

Thursday 24 [Jan 19	
→ Alphabels:-	
Finite set of symbols or letters.	
2 = {a,b}	
2 = 10,13	
2 = [011]	
Ram -> Cache	
32 - bit instruction	
4 bits -> opcode	
28 bits -> address	
eu -> reads opcode and recognize	Tristruction
eg: Alphabéls of odal [0 -7, 10 - 17, 20, 27 - 30	3
eg: £ jab, cdj + 2 alphabets.	
AIGOL -> 113 letters.	
Includes letters, digits and variety operators such as GoTO and If.	08

→ Strings:
· - Concalenation of finite symbols from alphabe
0 0 0 apriase
- Emply String: String with a character
> Emply String: String with 0 character. Zero occurrence of alphabels.
To the section of alphabers.
Transition without 0 input is expressed as
Emply string.
eg: Screen saver -> Time is input but it
happens when you do mothing
Emply string. eg: Screen saver -> Time is input but it happens when you do mothing.
Dended by "h" on "h".
-> Words:
3- They are the second of
o- They are strings (set of alphabels). o- It belongs to some language.
°- It belongs to some language.
eg:
* String with max length 2
* String with max length 2. £ = [a,b,ab,ba].
When the impose some conditions.
THEN GIVE IMPOSE SOME CONSTITUTE
at All late of the strongs hill
THE MOVES ARE STREETS
not all strings are words? "

(4)

 $L = \{\chi^{n}, \eta = 1, 2, 3\}$ $Y = \{\chi, \chi\chi, \chi\chi\chi, \chi\chi\chi\chi, \chi\chi\chi\chi\chi\}$ words & strings strings.

L= {xodd} Y= {x xxx xxxxx} Words & strings

-> Valid / Invalid Alphabels

Invalid -> mulliple symbols alphabet

= 18, ab, Babi -> 3 mords

Eg: \(\frac{1}{2} = \frac{1}{1}B, Ba, bab, d\frac{3}{2}\)
string \(\rightarrow \text{BababB}. \)

.- If ambiguity is there while tokenizing a string than it is invalid.

alphabet in a same set it means that

source program + input - interpreter - output.
(5)
source -> compiler -> larget program
£1 = [B, aB, bab, d] → valid
£.2 = {B, Ba, bab, d} → invalid b/c of
ambiguity.
A CONTRACTOR OF THE PROPERTY O
→ length of Strings: =
o-Denoted by 151.
· - Humber of retters in strings.
eg:
2 = 18, aB, bab, d3
8 = BaBbabal
Jokenizing = (B), (aB), (bab), (d).
151 = 4.

0 -> Reverse of a string? = Rewriting of tokens of a string in reverse order eg: L= {10,01} 5 = 100110 5" = 100110 L - {1,03 S = 100110 3° = 011001 £ - [9,6,c] s- Tabeq Sr = cba 2 = {B, aB, bab, d} 3 = BaB bab Bd Rev(s) = dB bab BB

* + Operation.
The set of all possible strings from alphabet & except A. 至= うなり 2+= 3a,b,ab;aa,...} -> Operation on languages. A language 9, any subset of 2x Language of all possible mords £ = 10, bi 2 * = 1/1, a, b, aa, ab, } (9 dentifier + user defined marnes) 9 dentifiers > infinite (anguage.

NOTE: tanguage which contains emply The language contains no mords. → Set size | 1] = 10 | = 0 -> Set size | [\] = 1 > String length INI-0. L = 3 an bn : 7 709. (order) ab words aabb infinite language. aaabbb abb & L (condition satisfy who hori). -> The Usual Set Operations * [a, ab, aaaa] U [bb, ab] = { a, ab, bb, aaaa }. * 39, ab , agga (1 9 bb, ab) =

jabj.

* L2 = 3 an b" am b" : n, m > 0 }

aabbaaa bbb EL2.

* 13 = { a b a m b a b s n m, p 2, 0}

-> Har Closure on languages (Kleene*) 8=

· L* = L° U L'UL2.

Ta, bb * = 1

a, 66

aa, abb, bba, bbbb

0991

L' = 3 a , ab 3

Lo = 1

L2= { a9b, aba, aa 1 abab }
L3= { ababab, aaa 1 aaba }

Tuesday 29/Jan/19

-> Defining Language:

- 1. Descriptive definition of a language:

 .-A theoritical expression of language
- 2 Regular expressions:
 - -- Defining language through mathematical
- 3. Finite Automata:
 . Models, abstract machines
- 1 Ductipure definition:
- The language L of strings of odd (ength)

 defined over \$ = {a} can be written as:

 L = {a, aaa, aaaaa,}
 - -- The language L of strings that does not start

 With a defined over $\xi = \{a, b, c\}$ can be written as $L = \{b, c, ba, \dots\}$

(15) WIMM. regent. com - Palindrome The language consisting of A and the strings S defined over & such that Rev(s) = s 至= うの1 らう, 2. Regular Expressions: language It's a mathematical notation Regular Man-regu -that can express Regular (Arthemplic Progression) languages (difference same) Regular Expression is a pattern to express the language. * -> Zero or more occurrence of alphabels + -> one of more occurrence · -> conxalenation. ? -> 0,1 abc - 0 01 6 or c (a+b+c) - aubuc a127 > faat a? \$ 1,09

eg: (a+b.c)* describes the language.

Ta,bc? = { h, a, bc, aa, abc, bca,...} RE = (a+b)* L = { 1, b, a, aa, bb, aba, :-- } RE = (ab)* L = 1 h, ab, abab, ababab, - $a^{*} + b^{*} \neq (a+b)^{*}$ NOTE: .- All finite languages are regular.

.- There are some finite languages whose
These is no A.P. of Can we use Regular expression for finite languages with no A.P

(7) (a*b*) = (a+b) 31 Jan 19 + : Primitive Regular Expression =-Language Regular Expression (a+b)* - Concalenation of twoor more regular expression is a regular expression. 110h2 = 12 h1 = 9 1 h2 = (a+b) hi. hz = a*. (a+b) - Union of two or more regular expression Rithz = h 2, = 9* , 2 = b* 81+82 = 8 a* + b* - Closure of regular expression is a regular expression

x = (1)*

h = (a+b)

(18) 1x - (a+6)* -> (a+b)*= { /, a, b, ab, ba, aab,) -, a*+ b* = [1, a, b, aa, bb, aaa, bbb, -.] -> (a+b)* = (b+a)* > (ab)* + (ba)* -> (ab)* = { / ab, abab, ababab, ...} > (ba) = { / ba, baba, ... } · - The language L contains all strings with allerest two conscutive zeress defined over 2= 10,13. L = 100,000,001,100, } R. E = (0+1)* 00 (0+1)* · - The language L contains all strongs n'ithout two consecutive zeroes defined over 2=90,19. RE = (1+01)*(0+1)

R.E = (1+011+)*(0+1) + 1*(0+1).

* for one language there may exist more than than one regular expressions but for each regular expression there exust a one language

.- 2.E: L(1) = 3a2nb2mb:n,m≥0. L= {b, aab, bbb, }. The language L of strings ending in b

defined over & = jaibj.

R.E = (aa)* (bb) x b

. - alabane, n, m/10 R.E = (aa) + (bbb) * .

Q 9s there any case when St contains A?

Yes, if get contains alphabet 'h'

· - (8+)* = (5*)*

·- (S+)+ = S+

(29) 0- (5*)+ = (St)* Ex 3.1 : () L ((a+b)*b (a+ab)*) 24 = 16, aba, abab, bba, bbab? D ((0+1)(0+1)*)*00 (0+1)* @ fanbm: (n+m) is even? R.E: (aa)*(bb)* + (aa)*a (bb)*b (3) (a) L1 = 3 an bm, n> 4, m < 3 } R.E: aaaqa+. (K+b+bb+bbb) (6) Lz = {anbm: n<4,m<3} R.E: (1+ a+ aa+ aaa) . (1+ b+ bb+ b66) of (c) The complement of Li R.E.: (A+a+aa+aaa+aaaa). bbbb + + (a+b)

(22) 4 Feb 19 -) The language of string defined over &= {a ib} having exactly 'aa! b* aa b* > The language L of strings with 2 a's over \(\frac{2}{2} = \frac{5}{2}a_1b_1^2 \). bta btabt > The language L of string alleast

2 a's over \(\xi = \frac{3}{a_1 b_3} \) (a+b)* aa (a+b)* (a+b) + a (a+b) + a (a+b)* → The language L of strings with alleast one 'a" and one 'b". (a+b) *a (a+b) * b (a+b) *+ (a+b) + b(a+b) * a(a+b) * -> The language Lox strings with even length (1a+6) (a+6)

-> The language L of strings with odd length

(a+b) ((a+b)(a+b))*

-> The (anguage L of strings started with a and ending with b or starting with b and ending with b

a (a+b)*b + b (a+b)* a

- The language of strings with words

(a+6)* b + h (a+b).b)* (OR)

[b-g] means [bcdefg]
[b-gM-Qxi] means [bcdefg]

-> RE for Jokenization 9 dentifier

letter > (alble1 ... 121A1B1C1...1Z)

digit > (011121 ... 1819) :d → letter (letter Idigit)* numbers integer -> (+1-18)(01/121 ... 19) digit*) decimal - integer (digit) real -> (integer I decimal) E (+1-) digit * complex -> '('real', 'real')'

·- [a-z][9-z0-9]*

· - [0 - 9] +

·- ([0-9]+"."[0-9]*)([0-9] *"."[0-9]+)
·- ("-"[a-z]*"\n")[(" "|"\n"|"\t")]

no loken just white spaces

Finite: Blc total no of slates should be finite in IDFA.

No additional memory.

Regular Expression: Generator.
Finite Automption: Acceptor

9 mput

String → Finite Automaton → Accept (OR) Reject

* When input consumed completely & we are at final state * Input is consumed & we are not at final state (or)

* We are not at final state & input is also not consumed.

- For every state, There is a transition for every symbol in the alphabel.
- Final state could be intermidiary state
- o- To accept a string: Whole input string is scanned & the last state (9, Final) is accepted.

OrFinal EF.

→ language of DFA:

All the strings that derive M to a final state is the language of DFA.

(OR)

All the strings accepted by the model is the language of the IDFA.

eg: L(M) = { h, abba}

eg: L(M) = gab, bag

NFA accepts a string:

96 whole string is consumed and autompton is at final state.

NFA rejects a string:

NFA definition: M=(Q, 2, 8, 90, F)

(36) → Extended Jiansition Function = 8* 1) Base clause: 8* (90,1) = 993 2) Inductive clause: 5*(9, ya)
- Upe s* (9,y) 5 (p,a) Example: 8*(0, ab) = ? 301 → Upes* (0, a) 8(p, b) => 5*(0,a) = Upes*(0,A) 5(p,a) => 5*(0, K) = {0} => 8 (foj, a) = fo, 1, 3} ⇒ S(10,1,39,6) = S(0,6) US(1,6)US(3,6) = {2}0{3}0 13 = {1, 2,3} => 8 * (0, ab) = \$1,2,3}

Every TOFA Is also MFA (37) Every MFA is also - MFA-A 14/Feb/19 - NFA with Null Fransition:= 1 = 1 a 1 b] , 1 = 1 a 1 b] , R.E = a + b 1 DFA: NFA: ax(0) (OR) NFA HULL: It was also be accepted by NFA & NFA-A.

States	a	Ь	1	8(0,1) = 943
0	1	Φ	4	0(0.)
1	Φ	Φ	2	
2	Ф	Φ	3,4	
3	Ф	4	5	
4	5	Ф	Φ	
5	Φ	P	φ.	

-> Definition of 1 - closure:

"A closure of set S of states of Q by A(S)"

(OR) h(s) is defined as the number of states that can be reached by reading h arc, including S itself.

 $L(0) = \{0, 4\}$ $L(3) = \{3, 5\}$ $L(3) = \{1, 2, 3, 4, 5\}$ $L(3) = \{2, 3, 4, 5\}$

- > Extended transition function:
 - · Base clause: 8*(9,1) 1 ([9]).
 - . Inductive clause: S* (q, ya) K(Upesmany) S(Pia)

Example

$$5*(0,ab) = \Lambda(U_{PES*(0,a)}^{\delta(P,b)}) \rightarrow 1$$

 $5*(0,a) = \Lambda(U_{PE(S*(0,h))}^{\delta(P,a)}) \rightarrow 2$
 $5*(0,h) = \Lambda(\{0\}) = \{0,3,4\}.$

Pulling this in eq1 8((0,3,4),9) = 8(0,0) U 8(3,0) U 8(4,0)

Putting This in eq(2) 8* (0, 9) = 1 (11,5)

= 11.2,33055 = 11.2,33055 5*(0,a) = [1,2,3,5]

Pulling this in eq(1) $5(\{1,2,3,5\},b) = 5(1,b)U5(2,b)US(3,b)US(5,b)$ $= \phi U \{Y\}U\phi U\phi$ $= \{Y\}$

5*(0,ab) = 1([4]) 5*(0,ab) = [3,4] ([3] 5*(0,ab) = [3].

 $L = \{\Lambda, a, ab\}$ $R \cdot E = \Lambda + a + ab$

	(1)						
-> Conversion of NFA-A to NFA:							
MFA-A	Qa a	06	30				
->0	1	2	3				
0	(D)	> 7 m	1-closure of q				
State (9)	9nput (2)	n(193)					
0	a .	90,13	$s(0,a) \cup s(1,a)$ = $\phi \cup \{1,2\} = \{1,2\}$				
0-	ь	10,13	Φ				
1	a	119	11,23				
1	6	{1}	6				
2	a	{2}	•				
2	ь	123	133				
3	a	11.39	[1,2]				
3	Ь	{1,3}	Φ				
3 8 (9,0)= N(US(P,8))							
11,29							
6							
1,27							
(1 -							

φ 11,33 11,23

gleblig (44) \rightarrow L- iw belongs to {a,b}*: length (w)>= 2 \ \\

w neither ends in a a nor bb\(\frac{3}{2}\).

= (a+b)*(ab+ba). a 6)

-> L. IN belongs to faib ; IN does mil end
in aaj.

R.E. A+ a+ b+ (a+b)* (ab+ba+bb).

(48) 9 hursday > Generalized Fransition Graph: 1) Pinite 70. of sets.

(2) Finite set of input letters (2) from which input string formed.

3) Directed edges 1) Directed edges connected some pair of states labeled by R.E. Language Lantaining aa or 66.

Raib

aa, 66 RE: (a+b)* (aa+bb) (a+b)*. eg# Language L beginning and ending with same letter. 9+ P.E: a(a+b)*a+b(a+b)*b.

-> okleene's Theorem: =.

98 a language is expressed by FA, TG, RE then it can also be expressed by other two as well

Part 1: 96 accepted by FA, then it can be accepted by TG.

Part 2: 96 accepted by TG, then 91 can be accepted by RE

Part 3: 96 accepted by RE, then it

-> Part 1: Every FA is also a TG: 11 (conversion not required).

-> Part 2: Given TG, extract FA.

