$\ensuremath{\mathsf{PMATH352W18}}$ Complex Analysis - Class Notes

Johnson Ng

January 10, 2018

Contents

1	Lecture 1 - Jan 3, 2018 1.1 Complex Numbers and Their Properties	4
2	Lecture 2 - Jan 5th, 2018 2.1 Complex Numbers and Their Properties (Continued)	11 11
3	Lecture 3 - Jan 8th, 2018 3.1 Complex Numbers and Their Properties (Continued 2)	1 5 15
4	Lecture 4 - Jan 10th, 2018 4.1 Examples for nth Roots of Unity	20 20

List of Definitions

1.1.1	Complex Number, Complex Plane
1.1.2	Sum and Product
1.1.3	Conjugate
1.1.4	Modulus
3.1.1	Argument of a Complex Number

List of Theorems

Proposition 1.1.1	Basic Inequalities	8
Proposition 3.1.1	nth Roots of a Complex Number	18

Chapter 1

Lecture 1 - Jan 3, 2018

1.1 Complex Numbers and Their Properties

Definition 1.1.1 (Complex Number, Complex Plane)

A complex number is a vector in \mathbb{R}^2 . The complex plane, denoted by \mathbb{C} , is a set of complex numbers,

$$\mathbb{C} = \mathbb{R}^2 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

In \mathbb{C} , we usually write

$$0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$i = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad x = \begin{pmatrix} x \\ 0 \end{pmatrix}$$
$$iy = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

where $x, y \in \mathbb{R}$. Consequently, we have that

$$x + iy = x + yi = \begin{pmatrix} x \\ y \end{pmatrix}$$

If for $x, y \in \mathbb{R}$, z = x + iy, then x is aclled the real part of z and y is called the imaginary part of z, and we write

$$Re(z) = x \quad Im(z) = y.$$

Note

• It is easy to see how \mathbb{R} is a subset of \mathbb{C} .

- Complex Numbers of the form $\begin{pmatrix} 0 \\ y \end{pmatrix}$ where $y \in \mathbb{R}$ are called purely imaginary numbers.
- Certain authors may prefer to denote $i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Definition 1.1.2 (Sum and Product)

We define the sum of two complex numbers to be the usual vector sum, i.e.

$$(a+ib) + (c+id) = \binom{a}{b} + \binom{c}{d}$$
$$= \binom{a+c}{b+d}$$
$$= (a+c) + i(b+d)$$

where $a, b, c, d \in \mathbb{R}$.

We define the product of two complex numbers by setting $i^2 = -1$, and by requiring the product to be commutative, associative, and distributive over the sum. In this setup, we have that

$$(a+ib)(c+id) = ac + iad + ibc + i^2bd$$

= $(ac - bd) + i(ad + bc)$ (1.1)

Note

It is interesting to note that any complex number times zero is zero, just like what we have with real numbers.

$$\forall z = x + iy \in \mathbb{C} \ x, y \in \mathbb{R} \ 0 \in \mathbb{C}$$
$$z \cdot 0 = (x + iy)(0 + i0) = 0 + i0 = 0$$

Example 1.1.1

Let z = 2 + i, w = 1 + 3i. Find z + w and zw.

$$z + w = (2+i) + (1+3i)$$
$$= 3+4i$$

$$zw = (2+i)(1+3i)$$

= $(2-3) + i(6+1)$ By Equation (1.1)
= $-1 + 7i$

Example 1.1.2

Show that every non-zero complex number has a multiplicative inverse, z^{-1} , and find a formula for this inverse.

Let z = a + ib where $a, b \in \mathbb{R}$ with $a^2 + b^2 \neq 0$. Then

$$z(x+iy) = 1$$

$$\iff (ax - by) + i(ay + bx) = 1$$

$$\iff \begin{pmatrix} ax - by \\ ay + bx \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a \\ -b \end{pmatrix}$$

$$\iff x + iy = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$

Therefore, we have that the formula for the inverse is

$$(a+ib)^{-1} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$
(1.2)

Notation

For $z, w \in \mathbb{C}$, we write

$$-z = -1z$$
 $w - z = w + (-z)$
 $\frac{1}{z} = z^{-1}$ $\frac{w}{z} = wz^{-1}$

Example 1.1.3 Find $\frac{(4-i)-(1-2i)}{1+2i}$.

$$\frac{(4-i) - (1-2i)}{1+2i} = \frac{3+i}{1+2i}$$
$$= (3+i)(\frac{1}{5} - i\frac{2}{5})$$
$$= 1-i$$

Note

The set of complex numbers is a **field** under the operations of additiona and multiplication. This means that $\forall u, v, w \in \mathbb{C}$,

$$u + v = v + u$$
 $uv = vu$
 $(u + v) + w = u + (v + w)$ $(uv)w = u(vw)$
 $0 + u = u$ $1u = u$
 $u + (-u) = 0$ $uu^{-1} = 1, u \neq 0$
 $u(v + w) = uv + uw$

Since the distributive law holds for complex numbers, note that the binomial expansion works for $(w+z)^n$ where $w, z \in \mathbb{C}$ and $n \in \mathbb{N}$. (I did not verify if this is still true for when $n \in \mathbb{R}$.)

Definition 1.1.3 (Conjugate)

If z = x + iy where $x, y \in \mathbb{R}$, then the **conjugate of** z is given by $\bar{z} = x - iy$

Example 1.1.4

Let z=3+4i. Then the $\bar{z}=3-4i$. Represented in the complex plane, we have the following:

We observe that on the complex plane, the conjugate of a complex number is simply its reflection on the real axis.

Definition 1.1.4 (Modulus)

We define the **modulus** (length, magnitude) of $z = x + iy \in \mathbb{C}, x, y \in \mathbb{R}$, to be

$$|z| = \sqrt{x^2 + y^2} \in \mathbb{R}.\tag{1.3}$$

Note

Note that this definition is consistent with the notion of the absolute value in real numbers when z is a real number, since if y = 0, $|z| = |x + i0| = \sqrt{x^2} = \pm x$.

Note

For $z, w \in \mathbb{R}$, we have

but note that $|z+w| \neq |z| + |w|$.

Note

While inequalities such as $z_1 < z_2$, where $z_1, z_2 \in \mathbb{C}$, are meaningless unless if both of them are real, $|z_1| < |z_2|$ means that the point z_1 in the complex plane is closer to the origin than the point z_2 .

Proposition 1.1.1 (Basic Inequalities)

- 1. $|\text{Re}(z)| \le |z|$
- 2. $|\text{Im}(z)| \le |z|$
- 3. $|z+w| \le |z| + |w|$ Triangle Inequality
- 4. $|z+w| \ge ||z| |w||$ Inverse Triangle Inequality

Proof

Note that $|z|^2 = \text{Re}(z)^2 + \text{Im}(z)^2$ and that we can express $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$. 1 and 2 immediately follows from that.

To prove 3, we have that

$$|z + w|^{2} = (z + w)(\bar{z} + \bar{w})$$

$$= |z|^{2} + |w|^{2} + (w\bar{z} + \bar{w}z)$$

$$= |z|^{2} + |w|^{2} + 2\operatorname{Re}(w\bar{z})$$

$$\leq |z|^{2} + |w|^{2} + 2|w\bar{z}| \quad by \ 1$$

$$= |z|^{2} + |w|^{2} + 2|wz| \quad since \ |w\bar{z}| = |w| |\bar{z}| \quad and \ |z| = |\bar{z}|$$

$$= (|z| + |w|)^{2}$$

To prove 4, note that

$$|z| = |z + w - w| \le |z + w| + |w| \tag{1.4}$$

$$|w| = |w + z - z| \le |z + w| + |z| \tag{1.5}$$

Observe that

Equation (1.4)
$$\Longrightarrow |z| - |w| \le |z + w|$$

Equation (1.5) $\Longrightarrow |w| - |z| \le |z + w|$

Thus, we have that

$$|z+w| \ge ||z| - |w||$$

as required.

Item 3 in Proposition 1.1.1 can be generalized by the means of mathematical induction to sums involving any finite number of terms, as:

$$|z_1 + z_2 + \ldots + z_n| \le |z_1| + |z_2| + \ldots + |z_n| \tag{1.6}$$

where $n \in \mathbb{N} \setminus \{0, 1\}$.

To note the induction proof, when n = 2, Equation (1.6) is just Item 3. If Equation (1.6) is true for when n = m where $m \in \mathbb{N} \setminus \{0, 1\}$, n = m + 1 is also true since by Item 3,

$$|(z_1 + z_2 + \ldots + z_m) + z_{m+1}| \le |z_1 + z_2 + \ldots + z_m| + |z_{m+1}|$$

 $\le (|z_1| + |z_2| + \ldots + |z_m|) + |z_{m+1}|.$

The distance between two points $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \in \mathbb{C}, x_1, x_2, y_1, y_2 \in \mathbb{R}$ is $|z_1 - z_2|$, since $|z_1 - z_2| = \sqrt{(x_1 - x_2)^2(y_1 - y_2)^2}$ is our usual notion of the Euclidean distance of two points on a plane.

Also, note that

$$z_1 - z_2 = z_1 + (-z_2)$$

and thus if we apply our knowledge of vector representation, $z_1 - z_2$ is the directed line segment from the point z_2 to z_1 .

With the notion of a "distance" set on the complex plane, we can now explore upon points lying on a circle with a center z_0 and radius R, which satisfies the equation

$$|z-z_0|=R.$$

We may simply refer to this set of points as the circle $|z - z_0| = R$.

Example 1.1.5

We may describe a set $\{z \in \mathbb{C} : |z-i|=1\}$ as follows:

Let $a,b \in \mathbb{C}$ describe the set $\{z \in \mathbb{C} : |z-a| < |z-b|\}$.

Suppose the following coordinates for a and b are arbitrary,

In the above, g is the line segment that connects the points a and b on the complex plane, while f is the perpendicular bisector of the line segment g. The area described by the set $\{z \in \mathbb{C} : |z-a| < |z-b|\}$ is the shaded area which is below f.

Chapter 2

Lecture 2 - Jan 5th, 2018

2.1 Complex Numbers and Their Properties (Continued)

Example 2.1.1

Let $a \in \mathbb{C}$. Describe the set $\{z \in \mathbb{C} : 1 < |z - a| < 2\}$.

Example 2.1.2

Show that every non-zero complex number has exactly two complex square roots, and find a formula for the square roots.

Let $z = x + iy \in \mathbb{C}, x, y \in \mathbb{R}$, and let $w = u + iv, u, v \in \mathbb{R}$. Then

$$w^{2} = z \iff (u + iv)^{2} = x + iy$$

$$\iff (u^{2} - v^{2}) + i(2uv) = x + iy$$

$$\iff x = u^{2} + v^{2} \quad and$$

$$y = 2uv$$
(2.1)

Square both sides of Equation (2.2), and thus we have $y^2 = 4u^2v^2$.

Multiply Equation (2.1) by $4u^2$, and we get

$$4u^{2}x = 4u^{4} - 4u^{2}v^{2} = 4u^{4} - y^{2}$$

$$\iff 0 = 4u^{4} - 4u^{2}x - y^{2}$$

$$\iff u^{2} = \frac{4x \pm \sqrt{16x^{2} + 16y^{2}}}{8}$$

$$= \frac{x \pm \sqrt{x^{2} + y^{2}}}{2}$$

Suppose $y \neq 0$. Note that $x < \sqrt{x^2 + y^2}$. Thus $u^2 = \frac{x + \sqrt{x^2 + y^2}}{2} \implies u = \left(\frac{x + \sqrt{x^2 + y^2}}{2}\right)^{\frac{1}{2}}$.

Similarly, we can get

$$v = \pm \left(\frac{-x + \sqrt{x^2 + y^2}}{2}\right)^{\frac{1}{2}}$$

Note that all four choices of signs satisfy Equation (2.1). If y > 0, then u and v are either both positive or both negative by Equation (2.2).

Suppose y = 0. Then we have

$$w^2 = z = x$$

Therefore, we get

$$w = \begin{cases} \pm \left[\left(\frac{x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} + i \left(\frac{-x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} \right] & y > 0 \\ \pm \left[\left(\frac{x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} - i \left(\frac{-x + \sqrt{x^2 + y^2}}{2} \right)^{\frac{1}{2}} \right] & y < 0 \\ \pm \sqrt{x} & y = 0, x > 0 \\ \pm i \sqrt{x} & y = 0, x < 0 \end{cases}$$

Remark

Let $z \in \mathbb{C}$. The notation \sqrt{z} may represent either one of the square roots of z or both of the square roots, i.e. it is possible that \sqrt{z} represents a set.

Exercise 2.1.1

Is it always okay for complex numbers such that $\sqrt{zw} = \sqrt{z}\sqrt{w}$, for $z, w \in \mathbb{C}$?

No. For example, consider z = w = -1. Then we have

$$\sqrt{zw} = \sqrt{1} = \pm 1$$

while

$$\sqrt{z}\sqrt{w}=i\cdot i=-1$$

and thus

$$\sqrt{zw} \neq \sqrt{z}\sqrt{w}$$
.

Example 2.1.3

Find the values of $\sqrt{3-4i}$.

By Example 2.1.2,

$$\sqrt{3-4i} = \pm \left(\sqrt{\frac{3+\sqrt{9+16}}{2}} - i\sqrt{\frac{-3+\sqrt{9+16}}{2}}\right)$$
$$= \pm (2-i)$$

Remark

The quadratic formula holds for complex polynomials, i.e.

$$\forall a, b, c \in \mathbb{C} \quad a \neq 0 \quad \forall z \in \mathbb{C} \ az^2 + bz + c = 0,$$

the solution for z is given by

$$z_{1,2} = \frac{-b + \sqrt{b^2 - 4ac}}{b} \tag{2.3}$$

The following is a short proof.

Proof

$$az^{2} + bz + c = 0 \iff z^{2} + \frac{b}{a}z + \frac{c}{a} = 0$$

$$\iff z^{2} + \frac{b}{a}z + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} = 0$$

$$\iff \left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$\iff z = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$

(Personal Note: where did the – for the supposed \pm go? Or should it really be \pm ?)

Example 2.1.4

Solve $iz^2 - (2+3i)z + 5(1+i) = 0$.

$$z = \frac{2+3i+\sqrt{(2+3i)^2-4i[5(1+i)]}}{2i}$$

$$= \frac{2+3i+\sqrt{-5+12i-20i+20}}{2i}$$

$$= \frac{2+3i+\sqrt{15+8i}}{2i}$$

Note that by Example 2.1.2,

$$\sqrt{15 - 8i} = \pm \left[\sqrt{\frac{15 + \sqrt{225 + 64}}{2}} - i\sqrt{\frac{-15 + \sqrt{225 + 64}}{2}} \right]$$
$$= \pm \left[\sqrt{\frac{15 + 17}{2}} - i\sqrt{\frac{-15 + 17}{2}} \right]$$
$$= \pm (4 - i)$$

Thus we have

$$z = \frac{2 + 3i + \sqrt{15 + 8i}}{2i}$$

$$= \frac{2 + 3i \pm (4 - i)}{2i}$$

$$= (6 + 2i) \left(-\frac{1}{2}i\right) \text{ or } (-2 + 4i) \left(-\frac{1}{2}i\right) \text{ by Example 1.1.2}$$

$$= (1 - 3i) \text{ or } (2 + i)$$

Chapter 3

Lecture 3 - Jan 8th, 2018

3.1 Complex Numbers and Their Properties (Continued 2)

Definition 3.1.1 (Argument of a Complex Number)

Let $z \in \mathbb{C} \setminus \{0\}$. The **argument** (or the angle) of z, denoted by $\arg z$, $\arg z$, or simply $\theta = \theta(z)$, is the angle modulo 2π (i.e. $0 \le \theta < 2\pi$) between the vector defining z and the positive real axis (in the counterclockwise direction).

Notation

Let $e^{i\theta} := \cos \theta + i \sin \theta$. Note that this definition can be derived by the extending the Taylor expansion of $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for when $x \in \mathbb{C}$ (the sum of the real parts of the expansion is the Taylor expansion of cosine while the imaginary part for sine).

Now $e^{i\theta}$ is on the unit circle.

Example 3.1.1

Some examples of $\theta \in [0, 2\pi)$:

$$\begin{array}{ll} e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} & e^{i\frac{\pi}{2}} = i \\ e^{i\frac{3\pi}{4}} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} & e^{i\pi} + 1 = 0 \end{array}$$

Remark

$$\forall k \in \mathbb{Z} \ \forall \theta \in \mathbb{R} \ e^{i\theta} = e^{i(\theta + 2\pi k)}$$

Remark

The complex number $re^{i\theta}$, where $r > 0, \theta \in [0, 2\pi)$, represents the complex number with modulus r and argument θ .

Therefore, $\forall z \in \mathbb{C}$, we can express

$$z := |z| e^{i \operatorname{Arg} z}. \tag{3.1}$$

With that, we now have two representations of a complex number:

- Cartesian representation: z = x + iy where x = Re(z) and y = Im(z)
- Polar representation: $z = re^{i\theta}$ where r = |z| and $\theta = \operatorname{Arg} z \in [0, 2\pi)$

To convert between the two representations, we have the following equations: Polar \rightarrow Cartesian:

$$x = r\cos\theta \quad y = r\sin\theta \tag{3.2}$$

Cartesian \rightarrow Polar:

$$r = |z|$$

$$x \neq 0 \implies \tan \theta = \frac{y}{x}$$

$$x = 0 \implies \theta = \frac{\pi}{2} \text{ or } \frac{3\pi}{2}$$
(3.3)

On another note,

$$z = re^{i\theta} \implies \bar{z} = re^{-i\theta}$$

and

$$z \neq 0 \implies \frac{1}{z} = \frac{1}{r}e^{-i\theta}$$

Remark

$$\forall r_1, r_2 \in \mathbb{R} \ \forall \theta_1, \theta_2 \in [0, 2\pi)$$
$$z_1 := r_1 e^{i\theta_1} \quad z_2 := r_2 e^{i\theta_2}$$

Then

$$z_1 z_2 = r_1 r_2 e^{i\theta_1} e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Note that $e^{ix}e^{iy}=e^{i(x+y)}$ is true for all $x,y\in\mathbb{R}$ since

$$e^{ix}e^{iy} = (\cos x + i\sin x)(\cos y + i\sin y)$$

$$= (\cos x \cos y - \sin x \sin y) + i(\cos x \sin y + \cos y \sin x)$$

$$= \cos(x+y) + i\sin(x+y)$$

$$= e^{i(x+y)}.$$

Generalizing the above, we get that

$$\forall n \in \mathbb{Z} \ (re^{in}) = r^n e^{in\theta}$$

which is commonly known as deMoivre's Law.

Proposition 3.1.1 (nth Roots of a Complex Number)

$$\begin{aligned} \forall z = re^{i\theta} \in \mathbb{C} \ r = |z| \in \mathbb{R} \ \theta \in [0, 2\pi) \\ \exists w = se^{i\tau} \in \mathbb{C} \ s \in \mathbb{R} \ \tau \in [0, 2\pi) \\ \forall n \in \mathbb{Z} \\ w^n = \left(se^{i\tau}\right)^n = z = re^{i\theta} \end{aligned}$$

The nth roots of z is described by the set

$$\left\{r^{\frac{1}{n}}e^{i\left(\frac{\theta+2\pi k}{n}\right)}: k=0,1,...,n-1\right\}$$
 (3.4)

Proof

$$s^{n} = r \iff s = r^{\frac{1}{n}}$$

$$e^{in\theta} = e^{i\tau} \iff \theta = \frac{\tau + 2\pi k}{n}$$

Therefore, the set that describes the nth roots of z is

$$\left\{ w = r^{\frac{1}{n}} e^{i\left(\frac{\theta + 2\pi k}{n}\right)} : k = 0, 1, ..., n - 1 \right\}$$

Remark (nth Roots of Unity)

The nth roots of unity is a direct consequence of Proposition 3.1.1 where we solve for the equation $z^n = 1$ for any $z \in \mathbb{C}$, $n \in \mathbb{Z}$.

The set that describes the nth roots of unity is

$$\left\{ e^{i\theta} : \theta = \frac{2\pi k}{n}, k = 0, 1, ..., n - 1 \right\}$$
 (3.5)

It is easy to see how the nth roots of unity partitions the unit circle into n parts.

Example 3.1.2

Find the cubic roots of -2 + 2i.

Let
$$z=-2+2i$$
. Note that $|z|=2\sqrt{2}$ and $\operatorname{Arg} z=\frac{3\pi}{4}$.

Therefore, in polar form, $z = 2\sqrt{2}e^{i\frac{3\pi}{4}}$.

Let $w = re^{i\theta}$, where $\theta \in [0, 2\pi)$, and $w^3 = z$. Then

$$r = (2\sqrt{2})^{\frac{1}{3}}$$

$$\theta = \frac{\frac{3\pi}{4} + 2\pi k}{3}, \ k = 0, 1, 2$$

The set that describes the cubic root of -2 + 2i is thus

$$\left\{ (2\sqrt{2})^{\frac{1}{3}}e^{i\theta}: \theta = \frac{\frac{3\pi}{4} + 2\pi k}{3}, k = 0, 1, 2 \right\}$$

Example 3.1.3

Describe the set $\{z \in \mathbb{C} : \left| \operatorname{Arg} z - \frac{\pi}{2} \right| < \frac{\pi}{2} \}$. (Note: $\operatorname{Arg} z \in [0, 2\pi)$)

Exercise 3.1.1

Solve

1.
$$z^4 = -1$$

$$Let \ z = re^{i\theta}$$

$$r = |-1| = 1 \quad \theta = \frac{\pi + 2\pi k}{4} = \frac{(2k+1)\pi}{4}, \ k = 0, 1, 2, 3$$

2.
$$z^4 = -1 + \sqrt{3}i$$

$$Let \ z = re^{i\theta}$$

$$r = \left| -1 + \sqrt{3}i \right| = \sqrt{(-1)^2 + 3^2} = \sqrt{10}$$

$$\theta = \frac{\frac{2\pi}{3} + 2\pi k}{4} = \frac{(2k + \frac{2}{3})\pi}{4}, \quad k = 0, 1, 2, 3$$

Chapter 4

Lecture 4 - Jan 10th, 2018

4.1 Examples for nth Roots of Unity

Recall that the *n*th roots of unity are given by $e^{i\frac{2\pi k}{n}}, k = 0, 1, ..., n - 1$.

Exercise 4.1.1

Let z be any nth root of unity other than 1. Show that

$$z^{n-1} + z^{n-2} + \ldots + z + 1 = 0 (4.1)$$

Proof

By the Sum of Finite Geometric Terms,

$$z^{n-1} + z^{n-2} + \ldots + z + 1 = \frac{1 - z^n}{1 - z}.$$

Since $z^n = 1$, RHS is thus zero, which in turn completes the proof.

As an aside, if we wish to remove the restriction that z can also be 1, we may consider that

$$z^{n} - 1 = (z - 1)(1 + z + \dots + z^{n-1})$$

Since $z^n = 1$, LHS is zero. Then either z = 1 or $(1 + z + \ldots + z^{n-1}) = 0$.

Exercise 4.1.2

Consider the n-1 diagonals of a regular n-gon, inscribed in a circle of radius 1, obtained by connecting one vertex on the n-gon to all its other vertices.

For example, if we are given n = 6, we obtain the following diagram.

Show that the product of the lengths of these diagonals is equal to n.

Figure 4.1: n = 6, where a is an arbitrary vertex on the hexagon

Figure 4.2: A regular n-gon with the roots of unity on its vertices

Proof

Note that Figure 4.1 can be translated into Figure 4.2.

Thus the equation that we wish to prove becomes

$$|1 - z_2| |1 - z_3| \dots |1 - z_n| = n \tag{4.2}$$

Note that $z_2, ..., z_n$ are the nth roots of unity other than 1.

Let z be a variable and consider the polynomial

$$P(z) := 1 + z + z^{2} + \dots + z^{n-1}$$
(4.3)

Since the roots of P(z) are the nth roots of unity other than 1, we can factorize Equation (4.3) into

$$P(z) = (z - z_2)(z - z_3) \dots (z - z_n)$$

Now let z = 1 and take the modulus of P(z), and we get Equation (4.2).

Exercise 4.1.3

Let $n \in \mathbb{N}$. Show that $\sum_{j=0}^{n} {3n \choose 3j} = \frac{2^{3n}+2(-1)^n}{3}$.

Proof

Let $\alpha = e^{i\frac{2\pi}{3}}$. Then α is a cubic root of unity, i.e. $\alpha^3 = 1$, and from Exercise 4.1.1, $1 + \alpha + \alpha^2 = 0$.

Consider

$$(1+1)^{3n} = {3n \choose 0} + {3n \choose 1} + {3n \choose 2} + {3n \choose 3} + {3n \choose 4}$$

$$+ {3n \choose 5} + {3n \choose 6} + \dots + {3n \choose 3n}$$

$$(4.4)$$

$$(1+\alpha)^{3n} = {3n \choose 0} + {3n \choose 1}\alpha + {3n \choose 2}\alpha^2 + {3n \choose 3} + {3n \choose 4}\alpha + {3n \choose 5}\alpha^2 + {3n \choose 6} + \dots + {3n \choose 3n}$$

$$(4.5)$$

$$(1+\alpha^2)^{3n} = {3n \choose 0} + {3n \choose 1}\alpha^2 + {3n \choose 2}\alpha + {3n \choose 3} + {3n \choose 4}\alpha^2 + {3n \choose 5}\alpha + {3n \choose 6} + \dots + {3n \choose 3n}$$

$$(4.6)$$

Adding Equation (4.4), Equation (4.5) and Equation (4.6), we observe that the terms with coefficients $\binom{3n}{k}$ where k is not a multiple of 3 sums to 0 as given by $1 + \alpha + \alpha^2 = 0$, and therefore we obtain

$$2^{3n} + (1+\alpha)^{3n} + (1+\alpha^2)^{3n} = 3\sum_{j=0}^{n} \binom{3n}{3j}$$

$$\frac{1}{3} \left[2^{3n} + (1+\alpha)^{3n} + (1+\alpha^2)^{3n} \right] = \sum_{j=0}^{n} \binom{3n}{3j}$$

$$\frac{1}{3} \left[2^{3n} + (-\alpha^2)^{3n} + (-\alpha)^{3n} \right] = \sum_{j=0}^{n} \binom{3n}{3j} \quad since \ 1 + \alpha + \alpha^2 = 0$$

$$\frac{1}{3} \left[2^{3n} + (-1)^n + (-1)^n \right] = \sum_{j=0}^{n} \binom{3n}{3j} \quad since \ \alpha^3 = 1$$

$$\frac{2^{3n} + 2(-1)^n}{3} = \sum_{j=0}^{n} \binom{3n}{3j}$$

as required.

Figure 4.3: (Right) Depicted question, (Left) Translated Angles

Exercise 4.1.4

Note that we can define $\operatorname{Arg} z$ in any interval of length 2π , i.e. it is not necessary that $\operatorname{Arg} z \in [0, 2\pi)$.

For example, if we restrict Arg $z \in [-\pi, \pi]$, then we can write

$$\operatorname{Arg}\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = -\frac{3\pi}{4}$$

Let z be on the unit circle and Arg $z \in [-\pi, \pi]$. Suppose that $z \notin \mathbb{R}$, i.e. $z \neq 1, z \neq -1$. Show that

$$\operatorname{Arg}\left(\frac{z-1}{z+1}\right) = \begin{cases} \frac{\pi}{2} & \operatorname{Im} z > 0\\ -\frac{\pi}{2} & \operatorname{Im} z < 0 \end{cases}$$

Proof

Note that $\forall w_1, w_2 \in \mathbb{C}$, where $\operatorname{Arg} w_1 = \tau_1, \operatorname{Arg} w_2 = \tau_2$ for τ_1, τ_2 in the same 2π -interval,

$$\operatorname{Arg} \frac{w_1}{w_2} = \frac{e^{i\tau_1}}{e^{i\tau_2}} \equiv e^{i(\tau_1 - \tau_2)} = \operatorname{Arg} w_1 - \operatorname{Arg} w_2$$

in modulo 2π .

Suppose Im z > 0. Let $\theta_1 = \operatorname{Arg}(z-1)$ and $\theta_2 = \operatorname{Arg}(z+1)$. Consider Figure 4.3. We observe that

$$\frac{\pi}{2} = \theta_2 + \pi - \theta_1$$

$$\theta_1 - \theta_2 = \frac{\pi}{2}$$

as desired.

Similarly, we can obtain $\theta_1 - \theta_2 = -\frac{\pi}{2}$ for when $\operatorname{Im} z < 0$. This completes the proof.

Figure 4.4: (Right) Domain of f(A), (Left) Image of f(A)

Exercise 4.1.5

Let $f(z) = e^z$ for $z \in \mathbb{C}$. Let $A = \{z = x + iy \in \mathbb{C} : x \le 1, y \in [0, \pi]\}$. Describe the image of f(A).

Solution

Firstly, note that

$$e^{z} = e^{x+iy}$$
$$e^{x} \in (0, e]$$
$$y \in [0, \pi]$$

It is clear that the image will be in on the positive side of the imaginary-axis. Also, since $e^x \in (0,e]$, we get the right graph represented in Figure 4.4. The image of f(A) is described in the left image of Figure 4.4.