Correction de l'exercice n° 91 p 125

A propos de positions relatives

Soit f la fonction définie sur I =]0; $+\infty[$ par $f(x) = \sqrt{x}$ et $\mathscr C$ sa courbe représentative.

- **1.** Déterminer l'équation réduite de la tangente \mathcal{T} à la courbe \mathscr{C} en son point d'abscisse 1.
- 2. On considère la fonction d définie sur I par :

$$d(x) = f(x) - \left(\frac{1}{2}x + \frac{1}{2}\right)$$

a. Montrer que, pour tout réel x appartenant à I :

$$d'(x) = \frac{1 - \sqrt{x}}{2\sqrt{x}}$$

- **b.** Étudier les variations de d sur I. Calculer d(1).
- c. Déterminer le signe de d(x) sur I.
- **d.** Interpréter ce résultat en termes de positions relatives entre $\mathscr C$ et la tangente $\mathcal T$.

Correction:

1. L'équation réduite de $\mathcal F$ est donnée par la formule :

$$y = f(1) + f'(1)(x - 1)$$

$$\Leftrightarrow y = \sqrt{1} + \frac{1}{2\sqrt{1}}(x - 1)$$

$$\Leftrightarrow y = 1 + \frac{1}{2}(x - 1) = \frac{1}{2}(x + 1)$$

2. a) $\forall x \in I$, on a:

$$d'(x) = f'(x) - \left(\frac{1}{2}x + \frac{1}{2}\right)' = \frac{1}{2\sqrt{x}} - \frac{1}{2}$$

$$\Leftrightarrow d'(x) = \frac{1}{2\sqrt{x}} - \frac{\sqrt{x}}{2\sqrt{x}} = \frac{1 - \sqrt{x}}{2\sqrt{x}}$$

b) Pour étudier les variations de d sur I, on étudie le signe de d' sur I.

$$\forall x \in I, \ 2\sqrt{x} > 0$$
. Le signe de $d'(x)$ est donc le signe de $1 - \sqrt{x}$

On a
$$d'(x) = 0 \Leftrightarrow 1 - \sqrt{x} = 0 \Leftrightarrow \sqrt{x} = 1 \Leftrightarrow x = 1$$

Si $x \ge 1$, alors $\sqrt{x} \ge 1$ et $1 - \sqrt{x} \le 0$ car la fonction \sqrt{x} est croissante, donc $d'(x) \le 0$

Si
$$x \le 1$$
, alors $\sqrt{x} \le 1$ et $1 - \sqrt{x} \ge 0$ donc $d'(x) \ge 0$

Par ailleurs
$$d(1) = f(1) - \left(\frac{1}{2} \times 1 + \frac{1}{2}\right) = \sqrt{1} - 1 = 0.$$

d'(0) n'est Pas défini

On en	déduit le	tableau	de	variation	de	d	su

- c) $]0; +\infty[$ est un <u>intervalle ouvert</u> et donc 0 est un maximum de la fonction f sur I. On en déduit que $\forall x \in I \ d(x) \le 0$ (et même d(x) < 0 si $x \ne 1$).
- 3. Cela signifie que

$$\forall x \in I$$
, on a $f(x) - \left(\frac{1}{2}x + \frac{1}{2}\right) \le 0 \Leftrightarrow f(x) \le \frac{1}{2}x + \frac{1}{2}$

La courbe de la fonction f est donc toujours « sous la tangente » \mathcal{F} de f en 1. L'écart est nul pour x=1, au point A(1;1).

Correction de l'exercice n° 92 p 125

92 « Distance » entre deux courbes

On considère les fonctions f et g définies sur $\mathbb R$ par $f(x) = x^3 + 12$ et $g(x) = x^2 + 8x$, et \mathscr{C}_f et \mathscr{C}_g leurs courbes représentatives dans un repère orthogonal.

1. a. Montrer que, pour tout réel x, on a :

$$f(x)-g(x)=(x+3)(x-2)^2$$

b. Étudier alors les positions relatives de \mathscr{C}_f et \mathscr{C}_a .

2. On considère les points M et N de même abscisse $x \in [-3; 2], M \text{ (resp. } N)$ appartenant à \mathscr{C}_f (resp. à \mathscr{C}_{o}) comme l'illustre la figure ci-contre.

Correction:

1. a. On a:

$$f(x) - g(x) = x^3 + 12 - (x^2 + 8x)$$

= $x^3 - x^2 - 8x + 12$

Il n'y a pas de factorisation évidente.

Il faut donc développer l'expression de droite et comparer les résultats.

$$(x+3)(x-2)^2 = (x+3)(x^2-4x+4)$$

= $x^3 - 4x^2 + 4x + 3x^2 - 12x + 12$
= $x^3 - x^2 - 8x + 12$

L'égalité est donc bien démontrée.

2. Pour étudier les positions relatives des courbes C_f et C_g , on étudie le signe de la fonction f - g. Posons h = f - g. On a:

$$h: \mathbb{R} o \mathbb{R}$$

$$x \to h(x) = (x+3)(x-2)^2$$

La courbe de f est au dessus de celle de g pour les valeurs d'abscisse telles que h(x) > 0. La courbe de f est au dessous de celle de gpour les valeurs d'abscisse telles que h(x) < 0.

La courbe de f est confondue avec celle de g pour les valeurs d'abscisse telles que h(x) = 0. On fait un tableau de signe pour la fonction h.

x	$-\infty$ -3	$2 + \infty$
$(x+3) (x-2)^2$	- 0	+ +
1	+	+ 0 +
h(x)	— o	+ 0 +

On en déduit que la courbe \mathcal{C}_f est au dessous de \mathcal{C}_g pour $x \in]-\infty;3[$, au dessus pour $x \in]-3$; $2[\cup]2$; $+\infty[$. Pour $x \in \{-3, 2\}$ les deux courbes sont confondues.

Ce résultat s'observe bien sur la figure.

3. D'après la question précédente, les valeurs de f sont toujours supérieures ou égales à celles de g sur l'intervalle étudié. La distance entre les points M(x; f(x)) et N(x; g(x)) est donc égale à h(x) = f(x) - g(x).

Chercher la distance maximale revient donc à chercher la valeur maximale de h sur l'intervalle]-3;2[. Pour cela, il faut étudier les variations de h. On a :

$$h'(x) = (x^3)' - (x^2)' - (8x)' + (12)' = 3x^2 - 2x - 8$$

Pour étudier le signe de h', il faut calculer le discriminant et trouver les racines éventuelles.

$$\Delta = (-2)^2 - 4 \times 3 \times (-8) = 4 + 96 = 100.$$

$$x_1 = \frac{2-10}{2\times3} = -\frac{8}{6} = -\frac{4}{3}$$
 et $x_2 = \frac{2+10}{2\times3} = \frac{12}{6} = 2$

On a $\Delta>0$ et $\sqrt{\Delta}=10$. Il y a donc deux racines x_1 et x_2 : $x_1=\frac{2-10}{2\times 3}=-\frac{8}{6}=-\frac{4}{3}$ et $x_2=\frac{2+10}{2\times 3}=\frac{12}{6}=2$ Comme a=3>0, on sait que h'(x)>0 sauf entre les racines (courbe en U). De plus x_2 correspond à la borne supérieure de l'intervalle.

On peut établir le tableau de variation de h:

La distance maximale est $h(x_1) = h\left(-\frac{4}{3}\right)$

$$= \left(-\frac{4}{3} + 3\right) \left(-\frac{4}{3} - 2\right)^2 = \frac{-4 + 9}{3} \times \left(\frac{-4 - 6}{3}\right)^2$$
$$= \frac{5}{3} \times \frac{100}{9} = \frac{500}{27}$$

x	-3	$x_1 = -$	$-\frac{4}{3}$	2
h'(x)	+	0	_	0
h(x)		$\frac{500}{27}$		
	0		`	0