Todo list

konkreter prufen, zwecks singularitat	4
algebraische Topologie von Lück als Quelle? auch für die basics	4
noch bezeichnungen vergessen?	5
link zu diskreten diffformen	6
Quelle?	6
abstr.Simplex als kartenabbildung?	7
pastingmap?	7
beweis?	7
Quelle? vgl. http://de.wikipedia.org/wiki/Korkenzieherregel	8
quelle	10
formaler?	14
evtl. noch folgern mit beweis, dass alle benachbarten elem. dualsimplizes	
gleichorientiert sind	14
evtl. noch mit baryzentrische dualität vergleichen, s. hirani 2.6	14
noch mehr?	15
homologietheorie falls nötig, falls platz ist noch graphisches beispiel zum	
randoperator	20
whitney abbildung noch ansprechen? Das heißt Interpolation im allgemeinen	
oder nur speziell?	31

diplomarbeit

Ingo Nitschke

17. Juni 2014

Inhaltsverzeichnis

1	Einf	ührung	3
2	Disk	krete Mannigfaltigkeit	4
	2.1	Primär- und Dualgitter	4
		2.1.1 Simplizialkomplex	
			10
	2.2	-	15
	2.3		20
			22
		2.3.2 Beispiele	25
	2.4	Implizit gegebene Oberflächen	28
		2.4.1 Numerische Projektion	28
3	Disk	kretes Äußeres Kalkül (DEC)	30
	3.1	· · ·	30
	3.2	Äußere Ableitung	32
	3.3	Hodge-Operator	32
	3.4	Laplace-Operator	32
		3.4.1 Beispiel: Laplace-Gleichung	32
		3.4.2 Beispiel: Krümmung Teil 1: Gauß-Bonnet-Operator	32
		3.4.3 Beispiel: Krümmung Teil 2: Weingarten-Abbildung	32
		3.4.4 Beispiel: Krümmung Teil 3: Krümmungsvektor	32
	3.5	Lie-Ableitung und Jacobian	32
		3.5.1 Beispiel: Wirbelgleichung	32
4	Арр	endix	33
	4.1	Algorithmen	33
		4.1.1 Element-Knotenkräfte	33
	4.2		33
	4.3	Oberflächenbeispiele	34
		-	34
		4.3.2 Ellipsoid	34

1 Einführung

History: [Whi57] (1957)

2 Diskrete Mannigfaltigkeit

2.1 Primär- und Dualgitter

Zielsetzung. Bei vielen numerischen Methoden werden Gebiete über überabzählbaren Mengen auf denen Gleichungen "leben" diskretisiert. Ziel dabei ist es endlich viele Gleichungen zuerzeugen, die das ursprüngliche Problem approximativ lösen. Ein Beispiel für solch ein Vorgehen ist die FDM (Finite-Differenzen-Methode) im \mathbb{R}^n . Dort wird ein Gebiet $U \subseteq \mathbb{R}^n$ mit endlich vielen Rechtecken diskretisiert und es wird versucht eine Funktion zu finden, die jedem Knoten einen Wert zuweist und damit endlichdimensional beschrieben ist, so dass diese diskrete Funktion eine stetige Funktion auf U approximiert.

Das funktioniert beim DEC ähnlich. Die Objekte die es hier zu approximieren gilt sind allerdings Differentialformen und das Gebiet eine Mannigfaltigkeit welche durch Polyeder diskretsiert wird. Die diskreten Differentialformen sind dann auf den Knoten, Kanten, Flächen usw. als Integralwerte definiert. Wir werden uns hierbei auf Simplizes als spezielle Polyeder beschränken und die Menge der Simplizes so charakterisieren, dass wir eine algebraische Topologie bekommen. Somit wird eine algebraische Struktur erzeugt, die es einem ermöglicht in dieser Topologie "sinnvoll zu rechnen". Das heißt der große Unterschied zu anderen numerischen Verfahren ist, dass wir nicht auf einem Gitter sondern mit einem Gitter rechnen wollen. Aus diesem Grund müssen Anforderungen an die diskrete Struktur gestellt werden, die bestimmte Eigenschaften der Differentialformen auch wieder spiegeln. So bilden die Differentialformen auf einer Mannigfaltigkeit zusammen mit der äußeren Ableitung einen Kokettenkomplex den de-Rham-Kokomplex und mit ihm die de-Rham-Kohomologiegruppen. Kohomologiegruppen lassen sich mit Hilfe des Randoperators auch erzeugen, deshalb scheinen die Simplizialkomplexe als Triangulierung einer Mannigfaltigkeit ein geeigneter Kanditat für eine Gitterstruktur zu sein. Und das magische daran ist, wie wir später noch in Kapitel 3 sehen werden, dass es mit den Satz von de Rham einen Isomorphismus zwischen den de-Rham- und den simplizialen Kohomologiegruppen existiert und auch praktisch anwendbar ist.

2.1.1 Simplizialkomplex

Die Elemente des noch zu definierenden Simplizialkomplexes sind die Simplizes. Diese wollen wir hier erst einmal geometrisch als Teilmenge des \mathbb{R}^N einführen.

Definition 2.1.1. Ein p-Simplex ist die konvexe Hülle von p+1 geometrisch unabhängigen Punkten im \mathbb{R}^N , d.h.

$$\sigma^p := \left\{ x \in \mathbb{R}^N \middle| x = \sum_{i=0}^p \mu^i v_i \text{ wobei } \mu^i \ge 0 \text{ und } \sum_{i=0}^p \mu^i = 1 \right\}$$
 (2.1)

konkreter prüfen, zwecks singularität

algebraische
Topologie von
Lück
als
Quelle?
auch
für die

basics

Geometrisch unabhängig bedeutet dabei, dass die p Vektoren $v_1 - v_0, v_2 - v_0, \ldots, v_p - v_0$ linear unabhängig sind. Konkret werden wir je nach Kontext σ^0 Knoten oder Ecke, σ^1 Kante und σ^2 Dreieck oder Volumenelement nennen. Des Weiteren schreiben wir auch kurz $\sigma^p = v_0 v_1 \ldots v_p$ und sagen "Das Simplex σ^p wird von den Ecken $\{v_0, v_1, \ldots, v_p\}$ aufgespannt.".

noch
bezeichnungen
vergessen?

Bemerkung 2.1.2. Die obige Defintion eines Simplexes, hier als σ_{geo} geschrieben, nennt man auch geometrische Realisierung eines Simplexes. Denn es ist auch möglich ein Simplex als Abbildung vom Standard-Simplex

$$\Delta^p := \left\{ \left(\mu^0, \mu^1, \dots, \mu^p \right) \middle| \mu^i \ge 0 \text{ und } \sum_{i=0}^p \mu^i = 1 \right\} \subset \mathbb{R}^{p+1}$$
(2.2)

in einen Topologischen Raum zu definieren, im obigen Fall in den \mathbb{R}^N . Mit Hilfe der Ecken $v_i \in \mathbb{R}^N$ können wir die Abbildung festlegen durch

$$\sigma_{\text{sing}} = \sigma_{\text{sing}}^p \left(v_0, v_1, \dots, v_p \right) : \Delta^p \to \mathbb{R}^N : \left(\mu^0, \mu^1, \dots, \mu^p \right) \mapsto \sum_{i=0}^p \mu^i v_i \tag{2.3}$$

so dass $\sigma_{\rm sing}(\Delta^p) = \sigma_{\rm geo}^p$. Das Simplex $\sigma_{\rm sing}$ heißt singuläres p-Simplex (vgl. [Lü05]).

Von nun an ist mit einem Simplex σ immer die geometrische Realisierung nach Definition 2.1.1 gemeint solange nicht explizit auf etwas anderes hingewiesen wird.

Definition 2.1.3. Für $0 \le r < p$ definert sich eine Relation zwischen dem r-Simplex σ^r und dem p-Simplex $\sigma^p := v_0 v_1 \dots v_p$ durch

$$\sigma^r \prec \sigma^p : \Leftrightarrow \sigma^p \succ \sigma^r \tag{2.4}$$

$$: \Leftrightarrow \exists \{v_{i_0}, v_{i_1}, \dots, v_{i_r}\} \subset \{v_0, v_1, \dots, v_p\} : \sigma^r = v_{i_0} v_{i_1} \dots v_{i_r}$$
 (2.5)

und σ^r nennen wir Facette oder Seite von σ^p .

Damit bildet \prec beziehungsweise \succ eine strikte Ordnung auf der Menge aller (endlichen) Simplizes.

Definition 2.1.4. Ein Simplizialkomplex K über \mathbb{R}^N ist eine Menge von Simplizes mit folgenden zwei Regeln

- Jede Facette eines Simplexes aus K ist ebenfalls aus K.
- \bullet Der Schnitt zweier Simplizes aus K ist entweder eine Facette von beiden oder leer.

 $\dim(K) := \max \{ p \in \mathbb{N} | \sigma^p \in K \}$ heißt die Dimension von K.

Im Folgendem ist ein Simplizialkomplex immer endlich, das heißt es besteht nur aus einer endlichen Menge von Simplizes.

Definition 2.1.5. Die Vereinigung aller Simplizes eines Simplizialkomplexes über \mathbb{R}^N , das heißt

$$|K| := \bigcup_{\sigma \in K} \sigma \subset \mathbb{R}^N, \tag{2.6}$$

ist der zugrundeliegende (topologische) Raum oder auch Polytop. Die Topologie von |K| ist dann gerade die induzierte Teilraumtopologie des \mathbb{R}^N .

Meistens sieht es aber so aus, dass wir ein Raum haben und ein Simplizialkomplex suchen der diesen beschriebt. Dieses führt uns zu folgender Definition.

Definition 2.1.6. Ein Simplizialkomplex L heißt (simpliziale) Triangulation von $V \subset \mathbb{R}^N$, wenn |L| = V gilt. Existiert eine Triangulation von V, dann heißt V triangulierbar.

Bisher kann solch ein Simplizialkomplex noch sehr viele Teilräume des \mathbb{R}^N beschreiben, die für diese Arbeit nicht von Belang sind. Wir wollen deshalb die Menge der Simplizialkomplexe etwas einschränken, um uns langsam der Beschreibung von (Hyper-)Oberflächen zu nähern.

Definition 2.1.7. Ein Simplizialkomplex K heißt mannigfaltigartig, wenn das Polytop |K| eine C^0 -Mannigfaltigkeit ist.

Da wir uns später mit den Spezialfall von Oberflächen im \mathbb{R}^3 beschäftigen möchten, seien hier schon mal ein paar Bemerkungen dazu.

Bemerkung 2.1.8. Sei K ein mannigfaltigartiger Simplizialkomplex im \mathbb{R}^3 mit $\dim(K) = 2$.

- Falls |K| nicht flach ist, dann ist das Polytop |K| global nicht differenzierbar.
- Falls |K| zudem eine geschlossene Mannigfaltigkeit ist, dann ist |K| ein Polyeder.

Der zugrundeliegende Raum eines Simplizialkomplexes kann im Allgemeinen nicht eine beliebige C^{∞} -Mannigfalltigkeit sein. Jedoch kann ein Simplizialkomplex solch eine Mannigfalltigkeit approximieren, d.h.

Definition 2.1.9. Sei K ein mannigfaltigartiger Simplizialkomplex und M eine C^{∞} -Mannigfaltigkeit, dann

$$K \sim M : \Leftrightarrow \forall \sigma^0 \in K : \sigma^0 \in M$$
. (2.7)

Das heißt K approximiert M genau dann, wenn alle Ecken von K auch auf M liegen.

Bemerkung 2.1.10. Wenn $K \sim M$ gilt, dann würden wir für die Übertragung von skalarwertigen Informationen von der Mannigfaltigkeit M auf den Simplizialkomplex K auf den Ecken nichts falsch machen. Wie sieht es aber mit höherwertigen Informationen aus, wie zum Beispiel Vektorfelder oder Differentialformen höheren Grades als 0? Für 2 dimensionale Mannigfaltigkeiten bedeutet das, dass 1-Formen auf Kanten und 2-Formen auf den Volumenformen ausgewertet werden, wie wir später noch sehen werden. Kanten und Dreickflächen liegen aber nur (linear) approximiert im Simplizialkomplex vor, genauso wie auch die Metrik. Dennoch brauchen wir für spätere Argumentationen ein simpliziales Konstrukt bei dem wir diese Fehler nicht machen. Dieses formale Brücke zwischen der Mannigfaltigkeit und dem Simplizialkomplex nennen wir abstrakter Simplizialkomplex (über der Mannigfaltigkeit M). Er lässt sich genauso einführen wie oben für den Simplizialkomplex über dem \mathbb{R}^N nur dass die p-Simplizes für p > 0 eine Krümmung besitzen, die gleiche wie M eingeschränkt auf das jeweilige Simplex. Das heißt, dass

link zu diskreten diffformen

Quelle?

der zugrundeliegende Raum des abstrakten Simplexes gleich der Mannigfaltig M ist. Folgendes kommutative Diagramm, soll das für ein einzelnes Simplex verdeutlichen.

$$\mathbb{R}^{p+1} \supset \Delta^p \xrightarrow{\sigma_{\text{sing}}} \sigma^p \subset \mathbb{R}^N \tag{2.8}$$

$$\sigma_{\text{m}}^p \subset M$$

Die Abbildungen $\sigma_{\rm sing}$ und $\hat{\sigma}_{\rm sing}$ sind singuläre Simplexe, wie in Bemerkung 2.1.2 definiert. σ^p und σ^p_M sind deren geometrische Realisierungen im \mathbb{R}^N beziehungsweise auf M und es gelte $\sigma^p \sim \sigma^p_M$. π_σ ist ein Homöomorphismus, das heißt bijektiv, stetig und π_σ^{-1} ist ebenfalls stetig. Whitney [Whi57] forderte noch weitere Bedingungen an diese Abbildung. Für uns soll die Homöomorphieeigenschaft allerdings reichen, da wir sie nur formal nutzen werden und nie explizit mit ihr rechnen wollen. Prinzipiell genügt es, wenn wir uns die Abbildung π_σ als "Ankleben" des Simplexes σ auf die Mannigfaltigkeit vorstellen. Des Weiteren soll $\pi := \pi_{\bullet}^{-1}$ homomorph auf dem ganzem Simplizialkomplex bezüglich der Relation \prec sein, also ist π ein Isormophismus zwischen dem Simplizialkomplex K und einem abstrakten Simplizialkomplex L mit |L| = M und $K^{(0)} = L^{(0)}$. Wobei

abstr.Simplex als kartenabbildung?

pastingmap?

$$K^{(p)} := \{ \sigma^p \in K \} \tag{2.9}$$

das p-Skelett von K ist. Zu dem ist L somit eindeutig bestimmt falls π bekannt. Wenn solch eine Triangulation L von M exzistiert, dann nennen wir auch K eine (lineare) Triangulation von M.

beweis?

Für den DEC ist der Begriff der Orientierung von essenzieller Bedeutung. Zum einen, weil die Orientierung der Simplizes über das Vorzeichen eines Berechnungsschemata entscheiden kann und zum anderen wird eine weitere notwendige Eigenschaft an den Simplizialkomplex, dessen Polytop und die zu approximierende Mannigfaltigkeit gestellt, die Orientierbarkeit.

Wie wir in Bemerkung 2.1.2 sehen hängt die geometrische Realisierung σ eines singulären Simplexes σ_{sing} , also dessen Bild, nicht von der gewählten Reihenfolge der Ecken v_i ab. Formal können wir aber diesen für σ syntaktischen Unterschied auch semantisch nutzen und schreiben $\sigma = (v_0, v_1, \ldots, v_p)$ mit runden Klammern um die Reihenfolge zu würdigen. Somit ergeben sich für einen Satz Ecken p! Simplizes

$$\Sigma^p := \left\{ \left(v_{\tau(0)}, v_{\tau(1)}, \dots, v_{\tau(p)} \right) \middle| \tau \in S_p \text{ Permutation} \right\}, \tag{2.10}$$

die geometrisch das gleiche Simplex beschreiben. Auf Σ^p lässt sich nun eine Äquivalenzrelation $\Theta \subseteq \Sigma^p \times \Sigma^p$ definieren:

Definition 2.1.11. Es sei $\sigma_1 = \tau(\sigma_2) \in \Sigma^p$, dann gelte

$$\sigma_1 \Theta \sigma_2 : \Leftrightarrow \tau \in A_n \text{ gerade Permutation},$$
 (2.11)

¹d.h. $\pi|_{\sigma} = \pi_{\sigma}$

wobei $\tau(\sigma) := (v_{\tau(0)}, v_{\tau(1)}, \dots, v_{\tau(p)})$ für $\sigma = (v_0, v_1, \dots, v_p)$.

Ein Element des Faktorraumes Σ^p/Θ heißt orientiertes Simplex und wir schreiben dafür

$$\sigma = [v_0, v_1, \dots, v_p] \tag{2.12}$$

Dass hier das orientierte Simplex ebenfalls als σ geschrieben wird, soll uns nicht stören, da dieses auch immer das entsprechende geometrische Simplex impliziert. Oft werden wir der einfachheithalber nur Simplex sagen, wenn aus dem Kontext klar ist, das dieses Simplex orientiert ist. Für p>0 ergeben sich somit genau 2 Äquivalenzklassen und somit Orientierungen pro Simplex. Wir wollen die Orientierung eineindeutig mit

$$\operatorname{sgn}: \Sigma^p/\Theta \to \{-1, +1\} \tag{2.13}$$

beschreiben. Falls p=0, das heißt es liegt eine Ecke vor und folglich nur eine Orientierungsmöglichkeit, dann wird die Orientierung festgelegt, wenn möglich durch die induzierte Orientierung.

Definition 2.1.12. Es sei $\sigma^p = [v_0, v_1, \dots, v_p] \in \Sigma^p/\Theta$ mit $p \ge 1$, dann definiert sich eine induzierte Orientierung für die (p-1)-Facetten von σ^p durch

$$\operatorname{sgn}([v_0, v_1, \dots, \hat{v_i}, \dots, v_p]) := \begin{cases} \operatorname{sgn}(\sigma^p) & \text{falls } i \text{ gerade,} \\ -\operatorname{sgn}(\sigma^p) & \text{falls } i \text{ ungerade,} \end{cases}$$
 (2.14)

wobei $[v_0, v_1, \dots, \hat{v_i}, \dots, v_p]$ bedeutet, dass die *i*-te Ecke weggelassen wird.

Beispiel 2.1.13. Anhand folgendes Beispieles sehen wir, dass diese Definition intuitiver ist als es vielleicht auf den ersten Blick anmuten mag. Gegeben sei ein 2-Simplex $\sigma := [v_0, v_1, v_2]$, also ein Dreieck, dessen Orientierung auf +1 festgelegt wird. Daraus leiten sich die Orientierungen der Kanten ab. Durch Transposition der Kante $[v_0, v_2]$, und damit der Wechsel zur anderen Äquivalenzklasse, kann zudem eine einheitliche Orintierung aller Kanten erreicht werden.

$$\operatorname{sgn}([v_{0}, v_{1}, v_{2}]) := +1$$

$$\operatorname{sgn}([v_{0}, v_{1}]) = +1$$

$$\operatorname{sgn}([v_{0}, v_{2}]) = -1$$

$$\operatorname{sgn}([v_{1}, v_{2}]) = +1$$

$$\operatorname{sgn}([v_{2}, v_{0}]) = +1$$

Geometrisch wird die Orientierung oft durch Pfeile visualisiert. In diesem Beispiel ein gebogener Pfeil für die Fläche. Gegen den Uhrzeigersinn bedeutet dabei eine Orientierung von +1, das ist auch gleichbedeutend damit, dass die Rechte-Hand-Regel gilt und die Fläche per Definition eine äußere Normale besitzt. Sollen nun alle Kanten die gleiche Orientierung wie die Fläche besitzen, so müssen die Pfeile der Kanten ebenfalls gegen den Uhrzeiger abgetragen werden. Von nun an werden wir Pfeile ohne Beschriftung immer als positiv, also mit Orientierung +1, anerkennen.

Quelle?
vgl.
http:
//de.
wikipedia.
org/
wiki/
Korkenzieher

Es sei nun ein weiteres Simplex $\tilde{\sigma} := [v_1, v_3, v_2]$ "angelegt", so dass beide Simplizes sich die Kante $[v_1, v_2]$ teilen, und die Orientierung von $\tilde{\sigma}$ auf +1 gesetzt wird. Dabei müssen die von den Kanten aufgespannten (Unter-)Vektorräume (z.B. des \mathbb{R}^3) nicht notwendigerweise gleich sein. Dennoch liegt das Gefühl nahe zusagen, dass die beiden 2-Simplexe irgendwie "gleichorientiert" sind. Des Weiteren fällt auf, dass die induzierte Orientierung der gemeinsamen Kante für beide Dreiecke entgegengesetzt ist. Darauf wollen wir im allgemeineneren näher eingehen.

Definition 2.1.14. Es seien zwei orientierte p-Simplizes σ_1^p und σ_2^p gegeben mit $1 \le p \le n$, die sich genau eine (p-1)-Facette teilen, das heißt es existiert genau ein σ^{p-1} mit $\sigma^{p-1} \prec \sigma_1^p$ und $\sigma^{p-1} \prec \sigma_2^p$.

 σ_1^p und σ_2^p heißen gleichorientiert, falls

$$\operatorname{sgn}_{\sigma_1^p}(\sigma^{p-1}) = -\operatorname{sgn}_{\sigma_2^p}(\sigma^{p-1}), \qquad (2.16)$$

also die von den beiden Simplizes induzierten Orientierungen der gemeinsamen Facette umgleich sind. Anderfalls heißen σ_1^p und σ_2^p verschiedenorientiert.

Bemerkung 2.1.15. Für Simplizialkomplexe der Dimension 2 im \mathbb{R}^3 wollen wir nun festlegen, dass die 2-Simplizes die Orientierung +1 besitzen genau dann, wenn dessen Ecken geometrisch gegen den Uhrzeigersinn gezählt werden, falls wir von "oben" drauf schauen, das heißt in Richtung der inneren Normale. Da wir uns später ausschließlich mit unberandeten orientierbaren Oberflächen beschäftigen möchten, ist auch intuitiv immer klar, was "innen" und was "außen" bezeichnet. In Graphiken kennzeichnen wir die Orientierung mit einem gebogenen Pfeil ebenfalls im mathematisch positiven Drehsinn, wie im Beispiel 2.1.13.

Folgerung 2.1.16. Im \mathbb{R}^3 ist ein Paar von 2-Simplizes, die sich eine Kante teilen, genau dann gleichorientiert, wenn die Ecken beider gegen den Uhrzeigersinn gezählt werden.

Beweis. Es seien 2 Simplizes gegeben mit $\sigma_1 := vv_1v_2$ und $\sigma_2 := wv_1v_2$. Da für 3-elementige Mengen jede zyklische Permutation eine gerade Permutation ist, lässt auch jede zyklische Vertauschung der Ecken das jeweilige Simplex in der gleichen Äquivalenzklasse bleiben. Sind die Ecken im mathematisch positiven Drehsinn gezählt, so ist es deshalb auch keine Einschränkung der Allgemeinheit, wenn

$$\sigma_1 = [v, v_1, v_2] \qquad \qquad \sigma_2 = [w, v_2, v_1] \qquad (2.17)$$

$$\Leftrightarrow \qquad \operatorname{sgn}_{\sigma_1}([v_1, v_2]) = +1 \qquad \qquad \operatorname{sgn}_{\sigma_2}([v_2, v_1]) = +1 \qquad (2.18)$$

$$\Leftrightarrow \operatorname{sgn}_{\sigma_1}([v_1, v_2]) = -\operatorname{sgn}_{\sigma_2}([v_1, v_2]) \tag{2.19}$$

d.h. σ_1 und σ_2 sind gleichorientiert.

Definition 2.1.17. Ein mannigfaltigartiger Simplizialkomplex der Dimension n heißt orientiert, wenn alle paarweise benachbarten n-Simplizes gleichorientiert sind. Solch einen orientierten mannigfaltigartigen Simplizialkomplex nennen wir auch kurz Primärgitter.

Satz 2.1.18. Ist eine triangulierbare Mannigfaltigkeit M orientiert, so sind auch alle linearen Triangulationen $K \sim M$ orientiert.

Beweis. Sei L der zugehörige abstrakte Simplizialkomplex, d.h. |L| = M, $L^{(0)} = K^{(0)}$ und $(L, \prec) \cong (K, \prec)$. Es reicht zu zeigen, dass L orientiert ist, da die Orientierung eines abstrakten n-Simplexes auf das zugehörige n-Simplex aus K einfach übertragen werden kann, et vice versa. Für jedes einzelne abstrakte n-Simplex $\sigma^n \in L$ kann die Orientierung im Inneren der Untermannigfaltig $|\sigma^n| \subset M$ übernommen werden, da sie dort konstant ist. Betrachten wir die gemeinsame Kante $\sigma^{(n-1)} \in L$ eines benachbarten abstrakten n-Simplexes $\tilde{\sigma}^n \in L$, dann gilt, dass die Orientierung in einer Umgebeung $U_{\varepsilon}(p) \subset M$ konstant ist, mit p im Inneren von $|\sigma^{(n-1)}| \subset M$ (vgl. [Jän05]). Folglich ist die Orientierung auf beiden seiten der Kante gleich und damit sind beide n-Simplizes gleichorientiert. Da σ^n und $\tilde{\sigma}^n$ beliebig benachbarte Simplizes sind, ist L orientiert.

Damit ist es uns nun möglich eine Mannigfaltigkeit mit obigen Vorraussetzungen mittels Primärgitter linear zu triangulieren.

Bemerkung 2.1.19 (zur Implementierung). Da später alle computergestützten Rechnungen mit AMDiS gemacht werden ist es wichtig, dass die dortigen Gitter die Anforderungen eines Primärgitters erfüllen. Ob ein mannigfaltigartiger Simplizialkomplex als Eingangsgröße vorliegt, liegt in der Verantwotung des Benutzers. Die Orientiertheit eines 2D-Gitters, also für Simplizialkomplexe der Dimension 2, ist mit Folgerung 2.1.16 automatisch gegeben, da in AMDiS die Ecken eines Dreieckelemets immer gegen den Uhrzeigersinn aufgetragen werden, siehe [Pra14].

2.1.2 Umkreismittelpunktunterteilung

Eine sehr wichtige Zutat für das DEC ist das Dualgitter. Es erlaubt uns später die Definition des Sternoperators \star , das geometrische Analogon zum Hodge-Stern-Operators *. Liegt der Simplizialkomplex zum Beispiel als Delaunaytriangulierung vor, so ist der duale Zellkomplex gerade das zugehörige Voronoidiagramm. Dieser ist im allgemeinen natürlich kein Simplizialkomplex. Des Weiteren teilt im nicht-flachen Fall, das Voronoidiagramm und die Delaunaytriangulierung nicht einmal den selben zugrunde liegenden Raum. Unter gewissen Vorraussetzungen ist es aber möglich ein Primärgitter so simplizial zuverfeinern um so ein Gitter zubekommen welches wieder die Primärgittereigenschaften erfüllt und zudem Gruppierungen von n-Simplizes enthalten, die den zugehörigen Voronoizellen ähneln, als eine Art "Voronoizellen mit Knicken".

Definition 2.1.20. Der Umkreismittelpunkt $c(\sigma^p)$ eines Simplexes $\sigma^p := v_0 v_1 \dots v_p$ ist der Mittelpunkt der (p-1)-Sphäre $\mathbb{S}_r^{p-1}(c(\sigma^p))$, mit Radius $r \in [0, \infty)$, die durch

$$\forall i = 0, 1, \dots, p : \|v_i - c(\sigma^p)\|^2 = r^2$$
 (2.20)

quelle

bestimmt ist. Speziell für p=0 definieren wir formal

$$S^{-1}(c(\sigma^0)) := \{c(\sigma^0)\}$$
 (2.21)

und damit ist

$$c(\sigma^0) = \sigma^0. (2.22)$$

Bemerkung 2.1.21. Obige Definition, stellt ein Spezialfall des Kleinste-Sphäre-Problems dar. Die Ecken von σ^p sind nach Vorraussetzung geometrisch linear unabhängig, demnach ist nach [EH72] die Sphäre $\mathbb{S}_r^{p-1}(c(\sigma^p))$ existent und eindeutig bestimmt. Der Umkreismittelpunkt $c(\sigma^p)$ nach Definition 2.1.20 ist somit wohldefiniert.

Bemerkung 2.1.22 (zur Implementierung). Im \mathbb{R}^3 ist die Berechnung der Umkreismittelpunkte für 0- und 1-Simplizes einfach:

$$c(v_0) = v_0 \quad \text{und} \tag{2.23}$$

$$c(v_0v_1) = \frac{1}{2}(v_0 + v_1). (2.24)$$

Für ein 2-Simplex nutzen wir die Formel

$$c(v_{0}v_{1}v_{2}) = v_{0} + a_{1}(v_{0} - v_{1}) + a_{2}(v_{0} - v_{2}) \quad \text{mit}$$

$$a_{1} = \frac{\|v_{0} - v_{2}\|^{2}}{2D^{2}}(v_{1} - v_{0}) \cdot (v_{2} - v_{1}) \quad \text{und}$$

$$a_{2} = \frac{\|v_{0} - v_{1}\|^{2}}{2D^{2}}(v_{0} - v_{2}) \cdot (v_{2} - v_{1}) .$$

$$(2.25)$$

D ist die Determinante des Simplexes, also dessen doppeltes Volumen. Einsetzen in (2.20) für z.B. $r = ||v_0 - c(v_0v_1v_2)||$ und nachrechnen ergibt die Korrektheit der Formel.

Definition 2.1.23. Leigt der Umkreismittelpunkt eines Simplexes σ^p im Inneren dieses Simplexes, das heißt $c(\sigma^p) \in \text{Int}(\sigma^p)$, dann nennen wir σ^p ein wohlzentriertes Simplex.

Sind alle $\sigma \in K$ wohlzentriert, dann heißt K ein wohlzentrierter Simplizialkomplex.

1-Simplizes sind natürlich immer wohlzentriert. Für 0-Simplizes legen wir hier eine topologische Besonderheit fest: $\operatorname{Int}(\sigma^0) := \sigma^0$. Folglich soll die Ecke σ^0 eine offene Menge sein (mit leerem Rand). Es sei hier explizit darauf hingewiesen, dass das einen deutlichen Unterschied zu der Topologie des Polytopes eines Simplizialkomplexes darstellt, wo einzelne Punkte keine offenen Mengen sind. Bei 2-Simplizes lassen sich verschieden äquivalente Kriterien für die Wohlzentriertheit finden. Die populärsten sind zum Beispiel:

- Alle Innenwinkel sind kleiner als $\frac{\pi}{2}$, oder
- bilden wir einen Kreis in der aufgespannten Ebene des Dreieckes mit zwei Ecken auf dem Rand und Mittelpunkt auf der sich ergebenen Kante beider Ecken, dann liegt die dritte Ecke außerhalb dieses Kreises, das heißt

$$\forall \sigma^1 := \left[v_{\tau(0)}, v_{\tau(1)} \right] \prec \left[v_0, v_1, v_2 \right] : \quad \| v_{\tau(2)} - c(\sigma^1) \| > \| v_{\tau(0)} - c(\sigma^1) \| .$$
(2.26)

Wie dem auch sei, mit der Wohlzentriertheit eines Simplizialkomplexes ist es nun möglich eine Verfeinerung durchzuführen, die alle Umkreismittelpunkte als neue Knoten enthällt und zudem wieder ein Simplizialkomplex ist.

Definition 2.1.24. Für einen wohlzentrierten Simplizialkomplex K der Dimension n, ist

$$\operatorname{csd} K := \{c(\sigma_0) \dots c(\sigma_k) | \sigma_i \in K \text{ für } 0 \le i \le k \text{ und } \sigma_0 \prec \dots \prec \sigma_k \text{ für } 0 \le k < n\}$$
(2.27)

die Umkreismittelpunktunterteilung von K. (Dabei ist zu beachten, dass die Indizierung unten vorgenommen wurde und nicht mit der Dimension der Simplizes verwechselt werden sollte. Gefordert wird, dass die Dimension der Simplizes von links nach rechts streng monoton steigend sein soll. Vgl. dazu das erklärende Beispiel in Abbildung 2.1.)

Bemerkung 2.1.25. Da alle n-Simplizes des $\operatorname{csd} K$ jeweils Teilmengen eines n-Simplexes aus K sind, ändert sich am zugrundeliegenden Raum nichts, das heißt $|\operatorname{csd} K| = |K|$. Jedoch approximiert $\operatorname{csd} K$ nicht mehr die Mannigfaltigkeit M im Sinne von Definition 2.1.9, weil neu enstandene Knoten im Algemeinen nicht auf der Mannigfaltigkeit liegen.

Wie wir im vorhergehenden Absatz gesehen haben, spielt die Orientierung eines Simplizialkomplexes eine große Rolle. Die Frage ist nur, wie lässt sich auf sinnvoller Art und Weise eine Orientierung von dem ausgehenden Simplizialkomplex induzieren, konkret, wenn wir von einem Primärgitter ausgehen. Für Volumenelemente ist intuitiv klar, was sinnvoll ist, nämlich, dass die Orientierung der n-Simplizes des $\operatorname{csd} K$, welche die n-Simplizes aus K verfeinern, übernommen werden kann. Schließlich ist das Polytop beider Komplexe gleich und sollte als n-Mannigfaltigkeit auch ihre Orientierung beibehalten. Allgemein definieren wir

Definition 2.1.26. Es sei $\hat{\sigma}^p \in \operatorname{csd} K$, $\sigma^p \in K$ mit $\hat{\sigma}^p \subseteq \sigma^p$, dann ist durch

$$\operatorname{sgn}_{\sigma^p}(\hat{\sigma}^p) := \operatorname{sgn}(\sigma^p) \tag{2.28}$$

die von $\sigma^p \in K$ (dual) induzierte Orientierung gegeben.

Definition 2.1.27. Es sei csdK die Umkreismittelpunktunterteilung eines wohlzentrierten Primärgitters K versehen mit einer Orientierung. Ist die Orientierung der n-Simplizes aus csdK von den n-Simplizes aus K induziert, dann nennen wir csdK das Dualgitter (von K).

Dass sich überhaupt erst eine Orientierung für die Volumenelemente nach Definition 2.1.26 induzieren lässt, also die dortige Bedingung $\hat{\sigma}^n \subseteq \sigma^n$ erfüllt ist, erhalten wir durch folgendes Lemma für p = n und der Tatsache, dass

$$(\operatorname{csd}K)^{(n)} = \left\{ c\left(\sigma^{0}\right) c\left(\sigma^{1}\right) \dots c\left(\sigma^{n}\right) \middle| \sigma^{i} \in K \text{ für } 0 \le i \le n \right\}. \tag{2.29}$$

Lemma 2.1.28. Ist K ein wohlzentrierter Simplizialkomplex, dann gilt für $\sigma^p \in K$

$$c(\sigma^0) c(\sigma^1) \dots c(\sigma^p) \subseteq \sigma^p,$$
 (2.30)

Beweis. Es sei $x \in c(\sigma^0) c(\sigma^1) \dots c(\sigma^p)$ und $\sigma^p = v_0 v_1 \dots v_p$, dann

$$x = \sum_{i=0}^{p} \tilde{\mu}^{i} c(\sigma^{i}) \quad \text{mit} \quad \sum_{i=0}^{p} \tilde{\mu}^{i} = 1 \quad \text{und} \quad \tilde{\mu}^{i} \ge 0$$
 (2.31)

$$=\sum_{i=0}^p \tilde{\mu}^i \sum_{k=0}^i \mu_i^k v_k \quad \text{, da } c(\sigma^i) \in \sigma^i \text{, wobei} \quad \sum_{k=0}^i \mu_i^k = 1 \quad \text{und} \quad \mu_i^k \geq 0 \quad (2.32)$$

$$= \sum_{k=0}^{p} \left(\sum_{i=k}^{p} \tilde{\mu}^{i} \mu_{i}^{k} \right) v_{k} =: \sum_{k=0}^{p} \lambda^{k} v_{k} . \tag{2.33}$$

Bleibt noch zu zeigen, dass (2.33) die Bedingung einer Konvexkombination der Ecken von σ^p erfüllt:

$$\sum_{k=0}^{p} \lambda^{k} = \sum_{k=0}^{p} \sum_{i=k}^{p} \tilde{\mu}^{i} \mu_{i}^{k} = \sum_{i=0}^{p} \tilde{\mu}^{i} \sum_{k=0}^{i} \mu_{i}^{k} = \sum_{i=0}^{p} \tilde{\mu}^{i} = 1, \qquad (2.34)$$

zudem ist $\lambda^k = \sum_{i=k}^p \tilde{\mu}^i \mu_i^k \ge 0$, da alle Summanden nicht negativ sind, also ist $x \in \sigma^p$.

Somit ist Definition 2.1.27 sinnvoll und das Dualgitter existiert unter den getroffenen Voraussetzungen.

Nun wissen wir welches das zum wohlzentrierten Primärgitter duale Gitter sein soll. Was ist aber konkret dual zu einen Element, also ein einzelnes Simplex, aus dem Primärgitter? Betrachten wir eine 2D Delaunaytriangulierung und das dazugehörige Voronoidiagramm, dann ist die Dualitätszugehörigkeit geometrisch klar. Ecken sind dual zu den Voroinoizellen, Kanten zu den Kanten, der Zelle und Dreiecke zu den Ecken, der Zelle. All diese, im allgemeinen Zellen, lassen sich nun auch innerhalb des $\operatorname{csd} K$ als Vereinigungen von Simplexen darstellen. In [Hir03] und [Mun84] werden die Dualzellen als offene Zellen eingeführt. Das wollen wir hier nicht machen, da es für diese Arbeit nicht von nöten ist und weitere technische Kompliziertheiten beinhalten würde.

Definition 2.1.29. Es sei K ein wohlzentriertes Primärgitter, dann definieren wir die Dualzelle von $\sigma^p \in K$ durch

$$D(\sigma^p) := \bigcup_{\sigma^p \prec \sigma^{p+1} \prec \dots \prec \sigma^n} c(\sigma^p) c(\sigma^{p+1}) \dots c(\sigma^n).$$
 (2.35)

Wobei die Simplizes $c(\sigma^p)c(\sigma^{p+1})\ldots c(\sigma^n) \in \operatorname{csd} K$ die (elementaren) Dualsimplizes von σ^p sind.

Auch hier lässt sich eine Orientierung für die elementaren Dualsimplizes induzieren.

Definition 2.1.30. Es sei K ein wohlzentriertes Primärgitter, dann induziert $\sigma^p \in K$ eine Orientierung für $[c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n)] \in \operatorname{csd} K$ durch

$$\operatorname{sgn}_{\sigma^{p}}\left(\left[c(\sigma^{p}), c(\sigma^{p+1}), \dots, c(\sigma^{n})\right]\right) := \operatorname{sgn}_{\sigma^{p}}\left(\left[c(\sigma^{0}), c(\sigma^{1}), \dots, c(\sigma^{p})\right]\right) \\ \cdot \operatorname{sgn}_{\sigma^{n}}\left(\left[c(\sigma^{0}), c(\sigma^{1}), \dots, c(\sigma^{n})\right]\right)$$

$$(2.36)$$

für beliebig gewählte $\sigma^0 \prec \sigma^1 \prec \ldots \prec \sigma^p$, wobei $\operatorname{sgn}_{\bullet}(\bullet)$ die induzierten Orientierungen aus Definition 2.1.12 sind.

Abbildung 2.1: Umkreismittelpunktunterteilung eines Dreieckelements $v_0v_1v_2$ mit dessen Kanten und Ecken, wobei $c_{v_1...v_p} := c(v_1...v_p)$

Abbildung 2.2: Wie wir sehen ist $\operatorname{sgn}_{[v_0,v_1]}([c_{01},c_{012}]) = +1$, dabei spielt es keine Rolle, ob wir $v_0 \prec [v_0,v_1]$ oder $v_1 \prec [v_0,v_1]$ für die Berechnung hinzuziehen.

Definition 2.1.30 ist wohldefiniert, das heißt unabhängig von den gewählten $\sigma^i \prec \sigma^p$, denn würden wir ein σ^i durch ein $\tilde{\sigma}^i \prec \sigma^p$ austauschen und sich dabei die Orientierung für das resultierende $[c(\sigma^0), \ldots, c(\tilde{\sigma}^i), \ldots, c(\sigma^p)]$ ändern, dann auch bei $[c(\sigma^0), \ldots, c(\tilde{\sigma}^i), \ldots, c(\sigma^n)]$. Induktiv gilt dieses dann auch für alle möglichen mehrmaligen Austauschungen.

formaler

In Abbildung 2.2 ist beispielhaft die Berechnung der induzierten Orientierung für eine elementare Dualkante in einem Dreieckelement dargestellt.

evtl. noch folgern mit beweis, dass alle benachbarten elem. dualsimplizes gleichorientiert sind

Fazit. Damit wäre nun das geometrische Fundament für ein DEC gelegt, welches für diese Arbeit hier vollkommen ausreichend ist. Wenn wir genau hinschauen, dann ist zu bemerken, dass nicht alle Simplizes des Dualgitters vom Primärgitter nach unseren Definitionen eine induzierte Orientierung erhalten können. Wohl aber für eine Teilmenge des csdK, mehr als diese Teilmenge wird auch für die numerischen Schematas nicht von nöten sein, wie wir noch sehen werden.

evtl. noch mit baryzentrische dualität vergleichen, s. hirani 2.6

Leider ist gerade die Wohlzentriertheit eine problematische Bedingung für zulässige Gitter. Zum Beispiel in der FEM gibt es diese Anforderung nicht, obgleich wohlzentrierte Gitter die numerischen Eigenschaften sicherlich verbessern würden. Wie dem auch sei, in 2.3 wird ein (ingeneursmäßiger) Ansatz geboten für den DEC brauchbare Triangulierungen aus nicht zulässigen Gittern zu generieren. Jedoch setzt das auch einiges explizites oder implizites Wissen an die tatsächliche Geometrie der Mannigfaltigkeit voraus und es muss zusätzliche Rechnergestützte Arbeit in das Problem gesteckt werden. Damit zeichnet sich schon hier das größte Manko eines DECs auf wohlzentrierten Primärgittern ab. In zukünftigen Arbeiten muss die Wohlzentriertheit abgeschwächt werden. Ein kleiner Sieg wäre zum Beispiel schon eine "Wohlzentriertheit im Limes", das heißt es wären auch Umkreismittelpunkte auf dem Rand eines Simplexes zulässig. Damit wären auf zweidimensionalen Gittern auch Rechtecke möglich und folglich auch, selbst im planaren,

Ecken mit nur 4 Dreickelementen, die sich diese Ecke teilen. Prinzipiell könnte so auch der hier vorgestellte DEC in gleicher Art und Weise geführt werden, allerdings können sich so auch Kanten der Länge null ergeben und somit müssten wir auch ständig aufpassen in den späteren Berechnungsschematas nicht durch null zuteilen. Deswegen sehen wir hier in dieser Arbeit davon ab. In 2.4 wird auch noch kurz gezeigt wie wir numerisch mit implizit gegeben Oberflächen umgehen können.

2.2 Kettenkomplexe

Zielsetzung. blub

Definition 2.2.1. Eine p-Kette ist eine formale Summe aus p-Simplizes mit Koeffizienten in \mathbb{Z} , das heißt für einen Simplizialkomplex K ist

$$C_p(K) := \left\{ \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \middle| a_{\sigma} \in \mathbb{Z} \right\}$$
 (2.37)

die Menge aller p-Ketten über K.

Prinzipiell würde für das reine Rechnen mit p-Ketten Koeffizienten aus $\{+1,0,-1\}$ ausreichen, da wir Simplizes gleicher Dimension immer nur "aneinander reihen" (konkatieren) werden, das entspräche das reine Addieren (+1) zweier benachbarter Simplizes. Subtrahieren (-1) erlaubt zudem die Orientierung, falls vorhanden, zu wechseln. Auch Koeffizienten aus \mathbb{R} sind denkbar, dann wäre $C_p(K)$ ein \mathbb{R} -Vektorraum. Das wir hier jedoch \mathbb{Z} gewählt haben, hat den Vorteil, dass $C_p(K)$ bezüglich der Addition eine freie abelsche Gruppe ist (mit Erzeugendensystem $K^{(p)}$, d.h. $\langle K^{(p)} \rangle_{C_p(K)} = C_p(K)$) in der die Universaleigenschaft gilt. Genauer $C_p(K)$ ist frei bzgl jeder abelschen Gruppe \mathfrak{A} , deswegen kommutiert das Diagramm

$$C_p(K) \tag{2.38}$$

$$K^{(p)} \xrightarrow{op} \mathfrak{A}$$

mit $op = \widehat{op}|_{K^{(p)}}$, das heißt \widehat{op} ist der eindeutig bestimmte Homomorphismus, der op fortsetzt und zwar gilt

$$\widehat{op}\left(\sum_{\sigma\in K^{(p)}} a_{\sigma}\sigma\right) = \sum_{\sigma\in K^{(p)}} a_{\sigma}op(\sigma). \tag{2.39}$$

Somit reicht es vollkommen aus, dass wir bestimmte Operatoren/Homomorphismen nur auf der Basis definieren und diese dann linear fortsetzen. Speziell werden wir uns das noch für $\mathfrak{A} = C_q(\operatorname{csd} K)$, $C_q(K)$, \mathbb{R} oder $\operatorname{Hom}(C_p(K),\mathbb{R})$ zunutze machen.

noch mehr?

Geometrisch kann die in (2.37) rein formale Addition als Vereinigung interpretiert werden. In Definition 2.1.29 wurde die Dualzelle eines p-Simplex eingeführt. Sie ist die geometrische Vereinigung von (n-p)-Simplizes. Nun liegt es nahe, diese Dualzelle als (n-p)-Kette darzustelle. Das führt uns zur Definition des Sternoperators.

Definition 2.2.2. Es sei K ein wohlzentriertes Primärgitter der Dimension n. Der Sternoperator $\star: C_p(K) \to C_{n-p}(\operatorname{csd} K)$ ist definiert durch

$$\star \sigma^p := \sum_{\sigma^p \prec \sigma^{p+1} \prec \dots \prec \sigma^n} s_{\sigma^p, \sigma^{p+1}, \dots, \sigma^n} \left[c(\sigma^p), c(\sigma^{p+1}), \dots, c(\sigma^n) \right]$$
 (2.40)

mit $s_{\sigma^p,\sigma^{p+1},\dots,\sigma^n} \in \{-1,+1\}$ so gewählt, dass $s_{\sigma^p,\sigma^{p+1},\dots,\sigma^n} [c(\sigma^p),c(\sigma^{p+1}),\dots,c(\sigma^n)]$ der durch σ^p induzierte Orientierung entspricht.

Wie man sieht besteht das Bild von \star nur aus Verkettungen von elementaren Dualsimplizes und freilich ist das eine Untergruppe des $C_{n-p}(\operatorname{csd} K)$. Wir definieren deshalb hier $C_{n-p}(\star K) := Im(\star_{(p)}) = \star C_p(K)$. Also gilt $\star : C_p(K) \to C_{n-p}(\star K)$.

Wir können somit Simplizes verketten und haben mit dem Sternoperator auch einen Isomorphismus zwischen den Ketten des Primär- und elementaren Dualgitters. Die Surjektivität ist per Definition gegeben, da $C_{n-p}(\star K)$ Bild ist. Für

$$0 = \star \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma = \sum_{\sigma \in K^{(p)}} a_{\sigma} (\star \sigma)$$
 (2.41)

ergibt sich über Koeffizientenvergleich nur der triviale Kern $\{0\}$ für den Gruppenhomomorphismus \star , folglich ist der Sternoperator auch injektiv.

Desweiteren ist auch $C_{n-p}(\star K)$ freie abelsche Gruppe mit Erzeugendensystem $\star K^{(p)} := \star (K^{(p)})$, denn für jedes $\hat{c} = \star c \in C_{n-p}(\star K)$ mit $c = \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \in C_p(K)$ für gewisse $a_{\sigma} \in \mathbb{Z}$ gilt

$$\hat{c} = \star \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma = \sum_{\sigma \in K^{(p)}} a_{\sigma} (\star \sigma) = \sum_{\hat{\sigma} := (\star \sigma) \in \star K^{(p)}} a_{\sigma} \hat{\sigma} . \tag{2.42}$$

Somit ist $\star K^{(p)}$ Erzeugensystem und falls $\hat{c} = \star c = 0$, dann muss auch c = 0 gelten, weil der Sternoperator ein Gruppenisomorphismus ist, das heißt es wären alle $a_{\sigma} = 0$ in (2.42) als einzige (triviale) Lösung für $\hat{c} = 0$. Genauso wie bei (2.38) können wir nun Operatoren auf $C_{n-p}(\star K)$ auf der Basis $\star K^{(p)}$ definieren und fortsetzen, wenn der Operator auf eine abelsche Gruppe abbildet.

Da der Sternoperator das simpliziale Analogon zum Hodge-Stern-Operator * werden soll, sollten auch analoge, also auf syntaktischer Ebene gleiche, Bedingungen gelten. Für eine Differentialform $\alpha \in \Omega^p(M_n)$ gilt $**\alpha = (-1)^{p(n-p)}\alpha$ (vgl. [AMR88], Kap.6.2.)². Deswegen definieren wir den Sternoperator auf $C_p(\star K)$ implizit über genau diese Bedingung.

Definition 2.2.3. Es sei K ein wohlzentriertes Primärgitter der Dimension n. Der (duale) Sternoperator $\star: C_p(\star K) \to C_{n-p}(K)$ definiert sich über

$$\star \star \sigma^{n-p} = (-1)^{p(n-p)} \sigma^{n-p} \tag{2.43}$$

für alle $\sigma^{n-p} \in C_{n-p}(K)$.

Natürlich gilt Bedingung (2.43) auch für alle Ketten $\star \sigma^{n-p} := \hat{\sigma}^p \in C_p(\star K)$, denn

$$\star \star \hat{\sigma}^p = \star \star \star \sigma^{n-p} = \star \left((-1)^{p(n-p)} \sigma^{n-p} \right) = (-1)^{p(n-p)} \star \sigma^{n-p}$$
$$= (-1)^{p(n-p)} \hat{\sigma}^p. \tag{2.44}$$

²Der Index, der von uns behandelten Mannigfaltigkeiten, ist immer null.

Bemerkung 2.2.4. Es sei K ein zweidimensionales wohlzentriertes Primärgitter ohne Rand, dann wird mit dem Sternoperator

- ein Knoten auf eine 2-Kette abgebildet, so dass alle Dreiecke in dieser Verkettung vorkommen, die diesen Knoten als Facette haben, et vice versa. Die Orientierung der Flächenelemente ist die aller Flächenelemente. Die sich ergebene 2-Kette nennen wir auch Voronoizelle.
- eine Kante σ^1 auf eine 1-Kette abgebildet, die aus genau den beiden dualen Kanten des $\operatorname{csd} K$ besteht, die $c(\sigma^1)$ als gemeinsamen Randpunkt haben, et vice versa. Die sich ergebene 1-Kette nennen wir auch Voronoikante. Die orientierte Kante bzw. Voronoikante wird somit immer in Richtung der Flächenorientierungen "gedreht".
- ein Dreieckelement auf dessen Umkreismittelpunkt abgebildet, et vice versa, deswegen nennen wir den Umkreismittelpunkt auch Voronoiknoten.

In Abbildung 2.3 ist dieser Zusammenhang für einen Auschnitt eines Primärgitters beispielhaft dargestellt.

Nun wird es Zeit der Überschrift Rechnung zutragen und einen Operator einzuführen, der die Komplexeigenschaft erfüllt.

Definition 2.2.5. Es sei K ein Simplizialkomplex und $0 . Der Randoperator <math>\partial_p : C_p(K) \to C_{p-1}(K)$ definiert sich durch

$$\partial_p \sigma^p := \sum_{i=0}^p (-1)^i [v_0, v_1, \dots, \hat{v}_i, \dots, v_p]$$
 (2.45)

wobei $\sigma^p = [v_0, v_1, \dots, v_p] \in K$. Das Dach bedeutet wieder, dass die entsprechende Ecke weggelassen wird. Da schon vorher erwähnt wurde das Knoten offene Mengen bezüglich der simplizialen Topologie sind, setzen wir konsistenterweise

$$\partial_0 \sigma^0 := 0 \tag{2.46}$$

Wenn kein Grund zur Verwirrung besteht, dann darf auch nur ∂ statt ∂_p geschrieben werden.

Folgerung 2.2.6. Der (duale) Randoperator $\partial_p: C_p(\star K) \to C_{p-1}(\star K)$ lässt sich vom obigen Randoperator für einen wohlzentrierten Simplizialkomplex K ableiten, in dem wir csdK als Simplizialkomplex nutzen und den Operator auf $C_p(\star K) \leq C_p(\text{csd}K)$ einschränken. Das bedeutet für $\hat{\sigma}^p = \star \sigma^{n-p} \in \star K^{(n-p)}$ ($\star K^{(n-p)}$ Erzeugendensystem für $C_p(\star K)$)

$$\partial_p \hat{\sigma}^p = \partial_p \star \sigma^{n-p} \tag{2.47}$$

$$= \sum_{\sigma^{n-p+1} \succ \sigma^{n-p}} \star \left(s_{\sigma^{n-p+1}} \sigma^{n-p+1} \right) , \qquad (2.48)$$

wobei $s_{\sigma^{n-p+1}} \in \{-1, +1\}$ so gewählt wird, dass die durch $s_{\sigma^{n-p+1}}\sigma^{n-p+1}$ induzierte Orientierung für σ^{n-p} konsistent ist. (vergleiche Beispiel in Abbilddung 2.4)

Abbildung 2.3: Beispiel für den Sternoperator auf einem Primärgitter der Dimension 2. Für Knoten und Volumenelemente ändert sich die Orientierung auch nach mehrmaliger Anwendung nicht, dagegen muss bei Kanten immer gegen den Uhrzeigersinn "gedreht" werden, so dass z.B. $\star\star\sigma^1=-\sigma^1$

Abbildung 2.4: Rand mit Orientierungen einer (dualen) 2-Kette, genauer, der Voronoizelle, der primären Ecke in der Mitte des Simplizialkomplexes. Es ergibt sich eine (duale) 1-Kette aus Voronoikanten, dual zu den primären Kanten, die sich im Mittelpunkt treffen. Die Orientierung dieser primären Kanten muss für die Berechnung so geändert werden, dass sie alle nach außen zeigen.

Beweis. Das $\partial_p C_p(\star K) \leq C_{p-1}(\operatorname{csd} K)$ gilt, ist klar wegen der Untergruppeneigenschaft von $C_p(\star K)$ und weil der Randoperator ein Homomorphismus ist. Zu zeigen ist aber allerdings noch $\partial_p C_p(\star K) \leq C_{p-1}(\star K)$. Dabei reicht es auch hier aus, dass nur auf dem Ereugendensystem zu zeigen (algebraischer Induktionsanfang). Der (algebraische) Induktionsschritt gilt dann immer wegen der Universaleigenschaft für homomorphe Fortsetzungen auf freie abelsche Gruppen.

Für eine bessere Lesbarkeit substituieren wir den Grad der Simplizes $(n-p) \leftrightarrow p$ und schreiben nur s für $s_{\bullet} \in \{+1, -1\}$ und machen uns dabei bewusst, dass der Koeffizient s in jeder Zeile und Summanden etwas anderes bedeuten kann.

$$\partial_{n-p} \star \sigma^p = \sum_{\sigma^p \prec \ldots \prec \sigma^n} s \partial_{n-p} \left[c(\sigma^p), c(\sigma^{p+1}), \ldots, c(\sigma^n) \right]$$
(2.49)

$$= \sum_{\sigma^p \prec \cdots \prec \sigma^n} s \sum_{i=n}^n (-1)^{i-p} \left[c(\sigma^p), \dots, \widehat{c(\sigma^i)}, \dots, c(\sigma^n) \right]$$
 (2.50)

$$= \sum_{\sigma^{p} \prec \ldots \prec \widehat{\sigma^{k}} \prec \ldots \prec \sigma^{n}} s \sum_{i=p}^{n} (-1)^{i-p} \begin{pmatrix} \left[c(\sigma^{p}), \ldots, c(\sigma_{1}^{k}), \ldots, \widehat{c(\sigma^{i})}, \ldots, c(\sigma^{n}) \right] \\ -\left[c(\sigma^{p}), \ldots, c(\sigma_{2}^{k}), \ldots, \widehat{c(\sigma^{i})}, \ldots, c(\sigma^{n}) \right] \end{pmatrix}$$

$$(2.51)$$

$$= \sum_{\substack{\sigma^p \prec \dots \prec \sigma^n \\ i \neq k}} s \sum_{\substack{i=p\\ i \neq k}}^n (-1)^{i-p} \left[c(\sigma^p), \dots, \widehat{c(\sigma^i)}, \dots, c(\sigma^n) \right]$$
 (2.52)

:

$$= \sum_{\sigma^{p} \prec \ldots \prec \sigma^{n}} s \left[c(\sigma^{p+1}), c(\sigma^{p+1}), \ldots, c(\sigma^{n}) \right]$$
(2.53)

$$= \sum_{\sigma^{p} \prec \sigma^{p+1}} \sum_{\sigma^{p+1} \prec \sigma^{n}} s\left[c(\sigma^{p+1}), c(\sigma^{p+1}), \dots, c(\sigma^{n})\right]$$
(2.54)

$$= \sum_{\sigma^{p+1} \succ \sigma^p} \star (s\sigma^{p+1}) \in C_{n-p-1}(\star K)$$
(2.55)

Dabei ergibt sich (2.49) aus der Homomorphie des Randoperators und (2.50) nach Definition 2.2.5. In (2.51) schreiben wir die beiden Summanden für σ_r^k für r=1,2 explizit aus. Es gibt immer genau zwei solcher Folgen $\sigma^p \prec \ldots \prec \sigma^{k-1} \prec \sigma^k \prec \sigma^{k+1} \prec \ldots \prec \sigma^n$, wenn bis auf σ^k und σ^p alle Simplizes fest gewählt sind. Die beiden sich ergebenden dualen Simplizes sind gegensätzlich orientiert, da die "Zählrichtung" der Dualecken anders herum ist. (2.52) folgt daraus, dass sich beide Summanden für i=k aufheben. Das machen wir dann für alle $p< k \leq n$. Der Rest ergibt sich durch aufteilen der Summe und der Definition des Sternoperators.

Bemerkung: In z.B. [Hir03] wurde der duale Randoperator einfach per Definition festgelegt ohne zu prüfen oder zu verweisen ob er den primären Randoperator auf dualen Gittern wiederspricht. Dem wurde hier nun genüge getan. Es ist der gleiche Operator mit eingeschränketem Definitionbereich.

Folgerung 2.2.7. Die Folgen $(C_p(K), \partial_p)_{0 \le p \le n}$ beziehungsweise $(C_p(*K), \partial_p)_{0 \le p \le n}$

bilden einen (simplizialen) Kettenkomplex.

$$0 \longrightarrow C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_1} C_0(K) \longrightarrow 0$$

$$\downarrow^{\star} \qquad \qquad \downarrow^{\star} \qquad \qquad \downarrow^{\star}$$

$$0 \longrightarrow C_n(\star K) \xrightarrow{\partial_n} C_{n-1}(\star K) \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_1} C_0(\star K) \longrightarrow 0$$

$$(2.56)$$

Das heißt $\partial_p \circ \partial_{p+1} = 0$, was sich einfach nachrechnen lässt. Zudem sei noch der Isomorphismus \star im Diagramm mit angegeben.

homologietheorie falls nötig, falls platz ist noch graphisches beispiel zum rand-operator

Fazit. Am Anfang des Absatzes haben wir uns entschieden, die Koeffizienten der Ketten aus \mathbb{Z} zuwählen. Hätten wir \mathbb{R} genommen, dann wäre $C_p(K)$ ein \mathbb{R} -Vektorraum mit (linear unabhängiger) Basis $K^{(p)}$. Dem entsprechend würde auch immernoch alles aus diesem Absatz gelten. Wir würde aber die Abzählbarkeit des $C_p(K)$ aufgeben, die uns unter Umständen später noch von nützen sein könnte.

Wenn wir allgemein C_p als Funktor auf der Kategorie der Simplizialkomplexe sehen, also

$$C_{p}(K) \xrightarrow{C_{p}(f)} C_{p}(L)$$

$$C_{p} \downarrow \qquad \qquad \uparrow C_{p}$$

$$K \xrightarrow{f} L$$

$$(2.57)$$

wäre

$$f_p := C_p(f) : \sum_{\sigma \in K^{(p)}} a_i \sigma \mapsto \sum_{\sigma \in K^{(p)}} a_i f(\sigma)$$
 (2.58)

kanonisch gegeben. Somit wäre zum einen eine Zuordnung zu den singulären Kettenkomplexen mit

$$f := \langle \bullet, \bullet \rangle := K \to K_{sing} : [v_0, \dots v_p] \mapsto \langle \bullet, [v_0, \dots v_p] \rangle := \left(\left[\mu^0, \dots, \mu^p \right] \mapsto \sum_{i=0}^p \mu^i v_i \right)$$

$$(2.59)$$

oder zu den abstrakten Kettenkomplexen mit $f := \pi$ (Projektion/Ankleben der Simplizes auf die Mannigfaltigkeit) gegeben. Zum anderen haben wir in zukünftigen Arbeiten auch die Möglichkeit Oberflächen zubetrachten die sich zeitlich ändern $f(t): K \to K(t)$ unter beibehalten der simplizialen Struktur, so es denn möglich ist. Im Einzelnen muss dann noch geprüft werden unter welchen Vorraussetzungen $f \circ \partial = \partial \circ f$ beziehungsweise $f \circ \star = \star \circ f$ gilt.

2.3 Gittergenerierung für Oberflächen

Zielsetzung. Die Wohlzentriertheit eines Gitters ist Pflicht, da ohne sie kein brauchbares duales Gitter (Voronoigitter) erzeugt werden kann. Diese zur Triangulierung duale Gebietsdiskretisierung wird aber benötigt um zum Beispiel ein diskreten Hodge-Stern-Operator sinnvoll zu entwickeln. Bei einem nicht wohlzentrierten Dreieck liegt der Voronoiknoten $\star \sigma^2$ nicht im Dreieck σ^2 . Das Problem dabei ist, dass sich die Werte auf $\star \sigma^2$ und σ^2 nur um einen metrischen Faktor³ unterscheiden sollten. Diese Voraussetzung wäre aber nicht mehr haltbar, da die Gebiete, die beide Elemente einnehmen, disjunkt sind. Sie können sogar "sehr weit" von einander entfernt liegen. Dann hätte die eine Größe fast nichts mehr mit der anderen gemein und die Linearität beider wäre nicht mehr gegeben.

Wohlzentriertheit ist eine schwerwiegende Einschränkung an die Gitterstruktur. Sie verbietet unter anderem einen 1-Ring um einen Knoten aus vier oder weniger Dreickelementen. Für eine nicht planare Triangulierung mag ein 1-Ring aus vier Flächenelementen gerade noch funktionieren, da die Innenwinkelsumme der inneren Kanten weniger als 2π ist. Im planaren Fall erhalten wir aber für eine optimale⁴ Triangulierung Winkel von $\frac{\pi}{2}$ und somit nur Wohlzentriertheit im Limes⁵. Damit sind oft genutzte lokale und globale Strategien zur Verfeinerung nicht anwendbar. So wird zum Beispiel bei der FEM-Toolbox AMDiS [WV10] die längste Kante halbiert und von dort zwei neue Kanten zu den jeweils gegenüberliegenden Knoten der beiden angrenzenden Dreiecken erstellt. Der neu entstandene Knotenpunkt hat folglich einen 1-Ring aus 4 Flächenelementen. Auch CAD-Programme liefern im Allgemeinen keine geeigneten Gitter. Ein möglicher Ausweg könnte eine Triangulierung (bzw. Neutriangulierung) mittels angepassten Delaunay oder anderen Algorithmen sein, zum Beispiel Centroidal Voronoi Tessellation (CVT) [DFG99], Optimal Delaunay Triangulations (ODT) [CX04] oder Hexagonal Delaunay Triangulation [SG09].

Im Folgenden wollen wir davon ausgehen, dass zu mindest eine Triangulation vorliegt, die die Bedingung erfüllt, dass jeder Knoten Teil von mehr als 4 Dreiecken ist. Damit möchten wir ein Oberflächengitter erzeugen, welches wohlzentriert ist. Die Struktur des Simplizialkomplexes soll dabei erhalten bleiben. Nur die Knotenpunkte werden neu arrangiert. Das setzt natürlich vorraus, dass die Oberfläche exakt, zum Beispiel explizit durch eine Immersion $X:M\to\mathbb{R}^3$ oder implizit durch das 0-Niveau einer Level-Set-Funktion [OF02], oder eine Approximation der 2-Mannigfaltigkeit höher als 1 gegeben ist.

Ansätze zur Gitterverbesserung bei der die Wohlzentriertheit im Vordergrund steht gibt es bis jetzt wenige. Denn obwohl diese Vorderung an der Triangulation für viele numerische Verfahren Vorteile bringen würde, so ist sie doch nur für den DEC zwingend. Eine Arbeit ist zum Beispiel [VHGR08], wobei auch hier das diskrete Äußere Kalkül die Motivation bildete. Hier wird eine Kostenfunktion aufgestellt deren Argument des Minimums ein wohlzentrierter Simplizialkomplex ist. Leider muss solch ein Minimum nicht existieren, weder im planaren noch auf gekrümmten Oberflächen. Wir wollen hier im Folgendem einen ähnlich Ansatz verwenden. Ausgangspunkt sind Kraftvektoren an den Knoten, die das Gitter so unter Zwang setzen, dass die daraus resultierende Bewegung der Knoten, wenn es denn möglich ist, eine wohlzentierte Triangulation formt. Das Modell ist nicht

³hier $|\sigma^2|$ bzw. dessen Reziproke

⁴bzgl. der maximalen Winkel

⁵für planare äquidistante Gitter kann diese schwächere Restriktion dennoch sinnvoll sein, da somit bekannte Differenzenschematas entstehen können

neu und wird zum Beispiel zur Simulation von biologischen Zellgewebe verwendet. Einen Überblick zu der Thematik bietet [PCF⁺09].

2.3.1 Mechanisches Modell und dessen Diskretisierung

Ein einfacher mechanischer Ansatz, um nach gewissen Kriterien ein optimales Gitter zu entwickeln ist

$$\gamma \frac{\mathrm{d}\vec{x}_i}{\mathrm{d}t} = \vec{F}(\vec{x}_i) \tag{2.60}$$

Diese gewöhnliche Differentialgleichung erster Ordnung beschreibt eine Viskosedämpfung am Knoten σ_i^0 mit Koordinaten $\vec{x_i} \in X(M) \subset \mathbb{R}^3$ und Viskositätskoeffizient γ . Eine einfache Diskretisierung des Problems (2.60) ist das Explizite Eulerverfahren mit nachgeschalteter Projektion $\pi: \mathbb{R}^3 \to X(M)$ um die Nebenbedingung $\vec{x_i} \in X(M)$ zu erfüllen.

$$\vec{x}_i(t + \Delta t) = \pi \left(\vec{x}_i(t) + h\vec{F}_i \right)$$
 (2.61)

wobei $h:=\frac{\Delta t}{\gamma}$ und $\vec{F}_i:=\vec{F}(\vec{x}_i(t))$. Der Kraftvektor \vec{F}_i resultiert aus Interaktion mit den anderen Knoten. Im Overlapping-Sphere-Modell(OS) [PCF+09] sind das all die Knoten σ_j^0 , die einen bestimmten Abstand zu σ_i^0 haben. Für das explizite Eulerverfahren (Verfahren 1.Ordnung) werden kleine Schrittweiten h benötigt. Allerdings bringen Verfahren höherer Ordnung wahrscheinlich keine signifikant besseren Ergebnisse. Zum einen könnte eine größere Schrittweite nicht ausgenutzt werden, da es sonst passieren kann, dass sich, durch die resultierende größere Verschiebung eines Knoten, Dreiecke überlappen und somit keine zulässige Triangulierung mehr vorliegt. Zum anderen reduziert die Projektion π die Konvergenzordnung der Verfahren. So wurde zum Beispiel in den numerischen Experimenten auch das Heun-Verfahren (explizites Runge-Kutta-Verfahren der Ordnung 2) getesten ohne nenneswerten besseren Resultaten, dafür wesentlich (linear) höheren Aufwand. Implizite Verfahren haben einen zu hohen Aufwand in der Implementation, denn es ist zu bedenken, dass der Kraftvektor \vec{F}_i nicht nur von den Koordinaten \vec{x}_i abhängt, sondern auch von der umgebenden Struktur.

Wir wollen hier, im Gegensatz zum OS-Modell, die Gitterstruktur des Simplizialkomplexes ausnutzen, das heißt es interagieren genau die Knoten mit einander, die eine gemeinsame Kante besitzen. Somit lässt sich der Kraftvektor $\vec{F_i}$ zerlegen zu

$$\vec{F}_i = \sum_{\sigma^1 := [\sigma_j^0, \sigma_i^0] \succ \sigma_i^0} \frac{F_{\sigma_i^0 \prec \sigma^1}}{\|\vec{x}_j - \vec{x}_i\|} (\vec{x}_j - \vec{x}_i)$$
 (2.62)

 $F_{\sigma^0 \prec \sigma^1}$ ist folglich die Kraft die am Knoten σ^0 in Richtung der Kante σ^1 wirkt. Da die Kraft aber auch von der Geometrie der Flächenelemente abhängen kann, zerlegen wir die Kantenkräfte weiter zu

$$F_{\sigma^0 \prec \sigma^1} = \sum_{\sigma^2 \succ \sigma^1} F_{\sigma^0 \prec \sigma^1 \prec \sigma^2} \tag{2.63}$$

Als praktisch erweist es sich außerdem die Kräfte dimensionslos zuhalten, da somit eventuell auftretende Parameter für unterschiedliche Ausgangsgitter annährend gleich gewählt werden können. Die Schrittweite h in (2.61) hängt somit annährend linear von der Gitterweite ab. Zu beachten ist hierbei, dass sich die Gitterweite, je nach Definition⁶, in jedem Eulerschritt ändern kann.

Es folgen nun 2 heuristische Ansätze für die Kraft um die Beschaffenheit des Gitters positiv zu beeinflussen.

Optimale Kantenlängen

Ein ideales Dreieck mit bestmöglichen Eigenschaften hat überall Innenwinkel von $\frac{\pi}{3}$. Folglich liegt ein gleichseitiges Dreieck vor. Deshalb wäre es ein guter Ansatz zu versuchen eben diese Eigenschaft bei einem Dreieckelement hervorzurufen. Wir setzen eine Kantenkraft in linearer Abhängigkeit der Länge der Kante σ^1 an, die für alle Knoten $\sigma^0 \prec \sigma^1$ gleich ist.

$$F_{\sigma^0 \prec \sigma^1}^L := F_{\sigma^1}^L := \frac{|\sigma^1|}{l^*} - k \tag{2.64}$$

mit $k \in [0,1]$. l^* ist die Referenzlänge des Dreiecks T^* . Sie resultiert aus der Annahme, dass wir ein äquidistantes flache Triangulierung haben mit hexagonaler Struktur. Das heißt alle Dreiecke σ^2 wären dann vom Ausmaß gleich einem gleichseitigen Referenzdreieck T^* . Dessen Fläche berechnet sich dann über die Gesamt-fläche $V(K) = \sum_{\sigma^2} |\sigma^2|$ und der Anzahl aller Dreiecke $N_{\sigma^2} = |\{\sigma^2 \in K\}|$

$$|T^*| = \frac{V(K)}{N_{\sigma^2}}$$
 (2.65)

sowie unter Ausnutzung, dass T^* gleichseitig ist

$$|T^*| = \frac{l^*\sqrt{3}}{4} \tag{2.66}$$

Zusammen ergibt sich für die Referenzlänge $l^* > 0$

$$l^* = 2\sqrt{\frac{V(K)}{\sqrt{3}N_{\sigma^2}}} \tag{2.67}$$

Für k=1 kann man sich das so vorsellen, dass die beiden Knoten einer Kante σ^1 sich abstoßen falls $|\sigma^1| < l^*$, sich anziehen falls $|\sigma^1| > l^*$ oder keine Kräfte wirken wenn $|\sigma^1| = l^*$ gilt (siehe Abb. 2.5). k=0 würde für eine Gitter mit Rand und freien Randknoten⁷ bedeuten, dass es immer weiter schrumpft. In unserem Fall, also Triangulierung von Oberflächen ohne Rand, zeigt sich, dass sich die Gitter vor allem dort zusammen ziehen, wo sich zum einen 1-Ringe aus 5 Dreieckelementen befinden und zum anderen wo die Krümmung der Mannigfaltigkeit klein ist. Letzteres ist allerdings keine gute Eigenschaft, da gerade dort ein feineres Gitter von nöten wäre, wo die Oberfläche eine große Krümmung aufweist. Der andere Extremfall, k=1, würde zwar ein annährend gleich grobes Gitter erzeugen, aber in Experimenten zeigte sich, dass (2.61) dadurch instabil wird. Stabilisierend wirkt sich aber das Zuaddieren des folgenden Kraftansatzes aus.

⁶z.B. Maximum aller Umkreisradien

⁷Randknoten dürfen auch nach innen wandern

Abbildung 2.5: Kantenkräfte für an einem Knoten k = 1. Die eingezeichneten Radii entsprechen $\frac{l^*}{2}$.

Abbildung 2.6: Eine Verschiebung des Knotens entlang einer Kante verändert den Winkel.

Optimale Winkel

Ein weiterer heuristischer Ansatz bezieht sich direkt auf die inneren Winkel eines Dreieckelements. Wie in Abbildung 2.6 angedeutet bewirkt eine Verschiebung entlang der Kante eine änderung des Winkels. Wird dabei, wie in Abbildung 2.6, die Kante länger, dann wird der Winkel an dem zuverscheibenen Knoten kleiner, et vice versa.

$$F_{\sigma^0 \prec \sigma_i^1 \prec \sigma^2}^A := \cos \angle (\vec{e}_0, \vec{e}_1) - c \tag{2.68}$$

$$= \frac{\vec{e}_0 \cdot \vec{e}_1}{\|\vec{e}_0\| \|\vec{e}_1\|} - c \tag{2.69}$$

$$\vec{e_i} := \vec{e_{\sigma_i^1}} = \vec{x}_{v_i} - \vec{x}_{\sigma^0} \tag{2.70}$$

(2.71)

mit $i \in \{0,1\}$ und $c \in [-1,1]$. v_i ist also der Knoten, der mit σ^0 die gemeinsame Kante σ^1_i im Dreieck $\sigma^2 = [\sigma^0, v_0, v_1]$ hat.

Eine sinnvolle Wahl für die Konstante ist $c = \cos \frac{\pi}{3} = 0.5$. Sie würde in einer flachen Triangulation mit hexagonaler Struktur bewirken, dass sich keine Kräfte entwickeln, falls alle Dreiecke bis auf Rotation und Translation gleich sind.

Kombination der Kantenkräfte

Es hat sich gezeigt, dass (2.64) und (2.68) gerade auf komplizierteren Gebieten einzeln entweder nicht das gewünschste Resultat liefern oder insatbil sind. Deshalb kombinieren wir die beiden Kräfte linear:

$$F_{\sigma^0 \prec \sigma^1}^{\text{Gesamt}} := D \cdot F_{\sigma^0 \prec \sigma^1}^L + (1 - D) \cdot F_{\sigma^0 \prec \sigma^1}^A$$
 (2.72)

mit $D \in [0, 1]$. Algorithmus 4.1.1 zeigt wie die resultierenden Kräfte auf einem Dreieckelement berechnet werden können. Um alle Knotenkräfte⁸ zu erhalten müssen wir nur noch diese Element-Knotenkräfte aufassemblieren.

⁸d.h. $(\vec{F}_i)_{i=1,...,N_{\sigma^0}} \in (\mathbb{R}^3)^{N_{\sigma^0}}$

Abbildung 2.7: Eindimensionales Extrembeispiel für ein Schritt Euler-Explizit E (inkl. Nachprojektion π) eines Knotens mit und ohne Vorprojektion des Kraftvektors \vec{F}_i zu $\vec{F}_{T_pM,i}$. Ohne Vorprojektion kann es zu einem unzulässigen Gitter kommen.

Projektion der Kraftvektoren

Des Weiteren, wie im Algorithmus 4.1.1 zu sehen, wird der Kraftvektor \vec{F}_i in den Tangentialraum projeziert, das heißt

$$\vec{F}_{T_pM,i} = \vec{F}_i - (\vec{F}_i \cdot \vec{\nu}_i)\vec{\nu}_i \tag{2.73}$$

wobei der Normalenvektor $\vec{\nu_i}$ am Knoten σ_i^0 entweder als bekannt vorrausgesetzt ist, über eine signierte Distanze Funktion φ ermittelt wird, also

$$\vec{\nu_i} = \frac{\nabla \varphi}{\|\nabla \varphi\|} (\vec{x_i}) \tag{2.74}$$

oder über die Elementnormalen approximiert wird

$$\vec{\nu_i} = \frac{1}{|\circlearrowleft \sigma_i^0|} \sum_{\sigma^2 \succ \sigma_i^0} |\sigma^2| \cdot \vec{\nu}_{\sigma^2} \tag{2.75}$$

Somit kann im expliziten Eulervefahren (2.61) $\vec{F}_{T_pM,i}$ statt \vec{F}_i verwendet werden. Das müssen wir nicht machen, aber es bringt Vorteile. Zum einen könnten Knoten soweit in Normalenrichtung verschoben werden, dass die nachfolgende Projektion den Knoten falsch abbildet und das Gitter zerstört wird (vgl. Abb. 2.7), zum anderen wird die Projektion in (2.61) oft iterativ gelöst (vgl. 2.4.1) und je weiter weg wir den Knoten von der Mannigfaltigkeit verschieben um so schlechter ist die Startnährung für das iterative Verfahren.

2.3.2 Beispiele

Ellipsoid

Wir wollen nun ein geeignetes Gitter für ein Ellipsoid erstellen (vgl. Appendix 4.3.2). Zur Verfügung steht uns eine Starttriangulierung der Einheitssphäre mit zirka 1000 Knoten. Es ist fast überall eine hexagonale Struktur vorhanden bis

auf 12 Defekte, genauer, an 12 Knoten befinden sich pentagonale 1-Ringe. Dieses Startgitter wird nun auf den Ellipsoid projeziert (vgl. 2.4.1).

Wie in Abbildung 2.8 zu sehen, ist ein wohlzentrierter Simplizialkomplexe nach nur wenigen Eulerschritten (2.61) erreicht. Der größte Winkel nimmt aber weiterhin logarithmisch ab. Nach zirka 200 Schritten hat er sein Minimum erreicht und steigt danach wieder leicht. Das ist nicht verwunderlich, denn kleinere Winkel sind nicht das einzige Optimalitätskriterium. Geplottet wurde das Integralmittel $\bar{\alpha}_{\max}$ (AvMaxAngle) der größten Winkel der Dreiecke und der größte aller aximalen Winkel α_{\max}^{\max} (MaxMaxAngle) nach jedem Iterationsschritt.

$$\bar{\alpha}_{\max} := \frac{\int_{|K|} \alpha_{\max} \mu}{\int_{|K|} \mu} = \frac{1}{V(K)} \sum_{\sigma^2 \in K} |\sigma^2| \left\langle \alpha_{\max}, \star \sigma^2 \right\rangle \tag{2.76}$$

$$\alpha_{\max}^{\max} := \max \left\{ \left\langle \alpha_{max}, \star \sigma^2 \right\rangle \middle| \sigma^2 \in K \right\}$$
 (2.77)

wobei |K| der zugrunde liegende Raum des Simplizialkomplexes K ist und $\mu \in \Lambda^2(|K|)$ die die stückweise konstante Volumenform auf |K|. $\langle \alpha_{max}, \star \sigma^2 \rangle$ ist der größte Winkel auf dem Dreieck σ^2 .

Lokale Verfeinerung

Die in der FEM häufig anzutreffende Verfeinerung, nämlich die Halbierung der Dreiecke, führt zu 1-Ringen aus 4 Flächenelementen an den neu enstandenen Knoten und ist somit im Algemeinen nicht zulässig für unsere Triangulierung. Eine Möglichkeit Dreiecke zu verfeinern und trotzdem eine Ausgangssituation für ein wohlzentriertes Gitter zu schaffen ist das Vierteln von Flächenelementen, wobei 3 neue Knoten an den Seitenhalbierenden enstehen (siehe Abb. 2.9 ganz links). Die somit hängenden Knoten werden beseitigt indem die Nachbarelemente halbiert werden. Das heißt es ensteht hexagonale Struktur an einem neuen Knoten, wenn beide angrenzende Dreiecke zum Verfeinern markiert wurden und pentagonale Struktur, wenn nur ein Dreieck markiert wurde. Für die alten Knoten an denen eine neue Kante hinzu kommt erhöht sich die Anzahl der umliegenden Flächenelemente um eins.

Nachdem die neuen Knoten auf die Mannigfaltigkeit projeziert werden ist im Allgemeinen noch nicht sichergestellt, dass ein wohlzentrierte Triangulation vorliegt. Deshalb wenden wir unseren Algorithmus (2.61) darauf an. Wenn vor der Verfeinerung ein zulässiges Gitter vorlag, dann zeigt sich, dass wir nur sehr wenige Iterationsschritte benötigen um ein zulässiges Gitter wieder herzustellen. Abbildung 2.9 zeigt das Resultat nach nur einem Eulerschritt mit zwei verschiedenen Parameterkonfigurationen. Hier wurde ein Dreieck verfeinert (links). Das Gitterverbesserungsverfahren erzeugt zum einen wohlzentrierte Dreiecke bei denen die Abmessungen weitestgehend gleich bleiben (mitte) und bei denen die neu entstandenen Elemente schrumpfen aber die Winkel besser sind (rechts).

Fazit. blub

Abbildung 2.8: Parameter: h = 0.01; k = 1; c = 0.7. Von links oben nach rechts unten: Startgitter (keine Wohlzentriertheit, maximaler Winkel ca. 95.9°); nach 7 Eulerschritten (Wohlzentriertheit); nach 1000 Eulerschritten (danach keine signifikanten Veränderungen mehr); (semilog)Eulerschritte-Winkel-Plot (Maximum und Integralmittel)

Abbildung 2.9: Von links nach rechts: Startgitter; nach 1 Eulerschritt (h = 0.1, k = 1, c = 0.7, max. Winkel ca. 86.5°); nach 1 Eulerschritt (h = 0.08, k = 0.3, c = 0.7, max. Winkel ca. 80.8°)

2.4 Implizit gegebene Oberflächen

Oftmals ist eine Oberfläche $M \subset \mathbb{R}^3$ nicht explizit über eine Immersion

$$X: (u,v) \mapsto X(u,v) \in \mathbb{R}^3 \tag{2.78}$$

gegeben, sondern über den 0-Level-Set einer signierten Distanzfunktion

$$\varphi = \pm \operatorname{dist}(\cdot, M) = \pm \inf_{\vec{x} \in M} d(\cdot, \vec{x})$$
 (2.79)

mit einer beliebigen (ausreichend glatten) Metrik d im \mathbb{R}^3 . Die 2-Mannigfaltigkeit ist dann definiert durch

$$M = \left\{ \vec{x} \in \mathbb{R}^3 \middle| \varphi(\vec{x}) = 0 \right\}. \tag{2.80}$$

Solche implizit beschriebenen Oberflächen liegen zum Beispiel bei 3D-Phasenfeldproblemen vor (z.B. Allen-Cahn-, Cahn-Hilliard- oder Phase-Field-Crystal-Modell). Die Distanzfunktion⁹ $\varphi: \mathbb{R}^3 \to \mathbb{R}$ ist dort gerade die Lösung dieser Probleme und das 0-Niveau dieser Funktion beschreibt die Phasengrenzen.

Wir treffen hier die Konvention, dass "außen" $\varphi > 0$ gilt und "innen" $\varphi < 0$. Dadurch zeigt der Gradient $\nabla \varphi(\vec{x})$ für alle $\vec{x} \in M$ in Richtung der äußeren Normalen. "Außen" und "innen" ist durch die Orientierung der Mannnigfaltigkeit gegeben. In Falle von 2-Mannigfaltigkeiten ohne Rand, ist "innen" gerade das von der Oberfläche umschlossene Gebiet im \mathbb{R}^3 .

2.4.1 Numerische Projektion

Wenn bei einem Simplizialkomplex, welches die Oberfläche approximiert, neue Knoten enstehen oder vorhandene verschoben werden sollen, dann ist es notwendig diese Knoten auf die Mannigfaltigkeit zu projezieren. Denn eine Bedingung an den Simplizialkomplex ist, dass die Knoten dort und auf dem abstrakten Simplizialkomplex übereinstimmen.

Gesucht ist also das

$$\underset{\vec{x} \in M}{\operatorname{argmin}} \|\vec{y} - \vec{x}\| \tag{2.81}$$

für den Knoten mit den Koordinaten \vec{y} , der sich noch nicht auf der Mannigfaltigkeit M befindet und damit $\varphi(\vec{y}) \neq 0$ gilt.

Der kürzeste Weg mit Länge ε steht im rechten Winkel zur Oberfläche am Punkt \vec{x} (siehe Abb. 2.10).

$$\vec{x} = \vec{y} + \frac{\varepsilon}{\|\nabla\varphi(\vec{x})\|} \nabla\varphi(\vec{x})$$
 (2.82)

$$= \vec{y} + h\nabla\varphi(\vec{x}) \tag{2.83}$$

⁹auch Phasen- oder Ordnungsfunktion genannt

Abbildung 2.10: Darstellung des Punktes \vec{y} und dessen projezierter Punkt \vec{x}

für $\varepsilon = h \|\nabla \varphi(\vec{x})\|$. Allerdings ist weder h noch \vec{x} bekannt. Deshalb approximieren wir den Gradienten mittels Taylor an \vec{y} :

$$\nabla \varphi(\vec{x}) = \nabla \varphi(\vec{y}) + H[\varphi](\vec{y})(\vec{x} - \vec{y}) + HOT \tag{2.84}$$

$$= \nabla \varphi(\vec{y}) + \frac{\varepsilon}{\|\nabla \varphi(\vec{x})\|} H[\varphi](\vec{y}) \nabla \varphi(\vec{x}) + HOT$$
 (2.85)

wobei HOT für Therme höherer Ordnung (in ε) steht und $H[\varphi]$ ist die (symmetrische) Hessematrix von $\varphi \in C^2(\overline{B_{\varepsilon}(\vec{x})})$. Einsetzen in (2.83) liefert

$$\vec{x} = \vec{y} + h\nabla\varphi(\vec{y}) + \vec{O}(\varepsilon^2) \quad . \tag{2.86}$$

Somit ist für uns die Abschätzung

$$\vec{x}^* := \vec{y} + h\nabla\varphi(\vec{y}) \tag{2.87}$$

für \vec{x} ausreichend falls φ hinreichend glatt und ε klein.

Nun wollen wir h so bestimmen, dass \vec{x}^* auf der Oberfläche liegt, das heißt

$$\Phi_{\vec{y}}(h) := \varphi(\vec{x}^*) = \varphi(\vec{y} + h\nabla\varphi(\vec{y})) = 0 \quad . \tag{2.88}$$

Dieses Nullstellenproblem lösen wir in erster Nährung mittels Newton-Verfahren und Startlösung h = 0.

$$\hat{h} = -\frac{\Phi_{\vec{y}}(0)}{\Phi_{\vec{y}}'(0)} = -\frac{\varphi(\vec{y})}{\|\nabla\varphi(\vec{y})\|^2}$$
(2.89)

Damit stellen wir die Iterationsvorschrift

$$\vec{y}_{i+1} := \vec{y}_i - \frac{\varphi(\vec{y}_i)}{\|\nabla \varphi(\vec{y}_i)\|^2} \nabla \varphi(\vec{y}_i)$$
(2.90)

auf.

3 Diskretes Äußeres Kalkül (DEC)

see [Lee97] [Shi14]

3.1 Diskrete Differentialformen

Definition 3.1.1. Eine diskrete p-Form ist ein Homomorphismus vom Kettenkomplex $C_p(K)$ nach \mathbb{R} . Die Menge aller dieser Homomorphismen bezeichnen wir je nach Kontext mit $C^p(K)$ (Menge der p-Koketten) oder $\Omega_d^p(K)$ (Menge der diskrete p-(Differential-)Formen). Das heißt

$$\operatorname{Hom}(C_p(K), \mathbb{R}) =: C^p(K) =: \Omega_d^p(K). \tag{3.1}$$

Desweiteren erfolgt die Addition punktweise, das heißt

$$(\alpha + \beta)(c) := \alpha(c) + \beta(c) \tag{3.2}$$

für $\alpha, \beta \in C^p(K)$ und $c \in C_p(K)$.

Folgerung 3.1.2. Da \mathbb{R} mit der Addition eine abelsche Gruppe ist, können wir uns wieder die Universalitätseigenschaft (2.38) des Kettenkomplexes zunutze machen. Für eine p-Kette $c = \sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \in C_p(K)$ und eine p-Kokette $\alpha \in C^p(K)$ gilt

$$\alpha(c) = \alpha \left(\sum_{\sigma \in K^{(p)}} a_{\sigma} \sigma \right) = \sum_{\sigma \in K^{(p)}} a_{\sigma} \alpha(\sigma), \qquad (3.3)$$

damit reicht es auch hier aus die p-Koketten nur auf den p-Simplizes zu definieren.

Hätten wir die Menge der p-Ketten als \mathbb{R} -Vektoraum eingeführt, so hätte uns die Frage nach einem inneren Produkt zwischen den Ketten und den Koketten zur dualen Paarung geführt und damit auch, dass $C^p(K) = (C_p(K))^*$ der Dualraum von $C_p(K)$ ist. Nun hält uns aber auch nichts davon ab, dies auch für die hier eingeführten Ketten analog zu machen.

Definition 3.1.3.

$$\langle \bullet, \bullet \rangle : C^p(K) \times C_p(K) \to \mathbb{R}$$

 $(\alpha, c) \mapsto \langle \alpha, c \rangle := \alpha(c)$ (3.4)

heißt natürliche Paarung zwischen den p-Koketten (-Formen) und den p-Ketten.

Die Verbindung zwschen diskreter Form und Differentialform ist die de-Rham-Abbildung. Dazu nehmen wir zunächst an, dass wir einen abstrakten Simplizialkomplex L vorliegen haben, das heißt, dass alle Simplizes auf der zugehörigen Mannigfaltigkeit M liegen. Das bringt erst einmal den Vorteil, dass Integration auf den Simplizes das gleiche Ergebinis auch auf der Mannigfaltigkeit liefert.

Abbildung 3.1: sadsad

Definition 3.1.4. Die de-Rham-Abbildung bildet p-Differentialformen auf diskrete p-Formen (Koketten) ab. Genauer

$$\psi^{p}: \Omega^{p}(M) \to C^{p}(L) = \Omega^{p}_{d}(L)$$

$$\alpha \mapsto \left(\sigma^{p} \mapsto \int_{\sigma^{p}} \alpha =: \psi^{p}(\alpha)(\sigma^{p}) = \langle \psi^{p}(\alpha), \sigma^{p} \rangle\right), \tag{3.5}$$

das heißt die diskrete p-Form $\psi^p(\alpha) \in \Omega^p_d(L)$ ist auf den p-Simplizes definiert, was wegen Folgerung 3.1.2 vollkommen ausreicht.

Da das Integral ein lineares Funktional ist, ist auch ψ linear.

Bemerkung 3.1.5. Nun haben wir bei der Definition der de-Rham-Abbildung vorrausgesetzt, dass ein abstrakter Simplizialkomplex vorliegt. Das entspricht aber nur für flache Mannigfaltigkeiten unseren Anfoderungen. Im Allgemeinen ist die gegebene Triangulation nur eine lineare Approximation der Mannigfaltigkeit und damit auch des zugehörigen abstrakten Simplizialkomplexes. Das bedeutet auch, dass für $p \geq 1$ die Differentialformen von M in einem anderen Raum "leben" als die Differentialformen des Polytopes |K|. Für die numerische Analysis ist das eine schwierige Situation, da vor der eigentlichen Diskretisierung (Diskretisierungsfehler) noch eine Approximation (geometrischer Fehler) auf einen stückweise flachen Raum gemacht wird.

Für 0-Formen (identisch zu Skalarfeldern) ergibt sich dieser geometrische Fehler nicht, da nach Vorraussetzung die Ecken des Simplizialkomplexes auf der Mannigfaltigkeit liegen. Hier ist die Diskretisierung genauso wie wir das aus anderen Verfahren, wie die Finite-Differenzen-Methode, gewöhnt sind, da das "Punktintegral" nichts weiter als die Auswertung an eben diesem Punkt ist. Das heißt, liegt ein Skalarfeld $u: M \to \mathbb{R}$ vor, so ist das diskrete Skalarfeld $u_d: K^{(0)} \to \mathbb{R}$ an den Ecken definiert.

$$u(v_i) = \psi(u)(v_i) = \langle \psi(u), v_i \rangle = u_d(v_i) =: u_i$$
(3.6)

für alle $v_i \in K^{(0)}$. Die Interpolation zurück zur Mannigfaltigkeit kann dann mittels linearer Ansatzfuktionen erfolgen, die sich auf den abstrakten Volumenenelementen $\pi(\sigma^n)$ definieren. π ist hier wieder die Projektion.

whitney
abbildung
noch
ansprechen?
Das
heißt
Interpolation im
allgemeinen
oder
nur
speziell?

- 3.2 Äußere Ableitung
- 3.3 Hodge-Operator
- 3.4 Laplace-Operator
- 3.4.1 Beispiel: Laplace-Gleichung
- 3.4.2 Beispiel: Krümmung Teil 1: Gauß-Bonnet-Operator
- 3.4.3 Beispiel: Krümmung Teil 2: Weingarten-Abbildung
- 3.4.4 Beispiel: Krümmung Teil 3: Krümmungsvektor
- 3.5 Lie-Ableitung und Jacobian
- 3.5.1 Beispiel: Wirbelgleichung

4 Appendix

4.1 Algorithmen

4.1.1 Element-Knotenkräfte

Berechnung der Knotenkräfte Force $\in \mathbb{R}^3 \times \mathbb{R}^3$ für ein Element:

Parameter c,d,k $\in \mathbb{R}$, Koordinatenabbildung X: $\sigma^0 \mapsto \vec{x} \in M \subset \mathbb{R}^3$ und Tangentialprojektion project: $\mathbb{R}^3 \to T_pM \subset \mathbb{R}^3$ sind (approximativ oder exakt) gegeben.

Zu Beachten ist hierbei, dass die Kantenkraft forceLength nur auf einem Knoten aufgetragen wird. Der andere Knoten der ebenfalls zu dieser Kante gehört bekommt die gleiche Kantenkraft aufdatiert, wenn die Knotenkräfte auf dem 2. Dreieckelement, das sich diese Kante teilt, berechnet werden.

4.2 Krümmungsgrößen für impliziten Oberflächen

Es sei $\varphi \in C^2(\mathbb{R}^3)$ gegeben mit $M = \{\vec{x} \in \mathbb{R}^3 | \varphi(\vec{x}) = 0\}$. Die Gaußkrümmung \mathfrak{H} und die Mittlere Krümmung \mathfrak{H} von M berechnet sich wie folgt (siehe [Gol05]):

$$\mathfrak{K} = \frac{\nabla^T \varphi \cdot H^*[\varphi] \cdot \nabla \varphi}{\|\nabla \varphi\|_2^4} = -\frac{\det \begin{bmatrix} H[\varphi] & \nabla \varphi \\ \nabla^T \varphi & 0 \end{bmatrix}}{\|\nabla \varphi\|_2^4}$$
(4.1)

$$\mathfrak{H} = \frac{\|\nabla\varphi\|_2^4}{\|\nabla\varphi\|_2^4} = \frac{\|\nabla\varphi\|_2^4}{\|\nabla\varphi\|_2^2 \cdot \operatorname{Trace}(H[\varphi]) - \nabla^T\varphi \cdot H[\varphi] \cdot \nabla\varphi}{2 \cdot \|\nabla\varphi\|_2^3}$$
(4.2)

wobei $H^*[\varphi]$ die Adjunkte¹ des Hessian $H[\varphi]$ ist.

¹nicht Adjungierte!

4.3 Oberflächenbeispiele

4.3.1 Einheitssphäre

Level-Set-Funktion

$$\varphi(\vec{x}) := \frac{1}{2} \left(\|\vec{x}\|_2^2 - 1 \right) \tag{4.3}$$

$$\nabla \varphi(\vec{x}) = \vec{x} \tag{4.4}$$

$$H[\varphi] \equiv I \tag{4.5}$$

Krümmungsgrößen

$$\mathfrak{K} \equiv 1 \tag{4.6}$$

$$\mathfrak{H} \equiv 1 \tag{4.7}$$

4.3.2 Ellipsoid

Level-Set-Funktion

$$\varphi(x,y,z) := \frac{1}{2} \left((3x)^2 + (6y)^2 + (2z)^2 - 9 \right) \tag{4.8}$$

$$\nabla \varphi(x, y, z) = [9x, 36y, 4z]^T \tag{4.9}$$

$$H[\varphi] \equiv \begin{bmatrix} 9 & 0 & 0 \\ 0 & 36 & 0 \\ 0 & 0 & 4 \end{bmatrix} \tag{4.10}$$

Krümmungsgrößen

$$\mathfrak{K}(x,y,z) = \frac{11664}{(81 + 972y^2 - 20z^2)^2} \tag{4.11}$$

$$\mathfrak{K}(x,y,z) = \frac{11664}{(81 + 972y^2 - 20z^2)^2}$$

$$\mathfrak{H}(x,y,z) = \frac{36(45 + 54y^2 - 10z^2)}{(81 + 972y^2 - 20z^2)^{3/2}}$$
(4.11)

Abbildungsverzeichnis

2.1	Bsp. Umkreismittelpunktunterteilung	14
2.2	Bsp. induzierte Orientierung	14
2.3	Bsp. Sternoperator in 2D	18
2.4	Bsp. Randoperator auf (dualen) 2-Kette	18
2.5	Kantenkräfte für optimale Kantenlängen	24
2.6	Winkeländerung durch Verschiebung	24
2.7	Euler mit und ohne Vorprojektion	25
2.8	Gittergenerierung: Ellipsoid	27
2.9	Gittergenerierung: Lokale Verfeinerung	27
2.10	Projektion	29
3.1	Fehler bei der Auswertung diskreter 1-Form	31

Literaturverzeichnis

- [AMR88] R. Abraham, J.E. Marsden, and T.S. Ratiu. *Manifolds, Tensor Analysis, and Applications*. Number Bd. 75 in Applied Mathematical Sciences. Springer New York, 1988.
- [CX04] Long Chen and Jinchao Xu. Optimal Delaunay triangulations. *Journal of Computational Mathematics*, 22(2):299–308, 2004.
- [DFG99] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations: Applications and algorithms. *SIAM Rev.*, 41(4):637–676, December 1999.
- [EH72] D. Jack Elzinga and Donald W. Hearn. The minimum covering sphere problem. *Management Science*, 19(1):96 104, 1972.
- [Gol05] Ron Goldman. Curvature formulas for implicit curves and surfaces. Computer Aided Geometric Design, 22(7):632 – 658, 2005. Geometric Modelling and Differential Geometry.
- [Hir03] Anil Nirmal Hirani. *Discrete Exterior Calculus*. PhD thesis, California Institute of Technology, Pasadena, CA, USA, 2003. AAI3086864.
- [Jän05] Klaus Jänich. Vektoranalysis: Springer-Lehrbuch. Springer, 2005.
- [Lee 97] John Marshall Lee. Riemannian manifolds: an introduction to curvature. Graduate Texts in mathematics. Springer, New York, 1997.
- [Lü05] Wolfgang Lück. Algebraische Topologie: Homologie und Mannigfaltigkeiten. Vieweg, 1 edition, 2005.
- [Mun84] J.R. Munkres. *Elements of Algebraic Topology*. Advanced book classics. Perseus Books, 1984.
- [OF02] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces (Applied Mathematical Sciences). Springer, 2003 edition, November 2002.
- [PCF⁺09] P Pathmanathan, J Cooper, A Fletcher, G Mirams, P Murray, J Osborne, J Pitt-Francis, A Walter, and S J Chapman. A computational study of discrete mechanical tissue models. *Physical Biology*, 6(3):036001, 2009.
- [Pra14] Simon Praetorius. AMDiS Tutorial. https://fusionforge.zih.tu-dresden.de/plugins/mediawiki/wiki/amdis/index.php/Hauptseite#Tutorial, 2014. [Online; accessed 08-May-2014].

- [SG09] Gerd Sußner and Gunther Greiner. Hexagonal delaunay triangulation. In *Proceedings*, 18th International Meshing Roundtable, pages 519–538. Springer, 2009.
- [Shi14] Theodore Shifrin. DIFFERENTIAL GEOMETRY: A First Course in Curves and Surfaces. University of Georgia, 2014.
- [VHGR08] Evan VanderZee, Anil N. Hirani, Damrong Guoy, and Edgar A. Ramos. Well-centered triangulation. *CoRR*, abs/0802.2108, 2008.
- [Whi57] H. Whitney. Geometric Integration Theory. Princeton mathematical series. University Press, 1957.
- [WV10] T. Witkowski and A. Voigt. A multi-mesh finite element method for Lagrange elements of arbitrary degree. ArXiv e-prints, May 2010.