$$1 P \supset R$$

مقدمه

$$P \supset R$$

$$\rightarrow$$
 2 \sim (\sim P \vee R)

 $\therefore \sim P \vee R$

→3 *P*

4 *R*

() () () () ()

 $5 \sim P \vee R$

 $(\varphi)(\vee_{\varphi})$

 $6 \sim (\sim P \vee R) \wedge (\sim P \vee R) \quad (\ \) \quad$

7 *∼P*

 $(9,7)(\sim_{\rho})$

8 ~ P \ V R

 $(\lor)(\lor)$

 $9 \sim (\sim P \vee R) \wedge (\sim P \vee R) (\uparrow) (\land)(\land \land)$

 $10 \sim \sim (\sim P \vee R)$

 $(9,7)(\sim_{\rho})$

11 ~*P* ∨ *R*

 $() \cdot)(\sim z)$

 $\sim P \vee R$ آيا $\therefore P \supset R$

$$\begin{array}{cccc}
1 P \wedge (R \vee S) & & & & \\
2 R \vee S & & & & \\
3 P & & & & \\
(1)(\wedge z) & & & \\
4 R & & & & \\
5 P \wedge R & & & \\
6 (P \wedge R) \vee (P \wedge S) & (^{\triangle})(\vee_{P}) & & \\
6 (P \wedge R) \vee (P \wedge S) & (^{\triangle})(\vee_{P}) & & \\
7 S & & & \\
8 P \wedge S & & (^{\mathbf{T}})(^{\mathbf{Y}})(\wedge_{P}) & \\
9 (P \wedge R) \vee (P \wedge S) & (^{\wedge})(\vee_{P}) & \\
10 (P \wedge R) \vee (P \wedge S) & (^{9}, \vee) (^{9}, ^{9}) (^{\mathbf{T}}) & (^{\$$

 $P \wedge (R \vee S)$ $\therefore (P \wedge R) \vee (P \wedge S)$

جلسه سوم: معنی شناسی

Semantic of

Propositional Logic

تمایز بین «نحو» و «معناشناسی»

Logic

2- Natural Deduction System

$$v': \{A_0, A_1, A_2...\} \to \{T, F\}$$

چند طریق مقدار دهی v' می تواند وجود داشته باشد؟

$$2^{|N|} = 2^{\aleph_0}$$

 $v': \{A_0, A_1, A_2...\} \rightarrow \{T, F\}$

معناشناسي

برای $\theta \in wff$ هر که به فورم زیر باشد:

$$v: \begin{cases} A_i & v'(A_i) \\ (\varphi \supset \psi) & F \text{ if } f \text{ } v(\varphi) = T \text{ and } v(\psi) = F \\ \sim \varphi & x, x \in (\{T, F\} - \{v(\varphi)\}) \end{cases}$$

v: $wff \rightarrow \{T, F\}$

جدول صدق عملگرها:

φ	ψ	$(\varphi \supset \psi)$		φ	$\sim \varphi$
F	F	T		F	T
F	Τ	T	•	T	F
Τ	F	F			
Т	Т	T			

یادآوری:

$$(\varphi \lor \psi) =_{df} (\sim \varphi \supset \psi)$$

$$(\varphi \land \psi) =_{df} \sim (\varphi \supset \sim \psi)$$

$$(\varphi \equiv \psi) =_{df} \sim ((\varphi \supset \sim \psi) \supset \sim (\varphi \supset \sim \psi))$$

جدول صدق عملگر ٧ طبق تعاریف قبل:

$$\begin{array}{c|cccc} \varphi & \psi & \sim \varphi & (\sim \varphi \supset \psi) \\ \hline F & F & T & F \\ F & T & T & T \\ T & F & F & T \\ T & T & F & T \\ \end{array}$$

φ	ψ	$\sim \varphi$	$(\varphi \lor \psi)$	$(\varphi \wedge \psi)$	$(\varphi \equiv \psi)$
F	F	Т	F	F	T
F	Т	Т	T	F	F
Т	F	F	T	F	F
Τ	Т	F	Т	Τ	Т

چند تعریف:

اگر Σ زیرمجموعه ای از Wff و v یک تابع مقدار دهی باشد، آنگاه اگر به ازای هر v زیرمجموعه ای از v و $v(\theta)=T$ می گوییم : $\theta\in wff$

تابع v مجموعه Σ صدق پذیر کرده.

تابع v مجموعه Σ را درست می بیند.

تابع ν مدلی برای Σ است.

و می نویسیم:

$$\models_{\mathcal{V}} \Sigma$$

 $v(\varphi)=T$ انگاه Σ اگر به ازای هر v ممکنی داشته باشیم که $v(\varphi)=1$ انگاه $v(\varphi)=1$ می گوییم $v(\varphi)=1$ نتیجه معنایی $v(\varphi)=1$ است» و می نویسیم:

$$\Sigma \models \varphi$$

 $ot= \varphi$ تهی باشد آنگاه می گوییم ϕ اینهمانگویی یا توتولوژی است. و می نویسیم: Σ

$P \supset R , \sim R \} \models \sim P$ آيا

P	R	~ <i>R</i>	$(P \supset R)$	~P
F	F	Т	T	Т
F	Τ	F	Т	Т
Т	F	Т	F	F
Т	Т	F	Т	F

هر گاه دو مقدمه صادق است نتیجه هم صادق است

$$P \supset P$$
 آيا

P	$(P \supset P)$
F	T
Т	Т

$\P \models S \lor (P \supset R)$ آيا

$$S \lor (P \supset R)$$

$$F \qquad F$$

$$F$$

$$F$$

برای نشان دادن عدم اعتبار نیاز نیست تمام سطر های جدول را حساب کنیم، کافیست فقط یک ارزشدهی کاذب بیابیم.

$P \supset R , \sim R \} \models \sim P$ آيا

P	R	~ <i>R</i>	$(P \supset R)$	~P
F	F	Т	Т	Т
F	Т	F	Т	Т
Т	F	Т	F	F
Т	Т	F	Т	F

هر گاه دو مقدمه صادق است نتیجه هم صادق است