The Backshift Operator

[13_x, 13c - mostly 13c]

STAT 464 / 864 | Fall 2024 Discrete Time Series Analysis Skyepaphora Griffith, Queen's University

Proposition 2.2.1

Proposition 2.2.1 Statement

 $\{\psi_j\}$: Linear filter

{Yt}: Input

- Stationary
- Zero-mean
- \wedge ACVF: $\gamma_Y(h)$

- {Xt}: Output $\frac{1}{2}$ Stationary $\frac{2}{3}$
 - Zero-mean
 - $lackbox{}{\triangleright}$ ACVF $\gamma_X(h)$

If input $\{Yt\}$ is $wn(\sigma^2)$,

i.e.) {Xt} is a linear process

then $\gamma_X(h)$ reduces to

Proposition 2.2.1

Proving E[X t] = 0

Stationarity 1) time-invariant mean

We can bring the E inside the sum because the sum (highlighted) is finite with probability 1

TLDR: Linearity of E

Proposition 2.2.1

Deriving $\gamma_X(h)$

time-invariant ACVF

finite variance

$$\gamma_X(h) = E[]$$

$$= E\left[\left(\sum\right) \left(\sum\right) \left(\sum\right) \right]$$

$$= \sum \sum$$

$$= \sum$$

- Covariance independent of t
- Yt is stationary $\to \gamma_Y(h)$ finite for all $\mathbf{h} \to \mathbf{Variance} \ \gamma_X(0)$ is finite Absolute summability

Proposition 2.2.1 | Linear Processes

If the input $\{Y_t\}$ is a $wn(\sigma^2)$ process,

For each j:

Therefore:

Why do we care? | Attacking AR(1) with Prop. 2.2.1

{Xt} is a linear filter output

Nay, a linear process!

Is it causal?

Yes.

- Causal
- Stationary
- Linear Process
- With known ACVF

Why do we care? | Getting the ACVF with Prop. 2.2.1

- Causal
- Stationary
- Linear Process
- With known ACVF

Why do we care? | Another reason we need | phi | < 1

The ACF is then
$$g_x(h) = \emptyset^{|h|}$$

What about the case when $|\emptyset| = 1$?

Then
$$X_t = \emptyset X_{t-1} + Z_t$$
 gives
 $Var(X_t) = Var(X_{t-1}) + \emptyset^2$

If $\{X_t\}$ was stationary then $Var(X_t) = Var(X_{t-1})$ we would get $\sigma^2 = 0$. So, other than this trivial case, this is a contradiction to $\sigma^2 > 0$. So $\{X_t\}$ is not stationary.

- Causal
- Stationary
- Linear Process
- With known ACVF

The

Backshift Operator

The Backshift Operator

Basic operation:
 Powers
 extend/contract timeshift

Why do we care?

- We can express a linear filter as a linear combo of powers of B
- Expressions involving B can be **treated as regular expressions** and used strategically let's revisit our AR(1) example.

Linear Filters in terms of B

A linear filter {a_j} can be written as an operator in terms of B:

This is exactly the filter's output process, $\{X_t\}$

Example: AR(1)

- Causal
- Stationary
- Linear Process
- With known ACVF

We learned something Today, in Time Series 🕛

What do we tell quin?