Lasso Regression

Nipun Batra February 5, 2020

IIT Gandhinagar

Lasso Regression

• LASSO \longrightarrow Least absolute shrinkage and selection operator

Lasso Regression

- LASSO \longrightarrow Least absolute shrinkage and selection operator
- · Popular as it leads to a sparse solution.

Constructing the Objective Function

• Find a θ_{opt} such that

$$\theta_{opt} = \underset{\theta}{\arg\min} (\mathbf{Y} - \mathbf{X}\theta)^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\theta) : \|\theta\|_{1} < \mathsf{S}$$
 (1)

Constructing the Objective Function

• Find a θ_{opt} such that

$$\theta_{opt} = \underset{\theta}{\operatorname{arg\,min}} (Y - X\theta)^{\mathsf{T}} (Y - X\theta) : \|\theta\|_{1} < \mathsf{S}$$
 (1)

Using KKT conditions

$$\theta_{opt} = \underbrace{\arg\min_{\theta} (Y - X\theta)^{\mathsf{T}} (Y - X\theta) + \delta^{2} \|\theta\|_{1}}_{\text{convex function}}$$
(2)

Solving the Objective

· Since $|\theta|$ is not differentiable, we cannot solve,

$$\frac{\partial (\mathbf{Y} - \mathbf{X}\boldsymbol{\theta})^{\mathsf{T}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\theta}) + \delta^{2} \|\boldsymbol{\theta}\|_{1}}{\partial \boldsymbol{\theta}} = 0$$
 (3)

Solving the Objective

· Since $|\theta|$ is not differentiable, we cannot solve,

$$\frac{\partial (Y - X\theta)^{\mathsf{T}} (Y - X\theta) + \delta^2 \|\theta\|_1}{\partial \theta} = 0$$
 (3)

How to Solve? Use Coordinate descent!

Sample Dataset

Figure 1: y = 4x + 7

Geometric Interpretation

Figure 2: Lasso regression

Figure 4: $\mu = 1.25$ (on the Sample Dataset)

Figure 5: $\mu =$ 1.5 (on the Sample Dataset)

Figure 6: $\mu =$ 1.75 (on the Sample Dataset)

Figure 7: $\mu = 2.0$ (on the Sample Dataset)

WHY LASSO GIVES SPARSITY

() GEOMETRIC INTERPRETATION

C C RASED INTERPRETATION

LPNORM (04p<1)

PROS. OF JOSERSE CTING AXIS

$$y = |0|$$
 (FOR NOW ASSUME 0>0) $y = 6^2/2$

$$y = \{0\} \quad \text{(For Now Assume 0>0)} \quad y = 6^{2}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{(5,5)\}$$

$$= \{($$

$$y = |\theta| \quad (\text{For Now Assume } \theta > 0) \quad y = \theta^2$$

$$(5,25)$$

$$(4.5,4.5)$$

$$y = |(Assume \theta > 0)) \quad \frac{\partial y}{\partial \theta} = \frac{2\theta}{2} = \theta$$

$$|(2.5,2.5)h|$$

$$|(2.5,2.5)h|$$

$$\theta_0' = \theta_0' - 0.5*1 = 4.5$$
 $\theta_0' = \theta_0'' - 0.5*5 = 0.5*5$

$$y = |0|$$
 (FOR NOW ASSUME 0>0) $y = 0^2$ (5,25)
 $(45,4.5)$ $2y = 20 = 0$
 $(2.5,2.5)$
 $(45,4.5)$ $2y = 20 = 0$

$$\theta_0^1 = \theta_0^0 - 0.5 \times 1 = 4.5$$
 $\theta_0^2 = \theta_0^1 - 0.5 \times 1 = 4.0$

$$\theta_0^1 = \theta_0^0 - 0.5 * 5 = 2.5$$
 $\theta_0^2 = \theta_0^1 - 0.5 \times 2.5 = 1.25$

$$y = |\theta|$$
 (FOR NOW ASSUME 070) $y = \theta^{2}$ (5,25)
 $(4,6)$ (5,5)
 $(4,5)$ (4.5,4.5)
 $(4,5)$ (1.25,1.25 |2)
 $(1,25)$ $(1.25,1.25 |2)$

$$\theta_0^1 = \theta_0^1 - 0.5 \times 1 = 4.5$$
 $\theta_0^2 = \theta_0^1 - 0.5 \times 1 = 4.0$

$$\theta_0' = \theta_0' - 0.5 * 5 = 2.5$$
 $\theta_0^2 = \theta_0' - 0.5 \times 2.5 = 1.25$

$$y = |0|$$
 (FOR NOW ASSUME 0>0) $y = 0^2$

$$(5,25)$$

$$(4,4) = (5,5)$$

$$(4,5) = (4.5,4.5)$$

$$y = 1$$

$$(Assume 0>0)$$

$$2y = 20 = 0$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$10 = 10$$

$$1$$

$$\theta_0 = \theta_0 - 0.5 * 1 = 4.5$$

$$\theta_0^1 = \theta_0^1 - 0.5 * 1 = 4.0$$

$$\theta_0^1 = \theta_0^{1-1} - 0.5$$

$$\theta_0^+ = \theta_0^+ - 0.5 \times 2.5 = 1$$

Regularization path of lasso regression

Figure 8: Regularization path of θ_i

LASSO and feature selection

· LASSO inherently does feature selection!

LASSO and feature selection

- · LASSO inherently does feature selection!
- Sets coefficients of "less important" features to zero.

LASSO and feature selection

- · LASSO inherently does feature selection!
- · Sets coefficients of "less important" features to zero.
- Sparse and memory efficient and often more interpretable models.

Subgradient

- Generalizes gradient to convex but non-differentiable problems
- Examples:
 - $\cdot f(x) = |x|$

Task at hand

• TASK: find derivative of f(x) at $x = x^0$

Solution

- Construct a differentiable g(x)
 - Intersecting f(x) at $x = x_0$
 - Below or on f(x) for all x

Solution

• Compute slope of g(x) at $x = x_0$

Another Example: f(x) = |x|

• Subgradient of f(x) belongs to [-1, 1]

· Another optimisation method (akin to gradient descent)

- · Another optimisation method (akin to gradient descent)
- Objective: $_{\mathrm{Min}_{\theta}}f(\theta)$

- · Another optimisation method (akin to gradient descent)
- · Objective: $_{Min_{\theta}}f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates

- · Another optimisation method (akin to gradient descent)
- · Objective: $_{Min_{\theta}}f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- · ..., but, easy for each coordinate

- · Another optimisation method (akin to gradient descent)
- · Objective: $_{Min_{\theta}}f(\theta)$
- Key idea: Sometimes difficult to find minimum for all coordinates
- · ..., but, easy for each coordinate
- turns into a 1D optimisation problem

(DORDINATE DESCENT ALGORITHM

COORDINATE DESCENT ALGORITHM

GOAL: MIN f (B)

(DORDINATE DESCENT ALGORITHM

1) INIT \(\theta \)
2) WHILE NOT CONVERGED

2.1) PICK (GORDINATE 'j')

(DORDINATE

2.1) PICK COORDINATE

mm f (00, 0)

(DORDINATE

2.1) PICK (OORDINATE 'j'

$$(2.2)$$
 $\hat{\theta}_{j} = Mm f(\theta_{0}, \phi)$

COORDINATE DESCENT ALGORITHM

2) WHILE NOT CONVERGED

2.2)
$$\hat{\Theta}_{j} = \underset{\Phi}{\text{mw}} f(\Theta_{\delta}, \Phi)$$

• Picking next coordinate:

• Picking next coordinate:

- · Picking next coordinate: random, round-robin
- No step-size to choose!

- · Picking next coordinate: random, round-robin
- · No step-size to choose!
- · Converges for Lasso objective

Coordinate Descent: Example

Learn $y = \theta_0 + \theta_1 x$ on following dataset, using coordinate descent where initially $(\theta_0, \theta_1) = (2, 3)$ for 2 iterations.

Х	у
1	1
2	2
3	3

Coordinate Descent : Example

Our predictor,
$$\hat{y} = \theta_0 + \theta_1 x$$

Error for
$$i^{th}$$
 datapoint, $\epsilon_i = y_i - \hat{y}_i$
 $\epsilon_1 = 1 - \theta_0 - \theta_1$
 $\epsilon_2 = 2 - \theta_0 - 2\theta_1$
 $\epsilon_3 = 3 - \theta_0 - 3\theta_1$

$$MSE = \frac{\epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2}{3} = \frac{14 + 3\theta_0^2 + 14\theta_1^2 - 12\theta_0 - 28\theta_1 + 12\theta_0\theta_1}{3}$$

Coordinate Descent: Example

INIT:
$$\theta_0 = 2$$
 and $\theta_1 = 3$

$$\theta_1=$$
 3 optimize for θ_0

Coordinate Descent: Example

INIT:
$$\theta_0 = 2$$
 and $\theta_1 = 3$

$$\theta_1 = 3$$
 optimize for θ_0

$$\frac{\partial MSE}{\partial \theta_0} = 6\theta_0 + 24 = 0$$

$$\theta_0 = -4$$

Coordinate Descent: Example

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$heta_0 = -4$$
 optimize for $heta_1$

Coordinate Descent : Example

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

$$heta_0 = -4$$
 optimize for $heta_1$

$$\theta_1 = 2.7$$

Coordinate Descent: Example

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 2.7$

$$\theta_1=$$
 2.7 optimize for θ_0

Coordinate Descent: Example

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 2.7$

$$\theta_1=$$
 2.7 optimize for θ_0

$$\theta_0 = -3.4$$

FAILURE OF COORDINATE

FAILURE OF COORDINATE DESCENT

ART WITH (X,Y) = (-2,72)

FAILURE OF COORDINATE DESCENT

START WITH (x,y) = (-2,-2)Fix y = -2, OPTIMIZE

FAILURE OF COORDINATE DESCENT

START WITH (x,y) = (-2,-2)FIX y = -2, OPTIMIZE ABOUT 2.

OBJECTIVE INCREASES
IN BOTH DIRECTIONS

FAILURE OF COORDINATE

START WITH (x,y)=(-2,-2)Fix y=-2, OPTIMIZE

OBJECTIVE INCREASES
IN BOTH DIRECTIONS

SIMILAR IF WE FIX

2 and DETIMIZE ABOUT

GRADIENT DESCENT WILL WORK!

-NEED SIMULTANEOUS
UPDATE IN BOTH
(OORDINATES

• Express error as a difference of y_i and $\hat{y_i}$

$$\hat{y}_i = \sum_{i=0}^d \theta_j x_i^j = \theta_0 x_i^0 + \theta_1 x_i^1 + \theta_2 x_i^2 \dots + \theta_d x_i^d$$
 (4)

$$\epsilon_i = y_i - \hat{y_i} \tag{5}$$

$$= y_i - \theta_0 x_i^0 + \theta_1 x_i^1 + \dots + \theta_d x_i^d$$
 (6)

$$= y_i - \sum_{j=0}^d \theta_j x_i^j \tag{7}$$

$$\sum_{i=1}^{N} \epsilon^2 = RSS = \sum_{i=1}^{N} \left(y_i - \left(\theta_0 x_i^0 + \dots \quad \theta_j x_i^j + \theta_d x_i^d \right) \right)^2$$

$$\sum_{i=1}^{N} \epsilon^{2} = RSS = \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right)^{2}$$

$$\frac{\partial RSS (\theta_{j})}{\partial \theta_{j}} = 2 \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right) \left(-x_{i}^{j} \right)$$

$$\sum_{i=1}^{N} \epsilon^{2} = RSS = \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right)^{2}$$

$$\frac{\partial RSS \left(\theta_{j} \right)}{\partial \theta_{j}} = 2 \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \theta_{j} x_{i}^{j} + \dots \right) \right) \left(-x_{i}^{j} \right)$$

$$= 2 \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \theta_{d} x_{i}^{d} \right) \right) \left(-x_{i}^{j} \right) + 2 \sum_{i=1}^{N} \theta_{j} (x_{i}^{j})^{2}$$

$$\sum_{i=1}^{N} \epsilon^{2} = RSS = \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots \quad \theta_{j} x_{i}^{j} + \theta_{d} x_{i}^{d} \right) \right)^{2}$$

$$\frac{\partial RSS \left(\theta_{j} \right)}{\partial \theta_{j}} = 2 \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots \quad \theta_{j} x_{i}^{j} + \dots \right) \right) \left(-x_{i}^{j} \right)$$

$$= 2 \sum_{i=1}^{N} \left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \theta_{d} x_{i}^{d} \right) \right) \left(-x_{i}^{j} \right) + 2 \sum_{i=1}^{N} \theta_{j} (x_{i}^{j})^{2}$$

where:

$$\hat{y_i}^{(-j)} = \theta_0 x_i^0 + \ldots + \theta_d x_i^d$$

is \hat{y}_i without θ_j

$$Set \frac{\partial RSS(\theta_{j})}{\partial \theta_{j}} = 0$$

$$\theta_{j} = \sum_{i=1}^{N} \frac{\left(y_{i} - \left(\theta_{0} x_{i}^{0} + \dots + \dots + \theta_{d} x_{i}^{d}\right)\right) \left(x_{i}^{j}\right)}{\left(x_{i}^{j}\right)^{2}} = \frac{\rho_{j}}{z_{j}}$$

$$\rho_{j} = \sum_{i=1}^{N} x_{i}^{j} \left(y_{i} - \hat{y}_{i}^{(-j)}\right)\right)$$

$$z_{j} = \sum_{i=1}^{N} \left(x_{i}^{j}\right)^{2}$$

 z_i is the squared of ℓ_2 norm of the j^{th} feature

COORDINATE

UNDERSTANDING Pj IN COORDINATE DESCENT
$$Pj = \sum_{i=1}^{N} x_i^j (y_i - y_i^{(i)})$$

STRONG THE CORP WITH Y: -Y:

UNDERSTANDING Pj IN COORDINATE DESCENT
$$Pj = \sum_{i=1}^{N} x_i^i \left(y_i - y_i^{-i} \right)$$

CASE

WITH y; -y; T)

jth FEATURE IS IMPT

AND ITS COEFFICIENT

UNDERSTANDING Pj IN COORDINATE DESCENT
$$Pj = \sum_{i=1}^{N} x_i^j \left(y_i - \hat{y}_i^{-j} \right)$$

UNDERSTANDING Pj IN COORDINATE DESCEN

$$Pj = \sum_{i=1}^{N} \chi_{i}^{j} \left(y_{i} - y_{i}^{c} \right)$$

$$\chi_{i}^{j} \text{ WEAK } \left(\text{ORR.} \right)$$

$$\psi_{i} = \psi_{i}^{j}$$

$$\psi_{i}$$

Minimize
$$\underbrace{\sum_{i=1}^{N} \epsilon^2 + \delta^2 \left\{ |\theta_0| + |\theta_1| + \dots |\theta_j| + \dots |\theta_d| \right\}}_{LASSO \ OBJECTIVE}$$

$$\frac{\partial}{\partial \theta_j}(\text{LASSO OBJECTIVE}) = -2\rho_j + 2\theta_j z_j + \delta^2 \frac{\partial}{\partial \theta_j} \left| \theta_j \right|$$

$$\frac{\partial}{\partial \theta_j} |\theta_j| = \begin{cases} 1 & \theta_j > 0 \\ [-1, 1] & \theta_j = 0 \\ -1 & \theta_j < 0 \end{cases}$$

• Case 1: $\theta_{i} > 0$

$$2\rho_j + 2\theta_j Z_j + \delta^2 = 0$$

$$\theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{Z_j}$$

$$\rho_j > \frac{\delta^2}{2} \Rightarrow \theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{Z_j}$$

• Case 1: $\theta_{i} > 0$

$$2\rho_j + 2\theta_j z_j + \delta^2 = 0$$

$$\theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{z_j}$$

$$\rho_j > \frac{\delta^2}{2} \Rightarrow \theta_j = \frac{\rho_j - \frac{\delta^2}{2}}{z_j}$$

• Case 2: $\theta_{j} < 0$

$$\rho_j < \frac{\delta^2}{2} \Rightarrow \theta_j = \frac{\rho_j + \delta^2/2}{z_j} \tag{8}$$

• Case 3: $\theta_j = 0$

$$\frac{\partial}{\partial \theta_{j}}(\text{LASSO OBJECTIVE}) = -2\rho_{j} + 2\theta_{j}z_{j} + \delta^{2}\underbrace{\frac{\partial}{\partial \theta_{j}}\left|\theta_{j}\right|}_{\text{[-1,1]}}$$

$$\epsilon\underbrace{\left[-2\rho_{j} - \delta^{2}, -2\rho_{j} + \delta^{2}\right]}_{\text{\{0\} lies in this range}}$$

$$-2\rho_j - \delta^2 \le 0$$
 and $-2\rho_j - \delta^2 \le 0$
 $-\frac{\delta^2}{2} \le \rho_j \le \frac{\delta^2}{2} \Rightarrow \theta_j = 0$

Summary of Lasso Regression

$$\theta_{j} = \begin{bmatrix} \frac{\rho_{j} + \frac{\delta^{2}}{2}}{z_{j}} & if & \rho_{j} < -\frac{\delta^{2}}{2} \\ 0 & if & -\frac{\delta^{2}}{2} \leq \rho_{j} \leq \frac{\delta^{2}}{2} \\ \frac{\rho_{j} - \frac{\delta^{2}}{2}}{z_{j}} & if & \rho_{j} > \frac{\delta^{2}}{2} \end{bmatrix}$$
(9)

$$(p_1 + S_{12}^2)$$
 if

ASSO (SOFT) THRESHOLDING
$$\hat{\Theta}_{j} = \begin{cases} \frac{p_{j} + \hat{S}_{/2}^{2}}{Z_{j}} & \text{if} \end{cases}$$

θ

$$\hat{\Theta}_{i} = \begin{cases} \frac{p_{j} + S^{2}_{j2}}{3} & \text{if} \end{cases}$$

$$\hat{\Theta}_{j} = \begin{cases} \frac{p_{j} + \hat{S}_{12}^{2}}{Z_{j}} & \text{if} \end{cases}$$

ASSO (SOFT) THRESHOLDING
$$\hat{\Theta}_{i} = \begin{cases} \frac{p_{i} + S^{2}}{7} & \text{if} \end{cases}$$

 $-\frac{s^2}{2} \leq \mathcal{I}$ 95 - 52/2

$$\hat{\Theta}_{j} = \begin{cases} \frac{p_{j} + S^{2}}{Z_{i}} & \text{if} \end{cases}$$

LASSO (SOFT) THRESHOLDING
$$\hat{\Theta}_{j} = \begin{cases} \frac{p_{j} + S^{2}_{j}}{Z_{j}} & \text{if} \\ \frac{Z_{j}}{Z_{j}} & \text{if} \end{cases}$$

LASSO (SOFT) THRESHOLDING
$$\hat{A}_{i} = \begin{cases} \frac{p_{j} + S^{2}}{2} & \text{if} \end{cases}$$

LASSO (SOFT) THRESHOLDING

LASSO (SOFT) THRESHOLDING

RGGULARISATION

11

SPARSITY