Q1.

Decision Variables

X1 and x2 are the 2 decision variables

Objectives

 $\overline{\text{Maximize}}$ Z= 4x1+2x2

Functional Constraints

 $0.5x2 \le 5$

 $2x1+5x2 \le 60$

 $3x1+3x2 \le 54$

 $3x1+x2 \le 44$

Non-Functional Constraints

 $X1 \ge 0$, $x2 \ge 0$

Graphical solution using IOR Tutorial

Exact value of the optimal solution is 62 and Z is maximized at a point where x1=13 and x2=5

Q2. (a)

	WHITT WINDO	OW COMPANY				
PLANT		PRODUCT		PRODUCTION TIME		
	WOOD FRAME	ALLUMINIUM	1 FRAME			
GLASS	3		4		24	
WOOD	1		0		6	
ALUMINIUM	0		1		4	
PROFIT PER UNIT	\$150		\$75			

Decision Variables

Let the total number of wooden-framed window be x1

Let the total number of alluminium-framed window be x2

Objectives

The profit for each wood-framed and aluminium-framed window is \$150 and \$75 respectively. So the total profit which is maximized is

Z=150x1+75x2

Functional Constraints

Each wood-framed window requires 3 square feet of glass and each aluminium-framed window Requires 4 square feet of glass

The total glass required is

3x1+4x2

But Bob can cut 24 square feet of glass per day, so the inequality is

 $3x1+4x2 \le 24$

Dough can make 6 wood frames per day,

X1≤6

Linda can make 4 aluminium frames per day,

X2≤4

Non-Functional Constraints

Since the quantity can never be a negative number, we restrict x1 and x2 as non-negative $X1 \ge 0$, $x2 \ge 0$

Graphical Solution using IOR Tutorial

Exact value of the optimal solution is 101.2 and Z is maximized at the point when x1=6 and x2=1.5

2(d)

Decision Variables

X1 and x2 are the decision variables

Objectives

 $\overline{\text{Maximize }}$ Z= 75x1+75x2

Functional Constraints

 $3x1+4x2 \le 24$

X1≤6

X2<4

Non-Functional Constraints

 $X1 \ge 0$, $x2 \ge 0$

Graphical Solution using IOR Tutorial

2(d)

Decision variables

X1 and x2 are the two decision variables

Objectives

Maximize Z=50x1+75x2

Functional Constraints

 $3x1+4x2 \le 24$

X1≤6

X2≤4

Non-Functional Constraints

 $X1 \ge 0, x2 \ge 0$

Graphical Solution using IOR Tutorial

2(e)

Decision variables

X1 and x2 are the decision variables

Objectives

Maximize Z=150x1+75x2

Functional Constraints

 $3x1+4x2 \le 24$

X1 < 5

X2≤4

Non-Functional Constraints

 $X1 \ge 0, x2 \ge 0$

Graphical Solution Using IOR Tutorial

Decision Variables

X1 is the number of units of product 1 produced X2 is the number of units of product 2 produced

Objectives

Maximize Z=6x1+4x2

Functional Constraints

 $4x1+2x2 \le 4$

 $2x1+4x2 \le 4$

 $6x1+6x2 \le 8$

Non-Negative Constraints

 $X1 \ge 0$, $x2 \ge 0$

Solving of the Equations

$$4x1+2x2 = 4$$

When
$$x1=0$$
 $4(0)+2(x2) = 4$
 $0+2(X2) = 4$
 $x^2 - 4/2$

$$X2 = 4/2$$
$$X2 = 2$$

When
$$x2=0$$
 $4(x1)+2(0) = 4$

$$4(x1) = 4$$

$$X1 = 4/4$$

$$X1 = 1$$

2x1+4x2=4

When
$$x1=0$$
 2(0)+ 4($x2$) =4

$$0+4(x2)=4$$

$$4(x2) = 4$$

$$X2 = 4/4$$

$$\mathbf{A}\mathbf{Z} = 4/4$$

$$X2 = 1$$

x10 2 0 x2 1 (x1,x2)(0,1) (2,0)

When
$$x2=0$$
 $2(x1)+4(0) = 4$

$$2(x1)+0=4$$

$$2(x1) = 4$$

$$X1 = 4/2$$

$$X1 = 2$$

$$6x1 + 6x2 = 8$$

When
$$x1=0$$
 $6(0)+6(x2) = 8$

$$0+6(x2)=8$$

$$6(x2) = 8$$

$$X2 = 8/6$$

$$X2 = 4/3$$

$$X2 = 1.3$$

When
$$x2 = 0$$
 $6(x1)+6(0) = 8$ $x1$ 0 1.3 $6(x1)+0 = 8$ $x2$ 1.3 0 $6(x1)=8$ $x1=8/6$ $x1=4/3$ $x1=1.3$

Graphical solution using IOR Tutorial

Corner points	x1	x2
a	0	1
b	0	0
c	1	0
d	0.67	0.67

$$Z=6X1+4X2$$
a $Z=6(0)+4(1)=4$
b $Z=6(0)+4(0)=0$
c $Z=6(1)+4(0)=6$
d $Z=6(0.67)+4(0.67)=4.02+2.68=6.7$

Exact value of the optimal solution is 6.7 and Z is maximized at point d where x1=0.67 and x2=0.67