FINAL: 180 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer **ALL** questions. You may use **two** double sided $8\frac{1}{2} \times 11$ crib sheets. You **MUST** show **CORRECT** work (even for multiple choice) to receive full credit. **NO COLLABORATION** or **electronic devices**. **Any violations result in an F. NO questions** allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	6	Total
200	30	30	30	30	30	350

1 Circle at most one answer per question. 10 points for each correct answer.

- (1) Is this claim true or false. $\forall n \in \mathbb{Z} : n^2 \geq 0$.
 - A True.
 - B False.
 - $\boxed{\mathbf{C}}$ You can't say because it depends on n.
 - D You can't assign true or false to quantified statements.
 - E It is not a proper statement to which you can assign true or false.
- (2) If it rains on a day, it must rain the next day. Today it did not rain. What can you conclude?
 - A It won't rain tomorrow.
 - B It won't rain on any future day.
 - C It rained yesterday.
 - D It did not rain yesterday but it could have rained on some day prior to yesterday.
 - E It did not rain yesterday and it did not rain on any day prior to yesterday.
- (3) To prove P(n) by induction, which is not a valid induction step to prove $P(n) \to P(n+1)$.
 - A ssume that P(n) is true and prove that P(n+1) is true.
 - B Assume two things, that P(n) is true and that P(n+1) is false. Now derive a contradiction.
 - $\boxed{\mathbb{C}}$ Assume that P(n) is false and prove that P(n+1) is false.
 - \square Assume that P(n+1) is false and prove that P(n) is false.
 - E All of the above are valid induction steps.
- (4) What is the approximate value of the sum $\sum_{i=0}^{20} (2^i + i)(2^i i)$.
 - A 1.5×10^{11} .
 - $\boxed{\text{B}} 4.0 \times 10^{11}.$
 - $\boxed{\text{C}} 1.5 \times 10^{12}.$
 - D 4.0×10^{12} .
 - $\boxed{\text{E}} 1.5 \times 10^{13}.$
- (5) $T_1 = 1$ and $T_n = T_{n-1} + n^2$ for n > 1. Which order relationship is accurate?
 - $\boxed{\mathbf{A}} T_n \in \Theta(n).$
 - $\boxed{\mathbf{B}} T_n \in \Theta(n^2).$
 - $\boxed{\mathbf{C}} T_n \in \Theta(n^3).$
 - $\boxed{\mathbf{D}} T_n \in \Theta(2^n).$
 - E None of the above.

(6)	What is the remainder when 2^{2019} is divided by 5?
	$oxed{A}$ 0.
	B 1.
	$lue{C}$ 2.
	D 3.
	E 4.
(7)	Define the set $A = \{3x + 7y \mid x \text{ and } y \text{ are in } \mathbb{Z}\}$. Which numbers are <i>not</i> in A ?
	A -11.
	B 11.
	C 37.
	D 142.
	$\boxed{\mathrm{E}}$ They are all in A .
(8)	Ayfos is in a social network with 14 others, so 15 people in all with Ayfos. There are 25 friendship links in this network. Everyone but Ayfos has 3 friends. How many friends does Ayfos have?
	<u>D</u> 9.
	E Can't be determined or such a social network cannot exist.
(9)	In the previous problem regarding Ayfos' social network, you pick a person randomly. What is the expected number of friends that person has.
	$oxed{A}$ $3\frac{1}{3}$.
	$oxed{\mathbb{B}} 3\frac{1}{2}.$
	$\boxed{\mathbb{C}}$ $3\frac{3}{4}$.
	E None of the above, or not enough information to say for sure.
(10)) From 1000 students, 900 are CS and 200 are MATH. How many are CS-MATH duals?
	<u>A</u> 50.
	B 100.
	<u>C</u> 150.
	D 200.
	E None of the above, or not enough information to say for sure.

(11) Digits are $0,1,\ldots,9$. How many of the three digit strings 000 to 999 have a digit-sum 10? (For example, 307 and 811 have digit sum 10, but 846 and 213 do not.)
\overline{A} 60.
B 63.
C 66.
D 69.
E None of the above.
(12) A and B are sets. $ A = 5$ and $ B = 3$. How many functions are there from A to B?
$oxed{A}$ 3^5 .
$ \begin{array}{c c} $
C 5!.
$\overline{\mathrm{D}} \left({5 \atop 3} \right)$.
E None of the above.
(13) A and B are sets. $ A = 5$ and $ B = 3$. How many injections (1-to-1) are there from A to B?
$\overline{\mathbf{A}}$ 0.
B 100.
C 150.
D 200.
E None of the above.
(14) A and B are sets. $ A = 5$ and $ B = 3$. How many surjections (onto) are there from A to B?
$oxed{A}$ 0.
B 100.
C 150.
D 200.
E None of the above.
(15) You roll a die 4 times. What is the probability to get (exactly) 2 sixes?
$\overline{\text{A}} \ 6/6^4.$
$oxed{B}$ 12/6 ⁴ .
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\boxed{\mathrm{D}} \ 150/6^4.$
E None of the above.

(16) Al and Jo each independently pick 4 restaurants randomly from 10 restaurants r_1, \ldots, r_{10} . They must eat at a restaurant that both picked. Compute the probability they can eat at (exactly) 2 restaurants.
$oxed{A}$ 2/7
$\boxed{\mathrm{B}}$ 3/7
<u>C</u> 4/7
$\boxed{\mathrm{D}}$ 5/7
E None of the above
(17) Compute the expected number of restaurants Al and Jo from the previous problem can eat at.
$\boxed{\text{A}} \ 1.2.$
B 1.4
C 1.6.
D 1.8
E None of the above
(18) Which computing problem <i>cannot</i> be solved by a DFA?
A Strings with an even number of 1s.
B Strings which have more 1s than 0s.
C Strings whose number of 1s is a multiple of 3.
D Strings whose number of 1s is not a multiple of 3.
E Each problem is solvable using a DFA
(19) Which string cannot be generated by the CFG $S \to \varepsilon 0S 1S$?
$\boxed{\mathbf{A}} \ 11111111111100000000000000000000000$
B $1010101010101010101010 = (10)^{\bullet 10}$.
$\boxed{\mathbf{C}} 00000000000000000000000000000000000$
$\boxed{\mathbf{D}} \ 00110011001100110011 = (0011)^{\bullet 5}.$
E They can all be generated.
(20) Which answer is a valid conclusion about the decidability of the language \mathcal{L}_B ?
$[A]$ \mathcal{L}_A is decidable. A decider for \mathcal{L}_B can be converted to a decider for \mathcal{L}_A . So, \mathcal{L}_B is decidable.
$\boxed{\mathrm{B}}$ \mathcal{L}_A is decidable. A decider for \mathcal{L}_A can be converted to a decider for \mathcal{L}_B . So, \mathcal{L}_B is decidable.
$\overline{\mathbb{C}}$ \mathcal{L}_A is undecidable. A decider for \mathcal{L}_A can be converted to a decider for \mathcal{L}_B . So, \mathcal{L}_B is undecidable.
$\overline{\mathbb{D}}$ \mathcal{L}_A is undecidable. A decider for \mathcal{L}_B can be converted to a decider for \mathcal{L}_A . So, \mathcal{L}_B is decidable.
E None of the above is valid.

${\bf 2} \quad \hbox{ Determine the Type of Proof and Prove}$

<u>Prove</u> that for $n \in \mathbb{N}$, $\sqrt{n(n+1)} \le n + \frac{1}{2}$.

3 Induction and Sums. Tinker, Tinker, Tinker.

For $n \in \mathbb{N}$, obtain a formula for the sum $S(n) = \sum_{i=1}^{2n} (-1)^i i$ and prove your formula by induction.

$4\quad \hbox{Expected Waiting Time to 3 Heads In A Row}$

You flip a fair coin until you get 3 heads $in\ a\ row$. Compute the expected number of flips you make.

${\bf 5} \quad {\bf CFGs \ and \ Induction.} \ ({\bf Tinker, \ tinker, \ldots})$

For the CFG $S \rightarrow 0|0S1,\,prove$ that every string that can be generated has odd length.

6 Turing Machine for Squaring.

Give a high level pseudo-code description of a Turing Machine that solves the problem $\mathcal{L} = \{0^{\bullet n}1^{\bullet n \times n} | n \geq 1\}$. (You do not need to give machine level details but your pseudo-code should demonstrate understanding of how the Turing Machine moves back and forth to solve the problem. Tinker.)

SCRATCH

SCRATCH