# math115A lecture notes

## Alice Bob

## **Table of Contents**

| 0.1. January 7                                                                                                                 | 2   |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| 0.1.1. Remark                                                                                                                  | 3   |
| 0.1.2. Definition: prime number                                                                                                | 3   |
| 0.1.3. Remark                                                                                                                  | 3   |
| 0.1.4. Remark                                                                                                                  | 3   |
| 0.1.5. Remark                                                                                                                  | 3   |
| 0.1.6. Remark                                                                                                                  | 3   |
| 0.2. Properties of $\mathbb Z$                                                                                                 | 4   |
| 0.2.1. Proposition                                                                                                             | 4   |
| 0.2.2. Remark                                                                                                                  | 4   |
| 0.2.3. Definition: If $m, n$ are integers, we say that $m$ divides $n$ (written $m \mid n$ ) if there exists an integer $t$ so | uch |
| that $n=mt$ . Otherwise write $m\mid !n$                                                                                       | 4   |
| 0.3. Types of proofs:                                                                                                          | 4   |
| 0.3.1. Theorem                                                                                                                 | 4   |
| 0.3.2. Theorem                                                                                                                 | 5   |
| 0.3.3. Theorem                                                                                                                 | 5   |
| 0.3.4. Theorem                                                                                                                 | 6   |
| 0.3.5. Theorem: Principle of Induction                                                                                         | 6   |
| 0.3.6. Theorem: Birrchlet's pigeonhole principle                                                                               | 6   |
| 0.4. Back to number theory                                                                                                     | 7   |
| 0.4.1. <i>Proposition</i>                                                                                                      | 7   |
| 0.4.2. <i>Theorem:</i> Fundamental theorem of arithmetic                                                                       | 7   |
| 0.4.3. Remark                                                                                                                  | 8   |
| 0.5. January 16                                                                                                                | 8   |
| 0.5.1. Definition                                                                                                              | 8   |
| 0.5.2. <i>Theorem:</i> (by Euclid)                                                                                             | 8   |
| 0.5.3. <i>Theorem:</i> (Euler)                                                                                                 | 8   |
| 0.5.4. Remark                                                                                                                  | 8   |
| 0.5.5. <i>Proposition</i>                                                                                                      | 9   |
| 0.5.6. <i>Theorem:</i> division theorem                                                                                        | 9   |
| 0.5.7. Algorithm: Euclid's algorithm                                                                                           | 9   |
| 0.5.8. Definition                                                                                                              | 10  |
| 0.5.9. Theorem                                                                                                                 | 10  |
| 0.5.10. Remark                                                                                                                 | 10  |
| 0.6. January 21                                                                                                                | 11  |
| 0.6.1. Remark                                                                                                                  | 11  |
| 0.6.2. Example: : Solve two variable diophantine equation                                                                      | 11  |
| 0.6.3. Chatper 2 Congruences                                                                                                   | 12  |
| 0.6.4. Definition: Congruent modulo m                                                                                          |     |
| 0.6.5. Remark                                                                                                                  | 12  |
| 0.6.6. Remark                                                                                                                  | 12  |
| 0.6.7. Remark                                                                                                                  | 12  |

| 0.6.8. Remark                                                 |  |
|---------------------------------------------------------------|--|
| 0.6.9. Remark                                                 |  |
| 0.6.10. Remark                                                |  |
| 0.7. January 23                                               |  |
| 0.7.1. Definition: Linear Congruences                         |  |
| 0.7.2. Theorem                                                |  |
| 0.7.3. Example                                                |  |
| 0.7.4. Example                                                |  |
| 0.7.5. Corollary                                              |  |
| 0.7.6. Remark                                                 |  |
| 0.7.7. Theorem: Chinese Remainder                             |  |
| 0.7.8. Remark                                                 |  |
| 0.7.9. Remark                                                 |  |
| 0.7.10. Example                                               |  |
| 0.7.11. Definition: Order of x                                |  |
| 0.7.12. Example                                               |  |
| 0.7.13. Proposition                                           |  |
| 0.7.14. Theorem: Fremat's Little Theorem                      |  |
| 0.8. January 28                                               |  |
| 0.8.1. Definition: Fermat's Little Theorem                    |  |
| 0.8.2. Proposition                                            |  |
| 0.8.3. Remark                                                 |  |
| 0.8.4. <i>Theorem:</i> Fermat's Little Theorem                |  |
| 0.8.5. Definition: Euler $\phi$ function                      |  |
| 0.8.6. Theorem: Euler's                                       |  |
| 0.8.7. Example                                                |  |
| 0.8.8. <i>Theorem:</i> Wilson's Theofrem                      |  |
| 0.8.9. Example                                                |  |
| 0.8.10. <i>Theorem:</i> converse of Wilson's theorem          |  |
| 0.8.11. Theorem                                               |  |
| 0.9. Jan 30 (Sara Ramirez's notes)                            |  |
| 0.9.1. Proposition                                            |  |
| 0.9.2. Definition: multiplicative function                    |  |
| 0.9.3. Proposition                                            |  |
| 0.9.4. <i>Corollary:</i> $d(n), \sigma(n)$ are multiplicative |  |
| 0.9.5. <i>Theorem:</i> $\phi$ is multiplicative (proof 1)     |  |
| 0.9.6. Corollary                                              |  |
| 0.10. Feb 4                                                   |  |
| 0.10.1. <i>Theorem:</i> $\phi$ is multiplicative (proof 2)    |  |
| 0.10.2. Corollary                                             |  |
| 0.10.3. Theorem                                               |  |
| 0.10.4. Definition: $\mu$ mobius function                     |  |
| 0.10.5. <i>Theorem</i>                                        |  |
| 0.10.6. Theorem                                               |  |
| 0.10.7. Theorem: Mobius Inversion Formula                     |  |

## **0.1. January 7**

Basic Properties : What questions are studied in this subject?

### 0.1.1. Remark

Fermat (1636): Every positive integer can be represented as a sum of the squares of four integers

e.g. 
$$1 = 1^2 + 0^2 + 0^2 + 0^2$$

e.g. 
$$7 = 2^2 + 1^2 + 1^2 + 1^2$$

e.g. 
$$10 = 2^2 + 2^2 + 1^2 + 1^2$$

Langrange published the first proof in 1770

### 0.1.2. Definition: prime number

A positive integer p is prime if its only positive divisors are 1 and p. (should be greater than 1)

### 0.1.3. Remark

Euclid proved that there are inifinitely many primes

#### 0.1.4. Remark

Fermat: All numbers of the form  $f_n:=2^{2^n}+1$  are prime. Therefore, for example,  $641\mid 2^{2^5}+1$  (check this)

#### 0.1.5. Remark

Gauss: A regular polygon with m sides can be constructed as using straight edge and compasses alone iff  $m = 2^k \cdot f_{n_1} \cdot f_{n_2} \cdot \dots \cdot f_{n_r}$  (check this)

#### 0.1.6. Remark

How are the primes distributed?

$$\pi(x) = |\{n \le x : n \text{ is prime}\}|$$

How does  $\pi(x)$  grow with x?

Gauss used tables of primes to guess the answer e.g. look at values  $\frac{\pi(x) - \pi(x-1000)}{1000}$  for large x i.e. frequency of primes in [x - 1000, x]

He noticed that this frequency call it  $\Delta(x)$  seems to be slowly decreasing. He then noticed that  $\frac{1}{\Delta(x)} \cong$  $\frac{1}{\log(x)}$  (for log base e ) so that  $\pi(x) \approx \int_2^x \frac{\mathrm{d}t}{\log t}$ 

Then, if we define  $li(x) = \int_2^x \frac{dt}{\log t}$  then the following conjecture was made:

$$\lim_{x \to \infty} \frac{\pi(x)}{\mathrm{li}(x)} = 1$$

And later proved by Hadamard using complex variable theory

### 0.2. Properties of $\mathbb{Z}$

### 0.2.1. Proposition

properties of  $\mathbb{Z}$ 

- 1. cancellation law: if ab = ac then b = c as long as  $a \neq 0$  ( $\mathbb{Z}$  is said to be a domain or an integral domain)
- 2.  $\mathbb{Z}$  is ordered therefore  $\mathbb{Z}^+$  is closed under addition and multiplication and for every  $a \neq 0$  exactly one of a, -a belongs to  $\mathbb{Z}^+$ . Define a > b to mean  $a b \in \mathbb{Z}^+$
- 3.  $\mathbb{Z}^+$  is well ordered: Every non-empty set of positive integers has a smallest element. (note that  $\mathbb{Q}, \mathbb{R}$  are NOT well-ordered)

### 0.2.2. Remark

We can partiion the integers into three classes:

- 1. Units  $\pm 1$  (i.e. integers with reciprocals in  $\mathbb{Z}$ )
- 2. Prime numbers (i.e. integers n for which we cannot have n=ab with  $a,b\in\mathbb{Z}$  and a,b not units)
- 3. Composite numbers (the rest)

**0.2.3.** Definition: If m, n are integers, we say that m divides n (written  $m \mid n$ ) if there exists an integer t such that n = mt. Otherwise write  $m \mid !n$ 

### 0.3. Types of proofs:

### 0.3.1. Theorem

Every integer n > 1 is divisible by a positive prime.

### **Proof**

Suppose that n > 1 has no positive prime divisor. Then n is not prime, and we may write n = ab, with a and b not units. Then  $n = |a| \cdot |b|$  and |a| < n since |b| > 1.

Set  $n_1 = |a|$ . Then  $n_1 > 1$  and  $n_1$  has no prime divisor

Now repeat the above argument with  $n_1$  in place of n to produce an integer  $n_2$  with  $1 < n_2 < n_1$  and such that  $n_2$  has no prime divisor. Continuing in this way, we produce a non-empty set of positive integers  $n_1, n_2, \ldots$  having no smallest integer.

However, this contradicts the well-ordering principle.

### 0.3.2. Theorem

There are infinitely many positive primes

### **Proof**

Suppose that there are only finitely many positive primes.

Consider the integer  $N=p_1...p_2...p_r+1$ . Then  $p_i$  does not divide N for all i, but N>1 and our previous result shows that N is divisible by some prime. Henve there is a prime p distinct from  $p_1,...,p_r$  such that p divides N. (this leads to a contradiction)

no class next tuesday yay

### 0.3.3. Theorem

There is no integer between 0 and 1

#### Proof

Suppose that there exists  $m \in \mathbb{Z}$  such that 0 < m < 1. Then we have

$$0 < m^{2} < m < 1 \Rightarrow$$

$$0 < m^{3} < m^{2} < m < 1 \Rightarrow$$

$$0 < m^{4} < m^{3} < \dots$$

and so we obtain an infinite set of positive integers with no smallest element. This contradicts the well-ordering principle.

### 0.3.4. Theorem

The real number e is irrational

#### **Proof**

We know that  $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots$ 

So for each  $n \in \mathbb{Z}^+$ , we have  $n!e = \frac{n!}{1} + \frac{n!}{2} + \ldots + \frac{n!}{n!} + \frac{n!}{(n+1)!} + \ldots$ 

Suppose that e were irrational then  $e = \frac{a}{b}$ , with  $a, b \in \mathbb{Z}$ . If this is true, then

$$n!\tfrac{a}{b} = q_n + \tfrac{n!}{(n+1)!} + \dots$$

$$\operatorname{set} r_n \coloneqq n! a - q_n b$$

$$r_n=n!a-q_nb=b\big(\tfrac{n!}{(n+1)!}+\tfrac{n!}{(n+2)!}\big)$$

Since  $r_n \in \mathbb{Z}$  we have  $r_n < \frac{b}{n+1} + b \Big( \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \ldots \Big) = \frac{b}{n+1} + b \Big( \Big( \frac{1}{n+1} - \frac{1}{n+2} \Big) + \Big( \frac{1}{n+2} - \frac{1}{n+2} \Big) + \frac{1}{n+3} \Big) + \ldots \Big) = \frac{b}{n+1} + \frac{b}{n+1} = 2 \frac{b}{n+1}$ 

Hence if  $n \ge 2b$  we have  $0 < r_n < 2\frac{b}{n+1} < 1$  which is a contradiction by the previous theorem (hence e is irrational)

### 

### 0.3.5. Theorem: Principle of Induction

If a set S of integers contain  $n_0$ , and if S contains n+1 whenever it contains n, then S contains all integers greater than or equal to  $n_0$ 

#### **Proof**

Suppose that m is an integer with  $m > n_0$ , and  $m \notin S$ . Then  $m-1 \notin S$  for otherwise, since m = (m-1) + 1 we would have  $m \in S$ 

Hence  $m-1 \neq n_0$  therefore  $m-1 > n_0$ . Now we can continue to repeat the argument and thereby obtain a contradiction to the well ordering principle

### 

### 0.3.6. Theorem: Birrchlet's pigeonhole principle

suppose that a set of n elements is partitioned with m subsets with  $1 \le m < n$ . Then some subset must contain more than one of the elements.

### 0.4. Back to number theory

### 0.4.1. Proposition

Every natural number greater than 1 is either a prime or can be written as a product of primes.

### **Proof**

Proof via induction:

Let  $n \in \mathbb{Z}^+$ . If n is prime, then there is nothing to prove.

However if n is composite we can write n = ab with 0 < a, b < n. By induction a and b are either primes or expressible as a product of primes, and so substituting for n yields an expression for n as a product of primes.

### 0.4.2. Theorem: Fundamental theorem of arithmetic

Any natural number greater than 1 can be represented in one and only one way as a product of primes

#### **Proof**

Let P(n) denote the statement "n can be written uniquely as a product of primes"

observe that 2 is prime, so that P(2) is true.

Suppose for inductive hypothesis that k is an integer such that P(t) is true for all integers t satisfying  $2 \le t \le k$ 

Consider k + 1. If this is prime, then we are trivially done.

Suppose k+1 is composite (so that it has at least 2 prime factors) and (for contradiction) has 2 distinct representations as products of primes:

$$k+1=pqr...=p'q'r'...$$

(Note that the same prime cannot be in both representations (as P(t) is true for all  $2 \le t \le k$ ))

Suppose WLOG that p and p' are the smallest primes occuring in each factorization

Since k+1 is composite, we have  $k+1 \ge p^2$  and  $k+1 \ge p'^2$  and since  $p \ne p'$  then at least one of these ineuqalities is a strict inequality, therefore k+1 > pp'

Consider k+1-pp' which by induction hypothesis can be written uniquely as a product of primes. Since this quantity is divisible by both p and p', we have the prime factorization k+1-pp'=pp'QR... implies pp' divides k+1, this implies that ...

### 0.4.3. Remark

Consequences of Fundamental theorem of arithmetic.

suppose that the prime factorisation of  $n \in \mathbb{Z}^+$  is given by  $n = p_1^{q_1} p_2^{q_2} ... p_r^{q_r}$  with  $p_1, ..., p_2$  distinct primes. The divisors of n consist of all products of the form  $p_1^{\alpha_1} ... p_r^{\alpha_r}$  where  $0 \le \alpha_i \le q_i$  and the total number of choices is  $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_r + 1) = \prod_{i=1}^r (\alpha_i + 1)$ 

let d(n) be the number of divisors of n

We may consider the sum  $\sigma(n)$  of all divisors of n (including 1 and n). We have that  $\sigma(n)=(1+p_1+p_1^2+...+p_1^{q_1})(1+p_2+p_2^2...p_2^{q_2})...(1+p_r+p_3^r+...+p_1^{q_r})$ 

when we multiply this expression it is the sum of all possible products of the sum  $p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$  (this is probably in the book)

### 0.5. January 16

### 0.5.1. Definition

A positive number n is said to be perfect if the sum of the divisors of n including 1 and excluding n is equal to n

### 0.5.2. Theorem: (by Euclid)

Suppose that p is a prime such that  $p+1=2^k$  for some k>0. Then  $2^{k-1}\cdot p$  is perfect.

### Proof

Took a picture

### 0.5.3. Theorem: (Euler)

Every even perfect numbers is of the form  $2^{k-1} \cdot p$ , where  $p+1=2^k$ 

#### **Proof**

Did not do in class

#### 0.5.4. Remark

are there any odd perfect numbers (open question)

### 0.5.5. Proposition

If m, n have common prime factors, we may obtain the greatest common divisor or highest common factor (HCF) of m and n by multiplying together the various common prime factors of m and n, each of these being taken to the highest power to which it divides both m and n

### **Proof**

For example,  $3132=2^2\cdot 3^3\cdot 29$  and  $7200=2^5\cdot 3^2\cdot 5^2$  then the highest common factor is  $2^2\cdot 3^2=36$ 

### 0.5.6. Theorem: division theorem

If a is any integer and  $b \in \mathbb{Z}^+$ , then there exists exactly one pair of integers q and r such that the condition a = bq + r where  $0 \le r < b$  hold. (the number q is called the quotient and r is the remainder when a is divided by b)

### Proof

look it up

### 0.5.7. Algorithm: Euclid's algorithm

Finds the highest common factor of two positive integers a and b. Suppose that a > b. Then

$$a = qb + c, 0 < c < b$$

Any common divisor of a and b is also a common divisor of b and c. So we've reduced the problem to finding the highest comon factor of b and c (which are respectively less than and b).

i.e. the problem we are solving is b = rc + d,  $0 \le d < c$ 

The common divisors of b and c are the same as those of c and d. etc.

We can repeat this process until we arrive at a number which is a divisor of the preceding number.

#### 0.5.8. Definition

Suppose that  $a, b \in \mathbb{Z}^+$ . Say that  $n \in \mathbb{Z}$  is linearly dependent on a and b if it can be written in the form n = ax - by for some  $x, y \in \mathbb{Z}^+$ .

#### Remarks:

(i) Any number representable in the form ax-by can also be represented in the form by'-ax' with  $x',y'\in\mathbb{Z}^+\cup\{0\}$ 

Observe that  $ax - by = by' - ax' \Leftrightarrow a(x + x') = b(y + y')$ . To ensure that this last equality holds, take any integer m such that mb > x and ma > y.

Then define x' and y' by x + x' = mb, y + y' = ma.

- (ii) If n is linearly dependent on a and b, then so is kn for any integer k
- (iii) If  $n_1, n_2$  are (both) linearly dependent on a, b then so is  $n_1 + n_2$

We come to an interesting property of the HCF:

### 0.5.9. Theorem

The HCF h of two positive integers a and b is representable in the form h = ax - by where  $x, y \in \mathbb{N}$ 

#### **Proof**

Consider the stpes involved in Euclid's algorithm. Observe that a,b are linearly dependent on a,b since a=a(b+1)-ba, b=ab-b(a-1).

Now we have a=qb+c. So, since b is linearly dep on a,b so is  $q^b$ . Hence c=a-qb is linearly dependent on a,b. Continue in this way to deduce that the last remainder is the application of the algorithm, i.e. h is linearly dependent on a,b.

Example: took a picture (this seems important)

#### 0.5.10. Remark

Here is a problem: suppose that  $a, b \in \mathbb{Z}_{\geq 0}$ . Find  $x, y \in \mathbb{Z}$  such that ax + by = n (†) This is an example of a Diophantine Euqation (it does not determine x, y uniquely.)

#### Remakrs:

- 1. Note that (†) cannot be solved unless n is a multiple of the HCF h of a,b since  $h \mid (ax+by)$
- 2. Suppose that n=mh. Then  $\dagger$  can be solved. First solve  $ax_1+by_1=h$ . We've already seen: set  $x=mx_1$  and  $y=my_1$

### 0.6. January 21

Last time: diophantine equations

### 0.6.1. Remark

Solving Diophantine Equations:

Suppose that  $a, b, n \in \mathbb{Z}_{>0}$ . Find  $x, y \in \mathbb{Z}$  such that ax + by = n (†)

Remarks:

- 1. (†) cannot be solved unless n is a multiple of h := gcf(a, b), since  $h \mid (ax + by)$
- 2. Suppose that n = mh Then (†) can always be solved.

First, solve  $ax_1 + by_1 = h$ 

Then set  $x = mx_1, y = my_1$ 

In fact,  $(\dagger)$  is solvable with  $x, y \in \mathbb{Z}$  if and only iff n is a multiple of h. So, if h = 1 then  $(\dagger)$  is solvable for all  $n \in \mathbb{N}$  (and also for  $n \in \mathbb{Z}$ ).

3. Suppose that h=1 and that (x,y),(x',y') are two distinct solutions of  $(\dagger)$  . Then a(x-x')+b(y-y')=n-n=0. Therefore  $\frac{a}{b}=\frac{-y(y-y')}{x-x'}$ 

Since a, b are coprime there exists  $t \in \mathbb{Z}$  such that y - y' = -at and x - x' = bt

Additionally, any integers of the form y = y' - at and x = x' + bt satisfy (†)

So if h = 1 then a general solution of (†) is x = x' + bt, y = y' - at

4. Now suppose that h>1, and n=mh so  $(\dagger)$  has a solution. Then  $ax+by=n=mh\Leftrightarrow \frac{a}{h}x+\frac{b}{h}y=m$ . Since the HCF of  $\frac{a}{h},\frac{b}{h}$  is 1, we've already dealt with this case: the general solution is  $x=x_0+\frac{b}{h}t,y=y_0-\left(\frac{a}{h}\right)t$  ( $t\in\mathbb{Z}$ ) where  $x_0,y_0$  is a solution of  $(\dagger)$ 

### 0.6.2. Example: : Solve two variable diophantine equation

Find the general solution of 69x + 39y = 15 (if it exists)

First determine if the equation is solvable: find the HCF of 69,39:

69 = 39 times 1 + 30

39 = 30 times 1 + 9

30 = 9 times 3 + 3

9 = 3 times 3

Therefore the equation is solvable, since  $3 \mid 15$ 

Next: 
$$\frac{69}{3}x + \frac{39}{3}y = 15 \Leftrightarrow 23x + 13y = 5$$

From the Euclidean algorithm, we obtain  $3 = 30 - 9 \times 3 = 4(69 - 39 \times 1) - 3 \times 39 = 4 \times 69 - 7 \times 39$ . Therefore x = 4, y = -7 is a solution of 69x + 39y = 3 and 23x + 13y = 1.

Then,  $x_0=4\times 5, y_0=-7\times 5$  is a solution of 69x+39y=15

And a general solution of (†) is x = 20 + 13t, y = -35 - 23t

### 0.6.3. Chatper 2 Congruences

### 0.6.4. Definition: Congruent modulo m

Suppose that  $a, b \in \mathbb{Z}$ . We say that a is congruent to b modulo m and write  $a \equiv b \pmod{m}$  or  $a \equiv b \pmod{m}$  (Informally, "equality except for the addition of some multiple of m")

Examples:  $63 \equiv 0 \mod 3$ ,  $7 \equiv -1 \mod 8$ ,  $5^2 \equiv -1 \mod 13$ 

Additionally, note that  $x \equiv y \mod 2 \Leftrightarrow x$  and y are both even or x and y are both odd

### 0.6.5. Remark

If  $a \equiv \alpha, b \equiv \beta \mod m$  then

$$a + b \equiv \alpha + \beta \mod m,$$
  
 $a - b \equiv \alpha - \beta \mod m,$   
 $ab \equiv \alpha\beta \mod m$ 

Proof:

Since  $a \equiv \alpha \mod m$  and  $b \equiv \beta \mod m$  it follows that  $a = \alpha + k_1 m, b = \beta + k_2 m$  for some integers  $k_1, k_2$  hence  $a + b = \alpha + k_1 m + \beta + k_2 m = \alpha + \beta + m(k_1 + k_2)$ . Therefore  $(a + b) - (\alpha - \beta)$  is divisible by m, and so  $a + b \equiv \alpha + \beta \mod m$ 

#### 0.6.6. Remark

If  $a = \alpha m$ , then  $ka \equiv k\alpha m$  for any  $k \in \mathbb{Z}$ 

### 0.6.7. Remark

It is true that  $42 \equiv 12 \, \mathrm{mod} \, 10$  however  $\frac{42}{6} \not \equiv \frac{12}{6} \, \mathrm{mod} \, 10$ 

However, we CAN cancel factors if they are coprime to the modulus.

i.e. suppose that  $ax \equiv ay \mod m$  with a,m coprime then  $m \mid a(x-y)$  and this implies  $m \mid (x-y)$  i.e.  $x \equiv y \mod m$ 

#### 0.6.8. Remark

Suppose that  $n = a_m \cdot 10^m + a_{m-1} \cdot 10^{m-1} + ... + a_1 \cdot 10 + a_0$ .

Observe that  $n \equiv a_0 \mod 2$ . Therefore n is divisible by 2 if and only if  $a_0$  (the last digit of n) is divisible by 2

Next, notice that  $10 \equiv 1 \mod 3$ . Therefore  $n \equiv a_m + a_{m-1} + ... + a_1 + a_0 \mod 3$ . In other words, the sum of the digits of n is divisible by 3 if and only if n is divisible by 3.

Observe that  $10 \equiv 0 \mod 5$  and so  $n \equiv a_0 \mod 5$ . Therefore  $n \equiv 0 \mod 5$  iff  $a_0 \equiv 0 \mod 5$  (i.e. n is divisible by 5 if and only if the last digit of n is divisible by 5 )

Observe that  $10 \equiv 1 \mod 9$  (similar to 3, n is divisible by 9 iff the sum of its digits is divisible by 9)

Observe that  $10 \equiv -1 \mod 11$ . Hence  $n \equiv a_m \cdot (-1)^m + a_{m-1} \cdot (-1)^{m-1} + ... + a_1 \cdot (-1) + a_0$ . (i.e. n is divisible by 11 if and only if the alternating sum of the digits of n is divisible by 11)

### 0.6.9. Remark

Notice that  $7 \cdot 11 \cdot 13 = 10^3 + 1$ 

Any integer is congruent modulo m to exactly one of the numbers  $\{0, 1, 2, ..., m-1\}$ . This set of numbers is called a complete set of residues modulo m.

#### 0.6.10. Remark

"Congruence modulo m" is an equivalence relation on  $\mathbb Z$ 

### 0.7. January 23

Notation: If  $a, b \in \mathbb{Z}$  then we write (a, b) for the HCF of a and b

### 0.7.1. Definition: Linear Congruences

A linear congruence is of the form  $ax \equiv b \pmod{m}$  (†)

### 0.7.2. Theorem

The congruence  $(\dagger)$  can be solved if and only if  $(a,m)\mid b$ 

### **Proof**

Since  $(a, m) \mid a$  and  $(a, m) \mid m$  it foolows that if  $(\dagger)$  is solvable, then we must have  $(a, m) \mid b$ 

For the converse, set d=(a,m), and suppose that  $d\mid b$ . Let  $a'=\frac{a}{d}, b'=\frac{b}{d}, m'=\frac{m}{d}$ 

Then to solve  $\dagger$  it suffices to solve  $a'x \equiv b' \pmod{m'}(\dagger\dagger)$ 

Now (due to properties of gcf) we have (a', m') = 1, and as x runs through a complete set of residues mod m', so does a'x (since there are m' of these numbers, no two of which are congruent modulo m')

Hence  $(\dagger\dagger)$  has precisely one solution modulo m'

If y is any solution of  $a'x \equiv b' \pmod{m'}$ , then the complete set of solutions modulo m of  $(\dagger)$  is given by x = y, x = y + m', x = y + 2m', ..., x = y + (d-1)m'

### 0.7.3. Example

Consider  $3x \equiv 5 \pmod{11}$ 

A complete set of residues mod 11 is  $\{0, 1, 2, ..., 10\}$ 

Another complete set of residuces is  $\{0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30\}$  mod 11

and these are congruent modulo 11 respectively to 0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8 respectively.

The value 5 occurs when x = 9

### 0.7.4. Example

Complete set of residues of 6 is  $\{0, 1, 2, 3, 4, 5\}$ 

If we multiply this set with something coprime to 6 then  $\{0, 5, 10, 15, 20, 25\}$  is still complete set of residues

However if we multiply by something that is not coprime to 6, such as 2, then the set  $\{0, 2, 4, 6, 8, 10\}$  is not a complete set of residues as they are confruent to  $\{0, 2, 4, 0, 2, 4\}$  (mod 6)

recall that  $ax \equiv ay \pmod{m}$ , a can be canceld iff (a, m) = 1 (from 1.6.7)

### 0.7.5. Corollary

The above implies that  $ax \equiv b \pmod{p}$  is solvable where p is prime.

### 0.7.6. Remark

The congruence  $ax \equiv b \pmod{m}$  is equivalent to the equation ax = b + my i.e. ax - my = b. We have seen that this diophantine equation can be solved if any only if b is a multiple of (a, m)

### 0.7.7. Theorem: Chinese Remainder

Suppose that  $n_1,...,n_k\in\mathbb{Z}^+$  and that  $\left(n_i,n_j\right)=1$  for  $i\neq j$  (i.e. pairwise coprime) Then, for any  $c_1,...,c_k\in\mathbb{Z}$  there is an integer x satisfying  $x\equiv c_j \pmod{n_j}, 1\leq j\leq k$   $(\dagger)$ 

#### Proof

Let  $n=n_1\cdot n_2...n_k$  and set  $m_j=\frac{n}{n_j}$  for  $(1\leq j\leq k)$ . Then  $\left(m_j,n_j\right)=1$  and so there exists an integer  $x_j$  such that  $m_jx_j\equiv c_j\big(\mathrm{mod}\,n_j\big)(\dagger)$ 

The integer  $x = m_1 x_1 + ... + m_k x_k$  satisfies  $x \equiv c_i \pmod{n_i}$ 

### 0.7.8. Remark

Let  $x = m_1 x_1 + ... + m_2 x_2 + ... + m_k x_k$ 

Consider  $x \mod n_2$ . We have  $x \equiv 0 + m_2 x_2 + 0 + 0 + ... + 0 \pmod{n_2} \equiv c_2 \pmod{n_2}$ 

#### 0.7.9. Remark

Infact, there is a unique solution to the congruence (†) modulo  $n = n_1...n_k$ .

Proof: suppose that x, y are solutions to (†) Then we have  $x \equiv y \pmod{n_i}$  i.e.  $x - y \equiv 0 \pmod{n_i}$ .

Since the integers  $n_i$  are pairwise coprime, this implies that  $x-y\equiv 0 \pmod n$  i.e.  $x\equiv y \mod (n)$ 

#### 0.7.10. Example

Consider  $x \equiv 2 \pmod{5}$ ,  $x \equiv 3 \pmod{7}$ ,  $x \equiv 4 \pmod{11}$ .

Therefore  $n_1 = 5, n_2, = 7, n_3 = 11$  and  $n = 5 \cdot 7 \cdot 11$  so that  $m_1 = 77, m_2 = 55, m_3 = 35$ 

Hence we must solve:  $77x_1 \equiv 2 \pmod{5}, 55x_2 \equiv 3 \pmod{7}, 35x_3 \equiv 4 \pmod{11}$ 

Which can be simplified to  $2x_1 \equiv 2 \pmod{5}$ ,  $6x_2 \equiv 3 \pmod{7}$ ,  $2x_3 \equiv 4 \pmod{11}$ 

A solution is given by  $x=77x_1+55x_2+35x_3$  and we can take  $x_1=1, x_2=4, x_3=2$  which give x=367

### 0.7.11. Definition: Order of x

Suppose that  $m \in \mathbb{Z}^+$  and  $x \in \mathbb{Z}$  with (m, x) = 1. The order of  $x \pmod m$  is the smallest positive integer l satisfying  $x^l \equiv 1 \pmod m$ 

### 0.7.12. Example

the powers of  $3 \mod 11$  are  $3, 9, 5, 4, 1, 3, 9, \dots$  Then the order of  $3 \mod 11$  is 5

### 0.7.13. Proposition

 $x^n \equiv 1 \mod(m) \Leftrightarrow n \text{ is a multiple of } l. \text{ Where } l \text{ is the order of } x \mod m.$ 

#### **Proof**

We have  $n=ql+r, 0 \le r \le l-1$ . Therefore  $x^n=x^{ql}\cdot x^r=x^r$ . We have that  $x^r=1$  iff r=0

### 0.7.14. Theorem: Fremat's Little Theorem

Suppose that  $m \in \mathbb{Z}^+$  and let  $x \in \mathbb{Z}$  with (m,x)=1 . Consider the sequence  $x,x^2,x^3,\dots$ 

Then there exist k, h with  $x^k \equiv x^h \pmod{m}$ .

Since (x, m) = 1 this implies that  $x^{h-k} \equiv 1 \pmod{m}$ 

### 0.8. January 28

We finish Fermat's Little Theorem:

#### 0.8.1. Definition: Fermat's Little Theorem

Suppose that  $m \in \mathbb{Z}^+$  and  $x \in \mathbb{Z}$  with (m,x)=1. The order of  $x \mod m$  is the smallest positive integer l satisfying  $x^l \equiv 1 \pmod m$ 

### 0.8.2. Proposition

We have that  $x^n \equiv 1 \pmod{m}$  if and only if n is a multiple of l

### 0.8.3. Remark

Suppose that p is a prime number. Let  $1 \le r \le p-1$  be an integer. Recall that  $\binom{p}{r} = \frac{p!}{(p-r)!r!}$ 

We therefore see that  $p\mid \binom{p}{r}$  i.e.  $\binom{p}{r}\equiv 0(\operatorname{mod} p)$ 

Now suppose that x, y are intleterninates. Then

$$(x+y)^p = \binom{p}{1}x^{p-1}y + \dots + \binom{p}{1}x^{p\cdot r}y^r + \dots + pxy^{p-1} + y^p$$
$$\equiv x^p + y^p \pmod{p}$$

Hence one can show by induction that  $\left(x_1+x_2+\ldots+x_n\equiv x_1^p+x_2^p+\ldots+x_n^p(\operatorname{mod} p)\right)$ 

### 0.8.4. Theorem: Fermat's Little Theorem

Suppose that p is a prime number and that  $x \not\equiv 0 \pmod{p}$ . Then  $x^{p-1} \equiv 1 \pmod{p}$ 

### **Proof**

We have x = 1 + 1 + ... + 1 (x times) therefore  $x^p = (1 + 1 + ... + 1)^p \equiv 1^p + 1^p + ... + 1^p \pmod{p} \equiv x \pmod{p}$ . Since (x, p) = 1 this implies that  $x^{p-1} \equiv 1 \pmod{p}$ 

Second proof: Consider the numbers x, 2x, 3x, ..., (p-1)x. There are p-1 numbers in this set and no two fo them are congruent modulo p. Here this set forms a complete set of non-zero residues modulo p, and are congruent (in some order) to 1, 2, 3, ..., p-1

Therefore  $x \cdot 2x \cdot 3x...(p-1)x \equiv 1 \cdot 2 \cdot 3...(p-1) \pmod{p}$  i.e.  $x^{p-1} \cdot (p-1)! \equiv (p-1)! \pmod{p}$ 

Since (p,(p-1)!)=1, it foolows that  $x^{p-1}\equiv 1 \pmod p$ 

### **0.8.5.** Definition: Euler $\phi$ function

Suppose that  $m \in \mathbb{Z}^+$ . Then  $\phi(m)$  is defined to be the number of elements in the set 1, 2, ..., m-1 that are coprime to m.

Example: suppose that p is a prime. then  $\phi(p) = p - 1$ 

### 0.8.6. Theorem: Euler's

Suppose that  $m \in \mathbb{Z}^+$  and that (x,m)=1. Then  $x^{\phi(m)}\equiv 1$ 

### **Proof**

Let  $\alpha_1, \alpha_2, ..., \alpha_{\phi(m)}$  denote the elements of the set  $\{1, 2, ..., m-1\}$  that are coprime to m.

Then the numbers  $x \cdot \alpha_1, ..., x \cdot \alpha_{\phi(m)}$  are congruent (in some order) to the numbers  $\alpha_1, ..., \alpha_{\phi(m)}$ 

In other words  $x\alpha_1...x\alpha_{\phi(m)}\equiv\alpha_1...\alpha_{\phi(m)}(\operatorname{mod} m)$ 

i.e.  $x^{\phi(m)} \cdot \alpha_1 ... \alpha_{\phi(m)} \equiv \alpha_1 ... \alpha_{\phi(m)} \pmod{m}$ . Hence  $x^{\phi(m)} \equiv 1 \pmod{m}$ .

## 0.8.7. Example

Take m=20, the positive integers less than 20 and corpime to 20 are 1,3,7,9,11,13,17,19 Therefore  $\phi(m)=8$ . Note that if we multiply this set of numbers of 3 then none of the new numbers will be congruent to 20. i.e. the residues would be  $3,9,1,7,13,19,11,17 \pmod{20}$ .

We have  $3^8 \equiv 1 \pmod{20}$  and (note that  $3^8 = 6561$ )

### 0.8.8. Theorem: Wilson's Theofrem

If p is a prime, then  $(p-1)! \equiv 1 \pmod{p}$ 

### **Proof**

Suppose that p > 3. (the cases p = 2, 3 are clear.)

Consider the set of integers  $S = \{1, 2, 3, ..., p-1\}$ 

For each  $a \in S$  there exists a unique  $a' \in S$  such that  $aa' \equiv 1 \pmod{p}$ 

If a=a' then we have  $a^2\equiv 1(\bmod{\,p})$  if and only if  $a^2-1\equiv 0(\bmod{\,p})$  if and only if  $(a-1)(a+1)(\bmod{\,p})\equiv 0$  if and only if  $a-1\equiv 0(\bmod{\,p})\Rightarrow a\equiv 1(\bmod{\,p})$  or  $a+1\equiv 0(\bmod{\,p})\Rightarrow a\equiv -1(\bmod{\,p})$ 

So the set of integers  $\{2,3,...,p-2\}$  may be grouped into pairs a,a' such that  $a\not\equiv a'$  and  $aa'\equiv 1(\bmod\,p)$ , Hence it follows that

$$2\cdot 3\cdot \ldots \cdot (p-2) \equiv 1 (\operatorname{mod} p) \Rightarrow 2\cdot 3\cdot \ldots \cdot (p-2)(p-1) \equiv p-1 (\operatorname{mod} p) \equiv -1 (\operatorname{mod} p)$$

i.e.  $(p-1)! \equiv -1 \pmod{p}$ 

### 0.8.9. Example

```
Let p=13 and consider the integers 2,3,...,11. 2 \cdot 7 \equiv 1 \pmod{13}3 \cdot 9 \equiv 1 \pmod{13}4 \cdot 10 \equiv 1 \pmod{13}5 \cdot 8 \equiv 1 \pmod{13}We have 6 \cdot 11 \equiv 1 \pmod{13}So 11! = (2 \cdot 7)(3 \cdot 9)(4 \cdot 10)(5 \cdot 8)(6 \cdot 11) \equiv 1 \pmod{13}. Therefore 12! \equiv 12 \equiv -1 \pmod{13}
```

The converse of Wilson's theorem is also true:

### 0.8.10. Theorem: converse of Wilson's theorem

Suppose that  $(n-1)! \equiv -1 \pmod{n}$ . Then n is prime.

#### **Proof**

Suppose that n is not prime and let d be a divisor of n with 1 < d < n. Then  $d \mid (n-1)!$ . Since  $n \mid \{(n-1)!+1\}$  by hopothesis, it follows that  $d \mid \{(n-1)!+1\}$  also. This in turn implies that  $d \mid 1$ , which is a contradiction.

Although, this is completely useless as a primarlity test

### 0.8.11. Theorem

Suppose that p is an odd prime. Then the quadratic congruence  $x^2+1\equiv 0(\bmod p)$  has a solution if and only if  $p\equiv 1(\bmod 4)$ 

### **Proof**

Suppose that a is a solution of  $x^2+1\equiv 0(\bmod{p})$ , so  $a^2\equiv -1(\bmod{p})$  Since  $p\nmid a$  then Fermat's little theorem implies  $1\equiv a^{p-1}(\bmod{p})\equiv (a^2)^{\frac{p-1}{2}}\equiv (-1)^{\frac{p-1}{2}}(\bmod{p})(\dagger)$ 

Now suppose that p=4k+3 for some k. Then  $(-1)^{\frac{p-1}{2}}=(-1)^{2k+1}=-1$  and so  $(\dagger)$  implies that  $-1\equiv 1\pmod{p}$ . This implies that  $p\mid 2$ , which is a contradiction. Hence it follows that p must be of the form 4k+1

Conversely, suppose that p = 4k + 1 for some k.

Then 
$$(p-1)!=1\cdot 2\cdot 3\cdot \ldots \cdot \frac{p-1}{2}\cdot \frac{p+1}{2}\cdot \ldots \cdot (p-2)\cdot (p-1)(*)$$

As a side note, note that we have the congruences  $p-1\equiv -1 \pmod p, p-2\equiv -2 \pmod p, ..., \frac{p+1}{2}\equiv -\frac{p-1}{2} \pmod p$ 

Rearranging the factors of (\*) gives  $(p-1)! \equiv 1(-1) \cdot 2(-2) \cdot \ldots \cdot \frac{p-1}{2} \frac{-(p-1)}{2} \equiv (-1)^{\frac{p-1}{2}} \left(1 \cdot 2 \ldots \cdot \frac{p-1}{2}\right)^2 \equiv (-1)^{\frac{p-1}{2}} \left[\left(\frac{p-1}{2}\right)!\right]^2$  and by wilson's theorem we obtain  $-1 \equiv (-1)^{\frac{p-1}{2}} \left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv (1) \left[\left(\frac{p-1}{2}\right)!\right]^2$  and therefore we know that  $\left[\left(\frac{p-1}{2}\right)!\right]^2$  is a solution to the congruence.

### 

### 0.9. Jan 30 (Sara Ramirez's notes)

Arithmetical functions

### 0.9.1. Proposition

Suppose p is prime. Then  $\phi(p^q)=p^{q-1}(p-1)$ 

### **Proof**

Consider the set of numbers  $\{0,1,2,...,p^q-1\}$  The only numbers in this set that are not coprime to p are those that are divisible by p i.e. those of the form pt for  $t=0,1,2,...,p^{q-1}-1$ . Therefore  $\phi(p^q)=p^q-p^{q-1}=p^{q-1}(p-1)$ 



### 0.9.2. Definition: multiplicative function

Let  $n = p_1^a ... p_r^{q_r}$ 

Suppose that  $f: \mathbb{Z}^+ \to \mathbb{Z}$  is a function. f is multiplicative if f(mn) = f(m)f(n) whenever (m,n) = 1 Examples: f(n) = 1 and f(n) = n are multiplicative.

### 0.9.3. Proposition

If f is a multiplicative function and F is defined by  $F(n) = \sum_{d|n} f(d)$  is also multiplicative.

#### Proof

Suppose that  $m,n\in\mathbb{Z}^+$  such that (m,n)=1

Then

$$F(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m,d_2|n} f(d_1d_2) \text{ since } (m,n) = 1$$

Recall that f is multiplicative, therefore we have  $F(mn) = \sum\limits_{d_1|m,d_2|n} f(d_1)f(d_2) = \int\limits_{d_1|m,d_2|n} f(d_2)f(d_2) = \int\limits_{d_1|m,d_2|n} f(d_2)f(d_2)f(d_2) = \int\limits_{d_1|m,d_2|n} f(d_2)f($ 

$$(\sum_{d_1|m} f(d_1) \Biggl(\sum_{d_2|n} f(d_2)\Biggr) = F(m) F(n)$$

### 0.9.4. Corollary: $d(n), \sigma(n)$ are multiplicative

Recall that 
$$d(n) = \sum\limits_{d|n} 1$$
 and  $\sigma(n) = \sum\limits_{d|n} d$ 

#### Proof

Then use the earlier examples of multiplicative functions and the above proposition.

### 0.9.5. *Theorem:* $\phi$ is multiplicative (proof 1)

We can show that the euler function  $\phi$  is multiplicative

#### **Proof**

Suppose that  $m, n \in \mathbb{Z}$  such that m, n > 1 and (m, n) = 1, then consider the following array of integers:

$$\begin{pmatrix} 0 & 1 & 2 & 3 & \dots & m{-}1 \\ m & m{+}1 & m{+}2 & m{+}3 & \dots & m{+}(m{-}1) \\ \vdots \\ (n{-}1)m & (n{-}1)(m){+}1 & \dots & \dots & \dots & (n{-}1)m{+}(m{-}1) \end{pmatrix}$$

The (cool thing) is that this array consists of mn consecutive integers, and so it is a complete set of residues mod mn. If follows that  $\phi(mn)$  entries of this array are coprime to mn. The first row is a complete set of residues mod m and all the entries in any given column are congruent mod m. Therefore there are exactly  $\phi(m)$  columns consisting of integers that are coprime to m.

Consider such a column, It's entries are of the form  $\alpha, m+\alpha, 2m+\alpha+\ldots+(n-1)m\alpha$  for some  $\alpha$ . There are n integers, no 2 of which are congruent mod n. Therefore there are  $\phi(n)$  integers in each column that are coprime to n

Hence there are  $\phi(m)\phi(n)$  learnests in the array that are coprime to both m and n, and hence mn. Which shows that  $\phi$  is multiplicative since i.e.  $\phi(mn) = \phi(m)\phi(n)$ 

### 0.9.6. Corollary

$$\left(\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)\right)$$

#### Proof

Let n have prime factorization  $n=p_1^{q_1}...p_k^{q_k}$ 

Then 
$$\phi(n) = \phi\left(p_1^{q_1}...p_k^{q_k}\right) = \phi(p_1^{q_1})...\phi\left(p_k^{q_k}\right) = p_1^{q_1-1}(p_1-1)...p_k^{q_k-1}(p_k-1) = p_1^{q_1}\left(1-\frac{1}{p_1}\right)...p_k^{q_k}\left(1-\frac{1}{p_k}\right) = n\prod_{p|n}\left(1-\frac{1}{p}\right)$$

Note that in the third equality we use 0.9.1

0.10. Feb 4

**0.10.1.** *Theorem:*  $\phi$  is multiplicative (proof 2)



**Proof** 

### 0.10.2. Corollary

If n is a positive integer then  $\phi(n) = n \prod\limits_{p|n} \left(1 - \frac{1}{p}\right)$ 

### **Proof**

See the earlier proof

2nd proof that  $\phi$  is multiplicative.

Let  $p_1..., p_k$  be distinct prime factors of n. Then

$$n \prod_{p \mid n} \left(1 - \frac{1}{p}\right) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_k}\right) = n - \sum \left(\frac{n}{p_1}\right) + \sum \left(\frac{n}{p_1 p_2}\right) - \sum \frac{n}{p_1 p_2 p_3} + \dots$$

motivation: suppose that  $n=p_1p_2$  then  $n\prod_{p|n}\left(1-\frac{1}{p}\right)=n\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^2}\right)=n-\frac{n}{p_1}-\frac{n}{p_2}+\frac{n}{p_1p_2}$  (take away integers that are divisible by  $p_1,p_2$  and add back in integers 1...n that are divisible by  $p_1\wedge p_2$ )

Now:  $n = \sum_{m=1}^{n} 1$  and note that  $\frac{n}{p_r}$  denotes the number of integers in the set  $\{1, 2, ..., n\}$  that are divisible by  $p_r$  therefore

$$\sum_{1 \le r \le k} \frac{n}{p_r} = \sum_{m=1}^n \sum_{1 \le r \le k, P_r \mid m} 1$$

For each integer m with  $1 \le m \le n$  let  $l(m) \coloneqq$  the no. of primes in  $\{p_1,...p_k\}$  that divide m.

Then we have

$$n - \sum_{1 \leq r \leq k} \frac{n}{p_r} + \sum_{1 \leq s < r \leq k} \frac{n}{p_r p_s} - \sum_{1 \leq t < s < r \leq k} \frac{1}{p_r p_s p_t} + \dots = \\ \sum_{m=1}^n \left( 1 - \sum_{r, P_r \mid m} 1 + \sum_{r > s, P_r, P_s \mid m} 1 - \dots \right) = \sum_{m=1}^n \left( 1 - \binom{l(m)}{1} + \binom{l(m)}{1} - \binom{l(m)}{3} + \dots \right)$$

Let 
$$\left(1-\binom{l(m)}{1}+\binom{l(m)}{1}-\binom{l(m)}{3}+\ldots\right)(\star)$$

Then if l(m)=0 them  $(\star)$  is equal to 1, i.e. if (m,n)=1 then  $(\star)$  is 1.

Also, if l(m) > 0 them  $(\star)$  is equal to  $(1-1)^{l(m)} = 0$ .

Then we have 
$$\sum\limits_{m=1}^n \left[\left(1-\binom{l(m)}{1}+\binom{l(m)}{2}-\binom{l(m)}{3}+\ldots\right)\right]=\sum\limits_{m,(m,n)=1}1=\phi(n)$$

### 0.10.3. Theorem

Suppose that n>0 then  $\sum\limits_{d\mid n}\phi(d)=n$ 

#### Proof

Proof 1: Let  $S=\{1,2,...,n\}$ . For each  $d\mid n$  le  $C_d=\{a\in S:(a,n)=d\}$  Then  $S=\cup_{d\mid n}C_d$  and  $C_d\cap C_{d'}=\emptyset$  if  $d\neq d'$ ,

Now suppose that  $a \in C_d$ . Then we may write a = bd where  $1 \le b \le \frac{n}{d}$  and  $\left(b, \frac{n}{d}\right) = 1$ .

So, 
$$|C_d|=|\{a\in S:(a,n)=d\}|=|\left\{1\leq b\leq \frac{n}{d}:\left(b,\frac{n}{d}\right)=1\right\}=\phi\left(\frac{n}{d}\right)$$

Hence 
$$n = \sum\limits_{d|n} \lvert C_d \rvert = \sum\limits_{d|n} \phi \left( \frac{n}{d} \right) = \sum\limits_{d|n} \phi(d)$$

Proof 2: Define a function F by  $F(n) = \sum_{d|n} \phi(d)$ . Then, since  $\phi$  is multiplicative, we have that F is multiplicative.

Now suppose that  $n=p^j$  where p is prime. Then  $F(p^j)=\sum\limits_{d|p^j}\phi(d)=\sum\limits_{i=0}^j\phi(p^i)=1+(p-1)+\left(p^2-p\right)+\left(p^3-p^2\right)+\ldots+\left(p^j-p^{j-1}\right)=p_j$ 

### **0.10.4.** Definition: $\mu$ mobius function

The Mobius function  $\mu: \mathbb{Z}^+ \to Z$  is defined by

1 if 
$$n = 1$$

0 if  $p^2 \mid n$  for some prime p

 $(-1)^r$  if  $n = p_1 p_2 ... p_r$  where the  $p_i$  are distinct primes.

For example  $\mu(2) = 1, \mu(6) = 1, \mu(4) = 0$ 

#### 0.10.5. Theorem

The function  $\mu$  is multiplicative

### Proof

Suppose that  $m,n\in\mathbb{Z}^+$  with (m,n)=1. If either  $p^2\mid m$  or  $p^2\mid n$  for some p, them  $p^2\mid mn$  and so we have  $\mu(mn)=0=\mu(m)\cdot\mu(n)$ 

Suppose therefore that m,n are such that  $m=p_1\cdot p_r, n=q_1...q_s$  where  $\left(p_i,q_j\right)$  are distinct primes. Then  $\mu(mn)=\mu(p_1...p_rq_1...q_s)=(-1)^{r+s}=(-1)^r\cdot (-1)^s=\mu(m)\cdot \mu(n)$ 

### 0.10.6. Theorem

For each positive integer  $n \geq 1$ , we have  $\sum\limits_{d|n} \mu(d) = 1$  if n=1,0 if n > 1

#### **Proof**

First observe that  $\sum\limits_{d|1}\mu(d)=\mu(1)=1.$ 

Now consider the function F defined by  $F(n) = \sum_{d|n} \mu(d)$ . Since  $\mu$  is multiplicative, we have that F is multiplicative also. Suppose that p is a prime and  $k \geq 1$ . Then

$$F \big( p^k \big) = \sum_{d \mid p^k} \mu \big( p^k \big) = \mu(1) + \mu(p) + \mu(p^2) + \ldots + \mu \big( p^k \big) = \mu(1) + \mu(p) = 1 - 1 = 0$$

So if n>1 with  $n=p_1^{k_1}...p_r^{k_r}$  then  $F(n)=F\left(p_1^{k_1}\right)...F\left(P_r^{k_r}\right))=0$ 

#### 0.10.7. Theorem: Mobius Inversion Formula

Suppose that f and F are two (not necessarily multiplicative!) functions  $f,F:\mathbb{Z}^+\to\mathbb{Z}$  related by the function  $F(n)=\sum\limits_{d\mid r}f(d)$ . Then  $f(n)=\sum\limits_{d\mid n}\mu(d)F\left(\frac{n}{d}\right)=\sum\limits_{d\mid n}\mu\left(\frac{n}{d}\right)F(d)$ 

### **Proof**

Proof: compute

$$\sum_{d|n} \mu(d) F\left(\frac{n}{d}\right) = \sum_{d|n} (\mu(d) \sum_{c \mid \left(\frac{n}{d}\right)} f(c) = \sum_{d|n} \left(\sum_{c \mid \left(\frac{n}{d}\right)} \mu(d) f(c)\right) (\dagger)$$

Now observe that  $d \mid n$  and  $c \mid \frac{n}{d}$  if and only if  $c \mid n$  and  $d \mid \frac{n}{c}$ . To see this:  $d \mid n \Rightarrow n = ad, c \mid \frac{n}{d} \Rightarrow \alpha = cp$  and so we have  $n = \alpha d = cpd \Rightarrow c \mid d$  and  $d \mid \frac{n}{c}$ 

Now 
$$\sum\limits_{d|\frac{n}{c}}\mu(d)=0$$
 if  $n\neq c,1$  if  $n=c(\star)$ 

Hence

$$\sum_{d|m} \left( \sum_{c|\frac{n}{d}} \mu(d) f(c) \right) = \sum_{d|n} \left( \sum_{d|\frac{n}{c}} f(c) \mu(d) \right) = \sum_{c|n} \left( f(c) \sum_{d|\frac{n}{c}} \mu(d) \right) (\dagger)$$

Now apply  $\star$  to the RHS of  $(\dagger)$  to obtain:  $\sum_{c|n} (f(c) \sum_{d \mid \frac{n}{c}} \mu(d) = \sum_{c|n} f(c) \sum_{d \mid \frac{n}{c}} \mu(d) = f(n)$  as required.