COMPUTER & COMPUTATIONAL SCIENCES

Subgrid Scale Mixture Models for Hybrid Miscible/Immiscible Multifluid/Multimaterial Simulations

Mark A. Christon Continuum Dynamics, CCS-2 Los Alamos National Laboratory

14th International Conference on Finite Elements in Flow Problems
March 26 - 28, 2007

Overview

- ☐ Flow Regimes
- □ Formulation Issues mean strain rate with void compression
 - Basic Equations
 - Mixture Model
 - Void Compression
- Multimaterial Formulation pressure equilibration extensions
 - Pressure Relaxation
 - Strain Partitioning (*omitted*)
- Multispecies Formulation
 - General EOS closure
 - Gamma-law gas EOS closure
- Hybrid models
- Summary

Multimaterial/Multifluid

- Materials are immiscible
- Modest number of sharp interfaces are represented numerically
- Typically relies on the "mean-strain" approximation -- Each material has a unique stress and energy
- · Incorporates treatment of void
- Sub-cell pressure equilibrium can be enforced, but it can be expensive to do so exactly
- Can also be extended to partition deviatoric strain

Multiphase

- Large number of small material domains that are not resolved by a single element
- Too many interfaces to treat individually
- Relies on spatially-averaged mixture approximations, i.e., homogenized equations
- Multiphase fluid formulations may be used in the multimaterial limit, but still a research area with few productionlevel codes

Multispecies

- Components are completely miscible from a continuum view
- Typically applied to gases or materials at high temperatures, i.e., plasmas
- Use pressure-temperature equilibrium, i.e., Amagat model for gases
- Extensible to a carrier material with stress deviator and advective transport of multiple species
- Can include reaction chemistry

MAC - March 22, 2007 www.ccs.lanl.gov 3

The hybrid approach permits multiple mixture models to coexist

- Multimaterial and Multispecies
 - Individual materials can be designated as multispecies in the formulation
 - Requires material model definitions with multispecies EOS and species concentrations as state variables
 - Species cannot advect (or diffuse) between a multispecies material and "conventional" material

- Multimaterial and Multiphase
 - Multiphase materials, represented via homogenization, may be used in the multimaterial formulation, e.g., embedded rebar
 - ◆ State variables for multiphase (homogenized) materials can not mix with single phase materials or multispecies materials
- ☐ Materials can not be redefined as a problem evolves

MAC - March 22, 2007 www.ccs.lanl.gov

- KRAKEN, de Bar (1974)
- □ SLIC, Noh & Woodward (1976)
- Youngs (1982, 1987)Parker and Youngs (1992)
- ☐ MESA, Mandell, et al. (1989)
- CTH, McGlaun, et al. (1990),
 Bell & Hertel (1992)
- □ ALEGRA, Peery & Carrol (2000)
- □ ALE3D, Sharp (2004)
- □ LS-DYNA, Hallquist, et al. (~2005)
 - ... and too many others to mention here

◆ A Lagrangian phase and a volume-tracking/remap phase

started ~ 1990

- Some form of Young's reconstruction algorithm
- Onion-skin approach to reconstructing multiple material interfaces, i.e., order-dependent material advection

