Limit Rules

L'Hoptial: $\lim_{x \to \infty} \frac{f(x)}{g(x)} =$	$\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ if $\lim g(x) = \lim f(x) = 0$ / inf
---	--

Replacement:
$$f(x) = g(x)$$
 for all x, except x=c. $\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$

Squeeze:
$$g(x) \le f(x) \le h(x)$$
. $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L \to \lim_{x \to c} f(x) = L$

Exp.:
$$\lim_{x \to \infty} f(x)^k \leftrightarrow \exp\left(\lim(k * \ln(f(x)))\right)$$

Differentiation

Parametric:
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = \frac{g'(t)}{f'(t)}$$
, and, $\frac{d^2y}{dx^2} = \frac{g''(t)f'(t) - g'(t)f''(t)}{f'(t)^3}$, x=f(t) y=g(t)

Point-slope equation:
$$y - y_1 = m(x - x_1) / y = f(a) + f'(a)(x - a)$$

Constant-power:
$$\frac{d}{dx} a^x = a^x \ln(a)$$

Volume of Solids

Disk:
$$\pi \left(\int_a^b f(x)^2 - \int_a^b g(x)^2 \right) dx$$

Shell:
$$2 * \pi \int_a^b \mathbf{x} |f(\mathbf{x}) - g(\mathbf{x})| d\mathbf{x}$$

Get a and b by checking intercepts. Check which fn >fn2

Integration By Substitution

necessary; sub in u=g(x)

5. Sub in u, change dx to du

3. Manipulate $dx = \frac{du}{u'}$

6. If (-1)du, flip sign of

integration

You can also use du = u' * dx

1. Let u = g(x)

2. Find $\frac{du}{dx}$

Partial Fractions

 $\frac{P(x)}{O(x)}$ Where Px >= Qx

1. Factor Q(x):
$$\frac{5x-4}{x^2-x-2} = \frac{5x-4}{(x-2)(x+1)}$$

2. Write out:
$$\frac{5x-4}{(x-2)(x+1)} = \frac{A}{(x-2)} + \frac{B}{(x+1)}$$

Factor in roots and solve for A/E

Integration By Parts

- Identify "reducible" derivative (Log, inv trig, Algebra, trig)
- $2. \int uv \, dx = u \int v \int u' * \left(\int v \, dx \right) \, dx$

Series Manipulation

 $\textbf{Constants:} \ \Sigma_{n=1}^{\infty} \, c a_n = c * \Sigma_{n=1}^{\infty} \, a_n \quad \text{``f(x) can be a constant if outside of the series}$

Addition: $\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$

Power Series

 $\sum_{n=0}^{\infty} c_n (x-a)^n$ Is a power series centered about a. We can check

Power series either a) converge at x=a only, b) converge for all x, c) There is a positive R s.t. the series converges absolutely if |x-a| < R & diverges if |x-a| > R

Radius of Convergence: $\lim_{n \to \infty} (|\frac{c_{n+1}}{c_n}| \ \mathit{OR} \ \sqrt{|c_n|}) = \mathit{L}, \ \mathsf{R} = \frac{1}{\mathit{L}}.$

Power Series Representation

We can represent infinite power series as polynomial functions. Manipulate to the form of the $4\ \rm series\ below:$

Geometric: The geometric series $\sum_{n=0}^{\infty} ar^n = \frac{1}{1-x}$ for |x| < 1

Alt. Geometric: $\frac{1}{1+x}$ is equivalent to $\sum_{n=0}^{\infty} (-1)^n x^n$, for |x| < 1

Harmonic: $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges for any n/x

Formula/Form

 $\lim_{n\to inf} a_n$

 $\int_{1}^{\infty} f(x) dx$

 $0\!\le a_n\le b_n$

 $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}|$

 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$

 $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$

 $\sum_{n=1}^{\infty} ar^{n-1}$

N'th term

Integral

Comparison

Ratio

Root

Alternating

Geometric

Series

P-series

Converges

Fin. num

B conv. -> a

 $0 \le L < 1$

 $0 \le L < 1$

Diverges

DNE/!=0

Inf number

A div. -> B div.

I >1

 $P \le 1$

Inconclusive

(f(x) is continuous

positive

decreasing)

L=1

L=1

(Note: try to show that the bn is decreasing if can)

Alt. Harmonic: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges to ln(2)

Taylor & Maclaurin Series

A Taylor series centered about c: $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} * (x-c)^n$

A Maclaurin series is a special case of the taylor series centered about 0: $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$

Discriminan

$$D = f_{xx}(a,b) f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

D>0	$f_{xx}(a,b) > 0$	Local Min				
D>0	$f_{xx}(a,b) < 0$	Local max				
D<0	-	Saddle Point				
D=0	-	Inconclusive				

Polar Coordinates

 $\iint f(x,y) dA = \int_{-\pi}^{\beta} \int_{a}^{b} f(r * \cos(\theta), r * \sin(\theta)) * r dr d\theta$

Critical Point: $f_x(a,b)$ AND $f_y(a,b) = 0$

 $R = \{(r, \theta) : 0 \le a \le r \le b, \alpha \le \theta \le \beta\}$

PLANES AND SHIT

Distance 2 points: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ Unit Vector: $\frac{u}{||u||}$ Dot Product: $||u|| * ||v|| * \cos(\theta)$

Cross Product: $||a|| * ||b|| * \sin(\theta)$, remember + - det (normal to a&b)

Projection: $Proj_a b = \frac{b \cdot a}{||a||^2} * a$ Composition: $Comp_a b = \frac{a \cdot b}{||a||}$

Angle between 2 planes/normals: $\frac{n_1 \cdot n_2}{||n_1|| \cdot * ||n_2||}$

Line Eqn: $\langle x,y,z\rangle = \langle x_0,y_0,z_0\rangle + t \langle a,b,c\rangle$. 2 points to find <abc>

Plane Eqn: Find 2 vectors in plane then $p \times q$ to find normal. Using any point in plane sub into $a\left(x-x_0\right) + b\left(y-y_0\right) + c\left(z-z_0\right) + d = 0$

Point to Plane: $\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$

Tangent Plane: $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

ODE

Separable: $\frac{dy}{dx} = f(x) g(y) - \text{turn into } \int \frac{1}{g(y)} dy = \int f(x) dx + c$

Reductible: $y' = g\left(\frac{y}{x}\right) - \text{let } v = \frac{y}{x}$, then y = vx & y' = v + xv'.

Manipulate and get $v' = \frac{g(v) - v}{x}$. Now apply separable ODE.

LFODE: $\frac{dy}{dx} + P(x)y = Q(x)$. Let $I(X) = e^{\int P(x) dx}$. Solve $y * I(x) = \int Q(x) * I(x) dx$

Bernoulli: $y'+p(x)y=Q(x)*y^n$. Let $u=y^{\{1-n\}}$. Then, equation is the LFODE u'+(1-n)P(x)u=(1-n)Q(x)

General Stuff

If you see a series, might be squeeze theorem. Try taking

the smallest element of the series and using that as your

Equation of sphere: $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$, where c=(h,k,l), radius = r

 $\lim f(x)^{g(x)} = \exp \Big(\lim \Big(g(x) * \ln(f(x)) \Big) \Big)$

Rationalize roots by multiplying by conjugate

lower/upper bound. Same wrt to oppostie.

Reciprocal Identities:

$$co \sec(\theta) = \frac{1}{\sin(\theta)}$$

 $\sec(\theta) = \frac{1}{\cos(\theta)}$

$$\tan(\theta)$$
 for finding bounds of double integral

For finding bounds of double integration, try subbing z=0 so you can find relation between x and y.

Functions of Several Variables

Arc length curves:
$$y=f(x) - \int_a^b \sqrt{1 + f'(x)^2} dx$$

Arclength: $\langle f,g \rangle \rightarrow \int_a^b \int_a^f f'(t) + g'(t)$ where f/g represent x/y axes.

Chain Rule: z = f(x,y), x=g(s,t), y = h(s,t): $\frac{dz}{dt} = \frac{df}{dx} * \frac{df}{dt} + \frac{df}{dy} * \frac{dy}{dt}$ (resp. s)

Implicit D: $\frac{dz}{dx/y} = -\frac{F_{x/y}(x,y,z)}{F_z(x,y,z)}$

Directional D: $D_u f = \nabla f(x,y) * u = \langle f_x, f_y \rangle \cdot u$

Level Surface to Tangent Plane: $\nabla F\left(x_0,y_0,z_0\right) *< x-x_0,y-y_0,z-z_0>=0$

Double Integrals

Surface Area: $\iint \int f_x^2 + f_y^2 + 1 \, dA$

Type 1: y=f(x), arrow pointing UP

Type 2: x = f(y), arrow pointing RIGHT

Concavity

Second Derivative Test: If f''(c) > 0, then f is concave up at c. If f''(c) < 0, then concave down at c. If f'(c) = 0, or f'(c) does not exist, it is a point of inflection.

Extrema tests

Critical Values: If c is not an endpoint, and f(c) = 0 or f'(c) DNE

FDT abs extrema: Find critical points. Evaluate function at critical points. By EVT, highest/lowest value is abs max/min

FDT loc extrema: Find critical points. If f changes from positive to negative at c, local maximum. (respectively for neg-pos)

SDT: Find critical points. If f'(c) < 0, local max. f'(c) > 0, local minimum. =0 inconclusive

Extrema Theorems

Extreme value theorem states that on [a,b], f has absolute extrema

Rolle's theorem states on (a,b), if f(a)=f(b) anywhere in the interval (including end point a,b), there is at least on c such that f(c) = 0.

Mean Value Theorem states that if f is continuous on [a,b] and differentiable on (a,b), there is at least one c such that $f'(c) = \frac{f(b) = f(a)}{b-a}$. (think of a sliding door – the gradient from a to b "slides" towards

 the gradient from a to b "slides" towards the tangent of point c)

Volume of Solids

X-axis rotation – Disk method wrt to x (\uparrow), shell wrt to y (\rightarrow).

Y-axis rotation – Disk method wrt y (→), shell wrt x (↑).

Limits Tips

Limits need to converge to 1 number to exist.

If not dividing by 0 or invalid, iust sub in the value

Substitute trigonometric values if can and use squeeze: $-5 \le$ $3\sin(g(x))$ – $2\cos(h(x)) \le 5$

Differentiability

If f' is differentiable at a point,

$$\lim_{h \to 0} \frac{f(x)_0 + h - f(x_0)}{h}$$

exist and are equal to the derivative at the point.

For piecewise functions, if they are differentiable, then f(a)=f(b) (no sharp spikes) and their limits are equal at the "meeting point" of the piecewise fnc

Differentiation RULES

Constant Rule: d/dx c = 0

Constant multiple: d/dx cu = c du/dx u Sum Rule: d/dx (u + v) = d/dx u + d/dx vProduct Rule: d/dx(uv) = du/dx * v + dv/dx * u

Quotient Rule: $\frac{d}{dx} \frac{u}{v} = \frac{\frac{du}{dx} * v - u * \frac{dv}{dx}}{v^2}$

Natural Logarithm Rules

 $\ln(a) = x \to a = e^x$

 $\ln(ab) = \ln(a) + \ln(b)$

 $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$

 $\ln(a^n) = n * \ln(a)$

ln(1) = 0

ln(e) = 1

|f(x)| = |f'(x)|. Open abs value to -f(x) and f(x)

Fundamental Theorem of Calculus

 $\int_{a}^{b} f(x) dx = G(b) - G(a)$

 $\int_{a}^{b} G'(x) dx = G(b) - G(a)$

If f is a function and G is the

antiderivative of F (that is, G' = f):

Don't be stupid dx/dy directly corresponds to the axis

Trigonometry Stuff

sin(0) = 0, sin(
$$\pi$$
) = 0, sin($\frac{\pi}{2}$) = 1
cos(0) = 1, cos(π) = 1, cos($\frac{\pi}{2}$) = 0
sin(θ) = $\frac{opp}{hypotenuse}$
cos(θ) = $\frac{adj}{hypotenuse}$
tan(θ) = $\frac{opp}{adj}$ = $\frac{\sin(\theta)}{\cos(\theta)}$

Γετ ιτ τωιστεδ

Implicit Differentiation

Apply d/dx to every term off the equation. Treat y as a function of x, and apply chain rule:

$$\frac{d}{dx}y = \frac{dy}{dx}$$

Solve for dy/dx by collecting all the terms

Power rule:
$$\frac{d}{dx} y^n = n y^{n-1} \frac{dy}{dx}$$

Product Rule:
$$\frac{d}{dx} u(x) y(x) = u'(x) y + u(x) \frac{dy}{dx}$$

Chain Rule:
$$\frac{d}{dx} f(y) = f'(y) \frac{dy}{dx}$$

Example:

Figuring out bounds

Let's say you did some discriminant/differentiation stuff and you get an equation

x=y+1

How do you find out the values that hold true for this?

Sub it into the original equation and solve!

Imposing restrictions

Let's say a question gives you a function of several variables f(x,y,z) = w $= xyz^2$.

Additionally, f(x,y,z) must fulfill the constraint equation $2x^3z^3 - xyz = 1$. You are tasked to find the exact value of dw/dx when (x,y,z)=(1,1,1). Lastly, you must regard w as a function of variables x and y only.

Firstly, you perform implicit differentiation on the constraint equation, treating z as a non-variable:

$$\frac{d}{dx} (2x^3z^3 - xyz)$$

$$= 6x^3z^3 + 6x^3z^2 \frac{dz}{dx} - yz$$

$$- xy\frac{dz}{dz} = 0$$

$$= \frac{dz}{dx} = -\frac{z}{x}$$

Then, we differentiate the original equation wrt to x, treating z as a function of x and y:

$$\frac{dw}{dx} = yz^2 + 2xyz\frac{dz}{dx}$$

Finally, we sub in (1,1,1) in the differentiated constraint equation to find

Interchanging bounds of integration

$$\int_{0}^{4} \int_{\sqrt{x}}^{2} g(x) \, dy \, dx$$

let's say you have this integral, and want to interchange the bounds of integration. The best way is to draw a graph of sqrt x and observe how y and x change. However, you could also try

Write out the bounds:

$$[0 \le x \le 4]$$
 and $[\sqrt{x} \le y \le 2]$

Write out y in terms of x:

$$[x \le y^2 \le 4]$$

Combine the bounds:

$$[0 \le x \le y^2 \le 4]$$

Separate and swap:

$$[0 \le y^2 \le 4]$$
 and $[0 \le x \le y^2]$

Always double-check, though.

Fundamental Theorem of Calculus 2

If
$$g(x) = \int_{h(x)}^{u(x)} f(t) dt$$
, **THEN**

$$g'(x) = f(u(x)) * u'(x) - f(h(x)) * h'(x)$$
IF f is continuous on [a,b], f is differentiable on (a,b)

Optimization problems

Problems where you're trying to make something as large/small as

- 1. Read the problem: Write down the givens, and what you're optimizing for
- 2. Draw a picture, label any part important
- 3. Introduce Variables: List every relation as an equation/algebra, and identify which is the unknown variable
- 4. Test Critical points and unknowns: Find critical points

E.g. An open top box is made by cutting squares from a 12-by-12 sheet and bent up. How large should the squares cut from the corners be to make the box hold as much as possible?

From problem diagram: $V(x) = x * (12 - 2x)^2$, where x is the size of the corner cut. Find critical point by taking derivative (basic), and then check which is the maximum point and sub into original equation

ODE problems

Look for rates of change, these usually indicate ODE.

- 1. Read the problem: Find the rates given, create them if required
- 2. Identify the type of ODE
- 3. Solve the ODE
- 4. Find constant: Using initial value given in question
- 5. Finish: Calculate some value using the equation if needed

Example: In an oil refinery, a storage tank contains 10,000L of gas that initially has 50kg of additive dissolved in it. Gasoline containing 0.2kg/l of additive is pumped into the tank at a rate of 200L/min. The solution is pumped out at a rate of 220L/min. How much of the additive is in the tank 20mins after the pumping begins?

Let y be kgs of additive in tank at time t. When y=50, t=0. The number of liters of gasoline and additive in the solution is given:

$$V(t) = 10,000L + (200L/min - 220L/min) * t mins = (10,000 - 20t)L$$

With this, we can model how much additive comes in and out of the

Rate out =
$$\frac{y(t)}{V(t)}$$
 * outflow = $\frac{y}{10,000-20t}$ * 200 = $\frac{220y}{10,000-20t}$ kg/

Rate in = 0.2 kg/l * 200l = 40kg/min

We can model a differential equation:

$$\frac{dy}{dt} = 40 - \frac{220y}{10,000 - 20t} \, kg/\min$$

In standard form:

$$\frac{dy}{dt} + \frac{220}{10,000-20t} * y = 40$$
 This is a LFODE so we get the integrating factor:

$$I(x) = e^{\int P dt} = e^{\int \frac{220}{10,000 - 20t}}$$

$$= e^{-11 \cdot \ln(10,000-20^t)} = (10,000 - 20t)^{-11}$$

Follow the steps for LFODE and multiply both sides and integrate:

$$\left(10,000 - 20t\right)^{-11} * \left(\frac{dy}{dt} + \frac{220}{10,000 - 20t} * y\right) = 40 (10,000 - 20t)^{-1}$$

Skipping a few steps we get:

$$y = 0.2(10,000 - 20t) + C(10,000 - 20t)^{11}$$

From this, we solve the initial value problema and get C. Done.

Maclaurin Series tiny example

Find the maclaurin series for $\frac{1}{1-3x}$

This is the geometric series, where u = 3x.

Hence,
$$\sum_{n=0}^{\infty} (3x)^n$$

Then, to find the 6th derivative of the function $\frac{1}{1-3x}$ evaluated

at 0, we take:
$$c_n = \frac{f^{(n)}(0)}{n!}$$
, which when rearranged: $f^{(6)}(0) = 6! * 3^6$