ENG1456 - Algoritmos Genéticos - Trabalho 2

Aluno: Matheus Carneiro Nogueira - 1810764

Professora: Karla Figueiredo

Resumo

Este documento consiste no relatório do trabalho 2 do módulo de Algoritmos Genéticos da disciplina ENG1456 da PUC-Rio. O objetivo deste trabalho é estudar diferentes modelos de Algoritmos Genéticos para a tentativa de otimização da função Rastrigin. Foi utilizada a biblioteca geneticalgorithm2 para Python. Foram consultados os materiais de aula, o livro [?] e outros materiais devidamente referenciados. Além disso, tudo que foi produzido para a realização deste trabalho encontra-se no repositório https://github.com/MathNog/Trabalhos_ICA

1 Apresentação do Problema e comentários iniciais

O objetivo é avaliar e testar todos os parâmetros do Algoritmo Genético para encontrar a função de mínimo para o problema no menor tempo possível, ou seja, com a menor quantidade de gerações. O problema a ser minimizado é a função Rastrigin, definida por:

$$f(x) = A_n + \sum_{i=1}^{n} [x_i^2 - A\cos(2\pi x_i)]$$

Figura 1: Plot da função Rastrigin

Em cada seção desse relatório será variado algum parâmetro do algoritmo genético com o intuito de melhorar a minimização da função Rastrigin, com exceção da próxima seção que apresentará os resultados para os parâmetros iniciais padrões da biblioteca. Para visualizar e comparar resultados, serão fornecidas tabelas com os valores adotados para os parâmetros e imagens dos gráficos gerados pelo código.

Os parâmetros que serão variados são max_num_iterarion, population_size, mutation_probability, elit_ratio, crossover_probability, parents_portion e crossover_type. Sempre será variado um parâmetro por vez, mantendo os demais iguais ao GA inicial. Isso será feito para avaliar o impacto de cada parâmetro na qualidade do GA. Ao final, será executado um GA com os melhores valores para cada parâmetro variado.

Serão sempre realizados 5 experimentos para cada configuração de GA e a análise será realizada com base nos resultamos médios de cada configuração.

2 GA com parâmetros iniciais dados

Os parâmetros utilizados no GA são:

max_num_iterarion	population_size	${\it mutation_probability}$	elit_ratio
100	100	0.1	0.01
crossover_probability	parents_portion	$crossover_type$	
0.5	0.3	Uniform	

3 Variação de max_num_iterarion

Esse parâmetro define por quanto tempo nosso algoritmo ficará executando, o que, em outras palavras, significa a quantidade máxima de gerações. É importante que esse valor não seja pequeno demais para que a solução possua tempo para evoluir até uma solução razoável. Por outro lado, um valor alto pode ser desnecessário caso o algoritmo convirja para algum valor ótimo em menos gerações que o número máximo.

Nú	mero	máxi	mo de gerações	Padrão
10	50	200	500	100

4 Variação de population_size

O tamanho da população é a quantidade de indivíduos em cada geração. Podemos pensar na variação desse parâmetro como uma intensificação de busca paralela. Quanto mais indivíduos na população, maior o paralelismo da busca pela solução ótima, embora exija mais capacidade computacional. Uma população pequena demais levaria muito tempo para alcançar um valor de aptidão específico enquanto que uma população maior o alcançaria mais rápido.

Tamanho da População			Padrão	
10	50	200	500	100

5 Variação de mutation_probability

Variar a taxa de mutação é variar a aleatoriedade do processo de evolução do GA, uma vez que uma mutação é uma alteração aleatória em alguns dos genes, ou indivíduos, do algoritmo. Valores de mutação muito altos geram processos muito aleatórios que podem frear a evolução da minimização, embora uma taxa pequena seja importante para aumentar as chances do algoritmo ser capaz de gerar todas as combinações de indivíduos.

A tabela abaixo exibe os diferentes valores de taxa de mutação testados:

Taxa de Mutação				Padrão
0.001	0.3	0.7	1.0	0.1

6 Variação de elit_ratio

Esse parâmetro configura o elitismo do algoritmo genético, sendo a taxa em si a porcentagem dos melhores indivíduos que será mantida para a próxima geração. Como sabemos, o elitismo é importante para mantermos a curva de otimização monotônica, neste caso sempre decrescente haja vista o fato do problema ser uma minimização. Uma taxa zero significa não haver elitismo. Taxas muito altas freiam o processo uma vez que haverá poucos novos indivíduos sendo gerados a cada geração. Taxas pequenas demais, por sua vez, aumentam as chances de termos mais indivíduos piores do que melhores na próxima geração.

A tabela abaixo exibe os diferentes valores de taxa de elitismo testados:

Taxa de Elitismo			Padrão
0.0	0.001	0.1	0.01

7 Variação de crossover_probability

Variar a taxa de crossover significa variar a taxa com a qual o algoritmo gera novos descendentes a partir dos progenitores. Altas taxas de crossover aumentam a combinação de progenitores para a geração de filhos, enquanto baixas taxas fazem com que mais filhos sejam idênticos aos pais. Taxas altas demais não são interessantes por "embaralhar" demais os filhos, fazendo com que o perfil da evolução possa ser perdido. Por outro lado, taxas pequenas demais também não são interessantes por diminuir a variabilidade genética dos filhos, o que pode frear a evolução.

COMENTAR SOBRE VALOR LIMITE DEVIDO AO PARENT PORTION

PROBLEMA AO RODAR COM TAXA 0

A tabela abaixo exibe os diferentes valores de taxa de crossover testados:

Taxa de Crossover				Padrão
0	0.25	0.75	1	0.5

8 Variação de parents_portion

A definição desse parâmetro na documentação da biblioteca não é muito clara e e confunde com a definição de elit_ratio. Suponho, com base no que entendi e discuti com a professora, que a porção de pais que o GA mantém não é, necessariamente, a melhor. Essa hipótese ganha força pelo fato de que a porcentagem parants_portion inclui, segundo a documentação, a porcentagem definida em elit_ratio. Dito isso, a análise do impacto deste parâmetro sozinho talvez não traga muitas informações interessantes. De todo modo, foram testados diferentes valores, assim como descrito na tabela abaixo:

Porcentagem de Pais mantidos			Padrão	
0.02	0.1	0.7	1	0.3

9 Variação de crossover_type

São três os tipos de crossover disponíveis: um ponto, dois pontos e uniforme. Enquanto os dois primeiros simplesmente escolhem, aleatoriamente, um ou dois pontos de corte do gene para cruzamento, o último utiliza um padrão, também aleatório, para comparar com os progenitores. Os dois últimos tipos, dois pontos e uniforme, são capazes de combinar todos os padrões dos progenitores, enquanto o de um ponto não.

Tipos de C	Padrão	
OnePoint	TwoPoints	Uniform

Referências