Lizard Perch Heights on Experimental Islands

Response: Green Lizard Perch Height

 $y \sim N(\hat{y}, \sigma_y^2) [0, \infty)$

$$y \sim N(\hat{y}, \sigma_y^2) [0, \infty)$$

$$\hat{y}_i = \alpha_{j[i]} + \beta_{treatment} + \beta_{sex} + \beta_{year} + \beta_{treatment x year} + \beta_{treatment x sex x year}$$

$$y \sim N(\hat{y}, \sigma_y^2) [0, \infty)$$

$$\hat{y}_i = \alpha_{j[i]} + \beta_{treatment} + \beta_{sex} + \beta_{year} + \beta_{treatment x year} + \beta_{treatment x sex x year}$$

Positive if males perch higher than females

Negative if lizards on removal islands perch lower following competitor removal

Negative if males on removal islands have a larger drop than females following competitor removal

$$y \sim N(\hat{y}, \sigma_y^2) [0, \infty)$$

$$\hat{y}_i = \alpha_{j[i]} + \beta_{treatment} + \beta_{sex} + \beta_{year} + \beta_{treatment \ x \ year} + \beta_{treatment \ x \ sex \ x \ year}$$

 $\alpha_{\rm j} \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$

Positive if males perch higher than females

Negative if males on removal islands have a larger drop than females following competitor removal

	Sim 1	Sim 2	Sim 3	Sim 4	Sim 5	Sim 6
					real and	real and
Data Type	fake	fake	fake	fake	fake	fake
Balanced sampling?	Y	Y	Y	Y	N	N
Observations per island	50	26*	26	26	26‡	26‡
Number of islands (j)	16	6*	6	6	6	6
Total number of observations (i)	1600	312*	312	312	294*	294
$\beta_{treatment}$	0	0	-120*	0*	0	0
β _{treatment x year}	-30	-30	-30	-30	-30	-30
β_{year}	0	0	0	0	0	0
$oldsymbol{eta_{ m sex}}$	80	80	80	80	80	80
β _{treatment x sex x year}	-40	-40	-40	-40	-40	-40
μ_{lpha}	180	180	180	180	181.6*†	181.6†
$\sigma_{\!\scriptscriptstyle{lpha}}$	10	25*	25	40*	41.2*†	41.2†
$\sigma_{\! ext{y}}$	10	25*	25	100*	123.4*†	40*

What's next?

- Different variances for removal vs. control islands
- Weakly informative priors on hyperparameters
- Use my new skills on an experiment that won't get crushed by a hurricane

