Министерство образования и науки РФ

Федеральное государственное автономное образовательное учреждение высшего образования

"Омский государственный технический университет"

Факультет(институт) Информационных технологий и компьютерных систем

Кафедра Прикладная математика и фундаментальная информатика

Расчетно-графическая работа

По дисциплине Дискретная математика

На тему "Нахождение минимальной длины маршрута между городами Омской области"

Студента Загребельного Владислава Алексадровича

Фамилия, имя, отчество полностью

Курс <u>1</u> Группа <u>ФИТ-221</u>

Направление 02.03.02 Фундаментальная

(специальность) информатика и информационные

Технологии Код, наименование

Руководитель Ст. преподаватель

Ученая степень, звание

Федотова И.В. Фамилия, инициалы

Выполнил

Дата, подпись студента

Работа защищена с количеством баллов

Омск 2023

Содержание

1.	Задание	2
2.	Текст программы на языке С#	3
	Разработка интерфейса пользователя	5
	Список литературы	6

Задание

Дана сеть автомобильных дорог, соединяющих города Омской области. Некоторые дороги односторонние. Найти кратчайшие пути между городами Омской области (если двигаться можно только по дорогам).

Формат входных данных

Во входном файле записано сначала число N (1<=N<=100), определявшее количество рассматриваемых городов. Затем идет число М - количество дорог в стране, далее идет описание самих дорог. Каждая дорога задается тремя числами - номерами городов, которые она соединяет и расстоянием. Все дороги двухсторонние (то есть по ним можно ездить как в одну, так и в другую сторону); между двумя городами всегда существует не более одной дороги; не существует дорог, ведущих из города в себя.

Формат выходных данных

На экран выведите числа - суммарные длины маршрутов с указанием номеров городов или -1, если добраться невозможно.

Для решения данной задачи был использован алгоритм Флойда. В качестве ответа будут выведены города и кратчайшие пути между ними.

Текст программы на языке С#

```
while (true){
    Console.WriteLine("1.Программа");
    Console.WriteLine("2.06 авторе");
    Console.WriteLine("3.Выход");
    int key=Convert.ToInt32(Console.ReadLine());
    if (key==3) break;
    switch(key){
        case 1:
            Console.Clear();
            Prog();
           Console.WriteLine("========");
           break;
        case 2:
           Console.Clear();
            Console.WriteLine($"Об авторе:\nЗагребельный Владислав
Александрович, студент группы ФИТ-221.");
            Console.WriteLine("========");
            break;
static void Prog(){
    StreamReader date=new StreamReader("1.txt");
    int n=Convert.ToInt32(date.ReadLine());
    int m=Convert.ToInt32(date.ReadLine());
    double[,] matrix= new double[n,n];
    for (int i=0;i< m;i++){
        string[] str=date.ReadLine().Split(" ");
        matrix[Convert.ToInt32(str[0])-1,Convert.ToInt32(str[1])-
1]=Convert.ToDouble(str[2]);
        matrix[Convert.ToInt32(str[1])-1,Convert.ToInt32(str[0])-
1]=Convert.ToDouble(str[2]);
    date.Close();
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++){
            if (matrix[i,j]==0){
               matrix[i,j]=double.PositiveInfinity;
           if(i==j){
               matrix[i,j]=0;
            }
    for (int k=0; k< n; k++){
        for (int i=0;i<n;i++){
            for (int j=0;j<n;j++){
               matrix[i,j]=Math.Min(matrix[i,k]+matrix[k,j],matrix[i,j]);
```

```
}
}
Console.WriteLine("Кратчайшие пути:");
for (int i = 0; i < n; i++)
{
    for (int j=i+1; j<n;j++){
        if (matrix[i,j]==double.PositiveInfinity){
            Console.WriteLine($"{i+1} {j+1} -1");
        }
        else{
            Console.WriteLine($"{i+1} {j+1} {matrix[i,j]}");
        }
    }
}
```

Разработка интерфейса пользователя

На рисунке 1 представлено основное меню программы. Управление осуществляется при помощи ввода номера пункта меню с клавиатуры и нажатия клавиши Enter.

```
1.Программа
2.06 авторе
3.Выход
```

Рисунок 1- Основное меню программы

На рисунке 2 представлен результат работы алгоритма вычисления минимального пути между городами

```
Кратчайшие пути:
1 2 3
1 3 2
2 3 1
```

Рисунок 2- Вычисление минимального пути между городами

На рисунке 3 представлены сведения об авторе 06 авторе: Загребельный Владислав Александрович, студент группы ФИТ-221.

Рисунок 3- сведения об авторе

На рисунке 4 представлены входной файл для работы программы

Рисунок 4- Входной файл

Список литературы

- 1. Алгоритм Флойда Уоршелла / Хабр (habr.com) (дата обращения 11.05.2023)
- 2. <u>Язык программирования С# и платформа .NET (metanit.com)</u> (дата обращения 11.05.2023)