Semantic Segmentation

1. Introduction to Semantic Segmentation

The next deep learning function we will cover in this tutorial is semantic segmentation. Semantic segmentation is based on image recognition, except that classification occurs at the pixel level, rather than the entire image. This is achieved by convolving a pre-trained image recognition backbone, which converts the model into a fully convolutional network (FCN) capable of pixel-by-pixel labeling. Segmentation is particularly useful for environmental perception, producing a dense per-pixel classification of many different potential objects for each scene, including the scene foreground and background.

segNet takes a 2D image as input and outputs a second image with a per-pixel classification mask overlaid. Each pixel of the mask corresponds to the classified object category. segNet can be used from Python and C++.

Download Additional Models

Various pre-trained segmentation models for the FCN-ResNet18 network with real-time performance on Jetson. Below is a table of pre-trained semantic segmentation models available for use, and the associated --network parameters of segnet used to load them. They are based on a 21-class FCN-ResNet18 network, trained on various datasets and resolutions using PyTorch, and exported to ONNX format for loading into TensorRT.

Dataset	Resolution	CLI Argument	Accuracy	Jetson Nano	Jetson Xavier
Cityscapes	512x256	fcn-resnet18-cityscapes-512x256	83.3%	48 FPS	480 FPS
Cityscapes	1024x512	fcn-resnet18-cityscapes-1024x512	87.3%	12 FPS	175 FPS
Cityscapes	2048x1024	fcn-resnet18-cityscapes-2048x1024	89.6%	3 FPS	47 FPS
DeepScene	576x320	fcn-resnet18-deepscene-576x320	96.4%	26 FPS	360 FPS
DeepScene	864x480	fcn-resnet18-deepscene-864x480	96.9%	14 FPS	190 FPS
Multi-Human	512x320	fcn-resnet18-mhp-512x320	86.5%	34 FPS	370 FPS
Multi-Human	640x360	fcn-resnet18-mhp-640x360	87.1%	23 FPS	325 FPS
Pascal VOC	320x320	fcn-resnet18-voc-320x320	85.9%	45 FPS	508 FPS
Pascal VOC	512x320	fcn-resnet18-voc-512x320	88.5%	34 FPS	375 FPS
SUN RGB-D	512x400	fcn-resnet18-sun-512x400	64.3%	28 FPS	340 FPS
SUN RGB-D	640x512	fcn-resnet18-sun-640x512	65.1%	17 FPS	224 FPS

Here you can download the model you want at https://github.com/dusty-nv/jetson-inference

2. Image semantic segmentation

Here is an example of segmenting a city street scene using the Cityscapes model:

After building the project, make sure your terminal is in the aarch64/bin directory:

```
cd jetson-inference/build/aarch64/bin
```

Here are some examples using the fcn-resnet18-cityscapes model:

--network= You can put your own downloaded model file in here. For example, I have fcn-resnet18-cityscapes

```
# C++
```

\$./segnet --network=fcn-resnet18-cityscapes images/city_0.jpg
images/test/output.jpg

Python

\$./segnet.py --network=fcn-resnet18-cityscapes images/city_0.jpg
images/test/output.jpg

The following example is a DeepScene dataset consisting of off-road forest trails and vegetation, which is helpful for path tracking of outdoor robots.

C++

```
$ ./segnet --network=fcn-resnet18-deepscene images/trail_0.jpg
images/test/output_overlay.jpg # overlay
$ ./segnet --network=fcn-resnet18-deepscene --visualize=mask images/trail_0.jpg
images/test/output_mask.jpg # mask
```

python

```
$ ./segnet.py --network=fcn-resnet18-deepscene images/trail_0.jpg
images/test/output_overlay.jpg # overlay
$ ./segnet.py --network=fcn-resnet18-deepscene --visualize=mask
images/trail_0.jpg images/test/output_mask.jpg # mask
```


Note: If you build your own environment, you need to download the model file to the network folder to run the above program. You can directly enter the above program using the image we provide

3. Run the real-time camera segmentation demonstration

The <u>segnet.cpp</u> / <u>segnet.py</u> samples we used before can also be used for real-time camera streaming. Supported camera types include:

- MIPI CSI cameras (csi://0)
- V4L2 cameras (/dev/video0)
- RTP/RTSP streams (rtsp://username:password@ip:port)

Here are some typical scenarios for starting the program - about the available models

C++

```
$ ./segnet --network=<model> csi://0  # MIPI CSI camera
$ ./segnet --network=<model> /dev/video0  # V4L2 camera
$ ./segnet --network=<model> /dev/video0 output.mp4  # save to video file
```

python

```
$ ./segnet.py --network=<model> csi://0  # MIPI CSI camera
$ ./segnet.py --network=<model> /dev/video0  # V4L2 camera
$ ./segnet.py --network=<model> /dev/video0 output.mp4  # save to video file
```

The model we can choose is fcn-resnet18-mhp.

The OpenGL window shows the live camera stream with the segmentation output superimposed, and a solid segmentation mask for clarity. Here are some examples used with different models to try:

- # C++
 \$./segnet --network=fcn-resnet18-deepscene /dev/video0
- # Python
- \$./segnet.py --network=fcn-resnet18-deepscene /dev/video0

