

实验7、虚拟防真实验一太阳能电池的特性测量

物理实验(一)

一、实验目的

- 1. 了解光伏效应的基本原理
- 2. 测定太阳能电池的伏安特性、开路电压和短路电流
- 3. 讨论输出功率和负载电阻的关系

二、实验仪器

1. 虚拟仿真实验系统地址: http://aryun.ustcori.com:3230

账号: SZDX+学号(忽略加号),密码: 自行设定

- 2. 太阳能电池的特性测量
- 3. 实验仪器: 光伏电池、光源、光源电源、万用表

三、实验原理/3.1背景简介

太阳能电池(也称光伏电池),是将太阳光辐射能直接转换为电能的器件。把一定数量的器件根据需求组合起来,即构成常见的光伏发电系统。它具有低碳、环保、寿命长和使用方便等优点。

世界上第一块实用型半导体太阳电池是美国贝尔实验室于1954年研制的。经过人们多年的努力,太阳电池的研究、开发与产业化已取得巨大进步。目前,太阳电池已成为空间卫星的基本电源和地面无电、少电地区及某些特殊领域(通信设备、气象台站、航标灯等)的重要电源。

随着可再生能源的渐趋枯竭和石化燃料带来污染的日趋严重,太阳能电池将成为未来重要的基础能源之一。

PN结即最简单的太 阳能电池器件

图2 太阳能电池的原理图

PN结内部存在由正、负离子的扩散引起的内建电场(如图2所示)。当有光照射时,若光子能量大于半导体能隙,则会产生电子空穴对,在内建场的作用下朝PN结的两端运动,产生光生电流 I_S 。两端的电荷积累产生了光电池的端电压U。同时,PN结内部在U的作用下会引起反向电流 I_D ,开路状态时会与 I_S 达到平衡。

实际测量的光电池的电流是 I_S 与 I_D 之差,

$$I = I_s(\phi) - I_D(U) \tag{1}$$

光生电流 I_s 的大小是由PN结"搬运"电子的能力决定的,取决于材料内部的电势分布 ϕ 。反向电流 I_D 的大小则取决于光电池的端电压U。

当器件处于开路状态时端电压最大,即开路电压 U_0 。当器件短路时端电压为零,此时电流有最大值 I_S (短路电流)。因此可以在电路中接入一个负载电阻R,通过调节R的大小由0(短路)到无穷(断路),用来测量太阳能电池的伏安特性曲线。

图3为太阳能电池伏安特性的典型曲线。由此可见,当负载电阻R很小时,光电池可视为一个恒流源,因为反向电流I_D可以忽略不计;当负载电阻很大时,光电池可视为一个恒压源。

在光照强度恒定时,光电池的输出功率依赖于负载电阻R,

$$P_{out} = I^2 R = \left(\frac{E}{r+R}\right)^2 R$$
$$= \frac{E^2}{2r + (R + \frac{r^2}{R})} \le \frac{E^2}{4r}$$

其中 $r = \frac{U_0}{I_S}$ 为太阳能电池的内阻,当负载R = r时输出功率取最大值。E为光电池的电动势(端电压与降在内阻上的电压之和)

图3 太阳能电池的伏安特性

光电池的输出功率最大时有 $P_{max} = U_{max} \cdot R_{max}$ 。 这里 U_{max} 和 R_{max} 表示输出功率最大值时对应的端电压和负载电阻。输出功率的最大值 P_{max} 小于开路电压与短路电流的乘积(见图3),定义它们的比值为填充因数,

$$F = \frac{P_{max}}{U_0 \cdot I_S} \tag{2}$$

填充因数是反映电池性能的一个重要参数,一定程度决定了光电池的能量转化效率。填充因数越大,太阳能电池的伏安特性曲线越接近矩形,光电转化效率越高。填充因数典型值处于0.65到0.85之间,性能更好的电池可以达到更高。

本实验中测出伏安特性曲线之后,可以用每个点的电压和电流相乘找到最大总功率,进而得到填充因数。

四、实验内容/4.1 操作提示

点击"开始实验"后,桌面上有万用表、表笔、电池板(包括两块太阳能电池和一个可变电阻)、光源和光源电源(如图4所示)。万用表一个作电压表,另一个作电流表。

把太阳能电池、可变电阻和电流表串联,然后把电压表与电池的两端并联,打开光源即可测量太阳能电池的伏安特性曲线。

图4 太阳能电池的特性测量仪器

四、实验内容/4.1 操作提示

双击万用表可以看到如图5所示的放大图。本实验万用表作为电流表时选择量程200mA,作为电压表时选择量程20V。连线时注意黑色表笔连接接地端,红色表笔连接电流(或电压)插孔。把量程调节到相应的档位,打开开关即可进行读数。

双击电池板可弹出放大图,每个九宫格上的点是连接在一起的,在放大图里调节可变电阻的大小。

双击光源电源可弹出放大图,在放大图里调节光源的亮度。

四、实验内容/4.2 实验步骤

- 1. 按右图所示连接电路图
- 2. 左边万用表作为电流表,量程选200mA。右边万用表作为电压表,量程选为20V;
- 3. 打开光源电源,让光照射在太阳能电池上;

图6 电路连接图

四、实验内容/4.2 实验步骤

- 4. 打开电池板放大图,把可变电阻的阻值调节至零(靠近a点);
- 5. 调节光照功率,使电流的大小约为45mA(短路电流);然后断开电路,记录此时的开路电压 U_0 ;
- 6. 逐渐增大电阻阻值,记录太阳能电池的电压和电流的变化值,记录数据至表1;
- 7. 把电阻再次减小为零,调节光照功率,使电流大小为35mA、25mA和15mA,并重复上面的步骤,记录至表格2、3和4;
- 8. 由短路电流和开路电压计算电池的内阻,与输出功率最大时对应的 负载电阻相比较,填入表5。计算开路电压与短路电流的乘积,以 及填充因数,填入表6。

太阳能电池伏安特性测量数据记录

第一组: $I_S = 45.1 mA$, $U_0 = 2.05 mV$

测量次数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
U(mV)	0.01	0.46	0.91	1.70	1.80	1.85	1.86	1.88	1.90	1.91	1.92	1.93	1.95	1.96	1.97	1.98	1.99	2.00
I(mA)	45.1	45.1	45.1	42.6	36.1	30.9	26.9	23.9	21.4	19.4	17.7	16.3	13.2	11.7	9.5	8.1	6.5	4.7
$R(\Omega)$	0.00	0.01	0.02	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.15	0.17	0.21	0.24	0.31	0.43
P(mW)	0.45	20.75	41.04	72.42	64.98	57.17	50.03	44.93	40.66	37.05	33.98	31.46	25.74	22.93	18.72	16.04	12.94	9.40

表1 短路电流 $I_S=45.1mA$ 时测得的电流和电压值

第二组: $I_S = 35.0 mA$, $U_0 = 2.03 mV$

测量次数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
U(mV)	0.01	0.72	1.08	1.68	1.77	1.81	1.84	1.88	1.91	1.93	1.96	1.97	1.99	2.00	2.01		
I(mA)	35.0	35.0	35.0	32.9	28.8	25.3	22.5	18.4	15.6	12.6	9.6	7.5	5.9	4.7	3.3		
$R(\Omega)$	0.00	0.02	0.03	0.05	0.06	0.07	0.08	0.10	0.12	0.15	0.20	0.26	0.34	0.43	0.61		
P(mW)	0.35	25.20	37.80	55.27	50.98	45.79	41.40	34.59	29.80	24.32	18.82	14.78	11.74	9.40	6.63		

太阳能电池伏安特性测量数据记录

第三组: $I_S = 25.0 mA$, $U_0 = 1.99 mV$

测量次数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
U(mV)	0.01	0.25	0.75	1.65	1.72	1.76	1.79	1.81	1.84	1.86	1.87	1.89	1.90	1.91	1.92	1.93	1.94	1.95	1.96	1.97
I(mA)	25.0	25.0	25.0	23.7	21.6	19.6	17.9	16.5	14.2	12.5	11.1	10	9.1	8.0	7.1	6.3	5.4	4.4	3.3	2.1
$R(\Omega)$	0.00	0.01	0.03	0.07	0.08	0.09	0.10	0.11	0.13	0.15	0.17	0.19	0.21	0.24	0.27	0.31	0.36	0.44	0.59	0.94
P(mW)	0.25	6.25	18.75	39.11	37.15	34.50	32.04	29.87	26.13	23.25	20.76	18.90	17.29	15.28	13.63	12.16	10.48	8.58	6.47	4.14

表3 短路电流 $I_S=25.0mA$ 时测得的电流和电压值

第四组: $I_S = 15.1 mA$, $U_0 = 1.92 mV$

测量次数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
U(mV)	0	0.3	0.75	1.35	1.6	1.65	1.71	1.75	1.76	1.77	1.78	1.79	1.8	1.81	1.83	1.84	1.85	1.86	1.87
I(mA)	15.1	15.1	15.1	15.1	14.6	13.9	12.3	11	10.4	9.9	9.4	8.6	7.9	7.3	6.6	6	5.3	4.1	3.6
$R(\Omega)$	0.00	0.02	0.05	0.09	0.11	0.12	0.14	0.16	0.17	0.18	0.19	0.21	0.23	0.25	0.28	0.31	0.35	0.45	0.52
P(mW)	0.00	4.53	11.33	20.39	23.36	22.94	21.03	19.25	18.30	17.52	16.73	15.39	14.22	13.21	12.08	11.04	9.81	7.63	6.73

表4 短路电流 $I_S=15.1mA$ 时测得的电流和电压值

测量值/组数	第一组	第二组	第三组	第四组		
$R_{max}(\Omega)$	0.04	0.05	0.07	0.11		
$r(\Omega)$	0.045	0.058	0.079	0.127		
R_{max}/r	0.889	0.862	0.886	0.866		

表5 电阻 R_{max} 及由 $r = U_0/I_S$ 得到的内阻的比较

测量值/组数	第一组	第二组	第三组	第四组		
$P_{max}(mW)$	72.42	55.27	39.11	23.36		
$U_0 \times I_S (mW)$	92.455	71.05	49.75	28.992		
F	0.783	0.778	0.786	0.806		

表6 最大输出功率与填充因数

由结果可知,太阳能电池的输出功率最大时对应的电阻,和由开路电压以及短路电流得到的内阻比较接近,验证了"负载等于内阻时电池的输出功率最大"的结论。计算得到的填充因数在0.7以上,说明太阳能电池的转化效率较高。

太阳能电池的伏安特性曲线

四、实验内容/4.4思考题

- 1. 温度会对太阳能电池带来什么影响?
- 2. 实验中的路端电压和光电池的电动势有什么关系?
- 3. 测量得到输出功率最大时的电阻R,与用短路电流和开路电压计算的内阻有一定差异,产生差异的原因主要是什么?

