Constructions With Monoidal Categories

The Clowder Project Authors

July 21, 2025

This chapter contains some material on constructions with monoidal categories.

Contents

13.1	Moduli Categories of Monoidal Structures	2
	13.1.1 The Moduli Category of Monoidal Structures on a Cate-	
gory .		2
	13.1.2 The Moduli Category of Braided Monoidal Structures on a	
Categ	gory	18
	13.1.3 The Moduli Category of Symmetric Monoidal Structures	
on a (Category	18
13.2	Moduli Categories of Closed Monoidal Structures	18
13.3	Moduli Categories of Refinements of Monoidal Structures	18
13.3	Moduli Categories of Refinements of Monoidal Structures 13.3.1 The Moduli Category of Braided Refinements of a Monoidal	18
	Moduli Categories of Refinements of Monoidal Structures 13.3.1 The Moduli Category of Braided Refinements of a Monoidal sture	
	13.3.1 The Moduli Category of Braided Refinements of a Monoidal	
	13.3.1 The Moduli Category of Braided Refinements of a Monoidal sture	18

Moduli Categories of Monoidal Structures **13.1**

The Moduli Category of Monoidal Structures on a **13.1.1** Category

Let *C* be a category.

DEFINITION 13.1.1.1.1 ► THE MODULI CATEGORY OF MONOIDAL STRUCTURES ON A CATE-

The moduli category of monoidal structures on C is the category $\mathcal{M}_{\mathbb{E}_1}(C)$ defined by

$$\mathcal{M}_{\mathbb{E}_1}(\mathcal{C})\stackrel{\scriptscriptstyle
m def}{=}\operatorname{pt} imes_{\mathsf{Cats}}\operatorname{\mathsf{MonCats}},$$

REMARK 13.1.1.1.2 ► Unwinding Definition 13.1.1.1.1, I

In detail, **the moduli category of monoidal structures on** *C* is the category $\mathcal{M}_{\mathbb{E}_1}(C)$ where:

- *Objects.* The objects of $\mathcal{M}_{\mathbb{E}_1}(C)$ are monoidal categories $(C, \otimes_C, \mathbb{1}_C,$ $\alpha^C, \lambda^C, \rho^C$) whose underlying category is C.
- *Morphisms.* A morphism from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \alpha^C, \alpha^C, \lambda^C, \rho^C)$ $\mathbb{1}'_{C}, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime}$ is a strong monoidal functor structure

$$\operatorname{id}_{C}^{\otimes} \colon A \boxtimes_{C} B \xrightarrow{\sim} A \otimes_{C} B,$$
$$\operatorname{id}_{1|C}^{\otimes} \colon \mathbb{1}_{C}' \xrightarrow{\sim} \mathbb{1}_{C}$$

on the identity functor $id_C : C \to C$ of C.

• *Identities.* For each $M \stackrel{\text{def}}{=} (C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C) \in \text{Obj}(\mathcal{M}_{\mathbb{E}_1}(C)),$ the unit map

$$\mathbb{1}_{M,M}^{\mathcal{M}_{\mathbb{E}_1}(C)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathcal{M}_{\mathbb{E}_1}(C)}(M,M)$$

of $\mathcal{M}_{\mathbb{E}_1}(C)$ at M is defined by

$$\mathrm{id}_{M}^{\mathcal{M}_{\mathbb{E}_{1}}(C)}\stackrel{\mathrm{def}}{=}\left(\mathrm{id}_{C}^{\otimes},\mathrm{id}_{1|C}^{\otimes}\right),$$

where $(id_C^{\otimes}, id_{1|C}^{\otimes})$ is the identity monoidal functor of C of ??.

• *Composition.* For each M, N, $P \in \text{Obj}(\mathcal{M}_{\mathbb{E}_1}(C))$, the composition map

$$\circ_{M,N,P}^{\mathcal{M}_{E_1}(C)} \colon \operatorname{Hom}_{\mathcal{M}_{E_1}(C)}(N,P) \times \operatorname{Hom}_{\mathcal{M}_{E_1}(C)}(M,N) \to \operatorname{Hom}_{\mathcal{M}_{E_1}(C)}(M,P)$$
 of $\mathcal{M}_{E_1}(C)$ at (M,N,P) is defined by

$$\Big(\operatorname{id}_{C}^{\otimes,\prime},\operatorname{id}_{1|C}^{\otimes,\prime}\Big)\circ_{M,N,P}^{\mathcal{M}_{\mathbb{B}_{1}}(C)}\Big(\operatorname{id}_{C}^{\otimes},\operatorname{id}_{1|C}^{\otimes}\Big)\stackrel{\scriptscriptstyle\rm def}{=}\Big(\operatorname{id}_{C}^{\otimes,\prime}\circ\operatorname{id}_{C}^{\otimes},\operatorname{id}_{1|C}^{\otimes,\prime}\circ\operatorname{id}_{1|C}^{\otimes}\Big).$$

REMARK 13.1.1.1.3 ► Unwinding Definition 13.1.1.1.1, II

In particular, a morphism in $\mathcal{M}_{\mathbb{E}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ satisfies the following conditions:

I. *Naturality.* For each pair $f:A\to X$ and $g:B\to Y$ of morphisms of C, the diagram

$$\begin{array}{c|c} A \boxtimes_C B & \xrightarrow{f \boxtimes_{C} g} X \boxtimes_C Y \\ \operatorname{id}_{A,B}^{\otimes} & & & & \operatorname{id}_{X,Y}^{\otimes} \\ A \otimes_C B & \xrightarrow{f \otimes_{C} g} X \otimes_C Y \end{array}$$

commutes.

2. Monoidality. For each $A, B, C \in Obj(C)$, the diagram

commutes.

3. Left Monoidal Unity. For each $A \in \text{Obj}(C)$, the diagram

commutes.

4. Right Monoidal Unity. For each $A \in \text{Obj}(C)$, the diagram

commutes.

PROPOSITION 13.1.1.1.4 ► PROPERTIES OF THE MODULI CATEGORY OF MONOIDAL STRUCTURES ON A CATEGORY

Let *C* be a category.

- I. Extra Monoidality Conditions. Let $(id_C^{\otimes}, id_{1|C}^{\otimes})$ be a morphism of $\mathcal{M}_{\mathbb{E}_1}(C)$ from $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$.
 - (a) The diagram

commutes.

(b) The diagram

$$A \boxtimes_{C} (B \boxtimes_{C} C) \xrightarrow{\operatorname{id}_{A} \boxtimes_{C} \operatorname{id}_{B,C}^{\otimes}} A \boxtimes_{C} (B \otimes_{C} C)$$

$$\operatorname{id}_{A,B\boxtimes_{C} C}^{\otimes} \downarrow \qquad \qquad \downarrow \operatorname{id}_{A,B\otimes_{C} C}^{\otimes}$$

$$A \otimes_{C} (B \boxtimes_{C} C) \xrightarrow{\operatorname{id}_{A} \otimes_{C} \operatorname{id}_{B,C}^{\otimes}} A \otimes_{C} (B \otimes_{C} C)$$

commutes.

2. Extra Monoidal Unity Constraints. Let $(id_C^{\otimes}, id_{1|C}^{\otimes})$ be a morphism of $\mathcal{M}_{\mathbb{E}_1}(C)$ from $(C, \otimes_C, \mathbb{I}_C, \alpha^C, \lambda^C, \rho^C)$ to $(C, \boxtimes_C, \mathbb{I}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$.

(a) The diagram

commutes.

(b) The diagram

commutes.

(c) The diagram

commutes.

(d) The diagram

commutes.

3. Mixed Associators. Let $(C, \otimes_C, \mathbb{1}_C, \alpha^C, \lambda^C, \rho^C)$ and $(C, \boxtimes_C, \mathbb{1}'_C, \alpha^{C,\prime}, \lambda^{C,\prime}, \rho^{C,\prime})$ be monoidal structures on C and let

$$\mathrm{id}_{-1,-2}^{\otimes} : -_1 \boxtimes_C -_2 \longrightarrow -_1 \otimes_C -_2$$

be a natural transformation.

(a) If there exists a natural transformation

$$\alpha_{A,B,C}^{\otimes} \colon (A \otimes_C B) \boxtimes_C C \longrightarrow A \otimes_C (B \boxtimes_C C)$$

making the diagrams

$$\begin{array}{c|c} (A \otimes_C B) \boxtimes_C C \xrightarrow{\alpha_{A,B,C}^{\otimes}} A \otimes_C (B \boxtimes_C C) \\ id_{A \otimes_C B,C}^{\otimes} & \downarrow id_A \otimes_C id_{B,C}^{\otimes} \\ (A \otimes_C B) \otimes_C C \xrightarrow{\alpha_{A,B,C}^{C}} A \otimes_C (B \otimes_C C) \end{array}$$

and

$$\begin{array}{c|c} (A \boxtimes_C B) \boxtimes_C C \xrightarrow{\alpha_{A,B,C}^{C,\prime}} A \boxtimes_C (B \boxtimes_C C) \\ \operatorname{id}_{A,B}^{\otimes} \boxtimes_C \operatorname{id}_C & & & & \operatorname{id}_{A,B \boxtimes_C C}^{\otimes} \\ (A \otimes_C B) \boxtimes_C C \xrightarrow{\alpha^{\otimes}_{A,B,C}} A \otimes_C (B \boxtimes_C C) \end{array}$$

commute, then the natural transformation id[⊗] satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

(b) If there exists a natural transformation

$$\alpha_{A,B,C}^{\boxtimes} \colon (A \boxtimes_C B) \otimes_C C \to A \boxtimes_C (B \otimes_C C)$$

making the diagrams

and

commute, then the natural transformation id[®] satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

(c) If there exists a natural transformation

$$\alpha_{ABC}^{\boxtimes,\otimes}: (A\boxtimes_C B)\otimes_C C \to A\otimes_C (B\boxtimes_C C)$$

making the diagrams

and

$$\begin{array}{c|c} (A\boxtimes_{C}B)\boxtimes_{C}C \xrightarrow{\alpha_{A,B,C}^{C,\prime}} A\boxtimes_{C}(B\boxtimes_{C}C) \\ \operatorname{id}_{A\boxtimes_{C}B,C}^{\otimes} & & \operatorname{id}_{A,B\boxtimes_{C}C}^{\otimes} \\ (A\boxtimes_{C}B)\otimes_{C}C \xrightarrow{\alpha_{A,B,C}^{\boxtimes,\otimes}} A\otimes_{C}(B\boxtimes_{C}C) \end{array}$$

commute, then the natural transformation id[®] satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

PROOF 13.1.1.1.5 ► PROOF OF PROPOSITION 13.1.1.1.4

Item 1: Extra Monoidality Conditions

We claim that Items 1a and 1b are indeed true:

- I. *Proof of Item 1a:* This follows from the naturality of id^{\otimes} with respect to the morphisms $id_{A,B}^{\otimes}$ and id_{C} .
- 2. *Proof of Item 1b*: This follows from the naturality of id^{\otimes} with respect to the morphisms id_{A} and $id_{B,C}^{\otimes}$.

This finishes the proof.

Item 2: Extra Monoidal Unity Constraints

We claim that Items 2a and 2b are indeed true:

wish to prove. Since:

- Subdiagram (1) commutes by the naturality of $\mathrm{id}_C^{\otimes,-1}$;
- Subdiagram (2) commutes trivially;
- Subdiagram (3) commutes by the naturality of λ^C , where the equality $\rho_{1_C}^C = \lambda_{1_C}^C$ comes from $\ref{eq:comparison}$;
- Subdiagram (4) commutes by the right monoidal unity of $(id_C, id_C^{\otimes}, id_{C|1}^{\otimes});$

so does the boundary diagram, and we are done.

wish to prove. Since:

- Subdiagram (1) commutes by the naturality of $id_C^{\otimes,-1}$;
- Subdiagram (2) commutes trivially;
- Subdiagram (3) commutes by the naturality of ρ^C , where the equality $\rho_{1_C}^C = \lambda_{1_C}^C$ comes from ??;
- Subdiagram (4) commutes by the left monoidal unity of $(id_C, id_C^{\otimes}, id_{C|1}^{\otimes});$

so does the boundary diagram, and we are done.

3. Proof of Item 2c: Indeed, consider the diagram

Since:

- The boundary diagram commutes trivially;
- Subdiagram (1) commutes by Item 1b;

it follows that the diagram

commutes. But since $\mathrm{id}_{1_C,1_C'}^{\otimes,-1}$ is an isomorphism, it follows that the diagram (†) also commutes, and we are done.

4. Proof of Item 2d: Indeed, consider the diagram

Since:

- The boundary diagram commutes trivially;
- Subdiagram (1) commutes by Item 1a;

it follows that the diagram

commutes. But since $id_1^{\otimes,-1}$ is an isomorphism, it follows that the diagram (\dagger) also commutes, and we are done.

This finishes the proof.

Item 3: Mixed Associators

We claim that Items 3a to 3c are indeed true:

I. *Proof of Item 3a:* We may partition the monoidality diagram for id[⊗] of Item 2 of Remark 13.1.1.1.3 as follows:

Since:

- Subdiagram (1) commutes by Item 1a of Item 1.
- Subdiagram (2) commutes by assumption.
- Subdiagram (3) commutes by assumption.

it follows that the boundary diagram also commutes, i.e. id[⊗] satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

2. *Proof of Item 3b*: We may partition the monoidality diagram for id^{\otimes}

of Item 2 of Remark 13.1.1.1.3 as follows:

Since:

- Subdiagram (1) commutes by assumption.
- Subdiagram (2) commutes by assumption.
- Subdiagram (3) commutes by Item 1b of Item 1.

it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

3. *Proof of Item 3c*: We may partition the monoidality diagram for id^{\otimes}

of Item 2 of Remark 13.1.1.1.3 as follows:

Since subdiagrams (1) and (2) commute by assumption, it follows that the boundary diagram also commutes, i.e. id^{\otimes} satisfies the monoidality condition of Item 2 of Remark 13.1.1.1.3.

This finishes the proof.

- 13.1.2 The Moduli Category of Braided Monoidal Structures on a Category
- 13.1.3 The Moduli Category of Symmetric Monoidal Structures on a Category
- 13.2 Moduli Categories of Closed Monoidal Structures
- 13.3 Moduli Categories of Refinements of Monoidal Structures
- 13.3.1 The Moduli Category of Braided Refinements of a Monoidal Structure

Appendices

A Other Chapters

Preliminaries

- I. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets

7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations
- 10. Conditions on Relations

Categories

- II. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal gories
Categories

Bicategories

Extra Part

14. Types of Morphisms in Bicate- 15. Notes