CANARY ISLANDS DATABASE

Samuel Martín Morales alu0101359526@ull.edu.es Jorge Domínguez González alu0101330600@ull.edu.es Cheuk Kelly Ng Pante alu0101364544@ull.edu.es

December 18, 2023

0.1 Objetivos del Proyecto

- Diseñar e implementar una base de datos para gestionar información relacionada con las Islas Canarias.
- Crear una interfaz de programación de aplicaciones (API) que permita operaciones CRUD sobre la base de datos.
- Realizar consultas de prueba y demostrar el funcionamiento de la base de datos.

0.2 Contexto y Requisitos

0.2.1 Entidades:

- Islas:
 - Atributos: ID (clave primaria), Nombre.
- Distribución Poblacional:
 - Atributos: ID (clave primaria), Nombre, Provincia, Capital, Municipio, Poblacion Isla.
- Compañías:
 - Atributos: ID (clave primaria), Nombre, Tipo, Sede (relacionada con Islas), Año Fundacion.
- Sitio interes:
 - Atributos: ID (clave primaria), Nombre, Isla, Municipio, Coordenadas, Foto.
- Animales autóctonos:
 - Atributos: ID (clave primaria), Nombre, Nombre Científico, Islas, Invasoras, Dieta, Foto.

0.2.2 Relaciones:

- Distribución Poblacional a Islas:
 - Relacionada por la columna Nombre con la entidad Islas.
- Compañías a Islas:
 - Relacionada por la columna Sede con la entidad Islas.
- Sitio interes a Islas:
 - Relacionada por la columna Isla con la entidad Islas.
- Animales autóctonos a Islas:
 - Relacionada por la columna Islas con la entidad Islas.

0.2.3 Consideraciones Adicionales:

- La relación entre las entidades Compañías y Islas se establece a través de la columna Sede, indicando la isla donde tienen su sede las compañías.
- La relación entre Sitios Interes y Islas se establece por la columna Isla, indicando en qué isla se encuentra el sitio de interés.

• La relación entre Animales autóctonos e Islas se establece por la columna Islas, indicando las islas a las que están asociados los animales autóctonos.

0.2.4 Restricciones:

- La relación entre las entidades Compañías y Islas se establece a través de la columna Sede, indicando la isla donde tienen su sede las compañías.
- La relación entre Sitio interes y Islas se establece por la columna Isla, indicando en qué isla se encuentra el sitio de interés.
- La relación entre Animales autóctonos e Islas se establece por la columna Islas, indicando las islas a las que están asociados los animales autóctonos.

0.3 Diseño Conceptual

0.3.1 Modelo Entidad-Relación

Figure 1: Modelo Entidad-Relación

0.3.2 Modelo Relacional

Figure 2: Modelo Relacional

0.3.3 Supuestos Semánticos

Documentación que explique los supuestos semánticos y decisiones de diseño.

Chapter 1 Scripts SQL

1.1 Creación de la Base de Datos

```
DROP DATABASE IF EXISTS islas_canarias;

CREATE DATABASE islas_canarias with TEMPLATE = templateO ENCODING = 'UTF8';

ALTER DATABASE islas_canarias OWNER TO postgres;

\connect islas_canarias

DROP SCHEMA IF EXISTS public CASCADE;

CREATE SCHEMA public;

ALTER SCHEMA public OWNER TO postgres;

SET default_tablespace = '';

SET default_table_access_method = heap;
```

1.2 Creación de Tablas y Datos de Muestra

```
CREATE TABLE sitios_interes (
   id_sitios_interes SERIAL PRIMARY KEY,
   isla_id INTEGER NOT NULL,
   nombre VARCHAR(50) NOT NULL,
   municipio VARCHAR(50) NOT NULL,
   latitud DECIMAL(9,6) NOT NULL,
   longitud DECIMAL(9,6) NOT NULL,
   foto VARCHAR(100) NOT NULL,
   CONSTRAINT sitios_interes_isla_fkey
        FOREIGN KEY (isla_id)
        REFERENCES isla (id_isla) ON DELETE CASCADE
);
```

1.3 Inclusión de Datos en las Tablas

```
-- -- Inclusión de datos en la tabla de isla_ecosistema
ALTER TABLE isla_ecosistema
ALTER COLUMN plantas_autoctonas_id DROP NOT NULL,
ALTER COLUMN animales_autoctonos_id DROP NOT NULL;
TRUNCATE TABLE isla_ecosistema;
```

INSERT INTO isla_ecosistema(isla_id, seres_vivos_id, animales_autoctonos_id, plantas_autoctonas_i

```
FROM animales_autoctonos;

INSERT INTO isla_ecosistema(isla_id, seres_vivos_id, animales_autoctonos_id, plantas_autoctonas_i
SELECT isla_id, ser_vivo_id, NULL, id_plantas_autoctonas
```

1.4 Implementación de Triggers

SELECT isla_id, ser_vivo_id, id_animales_autoctonos, NULL

-- Si se añade una nueva tupla dentro de la tabla de animales_autoctonos, se añadirá una nueva tu CREATE OR REPLACE FUNCTION insertar_animal_autoctono() RETURNS TRIGGER AS \$\$ BEGIN INSERT INTO isla_ecosistema(isla_id, seres_vivos_id, animales_autoctonos_id, plantas_autocton

INSERT INTO isla_ecosistema(isla_id, seres_vivos_id, animales_autoctonos_id, plantas_autoct
VALUES (NEW.isla_id, NEW.ser_vivo_id, NEW.id_animales_autoctonos, NULL);
RETURN NEW;

END;

\$\$ LANGUAGE plpgsql;

FROM plantas_autoctonas;

CREATE TRIGGER insertar_animal_autoctono
AFTER INSERT ON animales_autoctonos
FOR EACH ROW
EXECUTE PROCEDURE insertar_animal_autoctono();

1.5 Consultas de Ejemplo

1.5.1 Consultas SQL

Ejemplos de consultas que demuestren el funcionamiento de la base de datos.

1.6 Implementación de API con Flask

1.6.1 API REST

Desarrollo de una API mediante Flask para realizar operaciones CRUD.

1.7 Entrega

1.7.1 Repositorio en GitHub

Enlace al Repositorio: https://github.com/feichay10/Proyecto-Final-ADBD/tree/main

1.7.2 Imágenes Adjuntas

Modelo Entidad-Relación, Grafo Relacional y capturas de consultas y operaciones en las tablas.

1.8 Bibliografía

Bibliography

[1] https://www.canaryislands.org/