Finding and Counting Substructures in Graphs and Hypergraphs

Liam Hardiman

December 10, 2020

A Finding Problem

2 A Counting Problem

3 Another Counting Problem

• A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.

- A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.
- If $X \subseteq V$, then the **subgraph induced by** X, G[X] is the graph with vertex set X and all edges from E that have both ends in X.

- A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.
- If $X \subseteq V$, then the **subgraph induced by** X, G[X] is the graph with vertex set X and all edges from E that have both ends in X.
- The **degree** of a vertex v, denoted $d_G(v)$, is the number of edges of G that v appears in.

- A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.
- If $X \subseteq V$, then the **subgraph induced by** X, G[X] is the graph with vertex set X and all edges from E that have both ends in X.
- The **degree** of a vertex v, denoted $d_G(v)$, is the number of edges of G that v appears in.
- picture here

Theorem (L. Lovász, T. Gallai - 1979)

Let G = (V, E) be any graph. Then G admits a partitioning of its vertex set into two parts, $V = V_1 \cup V_2$, so that each vertex in $G[V_1]$ and each vertex in $G[V_2]$ has even degree. In particular, any graph on n vertices has an even subgraph of order at least n/2.

Theorem (L. Lovász, T. Gallai - 1979)

Let G = (V, E) be any graph. Then G admits a partitioning of its vertex set into two parts, $V = V_1 \cup V_2$, so that each vertex in $G[V_1]$ and each vertex in $G[V_2]$ has even degree. In particular, any graph on n vertices has an even subgraph of order at least n/2.

Proof sketch:

asdf

• What about odd subgraphs?

• What about odd subgraphs?

Theorem (A. Scott - 1992)

Every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq \frac{n}{900\log n}$ and G[W] has all degrees odd.

• What about odd subgraphs?

Theorem (A. Scott - 1992)

Every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq \frac{n}{900\log n}$ and G[W] has all degrees odd.

Conjecture (A. Scott - 2001)

There exists some constant c>0 such that every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq cn$ and G[W] has all degrees odd.

• What about odd subgraphs?

Theorem (A. Scott - 1992)

Every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq \frac{n}{900\log n}$ and G[W] has all degrees odd.

Conjecture (A. Scott - 2001)

There exists some constant c>0 such that every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq cn$ and G[W] has all degrees odd.

Definition

The **Erdős-Renyi random graph**, $\mathcal{G}(n,p)$, is the random variable that outputs a graph on n vertices, any two of which are independently connected with probability p.

Definition

The **Erdős-Renyi random graph**, $\mathcal{G}(n,p)$, is the random variable that outputs a graph on n vertices, any two of which are independently connected with probability p.

Theorem (A. Scott - 1992)

Let $G \sim \mathcal{G}(n,1/2)$. Then with high probability (that is, with probability 1-o(1)), G has an induced subgraph on at least 0.7729n vertices with all degrees odd.

Other Moduli and Remainders

Conjecture (A. Scott - 2001)

For any positive integer q at least 2, there exists a constant c_a so that every graph on n vertices without isolated vertices has an induced subgraph on at least c_a n vertices with all degrees 1 (mod q).

Other Moduli and Remainders

Conjecture (A. Scott - 2001)

For any positive integer q at least 2, there exists a constant c_q so that every graph on n vertices without isolated vertices has an induced subgraph on at least c_q n vertices with all degrees 1 (mod q).

Theorem (A. Ferber, H., M. Krivelevich - 2020+)

Let $q \ge 2$ and let r be an integer. Then there exists a constant c_q such that, with high probability, the random graph $G \sim \mathcal{G}(n,1/2)$ has an induced subgraph on at least $c_q n$ vertices wijth all degrees $r \pmod q$.

Key Idea Behind Proof

• If $G \sim \mathcal{G}(n, 1/2)$, then its adjacency matrix M ($M_{ij} = 1$ if and only vertices i and j are connected and $M_{ij} = 0$ otherwise) is a random symmetric $n \times n$ matrix whose above-diagonal entries are iid Bern(1/2) random variables.

Key Idea Behind Proof

- If $G \sim \mathcal{G}(n, 1/2)$, then its adjacency matrix M ($M_{ij} = 1$ if and only vertices i and j are connected and $M_{ij} = 0$ otherwise) is a random symmetric $n \times n$ matrix whose above-diagonal entries are iid Bern(1/2) random variables.
- In this case, the *i*-th entry of M1 is the degree of vertex *i* in G, where 1 is the length n all-1 vector.

- If $G \sim \mathcal{G}(n, 1/2)$, then its adjacency matrix M ($M_{ij} = 1$ if and only vertices i and j are connected and $M_{ij} = 0$ otherwise) is a random symmetric $n \times n$ matrix whose above-diagonal entries are iid Bern(1/2) random variables.
- In this case, the *i*-th entry of M1 is the degree of vertex *i* in G, where 1 is the length n all-1 vector.

Observation

G contains a subgraph with all degrees $r \pmod q$ if and only if its adjacency matrix contains a principal submatrix B satisfying $B\mathbf{1} \equiv r\mathbf{1} \pmod q$.

$$\Pr[x_1 + \dots + x_t \equiv r] = \mathbb{E}[\delta_0(x_1 + \dots + x_t - r)]$$

$$\Pr[x_1 + \dots + x_t \equiv r] = \mathbb{E}[\delta_0(x_1 + \dots + x_t - r)]$$

$$= \frac{1}{q} \sum_{\ell \in \mathbb{Z}_q} \mathbb{E} \exp\left[\frac{2\pi i \ell}{q}(x_1 + \dots + x_t - r)\right]$$

$$\begin{aligned} \Pr[x_1 + \dots + x_t &\equiv r] = \mathbb{E}[\delta_0(x_1 + \dots + x_t - r)] \\ &= \frac{1}{q} \sum_{\ell \in \mathbb{Z}_q} \mathbb{E} \exp\left[\frac{2\pi i \ell}{q} (x_1 + \dots + x_t - r)\right] \\ &= \frac{1}{q} \sum_{\ell \in \mathbb{Z}_q} e^{-2\pi i r \ell/q} \prod_{j=1}^t \mathbb{E} e^{2\pi i \ell x_j/q} \end{aligned}$$

$$\begin{aligned} \Pr[x_1 + \dots + x_t &\equiv r] = \mathbb{E}[\delta_0(x_1 + \dots + x_t - r)] \\ &= \frac{1}{q} \sum_{\ell \in \mathbb{Z}_q} \mathbb{E} \exp\left[\frac{2\pi i \ell}{q}(x_1 + \dots + x_t - r)\right] \\ &= \frac{1}{q} \sum_{\ell \in \mathbb{Z}_q} e^{-2\pi i r \ell/q} \prod_{j=1}^t \mathbb{E} e^{2\pi i \ell x_j/q} \\ &= \frac{1}{q} \sum_{\ell \in \mathbb{Z}_q} e^{-2\pi i r \ell/q} \left(\frac{1 + e^{2\pi i \ell/q}}{2}\right)^t. \end{aligned}$$

 \bullet Isolate the $\ell \equiv 0$ term, apply the triangle inequality and Euler's identity.

• Isolate the $\ell \equiv 0$ term, apply the triangle inequality and Euler's identity.

$$\left|\Pr[x_1+\cdots+x_t\equiv r]-\frac{1}{q}\right|\leq \frac{1}{q}\sum_{\ell=1}^{q-1}|\cos(\pi\ell/q)|^t.$$

• Isolate the $\ell \equiv 0$ term, apply the triangle inequality and Euler's identity.

$$\left|\Pr[x_1+\cdots+x_t\equiv r]-\frac{1}{q}\right|\leq \frac{1}{q}\sum_{\ell=1}^{q-1}|\cos(\pi\ell/q)|^t.$$

• Calculus trick: when $|x| \le \pi/2$, $|\sin x| \ge (2/\pi)|x|$.

 \bullet Isolate the $\ell \equiv 0$ term, apply the triangle inequality and Euler's identity.

$$\left|\Pr[x_1+\cdots+x_t\equiv r]-\frac{1}{q}\right|\leq \frac{1}{q}\sum_{\ell=1}^{q-1}|\cos(\pi\ell/q)|^t.$$

- Calculus trick: when $|x| \le \pi/2$, $|\sin x| \ge (2/\pi)|x|$.
- From this, it follows that $|\cos(\pi\ell/q)| \le e^{-2/q^2}$ for all $\ell=1,\ldots,q-1$.

• Isolate the $\ell \equiv 0$ term, apply the triangle inequality and Euler's identity.

$$\left|\Pr[x_1+\cdots+x_t\equiv r]-\frac{1}{q}\right|\leq \frac{1}{q}\sum_{\ell=1}^{q-1}|\cos(\pi\ell/q)|^t.$$

- Calculus trick: when $|x| \le \pi/2$, $|\sin x| \ge (2/\pi)|x|$.
- From this, it follows that $|\cos(\pi\ell/q)| \le e^{-2/q^2}$ for all $\ell=1,\ldots,q-1$.

$$\left| \Pr[x_1 + \dots + x_t \equiv r] - \frac{1}{q} \right| \leq \frac{q-1}{q} e^{-2t/q^2}.$$

• The distribution of a random Bernoulli sum modulo *q* is asymptotically uniform!

- The distribution of a random Bernoulli sum modulo q is asymptotically uniform!
- By independence we have.

Lemma

Let M be an $s \times t$ matrix whose entries are iid Bern(1/2) random variables. Then for any $v \in \mathbb{Z}_q^s$,

$$\mathsf{Pr}[M\mathbf{1} \equiv v] = rac{1}{q^s} igg(1 + O \left(\mathrm{e}^{-2t/q^2}
ight) igg)^s.$$

Symmetric Case

• But the adjacency matrix is symmetric!

Symmetric Case

- But the adjacency matrix is symmetric!
- A similar, but more technical argument handles the symmetric case.

- But the adjacency matrix is symmetric!
- A similar, but more technical argument handles the symmetric case.

Lemma

Let M be an $m \times m$ symmetric matrix whose diagonal is zero and whose entries above the diagonal are iid Bern(1/2) random variables. Then for any $v \in \mathbb{Z}_q^m$,

$$\Pr[M\mathbf{1} \equiv v] = \begin{cases} \frac{1}{q^m} (1 + O(e^{-m/q^2})) & \textit{if q is odd} \\ \frac{2}{q^m} (1 + O(e^{-m/q^2})) & \textit{if q is even and $\sum v_i$ is even} \\ 0 & \textit{if q is even and $\sum v_i$ is odd.} \end{cases}$$

Parity?

We have

$$\sum_{i} (M\mathbf{1})_{i} = \sum_{i,j} M_{ij} = 2 \sum_{i < j} M_{ij},$$

which is always even modulo q if q is even and can be any residue modulo odd q.

Parity?

We have

$$\sum_{i} (M\mathbf{1})_{i} = \sum_{i,j} M_{ij} = 2 \sum_{i < j} M_{ij},$$

which is always even modulo q if q is even and can be any residue modulo odd q.

The symmetric lemma then says that the distribution of M1 (mod q) is asymptotically uniform over all "feasible" values.

Proof (Sketch) of Theorem

Theorem (Chebyshev's Inequality)

Let X be a nonnegative integer-valued random variable with finite variance. Then

$$\Pr[X>0] \geq 1 - \frac{\textit{Var}[X]}{(\mathbb{E}[X])^2}.$$

Proof (Sketch) of Theorem

Theorem (Chebyshev's Inequality)

Let X be a nonnegative integer-valued random variable with finite variance. Then

$$\Pr[X>0] \geq 1 - \frac{Var[X]}{(\mathbb{E}[X])^2}.$$

• Let $k = c_q n$ for some $c_q > 0$ and let X_k be the number of $k \times k$ principal submatrices B of the adjacency matrix of G satisfying $B\mathbf{1} \equiv r\mathbf{1} \pmod{q}$.

Theorem (Chebyshev's Inequality)

Let X be a nonnegative integer-valued random variable with finite variance. Then

$$\Pr[X>0] \geq 1 - \frac{Var[X]}{(\mathbb{E}[X])^2}.$$

- Let $k = c_q n$ for some $c_q > 0$ and let X_k be the number of $k \times k$ principal submatrices B of the adjacency matrix of G satisfying $B\mathbf{1} \equiv r\mathbf{1} \pmod{q}$.
- Show that c_q can be chosen so that $Var[X_k] = o(E[X_k]^2)$. Then G has an induced subgraph of size $c_q n$ with high probability.

Proof (Sketch) of Theorem

Maybe have some of the calculations and that overlap diagram.

State theorem for arbitrary distribution of residues $\mod q$.

A Finding Problem

2 A Counting Problem

Another Counting Problem

Packing

• Recall Gallai's result on even subgraphs.

Theorem (L. Lovász, T. Gallai - 1979)

Let G = (V, E) be any graph. Then G admits a partitioning of its vertex set into two parts, $V = V_1 \cup V_2$, so that each vertex in $G[V_1]$ and each vertex in $G[V_2]$ has even degree. In particular, any graph on n vertices has an even subgraph of order at least n/2.

Packing

• Recall Gallai's result on even subgraphs.

Theorem (L. Lovász, T. Gallai - 1979)

Let G = (V, E) be any graph. Then G admits a partitioning of its vertex set into two parts, $V = V_1 \cup V_2$, so that each vertex in $G[V_1]$ and each vertex in $G[V_2]$ has even degree. In particular, any graph on n vertices has an even subgraph of order at least n/2.

• What else can we say about partitions and remainders?

Theorem (A. Scott - 2001)

Let G be a graph. Then G admits a partition into odd subgraphs if and only if every component of G has even order.

Theorem (A. Scott - 2001)

Let G be a graph. Then G admits a partition into odd subgraphs if and only if every component of G has even order.

Theorem (A. Scott - 2001)

With high probability, $G \sim \mathcal{G}(n, p)$ for n even admits a partition into three odd subgraphs.

Theorem (A. Scott - 2001)

Let G be a graph. Then G admits a partition into odd subgraphs if and only if every component of G has even order.

Theorem (A. Scott - 2001)

With high probability, $G \sim \mathcal{G}(n,p)$ for n even admits a partition into three odd subgraphs.

Conjecture (A. Scott - 2001)

For q>1 and $r\leq q$, there exists a constant c_q such that $G\sim \mathcal{G}(n,p)$ admits a partition into c_q classes such that the degrees in each class are congruent to $r\pmod q$ with high probability.

Theorem (A. Ferber, H., M. Krivelevich)

For q>1 and $r\leq q$, $G\sim \mathcal{G}(n,1/2)$ admits a partition into q+1 classes such that the degrees in each class are congruent to $r\pmod q$ with high probability.

Sketch of Packing Proof

Explain that it's just another second moment argument. Maybe some calculations, diagrams. Explain need for "both ways" lemma.

1 A Finding Problem

2 A Counting Problem

3 Another Counting Problem

Definition

Let G = (V, E) be a graph. A subset of edges $\mathcal{M} \subseteq E$ is called a **matching** if its edges are vertex-disjoint. The matching \mathcal{M} is **perfect** if the vertices that comprise it cover all of V.

Definition

Let G = (V, E) be a graph. A subset of edges $\mathcal{M} \subseteq E$ is called a **matching** if its edges are vertex-disjoint. The matching \mathcal{M} is **perfect** if the vertices that comprise it cover all of V.

Definition

Let G = (V, E) be a graph and let C be a sequence of edges. Then C is a...

• ...path if it joins a sequence of distinct vertices.

Definition

Let G = (V, E) be a graph. A subset of edges $\mathcal{M} \subseteq E$ is called a **matching** if its edges are vertex-disjoint. The matching \mathcal{M} is **perfect** if the vertices that comprise it cover all of V.

Definition

Let G = (V, E) be a graph and let C be a sequence of edges. Then \mathcal{C} is a...

- ...path if it joins a sequence of distinct vertices.
- ... cycle if it joints a sequence of vertices $v_1, v_2, \dots, v_k, v_1$.

Definition

Let G = (V, E) be a graph. A subset of edges $\mathcal{M} \subseteq E$ is called a **matching** if its edges are vertex-disjoint. The matching \mathcal{M} is **perfect** if the vertices that comprise it cover all of V.

Definition

Let G = (V, E) be a graph and let C be a sequence of edges. Then C is a...

- ...path if it joins a sequence of distinct vertices.
- ...**cycle** if it joints a sequence of vertices $v_1, v_2, \dots, v_k, v_1$.
- ... **Hamiltonian cycle** if it is a cycle that visits every vertex in *G* exactly once.

 When does a graph have Hamiltonian a cycle (when is it Hamiltonian)?

- When does a graph have Hamiltonian a cycle (when is it Hamiltonian)?
- For any graph G, let $\delta(G)$ denote the minimum degree of any vertex.

- When does a graph have Hamiltonian a cycle (when is it Hamiltonian)?
- For any graph G, let $\delta(G)$ denote the minimum degree of any vertex.

Theorem (G. Dirac - 1952)

A graph on $n \ge 3$ vertices is Hamiltonian if $\delta(G) \ge n/2$.

- When does a graph have Hamiltonian a cycle (when is it Hamiltonian)?
- For any graph G, let $\delta(G)$ denote the minimum degree of any vertex.

Theorem (G. Dirac - 1952)

A graph on $n \ge 3$ vertices is Hamiltonian if $\delta(G) \ge n/2$.

• A graph is Hamiltonian if it is sufficiently dense.

Counting Hamiltonian Cycles in Dense Graphs - Intuition

ullet The expected number of Hamiltonian cycles in $G\sim \mathcal{G}(n,p)$ is

$$\frac{1}{2}(n-1)!p^n.$$

Counting Hamiltonian Cycles in Dense Graphs - Intuition

ullet The expected number of Hamiltonian cycles in $G\sim \mathcal{G}(n,p)$ is

$$\frac{1}{2}(n-1)!p^n.$$

• Fix $\gamma > 0$. If $p > (1/2 + \gamma)$, then

Cuckler-Kahn

Introduce hypergraphs and notion of cycle

Hypergraph theorems

Our theorem

Proof sketch