Fenómenos de Transferência II

1. Num estudo experimental de absorção de SO_2 em água numa coluna de parede molhada determinou-se para K_G o valor de 0.768 kmol $h^{\text{-}1}$ $\text{m}^{\text{-}2}$ at $\text{m}^{\text{-}1}$ a 20^{o} e à pressão atmosférica. Não sendo a absorção de SO_2 controlada nem pelo filme gasoso nem pelo filme líquido, pode considerar-se que $\frac{1}{k_G} = \frac{H}{k_I}$.

Sabendo que o valor de K_G para absorção de NH_3 em água a $10^{\circ}C$ na mesma aparelhagem e com os mesmos caudais de gás e água é 2.217 kmole h^{-1} m^{-2} at m^{-1} , calcule a constante α na equação:

 $k_G = A (D_G)^{\alpha}$ em que D_G é o coeficiente de difusão do gás no ar.

- coeficiente de difusão de SO_2 em ar a 20° C, $D_{SO_2} = 0.041 \text{ m}^2/\text{h}$
- -coeficiente de difusão de NH₃ em ar a 10° C, $D_{NH_3} = 0.083 \text{ m}^2/\text{h}$

$$\frac{H_{SO_2}}{H_{NH_3}} = \frac{1}{0.018} \qquad \frac{D_{SO_2}/H_2O}{D_{NH_3}/H_2O} \cong 1$$

2. Ar e água são postos em contacto em contracorrente numa coluna de parede molhada de 30 mm de diâmetro.

Para a fase gasosa sabe-se que:

$$Sh = 0.023 \text{ Re}^{0.8} Sc_6^{0.44}$$

Mostre que na fase líquida, a quantidade transferida por unidade de tempo e por unidade de área de interface é k_L C_L $(x_i - x)$ Kmol/m² s; x_i e x são respectivamente as fracções molares de soluto na interface e na fase líquida, C_L a concentração molar de água $(C_L = 1000/18 \text{ kmol/m}^3)$ e k_L m/s.

Então mostre ainda que, com K_G e k_G em m/s, e H nas unidades em que é dado na

tabela
$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{10^5 \text{ H}}{k_L C_L \text{ RT}}$$

Em experiências de desabsorção de oxigénio verificou-se que para a fase líquida $k_L=0,2$ mm/s.

Admitindo $k_L \alpha \sqrt{D_L}$, calcule o coeficiente global de transferência K_G quando o ar contém pequenas quantidades de a) NH₃, b) SO₂, c) CO₂ e a velocidade do ar é 0,40 m/s a uma pressão de 5×10^5 Pa e à temperatura de 20° c.

Dados: (a 20°C)

Gás	H(10 ⁵ Pa)	Sc _G	$D_L \times 10^9 (m^2/s)$
NH ₃	0,62	0,6	1,6
SO_2	12,2	1,3	1,4
CO_2	1420	1,0	1,7
O_2			2,1

Para o ar, $\mu = 1.84 \times 10^{-5} \text{ Ns m}^{-2}$

3. Experiências de absorção de SO_2 realizadas numa coluna de parede molhada, alimentada com um caudal de água constante, forneceram os seguintes resultados:

Caudal molar de gás	K _G
(kmol/s)	(kmol/m²s Pa)
0.04	8.4 x 10 ⁻⁵
0.10	10 x 10 ⁻⁵

- a) Para um caudal de gás de 0.5 kmol/s calcule o coeficiente global, K_G e os coeficientes individuais de transferência de massa, k_G e k_L .
- b) Calcule a percentagem de resistência exercida por cada uma das fases.

$$H = 20 \frac{\text{Pa m}^3}{\text{kmol}}$$
$$k_{_{G}} \propto \text{Re}_{G}^{0.8}$$

 Num estudo experimental de absorção de SO₂ em água numa coluna de parede molhada determinou-se para K_G o valor de 0.768 kmol h⁻¹ m⁻² atm⁻¹ a 20° e à pressão atmosférica. Não sendo a absorção de SO2 controlada nem pelo filme gasoso nem pelo filme líquido, pode considerar-se que $\frac{1}{k_C} = \frac{H}{k_C}$.

Sabendo que o valor de K_G para absorção de NH₃ em água a 10°C na mesma aparelhagem e com os mesmos caudais de gás e água é 2.217 kmole h-1 m-2 atm⁻¹, calcule a constante α na equação:

 $k_G = A (D_G)^{\alpha}$ em que D_G é o coeficiente de difusão do gás no ar.

coeficiente de difusão de SO₂ em ar a 20°C, D_{SO₂} = 0.041 m²/h

-coeficiente de difusão de NH₃ em ar a 10°C, D_{NH₃} = 0.083 m²/h

$$\frac{H_{SO_2}}{H_{NH_3}} = \frac{1}{0.018}$$
 $\frac{D_{SO_2}/H_2O}{D_{NH_3}/H_2O} \cong 1$

WG: KL

P-_ 1 atm

T. 283K

Dsoz = 0,041 m²

$$\frac{1.54}{2.37} = \frac{0.071}{0.083}$$

$$X = \frac{1.57}{12.32}$$

$$X = \frac{1.57}{2.32}$$

$$= 0.581$$

2. Ar e água são postos em contacto em contracorrente numa coluna de parede molhada de 30 mm de diâmetro.

Para a fase gasosa sabe-se que:

$$Sh = 0.023 \text{ Re}^{0.8} \text{ Sc}_{G}^{0.44}$$

Mostre que na fase líquida, a quantidade transferida por unidade de tempo e por unidade de área de interface é k_L C_L $(x_i - x)$ Kmol/m² s; x_i e x são respectivamente as fracções molares de soluto na interface e na fase líquida, C_L a concentração molar de água $(C_L = 1000/18 \text{ kmol/m}^3)$ e k_L m/s.

Então mostre ainda que, com K_G e k_G em m/s, e H nas unidades em que é dado na

tabela
$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{10^5 \text{ H}}{k_L C_L \text{ RT}}$$

Em experiências de desabsorção de oxigénio verificou-se que para a fase líquida $k_L=0,2$ mm/s.

Admitindo $k_L \alpha \sqrt{D_L}$, calcule o coeficiente global de transferência K_G quando o ar contém pequenas quantidades de a) NH_3 , b) SO_2 , c) CO_2 e a velocidade do ar é 0,40 m/s a uma pressão de 5×10^5 Pa e à temperatura de 20° c.

Dados: (a 20°C)

Gás	H(10 ⁵ Pa)	Sc_G	$D_L \times 10^9 (m^2/s)$
NH ₃	0,62	0,6	1,6
SO ₂	12,2	1,3	1,4
CO_2	1420	1,0	1,7
O ₂			2,1

Para o ar, $\mu = 1.84 \times 10^{-5} \text{ Ns m}^{-2}$

P- Bx105 Pa T:293K M= 1.84 x10-5 Ns

a) NA3