Homework #11

Operational Amplifiers – 100 points

DUE @ Beginning of Class: Tuesday, December 5

- 1) E-Book, problem 9.2 (12 points)
- 2) E-Book, problem 9.6 (10 points)
- 3) E-Book, problem 9.7 (14 points)
- 4) E-Book, problem 9.19 (14 points)
- 5) E-Book, problem 9.25 (20 points)
- 6) E-Book, problem D9.35 (10 points)
- 7) E-Book, problem D9.60 (20 points)

1) E-Book, problem 9.2 (12 points)

9.2 The op-amp in the circuit shown in Figure P9.2 is ideal except it has a finite open-loop gain. (a) If $A_{od} = 10^4$ and $v_O = -2$ V, determine v_I . (b) If $v_I = 2$ V and $v_O = 1$ V, determine A_{od} .

Figure P9.2

2) E-Book, problem 9.6 (10 points)

9.6 Assume the op-amps in Figure P9.6 are ideal. Find the voltage gain $A_v = v_O/v_I$ and the input resistance R_i of each circuit.

Figure P9.6

- 3) E-Book, problem 9.7 (14 points)
- 9.7 Consider an ideal inverting op-amp with R₂ = 100 kΩ and R₁ = 10 kΩ.
 (a) Determine the ideal voltage gain and input resistance R_i. (b) Repeat part (a) for a second 100 kΩ resistor connected in parallel with R₂. (c) Repeat part (a) for a second 10 kΩ resistance connected in series with R₁.

4) E-Book, problem 9.19 (14 points)

9.19 Consider the circuit shown in Figure P9.19. (a) Determine the ideal output voltage v_O if $v_I = -0.40$ V. (b) Determine the actual output voltage if the open-loop gain of the op-amp is $A_{od} = 5 \times 10^3$. (c) Determine the required value of A_{od} in order that the actual voltage gain be within 0.2 percent of the ideal value.

Figure P9.19

- 5) E-Book, problem 9.25 (20 points)
- 9.25 For the op-amp circuit shown in Figure P9.25, determine the gain $A_v = v_O/v_I$. Compare this result to the gain of the circuit shown in Figure 9.12, assuming all resistor values are equal.

Figure P9.25

- 6) E-Book, problem D9.35 (10 points)
- D9.35 (a) Design an ideal summing op-amp circuit to provide an output voltage of $v_O = -2[(v_{I1}/4) + 2v_{I2} + v_{I3}]$. The largest resistor value is to be 250 k Ω .
 - (b) Using the results of part (a), determine the range in output voltage and the maximum current in R_F if the input voltages are in the ranges $-2 \le v_{I1} \le +2 \text{ V}$, $0 \le v_{I2} \le 0.5 \text{ V}$, and $-1 \le v_{I3} \le 0 \text{ V}$.

7) E-Book, problem D9.60 (20 points)

D9.60 Consider the op-amp difference amplifier in Figure 9.24(a). Let $R_1 = R_3$ and $R_2 = R_4$. A load resistor $R_L = 10 \,\mathrm{k}\Omega$ is connected from the output terminal to ground. (a) Design the circuit such that the difference voltage gain is $A_d = 15$ and the minimum difference input resistance is $30 \,\mathrm{k}\Omega$. (b) If the load current is $i_L = 0.25 \,\mathrm{mA}$, what is the differential input voltage $(v_{I2} - v_{I1})$? (c) If $v_{I1} = 1.5 \,\mathrm{V}$ and $v_{I2} = 1.2 \,\mathrm{V}$, determine i_L . (d) If $i_L = 0.5 \,\mathrm{mA}$ when $v_{I2} = 2.0 \,\mathrm{V}$, determine v_{I1} .

