SF1625 Envariabelanalys Föreläsning 6

Lars Filipsson

Institutionen för matematik KTH

Vanliga tillämpningar av derivata:

- Approximation
- Växande/Avtagande
- Max/Min
- Förändringstakt, speciellt (men inte bara) hastighet
- Implicit derivering
- Senare också: gränsvärden mm

Uppgift: Låt $f(x) = \tan^2 x$. Skriv upp en ekvation för tangenten till y = f(x) i den punkt på kurvan som har x-koordinat $\pi/3$.

$$f(\frac{\pi}{3})=3$$
, $f'(x)=2(\tan x)^{1}\cdot(1+\tan^{2}x)$
 $f'(\frac{\pi}{3})=2\sqrt{3}\cdot 4=8\sqrt{3}$. Tangent:
 $y=3+8\sqrt{3}(x-\frac{\pi}{3})$

Uppgift: Skriv upp linjariseringen för $f(x) = \cos x$ kring punkten $x = \pi/6$ och använd den för att hitta ett närmevärde till $\cos \frac{\pi}{5}$.

$$x = \pi/6$$
 och anvand den for att hitta ett narmevarde till $\cos \frac{\pi}{5}$.

 $f(\pi/6) = \frac{13}{2}/2$. $f'(x) = -\sin x$, $f'(\pi/6) = -\frac{1}{2}$

Linger approx ling $\pi/6$:

 $f(x) \approx \frac{13}{2} - \frac{1}{2}(x - \frac{11}{6})$, x nare $\frac{11}{6}$
 $\cos \frac{\pi}{5} = f(\frac{\pi}{5}) \approx \frac{13}{2} - \frac{1}{2}(\frac{\pi}{5} - \frac{\pi}{6}) = \frac{13}{2} - \frac{11}{60}$
 $(\approx 0.85 - 0.05 = 0.8)$

Uppgift. Visa att $x^3 + 9x^2 + 1 = 0$ har exakt en lösning x mellan -10 och -9. Lät $f(x) = x^3 + 9x^2 + 1$. Ekv (=) f(x)=0. f(-10)=-99<0, f(-9)=1>0 och da f kontinuerlig på det slutua begr. int. [-10,-9] så följer av sats om mellanlijjande varlh att det f: f(x)=0. f(x)=3x2+18x=3x(x+6)>0 for all xe[10,7] => f strangt vaxande på intervallet, så det han finnes nogst ett nollstelle till fi inforallet.

Max/min (största/minsta värde). Satsen om max/min kan garantera existensen. Om max/min finns måste de antas i kritiska punkter, singulära punkter eller randpunkter.

Uppgift. Avgör om $f(x) = 2x^3 - 3x^2 + 1$ antar ett största och ett minsta värde när x varierar i intervallet [-1,3]. Bestäm största och minsta värdet om de finns.

Uppgift. Avgör om $f(x) = 2x^3 - 3x^2 + 1$ antar ett största och ett minsta värde när x varierar i intervallet [-1,3]. Bestäm största och minsta värdet om de finns.

Storsta och minista vardet om de minis.

$$f'(x) = 6x^2 - 6x = 6x(x-1)$$
; $f(x) = 0 \in 0$ $x = 0 \in 0$. $x = 1$
lnga sing. $f(x) = 0$; $f(x) = 0 \in 0$ $f(x) = 1$; $f(x) = 0 \in 0$. $f(x) = 1$; $f(x) = 0 \in 0$; $f(x) = 0$; f

× \-1		0		1		3	E /1	
f(x) {	+	0	_	0	+	1/2		
F(x1 loh)	1	iok max	1	6	1	lok	//	,

Uppgift. Avgör om $g(x) = \frac{1}{x} - \tan x$ antar ett största och ett minsta värde när x varierar i intervallet (0, 1). Bestäm största och minsta värdet om de finns. Hur blir det på intervallet (0, 1]?

Implicit derivering

Implicit definierade funktioner. Betrakta kurvan med ekvation

$$\underbrace{x^2 + 2x + y^2 - 4y = 5}_{\text{(y-2)}^2 - 4} \underbrace{(x+1)^2 - 1}_{\text{(y-2)}^2 - 4}$$

$$(x+1)^2-1$$
 $(y-2)^2-4$

Finn en ekvation för tangenten till kurvan i punkten (2, 1)

$$(y-2) = -\sqrt{10-(x+1)^2}$$

$$y = 2 - \sqrt{10 - (x+1)^2}$$
 $y(x)$
: $y'(z)$

$$(x+1)^2 + (y-2)^2 = 10$$

Implicit derivering

Uppgift. Betrakta kurvan med ekvation

$$x^2 + 2x + y^2 - 4y = 5.$$

Finn en ekvation för tangenten till kurvan i punkten (2, 1).

$$x^{2} + 2x + y(x)^{2} - 4y(x) = 5 deriva implisit$$

$$\Rightarrow 2x + 2 + 2y(x)y'(x) - 4y'(x) = 0 ins. (2.1)$$

$$\Rightarrow 4 + 2 + 2y'(2) - 4y'(2) = 0 \Rightarrow y'(2) = 3$$
Tangenten: $y = 1 + 3(x - 2)$

Implicit derivering

Uppgift. Bestäm med hjälp av implicit derivering en ekvation för tangenten till kurvan $xy + y^3 + x^4 = 7$ i punkten (-1, 2)

$$xy(x) + y(x)^{3} + x^{4} = 7$$
, implicit derivery:
 $\Rightarrow 1 \cdot y(x) + x \cdot y'(x) + 3y(x)^{2}y'(x) + 4x^{3} = 0$
ins. (-1,2): $2 + (-1) \cdot y'(-1) + 12 \cdot y'(-1) - 4 = 0$
 $\Rightarrow y'(-1) = \frac{2}{11}$. Tanyant: $y = 2 + \frac{2}{11}(x+1)$

Derivata i tillämpningar

Många samband kan formuleras med hjälp av derivator, t ex:

Tillväxttakten i en bakteriekoloni är proportionell mot mängden bakterier:

$$\frac{dM}{dt} = kM$$

Avsvalningstakten är proportionell mot temperaturskillnaden:

$$\frac{dT}{dt} = k(T+10)$$

Kraften är massan gånger accelerationen:

$$F = m \frac{d^2 y}{dt^2}$$

Strömstyrka är laddning per tidsenhet:

$$i = \frac{dq}{dt}$$

Hur snabbt förändras?

Uppgift: För en viss svängande massa upphängd i en fjäder gäller att dess avvikelse (i meter) från jämviktsläget vid tidpunkten *t* sekunder ges av funktionen

$$y(t)=2\sin\left(3t-\frac{\pi}{3}\right).$$

Bestäm den maximala hastighet som massan uppnår.

Hur snabbt förändras?

Dagens tentaproblem: En 5 meter lång stege står lutad mot en vägg. Stegens nederdel rör sig från väggen med en hastighet av 2 meter per sekund. Hur snabbt faller stegens överdel då nederdelen befinner sig 3 meter från väggen?

Hur snabbt förändras?

Kol 14-metoden: ett skelett hittat vid ett kloster strax söder om Rom innehåller 85 % av den ursprungliga mängden kol 14. Är det från Jesu tid? Halveringstiden är 5700 år.

Derivata i tillämpningar

Uppgift: Hur lång tid tar det att hoppa från 10 meter på Eriksdalsbadet?

(Tips: vad är accelerationen? Gör antaganden om verkligheten, ställ upp en matematisk modell och räkna!)

Envariabelanalys — bakgrund och motivation

$$v=rac{s}{t}$$

$$A = \pi r^2$$

Inför Seminarium 2

Läxa: Gör hemuppgifter2.pdf, repetera vid behov Film3, 4 och 6, Checka av moduluppgifterna. Kolla vid behov övningsfilmerna. Läs vid behov i boken. Gör inlämningsuppgifterna.

Glöm inte att se förberedande film till nästa föreläsning!