Question1

Heat loss through a composite wall

A 3-m high and 5-m wide wall consists of long 32cm-22cm cross section horizontal bricks(k=0.72 W/m·°C). There are also 3cm thick plaster layers(k=0.22 W/m·°C). There are also 2cm thick plaster layers in each side of the brick and a 3cm thick rigid foam(k=0.026 W/m·°C) on the inner side of the wall. The indoor and the outdoor temperatures are 20°C and -10°C , and the convection heat transfer coefficients on the inner and the outer sides are h_1 =10 W/m²·°C and h₂=40 W/ ·°C,respectively. Assuming one-dimensional heat transfer and disregarding radiation, determine the rate of heat transfer through the wall. A=(0.22+0.015+0.015)*1=0.25m²

$$R_{air1}=1/(h_{air1}*A)=1/(10*0.25)=0.4$$
°C/W

$$R_{foam}$$
=L/(h_f *A)=0.03/(0.026*0.25)=4.615°C/W

$$R_{plaster1} = R_{plaster2} = L/(k_{plastic}*A)=0.002/0.25=0.363°C/W$$

$$R_{plaster3} = R_{plaster4} = L/(k_{plastic} * A_{plastic}) = 0.32/(0.22*0.015*1) = 96.97°C/W$$

$$R_{brick} = L/(k_{brick} * A_{brick}) = 0.32/(0.72*0.22*1) = 2.02°C/W$$

$$1/R_{\text{parellel}} = 1/R_{\text{plaster3}} + 1/R_{\text{plaster4}} + 1/R_{\text{brick}} \approx 0.516 \text{W/}^{\circ}\text{C}$$

$$R_{parellel}$$
=1/0.516 ≈ 1.94 °C/W

$$R_{air2}=1/(h_{air2}*A)=1/(40*0.25)=0.1$$
°C/W

$$R_{total} = R_{air1} + R_{air2} + R_{parellel} + R_{foam} = 7.781$$
°C/W

$$\dot{Q}$$
=(T₁ - T₂)/ R_{total}=20-(-10)/7.781 \approx 3.86W

When the thickness of brick is 16mm, R_{total}=6.81°C/W

In this condition, the heat transfer rate is:

$$\dot{Q}=(T_1-T_2)/R_{total}=20-(-10)/6.81\approx 4.41W$$

Then, we can have the conclusion:

Increasing the thickness of the brick cannot decrease the rate heat transfer, because the thermal resistance increases also.

Question2

Determine the overall unit thermal resistance(the R-value) and the overall heat transfer coefficient(the U-factor) of a wall frame wall that is built around 38-mm 90-mm wood studs with a center-to-center distance of 400mm. The 90-mm-wide cavity between the studs is filled with urethane rigif foam. The inside is filled with 13-mm gypsum wallboard and outside with 13-mm plywoodand 13-mm and 200-mm wood bevel lapped siding. The insulated cavity constitutes 75% heat transmission area while the studs, plates, and sills constitutes 21%. The headers constitutes 4% of the area, and they can be treated as studs.

Find the $\,R_{unit}\,$ values.

	WOOD	INSULATION
Outside air	0.03	0.03
Wood bevel(13mm-200mm)	0.14	0.14
Plywood(13mm)	0.11	0.11
Urethane rigif foam(90mm)	NO	0.98/25*90=3.528
Wood studs(90mm)	0.63	NO
Gypsum board(13mm)	0.079	0.079
Inside surface	0.12	0.12

 $R_{total,wood}$ =0.03+0.14+0.11+0.63+0.079+0.12=1.109°C/W

 $R_{total,ins}$ =0.03+0.14+0.11+3.528+0.079+0.12=4.007°C/W