吉林大学

2012~2013学年第二学期《高等数学CII》 试卷

2013 年 6 月 27 日

 	三	Д	总分

得 分 — — 、单项选择题 (共 6 个小题, 每小题 3 分, 满分 18 分).

- 1. 由方程 $x^2 + \frac{y^2}{2} + \frac{z^2}{2} = 1$ 所表示的二次曲面为 ().
- (A) 椭球面.
- (B) 椭圆锥面.
- (C) 椭圆柱面. (D) 椭圆抛物面.
- 2. $\lim_{x \to 0} \frac{3xy}{x^2 + y^2} = ($).
- (A) $\frac{3}{2}$.
- (B) 0.
- (C) $\frac{6}{5}$.
- (D) 不存在.
- 3. 如果 f(x,y)的点 (x_0,y_0) 处的两个偏导数都存在,则(
- (A) f(x,y)在点 (x_0,y_0) 的某个邻域内有界.
- (B) f(x,y)在点 (x_0,y_0) 的某个邻域内可微.
- (C) $f(x, y_0)$ 在点 x_0 处连续, $f(x_0, y)$ 在点 y_0 处连续.
- (D) f(x,y)在点 (x_0,y_0) 处连续.
- 4. 数项级数 $\sum_{n=1}^{\infty} \left(\frac{\ln^n 3}{2^n} + \frac{1}{n(n+1)} \right)$ 的和等于 ().
- (A) $\frac{4 \ln 3}{2 \ln 3}$. (B) $\frac{2}{2 \ln 3}$. (C) $\frac{\ln 3}{2 \ln 2}$. (D) 1.

- 5. 设 $I_1 = \iint_D (x+y)^2 d\sigma$, $I_2 = \iint_D (x+y)^3 d\sigma$. 其中区域D 是由x轴、y轴及

直线 $x + y = 1$ 所围成的	的闭区域.则 I_1 与 I_2 的	的大小关系为().		
(A) $I_1 > I_2$.		(B) $I_1 < I_2$.			
(C) $I_1 = I_2$.		(D) 根据所给条件	不能确定.		
6. 如果 2 是微分	方程 $y'' + py' + qy =$	e ^{2x} 的特征方程的一	个单根,则该微		
分方程必有一个特解的	的形式为 $y^*=($).			
(A) Ae^{2x} .	(B) Axe^{2x} .	(C) Ax^2e^{2x} .	(D) xe^{2x} .		
得分 二、填空题(共6个小题,每小题3分,满分18分).					
1. 设向量 $\mathbf{a}=(\ 3,\ 2,\lambda\)$, $\mathbf{b}=(\ -1,\ 4,-5\)$,且 $\mathbf{a}\perp\mathbf{b}$,则常数 $\lambda=$					
2. 由方程 $xy - yz + zx = e^z$ 所确定的隐函数 $z = z(x, y)$ 在点 $(1, 1)$ 处					
的全微分为					
3. $\int_0^1 x^2 dx \int_x^1 e^{-y^2} dy = $					
4. 函数项级数 $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{ x }{x} \right)^n$ 的收敛域为					
5. 将函数 $\ln(1+x)$ 展开成 x 的幂级数的形式为					
6. 微分方程 $xy' + y = 0$ 满足 $y(1) = 1$ 的解为					

得 分 三、按要求解答下列各题(共4道小题,每小题 8 分,满分 32 分).

1. 求直线 $\frac{x-1}{1} = \frac{y-2}{-4} = \frac{z-3}{1}$ 与平面x + y + z = 0的交点和夹角 φ .

2. 设 f, φ 是 $C^{(2)}$ 类函数, $z = yf(\frac{x}{y}) + x\varphi(\frac{y}{x})$, 求: $(1)\frac{\partial z}{\partial y}$; $(2)x\frac{\partial^2 z}{\partial x^2} + y\frac{\partial^2 z}{\partial x \partial y}$.

3. 计算
$$I = \iint_D (xy + |x^2 + y^2 - 2|) d\sigma$$
,其中区域 $D = \{(x, y)|x^2 + y^2 \leq 3\}$.

4. 设函数
$$f(x,y,z)$$
连续,且 $f(x,y,z)=\sqrt{x^2+y^2}+z$ $\iiint_{\Omega}f(x,y,z)\mathrm{d}V$,其中区域 $\Omega=\{(x,y,z)|\sqrt{x^2+y^2}\leqslant z\leqslant 1\}$,求 $f(x,y,z)$ 的表达式.

得 分

四、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 求函数 $f(x,y) = x^2 + y^2 - xy - 3y$ 在闭区域 $D = \{(x,y)|0 \le y \le 4 - x , 0 \le x \le 4\}$ 上的最大值和最小值.

2. 求幂级数 $\sum_{n=1}^{\infty} n(x+1)^{n-1}$ 的收敛域与和函数.

3. 设 f(x) 具有一阶连续导数, $f(\frac{1}{2})=3$,且满足方程 $\int_0^x f(t) \mathrm{d}t = \frac{x}{2} f(x) + x$,求 f(x).

4. 求微分方程 y'' + 6y' + 9y = 0 满足 y(0) = 1, y'(0) = -3 的特解.