Cálculo Diferencial

Victoria Torroja Rubio 8/9/2025

Índice general

1.	Espa	acios métricos	3
	1.1.	Espacios normados	4
	1.2.	Bolas en un espacio métrico	7
	1.3.	Conceptos topológicos	9

Profesor: Jesús Jaramillo

Despacho: 305-E

Correo: jaramil@mat.ucm.es

Contenido:

- Topología de los espacios métricos (Cap 1-5) Aprox: 6'5 semanas
- Cálculo diferencial en varias variables (Cap 6-11) Resto

Bibliografía:

- Marsdem-Hoffman (sirve para las dos partes): 'Análisis clásico elemental'
- K. Smith (la parte de integración es más avanzada): 'Primer of modern analysis'

Materiales Campus:

- Apuntes de Victor Sánchez (apuntes muy condensados)
- Manual de Ansemil-Ponte (versión extendida de Marsden-Hoffman)
- Curso de Daniel Azagra

Capítulo 1

Espacios métricos

Definición 1.1 (Espacio métrico). Un **espacio métrico** es un par (X, d) donde X es un conjunto no vacío y $d: X \times X \to \mathbb{R}$ es una función que se llama **distancia** o **métrica**, tal que:

- 1. $d(x,y) \ge 0, \forall x,y \in X$.
- $2. \ d(x,y) = 0 \iff x = y.$
- 3. $d(x,y) = d(y,x), \forall x, y \in X$.
- 4. (Propiedad triangular) $d(x,y) \leq d(x,z) + d(z,y), \forall x,y,z \in X$.

Ejemplo. Algunos ejemplos de espacios métricos son:

- 1. Consideremos (\mathbb{R}, d) donde d(x, y) = |x y|.
- 2. La distancia euclídea en $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}:$

$$d((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

3. La 'métrica del taxi' en \mathbb{R}^2 con distancia:

$$d_1((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|.$$

- 4. Distancias geodésicas: el camino más corto (por ejemplo, en una superficie esférica el camino más corto entre dos puntos es un arco de circunferencia).
- 5. Distancias en \mathbb{R}^n . Si $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, consideramos la distancia euclídea

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

También podemos generalizar la 'métrica del taxi':

$$d_1(x, y) = |x_1 - y_1| + \dots + |x_n - y_n|$$
.

También se puede considerar la métrica

$$d_{\infty}(x, y) = \max\{|x_i - y_i| : 1 \le i \le n\}.$$

Definición 1.2 (Espacio discreto). Sea $X \neq \emptyset$ un conjunto cualquiera, y definimos $\forall x,y \in X$

$$d(x,y) = \begin{cases} 0, & \text{si } x = y \\ 1, & \text{si } x \neq y \end{cases}$$

Se dice que d es la métrica discrecta y (X,d) el espacio métrico discreto.

Definición 1.3 (Subespacio métrico). Sea (X,d) un espacio métrico y sea $Y \subset X$. Se define la **métrica relativa** (o **restringida**) a Y como $d_Y(y,y') = d(y,y'), \forall y,y' \in Y$. Entonces, (Y,d_Y) es un espacio métrico que llamaremos **subespacio** de X.

1.1. Espacios normados

Definición 1.4 (Espacio normado). Un **espacio normado** es un par $(E, \|\cdot\|)$ donde E es un espacio vectorial y $\|\cdot\|: E \to \mathbb{R}$ es una función que se llama **norma** tal que:

- 1. $||x|| \ge 0, \forall x \in E$.
- 2. $||x|| = 0 \iff x = 0$.
- 3. $\|\lambda x\| = |\lambda| \|x\|, \forall \lambda \in \mathbb{K}, \forall x \in E^{a}$.
- 4. $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$.

Proposición 1.1. Sea $(E, \|\cdot\|)$ un espacio normado. Si definimos

$$d(x,y) = ||x - y||, \forall x, y \in E,$$

se obtene que d es una distancia en E, que se llama **asociada** a la norma.

Demostración. Demostremos todas las propiedades de las métricas:

- 1. Tenemos que $d(x,y) = ||x-y|| \ge 0, \forall x,y \in E$.
- 2. $d(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y$.
- 3. d(x,y) = ||y-x|| = |-1| ||x-y|| = ||x-y|| = d(x,y).

 $[^]a\mathrm{En}$ este curso $\mathbb K$ va a ser principalmente $\mathbb R.$

4. $d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y)$.

Observación. En \mathbb{R}^n , dado $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ se definen:

(Norma euclídea)
$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$$
.

$$||x||_1 = |x_1| + \dots + |x_n|$$
.

$$||x||_{\infty} = \max\{|x_i| : 1 \le i \le n\}.$$

Proposición 1.2 (Relación entre las normas en \mathbb{R}^n). $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Demostración. Supongamos que $|x_{i_0}| = ||x||_{\infty}$. Entonces, tenemos que

$$|x_{i_0}|^2 \le |x_1|^2 + \dots + |x_n|^2$$
.

Dado que la función de la raíz es creciente, tenemos que

$$||x||_{\infty} = |x_{i_0}| \le \sqrt{|x_1|^2 + \dots + |x_n|^2} = ||x||_2.$$

Por otro lado, tenemos que

$$||x||_1^2 = (|x_1| + \dots + |x_n|)^2 = |x_1|^2 + \dots + |x_n|^2 + C^1 \ge |x_1|^2 + \dots + |x_n|^2 = ||x||_2^2.$$

Finalmente, tenemos que

$$||x||_1 = |x_1| + \dots + |x_n| \le |x_{i_0}| + \dots + |x_{i_0}| = n |x_{i_0}| = n ||x||_{\infty}.$$

Definición 1.5. Dos normas $\|\cdot\|$ y $\|\cdot\|'$ en un mismo espacio vectorial E son **equivalentes** cuando existen m, M > 0 tales que

$$m||x||' \le ||x|| \le M||x||', \ \forall x \in E.$$

Observación. Hemos visto en la proposición anterior que $\|\cdot\|_1, \|\cdot\|_2$ y $\|\cdot\|_\infty$ son equivalentes en \mathbb{R}^n .

 $^{^{1}}C \geq 0.$

Definición 1.6 (Producto escalar). Sea E un espacio vectorial real. Un **producto escalar** en E es una forma bilineal, simétrica y definida positiva. Es decir, una aplicación $\langle , \rangle : E \times E \to \mathbb{R}$ tal que

- 1. $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle, \forall x, y, z \in E, \forall \lambda, \mu \in \mathbb{R}.$
- 2. $\langle x, y \rangle = \langle y, x \rangle, \forall x, y \in E$.
- 3. $\forall x \in E, \langle x, x \rangle \ge 0 \text{ y } \langle x, x \rangle = 0 \iff x = 0.$

Observación. En este caso, denotaremos $||x|| = \sqrt{\langle x, x \rangle}$.

Teorema 1.1 (Desigualdad de Cauchy-Schwarz). Sea E un espacio vectorial dotado de un producto escalar \langle , \rangle . Entonces

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||, \ \forall x, y \in E.$$

Demostración. Caso 1. Si x = 0 o y = 0, obtenemos la igualdad.

Caso 2. Si $y \neq 0$, tenemos que $\forall \alpha \in \mathbb{R}$,

$$0 \leq \langle x + \alpha y, x + \alpha y \rangle = \langle x, x \rangle + \alpha \langle x, y \rangle + \alpha \langle y, x \rangle + \alpha^2 \langle y, y \rangle = \|x\|^2 + 2\alpha \langle x, y \rangle + \alpha^2 \|y\|^2.$$

Tomamos $\alpha = -\frac{\langle x, y \rangle}{\|y\|^2}$. Así, tenemos que

$$0 \le \|x\|^2 - \frac{2\langle x, y \rangle^2}{\|y\|^2} + \frac{\langle x, y \rangle^2}{\|y\|^4} \|y\|^2 = \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}.$$

Así, tenemos que $\frac{\langle x,y\rangle^2}{\|y\|^2} \leq \|x\|^2$, por lo que $\langle x,y\rangle^2 \leq \|x\|^2\|y\|^2$ y tenemos que $|\langle x,y\rangle| \leq \|x\|\|y\|$.

Proposición 1.3. Sea E un espacio vectorial dotado de un producto escalar \langle, \rangle . Entonces, $||x|| = \sqrt{\langle x, x \rangle}$, es una norma en E, que se dice asociada a \langle, \rangle .

Demostración. Comprobamos que se cumplen las propiedades de las normas:

- 1. Tenemos que claramente $||x|| = \sqrt{\langle x, x \rangle} \ge 0, \forall x \in E$.
- 2. $||x|| = 0 \iff \langle x, x \rangle = 0 \iff x = 0$.
- 3. $\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \lambda^2 \, \langle x, x \rangle = \lambda^2 \|x\|^2$. Tomando la raíz cuadrada, $\|\lambda x\| = |\lambda| \, \|x\|$.

CAPÍTULO 1. ESPACIOS MÉTRICOS

4. Si $x, y \in E$,

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Tomando raíces, tenemos que se verifica la propiedad triangular: $||x+y|| \le ||x|| + ||y||$.

1.2. Bolas en un espacio métrico

Definición 1.7. Sea (X, d) un espacio métrico y consideramos $a \in X$, r > 0. Se definen como **bola abierta** de centro a y radio r al conjunto

$$B(a,r) = \{x \in X : d(x,a) < r\}.$$

Similarmente, se llama **bola cerrada** de centro a y radio r al conjunto

$$\overline{B}(a,r) = \{x \in X : d(x,a) \le r\}.$$

Ejemplo. Considermos bolas en \mathbb{R}^2 de distintas normas.

1. Consideremos bolas abiertas y cerradas con la métrica euclídea:

$$B_2\left(\left(0,0\right),r\right) = \left\{\left(x,y\right) : \sqrt{x^2 + y^2} < r\right\}, \ \overline{B}_2\left(\left(0,0\right),r\right) = \left\{\left(x,y\right) : \sqrt{x^2 + y^2} \le r\right\}.$$

$$\overline{B}_2((0,0),r)$$

2. Consideremos bolas abiertas y cerradas con la métrica 'del taxi':

$$B_1((0,0),r) = \{(x,y) : |x| + |y| < r\}, \overline{B}_1((0,0),r) = \{(x,y) : |x| + |y| \le r\}.$$

3. Consideremos bolas abiertas y cerradas con la métrica infinita:

$$B_{\infty}((0,0),r) = \{(x,y) : \max\{|x|,|y|\} < r\} = \{(x,y) : |x|,|y| < r\}.$$

$$\overline{B}_{\infty}\left(\left(0,0\right),r\right)=\left\{ \left(x,y\right)\ :\ \mathrm{máx}\left\{ \left|x\right|,\left|y\right|\right\} \leq r\right\} =\left\{ \left(x,y\right)\ :\ \left|x\right|,\left|y\right| \leq r\right\} .$$

 $B_{\infty}((0,0),r)$

 $\overline{B}_{\infty}((0,0),r)$

Observación. En $(\mathbb{R}, |\cdot|)$ se tiene que B(0, r) = (-r, r) y $\overline{B}(0, r) = [-r, r]$. Similarmente, tenemos que B(a, r) = (a - r, a + r) y $\overline{B}(a, r) = [a - r, a + r]$.

Observación (Relación de las bolas en \mathbb{R}^n). Sabemos que

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}.$$

Por tanto, tenemos que

$$B_1(a,r) \subset B_2(a,r) \subset B_{\infty}(a,r) \subset B_1(a,nr)^a$$
.

En efecto, si $x \in B_1(a,r)$, tenemos que $||x-a||_1 < r$. Por tanto, es fácil ver que $||x-a||_2 \le ||x-a||_1 < r$, por lo que $x \in B_2(a,r)$. El resto de inclusiones se deducen de forma análoga.

^aTambién se puede escribir $B_{\infty}\left(a,nr\right)\subset B_{1}\left(a,r\right)\subset B_{2}\left(a,r\right)\subset B_{\infty}\left(a,nr\right)$.

Definición 1.8. Sean (X,d) un espacio métrico y $A \subset X$. Se define el **diámetro** de A como

$$diam(A) = \sup \{d(x, y) : x, y \in A\} \in [0, \infty).$$

Se dice que A es **acotado** si $diam(A) < \infty$.

Proposición 1.4. Dado un espacio métrico (X,d) con $A\subset X$, tenemos que A está acotado si y solo si A está contenido en alguna bola.

- Demostración. (i) Supongamos que A está acotado, entonces $diam(A) = r < \infty$. Así, tenemos que si $x \in A$, etonces $\forall a \in A$ se tiene que $d(a,x) \le r$, por lo que $A \subset \overline{B}(a,r)$. También podemos ver que lo contiene una bola abierta: $A \subset \overline{B}(a,r) \subset B(a,r+1)$.
- (ii) Si A está contenido en una bola, tenemos que existe $x \in X$ y $\frac{r}{2} > 0$ tal que $A \subset B\left(x, \frac{r}{2}\right)$. De esta manera, si $a, b \in A$ se tiene que

$$d(a,b) \le d(a,x) + d(x,b) < \frac{r}{2} + \frac{r}{2} = r.$$

Así, se tiene que $\forall a, b \in A$, d(a, b) < r, por lo que $diam(A) \le r < \infty$, por lo que A está acotado.

1.3. Conceptos topológicos

Definición 1.9 (Conjunto abierto). Sean (X, d) un espacio métrico y $A \subset X$. Se dice que A es un **conjunto abierto** si $\forall a \in A, \exists r > 0$ tal que $B(a, r) \subset A$.

Proposición 1.5. Toda bola abierta es un conjunto abierto.

Demostración. Tomemos A = B(a, R) y $x \in B(a, R)$. Sea $\delta = d(x, a) < R$ y $r = R - \delta > 0$ ². Sea $y \in B(x, r)$, tenemos que d(x, y) < r. Así,

$$d(y, a) \le d(y, x) + d(x, a) < r + \delta = R.$$

Así, $y \in B(a, R)$, por lo que $B(x, r) \subset B(a, R)$.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_2)$.

1. Consideremos $A = \{(x,y) : 0 < x < 1\}$. Vamos a ver que es abierto. Si $a \in A$, sea a = (x,y) y consideramos $r = \min\{x,1-x\}$. Entonces, tenemos que $B_2(a,r) \subset A$

²No hace falta de escribir $r = \min\{R - \delta, \delta\}$ al tratarse de una bola.

A, en efecto, si $(x', y') \in B_2(a, r)$:

$$\sqrt{(x - x')^2 + (y - y')^2} < r \Rightarrow |x - x'| < r \Rightarrow 0 < x' < 1.$$

Así, tenemos que $(x', y') \in A$.

2. Consideremos $A = \{(x,y) : 0 < x \le 1\}$. Vamos a ver que no es abierto. En efecto, si tomamos a = (1,0) y r > 0, tenemos que $\left(1 + \frac{r}{2}, 0\right) \in B_2(a,r)$ pero $\left(1 + \frac{r}{2}, 0\right) \notin A$.

Proposición 1.6. En \mathbb{R}^n los conjuntos abiertos coinciden para $\|\cdot\|_1$, $\|\cdot\|_2$ y $\|\cdot\|_{\infty}$.

Demostración. Como se vio en una observación anterior, sabemos que

$$B_1(a,r) \subset B_2(a,r) \subset B_{\infty}(a,r) \subset B_1(a,nr)$$
.

- Sea $A \subset \mathbb{R}^n$. Si A es abierto con la norma $\|\cdot\|_2$, tenemos que $\forall a \in A, \exists r > 0$ tal que $B_2(a,r) \subset A$. Por la observación, como $B_1(a,r) \subset B_2(a,r) \subset A$, tenemos que también es abierto para la norma $\|\cdot\|_1$.
- Sea $A \subset \mathbb{R}^n$. Si A es abierto con la norma $\|\cdot\|_{\infty}$, entonces $\forall a \in A, \exists r > 0$ tal que $B_{\infty}(a,r) \subset A$. Por la observación anterior, tenemos que $B_2(a,r) \subset B_{\infty}(a,r) \subset A$, por lo que A es abierto respecto a la norma $\|\cdot\|_2$.
- Sea $A \subset \mathbb{R}^n$. Si A es abierto respecto de $\|\cdot\|_1$, tenemos que $\forall a \in A, \exists r > 0$ tal que $B_1(a,r) \subset A$. Sea $r' = \frac{r}{n} > 0$,

$$B_{\infty}\left(a,r'\right)\subset B_{1}\left(a,nr'\right)=B_{1}\left(a,r\right)\subset A.$$

Por tanto, A es abierto respecto de la norma $\|\cdot\|_{\infty}$.

Teorema 1.2 (Propiedades de los abiertos). Sea (X, d) un espacio métrico.

- 1. $X y \emptyset$ son abiertos.
- 2. La unión arbitraria de abiertos es abierto.
- 3. La intersección finita de abiertos es abierto.

Demostración. 1. Es trivial que \emptyset es abierto. Por otro lado, si $a \in X$, tenemos que $\forall r > 0$, $B(x,r) \subset X$. Así, X está abierto.

2. Supongamos que $\{A_i\}_{i\in I}$ es una familia de conjuntos abiertos y sea $A=\bigcup_{i\in I}A_i$. Si $a\in A$, tenemos que $a\in A_i$ para algún $i\in I$. Así, existe r>0 tal que $B(a,r)\subset A_i\subset\bigcup_{i\in I}A_i$. Por tanto, $B(a,r)\subset A$ y A es abierto.

3. Sean A_1, \ldots, A_m conjuntos abiertos y sea $A = A_1 \cap \cdots \cap A_m$. Si $a \in A$, tenemos que $a \in A_i$ para $1 \le i \le m$. Así, existe $r_i > 0$ tal que $B(a, r_i) \subset A_i$. Si tomamos $r = \min\{r_i : 1 \le i \le m\}$, tenemos que $B(a, r) \subset B(a, r_i), \forall i = 1, \ldots, m$. Por tanto, $B(a, r) \subset A$ y A es abierto.

Observación. La intersección infinita de conjuntos abiertos puede no ser abierto. Por ejemplo, consideremos en $(\mathbb{R}^2, \|\cdot\|_2)$ consideramos $A_m = B_2\left((0,0), \frac{1}{m}\right)$, que es abierto $\forall m \in M$. Sin embargo, $A = \bigcap_{i=1}^{\infty} A_m = \{(0,0)\}$, que no es abierto.

Definición 1.10 (Conjunto cerrado). Sea (X,d) un espacio métrico. Se dice que un conjunto $C \subset X$ es **cerrado** si X/C es abierto.

Proposición 1.7. Toda bola cerrada es un conjunto cerrado.

Demostración. En efecto, sea $C=\overline{B}\left(p,R\right)=\left\{x\in X:d\left(x,p\right)\leq R\right\}$ y sea $A=X/C=\left\{x\in X:d\left(x,p\right)>R\right\}$. Si $a\in A$, tenemos que $d\left(a,p\right)=\delta>R$. Así, tomando $r=\delta-R>0$, si $x\in B\left(a,r\right)$, tenemos que

$$d(x,p) \ge d(p,a) - d(x,a) > \delta - r = R.$$

Así, tenemos que $x \in A$, por lo que $B(a,r) \subset A$ y X/C es abierto, por lo que C es cerrado.

Observación. Es fácil ver que en $(\mathbb{R}, |\cdot|)$:

- \blacksquare (a,b) es abierto.
- \blacksquare [a, b] es cerrado.
- (a,b] y [a,b) no son ni abiertos ni cerrados.

Teorema 1.3 (Propiedades de los cerrados). Sea (X,\emptyset) un espacio métrico.

- 1. Los conjuntos X y \emptyset son cerrados.
- 2. La intersección arbitraria de cerrados es cerrado.
- 3. La unión finita de cerrados es cerrado.

Demostración. 1. Dado que $\emptyset = X/X$ y $X = X/\emptyset$, del teorema anterior se sigue que son cerrados.

2. Sean $\{C_i\}_{i\in I}$ cerrados. Entonces, $\forall i\in I$ tenemos que X/C_i es abierto, así,

$$X/\bigcap_{i\in I}C_i=\bigcup_{i\in I}\left(X/C_i\right),$$

que es abierto, por lo que $\bigcap_{i \in I} C_i$ es cerrado.

3. Sean C_1, \ldots, C_m cerrados. Entonces, $\forall i=1,\ldots,m,$ tenemos que X/C_i es abierto. Así,

$$X/\bigcup_{i=1}^{m} C_i = \bigcap_{i=1}^{m} (X/C_i),$$

es abierto, por lo que $\bigcup_{i=1}^{m} C_i$ es cerrado.

Definición 1.11 (Punto interior). Sea (X,d) un espacio métrico y $A \subset X$. Se dice que $a \in A$ es un **punto interior** de A si existe r > 0 tal que $B(a,r) \subset A$. Denotamos Int (A) al conjunto de puntos interiores de A.

Observación. Es trivial ver que $\operatorname{Int}(A) \subset A$.

Proposición 1.8. Sea (X, d) un espacio métrico y $A \subset X$.

- 1. El conjunto Int(A) es el mayor abierto contenido en A.
- 2. A es abierto si y solo si A = Int(A).

Demostración. 1. Sea $U = \operatorname{Int}(A)$. Vamos a ver que es abierto. Dado $x \in U$, tenemos que existe r > 0 tal que $B(x,r) \subset A$. Si $y \in B(x,r)$, por tratarse de una bola abierta existe r' > 0 tal que $B(y,r') \subset B(x,r) \subset A$, por lo que $y \in \operatorname{Int}(A) = U$. Por tanto, $B(x,r) \subset U$ y U es abierto.

Ahora tenemos que ver que es el mayor abierto. Supongamos que V es abierto y $V \subset A$. Sea $x \in V$, tenemos que existe r > 0 tal que $B(x,r) \subset V \subset A$. Por tanto, $x \in \text{Int}(A) = U$ y $V \subset U$.

2. Si A = Int(A) está claro que A es abierto. Recíprocamente, si A es abierto, tenemos que como A es el mayor abierto contenido en A, A = Int(A).

Ejemplo. En $(\mathbb{R}, |\cdot|)$, sea A = (0, 2]. Tenemos que Int (A) = (0, 2). En efecto,

- (i) Si $x \in (0,2)$, entonces existe r > 0 tal que $(x-r,x+r) \subset (0,2) \subset (0,2]$, por lo que $x \in \text{Int}(A)$.
- (ii) Recíprocamente, tenemos que $2 \notin \text{Int}(A)$, puesto que $\forall r > 0$ tenemos que (2-r, 2+r)

no es subconjunto de (0,2].

Definición 1.12 (Punto adherente). Sean (X, d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es **punto adherente** a A (o también **punto clausura**) si $\forall r > 0$, $A \cap B(x, r) \neq \emptyset$. Denotamos \overline{A} o Adh(A) al conjunto de puntos adherentes de A.

Observación. Se ve trivialmente que $A \subset \overline{A}$.

Ejemplo. En $(\mathbb{R}, |\cdot|)$ sea A = (0, 2]. Tenemos que $\overline{A} = [0, 2]$. En efecto:

- (i) Tenemos que $0 \in \overline{A}$, puesto que $\forall r > 0$ tenemos que $(-r, r) \cap A \neq \emptyset$. Así, tenemos que $[0, 2] \subset \overline{A}$.
- (ii) Recíprocamente, si x > 2, tenemos que existe r > 0 suficientemente pequeño tal que x r > 2, por tanto $x \notin \overline{A}$. Similarmente, podemos demostrar que $0 \notin \overline{A}$.

Lema 1.1. Sean (X, d) un espacio métrico y $A \subset X$. Entcones, $\overline{A} = X/\operatorname{Int}(X/A)$.

- Demostración. (i) Sea $x \in \overline{A}$. Tenemos que $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$, por lo que $B(x,r) \not\subset X/A$, por lo que $x \notin \operatorname{Int}(X/A)$, por lo que $x \in X/\operatorname{Int}(X/A)$.
- (ii) Sea $x \in X/\operatorname{Int}(X/A)$, entonces $x \notin \operatorname{Int}(X/A)$, es decir, $\forall r > 0$ tenemos que $B(x,r) \not\subset X/A$. Así, debe ser que $B(x,r) \cap A \neq \emptyset$, por lo que $x \in \overline{A}$.

Proposición 1.9. 1. \overline{A} es el menor cerrado que contiene a A.

- 2. Un conjunto $A \subset X$ es cerrado si y solo si $A = \overline{A}$.
- Demostración. 1. Tenemos que $\overline{A} = X/\operatorname{Int}(X/A)$, por lo que su complementario es abierto y él es cerrado. Ahora vamos a ver que es el menor cerrado que contiene a A. Sea $C \subset X$ cerrado con $A \subset C$. Tenemos que $X/C \subset X/A$, por lo que $X/C \subset \operatorname{Int}(X/A)$ y tenemos que $C \supset X/\operatorname{Int}(X/A) = \overline{A}$.
 - 2. Si $A = \overline{A}$, A es cerrado. Por otro lado, si A es cerrado, entonces su complementario, X/A es abierto, por lo que $X/A = \operatorname{Int}(X/A)$, por lo que $\overline{A} = X/\operatorname{Int}(X/A) = X/(X/A) = A$.

Definición 1.13 (Punto frontera). Sean (X,d) un espacio métrico y $A \subset X$. Se dice que $x \in X$ es un **punto frontera** de A si $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ y $B(x,r) \cap (X/A) \neq \emptyset$. Denotamos Fr(A) el conjunto de puntos frontera de A.

Observación. Tenemos que $Fr(A) = \overline{A} \cap \overline{X/A}$ y en particular Fr(A) es cerrado.

Ejemplo. En $(\mathbb{R}^2, \|\cdot\|_2)$ sea $A = \{(x, y) : 0 < x \le 1\}$. Tenemos que

$$Fr(A) = \{(0, y) : y \in \mathbb{R}\} \cup \{(1, y) : y \in \mathbb{R}\}.$$

En efecto:

- (i) Sea P = (0, y). Tenemos que $\forall r > 0$, $B(P, r) \cap A \neq \emptyset$ y $B(P, r) \cap (X/A) \neq \emptyset$. Así, $P \in Fr(A)$. De forma análoga, se puede demostrar que $P = (1, y) \in Fr(A)$.
- (ii) El recíproco lo demostramos típicamente por contrapositiva. Sea $P=(x,y)\in\mathbb{R}^2$ con $x\neq 0$ y $x\neq 1$. Hay tres posibilidades a considerar: $x\in (-\infty,0), x\in (0,1)$ o $x\in (1,\infty)$. Si $x\in (-\infty,0), \exists r>0$ tal que $B(P,r)\cap A=\emptyset$. El resto de los casos se demuestran de forma análoga.