

UNIVERSIDAD DE GRANADA

Práctica 1.b:

Técnicas de Búsqueda Local y Algoritmos Greedy para el Problema del Aprendizaje de Pesos en Características (APC)

Brao Aissaoni, Isaac Grupo de prácticas 3 Jueves(17:30-19:30)

Índice

(APC)(APC)	
2. Funciones comunes a ambos algoritmos	
2.1 Codificación de los datos del problema	
2.1.1 Representación del problema	
2.1.2 Representación de la solución	
2.2 Función objetivo	
2.3 Cálculo de distancias	5
2.4 Cálculo de la tasa de clasificación	6
2.5 Lectura, preprocesamiento de datos y Five Cross Validation	7
2.5.1 Five Cross Validation	
2.5.2 Normalización de los datos con un escalado MinMax	9
3. Algoritmo Greedy	9
3.1 Obtención de pesos mediante el método Relief	9
3.2 Obtención de los amigos y enemigos	10
3.2.1 Obtención de amigos	10
3.2.2 Obtención de enemigos	10
4. Algoritmo de Búsqueda Local	11
4.1 Obtención de los pesos mediante la Búsqueda Local	11
4.2 Generación de vecinos	12
5. Procedimiento de desarrollo de la práctica	12
5.1 Software utilizado para el desarrollo del código fuente	12
5.2 Manual de usuario	12
5.3 Consideraciones a tener en cuenta	13
6. Experimentos y análisis de los resultados	
6.1 Experimentos y resultados	14
6.1.1 1NN	
6.1.1.1 Ecoli	
6.1.1.2 Parkinsons	
6.1.1.3 Breast Cancer	
6.1.2 Greedy Relief	
6.1.2.1 Ecoli	
6.1.2.2 Parkinsons	
6.1.2.3 Breast Cancer	
6.1.3 BL	
6.1.3.1 Ecoli	
6.1.3.2 Parkinsons	
6.1.3.3 Breast Cancer	
6.1.4 Medias	
6.2 Análisis de resultados	19

Descripción del problema: Problema del Aprendizaje de Pesos en Características (APC)

El problema consiste en la realización de la clasificación de datos en clases que ya son conocidas. La pertenencia de cada dato a una clase ya se conoce a priori.

El objetivo es que el modelo de clasificación sea capaz de clasificar los datos correctamente con un error mínimo, además de aprender la importancia de cada característica que describe a los datos. Para ello debe asignar distinta importancia a cada característica a la que le es asignada un peso distinto, el cual se tendrá en cuenta al momento de clasificar.

2. Funciones comunes a ambos algoritmos

2.1 Codificación de los datos del problema

2.1.1 Representación del problema

El problema se representa con 5 matrices n_ixm donde n_i es el número de datos de cada partición del problema y m es el número de característica.

$$X_i = \begin{pmatrix} x_{i11} & \cdots & x_{i1m} \\ \cdots & \cdots & \\ x_{in_i1} & \cdots & x_{in_im} \end{pmatrix}$$

Donde i corresponde al número de la partición.

2.1.2 Representación de la solución

Los pesos están representados en un vector de tamaño m donde m es el número de características

$$W_i = (W_{i1} \cdots W_{im})$$

Donde i corresponde al número de la partición.

2.2 Función objetivo

La función fitness tendrá en cuenta la tasa de acierto sobre el conjunto de entrenamiento y la tasa de reducción de los pesos. Buscamos maximizar el fitness.

```
fitness = \alpha · %aciertos + (1 - \alpha) · %reducción donde \alpha = 0.75 en los problemas
```

```
1 def fitness(X train, y train, X test, y test, pesos, alfa=0.75):
           predicciones = clasificador1NN(X_train, y_train, X_test, pesos)
           aciertos = accuracy(y_test, predicciones)
           tasa_red = tasa_reduccion(pesos)
           return alfa*aciertos + (1-alfa)*tasa_red
  1 def tasa_reduccion(pesos):
  2
         cont = 0
  3
         for p in pesos:
  4
           if p >= 0.1:
  5
                  cont += 1
  6
        return 100*(cont / len(pesos))
   1 def accuracy(y_true, y_pred):
         correctos = 0
   3
   4
         for i in range(len(y_true)):
   5
              if y_true[i] == y_pred[i]:
   6
                   correctos += 1
   7
         return correctos / len(y_true)
1 def clasificador1NN(X_train, y_test, X_test, pesos=None, k=1):
     # Inicializar pesos a 1 si no se especifican simulando un KNN normal
     if pesos is None:
        pesos = []
5
        for i in range(n_columnas(X_train)):
            pesos.append(1)
8
     predictions = np.array(n_columnas(X_test), dtype=str)
10
     # Calcular matriz de distancias
11
     for i in range(n_filas(X_test)):
         distancias = np.zeros(n_filas(X_train))
         for j in range(n_filas(X_train)):
13
14
             distancias[j] = distanciaEuclidiana(X_test[i], X_train[j], pesos)
         indices_ord = ordenarPorDistancia(distancias, eje='fila')
16
18
         # Si elegimos el numero 1, el vecino más cercano es el segundo porque el primero es el mismo
19
         indice_cercano = indices_ord[1]
21
         # Asignar la clase del vecino más cercano
22
         clase = y_test[indice_cercano]
         # Asignar la clase al conjunto de predicciones
24
25
         predictions[i] = clase
     return predictions
```

2.3 Cálculo de distancias

Usamos la distancia euclídea con pesos en el BL y Greedy. Para el clasificador 1NN estándar ignoramos los pesos, es decir ponemos todos los pesos a 1.

$$d(A,B) = \sqrt{\sum_i w_i (A_i - B_i)^2},$$

```
1 def distanciaEuclidiana(x1, x2, pesos):
       suma = 0
       for i in range(n_columnas(x1)):
3
           # Si el peso es menor o igual a 0.1, no se tiene en cuenta
           if pesos[i] <= 0.1:</pre>
5
               continue
6
7
           diff = x1[i] - x2[i]
8
           diff = diff ** 2
9
           suma += diff * pesos[i]
10
11
12
     return sqrt(suma)
13
14 def matrizCuadradaDistancias(X, pesos):
       distancias = np.zeros((n_filas(X), n_filas(X)))
15
16
       for i in range(n_filas(X)):
17
18
           for j in range(n_filas(X)):
19
               distancias[i][j] = distanciaEuclidiana(X[i], X[j], pesos)
20
21
     return distancias
```

2.4 Cálculo de la tasa de clasificación

```
1 def tasa_clasificacion(X, y, pesos):
      # Calcular matriz de distancias
3
      distancias = matrizCuadradaDistancias(X, pesos)
4
      # Ordenar indices de distancias
5
      indices_ord = ordenarPorDistancia(distancias, eje='fila')
6
      # Inicializar tasa de clasificacion
7
8
      tasa_clasificacion = 0
9
10
      for i in range(n_filas(X)):
          # Como los indices_ord estan ordenados, el mas cercano es el primero
11
          # Hay que ignorar el indice 0 porque es el mismo
12
13
          mas_cercano = indices_ord[i][1]
14
15
          if y[i] == y[mas_cercano]:
16
              tasa_clasificacion += 1
17
18
      return 100*(tasa_clasificacion / n_filas(X))
```

2.5 Lectura, preprocesamiento de datos y Five Cross Validation

```
1 def main():
      print('Introduce el nombre del conjunto de datos:')
      cadena = input()
3
4
     todos_los_modelos = ['KNN', 'Relief', 'BL', 'ALL']
     print('Introduce el modelo a utilizar [KNN, Relief, BL, ALL]:')
      model_type = input().upper()
     if model_type == 'KNN' or model_type == 'ALL':
         print('Introduce el valor de k:')
10
11
           k = int(input())
12
    if model_type == 'BL' or model_type == 'ALL':
14
         print('Introduce el valor de la semilla [DEFAULT=7]:')
           seed_i = input()
15
          if seed_i == '':
17
              seed = 7
              seed = int(seed_i)
19
20
21
      # Cargar los 5 conjuntos de datos
     data1 = leer_arff('./data/'+cadena+'_1.arff')
22
      data2 = leer_arff('./data/'+cadena+'_2.arff')
     data3 = leer_arff('./data/'+cadena+'_3.arff')
      data4 = leer_arff('./data/'+cadena+'_4.arff')
      data5 = leer_arff('./data/'+cadena+'_5.arff')
26
28
      # Separar los datos en características y etiquetas
29
      X1 = np.array(data1[:, :-1], dtype=float)
      y1 = data1[:, -1]
31
      X2 = np.array(data2[:, :-1], dtype=float)
33
      y2 = data2[:, -1]
      X3 = np.array(data3[:, :-1], dtype=float)
35
      y3 = data3[:, -1]
37
38
      X4 = np.array(data4[:, :-1], dtype=float)
      y4 = data4[:, -1]
      X5 = np.array(data5[:, :-1], dtype=float)
42
      y5 = data5[:, -1]
43
44
      # Normalizar los datos
46
      X = np.concatenate((X1, X2, X3, X4, X5), axis=0)
47
      X = escaladoMinmax(X)
49
      X1 = X[:n_filas(X1)]
51
      X2 = X[n_filas(X1):n_filas(X1)+n_filas(X2)]
      X3 = X[n_filas(X1)+n_filas(X2):n_filas(X1)+n_filas(X2)+n_filas(X3)]
53
      X4 = X[n_filas(X1) + n_filas(X2) + n_filas(X3) : n_filas(X1) + n_filas(X2) + n_filas(X3) + n_filas(X4)]
      X5 = X[n_filas(X1)+n_filas(X2)+n_filas(X3)+n_filas(X4):]
      # Five cross validation
      modelos_a_utilizar = [model_type] if model_type != 'ALL' else todos_los_modelos
58
      for modelo in modelos_a_utilizar:
          resultados = fiveCrossValidation(X1, X2, X3, X4, X5, y1, y2, y3, y4, y5, modelo, seed, k)
60
61
          print(f'Modelo: {modelo}')
64
          for res in resultados:
65
              print(res)
```

2.5.1 Five Cross Validation

```
1 def fiveCrossValidation(X1, X2, X3, X4, X5, y1, y2, y3, y4, y5, model_type, seed=7, k=1):
       resultados = []
       np.random.seed(seed)
      for i in range(5):
 4
           # Unir los conjuntos de datos
 5
 6
           if(i == 0):
              X_train = np.concatenate((X2, X3, X4, X5))
              y_train = np.concatenate((y2, y3, y4, y5))
 8
              X_{test} = X1
9
10
              y_test = y1
          elif(i == 1):
12
              X_train = np.concatenate((X1, X3, X4, X5))
13
              y_train = np.concatenate((y1, y3, y4, y5))
14
              X_{test} = X2
              y_test = y2
          elif(i == 2):
16
17
              X_train = np.concatenate((X1, X2, X4, X5))
18
              y_train = np.concatenate((y1, y2, y4, y5))
19
              X_test = X3
20
              y_test = y3
21
          elif(i == 3):
22
              X_train = np.concatenate((X1, X2, X3, X5))
              y_train = np.concatenate((y1, y2, y3, y5))
24
              X_{test} = X4
              y_test = y4
25
26
           elif(i == 4):
27
              X_train = np.concatenate((X1, X2, X3, X4))
              y_train = np.concatenate((y1, y2, y3, y4))
28
              X test = X5
29
30
              y_test = y5
32
           # Entrenar el modelo
33
34
          time_start = time.time()
35
          pesos = np.array(n_columnas(X_train))
36
37
          if model_type == 'KNN':
38
              pesos = np.ones(n_columnas(X_train))
40
           elif model_type == 'Relief':
              pesos = fit_Relief(X_train, y_train)
41
42
           elif model_type == 'BL':
43
              pesos = fit_BL(X_train, y_train, max_evaluaciones=15000, semilla=np.random.randint(0, 1000))
44
              raise ValueError("El modelo no es válido.")
45
46
           # Evaluar el modelo
49
           tasa_red = tasa_reduccion(pesos)
50
           tasa_clas = tasa_clasificacion(X_train, y_train, pesos)
52
           fitness_train = fitness(X_train, y_train, pesos, 0.75)
53
54
55
           acierto = accuracy(y_test, clasificador1NN(X_train, y_test, X_test, pesos, k))
56
57
           fitness_test = fitness2(acierto, tasa_red, 0.75)
58
59
           time_end = time.time()
60
           total time = time end - time start
61
62
           resultados.append((tasa_red, tasa_clas, fitness_train, acierto, fitness_test, total_time))
64
       return resultados
```

2.5.2 Normalización de los datos con un escalado MinMax

```
1 def escaladoMinmax(X):
2    minimo = np.min(X, axis='col')
3    maximo = np.max(X, axis='col')
4
5    return (X - minimo) / (maximo - minimo)
```

3. Algoritmo Greedy

3.1 Obtención de pesos mediante el método Relief

```
1 def fit_Relief(X, y):
      # Inicializar pesos a 0 con la cantidad de columnas de X
3
4
5
     for i in range(n_columnas(X)):
6
         pesos.append(0)
8
      # Calcular matriz de distancias
      distancias = matrizCuadradaDistancias(X, pesos)
10
      distancias[distancias == 0] = np.inf
11
      # Ordenar indices de distancias
12
      indices_ord = ordenarPorDistancia(distancias, eje='fila')
14
      for i in range(n_filas(X)):
15
          amigo_cercano = -1
16
          # Filtrar amigos y quitamos los que tengan distancia 0
17
18
          amigos = filtrarAmigos(i, indices_ord, y)
19
          # Si hay amigos, el amigo cercano es el primero
20
          if len(amigos) > 0:
21
22
              amigo_cercano = amigos[0]
23
          # Filtrar enemigos
24
          enemigo_cercano = filtrarEnemigos(i, indices_ord, y)
          # Si hay amigos, actualizamos los pesos
          if amigo_cercano != -1 and distancias[i][amigo_cercano] != np.inf:
               pesos += abs(X[i] - X[amigo_cercano]) - abs(X[i] - X[enemigo_cercano])
30
31
      # Normalizar pesos y ponerlos en el rango [0, 1]
32
      maximo = valor_maximo(pesos)
33
34
      for p in pesos:
35
         p = max(p/maximo, 0)
36
      return pesos
```

Para actualizar los pesos se utiliza la siguiente fórmula

```
pesos = pesos + (|X[i] - X[amigo\_cercano]| - |X[i] - X[enemigo\_cercano]|)
```

3.2 Obtención de los amigos y enemigos

3.2.1 Obtención de amigos

```
1 def filtrarAmigos(i, indices_ord, y):
2    amigos = []
3
4    for j in range(n_filas(indices_ord)):
5        if y[indices_ord[i]] == y[indices_ord[j]]:
6            amigos.append(indices_ord[j])
7
8    return amigos
```

3.2.2 Obtención de enemigos

```
1 def filtrarEnemigos(i, indices_ord, y):
2    enemigos = []
3
4    for j in range(n_filas(indices_ord)):
5        if y[indices_ord[i]] != y[indices_ord[j]]:
6             enemigos.append(indices_ord[j])
7
8    return enemigos
```

4. Algoritmo de Búsqueda Local

4.1 Obtención de los pesos mediante la Búsqueda Local

```
1 def fit_BL(X, y, max_evaluaciones, semilla=7):
      # Semilla para inicializar pesos aleatorios
      np.random.seed(semilla)
      # Incializar pesos con una distribución uniforme con el tamaño de columnas de X
 6
      pesos = np.random.uniform(0, 1, n_columnas(X))
 8
      # Maximo de iteraciones de veces en la que toleramos no mejorar
      MAX_ITER = 20*n_columnas(X)
10
11
      # Alfa para el fitness
12
      ALFA = 0.75
13
14
       # Evaluacion actual
      fitness_actual = fitness(X, y, pesos, ALFA)
15
16
17
      n evaluaciones = 0
      iteraciones_sin_mejora = 0
18
19
      while n evaluaciones < max evaluaciones and iteraciones sin mejora < MAX ITER:
          # Obtener un orden de mutacion aleatorio
22
          orden_mutacion = np.random.permutation(len(pesos))
23
24
         for mut in orden_mutacion:
25
             # Obtener un vecino
26
              vecino = obtenerVecino(pesos, mut)
27
28
              # Calcular fitness del vecino
29
              fitness_vecino = fitness(X, y, vecino, ALFA)
              n evaluaciones += 1
              # Si el vecino es mejor, actualizamos pesos
33
              if fitness_vecino > fitness_actual:
34
                   pesos = vecino
35
                  fitness_actual = fitness_vecino
36
                  iteraciones_sin_mejora = 0
              else: # Si no, aumentamos el contador de iteraciones sin mejora
37
38
                  iteraciones_sin_mejora += 1
39
   return pesos
```

4.2 Generación de vecinos

```
1 def obtenerVecino(pesos, i):
2  #Obtener una mutacion aleatoria de la distribucion normal de media 0 y varianza 0.3
3  mutacion = np.random.normal(0, np.sqrt(0.3))
4  vecino = pesos.copy()
5
6  # Aplicar la mutacion
7  vecino[i] += mutacion
8
9  # Normalizar el peso cambiado
10  vecino[i] = max(vecino[i], 0)
11  vecino[i] = min(vecino[i], 1)
12
13  return vecino
```

5. Procedimiento de desarrollo de la práctica

5.1 Software utilizado para el desarrollo del código fuente

La práctica se ha realizado en el lenguaje de programación python. Se ha usado **numpy** para las operaciones vectoriales y matriciales; **scipy** para el cálculo de distancias euclidianas, con peso y sin pesos para el KNN; **scikit learn** para la normalización y escalado de los datos; **pandas** para las tablas, estadísticas y guardar la salida en formato csv y el paquete **liac-arff** para la lectura de los datos.

5.2 Manual de usuario

1. Inicio del Programa:

Al iniciar el programa, verás el siguiente mensaje:

Introduce la base de datos a utilizar [Opciones: BreastCancer[DEFAULT][1], Ecoli[2], Parkinson[3]]:

Debes introducir el nombre de la base de datos que deseas utilizar. Las opciones son BreastCancer, Ecoli y Parkinson. También puedes seleccionar simplemente ingresando el número correspondiente a la base de datos deseada.

2. Selección del Modelo:

Después de seleccionar la base de datos, el programa te pedirá que elijas el modelo a utilizar con el siguiente mensaje:

Elige el modelo a utilizar [Opciones: KNN[DEFAULT][1], Relief[2], BL[3], ALL[4]]:

Puedes seleccionar el modelo escribiendo su nombre completo o simplemente ingresando el número correspondiente al modelo deseado. Las opciones disponibles son KNN, Relief, BL y ALL. Si eliges ALL, se utilizarán todos los modelos disponibles.

3. Configuración Adicional según el Modelo:

Dependiendo del modelo seleccionado, es posible que se soliciten configuraciones adicionales:

• Para KNN:

- Se te pedirá que introduzcas el valor de k, que representa el número de vecinos a considerar. Por defecto es 1, representando el 1NN.

• Para BL:

- Se te pedirá que introduzcas el valor de la semilla que se utilizará en el proceso. Por defecto es 7.

4. Guardar Resultados en Archivo CSV:

Después de seleccionar el modelo y configurar las opciones adicionales (si es necesario), se te preguntará si deseas guardar los resultados en un archivo CSV con el mensaje:

Guardar resultados en archivo CSV [S/N][DEFAULT=N]:

Puedes seleccionar S para guardar los resultados en un archivo CSV o N para no guardarlos.

5. Requisitos del Programa:

Este programa requiere los siguientes paquetes de Python instalados en tu sistema:

- numpy
- scipy
- pandas
- liac-arff
- scikit-learn

6. Errores y Salida del Programa:

Si introduces una base de datos o modelo no válido, el programa mostrará un mensaje de error correspondiente y se cerrará.

5.3 Consideraciones a tener en cuenta

- 1. Si tiene instalado el paquete arff de google tendrá que desinstalarlo e instalar a continuación liac-arff porque generan incompatibilidad entre ellos.
- 2. Los valores utilizados para el análisis de los resultados han sido k 1 y semilla 7.

6. Experimentos y análisis de los resultados

6.1 Experimentos y resultados

Los experimentos han sido realizados por el parámetro k = 1 (KNN) y con la semilla igual a 7 (BL)

6.1.1 1NN

6.1.1.1 Ecoli

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	81.20300752	0	60.902255 64	60	80	1.40E-03
2	83.45864662	0	62.593984 96	54.642857 14	72.857142 86	5.43E-04
3	80.97014925	0	60.727611 94	61.764705 88	82.352941 18	5.56E-04
4	77.98507463	0	58.488805 97	62.867647 06	83.823529 41	5.04E-04
5	80.79710145	0	60.597826 09	63.75	85	6.55E-04
Media	80.88279589	0	60.662096 92	60.605042 02	80.806722 69	7.32E-04
Desviación típica	1.946105413	0	1.4595790 6	3.6148543 15	4.8198057 54	3.80E-04

6.1.1.2 Parkinsons

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	95.48387097	0	71.612903 23	73.125	97.5	7.89E-04
2	94.19354839	0	70.645161 29	65.625	87.5	4.14E-04
3	96.12903226	0	72.096774 19	73.125	97.5	3.94E-04
4	94.19354839	0	70.645161 29	75	100	3.76E-04
5	96.875	0	72.65625	68.571428	91.428571	3.92E-04

				57	43	
Media	95.375	0	71.53125	71.089285 71	94.785714 29	4.73E-04
Desviación típica	1.185545588	0	0.8891591 907	3.8658755 31	5.1545007 08	1.77E-04

6.1.1.3 Breast Cancer

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	95.15418502	0	71.365638 77	73.043478 26	97.3913043 5	7.51E-03
2	94.9339207	0	71.200440 53	72.391304 35	96.5217391 3	4.86E-03
3	96.91629956	0	72.687224 67	69.130434 78	92.1739130 4	3.69E-03
4	93.83259912	0	70.374449 34	73.695652 17	98.2608695 7	5.78E-03
5	95.43478261	0	71.576086 96	70.183486 24	93.5779816 5	4.04E-03
Media	95.2543574	0	71.440768 05	71.688871 16	95.5851615 5	5.18E-03
Desviación típica	1.110035561	0	0.8325266 709	1.9472623 91	2.59634985 5	1.53E-03

6.1.2 Greedy Relief

6.1.2.1 Ecoli

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	79.32330827	28.57142857	66.635338 35	65	77.142857 14	9.94E-03
2	82.33082707	28.57142857	68.890977 44	62.857142 86	74.285714 29	8.43E-03
3	79.47761194	28.57142857	66.751066 1	66.701680 67	79.411764 71	9.19E-03
4	78.35820896	28.57142857	65.911513 86	67.804621 85	80.882352 94	9.58E-03

5	79.34782609	28.57142857	66.653726 71	72.142857 14	86.666666 67	8.56E-03
Media	79.76755646	28.57142857	66.968524 49	66.901260 5	79.677871 15	9.14E-03
Desviación típica	1.501184071	0	1.1258880 53	3.4749067 68	4.6332090 25	6.50E-04

6.1.2.2 Parkinsons

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	96.12903226	0	72.096774 19	73.125	97.5	4.06E-03
2	95.48387097	0	71.612903 23	67.5	90	3.57E-03
3	96.77419355	0	72.580645 16	71.25	95	3.39E-03
4	94.19354839	0	70.645161 29	75	100	3.77E-03
5	96.875	0	72.65625	68.571428 57	91.428571 43	3.92E-03
Media	95.89112903	0	71.918346 77	71.089285 71	94.785714 29	3.74E-03
Desviación típica	1.101367575	0	0.8260256 815	3.1099125 59	4.1465500 78	2.66E-04

6.1.2.3 Breast Cancer

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	94.71365639	3.333333333	71.868575 62	73.876811 59	97.391304 35	2.75E-02
2	94.27312775	3.333333333	71.538179 15	73.876811 59	97.391304 35	2.45E-02
3	98.23788546	13.33333333	77.011747 43	70.507246 38	89.565217 39	2.40E-02
4	94.05286344	0	70.539647 58	73.043478 26	97.391304 35	2.52E-02
5	96.08695652	0	72.065217	70.871559	94.495412	2.49E-02

			39	63	84	
Media	95.47289791	4	72.604673 43	72.435181 49	95.246908 66	2.52E-02
Desviación típica	1.735988059	5.477225575	2.5326318 26	1.6346610 34	3.4147349 91	1.35E-03

6.1.3 BL

6.1.3.1 Ecoli

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	80.82706767	57.14285714	74.906015 04	72.142857 14	77.142857 14	9.46E-02
2	79.32330827	57.14285714	73.778195 49	70	74.285714 29	6.58E-02
3	73.88059701	71.42857143	73.267590 62	67.489495 8	66.176470 59	8.53E-02
4	77.98507463	57.14285714	72.774520 26	73.844537 82	79.4117647 1	8.32E-02
5	73.91304348	71.42857143	73.291925 47	71.607142 86	71.666666 67	4.51E-02
Media	77.18581821	62.85714286	73.603649 37	71.016806 72	73.736694 68	7.48E-02
Desviación típica	3.166303594	7.824607964	0.8099668 272	2.4025178 3	5.1369200 24	1.96E-02

6.1.3.2 Parkinsons

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	94.19354839	81.81818182	91.099706 74	89.829545 45	92.5	2.57E-01
2	96.12903226	77.27272727	91.414956 01	90.568181 82	95	1.81E-01
3	97.41935484	77.27272727	92.382697 95	90.568181 82	95	1.70E-01
4	98.70967742	77.27272727	93.350439	86.818181	90	2.37E-01

			88	82		
5	98.125	77.27272727	92.911931 82	83.603896 1	85.714285 71	1.92E-01
Media	96.91532258	78.18181818	92.231946 48	88.277597 4	91.642857 14	2.08E-01
Desviación típica	1.800235019	2.03278907	0.9598924 158	3.0362589 8	3.9090423 69	3.76E-02

6.1.3.3 Breast Cancer

Partición	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución
1	96.03524229	86.6666667	93.693098 38	92.101449 28	93.913043 48	1.62E+00
2	96.03524229	86.6666667	93.693098 38	92.101449 28	93.913043 48	2.44E+00
3	98.01762115	76.6666667	92.679882 53	86.992753 62	90.434782 61	1.35E+00
4	96.47577093	90	94.856828 19	90.978260 87	91.304347 83	2.57E+00
5	96.73913043	80	92.554347 83	90.871559 63	94.495412 84	1.57E+00
Media	96.66060142	84	93.495451 06	90.609094 54	92.812126 05	1.91E+00
Desviación típica	0.8160851264	5.477225575	0.9330466 175	2.1057859 96	1.8153959 49	5.55E-01

	Ecoli							
	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución		
1NN	80.88	0.00	60.66	60.61	80.81	7.32E-04		
Relief	79.77	28.57	66.97	66.90	79.68	9.14E-03		
BL	77.19	62.86	73.60	71.02	73.74	7.48E-02		
	Parkinsons							
	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución		
1NN	95.38	0.00	71.53	71.09	94.79	4.73E-04		
Relief	95.89	0.00	71.92	71.09	94.79	3.74E-03		
BL	96.92	78.18	92.23	88.28	91.64	2.08E-01		
	Breast Cancer							
	Tasa de clasificación	Tasa de reducción	Fitness train	Fitness test	Accuracy	Tiempo de ejecución		
1NN	95.25	0.00	71.44	71.69	95.59	5.18E-03		
Relief	95.47	4.00	72.60	72.44	95.25	2.52E-02		
BL	96.66	84.00	93.50	90.61	92.81	1.91E+00		

6.2 Análisis de resultados

El 1NN por lo general es el que más porcentaje de acierto tiene y el que menor tiempo de ejecución tiene. Pero tiene un problema, que no reduce nada por lo que el fitness es el más bajo de los tres.

El método greedy también es bueno en acierto, pero tampoco reduce lo suficiente, por lo que el fitness aumenta ligeramente al haber reducido algo y aumentar ligeramente el acierto.

La búsqueda local reduce mucho, pero es el que más tarda con diferencia, aprox 2s en breast cancer frente a los milisegundos que tarda el greedy. En cuanto a fitness, es el mejor porque es el que más reduce sin comprometer tanto la tasa de acierto y tasa de clasificación. Pero parece tener un problema de sobreajuste al haber tanta diferencia entre la tasa de clasificación y la de acierto.

En conclusión la búsqueda local es la mejor al aprender pesos de características al tener mejor fitness y mayor reducción, pero a cambio tarda más y parece tener un ligero problema de sobreajuste a los datos de entrenamiento.