Cátedra de Biología general La Química de la vida

Lic. Gestión Ambiental 2018

Contenidos

- 1. Estructura atómica. Tabla periódica y propiedades de los elementos. Elementos esenciales para la vida. Energía y estados de la materia.
- 2. Enlaces químicos y moléculas. Iones. Tipos de reacciones químicas. Equilibrio químico. Oxidación y reducción. Ácidos, bases y sales.
- 3. Características fisicoquímicas del agua y su importancia para la vida.
- 4. La química del carbono: conceptos básicos de química orgánica. Grupos funcionales. Nomenclatura y diversidad estructural de los compuestos orgánicos. Polaridad.
- La bioquímica: Definición, estructuras, propiedades y funciones biológicas de las macromoléculas: lípidos, carbohidratos, péptidos y ácidos nucleicos. Pigmentos.

El átomo: somos vacío!

- •El átomo es la unidad básica de la materia (una viene idea de griegos, como Demócrito).
- •Su tamaño es 10⁻¹ metros.
- •Se compone de partículas subatómicas:
- Protones (carga positiva; +)
- Neutrones (sin carga; 0)
- Electrones (carga negativa; -)
- •Los protones y neutrones forman el núcleo, alrededor del cual giran los electrones, que son mucho más chicos (inspiración en el sistema solar).

Masa atómica: es la cantidad de protones y de neutrones (1 unidad de masa atómica (amu) = masa de un protón = 1×10^{-27} kg!). La masa de los electrones es insignificante.

Numero atómico: es la cantidad de protones. Identifica al elemento.

De donde vienen los elementos?

- •El Hidrogeno y el Helio se originaron primordialmente en el Big-Bang.
- •Los elementos del Carbono al Hierro surgieron en las estrellas por fusión.
- •Los elementos más pesados que el Hierro se forman en las supernovas.
- •El hombre ha creado elementos sintéticos

Los átomos pueden sufrir fenómenos de Fusión y Fisión

1						L	a ta	abla	ре	erió	dica	a						2
Н		Periodo (fila): Elementos con similar configuración de sus															He	
3	4	electrónicas.											5	6	- 7	8	9	10
Li	Be	Cada nube u orbital puede tener hasta 2 electrones.												С	N	0	F	Ne
11	12	La capa más externa del átomo es la capa de valencia. Los átomos tienden a completar su capa de valencia tomando,												14	15	16	17	18
Na	Mg					ndo e-	Al	Si	Р	S	CI	Ar						
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te	1	Xe
55	56	*	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	^	L	Hf	Ta	W	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	*	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	*	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
			57	58	59	60	61	62	63	64	65	66	67	68	69	70		
		*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
		*	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
		*	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

Enlaces y moléculas

Los compuestos químicos se forman al establecerse enlaces entre 2 o + átomos.

Enlace iónico (ceder o tomar e-): Se forman por atracción mutua de iones (átomos cargados) de carga opuesta.

Se unen los orbitales de los átomos, formándose orbitales moleculares. Se forma una Molécula.

El carbono, al tener 4 e $^{-}$ desapareados en su capa de valencia tiende a enlazar covalentemente. 1 Mol= 6 x 10^{23} moléculas. Mas fácil, un mol es el equivalente en gramos de la masa molecular (que es la suma de las masas de cada uno de los átomos de la molécula).

Concentración: Indica que tan abundante es una sustancia. Es la relación entre soluto y solvente. Generalmente: masa/volumen (ej. 1 gramo de azúcar por litro; 0,3 moles de amoniaco por litro)

Enlaces covalentes

Formulas químicas:
Formula molecular:H₂O
Formula estructural: H—O—H

Tipos de enlaces covalentes:

Según se comparten 1, 2 o 3 pares de e- entre los dos átomos, los enlaces covalentes pueden ser simples, dobles o triples. Se representan con líneas simples, dobles o triples en las formulas estructurales.

Polaridad:

La capacidad de un átomo de atraer y retener los electrones se llama electronegatividad. Cuando se forma un enlace entre 2 elementos de distinta electronegatividad, los electrones se van a compartir desigualmente y "van a estar más cerca" (simplificando cuestiones cuánticas) del átomo más electronegativo. Esto es un enlace covalente polar pues alrededor del átomo más electronegativo hay más carga – y más carga + en torno al otro. Cuando no hay diferencia de electronegatividad entre los átomos de un enlace, esta es no-polar.

Reacciones químicas

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O + ENERGIA$$

Azúcar

Oxigeno

Dióxido de carbono

Agua

Reactivos

Productos

Sentido de la reacción: Las reacciones ser irreversibles (los productos no pueden regenerar el sustrato) o reversibles (proceden en ambos sentidos).

Energética: Las reacciones pueden ser exergo nicas o endergonicas, según liberen o consuman energía.

Equilibrio químico: Estado en el cual las concentraciones de reactivos y productos no varían en el tiempo. Los sistemas biológicos tienden hacia el equilibrio porque es el estado más estable, pero en general no lo alcanzan sino que llegan a un estado estacionario (homeostasis).

Reacciones Redox: una sustancia cede electrones (se "oxida") y otra captura esos electrones (se "reduce"). Este movimiento de electrones implica transferencia de cargas y de energía. La respiración y la fotosíntesis se basan en reacciones redox.

Agua: somos agua!

3/4 partes del planeta están cubiertas por agua.

El agua representa 50-95% del peso de los seres vivos.

Las moléculas de agua son polares y se asocian entre si mediante Puentes de Hidrogeno. Son uniones débiles, por atracción electrostática. Sin embargo, al ser tan numerosos llegan a tener mucha fuerza y determinan las características del agua.

- •Alta tensión superficial (resistencia a aumentar su superficie).
- •Alta capilaridad (debido a la tensión).
- •Alto calor especifico (no cambia de temperatura tan fácilmente).
- •Gran calor de vaporización (la evaporación de agua produce enfriamiento).
- •Mayor densidad en estado liquido que en el sólido (el hielo flota!).E
- •Poderoso disolvente (disgrega fácilmente sustancias iónicas o polares que están en estado sólido).

Química orgánica: somos Carbono!

Los compuestos orgánicos contienen átomos de carbono, unidos covalentemente entre si y con hidrogeno. Aparte pueden tener N,

Hay compuestos inorgánicos que pueden tener C (ej. El carbonato del mármol) pero no tienen un esqueleto de C, no derivan de organismos y no son combustibles (la distinción no es tan simple). Isómeros: son sustancias con igual formula molecular pero diferente estructuras.

Hidrofobicidad (=lipofilicidad) e Hidrofilicidad (CONCEPTO CLAVE): Los compuestos hidroficos son poco polares y no se disuelven bien en el agua. Los hidrofilicos son polares y muy solubles. El grado de hidrofobicidad de una sustancia es clave para la vida.

Grupos funcionales orgánicos

Son estructuras submoleculares que le confieren a la molécula sus características más importantes.

 Hidroxilo: característico de los alcoholes. Ej. Etanol (alcohol medicinal)

•Carbonilo: característico de aldehídos y cetonas. Ej. Formol (antiguo anestésico), Azucares. Carboxilos: característico de los ácidos orgánicos. Muy polar. Ej. Acido acético (vinagre), ácidos grasos.

Muchos otros:

Sulfhidrilo, éter, amida, benzilo, fenilo, nitrilo, cianuro, nitro, imina, tio, pirrol, etc...

Polímeros:

"Muchas-Partes" Son grandes moléculas formadas por la unión covalente de repetidas unidades estructurales.

Bioquímica: la química de la vida

Estudio de los procesos químicos que ocurren en los seres vivos. Biomoleculas: moléculas producidas por los seres vivos.

Macromoléculas: biomoleculas de gran masa. No suele usarse en su sentido estricto y en general refiere a los lípidos, carbohidratos, proteínas y ácidos nucleicos.

La Bioquímica estudia las biomoleculas, principalmente las macromoléculas, las reacciones en las que intervienen y su catálisis, la transferencia y conservación de la información química, y la metodología para estudiar todo esto.

En los organismos las reacciones químicas ocurren encadenadamente: rutas bioquímicas. (ej. Producción de azúcar). Pueden ser lineales, ramificadas, cíclicas, espiraladas. Etc.

Anabolismo: rutas de síntesis (producción). Consumen energía. **Catabolismo:** rutas de degradación (destrucción). Producen energía.

También hay rutas que solo generan energía.

La enzimas son sustancias que catalizan las reacciones (es decir, hacen que ocurran más rápido) y son uno de los pilares de la vida!

Lípidos (grasas y aceites)

- •Grupo heterogéneo de moléculas orgánicas solubles en solventes orgánicos (ej. Cloroformo, hexano) y poco solubles en agua (hidrofobicos).
- •Principalmente C y H, baja proporción de otros elementos (O, N, S, etc.)
- •Funciones estructurales, energéticas y de señalización.
- •Liberan mucha energía y se almacenan en seco: principal fuente energética animal
- Ácidos grasos: ácidos carboxílicos (-COOH) de cadena larga, (en gral. 14-24C), en gral. lineal.

- •El enlace covalente simple C-C tiene siempre el mismo largo y angulo. Al alinearse los ácidos en paralelo se establecen muchas débiles uniones electrostáticos entre ellos (interacciones de Van de Waals), confiriéndoles solidez.
- •Los dobles enlaces son llamados insaturaciones. Cuanto más "insaturado" (es decir más dobles enlaces y menos H) tenga un acido graso, más fluido será (CONCEPTO CLAVE).
- •El doble enlace (C=C) se establece a un ángulo diferente del simple y hace que se tuerza la cadena \rightarrow ácidos insaturados no se alinean paralelos y establecen menos uniones Van der Waals \rightarrow más fluidos. + más insaturado, + saludable (- riesgo cardiovascular).
- •El doble enlace es rígido y existe en 2 configuraciones: cis y trans

Carbohidratos (azucares)

сн₂он

Triosa

(3C)

сн₂он

Tetrosa

- •También llamados glúcidos o hidratos de carbono.
- •Son polihidroxialdehidos (carbonilo en el extremo de la molécula) o polihidroxicetonas (carbonilo en el medio).
- •Tienen la formula (CH₂O)_n donde n va de 3 a 7.
- •Monosacáridos: azucares simples. Tienen un carbono carbonilico (C=O) y el resto con un hidroxilo (OH-) cada uno.
- •Las hexosas (6C) suelen cerrarse formando un anillo (son cíclicas).
- •Glucosa (6C) es el monosacáridos más importante. Es fuente de energía y sirve para producir otros compuestos. Una gran parte de los procesos bioquímicos de los organismos está dedicada a la regulación de la glucosa.

Pentosa Hexosa

Azucares: Polisacaridos

Los monosacáridos pueden unirse formando polímeros (di, tri, o polisacáridos). Entre los disacáridos esta la sucrosa (azúcar común), maltosa y lactosa.

Los monosacáridos se unen mediante enlaces glucosidicos (son enlaces covalentes), quedando un átomo de O entre ellos.

Almidón Celulosa Glucógeno Quitina

- •Los polisacáridos son importantes fuentes de energía para los organismos (almidón, glucógeno). Además tiene funciones estructurales (celulosa, quitina) pueden ser muy grandes (miles de monómeros y de estructuras muy complejas (ramificados). Pueden ser muy resistentes a la descomposición, pero hay bacterias y hongos especializados para destruirlos.
- •Tienen muchos hidroxilos, por lo cual son muy polares e hidrofilicos (CONCEPTO CLAVE).
- •Pueden estar combinados con otras macromoléculas (Glicoproteínas y glucolipidos).

•Las estructuras de las proteínas determinan su función, tienen que estar bien plegada para funcionar.

•Muchas proteínas cumplen sus funciones realizando cambios de conformación (CONCEPTO CLAVE) entre 2 o + configuraciones estructurales (ej. Estado activo e inactivo)

•Las proteínas pueden ser MUY especificas, reaccionando de manera muy diferente a moléculas muy similares

Son MUY sensibles, leves cambios en cualquier nivel de estructura puede alterar o anular su función: desnaturalización (Cambios de T°, pH o concentración iónica). Cada proteína suele tener un pH y T° óptimos para su función

y solubilidad.

Acidos nucleicos: la información biologica

Los ácidos nucleicos son polimeros de nucleotidos unidos por enlaces fosfodiester. EL ARN consta de una sola cadena. El ADN tiene dos cadenas apareadas por puentes de H y enroscadas en doble helice. Los nucleotidos de una cadena no se aparean con cualquier otro de la cadena opuesta, sino que solo se unen A-T (2 puentes) y C-G (3 puentes). Por ende, las cadenas son complementarias entre si.

El ADN contiene la información de todo el organismo, y sirve para elaborar cada uno de sus componentes (esp. proteínas). Es la base de la evolución, pues permite propagar esa información a la descendencia.

El código genético tiene las combinaciones de nucleótidos que simbolizan cada uno de los aa.

Pigmentos Moléculas que absorben luz activamente en el rango UV-Visible especialmente. Son muy importantes en procesos biológicos de transferencia de VITAMIN A energía. Isoprenoides: Vitamina A y

BETA-CAROTENE

Porfirinas: Compuestos cíclicos nitrogenados. Los N del centro de la molécula pueden formar enlaces con un átomo de un metal. Son cruciales para la vida: están en los pigmentos respiratorios (hemoglobina) y fotosintéticos.

ĊH₃

CH₃