Summary for "Elementary Number Theory: Second Edition by Underwood Dudley"

Agro Rachmatullah 2018-12-10

1 Integers

Definition 1.1 (Least-integer principle). A nonempty set of integers that is bounded below contains a smallest element.

Example The set $\{4, 5, 6\}$ has 4 as the smallest element. The set $\{10, 12, 14, ...\}$ has 10 as the smallest element.

Definition 1.2 (Greatest-integer principle). A nonempty set of integers that is bounded above contains a largest element.

Example The set $\{4,5,6\}$ has 6 as the largest element. The set $\{1\}$ has 1 as the largest element.

Definition 1.3. a divides b (written $a \mid b$) if and only if there is an integer d such that ad = b.

Examples $3 \mid 6, 15 \mid 60, 9 \mid 9, -4 \mid 16, \text{ and } 2 \mid -100.$

Definition 1.4. If a does not divide b, we write $a \nmid b$.

Examples $10 \nmid 5$ and $3 \nmid 7$.

Lemma 1.1. If d | a and d | b, then d | (a + b).

Example $2 \mid 4 \text{ and } 2 \mid 10, \text{ so } 2 \mid 14.$

Lemma 1.2. If $d \mid a_1, d \mid a_2, ... d \mid a_n$, then $d \mid (c_1a_1 + c_2a_2 + ... + c_na_n)$ for any integers $c_1, c_2, ..., c_n$

Example $2 \cdot 6 + 4 \cdot 9 = 12 + 36 = 48$. Because $3 \mid 6$ and $3 \mid 9$, we conclude that $3 \mid 48$.

Definition 1.5. d is the greatest common divisor of a and b (written d=(a,b)) if and only if

- (i) $d \mid a$ and $d \mid b$, and
- (ii) if $c \mid a$ and $c \mid b$, then $c \leq d$

Examples (2,6) = 2 and (5,7) = 1.

Theorem 1.1. If (a, b) = d, then (a/d, b/d) = 1.

Examples

$$(16,20) = 4$$
, so $(16/4,20/4) = (4,5) = 1$
 $(12,6) = 3$, so $(12/3,6/3) = (4,2) = 2$

Proof. Suppose that c = (a/d, b/d). If follows that $c \mid (a/d)$ and $c \mid (b/d)$. Therefore there are integers q and r such that cq = a/d and cr = b/d. That is,

$$(cd)q = a$$
 and $(cd)r = b$

which means cd is a divisor of both a and b. Because (a,b)=d, it must be the case that $cd \leq d$. d is positive so $c \leq 1$.

Because c = (a/d, b/d), it follows that $c \ge 1$. Therefore c = 1.

Definition 1.6. If (a, b) = 1, then we will say that a and b are **relatively** prime.

Examples (4,5) = 1, so 4 and 5 are relatively prime. 10 and 7 are also relatively prime.

Theorem 1.2 (The Division Algorithm). Given positive integers a and b, $b \neq 0$, there exist unique integers q and r, with $0 \leq r < b$ such that

$$a = bq + r$$

Example With a = 17 and b = 5, we have $17 = 5 \cdot 3 + 2$

Proof. Consider the set of integers $\{a, a-b, a-2b, a-3b, \ldots, a-qb\}$ bounded below by 0. It contains members that are nonnegative and nonempty (because at least a is a member). From the least-integer principle, it contains a smallest element a-qb.

The smallest element must be less than b, because if not the smallest element in the set would have to be a - (q + 1)b.

Ler r = a - qb. It follows that a = bq + r and we only have to show that q and r are unique.

Suppose that we have found q, r and q_1 , r_1 such that $a = bq + r = bq_1 + r_1$ with $0 \le r < b$ and $0 \le r_1 < b$. Subtracting, we get

$$0 = b(q - q_1) + (r - r_1)$$
$$b(q_1 - q) = r - r_1$$

Since b divides the left side of the equation, it follows that $b \mid r - r_1$.

Because $0 \le r_1 < b$, we have $-b < -r_1 \le 0$. We also have $0 \le r < b$, so it follows that

$$-b < r - r_1 < b$$

Since the only number in that range divisible by b is 0, $r - r_1 = 0$ which implies $q - q_1 = 0$. Hence the numbers q and r in the theorem is unique.

Lemma 1.3. If a = bq + r, then (a, b) = (b, r).

Proof. Let d = (a, b). Because $d \mid a$ and $d \mid b$, we know from a = bq + r that $d \mid r$. Therefore, d is a common divisor of b and r. It remains to show that d is not just any common divisor but in fact the greatest common divisor.

Now let us assume that c is a common divisor of b and r, so $c \mid b$ and $c \mid r$. From the equation a = bq + r, we know that $c \mid a$. So c is common divisor of both a and b. Because (a, b) = d, it must be the case that $c \leq d$.

Since d is a common divisor of b and r, and for any common divisor c we have $c \leq d$, we have proven that (b, r) = d.

Theorem 1.3 (The Eucledian Algorithm). If a and b are positive integers, $b \neq 0$, and

$$\begin{array}{lll} a = bq + r, & 0 \leqslant r < b, \\ b = rq_1 + r_1, & 0 \leqslant r_1 < r, \\ r = r_1q_2 + r_2, & 0 \leqslant r_2 < r_1 \\ & & & & \\ & & & \\ & & \\ & &$$

then for k large enough, say k = t - 1, we have

$$r_{t-1} = r_t q_{t+1}$$

and $(a,b) = r_t$.

Proof. The sequence

$$b > r > r_1 > r_2 > \dots$$

is decreasing, and we know that they are nonnegative, so we will eventually reach 0. Suppose $r_{t+1} = 0$. Then we have $r_{t-1} = r_t q_{t+1}$. If we apply Lemma 3 over and over,

$$(a,b) = (b,r) = (r,r_1) = (r_1,r_2) = \cdots = (r_{t-1},r_t) = r_t$$

Theorem 1.4. If (a,b) = d, then there are integers x and y such that

$$ax + by = d$$

3

Proof. Let us assume that a and b are positive integers with $a \ge b$ and $b \ne 0$. We can always switch the order of a and b, and if b = 0 then the proof is trivial.

If (a,b) = b, then $a \cdot 0 + b \cdot 1 = b$ so the equation is true with x = 0 and y = 1.

For d < b, then d will be one of the remainders in the set of equations from Theorem 3. If we call the remainders r_0, r_1, \ldots then we can rewrite the equations as

$$r_0 = a - bq$$

 $r_1 = b - r_0q_1$
 $r_2 = r_0 - r_1q_2$
...
 $r_n = r_{n-2} - r_{n-1}q_n$

For the base case of r_0 and r_1 , it is easy to confirm that they can be written as ax + bu.

Now, assuming that $r_{n-2} = ax + by$ and $r_{n-1} = ax' + by'$, then

$$r_n = r_{n-2} - r_{n-1}q_n$$

= $ax + by - q_n(ax' + by')$
= $a(x - q_nx') + b(y - q_ny')$

Because the base case and inductive case is proven, it is proved for all r_n . If one or both of a and b are negative, we can use the property (a,b) = (-a,b) = (a,-b) = (-a,-b). We can also switch the order such that $a \ge b$ as required by the beginning of the proof.

Corollary 1.4.1. If $d \mid ab$ and (d, a) = 1, then $d \mid b$.

Proof. Because d and a is relatively prime, we have

$$dx + ay = 1$$
$$d(bx) + (ab)y = b$$

Because the left side is divisible by d, we conclude that $d \mid b$.

Corollary 1.4.2. Let (a,b) = d, and suppose that $c \mid a$ and $c \mid b$. Then $c \mid d$.

Examples (18,12) = 6, and 3 is a common divisor of both 18 and 12. Thus by the corollary $3 \mid 6$.

Proof. We know that there are integers x and y such that

$$ax + by = d$$

Because $c \mid ax$ and $c \mid by$, c divides the right hand side too.

Corollary 1.4.3. If $a \mid m, b \mid m$, and (a, b) = 1, then $ab \mid m$.

Examples $3 \mid 30, 5 \mid 30, \text{ and } (3, 5) = 1.$ Thus $3 \cdot 5 = 15 \mid 30.$

Proof. $b \mid m$ means there is an integer q such that m = bq. Since $a \mid m$, we have $a \mid bq$.

However since (a,b)=1, from Corollary 1 we know that $a\mid q$. Therefore there is an integer r such that q=ar, so m=bar=(ab)r. Thus $ab\mid m$.