#### 3.2.6

#### ИССЛЕДОВАНИЕ ГАЛЬВАНОМЕТРА

Егор Берсенев

## 1 Цель работы

Изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

## 2 Оборудование

Зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

## 3 Теоретическая часть

Уравнение движения рамки сопротивлением R, площадью S с N витками, по которым течет ток I в постоянном магнитном поле B имеет вид:

$$J\ddot{\varphi} + \frac{(BSN)^2}{R_{\sigma}}\dot{\varphi} + D\varphi = BSNI \tag{1}$$

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI \tag{2}$$

## 3.1 Режим измерения постоянного тока

Считаем колебания затухшими, т.е.  $\ddot{\varphi} = \dot{\varphi} = 0$ , когда

$$\varphi = \frac{K}{w_0^2} I = \frac{BSN}{D} I = \frac{I}{C_1} \tag{3}$$

, где  $C_1 = \frac{D}{BSN}$  — динамическая постоянная гальванометра.

## 3.2 Свободные колебания рамки

Пусть I=0 и выполнены следующие начальные условия:  $t=0, \varphi=0, \dot{\varphi}=\dot{\varphi}_0$ . Тогда уравнение движения примет вид:

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2\varphi = 0 \tag{4}$$

Рассмотрим три варианта движения рамки:

**Колебательный режим** В колебательном режиме  $\gamma \leq \omega_0$ . Теперь пусть  $\omega^2 = \omega_0^2 - \gamma^2$  В этом случае решение уравнения имеет вид:

$$\varphi = \frac{\dot{\varphi}_0}{\omega_0} e^{-\gamma t} \sin \omega t \tag{5}$$

В этом случае период колебаний равен  $T=\frac{2\pi}{\sqrt{w_0^2-\gamma^2}}$ 

**Критический режим** В критическом режиме  $\gamma = \omega_0$ . В этом случае движение не имеет колебательного характера, и уравнение движения имеет вид:

$$\varphi = \dot{\varphi}_0 t e^{-\gamma t} \tag{6}$$

**Затухание велико** В этом режиме  $\gamma \ge \omega_0$ . Это случай переуспокоенного гальванометра. Теперь пусть  $\varkappa^2 = \gamma^2 - \omega_0^2$ . Уравнение движения имеет вид:

$$\varphi = \frac{\dot{\varphi}_0}{\omega_0} e^{-\gamma t} \sinh \varkappa t \tag{7}$$

В этом случае движение все еще апериодическое, но система приближается к равновесию медленнее, чем в критическом режиме.

### 3.3 Режим измерения заряда

Период свободных колебаний гальванометра оказывается очень большим. Если через рамку пропустить короткий импульс тока, то можно считать, что весь ток успевает пройти при неотклоненном положении рамки. В этом случае уравнение движения сводится к следующему:

$$\dot{\varphi}(\tau) = Kq \tag{8}$$

Максимальный отброс достигается при

$$\varphi_{max} == \frac{\dot{\varphi}(\tau)}{\omega_0} = \frac{Kq}{\omega_0} \tag{9}$$

## 3.4 Определение динамической постоянной

Соберем схему по рисунку:



При малых R сила тока, протекающего через гальванометр может быть вычислена по формуле:

$$I = U_0 \frac{R_1}{R_2} \frac{1}{R + R_0} \tag{10}$$

Угол отклонения рамки связан с координатой зайчика следующим образом:  $x = a \tan(2\varphi)$  При малых углах можно считать, что  $\varphi = \frac{x}{2a}$ . Динамическую постоянную

$$C_1 = \frac{I}{\varphi} = \frac{2aI}{x} \tag{11}$$

как правило выражают в единицах  $\left\lceil \frac{A}{_{\text{MM/M}}} \right\rceil$ 

### 3.5 Определение критического сопротивления гальванометра

Скорость затухания характеризуется логарифмическим декрементом затухания:

$$\theta = \ln \frac{x_n}{x_{n+1}} = \gamma T = \frac{2\pi R_3}{\sqrt{(R_0 + R)^2 - R_3^2}},$$
(12)

где  $R_3 = R_0 + R_{cr}$ .

Отсюда получаем:

$$R_{cr} = \frac{1}{2\pi} \sqrt{\frac{\Delta X}{\Delta Y}} - R_0 \tag{13}$$

## 3.6 Определение баллистической постоянной



Конденсатор заряжается до напряжения  $U_c=\frac{R_1}{R_2}U_0$ , при этом его заряд равен  $q=CU_c=\frac{R_1}{R_2}U_0C$ .

Баллистическая постоянная определяется при критическом сопротивлении:

$$C_{qcr} = \frac{q}{\varphi_{max}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{I_{max}} \tag{14}$$

# 4 Ход работы

## 4.1 Определение динамической постоянной

Соберем схему 1 и снимем зависимость отклонения зайчика от сопротивления магазина при постоянном положении делителя  $\frac{R_1}{R_2} = \frac{1}{2000}$ .

Построим таблицу результатов:

Таблица 1: Определение динамической постоянной

| R        | 0.9    | 1.4    | 2.4    | 2.9    | 3.4    | 3.9    | 4.9    | 5.4    | 5.9    | 6.4   |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| $x_{+}$  | 23.1   | 174    | 11.6   | 10     | 8.7    | 7.6    | 6.3    | 5.8    | 5.3    | 4.9   |
| $x_{-}$  | 23.9   | 18     | 11.9   | 10.2   | 8.9    | 7.9    | 6.5    | 6      | 5.5    | 5.1   |
| $x_{av}$ | 23.5   | 17.7   | 11.75  | 10.1   | 8.8    | 7.75   | 6.4    | 5.9    | 5.4    | 5     |
| I        | 456.95 | 343.28 | 229.24 | 195.58 | 172.07 | 152.99 | 125.23 | 114.81 | 105.99 | 98.43 |

#### Построим график:



## 4.2 Определение критического сопротивления

Пронаблюдаем свободные колебания рамки. Измерим два последовательных отклонения и рассчитаем логарифмический декремент затухания.

Таблица 2: Логарифмический декремент затухания

| $x_n$     | 20.2  | 17.9  | 16    | 14.7  | 12.7  | 17.2  |
|-----------|-------|-------|-------|-------|-------|-------|
| $x_{n+1}$ | 17.9  | 16    | 14.7  | 12.7  | 11.4  | 15.3  |
| $\theta$  | 0.121 | 0.112 | 0.085 | 0.146 | 0.108 | 0.117 |

Отсюда получаем:  $\bar{\theta} = 0.115 \pm 0.005$ 

Измерим также период свободных колебаний рамки:  $T=2.5\,\mathrm{c}$ 

Подберем наибольшее сопротивление магазина, при котором зайчик не проходит через нулевое положение. Это сопротивление  $R=4.5\,\mathrm{kOm}$ . Проведем измерения

Таблица 3: Измерение логарифмического декремента

| R, кОм | $(R+R_0)^2$ , $\kappa OM$ | $x_n$ , cm | $x_{n+1}$ , cm | $\theta$ | $\frac{1}{\theta^2}$ |
|--------|---------------------------|------------|----------------|----------|----------------------|
| 13.5   | 199.09                    | 2.3        | 0.3            | 2.037    | 0.241                |
| 15.75  | 267.65                    | 2.8        | 0.5            | 1.723    | 0.337                |
| 18     | 346.33                    | 6.7        | 1.2            | 1.720    | 0.338                |
| 20.25  | 435.14                    | 3.3        | 0.8            | 1.417    | 0.498                |
| 22.5   | 534.07                    | 3.4        | 0.9            | 1.329    | 0.566                |
| 24.75  | 643.13                    | 6.2        | 1.7            | 1.294    | 0.597                |
| 27     | 762.31                    | 5.9        | 1.8            | 1.187    | 0.710                |
| 29.25  | 891.62                    | 5.7        | 1.9            | 1.099    | 0.829                |
| 31.5   | 1031.05                   | 5.4        | 1.9            | 1.045    | 0.917                |
| 36     | 1340.29                   | 5          | 2              | 0.916    | 1.191                |
| 40.5   | 1690.03                   | 4.7        | 2.1            | 0.806    | 1.541                |





Критическое сопротивление:  $R_{cr} = 4.88 \pm 0.43$  кОм.

## 4.3 Баллистический режим

Соберем схему по рисунку:



Измерим первый отброс в свободном режиме при положении делителя  $\frac{R_1}{R_2} = \frac{1}{15}$ 

| R, кОм                                             | 50    | 40    | 25    | 15    | 10    | 5      | 4.5    | 4      | 3.5    |
|----------------------------------------------------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| $(R+R_0)^{-1}\cdot 10^3$ , $\kappa \text{Om}^{-1}$ | 19.76 | 24.62 | 39.05 | 64.06 | 94.25 | 178.25 | 195.69 | 216.92 | 243.31 |
| $x_{max}$ , CM                                     | 17.2  | 16.5  | 14.7  | 12.1  | 11.3  | 7.6    | 7.3    | 6.6    | 6      |



Критическое сопротивление :  $4.71 \pm 0.47$  кОм.

Рассчитаем баллистическую постоянную в критическом режиме:

$$C_{q_{cr}} = 2a \frac{R_1}{R_2} \frac{U_0 C}{I_{max}} = 6.76 \cdot 10^{-10} \frac{\text{K}}{\text{MM/M}}$$

Время релаксации  $t = R_0 C = 610 \cdot 2 \cdot 10^{-6} = 1.22 \cdot 10^{-3} \ll T = 2.5$  с.

## 5 Вывод

Критическое сопротивление, измеренное тремя путями сошлось в пределах погрешности, что позволяет говорить о точном измерении. Время релаксации много меньше периода свободных колебаний, что подтверждает наше предположение о том, что можно пренебречь начальным углом и угловой скоростью.