

ANTICIPARE LA CRESCITA CON LE NUOVE COMPETENZE SUI BIG DATA – EDIZIONE 2

Operazione Rif. PA 2019-11596/RER "Anticipare la crescita con le nuove competenze sui Big Data - Edizione 2", approvata dalla Regione Emilia-Romagna con DGR n° 789 del 20 maggio 2019 e co-finanziata dal Fondo Sociale Europeo PO 2014-2020

Prog. 4 Ed. 7 Titolo "Tecnologie & Software di Data Science

CONFUSION MATRIX

To do this, we could use **Logistic Regression**...

...or a Random Forest...

...or K-Nearest Neighbors...

...or some other method. There are tons to choose from.

How do we decide which one works best with our data?

We start by dividing the data into **Training** and **Testing** sets...

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
	Trai	ning Da	ata	

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Voc	No	210	No
	Tes	ting Da	ıta	
		•••	***	•••

NOTE: This would be an excellent opportunity to use **Cross Validation**.

The rows in a **Confusion Matrix** correspond to what the machine learning algorithm predicted...

...and the columns correspond to the known truth.

These are the patients that *did not have heart* disease that were correctly identified by the algorithm.

The bottom left-hand corner contains the **False Negatives**...

Lastly, the top right-hand corner contains the **False Positives...**

False Positives are patients that do not have heart disease, but the algorithm says they do.

K-Nearest Neighbors was worse than the Random Forest at predicting patients with Heart Disease (107 vs 142)...

...and worse at predicting patients without Heart Disease (79 vs 110)...

...so if we had to choose between using the **Random Forest** and **K-Nearest Neighbors**, we would choose the **Random Forest**.

Lastly, we can apply **Logistic Regression** to the **Testing Dataset** and create a **Confusion Matrix**.

These two **Confusion Matrices** are very similar and make it hard to choose which machine learning method is a better fit for this data.

Sensitivity, Specificity, ROC and AUC

		Actual		
		Troll 2	Gore Police	Cool as Ice
	Troll 2	12	102	93
Predicted	Gore Police	112	23	77
	Cool as Ice	83	92	17

...and if we had 40 things to choose from, we get a confusion matrix with 40 rows and 40 columns.

In summary, a **Confusion Matrix** tells you what your machine learning algorithm did right...

...and what it did wrong.

		Actual	
		Has Heart Disease	Does Not Have Heart Disease
 	Has Heart Disease	True Positives	False Positives
Predicted	Does Not Have Heart Disease	False Negatives	True Negatives

Once we've filled out the **Confusion Matrix**, we can calculate two useful metrics: **Sensitivity** and **Specificity**.

		Actual	
		Has Heart Disease	Does Not Have Heart Disease
 -	Has Heart Disease	True Positives	False Positives
Predicted	Does Not Have Heart Disease	False Negatives	True Negatives

In this case, **Sensitivity** tells us what percentage of patients *with* heart disease were correctly identified.

Specificity tells us what percentage of patients *without* heart disease were correctly identified.

Sensitivity =
$$\frac{139}{139 + 32}$$
 = 0.81

Sensitivity tells us that **81**% of the people with Heart Disease were correctly identified by the **Logistic Regression** model.

	Has Heart Disease	Does Not Have Heart Disease
Has Heart Disease	139	20
Does Not Have Heart Disease	32	112

Specificity =
$$\frac{112}{112 + 20}$$
 = 0.85

Specificity tells us that **85**% of the people without Heart Disease were correctly identified by the **Logistic Regression** model.

	Has Heart Disease	Does Not Have Heart Disease
Has Heart Disease	139	20
Does Not Have Heart Disease	32	112

Sensitivity =
$$\frac{142}{142 + 29}$$
 = 0.83

_	—Actual——	_

		Has Heart Disease	Does Not Have Heart Disease
Duo dieta d	Has Heart Disease	142	22
Predicted	Does Not Have Heart Disease	29	110

Sensitivity =
$$\frac{142}{142 + 29}$$
 = 0.83

Specificity =
$$\frac{110}{110 + 22}$$
 = 0.83

—Actual——

		Has Heart Disease	Does Not Have Heart Disease
 	Has Heart Disease	142	22
Predicted	Does Not Have Heart Disease	29	110

Sensitivity = 0.81

Specificity = 0.85

We would choose the **Logistic Regression** model if correctly identifying patients **without** heart disease was more important than correctly identifying patients **with** heart disease.

Random Forest

Sensitivity = 0.83

Specificity = 0.83

Alternatively, we would choose the **Random Forest** model if correctly identifying patients **with** heart disease was more important than correctly identifying patients **without** heart disease.

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$
 $F1 = \frac{2 \times precision \times recall}{precision + recall}$
 $accuracy = \frac{TP + TN}{TP + FN + TN + FP}$
 $specificity = \frac{TN}{TN + FP}$