Homework2-Copy1

February 19, 2024

1 Homework 2

Name/Znumber: Jordan Small / Z23465928 Professor: Juan Yepes Date: 17 FEB, 2024

Dataset: USGS EARTHQUAKES DATASET

Description: This data is related anticipating seismic tremors in order to predict where likely in the world and on what dates the earthquake will happen.

https://www.kaggle.com/datasets/rupindersinghrana/usgs-earthquakes-2024

```
[147]: # Import necessary libraries
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import statsmodels.stats.outliers_influence as inf
import seaborn as sns
```

1.1 1. Setup

1.1.1 Load the dataset into a pandas Dataframe and display the first 5 rows

```
[267]: eq = pd.read_csv('earthquakes.csv')
       eq = eq.dropna()
       eq.head(n=5)
[267]:
                                     latitude
                                                longitude
                                                             depth
                                                                     mag magType
                              time
       0 2024-01-26T04:52:42.967Z 31.604000 -104.213000
                                                            4.4198
                                                                    1.70
                                                                              ml
       3 2024-01-26T04:29:01.180Z 38.833168 -122.797165
                                                            1.7300
                                                                    0.40
                                                                              md
       6 2024-01-26T04:01:35.366Z 31.738000 -104.124000
                                                            4.5509
                                                                    2.00
                                                                              ml
       7 2024-01-26T04:00:02.000Z 38.821999 -122.796997
                                                            2.0800
                                                                    0.74
                                                                              md
       8 2024-01-26T03:55:54.430Z 19.704500 -64.647100
                                                           59.0000
                                                                    3.93
                                                                              md
           nst
                  gap
                           dmin
                                  rms
                                                           updated
         18.0
                                          2024-01-26T05:08:27.774Z
       0
                 69.0
                      0.100000
                                 0.50
       3
          9.0
                 65.0
                      0.007468
                                 0.02 ...
                                          2024-01-26T04:46:12.828Z
         19.0
                 63.0 0.000000
                                          2024-01-26T04:29:32.597Z
       6
                                0.30 ...
           7.0
                 90.0 0.010310 0.01 ...
                                          2024-01-26T04:29:13.730Z
```

8 10.0 309.0 1.387000 0.41 ... 2024-01-26T04:30:44.357Z

				pla	ce type	horizontalE	Error	\
0		51	km NW of	Toyah, Tex	as earthquake		0.00	
3			6 km	W of Cobb,	CA earthquake		0.34	
6		49 k	m W of M	entone, Tex	as earthquake		0.00	
7		6 km	NW of Th	e Geysers,	CA earthquake		0.45	
8	152 km N o	f Cruz Bay	, U.S. V	irgin Islan	ds earthquake		5.60	
	depthError	${\tt magError}$	magNst	status	locationSource	e magSource		
0	1.292059	0.10	13.0	automatic	t	tx tx		
3	0.970000	0.31	10.0	automatic	no	nc nc		
6	1.199743	0.20	14.0	automatic	t	tx tx		
7	1.050000	0.17	8.0	automatic	no	nc nc		
8	25.700000	0.13	6.0	reviewed	pı	r pr		

[5 rows x 22 columns]

1.1.2 Use .info() method to gather info about the predictors

[201]: eq.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9451 entries, 0 to 9450
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	time	9451 non-null	object
1	latitude	9451 non-null	float64
2	longitude	9451 non-null	float64
3	depth	9451 non-null	float64
4	mag	9451 non-null	float64
5	${\tt magType}$	9451 non-null	object
6	nst	7319 non-null	float64
7	gap	7319 non-null	float64
8	dmin	6175 non-null	float64
9	rms	9451 non-null	float64
10	net	9451 non-null	object
11	id	9451 non-null	object
12	updated	9451 non-null	object
13	place	9451 non-null	object
14	type	9451 non-null	object
15	horizontalError	6462 non-null	float64
16	depthError	9451 non-null	float64
17	${ t magError}$	7294 non-null	float64
18	magNst	7318 non-null	float64
19	status	9451 non-null	object

```
20 locationSource 9451 non-null object 21 magSource 9451 non-null object dtypes: float64(12), object(10) memory usage: 1.6+ MB
```

1.1.3 Construct an Evaluation Set with 5 datapoints and 3 predictors

1.2 2. Simple Linear Regression

1.2.1 Predict a continuous target variable using one predictor

```
[181]: # Using 'Magnitude' as predictor and 'Depth' as response

X = eq['mag']
y = eq['depth']
```

1.2.2 Visualize the relationship with a scatter plot

```
[183]: plt.figure(figsize=(10,6))
    sns.scatterplot(x='mag', y='depth', data=eq)
    plt.title('Relationship between magnitude and depth')
    plt.show()
```


1.2.3 Fit a linear regression model and print the model's summary

```
[185]: # Fitting a Linear Model
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()

# Printing a summary
model.summary()
```

[185]:

Dep. Variable:	depth	R-squared:	0.150
Model:	OLS	Adj. R-squared:	0.150
Method:	Least Squares	F-statistic:	1665.
Date:	Sun, 18 Feb 2024	Prob (F-statistic):	0.00
Time:	05:53:14	Log-Likelihood:	-49767.
No. Observations:	9451	AIC:	9.954e + 04
Df Residuals:	9449	BIC:	9.955e + 04
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025]	0.975]
const	-4.5457	0.797	-5.703	0.000	-6.108	-2.983
\mathbf{mag}	15.8810	0.389	40.803	0.000	15.118	16.644

Omnibus:	11037.060	Durbin-Watson:	1.965
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1314855.040
Skew:	6.164	Prob(JB):	0.00
Kurtosis:	59.454	Cond. No.	3.94

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.2.4 Analyze the model summary

```
[109]: # Intercept coefficient: -4.5457

# Magnitude coefficient: 15.881. For every one-unit increase in Magnitude, the price is expected to increase by approximately 15.881 units

# R-squared: 0.150 -> This suggests that approximately 15% of the variability in the dependent variable, price, can be explained by the model.
```

1.2.5 Model Equation

depth = -4.5457 + 15.881 * magnitude

1.2.6 Plotting the regression line and evaluation points

```
[187]: # Get a list of the evaluation points for mileage
       mag_values = []
       for point in data_points:
           mag_values.append(point['mag'])
       # Least squares coefficients
       beta_1 = model.params['mag']
       beta 0 = model.params['const']
       # Extracting price values using the regression equation for these mileage values
       depth_values = beta_0 + beta_1 * np.array(mag_values)
       # Original plot with scatter points and regression line
       plt.figure(figsize=(10,6))
       sns.scatterplot(x=eq['mag'], y=eq['depth'])
       plt.plot(eq['mag'], beta_0 + beta_1 * eq['mag'], color='red', label="Fitted_"
        ⇔Line")
       # Adding the points from the dictionary with a different color and size
       sns.scatterplot(x=mag_values, y=depth_values, color='black', s=100,_
        ⇔label="Evaluation Points")
       # Title and legend
       plt.title('Fitted Line on lstat vs medv')
```

```
plt.legend()
plt.show()
```


1.3 3. Multicollinearity

1.3.1 Choose predictors and create a subset of your dataset

```
[225]: selected_predictors = ['mag', 'depth', 'dmin', 'nst']
X = eq[selected_predictors]
```

1.3.2 Visualize the relationships using a scatter plot matrix

```
[227]: pd.plotting.scatter_matrix(X, figsize=(8, 8), alpha=0.8, alpha=0.
```

```
<Axes: xlabel='depth', ylabel='dmin'>,
<Axes: xlabel='dmin', ylabel='dmin'>,
<Axes: xlabel='nst', ylabel='dmin'>],
[<Axes: xlabel='mag', ylabel='nst'>,
<Axes: xlabel='depth', ylabel='nst'>,
<Axes: xlabel='dmin', ylabel='nst'>,
<Axes: xlabel='nst', ylabel='nst'>]], dtype=object)
```



```
[307]: # Visual Observations:
# - mag: Appears to be correlated with dmin (horizontal distance from the
→epicenter to the nearest station in degrees), depth of the event, and nst
# (the total number of seismic stations used to determine earthquake
→location)
```

```
# - depth: Appears to have a correlation with the magnitude
# - dmin: Shows no clear correlation with other predictors
# - nst: Shows no clear correlation with other predictors
```

1.3.3 Calculate the VIF (Variance Inflation Factor) for these predictors

```
[228]: for i in range(X.shape[1]):
           vif = inf.variance_inflation_factor(X.values, i) # Compute VIF
           print(f"VIF for {X.columns[i]}: \t{vif:10.3f}")
      VIF for mag:
                           3.529
      VIF for depth:
                           1.328
      VIF for dmin:
                           1.378
      VIF for nst:
                           2.679
[319]: # Observations from VIF:
       # mag - Relative high VIF; some multicollinearity with other predictors
       # depth - Relative low VIF; some multicollinearity is present
       # dmin - Relative low VIF; some multicollinearity is present
       # nst - Moderate VIF; some multicollinearity is present
```

1.4 4. Multiple Linear Regression

```
[261]: # Subset of the data with 4 predictors
X = pd.DataFrame(eq[['mag','dmin','nst','gap']])
y = eq['depth']

# Fitting a Linear Model
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()

#Print a summary
model.summary()
```

[261]:

Dep. Variable:	depth	R-squared:	0.179
Model:	OLS	Adj. R-squared:	0.178
Method:	Least Squares	F-statistic:	288.1
Date:	Sun, 18 Feb 2024	Prob (F-statistic):	1.80e-224
Time:	06:17:54	Log-Likelihood:	-28854.
No. Observations:	5300	AIC:	5.772e + 04
Df Residuals:	5295	BIC:	5.775e + 04
Df Model:	4		
Covariance Type:	nonrobust		

_		\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
	const	-8.8859	2.125	-4.182	0.000	-13.051	-4.721
	mag	18.1389	0.736	24.643	0.000	16.696	19.582
	$\operatorname{\mathbf{dmin}}$	0.7266	0.381	1.908	0.056	-0.020	1.473
	\mathbf{nst}	-0.0462	0.041	-1.124	0.261	-0.127	0.034
	\mathbf{gap}	-0.0394	0.016	-2.412	0.016	-0.071	-0.007
Omnibus:		6051.511	Durbin-Watson:		1.922		
Prob(Omnibus):		0.000	Jarqı	ıe-Bera	(JB):	520911.075	
Skew:		6.026	Prob(JB):		0.00		
Kurtosis:		50.049	Cond	l. No.		308.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[244]: # Observations:

# The R-squared value for the multiple linear regression model is higher (0.150

□ vs. 0.179),

# indicating that this model explains a greater proportion of the variance in

□ the dependent variable (depth).
```

1.4.1 Model equation

```
depth = -8.8859 + (18.1389 * mag) + (0.7266 * dmin) - (0.0461 * nst) - (0.0394 * gap)
```

```
[271]: # Get lists of the evaluation points for all predictors
      mag_values = []
       dmin_values = []
       nst_values = []
       gap_values = []
       for point in data_points:
           mag_values.append(point['mag'])
           dmin_values.append(point['dmin'])
           nst_values.append(point['nst'])
           gap_values.append(point['gap'])
       # Extracting coefficients from the model
       beta_0 = model.params['const']
       beta_mag = model.params['mag']
       beta_dmin = model.params['dmin']
       beta_nst = model.params['nst']
       beta_gap = model.params['gap']
       # Calculating depth values using the multiple regression equation
       depth_values = (beta_0 +
                       beta_mag * np.array(mag_values) +
                       beta_dmin * np.array(dmin_values) +
```

```
Data Point 1 - mag: 1.70, dmin: 0.10, nst: 18.00, gap: 69.00, Estimated depth: 18.47

Data Point 2 - mag: 0.40, dmin: 0.01, nst: 9.00, gap: 65.00, Estimated depth: -4.60

Data Point 3 - mag: 2.00, dmin: 0.00, nst: 19.00, gap: 63.00, Estimated depth: 24.03

Data Point 4 - mag: 0.74, dmin: 0.01, nst: 7.00, gap: 90.00, Estimated depth: 0.68

Data Point 5 - mag: 2.38, dmin: 0.03, nst: 31.00, gap: 57.00, Estimated depth: 30.63
```