

LINEAR PREDICTORS

Why

A simple class of predictors when the input and output sets are vector spaces is the class of linear predictors.

Definition

A linear predictor (or linear model or deterministic linear model) is a predictor which is a linear function of its inputs.

Such a model is simple to implement and interpretable, at the cost of flexibility.

R^d Example

Let $X = \mathbf{R}^d$ be a set of inputs and $Y = \mathbf{R}$ a set of outputs. The linear functions on \mathbf{R}^d are in one-to-one correspondence with vectors in \mathbf{R}^d .

A linear function $f: \mathbf{R}^d \to \mathbf{R}$ over the vector space $(\mathbf{R}^d, \mathbf{R})$ has a set of parameters $w \in \mathbf{R}^d$ so that

$$f(x) = \sum_{i} w_i x_i = w^{\top} x.$$

The parameters of a linear predictor on \mathbf{R}^d are often called weights.

