Apellido, nombre	Padrón	Cant. de hojas	Nota

<u>IMPORTANTE PARA TODOS LOS EJERCICIOS</u>: Justifique todas las respuestas e indique claramente los sistemas de referencia utilizados. Las justificaciones se realizan por medio de ecuaciones (principios y definiciones). Resuelva los problemas en hojas separadas, escribiendo nombre y apellido en cada hoja y numerando las hojas que entrega. No escriba en lápiz.

Ejercicio 1: Un objeto de 10 kg inicialmente se encuentra en la posición $\overline{r_0}=(3m;-2m)$ y se mueve con una velocidad $\overline{V}=\left(5\frac{m}{s^4}t^3-3\frac{m}{s^2}t\right)\breve{t}+\left(2\frac{m}{s}-1\frac{m}{s^3}t^2\right)\breve{j}$

- a) Escribir la posición y la aceleración del objeto en función del tiempo.
- b) Para t₁=1s, calcular la velocidad y la aceleración del objeto en coordenadas intrínsecas.
- c) Escribir la fuerza en función del tiempo y determinar el trabajo de la fuerza resultante desde t_0 =0s hasta t_1 =1s.

Ejercicio 2: Una masa M_A está apoyada sobre otra masa M_B y ambas están vinculadas por sogas y poleas ideales. Sobre M_A se aplica una fuerza F, como indica la figura. Considerando que el rozamiento entre M_A y M_B es despreciable, mientras que el coeficiente de rozamiento dinámico entre M_B y la superficie es μ :

- a) Realizar el DCL de M_A y M_B respecto de un sistema de referencia inercial. Escribir las ecuaciones de movimiento (2° ley de Newton y relaciones de vínculo).
- b) Calcular la aceleración de cada una de las masas.
- c) Realizar el DCL de M_A y M_B respecto de un sistema de referencia fijo a la masa M_A .
- d) Calcular el trabajo de cada una de las fuerzas que actúan sobre M_{B} , cuando M_{A} se desplazó una distancia d.

- a) Calcular el trabajo de la fuerza de rozamiento en la pista horizontal.
- b) Si la fuerza que ejerce la superficie sobre el objeto en el punto más alto de la trayectoria es igual al doble de su peso, determinar la velocidad inicial $(\overline{V_0})$.
- c) Escribir la aceleración del objeto en el punto más alto de la pista.

