Universidade Federal de Viçosa

Universidade Federal de Viçosa

Campus Rio Paranaíba

Sistemas de Informação

SIN 392 – Introdução ao processamento de imagens digitais (PER 2020)

Prof. João Fernando Mari - joaof.mari@ufv.br

UNIDADE 2 - Atividade extraclasse #1

LISTA DE EXERCÍCIOS – Segmentação de imagens

Considere as seguintes imagens para resolver os exercícios. Todas as imagens possuem tamanho 8 x 8 (64 pixels), 3 bits de resolução de intensidade, ou seja permitem representar 8 níveis de cinza no intervalo [0, 7].

ı	m	а	g	e	m	١.	Α	

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	2	5	7	0	0	7	7
2	0	2	5	7	6	5	6	7
3	0	2	5	7	7	6	6	7
4	0	2	1	0	0	1	0	0
5	0	2	1	1	1	2	1	0
6	0	1	2	1	0	2	1	0
7	0	0	0	0	0	0	0	0

Imagem B:

	0	1	2	3	4	5	6	7
0	0	1	1	1	1	1	1	1
1	0	6	1	2	3	4	6	1
2	0	6	6	6	6	6	6	1
3	0	6	1	2	3	4	6	1
4	0	6	2	2	3	4	6	1
5	0	6	3	3	3	4	6	1
6	0	6	6	6	6	6	6	1
7	0	0	0	0	0	0	0	0

- 1) Aplique a segmentação iterativa sobre as imagens A e B com ΔT_{min} = 0.001 e os seguintes valores para $T_{inicial}$:
 - Mostrar a cada iteração:
 - a) Os pixels em cada classe;
 - b) A média dos pixels em cada classe;
 - c) O valor de T atualizado;
 - d) O valor de ΔT
 - No final, desenhar a imagem segmentada.
- a) $T_{inicial} = média(I)$
- b) $T_{inicial} = minimo(I)$
- c) $T_{inicial} = máximo(I)$
- 2) Aplicar o algoritmo de Otsu nas imagens A e B.
 - Mostrar a variância entre as classes para todos os valores de intensidade da imagem.
 - Mostrar o valor de limiar encontrado, k*.
 - Mostrar a medida de separabilidade, η^* .

- Obs: Organizar em uma tabela, conforme o exemplo nos slides.
- 3) Aplicar o algoritmo de crescimento de regiões nas imagens A e B, considerando as sementes e propriedades abaixo:

a)
$$seed_1 = (2, 2) e seed_2 = (5, 5); T < 3,$$

a)
$$seed_1 = (2, 2) e seed_2 = (5, 5); T < 5,$$

a)
$$seed_1 = (2, 2)$$
, $seed_2 = (6, 5)$ e $seed_3 = (3, 6)$; T < 3,

a)
$$seed_1 = (2, 2)$$
, $seed_2 = (6, 5)$ e $seed_3 = (3, 6)$; T < 6,

- 4) Aplique a segmentação por divisão e fusão de regiões nas imagens A e B de acordo com o seguintes critérios.
 - Se $\sigma > \sigma_T$, dividir; caso contrário, interromper subdivisão.
 - Se $\mu > \mu_T$, 1; caso contrário, 0.
 - Desenhe os quadrantes apenas quando for necessário.

a)
$$\sigma_T = 1$$
; $\mu_T = 2.5$

b)
$$\sigma_T = 0.9$$
; $\mu_T = 3$

5) Explique, de forma objetiva, a importância dos filtros passa-baixa para o processo de segmentação.

Instruções para realização da atividade:

- 1) A lista deve ser resolvida usando caneta azul e/ou preta.
- 2) Utilizar uma folha de sulfite sem pauta dobrada ao meio. Escrever sempre com a folha na orientação retrato
- 3) Resolver cada exercício em uma ou mais folhas dependendo do tamanho do exercício, nunca dois exercícios em uma única folha.
- 4) Escrever o nome, matricula e turma no topo da folha.
- 5) Tirar uma foto com o celular de cada folha, renomear cada arquivo com o seguinte padrão:

Tirar a foto em local bem iluminado e com bom enquadramento.

6) Reunir todas imagens em um arquivo .pdf (uma página por folha, de preferencia), renomear o arquivo com o seu número de matricula.

Exemplo: Se sua matricula é 1234 então o nome do arquivo será "1234.pdf".

7) Enviar via GoogleForms até as 23:59 do dia 25/11/2020.