Introduction

Common Examples of Communications Networks

- The desktop computer and the Internet
- A laptop computer and a wireless connection
- Cell phone networks
- Industrial sensor-based systems
- Mainframe systems
- Satellite and microwave networks

Motivation

- INTERNET
- Exponential growth of traffic
- Development of new applications and services
- Advances in technology

Application requirements drive technology (or vice-versa?)

Motivation (contd)

- What's there to understand about communication/computer networks?
 - Applications, Protocols, Networking architecture
 - Links, Switches, Middleboxes
- Terms used often
 - Bandwidth, Latency, Performance, Quality of Service, User Experience
- Links: Wired, Wireless
- Bandwidth: 56kbps to 100Gbps
 - Is it only medium of transmission or something beyond?

Application Requirements

- Traditional vs Multimedia applications
- Client-server vs Peer-to-peer applications
- Elastic vs Inelastic Traffic
- Adaptive vs non-adaptive applications

- Performance of network/communication system meets requirements
 - Throughput/Data rate
 - Latency
 - Other qualitative and quantitative requirements

Data Communication

 Deals with sending information reliably from one place to another while conforming to the user requirements

- The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point
 - The Mathematical Theory of Communication, Claude Shannon

Data Representation

- Numbers
 - 8/16/32 bit integers
 - floating point
- Text
 - ASCII, Unicode
- Images
 - Bit patterns, Graphics formats JPG/GIF/etc
- Audio → Samples of continuous signal
- Video → Sequence of bitmap images

Communication Model

(a) General block diagram

(b) Example

Communication Model (contd)

Communication Tasks

- Signal generation and recovery
- Interfacing
- Synchronization
- Error detection and correction
- Addressing
- Routing
- Message formatting
- Flow control
- Congestion Control
- Session management
- Network management
- Security

Transmission Medium

- Twisted pair, coaxial cable, fiber-optic, wireless, infrared
- Choice of medium
 - Distance vs cost, (short-range or trans-pacific)
- Heterogeneity in links, data requirements
 - Rapid advancement in technology
- High transmission costs \rightarrow Efficient utilization

Networks

- Growth of number & power of devices interconnection needs
- Rapid growth in integrated applications (voice, text, video)
- Scalability and Efficiency
 - Point-to-point, multipoint communication
 - Better resource utilization
- Build networks according to requirements
 - Local area networks (LAN)
 - Metropolitan area networks (MAN)
 - Wide area networks (WAN)

Typical Configuration

Local Area Networks

- Shorter Reach
 - Building or small campus
- Usually owned and operated by same organization
- Data rates per user much higher (lower sharing level)
- Switched LANs, e.g. Ethernet
- Wireless LANs
 - Easy mobility
 - Easier to install
- Popularly broadcast or shared medium-based networks

Wide Area Networks

- Larger geographical reach: country or continents
- Crossing several administrative and political domains
- Operated and owned by different parties
- Rely on common carrier circuits
- Several Technologies
 - Circuit Switching (Wavelength division multiplexing (WDM) optical)
 - Packet Switching (IP or Frame Relay)
 - Asynchronous Transfer Mode (ATM)
 - Multiprotocol Label Switching

Internet

- Evolved from ARPANET (1969), first packet switched network
- Highly inter-operable (heterogeneous links, networks, protocols)
- Standardised through TCP/IP architecture and suite of protocols
- Reasons
 - End-to-end argument
 - Layering and Modularity
 - Best-effort packet delivery model
 - Increased public usage and contribution to development (WWW)
 - Killer applications every decade

Internet Structure

Network Architecture: What's in a network?

Hardware:

- Hosts (PC, Laptop, Mobile, Other devices)
- Switches (Gateway, Router, Middleboxes)
- Links

• Software:

- Layers and Protocols
- Standards for inter-operability of protocols
- TCP/IP Architecture

OSI Layers

- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

TCP/IP has been amazingly successful, and it's not based on a rigid OSI model. The OSI model has been very successful at shaping thought

Comparison of Network Models

OSI Model	Internet Model	Groups of Layers
7. Application Layer		
6. Presentation Layer	5. Application Layer	Application Layer
5. Session Layer		
4. Transport Layer	4. Transport Layer	Internetwork Layer
3. Network Layer	3. Network Layer	
2. Data Link Layer	2. Data Link Layer	Hardware Layer
1. Physical Layer	1. Physical Layer	

Protocols

- Used by Network model layers
- Sets of rules to define how to communicate at each layer and how to interface with adjacent layers

Protocols

- Module in a layered architecture
- A set of rules governing data communications
 - Syntax: format of data block
 - Semantics: meaning of each section
 - Timing: speed and sequencing
- Define interface to higher layers (API)
- Define interface to peer layers (syntax and semantics)
 - Format and order of messages
 - Action on receipt of messages
- Defined in standards and RFCs (ITU-T, IEEE, ISO)

Some Data Comm. Standards

<u>Layer</u>	Common Standards
5. Application layer	HTTP, HTML (Web) MPEG, H.323 (audio/video) IMAP, POP (e-mail)
4. Transport layer	TCP (Internet) SPX (Novell LANs)
3. Network layer	IP (Internet) IPX (Novell LANs)
2. Data link layer	Ethernet (LAN) Frame Relay (WAN) PPP (dial-up via modem for MAN)
1. Physical layer	RS-232c cable (LAN) Category 5 twisted pair (LAN) V.92 (56 kbps modem)

Example with HTTP

Message Transmission Example

Layering: Pros and Cons

- Many different software packages (protocols) and many different packets (at different layers)
 - Easy to develop new software
 - Simple to change the software at any level
- Matching layers communicate at different computers
 - Accomplished by standards
 - e.g., Physical layer at the sending computer must be the same in the receiving computer
- Somewhat inefficient
 - Involves many software and packets
 - Packet overhead (slower transmission, processing time)