

Profº Agnaldo Cieslak

Avisos:

- 30/09 finalização conteúdo ciclo 1 e revisão;
- 07/10 entrega do trabalho em grupo da parte 1 do fechamento do ciclo 1;
- 07/10- atividade de fechamento do ciclo 1 parte 2 (individual). Início: 20:00h e término: 22:00h pelo Moodle.

- Propriedades da lógica proposicional:
- Contingência

Quando uma proposição assume resultados verdadeiros e falsos em seu resultado, dizemos que é uma contingência. Ou seja, o resultado da proposição complexa será V e F (quando se olha a tabela verdade.

р	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Aplicação Contingência - sistemas de recomendação

Jorge tem 18 anos, gosta de samba e costuma frequentemente comentar isto nas suas redes sociais e nos fóruns que participa, onde sinaliza a paixão por camisas com o tema de samba. Porém, por superstição, ele informa ainda que não gosta de camisas totalmente pretas e totalmente brancas.

Através de um sistema de recomendação de conteúdo pode-se ter a seguinte proposição para a situação problema citada:

Jorge compra camisas se elas forem diferentes de preta ou branca e tem que ser sobre samba. As variáveis são cores e a preferência pessoal dele. Então quando Jorge compra a camisa?

C: ação de comprar

p: cor preta

q: cor branca

r: tema da camisa de samba

Exemplo de aplicação em sistemas de recomendação

		_				
p	q	r	¬р	¬q	(¬p v ¬ q)	C= (¬p v ¬ q) <—> r
V	V	V				
V	V	F				
V	F	V				
V	F	F				
F	V	V				
F	V	F				
F	F	V				
F	F	F				

Conclusão:	SO	2

Atividade 5 - Exercícios para compartilhar:

1. Construir as tabelas-verdade das seguintes proposições:

a)
$$\neg (p \lor \neg q)$$
 b) $p \land q \longrightarrow p \lor q$

c)
$$\neg p \land r \longrightarrow q \lor \neg r$$
 d) $(p \land \neg q) \lor r$

d)
$$(p \land \neg q) \lor r$$

2. Avaliar a proposição abaixo e classificá-la. Depois, sabendo que os valores lógicos das proposições p e q são respectivamente F e V, determinar o valor lógico da proposição:

$$(p \land (\neg q \longrightarrow p)) \land \neg ((p \lor \neg q) \longrightarrow q \lor \neg p)$$

- Demonstrar qual a classificação desta proposição (Tautologia, Contradição, contingência): p ^ r —> q v r
- 4. Demonstrar qual a classificação desta proposição: (p ^ q) ^ ¬ (p v q)

EQUIVALÊNCIA DE PROPOSIÇÕES (≡)

Dizemos que duas proposições são logicamente equivalentes (ou simplesmente equivalentes) quando os resultados de suas tabelas-verdade são idênticos.

seguem algumas equivalências lógicas, onde V é verdadeiro, F é falso e p, q e r são proposições:

Equivalências	Denominação
$p \wedge T \equiv p$	Leis de Identidade
$p \vee F \equiv p$	
$p \lor T \equiv T$	Leis de Dominância
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Leis de Idempotência
$p \wedge p \equiv p$	
$\neg (\neg p) \equiv p$	Lei da dupla negação
$p \lor q \equiv q \lor p$	Leis Comutativas
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Leis Associativas
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Leis Distributivas
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	Leis de De Morgan
$\neg (p \lor q) \equiv \neg p \land \neg q$	

Recordando negação:

Proposição	Equivalente da Negação
A e B	Não A ou não B
A ou B	Não A e não B
*Se A então B	A e não B
**A se e somente se B (↔)	(A e não B) ou (B e não A)
Todo A é B	Algum A não é B
Algum A é B	Nenhum A é B

Obs.: Para negar o todo, basta ter uma exceção.

Obs.: Para negar algum, deve-se negar o todo.

EQUIVALÊNCIA DE PROPOSIÇÕES (≡)

$$p \lor q \rightarrow r$$
 é equivalente a $p \rightarrow r$

$$p \rightarrow q$$
 é equivalente a $\neg q \rightarrow \neg p$.

Usando tabelas-verdade, prove ou refute as equivalências lógicas a seguir:

- a) ¬¬p ≡ p
- b) $p \rightarrow q \equiv \neg p \lor q$
- c) $\neg p \land \neg q \equiv \neg (p \lor q)$
- $d) \neg \neg (p \land q) \equiv \neg (\neg p \lor \neg q)$
- $(e) p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- f) $p \lor (q \land r) \equiv (p \land q) \lor (p \land r)$
- g) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Usando tabelas-verdade, prove ou refute as equivalências lógicas a seguir: g) p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)

		1			
p	q	r			

EQUIVALÊNCIA DE PROPOSIÇÕES (≡)

Usando tabelas-verdade, verificar se são equivalentes logicamente:

a)
$$\neg q \rightarrow \neg p \equiv p \rightarrow q$$

b)
$$/ \neg p \rightarrow \neg q \equiv p \rightarrow q$$

c)
$$p \rightarrow q \equiv p \rightarrow q \vee r$$

Formas Normais

Forma normal das proposições

Uma proposição está na forma normal (FN) quando contém apenas os conectivos ~, ^ e v.

Toda proposição pode ser levada para a forma normal equivalente pela eliminação dos conectivos —> e <—>. Exemplos:

$$p \longrightarrow q \equiv \sim p \vee q$$

 $p < \longrightarrow q \equiv (\sim p \vee q) \wedge (p \vee \sim q)$

Pode-se comprovar esta afirmação de igualdade acima construindo as respectivas tabelas verdade.

- \not possível representar $p \rightarrow q$ em termos dos conectivos \neg , \lor , \land ?

 $p \rightarrow q \equiv ^p V q$

р	q	<mark>p -> q</mark>	P<-> q	~p	~q	p V q	~p V q	p V ~q	~p V ~q	p ^ q	~p ^ q	p ^ ~q	~p ^ ~q
V	V	V		F	F	V	V	V	F	V	F	F	F
V	F/	F F		F	V	>	F	V	V	F	F	V	F
F	V	V		V	F	V	٧	F	V	F	V	F	F
F	F	V		V	V	F	V	V	V	F	F	F	V
												Se	nac

- Trabalho ciclo 1 parte 1: criar uma estória que simule um sistema de recomendação, resolvendo a tabela verdade para indicar em quais situações ocorre o sucesso.
- O(s) aluno(s) deverá(ão) criar uma estória simples através de construção de proposições complexas (sugerido 5 proposições) e suas respectivas tabelas verdade, contemplando no mínimo uma das seguintes propriedades:
- Tautologia;
- Contradição;
- Equivalência;
 - •
 - Usar à vontade os conectivos lógicos (negação, conjunção, disjunção, condição, bi-condição);
- Não é obrigatório que tenha todos os conectivos básicos.
- Apresentar a estória em linguagem normal e em linguagem proposicional, e as respectivas tabelas verdade das proposições.

- Critério de avaliação: criatividade e coerência com as regras proposicionais.
- Data de entrega: 07/10/2021
- Data de apresentação: 14/10/2021 sorteio do integrante da equipe para apresentar.

Roteiro:

- 1. Pensar e construir a estória a ser apresentada;
- 2. Redigir a estória como texto;
- 3. Construir frases proposicionais simples envolvendo os conectivos apropriados;
- Traduzir as frases para a linguagem simbólica (proposicional);
- Organizar a estória para que tenha um final coerente com a tautologia, a contradição e/ou a equivalência proposicional;
- Usar este mesmo documento para desenvolver o seu trabalho.