SAT Benchmark Performance in Connecticut in 2012-13

By Micheal Chen, Mingyang Su and Alex P Zhang

Introduction

Our goal is to practice and develop our Exploratory Data Analysis (EDA) skills in R.

In this project we analyze the distributions of SAT Benchmark Performance among high schools in the state of Connecticut from 2012 to 2013, then try to find the relationship between the number of senior students and their SAT Benchmark Performance.

This project uses a primary dataset which (SAT_School_Participation_and_Performance__2012-2013.csv) has been downloaded from the link: https://catalog.data.gov/dataset/sat-school-participation-and-performance-2012-2013.

The SAT benchmarks are designed to measure the college readiness of high school students, using the SAT, a college entrance examination taken by nearly 1.45 million students in all 50 United States and the District of Columbia. The SAT benchmark determined in this study was 1550 for the composite. According to research conducted by the College Board, a score of 1550 indicates that a student will have a 65 percent or greater likelihood of achieving a B- average or higher during the first year of college. (College Board. 250 Vesey Street, New York, NY 10281. Tel: 212-713-8000; e-mail: research@collegeboard.org; Web site: http://research.collegeboard.org)

The primary dataset provided SAT Benchmark Meeting and participation rate, but it did not exactly show how many senior students reach the Benchmark, and the Percent among the total number of senior students in the schools. Therefore, we created a new index called BMR(Benchmark Meeting Rate), which comes through the number of Benchmark-Meeting seniors divided by the number of total seniors in the same school. We use BMR to evaluate SAT Benchmark Performance among high schools in Connecticut in 2012 and 2013.

Questions and Findings

What is the relationship between a school's senior population and the school's benchmark-meeting rate?

data <- read_csv("C:/Users/alex/Documents/SAT-Benchmark-Group-Report/SAT_School_Participation_and_Perfo

```
## Parsed with column specification:
## cols(
##
     `District Number` = col_double(),
     District = col_character(),
##
##
     School = col_character(),
     `Test-takers: 2012` = col_double(),
##
     `Test-takers: 2013` = col_double(),
##
     `Test-takers: Change%` = col_double(),
##
     `Participation Rate (estimate): 2012` = col_double(),
##
##
     `Participation Rate (estimate): 2013` = col_double(),
     `Participation Rate (estimate): Change%` = col_double(),
##
##
     `Percent Meeting Benchmark: 2012` = col_double(),
##
     `Percent Meeting Benchmark: 2013` = col_double(),
     `Percent Meeting Benchmark: Change%` = col_double()
##
## )
```

```
df <- data %>%
  select(-1, -6, -9, -12) %>%
  rename(district = "District", school = "School", t_takes2012 = "Test-takers: 2012", t_takes2013 = "Te
  dplyr::filter(!(is.na(t_takes2012) | is.na(t_takes2013) | is.na(part_rate2012) | is.na(part_rate2013)
#df1 is for testtakers for each school+year
df1 <- df %>%
  select(1:4) %>%
  rename(`2012` = t_takes2012, `2013` = t_takes2013) %>%
  gather(3,4,key = "year", value = "t_takes") %>%
  arrange(school)
#df2 is participation rate for each school+year
df2 <- df %>% select(1,2,5,6) %>%
 rename(`2012` = part_rate2012, `2013` = part_rate2013) %>%
  gather(3,4,key = "year", value = "part rate")
#df3 is percentage meeting benchmark for each school+year
df3 <- df %>%
  select(1,2,7,8) %>%
 rename(`2012` = perc_mb2012, `2013` = perc_mb2013) %>%
  gather(3,4,key = "year", value = "perc_mb")
#df4 combines them all
#BMR is calculated as such:
#bmr = number of meeting Benchmark / number of total seniors = (t_takes*perc_mb) / (t_takes/part_rate)
df4 <- df1 %>%
 full_join(df2,by = c("district", "school", "year")) %>%
  full_join(df3,by = c("district", "school", "year"))
df4 <- df4 %>%
  mutate(bmr = perc_mb*part_rate*1e-4)
```

First we'll get the senior population for each school (denoted as pop)

```
data <- df4 %>% mutate(pop = floor(1e2*t_takes / part_rate))
data
```

```
## # A tibble: 374 x 8
##
      district
                      school
                                   year t_takes part_rate perc_mb
                                                                       bmr
                                                                             pop
##
      <chr>
                      <chr>>
                                   <chr>
                                           <dbl>
                                                     <dbl>
                                                             <dbl> <dbl> <dbl>
## 1 Stamford
                                             133
                                                        82
                                                                47 0.385
                      Academy of~ 2012
                                                                             162
## 2 Stamford
                      Academy of~ 2013
                                             142
                                                        88
                                                                 51 0.449
                                                                             161
## 3 Connecticut Te~ Albert I P~ 2012
                                              92
                                                        58
                                                                 1 0.0058
                                                                             158
## 4 Connecticut Te~ Albert I P~ 2013
                                              88
                                                        55
                                                                 0 0
                                                                             160
## 5 Amistad Academ~ Amistad Ac~ 2012
                                              34
                                                       100
                                                                32 0.32
                                                                              34
## 6 Amistad Academ~ Amistad Ac~ 2013
                                              31
                                                       100
                                                                39 0.39
                                                                              31
                      Amity Regi~ 2012
## 7 Regional 05
                                                        87
                                                                61 0.531
                                                                             437
                                             381
## 8 Regional 05
                      Amity Regi~ 2013
                                                        80
                                                                63 0.504
                                             348
                                                                             435
## 9 Ansonia
                                                        67
                      Ansonia Hi~ 2012
                                             118
                                                                18 0.121
                                                                             176
## 10 Ansonia
                      Ansonia Hi~ 2013
                                             104
                                                        61
                                                                18 0.110
                                                                             170
## # ... with 364 more rows
```

Let's see the trend of bmr vs year

```
data %>%
  ggplot(aes(x = year, y = bmr, fill = year)) +
  geom_boxplot() + labs(
    title = "2012-13 School Benchmark Performance in Connecticut",
    y = "Benchmark Meeting Rate", x = "Year"
) + theme_bw()
```

2012-13 School Benchmark Performance in Connecticut

From the graphic above , in 2012 the BMRs of Connecticut schools distributed from 0 to 80 percent, but in 2013 the rate went up a little bit, a couple of schools' numbers almost over 80 percent.

We'll plot the data to see if we can recognize any patterns.

```
ggplot(data) +
  geom_point(aes(pop,bmr),alpha=4/9,size=3) +
  facet_wrap(~year) +
  theme_bw() +
  labs(title="Senior Population vs Benchmark Meeting Rate",caption="This shows the population vs bmr for
```

Senior Population vs Benchmark Meeting Rate

This shows the population vs bmr for each year.

The data is relatively scattered, but we can see a weak positive linear trend.

We can create a linear model using root mean squared residuals.

```
#root-mean-square residuals
measure_distance <- function(mod,data){
    diff <- data$bmr - (mod[1] + data$pop*mod[2])
    sqrt(mean(diff^2))
}
best <- optim(c(0, 0), measure_distance, data = data)
ggplot(data, aes(pop, bmr)) +
    geom_point(size = 2, colour = "grey30") +
    geom_abline(color="blue",intercept = best$par[1], slope = best$par[2]) +
    theme_bw() +
    labs(title="Fitting a linear model") +
    facet_wrap(~year)</pre>
```

Fitting a linear model

However, there's still many points in the data that are far from our linear model. Let's try out some nonlinear models to see if it can fit the data any better.

```
mod1 <- lm(bmr ~ ns(pop, 1), data = data)
mod2 <- lm(bmr ~ ns(pop, 2), data = data)
mod3 <- lm(bmr ~ log(pop, base = exp(1)), data = data)
mod4 <- lm(bmr ~ I(pop^2), data = data)
data %>%
    gather_predictions(mod1, mod2, mod3, mod4) %>%
    ggplot(aes(pop, bmr)) +
    geom_point(alpha=2/5) +
    geom_line(aes(pop,pred), colour = "red") +
    facet_grid(year~ model) +
    theme_bw() +
    labs(title="Fitting non-linear models")
```

Fitting non-linear models

None of these models appear very satisfactory since many data points are still ommitted. But we can't conclude that a model isn't good just by appearance, we also have to examine other factors of the models to check how good it is. Let's check the residuals for any patterns.

```
data %>%
  gather_residuals(mod1,mod2,mod3,mod4) %>%
  ggplot(aes(resid)) +
  geom_freqpoly(binwidth = 0.05) +
  geom_vline(xintercept = 0, colour = "Green", size=0.5) +
  facet_grid(year ~ model) +
  theme_bw() +
  labs(title="Distribution of residuals")
```

Distribution of residuals

Except the first model, all the other residuals have an approximately normal distribution around 0, which are good.

```
data %>%
  gather_residuals(mod1,mod2,mod3,mod4) %>%
  ggplot(aes(pop, resid)) +
  geom_hline(yintercept = 0, colour = "green", size = 2) +
  geom_point(alpha=2/5) +
  facet_grid(year ~ model) +
  theme_bw() +
  labs()
```


There appears to be no pattern in our residual plot for all of the models, which is also a good thing. The last thing we need to check is the coefficient of determination.

```
print(str_c("r^2 of 1-degree of freedom cubic spline model: ", round(summary(mod1)$r.squared,3) ))
## [1] "r^2 of 1-degree of freedom cubic spline model: 0.126"

print(str_c("r^2 of 2-degrees of freedom cubic spline model: ", round(summary(mod2)$r.squared,3) ))

## [1] "r^2 of 2-degrees of freedom cubic spline model: 0.138"

print(str_c("r^2 of logarithmic model: ", round(summary(mod3)$r.squared,3) ))

## [1] "r^2 of logarithmic model: 0.125"

print(str_c("r^2 of 2nd-degree polynomial model: ", round(summary(mod4)$r.squared,3) ))

## [1] "r^2 of 2nd-degree polynomial model: 0.09"
```

These coefficients are pretty low overall, which are not good. The model with highest coefficient of determination is mod2, the 2-degrees of freedom cubic spline model, so this is the best model we have so far. When predicting a school's benchmark meeting rate based on its population, we can use this model, and be correct about 13.8% of the time.

What's significant about the schools with the highest bmr?

We find the schools with the highest bmr.

```
df4 %>%
    arrange(desc(bmr)) %>%
    head(10) %>%
    ggplot() +
    geom_bar(aes(school,bmr,fill = bmr>0.75),stat="identity") +
    coord_flip() +
    theme_bw() +
    labs(title="Schools with the highest bmr")
```

Schools with the highest bmr Wilton High School Staples High School -New Canaan High School bmr > 0.75school **FALSE TRUE** Greater Hartford Academy Mathematics and Science -Glastonbury High School -Darien High School 0.5 1.0 1.5 0.0 bmr

We'll focus on the top 3 schools: Darien High School, New Canaan High School, and Wilton High School.

Graph with highest bmr schools emphasized

If we were to zoom in those in those 3 schools,

```
ggplot() +
  geom_point(data=Top3,aes(pop,bmr), color = "Red", size=3) +
  facet_wrap(~year) +
  theme_bw() +
  labs(title="Focusing on the senior populatin of the 3 highest-bmr schools")
```


We can see that they fall around the 300-330 population range.

Conclusion

According to the graphs, we removed all the null values in both 2012 and 2013 from data of SAT School Participation and Performance informations in Connecticut state, there are around 170 schools remaining. From the graph of comparison of population and BMR, we find that students numbers in most school were less than 300, and most of them had BMR values lower than 0.5. SAT Benchmark Performance of 2013 increase a little bit than 2012, but it did not show big change overall. There are 3 schools from three districts have the highest BMR in both years, which are "Darien High School", "New canaan High School" and "Wilton High School". All three schools have student scale around 300. We concluded that in the state of Connecticut in 2012 and 2013, student scale around 300 can make best SAT Benchmark Performance.

Contributions

Alex - Created the formula for BMR, came up with the ideas on what to explain from our model, tidied the data frame, and proofread the project for any errors.

Michael - Created the models, analyzed each model, and made the plots looking pretty.

Hongyang - Wrote the Introduction, the Conlcusion, and added the graphs for the schools with the highest bmr.