UK Patent Application (19) GB (11) 2 152 492 A

(43) Application published 7 Aug 1985

	·	•		1 NIT 01 A
(21)	Application No 8431313) INT CL ⁴ • C05G 3/00
(22)	Date of filing 12 Dec 1984		(52)) Domestic classification
(30)	Priority data			C1B 3C1 3C4 3C5 3CX 3D5 3DX 3F1
	(31) 4269 (32) 15 Dec 1983	(33) HU	(56)	S) Documents cited None
. (71)	Applicant Budapesti Vegyimuvek (Hungary), 1455 Budapest, Ken utca 5, Hungary		(58)	8) Field of search C1B
(72)	Inventors Roza Csanyi, Ferenc Gati, Edit Halasz,			
•	Endre Horak, Janos Karakas, Laszlo Nemes			
(74)	Agent and/or Address for Service T. Z. Gold & Company, 9 Staple Inn, London WC1V 7QH			

(54) Process for planting of woody stem plants by hydroboring

⁽⁵⁷⁾ A process for planting of woody stem plants by hydroboring, wherein a planting hole is prepared by means of a hydroboring apparatus, slow- and/or quick-acting fertilizer composition containing up to 75% of wt. of N, P_2O_5 and K_2O macro nutritive elements and up to 10% wt. of Mg, Cu, Mn, Zn, Fe and B micro nutritive elements in desired ratio are admixed with the boring water and the reproducer is placed into the planting hole. The boring water may optionally contain fine-crushed organic and/or inorganic substance, soil-desinfectants and/or fungicides or different compounds controlling the plants' processes, e.g. compounds with hormonic activity or their precursors. For the plantation rooted or rootless reproducers can be used. According to the process of the invention different woody stem plants e.g. poplars, willows, vines, peaches etc. can successfully be planted.

15

20

25

30

35

40

SPECIFICATION

Process for planting of woody stem plants

The present invention relates to a process for planting of woody stem plants by hydroboring, wherein the planting hole is prepared by a hydroboring apparatus and plant nutrients, different compounds and compositions controlling the plant's vital processes or plant protecting agents as well as substances for amelioration admixed with the boring water are applied to the soil.

Into the hole thus prepared rooted or rootless propagation materials /reproducers/ are placed. According to the process of the invention different woody stem plants e.g. poplar, wilow, vine, peach and other types of fruits can successfully be planted by large-scale industrial methods into any type of soils except stony soils.

Background of the invention

40

It is a drawback of the traditional process that it is extraordinarily labour-consuming and consequently expensive and slow. The drawback of the mechanical deep driling method consisting of several work-phases is that the twist drill compacts the sides of the hole, thus subsequent to the placing of the reproducer into the hole the soil has to be broken up and has to be compacted around the sapling. An additional drawback is the intensive wear of the bit edge and consequently the frequent and expensive change of the bit. A further drawback is in case of both known processes the low ratio of plants taking root and the annual low yield of crops.

In order to eliminate the drawbacks of the known methods mentioned above we have investigated the possibilities of the development of a new technology and we have made a series of experiments on different types of soils and under different weather conditions employing different types of reproducers. In case of predominantly bad, sandy soils assigned for forest plantation which soils are unsuited for field and horticultural husbandary due to the low water table and the insufficient nutrient supply, we have found that the nutritive element content of the leaves of 3-5 m tall poplar cuttings with crown buds – planted in a depth of 2-4 m – does not reach the optimal values regarding certain elements. The reason for this is that by carrying out the planting up to the water table the water supply of the plant becomes more favourable, the plant grows more quickly but the soil does not contain sufficient nutrients to ensure the optimum nutrient level. The test data of a 2 year old poplar plantation are given in Table 1. The test data relate to plants planted by traditional technology as well as by the process of the invention and both are compared with the optimum values. The data relate to leaf-dry substance.

TABLE 1

	Nutritive	element	Optimum		Planting	
45	co	ontent	value	with traditional process	with hydroboring process	45
	Nitrogen	% by wt	2.50	2.50	2.30	
	Phosphorus	% by wt	0.25	0.24	0.19	
	Potassium	% by wt	1.50	1.50	1.27	
50	Calcium	% by wt	1.70	1.80	2.00	50
	Magnesium	% by wt	0.40	0.37	0.39	
	Iron	ppm	200	130	105	• .
	Manganese	ppm	120	125	95	21.1
•	Zinc	ppm	60	44	20	
55	Copper	ppm	15	11	8	55
55	Boron	ppm	60	59	51	
	Molybdenum	ppm	0.5	0.8	1.0	٠,

Different researchers described similar results but in the course of their investigations the intensive growth of the plants was not due to the optional amount of used water but the great amount of nitrogen-fertilizer /Vagoor, Lehrbuch der Pflanzenphysiologie, VEB Gustav Verlag Jena 1979. pp. 137-138; and Souchelli: Trace-elements in agriculture, Von Nostran Beinhald Co., New York 1969. pp. 201-209/.

into account all parameters having importance from point of view of the dynamic unity of plant and its environment and which technology produces harmony between the plant protection and nutriation adjusted to the plant's vital processes during the whole vegetation period particularly during the growing period just after taking root. The planting process by hydroboring according to the invention is the result of our wide-spread experimental work and it offers a great help in the large scale industrial planting of forest and fruit garden.

5

Detailed description of the invention

According to the process of the invention for planting of woody stem plants a planting hole is prepared by 10 hydroboring apparatus of a deepness of 2-4 m depending on soil quality and type of plant to be planted. Previously slow- or quick-acting fertilizer compositios containing the necessary nutrients are dispersed in the boring water. These compositions contain up to 75 % by weight of N, P2O5 and K2O as macro-nutritive elements and up to 10 % by weight of Mg, Cu, Mn, Zn, Fe and B as micro-nutritive elements in the desired ratio.

10

15

The boring water may optionally contain fine-crushed organic substances e.g. organic fertilizer and/or turf to increase the nutrient content and for amelioration, it may also contain fine-crushed inorganic substances e.g. zeolite, pearlite or other types of mineral clays. If desired soil- desinfectants, preferably phosphorus acid-, thiophosphorous acid- or dithiophosphorous acid-ester-derivatives, e.g. O-ethyl-S-phenyl-ethylphosphonodithioate /DYFONATE/, 2-chloro-3-/-diethylamino/-1-methyl-3-oxo-1-propanyl-dimethyl-20 phosphate /DIMECRON/ O,O-diethyl-O-/2-isopropyl-6-methyl-4-pyrimidinyl/-phosphorothioate /DIAZINON/,

20

S-/2,5-dichlorophenylthiomethyl/-0,0-diethyl-phosphorodithioate /PHENKAPTON/, etc. may also be mixed into the boring water.

As fungicides triphenyl-stannic acetate /BRESTAN/ and/or zinc- or manganese dithiocarbamate derivatives /MANEB, MANCOZEB, ZINEB/, etc. can preferably be mixed into the boring water. For controlling the plant's vital processes, if desired different compounds having hormonic activity /e.g.

25

gibberellinic acid or its derivatives, auxin or cytoquinine or cytoquinine-like substances/, or compounds being transformed into such compounds in the plant/e.g. precursors, methionin/ may also be added to the boring water.

30

The rooted or rootless reproducers are placed into the planting hole prepared by using boring water of 3-4 30 bar pressure containing all the necessary substances mentioned above.

35

The advantage of the process according to the invention compared with the known methods is that it can be carried out quickly and economically since the preparation of the planting hole, the addition of nutrients, water and other substances /plant protectives, soil-ameliorating materials, regulators etc./, the compacting of the soil around the plant are made in a single step by using mechanical power and the demand of physical work is reduced to one third. A further advantage of the process of the invention is that the water in the bored hole produces a sludge-bed which surrounds the sapling and fixes it without any specific compacting operation. The sluge-bed contains every material in desired quality and quantity necessary to the sufficient taking roots and growing of the plant and surrounds the underground part of the plant in a fairly large volume and in uniform distribution thus solving the constant and uniform nutrient-supply harmonizing with 40 the vital processes in the long run. Despite of the relative high nutrient concentration considerable amount of fertilizer can be economized since there is no need for the so called "reserve fertilization" of the whole plantation area and the effective nutrient supply can be solved with the one fifth part of the earlier amount.

Further advantage of the process of the invention is that the local amelioration of soil of bad quality can simply be realized simultaneously with the planting. The most important advantage of the process is that the planting of forests and fruit-gardens can be carried out under such conditions under which it was impossible or complicated when using the known methods. As an advantage the fact can finally be mentioned that, the healthy, rapidly growing plant stock can earlier achieve the state, when it can be utilized, e.g. in case of poplar the felling rotation /in average 25 years/ is reduced at least to one half.

The invention is illustrated by the following, non-limiting examples.

50

50

Comparative test of poplar plantations planted by mechancial deep-boring and by hydroboring On an area of 1 ha of weakly humic soil poplars are planted in 4 repetitions at a square-distance of 5×3 m from one another by mechanical deep-boring and by hydroboring using rootless reproducers. The

comparative test of the plantations was carried out 2 years after the planting. The average results are

55

20

25

summarized in Table 2.

TABLE 2

5		Taking roots /%/	Stem-diameter Icm/	Height of trees ImI	Production of organic substances I%/	5
10	Mechanical deep-boring	81	2.66	1.90	100	10
	Hydroboring	94	2.76	2.02	114	

15 Example 2
Comparative test of poplar plantations planted by hydroboring and hydroboring + addition of plant

On an area of 1 ha of weakly humic soil poplars are planted in 4 repetitions at a square-distance of 5×3 m from one another by hydroboring and hydroboring + addition of plant nutrients, using rootless reproducers.

20 At the time of the planting soil-examinations were carried out, the results thereof are summarized in Table 3. The plant nutrients were added in two different doses /250 g/tree and 500 g/tree/. The different components of the nutrients as well as the water-solubility and the nutritive-element content thereof are summarized in Table 4. The examination of the plantations has been carried out for 4 years starting from the planting. The average test results in every year are summarized in Table 5. The nutritive element content of the leaves was determined two years after the planting, the results thereof are summarized in Table 6.

TABLE 3

	Tested par	ameters Values		20
30	pH Heaviness	7.5 30		30
		by wt 5.0		
		bywt 0.88 pm 1.6		35
35		pm 101		
		pm 112		
	81- n	pm 56 nm 39		
	_	pm 39 pm 5.2	the state of the s	40
40		pm 5.7		
	Mn p SO ₄ ²⁻ p	pm 16.1 pm 5.1		

T	Δ	R	ı	F	4

					•	
5	Component the fertilizer		Solubility at 20°C % by wt	Nutritive elements	Nutritive element content in the fertilizer% by wt	5
	Urea-formal cond.	dehide	10 ⁻² - 10 ⁻¹	Nitrogen	20	
z. 10	cond.			P_2O_5	11	10
	Potassium c	hloride	good	K₂O	14	10
	Potassium n	nagnasium				
15	phosphate	iagnesium ,	$10^{-2} - 10^{-1}$	Mg	· 4	15
	Culpric amm phosphate		10 ⁻³ - 10 ⁻²	Cu	0.4	
20	Manganese phosphate	ammonium	10 ⁻³ - 10 ⁻²	Mn	0.2	20
	Zinc ammon phosphate		10 ⁻³ - 10 ⁻²	Zn	0.1	
25	Iron ammon phosphate	ium . 1	0 ⁻³ - 10 ⁻²	Fe	0.35	25
30	Boric acide		good	B	0.05	30
			TABL	E 5		
35	Time after the planting	Nutrient dos gltree	e Stem diar Icm/			35
	1 year	0 /control/	1.06	99.8	3 100	
•	, ,	250	1.10	95.9	105	
40		500	1.24	95.8	3 110	40
	2 years	0 /control/ 250	2.88	202.8 213.1	118	
		500	2.97	219.4	129	
45	3 years	0 /control/	5.35	351.0	100	45
	•	250 500	5.75 5.99	375.0 379.0		
50	4 years	0 /control/	9.26	543.0		
50		250 500	10.57 10.89	543.0 592.0 595.0	142	50

35

TABLE 6

	Nutritive elements	Nutritive element o 0 g/tree	content in the dry leave 250 g/tree	s 500 g tree	- + - 	5
5	Nitrogen	2.79 % by wt	3.00 % by wt	2.79 % by wt		J
	Phosphorous	0.19 % by wt	0.19 % by wt	0.19 % by wt	*	
10	Potassium	1.57 % by wt	1.64 % by wt	1.62 % by wt		10
	Ca	2.21 % by wt	2.11 % by wt	2.10 % by wt		
	Mg	0.39 % by wt	0.40 % by wt	0.44 % by wt		15
15	Fe	94.7 ppm	96.7 ppm	107.5 ppm		13
	Mn	95.0 ppm	89.0 ppm	91.7 ppm		
20	Zn	19.5 ppm	21.9 ppm	23.5 ppm		20
	Cu	7.8 ppm	9.8 ppm	9.0 ppm		• •
	В	51.0 ppm	56.0 ppm	62.0 ppm		25
25						25

Example 3

Examination of insecticidal and fungicidal activity on poplar plantations planted by hydroboring According to Example 2 poplars are planted on humic soil. At the time of the planting soil test was carried 30 out and the degree of infection by insects and fungis was determined. The area was infected by Anoxia pilosa and Cytospora chrysosperma. The pesticide contains O-ethyl-S-phenylethyl-phosphorodithioate /DYFONATE/ as active ingredient /applied dose: 30 g active ingredient/ tree/, the fungicide contains triphenyl stannic acetate /BRESTAN/ as active ingredient /applied dose: 1.5 g active ingredient/tree/. A third experiment was carried out by mixing a fertilizer composition according to Example 2 into the boring water together with the insecticide and fungicide. The results of the soil tests carried out at the same time on the planting are given in Table 7, the test results

55

obtained one year after the planting are summarized in Table 8.

TΑ	_	_	_
1 4	ж.	-	•

5			Te	sted	param	eters	Va	lues					5
			рH				•	7.5					
			He	avine	ess		3	2					
10			Ca	CO ₃ 9	% by w	rt .	.(6.4					10
			Hu	mus	% by v	vt		1.47					
15 -			NC)2 + 1	VO₃ pp	ım	:	2.3					15
			P ₂ (O ₅	ppm		110)					
			K ₂ ()	ppm	7.	150)					
20			Mg	J	ppm		39)	•				20
			Na		ppm		18	3	• .				
25			Zn		ppm		E	5.6					25
			Cu		ppm			3.2					25
	•		Mn	l	ppm			3.6					
30			so		ppm			.8					30
i.				4	FF	٠.	•						
35						TABLE 8							
	Treatment	1	. A 2		ection a pilo: 4	by sa l%l Average	Cyt	In: ospoi 2	fection ra chi 3	n by Ysosp 4	erma Average		35
40	Dyfonate + Brestan	1	0	0	0	0.25	0	0	0	0.	0	•	40
45	Dyfonate + Brestan + Fertilizer	. 0	1	0	0	0.25	0	0	0	0.	0		45
	Control	3	7	6	1	4.25	10	9	4	6	7.25		45
50 <i>Exam</i> i	ole 4											·	

50 Example 4

Effect of fine-crushed inorganic substance addition | manganese mud from Urkut| on poplar planted by hydroboring

Poplars are planted on weakly humic soil according to Example 2. At the time of the planting soil test was carried out the results of which are summarized in Table 9. In order to examine the effect of manganese mud it was added in an amount of 500 g/tree. In the course of another experiment the activity of the fertilizer composition according to Example 2 /in an amount of 125 g/tree / together with the manganese mud was

BNSDOCID: <GB__2152492A__J_>

examined. The experiments were evaluated one year after the planting. The results are summarized in Table 10.

TABLE 9

5		Teste	d parameters	Values	5. Section 1985
		рН		7.6	v v
10		Heavi	ness	30	
10		CaCO ₃	3% by wt	4.2	10
		Humu	s % by wt	0.9	
15		NO ₂ +	NO ₃ ppm	1.4	15
		P ₂ O ₅	ppm	78	
20		K ₂ O	ppm	86	
20		Mg	ppm	55	20
		Na	ppm	36	
25		Zn	ppm	5.8	25
		Cu	ppm	1.2	
30	:	Mn	ppm	10.5	
-	·	SO ₄ ²⁻	ppm	5.0	, 30

	S	tem dia	meter lu	/wa	TAB Average	TABLE 10		if trees	/cm/	Average	Production of
1 2 3 4	2 2	<u>-</u>	3 3	4	Avelaya	-	neigii. 5 2	7 3 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4	Avelaye	organic sub- stance I%I
9.9 10.3	10.3		10.2	10.4	10.15	97	86	97	86	97.5	106.3
10.3 10.8			10.9	10.6	10.65	66	6	86	66	98.25	114.4
9.2 9.7			9.6	9.6	9.5	102	92	96	66	88	100
					TAB	TABLE 11	-				
Stem diameter Imml	tem diamet 2 3	amei 3	eter I. 3	mm/ 4	Average	-	Height c 2	Height of trees lcml 2 3 4	lcm/ 4	Average	Production of organic substance 1%
9.6 9.6		0)	9.5	9.5	9.55	100	66	101	100	100	103
10.8 10.3 10		=	10.6	10.6	10.6	102	86	66	100	99.75	111.4
9.2 9.7	9.7		9.6	9.6	9.5	102	92	96	66	86	100

Example 5

Effect of fine crushed organic substance addition lorganic fertilizer on plantation of poplars planted by hydroboring

The experiment was carried out according to Example 4 but organic fertilizer in an amount of 3 liter/tree 5 was used instead of manganese mud, admixed with the boring water. The experiment was evaluated one year after the plantation, the results are summarized in Table 11.

Example 6

Effect of addition of compounds with hormonic activity on poplar plantations planted by hydroboring The experiment was carried out according to Example 4, but a compound with hormone active agent /gibberellin/ in an amount of 0.05 g/tree instead of manganese mud was used and mixed into the boring

10

The experiment was evaluated one year after the planting, the results thereof are summarized in Table 12.

• .	٠.	•				. • .	TABLE 12	61				
Treatment	<i>t.</i>	~	Stem (Stem diameter Imml 2 3 4	/mm/ 4	Average	je 1	Height 2	Height of trees lcml 2 3 4	lcm/ 4	Average	Production of organic substance 1%
Gibberellin		9.3	9.5	9.6	9.6	9.5	103	101	103	102	102.25	104.3
Gibberellin + fertilizer		10.6	10.8	10.6	10.7	10.6	101	66	66	100	99.75	113.6
Control	- ·	9.5	9.7	9.6	9.6	9.5	102	g	96	66	86	100
			• .,	: 			TABLE 13				. ".	
Treatment	• • •	Taking %	Taking roots %	S	Shoot-diameter Imml	neter	Shoot-length Imml	rt-length Imml	We	Weight of leaves glstock		Production of organic substance 1%
20 g/stock fertilizer		96		· · · · · · · · · · · · · · · · · · ·	5.13		733	ღ		81.73		115.7
40 g/stock fertilizer		95			5.19		77.1			85.39		127.1
Control		94			4.92		. 683	ო		66.28		100

Exampl	е	7	
--------	---	---	--

Comparative test of vine-plantations planted by hydroboring and by hydroboring + addition of plant nutrients

Vine is planted on humic sandy soil by mixing a fertilizer composition into the boring water in an amount 5 of 20 and 40 g/vine-stock, respectively. The experiment was evaluated one year after the planting. the average values of 200-200 vine-stocks are summarized in Table 13.

5

Example 8

Comparative test of peach plantations planted by hydroboring and by hydroboring + addition of plant 10 nutrients

10

Peach trees are planted on middle-hard adobe-soil 100 cm deep by mixing a fertilizer composition according to Table 4 into the boring water in an amount of 40 g/tree and 80 g/tree, respectively. The experiment was evaluated one year after the planting, the results are summarized in Table 14.

	-
7	

TA	RI	E	14

15

15	Treatment	Taking roots %	Stem diameter Imml	Production of organic substances %	
20	40 g/tree fertilizer	83	35.7	116	20
	80 g/tree fertilizer	87	38.9	126	25
25	Control	64	30.8	100	

CLAIMS

30

1. Process for planting of woody stem plants by hydroboring, which comprises placing into the planting hole prepared by hydroboring apparatus, plant nutrients, optionally fine-crushed organic and/or inorganic substances, soil disinfectant and/or fungicides and/or compounds of hormone activity or precursors thereof admixed with the boring water and placing the reproducers into the planting hole.

2. Process as claimed in claim 1, which comprises using fertilizer compositions as plant nutrients containing up to 75 % by wt of N, P_2O_5 and K_2O macro-nutritive elements and up to 10 % by wt of Mg, Cu, Mn, Zn, Fe and B micro-nutritive elements in desired ratio.

35

3. Process as claimed in claims 1 to 2, which comprises using the plant nutritive elements in form of slow- and/or quick-acting fertilizer compositions.

4. Process as claimed in claim 1, which comprises using organic fertilizers and/or turf as fine-crushed organic fertilizers.

40

5. Process as claimed in claim 1, which comprises using zeolite, pearlite or other types of mineral clays as fine-crushed inorganic substances.

6. Process as claimed in claim 1, which comprises using phosphoric acid-, thiophosphoric acid-ester-45 derivatives as soil desinfectants.

45

- 7. Process as claimed in claim 1, which comprises using triphenyl stannic acetate and/or zinc- and/or manganese-dithiocarbamates as fungicides.
- 8. Process as claimed in claim 1, which comprises using gibberellinic acid or gibberellinic acidderivatives, auxin or cytoquinine or cytoquinine-like compounds as compounds of hormone activity. 9. Process as claimed in claim 1, which comprises using amino acids as compounds being transformed

into compounds with hormone activity in the plant. 10. Process as claimed in any of claims 1 to 9, which comprises placing rooted or rootless reproducer

into the planting hole.

11. A process as claimed in claim 1 and substantially as hereinbefore described in any one of Examples 1 55 to 8.

50