

5

Plant Kingdom

Classification Systems

Artificial Classification System:

- Given by Carolus Linnaeus.
- Based mainly on vegetative characters or on the androecium structure
- Separated the closely related species since they were based on a few characteristics.
- * Gave equal weightage to vegetative and sexual characteristics.

Natural Classification System:

- Given by George Bentham and Joseph Dalton Hooker.
- Based on natural affinities among the organisms.
- Consider both external and internal features.

Phylogenetic Classification System:

- Based on evolutionary relationships between the various organisms.
- Assumes that organisms belonging to the same taxa have a common ancestor.

Numerical Taxonomy

- Carried out using computers and based on all observable characteristics.
- Each character is given equal importance and at the same time hundreds of characters can be considered.

Cytotaxonomy

 Based on cytological information like chromosome number, structure, behaviour.

Chemotaxonomy

Uses the chemical constituents of the plant to resolve confusions.

Classification of Algae			
Features	Chlorophyceae	Phaeophyceae	Rhodophyceae
Common	Green algae	Brown algae	Red algae
name			
Pigment	Chl a, b	Chl a, c and	Chl a, d and
		fucoxanthin	<i>r</i> -phycoerythrin
Reserve	Starch	Laminarin,	Floridean
food		Mannitol	starch
Flagella	2-8, equal, apical	2, unequal,	Absent
		lateral	
Examples	Chlamydomonas,	Ectocarpus,	Polysiphonia,
	Volvox etc.	Sargassum etc.	Gracilaria etc.

Bryophytes

- * Commonly called as **amphibians** of plant kingdom.
- Includes Liverworts and mosses.
- Vascular tissues are absent.
- Lack true stem, leaves and roots.
- Main plant body is gametophyte. Sporophyte is dependent on gametophyte for nutrition.
- Plant body attached to substratum by unicellular or multicellular rhizoids.
- * Water is essential for fertilization.
- Sex organs are multicellular. Male-antheridium and female-archegonium.
- Fertilization produces zygote which develops into multicellular sporophyte.

Liverworts

- Grow usually in moist and shady habitats.
- Plant body is thalloid which is dorsiventral and closely appressed to the substrate.
- Leafy members have tiny leaf-like appendages in two rows on the stem-like structures.
- * Asexual reproduction through fragmentation.
- * Gemmae are green, multicellular asexual buds.
- Sporophyte is formed as a result of sexual reproduction.
- Sporophyte is differentiated into foot, seta and capsule.
- After meiosis, spores are produced within the capsule which germinate to form free-living gametophytes. E.g., Marchantia

Mosses

- Protonema is the first stage of gametophyte that develops directly from spore.
- Leafy stage is second stage develops from secondary protonema as lateral bud.
- Vegetative reproduction through fragmentation and budding in secondary protonema.
- * Sexual reproduction present.
- Have an elaborate mechanism of spore dispersal. E.g., Funaria, Polytrichum and Sphagnum.

Pteridophytes

- * Includes horsetails and ferns.
- First vascular plants without seeds.
- Main plant body is sporophyte and distinguishes into root, stem and leaves.
- * Reproduction is of vegetative, asexual and sexual type.
- Male gametes are flagellated.
- * Sporangia produce spores by meiosis in spore mother cells.
- * Spores germinate to give rise to inconspicuous, small but multicellular, free-living, mostly photosynthetic thalloid gametophytes called **prothallus**.
- * Requires water for fertilisation.
- Development of the zygotes into young embryos take place within the female gametophytes which represents is a precursor to the seed habit. E.g., Psilotum, Lycopodium, Selaginella etc.

Gymnosperms

- Vascular plants with naked seeds.
- * Redwood tree *Sequoia* is one of the tallest tree species.
- In Pinus roots have fungal association in the form of mycorrhiza.
- Coralloid roots are found in Cycas which are associated with N₂-fixing cyanobacteria.
- Male and female cones may be brone on same tree as in *Pinus* or in different tree as in *Cycas*.
- Male and the female gametophytes do not have an independent free-living existence.
- * Zygote is formed after fertilisation of pollen grain and ovule.
- Zygote develops into an embryo and the ovules into seeds. These seeds are naked.

Angiosperms

- In angiosperms, the seeds are enclosed in fruits, the pollen grains and ovules are developed in specialized structures called flowers.
- Stamen (male sex organ) consists of a filament and an anther and carpel (female sex organ) consists of a stigma, style and ovary containing ovules.
- Double fertlization occurs in angiosperm. One produces zygote and other forms primary endosperm nucleus (3n).
- Fertilized ovules ripen into seeds and ovaries into fruit.
- * Angiosperms are divided into two classes.

Dicots

- There usually have two cotyledons.
- * Flowers are generally pentamerous or tetramerous (floral parts in sets of 5 and 4 or their multiples).
- Leaves possess reticulate venation.

Monocots

- * The seeds contain one cotyledon.
- Flowers are usually trimerous (floral parts in sets of three or its multiples).
- Leaves possess parallel venation.

Plant Life Cycles & Alternation of Generations

Haplontic Life Cycle

- Sporophytic generation is represented only by the one-celled zygote.
- No free-living sporophytes.
- Meiosis in the zygote results in the formation of haploid spores.
- Haploid spores divide mitotically and form the gametophyte.
- Dominant, photosynthetic phase in such plants is the freeliving gametophyte.
- Many algae such as Volvox, Spirogyra and some species of Chlamydomonas represent this pattern.

Diplontic Life Cycle

- Diploid sporophyte is the dominant, photosynthetic, independent phase of the plant.
- Gametophytic phase is represented by the single to few-celled haploid gametophyte.
- * Fucus, all seed bearing, plants i.e., gymnosperms and angiosperms follow this pattern.

Haplo-diplontic Life Cycle

* Bryophytes and pteridophytes exhibit this pattern

Bryophytes

- Dominant, independent, photosynthetic, thalloid or erect phase is represented by a haploid gametophyte.
- * Sporophyte is short-lived, multicelluler and totally or partially dependent on the gametophyte for its anchorage and nutrition.

Pteridophytes

- Diploid sporophyte is represented by a dominant, independent, photosynthetic, vascular plant body.
- Gametophyte is multicellular, saprophytic/autotrophic, independent but short-lived.

