компьютере) и определите количество верных в строгом смысле цифр в следующих значениях элементерных функций:

a) log 23,6;

б) $e^{2,01}$;

B) $\frac{1}{4,09}$

r) arccos 0,79;

д) arctg 8,45;

e) $3.4^{2.6}$.

1.6.

УЧЕТ ПОГРЕШНОСТЕЙ ВЫЧИСЛЕНИЙ ПО ЗАДАННОЙ ФОРМУЛЕ

Наиболее распространенный вид вычислений — это вычисления по готовой формуле. В компьютере вычисление при любой громоздкости формулы обеспечивается, как правило, одной командой (оператором). Если при этом не запрограммирован контроль за вычислительными погрешностями, вычислитель анализирует результат в конце счета. Иногда условия вычислительной задачи заставляют вести пооперационный учет движения вычислительной погрешности. Рассматривая в дальнейшем приемы вычислений, мы будем учитывать как пооперационную, так и итоговую методику оценки точности.

1.6.1. Вычисления по правилам подсчета цифр

При вычислении этим методом явного учета погрешностей не ведется, правила подсчета цифр показывают лишь, какое количество значаних цифр или десятичных знаков в результате можно считать надежными. Сами эти правила основываются на выводах, вытекающих из формул для оценки погрешностей арифметических действий и функций (см. подразд. 1.4 и 1.5). Приведем эти правила в систематизированном виде.

1. При сложении и вычитании приближенных чисел младший из сохраняемых десятичных разрядов результата должен являться наибольшим среди десятичных разрядов, выражаемых последними верными значащими цифрами исходных данных¹.

¹ Когда точность исходных данных такова, что все они имеют десятичные знаки после запятой, т.е. являются десятичными дробями, правило формулируется более доступно: при сложении и вычитании приближенных чисел в результате следует считать верными столько десятичных знаков после запятой, сколько их в приближенном данном с наименьшим числом знаков после запятой. Количество десятичных знаков после запятой перед выполнением действия целесообразно уравнивать, округляя до одного запасного исходные данные с большим количеством десятичных знаков.

компьютере) и определите количество верных в строгом смысле цифр в следующих значениях элементарных функций:

a) log 23,6;

б) $e^{2.01}$:

4,09

r) arccos 0.79:

д) arctq 8,45;

e) $3.4^{2.6}$.

1.6.

УЧЕТ ПОГРЕШНОСТЕЙ ВЫЧИСЛЕНИЙ ПО ЗАДАННОЙ ФОРМУЛЕ

Наиболее распространенный вид вычислений — это вычисления по готовой формуле. В компьютере вычисление при любой громоздкости формулы обеспечивается, как правило, одной командой (оператором). Если при этом не запрограммирован контроль за вычислительными погрешностями, вычислитель анализирует результат в конце счета. Иногда условия вычислительной задачи заставляют вести пооперационный учет движения вычислительной погрешности. Рассматривая в дальнейшем приемы вычислений, мы будем учитывать как пооперационную, так и итоговую методику оценки точности.

1.6.1. Вычисления по правилам подсчета цифр

При вычислении этим методом явного учета погрешностей не велется, правила подсчета инфр показывают лишь, какое количество значащих цифр или десятичных знаков в результате можно считать надежными. Сами эти правила основываются на выводах, вытекающих из формул для оценки погрешностей арифметических действий и функций (см. подразд. 1.4 и 1.5). Приведем эти правила в систематизированном виде.

1. При сложении и вычитании приближенных чисел младший из сохраняемых десятичных разрядов результата должен являться наибольшим среди десятичных разрядов, выражаемых последними верными значащими цифрами исходных данных¹.

¹ Когда точность исходных данных такова, что все они имеют десятичные знаки после запятой, т. е. являются десятичными дробями, правило формулируется более доступно: при сложении и вычитании приближенных чисел в результате следует считать верными столько десятичных знаков после запятой, сколько их в приближенном данном с наименьшим числом знаков после запятой. Количество десятичных знаков после запятой перед выполнением действия целесообразно уравнивать, округляя до одного запасного исходные данные с большим количеством десятичных знаков.

- При этом следует избегать вычитания близких по величине ел, а также при пооперационном применении правила для сложения и вычитания нескольких чисел подряд стараться произворить действия над числами в порядке возрастания их абсолютных величин.
- 2. При умножении и делении приближенных чисел нужно выбрать число с наименьшим количеством значащих цифр и округлить остальные числа так, чтобы в них было лишь на одну значащую . цифру больше, чем в наименее точном числе.

В результате следует считать верными столько значащих цифр, сколько их в числе с наименьшим количеством значащих цифр.

- 3. При определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. Если это значение не превосходит единицы или близко к ней, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Если же модуль производной функции в окрестности приближенного значения аргумента превосходит единицу, то количество верных десятичных знаков в значении функции меньше, чем в значении аргумента на величину k, где k — наименьший показатель степени, при котором имеет место неравенство¹: $|f'(x)| < 10^k$.
- 4. При записи промежуточных результатов следует сохранять на одну цифру больше, чем рекомендуют правила 1-3. В окончательном результате эта запасная цифра округляется.

Правила подсчета цифр носят оценочный характер и не являются методом строгого учета точности вычислений. Обычно их применяют в тех случаях, когда быстро и без особых затрат нужно получить результат, не особенно беспокоясь о его достоверности. Между тем практическая надежность этих правил достаточно высока в результате вычислительной вероятиости взаимопогамения ошибок, не учитываемой при строгом подсчете предельных погрешностей.

При операционном учете опибок вычислений используется обычная расчетная таблица — так называемая расписка формулы.

Пример 1.14. Вычислите значение величины

$$A = \frac{e^a + \sqrt{b}}{\ln(a + b^2)}$$
 (1.19)

 $^{^{1}}$ Действительно, при этом условии с учетом формулы $\Delta f = |f'(\mathbf{x})| \Delta \mathbf{x}$ можно вывести, что увеличение к на единицу означает увеличение Δf примерно в 10 раз, что в данном случае уменьшает в значении f(x) количество верных десятичных знаков на единицу по-сравнению со значением х.

Таблица 1.4								
а	b	e^a	√b	$e^a + \sqrt{b}$	b^2	$a + b^2$	$\ln(a+b)^2$	A
2,156	0,927	8,637	0,9628	9,600	0,8593	3,015 3	1,103 7	8,69 8

по правилам подсчета цифр для приближенных значений a=2,156 и b=0,927, у которых все цифры верны.

Вычисления приведены в табл. 1.4.

Прокомментируем ход вычислений. Сначала вычислим $e^{2,156}=0.63652$. Этот же результат дает нам и оценку величины производной в этой же точке: $2^{2,156}<1\cdot10^1$, т.е. в полученном значении следует сохранить на один десятичный знак меньше, чем в значении аргумента. Округляя с одним запасным знаком, получаем 8,637 (запасной знак выделен) и заносим результаты в таблицу. Далее $\sqrt{0,927}=0,9628083$, причем модуль производной $(1/2\sqrt{b})$ меньше единицы, поэтому сохраняем после запятой три знака и один запасной: 0,9628. При вычислении суммы в числителе находим 8,637+0,9628=9,5998 и согласно правилу 1 округляем результат до тысячных: 9,600. При вычислении b^2 пользуемся правилом 2, при нахождении суммы $a+b^2$ — правилом 1.

При определении количества верных цифр в значении $\ln 3.0153$ снова применяем правило 3 (учитываем, что производная функции $\ln x$ при x>1 имеет значение меньше единицы). Округляя окончательный результат без запасного знака, получим A=8.70 (три верные значащие цифры).

Допустим, что в результате вычисления заданного в примере 1.19 выражения (exp(2,156) + sqrt(0,927))/ln(2,156 + sqrt(0,927)) на МК или компьютере было получено значение: 8,6873389294998. Как выделить в полученном числе верные цифры? Сделать это можно и без подробного поэтапного анализа, который приведен выше.

Действительно, так как выражение А представляет собой дробь, то последнее действие при его вычислении — деление, а следовательно, результат будет содержать верных значащих цифр не более, чем в наименее точном из операндов — числителе или знаменателе. Учитывая, что корень квадратный дает верных цифр столько же, сколько и его аргумент (три), а экспонента в данном случае теряет не более одного верного знака после запятой (что вместе с ненулевой целой частью также дает не менее трех значащих цифр), замечаем, что в числителе число верных значащих цифр будет равно трем. Нетрудно видеть, что в знаменателе число верных цифр

(благодаря свойствам производной логарифма) также наверняка не менее трех. Следовательно, значение A должно быть округлено до грех верных знаков: A=8,70. Там, где возможен подобный анализ, при использовании МК или компьютера в непосредственных вычислениях по правилам подсчета цифр удается избежать пооперационного учета количества верных знаков.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Как формулируются правила подсчета цифр?
- 2. В каких случаях рекомендуется применять правила подсчета цифр?
- 3. Какие два способе применения правил подсчета цифр возможны в вычислениях на МК и ЭВМ?
- 4. Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по правилам подсчета цифр с пооперационным учетом ошибок? На заключительном этапе?

УПРАЖНЕНИЯ

Вычислите на МК или компьютере значения заданных выражений по правилам подсчета цифр двумя способами: 1) с пооперационным анализом результатов; 2) с итоговой оценкой окончательного результата (у числовых данных все цифры верные):

a)
$$\frac{0.62 + \sqrt{16.9}}{\log 41.3}$$
;

6)
$$\frac{12,47 + \sqrt{12,5^2 + 14,8^2}}{\sin^2 0,97 + \cos^2 2,63};$$

B)
$$\frac{\ln(6,91+3,35^2)}{\sqrt{626.3}}$$
;

r)
$$\frac{\sqrt[3]{26,88}}{e^{3.94}-8,04^2}+6,19^{1,34}$$
.

1.6.2. Вычисления со строгим учетом предельных абсолютных погрешностей

Этот метод предусматривает использование правил вычисления предельных абсолютных погрешностей, рассмотренных в подразд. 1.4 и 1.5.

При пооперационном учете ошибок (который целесообразен прежде всего для ручных вычислений) промежуточные результаты, так же как и их погрешности, заносятся в специальную таблицу, состоящую из двух дараллельно заполняемых частей — для резуль-

Табл	Таблица 1 5								
а	b	e^a	√b	$e^a + \sqrt{b}$	b^2	$a+b^2$	$\ln(a+b)^2$	A	
2,156	0,927	8,637	0,9628	9,603	0,860	3,016	1,104	8,70	
Δα	Δb	$\Delta(e^a)$	$\Delta(\sqrt{b})$	$\Delta(e^a+\sqrt{b})$	$\Delta(b^2)$	$\Delta(a+b^2)$	$\Delta \ln(a+b^2)$	ΔΑ	
0,0005	0,0005	0,0049	0,00027	0,0054	0,0016	0,0021	0,00076	0,016	

татов и их погрешностей. В табл. 1.5 приведены пошаговые вычисления со строгим учетом предельных абсолютных погрешностей по той же формуле, что и в примере 1.14, и в предположении, что исходные данные a и b имеют предельные абсолютные погрешности $\Delta a = \Delta b = 0,0005$ (т. е., что у значений a и b все цифры верны в строгом смысле).

Промежуточные результаты вносятся в таблицу после округления до одного запасного знака (с учетом вычисленной параллельно величины погрешности); значения погрешностей для удобства округляются (с возрастанием!) до двух значащих цифр. Проследим ход вычислений на одном этапе (см. табл. 1.5).

Используя калькулятор, имеем $e^{2,156} = 8,63652$. Подсчитаем предельную абсолютную погрешность (см. табл. 1.5): $\Delta(e^{2,156} \cdot 0,0005) = 0,0043182 \approx 0,0044$. Судя по ее величине, в полученном значении экспоненты в строгом смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой: $e^{2,156} \approx 8,637$ (запасная цифра выделена) и вносим его в таблицу. Вслед за этим вычисляется полная погрешность полученного результата (погрешность действия плюс погрешность округления: 0,0044 + 0,00048 = 0,0049), которая также вносится в таблицу. Все последующие действия выполняются аналогично с применением соответствующих формул для предельных абсолютных погрешностей.

Округляя окончательный результат до последней верной в строгом смысле цифры, а также округляя погрешность до соответствующих разрядов результата, окончательно получаем: $A=8.7\pm0.1$.

Вычисления по методу строгого учета предельных абсолютных погрешностей можно выполнить и программным путем. Однако в тех случаях, когда для вычислений выгоднее применять калькулятор, можно обойтись и без составления программы. Рассмотрим для примера, как можно получить итоговую оценку предельной погрешности результата вычислений на МК по формуле с использованием предельной относительной погрешности.

3Н ВЬ

40

В

H(

Дâ П(

get a

Пример 1.15. Значения a=23.1 и b=5.24 даны цифрами, верными строгом смысле. Вычислить значение выражения $B=\frac{\sqrt{a}}{b \ln a}$.

С помощью МК получаем B = 0.2921247. Используя формулы отжительных погрешностей частного и произведения, запишем:

$$\delta B = \delta(\sqrt{a}) + \delta b + \delta(\ln a), \text{ T. e.}$$

$$\delta B = \frac{1}{2}\delta a + \delta b + \frac{\delta a}{|\ln a|}$$

Пользуясь МК (см. также формулу (1:6)), получим $\delta B = 0.003$, что ет $\Delta B = B$ $\delta B = 0.0008$. Это означает, что в результате две цифры эсле запятой верны в строгом смысле: $B = 0.003 \pm 0.001$.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Как оформляются вычисления со строгим учетом предельных погрешностей при пооперационном учете ошибок?
- 2. Какова последовательность действий на каждом промежуточном этапе составления расчетной таблицы в вычислениях по методу строгого учета предельных погрешностей с пооперационным учетом ошибок? На заключительном этапё?
- 3. Как вычисляются предельные погрешности результата при использовании методики итоговой оценки ошибки вычислений?

УПРАЖНЕНИЯ

У значений a=2,674 и b=31,48 все цифры верны в строгом смысле. Вычислите значения заданных выражений со строгим учетом границ погрещностей двумя способами:

- 1) с пооперационным учетом границ погрешностей;
- 2) с итоговой оценкой точности результата:

a)
$$\frac{ab}{\sqrt{a+b^2}}$$
; 6) $\frac{a+\sqrt{b}}{\lg(a^2+b^2)}$; B) $\frac{e^a-\sqrt[3]{b}}{\ln(1+a^2)}$; r) $\lg \frac{\cos^2 a+b}{a^{\sqrt{b}}+b^{\sqrt{a}}}$.

1.6.3. Вычисления по методу границ

Если нужны абсолютно гарантированные границы возможных начений вычисляемой величины, используют специальный метод лчислений — метод грания.

Пусть f(x, y) — функция, непрерывная и монотонная в некоторой области допустимых значений аргументов x и y. Нужно получить ее значение f(a, b), где α и b — приближенные значения аргументов, причем достоверно известно, что

$$H\Gamma_a < a < B\Gamma_a, \ H\Gamma_b < b < B\Gamma_b. \tag{1.20}$$

H

Н

Ч П

H

C

π

H

И

r

a

r n

Здесь НГ, ВГ — обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b) нри известных границах значений a и b.

Допустим, что функция f(x, y) возрастает по каждому из аргументов x и y. Тогда $f(H\Gamma_a, H\Gamma_b) < f(a, b) < f(B\Gamma_a, B\Gamma_b)$. Пусть теперь f(x, y) возрастает по аргументу x и убывает по аргументу y. Тогда будет строго гарантировано выполнение неравенства:

$$f(H\Gamma_a, B\Gamma_b) < f(a, b) < f(B\Gamma_a, H\Gamma_b)$$
.

Указанный принцип особенно очевиден для основных арифметических действий. Пусть, например, f(x, y) = x + y. Тогда очевидно, что

$$H\Gamma_a + H\Gamma_b < a + b < B\Gamma_a + B\Gamma_b. \tag{1.21}$$

Точно так же для функции $f_2(x, y) = x - y$ (она по x возрастает, а по y убывает) имеем:

$$H\Gamma_a = H\Gamma_b < a - b < B\Gamma_a - H\Gamma_b. \tag{1.22}$$

Аналогично для умножения и деления:

$$H\Gamma_a \cdot H\Gamma_b < ab < B\Gamma_a \cdot B\Gamma_b, \tag{1.23}$$

$$\frac{H\Gamma_a}{B\Gamma_b} < \frac{a}{b} < \frac{B\Gamma_a}{H\Gamma_b}. \tag{1.24}$$

Рассмотрим функцию $\frac{1}{\ln(x-y)}$. Замечаем, что при увеличении

х она убывает, а с увеличением у — возрастает (разумеется, при соблюдении условий существования). Следовательно, имеет место неравенство:

$$\frac{1}{\ln(\mathrm{B}\Gamma_a - \mathrm{H}\Gamma_b)} < \frac{1}{\ln(a-b)} < \frac{1}{\ln(\mathrm{H}\Gamma_a - \mathrm{B}\Gamma_b)}.$$

Вычисляя по методу границ с пошаговой регистрацией промежуточных результатов, удобно использовать обычную вычислитель-

ую таблицу, состоящую из двух строк — отдельно для вычисления IГ- и ВГ-результата. По этой причине метод границ называют еще етодом двойных вычислений. При выполнении промежуточных вычислений и округлении результатов используются все рекомендации равил подсчета цифр с одним важным дополнением: округление ижних границ ведется по недостатку, а верхних — по избытку. Экончательные результаты округляются по этому же правилу до оследней верной цифры.

Пример 1.16. В табл. 1.6 приведены вычисления по формуле $A = \frac{e^a + \sqrt{b}}{\ln(a+b^2)}$ методом границ. Нижняя и верхняя границы значений a и b определены из условия, что в исходных данных a=2,156 b=0,927 все цифры верны в строгом смысле ($\Delta a=\Delta b=0,0005$), е. 2,1555 < a < 2,1565; 0,9265 < b < 0,9275.

Таким образом, результат вычислений значения A по методу раниц имеет вид:

Способ границ связан со способом строгого учета предельных обсолютных погрешностей следующим образом. Пусть X — точное начение некоторой величины, e_x — его приближение с известными раницами $\mathrm{H}\Gamma_x$ и $\mathrm{B}\Gamma_x$.

Примем x равным значению $\frac{H\Gamma_x + B\Gamma_x}{2}$, тогда абсолютная порешность e_x этого приближения (рис. 1.8) будет заведомо не больше полуразности $e_x = \frac{B\Gamma_x - H\Gamma_x}{2}$.

Так, по результатам вычислений в табл. 1.6 получаем:

Таблица 1.6							
Параметр	а	b	e^a	\sqrt{b}	$e^a + \sqrt{b}$		
НГ	2,1555	0,9265	8,6322 0	0,9625 5	9,5947 5		
ВГ	2,1565	0,9275	8,6408 4	0,9630 7	9,60391		

Окончание табл. 1.6

Параметр	b^2	$a+b^2$	$\ln(a+b^2)$	A
• • НГ • .	0,85840	3,01434	1,1033 8	8,6894
ВГ	0,86026	3,0167 6	1,1041 9	8,7041

ную таблицу, состоящую из двух строк — отдельно для вычисления НГ- и ВГ-результата. По этой причине метод границ называют еще методом двойных вычислений. При выполнении промежуточных вычислений и округлении результатов используются все рекомендации правил подсчета цифр с одним важным дополнением: округление нижних границ ведется по недостатку, а верхних — по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

Пример 1.16. В табл. 1.6 приведены вычисления по формуле $A=\frac{e^a+\sqrt{b}}{\ln(a+b^2)}$ методом границ. Нижняя и верхняя границы значений a и b определены из условия, что в исходных данных a=2,156 и b=0,927 все цифры верны в строгом смысле ($\Delta a=\Delta b=0,0005$),

т. е. 2,1555 < a < 2,1565; 0,9265 < b < 0,9275. Таким образом, результат вычислений значения A по методу границ имеет вид:

Способ границ связан со способом строгого учета предельных абсолютных погрешностей следующим образом. Пусть X — точное значение некоторой величины, e_x — его приближение с известными границами $\mathrm{H}\Gamma_x$ и $\mathrm{B}\Gamma_x$.

Примем х равным значению $\frac{H\Gamma_x + B\Gamma_x}{2}$, тогда абсолютная погрешность e_x этого приближения (рис. 1.8) будет заведомо не больше полуразности $e_x = \frac{B\Gamma_x - H\Gamma_x}{2}$.

Так, по результатам вычислений в табл. 1.6 получаем:

Таблица '	1.6				
Параметр	а	b	e^a	\sqrt{b}	$e^a + \sqrt{b}$
НГ	2,1555	0,9265	8,6322 0	0,9625 5	9,5947 5
ВГ	2,1565	0,9275	8,6408 4	0,96307	9,60391

Окончание табл. 1.6

Параметр	b^2	$a + b^2$	$\ln(a+b^2)$	Α
НГ	0,85840	3,01434	1,10338	8,6894
ВГ	0,8602 6	3,0167 6	1,10419	8,7041

Рис. 1.8 сСвязь между абсолютной погрешностью и границами значений

$$A = \frac{8,6894 + 8,7041}{2} = 8,69675$$
, $\Delta A = \frac{8,7041 \pm 8,6894}{2} = 0,00735$,

что дает $A=8,697\pm0,008$, наи, при записи цифрами, верными в строгом смысле:

Вычисления по методу границ можно вести и без пошагового фиксирования промежуточных результатов. Пусть, например, нужно найти границы значения выражения:

$$Z = \frac{\sqrt{x}}{\ln(x - y^2)}$$

если 4,845 < 'х < '4,855; 1,245 < у < 1,225. Полета во не одности в септем на त्र के प्राप्त के क्षेत्र के अभिनेत्र **ऋ**श्वर्षक के विकास के कि

Имеем

$$\frac{\sqrt{\mathsf{H}\Gamma_x}}{\ln(\mathsf{B}\Gamma_x - (\mathsf{H}\Gamma_y)^2)} < Z < \frac{\sqrt{\mathsf{B}\Gamma_x}}{\ln(\mathsf{H}\Gamma_x - (\mathsf{B}\Gamma_y)^2)}.$$

С помощью МК вычислим значения нижней и верхней границ Z: 1,807895009 < Z < 1,825100030.

Если нет нужды держать в результате слишком большое количество значащих цифр, его можно округлить (нижнюю границу — по убыванию, верхнюю — по возрастанию). Так, округляя границы Z до сотых, будем иметь

$$1.80 \le Z \le 1.83$$
, T. e. $Z = 1.81 \pm 0.01$.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чем основное отличие метода границ от вычислений по методу строгого учета границ погрешностей?
- 2. Какова последовательность дайствий на каждом промежуточном этапе расчетной таблицы в вычислениях по методу границ с пооперационным учетом ошибок? На заключительном этапе?

get a