EXAMEN

CUESTIONES (1a: 1,2 puntos | 2a: 1 punto)

- 1°) Consideremos dos superficies esféricas concéntricas, de radios R_1 y R_2 , con $R_2 > R_1$, que están uniformemente cargadas: la interior con carga -Q y la exterior con carga Q. ¿Qué campo eléctrico generan en conjunto en las tres regiones del espacio que definen, es decir, para: $r < R_1$, $R_1 < r < R_2$ y $r > R_2$?
- 2^{α}) En un circuito RC sometido a una tensión $V_{\mathcal{G}}$, con el condensador inicialmente descargado, ¿cómo evolucionan la carga del condensador, Q, y la intensidad de corriente, I, que circula por el circuito? Indicar las expresiones y también cómo se calcularían las magnitudes que aparecen en ellas.

PROBLEMAS (1°: 1,8 puntos | 2°: 1,8 puntos | 3°: 2,4 puntos | 4°: 1,8 puntos)

 1^{er}) Razonar en qué porción del eje X el potencial eléctrico nunca es nulo: a la izqda. de Q_2 , entre Q_1 y Q_2 , o a la dcha. de Q_1 . Y calcular los dos puntos en que es nulo, uno en cada una de las otras porciones.

$$A = 1 \text{ m} \mid Q_1 = 2 \mu C \mid Q_2 = -8 \mu C \mid K = 9 \cdot 10^9 \text{ Nm}^2 C^{-2}$$

 2°) Una bobina de sección cuadrada, de lado L = 5 cm, con N espiras (N = 100) y una resistencia R = $20~\Omega$, cae por efecto de la gravedad (tomar g = $10~\text{m/s}^2$), como se ve en la figura, abandonando una zona en la que existe un campo magnético uniforme B = 0.2~T. Si se observa que se mueve con una velocidad constante v = 5~m/s y que por ella circula una intensidad I:

¿Qué valor y sentido tiene I? ¿Y qué masa, m, posee la bobina?

- 3^{er}) Para determinar el valor de R_4 , se varía el valor de R_1 , R_2 y R_5 hasta que no circule corriente a través de la resistencia R_3 . En esas condiciones se verifica una relación sencilla entre las resistencias R_1 , R_2 , R_4 y R_5 : $R_1R_5 = R_2R_4$.
- a) Deducir dicha relación y calcular con ella el valor de R₄.
- b) Determinar el valor de la resistencia equivalente en esas condiciones, R_{eq} , y la intensidad de corriente en cada resistencia.
- c) Obtener la potencia consumida por cada resistencia y verificar que su suma coincide con la potencia que se suministra al circuito.

Puente de Wheastone (circuito usado para medir resistencias)

R ₄ = ¿?	R ₅ = 45 Ω	
R ₃ = 100 Ω		
R ₁ = 20 Ω	R ₂ = 30 Ω	
R ₀ = 10 Ω	ε = 20 V	

4°) Calcular $I_{\text{B}},\ I_{\text{C}},\ I_{\text{E}},\ \alpha,\ V_{\text{CE}}$ y V_{CB} considerando que el transistor está en la región activa.

β = 100	V _{BB} = 3,2 V	V _{cc} = 8 V
V _{BE} = 0,7 V	$R_B = 5 k\Omega$	$R_C = 20 \Omega$

¿Qué tipo de transistor es? ¿Qué nos indica que trabaja en la región activa?