- 1. Obtener ζ con la siguiente formula $\zeta = \cos(\theta)$
 - Para $\theta = 30^{\circ}$

$$\zeta = \cos(\theta) \rightarrow \zeta = \cos(30) \rightarrow \zeta = \frac{\sqrt{3}}{2}$$

• Para $\theta = 60^{\circ}$

$$\zeta = \cos(\theta) \rightarrow \zeta = \cos(60) \rightarrow \zeta = \frac{1}{2}$$

2. Obtener Wn con la siguiente formula Wn = $\frac{\alpha}{\zeta}$

• Para
$$\alpha = 3$$
, $\zeta = \frac{\sqrt{3}}{2}$

$$Wn = \frac{\alpha}{\zeta} \rightarrow Wn = \frac{3}{\frac{\sqrt{3}}{2}} \rightarrow Wn = 2\sqrt{3}$$

• Para
$$\alpha = 3$$
, $\zeta = \frac{1}{2}$

$$Wn = \frac{\alpha}{\zeta} \rightarrow Wn = \frac{3}{\frac{1}{2}} \rightarrow Wn = 6$$

• Para
$$\alpha = 6$$
, $\zeta = \frac{\sqrt{3}}{2}$

$$Wn = \frac{\alpha}{\zeta} \rightarrow Wn = \frac{6}{\frac{\sqrt{3}}{2}} \rightarrow Wn = 4\sqrt{3}$$

• Para
$$\alpha = 6$$
, $\zeta = \frac{1}{2}$

$$Wn = \frac{\alpha}{\zeta} \rightarrow Wn = \frac{6}{\frac{1}{2}} \rightarrow Wn = 12$$

3. Obtener Mp con la siguiente formula
$$Mp = e^{-\left(\frac{\zeta \cdot \pi}{\sqrt{1-\zeta^2}}\right)}$$

• Para
$$\zeta = \frac{\sqrt{3}}{2}$$

$$Mp = e^{-\left(\frac{\zeta \cdot \pi}{\sqrt{1-\zeta^2}}\right)} \rightarrow Mp = e^{-\left(\frac{\sqrt{3}}{2} \cdot \pi\right)} \rightarrow Mp = 4,33x10^{-3}$$

• Para
$$\zeta = \frac{1}{2}$$

$$Mp = e^{-\left(\frac{\zeta \cdot \pi}{\sqrt{1-\zeta^2}}\right)} \rightarrow Mp = e^{-\left(\frac{\frac{1}{2} \cdot \pi}{\sqrt{1-\frac{1}{2}}}\right)} \rightarrow Mp = 0.16$$

4. Obtener
$$T_{S_{2\%}}$$
 con la siguiente formula $T_{S_{2\%}} = \frac{4}{\zeta \cdot \text{Wn}}$

• Para
$$\zeta = \frac{\sqrt{3}}{2}$$
, Wn = $2\sqrt{3}$

$$T_{s_{2\%}} = \frac{4}{\zeta \cdot \text{Wn}} \rightarrow T_{s_{2\%}} = \frac{4}{\frac{\sqrt{3}}{2} \cdot 2\sqrt{3}} \rightarrow T_{s_{2\%}} = \frac{4}{3}$$

• Para
$$\zeta = \frac{\sqrt{3}}{2}$$
, Wn = $4\sqrt{3}$

$$T_{s_{2\%}} = \frac{4}{\zeta \cdot \text{Wn}} \rightarrow T_{s_{2\%}} = \frac{4}{\frac{\sqrt{3}}{2} \cdot 4\sqrt{3}} \rightarrow T_{s_{2\%}} = \frac{2}{3}$$

• Para
$$\zeta = \frac{1}{2}$$
, Wn = 6

$$T_{s_{2\%}} = \frac{4}{\zeta \cdot \text{Wn}} \rightarrow T_{s_{2\%}} = \frac{4}{\frac{1}{2} \cdot 6} \rightarrow T_{s_{2\%}} = \frac{4}{3}$$

• Para
$$\zeta = \frac{1}{2}$$
, Wn = 12

$$T_{s_{2\%}} = \frac{4}{\zeta \cdot \text{Wn}} \rightarrow T_{s_{2\%}} = \frac{4}{\frac{1}{2} \cdot 12} \rightarrow T_{s_{2\%}} = \frac{2}{3}$$

5. Función de transferencia y sistema de bloques

• Para
$$\zeta = \frac{\sqrt{3}}{2}$$
, Wn = $2\sqrt{3}$

$$G_0 = \frac{2\sqrt{3}^2}{S^2 + 2 \cdot 2\sqrt{3} \cdot \frac{\sqrt{3}}{2}s + 12} \rightarrow \frac{12}{S^2 + 6S + 12} \rightarrow \frac{12}{S^2 + 6S}$$

• Para
$$\zeta = \frac{\sqrt{3}}{2}$$
, Wn = $4\sqrt{3}$

$$F_0 = \frac{4\sqrt{3}^2}{S^2 + 2 \cdot 4\sqrt{3} \cdot \frac{\sqrt{3}}{2}S + 6.298^2} \to \frac{48}{S^2 + 12S + 48} \to \frac{48}{S^2 + 12S}$$

• Para
$$\zeta = \frac{1}{2}$$
, Wn = 6

$$G_1 = \frac{6^2}{S^2 + 6 \cdot \frac{1}{2} \cdot 2s + 6^2} \rightarrow \frac{36}{S^2 + 6S + 36} \rightarrow \frac{36}{S^2 + 6S}$$

• Para
$$\zeta = \frac{1}{2}$$
, Wn = 12

$$F_1 = \frac{12^2}{S^2 + 2 \cdot \frac{1}{2} \cdot 12 \cdot S + 12^2} \rightarrow \frac{144}{S^2 + 12S + 144} \rightarrow \frac{144}{S^2 + 12S}$$

