一、实验目的

- (1) 迫过实验加深对叠加定理和马尔理的理解
- (2)研究叠加定理这所条件和范围。
- 的熟悉验证定理的方法和直流仪表仪器的正确使用

二、实验原理

盈加它理是线性电路的一个重要定理,是分析线性电路的基础。叠加定理指出、在线性电路中在一支路电流,他压都是由新独立电源单独作用邮件流动叠加它理运用于线性电路,不适用于非线性电路,叠加时一定要注意电流与电压的参考方向,由于功率不是电流或电压的一次函数,所以不可用叠加定理来、计算所耗功率

三、实验仪器

DL5型电路原理域置单元4、DHI7180-2型双路形流、稳压源, Cn型直流电流表,MF-47型万甲表、DT9109型数字万用表,ZG-1型伏 特、毫安双用表,电流表去用我,电压表专用我。

四、实验方法与步骤

- (1) 我准对称电路N(我胜电阻 Ri=R=R3)。分别沙量当电源 Usa 单独作用、电源 Usa 并同作用时的为支路电流和电压,并记录
- (2) 後性不对称电路 //(後性电阻 R4 +/2.4%)。重复(1)的实验内容并记录

$(R_1=R_2=R_3)$										
方号	沙量	Ri支路		计算	R2支路		计算	尺3支路		计慎
5	· 狼励就	1,	Ui	P,	12	U2	Pz	I3_	U3	P ₃
1	(JSA=20V 卓独激励	62 mA	12.91	0.8	30MA	6.664	0.20	30M4	6.670	0.20
2	UsB=12V单独激励	15MA	-3.60V	400	-35mA	-7.24v	0.25	18mA	3.5W	0.04
3	USASUSE同时激励	42 MA	9.140	0.38	-5mA	-1.06V		48mA	9.81	0.47
残	激励放	R4 \$ 1	沧 ///	计算 P4	R5支	路	计算	R6支1		计角
1	Us4=20V 单独激励	52MA	13.892	0.72	28mA	5.94	P5	25.7mA	5.74V	Рь' 0.15
2	UsB=12 V单独激励		-4.28V	0.06	-34mA	-6.7	0.23	14mA	4.28V	
3	UsasUsa共同激励	34mA	9.540	0.32	-9mA	-024V		44mA	60.490	2.66

(R4 + R5 + R6)

六、误差分析或问题讨论

五、实验记录及数据外理

问匙讨话:

四在验证叠加灾理时,如果所用电源内阻不唿略.该企业和

度: 首、通过伏安法浏出电源内阻,进行等效的时候将电压沥着成电冲内阻即可以,如果使用电流表内阻较大,电压表相又较小时,对沙量征来有何影响;为你心

焙. 会致电流表有明验压,电压表有明显分流,使沙量伤果扁小.

误差分析:

(1)电阻值不恒等电路标出值,误美较大 (5)电济波动影响。

(2) 子改连接不紧密命线的接触误差

(3) 仪表样误差及读数误差

(4) 电沿内阻影响

七、教师批语与成绩评定