Задача о рюкзаке

Материал из Викиконспекты

Задача о рюкзаке(aнгл. Knapsack problem) — дано N предметов, n_i предмет имеет массу $w_i>0$ и стоимость $p_i>0$. Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W (вместимость рюкзака), а суммарная стоимость была максимальна.

Содержание

- 1 Формулировка задачи
- 2 Варианты решения
- 3 Метод динамического программирования
- 4 Реализация
- 5 Пример
- 6 Другие задачи семейства
 - 6.1 Ограниченный рюкзак
 - 6.1.1 Формулировка Задачи
 - 6.1.2 Варианты решения
 - 6.1.3 Метод динамического программирования
 - 6.1.4 Реализация
 - 6.2 Неограниченный рюкзак
 - 6.2.1 Формулировка Задачи
 - 6.2.2 Варианты решения
 - 6.2.3 Метод динамического программирования
 - 6.3 Непрерывный рюкзак
 - 6.3.1 Формулировка Задачи
 - 6.3.2 Варианты решения
 - 6.3.3 Реализация
 - 6.4 Задача о суммах подмножеств
 - 6.4.1 Формулировка Задачи
 - 6.4.2 Варианты решения
 - 6.4.3 Метод динамического программирования
 - 6.5 Задача о размене
 - 6.5.1 Формулировка Задачи
 - 6.5.2 Варианты решения
 - 6.5.3 Метод динамического программирования
 - 6.6 Задача об упаковке
 - 6.6.1 Формулировка Задачи
 - 6.6.2 Варианты решения
 - 6.7 Мультипликативный рюкзак
 - 6.7.1 Формулировка Задачи
 - 6.7.2 Варианты решения
 - 6.8 Задача о назначении
 - 6.8.1 Формулировка Задачи
 - 6.8.2 Варианты решения
- 7 Литература

Формулировка задачи

Дано N предметов, W - вместимость рюкзака, $w = \{w_1, w_2, ..., w_N\}$ — соответствующий ему набор положительных целых весов, $p = \{p_1, p_2, ..., p_N\}$ соответствующий ему набор положительных целых стоимостей. Нужно найти набор бинарных величин $B = \{b_1, b_2, ..., b_N\}$, где $b_i = 1$, если предмет n_i включен в набор, $b_i = 0$, если предмет n_i не включен, и такой что:

- $1.\ b_1w_1+\ldots+b_Nw_N\leq W$ $2.\ b_1p_1+\ldots+b_Np_N$ максимальна.

Варианты решения

Задачу о рюкзаке можно решить несколькими способами:

- Перебирать все подмножества набора из N предметов. Сложность такого решения $O(2^N)$.
- Методом Meet-in-the-middle. Сложность решения O(2^{N/2} × N)
- Метод динамического программирования. Сложность $O(N \times W)$.

Метод динамического программирования

Пусть A(k,s)есть максимальная стоимости предметов, которые можно уложить в рюкзак вместимости s, если можно использовать только первые kпредметов, то есть $\{n_1, n_2, ..., n_k\}$, назовем этот набор допустимых предметов для A(k,s)

$$A(k, 0) = 0$$

$$A(0, s) = 0$$

Найдем A(k, s) Возможны 2 варианта:

- 1. Если предмет k не попал в рюкзак. Тогда A(k,s) равно максимальной стоимости рюкзака с такой же вместимостью и набором допустимых предметов $\{n_1,n_2,...,n_{k-1}\}$, то есть A(k,s)=A(k-1,s)
- 2. Если k попал в рюкзак. Тогда A(k,s) равно максимальной стоимости рюкзака, где вес s уменьшаем на вес k -ого предмета и набор допустимых предметов $\{n_1, n_2, ..., n_{k-1}\}$ плюс стоимость k, то есть $A(k-1, s-w_k) + p_k$

То есть:

$$\begin{array}{l} \text{1. } A(k,s) = A(k-1,s) \\ \text{2. } A(k,s) = A(k-1,s-w_k) + p_k \end{array}$$

Выберем из этих двух значений максимальное:

$$A(k, s) = max(A(k - 1, s), A(k - 1, s - w_k) + p_k)$$

Стоимость искомого набора равна A(N,W), так как нужно найти максимальную стоимость рюкзака, где все предметы допустимы и вместимость рюкзака W.

Восстановим набор предметов, входящих в рюкзак

Будем определять, входит ли n_i предмет в искомый набор. Начинаем с элемента A(i,w), где i=N,w=W. Для этого сравниваем A(i,w) со следующими значениями:

- 1. Максимальная стоимость рюкзака с такой же вместимостью и набором допустимых предметов $\{n_1, n_2, ..., n_{i-1}\}$, то есть A(i-1, w)
- 2. Максимальная стоимость рюкзака с вместимостью на w_i меньше и набором допустимых предметов $\{n_1, n_2, ..., n_{i-1}\}$ плюс стоимость p_i , то есть $A(i-1, w-w_i)+p_i$

Заметим, что при построении A мы выбирали максимум из этих значений и записывали в A(i, w). Тогда будем сравнивать A(i, w)с A(i-1, w), если равны, тогда n_i не входит в искомый набор, иначе входит.

Реализация

Сначала генерируем A.

Затем найдем набор ans предметов, входящих в рюкзак, рекурсивной функцией:

```
findAns(k, s)
  if A[k][s] == 0
    return;
  if A[k-1][s] == A[k][s]
    findAns(k-1, s);
  else
    findAns(k-1, s - w[k]);
  ans.push(k);
```

Сложность алгоритма $O(N \times W)$

Пример

```
W = 13, N = 5
w_1 = 3, p_1 = 1
w_2 = 4, p_2 = 6
w_3 = 5, p_3 = 4
w_4 = 8, p_4 = 7
w_5 = 9, p_5 = 6
```

	1	2	3	4	5	6	7	8	9	10	11	12	13
k=0	0	0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	1	1	1	1	1	1	1	1	1	1	1
k=2	0	0	1	6	6	6	7	7	7	7	7	7	7
k=3	0	0	1	6	6	6	7	7	10	10	10	11	11
k=4	0	0	1	6	6	6	7	7	10	10	10	13	13
k=5	0	0	1	6	6	6	7	7	10	10	10	13	13

Числа от 0 до 13 в первой строчке обозначают вместимость рюкзака.

В первой строке как только вместимость рюкзака $n \geq 3$, добавляем в рюкзак 1 предмет.

Рассмотрим k=3, при каждом $s\geq 5$ (так как $w_3=5$) сравниваем A[k-1][s] и $A[k-1][s-w_3]+p_3$ и записываем в A[k][s] стоимость либо рюкзака без третьего предмета, но с таким же весом, либо с третьим предметом, тогда стоимость равна стоимости третьего предмета плюс стоимость рюкзака с вместимостью на w_3 меньше.

Максимальная стоимость рюкзака находится в A(5, 13).

Восстановление набора предметов, из которых состоит максимально дорогой рюкзак.

Начиная с A(5, 13) восстанавливаем ответ.

	1	2	3	4	5	6	7	8	9	10	11	12	13
k=0	0	0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	()	V	1	1	1	1	1	1	1	1	1	1
k=2	0	0	1	6	(b)	6	7	7	7	7	7	7	7
k=3	0	0	1	6	6	₩	7	7	10	10	10	11	11
k=4	0	0	1	6	6	6	7	7	10	10	10	13	(13)
k=5	0	0	1	6	6	6	7	7	10	10	10	13	13

Таким образом, в набор входит 2 и 4 предмет.

Стоимость рюкзака = 6 + 7 = 13

Вес рюкзака = 4 + 8 = 12

Другие задачи семейства

Ограниченный рюкзак

Ограниченный рюкзак (англ. *Bounded Knapsack Problem*) - обобщение классической задачи, когда любой предмет может быть взят некоторое количество раз.

Пример: Вор грабит склад. Он может унести ограниченный вес, каждый товар на складе содержится в определенном ограниченном количестве. Нужно унести предметов на максимальную сумму.

Формулировка Задачи

Каждый предмет может быть выбран ограниченное b_i число раз. Задача выбрать число x_i предметов каждого типа так, чтобы

- максимизировать общую стоимость: $\sum_{i=1}^{N} p_i x_i$;
- выполнялось условие совместности: $\sum_{i=1}^{N} w_i x_i \leq W$;

где $x_i \in (0, 1, ..., b_i)$ для всех i = 1, 2, ..., N.

Варианты решения

При небольших b_i решается сведением к классической задаче о рюкзаке. В иных случаях:

- Методом ветвей и границ.
- Методом динамического программирования.

Метод динамического программирования

Пусть d(i,c) максимальная стоимость любого возможного числа предметов типов от 1 до i, суммарным весом до c.

Заполним d(0, c) нулями.

Тогда меняя і от 1 до N, рассчитаем на каждом шаге d(i,c), для c от 1 до W, по рекуррентной формуле:

```
d(i,c) = max(d(i-1,c-lw_i)+lp_i) по всем целым l из промежутка 0 \le l \le min(b_i,\lfloor c/w_i \rfloor).
```

Если не нужно восстанавливать ответ, то можно использовать одномерный массив d(c) вместо двумерного.

После выполнения в d(N,W) будет лежать максимальная стоимость предметов, помещающихся в рюкзак.

Реализация

Сложность алгоритма $O(NW^2)$.

Неограниченный рюкзак

Неограниченный рюкзак (англ. *Unbounded Knapsack Problem*) - обобщение ограниченного рюкзака, в котором любой предмет может быть выбран любое количество раз.

Пример: Перекупщик закупается на оптовой базе. Он может увезти ограниченное количество товара, количество товара каждого типа на базе не ограниченно. Нужно увезти товар на максимальную сумму.

Формулировка Задачи

Каждый предмет может быть выбран любое число раз. Задача выбрать количество x_i предметов каждого типа так, чтобы

- максимизировать общую стоимость: $\sum_{i=1}^{N} p_i x_i$;
- выполнялось условие совместности: $\sum_{i=1}^{N} w_i x_i \leq W$;

где $x_i \ge 0$ целое, для всех i = 1, 2, ..., N.

Варианты решения

Самые распространенные методы точного решения это:

- Метод ветвей и границ.
- Метод динамического программирования.

Метод динамического программирования

Пусть d(i, c) максимальная стоимость любого количества вещей типов от 1 до i, суммарным весом до c включительно.

Заполним d(0, c) нулями.

Тогда меняя і от 1 до N, рассчитаем на каждом шаге d(i,c), для c от 0 до W, по рекуррентной формуле:

$$d(i,c) = \begin{cases} d(i-1,c) & for \ c = 0, ..., w_i - 1; \\ max(d(i-1,c), d(i, c - w_i) + p_i) & for \ c = w_i, ..., W; \end{cases}$$

После выполнения в d(N,W) будет лежать максимальная стоимость предметов, помещающихся в рюкзак.

Если не нужно восстанавливать ответ, то можно использовать одномерный массив d(c) вместо двумерного и использовать формулу:

$$d(c) = max(d(c), d(c - w_i) + p_i),$$

Сложность алгоритма O(NW).

Непрерывный рюкзак

Непрерывный рюкзак (англ. *Continuous knapsack problem*) - вариант задачи, в котором возможно брать любою дробную часть от предмета, при этом удельная стоимость сохраняется.

Пример: Вор грабит мясника. Суммарно он может унести ограниченный вес товаров. Вор может резать товары без ущерба к удельной стоимости. Нужно унести товара на максимальную сумму.

Формулировка Задачи

Задача выбрать часть x_i каждого предмета так, чтобы

- максимизировать общую стоимость: $\sum_{i=1}^{N} p_i x_i$;
- выполнялось условие совместности: $\sum_{i=1}^{N} w_i x_i \leq W$;

где $0 \le x_i \le 1$ дробное, для всех i = 1, 2, ..., N.

Варианты решения

Возможность брать любую часть от предмета сильно упрощает задачу. Жадный алгоритм дает оптимальное решение в данном случае.

Реализация

Задача о суммах подмножеств

Задача о суммах подмножеств (англ. Subset-sum problem, Value Independent Knapsack Problem) - задача из семейства, в которой стоимость предмета совпадает с его весом.

Пример: В машина может увезти определенное количество груза. Нужно увезти как можно больше крупного неделимого мусора за раз.

Формулировка Задачи

Нужно выбрать подмножество так, чтобы сумма ближе всего к W, но не превысила его. Формально, нужно найти набор бинарных величин x_i , так чтобы

- максимизировать общую стоимость: $\sum_{i=1}^{N} w_i x_i$;
- выполнялось условие совместности: $\sum_{i=1}^{N} w_i x_i \leq W$;

 $x_{j} = 1$ если j предмет назначен рюкзаку, иначе $x_{ij} = 0$, для всех i = 1, 2, ..., N.

Варианты решения

Для решения пригодны любые методы применяемые для классической задачи, однако специализированые алгоритмы обычно более оптимальны по параметрам. Используются:

- Метод динамического программирования.
- Гибридный метод на основе динамического программирования и поиска по дереву. В худшем случае, работает за O(n)

Метод динамического программирования

Пусть d(i, c) максимальная сумма $\leq c$, подмножества взятого из 1, ..., i элементов.

Заполним d(0, c) нулями.

Тогда меняя і от 1 до N, рассчитаем на каждом шаге d(i, c), для c от 0 до W, по рекуррентной формуле:

$$d(i,c) = \begin{cases} d(i-1,c) & for \ c = 0,...,w_i - 1; \\ max(d(i-1,c),d(i-1,c-w_i) + w_i) & for \ c = w_i,...,W; \end{cases}$$

После выполнения в d(N,W) будет лежать максимальная сумма подмножества, не превышающая заданное значение.

Сложность алгоритма O(NW).

Задача о размене

Задача о размене (англ. $Change-Making\ problem$) - имеются N неисчерпаемых типов предметов с весами w_i . Нужно наполнить рюкзак предметами с суммарным весом W.

Часто задачу ставят как, дать сдачу наименьшим количеством монет.

Формулировка Задачи

Каждый предмет может быть выбран любое число раз. Задача выбрать количество x_i предметов каждого типа так, чтобы

- минимизировать количество взятых предметов: $\sum_{i=1}^{N} x_i$;
- \blacksquare сумма весов выбранных предметов равнялась вместимости рюкзака: $\sum_{i=1}^N w_i x_i = W;$

Где $x_i \ge 0$ целое, для всех i = 1, 2, ..., N.

Варианты решения

Самые распространенные методы точного решения это:

- Метод ветвей и границ.
- Метод динамического программирования.

Метод динамического программирования

Пусть d(i,c) минимальное число предметов, типов от 1 до i, необходимое, чтобы заполнить рюкзак вместимостью c.

Пусть
$$d(0,0) = 0$$
, а $d(0,c) = \inf$ для всех $c > 0$.

Тогда меняя і от 1 до N, рассчитаем на каждом шаге d(i,c), для c от 0 до W, по рекуррентной формуле:

$$d(i,c) = \begin{cases} d(i-1,c) & for \ c = 0, ..., w_i - 1; \\ min(d(i-1,c), d(i,c-w_i) + 1) & for \ c = w_i, ..., W; \end{cases}$$

После выполнения в d(N, W) будет лежать максимальная стоимость предметов, помещающихся в рюкзак.

Если не нужно восстанавливать ответ, то можно использовать одномерный массив d(c) вместо двумерного и использовать формулу:

$$d(c) = min(d(c), d(c - w_i) + 1)$$
 for $c = w_i, ..., W$

Сложность алгоритма O(NW).

Задача об упаковке

Задача об упаковке (англ. $Bin\ Packing\ Problem$) - имеются N рюкзаков вместимости W и столько же предметов с весами w_i . Нужно распределить все предметы, задействовав минимальное количество рюкзаков.

Пример: Нужно вывезти из шахты все куски руды, используя наименьшее число вагонеток.

Формулировка Задачи

Математически задачу можно представить так:

- минимизировать количество рюкзаков: $\sum_{i=1}^{N} y_i$;
- так чтобы выполнялось условие на совместность: $\sum_{i=1}^{N} w_i x_{ij} \le W y_j$ $j \in {1,...,N}$;

 $x_{ij} = 1$ если j предмет назначен i рюкзаку. Иначе $x_{ij} = 0$.

 $y_i = 1$ если *i* рюкзак используется. Иначе $y_i = 0$.

Варианты решения

Применение динамического программирования нецелесообразно. Обычно применяют аппроксимационные алгоритмы, либо используют метод ветвей и грании.

Мультипликативный рюкзак

Мультипликативный рюкзак (англ. *Multiple Knapsack Problem*) - есть N предметов и M рюкзаков ($M \le N$). У каждого рюкзака своя вместимость W_i . Задача: выбрать M не пересекающихся множеств, назначить соответствие рюкзакам так, чтобы суммарная стоимость была максимальна, а вес предметов в каждом рюкзаке не превышал его вместимость.

Пример: У транспортной компании есть парк машин разной грузоподъемности. Нужно перевезти товара на максимальную сумму с одного склада на другой единовременно.

Формулировка Задачи

Максимизировать $\sum_{i=1}^{M} \sum_{j=1}^{N} p_j x_{ij}$

так, чтобы $\sum_{i=1}^{N} w_i x_{ij} \leq W_i$ выполнялось для всех i=1,2,...,N.

$$\sum_{i=1}^{M} x_{ij} = 1$$
 для всех $i = 1, 2, ..., N$.

 $x_{ij} = 1$ если j предмет назначен i рюкзаку. Иначе $x_{ij} = 0$.

Варианты решения

Применение динамического программирования, для задач данного типа нецелесообразно. Используются вариации метода ветвей и границ.

Задача о назначении

Задача о назначении (англ. Generalized Assignment Problem) - Наиболее общая задача семейства. Отличается от мультипликативного рюкзака тем, что каждый предмет имеет различные характеристики в зависимости от рюкзака, куда его помещают. Есть N предметов и M рюкзаков ($M \le N$). У каждого рюкзака своя вместимость W_i , у j предмета p_{ij} стоимость и вес, при помещении его в i рюкзак, равны p_{ij} и w_{ij} соответственно. Задача: выбрать M не пересекающихся множеств, назначить соответствие рюкзакам так, чтобы суммарная стоимость была максимальна, а вес предметов в каждом рюкзаке не превышал его вместимость. Весьма важная задача, так как она моделирует оптимальное распределение различных задач между вычислительными блоками.

Формулировка Задачи

Максимизировать стоимость выбранных предметов $\sum_{i=1}^{M} \sum_{j=1}^{N} p_{ij} x_{ij}$,

при выполнении условия совместности $\sum_{j=1}^{N} w_{ij} x_{ij} \leq W_i$ $i = 1, \dots, M$.

$$\sum_{i=1}^{M} x_{ij} \le 1 \qquad j = 1, \dots, N$$

$$x_{ij} \in \{0, 1\} \qquad i = 1, \dots, N, \quad j = 1, \dots, N$$

Варианты решения

Применение динамического программирования нецелесообразно. Наиболее используем метод ветвей и границ.

Литература

- Дистанционная подготовка по информатике (http://informatics.mccme.ru/moodle/mod/book/view.php?id=815&chapterid=60)
- Код для нескольких задач семейства на всевозможных языках (http://rosettacode.org/wiki/Knapsack Problem)
- David Pisinger Knapsack problems. 1995 (http://www.diku.dk/users/pisinger/95-1.pdf)
- Silvano Martello, Paolo Toth. Knapsack Problems: Algorithms and Computer Implementations 1990 г. ISBN 0-471-92420-2

Источник — «http://neerc.ifmo.ru/wiki/index.php?

title=%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%BE_%D1%80%D1%8E%D0%BA%D0%B7%D0%B0%D0%BA%D0%B5&oldid=46048» Категории: Дискретная математика и алгоритмы | Динамическое программирование

■ Последнее изменение этой страницы: 17:58, 6 мая 2015.

• К этой странице обращались 39 897 раз.