This listing of claims will replace all prior versions and listings of claims in the application.

1. (Previously presented) A compound of Formula (WHH)

$$0 = \begin{bmatrix} R^8 & Y^2 - J \\ Y^1 & Z^1 \end{bmatrix}$$
 (WHH)

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆ alkynyl; R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C;

 X^1 is N:

Y1 is N:

Y² is CH₂:

J is CH2 or a bond;

 Z^1 is CH_2 or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C_1 .

4alkyl, C_{1-4} alkoxy, C_{1-6} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_1-C_4$ alkyl)₂ and CN.

2. (Previously presented) A process for preparing a compound of Formula (WHH)

$$0 = \begin{cases} R^8 & Y^2 - J \\ Y & Z^1 \end{cases}$$
 (WHH)

CT-2662-US-DIV-1 USSN 10/767,645 Page 3 of 11

wherein

 R^1 is H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} thioalkyl, cyano, halo, C_{3-7} cycloalkyl, $-C_{1-6}$ alkylene- $-C_{3-7}$ cycloalkyl, C_{2-6} alkenyl or C_{3-6} alkynyl; R^8 is $O-C_{1-4}$ alkyl, $-N(CH_3)(OCH_3)$;

X is C;

Y is C;

 X^1 is N;

Y1 is N:

Y2 is CH2;

J is CH2 or a bond;

Z¹ is CH₂ or C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-5} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_{1}-C_{4}$ alkyl)₂ and CN;

comprising reacting a compound of Formula (UFF)

wherein

Z, Z¹, J and Y² are defined as for Formula (WHH);

with a compound of Formula (UFF')

wherein

R¹, R⁸, X, Y, X¹ and Y¹ are defined as for Formula (WHH);

in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula (VGG)

$$Z^1$$
— ZH
 X
 Y^2
 Br
 X
 X
 X
 X
 X

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , J, Z^1 and Z are defined as for Formula (WHH); and reacting said compound of Formula (VGG) with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

3. (Previously Presented) A compound of Formula (Z')

wherein

 R^1 is H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} thioalkyl, cyano, halo, C_{3-7} cycloalkyl, $-C_{1-6}$ alkylene- $-C_{3-7}$ cycloalkyl, $-C_{2-6}$ alkenyl or $-C_{3-6}$ alkynyl; $-C_{1-6}$ alkyl, $-N(CH_3)(OCH_3)$;

X is C:

Y is C;

X1 is N:

Y1 is N:

Y² is CH or CR⁵:

 R^5 is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆ haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene-amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-

amino, -amino- $(C_{1-6}$ alk(en)yl $)_{1-2}$, -amino-aryl, -amino-heterocyclo, C_{1-6} alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is C(0); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆ thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN.

4. (Previously presented) A process for preparing a compound of Formula (Z')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆ alkynyl; R³ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C:

X¹ is N:

Y¹ is N:

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene-amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₅alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is C(O); and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₆ thioalkyl, C₁₋₄haloalkyl, halogen, N(C₁-C₄alkyl)₂ and CN;

comprising reacting a compound of Formula (X')

wherein

Z, Z^1 and Y^2 are defined as for Formula (Z'); with a compound of Formula (UFF ')

$$O = \begin{bmatrix} \mathbf{X} & \mathbf{Y}^1 \\ \mathbf{X} & \mathbf{X}^1 \end{bmatrix}$$

wherein

 R^1 , R^8 , X, Y, X^1 and Y^1 are defined as for Formula (Z'); in the presence of a suitable base and polar aprotic solvent to yield a compound of Formula

$$R^8$$
 Y^2
 B_T
 X
 X
 X
 Y^1
 Y^2
 Y^2

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , Z^1 and Z are defined as for Formula (Z'); and reacting said compound of Formula (Y') with a high-boiling point polar aprotic solvent and a suitable silver salt under suitably high temperature.

5. (Previously Presented) A compound of Formula (AA')

$$0 \xrightarrow{\mathbb{R}^{8}} Y^{1} \xrightarrow{Y^{2}} Z^{1}$$

$$X \xrightarrow{X^{1}} X$$
(AA')

wherein

R¹ is H, C₁₋₆alkyl, C₁₋₆haloalkyl, C₁₋₆alkoxy, C₁₋₆thioalkyl, cyano, halo, C₃₋₇cycloalkyl, -C₁₋₆alkylene-C₃₋₇cycloalkyl, C₂₋₆alkenyl or C₃₋₆ alkynyl; R⁸ is O-C₁₋₄alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C:

 X^{l} is N:

 Y^1 is N;

Y² is CH or CR⁵;

R⁵ is selected from the group consisting of -CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆ haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, -C₁₋₄alk(en)ylene-amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^{1} is CR^{7} ;

wherein R⁷ is chloro or bromo: and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-6} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_1-C_4$ alkyl)₂ and CN.

6. (Previously Presented) A process for preparing a compound of Formula (AA')

$$0 = \begin{bmatrix} R^8 \\ Y^2 \\ Z \end{bmatrix}$$

$$R^1 = X X^1$$
(AA7)

wherein

 R^1 is H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} thioalkyl, cyano, halo, C_{3-7} cycloalkyl, $-C_{1-6}$ alkylene- C_{3-7} cycloalkyl, C_{2-6} alkenyl or C_{3-6} alkynyl; R^8 is O- C_{1-4} alkyl, -N(CH₃)(OCH₃);

X is C;

Y is C:

X¹ is N:

Y1 is N:

Y² is CH or CR⁵:

R⁵ is selected from the group consisting of CN, -C₁₋₄alk(en)ylene-CN, halo, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆alkynyl, C₁₋₆haloalkyl, aryl, -C₁₋₄alk(en)ylene-aryl, -C₁₋₄alk(en)ylene-heterocyclo, heterocyclo, C₁₋₄alk(en)ylene-amino, -C₁₋₄alkylene-amino-C₁₋₄alkyl, aryl-amino, -amino-(C₁₋₆alk(en)yl)₁₋₂, -amino-aryl, -amino-heterocyclo, C₁₋₆alkoxy, -O-aryl and -O-heterocyclo;

 Z^1 is CR^7 :

wherein R7 is chloro or bromo; and

Z is N-V, wherein V is phenyl, 2-pyridyl or 3-pyridyl substituted with two to three of the same or different substituents selected from the group consisting of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-6} thioalkyl, C_{1-4} haloalkyl, halogen, $N(C_{1-6}$ thioalkyl)₂ and CN;

comprising reacting a compound of Formula (Z')

wherein

 R^1 , R^8 , X, Y, X^1 , Y^1 , Y^2 , and Z are defined as for Formula (AA'); and Z^{1} is C(O);

with phosphoryl trichloride or phosphoryl tribromide, neat or with a suitable solvent and without a base or with a suitable base.