

《计算复杂性理论》 第7讲 贪心法(2)

山东师范大学信息科学与工程学院 段会川 2014年11月

目录

- □ 部分背包问题及其贪心算法
- □ 0-1背包问题及其贪心算法
- □ TSP问题的贪心算法
- □ TSP问题的贪心有可能获得最差的解

第7讲 贪心法(2)

部分背包问题 可分割潜气的器

口 定义

- 部分背包问题(fractional knapsack problem)又称为连 续背包问题(continuous knapsack problem)。
- 给定n个重量为 w_1,w_2,\cdots,w_n 价值为 v_1,v_2,\cdots,v_n 的物品和容量为w的背包,在允许物品可以部分地装入背包的情况 下,装入哪些物品可以获得最大的价值?

编号	1	2	3	4	5	
重量	2	2	6	5	4	
价值	6	3	5	4	6	

toy problem 1>100

背包容量: 10 王秋芬, P101

第7讲 贪心法(2)

部分背包问题的贪心算法

- □ 将物品按照价值重量比倒序排列
- □ 按价值重量比由高到低依次向背包装入物品
- □ 当遇到不能完全装下的物品时,取其正好装满背包的 部分装入背包

١	i	1	2	3	4	5
Į	w	2	2	6	5	4
(v	6	3	5	4	6
(v/w	3	1.5	0.83	0.8	1.5
(i	1	2	5	3	4

W = 10解: 1,2,5 重量: 2+2+4=8 价值: 6+3+6=15

							J
(i	1	2	5	3	4	
ł	w	2	2	4	6	5	и
	v	6	3	6	5	4	ι
l	v/w	3	1.5	1.5	0.83	0.8	
_							

1 2 5 v* 2 2 4 (2) 10 y* 6 3 6 1.67 16.67 王秋芬, P101

第7讲 贪心法(2)

部分背包问题贪心算法—伪代码

- □ 算法名称: 部分背包问题贪心算法(FracKnapsackG)
- □ 输入: 物品w[n], v[n],背包容量W
- □ 输出: 装入的物品比例x[n]和总价值V 05×1.5
- □ 1: 计算价值重量比数组p[n]并倒序排列
- \square 2: x[i]=0, i=1, ..., n; V=0; \S =1)
- ☐ 3: while W>0
- 算法复杂度为排序的复杂度, 即O(nlogn)
- **4**: if $w[j] \leftarrow W$
- **□** 5: x[j] = 1; V += v[j]; W -= w[j]
- **□** 6:
- x[j] = W/w[j]; V += p[j]*x[j]; W=0□ 7:
- □ 8: break
- □ 5: end while 第7讲 贪心法(2)

0-1背包问题的贪心算法1

- □ 重量价值比优先的贪心策略
 - 将物品按照价值重量比倒序排列
 - 按价值重量比由高到低依次向背包装入物品
 - 当遇到不能完全装下的物品时,算法结束
- □ 算法复杂度为排序的复杂度,即O(nlogn)
- □ 该贪心算法不能保证获得最优解

(i	1	2	3
	w	(5)	20	10
1	v	(50)	140	60
١I	12/w	10	7	6

W = 30 $X^* = (0, 1, 1)$ $W^* = 20 + 10 = 30$ $V^* = 140 + 60 = 200$

http://www.radford.edu/~nokie/classes/360/greedy.html

第7讲 贪心法(2)

TSP问题的贪心算法—Kruskal思想2

- □ 对图G(V, E)的所有边按权值排序
- □ 依次取最小边长的边放入F集合(结果边的集合)
- □ 检查新加入边的两个顶点在F集合决定的图中的度, 如果出现度为2的顶点,则从E集合中删除与该顶点有 关的边
- □ 算法在无向完全图上可以正确执行,其它图不能保证 获得一条路径

Sándor Zoltán Németh, Heuristic Optimisation, Lecture 5: Greedy algorithms. Divide and conquer, P12, http://web.mat.bham.ac.uk/S.Z.Nemeth

第7讲 贪心法(2)

贪心法(2)

TSP问题的贪心算法—Kruskal思想2

1. 对边E按边上的权建立优先队列Q

2. F = {}, S = {} //F, S-结果边和顶点的线性表集合

3. while Q is not empty

4. $e_{ij} = \text{ExtractMin}(Q)$

 $F = F \cup \{e_{ij}\}$

5.

7.

9.

11.

6. S = S∪ {i, j}, 计算i, j的度d(i), d(j)

if d(i)=2 then

8. for each i 相关的边 f_{ik}

Delete(Q, f_{ik})

10. if d(j)=2 then

for each j 相关的边 f_{ik}

12. Delete (Q, f_{jk})

13. end while

第7讲 贪心法(2)

5法(2) 14

TSP问题的贪心算法—Kruskal思想2

□ 算法复杂度

- 设项点数N = |V|, 则边的数量为 $|E| = \frac{1}{2}N(N-1) = O(N^2)$
- 算法建立二叉堆优先队列的复杂度为O(N2)
- ExtractMin(Q)要执行N次,因而复杂度为O(NlogN)
- 两个Delete操作共执行 $|E|-N=O(N^2)$ 次,因而复杂度 $\bigcirc O(N^2\log N)$
- 综上所述,算法复杂度为O(N²logN)

第7讲 贪心法(2)

贪心算法可能会获得最差的结果

□ <u>对非最优子结构问题施行贪心算法</u>,有可能会得到较 差甚至最差的结果

TSP问题的贪心算法可能会获得最长的路径

☐ Gutin, Gregory, Anders Yeo, and Alexey Zverovich.

"Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP."

Discrete Applied
Mathematics 117.1 (2002):
81-86.

第7讲 贪心法(2)

目录

- □ 部分背包问题及其贪心算法
- □ 0-1背包问题及其贪心算法
- □ TSP问题的贪心算法
- □ TSP问题的贪心算法有可能获得最差的解

第7讲 贪心法(2)

讲 贪心法(2) 18