

MONASH INFORMATION TECHNOLOGY

## FIT3003 – Business Intelligence and Data Warehousing

Week 3 – Bridge Tables & Average in the Fact

Semester 2, 2022

Developed by: Dr. Agnes Haryanto Agnes.Haryanto@monash.edu



### **Learning Objectives**

- 1. Able to implement a star schema using SQL
- 2. Know when and why Bridge Tables are necessary to be used
- 3. Be familiar with the concepts of Weight Factor and ListAgg in Bridge Tables
- 4. Understand the concept of snowflakes and bridge tables
- 5. Understand why Average in a Fact should be avoided



### **Agenda**

- 1. Bridge Tables
  - 1. Product Sales Case Study
  - 2. Truck Delivery Case Study

2. Average in the Fact



### **Bridge Tables**



### **Bridge Tables**

- A bridge table is a table that links between two dimensions; and only one
  of these two dimensions are linked to the fact.
  - > As a result, the star schema becomes a *snowflake schema*.





### **Bridge Tables**

- Two reasons on why a dimension cannot be connected directly to the Fact:
  - a) The Fact table has a fact measure, and the dimension has a key identity. In order to connect a dimension to the Fact, the dimension's key identity must contribute directly to the calculation of the fact measure. Unfortunately, this cannot happen if the operational database does not have this data.
  - b) The operational database does not have this data if the relationship between two entities in the operational database that hold the information about dimension's key identity and the intended fact measure is a *many-many* relationship.



# Bridge Tables Case Study #1



- A company management team would like to analyze the statistics of its product sales history. The analysis is needed to identify popular products, suppliers supplying those products, the best time to purchase more stock, etc.
- A small data warehouse is to be built to keep track of the statistics.
- The management is particularly interested in analyzing the total sales (quantity \* price) by product, customer suburbs, sales time periods (month and year), and supplier.





The management is particularly interested in analyzing the total sales (quantity \* price) by product, customer suburbs, sales time periods (month and year), and supplier.





- The management is particularly interested in analyzing the total sales (quantity \* price) by product, customer suburbs, sales time periods (month and year), and supplier.
- Sales Star Schema
  - > Fact:
    - Total Sales





- The management is particularly interested in analyzing the total sales (quantity \* price) by product, customer suburbs, sales time periods (month and year), and supplier.
- Sales Star Schema
  - > Fact:
    - Total Sales
  - > Dimensions:
    - Product
    - Customer locations/suburbs
    - Time period
    - Supplier





Possible Two-Column Methodology Tables:

| ProductNo | TotalSales  |
|-----------|-------------|
| A1        | \$130,000   |
| B2        | \$15,900    |
| C3        | \$2,500,000 |
| •••       |             |

| TimeID | TotalSales |
|--------|------------|
| 201801 | \$25,000   |
| 201802 | \$4,700    |
| 201803 | \$3,500    |
|        |            |

(b) Time point of view

| Suburb    | TotalSales |
|-----------|------------|
| Caulfield | \$6,500    |
| Chadstone | \$12,000   |
| Clayton   | \$1,800    |
|           |            |

(c) Suburb point of view



- Sales Star Schema
  - > Fact:
    - Total Sales
  - > Dimensions:
    - Product
    - Customer locations/suburbs
    - Time period
    - Supplier





| TimeID | Suburb    | ProductNo | TotalSales |
|--------|-----------|-----------|------------|
| 201801 | Caulfield | A1        | \$450      |
| 201801 | Caulfield | B2        | \$100      |
| 201801 | Caulfield | C3        | \$320      |
| 201801 | Caulfield |           |            |
| 201801 |           |           |            |
| 201801 | Chadstone | A1        | \$75       |
| 201801 | Chadstone | B2        | \$600      |
| 201801 | Chadstone | C3        | \$55       |
| 201801 | Chadstone |           |            |
| 201801 |           |           |            |
| 201801 | Clayton   | A1        | \$130      |
| 201801 |           |           |            |
| 201802 | Caulfield | A1        | \$500      |
| 201802 | Caulfield | B2        | \$430      |
| 201802 | Caulfield | C3        | \$120      |
|        |           |           |            |





| SupplierID | TotalSales |
|------------|------------|
| S1         | \$77,000   |
| S2         | \$5,700    |
| S3         | \$12,500   |
|            |            |

Supplier point of view





| SupplierID | TotalSales |
|------------|------------|
| S1         | \$77,000   |
| S2         | \$5,700    |
| S3         | \$12,500   |
|            |            |

Supplier point of view





| TimeID | Suburb    | ProductNo | SupplierID | TotalSales |
|--------|-----------|-----------|------------|------------|
| 201801 | Caulfield | A1        | S1         |            |
| 201801 | Caulfield | A1        | S2         |            |
| 201801 | Caulfield | A1        | <b>S</b> 3 |            |
| 201801 | Caulfield | A1        |            |            |
| 201801 | Caulfield | B2        | S1         |            |
| 201801 | Caulfield | B2        | S2         |            |
| 201801 | Caulfield | B2        | S3         |            |
| 201801 | Caulfield | B2        |            |            |
| 201801 | Caulfield | C3        | S1         |            |
| 201801 | Caulfield | C3        | S2         |            |
| 201801 | Caulfield | C3        | <b>S</b> 3 |            |
| 201801 | Caulfield | C3        |            |            |
| 201801 |           |           |            |            |
| 201801 | Chadstone | A1        | S1         |            |
| 201801 | Chadstone | A1        | S2         |            |
| 201801 | Chadstone | A1        | <b>S</b> 3 |            |
| 201801 | Chadstone | A1        |            |            |
| 201801 |           |           |            |            |
| 201802 | Caulfield | A1        | S1         |            |
| 201802 | Caulfield | A1        | S2         |            |
| 201802 | Caulfield | A1        | <b>S</b> 3 |            |
| 201802 | Caulfield | A1        |            |            |
|        |           |           |            |            |





| l      |           |           |            |            |
|--------|-----------|-----------|------------|------------|
| TimeID | Suburb    | ProductNo | SupplierID | TotalSales |
| 201801 | Caulfield | A1        | S1         |            |
| 201801 | Caulfield | A1        | S2         |            |
| 201801 | Caulfield | A1        | S3         |            |
| 201801 | Caulfield | A1        |            |            |
| 201801 | Caulfield | B2        | S1         |            |
| 201801 | Caulfield | B2        | S2         |            |
| 201801 | Caulfield | B2        | S3         |            |
| 201801 | Caulfield | B2        |            |            |
| 201801 | Caulfield | C3        | S1         |            |
| 201801 | Caulfield | C3        | S2         |            |
| 201801 | Caulfield | C3        | <b>S</b> 3 |            |
| 201801 | Caulfield | C3        |            |            |
| 201801 |           |           |            |            |
| 201801 | Chadstone | A1        | S1         |            |
| 201801 | Chadstone | A1        | S2         |            |
| 201801 | Chadstone | A1        | <b>S</b> 3 |            |
| 201801 | Chadstone | A1        |            |            |
| 201801 |           |           |            |            |
| 201802 | Caulfield | A1        | S1         |            |
| 201802 | Caulfield | A1        | S2         |            |
| 201802 | Caulfield | A1        | S3         |            |
| 201802 | Caulfield | A1        |            |            |
|        |           |           |            |            |



| SupplierID | TotalSales |
|------------|------------|
| S1         | \$77,000   |
| S2         | \$5,700    |
| S3         | \$12,500   |
|            |            |





















#### To create Time Dimension:

```
- create table TimeDim as
  select
    distinct to_char(SalesDate, 'YYYYYMM') as TimeID,
    to_char(SalesDate, 'YYYY') as Year,
    to_char(SalesDate, 'MM') as Month
  from Sales;
```

#### To create Customer Location Dimension:

- create table CustLocDim as select distinct Suburb, Postcode from Customer;



#### To create Product Dimension:

- create table ProductDim as select distinct ProductNo, ProductName from Product;

#### To create Bridge Table:

- create table ProductSupplierBridge as select \* from StockSupplier;

#### To create Supplier Dimension:

- create table SupplierDim as select SupplierID, Name as SupplierName from Supplier;



#### To create Fact Table:

```
- create table ProductSalesFact as
  Select
       to char (S.SalesDate, 'YYYYMM') as TimeID,
       P. ProductNo,
       C.Suburb,
       sum(SI.QtySold*P.Price) as TotalSales
  from Sales S, Product P, Customer C, SalesItem SI
  where S.SalesNo = SI.SalesNo
  and SI.ProductNo= P.ProductNo
  and C.CustomerID = S.CustomerID
  group by
       to char (S.SalesDate, 'YYYYMM'), P.ProductNo, C.Suburb;
```



# Bridge Tables Case Study #2



- A trucking company is responsible for picking up goods from warehouses of a retail chain company, and delivering the goods to individual retail stores.
- A truck carry goods during a single trip, which is identified by TripID, and delivers these goods to multiple stores. Trucks have different capacities for both the volumes they can hold and the weights they can carry.
- At the moment, a truck makes several trips each week. An operational database is being used to keep track the deliveries, including the scheduling of trucks, which provide timely deliveries to stores.





- A trip may pick up goods from many warehouses
  - i.e. a many-many relationship between Warehouse and Trip
- A trip uses one truck only, and a truck may have many trips in the history
  - i.e. a many-1 relationship between Trip and Truck
- A trip delivers goods (e.g. TVs, fridges, etc) potentially to several stores
  - a many-many relationship between Trip and Store, which is represented by the Destination table





Sample data in the operational database:

#### (a) Warehouse Table

| WarehouseID | Location   |
|-------------|------------|
| W1          | Warehouse1 |
| W2          | Warehouse1 |
| W3          | Warehouse1 |
|             |            |

#### (b) Trip Table

| TripID | Date        | TotalKm | TruckID |
|--------|-------------|---------|---------|
| Trip1  | 14-Apr-2018 | 370     | Truck1  |
| Trip2  | 14-Apr-2018 | 570     | Truck2  |
| Trip3  | 14-Apr-2018 | 250     | Truck3  |
| Trip4  | 15-Jul-2018 | 450     | Truck1  |
|        |             |         |         |

#### (c) TripFrom Table

| TripID | WarehouseID |
|--------|-------------|
| Trip1  | W1          |
| Trip1  | W2          |
| Trip1  | W3          |
| Trip2  | W1          |
| Trip2  | W2          |
|        |             |

#### (d) Truck Table

| TruckID | VolCapacity | WeightCategory | CostPerKm |
|---------|-------------|----------------|-----------|
| Truck1  | 250         | Medium         | \$1.20    |
| Truck2  | 300         | Medium         | \$1.50    |
| Truck3  | 100         | Small          | \$0.80    |
| Truck4  | 550         | Large          | \$2.30    |
| Truck5  | 650         | Large          | \$2.50    |
|         |             |                |           |

#### (e) Store Table

|         | \ /             |            |
|---------|-----------------|------------|
| StoreID | StoreName       | Address    |
| M1      | MyStore City    | Melbourne  |
| M2      | MyStore Chaddy  | Chadstone  |
| M3      | MyStore HiPoint | High Point |
| M4      | MyStore Donc    | Doncaster  |
| M5      | MyStore North   | Northland  |
| M6      | MyStore South   | Southland  |
| M7      | MyStore East    | Eastland   |
| M8      | MyStore Knox    | Knox       |
|         |                 |            |

#### (f) Destination Table

| TripID | StoreID |
|--------|---------|
| Trip1  | M1      |
| Trip1  | M2      |
| Trip1  | M4      |
| Trip1  | M3      |
| Trip1  | M8      |
| Trip2  | M4      |
| Trip2  | M1      |
| Trip2  | M2      |
|        |         |

The management of this trucking company would like to analyze the deliver cost, based on trucks, time period, and store.





- Sales Star Schema
  - > Fact:
    - Total Delivery Cost (distance \* cost per kilometre)
  - > Dimensions:
    - Truck
    - Time period
    - Store





- From the **Truck** point of view, Truck1 has two trips (e.g. Trip1 and Trip4), with the total kilometres of 820km (370km + 450km). The cost for Truck1 is \$1.20. Hence, calculating the cost for Truck1 is straightforward. Other trucks can be calculated this way.
- From the **Period** point of view, 14-Apr-2018 has three trips (e.g. Trip1,Trip2, and Trip3). Trip1 (370km) is delivered by Truck1 which costs \$1.20/km. Trip2 and Trip 3, on the same day, can be calculated the same way. Hence, on 14-Apr-2018, the total cost can be calculated.
- From the Store point of view; The cost is calculated based on Trip, but a trip delivers goods to many stores. Therefore, the delivery cost for each store cannot be calculated. The delivery cost is for the trip – not for the store.





- From the **Truck** point of view, Truck1 has two trips (e.g. Trip1 and Trip4), with the total kilometres of 820km (370km + 450km). The cost for Truck1 is \$1.20. Hence, calculating the cost for Truck1 is straightforward. Other trucks can be calculated this way.
- From the **Period** point of view, 14-Apr-2018 has three trips (e.g. Trip1,Trip2, and Trip3). Trip1 (370km) is delivered by Truck1 which costs \$1.20/km. Trip2 and Trip 3, on the same day, can be calculated the same way. Hence, on 14-Apr-2018, the total cost can be calculated.
- From the **Store** point of view; The cost is calculated based on Trip, but a trip delivers goods to many stores. Therefore, the delivery cost for each store cannot be calculated. The delivery cost is for the trip not for the store.





#### **Solution Model 1 – Using a Bridge Table**





#### Solution Model 2 – add a Weight Factor attribute





#### Solution Model 2 – add a Weight Factor attribute





#### (a) Trip Dimension Table

| TripID | Date        | TotalKm | WeightFactor |
|--------|-------------|---------|--------------|
| Trip1  | 14-Apr-2018 | 370     | 0.20         |
| Trip2  | 14-Apr-2018 | 570     | 0.33         |
|        | •••         | •••     |              |

#### (b) Bridge Table

| TripID | StoreID |
|--------|---------|
| Trip1  | M1      |
| Trip1  | M2      |
| Trip1  | M4      |
| Trip1  | M3      |
| Trip1  | M8      |
| Trip2  | M4      |
| Trip2  | M1      |
| Trip2  | M2      |
|        |         |

#### (c) Store Table

| StoreID | StoreName       | Address    |
|---------|-----------------|------------|
| M1      | MyStore City    | Melbourne  |
| M2      | MyStore Chaddy  | Chadstone  |
| M3      | MyStore HiPoint | High Point |
| M4      | MyStore Donc    | Doncaster  |
| M5      | MyStore North   | Northland  |
| M6      | MyStore South   | Southland  |
| M7      | MyStore East    | Eastland   |
| M8      | MyStore Knox    | Knox       |
|         |                 |            |





#### To create Trip Dimension:



#### Solution Model 3 – a List Aggregate version





#### (a) Trip Dimension Table

| TripID | Date        | TotalKm | WeightFactor | StoreGroupList |
|--------|-------------|---------|--------------|----------------|
| Trip1  | 14-Apr-2018 | 370     | 0.20         | M1_M2_M3_M4_M8 |
| Trip2  | 14-Apr-2018 | 570     | 0.33         | M1_M2_M4       |
|        |             |         |              |                |

#### (b) Bridge Table

| TripID | StoreID |
|--------|---------|
| Trip1  | M1      |
| Trip1  | M2      |
| Trip1  | M4      |
| Trip1  | M3      |
| Trip1  | M8      |
| Trip2  | M4      |
| Trip2  | M1      |
| Trip2  | M2      |
|        |         |









#### To create Trip Dimension:



Joining based on the StoreGroupList attribute in the Trip dimension table and the StoreID in the Store dimension table:

```
- select *
from TripDim3 T, StoreDim3 S
where T.StoreGroupList like '%'||S.StoreID||'%';
```

Without the StoreGroupList attribute in the Trip dimension, we need to join three tables:

```
- select *
  from TripDim3 T, BridgeTable3 B, StoreDim3 S
  where T.TripID = B.TripID
  and B.StoreID = S.StoreID;
```



# Bridge Tables Summary



### **Bridge Tables – Summary**

- In principal, a Bridge Table is used:
  - a) When it is impossible to have a dimension connected directed to the Fact table, because simply there is no relationship between this dimension and the Fact table (e.g. in the Product Sales case study, it is impossible to have a direct link from SupplierDim to ProductSalesFact)
  - b) When an entity (which will become a dimension) has a many-many relationship with another entity (dimension) in the E/R schema of the operational database (e.g. Supplier and Stock has a many-many relationship).
  - c) When temporality aspect (data history) is maintained in the operational database and the bridge table can be used to accommodate the dimension that has temporal attributes (e.g. product supply history is maintained in the second snowflake schema example).



### **Bridge Tables – Summary**

- When a Bridge Table is used in the schema, there are two additional options:
  - a) A Weight Factor is used to estimate the contribution of a dimension in the calculation of the fact measure. Because this is only an estimate, a weight factor is option.
  - b) Every snowflake schema (whether it has Weight Factor or not) can be implemented in two ways: a List Aggregate version, and a non-List Aggregate version.



# More Complex Processes in Creating Fact



### Recall – Star Schema Components

- There are Three main components of the Star Schema:
  - 1. Facts
  - 2. Dimensions
  - 3. Attributes







### Recall – Star Schema Components

- There are Three main components of the Star Schema:
  - 1. Facts
  - 2. Dimensions
  - 3. Attributes







### Recall – Fact

- A Fact Table consists of key attributes from each dimension, and fact measures.
- A Fact Table is created by a join operation, that joins several tables from the operational database.
- Fact tables are created either through *TempFact* or directly retrieval from the tables in the operational database.
- The fact measure itself is an aggregated value.
  - In the SQL command, the fact measure attribute in the Fact Table is created using an aggregate function, such as count or sum, and the group by operation.







| Unit Code | Unit Title | Semester | Student First Name | Score |
|-----------|------------|----------|--------------------|-------|
| IT001     | Database   | 1        | Mirriam            | 81    |
| IT001     | Database   | 1        | Allan              | 41    |
| IT001     | Database   | 1        | Ben                | 74    |
| IT001     | Database   | 1        | Kate               | 85    |
| IT001     | Database   | 1        | Larry              | 87    |
| IT001     | Database   | 1        | Leonard            | 75    |
| IT001     | Database   | 2        | Juan               | 64    |
| IT001     | Database   | 2        | Andy               | 32    |
| IT002     | Java       | 1        | Ally               | 65    |
| IT002     | Java       | 1        | Menson             | 47    |
| IT002     | Java       | 2        | Mirriam            | 78    |
| IT002     | Java       | 2        | Ben                | 73    |
| IT002     | Java       | 2        | Larry              | 64    |
| IT003     | SAP        | 1        | Ally               | 63    |
| IT004     | Network    | 2        | Juan               | 53    |
| IT004     | Network    | 2        | Menson             | 52    |



| Unit Code | Unit Title | Semester | Student First Name | Score |
|-----------|------------|----------|--------------------|-------|
| IT001     | Database   | 1        | Mirriam            | 81    |
| IT001     | Database   | 1        | Allan              | 41    |
| IT001     | Database   | 1        | Ben                | 74    |
| IT001     | Database   | 1        | Kate               | 85    |
| IT001     | Database   | 1        | _arry              | 87    |
| IT001     | Database   | 1        | _eonard            | 75    |
| IT001     | Database   | 2        | Juan               | 64    |
| IT001     | Database   | 2        | Andy               | 32    |
| IT002     | Java       | 1        | Ally               | 65    |
| IT002     | Java       | 1        | Menson             | 47    |
| IT002     | Java       | 2        | Mirriam            | 78    |
| IT002     | Java       | 2        | Ben                | 73    |
| IT002     | Java       | 2        | _arry              | 64    |
| IT003     | SAP        | 1        | Ally               | 63    |
| IT004     | Network    | 2        | Juan               | 53    |
| IT004     | Network    | 2        | Menson             | 52    |

# The operational database contains:

- 9 records of Semester one
- 7 records of Semester two



| Unit Code | Unit Title | Semester | Student First Name | Score |
|-----------|------------|----------|--------------------|-------|
| IT001     | Database   | 1        | Mirriam            | 81    |
| IT001     | Database   | 1        | Allan              | 41    |
| IT001     | Database   | 1        | Ben                | 74    |
| IT001     | Database   | 1        | Kate               | 85    |
| IT001     | Database   | 1        | _arry              | 87    |
| IT001     | Database   | 1        | Leonard            | 75    |
| IT001     | Database   | 2        | Juan               | 64    |
| IT001     | Database   | 2        | Andy               | 32    |
| IT002     | Java       | 1        | Ally               | 65    |
| IT002     | Java       | 1        | Menson             | 47    |
| IT002     | Java       | 2        | Mirriam            | 78    |
| IT002     | Java       | 2        | Ben                | 73    |
| IT002     | Java       | 2        | Larry              | 64    |
| IT003     | SAP        | 1        | Ally               | 63    |
| IT004     | Network    | 2        | Juan               | 53    |
| IT004     | Network    | 2        | Menson             | 52    |

### The operational database contains:

- 9 records of Semester one
- 7 records of Semester two
- 8 records of Database Unit (6 Semester one and 2 Semester two)





#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |





(a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| 11001     | _        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

(b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



Average Score for the Database Unit in:

• Semester one: (81+41+74+85+87+75)/6 = 73.833

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| 11001     | _        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



#### Average Score for the Database Unit in:

- Semester one: (81+41+74+85+87+75)/6 = **73.833**
- Semester two: (64+32)/2 = 48

#### (a) Fact

| <b>Unit Code</b> | Semester | Average_Score |
|------------------|----------|---------------|
| IT001            | 1        | 73.833        |
| IT001            | 2        | 48            |
| 11002            | 1        | 56            |
| IT002            | 2        | 71.667        |
| IT003            | 1        | 63            |
| IT004            | 2        | 52.5          |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



Average Score for the Database Unit in:

- Semester one: (81+41+74+85+87+75)/6 = 73.833
- Semester two: (64+32)/2 = 48

### These are actually incorrect!

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

(b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



**Query:** Calculate Average Score for the Database Unit:

• (73.833 + 48) / 2 = 60.9165

#### The SQL command:

```
select avg(Average_Score)
from EnrolmentFact
where UnitCode = 'IT001';
```

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



Query: Calculate Average Score for the Database Unit.

#### (b) Operational Database

#### Calculation using **Fact**:

• (73.833 + 48) / 2 = 60.9165

#### Calculation based on the **Operational Database**:

• (81+41+74+85+87+75+64+32) / 8 = 539 / 8 = 67.375

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

| <b>Unit Code</b> | Unit Title | Semester | Student First Name | Score |
|------------------|------------|----------|--------------------|-------|
| IT001            | Database   | 1        | Mirriam            | 81    |
| IT001            | Database   | 1        | Allan              | 41    |
| IT001            | Database   | 1        | Ben                | 74    |
| IT001            | Database   | 1        | Kate               | 85    |
| IT001            | Database   | 1        | Larry              | 87    |
| IT001            | Database   | 1        | Leonard            | 75    |
| IT001            | Database   | 2        | Juan               | 64    |
| IT001            | Database   | 2        | Andy               | 32    |
| IT002            | Java       | 1        | Ally               | 65    |
| IT002            | Java       | 1        | Menson             | 47    |
| IT002            | Java       | 2        | Mirriam            | 78    |
| IT002            | Java       | 2        | Ben                | 73    |
| IT002            | Java       | 2        | Larry              | 64    |
| IT003            | SAP        | 1        | Ally               | 63    |
| IT004            | Network    | 2        | Juan               | 53    |
| IT004            | Network    | 2        | Menson             | 52    |



Query: Calculate Average Score for the Database Unit.

#### (b) Operational Database

#### Calculation using **Fact**:

• (73.833 + 48) / 2 = 60.9165

#### Calculation based on the **Operational Database**:

• (81+41+74+85+87+75+64+32) / 8 = 539 / 8 = **67.375** 

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

|           |            |          | · / ·              |       |
|-----------|------------|----------|--------------------|-------|
| Unit Code | Unit Title | Semester | Student First Name | Score |
| IT001     | Database   | 1        | Mirriam            | 81    |
| IT001     | Database   | 1        | Allan              | 41    |
| IT001     | Database   | 1        | Ben                | 74    |
| IT001     | Database   | 1        | Kate               | 85    |
| IT001     | Database   | 1        | Larry              | 87    |
| IT001     | Database   | 1        | Leonard            | 75    |
| IT001     | Database   | 2        | Juan               | 64    |
| IT001     | Database   | 2        | Andy               | 32    |
| IT002     | Java       | 1        | Ally               | 65    |
| IT002     | Java       | 1        | Menson             | 47    |
| IT002     | Java       | 2        | Mirriam            | 78    |
| IT002     | Java       | 2        | Ben                | 73    |
| IT002     | Java       | 2        | Larry              | 64    |
| IT003     | SAP        | 1        | Ally               | 63    |
| IT004     | Network    | 2        | Juan               | 53    |
| IT004     | Network    | 2        | Menson             | 52    |
|           |            |          |                    |       |



Query: Calculate Average Score for the Java Unit in both Semesters.

#### (b) Operational Database

#### Calculation using **Fact**:

• (56+71.667) / 2 = **63.833** 

#### Calculation based on the **Operational Database**:

• (65+47+78+73+64) / 5 = 65.4

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| 11003     | 1        | 63            |
| IT004     | 2        | 52.5          |

| Unit Code                        | Unit Title                   | Semester              | Student First Name                        | Score                |
|----------------------------------|------------------------------|-----------------------|-------------------------------------------|----------------------|
| IT001                            | Database                     | 1                     | Mirriam                                   | 81                   |
| IT001                            | Database                     | 1                     | Allan                                     | 41                   |
| IT001                            | Database                     | 1                     | Ben                                       | 74                   |
| IT001                            | Database                     | 1                     | Kate                                      | 85                   |
| IT001                            | Database                     | 1                     | Larry                                     | 87                   |
| IT001                            | Database                     | 1                     | Leonard                                   | 75                   |
| IT001                            | Database                     | 2                     | Juan                                      | 64                   |
| ITOO4                            | Databasa                     | 2                     | Andy                                      | 22                   |
|                                  |                              |                       |                                           |                      |
| ITOOO                            | Lavia                        | 4                     |                                           | 0_                   |
| IT002                            | Java                         | 1                     | Ally                                      | 65                   |
| IT002<br>IT002                   | Java<br>Java                 | 1                     |                                           | 65<br>47             |
|                                  |                              |                       | Ally                                      |                      |
| IT002                            | Java                         | 1                     | Ally<br>Menson                            | 47                   |
| IT002<br>IT002                   | Java<br>Java                 | 1 2                   | Ally<br>Menson<br>Mirriam                 | 47<br>78             |
| IT002<br>IT002<br>IT002          | Java<br>Java<br>Java         | 1 2 2                 | Ally<br>Menson<br>Mirriam<br>Ben          | 47<br>78<br>73       |
| IT002<br>IT002<br>IT002<br>IT002 | Java<br>Java<br>Java<br>Java | 1<br>2<br>2<br>2      | Ally<br>Menson<br>Mirriam<br>Ben<br>Larry | 78<br>73<br>64       |
| IT002<br>IT002<br>IT002<br>IT002 | Java<br>Java<br>Java<br>Java | 1<br>2<br>2<br>2<br>1 | Ally Menson Mirriam Ben Larry Ally        | 47<br>78<br>73<br>64 |



Query: Calculate Average Score for Semester One.

#### Calculation using **Fact**:

• (73.833+56+63) / 3 = 64.287

#### Calculation based on the **Operational Database**:

• (81+41+74+85+87+75+65+47+63) / 9 = 68.667

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

#### (b) Operational Database

|            |                                                                                                              | · , ·                                                                                                                                                            |                                                                                                                                                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit Title | Semester                                                                                                     | Student First Name                                                                                                                                               | Score                                                                                                                                                                                                                          |
| Database   | 1                                                                                                            | Mirriam                                                                                                                                                          | 81                                                                                                                                                                                                                             |
| Database   | 1                                                                                                            | Allan                                                                                                                                                            | 41                                                                                                                                                                                                                             |
| Database   | 1                                                                                                            | Ben                                                                                                                                                              | 74                                                                                                                                                                                                                             |
| Database   | 1                                                                                                            | Kate                                                                                                                                                             | 85                                                                                                                                                                                                                             |
| Database   | 1                                                                                                            | Larry                                                                                                                                                            | 87                                                                                                                                                                                                                             |
| Database   | 1                                                                                                            | Leonard                                                                                                                                                          | 75                                                                                                                                                                                                                             |
| Database   | 2                                                                                                            | Juan                                                                                                                                                             | 64                                                                                                                                                                                                                             |
| Database   | 2                                                                                                            | Andy                                                                                                                                                             | 32                                                                                                                                                                                                                             |
| Java       | 1                                                                                                            | Ally                                                                                                                                                             | 65                                                                                                                                                                                                                             |
| Java       | 1                                                                                                            | Menson                                                                                                                                                           | 47                                                                                                                                                                                                                             |
| Java       | 2                                                                                                            | Mirriam                                                                                                                                                          | 78                                                                                                                                                                                                                             |
| Java       | 2                                                                                                            | Ben                                                                                                                                                              | 73                                                                                                                                                                                                                             |
| Java       | 2                                                                                                            | Larry                                                                                                                                                            | 64                                                                                                                                                                                                                             |
| SAP        | 1                                                                                                            | Ally                                                                                                                                                             | 63                                                                                                                                                                                                                             |
| Network    | 2                                                                                                            | Juan                                                                                                                                                             | 53                                                                                                                                                                                                                             |
| Network    | 2                                                                                                            | Menson                                                                                                                                                           | 52                                                                                                                                                                                                                             |
|            | Database Database Database Database Database Database Database Database Java Java Java Java Java SAP Network | Database 1 Database 2 Database 2 Database 2 Java 1 Java 1 Java 2 Java 2 Java 2 SAP 1 Network 2 | Database 1 Mirriam  Database 1 Ben  Database 1 Kate  Database 1 Larry  Database 1 Leonard  Database 2 Juan  Database 2 Juan  Database 2 Andy  Java 1 Ally  Java 1 Menson  Java 2 Ben  Java 2 Larry  SAP 1 Ally  Network 2 Juan |



Query: Calculate Average Score for Semester Two.

#### Calculation using **Fact**:

• (48+71.667+52.5) / 3 = 57.389

#### Calculation based on the **Operational Database**:

• (64+32+78+73+64+53+53) / 7 = 59.4286

#### (a) Fact

| Unit Code | Semester | Average_Score |
|-----------|----------|---------------|
| IT001     | 1        | 73.833        |
| IT001     | 2        | 48            |
| IT002     | 1        | 56            |
| IT002     | 2        | 71.667        |
| IT003     | 1        | 63            |
| IT004     | 2        | 52.5          |

#### (b) Operational Database

|           |            |          | · , ·              |            |
|-----------|------------|----------|--------------------|------------|
| Unit Code | Unit Title | Semester | Student First Name | Score      |
| IT001     | Database   | 1        | Mirriam            | 81         |
| IT001     | Database   | 1        | Allan              | 41         |
| IT001     | Database   | 1        | Ben                | 74         |
| IT001     | Database   | 1        | Kate               | 85         |
| IT001     | Database   | 1        | Larry              | 87         |
| IT001     | Database   | 1        | Leonard            | 75         |
| IT001     | Database   | 2        | Juan               | 64         |
| IT001     | Database   | 2        | Andy               | 32         |
| IT002     | Java       | 1        | Ally               | 65         |
| IT002     | Java       | 1        | Menson             | <i>1</i> 7 |
| IT002     | Java       | 2        | Mirriam            | 78         |
| IT002     | Java       | 2        | Ben                | 73         |
| IT002     | Java       | 2        | Larry              | 64         |
| IT003     | SAP        | 1        | Allv               | 63         |
| IT004     | Network    | 2        | Juan               | 53         |
| IT004     | Network    | 2        | Menson             | 52         |
|           |            |          |                    |            |











#### (a) Fact Version 2

| <b>Unit Code</b> | Semester | Total_Score | Number_of_Students |
|------------------|----------|-------------|--------------------|
| IT001            | 1        | 443         | 6                  |
| IT001            | 2        | 96          | 2                  |
| IT002            | 1        | 112         | 2                  |
| IT002            | 2        | 215         | 3                  |
| IT003            | 1        | 63          | 1                  |
| IT004            | 2        | 105         | 2                  |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |





#### (a) Fact Version 2

| <b>Unit Code</b> | Semester | Total_Score | Number_of_Students |
|------------------|----------|-------------|--------------------|
| IT001            | 1        | 443         | 6                  |
| IT001            | 2        | 96          | 2                  |
| IT002            | 1        | 112         | 2                  |
| IT002            | 2        | 215         | 3                  |
| IT003            | 1        | 63          | 1                  |
| IT004            | 2        | 105         | 2                  |

### **Query:** Calculate Average Score for the Database Unit:

• (443+96)/(6+2) = 67.375

#### The SQL command:

```
select sum(Total_Score)/
    sum(Number_of_Students)
    as Average_Score
from EnrolmentFact2
where UnitCode = 'IT001';
```



- The problem of Average in the Fact is known as the Average of an Average problem.
  - This problem is well known in Mathematics and Statistics.
  - Average of an average will simply produce an incorrect average result.

- Hence, it is not desirable to have an average measure in the fact.
  - Exceptional case: when the analysis ALWAYS uses all the dimensions (e.g. Determinant Dimensions).



• If Average should not be used in the fact, how about Min or Max?



- If Average should not be used in the fact, how about Min or Max?
  - Yes, we can.
  - Because Max of Max is always a global Max, and Min of Min is always a global Min.



- If Average should not be used in the fact, how about Min or Max?
  - Yes, we can.
  - Because Max of Max is always a global Max, and Min of Min is always a global Min.

#### (a) Fact

| Ucode | Semester | Min_Score | Max_Score |
|-------|----------|-----------|-----------|
| IT001 | 1        | 41        | 87        |
| IT001 | 2        | 32        | 64        |
| IT002 | 1        | 47        | 65        |
| IT002 | 2        | 64        | 78        |
| IT003 | 1        | 63        | 63        |
| IT004 | 2        | 52        | 53        |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



- Query: Find the Maximum Score of Database Unit.
  - Max of {87, 64} is **87**.
- The SQL command:

```
select max(Max_Score) from EnrolmentFact
where UnitCode = 'IT001';
```

#### (a) Fact

| Ucode | Semester | Min_Score | Max_Score |
|-------|----------|-----------|-----------|
| IT001 | 1        | 41        | 87        |
| IT001 | 2        | 32        | 64        |
| 11002 | 1        | 47        | 65        |
| IT002 | 2        | 64        | 78        |
| IT003 | 1        | 63        | 63        |
| IT004 | 2        | 52        | 53        |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



- Query: Find the <u>Minimum Score</u> of Database Unit.
  - Min of {41, 32} is **32**.
- The SQL command:

```
select min(Min_Score) from EnrolmentFact
where UnitCode = 'IT001';
```

#### (a) Fact

| Ucode | Semester | Min_Score | Max_Score |
|-------|----------|-----------|-----------|
| IT001 | 1        | 41        | 87        |
| IT001 | 2        | 32        | 64        |
| 11002 | 1        | 47        | 65        |
| IT002 | 2        | 64        | 78        |
| IT003 | 1        | 63        | 63        |
| IT004 | 2        | 52        | 53        |

#### (b) Subject Dimension

| Unit Code | Unit Title |
|-----------|------------|
| IT001     | Database   |
| IT002     | Java       |
| IT003     | SAP        |
| IT004     | Network    |

| Semester |
|----------|
| 1        |
| 2        |



### **Average in the Fact – Conclusion**

- Average in the Fact is not desirable, although technically it satisfies the two criteria of the fact (e.g. must be a numerical and aggregate value).
- Min and Max in the Fact can still be used, since Min Score and Max Score are valid fact measures (e.g. they are numerical and aggregated values).
- In general, count and sum are more common.

