WHAT IS CLAIMED IS:

1	1. A system for modifying a valve in a patient's heart to reduce				
2	regurgitation, the valve having an annulus, the system comprising:				
3	a catheter configured for advancement through the patient's vasculature				
4	into the heart from a vascular access point remote from the heart; and				
5	a supporting structure releasably coupled to the catheter, the supporting				
6	structure being adapted for deployment at a tissue location on or near the annulus, the				
7	supporting structure being movable between a delivery configuration suitable for				
8	advancement through the patient's vasculature and a deployed configuration suitable for				
9	modifying the annulus when deployed at the tissue location so as to reduce regurgitation				
10	in the valve.				
1	2. The system of claim 1 wherein the supporting structure comprises a				
2	ring adapted to at least partially surround the annulus.				
1	3. The system of claim 1 wherein the supporting structure is elastic				
2	and moves from the delivery configuration to the deployed configuration upon				
3	deployment from the catheter.				
1	4. The system of claim 1 wherein the supporting structure is				
2	expandable from the delivery configuration to the deployed configuration.				
1	5. The system of claim 4 further comprising an expansion element on				
2	the catheter for expanding the supporting structure.				
1	6. The system of claim 5 wherein the expansion element comprises a				
2	balloon.				
1	7. The system of claim 5 wherein the expansion element comprises a				
2	plurality of spokes.				
1	8. The system of claim 1 further comprising a fastener for fastening				
2	the supporting structure to tissue.				
1	9. The system of claim 8 wherein the fastener comprises suture.				
1	10. The system of claim 8 wherein the fastener comprises a staple.				

1	11. The system of claim 1 wherein the supporting structure is				
2	configured to circumferentially shorten the annulus.				
1	12. The system of claim 1 wherein the supporting structure is				
2	configured for deployment over the annulus.				
_					
1	13. The system of claim 1 wherein the supporting structure is adapted				
2	for adhesive attachment to tissue.				
1	14. The system of claim 1 wherein the catheter is configured to extend				
2	into the heart from a femoral venous location.				
1	The content of aloine 1 when in the eather in an Council to content				
1	15. The system of claim 1 wherein the catheter is configured to extend				
2	across an inter-atrial septum of the heart.				
1	16. The system of claim 1 wherein the valve is the mitral valve, the				
2	supporting structure being adapted for modifying the annulus of the mitral valve in the				
3	deployed configuration.				
1	17. The system of claim 1 further comprising a guide catheter				
2	configured for advancement through the patient's vasculature into the heart from the				
3	•				
4	vascular access point remote from the heart, the catheter and the supporting structure being positionable through the guide catheter.				
•	being positionable through the guide editieter.				
1	18. The system of claim 1 wherein the supporting structure is				
2	configured to tighten the annulus.				
1	19. The system of claim 1 wherein the supporting structure is				
2	deformable from the delivery configuration to the deployed configuration.				
1	20. A method of modifying a valve in a patient's heart to reduce				
2	regurgitation, the valve having an annulus, the method comprising:				
3	advancing a catheter through the patient's vasculature into the heart from a				
4	vascular access point remote from the heart, the catheter having a supporting structure				
5	releasably coupled thereto in a delivery configuration; and				
6	deploying the supporting structure from the catheter at a tissue location on				
7	or near the annulus, the supporting structure having a deployed configuration upon				

9 in the valve. 1 21. The method of claim 20 wherein the supporting structure 2 comprises a ring, and wherein deploying comprises deploying the supporting structure so 3 that the ring at least partially surrounds the annulus. 1 22. The method of claim 20 wherein the supporting structure is elastic 2 and wherein deploying includes elastic recoil movement of the supporting structure from 3 the delivery configuration to the deployed configuration upon deployment from the 4 catheter. 1 23. The method of claim 20 wherein deploying comprises expanding 2 of the supporting structure from the delivery configuration to the deployed configuration. 1 24. The method of claim 23 wherein expanding comprises using an 2 expansion element on the catheter to expand the supporting structure. 1 25. The method of claim 24 wherein the expansion element comprises 2 a balloon and using the expansion element comprises inflating the balloon. 1 26. The method of claim 24 wherein the expansion element comprises 2 a plurality of spokes and using the expansion element comprises opening the plurality of 3 spokes. 1 27. The method of claim 20 further comprising fastening the deployed 2 supporting structure to tissue with a fastener. 1 28. The method of claim 27 wherein the fastener comprises suture. 1 29. The method of claim 27 wherein the fastener comprises a staple. 1 30. The method of claim 20 wherein modifying the annulus by the 2 supporting structure comprises circumferentially shortening the annulus. 1 31. The method of claim 20 wherein deploying the supporting structure 2 comprises deploying the supporting structure over the annulus.

deployment, the supporting structure modifying the annulus so as to reduce regurgitation

8

1	32. The method of claim 20 further comprising fastening the
2	supporting structure to tissue with adhesive.
1	33. The method of claim 20 wherein advancing the catheter comprises
2	advancing the catheter from a femoral venous location.
1	34. The method of claim 20 wherein advancing the catheter comprises
2	advancing the catheter across an inter-atrial septum of the heart.
1	35. The method of claim 20 wherein the valve is a mitral valve, the
2	supporting structure modifying the annulus of the mitral valve.
1	36. The method of claim 20 further comprising positioning a guide
2	catheter through the patient's vasculature into the heart from the vascular access point
3	remote from the heart, and wherein advancing the catheter comprises advancing the
4	catheter through the guide catheter.
1	37. The method of claim 20 wherein modifying the annulus comprises
2	tightening the annulus.
1	38. The method of claim 20 wherein deploying comprises deforming
2	of the supporting structure from the delivery configuration to the deployed configuration.
1	39. A method of modifying a valve in a patient's heart to reduce
2	regurgitation, the valve having an annulus, the method comprising:
3	advancing a catheter through the patient's vasculature into the heart from a
4	vascular access point remote from the heart, the catheter having an annuloplasty device
5	releasably coupled thereto; and
6	deploying the annuloplasty device on or near the annulus so as to modify
7	the annulus to reduce regurgitation in the valve.
1	40. The method of claim 39 wherein the annuloplasty device is
2	disposed in a delivery configuration while advancing the catheter through the patient's
3	vasculature, and wherein deploying the annuloplasty device comprises expanding the
4	annuloplasty device into a delivery configuration suitable for modifying the annulus.

1		41.	The method of claim 39 wherein modifying the annulus comprises			
2	shortening the annulus.					
1		42.	The method of claim 39 wherein modifying the annulus comprises			
2	tightening the	annuli				
1		43.	A method of modifying a valve in a patient's heart to reduce			
2	regurgitation		lve having an annulus, the method comprising:			
3	1 • 8 a. 8	advancing a catheter through the patient's vasculature into the heart from a				
4	vascular acce	• •				
5	vascular access point remote from the heart, the catheter carrying a plurality of anchors; placing the anchors on or near the annulus;					
		-				
6		_	ing a filament to the anchors; and			
7		tighte	ening the filament so as to modify the annulus to reduce regurgitation			
8	in the valve.					
1		44.	A method of modifying a valve in a patient's heart to reduce			
2	regurgitation, the valve having an annulus, the method comprising:					
3		advan	ncing a catheter through the patient's vasculature into the heart from a			
4	vascular acce	ss poin	t remote from the heart, the catheter carrying a plurality of staples;			
5	and					
6		apply	ing the staples to tissue on or near the annulus so as to modify the			
7	annulus to reduce regurgitation in the valve.					
1		45.	A method for repairing an atrioventricular valve, said method			
2	comprising:					
3		access	sing a patient's vasculature remote from a heart;			
4		advan	cing an interventional catheter through the vasculature into the heart,			
5	the intervention	onal cat	theter having an interventional tool at a distal end thereof;			
6		delive	ering an implantable device through the interventional catheter to a			
7	target location	n in the	heart with the use of the interventional tool; and			
8		modif	fying the annulus with the use of the implantable device in a manner			
9	that reduces leakage through the valve during ventricular systole.					

1	46. A method as in claim 45 wherein the implantable device comprises			
2	a supporting structure and modifying the annulus comprises attaching the supporting			
3	structure to the annulus.			
1	47. A method as in claim 46 wherein the supporting structure			
2	comprises a ring and modifying the annulus comprises affixing the ring around the			
3	circumference of the annulus.			
1	48. A method as in claim 47, wherein the interventional tool comprises			
2	a balloon and delivering the implantable device comprises expanding the balloon having			
3	the ring mounted thereon within the annulus.			
1	49. A method as in claim 45, wherein the implantable device			
2	comprises a plurality of anchors and modifying the annulus comprises circumferentially			
3	tightening the annulus by drawing at least some of the plurality of anchors together.			
1	50. A method as in claim 45, wherein the implantable device			
2	comprises a plurality of plicators and modifying the annulus comprises circumferentially			

tightening the annulus by plicating portions of the annulus with the plicators.