

#### **Ouick** start

import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

X = np.linspace(0, 2\*np.pi, 100) Y = np.cos(X)

fig, ax = plt.subplots() ax.plot(X, Y, color='green')

fig.savefig("figure.pdf") fig.show()

#### Anatomy of a figure



#### Subplots layout



#### Getting help

matplotlib.org

github.com/matplotlib/matplotlib/issues

discourse.matplotlib.org

stackoverflow.com/questions/tagged/matplotlib https://gitter.im/matplotlib/matplotlib

**y** twitter.com/matplotlib

✓ Matplotlib users mailing list



scatter(X,Y,...) X, Y, [s]izes, [c]olors, marker, cmap















# X, Y1, Y2, color, where

#### Advanced plots

API















#### Scales ax.set\_[xy]scale(scale,...) MAMAMAMA linear log any values values > 0 symlog logit 0 < values < 1 any values **Projections** subplot(...,projection=p) p='polar' p='3d'





"projecting"

"butt"













Cyclic







ticker.StrMethodFormatter('{x}')

ticker.PercentFormatter(xmax=5)

ax.legend(...) handles, labels, loc, title, frameon







0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9



#### Event handling

fig, ax = plt.subplots() def on\_click(event): print(event) fig.canvas.mpl\_connect( 'button\_press\_event', on\_click)

## import matplotlib.animation as mpla

T = np.linspace(0, 2\*np.pi, 100)S = np.sin(T)line, = plt.plot(T, S) def animate(i): line.set\_ydata(np.sin(T+i/50)) anim = mpla.FuncAnimation( plt.gcf(), animate, interval=5) plt.show()

#### Styles

Animation

plt.style.use(style)



#### Quick reminder

```
ax.grid()
ax.set_[xy]lim(vmin, vmax)
ax.set [xy]label(label)
ax.set_[xy]ticks(ticks, [labels])
ax.set_[xy]ticklabels(labels)
ax.set title(title)
ax.tick_params(width=10, ...)
ax.set_axis_[on|off]()
```

fig.suptitle(title) fig.tight\_layout() plt.gcf(), plt.gca()
mpl.rc('axes', linewidth=1, ...) [fig|ax].patch.set\_alpha(0) text=r'\$\frac{-e^{i\pi}}{2^n}\$'

### **Keyboard** shortcuts

ctrl + s Save ctrl + w Close plot r Reset view f Fullscreen 0/1 b View back

f View forward p Pan view

O Zoom to rect x X pan/zoom y Y pan/zoom

g Minor grid 0/1

G Major grid 0/1 X axis log/linear L Y axis log/linear

#### Ten simple rules

1. Know your audience

2. Identify your message

3. Adapt the figure

4. Captions are not optional

5. Do not trust the defaults 6. Use color effectively

7. Do not mislead the reader

8. Avoid "chartiunk"

9. Message trumps beauty 10. Get the right tool

