

Introduction to Simulation

Agent-Based Modelling and Simulation

Contents

Contents of the lecture

- Motivation
- Simple Examples
- Theoretical background
- Application examples

Motivation

Why do we need agent based simulation?

- Growing complexity in social-technical systems
- Distributed / agent based systems more frequent
- Interaction and self-organization → emergence
- Most natural populations are heterogeneous
- Individuals are adaptive and can learn
- **.** . . .
- e.g. energy market, economy, societal dynamics

Traditional methods fail to capture that adequately

Simple Examples

Game of Life

- Cellular automaton
- Each cell can be either alive or dead
- Next generation state depends on Moore-neighborhood

Rules

- 1. A dead cell with 3 live neighbors comes alive
- 2. A living cell with less than 2 live neighbors dies
- 3. A living cell with 2 or 3 live neighbors stays alive
- 4. A living cell with more than 3 live neighbors dies

Simple Examples

Flocking behavior of birds

- Continuous space and movement
- Birds adapt their flight pattern to other birds in their vicinity
- Results in complex, seemingly coordinated flight patterns → flocks

Rules

- Separation avoid crowding neighbors (short range repulsion)
- Alignment steer towards average heading of neighbors
- Cohesion steer towards average position of neighbors (long range attraction)

Theory

Elements of an agent based simulation model

- set of agents
- set of relationships
- environment

Agents in ABMS

Essential characteristics of an agent

- self-contained
- autonomous
- has a state
- interacts with other agents and/or the environment

Possible additional characteristics

- adaptive
- goal-directed
- heterogeneous

Agent interactions

An agent

- is connected to other agents (neighbors)
- has only local information

- interacts with some agents at some point in time NOT with all agents at any time
- interacts with its local environment
 NOT with any part of the environment

A topology describes who transfers information to whom

Note: a model may contain multiple topologies

Topologies & Neighborhoods

Discrete - Cellular Automaton

- At most one agent per cell
- GoL: cell=agent

Moore Neighborhood

Euclidean Neighborhood

Continuous - Euclidean Space

- Euclidean distance
- Continuous movement

Topologies & Neighborhoods

Network

- Static networks
- Dynamic networks evolve and can grow / shrink

GIS (Geographical Information System)

- Realistic / real landscape
- Agents move from patch to patch

Soup / Random Access

- Actual location does not apply / matter
- Connections form randomly

Environment

May provide information on

- agents location
- available resources

• model specifics: e.g. ground characteristic, network

capacities

Small scale academic models

- Create and research emergence
- Set of idealized assumptions

Large-scale decision support systems

- Answer policy questions
- Include real data
- Are validated and credible

Agent Based Computational Economics

- Classical assumptions: rational & homogenous agents maximize utility, long run equilibrium \rightarrow perfect markets
- ABMS makes more realistic assumptions possible

Perfect Imperfection - Agent Based Models (ABM) - Stuart Gordon Reid (2013)

Spread of Epidemics

Simulating SARS: Small-World Epidemiological Modeling and Public Health Policy Assessments (Huang, Sun, Hsieh, Lin 2004)

In-Store Consideration Set Store Shelf

Available Products

Applications

Consumer behavior

 Multiscale Agent-Based Consumer Market Modeling (North et.al. 2009)

Shopper

Store Preferences Product Preferences

Out-of-Store Consideration Set

Overview of the virtual market learning lab agents and agent relationships.

Human behavior in panic situations

 Die Simulation menschlichen Panikverhaltens, Ein Agentenbasierter Ansatz (Schneider 2011)

Crowd behavior

 Towards agent-based crowd simulation in airports using games technology (Szymanezyk, Dickinson, Duckett 2011)

Understanding ancient civilizations

Simulating Ancient Societies: Computer modeling is helping unravel the archeological mysteries of the American Southwest (Kohler, Gumeran, Reynolds 2005)

Understanding ancient civilizations

MayaSim: An agent-based model of the ancient Maya social-ecological system (Heckbert 2013)

Further examples

- Supply chains
- Adaptive immune system
- Threat of bio-warfare
- Military engagements

Advantages

Advantages of ABMS (over DES and SD)

- Can utilize insights from cognitive and social sciences to model agent behavior
- Can give insights into emergent phenomena in DES these have to be modeled explicitly
- Can model heterogeneous populations in SD these are homogenous
- Can model learning and adaption

Disadvantages

But there are pitfalls

- No common modeling approach
- No agreed upon rules for what an agent is and what not
- Not easy / possible to validate due to system complexity

Other Agent based Stuff

Optimization

- Ant optimization
- Particle swarm optimization methods

Swarm intelligence

Fleets of robots for exploration tasks

Computer Games

Games like SimCity, Sims etc.

. . .

Some Agent based Simulation Tools

NetLogo (used for this lectures examples)

- Freeware
- Specific for agent based systems
- Developed at CCL (The Center for Connected Learning and Computer-Based Modeling) Northwestern University, IL

Others

- AnyLogic 8.x
- Repast Recursive Porous Agent Simulation Toolkit

Learning Goals

Questions to test your knowledge:

- What are the elements of an agent based simulation?
- What are possible topologies?
- What elements are essential for an agent?