### Ciência de Dados



Revisado: Roseli Romero SCC-ICMC-USP

## Métodos baseados em distância

Prof. Dr. André C. P. L. F. de Carvalho Dr. Isvani Frias-Blanco ICMC-USP













## Principais tópicos

- Aprendizado baseado em instâncias
- 1-vizinho mais próximo
- Medidas de distância
- Similaridade e dissimilaridade
- Proximidade
- K-vizinhos mais próximos
- Conclusão



#### AM e Geometria

- Medidas de distância
  - Podem ser usadas para
    - Classificar novos dados
      - Ex.: K-NN
    - Agrupar dados
      - Ex.: K-médias
  - Existem várias medidas







- Versão simples do algoritmo k-NN
  - Geralmente usado para classificação
- Algoritmo lazy (preguiçoso)
  - Olha os dados de treinamento apenas quando vai classificar um novo objeto
  - Não constrói um modelo explicitamente
  - Diferente de algoritmos
    - Induzem modelo
      - Ex.: ADs, RNs e SVMs







## Métodos baseados em distância

- Consideram proximidade entre dados
  - Similaridade
  - Dissimilaridade



- Existem várias
  - Euclidiana
  - Norma máxima
  - Bloco-cidade
  - **.** . . .



### Distância de Minkowski

Medida de distância generalizada

$$dist = (\sum_{k=1}^{m} |p_k - q_k|^r)^{\frac{1}{r}}$$

- Valor de r leva a diferentes distâncias:
  - 1 (L<sub>1</sub>): Distância bloco cidade (Manhattan)
    - Hamming (valores binários)
  - 2 (L<sub>2</sub>): Distância Euclidiana



#### Medidas de distância

- Distância Euclidiana
  - Sistema de coordenadas cartesianas

$$dist = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

- Distância de norma máxima
  - Menor complexidade e menos exatidão

$$dist = MAX(|p_k - q_k|)$$



## Medidas de distância



Distância Euclidiana

Distância Manhattan

- Qual das três medidas resulta na maior e na menor distância entre os exemplos abaixo?
  - Manhattan
  - Euclidiana
  - Norma máxima

$$Ex1 = (3, 1, 10, 2)$$

$$Ex2 = (2, 5, 3, 2)$$

- Utilizando distância de Manhattan, definir:
  - Qual par dos números binários abaixo tem a distância mais semelhante à diferença entre seus valores na base decimal?
     110000, 111001, 000111, 001011, 100111, 101001



#### Similaridade x Dissimilaridade

- Similaridade
  - Mede o quanto dois objetos são parecidos
    - Quanto mais parecidos, maior o valor
- Dissimilaridade
  - Mede o quanto dois objetos são diferentes
    - Distância
    - Quanto mais diferentes, maior o valor
- Medida de proximidade pode ser usada



### Proximidade entre valores

- Sejam a e b dois valores de um atributo
  - Nominal

• 
$$sim = 1 - d$$
  $d(a,b) = \begin{cases} 1, se \ a \neq b \\ 0, se \ a = b \end{cases}$ 

Ordinal

$$d(a,b) = \frac{|pos_a - pos_b|}{n-1}$$
 n = #valores

Intervalar ou racional

• sim = 1 - d ou sim = 
$$1/(1+d)$$
  $d(a,b) = |a-b|$ 



- Para cada medida de distância
  - Quais são os dois exemplos da tabela abaixo mais próximos e os dois mais distantes?
  - Usar distâncias Euclidiana, bloco cidade e norma máxima

| Estado   | Escolaridade            | Altura     | Salário      | Classe |
|----------|-------------------------|------------|--------------|--------|
| SP       | Médio                   | 180        | 3000         | Α      |
| RJ<br>RJ | Superior<br>Fundamental | 174<br>100 | 7000<br>2000 | B<br>A |



- Generalização do 1-vizinho mais próximo
- Algoritmo de AM baseado distância muito simples
  - Memória
- Número de vizinhos (k) pode variar



## Quantos vizinhos?

- K muito grande
  - Vizinhos podem ser muito diferentes
  - Predição tendenciosa para classe majoritária
  - Custo computacional mais elevado
- K muito pequeno
  - Considera apenas os objetos muito parecidos
    - Não usa quantidade suficiente de informação
  - Previsão pode ser instável
    - Ruído

# 4

## Quantos vizinhos?



# 4

## Quantos vizinhos?





Seja k o número de vizinhos mais próximos
Para cada novo exemplo x
Definir a classe dos k exemplos
(vizinhos) mais próximos
Classificar x na classe majoritária
entre seus k vizinhos



- Abordagem local
- Processo de classificação pode ser lento
  - Seleção de atributos
  - Eliminação de exemplos
    - Guardar conjunto de protótipos para cada classes
    - Algoritmos iterativos
      - Eliminação sequencial
      - Inserção sequencial



- Algoritmos iterativos para eliminação
  - Eliminação sequencial
    - Começa com todos os exemplos
    - Descarta exemplos corretamente classificados pelos protótipos
  - Inserção sequencial
    - Conjunto inicial tem apenas os protótipos
    - Acrescenta exemplos incorretamente classificados pelos protótipos (expande protótipos)



- Normalizar atributos
- Ponderar atributos
- Ponderar voto por distância entre exemplos
- Regressão
- Naturalmente incremental



#### Seja o seguinte cadastro de pacientes:

| Nome  | Febre | Enjôo | Manchas  | Dores | Diagnóstico |
|-------|-------|-------|----------|-------|-------------|
| João  | sim   | sim   | pequenas | não   | doente      |
| Pedro | não   | não   | grandes  |       | saudável    |
| Maria | sim   | sim   | pequenas |       | saudável    |
| José  | sim   | não   | grandes  |       | doente      |
| Ana   | sim   | não   | pequenas |       | saudável    |
| Leila | não   | não   | grandes  |       | doente      |



- Usar K-NN e os exemplos anteriores para definir as classes dos exemplos de teste
  - Usar k = 1, 3 e 5
- Exemplos de teste
  - (Luis, não, não, pequenas, sim)
  - (Laura, sim, sim, grandes, sim)

- Dada a tabela abaixo, com k = 1 e 3, definir a classe dos exemplos:
  - (RJ, Médio, 178, 2000)
  - (SP, Superior, 200, 800)

| E | Estado | Escolaridade | Altura | Salário | Classe |
|---|--------|--------------|--------|---------|--------|
|   | SP     | Médio        | 180    | 3000    | Α      |
| F | RJ     | Superior     | 174    | 7000    | В      |
| F | RS     | Médio        | 180    | 600     | В      |
| F | RJ     | Superior     | 100    | 2000    | Α      |
|   | SP     | Fundam.      | 178    | 5000    | Α      |
| F | RJ     | Fundam.      | 188    | 1800    | Α      |



## Conclusão

- Aprendizado baseado em distância
- Conceitos básicos
- Medidas de distância
- K-vizinhos mais próximos
- Variações
- Exemplos



# Perguntas





#### Similaridade entre vetores binários

- Algumas vezes, objetos p e q têm apenas valores binários
  - Ex.: 0110 e 1100
- Similaridades podem ser computadas usando:
  - $M_{01}$  = número de atributos em que p = 0 e q = 1
  - $M_{10}$  = número de atributos em que p = 1 e q = 0
  - $M_{00}$  = número de atributos em que p = 0 e q = 0
  - M<sub>11</sub> = número de atributos em que p = 1 e q = 1



#### Similaridade entre vetores binários

Coeficiente de Casamento Simples

$$CCS = (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

Coeficiente Jaccard

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$

Agrupamento de dados



• Que medida de similaridade binária gera o maior valor de similaridade entre vetores p e q?



#### Similaridade cosseno

- Muito usado quando dados são textos
  - Bag of words
    - Grande número de atributos
    - Vetores esparsos
- Sejam p e q vetores representando documentos
  - $\cos(p, q) = ||p|| ||q|| \cos\theta = (p \cdot q) / (||p|| ||q||)$ 
    - •: vector produto interno entre vetores
    - || p ||: é o tamanho (norma) do vetor p



### Distância cosseno

- Distância angular entre dois vetores
  - Invariante a escala dos atributos
  - 1 − similaridade cosseno

$$dist_{\cos seno} = 1 - \frac{\sum_{k=1}^{m} p_{k}.q_{k}}{\sum_{k=1}^{m} p_{k}^{2}.\sum_{k=1}^{m} q_{k}^{2}}$$



## Distância de Pearson

- Muito usada em bioinformática e séries temporais
  - 1 correlação entre dois vetores

$$dist_{Pearson} = 1 - \frac{\sum_{k=1}^{m} (p_k - \overline{p}).(q_k - \overline{q})}{\sqrt{\sum_{k=1}^{m} (p_k - \overline{p})^2.\sum_{k=1}^{m} (q_k - \overline{q})^2}}$$



## Propriedade de Distâncias

- Medidas de distância, em geral, têm as seguintes propriedades
  - Seja d(p, q) a distância (dissimilaridade) entre dois objetos p e q
    - $d(p, q) \ge 0 \ \forall \ p \in q \in d(p, q) = 0$  se somente se p = q (definida positiva)
    - $d(p, q) = d(q, p) \forall p \in q \text{ (simetria)}$
    - $d(p, r) \le d(p, q) + d(q, r) \forall p, q \in r$  (designaldade triangular)
- Medidas que satisfazem essas propriedades são denominadas métricas



## Propriedade de Distâncias

- Medidas de similaridade também têm propriedades bem definidas:
  - Seja s(p, q) a similaridade entre dois objetos p e q
    - s(p, q) = 1 (similaridade máxima) apenas se p = q
    - $s(p, q) = s(q, p) \forall p \in q$  (simetria)

# Input space

