Math 3500 Exercise Sheet

1 October, 2014

This week we'll go over the material for the first term test by section. The first two sections in Chapter 3 are mainly review, so we'll start with 3.3, the section on the real number system.

Section 3.3: The Real Numbers

Main definitions and results:

- A set $A \subseteq \mathbb{R}$ is **bounded above** if there exists some $k \in \mathbb{R}$ such that $a \leq k$ for all $a \in A$. Any such real number k is called an **upper bound** for A. We say that s is the **least upper bound**, or **supremum** of A, and write $s = \sup A$, if s is an upper bound for A, and if t is any other upper bound for A, then $s \leq t$.
 - Similarly, a set $A \subseteq \mathbb{R}$ is **bounded below** if there exists some $k \in \mathbb{R}$ such that $a \ge k$ for all $a \in A$. Any such real number k is called a **lower bound** for A. We say that s is the **greatest lower bound**, or **infimum** of A, and write $s = \inf A$, if s is a lower bound for A, and if t is any other lower bound for A, then $s \ge t$.
- The **completeness axiom** for \mathbb{R} states that any nonempty set $A \subseteq \mathbb{R}$ that is bounded above has a least upper bound.
- The **Archimedean property** for \mathbb{R} is the fact that the set \mathbb{N} of natural numbers has no upper bound in \mathbb{R} . Equivalently, given any real number x > 0, there exists some $n \in \mathbb{N}$ such that 1/n < x.
- The fact that the set \mathbb{Q} of rational numbers is **dense** in \mathbb{R} is the statement that given any two real numbers $x, y \in \mathbb{R}$ with x < y, there exists some $q \in \mathbb{Q}$ such that x < q < y.

Exercises:

- 1. Show that \mathbb{Q} has the Archimedean property. (Given any rational number a/b can you find a natural number larger than it?)
- 2. Prove that any nonempty subset of \mathbb{R} that is bounded below has a greatest lower bound.

3. For each of the following sets, decide if it is bounded above/below. If so, find the supremum/infimum:

$$A = \{n \in \mathbb{N} : n^2 < 10\}$$
 $B = \{x \in \mathbb{Q} : |x| < 2\}$ $C = \{x \in \mathbb{R} : x^2 < 2x\}$

4. Given subsets $A, B \subseteq \mathbb{R}$, let $A + B = \{a + b : a \in A \text{ and } b \in B\}$. Show that $\sup(A + B) = \sup A + \sup B$.

Remark: We showed that the Archimedean property for \mathbb{R} follows from the completeness axiom, but it is not equivalent to it. In fact, it's possible to show that \mathbb{Q} is Archimedean, but we know that \mathbb{Q} is not complete.

Section 3.4: Topology of \mathbb{R}

Main definitions and results:

• For any $\epsilon > 0$, the ϵ -neighbourhood of x is the set

$$N_{\epsilon}(x) = \{ y \in \mathbb{R} : |x - y| < \epsilon \} = (x - \epsilon, x + \epsilon).$$

- A point $x \in \mathbb{R}$ is an **interior point** of a set $A \subseteq \mathbb{R}$ if there exists some $\epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A$. The set of all interior points is called the **interior** of A, and is often denoted by A.
- A point $x \in \mathbb{R}$ is a **boundary point** of a set $A \subseteq \mathbb{R}$ if for every $\epsilon > 0$, both $N_{\epsilon}(x) \cap A$ and $N_{\epsilon}(x) \cap (\mathbb{R} \setminus A)$ are nonempty. The set of all boundary points of A is called the **boundary** of A and denoted by $\mathrm{bd}A$ or by ∂A .
- A point $x \in \mathbb{R}$ is a **limit point** (or accumulation point) of a set $A \subseteq \mathbb{R}$ if for every $\epsilon > 0$, $N_{\epsilon}(x)$ contains some point $a \in A$, with $a \neq x$. The set of all limit points of A is sometimes denoted by A'.
- A point $a \in A$ is called an **isolated point** of A if $a \neq A'$.
- A set $A \subseteq \mathbb{R}$ is **open** if every $a \in A$ is an interior point of A.
- A set $A \subseteq \mathbb{R}$ is **closed** if $\mathbb{R} \setminus A$ is open, or equivalently, if $\partial A \subseteq A$.
- The **closure** of a set $A \subseteq \mathbb{R}$ is denoted \overline{A} and defined by $\overline{A} = A \cup A'$. (It's also possible to show that $\overline{A} = A \cup \partial A$.

Exercises:

1. Decide whether the following sets are open, closed, neither, or both:

(i)
$$\mathbb{Q}$$
 (ii) \mathbb{N} (iii) $\{x: x^2 > 0\}$ (iv) $\bigcap_{n=1}^{\infty} (0, 1/n)$

- 2. Determine the interior, boundary, and limit points for the sets in problem 1.
- 3. If S is a nonempty bounded set of real numbers and $m = \sup S$, is m a boundary point of S? Why or why not?
- 4. If S has both a maximum and a minimum, is S necessarily closed? Why or why not?

Section 3.5: Compact sets

Main definitions and results:

- An **open cover** of a set $A \subseteq \mathbb{R}$ is a collection of open sets $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ such that $A \subseteq \bigcup_{{\alpha} \in I} U_{\alpha}$. A **finite subcover** of an open cover of A is a finite set $\{U_1, \ldots, U_n\}$ with $U_j \in \mathcal{U}$ for $1 \leq j \leq n$ such that $A \subseteq U_1 \cup \cdots \cup U_n$.
- A set $A \subseteq \mathbb{R}$ is **compact** if every open cover of A admits a finite subcover.
- The **Heine-Borel theorem** states that a set $A \subseteq \mathbb{R}$ is compact if and only if A is closed and bounded.
- The **Bolzano-Weierstrass theorem** states that any bounded, infinite subset of \mathbb{R} has at least one limit point.
- The **nested intervals theorem** states that if $\{A_n : n \in \mathbb{N}\}$ is any collection of closed intervals such that $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} A_n$ is nonempty.

Exercises:

- 1. Prove that the intersection of any collection of compact sets is compact.
- 2. Prove that if a set $A \subseteq \mathbb{R}$ is compact, then every infinite subset $B \subseteq A$ has a limit point contained in A.
- 3. Prove that if A is compact, then $\sup A$ and $\inf A$ exist, and are elements of A.

Section 4.1: Convergence of sequences

Main definitions and results:

- 1. A **sequence** is a function $f: \mathbb{N} \to \mathbb{R}$. We usually denote f(n) by a_n and the sequence by (a_n) .
- 2. A sequence (a_n) converges to $a \in \mathbb{R}$, if for every $\epsilon > 0$ there exists some $N \in \mathbb{N}$ such that $|a_n a| < \epsilon$ for every $n \geq N$. We call a the **limit** of the sequence, and write $\lim a_n = a$ or $a_n \to a$.
- 3. If a sequence (a_n) converges, then it is bounded. (That is, the set $\{a_n : n \in \mathbb{N}\}$ is bounded.)
- 4. If $\lim a_n$ exists, then it is unique.

Exercises:

1. Determine whether or not the following sequences converge. If a sequence does converge, find the limit and prove your result using the definition of convergence. If it does not converge, explain why.

$$a_n = \frac{\sin n}{n}$$
 $b_n = (-1)^n (1 - 1/n)$ $c_n = \frac{2n+1}{3n-1}$

- 2. Show that if $\lim a_n = 0$ and (b_n) is a bounded sequence, then $\lim (a_n b_n) = 0$.
- 3. Prove that a point $x \in \mathbb{R}$ is a limit point of a set A if and only if there exists a sequence (a_n) of points in $A \setminus \{a\}$ with $\lim a_n = a$.
- 4. Prove that a set $A \subseteq \mathbb{R}$ is closed if and only if for any sequence (a_n) with $a_n \in A$ for all $N \in \mathbb{N}$ converges to some $a \in \mathbb{R}$, then $a \in A$.

Section 4.2: Limit theorems

Main definitions and results:

• Suppose that (a_n) and (b_n) are convergent sequences with $a_n \to a$ and $b_n \to b$. Then

$$\lim(a_n + b_n) = a + b$$

 $\lim(ka_n) = ka$, for any $k \in \mathbb{R}$
 $\lim(a_nb_n) = ab$
 $\lim(a_n/b_n) = a/b$, provided that $b_n \neq 0$ for all $n \in \mathbb{N}$ and $b \neq 0$.

- If $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $a_n \to a$ and $b_n \to b$, then $a \leq b$.
- A sequnce (a_n) diverges to ∞ if for any $M \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $a_n \geq M$ for all $n \geq \mathbb{N}$.

Exercises:

- 1. Prove that $\lim_{n\to\infty} \left(\frac{1}{n} \frac{1}{n+1}\right) = 0.$
- 2. Let (a_n) be a sequence of positive numbers. Prove that $\lim a_n = \infty$ if and only if $\lim (1/a_n) = 0$.

Section 4.3: Monotone and Cauchy sequences

Main definitions and results:

• A sequence (a_n) is **increasing** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$, and **decreasing** if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. If a sequence is either increasing or decreasing, we say that it is a **monotone** sequence.

- The **monotone convergence theorem** states that any monotone sequence converges if and only if it is bouded.
- A sequence (a_n) is a **Cauchy sequence** if for every $\epsilon > 0$ there exists some $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have $|a_n a_m| < \epsilon$.
- Any convergent sequence is a Cauchy sequence.
- Any Cauchy sequence is bounded.
- Any Cacuhy sequence converges.

Exercises:

- 1. Prove that each sequence is monotone and bounded. Then find the limit.
 - (a) $a_1 = 1$ and $a_{n+1} = \frac{1}{5}(a_n + 7)$ for all $n \ge 1$
 - (b) $a_1 = 2$ and $a_{n+1} = \frac{1}{4}(2a_n + 7)$ for all $n \ge 1$
 - (c) $a_1 = 5$ and $a_{n+1} = \sqrt{4a_n + 1}$ for all $n \ge 1$
- 2. A sequence (a_n) is called *contractive* if there exists some constant $k \in (0,1)$ such that $|a_{n+2} a_{n+1}| \le k|a_{n+1} a_n|$ for all $n \in \mathbb{N}$. Prove that any contractive sequence is a Cauchy sequence.