0. 기본 라이브러리

```
In [2]: # 기본 라이브러리 호출
        import warnings
        warnings.filterwarnings('ignore')
        warnings.warn("once")
        import pandas as pd
        import numpy as np
        import scipy as sp
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        from scipy import stats
        from scipy.stats import norm, skew
        # 선형모델을 추정하는 라이브러리
        import statsmodels.formula.api as smf
        import statsmodels.api as sm
        import statsmodels.stats.api as sms
        from patsy import dmatrices
        color = sns.color palette()
        pd.set option('display.float format','{:,.2f}'.format) # 소수점 2번째 자리까지 표
        pd.set option('display.max columns', None) # 모든 컬럼 표시
        pd.set_option('display.max_colwidth', None) # 컬럼내용 전체 표시
        #Graph에 한글을 표시하기 위한 코드
        import matplotlib
        from matplotlib import font manager, rc
        import platform
        # font name = font manager.FontProperties(fname="c:/Windows/Fonts/malgun.tt
        f").get name()
        font name = font manager.FontProperties(fname="malgun.ttf").get name()
        rc('font', family=font name)\
        matplotlib.rcParams['axes.unicode_minus'] = False
```

1. 연관규칙 (사용 데이터 : lotto)

Q1) 연관규칙분석을 수행하기 위해 lotto 데이터셋을 transaction 데이터로 변환하시오.

- 단, 본 분석에서 로또번호가 추첨된 순서는 고려하지 않고 분석을 수행하도록 한다.
- 변화된 데이터에서 가장 많이 등장한 상위 10개의 로또번호를 막대그래프로 출력하고 이에 대해 설명하시오.

```
In [24]: df = pd.read_csv('./data/lotto.csv')
    print(df.shape)
    df.head()

(859, 7)
```

Out[24]:

	time_id	num1	num2	num3	num4	num5	num6
0	859	8	22	35	38	39	41
1	858	9	13	32	38	39	43
2	857	6	10	16	28	34	38
3	856	10	24	40	41	43	44
4	855	8	15	17	19	43	44

1) melt를 사용하는 방법

```
In [4]: melt = pd.melt(df, id_vars = ['time_id']) # time_id 기준, 컬럼을 variable로하여 값을 분해함

In [25]: # value(실제 나온 숫자)를 기준으로 그루핑하여 variable을 count 내림차순으로 정렬 후 상위 10개만 뽑아냄 pivot = melt.groupby('value')[['variable']].count().sort_values(by = 'variable', ascending = False)[:10].reset_index()

In []: sns.barplot(x = 'value', y = 'variable', data = pivot, order = pivot['value']) my
```

2) mlxtend를 사용하는 방법

```
In [46]:
        from mlxtend.preprocessing import TransactionEncoder
         dataset = df[df.columns[1:]].values.tolist() # df의 num 컬럼들의 값을 List형태로 d
         ataset에 저장
         te = TransactionEncoder()
         te ary = te.fit(dataset).transform(dataset) # dataset을 np.array 형태로 변환 후
         fitting
         te_df = pd.DataFrame(te_ary, columns = te.columns_) # te_ary를 dataframe 형태로
         변화
         # top 10 시각화
         best10 = pd.DataFrame(columns = ['num', 'freq']) # 상위 10개 숫자를 저장하기 위한
         dataframe 생성
         best10['num'] = te df.sum(axis = 0).index # te df의 세로 합을 구한 후 해당 번호를 n
         um컬럼에 저장
         best10['freq'] = te df.sum(axis = 0).values # te df의 세로 합을 구한 후 합계를 fre
         a컬럼에 저장
         best10 = best10.sort_values(by = 'freq', ascending = False).head(10).reset_ind
         ex(drop = True) #freq를 기준으로 내림차순 정렬 후 상위 10개만 저장
         sns.barplot(data = best10, x = 'num', y = 'freq', order = best10['num'])
```

Out[46]: <AxesSubplot:xlabel='num', ylabel='freq'>

Q2) 변환한 데이터에 대해 apriori함수를 사용하여 다음 괄호 안의 조건을 반영하여 연관규칙을 생성하고, 이를 'rules_1'이라는 변수에 저장하여 결과를 해석하시오.

- (최소 지지도 : 0.002, 최소 신뢰도 : 0.8, 최소조합 항목 수 : 2개, 최대조합 항목 수 : 6개)
- 그리고 도출된 연관규칙들을 향상도를 기준으로 내림차순 정렬하여 상위 30개의 규칙을 확인하고, 이를 데이 터프레임으로 변환하여 csy파일로 출력하시오.

최소 지지도, 최대 조합 항목 설정

```
In [47]: # 파이썬 Apriori에서는 최소 신뢰도 및 조합항목 수 조절 불가 from mlxtend.frequent_patterns import association_rules, apriori frequent_itemsets = apriori(te_df, min_support = 0.002, # 최소 지지도 max_len = 6, use_colnames = True) # 컬럼명 사용
```

최소 조합 항목 설정

```
In [48]: frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: le n(x)) # itemsets 컬럼내 값의 길이 계산
```

```
In [49]: # 최소 조합항목수가 2 이상 & 최소 지지도가 0.002 이상 frequent_itemsets[(frequent_itemsets['length'] >= 2) & (frequent_itemsets['sup port'] >= 0.002)] # 지지도 : A,B가 동시에 일어난 횟수 / 전체 횟수
```

Out[49]:

	support	itemsets	length
45	0.02	(1, 2)	2
46	0.02	(1, 3)	2
47	0.01	(1, 4)	2
48	0.02	(1, 5)	2
49	0.01	(1, 6)	2
6358	0.00	(40, 43, 13, 14, 26)	5
6359	0.00	(14, 15, 18, 21, 26)	5
6360	0.00	(40, 14, 27, 30, 31)	5
6361	0.00	(34, 44, 15, 19, 21)	5
6362	0.00	(36, 43, 16, 26, 31)	5

6318 rows × 3 columns

규칙을 생성하며 최소 신뢰도 설정

결과 해석

```
In [51]: rule 1.shape
         ### 704개의 규칙이 생성되었음
Out[51]: (704, 9)
In [52]: # 규칙의 조합항목 개수 컬럼 생성
         rule_1['antecedents_length'] = rule_1['antecedents'].apply(lambda x: len(x))
         rule 1['consequents length'] = rule 1['consequents'].apply(lambda x: len(x))
         rule 1['total length'] = rule 1['antecedents length'] + rule 1['consequents le
         ngth']
         rule_1 = rule_1.sort_values(by = 'lift', ascending = False)
In [53]: | rule_1['antecedents_length'].value_counts()
         ### 좌측항이 3개 항목으로 조합된 규칙은 657건, 4개 항목으로 조합된 규칙은 47건임.
Out[53]: 3
             657
              47
        Name: antecedents_length, dtype: int64
In [54]:
        rule_1['consequents_length'].value_counts()
         ### 우측항이 1개 항목으로 조합된 규칙은 679건, 2개 항목으로 조합된 규칙은 25건임.
Out[54]: 1
             679
        2
              25
        Name: consequents_length, dtype: int64
In [55]: rule_1['total_length'].value_counts()
         ### 전체 규칙 중 632개의 규칙은 4개 항목의 조합으로 이루어져 있으며, 72개의 규칙은 5개의
         항목 조합으로 이루어져 있음
Out[55]: 4
             632
              72
        Name: total length, dtype: int64
```

```
In [56]: a = rule_1.describe(include = 'all')
a
```

Out[56]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leveraç
count	704	704	704.00	704.00	704.00	704.00	704.00	704.0
unique	654	70	nan	nan	nan	nan	nan	na
top	(26, 21, 14)	(43)	nan	nan	nan	nan	nan	na
freq	3	28	nan	nan	nan	nan	nan	na
mean	NaN	NaN	0.00	0.13	0.00	1.00	9.30	0.0
std	NaN	NaN	0.00	0.02	0.00	0.00	9.99	0.0
min	NaN	NaN	0.00	0.01	0.00	1.00	6.41	0.0
25%	NaN	NaN	0.00	0.13	0.00	1.00	7.04	0.0
50%	NaN	NaN	0.00	0.14	0.00	1.00	7.34	0.0
75%	NaN	NaN	0.00	0.14	0.00	1.00	7.74	0.0
max	NaN	NaN	0.00	0.16	0.00	1.00	78.09	0.0
4								•

In [58]: print(a.loc['min','lift']) ### 규칙들에 대한 향상도의 최소값은 6.41로 꽤 높게 나타났음 print(a.loc['mean','support']) ### 항목들의 교집합 확률을 의미하는 지지도의 평균은 0.0 02363으로 나타났다.

특정 항목에 대한 연관성규칙 결과 확인

^{6.41044776119403}

^{0.002363014604720083}

In [59]: rule_1[rule_1['consequents'] == frozenset([34])]

Out[59]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	ft leverage	
542	(17, 42, 45)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
693	(19, 44, 21, 15)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
50	(2, 4, 31)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
471	(25, 44, 14)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
486	(41, 19, 15)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
579	(24, 22, 31)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
8	(1, 5, 13)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
68	(2, 21, 15)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
72	(2, 28, 15)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
539	(32, 17, 33)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
561	(19, 44, 21)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
419	(12, 37, 36)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
641	(24, 31, 22, 7)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
203	(17, 5, 29)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
651	(10, 36, 44, 22)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
282	(24, 31, 7)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
192	(5, 29, 13)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
603	(42, 45, 23)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
281	(7, 22, 31)	(34)	0.00	0.16	0.00	1.00	6.41	0.00	
4									•

```
In [60]: rule_1[rule_1['consequents'] == frozenset([34])]['support'] * 100
Out[60]: 542
                0.23
          693
                0.23
          50
                0.35
                0.23
          471
          486
                0.23
          579
                0.23
                0.23
          8
                0.23
          68
          72
                0.23
          539
                0.35
          561
                0.23
          419
                0.23
          641
                0.23
          203
                0.23
          651
                0.23
          282
                0.23
          192
                0.23
          603
                0.23
          281
                0.23
         Name: support, dtype: float64
```

• 총 19개의 규칙이 도출되었으며 (1,5,13)번과 (34)번이 함께 추첨될 확률은 지지도(support) 확인 결과 0.23% 이다. 이 규칙의 향상도(lift)는 6.41로 (34)만 추첨되었을 때보다 (1,5,13)번이 뽑히고 (34)번이 뽑힐 확률이 약 6.41배 높다는 걸 의미한다.

연관분석 추가 코드

```
In [13]: # Association 을 위한 전처리
         import pandas as pd
         from mlxtend.frequent patterns import apriori
         # 데이터 프레임 물건 리스트 변화
         df = pd.DataFrame([[1, 'banana'],[2, 'banana'],[2, 'apple'],[3, 'banana']], co
         lumns=['a','b'])
         def toList(x):
           return list(set(x))
         df1 = df.groupby('a').b.apply(lambda x: toList(x)).reset_index()
         # 2개 이상만 추출
         df1['leng'] = df1.b.apply(lambda x: len(x) >= 2)
         # 워하는 연관분석 형태로 변화
         dataset = list(df1.b)
         # 조금더 확실하게 볼수 있는 더 많은 데이터셋으로 전환
         dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
                   ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'], ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
                   ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
                   ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
         # 원하는 변수들을 인덱스/컬럼 으로 재정렬
         # 각 제품의 포함 여부를 one-hot encodina하여 array 로 변환
         from mlxtend.preprocessing import TransactionEncoder
         te = TransactionEncoder()
         te ary = te.fit(dataset).transform(dataset)
         # 변화된 array를 dataframe으로 변화 후 확인
         df = pd.DataFrame(te ary, columns=te.columns )
         # 컬럼 이름
         print(te.columns )
         # 혹시 1 또는 0으로 변경하고 싶다면
         pd.DataFrame(te ary.astype('int'), columns=te.columns )
         # 원래 이중 리스트로 변화
         te.inverse transform(te ary)
         # 연관규칙 분석을 위한 apriori 알고리즘 사용
         from mlxtend.frequent patterns import apriori
         # 지지도 도출 -> 수가 많을 수 있으므로 min support 로 일정 이상의 지지도만 도출 (default
         =0.5)
         frequent_itemsets = apriori(df, min_support=0.5, use_colnames=True)
         # 특정 개수 이상의 itemset만 추출
         frequent itemsets['length'] = frequent itemsets['itemsets'].apply(lambda x: le
         n(x)
         frequent itemsets[frequent itemsets['length'] >=2]
         # 특정 아이템(Eggs) 이 포함된 것만 추출
         frequent itemsets[frequent itemsets['itemsets'].apply(lambda x: 'Eggs' in list
         (x)
```

```
# 연관 규칙 도출
from mlxtend.frequent_patterns import association_rules
# 최소 신뢰도 0.7이상인것만 추출
association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
# 최소 향상도 0.7이상인것만 추출
association_rules(frequent_itemsets, metric="lift", min_threshold=0.7)
# antecedents 1개인거만 추출
rules[rules.apply(lambda x: True if len(x.antecedents) else false, axis=1)]
# lift 제일 큰것찿기 = 상호 정보량이 가장 큰것 찿기(lift max)
df[df.antecedents == frozenset({'Eggs'})].sort values(by='lift', ascending=Fal
se)
# antecedents가 Eggs 이고, consequents 가 하나일때 lift 젤 작은것 찿기 = 가장 멀리있
어도 되는 물품
rules[(rules.antecedents == frozenset({'Eggs'})) & (rules.consequents.apply(la
mbda x: len(x) ==1))].sort_values(by='lift')
# antecedents에 특정 단어 'Eggs' 있는거 찾기
rules[rules.antecedents.apply(lambda x: 'Eggs' in x)]
# 특정 antecedents 만 찾기
rules[rules.antecedents == frozenset({'Eggs'})]
# fronzenset 에서 값 추출하기
[i for i in frozenset({'Apple', 'Banana'})]
```