Journal of Bioresource Management

Volume 6 | Issue 1 Article 2

Avian Diversity Of Langh Lake Sindh And Their Response To The Disturbance.

Ali Hasnain Mosvi

Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, wlm708@gmail.com

Yasir Muneer

Sindh Wildlife Department, Karachi, Pakistan, yasirmunir126@gmail.com

Javeed Ali Maher

Sindh Wildlife Department, Karachi, Pakistan

Jibran Haider

Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, jibranhaider5@hotmail.com

Amir Naseer

Pir Mehr Ali Shah Arid Agriculture University Rawalpindi

See next page for additional authors

Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm

Part of the Biodiversity Commons, and the Ornithology Commons

Recommended Citation

Mosvi, A. H., Muneer, Y., Maher, J. A., Haider, J., Naseer, A., & Ibrahim, A. (2019). Avian Diversity Of Langh Lake Sindh And Their Response To The Disturbance., Journal of Bioresource Management, 6 (1).

DOI: https://doi.org/10.35691/JBM.9102.0100

ISSN: 2309-3854 online

(Received: Dec 10, 2019; Accepted: Dec 11, 2019; Published: Feb 12, 2019)

This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact library-corescholar@wright.edu.

Avian Diversity Of Langh Lake Sindh And Their Response To The Disturbance.

Cover Page Footnote

We are cordially thankful to Sindh Wildlife Department who facilitated us during this study.

Authors

Ali Hasnain Mosvi, Yasir Muneer, Javeed Ali Maher, Jibran Haider, Amir Naseer, and Abdullah Ibrahim

© Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in the Journal. We operate under International Version 4 (CC BY 4.0) of Creative Commons Attribution License which allows the reproduction of articles free of charge with the appropriate citation of the information.

AVIAN DIVERSITY OF LANGH LAKE SINDH AND THEIR RESPONSE TO THE DISTURBANCE

SYED ALI HASNAIN MOSVI^{1*}, YASIR MUNEER², JAVEED ALI MAHER², JIBRAN HAIDER¹, AMIR NASEER¹ AND ABDULLAH IBRAHIM¹

¹ Department of Wildlife Management, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan
² Sindh Wildlife Department, Karachi, Pakistan

* Corresponding author: wlm708@gmail.com

ABSTRACT

Birds and human interaction add harmful effects on conservation and behavior of bird. To develop a buffer between human activities and number of birds, a comprehensive study is necessary to assess the response of birds and their flight initiation distance. An experimental design was employed to record the bird's response and their flight initiation distance, for 109 birds of Langh lake, Sindh. Fifty percent of passerine birds showed medium response towards disturbance and 39% of water birds showed high response toward disturbance. 13 species of family Scolopacidae were recorded during study and 84.62% species of this family showed high response which was the highest response recorded from all families of birds recorded during study. It indicated that maximum representatives of this family were very sensitive towards disturbance. During the study period a total of 131 bird species belonging to 14 orders were recorded from Langh lake. From identified species, order of Passeriformes was recorded the highest. Fifty percent of species recorded were resident, 35% were winter migrant, 9% were passage migrant and only 5% were summer migrant.

Keywords: Birds, Sindh, response, flight distance, passerines

INTRODUCTION

Among vertebrates, birds are an apt beacon of biodiversity and environmental changes such as level of contaminations and impact of human activity on their ecosystem (Sutherland, 2000). Due to their highly adapted and diverse behavior, 10,000 bird species are reported from poles to equators. Which is followed by 21% species from Afro-tropical region, 18% species from Indomalayan region, 17% from Australasian region, 10 % from Palearctic region, 8% from Nearctic region and 2% from Oceanic. 611 species of birds have been reported from Pakistan, which indicate that from total avian species, 6.11% are distributed in different regions of Pakistan, 33 species are globally threatened and 357 birds are migratory. Roberts (1992) reported 356 species of birds from Sindh. Ghalib et al. (2018) reported 420 birds from different areas of Sindh. Large number of migratory species move to this lake in winter from far areas of world because of this particular reason, it was declared as a wildlife Sanctuary in 1972. Yet, the diversity of this region's avifauna has not been fully explored. However, some water birds have been documented. Over all birds are reported from different habitats of Sindh but current area remains unfocused. Birds are an integral part of their niche, being important part of food chain in an ecological unit of nature, so they are good indicators of ecological status of any given ecosystem (Hossain and Baki, 2015). Diversity status of class of an area indicate adaptations of individuals of that class. Anti-predator response is an important phenomenon for prey species to survive. Along with finding diversity pattern of avian fauna, the current study also focuses on finding flight initiation distance for different birds of the study site. Present study was

designed to assess the diversity of avian fauna along with this effect of disturbance on birds of Lang lake. Flight initiation distance is a behavioral measure of the distance at which potential prey take flight when approached by a predator (Heini, 1934). The response of birds to disturbance takes many forms, but most reported responses are behavioral and can be considered vigilance or flight responses (Heini, 1934). FID varies for all birds and it depends on many factors i.e. distance of disturbing point (Dandenong Valley Authority, 1979), body mass (Daniel, 2005) and group size. Current study was performed investigate to pattern disturbance on birds due to presence of humans in their habitat and finding the avian diversity.

MATERIAL AND METHODS

Study Area

Langh Lake is located in District Qambar Shadkot, about 18 Km west of Larkana between 272942 N latitude and 68127. Average precipitation fall annually is 85-mm, average temperature is 27.0 degrees C and the altitude ranges between 50 and 115 meters above sea level. The east side is surrounded by cultivated fields of rice and wheat. Almost all sides of lake are marshy and having muddy bottom and abundant Typha vegetation which is a habitat for many birds. Figure 1 shows map of the study site.

Study design and data collection methods

The lake was regularly visited every month from January-2018 to December-2018. Observations were made early morning and in evening by a single observer using binocular (8×30) and camera. Birds were identified by Helam Field Guide, Birds of Pakistan (Grimmett et al., 2009). Relative abundance and diversity of birds were recorded. The following three characteristics were applied to identify the bird species, upon external morphology (Color, shape,

size, beak, leg and tail), song and calls. Response of birds was also categorized according to following categories

- W- Weak response: moves slightly away, remains within area of site
- M- Moderate response: moves away from source of disturbance but remains in subsite and returns to the same position when activity ends.
- H- High response: bird flies away and does not return during survey time.

After a particular bird was sighted, the observer started moving towards it to initiate flight of bird. The distance between disturbing point and the point from where the bird flew was recorded.

Figure 1; Map of study site

RESULT

Species Richness

During study period a total of 131 bird species belonging to 14 orders were identified in the study area (Table 1). From identified species, Passeriformes had the highest number of species (48), followed by Charadriiforms with 26 species, Anseriformes and Pelecaniformes had 11 species each. Accipitriformes had 9 species. Columbiformes and Coraciiformes had four species each, Suliformes had 3 species

and Strigiformes had 2 species. Podicipediformes, Cuculiformes, Caprimulgiformes and Piciformes had the lowest number of birds with only one species in each. According to the results of the study 50% of species recorded were resident, 35% were winter migrant, 9% were passage migrant and only 5% were summer migrant (Fig 3). Yellow-footed Green pigeon and Ruddy-Breasted crake were absent from Sindh (Robert, 1992). During this study, 26 individuals of Yellow footed green pigeon with 2.2 relative abundance and 3 individuals of Ruddy-Breasted crake with 0.2 relative abundance were recorded.

During the study period, Northern Shoveler (*Anas clypeata*) had the highest relative abundance (5.3%), whereas Marsh Harrier

(*Cicus aeruginosus*) showed the lowest relative abundance (0.08%) in the study area (Table 1).

Figure 2: Proportion of different bird's belong to various orders

Figure 3: Seasonal Occurrence of different Birds species

Table 1. Occurrence and relative abundance of the bird species at Langh lake

#	Common Name	Scientific Name	Family	Order	Occurrence	R.A(%)
1	Pale Martin	Riparia diluta	Hirundinidae	Passeriformes	R	1.78
2	Wire Tailed Swallow	Hirundo smithii	Hirundinidae	Passeriformes	R	1.86
3	Barn Swallow	Hirundo rustica	Hirundinidae	Passeriformes	W	1.69
4	Common Whitethroat	Sylvia communis	Sylviidae	Passeriformes	P	0.68
5	White Tailed Stonechat	Saxicola leucurus	Muscicapidae	Passeriformes	R	0.59
6	Red Throated Flycatcher	Ficedula parva	Muscicapidae	Passeriformes	W	0.68
7	Common Stonechat	Saxicola rubicola	Muscicapidae	Passeriformes	P	0.59
8	Pied Bushchat	Saxicola caprata	Muscicapidae	Passeriformes	R	0.42
9	Rufous tailed Scrub Robin	Cercotrichas galactotes	Muscicapidae	Passeriformes	P	0.51
10	Spotted Flycatcher	Muscicapa striata	Muscicapidae	Passeriformes	P	0.34
11	Asian Desert Warbeler	Sylvia nana	Sylvia	Passeriformes	W	0.76
12	Rufous Vented Prinia	Prinia burnesii	Cisticolidae	Passeriformes	R	0.59
13	Bay-Backed Shrike	Lanius vittatus	Laniidae	Passeriformes	R	0.42
14	Isabelline Shrike	Lanius isabellinus	Laniidae	Passeriformes	W	0.34
15	Long Tailed Shrike	Lanius schach	Laniidae	Passeriformes	R	0.51
16	Turkestan Shrike	Lanius phoenicuroides	Laniidae	Passeriformes	R	0.25
17	Baya Weaver	Ploceus philippinus	Ploceidae	Passeriformes	R	0.76
18	Streaked Weaver	Ploceus manyar	Ploceidae	Passeriformes	R	0.85
19	Chestnut Shuoldered Petronia	Petronia xanthocollis	Passeridae	Passeriformes	S	0.68
20	Spanish Sparrow	Passer hispaniolensis	Passeridae	Passeriformes	W	0.76
21	Black Redstart	Phoenicurus phoenicurus	Passeridae	Passeriformes	W	0.59
22	House Sparow	Passer domesticus	Passeridae	Passeriformes	R	2.37
23	Paddy Field Warbeler	Acrocephalus agricola	Acrocephalidae	Passeriformes	W	0.93
24	Clamorous Reed Warbler	Acrocephalus stentoreus	Acrocephalidae	Passeriformes	W	0.76
25	Oriental Sky Lark	Alauda gulgula	Alaudidae	Passeriformes	R	1.19
26	Crested Lark	Galerida cristata	Alaudidae	Passeriformes	R	1.02
27	Common Chiff Chaff	Phylloscopus collybita	Phylloscopidae	Passeriformes	W	0.76
28	Bluethroat	Luscinia svecica	Turdidae	Passeriformes	W	0.42

29	Striated Babbler	Turdoides earlei	Leiothrichidae	Passeriformes	R	0.76
30	Jungle Babbler	Turdoides striata	Leiothrichidae	Passeriformes	R	1.27
31	Common Babbler	Turdoides caudata	Leiothrichidae	Passeriformes	R	1.02
32	Graceful Prinia	Prinia gracilis	Cisticolidae	Passeriformes	R	0.59
33	Rufous Fronted Prinia	Prinia buchanani	Cisticolidae	Pesseriformes	R	0.34
34	Yellow Bellied Prinia	Prinia flaviventris	Cisticolidae	Passeriformes	R	0.68
35	Plain Prinia	Prinia inornata	Cisticolidae	Passeriformes	R	0.93
36	Zitting Cicsticola	Cisticola juncidis	Cisticolidae	Passeriformes	R	0.34
37	Paddy Field Pipit	Anthus rufulus	Motacillidae	Passeriformes	R	1.36
38	Citrine Wagtail	Motacilla citreola	Motacillidae	Passeriformes	W	0.59
39	Yellow Wagtail	Motacilla flava	Motacillidae	Passeriformes	P	0.51
40	White Wagtail	Motacilla alba	Motacillidae	Passeriformes	W	0.76
41	White Cheeked Bulbul	Pycnonotus leucotis	Pycnonotidae	Passeriformes	R	2.03
42	Red Vented Bulbul	Pycnonotus cafer	Pycnonotidae	Passeriformes	R	0.42
43	Blyth's Reed Warbler	Acrocephalus dumetorum	Acrociphalidae	Passeriformes	P	0.51
44	Purple Sun Bird	Dreptes thomensis	Nectariniidae	Passeriformes	R	0.59
45	Common Myna	Acridotheres tristis	Sturnidae	Passeriformes	R	0.68
46	Blue Cheeked Bee Eater	Merops persicus	Meropidae	Passeriformes	S	0.76
47	Green Bee Eater	Merops orientalis	Meropidae	Passeriformes	R	1.36
48	Black Drongo	Dicrurus macrocercus	Dicruridae	Passeriformes	R	0.51
49	Red Collared Dove	Streptopelia tranquebarica	Columbidae	Columbiformes	S	0.76
50	Yellow Footed Green Pigeon	Treron phoenicoptera	Columbidae	Columbiformes	R	2.20
51	Laughing Dove	Spilopelia senegalensis	Columbidae	Columbiformes	R	2.46
52	Eurasian Collard Dove	Streptopelia decaocto	Columbidae	Columbiformes	R	2.63
53	Black Rumped Flameback	Dinopium benghalense	Picidae	Piciformes	R	0.34
54	Pied Kingfisher	Ceryle rudis	Alcedinidae	Coraciiformes	R	0.25
55	White Throated Kingfisher	Halcyon smyrnensis	Alcedinidae	Coraciiformes	R	0.59
56	Common Kingfisher	Alcedo atthis	Alcedinidae	Coraciiformes	R	0.17
57	Barn Owl	Tyto alba	Tytonidae	Strigiformes	R	0.25
58	Spotted Owl	Strix occidentalis	Strigidae	Strigiformes	R	0.17

59	Eurasian Nightjar	Caprimulgus europaeus	Caprimulgidae	Caprimulgiformes	S	0.17
60	Indian Roller	Coracias benghalensis	Coraciidae	Coraciiformes	R	0.34
61	Asian Koel	Eudynamys scolopaceus	Cuculidae	Cuculiformes	S	0.25
62	Gad Wall	Mareca strepera	Anatidae	Anseriformes	W	4.32
63	Common Pochard	Aythya ferina	Anatidae	Anseriformes	W	3.56
64	Marbled Teal	Marmaronetta angustirostris	Anatidae	Anseriformes	W	1.44
65	Garganey	Anas querquedula	Anatidae	Anseriformes	P	0.42
66	Eurasian Wigeon	Mareca penelope	Anatidae	Anseriformes	W	3.31
67	Ferruginous duck	Aythya nyroca	Anatidae	Anseriformes	W	0.85
68	Ruddy Shelduck	Tadorna ferruginea	Anatidae	Anseriformes	W	2.20
69	Common Teal	Anas crecca	Anatidae	Anseriformes	W	2.20
70	Northern Shoveler	Anas clypeata	Anatidae	Anseriformes	W	5.34
71	Northern Pintail	Anas acuta	Anatidae	Anseriformes	W	2.80
72	Mallard	Anas platyrhynchos	Anatidae	Anseriformes	W	3.31
73	Purple Swamphen	Porphyrio porphyrio	Rallidae	Gruiformes	R	0.34
74	Spotted Crake	Porzana porzana	Rallidae	Gruiformes	W	0.42
75	Baillons Crake	Porzana pusilla	Rallidae	Gruiformes	W	0.17
76	Water Rail	Rallus aquaticus	Rallidae	Gruiformes	W	0.25
77	Ruddy Breasted Crake	Porzana fusca	Rallidae	Gruiformes	W	0.25
78	little Crake	Porzana parva	Rallidae	Gruiformes	W	0.17
79	Common Moorhen	Gallinula chloropus	Rallidae	Gruiformes	R	0.42
80	White Breasted Waterhen	Amaurornis phoenicurus	Rallidae	Gruiformes	R	0.25
81	Eurasian Coot	Fulica atra	Rallidae	Gruiformes	R	0.51
82	Cinnamon Bittern	Ixobrychus cinnamomeus	Ardeidae	Pelicaniformes	R	0.17
83	Black Bittern	Ixobrychus flavicollis	Ardeidae	Pelicaniformes	R	0.17
84	Great Bittern	Botaurus stellaris	Ardeidae	Pelicaniformes	R	0.25
85	Yellow Bittern	Ixobrychus sinensis	Ardeidae	Pelicaniformes	R	0.17
86	Purple Heron	Ardea purpurea	Ardeidae	Pelicaniformes	R	0.17
87	Great Egret	Ardea alba	Ardeidae	Pelicaniformes	R	0.25
88	Grey Heron	Ardea cinerea	Ardeidae	Pelicaniformes	R	0.17
89	Intermediate Egret	Ardea intermedia	Ardeidae	Pelicaniformes	R	0.34

90	Indian Pond Heron	Ardeola grayii	Ardeidae	Pelicaniformes	R	0.25
91	Black Crowned Night Heron	Nycticorax nycticorax	Ardeidae	Pelicaniformes	R	0.23
92	Little Egret	Egretta garzetta	Ardeidae	Pelicaniformes	R	0.34
93	Temmink's Stint	Calidris temminckii	Scolopacidae	Charadriiformes	W	0.42
94	Marsh Sandpiper	Tringa stagnatilis	Scolopacidae	Charadriiformes	P	0.34
95	Wood Sandpiper	Tringa glareola	Scolopacidae	Charadriiformes	W	0.42
96	Common Sandpiper	Actitis hypoleucos	Scolopacidae	Charadriiformes	W	0.51
97	Green Sandpiper	Tringa ochropus	Scolopacidae	Charadriiformes	W	0.25
98	Common Snipe	Gallinago gallinago	Scolopacidae	Charadriiformes	W	0.17
99	Ruff	Philomachus pugnax	Scolopacidae	Charadriiformes	P	0.34
100	Common Greenshank	Tringa nebularia	Scolopacidae	Charadriiformes	W	0.51
101	little stint	Calidris minuta	Scolopacidae	Charadriiformes	P	0.25
102	Black Tailed Godwit	Limosa limosa	Scolopacidae	Charadriiformes	W	0.34
103	Common Red Shank	Tringa totanus	Scolopacidae	Charadriiformes	W	0.51
104	Jack Snipe	Lymnocryptes minimus	Scolopacidae	Charadriiformes	W	0.42
105	Spotted Redshank	Tringa erythropus	Scolopacidae	Charadriiformes	W	0.59
106	River Tern	Sterna aurantia	Laridae	Charadriiformes	W	0.25
107	Gull Billed Tern	Sterna acuticauda	Laridae	Charadriiformes	W	0.25
108	Whiskered Tern	Chlidonias hybrida	Laridae	Charadriiformes	P	0.25
109	Black Headed Gull	Chroicocephalus ridibundus	Laridae	Charadriiformes	W	0.25
110	Heuglin's Gull	Larus heuglini	Laride	Charadriiformes	W	0.34
111	Little Ringed Plover	Charadrius dubius	Charadriidae	Charadriiformes	W	0.51
112	White Tailed Lapwing	Vanellus leucurus	Charadriidae	Charadriiformes	W	0.17
113	Red Wattled Lapwing	Vanellus indicus	Charadriidae	Charadriiformes	R	0.34
114	Greater Painted Snipe	Rostratula benghalensis	Rostratulidae	Charadriiformes	R	0.51
115	Black Winged stilt	Himantopus himantopus	Recurvirostridae	Charadriiformes	R	0.68
116	Collared Pratincole	Glareola pratincola	Glareolidae	Charadriiformes	S	0.25
117	Oriental Pratincole	Glareola maldivarum	Glareolidae	Charadriiformes	S	0.34
118	Pheasant Tailed Jacana	Hydrophasianus chirurgus	Jacanidae	Charadriiformes	R	0.34
119	Glossy Ibis	Plegadis falcinellus	Threskiornithidae	Suliformes	P	0.42
120	Little Cormorant	Microcarbo niger	Phalacrocoracidae	Suliformes	R	1.53

121	Great Cormorant	Phalacrocorax carbo	Phalacrocoracidae	Suliformes	W	0.68
122	Little Gerebe	Tachybaptus ruficollis	Podicipedidae	Podicipediformes	R	0.59
123	Black Kite	Milvus migrans	Accipitridae	Accipitriformes	R	0.93
124	Sparrow hawk	Accipiter nisus	Accipitridae	Accipitriformes	W	0.17
125	Black Winged Kite	Elanus caeruleus	Accipitridae	Accipitriformes	R	0.25
126	Marsh Harrier	Cicus aeruginosus	Accipitridae	Accipitriformes	R	0.08
127	Shikra	Accipiter badius	Accipitridae	Accipitriformes	R	0.17
128	Greater Spotted Eagle	Clanga clanga	Accipitridae	Accipitriformes	R	0.17
129	Common Buzzard	Buteo buteo	Accipitridae	Accipitriformes	W	0.17
130	Booted Eagle	Hieraaetus pennatus	Accipitridae	Accipitriformes	W	0.17
131	Red Necked Falcon	Falco chicquera	Falconidea	Accipitriformes	R	0.17

Abbreviations: RA: Relative Abundance, R: Resident, W: Winter, S: Summer, P: Passage Migrant

Response of birds towards stimulus

One hundred and nine birds from different orders were disturbed intentionally to access their response and record their flight initiation distance. 39% of water birds shows weak response toward disturbance, 33% shows weak response and 28% show high response as they didn't return in site area after the disturbance during survey time.

Eleven species of family Anatidae were recorded during the study period. More than 54 percent of the representatives of family Anatidae showed weak response; they flew away on disturbance but remained within sub-sites. Thirty-six percent showed high-medium response and 9% of the representatives showed high response and did not return during survey time at point of disturbance. Nine species of family Rallidae were recorded during survey time; 55% of species from this family showed weak response upon disturbance, 33% medium and 11 % showed high response. This indicated that family Anatidae and Rallidae showed almost the same type of response rate on disturbance.

Response recorded by species of family Ardeidae was highly variable as 45% showed weak response and 36% showed high response which indicated variation in producing same response against same stimuli among representatives of same family. Three representatives of family charadriiformes were recorded; two of them showed weak response and one showed high response.

Thirteen species of family Scolopacidae were recorded during study and 84.62% species of this family showed high response, which indicated that representatives of this family were very sensitive towards disturbance. Same type of response was recorded in representative of family Laridae as 60% of representative showed medium response, 40% shows high response. Weak response was totally absent in this family. Collared Pratincole, Oriental Pratincole, Greater Painted Snipe and Glossy Ibis showed high response and Pheasant Tailed Jacana, Black-Winged stilt and Little Cormorant showed medium response.

Figure 4: Percentage of Response type in species of water birds

Flight initiation distance (FID) of 61 species of water birds were recorded. Whiskered Turn showed maximum FID that is 39 m and Spotted Crake shows minimum FID that is 10 m (Table 2). More than 50% of water birds recorded showed more than 25 m FID and others lay below this range (Figure 5).

Table 2. Flight initiation distance of water birds at Langh lake

			FID (meters)
1	Gad Wall	Mareca strepera	20
2	Common Pochard	Aythya ferina	30
3	Marbled Teal	Marmaronetta angustirostris	25
4	Garganey	Anas querquedula	26
5	Eurasian Wigeon	Mareca penelope	36
6	ferruginous duck	Aythya nyroca	30
7	Ruddy Shelduck	Tadorna ferruginea	24
8	Common Teal	Anas crecca	23
9	Northern Shoveler	Anas clypeata	22
10	Northern Pintail	Anas acuta	25
11	Mallard	Anas platyrhynchos	27
12	Purple Swamphen	Porphyrio porphyrio	18
13	Spotted Crake	Porzana porzana	10
14	Baillons Crake	Porzana pusilla	11
15	Water Rail	Rallus aquaticus	16
16	Ruddy Breasted Crake	Porzana fusca	20
17	little Crake	Porzana parva	23
18	Common Moorhen	Gallinula chloropus	17
19	White Breasted Waterhen	Amaurornis phoenicurus	18
20	Eurasian Coot	Fulica atra	15
21	Cinnamon Bittern	Ixobrychus cinnamomeus	30
22	Black Bittern	Ixobrychus flavicollis	25
23	Great Bittern	Botaurus stellaris	26
24	Yellow Bittern	Ixobrychus sinensis	25
25	Purple Heron	Ardea purpurea	28
26	Great Egret	Ardea alba	20
27	Grey Heron	Ardea cinerea	30
28	Intermediate Egret	Ardea intermedia	36
29	Indian Pond Heron	Ardeola grayii	29
30	Black Crowned Night Heron	Nycticorax nycticorax	26
31	Little Egret	Egretta garzetta	22
32	Temmink's Stint	Calidris temminckii	32
33	Marsh Sandpiper	Tringa stagnatilis	31
34	Wood Sandpiper	Tringa glareola	33
35	Common Sandpiper	Actitis hypoleucos	36
36	Green Sandpiper	Tringa ochropus	38

37	Common Snipe	Gallinago gallinago	35
38	Ruff	Philomachus pugnax	37
39	Common Greenshank	Tringa nebularia	35
40	little stint	Calidris minuta	34
41	Black Tailed Godwit	Limosa limosa	36
42	Common Red Shank	Tringa totanus	37
43	Jack Snipe	Lymnocryptes minimus	34
44	Spotted Redshank	Tringa erythropus	39
45	River Tern	Sterna aurantia	35
46	Gull Billed Tern	Sterna acuticauda	38
47	Whiskered Tern	Chlidonias hybrida	39
48	Black Headed Gull	Chroicocephalus ridibundus	35
49	Heuglin's Gull	Larus heuglini	34
50	Little Ringed Plover	Charadrius dubius	25
51	White Tailed Lapwing	Vanellus leucurus	15
52	Red Wattled Lapwing	Vanellus indicus	14
53	Greater Painted Snipe	Rostratula benghalensis	28
54	Black Winged stilt	Himantopus himantopus	26
55	Collared Pratincole	Glareola pratincola	30
56	Oriental Pratincole	Glareola maldivarum	32
57	Glossy Ibis	Plegadis falcinellus	29
58	Little Cormorant	Microcarbo niger	21
59	Little Gerebe	Tachybaptus ruficollis	19
60	Great Cormorant	Phalacrocorax carbo	18
61	Pheasant Tailed Jacana	Hydrophasianus chirurgus	20

Figure 5: Level of FID of different water birds

Figure 6: Percentage of Response type in species of Order Passeriformes

Rate of response of passerine birds was also recorded during current study, according to which, 50% of passerine birds showed medium response. This indicated that they remain in the site upon disturbance, 25% showed high and 25% showed weak response (Figure 6).

Seventy percent of passerines recorded lay in the 12 m to 32 m range. Pale martin showed maximum (39) FID among passerines and Jungle babbler showed the minimum FID of 9 meter. (Table 3), (Figure 7)

Table 3. Flight initiation distance of passerines at Langh lake

S. No	Common Name	Scientific Name	FID (meter)
1	Pale Martin	Riparia diluta	32
2	Wire Tailed Swallow	Hirundo smithii	27
3	Barn Swallow	Hirundo rustica	26
4	Common Whitethroat	Sylvia communis	20
5	White Tailed Stonechat	Saxicola leucurus	15
6	Red Throated Flycatcher	Ficedula parva	16
7	Common Stonechat	Saxicola rubicola	17
8	Pied Bushchat	Saxicola caprata	10
9	Rufous tailed Scrub Robin	Cercotrichas galactotes	19
10	Spotted Flycatcher	Muscicapa striata	10
11	Asian Desert Warbeler	Sylvia nana	12
12	Rufous Vented Prinia	Prinia burnesii	14
13	Bay-Backed Shrike	Lanius vittatus	15
14	Isabelline Shrike	Lanius isabellinus	17
15	Long Tailed Shrike	Lanius schach	16
16	Turkestan Shrike	Lanius phoenicuroides	18
17	Baya Weaver	Ploceus philippinus	20

18	Streaked Weaver	Ploceus manyar	22
19	Chestnut Shuoldered Petronia	Petronia xanthocollis	20
20	Spanish Sparrow	Passer hispaniolensis	15
21	Commn Redstart	Phoenicurus phoenicurus	14
22	House Sparow	Passer domesticus	10
23	Paddy Field Warbeler	Acrocephalus agricola	11
24	Clamorous Reed Warbler	Acrocephalus stentoreus	12
25	Oriental Sky Lark	Alauda gulgula	14
26	Crested Lark	Galerida cristata	10
27	Common Chiff Chaff	Phylloscopus collybita	14
28	Bluethroat	Luscinia svecica	14
29	Striated Babbler	Turdoides earlei	10
30	Jungle Babbler	Turdoides striata	9
31	Common Babbler	Turdoides caudata	9
32	Graceful Prinia	Prinia gracilis	14
33	Rufous Fronted Prinia	Prinia buchanani	11
34	Yellow Bellied Prinia	Prinia flaviventris	13
35	Plain Prinia	Prinia inornata	12
36	Zitting Cicsticola	Cisticola juncidis	14
37	Paddy Field Pipit	Anthus rufulus	15
38	Citrine Wagtail	Motacilla citreola	13
39	Yellow Wagtail	Motacilla flava	13
40	White Wagtail	Motacilla alba	15
41	White Cheeked Bulbul	Pycnonotus leucotis	10
42	Red Vented Bulbul	Pycnonotus cafer	10
43	Blyth's Reed Warbler	Acrocephalus dumetorum	12
44	Purple Sun Bird	Dreptes thomensis	10
45	Common Myna	Acridotheres tristis	11
46	Blue Cheeked Bee Eater	Merops persicus	14
47	Green Bee Eater	Merops orientalis	13
48	Black Drongo	Dicrurus macrocercus	15

Figure 7: Level of FID of different Passerine birds

RESULT AND DISCUSSION

Species Richness and Species Abundance

During current study 131 species of birds belong to different families were recorded at Langh lake which indicates that this site is a perfect habitat of different bird species. This could be due to various factors like abundant typha, juncus and tamarix grown on edges of lake and different trees. From recorded birds, water birds were among highest in variety of different species. From total recorded birds, 51% were resident, 35% were in winter migrant, 9% passage migrant were recorded and only 5% were summer migrant. Among water birds the greatest number of species recorded were from order Charadriiforms.

Marbled Teal (*Marmaronetta* angustirostris) was recorded with percentage relative abundance of 1.4. This species is Vulnerable in IUCN red list. Population of this species is declining due to habitat destruction and illegal hunting (BirdLife International, 2017). Ferruginous duck (*Aythya nyroca*) was recorded with relative abundance of 0.85%. This species is Near

threatened internationally. Distribution range of this species is declining (Wetlands International, 2016). Changes to the vegetation community, disruption of water regimes, siltation, and increased water turbidity contribute to its dwindling numbers.

Greater Spotted Eagle (*Clanga clanga*) is facing serious threats throughout its distribution range. Its conservation status is vulnerable internationally. This species was recorded from study area with relative abundance of 0.17%. Key threats to this species are habitat destruction, disturbance, poaching and habitat degradation due to afforestation and wetland drainage. In eastern Europe, agricultural intensification and the abandonment of traditional floodplain management have reduced habitat quality (Lohmus and Vali, 1998).

River Tern (Sterna aurantia) is near threatened internationally. This was recorded during survey with 0.25% relative abundance. The global population is estimated at between 50,000 and 100,000 individuals (Delany and Helmink, 2006). Threats to this species are currently not clear but flow regime, flooding of nest-sites and

construction of dams could be major causes of its decline (Birdlife International, 2016). Population of Black-tailed Godwit (*Limosa limosa*) is declining globally, making its conservation status Near threatened. This was recorded from current study area with 0.34% relative abundance. Most significant to this species is loss of habitat for its nesting sites due to intensive agriculture.

Flight Initiation Distance and Response

FID is important for planning and developing policies for conservation of birds. Presence of humans in habitat of wildlife results in their disturbance. Hence, buffers are required between the wildlife and its observers to reduce wildlife disturbance. Yet, no proper research has previously been conducted to find the FID for birds of Pakistan. The current study recorded FID for 109 birds belonging to different avian Redshank families. Spotted (Tringa erythropu) and Whiskered tern (Chidonias hybrida) showed maximum flight initiation distance among water birds and Pale martin (Riparia diluta) among passerine birds. Due to aesthetic value of Langh lake a lot of visitors move towards this area and perform different kinds activities such as boating, playing loud music and eating, causing pollution which causes disturbance to the bird population. There is no defined boundary that would cordon off area between visitors and birds. All these factors create hurdles for conservation policies.

Past studies insinuate that birds take humans as a predator when approached, which produces different biological changes that are negative in most cases. An experiment was conducted on Royal Penguins (*Eudyptes schlegeli*) on Macquarie Island, Antarctica which revealed a 1.23-fold increase in heart rate from resting rate and a six-fold increase in vigilance as man approached; the study found that this response was significantly greater than that

produced for its natural aerial predator (Nick et.al, 2005). During current studies 50% species of Passerines showed a weak response. As many birds are not negatively affected by human presence which is quite similar with the study performed in Europe (Mayer-Gross, 1997) in which nests of 11 passerine birds were visited frequently in breeding season for two years, but they showed no negative effect. different studies it was proven that real predation attempts and human disturbance results in redirecting the target bird's time and energy expenditure away from other important activities, such as reproduction and feeding (Frid and Dill, 2002). Human outdoor recreation and intensive agriculture along wetlands has been linked to lower abundance and reduced species richness.

CONCLUSION

Langh lake is a wildlife sanctuary and habitat of many birds but this area needs long term management policies to maintain ecological integrity of this habitat. Current study recorded FID, birds' response toward disturbance and diversity of birds in this habitat. This information will stakeholders to develop policies to control the human intervention in birds' habitat be it in the form of agricultural activities or recreational activities. This data will also help in conservation of birds and in reducing their conflict with humans.

REFERENCES

BirdLife International (2004). State of the world's birds 2004: indicators for our changing world. BirdLife International, Cambridge, pp 7.

BirdLife International (2016). Sterna aurantia. The IUCN Red List of Threatened Species.

BirdLife International (2017). *Marmaronetta* angustirostris. The IUCN Red List of Threatened Species.

- BirdLife International (2019). Country profile: Pakistan.
- Blumstein DT (2006). Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim Behav., 71: 389–399.
- Dandenong Valley Authority (1979). Edithvale Wetlands buffer area analysis. Environmental report 2, Dandenong Valley Authority, Melbourne.
- Frid A, Dill LM (2002). Human-caused disturbance stimuli as a form of predation risk. Conserv Eco., 6: 11–26.
- Ghalib S, Kanwal R, Zahra A (2018). Review of the distribution, status and conservation of wildlife of Sindh. Can J Pure Appl Sci., 12: 4519-4533.
- Grimmett R, Roberts T, Inskipp T (2009).

 Birds of Pakistan. Yale University

 Press.
- Hediger H (1934). Zur Biologie und Psychologie der Flucht bei Tieren. Biol. Zentralbl. 54: 21-40.
- Holmes N, Giese M, Kriwoken LK (2005). Testing the minimum approach distance guidelines for incubating Royal penguins *Eudyptes schlegeli*. Biolog. Conserv., 126: 339–350.
- Hossain MD, Baki A (2015). Present status of preliminary survey on avifauna diversity and distribution in the most polluted river Buriganga, Dhaka, Bangladesh. Int J Pure Appl Zool., 3(1): 59-69.
- Lohmus A, Vali U, 1998. Numbers of the Greater Spotted Eagle and the Lesser Spotted Eagle in Estonia. Hirundo. Acta ornithoecol, 11: 24-34.
- Mayer-Gross H, Crick HQP, Greenwodd JJD (1997). The effect of observers visiting the nests of passerines: an experimental study. Bird Study, 44: 53–65.Roberts TJ (1992). In: The

- Birds of Pakistan. 1st ed 2, Oxford University Press, New York.
- Simon D, Scott D, Helmink ATF, (2006). Waterbird Population Estimates. 4th ed.
- Sutherland WJ (2000). The conservation, research, management and policy handbook. Blackwell Science Ltd., Oxford, pp 14.