Alice and Bob are names given to hypothetical entities or agents in systems, protocols, and games that involves the exchange of information.

- Alice and Bob are names given to hypothetical entities or agents in systems, protocols, and games that involves the exchange of information.
- They are assumed to be in different locations.

- Alice and Bob are names given to hypothetical entities or agents in systems, protocols, and games that involves the exchange of information.
- They are assumed to be in different locations.
- The specific roles they play must be clarified in different situations.

- Alice and Bob are names given to hypothetical entities or agents in systems, protocols, and games that involves the exchange of information.
- They are assumed to be in different locations.
- The specific roles they play must be clarified in different situations.
- Additional characters (e.g., Charlie, Diane, Eve, and Mallory) may be introduced as needed.

example of an *entangled state* of two qubits:

$$|\varphi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

example of an *entangled state* of two qubits:

$$|\hspace{.06cm} \hspace{.06cm} \hspace{.06cm}$$

$$|\Psi_{AB}\rangle = |\Psi_{A}\rangle \otimes |\Psi_{B}\rangle$$

example of an entangled state of two qubits:

$$|\varphi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

example of a *probabilistic state* of two bits:

$$\frac{1}{2}|00\rangle+\frac{1}{2}|11\rangle$$

example of an *entangled state* of two qubits:

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

example of a *probabilistic state* of two bits:

$$\frac{1}{2}|00\rangle + \frac{1}{2}|11\rangle$$

It is typical in the study of quantum information and computation that we view entanglement as a *resource* that can be used to accomplish different tasks.

When we do this we view the state $| \varphi^+ \rangle$ as representing one unit of entanglement called an e-bit.

example of an *entangled state* of two qubits:

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

example of a *probabilistic state* of two bits:

$$\frac{1}{2}|00\rangle + \frac{1}{2}|11\rangle$$

It is typical in the study of quantum information and computation that we view entanglement as a *resource* that can be used to accomplish different tasks.

When we do this we view the state $| \varphi^+ \rangle$ as representing one unit of entanglement called an e-bit.

- Terminology

To say that Alice and Bob share an e-bit means that Alice has a qubit A, Bob has a qubit B, and together the pair (A,B) is in the state $|\phi^+\rangle$.

```
Scenario —
```

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

 Alice is unable to physically send Q to Bob — she is only able to send classical information.

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

- Alice is unable to physically send Q to Bob she is only able to send classical information.
- Alice and Bob share an e-bit.

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

- Alice is unable to physically send Q to Bob she is only able to send classical information.
- Alice and Bob share an e-bit.

Remarks

• The state of Q is "unknown" to both Alice and Bob.

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

- Alice is unable to physically send Q to Bob she is only able to send classical information.
- Alice and Bob share an e-bit.

Remarks

- The state of Q is "unknown" to both Alice and Bob.
- Correlations (including entanglement) between Q and other systems must be preserved by the transmission.

Scenario

Alice has a *qubit* Q that she wishes to transmit to Bob.

- Alice is unable to physically send Q to Bob she is only able to send classical information.
- Alice and Bob share an e-bit.

Remarks

- The state of Q is "unknown" to both Alice and Bob.
- Correlations (including entanglement) between Q and other systems must be preserved by the transmission.
- The no-cloning theorem implies that if Bob receives the transmission, Alice must no longer have the qubit in its original state.

Initial conditions

Alice and Bob share one e-bit: Alice has a qubit A, Bob has a qubit B, and (A, B) is in the state $|\phi^+\rangle$.

Initial conditions

Alice and Bob share one e-bit: Alice has a qubit A, Bob has a qubit B, and (A, B) is in the state $|\phi^+\rangle$.

Alice also has a qubit Q that she wishes to transmit to Bob.

Protocol

 Alice performs a controlled-NOT operation, where Q is the control and A is the target.

- Alice performs a controlled-NOT operation, where Q is the control and A is the target.
- 2. Alice performs a Hadamard operation on Q.

- Alice performs a controlled-NOT operation, where Q is the control and A is the target.
- 2. Alice performs a Hadamard operation on Q.
- 3. Alice measures A and Q, obtaining binary outcomes α and b, respectively.

- Alice performs a controlled-NOT operation, where Q is the control and A is the target.
- 2. Alice performs a Hadamard operation on Q.
- 3. Alice measures A and Q, obtaining binary outcomes α and b, respectively.
- 4. Alice sends α and b to Bob.

- Alice performs a controlled-NOT operation, where Q is the control and A is the target.
- 2. Alice performs a Hadamard operation on Q.
- 3. Alice measures A and Q, obtaining binary outcomes α and b, respectively.
- 4. Alice sends α and b to Bob.
- 5. Bob performs these two steps:
 - 5.1 If $\alpha = 1$, then Bob applies an X operation to the qubit B.
 - 5.2 If b = 1, then Bob applies a Z operation to the qubit B.

Operation performed by Bob

1 if
$$ab = 00$$

Z if $ab = 01$
X if $ab = 10$
ZX if $ab = 11$

- Alice performs a controlled-NOT operation, where Q is the control and A is the target.
- 2. Alice performs a Hadamard operation on Q.
- 3. Alice measures A and Q, obtaining binary outcomes α and b, respectively.
- 4. Alice sends α and b to Bob.
- 5. Bob performs these two steps:
 - 5.1 If $\alpha = 1$, then Bob applies an X operation to the qubit B.
 - 5.2 If b = 1, then Bob applies a Z operation to the qubit B.

$$|\pi\rangle = |\phi^{+}\rangle \otimes [\propto |0\rangle + \beta |1\rangle]$$

$$= [\frac{1}{\sqrt{2}}|0\rangle\rangle + \frac{1}{\sqrt{2}}|11\rangle] \otimes [\propto |0\rangle\rangle + \beta |1\rangle]$$

$$= \frac{\propto |0\rangle\rangle + \propto |11\rangle\rangle + \beta |0\rangle\rangle + \beta |111\rangle}{\sqrt{2}}$$

$$\left|\pi_{0}\right\rangle = \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|001\rangle + \beta|111\rangle}{\sqrt{2}}$$

$$\begin{split} |\pi_0\rangle &= \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|001\rangle + \beta|111\rangle}{\sqrt{2}} \\ |\pi_1\rangle &= \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle}{\sqrt{2}} \end{split}$$

$$\begin{split} |\pi_0\rangle &= \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|001\rangle + \beta|111\rangle}{\sqrt{2}} \\ |\pi_1\rangle &= \frac{\alpha|000\rangle + \alpha|110\rangle + \beta|011\rangle + \beta|101\rangle}{\sqrt{2}} \\ |\pi_2\rangle &= \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}} \end{split}$$

$$|\pi_2\rangle = \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}}$$


```
\begin{split} |\pi_2\rangle &= \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}} \\ &= \frac{\alpha|00\rangle\big(|0\rangle + |1\rangle\big) + \alpha|11\rangle\big(|0\rangle + |1\rangle\big) + \beta|01\rangle\big(|0\rangle - |1\rangle\big) + \beta|10\rangle\big(|0\rangle - |1\rangle\big)}{2} \end{split}
```



```
\begin{split} |\pi_2\rangle &= \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}} \\ &= \frac{\alpha|00\rangle(|0\rangle + |1\rangle) + \alpha|11\rangle(|0\rangle + |1\rangle) + \beta|01\rangle(|0\rangle - |1\rangle) + \beta|10\rangle(|0\rangle - |1\rangle)}{2} \\ &= \frac{\alpha|000\rangle + \alpha|001\rangle + \alpha|110\rangle + \alpha|111\rangle + \beta|010\rangle - \beta|011\rangle + \beta|100\rangle - \beta|101\rangle}{2} \end{split}
```



```
\begin{split} |\pi_2\rangle &= \frac{\alpha|00\rangle|+\rangle + \alpha|11\rangle|+\rangle + \beta|01\rangle|-\rangle + \beta|10\rangle|-\rangle}{\sqrt{2}} \\ &= \frac{\alpha|00\rangle(|0\rangle + |1\rangle) + \alpha|11\rangle(|0\rangle + |1\rangle) + \beta|01\rangle(|0\rangle - |1\rangle) + \beta|10\rangle(|0\rangle - |1\rangle)}{2} \\ &= \frac{\alpha|000\rangle + \alpha|001\rangle + \alpha|110\rangle + \alpha|111\rangle + \beta|010\rangle - \beta|011\rangle + \beta|100\rangle - \beta|101\rangle}{2} \\ &= \frac{1}{2}(\alpha|0\rangle + \beta|1\rangle)|00\rangle + \frac{1}{2}(\alpha|0\rangle - \beta|1\rangle)|01\rangle + \frac{1}{2}(\alpha|1\rangle + \beta|0\rangle)|10\rangle + \frac{1}{2}(\alpha|1\rangle - \beta|0\rangle)|11\rangle \end{split}
```


$$\left|\pi_{2}\right\rangle = \frac{1}{2}\left(\alpha|0\rangle + \beta|1\rangle\right)\left|00\rangle + \frac{1}{2}\left(\alpha|0\rangle - \beta|1\rangle\right)\left|01\rangle + \frac{1}{2}\left(\alpha|1\rangle + \beta|0\rangle\right)\left|10\rangle + \frac{1}{2}\left(\alpha|1\rangle - \beta|0\rangle\right)\left|11\rangle + \frac{1}{2}\left(\alpha|1\rangle - \frac{1}{2}\left(\alpha|1\rangle$$

$$\begin{split} |\pi_2\rangle &= \frac{1}{2} \big(\alpha|0\rangle + \beta|1\rangle\big) |00\rangle + \frac{1}{2} \big(\alpha|0\rangle - \beta|1\rangle\big) |01\rangle + \frac{1}{2} \big(\alpha|1\rangle + \beta|0\rangle\big) |10\rangle + \frac{1}{2} \big(\alpha|1\rangle - \beta|0\rangle\big) |11\rangle \\ \\ & \text{Pr}(\alpha b = 00) = \frac{1}{4} ||\alpha|0\rangle + \beta|1\rangle ||^2 = \frac{1}{4} \end{split}$$

$\left \pi_{2}\right\rangle = \frac{1}{2}\left(\alpha 0\rangle + \beta 1\rangle\right)\left 00\rangle + \frac{1}{2}\left(\alpha 0\rangle - \beta 1\rangle\right)\left 01\rangle + \frac{1}{2}\left(\alpha 1\rangle + \beta 0\rangle\right)\left 10\rangle + \frac{1}{2}\left(\alpha 1\rangle - \beta 0\rangle\right)\left 11\rangle + \frac{1}{2}\left(\alpha 1\rangle - \beta 0\rangle\right 0\rangle$						
	ab	Probability	Conditional state of (B, A, Q)	Operation on B	Final state of B	
	00	$\frac{1}{4}$	$(\alpha 0\rangle + \beta 1\rangle) 00\rangle$	1	$\alpha 0\rangle + \beta 1\rangle$	
	01	$\frac{1}{4}$	$(\alpha 0\rangle - \beta 1\rangle) 01\rangle$	Z	$\alpha 0\rangle + \beta 1\rangle$	
	10	$\frac{1}{4}$	$(\alpha 1\rangle + \beta 0\rangle) 10\rangle$	x	$\alpha 0\rangle + \beta 1\rangle$	
	11	$\frac{1}{4}$	$(\alpha 1\rangle - \beta 0\rangle) 11\rangle$	ZX	$\alpha 0\rangle + \beta 1\rangle$	

$$|\pi_0\rangle = \tfrac{1}{\sqrt{2}} \Big(\alpha|00\rangle|0\rangle|\gamma_0\rangle + \alpha|11\rangle|0\rangle|\gamma_0\rangle + \beta|00\rangle|1\rangle|\gamma_1\rangle + \beta|11\rangle|1\rangle|\gamma_1\rangle \Big)$$

$$\begin{split} |\pi_0\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |0\rangle |\gamma_0\rangle + \alpha |11\rangle |0\rangle |\gamma_0\rangle + \beta |00\rangle |1\rangle |\gamma_1\rangle + \beta |11\rangle |1\rangle |\gamma_1\rangle \Big) \\ |\pi_1\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |0\rangle |\gamma_0\rangle + \alpha |11\rangle |0\rangle |\gamma_0\rangle + \beta |01\rangle |1\rangle |\gamma_1\rangle + \beta |10\rangle |1\rangle |\gamma_1\rangle \Big) \end{split}$$

$$\begin{split} |\pi_0\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |0\rangle |\gamma_0\rangle + \alpha |11\rangle |0\rangle |\gamma_0\rangle + \beta |00\rangle |1\rangle |\gamma_1\rangle + \beta |11\rangle |1\rangle |\gamma_1\rangle \Big) \\ |\pi_1\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |0\rangle |\gamma_0\rangle + \alpha |11\rangle |0\rangle |\gamma_0\rangle + \beta |01\rangle |1\rangle |\gamma_1\rangle + \beta |10\rangle |1\rangle |\gamma_1\rangle \Big) \\ |\pi_2\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |+\rangle |\gamma_0\rangle + \alpha |11\rangle |+\rangle |\gamma_0\rangle + \beta |01\rangle |-\rangle |\gamma_1\rangle + \beta |10\rangle |-\rangle |\gamma_1\rangle \Big) \end{split}$$

$$\begin{split} |\pi_0\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |0\rangle |\gamma_0\rangle + \alpha |11\rangle |0\rangle |\gamma_0\rangle + \beta |00\rangle |1\rangle |\gamma_1\rangle + \beta |11\rangle |1\rangle |\gamma_1\rangle \Big) \\ |\pi_1\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |0\rangle |\gamma_0\rangle + \alpha |11\rangle |0\rangle |\gamma_0\rangle + \beta |01\rangle |1\rangle |\gamma_1\rangle + \beta |10\rangle |1\rangle |\gamma_1\rangle \Big) \\ |\pi_2\rangle &= \frac{1}{\sqrt{2}} \Big(\alpha |00\rangle |+\rangle |\gamma_0\rangle + \alpha |11\rangle |+\rangle |\gamma_0\rangle + \beta |01\rangle |-\rangle |\gamma_1\rangle + \beta |10\rangle |-\rangle |\gamma_1\rangle \Big) \\ &= \frac{1}{2} \Big(\alpha |0\rangle |00\rangle |\gamma_0\rangle + \alpha |0\rangle |01\rangle |\gamma_0\rangle + \alpha |1\rangle |10\rangle |\gamma_0\rangle + \alpha |1\rangle |11\rangle |\gamma_0\rangle \\ &+\beta |1\rangle |00\rangle |\gamma_1\rangle - \beta |1\rangle |01\rangle |\gamma_1\rangle + \beta |0\rangle |10\rangle |\gamma_1\rangle - \beta |0\rangle |11\rangle |\gamma_1\rangle \Big) \end{split}$$

$\begin{split} \pi_2\rangle = \ &\frac{1}{2} \left(\alpha 0\rangle 00\rangle \gamma_0\rangle + \alpha 0\rangle 01\rangle \gamma_0\rangle + \alpha 1\rangle 10\rangle \gamma_0\rangle + \alpha 1\rangle 11\rangle \gamma_0\rangle \\ + &\beta 1\rangle 00\rangle \gamma_1\rangle - \beta 1\rangle 01\rangle \gamma_1\rangle + \beta 0\rangle 10\rangle \gamma_1\rangle - \beta 0\rangle 11\rangle \gamma_1\rangle \right) \end{split}$							
ab	Probability	Conditional state of (B, R, A, Q)	Operation on B	Final state of (B, R)			
00	$\frac{1}{4}$	$(\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle) 00\rangle$	1	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$			
01	$\frac{1}{4}$	$(\alpha 0\rangle \gamma_0\rangle - \beta 1\rangle \gamma_1\rangle) 01\rangle$	Z	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$			
10	$\frac{1}{4}$	$(\alpha 1\rangle \gamma_0\rangle + \beta 0\rangle \gamma_1\rangle) 10\rangle$	X	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$			
11	$\frac{1}{4}$	$(\alpha 1\rangle \gamma_0\rangle - \beta 0\rangle \gamma_1\rangle) 11\rangle$	ZX	$\alpha 0\rangle \gamma_0\rangle + \beta 1\rangle \gamma_1\rangle$			

Remarks on teleportation

 Teleportation is not an application of quantum information — it's a way to perform quantum communication.

Remarks on teleportation

- Teleportation is not an application of quantum information it's a way to perform quantum communication.
- Teleportation motivates entanglement distillation as a means to reliable quantum communication.

Remarks on teleportation

- Teleportation is not an application of quantum information it's a way to perform quantum communication.
- Teleportation motivates entanglement distillation as a means to reliable quantum communication.
- Beyond its potential for communication, teleportation also has fundamental importance in the study of quantum information and computation.