

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Curso de Ciência da Computação

Disciplina: Seminários I

Profs. João Caram e Saulo Augusto - Semestre 1/2017 Exercícios 4 - Programação em C - Valor: 25 pontos

Questão 6

Vô Quico comprou uma barra de chocolate para suas duas netas Lúcia e Beatriz. A barra é composta de N linhas e N colunas de quadrados, onde N é sempre um número par. Em exatamente dois quadrados, que podem estar em qualquer posição na barra, há uma figurinha colada. Vô Quico gostaria de dar dois pedaços de tamanhos iguais, um para cada neta, cada pedaço contendo uma figurinha. Mais precisamente, ele gostaria de dividir a barra bem na metade, com um único corte vertical ou horizontal, deixando uma figurinha em cada pedaço.

A figura ao lado mostra dois exemplos. A barra da esquerda, com N=4, vô Quico pode dividir na metade com um corte horizontal, e cada metade contém uma figurinha. Mas a barra da direita, com N=6, ele não consegue dividir em dois pedaços iguais, separando as figurinhas, com um único corte horizontal ou vertical.

TAREFA

Dados N e as posições das duas figurinhas, seu programa deve dizer se é, ou não, possível dividir a barra em dois pedaços de tamanhos iguais, com um único corte horizontal ou vertical, deixando uma figurinha em cada pedaço.

ENTRADA

A primeira linha da entrada contém um inteiro N, representando as dimensões da barra (número de linhas e de colunas). A segunda linha contém dois inteiros X_1 e Y_1 , representando as coordenadas da primeira figurinha. A terceira linha contém dois inteiros X_2 e Y_2 , representando as coordenadas da segunda figurinha. ($2 \le N \le 1000$, N é sempre par; $1 \le X_1, Y_1, X_2, Y_2 \le N$)

SAÍDA

Seu programa deve imprimir apenas uma linha contendo um único caractere: "S", caso seja possível dividir a barra em pedaços iguais com um único corte horizontal ou vertical, separando as figurinhas, ou "N" caso não seja possível.

ENTRADA	SAÍDA
4 1 2	S
4 2	

ENTRADA	SAÍDA
6	N
3 4	
2 6	

Arnaldo e Bernardo são dois garotos que compartilham um peculiar gosto por curiosidades matemáticas. Nos últimos tempos, sua principal diversão tem sido investigar propriedades matemágicas de tabuleiros quadrados preenchidos com inteiros. Recentemente, durante uma aula de matemática, os dois desafiaram os outros alunos da turma a criar quadrados mágicos, que são quadrados preenchidos com números de 1 a N², de tal forma que a soma dos N números em uma linha, coluna ou diagonal principal do quadrado tenham sempre o mesmo valor. A ordem de um quadrado mágico é o seu número de linhas, e o valor do quadrado mágico é o resultado da soma de uma linha. Um exemplo de quadrado mágico de ordem 3 e valor 15 é mostrado na figura abaixo:

2	7	6
9	5	1
4	3	8

TAREFA

Para ajudar Arnaldo e Bernardo a descobrirem se os quadrados entregues pelos outros alunos da turma são mágicos, você deve verificar computacionalmente todos os quadrados e imprimir 0 (zero) em caso de falha ou o valor do quadrado (a soma de uma das linhas) em caso de sucesso.

ENTRADA

A primeira linha da entrada contém um único número inteiro N, indicando a ordem do quadrado (seu número de linhas). As N linhas seguintes descrevem o quadrado. Cada uma dessas linhas contém N números inteiros separados por um espaço em branco. ($3 \le N \le 100$, $2 \le valor$ de cada célula ≤ 100)

SAÍDA

Seu programa deve imprimir uma única linha na *saída padrão*. Caso o quadrado seja mágico, a linha deve conter o valor do quadrado (ou seja, a soma de uma de suas linhas). Caso contrário, a linha deve conter o número 0.

ENTRADA	SAÍDA
3	0
1 1 1	
1 1 1	
1 1 1	

ENTRADA	SAÍDA
4	34
16 3 2 13	
5 10 11 8	
9 6 7 12	
4 15 14 1	

O conglomerado indiano Tutu é um conjunto de empresas que atua nos mais diversos ramos da indústria, produzindo desde sapatos até aviões e foguetes. Por ser tão diversificada, precisa de grandes e rápidos sistemas para cálculos de contabilidade.Um dos módulos mais importantes desse sistema é o de fornecimento de produtos, onde fica a base de dados de produtos e fornecedores. Um mesmo produto pode ser fornecido por vários fornecedores diferentes.

O sistema possui duas grandes matrizes: a matriz A, onde cada linha representa um produto e cada coluna representa um fornecedor. O valor da matriz na linha m e coluna n representa o preço do produto m se for comprado do fornecedor n.

A outra grande matriz é a \mathbf{B} , onde cada linha representa um dia do mês e cada coluna é um produto. O valor da matriz na linha m e coluna n representa a quantidade do produto n a ser adquirido no dia m

Tal empresa tem uma política de fidelidade com seus fornecedores, e uma das práticas efetuadas pela empresa é, em um determinado dia, comprar todos os produtos necessários de um único fornecedor. Isto é, em um dia todos os produtos adquiridos serao comprados do fornecedor x, no outro dia do fornecedor y, e assim por diante.

Para auxiliar a escolha de qual fornecedor será o escolhido no dia, foi gerada outra matriz \mathbf{C} , que é o resultado da multiplicação das matrizes $\mathbf{A} \times \mathbf{B}$. Essa matriz diz o quanto será gasto pela empresa se adquirir todos os produtos de um determinado fornecedor em um determinado dia.

As matrizes **A** e **B** são quadradas (o número de linhas é igual ao número de colunas) e têm valores definidos pelas fórmulas

$$\mathbf{A}_{ij} = (P \times i + Q \times j) \pmod{X}$$

$$\mathbf{B}_{ij} = (R \times i + S \times j) \pmod{Y}$$

onde i é o índice da linha da matriz e j é o índice da coluna da matriz (todos os índices vão de 1 até N). Os inteiros P, Q, R, S, X e Y são parâmetros constantes, que definem as duas matrizes A e B.

TAREFA

Escreva um programa que, dados os parâmetros das matrizes **A** e **B**, e a posição de uma das entradas as matriz **C**, calcula o valor daquela entrada.

ENTRADA

A primeira linha da entrada contém um inteiro N, indicando as dimensões das matrizes \mathbf{A} , \mathbf{B} e \mathbf{C} (2 $\leq N \leq 100$). A linha seguinte contém seis inteiros P, Q, R, S, X e Y, indicando os parâmetros das matrizes \mathbf{A} e \mathbf{B} (2 $\leq X$, $Y \leq 100$; 0 $\leq P$, Q < X; 0 $\leq R$, S < Y). A última linha da entrada contém dois inteiros I e J, indicando a linha e a coluna da matriz \mathbf{C} a serem consultados (1 $\leq I$, $J \leq N$).

SAÍDA

4 3

Seu programa deve imprimir uma única linha contendo o valor da matriz C na linha e coluna especificadas.

ENTRADA 3 4 3 2 3 5 6 2 2	SAÍDA 18
ENTRADA 4 3 5 1 0 6 7	SAÍDA 30

A cada final de semestre, o professor João gosta de computar as estatísticas de suas turmas. Dentre elas, está a de quantos alunos foram aprovados e quantos não obtiveram aprovação em uma matéria. Porém, o trabalho é grande, dado que o professor tem muitas turmas, cada uma com muitos alunos.

TAREFA

Escreva um programa que mostre se cada aluno do professor João foi aprovado ou reprovado. Ao final, mostre também a quantidade de aprovações, reprovações e a porcentagem de sucesso.

ENTRADA

A primeira linha do arquivo contém quantos alunos compõem a turma em questão ($1 \le N \le 100$). As linhas seguintes contêm, separado por um espaço em branco, o nome do aluno e sua nota final ($0 \le nota \le 100$). Um aluno é considerado aprovado se sua nota for maior ou igual a 60.

SAÍDA

Para cada aluno, imprima seu nome e seu estado (aprovado ou reprovado), de acordo com o exemplo abaixo. Após todos os alunos, imprima a quantidade de aprovações, a quantidade de reprovações e a porcentagem de sucesso, como no exemplo abaixo.

ENTRADA	SAIDA
4	ROGER APROVADO
ROGER 90	RAFAEL APROVADO
RAFAEL 70	ANDY APROVADO
ANDY 80	NOVAK APROVADO
NOVAK 80	4 APROVADOS
	0 REPROVADOS
	100%

ENTRADA	SAIDA
5	GAEL REPROVADO
GAEL 55	NICK REPROVADO
NICK 40	THOMAZ REPROVADO
THOMAZ 58	MILOS APROVADO
MILOS 60	MARIN APROVADO
MARIN 70	2 APROVADOS
	3 REPROVADOS
	40%

Outra estatística que o professor João gosta de computar é a média obtida pela turma em cada prova aplicada, assim como o nome e a nota do aluno com a maior nota final. Para isto, em algumas turmas ele armazena as notas parciais dos alunos em cada prova, e não a nota final diretamente.

TAREFA

Escreva um programa que mostre a média da turma em cada prova aplicada, bem como o nome e a nota do aluno de maior nota final.

ENTRADA

A primeira linha do arquivo contém quantos alunos compõem a turma em questão ($1 \le N \le 100$). As linhas seguintes contêm, separado por um espaço em branco, o nome do aluno e cada uma de suas quatro notas nas provas do semestre ($0 \le$ cada nota ≤ 25). A nota final do aluno é a soma de todas as suas quatro notas.

SAÍDA

Para a turma, imprima a média da nota de cada prova e, ao final, o nome e a nota do aluno de maior nota final, como no exemplo abaixo.

ENTRADA	SAIDA
4	PROVA 1 18.75
ROGER 25 20 25 20	PROVA 2 16.25
RAFAEL 15 15 15 25	PROVA 3 22.50
ANDY 20 15 25 20	PROVA 4 20.00
NOVAK 15 25 25 15	ROGER 90

ENTRADA	SAIDA
5	PROVA 1 16.40
GAEL 10 10 25 10	PROVA 2 12.00
NICK 12 8 10 10	PROVA 3 16.40
THOMAZ 20 10 12 16	PROVA 4 11.80
MILOS 20 12 15 13	MARIN 70
MARIN 20 20 20 10	