# 生物统计原理

王强

June 6, 2018

南京大学生命科学学院

### Outline

统计的科学基础

描述样本

进入高级部分: 概率与分布

统计检验

样本偏差

总结

# 统计的科学基础

# 统计学是什么



- 数学家故弄玄虚的东西?
- 宣传者企图使我们信服,有时就是欺骗我们的数值信息

"There are three kinds of lies: lies, damned lies, and statistics."

Mark Twain

### 逻辑思维的形式

- 科学方法
- 演绎
  - ▶ 提出一般的公理或假定
  - ▶ 推理,得出命题
  - ▶ 确定的和绝对的(?)
- 归纳
  - ▶ 从具体的经验和特殊的事实出发
  - ▶ 推理, 得出普遍结论的似真性的评判
  - ▶ 不确定的

## 归纳推理的重要性

- 基本事实: 自然界的事件和现象太多样, 太广泛或太不可及, 不能做出完全的观察.
  - ▶ "没有人能明白上帝从创世到末日的作为"
  - ▶ 不能在每一个人身上试验我们新的药物
- 在科学试验中得到的测量组构成一个样本
  - ▶ 无限重复试验,得到测量的无限集合,这个全集合被认作是总体
  - ▶ 样本的重要性在于它能透露有关它由之抽取的总体的 某些事情

### 统计学一词的意义

- 两层含义
  - ▶ 统计学意味着数值信息,通常用表和图来表示.
  - ► 统计学是讨论<mark>不确切</mark>推理的科学, 是<u>归纳的科学方法</u>.
- 研究的对象是样本, 根据样本对母体的推断.

### 关于样本的主要问题

- 1. 如何有效地描述样本?
- 2. 由这个样本的证据如何推断有关总体的结论?
- 3. 这些结论有多可靠?
- 4. 如何取样本才能使它们尽可能说明问题并可信?

# 描述样本

- 初等统计学的主题
- 数据
  - ▶ 体重, 胆固醇水平, 微信里的朋友, 理发费用, 学生成绩
- 类别
  - ▶ 男/女, 可口可乐/百事, 遗传病, iPhone/Android
- 参数
  - ▶ 平均值 mean,  $\mu$
  - ▶ 中位数 median
  - ▶ 方差 Var
  - ▶ 标准差 SD, σ



Figure 1. 统计表样例

## 描述组成



Figure 2. 饼图 (pie chart)



Figure 3. 柱/条形图 (bar chart)



Figure 4. 矩阵树图 (treemap)

### 描述分布



Figure 5. 密度图 (density plot)



Figure 6. 箱形图 (box plot)

### 描述相关



Figure 7. 散点图 (scatter plot)



Figure 8. 边缘直方图 (scatter plot)

## 时间序列



Figure 9. 时间序列图 (time series plot)

进入高级部分: 概率与分布

"If you can't explain something to a six-year-old, you really don't understand it yourself."

Albert Einstein

# 帕斯卡三角

Figure 10. 帕斯卡三角

Figure 11. 杨辉三角

## 抛硬币的概率

- 抛 4 次硬币, 两个正面的概率是多少?
- 包含 4 个对象的集合  $\{A, B, C, D\}$ , 由两个对象组成的子集有多少?
- 一共 6 个 {AB, AC, AD, BC, BD, CD}
- 所有可能的序列总数也可以这样逐个数出来
  - ▶ 0 个对象: 1, 反反反反
  - ▶ 1 个对象: 4, 正反反反, 反正反反, 反反正反, 反反反正
  - ▶ 3 个对象: 4, 反正正正, 正反正正, 正正反正, 正正正反
  - ▶ 4 个对象: 1, 正正正正
  - ightharpoonup 1 + 4 + 6 + 4 + 1 = 16
- 概率是 6 ÷ 16 = 0.375



 $16 \rightarrow 2^4$   $1,4,6,4,1 \rightarrow$ 帕斯卡三角的第五行  $6 \rightarrow$ 第五行的第三列

## 帕斯卡三角里的概率

### 创建一个空白 Excel 工作薄

- 1. 在 A1:A20 中填上 1
- 2. 在 B2 里填 1
- 3. 在 B3 里填公式 =A2+B2
- 4. 拷贝这个公式到 B3:T20
- 5. 对 A1:T20 设置条件格式, 所有等于 0 的单元格, 前景设为白色, 背景也设为白色
- 6. 在 U1 里填公式 =SUM(A1:T1), 拷贝这个公式到 U1:U20
- 7. 设置所有单元格列宽为 6
- 8. 将当前工作表全名为 Triangle

### 创建新工作表

- 1. 在 A1 填入公式 =Triangle!A1/Triangle!\$U1
- 2. 拷贝这个公式到 A1:T20
- 3. 选择 A2:T20, 插入一个折线图



Figure 12. 帕斯卡三角的密度图

### 二项式系数

$$(x + y)^{0} = 1$$

$$(x + y)^{1} = x + y$$

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{n-k} y^{k}$$

### 组合数

### 从 n 个元素的集合中选取 k 个元素组成的子集的个数

from n choose k

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$C_k^n \quad C_n^k \quad {}_nC_k \quad {}^nC_k \quad C(n,k)$$

## 一些专业术语

抛硬币实验是一种

伯努利实验 只有两种可能结果的单次随机试验, 成功或失败, 是或非, 1 或 0. 是/非实验.

硬币正面或反面的概率服从

大数定律 描述相当多次数重复实验的结果的定律. 样本数量越多,则其平均就越趋近期望值.

多次重复抛硬币实验,得到的概率分布称为

二项分布 n 个独立的是/非实验中成功的次数的离散概率 分布.

# 高尔顿板

模拟

视频

### 二项分布的例子

### ■ 选举

► 民意测验表明, 1218 位选民中, 516 位赞成某候选人. 你 认为他能赢吗?

### ■ 医学

▶ 一个指标病人, 1995 年被诊断有肺结核. 对该指标病人的 232 个同事进行了肺结核的筛选检验. 在检验中读数为阳性记录的同事的人数, 是不是要高于随机人群中的记数.

## 生物表型特征

- 由单基因决定的表型,即孟德尔遗传的特征,有显隐性的 3:1 的分离比
  - ▶ 单/双眼皮
  - ▶ 耳垂
  - ▶ 美人尖
  - ▶ 喝酒脸红
  - ▶ ..

- 决大多数生物学表型特征,都由多基因及环境条件决定,服从正态分布或者可以转化为正态分布
  - ▶ 身高
  - ▶ 新生儿体重
  - ▶ 药物对疾病的效果
  - ▶ 种子的大小
  - ▶ 光合作用的速率
  - ▶ ..

## 统计检验

## 正态群体

#### 目标

描述数据
一组数据与假定值
两组数据
成对的两组数据
三组或更多组数据
成对的三组或更多组数据
成对的三组或更多组数据
成对的三组或更多组数据
两个变量间的量化关系
从其它测定变量得到预测值

#### 方法

Mean, SD
One-sample t test
t test
Paired t test
One-way ANOVA
Repeated-measures ANOVA
Pearson correlation
Linear or nonlinear regression

## 非正态群体

#### 目标

描述数据
一组数据与假定值
两组数据
成对的两组数据
三组或更多组数据
成对的三组或更多组数据
成对的三组或更多组数据
成对的三组或更多组数据
从其它测定变量得到预测值

## 方法

Median, interquartile range
Wilcoxon test
Mann - Whitney test
Wilcoxon test
Kruskal - Wallis test
Friedman test
Spearman correlation
Nonparametric regression

## 二项实验

## 目标 描述数据 一组数据与假定值 两组数据 成对的两组数据 三组或更多组数据 成对的三组或更多组数据 两个变量间的量化关系 从其它测定变量得到预测值

## 方法

Proportion
Chi-square
Fisher test or Chi-square
McNemar test
Chi-square test
Cochrane Q
Contingency coefficients
Logistic regression

## 生存时间

#### 目标 方法 描述数据 Kaplan - Meier survival curve 一组数据与假定值 两组数据 Log-rank test 成对的两组数据 Conditional regression 三组或更多组数据 Cox regression 成对的三组或更多组数据 Conditional regression 两个变量间的量化关系 从其它测定变量得到预测值 Cox regression

# 样本偏差

## 瓦尔德与弹孔

#### 场景:

- 二战中, 美军不希望飞机被德军的战斗机击落, 因此要为飞机披上装甲. 但是, 装甲会增加飞机的重量, 飞机的机动性就会减弱, 还会消耗更多的燃油. 防御过度并不可取, 但是防御不足又会带来问题.
- 如果把装甲集中装在飞机最需要的部位, 那么即使减少 装甲总量, 对飞机的防护作用也不会减弱.

Table 5. 调查数据

| 飞机部位   | 每平方英尺平均弹孔数 |
|--------|------------|
| <br>引擎 | 1.11       |
| 机身     | 1.73       |
| 油料系统   | 1.55       |
| 其余部位   | 1.80       |
|        |            |

Table 5. 调查数据

| 飞机部位 | 每平方英尺平均弹孔数 |
|------|------------|
| 引擎   | 1.11       |
| 机身   | 1.73       |
| 油料系统 | 1.55       |
| 其余部位 | 1.80       |
|      |            |

■ 军官们的观点: 受攻击概率最高的部位

Table 5. 调查数据

| 每平方英尺平均弹孔数 |
|------------|
| 1.11       |
| 1.73       |
| 1.55       |
| 1.80       |
|            |

- 军官们的观点: 受攻击概率最高的部位
- 亚伯拉罕・瓦尔德: 损坏的概率应该是均等的, 引擎被击中的飞机未能返航.

■ 军官们在不经意间做出了一个假设: 返航飞机是所有飞机的随机样本.

- 军官们在不经意间做出了一个假设: 返航飞机是所有飞机的随机样本.
- 这个假设成立有个前提: 无论飞机的哪个部位被击中, 幸存的可能性是一样的.

- 军官们在不经意间做出了一个假设: 返航飞机是所有飞机的随机样本.
- 这个假设成立有个前提: 无论飞机的哪个部位被击中, 幸存的可能性是一样的.
- 幸存者偏差 (Survivorship bias)

## 1948 年美国总统大选





Democratic

Harry S. Truman Thomas E. Dewey Republican

Figure 13. 杜鲁门与杜威

- 密苏里农民,没有大学学历
- 民主党分裂
  - ▶ 左翼民主党成立进步党
  - ▶ 南方民主党成立迪克西民主党
- 民主党大会, 出现不祥的兆头



Figure 14. 1948 年, 北平城中支持杜威的游行

#### ■ 三大民意调查机构

- ▶ 盖洛普
- ▶ 罗珀
- ▶ 克罗斯利

#### ■ 媒体

- ▶ 新闻周刊
- ▶ 读者文摘
- ▶ 纽约时报



Figure 15. 火车旅行, 小站脱稿演讲







Figure 16. 芝加哥每日论坛报

#### 以偏概全

- 民调样本只限于大中城市
- 富裕或中等家庭成员, 特别是家庭主妇, 才会购买报纸 杂志并邮寄调查问卷
- 羞于表达政治观点

### 改进

- 调查方法上, 从不太精确的配额抽样转向随机概率抽样
- 为了把选民偏好在最后一刻的变化考虑进去, 民意调查 几乎会一直持续到选举之夜
- 实名的电话民调与匿名的网络民调同时进行



- 1. 如何有效地描述样本?
  - ▶ 数据,类别,参数,图表
- 2. 由这个样本的证据如何推断有关总体的结论?
- 3. 这些结论有多可靠?
  - ▶ 数学上的理论基础
- 4. 如何取样本才能使它们尽可能说明问题并可信?
  - ▶ 避免偏差

https://github.com/wang-q/lecture-slides/blob/master/slides/biostat.slides.pdf