

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Mid Exam. :: Trimester: Summer 2021

Course Code: CSE 2213, Course Title: DISCRETE MATHEMATICS

Total Marks: **20** Duration: 1 hour

Answer all the questions. Figures are in the right-hand margin indicate full marks. "Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules."

as per UIU disciplinary rules."				
Question 1.				
a)	Given that A and B are two sets such that:	[1+0.5+1=2.5]		
	$A \cap \overline{B} = \{10, 22, 31, 76\}$			
	$B = \{50, 64, 97, 84\}$			
	(i) Find out A U B. Order the elements of your set in ascending order.			
	(ii) Given that $A \cap B = \{50, 64, 97\}$, find out A			
	(iii) Given that Set C is a single-element set containing the letter 'a',			
	Find out P($(A \cap B) \times C$)			
b)	(i) Consider the following function:	[1+1+0.5=2.5]		
	$f:Z \to R, f(x)=x^3$			
	What type of function is this? Explain if this function can have an inverse.			
	(ii) Now consider a different function, g:			
	$g:A \to B, g(x)=x+1$			
	where, $A = \{a \in Z^+ \mid a \text{ is even and } a \leq 10 \}$			
	$B = \{b \in Z^+ \mid b \text{ is odd and } b \leq 12\}$			
	a. State the elements of the domain set, the codomain set and the			
	image set of the function g.			
	b. Find the composition function, $f \circ g$			
Ques	stion 2:			
a)	Write down whether each of the following statements is true or false. Explain the	$[3 \times 1 = 3]$		
	reason of your answer. Domain consists of real numbers.			
	i. $\forall x \forall y (xy < 0 \rightarrow \exists z (z^{xy} > 0))$			
	ii. $\exists x \forall y (x^y y^x = 1)$			
	iii. $\forall x \forall y \exists z ((yz)^x = 1)$			
b)	Look at the following predicates:	$[4 \times 0.5 = 2]$		
	P(x): x owns a car.			
	Q(x): x is rich.			
	R(x,y): x drives y's car.			
	Represent the following sentences using the above predicates, appropriate			
	quantifiers and logical connectives. Domain consists of all people.			
	i. There is a rich man who owns a car.			
	ii. A poor man does not own a car.			
	iii. Not all rich man drive their own cars.			
	iv. A man who owns a car is not poor.			
Question 3:				
a)	Prove that $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology using a sequence of logical	[2]		
b)	equivalences law Translate the following sentences into a logical expression.	$[1 \times 3 = 3]$		
0)	i. I come to class only if there is going to be a CT.	[[[] [] [] [] [] [] [] [] [] [] [] [] []		
	1. I come to class only it there is going to be a C1.	l		

	ii.	For you to get an A in this course, it is necessary and sufficient that you do			
		well in this mid-term exam.			
	iii.	Your guarantee is good whenever you bought your laptop less than 90 days			
		ago or you didn't damage it physically.			
Question 4:					
a)	Prove	the following by using the principle of mathematical induction, n is a	[3]		
	positive integer.				
		$1^3 + 2^3 + \dots + n^3 = (n(n+1)/2)^2$			
b)	Using	direct proof technique, prove that if x even and y odd, then xy is even"	[2]		