Ejercicio 4

Un sistema de comunicaciones tiene 100 dB de atenuación en el enlace, una densidad espectral de ruido a la entrada de 2,54.10⁻¹⁸ W/Hz y un ancho de banda equivalente de ruido 10% por encima del estricto necesario previo a la demodulación. Complete la siguiente tabla con las ecuaciones de las potencias de señal y de ruido a la entrada y a la salida del detector y los valores de ancho de banda y potencia de señal transmitida para obtener una relación señal a ruido a la salida del detector de 40 dB, para mensajes con anchos de banda de 5 kHz y 10 kHz cuya relación de potencia media a potencia máxima instantánea es de 0,125.

Tabla

Modulación	Potencia de Señal		Potencia de Ruido		¿Verifica Umbral?	$B_T[KHz]$	P_{S_T} [dBm]
	Entrada	Salida	Entrada	Salida			-1.5
Banda base	$P_S = \frac{A_c^2}{2}$		$P_N = N_0. 1, 1. B_T$		15.0	5	1,5
						10	4,5
SSB	$P_S = \frac{A_c^2 \cdot \langle m_{(t)}^2 \rangle}{2}$		$P_N = N_0. 1, 1. B_T$		128	5	1,5
						10	4,5
DSB-SC	$P_{S} = \frac{A_{c}^{2} \cdot \langle m_{(t)}^{2} \rangle}{2}$		$P_N = N_0. 1, 1. (2. B_T)$		172	5	4,5
						10	7,5
AM	$P_S = \frac{A_c^2 \cdot \left[1 + \langle m_{(t)}^2 \rangle\right]}{2}$		$P_N = N_0. 1, 1. (2. B_T)$		Si	5	4,5
(m = 95%)	$P_S =$	2	$F_N = N_0.1, 1.(2.D_T)$		Si	10	7,5
$PM \\ (\Delta\theta = \pi)$	A_c^2	$P_S = \frac{A_c^2}{2} \qquad P_S = K^2. D_p^2. \langle m_{(t)}^2 \rangle$	$P_N = N_0. 1, 1. B_T$	$P_N = \frac{2.K^2.N_0.1,1.B_T}{A_c^2}$	Si	5	-5,63
	$P_S = \frac{1}{2}$				Si	10	-2,63
$FM \\ (\Delta f = 75KHz)$	$P_S = \frac{A_c^2}{2}$	$P_S = K^2. D_f^2. \langle m_{(t)}^2 \rangle$	$P_N = N_0. 1, 1. B_T$	$P_N = \frac{2}{3} \cdot \left(\frac{K}{A_c}\right)^2 \cdot N_0 \cdot (1.1.B_T)^3$	No	5	-29,87
					Si	10	-18,06
FM Deénfasis $\Delta f = 75KHz$ $RC = 75\mu S$	$P_{S} = \frac{A_{c}^{2}}{2}$	$P_S = K^2. D_f^2. \langle m_{(t)}^2 \rangle$	$P_N = N_0. 1, 1. B_T$	$P_N = \frac{2.K^2.N_0.f_1^2.(1,1.B_T)}{A_c^2}$	Si	5	-16,57
					Si	10	-10,8

Banda base / SSB

$$SNR_D = \frac{P_S}{P_N} = \frac{P_S}{N_0.1, 1.B_T}$$

$$P_S = SNR_D.N_0.1, 1.B_T$$

Para
$$B_T = 5KHz$$
:

$$P_S = 1,4x10^{-10}W = -98,5dB$$

$$P_{ST} = P_S + 100dB = 1,5dB$$

Para
$$B_T = 10KHz$$
:

$$P_S = 2,8x10^{-10}W = -95,5dB$$

$$P_{ST} = P_S + 100dB = 4,5dB$$

DSB-SC / AM

$$SNR_D = \frac{P_S}{P_N} = \frac{P_S}{N_0.1, 1.2.B_T}$$

$$P_S = SNR_D.N_0.1, 1.2.B_T$$

Para
$$B_T = 5KHz$$
:

$$P_S = 2,8x10^{-10}W = -95,5dB$$

$$P_{ST} = P_S + 100dB = 4,5dB$$

Para
$$B_T = 10KHz$$
:

$$P_S = 5,6x10^{-10}W = -92,5dB$$

$$P_{ST} = P_S + 100dB = 7,5dB$$

PM

$$\beta_p = \tau$$

$$\left\langle \frac{m_{(t)}^2}{V_p^2} \right\rangle = \frac{1}{2.(FC)^2} = \frac{1}{16}$$

$$\frac{SNR_D}{SNR_R} = 2.\beta_p^2.(\beta_p + 1). \left\langle \frac{m_{(t)}^2}{V_p^2} \right\rangle$$

$$SNR_R = \frac{SNR_D}{2.\beta_p^2.(\beta_p + 1).\left\langle \frac{m_{(t)}^2}{V_p^2} \right\rangle} = 1957, 14 = 32, 9dB$$

$$SNR_R = \frac{P_S}{P_N} = \frac{P_S}{N_0.1, 1.B_T}$$

$$P_S = SNR_R.N_0.1, 1.B_T$$

Para
$$B_T = 5KHz$$
:

$$P_S = 2,73x10^{-11} = -105,63dB$$

$$P_{ST} = P_S + 100dB = -5,63dB$$

Para
$$B_T = 10KHz$$
:

$$P_S = 5,46x10^{-11} = -102,63dB$$

$$P_{ST} = P_S + 100dB = -2,63dB$$

\mathbf{FM}

$$\Delta_f = 75KHz$$

$$\beta_{f_{B_T=5KHz}} = \frac{75KHz}{5KHz} = 15$$

$$\beta_{f_{B_T}=10KHz} = \frac{75KHz}{10KHz} = 7.5$$

$$\left\langle \frac{m_{(t)}^2}{V_p^2} \right\rangle = \frac{1}{2.(FC)^2} = \frac{1}{16}$$

$$\frac{SNR_D}{SNR_R} = 6.\beta_f^2.(\beta_f + 1). \left\langle \frac{m_{(t)}^2}{V_p^2} \right\rangle$$

$$SNR_R = \frac{P_S}{N_0.1, 1.B_T}$$

$$P_S = N_0.1, 1.B_T.SNR_R$$

Para
$$B_T = 5KHz$$

$$SNR_R = 7, 4 = 8,7dB$$

$$P_S = 1,03x10^{-13} = -129,87dB$$

$$P_{ST} = P_S + 100dB = -29,87dB$$

Para
$$B_T = 10KHz$$

$$SNR_R = 55,77 = 17,46dB$$

$$P_S = 1,56x10^{-12} = -118,06dB$$

$$P_{ST} = P_S + 100dB = -18,06dB$$

\mathbf{FM}

$$\Delta_f = 75KHz$$

$$\beta_{fB_T=5KHz} = \frac{75KHz}{5KHz} = 15$$

$$\beta_{f_{B_T}=10KHz} = \frac{75KHz}{10KHz} = 7.5$$

$$\left\langle \frac{m_{(t)}^2}{V_p^2} \right\rangle = \frac{1}{2.(FC)^2} = \frac{1}{16}$$

$$f_1 = \frac{1}{RC} = 13,33KHz$$

$$\frac{SNR_D}{SNR_R} = 2.\beta_f^2.(\beta_f + 1).\left(\frac{B}{f_1}\right).\left\langle\frac{m_{(t)}^2}{V_p^2}\right\rangle$$

$$SNR_R = \frac{P_S}{N_0.1, 1.B_T}$$

$$P_S = N_0.1, 1.B_T.SNR_R$$

Para
$$B_T = 5KHz$$

$$SNR_R = 157,94 = 21,98dB$$

$$P_S = 2,2x10^{-12} = -116,57dB$$

$$P_{ST} = P_S + 100dB = -16,57dB$$

Para
$$B_T = 10KHz$$

$$SNR_R = 297, 31 = 24,73dB$$

$$P_S = 8,3x10^{-12} = -110,8dB$$

$$P_{ST} = P_S + 100dB = -10,8dB$$