titanic

April 6, 2025

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1 1. Wstępna analiza

```
with open("./Zbiór danych Titanic.arff", "r") as f:
    headers = f.read()

columns = [header.split()[1].strip("'") for header in headers.split("\n") if
    header.lower().startswith("@attribute")]

titanic_df = pd.read_csv('./Zbiór danych Titanic.arff', skiprows=17)

titanic_df.columns = columns

print(f'Liczba cech: {len(titanic_df.columns)}')

display(titanic_df.head(20))
```

Liczba cech: 14

	pclass	survived	name	\
0	1	1	Allison, Master. Hudson Trevor	
1	1	0	Allison, Miss. Helen Loraine	
2	1	0	Allison, Mr. Hudson Joshua Creighton	
3	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	
4	1	1	Anderson, Mr. Harry	
5	1	1	Andrews, Miss. Kornelia Theodosia	
6	1	0	Andrews, Mr. Thomas Jr	
7	1	1	Appleton, Mrs. Edward Dale (Charlotte Lamson)	
8	1	0	Artagaveytia, Mr. Ramon	
9	1	0	Astor, Col. John Jacob	
10	1	1	Astor, Mrs. John Jacob (Madeleine Talmadge Force)	
11	1	1	Aubart, Mme. Leontine Pauline	
12	1	1	Barber, Miss. Ellen 'Nellie'	
13	1	1	Barkworth, Mr. Algernon Henry Wilson	
14	1	0	Baumann, Mr. John D	
15	1	0	Baxter, Mr. Quigg Edmond	
16	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	
17	1	1	Bazzani, Miss. Albina	

18		1	0				Ве	Beattie, Mr. Thomson				
19		1	1		Beckwith, Mr. Richard Leonard							
												,
0	se 1	O	_	-		cicket	fare			embarked		\
0 1	mal femal		7 1 2 1	2		13781	151.55 151.55			S S	11 ?	
2	mal			2		l 13781 l 13781	151.55	C22		S	: ?	
3	femal			2		13781	151.55	C22		S	: ?	
4	mal			0	_	19952	26.55	022	E12	S	: 3	
5	femal			0		13502	77.9583		D7	S	10	
6	mal			0	1	12050	0		A36	S	?	
7	femal			0	_	11769	51.4792	(C101	S	D	
8	mal			0	P.C.	17609	49.5042		?	C	?	
9	mal			0		17757	227.525	C62	-	C	?	
10	femal			0		17757	227.525	C62		C	4	
11	femal			0		17477	69.3	002	B35	C	9	
12	femal			0	10	19877	78.85		?	S	6	
13	mal			0		27042	30		A23	S	В	
14	mal		? 0	0	PC	17318	25.925		?	S	?	
15	mal			1		17558	247.5208	B58	•	C	?	
16	femal			1		17558	247.5208			C	6	
17	femal			0	- 0	11813	76.2917	200	D15	C	8	
18			13050	75.2417		C6	C	A				
19	mal			1		11751	52.5542		D35	S	5	
	body			ho	me.d	lest						
0	?	Montreal	, PQ / C	hestervi	lle,	ON						
1	?	Montreal	, PQ / C	hestervi	lle,	, ON						
2	135	Montreal	, PQ / C	hestervi	lle,	, ON						
3	?	Montreal	, PQ / C	hestervi	lle,	, ON						
4	?			New Y	ork,	, NY						
5	?			Hud	lson,	, NY						
6	?	? Belfast, NI										
7	?	? Bayside, Queens, NY										
8	22		Mont	evideo,	Urug	guay						
9	124			New Y	ork,	, NY						
10	?	? New York, NY										
11	?			Paris,	Fra	ance						
12	?	?										
13		? Hessle, Yorks										
14		? New York, NY										
15		? Montreal, PQ										
16		? Montreal, PQ										
17		?										
18	? Winnipeg, MN											
19	? New York, NY											

Wstępnie można zauważyć, że jest 14 cech, które są typów numerycznego, binarnego

oraz tekstowego.

2 2. NaN

Trzeba zmodyfikować zbiór np funkcją df.replace('?', np.nan)

```
[3]: titanic_df = titanic_df.replace('?', np.nan)
```

2.1 NaN Suma

```
[4]: na_sum_df = titanic_df.isnull().sum().sort_values(ascending=False).reset_index()
na_sum_df.columns = ['Column', 'Missing Count']
display(na_sum_df)
```

	Column	Missing	${\tt Count}$
0	body		1187
1	cabin		1014
2	boat		823
3	home.dest		564
4	age		263
5	${\tt embarked}$		2
6	fare		1
7	sibsp		0
8	name		0
9	survived		0
10	pclass		0
11	sex		0
12	parch		0
13	ticket		0

2.2 NaN Średnia

	Column	Missing percent
0	body	90.75
1	cabin	77.52
2	boat	62.92
3	home.dest	43.12
4	age	20.11
5	embarked	0.15
6	fare	0.08
7	sibsp	0.00
8	name	0.00

```
9 survived 0.00
10 pclass 0.00
11 sex 0.00
12 parch 0.00
13 ticket 0.00
```

2.3 Procent braków w zależności od survived

```
[6]: nan_cols = [col for col in titanic_df.columns if titanic_df[col].isnull().sum()__
     →> 0]
     plot_data = []
     for col in nan_cols:
         missing_by_survived = titanic_df[col].isnull().

¬groupby(titanic_df['survived']).mean() * 100
         for survived_val, missing_percent in missing_by_survived.items():
             plot_data.append({
                 'Column': col,
                 'Survived': survived_val,
                 'Missing %': missing_percent
             })
     plot_df = pd.DataFrame(plot_data)
     plt.figure(figsize=(6, 6))
     sns.barplot(data=plot_df, x='Column', y='Missing %', hue='Survived', u
      →palette=['red', 'green'])
     plt.title('Procent brakujących wartości według statusu przeżycia')
     plt.ylabel('Procent NaN')
     plt.xlabel('Kolumna')
     plt.xticks(rotation=45)
     plt.title('Procent braków dla survived')
     plt.tight_layout()
     plt.show()
```


2.4 Korelacja

```
[7]: corr_df = titanic_df.copy()

nan_cols = []

for col in corr_df:
    if corr_df[col].isnull().sum() > 0:
        new_col = f'is_{col}'
        corr_df[new_col] = np.where(titanic_df[col].isnull(), 0, 1)
        nan_cols.append(new_col)

corr_df['is_male'] = np.where(corr_df['sex'] == 'male', 1, 0)
```

```
corr_df['is_1st_class'] = np.where(corr_df['pclass'] == 1, 1, 0)
corr_df['is_2nd_class'] = np.where(corr_df['pclass'] == 2, 1, 0)
corr_df['is_3rd_class'] = np.where(corr_df['pclass'] == 3, 1, 0)
```


3 3. Brakujące wartości - Wnioski

Kolumny z brakującymi wartościami:

age, fare, cabin, embarked, boat, body, home.dest

3.1 Missing Completely At Random (MCAR)

- fare prawie nigdy nie jest brakująca, więc pewnie przypadkowo
- embarked rzadko NaN, pewnie błąd

3.2 Missing At Random (MAR)

- age:
 - brak częściej u osób które nie przeżyły czyli osoby "słabsze" (dzieci, starsze osoby) albo "gorsze" (trzecia klasa) mogły nie mieć zawsze wpisane wieku
- body mała ujemna korelacja z survived (numer ciała jest tylko dla osób martwych), czyli braki wynikają bezpośrednio z survived

3.3 Missing Not At Random (MNAR)

- boat:
 - Wysoka dodatnia korelacja z survived bez łodzi trudno było, przeżyć więc jej brak niemal zawsze oznaczał śmierć
 - Wysoka ujemna korelacja z is_male kobiety i dzieci mają pierwszeństwo podczas ewakuacji
 - Dodatnia korelacja z is 1st class pierwsza klasa miała pierwszeństwo podczas ewakuacji
 - Ujemna korelacja z is 3rd class trzecia klasa nie miała pierwszeństwa podczas ewakuacji więc brakło dla nich łodzi
- cabin:
 - Brak częściej u pasażerów, którzy nie przeżyli
 - Wysoka dodatnia korelacja z is_1st_class i ujemna z is_3rd_class. Wnioski? Oczywiste. W pierwszej klasie kabiny praktycznie zawsze przydzielane, w trzeciej już nie tak często class'
- home.dest- wysoka ujemna korelacja z is 3rd class, czyli można sądzić, że wyższe klasy miały lepiej udokumentowane docelowe miejsce podróży

4 Odpowiedź na pytanie

Brakujące wartości powinny być użyte do stworzenia nowych cech, które mogą wyjaśniać inne zjawiska.