晨沐公的数学习题集

Johnny Tang's Problem Collection in Mathmatics

◎ 晨沐公[†]

† 成都市锦江区嘉祥外国语高级中学

晨沐公的数学习题集

bilibili: 晨沐公 Johnny github:JunFStudio

2023年12月31日

请:相信时间的力量,敬畏概率的准则。

JOHNNY TANG

前言

愿大家爱上数学!

目录

1	线性代数 Linear Algebra	1
2	2 数学分析 Analysis	2
	2.1 集合论	2
	2.2 实数定义, 数列极限, 级数	5
3	B 初等数论 Elementary Number Theory	16

Chapter 1

线性代数 Linear Algebra

Chapter 2

数学分析 Analysis

2.1 集合论

A: Schröder-Bernstein 定理

A1) 证明 Schröder - Bernstein 定理: 给定集合 A,B. 若在 A,B 间存在两个单射 $f:A\to B$ 与 $g:B\to A$, 则在它们之间也存在一个双射 $h:A\to B$.

解. 通过以下方法构造一个映射 $h: A \to B$, 我们断言它就是想要的那个双射. 递归地定义:

$$C_0 = A - g(B), \quad C_{n+1} = g(f(C_n)) \quad \forall n \ge 0.$$

并记 $C = \bigcup_{n=0}^{\infty} C_n$. 对任意的 $x \in A$ 定义映射 $h: A \to B$ 满足

并注意这里 g 的逆映射定义域被限制在了 g(B). 由 C_0 的定义可知, 若 $x \notin C$, 则 $x \in g(B)$, 所以这样的限制是合理的. 接下来验证 h 是双射.

1° 单射性: 假设不同的 a,b 导致 h(a) = h(b), 对以下四种情况进行讨论:

$$a \in C \land b \in C$$
, $a \notin C \land b \notin C$, $a \in C \land b \notin C$, $a \notin C \land b \in C$.

对于前两种情况,容易证明 a=b. 对于第三种情况,即有 g(f(a))=b,而 $a\in C$ 表明 $g(f(a))\in C$,从 而与 $b\notin C$ 矛盾. 第四种情况同理.

综上, 对任意 a,b 都有 $h(a) = h(b) \Rightarrow a = b$, 故 h 是单射.

 2° 满射性: 任取 $y \in B$. 若 $y \in f(A)$, 则存在一个 x_1 使得 $f(x_1) = y$, 从而 $h(x_1) = y$. 若不然, 则令 $x_2 = g(y)$. 下面证明 $x_2 \notin C$, 这样就有 $h(x_2) = g^{-1}(x_2) = y$:

假设 $x_2 = g(y) \in C$, 那么由 C 的定义且 g 为单射, 可知存在一个 x_0 使得 $f(x_0) = y$, 这与 $y \notin f(A)$ 矛盾.

综上, 对任意的 $y \in B$, 总能找到某个 x 使得 h(x) = y, 从而 h 是满射.

- A2) 不使用 Schröder-Bernstein 定理证明: 如果 X 是可数集, 存在 $f: X \to Y$ 和 $g: Y \to X$ 都是单射, 则存在 $\varphi: X \to Y$ 使得 φ 是双射.
 - 解. 关键是在于证明, h=gf 是 $X\to X$ 的满射. 从而, $h^{-1}g$ 与 f 互逆, 即 f 是一个双射.

设若不然,记 $X_1=h(X)$,由 h(X) 可数知 X_1 亦可数. 递归地定义 $X_{n+1}=h(X_n)$,则有 $X\supseteq X_1\supseteq \cdots \supseteq X_n\supseteq \cdots$ 且所有的 X_n 均可数且非空.所以存在 N 使得 $\forall n>N, X_n=X_N$. 取最小的这样的 N,作 $X^{(1)}=X-X_N$,那么在 $X^{(1)}$ 上 h 是双射.将 $X^{(1)}$ 视作 X 重复该过程,实际上将 X 分解为 $\bigcup_{n>0} X^{(n)}$ 的不交并,而 h 在每个 $X^{(n)}$ 上都是双射.

B: 关于映射与集合的一些命题

- B1) 设 $f: X \to Y$. 若 A, B 都是 X 的子集, A', B' 都是 Y 的子集, 那么:
- a) $f(A \cap B) \subseteq f(A) \cap f(B)$, b) $f(A \cup B) = f(A) \cup f(B)$,
- c) $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$, d) $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.
- 解. a) 显见, 若 $X \subseteq Y$ 则 $f(X) \subseteq f(Y)$. 那么 $f(A \cap B) \subseteq f(A)$, $f(A \cap B) \subseteq f(B)$.
 - b) 同上可得 $f(A) \subseteq f(A \cup B)$. 设 $X := f(A \cup B) f(A)$. 下证 X = f(B) f(A). 首先
- $f(B) f(A) \subseteq X$. 假设存在 $y \in X$ 使得 $y \notin f(B) f(A)$, 既是说存在 $x \in B$ 使得 f(x) = y, 矛盾.
- c) 显见, 若 $X' \subseteq Y'$ 则 $f^{-1}(X') \subseteq f^{-1}(Y')$. 所以 $LHS \subseteq RHS$. 另一方面, 若 $x \in RHS$ 即 $f(x) \in A' \cap B'$, 那么 $x \in LHS$.
 - d) 照抄 b).
 - B2) 设 $f: X \to Y$. 则下列陈述等价:
 - a) f 是单射; b) $f^{-1}(f(A)) = A$ 对任意 $A \subseteq X$ 都成立;
 - c) $f(A \cap B) = f(A) \cap f(B)$ 对任意 $A, B \subseteq X$ 都成立;
 - d) $f(A) \cap f(B) = \emptyset \Leftrightarrow A \cap B = \emptyset$; e) f(A B) = f(A) f(B) 对任意 $X \supseteq A \supseteq B$ 都成立.
- 解. $a)\Leftrightarrow b$): 首先注意到无论 f 是否是单射均有 $f^{-1}(f(A))\supseteq A$. 现在假设存在 $x\notin A$ 但 $x\in f^{-1}(f(A))$, 即存在 $x'\in A$ 使得 f(x)=f(x'). b) 成立等价于该假设不成立, 进而等价于 a) 成立. $a)\Leftrightarrow c$): 与上面类似.
- $a)\Leftrightarrow d):\ d)$ 的"⇒" 自然成立,而" \Leftarrow " 等价于: 若存在 $y\in f(A)\cap f(B)$,则存在 $x\in A\cap B$. 设 $x_1\in A$ 和 $x_2\in B$ 使得 $f(x_1)=f(x_2)=y$. 显见这与 a) 等价.

 $a)\Leftrightarrow e)$: e) 即是说, 任取 $x\in A$ 但 $x\notin B$, 那么 $f(x)\in f(A)$ 但 $f(x)\notin f(B)$. 即若 $f(x)\in f(B)$ 则 $x\in B$. 这与 a) 等价.

C: (von Neumann) 用归纳集构造自然数

对于集合 x, 称 x 的后继为 $x^+ := x \cup \{x\}$. 若一个集合包含空集和自身任何一个元素的后继 (无穷公理说明这样的集合是存在的), 则称其为一个归纳集. 定义自然数集 N_0 为所有归纳集的交集.

若将·→·+ 视作映射 $S: N_0 \to N_0$, 下面证明这个映射符合 Peano 公理.

- C1) $x = y \Rightarrow x^+ = y^+$, 即该映射是良好定义的.
- C2) $\forall x \in N_0, \ x^+ \neq \emptyset, \ \mathbb{P} \ \emptyset \notin S(N_0).$
- C3) $(A \subseteq N_0) \land (\emptyset \in A) \land (\forall x \in A, x^+ \in A) \Rightarrow A = N_0$, 即如果自然数集的子集也是归纳集, 那么该子集就是自然数集本身 (数学归纳原理).
 - C4) $x^+ = y^+ \Rightarrow x = y$, 即 S 是一个单射.

解. 假设 $x \neq y$ 但 $x \in (x \cup \{x\}) = (y \cup \{y\})$, 从而 $x \in \{y\}$ (舍) 或 $x \in y$. 同理 $y \in x$. 下面证明, 若 $x \in y$, 则 $x \subseteq y$, 从而结束证明.

固定 x, 对 y 归纳证明 (这相当于利用 C3)): 当 $y = (\emptyset)^+ = \{\emptyset\}$ 时, 若 $x \in y$ 则 $x = \emptyset$, 显然 $x \subseteq y$; 设 $x \in y$ 则 $x \subseteq y$, 下证若 $x \in y^+ = y \cup \{y\}$ 则 $x \subseteq y^+$. 分类讨论. 当 x = y 时显然成立, 当 $x \in y$ 时由归纳假设可知 $x \subseteq y$, 从而 $x \subseteq y^+$.

D: 可数集

D1) 利用对角线法则, 证明区间 (0,1) 是不可数的. (从而证明 \mathbb{R} 是不可数的)

解. 设 (0,1) 可数,记 $(0,1)-\{x/9:x\in\mathbb{Z},1\leq x\leq 8\}=\{a_1,a_2,\cdots,a_n,\cdots\}$,并令 a_i 的十进制小数 表示为 $a_i=0.k_{i1}k_{i2}\cdots$. 构作如下无限矩阵:

$$\begin{pmatrix} \mathbf{k}_{11} & k_{12} & k_{13} & \cdots & k_{1m} & \cdots \\ k_{21} & \mathbf{k}_{22} & k_{23} & \cdots & k_{2m} & \cdots \\ k_{31} & k_{32} & \mathbf{k}_{33} & \cdots & k_{3m} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \cdots \\ k_{m1} & k_{m2} & k_{m3} & \cdots & \mathbf{k}_{mm} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

选取对角线上的数码 k_{11}, k_{22}, \cdots . 现在任取 $k_j \neq k_{jj}$ 使得 $1 \leq k_j \leq 8$. (假设不存在满足不等的 k_j , 则 a_j 小数点后数码均相同, 必然为 $\{x/9: x \in \mathbb{Z}, 1 \leq x \leq 8\}$ 中某个元素, 矛盾).

构造 $a=0.k_1k_2k_3\cdots$, 由上面的构造可知 a 的十进制小数表示唯一, 又因为存在 m 使得 $a=a_m$, 可得 $k_m=k_{mm}$, 矛盾.

- D2) 利用闭区间套定理证明 ℝ 是不可数的.
- 解. 假设可将 \mathbb{R} 写作 $\{x_1, x_2, \cdots\}$. 取 $a_1 < x_1 < b_1$, 那么在 $[a_1, \frac{2}{3}a_1 + \frac{1}{3}b_1]$, $[\frac{2}{3}a_1 + \frac{1}{3}b_1, \frac{1}{3}a_1 + \frac{2}{3}b_1]$, $[\frac{1}{3}a_1 + \frac{2}{3}b_1, b_1]$ 中至少有一个区间不包含 x_1 , 记为 $I_1 = [a_2, b_2]$. 递归地定义 I_n , 则 $I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots$ 且 $|I_n| \to 0$. 那么存在唯一的 $x \in \bigcap_{n > 1} I_n$, 即 $x \notin \mathbb{R}$, 矛盾.
- D3) 递归地定义: $C_0 := [0,1], C_n := \frac{1}{3}(C_{n-1} \cup (2+C_{n-1})), n \geq 1$, 并令 Cantor 集 $C := \bigcap_{n=0}^{\infty} C_n$. 证明: $C \sim [0,1]$.
 - 解. 将 Cantor 集写成三进制下的 $\{0.\alpha_1\alpha_2\cdots:\alpha_i=0$ 或2 $\}$,则显见 C 与二进制下的 $\{0,\beta_1\beta_2\cdots:\beta_i=0$ 或1 $\}$ 等势,即与 [0,1] 等势.

2.2 实数定义, 数列极限, 级数

A: 实数完备性定理的互推

- A1) 用 Dedekind 分割的定义证明 Dedekind 定理: ℝ 上任一 Dedekind 分割的上集均有最小元素.
- **解**. 记该分割为 $\alpha' \mid \beta'$. 我们想要证明, β' 的最小元素对应某个实数, 确切地说是对应一个 $\mathbb Q$ 上的 *Dedekind* 分割 $\alpha \mid \beta$, 其中 α , β 分别表示由 α' 和 β' 中所有有理数构成的集合.
- (i) 根据上述定义, α 显然向下封闭. 由于 α' 中无最大元素, 任取 $a \in \alpha$ 都存在 $M \in \alpha'$ 使得 a < M. 由推论 2.1 可知, 存在有理数 m 使得 a < m < M. 即得 α 中亦无最大元素, 所以 $\alpha \mid \beta$ 是 $\mathbb Q$ 上的一个 Dedekind 分割.
- (ii) 将 α 看做实数, 假设 $\alpha \in \alpha'$, 同上易知存在另一个 $(\mathbb{Q}$ 上的) 上集 α_1 满足 $\alpha < \alpha_1$. 将 α_1 看做有理数可知, 其一定在 β 内, 所以作为上集的 $\alpha_1 \in \beta'$, 矛盾.
 - (iii) 同 (ii) 可得, α 是 β' 的最小元素.
 - A2-1) 用 Dedekind 定理证明确界原理: 设非空集合 $X \subset \mathbb{R}$. 若其存在上界, 则一定存在上确界.
- 解. 若 X 中存在最大元素,则显然其上确界为该最大元素. 假设 X 中不存在最大元素,设其上界组成集合 β , 取 $\alpha = \beta^c$. 容易证明 $\alpha \mid \beta$ 是 \mathbb{R} 上的一个 Dedekind 分割,从而由 Dedekind 定理可得 β 存在最小元素,即为 X 的上确界.
 - A2-2) 用确界原理证明 Dedekind 定理.

解. 取 \mathbb{R} 上的 Dedekind 分割 $\alpha \mid \beta$, 显然 α 中的每个元素都是 β 的下界. 那么由确界原理可知 β 存在下确界.

假设 $\inf \beta$ 不是 β 的最小元素, 即 $\inf \beta \notin \beta$, 则 $\inf \beta \in \alpha$. 由于存在 $x \in \alpha$ 使得 $x > \inf \beta$, 故 $x \in B$, 矛盾.

A3-1) 用确界原理证明 Heine-Borel 定理: 对于给定闭区间, 任何一个能够覆盖它的开区间族必然包含一个亦可覆盖它的有限子族.

解. 设 $E = \{x \in [a,b] : [a,x]$ 存在一个 S 的有限子覆盖 $\}$. 显然存在 $I_0 \in S$ 满足 $a \in I_0$, 故存在 $x_0 \in I_0$ 使得 $x_0 > a$. 从而, E 非空.

显然 b 是 E 的一个上界, 故 E 存在上确界且 $\sup E \leq b$. 假设 $\sup E < b$. 取开区间 I 使得 $\sup E \in I$, 则存在 $\delta > 0$ 使得 $I \supseteq N_{\delta}(\sup E)$, 那么 E 所确定的有限子覆盖族 $\cup \{I\}$ 可以覆盖 $[a, \sup E + \delta]$, 这说明 $\sup E + \delta \in E$, 矛盾.

现在证明 $b \in E$. 假设 $b \notin E$, 类似地取包含 b 的 $I' \in S$, 容易得到 E 所确定的有限子覆盖族 $\cup \{I'\}$ 可以覆盖 [a,b].

A3-2) 用 Heine-Borel 定理证明确界原理.

解. 取不存在最大元素而存在上界 b 的集合 X. 假设 X 没有上确界. 任取 $a \in X$, 构造 $S = \{N_{\delta}(x): x \in [a,b]\}$, 其中 δ 满足:

- (i) 当 x 是 X 的上界时, 总存在另一个上界 x' 使得 x' < x, 此时记 $\delta = x x'$;
- (ii) 当 x 不是 X 的上界时, 存在 $x' \in X$ 使得 x' > x, 即 $\delta = x' x$.

由 Heine-Borel 定理知存在 S 的一个有限子覆盖 S'. 考虑 S' 中所有 (i) 类的区间, 取它们之中左端点的最小值 m, 可知 m 为 X 的上界, 则存在另一个 m' < m 亦为 X 的上界, 这样的 m 不可能在 (i) 中, 即得矛盾.

A4) 用确界原理证明单调收敛定理: 单调不减数列 $\{x_n\}$ 收敛于 $\sup\{x_n\}$ 当且仅当其有上界.

解. 只证明充分性: 若 $\{x_n\}$ 存在上界,则其存在上确界 $\sup\{x_n\}$,意即对任意的 ε 都存在 N 使得 $\sup\{x_n\}-\varepsilon < x_N \le \sup\{x_n\}$. 取 n > N 可知

$$\sup\{x_n\} - \varepsilon < x_N \le a_n \le \sup\{x_n\}.$$

这表明 $\{x_n\}$ 收敛于 $\sup\{x_n\}$.

A5) 用单调收敛定理证明闭区间套定理: 设闭区间 $I_n = [a_n, b_n]$, 若 $I_1 \supseteq I_2 \supseteq \cdots$, 且 $\lim_{n\to\infty} (a_n - b_n) = 0$, 则存在唯一的 c 属于所有闭区间.

解. 显然 $\{a_n\}$, $\{b_n\}$ 均单调且有界, 故存在极限. 注意到 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$, 记为 c, 即 $\sup\{a_n\}=\inf\{b_n\}=c$, 从而对任意 n 都有 $a_n\leq c\leq b_n$, 存在性即得证.

现假设存在不同的 c' 亦满足 $a_n \le c' \le b_n$ 对所有 n 都成立, 那么 $c' \le \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n \le c$, 同理 $c \le c'$, 即得 c = c', 矛盾.

- A6) 用闭区间套定理证明 Bolzano-Weierstrass 定理: 有界无限实数列必有收敛子列.
- 解. 设有界数列 $\{x_n\}$. 对于任意的 x_n 总存在 $a \le x_n \le b$. 显见区间 $[a, \frac{a+b}{2}]$ 和 $[\frac{a+b}{2}, b]$ 中必有至少一个含有 $\{x_n\}$ 的无穷多项. 取之,记为 I_0 . 重复该过程得到 $I_0 \supseteq I_1 \supseteq \cdots I_n \supseteq \cdots$. 注意到 I_n 的长度为 $\frac{b-a}{2^n} \to 0$,由闭区间套定理可得存在唯一的 $c \in I_n$ $(n=0,1,\cdots)$. 只需依次在 I_j 中取一个 x_{k_j} 即构成收敛于 c(容易证明) 的数列 $\{x_{k_n}\}$.
- A7-1) 用 Bolzano-Weierstrass 定理证明 Cauchy 收敛准则: 一个数列收敛当且仅当它是一个 Cauchy 列.
 - 解. 必要性:设数列 $\{x_n\}$ 收敛于 A. 则对任意 $\varepsilon > 0$ 都存在足够大的 m,m 满足 $|x_m A| < \varepsilon$, 从而可得 $|x_m x_n| < |x_m A| + |x_n A| < 2\varepsilon$ 对足够大的 m,n 成立.

充分性: 易证 Cauchy 列 $\{x_n\}$ 一定有界. 由 Bolzano-Weierstrass 定理可知 $\{x_n\}$ 存在某个子列 $\{x_{n_k}\}$ 有极限 A. 对任意 $\varepsilon > 0$,当 n_k 足够大时有 $|x_{n_k} - A| < \varepsilon$. 从而当 n 足够大时有 $|x_n - A| < |x_n - x_{n_k}| + |x_{n_k} - A| < 2\varepsilon$.

- A7-2) 用 Cauchy 收敛准则 (结合 Archimedes 性质) 证明确界原理.
- 解. 设非空集合 X 存在上界,由 Archimedes 性质可知,对任意的 n 都存在唯一的整数 k_n 使得 $q_n = \frac{k_n}{n}$ 是 X 的上界而 $\frac{k_n-1}{n}$ 不是. 我们断言 $\{q_n\}$ 是一个 Cauchy 列,从而其存在极限 q. 这里的 q 显然是 X 的上界,而对每个 n 都存在 $x \in X$ 使得 $x > q_n \frac{1}{n}$, 容易得到 q 就是 X 的上确界.

断言的证明: 对任意的 m,n 分别存在 $x_m,x_n\in X$ 使得 $q_m-\frac{1}{m}< x_m,q_n-\frac{1}{n}< x_n$,而 $q_m\geq x_n,q_n\geq x_m$,所以 $|q_m-q_n|<\max\{\frac{1}{m},\frac{1}{n}\}$,易知断言成立.

B: 逼近

- B1) 设无理数 α . 称 α 可被有理逼近, 如果 $\forall n, N \in \mathbb{N}^*, \exists p/q \in \mathbb{Q}\left(|\alpha p/q| < \frac{1}{Nq^n}\right)$.
- a) 证明: $\xi = \sum_{n=1}^{\infty} 10^{-n!} = \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^6} + \frac{1}{10^{24}} + \cdots$ 可被有理逼近.
- \mathbf{K} . 容易验证 ϵ 作为一个级数的确是收敛的. 又 ϵ 是一个无限不循环小数, 所以为无理数.

考虑取 $p_j/q_j = \sum_{n=1}^{\infty} 10^{-n!}$, 则有

$$\left| \xi - \frac{p_j}{q_j} \right| = \sum_{n=j+1}^{\infty} 10^{-n!} = 10^{-(j+1)!} \sum_{n=j+1}^{\infty} 10^{(j+1)!-n!} < 10^{-(j+1)!} \sum_{k=0}^{\infty} \left(10^{(j+1)!-(j+2)!} \right)^k$$

$$= \frac{1}{10^{(j+1)!} + 10^{-(j+1)}} < \frac{1}{10^{(j+1)!}}.$$

令 $q_j = 10^{j!}$, 那么 $|\xi - \frac{p_j}{q_j}| < \frac{1}{q_j^j}$.

接着,固定 n,对于任意 N>0,取 r 使得 $2^r>N$. 上面的计算说明存在 p/q 使得 $|\xi-\frac{p}{q}|<\frac{1}{q^{r+n}}<\frac{1}{2^rq^n}<\frac{1}{Nq^n}$.

b) (Liouville) 若 α 可被有理逼近, 则其必然是超越数.

解. 假设 α 是代数数, 设为 m 次整系数多项式 $f(x)=a_0+a_1x+\cdots+a_mx^m$ 的根. 下证存在特定的 n_m 和 N 使得对所有 $p/q\in\mathbb{Q}$ 都有 $|\alpha-p/q|>\frac{1}{Na^{n_m}}$.

与 a) 类似, 我们考虑一个数列 $\alpha_j=p_j/q_j \to \alpha$. 待定一个 ε , 则存在 j 使得 $|\alpha-\alpha_j|<\varepsilon$. 那么

$$\frac{f(\alpha_j) - f(\alpha)}{\alpha_j - \alpha} = a_1 \cdot \frac{\alpha_j - \alpha}{\alpha_j - \alpha} + \dots + a_m \cdot \frac{\alpha_j^m - \alpha^m}{\alpha_j - \alpha},$$

其中

$$\left| a_k \cdot \frac{\alpha_j^k - \alpha^k}{\alpha_j - \alpha} \right| = \left| a_k (\alpha_j^{k-1} + \alpha_j^{k-2} \alpha + \dots + \alpha^{k-1}) \right| < k |a_k| (|\alpha| + \varepsilon)^{k-1}$$

对 $k=1,\cdots,m$ 成立. 因此

$$\left| \frac{f(\alpha_j)}{\alpha_j - \alpha} \right| < \sum_{k=1}^m k|a_k|(|\alpha| + \varepsilon)^{k-1} =: M.$$

M 是一个仅与 α, ε 有关的常数. 那么

$$\left|\alpha - \frac{p_j}{q_j}\right| > \frac{|f(\alpha_j)|}{M} = \frac{1}{q_j^m} \cdot \frac{|a_0 q_j^m + a_1 p_j q_j^{m-1} + \dots + a_{m-1} p_j^{m-1} q_j + a_m p_j^m|}{M}.$$

注意到绝对值内必然是一个整数,且 $f(\alpha_j)\neq 0$ (否则消去 $(x-\alpha_j)$ 之后可得 α 是 m-1 次多项式的根),所以绝对值整体最小值为 1,即 $\left|\alpha-\frac{p_j}{q_j}\right|>\frac{1}{Mq_j^m}$.

现在做一些小的调整.

首先, 之前待定的数列 $\{\alpha_j\}$ 和 $\varepsilon>0$ 可以弱化为: 待定 ε , 令 $\{\alpha_j\}$ 满足 $|\alpha-\alpha_j|<\varepsilon$. 那么对这样的 $\{\alpha_i\}$ 我们完成了证明.

另一方面, 对于
$$\alpha' \in \mathbb{Q} - \{\alpha_j\}$$
, 必有 $|\alpha' - \alpha| > \varepsilon$. 取 $\varepsilon = 1$ 即得 $|\alpha' - \alpha| > \frac{1}{q^n}$.

B2) (连分数的概念) 给定自然数序列 $\{q_n\}$, 定义序列 $\{R_n\}$:

$$R_1 = q_1, R_2 = q_1 + \frac{1}{q_2}, \dots, R_n = q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \dots + \frac{1}{q_{n-1} + \frac{1}{q_n}}}}.$$

- a) 证明: 对每个有理数 $\frac{m}{l},$ 均存在唯一的 n 和 $\{q_n\}$ 使得 $R_n=\frac{m}{l}.$ (提示: 利用 Euclid 算法)
- b) 渐进分数序列 $\{R_n\}$ 满足以下不等式:

$$\exists m, l, \ R_1 < R_3 < \dots < R_{2k-1} < \frac{m}{l} < R_{2k} < R_{2k-2} < \dots < R_2.$$

- c) 每个无穷连分数 (定义为数列 $\{R_n\}$ 的极限) 都存在, 且为无理数.
- d) 可以按照如下方式递归地构造 R_k 的分子 P_k 与分母 Q_k . (对比 Pell 方程)

$$P_1 = q_1, P_2 = q_1q_2 + 1, P_k = P_{k-1}q_k + P_{k-2} \ (k \ge 3);$$

$$Q_1 = 1, Q_2 = q_2, Q_k = Q_{k-1}q_k + Q_{k-2} \ (k \ge 3).$$

e) $\frac{1+\sqrt{5}}{2}$ 的渐进分数 $R_k = \frac{P_k}{Q_k}$ 满足

$$\left| \frac{1+\sqrt{5}}{2} - \frac{P_k}{Q-k} \right| > \frac{1}{\sqrt{5}Q_L^2}, k \ge 1.$$

- C: 利用级数定义指数函数 e^x
 - C1) 自然常数 e 有如下级数展开式:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$$

解. 注意到:

$$x_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n C_n^k \frac{1}{n^k} = \sum_{k=0}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \le \sum_{k=0}^n \frac{1}{k},$$

所以 $e \leq \sum_{k=0}^{\infty} \frac{1}{k!}$. 另一方面, 熟知 $\{x_n\}$ 是单调递增的, 待定 n > m, 则

$$e \ge x_n \ge \sum_{k=0}^m \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right).$$

其中, 先固定 $m \diamondsuit n \to \infty$, 则 $e \ge \sum_{k=0}^m \frac{1}{k!}$. 再令 $m \to \infty$ 即得 $e \ge \sum_{k=0}^\infty \frac{1}{k!}$.

C2) 证明, 指数函数 $\exp: \mathbb{C} \to \mathbb{C}, z \mapsto \sum_{k=0}^{\infty} \frac{z^k}{k!}$ 是定义良好的.

解. 显见, 对足够大的 k 均有 $|\frac{z^k}{k!}| \leq \frac{1}{2^k}$.

C3) 设 $\sum_{k=1}^\infty a_k$ 和 $\sum_{k=1}^\infty b_k$ 是收敛的正项级数, $\{c_n\}$ 是 $\{a_ib_j\}$ 的一个重排, 则 $\sum_{n=1}^\infty c_n$ 收敛且

$$\sum_{n=1}^{\infty} c_n = (\sum_{k=1}^{\infty} a_k) (\sum_{k=1}^{\infty} b_k).$$

解. 容易证明 $\sum_{n=1}^{\infty} c_n$ 的部分和有界, 从而收敛. 待定 $\varepsilon_1, \varepsilon_2$, 则存在足够大的 n 使得

$$\left| \sum_{k=1}^{n} a_k - \sum_{k=1}^{\infty} a_k \right| < \varepsilon_1, \quad \left| \sum_{k=1}^{n} b_k - \sum_{k=1}^{\infty} b_k \right| < \varepsilon_2.$$

所以

$$\begin{split} & \left| (\sum_{k=1}^{n} a_{k}) (\sum_{k=1}^{n} b_{k}) - (\sum_{k=1}^{\infty} a_{k}) (\sum_{k=1}^{\infty} b_{k}) \right| \\ & \leq \left| (\sum_{k=1}^{n} a_{k}) (\sum_{k=1}^{n} b_{k}) - (\sum_{k=1}^{n} a_{k}) (\sum_{k=1}^{\infty} b_{k}) \right| + \left| (\sum_{k=1}^{n} a_{k}) (\sum_{k=1}^{\infty} b_{k}) - (\sum_{k=1}^{\infty} a_{k}) (\sum_{k=1}^{\infty} b_{k}) \right| \\ & \leq \varepsilon_{1} \left| \sum_{k=1}^{\infty} a_{k} \right| + \varepsilon_{2} \left| \sum_{k=1}^{\infty} b_{k} \right|. \end{split}$$

通过恰当地选取 $\varepsilon_1, \varepsilon_2$ 即可证明.

C4) 将 C3) 中的条件改为 $\sum_{k=1}^{\infty} a_k$ 和 $\sum_{k=1}^{\infty} b_k$ 绝对收敛 (不一定是正项), 则结论依然成立. 将条件 改为复数级数, 亦成立 (推广方式类似).

解. 将 $\sum_{k=1}^{\infty} a_k$ 拆成 $\sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$,其中 $a_k^+, a_k^- \geq 0$. 容易证明 $\sum_{k=1}^{\infty} a_k^+$ 和 $\sum_{k=1}^{\infty} a_k^-$ 都是收敛的. 同样地拆解 $\sum_{k=1}^{\infty} b_k$.

由于
$$c_n = a_i b_j = a_i^+ b_j^+ + a_i^- b_j^- - (a_i^+ b_j^- + a_i^- b_j^+)$$
,实际上我们有

$$\sum_{n=1}^{\infty} c_n = (\sum_{k=1}^{\infty} a_k^+)(\sum_{k=1}^{\infty} b_k^+) + (\sum_{k=1}^{\infty} a_k^-)(\sum_{k=1}^{\infty} b_k^-) - (\sum_{k=1}^{\infty} a_k^+)(\sum_{k=1}^{\infty} b_k^-) - (\sum_{k=1}^{\infty} a_k^-)(\sum_{k=1}^{\infty} b_k^+)$$

$$= (\sum_{k=1}^{\infty} a_k)(\sum_{k=1}^{\infty} b_k).$$

C5) 依 C2) 方式定义的指数函数 exp 满足: 对任意的 $z_1, z_2 \in \mathbb{C}$, $\exp(z_1 + z_2) = \exp(z_1) \cdot \exp(z_2)$.

解. 直接应用 C4) 有:

$$e^{z_1} \cdot e^{z_2} = (\sum_{k=0}^{\infty} \frac{z_1^k}{k!})(\sum_{k=0}^{\infty} \frac{z_2^k}{k!}) = \sum_{k=0}^{\infty} \sum_{i+j=k} \frac{z_1^i}{i!} \frac{z_2^j}{j!} = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i+j=k} \frac{k!}{i!j!} z_1^i \cdot z_2^j = \sum_{k=0}^{\infty} \frac{1}{k!} (z_1 + z_2)^k = e^{z_1 + z_2}.$$

D: Cesàro 求和极限

设 $\{a_n\}$ 是实数序列, 定义算术平均值序列 $\sigma_n = \frac{a_1 + \dots + a_n}{n}, n \in \mathbb{N}^*$.

- D1) 设 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} \sigma_n = a$.
- D2) 设 $n|a_{n+1}-a_n| \to 0$ 且 $\lim_{n\to\infty} \sigma_n = a$, 则 $\lim_{n\to\infty} a_n = a$.
- D3) 设 $\{n|a_{n+1}-a_n|\}$ 是有界的且 $\lim_{n\to\infty}\sigma_n=a$, 则 $\lim_{n\to\infty}a_n=a$.

解. 记 $b_k = a_{k+1} - a_k$. 设 $k|b_k| < M$. 将所有的 $\{a_n\}$ 缩小 M 倍, 可以不妨设 M = 1. 待定 n > N, 由于

$$|n\sigma_n - N\sigma_N - (n-N)a_N| = |(a_{N+1} - a_N) + \dots + (a_n - a_N)| = |\sum_{k=N}^{n-1} (n-k)b_k|$$

$$< \sum_{k=N}^{n-1} \frac{n-k}{k} < \left(\frac{n}{N} - 1\right)(n-N).$$

从而

$$\left|a_N - \frac{n\sigma_n - N\sigma_N}{n - N}\right| < \frac{n}{N} - 1,$$

即有

$$-\left(\frac{n}{N}-1\right)+\sigma_n+\frac{N}{n-N}(\sigma_n-\sigma_N)< a_N<\left(\frac{n}{N}-1\right)+\sigma_n+\frac{N}{n-N}(\sigma_n-\sigma_N).$$

待定 ε , 令 $n = |(1+\varepsilon)N|$. 在上式中令 $n, N \to \infty$ 可得

$$-\varepsilon + a < a_N < \varepsilon + a$$
.

即说明 $a_n \to a$.

E: Stolz 定理

定义无限非负下三角矩阵 $T = (t_{nk})$ 为一个 Toeplitz 矩阵, 若其满足

1) 对任意 $n \in \mathbb{N}^*$ 都有 $\sum_{k=1}^n t_{nk} = 1$; 2) 对任意 $k \in \mathbb{N}^*$ 都有 $\lim_{n \to \infty} t_{nk} = 0$.

对于数列 $\{a_n\}$, 称 $b_n = \sum_{k=1}^n t_{nk} a_k$ 构成的序列 $\{b_n\}$ 为其关于 T 的 Toeplitz 变换. (不严谨地, 即将 $\{a_n\}, \{b_n\}$ 竖写作向量 $\alpha, \beta,$ 有 $T\alpha = \beta$)

作为例子, 我们注意到 D 部分中的 $\{\sigma_n\}$ 就是 $\{a_n\}$ 关于

$$\begin{pmatrix} 1 \\ \frac{1}{2} & \frac{1}{2} \\ \vdots & \vdots & \ddots \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

的 Toeplitz 变换.

E1) (Silverman-Toeplitz 定理) 若 $\lim_{n\to\infty} a_n = a$, 则 $\lim_{n\to\infty} b_n = a$.

解. 通过将所有 a_n 减去 a, 不妨令 a=0. 注意到对任意 k 都有 $t_{nk} \to 0$, 所以 $\sum_{k=1}^{N} t_{nk} |a_n| \to 0$. 任 取 $\varepsilon > 0$, 则存在 N 使得对 n > N 均有 $|a_n| < \varepsilon/2$ 和 $\sum_{k=1}^{N} t_{nk} |a_n| < \varepsilon/2$. 于是,

$$|b_n| \le \sum_{k=1}^N t_{nk} |a_k| + \sum_{k=N+1}^n t_{nk} |a_k| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \sum_{k=N+1}^n t_{nk} < \varepsilon.$$

E2) (Stolz-Cesáro 定理) 设数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $\{b_n\}$ 严格递增, 且 $\lim_{n\to\infty}b_n=\infty$. 那么

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}.$$

前提是右侧极限存在且为实数.

解. <u>方法一</u> 构造 Toeplitz 矩阵 $T=(t_{nk})$, 其中 $t_{nk}=\frac{b_k-b_{k-1}}{b_n}$, 容易验证这样的定义符合要求. 记 $x_n=\frac{a_n-a_{n-1}}{b_n-b_{n-1}}$, 则

$$\lim_{n\to\infty}\sum_{k=1}^n t_{nk}x_k = \lim_{n\to\infty}\sum_{k=1}^n \frac{a_k-a_{k-1}}{n_n} = \lim_{n\to\infty}\frac{a_n}{b_n} = \lim_{n\to\infty}x_n.$$

方法二 只需证明

$$\liminf_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}\leq \liminf_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_n}{b_n}\leq \limsup_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}.$$

以右侧为例. 记 $s=\limsup_{n\to\infty} \frac{a_n-a_{n-1}}{b_n-b_{n-1}}$. 任取 $s_1>s$, 存在 N 使得任意 n>N 有 $\frac{a_n-a_{n-1}}{b_n-b_{n-1}}< s_1$, 从而

$$\frac{a_n - a_{N-1}}{b_n - b_{N-1}} \le \max \left\{ \frac{a_N - a_{N-1}}{b_N - b_{N-1}}, \cdots, \frac{a_n - a_{n-1}}{b_n - b_{n-1}} \right\} < s_1.$$

上式化简可得

$$\frac{a_n}{b_n} < s_1 \left(1 - \frac{b_{N-1}}{b_n} \right) + \frac{a_{N-1}}{b_n}.$$

两侧同时令 $n \to \infty$ 有 $\limsup_{n \to \infty} \frac{a_n}{b_n} \le s_1$. 再令 $s_1 \to s$ 则可证原式成立.

F: 数列的上下极限

- F1) 证明, 数列 $\{x_n\}$ 上下极限的三种定义方式是等价的: (以下极限为例)
- a) $\liminf_{k\to\infty} x_k := \lim_{n\to\infty} \inf_{k>n} x_k$; b) $\liminf_{k\to\infty} x_k := \min\{\{x_n\}$ 的聚点};
- c) $\liminf_{k\to\infty} x_k := \sup\{a \in \mathbb{R} \cup \{-\infty\} : \forall \varepsilon > 0, \exists N \in \mathbb{N}^* (\forall n > N, x_n > a \varepsilon)\}$

解. $a)\Rightarrow b)$: 若数列有界, 定义 $i_n=\inf_{k\geq n}x_k$, 记 $i=\lim_{n\to\infty}i_n$, 容易说明其是单调不减的. 我们可以归纳地得到所有 k_n 满足 $k_n< k_{n+1}$ 且 $i_{k_n}\leq x_{k_n}< i_{k_n}+\frac{1}{n}$. 由于 $\lim_{n\to\infty}i_{k_n}=\lim_{n\to\infty}(i_{k_n}+\frac{1}{n})=i$, 由夹逼定理得 $\lim_{n\to\infty}x_{k_n}=i$,即下极限是某个部分极限. 声明该部分极限为最小的: 对于任意 $\varepsilon>0$,足够大的 n 满足 $i-\varepsilon< i_n\leq x_k$ 对所有 $k\geq n$ 成立. 由 ε 的任意性可知所有的部分极限至少为 i.

若数列无 (Γ) 界, 即存在一个极限为 $-\infty$ 的子列, 容易得到 $i=-\infty$, 我们约定其为部分极限的最小元素.

 $b)\Rightarrow c)$: 记 $i=\min\{\{x_n\}$ 的聚点 $\}$, $E=\{a\in\mathbb{R}\cup\{-\infty\}:\forall\varepsilon>0,\exists N\in\mathbb{N}^*(\forall n>N,x_n>a-\varepsilon)\}$. 若数列有界. 先证明 $i\leq\sup E$: 若不然, 即存在 $\varepsilon>0$ 使得存在无穷多个 x_n 使得 $x_n+\varepsilon>i$, 进而由 Bolzano-Weierstrass 定理, $(-\infty,i-\varepsilon)$ 中存在聚点, 这与 i 的定义矛盾.

再证明 $i \ge \sup E$: 若不然, 即存在 $a \in E$ 使得 a > i, 进而存在 $\varepsilon > 0$ 使得 $a - \varepsilon > i$. 针对该 ε , 存在 N 使得任意 n > N 都有 $x_n > a - \varepsilon$, 说明 $(-\infty, a - \varepsilon)$ 中只有有限项, 故不存在聚点, 矛盾.

若数列无 (下) 界, 显然 $i = -\infty$, 同时 $E = \{-\infty\}$.

 $(c) \Rightarrow (a)$:

G: 无限乘积与 Riemann ζ-函数

给定复数列 $\{a_n\}$, 其中 $a_n \neq 0$ 对任意的 n 成立. 令 $P_n = \prod_{k=1}^n a_n$, 若 $\{P_n\}$ 的极限存在且不为 0, 则称无限乘积 $\prod_{n>1} a_n$ 收敛且其值为 $\lim_{n\to\infty} P_n$.

G1) (Cauchy 判別准则) $\prod_{n\geq 1}a_n$ 收敛当且仅当对任意的 $\varepsilon>0$, 存在 N 使得任意的 $n\geq N$ 和任意的 $p\geq 0$ 有

$$|a_n \cdot \cdots \cdot a_{n+p} - 1| < \varepsilon.$$

- G2) 设 $\{a_n\}$ 是正实数序列, 则无限乘积 $\prod_{n\geq 1}(1+a_n)$ 收敛当且仅当级数 $\sum_{n\geq 1}a_n$ 收敛. 特别地, 对于复数列 $\{b_n\}$, 若 $\sum_{n\geq 1}b_n$ 绝对收敛, 则 $\prod_{n\geq 1}(1+|b_n|)$ 收敛, 进而 $\prod_{n\geq 1}(1+b_n)$ 收敛.
 - G3) 设 \mathcal{P} 是所有素数构成的集合. 对于 s > 1, ζ -函数

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

是良好定义的,并且

$$\zeta(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}}.$$

G4) 利用按 2^k 为长度分组放缩的方式, 可以得到 $\zeta(s)$ 的下界估计:

$$\zeta(s) \ge \sum_{k=1}^{\infty} \frac{1}{2^{ks}} \times 2^{k-1} = \frac{1/2}{1 - \frac{1}{2^{s-1}}}.$$

从而当 $s \to 1$ 时 $\zeta(s) \to \infty$. 借此证明: \mathcal{P} 是无限集合.

H: 级数收敛判别法

- H1) (Cauchy) 设级数 $\sum_{n=1}^{\infty} a_n$, 记 $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. 则有:
- a) 当 $\alpha > 1$ 时,级数 $\sum_{n=1}^{\infty} a_n$ 发散;
- b) 当 $\alpha < 1$ 时,级数 $\sum_{n=1}^{\infty} a_n$ 绝对收敛;
- c) 当 $\alpha = 1$ 时,级数 $\sum_{n=1}^{\infty} a_n$ 可能发散或绝对收敛.
- 解. a) 用反证法. 假设级数收敛,则 $a_n \to 0$. 但由题知存在 $\{a_n\}$ 的子列 $\{a_{n_k}\}$ 使得 $\lim_{k\to\infty} \sqrt[n]{|a_{n_k}|} = \alpha > 1$,由极限保序性知对足够大的 k 有 $a_{n_k} > 1$,矛盾.
- b) 构造级数 $Q=\sum_{n=1}^{\infty}q^n$,其中 q 满足 $\alpha < q < 1$. 熟知 Q 收敛,而对足够大的 n 有 $\sqrt[n]{|a_n|} < q$ 即 $|a_n| < q^n$,故原级数绝对收敛.
 - c) 熟知 $\sum_{n=1}^{\infty} \frac{1}{n}$ 和 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 分别发散和绝对收敛, 它们都满足 c) 的条件.
 - H2) (d'Alembert) 若对于级数 $\sum_{n=1}^{\infty} a_n$, 极限 $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \alpha$ 存在, 则有:
 - a) 当 $\alpha > 1$ 时, 级数 $\sum_{n=1}^{\infty} a_n$ 发散;
 - b) 当 $\alpha < 1$ 时, 级数 $\sum_{n=1}^{\infty} a_n$ 绝对收敛;
 - c) 当 $\alpha = 1$ 时, 级数 $\sum_{n=1}^{\infty} a_n$ 可能发散或绝对收敛.
- **解.** a) 对足够大的 n 有 $|a_{n+1}| > |a_n|$, 显然与 $a_n \to 0$ 矛盾.
- b) 取 q 使得 $\alpha < q < 1$, 则对足够大 n 有 $|a_{n+1}| < q|a_n| < \cdots < q^n|a_1|$, 构造级数 $\sum_{n=0}^{\infty} |a_1|q^n$ 显 然收敛, 故原级数绝对收敛.
 - c) 同 H1) 中例子.
 - H3) (Cauchy) 对于 $s \in \mathbb{Z}_{\geq 2}$, 若 $\{a_n\}$ 单调不增, 则级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{k=1}^{\infty} b^k a_{b^k}$ 的敛散性相同.

解. 只需注意到

$$(b-1)b^{k-1}a_{b^k} \le \sum_{j=b^{k-1}}^{b^k-1} a_j \le (b-1)b^{k-1}a_{b^{k-1}}.$$

- H4) (振荡型的级数收敛判别) 给定实数列 $\{a_k\}$, $\{b_k\}$, 记 S_n 是 $\{a_k\}$ 的部分和. 级数 $\sum_{k=1}^\infty a_k b_k$ 收敛, 如果满足:
- a) $\{b_k\}$ 是单调 (不一定严格) 数列且 $\lim_{k\to\infty}b_k=0;$ b) $\{S_n\}$ 有界.(即 $\{a_k\}$ 是振荡的且相互抵消很多)

或 (是上方条件的推论)

a') $\{b_k\}$ 是单调 (不一定严格) 有界数列; b') $\sum_{k=1}^{\infty} a_k$ 收敛.

Chapter 3

初等数论 Elementary Number Theory