Curso 2 – CD, AM e DM

IA BIG DATA

Profa. Roseli Ap. Francelin Romero

MBA em Inteligência Artificial e BigData

Depto. de Ciências de Computação ICMC - USP

- Paradigmas de Aprendizado.
- Modelos preditivos.
- Partição dos dados.
- Reamostragem (Holdout, bootstrap, K-fold cross validation).
- Modelamento de Dados

3º.ETAPA

PLANEJAMENTO DE EXPERIMENTOS e AVALIAÇÃO DE ALGORITMOS

ESCOLHER A
FORMA DE
AMOSTRAGEM
DOS DADOS

SISTEMA
CLASSIFICAÇÃO
OU REGRESSÃO

- Depende da tarefa a ser resolvida:
 - Classificação: considera taxa de exemplos incorretamente classificados
 - Acurácia
 - Regressão: considera diferença entre valor previsto e valor correto: ERRO
 - Agrupamento: diferentes critérios
- Média dos erros obtidos em diferentes execuções de um experimento

- Pode ser avaliado para:
 - 1 Buscar o melhor modelo(s) de classificação gerados pelo mesmo algoritmo, variando
 - Valores de hiperparâmetros
 - Partições/atributos nos dados de treinamento

Desempenho Preditivo

- 2 Busca encontrar melhor algoritmo de classificação
 - Avaliar vários modelos gerados (funções, hipóteses)
 - Hiper-parâmetros de cada algoritmo com valores default ou otimizados
 - Conjuntos de dados com mesmas partições e atributos preditivos

Principal objetivo:

- Classificação correta de novos exemplos
 - Errar o mínimo possível
 - Minimizar taxa de erro para novos exemplos

• Taxa de erro

Geralmente não é possível medir com exatidão; ELA DEVE ser estimada

- Amostra de teste (simula novos exemplos) do conjunto de dados disponível
- Utilizando modelo induzido com uma amostra de treinamento do conjunto de dados disponível

- Ajuda a obter a melhor estimativa do desempenho de um modelo ou algoritmo
 - Treinamento (validação) e teste
- Procedimentos
 - Amostragem única
 - Hold-out
 - Re-amostragem

Hold-out

- Amostragem única é pouco confiável
- Reamostragem: geram várias partições para conjuntos de treinamento e teste (validação)
 - Random subsampling
 - K-fold Cross-validation
 - Leave-one-out
 - Bootstrap (ou Bootstrapping)

Random subsampling

Parti	ção	2 Part	tição	3
	1 3 4 7		5 6 7 8	Treinamento
	6		1 2	Teste

Bootstrap

- Estocástico, com diversas variações
 - Alguns exemplos podem não participar do treinamento
- Variação mais simples:
 - Amostragem com reposição
 - Cada partição é uma amostra aleatória com reposição do conjunto total de exemplos
 - Conjunto de treinamento têm o mesmo número de exemplos do conjunto total
 - Esta reamostragem é feita muitas vezes (de 1000 a 10000 vezes) para criar uma estimativa da função de distribuição acumulada.

- Se conjunto original tem N exemplos escolhe-se um exemplo N vezes
 - A probabilidade de um exemplo não ser amostrado é de: (1-1/n)^n ~1/e ~0.368.
 - O mesmo exemplo pode ser escolhido várias vezes
 - Amostra de tamanho N tem ≈ 63,2% dos exemplos originais
 - O restante: é deixado para teste: 36.8%

Boostrap

- Processo é repetido k vezes
 - Resultado final é a média dos k experimentos
 - Adequado para conjuntos pequenos.

Bootstrap

• Estima incerteza de um algoritmo

 Tende a ter menor variância e ser mais pessimista que k-fold crossvalidation

	Par	tição	1 P	artiçâ	ão 2	Pai	rtição	k
1		1		3			7	
2		2		4			8	Treinamento
3		3		5			1	
4	→	4		6			2	
5		5		7	•••		3	*
6		6		8			4	•
7		7		1			5	
8		8		2			6	Teste

- K-1 folds são usados para treinamento
- 1 fold para teste
- Repete-se o processo k vezes
- Toma-se a **MEDIA E DESVIO PADRÃO** da predição em cada um dos k conjuntos de testes

Leave-one-out

- Consiste em deixar um exemplo de fora (para testar) e treinar com os demais.
- Estimativa de erro praticamente não tendenciosa
 - Tende a taxa de erro verdadeiro
- Computacionalmente caro para conjuntos grandes
 - Geralmente utilizado para pequenos conjuntos de dados
- Variância tende a ser elevada

PARTICIONAMENTO DOS DADOS

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)

TAREFAS PREDITIVAS E DESCRITIVAS

Medir o Desempenho de AlgoritMos Preditivos:

Tipos de erro: Tipo I, Tipo II

Medidas: acurácia, precisão, recall, F1

Desempenho preditivo Classificação binária

- Classe de interesse é a classe positiva
- Dois tipos de erro:
 - Classificação de um exemplo N como P
 - Falso positivo (alarme falso)
 - Ex.: Diagnosticado como doente, mas está saudável
 - Classificação de um exemplo P como N
 - Falso negativo
 - Ex.: Diagnosticado como saudável, mas está doente

Reais Positivos

Reais negativos

Reais positivos

Reais negativos

- Matriz de confusão (tabela de contingência) pode ser utilizada para distinguir os erros
 - Base de várias medidas
 - Pode ser utilizada com 2 ou mais classes

	Cla	sse p	redita	l	
	1	2	3		
1	25	0	5		
2	10	40	0		
3	0	0 2	20		

 Matriz de confusão para 200 exemplos divididos em 2 classes

Classe predita

P 70 30
N 40 60

Taxa de FP (TFP) =
$$\frac{FP}{FP+VN}$$
 (Alarmes falsos)

Taxa de FN (TFN) = $\frac{FN}{VP + FN}$

Erro do tipo I

Erro do tipo II

Taxa de FP (TFP) =
$$\frac{FP}{FP + VN}$$
 (Alarmes falsos)

Taxa de VP (TVP) = $\frac{VP}{FN + VP}$

Custo

Benefício

Exemplo

$$\frac{VP}{VP + FN} \quad \frac{FP}{FP + VN}$$

• Avaliação de 3 classificadores

: <u>a</u> Cla	asse p	redita
adei <u>C</u>	р	n
verd d	20	30
Slasse	15	35

deira Cla	asse p	redita
Ö	р	n
verd	70	30
Classe Z	50	50

Exemplo

$$\frac{VP}{VP + FN} - \frac{FP}{FP + VN}$$

Avaliação de 3 classificadores

	asse p	redita
ade	р	n
verdadeira J	20	30
Classe Z	15	35

deira Cla	asse p	redita
Ö	р	n
verd	70	30
Classe Z	50	50

Classificador 1 TVP = 0.4TFP = 0.3

Classificador 3 TVP = 0.6TFP = 0.2

$$\frac{FP}{FP + TN}$$

False positive rate (FP)

= 1-TN

$$\frac{FN}{TP + FN}$$

TP

TP + FN

TN

TN + FP

False negative rate (FN)

= 1-TP

True positive rate (TP), also known as recall or sensitivity

True negative rate (TN), also known as specificity

TPTP + FPTNTN + FN

$$\frac{TP + TN}{TP + TN + FP + FN}$$

1/ precision +1/ recall

Positive predictive value (PPV), also known as Precision

Negative predictive value (NPV)

Accuracy

F1-measure

Data Smart: Using Data Science to Transform Information into Insight

Source: Amazon.com

Applied Predictive Modeling

Source: Amezon.com

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

Source: Amezon.com