Introduction to Colour Science NPGR025

Unit 6: Colour Reproduction

Sources: Kipphahn, Handbuch der Printmedien

Overview

- Additive: Self-Luminous Display technologies
- Additive: Photographic film
- Gamut mapping
- Subtractive: Printing technology
 - Inkjet
 - Laser
 - Offset

Self-Luminous Displays

- Cathode ray tubes
 - Good colour constancy
 - Bad ergonomic properties
- Liquid crystal displays
 - Comparatively bad colour performance
 - Good ergonomic properties
- Beamer devices
 - Limited use, good possibilities

Photographic Film

- Invented in the early 19th century limited to black and white
- Colour photography started to be practically useable in the late 1930ies (exceptions prove the rule)
- Use for imaging purposes is limited
- Slide printers used to be common, niche applications still exist

Primitive Colour

Uses 3 negatives and red, green & blue filters

- Used e.g. in Russia ~1910
- Difficult reproduction on devices of the day
- http://www.loc.gov/exhibits/empire/

Colour Film Principle

- Treated AgX used as light-sensitive compound
- Several layers of differing sensitivity responsible for different colours

Colour Film Properties

- Advantages:
 - Slides have high contrast ratio and good colour
 - Very durable form of output
- Disadvantages:
 - Processing required (for slides: projector)
 - Film gamut limited to gamut of slide writing equipment
- Nowadays only useful for niche applications

Subtractive Colour Mixing

- Basic colours for subtractive colour models are usually cyan, magenta and yellow
- Gamut of CMY is usually substantially smaller than the RGB gamut
- In order to improve the printing process, black (=key in printer jargon) is usually added, which leads to the CMYK colour space

and very non-linear in L

Display Gamuts

- If similar appearance is desired across varying output devices, some kind of corrective mapping has to be applied
- For colour space compensations, this mapping is known as gamut mapping

Gamut Mapping Strategies

- Global vs. Local
- Global methods preserve overall appearance of image
- Local methods introduce less distortion by just treating the out-of-gamut pixels

Tristimulus Colour Mixing

- Separation of x,y space into areas that can be described by particular mixtures of UVW
- Left of dash = positive
- Right of dash = negative

Gamut Mapping – Chroma

 Gamut mapping in chroma space just requires one to move the offending colour inside the display

gamut

 Direction: usually towards the white point

- Fast iterative process
- Issues:
 - real gamuts are not 2D
 - and not linear, either

Gamut Clipping Strategies in L

- Straight clipping preserves luminance, but loses chroma information
 - → artificial highlights
- Other two methods tend to lose highlight information resp. generate uniform patches

Gamut vs. Tone Mapping

- The two terms essentially mean the same thing
- The proper expression for both is tone reproduction operators
- Common differentiation:
 - Tone mapping is used for situations where the luminance values are far out of range (photorealistic computer graphics)
 - Gamut mapping is done in situations where colour gamut problems prevail (printing industry)

Pantone Hexachrome

 Industrial standard for larger gamut (offset) printing defined by Pantone

 Also known as CMYKGO, for Cyan Magenta Yellow **Key Green Orange**

Hexachrome Properties

- Advantages:
 - Exceeds RGB gamut everywhere except in the green area – superior colour rendition
 - Can save money if spot colours are no longer needed
- Disadvantages:
 - More costly during setup
 - Requires special software and printing presses

6 or 7 Colour Inkjets

- Modern consumer-level photo printers also use 6, or sometimes even 7, inks
- Key difference: the inks are
 - Dark and light cyan
 - Dark and light magenta
 - Yellow
 - (Dark and light black) or just black
- The overall gamut does not get bigger, but drop mixing artefacts are reduced

Inkjet Printers

- Basic idea: small drops of ink are individually sprayed onto the paper to form an image
- Advantages:
 - Simplicity
 - Low cost of device
- Disadvantages:
 - Speed
 - High cost per page
 - Durability of result

Inkjet Printer Types

- Continuous ink jet devices
 - Comparatively rare, used for high-speed devices
- Drop-on-demand technologies
 - Thermal/bubble jet devices
 - Piezoelectric device
- All types are prone to drying problems when heads with fine resolution are used (photo printers)

Continuous Ink Jet

 Electrostatic deflection is used to modulate travel of continuous, high-frequency beam of droplets onto target

Bubble Jet (HP, Canon)

- Small thermo element causes rapidly expanding bubble in ink channel
 - → ink droplet gets ejected
- Reliable and reasonably fast
- Hard to miniaturise beyond a certain level
- Temperatures can lead to problems with head durability

Bubble Jet Cycle

Bubble Nucleation $<3 \mu s$

Bubble Growth 3-10 µs

Bubble

Collapse &

Drop Breakoff

Refill

< 80 µs

Rapid Heating 100 °C/µs produces vapor explosion in ink

Drop formation

Bubble collapse settles to begins refill complete refill

Piezo Heads (Epson)

- Long time to market, but superior to thermal heads (better resolution)
- Actual print head more expensive than thermal version

Inkjet Ink Requirements

- Viscous (so that heads will work)
- Shallow paper penetration (so paper is not softened & dots remain sharp)
- Deep paper penetration (so that ink dries fast & colours are deep)
- Little dot bleed when mixed
- Lightfast
- Non-toxic and non-flammable

Inkjet Material Taxonomy

Laser Printers

- Digitally controlled electrostatic printers
- Advantages:
 - Fast
 - Low cost per page
- Disadvantages
 - Expensive (especially colour devices)
 - Slightly reduced gamut
 - Not capable of any additional colours

Electrostatic Printing

- Invented in 1938
- Used in analog optical copiers for decades
- Digital devices appeared in the 1970ies
- The term "Laser printer" is derived from the infrared imaging lasers used

Electrostatic Printing #1

Electrostatic Printing #2

- Process basically unchanged since 1938
- No differences between copier and printer imaging engines

Typical Imager Unit

- Key components:
- Rapidly addressable laser diode (usually IR)
- Rotating mirror (30000 rpm)
- Lens system
- Beam discharges single points on imaging drum

Imager Unit Variations

- Laser diode drawbacks:
 - Dot non-uniformity across line
 - Several units needed for high performance
- Alternative: LED bars
 - Advantage: fast, good for wide printers
 - Disadvantages:
 - Single dead LED kills whole component
 - Non-uniformity of luminance

Two Component Developers

- Original Xerographic process
- Still used in high-quality, high-speed devices

Two Component Developers

 "Brushes" are formed by magnetic beads and used to deposit electrostatically charged toner particles on the paper

Single Component Developers

- Newer development
- Used in slower, cheaper machines

Laser Printer Toner

 Typical property: solid pigments are used as colorants

Laser Printer Toner Fusing

 Method used depends on toner particle, cost and speed issues

5. Hot Roll Fusing

4. Vapor Fusing

Toner Fusing Process

Laser-Based Colour Imagers

- Huge variety of devices exists
- Reasons for variety:
 - Speed/cost tradeoffs
 - Patent issues
- Common to all types:
 - Somewhat reduced colour gamut when compared to ink-based systems
 - Glossy finish of toners
 - Durable output

Specific Example: Xeikon DCP500

- LED-Array imaging
- 130 A4 pages/min
- 600dpi
- 47cm imaging width
- Roll feed
- One-pass duplex
- Much faster turnaround times than plate-based printing machines

Offset Printing

- Basic principle: oil and water do not mix
- Offset plates do not contain any grooves
- Photographically prepared plates attract oily inks in dark areas
- Water is applied to all other areas
- Inks are transferred to paper via an intermediate roll

Offset Details

- Purpose of offset cylinder: improved print quality
- Modern machines operate without water (special inks and plates)

Offset Plate Preparation

- Prior to printing, plates of all pages have to be produced
- For colour pages, four plates have to be imaged
- Aluminium sheets are best carrier material
- Phototypesetters used have ultra high resolution (>2500 dpi)

Offset Production Process

- After preparation, plates have to be mounted in press
- Only roll feed paper is used
- Advantages: extreme speed, excellent gamut, low per-page-cost, possibility of including custom inks and finishes
- Disadvantages: (high equipment cost), high setup costs, not practicable for small runs

Small Offset Example: Xerox DI400

- Up to 400 pages per minute (b/w & c)
- Plates are imaged in the press directly from digital data

- Max. 2450 dpi resolution on up to .4mm paper
- 4 or 5 colours possible
- Special ink types can be used (e.g. Metallic)
- Weight: 9 tons for 5 roll version