Sampling Based Inference

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn basic sampling methods
 - Understand the concept of Markov chain Monte Carlo
 - Able to apply MCMC to the parameter inference of Bayesian networks
 - Know the mechanism of rejection sampling
 - Know the mechanism of importance sampling
- Learn sampling based inference
 - Understand the concept of Metropolis-Hastings Algorithm
 - Know the mechanism of Gibbs sampling
- Know a case study of sampling based inference
 - Understand the latent Dirichlet allocation model
 - Know the collapsed Gibbs sampling
 - Know how to derive Gibbs sampling formula for LDA

Gibbs Sampling

- Gibbs Sampling: A special case of M-H algorithm
 - Let's suppose $z^t = (z_k^t, z_{-k}^t) \to z^* = (z_k^*, z_{-k}^t)$
 - $T_{t,*}^{MH} = q(z^*|z^t)\alpha(z^*|z^t)$
 - $q(z^*|z^t) = P(z_k^*, z_{-k}^t|z_{-k}^t) = P(z_k^*|z_{-k}^t)$
 - Let's observe the balance equation
 - Should hold $P(z^t)q(z^*|z^t) = P(z^*)q(z^t|z^*)$
 - $P(z^{t})q(z^{*}|z^{t}) = P(z_{k}^{t}, z_{-k}^{t})P(z_{k}^{*}|z_{-k}^{t}) = P(z_{k}^{t}|z_{-k}^{t})P(z_{-k}^{t})P(z_{k}^{t}|z_{-k}^{t}) = P(z_{k}^{t}|z_{-k}^{t})P(z_{k}^{*}, z_{-k}^{t}) = q(z^{t}|z^{*})P(z^{*})$
 - Always hold the balance equation!
 - Then, the acceptance probability becomes $\alpha(z^*|z^t) = 1$
- Example of Gibbs sampling
 - When the joint distribution is not known explicitly or is difficult to sample from directly, but the conditional distribution of each variable is known and is easy
 - P(E,JC,B|A=F,MC=T)=?
 - Hard to sample directly. Why?
 - Consider a conditional distribution $p(z_i|z_{-i},e)$
 - P(E|B,A,JC,MC)=P(E|A,B)
 - P(JC|B,E,A,MC)=P(JC|A)
 - P(B|E,A,JC,MC)=P(B|A,E)
 - Update one random variable at a time

Can simplify using the Markov blanket

Concept of Gibbs Sampling

- Each step involves replacing the value of one of the variables by a value drawn from the distribution of that variable conditioned on the values of the remaining variables
- Repeated either by cycling through the variables in some particular order or by choosing the variable to be updated at each step at random from some distribution
- Example
 - 1. Full joint probability : $p(z_1, z_2, z_3)$
 - 2. Sample $z_1 \sim p\left(z_1 \mid z_2^{(\tau)}, z_3^{(\tau)}\right) \rightarrow \text{Obtain a value } z_1^{(\tau+1)}$
 - 3. Sample $z_2 \sim p\left(z_2 \mid z_1^{(\tau+1)}, z_3^{(\tau)}\right) \rightarrow \text{Obtain a value } z_2^{(\tau+1)}$
 - 4. Sample $z_3 \sim p\left(z_3 \mid z_1^{(\tau+1)}, z_2^{(\tau+1)}\right) \rightarrow \text{Obtain a value } z_3^{(\tau+1)}$

$$\left\{ z_{1}^{(\tau)}, z_{2}^{(\tau)}, z_{3}^{(\tau)} \right\} \qquad \left\{ z_{1}^{(\tau+1)}, z_{2}^{(\tau)}, z_{3}^{(\tau)} \right\} \qquad \left\{ z_{1}^{(\tau+1)}, z_{2}^{(\tau+1)}, z_{3}^{(\tau+1)}, z_{2}^{(\tau+1)}, z_{3}^{(\tau+1)} \right\}$$

Gibbs Sampling Algorithm

- Full joint distribution, $p(\mathbf{z}) = p(z_1, ..., z_M)$
- State = $\{z_i: i = 1, ..., M\}$
- Algorithm
 - 1. Initialize $\{z_i: i = 1, ..., M\}$
 - 2. For step $\tau = 1, ..., T$:
 - Sample $z_1^{(\tau+1)} \sim p\left(z_1 | z_2^{(\tau)}, z_3^{(\tau)}, ..., z_M^{(\tau)}\right)$
 - Sample $z_2^{(\tau+1)} \sim p\left(z_2 | z_1^{(\tau+1)}, z_3^{(\tau)}, \dots, z_M^{(\tau)}\right)$
 - Sample $z_j^{(\tau+1)} \sim p\left(z_j \mid z_1^{(\tau+1)}, \dots, z_{j-1}^{(\tau+1)}, z_{j+1}^{(\tau)}, \dots, z_M^{(\tau)}\right)$
 - Sample $z_M^{(\tau+1)} \sim p\left(z_M | z_1^{(\tau+1)}, z_2^{(\tau+1)}, ..., z_{M-1}^{(\tau+1)}\right)$

Gibbs Sampling based GMM

- Hard to tell the performance with the simple GMM
 - Sampling based inference
 - Simulation based

itr =2

itr = 16

- EM based inference
 - Optimization based
- Real power of Gibbs sampler comes from collapsing! -> Collapsed Gibbs Sampler
 - Let's look at more sophisticated model for collapsing technique

