FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

(S4.1) Fie LP logica propoziţională.

- (i) Demonstrați că mulțimea Expr a expresiilor lui LP este numărabilă.
- (ii) Demonstrați că mulțimea Form a formulelor lui LP este numărabilă.

Demonstrație:

(i) Avem că $Expr = \bigcup_{n \in \mathbb{N}} Sim^n = \{\lambda\} \cup Sim \cup \bigcup_{n \geq 2} Sim^n = A \cup B$, unde $A = \{\lambda\} \cup Sim$ și $B = \bigcup_{n \geq 2} Sim^n$. Deoarece $Sim = V \cup \{\neg, \rightarrow, (,)\}$ și V este numărabilă, obținem, din Corolarul 1.10, că Sim este numărabilă. Aplicând încă o dată Corolarul 1.10, rezultă că A este numărabilă.

Conform Propoziției 1.13.(iii), Sim^n este numărabilă pentru orice $n \geq 2$. Este evident că $\mathbb{N} \setminus \{0,1\}$ este numărabilă (se poate verifica imediat că $h: \mathbb{N} \setminus \{0,1\} \to \mathbb{N}, \ h(n) = n-2$ este bijecție). Putem aplica Propoziția 1.13.(i) pentru a concluziona că B este cel mult numărabilă. Evident, B este nevidă.

Aplicând din nou Corolarul 1.10, obținem că Expr este cel mult numărabilă.

Cum $V \subseteq Expr$, iar V este infinită, rezultă că Expr este numărabilă.

(ii) Cum $Form \subseteq Expr$, iar Expr este numărabilă, rezultă că Form este o mulțime cel mult numărabilă.

Cum $V \subseteq Form$, iar V este infinită, rezultă că Form este numărabilă.

(S4.2) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \text{ din } \{0, 1\}$ avem:

(i) $((x_0 \to x_1) \to x_0) \to x_0 = 1$;

(ii) $(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$.

Demonstrație:

(ii) Notăm $f(x_1, x_3, x_4) := (x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)).$

x_1	x_3	x_4	$x_3 \rightarrow x_4$	$x_4 \rightarrow x_1$	$x_3 \rightarrow x_1$	$(x_4 \to x_1) \to (x_3 \to x_1)$	$f(x_1, x_3, x_4)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1
0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1
0	0	0	1	1	1	1	1

П

Fie $\varphi, \psi \in Form$. Pentru orice $e: V \to \{0,1\}$, notăm cu $e \vDash \varphi$ (și spunem că e satisface φ sau e este **model** pentru φ) dacă $e^+(\varphi) = 1$. Notăm cu $\vDash \varphi$ (și spunem că φ este tautologie) dacă pentru orice $e: V \to \{0,1\}$ avem că $e \vDash \varphi$. Spunem că φ este satisfiabilă dacă există $e: V \to \{0,1\}$ cu $e \vDash \varphi$ și nesatisfiabilă în caz contrar, când nu există $e: V \to \{0,1\}$ cu $e \vDash \varphi$, i.e. pentru orice $e: V \to \{0,1\}$ avem că $e \nvDash \varphi$. Notăm $\varphi \vDash \psi$ (și spunem că din φ se deduce semantic ψ sau că ψ este consecință semantică a lui φ) dacă pentru orice $e: V \to \{0,1\}$ avem $e \vDash \varphi$ avem $e \vDash \psi$. Notăm cu $\varphi \sim \psi$ dacă pentru orice $e: V \to \{0,1\}$ avem $e \vDash \varphi$ dacă și numai dacă $e \vDash \psi$, i.e. pentru orice $e: V \to \{0,1\}$ avem $e^+(\varphi) = e^+(\psi)$.

(S4.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

Demonstrație:

(i) Fie funcția $e: V \to \{0, 1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 0, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_2 \\ 0, & \text{altfel.} \end{cases}$$

Atunci:

$$e^+(v_0 \to v_2) = e^+(v_0) \to e^+(v_2) = e(v_0) \to e(v_2) = 0 \to 1 = 1.$$

(ii) Fie funcția $e: V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e(x) := \begin{cases} 1, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_3 \\ 0, & \text{dacă } x = v_4 \\ 1, & \text{altfel.} \end{cases}$$

Atunci:

$$e^{+}(v_{0} \wedge v_{3} \wedge \neg v_{4}) = e^{+}(v_{0}) \wedge e^{+}(v_{3}) \wedge \neg e^{+}(v_{4})$$

$$= e(v_{0}) \wedge e(v_{3}) \wedge \neg e(v_{4})$$

$$= 1 \wedge 1 \wedge \neg 0$$

$$= 1 \wedge 1 \wedge 1$$

$$= 1.$$

(S4.4) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash (\varphi \rightarrow \psi)$;
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iii) $\varphi \lor (\varphi \land \psi) \sim \varphi$;
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi))$

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a, b \in \{0, 1\}$,

$$a \rightarrow b = 1 \iff a \leq b,$$

$$1 \rightarrow a = a, \qquad a \rightarrow 1 = 1$$

$$0 \rightarrow a = 1, \qquad a \rightarrow 0 = \neg a$$

$$1 \land a = a, \qquad 0 \land a = 0,$$

$$1 \lor a = 1, \qquad 0 \lor a = a.$$

- (i) Fie $e: V \to \{0, 1\}$ cu $e^+(\psi) = 1$. Vrem să arătăm că $e^+(\varphi \to \psi) = 1$. Dar: $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1$.
- (ii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că $e^+(\varphi\to(\psi\to\chi)=1~{\rm dacă}~{\rm si}~{\rm numai}~{\rm dacă}~e^+(\varphi\wedge\psi\to\chi)=1,$

ceea ce este echivalent cu a arăta că $e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi)$.

Metoda 1: Ne folosim de următorul tabel:

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\psi \to \chi)$	$e^+(\varphi \to (\psi \to \chi))$	$e^+(\varphi \wedge \psi)$	$e^+(\varphi \wedge \psi \to \chi)$
1	1	1	1	1	1	1
1	1	0	0	0	1	0
1	0	1	1	1	0	1
1	0	0	1	1	0	1
0	1	1	1	1	0	1
0	1	0	0	1	0	1
0	0	1	1	1	0	1
0	0	0	1	1	0	1

Metoda 2: Raţionăm direct. Observăm că

$$e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi) \to (e^+(\psi) \to e^+(\chi)),$$

 $e^+(\varphi \land \psi \to \chi) = e^+(\varphi) \land e^+(\psi) \to e^+(\chi).$

Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b) $e^+(\varphi) = 1$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = e^{+}(\psi) \rightarrow e^{+}(\chi),$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 1 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = e^{+}(\psi) \rightarrow e^{+}(\chi).$$

(iii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \vee (\varphi \wedge \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = e^+(\varphi).$$

Avem cazurile:

(a)
$$e^{+}(\varphi) = 1$$
. Atunci $e^{+}(\varphi) \vee (e^{+}(\varphi) \wedge e^{+}(\psi)) = 1 \vee (1 \wedge e^{+}(\psi)) = 1 \vee e^{+}(\psi) = 1$.

(b)
$$e^+(\varphi) = 0$$
. Atunci

$$e^{+}(\varphi) \vee (e^{+}(\varphi) \wedge e^{+}(\psi)) = 0 \vee (0 \wedge e^{+}(\psi)) = 0 \vee 0 = 0.$$

(iv) Fie $e: V \to \{0, 1\}$ o evaluare arbitrară.

$$e^{+}(\neg\varphi\to(\neg\psi\leftrightarrow(\psi\to\varphi)))=\neg e^{+}(\varphi)\to(\neg e^{+}(\psi)\leftrightarrow(e^{+}(\psi)\to e^{+}(\varphi))).$$

Avem cazurile:

(a)
$$e^+(\varphi) = 1$$
. Atunci $\neg e^+(\varphi) = 0$ şi, prin urmare,
 $\neg e^+(\varphi) \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi))) = 0 \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi)))$

$$= 1$$

(b)
$$e^{+}(\varphi) = 0$$
. Atunci

$$\neg e^{+}(\varphi) \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi))) = \neg 0 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0))$$

$$= 1 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0))$$

$$= \neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0)$$

$$= \neg e^{+}(\psi) \leftrightarrow \neg e^{+}(\psi)$$

$$= 1.$$

(S4.5) Să se demonstreze că, pentru orice formulă φ , φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.

Demonstraţie:

Avem:

 $\varphi \text{ este tautologie } \iff \text{ pentru orice } e:V\to\{0,1\},\ e^+(\varphi)=1$ $\iff \text{ pentru orice } e:V\to\{0,1\},\ \neg e^+(\varphi)=0$ $\iff \text{ pentru orice } e:V\to\{0,1\},\ e^+(\neg\varphi)=0$ $\iff \text{ pentru orice } e:V\to\{0,1\},\ \text{ nu avem că } e^+(\neg\varphi)=1$ $\iff \text{ nu avem că există } e:V\to\{0,1\}\ \text{ cu } e^+(\neg\varphi)=1$ $\iff \text{ nu avem că } \neg\varphi \text{ e satisfiabilă }$ $\iff \neg\varphi \text{ nu e satisfiabilă.}$