PROPOSED MARKING GUIDE UTEC P425/2

APPLIED MATHEMATICS 2023

NO	SOLUTION	Mks	Comments
1	(a) From $P(A' \cup B) = 1 - P(A \cap B')$		
	$\frac{1}{2} = 1 - \frac{5}{8} P(B')$		
	$\frac{5}{8} P(B') = \frac{1}{2} \qquad \therefore P(B') = \frac{4}{5}$		
	$\Rightarrow P(A \cup B') = 1 - P(A' \cap B)$		
	$=1-\left(\frac{3}{8}\times\frac{1}{5}\right)$		
	$=\frac{37}{40}$		
	(b) $P(A' \cup B') = P(A \cap B)^1$		
	$= 1 - P(A \cap B)$		
	$=1-\left(\frac{5}{8}\times\frac{1}{5}\right)$		
	$=\frac{7}{8}$		
		05	
2	i) $ \begin{array}{c cccc} 0.5 & 0.8 & 1.2 \\ \hline A & -0.24 & 0.18 \end{array} $ $ \frac{A+0.24}{0.5-0.8} = \frac{-0.24-0.18}{0.8-1.2} $ $ A = -0.555$		
	ii)		
	$ \begin{array}{c cccc} 0.8 & B & 1.2 \\ -0.24 & -0.12 & 0.18 \\ \end{array} $		
	$\frac{B-0.8}{-0.12+0.24} = \frac{1.2-0.8}{0.18+0.24}$		
	B = 0.9143		
		05	

3	(a) $G(\bar{x}, \bar{y}) = G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$		
	$=G\left(\frac{0+9+6}{3},\frac{0+0+6}{3}\right)$		
	=G(5,2)		
	(b)		
	$ \begin{array}{c} B \\ G(\bar{x}, \bar{y}) \\ \bar{y} \\ \tan \theta = \frac{2}{5} \\ \theta = \tan^{-1}\left(\frac{2}{5}\right) \\ \theta = 21.80^{\circ} \end{array} $		
		05	
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$ ho=1-rac{6\sum d^2}{n(n^2-1)}$ Very high positive correlation $ ho=1-rac{6 imes 10}{7(7^2-1)}$ Or Significant at 5% $ ho=0.8214$ Or Not significant at 1%		
5	$V_{\text{alogity at }t} = 1_{\text{c}}$	05	
3	Velocity at $t = 1s$; $v_{(t=1)} = 12i + (8 + 23)j = 12i + 31j \text{ ms}^{-1}$		

	Speed at $t = 1s$;		
	$v = \sqrt{12^2 + 31^2} = \sqrt{1105} ms^{-1}$		
	Velocity at $t = 3$ s		
	$\mathbf{v}_{(t=3)} = 12(3)^2 \mathbf{i} + (8 \times 3 + 23)\mathbf{j} = 108 \mathbf{i} + 47 \mathbf{j} \text{ms}^{-1}$		
	Speed at $t = 3s$;		
	$v = \sqrt{108^2 + 47^2} = \sqrt{13873} ms^{-1}$		
	⇒ Average speed = $\frac{\sqrt{1105} + \sqrt{13873}}{2}$ = 75.5126 ms^{-1}		
		05	
6	$e_x = 0.005, e_y = 0.0005$		
	$Max value = (xy)_{max}$		
	$= (1.25 + 0.005) \times (1.600 + 0.0005)$		
	= 2.0086		
	$Min value = (xy)_{min}$		
	$= (1.25 - 0.005) \times (1.600 - 0.0005)$		
	= 1.9914		
	Interval = $1.9914 \le xy \le 2.0086$		
	Or = [1.9914, 2.0086]		
	Maximum error = $\frac{1}{2}$ (2.0086 - 1.9914)		
	= 0.0086		
		05	
7	P(H) = 3 P(T)		
	P(H) + P(T) = 1		
	3P(T) + P(T) = 1		
	$4P(T) = 1$ $\therefore P(T) = \frac{1}{2} = 0.25, P(H) = 0.75$		
	Let $X = Number of heads that occurs$		
	$X \sim B(15, 0.75)$		
	$P(X \ge 7) = P(X' \le 8)$		
	$=1-P(X'\geq 9)$		

	=	1 - 0.00	42						
	= 0.9958								
	0.5500						05		
8	From $v = u$	+at						03	
	0 = 12 + 56								
	$0 = 12 + 5a$ $a = -2.4 \text{ ms}^{-2}$								
	$s = s_{(t=5)} -$,					
	$s = (12 \times 5)$	$5-\frac{1}{2}\times 2$.	4×5^2	$-(12 \times$	$4-\frac{1}{2}\times$	2.4×4	4^2		
	s = 30 - 28	3.8							
	s = 1.2 m								
								05	
9								0.5	
	<i>c</i> . <i>b</i>	f	х	fx	С	f.d	c.f		
	0-10	8	5	40	10	0.8	8		
	10-15 $15-25$	10 25	12.5 20	125 500	5 10	$\begin{array}{ c c } 2\\2.5\end{array}$	18 43		
	25 - 40	15	32.5	487.5	15	1	58		
	$\begin{vmatrix} 40 - 50 \\ 50 - 60 \end{vmatrix}$	4 2	45 55	180 110	10 10	0.4 0.2	62 64		
	$\frac{30-60}{\Sigma}$	64	33	1442.5	10	0.2	04		
		_							
	(a) (i) mean	$=\frac{\sum fx}{\sum f}$							
		$=\frac{1442.5}{64}$							
	= 22.5391								
	(ii) mode = $l_1 + \left(\frac{d_1}{d_1 + d_2}\right) \times c$								
	$= 15 + \left(\frac{0.5}{0.5 + 1.5}\right) \times 25$								
		= 21.2	5						
	(b)								

	$\int_0^{\pi/2} (2x + \cos x) dx \approx \frac{1}{2} \times \frac{\pi}{12} [4.14159 + 2(11.15185)]$		
	≈ 3.461680366		
	$\approx 3.4617 \text{ (4dps)}$		
	(b) Exact = $[x^2 + \sin x]_0^{\frac{\pi}{2}}$		
	$= \left(\frac{\pi^2}{4} + \sin\left(\frac{\pi}{2}\right)\right) - 0$		
	= 3.4674011		
	$\approx 3.4674 (4\text{dps})$		
	% age error = $\frac{ 3.4674 - 3.4617 }{3.4674} \times 100$		
	= 16.4388 % or 16.44 %		
	It can be minimized by increasing the number of ordinates		
		12	
11	(a) From $v^2 = \omega^2 (a^2 - x^2)$		
	When $x = 3m, v = 8 ms^{-1}$		
	$64 = \omega^2(a^2 - 9)$ (i)		
	When $x = 4 m, v = 6 ms^{-1}$		
	$36 = \omega^2(a^2 - 16)$ (ii)		
	$(i) \div (ii);$		
	$\frac{64}{36} = \frac{a^2 - 9}{a^2 - 16}$		
	$16(a^2 - 16) = 9(a^2 - 9)$		
	$16a^2 - 256 = 9a^2 - 81$		
	$7a^2 = 175$		
	$a^2 = 25 \qquad \qquad \therefore a = 5 m$		
	From (i); $64 = \omega^2 (25 - 9)$		
	$\omega^2 = 4$ $\therefore \omega = 2 \text{ rad} s^{-1}$		
	From $T = \frac{2\pi}{\omega}$		
	$T = \frac{2\pi}{2}$		
	$T = \pi = 3.1416 \text{ s}$		

	(b)		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	From $x = a \sin \omega t$		
	Time at point A from centre, O		
	$3 = 5\sin(2t_1)$		
	$t_1 = \frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$		
	Time at point B from centre, O		
	$4 = 5\sin(2t_2)$		
	$t_2 = \frac{1}{2}\sin^{-1}\left(\frac{4}{5}\right)$		
	Time from A to B,		
	$t = t_2 - t_1$		
	$t = \frac{1}{2} \left[\sin^{-1} \left(\frac{4}{5} \right) - \sin^{-1} \left(\frac{3}{5} \right) \right]$		
	t = 8.1301 s		
		12	
12	(a) $F(2)$; $3a = a + 2b$		
	2a = 2b		
	a = b		
	F(3) = 1;		
	a + 3b = 1		
	b + 3b = 1		
	$4b = 1 \qquad \qquad \therefore b = \frac{1}{4}, a = \frac{1}{4}$		

(b)
$$P(X < 2.5/X < 1.5) = \frac{P(X < 2.5 \cap X > 1.5)}{P(X > 1.5)}$$

$$= \frac{P(1.5 < X < 2.5)}{P(X > 1.5)}$$

$$= \frac{F(2.5) - F(1.5)}{1 - F(1.5)}$$

$$= \frac{\left(\frac{1}{4} + \frac{1}{4}(2.5)\right) - \left(\frac{1}{4}(1.5^2 - 1)\right)}{1 - \frac{1}{4}(1.5^2 - 1)}$$

$$= \left(\frac{7}{8} - \frac{5}{16}\right) \div \left(1 - \frac{5}{16}\right)$$

$$= \frac{9}{16} \times \frac{16}{11}$$

$$= \frac{9}{11}$$

(c) For
$$1 \le x \le 2$$
, $f(x) = \frac{d}{dx} \left[\frac{1}{4} (x^2 - 2) \right] = \frac{x}{2}$
For $2 \le x \le 3$, $f(x) = \frac{d}{dx} \left[\frac{1}{4} + \frac{1}{4} x \right] = \frac{1}{4}$
For $x \ge 1$, $f(x) = \frac{d}{dx} (1) = 0$

$$f(x) = \begin{cases} \frac{x}{2}, 1 \le x \le 2 \\ \frac{1}{4}, 2 \le x \le 3 \\ 0, elsewhere \end{cases}$$

$$E(x) = \int_{1}^{2} \frac{1}{4} x^2 dx + \int_{2}^{3} \frac{1}{4} x dx$$

$$E(x) = \left[\frac{x^3}{12} \right]_{1}^{2} + \left[\frac{x^2}{8} \right]_{2}^{3}$$

$$E(x) = \frac{1}{12} (8 - 1) + \frac{1}{8} (9 - 4)$$

	$E(x) = \frac{29}{24}$		
	$L(x) = \frac{1}{24}$		
12	(a) I at 21—langth of the ladder at — distance the man	12	
13	(a) Let $2l$ =length of the ladder, x = distance the man		
	climbs before the ladder slides.		
	Let $\theta = \tan^{-1}\frac{3}{4}$; $\tan \theta = \frac{3}{4}$		
	$ \begin{array}{c} \frac{1}{3}R_B \\ R_B \\ 4\rho g \\ 10g \\ \theta \\ A \end{array} $		
	$(\rightarrow); R_B = \frac{1}{2}R_A(i)$		
	$(\uparrow); R_A + \frac{1}{3}R_B = 40g + 10g$		
	$R_A + \frac{1}{3}R_B = 50g$		
	$2R_B + \frac{1}{3}R_B = 50g$		
	$\frac{7}{3}R_B = 50g$		
	$R_B = \frac{3 \times 50 \times 9.8}{7} = 210$ N		
	From (i);		
	$R_A = 2 \times 210 = 420$ N		
	Taking moments about point A;		
	$40g \times x \cos \theta + 10g \times l \cos \theta = R_B \times 2l \sin \theta + \frac{1}{3}R_B \times 2l \cos \theta$		
	Dividing through by $\cos \theta$;		

$$40gx + 10gl = 2lR_B \tan \theta + \frac{2}{3}lR_B$$

$$40gx = \frac{2}{3} \times l \times 210 + 2 \times l \times 210 \times \frac{3}{4} - 10 \times 9.8 \times l$$

$$40gx = 140l + 315l - 98l$$

$$40gx = 357l$$

$$x = \frac{357}{392}l = \frac{51}{56}l \text{ m or } = 0.9107l \text{ m from A}$$

(b) Let P be the minimum horizontal force

(1);
$$\frac{1}{3}R_B + R_A = 50g$$

 $R_B = 150g - 3R_A$
 $R_B = 150 \times 9.8 - 3R_A$
 $R_B = 1470 - 3R_A$(i)
(\rightarrow); $R_B = P + \frac{1}{2}R_A$(ii)
(i) = (ii);

$$1470 - 3R_A = P + \frac{1}{2}R_A$$

$$\frac{7}{2}R_A = 1470 - P$$

$$R_A = 420 - \frac{2}{7}P$$

Taking moments about point B;

$$10g \times l\cos\theta + \frac{1}{2}R_A \times 2l\sin\theta + P \times 2l\sin\theta = R_A \times 2l\cos\theta$$

_			
	$10 \times 9.8 + R_A \tan \theta + 2P \tan \theta = 2R_A$		
	$98 + \frac{3}{4}R_A + 2P \times \frac{3}{4} = 2R_A$		
	$98 + \frac{3}{2}P = \frac{5}{4}R_A$		
	$392 + 6P = 5R_A$		
	But $R_A = 420 - \frac{2}{7}P$		
	$\Rightarrow 392 + 6P = 5\left(420 - \frac{2}{7}P\right)$		
	$392 + 6P = 2100 - \frac{10}{7}P$		
	$\frac{52}{7}P = 1708 \qquad \therefore P = \frac{2989}{13}N \text{ or } 229.9231N$		
		12	
14	(a) Let $X =$ weights of the goats sold		
	$\mu = 16 \text{ kg}, \delta = ?$		
	$P(X > 20) = \frac{8}{12} = 0.6667$		
	$P(z > \frac{20-16}{\delta}) = 0.6667$		
	Let $\frac{20-16}{\delta} = z_0$		
	$P(z > z_0) = 0.6667$		
	$ \begin{array}{c} 0.1667 \\ \hline -z_o \end{array} $		
	$P(0 < z < z_0) = 0.1667$		
	$z_0 = -0.431$		
	$\frac{20-16}{\delta} = -0.431$		
	$-0.431\delta = 4 \qquad \qquad \therefore \delta = -9.28074 \approx -9$		
	Helo members check on that number in my opinion I think		
	there is a mistake somewhere		
		12	

15 (a) From
$$\theta = \tan^{-1}\frac{4}{3}$$
, $\tan \theta = \frac{4}{3}$, $\sin \theta = \frac{4}{5}$, $\cos \theta = \frac{3}{5}$

For minimum:

This is when the particle is just at the point of moving down the plane

At equilibrium;

$$T = mg$$
(i)

Along the plane;

$$T + o.5R = 10g \sin \theta$$

But
$$R = 10g \cos \theta$$

$$mg + 0.5 \times 10g \cos \theta = 10g \sin \theta$$

$$m = 10 \times \frac{4}{5} - 5 \times \frac{3}{5}$$

$$m = 8 - 3 = 5 \text{ kg}$$

For maximum;

This is when the particle is just at the point of moving up the plane

At equilibrium;

$$T = mg$$

Along the plane;

$$T = 0.5R + 10g \sin \theta$$

But
$$R = 10g \cos \theta$$

$$mg = 0.5 \times 10g \times \cos\theta + 10g \times \sin\theta$$

$$m = 5 \times \frac{3}{5} + 10 \times \frac{4}{5}$$

$$m = 3 + 8 = 11 \text{ kg}$$

(b) When the mass of B is 5kg

For 5 kg mass;

$$T - 5g = 5a$$

$$T = 5a + 5g$$
(i)

For 20 kg mass;

$$20g\sin\theta - 0.5R - T = 20a$$

But
$$R = 20g \cos \theta$$

$$20 \times 9.8 \times \frac{4}{5} - 0.5 \times 20 \times 9.8 \times \frac{3}{5} - 5a - 5 \times 9.8 = 20a$$

$$25a = 49$$

$$a = 1.96 \, ms^{-2}$$

When he mass of B is 11 kg;

For 11 kg mass;

	T - 11g = 11a		
	T = 11a + 11g		
	For 20 kg mass;		
	$20g\sin\theta - 0.5R - T = 20a$		
	But $R = 20g \cos \theta$		
	$20 \times 9.8 \times \frac{4}{5} - 0.5 \times 20 \times 9.8 \times \frac{3}{5} - 11a - 11 \times 9.8 = 20a$		
	$31a = -9.8; a = -\frac{49}{155} ms^{-2}$		
	$\therefore a = \frac{49}{155} \ ms^{-2} \text{ or } 0.3161 \ ms^{-2}$		
		12	
16	(a) Let $f(x) = x \sin x - 1$		
	$f(1) = 1\sin(1) - 1 = -0.15853$		
	$f(1.5) = 1.5\sin(1.5) - 1 = 0.49624$		
	∴ Since $f(1) \cdot f(1.5) < 0$, $1 < \text{root} < 1.5$		
	$ \begin{array}{c cccc} & 1 & x_0 & 1.5 \\ -0.15853 & 0 & 0.49624 \\ \end{array} $		
	$\frac{x_0 - 1}{0 + 0.15853} = \frac{1.5 - 1}{0.49624 + 0.15853}$		
	$x_0 = 1.121057776$		
	$x_0 \approx 1.12106$		
	(b) $f'(x) = x \cos x + \sin x$		
	$x_{n+1} = x_n - \left(\frac{x_n \sin x_{n-1}}{x_n \cos x_n + \sin x_n}\right)$		
	Taking $x_0 = 1.12106$		
	$x_1 = 1.12106 - \left(\frac{1.12106\sin(1.12106) - 1}{1.12106\cos(1.12106) + \sin(1.12106)}\right)$		
	= 1.11415		
	$x_2 = 1.11415 - \left[\frac{1.11415 \sin(1.11415) - 1}{1.11415 \cos(1.11415) + \sin(1.11415)} \right]$		
	= 1.11416		
	Since $ x_2 - x_1 = 0.00001 < 0.00005$, then the root is		
	1.1142		
		12	

NB:

- 1. The solutions in this Guide were according to my opinion.
- 2. I accept to own any mistakes detected
- 3. Try out the numbers and we compare the solutions thanx.