Noções Básicas de Grafos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

23 de maio de 2016

Plano de Aula

- Revisão
 - Matriz de adjacências e incidências
 - Vizinhança
- Caminhos e Circuitos
- Subgrafos

Pensamento

Frase

O plano que não pode ser mudado não presta.

Quem?

Públio Siro (??? - 43 d.C.) Escritor latino da Roma antiga.

Sumário

- Revisão
 - Matriz de adjacências e incidências
 - Vizinhança
- Caminhos e Circuitos
- Subgrafos

Matriz de adjacências e incidências

Definicão

Uma matriz de adjacências de um grafo G é a matriz A definida da seguinte maneira: para todo vértice u e v

$$A[u,v] = egin{array}{ll} 1 & \mbox{se } uv \in E_G \mbox{ ,} \\ 0 & \mbox{em caso contrário.} \end{array}$$

Definição

Uma matriz de incidências de um grafo G é a matriz M definida da seguinte maneira: para todo vértice u e uma aresta e

$$M[u,e] = egin{array}{ll} 1 & ext{se } u \ ext{\'e} \ ext{uma das pontas de } e \ , \\ 0 & ext{em caso contrário}. \end{array}$$

Vizinhança

Vizinhança

 A vizinhança de um vértice v em um grafo G é o conjunto de todos os vizinhos de v;

Vizinhança

Vizinhança

- A vizinhança de um vértice v em um grafo G é o conjunto de todos os vizinhos de v;
- Este conjunto será denotado por $N_G(v)$ (ou simplesmente N(v).

Lembrando...

Seja G um grafo e $v, u \in V(G)$.

Dizemos que v é vizinho de u se existe uma aresta que os liga.

Grau

Grau

- O grau de um vértice v em um grafo G é o número de arestas que incidem em v;
- Este valor será denotado por $d_G(v)$ (ou simplesmente d(v);
- Um vértice v é **isolado** se d(v) = 0.

Corolário

 $\bullet \ d_G(v) = |N(v)|.$

Grau mínimo e Grau máximo

Grau mínimo

$$\delta(G) := \min_{v \in V(G)} d_G(v)$$

Grau máxi<u>mo</u>

$$\Delta(G) := \max_{v \in V(G)} d_G(v)$$

Média dos graus

$$\mu(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

Corolário

$$\mu(G) = \frac{2m(G)}{n(G)}$$

Grafo regular

Grafo regular

Um grafo é **regular** se todos os seus vértices têm o mesmo grau, ou seja, se $\delta = \Delta$.

r-regular

Um grafo é r-regular se d(v) = r para todo vértice v.

Grafo cúbico

Um grafo cúbico é o mesmo que um grafo 3-regular.

Sumário

- Revisão
 - Matriz de adjacências e incidências
 - Vizinhança
- 2 Caminhos e Circuitos
- Subgrafos

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

Caminho

Um grafo G é um caminho se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

• os vértices v_1 e v_n são os **extremos** do caminho;

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

- os vértices v_1 e v_n são os **extremos** do caminho;
- os demais vértices são internos;

Caminho

Um grafo G é um **caminho** se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

- os vértices v₁ e v_n são os extremos do caminho;
- os demais vértices são internos;
- diremos que esse caminho liga v_1 a v_n .

Caminho

Um grafo G é um caminho se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

- os vértices v_1 e v_n são os **extremos** do caminho;
- os demais vértices são internos:
- diremos que esse caminho liga v_1 a v_n .

Notação

Podemos denotar um caminho pela sequência representada pelos seus vértices:

Caminho

Um grafo G é um caminho se V_G admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\}$$

- os vértices v_1 e v_n são os **extremos** do caminho;
- os demais vértices são internos;
- diremos que esse caminho liga v_1 a v_n .

Notação

Podemos denotar um caminho pela sequência representada pelos seus vértices:

Circuito

Um grafo G é um circuito se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Circuito

Um grafo G é um circuito se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Notaç<u>ão</u>

• Podemos denotar um circuito simplesmente por:

Circuito

Um grafo G é um **circuito** se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Notação

• Podemos denotar um circuito simplesmente por:

$$v_1 v_2 \dots v_n v_1$$

 O comprimento de um caminho ou circuito G é o número m(G);

Circuito

Um grafo G é um **circuito** se V_G tem 3 ou mais elementos e admite uma permutação (v_1, v_2, \ldots, v_n) tal que

$$E_G = \{v_i v_{i+1} : 1 \le i < n\} \cup \{v_1 v_n\}$$

Notação

• Podemos denotar um circuito simplesmente por:

$$v_1 v_2 \dots v_n v_1$$

- O comprimento de um caminho ou circuito G é o número m(G);
- Um triângulo, quadrado, pentágono e hexágono é o mesmo que um circuito de comprimento 3, 4, 5 e 6 respectivamente.

Sumário

- Revisão
 - Matriz de adjacências e incidências
 - Vizinhança
- Caminhos e Circuitos
- Subgrafos

Definição

Um **subgrafo** de um grafo G é qualquer grafo H tal que $V_H \subseteq V_G$ e $E_H \subseteq E_G$.

Definição

Um **subgrafo** de um grafo G é qualquer grafo H tal que $V_H \subseteq V_G$ e $E_H \subseteq E_G$.

Notações e Nomenclaturas

• É conveniente escrever " $H \subseteq G$ " para dizer que H é subgrafo de G;

Definição

Um **subgrafo** de um grafo G é qualquer grafo H tal que $V_H \subseteq V_G$ e $E_H \subseteq E_G$.

Notações e Nomenclaturas

- É conveniente escrever " $H \subseteq G$ " para dizer que H é subgrafo de G;
- Um subgrafo H de G é **gerador** (abrangente, para alguns) se $V_H = V_G$;

Definição

Um **subgrafo** de um grafo G é qualquer grafo H tal que $V_H \subseteq V_G$ e $E_H \subseteq E_G$.

Notações e Nomenclaturas

- É conveniente escrever " $H \subseteq G$ " para dizer que H é subgrafo de G;
- Um subgrafo H de G é **gerador** (abrangente, para alguns) se $V_H = V_G$:
- Um subgrafo H de G é **próprio** se $V_H \neq V_G$ ou $E_H \neq E_G$ (notação: $H \subset G$).

Subgrafo induzido - G[X]

O subgrafo de G induzido por um subconjunto X de V_G é o grafo (X,F) em que F é o conjunto $E_G\cap X^{(2)}$.

Esse subgrafo é denotado por G[X].

Subgrafo induzido - G[X]

O subgrafo de G induzido por um subconjunto X de V_G é o grafo (X,F) em que F é o conjunto $E_G\cap X^{(2)}$.

Esse subgrafo é denotado por G[X].

G - X

Para qualquer subconjunto X de V_G , denotaremos por G-X o subgrafo $G[V_G \setminus X]$.

Subgrafo induzido - G[X]

O subgrafo de G induzido por um subconjunto X de V_G é o grafo (X,F) em que F é o conjunto $E_G \cap X^{(2)}$. Esse subgrafo é denotado por G[X].

G-X

Para qualquer subconjunto X de V_G , denotaremos por G-X o subgrafo $G[V_G \setminus X]$.

G - v

Uma abreviação para $G - \{v\}$.

$$G - a$$

Uma abreviação para o grafo $(V_G, E_G \setminus \{a\})$.

G - a

Uma abreviação para o grafo $(V_G, E_G \setminus \{a\})$.

G - A

Se A é um subconjunto de E_G , então G-A é uma abreviação para o grafo $(V_G, E_G \setminus A)$.

G - a

Uma abreviação para o grafo $(V_G, E_G \setminus \{a\})$.

G - A

Se A é um subconjunto de E_G , então G-A é uma abreviação para o grafo $(V_G, E_G \setminus A)$.

Corolário

G - A é um grafo gerador de G.

Bônus (0,5 pt)

Desafio

- Quanto valem os parâmetros m, δ , e Δ de uma roda com n vértices? (ver E 1.76);
- Candidaturas até dia 24 de maio, 13h30;
- Apresentação e resposta por escrito \rightarrow (07 de junho, 15h30);
- 20 minutos de apresentação.

Noções Básicas de Grafos

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

23 de maio de 2016

