Rozwiązanie zadania 23 z zestawu nr 3 ("na piechotę" i w R)

23. Badano liczby transakcji wsród odsłon aukcji w trzech różnych wersjach. Otrzymano następujące wyniki.

Wersja aukcji	Liczba odsłon	Liczba transakcji 15	
I	100		
II	120	12	
III	115	17	

Czy na podstawie tych danych można wnioskować, że wskaźniki konwersji dla tych aukcji są istotnie różne? Przyjmij poziom istotności 0.05.

 p_i – wskaźnik konwersji dla i-tej wersji aukcji (liczba transakcji/liczba odsłon), i=1, 2, 3

 H_0 : $p_1 = p_2 = p_3$ (wskaźniki konwersji **nie różnią się istotnie**)

 H_1 : nie wszystkie p_i są sobie równe (wskaźniki konwersji **różnią się istotnie**)

Próby niezależne	$n_1 = 100$	$k_1 = 15$	$\hat{p}_1 = 0,150$
	$n_2 = 120$	$k_2 = 12$	$\hat{p}_2 = 0.100$
	$n_3 = 115$	$k_3 = 17$	$\hat{p}_3 = 0.148$

Na podstawie tych prób weryfikujemy powyższą hipotezę testem jednorodności chi-kwadrat.

Test jednorodności chi-kwadrat

Niech X_i oznacza cechę badaną w i-tej populacji, w tym zadaniu X_i oznacza wykonanie transakcji na i-tej wersji aukcji ($X_i=1$ oznacza, że na i-tej wersji aukcji została wykonana transakcja, $X_i=0$ – że nie została wykonana transakcja), i=1, 2, ..., k. Zmienna X_i może przyjmować l wartości, w tym zadaniu przyjmuje dwie wartości (l=2).

Uwaga: Hipoteza H_0 równoważna jest temu, że zmienne X_1, X_2, X_3 mają jednakowy rozkład.

Statystyka testowa:
$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{\left(n_{ij} - \frac{n_i n_{.j}}{n}\right)^2}{\frac{n_i n_{.j}}{n}}$$

gdzie n_{ij} – liczba wystąpień wartości x_i w i-tej próbie pochodzącej z rozkładu zmiennej X_i ,

$$n_{i.} = \sum_{j=1}^k n_{ij}, n_{.j} = \sum_{i=1}^l n_{ij}, n = \sum_{j=1}^k \sum_{i=1}^l n_{ij}$$

Statystyka testowa przy prawdziwości hipotezy H_0 ma rozkład chi-kwadrat z (k-1)(l-1) stopniami swobody.

Obszar krytyczny: $W = [\chi_{1-\alpha,(k-1)(l-1)}^2, +\infty)$ obszar przejsc to i

obszar odrucen

to

obszar odrucen

to

przejsc to i

obszar odrucen

to

przejsc to i

obszar odrucen

to

vartości nietypowej

przejmogać takie hartości

przejmogać takie hartości

przejmogać takie hartości

przejsc to i

obszar odrucen

to

vartości nietypowej

stat. χ^2 przejmogać takie hartości

przejsc to i

obszar odrucen

to

obszar odrucen

to

stat. χ^2 przejsc to i

obszar odrucen

to

obszar

	$x_1 = 1$	$x_2 = 0$	
Próba 1	$n_{11} = 15$	$n_{12} = 85$	$n_{1.} = 100$
Próba 2	$n_{21} = 12$	$n_{22} = 108$	$n_{2.} = 120$
Próba 3	$n_{31} = 17$	$n_{32} = 98$	$n_{3.} = 115$
	$n_{.1} = 44$	$n_{.2} = 291$	n = 335

($WR = \sum_{1-0.05}^{335} y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{5$

stal testorej & W => brak podstav do odrucenia tho, stal testorej & W => brak podstav do odrucenia tho, szetem stuendzahung, ze uskazhili tohuenji mie nożnią nię istornie (tj. mre ma upłanczajowych podsav, by pokazać, ze się nożnią).

A gelyby byro tok

 $k_1 = 15 \text{ 15\%}, \quad k_1 = 15 \text{ 15\%}, \quad m_1 = 100$ $k_2 = 30 \text{ 27\%}, \quad k_2 = 35 \text{ 25\%}, \quad m_2 = 120$ $k_3 = 17 \text{ 15\%}, \quad k_3 = 17 \text{ 15\%}, \quad m_3 = 1115$ $\sqrt{2} = 5.2275, \quad \chi^2 = 9.8211$

do politicaria