1 První přednáška

- 1. Heavisideova funkce a centrovaná Heavisideova funkce
- 2. Prostor s úplnou mírou $\{\mathbf{E}^r, \lambda(X), \mathcal{M}_{\lambda}\}$
- 3. G bude vždy značit oblast a J bude znamenat kompakt
- 4. funkce: $f(\vec{x}) : \mathbf{R} \mapsto \mathbf{C}$
- 5. Připomenout symboly $\mathscr{C}(M) = \mathscr{C}^0(M), \mathscr{C}^n(M)$
- 6. definice symbolů \mathscr{C}_0 : (třída všech spojitých funkcí s kompaktním nosičem)
- 7. definice symbolů \mathcal{C}_0^n : (třída všech funkcí, které mají kompaktní nosič a spojité derivace až do řádu n včetně)
- 8. $\mathcal{L}(G)$, $\mathcal{L}^{\star}(G)$, $\mathcal{L}_{loc}(G)$
- 9. připomenout, že:

$$f(x) \in \mathcal{L}(E,\mu) \quad \Leftrightarrow \quad |f(x)| \in \mathcal{L}(E,\mu) \land f(x) \in \Lambda_u(E).$$

- 10. **VĚTA**: o ekvivalentní definici třídy $\mathcal{L}_{loc}(G)$
- 11. snaha o prehilbertovský prostor $\mathscr{C}(\langle a,b\rangle)$
- 12. snaha o prehilbertovský prostor $\mathcal{L}(G)$ a protipříklad $\frac{1}{\sqrt{x}} \in \mathcal{L}(0,1)$, ale $\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} = \frac{1}{x} \in \mathcal{L}(0,1)$
- 13. $\mathcal{L}_p(G)$
- 14. snaha o prehilbertovský prostor $\mathscr{L}_1(G)$ a protipříklad $\frac{1}{\sqrt{x}} \in \mathscr{L}_1(0,1)$, ale $\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} = \frac{1}{x} \in \mathscr{L}_1(0,1)$
- 15. **VĚTA**: $f, g \in \mathcal{L}_2(G) \implies fg^* \in \mathcal{L}_1(G)$
- 16. ale ani $\mathscr{L}_2(G)$ není prehilbertovský
- 17. Co jsou faktorové funkce
- 18. značení $\mathbb{L}_2(G)$ a $\mathbb{L}_2^{(w)}(G)$: váha musí být spojitá a kladná na G

2 Druhá přednáška

- 1. $\bigvee \mathsf{ETA} : f \in \mathscr{L}_2(G) \quad \land \quad H \subset G \quad \land \quad \mu(H) < \infty \quad \Rightarrow \quad f \in \mathscr{L}_1(H)$
- 2. DŮSLEDEK: $\mu(H) < \infty \implies \mathcal{L}_2(H) \subset \mathcal{L}_1(H)$
- 3. snaha o Hilbertův prostor $\mathscr{C}(\langle a,b\rangle)$ se standardním skalárním součinem (není úplný)
- 4. snaha o Hilbertův prostor $\mathbb{L}_2(G)$
- 5. **VĚTA**: $\mathbb{L}_2(G)$ a $\mathbb{L}_2^{(w)}(G)$ jsou Hilbertovy prostory
- 6. Skalární součiny na funkcionálních vektorových prostorech jednorozměrných funkcí
 - Legendre $\Theta(x-a)\Theta(b-x)$, G=(a,b)
 - Laguerre $\Theta(x)e^{-x}$, $G = (0, +\infty)$
 - Hermite e^{-x^2} , $G = \mathbf{R}$
- Typy konvergence na funkcionálních vektorových prostorech (bodová, stejnoměrná, podle normy)
- 8. **VĚTA**: o vztahu stejnoměrné konvergence a konvergence podle normy na $\mathscr{C}(\langle a,b\rangle)$ pro $\langle f|g\rangle_w$. [Nezmiňoval jsem. Dokázáno v MAB3.]
- 9. **VĚTA**: o vztahu stejnoměrné konvergence a konvergence podle normy na $\mathcal{L}_2^{(w)}(G)$, kde $\mu(G) < \infty$. Váha musí být omezená na G.
- 10. VĚTA: o spojitosti skalárního součinu
- 11. Konvergence řad podle normy
- 12. **VĚTA**: o součtu podle normy
- 13. Uzavření tématu o konstrukci funkcionálních Hilbertových prostorů.
- 14. Domácí úkol: Je $||f||_{\infty} := \max_{x \in \langle a,b \rangle} |f|$ normou na $\mathscr{C}(\langle a,b \rangle)$? A je $\mathscr{C}(\langle a,b \rangle)$ s touto normou úplný?
- 15. Operace konvoluce na prostoru klasických funkcí definice na $\mathscr{L}_{\mathrm{loc}}(\mathbf{E}^r)$
- 16. **VĚTA**: o existenci konvoluce v $\mathcal{L}_1(\mathbf{E}^r)$
- 17. Bilinearita konvoluce v $\mathscr{L}_1(\mathbf{E}^r)$ (ve cvičení)
- 18. Komutativita konvoluce v $\mathcal{L}_1(\mathbf{E}^r)$
- 19. o konvoluci funkcí tvaru $\Theta(x)F(x)$, kde $F(x) \in \mathcal{L}_{loc}(\mathbf{R})$
- 20. definice pojmů hustota a hustota pravděpodobnosti

3 Třetí přednáška

- 1. VĚTA: o zachování vlastností hustoty pravděpodobnosti
- 2. **VĚTA**: f, g jsou hustoty pravděpodobnosti a $\int_{\mathbf{R}} x f(x) \, \mathrm{d}x = \mu_1$ a $\int_{\mathbf{R}} y g(y) \, \mathrm{d}y = \mu_2$, pak $\int_{\mathbf{R}} z (f \star g)(z) \, \mathrm{d}z = \mu_1 + \mu_2$
- 3. **VĚTA**: o posunutí v konvoluci v $\mathcal{L}_1(\mathbf{E}^r)$
- 4. **VĚTA**: o derivaci v konvoluci: $f(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r)$ a $g(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r) \cap \mathcal{C}_0^1$
- 5. ortonormální množina: Řekneme, že množina S z Hilbertova prostoru $\mathscr H$ je ortonormální, pokud pro každou funkci $f(\vec x) \in S$ je $||f(\vec x)|| = 1$ a zároveň pro každé dvě funkce $f(\vec x), g(\vec x) \in S$ takové, že $f(\vec x) \neq g(\vec x)$ platí rovnost $\langle f|g \rangle = 0$.
- 6. LEMMA: prvky každé ortonormální množiny jsou LN
- 7. zmínka o Grammově-Schmidtově proceduře vyrábějící ON množinu z množiny LN funkcí
- 8. **VĚTA**: o Besselově nerovnosti: Nechť $S = \{f_1(\vec{x}), f_2(\vec{x}), \dots, f_n(\vec{x})\}$ je (konečná) ortonormální množina v Hilbertově prostoru \mathscr{H} . Nechť $g(\vec{x}) \in \mathscr{H}$ je zvolen libovolně. Označme $a_k := \langle g|f_k \rangle$. Pak platí

$$\sum_{k=1}^{n} |a_k|^2 \le ||g(\vec{x})||^2. \tag{1}$$

- 9. Definice maximální ortonormální množiny
- 10. **VĚTA**: Nechť $S = \{f_1(\vec{x}), f_2(\vec{x}), \dots, f_n(\vec{x}), \dots\}$ je (spočetná) maximální ortonormální množina v Hilbertově prostoru \mathscr{H} . Nechť je funkce $g(\vec{x}) \in \mathscr{H}$ zvolena libovolně. Nechť pro každé $k \in \mathbb{N}$ je $\langle g|f_k \rangle = 0$. Pak $g(\vec{x}) = o(\vec{x})$.
- 11. Přípravná věta k větě o Fourierově rozvoji

Nechť $S=\{f_1(\vec{x}),f_2(\vec{x}),\ldots,f_n(\vec{x}),\ldots\}$ je (spočetná) ortonormální množina v Hilbertově prostoru \mathscr{H} . Nechť je funkce $g(\vec{x})\in\mathscr{H}$ zvolena libovolně. Označme $a_k=\langle g|f_k\rangle$. Pak existuje limita

$$\underset{n\to\infty}{\operatorname{limnorm}} \sum_{k=1}^{n} a_k f_k(\vec{x}) = \sum_{k=1}^{\infty} a_k f_k(\vec{x}) =: h(\vec{x}) \in \mathscr{H}.$$

Navíc pro každé $k \in \mathbb{N}$ platí $\langle g - h | f_k \rangle = 0$.

4 Čtvrtá přednáška

- 1. Definice báze v Hilbertově prostoru
- 2. Definice separability Hilbertova prostoru
- 3. **VĚTA**: o Fourierově rozvoji
- 4. VĚTA: o Parsevalově vzorci
- 5. **VĚTA**: o Parsevalově rovnosti