2011-2012 学年第一学期

《大学物理Ⅱ》期末(课内)考试(A)卷

授课班号		4级专	·级专业 <u>_ 计信 10_</u> 级 字号			姓名	
题号 一 二		三			总分	审核	
应 与		_	1	2	3		
题分	24	34	15	14	13		
得分							

相关常数: 1 大气压= 1.013×10^5 pa, $0^{\circ}C = 273.15K$,R = 8.31J / mol.K,

$$k = 1.38 \times 10^{-23} J/K$$
, $N_0 = 6.02 \times 10^{23}$,

一: 选择题(共24分, 每题3分)

阅卷	得分

1、某质点作谐振动,周期为 T,它由平衡位置沿 X 轴 正方向运动到离最大负位移 1/2 处所需要的最短时间为 (

- (A)3T/4
- (B)7T/12
- (C)7T/6
- (D)5T/8

2、一平面简谐波沿x轴正方向传播,振幅 A=0.01m,频率 $\nu = 550Hz$,波速 u = 330m/s。若 t=0 时,坐标原点处的质点达到最大正向速度,则此波的波函 数为

- (A) $y = 0.01\cos[2\pi(550t + 1.67x) + \pi]$ (B) $y = 0.01\cos[2\pi(550t 1.67x) + \pi]$
- (C) $y = 0.01\cos[2\pi(550t + 1.67x) \pi/2]$ (D) $y = 0.01\cos[2\pi(550t 1.67x) + 3\pi/2]$
- 3、在夫琅禾费单缝衍射实验中,若将单缝宽度调大,条纹宽度将) (A) 不变; (B) 增大; (C) 减小; (D) 无法确定。
- 4、如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干 涉,若薄膜的厚度为 e,并且 $n_1 < n_2 > n_3$, λ_1 为入射光在折射率为 n_1 的媒质中的波长, 则两束反射光在相遇点的位相差为

()

(A) $2 \pi n_2 e / (n_1 \lambda_1)$.

- (B) $4 \pi n_1 e / (n_2 \lambda_1) + \pi$.
- (C) $4 \pi n_2 e / (n_1 \lambda_1) + \pi$.
- (D) $4\pi n_2 e / (n_1 \lambda_1)$.
- 5、一束垂直入射面振动的线偏振光以起偏角入到某介质表面.则反射光与折射光的偏 振情况是 ()
 - (A) 反射光与折射光都是垂直入射面振动的线偏光.
 - (B) 反射光是垂直入射面振动的线偏光, 折射光是平行入射面振动的线偏光.
 - (C) 反射光是垂直入射面振动的线偏光, 看不见折射光.
 - (D) 折射光是垂直入射面振动的线偏光,看不见反射光.
 - 6、如图所示的三个过程中, $a\rightarrow c$ 为绝热过程,则有
 - (A) $a \rightarrow b$ 过程 Q<0, $a \rightarrow d$ 过程 Q<0.
 - (B) $a \rightarrow b$ 过程 Q > 0, $a \rightarrow d$ 过程 Q < 0.
 - (C) $a \rightarrow b$ 过程 Q < 0, $a \rightarrow d$ 过程 Q > 0.
 - (D) $a \rightarrow b$ 过程 Q > 0, $a \rightarrow d$ 过程 Q > 0.

- 7、温度、压强相同的氢气和氧气,它们的分子的平均动能 $\bar{\epsilon}_k$ 和平均平动动能 $\bar{\epsilon}_\ell$ 有如 下关系: ()
 - (A) $\bar{\varepsilon}_{\iota}$ 和 $\bar{\varepsilon}_{\iota}$ 都相等。
- (B) $\bar{\varepsilon}_{\iota}$ 相等。而 $\bar{\varepsilon}_{\iota}$ 不相等。
- (C) $\bar{\varepsilon}$,相等, D) 3/10
- 8、某理想气体,初态压强为 P,体积为 V,先绝热变化使体积变为 V/2,再等容变化使压强 恢复到 P,最后等压变化使气体回到初态,则整个循环过程中,气体
 - (A) 向外界放热.
 - (B) 从外界吸热.
 - (C) 对外界做正功.
 - (D) 内能减少.

	抽 內師	(# 21 丛	每空2分):
<u> </u>	央工	(光 34 万)	英生 4 万ノ:

阅卷	得分

1、作简谐振动的小球,振动速度的最大值为 $\nu_{\rm m}$ =3cm/s,振幅为A=2cm,则小球振动的周期为_______,加速度的最大值为_______;若以速度为正最大时作计时零点,振动表达式为

- 3、用波长 600nm 的单色平行光垂直照射在每厘米有 2000 条刻痕的衍射光栅上,则在 光屏上最多能观测到______条衍射主极大;若第三级衍射主极大缺级,则该光栅透光部分 的可能宽度为_____。
- 4、一气缸内储有 5mol 的双原子理想气体,在压缩过程中外界做功 500J,气体温度升高了 2K,则气体内能的增量 $\Delta E =$ ________,气体吸收热量 Q = ________,此过程摩尔热容 $C_m =$ ________.

三、计算题: (共42分)

1、(5+5+5分)

设入射波的波函数为

阅卷	得分

$$y_1 = A\cos\left[2\pi\left(\frac{t}{5} + \frac{x}{4}\right) + \pi\right]$$
, 在 $x = 0$ 处发生反射,反射点

为一固定端。(1) 写出反射波的波函数; (2) 写出驻波的波函数; (3) 求波节和波腹的 坐标。

2、(7+7 分) 在杨氏双缝干涉实验中,若双缝与屏之间的距离 D=1.20 m,两缝的间距 $d=0.50\times 10^{-3}$ m,用波长 $\lambda=5.00\times 10^{-7}$ m 的单色光垂直照射双缝。

阅卷	得分

- (1) 求原点 O (零级明纹所在处) 上方的第五级明条纹的坐标x;
- (2) 如用厚度 $e=1.0\times 10^{-5}m$,折射率 n=1.58 的透明薄片覆盖缝 S_1 ,求上述第五条明条纹的坐标 x' 。

、(13 分) 一定量的理想气体经历如图所示的循环过程, $A \rightarrow B$ 和 $C \rightarrow D$ 是等压过程, $B \rightarrow C$ 和 $D \rightarrow A$ 是绝热过程. 己知: $T_C = 300$ K, $T_B = 400$ K,试求此循环的效率.

阅卷	得分

