Análise de Algoritmos

Slides de Paulo Feofiloff

[com erros do coelho e agora também da cris]

Redução polinomial

Permite comparar o "grau de complexidade" de problemas diferentes.

Uma redução de um problema Π a um problema Π' é um algoritmo ALG que resolve Π usando uma subrotina hipotética ALG' que resolve Π' , de tal forma que, se ALG' é um algoritmo polinomial, então ALG é um algoritmo polinomial.

 $\Pi \leq_P \Pi' =$ existe uma redução de Π a Π' .

Se $\Pi \leq_P \Pi'$ e Π' está em P, então Π está em P.

```
\Pi = encontrar um ciclo hamiltoniano \Pi' = existe um ciclo hamiltoniano?
```

Redução de Π a Π' : ALG' é um algoritmo que resolve Π'

```
ALG (G)

1 se ALG'(G) = NÃO

2 então devolva "G não é hamiltoniano"

3 para cada aresta uv de G faça

4 H \leftarrow G - uv

5 se ALG'(H) = SIM

6 então G \leftarrow G - uv

7 devolva G
```

Se ALG' consome tempo O(p(n)), então ALG consome tempo $O(q \ p(\langle G \rangle))$, onde q = número de arestas de G.

Esquema comum de redução

Faz apenas uma chamada ao algoritmo ALG'.

T transforma uma instância I de Π em uma instância I'=T(I) de Π' tal que $\Pi(I)=\operatorname{SIM}$ se e somente se $\Pi'(I')=\operatorname{SIM}$

T é uma espécie de "filtro" ou "compilador".

Problema: Dada uma fórmula booleana ϕ em CNF, nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

CNF: forma normal conjuntiva.

Problema: Dada uma fórmula booleana ϕ em CNF, nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

CNF: forma normal conjuntiva.

Exemplo: $\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$.

Problema: Dada uma fórmula booleana ϕ em CNF, nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

CNF: forma normal conjuntiva.

Exemplo:
$$\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$$
.

Se
$$t(x_1) = \text{VERDADE}, t(x_2) = \text{FALSO}, t(x_3) = \text{FALSO},$$
 então $t(\phi) = \text{VERDADE}$

Problema: Dada uma fórmula booleana ϕ em CNF, nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

CNF: forma normal conjuntiva.

Exemplo: $\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$.

Se $t(x_1)= \text{VERDADE}, t(x_2)= \text{FALSO}, t(x_3)= \text{FALSO},$ então $t(\phi)= \text{VERDADE}$

Se $t(x_1)=$ VERDADE, $t(x_2)=$ VERDADE, $t(x_3)=$ FALSO, então $t(\phi)=$ FALSO

Sistemas lineares 0-1

Problema: Dadas uma matriz A e um vetor b,

$$Ax \geq b$$

possui uma solução tal que $x_i = 0$ ou $x_i = 1$ para todo i?

Sistemas lineares 0-1

Problema: Dadas uma matriz A e um vetor b,

$$Ax \geq b$$

possui uma solução tal que $x_i = 0$ ou $x_i = 1$ para todo i?

Exemplo:

tem uma solução 0-1?

Sistemas lineares 0-1

Problema: Dadas uma matriz A e um vetor b,

$$Ax \geq b$$

possui uma solução tal que $x_i = 0$ ou $x_i = 1$ para todo i?

Exemplo:

tem uma solução 0-1?

Sim! $x_1 = 1, x_2 = 0$ e $x_3 = 0$ é solução.

Satisfatibilidade \leq_P Sistemas lineares 0-1

Satisfatibilidade \leq_P Sistemas lineares 0-1

A transformação T recebe uma fórmula booleana ϕ (em CNF) e devolve um sistema linear $Ax \geq b$ tal que ϕ é satisfatível se e somente se o sistema $Ax \geq b$ admite uma solução 0-1.

Satisfatibilidade ≤_P Sistemas lineares 0-1

A transformação T recebe uma fórmula booleana ϕ (em CNF) e devolve um sistema linear $Ax \geq b$ tal que ϕ é satisfatível se e somente se o sistema $Ax \geq b$ admite uma solução 0-1.

Exemplo: $\phi = (x_1) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3)$

Satisfatibilidade \leq_P Sistemas lineares 0-1

A transformação T recebe uma fórmula booleana ϕ (em CNF) e devolve um sistema linear $Ax \geq b$ tal que ϕ é satisfatível se e somente se o sistema $Ax \geq b$ admite uma solução 0-1.

Exemplo:
$$\phi = (x_1) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3)$$

$$x_1$$
 ≥ 1 $(1-x_1) + (1-x_2) + x_3 \geq 1$ $(1-x_3) \geq 0$

(Esse é exatamente o sistema da página anterior.)

Verifique que

Ciclo hamiltoniano \leq_P Caminho hamiltoniano entre u e v

Verifique que

Ciclo hamiltoniano \leq_P Caminho hamiltoniano entre u e v

Verifique que

Caminho hamiltoniano entre u e $v \leq_P$ Caminho hamiltoniano

Caminho hamiltoniano \leq_P Satisfatibilidade

Caminho hamiltoniano \leq_P Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um grafo G e devolve uma fórmula booleana $\phi(G)$ tal que

G tem caminho hamiltoniano $\Leftrightarrow \phi(G)$ é satisfatível.

Caminho hamiltoniano \leq_P Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um grafo G e devolve uma fórmula booleana $\phi(G)$ tal que

G tem caminho hamiltoniano $\Leftrightarrow \phi(G)$ é satisfatível.

Suponha que G tem vértices $1, \ldots, n$.

 $\phi(G)$ tem n^2 variáveis $x_{i,j}$, onde $1 \leq i, j \leq n$.

Caminho hamiltoniano \leq_P Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um grafo G e devolve uma fórmula booleana $\phi(G)$ tal que

G tem caminho hamiltoniano $\Leftrightarrow \phi(G)$ é satisfatível.

Suponha que G tem vértices $1, \ldots, n$.

 $\phi(G)$ tem n^2 variáveis $x_{i,j}$, onde $1 \leq i, j \leq n$.

Interpretação:

 $x_{i,j} = VERDADE \Leftrightarrow vértice j é o i-ésimo vértice do caminho.$

Claúsulas de $\phi(G)$:

vértice j faz parte do caminho:

$$(x_{1,\mathbf{j}} \vee x_{2,\mathbf{j}} \vee \cdots \vee x_{n,\mathbf{j}})$$

para cada j (n claúsulas).

Claúsulas de $\phi(G)$:

vértice j faz parte do caminho:

$$(x_{1,\mathbf{j}} \vee x_{2,\mathbf{j}} \vee \cdots \vee x_{n,\mathbf{j}})$$

para cada j (n claúsulas).

vértice j não está em duas posições do caminho:

$$(\neg x_{i,j} \lor \neg x_{k,j})$$

para cada j e $i \neq k$ ($O(n^3)$ claúsulas).

Claúsulas de $\phi(G)$:

vértice j faz parte do caminho:

$$(x_{1,\mathbf{j}} \vee x_{2,\mathbf{j}} \vee \cdots \vee x_{n,\mathbf{j}})$$

para cada j (n claúsulas).

vértice j não está em duas posições do caminho:

$$(\neg x_{i,j} \lor \neg x_{k,j})$$

para cada j e $i \neq k$ ($O(n^3)$ claúsulas).

algum vértice é o i-ésimo do caminho:

$$(x_{\mathbf{i},1} \vee x_{\mathbf{i},2} \vee \cdots \vee x_{\mathbf{i},n})$$

para cada *i* (*n* claúsulas).

Mais claúsulas de $\phi(G)$:

dois vértices não podem ser o i-ésimo:

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada $i \in j \neq k (O(n^3) \text{ claúsulas}).$

Mais claúsulas de $\phi(G)$:

dois vértices não podem ser o *i*-ésimo:

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada $i \in j \neq k (O(n^3) \text{ claúsulas}).$

ullet se ij não é aresta, j não pode seguir i no caminho:

$$(\neg x_{k,i} \lor \neg x_{k+1,j})$$

para cada ij que não é aresta ($O(n^3)$ claúsulas).

Mais claúsulas de $\phi(G)$:

dois vértices não podem ser o i-ésimo:

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada $i \in j \neq k (O(n^3) \text{ claúsulas}).$

ullet se ij não é aresta, j não pode seguir i no caminho:

$$(\neg x_{k,i} \lor \neg x_{k+1,j})$$

para cada ij que não é aresta ($O(n^3)$ claúsulas).

A fórmula $\phi(G)$ tem $O(n^3)$ claúsulas e cada claúsula tem $\leq n$ literais. Logo, $\langle \phi(G) \rangle$ é $O(n^4)$.

Não é difícil construir o algoritmo polinomial T.

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t: \{ \text{variáveis} \} \rightarrow \{ \text{VERDADE}, \text{FALSO} \}$ tal que $t(\phi(G)) = \text{VERDADE}.$

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t: \{ \text{variáveis} \} \rightarrow \{ \text{VERDADE}, \text{FALSO} \}$ tal que $t(\phi(G)) = \text{VERDADE}.$

Para cada *i* existe um único *j* tal que $t(x_{i,j}) = VERDADE$.

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t: \{ \text{variáveis} \} \rightarrow \{ \text{VERDADE}, \text{FALSO} \}$ tal que $t(\phi(G)) = \text{VERDADE}.$

Para cada i existe um único j tal que $t(x_{i,j}) = VERDADE$. Logo, t é a codificadação de uma permutação

$$\pi(1), \pi(2), \ldots, \pi(n)$$

dos vértices de G, onde

$$\pi(i) = j \Leftrightarrow t(x_{i,j}) = VERDADE.$$

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t: \{ \text{variáveis} \} \rightarrow \{ \text{VERDADE}, \text{FALSO} \}$ tal que $t(\phi(G)) = \text{VERDADE}.$

Para cada i existe um único j tal que $t(x_{i,j}) = VERDADE$. Logo, t é a codificadação de uma permutação

$$\pi(1), \pi(2), \ldots, \pi(n)$$

dos vértices de G, onde

$$\pi(i) = j \Leftrightarrow t(x_{i,j}) = VERDADE.$$

Para cada k, $(\pi(k), \pi(k+1))$ é uma aresta de G.

Logo, $(\pi(1), \pi(2), \dots, \pi(n))$ é um caminho hamiltoniano.

G tem caminho hamiltoniano $\Rightarrow \phi(G)$ satisfatível.

G tem caminho hamiltoniano $\Rightarrow \phi(G)$ satisfatível.

Suponha que $(\pi(1), \pi(2), \dots, \pi(n))$ é um caminho hamiltoniano, onde π é uma pernutação dos vértices de G.

G tem caminho hamiltoniano $\Rightarrow \phi(G)$ satisfatível.

Suponha que $(\pi(1), \pi(2), \dots, \pi(n))$ é um caminho hamiltoniano, onde π é uma pernutação dos vértices de G.

Então

$$t(x_{\pmb{i},\pmb{j}}) = extsf{VERDADE} \ extsf{se} \ \pi(\pmb{i}) = \pmb{j} \ extsf{e}$$
 $t(x_{\pmb{i},\pmb{j}}) = extsf{VERDADE} \ extsf{se} \ \pi(\pmb{i})
eq \pmb{j},$

é uma atribuição de valores que satisfaz todas as claúsulas de $\phi(G)$.

Problema: Dada um fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

3-Satisfatibilidade

Problema: Dada um fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

Exemplo:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

3-Satisfatibilidade

Problema: Dada um fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$$

que torna *ϕ* verdadeira?

Exemplo:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

Um literal é uma variável x ou sua negação $\neg x$.

Exemplo 4

Satisfatibilidade \leq_P 3-Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um fórmula booleana ϕ e devolve uma fórmula booleana ϕ' com exatamente 3 literais por claúsula tais que

 ϕ é satisfatível $\Leftrightarrow \phi'$ é satisfatível.

A transformação consiste em substituir cada claúsula de ϕ por uma coleção de claúsulas com exatamente 3 literais cada e equivalente a ϕ .

Exemplo 4 (cont.)

Seja $(l_1 \lor l_2 \lor \cdots \lor l_k)$ uma claúsula de ϕ .

Caso 1.
$$k = 1$$

Troque (l_1) por

$$(l_1 \lor y_1 \lor y_2) (l_1 \lor \neg y_1 \lor y_2) (l_1 \lor y_1 \lor \neg y_2) (l_1 \lor \neg y_1 \lor \neg y_2)$$

onde y_1 e y_2 são variáveis novas.

Caso 2.
$$k = 2$$

Troque $(l_1 \lor l_2)$ por $(l_1 \lor l_2 \lor y)$ $(l_1 \lor l_2 \lor \neg y)$, onde y é uma variáveis nova.

Caso 3.
$$k = 3$$

Mantenha $(l_1 \vee l_2 \vee l_3)$.

Exemplo 4 (cont.)

Caso 4. k > 3

Troque $(l_1 \vee l_2 \vee \cdots \vee l_k)$ por

$$(l_1 \vee l_2 \vee y_1)$$

$$(\neg y_1 \lor l_3 \lor y_2) (\neg y_2 \lor l_4 \lor y_3) (\neg y_3 \lor l_5 \lor y_4) \dots$$

$$(\neg y_{\mathbf{k}-3} \lor l_{\mathbf{k}-1} \lor l_{\mathbf{k}})$$

onde y_1, y_2, \dots, y_{k-3} são variáveis novas

Verifique que ϕ é satisfátivel \Leftrightarrow nova fórmula é satisfatível.

O tamanho da nova claúsula é O(q), onde q é o número de literais que ocorrem em ϕ (contando-se as repetições).

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Existe um algoritmo polinomial para um problema NP-completo se e somente se P = NP.

Demonstração de NP-completude

Para demonstrar que um problema Π' é NP-completo podemos utilizar o Teorema de Cook e Levin.

Para isto devemos:

- Demonstrar que Π' está en NP.
- ullet Escolher um problema Π sabidamente NP-completo.
- **●** Demonstrar que $\Pi \leq_P \Pi'$.

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Exemplos:

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Exemplos:

clique com k vértices = subgrafo completo com k vértices

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe um fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tal que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe um fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tal que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Para cada claúsula, o grafo G terá três vértices, um correspondente a cada literal da cláusula. Logo, G terá 3k vértices.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe um fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tal que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Para cada claúsula, o grafo G terá três vértices, um correspondente a cada literal da cláusula. Logo, G terá 3k vértices.

Teremos uma aresta ligando vértices u e v se

- u e v são vértices que correspondem a literais em diferentes claúsulas; e
- se u corresponde a um literal x então v não corresponde ao literal $\neg x$.

Clique é NP-completo (cont.)

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica em P = NP.

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica em P = NP.

Todo problema NP-completo é NP-difícil.

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica em P = NP.

Todo problema NP-completo é NP-difícil.

Exemplos:

- Encontrar um ciclo hamiltoniano é NP-difícil, mas não é NP-completo, pois não é um problema de decisão e portanto não está em NP.
- Satisfabilidade é NP-completo e NP-difícil.

Mais problemas NP-difíceis

Os seguintes problema são NP-difíceis:

- mochila booleana
- caminho máximo
- caminho hamiltoniano
- escalonamento de tarefas
- subset-sum
- clique máximo
- cobertura por vértices
- sistemas 0-1

e mais um montão deles ...

Exercícios

Exercício 25.A

Suponha que os algoritmos ALG e ALG' transformam cadeias de caracteres em outras cadeias de caracteres. O algoritmo ALG consome $\mathsf{O}(n^2)$ unidades de tempo e o algoritmo ALG' consome $\mathsf{O}(n^4)$ unidades de tempo, onde n é o número de caracteres da cadeia de entrada. Considere agora o algoritmo ALGALG' que consiste na composição de ALG e ALG' , com ALG' recebendo como entrada a saída de ALG . Qual o consumo de tempo de ALGALG' ?

Exercício 25.B [CLRS 34.1-4]

O algoritmo Mochila-Booleana é polinomial? Justifique a sua resposta.

Exercício 25.C [CLRS 34.1-5]

Seja ALG um algoritmo que faz um número constante de chamadas a um algoritmo ALG[']. Suponha que se o consumo de tempo de ALG['] é constante então o consumo de tempo de ALG é polinomial.

- 1. Mostre que se o consumo de tempo de ALG' é polinomial então o consumo de tempo de ALG é polinomial.
- 2. Mostre que se o consumo de tempo de ALG' é polinomial e ALG faz um número polinomial de chamadas a ALG', então é possível que o consumo de tempo de ALG seja exponencial.

Algoritmos – p. 2

Mais exercícios

Exercício 25.D [CLRS 34.2-1]

Mostre que o problema de decidir se dois grafos dados são isomorfos está em NP.

Exercício 25.E [CLRS 34.2-2]

Mostre que um grafo bipartido com um número ímpar de vértices não é hamiltoniano (= possui um ciclo hamiltoniano).

Exercício 25.F [CLRS 34.2-3]

Mostre que se o problema do Ciclo hamiltoniano está em ¶, então o problema de listar os vértices de um ciclo hamiltoniano, na ordem em que eles ocorrem no ciclo, pode ser resolvido em tempo polinomial.

Exercício 25.G [CLRS 34.2-5]

Mostre que qualquer problema em NP pode ser resolvido por um algoritmo de consumo de tempo 2^{On^c} , onde n é o tamanho da entrada e c é uma constante.

Exercício 25.H [CLRS 34.2-6]

Mostre que o problema do Caminho hamiltoniano está em NP.

Exercício 25.I [CLRS 34.2-7]

Mostre que o problema do caminho hamiltoniano pode ser resolvido em tempo polinomial em grafos orientado acíclicos.

Mais exercícios

Exercício 25.J [CLRS 34.2-8]

Uma fórmula booleana ϕ é uma tautologia se $t(\phi) = \text{VERDADE}$ para toda atribuição de $t: \{\text{variáveis}\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$. Mostre que o problema de decidir se uma dada fórmula booleana é uma tautologia está em co-NP.

Exercício 25.K [CLRS 34.2-9]

Prove que $P \subseteq \text{co-NP}$.

Exercício 25.L [CLRS 34.2-10]

Prove que se $NP \neq co-NP$, então $P \neq NP$.

Exercício 25.M [CLRS 34.2-11]

Se G é um grafo conexo com pelo menos 3 vértices, então G^3 é o grafo que se obtém a partir de G ligando-se por uma aresta todos os pares de vértices que estão conectados em G por um caminho com no máximo três arestas. Mostre que G^3 é hamiltoniano.

Exercício 25.N [CLRS 34.3-2]

Mostre que se $\Pi_1 \leq_P \Pi_2$ e $\Pi_2 \leq_P \Pi_3$, então $\Pi_1 \leq_P \Pi_3$.

Mais exercícios

Exercício 25.0 [CLRS 34.3-7]

Suponha que Π e Π' são problemas de decisão sobre o mesmo conjunto de instâncias e que $\Pi(I) = \text{SIM}$ se e somente se $\Pi'(I) = \text{NÃO}$. Mostre que Π é NP-completo se e somente se Π' é co-NP-completo.

(Um problema Π' é co-NP-completo se Π' está em co-NP e $\Pi \leq_P \Pi'$ para todo problema Π em co-NP.)

Exercício 25.P [CLRS 34.4-4]

Mostre que o problema de decidir se uma fórmula boolena é uma tautologia é co-NP-completo. (Dica: veja o exercício 25.O.)

Exercício 25.Q [CLRS 34.4-6]

Suponha que ALG' é um algoritmo polinomial para Satisfatibilidade. Descreva um algoritmo polinomial ALG que recebe um fórmula booleana ϕ e devolve uma atribuição $t: \{\mathsf{variáveis}\} \to \{\mathsf{VERDADE}, \mathsf{FALSO}\}$ tal que $t(\phi) = \mathsf{VERDADE}$.

Exercício 25.Q [CLRS 34.5-3]

Prove que o problema Sistemas lineares 0-1 é NP-completo.

Exercício 25.R [CLRS 34.5-6]

Mostre que o problema C aminho hamiltoniano é NP-completo.

Mais um exercício

Exercício 25.S [CLRS 34.5-7]

Mostre que o problema de encontrar um ciclo de comprimento máximo é NP-completo.