# NHTSA Collision Dataset Analysis

Project Engineer: Dheeraj Kallakuri

Project Sponsor: Brendan Russo, NAU

# **Overview**

- Scope Summary
- Data Summary
- Data Analysis
- Data Visualization
- Automated vs Human driven vehicles.
- Predictive Modeling
- Future Work
- Takeaways
- References
- Q/A

#### **Scope Summary**

- General Order: The NHTSA has mandated that certain manufacturers and operators must report specific crashes involving vehicles equipped with ADS and ADAS Level 2 vehicles. The new version was amended in April 2023
- ADS: Automated Driving Systems(ADS)
- ADAS Level 2: Advanced Driver Assistance Systems(ADAS)
- Study the data and analyse the collision dataset and summarize the required data analysis and trends.
- Compare these collision elements with Human-driven vehicles collision elements.

# ADS-ADAS Level 2 Incident Report Sample Form



#### **Data Summary**

- ADS has about 703 and ADAS Level 2 has 1154 data points and there are 137 columns. It has the information from 2021 till 15 Sep 2023.
- The following data comprises of all the accident reported in US.
- Human driven vehicle data of Arizona was been provided by sponsor and the data set is huge it has information from 2010 to 2022.
- It was tedious to load and data process back till 2010 so used 2020-2022 data facts provided by ADOT.
- Each year there there are 100k road accidents happening Arizona. There are more than 50 inputs. The following data holds the drivers involved, units and incident data.
- All Data are crucial for accurate interpretation and analysis
- Precise location data, CBI related data are all be redacted from the csv.

#### **Steps**

- Data Cleaning and Preprocessing
- Exploratory Data Analysis (EDA)
- Correlation between variable and factors
- Data visualization between columns: bar, pie, grouped bar graph
- Statistical analysis
- Descriptive statistics
- Natural language analysis on the narrative of the accident
- Prediction of Crashing partner?

#### **Data Analysis**

- 1. Around 42 analysis were done with ADS and ADAS Level 2 Data.
  - a. Geospatial analysis: City wise, State wise, etc.
  - b. Factor Analysis: Road Type, Weather type, Speed Wise, etc.
  - c. Crash analysis: Injury Severity, Contact area, pre-crash movement etc.
  - d. Reporting analysis, Safety analysis etc.
- 2. Around 10 comparison analysis between ADS/ADAS Level 2 data with human driven vehicles.
  - a. Factor analysis
  - b. Crash with analysis
- 3. Created a model using machine learning algorithm on the provided ADS and ADAS Level 2 data to with which these vehicles might crash is **predicted.**

#### Data Visualization of count of accidents

- Which?
- Who?
- Where?
- When?
- What?
- Why?

- Which?: reporting companies count
- Who?: Operator analysis
- Where?: city ,state
- When?: Incident time
- What?: weather, road type, mileage, speed limit
- Why?: precrash movements

Which?: reporting companies count

# **ADS, ADAS Level 2 Entity analysis**





#### ADS, ADAS Level 2 Make-Model analysis >15





#### **ADS, ADAS Level 2 Same Vehicle involved in crash**





- Which?: reporting companies count
- Who?: Operator analysis

# ADS, ADAS Level 2 Driver/Operating type



- Which?: reporting companies count
- Who?: Operator analysis
- Where?: city ,state

# **ADS, ADAS Level 2 City analysis**

#### ads\_city\_analysis

| City          | count |
|---------------|-------|
| San Francisco | 420   |
| Austin        | 37    |
| Phoenix       | 36    |
| Tempe         | 35    |
| Las Vegas     | 13    |
| Miami         | 12    |
| Los Angeles   | 10    |
| Chandler      | 9     |
| Mesa          | 6     |
| Santa Monica  | 5     |

#### adas\_city\_analysis

| City          | count |
|---------------|-------|
| Los Angeles   | 42    |
| Houston       | 15    |
| San Jose      | 13    |
| Dallas        | 11    |
| Mountain View | 11    |
| San Diego     | 11    |
| Fremont       | 10    |
| Phoenix       | 10    |
| San Antonio   | 9     |
| Miami         | 8     |

# **ADS, ADAS Level 2 State analysis**

| State | count |
|-------|-------|
| CA    | 469   |
| AZ    | 96    |
| TX    | 60    |
| FL    | 23    |
| NV    | 16    |
| DC    | 6     |
| MI    | 6     |
| MN    | 5     |
| NM    | 4     |
| СО    | 4     |

| State | count |
|-------|-------|
| CA    | 377   |
| TX    | 101   |
| FL    | 92    |
| NY    | 52    |
| NJ    | 42    |
| GA    | 35    |
| PA    | 33    |
| VA    | 32    |
| WA    | 28    |
| 0.00  |       |

# **ADS, ADAS Level 2 Source Analysis**



- Which?: reporting companies count
- Who?: Operator analysis
- Where?: city ,state
- When?: Incident time

#### **ADS, ADAS Level 2 Incident Time Analysis**





- Which?: reporting companies count
- Who?: Operator analysis
- Where?: city ,state
- When?: Incident time
- What?: weather, road type, mileage, speed limit

#### ADS, ADAS Level 2 Mileage



```
Summary Statistics:
            690.000000
          27314.134783
mean
          34242.628596
std
              0.000000
min
25%
          5582.000000
50%
          16827.000000
          39252,000000
         440273.000000
Name: Mileage, dtype: float64
Median Mileage: 16827.0
Mileage Variance: 1172557613.1791947
Mileage Standard Deviation: 34242,628596227754
```



```
Summary Statistics:
           1002.000000
          34642.550898
mean
std
          38146.140195
min
             48.000000
25%
          13557.000000
          27073.500000
75%
          47641.500000
         846777.000000
Name: Mileage, dtype: float64
Median Mileage: 27073.5
Mileage Variance: 1455128011.7501538
Mileage Standard Deviation: 38146.140194653424
```

# ADS, ADAS Level 2 Road Type/Surface Analysis





# **ADS, ADAS Level 2 Posted Speed Limit**





# **ADS, ADAS Level 2 Lightning**





#### **ADS, ADAS Level 2 Weather Analysis**



- Which?: reporting companies count
- Who?: Operator analysis
- Where?: city ,state
- When?: Incident time
- What?: weather, road type, mileage, speed limit
- Why?: precrash movements

#### ADS, ADAS Level 2 Subject Vehicle pre-crash movement





# ADS, ADAS Level 2 Subj Vehicle Pre-Crash Speed Analysis



Mean Speed Limit: 8.091040462427745

Median Speed Limit: 1.0

Standard Deviation of Speed Limit: 14.482849003872918



Mean Speed Limit: 45.18143009605123

Median Speed Limit: 46.0

Standard Deviation of Speed Limit: 20.92710069931179

#### **ADS, ADAS Level 2 Crash Partner pre-crash movement**





- Crash Analysis
  - o Crash with?
  - Injury Analysis
  - Contact Area
  - Safety Analysis

#### **ADS, ADAS Level 2 Crash With?**





# **ADS, ADAS Level 2 Crash with Passenger Vehicle**





# **ADS, ADAS Level 2 Contact Area**





# **ADS, ADAS Level 2 Injury Analysis**





### **ADS, ADAS Level 2 Subject Vehicle Safety**





#### **ADS, ADAS Level 2 Facts**

- 1. SV Precrash Speed is higher than Posted Speed Limit
  - a. Number of accidents: 237 in ADAS
  - b. Number of accidents: 4 in ADS
- 2. SV Precrash Speed (MPH) and Posted Speed Limit (MPH) has stronger the correlation.
- 3. There are version control of the submitted reports highest goes still 5
- 4. ADS has 57 accidents due to sensor issues.
- 5. There different report types that the reporting companies has to update.

# ADS, ADAS Level 2 and Human Driven vehicle Analysis in AZ (21-23)

- Count of accidents
  - o ADS:96
  - o ADAS:25
  - o Human Driven: 200k
- Peak Location
  - o ADS: Phoenix, Tempe
  - ADAS:Phoenix
  - o Human Driven: Flagstaff
- Highest Road Type
  - ADS: Dry surface street
  - ADAS: Unknown surface Highway / Freeway
  - o Human Driven: Dry surface level road

# ADS, ADAS Level 2 and Human Driven vehicle Analysis in AZ (21-23)

- No of speeding Accidents
  - o ADS: 0
  - o ADAS: 2
  - Human Driven:1538
- Crash With?
  - ADS:Passenger Car
  - ADAS:Unknown
  - o Human Driven:Passenger Car
- Peak time of Accidents
  - o ADS: 1PM
  - o ADAS: 12 AM
  - Human Driven: 3-4 PM

# ADS, ADAS Level 2 and Human Driven vehicle Analysis in AZ (21-23)

#### Weather

- ADS: clear
- o ADAS: clear
- Human Driven: clear

#### Lightning

- ADS:Daylight
- ADAS:Daylight and Unknown
- o Human Driven: Daylight

## **Prediction of Crashing Partner/ Vehicle: Flow Chart**



## **Prediction of Crashing Partner/ Vehicle: Accuracy**

ADS Pred Accuracy: 74%



ADAS Pred Accuracy: 60%







## **Prediction of Crashing Partner/ Vehicle: GUI**



#### **Future work**

- GUI user friendly
- Prepare model for different use case
- Collection of more data
- Trying using different ML algorithms for increasing the accuracy
- Exploring complex queries and analysis.
- Add more fields to the to fetch more precise data of incident.

### **Takeaways**

Data analytics

ML models

Exploring complex queries



#### References

- https://azdot.gov/mvd/services/statistics/arizona-motor-vehicle-crash-f acts
- https://www.nhtsa.gov/laws-regulations/standing-general-order-crash-r eporting#overview
- https://link.springer.com/article/10.1023/A:1010933404324
- https://www.riverbankcomputing.com/software/pyqt/



#### **Vote Of Thanks**

Prof. Brendan Russo, NAU

Prof. Jeffrey Wishart, ASU



