Домашняя работа по математическому анализу ФКН ПМИ 1 курс основной поток 2018-2019

Листок 5. Задачи 31-35. Крайний срок сдачи 18.12.2018

Номер варианта в каждой задаче вычисляется по следующему алгоритму

 $N_{task} =$ номер задачи;

 N_{grp} = номер вашей группы;

 N_{stud} = ваш номер в списке группы (см. здесь);

 $N = (N_{task} - 1) \cdot 300 + (N_{grp} - 183) \cdot 35 + N_{stud}$

Ваш вариант — N-ая десятичная цифра числа π после запятой (можно спросить у wolfram alpha, или посмотреть здесь. Задачи со звездочкой сдаются семинаристам.

Задача 31. Представьте формулой Тейлора с $o((x-x_0)^3)$ в окрестности точки x_0 функцию f(x).

0.
$$f(x) = \sin x^2$$
, $x_0 = \pi/2$;

1.
$$f(x) = \ln(2 - 2x + x^2), x_0 = 1;$$

2.
$$f(x) = 1/\sin x$$
, $x_0 = \pi/2$;

3.
$$f(x) = x \ln(2 - x^2), x_0 = 1;$$

4.
$$f(x) = e^{-x^2 + x}, x_0 = 1;$$

5.
$$f(x) = \sqrt{3 + x^2}$$
, $x_0 = 1$;

6.
$$f(x) = \sqrt[3]{7+x}$$
, $x_0 = 1$;

7.
$$f(x) = \sqrt{x} \sin x$$
, $x_0 = \pi/6$;

8.
$$f(x) = \sin x/x, x_0 = \pi/2;$$

9.
$$f(x) = (x-1)/\cos x$$
, $x_0 = 0$;

10.
$$f(x) = (x - x^2)/\sqrt{x}, x_0 = 1.$$

Задача 32. Представьте формулой Тейлора с $o((x-x_0)^n)$ в окрестности точки x_0 функцию f(x), используя разложения основных элементарных функций.

0.
$$f(x) = x \ln x, x_0 = 2;$$

1.
$$f(x) = \sqrt{9-x}, x_0 = 5;$$

2.
$$f(x) = \frac{3}{1 + x - 2x^2}, x_0 = 0;$$

3.
$$f(x) = \frac{x}{4+8x}$$
, $x_0 = -1$;

4.
$$f(x) = x \ln(x+10), x_0 = 9;$$

5.
$$f(x) = \sin(5+x), x_0 = 0$$
;

6.
$$f(x) = \cos x$$
, $x_0 = \pi/3$;

7.
$$f(x) = \ln(3 - 2x - x^2), x_0 = -1;$$

8.
$$f(x) = \frac{x^2}{\sqrt{1-x^2}}, x_0 = 0;$$

9.
$$f(x) = 2x \cos \frac{x}{2} - x$$
, $x_0 = \pi$.

Задача 33. Используя формулу Тейлора с остаточным членом в форме Лагранжа, найдите приближенное значение числа с точностью до 0.001.

- $0. \sqrt{e};$
- 1. $\sqrt[3]{e}$;
- 2. $\cos \frac{3}{2}$;
- $3. \sin 4;$
- 4. $\sqrt[3]{1.5}$;
- 5. $\sqrt[4]{5/4}$;
- 6. $\sqrt{10}$;
- 7. $\sqrt[5]{33}$;
- 8. ln 4;
- 9. ln 6.

Задача 34. Вычислите предел с помощью формулы Тейлора.

0.
$$\lim_{x\to 0} \frac{\operatorname{tg} x^2 - \sin x^2}{e^{\operatorname{arctg} x} - 1};$$

1.
$$\lim_{x \to 0} \frac{e^{\lg x} - x}{\ln(x^2 + 1) - x^2}$$
;

2.
$$\lim_{x \to 0} \frac{\cos x - x\sqrt{1 - 2x} - 1}{\sin x - x}$$
;

3.
$$\lim_{x \to 0} \frac{x^2 e^{2x} + \ln(1 - x^2)}{x \cos x - \lg x};$$

4.
$$\lim_{x \to 0} \frac{e^{x^2} - \sqrt{1 + 2x^2}}{\sin^4 x}$$
;

5.
$$\lim_{x \to 0} \frac{e^{\arctan x} - x}{\ln(1 - x^3) + x^3};$$

6.
$$\lim_{x \to 0} \frac{x^2 \cos x + \ln(1 - x^2)}{xe^{2x} - \operatorname{tg} x};$$

7.
$$\lim_{x \to 0} \frac{\arcsin x^2 - \sin^2 x}{e^{\lg x} - x - 1};$$

8.
$$\lim_{x \to 0} \frac{xe^x - x\sqrt{1 - 5x}}{\cos x^2 - 1 - x};$$

9.
$$\lim_{x \to 0} \frac{x^2 e^{x^2} - \sin^2 x e^{x^4}}{\operatorname{tg} x^3}.$$

Задача 35.* Запишите и докажите формулы Маклорена для функций $f(x)=\arcsin x$ и $f(x)=\ln(x+\sqrt{1+x^2})$ и произвольного n.