Funciones de costo, Optimizadores, inicialización y regularización

Física Computacional 2 Ph.D. Santiago Echeverri Arteaga

* Binary Crossentropy:
$$-\sum_{i=1}^{N} y_i \log_b(p_i)$$

* BinaryFocalCrossentropy:
$$-\sum_{i=1}^{N} (i - p_i)^{\gamma} \log_b(p_i)$$

* Hinge Loss:
$$\max(1 - y_i \hat{y}); y_i, \hat{y} \in \{-1, 1\}$$

* Cosine Similarity:
$$-\frac{1}{N} \sum_{i=1}^{N} \frac{y_i \cdot \hat{y}}{|y_i| |\hat{y}|}$$

* Huber Loss:
$$\begin{cases} \frac{(y_i-\hat{y})^2}{2} & \text{if } |y_i-\hat{y}|<\delta<0\\ \delta(|y_i-\hat{y}|-\frac{\delta}{2}) & \text{if } |y_i-\hat{y}|<\delta \end{cases}$$

* KLDivergence (Kullback-Leibler divergence):
$$\sum_{i=1}^{N} P(i) \frac{P(i)}{Q(i)}$$

* LogCosh:
$$\sum_{i=1}^{N} \log(\cosh(\hat{y} - y_i))$$

Funciones de pérdida clasificación

Funciones de pérdida regresión

- * MeanAbsoluteError: $\frac{1}{n} \sum_{i=1}^{N} |\hat{y} y_i|$
- * MeanAbsolutePercentageError: $\frac{1}{n} \frac{\sum_{i=1}^{N} |\hat{y} y_i|}{\sum_{i=1}^{N} \hat{y}}$
- * MeanSquaredError: $\frac{1}{n} \sum_{i=1}^{N} (\hat{y} y_i)^2$
- * MeanSquaredLogarithmicError: $\sqrt{(\log(\hat{y} + 1) \log(y_i + 1))^2}$
- * Poisson Loss: $\langle \hat{y} y_i \log(\hat{y}) \rangle$

Regularización

- * Penalizar añadiendo una función de peso en la función de pérdida (L1 y L2 las más usadas)
- * Propout: Perder aleatoriamente neuronas durante el entrenamiento
- * Terminación rápida: Termina cuando alguna métrica deje de mejorar

Optimizadores: Momentum

- * Cinemática tenemos que $x^{k+1} \approx x^k + v^k t$ cuando $v^{k+1} = v^k + a^k t$ para dos k y k+1 suficientemente cercanos.
- * En gradient descent podemos tomar un "momentum" intrínseco a los pesos para que continue su estado de "movimiento" hacia otros valores hasta que se le ejerza una "fuerza contraria" (gradiente)
- * Los pesos se actualizan como la posición $w^{k+1}=w^k-\eta v^{k+1}$ y las velocidades de actualización como la velocidad de una partícula donde ρ es el momentum $v^{k+1}=\rho v^k+\frac{\partial J}{\partial w}$
- * Momentum ayuda a superar mínimos locales y puntos de inflexión
- * Nesterov Momentum: $v^{k+1} = \rho v^k + \alpha \frac{\partial (J \eta v^k)}{\partial w}$

Optimizadores: AdaGrad

- * Escala la actualización para cada peso por separado de forma que la activación de los que más varían sea menor (Learning rate cada vez más bajo)
- * Mientras actualiza lleva la suma de las actualizaciones previas

*
$$w^{k+1} = w^k - \frac{\eta}{\sqrt{G^k + \eta}} \frac{\partial J}{\partial w} \operatorname{con} G^k = G^{k-1} + \left(\frac{\partial J}{\partial w}\right)^2$$

Optimizadores: Root Mean Squared Propagation

- * Es como AdaGrad pero en lugar de usar la suma de los anteriores gradientes, se le asigna menos peso a los valores anteriores y más peso a los actuales
- * Se adapta mejor a las actualizaciones nuevas (Más eficiente que AdaGrad)

*
$$w^{k+1} = w^k - \frac{\eta}{\sqrt{G^k + \eta}} \frac{\partial J}{\partial w} \operatorname{con} G^k = \beta G^{k-1} + (1 - \beta) \left(\frac{\partial J}{\partial w}\right)^2$$

Optimizadores: APAM (Adaptative Moment Estimator)

- * AdaGrad: Mantiene el learning rate anterior. Bueno para problemas con gradientes dispersos (e.g. Procesamiento de lenguaje natural y visión computacional).
- * Root Mean Square Propagation (RMSProp): Mantiene el learning rate anterior pero lo adapta más fácilmente al promedio de las magnitudes de los gradientes actuales. Es bueno en problemas no estacionarios y en el manejo del ruido.
- * En lugar de adaptar el learning rate basado solo en el promedio como en RMSProp, APAM hace uso del segundo momento de los gradientes (varianza no centrada).
- * Ponde se definen $m^k = \beta_1 m^{k-1} + (1-\beta_1) \frac{\partial J}{\partial w}$, $v^k = \beta_2 v^{k-1} + (1-\beta_2) \frac{\partial J}{\partial w}$, $\hat{v}^k = \frac{v^k}{1-\beta_2^k}$, $\hat{m}^k = \frac{m^k}{1-\beta_1^k}$
- * Los pesos se actualizan: $w^{k+1} = w^k \frac{\eta}{\sqrt{\hat{v}^k + \epsilon}} \hat{m}^k$

Normalización por batch (por cada mini-batch)

- * Hacer escalado estándar antes de las funciones de activación
- * Luego hacer un mapeo afin (más parámetros de ajuste)
- * Luego se pasa a la función de activación
- * Para predicción se hace el escalado respecto al promedio de la población y la desviación estándar
- * "Reduce el corrimiento interno de la covarianza, no necesita dropout, no necesita bias, incrementa el learning rate"

Inicializar los pesos

- * Para no tener los mismos gradientes, los pesos deben ser inicializados a partir de una función de probabilidad plana, sin embargo se deben ajustar cuidadosamente los rangos.
- * **Pefault:** $-\frac{1}{\sqrt{L_{in}}}, \frac{1}{\sqrt{L_{in}}}$ Montavon, G., Orr, G., & Müller, K. R. (Eds.). (2012). Neural networks: tricks of the trade (Vol. 7700). springer.
- * Xavier method: $\left[-\frac{\sqrt{G}}{\sqrt{L_{in} + L_{out}}}, \frac{\sqrt{G}}{\sqrt{L_{in} + L_{out}}} \right]$ Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep

feedforward neural networks. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics* (pp. 249-256). JMLR Workshop and Conference Proceedings.

* He Method - ReLU Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics* (pp. 249-256). JMLR Workshop and Conference Proceedings.