Ш

WORLD INTELLECTUAL PROPERTY ORGANIZATION **PCT** International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/53, 15/82, A01H 5/00		A2	(11) International Publication Number:	WO 96/21022		
			(43) International Publication Date:	11 July 1996 (11.07.96)		
(21) International Application (22) International Filing		895/011 (28.12.9	European patent (AT, BE, CH, I			
(30) Priority Data: 08/366,779	30 December 1994 (30.12.	94) 1	Published Without international search repupon receipt of that report.	port and to be republished		

- (71) Applicant: RHONE-POULENC AGROCHIMIE [FR/FR]; 14-20, rue Pierre-Baizet, F-69263 Lyon (FR).
- (72) Inventors: THOMAS, Terry, L.; 3004 Normand, College Station, TX 77845 (US). REDDY, Avutu, S.; 3902 E. 29th Street #G11, Bryan, TX 77802 (US). NUCCIO, Michael; P.O. Box 553, College Station, TX 77841 (US). NUNBERG, Andrew, N.; 2804 B. Sprucewood Street, Bryan, TX 77801 (US). FREYSSINET, Georges, L.; 21, rue de Nervleux, F-69450 Saint-Cyr-au-Mont-d'Or (FR).
- (74) Agent: MITSCHERLICH & PARTNER; Sonnenstrasse 33, D-80331 München (DE).

(54) Title: PRODUCTION OF GAMMA LINOLENIC ACID BY A Δ6-DESATURASE

(57) Abstract

Linoleic acid is converted into γ -linolenic acid by the enzyme $\Delta 6$ -desaturase. The present invention is directed to isolated nucleic acids comprising the $\Delta 6$ -desaturase gene. More particularly, the isolated nucleic acid comprises the promoter, coding region and termination regions of the $\Delta 6$ -desaturase gene. The present invention provides recombinant constructions comprising the $\Delta 6$ -desaturase coding region in functional combination with heterologous regulatory sequences. The nucleic acids and recombinant constructions of the instant invention are useful in the production of GLA in transgenic organisms.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Paso	1E	ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR.	Republic of Kores	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fl	Finland	ML	Mali	US	United States of America
FR	Prance	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

PRODUCTION OF GAMMA LINOLENIC ACID BY A Δ6-DESATURASE

Linoleic acid (18:2) (LA) is transformed into gamma linolenic acid (18:3) (GLA) by the enzyme 5 A6-desaturase. When this enzyme, or the nucleic acid encoding it, is transferred into LA-producing cells, GLA is produced. The present invention provides nucleic acids comprising the A6-desaturase gene. More specifically, the nucleic acids comprise the

- 10 promoters, coding regions and termination regions of the $\Delta 6$ -desaturase genes. The present invention is further directed to recombinant constructions comprising a $\Delta 6$ -desaturase coding region in functional combination with heterologous regulatory sequences.
- 15 The nucleic acids and recombinant constructions of the instant invention are useful in the production of GLA in transgenic organisms.

Unsaturated fatty acids such as linoleic $(C_{18}\Delta^{9,12})$ and α -linolenic $(C_{18}\Delta^{9,12,15})$ acids are essential dietary constituents that cannot be synthesized by vertebrates since vertebrate cells can introduce double bonds at the Δ^9 position of fatty acids but cannot introduce additional double bonds between the Δ^9 double bond and the methyl-terminus of the fatty

- 25 acid chain. Because they are precursors of other products, linoleic and α -linolenic acids are essential fatty acids, and are usually obtained from plant sources. Linoleic acid can be converted by mammals into γ -linolenic acid (GLA, $C_{15}\Delta^{6,9,12}$) which can in turn
- 30 be converted to arachidonic acid (20:4), a critically

WO 96/21022 PCT/IB95/01167

-2-

1 important fatty acid since it is an essential precursor of most prostaglandins.

The dietary provision of linoleic acid, by virtue of its resulting conversion to GLA and 5 arachidonic acid, satisfies the dietary need for GLA and arachidonic acid. However, a relationship has been demonstrated between consumption of saturated fats and health risks such as hypercholesterolemia, atherosclerosis and other clinical disorders which 10 correlate with susceptibility to coronary disease, while the consumption of unsaturated fats has been associated with decreased blood cholesterol concentration and reduced risk of atherosclerosis. The therapeutic benefits of dietary GLA may result 15 from GLA being a precursor to arachidonic acid and thus subsequently contributing to prostaglandin synthesis. Accordingly, consumption of the more unsaturated GLA, rather than linoleic acid, has potential health benefits. However, GLA is not 20 present in virtually any commercially grown crop plant.

Linoleic acid is converted into GLA by the enzyme $\Delta 6$ -desaturase. $\Delta 6$ -desaturase, an enzyme of more than 350 amino acids, has a membrane-bound domain and an active site for desaturation of fatty acids. 25 When this enzyme is transferred into cells which endogenously produce linoleic acid but not GLA, GLA is The present invention, by providing the produced. gene encoding $\Delta 6$ -desaturase, allows the production of transgenic organisms which contain functional A6desaturase and which produce GLA. In addition to

1 allowing production of large amounts of GLA, the present invention provides new dietary sources of GLA.

The present invention is directed to isolated Δ6-desaturase genes. Specifically, the isolated genes comprises the Δ6-desaturase promoters, coding regions, and termination regions.

The present invention is further directed to expression vectors comprising the $\Delta 6$ -desaturase promoter, coding region and termination region.

Yet another aspect of this invention is directed to expression vectors comprising a Δ6-desaturase coding region in functional combination with heterologous regulatory regions, i.e. elements not derived from the Δ6-desaturase gene.

Of the present invention, and progeny of such organisms, are also provided by the present invention.

A further aspect of the present invention provides isolated bacterial \(^6\)-desaturase. An 20 isolated plant \(^6\)-desaturase is also provided.

Yet another aspect of this invention provides a method for producing plants with increased gamma linolenic acid content.

A method for producing chilling tolerant plants is also provided by the present invention.

Fig. 1 depicts the hydropathy profiles of the deduced amino acid sequences of <u>Synechocystis</u> $\triangle 6$ -desaturase (Panel A) and $\triangle 12$ -desaturase (Panel B). Putative membrane spanning regions are indicated by solid bars. Hydrophobic index was calculated for a

window size of 19 amino acid residues [Kyte, et al.
(1982) J. Molec. Biol. 157].

Fig. 2 provides gas liquid chromatography profiles of wild type (Panel A) and transgenic (Panel 5 B) Anabaena.

Fig. 3 is a diagram of maps of cosmid cSy75, cSy13 and Csy7 with overlapping regions and subclones. The origins of subclones of Csy75, Csy75-3.5 and Csy7 are indicated by the dashed diagonal lines.

10 Restriction sites that have been inactivated are in parentheses.

Fig. 4 provides gas liquid chromatography profiles of wild type (Panel A) and transgenic (Panel B) tobacco.

15 Fig. 5A depicts the DNA sequence of a Δ -6 desaturase cDNA isolated from borage.

Fig. 5B depicts the protein sequence of the open reading frame in the isolated borage Δ -6 desaturase cDNA. Three amino acid motifs

20 characteristic of desaturases are indicated and are, in order, lipid box, metal box 1, and metal box 2.

Fig. 6 is a dendrogram showing similarity of the borage Δ6-desaturase to other membrane-bound desaturases. The amino acid sequence of the borage Δ6-desaturase was compared to other known desaturases using Gene Works (IntelliGenetics). Numerical values correlate to relative phylogenetic distances between subgroups compared.

Fig. 7 is a restriction map of 221. $\Delta 6.NOS$ and 121. $\Delta 6.NOS$. In 221. $\Delta 6.NOS$, the remaining portion

1 of the plasmid is pBI221 and in 121.Δ6.NOS, the remaining portion of the plasmid is pBI121.

Fig. 8 provides gas liquid chromatography profiles of mock transfected (Panel A) and 221. Δ 6.NOS transfected (Panel B) carrot cells. The positions of 18:2, 18:3 α , and 18:3 γ (GLA) are indicated.

Fig. 9 provides gas liquid chromatography profiles of an untransformed tobacco leaf (Panel A) and a tobacco leaf transformed with 121. Δ 6.NOS. The 10 positions of 18:2, 18:3 α , 18:3 γ (GLA), and 18:4 are indicated.

Fig. 10 provides gas liquid chromotography profiles for untransformed tobacco seeds (Panel A) and seeds of tobacco transformed with 121.Δ6.NOS. The positions of 18:2, 18:3α and 18:3γ(GLA) are indicated.

The present invention provides isolated nucleic acids encoding A6-desaturase. To identify a nucleic acid encoding A6-desaturase, DNA is isolated from an organism which produces GLA. Said organism 20 can be, for example, an animal cell, certain fungi (e.g. Mortierella), certain bacteria (e.g. Synechocystis) or certain plants (borage, Oenothera, currants). The isolation of genomic DNA can be accomplished by a variety of methods well-known to one of ordinary skill in the art, as exemplified by Sambrook et al. (1989) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY. The isolated DNA is fragmented by physical methods or enzymatic digestion and cloned into an appropriate vector, e.g. a bacteriophage or cosmid vector, by any

of a variety of well-known methods which can be found

- 1 in references such as Sambrook et al. (1989). Expression vectors containing the DNA of the present invention are specifically contemplated herein. encoding \$6-desaturase can be identified by gain of .
- 5 function analysis. The vector containing fragmented DNA is transferred, for example by infection, transconjugation, transfection, into a host organism that produces linoleic acid but not GLA. As used herein, "transformation" refers generally to the
- 10 incorporation of foreign DNA into a host cell. Methods for introducing recombinant DNA into a host organism are known to one of ordinary skill in the art and can be found, for example, in Sambrook et al. (1989). Production of GLA by these organisms (i.e.,
- 15 gain of function) is assayed, for example by gas chromatography or other methods known to the ordinarily skilled artisan. Organisms which are induced to produce GLA, i.e. have gained function by the introduction of the vector, are identified as
- 20 expressing DNA encoding $\Delta 6$ -desaturase, and said DNA is recovered from the organisms. The recovered DNA can again be fragmented, cloned with expression vectors, and functionally assessed by the above procedures to define with more particularity the DNA encoding $\Delta 6$ -

25 desaturase.

As an example of the present invention, random DNA is isolated from the cyanobacteria Synechocystis Pasteur Culture Collection (PCC) 6803. American Type Culture Collection (ATCC) 27184, cloned into a cosmid vector, and introduced by transconjugation into the GLA-deficient cyanobacterium

- Anabaena strain PCC 7120, ATCC 27893. Production of GLA from <u>Anabaena</u> linoleic acid is monitored by gas chromatography and the corresponding DNA fragment is isolated.
- The isolated DNA is sequenced by methods well-known to one of ordinary skill in the art as found, for example, in Sambrook et al. (1989).

In accordance with the present invention,

DNA molecules comprising A6-desaturase genes have been

isolated. More particularly, a 3.588 kilobase (kb)

DNA comprising a A6-desaturase gene has been isolated.

- DNA comprising a $\Delta 6$ -desaturase gene has been isolated from the cyanobacteria <u>Synechocystis</u>. The nucleotide sequence of the 3.588 kb DNA was determined and is shown in SEQ ID NO:1. Open reading frames defining
- potential coding regions are present from nucleotide 317 to 1507 and from nucleotide 2002 to 3081. To define the nucleotides responsible for encoding \$\triangle 6\$-desaturase, the 3.588 kb fragment that confers \$\triangle 6\$-desaturase activity is cleaved into two subfragments,
- each of which contains only one open reading frame.
 Fragment ORF1 contains nucleotides 1 through 1704,
 while fragment ORF2 contains nucleotides 1705 through
 3588. Each fragment is subcloned in both forward and
 reverse orientations into a conjugal expression vector
- 25 (AM542, Wolk et al. [1984] Proc. Natl. Acad. Sci. USA 81, 1561) that contains a cyanobacterial carboxylase promoter. The resulting constructs (i.e. ORF1(F), ORF1(R), ORF2(F) and ORF2(R)] are conjugated to wild-type Anabaena PCC 7120 by standard methods (see, for
- example, Wolk et al. (1984) <u>Proc. Natl. Acad. Sci. USA</u>
 81, 1561). Conjugated cells of <u>Anabaena</u> are

l	identified as Neo" green colonies on a brown
	background of dying non-conjugated cells after two
	weeks of growth on selective media (standard mineral
	media BG11N + containing $30\mu g/ml$ of neomycin according
5	to Rippka et al., (1979) <u>J. Gen Microbiol.</u> <u>111</u> , 1).
	The green colonies are selected and grown in selective
	liquid media (BG11N + with $15\mu g/ml$ neomycin). Lipids
	are extracted by standard methods (e.g. Dahmer et al.,
	(1989) Journal of American Oil Chemical Society 66,
10	543) from the resulting transconjugants containing the
	forward and reverse oriented ORF1 and ORF2 constructs.
	For comparison, lipids are also extracted from wild-
	type cultures of <u>Anabaena</u> and <u>Synechocystis</u> . The
	fatty acid methyl esters are analyzed by gas liquid
L5	chromatography (GLC), for example with a Tracor-560
	gas liquid chromatograph equipped with a hydrogen
-	flame ionization detector and a capillary column. The
	results of GLC analysis are shown in Table 1.

20

25

30

1 Table 1: Occurrence of C18 fatty acids in wild-type
and transgenic cyanobacteria

	SOURCE	18:0	18:1	18:2	γ18:3	α18:3	18:4
5	Anabaena (wild type)	+	+	+	-	+	-
	Anabaena + ORF1(F)	+	+	+	_	+	-
10	Anabaena + ORF1(R)	+	+	+	-	+	-
	Anabaena + ORF2(F)	+	+	+	+	+	+
	Anabaena + ORF2(R)	+	+	+	-	+	-
	Synechocystis (wild type)	+	+	+	+	-	-

As assessed by GLC analysis, GLA deficient Anabaena gain the function of GLA production when the 15 construct containing ORF2 in forward orientation is introduced by transconjugation. Transconjugants containing constructs with ORF2 in reverse orientation to the carboxylase promoter, or ORF1 in either orientation, show no GLA production. This analysis 20 demonstrates that the single open reading frame (ORF2) within the 1884 bp fragment encodes \$\triangle 6\$-desaturase. The 1884 bp fragment is shown as SEQ ID NO:3. This is substantiated by the overall similarity of the hydropathy profiles between $\Delta 6$ -desaturase and $\Delta 12$ -25 desaturase [Wada et al. (1990) Nature 347] as shown in Fig. 1 as (A) and (B), respectively.

Also in accordance with the present invention, a cDNA comprising a Δ6-desaturase gene from borage (Borago officinalis) has been isolated. The nucleotide sequence of the 1.685 kilobase (kb) cDNA

WO 96/21022 PCT/IB95/01167

-10-

1 was determined and is shown in Fig. 5A (SEQ ID NO: 4).
 The ATG start codon and stop codon are underlined.
 The amino acid sequence corresponding to the open
 reading frame in the borage delta 6-desaturase is
5 shown in Fig. 5B (SEQ ID NO: 5).

Isolated nucleic acids encoding \$\triangle 6\$desaturase can be identified from other GLA-producing
organisms by the gain of function analysis described
above, or by nucleic acid hybridization techniques
10 using the isolated nucleic acid which encodes
Synechocystis or borage \$\triangle 6\$-desaturase as a
hybridization probe. Both genomic and cDNA cloning
methods are known to the skilled artisan and are
contemplated by the present invention. The

15 hybridization probe can comprise the entire DNA sequence disclosed as SEQ. ID NO:1 or SEQ. ID NO:4, or a restriction fragment or other DNA fragment thereof, including an oligonucleotide probe. Methods for cloning homologous genes by cross-hybridization are known to the ordinarily skilled artisan and can be found, for example, in Sambrook (1989) and Beltz et al. (1983) Methods in Enzymology 100, 266.

In another method of identifying a delta 6desaturase gene from an organism producing GLA, a cDNA
library is made from poly-A RNA isolated from
polysomal RNA. In order to eliminate hyper-abundant
expressed genes from the cDNA population, cDNAs or
fragments thereof corresponding to hyper-abundant
cDNAs genes are used as hybridization probes to the
cDNA library. Non hybridizing plaques are excised and
the resulting bacterial colonies are used to inoculate

- liquid cultures and sequenced. For example, as a means of eliminating other seed storage protein cDNAs from a cDNA library made from borage polysomal RNA, cDNAs corresponding to abundantly expressed seed
- 5 storage proteins are first hybridized to the cDNA library. The "subtracted" DNA library is then used to generate expressed sequence tags (ETSs) and such tags are used to scan a data base such as GenBank to identify potential desaturates.
- Transgenic organisms which gain the function of GLA production by introduction of DNA encoding α-desaturase also gain the function of octadecatetraeonic acid (18:4.6.9,12.15) production.

 Octadecatetraeonic acid is present normally in fish oils and in some plant species of the Boraginaceae family (Craig et al. [1964] J. Amer. Oil Chem. Soc. 41, 209-211; Gross et al. [1976] Can. J. Plant Sci. 56, 659-664). In the transgenic organisms of the present invention, octadecatetraenoic acid results from further desaturation of α-linolenic acid by Δ6-desaturase or desaturation of GLA by Δ15-desaturase.

The 359 amino acids encoded by ORF2, i.e. the open reading frame encoding Synechocystis A6-desaturase, are shown as SEQ. ID NO:2. The open reading frame encoding the borage A6-desaturase is shown in SEQ ID NO: 5. The present invention further contemplates other nucleotide sequences which encode the amino acids of SEQ ID NO:2 and SEQ ID NO: 5. It is within the ken of the ordinarily skilled artisan to identify such sequences which result, for example, from the degeneracy of the genetic code. Furthermore,

- one of ordinary skill in the art can determine, by the gain of function analysis described hereinabove, smaller subfragments of the fragments containing the open reading frames which encode \$\delta\$6-desaturases.
- 5 The present invention contemplates any such polypeptide fragment of Δ6-desaturase and the nucleic acids therefor which retain activity for converting LA to GLA.

In another aspect of the present invention,

a vector containing a nucleic acid of the present
invention or a smaller fragment containing the
promoter, coding sequence and termination region of a
Δ6-desaturase gene is transferred into an organism,
for example, cyanobacteria, in which the Δ6-desaturase
promoter and termination regions are functional.
Accordingly, organisms producing recombinant Δ6desaturase are provided by this invention. Yet
another aspect of this invention provides isolated Δ6desaturase, which can be purified from the recombinant
organisms by standard methods of protein purification.
(For example, see Ausubel et al. [1987] Current
Protocols in Molecular Biology, Green Publishing
Associates, New York).

Vectors containing DNA encoding Δ6
desaturase are also provided by the present invention.

It will be apparent to one of ordinary skill in the art that appropriate vectors can be constructed to direct the expression of the Δ6-desaturase coding sequence in a variety of organisms. Replicable expression vectors are particularly preferred.

Replicable expression vectors as described herein are

1 DNA or RNA molecules engineered for controlled expression of a desired gene, i.e. the \$6-desaturase Preferably the vectors are plasmids, bacteriophages, cosmids or viruses. Shuttle vectors, 5 e.g. as described by Wolk et al. (1984) Proc. Natl. Acad. Sci. USA, 1561-1565 and Bustos et al. (1991) J. Bacteriol. 174, 7525-7533, are also contemplated in accordance with the present invention. Sambrook et al. (1989), Goeddel, ed. (1990) Methods in Enzymology 10 185 Academic Press, and Perbal (1988) A Practical Guide to Molecular Cloning, John Wiley and Sons, Inc., provide detailed reviews of vectors into which a nucleic acid encoding the present 46-desaturase can be inserted and expressed. Such vectors also contain 15 nucleic acid sequences which can effect expression of nucleic acids encoding A6-desaturase. Sequence elements capable of effecting expression of a gene product include promoters, enhancer elements, upstream activating sequences, transcription termination signals and polyadenylation sites. Both constitutive and tissue specific promoters are contemplated. transformation of plant cells, the cauliflower mosaic virus (CaMV) 35S promoter and promoters which are regulated during plant seed maturation are of 25 particular interest. All such promoter and transcriptional regulatory elements, singly or in combination, are contemplated for use in the present replicable expression vectors and are known to one of ordinary skill in the art. The CaMV 355 promoter is described, for example, by Restrepo et al. (1990) 30

1 Plant Cell 2, 987. Genetically engineered and mutated regulatory sequences are also contemplated.

The ordinarily skilled artisan can determine vectors and regulatory elements suitable for 5 expression in a particular host cell. For example, a vector comprising the promoter from the gene encoding the carboxylase of Anabaena operably linked to the coding region of A6-desaturase and further operably linked to a termination signal from Synechocystis is 10 appropriate for expression of A6-desaturase in "Operably linked" in this context cyanobacteria. means that the promoter and terminator sequences effectively function to regulate transcription. As a further example, a vector appropriate for expression 15 of A6-desaturase in transgenic plants can comprise a seed-specific promoter sequence derived from helianthinin, napin, or glycinin operably linked to the $\Delta 6$ -desaturase coding region and further operably linked to a seed termination signal or the nopaline synthase termination signal. As a still further example, a vector for use in expression of Δ 6desaturase in plants can comprise a constitutive promoter or a tissue specific promoter operably linked to the \$\Delta\$ 6-desaturase coding region and further operably linked to a constitutive or tissue specific 25 terminator or the nopaline synthase termination signal.

In particular, the helianthinin regulatory elements disclosed in applicant's copending U.S.

Application Serial No. 682,354, filed April 8, 1991 and incorporated herein by reference, are contemplated

1 as promoter elements to direct the expression of the $\Delta 6$ -desaturase of the present invention.

Modifications of the nucleotide sequences or regulatory elements disclosed herein which maintain the functions contemplated herein are within the scope of this invention. Such modifications include insertions, substitutions and deletions, and specifically substitutions which reflect the degeneracy of the genetic code.

Standard techniques for the construction of 10 such hybrid vectors are well-known to those of ordinary skill in the art and can be found in references such as Sambrook et al. (1989), or any of the myriad of laboratory manuals on recombinant DNA 15 technology that are widely available. A variety of strategies are available for ligating fragments of DNA, the choice of which depends on the nature of the termini of the DNA fragments. It is further contemplated in accordance with the present invention to include in the hybrid vectors other nucleotide 20 sequence elements which facilitate cloning, expression or processing, for example sequences encoding signal peptides, a sequence encoding KDEL, which is required for retention of proteins in the endoplasmic reticulum or sequences encoding transit peptides which direct 25 A6-desaturase to the chloroplast. Such sequences are known to one of ordinary skill in the art. An optimized transit peptide is described, for example, by Van den Broeck et al. (1985) Nature 313, 358. Prokaryotic and eukaryotic signal sequences are 30

1 disclosed, for example, by Michaelis et al. (1982)
Ann. Rev. Microbiol. 36, 425.

A further aspect of the instant invention provides organisms other than cyanobacteria or plants which contain the DNA encoding the \$\times 6\$-desaturase of the present invention. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, and plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989).

A variety of plant transformation methods The \$6-desaturase gene can be introduced into plants by a leaf disk transformation-regeneration procedure as described by Horsch et al. (1985) Science 20 227, 1229. Other methods of transformation, such as protoplast culture (Horsch et al. (1984) Science 223, 496; DeBlock et al. (1984) EMBO J. 2, 2143; Barton et al. (1983) Cell 32, 1033) can also be used and are within the scope of this invention. In a preferred embodiment plants are transformed with Agrobacterium-25 derived vectors. However, other methods are available to insert the A6-desaturase genes of the present invention into plant cells. Such alternative methods include biolistic approaches (Klein et al. (1987) Nature 327, 70), electroporation, chemically-induced 30 DNA uptake, and use of viruses or pollen as vectors.

- When necessary for the transformation method, the Δ6-desaturase genes of the present invention can be inserted into a plant transformation vector, e.g. the binary vector described by Bevan (1984) <u>Nucleic Acids Res.</u> 12, 8111. Plant
- 5 (1984) Nucleic Acids Res. 12, 8111. Plant transformation vectors can be derived by modifying the natural gene transfer system of Agrobacterium tumefaciens. The natural system comprises large Ti (tumor-inducing)-plasmids containing a large segment,
- 10 known as T-DNA, which is transferred to transformed plants. Another segment of the Ti plasmid, the <u>vir</u> region, is responsible for T-DNA transfer. The T-DNA region is bordered by terminal repeats. In the modified binary vectors the tumor-inducing genes have
- been deleted and the functions of the <u>vir</u> region are utilized to transfer foreign DNA bordered by the T-DNA border sequences. The T-region also contains a selectable marker for antibiotic resistance, and a multiple cloning site for inserting sequences for
 - transfer. Such engineered strains are known as "disarmed" A. tumefaciens strains, and allow the efficient transformation of sequences bordered by the T-region into the nuclear genomes of plants.
- Surface-sterilized leaf disks are inoculated with the "disarmed" foreign DNA-containing A. tumefaciens, cultured for two days, and then transferred to antibiotic-containing medium.

 Transformed shoots are selected after rooting in medium containing the appropriate antibiotic,

30 transferred to soil and regenerated.

Another aspect of the present invention 1 provides transgenic plants or progeny of these plants containing the isolated DNA of the invention. monocotyledenous and dicotyledenous plants are 5 contemplated. Plant cells are transformed with the isolated DNA encoding A6-desaturase by any of the plant transformation methods described above. transformed plant cell, usually in a callus culture or leaf disk, is regenerated into a complete transgenic 10 plant by methods well-known to one of ordinary skill in the art (e.g. Horsch et al. (1985) Science 227, In a preferred embodiment, the transgenic plant is sunflower, oil seed rape, maize, tobacco, peanut or soybean. Since progeny of transformed 15 plants inherit the DNA encoding \(\delta \cdot \text{-desaturase} \), seeds or cuttings from transformed plants are used to maintain the transgenic plant line.

The present invention further provides a method for providing transgenic plants with an increased content of GLA. This method includes introducing DNA encoding \(\Delta 6 \)-desaturase into plant cells which lack or have low levels of GLA but contain LA, and regenerating plants with increased GLA content from the transgenic cells. In particular,

commercially grown crop plants are contemplated as the transgenic organism, including, but not limited to, sunflower, soybean, oil seed rape, maize, peanut and tobacco.

The present invention further provides a method for providing transgenic organisms which contain GLA. This method comprises introducing DNA

- 1 encoding 46-desaturase into an organism which lacks or has low levels of GLA, but contains LA. In another embodiment, the method comprises introducing one or more expression vectors which comprise DNA encoding 5 \(\text{12-desaturase} \) and \(\text{16-desaturase} \) into organisms which are deficient in both GLA and LA. Accordingly, organisms deficient in both LA and GLA are induced to produce LA by the expression of \$\triangle 12-desaturase, and GLA is then generated due to the expression of A6-10 desaturase. Expression vectors comprising DNA encoding \$12-desaturase, or \$12-desaturase and \$6desaturase, can be constructed by methods of recombinant technology known to one of ordinary skill in the art (Sambrook et al., 1989) and the published 15 sequence of 12-desaturase (Wada et al [1990] Nature (London) 347, 200-203. In addition, it has been discovered in accordance with the present invention that nucleotides 2002-3081 of SEQ. ID NO:1 encode cyanobacterial 12-desaturase. Accordingly, this 20 sequence can be used to construct the subject expression vectors. In particular, commercially grown crop plants are contemplated as the transgenic organism, including, but not limited to, sunflower, soybean, oil seed rape, maize, peanut and tobacco.
- 25 The present invention is further directed to a method of inducing chilling tolerance in plants.

 Chilling sensitivity may be due to phase transition of lipids in cell membranes. Phase transition temperature depends upon the degree of unsaturation of fatty acids in membrane lipids, and thus increasing the degree of unsaturation, for example by introducing

The following examples further illustrate 10 the present invention.

15

20

25

1

EXAMPLE 1

Strains and Culture Conditions

Synechocystis (PCC 6803, ATCC 27184),

- Anabaena (PCC 7120, ATCC 27893) and Synechococcus (PCC 7942, ATCC 33912) were grown photoautotrophically at 30°C in BG11N+ medium (Rippka et al. [1979] J. Gen. Microbiol. 111, 1-61) under illumination of incandescent lamps
- 10 (60μE.m⁻².S⁻¹). Cosmids and plasmids were selected and propagated in <u>Escherichia coli</u> strain DH5α on LB medium supplemented with antibiotics at standard concentrations as described by Maniatis <u>et al</u>. (1982) <u>Molecular Cloning: A Laboratory Manual</u>, Cold Spring Harbor Laboratory, Cold Spring, New York.

20

25

30

1 EXAMPLE 2

Construction of Synechocystis Cosmid Genomic Library

Total genomic DNA from Synechocystis (PCC 5 6803) was partially digested with Sau3A and fractionated on a sucrose gradient (Ausubel et al. [1987] Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, New York). Fractions containing 30 to 40 kb DNA fragments 10 were selected and ligated into the dephosphorylated BamHI site of the cosmid vector, pDUCA7 (Buikema et <u>al</u>. [1991] <u>J. Bacteriol</u>. <u>173</u>, 1879-1885). The ligated DNA was packaged in vitro as described by Ausubel et <u>al</u>. (1987), and packaged phage were propagated in E. 15 <u>coli</u> DH5α containing the <u>Ava</u>I and <u>Eco</u>4711 methylase helper plasmid, pRL528 as described by Buikema et al. (1991). A total of 1152 colonies were isolated randomly and maintained individually in twelve 96-well microtiter plates.

20

25

30

1 EXAMPLE 3

Gain-of-Function Expression of GLA in Anabaena

Anabaena (PCC 7120), a filamentous 5 cyanobacterium, is deficient in GLA but contains significant amounts of linoleic acid, the precursor for GLA (Figure 2; Table 2). The Synechocystis cosmid library described in Example 2 was conjugated into Anabaena (PCC 7120) to identify transconjugants that 10 produce GLA. Anabaena cells were grown to mid-log phase in BG11N+ liquid medium and resuspended in the same medium to a final concentration of approximately $2x10^{\circ}$ cells per ml. A mid-log phase culture of <u>E</u>. coli RP4 (Burkardt et al. [1979] J. Gen. Microbiol. 15 114, 341-348) grown in LB containing ampicillin was washed and resuspended in fresh LB medium. Anabaena and RP4 were then mixed and spread evenly on BG11N+ plates containing 5% LB. The cosmid genomic library was replica plated onto LB plates containing 50 μg/ml 20 kanamycin and 17.5 μg/ml chloramphenicol and was subsequently patched onto BG11N+ plates containing Anabaena and RP4. After 24 hours of incubation at 30°C, 30 μ g/ml of neomycin was underlaid; and incubation at 30°C was continued until transconjugants 25 appeared.

Individual transconjugants were isolated after conjugation and grown in 2 ml BG11N+ liquid medium with 15 μ g/ml neomycin. Fatty acid methyl esters were prepared from wild type cultures and cultures containing pools of ten transconjugants as follows. Wild type and transgenic cyanobacterial

- l cultures were harvested by centrifugation and washed twice with distilled water. Fatty acid methyl esters were extracted from these cultures as described by Dahmer et al. (1989) J. Amer. Oil. Chem. Soc. 66, 543-
- 5 548 and were analyzed by Gas Liquid Chromatography (GLC) using a Tracor-560 equipped with a hydrogen flame ionization detector and capillary column (30 m x 0.25 mm bonded FSOT Superox II, Alltech Associates Inc., IL). Retention times and co-chromatography of
- 10 standards (obtained from Sigma Chemical Co.) were used for identification of fatty acids. The average fatty acid composition was determined as the ratio of peak area of each C18 fatty acid normalized to an internal standard.
- Representative GLC profiles are shown in Fig. 2. C18 fatty acid methyl esters are shown.

 Peaks were identified by comparing the elution times with known standards of fatty acid methyl esters and were confirmed by gas chromatography-mass
- spectrometry. Panel A depicts GLC analysis of fatty acids of wild type Anabaena. The arrow indicates the migration time of GLA. Panel B is a GLC profile of fatty acids of transconjugants of Anabaena with pAM542+1.8F. Two GLA producing pools (of 25 pools
- representing 250 transconjugants) were identified that produced GLA. Individual transconjugants of each GLA positive pool were analyzed for GLA production; two independent transconjugants, AS13 and AS75, one from each pool, were identified which expressed significant
- levels of GLA and which contained cosmids, cSy13 and cSy75, respectively (Figure 3). The cosmids overlap

- 1 in a region approximately 7.5 kb in length. A 3.5 kb NheI fragment of cSy75 was recloned in the vector pDUCA7 and transferred to Anabaena resulting in gainof-function expression of GLA (Table 2).
- Two NheI/Hind III subfragments (1.8 and 1.7 kb) of the 3.5 kb Nhe I fragment of cSy75-3.5 were subcloned into "pBLUESCRIPT" (Stratagene) (Figure 3) for sequencing. Standard molecular biology techniques were performed as described by Maniatis et al. (1982)
- and Ausubel et al. (1987). Dideoxy sequencing (Sanger et al. [1977] Proc. Natl. Acad. Sci. USA 74, 5463-5467) of pBS1.8 was performed with "SEQUENASE" (United States Biochemical) on both strands by using specific oligonucleotide primers synthesized by the Advanced
- DNA Technologies Laboratory (Biology Department, Texas A & M University). DNA sequence analysis was done with the GCG (Madison, WI) software as described by Devereux et al. (1984) Nucleic Acids Res. 12, 387-395.

Both MheI/HindIII subfragments were
transferred into a conjugal expression vector, AM542, in both forward and reverse orientations with respect to a cyanobacterial carboxylase promoter and were

introduced into Anabaena by conjugation.

Transconjugants containing the 1.8 kb fragment in the forward orientation (AM542-1.8F) produced significant quantities of GLA and octadecatetraenoic acid (Figure 2; Table 2). Transconjugants containing other constructs, either reverse oriented 1.8 kb fragment or forward and reverse oriented 1.7 kb fragment, did not produce detectable levels of GLA (Table 2).

ı	Figure 2 compares the C18 fatty acid profile
	of an extract from wild type Anabaena (Figure 2A) with
	that of transgenic Anabaena containing the 1.8 kb
	fragment of cSy75-3.5 in the forward orientation
5	(Figure 2B). GLC analysis of fatty acid methyl esters
	from AM542-1.8F revealed a peak with a retention time
	identical to that of authentic GLA standard. Analysis
	of this peak by gas chromatography-mass spectrometry
	(GC-MS) confirmed that it had the same mass
10	fragmentation pattern as a GLA reference sample.
	Transgenic Anabaena with altered levels of
	polyunsaturated fatty acids were similar to wild type
	in growth rate and morphology.

15

20

25

30

1 Table 2 Composition of C18 Fatty Acids in Wild Type and Transgenic Cyanobacteria

Strain	Patty Acid (%)						
SCIGID	18:0	18:1	18:2	18.3 (α)	18.3(γ)	18.4	
Wild Type		 					
Synechocystis (sp.PCC6803)	13.6	4.5	54.5	-	27.3	-	
Anabaena (sp.PCC7120)	2.9	24.8	37.1	35.2	-	-	
Synechococcus (sp.PCC7942)	20.6	79.4	-	-	-	-	
Anabaena Transconju	gants						
cSy75	3.8	24.4	22.3	9.1	27.9	12.5	
cSy75-3.5	4.3	27.6	18.1	3.2	40.4	6.4	
pAM542 - 1.8F	4.2	13.9	12.1	19.1	25.4	25.4	
pAM542 - 1.8R	7.7	23.1	38.4	30.8	-	-	
pAM542 - 1.7F	2.8	27.8	36.1	33.3	-	. -	
pAM542 - 1.7R	2.8	25.4	42.3	29.6	-	-	
Synechococcus Trans	formants						
pAM854	27.8	72.2	-	-	-	_	
pAM854 -Δ ¹²	4.0	43.2	46.0	-	-	-	
pAM854 -Δ ⁶	18.2	81.8	-	-	-	_	
pAM854 -Δ ⁶ &Δ ¹²	42.7	25.3	19.5	-	16.5	_	

^{18:0,} stearic acid; 18:1, oleic acid; 18:2, linoleic acid; 18:3(α), linolenic acid; 18:3(γ), γ -linolenic acid; 18:4, octadecatetraenoic acid

WO 96/21022 PCT/IB95/01167

-28-

1 EXAMPLE 4

Transformation of <u>Synechococcus</u> with $\Delta 6$ and $\Delta 12$ Desaturase Genes

A third cosmid, cSy7, which contains a \$12-5 desaturase gene, was isolated by screening the Synechocystis genomic library with a oligonucleotide synthesized from the published Synechocystis A12desaturase gene sequence (Wada et al. [1990] Nature (London) 347, 200-203). A 1.7 kb AvaI fragment from 10 this cosmid containing the \$12-desaturase gene was identified and used as a probe to demonstrate that cSy13 not only contains a 46-desaturase gene but also a \$12-desaturase gene (Figure 3). Genomic Southern blot analysis further showed that both the \$6-and \$12-15 desaturase genes are unique in the Synechocystis genome so that both functional genes involved in C18 fatty acid desaturation are linked closely in the Synechocystis genome.

The unicellular cyanobacterium Synechococcus

(PCC 7942) is deficient in both linoleic acid and

GLA(3). The \$\text{\tex

1	Table 2 shows that the principal fatty acids
	of wild type Synechococcus are stearic acid (18:0) and
	oleic acid (18:1). Synechococcus transformed with
	pAM854-412 expressed linoleic acid (18:2) in addition
5	to the principal fatty acids. Transformants with
	pAM854-\(\rightarrow\)6 and \(\rightarrow\)12 produced both linoleate and GLA
	(Table 1). These results indicated that Synechococcus
	containing both 12- and 6-desaturase genes has
	gained the capability of introducing a second double
10	bond at the Al2 position and a third double bond at
	the 46 position of C18 fatty acids. However, no
	changes in fatty acid composition was observed in the
	transformant containing pAM854-46, indicating that in
	the absence of substrate synthesized by the \$\dagger{12}\$
15	desaturase, the \(\delta 6 - desaturase is inactive. \) This
	experiment further confirms that the 1.8 kb
	NheI/HindIII fragment (Figure 3) contains both coding
	and promoter regions of the Synechocystis 46-
	desaturase gene. Transgenic Synechococcus with
20	altered levels of polyunsaturated fatty acids were
	similar to wild type in growth rate and morphology

25

WO 96/21022 PCT/IB95/01167

-30-

1 EXAMPLE 5

Nucleotide Sequence of A6-Desaturase

The nucleotide sequence of the 1.8 kb 5 fragment of cSy75-3.5 including the functional A6desaturase gene was determined. An open reading frame encoding a polypeptide of 359 amino acids was identified (Figure 4). A Kyte-Doolittle hydropathy analysis (Kyte et al. [1982] J. Mol. Biol. 157, 105-10 132) identified two regions of hydrophobic amino acids that could represent transmembrane domains (Figure 1A); furthermore, the hydropathic profile of the A6desaturase is similar to that of the \$12-desaturase gene (Figure 1B; Wada et al.) and 49-desaturases 15 (Thiede et al. [1986] J. Biol. Chem. 261, 13230-13235). However, the sequence similarity between the Synechocystis 46- and 412-desaturases is less than 40% at the nucleotide level and approximately 18% at the amino acid level.

20

25

1 EXAMPLE 6

Transfer of Cyanobacterial & - Desaturase into Tobacco

The cyanobacterial 6-desaturase gene was 5 mobilized into a plant expression vector and transferred to tobacco using Agrobacterium mediated gene transfer techniques. To ensure that the transferred desaturase is appropriately expressed in leaves and developing seeds and that the desaturase 10 gene product is targeted to the endoplasmic reticulum or the chloroplast, various expression cassettes with Synechocystis A-desaturase open reading frame (ORF) were constructed. Components of these cassettes (i) a 35S promoter or seed specific promoter include: 15 derived from the sunflower helianthinin gene to drive Δ⁶-desaturase gene expression in all plant tissues or only in developing seeds respectively, (ii) a putative signal peptide either from carrot extensin gene or sunflower helianthinin gene to target newly synthesized Δ^6 -desaturase into the ER, (iii) an ER 20 lumen retention signal sequence (KDEL) at the COOHterminal of the \$6-desaturase ORF, and (iv) an optimized transit peptide to target of desaturase into the chloroplast. The 35S promoter is a derivative of pRTL2 described by Restrepo et al. (1990). 25 optimized transit peptide sequence is described by Van de Broeck et al. (1985). The carrot extensin signal peptide is described by Chen et al (1985) EMBO J. 9, 2145.

Transgenic tobacco plants were produced containing a chimeric cyanobacterial desaturase gene,

1 comprised of the <u>Synechocystis</u> 46 desaturase gene fused to an endoplasmic reticulum retention sequence (KDEL) and extensin signal peptide driven by the CaMV 35S promoter. PCR amplifications of transgenic tobacco 5 genomic DNA indicate that the & desaturase gene was incorporated into the tobacco genome. Fatty acid methyl esters of leaves of these transgenic tobacco plants were extracted and analyzed by Gas Liquid Chromatography (GLC). These transgenic tobacco 10 accumulated significant amounts of GLA (Figure 4). Figure 4 shows fatty acid methyl esters as determined by GLC. Peaks were identified by comparing the elution times with known standards of fatty acid methyl ester. Accordingly, cyanobacterial genes 15 involved in fatty acid metabolism can be used to generate transgenic plants with altered fatty acid compositions.

20

25

30

1 EXAMPLE 7

the GenBank database.

Construction of Borage cDNA library

Membrane bound polysomes were isolated from 5 borage seeds 12 days post pollination (12 DPP) using the protocol established for peas by Larkins and Davies (1975 Plant Phys. 55:749-756). RNA was extracted from the polysomes as described by Mechler (1987 Methods in Enzymology 152:241-248, Academic Press).

Poly-A+ RNA was isolated from the membrane bound polysomal RNA by use of Oligotex-dT beads (Qiagen). Corresponding cDNA was made using Stratagene's ZAP cDNA synthesis kit. The cDNA library was constructed in the lambda ZAP II vector (Stratagene) using the lambda ZAP II vector kit. The primary library was packaged in Gigapack II Gold packaging extract (Stratagene). The library was used to generate expressed sequence tags (ESTs), and sequences corresponding to the tags were used to scan

25

30

1

EXAMPLE 8

Hybridization Protocol

Hybridization probes for screening the 5 borage cDNA library were generated by using random primed DNA synthesis as described by Ausubel et al (1994 Current Protocols in Molecular Biology, Wiley Interscience, N.Y.) and corresponded to previously identified abundantly expressed seed storage protein 10 cDNAs. Unincorporated nucleotides were removed by use of a G-50 spin column (Boehringer Manheim). Probe was denatured for hybridization by boiling in a water bath for 5 minutes, then quickly cooled on ice. Filters for hybridization were prehybridized at 60°C for 2-4 15 hours in prehybridization solution (6XSSC [Maniatis et al 1984 Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory], 1X Denharts Solution, 0.05% sodium pyrophosphate, 100 $\mu g/ml$ denatured salmon sperm DNA). Denatured probe was added to the hybridization solution (6X SSC, 1X Denharts solution, 0.05% sodium 20 pyrophosphate, 100 μ g/ml denatured salmon sperm DNA) and incubated at 60°C with agitation overnight. Filters were washed in 4x, 2x, and 1x SET washes for 15 minutes each at 60°C. A 20X SET stock solution is 3M NaCl, 0.4 M Tris base, 20 mM Na₂EDTA-2H₂O. The 4X 25 SET wash was 4X SET, 12.5 mM PO, pH 6.8 and 0.2% SDS. The 2X SET wash was 2X SET, 12.5 mM PO, pH 6.8 and 0.2% SDS. The 1X SET wash was 1X SET, 12.5 mM PO4, pH 6.8 and 0.2% SDS. Filters were allowed to air dry and were then exposed to X-ray film for 24 hours with 30 intensifying screens at -80°C.

1 EXAMPLE 9

Random sequencing of cDNAs from a borage seed (12 DPP) membrane-bound polysomal library

The borage cDNA library was plated at low 5 density (500 pfu on 150 mm petri dishes). Highly prevalent seed storage protein cDNAs were "subtracted" by screening with the previously identified corresponding cDNAs. Non-hybridizing plaques were excised using Stratagene's excision protocol and 10 reagents. Resulting bacterial colonies were used to inoculate liquid cultures and were either sequenced manually or by an ABI automated sequencer. Each cDNA was sequenced once and a sequence tag generated from 200-300 base pairs. All sequencing was performed by 15 cycle sequencing (Epicentre). Over 300 ESTs were generated. Each sequence tag was compared to GenBank database by BLASTX computer program and a number of lipid metabolism genes, including the $\Delta 6$ -desaturase were identified. 20

Database searches with a cDNA clone
designated mbp-65 using BLASTX with the GenBank
database resulted in a significant match to the
Synechocystis A6-desaturase. It was determined
however, that this clone was not a full length cDNA.
A full length cDNA was isolated using mbp-65 to screen
the borage membrane-bound polysomal library. The
sequence of the isolated cDNA was determined (Fig. 5A,
SEQ ID NO:4) and the protein sequence of the open
reading frame (Fig. 5B, SEQ ID NO:5) was compared to
other known desaturases using Geneworks

WO 96/21022 PCT/IB95/01167

1 (IntelligGenetics) protein alignment program (Fig. 2). This alignment indicated that the cDNA was the borage $\Delta 6$ -desaturase gene.

Although similar to other known plant

5 desaturases, the borage delta 6-desaturase is distinct
as indicated in the dendrogram shown in Fig. 6.
Furthermore, comparison of the amino acid sequences
characteristic of desaturases, particularly those
proposed to be involved in metal binding (metal box 1)

10 and metal box 2), illustrates the differences between
the borage delta 6-desaturase and other plant
desaturases (Table 3).

The borage delta 6-desaturase is distinguished from the cyanobacterial form not only in over all sequence (Fig. 6) but also in the lipid box, metal box 1 and metal box 2 amino acid motifs (Table 3). As Table 3 indicates, all three motifs are novel in sequence. Only the borage delta 6-desaturase metal box 2 shown some relationship to the Synechocystis delta-6 desaturase metal box 2.

In addition, the borage delta 6-desaturase is also distinct from another borage desaturase gene, the delta-12 desaturase. P1-81 is a full length cDNA that was identified by EST analysis and shows high similarity to the <u>Arabidopsis</u> delta-12 desaturase (Fad 2). A comparison of the lipid box, metal box 1 and metal box 2 amino acid motifs (Table 3) in borage delta 6 and delta-12 desaturases indicates that little homology exists in these regions. The placement of the two sequences in the dendrogram in Fig. 6 indicates how distantly related these two genes are.

25

0	5		20			.5	_			.0		5	_		1
Table 3. Comparison of	of common amino acid motifs in membrane-bound desaturases	no ac	m pi	ot i £	s in	nembran	e-bou	p pu	esat	urase	ăl				
				Z	at no	Amino Acid Wotif	116								
Desaturase	Lipid Box							ž	3	Metal Box 1	_		3	Wetal Box	ox 2
Borage A ⁶	WIGHDAGH (SEQ.	(SEQ.	E.	ě	6	HNAHH	(SEQ.	e.		NO: 12)	FOIEHH	CSEO	1	٤	166
Synechocystis A'	NVGHDANH	(SEQ.	ID.	NO: 7)	(,	HNYLHR	(SEQ. 1D.	10.	0	NO: 13)	HOVTHH			· •	
Arab. chloroplast A15	VLGHDCGH	(SEQ.	10.	NO:	8	нвтин	(SEQ.	ΙĎ.	NO:	14)	нуінн	_	g		
Rice A ¹⁵	VLGHDCGH (SEQ.		ID.	 0	6	HRTHH	(SEQ.	10.	 0	14)	нитин	(SEO.	=		
Glycine chloroplast A13	VLGHDCGH (SEQ.		ID.	 0	8)	HRTHH	(SEQ.	ID.	0 N	14)	нитин	(SEO.			
Arab. fad3 (Δ^{15})	VLGHDCGH (SEQ.		ID.	NO:	8)	HRTHH	(SEQ.	ID.	N0.	14)	нутни	(SEO			
Brassica fad3 (Δ^{15})	VLGHDCGH	(SEQ.	ID.	0	8)	HRTHH	(SEQ.	ID.	 0	14)	нутни	(SEO			
Borage A ¹² (PI-81)*	VIAHECGH	(SEQ.	ID.	NO:	6	HRRHH	(SEQ.	10.			нудин	(350			
Arab. fad2 (Δ^{17})	VIAHECGH (SEQ.		ID.	NO:	6	HRRHH	(SEQ.				нуанн	(25)			
Arab. chloroplast A12	VIGHDCAH (SEQ.		10.	NO:	10)	HDRHH	(SEQ. ID.	ID.			HIPHH	. 245)			
Glycine plastid Δ^{12}	VIGHDCAH (SEQ.		ID.	NO: 10)	10)	HDRHH	(SEO. ID.	10.			HIDHH	(650 10	; £		
Spinach plastidial n-6	VIGHDCAH (SEQ. ID. NO: 10)	(SEQ.	ID.	Š.	10)	нрон	(SEQ.	10	2		нтотн	(SEO TO NO:	; £		(*)
Synechocystis A ¹²	WGHDCGH (SEQ.		ID. NO: 11)	9	11)	НДИНН	(SEQ. ID. NO: 18)	ID.	9	18)	нтен	(SEO	֝֟֝֝֝֟֝֝֝֟֝֝֝֟֝֝֝֟֝֝֟֝֝֟֝֝֟֝֓֓֓֓֓֓֓֓֓֓		
Anabaena Δ^{12}	VLGHDCGH (SEQ.	SEQ.	ID. NO: 8)	ö	8	HNHHH	(SEQ. ID. NO: 19)	ID.	No:	19)	нурни	(SEQ. ID.	9		
"PI-81 is a full length cDNA which was identified by EST analysis and shows high similarity to	h cDNA whic	h was	ide	ıtif:	ied	by EST a	nalysi	S. a.r.	is br	POMS	high simi	larita	+		

WO 96/21022 PCT/IB95/01167

-38-

1 EXAMPLE 10

Construction of 222.14 NOS for transient and expression

The vector pBI221 (Jefferson et al. 1987

EMBO J. 6:3901-3907) was prepared for ligation by digestion with BamHI and EcoICR I (Promega) which excises the GUS coding region leaving the 35S promoter and NOS terminator intact. The borage Δ 6-desaturase cDNA was excised from the Bluescript plasmid (Stratagene) by digestion with BamHI and XhoI. The XhoI end was made blunt by use of the Klenow fragment. This fragment was then cloned into the BamHI/EcoICR I sites of pBI221, yielding 221.Δ6NOS (Fig. 7). In 221.Δ6.NOS, the remaining portion (backbone) of the restriction map depicted in Fig. 7 is pBI221.

20

25

EXAMPLE 11

Construction of 121. A⁶. NOS for stable transformation

The vector pBI121 (Jefferson et al. 1987

5 EMBO J. 6:3901-3907) was prepared for ligation by digestion with BamHI and EcoICR I (Promega) which excises the GUS coding region leaving the 35S promoter and NOS terminator intact. The borage Δ 6-desaturase cDNA was excised from the Bluescript plasmid

(Stratagene) by digestion with BamHI and XhoI. The XhoI end was made blunt by use of the Klenow fragment. This fragment was then cloned into the BamHI/EcoICR I sites of pBI121, yielding 121.1Δ6NOS (Fig. 7). In 121.Δ6.NOS, the remaining portion (backbone) of the restriction map depicted in Fig. 7 is pBI121.

20

1

25

EXAMPLE 12

Transient Expression

All work involving protoplasts was performed 5 in a sterile hood. One ml of packed carrot suspension cells were digested in 30 mls plasmolyzing solution (25 g/l KC1, 3.5 g/l $CaCl_2-H_2O$, 10mM MES, pH 5.6 and 0.2 M mannitol) with 1% cellulase, 0.1% pectolyase, and 0.1% dreisalase overnight, in the dark, at room 10 temperature. Released protoplasts were filtered through a 150 μm mesh and pelleted by centrifugation (100x g, 5 min.) then washed twice in plasmolyzing Protoplasts were counted using a double chambered hemocytometer. DNA was transfected into the protoplasts by PEG treatment as described by Nunberg and Thomas (1993 Methods in Plant Molecular Biology and Biotechnology, B.R. Glick and J.E. Thompson, eds. pp. 241-248) using 106 protoplasts and 50-70 ug of plasmid DNA (221.Δ6.NOS). Protoplasts were cultured in 5 mls of MS media supplemented with 0.2M mannitol 20 and 3 μ m 2,4-D for 48 hours in the dark with shaking.

25

1 EXAMPLE 13 Stable transformation of tobacco

121.Δ6.NOS plasmid construction was used to 5 transform tobacco (Nicotiana tabacum cv. xanthi) via Agrobacterium according to standard procedures (Horsh et al., 1985 Science 227: 1229-1231; Bogue et al., 1990 Mol. Gen. Genet. 221:49-57), except that initial transformants were selected on 100 ug/ml kanamycin.

10

15

20

25

30

EXAMPLE 14

Preparation and analysis of fatty acid methyl esters (FAMEs)

Tissue from transfected protoplasts and
transformed tobacco plants was frozen in liquid
nitrogen and lyophilized overnight. FAMEs were
prepared as described by Dahmer et al (1989 J. Amer.
Oil Chem. Soc. 66:543-548). In some cases, the
solvent was evaporated again, and the FAMEs were
resuspended in ethyl acetate and extracted once with
deionized water to remove any water soluble
contaminants. The FAMEs were analyzed by gas
chromatography (GC) on a J&W Scientific DB-wax column
(30 m length, 0.25 mm ID, 0.25 um film).

An example of a transient assay is shown in Fig. 8 which represents three independent transfections pooled together. The addition of the borage Δ6-desaturase cDNA corresponds with the appearance of gamma linolenic acid (GLA) which is one of the possible products of Δ6-desaturase.

Figures 9 and 10 depict GC profiles of the FAMES derived from leaf and seed tissue, respectively, of control and transformed tobacco plants. Figure 9A provides the profile of leaf tissue of wild-type tobacco (xanthi); Figure 9B provides the profile of leaf tissue from a tobacco plant transformed with the borage Δ -6 desaturase under the transcriptional control of the 35S CaMV promoter (pBI 121 Δ 'NOS). Peaks correspond to 18:2, 18:3 γ (GLA), 18:3 α and 18:4 (octadecanonic acid). Figure 10A shows the GC profile of seeds of a wild-type tobacco; Figure 10B shows the

30

profile of seed tissue of a tobacco plant transformed with pBI 121 Δ^6 NOS. Peaks correspond to 18:2, 18:3 γ (GLA) and 18:3 α .

The relative distribution of the C_{18} fatty scids in control and transgenic tobacco seeds is shown in Table 4.

TABLE 4

	Fatty Acid	Xanthi	pBI12146NOS
10	18:0	4.0%	2.5%
	18:1	13%	13%
	18:2	82%	82%
	18:3γ (GLA)	-	2.7%
15	18:3α	0.82%	1.4%

The foregoing results demonstrate that GLA is incorporated into the triacylglycerides of transgenic tobacco leaves and seeds containing the borage $\Delta 6$ -desaturase.

25

20

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Rhone-Poulenc Agrochimie
 - (ii) TITLE OF INVENTION: PRODUCTION OF GAMMA LINOLENIC ACID BY A DELTA 6-DESATURASE
 - (iii) NUMBER OF SEQUENCES: 25
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Scully, Scott, Murphy & Presser (B) STREET: 400 Garden City Plaza

 - (C) CITY: Garden City
 - (D) STATE: New York
 - (E) COUNTRY: United States
 - (F) ZIP: 11530
 - (v) COMPUTER READABLE FORM:

 - (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 30-DEC-1994
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Presser, Leopold (B) REGISTRATION NUMBER: 19,827 (C) REFERENCE/DOCKET NUMBER: 8383ZYXW
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (516) 742-4343
 - (B) TELEFAX: (516) 742-4366 (C) TELEX: 230 901 SANS UR
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3588 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 2002..3081

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CACCTTGCCA GACCACGTTA GTTTGAGTGT TTCCGCCCTG GCGGCCCCGA TTTTTTCCTT TGCGGCTTTG GGCAATCAGG CGATCGGGCA ATTGCGTTTG TTTGACCAGA CTTGGCCCAT TCAGGAAATT GTCATTCACC AAGACCATCC CTGGCTCAAT TTACCCCTGG CGGATTTATG GGATGATCCG AGCCGAATGT TGATCTATTA CCTACCGGCC CACAGTGAAA CGGATTTAGT AGGCGCAGTG GTGAATAATT TAACGTTGCA ATCTGGGGAC CATTTAATAG TGGGACAAAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA AAAGTCCCCC GATATCATCA AAGTATTCAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG TAATTGTGGA GGTGGCCACC AGCGACAC CCGTTAACTT GGAAATTGG CTAACTGCCA AGGCCATTGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGGTATTTGAAACGG TGCTTTGTCC GGCGGAATTG CCTTTGCCGC TCCTTGCGGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACCTCTG AGACGTGTTG TATTTAAACCA TCCCTTAGCTG GGAATTATTG GGTACCCATC TCGACCTCTG AGACGTGTTG TATTTTAACCA TCCCTTAGCTG TGCCCTAACCTACC CTTAACTCT CAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG TGCCCTACACC TTAACCCACC CTCACCTTGC AGACCGTTGT TATTTAACCA TCCCTTAGCTG TGCCCTACAC CAACCACC CAACTTCTG AGACGTGTTG TATTTTAACCA TCCCTTAGCTG TGCCCTACAC CAACTTTCCC CTCCCTCTT							
CACCTTGCCA GACCACGTTA GTTTGAGTGT TTCCGCCCTG GCGGCCCCGA TTTTTTCCTT TGCGGCTTTG GGCAATCAGG CGATCGGGCA ATTGCGTTTG TTTGACCAGA CTTGGCCCAT TCAGGAAATT GTCATTCACC AAGACCATCC CTGGCTCAAT TTACCCCTGG CGGATTTATG GGATGATCCG AGCCGAATGT TGATCTATTA CCTACCGGCC CACAGTGAAA CGGATTTAGT AGGCGCAGTG GTGAATAATT TAACGTTGCA ATCTGGGGAC CATTTAATAG TGGGACAAAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA AAAGTCCCCC GATATCATCA AAGTATTCAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG TAATTGTGGA GGTGGCCACC AGCGACAC CCGTTAACTT GGAAATTGG CTAACTGCCA AGGCCATTGC CCCTAGCCTC CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGGTATTTGAAACGG TGCTTTGTCC GGCGGAATTG CCTTTGCGGC 12 CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACCTCTG AGACGTGTTG TATTTAAACCA TCCCTTAGCTG GGAATTATTG GGTACCCATC TCGACCTCTG AGACGTGTTG TATTTAACCA TCCCTTAGCTG CCCAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG TGCCCTACCCACC TTAACCCACC CTCCCTGG AGACGTGTTG TATTTTAACCA TCCCTTAGCTG TGCCCTACCCACC TTAACCCACC CTCCCTGG AGACGTGTTG TATTTTAACCA TCCCTTAGCTG TGCCCTACCCACC TTAACCCACC CTCCCTGG AGACGTGTTG TATTTTAACCA TCCCTTAGCTG TGCCCTACAC CAACTTTCCC CAACCACC CTCCCT	GCTAGCCACC	AGTGACGATG	CCTTGAATTT	GGCCATTCTG	ACCCAGGCCC	GTATTCTGAA	60
TGCGGCTTTG GGCAATCAGG CGATCGGGCA ATTGCGTTG TTTGACCAGA CTTGGCCCAT TCAGGAAATT GTCATTCACC AAGACCATCC CTGGCTCAAT TTACCCCTGG CGGATTTATG GGATGATCCG AGCCGAATGT TGATCTATTA CCTACCGGCC CACAGTGAAA CGGATTTAGT AGGCGCAGTG GTGAATAATT TAACGTTGCA ATCTGGGGAC CATTTAATAG TGGGACAAAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAACTCGCC TGGGGGGGGGT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGC TGGGGGGAGT GAGCATGCCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGC CTAACCTGCCA AGGCGATCGC CCCTAGCCACC CAGGGCAAAA TTTTGGCCA GGATGCCCAG TTTAGCCTGT CCCTTGCGGC CCCTAGCCACC CAACGTGCT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTTGCGGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTTGC TGCGGGTAGCC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTTGCC TGCGGGTAGCC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTTGCC TGCGGGTAGCC CCCAAAAGTCT GATTTCGTCC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTCC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCACT TCGACCTCTG AGACGTGTTG TATTTAACCA TCCCTAGCCTC CCCAAAAGTCT GATTTCGTCC CCTCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCACT TCGACCTCTG AGACGTGTTG TATTTTAACCA TCCCTTAGCTG 14 TGCCCTACCCACC TTAATCACCT CTCACCTCTG AGACGTGTTG TATTTTAACCA TCCCTAGCTCC TGCACCTACC TTAATCACCT CTCACCTCTG AGACGTGTTG TATTTTAACCA TCCCTAGCTCC TGCACCTACC TTAATCACCT CTCACCTCTG AGACGTGTTG TATTTTAACCA TCCCTAGCTCC TGCACCTACC TAACTTCC CTCACCTTCG AGACGTGTTG TATTTTAACCA TCCCTAGCTCC TGCCCTACCC TAACCTCC CTCACCTCTG AGACCTTCTC TATTTTAACCA TCCCTTAGCTC TGCCCTACCTAC	TCCCCGCATT	CGCATTGTTA	ATCGTTTGTT	CAACCATGCC	CTGGGTAAAC	GTTTAGACAC	120
TCAGGAAATT GTCATTCACC AAGACCATCC CTGGCTCAAT TTACCCCTGG CGGATTTATG GGATGATCCG AGCCGAATGT TGATCTATTA CCTACCGGCC CACAGTGAAA CGGATTTAGT AGGCGCAGTG GTGAATAATT TAACGTTGCA ATCTGGGGAC CATTTAATAG TGGGACAAAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA AAAGTCCCCC GATATCATCA AAGTATTCAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT TTTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACCATCATC ATTTGTGGGC TGGGGGGAGT TTTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACCATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATGCCCCC CTAGAAAGAA CGTTGGCCT CGCCCATCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGGGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCACC CCAGTGGTGT TGCGTTGCCA GGAGTGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC CCCTAGCCACC TTAATCACCC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTC CCCTCATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTCC CCCCTCATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTCC CCCCTCATCT TAGACCGGCC CCAATTAGCACC TCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCCCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCCCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCCCTATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCCTCATCT TCGACTCTG AGACCGGTTG TATTTAACCA TGCCCGCCAC TCCCTAGCCACC TTAACCTCC CTTTGCCGAC TTTTTAACCA TCCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCCTCATCT AGAACGGGGT GGCAAAAACCA TCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCCTCATCT AGACCGGTTG TATTTTAACCA TGCCCGCCAC	CACCTTGCCA	GACCACGTTA	GTTTGAGTGT	TTCCGCCCTG	GCGGCCCCGA	TTTTTTCCTT	180
GGATGATCCG AGCCGAATGT TGATCTATTA CCTACCGGCC CACAGTGAAA CGGATTTAGT AGGCGCAGTG GTGAATAATT TAACGTTGCA ATCTGGGGAC CATTTAATAG TGGGACAAAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA CGCGTTGTAT TTTTCCGTGG GCATGATTAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT TTTGGATGCC GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT CCCTAGCCACC AGCGACGACA CCGTTACCTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCACC CCAGTGGTGT TGCGTTGCCA GGAGGACCGA TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTC CCCCTCTACCT AGAACGGGT GGCAAAACCA TCCATAGCTG GGAAATTATTG GGTACCCACT TCGACTCTCG AGACGGTTG TATTTAACCA TCCCATAGCTG CCCAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGT GGCAAAACCA TCCATAGCTG 13 GGAAATTATTG GGTACCCACT TCGACTCTCG AGACGTGTT TATTTAACCA TCCCATAGCTG 14 TGCCCTACCAC CAACGCCAC CAATCCCACC CTTTTCCCGAC CAATTTCACCTC TCCCTCCCCCCCCCC	TGCGGCTTTG	GGCAATCAGG	CGATCGGGCA	ATTGCGTTTG	TTTGACCAGA	CTTGGCCCAT	240
AGGCCAGTG GTGAATAATT TAACGTTGCA ATCTGGGGAC CATTTAATAG TGGGACAAAA ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA 4 CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT 5 GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA CGCGTTGTAT TTTTCCGTGG GCATGATTAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCCC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCCTC CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTTT CCCTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCAATATC GCCACCTATT CCTTTGCGGC GCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTC CCCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAAATTATTG GGTACCCACT CCCTCTATCT AGAACGGGT GGCAAAACCA TCCATAGCTG GGAAATTATTG GGTACCCACT CCGCCCACT TAATTTAACCA TGCCCGCCAC TGCCCTACCAC CAACCACCC CTCCACTCTG AGAACGGGT TAATTTAACCA TGCCCGCCAC TGCCCTACCACC TAAACCACC CTCCACTCTG AGACGGTTT TAATTTAACCA TGCCCGCCAC TGCCCTACCAC CAACCACCC TCGACCTCTTC TAACCATCC TTTTGCCGGC TAATTTAACCA TGCCCGCCAC TGCCCTACCAC CAACCACCC TCGACCTCTTC TAACCATCC TTTTTTAACCA TCCCATAGCTG TGCCCTACACC CAACACCC TCGACCTCTTC TAACCATCC TTTTTTAACCA TCCCATAGCTG TGCCCTACCAC CAACCACC TCGACCTCCTTCTTCT AGAACGGGTT TAATTTAACCA TCCCATAGCTG TGCCCTACCAC TAACCATCC TCGACCTCTTTCT TAACCACTCC TAATTTAACCA TCCCATAGCTG TGCCCTACACC TAACCATCC TCGACCTCTTTCT TAACCACTCC TAATTTAACCA TCCCATAGCTG TGCCCTACACC CAACCACC TCCACCTCTTTCT TAACCATCC TTTTTAACCA TCCCATAGCTG TGCCCTACCAC CAACCACC TCCACCTCTTCTCTTTTAACCA TCCCATACCTC TCCATACCTTTTAACCATCC TTTTTTAACCA TCCCCTCCACCACTTTTTTTT	TCAGGAAATT	GTCATTCACC	AAGACCATCC	CTGGCTCAAT	TTACCCCTGG	CGGATTTATG	300
ACCCCAACCC AAGACCAAAC GGCGATCGCC TTGGCGCAAA TTTTCCAAAC TGATTACCAA CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA GGCGTTGTAT TTTTCCGTGG GCATGATTAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAGTCGCT TTAGTCAGTT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCCATTGT CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG CCCTGCAGGA AGTATTTGAA GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTC CCCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACCTCGG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACACC GAACTTCTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG CCCAAAAAGTCT GATTTCGTCC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACACC GAACTTCTCC CAACCATCC TTGCACTCTG TATTTAACCA TGCCCGCCAC TGCCCTACACC GAACTTCTCC CAACCATCC TTTTACCTGTT TATTTAACCA TGCCCGCCAC TGCCCTACACC GAACTTCTCC GACCCTCTC TATTTAACCA TGCCCGCCAC TTCCCTACACC GAACTTCTCC GACCCTCTC TATTTAACCA TGCCCGCCAC TTCCCTACACC GAACTTCTCC GACCCTCTC TATTTAACCA TGCCCGCCAC TTCCCTACACCACC GAACCATC TCGACTCTCG AGACCGTGTTG TATTTAACCA TGCCCGCCAC TTCCCTACACC GAACTTCTCC GACCCTCTC TATTTAACCA TGCCCGCCAC TGCCCTACACCACC GAACCATC TCGACTCTCG AGACCGTGTTG TATTTAACCA TGCCCGCCAC TCCCCTACACC GAACTTCCC CAACCATCC TCCACCTCC TATTTAACCA TGCCCGCCAC TGCCCTACACC GAACTTCCC CAACCATCC TCCACCACC TATTTAACCA TGCCCGCCAC TCCCCTACACC GAACTTCCC CAACCACC TCCACCACC TCCACCACC TATTTTAACCA TGCCCCCCCAC TCCCCTACACC GAACTTCCC CAACCACC TCCACCACC TCCACCACCAC TCCACCACCA	GGATGATCCG	AGCCGAATGT	TGATCTATTA	CCTACCGGCC	CACAGTGAAA	CGGATTTAGT	360
CCTGCGGGAG TATCAGCGGT ATGTCCAACA GGTGATATGG GTGGTGTTGT TTTTATTGTT GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA GATGATTTTT CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA GAGGTGTGATA TTTTCCGTGG GCATGATTAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGT GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAGTCGCT TTAGTCAGTT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCTC CCCCCTCTGC AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCTC CCCCCTCTGC AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCTCC CAACCATCC CAACTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACACC CAACTCTCC CAACCATCC CAACTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCTCC CAACCACC CAACTGTTT TATTTAACCA TGCCCGCCAC TGCCCTACACAC CAACTCTCC CAACCACC CAACTCTCC CAACTCT	AGGCGCAGTG	GTGAATAATT	TAACGTTGCA	ATCTGGGGAC	CATTTAATAG	TGGGACAAAA	420
GATGATTITI CTGGCCACCT TCATCTACGT TTCCATTGAT CAACATATTG CCCCAGTGGA GCGCTTGTAT TTTTCCGTGG GCATGATTAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAGTCGCT TTAGTCAGTT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCACC CCAGTGGTGT TGCGTTGCCA GGAGAATTGG CCTAACTGCCA AGGCGATCGC AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATTCA CAACCATCC CTTTGCCGGC TAATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG CAACCATCC TTGCCGGC TAATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG GAACTCTCG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG GAACTCTCG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG GAACTCTCG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG CAACCATCC TTGCCCGCCAC TGCCCTACAC GAACTTATCG GAACTCTCG TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG GAACTCTCG TTGCCGAC TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTTATCG GAACTCTCG TTGCCGAC TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCC GAACCCTCTC TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCCC GAACCCTCTC TATTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCC GAACCCTCTC TTGCCGC TTTTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCC GAACCCTCTC TTTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCC GAACTCTC TTTTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCC GAACTCTCC TTTTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCCC GAACTCTCC TTTTTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCCC GAACTCTCC TTTTTAACCA TGCCCGCCAC TGCCCTACAC GAACTCTCCCAC TTTTTTTAACCA TGCCCACAC TTTTTTTAACCA TGCCCGCCAC	ACCCCAACCC	AAGACCAAAC	GGCGATCGCC	TTGGCGCAAA	TTTTCCAAAC	TGATTACCAA	, .480
CGCGTTGTAT TTTTCCGTGG GCATGATTAC CGGGGCCGGT GGCAAGGAAG AGGTGGCCGA AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAGTCGCT TTAGTCAGTT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCT CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGAGACCCAGTTT CCCTTGCGGC AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC CCTAGCCCCC GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCCTCTC CAACCATCC TTTTTAACCA TGCCCGCCAC TGCCCTACAC CAACCCTCC CAACCCTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCTCCC CAACCCTCTGC AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCTCTCC CAACCCTCC CAACCTGTTT TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCTCTCC CAACCTCTCG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCTCTCC CAACCTCTCG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCTCC CAACCTCTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCTCC CAACCTCTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACCTCTCC CAACCTCTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCTCCC CAACCTCTCTC CAACCTCTCTCT	CCTGCGGGAG	TATCAGCGGT	ATGTCCAACA	GGTGATATGG	GTGGTGTTGT	TTTTATTGTT	540
AAAGTCCCCC GATATCATCA AAGTATTCAC AGTGGTGATG ATGATCGCCG GGGCGGGGGT GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAGTCGCT TTAGTCAGTT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT BAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAAGTCT GATTTCGTC CCCCCCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAAATTATTG GGTACCCATC TCGACTCTG AGACCGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTGTCC CATGCGCGCG TGCGAATGTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCC CATGCCGCCC TCCGACTCTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCC CATGCCGCCC TCCGACTCTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCC CAACTCCC TCCGACTCTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCC CAACTCCC TCCGACTCTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCC CAACTCCC TCCGCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCCAC TCCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCAC TCCCCCCCAC TCCCCCCCAC TCCCCCCCAC TCCCCCCCC	GATGATTTT	CTGGCCACCT	TCATCTACGT	TTCCATTGAT	CAACATATTG	CCCCAGTGGA	600
GATTGGTATT TGTTATGCCC TACTGAATGA TTTCATCCTT GGCAGTCGCT TTAGTCAGTT TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC 12 GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACTCTG AGACCGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTAGAC CAACTTTCGC CAACCTCTG TATTTAACCA TGCCCGCCAC TGCCCTAGCC CAACTTTCCC CAACCTCC TTGCCGCC TATTTAACCA TGCCCGCCAC TGCCCTAGCC CAACTTTCCCC CAACCTCC TTGCCGCC TATTTAACCA TGCCCGCCAC TGCCCTAGCC CAACTTTCCCC CAACCTCC TTGCCGCC TATTTAACCA TGCCCGCCAC TGCCCTAGCC CAACTTTCCCC CAACCTCC TTGCCCGCC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCCC CAACCTCC TTGCCCGCC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCCC CAACCTCC TTGCCCGCC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCC CAACCTCC TTGCCCGCC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCC CAACCTCCC TTGCCCGCC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCCC CAACCTCCC TTGCCCACC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCCC CAACCTCCC TTGCCCACCTC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTCCCC CAACTCCC TTGCCCACCTC TTATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCCCCCC TTCCCCCCCC TTATTTTAACCA TGCCCGCCAC TGCCCTACAC CAACTCCC CAACTCCC TTCCCACCTCC TTATTTAACCA TGCCCCCCCAC TGCCCTACAC CAACTCCCCCC TTCCCCCCCCC TTATTCCCCCCCC	CGCGTTGTAT	TTTTCCGTGG	GCATGATTAC	CGGGCCGGT	GGCAAGGAAG	AGGTGGCCGA	660
TTTGGATGCG GCCAAGTTAC CCGATCGCCA TCACATCATC ATTTGTGGGC TGGGGGGAGT GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC 12 GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAAGTCT GATTTCGTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAAATTATTG GGTACCCATC TCGACTCTG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCGC CAACCGCCC TGCGACTGTT TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCGC CAACCGCCC TGCGCAC TGCCCACCAC TCCCACCAC TCCCTACCT TCGACTGCC TGCCACCAC TCCCACCAC TCCCACCAC TCCCACCAC TCCCACCAC TCCCCACCAC TCCCCCCAC TCCCCACCAC TCCCCACCAC TCCCCCCAC TCCCCCCAC TCCCCCAC TCCCCACCAC TCCCCACCAC TCCCCACCAC TCCCCACCAC TCCCCACCAC TCCCCACCAC TCCCCACCAC TCCCACCAC	AAAGTCCCCC	GATATCATCA	AAGTATTCAC	AGTGGTGATG	ATGATCGCCG	GGGCGGGGGT	720
GAGCATGGCC ATTATTGAAG AGTTAATTCA CCAGGGCCAT GAAATTGTGG TAATCGAAAA GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC CCCTCTATCT AGAACGGGGT TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCGC CATCGGGGG TGGCACTGTT TATTTAACCA TGCCCGCCAC	GATTGGTATT	TGTTATGCCC	TACTGAATGA	TTTCATCCTT	GGCAGTCGCT	TTAGTCAGTT	780
GGATACAGAT AATCGTTTCT TGCATACGGC CCGCTCCCTG GGGGTGCCCG TAATTGTGGA GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCC CATCCCCGCC TCGCACTGTT TATTTAACCA TGCCCGCCAC	TTTGGATGCG	GCCAAGTTAC	CCGATCGCCA	TCACATCATC	ATTTGTGGGC	TGGGGGGAGT	840
GGATGCCCGC CTAGAAAGAA CGTTGGCCTG CGCCAATATC AACCGAGCCG AAGCCATTGT 10 GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC 10 CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA 11 AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC 12 GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC 12 CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC 13 CCCAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC 14	GAGCATGGCC	ATTATTGAAG	AGTTAATTCA	CCAGGGCCAT	GAAATTGTGG	TAATCGAAAA	900
GGTGGCCACC AGCGACGACA CCGTTAACTT GGAAATTGGC CTAACTGCCA AGGCGATCGC CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCC CATCCCCCCC TGCCACTGTTG TATTTAACCA TGCCCGCCAC	GGATACAGAT	AATCGTTTCT	TGCATACGGC	CCGCTCCCTG	GGGGTGCCCG	TAATTGTGGA	960
CCCTAGCCTG CCAGTGGTGT TGCGTTGCCA GGATGCCCAG TTTAGCCTGT CCCTGCAGGA AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC CCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCCC CATCCCCGCC TGCCACTGGT GATGCTCTCATCTCTCTCTCTCTCTCTCTCTCTCTCTCTC	GGATGCCCGC	CTAGAAAGAA	CGTTGGCCTG	CGCCAATATC	AACCGAGCCG	AAGCCATTGT	1020
AGTATTTGAA TTTGAAACGG TGCTTTGTCC GGCGGAATTG GCCACCTATT CCTTTGCGGC 12 GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC 12 CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC 13 CCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC 14 TGCCCTACAC CAACTTTCGC CATGCCGCGC TGCGACTGTTG TATTTAACCA TGCCCGCCAC	GGTGGCCACC	AGCGACGACA	CCGTTAACTT	GGAAATTGGC	CTAACTGCCA	AGGCGATCGC	1080
GGCGGCCCTG GGGGGCAAAA TTTTGGGCAA CGGCATGACC GATGATTTGC TGTGGGTAGC CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC 13 CCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC TGCCCTACAC CAACTTTCGG CATGCCGGGG TGGGAATGGT GATGGTTG TATTTAACCA TGCCCGCCAC	CCCTAGCCTG	CCAGTGGTGT	TGCGTTGCCA	GGATGCCCAG	TTTAGCCTGT	CCCTGCAGGA	1140
CCTAGCCACC TTAATCACTC CTAACCATCC CTTTGCCGAC CAATTGGTTA AAATTGCAGC 13 CCAAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC 14 TGCCCTACAC GAACTTTCGG GATCCCGGGG TGGGA TGCGACTGTTG TATTTAACCA TGCCCGCCAC	AGTATTTGAA	TTTGAAACGG	TGCTTTGTCC	GGCGGAATTG	GCCACCTATT	CCTTTGCGGC	1200
CCAAAAGTCT GATTTCGTTC CCCTCTATCT AGAACGGGGT GGCAAAACCA TCCATAGCTG 13 GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC 14.	GGCGGCCCTG	GGGGGCAAAA	TTTTGGGCAA	CGGCATGACC	GATGATTTGC	TGTGGGTAGC	1260
GGAATTATTG GGTACCCATC TCGACTCTGG AGACGTGTTG TATTTAACCA TGCCCGCCAC 14.	CCTAGCCACC	TTAATCACTC	CTAACCATCC	CTTTGCCGAC	CAATTGGTTA	AAATTGCAGC	1320
TCCCCTACAC CAACTTTCCC CATCCCCCCC TCCCA TCCCA CTCCT	CCAAAAGTCT	GATTTCGTTC	CCCTCTATCT	AGAACGGGGT	GGCAAAACCA	TCCATAGCTG	1380
TGCCCTAGAG CAACTTTGGC GATCGCCCCG TGCCACTGCT GATCCTCTGG ACTCTTTTTT 15	GGAATTATTG	GGTACCCATC	TCGACTCTGG	AGACGTGTTG	TATTTAACCA	TGCCCGCCAC	1440
	TGCCCTAGAG	CAACTTTGGC	GATCGCCCCG	TGCCACTGCT	GATCCTCTGG	ACTCTTTTTT	1500

GGTT	TAGO	AT G	GGGG	GATG	G AA	CTCT	TGAC	TCG	GCCC	TAA	GGTG	ATCA	AG A	NAAGA	ACGCT	1560
TTGT	CTAT	GT I	TAGT	TTTA	T TA	AGTT	AACC	· AAC	AGCA	GAG	GATA	ACTI	CC A	DAAAA	BAAATT	1620
AAGC	TCAA	AA A	GTAG	CAAA	A TA	AGTT	TAAT	TCA	CAAT	TGA	GTT	TACI	rgc 1) AAA1	CAGCGG	1680
TGCA	АААА	AG 1	CAGA	AAAT.	A TA	AAAG	CTTC	ACT	TCGG	TTT	TATA	TTGT	GA (CCATO	GTTCC	1740
CAGG	CATC	TG C	TCTA	.GGGA	G TI	TTTC	CGCI	GCC	TTT	GAG	AGTA	1777	CT (CCAAC	TCGGC	1800
TAAC	TCCC	CC A	TTTT	TAGG	C AA	AATC	CATA:	ACA	GACT	CATC	CCA	TAT	rgc (CAGAC	CTTTG	1860
ATGA	CTCA	CT	STAGA	AGGC	A GA	CTAA	LAATI	CTA	GCA	YTGG	ACTO	CCAC	TT (GAA7	TTAAA1	1920
TTTA	GTC1	CC C	CCGG	CGCI	'G GA	GTT1	TITI	GTA	GTT	ATG	GCGC	TAT	AT (GTGA	V AGTTT	1980
TTTA	TCTA	ATT T	TAAAT	TTAT	A A									TTT Phe		2031
CAG Gln	AAA Lys	CGG Arg	GGG Gly	TTT Phe 15	CGT Arg	CGG Arg	GTA Val	CTA Leu	AAC Asn 20	CAA Gln	CGG Arg	GTG Val	GAT Asp	GCC Ala 25	TAC Tyr	2079
TTT Phe	GCC Ala	GAG Glu	CAT His 30	GGC Gly	CTG Leu	ACC Thr	CAA Gln	AGG Arg 35	GAT Asp	AAT Asn	CCC Pro	TCC Ser	ATG Met 40	TAT Tyr	CTG Leu	2127
AAA Lys	ACC Thr	CTG Leu 45	ATT Ile	ATT Ile	GTG Val	CTC Leu	TGG Trp 50	TTG Leu	TTT Phe	TCC Ser	GCT Ala	TGG Trp 55	GCC Ala	TTT Phe	GTG Val	2175
														ATG Met		2223
														GAT Asp		2271
														CTG Leu 105		2319
														TAT Tyr		2367
														GAC Asp		2415
														GAA Glu		2463

					TTC Phe 160											2511
TTC Phe	ATT Ile	CCC Pro	TTT Phe	TAT Tyr 175	TGG Trp	TTT Phe	CTC Leu	TAC Tyr	GAT Asp 180	GTC Val	TAC Tyr	CTA Leu	GTG Val	CTT Leu 185	TAA Asn	2559
AAA Lys	GGC Gly	AAA Lys	TAT Tyr 190	CAC His	GAC Aвр	CAT His	AAA Lys	ATT Ile 195	CCT Pro	CCT Pro	TTC Phe	CAG Gln	CCC Pro 200	CTA Leu	GAA Glu	2607
					GGG Gly							_		_	_	2655
GGC Gly	TTA Leu 220	CCT Pro	CTG Leu	GCT Ala	CTG Leu	GGC Gly 225	TTT Phe	TCC Ser	ATT Ile	CCT Pro	GAA Glu 230	GTA Val	TTA Leu	ATT Ile	GGT Gly	2703
					ATG Met 240											2751
					TTG Leu										GGT Gly	2799
					GAT Asp										ACC Thr	2847
			Phe		ACC Thr			Pro								2895
GGT Gly	TTA Leu 300	Asn	CAC His	CAA Gln	GTT Val	ACC Thr 305	His	CAT His	CTT Leu	TTC Phe	CCC Pro 310	TAA naA	ATT	TGT Cys	CAT His	2943
	His					Glu					Asp				GAG Glu 330	2991
TTT Phe	GGT Gly	GTG Val	GAA Glu	TAT Tyr 335	Lys	GTT Val	TAT	CCC Pro	ACC Thr 340	Phe	AAA Lys	GCG Ala	GCG Ala	Ile 345	GCC Ala	3039
TCT Ser	AAC	TAT	CGC Arg 350	Trp	CTA Leu	GAG Glu	GCC	Met 355	Gly	Lys	GCA Ala	TCG Ser	TGA 360		GCC	3088
TTG	GGAT	TGA	AGCA	TAAA	GG C	AAAA '	TCCC	T CG	TAAA	TCTA	TGA	TCGA	AGC	CITI	CTGTTC	3148
CCC	GCCG	ACC	AAAT	cccc	GA T	GCTG	ACCA	A AG	GTTG	ATGT	TGG	CATT	GCT	CCAA	ACCCAC	3208

TITGAGGGGG TTCATTGGCC GCAGTTTCAA GCTGACCTAG GAGGCAAAGA TTGGGTGAT	r
TTGCTCAAAT CCGCTGGGAT ATTGAAAGGC TTCACCACCT TTGGTTTCTA CCCTGCTCAA	1
TGGGAAGGAC AAACCGTCAG AATTGTTTAT TCTGGTGACA CCATCACCGA CCCATCCATC	;
TGGTCTAACC CAGCCCTGGC CAAGGCTTGG ACCAAGGCCA TGCAAATTCT CCACGAGGCT	•
AGGCCAGAAA AATTATATTG GCTCCTGATT TCTTCCGGCT ATCGCACCTA CCGATTTTTG	;
AGCATTITTG CCAAGGAATT CTATCCCCAC TATCTCCATC CCACTCCCCC GCCTGTACAA AATTTTATCC ATCAGCTAGC	
(2) INFORMATION FOR SEQ ID NO:2:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 359 amino acids (B) TYPE: amino acid	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
Met Leu Thr Ala Glu Arg Ile Lys Phe Thr Gln Lys Arg Gly Phe Arg 1 5 10 15	
Arg Val Leu Asn Gln Arg Val Asp Ala Tyr Phe Ala Glu His Gly Leu 20 25 30	
Thr Gln Arg Asp Asn Pro Ser Met Tyr Leu Lys Thr Leu Ile Ile Val 35 40 45	
Leu Trp Leu Phe Ser Ala Trp Ala Phe Val Leu Phe Ala Pro Val Ile 50 60	
Phe Pro Val Arg Leu Leu Gly Cys Met Val Leu Ala Ile Ala Leu Ala 65 70 75 80	
Ala Phe Ser Phe Asn Val Gly His Asp Ala Asn His Asn Ala Tyr Ser 85 90 95 Ser Asn Pro His Ile Asn Arg Val Leu Gly Met Thr Tyr Asp Phe Val	

Gly Leu Ser Ser Phe Leu Trp Arg Tyr Arg His Asn Tyr Leu His His 115

Thr Tyr Thr Asn Ile Leu Gly His Asp Val Glu Ile His Gly Asp Gly 130

Ala Val Arg Met Ser Pro Glu Gln Glu His Val Gly Ile Tyr Arg Phe

PCT/IB95/01167

Gln	Gln	Phe	Tyr	Ile 165	Ттр	Gly	Leu	Tyr	Leu 170	Phe	Ile	Pro	Phe	Tyr 175	Trp
Phe	Leu	Tyr	Asp 180	Val	Tyr	Leu	Val	Leu 185	Asn	Lys	Gly	Lув	Tyr 190	His	Asp
His	Lys	Ile 195	Pro	Pro	Phe	Gln	Pro 200	Leu	Glu	Leu	Ala	Ser 205	Leu	Leu	Gly
Ile	Lys 210	Leu	Leu	Trp	Leu	Gly 215	Tyr	Val	Phe	Gly	Leu 220	Pro	Leu	Ala	Leu
Gly 225	Phe	Ser	Ile	Pro	Glu 230	Val	Leu	Ile	Gly	Ala 235	Ser	Val	Thr	Tyr	Met 240
Thr	Tyr	Gly	Ile	Val 245	Val	Сув	Thr	Ile	Phe 250	Met	Leu	Ala	His	Val 255	Leu
Glu	Ser	Thr	Glu 260	Phe	Leu	Thr	Pro	Asp 265	Gly	Glu	Ser	Gly	Ala 270	Ile	Asp
двр	Glu	Trp 275	Ala	Ile	Сув	Gln	Ile 280	Arg	Thr	Thr	Ala	Asn 285	Phe	Ala	Thr
Asn	Asn 290	Pro	Phe	Trp	Asn	Trp 295	Phe	Сув	Gly	Gly	Leu 300	Asn	His	Gln	Val
Thr 305	His	His	Leu	Phe	Pro 310	Asn	Ile	Сув	His	Ile 315	His	Tyr	Pro	Gln	Leu 320
Glu	Asn	Ile	Ile	Lув 325	Asp	Val	Сув	Gln	Glu 330	Phe	Gly	Val	Glu	Tyr 335	Lys
Val	Tyr	Pro	Thr 340	Phe	Lys	Ala	Ala	Ile 345	Ala	Ser	Asn	Tyr	Arg 350	Trp	Leu
Glu	Ala	Met 355	Gly	Lys	Ala	Ser									

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1884 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AGCTTCACTT CGGTTTTATA TTGTGACCAT GGTTCCCAGG CATCTGCTCT AGGGAGTTTT 60 TCCGCTGCCT TTAGAGAGTA TTTTCTCCAA GTCGGCTAAC TCCCCCATTT TTAGGCAAAA 120

-50-

PCT/IB95/01167

					AAGGCAGACT	180
AAAATTCTAG	CAATGGACTC	CCAGTTGGA	TAAATTTTT	GTCTCCCCC	GCGCTGGAGT	240
TTTTTTGTAG	TTAATGGCGG	TATAATGTG	AAGTTTTTT	TCTATTTAAA	TTTATAAATG	300
CTAACAGCGG	AAAGAATTAA	ATTTACCCAC	AAACGGGGGT	TTCGTCGGGT	ACTAAACCAA	360
CGGGTGGATG	CCTACTTTGC	CGAGCATGG	CTGACCCAAA	GGGATAATCC	CTCCATGTAT	420
CTGAAAACCC	TGATTATTGT	GCTCTGGTTG	TTTTCCGCTT	GGGCCTTTGT	GCTTTTTGCT	480
CCAGTTATTI	TTCCGGTGCG	CCTACTGGGT	TGTATGGTTT	TGGCGATCGC	CTTGGCGGCC	540
					TCCCCACATC	600
					TTGGCGCTAT	660
					GGAAATCCAT	720
					TCGTTTCCAG	780
	TTTGGGGTTT					840
	TTAATAAAGG					900
	GTTTGCTAGG					960
	GCTTTTCCAT					1020
	TGGTTTGCAC					1080
	ATGGTGAATC					1140
	ATTTTGCCAC					1200
	CCCACCATCT					1260
	AGGATGTTTG					1320
	TCGCCTCTAA					1380
	TTGAAGCAAA					1440
	GACCAAATCC					1500
	GGGGTTCATT					1560
	AAATCCGCTG					1620
	GGACAAACCG					1680
	AACCCAGCCC					1740
GGCTAGGCCA	GAAAAATTAT	ATTGGCTCCT	GATTTCTTCC	GGCTATCGCA	CCTACCGATT	1800

WO 96/21022 PCT/IB95/01167

-51-

TITGAGCATT TITGCCAAGG AATTCTATCC CCACTATCTC CATCCCACTC CCCCGCCTGT	
	1860
ACAAAATTTT ATCCATCAGC TAGC	1884
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1685 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: both	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
AATATCTGCC TACCCTCCCA AAGAGAGTAG TCATTTTCA TCAATGGCTG CTCAAATCAA	60
GAAATACATT ACCTCAGATG AACTCAAGAA CCACGATAAA CCCGGAGATC TATGGATCTC	- •
	120
GATTCAAGGG AAAGCCTATG ATGTTTCGGA TTGGGTGAAA GACCATCCAG GTGGCAGCTT	180
TCCCTTGAAG AGTCTTGCTG GTCAAGAGGT AACTGATGCA TTTGTTGCAT TCCATCCTGC	240
CTCTACATGG AAGAATCITG ATAAGTTTIT CACTGGGTAT TATCTTAAAG ATTACTCTGT	300
TTCTGAGGTT TCTAAAGATT ATAGGAAGCT TGTGTTTGAG TTTTCTAAAA TGGGTTTGTA	360
TGACAAAAA GGTCATATTA TGTTTGCAAC TTTGTGCTTT ATAGCAATGC TGTTTGCTAT	420
GAGTGTTTAT GGGGTTTTGT TTTGTGAGGG TGTTTTGGTA CATTTGTTTT CTGGGTGTTT	480
GATGGGGTTT CTTTGGATTC AGAGTGGTTG GATTGGACAT GATGCTGGGC ATTATATGGT	540
AGTGTCTGAT TCAAGGCTTA ATAAGTTTAT GGGTATTTTT GCTGCAAATT GTCTTTCAGG	600
AATAAGTATT GGTTGGTGGA AATGGAACCA TAATGCACAT CACATTGCCT GTAATAGCCT	
TGAATATGAC CCTGATTTAC AATATATACC ATTCCTTGTT GTGTCTTCCA AGTTTTTTGG	660
	720
TTCACTCACC TCTCATTTCT ATGAGAAAAG GTTGACTTTT GACTCTTTAT CAAGATTCTT	780
TGTAAGTTAT CAACATTGGA CATTTTACCC TATTATGTGT GCTGCTAGGC TCAATATGTA	840
TGTACAATCT CTCATAATGT TGTTGACCAA GAGAAATGTG TCCTATCGAG CTCAGGAACT	900
CTTGGGATGC CTAGTGTTCT CGATTTGGTA CCCGTTGCTT GTTTCTTGTT TGCCTAATTG	960
GGGTGAAAGA ATTATGTTTG TTATTGCAAG TTTATCAGTG ACTGGAATGC AACAAGTTCA	1020
GTTCTCCTTG AACCACTTCT CTTCAAGTGT TTATGTTGGA AAGCCTAAAG GGAATAATTG	1080

GTTTGAGAAA CAAACGGATG GGACACTTGA CATTTCTTGT CCTCCTTGGA TGGATTGGTT

TCATGGTGGA TTGCAATTCC AAATTGAGCA TCATTTGTTT CCCAAGATGC CTAGATGCAA 1200

CCTTAGGAAA	ATCTCGCCCT	ACGTGATCGA	GTTATGCAAG	AAACATAATT	TGCCTTACAA	1260
TTATGCATCT	TTCTCCAAGG	CCAATGAAAT	GACACTCAGA	ACATTGAGGA	ACACAGCATT	1320
GCAGGCTAGG	GATATAACCA	AGCCGCTCCC	GAAGAATTTG	GTATGGGAAG	CTCTTCACAC	1380
TCATGGTTAA	AATTACCCTT	AGTTCATGTA	ATAATTIGAG	ATTATGTATC	TCCTATGTTT	1440
GTGTCTTGTC	TTGGTTCTAC	TTGTTGGAGT	CATTGCAACT	TGTCTTTTAT	GGTTTATTAG	1500
ATGTTTTTTA	ATTTTTATATA	GAGGTTTTGC	TTTCATCTCC	ATTATTGATG	AATAAGGAGT	1560
TGCATATTGT	CAATTGTTGT	GCTCAATATC	TGATATTTTG	GAATGTACTT	TGTACCACTG	1620
TGTTTTCAGT	TGAAGCTCAT	GTGTACTTCT	ATAGACTTTG	TTTAAATGGT	TATGTCATGT	1680
TATTT						1685

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 448 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn
 1 10 15
- His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 25 30
- Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 35 40 45
- Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 55 60
- Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 65 75 80
- Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu 85 90 95
- Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile 100 105 110
- Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val 115 120 125
- Tyr Gly Val Leu Phe Cys Glu Gly Val Leu Val His Leu Phe Ser Gly 130 135 140

Cys Leu Met Gly Phe Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 170 Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr 200 Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met 265 Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Gly 280 Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Ser Val 325 330 Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly Gly Ser Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys Lys 390 His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Trp Ile Gly His Asp Ala Gly His

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Asn Val Gly His Asp Ala Asn His

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val Leu Gly His Asp Cys Gly His

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Val Ile Ala His Glu Cys Gly His

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Val Ile Gly His Asp Cys Ala His

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Val Val Gly His Asp Cys Gly His

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

His Asn Ala His His 1

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

His Asn Tyr Leu His His

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

His Arg Thr His His 1

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

His Arg Arg His His

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

His Asp Arg His His

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

His Asp Gln His His

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

His Asp His His His

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids

 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

His Asn His His His

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Phe Gln Ile Glu His His 1

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

His Gln Val Thr His His

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

His Val Ile His His

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

His Val Ala His His

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids

 - (B) TYPE: amino acid(D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

His Ile Pro His His

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

His Val Pro His His 5

1 WHAT IS CLAIMED:

1. An isolated nucleic acid encoding a borage $\Delta 6$ -desaturase.

5

- The isolated nucleic acid of Claim 1 comprising the nucleotide sequence of SEQ ID NO: 4.
- 3. An isolated nucleic acid that codes for the $_{10}$ amino acid sequence of SEQ ID NO: 5.
 - 4. A vector comprising the nucleic acid of any one Claims 1-3.
- 5. An expression vector comprising the isolated nucleic acid of any one of Claims 1-3 operably linked to a promoter and optionally a termination signal capable of effecting expression of the gene product of said isolated nucleic acid.

20

25

- 6. The expression vector of Claim 5 wherein said promoter is a Δ-6 desaturase promoter, an <u>Anabaena</u> carboxylase promoter, a helianthinin promoter, a glycinin promoter, a napin promoter, the 35S promoter from CaMV, or a helianthinin tissue-specific promoter.
- 7. The expression vector of Claim 5 wherein

said promoter is constitutive or tissue-specific.

30 8. The expression vector of Claim 5 wherein said termination signal is a <u>Synechocystis</u> termination

- 1 signal, a nopaline synthase termination signal, or a seed termination signal.
- 9. A cell comprising the vector of any one of 5 Claims 4-8.
 - 10. The cell of Claim 9 wherein said cell is an animal cell, a bacterial cell, a plant cell or a fungal cell.

- 11. A transgenic organism comprising the isolated nucleic acid of any one of Claims 1-3.
- 12. A transgenic organism comprising the vector of any one of Claims 4-8.
 - 13. The transgenic organism of Claim 11 or 12 wherein said organism is a bacterium, a fungus, a plant or an animal.

- 14. A plant or progeny of said plant which has been regenerated from the plant cell of Claim 10.
- 15. The plant of Claim 14 wherein said plant is a sunflower, soybean, maize, tobacco, peanut, carrot or oil seed rape plant.
- 16. A method of producing a plant with increased gamma linolenic acid (GLA) content which comprises:

- 1 (a) transforming a plant cell with the isolated nucleic acid of any one of Claims 1-3; and
 - (b) regenerating a plant with increased GLA content from said plant cell.

- 17. A method of producing a plant with increased gamma linolenic acid (GLA) content which comprises:
- (a) transforming a plant cell with the vector of 10 any one of Claims 4-8; and
 - (b) regenerating a plant with increased GLA content from said plant cell.
- 18. The method of Claim 16 or 17 wherein said plant is a sunflower, soybean, maize, tobacco, peanut, carrot or oil seed rape plant.
- 19. A method of inducing production of gamma linolenic acid (GLA) in an organism deficient or lacking in GLA which comprises transforming said organism with the isolated nucleic acid of any one of Claims 1-3.
- 20. A method of inducing production of gamma linolenic acid (GLA) in an organism deficient or lacking in GLA which comprises transforming said organism with the vector of any one of Claims 4-8.
- 21. A method of inducing production of gamma linolenic acid (GLA) in an organism deficient or lacking in GLA and linoleic acid (LA) which comprises transforming said organism with an isolated nucleic acid encoding

- borage \(\delta \cdot \) desaturase and an isolated nucleic acid encoding \(\delta \cdot \) desaturase.
- 22. The method of Claim 21 wherein said isolated nucleic acid encoding \(\alpha \)-desaturase comprises nucleotides 44 to 1390 of SEQ. ID NO: 4.
- 23. A method of inducing production of octadecatetraeonic acid in an organism deficient or lacking in gamma linolenic acid which comprises transforming said organism with the isolated nucleic acid of any one of Claims 1-3.
- 24. A method of inducing production of octadecatetraeonic acid in an organism deficient or lacking in gamma linolenic acid which comprises transforming said organism with the vector of any one of Claims 4-8.
- 25. The method of Claim 23 or 24 wherein said organism is a bacterium, a fungus, a plant or an animal.
 - 26. A method of producing a plant with improved chilling resistance which comprises:
- (a) transforming a plant cell with the isolated nucleic acid of any one of Claims 1-3; and

 (b) regenerating said plant with improved
 - (b) regenerating said plant with improved chilling resistance from said transformed plant cell.
- 27. A method of producing a plant with improved chilling resistance which comprises:

5	(a) transforming a plant cell with the any one of Claims 4-8; and (b) regenerating said plant with improchilling resistance from said transformed plant 28. The method of Claim 26 or 27 when plant is a sunflower, soybean, maize, tobacco, posservot or oil seed rape plant.	ved cell. ein said
10		
15		
20		
25		·
30		

SUBSTITUTE SHEET (RULE 26)

taccetecea

aatatctgcc

1040 1120 440 480 560 880 640 ttgggtgaaa 160 800 960 acctcagatg tttgtgcttt tcaaggetta caacattgga ctgggtattt agttttttgg taatgcacat gagaaatgtg tgcctaattg ctagatgcaa ttctccaagg aaccacttct gaagaatttq catttcttgt tcctatgttt tatgtcatgt gaaatacatt atgtttcgga tgtttgcaac tttgttgcat ggttggtgga aatggaacca ttctgaggtt catttgttt gatgctgggc attatatggt agtgtctgat gtgtcttcca tgttgaccaa gtttcttgtt gttctccttg cccaagatgc tttaaatggt tgtaagttat ggacacttga ataatttgag attatgtatc ggtttattag atgtttttta ttatgcatct agccgctccc gctcaatatc ctcaaatcaa aactgatgca attactctgt ggtcatatta aaagcctatg tgttttggta attccttgtt ctcataatgt atagactttg caagattctt cccgttgctt tgccttacaa gatataacca aacaagttca caaacggatg tcatttgtt caattgttgt tcaatggctg gtcaagaggt tatcttaaag tttgtgaggg gattcaaggg aatatacc actggaatgc tgacaaaaa aataagtatt cgatttggta gactctttat tgtacaatct gtttgagaaa aaattgagca gcaggctagg agttcatgta aaacataatt tgtctttat tgcatattgt gtgtacttct tcattttca tatggatctc agtcttgctg cactgggtat tgggtttgta gattggacat gtctttcagg cctgatttac tcaatatgta gttatgcaag ggggttttgt gttgacttt ctagtgttct tttatcagtg ggaataattg ttgcaattcc cattgcaact aataaggagt acacagcatt aattaccctt tgaagctcat tcccttgaag tttctaaaa agagtggttg tgaatatgac atgagaaaag gctgctaggc aagagagtag ataagtttt gagtgtttat cttgggatgc ttattgcaag tcatggtgga acgtgatcga acattgagga tcatggttag gaggttttgc tttcatctcc attattgatg gaatgtactt tgtaccactg tgttttcagt cccggagatc gctgcaaatt aagcctaaag ttggttctac ttgttggagt ctcttcacac gacactcaga aagaatcttg tgtgtttgag tgtttgctat ctttggattc attatgtttg ttatgttgga ccttaggaaa atctcgccct ccacgataaa gtggcagctt tggattggtt gtaatagcct ctcaggaact gggtatttt tctcatttct tattatgtgt cctccttgga atagcaatgc ttcactcacc cattttaccc cttcaagtgt gtatgggaag gtgtcttgtc ataggaagct gatggggtt cacattgcct tcctatcgag gggtgaaaga gaccatccad ataagtttat ccaatgaaat 721 881 241 641 801 041 121 321 561 961 201 401 481 281 361 441 601

FIG.5B

81 LKDYSVSEVS KDYRKLVFEF SKMGLYDKKG HIMFATLCFI AMLFAMSVYG VLFCEGVLVH LFSGCLMGFL WIQSG<u>MIGHD</u> 160 IACNSLEYDP DLQYIPFLVV SSKFFGSLTS HFYEKRLTFD 240 241 SLSRFFVSYQ HWTFYPIMCA ARLNMYVQSL IMLLTKRNVS YRAQELLGCL VFSIWYPLLV SCLPNWGERI MFVIASLSVT 320 PWMDWFHGGL QPQIEHHLFP KMPRCNLRKI SPYVIELCKK 400 1 MAAQIKKYIT SDELKNHDKP GDLWISIQGK AYDVSDWVKD HPGGSFPLKS LAGQEVTDAF VAFHPASTWK NLDKFFTGYY 80 401 HNLPYNYASF SKANEMTLRT LRNTALQARD ITKPLPKNLV WEALHTHG 321 GMQQVQFSLN HFSSSVYVGK PKGNNWFEKQ TDGTLDISCP 161 <u>AGH</u>YMVVSDS RLNKFMGIFA ANCLSGISIG WWKWN<u>HNAHH</u>

SUBSTITUTE SHEET (RULE 26)

FIG. 6

SUBSTITUTE SHEET (RULE 26)

6 / 9

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG.9B

SUBSTITUTE SHEET (RULE 26)

9/9

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C12N 15/53, 15/82, A01H 5/00

A3

(11) International Publication Number: WO 96/21022

(43) International Publication Date: 11 July 1996 (11.07.96)

(21) International Application Number: PCT/IB95/01167

(22) International Filing Date: 28 December 1995 (28.12.95)

(31) International Publication Number: WO 96/21022

(43) International Publication Number: UT/IB95/01167

(81) Designated States: AU, BR, CA, CN, JP, RO, RU, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data: 08/366,779

30 December 1994 (30.12.94) US

(71) Applicant: RHONE-POULENC AGROCHIMIE [FR/FR]; 14-20, rue Pierre-Baizet, F-69263 Lyon (FR).

(72) Inventors: THOMAS, Terry, L.; 3004 Normand, College Station, TX 77845 (US). REDDY, Avutu, S.; 3902 E. 29th Street #G11, Bryan, TX 77802 (US). NUCCIO, Michael; P.O. Box 553, College Station, TX 77841 (US). NUNBERG, Andrew, N.; 2804 B. Sprucewood Street, Bryan, TX 77801 (US). FREYSSINET, Georges, L.; 21, rue de Nervleux, F-69450 Saint-Cyr-au-Mont-d'Or (FR).

(74) Agent: MITSCHERLICH & PARTNER; Sonnenstrasse 33, D-80331 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 12 September 1996 (12.09.96)

(54) Title: PRODUCTION OF GAMMA LINOLENIC ACID BY A $\Delta 6$ -DESATURASE

(57) Abstract

Linoleic acid is converted into γ -linolenic acid by the enzyme $\Delta 6$ -desaturase. The present invention is directed to isolated nucleic acids comprising the $\Delta 6$ -desaturase gene. More particularly, the isolated nucleic acid comprises the promoter, coding region and termination regions of the $\Delta 6$ -desaturase gene. The present invention provides recombinant constructions comprising the $\Delta 6$ -desaturase coding region in functional combination with heterologous regulatory sequences. The nucleic acids and recombinant constructions of the instant invention are useful in the production of GLA in transgenic organisms.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	İtaly	. PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
C1	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	T.J	Tajikistan
)K	Denmark	MC	Monaco	17	Trinidad and Tobago
Œ	Estonia	MD	Republic of Moldova	UA	Ukraine
ES .	Spain	MG	Madagascar	UG	Uganda
7	Finland	ML	Mali	US	United States of Americ
TR	France	MN	Mongolia	UZ	Uzhekistan
GA.	Gabon	MR	Mauritania	VN	Viet Nam

Internonal Application No.
PLI/IB 95/01167

		PC1/1B 95	0/0116/
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/53 C12N15/82 A01H5/0	0	
According t	o International Patent Classification (IPC) or to both national class	nfication and IPC	
B. FIELDS	SEARCHED		
Minimum d	ocumentation searched (classification system followed by classification C12N A01H	stion symbols)	
Documentat	tion searched other than minimum documentation to the extent that	such documents are included in the fields s	carched
Electronic d	ata base consulted during the international search (name of data ba	ase and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Y	KADER, JC. AND P. MAZLIAK (ED. LIPID METABOLISM; 11TH INTERNATI MEETING ON PLANT LIPIDS, PARIS, JUNE 26-JULY 1,1994. XX+588P. KL ACADEMIC PUBLISHERS: DORDRECHT, NETHERLANDS;, NORWELL, MASSACHUS 0 (0). 1995. 509-511. ISBN: 0-7923-3250-4, XP000569979 GALLE A-M, ET AL.: "Solubilizat DELTA-12- and DELTA-6-desaturase seeds of borage microsomes." see the whole document	ÓNAL FRANCE, UWER ETTS, USA. ion of	1-28
<u> </u>	ner documents are listed in the continuation of box C.	Patent family members are listed	in annex.
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E* earlier document but published on or after the international filling date L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other means P* document published prior to the international filling date but later than the priority date claimed Date of the actual completion of the international search A* document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention A* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents is combined with one or more other such documents, such combination being obvious to a person stilled in the art. A* document member of the same patent family Date of mailing of the international search report 23.07.96			th the application but neory underlying the claimed invention be considered to courselve to taken alone claimed invention inventive step when the one other such docuus to a person skilled
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authonzed officer	
	NL - 2280 HV Ripswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,	Maddox, A	

Form PCT/ISA/210 (second sheet) (July 1992)

BAD ORIGINAL

page 1 of 3

2

In tonal Application No PUT/IB 95/01167

And Documents	Puf/IB 95/01167
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
KADER, JC. AND P. MAZLIAK (ED.). PLANT LIPID METABOLISM; 11TH INTERNATIONAL MEETING ON PLANT LIPIDS, PARIS, FRANCE, JUNE 26-JULY 1,1994. XX+588P. KLUWER ACADEMIC PUBLISHERS: DORDRECHT, NETHERLANDS;, NORWELL, MASSACHUSETTS, USA. 0 (0). 1995. 21-23. ISBN:0-7923-3250-4, XP000569981 SCHMIDT H, ET AL.: "PCR-based cloning of membrane-bound desaturases" see the whole document	1-3
WO,A,93 06712 (RHONE POULENC AGROCHIMIE) 15 April 1993 see the whole document	4-28
BIOCHEM J 252 (3). 1988. 641-648., XP000568812 GRIFFITHS G: "DELTA-6 AND DELTA-12 DESATURASE ACTIVITIES AND PHOSPHATIDIC ACID FORMATION IN MICROSOMAL PREPARATIONS FROM THE DEVELOPING COTYLEDONS OF COMMON BORAGE BORAGO-OFFICINALIS." see the whole document	1-3
BIOCHIM BIOPHYS ACTA 1158 (1). 1993. 52-58., XP002007452 GALLE A M, ET AL.: "BIOSYNTHESIS OF GAMMA LINOLENIC ACID IN DEVELOPING SEEDS OF BORAGE BORAGO-OFFICINALIS L. " see the whole document	1-3
PLANT MOLECULAR BIOLOGY, vol. 26, 1994, pages 631-642, XP002000999 SCHMIDT, H., ET AL.: "Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase" see the whole document	1-3
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, vol. 67, no. 4, April 1990, pages 217-225, XP002001000 BAFOR, M., ET AL.: "Properties of the glyceerol acylating enzymes in microsomal preparations from the developing seeds of safflower (Carthamus tinctorius) and turnip rape (Brassica campestris) and their ability to assemble cocoa-butter type fats" see page 224, right-hand column, paragraph 2	19-24
	LIPID METABOLISM; 11TH INTERNATIONAL MEETING ON PLANT LIPIDS, PARIS, FRANCE, JUNE 26-JULY 1,1994. XX+588P. KLUWER ACADEMIC PUBLISHERS: DORDRECHT, NETHERLANDS;, NORWELL, MASSACHUSETTS, USA. 0 (0). 1995. 21-23. ISBN:0-7923-3250-4, XP000569981 SCHMIDT H, ET AL.: "PCR-based cloning of membrane-bound desaturases" see the whole document W0,A,93 06712 (RHONE POULENC AGROCHIMIE) 15 April 1993 see the whole document BIOCHEM J 252 (3). 1988. 641-648. , XP000568812 GRIFFITHS G: "DELTA-6 AND DELTA-12 DESATURASE ACTIVITIES AND PHOSPHATIDIC ACID FORMATION IN MICROSOMAL PREPARATIONS FROM THE DEVELOPING COTYLEDONS OF COMMON BORAGE BORAGO-OFFICINALIS." see the whole document BIOCHIM BIOPHYS ACTA 1158 (1). 1993. 52-58., XP002007452 GALLE A M, ET AL.: "BIOSYNTHESIS OF GAMMA LINOLENIC ACID IN DEVELOPING SEEDS OF BORAGE BORAGO-OFFICINALIS L." see the whole document PLANT MOLECULAR BIOLOGY, vol. 26, 1994, pages 631-642, XP002000999 SCHMIDT, H., ET AL.: "Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase" see the whole document JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, vol. 67, no. 4, April 1990, pages 217-225, XP002001000 BAFOR, M., ET AL.: "Properties of the glyceerol acylating enzymes in microsomal preparations from the developing seeds of safflower (Carthamus tinctorius) and turnip rape (Brassica campestris) and their ability to assemble cocoa-butter type fats" see page 224, right-hand column, paragraph 2

2

Int tional Application No PUT/IB 95/01167

Corne	DOCUMENTS CONSIDERED TO TO TO THE	PL1/1B 95/01167
continu.	CONTROL OF CONTROL OF THE PROPERTY OF THE PROP	
- BOI y	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1	WO,A,94 18337 (MONSANTO CO ;UNIV MICHIGAN (US); GIBSON SUSAN IRMA (US); KISHORE G) 18 August 1994 see page 32 - page 35; claim 15	26-28
A	NATURE, vol. 347, 13 September 1990, pages 200-203, XP002001001 WADA, H., ET AL.: "Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation"	26-28
\	PLANT PHYSIOLOGY, vol. 105, no. 2, June 1994, pages 601-605, XP002001002 KODAMA, H., ET AL.: "Genetic enhancement of cold tolerance by expression of a gene	26-28
	for chloroplast omega-3 fatty acid desaturase in transgenic tobacco" see the whole document	

2

information on patent family members

Intr Tonal Application No PCI/IB 95/01167

Patent document cited in search report	Publication date		family ber(s)	Publication date
WO-A-9306712	15-04-93	AU-B-	667848	18-04-96
		AU-B-	2881292	03-05-93
		BG-A-	98695	31-05-95
		BR-A-	9206613	11-04-95
		CA-A-	2120629	15-04-93
		CZ-A-	9400817	13-09-95
		EP-A-	0666918	16-08-95
		HU-A-	69781	28-09-95
		JP-T-	7503605	20-04-95
		NZ-A-	244685	27-06-94
		ZA-A-	9207777	21-04-93
WO-A-9418337	18-08-94	EP-A-	0684998	06-12-95

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

