Development of readout systems

Petr Burian + team/s IEAP CTU, FEE UWB

Timepix detectors - summary

- Timepix (2006)
 - Frame based
 - 3.2Gb/s

- Timepix3 (2013)
 - Data driven
 - Frame based
 - 5Gb/s

- Timepix2 (2018)
 - Frame based
 - 3.2Gb/s
 - Low power

- Timepix4 (2020)
 - Data driven
 - Frame based
 - 160Gb/s

Katherine for Timepix3

- Embedded computer + interface for one Timepix3 (CERN chipboard)
- Optimized for long distance between sensor and readout
- Source of high voltage for bias both polarities (±300V)
- Gigabit Ethernet Interface
- Long-distance access (up to 100m)
- Dimension: roughly 100x80x28

Katherine – Interfaces

- VHDCI connector
 - Direct connection of chipboard or VHDCl extending cable
- Power supply DC 5V
- Bias voltage LEMO connector voltage range ±300V
- Status LED diodes (programmable by user)
- GPIO port purpose of signals defined by control SW
 - 1x single-ended input (possible to use as external clock)
 - 1x single-ended BiDir signal
 - 1x LVDS input, 1x LVDS output

Katherine – GPIO Signals and Triggering

- Implemented internal trigger generator
- User can define the meaning of GPIO

- Triggering more detectors cascade chain
- Common LVDS trigger/busy signal

Katherine – Communication

- Communication with sensor:
 - Two "fast" lines (2x 640Mbs)
 - Embedded clock
 - Direct connection with chipboard
 - Shorter distance via VHDCI cable (max. approx. 3.5m)
 - ► Hit rates: up to 20Mhit/s (but limited by Gigabit Ethernet bottle-neck)
 - Four "slow" lines (4x 160Mbs)
 - Longer distance between readout and chipboard
 - Verified: 10m VHDCI cable at 4x160Mbs rate
 - Hit rates: up to 10Mhit/s
 - Automic setting of maximal speed according to used cable during power-up sequence
- Communication with computer/server:
 - Peer-to-peer communication with computer (based on UDP datagrams; TCP/IP in development)
 - 36 control/status commands
 - Automatic/independent sending data to server (via SSH connection)

Katherine – Communication

- How to connect sensor...
 - Directly (CERN chipboard)
 - Extending VHDCl cable

- Active or passive ethernet cabling extenders
 - Up to 100m distance between sensor and readout
 - 20m => no decreasing in speed
 - Radiation hardness solution
 - New rad. hard. chipboard

HW solution for ATLAS

- How to solve radiation hardness? By distance.
- Readout system
 - Standard Katherine readout for Timepix3 with Gigabit Ethernet Interface
 - Extender for long cabling (4x Ethernet, 1 bias voltage, 1 power supply voltage)
- Chipboard
 - Newly designed chipboard appropriate for long cabling
- Tested up to 120m distance (4x 80Mbps) between sensor and readout

Installation - details

- Four Timepix3 detectors
- Used as two sandwiches (2-layer stack)
- Sensors are face-to-face oriented
- Clock data recovery (clock signal is not used)
- Delays on cables? No problem (setup can measure delays of signal paths)
- Readout system placed in USA15 rackroom
- Distances and hit rates:
 - Central barrel ~47m (4x160Mbps, 10Mhit/s)
 - Wall A side ~80m (4x80Mbps, 5Mhit/s)
- Each of detectors can work independently

Readout system — final installation in USA15

Everything installed in one 19" rack shelf

Positions of the Timepix3 sandwiches

Katherine for Timepix2

- Embedded computer + interface for one Timepix2 (CERN chipboard; serial communication only)
- Source of high voltage for bias both polarities (±300V)
- Gigabit Ethernet Interface
- Long-distance access (up to 100m)
- Dimension: 100 x 80 x 28 mm
- Power consumption measurement
- Communication based on UDP
- Optional:
 - Independent mode (via SSH)
 - Data storing to local storage (SD card)

Katherine for Timepix2 – Data Pre-processing

- Raw data from detector are not in straight form
 - Counter raw data LFSR counters
 - Readout process serialization data
- Conversion of data commonly on SW side or in the readout device
- Katherine readout event data format
 (only active pixels are sent "Timepix3-like" format):

Katherine for Timepix2

- HW clustering support clustering directly in the readout hardware
- Cluster ToT Volume calculated
- Possibility to upload calibration matrixes (per pixel ToT calibration) to the device
 - → Energy of clusters

Katherine for Timepix2 – HW Clustering Support

- How to set acqusition time?
 - Short frames => dead time
 - Long frames => cluster overlapping
- Mainly in changing rad. field (space...)
- Adapting algorithm of acq. time needed
- Timepix2 implements Matrix Occupation Monitor
 - Dedicated signal MATRIX_OCC goes to high active state when defined number of active columns (one pixel hit at least) is achieved
 - Readout can use it for acquisition time control
 - Currently only for simultaneous mode
- Low power systems => occupation flag as wake-up signal for a processor

- Demonstration of the feature
- Timepix2 and ⁹⁰Sr and ²⁴¹Am movable source

3 cm

Frames

Time [s] 2

Stop for column trigger

- Default acq. time (80ms) + matrix occupation monitor (128 and 200 columns) Acquisition settings:
- Readout can stop current fame
- "Automatic" cluster overlapping reduction expected

• Final distance 3cm => acq. time = 1.67773 ms

Dependency of number of pixel hits and clusters (per frame) on detector-source distance

Distance vs. dead time

Chipboard for Timepix2

MMCX connector for BSP

Mounting holes for an external heat sink, a peltier or a fan

- 100mmx100mm board for mini satellite (cubesat)
- Designed for Pilsen Cube II project
- Requirements:
 - Particle telescope with Timepix
 - Radiation hardened (as much as possible)
 - Low cost (commercial components)
 - Low power
- Two bias power sources:
 - Up to +300V
 - Leakage current measurement
- Main interface:
 - Dual RS-485
- Based on SoC FPGA Microsemi Smartfusion2
- USB 2.0 Interface for equalization and calibration

- HW watchdog
- Memories:
 - 4x 4-Mbit SPI F-RAM
- 24-channel ADC
- Temperature sensor
- Compatible with Pixelman SW
- Demonstration of on-board processing:
 - Cluster analysis
 - Spectra calculation
 - Coincidences determination
- Current status:
 - The first prototype assambled by 2x300um Si sensors on 4mm copper plate
 - Works fully via USB interface
 - Onboard processing under testing
 - Second board ready for wire-bonding of Class-A sensors

Plans...

- Quad for PAN (+Katherine upgrade)
- Tune BSP measurement on Timepix2, then adapt it for Timepix3 (Michael Holík)
- Finish setup in VDG
- ATLAS upgrade (chipboard, frontend, backend)
- Detector network for Micado project

 Challange: Low power rad. hard platform for space (Milan)

Thank you for your attention...

petr.burian@utef.cvut.cz