

Hoofdstuk 3

Essential University Physics

Richard Wolfson 2nd Edition

Beweging in Twee en Drie Dimensies

Motion in Two and Three Dimensions

Hoofdstuk 3

Beweging in Twee en Drie Dimensies

Copyright @ 2008 Pearson Education, Inc.

Een helikopter vliegt horizontaal en laat in positie A een kist met hulpgoederen vallen. Welke baan volgt die kist (wrijving met de lucht verwaarlozen)?

Giancoli 2

3.1 Vektoren

- Een vektor is een grootheid die een grootte en een richting heeft.
 - In twee dimensies heb je twee getallen nodig om een vektor te karakteriseren.
 - In drie dimensies heb je drie getallen nodig.
 - Een vektor kan je voorstellen door een pijl.

Merk op: Componenten hebben een teken!

© 2012 Pearson Education, Inc.

$$\vec{r}_2 = \vec{r}_1 + \Delta \vec{r}$$
 of $\Delta \vec{r} = \vec{r}_2 - \vec{r}_1$

Vector addition is commutative:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}.$$

Vector addition is also associative: $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$.

© 2012 Pearson Education, Inc.

- Plaats (position) is een vektoriële grootheid.
 - De plaats van een voorwerp kan je aangeven met een vektor (plaatsvektor).
 - Vb.: \vec{r}_1 beschrijft een plaats op 2,0 m van de oorsprong en met een hoek van 30° met de as.

Merk op:

De plaats van een voorwerp wordt gegeven t.o.v. een zelfgekozen oorsprong en assenkruis.

 Het eindpunt van de plaatsvektor beschrijft de baan van het voorwerp.

(netto)Verplaatsing (displacement) ⇔

Afgelegde afstand

3.2 Snelheidsvektor en Versnellingsvektor

- Snelheid is het tempo van positieverandering.
 - Gemiddelde snelheid over een tijdsinterval Δt :

$$\overline{\vec{v}} = \frac{\Delta \vec{r}}{\Delta t}$$

• Ogenblikkelijke snelheid (of kortweg snelheid):

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

- Versnelling is het tempo van snelheidsverandering:
 - Gemiddelde versnelling over een tijdsinterval Δt :

$$\overline{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t}$$

• Ogenblikkelijke versnelling (of kortweg versnelling):

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

 Snelheidsvektor is altijd rakend aan de baan van het voorwerp:

- Let op:
- Snelheid (velocity) is een vektor
- Grootte van snelheid (speed)

 Versnellingsvektor is altijd gericht naar de holle kant van de baan:

Snelheid

Versnelling

• Eenheid: m.s⁻¹

$$\vec{V} = \vec{V_x} \vec{i} + \vec{V_y} \vec{j} + \vec{V_z} \vec{k}$$

$$= \vec{V_x} + \vec{V_y} + \vec{V_z}$$

$$V_x$$
 = snelheid volgens X-as

$$V_y$$
 = snelheid volgens Y-as

$$V_z$$
 = snelheid volgens Z-as

• Eenheid: m.s⁻²

$$\vec{a} = \vec{a_x} \vec{i} + \vec{a_y} \vec{j} + \vec{a_z} \vec{k}$$

$$= \vec{a_x} + \vec{a_y} + \vec{a_z}$$

$$a_x =$$
 versnelling volgens X-as

$$a_y$$
 = versnelling volgens
Y-as

$$a_z$$
 = versnelling volgens Z-as

- Een versnelling \vec{a} gedurende een tijd Δt produceert een snelheidsverandering $\Delta \vec{v} = \vec{a} \Delta t$.
- De nieuwe snelheid wordt dan:

$$\vec{v} = \vec{v}_0 + \vec{a}\Delta t$$

 De nieuwe snelheid hangt af van de grootte en van de richting van de versnelling:

 \vec{a} and \vec{v} colinear: only speed changes

 \vec{a} and \vec{v} perpendicular: only direction changes

In general: both speed and direction change

Conceptvraag

Gegeven zijn de snelheid en versnelling van een bewegende persoon. In welk geval vertraagt de persoon en wijkt af naar rechts (vanuit het standpunt van de persoon)?

3.3 Relatieve Beweging

 Snelheid en versnelling is altijd <u>t.o.v.</u> een referentiestelsel of assenkruis.

- Een voorwerp beweegt met snelheid \vec{v}' t.o.v. een referentiestelsel.
- Dat referentiestelsel beweegt met snelheid \vec{V} t.o.v. een tweede referentiestelsel.
- De snelheid van het voorwerp t.o.v. het tweede referentiestelsel is dan

$$\vec{v} = \vec{v}' + \vec{V}$$

De zgn "optellingswet der snelheden"

• Example:

- A jetliner flies at 960 km/h relative to the air, and must go from south to north (y axis).
- There's a wind blowing eastward at 190 km/h. In what direction should the plane fly?
- The vector diagram identifies the quantities in the equation, and shows that the angle is 11°.

TIP

- Snelheid vliegtuig t.o.v. lucht: $\overrightarrow{V_{yy}}$
- Snelheid lucht t.o.v. grond (= windsnelheid): V_{LG}
- De snelheid $\overline{V_{VG}}$ van het vliegtuig t.o.v. de grond is dan:

$$\overrightarrow{V_{VG}} = \overrightarrow{V_{VL}} + \overrightarrow{V_{LG}}$$

Vconstant: rechtlijnige beweging. (waarom?)

 \vec{V} niet constant: rechtlijnige of kromlijnige beweging.

ā?

Constant:

 zowel grootte en richting veranderen niet.

Niet constant:

- Grootte verandert.
- Richting verandert.
- Grootte en richting verandert.

3.4 Constante Versnelling – één dim

$$a = \frac{dv}{dt}$$
 of $dv = a dt$

als <u>a = cte</u> dan is (cte voor integratieteken)

$$v - v_0 = \int_0^t a \, dt = a \int_0^t \, dt = a t$$

$$v = v_0 + at$$

3.4 Constante Versnelling – één dim

$$v = \frac{dx}{dt}$$
 of $dx = v dt$

$$x - x_0 = \int_0^t v \, dt = \int_0^t (v_0 + at) dt$$

met v_0 = cte en als a = cte!

$$x - x_0 = v_0 \int_0^t dt + a \int_0^t t \, dt$$

$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$

3.4 Constante Versnelling – één dim

$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$
 (1)

$$v = v_0$$
 + at => kwadrateren =>

$$v^2 = v_0^2 + 2 v_0 a t + a^2 t^2$$

$$v^2 = v_0^2 + 2a \left(v_0 t + \frac{1}{2} a t^2\right)$$
 (3)

(1) in (3) =>
$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$
En ook : $x - x_{0} = \frac{v^{2} - v_{0}^{2}}{2a}$

3.4 Constante Versnelling

Als de versnelling constant is:

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a}t^2$$

- Projectie op X-, Y- en Z-as geeft aparte scalaire vgln.
- Vb., in één dimensie:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 en $v = v_0 + a t$ waaruit $v^2 = v_0^2 + 2a(x - x_0)$

• Vb., in twee dimensies, worden de x- and y-componenten van de plaatsvektor \vec{r} en de snelheidsvektor \vec{v} op elk ogenblik t gegeven door:

$$x = x_0 + V_{x0}t + \frac{1}{2}a_xt^2$$
 en $V_x = V_{x0} + a_xt$
 $y = y_0 + V_{y0}t + \frac{1}{2}a_yt^2$ en $V_y = V_{y0} + a_yt$

Voorbeelden van bewegingen met constante versnelling zijn (bij te verwaarlozen wrijving):

- Valbeweging
- Projectielbeweging

Versnelling is telkens valversnelling

- Vertikaal naar beneden gericht.
- Grootte afhankelijk van plaats op aarde
- Gemiddelde waarde 9,8 m/s².

Opmerkingen:

- Zwaartekracht (in de buurt van het aardoppervlak) F =mg (g = 9,8 m/s²)

- Algemene gravitatiekracht

$$F = \frac{G m_1 m_2}{R^2} (G = 6,67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2})$$

22

- Beweging onder invloed van zwaartekracht nabij aardoppervlak gebeurt met constante versnelling.
- $g = 9.8 \text{ m/s}^2$, vertikaal naar beneden gericht.
 - Deze beweging noemt men de projectiel beweging.
- Beweging is combinatie van een horizontale beweging met constante snelheid en een vertikale beweging (valbeweging) met constante versnelling.
- Deze bewegingen zijn onafhankelijk van elkaar!

Vertical spacing is the same, showing that vertical and horizontal motion are independent.

$$v_{x} = v_{x0}$$

$$v_{y} = v_{y0} - gt$$

$$x = x_{0} + v_{x0}t$$

$$y = y_{0} + v_{y0}t - \frac{1}{2}gt^{2}$$

Het traject bij een projectielbeweging (zonder wrijving) is een parabool, tenzij de horizontale component nul is (dan is het een verticale rechte)

De baan van het projectiel is de hoogte y als functie van de horizontale positie x : y(x)

$$x = v_{x0}t = v_0 \cos(\theta_0)t \quad als \quad x_0 = 0$$

$$y = v_{y0}t - \frac{1}{2}gt^2 = v_0 \sin(\theta_0)t - \frac{1}{2}gt^2 \quad als \quad y_0 = 0$$

Elimineren van de parameter t geeft:

$$t = \frac{x}{v_0 \cos(\theta_0)}$$

$$y = x \tan \theta_0 - \frac{g}{2v_0^2 \cos^2 \theta_0} x^2$$

De reikwijdte : waar raakt het projectiel de grond

$$y = 0$$

$$x \tan \theta_0 - \frac{g}{2v_0^2 \cos^2 \theta_0} x^2 = 0$$

$$waaruit \quad x = 0$$

of
$$\tan \theta_0 = \frac{gx}{2v_0^2 \cos^2 \theta_0}$$

$$x = \frac{v_0^2}{g} \sin(2\theta_0)$$

omdat

$$\sin(2\theta_0) = 2\sin\theta_0\cos\theta_0$$

Bemerk de symmetrie t.o.v. 45°

Conceptvraag

Alice and Tom dive from an overhang into the lake below. Tom simply drops straight down from the edge, but Alice takes a running start and jumps with an initial horizontal velocity of 10 m/s. Neither person experiences any significant air resistance. Compare the time it takes each of them to reach the lake below.

- A) Alice reaches the surface of the lake first.
- B) Tom reaches the surface of the lake first.
- C) Alice and Tom will reach the surface of the lake at the same time.

Conceptvraag

- A pilot drops a package from a plane flying horizontally at a constant speed. Neglecting air resistance, when the package hits the ground the horizontal location of the plane will
- A) be behind the package.
- B) be over the package.
- C) be in front of the package.
- D) depend of the speed of the plane when the package was released.

3.6. Niet-constante Versnelling: Cirkelbeweging, Kromlijnige Beweging

Eénparig cirkelvormige beweging:
 Wanneer een voorwerp beweegt in een cirkelvormige baan met straal r met constante 'speed' v, heeft de versnelling een grootte

$$a=\frac{v^2}{r}$$

- Versnellingsvektor wijst naar het middelpunt van de cirkel.
- Versnelling is *niet constant:* de richting verandert voortdurend.
- Idem voor de snelheid :
 niet constant:
 de richting verandert voortdurend.

The velocities

$$\frac{\Delta v}{v} = \frac{\Delta r}{r} \approx \frac{v \, \Delta t}{r}$$
 waaruit $\bar{a} = \frac{\Delta v}{\Delta t} \approx \frac{v^2}{r}$ en als $\Delta t \to 0$: $a = \frac{v^2}{r}$

- niet-éénparig cirkelvormige beweging: (zie ook hfdst 10)
 Zowel richting en de grootte van de snelheid kunnen veranderen.
- De versnelling heeft een radiale en een tangentiële component:

$$\vec{a} = \vec{a}_r + \vec{a}_t$$
 $a = \sqrt{a_t^2 + a_r^2}$

- \vec{a}_r staat loodrecht op \vec{v} \vec{a}_t is evenwijdig met \vec{v}
 - De figuur toont een auto die remt bij het maken van een bocht.

The car is slowing, so its tangential acceleration \vec{a}_t is opposite its velocity. The radial acceleration \vec{a}_r changes only the direction of motion.

32

Aanvulling: Kromlijnige Beweging

$$\vec{a} = \vec{a}_t + \vec{a}_r$$

 $\overrightarrow{a_t}$ verandert grootte \overrightarrow{v} $\overrightarrow{a_r}$ verandert richting \overrightarrow{v}