TRIGONOMETRY

Important Formulae

Basic Identity:-

1)
$$\sin \theta = \frac{1}{\cos ec\theta}$$

$$2) \cos \theta = \frac{1}{\sec \theta}$$

3)
$$\tan \theta = \frac{1}{\cot \theta}$$

4)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Fundamental Identity:-

1)
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$2) 1 + \tan^2 \theta = \sec^2 \theta$$

3)
$$1 + \cot^2 \theta = \cos ec^2 \theta$$

Sign Convention:-

sin & cosec +ve All+ve
tan & cot +ve cos & sec +ve

Standard Value Table:-

						1	
$\theta \longrightarrow /$	0^{0}	$ \frac{30^{0}}{\left(\frac{\pi}{6}\right)} $	$45^{0}\left(\frac{\pi}{4}\right)$	$60^{\circ} \left(\frac{\pi}{3}\right)$	$\frac{90^{\circ}}{\left(\frac{\pi}{2}\right)}$	$180^{0}(\pi)$	$360^{\circ}(2\pi)$
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	0	0
cot	8	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	8	∞
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	∞	-1	1

cosec	8	2	$\sqrt{2}$	2	1	∞	∞
			, and the second	$\sqrt{3}$			

Compound Angle:- It is a angle obtained by addition or subtraction of given angle.

If A & B are any angle then A+B, A-B are compound angle.

Compound Angle Formulae:-

1)
$$\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$$

4)
$$\cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B$$

2)
$$\sin(A-B) = \sin A \cdot \cos B - \cos A \cdot \sin B$$

5)
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$$

3)
$$\cos(A+B) = \cos A \cdot \cos B - \sin A \cdot \sin B$$

6)
$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \cdot \tan B}$$

Example

1) Without using calculator, find the value of

Solution:

a) As
$$15^{\circ} = 45^{\circ} - 30^{\circ}$$

 \therefore sin $15 = \sin (45^{\circ} - 30^{\circ})$

Using formula $\sin (A - B) = \sin A \cdot \cos B - \cos A \sin B$ = $\sin 45^{\circ} \cdot \cos 30^{\circ} - \cos 45^{\circ} \cdot \sin 30^{\circ}$

$$\sin 45^{\circ} = \cos 45^{\circ} = \frac{1}{\sqrt{2}} \text{ and } \sin 30^{\circ} = \frac{1}{2} \text{ , } \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$= \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$$

$$\sin 15 = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

b) As
$$75^{\circ} = 45^{\circ} + 30^{\circ}$$

$$\therefore$$
 cos 75°= cos (45° + 30°)

By using Formula cos (A + B) = $\cos A \cdot \cos B - \sin A \cdot \sin B$

$$= \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) - \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)$$

$$=$$
 $\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}$

$$\cos 15 = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

2) If
$$\tan A = \frac{1}{2}$$
, $\tan B = \frac{1}{3}$ Find $\tan (A + B)$

Solution: Given that
$$\tan A = \frac{1}{2}$$
, $\tan B = \frac{1}{3}$

By compound formula, $tan (A + B) = \frac{tan A + tan B}{1 - tan A \cdot tan B}$

$$=\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}$$

$$=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}$$

$$= \frac{\frac{3+2}{6}}{\frac{6-1}{6}} = \frac{5}{5}$$

$$tan(A + B) = 1$$

- 4) If $\angle A$ and $\angle B$ are both obtuse angles and $\sin A = \frac{12}{13}$ and $\cos B = \frac{-4}{5}$. Find $\sin (A + B)$.
- ► Solution : Given sin $A = \frac{12}{13}$

∴ A is obtuse (More than 90° and less than 180°)
A is the second quadrant, cos A is negative.

$$\cos A = \frac{-5}{13}$$

Given
$$\cos B = \frac{-4}{5}$$

$$\sin B = \frac{3}{5}$$

∴ B is obtuse (More than 90° and less than 180°)
B is the second quadrant, sin B is Positive.

$$\sin B = \frac{3}{5}$$

$$\sin (A + B) = \sin A \cos B + \cos A \sin B$$

$$= \left(\frac{12}{13}\right) \times \left(\frac{-4}{5}\right) + \left(\frac{-5}{13}\right) \times \left(\frac{3}{5}\right)$$

$$= \frac{-48}{65} + \frac{-15}{65}$$

$$= \frac{-48 - 15}{65}$$

$$\sin (A + B) = \frac{-63}{65}$$

Assignment: - 1

1) If $\cos A = \frac{-3}{5}$ and $\sin B = \frac{20}{29}$, where A & B are angles in third & second quadrant respectively. Find $\tan(A+B)$.

- 2) If A & B are obtuse angle such that, $\sin A = \frac{5}{13}$ and $\cos B = \frac{-4}{5}$. Find $\tan(A+B)$.
- 3) If $A + B = \frac{\pi}{4}$. show that $(1 + \tan A)(1 + \tan B) = 2$
- 4) If $\tan(x+y) = \frac{3}{4}$ and $\tan(x-y) = \frac{8}{15}$ show that $\tan 2x = \frac{77}{36}$.
- 5) Prove that, $\frac{\cot A \cot 2A}{\cot A + \cot 2A} = \frac{\sin A}{\sin 3A}$
- 6) Show that, $sin(A+B).sin(A-B) = sin^2 A sin^2 B$
- 7) Prove that, $\frac{\sin(A-B)}{\cos A \cdot \cos B} + \frac{\sin(B-C)}{\cos B \cdot \cos C} + \frac{\sin(C-A)}{\cos C \cdot \cos A} = 0$
- 8) If $\cos A = \frac{1}{7}$, $\cos B = \frac{13}{14}$, A and B are positive acute angles. Find $\sin(A+B)$, $\cos(A+B)$.
- 9) Prove that, $\frac{\sin(A-B)}{\cos(A-B)} = \frac{\cot A + \cot B}{1 + \cot A \cdot \cot B}$
- 10) If $tan(x + y) = \frac{1}{2}$ and $tan(x y) = \frac{1}{3}$ then, find 1) tan2x 2) tan2y

Allied Angle

Definition:- If the sum or difference of the two angle is either zero or integral multiple of 90° i.e. $\frac{n\pi}{2}$, where 'n' is integer, then these two angles are called as 'allied angle'.

E.g. if θ is any angle then its allied angles are $-\theta$, $\left(\frac{\pi}{2} - \theta\right)$, $\left(\frac{\pi}{2} + \theta\right)$, $\left(\pi - \theta\right)$, $\left(\pi + \theta\right)$, $\left(\pi - \theta\right)$,

Useful Formulae:- 1) $\sin(-\theta) = -\sin\theta$

$$2) \cos(-\theta) = \cos\theta$$

3)
$$\sin(n\pi) = 0$$

4)
$$\cos(n\pi) = 1$$
, if 'n' is even.

5) $\sin\left(\frac{n\pi}{2} + \theta\right) = +\sin\theta$, if 'n' is even integer (sign is depend on quadrant)

=
$$+\cos\theta$$
, if 'n' is odd integer.

6)
$$\cos\left(\frac{n\pi}{2} + \theta\right) = +\cos\theta$$
, if 'n' is even integer
= $+\sin\theta$, if 'n' is odd integer

Significance:- Any angle of large measure can be express in term of standard angle.

For example,
$$570^{\circ} = 6 \times 90^{\circ} + 30^{\circ} = \frac{6\pi}{2} + \frac{\pi}{6}$$

- 1) Without using calculator, find the value of
- i) sin(- 765°) ii) sec (3660°)

Solution:

i)
$$\sin (-765^{\circ})$$

 $\sin (-\theta) = -\sin \theta$
 $= -\sin (765^{\circ})$
 $= -\sin (8 \times 90^{\circ} + 45^{\circ})$
 $= -\sin 45^{\circ}$
 $= -\frac{1}{\sqrt{2}}$
ii) $\sec (3660^{\circ})$
 $= \sec (40 \times 90^{\circ} + 60^{\circ})$
 $= + \sec 60^{\circ}$
 $= 2$

765° lies in first quadrant, where sin is +ve n = 8 (even) function remains same.

3660 lies in Ist quadrant, where sec. is positive. n = 40 (even) function remains same.

2)Without using calculator, find the value of
$$\sin (420^{\circ}) \cos (390^{\circ}) + \cos (-300^{\circ}) \sin (-330)$$

Solution: Given
$$\sin 420^{\circ} \cos 390^{\circ} + \cos (-300^{\circ}) \sin (-330^{\circ})$$

 $\sin (420^{\circ}) = \sin (4 \times 90^{\circ} + 60^{\circ})$
 $= \sin 60^{\circ}$
 $= \frac{\sqrt{3}}{2}$
 $\cos (390^{\circ}) = \cos (360^{\circ} + 30^{\circ})$
 $= \cos (4 \times 90^{\circ} + 30^{\circ})$
 $= \cos 30^{\circ}$
 $= \frac{\sqrt{3}}{2}$

$$\cos (-300^{\circ}) = \cos (300^{\circ})$$

$$= \cos (3 \times 90^{\circ} + 30^{\circ})$$

$$= \sin 30^{\circ}$$

$$= \frac{1}{2}$$

$$\sin (-330^{\circ}) = -\sin (330^{\circ})$$

$$= -\sin (360^{\circ} - 30^{\circ})$$

$$= -\sin (4 \times 90^{\circ} - 30^{\circ})$$

$$= -(-\sin 30^{\circ})$$

$$= \sin 30^{\circ}$$

$$= \frac{1}{2}$$

Given sin 420° cos 390° + cos (- 300°) sin (- 330°)

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2}$$

$$= \frac{3}{4} + \frac{1}{4}$$

$$= \frac{3+1}{4}$$

$$= \frac{4}{4}$$

$$= 1$$

Assignment: - 2

1) Find value of a) $\sin(120^{\circ})$ b) $\cos(-390^{\circ})$ c) $\sec(3660^{\circ})$

2) Without using calculator, find value of : $\cos(570^{\circ})\sin(510^{\circ}) + \sin(-330^{\circ})\cos(-390^{\circ})$

3) Prove that, $\frac{\tan 420^{0} + \tan 300^{0}}{1 - \tan 420^{0} \tan 660^{0}} = 0$

4) Without using calculator, prove that: $\sin 240^{\circ} \cos 390^{\circ} + \cos(-300^{\circ}) \sin(-330^{\circ}) = 1$

5) Using compound angle formulae, find value of $\sin 75^{\circ}$, $\sec 75^{\circ}$ & $\tan 120^{\circ}$.

6) Without using calculator, find value of :

- a) $\cos 15^{\circ}$
- b) $\sin 75^{\circ}$ c) $\sin(-135^{\circ})$ d) $\sec(-660^{\circ})$

7) Without using calculator, find value of :

$$\sin(-690^{\circ}).\cos(300^{\circ}) + \cos(750^{\circ}).\sin(240^{\circ})$$

Multiple angle formulae

Definition:- If θ is any angle then $2\theta, 3\theta, 4\theta, ----etc$ are called 'multiple angle'

Useful Formulae: -(Multiple angle)

1)
$$\sin 2\theta = 2\sin \theta . \cos \theta = \frac{2\tan \theta}{1 + \tan^2 \theta}$$

2)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 1 - 2\sin^2 \theta = 2\cos^2 \theta - 1 = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

(From this, $1 + \cos 2\theta = 2\cos^2 \theta$, $1 - \cos 2\theta = 2\sin^2 \theta$)

3)
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

4)
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

5)
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

5)
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$
 6) $\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$

Half Angle formulae

Trigonometric ratios of any angle in the form of half angle

1)
$$\sin\theta = 2 \sin\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right)$$

$$\sin\theta = \frac{\tan\theta}{1 + \tan^2\theta}$$
2) $\cos\theta = \cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)$

$$\cos\theta = 2 \cos^2\left(\frac{\theta}{2}\right) - 1$$

$$\cos\theta = 1 - 2 \sin^2\left(\frac{\theta}{2}\right)$$

$$\cos\theta = \frac{1 - \tan^2\left(\frac{\theta}{2}\right)}{1 + \tan^2\left(\frac{\theta}{2}\right)}$$

3)
$$\tan\theta = \frac{2 \tan\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)}$$

Example

1) If sin A = 0.4, Find sin 3A.

Solution: Given $\sin A = 0.4$

Now,
$$\sin 3A = 3 \sin A - 4 \sin^3 A$$

= $3(0.4) - 4(0.4)^3$
= $1.2 - 0.256$
= 0.944

$$\therefore$$
 sin 3A = 0.944

2) If $\cos A = \frac{1}{2}$, find the value of $\cos 3A$.

Solution: Given that $\cos A = \frac{1}{2}$

Now, $\cos 3A = 4 \cos^3 A - 3 \cos A$

$$= 4\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)$$

$$= 4\left(\frac{1}{8}\right) - \frac{3}{2}$$

$$= \frac{1}{2} - \frac{3}{2}$$

$$= \frac{-2}{2}$$

∴cos 3A = -1

3) Prove that :
$$\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$$

Solution: L.H.S. =
$$\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta}$$

Use Formula $\sin 4\theta = 2 \sin 2\theta \cos 2\theta$ And $1 + \cos 4\theta = 2 \cos^2 2\theta$

L.H.S. =
$$\frac{2 \sin 2 \cdot 2 \cos 2\theta + \sin 2 \cdot 2}{2 \cos^2 2\theta + \cos 2\theta}$$
$$= \frac{\sin 2 \cdot 2 \cdot (2 \cos 2\theta + 1)}{\cos 2\theta \cdot (2 \cos 2\theta + 1)}$$
$$= \frac{\sin 2 \cdot 2}{\cos 2\theta} = \tan 2\theta$$
$$= R.H.S.$$

Example on Half angle formulae

1) If $\tan\left(\frac{A}{2}\right) = \frac{1}{\sqrt{3}}$, find the value of cosA.

Solution: We know that

$$cosA. = \frac{1 - \tan^2\left(\frac{A}{2}\right)}{1 + \tan^2\left(\frac{A}{2}\right)}$$
$$= \frac{1 - \left(\frac{1}{\sqrt{3}}\right)^2}{1 - \left(\frac{1}{\sqrt{3}}\right)^2}$$

$$= \frac{1 - \frac{1}{3}}{1 + \frac{1}{3}}$$

$$= \frac{2}{4}$$

$$= \frac{1}{2}$$

2) Prove that
$$\frac{\cos\theta}{1-\sin\theta} = \frac{1-\tan(\frac{\theta}{2})}{1+\tan(\frac{\theta}{2})}$$

Solution: L.H.S. $=\frac{\cos\theta}{1-\sin\theta}$

$$\cos\theta = \cos^{2}\left(\frac{\theta}{2}\right) - \sin^{2}\left(\frac{\theta}{2}\right)$$

$$1 = \cos^{2}\left(\frac{\theta}{2}\right) + \sin^{2}\left(\frac{\theta}{2}\right)$$

$$\sin\theta = 2\sin\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right)$$

$$= \frac{\cos^2(\frac{\theta}{2}) - \sin^2(\frac{\theta}{2})}{\cos^2(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2}) - 2\sin(\frac{\theta}{2}) \cdot \cos(\frac{\theta}{2})}$$

$$(\cos^2(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2}))(\cos^2(\frac{\theta}{2}) + \sin^2(\frac{\theta}{2}))$$

$$= \frac{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)\left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)}{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)^{2}}$$

$$= \frac{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right) \left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)}{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right) \left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)}$$

$$= \frac{\left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)}{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)}$$

Divide numerator and denominator by $\cos\left(\frac{\theta}{2}\right)$

$$= \frac{\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)}{\frac{\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}}$$

$$= \frac{\frac{\cos(\frac{\theta}{2})}{\cos(\frac{\theta}{2})} + \frac{\sin(\frac{\theta}{2})}{\cos(\frac{\theta}{2})}}{\frac{\cos(\frac{\theta}{2})}{\cos(\frac{\theta}{2})} - \frac{\sin(\frac{\theta}{2})}{\cos(\frac{\theta}{2})}}$$

$$\therefore \frac{\cos \theta}{1 - \sin \theta} = \frac{1 - \tan(\frac{\theta}{2})}{1 + \tan(\frac{\theta}{2})} = \text{R.H.S.}$$

Assignment: - 3

1) If
$$\sin A = \frac{1}{2}$$
, find $\sin 3A$.

2) Prove that,
$$\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 4\theta + \cos 2\theta} = \tan 2\theta$$

3) Prove that,
$$\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}=\tan\left(\frac{\theta}{2}\right)$$

4) Prove that,
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 8\theta}}} = 2\cos \theta$$

5) Prove that,
$$\frac{1 - \cos 2\theta - \sin \theta}{\sin 2\theta - \cos \theta} = \tan \theta$$

6) If
$$A = 30^{\circ}$$
, verify that a) $\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$ b) $\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$

7) Prove that, a)
$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$
 b) $\frac{\sin 4A}{\sin A} = 8\cos^3 A - 4\cos A$

c)
$$\sqrt{\frac{1-\sin 2\theta}{1+\sin 2\theta}} = \tan\left(\frac{\pi}{4} - \theta\right)$$
 d) $\cot 2\theta + \cos ec 2\theta = \cot \theta$

Factorization & Defactorization Formulae

1) Factorization Formulae:- a)
$$\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right).\cos\left(\frac{C-D}{2}\right)$$

b)
$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right).\sin\left(\frac{C-D}{2}\right)$$

c)
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right).\cos\left(\frac{C-D}{2}\right)$$

d)
$$\cos C - \cos D = 2\sin\left(\frac{C+D}{2}\right).\sin\left(\frac{D-C}{2}\right)$$

Note:- This formulae are used to convert addition or subtraction into multiplication.

E.g.
$$\sin 2x + \sin 3x = 2\sin\left(\frac{5x}{2}\right) \cdot \cos\left(\frac{x}{2}\right)$$

DE factorization Formulae:-1) 2SinA.CosB = Sin(A + B) + Sin(A - B)

2)
$$2CosA.SinB = Sin(A + B) - Sin(A - B)$$

3)
$$2CosA.CosB = Cos(A+B) + Cos(A-B)$$

4)
$$2SinA.SinB = Cos(A - B) - Cos(A + B)$$

Remark:- DE factorization formulae are used to convert product(multiplication) in to sum or difference.

Example

1) Evaluate 2cos75° · cos15°

Solution:

$$2\cos A \cdot \cos B = \cos(A + B) + \cos(A - B)$$

$$2\cos 75^{\circ} \cdot \cos 15^{\circ} = \cos(75^{\circ} + 15^{\circ}) + \cos(75^{\circ} - 15^{\circ})$$

$$\Rightarrow 2\cos 75^{\circ} \cdot \cos 15^{\circ} = \cos(90^{\circ}) + \cos(60^{\circ})$$

$$\Rightarrow 2\cos 75^{\circ} \cdot \cos 15^{\circ} = 0 + \frac{1}{2}$$

$$\Rightarrow 2\cos 75^{\circ} \cdot \cos 15^{\circ} = \frac{1}{2}$$

2. Prove that: $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \tan 3A \cdot \sin A$

Solution:

L.H.S.
$$= \frac{\cos 2A + 2 \cos 4A + \cos 6A}{\cos A + 2 \cos 3A + \cos 5A}$$

$$= \frac{(\cos 6A + \cos 2A) + 2 \cos 4A}{(\cos 5A + \cos A) + 2 \cos 3A}$$

$$= \frac{2 \cos \left(\frac{6A + 2A}{2}\right) \cdot \cos \left(\frac{6A - 2A}{2}\right) + 2 \cos 4A}{2 \cos \left(\frac{5A + A}{2}\right) \cdot \cos \left(\frac{5A - A}{2}\right) + 2 \cos 3A}$$

$$= \frac{2 \cos 4A \cdot \cos 2A + 2 \cos 4A}{2 \cos 3A \cdot \cos 2A + 2 \cos 3A}$$

$$= \frac{2 \cos 4A (\cos 2A + 1)}{2 \cos 3A (\cos 2A + 1)}$$

$$= \frac{\cos 4A}{\cos 3A} = \frac{\cos (3A + A)}{\cos 3A}$$

$$= \frac{\cos 3A \cdot \cos A - \sin 3A \cdot \sin A}{\cos 3A}$$

$$= \frac{\cos 3A \cdot \cos A}{\cos 3A} - \frac{\sin 3A \cdot \sin A}{\cos 3A}$$

$$= \cos A - \frac{\sin 3A}{\cos 3A} \cdot \sin A$$

$$= \cos A - \tan 3A \cdot \sin A = \text{R.H.S.}$$

3) Prove that
$$\frac{\sin 8\theta \cdot \cos \theta - \cos 3\theta \cdot \sin 6\theta}{\cos 2\theta \cdot \cos \theta - \sin 3\theta \cdot \sin 4\theta} = \tan 2\theta$$

Multiply the Numerator & denominator by 2

L.H.S =
$$\frac{2\sin \theta\theta \cdot \cos \theta - 2\sin \theta\theta \cdot \cos 3\theta}{2\cos 2\theta \cdot \cos \theta - 2\sin \theta\theta \cdot \sin 3\theta}$$
=
$$\frac{[\sin(\theta\theta + \theta) + \sin(\theta\theta - \theta)] - [\sin(\theta\theta + 3\theta) + \sin(\theta\theta - 3\theta)]}{[\cos(2\theta + \theta) + \cos(2\theta - \theta)] - [\cos(4\theta - 3\theta) - \cos(4\theta + 3\theta)]}$$
=
$$\frac{[\sin(\theta\theta) + \sin(7\theta)] - [\sin(\theta\theta) + \sin(3\theta)]}{[\cos(3\theta) + \cos(\theta)] - [\cos(\theta) - \cos(7\theta)]}$$
=
$$\frac{\sin(\theta\theta) + \sin(7\theta) - \sin(\theta\theta) - \sin(3\theta)}{\cos(3\theta) + \cos(\theta) - \cos(\theta) + \cos(7\theta)}$$
=
$$\frac{\sin(7\theta) - \sin(3\theta)}{\cos(7\theta) + \cos(3\theta)}$$
=
$$\frac{2\cos(\frac{7\theta + 3\theta}{2}) \cdot \sin(\frac{7\theta - 3\theta}{2})}{2\cos(\frac{7\theta + 3\theta}{2}) \cdot \cos(\frac{7\theta - 3\theta}{2})}$$
=
$$\frac{2\cos 5\theta \cdot \sin 2\theta}{2\cos 5\theta \cdot \cos 2\theta}$$
=
$$\frac{\sin 2\theta}{\cos 2\theta} = \tan 2\theta$$

= R.H.S

4) Prove that
$$\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ} = \frac{3}{16}$$

Solution: L.H.S.=
$$\sin 20^{0} \cdot \sin 40^{0} \cdot \sin 60^{0} \cdot \sin 80^{0}$$

$$= \frac{1}{2} \{ 2 \sin 40^{0} \cdot \sin 20^{0} \} \cdot \frac{\sqrt{3}}{2} \cdot \sin(90^{0} - 10^{0}) \}$$

$$= \frac{1}{2} \{ \cos(40^{0} - 20^{0}) - \cos(40^{0} + 20^{0}) \} \cdot \frac{\sqrt{3}}{2} \cdot \cos 10^{0} \}$$

$$= \frac{\sqrt{3}}{4} \{ \cos 20^{0} - \cos 60^{0} \} \cos 10^{0} \}$$

$$= \frac{\sqrt{3}}{4} \{ \cos 20^{0} - \frac{1}{2} \} \cos 10^{0} \}$$

$$= \frac{\sqrt{3}}{4} \{ 2 \cos 20^{0} - \frac{1}{2} \} \cdot \cos 10^{0} \}$$

$$= \frac{\sqrt{3}}{8} \{ 2 \cos 20^{0} \cos 10^{0} - \cos 10^{0} \} \}$$

$$= \frac{\sqrt{3}}{8} \{ \cos(20^{0} + 10^{0}) + \cos(20^{0} - 10^{0}) - \cos 10^{0} \}$$

$$= \frac{\sqrt{3}}{8} \{ \cos 30^{0} + \cos 10^{0} - \cos 10^{0} \}$$

$$= \frac{\sqrt{3}}{8} \cdot \cos 30^{0} = \frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{8} = \frac{3}{16} = \text{R.H.S}$$

Assignment: - 4

1) Prove that,
$$\frac{\sin 3A - \sin A}{\cos 3A + \cos A} = \tan A$$

2) Prove that,
$$\frac{\cos 3x - \cos 11x}{\sin 11x - \sin 3x} = \tan 7x$$

3) Prove that,
$$\frac{\sin A + 2\sin 3A + \sin 5A}{\sin 3A + 2\sin 5A + \sin 7A} = \cos 2A - \cot 5A \cdot \sin 2A$$

4) In any $\triangle ABC$, prove that: $\sin 2A + \sin 2B - \sin 2C = 4\cos A.\cos B.\cos C$

5) Prove that
$$\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \tan 3A \cdot \sin A$$