More NP-Complete Problems

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS Monday, December 7, 2020

HW questions?

Announcements

- HW11 out
 - Last homework
- HW7 grades returned

THEOREM 7.36

Recap: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Proof:

- *C* is **NP**-complete (Def 7.34) if:
 - it's in NP (given), and
 - every lang A in NP reduces to C in poly time (must show)
- For every language A in NP, reduce $A \rightarrow C$ by:
 - First reduce $A \rightarrow B$ in poly time
 - Because *B* is **NP**-Complete
 - Then reduce $B \rightarrow C$ in poly time
 - This is given
- <u>Total run time</u>: Poly time + poly time = poly time

unknown

THEOREM 7.36 Shown Unknown Unknown USING: If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

Example: Prove 3SAT is NP-Complete using thm 7.36...

- ... by constructing poly time reduction from:
 - $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (known to be NP-Complete)
 - $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (known to be in NP)

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Example: Prove 3SAT is NP-Complete using thm 7.36 ...

- ... by constructing poly time reduction from:
 - $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (known to be NP-Complete) to
 - $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (known to be in NP)
- Reduction: Given an arbitrary SAT formula:
 - Convert to conjunctive normal form (CNF), ie an AND of OR clauses
 Use DeMorgan's Law to push negations onto literals
 - Use DeMorgan's Law to push negations onto literals $\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q)$
 - Distribute ORs to get ANDs outside of parens $(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$
 - 2. Then split clauses to 3cnf by adding new variables $(a_1 \lor a_2 \lor a_3 \lor a_4)$ $(a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4)$

NP-Complete problems, so far

- $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- 3SAT = $\{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduce SAT to 3SAT)
- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

- CLIQUE is in NP (Thm 7.24)
- *3SAT* is polynomial time reducible to *CLIQUE*. (Thm 7.32)

Other **NP** Problems, so far

• $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph }$ with a Hamiltonian path from $s \text{ to } t \}$

A Hamiltonian path goes through every node in the graph

All NP-Complete! (will prove it today)

- SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$
 - Some subset of a set of numbers sums to some total
 - e.g., $\langle \{4,11,16,21,27\},25 \rangle \in SUBSET\text{-}SUM$

Theorem: HAMPATH is NP-complete

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbb{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show HAMPATH is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function:

DEFINITION 7.29

Language A is *polynomial time mapping reducible*, ¹ or simply *poly***nomial time reducible.** to language B, written $A \leq_{P} B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every

$$w \in A \iff f(w) \in B$$
.

- 4. Show it runs in poly time
- 5. Show Def 7.29 iff requirement:
 - Satisfiable 3cnf formula \Leftrightarrow graph with Hamiltonian path

Computable Fn: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

- Clause → (extra) single nodes
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

Computable Fn: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

- Clause → (extra) single nodes
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"
- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_i \rightarrow c_i$ edges in gadget x_i (rev)

Theorem: HAMPATH is NP-complete

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

Proof Parts (5):

- Show HAMPATH is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4)$$

- 4. Show it runs in poly time
 - 5. Show Def 7.29 iff requirement:
 - Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

Polynomial Time?

<u>ΓΟΤΑL</u>: Ο(**k**²)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses = at most 3k variables

- Clause \rightarrow (extra) single nodes \bigcirc \circ_i $O(\mathbf{k})$
- Variable \rightarrow diamond-shaped graph "gadget" $O(k^2)$
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_j \rightarrow c_j$ edges in gadget x_i (rev)

e * ...

Theorem: HAMPATH is NP-complete

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

Proof Parts (5):

- Show HAMPATH is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function:

DEFINITION 7.29

Language A is **polynomial time mapping reducible**, ¹or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

 $w \in A \iff f(w) \in B$.

- 5. Show Def 7.29 iff requirement:
 - Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

<u>Want</u>: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

Satisfying assignment => Hamiltonian path

These hit all nodes except extra c_js

- Lit x_i makes clause c_j TRUE \rightarrow "detour" to c_j in gadget x_i
- Lit $\overline{x_i}$ makes clause c_i TRUE \rightarrow "detour" to c_i in gadget x_i

Now path goes through every node

Every clause must be TRUE so path hits all c_i nodes

• And edge directions align with TRUE/FALSE assignments

<u>Want</u>: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

Hamiltonian path => Satisfying assignment

gadget x_i "detours" from left to right $\rightarrow x_i = TRUE$

gadget x_i "detours" from right to left $\rightarrow x_i = FALSE$

- What about "weird" paths?
 - Cannot be Hamiltonian path because it misses some nodes

Theorem: UHAMPATH is NP-complete

 $UHAMPATH = \{\langle G, s, t \rangle | \ G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

- Reduce *HAMPATH* to *UHAMPATH* (using Thm 7.36)
 - HW11

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

THEOREM **7.36**

Strategy: Use If B is NP-complete and $B \leq_{\mathbb{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show SUBSET-SUM is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the <u>computable function</u> *f*:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee \overline{x_6} \vee x_4) \wedge (x_5 \vee \overline{x_6} \vee x_5) \wedge (x_5 \vee \overline{x_6} \vee x$$

- 4. Show it runs in poly time
- 5. Show Def 7.29 iff requirement:

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

 y_i and z_i :

The sum

 \mathbf{V}_{i} : \mathbf{I} + \mathbf{i} th digit = 1 \mathbf{Z}_{i} : \mathbf{I} + \mathbf{i} th digit = 1

Computable Fn: 3cnf $\rightarrow \langle S, t \rangle$

E.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots)$$

- Assume formula has:
 - I variables x_1, \ldots, x_l
 - k clauses c_1, \ldots, c_k
- Computable function f maps:
 - Variable $x_i \rightarrow two numbers y_i and z_i$
 - Clause $c_i \rightarrow two numbers g_i and h_i$
- Each number has max *l+k* digits:
- Sum is I 1s followed by k 3s

digit = 1					if c_j h	as x	- 1 i	Zi	if c _j ha	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	•	
		1	2	3	4		1	c_1	c_2	./.	c_k	
	y_1	$\frac{1}{1}$	0	0	0	• • •	0	1	0	/	0	
	z_1	1	0	0	0	• • •	0	0	9	• • •	0	
	y_2		1	0	0	• • •	0	0	/1	• • •	0	
)	z_2		1	0	0		0	1	0		0	
	y_3			1	0		0	1	1		0	
	z_3			1	0		0	0	0		1	
	:					٠.		:				
	y_l						1	0	0	• • •	0	
	z_l						1	0	0	• • •	0	
	g_1			~ 3	nd I			1	0	• • •	0	
	h_1		1,	g _j a Lith c	nd l digit	1 1		> 1	0	• • •	0	
	g_2			-) (ııgı	. – 1			1	• • •	0	
	h_2								1	• • •	0	
										٠.		
	g_k										1	
	h_k										1	
→	t	1	1	1	1	• • •	1	3	3	• • •	3	

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show SUBSET-SUM is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function f:

- 4. Show it runs in poly time
 - 5. Show Def 7.29 iff requirement:

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

Polynomial Time?

E.g.,
$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \cdots) \wedge \cdots \wedge (\overline{x_3} \vee \cdots \vee \cdots) \Longrightarrow$$

- Assume formula has:
 - I variables x_1, \ldots, x_l
 - k clauses c_1, \ldots, c_k
- Table size: (l + k)(2l + 2k)
 - Creating it requires at most a constant number of passes over the table
 - Num variables *I* = 3*k* at most
- Total: $O(k^2)$

	1	2	3	4		l	c_1	c_2		c_k
y_1	1	0	0	0	• • •	0	1	0	• • •	0
z_1	1	0	0	0		0	0	0	• • •	0
y_2		1	0	0		0	0	1	• • •	0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1		0
z_3			1	0		0	0	0		1
:					٠.	:	:		:	\vdots
y_l						1	0	0	• • •	0
z_l						1	0	0	• • •	0
g_1							1	0	• • •	0
h_1							1	0	• • •	0
g_2								1	• • •	0
h_2								1	• • •	0
÷									٠.	\vdots
										1
g_k										1
h_k										1
t	1	1	1	1		1	3	3		3

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

THEOREM 7.36

Strategy: Use If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

Proof Parts (5):

- 1. Show SUBSET-SUM is in NP (done in prev class)
- 2. Choose NP-complete problem to reduce from: 3SAT
- 3. Create the computable function f:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \stackrel{f}{\longleftarrow} (S, t) \mid S = \{x_1, \dots, x_k\}$$

- 4. Show it runs in poly time
- 5. Show Def 7.29 iff requirement:

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

Each column:

- At least one 1
- At most 3 1s

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of

S only includes

one

- => If formula is satisfiable, choose ...
 - Sum t = 11s followed by k3s
 - S to include:
 - y_i if $x_i = TRUE$
 - \mathbf{z}_{i} if \mathbf{x}_{i} = FALSE
 - and some of g_i and h_i to make the sum t
- Numbers in *S* sum to *t* because:
 - Left digits:
 - only one of y_i or z_i is in S
 - Right digits:
 - Top: Each column sums to 1, 2, or 3
 - Because each clause has only 3 literals
 - Bottom:
 - Add g_i and/or h_i to make column sum to 3

	1	2	3	4	• • •	l	c_1	c_2	• • • •	c_k
y_1	1	0	0	0	• • •	0	1	0	• • •	0
z_1	1	0	0	0	• • •	0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1		0
z_3			1	0		0	0	0		1
:					٠.		:		:	:
y_l						1	0	0	• • •	0
z_l						1	0	0	• • •	0
g_1							1	0		0
h_1							1	0	• • •	0
g_2								1	• • •	0
h_2								1	• • •	0
:									٠.	
g_k										1
h_k										1
t	1	1	1	1		1	3	3		3

Determines if x_i or $\overline{x_i}$ is in clause c_j

 ϕ is a satisfiable 3cnf-formula $\iff f(\langle \phi \rangle) = \langle S, t \rangle$ where some subset of S sums to t

- <= If f creates S with numbers summing to t</p>
 - Formula has *I* variables, *k* clauses, and has ...
 - lit \overline{x}_i in clause c_j if i^{th} number pair (1st) has $l+j^{th}$ digit = 1
 - lit x_i in clause c_j if i^{th} number pair (2nd) has $l+j^{th}$ digit = 1
- There must be a satisfying assignment:
 - $x_i = TRUE \text{ if } y_i \text{ in } S$
 - $x_i = FALSE if z_i in S$
- This is satisfying because:
 - For each column c_i
 - g_i and h_i total at most 2
 - so at least 1 number from top is included satisfy sum t
 - Which means at least one literal in every clause makes it makes it TRUE

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} c_k \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$\begin{bmatrix} z_2 \\ z_2 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots \\ 1 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots \end{bmatrix}$	0
y_3 1 0 ··· 0 1 1 ···	0
z_3 $1 0 \cdots 0 0 \cdots$	1
·. : : : : : : : : : : : : : : : : : :	:
1 0 0	
y_l $1 \mid 0 \mid 0 \mid \cdots$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
z_l 1 0 0 ····	0
1 0	0
In each column, 1 1 0	0
accounts for at 1	0
most 2 out of 1 ···	0
required sum of 3	
	:
·	•
g_k	1
$\begin{bmatrix} h_k \end{bmatrix}$	1
t 1 1 1 1 \cdots 1 3 3 \cdots	3

Check-in Quiz 12/7

On gradescope

End of Class Survey 12/7

See course website