Linear Least-Squares Problem (LSP) Method of Normal Equation

Rafikul Alam
Department of Mathematics
Indian Institute of Technology Guwahati
Guwahati - 781039, INDIA

Outline

- Least squares problem
- Method of Normal Equation

Least-squares problem (LSP)

Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$. Usually $m \gg n$. Find $x \in \mathbb{C}^n$ that minimizes

$$||Ax - b||_2^2 = \sum_{i=1}^m |(\sum_{j=1}^n a_{ij}x_j - b_i)|^2.$$

This is called least-squares problem because we minimize the sum of the squares of the errors

$$|r_1|^2 + \cdots + |r_m|^2$$
 where $r := Ax - b$.

Least-squares problem (LSP)

Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$. Usually $m \gg n$. Find $x \in \mathbb{C}^n$ that minimizes

$$||Ax - b||_2^2 = \sum_{i=1}^m |(\sum_{j=1}^n a_{ij}x_j - b_i)|^2.$$

This is called least-squares problem because we minimize the sum of the squares of the errors

$$|r_1|^2 + \cdots + |r_m|^2$$
 where $r := Ax - b$.

The vector r := Ax - b is called residual vector and $||r||_2$ is called residual error of the least squares problem. We write a solution x of the LSP as

$$x = \arg\min_{y \in \mathbb{C}^n} ||Ay - b||_2.$$

Least-squares problem (LSP)

Let $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$. Usually $m \gg n$. Find $x \in \mathbb{C}^n$ that minimizes

$$||Ax - b||_2^2 = \sum_{i=1}^m |(\sum_{j=1}^n a_{ij}x_j - b_i)|^2.$$

This is called least-squares problem because we minimize the sum of the squares of the errors

$$|r_1|^2 + \cdots + |r_m|^2$$
 where $r := Ax - b$.

The vector r := Ax - b is called residual vector and $||r||_2$ is called residual error of the least squares problem. We write a solution x of the LSP as

$$x = \arg\min_{y \in \mathbb{C}^n} \|Ay - b\|_2. \ \ \text{$\stackrel{=> \times$ belongs to the set containing y's, s.t. norm}$} \ (\text{Ay - b}) \ \text{is minimum}.$$

The LSP is called a linear least squares problem and is written as

solve
$$Ax \approx b$$
 or LSP $Ax \approx b$.

Remark: If x is a solution of the LSP $Ax \approx b$ then so is x + z for any $z \in N(A)$.

If $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, then define

$$f(x) := \|Ax - b\|_2^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j - b_i\right)^2.$$

Then gradient $\nabla f(x) = 2A^{\top}(Ax - b)$ and Hessian $H_f(x) = A^{\top}A$. For a minimum $\nabla f(x) = 0$ yields the normal equation $A^{\top}Ax = A^{\top}b$.

If $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, then define

$$f(x) := \|Ax - b\|_2^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j - b_i\right)^2.$$

Then gradient $\nabla f(x) = 2A^{\top}(Ax - b)$ and Hessian $H_f(x) = A^{\top}A$. For a minimum $\nabla f(x) = 0$ yields the normal equation $A^{\top}Ax = A^{\top}b$. Since Hessian is symmetric positive semidefinite, f has a minimum at x.

If $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, then define

$$f(x) := \|Ax - b\|_2^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j - b_i\right)^2.$$

Then gradient $\nabla f(x) = 2A^{\top}(Ax - b)$ and Hessian $H_f(x) = A^{\top}A$. For a minimum $\nabla f(x) = 0$ yields the normal equation $A^{\top}Ax = A^{\top}b$. Since Hessian is symmetric positive semidefinite, f has a minimum at x.

Note that $A^{T}A$ is positive semidefinite and the normal equation

Hpu
$$\mathcal{L}$$
 $A^{\top}Ax = A^{\top}b$

is always consistent and has a solution If $\operatorname{rank}(A) = n$ then $A^{\top}A$ is positive definite and $x = (A^{\top}A)^{-1}A^{\top}b = A^{+}b$ is a unique solution of the LSP $Ax \approx b$.

If $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, then define

$$f(x) := \|Ax - b\|_2^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j - b_i\right)^2.$$

Then gradient $\nabla f(x) = 2A^{\top}(Ax - b)$ and Hessian $H_f(x) = A^{\top}A$. For a minimum $\nabla f(x) = 0$ yields the normal equation $A^{\top}Ax = A^{\top}b$. Since Hessian is symmetric positive semidefinite, f has a minimum at x.

Note that $A^{T}A$ is positive semidefinite and the normal equation

$$A^{\top}Ax = A^{\top}b$$

is always consistent and has a solution. If $\operatorname{rank}(A) = n$ then $A^{\top}A$ is positive definite and $x = (A^{\top}A)^{-1}A^{\top}b = A^{+}b$ is a unique solution of the LSP $Ax \approx b$.

Remark: If rank(A) = n then $A^{T}Ax = A^{T}b$ can be solved by Cholesky factorization. However, $A^{T}A$ may be highly ill-conditioned.

Given data points $(t_1, b_1), \ldots, (t_m, b_m)$ in \mathbb{R}^2 , find a straight line $f(t) := x_1 + x_2 t$ that best fit the data. The task is to minimize the error $\sum_{j=1}^m (f(t_j) - b_j)^2$ for all $x_1, x_2 \in \mathbb{R}$.

Given data points $(t_1, b_1), \ldots, (t_m, b_m)$ in \mathbb{R}^2 , find a straight line $f(t) := x_1 + x_2 t$ that best fit the data. The task is to minimize the error $\sum_{i=1}^m (f(t_i) - b_i)^2$ for all $x_1, x_2 \in \mathbb{R}$.

Setting $r_i := f(t_i) - b_i \Longrightarrow f(t_i) = b_i + r_i \Longrightarrow x_1 + x_2 t_i = b_i + r_i$ for i = 1 : m. This yields the LSP

$$Ax = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = b.$$

Now consider the LSP

$$Ax = egin{bmatrix} 1 & t_1 \ 1 & t_2 \ dots & dots \ 1 & t_m \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} pprox egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix} = b.$$

Now consider the LSP

$$Ax = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = b.$$

Set
$$\mu_t := (t_1 + \dots + t_m)/m$$
, $\sigma_t^2 := (t_1^2 + \dots + t_m^2)/m$, $\mu_b := (b_1 + \dots + b_m)/m$ and $\sigma_{tb} := (t_1b_1 + \dots + t_mb_m)/m$. Then the normal equation $A^\top Ax = A^\top b$ gives

Now consider the LSP

$$Ax = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = b.$$

Set $\mu_t := (t_1 + \dots + t_m)/m$, $\sigma_t^2 := (t_1^2 + \dots + t_m^2)/m$, $\mu_b := (b_1 + \dots + b_m)/m$ and $\sigma_{tb} := (t_1b_1 + \dots + t_mb_m)/m$. Then the normal equation $A^\top Ax = A^\top b$ gives

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} b \Longrightarrow \begin{bmatrix} 1 & \mu_t \\ \mu_t & \sigma_t^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mu_b \\ \sigma_{tb} \end{bmatrix}.$$

Now consider the LSP

$$Ax = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = b.$$

Set $\mu_t := (t_1 + \dots + t_m)/m$, $\sigma_t^2 := (t_1^2 + \dots + t_m^2)/m$, $\mu_b := (b_1 + \dots + b_m)/m$ and $\sigma_{tb} := (t_1b_1 + \dots + t_mb_m)/m$. Then the normal equation $A^\top Ax = A^\top b$ gives

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} b \Longrightarrow \begin{bmatrix} 1 & \mu_t \\ \mu_t & \sigma_t^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mu_b \\ \sigma_{tb} \end{bmatrix}.$$

Hence $x_1 = (\mu_b \sigma_t^2 - \mu_t \sigma_{tb})/(\sigma_t^2 - \mu_t^2)$ and $x_2 = (\sigma_{tb} - \mu_t \mu_b)/(\sigma_t^2 - \mu_t^2)$.

Now consider the LSP

$$Ax = egin{bmatrix} 1 & t_1 \ 1 & t_2 \ dots & dots \ 1 & t_m \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} pprox egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix} = b.$$

Set $\mu_t := (t_1 + \dots + t_m)/m$, $\sigma_t^2 := (t_1^2 + \dots + t_m^2)/m$, $\mu_b := (b_1 + \dots + b_m)/m$ and $\sigma_{tb} := (t_1b_1 + \dots + t_mb_m)/m$. Then the normal equation $A^{\top}Ax = A^{\top}b$ gives

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} b \Longrightarrow \begin{bmatrix} 1 & \mu_t \\ \mu_t & \sigma_t^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mu_b \\ \sigma_{tb} \end{bmatrix}.$$

Hence $x_1 = (\mu_b \sigma_t^2 - \mu_t \sigma_{tb})/(\sigma_t^2 - \mu_t^2)$ and $x_2 = (\sigma_{tb} - \mu_t \mu_b)/(\sigma_t^2 - \mu_t^2)$.

The best fit is given by the line $y = \beta(t - \mu_t) + \mu_b$, where $\beta = (\sigma_{tb} - \mu_t \mu_b)/(\sigma_t^2 - \mu_t^2)$.

For (n-1) degree polynomial $p(t) = x_1 + x_2t + \cdots + x_nt^{n-1}$ fitting the data $(t_1, b_1), \ldots, (t_m, b_m)$, we have $p(t_i) = b_i + r_i$ for i = 1 : m. This yields the LSP

For (n-1) degree polynomial $p(t)=x_1+x_2t+\cdots+x_nt^{n-1}$ fitting the data $(t_1,b_1),\ldots,(t_m,b_m)$, we have $p(t_i)=b_i+r_i$ for i=1:m. This yields the LSP

$$\begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

For (n-1) degree polynomial $p(t)=x_1+x_2t+\cdots+x_nt^{n-1}$ fitting the data $(t_1,b_1),\ldots,(t_m,b_m)$, we have $p(t_i)=b_i+r_i$ for i=1:m. This yields the LSP

$$\begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

In practice, one considers n = 2, 3, 4 which correspond to straightline, quadratic and cubic polynomial fit, respectively.

For (n-1) degree polynomial $p(t)=x_1+x_2t+\cdots+x_nt^{n-1}$ fitting the data $(t_1,b_1),\ldots,(t_m,b_m)$, we have $p(t_i)=b_i+r_i$ for i=1:m. This yields the LSP

$$\begin{bmatrix} 1 & t_1 & \cdots & t_1^{n-1} \\ 1 & t_2 & \cdots & t_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & t_m & \cdots & t_m^{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \approx \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

In practice, one considers n = 2, 3, 4 which correspond to straightline, quadratic and cubic polynomial fit, respectively.

The matrix in the LSP has full rank and is solved by normal equation method. However, for large n the matrix becomes highly ill-conditioned.

Consider the data points

Consider the data points

For the quadratic polynomial fit, we have the LSP

$$\begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 0.1 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \approx \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 1.5 \\ 2.0 \end{bmatrix}.$$

Consider the data points

For the quadratic polynomial fit, we have the LSP

$$\begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 0.1 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \approx \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 1.5 \\ 2.0 \end{bmatrix}.$$

Solving the LSP we have $x = \begin{bmatrix} 0.086 & 0.40 & 1.4 \end{bmatrix}^{\top}$ which yields the polynomial $p(t) = 0.086 + 0.4t + 1.4t^2$.

Figure : The plot of $p(t) = 0.086 + 0.4t + 1.4t^2$ and the data points.

Task: Given data points $(\mathbf{t}_1, b_1), \dots, (\mathbf{t}_m, b_m)$ in $\mathbb{C}^p \times \mathbb{C}$ and model functions ϕ_1, \dots, ϕ_n , determine a function $f \in \operatorname{span}(\phi_1, \dots, \phi_n) =: S$ that "best fit" the data:

Task: Given data points $(\mathbf{t}_1, b_1), \dots, (\mathbf{t}_m, b_m)$ in $\mathbb{C}^p \times \mathbb{C}$ and model functions ϕ_1, \dots, ϕ_n , determine a function $f \in \mathrm{span}(\phi_1, \dots, \phi_n) =: S$ that "best fit" the data:

$$f = \arg\min_{\phi \in S} \sum_{j=1}^{m} |\phi(\mathbf{t}_j) - b_j|^2.$$

Task: Given data points $(\mathbf{t}_1, b_1), \dots, (\mathbf{t}_m, b_m)$ in $\mathbb{C}^p \times \mathbb{C}$ and model functions ϕ_1, \dots, ϕ_n , determine a function $f \in \operatorname{span}(\phi_1, \dots, \phi_n) =: S$ that "best fit" the data:

$$f = \arg\min_{\phi \in S} \sum_{j=1}^{m} |\phi(\mathbf{t}_j) - b_j|^2.$$

We have $f = x_1\phi_1 + \cdots + x_n\phi_n$ for some $x := [x_1, \dots, x_n]^{\top} \in \mathbb{C}^n$. Now, forcing f to pass through the data (\mathbf{t}_i, b_i) , we have $f(\mathbf{t}_i) = b_i + r_i$, where r_i is the error for i = 1 : m.

Task: Given data points $(\mathbf{t}_1, b_1), \dots, (\mathbf{t}_m, b_m)$ in $\mathbb{C}^p \times \mathbb{C}$ and model functions ϕ_1, \dots, ϕ_n , determine a function $f \in \operatorname{span}(\phi_1, \dots, \phi_n) =: S$ that "best fit" the data:

$$f = \arg\min_{\phi \in S} \sum_{j=1}^{m} |\phi(\mathbf{t}_j) - b_j|^2.$$

We have $f = x_1\phi_1 + \cdots + x_n\phi_n$ for some $x := [x_1, \dots, x_n]^{\top} \in \mathbb{C}^n$. Now, forcing f to pass through the data (\mathbf{t}_i, b_i) , we have $f(\mathbf{t}_i) = b_i + r_i$, where r_i is the error for i = 1 : m.

Now $f(\mathbf{t}_i) = b_i + r_i \Longrightarrow x_1 \phi_1(\mathbf{t}_i) + \cdots + x_n \phi_n(\mathbf{t}_i) = b_i + r_i$ for i = 1 : m. This yields

$$Ax = \begin{bmatrix} \phi_1(\mathbf{t}_1) & \cdots & \phi_n(\mathbf{t}_1) \\ \phi_1(\mathbf{t}_2) & \cdots & \phi_n(\mathbf{t}_2) \\ \vdots & \cdots & \vdots \\ \phi_1(\mathbf{t}_m) & \cdots & \phi_n(\mathbf{t}_m) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix} = b + r.$$

Task: Given data points $(\mathbf{t}_1, b_1), \dots, (\mathbf{t}_m, b_m)$ in $\mathbb{C}^p \times \mathbb{C}$ and model functions ϕ_1, \dots, ϕ_n , determine a function $f \in \operatorname{span}(\phi_1, \dots, \phi_n) =: S$ that "best fit" the data:

$$f = \arg\min_{\phi \in S} \sum_{j=1}^{m} |\phi(\mathbf{t}_j) - b_j|^2.$$

We have $f = x_1\phi_1 + \cdots + x_n\phi_n$ for some $x := [x_1, \dots, x_n]^{\top} \in \mathbb{C}^n$. Now, forcing f to pass through the data (\mathbf{t}_i, b_i) , we have $f(\mathbf{t}_i) = b_i + r_i$, where r_i is the error for i = 1 : m.

Now $f(\mathbf{t}_i) = b_i + r_i \Longrightarrow x_1 \phi_1(\mathbf{t}_i) + \cdots + x_n \phi_n(\mathbf{t}_i) = b_i + r_i$ for i = 1 : m. This yields

$$Ax = \begin{bmatrix} \phi_1(\mathbf{t}_1) & \cdots & \phi_n(\mathbf{t}_1) \\ \phi_1(\mathbf{t}_2) & \cdots & \phi_n(\mathbf{t}_2) \\ \vdots & \cdots & \vdots \\ \phi_1(\mathbf{t}_m) & \cdots & \phi_n(\mathbf{t}_m) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} + \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix} = b + r.$$

For the best fit, we have to choose $x \in \mathbb{C}^n$ for which $||r||_2 = ||Ax - b||_2$ is minimized. This yields the LSP $Ax \approx b$.

Geometry of Least-squares problem

Figure: Relationships among b; r and R(A):

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Let \mathcal{M} and \mathcal{N} be subspaces of \mathbb{C}^n . Then \mathcal{M} is said to be orthogonal to \mathcal{N} and written as $\mathcal{M} \perp \mathcal{N}$ if $\langle x, y \rangle = 0$ for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$.

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Let \mathcal{M} and \mathcal{N} be subspaces of \mathbb{C}^n . Then \mathcal{M} is said to be orthogonal to \mathcal{N} and written as $\mathcal{M} \perp \mathcal{N}$ if $\langle x, y \rangle = 0$ for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$.

Orthogonal direct sum: $\mathcal{M} \oplus \mathcal{N}$ and $\mathcal{M} \perp \mathcal{N}$.

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Let \mathcal{M} and \mathcal{N} be subspaces of \mathbb{C}^n . Then \mathcal{M} is said to be orthogonal to \mathcal{N} and written as $\mathcal{M} \perp \mathcal{N}$ if $\langle x, y \rangle = 0$ for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$.

Orthogonal direct sum: $\mathcal{M} \oplus \mathcal{N}$ and $\mathcal{M} \perp \mathcal{N}$.

Let $S \subset \mathbb{C}^n$. Then $S^{\perp} := \{ v \in \mathbb{C}^n : v \perp S \}$ is called the orthogonal complement of S. Note that S^{\perp} is a subspace.

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Let \mathcal{M} and \mathcal{N} be subspaces of \mathbb{C}^n . Then \mathcal{M} is said to be orthogonal to \mathcal{N} and written as $\mathcal{M} \perp \mathcal{N}$ if $\langle x, y \rangle = 0$ for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$.

Orthogonal direct sum: $\mathcal{M} \oplus \mathcal{N}$ and $\mathcal{M} \perp \mathcal{N}$.

Let $S \subset \mathbb{C}^n$. Then $S^{\perp} := \{ v \in \mathbb{C}^n : v \perp S \}$ is called the orthogonal complement of S. Note that S^{\perp} is a subspace.

Fact: Let \mathcal{M} is a subspace of \mathbb{C}^n . Then $\mathbb{C}^n = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Let \mathcal{M} and \mathcal{N} be subspaces of \mathbb{C}^n . Then \mathcal{M} is said to be orthogonal to \mathcal{N} and written as $\mathcal{M} \perp \mathcal{N}$ if $\langle x, y \rangle = 0$ for all $x \in \mathcal{M}$ and all $y \in \mathcal{N}$.

Orthogonal direct sum: $\mathcal{M} \oplus \mathcal{N}$ and $\mathcal{M} \perp \mathcal{N}$.

Let $S \subset \mathbb{C}^n$. Then $S^{\perp} := \{ v \in \mathbb{C}^n : v \perp S \}$ is called the orthogonal complement of S. Note that S^{\perp} is a subspace.

Fact: Let \mathcal{M} is a subspace of \mathbb{C}^n . Then $\mathbb{C}^n = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Thus if $w \in \mathbb{C}^n$ then there are unique vectors $u \in \mathcal{M}$ and $v \in \mathcal{M}^{\perp}$ such that w = u + v and $u \perp v$.

Fact: Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of \mathbb{C}^n and $v \in \mathbb{C}^n$. Then $v = \langle v, v_1 \rangle v_1 + \cdots + \langle v, v_n \rangle v_n$.

Let $\mathcal M$ and $\mathcal N$ be subspaces of $\mathbb C^n$. Then $\mathcal M$ is said to be orthogonal to $\mathcal N$ and written as $\mathcal M \perp \mathcal N$ if $\langle x, y \rangle = 0$ for all $x \in \mathcal M$ and all $y \in \mathcal N$. https://www.math.arizona.edu/~rsims/ma528b/orthogonality.pdf

Orthogonal direct sum: $\mathcal{M} \oplus \mathcal{N}$ and $\mathcal{M} \perp \mathcal{N}$.

Let $S \subset \mathbb{C}^n$. Then $S^{\perp} := \{ v \in \mathbb{C}^n : v \perp S \}$ is called the orthogonal complement of S. Note that S^{\perp} is a subspace.

Fact: Let \mathcal{M} is a subspace of \mathbb{C}^n . Then $\mathbb{C}^n = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Thus if $w \in \mathbb{C}^n$ then there are unique vectors $u \in \mathcal{M}$ and $v \in \mathcal{M}^{\perp}$ such that w = u + v and $u \perp v$.

Fact: Let $A \in \mathbb{C}^{m \times n}$. Then the adjoint $A^* \in \mathbb{C}^{n \times m}$ is the unique matrix such that

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$
 for all $x \in \mathbb{C}^n$ and all $y \in \mathbb{C}^m$.

Consider the range space
$$R(A) := \{Ax : x \in \mathbb{C}^n\} \subset \mathbb{C}^m$$
 and the null space $N(A) := \{x \in \mathbb{C}^n : Ax = 0\} \subset \mathbb{C}^n \text{ of } A \in \mathbb{C}^{m \times n}.$ Then
$$\mathbb{C}^m = R(A) \oplus N(A^*) \text{ and } R(A) \perp N(A^*)$$
$$\mathbb{C}^n = N(A) \oplus R(A^*) \text{ and } N(A) \perp R(A^*).$$

Consider the range space
$$R(A) := \{Ax : x \in \mathbb{C}^n\} \subset \mathbb{C}^m$$
 and the null space $N(A) := \{x \in \mathbb{C}^n : Ax = 0\} \subset \mathbb{C}^n \text{ of } A \in \mathbb{C}^{m \times n}.$ Then
$$\mathbb{C}^m = R(A) \oplus N(A^*) \text{ and } R(A) \perp N(A^*)$$
$$\mathbb{C}^n = N(A) \oplus R(A^*) \text{ and } N(A) \perp R(A^*).$$

Theorem: The LSP Ax = b has a solution and

$$x = \underset{y \in \mathbb{C}^n}{\operatorname{argmin}} \|Ay - b\|_2 \iff (Ax - b) \perp R(A) \iff A^*Ax = A^*b.$$

Consider the range space
$$R(A) := \{Ax : x \in \mathbb{C}^n\} \subset \mathbb{C}^m$$
 and the null space $N(A) := \{x \in \mathbb{C}^n : Ax = 0\} \subset \mathbb{C}^n \text{ of } A \in \mathbb{C}^{m \times n}.$ Then
$$\mathbb{C}^m = R(A) \oplus N(A^*) \text{ and } R(A) \perp N(A^*)$$
$$\mathbb{C}^n = N(A) \oplus R(A^*) \text{ and } N(A) \perp R(A^*).$$

Theorem: The LSP Ax = b has a solution and

$$x = \operatorname*{argmin}_{y \in \mathbb{C}^n} \|Ay - b\|_2 \iff (Ax - b) \perp R(A) \iff A^*Ax = A^*b.$$

Proof:
$$(Ax - b) \perp R(A) \iff b - Ax \in N(A^*) \iff A^*(Ax - b) = 0 \iff A^*Ax = A^*b$$
.

Consider the range space
$$R(A) := \{Ax : x \in \mathbb{C}^n\} \subset \mathbb{C}^m$$
 and the null space $N(A) := \{x \in \mathbb{C}^n : Ax = 0\} \subset \mathbb{C}^n \text{ of } A \in \mathbb{C}^{m \times n}.$ Then
$$\mathbb{C}^m = R(A) \oplus N(A^*) \text{ and } R(A) \perp N(A^*)$$
$$\mathbb{C}^n = N(A) \oplus R(A^*) \text{ and } N(A) \perp R(A^*).$$

Theorem: The LSP Ax = b has a solution and

$$x = \operatorname*{argmin}_{y \in \mathbb{C}^n} \|Ay - b\|_2 \iff (Ax - b) \perp R(A) \iff A^*Ax = A^*b.$$

Proof:
$$(Ax - b) \perp R(A) \iff b - Ax \in N(A^*) \iff A^*(Ax - b) = 0 \iff A^*Ax = A^*b$$
.

Let $b = b_1 + b_2$ with $b_1 \in R(A)$ and $b_2 \in N(A^*)$. Then

$$||Ax - b||_2^2 = ||Ax - b_1 - b_2||_2^2 = ||Ax - b_1||_2^2 + ||b_2||_2^2 = ||b_2||_2^2$$

$$\Leftrightarrow Ax = b_1 \iff b_2 = b - Ax \iff (Ax - b) \perp R(A). \blacksquare$$

Consider the range space $R(A):=\{Ax:x\in\mathbb{C}^n\}\subset\mathbb{C}^m$ and the null space $N(A):=\{x\in\mathbb{C}^n:Ax=0\}\subset\mathbb{C}^n \text{ of } A\in\mathbb{C}^{m\times n}.$ Then

$$\mathbb{C}^m = R(A) \oplus N(A^*) \text{ and } R(A) \perp N(A^*)$$

 $\mathbb{C}^n = N(A) \oplus R(A^*) \text{ and } N(A) \perp R(A^*).$

Theorem: The LSP Ax = b has a solution and

$$x = \underset{y \in \mathbb{C}^n}{\operatorname{argmin}} \|Ay - b\|_2 \iff (Ax - b) \perp R(A) \iff A^*Ax = A^*b.$$

Proof:
$$(Ax - b) \perp R(A) \iff b - Ax \in N(A^*) \iff A^*(Ax - b) = 0 \iff A^*Ax = A^*b$$
.

Let $b = b_1 + b_2$ with $b_1 \in R(A)$ and $b_2 \in N(A^*)$. Then

$$||Ax - b||_2^2 = ||Ax - b_1 - b_2||_2^2 = ||Ax - b_1||_2^2 + ||b_2||_2^2 = ||b_2||_2^2$$

$$\Leftrightarrow Ax = b_1 \iff b_2 = b - Ax \iff (Ax - b) \perp R(A). \blacksquare$$

The system $A^*Ax = A^*b$ is called the normal equation for $Ax \approx b$.

