PS5841

Data Science in Finance & Insurance

Variance Bias

Yubo Wang

Spring 2022

Quantitative Response

- $\hat{y} = E(Y|X)$ has the lowest possible test MSE: $E((y \hat{y})^2)$
- $EPE(\hat{y})$ = $\sigma_{\epsilon}^2 + [E_{\tau}(\hat{y}_0) - f(x_0)]^2 + E_{\tau}([\hat{y}_0 - E_{\tau}(\hat{y}_0)]^2)$ = $\sigma_{\epsilon}^2 + bias^2(\hat{y}_0) + Var(\hat{y}_0)$
- A more flexible model tends to have a higher variance than a less flexible one

Example: Hyperboloid of Two Sheets

K-Nearest Neighbor Regression

$$\hat{y} = E(Y|X = \mathbf{x}_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} y_i$$

Predicted response is the mean response in the neighborhood

Example: Hyperboloid of Two Sheets KNN (K=1,3,7,14)

Example: Hyperboloid of Two Sheets KNN: RMSE vs. 1/K

Qualitative Response

- Bayes Classifier $\hat{y} = \underset{k}{\operatorname{argmax}} \Pr(Y = k | X)$
- Bayes Classifier has the lowest possible test error rate: $E(I_{\nu \neq \hat{\nu}})$
- Overall Bayes error rate

$$1 - E\left(\max_{k} \Pr(Y = k|X)\right)$$

- The expectation averages the probability over all possible values of X
- A more flexible model tends to have a error rate than a less flexible one

Decision Boundary

Bayes Decision Boundary

Sample from a Discrete Distribution

$$X = \begin{cases} x_1, & \Pr(X = x_1) = p_1 \\ \vdots \\ x_k, & \Pr(X = x_k) = p_k \end{cases}$$

 $U \sim \text{Uniform}(0,1)$

$$x = \begin{cases} x_1, & 0 \le u < p_1 \\ x_2, & p_1 \le u < p_1 + p_2 \\ \vdots & \vdots \\ x_k, & p_1 + \dots + p_{k-1} \le u \end{cases}$$

K-Nearest Neighbor Classifier

$$\Pr(Y = j | X = \mathbf{x}_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j)$$

• Classifies x_0 to the class with the highest probability

Bayes vs KNN

KNN: K=10

 X_1

KNN: Error Rate vs 1/K

11

That was

