Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №3.2.4

Свободные колебания в электрическом контуре.

Автор:

Глеб Уваркин 615 группа Преподаватель:

Андрей Александрович Заболотных

Цель работы:

Исследование свободных колебаний в колебательном контуре.

В работе используются:

Генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф с разделительной панелью, измеритель LCR.

1 Теоретические сведения.

1.1 Предмет исследования.

В этой лабораторной работе мы будем рассматривать гармонические колебания токов (зарядов) в электрических цепях, включающих в себя резисторы , конденсаторы и катушки индуктивности (рис. 1). Все колебания мы будем рассматривать при относительно низких частотах когда выполняется условие κ вазистационарности. Квазистационарность означает, что мгновенные значения тока I практически одинаковы во всех проводниках, соединяющих элементы цепи, а изменения во времени происходя настолько медленно, что распространение электродинамических взаимодействий можно считать M в M

Рис. 1: Колебательный контур.

1.2 Основные формулы.

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0$$

- дифференциальное уравнение свободных колебаний, где $\gamma=\frac{R}{2L}$ - коэффициент затухания, $\omega_0^2=\frac{1}{7}LC$ -собственная частота контура.

$$\omega = \sqrt{\omega_0^2 - \gamma^2}$$

- частота свободных или собственных колебаний.

$$R_{\mathrm{kp}} = 2\sqrt{rac{L}{C}}$$

- критическое сопротивление (сопротивление, при котором $\gamma = \omega_0$, а периодические колебания сменяются апериодическими).

В колебательном режиме потери в контуре принято характеризовать добротностью и логарифмическим декрементом затухания. Определим эти понятия. Назовём добротностью величину

$$Q = 2\pi \frac{W}{\Delta W}$$

или

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Добротность контура Q показывает, во сколько раз запасённая в контуре энергия превосходит среднюю потерю энергии за время, в течение которого фаза колебаний изменяется на один радиан.

Введём логарифмический декремент затухания Θ - логарифм отношения двух последовательных максимальных отклонений в одну сторону.

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T}$$

На практике для определения Θ удобно использовать отношение максимальных отклонений, разделённых целым числом периодов n:

$$Q = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$

Связь между Θ и Q:

$$Q = \frac{\pi}{\gamma T} = \frac{\pi}{\Theta}$$

2 Экспериментальная установка.

Рис. 2: Схема установки для исследования свободных колебаний

На рис.2 приведена схема дл исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю и импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\simeq 1~\text{MOM}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развертки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

3 Ход работы.

3.1 Измерение периодов.

Соберём схему согласно рис. 2 , подготовим осциллограф к работе, установим длительность импульсов $\sim 5\mu S$, частоту повторения импульсов $\nu_0 = 100 {\rm Hz} (T_0 = 0, 01 {\rm c})$.

Подберём частоту развертки ЭО, при которой расстояние x_0 между импульсами, поступающими с генератора, занимает почти весь экран $(x_0 = (10, 4 \pm 0, 2) \text{мc})$.

Изменяя ёмкость от 0.02 мкФ до 0.9 мкФ и, периодически проверяя величину x_0 , проведём измерение расстояния x, которое занимают несколько полных периодов n и рассчитаем период колебаний контура по формуле:

$$T = T_0 x / (nx_0) \tag{1}$$

Полученные значения запишем в таблицу 1.

Таблица 1: Зависимость периода свободных колебаний контура от ёмкости конденсатора.

С, мкФ	X, MC	n	Т, мс	σ_T , MC	ε, %
0,02	4,7	14	0,32	0,01	3
0,11	8,6	11	0,75	0,02	2
0,20	9,4	9	1,00	0,02	2
0,29	8,8	7	1,21	0,03	2
0,38	8,6	6	1,38	0,04	2
0,47	8	5	1,54	0,04	2
0,56	8,8	5	1,69	0,04	2
0,65	7,6	4	1,83	0,04	2
0,74	8	4	1,92	0,04	2
0,83	8,6	4	2,07	0,05	2
0,9	9	4	2,16	0,05	2

3.2 Критическое сопротивление и декремент затухания.

Примем L=200м Γ н, найдём ёмкость C, при которой собственная частота колебаний контура ν_0 составляет 5 к Γ ц из формулы:

$$\nu_0 = 1/(2\pi\sqrt{LC})\tag{2}$$

$$C=0,005$$
mk Φ

Для этих значений L и C рассчитаем критическое сопротивление контура R по формуле:

$$R_{\rm Kp} = 2\sqrt{L/C} \tag{3}$$

$$R_{\mathrm{kp}} pprox 12,6$$
кОм

С помощью установки, собранной ранее, найдём экспериментальное значение сопротивления при котором колебательный режим переходит в апериодический:

$$R_{\rm kd} pprox 10 {
m kOm}$$

<u>MIPT</u>

Для расчёта логарифмического декремента затухания Θ по формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_{\mathbf{k}}}{U_{\mathbf{k}+\mathbf{n}}} \tag{4}$$

измерим амплитуды, разделённые целым числом периодов n. Полученные значения запишем в таблицу 2.

Рис. 3: Вид свободных колебаний при разных значениях сопротивления R.

Таблица 2: Зависимость логарифмического декремента затухания Θ от сопротивления R.

R, кОм	U_0 , дел	U_n , дел	n	Θ
1	6,8	0,4	4	0,71
1,25	5,8	0,4	3	0,89
1,5	5	0,2	3	1,07
1,75	4,2	0,4	2	1,18
2	3,2	0,2	2	1,39
2,25	7,4	0,4	2	1,46
2,5	6,2	0,2	2	1,72
2,75	5,2	0,8	1	1,87
3	4,4	0,5	1	2,17

3.3 Колебания на фазовой плоскости.

Найдём логарифмический декремент затухания с помощью фазовой плоскости и формулы 4. Для этого измерим радиусы витков спирали, разделённые целым числом периодов n. Данные запишем в таблицу 3.

Таблица 3: Измерение логарифмического декремента затухания Θ с помощью фазовой плоскости.

R, кОм	r_0 , дел	r_n , дел	n	Θ
1	4,6	1,2	2	0,67
1,25	5,6	1,1	2	0,81
2,75	4,2	0,6	1	1,95
3	4,6	0,6	1	2,04

Отсоединим катушку от цепи. Измерим омическое сопротивление катушки R_L и индуктивность L с помощью измерителя LCR на различных частотах.

Таблица 4: Измерение характеристик катушки.

ν, гц	L, мГн	R, Om
50	148,6	9,8
1000	142,73	12,2
5000	143,97	20,2

4 Обработка результатов.

4.1 Исследование периода колебаний контура.

Рассчитаем теоретические значения периода колебаний контура по формуле

$$T = 2\pi\sqrt{LC}$$
,

где $L \approx 145$ м Γ н.

Сравним их с экспериментальными значениями, полученными в пункте 3.1.

Таблица 5: Сравнение теоретических и экспериментальных значений периода колебаний контура.

С, мкФ	0,02	0,11	0,20	0,29	0,38	0,47	0,56	0,65	0,74	0,83	0,90
$T_{\text{эксп}}$, мс	0,32	0,75	1,00	1,21	1,38	1,54	1,69	1,83	1,92	2,07	2,16
T_{reop} , MC	0,34	0,79	1,07	1,29	1,47	1,64	1,79	1,93	2,06	2,18	2,27

Рис. 4: График функции $T_{\text{эксп}} = f(T_{\text{теор}})$.

Найдём тангенс угла наклона с помощью метода наименьших квадратов

$$k = \frac{< T_{\rm Teop} T_{\rm SKC\Pi}>}{< T_{\rm Teop}^2>}, \ \sigma_k = \frac{1}{11} \sqrt{\frac{< T_{\rm SKC\Pi}^2>}{< T_{\rm Teop}^2>} - k^2}$$

тогда

$$T_{\text{эксп}} = (0,940 \pm 0,001)T_{\text{теор}}$$

4.2 Исследование логарифмического декремента затухания.

Рассчитаем значение $R_{\text{конт}}$ (сопротивление контура состоит из сопротивления магазина R и омического сопротивления катушки R_L). Построим график в координатах $1/\Theta^2=f[1/(R_{\text{конт}}^2)]$. Примем обозначения $1/\Theta^2=Y$, $1/(R_{\text{конт}}^2)=X$. Необходимые измерения возьмём из таблицы 2

Таблица 6: Данные для построения графика $1/\Theta^2 = f[1/(R_{\text{конт}}^2)].$

$R_{\mathtt{KOHT}},OM$	$1/(R_{\text{koht}}^2), 1/\text{Om}^2 \times 10^{-7}$	$1/\Theta^2$
1010	9,80	1,99
1260	6,29	1,26
1510	4,39	0,87
1760	3,23	0,72
2010	2,48	0,52
2260	1,96	0,47
2510	1,59	0,34
2760	1,31	0,29
3010	1,10	0,21

Рис. 5: График функции $1/\Theta^2 = f[1/(R_{\mbox{\tiny KOHT}}^2)].$

Найдём тангенс угла наклона k прямой графика, изображённого на рис. 5, с помощью метода наименьших квадратов по формуле

$$k = \frac{\langle XY \rangle}{\langle X^2 \rangle}, \ \sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle Y^2 \rangle}{\langle X^2 \rangle} - k^2}$$

Тогда имеем

$$k = (2044038 \pm 26622)$$
Om²

Из формулы $R_{ ext{ iny KD}} = 2\pi \sqrt{\Delta Y/\Delta X}$ получаем

$$R_{\rm Kp} = (8973 \pm 58) {\rm OM}$$
 (5)

Рассчитаем теоретическое значение $R_{\rm kp}=2\sqrt{L/C}$, где $L\approx 145$ м Γ н и $C\approx 0,007$ мк Φ .

$$R_{\rm Kp} \approx 9102 {\rm OM} \tag{6}$$

Рассчитаем добротность контура Q для максимального и минимального значений Θ по картине затухающих колебаний и по спирали. Для этого воспользуемся формулой $Q=\pi/\Theta$. Сравним полученные значения с теоретическими, рассчитанными по формуле $Q=1/R\sqrt{L/C}$. Найдем погрешности измерения $R_{\rm кp}$ и Q по отношению к табличному значению. Сведём результаты эксперимента в таблицу 7

РКр, Ом R, KOM Q **L**кат, мГн Teop. Подбор $f(\Theta)$ Спираль Граф. Teop. $1,54\pm 0,02$ $1,45\pm 0,07$ 1,52 10000 ± 898 8973 ± 129 3 145 9102 $(\varepsilon = 5\%)$ $(\varepsilon = 1, 3\%)$ $4,42 \pm 0,13$ $4,69 \pm 0,14$ $(\varepsilon = 9\%)$ $(\varepsilon = 1, 5\%)$ 1 4,55 $(\varepsilon = 3\%)$ $(\varepsilon = 3\%)$

Таблица 7: Итоговые результаты эксперимента.

5 Вывод.

Рассчитанные значения $R_{\rm кp}$ и Θ практически совпадают с теоретическими (относительные погрешности не превышают 5%).

При определении $R_{\rm kp}$, несомненно, предпочтительнее графический метод перед методом подбора, так как определить на глаз момент перехода критического режима в апериодический довольно сложно.

В ходе работы были измерены с довольно высокой точностью:

- а)период свободных колебаний контура
- б)критическое сопротивление
- в) декремент затухания
- г) добротность контура.