Homework 4 - Problem 1 Systems of integral equations: Theory

Christian Howard howard28@illinois.edu

Contents

1	Nor	med Spa	ces																	;
	1.1	Property	1.																	
	1.2	Property	2 .																	
	1.3	Property	3 .																	
2	Cor	${f nposite}$ ()pe	rat	O	rs														

1 Normed Spaces

Let $X_i \, \forall i = 1, \dots, n$ be complete Banach spaces with norms $\|\cdot\|_i$. For this first problem, the goal is to show that the product space $X := X_1 \times \dots \times X_n$, with n-tuple elements of the form $\phi = (\phi_1, \dots, \phi_n)$, are a normed space given this product space has a maximum norm defined in the following manner:

$$\|\phi\|_{\infty} = \max_{i=1,\cdots,n} \|\phi_i\|_i \tag{1}$$

To show this, we need to show that the following properties exist for some $x,y\in X$:

- 1. $||x||_{\infty} \geq 0$ and $||x||_{\infty} = 0 \iff x = 0$
- 2. $\|\alpha x\|_{\infty} = |\alpha| \|x\|_{\infty}$ for some scalar α
- 3. $||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$

1.1 Property 1

We can easily show that 1 holds. First, let's plug in $\phi = (0, \dots, 0)$ and see the following:

$$\|\phi\|_{\infty} = \max_{i=1,\dots,n} \|\phi_i\|_i$$
$$= \max_{i=1,\dots,n} \|0\|_i$$
$$= 0$$

The above work trivially shows the above norm can only be zero if ϕ is zero in all of its elements. Now let's assume there exists some index subset $J \subset \{1,2,\cdots,n\}$ such that $\phi_k \neq 0 \ \forall k \in J$, and all other elements are 0. We can find the following:

$$\begin{split} \left\|\phi\right\|_{\infty} &= \max_{i=1,\cdots,n} \left\|\phi_i\right\|_i \\ &= \max_{i\in J} \left\|\phi_i\right\|_i \\ &\geq 0 \end{split}$$

The above results show that $\|\phi\|_{\infty}$ satisfies property 1.

1.2 Property 2

Let us assume $\hat{\phi} = \alpha \phi = (\alpha \phi_1, \dots, \alpha \phi_n)$. Then we can work out the following:

$$\begin{split} \left\| \hat{\phi} \right\|_{\infty} &= \left\| \alpha \phi \right\|_{\infty} = \max_{i=1,\cdots,n} \left\| \alpha \phi_i \right\|_i \\ &= \max_{i=1,\cdots,n} \left| \alpha \right| \left\| \phi_i \right\|_i \\ &= \left| \alpha \right| \max_{i=1,\cdots,n} \left\| \phi_i \right\|_i \\ &= \left| \alpha \right| \left\| \phi \right\|_{\infty} \end{split}$$

Thus we can see that property 2 is satisfied.

1.3 Property 3

Let us show that $||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty}$ for $x, y \in X$.

$$\begin{aligned} \|x + y\|_{\infty} &= \max_{i} \|x_{i} + y_{i}\|_{i} \\ &\leq \max_{i} \|x_{i}\|_{i} + \|y_{i}\|_{i} \\ &\leq \left(\leq \max_{i} \|x_{i}\|_{i} \right) + \left(\max_{i} \|y_{i}\|_{i} \right) \\ &= \|x\|_{\infty} + \|y\|_{\infty} \end{aligned}$$

Thus, $\|x+y\|_{\infty} \leq \|x\|_{\infty} + \|y\|_{\infty}$ holds and Properties 1, 2, and 3 are satisfied, showing that $(X, \|\cdot\|_{\infty})$ together represent a normed vector space.

2 Composite Operators

The goal of this part is to show that $(A\phi)_i = \sum_{k=1}^n A_{ik}\phi_k$ is compact $\forall i$ iff $A_{ik}: X_k \to X_i$ is compact $\forall i, k$. Let us define the below statements:

$$(A\phi)_i = \sum_{k=1}^n A_{ik}\phi_k$$
 is compact $\forall i$ (2)

$$A_{ik}: X_k \to X_i \text{ is compact } \forall i, k$$
 (3)

If (3) is true, then it holds that for each bounded sequence $(\phi_k(m))$ in X_k , some subsequence of $(A_{ik}\phi_k(m))$ is convergent in X_i . This means $(A\phi)_i = \sum_{k=1}^n A_{ik}\phi_k$ must be convergent $\forall i, k$, since each term of the summation converges, and in turn implies (2) is true.

Let us assume that (2) holds and that $\exists j, l \ni A_{jl}$ is not compact. This means that $(A\phi)_j = \sum_{k=1}^n A_{jk}\phi_k$ is not compact for some j because the sum is not convergent based on some bounded sequence $(\phi(m))$. Since $(A\phi)_j$ is not convergent for some j, then $A\phi$ is not compact. Due to this contradiction, we see that (2) implies that (3) must be true.