- 1°. (a) if $L: \mathbb{R}^n \to \mathbb{R}^n$ injective, then a basis $\{v_j\}_{j=1}^n$ for \mathbb{R}^n pushes forward to a basis $\{L(v_j)\}_{j=1}^n$ for $\mathbb{R}(L)$, hence $\dim \mathbb{R}(L) = n$ so $\mathbb{R}(L) = \mathbb{R}^n$, i.e. L surjective
 - (b) if L surjecture, given basis $\{w_j\}_{j=1}^n$ for $1R^n$ there exists $\{v_j\}_{j=1}^n \subset 1R^n$ s.t. $\forall j: Lv_j = w_j;$ can verify that $\{v_j\}_{j=1}^n$, linearly independent, so $ar(L) = \{0\}$, so L injecture
 - (c) if $R(L) \subset M(L)$, then $L^{n} = O_{n \times n}$, so spec $L = \{0\}$ (d) (c) \Rightarrow spec $A_{L} = \{0\} \Rightarrow det(s I - A) = s^{n}$

2° (a) noting that
$$L(L^kb) = L^{k+l}b$$
,
and letting $\det(sI-l) = s^n + \alpha_{n-1}s^{n-l} + \cdots + \alpha_0$,

$$A_{L,B} = \begin{bmatrix} 0 & -1 & -1 & 0 & -\alpha_0 \\ 1 & 0 & 0 & -\alpha_1 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

$$A_{L,V} = \begin{bmatrix} \lambda & 1 & 0 & - & - & 0 \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 & - & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \lambda & 1 & 0 &$$

be matrix rep's for $L, \Gamma, respectively$ since $\forall v \in \mathbb{R}^n$: $L \Gamma v = \Gamma L v = v$, then M W v = W M v = v; since matrix inverses are unique, $W = M^{-1}$ 3°. (a) if f is linear, then \exists matrix A s.t. $\forall x \in \mathbb{R}^n$; f(x) = Ax then know $\phi(t,x) = e^{At}x$ so ϕ_t linear

(b) if ϕ_t is linear then

$$\forall \alpha \in \mathbb{R}$$
, $x, \xi \in \mathbb{R}^n$: $\phi_t(x + \alpha \xi) = \phi_t(x) + \alpha \phi_t(\xi)$
 $\Rightarrow D_t \phi_t(x + \alpha \xi) = D_t \phi_t(x) + \alpha D_t \phi_t(\xi)$
 $\Rightarrow f(\phi_t(x + \alpha \xi)) = f(\phi_t(x) + \alpha \phi_t(\xi))$
 $= f(\phi_t(x)) + \alpha f(\phi_t(\xi)) \forall$

4°. (a) $\forall x \in \mathbb{R}, \ x_i \in \mathbb{R}^R : S_t(x + \alpha \xi) = x(t) + \alpha \xi(t) \not \subseteq \{b\} \text{ consider } \{x_i\}_{i=1}^{\infty} \text{ defined by } x_i(\xi) = \{j_i \ \zeta = t \ C_i \text{ else } t \}$ then $\|x_j\| = 0$ but $\|S_t x_i\| = j$ so $\|S_t\| = \infty$

5°. (a) $P(a_1b)P(b_1a) = I \Rightarrow P(a_1b)^{-1} = P(a_1b)$ (b) $D_b(P(a_1b)P(b_1a)) = D_bP(a_1b)P(b_1a) + P(a_1b)D_bP(b_1a)$ $\Rightarrow D_bP(a_1b) = -P(a_1b)D_bP(b_1a)P(a_1b)$

6°. (a)
$$\phi(s_1x) = \overline{\phi}(s_10)x$$

$$(c) \quad \overline{\Phi} = \widetilde{\Phi}$$

(d)
$$\Phi(s, x) = \overline{\Phi}(s, 0) \overline{x} + \int_{0}^{s} \overline{\Phi}(s, \tau) \Phi(\tau, x) d\tau$$

(e)
$$\tilde{x} = -\bar{\Phi}(0,s) \left[\int_{0}^{s} \bar{\Phi}(s,\tau) \varphi(\tau,x) d\tau \right]$$