Chapter 15 (AIAMA) Probabilistic Reasoning Over Time

Sukarna Barua Assistant Professor, CSE, BUET

Temporal Probabilistic Models

- Static world (as we considered in Bayesian network):
 - Random variables have a fixed number of states/values.
 - Values of Random variables doesn't change over time
- Dynamic world (time is an important factor):
 - Random variables have a fixed number of states/values.
 - Values of Random variables change over time.

Temporal Probabilistic Models

- Dynamic world has a state at time
 - State is composed of a set of random variables
 - A snapshot of the state at time is a set of values of
- State is not observable
 - State is not directly observable.
 - A set of evidence variables are observable at time [evidences depends on state]
 - We may infer which state we are in from the evidence!

Temporal Probabilistic Models: Example

You want to know whether you have infection at time step.
You can measure fever, headache, stomachache at time step

- Values: Yes/No [*Unobservable by agent, hidden*]

Values: Yes/No [Observable by agent]

Temporal Probabilistic Models

In a temporal probabilistic model, agent have:

- Environment: Partially observable
- Belief state: What is the current state as agent maintains/believes?
- Transition model: How the environment might evolve in the next time step
- Sensor model: How the observable events happen at world state?
- Decision: How the agent take action?
 - Evidence Belief state Decision

Hidden Markov Models

- A temporal probabilistic model may be called a Hidden Markov Model (HMM) when the state is represented by a discrete random variable:
- A single state variables at time t
 - Unobservable by agent [hidden from the agent]
- Set of evidence variables
 - Observable by agent [known through percepts]

Hidden Markov Models

- What happens if world state has multiple random variables?
 - Multiple random variables may be mapped to a single random variable
 - Example: <Burglary, Earthquake> makes up agent state both are Boolean.
 - Construct a single variable $\langle BE \rangle$ with four values $\{0,1,2,3\}$ where
 - 0 means Burglary=T and Earthquake = T
 - 1 means Burglary=T and Earthquake = F
 - 2 means Burglary=F and Earthquake = T
 - 3 means Burglary=F and Earthquake = F

Hidden Markov Models: Example

A security guard inside a building needs to know whether it's raining outside. He can only see if someone coming in with/without an umbrella.

- Values: Yes/No [Unobservable by agent]

- Values: Yes/No [Observable by agent]

Transition Model

Specifies the probability distribution of the state at time, given the previous states:

- Assume the size of CPT when is large [exponentially large]
- Problematic as number of time steps increases
- Not practical as current state may depend only on few previous states

Markov Assumption for Transition Model

Assumption: Current state is independent of all states given the previous number of states

)

- Markov Process: Process satisfying Markov assumption.
 - Also known as Markov chains.
 - After Russian mathematician Andrei Markov

Order of Markov Process

- First Order Markov Process:
 - Current state is independent of all other states given only the previous state
 - Transition model is a conditional distribution

- For a second order Markov Process:
 - Transition model is a conditional distribution

First Order Markov Process

- Stationary process: transition model do not change over time steps
 - is same for all time steps t.

_

_

[is the probability of state transitioning from to]

Sensor/Emission Model

- Evidence values depend on current state as well as all previous states
 and evidence values
- Probability distribution of events :

- What is the probability that given all previous state and evidence values?
- What is the size of CPT when is large? [exponentially large]
- Not practical from computational perspective

Markov Assumption for Sensor Model

Assumption: Evidence at time is independent of all previous states and events given the state at time (current state).

[evidence depend only on current state]

- Evidence only depend on current state and is independent of all previous states and evidences
- [probability of emitting output from state]
- Also known as Observation/Emission Model

Example Markov Process

- For the umbrella example:
 - Transition model: , sensor model:

Complete/Full Joint Distribution

- We have
 - [transition model]
 - [sensor model]
- We also need
 - The prior probability distribution of states at time step
- Complete joint distribution can be computed as:

)

[Assume for notational convenience]

Complete/Full Joint Distribution

Complete joint distribution derivation:

Is First Order Markov Process Accurate?

Sometimes true

- For example, in a random walk along – axis, position at time step only depends on position at time step

Sometimes not

- For example, in our rain example, probability of raining at time step may depend on several previous rainy days

Is First Order Markov Process Accurate?

Sometimes not

- For example, in our rain example, probability of raining at time step only depend on whether it rained at time step

Solutions

- Increase the order of the Markov process:
- Incorporate more state variables: , etc.

• **Filtering query**: Compute probability distribution of current state given all observations to date.

_

- Compute probability of raining (and not raining also!) today, given all umbrella observations taken so far
- Note the use capital and small letters: Capitals specify random variable and small letters specify values of random values.
- Required for decision making at current state

Prediction query: Compute probability distribution of a future state given all observations to date.

- Compute probability of raining three days from now, given all umbrella observations taken so far
- Required for decision making about future action

• Smoothing query: Compute probability distribution of a past state given all observations to date.

- Compute probability of raining last Wednesday, given all umbrella observations taken so far
- Smoothing provides a better estimate than what was made before

• Most likely explanation query: Given a sequence of observation, what is the most likely state sequence that have generated the observation sequence?

- Umbrella was observed on first three days and absent on fourth, the most likely state sequence could be it rained first three days and did not rain on fourth.
- Speech recognition: What is the sequence of words given a sequence of sounds?

- Compute probability distribution of current state given observation sequence
- Agent maintains the probability distribution of current state at time step.
- As new evidence comes up, agent updates its estimation of current state probabilities

```
\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.
```

a is a normalizing constant to make probabilities sum up to

```
\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.
```

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.$$

- How to calculate
 - Marginalize over

$$\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t \mid \mathbf{e}_{1:t})$$

$$= \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

$$\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t \mid \mathbf{e}_{1:t})$$

$$= \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

-) comes from observation/sensor model [given]
- comes from the transition model [given]
- is the probability distribution of states at time step
 - This part is recurrence and can be computed recursively or iteratively [using dynamic programming approach]

$$\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t \mid \mathbf{e}_{1:t})$$

$$= \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

- Let, [is a vector/array of probabilities]
 - [i] [[i] is a single probability value]
- Hence,

) [assume an output value]

Filtering: Forward Algorithm

- is known as forward probabilities
- How to compute forward probabilities up to time step?
 - Start from and compute [base condition]
 - Compute going forward in time up to using the recurrence
 - The algorithm is known as forward algorithm.

Filtering: Forward Algorithm

- is known as forward probabilities
- How to compute compute [base condition]?

[assume is the prior probability of state]

Filtering: Example

- Compute)
- Day 1:
 - is the prior probability distribution of initial state [at time
 - If both states are equally likely from START,
 - can now be calculated as:

$$\mathbf{P}(R_1 \mid u_1) = \alpha \, \mathbf{P}(u_1 \mid R_1) \mathbf{P}(R_1) = \alpha \, \langle 0.9, 0.2 \rangle \langle 0.5, 0.5 \rangle$$
$$= \alpha \, \langle 0.45, 0.1 \rangle \approx \langle 0.818, 0.182 \rangle .$$

Filtering: Example

Day 2:

- Can be calculated as:

$$\mathbf{P}(R_2 \mid u_1) = \sum_{r_1} \mathbf{P}(R_2 \mid r_1) P(r_1 \mid u_1)$$
$$= \langle 0.7, 0.3 \rangle \times 0.818 + \langle 0.3, 0.7 \rangle \times 0.182 \approx \langle 0.627, 0.373 \rangle$$

$$\mathbf{P}(R_2 \mid u_1, u_2) = \alpha \, \mathbf{P}(u_2 \mid R_2) \mathbf{P}(R_2 \mid u_1) = \alpha \, \langle 0.9, 0.2 \rangle \langle 0.627, 0.373 \rangle$$
$$= \alpha \, \langle 0.565, 0.075 \rangle \approx \langle 0.883, 0.117 \rangle .$$

Filtering: Example

Probability of rain increases at day 2 from day 1 [why?]

Prediction

- Compute probability distribution of a future state:)
- Can be computed using filtering:
 - First compute [forward algorithm]
 - Then compute as:
 - Similarly, compute, ...,
- Recursive/dynamic programming algorithm:

$$\mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{e}_{1:t}) = \sum_{\mathbf{X}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{X}_{t+k}) P(\mathbf{X}_{t+k} | \mathbf{e}_{1:t}) .$$

Prediction: Don't Go Too Much Ahead

Recursive/dynamic programming algorithm:

$$\mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{e}_{1:t}) = \sum_{\mathbf{x}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{x}_{t+k}) P(\mathbf{x}_{t+k} | \mathbf{e}_{1:t}) .$$

- Predicting too much ahead may be useless
 - will become fixed (stationary distribution of the Markov Process) after some time steps
 - The time taken to reach the fixed point is known as Mixing Time.
- The more uncertainty in the transition model, the shorter will be the mixing time and the more future is obscured!

Likelihood of Evidence Sequence

- What is the likelihood of evidence sequence
- Compute as

can be calculated recursively or using dynamic programming:

[Markov assumption]

- can be computed recursively [using dynamic programming]
- This is similar to the forward algorithm [described earlier]