

PATENT
ATTORNEY DOCKET NO.: 046124-5005

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Takashi OSUMI et al.

Application No.: 09/121,539

Filed: July 24, 1998

For: GREEN FLUORESCENT PROTEINS AND BLUE FLUORESCENT PROTEINS

Assistant Commissioner for Patents
BOX MISSING PARTS
Washington, D.C. 20231

JC986 U.S. PTO
09/852000
05/10/01

CLAIM FOR PRIORITY

Under the provisions of Section 119 of 35 U.S.C., applicants hereby claim the benefit of the filing date of Japanese Patent Application No. 10-026418 filed January 23, 1998, for the above-identified United States Patent Application.

In support of applicants' claim for priority, filed herewith is one certified copy of the above.

Respectfully submitted,

MORGAN, LEWIS & BOCKIUS LLP

Reid G. Adler
Reg. No. 30,988

Dated: October 20, 1998

Customer No. 009629
MORGAN, LEWIS & BOCKIUS LLP
1800 M Street, N.W.
Washington, D.C. 20036
(202)467-7000

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

05/10/01
09/852000
US PRO
ICG85

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
る事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
in this Office.

出願年月日
Date of Application: 1998年 1月 23日

出願番号
Application Number: 平成10年特許願第026418号

出願人
Applicant(s): 大隅 隆

1998年 8月 7日

特許庁長官
Commissioner,
Patent Office

伴佐山 建志

出証番号 出証特平10-306388

VERIFICATION

The undersigned, of the below address, hereby certifies that he/she well knows both the English and Japanese languages, and that the attached is an accurate translation into the English language of the Certified Copy, filed for this application under 35 U.S.C. Section 119 and/or 365, of:

Application No.	Country	Date Filed
26418/1998	Japan	January 23, 1998

The undersigned declares further that all statements made herein of his/her own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signed this 18th day of November 1999.

Signature:

Name: HASEGAWA Yoshiki

Address: c/o Soei Patent and Law Firm
Okura-Honkan (Bldg.)
6-12 Ginza 2-chome Chuo-ku
Tokyo 104-0061 Japan

PATENT OFFICE
JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of
the following application as filed with this office.

Date of Application: January 23, 1998

Application Number: Japanese Patent Application
No. 026418/1998

Applicant(s) Takashi OSUMI

August 7, 1998

(Document Name) Patent Application
(Reference Number) P97XX-124
(Presentation Date) September 19, 1996
(Directly) Commissioner of the Patent Office
(IPC) C07K 7/10
C07H 21/00

(Title of the Invention) FLUORESCENT PROTEINS GFP AND BFP
(Number of Claims) 9

(Inventor)

(Residence or Address)
879-22, Shosha, Himeji-shi, Hyogo 671-2201 Japan
(Name) Takashi OSUMI

(Inventor)

(Residence or Address)
1496-11, Kanaji, Kamigoricho, Ako-gun, Hyogo
678-1201 Japan
(Name) Toshiro TSUKAMOTO

(Inventor)

(Residence or Address)
1496-11, Kanaji, Kamigoricho, Ako-gun, Hyogo
678-1201 Japan
(Name) Noriyo TSUKAMOTO

(Inventor)

(Residence or Address)
223-35-B304, Tsunogame, Shingucho, Ibo-gun, Hyogo
679-5163 Japan
(Name) Masatoshi YAMASAKI

(Applicant)

(Residence or Address)
879-22, Shosha, Himeji-shi, Hyogo 671-2201 Japan
(Name) Takashi OSUMI

(Attorney)
(Identification Number) 100088155
(Patent Attorney)
(Name) YOSHIKI HASEGAWA

(Attorney)
(Identification Number) 100089978
(Patent Attorney)
(Name) Tatsuya SHIODA

(Attorney)
(Identification Number) 100092657
(Patent Attorney)
(Name) Shiro TERASAKI

(Attorney)
(Identification Number) 100094318
(Patent Attorney)
(Name) Koichi YAMADA

(Attorney)
(Identification Number) 100089901
(Patent Attorney)
(Name) Kazuo YOSHII

(Attorney)
(Identification Number) 100107191
(Patent Attorney)
(Name) Noriaki NAGAHAMA

(Official Fee)
(Pre-Paid Master Note Number) 014708
(Amount to be paid) 21,000 yen

(Lists of the Article to be presented)
(Name of Article) Specification 1
(Name of Article) Drawing 1
(Name of Article) Abstract 1

[NAME OF DOCUMENT] Specification

[TITLE OF INVENTION] FLUORESCENT PROTEINS GFP and BFP

[WHAT IS CLAIMED IS]

[Claim 1]

5 A GFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of Phe64Leu, Val163Ala, and Ser175Gly.

[Claim 2]

10 A GFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having the three mutations of Phe64Leu, Val163Ala, and Ser175Gly.

[Claim 3]

15 A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of Y66H, Y145F, and Phe64Leu.

[Claim 4]

20 A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of Y66H, Y145F, Phe64Leu, and Leu236Arg.

[Claim 5]

25 A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing,

said sequence having the four mutations of Y66H,
Y145F, Phe64Leu, and Leu236Arg.

[Claim 6]

A BFP protein comprising the amino acid sequence
set forth in SEQ ID No. 1 in the Sequence Listing,
5 said sequence having at least mutations of Y66H,
Y145F, Phe64Leu, Val163Ala, Ser175Gly and Leu236Arg.

[Claim 7]

A BFP protein comprising the amino acid sequence
set forth in SEQ ID No. 1 in the Sequence Listing,
10 said sequence having the six mutations of Y66H, Y145F,
Phe64Leu, Val163Ala, Ser175Gly and Leu236Arg.

[Claim 8]

A gene encoding the GFP protein according to
15 claim 1 or claim 2.

[Claim 9]

A gene encoding the BFP protein according to any
one of claims 3 to 7.

[DETAILED DESCRIPTION OF INVENTION]

20 [0001]

[Technical Field to which the Invention Belongs]

This invention relates to novel fluorescent
proteins, GFPs and BFPs.

[0002]

25 [Prior Art]

GFP (Green Fluorescent Protein), which was found

in *Aequorea victoria*, is a relatively small protein having a molecular weight of 26,900 and comprising the overall 238 amino acid residues as shown below (SEQ No. 1 in the Sequence Listing).

5

[0003]

	Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val			
	1	5	10	15
	Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu			
	20	25	30	
10	Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys			
	35	40	45	
	Thr Thr Gly Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe			
	50	55	60	
	Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln			
15	70	75	80	
	His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg			
	85	90	95	
	Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val			
	100	105	110	
20	Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile			
	115	120	125	
	Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn			
	130	135	140	
	Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly			
25	145	150	155	160
	Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val			

	165	170	175
	Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro		
	180	185	190
	Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser		
5	195	200	205
	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val		
	210	215	230
	Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys		
	225	230	235
			238
10			
	[0004]		
	In the present specification, the term "GFP		
	protein" refers to a protein that emits green		
	fluorescence when excited by ultraviolet-blue light		
15	and that, then, does not require an energy source		
	such as a special substrate or ATP. In other words,		
	the chromophore formation reaction of GFP is		
	autonomous, and the portion of serine-tyrosine-		
	glycine at Nos. 65-67 from the amino terminus forms		
20	an imidazolidine ring oxidatively which serves as a		
	chromophore. (Yuichiro Watanabe, Gendai Kagaku		
	"Modern Chemistry" 12, 46-52 (1995); R. Heim et al.		
	Proc. Natl. Acad. Sci. USA 91: 12501-12504 (1994).)		
	Because GFP possesses such a property, a DNA encoding		
25	this protein is linked to a suitable expression		
	vector and is introduced into the desired cells to		

express GFP, which alone results in fluorescent images. Therefore, GFP is in use for the visual analysis of gene expression and localization of proteins in a variety of cells in their viable state.

5 However, since such GFP was not luminous at 37 °C, there was a problem that culturing must necessarily be done at 30 °C for the purpose of observation in mammalian cells or the like. In connection with this problem, it has been reported that the mutations of V163A and S175G enhance the thermal stability. (K. R. Siemering et al. Curr. Biol. 6, 1653-1663 (1996).)

10

[0005]

Recently, a mutant of GFP into which the mutations of Y66H and Y145F were introduced and which had different wavelength characteristics (it is also referred to as "Mutant," and its amino acid sequence is described below with the above-mentioned mutations shown as underlined) was developed. This is referred to as "BFP (Blue Fluorescent Protein)," because it emits blue fluorescence by UV excitation. (R. Heim et al. Curr. Biol. 6, 178-182 (1996); R. Heim et al. Proc. Natl. Acad. Sci. USA 91, 12501-12504 (1994).)

15

In the present specification, the term "BFP protein" refers to a protein that emits blue fluorescence when excited by ultraviolet-blue light and that, then,

20

25

does not require an energy source such as a special

substrate or ATP. However, such BFP had a problem
that it experienced severe fading as compared to GFP
and was difficult to be observed under a microscope
or the like. As used herein to designate mutation,
5 the position of the mutation is expressed by a
specific amino acid number in the sequence of the
above-mentioned wild type; the amino acid prior to
its mutation is described preceding the number and
the mutated amino acid is to be described following
10 the number.

[0006]

Further, amino acids are designated by the one-letter code or three-letter code as appropriate.

[0007]

15	Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val	1	5	10	15
	Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu	20	25	30	
20	Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys	35	40	45	
	Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe	50	55	60	
	Ser His Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln	66	70	75	80
25	His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg	85	90	95	

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
 100 105 110
 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
 115 120 125
 5 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
 130 135 140
 Phe Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
 145 150 155 160
 Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
 10 165 170 175
 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
 180 185 190
 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
 195 200 205
 15 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
 210 215 230
 Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
 225 230 235 238

 20 [0008]
 [Problem to be Solved by the Invention]
 This invention provides novel fluorescent
 proteins, GFPs and BFPs.

 [0009]
 25 [Means for Solving the Problem]
 In view of the above-mentioned problems, the

present inventors made extensive researches and succeeded in the discovery of novel GFPs and BFPs that are free from such problems by introducing certain mutations into specific positions of the amino acid sequence for GFP or BFP, thus accomplishing this invention.

5 [0010]

Specifically, according to this invention, GFP mutants or BFP mutants were prepared from GFP or BFP, either of which was already known (these may be hereinafter referred to as "wild type"), by introducing certain mutations into its specific positions through various techniques. Then, BFP mutants that still emitted brightly after UV radiation for about one hour were obtained among such mutants. In other words, the invention has solved the problem that the conventional BFP experienced severe fading as compared to GFP and was difficult to be observed under a microscope.

10 20 [0011]

Likewise, a mutant of GFP that was brightly luminous even at 37 °C was obtained. Namely, the invention has solved the problem that because the conventional GFP was not luminous at 37 °C, its observation in mammalian cells and the like necessitated the need to culture them at 30 °C.

[0012]

Specifically, on the basis of the amino acid sequence for the wild type of GFP (283 amino acid residues, SEQ No. 1 in the Sequence Listing), GFPs into which the mutations as described below had been introduced were prepared, and their fluorescence and thermal characteristics were investigated in this invention.

[0013]

10 (1) Phe64Leu
(2) Val163Ala and Ser175Gly were introduced.

[0014]

(3) Phe64Leu, Val163Ala and Ser175Gly were introduced.

[0015]

15 Furthermore, on the basis of the amino acid sequence for the wild type of BFP as described above, GFPs into which the mutations as described below had been introduced were prepared, and their fluorescence and thermal characteristics were investigated in this invention. Here, the mutations introduced were based 20 on the amino acid sequence for the wild type of GFP.

[0016]

(4) Y66H, Y145F: Phe64Leu, Leu236Arg
(5) Y66H, Y145F: Phe64Leu
25 (6) Y66H, Y145F: Val163Ala, Ser175Gly
(7) Y66H, Y145F: Phe64Leu, Val163Ala, Ser175Gly, Leu236Arg

[0017]

Consequently, it was discovered that the resulting BFP and GFP mutants had improved fluorescence characteristics and thermal stability.
5 Specifically, this invention provides novel BFPs and GFPS as will be described below, and further, genes coding them.

[0018]

10 1. A GFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of Phe64Leu, Val163Ala, and Ser175Gly.

[0019]

15 2. A GFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having the three mutations of Phe64Leu, Val163Ala, and Ser175Gly.

[0020]

20 3. A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of Y66H, Y145F, and Phe64Leu.

[0021]

25 4. A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of

Y66H, Y145F, Phe64Leu, and Leu236Arg.

[0022]

5. A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having the four mutations of Y66H, Y145F, Phe64Leu, and Leu236Arg.

[0023]

10 6. A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having at least mutations of Y66H, Y145F, Phe64Leu, Val163Ala, Ser175Gly and Leu236Arg.

[0024]

15 7. A BFP protein comprising the amino acid sequence set forth in SEQ ID No. 1 in the Sequence Listing, said sequence having the six mutations of Y66H, Y145F, Phe64Leu, Val163Ala, Ser175Gly and Leu236Arg.

[0025]

20 8. A gene encoding the GFP protein according to either Item 1 or Item 2 as described above.

[0026]

9. A gene encoding the BFP protein according to any of Items 3-7 as described above

25 [0027]

This invention will be illustrated in detail

hereinbelow based on its embodiments. The abbreviations of nucleic acids and amino acids (one-letter and three-letter codes) as used in the present specification are set forth below.

5	[0028]	
	(Nucleic Acids)	
	DNA	deoxyribonucleic acid
	A	Adenine
	C	Cytosine
10	G	Guanine
	T	Thymine
	(Amino Acids)	
	Ala (A)	Alanine
	Arg (R)	Arginine
15	Asn (N)	Asparagine
	Asp (D)	Aspartic acid
	Cys (C)	Cysteine
	Gln (Q)	Glutamine
	Glu (E)	Glutamic acid
20	Gly (G)	Glycine
	His (H)	Histidine
	Ile (I)	Isoleucine
	Leu (L)	Leucine
	Lys (K)	Lysine
25	Met (M)	Methionine
	Phe (F)	Phenylalanine

	Pro (P)	Proline
	Ser (S)	Serine
	Thr (T)	Threonine
	Trp (W)	Tryptophan
5	Tyr (Y)	Tyrosine
	Val (V)	Valine
	[0029]	
	[Embodiments]	

Novel GFP or BFP proteins according to this
10 invention are those obtained by introducing certain mutations to parts of the amino acid sequences for the wild types of GFP and BFP, and exhibit improved fluorescence characteristics and thermal stability. Therefore, this invention embraces proteins having
15 least such amino acid sequences insofar as they exhibit the improved fluorescence characteristics and thermal stability based on the novel GFP or BFP proteins according to the invention. Namely, in the cases where cells of a variety of origins are used
20 as will be in use in the Examples below, the invention also embraces proteins to which a variety of amino acid sequences other than the aforementioned amino acid sequences are appended at their N- or C-termini and which exhibit the improved fluorescence characteristics and thermal stability based on the novel GFP or BFP proteins according to the invention.

[0030]

Moreover, this invention provides genes encoding such novel proteins or proteins containing them within parts thereof.

5 [0031]

There are no particular limitations to methods for obtaining the novel GFPs or BFPs according to this invention, and methods for artificially obtaining them by means of chemical syntheses and
10 methods for obtaining them according to standard genetic engineering are possible. The latter methods are made possible through the genetic engineering techniques in which suitable vectors conventionally known and means for introducing mutations are
15 combined. Concretely, the following procedure is preferred.

[0032]

Specifically, the procedure comprises the steps of: (1) starting with a known GFP or BFP protein to be improved and introducing a gene encoding said protein into a suitable vector; (2) introducing mutations into said gene selectively or randomly according to known methods; and (3) selecting desirable mutants on the basis of the fluorescence intensities and temperature-dependence, among others, of the resultant GFP or BFP mutants.

[0033]

The above-mentioned procedure will be hereinbelow illustrated in detail by way of examples; however, this invention is not to be
5 limited to these specific examples.

[0034]

[Example]

(I) The genetic engineering techniques as used in the present examples will be illustrated in the following.

10 [0035]

1. Vector Construction

In this invention, a DNA portion encoding GFP of pgFP-C1 vector (available from Clontech Inc.) was replaced by a DNA of GFP derived from phGFP-S65T
15 (available from Clontech Inc.), which served as a basic plasmid (hereinafter referred to as "phGFP(101)-C1"). The vector is meant for expression in mammalian cells and its full base sequence including the vector part is known in the art. The
20 corresponding amino acid sequence is set forth below.

[0036]

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val

1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu

25 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys

	35	40	45
	Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe		
	50	55	60
	Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln		
5	65	70	75
	His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg		
	85	90	95
	Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val		
	100	105	110
10	Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile		
	115	120	125
	Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn		
	130	135	140
	Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly		
15	145	150	155
	Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val		
	165	170	175
	Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro		
	180	185	190
20	Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser		
	195	200	205
	Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val		
	210	215	230
	Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys		
25	225	230	235

[0037]

Here, the protein encoded by phGFP-S65T as described above is compared with that of a wild type derived from jellyfish: (i) an amino acid (valine) has been inserted between methionine, which is amino acid number 1 of the amino acid sequence, and serine, which is amino acid number 2; (ii) serine, which is amino acid number 65, has been further mutated to threonine; and (iii) histidine, which is amino acid number 231, has been mutated to leucine. These are respectively underlined in the amino acid sequence as described above. Thus for example, the amino acid number 65 threonine becomes number 66 in reality, but amino acid sequence numbers corresponding to those of the wild type are employed for the amino acid numbers connected with mutation, in accordance with general rules. In other words, the amino acid numbers for the amino acid sequence of the wild type derived from jellyfish (amino acid numbers 1 through 238) are to be used. The extra valine as described above is construed as having been inserted between amino acid number 1 and amino acid number 2, and no number is then designated therefor. In practice, such an addition of valine has been used as a working example to illustrate the embodiments of this invention and it is not the essential amino acid sequence of this

invention. Accordingly, in the explanation that follows the presence (or the absence) of the valine addition will not affect the scope of the invention.

[0038]

5 Furthermore, methods for introducing specific mutations are not particularly limited, and for example, the method of introduction used in the examples of this invention as described below is feasible. Specifically, a DNA region encoding GFP
10 was cut out from the above-mentioned phGFP(101)-Cl with HindIII, and it was inserted into the HindIII site of a pUC18 vector or a pQE30 vector (Qiagen) to thereby prepare pUCGFP(101) or pQEGFP(101). Here,
the pQE30 vector was meant for expression in *E. coli*.

15 [0039]

Employing the resultant pUCGFP(101), pUCBFP(101) into which the mutations of T65S, Y66H, and Y145F had been introduced by the site-directed mutation introduction method as described below was prepared.

20 [0040]

Here, through said mutation the amino acid number 65 Ser that was introduced by the above-mentioned mutation (T65S) proved to be identical with the wild type site.

25 [0041]

Further, a DNA encoding BFP was cut out from the

obtained pUCBFP(201) by digestion with EcoRI/XhoI and it was cloned into the EcoRI/XhoI site of Bluescript II KS(-) (Stratagene) to thereby prepare blueBFP(201).

[0042]

5 Furthermore, a DNA region encoding BFP was cut out from the obtained pUCBFP(201) by digestion with HindIII and it was inserted into the HindIII site of a pQE30 vector to thereby prepare pQE-BFP(201). On the other hand, phBFP(201)-Cl was prepared by
10 replacing the GFP coding region of the phGFP(101)-Cl vector with the above-mentioned DNA in like manner.

[0043]

2. Mutagenic Polymerase Chain Reaction (hereinafter referred to as "PCR")

15 Moreover, methods for randomly introducing mutations are not particularly limited, and Mutagenic PCR as described below can preferably be used in this invention. The Mutagenic PCR can be carried out according to methods known in the art. (C. W. Dieffenbach, ed. PCR PRIMER, A Laboratory Manual (Cold Spring Harbor Laboratory Press) (1995) pp. 583-588.) Concretely, the following conditions were employed in the examples.

[0044]

25 About 50 ng of Plasmid BlueBFP(201) was added to 10xmutagenic PCR buffer (70 mM MgCl₂, 500 mM KCl, and

100 mM Tris-HCl, pH 8.3 at 25 °C; 0.1% (w/v) gelatin)
10 μ l, 10xdNTP (2 mM dGTP, 2 mM dATP, 10 mM dCTP,
and 10 mM dTTP) 10 μ l, 10 pmol/ μ l primer (23mer
M13Universal primer and M13Reverse primer) 3 μ l, and
H₂O 62 μ l, and mixed. Subsequently, 10 μ l of 5 mM
MnCl₂ was added and mixed, and 1 μ l of Taq Polymerase
(Takara) was added to conduct PCR (PC-700 available
from ASTEC Inc. was used). The PCR was conducted in
three tubes under the following conditions: 25 cycles
at 94 °C for 1 min, 30 cycles at 45 °C for 1 min, and
35 cycles at 72 °C for 1 min, respectively.

[0045]

After the respective reaction solutions were
combined and treated with chloroform twice, a DNA
fragment encoding the amplified BFP was recovered by
carrying out electrophoresis on a 1% agarose gel
after digestion with BamHI and XhoI and it was
inserted into the BamHI and SalI sites of pQE30
(Qiagen Inc.).

[0046]

Transformation was performed on *E. coli* JM109,
and inoculation was done in a LB medium containing
carbenicillin to incubate JM109 at 37 °C for 16 h.
Subsequently, the incubated product was allowed to
stand at room temperature for 24 h. The *E. coli*
colonies that resulted on a plate were irradiated

with UV (Funakoshi UV Transilluminator FTI-201 UV nm) from the top side of the plate for 1 h, and colonies emitting sufficient illumination visually after irradiation were selected: ten colonies were obtained in the example.

5 [0047]

Sequence determination was performed on the selected plasmids. With respect to the mutant having mutations within its coding region that appeared meaningful, the coding region was cut out with *Hin* and was inserted into the *HindIII* site of pQE30, and thereafter, this was cut out with *SalI/BglII* and replaced by the corresponding portion of pQEBFP to bring the cloning site of the vector into conformation with pQEBFP(201): in the present examples the one prepared from Mutant 10 was designated pQEBFP (202).

10 15 [0048]

3. Construction of Mutant GFP/BFP by the Site-Directed Mutation Introduction Method

20 The site-directed mutation introduction methods are not particularly limited, and for example, the protocol for a Quick Change Kit from Stratagene Inc was followed. The oligonucleotides shown in Table below were used as primers and the plasmid (about 25 0.03 µg) obtained by subcloning GFP or BFPcDNA into the *HindIII* site of a pUC18 or pQE30 vector was used

as a template. The concrete PCR conditions are preferably as follows: 16 cycles at 95 °C for 30 sec, 55 °C for 1 min, and 68 °C for 10 min.

[0049]

5 (TABLE 2)

	oligo no.	sequence
	1F	TCTGTGACCACTTCTCCCACGGCCTGCA
	1R	TGCACGCCGTGGGAGAAGGTGGTCACGA
10	2F	GCTGGAGTACAACTTAACAGCCACAAACG
	2R	CGTTGTGGCTGTTGAAGTTGTACTCCAGC
	3F	CCTCGTGACCACCCCTCTCCCACGGCGTG
	3R	CACGCCGTGGGAGAGGGTGGTCACGAGG
	4F	CCTCGTGACCACCCCTCACCTACGGCGTG
15	4R	CACGCCGTAGGTGAGGGTGGTCACGAGG
	5F	GAACGGCATCAAGGCCAACTTCAAGATCC
	5R	GGATCTTGAAGTTGGCCTTGATGCCGTTG
	6F	CATCGAGGACGGCGGTGCAGCTCGCC
	6R	GGCGAGCTGCACGCCGCCGTCTCGATG

20

(TABLE 3)

GFP or BFP used as template	oligo no. used in the introduction of mutation	GFP mutant or BFP mutant after mutation-introduction
5		
pUCGFP(101)	1F+1R	pUCGFP101(+Y66H)
pUCGFP101(+Y66H)	2F+2R	pUC(201)
pQEGFP(101)	4F+4R	pQEGFP(103)
10. pQEBFP(201)	3F+3R	pQEBFP(203)
pQEGFP(101)	5F+5R	pQEGFP101(+V163A)
pQEGFP101(+V163A)	6F+6R	pQEGFP(104)
pQEBFP(201)	5F+5R	pQEBFP201(+V163A)
pQEBFP201(+V163A)	6F+6R	pQEBFP(204)
15 pQEGFP(104)	4F+4R	pQEGFP(105)
pQEBFP(202)	5F+5R	pQEBFP202(+V163A)
pQEBFP202(+V163R)	6F+6R	pQEBFP(205)

20 Sequence determination of the resulting plasmids was conducted and it was verified that the desired mutations were contained in the plasmids.

[0050]

25 In the examples of this invention, GFPs were designated as 101-105 and BFP were designated as 201-205 for reasons of convenience to place a variety of

mutants as obtained in good order. Table 4 below thus summarizes the mutations introduced. Although not shown in the table, GFP 101-105 all contain the mutations of Ser65Thr and His231Leu.

5 [0051]

(TABLE 4)

GFP

101	none
10	103 Phe64Leu
	104 Val163Ala, Ser175Gly
	105 Phe64Leu, Val163Ala, Ser175Gly

15 BFP (as for BFP, the two mutations, Y66H and Y145F, have been introduced into the sequence for GFP which serves as a basis)

201	Y66H, Y145F:	
202	Y66H, Y145F: Phe64Leu,	Leu236Arg
203	Y66H, Y145F: Phe64Leu	
204	Y66H, Y145F: Val163Ala, Ser175Gly	
20	205 Y66H, Y145F: Phe64Leu, Val163Ala, Ser175Gly, Leu236Arg	

[0052]

4. Determination of the Quantities of Expression for BFP Mutants

25 Determination of the quantities of expression for the BFP mutants obtained is not particularly

limited, but a comparison of the quantities of their expression in *E. coli* by means of SDS-PAGE is preferable. Concretely, an overnight culture of *E. coli* into which each expression vector of pQE30 (empty vector), pQE8F(201), and pQE8BFP(202) had been introduced was diluted to 1/50 and it was grown in 3 ml of 2xYT carbenicillin medium at 37 °C for 3 h. IPTG was added to each sample to give its final concentration of 0.24 mg/ml, and the induction of a BFP protein was performed by further culturing the sample for 2.5 h.

10 [0053]

An aliquot (100 μ l) was taken out from each sample and centrifuged, and precipitates were dissolved in a sample buffer. For each sample, 1.3 ml of *E. coli* was centrifuged at 10,000 rpm for 1 min and precipitates were suspended in 260 μ l of PBS(-). This suspension was frozen and thawed at -80 °C for 10 min, and was subjected to ultrasonic treatment (Elma Transonic ultrasonic washer 460/H). Subsequently, it was centrifuged at 15,000 rpm for 5 min to separate soluble proteins from insoluble fractions containing the inclusion body. These were subjected to SDS-PAGE in quantities that correspond 15 to 50 μ l cultures of *E. coli* and were stained with Coomassie Brilliant Blue.

[0054]

5. Comparison of Brightness of *E. coli* Cells Having a Variety of GFPs and BFPs Introduced

JM109 was transformed with each of pQE30 (empty vector), pQEGFP(101), pQEGFP(105), pQE-BFP(201), pQE-BFP(202), and pQE-BFP(205), and it was streaked on a LB agar medium containing carbenicillin. After incubation at 37 °C for 24 h, the upper lid was removed and the plate was turned upside down and irradiated with UV (Funakoshi UV Transilluminator FTI-201 UV 365 nm to have photographs taken.

[0055]

6. Transfection of GFP and BFP Mutant cDNAs into CHO Cells by the Calcium Phosphate Method and Fluorescence Measurements

A. Transfection

Coding regions were cut out from the pQE vectors containing the genes of GFP and BFP mutants that had been prepared by the site-directed mutation introduction method, and the corresponding portions of phGFP(101)-Cl vectors were replaced by them; thus, phGFP(103-105)-Cl and phBFP(202-205)-Cl were prepared.

[0056]

Unless otherwise so stated, CHO-K1 cells were grown in a F12+10% FBS medium in 5% CO₂ at 37 °C. The cells (1x10⁵) were inoculated into a 6-cm dish,

and on the following day, their transfection was conducted in two dishes as a pair by the calcium phosphate method. (C. Chen and H. Okayama Mol. Cell. Biol. 7: 2745-2752 (1987).) After transfection, the one dish was incubated at 37 °C and the other at 30 °C for 24 h. The transfected CHO cells were washed with 1xPBS(-) three times, and they were dissolved in 1 ml of 10 mMTris-HCl (pH 7.4) containing 1% Triton X-100 and recovered in an Eppendorf tube. A supernatant (0.5 ml) from centrifugation at 3,000 rpm for 5 min was diluted 4-fold with the same buffer and fluorescence measurement was performed. Here, a pUCD2SRαMCS vector (empty vector) was transfected and used as a blank. A Hitachi F-2000 type fluorophotometer was used in the fluorescence measurement. In the measurement of GFPs, fluorescence was scanned between 460 nm and 600 nm at an excitation wavelength of 460 nm to measure the maximal value in the vicinity of the fluorescence wavelength of 510 nm. In the measurement of BFPs, fluorescence was scanned between 360 nm and 500 nm at an excitation wavelength of 360 nm to measure the maximal value in the vicinity of the fluorescence wavelength of 445 nm.

[0057]

1. Western Blotting

The CHO cells were transfected with pUcD2SR α MCS (empty vector) (T. Tsukamoto et al. Nature Genet. 11: 395-401 (1995)), phGFP(101)-Cl, phGFP(105)-Cl, phBFP(201)-Cl, and phBFP(205)-Cl, respectively and grown at 37 °C and at 30 °C. Employing a sample prior to dilution as used in the fluorescence measurement previously described (8 μ l), SDS-PAGE was performed on a 12% gel. With the use of a Horizonblot (ATTO Inc.), transfer was conducted onto a nitrocellulose membrane (Millipore Inc., HAHY394FO) under the conditions of 2 mA and 90 min per cm². After the membrane was taken out and washed with 1xPBS, it was immersed in 1% skim milk/PBS and shaken at room temperature for 30 min. After the membrane was washed with 1xPBS, it was immersed in 0.1% skim milk/PBS containing an anti-GFP antibody (Clonetech Inc.) that had been diluted 2,000-fold and shaken at 4 °C overnight. The membrane was washed with 1xPBS for 5 min, and then with TPBS (0.05% Trion X-100/PBS) for 15 min three times. The membrane was immersed in 0.1% skim milk/PBS containing an anti-rabbit IgG antibody labeled with HRP (Amersham Inc.) that had been diluted 1,000-fold, and shaken at 4 °C for 1 h. The membrane was washed with 1xPBS for 5 min, and then with TPBS (0.05% Trion X-100/PBS) for 15 min three times. The membrane was reacted with a

chemiluminescence reagent (Amersham Inc. ECL) for 1 min, and then, was exposed to an X-ray film for 2 min.

[0058]

5 (II) Amino Acid Sequences of Novel GFP and BFP
Mutants

1. Sequence Determination of BFP Mutants

10 Among the 10 mutants obtained, one mutant (Mutant No. 10) proved that phenylalanine at amino acid number 64, which had been at the immediate N-terminal side of the chromophore, mutated into leucine.

[0059]

15 With respect to this mutant clone, another mutation (L236R) had been introduced into its C-terminus (Table 1)

[0060]

(TABLE 1)

mutant no. mutation

20 1 L(CTT)1H(CAT)
2 D(GAT)7Y(TAT)
3 I(ATC)6T(ACC)
4 the multicloning site: 14bp deletion
from BamHI
25 5 the multicloning site: 24bp deletion
from BamHI

6 I(ATC)6N(AAC)
7 L(CTT)4P(CCT), I(ATC)128G(GTC),
8 D(GAC)197A(GCC), S(AGC)202C(TGC)
5 9 L(CTT)4R(CGT)
10 M(ATG)1T(ACG), Y(TAC)39N(AAC), K(AAG)52E(GAG)
 K(AAG)41K(AAA)silent, F(TTC)64L(CTC),
 L(CTG)236R(CGG)

10 With respect to this mutant, BFPcDNA was
subcloned into the same HindIII site as in
pQE-BFP(201) for a comparison purpose to prepare
pQE-BFP(202).

[0061]

2. Comparison of the Quantities of Expression for BFP
15 Mutants in E. coli by SDS-PAGE

IPTG was added to *E. coli* cultures harboring
pQE-BFP(201) and pQE-BFP(202) and BFP proteins were
allowed to express. When the *E. coli* cells were
irradiated with UV, the *E. coli* harboring pQE-BFP(202)
20 apparently exhibited stronger fluorescence. When the
proteins from these *E. coli* were analyzed by SDS-PAGE,
the production of the 31 kDa protein was recognized
to almost similar degrees in both *E. coli* having the
respective plasmids (FIG. 1, Lanes 4 and 7),

25 [0062]

When the solubility of these BFPs was also

studied, BFP(201) with weaker fluorescence was nearly insoluble (FIG. 1, Lanes 5 and 6), whereas BFP(202) was mostly recovered in the soluble portion (FIG. 1, Lanes 8 and 9).

5 [0063]

3. Comparison of Fluorescence of *E. coli* Cells Having a Variety of GFPs and BFPs Introduced

10 GFPs and BFPs into which the mutations of V163A and S175G had been further introduced in addition to F64L were prepared (see Table 4).

[0064]

15 In order to compare the intensities of fluorescence in *E. coli*, streaking was performed using *E. coli* cells having an empty pQE30 vector or pQE30 vectors into which cDNAs of GFP101, GFP105, BFP201, BFP202, and BFP205 had been subcloned. The *E. coli* having the empty vector introduced was not luminous. The *E. coli* having BFP201 prior to its improvement subcloned, even when irradiated with UV, was hardly luminous. In contrast, the one into which 202 had been subcloned was brightly luminous in blue. Further, it could be ascertained that 205 was even more brightly luminous than was 202.

20 [0065]

25 As for GFPs, green fluorescence was observed by the naked eye, and a distinctive difference in

brightness was noted between 101 and 105 (FIG. 2).

[0066]

5. Transfection of GFP and BFP Mutant cDNAs into CHO Cells and Fluorescence Measurements

Since very luminous GFPs and BFPs were obtained in *E. coli*, the comparison was made also in mammalian cells (CHO). The results from the fluorescence measurements of cell extracts that were already prepared under culturing at 37 °C and at 30 °C are summarized (Table 5).

[0067]

(TABLE 5)

	GFP or BFP	37 °C	30 °C
15	101	30.8	214.6
	103	532.1	765.4
	104	659.0	697.9
	105	2991.1	868.7
	201	14.3	166.7
20	202	304.6	188.6
	203	331.3	210.9
	204	330.9	265.9
	205	901.5	287.7

25

The values shown in the table are those obtained

by subtracting the value of the empty vector used as a blank from the values of fluorescence obtained. The blank values were 8.9 in the measurement of GFPs at 37 °C, 7.14 in the measurement at 30 °C, 64.3 in 5 the measurement of BFPs at 37 °C, and 50 in the measurement at 30 °C.

[0068]

Table 6 shows relative values when the fluorescence intensity of GFP or BFP prior to its 10 improvement after culturing at 37 °C is taken as 100, and it also makes comparisons in terms of ratio of fluorescence at 37 °C to that at 30 °C. From Table 6 BFP(202) having the mutation as found by the Mutagenic PCR exhibited the fluorescence 21 times 15 stronger at 37 °C. Further, BFP(202) had two mutations (F64L and L236R); however, BFP(203) having only F64L exhibited a similar intensity of fluorescence to that of 202. This mutation is believed to have caused stronger fluorescence. 20 Seventeen times stronger fluorescence was observed in GFP(103) having F64L.

[0069]

On the other hand, BFP(204) and GFP(104), both 25 of which had the mutations of V163A and S175G, were brighter 23 times and 21 times, respectively. GFP(105) and BFP(205) in which these mutations were

combined with F64L mutation were brighter 97 times
and 63 times. In addition, when the ratios of
fluorescence intensities at 37 °C to those at 30 °C
are taken for comparison, either of 101 and 201 prior
5 to its improvement was darker at 37 °C than at 30 °C.
Those having F64L alone or the combination of V163A
and S175G showed increases in the ratio of
fluorescence intensities at two temperatures, whereas
it was found that the fluorescence at 37 °C was more
10 than three times brighter with respect to GFP(105)
and BFP(205) in which the mutations were combined
(Table 6).

[0070]

(TABLE 6)

	GFP or BFP	37 °C	37 °C/30 °C
5	101	100	0.14
	103	1728	0.70
	104	2140	0.94
	105	9711	3.44
	201	100	0.09
10	202	2130	1.62
	203	2317	1.57
	204	2314	1.24
	205	6304	3.13

15 [0071]

6. Examination of the Quantities of Expression in Animal Cells by Means of Western Blotting

The CHO cells were transfected with pUCD2SRαMCS (empty vector), phGFP(101)-Cl, phGFP(105)-Cl, phBFP(201)-Cl, and phBFP(205)-Cl, respectively and cultured at 37 °C and 30 °C. Employing an anti-GFP antibody for the cultured cells, the quantities of GFP or BFP proteins expressed were examined. About 30kD bands that were not recognized in the transfection of the empty vector (FIG. 3, Lanes 1 and 6) were detected.

[0072]

In culturing at 30 °C, no distinctive difference was noted between the content of GFP or BFP proteins expressed prior to the introduction of mutations and that after the introduction of mutations (Lanes 7-10). On the other hand, in culturing at 37 °C it was found that the mutants (Lanes 3 and 5) clearly expressed the GFP and BFP proteins in larger quantities (FIG. 3, Lanes 2-5).

10 [0073]

[Effect of the Invention]

The effects associated with the improved BFP and GFP mutants according to this invention are summarized below.

15 [0074]

(1) The mutant type BFP(202) obtained by the Mutagenic PCR exhibits enhanced fluorescence as compared to BFP prior to the introduction of mutation in either *E. coli* cells or mammalian cells. In the 20 clone of said mutant BPF, phenylalanine at amino acid number 64 has mutated into leucine (F64L), and further, leucine (amino acid number 236 at the C-terminus) has mutated into arginine (L236R).

[0075]

25 With respect to the mutant type BFP(203) having only the mutation at amino acid number 64 as

described above, a similar enhancement in fluorescence was also noted in mammalian cells. Therefore, it is F64L that is the responsible mutation for this mutant type BFP(202).

5 [0076]

Such a mutation is presumed to involve a mechanism similar to the fluorescence enhancement reported for GFP. (T. -T. Yang et al. Nucleic Acids Res. 24: 4592-4593 (1996).)

10 [0077]

(2) The quantities of expression of proteins and the production of soluble proteins were investigated:

(i) Although the content of proteins is the same based on the comparison of the quantities of expression of Mutant BFPs in *E. coli* (through SDS-PAGE), the proteins from the mutant type BFP(201) are mostly insoluble whereas soluble proteins have increased in the mutant type BFP(202); and (ii) a large difference in brightness was also seen in *E. coli*. These results indicate that the mutant type BPF(201) cannot correctly occupy a higher-order structure such as the formation of a chromophore whereas the mutant type BPF(202) tends to occupy a more correct higher-order structure with ease: the mechanism for the above-mentioned fluorescence enhancement is believed to be due to this.

[0078]

(3) On the other hand, the results of western blotting in the mammalian cells show that the quantity of proteins from GFP or BFP itself has increased. Namely, it is thought that the protein can occupy a stabilized higher-order structure in the mammalian cells; or alternatively, proteolysis becomes slower than that prior to the improvement because the protein structure is stabilized.

10 [0079]

(4) With the introduction of the F64L mutation having the characteristics as described above and other mutations, V163A and S175G, GFP and BFP proteins that have markedly improved characteristics in the expression at 37 °C in addition to those as described above are obtained.

[0080]

Accordingly, the improved types of GFPs and BFPs into which such mutations have been introduced are provided with the characteristics that will allow them to be brightly luminous even at 37 °C, and they will enable observation in the mammalian cells where culturing is to be conducted at 37 °C. These improved types of GFPs and BFPs can be applied to cell biology as well as to many research areas. Fig. 4 shows the effects of this invention as described

above.

[0081]

[SEQUENCE LISTING]

SEQ ID NO: 1

5 LENGTH: 238

TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

10	Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val			
	1	5	10	15
	Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu			
	20	25	30	
	Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys			
15	35	40	45	
	Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe			
	50	55	60	
	Ser His Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln			
	66	70	75	80
20	His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg			
	85	90	95	
	Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val			
	100	105	110	
	Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile			
25	115	120	125	
	Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn			

130 135 140
Phe Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
145 150 155 160
Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
5 165 170 175
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
180 185 190
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
195 200 205
10 Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
210 215 230
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
225 230 235 238

15 SEQ ID NO: 2
LENGTH: 28
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
20 MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
TCGTGACCAC CTTCTCCAC GGCGTGCA 28

SEQ ID NO: 3
25 LENGTH: 28
TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: DNA

SEQUENCE DESCRIPTION

5 TGCACGCCGT GGGAGAAGGT GGTCACGA 28

SEQ ID NO: 4

LENGTH: 29

TYPE: nucleic acid

10 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: DNA

SEQUENCE DESCRIPTION

GCTGGAGTAC AACTTCAACA GCCACAAACG 29

15

SEQ ID NO: 5

LENGTH: 29

TYPE: nucleic acid

STRANDEDNESS: single

20 TOPOLOGY: linear

MOLECULE TYPE: DNA

SEQUENCE DESCRIPTION

CGTTGTGGCT GTTGAAGTTG TACTCCAGC 29

25 SEQ ID NO: 6

LENGTH: 28

TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: DNA
5 SEQUENCE DESCRIPTION
CCTCGTGACC ACCCTCTCCC ACGGCGTG 28

SEQ ID NO: 7
LENGTH: 28
10 TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
15 CACGCCGTGG GAGAGGGTGG TCACGAGG 28

SEQ ID NO: 8
LENGTH: 28
20 TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
CCTCGTGACC ACCCTCACCT ACGGCGTG 28

25 SEQ ID NO: 9

LENGTH: 28
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
5 MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
CACGCCGTAG GTGAGGGTGG TCACGAGG 28

SEQ ID NO: 10
10 LENGTH: 29
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: DNA
15 SEQUENCE DESCRIPTION
GAACGGCATC AAGGCCAACT TCAAGATCC 29

SEQ ID NO: 11
LENGTH: 29
20 TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
25 GGATCTTGAA GTTGGCCTTG ATGCCGTTTC 29

SEQ ID NO: 12
LENGTH: 28
TYPE: nucleic acid
STRANDEDNESS: single
5 TOPOLOGY: linear
MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
CATCGAGGAC GGCGGGGTGC AGCTCGCC 28

10 SEQ ID NO: 13
LENGTH: 28
TYPE: nucleic acid
STRANDEDNESS: single
TOPOLOGY: linear
15 MOLECULE TYPE: DNA
SEQUENCE DESCRIPTION
GGCGAGCTGC ACGCCGCCGT CCTCGATG 28

[BRIEF DESCRIPTION OF DRAWINGS]

[Fig. 1]

An electrophoresis photograph obtained when *E. coli* harboring each plasmid was induced by IPTG and its protein was subjected to SDS-PAGE, where Lanes 1, 4, and 7 show the results of electrophoresis of 50 μ 1 equivalents of the *E. coli* culture media and Lanes 2, 3, 5, 6, 8, and 9 show those of 50 μ l equivalents.

[Fig. 2]

A photograph showing the fluorescence emitted when the *E. coli* harboring each plasmid was streaked on a plate, and after culturing at 37°C overnight, it was irradiated with UV at a long wavelength.

[Fig. 3]

An electrophoresis photograph showing the results obtained when CHO cells, after transfection with each plasmid, were cultured at 37 °C or at 30 °C, and the culture was subjected to SDS-PAGE followed by transfer onto a nitrocellulose membrane and western blotting with an anti-GFP antibody. Here, the arrow indicates GFP or BFP.

[Fig. 4]

Fluorescence photographs showing the effects of the improved type of BFP and GFP.

[NAME OF DOCUMENT] Abstract

[ABSTRACT]

[OBJECT]

To provide novel fluorescent GFPs and BFPs.

5 [SOLUTION]

A novel BFP according to this invention has an F64L mutation as well as a L236R mutation and is provided with improved fluorescence. Furthermore, another BFP has the F64L mutation with the characteristics as described above and other mutations, V163A and S175G, and it possesses markedly improved characteristics in the expression at 37 °C in addition to those as described above.

10 [SELECTED DRAWING] Fig. 3

【書類名】図面

【図1】 Fig. 1

図2 Fig. 2

Original GFP
改良前GFP
pQE101

Empty Vector
エーベクタ
pQE30

Original BFP
改良前BFP
pQE201

Improved GFP
改良型GFP
(F64L/V163A/S175G)
pQE105

Improved BFP
改良型BFP
(F64L/V163A/S175G/L236R)
pQE202

Improved BFP
改良型BFP
(F64L/V163A/S175G/L236R)
pQE205

整理番号 P 9 7 XX-0 1 2 4

(3)

図3 Fig. 3

整理番号 P 97XX-0124

(4)

〔図4〕 Fig. 4

改良前GFP
Original GFP

改良前BFP
Original BFP

改良型GFP
Improved GFP

改良型BFP
Improved BFP