Permutations r_j such that $\sum_{i=1}^n \prod_{j=1}^k r_j(i)$ is maximized or minimized

Chai Wah Wu

IBM T. J. Watson Research Center P. O. Box 218, Yorktown Heights, New York 10598, USA e-mail: chaiwahwu@member.ams.org

August 12, 2015

Abstract

Tabulation of the set of permutations r_j of $\{1, \dots, n\}$ such that $\sum_{i=1}^n \prod_{j=1}^k r_j(i)$ is maximized or minimized.

1 Introduction

Consider k permutations of the integers $\{1, \dots, n\}$ denoted as $\{r_1, \dots, r_k\}$ and the value $v(n, k) = \sum_{i=1}^{n} \prod_{j=1}^{k} r_j(i)$. The maximal value of v among all k-sets of permutations, denoted as $v_{\max}(n, k)$, is $\sum_{i=1}^{n} i^k$ and is achieved when all the k permutations are the same. This is a consequence of the following result in [1]:

Lemma 1. Consider a set of nonnegative numbers $\{a_{ij}\}$, $i=1,\dots,m,\ j=1,\dots,n$. Let $a'_{i1},a'_{i2},\dots,a'_{in}$ be the numbers $a_{i1},a_{i2},\dots,a_{in}$ reordered such that $a'_{i1}\geq a'_{i2}\geq \dots \geq a'_{in}$. Then

$$\sum_{j=1}^{n} \prod_{i=1}^{m} a_{ij} \le \sum_{j=1}^{n} \prod_{i=1}^{m} a'_{ij}$$

$$\prod_{j=1}^{n} \sum_{i=1}^{m} a_{ij} \ge \prod_{j=1}^{n} \sum_{i=1}^{m} a'_{ij}$$

Finding the minimal value of v(n,k) among all k-sets of permutations, denoted as $v_{\min}(n,k)$, appears to be more complicated for k>2 and n>2. Clearly v(1,k)=1 and $v(n,1)=\sum_{i=1}^n i=\frac{n(n+1)}{2}$. Since v(n,k) is invariant under simultaneous reordering of the permutations, we can use this to define equivalence classes among k-sets of permutations.

2 The case n=2

There are only two permutations on the integers $\{1,2\}$. In this case $v_{\text{max}}(2,k)=1+2^k$. If k is even, $v_{\min}(2,k)=2^k$ is achieved with k/2 of the permutations of one kind and the other half the other kind. If k = 2m + 1 is odd, $v_{\min}(2,k) = 3 \cdot 2^m$ is achieved with m of the permutations of one kind and m+1 of them the other kind.

The case k=23

Lemma 2 (Rearrangement inequality).

$$x_n y_1 + \dots + x_1 y_n \le x_{\sigma(1)} y_1 + \dots + x_{\sigma(n)} y_n \le x_1 y_1 + \dots + x_n y_n$$

for real numbers x_i , y_i such that $x_1 \leq \cdots \leq x_n$ and $y_1 \leq \cdots \leq y_n$ and all permutations σ .

A proof of this can be found in [2].

In this case $v_{\max}(n,2) = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$. Consider the two permutations $(1,2,\cdots,n)$ and $(n,n-1,\cdots,2,1)$. The value of v(n,2) is equal to $\sum_{i=1}^n i(n-i+1) = (n+1) \sum_{i=1}^n i - \sum_{i=1}^n i^2 = \frac{n(n+1)^2}{2} - \frac{n(n+1)(2n+1)}{6} = n(n+1) \left(\frac{n+1}{2} - \frac{2n+1}{6}\right) = \frac{n(n+1)(n+2)}{6}$ and is in fact equal to $v_{\min}(n,2)$ by Lemma 2. $v_{\min}(n,2)$ by Lemma 2.

4
$$v_{\min}(n,k)$$
 for $k = 3, 4, \cdots$

The values of $v_{\min}(n,k)$ for different k's are listed in OEIS sequences [3] A070735 (k=3, https://oeis.org/A070735), A070736 (k = 4, https://oeis.org/A070736), A260356(k = 5, https://oeis.org/A260356), A260357 (k = 6, https://oeis.org/A260357),A260358 (k=7, https://oeis.org/A260358), and sequence A260359 (for the case k=8, https://oeis.org/A260359).

Partial list of values of $v_{\min}(n,k)$ (with some data taken from OEIS) are listed in Table 1. The antidiagonals of Table 1 can be found in https://oeis.org/A260355 (OEIS sequence A260355).

Table 2 is a partial table of the number of nonequivalent k-sets of permutations achieving $v_{\min}(n,k)$ where equivalence is described in Section 1. We will denote these numbers as $N_{\min}(n,k)$. For $n \leq 2$ or $k \leq 2$, $N_{\min}(n,k) = 1$. On the other hand, $N_{\min}(n,k)$ can be larger than 1 if n > 2 or k > 2. For example, the 2 sets of nonequivalent permutations that achieves $v_{\min}(3,6) = 108 \text{ are } (123,123,231,231,312,312) \text{ and } (123,132,213,231,312,321).$ The 3 sets of nonequivalent permutations that achieves $v_{\min}(5,3) = 89$ are (12345, 34251, 52314), (12345, 35214, 52341) and (12345, 35241, 52314).

Note that $N_{\max}(n,k)$ corresponding to v_{\max} satisfies $N_{\max}(n,k) = 1$ for all n and k. Table 3 lists $N_{\min}(3, k)$ for various values of k.

	k = 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n = 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	3	4	6	8	12	16	24	32	48	64	96	128	192	256	384
3	6	10	18	33	60	108	198	360	648	1188	2145	3888	7083	12844	23328
4	10	20	44	96	214	472	1043	2304	5136	11328	24993	55296	122624	271040	599832
5	15	35	89	231	600	1564	4074	10618							
6	21	56	162	484	1443	4320									
7	28	84	271	915	3089										
8	36	120	428	1608											
9	45	165	642	2664											
10	55	220	930	4208											
11	66	286	1304												
12	78	364	1781												
13	91	455	2377												·
14	105	560	3111												
15	120	680	4002												

Table 1: Partial list of $v_{\min}(n,k)$.

	k = 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n = 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	2	1	2	2	2	1	3	1	1	3
4	1	1	2	4	11	10	10	81	791	533	24	1461	3634	192	2404
5	1	1	3	12	16	188	211	2685							
6	1	1	10	110	16										
7	1	1	6												
8	1	1	16												
9	1	1	4												
10	1	1	12												
11	1	1													
12	1	1													
13	1	1													
14	1	1													
15	1	1							·					·	

Table 2: Partial list of $N_{\min}(n,k)$, the number of nonequivalent k-sets of permutations that achieve $v_{\min}(n,k)$.

.

k	$N_{\min}(3,k)$
	1
2	1
3	1
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	1
5	1
6	2
7	1
8	2
9 10	2
10	2
11	1
12	3
11 12 13 14 15	1
14	1
15	3
16	2
16 17	1
18	1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 1 3 1 4 3 2 4 1 2 5 1 3 5 2 3 5 2 3
19 20 21 22 23 24	3
20	2
21	4
22	1
23	2
24	5
25	1
26	3
27	5
27 28	2
29	3
30	6
31	2
32 33 34	2 4 6
33	6
34	3
35	1

Table 3: $N_{\min}(3, k)$ for various values of k.

5 Computing $v_{\min}(n,k)$

Since we can always pick the member in the equivalent class such that $r_1 = \{1, \dots, n\}$, we can fix r_1 . By Lemma 2, after $r_1, \dots r_{k-1}$ are chosen, the permutation r_k that minimize v(n,k) among all choices of r_k is the permutation of $\{1,\dots,n\}$ that is in reverse order from the order of the sequence of numbers $\left\{\prod_{j=1}^{k-1} r_j(1), \prod_{j=1}^{k-1} r_j(2), \dots, \prod_{j=1}^{k-1} r_j(n)\right\}$. This means we only need to test v(n,k) by choosing only r_2,\dots,r_{k-1} , as r_1 is fixed and r_k is determined by the choices for the other permutations. The number of combinations we need to check (for k > 2) is equal to the number of combinations of n! objects chosen k-2 times with replacement, which is equal to

$$\binom{n!+k-3}{k-2}$$

The following Python function computes $v_{\min}(n, k)$ (for $k \geq 2$):

6 Permutation sets achieving $v_{\min}(n, k)$

The next sections list for each n and k one k-set of permutations (there may be many) that achieves $v_{\min}(n,k)$. Concatenating the permutations and considering them as a number in base n+1, the listed k-set of permutations is the k-set with the smallest such number that achieves $v_{\min}(n,k)$. We use the letters a, b, etc. to represent the numbers 10, 11, \cdots . We omit the $n \leq 2$ or $k \leq 2$ cases as they were discussed above.

6.1
$$k = 3$$

• $n = 3$: (123, 231, 312)

- n = 4: (1234, 2341, 4213)
- n = 5: (12345, 34251, 52314)
- n = 6: (123456, 435261, 642315)
- n = 7: (1234567, 5463271, 7523416)
- n = 8: (12345678, 64572381, 86425317)
- n = 9: (123456789, 854673291, 976324518)
- n = 10: (123456789a, 96485372a1, a783452619)
- n = 11: (123456789ab, a65847932b1, b984632571a)

6.2 k = 4

- n = 3: (123, 132, 312, 321)
- n = 4: (1234, 2143, 3412, 4321)
- n = 5: (12345, 23145, 42531, 54312)
- n = 6: (123456, 235146, 632541, 653412)
- n = 7: (1234567, 3264571, 6724513, 7542136)
- n = 8: (12345678, 32457168, 87423651, 87452613)

6.3 k = 5

- n = 3: (123, 123, 231, 312, 321)
- n = 4: (1234, 1234, 3214, 4231, 4321)
- n = 5: (12345, 21453, 34512, 45231, 53124)
- n = 6: (123456, 213564, 453612, 563241, 643125)
- n = 7: (1234567, 2317564, 5371624, 6574312, 7534162)

6.4 k = 6

- n = 3: (123, 123, 231, 231, 312, 312)
- n = 4: (1234, 1234, 2134, 4312, 4321, 4321)
- n = 5: (12345, 12345, 31254, 45213, 54321, 54321)
- n = 6: (123456, 123465, 421536, 564312, 635142, 654321)

6.5 k = 7

- n = 3: (123, 123, 132, 231, 312, 312, 321)
- n = 4: (1234, 1234, 1234, 4231, 4231, 4312, 4312)
- n = 5: (12345, 12345, 21534, 45132, 45231, 52314, 54321)

6.6 k = 8

- n = 3: (123, 123, 123, 231, 231, 312, 312, 321)
- n = 4: (1234, 1234, 1243, 3124, 3421, 4213, 4321, 4321)
- n = 5: (12345, 12345, 12345, 42513, 45123, 53142, 53421, 53421)

6.7 k = 9

- n = 4: (1234, 1234, 1234, 2134, 3241, 3412, 4213, 4321, 4321)

6.8 k = 10

- n = 4: (1234, 1234, 1234, 1234, 3124, 4213, 4321, 4321, 4321, 4321)

6.9 k = 11

6.10 k = 12

- n = 4: (1234, 1234, 1234, 1243, 2143, 3124, 3412, 3421, 4213, 4321, 4321, 4321)

6.11 k = 13

- n = 4: (1234, 1234, 1234, 1234, 1234, 2143, 4213, 4213, 4321, 4321, 4321, 4321, 4321)

6.12 k = 14

- n = 4: (1234, 1234, 1234, 1234, 1234, 1324, 4132, 4132, 4312, 4312, 4321, 4321, 4321, 4321)

6.13 k = 15

- n = 4: (1234, 1234, 1234, 1234, 1234, 1234, 3214, 3421, 4213, 4213, 4231, 4231, 4231, 4321)

6.14 k = 16

- n = 4: (1234, 1234, 1234, 1234, 1243, 1243, 3124, 3124, 3421, 3421, 4213, 4213, 4321, 4321, 4321, 4321)

7 Version history

• August 12, 2015: initial version

References

- [1] H. D. Ruderman, Two New Inequalities, The American Mathematical Monthly, Vol. 59, No. 1 (Jan., 1952), pp. 29-32.
- [2] Hardy, G.H., Littlewood, J.E. and Pólya, G. (1952), Inequalities, Cambridge Mathematical Library (2nd ed.), Cambridge University Press.
- [3] The on-line encyclopedia of integer sequences, founded in 1964 by N. J. A. Sloane.