Lista de Exercícios 6

Luis Vinicius Costa Silva

Modelagem Computacional Prof. Thiago Alves de Queiroz Data de Entrega: 21/11/2018

Questão 2

A questão 2 pede a resolução do sistema de equações não lineares 1, através do método de Newton, considerando $x^{(0)} = (0,0)$, a fim de computar a solução até $x^{(2)}$:

$$\begin{cases} 4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 + 8 = 0\\ \frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 + 8 = 0 \end{cases}$$
 (1)

Montando o sistema em forma de matriz, temos:

$$F(x_1, x_2) = \begin{bmatrix} 4x_1^2 - 20x_1 + \frac{1}{4}x_2^2 + 8\\ \frac{1}{2}x_1x_2^2 + 2x_1 - 5x_2 + 8 \end{bmatrix}$$
 (2)

Daí, obtém-se a matriz Jacobiana J(x):

$$J(x_1, x_2) = \begin{bmatrix} 8x_1 - 20 & \frac{x_2}{2} \\ \frac{1}{2}x_2^2 + 2 & x_1x_2 - 5 \end{bmatrix}$$
 (3)

Sabemos que a solução do problema tem a seguinte forma:

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \end{bmatrix} + \begin{bmatrix} y_1^{(k-1)} \\ y_2^{(k-1)} \end{bmatrix}$$
(4)

Uma vez que o palpite inicial foi informado, é necessário computar $y_n^{(k-1)}$:

$$\begin{bmatrix} y_1^{(k-1)} \\ y_2^{(k-1)} \end{bmatrix} = -\left(J(x_1^{(k-1)}, x_2^{(k-1)})^{-1} F(x_1^{(k-1)}, x_2^{(k-1)}) \right)$$
 (5)

Partindo de um $x^0 = (x_1^{(0)}, x_2^{(0)}) = (0, 0)$ (palpite inicial), temos que para k = 1:

$$\begin{bmatrix} y_1^{(0)} \\ y_2^{(0)} \end{bmatrix} = -\left(J(x_1^{(0)}, x_2^{(0)})^{-1} F(x_1^{(0)}, x_2^{(0)}) \right)$$
 (6)

Computando $J(x_1^{(0)}, x_2^{(0)}) = J(0, 0) \Rightarrow J(0, 0)^{-1}$, temos que:

$$J(x_1^{(0)}, x_2^{(0)}) = J(0, 0) = \begin{bmatrix} -20 & 0\\ 2 & -5 \end{bmatrix} \Rightarrow J(0, 0)^{-1} = \begin{bmatrix} -0.05 & 0\\ -0.02 & -0.2 \end{bmatrix}$$
 (7)

Uma vez que a inversa da Jacobiana está computada em $(x_1^0,x_2^0)=(0,0),$ é necessário computar $F(x_1^0,x_2^0)=F(0,0)$:

$$F(0,0) = \begin{bmatrix} 8\\8 \end{bmatrix} \tag{8}$$

Com J^{-1} e F computados, multiplica-se ambas as matrizes, obtendo o vetor coluna abaixo:

$$\begin{bmatrix} -0.05 & 0\\ -0.02 & -0.2 \end{bmatrix} \times \begin{bmatrix} 8\\ 8 \end{bmatrix} = \begin{bmatrix} 0.4\\ 1.76 \end{bmatrix} \tag{9}$$

Já que o palpite inicial é (0,0), então $x_n^{(1)}=y_n^{(0)}$.

Analogamente ao procedimento de k = 1, temos que para k = 2:

$$\begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} + \begin{bmatrix} y_1^{(1)} \\ y_2^{(1)} \end{bmatrix}$$
(10)

Como foi descoberto em k = 1, temos que:

Agora, é necessário computar $\begin{bmatrix} y_1^{(2)} \\ y_2^{(2)} \end{bmatrix}$:

$$\begin{bmatrix} y_1^{(2)} \\ y_2^{(2)} \end{bmatrix} = J(x_1^{(1)}, x_2^{(1)}) = J(0.4, 0.176) = \begin{bmatrix} -16.8 & 0.88 \\ 3.5488 & -4.296 \end{bmatrix} \Rightarrow J(0.4, 1.76)^{-1} = \begin{bmatrix} -0.062216 & -0.012744 \\ -0.051395 & -0.243302 \end{bmatrix}$$
(12)

Logo, $F(x_1^{(1)}, x_2^{(1)})$ será:

$$F(x_1^{(1)}, x_2^{(1)}) = F(0.4, 1.76) = \begin{bmatrix} 1.4144 \\ 0.61952 \end{bmatrix}$$
 (13)

Obtidos $F(x_1^{(1)}, x_2^{(1)})eJ^{-1}(x_1^{(1)}, x_2^{(1)})$, procede-se para o produto destas a fim de obter $y_n^{(1)}$:

$$\begin{bmatrix} y_1^{(1)} \\ y_2^{(1)} \end{bmatrix} = J(0.4, 1.76)^{-1} \times F(x_1^{(1)}, x_2^{(1)}) = \begin{bmatrix} 0.095894 \\ 0.223423 \end{bmatrix}$$
 (14)

Logo:

$$\begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} + \begin{bmatrix} y_1^{(1)} \\ y_2^{(1)} \end{bmatrix} = \begin{bmatrix} 0.49589 \\ 1.98342 \end{bmatrix}$$
 (15)

Questão 3

Ι	x1	x2	х3	erro
1	0.500000	-0.186145	-0.523599	0.747533
2	0.498418	-0.199737	-0.528476	0.014527
3	0.498145	-0.199622	-0.528833	0.000464
4	0.498144	-0.199606	-0.528826	0.000018
5	0.498145	-0.199606	-0.528826	0.000001

Tabela 1: Aproximações das raízes e erro a cada iteração do Método de Newton

Questão 4

Na questão 4, foi utilizado o método de Newton aliado a Jacobiana, analogamente a Questão 3. Entretanto a Jacobiana foi calculada numericamente, visto que a versão exata da mesma era singular. A solução do sistema é:

$$(x_1, x_2, x_3) = (0.500033, 0.018803, -0.523130)$$
 (16)

Na questão 5, é necessário resolver o sistema de equações 17, utilizando o método de Broyden partindo de $x^{(0)} = (0,0)$ até $x^{(2)}$.

$$\begin{cases} \sin(4\pi x_1 x_2) - 2x_2 - x_1 = 0\\ \frac{4\pi - 1}{4\pi} (e^{2x_1} - e) + 4ex_2^2 - 2ex_1 = 0 \end{cases}$$
 (17)

Formulando o problema em forma matricial:

$$F(x_1, x_2) = \begin{bmatrix} \sin(4\pi x_1 x_2) - 2x_2 - x_1\\ \frac{4\pi - 1}{4\pi} (e^{2x_1} - e) + 4ex_2^2 - 2ex_1 \end{bmatrix}$$
 (18)

Sabe-se que a solução do problema pelo método de Broyden segue a forma:

$$x^{(n)} = x^{(n-1)} + s_n (19)$$

onde $s_n = -A_{n-1}^{-1} F(x^{(n-1)})$ e $A_{n-1}^{-1} = J(x^{(n-1)})^{-1}$

Computando a Jacobiana:

$$J(x_1, x_2, x_3) = \begin{bmatrix} 4\pi x_2 \cos(4\pi x_1 x_2) - 1 & 4\pi x_1 \cos(4\pi x_1 x_2) - 2\\ (\frac{4\pi - 1}{2\pi})e^{2x_1 - 2e} & 8ex^2 \end{bmatrix}$$
(20)

Aplica-se o palpite inicial $(x^{(0)})$ em J a fim de obter $F(x^{(0)})$:

$$F(x^{(0)}) = \begin{bmatrix} 0 \\ -1.58155 \end{bmatrix} \Rightarrow A_0 = J(x^{(0)}) = \begin{bmatrix} -1 & -2 \\ -3.59572 & 0 \end{bmatrix} \Rightarrow A_0^{-1} = J(x^0)^{-1} = \begin{bmatrix} 0 & -0.27811 \\ -\frac{1}{2} & 0.13905 \end{bmatrix}$$
(21)

Agora é possível computar s_1 :

$$s_1 = -A_0^{-1} F(x^{(0)}) = \begin{bmatrix} -0.43984\\ 0.21991 \end{bmatrix}$$
 (22)

Com s_1 computado, é possível computar a primeira iteração (i.e. $x^{(1)}$) do algoritmo:

$$x^{(1)} = x^{(0)} + s_1 = \begin{bmatrix} -0.43984\\ 0.21991 \end{bmatrix}$$
 (23)

Analogamente, para k = 2, teremos:

$$x^{(2)} = x^{(1)} - A_1^{-1} F(x^{(1)}) (24)$$

Uma vez que $x^{(1)}$ já foi obtido anteriormente, computa-se a segunda parte da subtração, obtendo como resposta final:

$$x^{(2)} = \begin{bmatrix} -0.43984 \\ 0.21991 \end{bmatrix} - \begin{bmatrix} -0.052216 & -0.205500 \\ -0.363463 & -0.05007 \end{bmatrix} \times \begin{bmatrix} -0.93752 \\ 0.79698 \end{bmatrix} = \begin{bmatrix} -0.32501 \\ -0.08035 \end{bmatrix}$$
(25)

A solução do sistema da questão 6 é:

$$(x_1, x_2, x_3) = (0.500000, 0.000000, -0.523599)$$
(26)

Entretanto o método de Broyden não é capaz de convergir ao resultado correto caso seja utilizado o palpite sugerido pela questão, i.e: $x_0 = (1, 1, -1)^t$, isto ocorre devido a jacobaiana se tornar singular durante a execução do metódo. A matriz jacobiana deste sistema é:

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 20 \end{bmatrix} \tag{27}$$

Foi utilizado $\vec{0}$ como palpite inicial a fim de contornar tal problema.

Questão 7

As tabelas abaixo demonstram a resolução da EDO entre 0.0 e 1.0, sob passos distintos, são eles: h=0.5 e h=0.25, nota-se que o método de tiro linear foi capaz de aproximar a solução da EDO ante a solução analítica com um erro de 10^{-1}

Tabela 2: Solução dada pelo método do tiro linear considerando $h = 5 \times 10^{-1}$

Ι	F(I)	W1(I)	W2(I)
1	0.00000000	0.00000000	0.21148286
1	0.50000000	0.30841250	1.36692827
2	1.00000000	2.00000000	6.60084217

Tabela 3: Solução dada pelo método do tiro linear considerando $h = 5 \times 10^{-1}$

Ι	F(I)	W1(I)	W2(I)
1	0.00000000	0.00000000	0.19969511
1	0.25000000	0.08489643	0.53305660
2	0.50000000	0.30458950	1.34060413
3	0.75000000	0.83336035	3.11250968
4	1.00000000	2.00000000	6.57941984

Tabela 4: Solução dada pelo método do tiro linear considerando h = 2.5×10^{-1}

F(I)	W1(F(I))
0	0.0
0.25	0.393676691931
0.5	0.824027136832
0.75	1.33708613392
1.0	2.0

Tabela 5: Função que aproxima EDO com $h = 2.5 \times 10^{-1}$

F(I)	W1(F(I))
0	0.0
0.5	0.824027136832
1.0	2.0

Tabela 6: Função que aproxima EDO com $h = 5 \times 10^{-1}$

0	0.0	0.00000000	0.19969511
0.5	0.824027136832	0.08489643	0.53305660
1.0	2.0	0.30458950	1.34060413
1.5	4.2621341328	0.83336035	3.11250968
2.0	9.52439138217	2.00000000	6.57941984

Tabela 7: Função que aproxima EDO com $h = 2.5 \times 10^{-1}$

I	X(I)	W(1,I)	W(2,I)
1	0.10000000	-0.81435498	1.71919781
2	0.20000000	-0.65498676	1.47372547
3	0.30000000	-0.51857538	1.25940374
4	0.40000000	-0.40219481	1.07252684
5	0.50000000	-0.30326802	0.90981220
6	0.60000000	-0.21952705	0.76835347
7	0.70000000	-0.14897754	0.64557867
8	0.80000000	-0.08986717	0.53921280
9	0.90000000	-0.04065769	0.44724469
10	1.00000000	0.00000000	0.36789733

Tabela 8: Solução dada pelo método do tiro linear considerando $h=10^{-1}$

Questão 9

As duas tabelas abaixo indicam respectivamente a resolução da EDO através do método do tiro não linear, para h=0.5 e 0.25 respectivamente. O algoritmo levou 22 e 23 iterações até convergir para a tolerância aceitável de 10^{-5} . As outras duas tabelas representam a função $\ln(x)$ entre 1 e 2 sob passos idênticos ao usado no método do tiro não linear. Após uma comparação do comportamento da função exata e a aproximação do método, constatou-se que a precisão foi mantida até, no mínimo, 4 casas após a vírgula.

Ι	X(I)	W1(I)	W2(I)
0	1.00000000	0.00000000	0.46447803
1	1.50000000	0.27377615	0.66026196
2	2.00000000	0.69315454	1.06399420

Tabela 9: Solução dada pelo método do tiro linear considerando $h=5\times 10^{-1}$

I	X(I)	W1(I)	W2(I)
0	1.00000000	0.00000000	0.46446389
1	1.25000000	0.12471421	0.54054980
2	1.50000000	0.27385081	0.65989455
3	1.75000000	0.45864047	0.82752369
4	2.00000000	0.69315405	1.06290899

Tabela 10: Solução dada pelo método do tiro linear considerando $h=2.5\times10^{-1}$

I	f(I) f'(I) f"(I)		
0.5000000	-0.69314716056	1.99999996	-3.99999984
1.0000000	9.99999988923e-09	0.99999999	-0.99999998
1.5000000	0.405465114775	0.66666662222	-0.44444438519
2.0000000	0.69314718556	0.4999999975	-0.2499999975

Tabela 11: Função correspondende a ODE sob h=0.5

Ι	f(I) f'(I) f"(I)		
0.2500000	-1.38629432112	3.99999984	-15.99999872
0.5000000	-0.69314716056	1.99999996	-3.99999984
0.7500000	-0.287682059118	1.33333331556	-1.77777773037
1.0000000	9.99999988923e-09	0.99999999	-0.99999998
1.2500000	0.223143559314	0.7999999936	-0.63999998976
1.5000000	0.405465114775	0.66666662222	-0.44444438519
1.7500000	0.55961579365	0.571428568163	-0.326530608513
2.0000000	0.69314718556	0.4999999975	-0.2499999975

Tabela 12: Função correspondende a ODE sob h=0.25

A tabela abaixo compara a solução apresentado pelo algoritmo do tiro linear com a solução exata da EDO (colunas 2 e 4), nota-se que a precisão do tiro linear alcançou a ordem de 10^{-4} , equivalente a tolerância imposta no método.

I	X(I)	W1(I)	W2(I)	Função Original
0	0.00000000	2.00000000	1.00010771	2.0
1	0.15707963	2.15645090	0.98777964	2.15643446504
2	0.31415927	2.30904734	0.95113408	2.30901699437
3	0.47123890	2.45403258	0.89107253	2.45399049974
4	0.62831853	2.58783719	0.80907313	2.58778525229
5	0.78539816	2.70716697	0.70715429	2.70710678119
6	0.94247780	2.80908402	0.58782501	2.80901699437
7	1.09955743	2.89107913	0.45402310	2.89100652419
8	1.25663706	2.95113359	0.30904282	2.9510565163
9	1.41371669	2.98776884	0.15645379	2.9876883406
10	1.57079633	3.00008297	0.00001301	3.0
11	1.72787596	2.98777285	-0.15642761	2.9876883406
12	1.88495559	2.95114164	-0.30901615	2.9510565163
13	2.04203522	2.89109133	-0.45399558	2.89100652419
14	2.19911486	2.80910053	-0.58779621	2.80901699437
15	2.35619449	2.70718804	-0.70712369	2.70710678119
16	2.51327412	2.58786316	-0.80904005	2.58778525229
17	2.67035376	2.45406393	-0.89103611	2.45399049974
18	2.82743339	2.30908473	-0.95109320	2.30901699437
19	2.98451302	2.15649519	-0.98773289	2.15643446504
20	3.14159265	2.00005228	-1.00005338	2.0

Tabela 13: Solução dada pelo método do tiro linear vs. Função Original considerando TOL = 10^{-4} e h = 1.5707963×10^{-1}

As tabelas abaixo representam as soluções aproximadas apresentadas pelo algoritmo das diferenças finitas para h=0.25 e h=0.5 respectivamente.

Ι	W1
1	0.000000
2	0.275010
3	0.600023
4	1.075029

Tabela 14: Solução dada pelo método das diferenças finitas considerando TOL = 10^{-5} e h = 2.5×10^{-1}

Ι	W1
1	0.000000
2	0.500021

Tabela 15: Solução dada pelo método das diferenças finitas considerando TOL = 10^{-5} e h = 5×10^{-1}

Nota-se que o algoritmo das diferenças finitas é superior ao algoritmo do tiro linear, convergindo a uma resposta correta com menos iterações, além de apresentar uma estabilidade

numérica superior. Entretanto sua implementação é mais trabalhosa, além da necessidade de um fino ajuste para uma quantidade maior de parâmetros (que não se fazem presente no tiro linear), a fim de que a convergência seja alcançada.

0.1 Questão 1

A solução do sistema de equações é:

$$(x_1, x_2) = (0.012056, 0.245517) (28)$$

Sendo que a norma infinita é dada por:

$$L^{\infty} = \max(abs(x_i)) = 0.245517 \tag{29}$$

Questão 12

As tabelas abaixo representam as saídas dos métodos do Tiro Linear e da Diferença Finita, utilizando h=0.1 e $TOL=10^{-4}$. Aparentemente o método das diferenças finitas não foi capaz de convergir a um resultado aceitável, entretanto a EDO foi resolvida de forma correta através do Tiro Linear. Em geral, o método das Diferenças Finitas utiliza menos iterações para atingir uma solução correta.

I	X(I)	W(1,I)	W(2,I)
1	1.10000000	0.02795843	0.24769537
2	1.20000000	0.04969726	0.18759338
3	1.30000000	0.06553363	0.12922998
4	1.40000000	0.07553162	0.07054192
5	1.50000000	0.07958310	0.01010029
6	1.60000000	0.07745900	-0.05311400
7	1.70000000	0.06884290	-0.11984644
8	1.80000000	0.05335380	-0.19065464
9	1.90000000	0.03056193	-0.26596394
10	2.00000000	0.00000000	-0.34610448

Tabela 16: Solução dada pelo método do tiro linear considerando $TOL = 10^{-4}$ e $h = 1 \times 10^{-1}$

I	W1
1.100000	0.000000
1.200000	0.074624
1.300000	0.139149
1.400000	0.192218
1.500000	0.232096
1.600000	0.256532
1.700000	0.262581
1.800000	0.246330
1.900000	0.202497
2.000000	0.123806

Tabela 17: Solução dada pelo método das diferenças finitas considerando TOL = 10^{-4} e h = 1×10^{-1}