The quantroSim user's guide

Stephanie C. Hicks shicks@jimmy.harvard.edu Rafael A. Irizarry rafa@jimmy.harvard.edu

Modified: November 24, 2014. Compiled: November 24, 2014

Contents

1	Introduction	1
2	Getting Started	1
3	DNA Methylation 3.1 Quick Start 3.2 Simulating 2 or more groups 3.3 Exporting DNA Methylation arrays to the minfi R-package 3.4 Additional options for simulateMeth 3.4.1 Controlling level of technical variation	4 6 7
4	Gene Expression 4.1 Quick Start 4.2 Simulating 2 or more groups 4.3 Additional options for simulateGEx 4.3.1 Controlling level of technical variation	12 13
5	Getting Help	15
6	SessionInfo	15

1 Introduction

This quantroSim package is the supporting data simulation package for the R/Bioconductor package quantro. This R package is designed to simulate gene expression and DNA methylation data. This document describes the classes, functions and tools available in the quantroSim package.

The features in this package include:

- 1. Simulate gene expression samples based on microarrays
- 2. Simulate DNA methylation samples based on microarrays
- 3. Control the proportion of differences (pDiff) between K groups
- 4. Vary the magnitude of technical variation observed in samples

2 Getting Started

To install the package, you can check out the Github repository https://github.com/stephaniehicks/quantroSim and install from source or use the devtools R package:

```
library(devtools)
install_github(repo = "quantroSim", username = "stephaniehicks")
```

After installation, load the package in R using

```
library(quantroSim)
```

The quantroSim package depends the MASS, quantro, minfi and affy R-packages and suggests the knitr R-package.

3 DNA Methylation

There are two main functions used to generate simulated DNA methylation data: simulateMethTruth and simulateMeth. The first function (simulateMethTruth) generates the true DNA methylation without any consideration for a platform technology. The second function (simulateMeth) simulates observed DNA methylation based on:

- 1. the platform technology
- 2. the magnitude of technical variation

3.1 Quick Start

To simulate the true level DNA methylation for a set of 2 groups, use the simulateMethTruth function.

Mixture of Normal distributions

pDiff is percent of probes different relative to Group 1. If nGroups = 1, pDiff should be 0. If nGroups > 1, the length of pDiff should be equal to nGroups - 1. The default for nGroups is 2 and the default for nGroups - 1.

Similarly, pUp is proportion of pDiff probes that are methylated relative to Group 1. If nGroups = 1, pUp is ignored. If nGroups > 1, the length of pUp should be equal to nGroups - 1. The default for nGroups is 2 and the default for pUp is 0.80.

The main output will be a matrix (methRange) of dimension nProbes x nGroups.

```
dim(methTruth$methRange)
## [1] 20000 2
```

The correlation between the two groups is given by:

```
cor(methTruth$methRange)

## Group_01 Group_02

## Group_01 1.0000000 0.9040011

## Group_02 0.9040011 1.0000000
```

If pDiff was given, there will be pDiff \times nProbes differences between the two groups. A boolean vector referring to which probes are different is in the methTruth object called methDiffInd. Here we list the indicies of which probes are different between the groups:

```
head(which(methTruth$methDiffInd))
## [1] 53 70 86 180 186 196
```

To simulate observed DNA methylation data based on a specific technology platform, use the simulateMeth function. First, a platform from list.meth.platforms must be selected:

```
list.meth.platforms()
## [1] "methArrays"
```

Once a platform has been selected,

summary(simMeth\$meth) ## Sample_001 Sample_002 Sample_003 Sample_004 Sample_005 ## : 104 Min. : 25 Min. 28 Min. : 35 Min. 33 1st Qu.: 1424 1st Qu.: 1171 ## 1st Qu.: 1253 1st Qu.: 1270 1st Qu.: 934 Median: 6293 Median: 5507 Median : Median: 5817 Median : 4329 ## 5934 ## Mean : 10007 Mean : 8692 Mean : 9398 Mean : 9207 Mean : 6786 3rd Qu.: 13572 3rd Qu.: 11944 3rd Qu.: 9239 ## 3rd Qu.: 12963 3rd Qu.: 12702 ## Max. :204706 Max. :161666 Max. :194935 Max. :154970 Max. :147551 ## Sample_006 Sample_007 Sample_008 Sample_009 Sample_010 Min. : 26 Min. : 81 Min. : 33 Min. : 22 Min. : 25

```
1st Qu.: 1809
                   1st Qu.: 1619
                                   1st Qu.: 1721
                                                    1st Qu.: 1678
                                                                    1st Qu.: 2006
##
   Median: 7322
                   Median: 6586
                                    Median :
                                             6912
                                                    Median :
                                                             6800
                                                                    Median :
                                                                             7972
          : 10916
                            9978
                                          : 10459
                                                          : 10450
                                                                           : 12273
##
   Mean
                   Mean
                                    Mean
                                                    Mean
                                                                    Mean
   3rd Qu.: 14979
                   3rd Qu.: 13488
                                    3rd Qu.: 14250
                                                    3rd Qu.: 14307
                                                                    3rd Qu.: 16797
##
   Max. :234445
                   Max. :352368
                                  Max. :165850
                                                    Max. :220224
                                                                    Max. :294473
```

3.2 Simulating 2 or more groups

To simulate the true level DNA methylation for a set of 2 or more groups, again use the the same simulateMethTruth function, but change nGroup and the length of pDiff and pUp

Mixture of Normal distributions

3.3 Exporting DNA Methylation arrays to the minfi R-package

To export the simulated DNA methylation object to mini, use the getMethylSet function.

```
mset <- getMethylSet(simMeth)</pre>
class(mset)
## [1] "MethylSet"
## attr(,"package")
## [1] "minfi"
head(minfi::getBeta(mset))
        Sample_001 Sample_002 Sample_003 Sample_004 Sample_005 Sample_006 Sample_007
##
## [1,] 0.00107200 0.005681153 0.02104874 0.01329519 0.00737188 0.41431311 0.7955727
## [2,] 0.60861911 0.276913189 0.70446647 0.07069987 0.37629124 0.56325955
                                                                            0.2163530
## [3,] 0.07482797 0.095685249 0.01816717 0.05761364 0.09079338 0.03481271
                                                                            0.1938120
  [4,] 0.70322125 0.720787152 0.83043679 0.63708213 0.54945055 0.59193881
  [5,] 0.99486574 0.993225380 0.99319632 0.99639552 0.97999524 0.99397809
                                                                            0.9817677
  [6,] 0.23069554 0.070011669 0.02212173 0.11058865 0.05687072 0.24056654
                                                                            0.3724013
##
        Sample_008 Sample_009 Sample_010 Sample_011 Sample_012 Sample_013 Sample_014
## [1,] 0.7364314 0.91680635 0.77712990 0.02488748 0.002076259 0.005362042 0.004826758
        0.8182779 0.52998079 0.39585037 0.17606363 0.120002272 0.663642288 0.300044929
## [3,] 0.0851244 0.01245816 0.06346039 0.02830494 0.207956104 0.036411478 0.004687271
```

```
## [4,] 0.3784451 0.55584783 0.76532300 0.64324741 0.754493350 0.759291671 0.719616451
## [5,] 0.9953099 0.99766246 0.96271244 0.99657460 0.996118589 0.991937581 0.991931844
## [6,] 0.1335530 0.19840104 0.08672005 0.09554162 0.531417351 0.059207410 0.167966442
## [1,] 0.01559584
## [2,] 0.20763109
## [3,] 0.03816986
## [4,] 0.74108434
## [5,] 0.98429578
## [6,] 0.35855504
```

Functions in the minfi R/Bioconductor package such as getBeta, getM, getCN can be used after creating a MethylSet with the function getMethylSet.

Note: there is no manifest and no method was used to preprocess the simulated data. Therefore, these functions from minfi will not work.

```
getManifest(mset)
preprocessMethod(mset)
```

3.4 Additional options for simulateMeth

3.4.1 Controlling level of technical variation

We use the Langmuir model to simulate chemical saturation observed using microarrays. Our model to simulate raw methylation and unmethylation value for the j^{th} probe from the i^{th} sample in the k^{th} group is given by

$$M_{ijk} = o_{ijk} + d_{ijk} + a_{ijk} \left(\frac{x_{jk}^m}{x_{jk}^m + b_{ijk}}\right) \epsilon_{ijk}$$

$$U_{ijk} = o_{ijk} + d_{ijk} + a_{ijk} \left(\frac{x_{jk}^u}{x_{jk}^u + b_{ijk}}\right) \epsilon_{ijk}$$

where x_{jk}^m and x_{jk}^u are the expected number of methylated and unmethylated molecules at j^{th} probe in the k^{th} group and the rest are parameters simulated from a log Normal distribution with a given set of hyperparameters. For example, $a_{ijk} = a_{ik} * a_j$ represents the florescence intensity from the scanner. We define $a_{ijk} = a_{ik} * a_j$ and let both parameters a_{ik} (sample-level noise) and a_j (probe-level noise) each have their own hyperparameters to allow for global shifts:

$$\log_2(a_{ik}) \sim N(16, 0.1)$$

$$\log_2(a_i) \sim N(0, 0.01)$$

Similarly, $b_{ijk} = b_{ik} * b_j$ and $o_{ijk} = o_{ik} * o_j$ (optical noise) where the sample-level noise is simulated using

$$\log_2(b_{ik}) \sim N(22, 0.1)$$

 $\log_2(o_{ik}) \sim N(5, 1)$
 $\log_2(d_{ijk}) \sim N(5, 1)$
 $\log_2(\epsilon_{ijk}) \sim N(0, 1)$

For efficiency, we simulate the parameters from a multivariate normal distribution for all 10 arrays (=5 samples per group * 2 groups). In the above example, covariance matrices would be given by:

These are the default values for the (siga, sigb and sibOpt) parameters in the simulateMeth function.

To control how much technical variation is induced from the platform-technology, the variance hyperparameters from the sample-level noise (siga, sigb and sibOpt) can be controlled manually.

```
set.seed(999)
siga = sigb = 1 * diag(10)
```


4 Gene Expression

There are two main functions used to generate simulated gene expression data: simulateGExTruth and simulateGEx. The first function (simulateGExTruth) generates the true gene expression without any consideration for a platform technology. The second function (simulateGEx) simulates observed gene expression based on:

- 1. the platform technology
- 2. the magnitude of technical variation

4.1 Quick Start

To simulate the true level gene expression for a set of 2 groups, use the simulateGExTruth function.

Similar to simulateMethTruth, pDiff is percent of probes different relative to Group 1. If nGroups = 1, pDiff should be 0. If nGroups > 1, the length of pDiff should be equal to nGroups - 1. The default for nGroups is 2 and the default for pDiff is 0.05.

foldDiff is the fold difference of gene differentially expressed in one group relative to Group 1. If nGroups = 1, foldDiff is ignored. If nGroups > 1, the length of foldDiff should be equal to nGroups - 1. The default for nGroups is 2 and the default for foldDiff is 5.

The main output will be a matrix (geneRange) of dimension nGenes x nGroups.

```
dim(geneTruth$geneRange)
## [1] 20000 2
```

The correlation between the two groups is given by:

```
cor(geneTruth$geneRange)

## Group_01 Group_02
## Group_01 1.0000000 0.8736777
```

```
## Group_02 0.8736777 1.0000000
```

If pDiff was given, there will be pDiff \times nGenes differences between the two groups. A boolean vector referring to which genes are different is in the geneTruth object called genesDiffInd. Here we list the indicies of which genes are different between the groups:

```
head(which(geneTruth$genesDiffInd))
## [1] 28 43 67 85 117 130
```

To simulate observed gene expression data based on a specific technology platform, use the simulateGEx function. First, a platform from list.GEx.platforms must be selected:

```
list.GEx.platforms()
## [1] "GExArrays"
```

Once a platform has been selected,

```
set.seed(999)
sim <- simulateGEx(geneTruth, GEx.platform = "GExArrays", nSamps = 5)
## Simulating gene expression samples using the GEx.platform: GExArrays
## No PCR amplification of RNA transcript counts.
plotGEx(sim)</pre>
```

log2(PM Values)


```
summary(simMeth$meth)
```

```
##
     Sample_001
                      Sample_002
                                      Sample_003
                                                       Sample_004
                                                                       Sample_005
          : 165
                    Min.
                               22
                                    Min.
                                                23
                                                     Min.
                                                                34
                                                                     Min.
   1st Qu.:
            1614
                    1st Qu.:
                             1002
                                    1st Qu.:
                                              1214
                                                     1st Qu.:
                                                              1281
                                                                     1st Qu.:
                                                                              493
   Median: 6986
                    Median: 4710
                                   Median: 5884
                                                     Median: 5522
                                                                     Median: 2146
```

```
Mean : 11110
                   Mean : 7431
                                    Mean : 9363
                                                   Mean : 8658
                                                                    Mean
##
                                                                           : 3339
##
   3rd Qu.: 15055
                   3rd Qu.: 10206
                                    3rd Qu.: 12929
                                                    3rd Qu.: 11959
                                                                    3rd Qu.: 4529
          :224914
                   Max.
                         :138133
                                          :197185
                                                          :141540
                                                                           :71803
##
   Max.
                                    Max.
                                                    Max.
                                                                    Max.
##
     Sample_006
                     Sample_007
                                     Sample_008
                                                     Sample_009
                                                                      Sample_010
               25
##
   Min.
          :
                   Min.
                         : 124
                                    Min.
                                          :
                                               35
                                                    Min.
                                                               21
                                                                    Min.
                                                                               23
##
   1st Qu.: 2455
                   1st Qu.: 1724
                                    1st Qu.: 2081
                                                    1st Qu.: 1994
                                                                    1st Qu.: 3531
##
   Median: 8626
                   Median: 6742
                                    Median: 8086
                                                    Median: 7930
                                                                    Median : 12504
## Mean
         : 12532
                   Mean
                         : 10165
                                    Mean
                                         : 12157
                                                    Mean : 12134
                                                                    Mean : 18862
## 3rd Qu.: 17090
                   3rd Qu.: 13719
                                    3rd Qu.: 16570
                                                    3rd Qu.: 16652
                                                                    3rd Qu.: 25760
## Max. :244585
                   Max. :355651
                                   Max. :185149
                                                    Max. :250245
                                                                    Max. :440915
```

4.2 Simulating 2 or more groups

To simulate the true level gene expression for a set of 2 or more groups, again use the the same simulateGExTruth function, but change nGroup and the length of pDiff and foldDiff


```
set.seed(999)
sim <- simulateGEx(geneTruth, GEx.platform = "GExArrays", nSamps = 5)
## Simulating gene expression samples using the GEx.platform: GExArrays
## No PCR amplification of RNA transcript counts.</pre>
```

plotGEx(sim)

4.3 Additional options for simulateGEx

4.3.1 Controlling level of technical variation

We use the Langmuir model to simulate chemical saturation observed using microarrays. Our model to simulate raw Perfect Match (PM) value for the j^{th} probe from the i^{th} sample in the k^{th} group is given by

$$PM_{ijk} = o_{ijk} + d_{ijk} + a_{ijk} \left(\frac{x_{jk}}{x_{jk} + b_{ijk}}\right) \epsilon_{ijk}$$

where x_{jk} is the number of RNA molecules at j^{th} probe in the k^{th} group and the rest are parameters simulated from a log Normal distribution with a given set of hyperparameters, similar to simulating DNA methylation:

$$\log_2(a_{ik}) \sim N(20, 0.1)$$
$$\log_2(b_{ik}) \sim N(18, 0.1)$$
$$\log_2(o_{ik}) \sim N(5, 0.1)$$
$$\log_2(d_{ijk}) \sim N(5, 1)$$
$$\log_2(\epsilon_{ijk}) \sim N(0, 1)$$

For efficiency, we simulate the parameters from a multivariate normal distribution for all 10 arrays (=5 samples per group * 2 groups). In the above example, covariance matrices would be given by:

```
set.seed(999)
siga = sigb = 0.1 * diag(10)
sigOpt = 0.1 * diag(10)
```

log2(PM Values)

These are the default values for the (siga, sigb and sibOpt) parameters in the simulateGEx function.

To control how much technical variation is induced from the platform-technology, the variance hyperparameters from the sample-level noise (siga, sigb and sibOpt) can be controlled manually.

Simulating gene expression samples using the GEx.platform: GExArrays
No PCR amplification of RNA transcript counts.
plotGEx(sim)

log2(PM Values)

5 Getting Help

For more help, open the HTML help file:

```
help(package = 'quantroSim', help_type = 'html')
```

6 SessionInfo

```
## R version 3.1.2 (2014-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] quantroSim_0.0.1 Biobase_2.26.0 BiocGenerics_0.12.1 knitr_1.8
##
```

```
## loaded via a namespace (and not attached):
## [1] annotate_1.44.0 AnnotationDbi_1.28.1 base64_1.1
## [4] beanplot_1.2 BiocStyle_1.4.1 ## [7] bumphunter_1.6.0 codetools_0.2-9
                            BiocStyle_1.4.1
                                                  Biostrings_2.34.0
                                                  colorspace_1.2-4
## [10] DBI_0.3.1
                           digest_0.6.4
                                                  doParallel_1.0.8
                                                  foreach_1.4.2
## [13] doRNG_1.6
                            evaluate_0.5.5
## [16] formatR_1.0
                            genefilter_1.48.1
                                                  GenomeInfoDb_1.2.3
## [19] GenomicRanges_1.18.3 ggplot2_1.0.0
                                                  grid_3.1.2
## [22] gtable_0.1.2
                            highr_0.4
                                                  illuminaio_0.8.0
## [25] IRanges_2.0.0
                            iterators_1.0.7
                                                  lattice_0.20-29
## [28] limma_3.22.1
                            locfit_1.5-9.1
                                                  MASS_7.3-35
## [31] matrixStats_0.10.3
                            mclust_4.4
                                                  minfi_1.12.0
## [34] multtest_2.22.0
                            munsell_0.4.2
                                                  nlme_3.1-118
## [37] nor1mix_1.2-0
                            pkgmaker_0.22
                                                  plyr_1.8.1
## [40] preprocessCore_1.28.0 proto_0.3-10
                                                  quadprog_1.5-5
                        R.methodsS3_1.6.1
## [43] quantro_1.0.0
                                                  RColorBrewer_1.0-5
## [46] Rcpp_0.11.3
                            registry_0.2
                                                  reshape_0.8.5
## [49] reshape2_1.4
                           rngtools_1.2.4
                                                  RSQLite_1.0.0
## [52] S4Vectors_0.4.0 scales_0.2.4
                                                  siggenes_1.40.0
## [55] splines_3.1.2
                            stats4_3.1.2
                                                  stringr_0.6.2
                       tools_3.1.2
## [58] survival_2.37-7
                                                  XML_3.98-1.1
## [61] xtable_1.7-4
                     XVector_0.6.0
                                                  zlibbioc_1.12.0
```