

FUTURE UPDATE

Electric vehicle adoption

When will EV become mainstream?

Collected data

- Global Internal Combustion Engine car sales
- Battery raw material evolution

- (2) Global Electric Vehicle sales
- **5** Diesel sales evolution

(3) Lithium price forecast

6 Hybrid car sales evolution

Creating our data models

Technologies used

Demand for battery raw materials

Cobalt supply as one of the risk factors of EV adoption

Battery price evolution

Switch to MNC batteries containing less cobalt to reduce risk and price

Trend Sales Diesel vs Hybrid Cars

Global Electric vehicle sales prediction

- "Red" ICE car global sales
- "Black" EV sales
- EV evolution similar to other technologies (diesel + hybrid)

Conclusions


```
In [105]: # Fitting Polynomial Regression to the EV dataset
          poly_reg_BEV = PolynomialFeatures(degree = 3)
          X poly BEV = poly reg BEV.fit transform(X BEV)
          poly reg BEV.fit(X poly BEV, y BEV)
          lin reg BEV = LinearRegression()
          lin reg BEV.fit(X poly BEV, y BEV)
Out[105]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
 ### Plotting the data ###
          ##################################
In [119]: # Visualising the Polynomial Regression results (for higher resolution and smoother curve)
          X \text{ grid} = \text{np.arange}(\min(X \text{ normal}), 2030, 0.1)
          X grid = X grid.reshape((len(X grid), 1))
          plt.scatter(X normal, y normal, color = 'red')
          plt.scatter(X BEV, y BEV, color = 'black')
          plt.plot(X_grid, lin_reg_normal.predict(poly_reg_normal.fit_transform(X_grid)), color = 'blue')
          plt.plot(X grid, lin reg BEV.predict(poly reg BEV.fit transform(X grid)), color = 'blue')
          plt.title('Total Car Sales')
          plt.xlabel('Year')
          plt.ylabel('Sales')
          plt.show()
```

