Question 1:	<u> </u>
1. In the Deutsch algorithm, when we consider U_f as a single-qubit	2 When fix) is Balanced.
operator $\hat{U}_{f(x)}$, (0> - 1>) $/\sqrt{2}$ is an eigenstate of $\hat{U}_{f(x)}$, whose	same as O. after Apply H gate
associated eigenvalue gives us the answer to the Deutsch problem.	H107 = 107 + 117
Suppose we were not able to prepare this eigenstate directly Show	J2
that if we instead input 0> to the target qubit, and otherwise run	
the same algorithm, we get an algorithm that gives the correct	Apply Uf, this time the oracle will
answer with probability $\frac{3}{4}$.	oflip the state
	$U_{\uparrow}\left(\frac{107+117}{\sqrt{2}}\right) = \frac{107-117}{\sqrt{2}}$
Answer: Divided into two cases	12 / J2
1) when f(x) is constant;	$H\left(\frac{107-117}{2}\right) = 117$
Start with 107 than it's superposition state:	So it's like correct half of the time
102+117	
$H 107 = \frac{10.77 \cdot 127}{\sqrt{12}}$	Conclution:
Apply up, this situation will not change	P = (1 + 1/2)/2 = 3/4
$U_{f}(\frac{107+117}{\sqrt{2}}) = e^{i\theta} \frac{107+117}{\sqrt{2}}$	
Apply the Hadamard gate H	
$H\left(e^{i\omega}\frac{107+117}{\sqrt{2}}\right)=107$	
So the probability of Measuring 107	i4 1

Question 2:
pure state: 14.7
density operator ρ , each state $ \psi_{\bar{i}}7$ occurs with a probability $p_{\bar{i}}: \rho = \sum_{i} p_{i} \psi_{i}7\langle\psi_{\bar{i}} $
for pr should satisfied:
Σ_{i} $p_{i} = 1$
Due to the formula that we used to calculate diagonal elements.
·
$T_{r}(X) = \frac{\Gamma_{j}(j)}{\lambda lj}$
So dange Pinto formula:
$Tr(\rho) = Tr(\Sigma_{i}\rho_{i} \varphi_{i},7\langle\varphi_{i})$
=> Tr(ρ) = ZipiTr(14i><9i1)
$\Rightarrow Tr(P) = I + pi < y + y + 7 $
$= \sum_{\hat{\nu}} p_{\hat{\nu}} = 1$
Question 3:
To prove it a set of operators Pi satisfy the conditions of being sett-
-adjoint ($P_i = P_i^{\dagger}$) and idempotent ($P_i^2 = P_i$), then $P_iP_j = 0$ ($i \neq j$)
J , J
Answer: Given Pi = Pit => Pi is Hermitian
Also because Idempotent property SO Pi2 = Pi
$(p_{\hat{i}}p_{\hat{j}})^{\dagger} = p_{\hat{j}}^{\dagger}p_{\hat{i}}^{\dagger}$
Since Pi = Pit &A Pj = Pjt
So (PiP;)+ = P; P;
Given: P:P: = P: Ql P;P: = P;
$P_i P_i = P_i^2 P_j = P_i P_j$
$(P_{i}t_{j}^{*})^{+} = (P_{i}t_{j}^{*}P_{i})^{+} = P_{i}^{*}P_{j}^{*}P_{i}^{*} + P_{i}^{*}P_{j}^{*}P_{i}^{*}$
$P_{j}P_{j} = P_{j}P_{j}$
Multiply Pj = PiPj PiPj = PiPj - PiPj : Pj Pi=0

Question 4:

QFT $|X\rangle = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i x k/N} |k\rangle$

 $\therefore 3 - qubit system : N = 2^3 = 8$ $\therefore OFT 1 \times 7 = \frac{1}{R} \sum_{k=0}^{7} e^{2\pi i \times k} / 8$

Second time (OFT:

QF7 (QF7 1x7) = 1 = 1 = e = mkj/8 | j = e = mkj/8 | j 7

So two times apply QPI

equal to a bit-reversal operation. Means actually back to state 1x7 but with a global phase factor.

To summarize: two consecutive apply of QFT Will bring back to original such 1X1, X2, X37, but in a global phase.