Scalable Partitioning of Large Complex Networks

Luce le Gorrec

UK IC Postdoctoral Research Fellow

Mathematics and Statistics Department,

University of Strathclyde,

Glasgow, United Kingdom

Graph (or network): entities (nodes) connected by relations (edges).

E.g. Who-follows-who network.

E.g. Money transfer network.

Graph (or network): entities (nodes) connected by relations (edges). Different kinds of graphs: directed, weighted, evolving...

⇒ Our study case : directed, unweighted, static.

What: A partition of nodes with high (low) density of edges within (between) the groups: a **community structure**.

Its Adjacency Matrix

What: A partition of nodes with high (low) density of edges within (between) the groups: a **community structure**.

A Network

Its Adjacency Matrix

What: A partition of nodes with high (low) density of edges within (between) the groups: a **community structure**.

Its Adjacency Matrix

Why:

- Data analysis: Users spreading terrorist propaganda on Twitter[1].
- Numerical efficiency: Analysis of a hundred-million-node network[2].

How: Partitioning a graph: NP-hard:

- But for undirected graphs: Efficient, simple and well-established heuristic (Louvain [3], Metis [4], ...).
- For directed graphs: Nothing as simple or well-established ([5]).
- ⇒ "Forgetting" edge directions to get undirected networks (suboptimal).

Recent works [6,7,8] focus on motifs to partition directed networks.

Motif: A small induced subgraph of a certain kind.

Looking for motifs ${\mathcal M}$

in a graph

Recent works [6,7,8] focus on motifs to partition directed networks.

Motif: A small induced subgraph of a certain kind.

Looking for motifs $\mathcal M$

in a graph

not a motif \mathcal{M}

Recent works [6,7,8] focus on motifs to partition directed networks.

Motif: A small induced subgraph of a certain kind.

Looking for motifs ${\cal M}$

in a graph

a motif \mathcal{M}

Recent works [6,7,8] focus on motifs to partition directed networks.

Motif: A small induced subgraph of a certain kind.

Looking for motifs \mathcal{M}

in a graph

,

another motif \mathcal{M}

Recent works [6,7,8] focus on **motifs** to partition directed networks.

Motif: A small induced subgraph of a certain kind.

Motifs express complex notions in networks:

Friends of my friends are my friends:

Recent works [6,7,8] focus on **motifs** to partition directed networks.

Motif: A small induced subgraph of a certain kind.

Motifs express complex notions in networks:

Cooperative propagation of information:

Transmitters

Receivers

An application of motifs: an undirected network induced from a directed one:

Looking for motifs _____ in the graph

provides the graph:

An application of motifs: an undirected network induced from a directed one:

Looking for motifs _____ in the graph

provides the graph:

	а	b	С	d	е
а		1	1		
a b	1		1		
c d	1	1			
d					
е					

An application of motifs: an undirected network induced from a directed one:

Looking for motifs _____ in the graph

provides the graph:

	а	b	С	d	е
а		1	2		1
a b	1		1		
c d	2	1			1
d					
е	1		1		

An application of motifs: an undirected network induced from a directed one:

Looking for motifs _____ in the graph

provides the graph:

	а	b	С	d	е
а		1	2		1
a b	1		2	1	
c d	2	2		1	1
		1	1		
е	1		1		

An application of motifs: an undirected network induced from a directed one:

Looking for motifs 🥕

in the graph

provides the graph:

whose adjacency matrix is:

	а	b	С	d	е
а		1	2		1
b	1		2	1	
С	2	2		1	1
d		1	1		
е	1		1		

 \implies the **Benson Graph** of the initial network [6].

Motifs and Benson Graphs

Adjacency Matrix of the Benson graph of motif:

Adjacency Matrix of the Benson graph of motif:

Motifs and Benson Graphs

Adjacency Matrix of the Benson graph of motif:

Adjacency Matrix of the Benson graph of motif:

Motifs and Benson Graphs

Adjacency Matrix of the Benson graph of motif:

Adjacency Matrix of the Benson graph of motif:

Which motif(s) should we use?

Assessing a motif significance:

- With inferred knowledge.
- What if no available knowledge?

Which motif(s) should we use?

Assessing a motif significance:

- With inferred knowledge.
- What if no available knowledge?
- Statistical significance (ZScore) [9]: 'Significant motifs appear more often than "by chance".'
 A network G, a motif M, a sequence of random networks {H₁,..., H_k}:

$$ZScore(\mathcal{M}) = \frac{\# motifs \ \mathcal{M} \ in \ G - mean(\# motifs \ \mathcal{M} \ in \ H_i)}{std(\# motifs \ \mathcal{M} \ in \ H_i) + \varepsilon}.$$

Expensive, no consensus about random model.

Which motif(s) should we use?

Assessing a motif significance:

- With inferred knowledge.
- What if no available knowledge?
- Statistical significance (ZScore) [9]: 'Significant motifs appear more often than "by chance".'
- X Expensive, no consensus about random model.
- Our proposal : Assessing the **discriminatory capacity of motifs on** a **dataset**: a measure (γ -score) derived from a feature selection process based on Principal Component Analysis. (A preprint submitted).

Which motif(s) should we use? Work in progress

Detecting communities in modular networks [10] using Louvain applied on the Benson graphs.

Which motif(s) should we use? Work in progress

Detecting communities in modular networks [10] using Louvain applied on the Benson graphs.

 \implies Motifs with highest γ -score \sim Motifs with highest Adj. Mut. Info. Royal Academy of Engineering

Which motif(s) should we use? TO DO

- Expand the preliminary study to confirm/dismiss the correlation high γ -score/well-detected blocks.
- Focus on local community detection: different motifs may help to detect different communities [11].

Building the Benson Graphs

- Naive: Whole decomposition of the network (finding all the Benson graphs): FanMod [12].
- Prohibitive complexity.
- Some efficient techniques exist [6].
- For certain kinds of motifs only.
- We have derived generic formulas to directly compute the Benson adjacency matrices of 3- and 4-node motifs.

Building the Benson Graphs: Our formulas

A graph G with n nodes, A of dim $n \times n$ its adjacency matrix. Two observations:

Observation 1: 3 matrices B, U, N of dim $n \times n$ based on A s.t.:

- $B(i,j) = 1 \iff (i) \leftrightarrow (j)$ in G.
- $U(i,j) = 1 \iff (i) \rightarrow (j)$ in G.
- $N(i,j) = 1 \iff (i)$ (j) in G.

Observation 2: Given 2 nodes i, j in G, number of x s.t.

 $(i \longleftrightarrow j)$ and $i \to x \leftarrow j$ B(i,j) $\times \sum_{x=1}^{n} U(i,x).U(x,j)$

Royal Academy of Engineering

Building the Benson Graphs: TO DO

- We are working on an efficient implementation of our formulas.
- Extension to larger motifs?

Take Home Messages

- Partitioning directed networks: not as "simple" as for undirected case.
- Motifs express complex notions in networks .
- The Benson Graph provides an undirected representation of the network.
- Without other knowledge, γ -score seems to provide good indication about which motifs used to partition the graph.
- With linear algebra, the Benson adjacency matrix can be directly built for 3-and 4-node motifs.

Thank you for your attention

Some codes and the slides are available on github.com/luleg/

Bibliography

- [1]: Detection of Terrorism-related Twitter Communities using Centrality Scores, I.Gialampoukidis et al., 2017
- [2]: Graph Partitioning for Distributed Graph Processing, M. Onizuka et al, 2017
- [3]: Fast unfolding of communities in large networks, V. Blondel et al, 2008
 [4]: Multi-Threaded Graph Partitioning, D. LaSalle, G. Karypis, 2013
- [5]: The map equation, M. Rosvall et al., 2009
- [6]: Tools for higher-order network analysis, A. Benson, 2017
- [7]: Higher-order organization of complex networks, A. Benson et al, 2017
- [8]: Scalable motif-aware graph clustering, C. Tsourakakis et al, 2017
- [9]: Network Motifs: Simple Building Blocks of Complex Networks, R. Milo et al, 2002
- [10]: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities, A. Lancichinetti, S. Fortunato, 2009
- [11]: gl2vec: Learning Feature Representation Using Graphlets for Directed Networks, K. Tu et al, 2019
- [12] : FANMOD: a tool for fast network motif detection, S. Wernicke, F. Rasche, 2006

