Discussion3

Jing Lyu

1/25/2023

One-Way ANOVA

For this section, we will use PlantGrowth dataset. It contains weights of plants produced under two distinct treatment conditions and a control condition. We will investigate the relationship between conditions and weights.

1. Write down a one-way ANOVA model for this data. Use the factor-effect form.

$$Y_{i,j} = \mu + \alpha_i + \epsilon_{i,j}, \ j = 1, \dots, n_i, i = 1, \dots, 3$$

where $\{\alpha_i\}$ satisfies that $\sum_{i=1}^3 n_i \alpha_i = 0$ and $\{\epsilon_{i,j}\}$ are i.i.d. $N(0, \sigma^2)$.

In this model, α_i represent the effect from the three conditions, which are control (i=1), treatment 1 (i=2) and treatment 2 (i=3). The outcome $Y_{i,j}$ represents the jth subject under ith condition. The mean effect μ represents the mean weight in the population. The errors $\epsilon_{i,j}$ capture any unexplained effects on weights. Values of n_i can be found in the following table.

table(PlantGrowth\$group)

```
##
## ctrl trt1 trt2
## 10 10 10
```

Main effect

2. Obtain the main effects plots. Summarize your findings.

Example observations:

- Apparent differences in weights across condition.
- Largest variability in treatment 1.
- Treatment 1 has the lowest weight.
- Equal sample size under each condition.

```
res.aov <- aov(weight ~ group, data = PlantGrowth)
summary(res.aov)</pre>
```

3. Set up the ANOVA table using R for your model. Briefly explain this table. (explain what Df, Sum Sq, Mean Sq, F value, and Pr(>F) mean in this table.)

```
## Df Sum Sq Mean Sq F value Pr(>F)
## group    2  3.766  1.8832  4.846  0.0159 *
## Residuals    27  10.492  0.3886
## ---
## Signif. codes:    0 '***'  0.001 '**'  0.05 '.'  0.1 ' ' 1
```

Eg: Treatment sum of squares is 3.766. Residual sum of squares is 10.492. F test statistics is 4.846. P-value is 0.0159.

4. Test whether there is any association between conditions and weights. What are the null and alternative hypotheses? P-value is 0.0159 less than 0.05 which indicates significant difference of weights under different conditions.

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0 \ \text{ v.s. } \ H_A: \text{not all } \alpha_i \text{ are the zero.}$$

Con

Contrasts

In this section, we will use the salaries dataset. It contains data on the salaries of different professors. We will investigate the relationship between ranks of professors and salaries.

```
library(car)
df=Salaries
head(df)
##
          rank discipline yrs.since.phd yrs.service sex salary
## 1
          Prof
                        В
                                      19
                                                   18 Male 139750
## 2
                                      20
                                                   16 Male 173200
          Prof
                        В
## 3
      AsstProf
                        В
                                       4
                                                   3 Male 79750
## 4
          Prof
                        В
                                      45
                                                   39 Male 115000
## 5
          Prof
                        В
                                      40
                                                   41 Male 141500
## 6 AssocProf
                        В
                                       6
                                                   6 Male 97000
levels(df$rank)
## [1] "AsstProf"
                   "AssocProf" "Prof"
table(df$rank)
##
##
    AsstProf AssocProf
                             Prof
##
          67
                    64
                              266
One-way ANOVA table:
aov1 = aov(salary ~ rank, df)
summary.lm(aov1)
##
## Call:
## aov(formula = salary ~ rank, data = df)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
##
  -68972 -16376 -1580
                        11755 104773
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    80776
                                 2887
                                      27.976
                                              < 2e-16 ***
## rankAssocProf
                    13100
                                 4131
                                        3.171
                                               0.00164 **
## rankProf
                    45996
                                 3230
                                       14.238
                                               < 2e-16 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 23630 on 394 degrees of freedom
## Multiple R-squared: 0.3943, Adjusted R-squared: 0.3912
## F-statistic: 128.2 on 2 and 394 DF, p-value: < 2.2e-16
```

We access the information in the form of regression output using the *summary.lm* command.

Global test shows the difference exists among the means.

Questions:

- (1) Do non-tenured position (AsstProf) and tenured position (AssocProf and Prof) have different salary?
- (2) Is there a difference of salary within tenured position (AssocProf vs Prof)?

Denote mean salary of each group as μ_1 :AsstProf, μ_2 :AssocProf, μ_3 :Prof.

Gloal test:

$$H_0: \mu_1 = \mu_2 = \mu_3$$
 vs. $H_A:$ they are not all equal.

Contrast 1: In the first contrast, we group AssocProf and Prof into the treatment condition. Then the test becomes

$$H_0: \mu_1 = \frac{\mu_2 + \mu_3}{2} \quad vs. \quad H_A: \mu_1 \neq \frac{\mu_2 + \mu_3}{2}$$

The contrast we are interested in is $\mu_1-(\mu_2+\mu_3)/2$ or $2\mu_1-(\mu_2+\mu_3)$ with $c_1=2,c_2=c_3=-1$.

Constrast 2:

$$H_0: \mu_2 = \mu_3 \quad vs. \quad H_A: \mu_2 \neq \mu_3$$

The constrast we are interested in is $\mu_2 - \mu_3$ with $c_1 = 1, c_2 = -1$.

Assign the contrasts to the variable rank in the dataset df.

```
contrast1 = c(2,-1,-1)
contrast2 = c(0,1,-1)
contrasts(df$rank) = cbind(contrast1, contrast2)
contrasts(df$rank) # check
```

```
## contrast1 contrast2
## AsstProf 2 0
## AssocProf -1 1
## Prof -1 -1
```

We now analyze our contrasts by rerunning the same ANOVA command that we ran before. However, because now R has more information on the structure of the variable rank in the form of contrasts, the output will be different.

```
aov2 = aov(salary ~ rank, df)
summary.lm(aov2)
```

```
##
## Call:
## aov(formula = salary ~ rank, data = df)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
  -68972 -16376 -1580
##
                        11755 104773
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   100475
                                1459 68.855
                                                <2e-16 ***
                    -9849
                                1108
                                      -8.892
                                                <2e-16 ***
## rankcontrast1
## rankcontrast2
                   -16448
                                1645
                                      -9.997
                                                <2e-16 ***
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 23630 on 394 degrees of freedom
## Multiple R-squared: 0.3943, Adjusted R-squared: 0.3912
## F-statistic: 128.2 on 2 and 394 DF, p-value: < 2.2e-16
```

Both contrasts are significant, meaning that becoming tenured affects professors' salaries and so does moving up among tenured positions.