0.1 R2 数学選択

- $\boxed{\mathbf{A}}$ $(1)R=\mathbb{Z}_{(p)}$ である.ただし $\mathbb{Z}_{(p)}$ は積閉集合 $S=\mathbb{Z}\setminus (p)$ による \mathbb{Z} の局所化である.したがって \mathbb{Q} の部分環となる.
- (2) イデアル $pR \subsetneq J$ をとる. $\frac{m}{n} \in J \setminus pR$, $\frac{m}{n} \notin R^{\times}$ が存在する. しかし $p \nmid m$ であるから $\frac{m}{n} \frac{n}{m} = 1$ となり, J = R となる. よって pR は極大イデアルである.
 - (3) 異なる極大イデアル J をもてば J-pR の元について (2) と同様にして単元であるとわかるので矛盾.
 - (3) で局所環であることを示すから R の単元全体に着目する. $\frac{m}{n} \in R^{\times}$ とする. ある $\frac{a}{b}$ が存在して $\frac{m}{n}\frac{a}{b}=1$ となる. よって $ma=nb\in S$ である. 逆に $ma\in S$ なる a が存在すれば $\frac{m}{n}\frac{an}{ma}=1$ となるから $\frac{m}{n}\in R^{\times}$ である. すなわち $R^{\times}=\left\{\frac{m}{n}\mid \exists \ a,ma\in S\right\}$ である.

 $R \setminus pR = \left\{ \frac{m}{n} \mid p \nmid m \right\} = R^{\times}$ であるから R は局所環で極大イデアルは pR である.

 $(4)\mathbb{Z}$ は UFD であるから原始多項式 x^2+1 の既約性は $\mathbb{Q}[x]$ での既約性と同値である.同様に $\mathbb{Z}_{(p)}$ も UFD でその商体は \mathbb{Q} であり,既約性が同値になる.

したがって x^2+1 は $\mathbb{Z}[x]$ 上既約であるから $\mathbb{Z}_{(p)}[x]=R[x]$ 上でも既約である.

 $(5)\varphi\colon R o R[x]/J$ を考えれば $\ker \varphi=R\cap J$ である。 $R/(R\cap J)=\mathrm{Im}(\varphi)\subset R[x]/J$ より整域であるから $R\cap J$ は素イデアルである。

 $i: \mathbb{Z} \to R$ について $i^{-1}(R \cap J) = (q)$ (qは素数か0) である。 $0 \neq q \neq p$ なら $i(q) \in R^{\times}$ となるから q = 0, p である。q = 0 なら $R \cap J = 0$ である。このとき $x^2 + 1 \in J$ より $f(x) \in J \setminus (x^2 + 1)$ なら $0 \neq ax + b \in J$ とできる。 $(ax + b)(ax - b) = a^2x^2 - b^2 \in J$ より $a^2 + b^2 \in J$ である。すなわち a = b = 0 である。よって J = I であるが I は極大イデアルでないから矛盾。

よって q = p である. すなわち $pR[x] \subset J$ である.

- B $(1)Q(\alpha^3)=0$ は明らか. P(X) は α の最小多項式である. $\alpha^3\in K$ なら最小多項式の次数が 3 以下となり矛盾. したがって $\alpha^3\notin K$ であるから Q(X) は既約である.
 - (2)(1) $\exists b \ [L:K] = 2 \ \text{cobs}$. $\exists c \ [F:K] = 6 \ \text{cobs}$ $\exists c \ [F:L] = 3 \ \text{cobs}$.
 - (3)L/K は完全体上の 2 次拡大であるから Galois 拡大である.
- (2) より α の L 上最小多項式の次数が 3 であるから $X^3-\alpha^3$ が L 上の最小多項式である. (最小多項式でなければ拡大次数が 2 以下となり矛盾する.)

その根は $\alpha, \omega \alpha, \omega^2 \alpha$ であり、全て F に含まれる.よって F/L は Galois 拡大である.

- - P(X) の根は $\alpha, \omega\alpha, \omega^2\alpha, \beta, \omega\beta, \omega^2\beta$ であるから全て F に含まれる. よって F/K は Galois 拡大である. $\sigma, \tau \in \operatorname{Gal}(F/K)$ について $\sigma(\alpha) = \omega\alpha, \tau(\alpha) = \beta$ とする.
- $\sigma \circ \tau(\alpha) = \sigma(\beta) = \sigma(c\alpha^{-1}) = c\omega^2\alpha^{-1}, \tau \circ \sigma(\alpha) = \tau(\omega\alpha) = \omega c\alpha^{-1}$ であるから $\sigma \circ \tau \neq \tau \circ \sigma$ である. よって非可換群.