НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 4.7.3 «Изучение поляризованного света»

Шумаков Иван Игоревич студент группы Б01-009 3 курс ФРКТ **Цель работы:** Измерить пробег α -частицы в воздухе двумя разными способами.

В работе используются: барометр, сцинтилляционный счетчик, ионизационная камера.

1 Теоретические сведения

В качестве источника альфа-частиц используется 239 Pu с периодом полураспада $T_{1/2}=2,44\cdot 10^4$ лет. Альфа-частицы, испускаемые 239 Pu, состоят из трех моноэнергетических групп, различие между которыми лежит в пределах 50 кэВ. При той точности, которая достигается в наших опытах, их можно считать совпадающими по энергии, равной 5,15 МэВ.

При α -распаде исходное родительское ядро испускает ядро гелия и превращается в дочернее ядро, число протонов и число протонов уменьшается на две единицы. Функциональная свзяь между энергией α -частицы E и периодом полураспада радиоактивного ядра $T_{1/2}$ хорошо описывается формулой:

$$\lg T_{1/2} = \frac{a}{\sqrt{E}} + b. \tag{1}$$

Экспоненциальный характер этого процесса возникает вследствие экспоненциального затухания волновой функции в области под барьером, где потенциальная энергия больше энергии частицы.

Экспериментально энергию α -частиц удобно определять по величине их пробега в веществе. Энергия частицы теряется в следствии ионизации частиц среды. В следствии этого появляется свободные носители заряда, которые можно измерить.

Для описания связи между энергией α -частицы и ее пробегом пользуются эмпирическими соотношениями. В диапазоне энергий α -частиц от 4 до 9 МэВ эта связь хорошо описывается выражением:

$$R = 0,32E^{3/2} \tag{2}$$

В этой формуле пробег α -частиц в воздухе R (при 15^oC и нормальном атмосферном давлении) выражается в сантиметрах, а энергия E — в мегаэлектрон-вольтах.

2 Ионизационная камера

2.1 Экспериментальная установка

Рис. 1. Схема экспериментальной установки

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами. Сферическая стенка прибора служит одним из электродов, второй электрод вводится в газ через изолирующую пробку. К электродам подводится постоянное напряжение от источника ЭДС.

2.2 Ход работы

В данном эксперименте была получена зависимость давления в камере от тока, протекающего через схему. Результаты представлены в таблице.

По полученным данным была определена точка перегиба. Ей соответствует состояние камеры, когда α -частицы полностью теряют энергию вследствии ионизации. Таким образом, зная диаметр камеры можно оперделить длину свободного пробега α -частицы.

По экспериментальным данным был построен график I(P). На нем было выделено 2 группы точек: зона роста ионного тока и зона плато.

ΔP [MM.PT.CT]	I [пкА]	$\Delta P[\text{mm.pt.ct}]$	І [пкА]
720	9	370	611
710	25	350	652
680	70	330	695
660	102	310	735
640	132	290	780
620	165	260	845
600	202	230	900
570	249	200	930
540	300	180	940
510	346	160	940
480	404	140	935
470	429	120	935
450	456	100	930
430	494	80	925
410	534	50	915
390	576	30	910

Каждая из них была аппроксимирована прямой. Пересечению этих прямых соответствует точка перегиба.

Рис. 2. График зависимоти I(P)

Исходя из графика точка перегиба имеет координаты:

$$P = 550[\text{mm.pt.ct.}]$$
 $I = 952[\text{nkA}]$ (3)

Погрешности коэффициентов каждого из графиков примерно равны одному проценту. Поскольку точка перегиба находится из экстреполяции реальных значений, примем погрешность метода равной отношению отклониения экстраполяции от реальных данных к значению в точке.

Таким образом примем относительную погрешность точки перегиба, как:

$$\delta \approx \delta_k + \delta_{method} \approx 0.01 + \frac{20}{950} \approx 0.04$$
 (4)

Окончательное значение точки перегиба:

$$P_o = 550 \pm 22$$
mm.pt.ct (5)

Найдем значение точки перегиба для нормального давления: Приведем данный к нормальным условиям ($P_n=760$ мм. рт. ст. $T_n=15$ ^{o}C),

при условии, что пробег, задаваемый камерой $R=5~{\rm cm}.$

$$R_n = R \frac{P_0 T_n}{P_n T_0} = 5 \frac{552(15 + 273)}{760(22 + 273)} = 3.53 \text{ cm}$$
 (6)

Выразим пробег в $\Gamma/\text{см}^3$:

$$R' = \rho R = 1.22 * 10^{-3} * 3.53 = 4.31 \cdot 10^{-3} \text{ r/cm}^2$$
 (7)

Значение с учетом погрешностей:

$$R_n = 3.53 \pm 0.14$$
cm (8)

Используя формулу $R=0.32E^{\frac{3}{2}}$ оценим энергию lpha-частиц.

$$E = \left(\frac{R}{0.32}\right)^{\frac{2}{3}} = 4.92 \text{M} \cdot \text{B} \tag{9}$$

Энергия с учетом погрешностей:

$$E = 4.92 \pm 0.19 \text{M} \cdot \text{B}$$
 (10)

3 Сцинтилляционная камера

3.1 Экспериментальная установка

Рис. 3. Схема экспериментальной установки

Установка состоит из цилиндрической камеры, на дне которой находится исследуемый препарат. Камера герметично закрыта стеклянной пластинкой, на которую с внутренней стороны нанесен слой люминофора.

Расстояние между препаратом и люминофором составляет 9 см, так что α -частицы не могут достигнуть люминофора при обычном давлении. Определение пробега сводится к измерению зависимости интенсивности счета от давления в камере.

3.2 Ход работы

В ходе эксперимента была получены зависимость числа зарегистроированных частиц от давления. Результаты представлены в таблицы:

$\Delta P[\text{mm.pt.ct}]$	Кол-во частиц за 10 сек
720	3602
660	3439
630	3073
640	3276
620	2893
610	2743
600	2534
590	2344
580	2181
570	2034
560	1761
550	1656
540	1370
530	1124
520	920
510	737
500	541
490	370
480	181
470	170
460	60
450	10
420	3
370	2
330	2

По полученни данни был построен график зависимости N(P), затем экспериментальные точки были приближены полиномом 10 степени. От полинома была найдена производная и по ее экстремуму было оперделено среднее давление:

$$P_{\rm Cp} = 209[{\rm MM.pt.ct}]$$
 (11)

Участок спада был экстраполирован прямой до пересечения с осью X. Таким образом было получено экстраполированное значение давления:

$$P_{\mathfrak{I}_{KCTP}} = 268[\text{mm.pt.ct}] \tag{12}$$

Рис. 4. График зависимоти N(P)

С учетом погрешностей приближения относительную погрешность давления оценим как:

$$\delta_P \approx 0.05 \tag{13}$$

Значения с учетом погрешностей:

$$P_{\rm Cp} = 209 \pm 10 [{\rm {\tiny MM.pt.ct}}] \qquad P_{\rm {\tiny SKCTP}} = 268 \pm 13 [{\rm {\tiny MM.pt.ct}}] \qquad (14)$$

Расчет длины свободного пробега:

$$R_{\rm Cp} = R \frac{P_0 T_n}{P_n T_0} = 9 \frac{209(15 + 273)}{760(22 + 273)} = 2.41 \text{ cm}$$
 (15)

$$R_{\text{Экстр}} = R \frac{P_0 T_n}{P_n T_0} = 9 \frac{268(15 + 273)}{760(22 + 273)} = 3.10 \text{ см}$$
 (16)

Значения с учетом погрешностей:

$$R_{\rm Cp} = 2.41 \pm 0.12 [{\rm cm}]$$
 $R_{\rm 9\kappa crp} = 3.10 \pm 0.16 [{\rm cm}]$ (17)