第五周作业参考解答及补充

作业

1. (习题 2.1.3)

证明:只有有限个元素的整环一定是一个域.

proof

整环 R 有乘法消去律 (习题 1.1.1 的 (1), 证明乘法消去律事实上只需要分配律加无零 因子), 而习题 1.3.9 告诉我们, 满足消去律的有限半群是群. 因此 $(R \setminus \{0\},\cdot)$ 是群, 即 R 是一个域.

2. (习题 2.1.4)

证明: 只有有限个理想的整环是一个域.

proo

事实上条件可以再减弱一点,一个 Artin 整环一定是域.

设 $a \neq 0$, 考虑理想降链

$$(a) \supseteq (a^2) \supseteq \cdots$$

因此 $\exists n \in \mathbb{Z}_{>0}$, $(a^n) = (a^{n+1})$. 即有 $a^n \in (a^{n+1})$, 那么 $\exists b \in R$, $a^n = a^{n+1}b$, 从而 $ab = 1_R$.

注: Artin 环定义为任意理想降链稳定的环, i.e. 若有理想降链

$$I_1 \supseteq I_2 \supseteq \cdots$$

则存在 $n \in \mathbb{Z}_{>0}$ 使得 $\forall m > n, I_m = I_n$, 也就是说从某一个 n 开始就稳定了 $I_n = I_{n+1} = \cdots$. 这个条件称为 descending chain condition(d.c.c.), 与之对应的是 ascending chain condtion(a.c.c.), 满足 a.c.c. 的正是 Noether 环.

3. (习题 2.1.9)

映射 $D: R[x] \longrightarrow R[x]$ 定义如下: $\forall f(x) = a_n x^n + \dots + a_1 x + a_0$,

$$D(f) = na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + 2a_2x + a_1.$$

 $\forall a \in R, f, g \in R[x]$, 试证明:

- (1) D(f+g) = D(f) + D(g), D(af) = aD(f);
- (2) $D(f \cdot g) = D(f) \cdot g + f \cdot D(g)$.
- (D(f) 称为 f(x) 的导数. 记为 f'(x) = D(f), $f^{(m)}(x) = D \cdot \cdot \cdot D(f)$ 称为 f(x) 的 m 次导数).

proof

接定义验证. 设 $f = a_n x^n + \cdots + a_1 x + a_0$, $g = b_m x^m + \cdots + b_1 x + b_0$.

(1) 不妨设 $n \ge m$, 且令 $b_k = 0, k > m$.

$$D(f+g) = D\left(\sum_{k=0}^{n} (a_k + b_k)x^k\right) = \sum_{k=1}^{n} k(a_k + b_k)x^{k-1}$$
$$= \sum_{k=1}^{n} ka_k x^{k-1} + \sum_{k=1}^{m} kb_k x^{k-1} = D(f) + D(g).$$

(2)
$$D(f \cdot g) = D\left(\sum_{k=0}^{n+m} \sum_{i+j=k} a_i b_j x^k\right) = \sum_{k=1}^{n+m} \sum_{i+j=k} k a_i b_j x^{k-1}$$

$$= \sum_{k=1}^{n+m} \sum_{i+j=k} (i+j) a_i b_j x^{i+j-1}$$

$$= \sum_{k=1}^{n+m} \sum_{i+j=k} (i a_i x^{i-1}) b_j x^j + a_i x^i (j b_j x^{j-1})$$

$$= \sum_{k=0}^{n+m-1} \sum_{(i-1)+j=k} (i a_i) b_j x^k + a_i (j b_j) x^k$$

$$= D(f) \cdot g + f \cdot D(g).$$

4. (习题 2.1.10)

如果 F 是特征零的域, 则 $f'(x) = 0 \Leftrightarrow \deg(f) = 0$ 或 f(x) = 0(即常数); 如果 F 的特征是 p > 0, 则 $f'(x) = 0 \Leftrightarrow$ 存在 $g(x) \in F[x]$ 使得 $f(x) = g(x^p)$.

proof

Char(F) = 0, 即 $\forall n \in \mathbb{Z}_{>0}, n \neq 0$ (这里 n 看做 $n1_F$, 见 1.2.1 后最新添加的部分), 那么

$$f'(x) = na^{n-1} + \dots + a_1 = 0 \implies 1 \leqslant k \leqslant n, ka_k = 0 \implies 1 \leqslant k \leqslant n, a_k = 0$$

故 $f(x) = a_0$, $\deg(f) = 0$ 或 f = 0, 反过来是平凡的.

若 $\operatorname{Char}(F) = p$, 则 p = 0, 那么设 $\operatorname{deg}(f) = n = kp + r, 0 \leqslant r < p, k \in \mathbb{N}$,

$$f = a_0 + a_1 x + \dots + a_p x^p + \dots + a_{2p} x^{2p} + \dots + a_{kp} x^{kp} + a_n x^n.$$

$$\implies f' = a_1 + \dots + p a_p x^{p-1} + \dots + k p a_{kp} x^{kp-1} + \dots + n a_n x^{n-1}$$

$$= a_1 + \dots + (p-1) a_{p-1} x^{p-2} + (p+1) a_{p+1} x^p + \dots + (kp-1) a_{kp-1} x^{kp-2} + (kp+1) a_{kp+1} x^k p + \dots + n a_n x^{n-1}.$$

此时 f' = 0 有 $f = a_0 + a_p x^p + \dots + a_{kp} x^{kp} = g(x^p)$. 这里 $g = a_0 + a_p x + \dots + a_{kp} x^k$. 反过来也是类似的.

5. (习题 2.2.1)

设 m,n 是两个正整数, 证明它们在 \mathbb{Z} 中的最大公因数和它们在 $\mathbb{Z}[i]$ 中的最大公因数相

同.

注意这里的相同指的在相伴的意义下相同.

proof

由于 $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$, 在相伴的意义下, 可以假设 (m, n) 在 \mathbb{Z} 和 $\mathbb{Z}[i]$ 中都是正整数, 分别记为 d 和 d'.

那么 PID 上 Bezout's Theorem 成立, 有

$$d = mu + nv, \quad d' = m\alpha + n\beta.$$

其中 $u, v \in \mathbb{Z}$, $\alpha, \beta \in \mathbb{Z}[i]$. 设 $\alpha = a_1 + ia_2$, $\beta = b_1 + ib_2$, 由于我们假设的是 $d' \in \mathbb{Z}_{>0}$, 故 $d' = ma_1 + nb_1$, 从而 $d \mid m, d \mid n \implies d \mid d'$. 反过来也有 $d' \mid d$, 所以 d = d'.

6. (习题 2.2.6)

令 ℝ, ℂ 分别表示实数域和复数域, 试证明:

- (1) 若 R 是由关于 $\cos t$ 和 $\sin t$ 的实系数多项式组成的函数环, 则 $R \cong \mathbb{R}[x,y]/(x^2+y^2-1)$;
- (2) $\mathbb{C}[x,y]/(x^2+y^2-1)$ 是唯一分解整环 (提示: 证明其为 ED);
- (3) $\mathbb{R}[x,y]/(x^2+y^2-1)$ 不是唯一分解整环.

proof

(1) 考虑同态

$$\varphi : \mathbb{R}[x, y] \to R = \mathbb{R}[\cos t, \sin t], \ x \mapsto \cos t, y \mapsto \sin t,$$

这自然是一个满同态,由同态基本定理,关键在于证明

$$\ker(\varphi) = (x^2 + y^2 - 1)$$

若多项式 f(x,y) 满足 $\varphi(f) = f(\cos t, \sin t) = 0$, 将 f 看成是关于 g 的多项式

$$f(x,y) = a_0(x) + a_1(x)y + \dots + a_n(x)y^n, a_i(x) \in \mathbb{R}[x], 0 \le i \le n$$

由于 $x^2 + y^n - 1$ 关于 y 是首一的,因此可以做带余除法,得 f = gq + r,其中 $r(x,y) = r_0(x) + r_1(x)y$. 带入 $x = \cos t, y = \sin t$ 得 $r(\cos t, \sin t) = 0$,即

$$r_0(\cos t) + r_1(\cos t)\sin t = 0$$

做代换 $t \mapsto -t$, 得

$$r_0(\cos t) - r_1(\cos t)\sin t = 0$$

两式相加得 $r_0 = 0$,相减得 $r_1 = 0$,从而 r = 0. 因此 $f \in (x^2 + y^2 - 1)$,即 $\ker(\varphi) \subseteq (x^2 + y^2 - 1)$.另一方面 $x^2 + y^2 - 1 \in \ker(\varphi)$,故 $\ker(\varphi) = (x^2 + y^2 - 1)$

(2) 做基变换 u=x+iy, v=x-iy, 他有逆变换 $x=\frac{u+v}{2}, y=\frac{u-v}{2i}$. 因此有同构 $\mathbb{C}[u,v]\cong\mathbb{C}[x,y]$. 从而

$$\mathbb{C}[x,y]/(x^2+y^2-1) \cong \mathbb{C}[u,v]/(uv-1)$$

而同态

$$\mathbb{C}[u,v] \to \mathbb{C}[u,u^{-1}], u \mapsto u,v \mapsto u^{-1}$$

是满的, 且 kernel 是 (uv-1), 证明类似于 (1). 因此

$$\mathbb{C}[u,v]/(uv-1) \cong \mathbb{C}[u,u^{-1}]$$

这个环称为 Laurent 多项式环, 这个环上可以做带余除法, 非零多项式的次数定义为最高次数 — 最低次数. 即 $f = a_n u^n + a_{n+1} u^{n+1} + \cdots + a_m u^m, n, m \in \mathbb{Z}, n < m$ 的次数为 $\deg(f) = m - n$. 因此这是一个 ED, 从而是 UFD.

(3) 由 (2), ℂ[cos t, sin t] 是 UFD, 用待定系数, 假设

$$\cos t = (a_1 \cos t + a_2 \sin t + a_3)(b_1 \cos t + b_2 \sin t + b_3)$$

其中 $a_i, b_i \in \mathbb{C}, i = 1, 2, 3$. 我们要忽略掉 $a_1 = b_3 = 1$ 其余都是 0 这种平凡的情况, 左右展开得到

$$a_1b_1 - a_2b_2 = 0,$$

$$a_1b_2 + a_2b_1 = 0,$$

$$a_1b_1 + a_3b_3 = 0,$$

$$a_1b_3 + a_3b_1 = 1,$$

$$a_2b_3 + a_3b_2 = 0.$$

由第一个式子得 $b_1=\frac{a_2}{a_1}b_2$,带入第二个式子得 $a_2=\pm ia_1$,从而 $b_1=\pm ib_2$. 由一,三又能得到 $a_2b_2=-a_3b_3$,类似地,带入第五个式子,有 $a_3=\pm a_2$, $b_2=\pm b_3$. 再用四,五得 $a_1b_3=a_3b_1=\frac{1}{2}$.

 $\cos t = a_1 b_3 (\cos t \pm i \operatorname{si}$

$$\cos t = a_1 b_3 (\cos t \pm i \sin t \pm i)(\pm i \cos t \pm \sin t + 1)$$
$$= \frac{1}{2} (\cos t \pm i \sin t \pm i)(\pm i \cos t \pm \sin t + 1)$$

检查正负号,得到结果

把上述关系带入

$$\cos t = \frac{1}{2}(\cos t + i\sin t - i)(i\cos t + \sin t + 1)$$

类似有

$$1 - \sin t = \frac{1}{2}(\cos t + i\sin t - i)(\cos t - i\sin t + i).$$

带入 -t 就是 $1 + \sin t$ 的分解.

因此 $\cos t$ 和 $1 \pm \sin t$ 无法在 $\mathbb{R}[\cos t, \sin t]$ 中分解. 这样就有 $\cos^2 t = \cos t \cos t = (1 - \sin t)(1 + \sin t)$. 因此不是 UFD.

注: (2) 中若允许正次数到无穷的话, 则该环称为 Laurent 形式级数域 (可以验证确实是一个域).

课上的补充内容

1. (Noetherian \iff a.c.c.)

R 是诺特环当且仅当 R 满足 a.c.c. 其中 a.c.c. 指若有环 R 的理想升链

$$I_1 \subseteq I_2 \subseteq \cdots$$

则该链必稳定, 即 $\exists n \in \mathbb{Z}_{>0}$ 使得 I_n 后的理想都相等, $I_n = I_{n+1} = \cdots$.