Домашнее задание

Пусть G — граф и $w\colon V(G)\to\mathbb{R}^+$ — вещественно-значная функция, ставящая в соответствие каждой вершине v неотрицательное число w(v) — вес вершини v. Пару (G,w) назовём взвешенным графом. Под весом подмножества $S\subseteq V(G)$ будем понимать сумму весов его вершин. Во взвешенном графе (G,w) независимое множество наибольшего веса называется взвешенным числом независимости этого графа и обозначается через $\alpha_w(G)$.

Пусть k — натуральное число, $k \ge 1$. Операция k-кратного подразбиения ребра $e = \{a,b\}$ графа состоит в удалении ребра e из графа и добавлении k+1 новых рёбер: $e_1 = \{a,x_1\}, e_i = \{x_{i-1},x_i\}, i = 2,\ldots,k,\ e_{k+1} = \{x_k,b\},\ \text{где } x_1,x_2,\ldots,x_k$ — новые вершины.

1. Докажите, что для любого взвешенного графа (G, w) верно неравенство

$$\alpha_w(G) \geqslant \sum_{v \in V(G)} \frac{w(v)}{1 + \deg_G v}.$$

Доказательство проведите двумя способами: методом математической индукции и методом оценки веса независимого множества, построенного жадным алгоритмом, подобным алгоритму GREEDYMIN(G), который на каждом шаге выбирает вершину x, максимизирующую функцию $\frac{w(x)}{1+\deg x}$.

- 2. Выясните, как связано число независимости графа G с числом независимости графа G^* , который получается из графа G с помощью 2ℓ -кратного подразбиения каждого его ребра (здесь ℓ фиксированное натуральное число).
- 3. Докажите, что для любого графа G верно неравенство $\alpha(G) \leqslant \Theta(G)$, где $\Theta(G)$ шенноновская ёмкость графа G.