

Ù&@^œ^¦ £ Q&È		G€»Á/ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ĝi ãÁÜæ&\ ĝi *ÁÛ^• ♂{	
	Ü^]¦^•^} ææãç^ÁÔæ∮&` ææã[}•ÁËÄŒÜÔÒÁIËF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 20.62 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.91$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.05	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.05 1.65 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.12 -1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer Location Rear Struts Location Outer M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 M7 M11 Outer Outer N7 N15 M11 N7 Outer N15 N23 Location Outer Rear Struts M2 Outer Location M6 Inner Rear Reactions N8 Inner N8 N16 N16 Outer N16 N24 Location Outer M10 M10 Outer N24 Location Outer Bracing M15 Inner M15 M16A

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6 35	ksi
Φ =	0.90	
S _y =	0.02	in ³
E =	10100	ksi
I _y =	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.007	k-ft
P _n =	0.040	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>16%</u>	

A cross brace kit is required every 12 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	333.20	<u>1653.89</u>	k
Compressive Load =	2105.72	1632.85	k
Lateral Load =	<u>5.33</u>	768.26	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 23466.3 in-lbs Resisting Force Required = 782.21 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1303.69 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding Force = 177.14 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 442.85 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 177.14 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	22 in	23 in	24 in	<u>25 in</u>	
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs	

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	810 lbs	810 lbs	810 lbs	810 lbs	567 lbs	567 lbs	567 lbs	567 lbs	973 lbs	973 lbs	973 lbs	973 lbs	-149 lbs	-149 lbs	-149 lbs	-149 lbs
FB	595 lbs	595 lbs	595 lbs	595 lbs	499 lbs	499 lbs	499 lbs	499 lbs	775 lbs	775 lbs	775 lbs	775 lbs	-760 lbs	-760 lbs	-760 lbs	-760 lbs
F _V	74 lbs	74 lbs	74 lbs	74 lbs	321 lbs	321 lbs	321 lbs	321 lbs	291 lbs	291 lbs	291 lbs	291 lbs	-354 lbs	-354 lbs	-354 lbs	-354 lbs
P _{total}	3399 lbs	3490 lbs	3580 lbs	3671 lbs	3059 lbs	3150 lbs	3240 lbs	3331 lbs	3741 lbs	3832 lbs	3922 lbs	4013 lbs	287 lbs	341 lbs	396 lbs	450 lbs
M	524 lbs-ft	524 lbs-ft	524 lbs-ft	524 lbs-ft	619 lbs-ft	619 lbs-ft	619 lbs-ft	619 lbs-ft	822 lbs-ft	822 lbs-ft	822 lbs-ft	822 lbs-ft	575 lbs-ft	575 lbs-ft	575 lbs-ft	575 lbs-ft
е	0.15 ft	0.15 ft	0.15 ft	0.14 ft	0.20 ft	0.20 ft	0.19 ft	0.19 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	2.00 ft	1.68 ft	1.45 ft	1.28 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	302.2 psf	298.5 psf	295.2 psf	292.1 psf	252.6 psf	251.1 psf	249.7 psf	248.4 psf	300.6 psf	296.9 psf	293.6 psf	290.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	439.4 psf	429.7 psf	420.9 psf	412.7 psf	414.8 psf	406.2 psf	398.3 psf	391.1 psf	515.7 psf	502.7 psf	490.8 psf	479.9 psf	210.2 psf	145.5 psf	126.0 psf	117.8 psf

Maximum Bearing Pressure = 516 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 335.5 \text{ ft-lbs}$

Resisting Force Required = 366.03 lbs S.F. = 1.67

Weight Required = 610.04 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E				
Width		22 in			22 in			22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	94 lbs	261 lbs	89 lbs	375 lbs	1144 lbs	370 lbs	28 lbs	76 lbs	26 lbs		
F _V	5 lbs	5 lbs	0 lbs	24 lbs	22 lbs	1 lbs	1 lbs	1 lbs	0 lbs		
P _{total}	2563 lbs	2729 lbs	2557 lbs	2725 lbs	3494 lbs	2720 lbs	749 lbs	798 lbs	748 lbs		
М	7 lbs-ft	7 lbs-ft	0 lbs-ft	40 lbs-ft	34 lbs-ft	4 lbs-ft	2 lbs-ft	2 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.01 ft	0.01 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.31 ft	1.83 ft	1.83 ft	1.80 ft	1.81 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft		
f _{min}	276.9 sqft	295.2 sqft	278.9 sqft	282.8 sqft	369.1 sqft	295.4 sqft	81.0 sqft	86.3 sqft	81.5 sqft		
f _{max}	282.2 psf	300.3 psf	279.1 psf	311.7 psf	393.2 psf	298.0 psf	82.5 psf	87.8 psf	81.6 psf		

Maximum Bearing Pressure = 393 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut		Front Strut
1.322 k	Maximum Axial Load =	1.620 k	Maximum Axial Load =
5.692 k	M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =
7.952 k	Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =
<u>23%</u>	Utilization =	<u>28%</u>	Utilization =
	<u>Bracing</u>		Diagonal Strut
0.040 k	Maximum Axial Load =	0.327 k	Maximum Axial Load =
8.894 k	M10 Bolt Capacity =	5.692 k	M8 Bolt Shear Capacity =
8.894 k 7.952 k	M10 Bolt Capacity = Strut Bearing Capacity =	5.692 k 7.952 k	M8 Bolt Shear Capacity = Strut Bearing Capacity =
			, ,

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 29.57 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.591 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.068 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_b = 102.00 \text{ in}$$

$$J = 0.427$$

$$212.736$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 28.6 \text{ ksi}$$

b/t = 6.6

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Use Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 102.00 \text{ in}$$

$$J = 0.427$$

$$231.168$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 28.4$$

3.4.16

b/t = 37.95

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

S1 =
$$\frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

S1 = $\frac{38.1}{m}$
m = 0.63
C₀ = 40.784
Cc = 39.216
S2 = $\frac{k_1Bbr}{mDbr}$
S2 = 79.7

$$\phi F_L = 1.3 \phi y F cy$$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L S t = 28.6 \text{ ksi}$
 $t = 498305 \text{ mm}^4$
 $t = 40.784 \text{ mm}$
 $t = 40.746 \text{ in}^3$

1.778 k-ft

21.4 ksi

79.7

3.4.18

 $M_{max}Wk =$

h/t = 6.6

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$\phi F_L Wk = 24.3 \text{ ksi}$$

0.838 k-ft

Compression

 $M_{max}St =$

3.4.9

b/t =6.6 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =37.95 S1 = 12.21 S2 = 32.70 $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.42 \text{ ksi}$
 $\phi F_L = 620.02 \text{ mm}^2$
 $\phi F_L = 20.59 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.36 \\ & 21.0529 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\varphi F_L = \varphi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.8 \text{ ksi}$

Weak Axis:

3.4.11

L_b = 33.78 in
ry = 1.374
Cb = 1.36
24.5845

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\phi F_L = \phi b [Bc-Dc*Lb/(1.2*ry*\sqrt(Cb))]$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.8 \text{ ksi}$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\theta_{v}$$
 2

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

3.4.18

h/t =

S1 =

m =

Sy=

 $M_{max}Wk =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

4.29

mDbr

0.65

0.457 in³

0.513 k-ft

 $-\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$Lx = 364470 \text{ mm}^4$$

0.876 in⁴

37.77 mm

0.589 in³

1.463 k-ft

$$C_0 = 29$$
 $Cc = 29$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F C y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L W k = 13.5 \text{ ksi}$
 $\phi F_L W k = 13.5 \text{ ksi}$
 $\phi F_L W k = 217168 \text{ mm}^4$
 $\phi F_L W k = 29 \text{ mm}^4$

Compression

 $M_{max}St =$

y =

Sx=

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{B + B_b}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi F_C V$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 18.00 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 47.2194 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc} *\sqrt{(\mathsf{LbSc})/(\mathsf{Cb} *\sqrt{(\mathsf{lyJ})/2})}] \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

15 mm

0.163 in³

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$V = 15 \text{ mm}$$

$$V = 0.163 \text{ in}^3$$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = \frac{3c}{\pi} \sqrt{Fcy/R}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$Bp - \frac{\theta_y}{\theta_h} Fcy$$

$$1.6Dp$$
 S1 = 12.2

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$32 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

y = 15 mm

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.404 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$c_2 = k_1 Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

x = 15 mm

$$x = 15 \text{ mr}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{1}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.3$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.411 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 33.07 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{1}{46.7}$$

 $\phi F_1 = \phi y F c y$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDhr}$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{\kappa_1 B B T}{2}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.41804 \\ \textbf{r} = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.77853 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_L = & 13.5508 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 13.55 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 6.80 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

_		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	Υ	-4.45	-4.45	0	0
	2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-57.498	-57.498	0	0
2	M16	Υ	-57.498	-57.498	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-55.629	-55.629	0	0
2	M16	V	-87.418	-87.418	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	112.319	112.319	0	0
2	M16	V	52.98	52.98	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	6.					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	135.808	2	341.982	1	.002	10	0	2	0	1	0	1
2		min	-184.889	3	-386.919	3	195	1	0	3	0	1	0	1
3	N7	max	0	15	568.023	1	072	15	0	15	0	1	0	1
4		min	204	1	-69.173	3	-1.861	1	003	1	0	1	0	1
5	N15	max	001	15	1619.786	1	.616	1	.001	1	0	1	0	1
6		min	-2.186	1	-256.305	3	255	3	0	3	0	1	0	1
7	N16	max	561.79	2	1256.042	1	289	10	0	1	0	1	0	1
8		min	-590.97	3	-1272.224	3	-37.617	1	0	3	0	1	0	1
9	N23	max	0	15	567.799	1	4.098	1	.007	1	0	1	0	1
10		min	204	1	-68.721	3	.149	15	0	15	0	1	0	1
11	N24	max	136.31	2	347.831	1	34.96	1	.002	1	0	1	0	1
12		min	-184.941	3	-383.851	3	.051	10	0	3	0	1	0	1
13	Totals:	max	831.724	2	4701.464	1	0	3						
14		min	-961.105	3	-2437.193	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	I C	z Shear[lb]	I C	Torque[k-ft]	LC	v-v Mome	I.C.	z-z Mome	LC
1	M2	1	max	402.095	1	.642	4	.872	1	0	15	0	3	0	1
2			min	-366.236	3	.152	15	036	3	001	1	0	1	0	1
3		2	max	402.202	1	.601	4	.872	1	0	15	0	1	0	15
4			min	-366.156	3	.142	15	036	3	001	1	0	10	0	4
5		3	max	402.308	1	.56	4	.872	1	0	15	0	1	0	15
6			min	-366.077	3	.133	15	036	3	001	1	0	12	0	4
7		4	max	402.415	1	.519	4	.872	1	0	15	0	1	0	15
8			min	-365.997	3	.123	15	036	3	001	1	0	3	0	4
9		5	max	402.521	1	.477	4	.872	1	0	15	0	1	0	15
10			min	-365.917	3	.113	15	036	3	001	1	0	3	0	4
11		6	max	402.628	1	.436	4	.872	1	0	15	0	1	0	15
12			min	-365.837	3	.104	15	036	3	001	1	0	3	0	4
13		7	max	402.734	1	.395	4	.872	1	0	15	0	1	0	15
14			min	-365.757	3	.094	15	036	3	001	1	0	3	0	4
15		8	max	402.841	1	.354	4	.872	1	0	15	0	1	0	15
16			min	-365.677	3	.084	15	036	3	001	1	0	3	0	4
17		9	max	402.948	1	.312	4	.872	1	0	15	0	1	0	15
18			min	-365.597	3	.075	15	036	3	001	1	0	3	0	4
19		10	max	403.054	1	.271	4	.872	1	0	15	.001	1	0	15
20			min	-365.517	3	.065	15	036	3	001	1	0	3	0	4
21		11	max	403.161	1	.23	4	.872	1	0	15	.001	1	0	15
22			min	-365.437	3	.055	15	036	3	001	1	0	3	0	4
23		12	max	403.267	1	.189	4	.872	1	0	15	.001	1	0	15
24			min	-365.357	3	.045	15	036	3	001	1	0	3	0	4
25		13	max	403.374	1	.147	4	.872	1	0	15	.002	1	0	15
26			min	-365.277	3	.036	15	036	3	001	1	0	3	0	4
27		14	max	403.48	1	.106	4	.872	1	0	15	.002	1	0	15
28			min	-365.198	3	.026	15	036	3	001	1	0	3	0	4
29		15	max	403.587	1	.071	2	.872	1	0	15	.002	1	0	15
30			min	-365.118	3	.014	12	036	3	001	1	0	3	0	4
31		16	max	403.693	_1_	.039	2	.872	1	0	15	.002	1_	0	15
32			min	-365.038	3	006	9	036	3	001	1	0	3	0	4
33		17	max	403.8	_1_	.009	10	.872	1	0	15	.002	1	0	15
34			min	-364.958	3	034	1	036	3	001	1	0	3	0	4
35		18	max	403.906	_1_	013	15	.872	1	0	15	.002	1	0	15
36			min	-364.878	3	066	1	036	3	001	1	0	3	0	4
37		19	max	404.013	1	022	15	.872	1	0	15	.002	1	0	15

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]						_		_	
38			min		3	1	4	036	3	001	_1_	0	3	0	4
39	<u>M3</u>	1	max	60.058	2	1.795	4	028	15	0	15	.003	1	0	4
40			min	-108.672	9	.423	15	847	1_	0	_1_	0	15	0	15
41		2	max	59.991	2	1.617	4	028	15	0	<u>15</u>	.002	1_	0	4
42			min	-108.729	9	.381	15	847	1_	0	_1_	0	15	0	15
43		3	max	59.923	2	1.439	4	028	15	0	<u>15</u>	.002	1	0	2
44			min	-108.786	9	.339	15	847	1	0	_1_	0	15	0	9
45		4	max	59.855	2	1.262	4	028	15	0	<u>15</u>	.002	1	0	15
46		_		-108.842	9	.297	15	847	1_	0	1_	0	15	0	4
47		5	max	59.787	2	1.084	4	028	15	0	<u>15</u>	.002	1	0	15
48				-108.899	9	.256	15	847	1_	0	_1_	0	15	0	4
49		6	max	59.719	2	.906	4	028	15	0	15	.002	1	0	15
50		_	min	-108.955	9	.214	15	847	1_	0	_1_	0	15	0	4
51		7	max	59.651	2	.729	4	028	15	0	15	.001	1	0	15
52			min	-109.012	9	.172	15	847	1_	0	_1_	0	15	0	4
53		8	max	59.583	2	.551	4	028	15	0	<u>15</u>	.001	1_	0	15
54			min	-109.068	9	.13	15	847	1_	0	1_	0	15	0	4
55		9	max	59.516	2	.373	4	028	15	0	<u>15</u>	.001	1	0	15
56				-109.125	9	.089	15	847	1_	0	1_	0	15	001	4
57		10	max	59.448	2	.196	4	028	15	0	<u>15</u>	0	1_	0	15
58				-109.181	9	.047	15	847	1_	0	_1_	0	15	001	4
59		11	max	59.38	2	.029	2	028	15	0	<u>15</u>	0	1_	0	15
60				-109.238	9	003	9	847	1_	0	_1_	0	15	001	4
61		12	max	59.312	2	037	15	028	15	0	15	0	1	0	15
62			min	-109.295	9	16	4_	847	1_	0	_1_	0	15	001	4
63		13	max	59.244	2	078	15	028	15	0	<u>15</u>	0	1_	0	15
64			min	-109.351	9	337	4	847	1_	0	_1_	0	12	001	4
65		14	max	59.176	2	12	15	028	15	0	<u>15</u>	0	1	0	15
66				-109.408	9	515	4	847	1	0	1_	0	12	001	4
67		15	max	59.108	2	162	15	028	15	0	<u>15</u>	0	1	0	15
68		4.0		-109.464	9	693	4	847	1_	0	1_	0	3	0	4
69		16	max	59.041	2	204	15	028	15	0	<u>15</u>	0	15	0	15
70			min	-109.521	9	87	4	847	1_	0	1_	0	1_	0	4
71		17	max	58.973	2	246	15	028	15	0	<u>15</u>	0	15	0	15
72		40	min	-109.577	9	-1.048	4	847	1_	0	1_	0	1_	0	4
73		18	max	58.905	2	287	15	028	15	0	<u>15</u>	0	15	0	15
74		4.0	min	-109.634	9	-1.226	4	847	1_	0	1_	0	1_	0	4
75		19	max	58.837	2	329	15	028	15	0	<u>15</u>	0	15	0	1
76			min	-109.69	9	-1.403	4	847	1_	0	1_	0	1	0	1
77	M4	1_	max		1_	0	1	072	15	0	1_	0	3	0	1
78				-70.047	3	0	1_	-2.055	1_	0	1_	0	1	0	1
79		2	max		1_	0	1	072	15	0	1_	0	12	0	1
80				-69.998	3	0	1_	-2.055	1_	0	1_	0	1_	0	1
81		3		566.988	1	0	1	072	15	0	1_	0	15	0	1
82		A	min	-69.95	3	0	1_1	-2.055	1	0	1_1	0	1_	0	1
83		4		567.053	1	0	1	072	15	0	1	0	15	0	1
84		-	min	-69.901	3	0	1_1	-2.055	1	0	1_1	0	1_	0	1
85		5		567.118	1	0	1	072	15	0	1_	0	15	0	1
86		_		-69.852	3	0	1	-2.055	1	0	1_	0	1	0	1
87		6	max		1	0	1	072	15	0	1	0	15	0	1
88		-		-69.804	3	0	1_	-2.055	1_	0	1_	0	1_	0	1
89		7	max		1	0	1	072	15	0	1_1	0	15	0	1
90				-69.755	3_	0	1_	-2.055	1_	0	1_	001	1_	0	1
91		8		567.312	1	0	1	072	15	0	1_	0	15	0	1
92		_	min	-69.707	3	0	1	-2.055	1_	0	1_	001	1_	0	1
93		9	max		1	0	1	072	15	0	1_1	0	15	0	1
94			min	-69.658	3	0	1	-2.055	1	0	1_	002	1	0	1

: Schletter, Inc. : HCV

Job Number : Standard I

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	567.441	1	0	1	072	15	0	1	0	15	0	1
96			min	-69.61	3	0	1	-2.055	1	0	1	002	1	0	1
97		11	max	567.506	1	0	1	072	15	0	1	0	15	0	1
98			min	-69.561	3	0	1	-2.055	1	0	1	002	1	0	1
99		12	max	567.57	1	0	1	072	15	0	1	0	15	0	1
100			min	-69.513	3	0	1	-2.055	1	0	1	002	1	0	1
101		13	max	567.635	1	0	1	072	15	0	1	0	15	0	1
102			min	-69.464	3	0	1	-2.055	1	0	1	002	1	0	1
103		14	max	567.7	1	0	1	072	15	0	1	0	15	0	1
104			min	-69.416	3	0	1	-2.055	1	0	1	002	1	0	1
105		15	max	567.765	1	0	1	072	15	0	1	0	15	0	1
106			min	-69.367	3	0	1	-2.055	1	0	1	003	1	0	1
107		16	max	567.829	1	0	1	072	15	0	1	0	15	0	1
108			min	-69.319	3	0	1	-2.055	1	0	1	003	1	0	1
109		17	max	567.894	1	0	1	072	15	0	1	0	15	0	1
110			min	-69.27	3	0	1	-2.055	1	0	1	003	1	0	1
111		18	max	567.959	1	0	1	072	15	0	1	0	15	0	1
112			min	-69.222	3	0	1	-2.055	1	0	1	003	1	0	1
113		19	max	568.023	1	0	1	072	15	0	1	0	15	0	1
114			min	-69.173	3	0	1	-2.055	1	0	1	003	1	0	1
115	M6	1	max	1320.16	1	.637	4	.288	1	0	1	0	3	0	1
116			min	-1200.777	3	.151	15	112	3	0	15	0	2	0	1
117		2		1320.266	1	.595	4	.288	1	0	1	0	3	0	15
118			min	-1200.698	3	.142	15	112	3	0	15	0	2	0	4
119		3		1320.373	1	.554	4	.288	1	0	1	0	1	0	15
120			min	-1200.618	3	.132	15	112	3	0	15	0	15	0	4
121		4	max		1	.513	4	.288	1	0	1	0	1	0	15
122			min	-1200.538	3	.122	15	112	3	0	15	0	12	0	4
123		5		1320.586	1	.471	4	.288	1	0	1	0	1	0	15
124			min	-1200.458	3	.112	15	112	3	0	15	0	3	0	4
125		6		1320.693	1	.43	4	.288	1	0	1	0	1	0	15
126			min	-1200.378	3	.103	15	112	3	0	15	0	3	0	4
127		7		1320.799	1	.389	4	.288	1	0	1	0	1	0	15
128			min	-1200.298	3	.093	15	112	3	0	15	0	3	0	4
129		8		1320.906	1	.348	4	.288	1	0	1	0	1	0	15
130			min	-1200.218	3	.083	15	112	3	0	15	0	3	0	4
131		9		1321.012	1	.315	2	.288	1	0	1	0	1	0	15
132		3	min	-1200.138	3	.074	15	112	3	0	15	0	3	0	4
133		10		1321.119	1	.283	2	.288	1	0	1	0	1	0	15
134		10	min	-1200.058	3	.064	15	112	3	0	15	0	3	0	4
135		11	may	1321.225		.251	2	.288	1	0	1	0	1	0	15
136			min		3	.052	12	112	3	0	15	0	3	0	4
137		12		1321.332	1	.218	2	.288	1	0	1	0	1	0	15
138		12	min		3	.036	12	112	3	0	15	0	3	0	4
139		13		1321.438	1	.186	2	.288	1	0	1	0	1	0	15
140		13	min	-1199.819	3	.02	12	112	3	0	15	0	3	0	4
141		1.1		1321.545		.154	2	.288			1	0	1		15
		14			1		3		1	0	15	-	3	0	
142		4.5	min		3	001		112	3	0		0		0	4
143		15		1321.652	1	.122	2	.288	1	0	1	0	1	0	15
144		40	min	-1199.659	3	025	3	112	3	0	15	0	3	0	4
145		16		1321.758	1	.09	2	.288	1	0	1	0	1	0	15
146		47	min	-1199.579	3	05	3	112	3	0	15	0	3	0	2
147		17		1321.865	1	.058	2	.288	1	0	1	0	1	0	15
148		4.0	min		3	074	3	112	3	0	15	0	3	0	2
149		18		1321.971	1	.026	2	.288	1	0	1	0	1	0	15
150		4 -	min	-1199.419	3	098	3	112	3	0	15	0	3	0	2
151		<u> 19</u>	max	1322.078	1	007	2	.288	1	0	1	0	1	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		y-y Mome	LC	z-z Mome	
152			min	-1199.339	3	122	3	112	3	0	15	0	3	0	2
153	M7	1	max	327.174	2	1.793	4	.018	1	0	2	0	2	0	2
154			min	-267.715	3	.423	15	002	3	0	3	0	3	0	12
155		2	max	327.106	2	1.616	4	.018	1	0	2	0	2	0	2
156			min	-267.766	3	.381	15	002	3	0	3	0	3	0	3
157		3	max	327.038	2	1.438	4	.018	1	0	2	0	2	0	2
158			min	-267.817	3	.339	15	002	3	0	3	0	3	0	3
159		4	max	326.971	2	1.26	4	.018	1	0	2	0	2	0	2
160			min	-267.868	3	.297	15	002	3	0	3	0	3	0	3
161		5	max	326.903	2	1.083	4	.018	1	0	2	0	2	0	15
162			min	-267.919	3	.255	15	002	3	0	3	0	3	0	4
163		6	max	326.835	2	.905	4	.018	1	0	2	0	2	0	15
164			min	-267.969	3	.214	15	002	3	0	3	0	3	0	4
165		7	max		2	.727	4	.018	1	0	2	0	2	0	15
166			_	-268.02	3	.172	15	002	3	0	3	0	3	0	4
167		8	max		2	.55	4	.018	1	0	2	0	2	0	15
168				-268.071	3	.13	15	002	3	0	3	0	3	001	4
169		9		326.631	2	.372	4	.018	1	0	2	0	2	0	15
170				-268.122	3	.088	15	002	3	0	3	0	3	001	4
171		10		326.563	2	.216	2	.018	1	0	2	0	2	0	15
172		10		-268.173	3	.043	12	002	3	0	3	0	3	001	4
173		11		326.495	2	.078	2	.018	1	0	2	0	2	0	15
174				-268.224	3	046	3	002	3	0	3	0	3	001	4
175		12				046	15	.018	1	0	2	0	2	0	15
		12	max		2	03 <i>1</i> 161			3	0	3	_		001	
176		13		-268.275	3		<u>4</u> 15	002	<u> </u>	_		0	2	001 0	4
177		13	max		2	079		.018	_	0	2	T T	_		15
178		4.4		-268.326	3_	338	4	002	3	0	3	0	3	001	4
179		14		326.292	2	12	15	.018	1	0	2	0	2	0	15
180		4.5		-268.377	3	516	4	002	3	0	3	0	3	001	4
181		15		326.224	2	162	15	.018	1	0	2	0	2	0	15
182		40		-268.428	3	694	4	002	3	0	3	0	3	0	4
183		16		326.156	2	204	15	.018	1	0	2	0	2	0	15
184				-268.478	3_	871	4	002	3	0	3	0	3	0	4
185		17	max		2	246	15	.018	1	0	2	0	2	0	15
186				-268.529	3	-1.049	4	002	3	0	3	0	3	0	4
187		18	max	326.02	2	287	15	.018	1_	0	2	0	2	0	15
188			min		3	-1.227	4	002	3	0	3	0	3	0	4
189		19	max		2	329	15	.018	1_	0	2	0	2	0	1
190			min	-268.631	3	-1.404	4	002	3	0	3	0	3	0	1
191	M8	1		1618.622	_1_	0	1	.837	1	0	1_	0	15	0	1
192			min	-257.179	3	0	1	245	3	0	1	0	1	0	1
193		2	max	1618.686	1	0	1	.837	1	0	1	0	1	0	1
194			min	-257.13	3	0	1	245	3	0	1_	0	3	0	1
195		3	max	1618.751	1	0	1	.837	1	0	1	0	1	0	1
196			min	-257.082	3	0	1	245	3	0	1	0	3	0	1
197		4	max	1618.816	1	0	1	.837	1	0	1	0	1	0	1
198				-257.033	3	0	1	245	3	0	1	0	3	0	1
199		5	_	1618.881	1	0	1	.837	1	0	1	0	1	0	1
200				-256.985	3	0	1	245	3	0	1	0	3	0	1
201		6		1618.945	1	0	1	.837	1	0	1	0	1	0	1
202				-256.936	3	0	1	245	3	0	1	0	3	0	1
203		7		1619.01	1	0	1	.837	1	0	1	0	1	0	1
204				-256.888	3	0	1	245	3	0	1	0	3	0	1
205		8		1619.075	<u></u>	0	1	.837	1	0	1	0	1	0	1
206		0		-256.839	3	0	1	245	3	0	1	0	3	0	1
		0				_	1			0	1	_	1		
207		9		1619.139	1	0		.837	1			0		0	1
208			ının	-256.79	3	0	1	245	3	0	1_	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	1619.204	1	0	1	.837	1	0	1	0	1	0	1
210			min	-256.742	3	0	1	245	3	0	1	0	3	0	1
211		11	max	1619.269	1	0	1	.837	1	0	1	0	1	0	1
212			min	-256.693	3	0	1	245	3	0	1	0	3	0	1
213		12	max	1619.334	1	0	1	.837	1	0	1	0	1	0	1
214			min	-256.645	3	0	1	245	3	0	1	0	3	0	1
215		13	max	1619.398	1	0	1	.837	1	0	1	0	1	0	1
216			min	-256.596	3	0	1	245	3	0	1	0	3	0	1
217		14	max	1619.463	1	0	1	.837	1	0	1	0	1	0	1
218			min	-256.548	3	0	1	245	3	0	1	0	3	0	1
219		15	max	1619.528	1	0	1	.837	1	0	1	.001	1	0	1
220			min	-256.499	3	0	1	245	3	0	1	0	3	0	1
221		16	max	1619.592	1	0	1	.837	1	0	1	.001	1	0	1
222			min	-256.451	3	0	1	245	3	0	1	0	3	0	1
223		17	max	1619.657	1	0	1	.837	1	0	1	.001	1	0	1
224			min	-256.402	3	0	1	245	3	0	1	0	3	0	1
225		18	max	1619.722	1	0	1	.837	1	0	1	.001	1	0	1
226			min	-256.354	3	0	1	245	3	0	1	0	3	0	1
227		19	max	1619.786	1	0	1	.837	1	0	1	.001	1	0	1
228			min	-256.305	3	0	1	245	3	0	1	0	3	0	1
229	M10	1	max		1	.633	4	007	15	.001	1	0	1	0	1
230	-		min	-354.811	3	.151	15	191	1	0	3	0	3	0	1
231		2	max		1	.591	4	007	15	.001	1	0	1	0	15
232			min	-354.731	3	.141	15	191	1	0	3	0	3	0	4
233		3	max	416.81	1	.55	4	007	15	.001	1	0	1	0	15
234			min	-354.651	3	.131	15	191	1	0	3	Ö	3	0	4
235		4	max		1	.509	4	007	15	.001	1	0	1	0	15
236			min	-354.571	3	.122	15	191	1	0	3	0	3	0	4
237		5	max		1	.467	4	007	15	.001	1	0	2	0	15
238			min	-354.491	3	.112	15	191	1	0	3	0	3	0	4
239		6	max		1	.426	4	007	15	.001	1	0	2	0	15
240			min	-354.411	3	.102	15	191	1	0	3	0	3	0	4
241		7	max		1	.385	4	007	15	.001	1	0	2	0	15
242			min	-354.331	3	.093	15	191	1	0	3	0	3	0	4
243		8	max	417.342	1	.344	4	007	15	.001	1	0	2	0	15
244			min	-354.251	3	.083	15	191	1	0	3	0	3	0	4
245		9	max		1	.302	4	007	15	.001	1	0	2	0	15
246			min	-354.172	3	.073	15	191	1	0	3	0	1	0	4
247		10	max		1	.261	4	007	15	.001	1	0	15	0	15
248		10	min	-354.092	3	.063	15	191	1	0	3	0	1	0	4
249		11	max	417.662	1	.22	4	007	15	.001	1	0	15		15
250			min		3	.054	15	191	1	0	3	0	1	0	4
251		12		417.768	1	.179	4	007	15	.001	1	0	15	0	15
252			1	-353.932	3	.044	15	191	1	0	3	0	1	0	4
253		13	max		1	.137	4	007	15	.001	1	0	15	0	15
254		10	min	-353.852	3	.034	15	191	1	0	3	0	1	0	4
255		14		417.981	1	.096	4	007	15	.001	1	0	15	0	15
256		1 -	min		3	.013	1	191	1	0	3	0	1	0	4
257		15		418.088	1	.062	10	007	15	.001	1	0	15	0	15
258		13	min	-353.692	3	019	1	191	1	0	3	0	1	0	4
259		16		418.195	1	.036	10	007	15	.001	1	0	15	0	15
260		10	min		3	051	1	007 191	1	<u>.001</u>	3	0	1	0	4
261		17		418.301	1	.009	10	007	15	.001	1	0	15	0	15
262		17		-353.532	3	083	1	007 191	15	0 0	3	0	1	0	4
		18			1	083 014	15	191	15		1	0	15		15
263 264		10	max	-353.452	3	014 115	1	007 191	15	<u>.001</u>	3	0	1	0	4
		10	min						-					0	15
265		19	шах	418.514	1	024	15	007	15	.001	1	0	15	<u> </u>	10

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec	:	Axial[lb]		y Shear[lb]							LC	z-z Mome	
266	N44	1	min	-353.372	3	148	1	191	1	0	3	0	1	0	4
267	<u>M11</u>	1	max	59.801	2	1.8	4	.98	1	.001	1	0	3	0	4
268			min	-108.584	9	.423	15	.023	12	0	15	002	1	0	15
269		2	max	59.733	2	1.622	4	.98	1	.001	1	0	3	0	2
270			min	-108.64	9	.382	15	.023	12	0	15	002	1	0	12
271		3	max	59.666	2	1.444	4	.98	1	.001	1	0	3	0	2
272			min	-108.697	9	.34	15	.023	12	0	15	002	1	0	3
273		4	max	59.598	2	1.267	4	.98	1	.001	1	0	3	0	15
274		_	min	-108.753	9	.298	15	.023	12	0	15	002	1	0	3
275		5	max	59.53	2	1.089	4	.98	1	.001	1	0	3	0	15
276		_	min	-108.81	9	.256	15	.023	12	0	15	002	1	0	4
277		6	max	59.462	2	.911	4	.98	1	.001	1	00	3	0	15
278			min	-108.867	9	.215	15	.023	12	0	15	001	1	0	4
279		7	max	59.394	2	.734	4	.98	1	.001	1	0	3	0	15
280			min	-108.923	9	.173	15	.023	12	0	15	001	1	0	4
281		8	max	59.326	2	.556	4	.98	1	.001	1	0	3	0	15
282			min	-108.98	9	.131	15	.023	12	0	15	001	1	0	4
283		9	max	59.258	2	.378	4	.98	1	.001	1	0	3	0	15
284			min	-109.036	9	.089	15	.023	12	0	15	0	1	001	4
285		10	max	59.191	2	.201	4	.98	1	.001	1	0	3	0	15
286			min	-109.093	9	.048	15	.023	12	0	15	0	1	001	4
287		11	max	59.123	2	.05	2	.98	1	.001	1	0	3	0	15
288			min	-109.149	9	021	3	.023	12	0	15	0	1	001	4
289		12	max	59.055	2	036	15	.98	1	.001	1	0	3	0	15
290			min	-109.206	9	155	4	.023	12	0	15	0	1	001	4
291		13	max	58.987	2	078	15	.98	1	.001	1	0	3	0	15
292			min	-109.262	9	332	4	.023	12	0	15	0	2	001	4
293		14	max	58.919	2	12	15	.98	1	.001	1	0	1	0	15
294			min	-109.319	9	51	4	.023	12	0	15	0	10	001	4
295		15	max	58.851	2	161	15	.98	1	.001	1	0	1	0	15
296			min	-109.375	9	688	4	.023	12	0	15	0	15	0	4
297		16	max	58.783	2	203	15	.98	1	.001	1	0	1	0	15
298			min	-109.432	9	865	4	.023	12	0	15	0	15	0	4
299		17	max	58.715	2	245	15	.98	1	.001	1	0	1	0	15
300			min	-109.489	9	-1.043	4	.023	12	0	15	0	15	0	4
301		18	max	58.648	2	287	15	.98	1	.001	1	.001	1	0	15
302			min	-109.545	9	-1.22	4	.023	12	0	15	0	15	0	4
303		19	max	58.58	2	328	15	.98	1	.001	1	.001	1	0	1
304		10	min	-109.602	9	-1.398	4	.023	12	0	15	0	15	0	1
305	M12	1	max	566.634	1	0	1	4.52	1	0	1	0	1	0	1
306	10112	•	min		3	0	1	.15	15	0	1	0	3	0	1
307		2	max		1	0	1	4.52	1	0	1	0	1	0	1
308		_	min	-69.546	3	0	1	.15	15	0	1	0	15	0	1
309		3	max		1	0	1	4.52	1	0	1	0	1	0	1
310		_ J	min	-69.498	3	0	1	.15	15	0	1	0	15	0	1
311		4	max		1	0	1	4.52	1	0	1	.001	1	0	1
312			min	-69.449	3	0	1	.15	15	0	1	0	15	0	1
313		5	max		<u> </u>	0	1	4.52	1	0	1	.002	1	0	1
314		3	min	-69.401	3	0	1	.15	15	0	1	0	15	0	1
315		6		566.957	<u></u>		1	4.52	1		1	.002	1	•	1
		0	max			0	1		15	0	1	<u>.002</u>	15	0	1
316 317		7	min	-69.352	3	0		.15			-				
		7	max		1	0	1	4.52	1	0	1	.002	1	0	1
318		0	min	-69.303	3	0	1	.15	15	0	1	0	15	0	1
319		8	max		1	0	1	4.52	1	0	1	.003	1_	0	1
320			min	-69.255	3	0	1	.15	15	0	1	0	15	0	1
321		9	max	567.151	1_	0	1	4.52	1	0	1	.003	1	0	1
322			min	-69.206	3	0	1	.15	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

000	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
323		10	max	567.216	1	0	1	4.52	1	0	1	.004	1	0	1
324		4.4	min	-69.158	3	0	1	.15	15	0	1	0	15	0	1
325		11	max	567.281	3	0	1	4.52	1	0	1	.004	1	0	1
326		40	min	-69.109		0	1	.15	15	0	1	0	15	0	1
327		12	max	567.346	1	0	1	4.52	15	0	1	.004	15	0	1
328		13	min	-69.061	<u>3</u>	0	1	.15 4.52	1	0	1	.005	1	0	1
330		13	max	567.41 -69.012	3	0	1	.15	15	0	1	.005	15	0	1
331		14	min	567.475	1		1	4.52	1		1	.005	1	0	1
332		14	max min	-68.964	3	0	1	.15	15	0	1	.005	15	0	1
333		15	max	567.54	1	0	1	4.52	1	0	1	.006	1	0	1
334		13	min	-68.915	3	0	1	.15	15	0	1	0	15	0	1
335		16	max	567.604	1	0	1	4.52	1	0	1	.006	1	0	1
336		10	min	-68.867	3	0	1	.15	15	0	1	0	15	0	1
337		17	max	567.669	1	0	1	4.52	1	0	1	.007	1	0	1
338		- ' '	min	-68.818	3	0	1	.15	15	0	1	0	15	0	1
339		18	max	567.734	1	0	1	4.52	1	0	1	.007	1	0	1
340		10	min	-68.77	3	0	1	.15	15	0	1	0	15	0	1
341		19	max	567.799	1	0	1	4.52	1	0	1	.007	1	0	1
342			min	-68.721	3	0	1	.15	15	0	1	0	15	0	1
343	M1	1	max	143.82	1	344.63	3	-2.989	15	0	1	.175	1	.014	1
344			min	4.803	15	-401.365	1	-88.666	1	0	3	.006	15	01	3
345		2	max	143.915	1	344.433	3	-2.989	15	0	1	.156	1	.101	1
346		_	min	4.831	15	-401.628	1	-88.666	1	0	3	.005	15	085	3
347		3	max	121.946	1	7.599	9	-2.961	15	0	12	.135	1	.186	1
348			min	4.372	15	-21.435	3	-88.396	1	0	1	.005	15	158	3
349		4	max	122.042	1	7.38	9	-2.961	15	0	12	.116	1	.186	1
350			min	4.401	15	-21.632	3	-88.396	1	0	1	.004	15	153	3
351		5	max	122.137	1	7.161	9	-2.961	15	0	12	.097	1	.186	1
352			min	4.429	15	-21.828	3	-88.396	1	0	1	.003	15	149	3
353		6	max	122.233	1	6.943	9	-2.961	15	0	12	.078	1	.186	1
354			min	4.458	15	-22.025	3	-88.396	1	0	1	.003	15	144	3
355		7	max	122.328	1	6.724	9	-2.961	15	0	12	.059	1	.187	1
356			min	4.487	15	-22.222	3	-88.396	1	0	1	.002	15	139	3
357		8	max	122.424	1	6.505	9	-2.961	15	0	12	.039	1	.187	1
358			min	4.516	15	-22.419	3	-88.396	1	0	1	.001	15	134	3
359		9	max	122.519	1	6.287	9	-2.961	15	0	12	.02	1	.187	1
360			min	4.545	15	-22.616	3	-88.396	1	0	1	0	15	129	3
361		10	max	122.615	1	6.068	9	-2.961	15	0	12	.001	1	.187	1
362			min	4.574	15	-22.812	3	-88.396	1_	0	1	0	10	124	3
363		11	max		1	5.849	9	-2.961	15	0	12	0	12		1
364		40	min	4.602	15	-23.009	3	-88.396	1_	0	1	018	1	119	3
365		12	max		1	5.631	9	-2.961	15	0	12	001	12	.188	1
366		40	min	4.631	15	-23.206	3	-88.396	1	0	1	037	1	114	3
367		13	max		1	5.412	9	-2.961 -88.396	15	0	12	002	12 1	.189	3
368 369		14	min	4.66 122.997	1 <u>5</u>	-23.403 5.193	3	-2.961	15	0	12	056 003	15	<u>109</u> .189	1
370		14	max min	4.689	15	-23.599	9	-88.396	1	0	1	003	1	104	3
371		15	max		1	4.975	9	-2.961	15	0	12	003	15	.19	1
371		13	min	4.718	15	-23.796	3	-88.396	1	0	1	005	1	099	3
373		16	max	82.945	2	28.025	10	-2.989	15	0	1	004	15	.191	1
374		10	min	-31.353	3	-88.459	3	-89.131	1	0	12	115	1	093	3
375		17	max	83.04	2	27.807	10	-2.989	15	0	1	004	15	.208	1
376			min	-31.282	3	-88.655	3	-89.131	1	0	12	134	1	074	3
377		18	max	-4.808	15	451.145	1	-3.062	15	0	3	005	15	.113	1
378		10	min	-143.274	1	-154.743	3	-91.328	1	0	1	154	1	041	3
379		19	max		15	450.883	1	-3.062	15	0	3	006	15	.015	1
0.0			mux	1 10	.0	100.000		0.002					∪		<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
380			min	-143.178	1	-154.94	3	-91.328	1	0	1	174	1	007	3
381	M5	1	max	314.366	1	1139.817	3	109	10	0	1	.006	1	.02	3
382			min	9.412	12	-1328.628	1	-32.003	1	0	3	0	10	027	1
383		2	max	314.461	1	1139.62	3	109	10	0	1	0	2	.261	1
384			min	9.46	12	-1328.89	1	-32.003	1	0	3	003	3	227	3
385		3	max	241.814	1	9.388	9	3.065	3	0	3	0	10	.543	1
386			min	7.597	10	-71.065	3	127	2	0	1	008	3	469	3
387		4	max	241.91	1	9.169	9	3.065	3	0	3	0	10	.548	1
388			min	7.676	10	-71.262	3	127	2	0	1	008	3	454	3
389		5		242.005	1	8.951	9	3.065	3	0	3	<u>.000</u>	10	.552	1
390		5	max min	7.756	10	-71.459	3	127	2	0	1	007	3	438	3
											_				
391		6	max	242.101	1	8.732	9	3.065	3	0	3	0	10	.557	1
392		<u> </u>	min	7.835	10	-71.655	3	127	2	0	1	006	1	423	3
393		7	max	242.196	1	8.513	9	3.065	3	0	3	0	10	.561	1
394			min	7.915	10	-71.852	3	127	2	0	1	006	1	407	3
395		8	max	242.292	1_	8.295	9	3.065	3	0	3	0	10	.566	1
396			min	7.995	10	-72.049	3	127	2	0	1	005	1	392	3
397		9	max	242.387	1	8.076	9	3.065	3	0	3	0	10	.57	1
398			min	8.074	10	-72.246	3	127	2	0	1	005	1	376	3
399		10	max	242.483	1	7.857	9	3.065	3	0	3	0	10	.575	1
400			min	8.154	10	-72.443	3	127	2	0	1	004	1	36	3
401		11	max	242.578	1	7.639	9	3.065	3	0	3	0	10	.58	1
402			min	8.233	10	-72.639	3	127	2	0	1	004	1	345	3
403		12	max	242.674	1	7.42	9	3.065	3	0	3	0	10	.584	1
404		12	min	8.313	10	-72.836	3	127	2	0	1	003	1	329	3
405		13	max	242.769	1	7.201	9	3.065	3	0	3	- <u>003</u> 0	10	.589	1
406		13					3		2						3
		4.4	min	8.392	10	-73.033		127		0	1	003	1_	313	
407		14	max		1	6.983	9	3.065	3	0	3	0	15	.594	1
408		4.5	min	8.472	10	-73.23	3	127	2	0	1	002	1	297	3
409		15	max	242.96	1	6.764	9	3.065	3	0	3	0	15	.599	1
410			min	8.552	10	-73.427	3	127	2	0	1	002	1	281	3
411		16	max		2	172.822	2	3.041	3	0	1	00	3	.604	1
412			min	-102.661	3	-267.046	3	132	2	0	15	001	1	264	3
413		17	max	299.731	2	172.56	2	3.041	3	0	1	0	3	.609	1
414			min	-102.589	3	-267.243	3	132	2	0	15	0	1	206	3
415		18	max	-9.908	12	1486.95	1	2.912	1	0	3	.001	3	.293	1
416			min	-315.321	1	-509.839	3	019	10	0	1	0	2	096	3
417		19	max	-9.86	12	1486.688	1	2.912	1	0	3	.002	3	.014	3
418			min	-315.225	1	-510.036	3	019	10	0	1	0	2	029	1
419	M9	1	max	143.141	1	344.617	3	120.608	1	0	3	006	15	.014	1
420	1110		min		15			4.183	15		1	175	1	01	3
421		2		143.237	1	344.42	3	120.608	1	0	3	004	12	.101	1
422			min	4.807	15	-401.605	1	4.183	15	0	1	149	1	085	3
423		3	max	121.903	1	7.573	9	83.048	1	0	1	.001	3	.186	1
423		- 3		4.556					12	0	15		1		
		1	min	4.000	15	-21.378	3	1.612				121		158	3
425		4	max		1	7.355	9	83.048	1	0	1	.002	3	.186	1
426		-	min	4.585	15	-21.575	3	1.612	12	0	15	103	1	153	3
427		5	max		1	7.136	9	83.048	1	0	1	.002	3	.186	1
428			min	4.614	15	-21.772	3	1.612	12	0	15	085	1	148	3
429		6	max	122.189	1	6.917	9	83.048	1	0	1	.003	3	.186	1
430			min	4.642	15	-21.969	3	1.612	12	0	15	067	1	144	3
431		7	max	122.285	1	6.699	9	83.048	1	0	1	.003	3	.186	1
432			min	4.671	15	-22.165	3	1.612	12	0	15	049	1	139	3
433		8	max	122.38	1	6.48	9	83.048	1	0	1	.004	3	.187	1
434			min	4.7	15	-22.362	3	1.612	12	0	15	031	1	134	3
435		9	max		1	6.261	9	83.048	1	0	1	.004	3	.187	1
436		Ť	min	4.729	15	-22.559	3	1.612	12	0	15	013	1	129	3
TOU			TOTAL	T.1 Z3	IU	22.000	<u> </u>	1.014	14	U	IU	.010		.120	

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	122.571	1	6.043	9	83.048	1	0	1	.005	_1_	.187	1
438			min	4.758	15	-22.756	3	1.612	12	0	15	0	10	124	3
439		11	max	122.667	1	5.824	9	83.048	1	0	1	.023	_1_	.188	1
440			min	4.786	15	-22.953	3	1.612	12	0	15	0	15	119	3
441		12	max	122.762	1	5.605	9	83.048	1	0	1	.041	_1_	.188	1
442			min	4.815	15	-23.149	3	1.612	12	0	15	.001	15	114	3
443		13	max	122.858	1_	5.387	9	83.048	1	0	1	.059	_1_	.189	1
444			min	4.844	15	-23.346	3	1.612	12	0	15	.002	15	109	3
445		14	max	122.953	1	5.168	9	83.048	1	0	1	.077	_1_	.189	1
446			min	4.873	15	-23.543	3	1.612	12	0	15	.003	15	104	3
447		15	max	123.049	1	4.949	9	83.048	1	0	1	.095	1	.19	1
448			min	4.902	15	-23.74	3	1.612	12	0	15	.003	15	099	3
449		16	max	83.18	2	27.656	10	83.939	1	0	15	.115	1	.191	1
450			min	-31.392	3	-88.882	3	1.638	12	0	1	.004	15	093	3
451		17	max	83.276	2	27.437	10	83.939	1	0	15	.133	1	.208	1
452			min	-31.32	3	-89.079	3	1.638	12	0	1	.004	15	074	3
453		18	max	-4.799	15	451.145	1	88.433	1	0	1	.152	1	.113	1
454			min	-143.018	1	-154.741	3	1.88	12	0	3	.005	15	041	3
455		19	max	-4.771	15	450.882	1	88.433	1	0	1	.171	1	.015	1
456		1	min	-142.923	1	-154.938	3	1.88	12	0	3	.006	15	007	3
457	M13	1	max	120.88	1	400.676	1	-4.778	15	.014	1	.175	1	0	1
458			min	4.183	15	-344.602	3	-143.123	1	01	3	.006	15	0	3
459		2	max	120.88	1	282.622	1	-3.665	15	.014	1	.055	1	.277	3
460			min	4.183	15	-242.999	3	-109.716	1	01	3	.002	15	323	1
461		3	max	120.88	1	164.567	1	-2.552	15	.014	1	.002	3	.459	3
462		<u> </u>	min	4.183	15	-141.397	3	-76.309	1	01	3	032	1	534	1
463		4	max	120.88	1	46.513	1	-1.438	15	.014	1	002	12	.545	3
464			min	4.183	15	-39.795	3	-42.902	1	01	3	089	1	633	1
465		5	max	120.88	1	61.808	3	325	15	.014	1	003	12	.534	3
466		-	min	4.183	15	-71.542	1	-9.495	1	01	3	113	1	622	1
467		6	max	120.88	1	163.41	3	23.912	1	.014	1	003	12	.428	3
468		-	min	4.183	15	-189.596	1	.41	12	01	3	107	1	498	1
469		7		120.88	1	265.013	3	57.32	1	.014	1	002	12	.225	3
470		-	max	4.183	15	-307.651	1	1.496	12	01	3	068	1	264	1
		0	min												
471		8	max	120.88	1	366.615	3	90.727	1	.014	1	.002	1	.083	1
472			min	4.183	15	-425.705	1	2.582	12	01	3	0	3	073	3
473		9	max	120.88	1	468.218	3	124.134	1	.014	1	.103	1	.541	1
474		40	min	4.183	15	-543.76	1	3.668	12	01	3	.003	12	467	3
475		10	max	120.88	1	569.82	3	157.541	1	.011	2	.236	1_	1.11	1
476		4.4	min	4.183	15	-661.814	1	4.754	12	014	1	.007	12	957	3
477		11	max		1	543.76	1	-3.57	12	.01	3	.098	1	.541	1
478		40	min	2.989	15	-468.218		-123.451	1	014	1	.001	12	467	3
479		12	max	88.976	1	425.705	1	-2.483	12	.01	3	0	10	.083	1
480			min	2.989	15	-366.615		-90.044	1	014	1	003	3	073	3
481		13	max		1	307.651	1	-1.397	12	.01	3	002	<u>15</u>	.225	3
482			min	2.989	15	-265.013	-	-56.636	1	014	1	072	_1_	264	1
483		14	max		1	189.596	1	311	12	.01	3	004	15	.428	3
484			min	2.989	15	-163.41	3	-23.229	1	014	1	11	1_	498	1
485		15	max		1	71.542	1	10.178	1	.01	3	004	15	.534	3
486			min	2.989	15	-61.808	3	.349	15	014	1	116	1	622	1
487		16	max		1	39.795	3	43.585	1	.01	3	003	12	.545	3
488			min	2.989	15	-46.513	1	1.463	15	014	1	09	1	633	1
489		17	max	88.976	1	141.397	3	76.992	1	.01	3	0	12	.459	3
490			min	2.989	15	-164.567	1	2.576	15	014	1	033	1	534	1
491		18			1	243	3	110.399	1	.01	3	.055	1	.277	3
492			min	2.989	15	-282.622	1	3.689	15	014	1	.002	15	323	1
493		19			1	344.602	3	143.806	1	.01	3	.175	1	0	1

Model Name

: Schletter, Inc. : HCV

:
Chandard D\/Mini

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

496 M16		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
496	494			min	2.989	15	-400.676	1	4.803	15	014	1	.006	15	0	3
498	495	M16	1	max	-1.88	12	451.592	1		15	.007	3	.171	1	0	
498	496			min	-88.094	1	-154.959	3	-142.937	1	015	1	.006	15	0	3
Secondary Seco	497		2	max	-1.88	12	318.526	1	-3.657	15	.007	3	.052	1	.125	3
500	498			min	-88.094	1	-109.399	3	-109.53	1	015	1	.002	15	364	1
501			3	max	-1.88	12	185.46	1	-2.544	15	.007	3	001	12	.207	3
Sol	500			min	-88.094	1	-63.839	3	-76.123	1	015	1	035	1	602	1
503	501		4	max	-1.88	12	52.394	1	-1.431	15	.007	3	003	15	.245	3
505	502			min	-88.094	1	-18.279	3	-42.716	1	015	1	092	1	714	1
505	503		5	max	-1.88	12	27.281	3	318	15	.007	3	004	15	.241	3
Sofi	504			min	-88.094	1		1	-9.309	1	015	1	116	1	701	1
SOR	505		6	max	-1.88	12	72.841	3	24.098	1	.007	3	004	15	.194	3
Solid	506			min	-88.094	1	-213.738	1	.528	12	015	1	109	1	562	1
Sol	507		7	max	-1.88	12	118.401	3	57.505	1	.007	3	002	15	.104	3
STO	508			min	-88.094	1	-346.804	1	1.614	12	015	1	071	1	297	1
St12	509		8	max	-1.88	12	163.961	3	90.912	1	.007	3	.001	2	.094	1
S12	510			min	-88.094	1	-479.87	1	2.7	12	015	1	002	3	03	3
513	511		9	max	-1.88	12	209.522	3	124.32	1	.007	3	.101	1	.61	1
515	512			min	-88.094	1	-612.936	1	3.786	12	015	1	.002	12	206	3
516	513		10	max	-3.061	15	-17.148	15	157.727	1	0	15	.235	1	1.251	1
516	514			min	-91.033	1	-746.002	1	-7.461	3	015	1	.007	12	426	3
518	515		11	max	-3.061	15	612.936	1	-3.901	12	.015	1	.102	1	.61	1
518	516			min	-91.033	1	-209.522	3	-124.064	1	007	3	.003	12	206	3
519	517		12	max	-3.061	15	479.87	1	-2.815	12	.015	1	0	2	.094	1
519	518			min	-91.033	1	-163.961	3	-90.657	1	007	3	0	3	03	3
521			13	max		15		1		12	.015	1	002	12	.104	3
521						1		3	-57.249	1	007	3	07	1	297	1
Description Section			14	max		15		1	643	12	.015	1	003	12	.194	3
523	522					1		3		1	007	3	108	1	562	1
S24	523		15	max		15		1	9.565	1	.015	1	004	12	.241	3
526 min -91.033 1 -52.394 1 1.439 15 007 3 09 1 714 1 527 17 max -3.061 15 63.839 3 76.379 1 .015 1 0 12 .207 3 528 min -91.033 1 -185.46 1 2.553 15 007 3 033 1 602 1 529 18 max -3.061 15 109.399 3 109.786 1 .015 1 .054 1 .125 3 530 min -91.033 1 -318.526 1 3.666 15 007 3 .002 15 364 1 531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 533 M15 1 max <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>1</td> <td></td> <td>3</td> <td></td> <td>15</td> <td></td> <td>3</td> <td></td> <td>1</td> <td>701</td> <td>1</td>				min		1		3		15		3		1	701	1
527 17 max -3.061 15 63.839 3 76.379 1 .015 1 0 12 .207 3 528 min -91.033 1 -185.46 1 .2553 15 007 3 033 1 -602 1 529 18 max -3.061 15 109.399 3 109.786 1 .015 1 .054 1 .125 3 530 min -91.033 1 -318.526 1 3.666 15 007 3 .002 15 -364 1 531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 532 min -91.033 1 -451.592 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max	525		16	max	-3.061	15	18.279	3	42.972	1	.015	1	003	12	.245	3
528 min -91.033 1 -185.46 1 2.553 15 007 3 033 1 602 1 529 18 max -3.061 15 109.399 3 109.786 1 .015 1 .054 1 .125 3 530 min -91.033 1 -318.526 1 3.666 15 007 3 .002 15 364 1 531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 532 min -91.033 1 -451.592 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max 0 10 2.958 4 .023 3 0 1 0 1 534 min -35.153 1 0 <t< td=""><td>526</td><td></td><td></td><td>min</td><td>-91.033</td><td>1</td><td>-52.394</td><td>1</td><td>1.439</td><td>15</td><td>007</td><td>3</td><td>09</td><td>1</td><td>714</td><td>1</td></t<>	526			min	-91.033	1	-52.394	1	1.439	15	007	3	09	1	714	1
528 min -91.033 1 -185.46 1 2.553 15 007 3 033 1 602 1 529 18 max -3.061 15 109.399 3 109.786 1 .015 1 .054 1 .125 3 530 min -91.033 1 -318.526 1 3.666 15 007 3 .002 15 364 1 531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 532 min -91.033 1 -451.599 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max 0 10 2.958 4 .023 3 0 1 0 1 534 min -35.153 1 0 <t< td=""><td>527</td><td></td><td>17</td><td>max</td><td>-3.061</td><td>15</td><td>63.839</td><td>3</td><td>76.379</td><td>1</td><td>.015</td><td>1</td><td>0</td><td>12</td><td>.207</td><td>3</td></t<>	527		17	max	-3.061	15	63.839	3	76.379	1	.015	1	0	12	.207	3
529 18 max -3.061 15 109.399 3 109.786 1 .015 1 .054 1 .125 3 530 min -91.033 1 -318.526 1 3.666 15 007 3 .002 15 364 1 531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 532 min -91.033 1 -451.592 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max 0 10 2.958 4 .023 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 </td <td>528</td> <td></td> <td></td> <td>min</td> <td>-91.033</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>15</td> <td>007</td> <td>3</td> <td>033</td> <td>1</td> <td>602</td> <td>1</td>	528			min	-91.033	1		1		15	007	3	033	1	602	1
530 min -91.033 1 -318.526 1 3.666 15 007 3 .002 15 364 1 531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 532 min -91.033 1 -451.592 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max 0 10 2.958 4 .023 3 0 1 0 <			18	max		15		3		1	.015	1	.054	1	.125	3
531 19 max -3.061 15 154.959 3 143.193 1 .015 1 .174 1 0 1 532 min -91.033 1 -451.592 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max 0 10 2.958 4 .023 3 0 1	530			min	-91.033	1	-318.526	1	3.666	15	007	3	.002	15	364	1
532 min -91.033 1 -451.592 1 4.779 15 007 3 .006 15 0 3 533 M15 1 max 0 10 2.958 4 .023 3 0 1 0 1 0 1 0 1 534 min -35.153 1 0 10 028 1 0 3 0 1 0 1 0 1 535 2 max 0 10 2.63 4 .023 3 0 1 0 1 0 10 536 min -35.233 1 0 10 028 1 0 3 0 3 001 4 537 3 max 0 10 2.331 4 0.23 3 0 1 0 1 0 1 0 1 0 1 0<	531		19	max	-3.061	15	154.959	3	143.193	1	.015	1	.174	1	0	1
533 M15 1 max 0 10 2.958 4 .023 3 0 10 10 1 0 1						1	-451.592	1	4.779	15	007	3	.006	15	0	3
534 min -35.153 1 0 10 028 1 0 3 0 3 0 1 535 2 max 0 10 2.63 4 .023 3 0 1 0 1 0 10 10 10 536 1 0 10 028 1 0 3 0 3 001 4 537 3 max 0 10 2.301 4 .023 3 0 1 0 1 0 10 10 10 10 1 0 10 10 10 1 0 10 10 10 10 1 0 10	533	M15	1	max	0	10		4	.023	3	0	1	0	1	0	1
535 2 max 0 10 2.63 4 .023 3 0 1 0 1 0 10 536 min -35.233 1 0 10 028 1 0 3 0 3 001 4 537 3 max 0 10 2.301 4 .023 3 0 1 0 1 0 10 538 min -35.312 1 0 10 028 1 0 3 0 3 003 4 539 4 max 0 10 1.972 4 .023 3 0 1 0 1 0 10 540 min -35.392 1 0 10 028 1 0 3 0 3 004 4 541 5 max 0 10 1.643 4 .023 <	534			min	-35.153	1		10	028	1	0	3	0	3	0	1
536 min -35.233 1 0 10 028 1 0 3 0 3 001 4 537 3 max 0 10 2.301 4 .023 3 0 1 0 1 0 1	535		2			10	2.63	4	.023	3	0	1	0	1	0	10
538 min -35.312 1 0 10 028 1 0 3 0 3 003 4 539 4 max 0 10 1.972 4 .023 3 0 1 0 1 0 10 10 10 540 1 0 1 0 1 0 1 0 10				min	-35.233	1	0	10	028	1	0	3	0	3	001	4
539 4 max 0 10 1.972 4 .023 3 0 1 0 1 0 10 <td>537</td> <td></td> <td>3</td> <td>max</td> <td>0</td> <td>10</td> <td>2.301</td> <td>4</td> <td>.023</td> <td>3</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>10</td>	537		3	max	0	10	2.301	4	.023	3	0	1	0	1	0	10
540 min -35.392 1 0 10 028 1 0 3 0 3 004 4 541 5 max 0 10 1.643 4 .023 3 0 1 0 1 0 10 542 min -35.472 1 0 10 028 1 0 3 0 3 005 4 543 6 max 0 10 1.315 4 .023 3 0 1 0 1 0 10 544 min -35.551 1 0 10 028 1 0 3 0 3 005 4 545 7 max 0 10 .986 4 .023 3 0 1 0 3 0 10 546 min -35.631 1 0 10 028 1	538			min	-35.312	1	0	10	028	1	0	3	0	3	003	4
541 5 max 0 10 1.643 4 .023 3 0 1 0 1 0 10 <td></td> <td></td> <td>4</td> <td></td> <td>0</td> <td>10</td> <td>1.972</td> <td>4</td> <td>.023</td> <td>3</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>10</td>			4		0	10	1.972	4	.023	3	0	1	0	1	0	10
541 5 max 0 10 1.643 4 .023 3 0 1 0 1 0 10 <td>540</td> <td></td> <td></td> <td>min</td> <td>-35.392</td> <td>1</td> <td>0</td> <td>10</td> <td>028</td> <td>1</td> <td>0</td> <td>3</td> <td>0</td> <td>3</td> <td>004</td> <td>4</td>	540			min	-35.392	1	0	10	028	1	0	3	0	3	004	4
542 min -35.472 1 0 10 028 1 0 3 0 3 005 4 543 6 max 0 10 1.315 4 .023 3 0 1 0 1 0 1	541		5	max	0	10	1.643	4	.023	3	0	1	0	1	0	10
543 6 max 0 10 1.315 4 .023 3 0 1 0 1 0 10 544 min -35.551 1 0 10 028 1 0 3 0 3 005 4 545 7 max 0 10 .986 4 .023 3 0 1 0 3 0 10 546 min -35.631 1 0 10 028 1 0 3 0 2 006 4 547 8 max 0 10 .657 4 .023 3 0 1 0 3 0 10 548 min -35.71 1 0 10 028 1 0 3 0 1 006 4 549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10	542				-35.472	1	0	10	028	1	0	3	0	3	005	4
544 min -35.551 1 0 10 028 1 0 3 0 3 005 4 545 7 max 0 10 .986 4 .023 3 0 1 0 3 0 10 546 min -35.631 1 0 10 028 1 0 3 0 2 006 4 547 8 max 0 10 .657 4 .023 3 0 1 0 3 0 10 548 min -35.71 1 0 10 028 1 0 3 0 1 006 4 549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10			6	max		10	1.315			3	0		0			10
545 7 max 0 10 .986 4 .023 3 0 1 0 3 0 10 546 min -35.631 1 0 10 028 1 0 3 0 2 006 4 547 8 max 0 10 .657 4 .023 3 0 1 0 3 0 10 548 min -35.71 1 0 10 028 1 0 3 0 1 006 4 549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10											0	3	0	3	005	
546 min -35.631 1 0 10 028 1 0 3 0 2 006 4 547 8 max 0 10 .657 4 .023 3 0 1 0 3 0 10 548 min -35.71 1 0 10 028 1 0 3 0 1 006 4 549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10			7			10	.986		.023	3	0		0			10
547 8 max 0 10 .657 4 .023 3 0 1 0 3 0 10 548 min -35.71 1 0 10 028 1 0 3 0 1 006 4 549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10					-35.631						0	3	0			
548 min -35.71 1 0 10 028 1 0 3 0 1 006 4 549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10			8		_	10	.657			3	0		0		0	10
549 9 max 0 10 .329 4 .023 3 0 1 0 3 0 10					-			10				3			006	
			9			10	.329			3	0	1	0	3		10
								10				3			007	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

EE4	Member	Sec	T I	Axial[lb]							LC	y-y Mome		l -	
551		10	max	0	10	0	1	.023	3	0	<u>1</u>	0	3	0	10
552		4.4	min	-35.869	1	0	1	028	1_	0	3	0	1	007	4
553		11	max	0	10	0	10	.023	<u>3</u>	0	1	0	3	0	10
554		12	min	-35.949	1	329	4	028	3	0	3	0	1	007	4
555		12	max	0 -36.029	10	0 657	10	.023	<u>3</u> 1	0	<u>1</u> 3	0	3	0	10
556		12	min		10	657	4	028	3	0	<u>ာ</u> 1	0		006	4
557 558		13	max	0 -36.108	10	986	10	.023 028	<u> </u>	0	3	0	3	006	10
		1.1	min		_	966 0	10	.023	3	_	<u>ာ</u> 1	0			_
559		14	max	0 -36.188	10		4		<u> </u>	0		0	3	0	10
560 561		15	min		10	-1.315 0	10	028 .023	3	0	<u>3</u> 1	0	3	005 0	10
562		10	max min	0 -36.267	1	-1.643	4	028	1	0	3	0	1	005	4
563		16	max	<u>-30.207</u> 0	10	0	10	.023	3	0	1	0	3	003	10
564		10	min	-36.347	1	-1.972	4	028	1	0	3	0	1	004	4
565		17	max	-30.341 0	10	0	10	.023	3	0	<u> </u>	0	3	0	10
566		17	min	-36.426	1	-2.301	4	028	1	0	3	0	1	003	4
567		18	max	- <u>50.420</u> 0	10	0	10	.023	3	0	<u> </u>	0	3	0	10
568		10	min	-36.506	1	-2.63	4	028	1	0	3	0	1	001	4
569		19	max	<u>-30.300</u> 0	10	0	10	.023	3	0	<u> </u>	0	3	0	1
570		13	min	-36.585	1	-2.958	4	028	1	0	3	0	1	0	1
571	M16A	1	max	917	10	2.958	4	.02	1	0	3	0	3	0	1
572	IVITOA		min	-40.412	1	.695	15	009	3	0	1	0	1	0	1
573		2	max	851	10	2.63	4	.02	<u> </u>	0	3	0	3	0	15
574			min	-40.333	1	.618	15	009	3	0	1	0	1	001	4
575		3	max	785	10	2.301	4	.02	1	0	3	0	3	0	15
576			min	-40.253	1	.541	15	009	3	0	1	0	1	003	4
577		4	max	718	10	1.972	4	.02	1	0	3	0	3	0	15
578		_	min	-40.174	1	.464	15	009	3	0	1	0	1	004	4
579		5	max	652	10	1.643	4	.02	1	0	3	0	3	004	15
580			min	-40.094	1	.386	15	009	3	0	1	0	1	005	4
581		6	max	586	10	1.315	4	.02	1	0	3	0	3	003	15
582			min	-40.015	1	.309	15	009	3	0	1	0	1	005	4
583		7	max	519	10	.986	4	.02	1	0	3	0	3	001	15
584			min	-39.935	1	.232	15	009	3	0	1	0	1	006	4
585		8	max	453	10	.657	4	.02	1	0	3	0	3	001	15
586			min	-39.855	1	.155	15	009	3	0	1	0	1	006	4
587		9	max	387	10	.329	4	.02	1	0	3	0	3	002	15
588		Ť	min	-39.776	1	.077	15	009	3	0	1	0	1	007	4
589		10	max	321	10	0	1	.02	1	0	3	0	3	002	15
590			min	-39.696	1	0	1	009	3	0	1	0	1	007	4
591		11	max	254	10	077	15	.02	1	0	3	0	3	002	15
592			min	-39.617	1	329	4	009	3	0	1	0	1	007	4
593		12	max	188	10	155	15	.02	1	0	3	0	3	001	15
594			min	-39.537	1	657	4	009	3	0	1	0	1	006	4
595		13	max	122	10	232	15	.02	1	0	3	0	1	001	15
596			min	-39.458	1	986	4	009	3	0	1	0	13	006	4
597		14	max	055	10	309	15	.02	1	0	3	0	1	001	15
598			min	-39.378	1	-1.315	4	009	3	0	1	0	3	005	4
599		15	max	.011	10	386	15	.02	1	0	3	0	1	001	15
600			min	-39.299	1	-1.643	4	009	3	0	1	0	3	005	4
601		16	max	.077	10	464	15	.02	1	0	3	0	1	0	15
602			min	-39.219	1	-1.972	4	009	3	0	1	0	3	004	4
603		17	max	.144	10	541	15	.02	1	0	3	0	1	0	15
604			min	-39.139	1	-2.301	4	009	3	0	1	0	3	003	4
605		18	max	.21	10	618	15	.02	1	0	3	0	1	0	15
606			min	-39.06	1	-2.63	4	009	3	0	1	0	3	001	4
607		19	max	.276	10	695	15	.02	1	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-38.98	1	-2.958	4	009	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini	. · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Dene		10									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.003	1	.008	2	.016	1	-4.506e-5	15	NC	3	NC	3
2			min	003	3	006	3	0	3	-1.345e-3	1	4388.4	2	2023.301	1
3		2	max	.003	1	.007	2	.015	1	-4.32e-5	15	NC	3	NC	3
4			min	003	3	006	3	0	3	-1.29e-3	1	4756.155	2	2189.494	
5		3	max	.003	1	.006	2	.014	1	-4.133e-5	15	NC	3	NC	3
6		Ŭ	min	003	3	006	3	0	3	-1.235e-3	1	5187.869	2	2385.177	1
7		4	max	.003	1	.006	2	.013	1	-3.947e-5	15	NC	3	NC	3
8			min	002	3	006	3	0	3	-1.18e-3	1	5698.011	2	2617.5	1
9		5	max	.002	1	.005	2	.011	1	-3.76e-5	15	NC	3	NC	3
10		J	min	002	3	005	3	0	3	-1.124e-3	1	6305.599	2	2896.003	
		6			1			.01	1	-3.573e-5	_	NC	1	NC	
11		6	max	.002	3	.005	3	01 0	3		<u>15</u>		2		3
		7	min	002		005				-1.069e-3	1_	7036.028		3233.647	
13		7	max	.002	1	.004	2	.009	1	-3.387e-5	<u>15</u>	NC 7000 044	1	NC 2010 110	3
14			min	002	3	005	3	0	3	-1.014e-3	1_	7923.844	2	3648.412	
15		8	max	.002	1	.004	2	.008	1	-3.2e-5	<u>15</u>	NC	1	NC	2
16			min	002	3	005	3	0	3	-9.583e-4	1_	9017.072	2	4165.843	1
17		9	max	.002	1	.003	2	.007	1	-3.013e-5	<u>15</u>	NC	_1_	NC	2
18			min	002	3	004	3	0	3	-9.03e-4	1_	NC	1_	4823.261	1
19		10	max	.002	1	.003	2	.006	1	-2.827e-5	<u>15</u>	NC	<u>1</u>	NC	2
20			min	001	3	004	3	0	3	-8.478e-4	1	NC	1	5677.022	1
21		11	max	.001	1	.002	2	.005	1	-2.64e-5	15	NC	1	NC	2
22			min	001	3	004	3	0	3	-7.925e-4	1	NC	1	6815.648	1
23		12	max	.001	1	.002	2	.004	1	-2.454e-5	15	NC	1	NC	2
24			min	001	3	003	3	0	3	-7.372e-4	1	NC	1	8385.075	1
25		13	max	.001	1	.002	2	.003	1	-2.267e-5	15	NC	1	NC	1
26			min	0	3	003	3	0	3	-6.819e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	.002	1	-2.08e-5	15	NC	1	NC	1
28			min	0	3	002	3	0	3	-6.266e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	.002	1	-1.894e-5	15	NC	1	NC	1
30		10	min	0	3	002	3	0	3	-5.713e-4	1	NC	1	NC	1
31		16		0	1	<u>002</u> 0	2	.001	1	-1.707e-5	15	NC	1	NC	1
32		10	max	0	3	001	3	0	3	-5.16e-4	1	NC NC	1	NC NC	1
		17	min			<u>001</u> 0						NC NC	+	NC NC	1
33		17	max	0	3		2	0	1	-1.52e-5	<u>15</u>				
34		40	min	0		001	3	0	12	-4.607e-4	1_	NC NC	1_	NC NC	1
35		18	max	0	1	0	2	0	1	-1.334e-5	<u>15</u>	NC	1	NC	1
36		40	min	0	3	0	3	0	12	-4.054e-4	1_	NC	1_	NC NC	1
37		19	max	0	1	0	1	0	1	-9.843e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-3.501e-4	1_	NC	<u>1</u>	NC	1
39	M3	1	max	0	1	0	1	0	1	1.609e-4	1_	NC	1	NC	1
40			min	0	1	0	1	0	1		12	NC	1	NC	1
41		2	max	0	9	0	2	0	12		1_	NC	1_	NC	1
42			min	0	2	0	3	0	1	6.705e-6	15	NC	1	NC	1
43		3	max	0	9	0	2	0	12	2.455e-4	1	NC	1	NC	1
44			min	0	2	002	3	001	1	8.134e-6	15	NC	1	NC	1
45		4	max	0	9	0	2	0	12	2.878e-4	1	NC	1	NC	1
46			min	0	2	002	3	001	1	9.564e-6	15	NC	1	NC	1
47		5	max	0	9	0	2	0	12	3.301e-4	1	NC	1	NC	1
48		Ť	min	0	2	003	3	001	1	1.099e-5	15	NC	1	NC	1
49		6	max	0	9	0	2	0	3	3.725e-4	1	NC	1	NC	1
50			min	0	2	004	3	001	1	1.242e-5	15	NC	1	NC	1
51		7		0	9	.004	2	<u>001</u> 0	3	4.148e-4	1	NC	+	NC	1
UUI			max	U	J	.001		U	J	4.1406-4		INC		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
52			min	0	2	004	3	001	1	1.385e-5	15	NC	1_	NC	1
53		8	max	0	9	.001	2	0	3	4.571e-4	_1_	NC	_1_	NC	1
54			min	0	2	005	3	0	1	1.528e-5	<u>15</u>	NC	<u>1</u>	NC	1
55		9	max	0	9	.002	2	0	3	4.994e-4	_1_	NC	1_	NC	1
<u>56</u>		10	min	0	2	006	3	0	2	1.671e-5	15	NC	1_	NC	1
57		10	max	0	9	.002	2	0	1	5.417e-4	1_	NC	1	NC NC	1
58		44	min	0	2	006	3	0	15	1.814e-5	15	NC NC	1_	NC NC	1
59		11	max	0	9	.003	2	.001	1	5.84e-4	1_	NC NC	1_	NC	1
60		40	min	0	2	007	3	0		1.957e-5	<u>15</u>	NC NC	1_1	NC NC	1
61		12	max	0	9	.003	3	.002	15	6.263e-4	1_	NC NC	<u>1</u> 1	NC NC	1
63		13	min			007	2	.003		2.1e-5	<u>15</u>	NC NC	1	NC NC	1
64		13	max	0	9	.004 007	3	<u>.003</u>	15	6.686e-4 2.243e-5	<u>1</u> 15	NC NC	1	NC NC	1
65		14		0	9	.005	2	.004	1	7.109e-4	1 <u>15</u>	NC NC	1	NC NC	1
66		14	max min	0	2	007	3	004 0	15	2.386e-5	15	9439.052	2	NC NC	1
67		15	max	0	9	.006	2	.005	1	7.532e-4	1	NC	3	NC	2
68		10	min	0	2	007	3	0	15	2.529e-5	15	7983.097	2	9015.947	1
69		16	max	.001	9	.007	2	.006	1	7.955e-4	1	NC	3	NC	2
70		''	min	0	2	008	3	0	15			6845.188	2	7582.102	1
71		17	max	.001	9	.008	2	.007	1	8.378e-4	1	NC	3	NC	2
72			min	0	2	008	3	0	15	2.815e-5		5947.645	2	6558.176	
73		18	max	.001	9	.009	2	.008	1	8.801e-4	1	NC	3	NC	2
74			min	0	2	008	3	0	15	2.958e-5		5234.021	2	5804.097	1
75		19	max	.001	9	.01	2	.009	1	9.224e-4	1	NC	3	NC	2
76			min	0	2	008	3	0	15	3.101e-5	15	4663.081	2	5237.703	1
77	M4	1	max	.003	1	.009	2	0	15	-3.704e-5	15	NC	1	NC	3
78			min	0	3	007	3	007	1	-1.115e-3	1	NC	1	2928.195	1
79		2	max	.003	1	.008	2	0	15	-3.704e-5	15	NC	1	NC	3
80			min	0	3	006	3	006	1	-1.115e-3	1	NC	1	3194.048	1
81		3	max	.002	1	.008	2	0	15	-3.704e-5	<u>15</u>	NC	1_	NC	3
82			min	0	3	006	3	006	1	-1.115e-3	1_	NC	1_	3510.471	1
83		4	max	.002	1	.007	2	0	15	-3.704e-5	15	NC	1_	NC	2
84			min	0	3	006	3	005	1	-1.115e-3	1_	NC	1_	3890.802	1
85		5	max	.002	1	.007	2	0	15		<u>15</u>	NC	_1_	NC	2
86		_	min	0	3	005	3	004	1	-1.115e-3	_1_	NC	1_	4353.206	1
87		6	max	.002	1	.006	2	0	15	-3.704e-5	<u>15</u>	NC	_1_	NC	2
88			min	0	3	005	3	004	1_	-1.115e-3	_1_	NC	1_	4922.953	1
89		7	max	.002	1	.006	2	0	15			NC	1_	NC	2
90			min	0	3	004	3	003	1_	-1.115e-3	1_	NC	1_	5636.037	1
91		8	max	.002	1	.005	2	0	15	-3.704e-5		NC NC	1_	NC CE 4E 4 CZ	2
92			min		3	004	3	003		-1.115e-3		NC NC		6545.167	
93		9	max	.002	3	.005	2	0		-3.704e-5		NC NC	1_1	NC	2
94		10	min	0		<u>004</u>	2	003	1 1 1 5	-1.115e-3	1_	NC NC	<u>1</u> 1	7730.077 NC	1
95		10	max	.001	3	.004	3	0	1	-3.704e-5		NC NC	1		2
96		11	min max	.001	1	003 .004	2	002 0	15	-1.115e-3 -3.704e-5	15	NC NC	1	9316.126 NC	1
98		11	min	0	3	003	3	002	1	-1.115e-3	1	NC	1	NC	1
99		12	max	.001	1	.003	2	<u>002</u> 0		-3.704e-5		NC	1	NC	1
100		12	min	0	3	003	3	001	1	-1.115e-3	1	NC	1	NC	1
101		13		0	1	.003	2	<u>001</u> 0	15	-3.704e-5	•	NC	1	NC NC	1
101		13	max min	0	3	002	3	0	1	-3.704e-3	1	NC NC	1	NC NC	1
103		14	max	0	1	.002	2	0		-3.704e-5	_	NC	1	NC	1
104		17	min	0	3	002	3	0	1	-1.115e-3	1	NC	1	NC	1
105		15	max	0	1	.002	2	0		-3.704e-5		NC	1	NC	1
106		10	min	0	3	001	3	0	1	-1.115e-3	1	NC	1	NC	1
107		16	max	0	1	.001	2	0	15			NC	1	NC	1
108		1.0	min	0	3	001	3	0		-1.115e-3		NC	1	NC	1
100			1111111			.001				1.11000		110			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
109		17	max	0	1	0	2	0	15		15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-1.115e-3	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15		15	NC	_1_	NC	1
112			min	0	3	0	3	0	1	-1.115e-3	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-3.704e-5	<u>15</u>	NC	1_	NC	1
114			min	0	1	0	1	0	1	-1.115e-3	1_	NC	1_	NC	1
115	M6	1	max	.011	1	.025	2	.005	1	2.761e-4	<u>1</u>	NC	3	NC	2
116			min	01	3	019	3	002	3	4.542e-6	10	1338.034	2	7233.353	1
117		2	max	.01	1	.023	2	.004	1	2.591e-4	_1_	NC	3	NC	2
118			min	009	3	018	3	002	3	3.598e-6	10	1428.134	2	7859.774	1
119		3	max	.01	1	.022	2	.004	1	2.422e-4	_1_	NC	3	NC	2
120			min	009	3	017	3	002	3	2.653e-6	10	1530.926	2	8603.764	1
121		4	max	.009	1	.02	2	.004	1	2.252e-4	<u>1</u>	NC	3	NC	2
122			min	008	3	016	3	002	3	1.709e-6	10	1648.945	2	9495.481	1
123		5	max	.008	1	.019	2	.003	1	2.083e-4	1	NC	3	NC	1
124			min	008	3	015	3	002	3	7.646e-7	10	1785.454	2	NC	1
125		6	max	.008	1	.017	2	.003	1	1.913e-4	1_	NC	3	NC	1
126			min	007	3	014	3	001	3	-1.797e-7	10	1944.724	2	NC	1
127		7	max	.007	1	.016	2	.002	1	1.744e-4	1	NC	3	NC	1
128			min	007	3	013	3	001	3	-1.124e-6	10	2132.454	2	NC	1
129		8	max	.007	1	.014	2	.002	1	1.574e-4	1	NC	3	NC	1
130			min	006	3	012	3	001	3	-2.068e-6	10	2356.417	2	NC	1
131		9	max	.006	1	.013	2	.002	1	1.43e-4	3	NC	3	NC	1
132			min	005	3	011	3	001	3	-3.013e-6	10	2627.496	2	NC	1
133		10	max	.005	1	.011	2	.002	1	1.379e-4	3	NC	3	NC	1
134			min	005	3	01	3	0	3	-3.957e-6		2961.418	2	NC	1
135		11	max	.005	1	.01	2	.001	1	1.328e-4	3	NC	3	NC	1
136			min	004	3	009	3	0	3	-4.901e-6		3381.769	2	NC	1
137		12	max	.004	1	.008	2	0	1	1.277e-4	3	NC	3	NC	1
138			min	004	3	008	3	0	3	-8.948e-6	2	3925.614	2	NC	1
139		13	max	.004	1	.007	2	0	1	1.227e-4	3	NC	3	NC	1
140			min	003	3	007	3	0	3	-1.409e-5	2	4654.724	2	NC	1
141		14	max	.003	1	.006	2	0	1	1.176e-4	3	NC	3	NC	1
142			min	003	3	006	3	0	3	-1.924e-5	2	5680.278	2	NC	1
143		15	max	.002	1	.005	2	0	1	1.125e-4	3	NC	3	NC	1
144		1.0	min	002	3	005	3	0	3	-2.439e-5	2	7224.627	2	NC	1
145		16	max	.002	1	.003	2	0	1	1.074e-4	3	NC	1	NC	1
146		1.0	min	002	3	003	3	0	3	-2.953e-5	2	9806.561	2	NC	1
147		17	max	.001	1	.002	2	0	1	1.023e-4	3	NC	1	NC	1
148			min	001	3	002	3	0	3	-3.468e-5	2	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	9.726e-5		NC	1	NC	1
150			min	0	3	001	3	0	3	-3.982e-5	2	NC	1	NC	1
151		19	max	0	1	0	1	0	1	9.218e-5	3	NC	1	NC	1
152		10	min	0	1	0	1	0	1	-4.497e-5	2	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.037e-5	2	NC	1	NC	1
154	1017	<u>'</u>	min	0	1	0	1	0	1	-4.218e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.73e-5	2	NC	1	NC	1
156			min	0	2	002	3	0	2	-3.162e-5	3	NC	1	NC	1
157		3	max	0	3	.002	2	0	3	1.536e-5	1	NC	1	NC	1
158			min	0	2	003	3	0	2	-2.107e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	0	3	1.667e-5	1	NC	1	NC	1
160		_	min	0	2	005	3	0	2	-1.051e-5	3	NC NC	1	NC	1
161		5	max	0	3	.006	2	0	3	1.798e-5	1	NC	3	NC	1
162			min	0	2	006	3	0	2	4.338e-8	3	8301.046	2	NC	1
163		6	max	0	3	.007	2	0	3	1.929e-5	<u> </u>	NC	3	NC NC	1
164		0	min	001	2	008	3	0	2	5.69e-7		6651.519	2	NC NC	1
165		7		.001	3	.008	2	.001	3	2.115e-5	3	NC	3	NC	1
100		1	max	.001	」 ວ	.000		.001	<u>_</u>	2.1108-5	<u>ა</u>	INC	<u>ა</u>	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
166			min	001	2	009	3	0	2	6.692e-7		5524.683	2	NC	1
167		8	max	.001	3	.01	2	.001	3	3.171e-5	3	NC	3	NC	1
168			min	001	2	011	3	0	1	-1.126e-6	2	4699.497	2	NC	1
169		9	max	.001	3	.011	2	.001	3	4.227e-5	3	NC	3	NC	1
170		4.0	min	002	2	012	3	0	1	-4.197e-6	2	4065.794	2	NC	1
171		10	max	.002	3	.013	2	.001	3	5.282e-5	3	NC	3	NC	1
172		44	min	002	2	013	3	0	1	-7.268e-6	2	3562.497	2	NC	1
173		11	max	.002	3	.015	2	.001	3	6.338e-5	3_	NC 0450,000	3	NC	1
174		40	min	002	2	015	3	001	1	-1.034e-5	2	3152.928	2	NC NC	1
175		12	max	.002	3	<u>.016</u> 016	3	.001	3	7.393e-5	2	NC	3	NC NC	1
176 177		13	min	002 .002	3		2	001	3	-1.341e-5 8.449e-5		2813.62 NC	3	NC NC	1
178		13	max	002	2	.018 017	3	.001 001	1	-1.648e-5	2	2528.757	2	NC NC	1
179		14	max	.002	3	.02	2	.001	3	9.504e-5	3	NC	3	NC NC	1
180		14	min	003	2	018	3	002	1	-1.955e-5	2	2287.198	2	NC	1
181		15	max	.002	3	.022	2	.002	3	1.056e-4	3	NC	3	NC	1
182		10	min	003	2	019	3	002	1	-2.262e-5	2	2080.808	2	NC	1
183		16	max	.003	3	.024	2	.002	3	1.162e-4	3	NC	3	NC	1
184		10	min	003	2	019	3	002	1	-2.57e-5	2	1903.459	2	NC	1
185		17	max	.003	3	.026	2	.001	3	1.267e-4	3	NC	3	NC	1
186		<u> </u>	min	003	2	02	3	002	1	-2.877e-5	2	1750.425	2	NC	1
187		18	max	.003	3	.028	2	.001	3	1.373e-4	3	NC	3	NC	1
188			min	004	2	021	3	002	1	-3.184e-5	2	1617.984	2	NC	1
189		19	max	.003	3	.031	2	.001	3	1.478e-4	3	NC	3	NC	1
190			min	004	2	022	3	002	1	-3.491e-5	2	1503.167	2	NC	1
191	M8	1	max	.008	1	.028	2	.003	1	-1.969e-6	10	NC	1	NC	2
192			min	001	3	019	3	0	3	-1.609e-4	1	NC	1	7322.42	1
193		2	max	.007	1	.027	2	.002	1	-1.969e-6	10	NC	1	NC	2
194			min	001	3	018	3	0	3	-1.609e-4	1	NC	1	7983.416	1
195		3	max	.007	1	.025	2	.002	1	-1.969e-6	10	NC	1_	NC	2
196			min	001	3	017	3	0	3	-1.609e-4	1_	NC	1	8770.333	1
197		4	max	.006	1	.024	2	.002	1	-1.969e-6	10	NC	_1_	NC	2
198			min	001	3	016	3	0	3	-1.609e-4	1_	NC	1_	9716.34	1
199		5	max	.006	1	.022	2	.002	1	-1.969e-6	10	NC	_1_	NC	1
200			min	0	3	015	3	0	3	-1.609e-4	_1_	NC	_1_	NC	1
201		6	max	.006	1	.021	2	.002	1	-1.969e-6	<u>10</u>	NC	_1_	NC	1
202		<u> </u>	min	0	3	014	3	0	3	-1.609e-4	1_	NC	1_	NC	1
203		7	max	.005	1	.019	2	.001	1	-1.969e-6	10	NC	1_	NC	1
204			min	0	3	013	3	0	3	-1.609e-4	1_	NC	_1_	NC	1
205		8	max	.005	1	.017	2	.001	1	-1.969e-6	10	NC	1_	NC	1
206			min		3	012	3	0		-1.609e-4		NC NC	1	NC NC	1
207		9	max	.004	3	.016	2	.001	1	-1.969e-6		NC NC	1	NC NC	1
208		10	min	0		011	2	0	1	-1.609e-4 -1.969e-6	1_	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.004	3	.014	3	<u> </u>	3	-1.609e-4		NC NC	1	NC NC	1
210		11	min max	.003	1	01 .013	2	0	1	-1.609e-4 -1.969e-6	<u>1</u> 10	NC NC	1	NC NC	1
212			min	0	3	009	3	0	3	-1.609e-4	1	NC	1	NC	1
213		12		.003	1	.011	2	0	1	-1.969e-4		NC	1	NC	1
214		14	max min	0	3	008	3	0	3	-1.609e-4	1	NC NC	1	NC NC	1
215		13	max	.003	1	.009	2	0	1	-1.969e-4	10	NC	1	NC	1
216		13	min	.003	3	006	3	0	3	-1.609e-4	1	NC NC	1	NC NC	1
217		14	max	.002	1	.008	2	0	1	-1.969e-6	10	NC	1	NC	1
218			min	0	3	005	3	0	3	-1.609e-4	1	NC	1	NC	1
219		15	max	.002	1	.006	2	0	1	-1.969e-6	10	NC	1	NC	1
220		10	min	0	3	004	3	0	3	-1.609e-4	1	NC	1	NC	1
221		16	max	.001	1	.005	2	0	1	-1.969e-6	10	NC	1	NC	1
222			min	0	3	003	3	0	3	-1.609e-4	1	NC	1	NC	1
									_	, т	-		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC_
223		17	max	0	1	.003	2	0	1	-1.969e-6	10	NC	1_	NC	1
224			min	0	3	002	3	0	3	-1.609e-4	1_	NC	1_	NC	1
225		18	max	0	1	.002	2	0	1	-1.969e-6	<u>10</u>	NC	_1_	NC	1
226			min	0	3	001	3	0	3	-1.609e-4	1_	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-1.969e-6	<u>10</u>	NC	_1_	NC	1
228	140	1	min	0	1	0	1	0	1	-1.609e-4	1_	NC NC	1_	NC NC	1
229	<u>M10</u>	1	max	.003	1	.008	2	0	3	1.119e-3	1_	NC 4000 004	3	NC	1
230		 	min	003	3	006	3	002	1	-1.716e-4	3	4393.084	2	NC NC	1
231		2	max	.003	1	.007	2	0	3	1.06e-3	1	NC	3	NC	1
232		2	min	003	3	006	2	002	3	-1.671e-4	3	4749.389 NC	2	NC NC	1
233		3	max	.003 003	3	.006 006	3	0 002	1	1.001e-3	<u>1</u> 3	5165.569	3	NC NC	1
235		4	min	.003	1	006 .006	2	<u>002</u> 0	3	-1.625e-4 9.427e-4		NC	3	NC NC	1
236		4	max	002	3	006	3	002	1	-1.58e-4	<u>1</u> 3	5654.671	2	NC NC	1
237		5	max	.002	1	.005	2	<u>002</u> 0	3	8.84e-4	<u> </u>	NC	3	NC	1
238		-	min	002	3	006	3	002	1	-1.535e-4	3	6233.721	2	NC	1
239		6	max	.002	1	.005	2	0	3	8.252e-4	1	NC	1	NC	1
240		+	min	002	3	005	3	002	1	-1.489e-4	3	6925.281	2	NC	1
241		7	max	.002	1	.004	2	0	3	7.665e-4	1	NC	1	NC	1
242		1	min	002	3	005	3	001	1	-1.444e-4	3	7759.802	2	NC	1
243		8	max	.002	1	.004	2	0	3	7.077e-4	1	NC	1	NC	1
244			min	002	3	005	3	001	1	-1.398e-4	3	8779.264	2	NC	1
245		9	max	.002	1	.003	2	0	3	6.49e-4	1	NC	1	NC	1
246			min	002	3	004	3	001	1	-1.353e-4	3	NC	1	NC	1
247		10	max	.002	1	.003	2	0	3	5.902e-4	1	NC	1	NC	1
248			min	001	3	004	3	0	1	-1.307e-4	3	NC	1	NC	1
249		11	max	.002	1	.002	2	0	3	5.315e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-1.262e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	0	3	4.727e-4	1_	NC	1_	NC	1
252			min	001	3	003	3	0	1	-1.216e-4	3	NC	1	NC	1
253		13	max	.001	1	.002	2	0	3	4.14e-4	_1_	NC	_1_	NC	1
254			min	0	3	003	3	0	1	-1.171e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	3.552e-4	1_	NC	1_	NC	1
256			min	0	3	002	3	0	1	-1.125e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	2.965e-4	_1_	NC	_1_	NC	1
258		10	min	0	3	002	3	0	1	-1.08e-4	3	NC	1_	NC NC	1
259		16	max	0	1	0	2	0	3	2.378e-4	1_	NC	1_	NC	1
260		47	min	0	3	002	3	0	1	-1.034e-4	3	NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	3	1.79e-4	1_	NC	1_	NC	1
262 263		10	min max	<u> </u>	3	001	2	0	1	-9.889e-5 1.203e-4	3	NC NC	<u>1</u> 1	NC NC	1
		18			3	0	3	0	1				1	NC NC	1
264 265		19	min	<u> </u>	1	0	1	0	1	-9.434e-5 6.151e-5	<u>3</u>	NC NC	1	NC NC	1
266		19	max min	0	1	0	1	0	1	-8.979e-5	3	NC NC	1	NC NC	1
267	M11	1	max	0	1	0	1	0	1	4.129e-5	3	NC	1	NC	1
268	IVI I	+ '	min	0	1	0	1	0	1	-2.991e-5	1	NC	1	NC	1
269		2	max	0	9	0	2	0	2	2.835e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-1.065e-4	1	NC	1	NC	1
271		3	max	0	9	0	2	0	2	1.54e-5	3	NC	1	NC	1
272			min	0	2	002	3	0	3	-1.83e-4	1	NC	1	NC	1
273		4	max	0	9	<u>.002</u>	2	0	10	2.458e-6	3	NC	1	NC	1
274			min	0	2	002	3	0	1	-2.596e-4	1	NC	1	NC	1
275		5	max	0	9	0	2	0	10		•	NC	1	NC	1
276		Ť	min	0	2	003	3	001	1	-3.362e-4	1	NC	1	NC	1
277		6	max	0	9	0	2	0	15	-1.38e-5	15	NC	1	NC	1
278		Ĭ	min	0	2	004	3	002	1	-4.127e-4	1	NC	1	NC	1
279		7	max	0	9	.001	2	0	15	-1.641e-5	15	NC	1	NC	1
										,			_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
280			min	0	2	005	3	003	1	-4.893e-4	1_	NC	1_	NC	1
281		8	max	0	9	.001	2	00	15		<u>15</u>	NC	_1_	NC	1
282			min	0	2	005	3	004	1	-5.659e-4	_1_	NC	_1_	NC	1
283		9	max	0	9	.002	2	0	15	-2.163e-5	<u>15</u>	NC		NC	2
284		40	min	0	2	006	3	005	1	-6.424e-4	1_	NC NC	1_	9057.405	1
285		10	max	0	9	.002	2	0	15	-2.424e-5	<u>15</u>	NC NC	1_1	NC 7204 240	2
286		4.4	min	0	2	<u>006</u>	3	006	1_	-7.19e-4	1_	NC NC	1_	7301.318	
287		11	max	0	9	.003	3	0	15	-2.685e-5	<u>15</u>	NC NC	1	NC 6067.418	2
288		12	min	0	9	007		008 0		-7.956e-4	15	NC NC	1	NC	
289 290		12	max	<u> </u>	2	.003 007	3	009	15	-2.946e-5 -8.721e-4	<u>15</u> 1	NC NC	1	5167.805	1
291		13	min max	0	9	.007	2	<u>009</u> 0	15	-3.207e-5	15	NC NC	1	NC	2
292		13	min	0	2	00 4	3	01	1	-9.487e-4	1	NC NC	1	4492.889	
293		14	max	0	9	.005	2	0	15	-3.468e-5	15	NC	1	NC	2
294		14	min	0	2	007	3	012	1	-1.025e-3	1	9237.765	2	3975.219	1
295		15	max	0	9	.006	2	0	15	-3.729e-5	15	NC	3	NC	2
296		10	min	0	2	008	3	013	1	-1.102e-3	1	7865.79	2	3571.444	1
297		16	max	.001	9	.007	2	0	15	-3.99e-5	15	NC	3	NC	3
298			min	0	2	008	3	014	1	-1.178e-3	1	6780.736	2	3252.729	
299		17	max	.001	9	.008	2	0	15	-4.251e-5	15	NC	3	NC	3
300			min	0	2	008	3	015	1	-1.255e-3	1	5916.691	2	2999.365	
301		18	max	.001	9	.009	2	0	15	-4.512e-5	15	NC	3	NC	3
302			min	0	2	008	3	016	1	-1.332e-3	1	5224.422	2	2797.615	
303		19	max	.001	9	.01	2	0	15	-4.773e-5	15	NC	3	NC	3
304			min	0	2	008	3	017	1	-1.408e-3	1	4667.158	2	2637.801	1
305	M12	1	max	.003	1	.009	2	.014	1	1.234e-3	1	NC	1	NC	3
306			min	0	3	007	3	0	15	4.238e-5	15	NC	1	1343.778	1
307		2	max	.003	1	.008	2	.013	1	1.234e-3	1_	NC	1_	NC	3
308			min	0	3	006	3	0	15	4.238e-5	15	NC	1_	1465.416	
309		3	max	.002	1	.008	2	.012	1	1.234e-3	1_	NC	1_	NC	3
310			min	0	3	006	3	0	15	4.238e-5	15	NC	1_	1610.21	1
311		4	max	.002	1	.007	2	.011	1	1.234e-3	1_	NC	1_	NC	3
312			min	0	3	006	3	0	15	4.238e-5	15	NC	_1_	1784.263	
313		5	max	.002	1	.007	2	.01	1	1.234e-3	1_	NC	_1_	NC 1007	3
314			min	0	3	005	3	0	15	4.238e-5	15	NC NC	1_	1995.888	1
315		6	max	.002	1	.006	2	.009	1	1.234e-3	1_	NC	1_	NC	3
316		-	min	0	3	005	3	0	15	4.238e-5	15	NC NC	1_	2256.65	1
317		7	max	.002	1	.006	2	.007	1	1.234e-3	1_	NC NC	1_1	NC	3
318		0	min	0	3	004	3	0	15	4.238e-5	<u>15</u>	NC NC	1	2583.019	
319 320		8	max min	.002 0	3	.005 004	3	<u>.006</u> 0	1 1 5	1.234e-3 4.238e-5	1_	NC NC		NC 2999.118	3
321		9	max	.002	1	.005	2	.005	1	1.234e-3	1	NC NC	1	NC	3
322		9	min	0	3	004	3	<u>.005</u>	15		15	NC NC	1	3541.432	
323		10	max	.001	1	.004	2	.005	1	1.234e-3	1 <u>.</u> 1	NC	1	NC	2
324		10	min	0	3	003	3	0	15	4.238e-5	15	NC	1	4267.324	
325		11	max	.001	1	.004	2	.004	1	1.234e-3	1	NC	1	NC	2
326			min	0	3	003	3	0	15	4.238e-5	15	NC	1	5271.279	
327		12	max	.001	1	.003	2	.003	1	1.234e-3	1	NC	1	NC	2
328		12	min	0	3	003	3	0	15	4.238e-5	15	NC	1	6718.128	
329		13	max	0	1	.003	2	.002	1	1.234e-3	1	NC	1	NC	2
330		'	min	0	3	002	3	0	15	4.238e-5	15	NC	1	8917.086	
331		14	max	0	1	.002	2	.002	1	1.234e-3	1	NC	1	NC	1
332			min	0	3	002	3	0	15	4.238e-5	15	NC	1	NC	1
333		15	max	0	1	.002	2	.001	1	1.234e-3	1	NC	1	NC	1
334			min	0	3	001	3	0	15	4.238e-5	15	NC	1	NC	1
335									-	4.004.0			4		
333		16	max	0	1	.001	2	0	1	1.234e-3	1_	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	1.234e-3	_1_	NC	_1_	NC	1
338			min	0	3	0	3	0	15	4.238e-5	15	NC	1_	NC	1
339		18	max	0	1	0	2	0	1	1.234e-3	_1_	NC	_1_	NC	1
340			min	0	3	0	3	0	15	4.238e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	1.234e-3	1_	NC		NC	1
342	N 4 4		min	0	1	0	1	0	1	4.238e-5	15	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max	.006	3	.023	3	.001	3	1.996e-2	1_	NC	1_	NC NC	1
344			min	007	2	03	1	005	1	-1.708e-2	3	NC NC	1_	NC NC	1
345		2	max	.006	3	.013	3	0	3	9.51e-3	1	NC 2240 4CF	4	NC COOO 242	2
346		2	min	007	2	016	1	012	1	-8.456e-3	3	3340.165 NC	1_	6822.313 NC	1
347		3	max	.006 007	3	.003 003	3	0 016	1	5.896e-6 -7.453e-4	<u>3</u>	1727.586	<u>5</u> 1	4135.471	2
349		4	min	007 .006	3	003 .008	1	<u>016</u> 0	3	1.033e-5	3	NC	<u> </u>	NC	3
350		4	max	007	2	005	3	019	1	-6.206e-4	1	1222.404	1	3420.212	1
351		5		.006	3	005 .017	1	<u>019</u> 0	3	1.476e-5	3	NC	5	NC	3
352			max	007	2	012	3	019	1	-4.959e-4	1	979.677	1	3281.65	1
353		6	max	.006	3	.025	1	0	12	1.919e-5	3	NC	5	NC	3
354			min	007	2	017	3	018	1	-3.712e-4	1	842.57	1	3507.251	1
355		7	max	.006	3	.031	1	0	12	2.362e-5	3	NC	5	NC	2
356			min	007	2	021	3	016	1	-2.464e-4	1	759.651	1	4167.804	
357		8	max	.006	3	.035	1	0	3	2.805e-5	3	NC	5	NC	2
358			min	007	2	023	3	013	1	-1.217e-4	1	709.539	1	5699.104	1
359		9	max	.006	3	.037	1	0	3	3.248e-5	3	NC	5	NC	1
360			min	008	2	025	3	009	1	-9.087e-6	2	682.257	1	NC	1
361		10	max	.006	3	.038	1	0	3	1.278e-4	1	NC	5	NC	1
362			min	008	2	025	3	005	1	4.568e-6	15	673.211	1	NC	1
363		11	max	.006	3	.037	1	0	3	2.525e-4	1	NC	5	NC	1
364			min	008	2	024	3	001	1	8.732e-6	15	681.018	1	NC	1
365		12	max	.006	3	.035	1	.002	1	3.772e-4	1	NC	5	NC	2
366			min	008	2	022	3	0	15	1.29e-5	15	706.929	1	6710.113	1
367		13	max	.006	3	.03	1	.006	1	5.019e-4	1_	NC	5	NC	2
368			min	008	2	019	3	0	15	1.706e-5	15	755.36	1_	4645.434	1
369		14	max	.006	3	.024	1	.008	1	6.267e-4	_1_	NC	5_	NC	3
370			min	008	2	015	3	0	15	2.122e-5	15	835.976	1_	3803.302	1
371		15	max	.006	3	.016	1	.009	1	7.514e-4	1_	NC	5_	NC	3
372			min	008	2	01	3	0	15	2.539e-5	15	969.491	<u>1</u>	3500.014	
373		16	max	.006	3	.007	1	.009	1	8.416e-4	_1_	NC	5	NC	3
374			min	008	2	004	3	0	15	2.842e-5		1205.294	_1_	3605.085	
375		17	max	.006	3	.002	3	.007	1	1.116e-4	1_	NC	4_	NC 1000 001	2
376		40	min	008	2	005	1	0	15	4.551e-6	15	1691.764	1_	4323.391	1
377		18	max	.006	3	.01	3	.002		1.119e-2		NC	4	NC 7004 C07	2
378		10	min	008	2	018	1	0	15	-3.871e-3	3	3260.856	1_1	7091.607	1
379		19	max	.006	3	.018	3	0	1	2.248e-2	1	NC NC	<u>1</u> 1	NC NC	1
380	M5	1	min	008	2	033 .069	3	004		-7.844e-3 6.335e-7	3	NC NC	1	NC NC	1
381	IVIO		max min	.018 024	3	092	1	.001 006	1	4.46e-8	<u>1</u> 15	NC NC	1	NC NC	1
383		2	max	.018	3	.039	3	.002	3	4.40e-8 4.629e-5	3	NC	5	NC	1
384			min	024	2	05	1	005	1	-9.154e-5	1	1115.297	1	NC	1
385		3	max	.018	3	.01	3	.002	3	9.118e-5	3	NC	5	NC	1
386		<u> </u>	min	024	2	011	1	005	1	-1.818e-4	1	574.191	1	NC	1
387		4	max	.018	3	.022	1	.003	3	8.994e-5	3	NC	5	NC	1
388			min	024	2	013	3	004	1	-1.697e-4	1	405.219	1	NC	1
389		5	max	.018	3	.051	1	.003	3	8.87e-5	3	NC	15	NC	1
390			min	024	2	033	3	003	1	-1.575e-4	1	323.983	1	NC	1
391		6	max	.018	3	.074	1	.003	3	8.746e-5	3	NC	15	NC	1
392			min	024	2	048	3	003	1	-1.454e-4	1	278.014	1	NC	1
393		7	max	.018	3	.092	1	.003	3	8.623e-5	3	NC	15	NC	1
			max	.0.10		.002	•			0.0200					

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
394			min	024	2	06	3	003	1	-1.333e-4	1	250.117	1	NC	1
395		8	max	.018	3	.105	1	.003	3	8.499e-5	3	NC	15	NC	1
396			min	024	2	067	3	002	1	-1.211e-4	<u>1</u>	233.139	<u>1</u>	NC	1
397		9	max	.018	3	.113	1	.003	3	8.375e-5	3	9737.909	15	NC	1
398		1.0	min	025	2	072	3	002	1	-1.09e-4	1_	223.739	1_	NC	1
399		10	max	.018	3	.116	1	.003	3	8.251e-5	3	9637.71	<u>15</u>	NC NC	1
400		44	min	025	2	072	3	002	1	-9.689e-5	1_	220.368	1_	NC NC	1
401		11	max	.018	3	.113	1	.003	3	8.128e-5	3_	9777.439	<u>15</u>	NC NC	1
402		40	min	025	2	07	3	002	1	-8.476e-5	1	222.544	1_	NC NC	1
403		12	max	.018	3	.106	3	.002 002	3	8.004e-5	<u>3</u>	NC 220 GER	<u>15</u>	NC NC	1
404		13	min	025 .018	3	064 .092		.002	3	-7.264e-5 7.88e-5		230.658 NC	<u>1</u> 15	NC NC	1
406		13	max min	025	2	055	3	002	1	-6.051e-5	<u>3</u>	246.139	1	NC NC	1
407		14	max	.018	3	0 <u>55</u> .074	1	.002	3	7.756e-5	3	NC	15	NC NC	1
407		14	min	025	2	043	3	002	1	-4.838e-5	1	272.146	1	NC NC	1
409		15	max	.018	3	.049	1	.002	3	7.633e-5	3	NC	15	NC	1
410		13	min	025	2	029	3	002	1	-3.903e-5	2	315.484	1	NC	1
411		16	max	.018	3	.023	1	.002	3	7.288e-5	3	NC	5	NC	1
412		10	min	025	2	012	3	002	1	-3.664e-5	2	392.51	1	NC	1
413		17	max	.018	3	.007	3	0	3	1.69e-5	3	NC	5	NC	1
414			min	025	2	015	1	003	1	-2.418e-4	1	553.417	1	NC	1
415		18	max	.018	3	.029	3	0	3	7.954e-6	3	NC	5	NC	1
416			min	025	2	057	1	003	1	-1.24e-4	1	1072.459	1	NC	1
417		19	max	.018	3	.051	3	0	3	0	15	NC	1	NC	1
418			min	025	2	101	1	003	1	-1.103e-7	3	NC	1	NC	1
419	M9	1	max	.006	3	.023	3	0	3	1.708e-2	3	NC	1	NC	1
420			min	007	2	03	1	008	1	-1.996e-2	1	NC	1	NC	1
421		2	max	.006	3	.013	3	0	3	8.464e-3	3	NC	4	NC	2
422			min	007	2	016	1	001	1	-9.817e-3	1	3340.948	1	8112.281	1
423		3	max	.006	3	.003	3	.002	1	1.364e-4	1_	NC	5	NC	2
424			min	007	2	003	1	0	3	4.741e-6	15	1728.001	1_	5060.959	
425		4	max	.006	3	.008	1	.004	1	3.029e-5	1_	NC	5	NC	3
426			min	007	2	005	3	0	3	-1.712e-7	3	1222.694	1_	4309.198	
427		5	max	.006	3	.017	1	.005	1	-6.036e-7	10	NC	5_	NC	3
428		_	min	007	2	012	3	0	3	-7.583e-5	_1_	979.897	_1_	4299.353	1
429		6	max	.006	3	.025	1	.004	1	-5.963e-6	<u>15</u>	NC	5	NC	2
430		_	min	007	2	<u>017</u>	3	001	3	-1.819e-4	_1_	842.745	_1_	4876.024	
431		7	max	.006	3	.031	1	.002	1	-9.531e-6		NC	5	NC .	2
432			min	007	2	021	3	002	3	-2.881e-4	1_	759.795	1_	6430.49	1
433		8	max	.006	3	.035	1	0	10	-1.31e-5	<u>15</u>	NC 700.650	5	NC NC	1
434			min		2	023	3	002		-3.942e-4			1	NC NC	1
435		9	max	.006	3	.037	1	0		-1.667e-5			5	NC NC	1
436		10	min	007	2	025	3	<u>004</u>	15	-5.003e-4 -2.024e-5	1_	682.359	_1_	NC NC	1
437 438		10	max min	.006 008	3	.038 025	3	0 008	15	-2.024e-5 -6.064e-4	<u>15</u> 1	NC 673.298	<u>5</u> 1	NC NC	1
439		11	max	.006	3	.037	1	<u>008</u> 0	15	-2.38e-5	15	NC	5	NC NC	2
440		11	min	008	2	024	3	011	1	-7.125e-4	1	681.092	1	6899.551	1
441		12		.006	3		1	<u>011</u> 0	15			NC	5	NC	2
441		12	max min	008	2	.035 022	3	014	1	-2.737e-5 -8.187e-4	1	706.992	<u> </u>	4630.71	1
443		13		.006	3	.03	1	<u>014</u> 0	15	-3.094e-5	15	NC	5	NC	2
444		13	max min	008	2	019	3	017	1	-9.248e-4	15 1	755.413	<u> </u>	3656.723	
445		14	max	.006	3	.024	1	<u>017</u> 0		-3.451e-5		NC	5	NC	3
446		14	min	008	2	02 4	3	018	1	-1.031e-3	1	836.019	1	3209.573	
447		15	max	.006	3	.016	1	<u>018</u> 0		-3.808e-5		NC	5	NC	3
448		10	min	008	2	01	3	019	1	-1.137e-3	1	969.524	1	3083.376	
449		16	max	.006	3	.007	1	0	15		•	NC	5	NC	3
450		1.5	min	008	2	004	3	017	1	-1.215e-3		1205.32	1	3269.305	
100			1111111	.000	_	.00-		.017		1.2 100 0		1200.02		J_00.000	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
451		17	max	.006	3	.002	3	0	15 -1.425e-5		NC	4_	NC	2
452			min	008	2	005	1	014	1 -6.304e-4		1691.799	<u>1</u>	4002.856	
453		18	max	.006	3	.01	3	0	15 3.876e-3		NC	_4_	NC	2
454			min	008	2	018	1	009	1 -1.145e-2		3260.917	1_	6667.974	
455		19	max	.006	3	.018	3	0	3 7.844e-3		NC	_1_	NC	1
456			min	008	2	033	1	002	1 -2.248e-2		NC	1_	NC	1
457	M13	1	max	.008	1	.023	3	.006	3 3.971e-3		NC	_1_	NC	1
458			min	0	3	03	1	007	2 -5.296e-3		NC	_1_	NC	1
459		2	max	.007	1	21	3	.056	1 4.809e-3		NC	5	NC	3
460			min	0	3	249	1	.001	10 -6.448e-3		934.129	<u>1</u>	3361.316	
461		3	max	.007	1	.363	3	.141	1 5.647e-3		NC	5	NC	3
462		-	min	0	3	<u>427</u>	1	.005	15 -7.601e-3		513.956	_1_	1395.468	1
463		4	max	.007	1	.458	3	.214	1 6.485e-3		NC	5	NC	3
464		_	min	0	3	<u>539</u>	1	.007	15 -8.754e-3		400.981	1_	931.764	1
465		5_	max	.007	1	.485	3	.25	1 7.323e-3		NC	<u>15</u>	NC	3
466			min	0	3	<u>572</u>	1	.009	15 -9.907e-3		376.938	1_	800.368	1
467		6	max	.007	1	.445	3	.238	1 8.161e-3		NC	5_	NC 007.007	3
468		-	min	001	3	<u>526</u>	1	.008	15 -1.106e-2		411.476	_1_	837.987	1
469		7	max	.007	1	.351	3	.182	1 9.e-3	3	NC	_5_	NC 1007.007	3
470		_	min	001	3	418	1	.006	15 -1.221e-2		525.565	1_	1087.867	1
471		8	max	.007	1	.23	3	.098	1 9.838e-3		NC 004 004	5	NC	3
472			min	001	3	279	1	0	10 -1.336e-2		821.924	1_	1970.489	
473		9	max	.006	1	.12	3	.017	3 1.068e-2		NC	5_	NC OFFO 700	2
474		10	min	001	3	15	1	009	10 -1.452e-2		1700.72	1_	9559.796	
475		10	max	.006	1	.069	3	.018	3 1.151e-2		NC	4	NC NC	1
476		4.4	min	001	3	092	1	024	2 -1.567e-2		3310.208	1_	NC NC	•
477		11	max	.006	1	.12	3	.022	1 1.068e-2		NC	5	NC 7F2F CCC	2
478		40	min	001	3	<u>15</u>	1	<u>009</u>	10 -1.452e-2		1700.721	1_	7535.666	
479		12	max	.006	3	.23	3	.108	1 9.838e-3		NC 004 005	5_4	NC 4000 C7	3
480 481		13	min	001 .006	1	<u>278</u> .351	3	<u> </u>	10 -1.336e-2 1 9.001e-3		821.925 NC	<u>1</u> 5	1806.67 NC	5
482		13	max	001	3	418	1	.007	15 -1.221e-2		525.565	1	1026.337	1
483		14	min	.006	1	<u>416</u> .445	3	.007 .25	1 8.163e-3		NC	5	NC	5
484		14	max	001	3	526	1	.009	15 -1.106e-2		411.476	<u> </u>	799.96	1
485		15		.006	1	<u>526</u> .485	3	.26	1 7.325e-3		NC	15	NC	5
486		15	max	001	3	571	1	.009	15 -9.906e-3		376.938	1	768.258	1
487		16	max	.006	1	.458	3	.223	1 6.487e-3		NC	5	NC	3
488		10	min	001	3	539	1	.008	15 -8.753e-3	1	400.981	1	895.916	1
489		17	max	.006	1	.363	3	.147	1 5.649e-3		NC	5	NC	3
490		17	min	001	3	427	1	.005	15 -7.6e-3	1	513.956	1	1338.956	
491		18	max	.005	1	.21	3	.059	1 4.811e-3		NC	5	NC	3
492		10	min	001	3	249	1	.001	10 -6.447e-3		934.13	1	3195.059	1
493		19	max	.005	1	.023	3	.006	3 3.974e-3		NC	1	NC	1
494		10	min	001	3	03	1	007	2 -5.294e-3		NC	1	NC	1
495	M16	1	max	.002	1	.018	3	.006	3 5.519e-3		NC	1	NC	1
496	IVIIO	•	min	0	3	033	1	008	2 -3.016e-3		NC	1	NC	1
497		2	max	.002	1	.104	3	.06	1 6.759e-3		NC	5	NC	3
498			min	0	3	279	1	.001	10 -3.624e-3		829.283	1	3124.035	
499		3	max	.002	1	.174	3	.149	1 7.999e-3		NC	5	NC	3
500		Ĭ	min	0	3	48	1	.005	15 -4.231e-3		456.295	1	1324.115	
501		4	max	.002	1	.219	3	.223	1 9.239e-3		NC	5	NC	3
502			min	0	3	606	1	.008	15 -4.839e-3		356.031	1	891.535	1
503		5	max	.003	1	.233	3	.26	1 1.048e-2		NC	15	NC	5
504			min	0	3	642	1	.009	15 -5.447e-3		334.742	1	768.152	1
505		6	max	.003	1	.216	3	.248	1 1.172e-2		NC	5	NC	5
506			min	0	3	591	1	.009	15 -6.054e-3		365.525	1	803.708	1
507		7	max	.003	1	.176	3	.191	1 1.296e-2		NC	5	NC	5
										•				

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
508			min	0	3	469	1	.007	15	-6.662e-3	3	467.146	1_	1037.861	1
509		8	max	.003	1	.123	3	.105	1	1.42e-2	_1_	NC	5_	NC	3
510			min	0	3	312	1	0	10	-7.269e-3	3	731.534	1_	1850.362	1
511		9	max	.003	1	.074	3	.021	3	1.544e-2	1_	NC	5	NC	2
512			min	0	3	167	1	009	10	-7.877e-3	3	1519.434	1	8207.608	1
513		10	max	.003	1	.051	3	.018	3	1.668e-2	1	NC	4	NC	1
514			min	0	3	101	1	025	2	-8.485e-3	3	2977.857	1	NC	1
515		11	max	.003	1	.074	3	.018	3	1.544e-2	1	NC	5	NC	2
516			min	0	3	167	1	009	10	-7.877e-3	3	1519.434	1	8874.168	1
517		12	max	.003	1	.123	3	.101	1	1.42e-2	1_	NC	5	NC	3
518			min	0	3	312	1	0	10	-7.269e-3	3	731.535	1	1911.177	1
519		13	max	.003	1	.176	3	.186	1	1.296e-2	1	NC	5	NC	3
520			min	0	3	469	1	.007	15	-6.661e-3	3	467.146	1_	1063.953	1
521		14	max	.004	1	.216	3	.243	1	1.172e-2	1	NC	5	NC	3
522			min	0	3	591	1	.008	15	-6.053e-3	3	365.525	1	822.172	1
523		15	max	.004	1	.233	3	.254	1	1.048e-2	1	NC	15	NC	3
524			min	0	3	642	1	.009	15	-5.445e-3	3	334.742	1	786.044	1
525		16	max	.004	1	.219	3	.218	1	9.241e-3	1	NC	5	NC	3
526			min	0	3	606	1	.007	15	-4.837e-3	3	356.031	1	914.517	1
527		17	max	.004	1	.174	3	.144	1	8.001e-3	1	NC	5	NC	3
528			min	0	3	48	1	.005	15	-4.229e-3	3	456.296	1	1365.903	1
529		18	max	.004	1	.104	3	.057	1	6.762e-3	1	NC	5	NC	3
530			min	0	3	279	1	.001	10	-3.621e-3	3	829.283	1	3265.619	1
531		19	max	.004	1	.018	3	.006	3	5.522e-3	1	NC	1	NC	1
532			min	0	3	033	1	008	2	-3.013e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.166e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-1.151e-4	2	NC	1	NC	1
535		2	max	0	1	007	15	.001	1	8.209e-4	3	NC	15	NC	1
536			min	0	10	03	4	0	3	-8.074e-4	1	3626.105	4	NC	1
537		3	max	0	1	014	15	.004	1	1.325e-3	3	7849.751	15	NC	1
538			min	0	10	058	4	003	3	-1.54e-3	1	1845.201	4	NC	1
539		4	max	0	1	02	15	.008	1	1.829e-3	3	5385.388	15	NC	3
540			min	0	10	085	4	006	3	-2.273e-3	1	1265.916	4	8606.436	
541		5	max	0	1	026	15	.014	1	2.334e-3	3	4202.273	15	NC	4
542			min	0	10	109	4	01	3	-3.006e-3	1	987.807	4	5638.362	1
543		6	max	0	1	03	15	.019	1	2.838e-3	3	3536.657	15	NC	4
544			min	0	10	129	4	015	3	-3.739e-3	1	831.344	4	4100.254	_
545		7	max	0	1	034	15	.025	1	3.342e-3	3	3136.376	15	NC	4
546			min	0	10	146	4	019	3	-4.472e-3	1	737.252	4	3202.311	1
547		8	max	0	1	037	15	.031	1	3.847e-3	3		15	NC	4
548			min	0	10	158	4	024	3	-5.205e-3		680.783		2638.468	
549		9	max	0	1	039	15	.037	1	4.351e-3	3	2766.843	15	NC	4
550			min	0	10	166	4	028	3	-5.938e-3	1	650.388		2269.751	1
551		10	max	0	1	039	15	.041	1	4.855e-3	3	2725.937	15	NC	4
552		10	min	0	10	168	4	032	3	-6.671e-3	1	640.772	4	2026.458	
553		11	max	0	1	039	15	.044	1	5.36e-3	3	2766.843	15	NC	5
554			min	0	10	166	4	034	3	-7.404e-3	1	650.388	4	1872.02	1
555		12	max	0	1	037	15	.045	1	5.864e-3	3	2896.148	15	NC	5
556		12	min	0	10	159	4	035	3	-8.137e-3	1	680.783	4	1788.275	
557		13	max	0	1	034	15	.045	1	6.368e-3	3	3136.376	15	NC	5
558		13	min	0	10	034 147	4	034	3	-8.87e-3	1	737.252	4	1769.884	
559		14	max	0	1	03	15	.041	1	6.873e-3	3	3536.657	15	NC	5
560		14	min	0	10	03 13	4	032	3	-9.603e-3	1	831.344	4	1824.469	
561		15		0	1	13 026	15	.035	1	7.377e-3	3	4202.273	15	NC	4
562		10	max	0	10	026 11	4	027	3	-1.034e-2	<u>3</u>	987.807	4	1980.296	
563		16	min	0	1	11 02	15	027 .026	1		3		<u>4</u> 15	NC	4
		10	max							7.881e-3		5385.388			_
564			min	0	10	086	4	02	3	-1.107e-2	<u> 1</u>	1265.916	4	2314.226	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	Ö	1	014	15	.014	1	8.385e-3	3	7849.751	15	NC	4
566			min	0	10	059	4	009	3	-1.18e-2	1	1845.201	4	3067.491	1
567		18	max	0	1	007	15	.004	3	8.89e-3	3	NC	15	NC	4
568			min	0	10	031	4	008	2	-1.253e-2	1	3626.105	4	5460.522	1
569		19	max	.001	1	.004	3	.021	3	9.394e-3	3	NC	1	NC	1
570			min	0	10	005	1	026	2	-1.327e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.007	3	3.164e-3	3	NC	1	NC	1
572			min	001	1	002	1	008	2	-4.023e-3	1	NC	1	NC	1
573		2	max	0	10	007	15	.006	1	3.023e-3	3	NC	15	NC	2
574			min	001	1	03	4	0	10	-3.828e-3	1	3626.105	4	8653.602	1
575		3	max	0	10	014	15	.016	1	2.882e-3	3	7849.751	15	NC	3
576			min	0	1	059	4	004	3	-3.632e-3	1	1845.201	4	4893.606	1
577		4	max	0	10	02	15	.024	1	2.741e-3	3	5385.388	15	NC	4
578			min	0	1	085	4	008	3	-3.436e-3	1	1265.916	4	3719.704	1
579		5	max	0	10	026	15	.029	1	2.6e-3	3	4202.273	15	NC	4
580			min	0	1	109	4	01	3	-3.241e-3	1	987.807	4	3210.274	1
581		6	max	0	10	03	15	.031	1	2.46e-3	3	3536.657	15	NC	4
582			min	0	1	13	4	012	3	-3.045e-3	1	831.344	4	2986.837	1
583		7	max	0	10	034	15	.032	1	2.319e-3	3	3136.376	15	NC	4
584			min	0	1	146	4	012	3	-2.849e-3	1	737.252	4	2930.694	1
585		8	max	0	10	037	15	.032	1	2.178e-3	3	2896.148	15	NC	4
586			min	0	1	158	4	012	3	-2.654e-3	1_	680.783	4	3001.099	1
587		9	max	0	10	039	15	.03	1	2.037e-3	3	2766.843	15	NC	4
588			min	0	1	165	4	012	3	-2.458e-3	1	650.388	4	3192.256	1
589		10	max	0	10	039	15	.027	1	1.896e-3	3	2725.937	<u> 15</u>	NC	4
590			min	0	1	168	4	011	3	-2.262e-3	1	640.772	4	3523.276	1
591		11	max	0	10	039	15	.024	1	1.756e-3	3	2766.843	15	NC	4
592			min	0	1	165	4	009	3	-2.067e-3	1_	650.388	4	4042.246	1
593		12	max	0	10	037	15	.02	1	1.615e-3	3	2896.148	15	NC	3
594			min	0	1	158	4	008	3	-1.871e-3	1_	680.783	4	4844.73	1
595		13	max	0	10	034	15	.015	1	1.474e-3	3	3136.376	15	NC	3
596			min	0	1	146	4	006	3	-1.675e-3	1_	737.252	4	6121.272	1
597		14	max	0	10	03	15	.011	1	1.333e-3	3	3536.657	15	NC	2
598			min	0	1	129	4	004	3	-1.48e-3	1	831.344	4	8283.493	1
599		15	max	0	10	026	15	.007	1	1.192e-3	3	4202.273	15	NC	1_
600			min	0	1	109	4	002	3	-1.284e-3	1	987.807	4	NC	1
601		16	max	0	10	02	15	.004	1	1.052e-3	3	5385.388	<u>15</u>	NC	1
602			min	0	1	085	4	001	3	-1.088e-3	1_	1265.916	4	NC	1
603		17	max	0	10	014	15	.001	1	9.107e-4	3	7849.751	15	NC	1
604			min	0	1	058	4	0	3	-8.927e-4	1_	1845.201	4	NC	1
605		18	max	0	10	007	15	0	4	7.699e-4	3	NC	15	NC	1_
606			min	0	1	03	4	0	2	-7.262e-4	2	3626.105	4	NC	1
607		19	max	0	1	0	1	0	1	6.291e-4	3	NC	_1_	NC	1_
608			min	0	1	0	1	0	1	-5.634e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.