Анализ текстов

Лекция 11

Как научить компьютер читать?

Разрешение анафоры

"Мама вымыла раму, и теперь она блестит"

"Мама вымыла раму, и теперь она устала"

Задачи обработки текстов

- 1. Синтаксический анализ
- 2. Семантический анализ (классификация)
- 3. Порождение текста

Синтаксический анализ

- 1. Разметка частей речи
- 2. Морфологическая сегментация
- 3. Выделение границ предложений
- 4. Разрешение кореференций

Семантический анализ

- 1. Предсказание следующего слова по контексту
- 2. Анализ тональности текста
- 3. Ответы на вопросы (когда?, где?)
- 4. Выделение фактов
- 5. Поиск синонимов

Порождение текста

- 1. Автореферирование
- 2. Машинный перевод
- 3. Диалоговые модели

Классические модели обработки текста

Мешок слов

"Сантехник чинит кран", "Сантехник из водоканала", "Кран течёт", "Электрик Анатолий", "Анатолий чинит лампу".

сантехник	ЧИНИТЬ	кран	водоканал	течёт	электрик	лампа	Анатолий
1	1	1					
1			1				
		1		1			
					1		1
	1					1	1

TF-IDF

$$\operatorname{tf}(t,d) = rac{n_t}{\sum_k n_k} \;,\; \operatorname{idf}(t,D) = \log rac{|D|}{|\{\, d_i \in D \mid t \in d_i \,\}|}$$

$$\operatorname{tf-idf}(t,d,D) = \operatorname{tf}(t,d) \times \operatorname{idf}(t,D)$$

https://ru.wikipedia.org/wiki/TF-IDF

Учёт порядка слов

"Мама мыла раму с мылом"

- п-граммы слов ("мама мыла", "мыла раму")
- k-skip-n-граммы ("мама раму", "мыла мылом")
- Буквенные n-граммы ("мыл", "рам", "мыл")

Проблемы классической модели

- Вектора признаков очень разряженные
- Много 0 в признаках
- Количество признаков = размер словаря ~ миллионы
- В основе гипотеза независимости слов

Итог: векторы слов не отражают семантику слов

Векторные представления

Word Embedding

Дистрибутивная гипотеза

"You shall know a word by the company it keeps" - Firth, 1957.

Лингвистические единицы, встречающиеся в схожих контекстах, имеют близкие значения. (1960-ые)

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

These words will represent banking 7

https://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf

Латентный семантический анализ LSA

Сингулярное разложение матрицы

https://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf

Распределенное представление

One-Hot encoding

Сантехник =
$$[1,0,0,0,0,....,1...,0]$$

Электрик =
$$[0,0,1,0,0,\ldots,1,\ldots,1]$$

Word Embedding

$$Kpah = [0.22, 0.42, 0.1, 0.5]$$

Труба =
$$[0.23, 0.4, 0.15, 0.7]$$

word2vec

Load up the word vectors

So king + man - woman = queen!

word2vec алгоритм

- Каждому слову v сопоставляем вектор w размера d
- Считаем вероятности p(v|c1...cn), где ci контекст
- p(v|c1..cn) = f(w,o), o параметры функции
- Как найти **о** и **w** нейросеть его знает...

Word2vec

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec: CBOW

непрерывный мешок слов

Вход: контекст

Выход: целевое слово

Скрытый слой: векторное

представление слов

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

Модификации

- word2vec
 - CBOW
 - skip-gram
 - GLOVE https://nlp.stanford.edu/projects/glove/
- doc2vec
- ...

Литература

- 1. Глубокое обучение. С. Николенко, А. Кадурин, Е. Архангельская.
- 2. Векторные представления слов в документах: https://www.youtube.com/watch?v=hiDBnEyoZS4
- 3. Macтep класс по Gensim: https://www.youtube.com/watch?v=oBb9aFmp0Hs
- 4. Лекции 4 семестра специализации ML&DS: https://www.coursera.org/specializations/machine-learning-data-analysis
- 5. https://cs224d.stanford.edu/lectures/CS224d-Lecture2.pdf
- 6. https://github.com/RaRe-Technologies/movie-plots-by-genre

