TP4 Niveau 2 - Blanc Vogel					D	Note	
I. Préparation							
Compléter le schéma TI pour faire apparaître la boucle de régulation de niveau. On ajoutera tous les éléments présents sur la maquette (convertisseur i/p, positionneur).	2	Α				2	
2 Proposer un schéma fonctionnel faisant apparaître le correcteur C(p) ainsi que la fonction de transfert du procédé H(p).	1	Α				1	
3 Donner le nom de la grandeur réglée, réglante et d'une grandeur perturbatrice. Placer ces grandeurs sur le schéma TI.	2	Α				2	
4 Donner et procéder au câblage du régulateur.	1					0	
5 Régler la consigne à 50%.	1	Α				1	
6 Compte tenu de l'appareillage utilisé, déterminer le sens d'action du régulateur et le justifier.	1	С				0,35	
7 Régler le sens d'action du régulateur, on donnera le nom du paramètre modifié.	1	Α				1	
Régler le système pour que le niveau se stabilise à environ 50% pour une commande de 50% de la vanne. Ne plus modifier le débit d'alimentation.	1	Α				1	
9 Réaliser un échelon de commande. La commande passera de 50 à 40%.	1	Α				1	
10 Le procédé est-il naturellement stable ou intégrateur ? Justifiez votre réponse.	1	Α				1	
II. Réglage de la boucle							
Déterminer les réglages de votre régulateur à l'aide de la méthode de Ziegler et Nichols. On complétera la fiche fournie et on fournira un enregistrement des mesures qui a permis de régler la boucle.	3	Α				3	
2 Donner alors la fonction de transfert C(p).	1	В				0,75	
Commande à 50% à t=0, représenter l'allure de la commande Y en réponse à un échelon de mesure de 4% jusqu'à sa saturation.	1	D				0,05	
III. Performances							
Mesurer les performances de votre réglage. Tous les calculs et constructions devront apparaître sur l'enregistrement utilisé. (temps de réponse à ±5%, erreur statique et dépassement)	2	А				2	
2 Optimiser votre réglage, puis mesurer les nouvelles performances obtenues.	1	В				0,75	
Note: 16,9/20							

I. Préparation

1)

2)

3)

grandeur réglante :débit sortant grandeur réglée:niveau d'eau grandeur perturbatrice : débit entrant 4)

5)

6)

Quand on augmente la commande du LIC, la vanne naturellement se ferme donc le niveau dans la cuve augmente donc la mesure du LT diminue donc le procédé est inverse et il faut régler le régulateur avec une action direct

7)

9)

10)

Le procédé est stable car a une variation finit de la commande on obtient une variation finit de la mesure.

II. Réglage de la boucle

1)

Méthode du pompage = Méthode des oscillations entretenues

Cette méthode s'applique-t-elle à un procédé naturellement stable (auto-stable) ou à un procédé naturellement instable (intégrateur) ? stable

Un essai permet de déterminer le gain critique du régulateur Grc amenant à la juste instabilité ainsi que la période des oscillations su système Tosc.

Doit-il se faire en boucle ouverte ou en boucle fermée ? Boucle fermée

Détailler les différentes étapes de l'essai : .

- -On met le regulateur en Automatique
- -on diminue Xp pour obtenir un syteme en début d'instabilité sans saturations
- -On mesure le temps entre 2 périodes et on réalise avec la valeur les calculs

Tc=55sGrc = Ac=100/Xpc = 100/4,2=23,8

Le tableau qui suit traduit le choix de ZIEGLER-NICHOLS pour les paramètres du régulateur.

	P	PI série	PI //	PID série	PID //	PID mixte
G _r	$\frac{G_{rc}}{2}$	$\frac{G_{rc}}{2,2}$	$\frac{G_{rc}}{2,2}$	$\frac{G_{rc}}{3,3}$	$\frac{G_{rc}}{1,7}$	$\frac{G_{rc}}{1,7}$
Ti	Maximum	$\frac{T_{\text{osc}}}{1,2}$	$\frac{2.T_{osc}}{G_{rc}}$	$\frac{T_{\text{osc}}}{4}$	$\frac{0.85T_{osc}}{G_{rc}}$	$\frac{T_{osc}}{2}$
T _d	0	0	0	$\frac{T_{\rm osc}}{8}$	$\frac{\mathrm{T}_{\mathrm{osc}}.G_{rc}}{13,3}$	$\frac{T_{osc}}{8}$

Rappeler ici le type de régulateur utilisé: et déterminer les valeurs qui ont été prises comme base pour les réglages de :

- de la bande proportionnelle $Xp = \dots$
- du temps d'intégrale Ti =
- du temps de dérivée Td =

Régulateur PID mixte

Gr = 14

$$Xp = 4.2\%$$

ti= 27.58
td=6.9s
2)
 $C(p)=23.8*\frac{1+27.5p+189.8p}{27.5p}$

3)

III. Performances

1)

Pas d'erreur statique car il y a du Ti

2) On a a augmenté Td pour avoir un temps de réactio plus faible