Opi_syn_circuit_plots_R

April 29, 2019

```
In [41]: library(IRdisplay)
         display_html(
         '<script>
         code_show=true;
         function code_toggle() {
           if (code_show){
             $(\'div.input\').hide();
           } else {
             $(\'div.input\').show();
           code_show = !code_show
         $( document ).ready(code_toggle);
         </script>
           <form action="javascript:code_toggle()">
             <input type="submit" value="Click here to toggle on/off the raw code.">
          </form>'
         )
```

1 Introduction

Based on data in folder 'data', analysis - plots - stats are ran for the opi-syn-circuit project. For in-depth explanation of the data acquisition and preprocessing read: - matlab_instructions.txt - Birdsong, Jongbloets et al. eLife 2019

```
library(scales)
#read required datasets
df=read.csv('data/effectdataset.csv')
df$X=NULL
cdf=read.csv('data/rawdataset.csv') # will be used for latency graphs
# make new column describing the part of the circuit measured.
cdf$X=NULL
cdf$circuit= paste(cdf$stimSource, cdf$recordLayer, cdf$cellType, sep='_')
apdf=read.csv('data/latencySpikePeak.csv')
apdf$X=NULL
#+++++++++++++++++++++
# Function to calculate the mean and the standard deviation
  # for each group
#++++++++++++++++++++
# data : a data frame
# varname : the name of a column containing the variable
  #to be summariezed
# groupnames : vector of column names to be used as
  # grouping variables
data_meanSDSEM <- function(data, varname, groupnames){</pre>
  require(plyr)
  summary_func <- function(x, col){</pre>
    c(n = sum(!is.na(x[[col]])), mean = mean(x[[col]], na.rm=TRUE),
      sd = sd(x[[col]], na.rm=TRUE), sem = sd(x[[col]], na.rm=TRUE)/(sqrt(sum(!is.na(x)))
  # , sem = sd/(sum(!is.na(x[[col]])))^2
  data_sum<-ddply(data, groupnames, .fun=summary_func,</pre>
                  varname)
  data_sum <- rename(data_sum, c("mean" = varname))</pre>
return(data_sum)
#++++++++++++++++++++++++
#Function to append number of observations
give.n <- function(x){
    return(c(y = -10, label = length(x)))
# for now it should print the number of observations at -5\%; base of the graph
#+++++++++++++++++++++++
#function to annotate asterisks to plot
pvalAnno <- function(pval,adjust){</pre>
                        pval = pval*adjust
            if (!is.finite(pval)){
                pvalS = 'Error'
                fontsize = 11.17
```

```
fontface = 1
                    }
                    else if(pval > 0.05){
                                         pvalS ='N.S.'
                                         fontsize = 11.17
                                         fontface = 1
                                 }
                                 else if(pval <= 0.05 & pval > 0.01){
                                         pvalS = '*'
                                         fontsize = 13.88
                                         fontface = 2
                                 else if(pval <=0.01 & pval >0.001){
                                         pvalS = '**'
                                         fontsize = 13.88
                                         fontface = 2
                                 }
                                 else if(pval <=0.001){
                                         pvalS='***'
                                         fontsize = 13.88
                                         fontface = 2
                return(c(pvalS, fontsize,fontface))
        }
Attaching package: cowplot
The following object is masked from package:ggplot2:
    ggsave
Registering fonts with R
Loading required package: grid
Loading required package: futile.logger
```

2 Figure 1d

```
cols = colnames(tempSDF)
tempSDF = melt(tempSDF, id.vars = cols[1:19],measure.vars = cols[20:21])
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("MDDAMGO agonistEffect", "MDDPDPE agonistEffect", "ACCDAMGO agonistEffect",
antagonistSelect = c("ENKWASH")
graphTitle = c("fig1paneld")
k = 1
variableSelect = 'amplitude'
#since we adding more groups to the plot we need to make a plottingColumn to tell what
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
# to show also the data_summary of the antagonists we make a new dataframe: sDfFull, c
sDf = subset(sDf, variable == 'agonistEffect')
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
animalCount = list()
for (u in 1:length(unique(sDf$groupnames))){
    animalDf = subset(sDf, groupnames == unique(sDf$groupnames)[u])
    animalCount[u] = length(unique(animalDf$animalID))
    }
# to show also the data\_summary of the antagonists we use s\mathit{DfFull} containing all the c
data_summaryFull = data_meanSDSEM(sDfFull, varname = "value", groupnames = "groupnames
sumOut = capture.output(data_summaryFull)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
  sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
    geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "g
    geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
    geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = 1
    geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dod,
    coord_cartesian(ylim = c(-20, 150)) +
    theme_cowplot(font_size = 12)+
    stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position
    scale_x_discrete(limits = xLabel)+
    labs(ylab('% baseline'))+
    labs(xlab(NULL))+
    labs(title = paste(graphTitle,variableSelect[k],sep='_'))+
    labs(caption = paste(sumRepOut))+
    theme(plot.caption = element_text(size = 8, hjust = 0))+
    theme(plot.title = element_text(size = 12))+
    geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
    geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
    theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank()
```

theme(text=element_text(size=12))

MDDAMGO agonistEff&tDDPDPE agonistEff&CCDAMGO agonistEff&CDPDPE agonistEffect

```
groupnames n value sd sem
1 ACCDAMGO agonistEffect 7 92.75943 12.937997 4.890103
2 ACCDAMGO antagonistEffect 6 93.66419 7.969033 3.253344
3 ACCDPDPE agonistEffect 6 95.99529 6.288256 2.567170
4 ACCDPDPE antagonistEffect 5 86.01522 5.959387 2.665119
5 MDDAMGO agonistEffect 7 38.17238 16.075154 6.075837
6 MDDAMGO antagonistEffect 6 94.36899 10.609896 4.331472
7 MDDPDPE agonistEffect 6 99.57879 14.061706 5.740667
8 MDDPDPE antagonistEffect 5 92.05840 12.375464 5.534476
```



```
else if (trySDf$variable[i] == 'antagonistValue'){
                trySDf$drug[i] = as.character(trySDf$antagonistName[i])
            if (is.finite(trySDf$value[i])){
                if (trySDf$value[i]>=-1 & trySDf$value[i] <=0){ # for some unknown reason not
                trySDf$value[i] = trySDf$value[i]*1000
            }}
        }
        trySDf$drug = gsub("MD","",trySDf$drug)
        trySDf$drug = gsub("ACC","",trySDf$drug)
        trySDf$drug = factor(trySDf$drug, levels=unique(trySDf$drug))
        trySDf$groupnames = paste(trySDf$drug, trySDf$source)
        trySDf$opioidType = gsub("MD","",trySDf$opioidType)
        trySDf$opioidType = gsub("ACC","",trySDf$opioidType)
        trySDf$opioidType = gsub("DAMGO", "mu", trySDf$opioidType)
        trySDf$opioidType = gsub("DPDPE", "delta", trySDf$opioidType)
        trySDf$opioidType = factor(trySDf$opioidType, levels=unique(trySDf$opioidType))
        ACCMD.df = data.frame(trySDf$cellID, trySDf$source, trySDf$drug, trySDf$opioidType, try
        colnames(ACCMD.df) = c('cellID', 'source', 'period', 'opioidType', 'amplitude', 'groupn')
        ACCMD.df\period = gsub("BASEDPDPE", "BASELINE", ACCMD.df\period)
        ACCMD.df\period = gsub("BASEDAMGO", "BASELINE", ACCMD.df\period)
        ACCMD.df\( period = gsub("DPDPENTD", "ANTAGONIST", ACCMD.df\( period)
        ACCMD.df\period = gsub("DAMGOCTAP", "ANTAGONIST", ACCMD.df\period)
        ACCMD.df$period = gsub("DPDPE", "AGONIST", ACCMD.df$period)
        ACCMD.df\period = gsub("DAMGO", "AGONIST", ACCMD.df\period)
        ACCMD.df$groupnames = factor(ACCMD.df$groupnames,c('BASEDAMGO ACC','DAMGO ACC','DAMGOC'
                                               'BASEDAMGO MD', 'DAMGO MD', 'DAMGOCTAP MD',
                                               'BASEDPDPE ACC', 'DPDPE ACC', 'DPDPENTD ACC',
                                               'BASEDPDPE MD', 'DPDPE MD', 'DPDPENTD MD'))
        ACCMD.df$period = factor (ACCMD.df$period,levels=c("BASELINE", "AGONIST", "ANTAGONIST")
        ACCMD.df$source = factor (ACCMD.df$source,levels=c("ACC","MD"))
        ACCMD.df\prioridType = factor (ACCMD.df\prioridType,levels=c("delta","mu"))
In [4]: library(lme4)
        library(multcomp)
        # We will be using linear combinatons of coefficients from the model to determine if d
        # When determining which coefficients to put in a linear combination, it's easiest to
        # and subtract them. This leaves with the coefficient(s) they do not have in common.
        # For instance: baseline vs. agonist for the ACC/delta condition (baseline, ACC and de
           Baseline equation: frequency = intercept (since baseline, ACC and delta are the co
           Agonist equation: frequency = intercept + periodAGONIST
            Difference in equations: periodAGONIST
        # Example 2: baseline vs. agonist for the MD/mu condition
                                         6
```

else if (trySDf\$variable[i] == 'agonistValue'){

trySDf\$drug[i] = as.character(trySDf\$agonistName[i])

```
Baseline equation: frequency = intercept + sourceMD + opioidTypemu + sourceMD:opio
          Agonist equation : frequency = intercept + sourceMD + opioidTypemu + sourceMD:opio
           Difference in equations: periodAGONIST + periodAGONIST:opioidTypemu + periodAGONIS
        # To carry out these linear combinations first run the linear mixed effect model and s
        # This object is then used in the glht command (general linear hypothesis test - this
        # In order to let R know which coefficients you would like to test in your linear comb
        # The matrix is based on the coefficients listed in the linear mixed effects regressio
        # are 12 coefficients total if you include the intercept.
        MO.ACC <- lmer(data= ACCMD.df, amplitude ~ period + source + opioidType + opioidType:p
        summary(MO.ACC)
        ## Type III anova table with p-values for F-tests based on Satterthwaite's
        ## method:
        aov.ACC <- anova(MO.ACC, type="3")</pre>
        aov.ACC$Pvalue=pf(q=aov.ACC$F, df1 = aov.ACC$Df, df2 = length(unique(ACCMD.df$cellID))
        aov.ACC
Loading required package: Matrix
Loading required package: mvtnorm
Loading required package: survival
Loading required package: TH.data
Loading required package: MASS
Attaching package: TH.data
The following object is masked from package: MASS:
   geyser
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID)
  Data: ACCMD.df
     AIC
             BIC
                   logLik deviance df.resid
                  -468.8
   965.5
           997.8
                              937.5
Scaled residuals:
               1Q
    Min
                  Median
                                 3Q
                                         Max
-2.70742 -0.60419 0.02248 0.68216 1.98156
Random effects:
 Groups
          Name
                      Variance Std.Dev.
 cellID
          (Intercept) 6963
                                83.44
 Residual
                      15705
                               125.32
```

Number of obs: 74, groups: cellID, 8

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	-401.764	59.858	-6.712
periodAGONIST	14.157	72.352	0.196
periodANTAGONIST	22.092	76.426	0.289
sourceMD	-26.396	72.352	-0.365
opioidTypemu	-16.502	71.067	-0.232
periodAGONIST:opioidTypemu	16.555	98.599	0.168
periodANTAGONIST:opioidTypemu	12.193	103.702	0.118
sourceMD:opioidTypemu	-44.920	98.599	-0.456
periodAGONIST:sourceMD:opioidTypedelta	-6.494	102.321	-0.063
<pre>periodANTAGONIST:sourceMD:opioidTypedelta</pre>	27.850	107.316	0.260
periodAGONIST:sourceMD:opioidTypemu	286.649	94.731	3.026
periodANTAGONIST:sourceMD:opioidTypemu	7.037	98.599	0.071

Correlation of Fixed Effects:

	(Intr)	prAGONIST	prANTAGONIST	${\tt sorcMD}$	opdTyp
perdAGONIST	-0.604				
prANTAGONIST	-0.575	0.473			
sourceMD	-0.604	0.500	0.473		
opioidTypem	-0.643	0.509	0.496	0.509	
prAGONIST:T	0.443	-0.734	-0.347	-0.367	-0.694
pANTAGONIST:T	0.432	-0.349	-0.737	-0.349	-0.677
<pre>srcMD:pdTyp</pre>	0.443	-0.367	-0.347	-0.734	-0.694
prdAGONIST:srcMD:pdTypd	0.427	-0.707	-0.335	-0.707	-0.360
<pre>prdANTAGONIST:srcMD:pdTypd</pre>	0.407	-0.337	-0.702	-0.674	-0.343
<pre>prdAGONIST:srcMD:pdTypm</pre>	0.000	0.000	0.000	0.000	0.333
<pre>prdANTAGONIST:srcMD:pdTypm</pre>	0.000	0.000	0.000	0.000	0.320

pAGONIST:T pANTAGONIST:T srMD:T

perdAGONIST
prANTAGONIST
sourceMD
opioidTypem
prAGONIST:T
pANTAGONIST:T
srcMD:pdTvp

 pANTAGONIST:T
 0.475

 srcMD:pdTyp
 0.500
 0.475

 prdAGONIST:srcMD:pdTypd
 0.519
 0.247

 prdAGONIST:srcMD:pdTypd
 0.519
 0.247
 0.519

 prdANTAGONIST:srcMD:pdTypd
 0.247
 0.517
 0.495

 prdAGONIST:srcMD:pdTypm
 -0.480
 -0.228
 -0.480

 prdANTAGONIST:srcMD:pdTypm
 -0.231
 -0.475
 -0.462

prdAGONIST:srcMD:pdTypd prdANTAGONIST:srcMD:pdTypd

perdAGONIST prANTAGONIST sourceMD opioidTypem prAGONIST:T pANTAGONIST:T
srcMD:pdTyp

prdAGONIST:srcMD:pdTypd

prdANTAGONIST:srcMD:pdTypd 0.477 prdAGONIST:srcMD:pdTypm 0.000 prdANTAGONIST:srcMD:pdTypm 0.000

0.000

0.000

prdAGONIST:srcMD:pdTypm

perdAGONIST prANTAGONIST sourceMD opioidTypem prAGONIST:T pANTAGONIST:T srcMD:pdTyp

prdAGONIST:srcMD:pdTypd
prdANTAGONIST:srcMD:pdTypd
prdAGONIST:srcMD:pdTypm

prdANTAGONIST:srcMD:pdTypm 0.480

	Df	Sum Sq	Mean Sq	F value	Pvalue
period	2	129222.342	64611.171	4.11418128	0.05905561
source	1	1014.627	1014.627	0.06460742	0.80576780
opioidType	1	4765.247	4765.247	0.30343188	0.59678183
period:opioidType	2	109605.134	54802.567	3.48960856	0.08135860
source:opioidType	1	12242.165	12242.165	0.77953216	0.40303452
period:source:opioidType	4	184569.192	46142.298	2.93815721	0.09094361

```
In [5]: ##Linear combinations testing baseline vs antagonist for each source and Rx type
        ##This double checks assumption of experimental design; that after antagonist treatmen
        ##None of these comparisons are statistically significant, which is as expected
          ##baseline vs. antagonist, ACC and delta
            lc1a <- matrix(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
            lincom1a.ACC <- glht(MO.ACC, linfct = lc1a)</pre>
            summary(lincom1a.ACC) ##This is the same as the coefficient periodANTAGONIST
          ##baseline vs. antagonist, ACC and mu
            lc1b \leftarrow matrix(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0), 1)
            lincom1b.ACC <- glht(MO.ACC, linfct = lc1b)</pre>
            summary(lincom1b.ACC)
          ##baseline vs. antagonist, MD and delta
            lc1c \leftarrow matrix(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), 1)
            lincom1c.ACC <- glht(MO.ACC, linfct = lc1c)</pre>
            summary(lincom1c.ACC)
          ##baseline vs. antagonist, MD and mu
            lc1d \leftarrow matrix(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1), 1)
            lincom1d.ACC <- glht(MO.ACC, linfct = lc1d)</pre>
            summary(lincom1d.ACC)
```

```
Simultaneous Tests for General Linear Hypotheses
```

```
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
```

Linear Hypotheses:

```
Estimate Std. Error z value Pr(>|z|)

1 == 0 22.09 76.43 0.289 0.773

(Adjusted p values reported -- single-step method)
```

Simultaneous Tests for General Linear Hypotheses

```
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
```

Linear Hypotheses:

```
Estimate Std. Error z value Pr(>|z|)

1 == 0 34.28 70.15 0.489 0.625

(Adjusted p values reported -- single-step method)
```

Simultaneous Tests for General Linear Hypotheses

```
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
```

Linear Hypotheses:

```
Estimate Std. Error z value Pr(>|z|)

1 == 0 49.94 76.43 0.653 0.513

(Adjusted p values reported -- single-step method)
```

Simultaneous Tests for General Linear Hypotheses

```
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
```

```
Estimate Std. Error z value Pr(>|z|)
          41.32
                     70.15
                             0.589
                                       0.556
(Adjusted p values reported -- single-step method)
In [6]: ##Linear combinations testing baseline vs agnoist for each source and Rx type
        ##This tests if the agonist had an effect on amplitude
        ##As expected, the only comparison that is statistically significant is for MD/mu
          ##baseline vs. agonist, ACC and delta
            lc2a <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
            lincom2a.ACC <- glht(MO.ACC, linfct = lc2a)</pre>
            summary(lincom2a.ACC) ##This is claim 3
          ##baseline vs. agonist, ACC and mu
            1c2b \leftarrow matrix(c(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), 1)
            lincom2b.ACC <- glht(MO.ACC, linfct = lc2b)</pre>
            summary(lincom2b.ACC)
          ##baseline vs. agonist, MD and delta
            lc2c <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), 1)
            lincom2c.ACC <- glht(MO.ACC, linfct = lc2c)</pre>
            summary(lincom2c.ACC) ##Second part of claim 3
          ##baseline vs. agonist, MD and mu
            lc2d <- matrix(c(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), 1)
            lincom2d.ACC <- glht(MO.ACC, linfct = lc2d)</pre>
            summary(lincom2d.ACC) ##This is claim 2
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0
          14.16
                     72.35
                             0.196
                                      0.845
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
```

Linear Hypotheses:

```
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0
          30.71
                     66.99
                             0.459
                                      0.647
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = ACCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
          7.664
                   72.352
                           0.106
1 == 0
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
   data = ACCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0
        317.36
                     66.99
                           4.738 2.16e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Adjusted p values reported -- single-step method)
```

3 Figure 1 - figure supplement 1

3.1 Figure 1 - figure supplement 1c

```
#Important for good functioning of the script: No need to change:
cols = colnames(tempSDF)
tempSDF = melt(tempSDF, id.vars = cols[1:19],measure.vars = cols[20:21])
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("ME", "Wash", "NBQX")
antagonistSelect = c("ENKWASH")
graphTitle = c("Figure 1 - figure supplement 1c")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# to avoid problems with sign reversal during agonist/antagonist treatment all conditi
# after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
    if (ssDf$baseValue[u]<0){</pre>
        if (is.finite(ssDf$agonistValue[u])){
            if (ssDf$agonistValue[u]>0){
                ssDf$agonistValue[u]=-0.0001
            }
        if (is.finite(ssDf\u00e4antagonistValue[u])){
            if (ssDf$antagonistValue[u]>0){
                ssDf\antagonistValue[u]=-0.0001
            }
        }
    }
    if (ssDf$baseValue[u]>0){
        if (is.finite(ssDf$agonistValue[u])){
            if (ssDf$agonistValue[u]<0){</pre>
                ssDf\agonistValue[u]=0.0001
            }
        }
        if (is.finite(ssDf$antagonistValue[u])){
            if (ssDf$antagonistValue[u]<0){</pre>
                ssDf\antagonistValue[u]=0.0001
            }
        }
    if (is.finite(ssDf\antagonistName[u])){
        if (ssDf$antagonistName[u] !=antagonistSelect){
            ssDf\antagonistValue[u] = NA
    }
for (u in 1:nrow(sDf)){
    if (is.finite(sDf$antagonistName[u])){
```

```
if(sDf$antagonistName[u] != antagonistSelect){
            sDf$antagonistValue[u] = NA
            if(sDf$variable[u] == 'antagonistEffect'){
                sDf$value[u] = NA
            }
        }
    }
ssDf$baseValue = abs(ssDf$baseValue)
ssDf\agonistValue =abs(ssDf\agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
#check if ssDf$antagonistValue contains only 'NA's
checkNA = is.na(ssDf$antagonistValue)
if (sum(checkNA)==length(checkNA)){
    ssDf$antagonistValue[checkNA] = 0
# In case of the NBQX there is no repeated measures (the experiments stand on themselv
# are relative to baseline) So for the SM test we can only use the ENK data
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'ENK']))
SMmatrix = c(ssDf\baseValue[ssDf\bagonistName == 'ENK'][1:SMlen], ssDf\bagonistValue[ssDf\bagonistValue]
Gs = c(rep('baseline', SMlen), rep('agonist', SMlen), rep('antagonist', SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'ENK'][1:SMlen],ssDf\bagonis
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'ENK'][1:SMlen],ssDf
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'ENK'][1:SMlen] - ssDf$agonistValue[ssDf$agonistValue]
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'ENK'][1:SMlen],ssDf\bantago:
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'ENK'][1:SMlen],s
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'ENK'][1:SMlen] - ssDf$antagonistValue[ssDf
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'ENK'][1:SMlen], ssDf\and
AgAnWilcoxFlip = wilcox.test(ssDf\u00e4antagonistValue[ssDf\u00e4agonistName == 'ENK'][1:SMlen],
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'ENK'][1:SMlen] - ssDf$antagonistValue[s
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
# we will check whether it is significant smaller when NBQX is added, since we already
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'NBQX']))
BNBQXWilcox = wilcox.test(ssDf$baseValue[ssDf$agonistName == 'NBQX'][1:SMlen],ssDf$ago:
```

BNBQXWilcoxFlip = wilcox.test(ssDf\$agonistValue[ssDf\$agonistName == 'NBQX'][1:SMlen],s

```
BNBQXWilcox$statistic = min(c(BNBQXWilcox$statistic, BNBQXWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'NBQX'][1:SMlen] - ssDf$agonistValue[ssDf$agonistValue]
BNBQXWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'ENK' & is.finite(
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'ENK' & is.fini
antagonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'NBQX' & is.finite
NBQXAnimal = length(unique(animalDf$animalID))
reportString = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist: ',agonistAnimal agonist agonist: ',agonistAnimal agonist agoni
k = 1
variableSelect = 'amplitude'
#since we adding more groups to the plot we need to make a plottingColumn to tell what
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
    sumRepOut = paste(sumRepOut, '\n', sumOut[u])
ggplot(data_summary, aes(x = groupnames , y = value))+
       geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "g
       geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
       geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = 1
       geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dod;
       coord_cartesian(ylim = c(-20, 150)) +
       theme_cowplot(font_size = 12)+
       stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position
       annotate("text", x=1, y=130, label = BAgAnno[1], size = as.numeric(BAgAnno[2]), for
       annotate("text", x=2, y=130, label = BAnAnno[1], size = as.numeric(BAnAnno[2]), fe
       annotate("text", x=3, y=130, label = BNBQXAnno[1], size = as.numeric(BNBQXAnno[2])
       scale_x_discrete(labels = xLabel)+
       labs(ylab('% baseline'))+
       labs(xlab(NULL))+
       labs(title = paste(graphTitle,variableSelect[k],sep='_'))+
       labs(caption = paste(reportString, '\n', sumRepOut))+
       theme(plot.caption = element_text(size = 8, hjust = 0))+
       theme(plot.title = element_text(size = 12))+
       geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
       geom_segment(aes(x=0.5, y=0, x=0) +
```

```
theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank()
theme(text=element_text(size=12))
```

```
Warning message:
Removed 8 rows containing non-finite values (stat_summary).Warning message:
Removed 8 rows containing missing values (geom_point).Warning message:
Removed 8 rows containing missing values (geom_path).Warning message:
Removed 1 rows containing missing values (geom_bar).Warning message:
Removed 1 rows containing missing values (geom_errorbar).
```

Figure 1 - figure supplement 1c_amplitude

3.2 Figure 1 - figure supplement 1e

```
#plot light-evoked currents for the different channels with 473 and 625 nm \,
chan = subset(df, baseName =="BASE470" & stimChannel !="ChR2H134R_Chrimson" & stimChan
chanDf = melt(chan, id.vars = c("cellID","animalID","stimChannel","baseName","agonistNo
chanDf$variable = gsub("baseValue", "BASE470", chanDf$variable)
chanDf$value = chanDf$value*-1
chanDf$variable = gsub("agonistValue","BASE625",chanDf$variable)
chanDf$groupnames = paste(chanDf$stimChannel,chanDf$variable)
chanDf$groupnames = factor(chanDf$groupnames, levels = c("CsChR BASE470", "CsChR BASE62
cschrTtest = t.test(chanDf$value[chanDf$groupnames=="CsChR BASE470"], chanDf$value[chanDf$value]
chr2Ttest = t.test(chanDf$value[chanDf$groupnames=="ChR2H134R BASE470"], chanDf$value[
chrimsonTtest = t.test(chanDf$value[chanDf$groupnames=="Chrimson BASE470"], chanDf$val
cschrAnno = pvalAnno(cschrTtest$p.value,1)
chr2Anno = pvalAnno(chr2Ttest$p.value,1)
chrimsonAnno = pvalAnno(chrimsonTtest$p.value,1)
reportString1 = paste('Paired T-Tests: \n CsChR 470nm vs 625 nm: p-value = ',signif(cs
                     '\n ChR2(H134R) 470nm vs 625 nm: p-value = ',signif(chr2Ttest$p.value)
                    '\n Chrimson 470nm vs 625 nm: p-value = ',signif(chrimsonTtest$p.
animalDf = subset(chanDf, is.finite(chanDf$value) & groupnames == 'CsChR BASE470' | is
cschrAnimal = length(unique(animalDf$animalID))
animalDf = subset(chanDf, is.finite(chanDf$value) & groupnames == 'ChR2H134R BASE470'
chr2H134rAnimal = length(unique(animalDf$animalID))
animalDf = subset(chanDf, is.finite(chanDf$value) & groupnames == 'Chrimson BASE470' |
chrimsonAnimal = length(unique(animalDf$animalID))
reportString2 = paste(' Number animals CsChR: ',cschrAnimal,'\n Number animals ChR2(H1:
data_summary = data_meanSDSEM(chanDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
 sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(chanDf, aes(x = groupnames , y = value))+
  geom_point(data = chanDf, aes(x = groupnames , y = value), fill = "gray", colour = ";
 geom_line(data = chanDf, aes(group = cellID ), lty = 2, colour = "gray")+
 coord_cartesian(ylim = c(-100, 2000)) +
 theme_cowplot(font_size = 12)+
 stat_summary(data =chanDf, fun.data = give.n, geom = "text", fun.y = median, position
 labs(ylab('Light-evoked current (pA)'))+
 labs(caption = reportString)+
 labs(caption = paste(reportString1,"\n", reportString2,'\n',sumRepOut))+
 theme(plot.caption = element_text(size = 5, hjust = 0))+
 theme(plot.title = element_text(size = 12))+
  theme(text=element_text(size=12))
```


Palred T-Tests: CscNn 470nm vs 825 nm: p-value = 0.0103865 ChR2(H134F) 470nm vs 825 nm: p-value = 0.00187509 Chrimson 470nm vs 825 nm: p-value = 0.0159022 Number animals CscNn: 2 Number animals Chrimson: 5

Number animals Chrimson: 5 groupnames n value sd sem 1 CsCnR BASE470 5 444.8722000 215.431113285 96.343722746 2 CsChR BASE425 5 -4.0991940 5.280368860 2.361452854 3 ChR2H134H BASE470 10 673.9385000 489.733472108 194.867321829 4 ChR2H134H BASE420 10 0.1916073 4.373740141 1.38308007 5 5 Chrimson BASE470 8 18.8613030 24229519901 8.569427873

3.3 Figure 1 - figure supplement 1h

```
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("MDDAMGO agonistEffect", "MDDPDPE agonistEffect", "PFCDAMGO agonistEffect",
antagonistSelect = c("ENKWASH")
graphTitle = c("Figure 1 - figure supplement 1h")
k = 1
variableSelect = 'amplitude'
#since we adding more groups to the plot we need to make a plottingColumn to tell what
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
# to show also the data summary of the antagonists we use sDfFull containing all the c
sDfFull = sDf
sDf = subset(sDf, variable == 'agonistEffect')
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
animalCount = list()
for (u in 1:length(unique(sDf$groupnames))){
    animalDf = subset(sDf, groupnames == unique(sDf$groupnames)[u])
    animalCount[u] = length(unique(animalDf$animalID))
    }
# to show also the data_summary of the antagonists we use sDfFull containing all the c
data_summaryFull = data_meanSDSEM(sDfFull, varname = "value", groupnames = "groupnames
sumOut = capture.output(data_summaryFull)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
  sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
    geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "g
    geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
    geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = 1
    geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dod
    coord_cartesian(ylim = c(-20, 150)) +
    theme_cowplot(font_size = 12)+
    stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position
    scale_x_discrete(limits = xLabel)+
    labs(ylab('% baseline'))+
    labs(xlab(NULL))+
    labs(title = paste(graphTitle,variableSelect[k],sep='_'))+
    labs(caption = sumRepOut)+
    theme(plot.caption = element_text(size = 8, hjust = 0))+
    theme(plot.title = element_text(size = 12))+
    geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
    geom_segment(aes(x=0.5, y=0, x=0)+
    theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank()
    theme(text=element_text(size=12))
```


MDDAMGO agonistEffettDDPDPE agonistEffetCDAMGO agonistEffetCDPDPE agonistEffect

```
groupnames n value sd sem

MDDAMGO agonistEffect 7 22.20144044 9.680842743 3.659014625

MDDAMGO antagonistEffect 6 90.99290590 9.349664646 3.816984608

MDDPDPE agonistEffect 6 96.43610102 9.555016325 3.900819080

MDDPDPE antagonistEffect 5 85.26006450 10.107551431 4.520234417

PFCDAMGO agonistEffect 7 93.88351727 14.705309082 5.558084398

PFCDAMGO antagonistEffect 6 86.74916218 10.500669365 4.286880317

PFCDPDPE agonistEffect 6 81.64824047 9.635880182 3.933831612

PFCDPDPE antagonistEffect 5 87.07296536 16.708757875 7.472383685
```

```
else if (trySDf$variable[i] == 'antagonistValue'){
                                trySDf$drug[i] = as.character(trySDf$antagonistName[i])
                        if (is.finite(trySDf$value[i])){
                                if (trySDf$value[i]>=-1 & trySDf$value[i] <=0){</pre>
                                trySDf$value[i] = trySDf$value[i]*1000
                        }}
                }
                 trySDf$drug = gsub("MD","",trySDf$drug)
                 trySDf$drug = gsub("PFC","",trySDf$drug)
                 trySDf$drug = factor(trySDf$drug, levels=unique(trySDf$drug))
                 trySDf$groupnames = paste(trySDf$drug, trySDf$source)
                 trySDf$opioidType = gsub("MD","",trySDf$opioidType)
                 trySDf$opioidType = gsub("PFC","",trySDf$opioidType)
                 trySDf$opioidType = gsub("DAMGO","mu",trySDf$opioidType)
                 trySDf$opioidType = gsub("DPDPE","delta",trySDf$opioidType)
                 trySDf$opioidType = factor(trySDf$opioidType, levels=unique(trySDf$opioidType))
                PFCMD.df = data.frame(trySDf$cellID, trySDf$source, trySDf$drug, trySDf$opioidType, trySDf$cellID, trySDf$source, trySDf$drug, trySDf$opioidType, trySDf$cellID, trySDf$source, trySDf$drug, trySDf$cellID, trySDf$cellID, trySDf$source, trySDf$cellID, trySDf$cellID, trySDf$cellID, trySDf$source, trySDf$cellID, trySDf$cellI
                 colnames(PFCMD.df) = c('cellID', 'source', 'period', 'opioidType', 'amplitude', 'group
                PFCMD.df$period = gsub("BASEDPDPE","BASELINE",PFCMD.df$period)
                PFCMD.df$period = gsub("BASEDAMGO","BASELINE",PFCMD.df$period)
                PFCMD.df$period = gsub("DPDPENTD","ANTAGONIST",PFCMD.df$period)
                PFCMD.df$period = gsub("DAMGOCTAP", "ANTAGONIST", PFCMD.df$period)
                PFCMD.df$period = gsub("DPDPE","AGONIST",PFCMD.df$period)
                PFCMD.df$period = gsub("DAMGO", "AGONIST", PFCMD.df$period)
                PFCMD.df$groupnames = factor(PFCMD.df$groupnames,c('BASEDAMGO PFC','DAMGO PFC','DAMGO
                                                                                         'BASEDAMGO MD', 'DAMGO MD', 'DAMGOCTAP MD',
                                                                                         'BASEDPDPE PFC', 'DPDPE PFC', 'DPDPENTD PFC',
                                                                                         'BASEDPDPE MD', 'DPDPE MD', 'DPDPENTD MD'))
                PFCMD.df$period = factor (PFCMD.df$period,levels=c("BASELINE", "AGONIST", "ANTAGONIST"
                PFCMD.df$source = factor (PFCMD.df$source,levels=c("PFC","MD"))
                PFCMD.df$opioidType = factor (PFCMD.df$opioidType,levels=c("delta","mu"))
                MO.PFC <- lmer(data= PFCMD.df, amplitude ~ period + source + opioidType + opioidType:
                 summary(MO.PFC)
                 ## Type III anova table with p-values for F-tests based on Satterthwaite's
                 ## method:
                 aov.PFC <- anova(MO.PFC, type="3")</pre>
                 aov.PFC$Pvalue=pf(q=aov.PFC$F, df1 = aov.PFC$Df, df2 = length(unique(PFCMD.df$cellID)
                 aov.PFC
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: amplitude ~ period + source + opioidType + opioidType:period +
       source:opioidType:period + source:opioidType + (1 | cellID)
     Data: PFCMD.df
         AIC
                                     logLik deviance df.resid
                          BIC
```

}

1015.6 1047.8 -493.8 987.6 60

Scaled residuals:

Min 1Q Median 3Q Max -2.52346015 -0.62057228 0.05152351 0.67664902 1.85540157

Random effects:

 Groups
 Name
 Variance Std.Dev.

 cellID
 (Intercept)
 25398.50
 159.3691

 Residual
 29461.46
 171.6434

 Number of obs: 74, groups: cellID, 7

Fixed effects:

	Estimate	Std. Error t value
(Intercept)	-437.826415	92.938000 -4.71095
periodAGONIST	66.548367	99.098363 0.67154
periodANTAGONIST	21.267651	104.361194 0.20379
sourceMD	82.446333	99.098363 0.83196
opioidTypemu	1.411987	96.009863 0.01471
periodAGONIST:opioidTypemu	-61.745795	135.048305 -0.45721
periodANTAGONIST:opioidTypemu	27.419967	141.810325 0.19336
sourceMD:opioidTypemu	-67.355476	135.048305 -0.49875
periodAGONIST:sourceMD:opioidTypedelta	-57.959033	140.146249 -0.41356
<pre>periodANTAGONIST:sourceMD:opioidTypedelta</pre>	26.047367	146.986626 0.17721
periodAGONIST:sourceMD:opioidTypemu	316.042357	129.750215 2.43578
periodANTAGONIST:sourceMD:opioidTypemu	-25.482690	135.048305 -0.18869

Correlation of Fixed Effects:

	(Intr)	prAGONIST	prANTAGONIST	${\tt sorcMD}$	opdTyp
perdAGONIST	-0.533				
prANTAGONIST	-0.506	0.475			
sourceMD	-0.533	0.500	0.475		
opioidTypem	-0.561	0.516	0.490	0.516	
prAGONIST:T	0.391	-0.734	-0.348	-0.367	-0.703
pANTAGONIST:T	0.371	-0.349	-0.737	-0.349	-0.668
<pre>srcMD:pdTyp</pre>	0.391	-0.367	-0.348	-0.734	-0.703
prdAGONIST:srcMD:pdTypd	0.377	-0.707	-0.336	-0.707	-0.365
<pre>prdANTAGONIST:srcMD:pdTypd</pre>	0.359	-0.337	-0.704	-0.674	-0.348
<pre>prdAGONIST:srcMD:pdTypm</pre>	0.000	0.000	0.000	0.000	0.338
<pre>prdANTAGONIST:srcMD:pdTypm</pre>	0.000	0.000	0.000	0.000	0.325

pAGONIST:T pANTAGONIST:T srMD:T

perdAGONIST prANTAGONIST sourceMD opioidTypem prAGONIST:T

pANTAGONIST:T 0.476

srcMD:pdTyp 0.500 0.476

```
prdAGONIST:srcMD:pdTypd
                            0.519
                                       0.247
                                                      0.519
prdANTAGONIST:srcMD:pdTypd 0.247
                                                      0.495
                                       0.518
prdAGONIST:srcMD:pdTypm
                           -0.480
                                      -0.229
                                                     -0.480
prdANTAGONIST:srcMD:pdTypm -0.231
                                       -0.476
                                                     -0.462
                           prdAGONIST:srcMD:pdTypd prdANTAGONIST:srcMD:pdTypd
perdAGONIST
prANTAGONIST
sourceMD
opioidTypem
prAGONIST:T
pANTAGONIST:T
srcMD:pdTyp
prdAGONIST:srcMD:pdTypd
prdANTAGONIST:srcMD:pdTypd 0.477
prdAGONIST:srcMD:pdTypm
                                                     0.000
                            0.000
prdANTAGONIST:srcMD:pdTypm 0.000
                                                     0.000
                           prdAGONIST:srcMD:pdTypm
perdAGONIST
prANTAGONIST
sourceMD
opioidTypem
prAGONIST:T
pANTAGONIST:T
srcMD:pdTyp
prdAGONIST:srcMD:pdTypd
prdANTAGONIST:srcMD:pdTypd
prdAGONIST:srcMD:pdTypm
```

prdANTAGONIST:srcMD:pdTypm 0.480

	Df	Sum Sq	Mean Sq	F value	Pvalue
period	2	148098.912956	74049.456478	2.51343499097	0.15042117751
source	1	169852.237633	169852.237633	5.76523552860	0.04739016688
opioidType	1	2814.370919	2814.370919	0.09552721493	0.76626101068
period:opioidType	2	64604.571482	32302.285741	1.09642526943	0.38527199585
source:opioidType	1	10767.419582	10767.419582	0.36547478438	0.56455418868
period:source:opioidType	4	255891.886462	63972.971616	2.17141236388	0.17443974406

```
lc1c <- matrix(c(0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), 1)
             lincom1c.PFC <- glht(MO.PFC, linfct = lc1c)</pre>
             summary(lincom1c.PFC)
           ##baseline vs. antagonist, MD and mu
             lc1d <- matrix(c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1), 1)
             lincom1d.PFC <- glht(MO.PFC, linfct = lc1d)</pre>
             summary(lincom1d.PFC)
 Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
        Estimate Std. Error z value Pr(>|z|)
1 == 0 \quad 21.26765 \quad 104.36119 \quad 0.20379 \quad 0.83852
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0 \ 48.68762 \ 95.83388 \ 0.50804 \ 0.61142
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
        Estimate Std. Error z value Pr(>|z|)
1 == 0 \quad 47.31502 \quad 104.36119 \quad 0.45338 \quad 0.65028
(Adjusted p values reported -- single-step method)
```

##baseline vs. antagonist, MD and delta

```
Simultaneous Tests for General Linear Hypotheses
```

```
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0.23.20493 95.83388 0.24214 0.80867
(Adjusted p values reported -- single-step method)
In [12]: ##Linear combinations testing baseline vs agnoist for each source and Rx type
         ##This tests if the agonist had an effect on amplitude
         ##As expected, the only comparison that is statistically significant is for MD/mu
           ##baseline vs. agonist, PFC and delta
             lc2a <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
             lincom2a.PFC <- glht(MO.PFC, linfct = lc2a)</pre>
             summary(lincom2a.PFC) ##This is claim 3
           ##baseline vs. agonist, PFC and mu
             lc2b \leftarrow matrix(c(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), 1)
             lincom2b.PFC <- glht(MO.PFC, linfct = lc2b)</pre>
             summary(lincom2b.PFC)
           ##baseline vs. agonist, MD and delta
             lc2c <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0), 1)</pre>
             lincom2c.PFC <- glht(MO.PFC, linfct = lc2c)</pre>
             summary(lincom2c.PFC) ##Second part of claim 3
           ##baseline vs. agonist, MD and mu
             lc2d <- matrix(c(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), 1)</pre>
             lincom2d.PFC <- glht(MO.PFC, linfct = 1c2d)</pre>
             summary(lincom2d.PFC) ##This is claim 2
 Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0.66.54837 99.09836 0.67154 0.50188
(Adjusted p values reported -- single-step method)
```

```
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
       Estimate Std. Error z value Pr(>|z|)
1 == 0 4.802571 91.747257 0.05235 0.95825
(Adjusted p values reported -- single-step method)
Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
        Estimate Std. Error z value Pr(>|z|)
1 == 0 \quad 8.589333 \quad 99.098363 \quad 0.08667 \quad 0.93093
(Adjusted p values reported -- single-step method)
 Simultaneous Tests for General Linear Hypotheses
Fit: lmer(formula = amplitude ~ period + source + opioidType + opioidType:period +
    source:opioidType:period + source:opioidType + (1 | cellID),
    data = PFCMD.df, REML = FALSE)
Linear Hypotheses:
        Estimate Std. Error z value Pr(>|z|)
1 == 0 320.84493 91.74726 3.49705 0.00047043 ***
```

In [13]: ##Linear combination comparing the difference in baseline and agnoist for MD vs PFC w ##when rx=mu: (baseline vs. agonist for PFC) vs. (baseline vs. agonist for MD) - th

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 (Adjusted p values reported -- single-step method)

4 Figure 1 - figure supplement 2

4.1 Figure 1 - figure supplement 2c

```
Figure 1 - figure supplement 2c
       # Subset: opto stim ACC to DMS, recorded EPSC, from MSNs with DAMGO/DPDPE/antagonists
       tempSDF = subset(df, genoType != "MORKOho" & genoType != "MORWTho" & stimSource == "A
       tempSDF = subset(tempSDF, signal == "EPSC" & agonistName == "DAMGO" | agonistName ==
       #Important for good functioning of the script: No need to change:
       cols = colnames(tempSDF)
       tempSDF = melt(tempSDF, id.vars = cols[1:19],measure.vars = cols[20:21])
       # give the tempSDF a specific name, needs to be changed for every new subset
       sDf = subset(tempSDF, parameter == 'amplitude')
       xLabel = c("DAMGO", "NALOX", "DPDPE", "NALTRI")
       antagonistSelect = c("DAMGONALOX", "DPDPENALTRI")
       graphTitle = c("Figure 1 - figure supplement 2c")
       # prepare data into matrix for Skillings-Mack test.
       ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
       ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
       # # to avoid problems with sign reversal during agonist/antagonist treatment all cond
       # # after that the SMmatrix can be transformed to absolute values
```

```
for (u in 1:nrow(ssDf)){
    if (ssDf$baseValue[u]<0){</pre>
        if (is.finite(ssDf$agonistValue[u])){
            if (ssDf$agonistValue[u]>0){
                 ssDf agonist Value [u] = -0.0001
            }
        }
        if (is.finite(ssDf\u00e4antagonistValue[u])){
            if (ssDf$antagonistValue[u]>0){
                 ssDf\antagonistValue[u]=-0.0001
            }
        }
    }
    if (ssDf$baseValue[u]>0){
        if (is.finite(ssDf$agonistValue[u])){
            if (ssDf$agonistValue[u]<0){</pre>
                 ssDf$agonistValue[u]=0.0001
            }
        }
        if (is.finite(ssDf\antagonistValue[u])){
            if (ssDf\u00e4antagonistValue[u]<0){</pre>
                 ssDf\antagonistValue[u]=0.0001
        }
    }
    if (is.finite(ssDf\antagonistName[u])){
        if (ssDfantagonistName[u] !=antagonistSelect[1] \& ssDfantagonistName[u] !=a:
            ssDf\antagonistValue[u] = NA
    }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf\agonistValue =abs(ssDf\agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
##########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf\baseValue[ssDf\bagonistName == 'DAMGO'][1:SMlen], ssDf\bagonistValue[ssDf\bagonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
# Turns out that the statistic needs to be reported differently. One need the number
BAgWilcox = wilcox.test(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen],ssDf$ago:
```

```
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf$agonistValue]
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistVal
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString,'\n Number animals agonist: ',agonistAnimal,'\n Number agonist: ',agonistAnimal,'\n Number agonist: ',agonistAnimal,'\n Number agonist: ',agonistana', ',agonistan
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DPDPE'][1:SMlen], ssDf\$agonistValue[ssDf\$agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
# Turns out that the statistic needs to be reported differently. One need the number
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName == 'DPDPE']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
```

```
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen] - ssDf\antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist: ',agonist agonist agonist
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
    sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
       geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = ";
       geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
       geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill =
       geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_doe
       coord_cartesian(ylim = c(-20,150)) +
       theme_cowplot(font_size = 12)+
       stat_summary(data =sDf, fun.data = give.n, geom = "text", fun.y = median, position
       labs(ylab('% baseline'))+
       labs(xlab(NULL))+
       labs(title = paste(graphTitle, variableSelect[k], sep='_'))+
       labs(caption = paste(reportString1,"\n", reportString2,'\n',sumRepOut))+
       theme(plot.caption = element_text(size = 5, hjust = 0))+
       theme(plot.title = element_text(size = 12))+
       geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
       geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
       theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank(
       theme(text=element_text(size=12))
```

Warning message:

Removed 7 rows containing non-finite values (stat_summary). Warning message:

Removed 7 rows containing missing values (geom_point). Warning message:

Removed 7 rows containing missing values (geom_path).

Figure 1 - figure supplement 2c_amplitude

DAMGO agonistEffedDAMGO antagonistEffedDPDPE agonistEffecDPDPE antagonistEffect

Skillings-Mack Statistic = 0.053590 , p-value = 0.973561
Palired Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Basseline vs DAMGO : Statistic W(7) = 11 p-value = 0.8875
Basseline vs NALOX : Statistic: W(6) = 8 p-value = 0.8875
DAMGO vs NALOX : Statistic: W(6) = 10 p-value = 1
Number animals agonist: 4
Number animals antagonist: 4
Number animals antagonist + 4
Number animals antagonist + 9
Skillings-Mack Statistic = 4.038461 , p-value = 0.103392
Palired Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Basseline vs DPDPE : Statistic: W(9) = 110 p-value = 0.623344

Number animals agonist: 5

groupnames n value sd sem 1 DAMGO agonistEffect 7 98-73004430 15-988971917 6 047042989 2 DAMGO anitagonistEffect 6 97-44823075 19-882503983 8.10883329 3 DPDPE agonistEffect 9 95.132834 12.347879068 4.11599889 4 DPDPE anitagonistEffect 3 88.31233097 9.3007018094 1.161838383

4.2 Figure 1 - figure supplement 2f

```
#Important for good functioning of the script: No need to change:
cols = colnames(tempSDF)
tempSDF = melt(tempSDF, id.vars = cols[1:19], measure.vars = cols[20:21])
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
# Since there are two antagonists used for
tempSDF$antagonistName=gsub("DAMGONALOX", "DAMGOCTAP",tempSDF$antagonistName)
tempSDF$antagonistName=gsub("DPDPENALTRI", "DPDPENALOX",tempSDF$antagonistName)
xLabel = c("DAMGO", "CTAP/NALOX", "DPDPE", "NALOX/NAltri")
antagonistSelect = c("DAMGOCTAP", "DPDPENALOX")
graphTitle = c("Figure 1 - figure supplement 2f")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
    if (ssDf$baseValue[u]<0){</pre>
         if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]>0){
                  ssDf$agonistValue[u]=-0.0001
             }
        }
         if (is.finite(ssDf\antagonistValue[u])){
             if (ssDf\antagonistValue[u]>0){
                  ssDf$antagonistValue[u]=-0.0001
             }
        }
    if (ssDf$baseValue[u]>0){
         if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]<0){</pre>
                  ssDf$agonistValue[u]=0.0001
             }
        }
         if (is.finite(ssDf\u00e4antagonistValue[u])){
             if (ssDf\antagonistValue[u]<0){</pre>
                  ssDf\antagonistValue[u]=0.0001
             }
        }
    if (is.finite(ssDf\antagonistName[u])){
          \texttt{if } (ssDf\$antagonistName[u] != antagonistSelect[1] \& ssDf\$antagonistName[u] != antagonistSelect[1] \& ssDf\$antagonistName[u] != antagonistSelect[1] & ssDf\$antagonistName[u] != antagonistName[u] != antag
             ssDf\antagonistValue[u] = NA
```

```
}
   }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
##########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf$agonistValue[
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen],ssDf$agonistName == 'DAMGO']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf$agonistValue]
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen],ssDf\anterior
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistVal
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString,'\n Number animals agonist: ',agonistAnimal,'\n Number agonist: ',agonistAnimal,'\n Number agonist: ',agonistAnimal,'\n Number agonist: ',agonistana', ',agonistan
```

DPDPE

```
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf$agonistValue[ssDf$agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistName]
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
   sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
   geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
   geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
```

```
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
           geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
           coord_cartesian(ylim = c(-20,150)) +
           theme_cowplot(font_size = 12)+
           stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
           labs(ylab('% baseline'))+
           labs(xlab(NULL))+
           labs(title = paste(graphTitle,variableSelect[k],sep='__'))+
           labs(caption = paste(reportString1,"\n", reportString2,'\n',sumRepOut))+
           theme(plot.caption = element_text(size = 5, hjust = 0))+
           theme(plot.title = element_text(size = 12))+
           geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
           geom_segment(aes(x=0.5, y=0, x=0 = 3.5, y=0)+
           theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())
           theme(text=element_text(size=12))
Warning message in wilcox.test.default(ssDf$baseValue[ssDf$agonistName == "DPDPE"][1:SMlen], :
cannot compute exact p-value with tiesWarning message in wilcox.test.default(ssDf$agonistValue
cannot compute exact p-value with tiesWarning message:
Removed 6 rows containing non-finite values (stat_summary). Warning message:
Removed 6 rows containing missing values (geom_point). Warning message:
Removed 6 rows containing missing values (geom_path).
```


DAMGO agonistEffedDAMGO antagonistEffedDPDPE agonistEffecDPDPE antagonistEffect

Skillings-Mack Statistic = 2.286714 , p-value = 0.318907
Paired Wilcown-rank Tests (Wilcown signed-rank test)
Baseline vs DANIGO : Statistic W, 14 = 38 p-value = 0.309991
Baseline vs CTPR-WLLOX : Statistic W, 7 |= 4 p-value = 0.375
DANIGO vs CTTR-PMLOX : Statistic W, 7 |= 4 p-value = 0.375
DANIGO vs CTTR-PMLOX : Statistic W, 7 |= 4 p-value = 0.019375
Number animals anjonist : 9
Number animals anjonist : 9
Number animals anjonist : 8 (Wilcown signed-rank test)
Baseline vs DPDE : Statistic W, 13 |= 4 p-value = 0.0415449
Baseline vs DPDE : Statistic W, 13 |= 4 p-value = 1
DPDE vs NALOXARIT : Statistic: W, 2 |= 1 p-value = 1
Number animals anjanist: 9
Number animals anjanist: 9
Number animals anjanist: 9
Number animals anjanist: 9
DANIGO agonistificet 12 93.91726790 18.09250550 4.824748403
DANIGO agonistificet 12 93.102670708 24.41810788 7.04890037
DANIGO agonistificet 12 91.1007708 24.41810788 7.04890037
DPDE 15.836373 3747873345

4.3 Figure 1 - figure supplement 2i

```
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
    if (ssDf$baseValue[u]<0){</pre>
        if (is.finite(ssDf$agonistValue[u])){
           if (ssDf$agonistValue[u]>0){
               ssDf\agonistValue[u]=-0.0001
        if (is.finite(ssDf$antagonistValue[u])){
           if (ssDf\antagonistValue[u]>0){
               ssDf$antagonistValue[u]=-0.0001
       }
   }
    if (ssDf$baseValue[u]>0){
        if (is.finite(ssDf$agonistValue[u])){
           if (ssDf$agonistValue[u]<0){</pre>
               ssDf$agonistValue[u]=0.0001
           }
        }
        if (is.finite(ssDf\u00e4antagonistValue[u])){
           if (ssDf$antagonistValue[u]<0){</pre>
               ssDf$antagonistValue[u]=0.0001
       }
    if (is.finite(ssDf$antagonistName[u])){
        ssDf\antagonistValue[u] = NA
                               }
    }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
                              37
```

give the tempSDF a specific name, needs to be changed for every new subset

sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("DAMGO", "NALOX", "DPDPE", "NALTRI")
antagonistSelect = c("DAMGONALOX", "DPDPENALTRI")
graphTitle = c("Figure 1 - figure supplement 2i")

```
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DAMGO'][1:SMlen], ssDf\$agonistValue[ssDf\$agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DAMGO'][1:SMlen], ssDf\bagonistName == 'DAMGO']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],sagonistName == 'DAMGO']
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen]
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistValue[ssDf\agonistName == 'DAMGO']
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DPDPE'][1:SMlen], ssDf\$agonistValue[s
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DPDPE'][1:SMlen],ssDf\agonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
```

diff = c(ssDf\$baseValue[ssDf\$agonistName == 'DPDPE'][1:SMlen] - ssDf\$agonistValue[ssDf

```
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] [1:SMlen], ssDf\baseValue
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistName]
AgAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMles
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistVal
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
   sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
       geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray",
       geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
       geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill =
       geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_do-
       coord_cartesian(ylim = c(-20, 150)) +
       theme_cowplot(font_size = 12)+
       stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position
       labs(ylab('% baseline'))+
       labs(xlab(NULL))+
       labs(title = paste(graphTitle,variableSelect[k],sep='__'))+
       labs(caption = paste(reportString1,"\n", reportString2,'\n',sumRepOut))+
       theme(plot.caption = element_text(size = 5, hjust = 0))+
       theme(plot.title = element_text(size = 12))+
       geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
```

```
geom_segment(aes(x=0.5, y=0, x=0 = 3.5, y=0)+
theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank(
theme(text=element_text(size=12))
```

Removed 6 rows containing non-finite values (stat_summary). Warning message:

Removed 6 rows containing missing values (geom_point). Warning message:

Removed 5 rows containing missing values (geom_path).

DAMGO agonistEffedDAMGO antagonistEffedDPDPE agonistEffecDPDPE antagonistEffect

F-Mack Statistic = 31.133330 , p-value = 0.000000 Willcoxon-rank Tests (Willcoxon signed-rank test) e vs DAMGO: Statistic: W(22) = 0 p-value = 4.76837e-07 le vs DALOX : Statistic: W(15) = 37 p-value = 0.207764 0 vs NALOX : Statistic: W(15) = 0 p-value = 6.10332e-05 0 vs NALOX : Statistic: W(15) = 0 p-value = 6.10332e-05

animals agonist: 16
animals antagonist: 14
-Mack Statistic = 2.52139 , p-value = 0.283436
Micoxon-rank Tests (Wilcoxon signed-rank test)
vs DPDPE : Statistic: W(8 |= 12 p-value = 0.460
vs NALTRI : Statistic: W(4 |= 4 p-value = 0.375
vs NALTRI : Statistic: W(4 |= 0.000 p-value = 0.125

mber animals agonist: 7
imber animals antagonist: 5
groupnames n value 6
groupnames n value 6
DAMIGO agonistEffect 22 25.10380291 13.21712195 2.817898677
AMAGO antagonistEffect 8 38.83857780 20.47014823 4.88817407
DPDPE antagonistEffect 5 102.09712472 20.41843154 8.130500756

4.4 Figure 1 - figure supplement 21

```
Figure 1 - figure supplement 21
```

```
# Subset: opto stim in DMS from AMthal, recorded EPSC, from MSNs with Enk/Wash/NBQX
tempSDF = subset(df, genoType != "MORKOho" & genoType != "MORWTho" & genoType != "vGl
tempSDF = subset(tempSDF, signal == "EPSC" & agonistName == "DAMGO" | agonistName ==
#since there is a mixed bag of antagonist, lets rename the CTAP to NALOX and ICE to N.
tempSDF$antagonistName = gsub("DAMGOCTAP","DAMGONALOX", tempSDF$antagonistName)
tempSDF$antagonistName = gsub("DAMGONLX", "DAMGONALOX", tempSDF$antagonistName)
tempSDF$antagonistName = gsub("DPDPEICI","DPDPENALTRI", tempSDF$antagonistName)
tempSDF$antagonistName = gsub("DPDPENTD", "DPDPENALTRI", tempSDF$antagonistName)
tempSDF$antagonistName = gsub("DPDPENLX","DPDPENALTRI", tempSDF$antagonistName)
tempSDF$antagonistName = as.factor(tempSDF$antagonistName)
#Important for good functioning of the script: No need to change:
cols = colnames(tempSDF)
tempSDF = melt(tempSDF, id.vars = cols[1:19],measure.vars = cols[20:21])
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("DAMGO", "CTAP", "DPDPE", "NALTRI")
antagonistSelect = c("DAMGONALOX", "DPDPENALTRI")
graphTitle = c("Figure 1 - figure supplement 21")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
    if (ssDf$baseValue[u]<0){</pre>
        if (is.finite(ssDf$agonistValue[u])){
           if (ssDf$agonistValue[u]>0){
                ssDf\agonistValue[u]=-0.0001
           }
       }
        if (is.finite(ssDf\u00e4antagonistValue[u])){
           if (ssDf\u00e4antagonistValue[u]>0){
                ssDf\antagonistValue[u]=-0.0001
       }
    if (ssDf$baseValue[u]>0){
        if (is.finite(ssDf$agonistValue[u])){
           if (ssDf$agonistValue[u]<0){</pre>
                ssDf$agonistValue[u]=0.0001
        if (is.finite(ssDf\u00e4antagonistValue[u])){
           if (ssDf\u00e4antagonistValue[u]<0){</pre>
```

```
ssDf\antagonistValue[u]=0.0001
                       }
               }
       }
       if (is.finite(ssDf\u00e4antagonistName[u])){
               ssDf\antagonistValue[u] = NA
       }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf$agonistValue[
Gs = c(rep('baseline', SMlen), rep('agonist', SMlen), rep('antagonist', SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'] [1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
\label{eq:constraint} \mbox{diff} = \mbox{c}(\mbox{ssDf}\mbox{agonistName} == \mbox{'DAMGO'}] \mbox{[1:SMlen]} - \mbox{ssDf}\mbox{antagonistValue} \mbox{(ssDf}\mbox{agonistValue}) \mbox{(ssDf}\mbo
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
```

```
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DPDPE'][1:SMlen], ssDf\$agonistValue[s
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName == 'DPDPE']
BAgWilcoxFlip = wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
```

```
sumOut = capture.output(data_summary)
         sumRepOut = sumOut[1]
         for(u in 2:length(sumOut)){
           sumRepOut = paste(sumRepOut,'\n', sumOut[u])
         }
         ggplot(data_summary, aes(x = groupnames , y = value))+
             geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = ";
             geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
             geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill =
             geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_doc
             coord_cartesian(ylim = c(-20,150)) +
             theme_cowplot(font_size = 12)+
             stat_summary(data =sDf, fun.data = give.n, geom = "text", fun.y = median, position
             labs(ylab('% baseline'))+
             labs(xlab(NULL))+
             labs(title = paste(graphTitle,variableSelect[k],sep='_'))+
             labs(caption = paste(reportString1,"\n", reportString2,'\n',sumRepOut))+
             theme(plot.caption = element_text(size = 5, hjust = 0))+
             theme(plot.title = element_text(size = 12))+
             geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
             geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
             theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank(
             theme(text=element_text(size=12))
Warning message in wilcox.test.default(ssDf$baseValue[ssDf$agonistName == "DPDPE"][1:SMlen], :
cannot compute exact p-value with tiesWarning message in wilcox.test.default(ssDf$agonistValue
cannot compute exact p-value with tiesWarning message:
Removed 1 rows containing non-finite values (stat_summary). Warning message:
Removed 1 rows containing missing values (geom_point).
```


Skillings-Mack Statistic = 9.398842 , p-value = 0.009101 Palired Wilcoxon-rank Tests (Wilcoxon signed-rank test) Baseline vs DAMGO 'Statistic': W 6 |= 0 p-value = 0.03125 Baseline vs CTAP : Statistic: W 5 |= 1 p-value = 0.125 DAMGO vs CTAP : Statistic: W 5 |= 0 p-value = 0.0625

Number animals agonist: 5
Number animals anatonist: 4
Skillings-Mack Statistic = 6.00000, p-value = 0.049787
Palred Willoxon-rank Tests (Wilcoxon signed-rank test)
Baseline vs DPDPE: Statistic: W(3) = 0 p-value = 0.173568
Baseline vs NALTRI : Statistic: W(3) = 0 p-value = 0.25
DPDPE vs NALTRI : Statistic: W(3) = 0 p-value = 0.27

Number animals agonist: 2 Number animals antagonist: 2

1 DAMGO agonisiEffect 6 18.45943730 9.076301394 3.705384528 2 DAMGO antagonisiEffect 5 82.42432887 34.533092058 15.44368828 3 DPDPE agonisiEffect 1100.94129281 9.852904983 4928452491 4 DPDPE antagonisiEffect 4 89.81113911 9.988911897 4.993450498

5 Figure 2c

```
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("DAMGO", "CTAP", "DPDPE", "NALTRI")
antagonistSelect = c("DAMGOCTAP", "DPDPENALTRI")
graphTitle = c("Figure 2c")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
    if (ssDf$baseValue[u]<0){</pre>
        if (is.finite(ssDf$agonistValue[u])){
            if (ssDf$agonistValue[u]>0){
                 ssDf$agonistValue[u]=-0.0001
            }
        }
        if (is.finite(ssDf\antagonistValue[u])){
            if (ssDf$antagonistValue[u]>0){
                 ssDf\antagonistValue[u]=-0.0001
        }
    }
    if (ssDf$baseValue[u]>0){
        if (is.finite(ssDf$agonistValue[u])){
            if (ssDf$agonistValue[u]<0){</pre>
                 ssDf\agonistValue[u]=0.0001
            }
        if (is.finite(ssDf\u00e4antagonistValue[u])){
            if (ssDf\u00e4antagonistValue[u]<0){</pre>
                 ssDf\antagonistValue[u]=0.0001
            }
        }
    }
    if (is.finite(ssDf\antagonistName[u])){
        if (ssDf\u00e4antagonistName[u] !=antagonistSelect[1] & ssDf\u00e4antagonistName[u] !=a:
            ssDfantagonistValue[u] = NA
    }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
```

```
# DAMGO
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf$agonistValue[
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DAMGO'][1:SMlen], ssDf\bagonistName == 'DAMGO']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],sagonistName == 'DAMGO']
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen] - ssDf\antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString,'\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist 
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\baseValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName == 'DPDPE']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
```

BAgWilcox\$statistic = min(c(BAgWilcox\$statistic, BAgWilcoxFlip\$statistic))

```
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'][1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistName]
AgAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
BNBQXAnno = pvalAnno(BNBQXWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
   sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
       geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = ";
       geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
       geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill =
       geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_do-
       coord_cartesian(ylim = c(-20, 150)) +
       theme_cowplot(font_size = 12)+
       stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position
       labs(ylab('% baseline'))+
       labs(xlab(NULL))+
       labs(title = paste(graphTitle,variableSelect[k],sep='_'))+
       labs(caption = paste(reportString1,"\n", reportString2,'\n',sumRepOut))+
       theme(plot.caption = element_text(size = 5, hjust = 0))+
```

```
theme(plot.title = element_text(size = 12))+
geom_segment(aes(x=1, y=175, xend = 2, yend = 175))+
geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank(
theme(text=element_text(size=12))
```


Skillings-Mack Statistic = 9.333333 , p-value = 0.009404 Paired Wilcoxon-rank Tests (Wilcoxon signed-rank test) Baseline vs DAMGO : Statistic: W(6)= 0 p-value = 0.03125 Baseline vs CTAP : Statistic: W(6)= 7 p-value = 0.03125 DAMGO vs CTAP : Statistic: W(6)= 0 p-value = 0.03125

Number animalis agonist: 3
Number animalis antagonist: 3
Skillings-Mack Statistic = 0.000000 , p-value = 1.000000
Palred Wilcoxon-rank Tests (Wilcoxon signed-rank fest)
Baselline vs DPDE: Statistic: W(5) = 7 p-value = 1
Baselline vs NALTRI: Statistic: W(5) = 6 p-value = 0.812
DPDPE vs NALTRI: Statistic: W(5) = 6 p-value = 0.812

Number animais agonist: 3 Number animais antagonist: 3 groupnames n valu

groupnames n value so sem
1 DAMIGO agonistEffect 6 18.05421877 9.461076336 3.862468240
2 DAMIGO antagonistEffect 6 98.55824916 9.258614599 3.77981358.
3 DPDPE agonistEffect 5 100.47377438 17.821503615 7.880575990

6 Figure 4

6.1 Figure 4c

```
# Subset: photostim in ACC, recorded EPSC, from L5 PYR with DAMGO and DPDPE
tempSDF = subset(df, genoType != "MORKOho" & genoType != "MORWTho" & genoType != "vGl
tempSDF = subset(tempSDF, signal == "EPSC" & agonistName == "DAMGO" |signal == "EPSC"
tempSDF$antagonistName = as.factor(tempSDF$antagonistName)
#Important for good functioning of the script: No need to change:
cols = colnames(tempSDF)
tempSDF = melt(tempSDF, id.vars = cols[1:19],measure.vars = cols[20:21])
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude')
xLabel = c("DAMGO", "DAMGOCTAP", "DPDPE", "NALTRI")
antagonistSelect = c("DAMGOCTAP", "DPDPENALTRI")
graphTitle = c("Figure 4 panel c")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
  if (ssDf$baseValue[u]<0){</pre>
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]>0){
        ssDf$agonistValue[u]=-0.0001
      }
    }
    if (is.finite(ssDf\u00e4antagonistValue[u])){
      if (ssDf$antagonistValue[u]>0){
        ssDf$antagonistValue[u]=-0.0001
      }
    }
  if (ssDf$baseValue[u]>0){
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]<0){</pre>
        ssDf$agonistValue[u]=0.0001
      }
    if (is.finite(ssDf$antagonistValue[u])){
      if (ssDf\u00e4antagonistValue[u]<0){</pre>
        ssDf$antagonistValue[u]=0.0001
      }
    }
  if (is.finite(ssDf\antagonistName[u])){
    if (ssDf\antagonistName[u] !=antagonistSelect[1] & ssDf\antagonistName[u] !=antagonistSelect[1]
```

```
ssDf\antagonistValue[u] = NA
           }
     }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf$agonistValue[
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DAMGO'][1:SMlen], ssDf\bagonistName == 'DAMGO']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistValue[ssDf\agonistName == 'DAMGO']
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
\label{eq:constraint} \mbox{diff} = \mbox{c}(\mbox{ssDf}\mbox{agonistName} == \mbox{'DAMGO'}] \mbox{[1:SMlen]} - \mbox{ssDf}\mbox{antagonistValue} \mbox{(ssDf}\mbox{agonistValue} \mbox{[2:SMlen]} - \mbox{ssDf}\mbox{(snDf}\mbox{antagonistValue} \mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}\mbox{(snDf}
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2], '\n', 'Paired Wilcoxon-rank Tests (Wilcoxon signed-rank Tests)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
```

DPDPE

```
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DPDPE'][1:SMlen], ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[s
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName == 'DPDPE']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],sagonistName == 'DPDPE']
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistName]
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist: ',agonist agonist: ',agonist agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
     sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
```

geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"

geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.

geom_line(data = sDf, aes(group = cellID), lty = 2, colour = "gray")+

```
geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
           coord_cartesian(ylim = c(-20,150)) +
           theme_cowplot(font_size = 12)+
           stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
           labs(ylab('% baseline'))+
           labs(xlab(NULL))+
           labs(title = paste(graphTitle, "amplitude", sep='_'))+
           labs(caption = paste(reportString1,"\n\n", reportString2,'\n',sumRepOut))+
           theme(plot.caption = element_text(size = 5, hjust = 0))+
           theme(plot.title = element_text(size = 12))+
           geom_segment(aes(x=1, y=175, xend = 2, yend = 175))+
           geom_segment(aes(x=0.5, y=0, x=0 = 3.5, y=0)+
           theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())
           theme(text=element_text(size=12))
Warning message in wilcox.test.default(ssDf$baseValue[ssDf$agonistName == "DPDPE"][1:SMlen], :
cannot compute exact p-value with tiesWarning message in wilcox.test.default(ssDf$agonistValue
cannot compute exact p-value with tiesWarning message:
Removed 13 rows containing non-finite values (stat_summary). Warning message:
Removed 13 rows containing missing values (geom_point). Warning message:
Removed 13 rows containing missing values (geom_path).
```


Skillings-Mack Statistic = 22.850182, p-value = 1.1e-05
Paired Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Baselline vs DAMGO: Statistic: W(17) = 1 p-value = 3.05178e-05
Baselline vs DAMGOCTAP: Statistic: W(1+) = 16 p-value = 0.00012207
DAMGO Vs DAMGOCTAP: Statistic: W(1+) = 0 p-value = 0.00012207

Number animais agonist: 13 Number animais antagonist: 12

Skillings-Mack Statistic = 0.988882, p-value = 0.609918
Palred Milcoxon-rank Tests (Wilcoxon signed-rank test)
Baseline vs DPDF: Statistic W| (1+) = 36 p-value = 0.315055
Baseline vs NALTRI: Statistic: W| (4+) = 3 p-value = 0.625
DPDFE vs NALTRI: Statistic: W| (4+) = 1 p-value = 0.625

Number animals agonist: 11 Number animals antagonist: 5

groupnames n value so sem 1 DAMGO agonistErled 17 94.01942524 20.35089078 4.984274632 2 DAMGO antagonistErled 14 77.88663765 26.89580293 7.18820569-3 DPDPE agonistErled 19 93.3467367 27.12868189 7.04123623 DPDPE antagonistErled 7 88.41111678 24.50097319 9.280497422

6.2 Figure 4f

```
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude' )#& antagonistName != "DPDPEICI" & ant
sDf$value[sDf$antagonistName =="DPDPEICI" & sDf$variable =="antagonistEffect"] = NA
sDf$value[sDf$antagonistName =="DPDPENALOX" & sDf$variable =="antagonistEffect"] = N.
xLabel = c("DAMGO", "DAMGOCTAP", "DPDPE", "NALTRI")
antagonistSelect = c("DAMGOCTAP", "DPDPENALTRI")
graphTitle = c("Figure 4 panel F")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
  if (ssDf$baseValue[u]<0){</pre>
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]>0){
        ssDf$agonistValue[u]=-0.0001
      }
    }
    if (is.finite(ssDf\u00e4antagonistValue[u])){
      if (ssDf$antagonistValue[u]>0){
        ssDf\antagonistValue[u]=-0.0001
      }
    }
  if (ssDf$baseValue[u]>0){
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]<0){</pre>
        ssDf$agonistValue[u]=0.0001
      }
    }
    if (is.finite(ssDf$antagonistValue[u])){
      if (ssDf\antagonistValue[u]<0){</pre>
        ssDf\antagonistValue[u]=0.0001
    }
  if (is.finite(ssDf\antagonistName[u])){
    	ext{if } (	ext{ssDf} 	ext{\$antagonistName[u]} != 	ext{antagonistSelect[1]} \& 	ext{ssDf} 	ext{\$antagonistName[u]} != 	ext{antagonistName[u]} 
      ssDfantagonistValue[u] = NA
    }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf\agonistValue =abs(ssDf\agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
```

```
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistValue[ssDf\agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen],ssDf\anti-
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMles
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen] - ssDf\antagonistVal
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString,'\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist agon
# DPDPF.
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf$agonistValue[ssDf$agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen],ssDf$ago:
```

```
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf$agonistValue]
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'][1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2], '\n', 'Paired Wilcoxon-rank Tests (Wilcoxon signed-rank Tests)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
   sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
   geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
   geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
   geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
   geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
   coord_cartesian(ylim = c(-20,200)) +
   theme_cowplot(font_size = 12)+
   stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
   labs(ylab('% baseline'))+
   labs(xlab(NULL))+
```

```
labs(title = paste(graphTitle,"amplitude",sep='_'))+
labs(caption = paste(reportString1,"\n\n", reportString2,'\n',sumRepOut))+
theme(plot.caption = element_text(size = 5, hjust = 0))+
theme(plot.title = element_text(size = 12))+
geom_segment(aes(x=1, y=175, xend = 2, yend = 175))+
geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())+
theme(text=element_text(size=12))
```

Warning message in wilcox.test.default(ssDf\$baseValue[ssDf\$agonistName == "DPDPE"][1:SMlen], : cannot compute exact p-value with tiesWarning message in wilcox.test.default(ssDf\$agonistValue cannot compute exact p-value with tiesWarning message:

Removed 23 rows containing non-finite values (stat_summary). Warning message:

Removed 23 rows containing missing values (geom_point). Warning message:

Removed 22 rows containing missing values (geom_path).

Figure 4 panel F_amplitude

 ${\tt DAMGO\ agonistEffe} \ {\tt DAMGO\ antagonistEffe} \ {\tt DPPE\ agonistEffec} \ {\tt DPPE\ agonistEffec} \ {\tt DPPE\ agonistEffec} \ {\tt DPPE\ antagonistEffec} \ {\tt DPPE\ agonistEffec} \ {\tt DPPE\ agon$

salimiga-vision. Statistic = 13.6/36203, p-value = 0.000394 Pallred Willoon-rank Testic (Willooxon signed-rank test) Baseline vs DAMGGCTAP: Statistic:W(14) = 0 p-value = 0.00012207 Baseline vs DAMGGCTAP: Statistic:W(8) = 10 p-value = 0.3125 DAMGO vs DAMGOCTAP: Statistic:W(8) = 3 p-value = 0.039062

Number animals agonist: 9 Number animals antagonist:

Skillings-Mack Statistic = 7.425823 , p-value = 0.024408 Palired Wilcoxon-rank Tests (Wilcoxon signed-rank test) Baseline vs DPDPE : Statistic: W11 |= 1 p-value = 0.00507749 Baseline vs NALTRI : Statistic: W6 |= 8 p-value = 0.4375 DPDPE vs NALTRI : Statistic: W6 |= 4 p-value = 0.21875

Number animals agonist: 6 Number animals antagonist: 5

1 DAMGO agonistEffect 14 37.92881050 29.32998840 7.838763780 2 DAMGO antagonistEffect 8 83.08159536 31.42050087 11.108824616 3 DPDPE agonistEffect 12 47.57349404 27.29501377 7.879391775 4 DPDPE antagonistEffect 7 102.89773640 50.28777079 19.006990786

7 Figure 4 - figure supplement 1

7.1 Figure 4 - figure supplement 1c

```
Figure 4 - figure supplement 1c
        \# Subset: photostim in ACC, recorded EPSC, from L23 PYR with DAMGO and DPDPE
        tempSDF = subset(df, genoType != "MORKOho" & genoType != "MORWTho" & genoType != "vGl
        tempSDF = subset(tempSDF, signal == "EPSC" & agonistName == "DAMGO" |signal == "EPSC"
        tempSDF$antagonistName = as.factor(tempSDF$antagonistName)
        #Important for good functioning of the script: No need to change:
        cols = colnames(tempSDF)
        tempSDF = melt(tempSDF, id.vars = cols[1:19], measure.vars = cols[20:21])
        # give the tempSDF a specific name, needs to be changed for every new subset
        sDf = subset(tempSDF, parameter == 'amplitude')
        xLabel = c("DAMGO", "DAMGOCTAP", "DPDPE", "NALTRI")
        antagonistSelect = c("DAMGOCTAP", "DPDPENALTRI")
        graphTitle = c("Figure 4 - figure supplement 1c")
        # prepare data into matrix for Skillings-Mack test.
        ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
        ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
        # # to avoid problems with sign reversal during agonist/antagonist treatment all cond
        # # after that the SMmatrix can be transformed to absolute values
        for (u in 1:nrow(ssDf)){
         if (ssDf$baseValue[u]<0){</pre>
           if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]>0){
               ssDf$agonistValue[u]=-0.0001
             }
           if (is.finite(ssDf\antagonistValue[u])){
             if (ssDf$antagonistValue[u]>0){
               ssDf\antagonistValue[u]=-0.0001
             }
           }
         }
         if (ssDf$baseValue[u]>0){
           if (is.finite(ssDf$agonistValue[u])){
```

if (ssDf\$agonistValue[u]<0){</pre>

```
ssDf$agonistValue[u]=0.0001
      }
    }
    if (is.finite(ssDf\u00e4antagonistValue[u])){
      if (ssDf\u00e4antagonistValue[u]<0){</pre>
        ssDf\antagonistValue[u]=0.0001
      }
    }
  if (is.finite(ssDf\antagonistName[u])){
    ssDfantagonistValue[u] = NA
  }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DAMGO'][1:SMlen], ssDf\$agonistValue[s
Gs = c(rep('baseline', SMlen), rep('agonist', SMlen), rep('antagonist', SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DAMGO'][1:SMlen], ssDf\bagonistName == 'DAMGO']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
```

```
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf$agonistValue[ssDf$agonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] [1:SMlen], ssDf\baseValue
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistVal
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
```

```
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
         data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
         sumOut = capture.output(data_summary)
         sumRepOut = sumOut[1]
         for(u in 2:length(sumOut)){
           sumRepOut = paste(sumRepOut,'\n', sumOut[u])
         }
         ggplot(data_summary, aes(x = groupnames , y = value))+
           geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
           geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
           geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
           geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
           coord_cartesian(ylim = c(-20,150)) +
           theme_cowplot(font_size = 12)+
           stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
           labs(ylab('% baseline'))+
           labs(xlab(NULL))+
           labs(title = paste(graphTitle, "amplitude", sep='_'))+
           labs(caption = paste(reportString1, "\n\n", reportString2, '\n', sumRepOut))+
           theme(plot.caption = element_text(size = 5, hjust = 0))+
           theme(plot.title = element_text(size = 12))+
           geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
           geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
           theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())
           theme(text=element_text(size=12))
Removed 6 rows containing non-finite values (stat_summary). Warning message:
Removed 6 rows containing missing values (geom point). Warning message:
```

Removed 6 rows containing missing values (geom_path).

Skillings-Mack Statistic = 18.147709, p-value = 0.000115
Palired Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Baseline vs DAMGC: Statistic: W(15) = 0 p-value = 6.10352e-05
Baseline vs DAMGCCTAP: Statistic: W(12) = 2 p-value = 0.268113
DAMGC vs DAMGCCTAP: Statistic: W(12) = 5 p-value = 0.00488281

Number animals agonist: 8

Skillings-Mack Statistic = 1.868025, p-value = 0.393367
Palred Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Baseline vs DPDPE: Statistic: W(8) = 9 p-value = 0.128906
Baseline vs NALTRI: Statistic: W(6) = 8 p-value = 0.8875
DPDPE vs NALTRI: Statistic: W(6) = 9 p-value = 0.8875

Number animals agonist: 7 Number animals antagonist: 6

groupnames n value so sem
1 DAMGO agonisEffect 15 69 31737792 12 84510342 3.316591442
2 DAMGO antagonisEffect 12 93.52311737 22.19088380 6.40595636
3 DPDPE agonisEffect 9 92.89156108 16.23144091 5.410480304
4 DPDPE antagonisEffect 6 97 98803126 23.07060231 9.418533954

7.2 Figure 4 - figure supplement 1f

```
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude' )#& antagonistName != "DPDPEICI" & ant
sDf$value[sDf$antagonistName =="DPDPEICI" & sDf$variable =="antagonistEffect"] = NA
sDf$value[sDf$antagonistName =="DPDPENALOX" & sDf$variable =="antagonistEffect"] = N.
xLabel = c("DAMGO", "DAMGOCTAP", "DPDPE", "NALTRI")
antagonistSelect = c("DAMGOCTAP", "DPDPENALTRI")
graphTitle = c("Figure 4 - figure supplement 1f")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
  if (ssDf$baseValue[u]<0){</pre>
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]>0){
        ssDf$agonistValue[u]=-0.0001
      }
    }
    if (is.finite(ssDf\u00e4antagonistValue[u])){
      if (ssDf$antagonistValue[u]>0){
        ssDf\antagonistValue[u]=-0.0001
      }
    }
  if (ssDf$baseValue[u]>0){
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]<0){</pre>
        ssDf$agonistValue[u]=0.0001
      }
    }
    if (is.finite(ssDf$antagonistValue[u])){
      if (ssDf\antagonistValue[u]<0){</pre>
        ssDf$antagonistValue[u]=0.0001
    }
  if (is.finite(ssDf\u00e4antagonistName[u])){
    	ext{if } (	ext{ssDf} 	ext{\$antagonistName[u]} != 	ext{antagonistSelect[1]} \& 	ext{ssDf} 	ext{\$antagonistName[u]} != 	ext{antagonistName[u]} 
      ssDf$antagonistValue[u] = NA
    }
  }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf\agonistValue =abs(ssDf\agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
```

```
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistValue[ssDf\agonistValue]
Gs = c(rep('baseline', SMlen), rep('agonist', SMlen), rep('antagonist', SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\agonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DAMGO'][1:SMlen],ssDf\anti-
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMles
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen] - ssDf\antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString,'\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist agon
# DPDPF.
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\$baseValue[ssDf\$agonistName == 'DPDPE'][1:SMlen], ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[ssDf\$agonistValue[s
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen],ssDf$ago:
```

```
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf$agonistValue]
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'][1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
\label{eq:constraint} \mbox{diff} = \mbox{c}(\mbox{ssDf}\mbox{sagonistName} == \mbox{'DPDPE'}] \mbox{[1:SMlen]} - \mbox{ssDf}\mbox{santagonistValed} = \mbox{constraint} = \mbox{constra
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
     sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
     geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
     geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
     geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
     geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
     coord_cartesian(ylim = c(-20,200)) +
     theme_cowplot(font_size = 12)+
     stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
     labs(ylab('% baseline'))+
     labs(xlab(NULL))+
     labs(title = paste(graphTitle, "amplitude", sep='_'))+
     labs(caption = paste(reportString1,"\n\n", reportString2,'\n',sumRepOut))+
```

```
theme(plot.caption = element_text(size = 5, hjust = 0))+
theme(plot.title = element_text(size = 12))+
geom_segment(aes(x=1, y=175, xend = 2, yend = 175))+
geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())+
theme(text=element_text(size=12))
```

Warning message in wilcox.test.default(ssDf\$baseValue[ssDf\$agonistName == "DPDPE"][1:SMlen], : cannot compute exact p-value with tiesWarning message in wilcox.test.default(ssDf\$agonistValue cannot compute exact p-value with tiesWarning message:

Removed 23 rows containing non-finite values (stat_summary). Warning message:

Removed 23 rows containing missing values (geom_point). Warning message:

Removed 22 rows containing missing values (geom_path).

Figure 4 - figure supplement 1f_amplitude

DAMGO agonistEffedDAMGO antagonistEffedDPDPE agonistEffecDPDPE antagonistEffect

Skillings-Mack Statistic = 15.678203 , p-value = 0.000394
Palred Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Baseline vs DANGO - Statistic: W(14) = 0 , y-value = 0.00012207
Baseline vs DANGO-CTAP : Statistic: W(8) = 10 p-value = 0.3125
DANGO Vs DANGO-CTAP - Statistic: W(9) = 3 p-value = 0.0390625

Number animals agonist: 9 Number animals antagonist: 7

Skillings-Mack Statistic = 7.425823, p-value = 0.024406
Palired Willoxon-rank Tests (Willoxons signiged-trank fest)
Baselline vs DPDPE: Statistic: W(11) = 1 p-value = 0.0050774(
Baselline vs NALTRI: Statistic: W(6) = 6 p-value = 0.4375
DPDPE vs NALTRI: Statistic: W(8) = 4 p-value = 0.21875

Number animals agonist: 6 Number animals antagonist: 5

groupnames n value so berri 1 DAMIGO agonisEffect 14 37-9288100 29,32996840 7.838763780 2 DAMIGO antiagonisEffect 8 83.08159338 31.42050087 11.108824616 3 DPDPE agonisEffect 12 47.57349404 27.29501377 7.879391775 4 DPDPE antiagonisEffect 7 102.89773640 50.28777079 19.006990786

7.3 Figure 4 - figure supplement 2c

```
Figure 4 - figure supplement 2c
        selectCell = read.csv("data/chargeTransferTailExp.csv" )
        selectCell$AUC = abs(selectCell$AUC)
        give.n <- function(x){</pre>
           return(c(y = -2, label = length(x)))
        # Statistics for the tail injected only:
        tailDf = selectCell[grepl('TAIL',selectCell$circuit),]
       tailDf = subset(tailDf, !is.nan(AUC))
       r= capture.output(dunn.test(tailDf$AUC,tailDf$circuit, kw = TRUE, method = 'hochberg'
       reportString = paste(r[1],'\n',r[2],'\n',r[3],'\n',r[4],'\n',r[5],'\n',r[6],'\n',r[7]
        # Statistics for the all groups:
       r= capture.output(dunn.test(selectCell$AUC,selectCell$circuit, kw = TRUE, method = 'b'
       reportString = paste(r[1],'\n',r[2],'\n',r[3],'\n',r[4],'\n',r[5],'\n',r[6],'\n',r[7]
        # order selectCell factors:
        selectCell$circuit <- factor(selectCell$circuit, c('MD_DMS_MSN', 'MD_L2_PYR', 'MD_L5_PYR')</pre>
        # count number of cells tested;
       uniqAnimal= capture.output(aggregate(animalID ~ circuit, selectCell, function(x) length
        uniqCell= capture.output(aggregate(cellID ~ circuit, selectCell, function(x) length(union)
        #plot
        ggplot(selectCell, aes(x = circuit, y = AUC))+
           geom_point(shape = 1, colour = 'black', fill = NA, size = 3)+
           coord_cartesian(ylim = c(-3, 15)) +
           stat_boxplot(geom = 'errorbar', width = 0.2)+
           geom_boxplot(varwidth = FALSE, notch = FALSE, fill = NA)+
           theme_cowplot(font_size = 16)+
           labs(ylab('Charge transfer (pC)'))+
           theme(axis.text.x=element_text(angle=90,hjust=1))+
           labs(title = 'ChargeTransfer per circuit')+
           labs(caption = reportString)+
           theme(plot.caption = element_text(size = 8, hjust = 0))+
           theme(plot.title = element_text(size = 16))
        #To count the amount of animals used:
        aggregate(animalID ~ circuit, selectCell, unique)
       reportString3 = paste(uniqAnimal[1],uniqAnimal[2],uniqAnimal[3],uniqAnimal[4],uniqAnim
        #plot
       ggplot(selectCell, aes(x = circuit, y = AUC))+
```

```
geom_point(shape = 1, colour = 'black', fill = NA, size = 3)+
coord_cartesian(ylim = c(-3, 15))+
stat_boxplot(geom = 'errorbar', width = 0.2)+
geom_boxplot(varwidth = FALSE, notch = FALSE, fill = NA)+
theme_cowplot(font_size = 16)+
labs(ylab('Charge transfer (pC)'))+
theme(axis.text.x=element_text(angle=90,hjust=1))+
labs(title = 'ChargeTransfer per circuit')+
labs(caption = reportString3)+
theme(plot.caption = element_text(size = 8, hjust = 0))+
theme(plot.title = element_text(size = 16))
```

Removed 19 rows containing non-finite values (stat_boxplot). Warning message: Removed 19 rows containing non-finite values (stat_boxplot). Warning message: Removed 19 rows containing missing values (geom_point).

· 100
animalID
43, 17, 12, 13, 14, 10, 11, 15, 16, 18, 19, 20, 27, 28, 7, 8, 9, 29, 32, 34, 36, 39, 50, 55, 56, 57, 45
2, 1, 3, 22, 23, 24, 25, 48, 50, 52, 53, 4, 49
2, 1, 23, 26, 6, 30, 31, 35, 33, 37, 38, 39, 40, 42, 43, 44, 47, 48, 21, 5, 49
41, 51, 58
58, 59
41, 51, 58
41, 51, 58, 59

Warning message:

Removed 19 rows containing non-finite values (stat_boxplot). Warning message: Removed 19 rows containing non-finite values (stat_boxplot). Warning message: Removed 19 rows containing missing values (geom_point).

Kruskal-Wallis rank sum test

data: x and group Kruskal-Wallis chi-squared = 69.6541, df = 6, p-value = 0

Comparison of x by group (Bonferroni)

7.4 Figure 4 - figure supplement 2d

```
titleGr = 'tailRatio vs DAMGO effect L2/3 and L5 Pyr ACC'
# plot correlation graph
ggplot(teDf, aes(x=tailRatio, y=agonistEffect))+
  geom_point(size = 5)+
  geom_smooth(method=lm)+
  coord_cartesian(xlim = c(0, 1.0), ylim = c(0, 150))+
  labs(caption = reportString)+
  labs(title = titleGr)+
  theme(plot.caption = element_text(size = 16, hjust = 0))+
  theme(plot.title = element_text(size = 16))
```

Removed 6 rows containing non-finite values (stat_smooth). Warning message: Removed 6 rows containing missing values (geom_point).

tailRatio vs DAMGO effect L2/3 and L5 Pyr ACC

Linear regression model (tailRatio ~ agonistEffect(Damgo)): Estimate Std. Error t value Pr(>ltl)

(Intercept) 0.293184419 0.115197813 2.54505 0.016953 * agonistEffect -0.001763966 0.001814614 -0.97209 0.339635 R-squared: 0.0338149179578441

F-statistic: 0.9449564 on 1 and 27 DF, p-value: 0.3396352

8 Figure 5

8.1 Figure 5c

```
# Subset: opto stim of L5PV in ACC, recorded EPSC, from L5 PYR with DAMGO/DPDPE
        tempSDF = subset(df, genoType != "MORKOho" & genoType != "MORWTho" & genoType != "vGl
        tempSDF = subset(tempSDF, signal == "IPSC" & agonistName == "DAMGO" |signal == "IPSC"
        #Important for good functioning of the script: No need to change:
        cols = colnames(tempSDF)
        tempSDF = melt(tempSDF, id.vars = cols[1:19],measure.vars = cols[20:21])
        # give the tempSDF a specific name, needs to be changed for every new subset
        sDf = subset(tempSDF, parameter == 'amplitude' )#8 antagonistName != "DPDPEICI" & ant
        sDf$value[sDf$antagonistName =="DPDPEICI" & sDf$variable =="antagonistEffect"] = NA
        sDf$value[sDf$antagonistName =="DPDPENALOX" & sDf$variable =="antagonistEffect"] = N.
        xLabel = c("DAMGO", "DAMGOCTAP", "DPDPE", "NALTRI")
        antagonistSelect = c("DAMGOCTAP", "DPDPENALTRI")
        graphTitle = c("Figure 5c")
        # prepare data into matrix for Skillings-Mack test.
        ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
        ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
        # # to avoid problems with sign reversal during agonist/antagonist treatment all cond
        # # after that the SMmatrix can be transformed to absolute values
        for (u in 1:nrow(ssDf)){
          if (ssDf$baseValue[u]<0){
            if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]>0){
               ssDf$agonistValue[u]=-0.0001
             }
           if (is.finite(ssDf\u00e4antagonistValue[u])){
             if (ssDf\u00e4antagonistValue[u]>0){
               ssDf\antagonistValue[u]=-0.0001
           }
          if (ssDf$baseValue[u]>0){
           if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]<0){</pre>
               ssDf$agonistValue[u]=0.0001
             }
           }
```

if (is.finite(ssDf\u00e4antagonistValue[u])){

```
if (ssDf\u00e4antagonistValue[u]<0){</pre>
        ssDf\antagonistValue[u]=0.0001
      }
   }
  if (is.finite(ssDf\u00e4antagonistName[u])){
    ssDf$antagonistValue[u] = NA
  }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf\agonistValue =abs(ssDf\agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# In this graph we will be having two sets of repeated measures omnibus test. Thus ru
# DAMGO
##########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DAMGO']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen], ssDf$agonistValue[
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
# Turns out that the statistic needs to be reported differently. One need the number
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DAMGO'][1:SMlen], ssDf\bagonistName == 'DAMGO']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DAMGO'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DAMGO'][1:SMlen], ssDf\
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DAMGO'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DAMGO'][1:SMlen] - ssDf$antagonistVal
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
```

```
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DAMGO' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DAMGO' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString1 = paste(reportString,'\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist: ',agonist agonist: ',agonist agonist ag
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistValue[ssDf\bagonistValue]
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName == 'DPDPE']
BAgWilcoxFlip = wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist a
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
```

```
for(u in 2:length(sumOut)){
           sumRepOut = paste(sumRepOut,'\n', sumOut[u])
         ggplot(data_summary, aes(x = groupnames , y = value))+
           geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
           geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
           geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
           geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
           coord_cartesian(ylim = c(-20,200)) +
           theme_cowplot(font_size = 12)+
           stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
           labs(ylab('% baseline'))+
           labs(xlab(NULL))+
           labs(title = paste(graphTitle, "amplitude", sep='_'))+
           labs(caption = paste(reportString1,"\n\n", reportString2,'\n',sumRepOut))+
           theme(plot.caption = element_text(size = 5, hjust = 0))+
           theme(plot.title = element_text(size = 12))+
           theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())
           theme(text=element_text(size=12))
Warning message:
Removed 7 rows containing non-finite values (stat_summary). Warning message:
Removed 7 rows containing missing values (geom_point). Warning message:
Removed 7 rows containing missing values (geom_path).
```


DAMGO agonistEffe@AMGO antagonistEffe@PDPE agonistEffecDPDPE antagonistEffect

Skillings-Mack Statistic = 0.004832 , p-value = 0.997887 Paired Wilcoxon-rank Tests (Wilcoxon signed-rank test) Baseline vs DAMGO - Statistic: W(11) = 25 p-value = 0.519531 Baseline vs DAMGOCTAP : Statistic: W(9) = 22 p-value = 1 DAMGO vs DAMGOCTAP : Statistic: W(9) = 18 p-value = 0.852344

Number animals agonist: 5

Skillings-Mack Statistic = 19.598716, p-value = 5.56-05
Palired Wilcoxon-rank Tests (Wilcoxon signed-rank test)
Baselline vs DPDPE: Statistic: W(15) = 0 p-value = 6.10352e-05
Baselline vs NALTRI: Statistic: W(10) = 2 p-value = 0.0058938
DPDPE vs NALTRI: Statistic: W(10) = 5 p-value = 0.0198312

Number animals agonist: 8 Number animals antagonist: 5

 $IHC_PV_stdev = 0.005$

groupnames n value s d sem
1 DA/IGO agonisEffect 11 104.11967940 20.29828169 6.120162205
2 DA/IGO agonisEffect 11 113.00244697 32.80240820 9.903373788
3 DPDPE agonisEffect 16 41.86616404 22.0063070 57.3372472
4 DPDPE an

8.2 Figure 5f

```
IHC_DOR_stdev = 0.001
IHC_PVDOR_stdev = 0.006

ISH_pvalb_mean = 0.255
ISH_oprd1_mean = 0.972
ISH_pvalboprd1_mean = 0.227

ISH_pvalb_stdev = 0.029
ISH_oprd1_stdev = 0.005
ISH_pvalboprd1_stdev = 0.034
```

vennIHC.plot <- draw.pairwise.venn(IHC_PV_mean, IHC_DOR_mean, IHC_PVDOR_mean, c("PV+"
grid.draw(vennIHC.plot)</pre>

9 Figure 6

 $See\ analyze_cellAttached_experiments.m$

10 Figure 6 - figure supplement 1

```
# Plot latency data and perform Test for Significance on spike probability
# across conditions
# Requires installation of packages: 'Skillings.Mack', 'gqplot2', 'cowplot'
library(Skillings.Mack)
library(ggplot2)
library(cowplot)
df_latency = read.csv('data/data_cellAttached_latencies.csv')
# subset for all DAMGO experiments with a baseline value
df DAMGO = df_latency[rep(!is.nan(df_latency$spike_latency_DAMGO[grep('baseDAMGO', df
print('DAMGO AP latency Skillings-Mack analysis')
Ski.Mack(df_DAMGO$spike_latency_DAMGO,df_DAMGO$conditionDAMGO,df_DAMGO$cellDAMGO)
print('Paired Wilcoxon signed rank test baseline vs Damgo')
# define here the two groups to compare
first_group = df_DAMGO$spike_latency_DAMGO[df_DAMGO$conditionDAMGO=='baseDAMGO']
second_group = df_DAMGO$spike_latency_DAMGO[df_DAMGO$conditionDAMGO=='DAMGO']
# Below is required to calculate n and statistic in a sequence independent way
# (first vs second group and second vs first group)
wilcox_antero = wilcox.test(first_group, second_group, paired = TRUE)
wilcox_retro = wilcox.test(second_group, first_group, paired = TRUE)
statistic = min(c(wilcox antero$statistic, wilcox retro$statistic))
diff = c(first_group-second_group)
n = length(na.omit(diff[diff != 0]))
print(paste('W(', n, ') = ', statistic, '. p = ', wilcox_antero$p.value))
print('Paired Wilcoxon signed rank test Damgo vs CTAP')
# define here the two groups to compare
first_group = df_DAMGO$spike_latency_DAMGO[df_DAMGO$conditionDAMGO=='DAMGO']
second_group = df_DAMGO$spike_latency_DAMGO[df_DAMGO$conditionDAMGO=='DAMGOCTAP']
# Below is required to calculate n and statistic in a sequence independent way
# (first vs second group and second vs first group)
wilcox_antero = wilcox.test(first_group, second_group, paired = TRUE)
wilcox_retro = wilcox.test(second_group, first_group, paired = TRUE)
statistic = min(c(wilcox antero$statistic, wilcox retro$statistic))
diff = c(first_group-second_group)
n = length(na.omit(diff[diff != 0]))
print(paste('W(', n, ') = ', statistic, '. p = ', wilcox_antero$p.value))
# subset for all DPDPE experiments with a baseline value
df_DPDPE = df_latency[rep(!is.nan(df_latency$spike_latency_DPDPE[grep('baseDPDPE', df_
print('DPDPE AP latency Skillings-Mack analysis')
Ski.Mack(df_DPDPE$spike_latency_DPDPE,df_DPDPE$conditionDPDPE,df_DPDPE$cellDPDPE)
print('Paired Wilcoxon signed rank test baseline vs DPDPE')
# define here the two groups to compare
first_group = df_DPDPE$spike_latency_DPDPE[df_DPDPE$conditionDPDPE=='baseDPDPE']
second_group = df_DPDPE$spike_latency_DPDPE[df_DPDPE$conditionDPDPE=='DPDPE']
# Below is required to calculate n and statistic in a sequence independent way
```

```
# (first vs second group and second vs first group)
         wilcox_antero = wilcox.test(first_group, second_group, paired = TRUE)
         wilcox_retro = wilcox.test(second_group, first_group, paired = TRUE)
         statistic = min(c(wilcox_antero$statistic, wilcox_retro$statistic))
         diff = c(first_group-second_group)
         n = length(na.omit(diff[diff != 0]))
         print(paste('W(', n, ') = ', statistic, '. p = ', wilcox_antero$p.value))
         print('Paired Wilcoxon signed rank test DPDPE vs Naltrindole')
         # define here the two groups to compare
         first_group = df_DPDPE$spike_latency_DPDPE[df_DPDPE$conditionDPDPE=='DPDPE']
         second_group = df_DPDPE$spike_latency_DPDPE[df_DPDPE$conditionDPDPE=='DPDPENaltrindoleges.attency_DPDPE
         # Below is required to calculate n and statistic in a sequence independent way
         # (first vs second group and second vs first group)
         wilcox_antero = wilcox.test(first_group, second_group, paired = TRUE)
         wilcox_retro = wilcox.test(second_group, first_group, paired = TRUE)
         statistic = min(c(wilcox_antero$statistic, wilcox_retro$statistic))
         diff = c(first_group-second_group)
         n = length(na.omit(diff[diff != 0]))
         print(paste('W(', n, ') = ', statistic, '. p = ', wilcox_antero$p.value))
         #for plotting combine condition and spike_latency columns.
         spike_latencies = c(df_DAMGO$spike_latency_DAMGO,df_DPDPE$spike_latency_DPDPE)
         conditions = factor(c(as.character(df_DAMGO$conditionDAMGO),as.character(df_DPDPE$conditionDAMGO),as.character(df_DPDPE$conditionDAMGO)
         df_plot = data.frame('condition'=conditions, 'spike_latency'=spike_latencies)
         ggplot(data=df_plot, aes(x=condition, y=spike_latencies))+
             geom_boxplot()+
             coord_cartesian(ylim=c(0, 20))
[1] "DAMGO AP latency Skillings-Mack analysis"
Skillings-Mack Statistic = 2.000000, p-value = 0.367879
Note: the p-value is based on the chi-squared distribution with d.f. = 2
$Nblocks
[1] 7
$Ntreatments
Γ1 3
$rawdata
             [,1]
                          [,2]
                                      [,3]
                                                   [,4]
                                                                [,5]
                                                                             [,6]
[1,] 9.240740741 11.28064516 13.33684211 13.07600000 11.41578947 12.386486486
[2,] 12.900000000 10.36896552 13.50000000 15.04000000 10.46000000 14.490000000
[3,] 10.995833333 11.10975610 13.43636364 15.44285714 12.72000000 9.479487179
            [,7]
[1,] 13.86000000
[2,] 18.4666667
[3,] 18.73333333
```

\$rankdata

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 3 1 1 2 2 1

[2,] 3 1 3 2 1 3 2

[3,] 2 2 2 3 3 1 3

\$varCovarMatrix

[,1] [,2] [,3]

[1,] 14 -7 -7

[2,] -7 14 -7

[3,] -7 -7 14

\$adjustedSum

[,1] [,2] [,3]

[1,] -5.196152423 1.732050808 3.464101615

- [1] "Paired Wilcoxon signed rank test baseline vs Damgo"
- [1] "W(7) = 5.p = 0.15625"
- [1] "Paired Wilcoxon signed rank test Damgo vs CTAP"
- [1] " $W(7) = 13 \cdot p = 0.9375$ "
- [1] "DPDPE AP latency Skillings-Mack analysis"

Skillings-Mack Statistic = 1.750000 , p-value = 0.416862

Note: the p-value is based on the chi-squared distribution with d.f. = 2

\$Nblocks

[1] 8

\$Ntreatments

[1] 3

\$rawdata

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 8.590625000 7.810526316 11.72500000 13.40714286 17.40000000 12.685714286

[2,] 7.317910448 8.235000000 12.40952381 13.45416667 12.40370370 9.547222222

[3,] 6.786301370 9.591666667 13.81818182 13.49615385 13.64285714 9.627777778 [.8]

[1,] 14.80714286 16.86666667

[2,] 11.10277778 15.88750000

[3,] 13.72857143 14.93333333

\$rankdata

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 3 1 1 1 3 3 3 3

[2,] 2 2 2 2 1 1 1 2

[3,] 1 3 3 3 2 2 2 1

\$varCovarMatrix

\$adjustedSum

- --

- [1] "Paired Wilcoxon signed rank test baseline vs DPDPE"
- [1] "W(8) = 6. p = 0.109375"
- [1] "Paired Wilcoxon signed rank test DPDPE vs Naltrindole"
- [1] "W(8) = 7. p = 0.1484375"

11 Figure 7d

```
Figure 7 d
        # Subset: optogentic stim in ACC, recorded EPSC, from MSNs with DPDPE
        tempSDF = subset(df, genoType != "MORKOho" & genoType != "MORWTho" & genoType != "vGl
        tempSDF = subset(tempSDF, signal == "EPSC" & agonistName == "DPDPE")
        #Important for good functioning of the script: No need to change:
        cols = colnames(tempSDF)
        tempSDF = melt(tempSDF, id.vars = cols[1:19], measure.vars = cols[20:21])
        # give the tempSDF a specific name, needs to be changed for every new subset
        sDf = subset(tempSDF, parameter == 'area' )
        sDf$value[sDf$antagonistName =="DPDPEICI" & sDf$variable =="antagonistEffect"] = NA
        sDf$value[sDf$antagonistName =="DPDPENALOX" & sDf$variable =="antagonistEffect"] = N.
        xLabel = c("DPDPE","DPDPENaltri")
        antagonistSelect = c("DPDPENALTRI")
        graphTitle = c("Figure 7 d")
        # prepare data into matrix for Skillings-Mack test.
        ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
        ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
        # # to avoid problems with sign reversal during agonist/antagonist treatment all cond
        # # after that the SMmatrix can be transformed to absolute values
        for (u in 1:nrow(ssDf)){
          if (ssDf$baseValue[u]<0){
           if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]>0){
               ssDf$agonistValue[u]=-0.0001
             }
           }
           if (is.finite(ssDf$antagonistValue[u])){
             if (ssDf\u00e4antagonistValue[u]>0){
               ssDf\antagonistValue[u]=-0.0001
             }
           }
          if (ssDf$baseValue[u]>0){
           if (is.finite(ssDf$agonistValue[u])){
             if (ssDf$agonistValue[u]<0){</pre>
               ssDf$agonistValue[u]=0.0001
```

}

```
}
        if (is.finite(ssDf\u00e4antagonistValue[u])){
            if (ssDf\u00e4antagonistValue[u]<0){</pre>
                ssDf\antagonistValue[u]=0.0001
            }
        }
    }
    if (is.finite(ssDf\antagonistName[u])){
        if (ssDf$antagonistName[u] !=antagonistSelect[1]){
            ssDf$antagonistValue[u] = NA
        }
    }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf$agonistValue =abs(ssDf$agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf\baseValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistValue]
Gs = c(rep('baseline', SMlen), rep('agonist', SMlen), rep('antagonist', SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistName
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],s
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\agonistValue[ssDf\agonistName]
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
\label{eq:constraint} \mbox{diff} = \mbox{c}(\mbox{ssDf}\mbox{agonistName} == \mbox{'DPDPE'}] \mbox{[1:SMlen]} - \mbox{ssDf}\mbox{antagonistVal} = \mbox{c}(\mbox{ssDf}\mbox{antagonistVal}) \mbox{(ssDf}\mbox{antagonistVal} = \mbox{c}(\mbox{ssDf}\mbox{antagonistVal}) \mbox{(ssDf}\mbox{antagonistVal} = \mbox{c}(\mbox{ssDf}\mbox{antagonistVal}) \mbox{(ssDf}\mbox{antagonistVal} = \mbox{ssDf}\mbox{antagonistVal} = 
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
```

```
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
                 agonistAnimal = length(unique(animalDf$animalID))
                 animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
                 antagonistAnimal = length(unique(animalDf$animalID))
                 reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal, '\n Number animals agonist: ',agonistAnimal agonist agonist: ',agonistAnimal agonist agon
                 sDf$groupnames = factor(paste(sDf$agonistName, sDf$variable) , levels=c('DPDPE baseVa
                 # plot the area by raw values
                 cols = colnames(sDf)
                 sDf = subset(sDf, variable =="agonistEffect")
                 sDf = melt(sDf, id.vars = cols[c(1:14,16,18,22)], measure.vars = cols[c(15,17,19)])
                 sDf$value = sDf$value*-1
                 sDf$groupnames = factor(paste(sDf$agonistName, sDf$variable), levels=c('DPDPE baseVa
                 data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
                 sumOut = capture.output(data_summary)
                 sumRepOut = sumOut[1]
                 for(u in 2:length(sumOut)){
                     sumRepOut = paste(sumRepOut,'\n', sumOut[u])
                 }
                 ggplot(data_summary, aes(x = groupnames, y = value))+
                     geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
                     geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
                     geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
                     geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
                     coord_cartesian(ylim = c(-20,800)) +
                     theme_cowplot(font_size = 12)+
                     stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
                     labs(ylab('charge tranfer fC'))+
                     labs(xlab(NULL))+
                     labs(title = paste(graphTitle, "amplitude", sep='__'))+
                     labs(caption = paste(reportString2,'\n',sumRepOut))+
                     theme(plot.caption = element_text(size = 8, hjust = 0))+
                     theme(plot.title = element_text(size = 12))+
                     geom\_segment(aes(x=1, y=175, xend = 2, yend = 175))+
                     geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
                     theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())
                     theme(text=element_text(size=12))
Warning message:
Removed 1 rows containing non-finite values (stat_summary). Warning message:
Removed 1 rows containing missing values (geom_point). Warning message:
Removed 1 rows containing missing values (geom_path).
```


12 Figure 7 - figure supplement 1

12.1 Figure 7- figure supplement 1a

```
tempSDF4 = subset(tempSDF, cellID == 'will20171107c006' & conditionName == 'SR')
tempSDF5 = subset(tempSDF, cellID == 'will20170308c000' & conditionName == 'DPDPE')
tempSDF6 = subset(tempSDF, cellID == 'will20170620c003' & conditionName == 'DPDPE')
tempSDF7 = subset(tempSDF, cellID == 'will20170620c007' & conditionName == 'DPDPENTD'
tempSDF8 = subset(tempSDF, stimChannel == 'laser')
tempSDF = rbind(tempSDF1,tempSDF2,tempSDF3,tempSDF4,tempSDF5,tempSDF6,tempSDF7,tempSDF
tempSDF$channelCircuit=paste(tempSDF$stimChannel,tempSDF$circuit,sep='_')
tempSDF$channelCircuit= gsub("Poly_Poly_DMS_MSN","LED_Poly_DMS_MSN",tempSDF$channelCi
tempSDFMDACC = subset(cdf, genoType != "MORKOho" & genoType != "MORWTho" & stimSource
tempSDFMDACC = tempSDFMDACC[grep("BASE",tempSDFMDACC$conditionName, perl=TRUE, ignore
tempSDFMDACC$channelCircuit=paste(tempSDFMDACC$stimSource,tempSDFMDACC$circuit,sep='_
tempSDFMDACC$channelCircuit= gsub("MD_MD_L5_PYR","LED_MD_L5_PYR",tempSDFMDACC$channel
tempSDFACCDMS = subset(cdf, genoType != "MORKOho" & genoType != "MORWTho" & stimSour
tempSDFACCDMS = tempSDFACCDMS[grep("BASE",tempSDFACCDMS$conditionName, perl=TRUE, ign
tempSDFACCDMS$channelCircuit=paste(tempSDFACCDMS$stimSource,tempSDFACCDMS$circuit,sep
tempSDFACCDMS$channelCircuit= gsub("ACC_ACC_DMS_MSN","LED_ACC_DMS_MSN",tempSDFACCDMS$
tempSDFMDDMS = subset(cdf, genoType != "MORKOho" & genoType != "MORWTho" & stimSource
tempSDFMDDMS = tempSDFMDDMS[grep("BASE",tempSDFMDDMS$conditionName, perl=TRUE, ignore
tempSDFMDDMS$channelCircuit=paste(tempSDFMDDMS$stimSource,tempSDFMDDMS$circuit,sep='_
tempSDFMDDMS$channelCircuit= gsub("MD_MD_DMS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_DMS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN","LED_MD_DMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS$channelCircuit= gsub("MD_MS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS$channelCircuit= gsub("MS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",tempSDFMDDMS_MSN",te
tempSDF = rbind(tempSDF,tempSDFMDACC,tempSDFMDDMS,tempSDFACCDMS)
tempSDF$synapse = tempSDF$stimSource;
tempSDF$synapse = gsub("MD", "mono", tempSDF$synapse)
tempSDF$synapse = gsub("ACC","mono",tempSDF$synapse)
tempSDF$chargeOAmplitude = tempSDF$area/tempSDF$amplitude
tempSDF$test1DrugName = NULL
tempSDF =rbind(tempSDF,apdf)
synapseWilcox = wilcox.test(tempSDF$onset[grep("MONO",tempSDF$synapse,perl=TRUE, igno:
synapseWilcoxFlip = wilcox.test(tempSDF$onset[grep("POLY",tempSDF$synapse,perl=TRUE,
synapseWilcox$statistic = min(c(synapseWilcox$statistic,synapseWilcoxFlip$statistic))
synapseAllDunn = capture.output(dunn.test(tempSDF$onset,tempSDF$channelCircuit, kw = '
reportString = paste(synapseAllDunn)
reportString3 = ''
for (ii in 1:length(levels(data_summary$channelCircuit))){
   animalDf = subset(tempSDF, channelCircuit == data_summary$channelCircuit[ii])
   animalN = length(unique(animalDf$animalID))
   reportString3 = paste(reportString3,data_summary$channelCircuit[ii],' :',animalN,';
}
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
```

```
antagonistAnimal = length(unique(animalDf$animalID))
                 reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist: ',agonist agonist: ',agonist agonist: ',agonist agonist: ',agonist agonist ago
                 data_summary = data_meanSDSEM(tempSDF, varname = "onset", groupnames = "channelCircui")
                 data_summary$channelCircuit = factor(data_summary$channelCircuit, levels=c("laser_Pol
                 tempSDF$channelCircuit = factor(tempSDF$channelCircuit, levels=c("laser_Poly_DMS_MSN"
                 factor(data_summary)
                 levels(data_summary$channelCircuit)
                 sumOut = capture.output(data_summary)
                 sumRepOut = sumOut[1]
                 for(u in 2:length(sumOut)){
                     sumRepOut = paste(sumRepOut,'\n', sumOut[u])
                 }
                 reportString = '';
                 for (ii in 1:length(synapseAllDunn)){
                     reportString = paste(reportString,synapseAllDunn[ii],'\n', sep=' ')
                 reportString2 = paste('Mann-whitney U Tests Mono vs Poly synaptic: Statistic: W= ',synaptic
                 ggplot(tempSDF, aes(x = channelCircuit , y = onset))+
                     geom_point(data = tempSDF, aes(x = channelCircuit , y = onset), fill = "gray", color
                     geom_boxplot(varwidth = FALSE, notch = FALSE, fill = NA, )+
                     theme_cowplot(font_size =10)+
                     stat_summary(data =tempSDF, fun.data = give.n, geom = "text",fun.y = median, position
                     labs(ylab('onset EPSC (ms)'))+
                     labs(xlab(NULL))+
                     labs(caption = paste(reportString, reportString2, '\n', reportString3, '\n', sumRepOut)
                     theme(plot.caption = element_text(size = 5, hjust = 0))+
                     theme(text=element_text(size=10))+
                     coord_flip()
     channelCircuit
                                                                c(1, 5, 6, 4, 2, 3) n
                                                                                                                             c(6, 29, 79, 44, 8, 13)
                  6.13076923076923) sd
                                                                                                                              c(2.02130320997783,
0.525354677285558, 0.851724199668649, 1.41847333291624, 1.66849750631262, 2.44723810835283)
                       c(0.825193579982567, 0.0975559144614377, 0.0958264591973098, 0.213842900927638,
0.589902950553249, 0.678741729456588)
     Levels: 1. 'c(1, 5, 6, 4, 2, 3)' 2. 'c(6, 29, 79, 44, 8, 13)' 3. 'c(11.283333333333, 3.07758620689655,
2.90379746835443, 4.13409090909091, 10.09375, 6.13076923076923)' 4. 'c(2.02130320997783,
0.525354677285558, 0.851724199668649, 1.41847333291624, 1.66849750631262, 2.44723810835283)
       'c(0.825193579982567,
                                                0.0975559144614377,
                                                                                     0.0958264591973098,
                                                                                                                              0.213842900927638,
0.589902950553249, 0.678741729456588)'
                'laser_Poly_DMS_MSN'
                                                             2.
                                                                        'LED Poly DMS MSN'
                                                                                                                      3.
                                                                                                                                'MD L5 PYR AP'
4. 'LED_MD_L5_PYR' 5. 'LED_ACC_DMS_MSN' 6. 'LED_MD_DMS_MSN'
```


12.2 Figure 7 - figure supplement 1b

```
# give the tempSDF a specific name, needs to be changed for every new subset
sDf = subset(tempSDF, parameter == 'amplitude' )
sDf$value[sDf$antagonistName =="DPDPEICI" & sDf$variable =="antagonistEffect"] = NA
sDf$value[sDf$antagonistName =="DPDPENALOX" & sDf$variable =="antagonistEffect"] = N.
xLabel = c("DPDPE", "DPDPENaltri")
antagonistSelect = c("DPDPENALTRI")
graphTitle = c("Figure 7 - figure supplement 1b")
# prepare data into matrix for Skillings-Mack test.
ssDf = subset(sDf, variable == "agonistEffect" | variable == "antagonistEffect")
ssDf = subset(ssDf, is.finite(baseValue)& is.finite(agonistValue))
# # to avoid problems with sign reversal during agonist/antagonist treatment all cond
# # after that the SMmatrix can be transformed to absolute values
for (u in 1:nrow(ssDf)){
  if (ssDf$baseValue[u]<0){</pre>
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]>0){
        ssDf$agonistValue[u]=-0.0001
      }
    }
    if (is.finite(ssDf\u00e4antagonistValue[u])){
      if (ssDf$antagonistValue[u]>0){
        ssDf\antagonistValue[u]=-0.0001
      }
    }
  if (ssDf$baseValue[u]>0){
    if (is.finite(ssDf$agonistValue[u])){
      if (ssDf$agonistValue[u]<0){</pre>
        ssDf$agonistValue[u]=0.0001
      }
    }
    if (is.finite(ssDf\u00e4antagonistValue[u])){
      if (ssDf\antagonistValue[u]<0){</pre>
        ssDf$antagonistValue[u]=0.0001
      }
    }
  }
  if (is.finite(ssDf\u00e4antagonistName[u])){
    if (ssDf$antagonistName[u] !=antagonistSelect[1]){
      ssDf$antagonistValue[u] = NA
    }
  }
}
ssDf$baseValue = abs(ssDf$baseValue)
ssDf\agonistValue =abs(ssDf\agonistValue)
ssDf$antagonistValue = abs(ssDf$antagonistValue)
```

```
# DPDPE
#########
SMlen = length(unique(ssDf$cellID[ssDf$agonistName == 'DPDPE']))
SMmatrix = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen], ssDf$agonistValue[
Gs = c(rep('baseline',SMlen),rep('agonist',SMlen),rep('antagonist',SMlen))
Bs = rep(1:SMlen,3)
SMresult = capture.output(Ski.Mack(SMmatrix,groups=Gs, blocks=Bs))
BAgWilcox = wilcox.test(ssDf\baseValue[ssDf\bagonistName == 'DPDPE'][1:SMlen], ssDf\bagonistName == 'DPDPE']
BAgWilcoxFlip = wilcox.test(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen],sagonistName == 'DPDPE']
BAgWilcox$statistic = min(c(BAgWilcox$statistic, BAgWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$agonistValue[ssDf
BAgWilcox$n = length(na.omit(diff[diff !=0]))
BAnWilcox = wilcox.test(ssDf\baseValue[ssDf\baseValue] = 'DPDPE'] [1:SMlen], ssDf\baseValue[ssDf\baseValue]
BAnWilcoxFlip = wilcox.test(ssDf\antagonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen
BAnWilcox$statistic = min(c(BAnWilcox$statistic, BAnWilcoxFlip$statistic))
diff = c(ssDf$baseValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue[ssDf$agonistValue]
BAnWilcox$n = length(na.omit(diff[diff !=0]))
AgAnWilcox= wilcox.test(ssDf\agonistValue[ssDf\agonistName == 'DPDPE'][1:SMlen], ssDf\
AgAnWilcoxFlip = wilcox.test(ssDf$antagonistValue[ssDf$agonistName == 'DPDPE'][1:SMle:
AgAnWilcox$statistic = min(c(AgAnWilcox$statistic, AgAnWilcoxFlip$statistic))
diff = c(ssDf$agonistValue[ssDf$agonistName == 'DPDPE'][1:SMlen] - ssDf$antagonistValue
AgAnWilcox$n = length(na.omit(diff[diff !=0]))
BAgAnno = pvalAnno(BAgWilcox$p.value,1)
BAnAnno = pvalAnno(BAnWilcox$p.value,1)
AgAnAnno = pvalAnno(AgAnWilcox$p.value,1)
reportString = paste(SMresult[2],'\n','Paired Wilcoxon-rank Tests (Wilcoxon signed-rank)
animalDf = subset(sDf, variable == 'agonistEffect' & agonistName == 'DPDPE' & is.fini
agonistAnimal = length(unique(animalDf$animalID))
animalDf = subset(sDf, variable == 'antagonistEffect' & agonistName == 'DPDPE' & is.f
antagonistAnimal = length(unique(animalDf$animalID))
reportString2 = paste(reportString, '\n Number animals agonist: ',agonistAnimal,'\n Number animals agonist: ',agonist agonist ag
sDf$groupnames = paste(sDf$agonistName, sDf$variable)
data_summary = data_meanSDSEM(sDf, varname = "value", groupnames = "groupnames")
sumOut = capture.output(data_summary)
sumRepOut = sumOut[1]
for(u in 2:length(sumOut)){
   sumRepOut = paste(sumRepOut,'\n', sumOut[u])
}
ggplot(data_summary, aes(x = groupnames , y = value))+
   geom_point(data = sDf, aes(x = groupnames , y = value), fill = "gray", colour = "gray"
   geom_line(data = sDf, aes(group = cellID ), lty = 2, colour = "gray")+
   geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = N.
   geom_errorbar(aes(ymin=value-sem, ymax=value+sem), width=.2, position=position_dodg
```

 $coord_cartesian(ylim = c(-20,400)) +$

```
theme_cowplot(font_size = 12)+
stat_summary(data =sDf, fun.data = give.n, geom = "text",fun.y = median, position =
labs(ylab('% baseline EPSC'))+
labs(xlab(NULL))+
labs(title = paste(graphTitle, "amplitude",sep='_'))+
labs(caption = paste(reportString2,'\n',sumRepOut))+
theme(plot.caption = element_text(size = 5, hjust = 0))+
theme(plot.title = element_text(size = 12))+
geom_segment(aes(x=1, y=175, xend = 2, yend = 175))+
geom_segment(aes(x=0.5, y=0, xend = 3.5, yend = 0))+
theme(axis.line.x = element_line(linetype='blank'), axis.ticks.x = element_blank())+
theme(text=element_text(size=12))
```

Warning message:

```
Removed 1 rows containing non-finite values (stat_summary). Warning message: Removed 1 rows containing missing values (geom_point). Warning message: Removed 1 rows containing missing values (geom_path).
```


13 Rebuttal Figure 1c

```
df_DPDPE = df[rep(!is.nan(df$effect_amplitude[grep('baseNaltrindole', df$conditionDPD
         print('Naltrindole-DPDPE effect on baseline EPSC Skillings-Mack analysis')
         Ski.Mack(df_DPDPE$effect_amplitude,df_DPDPE$conditionDPDPE,df_DPDPE$cellDPDPE)
         print('Paired Wilcoxon signed rank test baseline vs Naltrindole')
         # define here the two groups to compare
         first_group = df_DPDPE$effect_amplitude[df_DPDPE$conditionDPDPE=='baseNaltrindole']
         second_group = df_DPDPE$effect_amplitude[df_DPDPE$conditionDPDPE=='Naltrindole']
         # Below is required to calculate n and statistic in a sequence independent way
         # (first vs second group and second vs first group)
         wilcox_antero = wilcox.test(first_group, second_group, paired = TRUE)
         wilcox_retro = wilcox.test(second_group, first_group, paired = TRUE)
         statistic = min(c(wilcox_antero$statistic, wilcox_retro$statistic))
         diff = c(first_group-second_group)
         n = length(na.omit(diff[diff != 0]))
         print(paste('W(', n, ') = ', statistic, '. p = ', wilcox_antero$p.value))
         print('Paired Wilcoxon signed rank test Naltrindole vs DPDPENaltrindole')
         # define here the two groups to compare
         first_group = df_DPDPE$effect_amplitude[df_DPDPE$conditionDPDPE=='Naltrindole']
         second_group = df_DPDPE$effect_amplitude[df_DPDPE$conditionDPDPE=='DPDPENaltrindole']
         # Below is required to calculate n and statistic in a sequence independent way
         # (first vs second group and second vs first group)
         wilcox_antero = wilcox.test(first_group, second_group, paired = TRUE)
         wilcox_retro = wilcox.test(second_group, first_group, paired = TRUE)
         statistic = min(c(wilcox_antero$statistic, wilcox_retro$statistic))
         diff = c(first_group-second_group)
         n = length(na.omit(diff[diff != 0]))
         print(paste('W(', n, ') = ', statistic, '. p = ', wilcox_antero$p.value))
[1] "Naltrindole-DPDPE effect on baseline EPSC Skillings-Mack analysis"
Skillings-Mack Statistic = 3.714286 , p-value = 0.156118
Note: the p-value is based on the chi-squared distribution with d.f. = 2
$Nblocks
[1] 7
$Ntreatments
Γ1 3
$rawdata
            [,1]
                        [,2]
                                    [,3]
                                                [,4]
                                                            [,5]
                                                                         [,6]
[1,] 1288.147967 570.3919281 550.9480322 455.4172314 690.8605557 569.1642694
[2,] 1232.114758 490.2516592 382.6019742 686.4860459 621.2439124 450.3674759
[3,] 1330.044652 453.3139970 209.8444380 565.3576579 675.4080718 313.0839955
             [,7]
[1,] 1193.1270871
[2,] 785.0636979
[3,] 752.8596021
```

```
$rankdata
     [,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,]
             3
                  3
                       1
                            3
                                  2
                                       2
[2,]
             2
                  2
                       3
                            1
        1
[3,]
        3
             1
                  1
                       2
                            2
                                  1
$varCovarMatrix
     [,1] [,2] [,3]
      14
            -7
[1,]
[2,]
       -7
            14
                 -7
[3,]
      -7
          -7
                 14
$adjustedSum
                         [,2]
                                      [,3]
           [,1]
[1,] 6.92820323 -1.732050808 -5.196152423
[1] "Paired Wilcoxon signed rank test baseline vs Naltrindole"
[1] "W(7) = 6 \cdot p = 0.21875"
[1] "Paired Wilcoxon signed rank test Naltrindole vs DPDPENaltrindole"
[1] "W( 7 ) = 7 . p = 0.296875"
```

14 Rebuttal figure 2

```
In [33]: # Rebuttal figure 2 Analysis of data and perform plotting for DAMGO effect on
         # thalamostriatal projections, to check whether there is a potential
         # heterogeneity in the data that would suggest that inputs to D1 and D2 MSNs in
         # the striatum may be modulated differently.
         # import packages
        library(ggplot2)
        library(reshape2)
        library(cowplot)
        require(cowplot)
        library(tidyverse) # data manipulation
        library(cluster)
                          # clustering algorithms
        library(factoextra) # clustering visualization
        library(dendextend) # for comparing two dendrograms
        library(heatmap.plus) # clustering visualization
        library(colorspace) # colors
        library(RColorBrewer)
        library(colorRamps)
        library(gplots)
        library(plyr)
        library(Skillings.Mack)
        df=read.csv('data/effectDataset.csv')
```

```
df$X = NULL
        msn_df=subset(df, cellType=='MSN' & drugGroup==2)
         setHook(packageEvent("grDevices", "onLoad"),
         function(...) grDevices::X11.options(type='cairo'))
         options(device='x11')
         # subset data for thalamostriatal projections only (including MD and AM)
         thal_df = subset(msn_df, (stimSource=='MD' | stimSource=='AM') & cellID != 'will20180'
 Attaching packages tidyverse 1.2.1
 tibble 1.4.2
                   purrr
                          0.2.5
 tidyr 0.8.2
                   dplyr
                           0.7.8
 readr
        1.1.1
                   stringr 1.3.1
 tibble 1.4.2
                   forcats 0.3.0
 Conflicts tidyverse_conflicts()
 dplyr::arrange()
                    masks plyr::arrange()
 readr::col_factor() masks scales::col_factor()
 purrr::compact()
                    masks plyr::compact()
 dplyr::count()
                    masks plyr::count()
 purrr::discard()
                    masks scales::discard()
 tidyr::expand()
                    masks Matrix::expand()
 dplyr::failwith()
                    masks plyr::failwith()
 dplyr::filter()
                    masks stats::filter()
 cowplot::ggsave()
                    masks ggplot2::ggsave()
 dplyr::id()
                    masks plyr::id()
                    masks stats::lag()
 dplyr::lag()
 dplyr::mutate()
                    masks plyr::mutate()
                    masks plyr::rename()
 dplyr::rename()
 dplyr::select()
                    masks MASS::select()
 dplyr::summarise() masks plyr::summarise()
 dplyr::summarize() masks plyr::summarize()
Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
______
Welcome to dendextend version 1.9.0
Type citation('dendextend') for how to cite the package.
Type browseVignettes(package = 'dendextend') for the package vignette.
The github page is: https://github.com/talgalili/dendextend/
Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issue
Or contact: <tal.galili@gmail.com>
       To suppress this message use: suppressPackageStartupMessages(library(dendextend))
```

Attaching package: dendextend

```
The following object is masked from package: VennDiagram:
    rotate
The following object is masked from package:stats:
    cutree
Attaching package: gplots
The following object is masked from package:stats:
    lowess
```

14.1 Rebuttal figure 2a

```
Rebuttal figure 2a
     # plot distribution of DAMGO effect on thalamostriatal
     # projections.
    ggplot(data=subset(thal_df, parameter=='amplitude'), aes(agonistEffect)) +
       geom_histogram(binwidth=25/4)+
       ylim(0,10)
Warning message:
```

Removed 1 rows containing non-finite values (stat_bin).

14.2 Rebuttal figure 2b

```
Rebuttal figure 2b
                # First re-organize the df to allow for subsetting
                sthal_df = thal_df[,c(1:12, 20, 15)]
                tthal_df <- subset(sthal_df, parameter=='amplitude')</pre>
                colnames(tthal_df)[colnames(tthal_df)=='baseValue'] <- 'amplitude'</pre>
                colnames(tthal_df)[colnames(tthal_df)=='agonistEffect'] <- 'damgoEffect'</pre>
                tthal_df$parameter <- NULL
                tthal_df$onset <- subset(sthal_df, parameter=='onset')$baseValue
                tthal_df$risetime <- subset(sthal_df, parameter=='risetime')$baseValue
                tthal_df$slope <- subset(sthal_df, parameter=='slope')$baseValue
                tthal_df$onset2peakTime <- subset(sthal_df, parameter=='onset2peakTime')$baseValue
                tthal_df$halfwidth <- subset(sthal_df, parameter=='halfwidth')$baseValue
                tthal_df$decay <- subset(sthal_df, parameter=='decay')$baseValue
                tthal_df$area <- subset(sthal_df, parameter=='area')$baseValue
                tthal_df$chargeOAmplitude <- subset(sthal_df, parameter=='chargeOAmplitude')$baseValue
                # fill out NA for onset of will20180705_732c002 with median of onset
                tthal_df[tthal_df$cellID == 'will20180705_732c002',]$onset = median(tthal_df$onset, national transfer in the content of the co
                rownames(tthal_df) = 1:nrow(tthal_df)
                tthal_df_ref = tthal_df
                tthal_df = tthal_df[,-12]
In [37]: # Rebuttal figure 2b, plot distribution of baseline EPSC risetime vs DAMGO
                # effect for thalamostriatal inputs. Perform linear regression to check for
                # correlation between effect of DAMGO and risetime of the baseline EPSC.
                ggplot(data=tthal_df_ref, aes(risetime, damgoEffect))+
                        geom_point(size=5)+
                        geom_smooth(method=lm, se=TRUE)+
                        ylim(0,100) +
                        xlim(0,3)
                model = lm(risetime ~ damgoEffect, data=tthal_df_ref)
                summary(model)
Warning message:
Removed 2 rows containing non-finite values (stat_smooth). Warning message:
Removed 2 rows containing missing values (geom_point). Warning message in grid. Call.graphics(C_
semi-transparency is not supported on this device: reported only once per page
Call:
lm(formula = risetime ~ damgoEffect, data = tthal_df_ref)
Residuals:
                                                     Median
                                      1Q
                                                                                   30
-0.78276215 -0.44111118 -0.06654981 0.28960441 1.83244029
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.132762132 0.143774537 7.87874 1.6452e-09 ***
damgoEffect 0.003210778 0.003902538 0.82274 0.41579

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5924341 on 38 degrees of freedom

(1 observation deleted due to missingness)

Multiple R-squared: 0.01750148, Adjusted R-squared: -0.008353749

F-statistic: 0.6769029 on 1 and 38 DF, $\,$ p-value: 0.4157885

14.3 Rebuttal figure 2c-d

```
Rebuttal figure 2c and d
        # Define two subpopulations based on the baseline EPSC
        # parameters. Based on those two subpopulations, test whether DAMGO effect on
        # baseline is significantly different between the two populations.
        # Generate a matrix with all parameters and make sure that no constant or zero
        # columns are present
        input_thal = tthal_df[12:ncol(tthal_df)]
        input_thal = na.omit(input_thal)
        which(apply(input_thal, 2, var)==0) # some variables have a constant or zero column,
        input_thal = input_thal[, apply(input_thal, 2, var)!=0]
        input_thal = scale(input_thal, center=TRUE, scale=TRUE) # center to the mean value an
        # generate distance matrixes for the cells and parameters:
        d_HCA_thal_param = get_dist(t(input_thal), method="pearson")
        d_HCA_thal_cell = get_dist((input_thal), method="euclidean")
        # Check that for both matrixes which clustering methods produces the strongest
        # clusters
        m <- c( "average", "single", "complete", "ward")</pre>
        names(m) <- c( "average", "single", "complete", "ward")</pre>
        ac <- function(x) {</pre>
          agnes(d_HCA_thal_cell, method = x)$ac
        }
        map_dbl(m, ac)
        m <- c( "average", "single", "complete", "ward")</pre>
        names(m) <- c( "average", "single", "complete", "ward")</pre>
        ac <- function(x) {</pre>
          agnes(d_HCA_thal_param, method = x)$ac
        }
        map_dbl(m, ac)
  average 0.738408243014765 single 0.597530680588402 complete 0.815356990926301 ward
0.887360896778015
  average 0.802350726435561 single 0.718641887706935 complete 0.860649035675753 ward
0.886143224910785
In [39]: # Based on the comparison of methods it turns out that Ward provides the strongest
        # clusters for both cell and parameter clustering. So continue with Ward.
        HCA_thal_cell = agnes(d_HCA_thal_cell, method = "ward")
        HCA_thal_param = agnes(d_HCA_thal_param, method = "ward")
        heatmap(t(input_thal), Colv=as.dendrogram(HCA_thal_cell), Rowv=as.dendrogram(HCA_thal_cell)
        HCA_thal_cell$order[1:15]
        HCA_thal_param$order.lab
  1. 1 2. 18 3. 36 4. 16 5. 20 6. 33 7. 29 8. 30 9. 4 10. 5 11. 17 12. 8 13. 19 14. 27 15. 28
  1. 'amplitude' 2. 'area' 3. 'slope' 4. 'onset' 5. 'risetime' 6. 'onset2peakTime' 7. 'halfwidth'
8. 'chargeOAmplitude' 9. 'decay'
```


cells

```
In [40]: # Plot and test whether the two putative subpopulations have a difference in DAMGO ef
    tthal_df_ref$cluster = rep(1,nrow(tthal_df_ref))
    clust1 = HCA_thal_cell$order[1:16]
    clust2 = HCA_thal_cell$order[17:nrow(input_thal)]
    tthal_df_ref[clust1,]$cluster = 1
    tthal_df_ref[clust2,]$cluster = 2
    ggplot(tthal_df_ref, aes(damgoEffect)) +
        geom_histogram(data=subset(tthal_df_ref,cluster==1), alpha=0.5, fill='red', binwise
        geom_histogram(data=subset(tthal_df_ref,cluster==2), alpha=0.5, fill='blue', binwise
        ylim(0,10)
    print('Warning, if alpha in the above plot is not allowed, this will stall the plottic
    print('please remove the alpha=0.5 from the above ggplot section')
    clust1 = HCA_thal_cell$order[1:16]
```

Warning message:

Removed 1 rows containing non-finite values (stat_bin). Warning message in grid.Call.graphics(C semi-transparency is not supported on this device: reported only once per page

- [1] "Warning, if alpha in the above plot is not allowed, this will stall the plotting and subse
- [1] "please remove the alpha=0.5 from the above ggplot section"

Warning message in wilcox.test.default(x = thal_clust1, y = thal_clust2, paired = FALSE): cannot compute exact p-value with ties

Wilcoxon rank sum test with continuity correction

data: thal_clust1 and thal_clust2
W = 181, p-value = 0.9884833
alternative hypothesis: true location shift is not equal to 0

