Math 612 Homework 3

Paul Hacking

March 5, 2014

Reading: Dummit and Foote, 14.4, 14.5, 14.6, 14.7. Justify your answers carefully.

- (1) For each of the following polynomials $f \in \mathbb{Q}[x]$, determine the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ of the splitting field K of f over \mathbb{Q} .
 - (a) $x^3 5x 1$.
 - (b) $x^4 10x^2 + 20$.
 - (c) $x^4 8x^2 + 9$.
- (2) Let $f = x^5 7 \in \mathbb{Q}[x]$. Let K be the splitting field of f over \mathbb{Q} .
 - (a) Show that $[K : \mathbb{Q}] = 20$.
 - (b) Using part (a), deduce that for each $a \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ and $b \in \mathbb{Z}/5\mathbb{Z}$ there is an automorphism $\varphi_{a,b}$ of K over \mathbb{Q} such that $\varphi_{a,b}(\zeta) = \zeta^a$ and $\varphi_{a,b}(\sqrt[5]{7}) = \zeta^b \sqrt[5]{7}$.
 - (c) Let $\mathrm{Aff}(\mathbb{Z}/5\mathbb{Z})$ denote the group of affine linear invertible maps f from $\mathbb{Z}/5\mathbb{Z}$ to itself. That is, $\mathrm{Aff}(\mathbb{Z}/5\mathbb{Z})$ is the set of maps $f: \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ such that f(x) = ax + b for some $a \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ and $b \in \mathbb{Z}/5\mathbb{Z}$, with the group operation being composition of maps. Show that the map

$$\operatorname{Aff}(\mathbb{Z}/5\mathbb{Z}) \to \operatorname{Gal}(K/\mathbb{Q}), \quad (f(x) = ax + b) \mapsto \varphi_{a,b}$$

is an isomorphism of groups.

(3) Let $\zeta = e^{2\pi i/13}$ and $K = \mathbb{Q}(\zeta)$. Then $\mathbb{Q} \subset K$ is a Galois extension with Galois group

$$\operatorname{Gal}(K/\mathbb{Q}) \simeq (\mathbb{Z}/13\mathbb{Z})^{\times} \simeq \mathbb{Z}/12\mathbb{Z}.$$

Let $\mathbb{Q} \subset L \subset K$ be the intermediate field such that $[L : \mathbb{Q}] = 2$. Show that $L = \mathbb{Q}(\sqrt{13})$.

- (4) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
 - (a) Compute the Galois group $Gal(K/\mathbb{Q})$.
 - (b) Determine the number of intermediate fields $\mathbb{Q} \subset L \subset K$ such that (i) [K:L]=2, (ii) $[L:\mathbb{Q}]=2$. Describe the fields L explicitly in case (ii).
 - (c) (Optional). Repeat for $K = \mathbb{Q}(\sqrt{p_1}, \dots, \sqrt{p_n})$, where $p_1, \dots, p_n \in \mathbb{N}$ are distinct primes.
- (5) Let $F \subset K$ and $K \subset L$ be Galois extensions. Is the extension $F \subset L$ Galois? (Give a proof or counterexample.)
- (6) Let p be a prime.
 - (a) Let S_p be the symmetric group on p letters and $\sigma, \tau \in S_p$ be a p-cycle and a transposition. Prove that S_p is generated by σ and τ .
 - (b) Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p. Let K be the splitting field of f over \mathbb{Q} . Suppose that f has exactly p-2 real roots. Show that $Gal(K/\mathbb{Q}) = S_p$.
 - (c) Let $f = x^5 16x + 2$ and K be the splitting field of f over \mathbb{Q} . Show that $Gal(K/\mathbb{Q}) = S_5$.
- (7) Let $F \subset K$ be a Galois extension with group G. Let $H \subset G$ be a subgroup and $L = K^H$ the corresponding intermediate field. Show that the number of intermediate fields of the form $gL := \{g(\alpha) \mid \alpha \in L\}$ for some $g \in G$ is equal to $|G|/|N_G(H)|$, where

$$N_G(H) := \{ g \in G \mid gHg^{-1} = H \}$$

is the normalizer of H in G.

- (8) Let F be a field of characteristic p and $F \subset K$ a Galois extension with Galois group $G \simeq \mathbb{Z}/p\mathbb{Z}$. Let φ be a generator of G.
 - (a) Show that there exists $\alpha \in K$ such that $\varphi(\alpha) = \alpha + 1$. [Hint: What are the eigenvalues of the F-linear map $\varphi : K \to K$? What is its Jordan normal form?]
 - (b) Deduce that $K = F(\alpha)$ and $\alpha^p \alpha + a = 0$ for some $a \in F$.