MATH 425a ASSIGNMENT 10 FALL 2015 Prof. Alexander Due Wednesday December 2.

Rudin Chapter 5 #15, Chapter 6 #1, 2, 3a, 8, plus the problems (I)-(V) below. Problems 1, 2, and (VI) should be relatively "quick" ones, the type that most often appears on exams.

- (I) Typically, if a continuous function $f:[a,b]\to\mathbb{R}$ has a local maximum at some $c\in[a,b]$, then f is increasing in $(c-\delta,c]$ and decreasing in $[c,c+\delta)$ for some $\delta>0$. Find an example, though, in which this is false.
- (II) Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere, with f'(x) < 3 for all x < 0 and f'(x) > 3 for all x > 0. Show that f'(0) = 3.
- (III) Let f(x) = 2 + 3x and

$$\alpha(x) = \begin{cases} x^2, & 0 \le x < 1\\ 2, & 1 \le x < 2\\ 2x, & x \ge 2. \end{cases}$$

Calculate $\int_0^3 f \ d\alpha$. (Just a calculation, you don't have to prove the steps.)

- (IV) Suppose f, α, β are real-valued functions on [a, b] with α and β nondecreasing. Define $I_{\alpha} = \inf_{P} U(P, f, \alpha)$, which is just a shorter notation for $\overline{\int}_{a}^{b} f \ d\alpha$, and define I_{β} and $I_{\alpha+\beta}$ similarly.
 - (a) Show that for fixed P we have $U(P, f, \alpha + \beta) = U(P, f, \alpha) + U(P, f, \beta)$.
 - (b) Show that $I_{\alpha+\beta} \geq I_{\alpha} + I_{\beta}$.
 - (c) Let $\epsilon > 0$. Show that $I_{\alpha+\beta} \leq I_{\alpha} + I_{\beta} + 2\epsilon$.
 - (d) Show that $I_{\alpha+\beta} = I_{\alpha} + I_{\beta}$.
- (V) For $x \in [1, 4]$ let f(x) = 2x and

$$\alpha(x) = \begin{cases} 0 & \text{if } x < 2, \\ \frac{1}{2} & \text{if } 2 \le x \le 3, \\ \frac{3}{2} & \text{if } x > 3. \end{cases}$$

- (a) Let P be a partition of [1, 4] such that some $x_i = 2$ and some $x_j = 3$. Find $U(P, f, \alpha)$. The only unspecified quantities in your answer should be some or all of the points x_0, \ldots, x_n .
 - (b) Find $\overline{\int}_{1}^{4} f \ d\alpha$.
 - (c) Similarly to (a) and (b), find $L(P, f, \alpha)$ and $\int_{-1}^{4} f \ d\alpha$.
 - (d) Is $f \in \mathcal{R}(\alpha)$? How can you tell from (a)–(c) alone?
- (VI) Suppose $f:[a,b]\to\mathbb{R}$ is Riemann integrable and bounded, say $|f(t)|\le M$ for all t. Let

$$F(x) = \int_{a}^{x} f(t) dt, \qquad x \in [a, b].$$

Show that F is uniformly continuous.

HINTS:

(15) You can omit the vector-valued part. The bound on |f'(x)| is valid for all h > 0. How can you take advantage of this?

This isn't really a hint, just an informal explanation of what problem 15 shows. If M_1 is large, this means |f'(x)| is large for some x. This means one of two things must happen. One possibility is that |f'(x)| remains large for points in the vicinity of x, in which case f(x) must climb to a very large value, meaning M_0 is large. The other possibility is that |f'(x)| does not remain large for points in the vicinity of x, in which case f'(x) must change rapidly, forcing M_2 to be large. Either way, if M_1 is large then the product M_0M_2 must be large. The bound in the problem quantifies this exactly.

- (1) For a partition $a = t_0 < \cdots < t_n = b$, focus on the interval $[t_{i-1}, t_i]$ containing x_0 .
- (2) If f is continuous and f(x) > 0 for some x, what must be true for values close to x?
- (3) Part (c) was done in lecture; (a) and (b) are similar.
- (8) Compare f(n), f(n+1) and $\int_{n}^{n+1} f(x) dx$.
- (I) Take a function which has a known local maximum, for example $g(x) = -x^2$ at x = 0. Add something to it so that it's no longer monotone on either side of x = 0, but it still has a local maximum at x = 0.
- (II) The problem would be easier if 3 were replaced everywhere by 0. Add something to f to make a new function g, so that the problem converts to this easier question, for g.
- (IV)(b) $I_{\alpha+\beta}$ is by definition the *greatest* lower bound, so it's enough to show $I_{\alpha} + I_{\beta}$ is a lower bound. (Lower bound for what, exactly? Specify!)
- (c) There exist P_1 with $U(P_1, f, \alpha) \leq I_{\alpha} + \epsilon$ and P_2 with $U(P_2, f, \beta) \leq I_{\beta} + \epsilon$. Why is there then a P with $U(P, f, \alpha + \beta) \leq I_{\alpha} + I_{\beta} + \epsilon$?