Université Paris-Saclay - L3 Mathématiques - Année 2023-2024 Analyse matricielle et optimisation

Feuille de TD n° 2 - Propriétés des matrices. Valeurs propres.

Rappels préliminaires.

Soit $n \in \mathbb{N}^*$, $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et $A \in \mathcal{M}_n(\mathbb{K})$. On dit que $\lambda \in \mathbb{K}$ est une valeur propre de A s'il existe $u \in \mathbb{K}^n$, $u \neq 0$, tel que $Au = \lambda u$. Un tel vecteur u s'appelle vecteur propre de A associé à la valeur propre λ .

Toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ est une matrice de $M_n(\mathbb{C})$ et a n valeurs propres dans \mathbb{C} , qui sont les n racines (distinctes ou non) du polynôme $P(\lambda) = \det(A - \lambda I_n) \in \mathbb{C}[\lambda]$.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique réelle, *i.e.* vérifiant $A^T = A$. Alors :

- A a n valeurs propres réelles;
- il existe une base orthonormée de \mathbb{R}^n formée de vecteurs propres (réels) de A (A est diagonalisable dans une base o. n. de vecteurs propres réels).

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne (auto-adjointe), i.e. vérifiant $A^* = A$. Alors:

- les n valeurs propres de A sont réelles;
- il existe une base orthonormée de \mathbb{C}^n formée de vecteurs propres de A (A est diagonalisable dans une base o. n. de vecteurs propres (complexes)).

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une **matrice normale**, *i.e.* vérifiant $AA^* = A^*A$. Alors il existe une base orthonormée de \mathbb{C}^n formée de vecteurs propres de A (A est diagonalisable dans une base o. n. de vecteurs propres (complexes), ses valeurs propres sont complexes)).

Exercice 1. Théorème de Gerschgörin - localisation des valeurs propres.

Si $n \in \mathbb{N}$, $n \geq 1$, et $A \in \mathcal{M}_n(\mathbb{K})$, on note spec(A) le spectre de la matrice A, c'est-à-dire l'ensemble des valeurs propres de A et, pour chaque $i \in \{1, \ldots, n\}$, on note $D_i(A)$ l'ensemble

$$D_i(A) = \{ z \in \mathbb{C} : |z - A_{ii}| \le \sum_{\substack{j=1\\ i \ne i}}^n |A_{ij}| \}.$$

 D_i s'appelle le *i*-ème disque de Gerschgörin de la matrice A. Soit $n \in \mathbb{N}$, $n \geq 1$, et $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que pour tout $\lambda \in spec(A)$,

$$\lambda \in \bigcup_{i=1}^{n} D_i(A).$$

En déduire que le rayon spectral $\rho(A) := \max_{\lambda \in spec(A)} |\lambda|$ de A vérifie

$$\rho(A) \le \max_{1 \le i \le n} \sum_{j=1}^{n} |A_{ij}|.$$

1

Exercice 2.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ orthogonale (*i.e.* vérifiant $AA^T = A^TA = I_n$). Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors $|\lambda| = 1$.
- 2. On considère ici le produit scalaire euclidien et la norme euclidienne sur \mathbb{R}^n . Soit $A \in \mathcal{M}_n(\mathbb{R})$.
 - (a) Montrer que A est orthogonale si et seulement si les colonnes de A forment une base o. n. de \mathbb{R}^n si et seulement si A préserve le produit scalaire, autrement dit si et seulement si pour tous $x, y \in \mathbb{R}^n$,

$$(Ax|Ay) = (x|y).$$

(b) Montrer que A préserve le produit scalaire si et seulement si A préserve la norme, autrement dit si et seulement si pour tout $x \in \mathbb{R}^n$,

$$||Ax|| = ||x||,$$

et en déduire que A est orthogonale si et seulement si A préserve la norme.

Exercice 3. Caractérisation des valeurs propres pour des matrices hermitiennes - théorème de Courant-Fischer.

Rappel: on rappelle que le produit hermitien canonique sur \mathbb{C}^n est défini par

$$(x|y)_{\mathbb{C}} = x_1\overline{y_1} + \cdots + x_n\overline{y_n},$$

pour tous $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_n)\in\mathbb{C}^n$, et que la norme $\|\cdot\|_2$ sur \mathbb{C}^n est définie par

$$||x||_2 = \sqrt{(x|x)_{\mathbb{C}}} = \sqrt{|x_1|^2 + \dots + |x_n|^2},$$

pour tout $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$.

Soit $n \in \mathbb{N}$, $n \geq 1$, et $A \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne (auto-adjointe). Soient $\lambda_1 \leq \cdots \leq \lambda_n$ les n valeurs propres réelles de A. Montrer que

$$\lambda_1 = \min_{x \in \mathbb{C}^n, \ x \neq 0} \frac{(Ax|x)_{\mathbb{C}}}{\|x\|_2^2} = \min_{x \in \mathbb{C}^n, \ \|x\|_2 = 1} (Ax|x)_{\mathbb{C}}$$

et que

$$\lambda_n = \max_{x \in \mathbb{C}^n, \ x \neq 0} \frac{(Ax|x)_{\mathbb{C}}}{\|x\|_2^2} = \max_{x \in \mathbb{C}^n, \ \|x\|_2 = 1} (Ax|x)_{\mathbb{C}}$$

Remarque : on pourra montrer de manière analogue que si $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice symétrique, alors

$$\lambda_1 = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{(Ax|x)}{\|x\|_2^2} = \min_{x \in \mathbb{R}^n, \ \|x\|_2 = 1} (Ax|x)$$

et~que

$$\lambda_n = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{(Ax|x)}{\|x\|_2^2} = \max_{x \in \mathbb{R}^n, \ \|x\|_2 = 1} (Ax|x).$$

Exercices en plus, à faire à la maison (non traités en TD)

Exercice 4.

Soit $n \in \mathbb{N}$, $n \geq 2$, et $A \in \mathcal{M}_n(\mathbb{R})$.

1. Redémontrer le résultat suivant : si A est une matrice symétrique, alors les valeurs propres de A sont réelles.

2. Montrer que les matrices A^tA et AA^t sont symétriques et positives, i.e. sont symétriques et vérifient

$$(A^t A x | x) \ge 0, \quad (A A^t x | x) \ge 0, \quad \forall \ x \in \mathbb{R}^n.$$

- 3. Montrer que les valeurs propres de A^tA et de AA^t sont positives ou nulles.
- 4. Montrer que les matrices A^tA et AA^t sont définies positives si et seulement si A est inversible.
- 5. Supposons A symétrique. Montrer que si A est définie positive, alors $A_{ii} > 0$, $\forall i \in \{1, ..., n\}$. Donner un exemple montrant que la réciproque n'est pas vraie, i.e. donner un exemple d'une matrice A qui ne soit pas définie positive mais telle que $A_{ii} > 0$, $\forall i \in \{1, ..., n\}$.

Exercice 5. Matrices symétriques à coefficients positifs et valeurs propres (*).

Notations. Soit $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{R})$ et $x \in \mathbb{R}^n$. On note :

$$A \ge 0 \ (A > 0) \text{ si } A_{ij} \ge 0 \ (A_{ij} > 0), \ \forall i, j \in \{1, \dots, n\};$$

$$x \ge 0 \ (x > 0) \text{ si } x_i \ge 0 \ (x_i > 0), \ \forall i \in \{1, \dots, n\};$$

 $||x||_2$ la norme euclidienne de x;

si
$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$
, $|x|$ le vecteur de \mathbb{R}^n $(|x_1|, \dots, |x_n|)$.

L'objectif de cet exercice est de montrer que si A est une matrice symétrique à coefficients (strictement) positifs, alors le rayon spectral de A est une valeur propre de A, pour laquelle il existe un vecteur propre associé dont toutes les composantes sont (strictement) positives.

Soit $n \in \mathbb{N}$, $n \geq 2$, et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique telle que $A \geq 0$. On note $\lambda_1 \leq \cdots \leq \lambda_n$ les n valeurs propres réelles de A. Soit

$$\mu := \sup\{(Ax|x) : x \in \mathbb{R}^n, \ x \ge 0, \ ||x||_2 = 1\}.$$

- 1. Montrer que $0 \le \mu \le \lambda_n$.
- 2. Soit $y \in \mathbb{R}^n$ tel que $||y||_2 = 1$ un vecteur propre de A associé à la valeur propre λ_n . Soit z = |y|. Montrer que

$$\mu \geq (Az|z) \geq \lambda_n$$
.

En déduire que $\mu = \lambda_n = (Az|z)$.

3. Soit λ une valeur propre de A et $x \in \mathbb{R}^n$ un vecteur propre associé à la valeur propre λ tel que $\|x\|_2 = 1$. Justifier que

$$|\lambda| = |(Ax|x)| \le \mu.$$

En déduire que $\lambda_n = \rho(A)$.

- 4. Soient u_1, \ldots, u_n vecteurs propres de A associés respectivement aux valeurs propres $\lambda_1, \ldots, \lambda_n$ tel que (u_1, \ldots, u_n) est une base orthonormée de \mathbb{R}^n . Soit z le vecteur de la question 2 et $(\alpha_1, \ldots, \alpha_n)$ les coefficients de z dans la base (u_1, \ldots, u_n) . Montrer que si $\lambda_i \neq \lambda_n$ alors $\alpha_i = 0$. En déduire que z est un vecteur propre de A associé à la valeur propre $\lambda_n = \rho(A)$.
- 5. Supposons maintenant que A > 0. Justifier que $\rho(A) > 0$ et utiliser la relation $z = \frac{1}{\rho(A)}Az$ pour justifier que z > 0.

Indications pour l'exercice 5.

- 1. Pour montrer que $\mu \geq 0$, développer (Ax|x) pour $x \geq 0$ et utiliser que $A \geq 0$; pour montrer que $\mu \leq \lambda_n$, utiliser l'exercice 3.
- 2. Pour la première inégalité, utiliser la définition de μ ; pour la deuxième, développer (Az|z) avec $z_i = |y_i|$, utiliser l'inégalité triangulaire et que y valeur propre de A associé à λ_n .
- 3. Pour montrer l'inégalité, développer (Ax|x), utiliser l'inégalité triangulaire et la définition de μ .
- 4. Utiliser que $(Az|z) = \lambda_n = \lambda_n(z|z)$ et développer (Az|z) et (z|z).