$10_{113} \ (K10a_{36})$

 $I_1^v = \langle a, b + v, v^2 - v + 1 \rangle$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.09017 \times 10^{16} u^{25} - 1.42680 \times 10^{17} u^{24} + \dots + 1.22316 \times 10^{16} b - 1.07995 \times 10^{16}, \\ &1.10038 \times 10^{16} u^{25} - 1.55970 \times 10^{17} u^{24} + \dots + 2.44631 \times 10^{16} a - 3.72028 \times 10^{16}, \ u^{26} - 14 u^{25} + \dots - 5 u + I_2^u &= \langle u^{18} a + u^{18} + \dots - 2 a + 1, \ 2 u^{18} a + 3 u^{18} + \dots - 18 a - 13, \ u^{19} + 9 u^{18} + \dots - u - 2 \rangle \\ I_3^u &= \langle -u^2 + b - u - 1, \ u^3 + 3 a - u - 1, \ u^4 + 3 u^3 + 5 u^2 + 5 u + 3 \rangle \\ I_4^u &= \langle u^2 + b + 2 u + 2, \ -u^2 + a - u - 2, \ u^3 + 2 u^2 + 3 u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 73 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 1.09 \times 10^{16} u^{25} - 1.43 \times 10^{17} u^{24} + \dots + 1.22 \times 10^{16} b - 1.08 \times 10^{16}, \ 1.10 \times 10^{16} u^{25} - \\ 1.56 \times 10^{17} u^{24} + \dots + 2.45 \times 10^{16} a - 3.72 \times 10^{16}, \ u^{26} - 14 u^{25} + \dots - 5 u + 2 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.449813u^{25} + 6.37572u^{24} + \cdots - 2.20872u + 1.52077 \\ -0.891275u^{25} + 11.6649u^{24} + \cdots - 2.84515u + 0.882924 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.129701u^{25} - 2.02435u^{24} + \cdots - 4.90429u + 1.76047 \\ 0.0404708u^{25} - 0.734657u^{24} + \cdots - 1.02816u + 0.178460 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.441462u^{25} - 5.28919u^{24} + \cdots + 0.636436u + 0.637845 \\ -0.891275u^{25} + 11.6649u^{24} + \cdots - 2.84515u + 0.882924 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.993712u^{25} - 13.0075u^{24} + \cdots + 1.68701u - 0.405418 \\ -0.904482u^{25} + 11.7178u^{24} + \cdots + 3.56314u + 1.98742 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.363122u^{25} - 4.69350u^{24} + \cdots + 1.36473u - 0.261781 \\ -0.0933259u^{25} + 1.56850u^{24} + \cdots + 0.496488u - 0.119215 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.433618u^{25} + 6.06965u^{24} + \cdots + 9.02432u - 0.696343 \\ 0.0726845u^{25} - 0.832738u^{24} + \cdots + 2.33024u - 0.595532 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.101086u^{25} + 1.86335u^{24} + \cdots + 7.57533u - 0.827238 \\ -0.651226u^{25} + 8.60822u^{24} + \cdots + 0.0145807u + 0.0950498 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{26} + 4u^{25} + \dots - 2u + 1$
c_2, c_5	$u^{26} + 3u^{24} + \dots - 2u + 1$
c_3, c_6	$u^{26} + 2u^{25} + \dots + 2u + 1$
c_4, c_8	$u^{26} + 6u^{25} + \dots + 25u + 4$
c ₇	$u^{26} + 10u^{25} + \dots + 81u + 16$
c_{10}	$u^{26} + 14u^{25} + \dots + 5u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{26} - 10y^{25} + \dots - 18y + 1$
c_2, c_5	$y^{26} + 6y^{25} + \dots + 6y + 1$
c_3, c_6	$y^{26} + 14y^{25} + \dots + 30y + 1$
c_4, c_8	$y^{26} - 10y^{25} + \dots - 81y + 16$
c ₇	$y^{26} + 10y^{25} + \dots + 9439y + 256$
c_{10}	$y^{26} + 8y^{24} + \dots - 21y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.056680 + 0.510753I		
a = -0.215461 + 0.700629I	1.49747 + 5.09068I	-3.0367 - 14.8892I
b = 1.09337 + 1.26772I		
u = 1.056680 - 0.510753I		
a = -0.215461 - 0.700629I	1.49747 - 5.09068I	-3.0367 + 14.8892I
b = 1.09337 - 1.26772I		
u = -1.197700 + 0.220817I		
a = 0.079663 - 0.840370I	2.92221 - 2.66541I	1.40924 + 2.72285I
b = 0.005740 - 0.465412I		
u = -1.197700 - 0.220817I		
a = 0.079663 + 0.840370I	2.92221 + 2.66541I	1.40924 - 2.72285I
b = 0.005740 + 0.465412I		
u = 1.306830 + 0.079067I		
a = -0.107470 + 0.279551I	-0.13330 + 3.14853I	-10.05225 - 4.78603I
b = -0.215760 + 1.218550I		
u = 1.306830 - 0.079067I		
a = -0.107470 - 0.279551I	-0.13330 - 3.14853I	-10.05225 + 4.78603I
b = -0.215760 - 1.218550I		
u = 0.493624 + 0.435869I		
a = 0.905680 - 0.839887I	-2.18699 - 0.53885I	-10.45014 + 2.98932I
b = -0.941763 - 0.771472I		
u = 0.493624 - 0.435869I		
a = 0.905680 + 0.839887I	-2.18699 + 0.53885I	-10.45014 - 2.98932I
b = -0.941763 + 0.771472I		
u = 1.022930 + 0.871070I		
a = 0.149244 - 0.992194I	-4.53791 + 8.53907I	-8.63796 - 7.50515I
b = -0.98451 - 1.19337I		
u = 1.022930 - 0.871070I		
a = 0.149244 + 0.992194I	-4.53791 - 8.53907I	-8.63796 + 7.50515I
b = -0.98451 + 1.19337I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.129304 + 0.643314I		
a = 0.984267 - 0.517979I	-0.924615 - 1.060120I	-5.32469 + 4.59251I
b = -0.031311 - 0.673436I		
u = 0.129304 - 0.643314I		
a = 0.984267 + 0.517979I	-0.924615 + 1.060120I	-5.32469 - 4.59251I
b = -0.031311 + 0.673436I		
u = 0.967641 + 1.016650I		
a = -0.486502 + 0.264040I	-4.93342 - 1.67636I	-14.6461 + 4.2929I
b = -0.211831 + 0.733834I		
u = 0.967641 - 1.016650I		
a = -0.486502 - 0.264040I	-4.93342 + 1.67636I	-14.6461 - 4.2929I
b = -0.211831 - 0.733834I		
u = 1.26531 + 0.92939I		
a = 0.020000 + 0.955891I	2.62082 + 10.45440I	-1.93774 - 5.95159I
b = 0.97670 + 1.20748I		
u = 1.26531 - 0.92939I		
a = 0.020000 - 0.955891I	2.62082 - 10.45440I	-1.93774 + 5.95159I
b = 0.97670 - 1.20748I		
u = -0.014473 + 0.410285I		
a = -2.05321 + 1.74511I	-1.92544 + 2.11547I	-8.52748 - 4.72090I
b = 0.284111 + 0.970184I		
u = -0.014473 - 0.410285I		
a = -2.05321 - 1.74511I	-1.92544 - 2.11547I	-8.52748 + 4.72090I
b = 0.284111 - 0.970184I		
u = 0.34430 + 1.56008I		
a = 0.493219 - 0.417449I	0.16560 - 2.24390I	-7.60792 + 3.01225I
b = 0.152881 - 0.590554I		
u = 0.34430 - 1.56008I		
a = 0.493219 + 0.417449I	0.16560 + 2.24390I	-7.60792 - 3.01225I
b = 0.152881 + 0.590554I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.26295 + 1.01918I		
a = -0.042904 - 1.006760I	0.9109 + 16.4735I	-4.00000 - 9.70500I
b = -0.97925 - 1.20625I		
u = 1.26295 - 1.01918I		
a = -0.042904 + 1.006760I	0.9109 - 16.4735I	-4.00000 + 9.70500I
b = -0.97925 + 1.20625I		
u = -0.281192 + 0.094635I		
a = -1.01688 + 4.90932I	-1.56544 - 2.09555I	-7.86102 + 3.20965I
b = 0.054013 + 1.156590I		
u = -0.281192 - 0.094635I		
a = -1.01688 - 4.90932I	-1.56544 + 2.09555I	-7.86102 - 3.20965I
b = 0.054013 - 1.156590I		
u = 0.64380 + 1.75632I		
a = -0.459645 + 0.377201I	-0.95700 - 7.52275I	0
b = -0.202381 + 0.586735I		
u = 0.64380 - 1.75632I		
a = -0.459645 - 0.377201I	-0.95700 + 7.52275I	0
b = -0.202381 - 0.586735I		

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ -u^{18}a - u^{18} + \dots + 2a - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{18}a + \frac{1}{2}u^{18} + \dots - a - \frac{3}{2} \\ u^{18} + 8u^{17} + \dots - 2a - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{18}a + u^{18} + \dots - a + 1 \\ -u^{18}a - u^{18} + \dots + 2a - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{18}a - \frac{1}{2}u^{18} + \dots + a + \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{18}a + 8u^{17}a + \dots - a + 2 \\ -u^{18}a - 2u^{18} + \dots + 2a + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{18}a + 8u^{17}a + \dots - a + \frac{1}{2} \\ -u^{18}a + u^{18} + \dots + u - 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{17}a - \frac{1}{2}u^{18} + \dots + 2a + \frac{1}{2} \\ -u^{17} - 8u^{16} + \dots - 3u - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -5u^{18} - 43u^{17} - 177u^{16} - 432u^{15} - 640u^{14} - 457u^{13} + 209u^{12} + 824u^{11} + 687u^{10} - 101u^9 - 627u^8 - 368u^7 + 164u^6 + 274u^5 + 34u^4 - 104u^3 - 41u^2 + 25u + 9$$

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{38} - 3u^{37} + \dots + 10u - 1$
c_{2}, c_{5}	$u^{38} + 2u^{37} + \dots + 109u + 11$
c_3, c_6	$u^{38} + 4u^{37} + \dots + 7u + 1$
c_4, c_8	$(u^{19} - 2u^{18} + \dots - 4u + 1)^2$
<i>C</i> ₇	$(u^{19} + 8u^{18} + \dots + 4u + 1)^2$
c_{10}	$(u^{19} - 9u^{18} + \dots - u + 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{38} + 13y^{37} + \dots + 2y + 1$
c_2, c_5	$y^{38} + 4y^{37} + \dots - 13311y + 121$
c_3, c_6	$y^{38} - 8y^{37} + \dots + 5y + 1$
c_4, c_8	$(y^{19} - 8y^{18} + \dots + 4y - 1)^2$
c ₇	$(y^{19} + 8y^{18} + \dots - 16y - 1)^2$
c_{10}	$(y^{19} - 3y^{18} + \dots + 37y - 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.488744 + 1.038280I		
a = -0.478820 + 0.914222I	-1.59095 - 7.59815I	-9.53397 + 8.95368I
b = -1.13156 + 1.02165I		
u = -0.488744 + 1.038280I		
a = -1.01797 - 1.24322I	-1.59095 - 7.59815I	-9.53397 + 8.95368I
b = 0.207487 - 0.730234I		
u = -0.488744 - 1.038280I		
a = -0.478820 - 0.914222I	-1.59095 + 7.59815I	-9.53397 - 8.95368I
b = -1.13156 - 1.02165I		
u = -0.488744 - 1.038280I		
a = -1.01797 + 1.24322I	-1.59095 + 7.59815I	-9.53397 - 8.95368I
b = 0.207487 + 0.730234I		
u = -0.752606 + 0.874521I		
a = 0.794589 + 0.607095I	0.10793 - 3.14909I	-5.58222 + 3.79428I
b = -0.361281 + 0.577577I		
u = -0.752606 + 0.874521I		
a = 0.312041 - 0.899421I	0.10793 - 3.14909I	-5.58222 + 3.79428I
b = 0.895728 - 0.988619I		
u = -0.752606 - 0.874521I		
a = 0.794589 - 0.607095I	0.10793 + 3.14909I	-5.58222 - 3.79428I
b = -0.361281 - 0.577577I		
u = -0.752606 - 0.874521I		
a = 0.312041 + 0.899421I	0.10793 + 3.14909I	-5.58222 - 3.79428I
b = 0.895728 + 0.988619I		
u = -1.211130 + 0.137559I		
a = 0.091441 - 0.907433I	2.95026 - 2.66622I	1.58619 + 3.20879I
b = 0.287046 - 0.731500I		
u = -1.211130 + 0.137559I		
a = 0.040607 - 0.755883I	2.95026 - 2.66622I	1.58619 + 3.20879I
b = -0.261106 - 0.186172I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.211130 - 0.137559I		
a = 0.091441 + 0.907433I	2.95026 + 2.66622I	1.58619 - 3.20879I
b = 0.287046 + 0.731500I		
u = -1.211130 - 0.137559I		
a = 0.040607 + 0.755883I	2.95026 + 2.66622I	1.58619 - 3.20879I
b = -0.261106 + 0.186172I		
u = 0.687103 + 0.235969I		
a = -0.068144 + 1.145470I	2.42247 + 8.22022I	-0.13214 - 8.57000I
b = -1.44986 + 0.74441I		
u = 0.687103 + 0.235969I		
a = 0.69993 - 2.21894I	2.42247 + 8.22022I	-0.13214 - 8.57000I
b = -0.854742 - 0.601611I		
u = 0.687103 - 0.235969I		
a = -0.068144 - 1.145470I	2.42247 - 8.22022I	-0.13214 + 8.57000I
b = -1.44986 - 0.74441I		
u = 0.687103 - 0.235969I		
a = 0.69993 + 2.21894I	2.42247 - 8.22022I	-0.13214 + 8.57000I
b = -0.854742 + 0.601611I		
u = 0.689008 + 0.139635I		
a = -0.128846 - 1.148580I	4.26470 + 2.32942I	3.40004 - 3.00608I
b = 1.37561 - 0.64670I		
u = 0.689008 + 0.139635I		
a = -0.76853 + 1.84609I	4.26470 + 2.32942I	3.40004 - 3.00608I
b = 0.966499 + 0.555876I		
u = 0.689008 - 0.139635I		
a = -0.128846 + 1.148580I	4.26470 - 2.32942I	3.40004 + 3.00608I
b = 1.37561 + 0.64670I		
u = 0.689008 - 0.139635I		
a = -0.76853 - 1.84609I	4.26470 - 2.32942I	3.40004 + 3.00608I
b = 0.966499 - 0.555876I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.378245 + 0.567353I		
a = -0.400712 + 1.127850I	-3.84277 - 0.76131I	-13.4982 + 7.0538I
b = -1.02428 + 1.44155I		
u = -0.378245 + 0.567353I		
a = -2.53438 - 0.54959I	-3.84277 - 0.76131I	-13.4982 + 7.0538I
b = 0.057884 - 0.472439I		
u = -0.378245 - 0.567353I		
a = -0.400712 - 1.127850I	-3.84277 + 0.76131I	-13.4982 - 7.0538I
b = -1.02428 - 1.44155I		
u = -0.378245 - 0.567353I		
a = -2.53438 + 0.54959I	-3.84277 + 0.76131I	-13.4982 - 7.0538I
b = 0.057884 + 0.472439I		
u = -0.865146 + 1.042810I		
a = 0.422088 + 0.852186I	0.09217 - 3.26203I	-7.82857 + 4.58696I
b = -0.475702 + 0.708695I		
u = -0.865146 + 1.042810I		
a = 0.299650 - 0.748328I	0.09217 - 3.26203I	-7.82857 + 4.58696I
b = 0.926354 - 0.812087I		
u = -0.865146 - 1.042810I		
a = 0.422088 - 0.852186I	0.09217 + 3.26203I	-7.82857 - 4.58696I
b = -0.475702 - 0.708695I		
u = -0.865146 - 1.042810I		
a = 0.299650 + 0.748328I	0.09217 + 3.26203I	-7.82857 - 4.58696I
b = 0.926354 + 0.812087I		
u = 0.494703		
a = 0.176592	-2.37666	7.11410
b = -1.65217		
u = 0.494703		
a = 2.43502	-2.37666	7.11410
b = -0.904693		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.23842 + 1.01885I		
a = 0.079408 - 1.045930I	2.68628 - 1.90197I	1.62421 + 1.37993I
b = 0.651625 - 0.880608I		
u = -1.23842 + 1.01885I		
a = -0.214414 + 0.212371I	2.68628 - 1.90197I	1.62421 + 1.37993I
b = -0.877077 + 0.378271I		
u = -1.23842 - 1.01885I		
a = 0.079408 + 1.045930I	2.68628 + 1.90197I	1.62421 - 1.37993I
b = 0.651625 + 0.880608I		
u = -1.23842 - 1.01885I		
a = -0.214414 - 0.212371I	2.68628 + 1.90197I	1.62421 - 1.37993I
b = -0.877077 - 0.378271I		
u = -1.18917 + 1.13858I		
a = -0.003038 + 1.092820I	2.32292 - 6.77576I	-0.09240 + 8.89089I
b = -0.617784 + 0.888572I		
u = -1.18917 + 1.13858I		
a = 0.319294 - 0.326713I	2.32292 - 6.77576I	-0.09240 + 8.89089I
b = 0.963591 - 0.457047I		
u = -1.18917 - 1.13858I		
a = -0.003038 - 1.092820I	2.32292 + 6.77576I	-0.09240 - 8.89089I
b = -0.617784 - 0.888572I		
u = -1.18917 - 1.13858I		
a = 0.319294 + 0.326713I	2.32292 + 6.77576I	-0.09240 - 8.89089I
b = 0.963591 + 0.457047I		

III. $I_3^u = \langle -u^2 + b - u - 1, \ u^3 + 3a - u - 1, \ u^4 + 3u^3 + 5u^2 + 5u + 3 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{3}u^{3} + \frac{1}{3}u + \frac{1}{3} \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{3}u^{3} - u^{2} - \frac{5}{3}u - \frac{2}{3} \\ u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{3}u^{3} - u^{2} - \frac{2}{3}u - \frac{2}{3} \\ u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{2}{3}u^{3} + u^{2} - \frac{2}{3}u - \frac{2}{3} \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{2}{3}u^{3} + u^{2} + \frac{4}{3}u + \frac{1}{3} \\ -u^{3} - 2u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{3}u^{3} + u^{2} + \frac{4}{3}u + \frac{1}{3} \\ -u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{3}u^{3} + u^{2} + \frac{2}{3}u + \frac{2}{3} \\ -u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u^{3} - 2u^{2} - 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^3 + 8u^2 + 16u + 9$

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9	$u^4 - u^3 + 2u^2 + 1$
c_2, c_5, c_8	$u^4 - u^3 + 1$
c_3, c_6	$u^4 - u + 1$
<i>c</i> ₄	$u^4 + u^3 + 1$
c_{10}	$u^4 + 3u^3 + 5u^2 + 5u + 3$

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$y^4 + 3y^3 + 6y^2 + 4y + 1$
c_2, c_4, c_5 c_8	$y^4 - y^3 + 2y^2 + 1$
c_3, c_6	$y^4 + 2y^2 - y + 1$
c_{10}	$y^4 + y^3 + y^2 + 5y + 9$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.324902 + 1.227920I		
a = -0.253420 + 0.896839I	0.20545 - 7.54387I	-3.11022 + 8.87572I
b = -0.727136 + 0.430014I		
u = -0.324902 - 1.227920I		
a = -0.253420 - 0.896839I	0.20545 + 7.54387I	-3.11022 - 8.87572I
b = -0.727136 - 0.430014I		
u = -1.175100 + 0.691825I		
a = -0.079913 - 0.614328I	1.43949 - 4.22398I	-2.38978 + 5.66623I
b = 0.727136 - 0.934099I		
u = -1.175100 - 0.691825I		
a = -0.079913 + 0.614328I	1.43949 + 4.22398I	-2.38978 - 5.66623I
b = 0.727136 + 0.934099I		

IV.
$$I_4^u = \langle u^2 + b + 2u + 2, -u^2 + a - u - 2, u^3 + 2u^2 + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + u + 2 \\ -u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - 2u - 2 \\ u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{2} + 3u + 4 \\ -u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{2} - 3u - 5 \\ u^{2} + 2u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 2u + 3 \\ -u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + u + 2 \\ -u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3u^{2} + 4u + 6 \\ -u^{2} - 3u - 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-11u^2 14u 24$

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^3 - u^2 + 2u - 1$
c_2, c_5	$u^3 + u^2 - 1$
c_3, c_4, c_6	u^3-u-1
c ₇	$u^3 - 2u^2 + u - 1$
c ₈	$u^3 - u + 1$
c_{10}	$u^3 + 2u^2 + 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^3 + 3y^2 + 2y - 1$
c_2,c_5	$y^3 - y^2 + 2y - 1$
c_3, c_4, c_6 c_8	$y^3 - 2y^2 + y - 1$
c_7	$y^3 - 2y^2 - 3y - 1$
c_{10}	$y^3 + 2y^2 + 5y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.78492 + 1.30714I		
a = 0.122561 - 0.744862I	1.37919 - 2.82812I	-0.99341 + 4.27206I
b = 0.662359 - 0.562280I		
u = -0.78492 - 1.30714I		
a = 0.122561 + 0.744862I	1.37919 + 2.82812I	-0.99341 - 4.27206I
b = 0.662359 + 0.562280I		
u = -0.430160		
a = 1.75488	-2.75839	-20.0130
b = -1.32472		

V.
$$I_1^v = \langle a, \ b+v, \ v^2-v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

$$a_2 = \begin{pmatrix} v \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ -v \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v - 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -v \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -v+1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -v+1 \\ -v-1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -v+1 \\ -v-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -9

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7 c_9	$(u-1)^2$
$c_2, c_3, c_5 \ c_6$	$u^2 - u + 1$
c_8	$(u+1)^2$
c_{10}	u^2

Crossings	Riley Polynomials at each crossing		
c_1, c_4, c_7 c_8, c_9	$(y-1)^2$		
$c_2, c_3, c_5 \\ c_6$	$y^2 + y + 1$		
c_{10}	y^2		

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.500000 + 0.866025I		
a = 0	-3.28987	-9.00000
b = -0.500000 - 0.866025I		
v = 0.500000 - 0.866025I		
a = 0	-3.28987	-9.00000
b = -0.500000 + 0.866025I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_9	$((u-1)^2)(u^3 - u^2 + 2u - 1)(u^4 - u^3 + 2u^2 + 1)(u^{26} + 4u^{25} + \dots - 2u + 1)$ $\cdot (u^{38} - 3u^{37} + \dots + 10u - 1)$
c_2, c_5	$(u^{2} - u + 1)(u^{3} + u^{2} - 1)(u^{4} - u^{3} + 1)(u^{26} + 3u^{24} + \dots - 2u + 1)$ $\cdot (u^{38} + 2u^{37} + \dots + 109u + 11)$
c_3, c_6	$(u^{2} - u + 1)(u^{3} - u - 1)(u^{4} - u + 1)(u^{26} + 2u^{25} + \dots + 2u + 1)$ $\cdot (u^{38} + 4u^{37} + \dots + 7u + 1)$
c_4	$((u-1)^2)(u^3-u-1)(u^4+u^3+1)(u^{19}-2u^{18}+\cdots-4u+1)^2$ $\cdot (u^{26}+6u^{25}+\cdots+25u+4)$
c ₇	$(u-1)^{2}(u^{3}-2u^{2}+u-1)(u^{4}-u^{3}+2u^{2}+1)$ $\cdot ((u^{19}+8u^{18}+\cdots+4u+1)^{2})(u^{26}+10u^{25}+\cdots+81u+16)$
c_8	$((u+1)^2)(u^3 - u + 1)(u^4 - u^3 + 1)(u^{19} - 2u^{18} + \dots - 4u + 1)^2$ $\cdot (u^{26} + 6u^{25} + \dots + 25u + 4)$
c_{10}	$u^{2}(u^{3} + 2u^{2} + 3u + 1)(u^{4} + 3u^{3} + 5u^{2} + 5u + 3)$ $\cdot ((u^{19} - 9u^{18} + \dots - u + 2)^{2})(u^{26} + 14u^{25} + \dots + 5u + 2)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_9	$(y-1)^{2}(y^{3}+3y^{2}+2y-1)(y^{4}+3y^{3}+6y^{2}+4y+1)$ $\cdot (y^{26}-10y^{25}+\cdots-18y+1)(y^{38}+13y^{37}+\cdots+2y+1)$	
c_2, c_5	$(y^{2} + y + 1)(y^{3} - y^{2} + 2y - 1)(y^{4} - y^{3} + 2y^{2} + 1)(y^{26} + 6y^{25} + \cdots + (y^{38} + 4y^{37} + \cdots - 13311y + 121)$	+6y+1)
c_3, c_6	$(y^{2} + y + 1)(y^{3} - 2y^{2} + y - 1)(y^{4} + 2y^{2} - y + 1)$ $\cdot (y^{26} + 14y^{25} + \dots + 30y + 1)(y^{38} - 8y^{37} + \dots + 5y + 1)$	
c_4, c_8	$(y-1)^{2}(y^{3}-2y^{2}+y-1)(y^{4}-y^{3}+2y^{2}+1)$ $\cdot ((y^{19}-8y^{18}+\cdots+4y-1)^{2})(y^{26}-10y^{25}+\cdots-81y+16)$	
c_7	$(y-1)^{2}(y^{3}-2y^{2}-3y-1)(y^{4}+3y^{3}+6y^{2}+4y+1)$ $\cdot((y^{19}+8y^{18}+\cdots-16y-1)^{2})(y^{26}+10y^{25}+\cdots+9439y+256)$	
c_{10}	$y^{2}(y^{3} + 2y^{2} + 5y - 1)(y^{4} + y^{3} + y^{2} + 5y + 9)$ $\cdot ((y^{19} - 3y^{18} + \dots + 37y - 4)^{2})(y^{26} + 8y^{24} + \dots - 21y + 4)$	