

AV-1451 processing methods

Susan Landau, Andy Horng, & William Jagust
Helen Wills Neuroscience Institute, UC Berkeley and Lawrence Berkeley National Laboratory

Summary

ADNI AV-1451 regional summary data are updated regularly and uploaded to LONI by our group. We use a native-space MRI scan for each subject that is segmented and parcellated with **Freesurfer (version 5.3.0)** to define a variety of cortical and subcortical regions of interest in each subject's native space. We then coregister each AV-1451 scan to its corresponding MRI and calculate the mean AV-1451 uptake within each Freesurfer-defined region.

Method

Acquisition of AV-1451 and MRI image data from LONI

We download AV-1451 data from LONI in the most fully pre-processed format (series description in LONI Advanced Search: "AV1451 Coreg, Avg, Std Img and Vox Siz, Uniform Resolution"). Each subject's pre-processed AV-1451 image is coregistered using SPM5 to the subject's MRI image (series description: ADNI 1 scans *N3;* and ADNI GO/2 scans *N3*) that was closest in time to the AV-1451 scan. Whenever possible we use MRI and PET images acquired within 3 months of each other, but when a concurrent MRI is not available we use an MRI scan acquired at another visit.

Calculation of AV-1451 SUVR

There is currently no consensus on the best way to quantify tau PET image data. The UC Berkeley AV-1451 dataset includes a broad set of AV-1451 means within Freesurfer-defined regions and their corresponding volumes (in mm³). This set includes cortical, subcortical, WM regions of interest and candidate reference regions such as cerebellar grey matter.

In the same dataset we have provided several "Braak stage" region composite values (Braak and Braak, 1991) which are calculated using volume-weighted means of groups of FreeSurfer-defined regions, specified in the "Braak ROIs" section below. This Braak staging strategy has been validated recently [1].

Note that the regional AV-1451 data in the UC Berkeley dataset have been only roughly intensity normalized during pre-processing using an approximation of cerebellar cortex. *To calculate intensity normalized SUVRs, we recommend dividing the Braak stage means or other AV1451 regions of interest (with or without an adjustment for regional volume) by the Freesurfer-defined cerebellar cortex mean or other reference region provided in the UC Berkeley dataset.*

Braak ROIs and corresponding Freesurfer region number from look up table

Braak 1

1006 L entorhinal

2006 R_entorhinal

Braak 2

17 L_hippocampus53 R_hippocampus

Braak 3

1016 L_parahippocampal

1007 L_fusiform

1013 L_lingual

18 L_amygdala

2016 R_parahippocampal

2007 R_fusiform 2013 R_lingual

54 R_amygdala

Braak 4

1015 L_middletemporal

10 L_thalamus

1002 L_caudantcing

1026 L_rostantcing

1023 L_postcing

1010 L_isthmuscing

1035 L_insula

1009 L_inferiortemporal

1033 L_temppole

2015 R_middletemporal

49 R_thalamus

2002 R_caudantcing

2026 R_rostantcing

2023 R_postcing

2010 R_isthmuscing

2035 R insula

2009 R_inferiortemporal

2033 R_temppole

Braak 5

1028 L_superior_frontal

1012 L_lateral_orbitofrontal

1014 L_medial_orbitofrontal

1032 L_frontal_pole

1003 L_caudal_middle_frontal

1027 L rostral middle frontal

1018 L_pars_opercularis

1019 L_pars_orbitalis

1020 L_pars_triangularis

11 L caudate

12 L_putamen

1011 L_lateraloccipital

- 1031 L_parietalsupramarginal
- 1008 L parietalinferior
- 1030 L_superiortemporal
- 13 L pallidum
- 1029 L_parietalsuperior
- 1025 L_precuneus
- 1001 L_bankSuperiorTemporalSulcus
- 26 L_accumbens
- 1034 L_tranvtemp
- 2028 R superior frontal
- 2012 R_lateral_orbitofrontal
- 2014 R_medial_orbitofrontal
- 2032 R_frontal_pole
- 2003 R_caudal_middle_frontal
- 2027 R_rostral_middle_frontal
- 2018 R_pars_opercularis
- 2019 R_pars_orbitalis
- 2020 R_pars_triangularis
- 50 R caudate
- 51 R_putamen
- 2011 R_lateraloccipital
- 2031 R_parietalsupramarginal
- 2008 R_parietalinferior
- 2030 R superiortemporal
- 52 R_pallidum
- 2029 R_parietalsuperior
- 2025 R_precuneus
- 2001 R_bankSuperiorTemporalSulcus
- 58 R_accumbens
- 2034 R_tranvtemp

Braak 6

- 1021 L_pericalcarine
- 1022 L postcentral
- 1005 L_cuneus
- 1024 L_precentral
- 1017 L_paracentral
- 2021 R_pericalcarine
- 2022 R_postcentral
- 2005 R_cuneus
- 2024 R_precentral
- 2017 R_paracentral

Partial Volume Correction for AV-1451

We have also provided the AV-1451 data corrected for partial volume effects using the Geometric Transfer Matrix approach [2]. A total of 81 non-overlapping regions were used as input for this method: 8 aggregated Freesurfer-defined regions listed in the "Aggregate PVC Input ROIs" section below, the remaining 70 individual Freesurfer-defined regions after

accounting for the aggregated ROIs, and 3 SPM-defined non-brain ROIs. These SPM12-defined regions were included with the goal of reducing the influence of tracer uptake in CSF, soft tissue, and bone. They were defined by the c3X.img (CSF), c4X.img (Soft Tissue) and c5X.img (Bone) tissue probability maps (created by SPM12 Segment) of the MRI image closest in time to the AV-1451 scan. Voxels are only included in those ROIs if the corresponding tissue probability is greater than 0.2 and no FreeSurfer ROI labels are assigned.

To calculate intensity normalized SUVRs, we recommend dividing the AV1451 PVC ROI values by a PVC reference region such a cerebellar grey matter to ensure standardized units.

Aggregate PVC Input ROIs and corresponding Freesurfer region number from look up table

Right orbitofrontal

2012 ctx-rh-lateralorbitofrontal2014 ctx-rh-medialorbitofrontal

2032 ctx-rh-frontalpole

Right pars regions

2018 ctx-rh-parsopercularis

2019 ctx-rh-parsorbitalis

2020 ctx-rh-parstriangularis

Right middle frontal

2003 ctx-rh-caudalmiddlefrontal

2027 ctx-rh-rostralmiddlefrontal

Left orbitofrontal

1012 ctx-lh-lateralorbitofrontal

1014 ctx-lh-medialorbitofrontal

1032 ctx-lh-frontalpole

Left pars regions

1018 ctx-lh-parsopercularis

1019 ctx-lh-parsorbitalis

1020 ctx-lh-parstriangularis

Left middle frontal

1003 ctx-lh-caudalmiddlefrontal

1027 ctx-lh-rostralmiddlefrontal

Hemispheric White Matter

2 Left-Cerebral-White-Matter

41 Right-Cerebral-White-Matter

251 CC Posterior

252 CC Mid Posterior

253 CC Central

254 CC Mid Anterior

Rev March 2, 2016

255 CC Anterior

Other

- 5 Left-Inf-Lat-Vent
- 14 3rd-Ventricle
- 15 4th-Ventricle
- 24 CSF
- 28 Left-VentralDC
- 30 Left-vessel
- 44 Right-Inf-Lat-Vent
- 60 Right-VentralDC
- 62 Right-vessel
- 72 5th-Ventricle
- 77 WM-hypointensities
- 80 non-WM-hypointensities
- 85 Optic-Chiasm
- 1000 ctx-lh-unknown
- 1004 ctx-lh-corpuscallosum
- 2000 ctx-rh-unknown
- 2004 ctx-rh-corpuscallosum

References

- 1. Scholl, M., et al., *PET Imaging of Tau Deposition in the Aging Human Brain.* Neuron, 2016. **89**(5): p. 971-82.
- 2. Rousset, O.G., Y. Ma, and A.C. Evans, *Correction for partial volume effects in PET:* principle and validation. J Nucl Med, 1998. **39**(5): p. 904-11.

About the Authors

This document was prepared by Andy Horng and Susan Landau, PhD, Helen Wills Neuroscience Institute, UC Berkeley and Lawrence Berkeley National Laboratory. For more information please contact Susan at slandau@berkelev.edu.

Notice: This document is presented by the author(s) as a service to ADNI data users. However, users should be aware that no formal review process has vetted this document and that ADNI cannot guarantee the accuracy or utility of this document.