Spike-and-Slab Additive Models And Fast Algorithms For High-Dimensional Data Analysis

Boyi Guo

Department of Biostatistics University of Alabama at Birmingham

July 12th, 2022

Dissertation Committee

- Chair: Nengjun Yi, Ph.D.
- Member (in alphabetical order):
 - AKM Fazlur Rahman, Ph.D.
 - Byron C. Jaeger, Ph.D.
 - D. Leann Long, Ph.D.
 - Michael E. Seifert, M.D.

Outline

Outline

- Background
 - Spline Model Development
 - Bayesian Regularization
 - Bayesian Variable Selection
- Dissertation
 - Bayesian Hierarchical Additive Models
 - Additive Cox Proportional Hazards Model
 - R package BHAM
- Conclusion
 - Future Research
 - Questions & Answers
 - Closing Statement & Acknowledgment

Spline Model Development

"It is extremely unlikely that the true (effect) function f(X) (on the outcome) is actually linear in X."

— Hastie, Tibshirani, and Friedman (2009) PP. 139

Question

How to model nonlinear effects?

Spline Functions

A *spline* function is a piece-wise polynomial function

$$B(x) = \sum_{k=1}^{K} \beta_k b_k(x) \equiv \boldsymbol{X}^T \boldsymbol{\beta}$$

 $b_k(x)$ are the basis functions, possibly truncated power basis and b-spline basis. (Simon N. Wood 2017)

► For simplicity, we assume all functions have *K* basis functions and knots of functions are equidistance.

Generalized Additive Models with Splines

Generalized additive model (Hastie and Tibshirani 1987) is expressed

$$y_i \stackrel{\text{iid}}{\sim} EF(\mu_i, \phi), \quad i = 1, \dots, n$$

 $g(\mu_i) = \beta_0 + B(x_i) = \beta_0 + \boldsymbol{X}_i^T \boldsymbol{\beta}, \quad \mathbb{E}[B(X)] = 0$

where $B(x_i)$ is the spline function, $g(\cdot)$ is a link function, ϕ is the dispersion parameter

Model fitting follows the generalized linear models, e.g. ordinary least square for Gaussian outcome

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{arg\,min}} \sum_{i=1}^n \left[y_i - eta_0 - oldsymbol{X}_i^{\mathsf{T}} oldsymbol{eta}
ight]^2$$

Question

How to decide K, the number of basis function ?

Bayesian Regularization

Smoothing Spline Model

- Smoothing penalty $\lambda \int B''(X)^2 dx = \lambda \beta^T S \beta$
 - ▶ The smoothing penalty matrix **S** is known given **X**
 - **S** is symmetric and positive semi-definite
- Penalized Least Square for Gaussian Outcome

$$\hat{\boldsymbol{\beta}} = \arg\min \sum_{i=1}^n \sum_{i=1}^n \left[y_i - \beta_0 - \boldsymbol{X}_i^T \boldsymbol{\beta} \right]^2 + \lambda \boldsymbol{\beta}^T \boldsymbol{S} \boldsymbol{\beta}$$

ightharpoonup The smoothing parameter λ is a tuning parameter, selected via cross-validation

Problem: Multiple Predictor Model

When a model contains multiple spline functions for variables X_1, \ldots, X_p , the penalized least square estimator is

$$\hat{\boldsymbol{\beta}} = \arg\min \sum_{i=1}^n \left[y_i - \beta_0 - \sum_{j=1}^p \boldsymbol{X}_{ij}^T \boldsymbol{\beta}_j \right]^2 + \sum_{j=1}^p \lambda_j \boldsymbol{\beta}_j^T \boldsymbol{S}_j \boldsymbol{\beta}_j$$

Question

How to choose λ_i for $i = 1, \dots, p$?

- ▶ Global smoothing: $\lambda_1 = \cdots = \lambda_p$
- ightharpoonup Adaptive smoothing: unique λ_i for $i=1,\ldots,p$

Bayesian Regularization

 Bayesian regularization is the Bayesian analogy of penalized models by using regularizing priors

Bayesian ridge:
$$\beta \sim N(0, \tau^2) \rightarrow \lambda = \sigma^2/\tau^2$$

Adaptive shrinkage with hierarchical priors

$$au_j^2 \stackrel{\mathsf{iid}}{\sim} \mathit{IG}(a,b)$$

- Adaptive smoothing
 - Random walk prior on b-spline bases with IG hyperprior
 - Normal prior on truncated power bases with a log-normal spline model for variance

Bayesian Variable Selection

Bayesian Variable Selection

In the context of variable selection and high-dimensional statistics, we always assume some variables are not effective or predictive of the outcome.

Question

How to statistically detect

- ▶ if a variable is predictive to the outcome, $B_j(X_j) = 0$
- lacktriangle if a variable has a nonlinear relationship with the outcome, $B_j(X_j)=eta_jX_j$

Bi-level selection is the procedure that simultaneously addresses the two questions above

Spike-and-Slab Priors

Spike-and-slab priors are a family of mixture distributions that deploys a characterizing structure

$$eta | \gamma \sim (1-\gamma) f_{\sf spike}(eta) + \gamma f_{\sf slab}(eta)$$

- lacktriangle Latent indicator γ follows a Bernoulli distribution with probability heta
- ▶ Spike density $f_{spike}(x)$ concentrates around 0 for small effects
- ▶ Slab density $f_{slab}(x)$ is a flat density for large effects
- lacktriangle Natural procedure to select variables via posterior distribution of γ
- ▶ Markov chain Monte Carlo is not compelling for high-dimensional data analysis

Double exponential distributions as the spike and slab distributions

$$\beta | \gamma \sim (1 - \gamma) DE(0, s_0) + \gamma DE(0, s_1), 0 < s_0 < s_1$$

- Computation advantages via Expectation-Maximization (EM) algorithms
- Seamless variable selection as coefficients shrinkage to 0
- Group spike-and-slab LASSO
 - Structure underlying predictors, e.g. gene pathways, bases of a spline function
 - ▶ Structured prior $\gamma_k | \theta_j \stackrel{\text{iid}}{\sim} Binomial(1, \theta_j), k \in j$

Problem: High-dimensional Spline Model

Question

How to jointly model signal sparsity and function smoothness, while capable of bi-level selection?

- Excess shrinkage due to ignoring smooth penalty completely
 - ► Group lasso penalty (Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010), group SCAD penalty (Wang, Chen, and Li 2007; Xue 2009)
- ► All-in-all-out selection

0000

- ► Can not detect if a function is linear, e.g. spike-and-slab grouped LASSO prior (Bai et al. 2020; Bai 2021)
- ▶ Failed to select function as whole, e.g. group spike-and-slab LASSO prior

Dissertation

Objectives

- ➤ To develop statistical models that improve curve interpolation and outcome prediction
 - Local adaption of sparse penalty and smooth penalty
 - ▶ Bi-level selection for linear and nonlinear effect
- To develop a fast and scalable algorithm
- ► To implement a user-friendly statistical software

Projects

- ▶ **Guo, B.**, Jaeger, B. C., Rahman, A. F., Long, D. L., Yi, N. (2022). Spike-and-Slab least absolute shrinkage and selection operator generalized additive models and scalable algorithms for high-dimensional data analysis. *Statistics in Medicine*. doi: https://doi.org/10.1002/sim.9483
- ▶ **Guo, B.**, Jaeger, B. C., Rahman, A. F., Long, D. L., Yi, N. (2022). A scalable and flexible Cox proportional hazard model for high-dimensional survival prediction and functional selection *arXiv*. doi: https://doi.org/10.48550/arXiv.2205.11600
- ▶ **Guo, B.**, Yi, N. (2022). BHAM: An R Package to Fit Bayesian Hierarchical Additive Models for High-dimensional Data Analysis *Work in Progress*

Two-part Spike-and-slab LASSO (SSL) Prior for Smooth Functions

Generalized Additive Model

Given the data $\{y_i, x_{i1}, \dots, x_{ip}\}_{i=1}^n$ where p >> n

$$y_i \stackrel{\text{i.i.d.}}{\sim} EF(\mu_i, \phi),$$
 $g(\mu_i) = \beta_0 + \sum_{j=1}^p B_j(x_{ij}), \quad i = 1, \dots, n.$

Smoothing Function Reparameterization

▶ Smoothing penalty from Smoothing spline regression (Simon N. Wood 2017)

$$\lambda_j \int B_j''(x) dx = \lambda_j \beta_j^T \mathbf{S}_j \beta_j,$$

where S_j is a known smoothing penalty matrix.

lacktriangle Isolate the linear and nonlinear components via eigendecomposing S_j

$$\mathbf{X}\boldsymbol{\beta} = X^0\boldsymbol{\beta} + \mathbf{X}^*\boldsymbol{\beta}^*$$

- Benefits
 - Motivate bi-level selection
 - ► Implicit modeling of function smoothness
 - ▶ Reduce computation load with conditionally independent prior of basis coefficients

Two-part Spike-and-slab LASSO (SSL) Prior

SSL prior for the linear coefficient and group SSL priors for nonlinear coefficients

$$egin{aligned} eta_j | \gamma_j, s_0, s_1 &\sim extit{DE}(0, (1-\gamma_j)s_0 + \gamma_j s_1) \ eta_{jk}^* | \gamma_j^*, s_0, s_1 &\stackrel{\mathsf{iid}}{\sim} extit{DE}(0, (1-\gamma_j^*)s_0 + \gamma_j^* s_1), k = 1, \dots, K_j \end{aligned}$$

lacktriangle Effect hierarchy enforced latent inclusion indicators γ_j and γ_j^* for bi-level selection

$$\gamma_j | heta_j \sim extit{Bin}(\gamma_j | 1, heta_j), \quad \gamma_j^* | \gamma_j, heta_j \sim extit{Bin}(1, \gamma_j heta_j),$$

Local adaptivity of signal sparsity and function smoothness

$$\theta_i \sim \text{Beta}(a, b)$$

Visual Representation

EM-Cooridante Descent Algrithm for Scalable Model Fitting

We are interested in estimating $\Theta = \{\beta, \theta, \phi\}$ using optimization based algorithm for scalability purpose

- Basic Ideas
 - ightharpoonup Treat γ s as the "missing data" in the EM procedure
 - Quantify the expectation of log posterior density function of Θ with respect to γ conditioning on $\Theta^{(t-1)}$
 - Maximize two parts of the objective function independently
- Previous applications in high-dimensional data analysis
 - EMVS (Ročková and George 2014), Spike-and-slab lasso (Ročková and George 2018)
 - BhGLM (Yi et al. 2019)

Decomposition of Objective Function

We aim to maximize the log posterior density of Θ by averaging over all possible values of γ

$$\log f(\Theta, \gamma | \mathbf{y}, \mathbf{X}) = Q_1(\beta, \phi) + Q_2(\gamma, \theta),$$

▶ L₁-penalized likelihood function of β , ϕ

$$Q_1 \equiv Q_1(eta,\phi) = \log f(\mathbf{y}|eta,\phi) + \sum_{j=1}^p \left[\log f(eta_j|\gamma_j) + \sum_{k=1}^{\mathcal{K}_j} \log f(eta_{jk}^*|\gamma_{jk}^*)
ight]$$

Posterior density of θ given data points γ s

$$Q_2 \equiv Q_2(\gamma, oldsymbol{ heta}) = \sum_{j=1}^p \left[(\gamma_j + \gamma_j^*) \log heta_j + (2 - \gamma_j - \gamma_j^*) \log (1 - heta_j)
ight] + \sum_{j=1}^p \log f(heta_j).$$

 $ightharpoonup Q_1$ and Q_2 are independent conditioning on γ s

Summary of EM-Coordinate Descent Algorithm

- ► E-step
 - Formulate $E_{\gamma|\Theta^{(t)}}[Q(\Theta,\gamma)] = E(Q_1) + E(Q_2)$
 - $ightharpoonup E(Q_1)$ is a penalized likelihood function of eta,ϕ
 - $E(Q_2)$ is a posterior density of θ given $E(\gamma)$
 - $ightharpoonup E(Q_1)$ and $E(Q_2)$ are conditionally independent
 - ightharpoonup Calculate $E(\gamma_i)$, $E(\gamma_i^*)$ and the penalties parameters by Bayes' theorem
- M-step:
 - ▶ Use Coordinate Descent to fit the penalized model in $E(Q_1)$ to update β, ϕ
 - ▶ Closed form calculation via $E(Q_2)$ to update θ

Tuning Parameter Selection

- \triangleright s_0 and s_1 are tuning parameters
- ightharpoonup Empirically, s_1 has extremely small effect on changing the estimates
- Focus on tuning *s*₀
- $lackbox{\ }$ Consider a sequence of L ordered values $\{s_0^I\}: 0 < s_0^1 < s_0^2 < \cdots < s_0^L < s_1$
- ightharpoonup Cross-validation to choose optimal value for s_0

Simulation Study

- ▶ Follow the data generating process introduced in Bai et al. (2020).
- $ightharpoonup n_{train} = 500, n_{test} = 1000$
- p = 4, 10, 50, 200

$$\mu = 5\sin(2\pi x_1) - 4\cos(2\pi x_2 - 0.5) + 6(x_3 - 0.5) - 5(x_4^2 - 0.3),$$

- $ightharpoonup f_j(x_j) = 0 \text{ for } j = 5, \dots, p.$
- lacksquare 2 types of outcome: Gaussian ($\phi=1$), Binomial
- ► Splines are constructed using 10 knots
- 50 Iterations

Comparison & Metircs

- Methods of comparison
 - Proposed model BHAM
 - ► Linear LASSO model as the benchmark
 - mgcv (S. N. Wood 2004)
 - COSSO (Zhang and Lin 2006) and adaptive COSSO(Storlie et al. 2011)
 - Sparse Bayesian GAM (Bai 2021)
 - spikeSlabGAM (Scheipl, Fahrmeir, and Kneib 2012)
- Metrics
 - \triangleright Prediction: R^2 for continuous outcomes, out-of-sample AUC for binary outcomes
 - Variable Selection: positive predictive value (precision), true positive rate (recall), and Matthews correlation coefficient (MCC)

Prediction Performance

- ► Linear LASSO Model performs bad and mgcv performs well
- BHAM performs better than COSSO, adaptive COSSO and spikeSlabGAM
- BHAM performs better than SB-GAM in low-dimensional case but slightly worse in the high-dimensional setting
- BHAM is much faster than SB-GAM in fitting models

Variable Selection Performance

- ► SB-GAM has the best variable selection performance
- BHAM has conservative selection
- BHAM and spikeSlabGAM have trade-offs for bi-level selection
 - spikeSlabGAM tends to select either linear or nonlinear components of the function
 - BHAM is more likely to select both parts

Additive Cox Proportional Hazards Model

Additive Cox Proportional Hazards Model

Model & Objective Functions

 \triangleright Cox proportional hazard model with event time t_i

$$h(t_i) = h_0(t_i) \exp(\sum_{j=1}^{p} B_j(x_{ij})), \quad i = 1, \ldots, n.$$

- ▶ No intercept term because of the baseline hazard function
- Model fitting
 - ▶ Replace likelihood function with partial likelihood function

$$\hat{h}_0(t_i|\beta) = d_i / \sum_{i' \in R(t_i)} \exp(X_{i'}\beta).$$

Two-part Spike-and-slab LASSO (SSL) Prior

SSL prior for the linear coefficient and group SSL priors for nonlinear coefficients

$$egin{aligned} eta_j | \gamma_j, s_0, s_1 &\sim \mathsf{DE}(0, (1-\gamma_j)s_0 + \gamma_j s_1) \ eta_{jk}^* | \gamma_j^*, s_0, s_1 &\stackrel{\mathsf{iid}}{\sim} \mathsf{DE}(0, (1-\gamma_j^*)s_0 + \gamma_j^* s_1), k = 1, \dots, K_j \end{aligned}$$

Effect hierarchy enforced latent inclusion indicators γ_i and γ_i^* for bi-level selection

$$\gamma_j | \theta_j \sim \textit{Bin}(\gamma_j | 1, \theta_j), \quad \gamma_j^* | \gamma_j, \theta_j \sim \textit{Bin}(1, \gamma_j \theta_j),$$

Local adaptivity of signal sparsity and function smoothness

$$\theta_i \sim \text{Beta}(a, b)$$

Summary of EM-Coordinate Descent Algorithm

- ► E-step
 - Formulate $E_{\gamma|\Theta^{(t)}}[Q(\Theta,\gamma)] = E(Q_1) + E(Q_2)$
 - $ightharpoonup E(Q_1)$ is a penalized likelihood function of eta,ϕ
 - $E(Q_2)$ is a posterior density of θ given $E(\gamma)$
 - $ightharpoonup E(Q_1)$ and $E(Q_2)$ are conditionally independent
 - lacktriangle Calculate $E(\gamma_j)$, $E(\gamma_j^*)$ and the penalties parameters by Bayes' theorem
- M-step:
 - ▶ Use Coordinate Descent to fit the penalized model in $E(Q_1)$ to update β, ϕ
 - ▶ Closed form calculation via $E(Q_2)$ to update θ

Simulation Study

- ▶ Follow the data generating process introduced in Bai et al. (2020).
- $ightharpoonup n_{train} = 500, n_{test} = 1000$
- p = 4, 10, 50, 100, 200
- Survival and censoring time follow Weibull distribution

$$\log \eta = (x_1 + 1)^2 / 5 + \exp(x_2 + 1) / 25 + 3\sin(x_3) / 2 + (1.4x_4 + 0.5) / 2$$

- Censoring rate is controlled at {0.15, 0.3, 0.45}
- Splines are constructed using 10 knots
- 50 Iterations

Comparison & Metircs

- Methods of comparison
 - Proposed model BHAM
 - Linear LASSO model as the benchmark
 - mgcv (S. N. Wood 2004)
 - ► COSSO (Zhang and Lin 2006) and adaptive COSSO(Storlie et al. 2011)
- Metrics
 - Out-of-sample deviance & Concordance

Prediction Performance

- ▶ Linear LASSO Model performs bad in general
- Low dimensional settings:
 - mgcv performs the best
 - BHAM performs as good as mgcv
- High dimensional setting:
 - ▶ BHAM performs better than COSSO models as p increases and more censoring events

Emipirical Performance: Emory Cardiovascular Biobank

- predicting all-cause mortality among patents undergoing cardiac catheterization
- ➤ Sample size N=454 and number of features p=200
- 5-knot cubic spline

R Package BHAM

R Package BHAM

R Package BHAM

- Model formulation for high-dimensional data
- Model fitting and tuning
- Model summary and variable selection
- Spline function visualization
- ► Website via boyiguo1.github.io/BHAM

Design Matrix of Spline Fucntions

► Flexible spline function formulation for high-dimensional data

```
spline_df <- dplyr::tribble(</pre>
    ~Var, ~Func, ~Args,
    "X1", "s", "bs='cr', k=5",
    "X2", "s", NA,
    "X3", "s". "")
spline df <- data.frame(</pre>
    Var = setdiff(names(dat), "v"),
    Func = "s".
    Args = "bs='cr', k=7")
train sm dat <- BHAM::construct smooth data(spline df, dat)
```

Model Fitting Functions

- Model fitting via bamlasso
 - Argument family for generalized and survival outcomes
 - Argument ss for spike-and-slab LASSO scale parameters
 - Argument group for group structures among predictors
- Model tuning via tune
 - Argument nfolds, ncv for nested cross-validation
 - Argument s0 for tuning candidates

R Package BHAM

Post Fitting Functions

- Bi-level selection via bamlasso_var_selection
- Make prediction data for splines make_predict_dat
- Plot spline functions via plot smooth term

Future Research

Modeling Interactions

Modeling Interactions

Varying coefficient models

- ightharpoonup Assume the coefficient of a variable X_j is a function of a covariate Z_j
 - linear model: $\beta(Z_j) = \beta$
 - $ightharpoonup VC model: <math>\beta(Z_j) = B(Z_j)$
- ▶ Replace each smooth function $B(z_{ij})$ with $B(z_{ij})x_{ij} \equiv (x_{ij} \boldsymbol{Z}_{ij}^T)\beta_j$
- Model fitting with EM-Coordinate Descent

Question

Can Z_j be continuous? Is it possible to have a more flexible model?

Smooth Surface Fitting

► Tensor product of spline functions

$$B_{js}(x_{ij},x_{is}) = \sum_{P\rho=1}^{K} \sum_{v=1}^{K} \beta_{jspv} b_{j\rho}(x_{ij}) b_{sv}(x_{is})$$

Smooth Surface

$$B_j(x_{ij}) + B_s(x_{is}) + B_{js}(x_{ij}, x_{is}),$$

Question

Can we have a generalized model that accounts fixed effects, nonlinear curves, smooth surfaces, and random effects?

Structural Additive Model

High-dimensional structural additive model can be formulated as

$$g(\mathbb{E}(y_i)) = \mathbf{x}_i^T \theta + \mathbf{u}_i^T \gamma + B(z_{i1}) + B(z_{i2}, z_{i3}) + B_{spat}(s_i)$$

- ightharpoonup Un-regularized predictors x_i
- ightharpoonup Regularized predictors u_i
- Predictors with nonlinear effects z_i
- ightharpoonup Spatial random effects with coordinates s_i

Spike-and-slab LASSO prior motivates a seamless process of variable/functional selection and a scalable optimization-based model fitting algorithm

Conclusion

Conclusion

- ▶ Identify challenges in high-dimensional GAM with spline functions
 - ▶ Balance between signal sparsity and function smoothness
 - ▶ Bi-level selection to automatically detect linear and nonlinear effects
- Statistical contribution
 - Two-part spike-and-slab LASSO prior for smooth functions
 - Scalable EM-Coordinate Descent algorithms for generalized and survival outcomes
 - R package BHAM
- ► Future Research
 - Extension of spike-and-slab LASSO prior in structured additive model

Acknowledgement

Acknowledgement

Acknowledgement

I would like to thank

- Dissertation Committee
- Biostatistics Department
 - Faculty
 - Staff
 - Students
- School of Public Health
 - Friends
 - PHSA

- REGARDS Research Group
 - ► PIs
 - Analytic Team
 - Collaborators
- ► Graduate Student Government

References

References I

- Bai, Ray. 2021. "Spike-and-Slab Group Lasso for Consistent Estimation and Variable Selection in Non-Gaussian Generalized Additive Models." arXiv:2007.07021v5.
- Bai, Ray, Gemma E Moran, Joseph L Antonelli, Yong Chen, and Mary R Boland. 2020. "Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models." *Journal of the American Statistical Association*, 1–14.
- Hastie, Trevor, and Robert Tibshirani. 1987. "Generalized additive models: Some applications." *Journal of the American Statistical Association* 82 (398): 371–86. https://doi.org/10.1080/01621459.1987.10478440.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer Science & Business Media.

References

References II

- Huang, Jian, Joel L Horowitz, and Fengrong Wei. 2010. "Variable Selection in Nonparametric Additive Models." *Annals of Statistics* 38 (4): 2282.
- Ravikumar, Pradeep, John Lafferty, Han Liu, and Larry Wasserman. 2009. "Sparse additive models." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 71 (5): 1009–30. https://doi.org/10.1111/j.1467-9868.2009.00718.x.
- Ročková, Veronika, and Edward I. George. 2014. "EMVS: The EM approach to Bayesian variable selection." *Journal of the American Statistical Association* 109 (506): 828–46. https://doi.org/10.1080/01621459.2013.869223.
- ——. 2018. "The Spike-and-Slab LASSO." *Journal of the American Statistical Association* 113 (521): 431–44. https://doi.org/10.1080/01621459.2016.1260469.

- Scheipl, Fabian, Ludwig Fahrmeir, and Thomas Kneib. 2012. "Spike-and-slab priors for function selection in structured additive regression models." Journal of the American Statistical Association 107 (500): 1518–32. https://doi.org/10.1080/01621459.2012.737742.
- Storlie. Curtis B. Howard D Bondell, Brian J Reich, and Hao Helen Zhang. 2011. "Surface Estimation, Variable Selection, and the Nonparametric Oracle Property." Statistica Sinica 21 (2): 679.
- Wang, Lifeng, Guang Chen, and Hongzhe Li. 2007. "Group SCAD Regression Analysis for Microarray Time Course Gene Expression Data." Bioinformatics 23 (12): 1486-94.

References IV

- Wood, S. N. 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models." *Journal of the American Statistical Association* 99 (467): 673–86.
- Wood, Simon N. 2017. *Generalized additive models: An introduction with R, second edition.* https://doi.org/10.1201/9781315370279.
- Xue, Lan. 2009. "Consistent Variable Selection in Additive Models." *Statistica Sinica*, 1281–96.
- Yi, Nengjun, Zaixiang Tang, Xinyan Zhang, and Boyi Guo. 2019. "BhGLM: Bayesian Hierarchical GLMs and Survival Models, with Applications to Genomics and Epidemiology." *Bioinformatics* 35 (8): 1419–21.
- Zhang, Hao Helen, and Yi Lin. 2006. "Component Selection and Smoothing for Nonparametric Regression in Exponential Families." *Statistica Sinica*, 1021–41.