Hardwarebeschreibung

Digital-Design

Prof. Dr.-Ing. habil. Jürgen Kampe

Binary Decision Diagram (BDD)

26. März 2025 2. Seminar HB: 1

- 1. Beschreibung kombinatorischer Systeme.
- Bestimmen Sie die ROBDDs für folgende Funktionen:

$$-x_2+\overline{x_1}x_0$$

$$-x_2 + \overline{x_1}x_0$$

 $-x_2\overline{x_1} + x_2x_1 + \overline{x_1}x_0\overline{x_2}$

2. Überprüfen Sie beide Funktionen auf Gleichheit.

Motivation Model checking

Überprüfung einer Spezifikation auf gewünschte Eigenschaften

Gibt es eine Eingangsbelegung

(hier: Kombination gedrückter Tasten),

bei der die Modell-Funktion $y = f(\underline{x}) = 1$ wird

(hier: ohne Geld Cola ausgeworfen wird)?

Motivation

Equivalence checking

Beweis der korrekten, spezifikationskonformen Schaltungsrealisierung

Wann sind zwei Funktionen identisch?

- Umformung der *Boole*'schen Gleichungen
- Wahrheitstafel, *Karnaugh*-Plan
- kanonische Normalformen
- ??

Bei komplexen Systemen (viele Eingangsvariable) sind viele Eingangsbelegungen zu betrachten:

- z. B. k=30 Variablen ergeben $e=2^k=1073\,741\,824$ Eingangsbelegungen!
- Suche nach einer kompakten, kanonischen Darstellung, die zur Beschreibung komplexer Systeme verwendet werden kann.

Kanonische Darstellungsformen (I)

1. Wertetabelle:

- $e = 2^k$ Zeilen erforderlich.
- Kombinatorische Funktionen mit vielen Eingangsvariablen ergeben sehr große Wertetabellen: Bei k=30 Variablen sind $2^{30}=1073\,741\,824$ (1 G) Tabelleneinträge erforderlich!

Wertetabelle:

$$y = f(\underline{x}) = x_2 + \overline{x_1}x_0, \quad k = 3$$

ϵ	x_2	x_1	x_0	y
0	0	0	0	?
1	0	0	1	?
2	0	1	0	?
3	0	1	1	?
4	1	0	0	?
5	1	0	1	?
6	1	1	0	?
7	1	1	1	?

Kanonische Darstellungsformen (II)

2. KDNF/KKNF:

$$y = m_1 + m_4 + m_5 + m_6 + m_7$$
$$= M_0 \cdot M_2 \cdot M_3$$

- Die Normalform ist *kanonisch* (Regel-konform), wenn sie ausschließlich aus Mintermen oder aus Maxtermen besteht wenn in jedem konjunktiven (DNF) oder disjunktiven (KNF) Term alle Eingangsvariable geordnet enthalten sind.
- \longrightarrow Erweiterung von $f(\underline{x}) = x_2 + \overline{x_1}x_0$ zur KDNF.

Das Ziel besteht in einer kompakten, standardisierten Darstellung, die für identische Funktionen übereinstimmt
— es soll zu jeder Funktion genau eine kanonische Form existieren.

Kanonizität: Ein Darstellungstyp heißt *kanonisch*, wenn jede Funktion $f(\underline{x})$ genau eine Darstellung in dieser Form besitzt.

Kanonische Darstellungsformen (III)

3. binärer Entscheidungsbaum (binary decision tree, BDT):
Der binäre Entscheidungsbaum ist ein gerichteter, schleifenloser Graph

$$m{G} = \{m{V}, m{E}\}$$

mit der Knotenmenge (vertices) V und der Kantenmenge (edges) E.

- Ausgehend von einem Wurzelknoten (*root*) wird in jeder Entscheidungsebene eine Variable bewertet,
- jede Eingangsbelegung \underline{x}_{ϵ} wird durch einen Pfad von der Wurzel zu einem Blattknoten repräsentiert,
- der Blattknoten enthält den Funktionswert y_{ϵ} für diese Eingangsbelegung.

Binary Decision Tree (BDT)

Definition: Ein binärer Entscheidungsbaum in k Variablen ist ein Binärbaum:

- dessen 2^k-1 Wurzel- und innere Knoten mit den Variablen x_{κ} markiert sind,
- jeder dieser Knoten 2 abgehende Kanten mit den Gewichten "0" und "1" besitzt, die den Belegungen der Variablen mit den Werten $x_{\kappa} \in \{0, 1\}$ entsprechen,
- 2^k Blattknoten mit den Funktionswerten "0" und "1" enthält.

- Der Entscheidungsbaum enthält identische (isomorphe) und redundante Knoten
 - *→ Reduced Binary Decision Diagram* (RBDD)

Binary Decision Diagram (BDD)

Reduzierungsregeln

Anwendung der Reduzierungsregeln:

$$y = f(\underline{x}) = x_2 + \overline{x_1}x_0$$

If-Then-Else Normalform

If-then-else Operator: Jede Entscheidungsebene für eine Eingangsvariable x_{κ} kann durch den *if-then-else Operator* $x_{\kappa} \to y_1, y_0$:

if
$$x_{\kappa}$$
 then y_1 else y_0

dargestellt werden:

$$x_{\kappa} \to y_1, y_0 \equiv x_{\kappa} \cdot y_1 + \overline{x_{\kappa}} \cdot y_0$$

Geoff Draper: "A Fork in the Path"

Die *If-Then-Else Normalform* (INF) wird ausschließlich durch if-then-else Operatoren, deren Testausdrücke aus den Variablen x_{κ} bestehen, und durch die Konstanten 0 und 1 gebildet.

If-Then-Else Normalform:

Im Beispiel $f(\underline{x}) = x_2 + \overline{x_1}x_0$ ergibt die INF:

$$f(\underline{x}) = x_2 \to 1, (x_1 \to 0, (x_0 \to 1, 0))$$

Schaltungsinterpretation des BDD

Aus dem ROBDD kann die Funktion wieder ausgelesen werden, allerdings ist das Ergebnis nicht minimal!

DNF: Jeder Pfad vom Wurzelknoten zu einem "1"-Blattknoten ergibt einen Term der DNF, wobei eine Variable x_{κ}

- nicht negiert einzusetzen ist, wenn das Gewicht der abgehenden Kante 1
- negiert einzusetzen ist, wenn das Gewicht der abgehenden Kante 0 beträgt.

KNF: Jeder Pfad vom Wurzelknoten zu einem "0"-Blattknoten ergibt einen Term der KNF, wobei eine Variable x_{κ}

- nicht negiert einzusetzen ist, wenn das Gewicht der abgehenden Kante 0
- negiert einzusetzen ist, wenn das Gewicht der abgehenden Kante 1 beträgt.

Entsprechend kann auf diese Weise aus dem BDT die KDNF bzw. die KKNF ausgelesen werden.

Schaltungsinterpretation:

$$y = f(\underline{x}) = x_2 + \overline{x_1}x_0$$

DNF:

Ergebnis: $y = x_2 + \overline{x_2} \, \overline{x_1} \, x_0$

minimal: $y = x_2 + \overline{x_1} x_0$

KNF:

Pfad	Term
$ \begin{array}{c} $	$) \xrightarrow{0} \boxed{0} (x_2 + x_1 + x_0) \cdot$
$(x_2) \xrightarrow{0} (x_1) \xrightarrow{1} [0]$	$(x_2 + \overline{x_1})$

Ergebnis: $y = (x_2 + x_1 + x_0) \cdot (x_2 + \overline{x_1})$

minimal: $y = (x_2 + x_0) \cdot (x_2 + \overline{x_1})$

 x_2

Schaltungsinterpretation des BDD BDD-Teilung

Das Problem der Wurzelknoten-Präsenz in jedem Term kann mit dem BDD-Teilungsverfahren gelöst werden:

Allgemein: Für eine Reihe von *Boole*'schen Operationen □:

$$f() = g() \square h()$$

kann eine Teilung vorgenommen werden:

• Anwendung von Schnitten, wobei der Wurzel- und die Blattknoten auf unterschiedlichen Seiten des Schnittes liegen.

Wo können die Schnitte sinnvoll angewendet werden, so dass bei der Teilung kein "Rest" entsteht?

BDD-Teilung Schnittebene ,,1-Dominanz"

Auswahl eines 1-Dominators als Schnittebene.

Definition: Ein **1-Dominator** ist ein Knoten, der auf jedem möglichen Pfad vom Wurzelknoten zum 1-Blattknoten liegt. Für eine geeignete Beispielfunktion:

KNF: $f(\underline{x}) = ?$

BDD-Teilung Schnittebene ,,1-Dominanz"

 $_{\text{J. Kampe}}$ 1-Dominator repräsentiert eine **konjunktive** Zerlegung $f(\underline{x}) = g \cdot h$.

BDD-Teilung Schnittebene ,,1-Dominanz"

- Der obere Teil bildet den Divisor g;
- der untere Teil bildet den Quotient h.

$$\boldsymbol{E}_g = \{0, 1, 2, 4, 5, 6\}$$

$$\boldsymbol{E}_h = \{4, 5, 6, 7\}$$

$$E_f = E_g \cap E_h = \{4, 5, 6\}$$

J. Kampe

BDD-Teilung Schnittebene "0-Dominanz"

Auswahl eines 0-Dominators als Schnittebene.

Definition: Ein **0-Dominator** ist ein Knoten, der auf jedem möglichen Pfad vom Wurzelknoten zum 0-Blattknoten liegt. Für eine geeignete Beispielfunktion:

DNF: $f(\underline{x}) = ?$

BDD-Teilung Schnittebene "0-Dominanz"

• Der 0-Dominator repräsentiert eine **disjunktive** Zerlegung $f(\underline{x}) = g + h$.

BDD-Teilung Schnittebene "0-Dominanz"

- \bullet Der obere Teil bildet den Subtrahend g;
- der untere Teil bildet die Differenz h.

$$\mathbf{E}_g = \{0, 2, 4, 6\}$$

$$\boldsymbol{E}_h = \{6, 7\}$$

$$\mathbf{E}_f = \mathbf{E}_g \cup \mathbf{E}_h = \{0, 2, 4, 6, 7\}$$

$$y = x_2 + \overline{x_1}x_0, \quad k = 3$$
:

Konstruktion des Reduced Binary Decision Diagram (RBDD)

Konstruktion:

- BDT aus Wertetabelle und Anwendung der Reduktionsregeln
- BDT aus KDNF/KKNF und Anwendung der Reduktionsregeln
- BDD oder RBDD aus Shannon-Theorem, ggf. Anwendung der Reduktionsregeln

Die Konstruktion eines BDD basierend auf dem Shannon'schen Expansionstheorem:

$$f(x_0, \dots, x_i, \dots, x_n) = x_i \ f(x_0, \dots, 1, \dots, x_n) + \overline{x_i} \ f(x_0, \dots, 0, \dots, x_n)$$

- minimierte Restausdrücke, Überspringen nicht vorhandener Variable in den Restausdrücken und Erkennung mehrfach identisch auftretender Restausdrücke ⇒ reduzierter BDD (RBDD)
- vollständige Zerlegung \Rightarrow vollständiger BDD/BDT

Konstruktion des ROBDD mit dem Shannon'schen Expansionstheorem:

$$f(x_0, ..., x_i, ..., x_n) = \overline{x_i} f(x_0, ..., 0, ..., x_n) + x_i f(x_0, ..., 1, ..., x_n)$$

= $\overline{x_i} g() + x_i h()$

$$y = f(\underline{x}) = x_2 + \overline{x_1}x_0$$
 in der Reihenfolge $x_0 - x_1 - x_2$:

Reduced Ordered Binary Decision Diagram (ROBDD) (I)

• Es ergeben sich unterschiedliche Graphen für die gleiche Funktion, wenn die Variablenreihenfolge verändert wird.

$$y = f(\underline{x}) = x_2 + \overline{x_1}x_0$$
:

Reihenfolge $x_2 - x_1 - x_0$ Reihenfolge $x_0 - x_1 - x_2$

Reduced Ordered Binary Decision Diagram (ROBDD) (II)

- Als *kanonische* Darstellung muss eine Variablenreihenfolge festgelegt werden (*ordering*)
 - *→ Reduced Ordered Binary Decision Diagram* (ROBDD)
- ROBDDs sind eine kanonische Darstellung für Schaltfunktionen,
- werden zur Spezifikation und zur Verifikation komplexer kombinatorischer Funktionen verwendet.

Zwei Schaltfunktionen sind identisch, wenn ihre ROBDD bei identischer Variablenordnung zueinander isomorph sind.

Überprüfung der Gleichheit:

Ist die Funktion
$$y=f(\underline{x})=x_2+\overline{x_1}x_0$$
 identisch zu $y_2=f(\underline{x})=x_2\overline{x_1}+x_2x_1+\overline{x_1}x_0\overline{x_2}$?

Entwicklung von $y_2=f(\underline{x})=x_2\overline{x_1}+x_2x_1+\overline{x_1}x_0\overline{x_2}$ in der gleichen Reihenfolge $x_0-x_1-x_2$:

$$y_2 = ?$$

 \hookrightarrow identisch?

Beispiele elementarer BDDs

BDDs mit don't care

Entsprechend der Überlegung, dass jeder Pfad im BDD vom Wurzelknoten zu einem Blattknoten einer möglichen Eingangsbelegung entspricht, können *don't care* als Pfade zu einem dritten Blattknoten eingetragen werden (dreiwertige BDDs).

ϵ	x_2	x_1	x_0	y
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	d

Verzeichnis der Präsentationen

3]	DD .	2. Seminar HB: 1
		2. Seminar HB: 2
	Motivation: Model checking	2. Seminar HB: 3
	Motivation: Equivalence checking	2. Seminar HB: 4
	Kanonische Darstellungsformen (I)	2. Seminar HB: 5
	Kanonische Darstellungsformen (II)	2. Seminar HB: 6
	Kanonische Darstellungsformen (III)	2. Seminar HB: 7
	Binary Decision Tree (BDT)	2. Seminar HB: 8
	Binary Decision Diagram (BDD): Reduzierungsregeln	2. Seminar HB: 9
	If-Then-Else Normalform	2. Seminar HB: 10
	Schaltungsinterpretation des BDD	2. Seminar HB: 11
	Schaltungsinterpretation des BDD: BDD-Teilung	2. Seminar HB: 12
	BDD-Teilung: Schnittebene "1-Dominanz"	2. Seminar HB: 13
	BDD-Teilung: Schnittebene "1-Dominanz"	2. Seminar HB: 14
	BDD-Teilung: Schnittebene "1-Dominanz"	2. Seminar HB: 15
	BDD-Teilung: Schnittebene "0-Dominanz"	2. Seminar HB: 16
	BDD-Teilung: Schnittebene "0-Dominanz"	2. Seminar HB: 17
	BDD-Teilung: Schnittebene "0-Dominanz"	2. Seminar HB: 18
	Konstruktion des Reduced Binary Decision Diagram (RBDD)	2. Seminar HB: 19
	Reduced Ordered Binary Decision Diagram (ROBDD) (I)	2. Seminar HB: 20
	Reduced Ordered Binary Decision Diagram (ROBDD) (II)	2. Seminar HB: 21
	Beispiele elementarer BDDs	2. Seminar HB: 22
	BDDs mit don't care	2. Seminar HB: 23

Präsentationen: 1

Verzeichnis der Präsentationen