1.
Ανάλυση προβλήματος

Εισαγωγή

Το πρόβλημα αποτελεί έννοια που απαντάται σε όλες τις επιστήμες και τους κλάδους τους, αλλά παράλληλα και στην καθημερινή μας ζωή. Τόσο η αντιμετώπιση, όσο και η διατύπωση ενός προβλήματος, αποτελούν διαδικασίες που απαιτούν ιδιαίτερες αναλυτικές και συνθετικές ικανότητες, ορθολογική σκέψη, αλλά και σωστό και εμπεριστατωμένο χειρισμό της φυσικής γλώσσας. Οι δεξιότητες που αποκτούνται από τους μαθητές μέσω της ενασχόλησής τους με την ανάλυση και τον ορισμό προβλημάτων, αποτελούν εφόδια γενικής χρηστικότητας, αφού μπορούν να λογίζονται σαν γνωστικά εργαλεία χρήσιμα για κάθε δραστηριότητα που είτε διαπερνά όλο το φάσμα των επιστημών, είτε αναφέρεται σε καθημερινές καταστάσεις.

Διδακτικοί στόχοι

Στόχοι του κεφαλαίου αυτού είναι :

- να μπορούν καταρχήν οι μαθητές να κατανοούν πλήρως τα προβλήματα που τους τίθενται
- να μπορούν στη συνέχεια να προσδιορίζουν τα συστατικά μέρη ενός προβλήματος
- 🗢 να μπορούν να αναλύουν ένα πρόβλημα σε άλλα απλούστερα
- να καταστούν ικανοί να προσδιορίζουν τα δεδομένα που τους παρέχονται για την αντιμετώπιση του προβλήματος
- να μπορούν να προσδιορίζουν τα ζητούμενα αποτελέσματα και τη μορφή απόδοσής τους
- να είναι σε θέση να θέσουν οι ίδιοι προβλήματα διατυπώνοντάς τα με ακρίβεια και πληρότητα

Προερωτήσεις

- θεωρείς σημαντικό το γεγονός να μιλάς και να γράφεις πολύ καλά τη φυσική γλώσσα στην προσπάθειά σου να επιλύσεις ένα τυχαίο πρόβλημα;
- ✓ έχεις ακούσει για "το πρόβλημα του έτους 2000";
- υπάρχει νοηματική διαφορά ανάμεσα στους όρους δεδομένο και πληροφορία;
- όταν αναφερόμαστε σε προβλήματα, έμμεσα δηλώνουμε την ανάγκη χρήσης υπολογιστών για την αντιμετώπισή τους;

1.1 Η έννοια πρόβλημα

Η καθημερινή εμπειρία και πρακτική μας εμφανίζει πολλά και ποικίλα προβλήματα που μας απασχολούν είτε στον προσωπικό μας χώρο, είτε στον κοινωνικό μας χώρο γενικότερα. Οι στατιστικές και οι δημοσκοπήσεις, που βλέπουν κατά καιρούς το φως της δημοσιότητας, καταγράφουν τα σημαντικότερα προβλήματα που απασχολούν το κοινωνικό σύνολο. Οι περισσότεροι από εμάς σήμερα, σε μια πιθανή έρευνα σχετική με τα κυριότερα προβλήματα που απασχολούν την ελληνική κοινωνία, θα απαντούσαμε πως ανάμεσα στα βασικότερα προβλήματα βρίσκονται η ανεργία, τα ναρκωτικά, η ξενοφοβία. Όπως επίσης σε μια παρόμοια έρευνα που θα επιχειρούσε να εντοπίσει τα κυριότερα παγκόσμια προβλήματα που απασχολούν την ελληνική κοινωνία, θα απαντούσαμε πως σαν κύρια προβλήματα θεωρούμε τον πόλεμο και τη μόλυνση του περιβάλλοντος.

Ορισμός: Με τον όρο **Πρόβλημα** εννοείται μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

Άλλου είδους απαντήσεις, που θα βρισκόντουσαν σε άλλο φάσμα, άλλο εύρος, θα δίναμε αν η ερώτηση αφορούσε στα προσωπικά μας προβλήματα. Πολλοί από μας πιθανό να ανέφεραν επαγγελματικά προβλήματα με τον εργοδότη τους, προσωπικά προβλήματα στη σχέση τους ή προβλήματα που σχετίζονται με απλά θέματα της καθημερινής ζωής.

Η ύπαρξη προβλημάτων δεν αποτελεί χαρακτηριστικό γνώρισμα της εποχής μας. Μια απλή περιήγηση ανά τις σελίδες της ιστορίας, αρκεί για να μας επιβεβαιώσει ότι σε κάθε εποχή αναφέρονται προβλήματα διαφορετικής υφής και εμβέλειας.

- Ο Όμηρος στην Ιλιάδα περιγράφει το πρόβλημα που αντιμετώπιζαν οι Έλληνες πολιορκητές της Τροίας, μέχρι ο Οδυσσέας να επινοήσει το Δούρειο Ίππο.
- Το πρόβλημα μέτρησης του χρόνου, που αποτελούσε ταυτόχρονα ανθρώπινη ανάγκη, ήρθε να αντιμετωπίσει η εμφάνιση της κλεψύδρας και του εκκρεμούς.
- Προβλήματα κοινωνικής αδικίας και εκμετάλλευσης ήταν αυτά που οδήγησαν στην εμφάνιση του Robin Wood στα δάση της επαρχίας του Nottingham.
- Το πρόβλημα με το ψύχος που αντιμετώπισαν τα στρατεύματα του Ναπολέοντα στην εκστρατεία του στη Ρωσία, είχε σαν αποτέλεσμα την ανακοπή της προέλασης και την οπισθοχώρησή του.

Ένα από τα σημαντικότερα προβλήματα στο χώρο των υπολογιστών είναι αυτό που αναφέρεται σαν πρόβλημα του έτους 2000 (millennium bug). Το πρόβλημα εντοπίζεται στο ότι οι υπολογιστές μετρούν την ημερομηνία μόνο με δύο στοιχεία για κάθε ένα από τα τρία συνθετικά της. Για παράδειγμα, η ημερομηνία 15 Απριλίου 1999 συμβολίζεται με τον κωδικό 150499.

Από τις πρώτες περιόδους λειτουργίας των υπολογιστών, τότε που γινόταν κάθε δυνατή προσπάθεια να εξοικονομηθεί πολύτιμος αποθηκευτικός χώρος, καθιερώθηκε η καταγραφή της ημερομηνίας με τον παραπάνω τρόπο. Οπότε η πρώτη μέρα του 21ου αιώνα θα συμβολίζεται με τον κωδικό 010100, πράγμα που θα επιφέρει μεγάλη αναστάτωση και σύγχυση στους υπολογισμούς που θα πραγματοποιούν οι υπολογιστές.

Η αυγή του 2000 απειλεί να "τρελάνει" τους υπολογιστές. Οι αυτόματες μηχανές συναλλαγών (ΑΤΜ) των τραπεζών μπορεί να μην δίνουν λεφτά ή να δίνουν απίστευτα ποσά που να μην ανταποκρίνονται στις πραγματικές καταθέσεις των πελατών. Τα μηχανογραφημένα λογιστήρια των επιχειρήσεων μπορεί να αποδίδουν τρελούς πίνακες οικονομικών στοιχείων που καμία σχέση να μην έχουν με την πραγματικότητα. Ένα ευρύ φάσμα κοινωνικών υπηρεσιών – ασφάλιση, υγειονομική περίθαλψη, παροχή ενέργειας, μεταφορές, κλπ - παρέχονται μέσα από χρήση πολύπλοκων υπολογιστικών συστημάτων, που απειλούνται από το πρόβλημα του έτους 2000.

Το ζήτημα όσο και αν φαίνεται απλό, στην πραγματικότητα είναι πολύπλοκο και κυρίως μπορεί να έχει πλευρές που δεν μπορούν να προβλεφθούν. Οι επιπτώσεις του προβλήματος του έτους 2000 μπορεί να είναι πολύ μεγάλες. Το πρόβλημα πρέπει να αντιμετωπιστεί με καθαρά τεχνικούς τρόπους, δεν παύει όμως να έχει και λειτουργικές, οικονομικές και νομικές προεκτάσεις.

- Σοβαρότατα προβλήματα επιδημιών, όπως η πανούκλα, η χολέρα και η λύσσα, αφάνιζαν καθημερινά χιλιάδες ανθρώπους τον περασμένο αιώνα μέχρις ότου επιστήμονες, όπως ο Pasteur και ο Fleming, να ανακαλύψουν τα κατάλληλα εμβόλια.
- Το πρόβλημα της μεταφοράς της ηλεκτρικής ενέργειας από τον τόπο παραγωγής στα σημεία κατανάλωσης πονοκεφάλιασε πολύ τους υπεύθυνους περασμένων εποχών μέχρι να εμφανιστούν οι μετασχηματιστές οι οποίοι έδωσαν λύση στο πρόβλημα.
- 🥪 Το ενεργειακό πρόβλημα από την άποψη των αποθεμάτων που απα-

- σχόλησε έντονα, αλλά και εξακολουθεί να απασχολεί την παγκόσμια κοινότητα, οδήγησε στην υιοθέτηση ήπιων μορφών ενέργειας, όπως είναι η ηλιακή ενέργεια, η αιολική ενέργεια και η βιομάζα.
- Το πρόβλημα της τρύπας του όζοντος, και κατ' επέκταση το πρόβλημα της προστασίας του φυσικού περιβάλλοντος, αντιμετωπίστηκε σε πρώτο βαθμό με τον περιορισμό εκπομπής χλωροφθορανθράκων από τις βιομηχανικές μονάδες που αποτελούν την κύρια αιτία του προβλήματος.
- Φυσικά φαινόμενα, όπως εκρήξεις ηφαιστείων, παλιρροιακά κύματα, σεισμοί και τυφώνες, αποτελούν σημαντικά προβλήματα ακόμα και στην εποχή μας, με αποτέλεσμα οι πληθυσμοί των περιοχών που πλήττονται να μετρούν ανθρώπινα θύματα, να υπόκεινται οικονομική καταστροφή και να αναγκάζονται πολλές φορές σε μετακίνηση.
- Ο υποσιτισμός ενός πολύ μεγάλου μέρους του πληθυσμού της αφρικανικής κύρια ηπείρου, οι καθημερινοί θάνατοι πολλών ανθρώπων, ειδικά μικρών παιδιών, αποτελεί ένα από τα σοβαρότερα προβλήματα της ανθρωπότητας σήμερα, χωρίς να έχει μπορέσει να αντιμετωπιστεί επαρκώς από τις ανθρωπιστικές οργανώσεις και τους διεθνείς οργανισμούς.
- Η αργή ταχύτητα μετάδοσης των δεδομένων σε σχέση με τις απαιτήσεις της σύγχρονης τεχνολογίας, αποτελεί ένα πρόβλημα που αντιμετωπίζεται σε ικανοποιητικό βαθμό από τη τεχνολογία των οπτικών ινών.
- Η ενοποίηση των τεσσάρων πεδίων δυνάμεων, του βαρυτικού, του ηλεκτρομαγνητικού, του ασθενούς πυρηνικού και του ισχυρού πυρηνικού, αποτελεί ένα πρόβλημα της σύγχρονης φυσικής που, προς το παρόν, δεν έχει επιλυθεί.

1.2 Κατανόηση προβλήματος

Η οποιαδήποτε προσπάθεια αντιμετώπισης ενός προβλήματος είναι καταδικασμένη σε αποτυχία αν προηγουμένως δεν έχει γίνει απόλυτα κατανοητό το πρόβλημα που τίθεται. Η κατανόηση ενός προβλήματος αποτελεί συνάρτηση δύο παραγόντων, της σωστής διατύπωσης εκ μέρους του δημιουργού του και της αντίστοιχα σωστής ερμηνείας από τη μεριά εκείνου που καλείται να το αντιμετωπίσει.

Η μορφή με την οποία παρουσιάζεται ένα πρόβλημα μπορεί να είναι ο-

ποιαδήποτε αρκεί να μπορεί να γίνει αντιληπτή από μία από τις πέντε ανθρώπινες αισθήσεις. Το πρόβλημα της ρύπανσης της ατμόσφαιρας της πρωτεύουσας μπορεί να το αντιληφθεί ο καθένας κοιτάζοντας τον αττικό ουρανό ή αναπνέοντας με δυσκολία ανηφορίζοντας κάποιο καλοκαιρινό μεσημέρι την οδό Ακαδημίας. Τα προβλήματα και τα δεινά που ταλαιπωρούν και σκοτώνουν χιλιάδες συνανθρώπους μας εξ αιτίας των πολεμικών συγκρούσεων στα διάφορα μέρη του κόσμου, μας γίνονται γνωστά είτε διαβάζοντας εφημερίδες, είτε ακούγοντας το ραδιόφωνο, είτε βλέποντας τηλεόραση.

Τα προβλήματα που μπορεί να κληθούμε να αντιμετωπίσουμε κατά τη διάρκεια της ζωής μας μπορούν να αναφέρονται σε οποιοδήποτε τομέα, μπορεί να αφορούν στα μαθηματικά, στη φυσική, στη λογική, στην καθημερινή ζωή ή οτιδήποτε άλλο θα μπορούσε κάποιος να σκεφτεί. Μπορεί να απαιτούνται γνώσεις συγκεκριμένων επιστημών ή μπορεί οι βιωματικές μας καταστάσεις και εμπειρίες να επαρκούν για την αντιμετώπισή τους. Μπορεί να είναι πολύπλοκα ή σχετικά απλά, πρωτόγνωρα ή συνηθισμένα. Σε κάθε όμως περίπτωση θα πρέπει να γίνουν απολύτως κατανοητά πριν γίνει κάθε προσπάθεια αντιμετώπισής τους.

Η κατανόηση ενός προβλήματος εξαρτάται σε μεγάλο βαθμό από την διατύπωσή του. Οποιοδήποτε μέσο μπορεί να χρησιμοποιηθεί για να αποδοθεί η διατύπωση ενός προβλήματος. Συνηθέστερο από όλα είναι ο λόγος, είτε ο προφορικός, είτε ο γραπτός.

Σαφήνεια διατύπωσης

Ο λόγος σαν μέσο επικοινωνίας και συνεννόησης πρέπει να χαρακτηρίζεται από σαφήνεια. Άστοχη χρήση ορολογίας, λανθασμένη σύνταξη, είναι δύο στοιχεία που μπορούν να προκαλέσουν παρερμηνείες και παραπλανήσεις. Η ικανότητα εκφοράς σωστού προφορικού και γραπτού λόγου αποτελεί μεγάλο προτέρημα για κάθε άτομο. Η παρερμηνεία είναι δυνατή ακόμα και σε περιπτώσεις όπου όλοι οι λεξικολογικοί και συντακτικοί κανόνες κρατούνται με ευλάβεια.

Παράδειγμα 1

Ένας πολυάσχολος επιχειρηματίας απευθύνεται στη σύζυγό του και της ζητά να φροντίσει για την αγορά αναμνηστικών δώρων για μερικούς παιδικούς του φίλους, που πρόκειται να συναντήσει μετά από πάρα πολλά χρόνια. Η σύζυγος του ζητάει να της δώσει κάποια χαρακτηριστικά γνωρίσματα των φίλων του, έτσι ώστε να γίνει πιο εύκολη η επιλογή των δώρων.

Τελικά, αυτά που πληροφορείται η σύζυγος από τον επιχειρηματία σχετικά με τους φίλους του είναι πως:

Ο Γιάννης και η Μαρία είναι παντρεμένοι. Ο Χρήστος είναι αθλητικός τύπος. Η Ελένη είναι προϊσταμένη σε τράπεζα.

Πράγματι, η σύζυγος φρόντισε και αγόρασε τα δώρα για τους φίλους του επιχειρηματία και τα έστειλε στο γραφείο του. Η παραλαβή των δώρων των φίλων του, έκρυβε για τον επιχειρηματία μια έκπληξη. Τα δώρα που παρέλαβε ήταν τρία, ενώ ο ίδιος περίμενε τέσσερα. Επικοινώνησε αμέσως με τη σύζυγό του, η οποία όμως τον διαβεβαίωσε, ότι έκανε τις επιλογές της ακριβώς σύμφωνα με τις πληροφορίες που της είχε ο ίδιος δώσει σχετικά με τους φίλους του. Το ένα από τα τρία δώρα προοριζόταν για το ζευγάρι των φίλων του. Στην πραγματικότητα όμως ζευγάρι φίλων δεν υπήρχε. Αμέσως έγινε κατανοητή η αιτία της παραπλάνησης.

Το πρόβλημα της αγοράς των δώρων αντιμετωπίστηκε από τη σύζυγο σύμφωνα με τις πληροφορίες που είχε πάρει. Η παραπλάνησή της οφείλεται στον τρόπο που ερμήνευσε την πρόταση Ο Γιάννης και η Μαρία είναι παντρεμένοι. Η πρόταση επιδέχεται δύο διαφορετικές, και ταυτόχρονα σωστές, ερμηνείες. Το γεγονός αυτό - της αποδεκτής διπλής ερμηνείας - οφείλεται στο ότι η διατύπωσή της αφήνει περιθώρια για κάτι τέτοιο.

Πρώτη ερμηνεία : Ο Γιάννης και η Μαρία είναι παντρεμένοι μεταξύ τους.

Δεύτερη ερμηνεία : Ο Γιάννης είναι παντρεμένος και η Μαρία είναι παντρεμένη.

Οι δύο διαφορετικές αυτές ερμηνείες οφείλονται στον ασαφή συνδετικό ρόλο που διαδραματίζει στη συγκεκριμένη πρόταση ο λογικός τελεστής ΚΑΙ. Δεν είναι σαφές από τη διατύπωση, αν ο τελεστής συνδέει δύο υποκείμενα μιας κύριας πρότασης (πρώτη ερμηνεία) ή αν συνδέει δύο υπονοούμενες κύριες προτάσεις (δεύτερη ερμηνεία).

Γίνεται λοιπόν αντιληπτό το ειδικό βάρος που έχει η σωστή διατύπωση στη σωστή κατανόηση ενός προβλήματος.

Σημαντικός ακόμα παράγοντας στη σωστή αντιμετώπιση ενός προβλήματος είναι η αποσαφήνιση του χώρου στον οποίο αναφέρεται. Η πληροφορία αυτή παρέχεται επίσης από την εκφώνηση του προβλήματος. Τα δεδομένα του προβλήματος είναι αυτά που θα μας παρέχουν αυτήν την πληροφορία.

Ορισμοί : Με τον όρο **δεδομένο** δηλώνεται οποιοδήποτε στοιχείο μπορεί να γίνει αντιληπτό από έναν τουλάχιστον παρατηρητή με μία από τις πέντε αισθήσεις του.

Με τον όρο **πληροφορία** αναφέρεται οποιοδήποτε γνωσιακό στοιχείο προέρχεται από επεξεργασία δεδομένων.

Ο όρος επεξεργασία δεδομένων δηλώνει εκείνη τη διαδικασία κατά την οποία ένας "μηχανισμός" δέχεται δεδομένα, τα επεξεργάζεται σύμφωνα με έναν προκαθορισμένο τρόπο και αποδίδει πληροφορίες.

Επί χιλιετίες ο "μηχανισμός" επεξεργασίας των δεδομένων ήταν και εξακολουθεί να είναι ο ανθρώπινος εγκέφαλος. Στις μέρες μας, ένας άλλος "μηχανισμός" επεξεργασίας δεδομένων είναι ο υπολογιστής.

1.3 Δομή προβλήματος

Η κατανόηση του προβλήματος είναι βασική προϋπόθεση για να γίνει στη συνέχεια δυνατή η σωστή αποτύπωση της δομής του. Η καταγραφή της δομής ενός προβλήματος σημαίνει αυτόματα ότι έχει αρχίσει η διαδικασία ανάλυσης του προβλήματος σε άλλα απλούστερα. Με τη σειρά τους τα νέα προβλήματα μπορούν να αναλυθούν σε άλλα, ακόμη πιο απλά. Η διαδικασία αυτή της ανάλυσης μπορεί να συνεχιστεί μέχρις ότου τα επιμέρους προβλήματα που προέκυψαν θεωρηθούν αρκετά απλά και η αντιμετώπισή τους χαρακτηριστεί ως δυνατή.

Ορισμός: Με τον όρο **δομή** ενός προβλήματος αναφερόμαστε στα συστατικά του μέρη, στα επιμέρους τμήματα που το αποτελούν καθώς επίσης και στον τρόπο που αυτά τα μέρη συνδέονται μεταξύ τους.

Η δυσκολία αντιμετώπισης των προβλημάτων ελαττώνεται όσο περισσότερο προχωράει η ανάλυση τους σε απλούστερα προβλήματα. Ο κατακερματισμός ενός προβλήματος σε άλλα απλούστερα είναι μια από τις διαδικασίες που ενεργοποιούν και αμβλύνουν τόσο τη σκέψη, αλλά κυρίως την αναλυτική ικανότητα του ατόμου.

Παράδειγμα 2

Ας υποθέσουμε ότι τίθεται σαν πρόβλημα το θέμα αντιμετώπισης των ναρκωτικών.

Η αντιμετώπιση του προβλήματος θα γίνει απλούστερη αν μπορέσουμε να αναλύσουμε το πρόβλημα σε άλλα απλούστερα Το αρχικό πρόβλημα είναι "Αντιμετώπιση ναρκωτικών". Αυτό θα μπορούσε να αναλυθεί καταρχήν σε τρία υποθέματα, σε τρία επιμέρους προβλήματα:

- (1) Πρόληψη
- (2) Θεραπεία
- (3) Επανένταξη

Τα τρία αυτά επιμέρους προβλήματα πιθανό να μην είναι ιδιαίτερα λεπτομερή έτσι ώστε να επιτρέπουν την εύκολη αντιμετώπισή τους. Πρέπει λοιπόν κάθε ένα από αυτά να αναλυθεί σε ακόμα απλούστερα.

Έτσι λοιπόν το επί μέρους πρόβλημα (1) Πρόληψη, μπορεί να αναλυθεί σε:

- (1.1) Σωστή ενημέρωση των πολιτών σχετικά με το θέμα
- (1.2) Υποβοήθηση προς την κατεύθυνση ανάπτυξης ενδιαφερόντων, οραμάτων και στόχων εκ μέρους των εφήβων
- (1.3) Υποστήριξη ομάδων αυξημένης θεωρητικά "προδιάθεσης"

Όμοια το επί μέρους πρόβλημα (2) Θεραπεία, μπορεί να αναλυθεί ως εξής :

- (2.1) Δημιουργία νέων κρατικών θεραπευτικών κοινοτήτων
- (2.2) Ενίσχυση υπαρχόντων θεραπευτικών κοινοτήτων
- (2.3) Δημιουργία κατάλληλων τμημάτων στα δημόσια νοσοκομεία

Παρόμοια το επιμέρους πρόβλημα (3) Επανένταξη, μπορεί να αναλυθεί ως ακολούθως:

- (3.1) Καταπολέμηση της κοινωνικής προκατάληψης έναντι των απεξαρτημένων
- (3.2) Επιδότηση θέσεων εργασίας για απεξαρτημένους πρώην χρήστες

Στη συνέχεια και το πρόβλημα (1.1) μπορεί να αναλυθεί σε απλούστερα:

- (1.1.1) Ενημέρωση των εφήβων μέσα από κατάλληλα προγράμματα στα σχολεία
- (1.1.2) Ενημέρωση των γονέων με προγράμματα του Δήμου
- (1.1.3) Ενημέρωση κάθε άλλου ενδιαφερόμενου πολίτη με προγράμματα του Υπουργείου Υγείας

Μια παρόμοια παραπέρα ανάλυση θα μπορούσε να γίνει και για το πρόβλημα (1.2), το οποίο θα μπορούσε να αναλυθεί στα εξής απλούστερα προβλήματα :

- (1.2.1) Οργάνωση πολιτιστικών δραστηριοτήτων στα σχολεία
- (1.2.2) Δημιουργία δημόσιων χώρων άθλησης στις γειτονιές για τους νέους
- (1.2.3) Παροχή κινήτρων στα παιδιά και στους νέους για παρακολούθηση και συμμετοχή σε καλλιτεχνικά γεγονότα

Αν η ανάλυση του αρχικού προβλήματος θεωρείται επαρκής, η διάσπαση των επιμέρους προβλημάτων σε άλλα απλούστερα μπορεί να τερματιστεί. Ο παραπάνω τρόπος περιγραφής και ανάλυσης ενός προβλήματος γίνεται φραστικά. Ο ενδιαφερόμενος για την αντιμετώπιση του αρχικού προβλήματος, έχει πλέον μπροστά του να αντιμετωπίσει μια σειρά από επιμέρους προβλήματα, τα οποία στο σύνολό τους εκφράζουν και αντιστοιχούν στο αρχικό πρόβλημα.

Η ανάλυση αυτή του προβλήματος σε άλλα απλούστερα αναδύει παράλληλα και τη δομή του προβλήματος. Για τη γραφική απεικόνιση της δομής ενός προβλήματος χρησιμοποιείται συχνότατα η διαγραμματική αναπαράσταση. Σύμφωνα με αυτή:

- το αρχικό πρόβλημα αναπαρίσταται από ένα ορθογώνιο παραλληλόγραμμο
- κάθε ένα από τα απλούστερα προβλήματα στα οποία αναλύεται ένα οποιοδήποτε πρόβλημα, αναπαρίσταται επίσης από ένα ορθογώνιο παραλληλόγραμμο
- τα παραλληλόγραμμα που αντιστοιχούν στα απλούστερα προβλήματα στα οποία αναλύεται ένα οποιοδήποτε πρόβλημα, σχηματίζονται ένα επίπεδο χαμηλότερα. Έτσι σε κάθε κατώτερο επίπεδο, δημιουργείται η γραφική αναπαράσταση των προβλημάτων στα οποία αναλύονται τα προβλήματα του αμέσως ψηλότερου επιπέδου.

Η διαγραμματική αναπαράσταση του παραδείγματος που παρατίθεται προηγούμενα φαίνεται στο σχήμα 1.1.

Σχ. 1.1. Διαγραμματική αναπαράσταση προβλήματος "Αντιμετώπιση ναρκωτικών"

Η διαγραμματική αναπαράσταση προσφέρει μια απτή απεικόνιση της δομής του προβλήματος. Η δημιουργία του σχετικού διαγράμματος βοηθάει τόσο στην καλύτερη κατανόηση του ίδιου του προβλήματος, όσο και στη σχεδίαση της λύσης του.

1.4 Καθορισμός απαιτήσεων

Η σωστή επίλυση ενός προβλήματος προϋποθέτει τον επακριβή προσδιορισμό των δεδομένων που παρέχει το πρόβλημα. Απαιτεί επίσης την λεπτομερειακή καταγραφή των ζητούμενων που αναμένονται σαν αποτελέσματα της επίλυσης του προβλήματος.

Θα πρέπει να δοθεί μεγάλη προσοχή στην ανίχνευση των δεδομένων ενός προβλήματος. Επισημαίνεται πως δεν είναι πάντοτε εύκολο να διακρίνει κάποιος τα δεδομένα. Υπάρχουν πολλές περιπτώσεις προβλημάτων όπου τα δεδομένα θα πρέπει να "ανακαλυφθούν" μέσα στα λεγόμενα του προβλήματος. Η διαδικασία αυτή απαιτεί προσοχή, συγκέντρωση και σκέψη. Μεθοδολογία προσδιορισμού των δεδομένων ενός προβλήματος δεν υπάρχει, ούτε και μεθοδολογία εντοπισμού και αποσαφήνισης των ζητούμενων ενός προβλήματος.

Το ίδιο προσεκτικά θα πρέπει να αποσαφηνιστούν και τα ζητούμενα του προβλήματος. Δεν είναι πάντοτε ιδιαίτερα κατανοητό τι ακριβώς ζητάει ένα πρόβλημα. Σε μια τέτοια περίπτωση θα πρέπει να θέτονται μια σειρά από ερωτήσεις με στόχο την διευκρίνηση πιθανών αποριών σχετικά με τα ζητούμενα, τον τρόπο παρουσίασής τους, το εύρος τους κ.λπ. Οι ερωτήσεις αυτές μπορούν να απευθύνονται είτε στο δημιουργό του προβλήματος, είτε στον ίδιο μας τον εαυτό αν εμείς καλούμαστε να αντιμετωπίσουμε το πρόβλημα.

Παράδειγμα 3

Για λόγους αξιολόγησης της εκπαιδευτικής του πολιτικής, το Υπουργείο Παιδείας χρειάζεται να ενημερωθεί για τα πρόσφατα αποτελέσματα φοίτησης των μαθητών της χώρας. Ζήτησε λοιπόν μεταξύ άλλων, από την Υπηρεσία Πληροφορικής να παρουσιάσει και τα αποτελέσματα που είχαν οι μαθητές Γ΄ τάξης της Τεχνολογικής Κατεύθυνσης των Ενιαίων Λυκείων στα μαθήματα ειδικότητας.

Το πρόβλημα λοιπόν που τίθεται είναι : Αποτελέσματα επίδοσης μαθητών Γ΄ τάξης Τεχνολογικής Κατεύθυνσης στα μαθήματα ειδικότητας.

Το πρώτο πράγμα που απασχόλησε την Υπηρεσία Πληροφορικής του Υπουργείου ήταν να καταλάβει τι ακριβώς ζητείται, πράγμα που δεν φαίνεται αμέσως από το ιδιαίτερα σύντομο σημείωμα του προϊστάμενου. Έτσι προχώρησε στις εξής σκέψεις:

Προφανώς σε ό,τι αφορά στη χρονική περίοδο, πράγμα το οποίο δεν αναφέρεται, το Υπουργείο χρειάζεται τα αποτελέσματα της προηγούμενης σχολικής χρονιάς για όλη τη χώρα. Γνωρίζουμε σε πόσα και ποια Λύκεια λειτούργησε η Τεχνολογική Κατεύθυνση. Γνωρίζουμε επίσης ότι τα μαθήματα ειδικότητας της κατεύθυνσης αυτής είναι τέσσερα. Έτσι φαίνεται ότι ζητούνται τα αποτελέσματα φοίτησης όλων των μαθητών της Γ΄ τάξης των πιο πάνω Λυκείων για κάθε ένα από τα τέσσερα μαθήματα ειδικότητας.

Ποια είναι όμως ακριβώς τα ζητούμενα; Σε κάθε μάθημα κάθε μαθητής λαμβάνει έναν τελικό βαθμό. Αν συγκεντρώσουμε όλες τις βαθμολογίες από όλα τα σχολεία και για κάθε μάθημα, τότε αυτά είναι τα ζητούμενα αποτελέσματα;

Σε κάθε Λύκειο όλοι οι μαθητές της Γ΄ Λυκείου Τεχνολογικής Κατεύθυνσης διδάσκονται τα ίδια μαθήματα. Έτσι ότι ζητείται για το σύνολο των σχολείων, ζητείται καταρχήν για ένα σχολείο. Μπορούμε λοιπόν να μελετήσουμε το πρόβλημα για ένα σχολείο και μετά να το επεκτείνουμε για όλα τα Λύκεια της χώρας.

Πίνακας 1.1. Απόσπασμα βαθμολογίας μαθήματος								
ΣΧΟΛΕΙΟ : 9ο ΛΥΚΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ								
ТА ЕН : Г'		ТМНМА : 2						
ΜΑΘΗΜΑ : Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον								
a/a	Ονοματεπώνυμο	Τελικός βαθμός						
1	Μαϊκούσης Αθανάσιος	10						
2	Μπουρνέλη Διονυσία	17						
3	Μυλωνάς Αλέξανδρος	15						

Κατόπιν αυτών η μελέτη επικεντρώνεται σε ένα σχολείο. Το σχολείο αυτό έχει 100 μαθητές στη Γ΄ τάξη Λυκείου Τεχνολογικής Κατεύθυνσης, κατανεμημένους σε τρία τμήματα. Οι βαθμολογίες των μαθητών και των τριών τμημάτων σε όλα τα μαθήματα επιλογής έχουν ήδη καταχωρηθεί. Ένα τμήμα της βαθμολογίας των μαθητών του πρώτου τμήματος για το μάθημα "Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον" φαίνεται στον πίνακα 1.1.

Υπάρχουν τρεις καταστάσεις βαθμολογίας, καθεμιά με τη βαθμολογία των μαθητών καθενός από τα τρία τμήματα. Αν τις ενώσουμε, θα έχουμε μία κατάσταση με τη βαθμολογία όλων των μαθητών της Γ΄ τάξης Τεχνολογικής Κατεύθυνσης του συγκεκριμένου σχολείου. Άρα αυτό είναι το ζητούμενο αποτέλεσμα.

Ωστόσο αμέσως μετά μπαίνουν τα εξής ερωτήματα: Μπορεί κανείς να βγάλει κάποιο συμπέρασμα διαβάζοντας μια λίστα με 100 ονόματα; Ακόμη και για να απαντηθεί το πιο απλό ερώτημα, έστω "πόσοι προάγονται", θα πρέπει κάποιος να τους μετρήσει. Βέβαια συμφέρει να μετρηθούν αυτοί που δεν προάγονται, οι οποίοι προφανώς θα είναι λιγότεροι, αλλά πάλι δεν αποφεύγεται η σάρωση όλης της λίστας. Θα πρέπει δε να γίνει παρόμοια εργασία για όλα τα σχολεία.

Ένα άλλο ερώτημα που τίθεται είναι το εξής: Για τους σκοπούς της ζητούμενης μελέτης ενδιαφέρει ποιοι ακριβώς μαθητές προάγονται και ποιοι όχι, ή μόνο πόσοι προάγονται και πόσοι όχι; Είναι φανερό ότι ενδιαφέρει το δεύτερο. Επομένως το αποτέλεσμα για το εξεταζόμενο σχολείο μπορεί να είναι ότι σε αυτό και στο μάθημα "Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον" προάγονται 92 μαθητές ενώ απορρίπτονται 8. Έχοντας κατά νου τον τελικό στόχο, δηλαδή όλη τη χώρα, θα μπορούσαμε να πάρουμε σαν τελικό αποτέλεσμα π.χ., ότι επί συνόλου 5809 μαθητών, 5287 μαθητές προάγονται και 522 απορρίπτονται στο συγκεκριμένο μάθημα. Α-

ντίστοιχοι αριθμοί θα υπάρχουν και για τα άλλα μαθήματα της κατεύθυνσης. Όμως μεγάλοι και πολλοί αριθμοί, αν και είναι ακριβείς, δεν παρέχουν αμέσως το ποιοτικό συμπέρασμα το οποίο είναι το ζητούμενο. Είναι προτιμότερο λοιπόν να τους εκφράσουμε σε ποσοστό, αφού έτσι γίνεται πιο εύκολα αντιληπτό το αποτέλεσμα.

Όμως το προηγούμενο αποτέλεσμα δίνει έναν πρώτο χωρισμό των μαθητών σε επιτυχόντες και αποτυχόντες. Δεν απαντά στο ερώτημα ποιο ποσοστό μαθητών αρίστευσε, ποιο ποσοστό μαθητών πήρε βαθμολογία που κυμάνθηκε από 10 μέχρι 13 κ.λπ. Αν έχει κάποιος αυτής της μορφής τα αποτελέσματα, μπορεί να σχηματίσει πολύ καλύτερη εικόνα για την κατάσταση. Φαίνεται λοιπόν ότι είναι προτιμότερο τα ζητούμενα αποτελέσματα να περιλαμβάνουν και ποσοστά κατά κλίμακα βαθμολογίας, όπως περίπου παρουσιάζονται στον πίνακα 1.2.

Πίνακας 1.2. Αποτελέσματα στο μάθημα "Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον" σχολικού έτους 1999-2000.						
Χαρακτηρισμός επίδοσης στο μάθημα	Βαθμός από	Βαθμός έως	Αριθμός μαθητών	Ποσοστό μαθητών %		
Απορρίπτονται	0	9	522	9,0		
Μέτρια	10	13	1211	20,8		
Καλά	14	15	2120	36,5		
Πολύ καλά	16	17	1180	20,3		
Άριστα	18	20	776	13,4		
ΣΥΝΟΛΟ			5809	100		

Ο πίνακας 1.2 αποκαλείται στη Στατιστική πίνακας συχνοτήτων ή κατανομή συχνοτήτων, διότι παρουσιάζει το πλήθος των μονάδων ενός πληθυσμού που ανήκει σε ένα διάστημα τιμών (απόλυτη συχνότητα) και το ποσοτό των μονάδων του πληθυσμού που εντάσσεται στο ίδιο διάστημα τιμών (σχετική συχνότητα).

Μια άλλη σκέψη είναι ότι επειδή τα αποτελέσματα αυτά θα δημοσιοποιηθούν, θα ήταν καλύτερα αν απεικονιζόντουσαν γραφικά. Πράγματι με ένα γράφημα, όπως αυτό του σχήματος 1.2, είναι ο καθένας σε θέση με μια ματιά να αποκομίσει σημαντικές πληροφορίες, χωρίς να χρειάζεται την απομνημόνευση των αριθμών. Άλλωστε όπως λέει και μία παλιά κινέζικη παροιμία "μια εικόνα αξίζει όσο 1000 λέξεις".

Σχ. 1.2. Γράφημα ραβδογράμματος για το χαρακτηρισμό επίδοσης στο μάθημα.

Τέλος μπορεί ακόμη να υπολογιστεί η μέση τιμή της βαθμολογίας, καθώς και η τυπική απόκλιση που δείχνει πόσο κατά μέσο όρο απέχουν οι βαθμολογίες από τη μέση τιμή.

Για την ολοκλήρωση της ανάλυσης του προβλήματος, θα πρέπει να γίνουν ανάλογες ενέργειες και για τα υπόλοιπα τρία μαθήματα ειδικότητας. Με παρόμοιο τρόπο θα πρέπει να υπολογιστούν καταρχήν οι επιδόσεις των μαθητών της Γ΄ τάξης Λυκείου Τεχνολογικής Κατεύθυνσης του ενός σχολείου και στη συνέχεια όλων των σχολείων της χώρας, δημιουργώντας και για αυτά τα μαθήματα τους αντίστοιχους πίνακες και τα κατάλληλα γραφήματα.

Εδώ η Υπηρεσία Πληροφορικής κρίνει ότι έχει ολοκληρώσει την ανάλυση του προβλήματος, που της ζητήθηκε να λύσει. Θεωρείται ότι το πρόβλημα έχει κατανοηθεί πλήρως. Είναι γνωστό πλέον το περιβάλλον του προβλήματος, πρώτα στο επίπεδο σχολείου και κατόπιν στο επίπεδο όλης της χώρας, ενώ η πηγή των δεδομένων είναι οι καταστάσεις βαθμολογιών, οι οποίες υπάρχουν. Τα ζητούμενα αποτελέσματα έχουν αποσαφηνιστεί, και η μορφή που παρέχονται είναι τόσο αριθμητική (απόλυτη και ποσοστιαία), όσο και διαγραμματική.

Σχ. 1.3. Στάδια αντιμετώπισης προβλήματος

Συμπερασματικά από όλα τα παραπάνω διαφαίνεται πως τα στάδια αντιμετώπισης ενός προβλήματος είναι τρία (σχήμα 1.3):

- κατανόηση, όπου απαιτείται η σωστή και πλήρης αποσαφήνιση των δεδομένων και των ζητούμενων του προβλήματος
- ανάλυση, όπου το αρχικό πρόβλημα διασπάται σε άλλα επί μέρους απλούστερα προβλήματα
- επίλυση, όπου υλοποιείται η λύση του προβλήματος, μέσω της λύσης των επιμέρους προβλημάτων.

1.5 Κατηγορίες προβλημάτων

Τα προβλήματα που απαντώνται τόσο στους διάφορους επιστημονικούς τομείς, όσο και στην καθημερινή μας ζωή, ποικίλουν ως προς τη φύση τους. Από τα παραδείγματα που έχουμε παραθέσει, έχει γίνει αντιληπτό πως τα προβλήματα δεν σχετίζονται υποχρεωτικά και αποκλειστικά με τα μαθηματικά ή γενικότερα με μαθηματικές και υπολογιστικές διαδικασίες με σκοπό την επίτευξη λύσης τους. Η διαφορετική φύση των προβλημάτων επιτρέπει την κατηγοριοποίησή τους σύμφωνα με ποικίλα κριτήρια.

- **1.** Με κριτήριο τη δυνατότητα επίλυσης ενός προβλήματος, διακρίνουμε τρεις κατηγορίες προβλημάτων :
- **Επιλύσιμα**, είναι εκείνα τα προβλήματα για τα οποία η λύση τους είναι ήδη γνωστή και έχει διατυπωθεί. Επιλύσιμα μπορεί επίσης να χαρακτηριστούν και προβλήματα, των οποίων η λύση δεν έχει ακόμα διατυπωθεί, αλλά ή συνάφειά τους με άλλα ήδη επιλυμένα μας επιτρέπει να θεωρούμε σαν βέβαιη τη δυνατότητα επίλυσής τους.
- Ανοικτά, ονομάζονται εκείνα τα προβλήματα για τα οποία η λύση τους δεν έχει μεν ακόμα βρεθεί, αλλά παράλληλα δεν έχει αποδειχθεί, ότι δεν επιδέχονται λύση. Σαν παράδειγμα ανοικτού προβλήματος μπορούμε να αναφέρουμε το πρόβλημα της ενοποίησης των τεσσάρων πεδίων δυνάμεων, που αναφέρουμε σε προηγούμενη παράγραφο.
- Άλυτα, χαρακτηρίζονται εκείνα τα προβλήματα για τα οποία έχουμε φτάσει στην παραδοχή, ότι δεν επιδέχονται λύση. Τέτοιου είδους πρόβλημα είναι το γνωστό από τους αρχαίους ελληνικούς χρόνους πρόβλημα του τετραγωνισμού του κύκλου. Το πρόβλημα αυτό θεωρείται άλυτο, στην πραγματικότητα η λύση που επιδέχεται είναι προσεγγιστική.

- 2. Με κριτήριο το βαθμό δόμησης των λύσεών τους, τα επιλύσιμα προβλήματα μπορούν να διακριθούν σε τρεις επίσης κατηγορίες:
- Δομημένα, χαρακτηρίζονται εκείνα τα προβλήματα των οποίων η επίλυση προέρχεται από μια αυτοματοποιημένη διαδικασία. Για παράδειγμα, η επίλυση της δευτεροβάθμιας εξίσωσης αποτελεί ένα δομημένο πρόβλημα, αφού ο τρόπος επίλυσης της εξίσωσης είναι γνωστός και αυτοματοποιημένος.
- Ημιδομημένα, ονομάζονται τα προβλήματα εκείνα των οποίων η λύση επιδιώκεται στα πλαίσια ενός εύρους πιθανών λύσεων, αφήνοντας στον ανθρώπινο παράγοντα περιθώρια επιλογής της. Σαν παράδειγμα ημιδομημένου προβλήματος μπορούμε να αναφέρουμε ένα πρόβλημα όπου ένας ταξιδιώτης αναζητά να επιλέξει το μεταφορικό μέσο μετακίνησής του από ένα μέρος σε κάποιο άλλο. Το πρόβλημα είναι ημιδομημένο, δεδομένου ότι η λύση που θα επιλεγεί, πρέπει να αναζητηθεί σε ένα σύνολο σαφώς προκαθορισμένο που συμπεριλαμβάνει όλα τα διαθέσιμα μεταφορικά μέσα.
- Αδόμητα, χαρακτηρίζονται τα προβλήματα εκείνα των οποίων οι λύσεις δεν μπορούν να δομηθούν ή δεν έχει διερευνηθεί σε βάθος η δυνατότητα δόμησής τους. Πρωτεύοντα ρόλο στην επίλυση αυτού του τύπου προβλημάτων κατέχει η ανθρώπινη διαίσθηση. Παράδειγμα αδόμητου προβλήματος είναι η επιλογή του τρόπου, του τόπου και του χρόνου ενός εφηβικού πάρτυ. Είναι σαφές ότι δεν υπάρχει κανένας προδιατυπωμένος τρόπος οργάνωσης ενός εφηβικού πάρτυ και όλοι οι παράγοντες που θα το διαμορφώσουν επαφίονται στην ανθρώπινη αίσθηση και προτίμηση των διοργανωτών του.
- 3. Το κάθε πρόβλημα σε ότι αφορά στην επίλυσή του, είναι στενά συνδεδεμένο με την έννοια του αλγόριθμου που παρουσιάζουμε αναλυτικά στο επόμενο κεφάλαιο. Με κριτήριο το είδος της επίλυσης που επιζητούν, τα προβλήματα διακρίνονται σε τρεις κατηγορίες:
- Απόφασης, όπου η απόφαση που πρόκειται να ληφθεί σαν λύση του προβλήματος που τίθεται, απαντά σε ένα ερώτημα και πιθανόν αυτή η απάντηση να είναι ένα "Ναι" ή ένα "Όχι". Αυτό που θέλουμε να διαπιστώσουμε σε ένα πρόβλημα απόφασης είναι αν υπάρχει απάντηση που ικανοποιεί τα δεδομένα που θέτονται από το πρόβλημα.

Παράδειγμα: Δίδεται ένας ακέραιος αριθμός Ν και το πρόβλημα που τίθεται είναι, αν ο αριθμός Ν είναι πρώτος.

Υπολογιστικά, όπου το πρόβλημα που τίθεται απαιτεί τη διενέργεια υ-

Με μια απλοποιημένη προσέγγιση, αλγόριθμος είναι μια "συνταγή" που προσδιορίζει τι πρέπει να κάνουμε κάτω από ορισμένες συνθήκες, έτσι ώστε να φτάσουμε στον επιθυμητό σκοπό.

πολογισμών, για να μπορεί να δοθεί μία απάντηση στο πρόβλημα. Σε ένα υπολογιστικό πρόβλημα ζητάμε να βρούμε τη τιμή της απάντησης που ικανοποιεί τα δεδομένα που παρέχει το πρόβλημα.

Παράδειγμα: Δίδεται ένας ακέραιος αριθμός Ν και ζητείται να βρεθεί πόσες διαφορετικές παραγοντοποιήσεις του Ν υπάρχουν.

Βελτιστοποίησης, όπου το πρόβλημα που τίθεται επιζητά το βέλτιστο αποτέλεσμα για τα συγκεκριμένα δεδομένα που διαθέτει. Σε ένα πρόβλημα βελτιστοποίησης αναζητούμε την απάντηση που ικανοποιεί κατά τον καλύτερο τρόπο τα δεδομένα που παρέχει το πρόβλημα.

Παράδειγμα: Δίδεται ένας ακέραιος αριθμός N και ζητείται ποια είναι η παραγοντοποίηση για το N με το μεγαλύτερο πλήθος παραγόντων.

1.6 Πρόβλημα και υπολογιστής

Τα προβλήματα που καθημερινά συναντάμε δεν είναι προβλήματα του χώρου των μαθηματικών, της φυσικής ή της στατιστικής. Συνήθως είναι λιγότερο ή περισσότερο σύνθετα προβλήματα που η αντιμετώπισή τους γίνεται αποκλειστικά και μόνο με βάση τους συλλογισμούς μας και τη σκέψη μας. Σε κάποιες ίσως περιπτώσεις χρειάζεται να πιάσουμε μολύβι και χαρτί, ή έστω και κάποιο κομπιουτεράκι, για να κάνουμε μερικούς αναγκαίους υπολογισμούς. Όμως οι όποιες προσπάθειες αντιμετώπισης προβλημάτων στηρίζονται στις νοητικές μας δυνάμεις, στη συλλογιστική μας και στη ικανότητα λήψης αποφάσεων.

Και οι υπολογιστές που έχουν κυριολεκτικά εισβάλλει στη ζωή μας, που καθημερινά ερχόμαστε σε επαφή μαζί τους, που αναντίρρητα εφαρμόζονται σε ένα μεγάλο εύρος τομέων και δραστηριοτήτων, σχετίζονται με την επίλυση προβλημάτων, και αν ναι με ποιο τρόπο;

Αναμφίβολα προβλήματα λυνόντουσαν και πριν τη "γένεση" των υπολογιστών. Η ικανότητα του ανθρώπου να αντιμετωπίζει και να επιλύει προβλήματα είναι πολύ προγενέστερη της εμφάνισής τους. Οι υπολογιστές ήρθαν σχετικά πάρα πολύ πρόσφατα για να δράσουν επικουρικά στην ανθρώπινη δραστηριότητα.

Η ένα προς ένα αντιπαράθεση στοιχείων μεταξύ ανθρώπου και υπολογιστή είναι ένα ενδιαφέρον "παιγνίδι". Η Πληροφορική δεν έχει να κάνει πλέον μόνο με τους υπολογιστές, αλλά με τον τρόπο ζωής του ανθρώπου. Το ανθρώπινο είδος, νοήμον ον, διαθέτει έμφυτες όλες εκείνες τις ικανότη-

τες που απαιτούνται για την επιτυχή αντιμετώπιση μιας τεράστιας γκάμας προβλημάτων. Η πολυπλοκότητα των συλλογισμών που μπορεί να εκτελεί ο ανθρώπινος εγκέφαλος είναι εξαιρετικά μεγάλη. Ο ακριβής τρόπος λειτουργίας του ανθρώπινου εγκεφάλου εξακολουθεί να παραμένει ένα αναπάντητο, τουλάχιστον προς το παρόν, ερώτημα.

Η "σύγκριση" λειτουργιών ανθρώπου και υπολογιστή επιφέρει βέβαια μια τεράστια ποιοτική διαφορά υπέρ του ανθρώπου. Ο υπολογιστής δεν είναι ένας ηλεκτρονικός εγκέφαλος. Αυτό που κάνει δεν είναι τίποτε περισσότερο από το να χειρίζεται στοιχεία, ενώ το ανθρώπινο πνεύμα μπορεί να σκέπτεται, να παράγει ιδέες. Το σημείο αυτό είναι πρωταρχικής σημασίας, προσδιορίζοντας μια αναμφισβήτητα τεράστια ποιοτική διαφορά. Το σημείο εκείνο στο οποίο ο υπολογιστής υπερτερεί έναντι του ανθρώπου, είναι η ταχύτητα εκτέλεσης των πράξεών του, ταχύτητα η οποία βελτιώνεται συνέχεια κατά αλματώδη τρόπο με την πρόοδο της τεχνολογίας.

Προβλήματα τα οποία απαιτούν πολλούς υπολογισμούς για την αντιμετώπισή τους, ενδείκνυνται για ανάθεση προς επίλυση σε υπολογιστή. Από τα παραδείγματα που αναφέρθηκαν στο κεφάλαιο, αυτό το παράδειγμα του οποίου η επίλυση θα μπορούσε να ανατεθεί σε υπολογιστή είναι το παράδειγμα 3 σχετικά με τα αποτελέσματα φοίτησης των μαθητών.

Οι λόγοι που αναθέτουμε την επίλυση ενός προβλήματος σε υπολογιστή σχετίζονται με

- ✓ την πολυπλοκότητα των υπολογισμών,
- ✓ την επαναληπτικότητα των διαδικασιών,
- ✓ την ταχύτητα εκτέλεσης των πράξεων,
- ✓ το μεγάλο πλήθος των δεδομένων.

Όσο και αν τυχόν ξαφνιάζει, ο υπολογιστής δεν μπορεί να εκτελεί παρά μόνο τρεις λειτουργίες :

- πρόσθεση, η οποία αποτελεί τη βασική αριθμητική πράξη, δεδομένου ότι και οι άλλες αριθμητικές πράξεις μπορούν να αντιμετωπιστούν, σαν διαδικασίες πρόσθεσης
- ✓ σύγκριση, η οποία συνιστά τη βασική λειτουργία για την επιτέλεση όλων των λογικών πράξεων,
- μεταφορά δεδομένων, λειτουργία που προηγείται και έπεται της επεξεργασίας δεδομένων.

Οι λειτουργίες αυτές είναι αρκετές, ώστε ο υπολογιστής να επιτελέσει με επιτυχία κάθε είδους επεξεργασία. Με βάση αυτές τις τρεις λειτουργίες

διεκπεραιώνει όλες τις εργασίες που του αναθέτονται και επιλύει όλα τα προβλήματα που αναλαμβάνει.

Είναι σαφές ότι ο άνθρωπος θα χρειαζόταν χρόνια ή και αιώνες για να εκτελέσει τις πράξεις εκείνες που ο υπολογιστής μπορεί να τις ολοκληρώσει μέσα σε λίγα μόλις λεπτά. Είναι λοιπόν ιδιαίτερα χρήσιμη και σημαντική η προσφορά του. Όμως δεν θα πρέπει να ξεχνάει κανείς πως η ικανότητα που παρουσιάζει ο υπολογιστής εκδηλώνεται σε ποσοτικό επίπεδο και όχι σε ποιοτικό. Μπορεί να αντιμετωπίσει σύνθετα λογικά προβλήματα μόνο εφόσον ο άνθρωπος έχει φροντίσει προηγούμενα, με τη χρήση κατάλληλων προγραμμάτων, να του "διδάξει" τον τρόπο αντιμετώπισης και επίλυσης αυτού του είδους των προβλημάτων. Πρέπει να γίνει απόλυτα κατανοητό πως τα προβλήματα και οι λύσεις του προϋπήρξαν και εξακολουθούν να υπάρχουν ανεξάρτητα από τους υπολογιστές.

Ανακεφαλαίωση

Στο κεφάλαιο αυτό παρουσιάστηκε η διαχρονικότητα του προβλήματος και έγινε σαφής η ανεξαρτησία της λύσης του από τον υπολογιστή. Επισημάνθηκαν βασικά στοιχεία στην ανάλυση και σύνταξη προβλημάτων που αφορούν στη σαφήνεια της διατύπωσης και κατ΄ επέκταση στην κατανόηση του προβλήματος. Στη συνέχεια παρουσιάστηκε η έννοια της δομής ενός προβλήματος, που ουσιαστικά ανάγει την ανάλυσή του σε άλλα απλούστερα. Ο καθορισμός δεδομένων και ζητούμενων ήταν αυτό που μας απασχόλησε στη συνέχεια. Ολοκληρώνοντας το πρώτο αυτό κεφάλαιο παρουσιάσαμε διαφορετικές κατηγοριοποιήσεις των προβλημάτων. Τέλος προσδιορίσαμε τους λόγους που συνηγορούν υπέρ της ανάθεσης προβλήματος σε υπολογιστή, εντοπίζοντας ταυτόχρονα τις ποιοτικές διαφορές αντιμετώπισης προβλημάτων ανάμεσα στον υπολογιστή και τον άνθρωπο.

Λέξεις κλειδιά

Δεδομένο, διαγραμματική αναπαράσταση, δομή προβλήματος, επεξεργασία δεδομένων, κατηγορίες προβλημάτων, πληροφορία, πρόβλημα.

Ερωτήσεις - Θέματα για συζήτηση

- Να γίνει συζήτηση σχετικά με την αντιμετώπιση προβλημάτων με τη χρήση υπολογιστών.
- Να γίνει συζήτηση σχετικά με τη δημιουργία προβλημάτων εξ αιτίας της χρήσης υπολογιστών.
- Οι μαθητές να αναφέρουν ιεραρχώντας τα σημαντικότερα κοινωνικά προβλήματα που κατά τη γνώμη τους σχετίζονται με την επιστήμη της Πληροφορικής.
- Να δοθεί ο ορισμός των όρων δεδομένο, επεξεργασία δεδομένων, πληροφορία.
- Να γίνει η γραφική αναπαράσταση του προβλήματος που περιγράφεται στο παράδειγμα της ενότητας 1.4.
- Να αναφερθούν οι κατηγορίες των προβλημάτων.
- Για ποιους λόγους αναθέτεται η επίλυση ενός προβλήματος σε υπολογιστή;
- Περιγράψτε τους τρόπους περιγραφής και αναπαράστασης των προβλημάτων.

Βιβλιογραφία

- 1. Jacques Arsac, Les machines á penser Des ordinateurs et des hommes, Seuil, Paris, 1987.
- 2. Emanuel Falkenauer, Genetic algorithms and grouping problems, Wiley, 1998
- 3. Les Goldschlager & Andrew Lister: Computer Science A modern introduction, Prentice Hall, 1990.
- 4. R. Kadesch, Problem Solving-Across the Disciplines, Prentice Hall Engineering, Science & Math, 1996.
- 5. Nicholas Negroponte, Being digital, Alfred Knopf Inc, 1995.
- 6. G. Polya, How to solve it A new aspect of mathematical method, Princeton University Press (second edition renewed), 1985.

Διευθύνσεις Διαδικτύου

http://snow.utoronto.ca/Learn2/targets8.htm

Ενδιαφέρουσα, χωρίς ιδιαίτερες δυσκολίες στην κατανόηση ιστοσελίδα που αναφέρεται στην επίλυση προβλημάτων. Μεταξύ των άλλων περιλαμβάνει και ασκήσεις, κυρίως μαθηματικών και λογικής, άλλες απλές και άλλες αρκετά σύνθετες, που αναφέρονται σε διαφορετικά πεδία δραστηριότητας. Περιλαμβάνει επίσης και στοιχεία για τους διαφορετικούς γνωστικούς τύπους μάθησης.

http://www.awesomelibrary.org/Classroom/Science/Problem_Solving/Problem_Solving.html

Ιστοσελίδα με αρκετά ενδιαφέρουσες απόψεις σε ότι αφορά στην επίλυση προβλημάτων. Αρκετά υψηλού επιπέδου θεματολογίας και σχετικής δυσκολίας, προτείνεται για μαθητές με αυξημένο ενδιαφέρον.

http://www.suremath.com/suremath/suremath/essential.html

Αρκετά εύκολη στην κατανόηση και ταυτόχρονα πολύ ενδιαφέρουσα ιστοσελίδα που αναφέρεται στην επίλυση προβλήματος. Περιλαμβάνει ασκήσεις και προβλήματα προς επίλυση, παραθέτοντας ενδεικτικά και τις λύσεις κάποιων προβλημάτων.

http://www2.hawaii.edu/suremath/click.html

Ιστοσελίδα με ιδιαίτερα χαρούμενο και νεανικό περιβάλλον, αναφέρεται στην επίλυση προβλήματος και περιλαμβάνει, εκτός από τη θεωρία περί επίλυσης προβλήματος, μια σειρά από προβλήματα που προέρχονται από διαφορετικά σχολικά μαθήματα (άλγεβρα, φυσική, χημεία) και άλλους τομείς δραστηριοτήτων.

http://www.infinn.com/creative.html

Αρκετά ενδιαφέρουσα ιστοσελίδα περιλαμβάνει διδακτικό υλικό που αναφέρεται στη δημιουργική σκέψη, στην ανακάλυψη μέσω των προβλημάτων και των σκέψεων, στις δημιουργικές συζητήσεις και στην ανταλλαγή απόψεων που οδηγούν σε γνωστικά αποτελέσματα.