LIFE DATA EPIDEMIOLOGY

Study of the influence of the time structure in a network for sexually transmitted diseases spreading and vaccination

Agostini Federico, Bottaro Federico, Pompeo Gianmarco

University of Padua

February 11, 2020

Contents

- Introduction
- Static Network
- Temporal network
- Manipulative analysis

Introduction

- Data from growing Brazilian online community of sex buyers and sellers (studied by Rocha in 2010)
- We have at disposal node identification numbers and times of their activations: 16500 nodes in about 2200 days

GOAL

Study of the influence of the time structure in a network for sexually transmitted diseases spreading and vaccination

Activation

By activation we take the time a feedback post is uploaded in the forum by either the seller or the buyer \to inevitable lack of resolution!

Analysis outline

Initial hypotheses: (1) bipartite network but no distinction between males and females; (2) no costraint to specific diseases

We consider our network from two complementary standpoints:

 static network, also known as aggregated, in which the time dimension is compressed: all nodes and links are present at once (418 connected components)

Analysis outline

 temporal network, made of a sequence of networks organized according to a predefined order

Active links

It is possible to follow the time evolution of the community, which remains greatly sparse: intrinsic effect of pair interaction?

We briefly present the main analysis tools employed

- networkX package used to characterize the properties of and to manipulate the networks we are working with
 - EoN package for dynamics studies on networks: efficient epidemiological simulations
- fast_SIR at each iteration the script creates a priority queue of transmission or recovery events; the earliest event is performed and if it is a transmission one the queue is updated. Similarly for SIS

Static Network

Grid search in SIR/SIS

We fix $x_0 = 0.005$, so fraction of initial infected is 0.5% of the total population

Grid search on β and μ

Study of the behaviour of s_{∞} as function of β and μ for the values [1,3,6,9] at orders of magnitude $10^{-4},10^{-3},10^{-2},10^{-1}$. For greater β , we have less susceptibles, for greater μ we have more: the behaviour of the network is more or less the same for both models.

Static Network

Vaccination – SIR

For SIR, straightforward vaccination of nodes with degree greater than 100 and 200 does not produce a noticeable effect \rightarrow related to the huge number of connected components wrt total number of nodes

Static Network

Vaccination - SIS

In the case of SIS, little effect in any case.

This could be explained by the fragmentation of the network and the absence of a recovered state.

Simulations

- Aggregated in time windows of 30 days, with periodic boundary conditions (restarting at regime)
- Code written in pure Python, without using any specific library other than networkX
- Syncronous update + probabilistic simulation
- \bullet SIR and SIS models, studying the $\beta-\mu$ plane with a grid search (as before)

Grid search in SIR/SIS

Results of the simulations

For both the models, we have that there is a clear change in the behaviour around $\mu \approx 0.03$ (more visible for SIR): limited number of links present in the early stages

Vaccination - SIR

Vaccination strategy: whenever a node activates, it has a probability to be removed from the network \rightarrow information about time flow is preserved

Plots represent the number of people that got the disease. We notice that applying a vaccination technique based on the number of activations of a node can help to reduce the spreading.

Vaccination - SIS

Plots now represent the number of infected at equilibrium.

Also in this situation, this vaccination approach appears to be more efficient

Random Reference Models

Two RRMs are tested in order to compare the spreading of the epidemic with the original one

- RRM₁: time sequence is shuffled
- RRM2: node lists are randomized

Random Reference Models

From the heatmap it emerges that the RRM models do not change the behaviour of the network in disease transmission \to it happens basically "at random"

Removal of bystanders

Removal of nodes with less than 5 activations: more spreading for both models

 \Rightarrow in general, lower s_{∞} , so broader spreading

Removal of bystanders - Vaccination

Conclusions

- The time dimension increases complexity and it allows for richer descriptive tools
- The presence of a critical recovery time emerged in a SIR model with time dimension; vaccinations appeared to be more effective by several % points
- Extreme sparsity of our network was a limitation in the analysis: few significant results: need to try different social structures?

Thank you for your attention

Vaccination on network without bystanders sir

Vaccination on network without bystanders sis

Critical values for β in aggregate network

References I

Networkx - software for complex networks, 2014.

C. for Disease Control and Prevention.

Stds in adolescents and young adults, 2017.

Accessed: 2020-01-19.

I. Kiss, J. Miller, and P. Simon.

Mathematics of Epidemics on Networks, volume 46.

01 2017.

J. Miller and T. Ting.

Eon (epidemics on networks): a fast, flexible python package for simulation, analytic approximation, and analysis of epidemics on networks.

Journal of Open Source Software, 4(44):1731, 2019.

Planned Parenthood.

What are stds?, 2020.

Accessed: 2020-01-18.

References II

L. Rocha, F. Liljeros, and P. Holme.

Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts.

PLoS computational biology, 7:e1001109, 03 2011.

L. E. C. Rocha, F. Liljeros, and P. Holme.

Information dynamics shape the sexual networks of internet-mediated prostitution.

Proceedings of the National Academy of Sciences, 107(13):5706–5711, 2010.

E. Valdano, L. Ferreri, C. Poletto, and V. Colizza.

Analytical computation of the epidemic threshold on temporal networks.

Phys. Rev. X, 5:021005, Apr 2015.

E. Volz and L. Meyers.

Susceptible-infected-recovered epidemics in dynamic contact networks.

Proceedings. Biological sciences / The Royal Society, 274:2925–33, 01 2008.