In [1]: # pandas is a software library written for the Python programming language for do import pandas as pd
#NumPy is a library for the Python programming language, adding support for large import numpy as np
Matplotlib is a plotting library for python and pyplot gives us a Matlab like primport matplotlib.pyplot as plt
#Seaborn is a Python data visualization library based on matplotlib. It provides import seaborn as sns

Out[2]:

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFi
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	Fal
1	2	2012 - 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	Fal
2	3	2013 - 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	Fal
3	4	2013- 09-29	Falcon 9	500.000000	РО	VAFB SLC 4E	Fa l se Ocean	1	Fal
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	Fal
4									

In [3]: sns.catplot(y="PayloadMass", x="FlightNumber", hue="Class", data=df, aspect = 5)
plt.xlabel("Flight Number", fontsize=20)
plt.ylabel("Pay load Mass (kg)", fontsize=20)
plt.show()


```
In [4]: # Plot a scatter point chart with x axis to be Flight Number and y axis to be the
        sns.catplot(y="LaunchSite", x="FlightNumber", hue="Class", data=df, aspect = 5)
        plt.xlabel("Flight Number", fontsize=20)
        plt.ylabel("Launch Site",fontsize=20)
        plt.show()
                                                                                          Olass
0
1
In [6]: # Plot a scatter point chart with x axis to be Pay Load Mass (kg) and y axis to \ell
        sns.catplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df)
        plt.xlabel("Pay Load Mass (kg)",fontsize=20)
        plt.ylabel("Launch Site", fontsize=20)
        plt.show()
            CCAFS SLC 40
              VAFB SLC 4E
                                                         Class
              KSC LC 39A
                           2500 5000 7500 10000 12500 15000
                          Pay Load Mass (kg)
```

```
In [7]: # HINT use groupby method on Orbit column and get the mean of Class column
    sns.catplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df)
    plt.xlabel("Pay Load Mass (kg)",fontsize=20)
    plt.ylabel("Launch Site",fontsize=20)
    plt.show()
```



```
In [8]: # Plot a scatter point chart with x axis to be FlightNumber and y axis to be the
sns.catplot(y="Orbit", x="FlightNumber", hue="Class", data=df)
plt.xlabel("FlightNumber", fontsize=20)
plt.ylabel("Orbit", fontsize=20)
plt.show()
```



```
In [9]: # Plot a scatter point chart with x axis to be Payload and y axis to be the Orbit
sns.catplot(y="Orbit", x="PayloadMass", hue="Class", data=df)
plt.xlabel("Payload",fontsize=20)
plt.ylabel("Orbit",fontsize=20)
plt.show()
```



```
In [10]: # A function to Extract years from the date
def Extract_year():
    for i in df["Date"]:
        year.append(i.split("-")[0])
    return year
```

```
In [11]:     year=[]
     df1 = df.copy()
     year = Extract_year()
     df1["Date"] = year
     df1.head()
```

Out[11]:

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFin
(1	2010	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	Fals
1	2	2012	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	Fals
2	2 3	2013	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	Fals
3	3 4	2013	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	Fals
4	5	2013	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	Fals

In [12]: # Plot a line chart with x axis to be the extracted year and y axis to be the suc sns.lineplot(data=df1, x="Date", y="Class") plt.xlabel("Date",fontsize=20) plt.ylabel("Success Rate",fontsize=20) plt.show()

Out[13]:

	FlightNumber	PayloadMass	Orbit	LaunchSite	Flights	GridFins	Reused	Legs	LandingPad	E
0	1	6104.959412	LEO	CCAFS SLC 40	1	False	False	False	NaN	
1	2	525.000000	LEO	CCAFS SLC 40	1	Fa l se	False	False	NaN	
2	3	677.000000	ISS	CCAFS SLC 40	1	Fa l se	False	False	NaN	
3	4	500.000000	РО	VAFB SLC 4E	1	Fa l se	False	False	NaN	
4	5	3170.000000	GTO	CCAFS SLC 40	1	Fa l se	False	False	NaN	

In [14]: # HINT: Use get_dummies() function on the categorical columns
features_one_hot = pd.get_dummies(features, columns=['Orbit', 'LaunchSite', 'Lau

Out[14]:

	FlightNumber	PayloadMass	Flights	GridFins	Reused	Legs	Block	ReusedCount	Orbit_ES- L1	
0	1	6104.959412	1	False	False	False	1.0	0	0	
1	2	525.000000	1	False	False	False	1.0	0	0	
2	3	677.000000	1	False	False	False	1.0	0	0	
3	4	500.000000	1	False	False	False	1.0	0	0	
4	5	3170.000000	1	False	False	False	1.0	0	0	

5 rows × 80 columns

In [15]: # HINT: use astype function
features_one_hot.astype(float)

Out[15]:

	FlightNumber	PayloadMass	Flights	GridFins	Reused	Legs	Block	ReusedCount	Orbit_ES- L1
0	1.0	6104.959412	1.0	0.0	0.0	0.0	1.0	0.0	0.0
1	2.0	525.000000	1.0	0.0	0.0	0.0	1.0	0.0	0.0
2	3.0	677.000000	1.0	0.0	0.0	0.0	1.0	0.0	0.0
3	4.0	500.000000	1.0	0.0	0.0	0.0	1.0	0.0	0.0
4	5.0	3170.000000	1.0	0.0	0.0	0.0	1.0	0.0	0.0
85	86.0	15400.000000	2.0	1.0	1.0	1.0	5.0	2.0	0.0
86	87.0	15400.000000	3.0	1.0	1.0	1.0	5.0	2.0	0.0
87	88.0	15400.000000	6.0	1.0	1.0	1.0	5.0	5.0	0.0
88	89.0	15400.000000	3.0	1.0	1.0	1.0	5.0	2.0	0.0
89	90.0	3681.000000	1.0	1.0	0.0	1.0	5.0	0.0	0.0

90 rows × 80 columns

NameError: name 'create_pandas_df' is not defined

```
task_2 = '''
In [17]:
         Select *
         From SpaceX
         Where LaunchSite Like 'CCA'
         Limit 5
         create_pandas_df(task_2,database=conn)
         NameError
                                                    Traceback (most recent call last)
         ~\AppData\Local\Temp/ipykernel_14152/3081930513.py in <module>
               6 '''
         ----> 8 create pandas df(task 2,database=conn)
         NameError: name 'create_pandas_df' is not defined
In [18]: | task_3 = '''
         SELECT SUM(payloadmassKG) AS Total Payloadmass
         from SpaceX
         Where Customer Like 'NASA(CRS)'
         create_pandas_df(task_3,database=conn)
                                                    Traceback (most recent call last)
         NameError
         ~\AppData\Local\Temp/ipykernel 14152/3062920854.py in <module>
               6 '''
               7
         ---> 8 create pandas df(task 3,database=conn)
         NameError: name 'create_pandas_df' is not defined
In [19]:
         features_one_hot.to_csv('dataset_part_3.csv', index=False)
```