T3

题目描述

给定一棵 n 个节点的树,第 i 个节点的颜色为 a_i 。

接下来我们可以割掉这棵树上的若干条边,使得这棵树被分割成若干个连通块,我们定义一种割边方案的权值为,对于一个连通块,若存在一种颜色的所有点均在该连通块内,则该连通块权值为1,否则为0,一种割边方案的权值即为其分割出来的所有连通块的权值和。

询问最大的可行的割边方案的权值。

时间限制 3 秒,空间限制 1024 MB。

输入格式

输入的第一行包含一个正整数 t ,表示测试数据组数。对于每组测试数据:

输入的第一行包含一个正整数 n ,表示树的大小。

输入的第二行包含 n 个正整数 a_1, \ldots, a_n 。

接下来输入 n-1 行,每行两个正整数 u,v 描述树上一条边 (u,v) 。

输出格式

对于每组测试数据,输出一行一个整数表示最大的可行的割边方案的权值。

数据范围

对于所有数据,保证 $1 \le t \le 3$, $1 \le n \le 10^6$, $1 \le a_i \le n$ 。

测试点编号	$n \leq$	特殊性质
$1\sim 2$	20	无
$3\sim 6$	3000	无
$7\sim12$	10^5	无
$13\sim14$	10^{6}	Α
$15\sim16$	10^{6}	В
$17\sim20$	10^{6}	无

特殊性质 A: 保证 $1 \le a_i \le 3$ 。

特殊性质 B: 保证所有边均形如 (i-1,i) 的形式。