8. Na podstawie wartości współczynników kierunkowych (a =gamma IS) linii trendu oraz ich niepewności obliczyć ostateczną (finalną) wartość czułości polowejgammaB ≡ gamma. Oszacować niepewność czułości polowej hallotronu.

Dane	Wartość	
$U_H Max$	182.28	
U_HMin	-169.8	Tabela 1.4- Wartości
ΔU_H	352.08	do policzenia wartości
B Max	0.498281	czułości polowej
B Min	-0.49828	
ΔB	0.996562	

$$\gamma_B = \frac{\Delta U_H}{\Delta B} = \frac{352.08}{0.996562427} = 353.2944756 \approx 353$$

$$\frac{d\gamma_B}{d\Delta B} = -\frac{\Delta U_H}{\Delta B^2} = -\frac{352.08}{0.993136671} = -354.5131404$$

$$\begin{split} U_B(\Delta U_H) = & \sqrt{\frac{(\Delta U_H)^2}{3}} = \sqrt{\frac{(1)^2}{3}} = \sqrt{\frac{1}{3}} = 0.57735024032211158333998798361823 \approx 0.58 \\ u_c(\Delta U_H) = & \sqrt{(U_A(\Delta U_H))^2 + (U_B(\Delta U_H))^2} = 0.57735024032211158333998798361823 \approx 0.58 \end{split}$$

$$u_A(x) = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}} = \sqrt{\frac{10.79316389}{35*34}} = = \sqrt{0.009069886} = 0.095235947 \approx 0.96$$

$$u(\Delta B) = \sqrt{u_A^2(x) + u_B^2(x)} = 0.095235947 \approx 0.96$$

$$\gamma_B = \gamma_B(\Delta U_H, \Delta B)$$

$$u_c(\gamma_B) = \sqrt{(\frac{\partial \gamma_B}{\partial \Delta U_H} u(\Delta U_H))^2 + (\frac{\partial \gamma_B}{\partial \Delta B} u(\Delta B))^2} = \sqrt{(1.003449431 * 0.58)^2 + (-354.5131404 * 0.96)^2} = \sqrt{(0.58200067)^2 + (-339.3726148)^2} = \sqrt{0.33872478 + 115173.7717} = 197.5150892 \approx 200 \text{ [mV/mA*mT]}$$

"W związku z tym definiuje się czułość prądową SI = dla B = const, czułość polową SB = dla IS = const oraz czułość kątową Sa = deltaUh/deltaIs dla IS = const i B0 = const (wyjaśnienia w p. 57.2 – układ pomiarowy B). Czułość jest tym większa im większy przyrost wartości napięcia UH odpowiada jednostkowej zmianie wartości wielkości wejściowej. Jeśli jednostkowej zmianie wielkości wejściowej odpowiada zawsze taka sama zmiana UH to czułość S = const."

Zgodnie z powyższym cytatem liczyłem czułość polową.