Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2021

DE BEINEBIER VII (NEW) EMINIMINITION	**************************************
Subject Code:3170620	Date:29/12/2021
Subject Name: Computational Geotechnics	
Time:10:30 AM TO 01:00 PM	Total Marks: 70
Instructions:	
1. Attempt all questions.	
2. Make suitable assumptions wherever necessary.	
3. Figures to the right indicate full marks.	

4. Simple and non-programmable scientific calculators are allowed.

			MARKS		
Q.1	(a)	Find a real root of the equation x^3 - $\cos x = 0$ using the Newton-Raphson method	03		
		correct to three decimal places starting from $x_0 = 1$.			
	(b)	Explain Bisection method with suitable example.	04		
	(c)	Solve the following system by Gauss Jacobi method. $20x+y-2z = 17$, $3x+20y-z = -18$ and $2x-3y+20z = 25$	07		
		20x+y-2z=17, $3x+20y-z=-16$ and $2x-3y+20z=23$			
0.2	(a)	Explain Falsa Position method with suitable axample	0.2		
Q.2	(a) (b)	Explain False Position method with suitable example. Enlist the types of boundary conditions. Explain Disichlet conditions.	03 04		
	(c)	Use fourth order Runge-Kutta method to find y(0.2) with h=0.1, given that	07		
	(0)	$10 \frac{dy}{dx} = x^2 + y^2, y(0) = 1.$	07		
		$\frac{10}{dx} - x + y$, $y(0) - 1$.			
	(c)	Use second order Runge-Kutta method of solve initial value problem y'= -y,	07		
	(C)	where $y(0)=1$ for $x_1=0.2$ and $x_2=0.4$	07		
Q.3	(a)	Differentiate between discrete modeling versus continuum modeling.	03		
	(b)	Briefly explain Drucker-Prager theory.	04		
	(c)	Explain One-dimensional (1D) plasticity theory.	07		
0.1	()	OR	0.2		
Q.3	(a)	Briefly explain continuum modeling.	03		
	(b) (c)	Briefly explain discrete element method (DEM). Explain Mohr-Coulomb theory.	04 07		
Q.4	(c) (a)	Briefly explain soil constitutive model.	03		
Ų, ī	(b)	Explain the flow through porous media.	04		
	(c)	Explain earth pressure coefficients based upon Lade-Duncan criterion.	07		
		OR			
Q.4	(a)	Differentiate between elastic models and plastic models.	03		
	(b)	Give the importance of boundary value problems in geotechnical	04		
	(a)	engineering. What is also sized placticity? Explain general framework of alassical placticity.	07		
	(c)	What is classical plasticity? Explain general framework of classical plasticity.	07		
Q.5	(a)	Define following terms:	03		
		1. Immediate Settlement			
		2. Primary Consolidation			
	(7. \)	3. Secondary Consolidation	0.4		
	(b)	· ·	04		
		consolidation when drained on both sides. Its coefficient of volume change m_v is 1.5×10^{-3} m ² /kN. Determine the coefficient of consolidation (m ² /yr)			
		and coefficient of permeability (m/year). Assume $\gamma_w = 10 \text{ kN/m}^3$			
	(c)	Explain Tri-axial Test.	07		
	(-)	r ·· · · · · · · · · · · · · · · · · ·	~ ·		

- Q.5 (a) Enlist the assumptions made in Terzaghi's theory of 1-dimensional consolidation.
 - **(b)** Spring analogy to explain consolidation theory.

04 07

03

(c) A laboratory specimen of clay 30 mm thick drained at top as well as bottom, has taken 400 second to reach 40% consolidation. When the pressure increased from 80 kN/m² to 160 kN/m². The initial void ratio was 0.85 and the final void ratio due to increasing of the load was 0.50. Determine coefficient of permeability.

Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VII (NEW) EXAMINATION – SUMMER 2022	
Subj	ect (Code:3170620 Date:10/0	6/2022
Subj	ect l	Name:Computational Geotechnics	
Time	:02	:30 PM TO 05:00 PM Total Mar	rks: 70
Instru	ction	ns:	
	1.	Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1		Explain Newton-Raphson method with suitable example.	03
	(b)	Find a root of the equation $x^3 - 4x = 9$ using the Bisection method in four stages.	04
	(c)	Solve the following system by Gauss Jacobi method	07
		6x + y + z = 105	
		4x + 8y + 3z = 155	
		5x + 4y - 10z = 65	
Q.2	(a)	Explain False Position method with suitable example.	03
	(b)		04
	(c)	Use the Runge-Kutta method of fourth order to solve	07
		$\frac{dy}{dx}$ = 1 + y ² Subject to y(0) = 0, find y(0.2) and y(0.4).	
		OR	
	(c)	3.	07
		y, y(0) = 1; (use $h = 0.1$).	
Q.3	(a)	y	03
		engineering?	
	(b)		04
	(c)	Explain Mohr-Coulomb theory.	07
0.1	(.)	OR	02
Q.3	(a)	Give difference between discrete modeling versus continuum modeling.	03
	(b)	Briefly explain Drucker-Prager theory. Explain in detail One- dimensional plasticity theory for understanding	04 07
	(c)	the behavior of soil.	U/
0.4	()	Evaluin basis sensent of discrete we delling	02
Q.4	(a)		03
	(b)	Explain Modified Mohr Coulomb failure theory for shear strength? Sketch typical strength envelop for different type of soil.	04
	(c)	Explain earth pressure coefficients based upon Lade-Duncan criterion.	07
	(C)	OR	07
Q.4	(a)	Explain the flow through porous media.	03
•	(b)	-	04
	(c)	Explain Terzaghi's theory of 1-dimensional consolidation with	07
	` /	assumptions.	
Q.5	(a)	Give detail explanation on various types of consolidation.	03
•	(b)	**	04
	(c)	Explain consolidation mechanism through spring analogy theory.	07

OR

Q.5	(a)	Explain consolidation in detail.	03
	(b)	A saturated clay layer of 4 m thickness takes 2 years for 50% primary	04
		consolidation when drained on both sides. Its coefficient of volume change $m_v = 1.5 \times 10^{-3} \text{ m}^2/\text{kN}$. Determine the coefficient of consolidation and coefficient of permeability. Assume $\gamma_w = 10 \text{ kN/m}^3$	
	(c)	Explain tri-axial test with neat sketch.	07
	` '	1	
