Лабораторная работа №1

Основы информационной безопасности

Чистов Д. М.

22 февраля 2025

Российский университет дружбы народов, Москва, Россия

Объединённый институт ядерных исследований, Дубна, Россия

Цель работы

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

Задания

Задания

- 1. Настройка виртуальной машины и установка операционной системы
- 2. Домашнее задание

Выполнение лабораторной работы

Я выполнял работу дома на стационарном компьютере, пользовался VirtualBox, по заданию требуется поставить ОС Rocky, я скачал её образ с официального сайта. Перейдём к процессу настройки виртуальной машины.

Задаю имя виртуальной машины согласно требованиям к наименованию, также задаю путь и выбираю нужный образ, скачанный с интернета.

Рис. 1: Первоначальные настройки виртуальной машины

Выбираю кол-во процессоров и выделяю нужное мне кол-во памяти.

Рис. 2: Настройка виртуальной машины

Выделяю нужное количество память жёсткого диска для моей виртуальной машины.

Рис. 3: Количество памяти

Итоговые настройки моей виртуальной машины.

Запускаю виртуальную машину и вижу, что установка успешно начата.

9/30

Задаю язык операционной системы.

Задаю часовой пояс операционной системы - Москва, Московское время.

Рис. 7: Часовой пояс виртуальной машины

В разделе выбора программ, указываю базовое окружение - Server with GUI, а в качестве дополнения - Development tools.

Настриваю клавиатуру - выбираю раскладку: русскую и английскую.

Рис. 9: Настройка клавиатуры

Отключаю KDUMP.

14/30

Включаю сетевое соединение, а в качестве имени узла указываю dmchistov.localdomain.

15/30

Устанавливаю пароль для root.

Рис. 12: пароль для root-доступа

Создаю пользователя dmchistov и задаю ему пароль.

Выбираю свой виртуальный жёсткий диск.

18/30

Начальная настройка операционной системы завершена, перейду к установке.

19/30

Установка ОС.

Рис. 16: Установка

Установка завершена.

Проверяю, что образ успешно автоматически исчез после установки и больше и не используется.

Подтверждаю лицензионное соглашение.

23/30

После успешной установки, также подключу образ с доплнениями к моей ОС.

По заданию мне требуется узнать утилитой dmesg следующие вещи:

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (CPU0).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).
- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем.

Пока просто посмотрю вывод этой команды, написав dmesg | less.

```
dmchistov@dmchistov:~
File Edit View Search Terminal Help
   0.0000000] Linux version 4.18.0-553.el8 10.x86 64 (mockbuild@iadl-prod-build@01.bld.egu.rockylinux.org) (acc version 8.5
 20210514 (Red Hat 8.5.0-22) (GCC)) #1 SMP Fri May 24 13:05:10 UTC 2024
   0.000000] Command line: BOOT IMAGE=(hd0.msdos1)/ymlinuz-4.18.0-553.el8 10.x86 64 root=/dev/mapper/rl dmchistov-root ro r
 sume=/dev/mapper/rl dmchistov-swap rd.lvm.lv=rl dmchistov/root rd.lvm.lv=rl dmchistov/swap rhgb guiet
   0.0000001 x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
   0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
   0.0000001 x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
   0.000000] x86/fpu: xstate offset[2]: 576, xstate sizes[2]: 256
   0.0000001 x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'standard' format.
   0.0000001 signal: max sigframe size: 1776
   0.000000] BIOS-provided physical RAM map:
   0.0000001 BIOS-e820: [mem 0x000000000000000-0x00000000099fbff] usable
   0.0000001 BIOS-e820: [mem 0x0000000000100000-0x000000007ffeffff] usable
   0.000000] BIOS-e820: [mem 0x000000007fff0000-0x000000007fffffff] ACPI data
   0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
   0.000000] BIOS-e820: [mem 0x000000000fee00000-0x000000000fee00fff] reserved
   A AAAAAA BIOS-e820: [mem Axaaaaaaaaaafffcaaaa-axaaaaaaaaffffffff] reserved
   0.000000] NX (Execute Disable) protection: active
   0.0000001 SMRTOS 2.5 present.
   0.000000 DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
   0.0000001 Hypervisor detected: KVM
   0.0000001 kym-clock: Using msrs 4b564d01 and 4b564d00
   0.0000001 kym-clock: using sched offset of 6309478735 cycles
   0.000000] clocksource: kym-clock: mask: 0xfffffffffffffff max cycles: 0x1cd42e4dffb, max idle ns: 881590591483 ns
   0.0000001 tsc: Detected 3600.008 MHz processor
   0.000000] e820: update [mem 0x00000000-0x000000fff] usable ==> reserved
   0.0000001 e820: remove [mem 0x000a0000-0x000fffff] usable
   0.0000001 last pfn = 0x7fff0 max arch pfn = 0x400000000
   0.000000] MTRR default type: uncachable
   0.0000001 MTRR variable ranges disabled:
   0.0000001 Disabled
   0.000000 x86/PAT: MTRRs disabled, skipping PAT initialization too.
   A AAAAAAA CPU MTRRs all blank - virtualized system
   9.999999] x86/PAT: Configuration [9-7]: WB WT UC- UC WB WT UC- UC
   0.0000001 found SMP MP-table at [mem 0x00009fff0-0x00009ffff]
   0.0000001 BRK [0x46801000. 0x46801fff1 PGTABLE
    0.0000001 BRK [0x46802000, 0x46802fff] PGTABLE
```

Используя dmesg | grep -i "" (в кавычках пишу то, что ищу), нахожу всё, что мне надо по заданию.

```
dmchistov@dmchistov:~
File Edit View Search Terminal Help
dmchistov@dmchistov ~]$ dmesg | grep -i "Linux version"
    0.0000001 Linux version 4.18.0-553.el8 10.x86 64 (mockbuild@iadl-prod-build@01.bld.egu.rockylinux.org) (gcc vers
on 8.5.0 20210514 (Red Hat 8.5.0-22) (GCC)) #1 SMP Fri May 24 13:05:10 UTC 2024
dmchistov@dmchistov ~]$ dmesg | grep -i "Detected Mhz processor"
dmchistov@dmchistov ~1$ dmesa | grep -i "Detected Mhz"
dmchistov@dmchistov ~[$ dmesg | grep -i "Detected"
     0.000000] Hypervisor detected: KVM
    0.0000001 tsc: Detected 3600.008 MHz processor
    0.838679] hub 1-0:1.0: 12 ports detected
    0.891799] hub 2-0:1.0: 12 ports detected
    1.158640] systemd[1]: Detected virtualization oracle.
    1.158643] systemd[1]: Detected architecture x86-64.
3.138116] systemd[1]: Detected virtualization oracle.
    3.138119] systemd[1]: Detected architecture x86-64.
dmchistov@dmchistov ~1$ dmesa | grep -i "CPU0"
     0.1170541 smpboot: CPU0: Intel(R) Core(TM) i3-8100 CPU 0 3.60GHz (family: 0x6, model: 0x9e, stepping: 0xb)
```

Рис. 22: Linux Version, Mhz processor, CPU0

Также узнаю о кол-ве доступной памяти, типе гипервизора, типе файловой системы и о последовательности монтирования файловых систем.

```
0.000000] PM: Registered nosave memory: [mem 0x000a0000-0x000effff]
    0.000000] PM: Registered nosave memory: [mem 0x000f0000-0x000fffff]
                Memory: 261120K/2096696K available (14339K kernel code, 5957K rwdata, 8568K rodata, 2820K init, 13792K b
   138444K reserved, OK cma-reserved)
    0.014966] Freeing SMP alternatives memory: 36K
    0.1281941 x86/mm: Memory block size: 128MB
    0.740037] Freeing initrd memory: 50468K
0.829112] Non-volatile memory driver v1.3
    1.144436] Freeing unused decrypted memory: 2028K
    1.1448231 Freeing unused kernel image (initmem) memory: 2820K
    1.149638] Freeing unused kernel image (text/rodata gap) memory: 2016K
1.149936] Freeing unused kernel image (rodata/data gap) memory: 1672K
    1.778461] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 16384 kB, FIFO = 2048 kB, surface = 507904 kB
    1.778466] vmwqfx 0000:00:02.0: [drm] Maximum display memory size is 16384 kiB
dmchistov@dmchistov ~1$ dmesa | arep -i "Hypervisor detected"
    0.000000] Hypervisor detected: KVM
dmchistov@dmchistov ~1$ dmesq | grep -i "sda"
    2.052076] sd 2:0:0:0: [sda] 83886080 512-byte logical blocks: (42.9 GB/40.0 GiB)
    2.052084] sd 2:0:0:0: [sda] Write Protect is off
2.052085] sd 2:0:0:0: [sda] Mode Sense: 00 3a 00 00
    2.0520921 sd 2:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
    2.0537371 sd 2:0:0:0: [sda] Attached SCSI disk
    4.5699391 XFS (sda1): Mounting V5 Filesystem
    4.870479] XFS (sdal): Ending clean mount
|dmchistov@dmchistov ~1$ dmesg | grep -i "Mount"
    0.004018] Mount-cache hash table entries: 4096 (order: 3. 32768 bytes. ymalloc)
    0.0040231 Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, vmalloc)
    2.5313261 XFS (dm-0): Mounting V5 Filesystem
    2.5489431 XFS (dm-0): Ending clean m
    4.569939] XFS (sda1): Mounting V5 Filesystem
    4.870479] XFS (sdal): Ending clean mount
dmchistov@dmchistov -14
```

Рис. 23: кол-во доступной памяти, тип гипервизора, тип файловой системы, последовательность

Выводы

При выполнении данной лаборатоной работы я приобрёл практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

Список литературы

Список литературы

Лабораторная работы №1

Команда dmesg