AU ENGINEERING

I4SWT MANDATORY EXERCISE

AIR TRAFFIC MONITORING

TEAM 16-1-6

Name	Student ID	E-mail
Ao Li	201407737	${ m liao}0452@{ m gmail.com}$
Cecilie Bendorff Moriat	201405949	${\it ceciliemoriat@gmail.com}$
Jonas Møgelvang Hansen	201407199	${\rm jonas_jmh@gmail.com}$
Morten Sand Knudsen	201270955	${\it mortens and knudsen @gmail.com}$

CI BUILD JOBS

Unit tests:

 $\tt http://cil.ase.au.dk:8080/job/Team \% 2016-1-06 \% 20ATM \% 20 (Unit \% 20Test)$

Integration tests:

http://cil.ase.au.dk:8080/job/Team%2016-1-06%20ATM%20(Integration%20Test)

Code metrics:

http://cil.ase.au.dk:8080/job/Team%2016-1-06%20ATM%20(Code%20Metrics)

Contents

Conter	nts
1	Introduction
2	Design
	2.1 Design considerations
	2.2 Implementation
3	Test
	3.1 Strategies
4	Teamwork
	4.1 Continuous integration
5	Conclusion

1 Introduction

The purpose of this journal is to reflect upon the design, implementation and test of the Air Traffic Monitor system.

The exercise required not only a working system, but a special effort had to be made to obtain a generic design with an appropriate amount of tests which should be simple to maintain if changes in the exercise requirements were to be made.

2 Design

As earlier stated the design of this solution was given thought as it had to be extensible and adaptive to changes in requirements. This section describes the process of obtaining such design and the outcome of the reflections.

2.1 Design considerations

An effort were made to design the system based on the five basic principles of objectoriented programming and design, SOLID. These principles applied to a system tend to make this maintainable and extendable.

2.2 Implementation

- 3 Test
- 3.1 Strategies
 - 4 Teamwork
- 4.1 Continuous integration
 - 5 Conclusion