Zadanie nr 1

Rafał Leja 340879 01.04.2025

 $340879 \mod 4 = 3$

Zadanie 3, rozkład t-studenta

1. Liczenie dystrybuanty

Mamy gęstość rozkładu t-studenta podaną jako:

$$t(k): f(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(k/2)} \left(1 + \frac{x^2}{k}\right)^{-(k+1)/2} dx.$$

Chcemy obliczyć dystrybuante, czyli:

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

co może być zapisane jako:

$$F(x) = \int_{-\infty}^{0} f(t)dt + \int_{0}^{x} f(t)dt.$$

Wiemy, że rozkład t(k) jest symetryczny względem zera, więc:

$$F(0) = \int_{-\infty}^{0} f(t)dt = 0.5.$$

Zatem, jeśli x > 0 to:

$$F(x) = 0.5 + \int_0^x f(t)dt,$$

oraz jeśli x < 0 to:

$$F(x) = 0.5 - \int_{x}^{0} f(t)dt.$$

2. Numeryczna poprawność funkcji Gamma

Funkcja Gamma jest zdefiniowana jako:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt,$$

co jest równoważne:

$$\Gamma(x) = x * \Gamma(x-1)$$
 dla $x \in \mathbb{N}$.

W zadaniu liczymy funkcję Gamma dla $\frac{k}{2}$ dla $k \in \mathbb{N}$, więc możemy użyć własności rekurencyjnej funkcji Gamma, oraz faktu że funkcja Gamma przyjmuje wartości:

$$\Gamma(1/2) = \sqrt{\pi},$$

$$\Gamma(1) = 1$$

W ten sposób mamy prostą, numerycznie poprawną funkcję Gamma, która nie wymaga obliczania całek.

3. Metoda trapezów

Metoda trapezów jest jedną z najprostszych metod numerycznych do obliczania całek. Polega na przybliżeniu funkcji linią prostą i obliczeniu pola trapezu. Możemy to zapisać jako:

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2}(f(a) + f(b))$$

dla jednego przedziału, lub

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{2}(f(a)+f(b)) + 2f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}),$$

gdzie x_i to punkty dzielące przedział [a,b] na n równych części.

4. Metoda Romberga

Metoda Romberga jest bardziej zaawansowaną metodą numeryczną do obliczania całek. Polega na iteracyjnym poprawianiu wyniku metody trapezów, aż do osiągnięcia zadowalającej dokładności. Możemy to zapisać jako:

$$\begin{cases} R_{0,i} = \text{metoda trapezów na } 2^i \text{ przedziałach} \\ R_{k,i} = \frac{4^k R_{k-1,i+1} - R_{k-1,i}}{4^k - 1} \end{cases}$$

gdzie $R_{k,i}$ to wynik metody Romberga dla k-tej iteracji i i-tego podziału. Metoda Romberga jest bardziej skomplikowana, ale daje lepsze wyniki niż metoda trapezów.

5. Podsumowanie

Używając powyższych metod, możemy obliczyć dystrybuantę rozkładu t-studenta dla dowolnej liczby stopni swobody k.