자료 구조 스터디 01

2021-2 KCA 김지환

본 ppt의 자료는 PtJ님, 바킹독님의 자료와 김성열 교수님의 강의를 참고하였음을 밝힙니다.

진행 방식에 대해...

• 각자의 상황?

• 자료구조 수업을 들었는지?

• 이 스터디에 참여하는 목적은?

자료 구조???

• 현실의 것을 컴퓨터(0과 1밖에 모르는..)에 표현하기 위한 개념

• 메모리는 일렬로 쭈욱 번호 붙어있는 기다란 방이다.

• 그렇다면 여기에 어떻게 데이터들을 집어넣을까? 더 효율적인 방법은?

자료 구조 종류들..

• 배열 / 리스트 연결 리스트 원형 리스트

• 큐 / 스택 / 덱

• <u>트</u>리 이진 트리 AVL 트리

우선순위 큐 힙 DFS BFS

• 그래프 방향성

추상 자료형 ADT(Abstract Data Type)

• 자료 구조에 들어가는 자료(Data)와 연산(기능)을 정의한 것.

• 실제 코드로의 구현은 고려하지 않아도 됨.

• 그러나 실제로 우리가 사용하고 문제를 풀려면 구현해야 함..

Big O notation

• 빅 오 표기법 (시간 복잡도)

• 최악의 경우, 걸리는 연산 횟수를 나타낸 것.

• 대략 사칙연산이나 비교, 대입, 삭제, 변경 한 번을 1로 친다.

```
a = 0
for i in range(0, n):
a += i
```

왼쪽 코드와 같은 경우, 덧셈을 n번 반복하니까 "O(N)의 시간 복잡도를 가진다." 라고 할 수 있다.

엄밀히 대입 + 덧셈이므로 O(2N)으로 볼 수 있으나 O 표기법에서 제일 큰 항의 차수만 표기 (일종의 극한)

이번 주제

• 배열 / (연결) 리스트

Array / (Linked) List

배열의 정의와 특징

• 배열 : 메모리(물리적) 상에 자료를 연속적으로 배치한 자료 구조

0	1	2	3	4	5	6	7	8	9
2	4	6	13	-2	1	1	0	5	6

• 특징

배열의 특정 인덱스 접근/값 변경은 O(1)에 가능

정의 : 항상 연속적이어야 함. => (중간 임의 위치에 삭제, 삽입의 경우 칸을 다 당기고 밀어야 한다. : O(N))

기본적으로는 처음 정의된 크기가 불변이다. (변하는 건 동적 배열)

배열의 주요 기능

- 삽입 O(N)
- 삭제 O(N)
- 값 탐색 O(1)
- 특정 위치 값 변경 O(1)
- 배열 크기 O(1)

구현??

연결 리스트의 정의와 특징

- 리스트 : 자료를 연속적으로 배치해야 하나, 물리적으로 연속적일 필요는 없다.
- 연결 리스트 : 물리적으로 불연속적인 리스트

물리적으로 불연속적으로 '연속적인 자료'를 어떻게 저장할 수 있을까?

자기 자료랑 다음 자료의 주소를 함께 가지고 있으면 된다! => 이것이 노드(Node) 노드 : data + link

• 특징

N 번째 원소 확인하려면 처음부터 타고타고 가야 함. O(N) 임의 위치에 자료 삽입/제거는 주소만 바꾸면 된다! O(1) (단, 여기까지 찾아가는 비용 듦.)

연결리스트 종류

배열 vs 연결 리스트

배열 vs 연결 리스트

	배열	연결 리스트	
k번째 원소의 접근	O(1)	O(k)	
임의 위치에 원소 추가/제거	O(N)	O(1)	
메모리 상의 배치	연속	불연속	
추가적으로 필요한 공간 (Overhead)	-	O(N)	

Array vs List (in python)

<Array>

- 데이터 타입이 같아야 함
- Array 안에 Array를 넣을 수 없음
- 데이터 삽입, 삭제 시 O(N)

파이썬에서 List는 Array와 매우 비슷함. 왜?

<List>

- 데이터 타입이 달라도 됨
- List 안에 List를 넣을 수 있음
- 데이터 삽입, 삭제 시 O(N)

C의 Array + 동적 할당으로 구현이 되었기 때문! (cpython) ⇔ 연결 리스트와 혼동하지 말자!

Array에 각종 기능을 추가한 것이라 보면 된다! (python의 list로 좀 더 편하게 큐, 스택 구현가능)