```
ion formValidation(){
ign the fields
ar firstname=document.getElementById('fnam
ar middlename= document.getElementById('m
ar lastname= document.getElementById('lr
ar user_id = document.getElementById('v
ar phone = document.getElementById('ph
ar username = document.getElementById
ar password = document.getElementBy/
ar cpassword = document.getElementF
irstname=document.getElementById(
irstname=document.getElementById/
irstname=document.getElementByI/
irstname=document.getElementB
irstname=document.getElement
irstname=document.('');if(i
irstname=document.('');if(
irstname=document.('');if
irstname=document.getEle
!@#$%^&*()*+=~`) Not al
irstname=document.getF
irstname=document.get
assword (!@#$%^&*()*
irstname=document.c
irstname=document,
sername(!@#$%^&*
irstname=documer
irstname=docum/
irstname=docur
```

eturn true;

Réalisation durant le stage de 1^{ère} année :

Application NPSA-NG

Compétence n°5 : Mettre à disposition des utilisateurs un service informatique

Syméon VACHOT

Contexte

→ Refonte d'une application développée en **Perl** en **1998**

Objectif: Avoir des rendus plus user friendly (adaptée niveau UX/UI)

Ancienne interface web du webservice ClustalW (Input)

Interface web du webservice Alphafold2 (Input)

Sortie post calcul du webservice Alphafold2 (Output)

Rôles

→ Déploiement de la solution en production

Objectif: Déploiement final de la solution sur le cluster de calcul

Rendu visuel d'alphafold2 sans options

Rôles

→ Création d'une documentation utilisateur

Objectif: Permettre aux futurs utilisateurs d'appréhender la manipulation du webservice

Documentation_Alphafold2_NPSA-NG

Documentation Utilisateur : Utilisation du Webservice AlphaFold2 dans NPSA-NG

Introduction

Ce guide présente les étapes pour soumettre une séquence protéique à AlphaFold2 via l'application web NPSA-NG, visualiser les résultats, et interagir avec les modèles prédits.

Étape 1 : Remplir les champs d'entrée

Avant de soumettre un job, veuillez renseigner les informations suivantes dans le formulaire :

- Séquence protéique : Entrer la séquence au format FASTA.
- Titre du job : Nom personnalisé pour retrouver facilement votre tâche.
- Adresse e-mail: Pour recevoir les notifications (facultatif selon configuration).
- Modèles de protéines proposés : Sélectionner parmi les modèles prédéfinis.
- Nombre de prédictions souhaitées : Définir combien de modèles doivent être générés.
- Autres paramètres: Options avancées selon vos besoins (ex.: recadrage, base de données, etc.).

Étape 2 : Soumettre le job

Une fois le formulaire complété :

- · Cliquez sur "Submit" pour lancer l'analyse.
- Une barre de statut vous indique la progression du job
 - Queued : en file d'attente
 - Running: en cours de traitement
 - Finished : traitement terminé

Étape 3 : Suivre vos jobs

Tous les jobs soumis sont accessibles via la section "My Jobs" (dans la barre de navigation principale).

Pour chaque job, vous pouvez voir :

- UUID du job
- Titre donné au job
- Webservice utilisé (ici : AlphaFold2)
- Date de soumission
- Statut actuel (Queued / Running / Finished)
- Action possible: suppression du job

Étape 4 : Visualisation des résultats

En cliquant sur un job dans "My Jobs", vous êtes redirigé vers une page de visualisation détaillée :

- Titre du job
- Visualiseur 3D de la protéine générée
- Alignement entre la structure 3D et la séguence soumise
- Matrice de confiance PAE (Predicted Aligned Error) pour estimer la fiabilité de chaque région du modèle

Étape 5 : Interactions avancées

Sur la page de visualisation :

- Changer de modèle: via le menu déroulant "Selected model", vous pouvez afficher un autre des modèles générés.
- Interaction avec la séquence :
 - Cliquer sur un résidu dans la séquence met en évidence le résidu correspondant dans la vue 3D.
- Interaction avec la matrice de confiance (PAE) :
 - Cliquer sur une cellule de la matrice met en évidence les acides aminés concernés dans la séquence et dans le viewer 3D.

Remarques

- Les modèles sont générés via le backend AlphaFold2, cela peut prendre plusieurs minutes selon la taille de la protéine et la file d'attente.
- Les données sont stockées temporairement : pensez à les sauvegarder si nécessaire.

Support

Pour tout problème technique ou question fonctionnelle, contactez l'équipe support via l'onglet "Contact" ou par mail à : support@npsa-ng.org.

Rôles

→ Création d'une documentation technique

<u>Objectif</u>: Permettre aux futurs techniciens et développeur de comprendre les choix techniques effectués pour mieux reprendre le projet

Commande principale de lancement de l'application

Structure de l'environnement de production

Compétences acquises et difficultés rencontrées

Compétences acquises

- Déploiement en production
 Premier déploiement du développement à la production
- Gestion complète d'un projet
 Gestion du projet du développement au design jusqu'aux documentations finales
- Insertion professionnelle
 Appréhension du déploiement dans un contexte professionnel

Difficultés rencontrées

- Mauvais changement des variables d'environnement
- Blocage de certaines requêtes du reverse proxy

Résultat

Déploiement

Déploiement du webservice en production terminé et fonctionnel lors de mon départ

Doc. utilisateur

Documentation utilisateur terminée et publiée sur GitHub

Doc. technique

Documentation technique terminée et publiée sur GitHub