### 4. Matrix Decompositions

#### 4.1 Determinant and Trace

Determinant: A math. object in the analysis and solution of systems of linear equations

Only defined for square matrices

Det(A) or |A|

A function that maps A onto a real number

**Theorem 4.1.** For any square matrix  $A \in \mathbb{R}^{n \times n}$  it holds that A is invertible if and only if  $\det(A) \neq 0$ .

We have explicit (closed-form) expressions for determinants of small matrices in terms of the elements of the matrix. For n = 1,

$$\det(\mathbf{A}) = \det(a_{11}) = a_{11}. \tag{4.5}$$

For n=2,

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}, \tag{4.6}$$

which we have observed in the preceding example.

For n = 3 (known as Sarrus' rule),

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23}$$

$$-a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}.$$

$$(4.7)$$

We call a square matrix T an upper-triangular matrix if  $T_{ij}=0$  for i>j, i.e., the matrix is zero below its diagonal. Analogously, we define a lower-triangular matrix as a matrix with zeros above its diagonal. For a triangular matrix  $T \in \mathbb{R}^{n \times n}$ , the determinant is the product of the diagonal elements, i.e.,

$$\det(\mathbf{T}) = \prod_{i=1}^{n} T_{ii}. \tag{4.8}$$

For n $\$ 3 cases, reduce the determinant of an nxn matrix to (n-1) x (n-1) matrices By recursively applying the Laplace expansion, ultimately compute determinants of 2x2 For  $A \in \mathbb{R}^{n \times n}$  the determinant exhibits the following properties:

- The determinant of a matrix product is the product of the corresponding determinants, det(AB) = det(A)det(B).
- Determinants are invariant to transposition, i.e.,  $\det(\mathbf{A}) = \det(\mathbf{A}^{\top})$ .
- If A is regular (invertible), then  $\det(A^{-1}) = \frac{1}{\det(A)}$ .
- Similar matrices (Definition 2.22) possess the same determinant. Therefore, for a linear mapping  $\Phi:V\to V$  all transformation matrices  $\boldsymbol{A}_\Phi$  of  $\Phi$  have the same determinant. Thus, the determinant is invariant to the choice of basis of a linear mapping.
- Adding a multiple of a column/row to another one does not change det(A).
- Multiplication of a column/row with  $\lambda \in \mathbb{R}$  scales  $\det(\mathbf{A})$  by  $\lambda$ . In particular,  $\det(\lambda \mathbf{A}) = \lambda^n \det(\mathbf{A})$ .
- Swapping two rows/columns changes the sign of det(A).

**Theorem 4.3.** A square matrix  $A \in \mathbb{R}^{n \times n}$  has  $\det(A) \neq 0$  if and only if  $\operatorname{rk}(A) = n$ . In other words, A is invertible if and only if it is full rank.

#### 4.2 Eigenvalues and Eigenvectors

Every linear mapping has a unique transformation matrix given an ordered basis

Can interpret linear mapping and associated transformation matrices by performing an "eigen" analysis

Eigenvalues of a linear mapping tell us how a special set of vectors, the eigenvectors, is transformed by the linear mapping

Useful properties regarding eigenvalues and eigenvectors include the following:

- A matrix A and its transpose  $A^{\top}$  possess the same eigenvalues, but not necessarily the same eigenvectors.
- The eigenspace  $E_{\lambda}$  is the null space of  $\mathbf{A} \lambda \mathbf{I}$  since

$$Ax = \lambda x \iff Ax - \lambda x = 0$$
 (4.27a)  
 $\iff (A - \lambda I)x = 0 \iff x \in \ker(A - \lambda I).$  (4.27b)

- Similar matrices (see Definition 2.22) possess the same eigenvalues. Therefore, a linear mapping  $\Phi$  has eigenvalues that are independent of the choice of basis of its transformation matrix. This makes eigenvalues, together with the determinant and the trace, key characteristic parameters of a linear mapping as they are all invariant under basis change.
- Symmetric, positive definite matrices always have positive, real eigenvalues.

In other cases, may have multiple identical eigenvalues and the eigenspace may have more than one dimension

## 4.3 Cholesky Decomposition

Square-root operation that gives a decomposition of the number into identical components

Cholesky decomposition/Cholesky factorization: provides a square-root equivalent operation on symmetric, positive definite matrices

**Theorem 4.18** (Cholesky Decomposition). A symmetric, positive definite matrix A can be factorized into a product  $A = LL^{\top}$ , where L is a lower-triangular matrix with positive diagonal elements:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ l_{n1} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & \cdots & l_{n1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & l_{nn} \end{bmatrix} . \tag{4.44}$$

L is called the Cholesky factor of A, and L is unique.

Cholesky factorization of this covariance matrix allows to generate samples from a Gaussian distribution and also to perform a linear transformation of random variable, compute determinants very efficiently

# 4.4 Eigendecomposition and Diagonalization

How to transform matrices into diagonal form

**Definition 4.19** (Diagonalizable). A matrix  $A \in \mathbb{R}^{n \times n}$  is diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix  $P \in \mathbb{R}^{n \times n}$  such that  $D = P^{-1}AP$ .

In the following, we will see that diagonalizing a matrix  $A \in \mathbb{R}^{n \times n}$  is a way of expressing the same linear mapping but in another basis (see Section 2.6.1), which will turn out to be a basis that consists of the eigenvectors of A.

Let  $A \in \mathbb{R}^{n \times n}$ , let  $\lambda_1, \dots, \lambda_n$  be a set of scalars, and let  $p_1, \dots, p_n$  be a set of vectors in  $\mathbb{R}^n$ . We define  $P := [p_1, \dots, p_n]$  and let  $D \in \mathbb{R}^{n \times n}$  be a diagonal matrix with diagonal entries  $\lambda_1, \dots, \lambda_n$ . Then we can show that

$$AP = PD (4.50)$$

if and only if  $\lambda_1, \dots, \lambda_n$  are the eigenvalues of A and  $p_1, \dots, p_n$  are corresponding eigenvectors of A.

We can see that this statement holds because

$$AP = A[p_1, ..., p_n] = [Ap_1, ..., Ap_n],$$
 (4.51)

$$\boldsymbol{PD} = [\boldsymbol{p}_1, \dots, \boldsymbol{p}_n] \begin{bmatrix} \lambda_1 & 0 \\ \ddots & \\ 0 & \lambda_n \end{bmatrix} = [\lambda_1 \boldsymbol{p}_1, \dots, \lambda_n \boldsymbol{p}_n]. \tag{4.52}$$

Thus, (4.50) implies that

$$Ap_1 = \lambda_1 p_1 \qquad (4.53)$$

:

$$Ap_{\alpha} = \lambda_{\alpha}p_{\alpha}. \qquad (4.54)$$

Therefore, the columns of P must be eigenvectors of A.

Our definition of diagonalization requires that  $P \in \mathbb{R}^{n \times n}$  is invertible, i.e., P has full rank (Theorem 4.3). This requires us to have n linearly independent eigenvectors  $p_1, \dots, p_n$ , i.e., the  $p_i$  form a basis of  $\mathbb{R}^n$ .

Theorem 4.20 (Eigendecomposition). A square matrix  $A \in \mathbb{R}^{n \times n}$  can be factored into

$$A = PDP^{-1}$$
, (4.55)

where  $P \in \mathbb{R}^{n \times n}$  and D is a diagonal matrix whose diagonal entries are the eigenvalues of A, if and only if the eigenvectors of A form a basis of  $\mathbb{R}^n$ .



Theorem 4.20 implies that only non-defective matrices can be diagonalized and that the columns of  $\boldsymbol{P}$  are the n eigenvectors of  $\boldsymbol{A}$ . For symmetric matrices we can obtain even stronger outcomes for the eigenvalue decomposition.

**Theorem 4.21.** A symmetric matrix  $S \in \mathbb{R}^{n \times n}$  can always be diagonalized.

Theorem 4.21 follows directly from the spectral theorem 4.15. Moreover, the spectral theorem states that we can find an ONB of eigenvectors of  $\mathbb{R}^n$ . This makes P an orthogonal matrix so that  $D = P^\top A P$ .

*Remark*. The Jordan normal form of a matrix offers a decomposition that works for defective matrices (Lang, 1987) but is beyond the scope of this book. ♢

• Diagonal matrices D can efficiently be raised to a power. Therefore, we can find a matrix power for a matrix  $A \in \mathbb{R}^{n \times n}$  via the eigenvalue decomposition (if it exists) so that

$$A^k = (PDP^{-1})^k = PD^kP^{-1}$$
. (4.62)

Computing  $D^k$  is efficient because we apply this operation individually to any diagonal element.

• Assume that the eigendecomposition  $A = PDP^{-1}$  exists. Then,

$$\det(\boldsymbol{A}) = \det(\boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1}) = \det(\boldsymbol{P})\det(\boldsymbol{D})\det(\boldsymbol{P}^{-1}) \tag{4.63a}$$