Report for the Markov model (cohort state-transition model)

Data and parameters

Table 1: Data from Global Health Data Exchange

	index	sex	incidence	$death_CVD$	death_nonCVD
1	40	male	0.003888	0.000819	0.002494
2	45	$_{\mathrm{male}}$	0.006729	0.001340	0.003399
3	50	$_{\mathrm{male}}$	0.010564	0.002302	0.004951
4	55	male	0.015291	0.003665	0.007282
5	60	male	0.022078	0.006404	0.011159
6	65	male	0.030980	0.011155	0.016946
7	70	male	0.043589	0.019978	0.026305
8	40	female	0.004545	0.000351	0.001137
9	45	female	0.007094	0.000643	0.001620
10	50	female	0.010133	0.001206	0.002475
11	55	female	0.013734	0.002014	0.003705
12	60	female	0.018272	0.003872	0.005850
13	65	female	0.023744	0.006996	0.009060
_14	70	female	0.033907	0.013398	0.014907

```
population_data <- read_csv("data/Normal3Stra_data.csv")
population_data <- data.frame(population_data)</pre>
```

```
year <- c(1,1,0,0)
HR_cvdhistory_cvd <- 1.37
HR_cvdhistory_cvdth <- 3.12
HR_high_live_cvdth <- 1.17

p_live_oth_death <- rate_to_prob(r=rate_data$death_nonCVD, t = 1)
p_live_cvd <- rate_to_prob(r=rate_data$incidence, t=1)
p_live_cvdth <- rate_to_prob(r=rate_data$death_CVD, t=1)
p_ccvd_acvd <- rate_to_prob(rate_data$incidence*HR_cvdhistory_cvd, t=1)
p_ccvd_cvdth <- rate_to_prob(rate_data$death_CVD*HR_cvdhistory_cvdth, t=1)
# p_acvd_cvddth</pre>
```

A transition probability matrix P_t

状态转换概率矩阵

状态	未患心血管病	患有心血管病	死于心血管病	死于非心血管病
未患心血管病	P4	P1	P2	P3
患有心血管病		P6	P5	P3

$$P_t = \begin{cases} p_{[1,1,t]} & p_{[1,2,t]} & p_{[1,3,t]} & p_{[1,4,t]} \\ p_{[2,1,t]} & p_{[2,2,t]} & p_{[2,3,t]} & p_{[2,4,t]} \\ p_{[3,1,t]} & p_{[3,2,t]} & p_{[3,3,t]} & p_{[3,4,t]} \\ p_{[4,1,t]} & p_{[4,2,t]} & p_{[4,3,t]} & p_{[4,4,t]} \end{cases}$$

```
Thus,
```

```
\begin{split} P4 &= 1 - P1 - P2 - P3 \\ P1 &= p\_live\_cvd * (1 - p\_acvd\_cvdth) \\ P2 &= p\_live\_cvdth + p\_live\_cvd * p\_acvd\_cvdth \\ P3 &= p\_live\_oth\_death \\ P6 &= 1 - (p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth) - p\_live\_oth\_death \\ P5 &= p\_ccvd\_cvdth + p\_ccvd\_acvd * p\_acvd\_cvdth \end{split}
```

Table 2: Distribution of the population

1 40 male 229 2 45 male 444 3 50 male 422 4 55 male 410 5 60 male 322 6 65 male 160 7 70 male 116 8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394 14 70 female 187		index	sex	num
3 50 male 422 4 55 male 410 5 60 male 322 6 65 male 160 7 70 male 116 8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	1	40	male	229
4 55 male 410 5 60 male 322 6 65 male 160 7 70 male 116 8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	2	45	$_{\mathrm{male}}$	444
5 60 male 322 6 65 male 160 7 70 male 116 8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	3	50	male	422
6 65 male 160 7 70 male 116 8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	4	55	$_{\mathrm{male}}$	410
7 70 male 116 8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	5	60	$_{\mathrm{male}}$	322
8 40 female 498 9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	6	65	male	160
9 45 female 856 10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	7	70	male	116
10 50 female 822 11 55 female 842 12 60 female 519 13 65 female 394	8	40	female	498
11 55 female 842 12 60 female 519 13 65 female 394	9	45	female	856
12 60 female 519 13 65 female 394	10	50	female	822
13 65 female 394	11	55	female	842
	12	60	female	519
14 70 female 187	13	65	female	394
	_14	70	female	187

```
p9 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
prob_CVD_group0 <- matrix(0, ncol=14, nrow=10,</pre>
                      dimnames=list(paste0("t",0:9), names_population))
prob_CVDlive_group0 <- matrix(0, ncol=14, nrow=10,</pre>
                      dimnames=list(paste0("t",0:9), names_population))
result_CVD <- matrix(0, ncol = 1, nrow = 14,</pre>
                      dimnames=list(names population, ""))
result_CVDlive <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_QALY <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_Lifeyear <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_CVDeath <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_nonCVDeath <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
result_allDeath <- matrix(0, ncol = 1, nrow = 14,
                      dimnames=list(names_population, ""))
for(i in 1:14){
  # construct a_P
  if(i == 7 | i == 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v names states, v names states, 1:10))
    a_P["S1", "S1", 1:10] \leftarrow 1 - (p_live_cvd[i] * (1-p8[1:10,i]) +
                                p_live_cvdth[i] + p_live_cvd[i] * p8[1:10,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] <- p_live_cvd[i] * (1-p8[1:10,i])
    a_P["S1", "S3", 1:10] <- p_live_cvdth[i] + p_live_cvd[i] * p8[1:10,i]
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1 - p_live_oth_death[i] -</pre>
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:10,i])
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:10,i]</pre>
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] <- p_ccvd_acvd[i]*(1 - p8[1:10,i])
    p10[1:10,i] <- p_live_cvd[i]
  }
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd[i] * (1-p8[1:5,i]) +
                                p_live_cvdth[i] + p_live_cvd[i] * p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] <- p_live_cvd[i] * (1-p8[1:5,i])
    a_P["S1", "S3", 1:5] <- p_live_cvdth[i] + p_live_cvd[i] * p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]
```

```
a_P["S2", "S1", 1:5] <- 0
  a_P["S2", "S2", 1:5] <- 1 - p_live_oth_death[i] -
    (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:5,i])
  a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:5,i]
  a_P["S2", "S4", 1:5] <- p_live_oth_death[i]</pre>
  a_P["S3", "S3", 1:5] <- 1
  a_P["S4", "S4", 1:5] <- 1
  a_P["S1", "S1", 6:10] \leftarrow 1- (p_live_cvd[i+1] * (1-p8[6:10,i]) +
                                    p_live_cvdth[i+1] + p_live_cvd[i+1] * p8[6:10,i] +
                                    p_live_oth_death[i+1])
  a_P["S1", "S2", 6:10] <- p_live_cvd[i+1] * (1 - p8[6:10,i])
  a_P["S1", "S3", 6:10] <- p_live_cvdth[i+1] + p_live_cvd[i+1] * p8[6:10,i]
  a_P["S1", "S4", 6:10] \leftarrow p_live_oth_death[i+1]
  a_P["S2", "S1", 6:10] <- 0
  a_P["S2", "S2", 6:10] <- 1 - p_live_oth_death[i+1] -
    (p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[6:10,i])
  a_P["S2", "S3", 6:10] \leftarrow p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[6:10,i]
  a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
  a_P["S3", "S3", 6:10] <- 1
  a_P["S4", "S4", 6:10] <- 1
  p9[1:5,i] \leftarrow p_{ccvd_acvd[i]} * (1 - p8[1:5,i])
  p9[6:10,i] \leftarrow p_ccvd_acvd[i+1] * (1 - p8[6:10,i])
  p10[1:5,i] <- p_live_cvd[i]
  p10[6:10,i] <- p_live_cvd[i+1]
# construct m M
  v s init \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
  m_M <- matrix(0,nrow = (n_t), ncol = n_states,</pre>
                 dimnames = list(0:(n_t-1), v_names_states))
  m_M[1, ] <- v_s_init</pre>
  for(t in 1:9){
    m_M[t + 1, ] \leftarrow m_M[t, ] %*% a_P[, , t]
# calculate result
  prob_CVD_group0[ ,i] <- m_M[ ,1] * p10[ ,i]</pre>
  prob_CVDlive_group0[\ ,i] <- \ m_M[\ ,1]*(a_P["S1",\ "S2",\ 1:10]) \ + \ m_M[\ ,2]*p9[\ ,i]
  result_m_M[ , , i] <- m_M
result_CVD[i] <- sum(prob_CVD_group0[1:9, i] * patient_group[i])</pre>
result_Lifeyear[i] <- sum(t(t(m_M) * year) * patient_group[i])</pre>
result_QALY[i] <- sum(t(t(m_M) * uti_values) * patient_group[i]) +</pre>
  sum(prob_CVDlive_group0[1:9, i] * out_trans_to_cvd*patient_group[i])
result_CVDeath[i] <- m_M[10, 3] * patient_group[i]</pre>
result nonCVDeath[i] <- m M[10, 4] * patient group[i]</pre>
result_allDeath[i] <- m_M[10, 3] * patient_group[i] + m_M[10, 4] * patient_group[i]
```

Table 3: New CVD events for patients under Strategy0

	V1
m40	10.20
m45	31.71
m50	43.92
m55	59.10
m60	61.94
m65	39.40
m70	31.64
f40	24.63
f45	61.96
f50	80.96
f55	108.29
f60	84.31
f65	81.88
f70	44.12
sum	764.06

Table 4: Result for Strategy0

	CVD.events	CVD.Death		00	Life.Year
1	764.06	266.80	594.73	59118.89	59488.82

0.82

		Table 5: Incidence rate	
Item		CVD incidence(HR)	CVD cause-specific mortality (HR)
	Low risk	0.63	1
Strategy 1	Medium risk	1.56	1
	High risk	1.6	1.17
	Low risk	0.43	1
Strategy 2	Medium risk	0.97	1
	High risk	2.06	1.17
	Low risk	0.45	1
Strategy 3	Medium risk	1.09	1
	High risk	2.11	1.17
	Weight control	0.93	0.93
Intervention	Smoke cession	0.85	0.72
	Salt reduction	0.81	0.66

Table 6: Distribution of the population under different strategies

0.7

Statin and antihypertensive

Medication

	index	sex	strategy	low	medium	high
1	40	male	strategy1	159	8	62
2	45	$_{\mathrm{male}}$	strategy1	173	64	207
3	50	$_{\mathrm{male}}$	strategy1	188	63	171
4	55	$_{\mathrm{male}}$	strategy1	200	89	121
5	60	$_{\mathrm{male}}$	strategy1	129	89	104
6	65	male	strategy1	71	42	47
7	70	$_{\mathrm{male}}$	strategy1	48	28	40
8	40	female	strategy1	444	6	48
9	45	female	strategy1	738	18	100
10	50	female	strategy1	677	20	125
11	55	female	strategy1	440	217	185
12	60	female	strategy1	216	164	139
13	65	female	strategy1	128	136	130
14	70	female	strategy1	65	55	67

```
prob_CVDlive_group1 <- matrix(0, ncol=14, nrow=10,</pre>
                     dimnames=list(paste0("t",0:9),names_population))
result_CVD_stg1 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_CVDlive_stg1 <- matrix(0, ncol = 3, nrow = 14,</pre>
                     dimnames=list(names_population, risk_levels))
result_QALY_stg1 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names population, risk levels))
result_Lifeyear_stg1 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_CVDeath_stg1 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result nonCVDeath stg1 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_allDeath_stg1 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
p8 <-array(rep(rate_to_prob(0.023), 140), dim=c(10,14),
           dimnames=list(1:10, names_population))
p9 <- array(NA, dim=c(10,14),dimnames=list(1:10,names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
for(r in 1:3){ # three rish groups
  # create a matrix for p_acvd_cvdth
 for(i in 1:14){
  # construct a P
 if(i == 7 | i == 14){
    a_P <- array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:10] \leftarrow 1 - (p_live_cvd_lmh[i,r] * (1 - p8[1:10,i]) +
                               p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * (p8[1:10,i]) +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] <- p_live_cvd_lmh[i,r] * (1 - p8[1:10,i])
    a_P["S1", "S3", 1:10] <- p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * (p8[1:10,i])
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1 - p_live_oth_death[i]-
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * (p8[1:10,i]))
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i] +</pre>
     p_ccvd_acvd[i] * (p8[1:10,i])
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] <- p_ccvd_acvd[i] * (1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd_lmh[i,r]
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd_lmh[i,r] * (1-p8[1:5,i]) +
                                p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] <- p_live_cvd_lmh[i,r] * (1-p8[1:5,i])
```

```
a_P["S1", "S3", 1:5] <- p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1 - p_live_oth_death[i]-
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:5,i])
    a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i] * p8[1:5,i]
    a P["S2", "S4", 1:5] <- p live oth death[i]
    a P["S3", "S3", 1:5] <- 1
    a_P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] \leftarrow 1 - (p_live_cvd_lmh[i+1,r] * (1-p8[1:5,i])+
                              p_live_cvdth_lmh[i+1,r] + p_live_cvd_lmh[i+1,r] * p8[1:5,i] +
                                p live oth death[i+1])
    a_P["S1", "S2", 6:10] \leftarrow p_live_cvd_lmh[i+1,r] * (1-p8[1:5,i])
    a_P["S1", "S3", 6:10] <- p_live_cvdth_lmh[i+1,r] + p_live_cvd_lmh[i+1,r] * p8[1:5,i]
    a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a_P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1 - p_live_oth_death[i+1]-
       (p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[1:5,i])
    a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[1:5,i]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
    a_P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] <- p_ccvd_acvd[i] * (1-p8[1:5,i])
    p9[6:10,i] <- p_ccvd_acvd[i+1] * (1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd_lmh[i,r]
    p10[6:10,i] <- p_live_cvd_lmh[i+1,r]
  }
     # construct m M
    v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m_M <- matrix(0,nrow</pre>
                             = (n_t), ncol = n_states,
                  dimnames = list(0:(n_t-1), v_names_states))
    m_M[1, ] <- v_s_init</pre>
    for(t in 1:9){
      m_M[t + 1, ] <- m_M[t, ] %*% a_P[, , t]</pre>
    # calculate result
    prob_CVD_group1[ ,i] <- m_M[ ,1]* p10[ ,i]</pre>
    prob_CVDlive_group1[ ,i] <- m_M[ ,1]*(a_P["S1", "S2", 1:10]) + m_M[ ,2]*p9[ ,i]</pre>
  result_CVD_stg1[i,r] <- sum(prob_CVD_group1[1:9,i]*patient_group_stg1[i,r])</pre>
  # result_CVDlive_stq1[i,r] <- sum(prob_CVDlive_group1[1:9,i]*patient_group_stq1[i,r])</pre>
  result_Lifeyear_stg1[i,r] <- sum(t( t(m_M) * year )*patient_group_stg1[i,r])
  result_QALY_stg1[i,r] <- sum(t(t(m_M) * uti_values)*patient_group_stg1[i,r]) +
    sum(prob_CVDlive_group1[1:9, i]*out_trans_to_cvd*patient_group_stg1[i,r])
 result_CVDeath_stg1[i,r] <- m_M[10,3]*patient_group_stg1[i,r]</pre>
  result_nonCVDeath_stg1[i,r] <- m_M[10,4]*patient_group_stg1[i,r]</pre>
  result_allDeath_stg1[i,r] <- m_M[10,3]*patient_group_stg1[i,r] + m_M[10,4]*patient_group_stg1[i,r]
}
}
```

Table 7: New CVD events for patients under Strategy1

	low	medium	high
m40	4.51	0.36	2.00
m45	7.90	4.58	10.77
m50	12.61	6.59	13.07
m55	18.77	12.94	12.96
m60	16.37	17.40	15.12
m65	11.73	10.64	8.97
m70	8.88	7.95	8.63
f40	13.98	0.30	1.72
f45	34.18	1.30	5.26
f50	42.91	1.97	9.00
f55	36.68	28.03	17.54
f60	22.94	26.89	16.84
f65	17.61	28.78	20.53
f70	10.25	13.34	12.21
sum	259.31	161.07	154.62

Table 8: Result for Strategy1

				0./	
	CVD.events	CVD.Death	all.Death	QALY	Life.Year
1	575.00	195.52	526.73	59531.09	59807.08

Table 9: Distribution of the population under different strategies

-			across or c	ne population	orr dried		3010000
		index	sex	strategy	low	medium	high
	15	40	male	strategy2	163	50	16
	16	45	$_{\mathrm{male}}$	strategy2	212	168	64
	17	50	$_{\mathrm{male}}$	strategy2	106	231	85
	18	55	$_{\mathrm{male}}$	strategy2	35	210	165
	19	60	$_{\mathrm{male}}$	strategy2	5	81	236
	20	65	male	strategy2	1	15	144
	21	70	male	strategy2	0	3	113
	22	40	female	strategy2	478	17	3
	23	45	female	strategy2	734	108	14
	24	50	female	strategy2	537	238	47
	25	55	female	strategy2	277	433	132
	26	60	female	strategy2	44	282	193
	27	65	female	strategy2	4	104	286
	28	70	female	strategy2	0	23	164

```
p_live_cvd_l <- ProbFactor(p_live_cvd, HR_l_stg2)</pre>
p_live_cvd_m <- ProbFactor(p_live_cvd, HR_m_stg2*</pre>
                               HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvd_h <- ProbFactor(p_live_cvd, HR_h_stg2*</pre>
                               HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd*
                                                                       # lifestyle intervention
                               HR_hpt_lip_cvd)
                                                # treatment intervention
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1)</pre>
                                                   # equal
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth) # lifestyle intervention
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1.17*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth* # lifestyle intervention
                                 HR_hpt_lip_cvdth) # treatment intervention
risk_levels <- c("low", "medium", "high")</pre>
                          dimnames = list(names_population, risk_levels))
```

```
dimnames=list(paste0("t",0:9),names_population))
result_CVD_stg2 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_CVDlive_stg2 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_QALY_stg2 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_Lifeyear_stg2 <- matrix(0, ncol = 3, nrow = 14,</pre>
                     dimnames=list(names_population, risk_levels))
result_CVDeath_stg2 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names_population, risk_levels))
result_nonCVDeath_stg2 <- matrix(0, ncol = 3, nrow = 14,
                     dimnames=list(names population, risk levels))
result_allDeath_stg2 <- matrix(0, ncol = 3, nrow = 14,</pre>
                     dimnames=list(names_population, risk_levels))
p8 <-array(rep(rate_to_prob(0.023), 140), dim=c(10,14),
           dimnames=list(1:10, names_population))
p9 <- array(NA, dim=c(10,14), dimnames=list(1:10, names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
for(r in 1:3){ # three rish groups
  # create a matrix for p_acvd_cvdth
  for(i in 1:14){
  # construct a_P
  if(i == 7 | i == 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:10] <-1 - (p_live_cvd_lmh[i,r] * (1-p8[1:10,i]) +
                                p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * (p8[1:10,i]) +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_lmh[i,r] * (1-p8[1:10,i])
    a_P["S1", "S3", 1:10] <- p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * (p8[1:10,i])
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1 - p_live_oth_death[i]-
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * (p8[1:10,i]))
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i] +
      p_ccvd_acvd[i] * (p8[1:10,i])
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] <- p_ccvd_acvd[i] * (1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd_lmh[i,r]
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] \leftarrow 1-(p_live_cvd_lmh[i,r] * (1-p8[1:5,i]) +
                                p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] <- p_live_cvd_lmh[i,r]*(1-p8[1:5,i])
    a_P["S1", "S3", 1:5] <- p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r]*p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]
```

```
a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1 - p_live_oth_death[i] -
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:5,i])
    a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i] * p8[1:5,i]
    a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:5] <- 1
    a P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] \leftarrow 1 - (p_live_cvd_lmh[i+1,r] * (1-p8[1:5,i])+
                              p_live_cvdth_lmh[i+1,r] + p_live_cvd_lmh[i+1,r] * p8[1:5,i] +
                                 p_live_oth_death[i+1])
    a_P["S1", "S2", 6:10] <- p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i])
     a_{p}["S1", "S3", 6:10] \leftarrow p_{live\_cvdth\_lmh[i+1,r]} + p_{live\_cvd\_lmh[i+1,r]} * p8[1:5,i] 
    a_P["S1", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a_P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1 - p_live_oth_death[i+1] -</pre>
      (p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[1:5,i])
    a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[1:5,i]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]</pre>
    a_P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] <- p_ccvd_acvd[i] * (1-p8[1:5,i])
    p9[6:10,i] <- p_ccvd_acvd[i+1] * (1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd_lmh[i,r]
    p10[6:10,i] \leftarrow p \text{ live cvd } lmh[i+1,r]
     # construct m M
    v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m_M <- matrix(0,nrow</pre>
                              = (n_t), ncol = n_states,
                   dimnames = list(0:(n_t-1), v_names_states))
    m_M[1, ] <- v_s_init</pre>
    for(t in 1:9){
      m_M[t + 1, ] \leftarrow m_M[t, ] %*% a_P[, , t]
    # calculate result
    prob_CVD_group2[ ,i] <- m_M[ ,1]* p10[ ,i] # new occurrence = S1*p9</pre>
    prob_CVDlive_group2[ ,i] <- m_M[ ,1]*(a_P["S1", "S2", 1:10]) + m_M[ ,2]*p9[ ,i]</pre>
  result_CVD_stg2[i,r] <- sum(prob_CVD_group2[1:9,i]*patient_group_stg2[i,r])</pre>
  result_CVDlive_stg2[i,r] <- sum(prob_CVDlive_group2[1:9,i]*patient_group_stg2[i,r])
  result_Lifeyear_stg2[i,r] <- sum(t( t(m_M) * year )*patient_group_stg2[i,r])</pre>
  result_QALY_stg2[i,r] <- sum(t(t(m_M) * uti_values)*patient_group_stg2[i,r]) +
    sum(prob_CVDlive_group2[1:9, i]*out_trans_to_cvd*patient_group_stg2[i,r])
  result_CVDeath_stg2[i,r] <- m_M[10,3]*patient_group_stg2[i,r]</pre>
  result_nonCVDeath_stg2[i,r] <- m_M[10,4]*patient_group_stg2[i,r]</pre>
  result_allDeath_stg2[i,r] <- m_M[10,3]*patient_group_stg2[i,r] + m_M[10,4]*patient_group_stg2[i,r]
}}
```

caption.placement="top",comment=FALSE)

Table 10: New CVD events for patients under Strategy1

	low	medium	high
m40	3.17	1.40	0.66
m45	6.67	7.60	4.25
m50	4.92	15.38	8.26
m55	2.28	19.64	22.34
m60	0.44	10.32	43.06
m65	0.12	2.52	34.17
m70	0.00	0.57	30.14
f40	10.33	0.53	0.14
f45	23.40	4.94	0.94
f50	23.50	14.93	4.31
f55	16.01	35.81	15.86
f60	3.25	29.86	29.48
f65	0.39	14.40	56.55
f70	0.00	3.68	37.23
sum	94.47	161.58	287.38

Table 11: Result for Strategy2

				-0./	
	CVD.events	CVD.Death	all.Death	QALY	Life.Year
1	543.44	164.33	497.15	59693.86	59953.83

Table 12: Distribution of the population under different strategies

	index	sex	strategy	low	medium	high
29	40	male	strategy3	0	0	0
30	45	male	strategy3	0	0	0
31	50	male	strategy3	106	231	85
32	55	male	strategy3	35	210	165
33	60	$_{\mathrm{male}}$	strategy3	5	81	236
34	65	male	strategy3	1	15	144
35	70	$_{\mathrm{male}}$	strategy3	0	3	113
36	40	female	strategy3	0	0	0
37	45	female	strategy3	0	0	0
38	50	female	strategy3	537	238	47
39	55	female	strategy3	277	433	132
40	60	female	strategy3	44	282	193
41	65	female	strategy3	4	104	286
42	70	female	strategy3	0	23	164

```
p_live_cvd_l <- ProbFactor(p_live_cvd, HR_l_stg3)</pre>
p_live_cvd_m <- ProbFactor(p_live_cvd, HR_m_stg3*</pre>
                              HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd) # lifestyle intervention
p_live_cvd_h <- ProbFactor(p_live_cvd, HR_h_stg3*</pre>
                              HR_smk_cvd*HR_salt_cvd*HR_wtc_cvd*
                                                                       # lifestyle intervention
                              HR_hpt_lip_cvd)
                                                # treatment intervention
p_live_cvdth_l <- ProbFactor(p_live_cvdth,1)</pre>
                                                   # equal
p_live_cvdth_m <- ProbFactor(p_live_cvdth,1*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth) # lifestyle intervention
p_live_cvdth_h <- ProbFactor(p_live_cvdth,1.17*</pre>
                                 HR_smk_cvdth*HR_salt_cvdth*HR_wtc_dth* # lifestyle intervention
                                 HR_hpt_lip_cvdth) # treatment intervention
risk_levels <- c("low", "medium", "high")</pre>
result CVD lmh <- matrix(0, nrow = 14,ncol = 3,
                          dimnames = list(names_population, risk_levels))
p_live_cvd_lmh <- matrix(cbind(p_live_cvd_l,p_live_cvd_m,p_live_cvd_h), ncol=3,</pre>
                          dimnames = list(names_population,risk_levels))
```

```
dimnames=list(paste0("t",0:9),names_population))
result_CVD_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_CVDlive_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_QALY_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_Lifeyear_stg3 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
result_CVDeath_stg3 <- matrix(0, ncol = 3, nrow = 14,
                      dimnames=list(names_population, risk_levels))
result_nonCVDeath_stg3 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names population, risk levels))
result_allDeath_stg3 <- matrix(0, ncol = 3, nrow = 14,</pre>
                      dimnames=list(names_population, risk_levels))
p8 <-array(rep(rate_to_prob(0.023), 140), dim=c(10,14),
           dimnames=list(1:10, names_population))
p9 <- array(NA, dim=c(10,14), dimnames=list(1:10, names_population))
p10 <- array(NA, dim=c(10,14), dimnames=list(1:10,names_population))
for(r in 1:3){ # three rish groups
  # create a matrix for p_acvd_cvdth
 for(i in 1:14){
  # construct a_P
 if(i == 7 | i == 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:10] \leftarrow 1 - (p_live_cvd_lmh[i,r]*(1-p8[1:10,i]) +
                                p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r]*(p8[1:10,i]) +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:10] \leftarrow p_live_cvd_lmh[i,r] * (1-p8[1:10,i])
    a_P["S1", "S3", 1:10] <- p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r] * (p8[1:10,i])
    a_P["S1", "S4", 1:10] <- p_live_oth_death[i]</pre>
    a_P["S2", "S1", 1:10] <- 0
    a_P["S2", "S2", 1:10] <- 1 - p_live_oth_death[i] -
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * (p8[1:10,i]))
    a_P["S2", "S3", 1:10] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i] * (p8[1:10,i])
    a_P["S2", "S4", 1:10] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:10] <- 1
    a_P["S4", "S4", 1:10] <- 1
    p9[1:10,i] <- p_ccvd_acvd[i]*(1-p8[1:10,i])
    p10[1:10,i] <- p_live_cvd_lmh[i,r]
  if(i != 7 && i != 14){
    a_P \leftarrow array(0, dim = c(n_states, n_states, 10),
               dimnames = list(v_names_states, v_names_states, 1:10))
    a_P["S1", "S1", 1:5] \leftarrow 1 - (p_live_cvd_lmh[i,r] * (1-p8[1:5,i]) +
                                p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r]*p8[1:5,i] +
                                p_live_oth_death[i])
    a_P["S1", "S2", 1:5] <- p_live_cvd_lmh[i,r] * (1-p8[1:5,i])
    a_P["S1", "S3", 1:5] <- p_live_cvdth_lmh[i,r] + p_live_cvd_lmh[i,r]*p8[1:5,i]
    a_P["S1", "S4", 1:5] <- p_live_oth_death[i]
```

```
a_P["S2", "S1", 1:5] <- 0
    a_P["S2", "S2", 1:5] <- 1 - p_live_oth_death[i]-
      (p_ccvd_cvdth[i] + p_ccvd_acvd[i] * p8[1:5,i])
    a_P["S2", "S3", 1:5] <- p_ccvd_cvdth[i]+
      p_ccvd_acvd[i]*p8[1:5,i]
    a_P["S2", "S4", 1:5] <- p_live_oth_death[i]
    a_P["S3", "S3", 1:5] <- 1
    a P["S4", "S4", 1:5] <- 1
    a_P["S1", "S1", 6:10] \leftarrow 1 - (p_live_cvd_lmh[i+1,r]*(1-p8[1:5,i])+
                              p_live_cvdth_lmh[i+1,r] + p_live_cvd_lmh[i+1,r] * p8[1:5,i]+
                                 p_live_oth_death[i+1])
    a_P["S1", "S2", 6:10] <- p_live_cvd_lmh[i+1,r] * (1-p8[1:5,i])
     a_{p}["S1", "S3", 6:10] \leftarrow p_{live\_cvdth\_lmh[i+1,r]} + p_{live\_cvd\_lmh[i+1,r]} * p8[1:5,i] 
    a_P["S1", "S4", 6:10] \leftarrow p_live\_oth\_death[i+1]
    a_P["S2", "S1", 6:10] <- 0
    a_P["S2", "S2", 6:10] <- 1-p_live_oth_death[i+1]-
       (p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[1:5,i])
    a_P["S2", "S3", 6:10] <- p_ccvd_cvdth[i+1] + p_ccvd_acvd[i+1] * p8[1:5,i]
    a_P["S2", "S4", 6:10] <- p_live_oth_death[i+1]
    a_P["S3", "S3", 6:10] <- 1
    a_P["S4", "S4", 6:10] <- 1
    p9[1:5,i] <- p_ccvd_acvd[i] * (1-p8[1:5,i])
    p9[6:10,i] <- p_ccvd_acvd[i+1] * (1-p8[6:10,i])
    p10[1:5,i] <- p_live_cvd_lmh[i,r]
    p10[6:10,i] \leftarrow p \text{ live cvd lmh}[i+1,r]
     # construct m M
    v_s_{init} \leftarrow c(state0 = 1, state1 = 0, state2 = 0, state3 = 0)
    m_M <- matrix(0,nrow</pre>
                             = (n_t), ncol = n_states,
                  dimnames = list(0:(n_t-1), v_names_states))
    m_M[1, ] <- v_s_init</pre>
    for(t in 1:9){
      m_M[t + 1, ] \leftarrow m_M[t, ] %*% a_P[, , t]
     # calculate result
    prob_CVD_group3[ ,i] <- m_M[ ,1]* p10[ ,i] # new occurence = S1*p9
    prob_CVDlive_group3[,i] \leftarrow m_M[,1]*(a_P["S1", "S2", 1:10]) + m_M[,2]*p9[,i]
  result_CVD_stg3[i,r] <- sum(prob_CVD_group3[1:9,i]*patient_group_stg3[i,r])</pre>
  result_CVDlive_stg3[i,r] <- sum(prob_CVDlive_group3[1:9,i]*patient_group_stg3[i,r])</pre>
  result_Lifeyear_stg3[i,r] <- sum(t( t(m_M) * year )*patient_group_stg3[i,r])</pre>
 result_QALY_stg3[i,r] <- sum(t(t(m_M) * uti_values)*patient_group_stg3[i,r]) +
    sum(prob CVDlive group3[1:9, i]*out trans to cvd*patient group stg3[i,r])
  result_CVDeath_stg3[i,r] <- m_M[10,3]*patient_group_stg3[i,r]</pre>
  result_nonCVDeath_stg3[i,r] <- m_M[10,4]*patient_group_stg3[i,r]</pre>
  result_allDeath_stg3[i,r] <- m_M[10,3]*patient_group_stg3[i,r] + m_M[10,4]*patient_group_stg3[i,r]
}
# There is another group for Strategy3
noncreen names <- c("m40", "m45", "f40", "f45")
noscreen\_group \leftarrow matrix(c(229,444,498,856),ncol = 1, nrow = 4,
                          dimnames = list(noncreen names,""))
```

```
noscreen_group_CVD <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen_names,""))
noscreen_group_CVDlive <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
noscreen_group_Lifeyear <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen_names,""))
noscreen_group_QALY <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
noscreen_group_CVDeath <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
noscreen_group_nonCVDeath <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen_names,""))
noscreen_group_allDeath <- matrix(NA,ncol = 1, nrow = 4,</pre>
                               dimnames = list(noncreen names,""))
m_M1 \leftarrow result_m_M[,, 1]
m_M2 <- result_m_M[ , , 2]</pre>
m_M3 \leftarrow result_m_M[,,8]
m_M4 <- result_m_M[ , , 9]</pre>
noscreen_m_M <- list(m_M1, m_M2, m_M3, m_M4)</pre>
for(i in 1:4){
  name <- noncreen names[i]</pre>
  noscreen_group_CVD[i] <- sum(prob_CVD_group0[1:9,noncreen_names][,i] * noscreen_group[i])</pre>
  noscreen group Lifeyear[i] <- sum(t(t(result m M[,,name]) * year) * noscreen group[i])</pre>
  noscreen group QALY[i] <- sum(t(t(result m M[,,name]) * uti values)*noscreen group[i] +</pre>
                            sum(prob_CVDlive_group0[1:9, i]*out_trans_to_cvd*noscreen_group[i]))
  noscreen_group_CVDeath[i] <- sum(data.frame(noscreen_m_M[i])[10,3]*noscreen_group[i])</pre>
  noscreen_group_nonCVDeath[i] <- sum(data.frame(noscreen_m_M[i])[10,4]*noscreen_group[i])</pre>
  noscreen_group_allDeath[i] <- sum(data.frame(noscreen_m_M[i])[10,3]*noscreen_group[i]) +</pre>
    sum(data.frame(noscreen_m_M[i])[10,4]*noscreen_group[i])
```

Table 13: New CVD events for patients under Strategy1

	low	medium	high
m40	0.00	0.00	0.00
m45	0.00	0.00	0.00
m50	5.14	17.20	8.45
m55	2.38	21.92	22.84
m60	0.46	11.48	43.99
m65	0.12	2.79	34.87
m70	0.00	0.63	30.73
f40	0.00	0.00	0.00
f45	0.00	0.00	0.00
f50	24.57	16.70	4.41
f55	16.72	40.00	16.21
f60	3.40	33.29	30.13
f65	0.40	16.01	57.75
f70	0.00	4.09	38.00
sum	53.20	164.12	287.37

Table 14: Result for Strategy3

	CVD.events	CVD.Death	all.Death	QALY	Life.Year
1	633.20	171.53	504.23	59278.20	59924.66

Conclusion

```
print(xtable((matrix(rbind(
    cbind(sum(result_CVD), sum(result_CVD_stg1), sum(result_CVD_stg2), sum(result_CVD_stg3)),
    cbind(sum(result_CVDeath), sum(result_CVDeath_stg1), sum(result_CVDeath_stg2), sum(result_CVDeath_stg3))
    cbind(sum(result_allDeath), sum(result_allDeath_stg1), sum(result_allDeath_stg2), sum(result_allDeath_stg
```

Table 15: Results under 3 strategies

	Strategy0	Strategy1	Strategy2	Strategy3
CVD events	764.0602	574.9988	543.4373	633.1974
CVD Death	266.7988	195.5202	164.3328	171.5336
all Death	594.7304	526.7278	497.1540	504.2270
QALY	59118.8895	59531.0867	59693.8639	59278.1986
Life Year	59488.8178	59807.0821	59953.8289	59924.6633