

Model Optimization and Tuning Phase Template

Date	15 March 2024
Team ID	SWTID1720452383
Project Title	Ecommerce Shipping Prediction Using Machine
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Random forest classifire	<pre>rfc = RandomforestClassifier(random_state=0) param_grid = { 'max_depth': [4, 8, 12, 16], 'min_samples_leaf': [2, 4, 6, 8], 'min_samples_split': [2, 4, 6, 8], 'criterion': ['gini', 'entropy'] } grid_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2, scoring='accummon's fit(x_train, y_train) best_params_rfc = grid_rfc.best_params_ print('Best_parameters for Random Forest Classifier:', best_params_rfc rfc_final = RandomforestClassifier(**best_params_rfc, random_state=0) rfc_final_fit(X_train, y_train) rfc_pred = rfc_final.predict(X_test)</pre>	print['Accres; for Bandon Forest Classifier', accoracy some[y_test, rfc_pred]) print['Consiston Retrin for Bandon Forest Classifier']or, consists metricly_test, rfc_pred]) print['Classification Report for Randon Forest Classifier']or, classification_report(y_test, rfc_pred)]
Decision Tree	<pre># Define the DecisionTree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	# Evaluate the performance of the tuned model accuracy = accuracy score(y test, y pred) proint("Optical Hyperparameters: (best params)") proint("Accuracy on Test Set: (accuracy)") Optical Hyperparameters: ("criterion": 'gint', 'haz depth': None, 'nin samples leef': 2, 'nin samples splitt Accuracy on Test Set: 8.7359535369457

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric					
Random Forest classifier	0 1 accuracy macro avg weighted avg		0.53	0.67 0.69 0.69	1292 2200 2200	
Decision Tree	<pre>print(classification_report(y_test,y_pred))</pre>					
				preci	sion	recall
	Loan w Loan will	ill be A not be A				0.68 0.73
		ma	accuracy acro avg ated avg	(0.71 0.71	0.71 0.71
	confusion_	matrix <mark>(</mark> y	_test,y	_pred)		
	array([[51 [25	, 24], , 69]])				

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Randomforest classifier	The random foest classifier was choosen as the final model as this model provides us with a higher percentage of accuracy with a highly optimize code and better runtime

