Scrivi le equazioni delle rette t_1 e t_2 tangenti alla parabola di equazione $x = \frac{1}{2}y^2 - 2y$ e passanti per P(-2;3). Condotta poi la tangente t_3 nel punto della parabola di ordinata 1, trova l'area del triangolo definito da t_1 , t_2 , t_3 .

$$\left[x=-2; x-2y+8=0; 2x+2y+1=0; \text{area} = \frac{3}{4}\right]$$

$$X = \frac{1}{2}y^2 - 2y$$
 $P(-2,3)$ $y-3 = m(x+2)$

$$\begin{cases} x = \frac{1}{2}y^2 - 2y & \begin{cases} x = \frac{1}{2}y^2 - 2y & \begin{cases} x = \frac{1}{2}y^2 - 2y \\ y - 3 = mx + 2m & mx = y - 3 - 2m \\ m \neq 0 \end{cases}$$

$$\frac{y-3}{m}-2=\frac{1}{2}y^2-2y$$

$$\frac{1}{2}y^2 - 2y - \frac{1}{m}y + \frac{3}{m} + 2 = 0$$

$$\frac{1}{2}y^2 - \left(2 + \frac{1}{m}\right)y + \frac{3}{m} + 2 = 0$$

pones
$$\Delta = 0 \qquad \left(2 + \frac{1}{m}\right)^2 = \frac{2}{2} \cdot \frac{1}{2} \left(\frac{3}{m} + 2\right) = 0$$

$$4 + \frac{1}{m^2} + \frac{4}{m} - \frac{6}{m} - 4 = 0$$

$$M^2$$
 M M

$$y-3=m(x+2)$$
 $y-3=\frac{1}{2}(x+2)$

$$y = \frac{1}{2} \times + 1 + 3$$
 $y = \frac{1}{2} \times + 4$

$$1+3$$
 $y = \frac{1}{2}x+4$
 $4 + 3 + 2y = x + 8$

SICCOME E DI

CHE L'ALMA

TANGENTE

-2M+1=0

 $m=\frac{1}{2}$

10 GRADO, SIGNIFICA

VERTICALE

m = 00

 $X = X_V$

×=-2

DOVUTO AD ARCHIMEDE

Trova l'area del segmento parabolico definito dalla parabola di equazione $y = -\frac{1}{2}x^2 - 2x - 3$ e dalla retta che congiunge i due punti della parabola di ascissa -7 e -1.

Trans i punti A e B

$$\begin{cases} y = -\frac{1}{2} \cdot 49 + 14 - 3 = -\frac{49}{2} + 11 = -\frac{27}{2} \\ A \end{cases}$$

$$A\left(-7,-\frac{27}{2}\right)$$

$$B\left(-1,-\frac{3}{2}\right)$$

B
$$\begin{cases} x = -1 \\ y = -\frac{1}{2} + 2 - 3 = -\frac{3}{2} \end{cases}$$

Trano l'equasione della retta AB

$$y + \frac{27}{2}$$
 $\times + 7$ $-\frac{3}{2} + \frac{27}{2}$ $-1 + 7$

$$\frac{y + \frac{27}{2}}{12} = \frac{x + 7}{41}$$

$$y + \frac{27}{2} = 2 \times + 14$$

$$y = 2x + 14 - \frac{27}{2}$$

$$y = 2x + \frac{1}{2}$$
 $(4x - 2y + 1 = 0)$

$$y = -\frac{1}{2}x^2 - 2x - 3$$

$$2 \times + K = -\frac{1}{2} \times^2 - 2 \times -3$$

$$\frac{1}{2} \times^2 + 4 \times + K + 3 = 0$$

$$\frac{\Delta}{4} = 0 \Rightarrow 4 - \frac{1}{2}(K+3) = 0$$

$$\frac{\Delta}{4} = 0 \Rightarrow 4 - \frac{1}{2}(K+3) = 0$$
 $4 - \frac{1}{2}K - \frac{3}{2} = 0$ $-\frac{1}{2}K = \frac{3}{2} - 4$

$$-\frac{1}{2}k = -\frac{5}{2} \Rightarrow k = 5$$
 $y = 2 \times +5$ tangente