Lógica para Computação

Davi Romero de Vasconcelos

Universidade Federal do Ceará em Quixadá, Brasil daviromero@ufc.br

- Os sistemas Axiomático e Dedução Natural permitem demonstrar quando uma fórmula é derivada de um conjunto de fórmulas (Γ ⊢ φ). Contudo, nenhum desses métodos nos permite inferir que Γ ⊬ φ. Note que Γ ⊬ φ não implica em Γ ⊢ ¬φ.
- O método da Tabela-Verdade é um procedimento de decisão que nos permite provar se $\Gamma \vdash \varphi$ ou $\Gamma \not\vdash \varphi$. Contudo, esse procedimento tem um crescimento no número de linhas exponencial em relação ao número de símbolos proposicionais.
- O sistema de inferência de Tableau Analítico (Semântico) é um método de decisão que não necessariamente gera provas de tamanho exponencial.
- Tableau é um método de inferência baseado em *refutação*: para provarmos $\Gamma \vdash \varphi$, afirmamos a *veracidade* de Γ e a *falsidade* de φ , na esperança de derivarmos uma *contradição*. Por outro lado, se não for obtida uma contradição, então teremos construído um *contra-exemplo*, i.e., uma valoração que satisfaz Γ e não satisfaz φ .

- Para afirmar a veracidade ou falsidade de uma fórmula, o método dos tableaux analíticos marca as fórmulas com os símbolos T para verdade e F para falsidade.
- O passo inicial na criação de um tableau é marcar todas as fórmulas de Γ com T e a fórmula φ com F.
- A partir do tableau inicial, utiliza-se regras de expansão do tableau que adicionam novas fórmulas ao final de um ramo (regras do tipo α) ou que bifurcam um ramo em dois (regras do tipo β).

Tipo α	$T \varphi \wedge \psi$	$F \varphi \lor \psi$	$F \varphi \rightarrow \psi$	$T \neg \varphi$	$F \neg \varphi$
	$T \varphi$	$\digamma \varphi$	$T \varphi$	F φ	$T \varphi$
	$T \psi$	$\digamma \psi$	$\digamma \psi$		
Tipo β	$F \varphi \wedge \psi$	$T \varphi \lor \psi$	$T \varphi \rightarrow \psi$		
	$F \varphi F \psi$	$T \varphi T \psi$	$\mid F \varphi \mid T \psi$		

• Note que as regras α e β não são aplicadas aos átomos.

- Em cada ramo, uma fórmula só pode ser expandida uma única vez.
- Um ramo que não possui mais fórmulas para expandir é dito saturado.
- Um ramo que possui uma par de fórmulas $T \varphi$ e $F \varphi$ é dito **fechado**. Um ramo fechado não precisa mais ser expandido.
- Um tableau que tem todos os seus ramos fechados é dito fechado, ou seja, $\Gamma \vdash \varphi$.
- Um ramo saturado e não fechado nos fornece um *contra-exemplo*, ou seja, $\Gamma \not\vdash \varphi$.

Exemplos de Provas em Tableau Analítico

$$A \rightarrow B, B \rightarrow C \vdash_{TA} A \rightarrow C$$

$$A, A \land B \rightarrow C \not\vdash_{TA} C$$

$$F \land A \lor \neg A$$

$$F \land A \rightarrow B$$

$$F \land A \rightarrow C$$

$$F \rightarrow C$$

$$F$$

 O Sistema de Tableau Analítico pode ser expandido para incluir as demonstrações da Lógica de Primeira-Ordem, no qual temos todas as regras da Lógica Proposicional e as seguintes regras:

Tipo γ	$T \ \forall x \varphi(x)$	$F \exists x \varphi(x)$
	$T \varphi(t)$	\mid $F \varphi(t)$
	x é substituível por t em φ	x é substituível por t em φ
Tipo δ	$F \ \forall x \varphi(x)$	$T \exists x \varphi(x)$
	\mid F $arphi(a)$	$ au \; arphi(a)$
	a é uma variável nova	a é uma variável nova

 As regras acima podem ocorrer mais de uma vez em cada ramo, pois podemos fazer arbitrárias substituições de variáveis. Dessa forma, no caso geral, não conseguiremos gerar um contra-exemplo.

Exemplos de Provas em Tableau Analítico

$$\forall x (H(x) \rightarrow M(x)), \forall x \rightarrow M(x) \vdash \neg \exists x H(x)$$

$$\forall x (H(x) \rightarrow M(x)), \forall x \rightarrow M(x) \vdash \forall x M(x)$$

$$\forall x (H(x) \rightarrow M(x)), H(s) \vdash M(s)$$

$$T \forall x (H(x) \rightarrow M(x))$$

$$T \forall x (H(x) \rightarrow M(x))$$

$$T \forall x (H(x) \rightarrow M(x))$$

$$T \forall x \rightarrow M(x)$$

$$T \Rightarrow x \rightarrow H(x)$$

- O sistema de Tableau Analítico (TA) usualmente é apresentado por meio de árvores. Mas, podemos apresentar uma versão de TA em um Estilo a la Fitch.
- No Estilo de Fitch as demonstrações são apresentadas de forma linear e sequencial, na qual cada uma das linhas da prova é numerada, tem uma afirmação e uma justificativa.
- As justificativas são definidas por serem as premissas ou a conclusão da prova ou pela aplicação de uma das regras do TA.
- Cada ramo de uma bifurcação da árvore é delimitado por { e }.
- Um ramo bifurcado pode ser bifurcado novamente por uma regra do tipo beta.
 Assim, podemos ter aninhamentos de delimitadores { e }.
- Uma fórmula só pode ser utilizada em uma prova em um determinado ponto se essa fórmula aconteceu anteriormente e dentro daquele ramo.

Regra Tableau Inicial

1.	$T \varphi_1$	Premissa		$A \vdash A$		
	•	Premissa	1.	TA	Premissa	
	<u>:</u>		2.	FΑ	Conclusão	
	•	Premissa Conclusão	3.	:	:	
:	÷	:				

Regra Ramo Fechado

```
A \vdash A
```

- 1. T A Premissa
- 2. F A Conclusão

Regra Negação (¬T)		Regra	Negação	o (¬F)		$A \vdash \neg \neg A$		
J	0 ,	,	J	σ,	,	1.	ТА	Premissa
	:			:	:	2.	$F \neg \neg A$	Conclusão
m.	$T \neg \varphi$		m.	F eg arphi		3.	$T \neg A$	2
÷	<u>:</u>	:	:	<u>:</u>	÷	4.	FA	3
n.	F φ	m	n.	T φ	m	5.	\perp	1,4

Regra (Conjunção ($(\wedge T)$		$A \wedge B$	$\vdash A$
÷	:	:	1.	$T A {\wedge} B$	Premissa
	$\overset{\cdot}{T} \ arphi \wedge \psi$	•	2.	FA	Conclusão
	:	:	3.	ТА	1
n.	T φ	m	4.	ТВ	1
n+1.	T ψ	m	5.	\perp	2,3

Regra Conjunção (∧F)

```
A, B \vdash A \land B
                                                 T A Premissa
     \mathsf{F}\ \varphi \wedge \psi
                                          2. T B Premissa
                                                 F A∧B Conclusão
n. \{ \mathsf{F} \varphi
                                          4.
                                                       FΑ
                                                              1,4 }
                                                       FΒ
                                                              2,6 }
```

Regra Disjunção ($\vee T$) $A \vee B, \neg B \vdash A$ Premissa $T A \lor B$ $T \varphi \lor \psi$ $\mathsf{T} \neg B$ Premissa F A Conclusão FB 5. ΤА 6. 3,5 } ТВ 4,7 } 8.

Regra	Disjunção ((∨ F)		$A \vdash A$	$\lor B$
:	:	:	1.	ТА	Premissa
m.	. F $\varphi \lor \psi$	•	2.	$FA\lor B$	Conclusão
:		:	3.	FΑ	2
	F $arphi$	m	4.	FΒ	2
n+1.	F ψ	m	5.	\perp	1,3

Regra	Impl	licação	(→ <i>T</i>)		$\neg \not$	$A \rightarrow B \vdash A$	$A \vee B$
:			:	1.	Т¬	$A \rightarrow B$	Premissa
•	: T ($\rho o \psi$:	2.	FA	$\vee B$	Conclusão
:	:	, 4	:	3.	FΑ		2
n.		F φ	m	4.	FΒ		2
:		:	:	5.	{	$F \neg A$	1
•	}	•	·	6.		ТА	5
p.	{	T ψ	m	7.		\perp	6,3 }
÷		:	:	8.	{	ТВ	1
	}			9.		\perp	8,4 }

Regra I	gra Implicação $(\to F)$ $B \vdash A \to B$		$\rightarrow B$		
:	: :	:	1.	ТВ	Premissa
	$\overset{\cdot}{F} \varphi \to \psi$	•	2.	$F\:A{\to}\:B$	Conclusão
	· · ·	:	3.	ΤA	2
	Τ <i>φ</i>	m	4.	FΒ	2
n+1.	F $\dot{\psi}$	m	5.	\perp	1,4

			$\forall x (H$	$f(x) \to M(x), H(s)$	$) \vdash M(s)$
Para Todo $(\forall T)$		1. 2.	T ∀.	$x(H(x) \to M(x))$ $y(s)$	Premissa Premissa
m. $\forall x \varphi(x)$ \vdots \vdots	: : <i>m</i> m <i>φ</i>	 3. 4. 5. 6. 7. 		$egin{aligned} \mathcal{M}(s) \ \mathcal{M}(s) & ightarrow \mathcal{M}(s) \ & ightarrow \mathcal{M}(s) \ & ightarrow \mathcal{M}(s) \ & ightarrow \mathcal{M}(s) \ & ightarrow \mathcal{M}(s) \end{aligned}$	Conclusão 1 4 2,6 }
		8.		Т	7,3 }

 $\forall x (H(x) \rightarrow M(x)), \forall x H(x) \vdash \forall x M(x)$

			,,,	.(()	,(),, ,()	(71)
			1.	$T \ \forall x$	$f(H(x) \to M(x))$	Premissa
Pa	ara Todo (∀/	=)	2.	$T \ \forall x$	H(x)	Premissa
	iiu Touo (*/	,	3.	$F \ \forall x$	M(x)	Conclusão
÷	:	:	4.	F M((a)	3
m.	$F \ \forall x \varphi(x)$		5.	T H((a)	2
÷	:	:	6.	T H((a) o M(a)	1
n.	F $arphi(a)$ uma variável i	m	7.	{	F H(a)	6
a e t	ıma variavei i	iova	8.		\perp	5,7 }
			9.	{	T M(a)	6
			10.		上	9,4 }

$\forall x (H(x) \rightarrow M(x)), \forall x \neg M(x) \vdash \neg \exists x H(x)$ $T \ \forall x (H(x) \rightarrow M(x))$ Premissa 2. $T \forall x \neg M(x)$ Premissa Existencial $(\exists T)$ 3. $F \neg \exists x H(x)$ Conclusão 4. $T \exists x H(x)$ 3 5. T H(a)m. $T \exists x \varphi(x)$ 6. $T \neg M(a)$ 7. F M(a)6 n. T $\varphi(a)$ 8. $T H(a) \rightarrow M(a)$ m a é uma variável nova 8 9. { F H(a) 10. 5,9 } 11. { T M(a) 8 12. 11,7 }

			$P(a), \exists x P(x) \to B \vdash B$			
Existencial (E	F)	1. 2.	T P(a) $T \exists x P(x) \rightarrow B$	Premissa Premissa		
\vdots \vdots $\exists x \varphi(x)$:	3. 4.	FB { $F \exists x P(x)$	Conclusão 2		
$\vdots \qquad \vdots \\ n. \qquad F \ arphi(t)$; <i>m</i>	5.	F P(a)	4		
x é substituível por		6. 7.	{ T B	1,5 } 2		
		8.	\perp	7,3 }		

- ANITA é um assistente de provas para auxiliar a verificação da correção de provas lógicas no Sistema de Tableau Analítico https://sistemas.quixada.ufc.br/anita
- A ideia central foi verificar as demonstrações de maneira mais próxima possível das demonstrações feitas em papel.
- A linguagem de entrada é semelhante ao estilo de Fitch de Dedução Natural, na qual cada ramo de uma bifurcação da árvore é delimitado por { e }.
- ANITA gera código LaTeX das árvores a partir de uma demostração correta. Use o pacote qtree em seu código LaTeX.
- Também é possível abrir o código diretamente no Overleaf.

Símbol) ¬	^	V	\rightarrow	$\forall x$	$\exists x$		bifurcação	-
LaTeX	\lnot	\land	\lor	\rightarrow	\forall x	\exists x	\bot	[.]	\vdash
ANITA	~	&		->	Ax	Ex	0	{}	-

Figura: Equivalência entre os símbolos da lógica, ANITA e LaTeX

- Os átomos e os predicados são escritos em letras maiúsculas (e.g. A, B, H(x));
- As variáveis são escritas com a primeira letra em minúsculo, podendo ser seguida de letras e números (e.g. x, x0, xP0);
- As fórmulas com o $\forall x$ e $\exists x$ serão representadas por Ax e Ex ('A' e 'E' seguidos da variável x). Por exemplo, Ax (H(x)->M(x)) representa $\forall x$ $(H(x)\to M(x))$.
- A ordem de precedência dos quantificadores e dos conectivos lógicos é definida por ¬, ∀, ∃, ∧, ∨, → com alinhamento à direita. Por exemplo:
 - A fórmula \sim A&B->C representa a fórmula $(((\neg A) \land B) \rightarrow C)$;
 - O teorema \sim A|B |- A->C representa o teorema $((\neg A) \lor B) \vdash (A \to B)$.
- Cada regra de inferência será nomeada por seu respectivo conectivo e o valor-verdade da fórmula. Por exemplo, &T representa a regra da conjunção quando a fórmula é verdadeira. Opcionalmente, o nome da regra pode ser omitido.
- As justificativas das Premissas e da Conclusão utilizam as palavras reservadas pre e conclusão, respectivamente.

Check »	Ма	nual L	atex L	Latex in Overleaf
1. T A	В		pre	A demonstração abaixo está correta.
2. T A-			pre	A B, A->C, B->C - C
3. T B-			pre	
4. F C			conclu	usao
5. {	ΤA		1	
6.	{	F A	2	
7.		@	5,6	
	}			
8.	{	T C	2	
9.		@	8,4	
	}			
}				
10.{	T B		1	
11.	{	F B	3	
12.		@	10,11	
	}		_	
13.	{	T C		
14.		@	13,4	
,	}			
}				

Check » Manual
1. T A B 2. T A -> C 3. T B -> C 4. F C 5. { T A 6. { F A 7.

Check » Manual	Latex Latex in Overleaf
1. T A 2. T A&B->C 3. F C 4. { F A&B 5. { F A 6. @ 7. { F B } 8. { T C 9. @ }	pre pre conclusao 2 4 1,5 4 2 8,3

neck » Manual	Latex Latex in C	Overleaf
T Ax (H(x) ->M(x)) T Ax ~M(x) F ~Ex H(x) T Ex H(x) T H(a) T ~M(a) F M(a) F H(a) ->M(a) F H(a) T H(a) -> (0) B H(a) B H(pre pre conclusao 3 4 2 6 1 8 5,9	A demonstração abaixo está correta. Ax (H(x)->M(x)), Ax ~M(x) - ~Ex H(x)

Check » Manual		
1. T Ex H(x) 2. T H(a) ->M(a) 3. F M(a) 4. T H(a) 5. { F H(a) 6. @ } 7. { T M(a) 8. @ }	pre pre conclusao 1 2 4,5	Os seguintes erros foram encontrados: Erro de sintaxe na linha 4: 4. T H(a) 1