```
In [25]:
                                                                                                        H
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
In [26]:
divorce_data = pd.read_csv('divorce_data.csv')
In [27]:
                                                                                                        M
divorce_data.head()
Out[27]:
   Atr1 Atr2 Atr3 Atr4 Atr5 Atr6 Atr7 Atr8 Atr9 Atr10 ... Atr46 Atr47 Atr48 Atr49 Atr
 0
      2
            2
                            0
                                  0
                                            0
                                                         0
                                                                  2
                                                                         1
                                                                                3
                                                                                      3
 1
      4
            4
                 4
                      4
                            4
                                  0
                                       0
                                            4
                                                  4
                                                        4 ...
                                                                  2
                                                                         2
                                                                               3
                                                                                      4
 2
      2
            2
                 2
                      2
                            1
                                 3
                                       2
                                                  1
                                                        2 ...
                                                                  3
                                                                         2
                                                                                3
                                            1
                                                                                      1
            2
                       2
                                                        3 ...
                                                                  2
                                                                         2
 3
      3
                 3
                            3
                                  3
                                       3
                                            3
                                                  3
                                                                                3
                                                                                      3
      2
            2
                                            0
                                                        0 ...
                                                                  2
                                                                                2
                                                                                      3
 4
                 1
                            1
                                  1
                                       0
                                                  0
                                                                         1
5 rows × 55 columns
In [28]:
                                                                                                        M
divorce_data.tail()
Out[28]:
     Atr1
           Atr2 Atr3
                     Atr4
                           Atr5
                                Atr6
                                      Atr7
                                           Atr8
                                                 Atr9
                                                      Atr10 ... Atr46
                                                                      Atr47 Atr48 Atr49 /
                                                                                  4
 165
        0
              0
                   0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
                                                           0
                                                                    1
                                                                           0
                                                                                        1
 166
        0
              0
                   0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
                                                           0
                                                                    4
                                                                           1
                                                                                  2
                                                                                        2
                                                                                  2
 167
              1
                              0
                                         0
                                               0
                                                    0
                                                           1
                                                                    3
                                                                           0
                                                                                        0
        1
                   0
                         0
                                    0
                                                                    3
                                                                                  2
 168
        0
              0
                   0
                         0
                              0
                                    0
                                         0
                                               0
                                                    0
                                                           0
                                                                           3
                                                                                        2
 169
        0
              0
                   0
                         0
                              0
                                    0
                                         0
                                               1
                                                    0
                                                           0
                                                                    3
                                                                                        0
5 rows × 55 columns
```

In [29]:

divorce_data.shape

Out[29]:

(170, 55)

In [30]: ▶

divorce_data.columns

Out[30]:

In [31]:

N

```
with open('divorce.txt') as f:
    contents = f.read()
    print(contents)
```

- 1. If one of us apologizes when our discussion deteriorates, the discussion ends.
- 2. I know we can ignore our differences, even if things get hard sometime s.
- 3. When we need it, we can take our discussions with my spouse from the be ginning and correct it.
- 4. When I discuss with my spouse, to contact him will eventually work.
- 5. The time I spent with my wife is special for us.
- 6. We don't have time at home as partners.
- 7. We are like two strangers who share the same environment at home rather than family.
- 8. I enjoy our holidays with my wife.
- 9. I enjoy traveling with my wife.
- 10. Most of our goals are common to my spouse.
- 11. I think that one day in the future, when I look back, I see that my sp ouse and I have been in harmony with each other.
- 12. My spouse and I have similar values in terms of personal freedom.
- 13. My spouse and I have similar sense of entertainment.
- 14. Most of our goals for people (children, friends, etc.) are the same.
- 15. Our dreams with my spouse are similar and harmonious.
- 16. We're compatible with my spouse about what love should be.
- 17. We share the same views about being happy in our life with my spouse
- 18. My spouse and I have similar ideas about how marriage should be
- 19. My spouse and I have similar ideas about how roles should be in marria ge
- 20. My spouse and I have similar values in trust.
- 21. I know exactly what my wife likes.
- 22. I know how my spouse wants to be taken care of when she/he sick.
- 23. I know my spouse's favorite food.
- 24. I can tell you what kind of stress my spouse is facing in her/his lif e.
- 25. I have knowledge of my spouse's inner world.
- 26. I know my spouse's basic anxieties.
- 27. I know what my spouse's current sources of stress are.
- 28. I know my spouse's hopes and wishes.
- 29. I know my spouse very well.
- 30. I know my spouse's friends and their social relationships.
- 31. I feel aggressive when I argue with my spouse.
- 32. When discussing with my spouse, I usually use expressions such as â€~y ou always' or â€~you never' .
- 33. I can use negative statements about my spouse's personality during our discussions.
- 34. I can use offensive expressions during our discussions.
- 35. I can insult my spouse during our discussions.
- 36. I can be humiliating when we discussions.
- 37. My discussion with my spouse is not calm.
- 38. I hate my spouse's way of open a subject.
- 39. Our discussions often occur suddenly.
- 40. We're just starting a discussion before I know what's going on.
- 41. When I talk to my spouse about something, my calm suddenly breaks.
- 42. When I argue with my spouse, ı only go out and I don't say a word.
- 43. I mostly stay silent to calm the environment a little bit.
- 44. Sometimes I think it's good for me to leave home for a while.
- 45. I'd rather stay silent than discuss with my spouse.

- 46. Even if I'm right in the discussion, I stay silent to hurt my spouse.
- 47. When I discuss with my spouse, I stay silent because I am afraid of no t being able to control my anger.
- 48. I feel right in our discussions.
- 49. I have nothing to do with what I've been accused of.
- 50. I'm not actually the one who's guilty about what I'm accused of.
- 51. I'm not the one who's wrong about problems at home.
- 52. I wouldn't hesitate to tell my spouse about her/his inadequacy.
- 53. When I discuss, I remind my spouse of her/his inadequacy.
- 54. I'm not afraid to tell my spouse about her/his incompetence.

In [32]: ▶

```
divorce_data.info()
```

<pre><class 'pandas.core.frame.dataframe'=""></class></pre>						
	169					
		(total 55 column				
#	Column	Non-Null Count	Dtype			
0	Atr1	170 non-null	int64			
1	Atr2	170 non-null	int64			
2	Atr3	170 non-null	int64			
3	Atr4	170 non-null	int64			
4	Atr5	170 non-null	int64			
5	Atr6	170 non-null	int64			
6	Atr7	170 non-null	int64			
7	Atr8	170 non-null	int64			
8	Atr9	170 non-null	int64			
9	Atr10	170 non-null	int64			
10	Atr11	170 non-null	int64			
11	Atr12	170 non-null	int64			
12	Atr13	170 non-null	int64			
13	Atr14	170 non-null	int64			
14	Atr15	170 non-null	int64			
15	Atr16	170 non-null	int64			
16	Atr17	170 non-null	int64			
17	Atr18	170 non-null	int64			
18	Atr18	170 non-null	int64			
19						
	Atr20		int64			
20	Atr21	170 non-null	int64			
21	Atr22	170 non-null	int64			
22	Atr23	170 non-null	int64			
23	Atr24	170 non-null	int64			
24	Atr25	170 non-null	int64			
25	Atr26	170 non-null	int64			
26	Atr27	170 non-null	int64			
27	Atr28	170 non-null	int64			
28	Atr29	170 non-null	int64			
29	Atr30	170 non-null	int64			
30	Atr31	170 non-null	int64			
31	Atr32	170 non-null	int64			
32	Atr33	170 non-null	int64			
33	Atr34	170 non-null	int64			
34	Atr35	170 non-null	int64			
35	Atr36	170 non-null	int64			
36	Atr37	170 non-null	int64			
37	Atr38	170 non-null	int64			
38	Atr39	170 non-null	int64			
39	Atr40	170 non-null	int64			
40	Atr41	170 non-null	int64			
41	Atr42	170 non-null	int64			
42	Atr43	170 non-null	int64			
43	Atr44	170 non-null	int64			
44	Atr45	170 non-null	int64			
45	Atr46	170 non-null	int64			
46	Atr47	170 non-null	int64			
47	Atr48	170 non-null	int64			
48	Atr49	170 non-null	int64			
49	Atr50	170 non-null	int64			
50						
שכ	Atr51	170 non-null	int64			

51 Atr52 170 non-null int64 52 Atr53 170 non-null int64 53 Atr54 170 non-null int64 54 Class 170 non-null int64

dtypes: int64(55)
memory usage: 73.2 KB

In [33]:

divorce_data.describe()

Out[33]:

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	
count	170.000000	170.000000	170.000000	170.000000	170.000000	170.000000	170.000000	1
mean	1.776471	1.652941	1.764706	1.482353	1.541176	0.747059	0.494118	
std	1.627257	1.468654	1.415444	1.504327	1.632169	0.904046	0.898698	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	2.000000	2.000000	2.000000	1.000000	1.000000	0.000000	0.000000	
75%	3.000000	3.000000	3.000000	3.000000	3.000000	1.000000	1.000000	
max	4.000000	4.000000	4.000000	4.000000	4.000000	4.000000	4.000000	

8 rows × 55 columns

H In [34]:

```
divorce_data.isnull().sum()
```

- Out[34]: Atr1 0 Atr2 0 Atr3 0 Atr4 0 Atr5 0 0 Atr6 Atr7 0 Atr8 0 Atr9 0 Atr10 0 Atr11 0 Atr12 0 Atr13 0 Atr14 0 Atr15 0 Atr16 0 Atr17 0 Atr18 0 Atr19 0 Atr20 0 Atr21 0 0 Atr22 Atr23 0
- Atr27 Atr28

Atr24

Atr25

Atr26

0

0

0 0

0

0

- Atr29
- Atr30 0
- Atr31 0
- Atr32 0
- Atr33 0
- Atr34 0
- Atr35 0
- 0 Atr36 Atr37 0
- 0 Atr38
- Atr39 0
- Atr40 0
- Atr41 0
- Atr42
- Atr43 0

0

- 0 Atr44
- Atr45 0
- Atr46 0
- 0 Atr47
- Atr48 0
- 0 Atr49
- Atr50 0
- 0 Atr51 Atr52 0
- 0 Atr53
- Atr54

5/6/22, 11:35 PM

Class 0 dtype: int64

In [35]:

divorce_data.nunique()

Out[35]:			
Atr1	5		
Atr2	5		
Atr3	5		
Atr4	5		
Atr5	5		
Atr6	5		
Atr7	5		
Atr8	5		
Atr9	5		
Atr10	5		
Atr11	5		
Atr12	5		
Atr13	5		
Atr14	5		
Atr15	5		
Atr16	5		
Atr17	5		
Atr18	5		
Atr19	5		
Atr20	5		
Atr21	5		
Atr22	5		
Atr23	5		
Atr24	5		
Atr25	5		
Atr26	5		
Atr27	5		
Atr28	5		
Atr29	5		
Atr30	5		
Atr31	5		
Atr32	5 5		
Atr33 Atr34			
Atr35	5 5		
Atr36	5		
Atr37	5		
Atr38	5		
Atr39	5		
Atr40	5		
Atr41	5		
Atr42	5		
Atr43	5		
Atr44	5		
Atr45	5		
Atr46	5		
Atr47	5		
Atr48	5		
Atr49	5		
Atr50	5		
Atr51	5		
Atr52	5		
Atr53	5		

Atr54

5/6/22, 11:35 PM

Class 2 dtype: int64

_

```
M
In [36]:
divorce_data['Class'].values
Out[36]:
In [37]:
                                  H
divorce_data['Class'].unique()
Out[37]:
array([1, 0], dtype=int64)
In [38]:
divorce_data['Class'].value_counts()
Out[38]:
  86
  84
1
Name: Class, dtype: int64
In [39]:
plt.figure(figsize=(15,6))
sns.countplot('Class', data = divorce_data)
plt.xticks(rotation = 90)
plt.show()
80
60
40
20
```

In [40]:


```
In [41]: ▶
```

```
plt.figure(figsize=(15,6))
sns.histplot(x=divorce_data['Class'],y=divorce_data.index)
plt.xticks(rotation = 90)
plt.show()
```


In [43]: ▶

In [44]: ▶

divorce_data.corr()

Out[44]:

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	Atr8	At
Atr1	1.000000	0.819066	0.832508	0.825066	0.881272	0.287140	0.427989	0.802357	0.8459
Atr2	0.819066	1.000000	0.805876	0.791313	0.819360	0.102843	0.417616	0.864284	0.8277
Atr3	0.832508	0.805876	1.000000	0.806709	0.800774	0.263032	0.464071	0.757264	0.8166
Atr4	0.825066	0.791313	0.806709	1.000000	0.818472	0.185963	0.474806	0.798347	0.8290
Atr5	0.881272	0.819360	0.800774	0.818472	1.000000	0.297834	0.381378	0.877584	0.9163
Atr6	0.287140	0.102843	0.263032	0.185963	0.297834	1.000000	0.424212	0.184019	0.30134
Atr7	0.427989	0.417616	0.464071	0.474806	0.381378	0.424212	1.000000	0.412807	0.5175
Atr8	0.802357	0.864284	0.757264	0.798347	0.877584	0.184019	0.412807	1.000000	0.91530
Atr9	0.845916	0.827711	0.816653	0.829053	0.916327	0.301342	0.517522	0.915301	1.00000
Atr10	0.790183	0.782286	0.753017	0.873636	0.823659	0.266076	0.498266	0.828031	0.8523
Atr11	0.892253	0.823380	0.805915	0.808533	0.936955	0.340135	0.432479	0.889795	0.9115
Atr12	0.794307	0.862835	0.780258	0.793992	0.846513	0.209801	0.511761	0.890338	0.8690
Atr13	0.842996	0.791073	0.758969	0.751623	0.915033	0.305109	0.373361	0.840350	0.87304
Atr14	0.817099	0.875800	0.750602	0.757000	0.845576	0.224459	0.491021	0.888822	0.8681;
Atr15	0.848754	0.801316	0.806909	0.794184	0.879461	0.323787	0.494110	0.873804	0.94904
Atr16	0.831822	0.806497	0.775528	0.878416	0.853561	0.311056	0.573290	0.865680	0.8933
Atr17	0.895970	0.822317	0.808161	0.809968	0.947429	0.377330	0.461450	0.881005	0.92230
Atr18	0.853739	0.883856	0.797395	0.835296	0.894474	0.251856	0.544550	0.941084	0.92554
Atr19	0.900446	0.829422	0.798999	0.832750	0.943349	0.365227	0.469995	0.873546	0.9164
Atr20	0.840966	0.884176	0.807892	0.815896	0.892909	0.230486	0.544207	0.922465	0.9022
Atr21	0.815708	0.790468	0.796069	0.775132	0.871994	0.273564	0.409827	0.861939	0.9094;
Atr22	0.785280	0.795406	0.727933	0.839534	0.840265	0.220010	0.378915	0.857010	0.8499
Atr23	0.822534	0.773018	0.706585	0.744783	0.888584	0.246478	0.254912	0.845731	،0.8502
Atr24	0.813233	0.868240	0.740476	0.776640	0.833608	0.191458	0.446469	0.896841	0.85100
Atr25	0.822084	0.769244	0.724506	0.736228	0.888740	0.291159	0.288867	0.809110	0.8387
Atr26	0.803507	0.861421	0.728653	0.762765	0.836194	0.200634	0.443149	0.883414	0.8502
Atr27	0.829037	0.817364	0.797595	0.767206	0.883768	0.283895	0.444643	0.848766	0.9039
Atr28	0.762102	0.776943	0.689914	0.827847	0.809789	0.254858	0.351262	0.822361	0.8180
Atr29	0.858139	0.789827	0.755491	0.781792	0.925601	0.309302	0.349379	0.860194	،0.8788
Atr30	0.792257	0.844007	0.752391	0.772562	0.837501	0.266464	0.448569	0.902820	0.8544
Atr31	0.699223	0.661210	0.652188	0.661251	0.785038	0.247634	0.334308	0.716731	0.7456
Atr32	0.739679	0.735763	0.747669	0.746677	0.832032	0.316605	0.442306	0.762425	0.8033

	Atr1	Atr2	Atr3	Atr4	Atr5	Atr6	Atr7	Atr8	At
Atr33	0.799735	0.757286	0.726481	0.764381	0.879037	0.292037	0.395764	0.818682	0.84490
Atr34	0.749774	0.714360	0.702500	0.729022	0.827560	0.279789	0.328700	0.780778	0.8101;
Atr35	0.796413	0.753566	0.730290	0.770813	0.878289	0.276539	0.349076	0.827441	0.85494
Atr36	0.812867	0.781295	0.744390	0.794636	0.887498	0.287708	0.370158	0.845435	0.8716
Atr37	0.786890	0.747088	0.736984	0.760451	0.859581	0.281458	0.431979	0.800964	0.83900
Atr38	0.804129	0.751705	0.740642	0.790350	0.852601	0.297791	0.401769	0.815830	0.84940
Atr39	0.817035	0.787768	0.759820	0.763502	0.866293	0.296121	0.477063	0.797134	0.8506;
Atr40	0.838355	0.788200	0.781657	0.798520	0.871809	0.351433	0.501758	0.822302	0.87560
Atr41	0.804182	0.780757	0.739967	0.768706	0.864434	0.329765	0.445483	0.821081	0.8524
Atr42	0.642307	0.648539	0.569293	0.639671	0.737922	0.227993	0.333211	0.699571	0.73740
Atr43	0.482223	0.503894	0.385152	0.452479	0.613142	0.171599	0.149930	0.555187	0.5856
Atr44	0.752972	0.699765	0.661830	0.707212	0.799453	0.339918	0.425874	0.760016	0.80860
Atr45	0.510160	0.489062	0.427409	0.446798	0.591656	0.094820	0.199548	0.542547	0.5753;
Atr46	0.400296	0.389519	0.308149	0.340240	0.470758	0.127759	0.069850	0.433541	0.4343
Atr47	0.582693	0.616884	0.544863	0.552301	0.719899	0.212979	0.254225	0.675584	0.6938;
Atr48	0.633564	0.643762	0.638256	0.630205	0.659220	0.200673	0.311110	0.588531	0.6117;
Atr49	0.674843	0.659841	0.647961	0.699069	0.762257	0.201091	0.291325	0.674776	0.71150
Atr50	0.725443	0.680538	0.663995	0.685263	0.795960	0.221100	0.332370	0.729668	0.75550
Atr51	0.684143	0.636558	0.600603	0.624015	0.742664	0.179119	0.349920	0.690190	0.7137!
Atr52	0.575463	0.536294	0.491803	0.534264	0.663855	0.205056	0.243104	0.658613	0.6523
Atr53	0.611422	0.610726	0.598749	0.588390	0.719493	0.258092	0.313725	0.705071	0.6992
Atr54	0.768522	0.728897	0.673012	0.698264	0.836799	0.292428	0.347493	0.807911	0.8109
Class	0.861324	0.820774	0.806709	0.819583	0.893180	0.420913	0.544835	0.869569	0.91230

5/6/22, 11:35 PM Divorce Prediction using Machine Learning - Jupyter Notebook In [47]: plt.figure(figsize=(15,6)) sns.heatmap(divorce_data.corr()) plt.show() - 1.0 Atr3 Atr5 Atr7 0.8 Atr13 Atr15 Atr17 Atr19 Atr21 Atr23 Atr25 0.6 Atr29 Atr31 Atr33 Atr35 0.4 Atr39 Atr41 Atr43 Atr45 Atr47 Atr49 0.2 Atr51 H In [48]: x = divorce_data.drop('Class',axis =1)

```
y = divorce_data['Class']
```

```
In [49]:
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y,
                                                     test_size=0.15,
```

```
In [50]:
                                                                                               M
```

random_state=42)

```
# importing module
from sklearn.linear_model import LinearRegression
# creating an object of LinearRegression class
LR = LinearRegression()
# fitting the training data
LR.fit(x_train,y_train)
```

Out[50]:

LinearRegression()

```
In [51]:
y_prediction = LR.predict(x_test)
y_prediction
Out[51]:
array([-2.98242255e-01, 1.04218550e+00, -1.91789945e-02, 1.03862867e+00,
        7.03564733e-02, -8.35928052e-04, 2.07739887e-02, 1.00384295e+00,
        9.70405323e-02, 9.92217945e-01, 1.06361244e+00, 1.53710970e-01,
        8.89485246e-02, 1.01424057e+00, 9.14619813e-01, -1.58940064e-01,
        1.04075060e+00, -4.42718464e-02, 9.76082286e-01, 2.16106731e-01,
        1.00445617e+00, 1.06361244e+00, 9.79472390e-01, 1.06082144e+00,
        1.06929121e+00, 3.62517357e-01])
                                                                                         H
In [53]:
print("Training Accuracy :", LR.score(x_train, y_train))
print("Testing Accuracy :", LR.score(x_test, y_test))
Training Accuracy : 0.9714138394151279
Testing Accuracy: 0.8981950750068269
In [57]:
                                                                                         Н
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from tensorflow.keras.models import Sequential # initialize neural network library
from tensorflow.keras.layers import Dense # build our layers library
In [58]:
                                                                                         H
def build classifier():
    classifier = Sequential() # initialize neural network
    classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'
    classifier.add(Dense(units = 4, kernel_initializer = 'uniform', activation = 'relu')
    classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmo:
    classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['acc
    return classifier
```

```
M
In [59]:
classifier = KerasClassifier(build_fn = build_classifier, epochs = 50)
accuracies = cross_val_score(estimator = classifier, X = x_train, y = y_train, cv = 2)
mean = accuracies.mean()
variance = accuracies.std()
Epoch 1/50
uracy: 0.5417
Epoch 2/50
racy: 0.5417
Epoch 3/50
racy: 0.5417
Epoch 4/50
racy: 0.5417
Epoch 5/50
racy: 0.5417
Epoch 6/50
racy: 0.5417
Epoch 7/50
In [61]:
                                                     M
print("Accuracy mean: "+ str(mean))
Accuracy mean: 0.9722222089767456
                                                     H
In [62]:
from sklearn.ensemble import RandomForestClassifier
In [68]:
                                                     H
clf = RandomForestClassifier()
In [69]:
clf.fit(x_train, y_train)
Out[69]:
RandomForestClassifier()
In [70]:
                                                     М
y_pred = clf.predict(x_test)
```

In [71]:

```
print("Training Accuracy :", clf.score(x_train, y_train))
print("Testing Accuracy :", clf.score(x_test, y_test))
```

Training Accuracy : 1.0

Testing Accuracy : 0.9615384615384616

In [72]: ▶

```
from sklearn import metrics
print()

# using metrics module for accuracy calculation
print("ACCURACY OF THE MODEL: ", metrics.accuracy_score(y_test, y_pred))
```

ACCURACY OF THE MODEL: 0.9615384615384616