Chapter 7(1). Some Probability Limit Theorems

Chapter 7(1). Some Probability Limit Theorems

What is the probability that we get 'head' when a fair coin is tossed?

What is the probability that we get 'head' when a fair coin is tossed?

experiment

the number of tossing: n the number of heads: m the frequency of head: m/n

1. Law of Large Numbers

What is the probability that we get 'head' when a fair coin is tossed?

experiment

the number of tossing: n the number of heads: m the frequency of head: m/n

n	m	m/n
2048	1061	0.518
4040	2048	0.5069
12000	6019	0.5016
24000	12012	0.5005
30000	14994	0.4998

the frequency \rightarrow the probability,

as
$$n \to \infty$$
.

the frequency \rightarrow the probability,

as $n \to \infty$. Actually, this is a special case of 'law of large numbers'.

The general case: Consider n repeated Bernoulli trials

$$X_i = \begin{cases} 0, & \text{failure} \\ 1, & \text{success} \end{cases}$$

$$i=1,\ldots,n.$$

The general case: Consider n repeated Bernoulli trials

$$X_i = \begin{cases} 0, & \text{failure} \\ 1, & \text{success} \end{cases}$$

 $i=1,\dots,n.$ The probability mass function of X_i is $0 \qquad 1 \\ 1-p \qquad p$

The general case: Consider n repeated Bernoulli trials

$$X_i = \begin{cases} 0, & \text{failure} \\ 1, & \text{success} \end{cases}$$

 $i=1,\dots,n.$ The probability mass function of X_i is $0 \qquad 1 \\ 1-p \qquad p$

The frequency of success $\frac{\sum_{i=1}^{n} X_i}{n} \to p$, as $n \to \infty$.

'→' means convergence in probability,

'→' means convergence in probability, that is

$$\lim_{n\to\infty}P\big(\big|\tfrac{\sum_{i=1}^nX_i}{n}-p\big|<\varepsilon\big)=1$$
 for any $\varepsilon>0.$

We will introduce **Chebyshev's law of large numbers**, a more general one.

We will introduce **Chebyshev's law of large numbers**, a more general one. First, introduce another form of **Chebyshev's inequality.**

Theorem 1 Let X be a random variable with mean $E(X) = \mu$, variance $V(X) = \sigma^2$, then

$$P(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

for any $\varepsilon > 0$.

Proof

Suppose X is a continuous random variable, with density function $f(\boldsymbol{x})$, then

$$P(|X - \mu| \ge \varepsilon) = \int_{|x - \mu| \ge \varepsilon} f(x) dx \le \int_{|x - \mu| \ge \varepsilon} \frac{(x - \mu)^2}{\varepsilon^2} f(x) dx$$

$$\le \frac{1}{\varepsilon^2} \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \frac{\sigma^2}{\varepsilon^2}$$

Theorem 2

Suppose the sequence of random variables X_1 , X_2 , ..., X_n is independent and identically distributed, with $E(X_i) = \mu$, $V(X_i) = \sigma^2$ (i = 1, 2, ..., n), then

$$\lim_{n \to \infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n} X_i - \mu\right| < \varepsilon\right) = 1$$

for any $\varepsilon > 0$.

Proof $\frac{1}{n} \sum_{i=1}^{n} X_i$ is a random variable,

Proof $\frac{1}{n}\sum_{i=1}^n X_i$ is a random variable,with mean $E(\frac{1}{n}\sum_{i=1}^n X_i) = \mu$, variance $V(\frac{1}{n}\sum_{i=1}^n X_i) = \sigma^2/n$.

Proof $\frac{1}{n}\sum_{i=1}^n X_i$ is a random variable,with mean $E(\frac{1}{n}\sum_{i=1}^n X_i) = \mu$, variance $V(\frac{1}{n}\sum_{i=1}^n X_i) = \sigma^2/n$. According to the Chebyshev's inequality, we have

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|\geq\varepsilon\right)\leq\frac{\sigma^{2}/n}{\varepsilon^{2}}\to0,$$

as $n \to \infty$.

When $n \to \infty$, what is the distribution of $\sum_{i=1}^{n} X_i$?

When $n \to \infty$, what is the distribution of $\sum_{i=1}^{n} X_i$?

Answer: Under some conditions, $\sum_{i=1}^{n} X_i$ will follow the normal distribution as $n \to \infty$.

We have

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \to N(0,1),$$

as $n \to \infty$. N(0,1) is the standard normal distribution.

We have

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \to N(0,1),$$

as $n \to \infty$. N(0,1) is the standard normal distribution.

This actually is the **central limit theorem**.

Theorem 3

Suppose that random variables $X_1, X_2, ..., X_n$ is independent and identically distributed, with $E(X_i) = \mu$, $V(X_i) = \sigma^2 \neq 0$ (i = 1, 2, ..., n), for any x, it has

$$\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}} \le x\right) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt = \Phi(x)$$

where $\Phi(x)$ is the standard normal distribution function.

Special case

 X_1, X_2, \ldots, X_n is independent and identically distributed, with probability mass function

$$0 1$$

$$1-p p$$

Special case

 X_1 , X_2 , ..., X_n is independent and identically distributed, with probability mass function

$$0 \qquad 1$$

$$1-p \qquad p$$
 then
$$\sum_{i=1}^{n} X_{i} \sim b(x;n,p),$$

Special case

 X_1 , X_2 , ..., X_n is independent and identically distributed, with probability mass function

$$\begin{array}{ccc}
0 & 1 \\
1 - p & p
\end{array}$$

then $\sum_{i=1}^{n} X_i \sim b(x; n, p)$, by using the **central limit theorem**, it has

$$\lim_{n \to n} P\left(\frac{\sum_{i=1}^{n} X_i - np}{\sqrt{np(1-p)}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

Example

 X_1, X_2, \ldots, X_n is independent and identically distributed, X_i is Poisson distributed with parameter $\mu = 2$. Calculate $P(190 < \sum_{i=1}^{100} X_i < 210)$.

Example

 X_1 , X_2 , ..., X_n is independent and identically distributed, X_i is Poisson distributed with parameter $\mu=2$. Calculate $P(190<\sum_{i=1}^{100}X_i<210)$.

It is hard to find the precise distribution for $\sum_{i=1}^{100} X_i$, so we use central limit theorem.

general case:

$$P(a_1 < \sum_{i=1}^n X_i < a_2) = P(\frac{a_1 - n\mu}{\sqrt{n\sigma^2}} < \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} < \frac{a_2 - n\mu}{\sqrt{n\sigma^2}})$$

general case:

$$P(a_1 < \sum_{i=1}^n X_i < a_2) = P(\frac{a_1 - n\mu}{\sqrt{n\sigma^2}} < \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} < \frac{a_2 - n\mu}{\sqrt{n\sigma^2}})$$

$$\approx \Phi(\frac{a_2 - n\mu}{\sqrt{n\sigma^2}}) - \Phi(\frac{a_1 - n\mu}{\sqrt{n\sigma^2}})$$

Example

 X_1 , X_2 , ..., X_n is independent and identically distributed, X_i is Poisson distributed with parameter $\mu=2$. Calculate $P(190<\sum_{i=1}^{100}X_i<210)$.

Example

 X_1 , X_2 , ..., X_n is independent and identically distributed, X_i is Poisson distributed with parameter $\mu=2$. Calculate $P(190<\sum_{i=1}^{100}X_i<210)$.

Solution Since
$$E(X_i) = 2$$
, $V(X_i) = 2$, $i = 1, 2, ..., 100$
$$P(190 < \sum_{i=1}^{100} X_i < 210)$$

$$= P(\frac{190 - 200}{\sqrt{200}} < \frac{\sum_{i=1}^{n} X_i - 200}{\sqrt{200}} < \frac{210 - 200}{\sqrt{200}})$$

$$\approx \Phi(\frac{210 - 200}{\sqrt{200}}) - \Phi(\frac{190 - 200}{\sqrt{200}})$$