Phủ của tập phụ thuộc hàm

- Phủ tối thiểu
- Phép tách các lược đồ quan hệ

Phủ và tập PTH tương đương

- □ G| = F ⇔ Mọi PTH trong G đều nằm trong F⁺.
- □ G| = F. G là phủ của F (moi PTH trong F có thể được suy dẫn từ G).
- □ F và G là tương đương (F≡G) nếu F+=G+.
- Thuật toán xác định G có phủ F không (G| = F)?
 - $\Box \forall f: X \rightarrow Y \in F$, tính X_G^+ .
 - Nếu ∀X: Y⊆X⁺, thì G phủ F.

Phủ tối thiểu

- F gọi là không dư thừa nếu không có tập con G thực sự nào của F mà G tương đương với F.
- F là phủ không dư thừa của G nếu F là 1 phủ của G và F không dư thừa.
- Phủ tối thiểu:
 - Không có thuộc tính nào của vế phải dư thừa
 - ∀f:X→A, f∈F và A chỉ có 1 thuộc tính.
 - Không có phụ thuộc hàm có vế trái dư thừa
 - $\blacksquare \neg \exists f: X \rightarrow A \text{ và } Z \subset X \text{ sao cho } F \equiv F \setminus f \cup \{Z \rightarrow A\}$
 - Tập phụ thuộc hàm F là không dư thừa
 - ¬∃ f:X→A để F\f còn tương đương với F.

Giải thuật tìm phủ tối thiểu của F

- □ **G**=∅
- ightharpoonup For \forall f ∈F, f:X \rightarrow Y do
 - $\blacksquare G = G \cup X \rightarrow A \text{ v\'oi}\{A \in Y\}$
- □ For $\forall f: X \rightarrow A \in G$ do
 - While $\exists Z \subset X$, $Z \neq X$, $G \equiv G \setminus \{f\} \cup \{Z \rightarrow A\}$ do
 - \blacksquare G = (G \ {f}) \cup {Z \rightarrow A }
- □ For $\forall f: X \rightarrow A \in G$ do
 - □ $If(G\setminus\{f\}\equiv G)$ then $G=G\setminus\{f\}$;

Ví dụ tìm phủ tối thiểu

- F = {AB->C, C->A, BC->D, ACD->B, D->EG, BE->C, CG->BD, CE->AG}
- Tìm phủ tối thiểu của F.
- Sau bước 1, 2 ta có: G={AB->C, C->A, BC->D, ACD->B, D->E, D->G, BE->C, CG->B, CG->D, CE->A, CE->G}
- Sau bước 3: G= ={AB->C, C->A, BC->D, CD->B, D->E, D->G, BE->C, CG->B, CG->D, CE->G}
- Sau bước 4: G= ={AB->C, C->A, BC->D, D->E, D->G, BE->C, CG->B, CG->D, CE->G}

Thuật toán xác định F và G có tương đương không?

- □ B1. $\forall f \in F$, f:X \rightarrow Y , xác định xem G| = F?
- B2. ∀g ∈G, g:X→Y , xác định xem F| = G?
- Dùng thuật toán xác định phủ để kiểm tra.

Phép tách lược đồ quan hệ

- Dịnh nghĩa:
 - \blacksquare R, $\rho = \{R_1, R_2, ..., R_k\}$ sao cho
 - □ R₁⁺∪R₂⁺∪ ...∪R_k⁺=R⁺ (các Rj không nhất thiết phải rời nhau)
- Mục tiêu:
 - Nâng cao chất lượng quan hệ để đạt dạng chuẩn cao hơn.
- Các tính chất khi phân rả cần quan tâm:
 - Phân rả bảo toàn thông tin
 - Phân rả bảo toàn phụ thuộc

S=(SNAME, ADD, PRO, PRICE) m được bao trong 1 lược đồ con

SNAME -> ADD

SNAME, PRO -> PRICE

S1(SNAME, ADD) S2(SNAME, PRO, PRICE)

Phân rả bảo toàn thông tin

- \square R, ρ ={R₁,R₂, ..., R_k}, F là tập PTH
- ρ không mất mát thông tin đối với F, nếu với mỗi r(R) thỏa F, sao cho:

Giải thuật kiểm tra phân rả bảo toàn thông tin

- Thiết lập một bảng k hàng n cột
- Hàng thứ i ứng với lược đồ R_i
- Cột thứ j ứng với thuộc tính A_i trong R
- Tại hàng i cột j điền a_j vào nếu A_j ∈ R_i⁺. Nếu không thì điền b_{ii}
- Xét các phụ thuộc hàm từ F áp dụng cho bảng trên
 - Xét X→Y ∈ F: Xét các hàng, nếu có giá trị bằng nhau trên thuộc tính X thì làm bằng nhau trên thuộc tính Y.
- Nếu xuất hiện 1 hàng (a₁, a₂,...,a_n) => Kết luận phép tách bảo toàn thông tin.

Ví dụ phân rả bảo toàn thông tin

S=(SNAME, ADD, PRO, PRICE)

SNAME -> ADD

SNAME, PRO -> PRICE

S1(SNAME, ADD) S2(SNAME, PRO, PRICE)

Kiểm tra xem sự phân rả trên có bảo toàn thông tin không?

Phân rả bảo toàn phụ thuộc

- □ f:X→Y là phụ thuộc hàm được bao trong LĐQH R nếu XY⊂R⁺
- f:X→Y là phụ thuộc hàm được bao trong LĐCSDL S ={R1,R2,...,Rk} nếu f được bao trong Ri, i∈[1..k]
- Phụ thuộc hàm bị ép:
 - G: tập các phụ thuộc hàm được bao trong S
 - □ ∀f∈G⁺, f được gọi là bị ép thỏa trong S
 - □ ∀f∈{F+\G+}, f được gọi là KHÔNG bị ép thỏa trong S
 - □ F gọi là tập phụ thuộc hàm bị ép thỏa trong S nếu F≡G.

Phân rả bảo toàn phụ thuộc (tt)

□ Ví dụ:

- Cho S={R1,R2,R3} với R1(A,B,C), R2(B,C,D), R3(D,E)
- Xét F={A->BC, C->A, A->D, D->E, A->E}
- Ta thấy PTH A->D và A->E không được bao trong S, nhưng F bị ép thỏa trong S vì ta tìm được tập G={A->BC, C->A, D->E, C->D} gồm các PTH được bao trong S và G≡F.
- Điều kiện phân rả bảo toàn phụ thuộc
 - Một phân rả ρ là bảo toàn phụ thuộc F nếu F bị ép thỏa trong ρ với tư cách là một lược đồ CSDL.

Giải thuật kiểm tra phân rả bảo toàn phụ thuộc

```
Enforce(F, \rho)
For \forall f: X \rightarrow Y \in F, f không được bao trong \rho Do
If NOT Y\subsetEclosure(X,F, \rho) then
    Return false;
    Return true;
Eclosure(X,F, ρ) //Tìm bao đóng của X
Y=∅;
While Y≠X do
    Y=X:
    For \forall R_i \in \rho do
         X = X \cup ((X \cap R_i)^+ \cap R_i);
Return X;
```

Ví dụ về phân rả bảo toàn phụ thuộc

- □ F={A->B, B->C, C->D, D->A}
- $\rho = \{(AB), (BC), (CD)\}$
- Kiểm tra phân rả ρ có bảo toàn phụ thuộc F không?
- Chỉ có D->A là không được bao trong ρ?
- Áp dụng giải thuật Enforce(F, ρ), kiểm tra A có chứa trong EnClosure(D) không?
- Tính EnClosure(D)=ABCD tức A ⊂ EnClosure(D)
- =>phân rả ρ bảo toàn phụ thuộc

Tính các phụ thuộc hàm được bao trong một lược đồ con của ρ

- Dịnh nghĩa:
 - □ Chiếu các tập phụ thuộc hàm trên lược đồ con π_{Ri}(F) = {F_i∈F⁺ / f ∈F_i được bao trong R_i}
- □ Giải thuật tính $\pi_{Ri}(F)$:

$$F_i = \emptyset$$
;
For $\forall f: X \rightarrow Y \in F$, $X \subset R_i$ do
 $F_i = F_i \cup \{X \rightarrow (X_F^+ - X) \cap R_i\}$;
Return F_i ;

Ví dụ

- □ F={A->C, B->C,}
- $\rho = \{(AC), (AB)\}$
- \Box Tính $F_1 = \prod_{AC}(F)$
- \Box $F_1 = \emptyset$
- \Box A⁺ = AC => F₁ = {A->C}
- □ Tính F2 = $\prod_{AB}(F)$
- \Box $F_2 = \emptyset$
- □ A⁺ = AC mà ((AC\A) ∩ AB) = Ø nên không bố sung A->C vào F₂
- □ B+ = BC mà ((BC\B)) ∩ AB) = Ø nên không bổ sung B >C vào F₂
- \square => F_2 = \varnothing