PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-253702

(43)Date of publication of application: 12.10.1990

(51)Int.CI.

H01Q 13/08

(21)Application number: 01-073818

(71)Applicant: JAPAN RADIO CO LTD

(22)Date of filing:

28.03.1989

a ta Albania

(72)Inventor: HIRAYAMA HIROHISA

(54) MICROSTRIP ANTENNA

(57) Abstract:

PURPOSE: To enlarge a usable frequency band by arranging the plane of a radial conductor element and the plane of a ground conductor element so as to be faced each other with a dielectric or an air layer inbetween, making the thickness of the dielectric or air layer near the feeding point thin and making the thickness of the dielectric or air layer in a part separated from the feeding point thick.

CONSTITUTION: For a microstrip antenna, a dielectric substrate 2, for which the thickness is continuously changed, is used and the plane of a radial conductor element 1 and the plane of a ground conductor board 3 are arranged so as to be faced each other with this dielectric substrate 2 in between. Then, the thickness of the dielectric substrate 2 near a feeding point 4 is made thin and the thickness of the dielectric substrate

2 in the part separated from the feeding point 4 is made thick. Accordingly, the position of the feeding point 4 can be changed in an arrow (x) direction shown by a dotted line and easily matched with a feeding system. Further, the usable frequency band can be enlarged by the thick dielectric substrate 2 in the part separated from the feeding point 4.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the

⑲ 日本国特許庁(JP) ⑪ 特許出願公開

⑫ 公 開 特 許 公 報 (A)

平2-253702

@Int.Cl. 5

識別記号

庁内整理番号

码公開 平成2年(1990)10月12日

H 01 Q 13/08

7741-5 J

審査請求 未請求 請求項の数 1 (全4頁)

60発明の名称

マイクロストリップアンテナ

②特 願 平1-73818

②出 願 平1(1989)3月28日

@発 明 者 平山 浩 久 東京都三鷹市下連雀5丁目1番1号 日本無線株式会社内

の出 頭 人 日本無線株式会社 東京都三鷹市下連雀5丁目1番1号

70代 理 人 弁理士 高橋 友二 外1名

1. 発明の名称

マイクロストリップアンテナ

2. 特許請求の範囲

接地導体素子と、この接地導体素子に誘電体あ るいは空気層を挟んで放射導体素子を向かい合わ せて配置し、この放射導体素子上に給電系から給 載するための給電点を有するマイクロストリップ アンテナにおいて、

厚さが連続的に変化する財電休あるいは空気層 を用い、この誘電体あるいは空気層の上記給電点 付近の厚さを薄くし、上配給電点から離れた付近 の厚さを厚くする手段を備え、

上記給電点の位置を上記放射導体素子上で変化 させて上記拾電系との整合を図り、上記拾電点か ら離れた付近の厚い誘電体あるいは空気層により 使用できる間波散帯域を広帯域化することを特徴 とするマイクロストリップアンテナ。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、誘電体あるいは空気層を挟んで放 射導体素子平面と接地導体素子平面とを向かい合 わせて配置したマイクロストリップアンテナに関 するものである.

「従来の技術」

従来のマイクロストリップアンテナとしては第 4 図に示すものがあった。第4図(A)は円形マ イクロストリップアンテナの構成例を示す斜視図、 第4図(B)は矩形マイクロストリップアンテナ の構成例を示す斜視図で、図において(1)は放射 弹体素子、(2) は誘電体基板、(3) は接地導体板、 (4) は給電点である。

請電体蓋板(2)の厚さは放射導体素子(L)上の 各点で一定となっており、放射導体衆子(1)平面 と接地導体板(3) 平面とが互いに向かい合って平 行な位置関係を保っている。

給電点(4)の共振周波数は、図(A)に示す円 形マイクロストリップアンテナでは放射導体素子 (1) の半径 a の長さに対応し、図(B) に示す剣 形マイクロストリップアンテナでは辺bの長さに

対応する。一般に主モードで励振されたマイクロストリップアンテナは高入力インピーダンスとなるため、特性インピーダンス50Ωの給電系との整合は第4図に示すような誘電体基板(2)の背面から給電するアンテナにおいては、給電点(4)の位置を点線の矢印×方向に変化させて行っている。

またマイクロストリップアンテナは、軽く、かさばらず、製作も容易で安い等の特徴があるが、一般に使用できる周波数帯域が狭いという欠点があり、周波数帯域を広げる方法としては、誘電体基板(2)の厚さを厚くしたり、誘電体基板(2)の比誘電率を小さくしたりする方法が考えられている。

[発明が解決しようとする課題]

上記のような従来のマイクロストリップアンテナでは以上のように、一般に使用できる周波数帯域が狭く、例えば自動車電話などで送信, 受信 2. つの周波数帯域を使用する移動体通信用の送受共用アンテナとして用いる場合には、広帯域化を図

る必要がある。然しながら誘電体基板の厚さを厚くしたり、誘電体基板の比誘電率を小さくしたりすると、放射導体素子上で給電点の位置を変化させても給電系との整合が取れなくなり、広げられる周波数帯域に限度があるという問題点があった。

この発明はかかる課題を解決するためになされたもので、簡単な構成で従来の機能を損なうことなく、使用できる周波数裕城を広げられるマイクロストリップアンテナを得ることを目的としている。

. [課題を解決するための手段]

この発明にかかるマイクロストリップアンテナは、厚さが連続的に変化する誘電体あるいは空気層を挟んで放射導体素子平面と接地導体素子平面とを向かい合わせて配置し、給電点付近の誘電体あるいは空気層の厚さを輝くし、給電点から離れた付近の誘電体あるいは空気層の厚さを厚くすることとした。

[作用]

この発明においては、給電点付近の誘電体ある

いは空気層の厚さを弾くし、給電点から離れた付近の誘電体あるいは空気層の厚さを導くすることとしたので、給電点の位置を放射導体素子上で変化させて給電系との整合を図ることが可能となり、また給電点から離れた付近の厚い誘電体あるいは空気層により使用できる周波数帯線を広げることが可能となる。

[寒旅祭]

(

(

以下、この発明の実施例を図面について説明する。第1図はこの発明の一実施例である円形マイクロストリップアンテナの構成を示す図で、第1図(A)は平面図、(B)は側断面図。(C)は斜視図を示す。また第2図はこの発明の他の実施例である矩形マイクロストリップアンテナの構成を示す図で、第2図(A)は平面図。(B)は側断面図。(C)は斜視図を示す。各図において第4図と同一符号は同一又は相当部分を示し、(5)は給電点(4)に給電を行うためのコネクタである。

第1図、第2図それぞれの実施例に示すように、 この発明にかかるマイクロストリップアンテナは、 厚さが連続的に変化する情電体芸板(2)を用い、この誘電体芸板(2)を挟んで放射導体素子(1)甲面と接地導体板(3)甲面とを向かい合わせて配置し、且つ給電点(4)付近の誘電体活板(2)の厚さを関くして構成してある。従ってせて(2)の厚さを厚くして構成してある。従ってせて(2)の厚さを厚くして構成してある。従ってせてな点(4)のの電系との整合を図ることができ、且つ給電点(4)から離れた付近の厚い誘電体基板(2)により使用できる周波数帯域を広げることができる。

第3図はリターンロスの周波数特性を示す図で、図において縦軸はリターンロス [dB]、横軸は 周波数 [GHz]、(6) は従来のアンテナの特性、 (7) はこの発明によるアンテナの特性を示す。

第3図に示すように、この発明によるアンテナ は比抗電率が従来のアンテナと等しい誘電体基板 (2) を用いても、従来のアンテナに比べて使用で きる周波数帯域が広がっている。

なお上記実施例では、厚さが連続的に変化する 誘電体基板(2)を使用しているが、同様に厚さが

特閒平2-253702(3)

連続的に変化する他の情能体あるいは空気層を用 いても同様に実施することができる。

[発明の効果]

4. 図面の簡単な説明

第1 図はこの発明の一実施例を示す図、第2 図はこの発明の他の実施例を示す図、第3 図はリタ

ーンロスの周波数特性を示す図、第4図は従来のマイクロストリップアンテナを示す図。

(1) は放射導体素子、(2) は誘電体基板、(3) は投地導体板、(4) は給電点、(5) はコネクタ。

なお、各図中同一符号は同一又は相当部分を示すものとする。

代理人 弁理士 高橋 太二

第 3 図

