

University of Geneva
Faculty of Science & CUI
Zahra Jaleh, Seyedvahid Mousavinezhad

>> TABLE OF CONTENTS

- 1 About the Game Gameplay, Goals, Game's Control
- 2 Research Question 6 Us
 - How can data be collected? What about the noise?
- Flow, ECG
- Modalities
 Inputs, Outputs

- 5 Tools and Applications
 Bitalino, Unity3D, VS Code,
 Unity Remote, OpenSignals
- 6 User Test
 Process, Results,
 Observations
- 7 Future Work
 How to explore more?
- 8 References
 Websites, Articles

About Cheesy Math

01 Cheesy Math I

Objective

> The project aims to assess how the quality of human performance in solving easy math problems differs when individuals focus solely on math puzzles versus when playing a video game.

Game

For this purpose, we've created a runner game with two-player control. In the game, they collect cheese and solve math puzzles.

01 Cheesy Math II

Game Play

01 Cheesy Math III

Updates I

Professor Chanel

➤ When Mousy approaches the right and left boundaries too closely, players hear different alarms. It helps the second player better control the character.

01 Cheesy Math IV

Updates II

Professor Moccozet

> Count the number of speed changes during the game for each participant.

```
if fastValueOld != fastValue:
    time_save = datetime.datetime.now() - start_game
    result.append({'id': it, 'time': int(time_save.total_seconds()), 'HR mean': HR_mean, 'fast value': fastValue})
    result_df = pd.DataFrame(result)
    result_df.to_csv(result_path, index=False)
    it += 1
```

	Α	В	С	D
1	id	time	HR mean	fast value
2	1	30	85.02	1
3	2	61	95.3	0
4	3	112	85.41	1
5	4	122	92.64	0
6	5	133	80.92	1
7	6	153	88.14	0
8	7	164	84.64	1
9	8	235	90.12	0
10	9	245	84.79	1
11	10	255	85.93	0

Research Question

02 Research Question I

How does playing video games affect human performance in solving easy math problems?

- ➤ Before the game, one player answers 10 math questions in 1 minute (Six seconds per question).
- > During the game, they respond to similar questions.
- Measure the differences in their math-solving performance.

02 Research Question II

What about the noisy data?

- > A supervisor notes player one's answers while they guide player two.
- > It helps to reveal interaction errors.

02 Research Question II

Hypothesis

- An underlying assumption in our research is that the player's math-solving performance during the game would likely be less accurate compared to when they were not playing.
- > This hypothesis is rooted in the notion that the act of gaming introduces multitasking and distractions that could affect performance.

Emotional Model

04 Emotional Model I

Flow

> Change the speed of the character based on the changes in heart rate.

> In different levels of difficulty, the HR will change, with higher HR as the difficulty increases. *

* Tian Y, Bian Y, Han P, Wang P,Gao F and Chen Y (2017) Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty. Front. Psychol. 8:1121. doi: 10.3389/fpsyg.2017.01121

04 Emotional Model II

Flow

- > Before the game, we set a baseline heart rate (HR) for player one by calculating the mean.
- During the game, we dynamically adjust the character's speed based on their heart rate mean fluctuations.

```
# ECG signal processing using biosppy library and extract Heart Rate
HR = ecg.ecg(signal=ECG_list, sampling_rate=1000., show=False)["heart_rate"]
# Compute HR mean for each window
HR_mean = np.round(np.mean(HR), 2)
```

04 Emotional Model III

For each window size of 10 seconds:

- > If the player's Mean of HR dropped below the baseline, indicating a decrease in arousal or engagement
 - Increase the character's speed
- If the HR exceeded the baseline, indicating heightened arousal
 - Decrease the character's speed

```
if HR_mean < baseline and fastValue == 0:
    fastValue = 1
    print("go faster")

if HR_mean > baseline:
    fastValue = 0
    print("go slower")
```

OpenSignals Saved Data

ത

ransferred

04 Problem Fixed

HR label

ECG label

```
# OpenSignals Text File Format. Version 1
# {"00:21:06:BE:15:D9": {"position": 0, "device": "bitalino rev", "device name":
"00:21:06:BE:15:D9", "device connection": "BTH00:21:06:BE:15:D9", "sampling rate": 1000,
"resolution": [4, 1, 1, 1, 1, 10, 10, 10, 10, 6, 6], "firmware version": 1282, "comments":
"", "keywords": "", "mode": 0, "sync interval": 2, "date": "2023-8-17", "time":
 "10:37:31.126", "channels": [1, 2, 3, 4, 5, 6], "sensor": ["RAW", "HR", "RAW", "RAW", "RAW"
 "RAW"], "label": ["A1", "A2", "A3", "A4", "A5", "A6"], "column": ["nSeq", "I1", "I2", "O1",
"02", "A1", "A2", "A3", "A4", "A5", "A6"], "special": [{}, {}, {}, {}, {}], "digital
IO": [0, 0, 1, 1]}}
# EndOfHeader
                                                606
                                                613
                                                615
                                                614
                                                595
                                                576
                                                548
                                                507
                                                472
                                                445
```

```
# OpenSignals Text File Format. Version 1
# {"00:21:06:BE:15:D9": {"position": 0, "device": "bitalino rev", "device name":
 resolution": [4, 1, 1, 1, 1, 10, 10, 10, 10, 6, 6], "firmware version": 1282, "comments":
"", "keywords": "", "mode": 0, "sync interval": 2, "date": "2023-8-17", "time":
"10:54:35.279", "channels": [1, 2, 3, 4, 5, 6], "sensor": ["RAW", "ECGBIT", "RAW", "RAW",
<u>"RAW", "RAW"], "label": ["A1<sup>"</sup>, "A2", "A3", "A4", "A5", "A6<sup>"</sup>], "column": ["nSeq", "I1", "I2",</u>
"01", "02", "A1", "A2", "A3", "A4", "A5", "A6"], "special": [{}, {}, {}, {}, {}],
"digital IO": [0, 0, 1, 1]}}
# EndOfHeader
                                            501
                                            504
                                            507
                                            508
                                            511
                                            510
                                            510
                                            509
                                            508
                                            508
```

```
Heart Rate =
              [4.0, 0.0, 132.39999389648438, 0.0, 0.0, 0.0, 0.0]
              [5.0, 1.0, 132.0, 0.0, 0.0, 0.0, 0.0]
Heart Rate =
Heart Rate =
              [6.0, 0.0, 132.0, 0.0, 0.0, 0.0, 0.0]
Heart Rate =
              [7.0, 0.0, 132.1999969482422, 0.0, 0.0, 0.0, 0.0]
              [8.0, 0.0, 133.1999969482422, 0.0, 0.0, 0.0, 0.0]
Heart Rate =
Heart Rate =
              [9.0, 0.0, 134.1999969482422, 0.0, 0.0, 0.0, 0.0]
              [10.0, 0.0, 134.39999389648438, 0.0, 0.0, 0.0, 0.0]
Heart Rate =
Heart Rate =
              [11.0, 0.0, 134.6999969482422, 0.0, 0.0, 0.0, 0.0]
              [12.0, 0.0, 135.1999969482422, 0.0, 0.0, 0.0, 0.0]
Heart Rate =
              [13.0, 1.0, 135.1999969482422, 0.0, 0.0, 0.0, 0.0]
Heart Rate =
Heart Rate = [14.0, 0.0, 134.6999969482422, 0.0, 0.0, 0.0, 0.0]
Heart Rate = [15.0, 0.0, 134.6999969482422, 0.0, 0.0, 0.0, 0.0]
```

```
ECG = [12.0, 0.0, 0.0032999999821186066, 0.0, 0.0, 0.0, 0.0]

ECG = [13.0, 0.0, 0.0038999998942017555, 0.0, 0.0, 0.0, 0.0]

ECG = [14.0, 0.0, 0.0032999999821186066, 0.0, 0.0, 0.0, 0.0]

ECG = [15.0, 1.0, 0.00279999990016222, 0.0, 0.0, 0.0, 0.0]

ECG = [0.0, 0.0, 0.0017000000225380063, 0.0, 0.0, 0.0, 0.0]

ECG = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0]

ECG = [2.0, 0.0, -0.002199999988079071, 0.0, 0.0, 0.0, 0.0]

ECG = [3.0, 0.0, -0.0032999999821186066, 0.0, 0.0, 0.0, 0.0]

ECG = [4.0, 0.0, -0.003899999888241291, 0.0, 0.0, 0.0, 0.0]

ECG = [5.0, 0.0, -0.004999999888241291, 0.0, 0.0, 0.0, 0.0]

ECG = [6.0, 0.0, -0.007199999876320362, 0.0, 0.0, 0.0, 0.0]

ECG = [7.0, 1.0, -0.008899999782443047, 0.0, 0.0, 0.0, 0.0]
```

04 Problem Fixed

04 Emotional Model IV

Biosppy

```
# ECG signal processing using biosppy library and extract Heart Rate
HR = ecg.ecg(signal=ECG_list, sampling_rate=1000., show=False)["heart_rate"]
```

Compute HR mean for each window
HR_mean = np.round(np.mean(HR), 2)

1. R-Peak Detection

Pan-Tompkins QRS detection algorithm

2. Calculate RR Intervals

Time intervals between 2 successive R-Peaks

3. Calculate Heart Rate

• Heart Rate (BPM) = $\frac{60 \times 1000}{\text{Average RR Interval (ms)}}$

Modalities Inputs & Outputs

04 Modalities I

Inputs

- 1. Movement (Smartphone accelerometer)
 - Move Mousy left and right
- 2. Touch (Laptop touchpad)
 - Jump
- 3. Heart Rate (Bitalino + OpenSignal)
 - Mousy's speed Adjustment

04 Modalities II

Outputs

1. Sound (Speaker)

- Correct and Wrong answer
- Running close to the boundaries
- Crashes

2. Display (Monitor)

- The number of collected cheeses
- Correctness of answers

3. Vibration in Mobile version (Smartphone Sensor)

In case of crashes into obstacles

Tools & Applications

05 Tools & Apps I

Unity3D(v2021.3.9f1)

It's a powerful cross-platform game engine for creating video games,
 VR, and AR apps. Equipped with many tools, a user-friendly interface,
 and a strong C# scripting API.

Visual Studio Code

 A streamlined code editor with support for development operations like debugging, task running, and version control. (C# and Python)

05 Tools & Apps II

Bitalino and OpenSignal

 Bitalino is a device used for heart rate acquisition. Open Signal is its corresponding app designed to collect and transfer data to other applications.

Unity Remote

 Unity Remote is a downloadable app that sends live inputs from Android and iOS devices to Unity projects.

05 Tools & Apps III

Unity Asset Store & Mixamo

 Unity Asset Store is a Unity Technologies online marketplace for developers to discover digital assets like 3D models, 2D textures, animations, audio, and more for their game projects.

Adobe Photoshop & Premier Pro

 Apps for editing photos, videos, and sound used to create game logos and loop music.

User Test

06 User Test I

Participants

- 3 men and 3 women as player 1
- 6 adults with gaming experience

06 User Test II

User Test Process Diagram

06 User Test III

06 User Test IV

Results

Men's Performance

Participant	Baseline of HR	Performance Before the Game		Performance During the Game		Supervisor Observations		Error	Collected	Number of Speed
ID		Correct	Wrong	Correct	Wrong	Correct	Wrong		Cheeses	Changes
MP1	79.46	10	0	5	5	5	5	0	53	12
MP2	85.74	10	0	6	4	8	2	2	44	10
MP3	75.55	9	1	4	6	5	5	1	65	10

06 User Test V

Results

Women's Performance

Participant ID	Baseline of HR	Performance Before the Game		Performance During the Game		Supervisor Observations		Error	Collected	Number of Speed
		Correct	Wrong	Correct	Wrong	Correct	Wrong		Cheeses	Changes
WP1	75.76	10	0	8	2	8	2	0	47	4
WP2	87.33	10	0	9	1	7	3	2	12	3
WP3	85.72	10	0	8	2	7	3	1	19	6

06 User Test VI

Results

Observations I

Participants exhibited a considerable drop in in-game performance compared to their performance before starting the game.

- > The effects of factors that cause distraction in the game for players
- > The impact of multitasking during gameplay

Observations II

The Heart Rate fluctuation was less among female participants compared to male participants.

- Female players may not take the game very seriously or their physiological system undergoes fewer changes during gameplay.
- > Higher character speed variability in male players may affect their performance in answering the math questions.

Observations III

The average heart rate (HR) obtained as the baseline before the game varies among the participants.

Individuals have distinct physiological responses.

Men's Performance

Participant ID	Baseline of HR	Performance Before the Game		Performance During the Game		Supervisor Observations		Error	Collected	Number of Speed
		Correct	Wrong	Correct	Wrong	Correct	Wrong		Cheeses	Changes
MP1	79.46	10	0	5	5	5	5	0	53	12
MP2	85.74	10	0	6	4	8	2	2	44	10
MP3	75.55	9	1	4	6	5	5	1	65	10

Observations IV

The number of cheese items collected by female players was lower than that of male players.

Female players prioritizing the solving of math questions more than collecting cheese items.

Women's Performance

Participant ID	Baseline of HR	Performance Before the Game		Performance During the Game		Supervisor Observations		Error	Collected	Number of Speed
		Correct	Wrong	Correct	Wrong	Correct	Wrong		Cheeses	Changes
WP1	75.76	10	0	8	2	8	2	0	47	4
WP2	87.33	10	0	9	1	7	3	2	12	3
WP3	85.72	10	0	8	2	7	3	1	19	6

Future Work

07 Future Work

- 1. Expanding our participant pool to include a more diverse range of players.
- 2. Change the type of questions. For example:

3. Monitoring the heart rate of player two

References

08 References

1. Character and its animations:

- https://www.mixamo.com/
- https://www.youtube.com/watch?v=2-_V0ZuB2eA&t=354s

2. Environment:

- https://assetstore.unity.com/packages/3d/environments/industrial/rpg-fps-game-assets-for-pc-mobile-industrial-set-v2-0-86679
- https://assetstore.unity.com/packages/tools/utilities/tg-utility-131460
- https://assetstore.unity.com/packages/3d/props/food/free-casual-food-pack-mobile-vr-85884
- https://assetstore.unity.com/packages/3d/environments/roadways/road-props-for-games-diffuse-map-atlas-lp-238835
- https://assetstore.unity.com/packages/3d/vehicles/controllable-forklift-free-80275

3. Sound FX:

• https://assetstore.unity.com/packages/audio/sound-fx/8-bits-elements-16848

4. Music:

https://assetstore.unity.com/packages/audio/music/rock/funky-blues-rock-jam-free-118085

5. Tools

- https://unity.com/
- https://code.visualstudio.com/
- https://www.pluxbiosignals.com/
- https://assetstore.unity.com/
- https://docs.unity3d.com/Manual/UnityRemote5.html
- https://www.adobe.com/

6. Articles

• Tian Y, Bian Y, Han P, Wang P,Gao F and Chen Y (2017) Physiological Signal Analysis for Evaluating Flow during Playing of Computer Games of Varying Difficulty. Front. Psychol. 8:1121. doi: 10.3389/fpsyg.2017.01121

THANK YOU

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**