Softmax with temperature from the paper
"Distilling the Knowledge in a Neural Network"

Neural networks typically produce class probabilities by using a "softmax" output layer that converts the logit, z_i , computed for each class into a probability, q_i , by comparing z_i with the other logits.

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)} \tag{1}$$

.

where T is a temperature that is normally set to 1. Using a higher value for T produces a softer probability distribution over classes.

* Key Concept
Model learns probability distribution
Loss measures difference between model distribution
and data distribution

Optimizer trains model to decrease loss

Details about "Loss"

Training darloset D = { (n, y,), (n, y,), ..., (n, y,)}

 $(ix)_i y_i = (0) = (0)$ = (0) = (0)

p(D) = TTp(n;) pp(y; n;) madel of true p(y; n;)

choose B such that p(D) is maximized

log p(0) = \(\) log p(\(n_i \) + log po (\(y_i \) \(n_i \))

 $\theta^* \leftarrow \underset{\theta}{\operatorname{argmax}} \geq \underset{\theta}{\operatorname{log}} p_{\theta}(y_{\overline{\imath}}|x_{\overline{\imath}})$ maximum likelihood estimation (MLE)

 $\theta^* \leftarrow \underset{\theta}{\operatorname{argmin}} - \sum \log p_{\theta}(y_{\tilde{\tau}}|x_{\tilde{\tau}})$ negative log-likelihood (NLL) our loss function

Information of an event E $I(E) = -\log_2 p(E)$

Entropy of random variable X H(X) = E(I(X)) $= -\sum p(x_i) \log p(x_i)$

Cross entropy of the distribution of relative to a distribution of
$$H(p,q) = -E_p(\log q)$$

= $-E_p(\log q)$

KL Divergence (Kullback - Leibler divergence)

telative entropy

model

statistical distance measuring how probability distribution (Q is different from

reference probability distribution P

$$D_{KL}(P||Q) = \sum p(x) \log \frac{p(x)}{q(x)}$$
$$= -\sum p(x) \log \frac{q(x)}{p(x)}$$

JS Divergence (Jenson - Shannon divergence)
$$JSD(P||Q) = \frac{1}{2}D_{KL}(P||\frac{P+Q}{2}) + \frac{1}{2}D_{KL}(Q||\frac{P+Q}{2})$$

Summary

for I data point (12. y2)

- Cross entropy : $-\sum_{3} p(y|x_i) \log p_{\theta}(y|x_i)$

- negative log-likelihood: - log po (yi (xi)

- KL divergence : - $\frac{5}{3}$ p(y(n_i) by $\frac{p_0(y(n_i))}{p(y(n_i))}$

- binary cross entropy: - p(y(x;) by po(y(x;) - (1-p(y(x;)) by(1-po(y(x;))

Consider only $(N_i, y_i) \rightarrow \text{model}$ output is probability distribution $H(p, p_{\theta}) = -\sum_{y} p(y|n_i) \log p_{\theta}(y|n_i) \qquad -\log p_{\theta}(y_i|N_i)$

if p(y(xi) is one-hot encoded ...

$$H(p,p_{\theta}) = -\sum_{i} p(y_i n_i) \log p_{\theta}(y_i n_i)$$

$$= -p(y_i | n_i) \log p_{\theta}(y_i | n_i) - p(y_i | n_i) \log p_{\theta}(y_i | n_i)$$

$$= -p(y_i | n_i) \log p_{\theta}(y_k | n_i)$$

$$= -\log p_{\theta}(y_k | n_i)$$

$$= NLL$$