Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИИ И ДИЗАЙНА»

Математическая статистика

Методические указания и контрольные задания для студентов 2-го курса по направлениям подготовки: 036000.62 - Интеллектуальные системы в гуманитарной сфере; 090900.62 - Информационная безопасность

Составители: Б. С. Тёрушкин О. Б. Тёрушкина

Утверждено на заседании кафедры 25.09.2013 г., протокол № 2 Рецензент Н. Р. Туркина

Методические указания с примерами и заданиями по дисциплине «Математическая статистика». Включают описание целей, задач и формируемых компетенций, тематику и общее содержание работы, список литературы. Указания содержат примеры заполнения таблиц и необходимые комментарии к выполнению работы.

Предназначены для студентов- 2-го курса обучения направления подготовки 036000.62 - Интеллектуальные системы в гуманитарной сфере, 090900.62 - Информационная безопасность.

•

Оригинал-макет подготовлен составителями и издан в авторской редакции Подписано в печать 27.02.2014 г. Формат 60х84 ¹/₁₆. Усл. печ. л. 2,0. Тираж 100 экз. Заказ 100/14. Электронный адрес: http://publish.sutd.ru

Отпечатано в типографии ФГБОУ ВПО «СПГУТД» 191028, С.-Петербург, ул. Моховая, 26

Оглавление

Оглавление	3
1. Математическая статистика	
2. Типовой пример, постановка задачи	4
3. Типовой пример, проверка статистической гипотезы	
4. Типовой пример, линейная регрессия	
5. Образцы заданий	
Задание 1	
Задание 2	
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЕ А	
ПРИЛОЖЕНИЕ Б	
ПРИЛОЖЕНИЕ В	

1. Математическая статистика

Математическая статистика изучает массовые явления и процессы, ставя целью получение выводов по данным наблюдений за ними. В результате появляются утверждения об общих характеристиках таких явлений в предположении постоянства начальных условий явления. Теоретической основой математической статистики является теория вероятностей.

Поскольку число наблюдений конечно, их результаты можно записать в таблицу аналогично дискретной случайной величине, только в нижней строке не вероятности, а частоты тех или иных значений, а чаще — диапазонов. При этом при анализе такой таблицы нередко возникает предположение, что данная величина распределена по одному из известных непрерывных законов (см. комментарии к задаче № 4), чаще всего — нормальному (гауссовскому).

2. Типовой пример, постановка задачи

Получены статистические данные (N=200) зависимости результатов измерения роста студентов (X) от длины окружности груди (Y) (см. табл.1).

Требуется:

часть 1

Упорядочить заданную выборку из 200 значений;

построить эмпирическую функцию распределения, полигон, гистограмму для случайной величины X;

построить точечные и интервальные оценки для мат. ожидания и дисперсии генеральной совокупности X;

сделать статистическую проверку гипотезы о законе распределения случайной величины X;

часть 2

- 1) нанести на координатную плоскость данные выборки (x;y) и по виду корреляционного облака подобрать вид функции регрессии;
- 2) составить корреляционную таблицу по сгруппированным данным; вычислить коэффициент корреляции; получить уравнение регрессии;

Исходная выборка.

Таблица 1. Выборочные данные Хи У

X	162	166	172	169	176	167	167	168	167	169	167	69
Y	100	84	82	91	86	90	92	88	89	88	89	83
												_
X	169	163	164	164	164	178	176	167	165	172	168	170
Y	91	92	84	89	85	91	82	85	90	87	88	88

Продолжение табл. 1.

	,										,	
X	187	165	171	171	169	163	161	175	172	163	180	172
Y	86	87	94	91	79	80	88	95	89	91	98	90
X	174	164	169	157	178	176	161	176	165	161	182	176
Y	97	89	88	90	90	93	94	90	87	84	90	93
X	168	164	160	178	170	168	173	176	170	163	165	165
Y	93	91	83	89	90	81	89	95	81	93	84	88
X	170	166	165	181	172	165	172	178	173	165	174	159
Y	86	84	85	92	88	91	98	90	90	87	96	81
X	171	169	169	170	170	165	190	175	157	148	172	159
Y	92	92	87	91	88	94	105	91	82	87	99	83
X	162	167	167	160	175	163	164	180	164	169	169	170
Y	92	85	88	87	90	91	89	85	84	87	91	93
			•	•		•	•	•		•	•	
X	179	167	162	169	172	166	164	173	161	159	166	158
Y	99	81	80	91	99	82	84	84	82	86	84	91
	-	•			•			•	•	•		
X	163	165	170	172	161	171	166	164	183	173	166	167
Y	88	87	91	94	84	97	87	97	90	90	89	85
			•	•		•	•	•		•	•	
X	162	156	167	168	170	171	174	179	161	170	172	166
Y	89	88	86	92	90	91	90	85	79	95	91	88
			•	•		•	•	•		•	•	
X	173	172	179	155	175	173	170	171	171	167	165	173
Y	89	96	85	86	89	96	96	83	90	91	91	90
-	•	•	•	•	•	•	•	•	•	•	•	
X	167	165	169	171	181	164	164	176	163	165	174	177
Y	89	94	82	89	89	86	91	87	88	93	86	87
	1		1	1		1	1	1		1	1	
X	180	170	168	175	171	170	168	160	169	164	171	164
Y	90	91	82	85	89	90	87	85	91	87	91	83
	1	ı	1	1	ı	1	1	1	ı	1	1	
X	164	163	170	174	161	167	173	164	174	168	176	156
Y	83	88	92	88	91	91	87	90	91	83	93	85
			<u>I</u>		<u>I</u>	<u>I</u>	<u> </u>	<u> </u>	<u>I</u>			
X	162	168	176	184	165	176	163	167	169	186	172	175
Y	90	93	88	98	94	92	89	88	89	92	91	90
		1 / 0	100	1 , 0				100	<u> </u>			, ,

Окончание табл. 1.

X	170	173	160	171	169	165	185	168
Y	90	91	89	85	87	94	91	90

Составим ранжированный (по увеличению X) ряд для случайных величин X,Y.

Таблица 2. Ранжированный ряд случайной величины Х

						T						
X	148	155	156	156	157	157	158	159	159	159	160	160
Y	87	86	85	88	82	90	91	81	83	86	83	85
X	160	161	161	161	161	161	161	162	162	162	162	162
Y	87	79	82	84	84	88	91	80	89	90	92	94
		•	•		•				•	•		
X	162	163	163	163	163	163	163	163	163	163	164	164
Y	100	80	88	88	88	89	91	91	92	93	83	83
	1	ı	ı	1	ı	•	•	•	ı	ı	JI.	1
X	164	164	164	164	164	164	164	164	164	164	164	164
Y	84	84	84	85	86	87	89	89	89	90	90	91
	1	1	1	1	1	1	1	1	1	1	1	1
X	164	164	165	165	165	165	165	165	165	165	165	165
Y	91	97	84	85	87	87	87	87	88	90	91	91
	1			1								1
X	165	165	165	165	165	166	166	166	166	166	166	166
Y	93	94	94	94	94	82	84	84	84	87	88	89
	1	ı	ı	1	ı	•	•	•	ı	ı	JI.	1
X	166	167	167	167	167	167	167	167	167	167	167	167
Y	89	81	85	85	85	86	88	88	89	89	89	90
	1	ı	ı	1	ı	•	•	•	ı	ı	JI.	1
X	167	167	167	168	168	168	168	168	168	168	168	168
Y	91	91	92	81	82	83	87	88	88	90	92	93
		•	•		•				•	•	•	
X	168	169	169	169	169	169	169	169	169	169	169	169
Y	93	79	83	87	87	87	88	88	89	91	91	91
		•	•		•		•		•	•		
X	169	169	169	169	170	170	170	170	170	170	170	170
Y	91	91	92	92	81	86	88	88	90	90	90	90
	1	1	1	1	1	1	1	1	1	1	1	1
X	170	170	170	170	170	170	170	171	171	171	171	171
Y	91	91	91	92	93	95	96	83	85	89	89	90
									1	1		

Продолжение табл. 2.

X	171	171	171	171	171	171	172	172	172	172	172	172
Y	91	91	91	92	94	97	82	87	88	89	90	91
X	172	172	172	172	172	172	173	173	173	173	173	173
Y	91	94	96	98	99	99	84	87	89	89	90	90
X	173	173	173	174	174	174	174	174	174	175	175	175
Y	90	91	96	86	88	90	91	96	97	85	89	90
X	175	175	175	176	176	176	176	176	176	176	176	176
Y	90	91	95	82	86	87	88	90	92	93	93	93
X	176	177	178	178	178	178	179	179	179	180	180	180
Y	95	87	89	90	90	91	85	85	99	85	90	98
X	181	181	182	183	184	185	186	187	190			
Y	89	92	90	90	98	91	92	86	105			

3. Типовой пример, проверка статистической гипотезы

Составим таблицу, в которой отразим частоты n_i появления случайных величин X_i (n_i — столько раз данный X_i появляется в выборке), и относительные частоты p_i = n_i /N (Напомним N — объём выборки, в нашем случае N=200).

Таблица 3. Дискретный вариационный ряд

i	1	2	3	4	5	6	7	8	9	10	11	12
X_i	148	155	156	157	158	159	160	161	162	163	164	165
n _i	1	1	2	2	1	3	3	6	6	9	15	15
p _i	$\frac{1}{200}$	$\frac{1}{200}$	$\frac{2}{200}$	$\frac{2}{200}$	$\frac{1}{200}$	$\frac{3}{200}$	$\frac{3}{200}$	$\frac{6}{200}$	$\frac{6}{200}$	$\frac{9}{200}$	$\frac{15}{200}$	$\frac{15}{200}$
i	13	14	15	16	17	18	19	20	21	22	23	24
X_i	166	167	168	169	170	171	172	173	174	175	176	177
n _i	8	14	10	15	15	11	12	9	6	6	10	1
pi	$\frac{8}{200}$	$\frac{14}{200}$	$\frac{10}{200}$	$\frac{15}{200}$	$\frac{15}{200}$	$\frac{11}{200}$	$\frac{12}{200}$	$\frac{9}{200}$	$\frac{6}{200}$	$\frac{6}{200}$	$\frac{10}{200}$	$\frac{1}{200}$

i	25	26	27	28	29	30	31	32	33	34	35
Xi	178	179	180	181	182	183	184	185	186	187	190
n _i	4	3	3	2	1	1	1	1	1	1	1
p _i	$\frac{4}{200}$	$\frac{3}{200}$	$\frac{3}{200}$	$\frac{2}{200}$	$\frac{1}{200}$						

Обратите внимание, что индекс і, ранее изменявшийся от 1 до 200, теперь изменяется от 1 до 35, так как в нашей выборке нашлось только 35 разных значений Х. В данном примере случайные величины Х находятся в интервале [148;190] включая границы. Число возможных значений (35) достаточно велико. Их нельзя представить в виде случайных величин, принимающих отдельные, изолированные значения, тем самым отделить возможное значение от другого промежутком, не содержащим случайной величины. T.e., значений например, утверждать, что между 183 и 184 нет промежуточных значений, нужно понимать, что шаг определён лишь точностью наших измерений, например, наличием делений у портновского метра. Поэтому для построения вариационного ряда будем использовать интервальный (а не точечный, т.е. дискретный) ряд распределения. Весь возможный интервал варьирования разобьём на конечное число интервалов и подсчитаем частоту попадания значений величины в каждый интервал. Минимальное и максимальное значения случайной величины: $x_{\min} = 148, x_{\max} = 190$ Тогда интервал варьирования R («размах») будет равен $R = x_{\text{max}} - x_{\text{min}} = 42$. Длину интервала рассчитывают по формуле (появление lg и множителя 3,28 выходит за рамки курса):

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{1 + 3.28 \lg N} \,. \tag{1}$$

При этом значение признака, находящегося на границе интервалов относят к правой границе интервала, т.е., если некоторый X оказался точно на границе интервалов, то его отнесут к интервалу, у которого он является правой границей, например, X=154 отнесут ко второму интервалу (151,154] (см. табл. 4).

На практике считают, что правильно составленный ряд распределения содержит от 6 до 15 интервалов. Часто интервальный вариационный ряд заменяют дискретным вариационным рядом, выбирая средние значения интервала (см. табл. 6), как бы принимая все попавшие в интервал значения равными середине интервала).

Для данного примера
$$h = \frac{190-148}{1+3,28*\ln 200} = 2,285$$
, округлим до 3, т.е.

размер интервала h=3, а число интервалов будет равно 14. Действительно, 14-ю интервалами по 3 мы покроем 42 единицы, что не меньше нашего R=42. Контрольный вопрос: «Можно ли взять 13 интервалов?» можно было бы взять число интервалов 15, тогда границы всех интервалов сдвинулись бы на h/2=1,5 влево и появился бы 15-й интервал (190-1,5;190+1,5]. Соответствующий интервальный вариационный ряд для 14 интервалов приведён в табл. 4.

Номер интервала	Число	Частота	Относительная
i	покупателей	n_i	частота
	(интервалы)	· ·	$n^* - \frac{n_i}{n}$
	$\chi_i < X \leq \chi_{i+1}$		$p_i^* = \frac{n_i}{N}$
1	148-151	1	1/200
2	151-154	0	0
3	154-157	5	5/200
4	157-160	7	7/200
5	160-163	21	21/200
6	163-166	38	38/200
7	166-169	39	39/200
8	169-172	38	
9	172-175	21	38/200
10	175-178	15	21/200
11	178-181	8	15/200
12	181-184	3	8/200
13	184-187	3	3/200
14	187-190	1	3/200

Таблица4. Интервальный вариационный ряд

Контрольные суммы (промежуточный контроль вычислений) $\sum n_i = 200$, $\sum p_i = \frac{200}{200} = 1$.

После составления вариационного ряда необходимо построить функцию распределения выборки или эмпирическую функцию $F^*(x) = \frac{n_x}{N}$, то есть функцию найденную опытным путём. Здесь \mathbf{n}_x – относительная частота события $\mathbf{X} < \mathbf{x}$, \mathbf{N} - общее число значений.

Эмпирическое распределение можно изобразить в виде полигона, гистограммы или ступенчатой кривой.

Построим выборочную функцию распределения. Очевидно, что для $x \in (-\infty,148]$ функция $F^*(x)=0$, так как $\mathbf{n}_x=0$. На концах интервалов значения функции $F^*(x)$ рассчитаем в виде «нарастающей относительной частоты». Результаты приведены в табл. 5.

При графическом изображении её доопределяют, соединив точки графика, соответствующие концам интервала, отрезками прямой ($puc.\ 1$).

Полученные данные, представленные в виде вариационного ряда, изобразим графически в виде ломаной линии (полигона), связывающей на плоскости точки с координатами $(X_i; p_i^*)$, где X_i - среднее значение интервала

 $x_i < X \le x_{i+1}$, т.е. $X_i = \frac{x_i + x_{i+1}}{2}$ а p_i^* - относительная частота (табл. 6 и puc. 2). На этом же рисунке позже отобразим пунктирной линией выравнивающие (теоретические) частоты, о расчёте которых будет сказано ниже, после предположения о законе распределения.

Таблица5. Расчёт эмпирической функции распределения

Индекс интервала	$F^*(x)$
i	1 (**)
1	1/200
2	1/200+0=1/200
3	1/200+5/200=6/200
4	6/200+7/200=13/200
5	13/200+21/200=34/200
6	34/200+38/200=72/200
7	72/200+39/200=111/200
8	111/200+38/200=149/200
9	149/200+21/200=170/200
10	170/200+15/200=185/200
11	185/200+8/200=193/200
12	193/200+3/200=196/200
13	196/200+3/200=199/200
14	199/200+1/200=200/200

На основании полученных выборочных данных необходимо сделать предположение, что изучаемая величина распределена по некоторому определённому закону. Для того чтобы проверить, согласуется ли это предположение с данными наблюдений, вычисляют частоты полученных в наблюдениях значений, т.е. находят теоретически сколько раз величина X должна была принять каждое из наблюдавшихся значений, если она

10

распределена по предполагаемому закону. Для этого находят выравнивающие (теоретические) частоты по формуле: $n'_i = Np_i$,

где N – число испытаний,

 p_i - вероятность наблюдаемого значения x_i , вычисленная при допущении, что X имеет предполагаемое распределение.

Таблицаб. Дискретный вариационный ряд

Номер	Среднее значение	Относительная	Выборочная
интервал	интервала	частота	оценка плотности
a	X_i	p_i^*	вероятности
i	,		n_i
			$h \cdot N$
1	149,5	0,005	0,002
2	152,5	0	0
3	155,5	0,025	0,008
4	158,5	0,035	0,012
5	161,5	0,105	0,035
6	164,5	0,19	0,063
7	167,5	0,195	0,065
8	170,5	0,19	0,063
9	173,5	0,105	0,035
10	176,5	0,075	0,025
11	179,5	0,04	0,013
12	182,5	0,015	0,005
13	185,5	0,015	0,005
14	188,5	0,005	0,002

Рис. 1. Эмпирическая функция распределения

Эмпирические (полученные из таблицы, сплошная линия на *puc. 2*) и полученные позже выравнивающие частоты сравнивают, и при небольшом расхождении данных делают заключение о выбранном законе распределения.

Мы предположим, что случайная величина X распределена нормально (в случае, когда на случайную величину влияют многие различные причины, действие некоторых из них мы часто не в состоянии описать, это наиболее часто встречающееся распределение). В этом случае выравнивающие частоты находят по формуле: $n_i' = \frac{Nh}{\sigma_B} \varphi(u_i)$, где N-число испытаний, h-длина частичного

интервала, x_B , σ_B -выборочное среднее и выборочное среднее квадратичное отклонение соответственно, $u_i = \frac{x_i - \overline{x}_B}{\sigma_B}$ (x_i - середина i – го частичного

интервала),
$$\varphi(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} - функция Лапласа.$$

Результаты вычислений отобразим в табл. 7.

Сравнение графиков (*puc. 2*) наглядно показывает близость выравнивающих частот к наблюдавшимся и подтверждает правильность допущения о том, что обследуемый признак распределён нормально. Напомним, что теоретические частоты будут рассчитаны ниже.

Рис. 2. Эмпирические и теоретические частоты

Интервальный вариационный ряд графически изобразим в виде гистограммы (рис. 3). На оси X отложим интервалы длиной h=3, а на оси Y значения $\frac{n_i}{h\cdot N}$, расчёт которых представлен в табл. 6. Площадь под гистограммой равна сумме всех относительных частот, т.е. единице.

Графическое изображение вариационных рядов в виде полигона и гистограммы позволяет получать первоначальное представление о закономерностях, имеющих место в совокупности наблюдений.

Найдём числовые характеристики вариационного ряда, используя табл. 4.

Выборочная средняя
$$(\overline{x}_B)$$
: $\overline{x}_B = \frac{x_1 + x_2 + \dots + x_k}{N}$ или $\overline{x}_B = \sum_{i=1}^k \frac{n_i x_i}{N} = 168,55$,

где n_1, n_2, n_3, \ldots - частоты, а $n_1 + n_2 + \ldots + n_k = N$ -объём выборки. Выборочная средняя является оценкой математического ожидания (среднего значения теоретического закона распределения).

Выборочная дисперсия
$$(d_B)$$
: $d_B = \sum_{i=1}^k \frac{n_i(x_i - \overline{x}_B)^2}{N} = \sum_{i=1}^{14} \frac{n_i x_i^2}{N} - \overline{x}_B^{-2}$;

$$d_B = (1*441+0*324+...+1*324)-1,95^2=40,21.$$

Среднеквадратическое отклонение: $\overline{\sigma}_{\scriptscriptstyle B} = \sqrt{d_{\scriptscriptstyle g}}$, $\overline{\sigma}_{\scriptscriptstyle B} = \sqrt{40,21} = 6.34$.

Рис. 3. Гистограмма интегрального вариационного ряда

Найдем несмещённую оценку дисперсии и среднеквадратического отклонения («исправленную» выборочную дисперсию и среднеквадратическое отклонение) по формулам: $S^2 = \frac{N}{N-1} d_B$ и

$$S = \sqrt{\frac{N}{N-1}} \, \overline{\sigma}_B$$
 ;
$$S^2 = \frac{200}{199} \cdot 40,21 = 40.41 \text{ и } S = \sqrt{\frac{200}{199}} \cdot 6.34 = 6.36 \,.$$

Доверительный интервал для оценки математического ожидания с надёжностью $\gamma = 0.95$ определяют по формуле:

$$P(\overline{x}_B - t \frac{\overline{\sigma}_B}{\sqrt{N}} < a < \overline{x}_B + t \frac{\overline{\sigma}_B}{\sqrt{N}}) = 2\Phi(t) \setminus = \gamma$$
.

Из соотношения $\Phi(t) = \gamma/2$ вычисляют значение функции Лапласа: $\Phi(t) = 0,475$. По таблице значений функции Лапласа находят t = 1,96. Таким образом,

$$168,55-1,96\frac{6,34}{\sqrt{200}} < a < 168,5+1,96\frac{6,34}{\sqrt{200}},$$

167,67<*a*<169,43.

Доверительный интервал для оценки среднего квадратичного отклонения случайной величины находят по формуле:

$$\frac{S}{1+q} < \sigma_x < \frac{S}{1-q},$$

где S — несмещённое значение выборочного среднего квадратичного отклонения;

q — параметр, который находится по таблице (приложение Б) на основе известного объёма выборки n и заданной надёжности оценки γ .

На основании данных значений γ =0,95 и N=200 по таблице можно найти значение q=0,099. Таким образом,

$$\frac{6,34}{1+0,099} < \sigma_x < \frac{6,34}{1-0,099}, 5.79 < \sigma_x < 7,06$$

Проведём статистическую проверку гипотезы о нормальном распределении. Примем основную (нулевую) гипотезу H_0 : наши данные распределены по нормальному закону, альтернативная гипотеза H_1 — наши данные распределены по иному, не нормальному, закону. По выборочным данным (таблицы 5 и 7) полученные оценки параметров нормального распределения, вычисленные выше:

$$\overline{x}_B = 168,55, \ \overline{d}_B = 40,21, \ S^2 = \frac{N}{N-1} \overline{d}_B = 40,41, \ S = 6,36.$$

Теперь мы получили ранее обещанные выравнивающие (теоретические) частоты для рис 2. Правда, теоретическими их можно назвать с некоторой натяжкой, т.к. они получены в «точечном» представлении нашего ряда. Ниже мы проведём более строгий анализ. Графическое изображение вариационных рядов в виде полигона и гистограммы позволяет получать первоначальное представление о закономерностях, имеющих место в совокупности наблюдений.

Теперь проведём более строгую проверку нашей основной гипотезы. Для расчёта теоретических частот p_i^m используют табличные значения функции

Лапласа $\Phi(z)$ приведённой в приложении 1. Алгоритм вычисления p_i^m состоит в следующем:

по нормированным значениям случайной величины Z находят значения $\Phi(z)$, а затем $F_N(x_i')$:

$$z_i = \frac{X_i - \overline{x}_B}{S}, F_N(x_i') = 0.5 + \Phi(z_i).$$

Например,
$$X_1=149.5$$
 ; $z_1=\frac{149.5-168.55}{6.36}=-3.0$; \varPhi (-3.0)=-0.4987; $F_N(149.5)=0.0013$.

Т а б л и ц а 7. Расчёт выравнивающих частот (с округлением n'_i , $p_i^* = \frac{n'_i}{N}$)

X_i	$x_i - \overline{x}_B$	$u_i = \frac{x_i - \overline{x}_B}{\sigma_B}$	$\varphi(u_i)$	$n_i' = \frac{nh}{\sigma_B} \varphi(u_i)$	n'_i	$p_i^{*'}$
149,5	-19,5	-3	0,004	0,42	1	0,05
152,5	-16,5	-2,53	0,02	1,55	2	0,01
155,5	-13,5	-2,06	0,048	4,54	5	0,025
158,5	-10,5	-1,59	0,11	10,68	11	0,055
161,5	-7,05	-1,11	0,22	20,37	20	0,1
164,5	-4,05	-0,64	0,33	31,0	31	0,155
167,5	-1,05	-0,17	0,396	37,48	37	0,185
170,5	1,95	0,31	0,38	36,0	36	0,18
173,5	4,95	0,78	0,3	28,0	28	0,14
176,5	7,95	1,25	0,18	17,34	17	0,085
179,5	10,95	1,73	0,09	8,44	8	0,04
182,5	13,95	2,2	0,04	3,37	3	0,015
185,5	16,95	2,67	0,011	1,06	1	0,005
188,5	19,95	3,15	0,003	0,26	0	0

$$\sum n_i' = 200;$$

$$P_i^m = P(z_i \le X < z_{i+1}) = F_N(x_{i+1}) - F_N(x_i);$$

Т а б л и ц а 8. **Определение** χ_r^2

i	$x_i \div x_{i+1}$	n_i	$\Phi(z_i)$	$F_N(x_i)$	$F_N(x_{i+1})$	p_i^m	$n_i^m = p_i^m n$	$\frac{(n_i - n_i^m)^2}{n_i^m}$
0	$-\infty \div 149,5$	0	-0,500	0,000	0,0013	0,0013	0,26	-
1	$149,5 \div 152,5$	1	-0,449	0,0013	0,0059	0,0046	0,92	-
2	$152,5 \div 155,5$	0	-0,494	0,0059	0,02	0,014	2,8	-
3	$155,5 \div 158,5$	5	-0,48	0,02	0,057	0,037	7,4	2,54
4	$158,5 \div 161,5$	7	-0,44	0,057	0,134	0,077	15,4	4,58
5	161,5÷164,5	21	-0,37	0,134	0,26	0,126	25,2	0,7

⁻ далее вычисляют вероятности попадания случайного числа в интервал с помощью (интегральной) функции распределения (напомним, что слово «интегральная» может быть опущено).

i	$x_i \div x_{i+1}$	n_i	$\Phi^{(z_i)}$	$F_N(x_i)$	$F_N(x_{i+1})$	p_i^m	$n_i^m =$	$(n_i - n_i^m)^2$
							$p_i^m n$	n_i^m
6	164,5÷167,5	38	-0,24	0,26	0,433	0,1725	34,5	0,36
7	$167,5 \div 170,5$	39	-0,07	0,433	0,62	0,188	37,6	0,06
8	$170,5 \div 173,5$	38	0,12	0,62	0,78	0,16	32	1,125
9	173,5÷176,5	21	0,28	0,78	0,89	0,11	22	0,045
10	176,5÷179,5	15	0,39	0,89	0,96	0,07	14	0,071
11	179,5÷182,5	8	0,46	0,96	0,99	0,03	6	6,125
12	182,5÷185,5	3	0,49	0,99	0,996	0,006	1,2	•
13	185,5÷188,5	3	0,496	0,996	0,999	0,003	0,6	•
14	188,5÷∞	1	0,5	0,999	1,0	0,001	0,2	-
		200				$\sum = 1$	200	$\Sigma = 15,61$

находят числа $n_i^m = p_i^m N$, и если некоторое $n_i^m < 5$, то соответствующие группы объединяются с соседними.

Результаты вычисления p_i^m , n_i^m , и χ_r^2 приведены в табл. 8.

Выберем уровень значимости α =0,05. Чем больше уровень значимости, тем строже критерий. По таблице приложения 3 можно найти число $\chi^2_{\kappa p}$ («кр – критическое», т.е предельно допустимое для принятия основной гипотезы) для уровня значимости α =0,05 и числа степеней свободы l=k-3=14-3=11 (напомним, k=14 — число интервалов, см. табл. 6) находим $\chi^2_{\kappa p}$ =19,7. Следовательно, критическая область - (19,7; ∞). Величина χ^2_r =15,61 не входит в критическую область (т.е. $\chi^2_r < \chi^2_{\kappa p}$), поэтому гипотеза о том, что случайная величина X подчинена нормальному закону распределения, не отвергается. Строго формулируя, «нет оснований отвергнуть основную гипотезу».

Индекс «г» означает сокращение от английского real, в нашей литературе часто вместо него пишут «набл.», т.е. реально наблюдаемое значение критерия.

При больших уровнях значимости гипотеза могла бы быть отвергнута из-за «чрезмерной?» строгости критерия. Посмотрите приложение 3, $\chi^2_{\kappa p}$ падает с ростом α .

Обычно выбирают α =0,01...0,05

4. Типовой пример, линейная регрессия

Часть 2

- 1) Данные таблицы 3 сгруппируем в корреляционную табл. 9.
- 2) Строим в системе координат множество, состоящее из 200 экспериментальных точек (рис. 4).

По расположению точек делаем заключение о том, что экономикоматематическую модель можно искать в виде y = kx + b.

3) Найдём выборочные уравнения линейной регрессии. Для упрощения расчётов разобьём случайные величины Y на интервалы и выберем средние значения. Для величины X указанные действия были выполнены в 1-й части задания.

Таблица 9. Корреляционная таблица

X/Y			99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	n_{x_i}
	105	100																						λ_{i}
148															1									1
155																1								1
156														1			1							2
157												1								1				2
158											1													1
159																1			1		1			3
160															1		1		1					3
161											1			1				2		1			1	6
162		1						1		1		1	1									1		6
163									1		2		1	3								1		9
164					1						2	2	3		1	1	1	3	2					15
165								4	1		2			1	4		1	1						15
166													2	1	1			3		1				8
167										1	2	1	3	2		1	3				1			14
168									2	1		1		2	1				1	1	1			10
169										2	5		1	2	3				1				1	15
170						1	1		1	1	3	4		2		1					1			15
171					1			1		1	3	1	2				1		1					11
172			2	1		1		1			2	1	1	1	1					1				12
173						1					1	3	2		1			1						9
174					1	1					1	1		1		1								6
175							1				1	2	1				1							6
176							1		3	1		1		1	1	1				1				10
177															1									1

X/Y	05	00	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	n_{x_i}
	10	10																						
178											1	2	1											4
179			1														2							3
180				1								1					1							3
181										1			1											2
182												1												1
183												1												1
184				1																				1
185											1													1
186										1						1								1
187																								1
190	1																							1
n_{y_i}	1		3	3	3	4	3	7	8	11	28	24	19	18	17	7	12	10	7	6	4	2	2	200

Для случайной величины Y, используя (1), получим h=2, число интервалов равно 13. Результаты внесём в таблицу 10 со сгруппированными данными. Находим средние значения $\bar{x}, \bar{y}, \overline{x^2}, \overline{y^2}, \overline{xy}$, по формулам:

$$\overline{x} = \frac{1}{N} \sum x_i, \ \overline{y} = \frac{1}{N} \sum y_i, \ \overline{x^2} = \frac{1}{N} \sum x_i^2, \ \overline{y^2} = \frac{1}{N} \sum y_i^2, \ \overline{xy} = \frac{1}{N} \sum x_i y_i;$$

$$\overline{y} = \frac{1}{200} (80 * 8 + 82 * 13 + ... + 100 * 1 + 104 * 1) = 88.53;$$

$$\overline{x^2} = \frac{1}{200} (149.5^2 * 1 + ... + 185.5^2 * 3 + 188.5^2 * 1) = 28449.31$$

Рис. 4 Экспериментальные точки

Таблица 10. Сгруппированные данные выборки

No		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	Y/X	149,5	152,5	155,5	158,5	161,5	164,5	167,517	170,5	173,5	176,5	179,5	182,5	185,5	5,881	n_{y_j}
1	80				1	3		3	1							8
2	82			1	2	1	3	3	2		1					13
3	84			1	1	2	9	3	1	2		3				22
4	86	1		1	2		7	5	1	1	3			1		24
5	88			1		6	7	10	6	4	2	1				37
6	90			1	1	4	6	9	14	9	4	1	2	1		52
7	92					3	1	6	3		4	1		1		19
8	94					1	4		3	1	1					10
9	96						1		3	3						7
10	98								3			2	1			6
11	100					1										1
12	102															
13	104														1	1
	n_{x_i}	1		5	7	21	38	39	38	21	15	8	3	3	1	200

$$\overline{y^2} = \frac{1}{200}(80^2*8+82^2*13+...+104^2*1) = 7856.02;$$

$$\overline{xy} = \frac{1}{N} \sum_{i=1}^{14} \sum_{j=1}^{13} n_{ij} x_i y_j = \frac{1}{200}(148*87*1+155*86*1+...+190*105*1) = \frac{2986101}{200} = 1493051.$$
Используя формулы: $\sigma_{xB} = \sqrt{\overline{x}^2 - (\overline{x})^2}$, $\sigma_{yB} = \sqrt{\overline{y}^2 - (\overline{y})^2}$, получим
$$\sigma_{xB} = \sqrt{28449.31 - 168.55^2} = 6.34, \sigma_{yB} = \sqrt{7856.02 - 88.53^2} = 4.297.$$

4) Вычисляем выборочный коэффициент корреляции r_{B} по формуле

$$r_{B} = \frac{\sum_{i=1}^{k_{1}} \sum_{j=1}^{k_{2}} n_{ij} x_{i} y_{j} - \overline{x} N \overline{y}}{N \sigma_{xB} \sigma_{yB}}, \quad r_{B} = \frac{2986101 - 200 \cdot 168, 5 \cdot 88, 53}{200 \cdot 6,34 \cdot 4,3} = 0,32.$$

Принято считать, что если $0,1<\mid r_B\mid <0,3$ — связь слабая, если $0,3<\mid r_B\mid <0,5$ — связь умеренная, если $0,5<\mid r_B\mid <0,7$ — связь заметная, если $0,7<\mid r_B\mid <0,9$ — связь высокая (тесная), если $0,9<\mid r_B\mid <0,99$ — связь весьма высокая (весьма тесная). $\mid r_B=1\mid$ — существует линейная функциональная зависимость, одна величина есть линейная функция другой. Если при этом $r_B>0$, то с увеличением X растёт и Y, $r_B<0$ — с ростом X - Y уменьшается.

Для данного примера связь между X и Y умеренная, с ростом X Y «немного» растёт.

Составим выборочное уравнение линейной регрессии Y на X в виде

$$\overline{y}_x - \overline{y} = \frac{\sigma_{yB}}{\sigma_{xB}} r_B (x - \overline{x})$$
 и выборочное уравнение линейной регрессии *X* на *Y*;

$$\overline{x}_y - \overline{x} = \frac{\sigma_{xB}}{\sigma_{vB}} r_B (y - \overline{y}), \ \overline{x}_y - 168,55 = \frac{6,34 \cdot 0,32}{4,3} (y - 88,53)$$
 или

$$\overline{x}_y = 0.47 \, y + 126,78 \,, \quad \overline{y}_x - 88,53 = \frac{4,3 \cdot 0,32}{6,34} (x - 168,55)$$
 или

$$\bar{y}_x = 0.22x + 51.95$$
.

Обратите внимание, что из уравнения регрессии Y на X нельзя получить уравнение регрессии X на Y просто выразив X через Y.

Вычисления рекомендуем проводить с помощью пакетов прикладных математических программ (например, Excel).

5. Образцы заданий

Задание 1

Отдел маркетинга крупной швейной фабрики провёл анкетирование 500 человек (женщин) по вопросу роста (X) см и веса (Y) кг. В результате была выявлена следующая зависимость (таблица 11).

Таблица 11. Зависимость роста и веса

N	1	2	3	4	5		6	7		8	9)	10	11	12
	<u> </u>										É				
X	168	169	156	171	17	5	159) [6	57	169	l	70	156	168	169
Y	73	68	56	75	66		60	60	$) \mid ($	58	6	8	54	62	56
N	13	14	15	16	17	18		19	20	21		22	23	24	25
X	164	171	174	176	170	17	3	171	196	153	5	174	176	176	172
Y	66	66	64	81	61	69	(62	60	61		66	75	60	70
N	26	27	28	29	30	31		32	33	34		35	36	37	38
X	172	163	187	172	161	17	6	164	166	168	8	162	163	172	175
Y	67	59	84	70	60	70	(60	63	55		55	65	65	64
N	39	40	41	42	43	44		45	46	47		48	49	50	51
X	156	164	167	177	183	16	3	172	172	172	2	173	163	166	178
Y	54	70	63	67	73	63	(69	60	63		67	66	57	69

Продолжение табл. 11.

N	52	53	54	55	56	57	58	59	60	61	62	63	64
X	169	171	165	175	171	186	165	164	163	173	173	177	173
Y	75	60	63	80	67	71	64	60	67	69	66	72	75
		l	I	l	I	I	l	l	I	I	l	l	
N	65	66	67	68	69	70	71	72	73	74	75	76	77
X	156	172	160	176	171	169	163	163	172	178	166	164	171
Y	53	59	62	71	66	75	63	72	74	73	57	59	69
N	78	79	80	81	82	83	84	85	86	87	88	89	90
X	163	163	182	163	169	164	164	170	176	163	179	176	182
Y	63	58	76	58	67	70	62	67	65	57	80	67	66
N	91	92	93	94	95	96	97	98	99	100	101	102	103
X	169	159	169	165	165	167	173	170	170	169	164	177	173
Y	73	68	62	61	62	64	69	61	61	68	59	68	64
N	104	105	106	107	108	109	110	111	112	113	114	115	116
X	166	161	162	190	167	160	165	156	157	174	168	176	170
Y	63	66	66	80	59	62	76	59	60	69	58	72	65
N	117	118	119	120	121	122	123	124	125	126	127	128	129
X	173	168	164	164	172	173	173	165	167	173	184	163	179
Y	69	61	57	56	63	64	78	60	59	72	68	58	69
		ı	ı	ı	T	ı	ı	ı	1	T	ı	ı	1
N	130	131	132	133	134	135	136	137	138	139	140	141	142
X	161	162	158	171	177	164	166	171	174	170	174	169	174
Y	66	55	57	57	60	53	62	62	73	61	73	62	70
	1	T	Т	T	Т	П	T	T	T	T	T	T	
N	143	144	145	146	147	148	149	150	151	152	153	154	155
X	169	175	167	172	168	163	168	161	173	164	167	164	173
Y	71	67	63	64	63	65	67	56	66	62	68	63	70
	1	T	T	T	T	T	T	T	1	T	T	T	
N	156	157	158	159	160	161	162	163	164	165	166	167	168
X	176	172	167	173	161	171	169	161	170	174	168	164	170
Y	65	67	70	77	51	76	62	52	61	68	63	64	66
	1	T	Т	T	Т	П	T	T	T	T	T	T	
N	169	170	171	172	173	174	175	176	177	178	179	180	181
X	164	162	166	172	169	169	163	178	166	168	168	180	163
Y	60	60	62	67	64	57	65	80	55	59	64	69	60

Продолжение табл. 11.

	1												
N	182	183	184	185	186	187	188	189	190	191	192	193	194
X	165	163	158	171	175	170	165	184	169	167	167	179	165
Y	62	64	61	69	74	69	69	72	67	61	65	69	59
N	195	196	197	198	199	200	201	202	203	204	205	206	207
X	173	161	166	164	159	175	169	172	172	167	160	156	161
Y	69	60	67	59	55	67	68	73	64	64	59	52	61
N	208	209	210	211	212	213	214	215	216	217	218	219	220
X	174	167	174	167	168	168	167	167	171	168	162	174	173
Y	79	61	66	56	50	58	59	68	72	66	64	67	68
N	221	222	223	224	225	226	227	228	229	230	231	232	233
X	173	165	167	172	176	174	171	169	161	173	170	176	171
Y	71	68	62	66	72	74	70	62	56	69	74	70	65
N	234	235	236	237	238	239	240	241	242	243	244	245	246
X	166	167	156	167	166	167	173	169	176	168	163	169	164
Y	51	66	58	55	62	60	63	74	62	65	68	55	61
			•	•	•	•		•	•	•	•	•	
N	247	248	249	250	251	252	253	254	255	256	257	258	259
X	164	170	172	166	163	164	166	175	162	164	164	164	167
Y	60	63	72	57	65	56	62	64	60	61	65	66	64
N	260	261	262	263	264	265	266	267	268	269	270	271	272
X	170	161	174	165	171	166	172	170	180	164	184	168	172
Y	58	57	74	69	60	67	64	61	73	61	84	68	68
	•	•	•	•	•	•	•	•	•	•	•	•	
N	273	274	275	276	277	278	279	280	281	282	283	284	285
X	165	176	171	169	171	170	164	167	164	165	162	164	178
Y	63	70	67	70	63	60	57	65	62	60	53	61	80
	•	•	•	•	•	•	•	•	•	•	•	•	
N	286	287	288	289	290	291	292	293	294	295	296	297	298
X	159	171	169	169	178	180	167	164	170	165	181	170	173
Y	55	65	63	70	75	65	57	60	61	60	68	75	66
						•		•	•		•	•	
N	299	300	301	302	303	304	305	306	307	308	309	310	311
X	182	166	163	165	180	162	171	171	161	167	167	169	178
Y	75	67	58	57	75	54	73	72	59	59	61	64	72
<u> </u>	<u> </u>	L			L								

Продолжение табл. 11.

N	312	313	314	315	316	317	318	319	320	321	322	323	324
X	164	171	168	177	161	172	154	170	167	162	168	168	173
Y	65	70	54	78	55	73	52	65	55	52	64	62	63
	•	•				•	•	•	•				
N	325	326	327	328	329	330	331	332	333	334	335	336	337
X	162	165	171	161	159	163	163	170	173	173	170	168	169
Y	65	57	64	62	54	63	61	76	65	69	66	67	64
N	338	339	340	341	342	343	344	345	346	347	348	349	350
X	175	161	171	171	169	170	171	166	171	169	177	158	167
Y	59	52	64	66	66	70	63	78	67	69	70	56	71
N	351	352	353	354	355	356	357	358	359	360	361	362	363
X	166	176	163	161	168	172	156	166	165	165	166	167	167
Y	63	65	63	51	60	78	54	61	72	56	55	63	63
N	364	365	366	367	368	369	370	371	372	373	374	375	376
X	171	165	160	157	165	166	157	165	165	160	166	168	186
Y	60	61	50	53	66	60	56	59	63	61	62	70	72
N	377	378	379	380	381	382	383	384	385	386	387	388	389
X	171	170	170	167	169	168	162	178	176	161	171	159	168
Y	65	73	65	65	61	64	56	66	78	56	70	57	70
	1	1	1	1	1	1	1	1	1	1	1	1	
N	390	391	392	393	394	395	396	397	398	399	400	401	402
X	167	178	169	163	169	170	187	174	162	165	164	173	162
Y	67	62	62	68	66	68	63	66	57	63	60	77	58
	1	1	1	1	1	1	1	1	1	1	1	1	
N	403	404	405	406	407	408	409	410	411	412	413	414	415
X	179	162	166	176	175	155	161	188	165	165	164	171	169
Y	63	65	63	70	77	51	64	75	61	67	59	64	59
	1	1	1	1	1	1	1	1	1	1	1	1	
N	416	417	418	419	420	421	422	423	424	425	426	427	428
X	171	163	171	172	165	170	173	169	169	167	162	170	175
Y	62	64	65	67	60	63	66	67	58	64	58	63	75
	1	1	ı	ı	ı	1	1	1	1	ı	ı	ı	,
N	429	430	431	432	433	434	435	436	437	438	439	440	441
X	175	170	168	185	166	161	176	179	167	163	167	179	180
Y	69	65	55	82	58	63	67	71	63	54	57	78	76

N	442	443	444	445	446	447	448	449	450	451	452	453	454
X	166	171	163	180	179	176	164	168	174	170	162	157	157
Y	57	59	60	84	77	77	60	63	75	65	61	60	59
N	455	456	457	458	459	460	461	462	463	464	465	466	467
X	177	161	148	168	176	166	169	168	176	167	159	164	181
Y	72	55	48	66	70	71	62	67	70	75	48	53	77
													<u> </u>
N	468	469	470	471	472	473	474	475	476	477	478	479	480
X	165	171	159	174	160	169	167	170	161	174	178	168	168
Y	61	66	61	70	57	65	63	65	58	74	71	71	67
N	481	482	483	484	485	486	487	488	489	490	491	492	493
X	165	173	166	175	158	174	178	170	167	168	161	161	166
Y	55	65	55	78	57	65	60	62	61	70	66	60	64
N	494	495	496	497	7 49	8 49	9 50	00					
X	169	164	181	165	5 17	1 16	9 10	68					

Выберите из указанных 500 значений 100 в соответствии с указаниями преподавателя (например, каждое 5-е или 1,6,11,....496).

61

65

65

Выполните задание 1-й и 2-й частей (см. типовой пример) и дайте интерпретацию полученных результатов.

Задание 2

68

66

69

68

Получены статистические данные зависимости результатов измерения роста студентов (X) от окружности груди (Y). Измерения проводились с точностью до 1 см. В результате была выявлена следующая зависимость (табл. 12).

Таблица 12. Зависимость роста и окружности груди

N	1	2	3	4	5	6	7	8	9	10	11	12
X	168	169	156	171	175	159	167	169	170	156	168	169
Y	90	91	81	89	96	90	88	97	90	84	85	79
												_
N	13	14	15	16	17	18	19	20	21	22	23	24
X	164	171	174	176	170	173	171	169	155	174	176	160
Y	89	86	89	94	85	95	89	83	86	90	89	88

Продолжение табл. 12.

N	25	26	27	28	29	30	31	32	33	34	35	36
X	172	172	163	187	172	161	176	164	166	168	162	163
Y	88	91	89	99	90	85	88	84	82	82	82	89
					1							
N	37	38	39	40	41	42	43	44	45	46	47	48
X	172	175	156	164	167	177	183	163	172	172	172	173
Y	90	88	82	92	89	93	90	91	99	85	89	96
		1	1	1	1		1	1		1		
N	49	50	51	52	53	54	55	56	57	58	59	60
X	163	166	178	169	171	165	175	171	186	165	164	163
Y	86	86	89	91	80	93	95	97	92	93	89	91
						ı			ı		ı	
N	61	62	63	64	65	66	67	68	69	70	71	72
X	173	173	177	173	156	172	160	176	171	169	163	163
Y	89	84	92	90	88	82	87	87	83	88	88	94
N	73	74	75	76	77	78	79	80	81	82	83	84
X	172	178	166	164	171	163	163	182	163	169	164	164
Y	99	103	85	87	90	93	88	90	88	87	91	85
N	85	86	87	88	89	90	91	92	93	94	95	96
X	170	176	163	179	176	182	169	159	169	166	165	167
Y	96	82	91	99	93	95	96	91	92	87	87	89
_	_											,
N	97	98	99	100	101	102	103	104	105	106	107	108
X	173	170	170	169	164	177	173	166	161	162	190	167
Y	96	90	88	91	91	95	90	99	94	100	105	91
		•	•	•	•		•	•		•		
N	109	110	111	112	113	114	115	116	117	118	119	120
X	160	165	156	157	174	168	176	170	173	168	164	164
Y	87	94	89	91	91	86	92	95	93	93	92	88
	_	_										
N	121	122	123	124	125	126	127	128	129	130	131	132
X	172	173	173	165	167	173	184	163	179	161	162	158
Y	91	86	101	93	82	91	98	80	92	82	82	85
	_	1	1	1	1	1	1	1	1	1	ı	, , , , , , , , , , , , , , , , , , , ,
N	133	134	135	136	137	138	139	140	141	142	143	144
X	171	177	164	166	171	174	170	174	169	174	169	175
Y	87	87	84	84	86	93	86	97	83	90	85	85

Продолжение табл. 12.

	1 -		1 -				1					
N	145	146	147	148	149	150	151	152	153	154	155	156
X	167	172	168	163	168	161	173	164	167	164	173	176
Y	85	94	93	96	92	81	91	89	86	83	97	88
N	157	158	159	160	161	162	163	164	165	166	167	168
X	172	167	173	161	171	169	161	170	174	168	164	170
Y	91	90	93	78	95	88	87	89	91	83	90	88
N	169	170	171	172	173	174	175	176	177	178	179	180
X	164	162	166	172	169	169	163	178	166	168	168	180
Y	97	84	89	89	88	84	88	98	90	90	87	90
		•	•	•	•	•	•	•	•	•	•	'
N	181	182	183	184	185	186	187	188	189	190	191	192
X	163	165	163	158	171	175	170	165	184	169	167	167
Y	86	87	93	91	94	97	93	89	93	89	84	88
l————	1			l	I	l		l	I		l	
N	193	194	195	196	197	198	199	200	201	202	203	204
X	179	165	173	161	166	164	159	175	169	172	172	167
Y	85	84	89	91	91	87	83	89	91	96	87	91
					I				I			<u> </u>
N	205	206	207	208	209	210	211	212	213	214	215	216
X	160	156	161	174	167	174	167	168	168	167	167	171
Y	81	85	92	92	85	86	86	85	83	84	90	100
	I	ı	1	ı	I	ı	1	ı	I	ı	ı	
N	217	218	219	220	221	222	223	224	225	226	227	228
X	168	162	174	173	173	165	167	172	176	174	171	169
Y	92	91	88	92	96	93	92	99	93	98	92	91
					I				I			
N	229	230	231	232	233	234	235	236	237	238	239	240
X	161	173	170	176	171	166	171	167	156	167	166	167
Y	82	87	98	90	87	78	88	78	85	88	89	89
		ı	1		I		1		I	ı		
N	241	242	243	244	245	246	247	248	249	250	251	252
X	173	169	176	168	163	169	164	170	172	166	163	164
Y	90	87	88	91	82	87	88	85	90	87	92	84
<u> </u>		<u> </u>	<u> </u>	<u>I</u>	<u>I</u>	<u> </u>	<u>I</u>	<u>1</u>				
N	253	254	255	256	257	258	259	260	261	262	263	264
X	166	175	162	164	164	164	167	170	161	174	165	171
Y	88	90	85	84	84	90	83	81	79	91	88	82
		1 - 0			<u> </u>				ı · ·	1		~ _

Продолжение табл. 12.

N	265	266	267	268	269	270	271	272	273	274	275	276
X	166	172	170	180	164	184	168	172	165	176	171	169
Y	89	88	90	90	88	101	88	91	87	86	83	96
					l .	l .			l .			
N	277	278	279	280	281	282	283	284	285	286	287	288
X	171	170	164	167	164	165	162	164	178	159	171	169
Y	89	87	85	86	87	88	80	86	92	86	90	90
N	289	290	291	292	293	294	295	296	297	298	299	300
X	169	178	180	167	164	170	165	181	170	173	182	166
Y	87	90	85	81	87	86	94	89	92	90	88	90
	T							T				,
N	301	302	303	304	305	306	307	308	309	310	311	312
X	163	165	180	162	171	171	161	167	167	169	178	164
Y	87	87	90	81	94	92	84	83	85	92	92	92
	•	1	1	1			•	•		1	1	
N	313	314	315	316	317	318	319	320	321	322	323	324
X	171	168	177	161	172	154	170	167	162	168	168	173
Y	94	81	99	80	94	84	92	83	87	90	92	90
	,		,	,		,	,	,		,	,	
N	325	326	327	328	329	330	331	332	333	334	335	336
X	162	165	171	161	159	163	163	170	173	173	170	168
Y	89	84	91	85	81	88	93	96	95	90	92	88
	T						1 2 / 2	1			T	• (0)
N	337	338	339	340	341	342	343	344	345	346	347	348
X	169	175	161	171	171	169	170	171	166	171	169	177
Y	87	88	81	91	91	91	90	88	94	90	89	94
N T	2.40	250	251	252	252	254	255	256	257	250	250	2.00
N	349	350	351	352	353	354	355	356	357	358	359	360
X	158	167	166	176	163	161	168	172	156	166	165	165
Y	85	95	96	87	84	83	81	98	85	82	93	91
), T	261	262	262	264	265	266	2.67	260	260	270	271	272
N	361	362	363	364	365	366	367	368	369	370	371	372
X	166	167	167	171	165	160	157	165	166	157	165	165
Y	84	89	85	84	94	85	82	90	88	88	87	91
NT	272	274	275	27/	277	270	270	200	201	202	202	204
N	373	374	375	376	377	378	379	380	381	382	383	384
X	160	166	168	186	171	170	170	167	169	168	162	178
Y	83	87	92	92	85	91	90	90	90	84	85	87

Продолжение табл. 12.

.	205	206	205	200	200	200	201	202	202	20.4	205	206
N	385	386	387	388	389	390	391	392	393	394	395	396
X	176	161	171	159	168	167	178	169	163	169	170	187
Y	96	87	90	80	97	91	91	90	86	90	88	86
	T	1	T	T	1	1	T		1	1	1	1
N	397	398	399	400	401	402	403	404	405	406	407	408
X	174	162	165	164	173	162	179	162	166	176	175	155
Y	86	85	85	84	95	82	88	92	88	95	95	85
N	409	410	411	412	413	414	415	416	417	418	419	420
X	161	168	165	165	164	171	169	171	163	171	172	165
Y	83	98	86	94	94	89	82	90	88	90	94	89
		•			•					•		
N	421	422	423	424	425	426	427	428	429	430	431	432
X	170	173	169	169	167	162	170	175	175	170	168	185
Y	93	85	92	82	85	90	84	91	90	91	90	91
						<u> </u>			<u> </u>		<u> </u>	
N	433	434	435	436	437	438	439	440	441	442	443	444
X	166	161	176	179	167	163	167	179	180	166	171	163
Y	85	90	87	84	87	88	85	85	98	86	85	89
			1 -	_		1	1				1	
N	445	446	447	448	449	450	451	452	453	454	455	456
X	180	179	176	164	168	174	170	162	157	157	177	161
Y	92	92	93	83	89	96	90	86	90	82	93	84
	1 -		1	1			1	1 0 0				
N	457	458	459	460	461	462	463	464	465	466	467	468
X	148	168	176	166	169	168	176	167	159	164	181	165
Y	87	86	91	94	87	91	95	104	84	82	92	91
	0 /	00	7 1		07	7 1	1 2 0	10.	0.	-		71
N	469	470	471	472	473	474	475	476	477	478	479	480
X	171	159	174	160	169	167	170	161	174	178	168	168
Y	92	91	88	85	89	83	91	85	87	91	90	93
	/ 	/ ·	100	100	100	05	/ 1	100	<u> </u>	<i>,</i> , ,		,,,
N	481	482	483	484	485	486	487	488	489	490	491	492
X	165	173	166	175	158	174	178	170	167	168	161	161
Y	85	89	84	98	83	86	90	86	93	94	89	88
1	0.5	07	04	70	0.5	00	70	00	73	74	07	00
N	493	101	495	496	497	100	499	500]			
-		160				498						
X	166	169	164	181	165	171	169	168				
Y	84	85	89	90	90	90	81	80				

Выберите из указанных 500 значений 100 в соответствии с указаниями преподавателя (например, каждое 5-е или 1,6,11,....496).

Выполните задание 1-й и 2-й частей (см. типовой пример) и дайте интерпретацию полученных результатов.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Γ мурман, B. E. Теория вероятностей и математическая статистика. Высшая школа / В.Е. Гмурман М. : Высшее образование, 2008. 479 с.
- 2. Γ мурман B.E. Руководство к решению задач по теории вероятностей и математической статистике. Высшая школа / В.Е. Гмурман М. : Высшее образование, 2008.-404 с.
- 3. *Вентцель, Е.С.* Теория вероятностей и ее инженерные приложения / Е. С. Вентцель, Л.А. Овчаров М.: Издательский центр «Академия», 2003. 464 с.

Нормированная функция Лапласа
$$\Phi(z)=\frac{1}{\sqrt{2\pi}}\int\limits_0^z e^{-\frac{t^2}{2}}dt$$
 (в значениях функции ноль целых опущен, указаны только знаки после запятой)

Таблица А. 1

Z	0	1	2	3	4	5	6	7	8	9
	0	399	789	1197	1595	1994	2392	2790	3188	3586
0,1	3983	4380	4776	5172	5567	5962	6356	6749	7142	7535
-	7926	8317	8706	9095	9483	9871	10257	10642	11026	11409
	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327
0,9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891
1	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214
1,1	36433	36650	36864	37076	37286	37493	37698	38000	38100	38298
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147
1,3	40320	40490	40658	40824	40988	41149	41308	41466	41621	41774
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670
2	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169
2,1	48214	48257	48300	48341	48382	48422	48461	48500	48537	48574
2,2	48610	48645	48679	48713	48745	48778	48806	48840	48870	48899
2,3	48928	48956	48983	49010	49036	49061	49086	49111	49134	49158
2,4	49180	49202	49224	49245	49266	49286	49305	49324	49343	49361
2,5	49379	49396	49413	49430	49446	49461	49477	49492	49506	49520
2,6	49534	49547	49560	49573	49585	49598	49609	49621	49632	49643
2,7	49653	49664	49674	49683	49693	49702	49711	49720	49728	49736
	49744	49752	49760	49767	49774	49781	49788	49795	49801	49807
2,9	49813	49819	49825	49831	49836	49841	49846	49851	49856	49861
	49865	49869	49874	49878	49882	49886	49889	49893	49896	49900
3,1	49903	49906	49910	49913	49916	49918	49921	49924	49926	49929

Окончание табл. А. 1

Z	0	1	2	3	4	5	6	7	8	9
3,2	49931	49934	49936	49938	49940	49942	49944	49946	49948	49950
3,3	49952	49953	49955	49957	49958	49960	49961	49962	49964	49965
3,4	49966	49968	49969	49970	49971	49972	49973	49974	49975	49976
3,5	49977	49978	49978	49979	49980	49981	49981	49982	49983	49983
3,6	49984	49985	49985	49986	49986	49987	49987	49988	49988	49989
3,7	49989	49990	49990	49990	49991	49991	49992	49992	49992	49992
3,8	49993	49993	49993	49994	49994	49994	49994	49995	49995	49995
3,9	49995	49995	49996	49996	49996	49996	49996	49996	49997	49997
4	49997									

ПРИЛОЖЕНИЕ Б

Значения чисел q в зависимости от объёма выборки n и надёжности γ для определения доверительного интервала среднего квадратического отклонения $\sigma_{\scriptscriptstyle x}$

	γ				γ		
n	0.95	0.99	0.999	n	0.95	0.99	0.999
7	0.92	-	-	25	0.32	0.49	0.73
8	0.80	-	-	30	0.28	0.43	0.63
9	0.71	-	-	35	0.26	0.38	0.56
10	0.65	-	-	40	0.24	0.35	0.50
11	0.59	0.98	-	45	0.22	0.32	0.46
12	0.55	0.90	-	50	0.21	0.30	0.43
13	0.52	0.83	-	60	0.188	0.269	0.38
14	0.48	0.78	-	70	0.174	0.245	0.34
15	0.46	0.73	-	80	0.161	0.226	0.31
16	0.44	0.70	-	90	0.151	0.211	0.29
17	0.42	0.66	-	100	0.143	0.198	0.27
18	0.40	0.63	0.96	150	0.115	0.160	0.211
19	0.39	0.60	0.92	200	0.099	0.136	0.185
20	0.37	0.58	0.88	250	0.089	0.120	0.162

ПРИЛОЖЕНИЕ В Критические точки распределения $\chi^2_{\kappa p}$

Число	Уровень значимости α									
степеней свободы	0,01	0,05	0,1	0,90	0,95	0,99				
1	6,6	3,8	2,71	0,02	0,004	0,0002				
3	9,2	6	4,61	0,21	0,1	0,02				
	11,3	7,8	6,25	0,58	0,35	0,12				
4	13,3	9,5	7,78	1,06	0,71	0,3				
5	15,1	11,1	9,24	1,61	1,15	0,55				
6	16,8	12,6	10,6	2,2	1,64	0,87				
7	18,5	14,1	12	2,83	2,17	1,24				
8	20,1	15,5	13,4	3,49	2,73	1,65				
9	21,7	16,9	14,7	4,17	3,33	2,09				
10	23,2	18,3	16	4,87	3,94	2,56				
11	24,7	19,7	17,3	5,58	4,57	3,05				
12	26,2	21	18,5	6,3	5,23	3,57				
13	27,7	22,4	19,8	7,04	5,89	4,11				
14	29,1	23,7	21,1	7,79	6,57	4,66				
15	30,6	23,7 25	22,3	8,55	7,26	5,23				
16	32	26,3	23,5	9,31	7,96	5,81				
17	33,4	27,6	24,8	10,1	8,67	6,41				
18	34,8	28,9	26	10,9	9,39	7,01				
19	36,2	30,1	27,2	11,7	10,1	7,63				
20	37,6	31,4	28,4	12,4	10,9	8,26				
21	38,9	32,7	29,6	13,2	11,6	8,9				
22	40,3	33,9	30,8	14	12,3	9,54				
23	41,6	35,2	32	14,8	13,1	10,2				
24	43	36,4	33,2	15,7	13,8	10,9				
25	44,3	37,7	34,4	16,5	14,6	11,5				
26	45,6	38,9	35,6	17,3	15,4	12,2				
27	47	40,1	36,7	18,1	16,2	12,9				
28	48,3	41,3	37,9	18,9	16,9	13,6				
29	49,6	42,6	39,1	19,8	17,7	14,3				
30	50,9	43,8	40,3	20,6	18,5	15				