EXPERIMENT No. 2

APPLICATIONS OF LOGIC GATES AND K-MAP

NAME:	; ID :	
GROUP NO.:	:DATE	

Learning Outcomes

- 1. Use a Karnaugh map to simplify the expression.
- 2. Build and test logic that implements the simplified expression for following applications
 - a. Addition of two bits
 - b. 4-bit Gray to Binary Code conversion
 - c. Invalid BCD code detector
 - d. Select one of the two inputs and pass it to output.
 - e. Compare two bits

Equipments and components Required

Analog/Digital IC tester, Power Supply, Bread Board, LED Panel, Panel of toggle switches, Digital Multi Meter (DMM).

7408 – Quad 2-input AND 7432 – Quad 2-input OR

7486 – Quad 2-input XOR 7404 _ Quad 1-input NOT

Experiment:

Verify following parameters and complete the checklist before circuit implementation.

S.No.	Description	Remark $(\sqrt{OR} \times)$
1	Check DC voltage from power supply using Multimeter.	
2	Is proper voltage range of DC power supply selected?	
3	Are all switches and LEDs working?	
4	Are all ICs tested using IC tester?	
5	Are required ICs placed correctly on bread board?	
6	Identified pin no.1 of IC?	
6	Do you know Logical function and pin configuration of all ICs? (Refer Data sheets)	
7	DC power supply is OFF till you complete the connections.	
8	All the truth tables with theoretically calculated values and required circuit diagrams are complete?	

Run 01#: Following truth table as Table 2.1 shows output of a logical circuit that adds two binary bits. The circuit is known as Half Adder. The circuit has two inputs and two outputs S (SUM) and C (CARRY). Derive logical expression for S And C from the given truth table in SOP form. Build and test logic that implements the simplified expression.

Include Pin numbers of each logic gate on the drawing.

i/p	o/p	Logic	Observed	o/p	Logic	Observed	
A B	S	For 'S'	output (S)	С	for 'C'	Output (C)	
0 0	0			0			
0 1	1			0			
1 0	1			0			
1 1	0			1			
Logi	cal E	xpression	(SOP form)	for 'S	S' =		
Logi	cal E	xpression	(SOP form)	for '(C' =		

Table 2.1: Truth Table for Half Adder

Fig 2.1: Circuit Diagram for Half Adder

Run #02: As an application of XOR gates, we would be implementing a circuit for converting a 4-bit gray code to its equivalent binary number. Given a 4 bit gray code $G_3G_2G_1G_0$ it equivalent binary number given by:

 $B_3 = \dots \qquad B_2 = \dots \qquad B_1 = \dots \qquad B_0 = \dots$

Draw circuit diagram as Fig 2.2. Include Pin numbers of each logic gate on the drawing.

Fig 2.2: Gray to Binary code converter

Note down your observations in following truth table as Table 2.2.

$G_3G_2G_1G_0$	$B_3B_2B_1B_0$	$B_3B_2B_1B_0$	$G_3G_2G_1G_0$	$B_3B_2B_1B_0$	$B_3B_2B_1B_0$
	(output)	(Observed		(output)	(Observed
		Output)			Output)
00000			1100		
0001			1101		
0011			1111		
0010			1110		
0110			1010		
0111			1011		
0101			1001		
0100			1000		

Table 2.2: Truth Table for Gray to Binary code conversion

Run 03 #: Implement a logic circuit to act as a invalid BCD code detector using Logic Gates. Complete the truth table shown as Table 2.3 with your observations.

Decimal	В3	B2	B1	B0	Valid	Invalid	Observed
equivalent					BCD	BCD	output
0	0	0	0	0	1	0	
1	0	0	0	1	1	0	
2	0	0	1	0	1	0	
3	0	0	1	1	1	0	
4	0	1	0	0	1	0	
5	0	1	0	1	1	0	
6	0	1	1	0	1	0	
7	0	1	1	1	1	0	
8	1	0	0	0	1	0	
9	1	0	0	1	1	0	
10	1	0	1	0	0	1	
11	1	0	1	1	0	1	
12	1	1	0	0	0	1	
13	1	1	0	1	0	1	
14	1	1	1	0	0	1	
15	1	1	1	1	0	1	

(a)	Cor	nplete	and	use	K-map	shc	own .	as F	igure	2.3	t
<u>(u)</u>	001	iipicic	una	abc	11 map	SIIC	, ,,,,,,	us I	15410	2.5	٠

to simplify boolean expression for the invalid codes. Draw the circuit diagram as Fig 2.4, space given below.

Fig 2.4: Circuit Diagram for invalid BCD code detector

Run 04 #: Following truth table as in Table 2.4 shows output of a logical circuit which selects one of the two inputs and pass it to output. The circuit is called as a 2:1 Multiplexer (MUX). Complete K-map shown as Figure 2.5 and use it to simplify logical expression for 2:1 MUX. Draw the circuit diagram as Fig 2.6, space given below.

Inpu	t		o/p	Z	
			_	(Observed	
A1	A0	S	Z	output)	
0	0	0	0		
0	0	1	0		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	1		Fig 2.5:K-map for 2:1 MUX
1	1	0	1		
1	1	1	1		

Table 2.4: Truth Table for 2:1 MUX;

Fig 2.6: Circuit diagram for 2:1 MUX

Implement the circuit and record your observations as observed output in Table 2.4

Run 05 #: Following truth table as in Table 2.5 shows output of a logical circuit which compare two bits The circuit is called as a 1 bit comparator. Complete K-map shown as Figure 2.7 and simplify logical expression. Draw the circuit diagram as Fig 2.8. Record your observations in Table 2.6

Input		A>B	A>B	A <b< th=""><th>A<b< th=""><th>A=B</th><th>A=B</th></b<></th></b<>	A <b< th=""><th>A=B</th><th>A=B</th></b<>	A=B	A=B
A	A B		(Observed output)		(Observed output)		(Observed output)
0	0	0		0		1	
0	1	0		1		0	
1	0	1		0		0	
1	1	0		0		1	

Table 2.5: Truth Table for 1 bit comparator

Fig 2.8: Circuit Diagram for 1 bit comparator