

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ</u> КАФЕДРА <u>ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ</u> ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ**

ОТЧЕТ

По лабораторной работе № 4

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-42Б		Фам М.Х
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А. Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы

Изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 цифровых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 В и 0 В (общая);
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Составим схему по варианту 23 (рисунок 1.1).

Схема работает следующим образом: На выход идет тот D сигнал, адрес которого пришел на дешифратор

2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 аналоговых сигналов:

3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. ФАЛ задается преподавателем.

Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

Таблица 3.1

<i>x4</i>	х3	<i>x</i> 2	x1	f	Примечание
0	0	0	0	1	D0 = 1
0	0	0	1	1	
0	0	1	0	1	D1 = ~Xo

0	0	1	1	0	
0	1	0	0	0	D2 = Xo
0	1	0	1	1	
0	1	1	0	0	D3 = 0
0	1	1	1	0	
1	0	0	0	1	D4 = ~Xo
1	0	0	1	0	
1	0	1	0	1	D5 = ~X0
1	0	1	1	0	
1	1	0	0	1	D6 = 1
1	1	0	1	1	
1	1	1	0	1	D7 = ~X0
1	1	1	1	0	

Исходя из данных полученных с логического анализатора, построенная схема работает верно.

Схема реализует заданную Φ АЛ. То есть при подаче на вход какого-то набора x0 x1 x2 x3 на выходе будет соответствующее таблице значение

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16 - 1 на основе простого мультиплексора MUX 4 - 1 и дешифратора DC 2-4.

Исследовать мультиплексора MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 — из табл. 2. Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1. мультиплексора MUX 16-1.

