	数值分析》	期末考试卷	(B)		本题 得分 二 二、单选题 〖每个 2 分, 共计 10 分 〗			
使用专业、班级 学号		-	姓名			$5x_1 + 7x_2 + 9x_3 = -2$ 1. 用全主元素消去法解线性方程组 $\begin{cases} 5x_1 + 7x_2 + 9x_3 = -2 \\ -7x_1 + 8x_2 - 10x_3 = 1 $ 第一次消元选取的主元素		
题 数 一 二	三	四五	六	七	总 分	$\left(x_1 + 20x_2 - 25x_3 = -3\right)$		
得分						是()。		
						A 20 B -7		
						C 5 D -25		
本题						2. 设线性方程组的系数矩阵 $A = D - L - U$,Gauss-Seidel 迭代法的迭代矩阵是()。		
1. $x^* = 3.1415$ 作为准确值 π 的近似值,它具有位有效数字, $x^* = 3.1416$ 具有						A $D^{-1}(L+U)$ B $(D-L)^{-1}U$		
位有效数字。 2. 序列 $\{y_n\}$ 满足递推关系 $y_n = 5y_{n-1} + 1(n = 1,2,\cdots)$ 。若 $y_0 = \sqrt{2} \approx 1.41$ (三位有效数						$C (D-U)^{-1}L D (D-L)U$		
字),计算到 y_{20} 时的误差限是,这个计算过程是								
(填稳定或不稳定)。						A $O(h^2)$ B $O(h^4)$		
3. $S(x) = \begin{cases} x^3 + x^2, 0 \le x \le 1 \\ 2x^3 + bx^2 + cx - 1, 1 \le x \le 2 \end{cases}$ 是以 0, 1, 2 为节点的三次样条函数,则								
b =						$D O(n^{\circ})$		
44.	$_k f(x_k)$ 插值型	型求积公式, 其	L 代数精质	度至少可	4. 一元方程牛顿迭代法的迭代格式是()。			
多只能达	而	L	帯 切函?	*/\r	A $x_{k+1} = x_k - f(x_k)/f'(x_k)$ B $x_{k+1} = x_k + f(x_k)/f'(x_k)$			
式。	火八足区内_		川火四	蚁	C $x_{k+1} = x_k - f'(x_k)/f(x_k)$ D $x_{k+1} = x_k + f'(x_k)/f(x_k)$			
6. 已知函数表					_	5. 改进 Euler 法的绝对稳定区间是()。		
x ,	0.8 0.9	1.0	1.1	1.2	_	$A -2 \le \lambda h \le 0 \qquad B -2.51 \le \lambda h \le 0$		
	0.512 0.72		1.331	1.728	_	$C -2.785 \le \lambda h \le 0 \qquad D -\infty \le \lambda h \le 0$		
采用中点公式,计算当 $h=$	• .		•					
7. 迭代过程 $x_{n+1} = \varphi(x_n)$	$(n=0,1,\cdots)$	收敛的一个	充分条件	牛是迭个				
8. 解微分方程初值问题的显	显式 Euler 法是	是 阶,隐	式 Euler	法是				

1

本题 得分

三、给定方程组

 $\begin{bmatrix} 1 & a & 0 \\ a & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

- (1) 确定a的取值范围,使方程组对应的 Jacobi 迭代收敛; 〖7分〗
- (2) 当a = 2时,用三角分解法求方程组的解。〖8分〗

本题 得分

四、已知函数f(x)的数据表如下

$\overline{x_i}$	1	2	3
f_i	2	4	12
f_i'		3	

构造一个不超过三次的插值多项式 $H_3(x)$ 。〖15分〗

本题 得分

 $\int_a^b \int_a^b f(x) dx$ 的数值积分公式 $\sum_{i=0}^n A_i f(x_i)$

- (1) 陈述具有m次代数精度的定义; 〖5分〗
- (2) 若求积公式是 Gauss 型求积公式, $l_k(x)$ 是 x_k 处对应的 Lagrange 基函数,证明:

$$\int_{-1}^{1} l_k^2(x) dx = \int_{-1}^{1} l_k(x) dx, k = 0, 1, \dots, n$$
 [10 分]

本题	本题
$x_{n+1} = \frac{18 - x_n^2}{10}$ 求解此方程,取初始值 $x_0 = 1.5$,验证此格式是收敛的。〖15 分〗	$(y' = \lambda y, (\lambda < 0))$
	$y(x_0) = y_0$ (1) 写出求解此问题的改进 Euler 格式; 【5分】
	(2) 给出该改进 Euler 格式的绝对稳定区间。〖10分〗