A Comparison of Antenna Placement Algorithms

Abhinav Jauhri

March 24, 2015

Outline of this talk

- ► Part 1: A quick introduction of the antenna placement problem
- ► Part 2: Description of stochastic algorithms, and formulation of an instance of antenna placment problem
- ► Part 3: Results of our experiments

Part 1: Introduction of the antenna placement problem

Antenna Placement Problem

Given, platform

- + allowable placements of antennas
 - Allowable placements for antenna 1
 - Allowable placements for antenna 2

Antenna Placement Problem

Given, platform

- allowable placements of antennas
 - Allowable placements for antenna 1
 - Allowable placements for antenna 2

- Best placement for antenna 1
- ★ Best placement for antenna 2

Problem: find best placements

Antenna Placement Problem

Given:

- ▶ platform *P* with its surface gridded such that end points represent possible antenna placement
- ▶ set of m (m>1) antennas $A = A_1, A_2, ..., A_m$
- ▶ for each A_i , let L_i denote the set of allowable placements locations $\in \mathbb{R}^3$ such that $|L_i| = n_i$ and $\forall i, n_i > 1$; $L_i = \{(x_1, y_1, z_1)...(x_{n_i}, y_{n_i}, z_{n_i})\}$

Problem: Find a set of n optimal antenna locations on P

How is a good antenna placement defined?

Minimize energy absorbed by one antenna's receiver when another antenna operating nearby.

Mutual Coupling

Minimize Mutual Coupling

$$F_{MC} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} CP(A_i, A_j), \tag{1}$$

where

- $ightharpoonup CP(\cdot)$ computes the coupling between two antennas via a simulator
- ► $i \neq j$

Example: If n = 3, then $F_{MC} = CP(A_1, A_2) + CP(A_1, A_3) + CP(A_2, A_3)$

Minimize Difference in Radiation Pattern

Pattern defines the ratio of energy radiated and input energy in a particular direction. For each antenna A_i :

$$F_{RP} = \sum_{i}^{n} \sum_{\theta} \sum_{\phi} (FSG_{i}(\theta, \phi) - ISG_{i}(\theta, \phi))^{2}, \qquad (2)$$

where

- θ, ϕ spherical coordinates
- ► $FSG(\cdot)$ returns free-space gain pattern
- ► $ISG(\cdot)$ returns in-situ gain pattern

Objective Function

Find a placement such that F is minimal:

$$F = \alpha F_{MC} + \beta F_{RP}, \tag{3}$$

where $\alpha + \beta = 1$

Contributions

- ► Formulation of the antenna placement problem
- Evaluation of standard stochastic algorithms on a real-world problem
- ► Able to achieve global optimum with as low as 21% evaluations of search space

Part 2: Stochastic Algorithms

Characteristics of EAs

- ► A set of solution candidates (or hypothesis) maintained
- Mating selection process is performed on the solution candidates
- Several solutions are combined to generate new candidate set solutions

Stochastic Algorithms

We will consider algorithms which rely on randomization principle.

- ► Simple Genetic Algorithm
- ► Evolutionary Strategy
- ► Simulated Annealing
- ► Hill Climbing

Evolutionary Strategy

Algorithm 1: AP-ES

- 1 Initialize $P \leftarrow$ generate μ random hypothesis;
- 2 $gen_{id} = 0$;
- 3 while $gen_{id} < gen_{max}$ do
- 4 Create λ/μ offsprings from each μ hypotheses by applying mutation operator, and add all offsprings to P;
- 5 Compute the $fitness(h_i), i = 1,...,\lambda$;
- Keep μ best hypotheses in P, and discard remaining $\lambda \mu$ hypotheses ;
- 7 Update $gen_{id} \leftarrow gen_{id} + 1$
- 8 end

Simulated Annealing

Algorithm 2: AP-SA

```
Initialize H \leftarrow generate a random hypothesis;
   Compute fitness(H);
   i=0;
   while i < i_m do
         Mutation - Apply the operation on H as stated in Algorithm . Call the
 5
         pertubrated/mutated hypothesis C;
         Compute \delta f = fitness(C) - fitness(H);
 6
         if \delta f > 0 then
 7
 8
               Generate a random number \epsilon using a uniform distribution over [0,1];
               if \epsilon < e^{-\delta f/T} then
 9
                    H \leftarrow C
10
               end
11
         else
12
               H ← C :
13
14
         end
15
         T \leftarrow T \cdot f_{cooling};
         i \leftarrow i + 1:
16
17 end
```

Experimental Setup

- 1. Create (s) such that each individual is defined by a placement for each of the m antennas
- 2. Run all individuals through *NEC* simulator ¹ to get fitness parameters
- 3. Apply EA operators
- 4. Repeat till either global minimum is reached or 50% evaluations of search space

¹http://www.nec2.org

Experiments: Test Cases

(a) Test Case 1 with 7056(83×83) allowable placements (b) Test Case 2 with 50625(45×45×45) allowable placements

Experiments: Test Cases

(a) Test Case 3 with 126025(71x71x25) allowable placements

(b) Test Case 4 with 20736(12x12x12x12) allowable placements

Results

Results

Equivalence of fitness to efficiency

For a particular test case, fitness change of 0.01 is equivalent to either the corresponding value under expected gain (\mathbb{E}_g) column, or difference in coupling (Δ_c) .

ID	\mathbb{E}_{g}	Δ_c (dB)
tc1	872.277	0.5474
tc2	862.082	1.3034
tc3	861.845	1.5180
tc4	871.049	0.5693

$$\mathbb{E}_g = \frac{1}{N \cdot m} \sum_{i}^{m} F_{RP}(A_i), \text{ where } N = |\theta| \cdot |\phi|$$

Conclusion

- ► Formulation of the antenna placement problem
- Generic problem formulation to accommodate multiple antennas and platforms
- Optimal placements found using stochastic algorithms

