Let
$$\gamma$$
: \sim normal (Θ_1, σ^2)

Let $\Theta_1 \sigma^2 \sim \text{normal}(M_0, T_0^2)$

To prove: $\Theta_1 \sigma^2, \vec{y} \sim \text{normal}(M_0, T_0^2)$

To prove: $\Theta_1 \sigma^2, \vec{y} \sim \text{normal}(M_0, T_0^2)$

(for some M_0, T_0^2) where $\vec{y} = \hat{y}_{11}, ..., y_0^2$

Proof:

 $P(\Theta_1 \sigma^2, \vec{y}) \propto P(\vec{y}_1 \Theta_1 \sigma^2) \cdot P(\Theta_1 \sigma^2)$
 $\propto \exp \{\frac{1}{2}\sigma^2, \frac{2}{2}(y_1 - \Theta)^2\} \cdot \exp \{\frac{1}{2}T_{12}^2(\Theta_1 - M_0)^2\}$
 $\propto \exp \{\frac{1}{2}\sigma^2, (N_0^2 - 2N_0^2\Theta_1)^{-\frac{1}{2}T_0}(\Theta_1^2 - 2M_0^2)\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - 2(N_0^2 + \frac{M_0}{T_0^2})\Theta_1^2\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - 2(N_0^2 + \frac{M_0}{T_0})\Theta_1^2\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - 2(N_0^2 + \frac{M_0}{T_0})\Theta_1^2\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - 2(N_0^2 + \frac{M_0}{T_0})\Theta_1^2\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - \frac{1}{T_0}(\Theta_1 - M_0^2)\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - \frac{1}{T_0}(\Theta_1 - M_0^2)\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - \frac{1}{T_0}(\Theta_1 - M_0^2)\}$
 $\propto \exp \{\frac{1}{2}(N_0^2 + \frac{1}{T_0})\Theta_1^2 - \frac{1}{T_0}(\Theta_1 - M_0^2)\}$