

Sprawdzenie tunowalności hiperparametrów

Sieci neuronowe

Jakub Borek Karol Denst

1 Wstęp

Celem pracy jest zbadanie tunowalności poszczególnych hiperparametrów. Ocena tunowalności będzie się bazować na [4]. Wybrane modele to

- Klasyfikator wektorów nośnych
- Losowy las decyzyjny
- Gradient Boosting

Modele i ich hiperparametry są opisane w sekcji 2. Dla każdego z modeli wykorzystujemy jego istniejącą implementację w pakiecie SKLearn. Modele były testowane na poniższych zbiorach danych z OpenML:

- Diabetes [5] zawiera dane różnych osób wraz z informacją czy mają cukrzycę.
- Banknote Authentication [1] zawiera dane opisujące zdjęcia prawdziwych i sfałszowanych banknotów.
- Credit [2] zawiera dane różnych osób wraz z informacją czy są dobrymi kandydatami na kredyt.
- Spambase [3] zawiera dane opisujące email oraz informację czy jest to spam czy nie.

2 Wybrane modele i ich hiperparametry

W tej sekcji opisane są modele oraz testowane hiperparametry.

2.1 Klasyfikator wektorów nośnych

Klasyfikator wektorów nośnych (SVC w pakiecie SKLearn) to model klasyfikacyjny bazujący na wektorach nośnych. Działa poprzez znajdowanie optymalnej granicy decyzyjnej, która najlepiej oddziela klasy w danych. Hiperparametry i ich przedziały:

- C [0.01, 100] parametr regularyzujący.
- kernel {linear, sigmoid, rbf} jadro algorytmu.
- gamma [0.001, 100] współczynnik ziarna. (nie ma znaczenia dla ziarna liniowego)

2.2 Losowy las decyzyjny

Jest to algorytm klasyfikacji oparty na ensemble, który tworzy wiele drzew decyzyjnych. Ostateczna decyzja jest wynikiem głosowania większościowego. Hiperparametry i ich przedziały:

- n estimators [1, 2000] liczba drzew w lesie.
- max depth [3, 15] maksymalna głębokość drzewa.
- min samples split [2, 10] minimalna liczba próbek wymagana do podziału węzła.
- \bullet $\min_samples_leaf$ $[1,\,10]$ \min malna liczba próbek w liściu.
- max_features {sqrt, log2, 0.2, 0.4} liczba cech branych pod uwagę przy każdym podziale.

2.3 Gradient Boosting

Algorytm klasyfikacji, który buduje modele w sposób sekwencyjny, poprawiając błędy poprzednich modeli. Hiperparametry i ich przedziały:

- \bullet n_estimators [1, 2000] liczba drzew w lesie.
- \bullet $\mathbf{max_depth}$ [3, 15] maksymalna głębokość drzewa.
- \bullet $\min_samples_split$ $[2,\,10]$ \min malna liczba próbek wymagana do podziału węzła.
- min samples leaf [1, 10] minimalna liczba próbek w liściu.
- max_features {sqrt, log2, 0.2, 0.4} liczba cech branych pod uwagę przy każdym podziale.

3 Potrzebna liczba iteracji

Różne algorytmy wymagają różnej liczby iteracji aby osiągnąć maksymalną efektywność. W tej sekcji przedstawione jest porównanie ile iteracji jest potrzeba do osiągnięcia najlepszej możliwej wydajności dla każdego algorytmu dla każdego zbioru danych.

Rysunek 1: Wyniki dla Klasyfikator wektorów nośnych

Rysunek 2: Wyniki dla lasu losowego

Rysunek 3: Wyniki dla Gradient Boostringu

4 Tunowalność algorytmów

Tunowalność hiperparametrów miarzy jak duże zmiany w wynikach algorytmu można osiągnąć poprzez zmiany hiperparametrów. Wzory mierzące tunowalność pochodzą z [4]. Tunowalność jest obliczana jako różnica pomiędzy wynikiem dla najlepszych parametrów, a wynikiem dla domyślnych parametrów SKLearn. Poprzez wynik rozumiemy 1-a, gdzie a to dokładność klasyfikacji na zbiorze testowym.

4.1 Wyniki dla optymalizacji losowej

Algorytm	Zbiór danych	Tunowalność
Klasyfikator wektorów nośnych	Diabetes	0.067
Klasyfikator wektorów nośnych	Banknote Authentication	0.0
Klasyfikator wektorów nośnych	Credit	0.045
Klasyfikator wektorów nośnych	Spambase	0.043
Losowy las decyzyjny	Diabetes	0.065
Losowy las decyzyjny	Banknote Authentication	0.005
Losowy las decyzyjny	Credit	0.017
Losowy las decyzyjny	Spambase	0.040
Gradient Boosting	Diabetes	0.076
Gradient Boosting	Banknote Authentication	0.005
Gradient Boosting	Credit	0.030
Gradient Boosting	Spambase	0.047

4.2 Wyniki dla optymalizacji bayesowskiej

Algorytm	Zbiór danych	Tunowalność
Klasyfikator wektorów nośnych	Diabetes	0.065
Klasyfikator wektorów nośnych	Banknote Authentication	0.0
Klasyfikator wektorów nośnych	Credit	0.047
Klasyfikator wektorów nośnych	Spambase	0.043
Losowy las decyzyjny	Diabetes	0.062
Losowy las decyzyjny	Banknote Authentication	0.005
Losowy las decyzyjny	Credit	0.028
Losowy las decyzyjny	Spambase	0.038
Gradient Boosting	Diabetes	0.073
Gradient Boosting	Banknote Authentication	0.005
Gradient Boosting	Credit	0.035
Gradient Boosting	Spambase	0.047

5 Podsumowanie

Celem pracy jest analiza tunowalności hiperparametrów trzech algorytmów klasyfikacyjnych: klasyfikatora wektorów nośnych, losowego lasu decyzyjnego oraz gradient boostingu. Modele te zostały zaimplementowane za pomocą pakietu SKLearn i przetestowane na zbiorach danych z OpenML: Diabetes, Banknote Authentication, Credit oraz Spambase. Tunowalność oceniono, porównując wyniki dla domyślnych i optymalnych wartości hiperparametrów, zgodnie z metodyką zaproponowaną w [4]. Przeprowadzone elementy pokazały, że jak bardzo tunowalny jest dany algorytm bardzo zależy od zbioru danych na podstawie którego przeprowadzamy optymalizację.

Bibliografia

- [1] Volker Lohweg. Banknote Authentication. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C55F 2012.
- [2] OpenML Dataset: 31 (Credit Approval). https://www.openml.org/d/31. Accessed: 2024-11-13. 2023.
- [3] OpenML Dataset: 44 (Spambase). https://www.openml.org/d/44. Accessed: 2024-11-13. 2023.
- [4] Philipp Probst, Bernd Bischl i Anne-Laure Boulesteix. *Tunability: Importance of Hyperparameters of Machine Learning Algorithms*. 2018. arXiv: 1802.09596 [stat.ML]. URL: https://arxiv.org/abs/1802.09596.
- [5] Peter D. Turney. "Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm". W: Journal of Artificial Intelligence Research 2 (1995), s. 369–409. DOI: 10.1613/jair.120. URL: https://www.jair.org/index.php/jair/article/view/10129.