Конспект по Матлогу.

Штукенберг Дмитрий

под редакцией Чепелина Вячеслава

Содержание

		Введение в математическую логику	2
1.1	Математ	ический анализ и его формализация	2
		е брадобрея, парадокс Рассела	
1.3	Програма	ма Гильберта	2
1.4	Классиче	еское исчисление высказываний	3
1.5	Метаязыковые соглашения		
1.6	Теория м	оделей	3
1.7	Тавтолог	ии и выполнимость	4
1.8	Теория д	оказательств	4
	1.8.1	Схемы высказываний	4
	1.8.2	Аксиомы исчисления высказываний	4
	1.8.3	Правило вывода Modus Ponens	5
2	Информац	ия о курсе.	6

1 Лекция 1. Введение в математическую логику

1.1 Математический анализ и его формализация

- Ньютон, Лейбниц (1664+) неформальная идея анализа
- **Критика**: Джордж Беркли. «Аналитик, или Рассуждение, адресованное неверующему математику»
- Коши последовательности вместо бесконечно-малых, пределы
- Вейерштрасс формализация вещественных чисел
- Кантор теория множеств (1875), формализующая вещественные числа
- Парадокс Рассела (1901) кризис оснований математики
- Давид Гильберт: «Никто не изгонит нас из рая, который основал Кантор»

1.2 Парадокс брадобрея, парадокс Рассела

- **Парадокс брадобрея**: На острове брадобрей бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Парадокс Рассела: Рассмотрим множество

$$X = \{x \mid x \notin x\}$$

Что можно сказать про $X \in X$?

- Анализ:
 - Пусть $X \in X$. Тогда по определению $X \notin X$
 - Пусть $X \notin X$. Тогда по определению $X \in X$
- Философский вывод: проблема существования математических объектов

1.3 Программа Гильберта

- Цели программы (1921):
 - 1. Формализация всей математики
 - 2. Доказательство полноты формализации
 - 3. Доказательство непротиворечивости
 - 4. Консервативность (исключение идеальных объектов)
 - 5. Разрешимость (алгоритмическая проверка истинности)
- Теоремы Гёделя о неполноте (1930) ограничения программы
- Современный подход: частичная формализация и изучение ограничений

1.4 Классическое исчисление высказываний

Определение 1 Высказывание (формула) строится по правилам:

- **Атомарное**: A, B', C_{1234} (пропозициональные переменные)
- Составное: если α и β высказывания, то:
 - Отрицание: $(\neg \alpha)$
 - Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - Дизъюнкция: $(\alpha \lor \beta)$
 - Импликация: $(\alpha \to \beta)$ или $(\alpha \supset \beta)$

Пример 1

$$(((A \rightarrow B) \lor (B \rightarrow C)) \lor (C \rightarrow A))$$

1.5 Метаязыковые соглашения

- Метапеременные: $\alpha, \beta, \gamma, \dots$
- Переменные для пропозициональных переменных: X, Y_n, Z'
- Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация
- **Ассоциативность**: левая для & и \lor , правая для \to

Пример 2 Упрощение записи:

$$(A \to B) \& Q \lor ((\neg B \to B) \to C) \lor (C \to C \to A)$$

1.6 Теория моделей

Оценка высказываний

Определение 2 Оценка определяется:

- ullet Множество значений: $V=\{\mathit{U},\mathit{Л}\}$
- Функция интерпретации: $f: \mathcal{P} \to V$
- Синтаксис оценки: $[\![\alpha]\!]^{X_1:=v_1, \dots, X_n:=v_n}$

Рекурсивное определение оценки

1.7 Тавтологии и выполнимость

Определение 3 α - *тавтология* ($\models \alpha$), если истинна при всех оценках

Пример 3 $A \to A$ - тавтология, $A \to \neg A$ - не тавтология

Определение 4 • $\gamma_1, \ldots, \gamma_n \models \alpha$ - α *следствие*

- Выполнима истинна при некоторой оценке
- Невыполнима ложна при всех оценках
- Опровержима ложна при некоторой оценке

1.8 Теория доказательств

1.8.1 Схемы высказываний

Определение 5 Cxema высказывания - строка, где вместо переменных можно использовать метапеременные

Определение 6 Высказывание о строится по схеме III, если

$$\sigma = III[\mathit{u}_1 := \varphi_1][\mathit{u}_2 := \varphi_2]...[\mathit{u}_n := \varphi_n]$$

1.8.2 Аксиомы исчисления высказываний

Определение 7 Схемы аксиом:

1.
$$\alpha \to \beta \to \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \to \beta \to \alpha \& \beta$$

4.
$$\alpha \& \beta \rightarrow \alpha$$

5.
$$\alpha \& \beta \rightarrow \beta$$

6.
$$\alpha \to \alpha \vee \beta$$

7.
$$\beta \rightarrow \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

1.8.3 Правило вывода Modus Ponens

- Исторически: Теофраст (IV-III вв. до н.э.)
- Формально:

$$\frac{\alpha \quad \alpha \to \beta}{\beta}$$

• Пример: «Сейчас сентябрь; если сентябрь, то осень; следовательно, осень»

Доказательство и вывод:

Определение 8 Доказательство - последовательность δ_1,\ldots,δ_n , где каждое δ_i :

- Аксиома, или
- Получено по МР из предыдущих

Определение 9 *Вывод из гипотез* Γ - то же, но можно использовать гипотезы из Γ

Корректность и полнота

Определение 10 *Корректность*: $\vdash \alpha \Rightarrow \models \alpha$

Определение 11 *Полнота*: $\models \alpha \Rightarrow \vdash \alpha$

Теорема 1 Исчисление высказываний корректно

Доказательство:

Индукция по длине вывода + проверка аксиом и правила МР

Теорема 2 (о дедукции)

$$\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \to \beta$$

Доказательство:

Конструктивное доказательство: преобразование вывода с гипотезой α в вывод импликации $\alpha \to \beta$. Оно будет на следующей лекции

2 Информация о курсе.

Поток — y2024.

Группы М3132-М3139.

Преподаватель — Штукенберг Дмитрий Григорьевич.

Это мат. лог ребятки

