Tensori e prodotto tensoriale

Giacomo Borin

6 febbraio 2020

Indice

1	Definizione		
	1.1	Caso bilineare	2
	1.2	Caso multilineare	4
	1.3	Proprietà del prodotto tensoriale	4
2	Funzionali tensoriali		
	2.1	Proprietà	8
	2.2	Esattezza del prodotto tensoriale	10
3	Moduli piatti (Flat modules)		12
4	Prodotto tensoriale di Algebre		14

Definizione

1.1 Caso bilineare

Sia A un anello commutativo e M,N,P A-moduli, sia data una mappa $f: M \times N \to P$ bilineare ¹. Vogliamo costruire un A-modulo T tale che per ogni A-modulo P ci sia una corrispondenza biunivoca tra le mappe A-bilineari da $M \times N \to P$ e quelle A-lineari $T \to P$. Chiameremo poi questo modulo il prodotto tensoriale di M e N. A questo fine enunciamo la seguente proposizione:

Proposizione 1.1.1. Siano M,N A-moduli. Allora esiste una coppia (T,g) composta da un A-modulo e una funzione A-bilineare $g: M \times N \to T$, con la seguente proprietà universale: Dato un qualsiasi A-modulo P e una qualsiasi mappa A-bilineare $f: M \times N \to P$ allora esiste un'unica mappa A-lineare $\bar{f}: T \to P$ tale che $f = \bar{f} \cdot g$, cioè che commuti il seguente diagramma.

Inoltre questa coppia è unica a meno di isomorfismi, cioè se supponiamo di avere un altra coppia (T',g') tale che commuti

$$\begin{array}{c|c}
M \times N & \xrightarrow{f} P \\
\downarrow g' & \downarrow & \downarrow \bar{f}' \\
T' & & & & \\
\end{array}$$

allora esiste un isomorfismo di A-moduli $\psi: T \to T'.$

Dimostrazione. Esistenza Sia C il modulo libero $A^{(M\times N)}$. Gli elementi di C sono le A-combinazioni lineari di elementi di $M\times N$ cioè della forma

 $f: M \times N \to P$ si dice bilineare se è lineare per ogni argomento, cioè fissato $x \in M$ allora $y \mapsto f(x,y)$ è lineare e fissato $y \in N$ allora $x \mapsto f(x,y)$ è lineare

 $\sum_{i=1}^{n} a_i(x_i, y_i)$ dove $a_i \in A, x_i \in M, y_i \in N$. Definiamo ora D come l'A-modulo generato dagli elementi:

$$\forall x, x' \in M, \forall y, y' \in N, \forall a \in A : (x + x', y) - (x, y) - (x', y) (x, y + y') - (x, y) - (x, y') (ax, y) - a(x, y) (x, ay) - a(x, y)$$

Definiamo allora T:=C/D e indichiamo gli elementi [(x,y)] di T come $x\otimes y$. Possiamo facilmente verificare che abbiamo una bilinerità degli argomenti di T perchè tutti i termini precedenti sono nulli in T. Abbiamo quindi che la mappa $g:M\times N\to T$ che manda $(x,y)\mapsto x\otimes y$ è bilineare, infatti

$$g(x + ax', y) = (x + ax') \otimes y = x \otimes y + (ax' \otimes y) = x \otimes y + a(x' \otimes y) =$$
$$= g(x, y) + ag(x', y)$$

a partire da $f: M \times N \to P$ posso usare la proprietà universale dei moduli liberi e definire una mappa bilineare $f': C \to P$ tale che se $u = \sum a_i(x_i, y_i) \in C$ allora $f'(u) = \sum a_i f(x_i, y_i)$. Dato che f' eredita la bilinearità, infatti f'(ax + by, z) = f(ax + by, z) = af(x, z) + bf(y, z) = af'(x, z) + bf'(y, z), vale che se $u \in D \Rightarrow f'(u) = 0$. Ma quindi $Ker(f') \supset D$. Allora esiste una unica mappa lineare $\bar{f}: T \to P$ ben definita tale che $\bar{f}(x \otimes y) := f'(x, y) = f(x, y)$. \bar{f} è ben definita, lineare e fa commutare il diagramma per costruzione.

Unicità Supponiamo di avere un'altra coppia (T',g') con la stessa proprietà universale, allora rimpiazzando (P, f) prima con (T,g) e poi con (T',g') abbiamo le mappe $i: T \to T'$ E $i': T' \to T$ tali che $g' = i \circ i' \circ g'$ e $g = i' \circ i \circ g$, dai quali segue che $i \circ i' = Id_{T'}$ E $i' \circ i = Id_T$ e sono lineari per costruzione, quindi ho isomorfismo tra T e T'.

Osservazioni. • Il modulo T costruito precedentemente viene chiamato il prodotto tensoriale di M e N, e viene indicato con $M \otimes_A N$, ed è l'A-modulo generato dai prodotti $x \otimes y$. Nel caso non ci sia rischio di ambiguità su quale anello sia costruito la specificazione di quest'ultimo viene omessa per alleggerire la notazione.

- Se i due moduli M e N sono finitamente generati dagli elementi $\{x_i\}_{i\in I}\subset M$ e $\{y_j\}_{j\in J}\subset N$ allora anche il prodotto tensoriale è finitamente generato, e i suoi generatori sono $\{x_i\otimes y_j\}_{(i,j)\in I\times J}$.
- La notazione $x \otimes y$ può essere ambigua se non è specificato il prodotto tensoriale su quale è definito: ad esempio se lavoriamo nell'anello $\mathbb Z$ allora: $2 \otimes x$ è :
 - nullo se visto in $\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}$, infatti $2 \otimes x = 1 \otimes 2x = 1 \otimes 0 = 0$
 - non nullo se visto in $2\mathbb{Z}\otimes\mathbb{Z}/2\mathbb{Z},$ perchè non posso fattorizzare 2 in $2\cdot 1$

1.2 Caso multilineare

Proposizione 1.2.1. Siano $E_1, ..., E_n$ A-moduli. Allora esiste una coppia (T,g) composta da un A-modulo e una funzione A-multilineare $g: E_1 \times ... \times E_n \to T$, con la seguente proprietà universale: Dato un qualsiasi A-modulo P e una qualsiasi mappa A-multilineare $f: E_1, ..., E_n \to P$ allora esiste un'unica mappa P-lineare P allora esiste un'unica mappa P-lineare P-

$$E_1 \times \dots \times E_n \xrightarrow{f} P$$

Inoltre questa coppia è unica a meno di isomorfismi, cioè se supponiamo di avere un altra coppia (T',g') tale che commuti

allora esiste un isomorfismo di A-moduli $\psi: T \to T'$.

Dimostrazione. La dimostrazione è identica al caso bilineare, l'unica differenza è che C sarà il modulo libero generato da tutti gli elementi di $E_1\times ...\times E_n$ e D sarà generato da:

$$\forall i \in \{1, ..., n\}, \forall x_i, x_i' \in E_i, \forall a \in A : (x_1, ..., x_i + x_i', ..., x_n) - (x_1, ..., x_i, ..., x_n) - (x_1, ..., x_i', ..., x_n) - (x_1, ..., x_i', ..., x_n) - (x_1, ..., x_i', ..., x_n)$$

Allora diremo che l'A-modulo T è il prodotto tensoriale dei moduli $E_1,...,E_n$ e lo indicheremo con:

$$E_1 \otimes ... \otimes E_n$$
 oppure con $\bigotimes_{i=1}^n = E_i$ (1.2)

1.3 Proprietà del prodotto tensoriale

Potrebbe sorgere una ambiguità tra prodotti tensoriali, infatti se M,N,L sono Amoduli il prodotto tensoriale tra i tre A-moduli $(M \otimes N \otimes L)$, quello tra $M \otimes N$ e L e quello tra M e $N \otimes L$ potrebbero essere tutti prodotti tensoriali non isomorfi. Possiamo però provare che vale una proprietà associativa del prodotto tensoriale:

Proposizione 1.3.1 (associatività). Siano M,N,L A-moduli, allora esiste un unico isomorfismo

$$M \otimes (N \otimes L) \to (M \otimes N) \otimes L$$

tale che per ogni $x \in M, y \in N, z \in L$ valga che $(x \otimes y) \otimes z \mapsto x \otimes (y \otimes z)$.

Dimostrazione. Dato $x \in M$ definisco la mappa

$$\lambda_x: N \times L \longrightarrow (M \otimes N) \otimes L$$

 $(y, z) \longmapsto (x \otimes y) \otimes z$

essendo λ_x ovviamente bilineare allora il prodotto tensoriale induce la mappa lineare:

$$\overline{\lambda_x}: N \otimes L \to (M \otimes N) \otimes L$$

Allora posso definire la mappa

$$g: M \times (N \otimes L) \longrightarrow (M \otimes N) \otimes L$$

 $(x, \alpha) \longmapsto \overline{\lambda_x}(\alpha)$

Essendo anche g ovviamente bilineare, il prodotto tensoriale induce la mappa lineare:

$$\bar{q}: M \otimes (N \otimes L) \to (M \otimes N) \otimes L$$

la quale rispetta la condizione richiesta nella proposizione. Possiamo costruire nello stesso modo:

$$\bar{g'}: (M \otimes N) \otimes L \to M \otimes (N \otimes L)$$

e ovviamente $\bar{g'}$ è l'inversa di \bar{g} e viceversa, quindi \bar{g} è un isomorfismo. Inoltre dato che gli elementi $(x \otimes y) \otimes z$ generano $M \otimes (N \otimes L)$ ovviamente l'unicità dell'isomorfismo è dimostrata.

Corollario 1.3.1. Siano M,N,L A-moduli, allora esiste un unico isomorfismo

$$M \otimes N \otimes L \to (M \otimes N) \otimes L$$

tale che per ogni $x \in M, y \in N, z \in L$ valga che $x \otimes y \otimes z \mapsto (x \otimes y) \otimes z$.

Dimostrazione. Se esiste l'isomorfismo è unico perchè è definito sui generatori degli A-moduli. Per l'esistenza considero la mappa

$$f: M \times N \times L \longrightarrow (M \otimes N) \otimes L$$

 $(x, y, z) \longmapsto (x \otimes y) \otimes z$

allora il prodotto tensoriale induce una mappa lineare tale $\bar{f}: M \times N \times L \to (M \otimes N) \otimes L$. Posso costruire poi la mappa lineare inversa ripetendo la costruzione della proposizione precedente. Quindi \bar{f} è biettiva, perciò abbiamo trovato l'isomorfismo desiderato.

Questa tecnica di costruzione di mappe multilineari su cui indurre mappe tra prodotti tensoriali può essere utilizzata per dimostrare altri isomorfismi tra Amoduli, i quali sono detti "isomorfismi canonici" che seguentemente enunceremo.

Proposizione 1.3.2 (commutatività). Se M,N sono A-moduli esiste un unico isomorfismo

$$M \otimes N \to N \otimes M$$

tale che per ogni $x \in M$, $y \in N$ allora $x \otimes y \mapsto y \otimes x$.

Dimostrazione. La mappa

$$f: M \times N \longrightarrow N \otimes M$$

 $(x,y) \longmapsto y \otimes x$

è ovviamente bilineare, allora induce la mappa $\bar{f}: M \otimes N \to N \otimes M$ che manda $x \otimes y$ in $y \otimes x$. Questa mappa è ovviamente invertibile, quindi biettiva, quindi è un isomorfismo. L'unicità è ovvia perchè $y \otimes x$ genera $N \otimes M$.

Osservazione. Se M A-modulo ovviamente esiste anche un isomorfismo canonico tra $A \otimes M$ e M, infatti dato $A \otimes M \ni u = \sum_{i \in I} a_i \otimes x_i = \sum_{i \in I} a_i (1 \otimes x_i) = \sum_{i \in I} 1 \otimes (a_i x_i) = 1 \otimes (\sum_{i \in I} a_i x_i)$ e dato che I finito allora $\sum_{i \in I} a_i x_i \in M$.

Proposizione 1.3.3. Se M è un A-modulo, L un B-modulo e N un (A,B)-modulo. Allora

$$M \otimes_A (N \otimes_B L) \simeq (M \otimes_A N) \otimes_B L$$
 (1.3)

Dimostrazione. Dato $m \in M$ definisco la mappa

$$\lambda_m: N \times L \longrightarrow (M \otimes_A N) \otimes_B L$$
$$(y, z) \longmapsto (m \otimes_A y) \otimes_B z$$

essendo λ_m ovviamente B-bilineare 2 allora il prodotto tensoriale induce la mappa lineare:

$$\overline{\lambda_m}: N \otimes_B L \to (M \otimes_A N) \otimes_B L$$

Allora posso definire la mappa

$$g: M \times (N \otimes_B L) \longrightarrow (M \otimes_A N) \otimes_B L$$

 $(m, \alpha) \longmapsto \overline{\lambda_m}(\alpha)$

Essendo g ovviamente A-bilineare³, il prodotto tensoriale induce la mappa lineare:

$$\bar{q}: M \otimes_A (N \otimes_B L) \to (M \otimes_A N) \otimes_B L$$

Da qui possiamo procedere come nella proposizione 1.3.1 per terminare la dimostrazione. $\hfill\Box$

 $^{^2}$ Infatti $M\otimes_A N$ ha una struttura di B-modulo naturale indotta da quella di N : $b(m\otimes_A n)=m\otimes_A bn$

Funzionali tensoriali

Dati $\{E_i\}_{i=1}^n$ e $\{E_i'\}_{i=1}^n$ famiglie di A-moduli e date mappe lineari : $f_i: E_i \to E_i'$ per i=1,...,n possiamo indurre una mappa sul prodotto dei moduli ¹:

$$\prod f: \prod E_i \longrightarrow \prod E'_i$$
$$(x_i)_i \longmapsto (f_i(x_i))_i$$

Se poi componiamo $\prod f$ con la la mappa canonica nel prodotto tensoriale $\bigotimes_{i=1}^n E_i'$ allora otteniamo una mappa indotta tra i prodotti tensoriali delle due famiglie di moduli, indicata con $T(f_1, ..., f_n)$, che fa commutare il seguente diagramma:

$$E_1 \times \ldots \times E_n \longrightarrow E_1 \otimes \ldots \otimes E_n$$

$$\prod f_i \downarrow \qquad \qquad \downarrow^{T(f_1, \ldots, f_n)}$$

$$E'_1 \times \ldots \times E'_n \longrightarrow E'_1 \otimes \ldots \otimes E'_n$$

Si nota che $T(f_1,...,f_n)$ è l'unica mappa multilineare tale che per ogni elemento di $\bigotimes_{i=1}^n E_i$ vale $x_1 \otimes ... \otimes x_n \mapsto f_1(x_1) \otimes ... \otimes f_n(x_n)$, infatti per multi-linearità definiscono ogni elemento del dominio.

Se abbiamo poi delle classi di funzioni A-lineari composte $f_i \circ g_i$ allora vale che $T(f_1 \circ g_1,...,f_n \circ g_n) = T(f_1,...,f_n) \circ T(g_1,...,g_n)$ e ovviamente vale T(id,...,id) = id. Possiamo allora vedere T come una funzione multi-lineare:

$$\prod_{i=1}^{n} Hom(E_i, E_i') \to Hom\left(\bigotimes_{i=1}^{n} E_i, \bigotimes_{i=1}^{n} E_i'\right)$$

Teorema 2.0.1. Siano L,M,N A-moduli e sia $Hom^2(L,M;N)$ l'insieme delle mappe bilineari da $L \times M \to N$. Allora sono isomorfi:

$$Hom(L, Hom(M, N)) \simeq Hom^2(L, M; N) \simeq Hom(L \otimes M, N)$$

Dimostrazione. • $Hom(L, Hom(M, N)) \leftrightarrow Hom^2(L, M; N)$: sia $f: L \times M \to N$ una mappa bilineare allora dato $x \in L$ la funzione $f_x: M \to N$ che manda $y \mapsto f(x, y)$ è ovviamente lineare. Inoltre dalla bilinearità di f

 $^{^1\}mathrm{Si}$ noti che questa mappa non è lineare, tranne che nei casi banali

segue che la mappa $x \mapsto f_x$ è lineare. Ho quindi un operatore lineare τ da $Hom^2(L,M;N) \to Hom(L,Hom(M,N))$. Dato un omomorfismo lineare $\phi: L \to Hom(M,N)$ posso ottenere una mappa bilineare:

$$\overline{\phi}: L \times M \longrightarrow N$$
 $(x,y) \longmapsto \phi(x)(y)$

Ho quindi un operatore lineare μ da $Hom(L, Hom(M, N)) \to Hom^2(L, M; N)$. Ovviamente μ è l'inversa di τ . Quindi τ è un isomorfismo (lineare e biettivo).

• $Hom^2(L,M;N) \leftrightarrow Hom(L\otimes M,N)$: sia $f:L\times M\to N$ una mappa bilineare, e considero la mappa $f\to \bar f$ dove quest'ultima è la mappa lineare indotta dal prodotto tensoriale. $\bar f$ è unica per le proprietà del prodotto tensoriale, quindi $f\to \bar f$ è iniettiva. La suriettività segue invece dal fatto che la proiezione $L\times M\to L\otimes M$ composta a $\bar f$ è uguale a f (come si vede nella proposizione 1.1.1). Ho quindi l'isomorfismo cercato.

2.1 Proprietà

Proposizione 2.1.1. Sia E la somma diretta di A-moduli $E = \bigoplus_{i=1}^{n} E_i$ e F A-modulo, allora abbiamo un isomorfismo canonico:

$$F \otimes E \leftrightarrow \bigoplus_{i=1}^{n} (F \otimes E_i)$$

Dimostrazione. La dimostrazione verrà data per il caso n=2, si può poi benissimo ripetere per il caso n generico o generalizzare per induzione. Definiamo la mappa bilineare:

$$\phi: F \times (E_1 \oplus E_2) \longrightarrow (F \otimes E_1) \oplus (F \otimes E_2)$$
$$(y, (x_1, x_2)) \longmapsto (y \otimes x_1, y \otimes x_2)$$

La bilinearità si verifica semplicemente sfruttando la linearità del prodotto tensoriale. Possiamo quindi indurre una mappa $\phi': F \otimes (E_1 \oplus E_2) \to (F \otimes E_1) \oplus (F \otimes E_2)$ che manda $y \otimes (x_1, x_2) \mapsto (y \otimes x_1, y \otimes x_2)$.

Per trovare un morfismo nell'altro verso usiamo la proprietà universale della somma diretta: definiamo due mappe $\psi_i: F \times E_i \to F \otimes (E_1 \oplus E_2)$ che mandano $(y, x_1) \mapsto y \otimes (x_1, 0)$ e $(y, x_2) \mapsto y \otimes (0, x_2)$ dalle quali possiamo indurre i morfismi dai prodotti tensoriali ψ_1' e ψ_2' . Se queste ultime mappe possiamo

infine usare la proprietà universale della somma diretta e ottenere ψ :

dove ψ manda $(y_1 \otimes x_1, y_2 \otimes x_2) \mapsto y_1 \otimes (x_1, 0) + y_2 \otimes (0, x_2)$. Si verifica immediatamente che ψ e ϕ' sono una l'inversa dell'altra provando sui generatori.

Osservazione. Sfruttando il fatto che per ogni elemento di $\bigoplus_{i\in I} E_i$ esiste $S\subset I$ finito per il quale possiamo costruire la sequenza che lo manda in $\bigoplus_{i\in I} (F\otimes E_i)$:

$$F \otimes \bigoplus_{i \in S} E_i \to \bigoplus_{i \in S} (F \otimes E_i) \hookrightarrow \bigoplus_{i \in I} (F \otimes E_i)$$

possiamo generalizzare la proposizione 2.1.1 al caso in cui la somma diretta sia su un insieme I generico, costruendo prima l'equivalente di ϕ' e poi di ψ , avendo quindi:

Corollario 2.1.1. Dato un insieme di indici I qualunque abbiamo un isomorfismo canonico:

$$F \otimes (\bigoplus_{i \in I} E_i) \leftrightarrow \bigoplus_{i \in I} (F \otimes E_i)$$

Proposizione 2.1.2. Sia E modulo libero sull'anello A, con base $\{v_i\}_{i\in I}$ allora ogni elemento di $F\otimes E$ ha una scrittura unica come:

$$\sum_{i \in I} y_i \otimes v_i \ dove \ y_i \in F$$

 $e y_i = 0 per quasi tutti gli i.$

Dimostrazione. Possiamo ridurci a dimostrarlo nel caso |I|=1 e poi usare il corollario 2.1.1 per generalizzare.

Abbiamo che E è modulo libero di dimensione 1 con base $\{v\}$. Definisco la mappa da $F \times E \to F$ che manda $(y,av) \mapsto (ay,v)$ dalla quale induco la mappa $F \otimes E \to F$.

Corollario 2.1.2. Dati due moduli E,F liberi su A con basi $\{e_i\}_{i\in I}$ e $\{f_j\}_{j\in J}$ allora $E\otimes F$ è libero su A con base $\{e_i\otimes f_j\}_{(I,J)\in I\times J}$ e $\dim(E\otimes F)=\dim E\dim F$

Proposizione 2.1.3. Siano E,F moduli liberi, di dimensione finita su A abbiamo un unico isomorfismo

$$End_A(E) \otimes End_A(F) \rightarrow End_A(E \otimes F)$$

il quale è l'unica mappa A-lineare tale che $f \otimes g \mapsto T(f,g)$

Dimostrazione. Se E è un modulo libero allora End(E) è un modulo libero, infatti se una base di E è $\{e_i\}_{i\in I}$ allora se definisco

$$f_{i,i'}: E \longrightarrow E$$

$$e_j \longmapsto \delta_{i,j} \sum_{k \in I} \delta_{k,i'} e_{i'}$$

segue banalmente che $\{f_{i,i'}\}_{(i,i')\in I^2}$ è una base di End(E). Infatti la mappa $f_{i,i'}$ manda $e_i\mapsto e_{i'}$ e ogni altro vettore della base in 0. Possiamo costruire similmente una base $\{g_{j,j'}\}_{(j,j')\in J^2}$. Dato che dal corollario 2.1.2 sappiamo che (usando le stesse notazioni) $\{e_i\otimes f_j\}_{(I,J)\in I\times J}$ è una base di $E\otimes F$ allora possiamo costruire similmente una base di $End(E\otimes F)$. Dato che

$$T(f_{(i,i')}, g_{(j,j')})(e_v \otimes f_w) = \begin{cases} e_{i'} \otimes f_{j'} & (v,w) = (i,j) \\ 0 & (v,w) \neq (i,j) \end{cases}$$

2.2 Esattezza del prodotto tensoriale

Lemma 2.2.1. Siano M,N,F A-moduli, $g:M\to N$ una funzione lineare suriettiva. Allora $1\otimes g:F\otimes M\to F\otimes N$ è suriettiva

Dimostrazione. Dati $y \in F$ e $x \in N$ qualsiasi per la suriettività di g esiste $\bar{x} \in M$ tale che $g(\bar{x}) = x$ allora $1 \otimes g$ manda $y \otimes \bar{x}$ in $y \otimes x$. Dato che questi ultimi al variare di y e x generano $F \otimes N$ ho la suriettività.

Proposizione 2.2.1. Sia

$$E_1 \xrightarrow{f} E_2 \xrightarrow{g} E_3 \longrightarrow 0$$

una sequenza esatta di A-moduli e F un modulo qualsiasi, allora la sequenza indotta:

$$F \otimes E_1 \xrightarrow{1 \otimes f} F \otimes E_2 \xrightarrow{1 \otimes g} F \otimes E_3 \longrightarrow 0$$

è esatta (dove 1 indica la mappa identità)

Dimostrazione. • Suriettività di $1 \otimes g$: Basta usare il lemma 2.2.1.

- $Ker(1 \otimes g) \supset Im(1 \otimes f)$: ovviamente l'immagine di $1 \otimes f$ è generata da $\{y \otimes f(x) | y \in F, x \in E_1\}$ e dato che Ker(g) = Im(f) allora $(1 \otimes g)(y \otimes f(x)) = y \otimes 0 = 0$ allora $Ker(1 \otimes g)$ contiene i generatori di $Im(1 \otimes f)$, quindi segue l'identità che volevamo dimostrare.
- $Ker(1 \otimes g) \subset Im(1 \otimes f)$: Sia $I := Im(1 \otimes f)$ allora posso indurre la mappa:

$$\overline{1 \otimes g} : (F \otimes E_2)/I \to F \otimes E_3$$

e dato che $I \subset Ker(1 \otimes g)$ è ben definita. Posso definire la mappa $\phi : F \times E_3 \to (F \otimes E_2)/I$ tale che manda $y \otimes x_3$ in $y \otimes x_3 \mod(I)$ dove $x_2 \in g^{-1}(x_3)$ (so che $g^{-1}(x_3) \neq \phi$ perchè g è suriettiva). La mappa è ben definita, infatti siano $x_2, x_2' \in g^{-1}(x_3)$ allora $0 = x_3 - x_3 = g(x_2) - g(x_2') = g(x_2 - x_2') \Longrightarrow$

 $x_2 - x_2' \in Ker(g) = Im(f) \Longrightarrow y \otimes x_2 - y \otimes x_2' = y \otimes (x_2 - x_2') \in I$. Dato che ϕ è ovviamente bilineare posso passare al prodotto tensoriale e ottenere la mappa:

$$\overline{\phi}: F \times E_3 \to (F \otimes E_2)/I$$

Per la quale vale ovviamente che $\overline{\phi} \circ \overline{1 \otimes g} = Id^2$, ma allora $\overline{1 \otimes g}$ deve essere iniettiva, quindi $Ker(\overline{1 \otimes g}) = \{0\} \Longrightarrow Ker(1 \otimes g) \subset Im(1 \otimes f)$. Combinando questi risultati abbiamo la tesi.

Osservazione. Anche se la sequenza

$$E_1 \xrightarrow{f} E_2 \xrightarrow{g} E_3$$

è esatta non è sempre vero che la sequenza

$$F \otimes E_1 \xrightarrow{1 \otimes f} F \otimes E_2 \xrightarrow{1 \otimes g} F \otimes E_3$$

è esatta. Infatti se A = \mathbb{Z} la sequenza $0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z}$ dove la seconda mappa è $x \mapsto 2x$ è ovviamente esatta (cioè iniettiva in questo caso), però la sequenza $0 \to \mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z} \xrightarrow{1 \otimes f} \mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}$ non lo è, infatti:

$$(1 \otimes f)(y \otimes x) = y \otimes 2x = 2y \otimes x = 0 \otimes x = 0$$

per ogni $y \in \mathbb{Z}/2\mathbb{Z}$ e $x \in \mathbb{Z}$, quindi non può essere iniettiva. Esistono invece alcuni moduli particolari per cui questo è sempre vero e sono detti moduli piatti.

²Dato che vale su un sistema di generatori del dominio, vale per ogni elemento del dominio

Moduli piatti (Flat modules)

Teorema 3.0.1. Dato un modulo F le seguenti condizioni sono equivalenti

H1 Se una sequenza di A-moduli qualsiasi $L \to M \to N$ è esatta lo è anche $F \otimes L \to F \otimes M \to F \otimes N$ (cioè F è un A-modulo piatto)

H2 Se una sequenza di A-moduli qualsiasi $0 \to L \to M \to N \to 0$ è esatta lo è anche $0 \to F \otimes L \to F \otimes M \to F \otimes N \to 0$

H3 Se una sequenza di A-moduli qualsiasi $0 \to L \to M$ è esatta (cioè $L \to M$ è iniettiva) lo è anche $0 \to F \otimes L \to F \otimes M$ (cioè $F \otimes L \to F \otimes M$ è iniettiva)

Dimostrazione. • H1 \Rightarrow H2 è ovvia, basta dividere la sequenza lunga in sequenze più corte.

- H2 \Rightarrow H1 data una sequenza $L \xrightarrow{f} M \xrightarrow{g} N$ esatta possiamo ottenere la sequenza $0 \to L/Ker(f) \xrightarrow{f'} M \xrightarrow{g'} Im(g) \to 0$. Questa sequenza è esatta perchè ovviamente f' è iniettiva, g' suriettiva e Im(f') = Im(f) = Ker(g) = Ker(g'); allora abbiamo da H2 che $Ker(1 \otimes g') = Im(1 \otimes f')$. Dato che per ogni $x \in M$ g'(x) = g(x) allora anche per ogni $y \in F \otimes M$ $(1 \otimes g')(y) = (1 \otimes g)(y)$ quindi i nuclei delle due mappe sono uguali. Ovviamente dato che $(1 \otimes f')(x \otimes \overline{y}) = (1 \otimes f)(x \otimes y)$ anche le immagini delle due funzioni sono le stesse: quindi $Ker(1 \otimes g) = Ker(1 \otimes g') = Im(1 \otimes f') = Im(1 \otimes f)$.
- H2 \Rightarrow H3 è ovvia, basta ricondursi alla sequenza 0 \rightarrow $L \xrightarrow{f} M \twoheadrightarrow M/Im(f) \rightarrow 0$
- H3 \Rightarrow H2 data la sequenza $0 \to L \to M \to N \to 0$, basta dividerla nelle sequenze $0 \to L \to M$ (su cui usiamo H3) e $L \to M \to N \to 0$ (su cui usiamo la proposizione 2.2.1). Quindi le sequenze $0 \to F \otimes L \to F \otimes M$ e $F \otimes L \to F \otimes M \to F \otimes N \to 0$ sono esatte, lo è quindi anche $0 \to F \otimes L \to F \otimes M \to F \otimes N \to 0$.

Corollario 3.0.1. Possiamo indebolire l'ipotesi H3 richiedendo che i due moduli L,M siano finitamente generati

Dimostrazione. Siano L,M moduli qualsiasi e $f:L\to M$ un'applicazione lineare iniettiva. Voglio dimostrare che $1\otimes f:F\otimes L\to F\otimes M$ è iniettiva. Sia $u=\sum_{i=1}^n y_i\otimes x_i\in Ker(1\otimes f)$ (quindi $(1\otimes f)(u)=\sum_{i=1}^n y_i\otimes f(x_i)=0)$, sia allora $U\subset L$ il modulo generato dagli x_i , dato che sono finiti U è finitamente generato e lo è anche V=f(U). Ovviamente $u\in U$. Dato che f iniettiva anche $f|_U:U\to V$ lo è (è una sua restrizione). Dato che U,V sono finitamente generati anche $1\otimes f|_U:F\otimes U\to F\otimes V$ è iniettiva. Ma allora dato che $(1\otimes f|_U)(u)=\sum_{i=1}^n y_i\otimes f_U(x_i)=\sum_{i=1}^n y_i\otimes f(x_i)=0$ deve essere u=0, quindi $Ker(1\otimes f)=0$.

Esempi. A è un A-modulo piatto. Se $A = \{0\}$ è banale, altrimenti data $f: L \to M$ iniettiva, sia $Ker(1 \otimes f) \ni u = \sum a_i \otimes x_i = \sum 1 \otimes a_i x_i = 1 \otimes \sum a_i x_i$, allora $(1 \otimes f)(u) = 1 \otimes f(\sum a_i x_i) = 0$, dato che $0 \neq 1$ bisogna che $f(\sum a_i x_i) = 0$, dato che f iniettiva $\sum a_i x_i = 0$, ma allora u = 0, quindi $Ker(1 \otimes f) = \{0\}$, quindi $1 \otimes f$ è iniettiva.

Se (B,ϕ) è una A-algebra e F un A-modulo piatto allora $F_B=F\otimes_A B$ è un B-modulo piatto.

Dimostrazione. Siano L,M due B-moduli e sia $f:L\to M$ B-lineare e iniettiva. Allora $1_B\otimes_B f:B\otimes_B L\to B\otimes_B M$ è iniettiva perchè B è B-modulo piatto. Dato che (B,ϕ) è una A-algebra B ha una struttura naturale di A-modulo, ma allora anche $B\otimes_B L$ e $B\otimes_B M$ la ereditano. Allora dato che F è A-modulo piatto $1_F\otimes_A (1_B\otimes_B f):F\otimes_A (B\otimes_B L)\to F\otimes_A (B\otimes_B M)$ è iniettiva. Usando la proposizione 1.3.3 posso ottenere $(1_F\otimes_A 1_B)\otimes_B f:(F\otimes_A B)\otimes_B L\to (F\otimes_A B)\otimes_B M$ da $1_F\otimes_A (1_B\otimes_B f)$ con composizioni di isomorfismi, allora $(1_F\otimes_A 1_B)\otimes_B f$ è iniettiva.

Osservazione. Essere un modulo piatto dipende dall'anello di definizione dei moduli, infatti come abbiamo visto $\mathbb{Z}/2\mathbb{Z}$ non è un \mathbb{Z} -modulo piatto, ma un $\mathbb{Z}/2\mathbb{Z}$ -modulo piatto sì.

Prodotto tensoriale di Algebre

Siano (B, ϕ) e (C, ψ) due A-algebre e sia $T = B \otimes_A C$ il prodotto tensoriale tra B e \mathbb{C}^1 . Posso definire la mappa multilineare

$$\mu: B \times C \times B \times C \longrightarrow T$$
$$(b, c, b', c') \longmapsto bb' \otimes cc'$$

Se fisso $(b,c) \in B \times C$ $\mu(b,c,\cdot,\cdot): B \times C \to T$ è bilineare, allora posso indurre la mappa $\bar{\mu}(b,c,\cdot): B \otimes C \to T$, se ora fisso $t \in T$ ho $\mu(\cdot,\cdot,t): B \times C \to T$ bilineare, posso indurre quindi la mappa $\mu^*: B \otimes C \times B \otimes C \to B \otimes C$ tale che sui generatori di T vale: $(b \otimes c, b' \otimes c') \mapsto bb' \otimes cc'$. μ^* è una operazione su T ben definita.

Teorema 4.0.1. T con la somma dovuta alla sua struttura di A-modulo e con moltiplicazione l'operazione μ è un anello commutativo con unità $1_B \times 1_C^2$.

Dimostrazione. (T,+) è un gruppo abeliano per costruzione. Per la moltiplicazione dimostreremo le proprietà sui generatori di T, e seguiranno direttamente su tutto T. L'associatività, la commutatività e la distibutività derivano direttamente dall'associatività e la commutatività di B e C. Infatti

$$((b \otimes c)(b' \otimes c'))(b'' \otimes c'') = (bb' \otimes cc')(b'' \otimes c'') = (bb')b'' \otimes (cc')c'' = b(b'b'') \otimes c(c'c'') = (b \otimes c)(b'b'' \otimes c'c'') = (b \otimes c)((b' \otimes c')(b'' \otimes c''))$$

E la dimostrazione è identica per la commutatività e la distributività. l'unità è $1_B \times 1_C$, infatti $(b \otimes c)(1 \otimes 1) = b1 \otimes c1 = b \otimes c$.

Posso inoltre dare a T la struttura di A-algebra indotta dalla funzione

$$\pi: A \longrightarrow T$$
$$a \longmapsto \phi(a) \otimes \psi(b)$$

 $^{^{-1}{\}rm B}$ e C hanno una struttura naturale di A-modulo: se $a\in A,b\in B$ posso definire $a\cdot b:=f(a)b$

 $^{^{2}\}mathrm{per}$ semplicità indicheremo d'ora in poi l'unità con 1

 π è un omomorfismo, infatti $\pi(a+b)=\pi(a)+\pi(b)$ è banale dato che ϕ e ψ sono omorfismi, mentre $\pi(ab)=\phi(ab)\otimes\psi(ab)=\phi(a)\phi(b)\otimes\psi(a)\psi(b)=\mu(\phi(a)\otimes\psi(b),\phi(a)\otimes\psi(b))=\pi(a)\pi(b)$.

 $\mu(\phi(a) \otimes \psi(b), \phi(a) \otimes \psi(b)) = \pi(a)\pi(b)$. Inoltre se definisco $i_B: B \times T$ $b \mapsto b \times 1$ e $i_C: C \times T$ $c \mapsto 1 \times c$ il seguente diagramma è commutativo:

Infatti se $a \in A$ ho $i_B \circ \phi(a) = i_B(\phi(a)) = \phi(a) \otimes 1 = (a \cdot 1) \otimes 1 = a(1 \otimes 1) = 1 \otimes (a \cdot 1) = 1 \otimes \psi(a) = i_C(\psi(a)) = i_C \circ \psi(a)$

Bibliografia

- [1] M. F. Atiyah e I. G. MacDonald. *Introduction to Commutative Algebra*. New York: Addison-Wesley Publishing Company, 2002.
- [2] Serge Lang. Algebra. New York: Springer, 2002.