Scienfic Computing Project 1

Anders Kjølhede

September 2022

nr.1 Scienfic Computing

Background Theory

The polarizability for a given frequency ω is obtained as a scalar product of two vectors **z** and **x**.

$$\alpha(\omega) = z^T x \tag{1}$$

 ${\bf z}$ is obtained from the schrödinger equation and ${\bf x}$ is the solution to the following system of linear equation:

$$(E - \omega S)x = z \tag{2}$$

E and S are square matrices and ω is the frequency of the incoming light. E, S and z are visualized as follows:

$$E = \begin{bmatrix} A & B \\ B & A \end{bmatrix} \qquad S = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \qquad z = \begin{bmatrix} y \\ -y \end{bmatrix}$$
 (3)

Question A

By computing the max-norm and the inverse of the given matrix we can calculate the condition number for the individual frequencies by using the following relation:

$$cond_{\infty}(M) = ||M||_{\infty}||M^{-1}||_{\infty} \tag{4}$$

Frequencies	Condition Number
0.800	327.8167
1.146	152679.2687
1.400	227.1944

Tabel 1:

Question B

For the three frequencies we can also determine a bound on the relative forward error in the maxnorm:

$$\frac{||\delta x||_{\infty}}{||\hat{x}||_{\infty}} \le cond_{\infty}(E - \omega S) \frac{||\delta \omega S||_{\infty}}{||E - \omega S||_{\infty}}$$

$$(5)$$

nr.1 Scienfic Computing

Frequencies	Bound
0.800	0.0052
1.146	2.4050
1.400	0.0035

Tabel 2:

 \mathbf{C}