Process Mining

Generalized Alignment-Based Trace Clustering

Mathilde Boltenhagen¹

J.Carmona²

T.Chatain²

¹LSV, CNRS, ENS Paris-Saclay, Inria, Université Paris-Saclay ²Universitat Politècnica de Catalunya

Start the form

S

Write a comment

C

Attach a file

F

Start the form

- < Start the form, Give a comment, Good rating >
- < Start the form, Give a comment, Good rating Donate to the developer>
 - < Start the form, Bad rating, Send a File, Get Apologies >
 - < Start the form, Send a File, Send a File, Get Apologies >
 - < Start the form, Send a File, Bad rating, Get Apologies >
- < Start the form, Good rating, Send a File, Donate to the developer, Donate to the developer, Donate to the developer >
 - < Good rating, Give a comment, Start the form, Donate to the developer, Donate to the developer >
 - < Start the form, Donate to the developer, Donate to the developer, Donate to the developer >

```
< S, C, G >
    < S, C, G, D>
    < S, B, F, A>
    < S, F, F, A >
    < S, F, B, A >
< S, G, F, D, D, D, D >
 < G, C, F, S, D, D >
   < S, D, D, D >
```

Log Traces

Data clustering is the task of grouping objects by similarity.

Data clustering

- Unsupervised algorithms
- No classes
- Number of clusters is unknown

To mine databases

(k-means, self-organizing map ...)

Data classification

- Supervised algorithms
- Labelled data/ known classes
- Number of classes is known

To respond to defined problems

(k-NN, SVM ...)

[Greco 2006] ; [Ferreira 2007]

Trace clustering

Log traces

Clusters

[Greco 2006] ; [Ferreira 2007]

Trace clustering

Log traces

Clusters

occurences activities frequency

[Greco 2006] ; [Ferreira 2007]

New idea: to cluster data based on an existing process model

- > highlight parts of models that are executed
- > show deviating traces
- > model repair

Clusters

Alignment-based Trace Clustering

Log traces

Clusters

< S, C, G > < S, C, G, D>

< S, B, F, A>

< S, F, F, A >

< S, F, B, A >

< S, G, F, D, D>

< S, G, F, D, D, D, D >

< G, C, F, S, D, D >

< S, D, D, D >

<5,B,F,A>

ζ5,C,T,G>

< 5, F, B, A>

< S,G,F,D,D>

Centroids: runs

< 5, G, F, D, D, D, D >

Non-clustered

Example of full run : < S, C, τ ,G>

N a process model, **L** a log:

For every trace $\sigma \in \mathbf{L}$, Find $u \in \text{Runs}(\mathbf{N})$, $\textit{dist}(\sigma,u)$ is small u is a centroid

N a process model, **L** a log:

For every trace $\sigma \in \mathbf{L}$, Find $u \in \text{Runs}(\mathbf{N})$, $\textit{dist}(\sigma,u)$ is small u is a centroid

Example:

$$\sigma 1 = < S, C, G >$$

 $\sigma 2 = < S, C, G, D >$

For every trace
$$\sigma \in \mathbf{L}$$
,
 Find $u \in \text{Runs}(\mathbf{N})$, $\textit{dist}(\sigma,u)$ is small
 u is a centroid

$$u = \langle S, C, T, G \rangle$$

$$\sigma 1 = \langle S, C, G \rangle \qquad dist(\sigma 1, u) = 0$$

$$\sigma 2 = \langle S, C, G, D \rangle \qquad dist(\sigma 2, u) = 1$$

For every trace
$$\sigma \in \mathbf{L}$$
,
 Find $u \in \text{Runs}(\mathbf{N})$, $\textit{dist}(\sigma,u)$ is small u is a centroid

$$\sigma 1 = < S, C, G >$$

 $\sigma 2 = < S, C, G, D >$

$$u = \langle S, C, T, G \rangle$$

$$dist(\sigma 1, u) = 0$$

$$dist(\sigma 2, u) = 1$$

dist is a distance between words (Hamming distance, Edit distance..)

Alignment-based Trace Clustering

Processes as centroids

Example of process:

S A A

Linearizations of the process :

< S, B, F, A >

< S, F, B, A >

[Boltenhagen 2019]

Boltenhagen 2019]

Boltenhagen 2019]

Clusters

Boltenhagen 2019]

N a process model, **L** a log:

For every trace $\sigma \in \mathbf{L}$,

Find $P \in Processes(\mathbf{N})$, $dist(\sigma,P)$ is small

P is a centroid

[Boltenhagen 2019]

N a process model, **L** a log:

For every trace $\sigma \in \mathbf{L}$, Find $P \in \text{Processes}(\mathbf{N})$, $\textit{dist}(\sigma,P)$ is small P is a centroid

dist is the minimal distance between a linearization of P and the trace (computed as distance between words : Hamming distance, Edit distance..)

Subnets

Example of subnet:

O F

Log traces

Log traces

Log traces

Boltenhagen 2019]

Clusters

> Distance between traces and their centroid

- > Distance between traces and their centroid
- > Number of non-clustered traces

Quality criteria

- > Distance between traces and their centroid
- > Number of non-clustered traces
- > Number of clusters

Quality criteria

- > Distance between traces and their centroid
- > Number of non-clustered traces
- > Number of clusters
- > Intra-cluster distance

Quality criteria

- > Distance between traces and their centroid
- > Number of non-clustered traces
- > Number of clusters
- > Intra-cluster distance
- > Inter-cluster distance

Implementation

- > Tool DARK SIDER*
- > SAT formulas
- > Optimal clusterings

*https://github.com/BoltMaud/darksider

How can one repair an existing process model?

. . . .

At least a better Not too far from the original model fitness How can one repair an existing process model?

