Unit 2: Differentiation

Linear approximation

Out[•]= 154.

$$\Delta f \approx \frac{df}{dx}\Big|_{x=a} \cdot \Delta x$$
 for Δx near 0

$$f(x)$$
 $\approx f'(a)(x-a) + f(a)$ for x near a

In[•]:=
$$D[\sqrt{x}, x]$$

Out[•]=
$$\frac{1}{2 \sqrt{x}}$$

$$ln[\circ] := \frac{1}{2 \sqrt{100}}$$

Out[•]=
$$\frac{1}{20}$$

Out[•]=
$$\frac{1}{5}$$

Out[
$$\circ$$
]= 31.4

In[•]:=
$$D[\sqrt{x}, \{x, 2\}]$$

Out[•]=
$$-\frac{1}{4 x^{3/2}}$$

$$ln[\circ] := -\frac{1}{4 \times 100^{3/2}}$$

Out[•]=
$$-\frac{1}{4000}$$

Out[•]=
$$4 \pi r^2$$

Out[•]=
$$-37.6991$$

Out[•]=
$$400~\pi$$

Out[•]=
$$\frac{1}{20}$$

Product rule

If
$$h\left(x\right)=f\left(x\right)g\left(x\right)$$
 , then

$$h'(x) = f(x)g'(x) + g(x)f'(x)$$

at all points where the derivatives $\ f^{\prime}\left(x\right)$ and $g^{\prime}\left(x\right)$ are defined.

$$In[\ \circ \]:= D[\sqrt{x} \ , \ x] * Cos[x] + \sqrt{x} * - Sin[x]$$

Out(•)=
$$\frac{Cos[x]}{2\sqrt{x}} - \sqrt{x} Sin[x]$$

Out[
$$\circ$$
]= 40 .

out = 100 * -0.01 + 3 * 0.4
Out = 0.2

$$f(x) = x^2 Sin[x] Cos[x]$$

 $f'[x] = 2 x * Sin[x] * Cos[x]$
 $+ x^2 * -Cos[x] * Sin[x]$
 $+ x^2 * Sin[x] * -Sin[x]$

Quotient Rule

$$\ln[\ \circ\]:= \text{Limit}\Big[\frac{f2*g-f*g2}{t}\ ,\ t\to 0\Big]$$

Out[•]= Indeterminate

If
$$h\left(x
ight)=rac{f\left(x
ight)}{g\left(x
ight)}$$
 for all x , then

$$h'\left(x\right) = \frac{f'\left(x\right)g\left(x\right) - f\left(x\right)g'\left(x\right)}{g(x)^{2}}$$

at all points where f and g are differentiable and $g\left(x\right)
eq0.$

out
$$\circ := D\left[\frac{2 + Cos[X]}{x^2 + 1}, x\right]$$
Out $\circ := -\frac{2 \times (2 + Cos[X])}{(1 + x^2)^2}$