PROJET 4 : SEGMENTEZ DES CLIENTS D'UN SITE DE E-COMMERCE

SOUTENANCE OPENCLASSROOMS, LE XX/05/2022

ERWAN CHESNEAU

PLAN:

- l. Contexte
- II. Nettoyage et exploration de la base de données
- III. Tests de segmentation
- IV. Interprétation de la meilleure segmentation
- V. Simulation du délai de maintenance
- VI. Conclusions
- VII. Améliorations à envisager

I. CONTEXTE:

- L'entreprise de e-coomerce Olist souhaite mieux comprendre sa clientèle
- Volonté de segmenter la clientèle
 - Meilleur communication
 - Identification des meilleurs clients
 - Ciblage marketing
- Base de données disponible regroupant un historique des commandes pour chaque client
- Démarches :
 - Explorer les données afin de caractériser la clientèle
 - Effectuer des tests de segmentation en utilisant différents algorithmes
 - Caractériser la segmentation
 - Simuler le délai de mise à jour optimal de la segmentation

II. EXPLORATION DES DONNÉES DISPONIBLES ET NETTOYAGE

 La base de données est séparée en 8 fichiers joints par une variable : (seules les variables utilisées dans le projet sont présentées ici)

fichiers	contenu	description	nettoyage
olist_customers_dataset	customer_id	ID client / commande	1
	customer_unique_id ID client unique		1
	customer_zip_code_prefix	Code postal client	int
olist_geolocation_dataset	geolocation_zip_code_prefix	Code postal	int
	geolocation_lat	Laittude	Float [-90, 90]
	geolocation_Ing	Longitude	Float [-180, 180]

II. EXPLORATION DES DONNÉES DISPONIBLES ET NETTOYAGE

fichiers	contenu	description	nettoyage
	order_id	ID commande	1
olist_order_items_dataset	product_id	ID produit	1
	price	Prix	Float > 0
olist_order_payments_datas et	order_id	ID commande	1
olist_order_reviews_dataset	review_id	ID de la notation	I
	order_id	ID commande	1
	review_score	Note	Int [0,5]

II. NETTOYAGE : REGROUPEMENT DES DONNÉES

- Détections et suppression des doublons
- Création d'une nouvelle base de données pour l'analyse :
 - Info clients :
 - id, unique id, zip code, ville, état, géolocalisation
 - Info commandes :
 - Id, date, id produit, prix
 - Info sur la satisfaction
 - order id, review score
 - Info sur les produits
 - Id, catégories

Nombre de commandes par client :

3% des clients ont commandé plus de 1 fois.

Montant dépensé

Min	0,85
Max	13440
Moyenne	142,17
Médiane	89,8

Min	0,85
Max	13440
Moyenne	137,53
Médiane	86,9

Nombre d'articles par commande

Min	1
Max	21
Moyenne	1,14
Médiane	1

Délai entre deux commandes

Date de la première commande : 04/09/2016

Date de la dernière commande : 03/09/2018

Min	Isec
Max	608j 23h29min
Moyenne	86j 16h20min
Médiane	39j 14h36min

III. TEST DE DIFFÉRENTS MODÈLES: RFM

- Sélection des clients ayant réalisés plus de 1 commande (limiter la taille de la matrice pour l'AgglomerativeClustering)
- Création de nouvelles variables :
 - Recency : nombre de jours depuis la dernière commande
 - Frequency : nombre de commande sur la période
 - Monetary : montant dépensé
- Création du score R, F et M : entre 1 et 5
 - R : à partir des quantiles [20%, 40%, 60%, 80%], I pour les clients dont la durée entre deux commandes est faible (dernier quantile) 5 pour les clients dont la durée entre deux commandes est longue (I er quantile)
 - M : à partir des quantiles [20%, 40%, 60%, 80%], I pour les clients dépensant le plus (dernier quantile), 5 pour les clients dépensant le moins (I er quantile)
 - F: quantiles ne fonctionne pas: F = nb_commande -1 si nb_commande <=6, 5 sinon.
- Score RFM : somme de R, F et M

III. TEST DE DIFFÉRENTS MODÈLES : RFM

- Segmentation à partir du score RFM:
 - Mauvais client : RFM < 5 : 13,1%
 - Bon client : 5 > RFM < 10 : 72,3%</p>
 - Très bon client : RFM > 10 : 14,5%
- Interprétation :
 - Mauvais client : dépense peu, peu souvent et il y a longtemps
 - Très bon client : commande régulièrement
 - Bon : les autres

III. TEST DE DIFFÉRENTS MODÈLES: RFM

Segmentation à l'aide d'un KMEANS :

- Cluster 0 : clients commandant peu et dont la dernière commande date de plus de 200j
- Cluster I : clients commandant peu mais avec une dernière commande récente
- Cluster 2 : clients commandant fréquemment

- Cluster 0 : clients avec des montants de commandes très faibles
- Cluster I : clients avec une faible fréquence de commande et la dernière datant de plus de 200jours
- Cluster 2 : clients commandant peu et dépensant peu
- Cluster 3 : clients commandant peu, mais avec un montant important

III. TEST DE DIFFÉRENTS MODÈLES :

- Création de nouvelles variables pour caractériser les clients :
 - Nombre de commandes
 - Temps depuis a dernière commande
 - Montant total dépensé
 - Prix moyen des articles
 - Nombre d'articles acheté
 - Prix moyen par commande
 - Nombre d'article moyen par commande
 - Satisfaction moyenne
- ACP pour visualiser les résultats
 - F1 montant dépensé
 - F2 fidélité
 - F3 : nombre de commande et satisfaction

III. TEST DE DIFFÉRENTS MODÈLES : AGGLOMERATION

Dendrogramme : 4 ou 3 clusters

Le DB score et le coefficient de silhouettes indique un nombre de clusters optimal à 3

III. TEST DE DIFFÉRENTS MODÈLES : AGGLOMERATION

- 4 clusters permet d'obtenir également une segmentation interprétal
- Interprétation :
 - FI : proportionnel au montant dépensé
 - F2 : inversement proportionnel au nombre de produits / commandes
 - F3 : proportionnel au nombre de commande et à la satisfaction
 - Cluster 0 : 87,5%

Client moyen = proche de 0 selon tous les axes

Cluster 1: 3,2%

Client commandant beaucoup de produit mais avec peu de commande ou une faible satisfaction

Cluster 2:2,0%

Peu de produits commandés, peu de commande ou peu satisfait

Cluster 3 : 7,3%

Peu de produits commandés, mais beaucoup de commande ou grande satisfaction

2.5

1.5

0.5

III. TEST DE DIFFÉRENTS MODÈLES : KMEANS

Calcul du coefficient de silhouette et de l'indice de Davies-Bouldin

Cluster 0 : 3,5%

Peu de produit commandé

Cluster 1: 93,2%

Client moyen

Cluster 2: 3,3%

Beaucoup de produit commandé

1.40

1.35

Davies Bou

1.25

1.20

1.15

2.0 2.5 3.0

3.5 4.0 4.5 5.0 5.5

III. TEST DE DIFFÉRENTS MODÈLES : DBSCAN

- Effet du epsilon :
 - Plus epsilon est grand, plus le nombre de cluster est faible
 - Variation « anarchique » : difficile de déterminer une valeur optimale
- Faible séparation entre clusters
- Majorité dans le cluster « bruit »
- Méthode non adaptée

IV. INTERPRÉTATIONS DE LA SEGMENTATION : AGGLOMERATIVECLUSTERING

Params	Cluster 0	Cluster I	Cluster 2	Cluster 3	All
N_orders	2.0	2.0	2.27	3.44	2.11
N_days_last_order	229	225	170	204	226
Total_price	205	1212	733	387	261
N_products	2.3	2.18	8.8	4.0	2.5
Review_score	4.1	4.0	3.68	4.5	4.1

- Cluster 0 : client moyen, dépensant peu
- Cluster I : client dépensant beaucoup
- Cluster 2 : client ayant commandé récemment, dépensant beaucoup (quantité + montant)
- Cluster 3 : client commandant régulièrement, un nombre important d'articles et plutôt satisfait.

IV. INTERPRÉTATIONS DE LA SEGMENTATION : KMEANS

Params	Cluster 0	Cluster I	Cluster 2	All
N_orders	1.0	1.0	1.2	1.0
N_days_last_order	245	243	236	243
Total_price	862.8	107	355	142
N_products	1.2	1.1	5.3	1.2
Review_score	4	4.1	3.35	4.1

- Cluster 0 : Client dépensant beaucoup
- Cluster I : client moyen, dépensant peu
- Cluster 2 : client ayant commandé plus régulièrement, plus de produits, pour un montant plus élevé

IV. MISE A JOUR DU MODELE

Démarches :

- 1. Sélection d'une période initiale pour construire la base de données
- Normalisation des données
- 3. Création d'un classifieur
- 4. Création d'une nouvelle base de données sur une période de temps incrémentée
- 5. Segmentation de ces données avec le classifieur initiale
- 6. Création d'un nouveau classifieur
- 7. Segmentation des données avec ce nouveau classifieur
- 8. Comparaison des segmentations grâce au calcul de l'indice de rang ajusté

IV. MISE A JOUR DU MODELE

Période initiale : 09/2016 → 11/2016 (90j)

Période initiale : 02/2018 → 05/2018 (90j)

Il est nécessaire de mettre à jour la segmentation tous les 3 mois

V. CONCLUSIONS

- La base de données est de qualité et facilement transformable
- La majorité des clients commandent qu'une seule fois
- La segmentation RFM permet d'obtenir un segmentation rapide et facilement interprétable
- La segmentation Agglomerative Clustering permet de créer 4 clusters interprétables
 - Mais elle est très couteuse en mémoire
- La segmentation KMEANS permet de créer 3 groupes de clients interprétables.
- Dans tous les cas on arrive à détecter le client moyen et les bon clients.
- Une mise à jour de la base de données est nécessaire tous les 3 mois
- Une mise à jour plus longue est possible si on accepte de prendre la totalité de la base de données

V. AMÉLIORATIONS

- Retour vers les experts commerces pour discuter de l'interprétation de la segmentation
- Envisager des options de big data pour utiliser l'algorithme agglomerativeclustering sur toute la base de données
- Prendre en compte les préférences des produits pour effectuer un ciblage commercial précis
- Identifier les vendeurs les plus performants pour les mettre en avant

MERCI POUR VOTRE ATTENTION!