

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Multiscale Modelling

Mateusz Sitko

Faculty of Metals Engineering and Industrial Computer Science Department of Applied Computer Science and Modelling

Classes calendar

_			
Т	SS		C
	-	 _	

- 1 Organizational class simple grain growth CA + visualization
- Microstructures export/import to/from txt files, pictures.

 Modification of cellular automata grain growth algorithm- inclusions
- 3 (at the beginning/end of the simulation)
 - Modification of CA grain growth algorithm influence of grain
- 4 curvature
- 5 Modification of CA grain growth algorithm substructures CA
- 6 Modification of CA grain growth algorithm boundaries coloring
- 7 Reports 1st part
- 8 Monte Carlo grain growth algorithm
- 9 Modification of MC grain growth algorithm substructures CA, MC
- 10 MC static recrystallization algorithm energy distribution
- 11 MC static recrystallization algorithm nucleation
- 12 MC static recrystallization algorithm growth
- 13 Reports 2nd part
- 14 Final degree

Simple Grain Growth CA algorithm

2 grains Von Neumann neighborhood

Initial space

1st step

2nd step

last step

Grain boundary shape control

Moore

Nearest Moore

Further Moore

e

Rule 1:

The id of particular cell depends on its all neighbors. If five to eight of the cells neighbors id's is equal to S, then cell transforms to the state S

Rule 2:

The id of particular cell depends on its nearest neighbors. If three of the cells neighbors id's is equal to S, then cell transforms to the state S

Rule 3:

The id of particular cell depends on its further neighbors. If three of the cells neighbors id's is equal to S, then cell transforms to the state S

Rule 4:

The id of particular cell depends on its all neighbors, and has X % probability chance to change.

Q1	Q1	Q2
Q3		Q2
Q3	Q2	Q2

 $n \in (1-100)$

Q1	Q1	Q2
Q3	Q2	Q2
Q3	Q2	Q2

Grain boundary shape control

Simple Grain Growth CA algorithm

Example of grain growth with 90% probability for rule 4:

Example of grain growth with 10% probability for rule 4:

