Assignment 1 Avinash Iyer

Problem (Problem 1): Let R be a ring in which every element a satisfies $a^2 = a$. Show that

- (a) $2\alpha = 0$ for every $\alpha \in R$, so $\alpha = -\alpha$;
- (b) R is commutative.

Solution:

(a) Let $a \in R$. We see that, since $a + a \in R$, $(a + a)^2 = a + a$, so that

$$a + a = (a + a)^{2}$$

$$= (a + a)(a + a)$$

$$= a^{2} + a^{2} + a^{2} + a^{2}$$

$$= a + a + a + a,$$

and since R is a ring, we see that a + a = 0, or that a = -a.

(b) Similarly, if $a, b \in R$, then since $(a + b)^2 = a + b$, we have

$$a + b = (a + b)^{2}$$

$$= (a + b)(a + b)$$

$$= a^{2} + b^{2} + ab + ba$$

$$= a + b + ab + ba,$$

so ab = -ba, but since -ba = ba by the previous part, we have ab = ba, and so R is commutative.

Problem (Problem 2): Let R be a ring with identity, and let R^{\times} be the set of invertible elements of R. Show that R^{\times} is a group under multiplication. What is $\mathbb{Z}[i]^{\times}$.

Solution: First, R^{\times} is nonempty, as R contains a multiplicative identity. Next, if $a, b \in R^{\times}$, we see that ab admits the inverse $b^{-1}a^{-1}$, as

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1}$$
$$= aa^{-1}$$
$$= 1.$$

and similarly,

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b$$

= $b^{-1}b$
= 1,

so R^{\times} is closed under multiplication. Similarly, since $(b^{-1})^{-1} = b$ for any $b \in R^{\times}$, every element of R^{\times} has a multiplicative inverse, so R^{\times} is a group.

To understand the picture of $\mathbb{Z}[i]^{\times}$, we try to understand when, given $a + bi \in \mathbb{Z}[i]$, $\frac{1}{a+bi} \in \mathbb{Z}[i]$. Doing the hand calculations, we see that

$$\frac{1}{a+bi} = \frac{1}{a^2+b^2}(a-bi).$$

Therefore, we see that this holds if and only if $a = \pm 1$ and b = 0, or $b = \pm 1$ and a = 0, meaning that $\mathbb{Z}[i]^{\times} = \{1, i, -1, -i\}$.

Problem (Problem 3): Fix an integer n > 1. Recall that for $a, b \in \mathbb{Z}$, we write $a \equiv b$ modulo n if a - b is divisible by n. Show that this relation is an equivalence relation on \mathbb{Z} . Furthermore, show that if $a \equiv b$

Assignment 1 Avinash Iyer

modulo n, and $c \equiv d$ modulo n, then

 $a + c \equiv b + d \mod n$, and $ac \equiv bd \mod n$.

Problem (Problem 4): Show that a finite commutative ring with 1 and without zero divisors is a field.

Solution: Let $\alpha \in R$, and consider the map $\phi_\alpha \colon R \setminus \{0\} \to R \setminus \{0\}$ given by $b \mapsto \alpha b$. We see that if $\alpha b = \alpha c$, then $\alpha(b-c) = 0$, and since $\alpha \neq 0$, we see that b = c, so ϕ_α is injective. Since ϕ_α is an injective self-map of a finite set, ϕ_α is surjective, so ϕ_α is bijective, and thus $\phi_\alpha^{-1}(1)$ is well-defined, so $\alpha \phi_\alpha^{-1}(1) = 1$, meaning α has a right-inverse. Since R is commutative, we have $\phi_\alpha^{-1}(1)\alpha = 1$, so R is a field.

Problem (Problem 5): Let $R = Mat_n(\mathbb{R})$ be the ring of real $n \times n$ matrices. Show that if A satisfies det(A) = 0, then there exist nonzero B, $C \in R$ such that $AB = \mathbf{0}_n$ and $CA = \mathbf{0}_n$.

Solution: We notice that, since 0 is an eigenvalue of A, as can be seen by plugging in 0 for the characteristic polynomial of A, the minimal polynomial $m_A(t)$ factors as $m_A(t) = tp(t)$ (by Cayley–Hamilton) for some monic polynomial $p \in \mathbb{R}[t]$ with strictly lesser degree than $m_A(t)$. Since $m_A(t)$ is the minimal polynomial of A, it must mean that $p(A) \neq 0$, so by setting B = p(A), we see that AB = BA = 0.

Problem (Problem 6): An element $x \in R$ is called *nilpotent* if there exists n > 0 such that $x^n = 0$.

Assume R is a commutative ring with identity. Show that if $x \in R$ is nilpotent, then

- (a) rx is nilpotent for any $r \in R$;
- (b) 1 + x is invertible.

Solution:

(a) We see that, since R is commutative,

$$(rx)^{n} = (rx)(rx)\cdots(rx)$$
$$= r^{n}x^{n}$$
$$= 0$$

so rx is nilpotent.

(b) We see that if a is nilpotent, then

$$1 = 1 - a^{n}$$

= $(1 - a)(1 + a + \dots + a^{n-1}),$

meaning that 1 - a is invertible. Furthermore, we note that if a is nilpotent, then so is -a, as since R is commutative and unital, $(-1)^n a^n = (-a)^n = 0$. Therefore, if $x \in R$ is nilpotent, 1 - (-x) = 1 + x is invertible.

Problem (Problem 7): Let $R = Mat_n(\mathbb{F})$, where \mathbb{F} is a field. Show that if I is a nonzero 2-sided ideal of R, then I = R.

Solution: We show that if I is a nonzero two-sided ideal in $Mat_n(\mathbb{F})$, then $I_n \in I$.

Since I is nonzero, there is some matrix $(a_{ij})_{i,j} \in I$ such that at particular indices i_0 and j_0 , $a_{i_0j_0} \neq 0$. Since $a_{ij} \in \mathbb{F}$ for all i, j, we have that $a_{i_0j_0}^{-1}$ exists.

Let e_{ij} be the matrix unit with a position 1 at index (i, j) and zero elsewhere. Then, via some matrix algebra, we see that

$$a_{i_0j_0}e_{kk} = \sum_{i,j=1}^n e_{ki}a_{ij}e_{jk},$$

which is necessarily in I, as I is a two-sided ideal. Therefore, since \mathbb{F} is a field, we see that $(e_{kk})_{i,j} \in I$ for

Assignment 1 Avinash Iyer

each k, so $\sum_{k=1}^{n} (e_{kk})_{i,j} \in I$, so $I_n \in I$, meaning I = R.

Problem (Problem 8):

- (a) Prove that $aut_{group}(\mathbb{Z}^n)\cong GL_n(\mathbb{Z}).$
- (b) Prove that $aut_{ring}(\mathbb{Z}^n) \cong Sym(n)$.