GEOMETRÍA MODERNA II

2019-2 (29 marzo 2019)

EXAMEN PARCIAL 02

INSTRUCCIONES:

- Justificar y argumentar todos los resultados que se realicen.
- Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.
- Existe la oportunidad de entregar solamente tres ejercicios y el cuarto ejercicio entregarlo resuelto el Lunes 01 de abril de 2019 a las 20:00 horas en el salón P108. De optar por esta opción, se deberá indicar en el examen el ejercicio que se entregará posteriormente.
- 1. Sean $\zeta(A,\alpha)$ y $P \neq A$. Demostrar que si $I_{\zeta(A,\alpha)}(P) = P'$ y $\zeta(A,\alpha) \cap \overline{PP'} = \{R,S\}$ entonces $\overline{PP'}\{P,P';R,S\} = -1$.
- 2. Demostrar que si Γ es una familia de circunferencias coaxiales que tiene un par de puntos límite $\{L, L'\}$ entonces para cualquier $\zeta(P, \rho) \in \Gamma$ se tiene que $I_{\zeta(P, \rho)}(L) = L'$.
- 3. Demostrar que si $\zeta(B,\beta)$ es una circunferencia que contiene a un par de puntos inversos respecto a $\zeta(A,\alpha)$ entonces $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ son ortogonales.
- 4. Demostrar que si $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ son ortogonales entonces $I_{\zeta(A,\alpha)}(B)$ es el punto medio del segmento determinado por los puntos de $\zeta(A,\alpha)\cap \zeta(B,\beta)$.
- 5. Sea $\zeta(A,\alpha)$ y $P \neq A$. Demostrar que si $I_{\zeta(A,\alpha)}(P) = P'$ entonces para cualquier $X \in \zeta(A,\alpha)$ se tiene que $\frac{XP}{XP'} = k$ para alguna $k \in \mathbb{R}$.

GEOMETRÍA MODERNA II

2019-2 (29 marzo 2019)

EXAMEN PARCIAL 02

INSTRUCCIONES:

- Justificar y argumentar todos los resultados que se realicen.
- Resolver únicamente cuatro ejercicios, de entregar más de cuatro ejercicios se anulará el ejercicio de mayor puntaje.
- Existe la oportunidad de entregar solamente tres ejercicios y el cuarto ejercicio entregarlo resuelto el Lunes 01 de abril de 2019 a las 20:00 horas en el salón P108. De optar por esta opción, se deberá indicar en el examen el ejercicio que se entregará posteriormente.
- 1. Sean $\zeta(A,\alpha)$ y $P \neq A$. Demostrar que si $I_{\zeta(A,\alpha)}(P) = P'$ y $\zeta(A,\alpha) \cap \overline{PP'} = \{R,S\}$ entonces $\overline{PP'}\{P,P';R,S\} = -1$.
- 2. Demostrar que si Γ es una familia de circunferencias coaxiales que tiene un par de puntos límite $\{L, L'\}$ entonces para cualquier $\zeta(P, \rho) \in \Gamma$ se tiene que $I_{\zeta(P, \rho)}(L) = L'$.
- 3. Demostrar que si $\zeta(B,\beta)$ es una circunferencia que contiene a un par de puntos inversos respecto a $\zeta(A,\alpha)$ entonces $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ son ortogonales.
- 4. Demostrar que si $\zeta(A,\alpha)$ y $\zeta(B,\beta)$ son ortogonales entonces $I_{\zeta(A,\alpha)}(B)$ es el punto medio del segmento determinado por los puntos de $\zeta(A,\alpha)\cap \zeta(B,\beta)$.
- 5. Sea $\zeta(A,\alpha)$ y $P \neq A$. Demostrar que si $I_{\zeta(A,\alpha)}(P) = P'$ entonces para cualquier $X \in \zeta(A,\alpha)$ se tiene que $\frac{XP}{XP'} = k$ para alguna $k \in \mathbb{R}$.