John Oscar PUBLISHING

ZÁKLADY POČÍTAČOVÝCH SÍTÍ

Předmět: KIV/ZPS Školní rok: 2000/2001 ZS

Přednášející: Ing. Jiří Ledvina CSc.

Jan Přibáň, 2000

john.oscar@post.cz

Vytvořeno programem MS Word 2000

POČÍTAČOVÁ SÍŤ

- soubor počítačů a komunikačních prvků propojených komunikačními spoji

Historický vývoj

1. Systémy vzdáleného přístupu

- veškeré výpočty jsou uskutečňovány na vzdáleném počítači

2. Počítačové sítě

- počítačová siť umožňuje realizovat výpočet kdekoliv, nejen na jednom konkrétním počítači
- úloha jako celek běží většinou na jednom počítači ⇒ nutnost programového vybavení i dat nutných k řešení úlohy na tomto počítači

3. Distribuované systémy

- množina počítačů a terminálů
- výpočet neprobíhá pouze na jednom počítači, ale na několika najednou
- nutnost rozdělení úloh v síti
- většina dnešních sítí se pohybuje mezi jednotlivými vývojovými druhy počítačových sítí

Požadavky na počítačové sítě

- zvýšení spolehlivosti

 v síti by porucha jedné komponenty neměla ovlivnit zbytek sítě
- zvýšení průchodnosti \Rightarrow více úloh v časovém intervalu
- zvýšení dostupnosti (nějaké služby)

Rozsah počítačových sítí

 v dnešní době počítačové sítě překonávají velké vzdálenosti a rozprostírají se na velké ploše naší planety

WAN - Wide Area Networks

- národní, nadnárodní a světové počítačové sítě ⇒ tisíce a stovky kilometrů
- využití současných infrastruktur ⇒ přenos dat a telefonních hovorů po jedné síti
- původní rychlost 100 kb/s dnes až 100 Mb/s

MAN - Metropolitan Area Networks

- sítě v městských oblastech a regionech ⇒ několik desítek kilometrů, např. v Plzni již
 2 : sít Plzeňského magistrátu, WEB-NET ve vlastnictví ZČU
- propojení pomocí optických spojů a radiových směrových spojů
- rychlost přenosu až 100 Mb/s

LAN - Local Area Networks

- počítačové sítě uvnitř budov a areálů ⇒ několik metrů až několik kilometrů
- většinou v majetku instituce, která je vytvořila
- využití speciálních spojení (kroucená dvoulinka, koaxiální kabel, optické vlákno) např. ETHERNET – 10 Mb/s, 100 Mb/s, 1 Gb/s

Topologie počítačových sítí

Spoje dvoubodové

dva počítače vzájemně propojené mezi sebou, zejména v rozlehlých sítích, např.
 připojení z domova do počítačové sítě

Spoje mnohabodové

- sběrnicové spoje
- zejména lokální počítačové sítě (LAN)
 - sběrnicové

- kruhové
- zejména v LAN sítě typu FDDI (100 Mb/s) nebo TOKEN RING (kvalitnější a dražší)

hvězdicové

- obecné
- ve tvaru jakéhokoliv obecného grafu
- použití zejména v rozsáhlých sítích

Komunikační média

Měděné vodiče (kroucená dvoulinka)

- 8 žil, několik druhů CAT3 připojení telefonu(10 Mb/s), CAT5, CAT6 (100 Mb/s)
- proud ve vodiči teče oběma směry tam i zpět ⇒ eliminace rušivých vlivů

Koaxiální kabel

signál je veden vnitřním vodičem, opředení funguje jako uzemnění ⇒ stínění vnitřního vodiče

- 1. jádro měděný drát
- 2. izolace
- 3. opředení měděným vodičem
- 4. vnější izolace

Optická vlákna

- výroba tažením ze speciálního skla, průměr 50 μm, délka až 1 km konstantní index lomu
- skleněné vlákno je obaleno teflonem, který má jiný index lomu

- paprsky jsou vysílány pod různým úhlem
- každý paprsek tak letí jinak dlouhou cestu, potřebují k tomu jiné množství času⇒ omezení šířky pásma kvůli slévání ⇒ omezeno na 10 Mb/s

vlákno s proměnným indexem lomu

- při okrajích je vlákno "řidší" ⇒ paprsek při okrajích letí rychleji, u středu pomaleji ⇒ celková dráha jednotlivých paprsků je různá ale čas je stejný
- omezení až na 1 Gb/s

Jednovidová vlákna

- průměr 2 μm, signál se šíří pouze středem
- rychlost až několik Gb/s
- výhodou je menší útlum signálu ⇒ možnost vedení na větší vzdálenosti (20-30 km)

Radiové spoje

všesměrové

- rozhlasové a televizní spoje
- nevýhodou je zabrání celého frekvenčního pásma

směrové

- signál se šíří v daném směru na vzdálenost až 30 km
- u počítačových sítí zejména toto použití ⇒ minimální výkon a maximální kapacita, minimální investiční náklady
- 2,5 GHz \Rightarrow 1 až 10 Mb/s

družicové

- vyšší přenosové frekvence asi 11 000 GHz
- využití geostacionárních družic (telefon, televize a počítačové sítě) nevýhodou je veliká vzdálenost 40 000 km ⇒ zpoždění tedy 270 milisekund
- využití družic nízké oběžné dráhy nevýhodou je nenulová rychlost oběhu družic nad zemí a natáčení parabol na povrchu zemském a výhodou malá vzdálenost, např. program IRIDIUM = systém 78 družic – použití u telefonních hovorů

Optické((laserové) spoje

Cíle počítačové sítě

- ✓ dovoluje sdílený přístup k výpočetním zdrojům
- ✓ dovoluje sdílený přístup k programům a datovým souborům
- ✓ medium pomocí kterého mohou geograficky rozptýlení uživatelé komunikovat (email, teleconferencing apod.)
- ✓ elektronická obec skupina uživatelů
- ✓ informační dálnice, národní informační struktura
- ✓ cyberprostor

Prvky počítačové sítě

- komunikační linky dvoubodové nebo mnohabodové spoje
- vyrovnávací paměti
- sít soubor uzlů (hostitelských systémů, směrovačů, bran) v jedné administrativní doméně
- intersít (internetwork) soubor propojených sítí
- aktivní sítové prvky (počítače na kterých běží komunikační protokoly)

host - počítač, na kterém běží aplikace používající sít

opakovač - elektronické zařízení pro zesílení signálu

most - počítač propojující dvě a více fyzických sítí (propojení LAN + filtrování

⇒ signál může tak zůstat pouze v subsíti ⇒ snižuje to zatížení celé sítě)

směrovač - počítač, který směruje pakety mezi sítěmi

brána - směrovač, přímo připojený k více sítím, slouží k propojení

nehomogenních sítí

switch - prvek nahrazující opakovač ⇒ propojí ty komponenty, které v danou

chvíli spolu komunikují, né ostatní

Protokoly

- pravidla, podle kterých sítové komponenty vzájemně komunikují

- definují formáty vyměňovaných zpráv a akce spojené s přenosem zpráv mezi entitami

- protokoly známé z běžného života: řízení dopravy, komunikace lidí, problémy souběžného přístupu apod.

- telekomunikační společnost CCITT vytvořila nejprve protokoly v telekomunikačních sítích a poté se věnovala tvorbě protokolů v sítě počítačové

Úrovňová architektura

- architektura složitých systémů může být zjednodušena rozdělením do více úrovní
- úroveň N využívá služeb úrovně N-1 zajišťuje služby pro úroveň N+1

- služby poskytované nižší úrovni jsou nezávislé na tom, jak jsou tyto služby realizovány ⇒ skrytí složitosti nižších úrovní, změna úrovně N neovlivní ostatní úrovně
- rozhraní definuje jak lze službu využívat

Distribuovaná sítová architektura

- sít je složena z geograficky distribuovaných technických i programových komponent
- stejnorodé entity (např. procesy) na úrovni N poskytují služby komunikací (posíláním zpráv nebo paketů) sobě navzájem; používají při tom komunikační služby úrovně N-1
- logická kontrola fyzické komunikace

Relační model ISO/OSI

- ISO.....zkratka Mezinárodní organizace pro standardizaci
- OSI......Open Systems Interconection (architektura pro propojování otevřených systémů)
- sedmiúrovňový model:

aplikační úroveň (7.)

- komunikace mezi procesy
- všechny existující úrovně podporují aplikační úroveň
- např. elektronická pošta, teleconferencing, www, ftp, telnet, distribuovaná databáze apod.

prezentační úroveň

- konverze dat do společného formátu
- komprese dat (ztrátová, bezztrátová)
- ochrana dat (šifrování)

relační úroveň

- spojení dvou aplikací pomocí relace
- vytvoření relace (ověřování)
- obnova po chybě
- sdílení relačního spojení

transportní úroveň

- univerzální transportní služby: přenos mezi koncovými procesy
- komunikace mezi koncovými uzly
- multiplexování toku dat z vyšších úrovní (možnost spuštění více aplikací)
- součást TCP/IP
- spojované služby spojení dvou uzlů, srovnání rychlosti vysílače a přijímač; řízení toku dat; realizované služby jsou spolehlivé ⇒ přijímací strana se nemusí starat jak je služba uskutečňována

nespojované služby – datagramové služby ⇒ posílání krátkých zpráv (datagramů)
 samostatně ⇒ tento systém nezaručuje přenos, neduplicitu apod.
 v případě posílání více datagramů; použití nejčastěji v systémech
 pracujících v reálném čase

síťová úroveň

- přijímání paketů z vyšších úrovní a určení jejich cesty do koncových uzlů
- řízení směrování
- předcházení zahlcení a kolizím
- adresování v síti
 - ✓ *metoda škrticích paketů* posílání protipaketů pro zpomalení sítě
 - ✓ zahazování (odmítání) zpráv

linková úroveň

- komunikace mezi dvěma sousedními uzly
- zajištění bezchybného přenosu ⇒ nejdůležitější úkol
- řízení rychlosti přenosu mezi sousedními uzly
- např. připojení z domova na Internet

ARQ (opakování vysílání chybně přijaté zprávy)

- s kladným potvrzováním potvrzování každé dobře přijaté zprávy, mlčení znamená nepřijetí zprávy
- záporného potvrzování ohlášení neporozumění (použití v pomalých systémech)
- kombinace obou potvrzování úplně všech zpráv

FEC (metoda s dopředenou korekcí chyb)

- vysílání zpráv s dostatečnou redundantností (systém si dokáže odvodit správnou zprávu)
- použití zejména v mezipozemských přenosech

fyzická úroveň

- transporty jednotlivých bitů komunikačním vedením
- kódování přenášených informací

INTERNET

- byla velká snaha uvést sedmiúrovňový model v život, jenže bylo mnoho proti: nutnost celé řady protokolů, vysoké náklady, malá používanost
- americké ministerstvo obrany zadalo projekty univerzitám (zač 70. let), aby vymysleli systém pro posílení armády, jedním z úkolů byla také počítačová síť
- došlo k vytvoření modelu přenosu dat přepínáním paketů (rozdělení, posílání samostatně, opětovné spojování)
- koncem 70. let představení tohoto modelu veřejnosti ⇒ velký zájem univerzit podílet se na tomto projektu
- začátkem 80. let je už dost přípojných bodů, dochází k oddělení vojenské části
- počátkem 90. let komercionalizace ⇒ vznik Internetu
- Internet je postaven na přenosových protokolech z 70. let: TCP/IP
- TCP...... Transport Control Protocol 4. úroveň
- Internet celosvětová síť
- internet propojení sítí s TCP/IP

-architektura TCP/IP:

aplikace			
TCP	UDP		
IP	ICMP		
	ARP		
přenosová vrstva			

fyzická + linková úroveň

přenosová vrstva – spolupráce se současnými schopnostmi, přenos informací z jednoho uzlu do druhého

síťová úroveň

ICMP......Internet Control Message Protocol – přenos řídících zpráv ARP......Adress Resolution Protocol – převod síťové adresy na fyzickou

transportní úroveň

UDP......User Datagram Protocol – datagramové služby

Adresování v internetu

- každý objekt (PC) je označen jménem a jednoznačným identifikátorem (IP adresou)
- adresa je 32 bitové číslo v tečkové notaci (desítková čísla jsou oddělena tečkami) např. 147.228.67.23 toto je IP verze 4
- dnes už v důsledku počtu PC na celém světe IP verze 6 (modifikace), délka adresy již
 128 bitové číslo ⇒ 4x delší, množství adres se zvětšilo 2⁹⁶
- IP adresy rozděleny do několika tříd:

Třída A

- první číslo síť, další tří čísla host
- maximálně může být 2^7 (mínus asi 7) sítí \Rightarrow asi tedy 115 sítí
- ve dvojkové soustavě tato třída má na začátku vyhrazenou 0 (např. 001101.011.0001.00011)

Třída B

- první dvě čísla síť, další dvě čísla host
- maximálně může být 2¹⁴ sítí a 2¹⁶ host
- ve dvojkové soustavě tato třída má na začátku vyhrazeno 01 (např. 011001.1001.01.01111101)
- tuto třídu má např. ZČU: 147.228.67.23

Třída C

- první tři čísla síť, poslední host
- maximálně může být 2²¹ sítí a 254 host
- ve dvojkové soustavě má tato třída vyhrazeno na začátku 110

Třída D

- bez vnitřní struktury
- jedná se o skupinovou adresu

 skupinové adresování

 čím dál větší význam při
 přenosu v reálném čase např. u netrádia (nenavazuje se spojení s každým PC zvlášť,
 ale signál je šířen všem najednou)
- ve dvojkové soustavě má tato třída vyhrazeno na začátku 1110

Třída E

- tato třída používána při experimentech
- ve dvojkové soustavě má tato třída na začátku vyhrazeno 1111

Jména

- zavádí se kvůli srozumitelnosti a zapamatovatelnosti
- nemusí být jednoznačná
- na Internetu je zaveden hierarchický *jmenný prostor*
- rozlišovací domény např.: edu, com, gov, mil, net,.....cz, sk, pl, hu

- převod mezi jménem a adresou:
 - jméno ⇒ adresa
 - adresa ⇒ jméno
- převod je prováděn decentralizovaně ⇒ decentralizovaný systém
- základ tvoří tzv. *jmenné servery (JS)* uložené části databáze jmen
 - vytváří hierarchii
 - spolupráce při převodu
 - vyřízené dotazy si po dobu 1 dne ukládá do "cash"
- kořenové jmenné servery
- ve světě jich je asi 7 jejich zatížení je rovnoměrné
- jejich databáze jsou identické

_

Aliasy (přezdívky)

- funkční jména většinou podle poskytovaných služeb
- jeden počítač tedy můžeme identifikovat podle: adresy, jména, několika alias

www.zcu.cz ftp.zcu.cz time.zcu.cz gopher.zcu.cz

aliasy jednoho PC

- převod nejen jména a adresy, ale i zjištění operačního systému, poštovního servru daného počítače atd.

APLIKAČNÍ ÚROVEŇ

Procesy

- Proces
- programový modul
- paměť
- data
- procesor
- Modely
- model server/klient
- model peer-to-peer ⇒ rovnoprávný (stejná funkce na všech komponentách)
- Realizace servrů
- podle služeb:
 - ✓ datagramové pro aplikace jednotného charakteru, např. jmenné služby, čas apod.
 - ✓ virtuální okruhy při přenášení velkého množství dat, kde záleží na bezchybném přenesení
- podle způsobu práce:
 - ✓ interaktivní v jednu chvíli obhospodařují 1 požadavek
 - ✓ procesně orientované vytvoření spec. procesu na uspokojení našeho požadavku a poté zrušení tohoto procesu; počet procesů je omezen (u ftp, gopher atd.)
- podle zapamatování stavu:
 - ✓ stavový
 - ✓ bezstavový pamatují si stav rozpracovaní ⇒ pokračování práce tam, kde došlo k přerušení; server si nemusí nic pamatovat, informace o úplnosti posílá na hostitelský počítač

Typy servrů a služeb aplikační úrovně

Souborový server

- slouží k ukládání souborů na vybraném PC
- souborový systém se dělí na : svazky, adresáře, soubory
- možnost sdílení dat, ale nutnost vytvoření ověřovacích mechanismů uživatele a mechanismus přístupových práv k souborům

R.....žtení W.....zápis

X.....spuštění programu

 využití mapování disků k ztotožňování svazku s nějakou částí adresářového stromu disku na souborovém serveru

- typy: NOVEL v 5.x (Dos)

NFS – Network File System (Unix) NTFS – NT File System (NT Server) AFS – Andrew File System (Orion)

Diskový server

- dnes už se příliš nepoužívá
- přístup je pouze k celému disku, né pouze např. k jednomu souboru
- uživatelé tedy přistupují k disku jako celku
- výhodou větší jednoduchost přístupu
- nevýhodou je vytažení přístupových práv pouze na celý disk
- sdílené disky jsou pouze pro čtení, každý uživatel má pak pro čtení a zápis svůj vlastní disk

Tiskový server

- realizování disků na společné tiskárně ⇒ síťové tiskárny
- lokální tisk
- text, který chceme vytisknout se nejprve převede do jazyka tiskárny a poté až je vytištěn

- jazyky: PostScript – univerzální jazyk, možnost uložení do souboru a až poté vytištění

• síťový tisk

síťový server obsluhuje více klientů současně ⇒ vznik fronty

- požadavky na tisk se řadí tedy do fronty, kde existují následující stavy: vytváří se, připraven k tisku, tiskne se
- existují také příkazy např. na upřednostňování ve frontě, mazání z fronty apod.
- přístup k tiskovému serveru:
 - ✓ *přesměrováním* převedení tisku na síťovou tiskárnu; v Novelu příkazy "capture, endcap"
 - ✓ *tisk souboru* a) uložení tiskové sestavy do souboru
 - b) kopírování souboru na tiskárnu (copy/b soubor.prn lpt2)

Poštovní server a elektronická pošta

- slouží k přenosu zpráv v datovém režimu
- přenáší se:
 - text (původně) ASCII znaky
 - formátované dokumenty (text) např. .pdf (portable data formular)
 - zvuk ⇒ voicemail
 - obraz
 - video
 - data (programy) binární data
- <u>funkce elektronické pošty:</u>

k chybě může dojít např. přeplněním poštovního serveru

- formát přenášených zpráv:
- dvě základní části: záhlaví, data

- adresy vypadají následovně: <u>adresa@počítač.subdoména.doména</u>
- poštovní servery umí pracovat s aliasy (přezdívkami)

```
context transfer encoding – base 64 – kódování
context type – typ přenášené informace
- typ/podtyp např. text/plain, image/jpg, aplication/msword ......
```

- MIME Multipurpose Information Mail Exchange
- prostředky pro přístup k elektronické poště:

.....programy: pine, elmumí manipulovat se soubory v pošt. adresáři

vzdálený přístup k elektronické poště:

✓ POP – Post Office Protocol

- na PC běží tzv. POP klient
- název POP servru ZČU je pop.zcu.cz
- příkazy pro telnet: user, pass, list, retr, quit, dele

✓ IMAP – Internet Mail Access Protocol

- funguje obdobně, ale umožňuje pracovat s poštou i částečně: přenesení autorů zpráv, věcí apod.

List server - Elektronická konference

- vytvoření zájmových skupin a těmto pak rozesílání zpráv (příspěvků) od různých členů
 ⇒ např. server list.zcu.cz
 - uzavřené
 - otevřené
 - druhé členění na:
 - moderované
 - nemoderované

- komunikace:

✓ administrativní (řídící) kanál

- umožňuje přihlášení, odhlášení, pozastavení a obnovení členství, výpis seznamu konferencí, seznamu členů, help
- např. <u>listserver@list.zcu.cz</u>, majordomo@....., název konference-request@....

✓ datový kanál

- samotný přenos zpráv
- např. <u>webnet@list.zcu.cz</u>

News server - Elektronické news

 zaslané příspěvky se pouze ukládají na servery, na kterých je možné si je přečíst ⇒ nedochází k odesílání klientům

Služby aplikační úrovně

- telnet, ftp, gopher, www, finger, netfind, whois, X500, videokonference, time servery
 - TELNET vzdálený terminál
 - jedná se v podstatě o emulaci terminálu
 - ✓ navázání spojení
 - ✓ dohodovací fáze (určení typu terminálu)
 - ✓ přenos dat
 - ✓ ukončení spojení
 - historicky různé typy terminálů: VT100, VT320... (čím větší číslo tím dokonalejší)
 - služba telnetu je implicitně přístupná přes port = 23
 - znaky na telnet klientovi se zobrazují na obrazovce až po vrácení z telnet servru

- proti odzírání ve formě otevřené podoby se používá *ssh* -*secured shell* ⇒ prostředek umožňující normální funkce, ale v šifrované podobě; použití port = 22

• FTP – File Transfer protocol

- ✓ navázání spojení
- ✓ přenos příkazů
- ✓ přenos dat (příkazy: dir, get, ls, put, cd, mget, mput, bye)
- ✓ ukončení spojení

bin.....čtení souborů binárně ascii....čtení textových souborů

promt.....přepínač, zapíná/vypínání dotazů

hash....zobrazování křížku za každý přenesený kb !....ovládání v našem vlastním adresáři

lcd....změna domácího adresáře

- ftp souborů je ve světě hodně
- zvláštní formou jsou pak indexové servry ⇒ archie servry (jméno programu a místo uložení)

GOPHER

- typy informací:
 - adresáře
 - chápáno jako seznam dokumentů
 - prohlížení informace
 - uspořádání do skupin podle typu informace
 - tink 🌐
 - adresování adresářů na cizích strojích
 - textové soubory
 - prohledávání pošty
 - spec. typ adresáře
 - specifikace klíčových slov pro vyhledávání
 - telefonní seznam (speciální aplikace)
 - telnet relace (přihlášení na jiný stroj)
 - # multimédia (obrázky, zvuk, video)
 - formátovaný text (postscrip)

protokol:

přenášená data:

0....soubor 7....prohledávání g....gif soubor 1....adresář 9...binární soubor

2...telefonní seznam 8...telnet

- nevýhoda: samy musíme prohledávat jednotlivé servry a jednotlivé adresáře

WWW server

- TCP port 80
- hypertextové spojení s dokumenty
- přenos textu, souborů, obrazů, zvuků, videa apod.
- systém dotazovacích servrů
- základní pojmy:

HTTP – Hypertext Transfer Protocol

- kromě zobrazitelných znaků obsahuje i další odkazy na související text

HTML - Hypertext Markup Language

- obsahuje řídící znaky a texty
- obsahuje formáty a odkazy

URL - Uniform Resource Locator

- schéma: //jméno:heslo@počítač:port-cesta k souboru?parametr
- schéma: http, shttp, ftp, telnet, gopher, news, mailto, file
- parametr: parametry předávané úloze běžící na servru

- URL může být lokální (do téhož dokumentu...#), nebo globální; může také být absolutní nebo relativní (obsah se doplňuje automaticky, není vázáno k určitému paměťovému médiu)
- **SERVER** http server ⇒ relativně jednoduchý
- KLIENT relativně složitý, univerzální
- formát přenášených dat:

..... značky v dokumentu buď párové nebo nepárové (např.)

- protokol:
- různé metody
- HEAD klient požaduje zaslání hlavičky dokumentu ⇒ optimalizace přenosu
- GET dovoluje vyžádat si nějaký dokument, za ? parametry (omezení)
- POST neomezený počet parametrů server zpracovává jiným způsobem
- PUT umožňuje zapsat stánku na server
- DELETE mazání

- <u>dokumenty (html stránky):</u>

- **statické** soubory předem vytvořené přenášené do počítače
- **dynamicky vytvářené** podle aktuálního požadavku uživatele
 - vyžadují existenci programu pro vytvoření té podoby stránky jak na straně servru, tak i na straně klienta
 - používání CGI skriptu "Common Gateway Interface" jazyk vyšší úrovně (většinou interpretační) – PHP, Perl

- problémy:
- vyžaduje přenos velkého objemu dat ⇒ zavedení vyrovnávacích pamětí (cash)
- tyto vyrovnávací paměti jsou uložené v mezilehlých uzlech ⇒ proxy servry (zástupné)
- možnost filtrace, a kontroly práce na síti (problémem např. v bankovnictví)

- <u>brány:</u>
- umožnění komunikace, překlad do html a přesun klientům
- např. netfind, whois, protokoly

- prohledávání:
- roboti, spider
- server shromažďuje informace formou registrace

- jazyk dokumentů zadávání klíčových slov, vytváření logických výrazů: AND, NOT, OR, NEAR apod.
- portál odkazy roztříděny podle skupin

• FINGER

- získávání informací o uživatelích vzdáleného systému
- textově orientovaný protokol
- protokol TCP port = 79
- architektura server/klient

- požadavek:
 - ✓ jméno uživatele + @jméno hosta
 - ✓ přihlašovací jméno uživatele -

- informace:

- ✓ výpis informací o uživateli
- ✓ výpis informací o přihlášených uživatelích

• NETFIND

- získávání informací o uživatelích nějaké domény
- ve světě několik servrů, které podporují tudle službu (většinou podle pro jednotlivé státy, např. u nás: netfind.vslib.cz
- přístup k této službě pomocí telnetu nebo bránou přes http protokol

telnet netfind.vslib.cz

login: netfind pass: netfind

zadání dotazu - jméno subdoména doména Novak zcu cz

WHOIS

- prostřednictvím centralizované databáze poskytuje tato služba informace o zaregistrovaných uživatelích
- interaktivní prostředí, ve kterém pak pomocí dotazů získáváme informaci o nějakém člověku

• X500

- následníkem služby "whois"
- tzv. directory services adresářová služba
- dovoluje získávat informace o nějakých objektech umístěných v decentralizovaných databázích
- 2 složky:

vlastní protokol

- relativně velmi jednoduchý
- operace charakteru: prohlédni, přečti, zapiš, porovnej, zruš, modifikuj...

vlastní databáze

adresný prostor objektů ⇒ objektům jsou přiřazeny atributy ⇒ hierarchický systém objektů

atributy: jméno=hodnota

0.....jméno organizace SA.....street adress OU...organizační jednotka L.....lokalita

C....země CN....označení objektu

[C=CZ, O=ZCU, OU=KIV, CN=...]

- <u>vyhledávání</u> (2 komponenty):
 - ✓ DUA –Directory User Agent
 - ✓ DSA Directory System Agent

- <u>realizace:</u>
- vytvořen protokol pro zjednodušování LDAP Lightweight Directory Access
 Protocol => přístup k adresářovým službám

VIDEOKONFERENCE

- přenos obrazu a zvuku
- internetové radio, internetová televize, videokonference

- např. Net Meeting výměna informací mezi 2 účastníky ⇒ obraz, zvuk, obrázky (white board), textová informace
- požadavky na přenosové kapacity:
- zvuk v kvalitě audio CD, stereo 44,1 KHz ⇒ 1,411 Mb/s
- obraz 768x576 b, 25 frames, 24 b/na 1 bod \Rightarrow 33 MB/s
- komprese dat:
- Motion Picture Expert Group
- MPEG1 352x288 b, 25 frames \Rightarrow 1,5 Mb/s
- MPEG 2 768x576 b,25 frames \Rightarrow 2-10 Mb/s (komprese 1:30 1:200)
- MPEG 4 176x144 b, 10 frames $\Rightarrow 64$ kb/s
- pro přenos multimediálních dat je nutná kvalitní infrastruktura
- přenos obrazové a zvukové informace se realizuje pomocí tzv. skupinového adresování ⇒ skupina počítačů má stejnou skupinovou adresu
- dochází tak k přenosu 1:N

- využívání tzv. MBONE páteřních sítí pro přenos skupinových dat (dat na skupinové adresy)
- realizováno nad sítí Internet
- nutná celá řada směrovačů ⇒ nutnost tedy dovybavit sítě prostředky pro skupinové směrování
- výhodou je možnost využití již stávající infrastruktury
- nutností je také zajistit synchronní přenos dat ⇒ vysílací rychlost musí být stejná jako rychlost přijímací (např. řešeno pomocí načítání do "bufferů")
- přijatelné je pouze zpoždění

• ČAS, ČASOVÉ SERVERY

- pro připojení do počítačové sítě dochází k synchronizaci času mezi naším počítačem a servrem, ke kterému se připojujeme
- u rozsáhlých sítí je to složitější ⇒ existují časové servry, které poskytují přesný čas (buď získaný z jiného časového servru, nebo přímo z časového etalonu atomové hodiny, signál šířený dlouhými radiovými vlnami)

DATABÁZOVÉ SERVERY

- jazykem pro přístup k databázím je **SQL-Structure Query Language**
- unifikovaný přístup

- síťový management – prostředky pro diagnostiku a sledování dění na síti

BEZPEČNOST POČÍTAČOVÉ SÍTĚ

- počítačová síť je otevřená
 - nebezpečí napadení počítačové sítě i jednotlivých počítačů
 - > nebezpečí odposlechu přenášených informací

.....ochrana uvnitř systému, vstupu do systému
.....ochrana komunikačních cest

- napadení:
- *aktivní* modifikace, zadržování dat (komunikace)
- *pasivn*í odezírání
- hlavními příčinami většinou odhadnutí hesel nebo napadení cest
- <u>šifrování:</u>
- *symetrické šifry* jeden klíč pro šifrování a dešifrování ⇒ rychlé
- nesymetrické šifry dvojice klíčů, pro šifrování je veřejný, druhý neveřejný
- musí být nemožné odvodit šifrovací klíč

$$text \longrightarrow K=f_E(T) \longrightarrow T=g_E(U)$$

- DES USA, šifrování vládních dokumentů klíč 56 bitů
- 3DES trojnásobné použití klíče DES klíč 112 bitů
- SAFER
- <u>útoky na počítačovou síť:</u>
 - pasivní
 - kradení/únik informace získávání obsahu zprávy
 - analýza přenosu odkud, kam, délka bloků, množství dat
 - aktivní
 - modifikace toku dat změna obsahu, opakování, změna pořadí, rušení, vkládání, syntéza zpráv, změna adresy, změna dat, modifikace požadované informace
 - blokování přenosu mezi dvěma entitami
 - zadržování zpožděné odesílání zpráv
 - vytváření falešného spojení (maskování se) autorizace entit, časová integrita

- cíle zabezpečení:
- prevence pasivního útoku
- detekce aktivního útoku

Ohodnocení bezpečnosti

- existuje více způsobů ohodnocení bezpečnosti
- jedním z nich je TCB- Trusted Computing Base
- uvedeno v Orange Book The Trusted Computer Evolution Criteria
 - o úplný ochranný mechanismus ve výpočetních systémech
 - o zahrnuje software, hardware, firmware
 - o podpora výrobců spolehlivých operačních systémů
- vlastní klasifikace rozdělení do 4 skupin:

skupina D

- bez zajištění bezpečnosti – minimální ochrana (MS-DOS)

skupina C

- volná ochrana ponecháno na uvážení
- např. systémy založené na ověřování uživatele

skupina B

nařízená, vymezená ochrana

skupina A

- verifikovaná ochrana
- vyžaduje úplný formální návrh systému
- orientováno na klasifikaci informace

Zajištění bezpečnosti

- ověřování uživatele.....přístup do výpočetních systémů
- zabezpečení přenosu......šifrování, "kontrolní součet" ⇒ proti změnám
- zabezpečení nepopiratelnosti.....elektronický podpis

1. Ověřování uživatele heslem

- jednoduché ověření
- nevýhodou je přenos jména a hesla v otevřené podobě

Login	Pass
Honza	Blb
lumir	vlk

možnost přenosu hesla a jména v zašifrované podobě ⇒ SSH

2. Ověřování uživatele pomocí ověřovacího serveru

- ověřovací server = bezpečný počítač
- udržuje databázi uživatelů a jejich hesel
- přenos relačního klíče šifrovací klíč pro komunikaci
- KERBEROS systém používaný v systému OrionNT

3. Ověřování uživatele pomocí certifikační autority (CA)

- nejmodernější způsob identifikace subjektů

- CA vystaví každému subjektu tzv. certifikát: (x.509)

CA – ID
Doba platnosti
Subjekt ID
Subjekt – Kv (veřejný klíč)
Podpis CA

LOKÁLNÍ POČÍTAČOVÉ SÍTĚ

- rozloha 1 − 10 km
- většinou jeden vlastník
- vyhrazené komunikační médium (kroucená dvoulinka, koaxial, optické vlákno, radiové spoje)
- přenosová rychlost: 10 Mb/s 1 Gb/s
- topologie: sběrnicová, kruhová topologie, hvězdicová topologie
- <u>řízení přístupu ke komunikačnímu médiu:</u>
 - *centralizované* nepoužívá se metoda výběru, metoda výzvy
 - decentralizované větší spolehlivost, snížení režie

a. metody náhodné

- předpokládají kolize při přenosu, není ochrana proti zahlcení
- opakování zprávy po opakování náhodné doby
- metody naléhající ihned po přestání začne rychlá, velké nebezpečí kolize, může vést k zahlcení sítě (neustálé skákání si do řeči)
- metody nenaléhající automatické přeplánování na pozdější dobu, méně agresivní, pomalá, malé nebezpečí kolize, nedojde k zahlcení sítě
- b. metody rovnoměrného přístupu
- c. metody prioritní

Příklady LAN

ETHERNET

- vznik začátkem 80. let
- na vývoji se podíleli firmy: INTEL, XEROX, DEC
- vychází z metod náhodného přístupu metoda CSMA-CD naslouchání nosné vlny + detekce kolize
- snaha o zvýšení propustnosti sítě ⇒ přenosové rychlosti
- topologie: sběrnicová, hvězdicová, stromová

- nesmí dojít ke vzniku smyček !!!!!

- HUB rozbočovač 8, 16, 24.....vstupů
- přenosová rychlost 10 Mb/s, 100 Mb/s, 1 Gb/s (páteřní sítě), 10 Gb/s (ve vývoji)
- komunikační médium koaxiální kabel, kroucená dvoulinka, optické vlákno

- typy:

- 10 BASE 5 10 Mb/s, základní pásmo, 500 m dlouhý segment
- 10 BASE 2 cheaper net, 200 m, koaxial, začátkem 90. let
- 10 BASE T twist kroucená dvoulinka, ELIE 45 200 m až 1 km
- 10 BASE F optické vlákno
- 100 BASE Tx 100 Mb/s, kroucená dvoulinka CAT 5
- 100 BASE Fx 100 Mb/s, optické vlákno
- 100 BASE T4 4 páry vodičů ⇒ speciální modulační metoda
- 1000 BASE T 1 Gb/s, kroucená dvoulinka
- 1000 BASE F 1 Gb/s, optické vlákno

- adresování v Ethernetu:

- **individuální** délka 48 bitů (6 slabik) 24 bitů výrobce, 24 bitů další rozlišení; iedinečná
- všeobecná 48 bitů samé 1....1, slyšení zprávy všemi stanicemi najednou; použití např. pro šíření výzev apod.
- skupinová (1x....x), adresování skupin stanic
- délka přenášených dat 46-1500 slabik
- v 1 segmentu max 100 stanic

TOKEN RING

- fyzický kruh kruhová síť s předáváním pověření
- odposlouchává pouze příslušný počítač
- metoda přenosu předávání pověření metoda rovnoměrného přístupu ⇒ bez kolizí
- rychlost přenosu 4 Mb/s (stejná propustnost jako 10 Mb/s Ethernet), 16 Mb/s
- maximální počet stanic 250
- médium kroucená dvoulinka
- adresa 48 bit individuální, všeobecné a skupinové adresování
- délka paketu 4 099 slabik
- 1985 velký úspěch 20 % na trhu
- do ČR se moc nedostal, pro svojí cenu
- použití tam, kde je třeba nezahlcujících se sítí např. banky, Škoda MB

• FDDI (Fibre Data Distributed Interface)

- optická síť
- realizováno dvojitým kruhem (kruhová topologie) ⇒ primární a záložní
- rozlehlost 100 km
- rychlost přenosu 100 Mb/s
- zařízení buď *plné připojení* (DUAL ATTACHMENT) nebo *připojení pouze k primárnímu okruhu* (SINGLE ATTACHMENT)
- použití jako páteřní sítě, metropolitní sítě ⇒ připojení významných serverů
- rychlé připojení pracovních stanic
- délka paketu 5 kB
- vysoká odolnost proti výpadkům ⇒ v případě poruchy se síť automaticky překonfiguruje a začne používat sekundární okruh

ISO 8802

DALŠÍ

Standardizace protokolů lokální počítačové sítě

	IEEE IEEE 802		
802.3	Ethernet		
802.5	Token Ring		

802.12.....100 GU AnyLAN......HP síť 100 Mb/s, telefonní vedení

Propojení lokálních počítačových sítí

ISO

Rozbočovače (opakovače) HUB

Přepínače (switch)

- propojuje pouze stanice, které spolu mají komunikovat
- zvýšení výkonu, méně kolizí

Mosty(bridge)

- oddělují jednotlivé LAN
- filtrují přenos paketů podle adresy
- mají 3 funkce: propouštění, filtrování, učení/zapomínání

- nesmí vznikat smyčky ⇒ nesmí dojít k zacyklení
- příklad umístění dvou mostů (z důvodu zálohování)
- použití spaning tree algoritmu odpojení mostů vytvářejících smyčku + kontrola připojení všech

ROZLEHLÉ POČÍTAČOVÉ SÍTĚ

Přenos dat v rozlehlých počítačových sítích

- dvoubodové spoje, 10 Kb/s (individuální účastník), 100 Mb/s (realizace páteřních sítí)
- média: telefonní vedení, radiové spoje směrové a družicové, optická vlákna

Modemy

- název odvozen od pojmů modulátor a demodulátor
- propojení digitální techniky (počítače) s počítačovou sítí za pomoci analogového vedení

- funkce modemu:
 - převádí číslicový signál na signál analogový a opačně
 - vytáčení telefonní čísla, vytvoření spojení
 - dohodnutí parametrů spojení
 - komprimace dat
- stavy modemu:
- duplexní spojení
 - *řízení* řídící příkazy
 - data přenos dat

- data modem interpretuje ve stavu řízení jako řídící příkazy
- ve stavu přenosu dat je přenáší dál
- ze stavu řízení do stavu přenosu dat může přejít:
 - navázáním spojení
 - přepnutím ze stavu navazování spojení
- příkazy modemu:
- vymyslela je firma *AT&T* ⇒ mluvíme o tzv. AT příkazech
 - atz.....nastavení přednastavených atributů
 - atd.....vytočení telefonního čísla
 - atdp.....pulsní volba
 - atdt......tónová volba (např. atdt 01974912222)
 - ath.....zavěšení
 - atm.....zeslabení/zesílení poslechu
 - nastavní parametrů modemu je uloženo v S-registrech 50 –540
 - ats0.....práce s registrem 0

- přenosové rychlosti modemu:
- normalizovány: 150, 300, 600, 1200 b/s 14 400 b/s, 16 800 b/s, 33 600 b/s, 56 Kb/s

- přenosové protokoly (mezi modemy):
- firemní protokoly MNP Microcom Network Protocol

MNP2 - MNP10

MNP5....standard

délka přenášeného rámce

přenosová rychlost

opakování přenosu při chybě

MNP10...určeno pro velmi špatné komunikační linky ⇒ radiové sítě - navázání spojení s nízkou přenosovou rychlostí ⇒ postupně se tato rychlost zvyšuje, zvětšují se a zkracují délky rámců

V.x.....doporučení *ITU* týkající se protokolů, kódování, komprimace

Terminálový server a vzdálená přihlášení

- přihlášení ke vzdálenému systému
 - *přihlášení v terminálovém režimu* \Rightarrow (jméno + heslo)
 - v režimu připojení jako uzel počítačové sítě ⇒ možnost využití všech dostupných služeb

 BOOTHP, DHCP – protokoly umožňující přenést informace o IP adrese, masce...

Digitální telefonní sítě

- přenáší číslicovou informaci ⇒ informaci v číselné podobě
- zařízení jménem *CODEC* coder, decoder ⇒ převod analogového signálu na číslicový
- výhody: méně poruch, lepší možnost propojování sítí ⇒ kvalitnější přenos

- převod signálu využití *PCM pulsní kódové modulace*
 - ⇒ posloupnost 8 bitových slabik vždy po 125 2 μs c = 8 bitů + 8 000 = 64 Kb/s

ISDN Integrated Services Data Network

- datové sítě integrovaných služeb
- domácí přípojky ISDN
 - dovolují připojení našich přístrojů přímo na síť
 - k dispozici 2 x 64 Kb/s a jeden kanál řídící 16 Kb/s = 144 Kb/s
- domácí digitální miniústředna (NT2)
 - digitální telefon
 - počítač vybavený ISDN rozhraním
 - možnost zapojení až 8 zařízení
 - základní kanály s poté sdružují ⇒ vznikají přenosové systémy T (T1...T4) Amerika, Japonsko a E (E1....E5) Evropa

- synchronní přenos ⇒ 8 000 vzorků za sekundu

B-ISDN

- širokopásmové ISDN, využití ATM technologie
- hodí se pro přenos zvuku, pohyblivého obrazu a dat
- nároky na kvalitu přenosu musí být zajištěn synchronní přenos
 - rychlost snímání = rychlosti reprodukce
 - snímání konstantní rychlosti
- informace se přenáší komprimovaně ⇒ komprimace
 - ztrátová zpětným obnovením nedostaneme to samé
 - bezeztrátová

 - médium: optické vlákno, metalické vodiče (na krátké vzdálenosti)
 - data jdou normálně s telefonními hovory

ATM (Asynchronous Transfer Mode) technologie

- data se rozdělí na buňky 53 slabik (5 řízení, 48 data)
- výhoda konstantní rozdělení do buněk usnadňuje přenos
- přenos na základě virtuálních kanálů
- přenos je identifikován virtuálním obvodem (VCI) a virtuální cestou (VPI)

- existují virtuální sítě vytvoření nad ATM
- IP over ATM akademická síť v České republice

LINKOVÁ ÚROVEŇ – Ochrana proti chybám

- existují 2 způsoby:
 - ARQ detekce chyb + opakování přenosu
 - použití při normálních přenosech detekce chyb zabere v paketu málo místa
 - FEC detekce chyb + odstranění
 - při přenosu, který nelze opakovat ⇒ věrný přenos zvuku a obrazu, meziplanetární přenosy ⇒ samoopravitelné systémy ⇒ redundatnost přenosu dat – musíme přenášet mnoho informací navíc

Hamingova vzdálenost

- minimální vzdálenost dvou znaků abecedy
- uvádí se v počtu bitů ve stejnolehlých pozicích
- při $\mathbf{h} = \mathbf{n}$ dokážeme detekovat $\mathbf{n-1}$ chyb
- při $\mathbf{h} = \mathbf{n}$ dokážeme opravit $\mathbf{n}/2$ chyb

Kódy pro detekci chyb

- paritní kódy:
 - *liché* lichý počet jedniček
 - sudé sudý počet jedniček
 - příčná parita
 - podélná parita
- v moderních systémech se používá zabezpečení pomocí cyklických kódů (CRC)
- sítě typu ETHERNET jsou zabezpečovány 32-bitovým polynomem
- s rostoucím počtem chyb a se zvolením špatného způsobu zabezpečení, narůstá možnost špatné detekce a opravy chyb

Model komunikačního kanálu

- přenos je binární, symetrický, bez paměti (přenos dalšího bitů neovlivňuje přenos dalšího)
- pravděpodobnost chyb: $P_n = p^n$ n.....počet bitů

NEPROŠLO JAZYKOVOU ÚPRAVOU ÚSTAVU PRO JAZYK ČESKÝ - ČSAV

Veškerá práva autora a vlastníků autorských práv k dílu jsou vyhrazena bez souhlasu je výroba kopií, pronájem, půjčování, veřejné provozování a rozhlasové šíření tohoto materiálu přísně zakázáno!

Autor rovněž neručí za případná pochybení, jelikož máte chodit na přednášky a psáti si poznámky své vlastní.

http://home.zcu.cz/~chairman

