1 O Sistema F

No Cálculo-Lambda Simplesmente Tipado, é possível definir a função identidade, a função que pega um valor como input e retorna o próprio valor como outpu, para cada tipo definido no cálculo:

- Para os números naturais, $\lambda x : \mathbb{N}.x$
- Para os booleanos, $\lambda x : bool.x$
- Para o tipo das funções dos naturais nos booleanos, $\lambda x : (\mathbb{N} \to bool).x$
- ..

Mas dessa forma, quanto mais tipos a teoria suportar, mais formais diferentes são possíveis de serem criadas. Isso faz com que existam vários termos análogos sem qualquer possibilidade de relação entre eles. O máximo que se pode dizer é fazer uma quantificação além de λ_{\rightarrow} e construir um tipo arbitrário α com uma função $f \equiv \lambda x : \alpha.x$ que seria a função identidade arbitrária.

Porém, dado um termo $M:\mathbb{N}$, não é possível escrever fM pois $\alpha\not\equiv\mathbb{N}$. Para fazer isso, é necessário que a função receba também o tipo específico que ela precisa ter para receber o termo M, fazendo um segundo processo de abstração em cima da função da seguinte forma:

$$\lambda \alpha : *.\lambda x : \alpha.x$$

Nesse caso, α se torna uma variável de tipo e \star o tipo de todos os tipos. Esse termo é chamado de *polimórfico*, pois pode possuir diversas formas diferentes a depender do tipo escolhido:

• $(\lambda \alpha : *.\lambda x : \alpha.x)\mathbb{N} \to_{\beta} \lambda x : \mathbb{N}.x$

Para fazer essa extensão, é necessário adicionar regras de inferência e regras de tipagem que lidem com essa abstração de segunda ordem.

A tipagem para a função identidade $\lambda \alpha: *.\lambda x: \alpha.x$ é o tipo $\Pi \alpha: *.\alpha \to \alpha$, onde Π é o operador que tem como função ligar os tipos, chamado de Tipo Π ou Tipo Produto

Exemplos:

• A função de iteração D que recebe uma função $f:\alpha\to\alpha$ e retorna a aplicação dela duas vezes em cima de um termo $x:\alpha$ pode ser escrita da seguinte forma:

$$D \equiv \lambda \alpha : *.\lambda f : \alpha \rightarrow \alpha.\lambda x : \alpha.f(fx)$$

Nesse caso, D é a mesma coisa que $f \circ f$. Para os números naturais:

$$D\mathbb{N} \equiv \lambda f : \mathbb{N} \to \mathbb{N}.\lambda x : \mathbb{N}.f(fx)$$

e sendo f a função sucessor s que mapeia $n : \mathbb{N}$ em $n + 1 : \mathbb{N}$, então:

$$D\mathbb{N}s \to_{\beta} \lambda x : \mathbb{N}.s(sx)$$

O tipo de D é: $D: \Pi\alpha: *.(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

A composição de duas funções é a aplicação de uma função em outra. É
possível definir o operador de composição o da seguinte forma:

$$\circ \equiv \lambda \alpha : *.\lambda \beta : *\lambda \gamma : *.\lambda f : \alpha \to \beta.\lambda g : \beta \to \gamma.\lambda x : \alpha.g(fx)$$

A sua tipagem é:
$$\circ: \Pi\alpha: *.\Pi\beta: *.\Pi\gamma: *.(\alpha \to \beta) \to (\beta \to \gamma) \to \alpha \to \gamma$$

1.1 O Cálculo Lambda com tipagem de Segunda Ordem

1.1.1 Regras de Inferência

Uma vez inseridas as regras de abstração e aplicação de segunda ordem, é necessário extender as regras de inferência em relação ao $ST\lambda C$

Definição 1.1 (Regra de Inferência para a Abstração).

$$\frac{\Gamma,\alpha:*\vdash M:A}{\Gamma\vdash\lambda\alpha:*.M:\Pi\alpha:*.A}\ abst_2$$

Essa regra define basicamente que, sendo M um termo de tipo A em um contexto onde α possui tipo *, então a abstração $\alpha:*.M$ possui o tipo $\Pi\alpha:*.A$. Essa regra da abstração difere da primeira por permitir a definição de α no contexto.

Definição 1.2 (Regra de Inferência para a Aplicação).

$$\frac{\Gamma \vdash M : \Pi\alpha : *.A \qquad \Gamma \vdash B : *}{\Gamma \vdash MB : A[\alpha := B]} \ appl_2$$

1.1.2 O Sistema $\lambda 2$

A sintaxe de $\lambda 2$ segue de forma análoga a λ_{σ} , sendo descrita pela seguinte BNF:

$$\mathbb{T}2 = \mathbb{V}|(\mathbb{T}2 \to \mathbb{T}2)|(\Pi\mathbb{V}: *.\mathbb{T}2)$$

onde \mathbb{V} é a coleção dos tipos variáveis, denominados de $\alpha, \beta, \gamma, \dots$. Para os termos pré-tipados:

Definição 1.3. A coleção dos λ -termos pré-tipados de segunda ordem, ou λ 2-termos, é definido na seguinte BNF:

$$\Lambda_{\mathbb{T}2} = V|(\Lambda_{\mathbb{T}2}\Lambda_{\mathbb{T}2})|(\Lambda_{\mathbb{T}2}\mathbb{T}2)|(\lambda V : \mathbb{T}2.\Lambda_{\mathbb{T}2})|(\lambda \mathbb{V} : *.\Lambda_{\mathbb{T}2})$$

Onde V é a coleção das variáveis de termos (x, y, z, ...). Como existem ambos \mathbb{V} e V, então a BNF possui duas formas de aplicação, uma de primeira ordem $(\lambda V : \mathbb{T}2.\Lambda_{\mathbb{T}2})$ para variáveis de termo e outro de segunda ordem $(\lambda \mathbb{V} : *.\Lambda_{\mathbb{T}2})$ para variáveis de tipo.

Da mesma forma, também existe a aplicação de primeira ordem $(\Lambda_{\mathbb{T}2}\Lambda_{\mathbb{T}2})$ e de segunda ordem $(\Lambda_{\mathbb{T}2}\mathbb{T}2)$.

As regras de parenteses em aplicação e abstração segue as regras vistas anteriormente para o ST λ C e para o $\lambda_{\beta\eta}$:

- Parenteses mais externos podem ser omitidos
- Aplicação é associativa à esquerda
- Aplicação e \rightarrow precedem ambas abstrações λ e Π
- Abstrações λ e Π sucessivas com o mesmo tipo podem ser combinadas de forma associativa à direita
- Tipos funcionais são escritos de forma associativa à direita

Exemplo: $(\Pi\alpha: *.(\Pi\beta: *.(\alpha \to (\beta \to \alpha))))$ pode ser escrito como $\Pi\alpha, \beta: *.\alpha \to \beta \to \alpha$.

A definição para declarações e sentenças pode ser estendida da seguinte forma:

Definição 1.4 (Declarações, sentenças).

- Uma sentença possui a forma $M: \sigma$ onde $M \in \Lambda_{\mathbb{T}2}$ e $\sigma \in \mathbb{T}2$ ou da forma $\sigma: *$, onde $\sigma \in \mathbb{T}2$
- \bullet Uma declaração é uma sentença com uma variável de termo ou uma variável de tipo como sujeito

Para $\lambda 2$ como é possível que uma variável de termo faça uso de uma variável de tipo, é necessário que a ordem da aparição dessas variáveis siga uma regra, para que uma variável não seja usada antes de ser declarada. O contexto pode ser descrito como um *domínio* da seguinte forma:

Definição 1.5 (Contexto de $\lambda 2$).

- 1. \emptyset é um contexto válido de $\lambda 2$ $dom(\emptyset) = ()$, a lista vazia
- 2. Se Γ for um contexto de $\lambda 2$, $\alpha \in \mathbb{V}$ e $\alpha \notin dom(\Gamma)$, então $\Gamma, \alpha : *$ é um contexto de $\lambda 2$ $dom(\Gamma, \alpha : *) = (dom(\Gamma), \alpha)$, ou seja $dom(\Gamma)$ concatenado com α
- 3. Se Γ for um contexto de $\lambda 2$, se $\rho \in \mathbb{T}2$ tal que $\alpha \in dom(\Gamma)$ para toda variável de tipo livre α existente em ρ e se $x \notin dom(\Gamma)$, então $\Gamma, x : \rho$ é um contexto de $\lambda 2$ $dom(\Gamma, x : \rho) = (dom(\Gamma), x)$

Exemplos

- \emptyset é um contexto de $\lambda 2$ por (1)
- α : * é um contexto de λ 2 por (2)
- $\alpha: *, x: \alpha \to \alpha$ é um contexto de $\lambda 2$ por (3)
- logo $\alpha: *, x: \alpha \to \alpha, \beta: *$ é um contexto de $\lambda 2$ por (2)

• e $\alpha: *, x: \alpha \to \alpha, \beta: *, y: (\alpha \to \alpha) \to \beta$ é um contexto de $\lambda 2$ por (3), sendo $dom(\Gamma) = (\alpha, x, \beta, y)$

A regra var pode ser reconstruida para lidar com os tipos de $\lambda 2$:

Definição 1.6. (Regra var em $\lambda 2$) (var) $\Gamma \vdash x : \sigma$ se Γ for um contexto de $\lambda 2$ e $x : \sigma \in \Gamma$

O problema é que, usando as regras até então, não é possível chegar ao juizo $\Gamma \vdash B : *$. Por isso, será introduzida uma nova regra:

Definição 1.7. (Regra de formação) $(form) \Gamma \vdash B : * se \Gamma$ é um contexto de $\lambda 2, B \in \mathbb{T}2$ e todas as variáveis de tipo livres em B sejam declaradas em Γ

Regras de $\lambda 2$:

- (var) $\Gamma \vdash x : \sigma$ se Γ for um contexto de $\lambda 2$ e $x : \sigma \in \Gamma$
- (appl)

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \text{ appl}$$

• (abst)

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x : \sigma . M : \sigma \to \tau} \text{ abst}$$

- (form) $\Gamma \vdash B : *$ se Γ é um contexto de $\lambda 2$, $B \in \mathbb{T}2$ e todas as variáveis de tipo livres em B sejam declaradas em Γ
- $(appl_2)$

$$\frac{\Gamma \vdash M : \Pi\alpha : *.A \qquad \Gamma \vdash B : *}{\Gamma \vdash MB : A[\alpha := B]} appl_2$$

• (abst₂)

$$\frac{\Gamma, \alpha : * \vdash M : A}{\Gamma \vdash \lambda \alpha : * M : \Pi \alpha : * A} abst_2$$

Definição 1.8. ($\lambda 2$ -termos legais) Um termo M em $\Lambda_{\mathbb{T}2}$ é chamado de legal se existe um contexto de $\lambda 2$ Γ e um tipo ρ em $\mathbb{T}2$ tal que $\Gamma \vdash M : \rho$

1.1.3 Exemplos de Derivação

Seja a seguinte árvore de inferência incompleta:

$$\frac{?}{\emptyset \vdash \lambda \alpha : *.\lambda f : \alpha \to \alpha.\lambda x : \alpha.f(fx) : \Pi \alpha : *.(\alpha \to \alpha) \to \alpha \to \alpha} ?$$

Primeiro, é necessário utilizar a regra $(abst_2)$:

$$\frac{?}{\alpha: * \vdash \lambda f: \alpha \to \alpha.\lambda x: \alpha.f(fx): (\alpha \to \alpha) \to \alpha \to \alpha}?$$

$$\emptyset \vdash \lambda \alpha: *.\lambda f: \alpha \to \alpha.\lambda x: \alpha.f(fx): \Pi\alpha: *.(\alpha \to \alpha) \to \alpha \to \alpha} abst_2$$

Após isso as regras que precisam ser utilizadas já são conhecidas a partir do ST λC :

primeiro dois absts seguidos para $f \in x$:

$$\frac{\frac{?}{\alpha:*,f:\alpha\rightarrow\alpha,x:\alpha\vdash f(fx):\alpha}?}{\alpha:*,f:\alpha\rightarrow\alpha\vdash\lambda x:\alpha.f(fx):\alpha\rightarrow\alpha}abst} \frac{\alpha:*,f:\alpha\rightarrow\alpha\vdash\lambda x:\alpha.f(fx):\alpha\rightarrow\alpha}{\alpha:*\vdash\lambda f:\alpha\rightarrow\alpha.\lambda x:\alpha.f(fx):(\alpha\rightarrow\alpha)\rightarrow\alpha\rightarrow\alpha}abst} abst$$

O resto da Derivação fica como exercício para o leitor

1.1.4 Propriedades de $\lambda 2$

A definição de α -conversão deve ser acomodada para lidar com tipos Π :

Definição 1.9 (α -conversão ou α -equivalência).

- 1. (Renomeando variáveis de termo) $\lambda x:\sigma.M=_{\alpha}\lambda y:\sigma.M^{x\to y}\text{ se }y\not\in FV(M)\text{ e }y\text{ não ocorre como ligante em }M$
- 2. (Renomeando variáveis de tipo) $\lambda\alpha:*.M=_{\alpha}\lambda\beta:*.M[\alpha:=\beta] \text{ se }\beta \text{ não ocorre em }M$ $\Pi\alpha:*.M=_{\alpha}\Pi\beta:*.M[\alpha:=\beta] \text{ se }\beta \text{ não ocorre em }M$
- 3. O resto das definições se segue da definição 1.8

Também é possível extender a regra de β -redução:

Definição 1.10. (β -redução de passo único)

- 1. (Base, de primeira ordem) $(\lambda : \sigma.M)N \to_{\beta} M[x := N]$
- 2. (Base, de segunda ordem) $(\lambda \alpha : *.M)T \rightarrow_{\beta} M[\alpha := T]$
- 3. (Compatibilidade) da mesma forma que definição 1.10

Os lemmas definidos no capítulo 2 também podem ser utilizados aqui:

Lema 1.1. Os seguintes lemas e teoremas também são válidos para $\lambda 2$:

- Lema das variáveis livres
- Lema do afinamento
- Lema da condensação
- Lema da geração
- Lema do subtermo
- Unicidade dos tipos
- Lema da substituição
- Teorema de Church-Rosser
- Redução do sujeito
- Teorema da normalização forte

Lema 1.2 (Lema da permutação). Se $\Gamma \vdash M : \sigma$ e Γ' é uma permutação de Γ e um contexto de $\lambda 2$ válido, então Γ' também é um contexto e $\Gamma' \vdash M : \sigma$.

1.2 O Sistema \mathcal{F} de girard