0$. 特别地,当 $k = n_i$,所有的 $s_{x,y}^{i,n_i} = 0$,即 $(\boldsymbol{J}_i - \lambda_i \boldsymbol{I}_{n_i})^{n_i} = \boldsymbol{O}_{n_i}$ 为 n_i 阶零方阵. 故

通过归纳法, 我们可以直接验证 $(\boldsymbol{J} - \lambda_1 \boldsymbol{I})^{n_1} \cdots (\boldsymbol{J} - \lambda_i \boldsymbol{I})^{n_i}$ 是前 $(n_1 + \cdots + n_i)$ 列为零的上三角阵. 特别地, $(\boldsymbol{J} - \lambda_1 \boldsymbol{I})^{n_1} \cdots (\boldsymbol{J} - \lambda_s \boldsymbol{I})^{n_s} = \boldsymbol{O}$. 从而 $p_{\boldsymbol{A}}(\boldsymbol{A}) = \boldsymbol{O}$.

(**思路二**) 设方阵 $\lambda I_n - A$ 的伴随矩阵为 B. 显然 B 的每个元素都是关于 λ 的 $\mathbb C$ 上的 次数不超过 n-1 的多项式. 因此, 我们可以设 $B = \sum_{i=0}^{n-1} \lambda^i B_i$, 其中 $B_i \in \mathbb C^{n \times n}$. 我们不妨设 $p_A(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$. 利用伴随矩阵的性质, 我们有

$$(\lambda \mathbf{I}_n - \mathbf{A})\mathbf{B} = p_{\mathbf{A}}(\lambda)\mathbf{I}_n = \lambda^n \mathbf{I}_n + \lambda^{n-1}a_{n-1}\mathbf{I}_n + \dots + \lambda a_1\mathbf{I}_n + a_0\mathbf{I}_n.$$

另一方面,直接乘,我们有

$$(\lambda \mathbf{I}_n - \mathbf{A})\mathbf{B} = (\lambda \mathbf{I}_n - \mathbf{A})\sum_{i=0}^{n-1} \lambda^i \mathbf{B}_i = \lambda^n \mathbf{B}_{n-1} + \sum_{i=1}^{n-1} \lambda^i (\mathbf{B}_{i-1} - \mathbf{A}\mathbf{B}_i) - \mathbf{A}\mathbf{B}_0.$$

比较"系数", 我们有

$$\begin{cases} \boldsymbol{B}_{n-1} = \boldsymbol{I}_n, \\ \boldsymbol{B}_{n-2} - \boldsymbol{A}\boldsymbol{B}_{n-1} = a_{n-1}\boldsymbol{I}_n, \\ \vdots \\ \boldsymbol{B}_0 - \boldsymbol{A}\boldsymbol{B}_1 = a_1\boldsymbol{I}_n, \\ -\boldsymbol{A}\boldsymbol{B}_0 = a_0\boldsymbol{I}_n. \end{cases}$$

上面的各式依次分别左乘矩阵 $A^n, A^{n-1}, \ldots, A, I$, 并相加, 即得到

$$p_{\mathbf{A}}(\mathbf{A}) = \mathbf{A}^{n} + a_{n-1}\mathbf{A}^{n-1} + \dots + a_{1}\mathbf{A} + a_{0}\mathbf{I}_{n}$$

 $= \mathbf{A}^{n}\mathbf{B}_{n-1} + \mathbf{A}^{n-1}(\mathbf{B}_{n-2} - \mathbf{A}\mathbf{B}_{n-1}) + \dots + \mathbf{A}(\mathbf{B}_{0} - \mathbf{A}\mathbf{B}_{1}) - \mathbf{A}\mathbf{B}_{0}$
 $= \mathbf{O}.$

例 6.4.28. 设
$$m{A}=\begin{pmatrix}2&-2&4\\2&3&2\\-1&1&-1\end{pmatrix}$$
,它的特征多项式是 $p_{m{A}}(\lambda)=\det(\lambda m{I}_3-m{A})=$

 $\lambda^3 - 4\lambda^2 + 7\lambda - 10$. 利用 Caylay-Hamilton 定理, 这说明了

$$\mathbf{A}^{-1} = \frac{1}{10} (\mathbf{A}^2 - 4\mathbf{A} + 7\mathbf{I}_3) = \frac{1}{10} \begin{pmatrix} -5 & 2 & -16 \\ 0 & 2 & 4 \\ 5 & 0 & 10 \end{pmatrix}.$$

这是求矩阵逆的新方法.

例 6.4.29. 求 A¹⁰⁰. 其中

$$m{A} = egin{pmatrix} 0 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

证明. 不难验证, 该矩阵不可相似对角化. 因此, 将矩阵对角化后求解的方法暂时不适用. 当然, 若接用若尔当标准形, 我们也可以稍微简化一下计算. 现在我们看一下如何利用 Caylay-Hamilton 定理来计算.

可以求出, $\bf A$ 的特征多项式为 $p_{\bf A}(\lambda)=\lambda(\lambda-1)^3$. 对多项式 λ^{100} 关于 $p_{\bf A}(\lambda)$ 作带余除法:

$$\lambda^{100} = p_{\mathbf{A}}(\lambda)f(\lambda) + r(\lambda), \tag{6.4}$$

其中 $r(\lambda) = a\lambda^3 + b\lambda^2 + c\lambda + d$. 由于 0 是 **A** 的单特征值, 1 是 **A** 的 3 重特征值, 从而, 0 是 $p_A(\lambda)$ 的根, 1 是 $p_A(\lambda)$, $p'_A(\lambda)$, $p'_A(\lambda)$ 的根. 基于此观察, 我们在等式 (6.4) 中代入 $\lambda = 0$ 和 $\lambda = 1$, 对等式 (6.4) 两边依次求导和求二次导后代入 $\lambda = 1$, 我们可以建立如下四个方程:

$$\begin{cases} 0^{100} = p_{A}(0)f(0) + r(0) = r(0) = d, \\ 1^{100} = p_{A}(1)f(1) + r(1) = r(1) = a + b + c + d, \\ 100 \cdot 1^{99} = p'_{A}(1)f(1) + p_{A}(1)f'(1) + r'(1) = r'(1) = 3a + 2b + c, \\ 100 \cdot 99 \cdot 1^{98} = p''_{A}(1)f(1) + 2p'_{A}(1)f'(1) + p_{A}(1)f''(1) + r''(1) = r''(1) = 6a + 2b. \end{cases}$$

可以解得 a=4851, b=-9603, c=4753, d=0,从而 $r(\lambda)=4851\lambda^3-9603\lambda^2+4753\lambda$. 再由 Caylay-Hamilton 定理, 我们知 $p_{\boldsymbol{A}}(\boldsymbol{A})=\boldsymbol{O}$,从而

$$A^{100} = p_{\mathbf{A}}(\mathbf{A})f(\mathbf{A}) + r(\mathbf{A})$$

$$= \mathbf{O} f(\mathbf{A}) + r(\mathbf{A}) = r(\mathbf{A})$$

$$= 4851 \mathbf{A}^{3} - 9603 \mathbf{A}^{2} + 4753 \mathbf{A}$$

$$= 4851 \begin{pmatrix} 0 & 1 & 3 & 6 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} - 9603 \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} + 4753 \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 100 & 5050 \\ 0 & 1 & 100 & 5050 \\ 0 & 0 & 1 & 100 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

注 6.4.30. 当然, 在上题中, 我们也可以直接用归纳法证明

$$m{A}^n = egin{pmatrix} 0 & 1 & n & rac{n(n+1)}{2} \ 0 & 1 & n & rac{n(n+1)}{2} \ 0 & 0 & 1 & n \ 0 & 0 & 0 & 1 \end{pmatrix}.$$