Challenge Machine Learning : Classification en phase de sommeil avec Dreem

Marion Favre d'Echallens et Jean-Louis Truong 7 janvier 2019

1. Introduction

Ce challenge est réalisé en partenariat avec l'entreprise Dreem qui est une start-up spécialisée dans l'amélioration du sommeil des personnes.

Contexte du challenge

Ce challenge consiste à réaliser de la classification en stades de sommeil. Une nuit voit défiler plusieurs cycles de sommeil qui se composent tous d'une phase : + d'éveil + de sommeil léger + de sommeil profond + de sommeil paradoxal.

Un moyen de mesurer le sommeil est d'utiliser le polysomnographe qui relève notamment l'activité du cerveau, le mouvement des yeux et la tension musculaire afin d'évaluer la qualité du sommeil d'une personne.

Dans cette optique de mesure, la société Dreem a développé un bandeau qui fonctionne comme le polysomnographe et qui permet de mesurer trois types de signaux: + l'activité électrique du cerveau grâce à un électro-encéphalogramme (EEG) + le mouvement la position, la respiration grâce à un acceléromètre + les battements sanguins grâce à un oxymètre de pouls.

Le challenge

Ce bandeau enregistre donc une certaines quantité de données par nuit et l'objectif de ce challenge est de développer un algorithme permettant, à partir des données de 30 secondes d'enregistrement du bandeau, dans quel stade de sommeil parmi les quatre cités plus haut se trouve la personne.

Nous avons pour cela à notre disposition 7 enregistrements d'encéphalogramme (sept positions différentes sur la tête), 1 enregistrement d'oxymètre et 3 enregistrement d'accéléromètre. Ces enregistrements sont de 30 secondes et ils sont labellisés i.e. nous connaissons le stade de sommeil associé.

2. Prétraitement des données

Les données sont présentées sous le format h5 afin de faciliter leur manipulation au vu de leur taille trés volumineuse. Nous disposons en effet de sept bases de données d'enregistrements d'encéphalogrammes contenant chacun 38289 lignes de 1500 valeurs, ce qui correspond à une fréquence de 50Hz. Les quatres autres bases de données ne contiennent que 300 valeurs par enregistrement (fréquence de 10Hz).

Afin de lire et manipuler ces données, nous utilisons le package h5de R.

library(h5,warn.conflicts = FALSE)

Warning: package 'h5' was built under R version 3.4.4

```
data_folder = "C:/Users/Admin/Documents/Centrale Paris/3A/OMA/Machine Learning/Challenge/Data/"
ytrain = read.csv(paste0(data_folder,"train_y.csv"))
xtrain = h5file(name = paste0(data_folder,"train.h5/train.h5"))
list.datasets(xtrain)
```

```
[1] "/accelerometer_x"
                                     "/accelerometer_y"
##
##
    [3] "/accelerometer_z"
                                     "/eeg_1"
       "/eeg_2"
                                     "/eeg_3"
##
    [5]
##
    [7]
       "/eeg_4"
                                     "/eeg_5"
    [9] "/eeg_6"
                                     "/eeg_7"
   [11] "/pulse_oximeter_infrared"
```

L'objet xtrain contient les onze datasets à exploiter. Pour ce faire, nous les transformons en dataframe.

```
eeg1 = xtrain[list.datasets(xtrain, recursive = TRUE)[4]]
eeg1 = as.data.frame(readDataSet(eeg1))
eeg1_y = cbind(eeg1,ytrain[,2])
colnames(eeg1_y)[ncol(eeg1_y)] = "y"
```

EEG position 1 - enreg

Numéro d'enregistrement sur 30

On peut observer le premier enregistrement ci-dessous.