Math 110: Homework 12

Michael Pham

Fall 2023

Contents

1	Injectivity and Surjectivity	3
2	Self-Adjointness	4
3	Projector	5
4	Anti-Hermitian	6
5	A Normal Problem	7

1 Injectivity and Surjectivity

Problem 1.1. Let $T \in \mathcal{L}(V, W)$. Prove that

- 1. T is injective if and only if T^* is surjective.
- 2. T^* is injective if and only if T is surjective.

Solution. To prove the first statement, we will work in reverse and suppose that T^* is surjective. From here, we recall that range $T^* = (\operatorname{null} T)^{\perp}$. This means the following:

$$T^*$$
 is surjective \iff range $T^* = V$
 \iff $(\operatorname{null} T)^{\perp} = V$
 \iff $\operatorname{null} T = \{0\}$
 \iff T is injective

For the second statement, we note that if we replaced T with T^* , and note that $(T^*)^* = T$, then we observe that first, range $T = (\operatorname{null} T^*)^{\perp}$, and also that this means then that:

$$T$$
 is surjective \iff range $T = V$ \iff $(\operatorname{null} T^*)^{\perp} = V$ \iff $\operatorname{null} T^* = \{0\}$ \iff T^* is injective

2 Self-Adjointness

Problem 2.1. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Solution. To begin with, we proceed with the forwards direction. Suppose that ST is self-adjoint. Then, by definition, we observe that $ST = (ST)^*$. Then, we observe the following:

$$ST = (ST)^*$$
$$= T^*S^*$$

However, we note that T,S are also self-adjoint, meaning that $T^*=T$ and $S^*=S$. So, we have that $T^*S^*=TS$. Thus, we see that ST=TS as desired.

For the backwards direction, suppose that ST=TS. Furthermore, we note that in fact, S,T are self-adjoint, so we have:

$$ST = TS$$

$$= T^*S^*$$

$$= (ST)^*$$

And since $ST = (ST)^*$, we see that indeed, ST is self-adjoint as desired.

3 Projector

Problem 3.1. Let $P \in \mathcal{L}(V)$ be such that $P^2 = P$. Prove that there is a subspace U of V such that $P_U = P$ if and only if P is self-adjoint.

Solution. We shall begin with the forward direction. Suppose that P is an orthogonal projection P_U onto a subspace U of V. From here, we observe the following:

$$\begin{split} \langle P_U v, w \rangle &= \langle P_U v, P_U w + (I - P_U) w \rangle \\ &= \langle P_U v, P_U w \rangle + \langle P_U v, (I - P_U) w \rangle \\ &= \langle P_U v, P_U w \rangle \\ &= \langle P_U v, P_U w \rangle + \langle (I - P_U) v, P_U w \rangle \\ &= \langle P_U v + (I - P_U) v, P_U w \rangle \\ &= \langle v, P_U w \rangle \end{split} \tag{Rewriting $I w$ as $P_U + (I - P_U) w$)}$$

Thus, we see that, indeed, P is self-adjoint as desired.

For the backwards direction, let us suppose that P is self-adjoint. Then, by definition, we see that $P = P^* = P^2$. Furthermore, we have that $\langle Pv, w \rangle = \langle w, Pv \rangle$.

Now, with this in mind, let us denote U = range P. From here, let us take $v, w \in V$ and we observe the following:

$$\langle Pv, (I-P)w \rangle = \langle (I-P)^*Pv, w \rangle$$

$$= \langle (I-P)Pv, w \rangle$$

$$= \langle Pv - P^2v, w \rangle$$

$$= \langle Pv - Pv, w \rangle$$

$$= \langle 0, w \rangle$$

$$= 0$$

Then, we note that since the inner product is equal to zero, this maens then that Pv and (I-P)w, for $v, w \in V$, are orthogonal to each other. Since v, w are arbitrary, we observe that this means that P is orthogonal to I-P.

From here, we note that for any $v \in V$, we have that v = u + w = Pv + (I - P)v. And we note that since we let U = range P, then $Pv \in U$, and $(I - P)v \in U^{\perp}$. Thus, by definition, we observe that, indeed, P is an orthogonal projection P_U .

4 Anti-Hermitian

Problem 4.1. Let $n \in \mathbb{N}$ be fixed. Consider the real space $V \coloneqq \operatorname{span} \{1, \cos x, \sin x, \dots, \cos nx, \sin nx\}$, equipped with the inner product space

$$\langle f, g \rangle := \int_{-\pi}^{\pi} f(x)g(x) dx.$$

Show that the differentiation operator $D \in \mathcal{L}(V)$ satisfies $D^* = -D$.

Solution. To begin with, we note that all functions in V are periodic with a period of 2π . In other words, we have that $f(\pi) = f(-\pi)$ for $f \in V$.

Now, with this in mind, we observe the following:

$$\langle Df, g \rangle = \int_{-\pi}^{\pi} f'(x)g(x) dx$$

$$= f(x)g(x) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} f(x)g'(x) dx$$

$$= f(\pi)g(\pi) - f(-\pi)g(-\pi) - \int_{-\pi}^{\pi} f(x)g'(x) dx$$

$$= f(\pi)g(\pi) - f(\pi)g(\pi) - \int_{-\pi}^{\pi} f(x)g'(x) dx$$

$$= -\int_{-\pi}^{\pi} f(x)g'(x) dx$$

$$= \langle f, (-D)g \rangle$$

Thus, we observe that, indeed, we have that $D^* = -D$ as desired.

5 A Normal Problem

Problem 5.1. Suppose that T is normal. Prove that, for any $\lambda \in \mathbb{F}$ and any $k \in \mathbb{N}$, we have:

$$\operatorname{null}(T - \lambda I)^k = \operatorname{null}(T - \lambda I).$$

Solution. We note that since T is normal, then we have that $S=(T-\lambda I)$ is normal as well. From here, we will first introduce the following lemma, then instead shall prove a more general result.

To begin with, we introduce the following lemma:

Lemma 5.1. Given that T is a normal operator, and for any $k \in \mathbb{N}$ then we have:

$$(TT^*)^k = T^k (T^*)^k$$

Proof. We shall proceed with induction.

To begin with, we observe that for the base case of k=1, we have:

$$(TT^*)^1 = TT^* = T^1(T^*)^1.$$

Thus, our claim holds for k = 1. For k = 2, we see that

$$(TT^*)^2 = TT^*TT^*$$
$$= TTT^*T^*$$
$$= T^2(T^*)^2$$

Now, suppose that for n = k > 2, our claim holds. We now will show that it holds for n = k + 1 as well. To do this, we first observe the following:

$$(TT^*)^{k+1} = (TT^*)^k (TT^*)$$

= $T^k (T^*)^k (T^*T)$
= $T^k (T^*)^{k+1} T$

Then from here, we can simply switch the T and T^* with each other repeatedly, moving the T inside until we eventually get $T^{k+1}(T^*)^{k+1}$. This is possible due to T being normal.

Thus, we have proven our claim.

We note here that $(T^*T)^k = (T^*)^k T^k$; we simply replace T with T^* in the lemma above (and use the fact that $(T^*)^* = T$) to see that this is the case.

We will also introduce the following observation:

Remark 5.2. If we have some T which is self-adjoint, and we consider some v such that $T^k v = 0$, then we see the following:

Then, we observe that $T^{k-1}v$ must be equal to 0, since $\langle v,v\rangle=0$ if and only if v=0.

Then, from here, we can simply keep on repeating this process recursively until we hit Tv = 0.

Now, we will prove a more generalised lemma:

Lemma 5.3. Given that T is a normal operator, then $\operatorname{null} T^k = \operatorname{null} T$.

Proof. To do this, we first show that $\operatorname{null} T \subseteq \operatorname{null} T^k$.

For this inclusion, we note that for any $v \in \text{null } T$, we have that Tv = 0. Then, it follows that $T^k = T^{k-1}(Tv) = T^{k-1}(0) = 0$. Thus, we see that the inclusion holds.

Next, for the other inclusion, we want to show that $\operatorname{null} T^k \subseteq \operatorname{null} T$. To do this, let us consider some $v \in \operatorname{null} T^k$.

Then, from here, we have that $T^k v = 0$. Then, this means that $(T^*T)^k v = (T^*)^k T^k v = (T^*)^k 0 = 0$.

Thus, we have that $(T^*T)^k v = 0$.

Now, we note here that since T is normal, we have that $(T^*T)^* = T^*(T^*)^* = T^*T$. In other words, T^*T is self-adjoint.

From our observation in Remark 5.2, we observe then that, in fact, we also have that $T^*Tv=0$. Then, with this in mind, we do the following:

$$\langle T^*Tv, v \rangle = \langle Tv, Tv \rangle$$
$$= 0$$

And since $\langle v, v \rangle = 0$ if and only if v = 0, we see that, in fact, we have that Tv = 0. In other words, given that $v \in \text{null } T^k$, we have that $v \in \text{null } T$ as well.

Thus, we have that $\operatorname{null} T^k \subseteq \operatorname{null} T$.

Then, since we have these two inclusions, we can in fact conclude that they are equal.

Now, with this lemma proven, we note that since S is normal, then we can apply the lemma above to S and thus we have proven our claim as desired.