

PHYSICS

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Electromagnetic Waves (EMW)

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

- 1. If \overrightarrow{E} and \overrightarrow{B} are the electric and magnetic field vectors of electromagnetic waves then the direction of propagation of electromagnetic wave is along the direction of
 - (1) \vec{E}

- (2) \vec{B}
- (3) $\vec{E} \times \vec{B}$
- (4) none of these

EM0178

- 2. The electromagnetic waves do not transport -
 - (1) energy
- (2) charge
- (3) momentum
- (4) information

EM0179

3. The wave function (in S.I.units) for a electromagnetic wave is given as –

$$\psi(x,t) = 10^3 \sin \pi (3 \times 10^6 \, x - 9 \times 10^{14} \, t)$$

The speed of the wave is -

- (1) 9×10^{14} m/s
- (2) 3×10^8 m/s
- (3) 3×10^6 m/s
- $(4) 3 \times 10^7 \text{ m/s}$

EM0180

- **4.** In the above problem, wavelength of the wave is _
 - (1) 666 nm
- (2) 666 Å
- (3) 666 µm
- (4) 6.66 nm

EM0181

- **5.** In an electromagnetic wave the average energy density is associated with
 - (1) electric field only
 - (2) magnetic field only
 - (3) equally with electric and magnetic fields
 - (4) average energy density is zero

EM0182

Build Up Your Understanding

- **6.** In an electromagnetic wave the energy density associated with magnetic field will be
 - (1) $\frac{1}{2}LI^2$
- (2) $\frac{B^2}{2\mu_0}$
- (3) $\frac{1}{2}\mu_0 B^2$
- (4) $\frac{1}{2} \frac{\mu_0}{B^2}$

EM0183

- 7. In the above problem, the energy density associated with the electric field will be
 - (1) $\frac{1}{2}$ CV²
- (2) $\frac{1}{2} \frac{q^2}{C}$
- $(3) \ \frac{1}{2} \frac{\varepsilon^2}{E}$
- $(4) \frac{1}{2} \varepsilon_0 E^2$

EM0184

- **8.** If there were no atmosphere, the average temperature on earth surface would be
 - (1) lower
- (2) higher
- (3) same
- (4) 0° C

EM0185

- **9.** In which part of earth's atmosphere is the ozone layer present?
 - (1) troposphere
- (2) stratosphere
- (3) ionosphere
- (4) mesosphere

EM0186

- 10. The ozone layer is earth's atmosphere is crucial for human survival because it -
 - (1) contains ions
 - (2) reflects radio signals
 - (3) reflects ultraviolet rays
 - (4) reflects infra red rays

- 11. The frequency from 3×10^9 Hz to 3×10^{10} Hz is-
 - (1) high frequency band
 - (2) super high frequency band
 - (3) ultra high frequency band
 - (4) very high frequency band

EM0188

- **12.** The frequency from 3MHz to 30 MHz is known as
 - (1) audio band
 - (2) medium frequency band
 - (3) very high frequency band
 - (4) high frequency band

EM0189

- 13. The AM range of radiowaves have frequency
 - (1) less than 30 MHz
 - (2) more than 30 MHz
 - (3) less than 20000Hz
 - (4) more than 20000Hz

EM0190

- **14.** Select wrong statement from the following for EMW-
 - (1) are transverse
 - (2) travel with same speed in all medium
 - (3) travel with the speed of light
 - (4) are produced by accelerating charge

EM0191

- 15. The waves related to tele-communication are -
 - (1) infrared
- (2) visible light
- (3) microwaves
- (4) ultraviolet rays

EM0192

- **16.** The nature of electromagnetic wave is
 - (1) longitudinal
 - (2) longitudinal stationary
 - (3) transverse
 - (4) transverse stationary

EM0193

- 17. Greenhouse effect keeps the earth surface -
 - (1) cold at night
- (2) dusty and cold
- (3) warm at night
- (4) moist

EM0194

- **18.** The speed of electromagnetic radiation in vacuum is:-
 - (1) $\mu_0 \in 0$
- (2) $\sqrt{\mu_0 \in_0}$
- $(3) \frac{1}{\mu_0 \in_0}$
- $(4) \ \frac{1}{\sqrt{\mu_0 \in_0}}$

EM0195

- **19.** What is the cause of greenhouse effect?
 - (1) Infrared rays
- (2) Ultraviolet rays
- (3) X-rays
- (4) Radio waves

EM0196

- **20.** The conduction current is the same as displacement current when source is :-
 - (1) ac only
 - (2) dc only
 - (3) both ac and dc
 - (4) neither dc nor ac

EX	EXERCISE-I (Conceptual Questions) ANSWER K										KEY				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	1	3	2	4	1	2	3	2	4	1	2	3
Que.	16	17	18	19	20										

EXERCISE-II (Previous Year Questions)

AIPMT/NEET

Physics: Electromagnetic Waves

AIPMT 2009

1. The electric field part of an electromagnetic wave in a medium is represented by $E_x = 0$;

$$E_y = 2.5 \ \frac{N}{C} \ cos \ \left[\left(2\pi \times 10^6 \, \frac{rad}{s} \right) t - \left(\pi \times 10^{-2} \, \frac{rad}{m} \right) x \, \right]$$

 $E_z = 0$. The wave is :

- (1) Moving along -x direction with frequency 10⁶ Hz and wave length 200 m.
- (2) Moving along y direction with frequency $2\pi \times 10^6$ Hz and wave length 200 m.
- (3) Moving along x direction with frequency 10⁶ Hz and wave length 100 m.
- (4) Moving along x direction with frequency 10⁶ Hz and wave length 200 m.

EM0200

AIPMT (Pre) 2010

- 2. Which of the following statement is false for the properties of electromagnetic waves?
 - (1) These waves do not require any material medium for propagation
 - (2) Both electric and magnetic field vectors attain the maxima and minima at the same place and same time
 - (3) The energy in electromagnetic wave is divided equally between electric and magnetic vectors
 - (4) Both electric and magnetic field vectors are parallel to each other and perpendicular to the direction of propagation of wave

EM0201

AIPMT (Pre) 2011

- The dimensions of $(\mu_0 \in _0)^{-1/2}$ are : 3.
 - (1) $[L^{1/2}T^{-1/2}]$

(2) $[L^{-1}T]$

 $(3) [LT^{-1}]$

(4) $[L^{-1/2}T^{1/2}]$

EM0202

4. The electric and the magnetic field, associated with an e.m. wave, propagating along the +zaxis, can be represented by :-

$$(1) \left[\vec{E} = E_0 \hat{i}, \vec{B} = B_0 \hat{j} \right]$$

(2)
$$\vec{E} = E_0 \hat{k}, \vec{B} = B_0 \hat{i}$$

(3)
$$\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{i}$$

(4)
$$\vec{E} = E_0 \hat{j}, \vec{B} = B_0 \hat{k}$$

EM0203

- 5. The decreasing order of wavelength of infrared, microwave, ultraviolet and gamma rays is:
 - (1) microwave, infrared, ultraviolet, gamma rays
 - (2) gamma rays, ultraviolet, infrared, microwaves
 - (3) microwaves, gamma rays, infrared, ultraviolet
 - (4) infrared, microwave, ultraviolet, gamma rays

EM0204

AIPMT (Pre) 2012

- The electric field associated with an e.m. wave in **6**. vacuum is given by $\vec{E} = 40 \cos (kz - 6 \times 10^8 t)$. where E, z and t are in volt/m, meter and seconds respectively. The value of wave vector k
 - $(1) 6 \text{m}^{-1}$

(2) 3m⁻¹

 $(3) 2m^{-1}$

(4) 0.5m⁻¹

EM0205

NEET-UG 2013

- 7. The condition under which a microwave oven heats up a food item containing water molecules most efficiently is :-
 - (1) Infra-red waves produce heating in a microwave oven
 - (2) The frequency of the microwaves must match the resonant frequency of the water molecules
 - (3) The frequency of the microwaves has no relation with natural frequency of water molecules
 - (4) Microwaves are heat waves, so always produce heating

EM0206

Re-AIPMT 2015

- 8. The energy of the em waves is of the order of 15 keV. To which part of the spectrum does it belong?
 - (1) γ -rays

(2) X-rays

(3) Infra-red rays

(4) Ultraviolet rays

EM0207

AIPMT 2015

A radiation of energy 'E' falls normally on a 9. perfectly reflecting surface. The momentum transferred to the surface is

(C = Velocity of light) :-

(1) $\frac{2E}{C}$ (2) $\frac{2E}{C^2}$ (3) $\frac{E}{C^2}$ (4) $\frac{E}{C}$

NEET-I 2016

- 10. Out of the following options which one can be used to produce a propagating electromagnetic wave?
 - (1) A charge moving at constant velocity
 - (2) A stationary charge
 - (3) A chargeless particle
 - (4) An accelerating charge

EM0214

- 11. A 100 Ω resistance and a capacitor of 100 Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is :-
 - (1) 4.4 A
- (2) $11\sqrt{2}$ A
- (3) 2.2 A
- (4) 11 A

EM0215

NEET (UG) 2017

- 12. In an electromagnetic wave in free space the root mean square value of the electric field is $E_{\rm rms}=6V/m$. The peak value of the magnetic field is:-
 - (1) 2.83×10^{-8} T
 - (2) 0.70×10^{-8} T
 - $(3) 4.23 \times 10^{-8} \text{ T}$
 - (4) 1.41×10^{-8} T

EM0219

NEET (UG) 2018

- 13. An em wave is propagating in a medium with a velocity $\overrightarrow{V} = V \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along :-
 - (1) –z direction
 - (2) +z direction
 - (3) –y direction
 - (4) -x direction

EM0224

NEET (UG) 2019 (Odisha)

- 14. For a transparent medium relative permeability and permittivity, μ_r and ϵ_r are 1.0 and 1.44 respectively. The velocity of light in this medium would be,
 - $(1) 2.5 \times 10^8 \text{ m/s}$
- (2) 3×10^8 m/s
- (3) 2.08×10^8 m/s
- $(4) 4.32 \times 10^8 \text{ m/s}$

EM0253

NEET (UG) 2020

- **15.** Light with an average flux of 20 W/cm² falls on a non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is:
 - $(1) 48 \times 10^3 \text{ J}$
- (2) $10 \times 10^3 \text{ J}$
- (3) $12 \times 10^3 \text{ J}$
- (4) 24×10^3 J

EM0254

16. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is:

(c = speed of electromagnetic waves)

- (1) $1:c^2$
- (2) c : 1
- (3) 1 : 1
- (4) 1 : c

EM0255

NEET (UG) 2020 (COVID-19)

- **17.** The E.M. wave with shortest wavelength among the following is
 - (1) Ultraviolet rays
- (2) X-rays
- (3) Gamma-rays
- (4) Microwaves

EM0256

18. The magnetic field in a plane electromagnetic wave is given by :

 $B_y = 2 \times 10^{-7} \sin{(\pi \times 10^3 \text{ x} + 3\pi \times 10^{11} \text{t})} T$ Calculate the wavelength.

- (1) $\pi \times 10^3$ m
- (2) 2×10^{-3} m
- (3) 2×10^3 m
- (4) $\pi \times 10^{-3}$ m

Pre-Medical

NEET (UG) 2021

19. A capacitor of capacitance 'C', is connected across an ac source of voltage V, given by $V=V_0\,\text{sin}\omega t$

The displacement current between the plates of the capacitor, would then be given by:

(1)
$$I_d = V_0 \omega C \cos \omega t$$

(2)
$$I_d = \frac{V_0}{\omega C} \cos \omega t$$

(3)
$$I_d = \frac{V_0}{\omega C} \sin \omega t$$

(4)
$$I_d = V_0 \omega C \sin \omega t$$

EM0258

- 20. For a plane electromagnetic wave propagating in x-direction, which one of the following combination gives the correct possible directions for electric field (E) and magnetic field (B) respectively?
 - (1) $\hat{j} + \hat{k}, \hat{j} + \hat{k}$
 - (2) $-\hat{j} + \hat{k}, -\hat{j} \hat{k}$
 - (3) $\hat{j} + \hat{k}, -\hat{j} \hat{k}$
 - (4) $-\hat{j} + \hat{k}, -\hat{j} + \hat{k}$

EM0259

NEET (UG) 2022

21. When light propagates through a material medium of relative permittivity \in , and relative permeability μ , the velocity of light, ν is given by: (c-velocity of light in vacuum)

$$(1) \ \ \nu = \sqrt{\frac{\mu_r}{\epsilon_r}}$$

(2)
$$v = \sqrt{\frac{\epsilon_r}{\mu_r}}$$

(3)
$$v = \frac{c}{\sqrt{\in_r \mu_r}}$$

(4)
$$v = c$$

EM0271

22. Match List - I with List -II

	List -I		List-II
	(Electromagnetic		(Wavelength)
	waves)		
(a)	AM radio waves	(i)	10 ⁻¹⁰ m
(b)	Microwaves	(ii)	10 ² m
(c)	Infrared radiations	(iii)	10 ⁻² m
(d)	X-rays	(iv)	10 ⁻⁴ m

Physics: Electromagnetic Waves

Choose the **correct** answer from the options given below:

$$(1)$$
 (a) $-$ (iii), (b) $-$ (ii), (c) $-$ (i), (d) $-$ (iv)

(2) (a)
$$-$$
 (iii), (b) $-$ (iv), (c) $-$ (ii), (d) $-$ (i)

(3) (a)
$$-$$
 (ii), (b) $-$ (iii), (c) $-$ (iv), (d) $-$ (i)

(4) (a)
$$-$$
 (iv), (b) $-$ (iii), (c) $-$ (ii), (d) $-$ (i)

EM0272

NEET (UG) 2022 (Overseas)

23. An electromagnetic wave is moving along negative z(-z) direction and at any instant of time, at a point, its electric field vector is 3ĵ V/m. The corresponding magnetic field at that point and instant will be:

(Take
$$c = 3 \times 10^8 \text{ ms}^{-1}$$
)

- (1) -10inT
- (2) înT
- $(3) \hat{i} nT$
- (4) 10 în T

EM0273

- **24.** If $\lambda_{_X}$, $\lambda_{_I}$, $\lambda_{_M}$ and λ_{γ} are the wavelengths of X-rays, infrared rays, microwaves and γ rays respectively, then:
 - (1) $\lambda_{_{M}} < \lambda_{_{I}} < \lambda_{_{X}} < \lambda_{_{Y}}$
 - (2) $\lambda_{x} < \lambda_{\gamma} < \lambda_{M} < \lambda_{I}$
 - (3) $\lambda_{\rm X} < \lambda_{\rm I} < \lambda_{\rm Y} < \lambda_{\rm M}$
 - (4) $\lambda_{\gamma} < \lambda_{x} < \lambda_{i} < \lambda_{M}$

Physics: Electromagnetic Waves

ALLEN®

Pre-Medical

Re-NEET (UG) 2022

25. The magnetic field of a plane electromagnetic wave is given by

$$\vec{B} = 3 \times 10^{-8} \cos(1.6 \times 10^{3} \, \text{x} + 48 \times 10^{10} \, \text{t}) \hat{j}$$

then the associated electric field will be:

(1)
$$3 \times 10^{-8} \cos(1.6 \times 10^{3} x + 48 \times 10^{10} t) \hat{i} V / m$$

(2)
$$3 \times 10^{-8} \sin(1.6 \times 10^3 \text{ x} + 48 \times 10^{10} \text{ t}) \hat{i} \text{ V/m}$$

(3)
$$9\sin(1.6\times10^3 x - 48\times10^{10} t) \hat{k}V/m$$

(4)
$$9\cos(1.6\times10^3 x + 48\times10^{10} t)\hat{k}V/m$$

EM0275

 $\begin{tabular}{lll} \bf 26. & The ratio of the magnitude of the magnetic field \\ & and electric field intensity of a plane \\ & electromagnetic wave in free space of \\ & permeability μ_0 and permittivity ϵ_0 is (Given that \\ & c-velocity of light in free space) \\ \end{tabular}$

(2)
$$\frac{1}{c}$$

(3)
$$\frac{c}{\sqrt{\mu_0 \epsilon_0}}$$

$$(4) \frac{\sqrt{\mu_0 \varepsilon_0}}{c}$$

Physics: Electromagnetic Waves

EXERCISE-III (Analytical Questions)

- 1. The pressure exerted by an electromagnetic wave of intensity I W/m^2 on a non-reflecting surface is :-
 - (1) Ic
- (2) Ic^2
- (3) I/c
- (4) I/c^2

EM0227

- 2. A plane electromagnetic wave of frequency 40 MHz travels in free space in the X-direction. At some point and at some instant, the electric field \vec{E} has its maximum value of 750 N/C in Y-direction. The wavelength of the wave is
 - (1) 3.5 m
- (2) 5.5 m
- (3) 7.5 m
- (4) 9.5 m

EM0228

- **3.** In **Q.2**, the period of the wave will be
 - $(1) 2.5 \mu s$
- (2) $0.25 \mu s$
- (3) $0.025 \mu s$
- (4) none of these

EM0229

- **4.** In **Q.2**, the magnitude and direction of magnetic field will be
 - (1) $2.5 \mu T$ in X-direction
 - (2) $2.5 \mu T$ in Y-direction
 - (3) $2.5 \mu T$ in Z-direction
 - (4) none of these

EM0230

- 5. In **Q.2**, the angular frequency of e.m. wave will be— (in rad/s)
 - (1) $8 \pi \times 10^7$
- (2) $4 \pi \times 10^6$
- (3) $2 \pi \times 10^5$
- (4) $\pi \times 10^4$

EM0231

- **6.** In **Q.2**, the propagation constant of the wave will be
 - (1) 8.38 m⁻¹
- (2) 0.838 m⁻¹
- (3) 4.19 m⁻¹
- (4) 0.419 m⁻¹

EM0232

Master Your Understanding

- 7. The sun delivers 10^3 W/m² of electromagnetic flux to the earth's surface. The total power that is incident on a roof of dimensions $8m \times 20m$, will be
 - $(1) 6.4 \times 10^3 \text{ W}$
- $(2) 3.4 \times 10^4 \text{ W}$
- (3) 1.6×10^{5} W
- (4) none of these

EM0233

- **8.** In. **Q.7**, the radiation force on the roof will be
 - (1) 3.33×10^{-5} N
- $(2) 5.33 \times 10^{-4} \text{ N}$
- (3) $7.33 \times 10^{-3} \text{ N}$
- (4) 9.33×10^{-2} N
 - EM0234
- **9.** In. **Q.7**, the solar energy incident on the roof in 1 hour will be
 - $(1) 5.76 \times 10^8 \text{ J}$
- $(2) 5.76 \times 10^7 \text{ J}$
- $(3) 5.76 \times 10^6 \text{ J}$
- $(4) 5.76 \times 10^5 \text{ J}$

EM0235

- 10. The sun radiates electromagnetic energy at the rate of 3.9×10^{26} W. It's radius is 6.96×10^{8} m. The intensity of sun light at the solar surface will be (in W/m²)
 - (1) 1.4×10^4
- (2) 2.8×10^5
- $(3) 4.2 \times 10^6$
- $(4) 6.4 \times 10^7$

EM0236

- 11. In. Q.10, if the distance from the sun to the earth is 1.5×10^{11} m, then the intensity of sunlight on earth's surface will be (in W/m²)
 - (1) 1.38×10^3
- $(2) 2.76 \times 10^4$
- $(3) 5.52 \times 10^{5}$
- (4) none of these

EM0237

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11
Ans.	3	3	3	3	1	2	3	2	1	4	1