como regla de inferencia. Esto muestra que la implicación original con una hipótesis construida mediante una disyunción de las proposiciones p_1, p_2, \dots, p_n se puede demostrar demostrando individualmente cada una de las *n* implicaciones $p_i \rightarrow q$, i = 1, 2, ..., n. Tal argumento se denomina una **demostración por casos.** A veces para demostrar que una implicación $p \to q$ es verdadera, es conveniente usar una disyunción de proposiciones $p_1 \lor p_2 \lor ... \lor p_n$ en lugar de una sola proposición p como hipótesis de la implicación, donde p y $p_1 \lor p_2 \lor ... \lor p_n$ son equivalentes. Considera el Ejemplo 23.

Eiemplos

EJEMPLO 23 Utiliza una demostración por casos para ver que |xy| = |x| |y|, donde x e y son números reales. (Recuerda que |x|, el valor absoluto de x, es igual a x cuando $x \ge 0$ e igual a -x cuando $x \le 0$).

> Solución: Sea $p \ll x$ e y son números reales» y sea $q \ll |xy| = |x| |y|$ ». Ten en cuenta que p es equivalente a $p_1 \lor p_2 \lor p_3 \lor p_4$, donde p_1 es $\langle x \rangle \geq 0$, p_2 es $\langle x \rangle \geq 0$, p_3 es $\langle x \rangle \leq 0$, p_3 es $\langle x \rangle \geq 0$ y p_4 es « $x < 0 \land y < 0$ ». Por tanto, para demostrar $p \to q$, podemos ver que $p_1 \to q$, $p_2 \to q$, $p_3 \to q$ y $p_A \rightarrow q$. (Hemos considerado estos cuatro casos porque son una elección apropiada para poder eliminar el signo del producto dentro de cada caso).

Vemos que $p_1 \to q$ porque $xy \ge 0$ cuando $x \ge 0$ e $y \ge 0$, por lo que |xy| = xy = |x||y|.

Para ver que $p_2 \to q$, ten en cuenta que si $x \ge 0$ e y < 0, entonces $xy \le 0$, por lo que |xy| = -xy= x(-y) = |x||y|. (Aquí, como y < 0, tenemos que |y| = -y).

Para ver que $p_3 \rightarrow q$, seguimos el mismo razonamiento que en el caso anterior, cambiando x por y, y viceversa.

Para ver que $p_4 \rightarrow q$, ten en cuenta que cuando x < 0 e y < 0 se sigue que xy > 0. Por tanto, |xy| = xy = (-x)(-y) = |x||y|. Esto completa la demostración.

DEMOSTRACIONES POR EQUIVALENCIA Para demostrar un teorema que viene dado por una bicondicional, esto es, una doble implicación de la forma $p \leftrightarrow q$, donde p y q son proposiciones, se puede usar la tautología

$$(p \leftrightarrow q) \leftrightarrow [(p \rightarrow q) \land (q \rightarrow p)].$$

Esto es, la proposición «p si, y sólo si, q» se puede demostrar si se demuestran las dos implicaciones «si p, entonces q» y «si q, entonces p».

EJEMPLO 24 Demuestra el teorema «El entero n es impar si, y sólo si, n^2 es impar».

Solución: Este teorema tiene la forma «p si, y sólo si, q», donde p es «n es impar» y q es « n^2 es impar». Para demostrar este teorema, necesitamos mostrar que $p \to q$ y $q \to p$ son verdaderas.

Ejemplos

Ya hemos demostrado que $p \to q$ y que $q \to p$ son verdaderas (Ejemplos 14 y 19, respectivamente). Como $p \to q$ y $q \to p$ son verdaderas, hemos demostrado que el teorema se cumple.

A veces, un teorema enuncia que varias proposiciones $p_1, p_2, ..., p_n$ son equivalentes. Tales teoremas se pueden reescribir como

$$p_1 \leftrightarrow p_2 \leftrightarrow \dots \leftrightarrow p_n$$

lo cual declara que las n proposiciones tienen los mismos valores de verdad y, por tanto, que para todo i y j, $1 \le i \le j \le n$, p_i y p_j son equivalentes. Una forma de demostrar estas equivalencias mutuas es emplear la tautología

$$[p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n] \leftrightarrow [(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land ... \land (p_n \rightarrow p_1)]$$

Esto indica que si las implicaciones $p_1 \to p_2, p_2 \to p_3, \dots, p_n \to p_1$ se pueden mostrar que son verdaderas, entonces las proposiciones $p_1, p_2, ..., p_n$ son todas equivalentes.

Esto es mucho más eficiente que probar $p_i \to p_i$ para $i \neq j$, $1 \le i \le n$ y $1 \le j \le n$.

Cuando demostramos que un grupo de sentencias son equivalentes, podemos establecer cualquier cadena de implicaciones que elijamos, ya que a través de la cadena es posible ir de una a otra cualesquiera. Por ejemplo, podemos ver que p_1, p_2 y p_3 son equivalentes mostrando que $p_1 \rightarrow p_3$, $p_3 \rightarrow p_2 \text{ y } p_2 \rightarrow p_1$.