TCP协议培训系列

—— 第一讲 基本概念

作者: 老高

RFC 列表

- 1. RFC 7414: A Roadmap of TCP
- 2. RFC 793: TRANSMISSION CONTROL PROTOCOL
- 3. RFC 813: Windows and Acknowledge Strategy ...
- 4. RFC 879: The TCP Maximum Segment Size ...
- 5. RFC 896: Congestion Control in IP/TCP ...
- 6. RFC 1122: Requirements for Internet Hosts
- 7. RFC 1146: TCP Alternate Checksum Options
- 8. RFC 1323 TCP Extensions for High Performance
- 9.

RFC 793 —— TCP的第一个RFC

- 1. TCP/IP的分层
- 2. 为什么要有TCP?
- 3. TCP的基本功能

TCP/IP分层

TCP/IP Layers	TCP/IP Prototocols							
Application Layer	НТТР	HTTP FTP		Telnet		;	SMTP	DNS
Transport Layer	ТСР				UDP			
Network Layer	IP			ARP		ICMP	IGMP	
Network Interface Layer	Ethernet		Token Ring				Other Link-Layer Protocols	

- -- 服务
- -- 端对端
- -- 寻路
- -- 数据包发送

爱快路由(全讯汇聚)

为什么要有TCP?解决什么问题

端对端的、可靠连接!

不对底层协议做出任何假设

基本功能

- 1. Stream data transfer
- 2. Reliable
- 3. Flow Control
- 4. Multiplexing
- 5. Connections
- 6. Precedence and Security —— 失败!

报文格式 —— 已过时

更多的控制位

1. NS: ECN-nonce concealment protection

2. CWR: Congestion Window Reduced

3. ECE: ECN-Echo

发送序列

```
1 2 3 4 4

SND. UNA SND. NXT SND. UNA +SND. WND +SND. WND 4

1 - old sequence numbers which have been acknowledged 4
2 - sequence numbers of unacknowledged data 4
3 - sequence numbers allowed for new data transmission 4
4 - future sequence numbers which are not yet allowed 4
```

接收序列

- 1 old sequence numbers which have been acknowledged &
- 2 sequence numbers allowed for new reception
- 3 future sequence numbers which are not yet allowed $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$

什么样的ACK会被接受?

SND.UNA < SEG.ACK = < SND.NXT

什么样的SEQ会被接受?

RCV.NXT = < SEG.SEQ < RCV.NXT+RCV.WND

or

RCV.NXT = < SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

初始化序列号与序号回绕

- 1. ISN generator: 4 ms递增; 4.55小时回绕;
- 2. 序号回绕

Netwo	rk B*8 bits/sec	B bytes/sec	Twrap secs
ARPAN	ET 56kbps	7KBps	3*10**5 (~3.6 days)
DS1	1.5Mbps	190KBps	10**4 (~3 hours)
Ethen	net 10Mbps	1.25MBps	1700 (~30 mins)
DS3	45Mbps	5.6MBps	380
FDDI	100 M bps	12.5 M Bps	170
Gigab:	it 1Gbps	125MBps	17

序号回绕——如何破?!

RFC1323: TCP Exensions for High Performance

PAWS: Protect Against Wrapped Sequence Numbers

RESET的发送和处理

- 1. Close状态;
- 2. Non-synchronized狀态;
- 3. 其它情况——一般会由防火墙, 网关设备发出;
- 4. 校验Reset包 —— Reset攻击

FIN的含义是什么?关闭连接?

- 1. "我不要再发数据了"
- 2. 可以读,不能写
- 3. Socket操作为shutdown, 而不是close

问题

- 1. 同时发syn会怎么样?
- 2. Zero-Window问题:如何处理?可以接收什么数据包?
- 3. Syn和fin是否占用sequence?为什么

本节结束 下集预告: RFC 813,...

求贤若渴 欢迎Linux C/C++开发一起学习进步 内核、应用、服务端、嵌入式我们都要☺ fgao@ikuai8.com

爱快路由(全讯汇聚)