

5

Supervised and unsupervised learning in artificial neural brains

Learning in perceptrons

Perceptrons have 2 sets of parameters - weights and activation function, and both affect the output.

Question: So which one should we modify to learn?

Answer: Ideally, both should be modified.

Introducing bias: a way to describe the activation function

- Bias is the point on the z-axis at which v=0
- · By changing bias, one can shift the activation function to the left or right.

Example: Sigmoid activation function $v = \frac{1}{1 + e^{-S(z-b)}}$ where b is the bias and S determines the slope of linear part.

Question: So how do we decide what should be the value of bias *b*?

Answer: We could learn it by considering b as another "weight".

Bias b as a weight

$$z = w_1u_1 + w_2u_2 + \dots + w_nu_n$$

$$\Rightarrow (z - b) = w_1u_1 + w_2u_2 + \dots + w_nu_n - b$$

$$\Rightarrow (z - b) = w_1u_1 + w_2u_2 + \dots + w_nu_n + b \quad (-1)$$

$$w_{n+1} \quad u_{n+1}$$

$$u_1 \quad w_1 \quad x_{n+1} \quad x_{n+1}$$

$$u_2 \quad x_{n+1} \quad x_{n+1}$$

$$u_3 \quad x_{n+1} \quad x_{n+1}$$
Activation function
$$v = \frac{1}{1 + e^{-S(z-b)}}$$

$$z = \sum_{i=1}^{n+1} \omega_i \cdot u_i$$
This small change sets the AF in the centre **before learning**. By learning w_{n+1} , we can shift the activation function automatically.

Why shift the activation function?

- The blue line is called the decision boundary.
- Decision boundary separates inputs into different classes (for a classification problem). Here the classes are "0" and "1", but it can also be labels such as "cat", "dog" etc.
- By changing $w_1, w_2, ..., w_n, w_{n+1}$ by learning, the decision boundary can be shifted to adapt to new input data.

Equation for blue line. $w_1u_1 + w_2u_2 ... + w_nu_n + b(-1) = (z - b)$

From decision boundaries to decision surfaces

- By adding a third perceptron as the next layer, we get a 2-dimensional decision surface.
- By adding more perceptrons in the first layer, we can draw more decision boundaries to enclose more complex decision surfaces.

Multi-Layer Perceptron (MLP)

In deep learning neural networks, there is more than one hidden layer

Training a MLP: Notation

Step 1: Forward propagation

- Calculate output $x_i = \sum_i u_i w_{ii}$ for all hidden neurons
- Calculate output $v_k = \sum_i x_i y_{ki}$ for all output neurons

Step 2: Backpropagation

- Calculate error gradient for all output neurons, $E_k^o = v_k(1 v_k)(t_k v_k)$
- Calculate error gradient for all hidden neurons, $E_i^h = x_j (1 x_j) \sum_k E_k^o y_{kj}$

Step 2: Backpropagation

- Update weights for the output neurons, $y'_{kj} = y_{kj} + \mu E^o_k x_j$
- Update weights for the hidden neurons, $w'_{ji} = w_{ji} + \mu E^h_j u_i$

Training a MLP: backpropagation algorithm

- Divide dataset into two sets training dataset (70% of total input data points) and testing dataset (30% of total input data points)
- Initialise all weights to random values between 0 and 1 (or -1 and +1)
- Step 1: Feed forward
 - 1. Randomly shuffle training dataset and select a (new) randomly chosen input data point
 - 2. Calculate output $x_j = \sum_i \sum_i u_i w_{ji}$ for all hidden neurons, and $v_k = \sum_k \sum_i x_j \overline{y_{kj}}$ for all output neurons
- Step 2: Backpropagation
 - 1. Calculate error gradient for all output neurons, $E_k^0 = v_k(1 v_k)(t_k v_k)$
 - 2. Calculate error gradient for all hidden neurons, $E_j^h = x_j (1 x_j) \sum_k E_k^o y_{kj}$
 - 3. Update weights for the output neurons, $y'_{kj} = y_{kj} + \mu E^o_k x_j$
 - 4. Update weights for the hidden neurons, $w'_{ji} = w_{ji} + \mu E^h_j u_i$
- Repeat Step 1 and Step 2 until the error is very low or max. number of epochs is reached
- Test your trained network on testing dataset by repeating Step 1

Additional notes on training

- Training set: Used to adjust weights of the neural network
- Validation set: Used to minimize overfitting
- Testing set: Used only for testing the final solution
- Monte Carlo cross validation
 - Sub-sample data randomly into training and test sets (e.g., 70% and 30%)
- K-fold cross validation
 - Divide data into k subsets
 - Each time (in total k times) one of the subsets is used for testing and the rest k-1 subsets are joined and used as a training set
- Leave-p-out cross validation
 - Use p data samples as training samples and the rest (n-p) data samples as test samples
 - Train and test $\frac{n!}{p! \cdot (n-p)!}$ times

Learning the activation function

Hungry for more?

Bioinspired Legged Locomotion

Models, Concepts, Control and Applications

Edited by

From Biological Inspiration to Implementation and Control

edited by Michael A. Arbib and James J. Bonaiuto

SENSORIMOTOR CONTROL & LEARNING

An Introduction to the Behavioral Neuroscience of Action

