Fundamentos de Processamento de Imagens

Aula 24

Segmentação de Imagens

Segmentação

- Particiona uma imagem em regiões distintas, correlacionadas com objetos ou elementos presentes na imagem
- Também pode ser entendido como o processo de agrupar pixels que apresentem atributos similares
- Geralmente, a primeira etapa no processo de tentar interpretar ou analisar imagens automaticamente
- A obtenção de segmentação correta e confiável é, em geral, muito difícil de obter de forma totalmente automatizada

Convright Manuel Menezes de Oliveira Neto, Informática LIERGS

Tipos de Segmentação

- Não Contextual
 - Pixels são agrupados com base <u>apenas</u> em algum <u>atributo global</u> como, por exemplo, o nível de tons de cinza ou cor
 - Exemplo: limiarização (thresholding)
- Contextual
 - Pixels são agrupados com base em algum <u>atributo global</u> e na proximidade espacial
 - Exemplos: conectividade de pixels, similaridade de regiões, crescimento de regiões, algoritmo split and merge

Copyright Manuel Menezes de Oliveira Neto, Informática UFRG

Limiarização

- Transforma uma imagem com valores em uma determinada faixa em uma nova imagem contendo apenas dois valores (imagem binária)
- Forma mais comun

$$g(x,y) = \begin{cases} 0, f(x,y) < T \\ 1 \text{ ou } 255, f(x,y) \ge T \end{cases}$$

No caso de dois limiares

$$g(x, y) = \begin{cases} 0, f(x, y) < T_1 \\ 1 \text{ ou } 255, T_1 \le f(x, y) \le T_2 \\ 0, f(x, y) > T_2 \end{cases}$$

pyright Manuel Menezes de Oliveira Neto. Informática UFRGS

Limiarização

- O sucesso do processo de limiarização depende da escolha do(s) limiar(es)
- Os valores de limiar adequados variam entre imagens
 - Diferenças nas condições de iluminação e de contraste
 - Desejável procedimento automático para cálculo de limiar
- Abordagem mais geral baseia-se na <u>análise do histograma</u>
- Picos no histograma correspondem aos elementos de interesse
- Limiar: vale entre dois picos adjacentes
- Em geral, picos adjacentes se sobrepõe, fazendo com que alguns pixels sejam detectados ou rejeitados erroneamente
- Limiar ótimo minimiza o número de falsos positivos e negativos

Exemplo de Determinação Automática do Limiar

Resultados da execução do algoritmo de determinação do limiar sobre a imagem das hactérias

m ₁	m ₂	Limiar_atual
0.00	125.81	62.90
29.88	132.78	81.33
46.42	135.70	91.06
53.00	136.94	94.97
54.82	137.26	96.04
51.94	137.45	96.69

Limiarização em Imagens RGB

- Definem-se limiares independentemente para cada canal
 - Uma cor corresponde a um ponto em um espaço 3D de cores
 - A limiarização corresponde a um particionamento deste espaço
- Alternativamente, pode-se definir um limiar para a distância medida com relação a uma cor de referência (R_0 , G_0 , B_0)

$$g(x, y) = \begin{cases} 0, d(x, y) < d_{\text{max}} \\ 1 \text{ ou } 255, d(x, y) \ge d_{\text{max}} \end{cases}$$

onde d(x,y) é a distância Euclidiana da cor associada ao pixel f(x,y) e a cor de referência

Segmentação Contextual

- Principais Técnicas
 - Conectividade de Pixels (Pixel Connectivity)
 - Similaridade de Regiões
 - Crescimento de Regiões
 - Algoritmo split and merge

Vizinhança entre Pixels

- Componente importante nas técnicas de segmentação baseadas em regiões
- Vizinhança-4 (4-neighbourhood) x vizinhança-8 (8-neighbourhood)

• Um caminho k-conexo entre pixels p_1 e p_n é uma seqüência $\{p_1, p_2, ..., p_n\}$, onde p_{i+1} é um k-vizinho de p_i , $\forall i, i=1, ..., n$

Vizinhança entre Pixels

- O conjunto de pixels em cinza define
 - 1 região 8-conectada
 - 2 regiões 4-conectadas
- O conjunto de pixels em amarelo define um única região

Copyright Manuel Menezes de Oliveira Neto, Informática UFRG

Rotulação de Regiões Conexas

- Visita cada pixel da imagem, com um procedimento recursivo que rotula os pixels ainda n\u00e3o visitados
- Cada região conexa recebe um identificador único

```
Rotulação_de_regiões_conexas (imagem *in, imagem *out, float limiar)
// in: imagem de entrada; out: imagem de saída;
{
  int região = 1; float *média_região;
  para x = 1 até largura da imagem / faça
  para y = 1 até altrura da imagem / faça
  // pixel não visitado
  se (in(x,y) > -1 ) então // pixel não visitado
  // rotula toda a região recursivamente
  Rotula(in, out, x, y, região, limiar, *média_região=in(x,y), *nro_pixels=1);
  região = região + 1;
}
```


Rotulação de Regiões Conexas

```
Rotula (imagem *in, imagem *out, int x, int y, int região, float limiar, float *média_região, int *nro_pixels)
{ // in: imagem de entrada; out: imagem de saída int i, j;
// se pixel satisfaz critério de uniformidade marca-o como visitado e rotula-o na saída se (abst/in(x,y) − media_região) ≤ limiar) então out(x,y) = região; *nro_pixels += 1;
 *média_região = ((*média_região)(*nro_pixels -1) + in(x,y))/(*nro_pixels); in(x,y) = -1;
 //
para conect = 1 até conectividade faça // vizinhança-4 ou -8
 i = x + delta[conect],x;
 j = y + delta[conect],y;
 se (Limites(in, i,j) && in(i,j) > -1) então
 Rotula(in, out, i, j, região, limiar, média_região, nro_pixels); // rotula
}
Limites (imagem *in, int i, int j)
{ retorna (i > 0 && i ≤ largura(in) && j > 0 && j ≤ altura(in)); }
```


Rotulação de Regiões Conexas Exemplo

Assumindo regiões 4-conectadas

1	1	1	1	1	1
1	2	2	2	1	1
1	2	2	2	1	1
1	1	1	1	3	1
1	1	3	3	3	1
1	1	1	1	1	1

Convright Manuel Menezes de Oliveira Neto, Informática LIFRG

Similaridade de Regiões

- Baseia-se na uniformidade das regiões conexas
- Predicado de Uniformidade em uma região R, P(R)
 - Condição que expressa similaridade entre tons de cinza ou cores

$$P(R) = \begin{cases} TRUE, se \left| f(i, j) - \alpha \right| \le \Delta \\ FALSE, caso \ contrário \end{cases}$$

- $\bullet \ \ \text{onde} \ \alpha \ \text{pode representar}$
 - o tom/cor de um pixel vizinho (f(m,n))
 - a média dos tons/cores na região $R(\mu_R)$, excluindo-se o pixel em (i,j)
- $f \Delta$ representa a máxima diferença definida para o critério de similaridade

Copyright Manuel Menezes de Oliveira Neto, Informática UFRG

Crescimento de Regiões

- Cresce regiões similares a partir de um conjunto de pixels "sementes"
- Um pixel é incorporado a uma dada região se e somente se:
 - Ele ainda não pertence a nenhuma região
 - Ele encontra-se na vizinhança (fronteira) daquela região
 - A região permanece uniforme após a inclusão do pixel

Copyright Manuel Menezes de Oliveira Neto, Informática UFRG

Segmentação de Texuras

- Na presença de texturas pode-se utilizar:
 - Técnicas estatísticas (e.g., análise de variância de tons)
 - Técnicas de análise espectral

Convright Manuel Menezes de Oliveira Neto, Informática LIERGS