Movimiento Browniano

Ejercicios entregables - Lista 3

Lucio Santi lsanti@dc.uba.ar

15 de mayo de 2017

Ejercicio. (2.6 - Mörters y Peres) Sea $(B(t), 0 \le t \le 1)$ un movimiento browniano lineal y

$$\tau = \sup \{ t \in [0,1] : B(t) = 0 \}$$

Probar que, casi seguramente, existen tiempos $t_n < s_n < \tau$ con $t_n \uparrow \tau$ tales que $B(t_n) < 0$ y $B(s_n) > 0$.

Resolución. Consideremos el proceso $(\tilde{B}(t), 0 \le t \le \tau)$ en donde $\tilde{B}(t) = B(\tau - t)$. Es evidente que \tilde{B} es un movimiento browniano como consecuencia de que B lo sea. Además, \tilde{B} es un movimiento browniano standard puesto que $\tilde{B}(0) = B(\tau) = 0$ (esto último vale por definición de τ y continuidad de B). Luego, valiéndonos del resultado estudiado en clase (que de hecho es enunciado en el Teorema 2.8 del libro), tenemos que $\mathbb{P}_0 \{ \sigma = 0 \} = 1$, siendo

$$\sigma = \inf \left\{ 0 < t \le \tau : \tilde{B}(t) < 0 \right\}$$

De esto sigue que, casi seguramente, podemos encontrar una sucesión de tiempos $t'_n > 0$ tales que $t'_n \downarrow 0$ y $\tilde{B}(t'_n) < 0$ para todo n. Ahora bien, utilizando el mismo resultado, tenemos que $\mathbb{P}_0 \{ \phi_n = 0 \} = 1$, con

$$\phi_n = \inf \{ 0 < t < t'_n : \tilde{B}(t) > 0 \}$$

Por ende, podemos afirmar que, casi seguramente, existe una sucesión de tiempos $r_k^n > 0$ tales que $r_k^n < t_n'$, $r_k^n \downarrow 0$ y $\tilde{B}(r_k^n) > 0$ para todo k. Sea $s_n' = r_0^n$ y sean $t_n = \tau - t_n'$ y $s_n = \tau - s_n'$. De esta forma,

- $t_n < s_n$ puesto que $t'_n > s'_n$.
- $s_n < \tau$ al ser $s'_n > 0$.
- $t_n \uparrow \tau$ puesto que $t'_n \downarrow 0$.
- $B(t_n) = \tilde{B}(\tau t_n) = \tilde{B}(t'_n) < 0.$
- $B(s_n) = \tilde{B}(\tau s_n) = \tilde{B}(s'_n) > 0.$

Consecuentemente, las sucesiones t_n , s_n propuestas satisfacen lo solicitado en el enunciado.

Ejercicio. (2.8 - Mörters y Peres) Probar que, para cualquier x > 0 y $A \subset [0, \infty)$ medible,

 $\mathbb{P}_{x} \{ B(s) \ge 0 \ \forall \ 0 \le s \le t, B(t) \in A \} = \mathbb{P}_{x} \{ B(t) \in A \} - \mathbb{P}_{-x} \{ B(t) \in A \}$

Resolución. Por la ley de probabilidad total,

$$\mathbb{P}_{x} \{ B(t) \in A \} = \mathbb{P}_{x} \{ B(t) \in A, B(s) \ge 0 \ \forall \ 0 \le s \le t \} + \mathbb{P}_{x} \{ B(t) \in A, \exists \ 0 \le s \le t : B(s) < 0 \}$$

Veamos entonces que $\mathbb{P}_{-x} \{ B(t) \in A \} = \mathbb{P}_x \{ B(t) \in A, \exists \ 0 \le s \le t : B(s) < 0 \}$. Supongamos que tenemos un tal browniano B arrancado en x > 0 y tal que B(s) < 0 para cierto $0 \le s \le t$. Sea $\sigma = \inf \{ 0 \le u \le t : B(u) = 0 \}$. Siendo B(s) < 0 y B(0) > 0, tal σ existe, es positivo y es tal que $B(\sigma) = 0$ por continuidad de B. Consideremos entonces el proceso estocástico $(\tilde{B}(t), t \ge 0)$ definido como sigue, en donde $(B_0(t), t \ge 0)$ es un movimiento browniano standard:

$$\tilde{B}(t) = \begin{cases} B(\sigma - t) & \text{si } 0 \le t \le \sigma \\ B_0(t - \sigma) + x & \text{si } t > \sigma \end{cases}$$

Veamos que \tilde{B} es un movimiento browniano standard:

- $\tilde{B}(0) = B(\sigma) = 0$.
- Fuera de $t = \sigma$, \tilde{B} es continua por continuidad de B y B_0 . Además,

$$\lim_{t \to \sigma^{-}} \tilde{B}(t) = B(0)$$

$$= x$$

$$= B_{0}(0) + x$$

$$= \lim_{t \to \sigma^{+}} \tilde{B}(t)$$

■ Dados $t \ge 0$ y h > 0, los incrementos $\tilde{B}(t+h) - \tilde{B}(t)$ tienen distribución normal con esperanza 0 y varianza h siempre que t+h y h estén ambos a izquierda o a derecha de σ . Cuando $t+h>\sigma$ y $t\le \sigma$,

$$\tilde{B}(t+h) - \tilde{B}(t) = \underbrace{B_0((t+h) - \sigma)}_{\sim N(0, t+h-\sigma)} + \underbrace{x - B(\sigma - t)}_{\sim N(0, \sigma - t)}$$

• Finalmente, puede verse que \tilde{B} tiene la propiedad de incrementos independientes siguiendo un razonamiento similar al del ítem anterior.

La idea detrás de \tilde{B} es la de poder reformular la probabilidad anterior de forma más sencilla. Esencialmente, \tilde{B} se mueve entre 0 y σ invirtiendo el movimiento de B y luego comportándose como un browniano standard trasladado en x. De esta manera, como consecuencia de la propiedad de Markov de B, el evento de B llegando a A en tiempo t equivale al evento de B_0 llegando a A en tiempo $t - \sigma$. Como B_0 está trasladado en x y siendo la primera porción del recorrido de B una inversión del recorrido de B, tenemos que

$$\mathbb{P}_{x} \{ B(t) \in A, \exists \ 0 \le s \le t : B(s) < 0 \} = \mathbb{P}_{0} \{ \tilde{B}(t) \in A + x \}$$

No obstante, llegar a A + x en tiempo t y arrancando en 0 equivale a llegar a A en el mismo tiempo pero arrancando en -x, con lo cual

$$\mathbb{P}_0\left\{\tilde{B}(t)\in A+x\right\}=\mathbb{P}_{-x}\left\{B(t)\in A\right\}$$

Esto prueba lo deseado y completa la resolución del ejercicio.