Задание 5 (І курс, весенний семестр 2010 г.)

Задача 1.

Задана выборка x = (-1.0, -0.75, -0.5, -0.25, 0.25, 0.25, 0.75, 1.0), y = (1.0, 0.75, 0.5, 0.25, 0.25, 0.25, 0.75, 1.0). Построить методом конформных предикторов доверительный интервал значения квадратичной регрессионной зависимости $f(x) = a + bx + cx^2$, построенной по выборке значений x и y, в точке x=0 для уровня толерантности p=0.95

Указание. Использовать материал лекции 26.03.2010.

Задача 2.

Точки А и В располагаются на концентрических сферах радиусов r_{A} и r_{B} . По измерениям поля в этих точках методом кригинга прогнозируется значение поля в центре сфер. Дисперсия поля в любой точке одинакова и не изменяется во времени, корреляционная функция зависит только от расстояния между двумя точками, не изменяется во времени и убывает с увеличением расстояния между точками, математическое ожидание поля равно 0.

Как расположить точки на сферах, чтобы условная дисперсия прогноза была минимальна?

Задача 3.

Записать интегральное уравнение вида $\int_0^1 K(x,t)f(t)dt = u(x)$, соответствующее вычислению производной порядка п на [0,1], и продемонстрировать неустойчивость его решения к возмущениям функции u(x). Предложить метод стабилизации решения этого уравнения.

Указания

- 1) Решением интегрального уравнения должна быть функция $f(x) = \frac{d^n}{dx^n} u(x)$, $x \subset [0,1]$.
- 2) Для демонстрации неустойчивости решения интегрального уравнения приведите пример последовательности функций $u_k(x)$, таких, что $\sup_{x \subset [0,1]} |u_k(x)| \underset{k \to \infty}{\longrightarrow} 0$, а для последовательности решений $f_k(x)$ условие $\sup_{x \subset [0,1]} |f_k(x)| \underset{k \to \infty}{\longrightarrow} 0$ не выполняется.
- 3) Стабилизация решения интегрального уравнения означает, что из условия $\sup_{x\subset [0,1]} \!\! \big| u_k(x) \big|_{k\to\infty} \!\! \to \!\! 0 \text{ обязательно следует, что } \sup_{x\subset [0,1]} \!\! \big| f_k^*(x) \big|_{k\to\infty} \!\! \to \!\! 0 \text{ , где } f_k^*(x) \text{ стабилизированное решение интегрального уравнения.}$