Autômato Finito Não-determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

20 de novembro de 2017

Plano de Aula

- Revisão
 - Fecho em Linguagens Regulares (cont.)
- 2 Não-determinismo
- Não-determinismo (cont.)

Sumário

- Revisão
 - Fecho em Linguagens Regulares (cont.)
- Não-determinismo
- Não-determinismo (cont.)

Teorema 1.25

A classe de linguagens regulares é fechada sob a operação de união.

Prova

Sejam A e B duas linguagens regulares. Se A e B são regulares, então existem dois AFDs $M_A = (Q_A, \Sigma_A, \delta_A, q_A, F_A)$ e $M_B = (Q_B, \Sigma_B, \delta_B, q_B, F_B)$ que as reconhecem, respectivamente. Como passo auxiliar, iremos construir o AFDs estendidos $M_A' = (Q_A', \Sigma_A', \delta_A', q_A', F_A')$ e $M_B' = (Q_B', \Sigma_B', \delta_B', q_B', F_B')$ dos AFDs M_A e M_B , respectivamente. Um AFD estendido O é um AFD equivalente a um dado AFD P de forma que $\Sigma_P \subset \Sigma O$. Desta forma, temos:

Prova (cont.)

Elementos de M'_{Δ} :

- $Q_A' = Q_A \cup \{q_{fugaA}\};$
- $\Sigma_A' = \Sigma_A \cup \Sigma_B$;
- \bullet $q'_A = q_A$;
- $F'_A = F_A$

Prova (cont.)

Elementos de M'_R :

- $Q'_B = Q_B \cup \{q_{fugaB}\};$
- $\Sigma_B' = \Sigma_A \cup \Sigma_B$;
- $q_B' = q_B;$
- $F'_B = F_B$.

Prova (cont.)

De posse de M'_A e M'_B , será construído o AFD $M_{A\cup B}=(Q,\Sigma,\delta,q_0,F)$ que reconhece $A\cup B$: Elementos de $M_{A\cup B}$:

•
$$Q = Q'_A \times Q'_B$$
;

•
$$\Sigma = \Sigma'_A$$
;

•
$$\delta((x,y),a) = (\delta'_A(x,a), \delta'_B(y,a))$$

em que $(x,y) \in Q$ e $a \in \Sigma$;

•
$$q_0 = (q'_A, q'_B);$$

•
$$F = \{(x, y) \in Q \mid x \in F'_A \text{ ou } y \in F'_B\}.$$

Assim, como foi possível construir $M_{A \cup B}$, podemos dizer que a classe de linguagens regulares é fechada sob a operação de união l

Sumário

- Revisão
 - Fecho em Linguagens Regulares (cont.)
- 2 Não-determinismo
- Não-determinismo (cont.)

FIGURA **1.27**

O autômato finito não-determinístico N_1

FIGURA **1.28**

Computações determinísticas e não-determinísticas com um ramo de aceitação

FIGURA 1.29 A computação de N_1 sobre a entrada 010110

FIGURA 1.31 O AFN N_2 que reconhece A

 $\begin{array}{ll} {\rm Figura} & {\rm \bf 1.34} \\ {\rm OAFN} \, N_3 \end{array}$

Sumário

- Revisão
 - Fecho em Linguagens Regulares (cont.)
- 2 Não-determinismo
- Não-determinismo (cont.)

FIGURA 1.36 O AFN N_4

DEFINIÇÃO 1.37

Um autômato finito não-determinístico é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, onde

- 1. Q é um conjunto finito de estados,
- 2. Σ é um alfabeto finito,
- 3. $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ é a função de transição,
- **4.** $q_0 \in Q$ é o estado inicial, e
- **5.** $F \subseteq Q$ é o conjunto de estados de aceitação.

Descrição Formal

FIGURA **1.27**

O autômato finito não-determinístico N_1

Descrição Formal

FIGURA 1.31 O AFN N_2 que reconhece A

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$.

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

- ② $r_{i+1} \in \delta(r_i, \omega_{i+1})$ (para i = 0, ..., n-1); e
- \circ $r_n \in F$.

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

- ② $r_{i+1} \in \delta(r_i, \omega_{i+1})$ (para i = 0, ..., n-1); e
- \circ $r_n \in F$.

Corolário

N reconhece a linguagem A, se $A = \{\omega \mid N \text{ aceita } \omega\}$.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

 Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;
- Se k é o número de estados do AFN, então ele tem 2^k subconjuntos de estados;

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;
- Se k é o número de estados do AFN, então ele tem 2^k subconjuntos de estados;
- Portanto o AFD equivalente terá 2^k estados.

Descrição Formal

Descrição Formal

Autômato Finito Não-determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

20 de novembro de 2017

