

Background

- Dataset: Single-cell RNA sequencing (scRNA-seq) datasets.
 - each dataset consists of a cell by gene expression matrix, where cells are annotated with batches and labels.
- Goal: Combining high-throughput sequencing datasets to produce a self-consistent version of the data for downstream analysis.
- Reason: Integrating scRNA-seq helps biological findings.
- Challenges:
 - Dealing with noise, sparsity, batch effects and rare cell types.
 - Evaluating integration methods.

Background

- (Luecken, Büttner, Chaichoompu, Danese, Interlandi, Müller, Strobl, Zappia, Dugas, Colomé-Tatché, and others, 2022) benchmarked 19 methods in 13 integration tasks.
- They used 14 metrics to evaluate integration methods on their ability to
 - remove batch effects, and
 - conserve biological variations.
- They provided guidelines to choose an integration method given a task.
- For all methods, they used default parameters.

Methods

- Integrating scRNA-seq datasets usually include two parts:
 - o jointly embedding high-dimensional input onto a shared latent space, and
 - o (soft) clustering cells that incorporates annotated information (e.g. cell type).
- In this presentation, we aim to study the dependence of integration methods on the dimension of latent space.
- We focus on three methods that build deep generative models:
 - scVI(Lopez, Regier, Cole, Jordan, and Yosef, 2018),
 - o scGen (Lotfollahi, Wolf, and Theis, 2019), and
 - o scanvI(Xu, Lopez, Mehlman, Regier, Jordan, and Yosef, 2021).

Evaluation

- Average silhouette width (ASW) measures the separation of clusters.
- We use modified batch ASW and cell type ASW to evaluate the ability of batch removal and biogical conservation, respectively.
- For both, the larger ASW we have, the better.

Real-data analysis: human immune cell integration

- Task: integrating 5 datasets of 10 batches (donors) with cells from peripheral blood and bone marrow, annotated by cell types
- According to (Luecken, Büttner, Chaichoompu, et al., 2022), scANVI is one of the best methods, evaluated by a weighted mean of 14 metrics.

Results

- We vary the dimension of latent space, and evaluate scvi, scanvi and scgen using batch ASW and cell type ASW.
- Overall, scgen works worst.
- For scvi and scanvi, there is a tradeoff between removing batch effects and conserving biological variations.
 - Higher-dimensional latent space tends to have better batch correction.
 - For conservation of biological variations, the choice of dimension is unclear (may present opposite order in other datasets).

Results

Latent space fitted by scvi projected onto 2d space, with dimension of latent space (left) 5 and (right) 100, colored by (top) batches and (bottom) cell types.

Results

Latent space fitted by (left) scanvi and scgen projected onto 2d space, , colored by (top) batches and (bottom) cell types.

Takeaways

- Across methods, there is a trade-off between batch removal and conservation of biological variations.
- The choice of latent space dimension doesn't affect the rank across methods.
- For each method, the performance of integration methods is dependent on the dimension of latent space.
 - High-dimensional latent space leads to better batch removal.
 - That being said, it's hard to tell the difference in visualizations on 2d space.

Reproducibility

• Results can be reproduced via https://github.com/XinranMiao/scRNA_int (not yet finished).

Thank You! Questions?

References

Luecken, M. D., M. Büttner, K. Chaichoompu, et al. (2022). "Benchmarking atlas-level data integration in single-cell genomics". In: *Nature methods* 19.1, pp. 41-50.