Código disponível em: Código - 187793 - Pastebin.com

Estou usando as seguintes bibliotecas no meu código

```
import numpy as np
from numpy import linalg as LA
```

1. d)

```
L = np.tril(A)
U = np.triu(A, 1)

C = -LA.inv(L) @ U
g = LA.inv(L) @ b

print("C_gs =\n", tabulate.tabulate(C, tablefmt="fancy_grid", floatfmt=".4f"), sep = '')
print(LA.norm(C, np.inf))
```

A nesse caso é a matriz da função gs (que foi passado M), definido da seguinte maneira

```
def gs(A, b, eps): e invocada assim
gs(M, d, 1e-2)
```

O resultado desses prints foram

	-						
C_gs =							
0.0000	0.0714	0.0000	0.0000	0.1429	0.1429	0.0000	0.1429
0.0000	0.0102	0.0000	0.0000	0.0918	0.0204	0.0000	0.0204
0.0000	0.0034	0.0000	0.1667	0.0306	0.0068	0.0000	0.0068
0.0000	0.0006	0.0000	0.0278	0.0051	0.0011	0.0000	0.1678
0.0000	0.0009	0.0000	0.0432	0.0079	0.0018	0.0000	0.0388
0.0000	0.0009	0.0000	0.0417	0.0077	0.0017	0.5000	0.0017
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0294	0.0000	0.0420	0.0649	0.0589	0.0000	0.0663
0.5535714285714285							

e nossa Norma - inf (C_gs) é 0.5535714285714285

e) Definição da função:

Invocação:

jacobi(M, d, 1e-2)

Output:

C_j =							
0.0000	0.0714	0.0000	0.0000	0.1429	0.1429	0.0000	0.1429
0.1429	0.0000	0.0000	0.0000	0.0714	0.0000	0.0000	0.0000
0.0000	0.3333	0.0000	0.1667	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.1667	0.0000	0.0000	0.0000	0.0000	0.1667
0.0000	0.0000	0.2222	0.2222	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.2500	0.0000	0.0000	0.0000	0.5000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.4000	0.0000	0.2000	0.0000	0.2000	0.0000	0.0000	0.0000
Norm-inf (C_j) = 0.8							

0	[[5] [2] [2] [4] [3] [2] [0] [11]]	-	0.4
1	[[5.57142857] [1.64285714] [2.5	0.5714285714285721	0.123413
2	[[5.39512472] [1.68480726] [2.3531746] [3.91666667] [2.51851852] [1.725] [0.2] [11.21746032]]	0.22500000000000001	0.0537509
3	[[5.47191178] [1.664912] [2.38104686] [3.92843915] [2.50440917] [1.68829365] [0.2] [11.13238851]]	0.0850718065003786	0.0167337
4	[[5.45107819] [1.67487377] [2.37637719] [3.9189059] [2.51321911] [1.69526172] [0.2] [11.16585592]]	0.033467408127272336	0.00542263

g) Definição da função

```
def gs(A, b, eps, printtable = False):
    n = len(A)

L = np.tril(A)
U = np.triu(A, 1)

C = -LA.inv(L) @ U
g = LA.inv(L) @ b

print("C_gs =\n", tabulate.tabulate(C, tablefmt="fancy_grid", floatfmt=".4f"), sep = '')
print(LA.norm(C, np.inf))
# print("g-gs\n", g)

k = 0

x = [np.array([5, 2, 2, 4, 3, 2, 0, 11]).reshape(n, 1)]
table = []
table.append([0, x[0], "-", LA.norm((A @ x[0]) - b, np.inf)])
while k == 0 or (LA.norm(x[k] - x[k - 1], np.inf) >= eps and LA.norm((A @ x[k]) - b, np.inf) >= eps):
    x.append(C @ x[k] + g)
    k += 1
    table.append([k, x[k], LA.norm(x[k] - x[k - 1], np.inf), LA.norm((A @ x[k]) - b, np.inf)])

if printtable:
    print(tabulate.tabulate(table, tablefmt="fancy_grid"))
return x
```

Invocação:

Output:

o alpai.							
C_gs = 							
0.0000	0.0714	0.0000	0.0000	0.1429	0.1429	0.0000	0.1429
0.0000	0.0102	0.0000	0.0000	0.0918	0.0204	0.0000	0.0204
0.0000	0.0034	0.0000	0.1667	0.0306	0.0068	0.0000	0.0068
0.0000	0.0006	0.0000	0.0278	0.0051	0.0011	0.0000	0.1678
0.0000	0.0009	0.0000	0.0432	0.0079	0.0018	0.0000	0.0388
0.0000	0.0009	0.0000	0.0417	0.0077	0.0017	0.5000	0.0017
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0294	0.0000	0.0420	0.0649	0.0589	0.0000	0.0663
0.5535714285714285							

0	[[5] [2] [2] [4] [3] [2] [0] [11]]	-	0.4
1	[[5.57142857] [1.7244898] [2.40816327] [3.90136054] [2.51322751] [1.60204082] [0.2] [11.21284958]]	0.5714285714285721	0.0809637
2	[[5.45576612] [1.67319712] [2.3746258] [3.9312459] [2.51241593] [1.69365645] [0.2] [11.15971479]]	0.11566245545837361	0.00531348