

Experimental Methods Lecture 28

November 25th, 2020

Digital Noise Estimation

The periodogram

- Estimate of PSD of zero-mean Gaussian process x(t) from N of its samples $x[n] = x(n\Delta T)$ $0 \le n \le N$; Measurement duration: $T = N\Delta T$
- Periodogram

$$S_k = \frac{\Delta T}{N} \left| \sum_{n=0}^{N-1} x[n] e^{-ikn \frac{2\pi}{N}} \right|^2$$

Statistics of periodogram

$$\frac{S_k}{\frac{\Delta T}{2\pi} \int_{-\infty}^{\infty} \left| H\left(\omega - k \frac{2\pi}{T}\right) \right|^2 S(\omega) d\omega}$$

• is a χ^2 with 2 degrees of freedom

$$|H(\omega)|^2 = \frac{1}{N} \frac{Sin^2\left(\frac{\omega T}{2}\right)}{Sin^2\left(\frac{\omega \Delta T}{2}\right)}$$

• If aliasing cured, $S(\omega) \simeq 0$ for $|\omega| > \frac{\pi}{\Lambda T}$, then:

$$\frac{S_{k}}{\frac{\Delta T}{2\pi} \int_{-\infty}^{\infty} \left| H\left(\omega - k \frac{2\pi}{T}\right) \right|^{2} S(\omega) d\omega} = \frac{S_{k}}{\frac{\Delta T}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} \left| H\left(\omega - k \frac{2\pi}{T}\right) \right|^{2} S(\omega) d\omega}$$

Digital estimate of PSD and Discrete Fourier Transform

A blow-up, the first lobe is zero for: $\omega \in (k \pm 1)(2\pi/N\Delta T) = (k \pm 1)(2\pi/T)$

Spectral resolution is $\pm 2\pi/T!$

AA 2020-202

Digital estimate of PSD and Discrete Fourier Transform

A better representation of side lobes. Amplitude decays very slowly.

Each coefficient of the spectral estimate is also partly contributed by the power within the side lobes.

AA 20

5

Precision

• Recalling the properties of chi-square

$$0.7S_k \le S\left(k \frac{2\pi}{T}\right) \le 2.4 \, \mathrm{S_k}$$

- This is a very imprecise estimate, not at all surprising as the spectral resolution is $\pm 1/T$ and the duration of the measurement is T so that the radiometric formula would give a 100% error.
- In conclusion S_k is indeed an estimator for $S(\omega = k\frac{2\pi}{T})$ with two problems:
- 1. The relative precision is low, worse than 100%
- 2. The accuracy is poor due to the "leakage" from side lobes

Thus $S_k = (\Delta T/N) \left| \sum_{j=0}^{N-1} x [n] e^{-ikn(2\pi/N)} \right|^2$ is an estimator for $S_{xx}(\omega = k 2\pi/T)$ with low relative precision, worse than

Digital estimate of PSD and Discrete Fourier Transform

100%.

In order to improve relative precision you need to average over many

• Average the estimates for many data series $\overline{S}_k = \sum_{i=1}^{M} S_{k,i} / M$

independent estimates. There are two ways of doing that:

• Average many nearby coefficients $S_{\overline{k}} = \sum_{k=\overline{k}-M/2}^{\overline{k}+M/2} S_k / M$ In both cases the error decreases like $1/\sqrt{M}$. In the first case the total

length of the data series increases to $N_{tot} = N$ M so that the radiometric formula gives indeed

AS $/S \sim 1/\sqrt{NMAT} \times (1/NAT) = 1/\sqrt{M} \sim AS /S /\sqrt{M}$

$$\Delta S_{\overline{k}}/S_{\overline{k}} \approx 1/\sqrt{NM\Delta T \times (1/N\Delta T)} = 1/\sqrt{M} \approx \Delta S_{\overline{k}}/S_{\overline{k}}/\sqrt{M}$$
 With the second trick the spectral resolution worsen to M 1/T thus

With the second trick the spectral resolution worsen to W 1/1 that $\Delta S_{\overline{k}}/S_{\overline{k}} \approx 1/\sqrt{N\Delta T} \times (M/N\Delta T) = 1/\sqrt{M} \approx \Delta S_{\overline{k}}/S_{\overline{k}}/\sqrt{M}$ AA 2020-2021 $\Delta S_{\overline{k}}/S_{\overline{k}} \approx 1/\sqrt{N\Delta T} \times (M/N\Delta T) = 1/\sqrt{M} \approx \Delta S_{\overline{k}}/S_{\overline{k}}/\sqrt{M}$

Accuracy

Before examining in more details the effect of averaging, we will first consider the problem of the leakage of side lobes. The starting point is

that
$$\left\langle S_{k} \right\rangle = \left(\Delta T/2\pi\right) \int_{-\infty}^{\infty} S_{xx} \left(\omega\right) \left| H\left(\omega - k2\pi/T\right) \right|^{2} d\omega$$

With $H\left(\omega\right) = \left(1/\sqrt{N}\right) \sum_{n=0}^{N-1} e^{-i n\omega \Delta T}$

a function whose square modulus decays very slowly with $\omega \rightarrow \infty$

Accuracy

Notice that by defining $\phi = \omega \Delta T$ the function H can be written as

$$w(\phi) \equiv H(\omega = \phi/\Delta T) = (1/\sqrt{N}) \sum_{n=0}^{N-1} e^{-i n\phi}$$

This is the discrete-time Fourier Transform of the window function

$$w[n] = (1/\sqrt{N})\Pi(n/(N-1)-1/2)$$

which we (indirectly) calculated to be

$$w(\phi) = (1/\sqrt{N}) \sum_{k=0}^{N-1} e^{-i\phi k} = (1/\sqrt{N}) (1 - e^{-iN\phi}) / (1 - e^{-i\phi})$$

Thus our spectral estimator can be written as

$$S_{k} = \Delta T \left| \sum_{n=-\infty}^{\infty} x [n] w [n] e^{-ikn(2\pi/N)} \right|^{2}$$

This suggest a way to decrease spectral leakage by selecting a window function w[n] whose discrete-time Fourier transform w(ϕ) has smaller side-lobes.

A few examples of such windows follow

The rectangular window

- The formula $w \lceil n \rceil = 1/\sqrt{N} \quad 0 \le n \le N-1 \quad (N = 100)$
- Width of the main lobe $\pm 2\pi/N$
- Suppression of side lobes $\approx 30 dB$

The Hann window

$$w[n] = \sqrt{2/3N} \left[1 - Cos \left[n(2\pi/N) \right] \right] \qquad 0 \le n \le N - 1 \quad (N = 100)$$

- Width of main lobe $\pm 2(2\pi/N)$
- Suppression of side lobes >60 dB

Blackman-Harris

$$0.70634 - 0.96139 \times \cos \left[\frac{2\pi}{N} n \right] + 0.27816 \times \cos \left[2\frac{2\pi}{N} n \right] - 0.02300 \times \cos \left[3\frac{2\pi}{N} n \right] \quad 0 \le n \le N - 1$$

- Width of main lobe $\pm 3(2\pi/N)$
- Suppression of side lobes >140 dB

In the time domain

$$0.70634 - 0.96139 \times Cos \left\lceil \frac{2\pi}{N} n \right\rceil + 0.27816 \times Cos \left\lceil 2\frac{2\pi}{N} n \right\rceil - 0.02300 \times Cos \left\lceil 3\frac{2\pi}{N} n \right\rceil \quad 0 \leq n \leq N-1$$

AA 2020-202

The effect of the window

- The window avoids sharp truncation of data that would give Sinc(f) tails in the frequency domain
- The higher the order of the window, the higher the order of the lowest derivative that gets truncated
- However the higher the order of the window, the larger the width of first lobe
- Notice that this implies that, for small k, S_k is also contributed by power at low frequency down to dc.
- Thus for Hannings even the third coefficient (or the second at non-zero frequency) picks up the power from frequencies down to dc, and for Blackmann-Harris even the fourth coefficient (or the third at non-zero frequency) does so.

AA 2020-2021 S. Vitale 14

De-trending

- To mitigate the effect of noise at very low frequency leaking into the spectral estimates at high frequency, we may use two approaches:
 - Either drop the coefficients that are affected by the spectral leakage: e.g. <4 for Blackmann Harris Window
 - Or filter data with a high pass filter with a lower roll-off at 1/T
 - A popular high pass filter, called de-trending, consists of fitting a line to the data with least squares, and subtract then the best fit line from the same data to generate the de-trended data.
 - As noise at frequencies lower than 1/T appears substantially as a drift in the data, the method is rather effective.
 - It must be stressed that the method is quite empirical, and statistical properties are not straightforward.

Combining averaging and windowing bithento

Thus spectral leakage is suppressed by windowing (and de-trending).

Fluctuations are reduced by averaging. The most common approach for averaging consists of:

1. dividing the available data series of length N in stretches of equal length M

- 2. detrending each stretch and windowing it with the appropriate window.
- 3. evaluating $S_{k,j}$ for each stretch j
- 4. For each value of k, evaluate $\overline{S}_k = \sum_{i=1}^{N/M} S_{k,i} / (N/M)$
- 5. There is however a more efficient way to divide the data. See the following slide.

AA 2020-2021

S. Vitale

Overlapping stretches

The spectral window suppresses the data in the tails.

The picture is for the Blackman-Harris window. Arrows show the two 25% tails. In these tails data are weighted by less than 1/4

Overlapping stretches

Thus adjoining stretches can be somewhat overlapped, never really weighting the data within the overlapping tails more than the remaining ones

For the Blackman-Harris window one can show that 50% overlap or slightly more produce best results

AA 2020-2021 n

Combining averaging and windowing university decell study

Thus best recipe consists of

- dividing the available data series of length N in overlapping stretches of equal length M
- Windowing (and de-trending) each stretch with the appropriate window, and finally evaluating $S_{k,i}$ for that stretch (that we label with j)
- averaging the spectral estimates from different stretches

$$\overline{S}_k = \sum\nolimits_{j=1}^{N_s} S_{k,j} / N_s$$
 The spectral resolution depend on the width of the central lobe of the window.

This is usually n times the basic frequency $1/M\Delta T$

The relative error on the spectral estimate depends on the number of stretches

$$N_s$$
 entering in the average $\Delta \overline{S}_k / \overline{S}_k \approx 1 / \sqrt{(n/M\Delta T)M\Delta T} \sqrt{N_s}$

However a more accurate calculation shows that the formula holds with n=1 For 50% overlap $(N_s+1)(M/2)=N$:

$$\Delta \overline{S}_k / \overline{S}_k \approx 1 / \sqrt{\frac{2N}{M} - 1}$$

AA 2020-2021 S. Vitale

Spectral estimate by FFT: summary

- 1. Divide the data in stretches
- 2. Multiply by window
- 3. Make FFT
- 4. Take Square Modulus
- 5. Multiply by ΔT (or 2 ΔT if you need the one-sided PSD)
- 6. Average different spectra
- 7. Take error from rms of different spectra

Continuing the previous example

All numbers, no average, log-lin scale (PSD₁ first plot)

Log-log scale only N/2 coefficients (PSD₁ second plot)

Average of 16 non overlapping stretches

Hanning window

Blackmann-Harris window

