ЛАБОРАТОРНАЯ РАБОТА 1. МАТЕМАТИЧЕСКИЕ ВЫЧИСЛЕНИЯ С ПОМОЩЬЮ NUMPY

Цель работы: ознакомиться с основными возможностями библиотеки Numpy языка программирования Python. Научиться оптимизировать вычисления над массивами, используя векторные функции вместо циклов. Номер вариант равен последней цифре в списке группы (по журналу).

Задание 1. Одномерный массив.

Сгенерировать случайную последовательность a вещественных чисел длиной $n=10^5$, элементы которой $-1 \le a_i \le 1$ распределены по нормальному закону (Гаусса) с заданным математическим ожиданием μ и среднеквадратическим отклонением σ (выбросы за пределы отрезка [-1,1] урезать до ± 1).

Построить новую последовательность b, элементы которой равны $b_i = f(a_i)$ для тех элементов a_i , для которых функция f определена. В противном случае присвоить $b_i = 0$.

Вывести следующие характеристики новой последовательности b:

- среднее значение;
- дисперсия;
- медиана;
- минимальный и максимальный элементы.

Задание выполняется без использования циклов.

По вариантам:

0)
$$\mu = 0.1$$
, $\sigma = 0.2$, $f(x) = \sqrt{\sin^2 x + 0.1}$

1)
$$\mu = 0.1$$
, $\sigma = 0.2$, $f(x) = \sqrt{\cos x^2 - 0.1}$

2)
$$\mu = -0.1$$
, $\sigma = 0.3$, $f(x) = \cos^2(\sqrt{x} + 0.2)$

3)
$$\mu = 0.1$$
, $\sigma = 0.2$, $f(x) = \sin^2(\sqrt{x} - 0.1)$

4)
$$\mu = 0.0$$
, $\sigma = 0.25$, $f(x) = \text{tg}^2(\sqrt{x} - 0.1)$

5)
$$\mu = -0.1$$
, $\sigma = 0.3$, $f(x) = \text{ctg}^2(\sqrt{x} + 0.2)$

6)
$$\mu = 0.1$$
, $\sigma = 0.2$, $f(x) = \sin(\log_2 x + 0.1)$

7)
$$\mu = 0.2$$
, $\sigma = 0.1$, $f(x) = \cos(\log_{10} x - 0.1)$

8)
$$\mu = -0.1$$
, $\sigma = 0.3$, $f(x) = \arccos^2(x + 0.2)$

9)
$$\mu = 0.1$$
, $\sigma = 0.2$, $f(x) = \arcsin^2(x - 0.1)$

Задание 2. Два массива.

Вводятся два натуральных числа $x, y \ (1 \le x < y \le m,$ где m = 20).

Сгенерировать две случайные последовательности целых чисел

$$(a_0,...,a_{n-1})$$
 и $(b_0,...,b_{n-1})$

длины $n=10^5$, элементы которых лежат на отрезке $1 \le a_i, b_i \le m$ (с равномерным распределением).

Нужно подсчитать количество индексов i, для которых выполняется заданное условие:

- 0) $a_i = x$ и $b_i \in \{y, 2y\};$
- 1) $a_i = x$ и $x < b_i \le y$;
- 2) $b_i a_i = x \text{ in } b_i > y;$
- 3) $a_i = x \text{ in } b_i \in \{y, a_i + x\};$
- 4) $a_i \in \{x, 2x\}$ и $b_i = y$;
- 5) $x < a_i \le 2x$ и $b_i = y$;
- 6) $b_i a_i = y$ и $b_i < x$;
- 7) $a_i = x$ и $b_i \in \{y, 2x\};$
- 8) $x < a_i + b_i \le 2x$ и $b_i = y$;
- 9) $y < a_i + b_i \le 2y$ и $b_i = 2x$;

Задание выполняется без использования циклов.

Задание 3. Работа с матрицами.

Общий вариант.

Написать скрипт для создания двух прямоугольных матриц: матрица A размера 10×20 и матрица B размера 20×10 со случайными элементами, принимающими вещественные значения от 0 до 1.

Найти матричное произведение C = AB и D = BA.

Для полученных матриц C и D посчитать обратные матрицы C^{-1} , D^{-1} и траспонированные матрицы C^T , D^T . Для всех шести матриц найти:

- определитель,
- след.

Сравнить полученные значения между собой (т.е. проверить свойства определителя и следа матриц: $\det C = \det C^T$, $\det C^{-1} = (\det C)^{-1}$ и т.п.).