Plan du cours

I.	No	Nombre dérivé et tangente														
	1.	Nombre dérivée	1													
	2.	Tangente à une courbe	2													
H.	Dé	rivées des fonctions usuelles	3													
	1.	Fonction dérivée	3													
	2.	Opération sur les fonctions dérivées	3													
III.	Etude des variations d'une fonction															
	1.	Exemple d'une fonction polynôme	5													
	2.	Exemple d'une fonction exponentielle	5													

I. Nombre dérivé et tangente

1. Nombre dérivée

Sur le graphique ci-contre, la pente de la droite (AM) sécante à la courbe est égale à : $\frac{f(a+h)-f(a)}{a+h-a} = \frac{f(a+h)-f(a)}{h}$ avec $h \neq 0$.

Lorsque M se rapproche de A, h tend vers 0. La droite (AM) se rapproche alors d'une position limite dont la pente est égale à $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}.$

Cette pente s'appelle le nombre dérivé de f en a et se note f'(a).

Définition

On dit que la fonction f est dérivable en a s'il existe un nombre réel ℓ , tel que : $\lim_{t \to 0} \frac{f(a+h) - f(a)}{t} = \ell.$

 ℓ est appelé le nombre dérivé de f en a et se note f'(a).

Exemples:

1) Etudier la dérivabilité de la fonction f définie sur \mathbb{R} par $f(x)=2x^2-3$

Chapitre 3 : Compléments sur la dérivation

2) Etudier la dérivabilité de la fonction g définie sur \mathbb{R} par $g(x) = x $
 Z. Tangente à une courbe Définition La tangente à la courbe au point A d'abscisse a est la droite passant par A de pente le nombre dérivé f'(a).
Propriété Equation d'une tangente Soit f une fonction définie sur un intervalle I et soit $a \in I$. On suppose que f est dérivable en a , donc que f admet un nombre dérivé $f'(a)$ en a . Alors l'équation de la tangente en a est $y = f'(a)(x - a) + f(a)$.
Exemple: On considère la fonction trinôme f définie sur $\mathbb R$ par $f(x)=-5x^2+3x-7$ Déterminer une équation de la tangente à la courbe représentative de f au point de la courbe d'abscisse $x=1$.

II. Dérivées des fonctions usuelles

1. Fonction dérivée

Définition

On dit que la fonction f est dérivable sur un intervalle I, si elle est dérivable en tout réel x de I.

Dans ce cas, la fonction qui à tout réel x de I associe le nombre dérivé de f en x est appelée **fonction dérivée** de f et se note f'.

Exemple : Dérivée de la fonction inverse

So Démo	oit l	a f	on.	cti	on	f	dé	éfir	nie	: SI	ur	\mathbb{R}	* [pai	r f	(x	()	=	$\frac{1}{x}$											
Démo	ontr	on	s c	ļue	p p	oui	r t	ou	t :	x (de	\mathbb{R}	*,	or	ı a	1:	f'	(x) :	=	 $\frac{1}{x^2}$	•								
					٠.				٠.							٠.					 		 	 	 	 	 	 	 	
										٠.											 		 ٠.	 	 	 	 	 	 	

2. Opération sur les fonctions dérivées

• Dérivées des fonctions usuelles

Fonction	Dérivée
$a, a \in \mathbb{R}$	0
$ax, a \in \mathbb{R}$	а
x^2	2 <i>x</i>
x^n $n \ge 1 \text{ entier}$	nx^{n-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{x^n}$ $n \ge 1 \text{ entier}$	$-\frac{n}{x^{n+1}}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
e ^x	e ^x
$e^{kx}, k \in \mathbb{R}$	ke ^{kx}

• Opérations sur les fonctions dérivées

Fonction	Dérivée
u + v	u' + v'
$ku, k \in \mathbb{R}$	ku'
uv	u'v + uv'
1	u'
\overline{u}	$-\frac{u^2}{u^2}$
<u>u</u>	u'v - uv'
\overline{v}	$\overline{v^2}$

• Dérivées des fonctions composées

Fonction de la forme	Fonction dérivée	Condition d'application					
u(ax + b)	au'(ax+b)						
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	u(x) > 0 sur l					
u ⁿ	nu′u ^{n−1}	n entier, $n \geq 1$					
e^u	u'e ^u						

Exem	nla	
LYCIII	hic	э.

Dans chaque cas, calculer la fonction dérivées de f:

	1)	f(x)	$= 5x^3$	$-3x^{2}$	+	10
--	----	------	----------	-----------	---	----

2)
$$g(x) = (x+1)\sqrt{x}$$

2)
$$g(x) = (x+1)\sqrt{x}$$
 3) $h(x) = \frac{6x-1}{3-5x}$
5) $j(x) = (9x-6)^3$ **6)** $k(x) = \sqrt{2x-5}$

4)
$$i(x) = e^{4x^2-5}$$

5)
$$j(x) = (9x - 6)^{3}$$

6)
$$k(x) = \sqrt{2x - 5}$$

|
 |
• • |
|------|------|------|------|------|------|------|------|------|------|------|---------|
|
 |

III. Etude des variations d'une fonction

Théorème

Soit f une fonction dérivable sur un intervalle I de \mathbb{R} .

- Si, pour tout x de I, f'(x) > 0, alors f est **strictement croissante** sur I.
- Si, pour tout x de I, f'(x) < 0, alors f est **strictement décroissante** sur I.
- Si, pour tout x de I, f'(x) = 0, alors f est **constante** sur I.

1.	Exemp	le d	'une	fonction	polynôme
	-/(-)				P0.,

Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 + \frac{9}{2}x^2 - 12x + 5$. \rightarrow Étudier les variations de f sur \mathbb{R} et dresser le tableau de variation.

2. Exemple d'une fonction exponentielle

Soit la fonction g définie sur \mathbb{R} par $g(x) = (4-3x)e^{2x-1}$. \rightarrow Étudier les variations de g sur [-5;5] et dresser le tableau de variation.