

Universidade Federal da Grande Dourados - UFGD Faculdade de Engenharia - FAEN Curso de Engenharia Mecânica - Bacharelado

## Combustão e Combustíveis Gases de Combustão

Engenheiro Responsável: Adrian Beppu Hirata

Engenheiro Verificador: Carlos Renan Cândido da Silva

## Combustão e Combustíveis Gases de Combustão

## Trabalho 3 – Gases de Combustão

A partir das instruções dadas em sala, utilizou-se o Scilab e os dados obtidos no trabalho 1, "Conservação da massa", para calcular as concentrações dos produtos das 17 reações na base seca a partir do número de mols. Assim pôdese tabelar os resultados a seguir:

| Combustível | Proporção de Dióxido<br>de Carbono (%) | Proporção de<br>Oxigênio (%) | Proporção de<br>Nitrogênio (%) |
|-------------|----------------------------------------|------------------------------|--------------------------------|
| Metano      | 11,74                                  | 0                            | 88,26                          |
| Propano     | 13,76                                  | 0                            | 86,24                          |
| Gasolina    | 14,20                                  | 0                            | 85,80                          |
| Octano      | 14,55                                  | 0                            | 85,45                          |
| Diesel      | 15,66                                  | 0                            | 84,34                          |
| Pentadecano | 14,78                                  | 0                            | 85,22                          |
| Metanol     | 15,06                                  | 0                            | 84,94                          |
| Etanol      | 15,06                                  | 0                            | 84,94                          |
| Nitrometano | 23,15                                  | 0                            | 76,85                          |
| Hidrogênio  | 0                                      | 0                            | 100,0                          |
| Acetileno   | 17,54                                  | 0                            | 82,46                          |
| Cianogênio  | 19,01                                  | 0                            | 80,99                          |
| Amônia      | 0                                      | 0                            | 100,0                          |
| Benzeno     | 17,54                                  | 0                            | 82,46                          |
| Naftaleno   | 18,14                                  | 0                            | 81,86                          |
| Grafite     | 21,01                                  | 0                            | 78,99                          |
| Carvão      | 18,34                                  | 0                            | 81,66                          |

Tabela 1 – Concentração dos produtos das reações avaliados na base seca

Como já era de se esperar, todos os valores para a proporção de oxigênio são nulos visto que os resultados do trabalho 1 oferecem dados referentes a avaliação estequiométrica das reações, logo não há excesso de oxigênio como produto.

## Código utilizado

Código adicionado à programação utilizado no trabalho 2, "Limites de inflamabilidade", para avaliar as concentrações das reações na base seca utilizando o Scilab.

```
82
83
//Dados-referentes-às-concentrações-dos-produtos-das-reações-na-base-seca
84
85
prop_co2-=-N(:,1)./(N(:,1)+N(:,3)+N(:,4))*100;...//Proporção-de-co2-(%)
86
prop_o2-= N(:,3)./(N(:,1)+N(:,3)+N(:,4))*100;...//Proporção-de-o2-(%)
87
prop_n2-= N(:,4)./(N(:,1)+N(:,3)+N(:,4))*100;....//Proporção-de-n2-(%)
88
89
P-=-[prop_co2-prop_o2 prop_n2];....//Matriz-para-as-proporções-dos-produtos-de-todas-as-reações
90
```

Figura 1 – Código para avaliar as concentrações dos produtos das reações na base seca