O Produto Vetorial

Definição

Se $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ e $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, então **produto vetorial** ou **cruzado** de \mathbf{a} e \mathbf{b} é o vetor \mathbf{c} perpendicular tanto à \mathbf{a} e \mathbf{b} descrito por

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

Obs: Definição de produto vetorial para vetores *tridimensionais*.

Por ser ortogonal tanto à **a** e **b**, tem-se que:

$$\mathbf{c} \cdot \mathbf{a} = \mathbf{c} \cdot \mathbf{b} = 0 = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}$$

A regra da mão direita fornece a direção de $\mathbf{a} \times \mathbf{b}$, ortogonal ao plano que contêm \mathbf{a} e \mathbf{b} . Nesta, um dos vetores aponta para o pulso enquanto os dedos da mão fecham-se em direção ao outro vetor pelo ângulo agudo entre estes. Nesta configuração, o polegar levantado aponta para $\mathbf{a} \times \mathbf{b}$.

Propriedades

Se **a**, **b** e **c** são vetores e *c* é um escalar, então

1. **a**
$$\times$$
 a = 0

2.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

3.
$$(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

4.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

5.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

6.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

7.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Pela aplicação da propriedade 2 sobre as bases canônicas \mathbf{i} , \mathbf{j} e \mathbf{k} , obtemos

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$
 $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$
 $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$ $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$

Resultado este que pode ser verificado pela aplicação da regra da mão direita.

Exemplo

Encontre um vetor perpendicular ao plano que passa pelos pontos

$$P(1,4,6), Q(-2,5,-1), R(1,-1,1)$$

Resolução

O vetor $\overrightarrow{PQ} \times \overrightarrow{PR}$ é perpendicular a ambos \overrightarrow{PQ} e \overrightarrow{PR} e, portanto, perpendicular ao plano que passa por P, Q e R. Tem-se que:

$$\overrightarrow{PQ} = (-2 - 1)\mathbf{i} + (5 - 4)\mathbf{j} + (-1 - 6)\mathbf{k} = -3\mathbf{i} + \mathbf{j} - 7\mathbf{k}$$

$$\overrightarrow{PR} = (1 - 1)\mathbf{i} + (-1 - 4)\mathbf{j} + (1 - 6)\mathbf{k} = -5\mathbf{j} - 5\mathbf{k}$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \langle 1(-5) + 7(-5), -7(0) + 3(-5), -3(-5) - 1(0) \rangle$$

$$= \langle -40, -15, 15 \rangle = -5\langle 8, 3, -3 \rangle$$

Assim, temos que $\langle -40, -15, 15 \rangle$ é perpendicular ao plano e, no mais, todo múltiplo não nulo de $\langle 8, 3, -3 \rangle$ também o é.

Teorema

Se heta é o ângulo entre ${f a}$ e ${f b}$, $0 \le heta \le \pi$, então

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin \theta = A$$

Onde A é a área descrita pelo paralelogramo formado entre os vetores. Assim, dois vetores são paralelos entre si se $\theta=k\pi, k\in\mathbb{Z}$.

Caso específico

A ideia de produto vetorial aparece muito frequentemente em física. Por exemplo, ao apertarmos um parafuso aplicando uma força a uma chave de boca iremos girar o parafuso). O torque τ (em relação à origem) é definido como sendo o produto cruzado dos vetores posição e força:

$$\tau = \mathbf{r} \times \mathbf{F}$$

Posto em termos da definição de produto vetorial, isso seria equivalente à

$$| au| = |\mathbf{r} imes \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin heta$$

Produtos Triplos

O produto $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ que ocorre na Propriedade 5 da definição de produto vetorial é chamado **produto misto ou produto triplo escalar** dos vetores \mathbf{a} , \mathbf{b} e \mathbf{c} . O significado geométrico do produto misto pode ser visto considerando-se o paralelepípedo determinado pelos vetores \mathbf{a} , \mathbf{b} e \mathbf{c} .

Assim sendo, o volume do paralelepípedo determinado pelos vetores a, b e c é o módulo do produto misto:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Caso específico

Se usarmos a fórmula anterior e descobrirmos que o volume do paralelepípedo determinado por **a**, **b** e **c** é 0, então os três vetores precisam pertencer ao mesmo plano; ou seja eles são **coplanares**.

Exemplo

$$a = <1, 5, -2>, b = <3, -1, 0>, c = <5, 9, -4>$$

$$\therefore V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = \begin{vmatrix} 1 & 5 & -2 \\ 3 & -1 & 0 \\ 5 & 9 & -4 \end{vmatrix} = 1 \begin{vmatrix} -1 & 0 \\ 9 & -4 \end{vmatrix} - 5 \begin{vmatrix} 3 & 0 \\ 5 & -4 \end{vmatrix} - 2 \begin{vmatrix} 3 & -1 \\ 5 & 9 \end{vmatrix}$$

$$= 1(4) - 5(-12) - 2(27 + 5) = 0$$