Assignment #2: COMP4434 Big Data Analytics

Due Date: 23:59pm, Monday, 8 Mar. 2021

Question 1 [10 marks]

(a). [5 point] Consider using linear regression for binary classification on the label {0, 1}. Here, we use a linear model

$$h_{\theta}(x) = \theta_1 x + \theta_0$$

and squared error loss $L = \frac{1}{2}(h_{\theta}(x) - y)^2$. The threshold of the prediction is set as 0.5, which means the prediction result is 1 if $h_{\theta}(x) \ge 0.5$ and 0 if $h_{\theta}(x) < 0.5$. However, this loss has the problem that it penalizes confident correct predictions, i.e., $h_{\theta}(x)$ is larger than 1 or less than 0. Some students try to fix this problem by using an absolute error loss $L = |h_{\theta}(x) - y|$. The question is: Will it fix the problem? Please answer the question and explain it. Furthermore, some other students try designing another loss function as follows

$$L = \begin{cases} \max(0, h_{\theta}(x)), & y = 0 \\ \cdots, & y = 1 \end{cases}$$

Although it is not complete yet, if it is correct in principle, please complete it and explain how it can fix the problem. Otherwise, please explain the reason.

(b). [5 point] Consider the logistic regression model $h_{\theta}(x) = g(\theta^T x)$, trained using the binary cross entropy loss function, where $g(z) = \frac{1}{1+e^{-z}}$ is the sigmoid function. Some students try modifying the original sigmoid function into the following one

$$g(z) = \frac{e^{-z}}{1 + e^{-z}}.$$

The model would still be trained using the binary cross entropy loss. How would the model prediction rule, as well as the learnt model parameters θ , differ from conventional logistic regression? Please show your answer and explanation.

Question 2 [20 marks]

Consider using logistic regression for classification problems. Four 3-dimensional data points $(x_1, x_2, x_3)^i$ and the corresponding labels y^i are given as follows.

Data point	x_1	x_2	x_3	y
D1	-0.120	0.300	-0.010	1
D2	0.200	-0.030	-0.350	-1
D3	-0.370	0.250	0.070	-1
D4	-0.100	0.140	-0.520	1

The learning rate η is set as 0.2 and the initial parameter $\theta[0]$ is set as [-0.09, 0, -0.19, -0.21]. Please answer the following questions.

- a) [5 point] Calculate the initial predicted label for each data point.
- b) [10 point] Calculate the parameter in the first and second iterations, i.e., $\theta[1]$, $\theta[2]$, by using gradient descent algorithm.
- c) [5 point] Implement the gradient descent algorithm to update the parameters θ using python language. Please show the change trend diagram of loss function $J(\theta)$ in 50000 rounds and upload the source code file.

ps. For a) and b), the detailed calculation process is required and the intermediate and final results should be rounded to 3 decimal places.