CONTENTS

<u>TI</u>	<u>rle </u>	PAGE.NO
L	ist of Figures	
A	bstract	
1. INTRODUCTION		1
1.1	Overview	1
1.2	Brain Anatomy	1
1.3	Brain Tumor	2
1.4	Classification of Brain Tumor	3
1.5	Motivation for work	4
1.6	Purpose	6
2.	LITERATURE SURVEY	7-15
2.1	Problem Statement	16
2.2	Existing System	17
2.3	Disadvantages of the Existing System	17
2.4	Proposed System	17
2.5	Advantages Of Proposed System	18
3.	CHALLENGES IN TUMOR CLASSIFICATION	19
4.	SOFTWARE HARDWARE REQUIREMENTS	20
5.	METHODOLOGY	22
5.1	Machine learning life cycle	22
5.2	Architecture	23
5.3	Methods of methodology	23
	5.3.1 Data gathering	24

12.	REFERENCES	60
11.	CONCLUSION AND FUTURE WORKS	58-59
10.	MODULES	57
9.	OUTPUTS	55-56
8.	CODE	52-54
	7.5.1 CNN Algorithm	50 - 51
	Convolutional Neural Network (CNN)	37 - 50
7.4	Types of Neural Networks	35
7.3	Using Neural Networks for Images	34
7.2	Artificial Neural Network	33
7.1	Neuron	32
7.	DEEP LEARNING	32
6.3	K-Means Clustering	31
6.2	Image pre-processing	29
6.1	Need for dataset	28
6.	DATASET	27
	5.3.7 Deployment	26
	5.3.6 Test Model	26
	5.3.5 Train Model	26
	5.3.4 Data Analyze	25
	5.3.3 Data wrangling	25
	5.3.2 Data Preparation	24

LIST OF FIGURES

NO.	NAME	PAGI
Figure – 1.1	Benign Tumor (left) and Malignant Tumor (Right)	3
Figure – 1.2	New cases and survival rate caused by brain tumor	5
Figure – 3.1	Location of tumors in eight different images.	19
Figure – 5.1	Machine learning life cycle	22
Figure – 5.2	Architecture	23
Figure – 6.1	Dataset	27
Figure – 6.2	Dataset Division into training and testing sets	28
Figure – 6.3	Image Segmentation	30
Figure – 6.4	Segmentation Using K-Means Clustering	31
Figure – 7.1	Basic structure of a neuron	32
Figure – 7.2	A simple Artificial Neural Network	33
Figure – 7.3	Hidden layers in neural networks	38
Figure – 7.4	represents the convolution operation.	39
Figure – 7.5	Convolution Operation of CNN	41
Figure – 7.6	Depth changing from 3 to 32 using 32 filters	42
Figure – 7.7	shows that a 2*2 filter moves along the input size of	42
	4*4 through width and height when the stride is 1	
Figure – 7.8	Zero-padding of an input (padding amount = 1)	43
Figure – 7.9	Fully Connected Layer of CNN	44

Figure – 7.10	Before(left) and after(right) applying activation function	45
Figure – 7.11	Curve of Sigmoid Function	45
Figure – 7.12	Curve of tanh Function	46
Figure – 7.13	Curve of ReLU Function	47
Figure – 7.14	Network before and after	48
Figure – 7.15	A Neural Network before and after Batch Normalization	49
Figure – 8	Output 1	55
Figure – 9	Output 2	55
Figure – 10	GUI of the site (Frontend output)	56

ABSTRACT

Data processing and learning have become a spearhead for the advancement of medicine, with pathology and laboratory medicine as no exception. The incorporation of scientific research through clinical informatics, including genomics, proteomics, bioinformatics, and biostatistics, into clinical practice, unlocks innovative approaches to patient care. The rise of Artificial Intelligence (AI) and Deep Learning (DL) techniques and their applications in various fields have brought immense value in providing insights into advancement in support of medical pathology. In this project, Deep Learning models are proposed for classifying these pathologies, including Convolutional neural networks (CNN). To test and improve the CNN model accuracy Transfer Learning (TL) is used. The analysis is done by training, validating, and testing data. Depending upon the analysis of data by applying the CNN algorithm pathosis is measured. Deep Learning, unlocked through information integration and advanced digital communication networks, has the potential to improve clinical workflow efficiency, and diagnostic quality, and ultimately create personalized diagnoses and treatment plans for patients. This review describes clinical perspectives and discusses the statistical methods, clinical applications, potential obstacles, and future directions of medical pathology using AI and DL.