Präsenzaufgabenblatt 1

Analysis für Informatik

Aufgabe 1.

- (a) Geben Sie alle Teilmengen der Menge $\{3, 6, 9, 10\}$ an.
- (b) Es seien $M_1 := \{1, 3, 5, 7\}$ und $M_2 := \{1, 2, 3, 4\}$. Veranschaulichen Sie die beiden Mengen in einem Diagramm und geben Sie $M_1 \cup M_2$, $M_1 \cap M_2$ sowie $M_1 \setminus M_2$ an.

b)
$$M_1 \cup M_2 = \{1,2,3,4,5,7\}$$

 $M_1 \cap M_2 = \{1,3\}$
 $M_1 \setminus M_2 = \{1,5,7\}$

Aufgabe 2.

Die Mengen

$$A := \{-3, -2, ..., 2, 3\}$$
 und $B := \{-10, -9, ..., 9, 10\}$

seien gegeben. Wir betrachten außerdem eine Abbildung $f:A\to B,$ die durch

$$f(-3) = 10, f(-2) = 5, f(-1) = 2, f(0) = 1, f(1) = 2, f(2) = 5, f(3) = 10$$

gegeben ist

(a) Veranschaulichen Sie die Abbildung f in einem Diagramm.

(b) Können Sie eine Vorschrift finden, um $f(x) = \dots$ kompakter zu beschreiben?

$$f(x) = x^2 + 1$$

(c) Finden Sie $f(\{-1,0,1\})$, $f^{-1}(\{2\})$ und $f^{-1}(\{0\})$.

$$3^{(\xi-1,0,1)} = \{2,1\}$$

$$3^{-1}(\{2\}) = \{-1,1\}$$

$$3^{-1}(\{0\}) = \{1\}$$

Aufgabe 3.

Sei $f:X\to Y$ eine beliebige Abbildung und seien $Y_1,Y_2\subset Y$ beliebig. Zeigen Sie, dass

$$f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2).$$

$$\times \in \mathcal{J}^{-1} \left(Y_1 \cup Y_2 \right) \implies \exists y \in Y_1 \cup Y_2 , x = \mathcal{J}^{-1}(y)$$

$$\implies y \in Y_1 \text{ oder}, y \in Y_2$$

Fall
$$y \in Y_a$$
:
$$= > \times \in \mathcal{J}^{-1}(Y_a)$$
Fall $y \in Y_2$:
$$= > \times \in \mathcal{J}^{-1}(Y_2)$$

$$\Rightarrow \times \in J^{-1}(Y_1) \quad \text{oden} \quad \times \in J^{-1}(Y_2)$$

$$\Rightarrow \times \in J^{-1}(Y_1) \cup J^{-1}(Y_2)$$

$$\frac{\sqrt{2}}{2} \times \epsilon_{3}^{-1}(\gamma_{1}) \cup j^{-1}(\gamma_{2}) = \sum_{i=1}^{n} (\gamma_{1}) \cdot \epsilon_{3}^{-1}(\gamma_{2}) \cdot \epsilon_{3}^{-1}(\gamma_$$

Aufgabe 4.

Es seien A, B und C beliebige Mengen. Zeigen Sie, dass $A \subset B \cap C$ genau dann, wenn $A \subset B$ und $A \subset C$, d.h., zeigen Sie, dass

$$A \subset B \cap C \Leftrightarrow (A \subset B \text{ und } A \subset C)$$
.

Hinweis: Hier soll gezeigt werden, dass die Aussage $A \subset B \cap C$ dann und nur dann gültig ist, wenn auch $A \subset B$ und $A \subset C$ gelten. Um solch eine Äquivalenz zu zeigen, müssen Sie je eine Bedingung voraussetzen und zeigen, dass unter dieser Annahme die andere Bedingung gilt.

ACB und AC(

ACB
$$\Rightarrow \forall a \in A, a \in B$$

ACC $\Rightarrow \forall a \in A, a \in C$
 $\Rightarrow a \in B \text{ und } a \in C$
 $\Rightarrow a \in B \cap C$