Statistics for Applications

Chapter 7: Regression

Heuristics of the linear regression (1)

Consider a cloud of i.i.d. random points $(X_i,Y_i), i=1,\ldots,n$:

Heuristics of the linear regression (2)

- ▶ **Idea:** Fit the *best* line fitting the data.
- ▶ Approximation: $Y_i \approx a + bX_i, i = 1, ..., n$, for some (unknown) $a, b \in \mathbb{R}$.
- Find \hat{a}, \hat{b} that approach a and b.
- lacksquare More generally: $Y_i \in {\rm I\!R}, X_i \in {\rm I\!R}^d$,

$$Y_i \approx a + X_i^{\top} b, \quad a \in \mathbb{R}, b \in \mathbb{R}^d.$$

▶ **Goal:** Write a rigorous model and estimate a and b.

Heuristics of the linear regression (3)

Examples:

Economics: Demand and price,

$$D_i \approx a + bp_i, \quad i = 1, \dots, n.$$

Ideal gas law: PV = nRT,

 $\log P_i \approx a + b \log V_i + c \log T_i, \quad i = 1, \dots, n.$

Let X and Y be two real r.v. (non necessarily independent) with two moments and such that $Var(X) \neq 0$.

The theoretical linear regression of Y on X is the best approximation in quadratic means of Y by a linear function of X, i.e. the r.v. a+bX, where a and b are the two real numbers minimizing $\mathbb{E}\left[(Y-a-bX)^2\right]$.

By some simple algebra:

$$b = \frac{cov(X,Y)}{Var(X)},$$

$$a = \mathbb{E}[Y] - b\mathbb{E}[X] = \mathbb{E}[Y] - \frac{cov(X,Y)}{Var(X)}\mathbb{E}[X].$$

If
$$\varepsilon = Y - (a + bX)$$
, then

$$Y = a + bX + \varepsilon,$$

with
$${\rm I\!E}[\varepsilon]=0$$
 and $cov(X,\varepsilon)=0$

Conversely: Assume that $Y=a+bX+\varepsilon$ for some $a,b\in {\rm I\!R}$ and some centered r.v. ε that satisfies $cov(X,\varepsilon)=0$.

E.g., if
$$X \perp \!\!\!\perp \varepsilon$$
 or if $\mathrm{I\!E}[\varepsilon|X] = 0$, then $cov(X, \varepsilon) = 0$.

Then, a + bX is the theoretical linear regression of Y on X.

A sample of n i.i.d. random pairs (X_1, \ldots, X_n) with same distribution as (X, Y) is available.

A sample of n i.i.d. random pairs (X_1, \ldots, X_n) with same distribution as (X, Y) is available.

A sample of n i.i.d. random pairs (X_1, \ldots, X_n) with same distribution as (X, Y) is available.

A sample of n i.i.d. random pairs (X_1, \ldots, X_n) with same distribution as (X, Y) is available.

A sample of n i.i.d. random pairs $(X_1,Y_1),\ldots,(X_n,Y_n)$ with same distribution as (X,Y) is available.

Definition

The *least squared error* (LSE) estimator of (a, b) is the minimizer of the sum of squared errors:

$$\sum_{i=1}^{n} (Y_i - a - bX_i)^2.$$

 (\hat{a},\hat{b}) is given by

$$\hat{b} = \frac{\overline{XY} - \bar{X}\bar{Y}}{\overline{X^2} - \bar{X}^2},$$

$$\hat{a} = \bar{Y} - \hat{b}\bar{X}.$$

13/43

Multivariate case (1)

$$Y_i = \mathbf{X}_i \ \boldsymbol{\beta} + \varepsilon_i, \quad i = 1, \dots, n.$$

Vector of explanatory variables or covariates: $\mathbf{X}_i \in \mathbb{R}^p$ (wlog, assume its first coordinate is 1).

Dependent variable: Y_i .

$$\boldsymbol{\beta} = (a, \mathbf{b})$$
; $\beta_1 (= a)$ is called the *intercept*.

$$\{\varepsilon_i\}_{i=1,\ldots,n}$$
: noise terms satisfying $cov(\mathbf{X}_i,\varepsilon_i)=\mathbf{0}$.

Definition

The *least squared error* (LSE) estimator of β is the minimizer of the sum of square errors:

$$\hat{\boldsymbol{\beta}} = \underset{\mathbf{t} \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - \mathbf{X}_i \ \mathbf{t})^2$$

Multivariate case (2)

LSE in matrix form

Let
$$\mathbf{Y} = (Y_1, \dots, Y_n) \in \mathbb{R}^n$$
.

Let X be the $n \times p$ matrix whose rows are X_1, \ldots, X_n (X is called the design).

Let
$$\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n) \in {\rm I\!R}^n$$
 (unobserved noise)

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}.$$

The LSE $\hat{\boldsymbol{\beta}}$ satisfies:

$$\hat{\boldsymbol{\beta}} = \underset{\mathbf{t} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{t}\|_2^2.$$

Multivariate case (3)

Assume that $rank(\mathbf{X}) = p$.

Analytic computation of the LSE:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X} \ \mathbf{X})^{-1} \mathbf{X} \ \mathbf{Y}.$$

Geometric interpretation of the LSE

 $\mathbf{X}\hat{\boldsymbol{\beta}}$ is the orthogonal projection of \mathbf{Y} onto the subspace spanned by the columns of \mathbf{X} :

$$\mathbf{X}\hat{\boldsymbol{\beta}} = P\mathbf{Y},$$

where $P = \mathbf{X}(\mathbf{X} \ \mathbf{X})^{-1}\mathbf{X}$.

Linear regression with deterministic design and Gaussian noise (1)

Assumptions:

The design matrix **X** is deterministic and $rank(\mathbf{X}) = p$.

The model is *homoscedastic*: $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d.

The noise vector ε is Gaussian:

$$\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n),$$

for some known or unknown $\sigma^2 > 0$.

Linear regression with deterministic design and Gaussian noise (2)

LSE = MLE:
$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}_p \left(\boldsymbol{\beta}, \sigma^2 (\mathbf{X} \ \mathbf{X})^{-1} \right)$$
.

Quadratic risk of
$$\hat{\boldsymbol{\beta}}$$
: $\mathbb{E}\left[\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_2^2\right] = \sigma^2 \mathrm{tr}\left((\mathbf{X} \ \mathbf{X})^{-1}\right)$.

$$\text{Prediction error:} \qquad \mathbb{E}\left[\|\mathbf{Y}-\mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2\right] = \sigma^2(n-p).$$

Unbiased estimator of
$$\sigma^2$$
: $\hat{\sigma}^2 = \frac{1}{n-p} \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2$.

Theorem

$$(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-p}^2.$$

$$\hat{\boldsymbol{\beta}} \perp \!\!\!\perp \hat{\sigma}^2$$
.

Significance tests (1)

Test whether the j-th explanatory variable is significant in the linear regression $(1 \le j \le p)$.

$$H_0: \beta_j = 0 \text{ v.s. } H_1: \beta_j = 0.$$

If γ_j is the *j*-th diagonal coefficient of $(\mathbf{X} \ \mathbf{X})^{-1} \ (\gamma_j > 0)$:

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 \gamma_j}} \sim t_{n-p}.$$

Let
$$T_n^{(j)} = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \gamma_j}}$$
.

Test with non asymptotic level $\alpha \in (0,1)$:

$$\delta_{\alpha}^{(j)} = \mathbb{1}\{|T_n^{(j)}| > q_{\frac{\alpha}{2}}(t_{n-p})\},\$$

where $q_{\frac{\alpha}{2}}(t_{n-p})$ is the $(1-\alpha/2)$ -quantile of t_{n-p} .

Significance tests (2)

Test whether a **group** of explanatory variables is significant in the linear regression.

$$H_0: \beta_j = 0, \forall j \in S \text{ v.s. } H_1: \exists j \in S, \beta_j = 0, \text{ where } S \subseteq \{1, \dots, p\}.$$

Bonferroni's test:
$$\delta_{\alpha}^{B} = \max_{j \in S} \delta_{\alpha/k}^{(j)}$$
, where $k = |S|$.

 δ_{α} has non asymptotic level at most $\alpha.$

More tests (1)

Let G be a $k \times p$ matrix with rank(G) = k ($k \leq p$) and $\lambda \in \mathbb{R}^k$. Consider the hypotheses:

$$H_0: G\beta = \lambda$$
 v.s. $H_1: G\beta = \lambda$.

The setup of the previous slide is a particular case.

If H_0 is true, then:

$$G\hat{\boldsymbol{\beta}} - \boldsymbol{\lambda} \sim \mathcal{N}_k \quad 0, \sigma^2 G(\mathbf{X} \quad \mathbf{X})^{-1} G \quad ,$$

and

$$\sigma^{-2}(G\hat{\boldsymbol{\beta}} - \boldsymbol{\lambda}) \quad G(\mathbf{X} \ \mathbf{X})^{-1}G \quad {}^{-1}(G\boldsymbol{\beta} - \boldsymbol{\lambda}) \sim \chi_k^2.$$

More tests (2)

Let
$$S_n = \frac{1}{\hat{\sigma}^2} \frac{(G\hat{\boldsymbol{\beta}} - \boldsymbol{\lambda}) \quad (G(\mathbf{X} \quad \mathbf{X})^{-1}G \quad)^{-1} (G\boldsymbol{\beta} - \boldsymbol{\lambda})}{k}.$$

If H_0 is true, then $S_n \sim F_{k,n-p}$.

Test with non asymptotic level $\alpha \in (0,1)$:

$$\delta_{\alpha} = \mathbb{1}\{S_n > q_{\alpha}(F_{k,n-p})\},\,$$

where $q_{\alpha}(F_{k,n-p})$ is the $(1-\alpha)$ -quantile of $F_{k,n-p}$.

Definition

The Fisher distribution with p and q degrees of freedom, denoted by $F_{p,q}$, is the distribution of $\frac{U/p}{V/q}$, where:

$$U \sim \chi_p^2$$
, $V \sim \chi_q^2$,

$$U \perp \!\!\! \perp V$$
.

Concluding remarks

Linear regression exhibits correlations, NOT causality

Normality of the noise: One can use goodness of fit tests to test whether the residuals $\hat{\varepsilon}_i = Y_i - \mathbf{X}_i \hat{\boldsymbol{\beta}}$ are Gaussian.

Deterministic design: If X is not deterministic, all the above can be understood conditionally on X, if the noise is assumed to be Gaussian, conditionally on X.

Linear regression and lack of identifiability (1)

Consider the following model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

with:

- 1. $\mathbf{Y} \in \mathbb{R}^n$ (dependent variables), $\mathbf{X} \in \mathbb{R}^{n \times p}$ (deterministic design) ;
- 2. $\beta \in \mathbb{R}^p$, unknown;
- 3. $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$.

Previously, we assumed that X had rank p, so we could invert $X \ X$.

What if X is not of rank p ? E.g., if p > n ?

 β would no longer be identified: estimation of β is vain (unless we add more structure).

Linear regression and lack of identifiability (2)

What about prediction ? $X\beta$ is still identified.

 $\hat{\mathbf{Y}}$: orthogonal projection of \mathbf{Y} onto the linear span of the columns of \mathbf{X} .

 $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X} \ \mathbf{X})^{\dagger}\mathbf{X}\mathbf{Y}$, where A^{\dagger} stands for the (Moore-Penrose) pseudo inverse of a matrix A.

Similarly as before, if $k = rank(\mathbf{X})$:

$$\frac{\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2}{\sigma^2} \sim \chi_{n-k}^2,$$

$$\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2 \perp \!\!\! \perp \hat{\mathbf{Y}}.$$

Linear regression and lack of identifiability (3)

In particular:

$$\mathbb{E}[\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2] = (n - k)\sigma^2.$$

Unbiased estimator of the variance:

$$\hat{\sigma}^2 = \frac{1}{n-k} ||\hat{\mathbf{Y}} - \mathbf{Y}||_2^2.$$

Linear regression in high dimension (1)

Consider again the following model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

with:

- 1. $\mathbf{Y} \in \mathbb{R}^n$ (dependent variables), $\mathbf{X} \in \mathbb{R}^{n \times p}$ (deterministic design);
- 2. $\beta \in \mathbb{R}^p$, unknown: to be estimated;
- 3. $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$.

For each $i, X_i \in \mathbb{R}^p$ is the vector of covariates of the i-th individual.

If p is too large (p > n), there are too many parameters to be estimated (overfitting model), although some covariates may be irrelevant.

Solution: Reduction of the dimension.

Linear regression in high dimension (2)

Idea: Assume that only a few coordinates of β are nonzero (but we do not know which ones).

Based on the sample, select a subset of covariates and estimate the corresponding coordinates of β .

For
$$S\subseteq\{1,\dots,p\}$$
, let
$$\hat{\pmb{\beta}}_S\in \operatorname*{argmin}_{\mathbf{t}\in\mathbb{R}^S}\ \|\mathbf{Y}-\mathbf{X}_S\mathbf{t}\|^2,$$

where X_S is the submatrix of X obtained by keeping only the covariates indexed in S.

Linear regression in high dimension (3)

Select a subset S that minimizes the prediction error penalized by the complexity (or size) of the model:

$$\|\mathbf{Y} - \mathbf{X}_S \hat{\boldsymbol{\beta}}_S\|^2 + \lambda |S|,$$

where $\lambda > 0$ is a tuning parameter.

If $\lambda=2\hat{\sigma}^2$, this is the *Mallow's* C_p or *AIC* criterion.

If $\lambda = \hat{\sigma}^2 \log n$, this is the *BIC* criterion.

Linear regression in high dimension (4)

Each of these criteria is equivalent to finding $\beta \in \mathbb{R}^p$ that minimizes:

$$\|\mathbf{Y} - \mathbf{X}\mathbf{b}\|_2^2 + \lambda \|\mathbf{b}\|_0,$$

where $\|\mathbf{b}\|_0$ is the number of nonzero coefficients of \mathbf{b} .

This is a computationally hard problem: nonconvex and requires to compute 2^n estimators (all the $\hat{\beta}_S$, for $S \subseteq \{1, \ldots, p\}$).

Lasso estimator:

$$\mathsf{replace}\|\mathbf{b}\|_0 = \sum_{j=1}^p \mathbb{I}\{b_j = 0\}$$
 with $\|\mathbf{b}\|_1 = \sum_{j=1}^p \left|b_j\right|$

and the problem becomes convex.

$$\hat{\boldsymbol{\beta}}^L \in \underset{\mathbf{b} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{b}\|^2 + \lambda \|\mathbf{b}\|_1,$$

where $\lambda > 0$ is a tuning parameter.

Linear regression in high dimension (5)

How to choose λ ?

This is a difficult question (see grad course 18.657: "High-dimensional statistics" in Spring 2017).

A good choice of λ with lead to an estimator $\hat{\beta}$ that is very close to β and will allow to recover the subset S^* of all $j \in \{1, \dots, p\}$ for which $\beta_j = 0$, with high probability.

Linear regression in high dimension (6)

Nonparametric regression (1)

In the linear setup, we assumed that $Y_i = \mathbf{X}_i \ \boldsymbol{\beta} + \varepsilon_i$, where \mathbf{X}_i are deterministic.

This has to be understood as working conditionally on the design.

This is to assume that $\mathbb{E}[Y_i|\mathbf{X}_i]$ is a linear function of \mathbf{X}_i , which is not true in general.

Let $f(x) = \mathbb{E}[Y_i | \mathbf{X}_i = x]$, $x \in \mathbb{R}^p$: How to estimate the function f ?

Nonparametric regression (2)

Let p = 1 in the sequel.

One can make a parametric assumption on f.

E.g.,
$$f(x) = a + bx$$
, $f(x) = a + bx + cx^2$, $f(x) = e^{a+bx}$, ...

The problem reduces to the estimation of a finite number of parameters.

LSE, MLE, all the previous theory for the linear case could be adapted.

What if we do not make any such parametric assumption on f ?

Nonparametric regression (3)

Assume f is smooth enough: f can be well approximated by a piecewise constant function.

Idea: Local averages.

For $x \in \mathbb{R}$: $f(t) \approx f(x)$ for t close to x.

For all i such that X_i is close enough to x,

$$Y_i \approx f(x) + \varepsilon_i$$
.

Estimate f(x) by the average of all Y_i 's for which X_i is close enough to x.

Nonparametric regression (4)

Let h > 0: the window's size (or bandwidth).

Let
$$I_x = \{i = 1, \dots, n : |X_i - x| < h\}.$$

Let $\hat{f}_{n,h}(x)$ be the average of $\{Y_i : i \in I_x\}$.

$$\hat{f}_{n,h}(x) = \begin{cases} \frac{1}{|I_x|} \sum_{i \in I_x} Y_i & \text{if } I_x = \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

Nonparametric regression (5)

Nonparametric regression (6)

Nonparametric regression (7)

How to choose h ?

If $h \to 0$: overfitting the data;

If $h \to \infty$: underfitting, $\hat{f}_{n,h}(x) = \bar{Y}_n$.

Nonparametric regression (8)

Example:

$$n = 100$$
, $f(x) = x(1 - x)$, $h = .005$.

Nonparametric regression (9)

Example:

$$n = 100$$
, $f(x) = x(1 - x)$, $h = 1$.

Nonparametric regression (10)

Example:

$$n = 100$$
, $f(x) = x(1 - x)$, $h = .2$.

Nonparametric regression (11)

Choice of h ?

If the smoothness of f is known (i.e., quality of local approximation of f by piecewise constant functions): There is a good choice of h depending on that smoothness

If the smoothness of f is unknown: Other techniques, e.g. $cross\ validation$.

MIT OpenCourseWare https://ocw.mit.edu

18.650 / 18.6501 Statistics for Applications Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.