Medição do Ângulo de Inclinação

Instrumentação Eletrônica para Engenharia

Filipe Menezes Ribeiro Antunes, Giulio Henrique de Andrade Pasini Engenharia Eletrônica
Universidade de Brasília - Faculdade do Gama
Gama, Distrito Federal
E-mails: 180041762@aluno.unb.br , 221029211@aluno.unb.br

Resumo— Neste trabalho, apresentamos o método de medição do ângulo de inclinação de um plano usando o sensor acelerômetro e giroscópio MPU6050. O objetivo do estudo é analisar duas formas de estimar o ângulo: uma baseada na trigonometria dos dados do acelerômetro e outra baseada na integração numérica dos dados do giroscópio. Para validar as estimativas, comparamos elas com um sistema de referência, o mesmo que foi usado no relatório anterior para calibrar o sensor. Os resultados mostram os valores do ângulo de inclinação obtidos pelos dois métodos e sua relação com o sistema de referência. As análises ressaltam a qualidade e a exatidão das medições feitas.

palavras-chave: MPU6050. Integração Numérica. Acelerômetro. Giroscópio. Composição Trigonométrica. Ângulo de Inclinação.

I. INTRODUÇÃO

Medir com precisão o ângulo de inclinação é essencial para vários campos da engenharia e automação, como robótica, sistemas de estabilização, veículos autônomos, etc. Para isso, o sensor MPU6050 [1], que combina acelerômetro e giroscópio em um único dispositivo [2], tornou-se uma alternativa comum para esses usos, por ser versátil e eficiente.

Este trabalho tem como propósito utilizar o sensor MPU6050 para medir o ângulo de inclinação de um plano. Para isso, serão usados dois métodos diferentes de cálculo do ângulo: a trigonometria dos dados do acelerômetro e a integração numérica dos dados do giroscópio. A razão para essa escolha é a possibilidade de comparar e validar as estimativas do ângulo feitas pelos dois métodos, bem como conferir sua coerência com um sistema de referência. Esse sistema de referência é o mesmo que foi aplicado na calibração estática do sensor, assegurando uma base segura para a comparação das medições.

Os objetivos traçados para este estudo incluem:

- Comparar as Estimativas de Ângulo: Medir o ângulo de inclinação usando a trigonometria dos dados do acelerômetro e a integração numérica dos dados do giroscópio.
- Validar com Sistema de Referência: Analisar as diferenças entre as estimativas de ângulo feitas pelos dois métodos com um sensor MPU6050, que será o

- sistema de referência que foi usado na calibração, para checar a precisão das medições.
- Fazer uma análise e uma discussão dos resultados alcançados, apontando as possíveis causas de erro e sugerindo melhorias para o futuro.

Em seguida, serão explicados os princípios teóricos dos sensores usados, os métodos usados na medição e na análise dos resultados, e as discussões sobre as estimativas encontradas.

Figura 1. A MPU-6050 tem 6 eixos para medir os 6 graus de liberdade, dos quais 3 são do giroscópio e 3 são do acelerômetro.

II. METODOLOGIA

- Preparo e Montagem: Antes de tudo, serão reunidos os equipamentos e materiais necessários, como o sensor MPU6050, Arduino, suporte para fixar o sensor (veja a Fig. 2), e o sistema de referência usado na calibração. O sensor MPU6050 será colocado no suporte, garantindo que esteja bem nivelado antes das medições.
- Seleção do Plano e Posicionamento do Sensor: Será escolhido o plano para medir o ângulo de inclinação. O sensor MPU6050 será colocado de forma adequada no plano escolhido, garantindo que o eixo Z do sensor fique de pé em relação ao plano de referência.
- Coleta de Dados: Serão coletados os dados do acelerômetro e giroscópio do MPU6050, usando o Arduino.

Ele medirá as acelerações nos eixos X, Y e Z do acelerômetro e as velocidades angulares nos mesmos eixos do giroscópio.

- Para calcular o ângulo de inclinação em cada eixo (X, Y e Z), usaremos a fórmula da composição trigonométrica, Eq. 1, com os dados do acelerômetro. Depois, faremos uma correção usando os parâmetros de calibração (Ganho e Aoffset) que foram obtidos no procedimento de calibração estática, para aumentar a precisão da estimativa.
- Para calcular o ângulo de inclinação, integraremos numericamente as leituras de velocidade angular para cada eixo (X, Y e Z) ao longo do tempo, conforme a Eq. 3. Consideraremos também os possíveis erros de drift que podem ocorrer na integração.
- Usamos o sistema de referência para medir diretamente o ângulo de inclinação do plano. Comparamos as estimativas de ângulo que obtivemos pelo acelerômetro e pelo giroscópio com o valor medido pelo sistema de referência, para avaliar a precisão e a confiabilidade dos métodos de medição. O sistema de referência está mostrado na Fig. 2.

Figura 2. Sistema de referência que foi usado no projeto para verificar se as medidas de ângulo estão certas.

• Análise dos Resultados:

As diferenças entre as estimativas de ângulo obtidas pelos dois métodos e o sistema de referência foram analisadas. Foram identificadas possíveis fontes de erro e discutida sua influência nos resultados.

III. CÁLCULO DO ÂNGULO DE INCLINAÇÃO

Para medir o ângulo de inclinação com o sensor MPU6050, usamos as informações que vêm do acelerômetro e do giroscópio. Cada sensor tem seus pontos fortes e fracos, e juntando suas saídas conseguimos uma estimativa mais exata e confiável do ângulo de inclinação em relação à gravidade e ao plano de referência.

A. Cálculo do Ângulo de Inclinação pelo Acelerômetro

- Leitura do Acelerômetro: As leituras do acelerômetro $(A_{\rm X},A_{\rm Y},A_{\rm Z})$ nos dão os valores das acelerações nos três eixos.
 - Cálculo do ângulo: O acelerômetro do MPU6050 capta as acelerações nos três eixos do espaço (X, Y e Z). Se a MPU6050 estiver parada e bem alinhada, o acelerômetro mede diretamente a componente da aceleração da gravidade na direção do eixo Z, que é perpendicular ao plano de referência. Supondo que o acelerômetro esteja perfeitamente calibrado, a intensidade da aceleração da gravidade (Ag) é igual a 1g (9,81 m/s²), usando a aceleração da gravidade padrão na superfície da Terra. Com a trigonometria, é possível encontrar o ângulo de inclinação (θ_{acel}) do plano em relação à direção da gravidade usando as leituras do acelerômetro nos eixos X, Y e 7

$$\theta_{\text{acel}} = \arctan\left(\frac{A_{\text{eixo}}}{\sqrt{A_{\text{X}}^2 + A_{\text{Y}}^2 + A_{\text{Z}}^2}}\right) \tag{1}$$

Onde:

- θ_{acel} é o ângulo de inclinação estimado pelo acelerômetro no eixo em questão.
- A_X, A_Y, A_Z são as leituras do acelerômetro nos eixos X, Y e Z, respectivamente.
- A_{eixo} é o valor do acelerômetro no eixo de interesse (X, Y ou Z).
- Ajuste com base na calibração estática: Para estimar o ângulo de inclinação com mais precisão, é preciso fazer alguns ajustes depois de calcular esse ângulo usando o acelerômetro. Esses ajustes dependem dos parâmetros de calibração (Ganho e Aoffset) que foram obtidos no procedimento de calibração estática do sensor. Eles servem para corrigir erros e desvios que podem ocorrer nas medições.
- Conversão para graus: Não pode se esquecer de converter o valor encontrado para graus (°). Para fazer essa conversão, você precisa usar esta relação trigonométrica:

angulo em graus = angulo em
$$rad \times \frac{180}{\pi}$$
 (2)

B. Cálculo do Ângulo de Inclinação pelo Giroscópio

Para calcular o ângulo de inclinação com o acelerômetro, você precisa medir as acelerações gravitacionais nos eixos X, Y e Z. Se a MPU6050 estiver parada e nivelada, o acelerômetro só vai captar a aceleração gravitacional no eixo Z, que é o que fica de pé em relação ao plano de referência.

- O acelerômetro (AX, AY, AZ) mede as acelerações em cada eixo. Quando está parado e nivelado, a aceleração gravitacional (Ag) no eixo Z é 1g (9,81 m/s²), usando a gravidade padrão na superfície da Terra.
- Para estimar o ângulo de inclinação (θgiro) com base nas medições do giroscópio, fazemos a integração numérica das velocidades angulares no tempo. Considerando um intervalo de tempo discreto Δt entre as amostras, a integração é feita assim:

$$\theta_{\rm giro} = \theta_{\rm giro} + \omega_{\rm eixo} \times \Delta t$$
 (3)

No qual:

- $\theta_{\rm giro}$ é o ângulo de inclinação estimado pelo giroscópio no eixo em questão (X, Y ou Z) em graus.
- $\omega_{\rm eixo}$ é a leitura do giroscópio na velocidade angular no eixo de interesse (X, Y ou Z) em °/s.
- Δt é o intervalo de tempo entre as amostras em segundos.

C. Erro Quadrático Médio (EQM)

O Erro Quadrático Médio (EQM) é uma métrica importante para avaliar a precisão de um modelo ou estimativa. Ele é calculado ao se tomar a média dos quadrados das diferenças entre os valores estimados e os valores reais. No nosso caso, calculamos o EQM para cada conjunto de ângulos em relação aos ângulos de referência (0, 45 e 90 graus), e então tiramos a raiz quadrada do EQM para obter a Raiz do Erro Quadrático Médio (REMQ). Os resultados obtidos, REMQ para 0 graus: 0.62, REMQ para 45 graus: 1.77 e REMQ para 90 graus: 2.08, indicam que as estimativas são mais precisas para ângulos próximos a 0 graus e menos precisas para ângulos próximos a 90 graus. Isso pode ser devido a vários fatores, como a resolução do sensor ou a natureza dos dados coletados.

Figura 3. Erro Quadrático Médio (EQM)

Figura 4. Ângulos medidos no eixo X.

Figura 5. Ângulos fixos medidos pelo sensor giroscópio.

V. Conclusões

Este relatório buscou explicar o método de medição do ângulo de inclinação com o sensor MPU6050, usando o acelerômetro e giroscópio, e a comparação com um sistema de referência. Durante o estudo, conseguimos resultados bons nas medições feitas pelo acelerômetro, que mostraram uma boa precisão depois da calibração estática adequada. Porém, durante a implementação, enfrentamos desafios na obtenção precisa dos ângulos pelo giroscópio, principalmente devido ao fenômeno do "drift". Apesar de resultados coerentes e satisfatórios para o acelerômetro, a integração numérica das velocidades angulares do giroscópio mostrou-se suscetível ao acúmulo de erros ao longo do tempo. A dificuldade em controlar o "drift" impactou a confiabilidade das leituras, indicando a necessidade de explorar abordagens mais avançadas de filtragem para futuras melhorias no projeto.

Referências

- [1] InvenSense, "Mpu-6000 and mpu-6050 product specification revision 3.4," https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf, 2015, acessado em: 11 dez. 2023.
 [2] "Calibrating mpu6050," https://wired.chillibasket.com/2015/01/calibrating-mpu6050/, 2015, acessado em: 11 dez. 2023.

 M. Garcia and R. Barbosa, "Análise do salto vertical com contramovimento utilizando sensores inerciais," 2022.
 [3] https://github.com/FilipeAntunes89/Trabalho-Pr-tico-Acelr-metro-MPU6050
- MPU6050