Step 5. It remains to prove that f is unique. Since E_0 is dense in E, for every $x \in E$, there is some sequence (x_n) converging to x, with $x_n \in E_0$. Since f extends f_0 and since f is continuous, we get

$$f(x) = \lim_{n \to \infty} f_0(x_n),$$

which only depends on f_0 and x, and shows that f is unique.

Remark: It can be shown that the theorem no longer holds if we either omit the hypothesis that F is complete or omit that f_0 is uniformly continuous.

For example, if $E_0 \neq E$ and if we let $F = E_0$ and f_0 be the identity function, it is easy to see that f_0 cannot be extended to a continuous function from E to E_0 (for any $x \in E - E_0$, any continuous extension f of f_0 would satisfy f(x) = x, which is absurd since $x \notin E_0$).

If f_0 is continuous but not uniformly continuous, a counter-example can be given by using $E = \mathbb{R} = \mathbb{R} \cup \{\infty\}$ made into a metric space, $E_0 = \mathbb{R}$, $F = \mathbb{R}$, and f_0 the identity function; for details, see Schwartz [149] (Chapter XI, Section 3, page 134).

Definition 37.39. If (E, d_E) and (F, d_F) are two metric spaces, then a function $f: E \to F$ is distance-preserving, or an isometry, if

$$d_F(f(x), f(y)) = d_E(x, y)$$
, for all for all $x, y \in E$.

Observe that an isometry must be injective, because if f(x) = f(y), then $d_F(f(x), f(y)) = 0$, and since $d_F(f(x), f(y)) = d_E(x, y)$, we get $d_E(x, y) = 0$, but $d_E(x, y) = 0$ implies that x = y. Also, an isometry is uniformly continuous (since we can pick $\eta = \epsilon$ to satisfy the condition of uniform continuity). However, an isometry is not necessarily surjective.

We now give a construction of the completion of a metric space. This construction is just a generalization of the classical construction of \mathbb{R} from \mathbb{Q} using Cauchy sequences.

Theorem 37.53. Let (E,d) be any metric space. There is a complete metric space $(\widehat{E},\widehat{d})$ called a completion of (E,d), and a distance-preserving (uniformly continuous) map $\varphi \colon E \to \widehat{E}$ such that $\varphi(E)$ is dense in \widehat{E} , and the following extension property holds: for every complete metric space F and for every uniformly continuous function $f \colon E \to F$, there is a unique uniformly continuous function $\widehat{f} \colon \widehat{E} \to F$ such that

$$f = \widehat{f} \circ \varphi,$$

as illustrated in the following diagram.

$$E \xrightarrow{\varphi} \widehat{E}$$

$$\downarrow \widehat{f}$$

$$F.$$

As a consequence, for any two completions $(\widehat{E}_1, \widehat{d}_1)$ and $(\widehat{E}_2, \widehat{d}_2)$ of (E, d), there is a unique bijective isometry betwen $(\widehat{E}_1, \widehat{d}_1)$ and $(\widehat{E}_2, \widehat{d}_2)$.