1. A Kunneth Formula

Definition 1.1. The cross product is the map

$$(1.2) H^*(X;R) \times H^*(Y;R) \to H^*(X \times Y;R)$$

given by $a \times b = p_1^*(a) \smile p_2^*(b)$ where p_1 and p_2 are the projections of $X \times Y$ onto X and Y.

Since cup product is distributive, the cross product is bilinear.

Theorem 1.3. The cross product $H^*(X;R) \otimes_R H^*(Y;R) \to H^*(X \times Y;R)$ is an isomorphism of rings if X and Y are CW complexes and $H^k(Y;R)$ is a finitely generated R-module for all k.

Proposition 1.4. If a natural transformation between unreduced cohomology theories on the category of CW pairs is an isomorphism when the CW pair is (point, \emptyset), then it is an isomorphism for all CW pairs.

Theorem 1.5. For CW pairs (X, A) and (Y, B) the cross product homomorphism $H^*(X, A; R) \otimes_R H^*(Y, B; R) \to H^*(X \times Y, A \times B; R)$ is an isomorphism of rings if $H^k(Y, B; R)$ is a finitely generated free R-module for each k.

2. Exercise

Proposition 2.1. $S^2 \vee S^1 \vee S^1 = X$.

Proof. By Mayer-Vietoris, $H^n(S^2 \vee S^1 \vee S^1) = H^n(S^2) \oplus H^n(S^1) \oplus H^n(S^1)$, for n > 0. Then we have $H^0(X) = \mathbb{Z}$, $H^1(X) = \mathbb{Z}^2$ and $H^2(X) = \mathbb{Z}$. And $H^1(X) \simeq Hom(\mathbb{Z}^2, \mathbb{Z})$ with basis $\{\alpha, \beta\}$. We have α represented by cocycle ϕ and β represented by cocycle ψ . Where phi and psi take 1 on each simplex represented by two S^1 and 0 else where. Then we look at their cup product $\phi \smile \psi$. Given any 2-simplex c, we have $(\phi \smile \psi)(c) = 0$ and thus $\phi \smile \psi = 0$ is not a generator of $H^2(X)$.