Quantum Lightning Never Strikes the Same State Twice

Mark Zhandry
Princeton University

Quantum No-Cloning ng Unkn quantum

No-Cloning = Quantum Money [Wiesner'70]

Kept secret

Limits of (Plain) Quantum Money

Limits of (Plain) Quantum Money

Mint must be involved in verification

Requires merchant and Mint to have quantum channel

Moreover, having verification oracle can break security [Lutomirski'10]

Can fix by replacing note with new bill every time

(Some proposals to circumvent difficulties [Mosca-Stebila'10, Gavinsky'10])

Decoherence?

Public Key Quantum Money [Aaronson'09]

Public Key Quantum Money [Aaronson'09]

Bitcoin sans blockchain?

Quantum Lightning

Let's pretend old adage is true of lightning in nature

Of course, can erect lightning rod to tamper with nature

Quantum lightning = secure "digital" lightning immune to adversarial generation (aka lightning rods)

• Impossible classically: can always reset to same initial conditions

This work: study strong variants of no cloning

- New constructions
- Connections to post-quantum security

Quantum Background

Quantum states:

= superposition of all messages
=
$$\Sigma \alpha_x |x\rangle$$
 ($\Sigma |\alpha_x|^2 = 1$)

Measurement:

Operations: Unitary transformations on amplitude vectors

Quantum Background

Example Operations:

Simulate classical ops in superposition:

Quantum Fourier Transform:

$$\hat{a}_{y} = \Sigma \alpha_{x} |x\rangle \rightarrow \boxed{QFT} \rightarrow \mathcal{Q} = \Sigma \hat{a}_{y} |y\rangle$$

$$\hat{a}_{y} = (\Sigma \alpha_{x} \omega^{xy})/C$$

Public Key Quantum Money

- Verification accepts honest banknotes
- Verification leaves honest banknotes intact
- Repeated verification on honest banknotes results in same σ

Public Key Quantum Money

Constructions of PK Quantum Money

- [Aaronson'09]: (1) relative to **Quantum** oracle, (2) concrete candidate instantiation
 - (2) broken by [Lutomirski-Aaronson-Farhi-Gosset-Kelner-Hassidim-Shor'10]
- [Farhi-Gosset-Hassidim-Lutomirski-Shor'12]: from knots
- [Aaronson-Christiano'12]: (1) relative to **Classical** oracle, (2) concrete candidate instantiation
 - (2) broken by [Pena-Faugère-Perret'15]

[Aaronson-Christiano'12]

Let **S** be a **d/2**-dimemsional subspace of \mathbb{Z}_p^d

$$=\sum_{x\in S}|x\rangle$$

Ver:

[Aaronson-Christiano'12]

Thm [Aaronson-Christiano'12]: If S,S^{\perp} given as oracles, no efficient quantum adversary can copy

Additionally provide candidate obfuscator for subspaces

- Serial number = obfuscations of $S_{\bullet}S^{\perp}$
- Proof relative to non-standard assumption
- Scheme/assumption broken by [Pena-Faugère-Perret'15]

Barrier to Proving Quantum Money

If adversary can produce a single banknote, why can't it produce two?

Quantum Lightning

Aka "collision-free" quantum money [Lutomirski-Aaronson-Farhi-Gosset-Kelner-Hassidim-Shor'10]

Quantum Lightning

Applications:

- PK Quantum money
- Decentralized currency

Provable min-entropy

Detour: Classical crypto in a quantum world

(Bit) Commitment Schemes

Hiding

Binding

Limitation

Security goal: once Alice commits, there is a unique message she can de-commit to

Actual security notion: once Alice commits, she cannot simultaneously de-commit to both **0** and **1**

Classically, these two goals are the same (use rewinding), but quantumly, they may not be

Limitation: Quantum Rewinding

Intuition:

- Alice may keep a state that allows her to decommit to either O or 1
- Once she decommits to, say, $\mathbf{0}$, she must measure to get classical decommitment \Rightarrow state collapses
- Cannot no longer rewind to evaluate on 1

Solution: Collapse-Binding [Unruh'16]

Is this really a problem?

Thm [Ambainis-Rosmanis-Unruh'14]: Relative to a quantum oracle, there exists a commitment scheme that is classically binding, but an efficient quantum adversary can de-commit to either **0** or **1**

What's this got to do with no-cloning?

Either/Or Results

Thm (Informal): A binding commitment is either collapse binding, or can be used to build public key quantum money.

Thm (Informal): A non-interactive binding commitment is either collapse binding, or can be used to build quantum lightning.

Also show analogous statements for digital signatures, hash functions

Intuition

Thm (Informal): A binding commitment is either collapse binding, or can be used to build public key quantum money.

What if we could clone adversary's post-commitment state?

• Then no need to rewind, definitions equivalent

So any separation inherently uses no-cloning

- Banknote/bolt = adversary's state
- For verification, check that adversary breaks collapsebinding

Assume:

comm

 $\Sigma \alpha_{m}$ |m,Reveal m)

 $|\Psi\rangle$

- Verify
- W/ prob ½, measure **m**

Given two valid bolts with same serial number σ =comm,

- Both |φ⟩ contain only openings valid wrt comm
- Both $| \phi \rangle$ are in superposition

Therefore, if we measure both bolts, we will get openings to both 0 and 1 with reasonable probability

Proof Difficulties

- Alice may not be a perfect distinguisher
- Bolt may contain state that didn't come from Alice
- Need to rule out small success probabilities
- Verifier may not be able to rewind Alice perfectly
 - ⇒ Hard to simultaneously guarantee in superposition and contains only valid pre-images

Takeaways

Two possible interpretations:

(1) Quantum money is hard, so probably don't have to worry about these quantum security issues

(2) Possible route toward building quantum money/lightning

New Constructions of Quantum Money/Lightning

Program Obfuscation

"Scramble" a program

- Hide implementation details
- Maintain functionality

Golden goose of crypto, believed by many to be "crypto complete"

Indistinguishability Obfuscation (iO)

[Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang'01]

Candidate Constructions

First: [Garg-Gentry-Halevi-Raykova-Sahai-Waters'13]

Based on "multilinear maps" from [Garg-Gentry-Halevi'12]

Many subsequent proposals, and attacks

• [Coron-Lepoint-Tibouchi'13, Cheon-Han-Lee-Ryu-Stehle'14, Boneh-Wu-Zimmerman'14, Brakerski-Rothblum'14, Barak-Garg-Kalai-Paneth-Sahai'14, Ananth-Gupta-Ishai-Sahai'14, Coron-Gentry-Halevi-Lepoint-Maji-Miles-Raykova-Sahai-Tibouchi'15, Hu-Jia'15, Brakerski-Gentry-Halevi-Lepoint-Sahai-Tibouchi'15, Coron-Lepoint-Tibouchi'15, Cheon-Lee-Ryu'15, Minaud-Fouque'15, Badrinarayanan-Miles-Sahai-Z'15, Miles-Sahai-Z'16, Garg-Miles-Mukherjee-Sahai-Srinivasan-Z'16, Chen-Gentry-Halevi'16,...]

Quantum security unclear, but I strongly believe a construction exists

Folklore PK Quantum Money

Simply obfuscate oracles S,S^{\perp} in [AC'12] using iO

Unfortunately, not so simple...

- Proving security for most tasks using iO is already hard (not uncommon to have 60+ page papers)
- Plus, difficulty discussed earlier

Thm: If injective OWFs exist, then [Aaronson-Christiano'12] instantiated with iO is secure

Proof idea:

- Don't use iO to directly prove cloning is hard
- Instead, use iO to convert adversary into informationtheoretic cloner
- Then use information-theoretic techniques to rule out such a cloner

Let **T** be a random super-space of **S** of dimension **3/4**

Let $\mathbf{T'}$ be a random super-space of \mathbf{S}^{\perp} of dimension $\mathbf{34d}$

What if we instead obfuscate **T,T'**?

Lemma: By iO (plus injective OWFs), even if adversary knows **S** (but not **T,T'**), can't tell difference between iO(S), $iO(S^{\perp})$ and iO(T), iO(T')

Actually, suffices to have a good "subspace-hiding" obfuscator

Equivalent way to generate **S,T,T'**:

- Choose random T,T' such that $T^{\perp} \subseteq T'$
- Then choose random **S** s.t. $T^{\perp} \subseteq S \subseteq T'$

Suppose we obfuscate **T,T'**

Let
$$|\Psi_s\rangle = \Sigma_{x \in s} |x\rangle$$

Now adversary duplicates $|\Psi_s\rangle$ for unknown **S**

Lemma: Even if adversary knows T,T', cannot clone $|\Psi_s\rangle$ Follows from a new quantitative version of no-cloning theorem

Constructing Quantum Lightning

Apparently really hard (at least for me)

No known constructions from any existing tools

- Using [ARU'14] + obfuscator for *quantum* circuits + Either/Or result, may get *candidate*
- But no good candidates for quantum obfuscation

Instead, I devise a new assumption...

Failed Approach to Quantum Lightning

The SIS hash function:

- Fix integers n,m,q,B, m >> n, B << q
- Let \mathbf{A} be a random matrix in $\mathbb{Z}_{\mathbf{q}}^{\mathbf{n} \times \mathbf{m}}$

$$H_A: [-B,B]^m \rightarrow \mathbb{Z}_q^n$$

 $H_A(x) = A \cdot x$

Collision resistant based on worst-case lattice problems

Maybe non-collapsing?

Failed Approach to Quantum Lightning

Idea to show non-collapsing:

- Prepare state $\Sigma_{x} N_{\sigma}(x) |_{x}$
- If we apply H_A and measure, will get state

$$|\Psi_{y}\rangle = \Sigma_{x:A\cdot x=y} N_{\sigma}(x) |x\rangle = \Sigma_{x} J_{y}(x)N_{\sigma}(x) |x\rangle$$

$$J_{y}(x) \text{ indicator for } A\cdot x=y$$

QFT of this state:

$$|\Psi'_{y}\rangle = \Sigma_{r,e} \omega^{y\cdot e} N_{q/\sigma}(e) |r\cdot A+e\rangle$$

Superposition of LWE samples!

Quantum Lightning from Lattices?

Turns out SIS for random A is collapsing* [Liu-Z'19]

But maybe we can break SIS in such a way to allow decisional LWE to be easy?

• Obvious choice: give a short vector ($\langle \langle \sigma \rangle$) in kernel of A. But then H_A is not collision resistant!

Open question: Devise distribution over **A** such that: (1) SIS hard (2) dec. LWE easy (3) search LWE hard

^{*} for super-poly modulus, weaker notion for poly modulus

Abstracted Construction

SIS is an example of a domain-constrained linear function

Linear functions are easily cryptanalyzed by quantum

Maybe other domain restrictions are useful?

Need to behave nicely with QFT

In paper, give candidate construction

- Interpret input as a matrix
- Domain constraint: low-rank matrix
- Show trapdoor that doesn't trivially break security
- Lots of annoying details

Future Directions

Construct quantum lightning from iO (+LWE etc)

Verifiable Entropy

- Quantum lightning gives quantum non-interactive proof of minentropy
- [Brakerski-Christiano-Mahadev-Vazirani-Vidick'18] interactive privately verifiable classical proof of uniform randomness from LWE
- Goal: classical non-interactive proof?

Other applications of no-cloning

- Un-clonable programs
- Various one-shot primitives (one-time memory, etc)

Thanks!