Notas de aula de Lógica para Ciência da Computação

Daniel Oliveira Dantas

11 de setembro de $2020\,$

Sumário

1	A linguagem da lógica proposicional										
2	$\mathbf{A} \mathbf{s}$	A semântica da lógica proposicional									
3	Propriedades semânticas da lógica proposicional										
	3.1	Propriedades semânticas	5								
	3.2	Relações entre propriedades semânticas	6								
	3.3	Relações semânticas entre os conectivos da lógica proposicional .	7								
	3.4	Formas normais na lógica proposicional	8								
	3.5	Exercícios	9								
4	Mé	todos semânticos de dedução na lógica proposicional	12								
	4.1	Introdução	12								
	4.2	Método da tabela verdade	12								
	4.3	Método da negação ou absurdo	13								
	4.4	Método da árvore semântica	13								
	4.5	Método do tableaux semântico	15								
	4.6	Exercícios	17								
5	Um	Um método sintático de dedução na lógica proposicional									
	5.1	Introdução	18								
	5.2	O sistema formal Pa	18								
6	A i	nguagem da lógica de predicados	19								
2 3 4	6.1	O alfabeto da lógica de predicados	19								
	6.2	Fórmulas da lógica de predicados	19								
	6.3	Correspondência entre quantificadores	20								
	6.4	Símbolos de pontuação	20								
	6.5	Características sintáticas das fórmulas	20								
	6.6	Formas normais	21								
	6.7	Classificações de variáveis	21								

A linguagem da lógica proposicional

Capítulo 1 de Souza, Lógica para Ciência da Computação [2].

- Alfabeto: o alfabeto da Lógica Proposicional é composto por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: true false
 - \bullet Símbolos proposicionais: A B C P Q R A₁ A₂ A₃ a b c . . .
 - o Não se usam as letras V, v, F, f, T e t para não confundir com os valores de verdade.
 - Conectivos proposicionais: $\sim \lor \land \rightarrow \leftrightarrow$
- Fórmula: as fórmulas da linguagem da lógica proposicional são construídas a partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo símbolo de verdade é uma fórmula.
 - Todo símbolo proposicional é uma fórmula.
 - \bullet Se H é fórmula, $\sim H$ é fórmula.
 - Se H e G são fórmulas, $(H \vee G)$, $(H \wedge G)$, $(H \to G)$ e $(H \leftrightarrow G)$ são fórmulas.
- Fórmulas mal formadas: são fórmulas não obtidas da definição anterior.
- Ordem de precedência:
 - ~ Precedência maior.
 - ullet $\rightarrow \leftrightarrow$ $A \rightarrow B \leftrightarrow C$ possui duas interpretações.
 - $\bullet \land$
 - V Precedência menor.

- Comprimento de uma fórmula:
 - Se H é um símbolo proposicional ou de verdade, comp(H) = 1.
 - Se H é fórmula, $comp(\sim H) = comp(H) + 1$.
 - \bullet Se He Gsão fórmulas:
 - $\circ \operatorname{comp}(H \vee G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \wedge G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$

— Subfórmulas:

- \bullet H é subfórmula de H.
- Se $H = \sim G$, G é subfórmula de H.
- Se H é uma fórmula do tipo $(G \vee E)$, $(G \wedge E)$, $(G \to E)$ ou $(G \leftrightarrow E)$, então G e E são subfórmulas de H.
- \bullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.

A semântica da lógica proposicional

Capítulo 2 de Souza, Lógica para Ciência da Computação [2].

- Função: é uma relação entre dois conjuntos que associa cada elemento do conjunto de entrada a um único elemento do conjunto de saída
- Função binária: é uma função em que seu contradomínio possui apenas dois elementos
- Interpretação I é uma função binária tal que:
 - ullet O domínio de I é constituído pelo conjunto de fórmulas da lógica proposicional.
 - O contradomínio de I é o conjunto $\{T, F\}$.
 - I(true) = T, I(false) = F.
 - Se P é um símbolo proposicional, $I(P) \in \{T, F\}$.
- Interpretação de fórmulas: dadas uma fórmula E e uma interpretação I, o significado ou interpretação de E, denotado por I(E), é determinado pelas regras:
 - Se E=P, onde P é um símbolo proposicional, então I(E)=I(P), onde $I(P)\in\{T,F\}.$
 - Se E = true, então I(E) = I(true) = T.
 - Se E = false, então I(E) = I(false) = F.
 - Seja H uma fórmula, se $E = \sim H$ então:

$$\circ I(E) = I(\sim H) = T \Leftrightarrow I(H) = F.$$

$$\circ I(E) = I(\sim H) = F \Leftrightarrow I(H) = T.$$

- Sejam H e G duas fórmulas, se $E = (H \vee G)$ então: • I(H) = T e/ou $I(G) = T \Leftrightarrow I(E) = I(H \vee G) = T$. • I(H) = F e $I(G) = F \Leftrightarrow I(E) = I(H \vee G) = F$.
- Sejam H e G duas fórmulas, se $E = (H \land G)$ então: • I(H) = T e $I(G) = T \Leftrightarrow I(E) = I(H \land G) = T$. • I(H) = F e/ou $I(G) = F \Leftrightarrow I(E) = I(H \land G) = F$.
- Sejam H e G duas fórmulas, se $E = (H \to G)$ então: • I(H) = T então $I(G) = T \Leftrightarrow I(E) = I(H \to G) = T$. • I(H) = F e/ou $I(G) = T \Leftrightarrow I(E) = I(H \to G) = T$. • I(H) = T e $I(G) = F \Leftrightarrow I(E) = I(H \to G) = F$.
- Sejam H e G duas fórmulas, se $E = (H \leftrightarrow G)$ então: • $I(H) = I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = T$. • $I(H) \neq I(G) \Leftrightarrow I(E) = I(H \leftrightarrow G) = F$.

Propriedades semânticas da lógica proposicional

Capítulo 3 de Souza, Lógica para Ciência da Computação [2].

3.1 Propriedades semânticas

— Tautologia: uma fórmula H é tautologia ou válida se e somente se (sse) para toda interpretação I

$$I(H) = T$$

— Satisfatibilidade: uma fórmula H é satisfatível ou factível se e somente se (sse) existe pelo menos uma interpretação I tal que

$$I(H) = T$$

— Contingência: uma fórmula H é uma contingência se e somente se (sse) existem interpretações I e J tais que

$$I(H) = T \in J(H) = F$$

— Contradição: uma fórmula H é contraditória se e somente se (sse) para toda interpretação I

$$I(H) = F$$

— Implicação: dadas duas fórmulas H e G, $H \vDash G$ (H implica G) sse para toda interpretação I

se
$$I(H) = T$$
 então $I(G) = T$

— Equivalência: dadas duas fórmulas H e G, H equivale a G sse para toda interpretação I

$$I(H) = I(G)$$

— Dada uma fórmula H e uma interpretação I, dizemos que I satisfaz H se

$$I(H) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é satisfatível sse existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

— Um conjunto de fórmulas $\beta = \{H_1, H_2, \dots, H_n\}$ é insatisfatível sse não existe interpretação I tal que

$$I(H_1) = I(H_2) = \cdots = I(H_n) = T$$

3.2 Relações entre propriedades semânticas

— Proposição 3.1: seja H uma fórmula,

H é tautologia $\Rightarrow H$ é satisfatível.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Rightarrow$ existe interpretação I tal que $I(H) = T \Leftrightarrow H$ é satisfatível. ■
- Proposição 3.3: seja H uma fórmula,

H é tautologia $\Rightarrow H$ não é contingência.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Rightarrow$ não existe interpretação I tal que $I(H) = F \Leftrightarrow H$ não é contingência. \blacksquare
- Proposição 3.4: seja H uma fórmula,

Hé contingência $\,\Rightarrow\, H$ é satisfatível.

- Demonstração: H é contingência \Leftrightarrow existem interpretações I e J tais que I(H) = T e J(H) = F \Rightarrow existe interpretação I tal que I(H) = T \Leftrightarrow H é satisfatível. ■
- Proposição 3.5: seja H uma fórmula,

H é tautologia \Leftrightarrow $\, \boldsymbol{\sim} \, H$ é contraditória.

- Demonstração: H é tautologia \Leftrightarrow para toda interpretação I, $I(H) = T \Leftrightarrow$ para toda interpretação I, $I(\sim H) = F \Leftrightarrow \sim H$ é contraditória.
- Proposição 3.7: sejam $H \in G$ duas fórmulas,

H equivale a $G \Leftrightarrow (H \leftrightarrow G)$ é tautologia.

- Demonstração: H equivale a $G \Leftrightarrow \text{para toda interpretação } I, I(H) = I(G) \Leftrightarrow \text{para toda interpretação } I, I(H \leftrightarrow G) = T \Leftrightarrow (H \leftrightarrow G)$ é tautologia. \blacksquare
- Proposição 3.8: sejam H e G duas fórmulas,

H implica $G \Leftrightarrow (H \to G)$ é tautologia.

• Demonstração: H implica G ⇔ para toda interpretação I, se I(H) = T então I(G) = T ⇔ para toda interpretação I, $I(H \to G) = T$ ⇔ $(H \to G)$ é tautologia. \blacksquare

3.3 Relações semânticas entre os conectivos da lógica proposicional

- Conjunto de conectivos completo: o conjunto de conectivos ψ é dito completo se é possível expressar os conectivos $\{\sim, \lor, \land, \rightarrow, \leftrightarrow\}$ usando apenas os conectivos de ψ .
 - O conectivo \rightarrow pode ser expresso com $\{\sim, \lor\}$:

$$(P \to Q) \equiv (\sim P \lor Q)$$

• O conectivo \land pode ser expresso com $\{ \sim, \lor \}$:

$$(P \wedge Q) \equiv \sim (\sim P \vee \sim Q)$$

• O conectivo \leftrightarrow pode ser expresso com $\{\sim,\vee\}$:

$$(P \leftrightarrow Q) \equiv \sim (\sim (\sim P \lor Q) \lor \sim (\sim Q \lor P))$$

- O conjunto $\{\sim, \lor\}$ é completo, pois é possível expressar os conectivos $\{\sim, \lor, \land, \rightarrow, \leftrightarrow\}$ usando apenas $\{\sim, \lor\}$.
- Proposição 3.15 (regra da substituição): sejam G, G', H e H' fórmulas da lógica proposicional tais que:
 - \bullet G e H são subfórmulas de G' e H' respectivamente.
 - G' é obtida de H' da substituição de H por G em H'.

$$G \equiv H \Rightarrow G' \equiv H'$$

- Definição: o conectivo NAND $(\bar{\wedge})$ é definido por $(P \bar{\wedge} Q) \equiv \sim (P \wedge Q)$.
 - O conectivo \sim pode ser expresso com $\{\overline{\wedge}\}$:

$$(\sim P) \equiv (P \,\overline{\wedge}\, P)$$

• O conectivo \vee pode ser expresso com $\{\overline{\wedge}\}$:

$$(P \lor Q) \equiv ((P \bar{\land} P) \bar{\land} (Q \bar{\land} Q))$$

3.4 Formas normais na lógica proposicional

- Literais: um literal na lógica proposicional é um símbolo proposicional ou sua negação.
- Forma normal: dada uma fórmula H da lógica proposicional, existe uma fórmula G, equivalente a H, que está na forma normal. Forma normal é uma estrutura de fórmula pré-definida.
 - Forma normal disjuntiva (FND): é uma disjunção (\vee) de conjunções (\wedge).
 - \bullet Forma normal conjuntiva (FNC): é uma conjunção (\land) de disjunções (\lor).
- Obtenção de formas normais:
 - FND:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é t.
 - o Para cada linha selecionada, faça a conjunção (\land) de todos os símbolos proposicionais cuja interpretação é T com a negação dos símbolos proposicionais cuja interpretação é F.
 - o Faca a disjunção (V) das fórmulas obtidas no passo anterior.
 - FNC:
 - o Obtenha a tabela verdade da fórmula.
 - \circ Selecione as linhas cuja interpretação é F.
 - \circ Para cada linha selecionada, faça a disjunção (\lor) de todos os símbolos proposicionais cuja interpretação é F com a negação dos símbolos proposicionais cuja interpretação é T.
 - ∘ Faça a conjunção (∧) das fórmulas obtidas no passo anterior.

— Exemplo: encontre a FND e a FNC da fórmula $((P \to Q) \land R)$.

P	Q	R	$P \rightarrow Q$	$(P \to Q) \land R$	FND	FNC
\overline{T}	T	T	T	T	$P \wedge Q \wedge R$	
T	T	F	T	F		$\sim P \vee \sim Q \vee R$
T	F	T	F	F		$\sim P \lor Q \lor \sim R$
T	F	F	F	F		$\sim P \lor Q \lor R$
F	T	T	T	T	$\sim P \wedge Q \wedge R$	
F	T	F	T	F		$P \lor \sim Q \lor R$
F	F	T	T	T	$\sim P \wedge \sim Q \wedge R$	
F	F	F	T	F		$P \lor Q \lor R$

• FND:
$$(P \land Q \land R) \lor (\sim P \land Q \land R) \lor (\sim P \land \sim Q \land R)$$

• FNC:
$$(\sim P \lor \sim Q \lor R) \land (\sim P \lor Q \lor \sim R) \land (\sim P \lor Q \lor R) \land (P \lor \sim Q \lor R) \land (P \lor Q \lor R)$$

3.5 Exercícios

- 1. Determine o comprimento e o conjunto de subfórmulas das fórmulas a seguir.
 - (a) $P \vee P$

(b)
$$((\sim \sim P \lor Q) \leftrightarrow (P \to Q)) \land true$$

(c)
$$P \to ((Q \to R) \to ((P \to R) \to (P \to R)))$$

(d)
$$((P \rightarrow \sim P) \leftrightarrow \sim P) \lor Q$$

(e)
$$\sim (P \rightarrow \sim P)$$

- 2. Dentre as concatenações de símbolos a seguir, quais são fórmulas bem formadas e quais são fórmulas mal formadas?
 - (a) $(P \rightarrow \wedge true)$

(b)
$$(P \wedge Q) \rightarrow ((Q \leftrightarrow P) \lor \sim \sim R)$$

- (c) ~ ~ P
- (d) $\vee Q$
- (e) $(P \lor Q) \to ((Q \leftrightarrow R))$
- (f) PQR

- (g) A~
- 3. Demonstre as proposições abaixo usando as regras de interpretação de fórmulas.

(a)
$$I(P \land Q) = T \Leftrightarrow I(\sim (\sim P \lor \sim Q)) = T$$

(b)
$$I(P \land Q) = F \Leftrightarrow I(\sim (\sim P \lor \sim Q)) = F$$

(c)
$$I(P \land Q) = T \Leftrightarrow I(\sim P \lor \sim Q) = F$$

(d)
$$I(P \to Q) = F \Leftrightarrow I(\sim P \lor Q) = F$$

(e)
$$I(P \to Q) = T \Leftrightarrow I(\sim P \lor Q) = T$$

(f)
$$I(P \to Q) = F \Leftrightarrow I(P \land \sim Q) = T$$

- 4. Seja $H = (P \rightarrow Q)$ e I uma interpretação.
 - (a) Se I(H) = T, o que se pode concluir a respeito de I(P) e I(Q)?
 - (b) Se I(H) = T e I(P) = T, o que se pode concluir a respeito de I(Q)?
 - (c) Se I(Q) = T, o que se pode concluir a respeito de I(H)?
 - (d) Se I(H) = T e I(P) = F, o que se pode concluir a respeito de I(Q)?
 - (e) Se I(Q) = F e I(P) = T, o que se pode concluir a respeito de I(H)?
- 5. Seja Iuma interpretação tal que $I(P \leftrightarrow Q) = T.$ O que se pode concluir a respeito de:
 - (a) $I(\sim P \land Q)$
 - (b) $I(P \lor \sim Q)$
 - (c) $I(Q \to P)$
 - (d) $I((P \wedge R) \leftrightarrow (Q \wedge R))$
 - (e) $I((P \vee R) \leftrightarrow (Q \vee R))$
- 6. Repita o exercício anterior considerando $I(P \leftrightarrow Q) = F$.
- 7. Sejam H e G as fórmulas indicadas a seguir. Identifique, justificando sua resposta, os casos em que H implica G.
 - (a) $H = (P \wedge Q), G = P$
 - (b) $H = (P \vee Q), G = P$
 - (c) $H = (P \lor \sim Q), G = false$
 - (d) H = false, G = P

- (e) H = P, G = true
- 8. Demonstre as proposições abaixo ou dê um contra-exemplo.
 - (a) Proposição 3.6: Hnão é satisfatível $\Leftrightarrow H$ é contraditória.
 - (b) H é satisfatível $\Leftrightarrow H$ não é contraditória.
 - (c) $\, \, {\boldsymbol \sim} \, H$ é tautologia $\Leftrightarrow H$ é contraditória.
 - (d) H não é tautologia $\Leftrightarrow H$ é contraditória.

Métodos semânticos de dedução na lógica proposicional

Capítulo 4 de Souza, Lógica para Ciência da Computação [2].

4.1 Introdução

— Validade de fórmulas: uma fórmula é válida s
se todas as suas interpretações são iguais a V.

4.2 Método da tabela verdade

- Método da tabela verdade: é um método exaustivo, ou seja, enumera todas as possibilidades. A desvantagem é que, se houver muitos símbolos proposicionais, a tabela fica muito grande.
- Exemplo: seja $H = \sim (P \wedge Q) \leftrightarrow (\sim P \vee \sim Q)$, demonstre que H é uma tautologia usando o método da tabela verdade.

P	Q	~P	$\sim Q$	$(P \wedge Q)$	$\sim (P \land Q)$	$(\sim P \vee \sim Q)$	H
\overline{T}	T	F	F	T	F	F	T
T	F	F	T	F	T	T	T
F	$\mid T \mid$	T	F	F	T	T	T
F	$\mid F \mid$	T	T	F	T	T	T

4.3 Método da negação ou absurdo

- Método da negação ou absurdo: funciona da seguinte maneira.
 - Faça uma suposição.

tautologia.

- Se todas as substituições possíveis levarem a contradições, a suposição é falsa. Ou seja, a negação da suposição é verdadeira.
- Exemplo: seja $H = ((P \to Q) \land (Q \to R)) \to (P \to R)$, demonstre por absurdo que H é uma tautologia.
 - \bullet Demonstração: assuma por absurdo que existe interpretação I tal que I(H)=F.

$$\begin{array}{l} F(H)=F.\\ \text{Ent\~ao}\ I((P\to Q)\wedge (Q\to R))=T\ \text{e}\ I(P\to R)=F.\\ \text{Como}\ I(P\to R)=F,\ \text{ent\~ao}\ I(P)=T\ \text{e}\ I(R)=F.\\ \text{Distribuindo na f\'ormula os valores de verdade encontados, temos}\\ ((P\to Q)\wedge (Q\to R))\to (P\to R)\\ T & T & F & F & TFF\\ \text{de onde obtemos}\\ ((P\to Q)\wedge (Q\to R))\to (P\to R)\\ T & T & T & F & T & FF\\ \end{array}$$

Contradição Portanto, a suposição inicial de que existe interpretação I tal que I(H) = F é falsa. Em outras palavras, para todo I, I(H) = T, ou seja, H é

4.4 Método da árvore semântica

— Método da árvore semântica: é um método que permite a verificação da validade de uma fórmula sem ser exaustivo. A depender da fórmula, pode ser possível obter a resposta sem verificar todas as interpretações possíveis. Este conteúdo está na primeira edição do livro de Souza Lógica para Ciência da Computação [1].

— Exemplo: seja $H = \sim (P \wedge Q) \leftrightarrow (\sim P \vee \sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	~	(P	\wedge	Q)	\leftrightarrow	(~	P	V	~	Q)
2		T				F	T			
3	T	F	F		T	T	F	T		
4	F	T	T	T	T	F	T	F	F	\overline{T}
5	T	T	F	F	T	F	T	T	T	\overline{F}

— Exemplo: seja $H=(P\vee \sim Q)\leftrightarrow (\sim P\rightarrow \sim Q)$, demonstre que H é uma tautologia usando o método da árvore semântica.

	P	V	~	Q)	\leftrightarrow	(~	P	\rightarrow	~	Q)
2	T	T			T	F	T	T		
3	F					T	F			
4	F	F	F	T	T	T	F	F	F	\overline{T}
5	F	T	T	F	T	T	F	T	T	\overline{F}

4.5 Método do tableaux semântico

- Tableaux semântico: sequência de fórmulas construída de acordo com um conjunto de regras e apresentada em forma de árvore. O método de tableaux semânticos é um mecanismo de decisão para a pergunta $\beta \vdash H$, sim ou não?
- Elementos do sistema de tableaux semânticos da lógica proposicional:
 - Alfabeto da lógica proposicional sem os símbolos de verdade true e false.
 - Conjunto das fórmulas da lógica proposicional.
 - Um conjunto de regras de dedução.
- Regras de dedução do tableau semântico: sejam A e B duas fórmulas da lógica proposicional, as regras de dedução do sistema de tableaux semânticos são

- Construção de um tableau semântico: se dá aplicando alguma regra de dedução uma vez para cada linha que não seja um literal (símbolo proposicional ou sua negação). O tableau resultante tende a ficar mais simples se aplicarmos primeiro as regras de dedução que não geram bifurcações (R_1, R_5, R_7, R_8) .
 - Exemplo: considere o conjunto de fórmulas: $\{A \to B, \sim (A \lor B), \sim (C \to A)\}$
 - A)}. Encontre o tableau semântico iniciado com esse conjunto de fórmulas.

$$\{P \lor (Q \lor {\color{red} \sim} R), P \to {\color{red} \sim} R, Q \to {\color{red} \sim} R\} \vdash {\color{red} \sim} R \ P^{\tiny \sim} P$$

 Ass

 Ass

- 2.
- 3.
- $P \lor (Q \lor \sim R) \checkmark$ $P \to \sim R \checkmark$ $Q \to \sim R \checkmark$ $\sim \sim R$ Ass ~ Conc 4.

- $\begin{array}{c} 2 \rightarrow \operatorname{Elim} \\ 5 \vee \operatorname{Elim} \end{array}$ $\sim P$ $\sim R$ 6.
- $\underset{5,6}{\otimes}$ $\underset{4,6}{\otimes}$ 7. $\underset{4,7}{\otimes}$
- $\sim Q$ $3 \to \mathrm{Elim}$ 8. $\sim R$ ⊗ 7,8 $\mathop{\otimes}\limits_{4,\,8}$

- Ramo: é uma sequência de fórmulas onde cada fórmula é derivada das anteriores através das regras de dedução. A primeira fórmula do ramo é sempre a primeira fórmula do tableau.
- Ramo fechado: é um ramo que contém uma fórmula e sua negação.
- Ramo saturado: é um ramo onde, para todas as suas fórmulas,
 - já foi aplicada alguma regra de dedução; ou
 - não é possível aplicar nenhuma regra de derivação, isto é, a fórmula é um literal.
- Ramo aberto: é um ramo saturado não fechado.
- Tableau fechado: é um tableau onde todos os ramos são fechados.
- Tableau aberto: é um tableau onde algum ramo é aberto.
- Prova de H no sistema de tableaux semânticos: é um tableau fechado iniciado com a fórmula $\sim H$
 - Exemplos: verifique se as fórmulas abaixo são tautologias: $\circ \sim ((P \to Q) \land \sim (P \leftrightarrow Q) \land \sim \sim P)$

$$\sim (D \cup O) \cup D$$

- $\circ \ (P \leftrightarrow Q) \lor \, {\color{gray} \sim} \, P$
- Pergunta: um tableau iniciado com uma tautologia necessariamente terá todos os ramos abertos?
 - o Resposta: não. Um contra-exemplo é a fórmula $(P \land \sim P) \lor (Q \to Q)$

4.6 Exercícios

- 1. Determine por absurdo se as fórmulas a seguir são ou não tautologias.
 - (a) $H_1 = \sim (\sim H) \leftrightarrow H$
 - (b) $H_2 = \sim (H \to G) \leftrightarrow (\sim H \leftrightarrow G)$
 - (c) $H_3 = \sim (H \leftrightarrow G) \leftrightarrow (\sim H \leftrightarrow G)$
 - (d) $H_4 = (H \leftrightarrow G) \leftrightarrow ((H \to G) \land (G \to H))$
 - (e) $H_5 = (H \land (G \lor E)) \leftrightarrow ((H \land G) \lor (H \land E))$
 - (f) $H_6 = ((H \to G) \land (G \to H) \to (H \to H)$
 - (g) $H_7 = ((H \leftrightarrow G) \land (G \leftrightarrow H) \rightarrow (H \leftrightarrow H))$
 - (h) $H_8 = H \rightarrow (H \land G)$

Um método sintático de dedução na lógica proposicional

Capítulo 5 de Souza, Lógica para Ciência da Computação [2].

- 5.1 Introdução
- 5.2 O sistema formal Pa

18

A inguagem da lógica de predicados

Capítulo 6 de Souza, Lógica para Ciência da Computação [2].

6.1 O alfabeto da lógica de predicados

- Alfabeto: o alfabeto da lógica de predicados é composto por
 - Símbolos de pontuação: ()
 - Símbolos de verdade: true false
 - Símbolos para variáveis: $x y z w x_1 y_1 z_1 x_2 \dots$
 - Símbolos para funções: $f g h f_1 g_1 h_1 f_2 \dots$
 - \bullet Símbolos para predicados: $p~q~r~s~p_1~q_1~r_1~s_1~p_2\dots$
 - Conectivos: \sim \vee \wedge \rightarrow \leftrightarrow \forall \exists
- Associado a cada função ou predicado está um número inteiro $k \ge 0$ que indica a sua "aridade", ou seja, seu número de argumentos.
- Os símbolos para funções zero-árias, isto é, funções constantes, são: $a\ b\ c\ a_1\ b_1\ c_1\ a_2\dots$
- Os símbolos para predicados zero-ários, isto é, símbolos proposicionais, são: $P\ Q\ R\ S\ P_1\ Q_1\ R_1\ S_1\ P_2\dots$

6.2 Fórmulas da lógica de predicados

- Termo: um termo pode ser
 - uma variável
 - $f(t_1, \ldots, t_n)$ onde f é uma função n-ária e t_1, \ldots, t_n são termos.

A INTERPRETAÇÃO DE UM TERMO É UM OBJETO MATEMÁTICO

- Átomo: um átomo pode ser
 - um símbolo de verdade
 - $p(t_1, \ldots, t_n)$ onde p é um predicado n-ário e t_1, \ldots, t_n são termos.

A INTERPRETAÇÃO DE UM ÁTOMO É UM VALOR DE VERDADE $\in \{T,F\}$

- Fórmula: as fórmulas da linguagem da lógica de predicados são construídas a partir dos símbolos do alfabeto conforme as regras a seguir:
 - Todo átomo é uma fórmula.
 - \bullet Se H é fórmula, $\sim\!H$ é fórmula.
 - Se H e G são fórmulas, então $(H \vee G), (H \wedge G), (H \to G)$ e $(H \leftrightarrow G)$ são fórmulas.
 - Se H é fórmula e x é variável, então, $((\forall x)H)$ e $((\exists x)H)$ são fórmulas.
- Expressão: uma expressão pode ser
 - um termo
 - uma fórmula

6.3 Correspondência entre quantificadores

$$-((\forall x)H) \equiv \sim ((\exists x)(\sim H))$$
$$-((\exists x)H) \equiv \sim ((\forall x)(\sim H))$$

- Ordem de precedência:
 - ~

Símbolos de pontuação

• ∀∃

6.4

- $\bullet \to \leftrightarrow A \to B \leftrightarrow C$ possui duas interpretações.
- ^
- ∨ Menor

6.5 Características sintáticas das fórmulas

- Subtermo, subfórmula e subexpressão:
 - Se E = x então x é subtermo de E.
 - Se $E = f(t_1, \ldots, t_n)$ então $t_1, \ldots, t_n, f(t_1, \ldots, t_n)$ são subtermos de E.

Maior

ullet Se H é fórmula, H é subfórmula de H.

- Se $E = \sim H$, então H e $\sim H$ são subfórmulas de E.
- Se E é uma fórmula do tipo $(G \vee H)$, $(G \wedge H)$, $(G \to H)$ ou $(G \leftrightarrow H)$, então G e H são subfórmulas de E.
- \bullet Se E é uma fórmula do tipo $(\forall x)H$ ou $(\exists x)H,$ então H é subfórmula de E
- \bullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H.
- Todo subtermo ou subfórmula é também subexpressão.
- Comprimento de uma fórmula:
 - Se H é um átomo, comp(H) = 1.
 - Se H é fórmula, comp $(\sim H) = \text{comp}(H) + 1$.
 - \bullet Se H e G são fórmulas:
 - $\circ \operatorname{comp}(H \vee G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \wedge G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \to G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - $\circ \operatorname{comp}(H \leftrightarrow G) = \operatorname{comp}(H) + \operatorname{comp}(G) + 1.$
 - Se $H = ((\forall (x)G) \text{ ou } H = ((\exists (x)G), \text{ então } \text{comp}(H) = \text{comp}(G) + 1.$

6.6 Formas normais

- Literal: um literal pode ser
 - um átomo
 - a negação de um átomo
- Forma normal: uma fórmula está na
 - forma normal conjuntiva (FNC) se for uma conjunção (∧) de disjunções
 (∨) de literais
 - forma normal disjuntiva (FND) se for uma disjunção (\vee) de conjunções (\wedge) de literais

6.7 Classificações de variáveis

- Escopo de um quantificador: seja G uma fórmula da lógica de predicados:
 - Se $(\forall x)H$ é uma subfórmula de G, então o escopo de $(\forall x)$ em G é a subfórmula H.
 - \bullet Se $(\exists x)H$ é uma subfórmula de G,então o escopo de $(\exists x)$ em G é a subfórmula H.

Exercícios

1. Considere a fórmula abaixo.

$$G = (\forall x)(\exists y)((\forall z)p(x, y, z, w) \rightarrow (\forall y)q(z, y, x, z_1))$$

Qual é o escopo de

- (a) $(\forall x)$
- (b) $(\exists y)$
- (c) $(\forall z)$
- (d) $(\forall y)$
- Ocorrência livre e ligada: sejam x uma variável e G uma fórmula.
 - Uma ocorrência de x em G é ligada se x está no escopo de um quantificador $(\forall x)$ ou $(\exists x)$.
 - ullet Uma ocorrência de x em G é livre se não for ligada.
- Variável livre e ligada: sejam x uma variável e G uma fórmula.
 - A variável x é ligada em G se existe pelo menos uma ocorrência ligada de x em G.
 - A variável x é livre em G se existe pelo menos uma ocorrência livre de x em G.
- Símbolo livre: seja G uma fórmula, os seus símbolos livres são as variáveis com ocorrência livre em G, símbolos de função e símbolos de predicado.
- Fórmula fechada: uma fórmula é fechada quando não possui variáveis livres.
- Fecho de uma fórmula: seja H uma fórmula da lógica de predicados, e $\{x_1, \ldots, x_n\}$ o conjunto das variáveis livres de H.
 - O fecho universal de H, indicado por $(\forall *)H$, é dado pela fórmula $(\forall x_1)(\forall x_2)\dots(\forall x_n)H$.
 - O fecho existencial de H, indicado por $(\exists *)H$, é dado pela fórmula $(\exists x_1)(\exists x_2)\dots(\exists x_n)H$.

Referências Bibliográficas

- [1] João Nunes de Souza. Lógica para Ciência da Computação. Campus, Brasil, 1st edition, 2002.
- [2] João Nunes de Souza. Lógica para Ciência da Computação e Áreas Afins. Campus-Elsevier, Brasil, 3rd edition, 2014.