Numerical Optimization Targeting Energy-Efficient Scientific Computing

Roman lakymchuk jointly with Yanxiang Chen (UmU) and Pablo de Oliveira Castro (Paris-Saclay)

Uppsala University and Umeå University, Sweden roman.iakymchuk@it.uu.se

MS2A: Sustainable Scientific Computing PASC25, Brugg, Switzerland June 16, 2025

MS2A: Sustainable Scientific Computing							
14:30	Roman lakymchuk	Numerical Optimization Targeting Energy- Efficient Scientific Computing					
15:00	Michele Weiland	Sustainable Supercomputing: An Overview of Activities at EPCC					
15:30	Pablo De Oliveira Castro	Exploring Numerical Accuracy and Mixed- Precision with Verificarlo and Stochastic Round- ing					
16:00	El-Mehdi El Arar	Probabilistic Error Analysis of Limited-Precision Stochastic Rounding					

Outline

Mixed-precision arithmetic

Energy efficiency in computing

Methodology for energy-efficient algorithms

Outline

Mixed-precision arithmetic

Energy efficiency in computing

Methodology for energy-efficient algorithms

Floating-point formats

IEEE Standard for Floating-Point Arithmetic IEEE 754-2019 is widely supported by hardware and software

double - binary64

▶ single - binary32

half - binary16

bfloat

Mixed-precision arithmetic

▶ double-single plus iterative refinement ^a

^aButari et al. 'Mixed-precision iterative refinement techniques for the solution of dense linear systems'. IJPHCA 2007

Mixed-precision arithmetic

- double-single plus iterative refinement
- double-single-half/bfloat
- ▶ Over 100 works on mixed precision ^a

^aN. Higham and Th. Mary. 'Mixed Precision Algorithms in Numerical Linear Algebra'. Acta Numerica. 2022; 31:347-414

Mixed-precision arithmetic

- double-single plus iterative refinement
- double-single-half/bfloat
- Over 100 works on mixed precision
- ► Extending precision for exact computations: double plus FPEs or double plus long accumulator

Example: Ariane 5 explosion

- ► Failed maiden flight of the ESA Ariane 5 rocket
- Causes of the failure
 - Old code from Ariane 4, but Ariane 5 had higher horizontal velocity
 - Overflow in converting numbers (64-bit to 16-bit) for the horizontal velocity
 - ► This halted the internal navigation system and led to self destruction
- Loss: more than \$500 million for satellite

Outline

Mixed-precision arithmetic

Energy efficiency in computing

Methodology for energy-efficient algorithms

Energy efficiency: from hardware to NLA

- Supercomputing is constrained by power consumption
- → Power-efficient hardware
 - ► RIKEN's Fugaku w A64FX (FP64:FP32:FP16 = 1:2:4)
 - EPI (ARM, FPGA, RISC-V)
 - Jülich to host the first EPI-based supercomputer
- Numerical linear algebra is dominant by double precision
- → Mixed-precision/ energy-efficient algorithms math Mixed and adaptive precision computing
 - code Communication hiding or avoiding
 - tools Numerical abnormalities and precision cropping

How to measure energy consumption?

Best Practice Guide

Harvesting energy consumption on European HPC systems: Sharing Experience from the CEEC project

lakymchuk et al. Zenodo, 2024

- More complex than measuring time-to-solution
- Measurements require elevated privileges

Objectives

- Facilitate energy measurements on the European HPC systems
- ► Teach the community how to conduct such measurements
- Provide examples with easy-to-use guide

Practical advices

What can we measure?

- ► CPU, DRAM, accelerators
- ► NO: cooling, interconnect

Practical advices

What can we measure?

- CPU, DRAM, accelerators
- ► NO: cooling, interconnect

Energy/ power-meters

- on clusters, use job monitoring systems like SLURM, eg energy measurement pluggin sacct
- similarly, Energy Aware Runtime (EAR) helps to measure energy: eacct
- ▶ likwid-powermeter is another tool that can measure the entire program or its part
- MSR counters the lowest level possible

Outline

Mixed-precision arithmetic

Energy efficiency in computing

Methodology for energy-efficient algorithms

Methodology

Methodology to enable mixed-precision algorithmic solutions in applications with accuracy guarantees.

- Conduct classic or probabilistic (aka optimistic) error analysis
 - error bound with constant $\sqrt{n}\mu$ with high probability

EuroHPC JU CoE CEEC.

Center of Excellence in Exascale CFD

Overview

ĈEEC

The main goal of CEEC is to address the extreme-scale computing challenge to enable the use of accurate and cost-efficient high fidelity computational fluid dynamics (CFD) simulations at exascale

- Implement exascale-ready workflows for addressing grand challenge scientific problems
- Develop new or improved algorithms that can efficiently exploit exascale systems.
- Significantly improve energy efficiency of simulations
- Demonstrate workflows on lighthouse cases relevant for both academia and industry

ш

EuroHPC JU CoE CEEC

Center of Excellence in Exascale CFD

Lighthouse Cases

CEEC

- Shock-boundary layer interaction and buffet on wings at the edge of the flight envelope
 - Codes used: FLEXI
- High fidelity aeroelastic simulation of the SFB 401 wing in flight conditions
 - · Codes used: Alya
- Topology optimisation of static mixers
 - · Codes used: Neko
- Localized erosion of an offshore wind-turbine foundations
 - · Codes used: waLBerla
- Simulation of Atmospheric Boundary Layer flows
 - Codes used: NekRS/Nek5000
- Merchant ship hull
 - Codes used: Neko

Test case

- ► Nek5000/ Neko are the high order, incompressible Navier-Stokes solvers based on the spectral element method
- → 'matrix-free'
- ► Nekbone is a mini-app of Nek5000 and it solves a Poisson equation using a Conjugate Gradient method with the spectral element multigrid preconditioner

Nekbone w Vprec

$$Ax = b$$

Nekbone w MCA for FP32

Entire program, no preconditioner

- ightharpoonup Random Rounding (rr) mode (left)
- ► MCA (mca) mode (right)
- ▶ Issue in initialization $10^9 \times \cos(x) \rightarrow$ focus on the solver only

Nekbone w MCA for FP32

Only the CG loop, no preconditioner

- ightharpoonup Random Rounding (rr) mode (left)
- ► MCA (mca) mode (right)

Performance of mixed-precision Nekbone

Parallel tests: gain in execution time w/o preconditioner

On LUMI-C, AMD EPYC 7763 CPU with 64 cores @2.45 GHz

(a) Whole program

MPI ranks		4	8	16	32	64	128
Mixed	0.741	0.905	0.995	1.642	1.694	2.096 3.562	2.641
Gain	1.05x	1.13x	1.87x	1.78x	1.86x	1.70x	1.69x

(b) Solve time

MPI ranks			8	16	32	64	128
Mixed	0.165	0.178	0.190	0.256	0.430 1.161	0.445	0.476
Double	0.182	0.239	0.596	1.115	1.161	1.207	1.245
Gain	1.10x	1.34x	3.14x	4.36x	2.70x	2.71x	2.62x

- time is in seconds
- run each test five times, report median

energy-to-solution of mixed-precision Nekbone

MPI ranks	32	stddev	64	stddev	128	stddev
Mixed	451.6	4.1%	653.6	2.4%	1089.4	1.0%
Double	990.6	3.9%	1424.8	4.5%	2061.2	3.2%
Gain	2.20x		2.18x		1.89x	

- run each test five times, compute mean & standard deviation (stddev)
- energy numbers are in joules measured by sacct (Slurm)
- ▶ On LUMI-C, 2x AMD EPYC 7763 CPU with 64 cores @2.45 GHz

energy-to-solution of mixed-precision Nekbone MareNostrum5

MPI ranks	20	40	80
Mixed	637	865	1221
Double	1042	2473	4685
Gain	1.64x	2.86x	3.84x

- Energy measurements with EAR
- On MN5, 2x Intel Sapphire Rapids 8460Y+ @2.3Ghz

Neko: CG with preconditioner

- ▶ Results from the real-world Neko code
- Comparable convergence for mixed-precision

Accuracy vs Energy vs Time

- ▶ Nekbone with the multigrid preconditioned CG
- ▶ 3.7x-4.5x gain in energy and 1.8x-2.2x in time

Outline

Mixed-precision arithmetic

Energy efficiency in computing

Methodology for energy-efficient algorithms

- Computer arithmetic operates with finite precisions
- Use computer arithmetic tools to
 - detect cancellations
 - get the right FP format
 - verify sensitivity of reduced precision
- Start measuring energy consumption
- ► Enabled mixed-precision in Nekbone and Neko:
 - use tools: Verificarlo, gprof, Intel Advisor
 - target the most time-consuming part
 - ▶ reduced time-to-solution by up to 2.2x and energy-to-solution by up to 3.8x on 80 MPI ranks at MareNostrum5

Summary

- Computer arithmetic operates with finite precisions
- Use computer arithmetic tools to
 - detect cancellations
 - get the right FP format
 - verify sensitivity of reduced precision
- ► Start measuring energy consumption
- ► Enabled mixed-precision in Nekbone and Neko:
 - use tools: Verificarlo, gprof, Intel Advisor
 - target the most time-consuming part
 - reduced time-to-solution by up to 2.2x and energy-to-solution by up to 3.8x on 80 MPI ranks at MareNostrum5

Thank you for your attention!

This research is partially supported by EuroHPC JU CoE CEEC (No. 101093393).

TDB and eSSENCE at Uppsala University.

References

- ▶ lakvmchuk et al. Best Practice Guide Harvesting energy consumption on European HPC systems: Sharing Experience from the CEEC project. Zenodo, Aug 2024
- ▶ Chen et al. Enabling mixed-precision with the help of tools: A Nekbone case study. In proceedings of PPAM 24. arXiv:2405.11065
- N. Higham and Th. Mary. Mixed Precision Algorithms in Numerical Linear Algebra. Acta Numerica. 2022; 31:347-414
- Boldo et al. Floating-point arithmetic. Acta Numerica, 2023
- Higham. Accuracy and stability of numerical algorithms. SIAM, 2002
- Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Comp Sur. Vol 23, No 1. 1991

