ОТЧЁТ АСУ ТП ПО ОСТАНОВУ МШЦ2 14.04.2024

ОБЩИЕ СВЕДЕНИЯ

14.04.2021, по окончании ППР ЗИФ, в 18:26 МШЦ2 была запущена в работу. В 18.52 остановлена мельником из-за обнаружения нарушения герметичности теплообменника масло-станции смазки редуктора.

Рисунок 1: Тренд работы МШЦ2

АСУ МШЦ2 зафиксировало падение давления масла смазки редуктора (RDCR_OIL_PRESS Local:4:I.Data7) и низкий проток (RDCR_OIL_FLOW_LOW Local:4:I.Data8), что было отображено в виде всплывающего аварийного сообщения, индикации на мнемосхемах локальной операторской панели мельницы, операторских станциях ECS. Насос PP08 масло-станции редуктора МШЦ2 продолжил работать до ручного останова.

14-Apr-2021 19:34:16.03	14-Apr-2021 19:34:16.03	020BM120A01BM01_8015	Ball Mill Reducer Lube L FLow Ball Mill Reducer Lube L FLow Sw Normal	On <- Alarm
14-Apr-2021 18:42:34.35	14-Apr-2021 19:34:16.03	020BM120A01BM01_8015	Ball Mill Reducer Lube L FLow Ball Mill Reducer Lube L FLow Sw Alarm	Alarm <- Alarm
14-Apr-2021 18:39:53.39	14-Apr-2021 18:42:34.35	020BM120A01BM01_8015	Ball Mill Reducer Lube L FLow Ball Mill Reducer Lube L FLow Sw Alarm	Alarm <- Off
14-Apr-2021 18:39:49.15	14-Apr-2021 18:39:49.15	020BM120A01BM01_8015	Ball Mill Reducer Lube L FLow Ball Mill Reducer Lube L FLow Sw Normal	Off <- On
14-Apr-2021 16:07:52.76	14-Apr-2021 16:07:52.76	020BM120A01BM01_8015	Ball Mill Reducer Lube L FLow Ball Mill Reducer Lube L FLow Sw Normal	On <- Off
14-Apr-2021 16:07:50.37	14-Apr-2021 16:07:50.37	020BM120A01BM01_8015	Ball Mill Reducer Lube L FLow Ball Mill Reducer Lube L FLow Sw Normal	Off <- On

Рисунок 2: Авария по низкому протоку масла на смазку редуктора в ECS АСУ ТП.

020BM120A01BM01_8014	Ball Mill Reducer Lube Press & Ball Mill Reducer Lube Press Sw. Normal	On <- Alarm
020BM120A01BM01_8014	Ball Mill Reducer Lube Press 5 Ball Mill Reducer Lube Press Sw Alarm	Alarm <- Alarm
020BM120A01BM01_8014	Ball Mill Reducer Lube Press 5 Ball Mill Reducer Lube Press Sw Alarm	Alarm <- Off
020BM120A01BM01_8014	Ball Mill Reducer Lube Press & Ball Mill Reducer Lube Press Sw Normal	Off <- On
020BM120A01BM01_8014	Ball Mill Reducer Lube Press & Ball Mill Reducer Lube Press Sw. Normal	On <- Alarm
020BM120A01BM01_8014	Ball Mill Reducer Lube Press 5 Ball Mill Reducer Lube Press Sw Alarm	Alarm <- Off
020BM120A01BM01_8014	Ball Mill Reducer Lube Press & Ball Mill Reducer Lube Press Sw Normal	Off <- On
	020BM120A01BM01_8014 020BM120A01BM01_8014 020BM120A01BM01_8014 020BM120A01BM01_8014 020BM120A01BM01_8014	020BM120A01BM01_8014

Рисунок 3: Авария по низкому давлению масла на смазку редуктора в ECS АСУ ТП.

АНАЛИЗ ПРОГРАММЫ ПЛК

Анализ программы ПЛК МШЦ2 показал, что остановка насоса РР08 смазки редуктора аварийно останавливает мельницу.

Насос аварийно останавливается по низкому уровню масла в баке (отсутствие сигнала $RDCR_OIL_LVL\ Local: 4:I.Data.5$).

Отсутствие давления масла (*RDCR_OIL_PRESS Local:4:I.Data.7*) формирует только аварийное сообщение и индикацию на мнемосхемах операторской панели мельницы, операторских станциях ECS.

Остановка насоса по низкому протоку масла была предусмотрена разработчиками METSO, но из-за ошибки в программной реализации никогда не сработает. Описание ошибки и способ её устранения приведен ниже. Данная ошибка есть в ПЛК всех мельниц: МПСИ, МШЦ1 и МШЦ2. Проверка резервных копий программы выявила, что ошибка присутствует в проекте 2015 года, что был оставлен METSO после проведения пусконаладочных работ.

АЛГОРИТМ УПРАВЛЕНИЯ НАСОСОМ РРОВ СМАЗКИ РЕДУКТОРА

Рисунок 4: LD логика управления насосом PP08 смазки редуктора.

ЗАПУСК НАСОСА РРО8

При нажатии кнопки «CTAPT» (HMI.RDCR_LUBE_PMP_ST_PB) на операторской панели мельницы или по команде PP08_START запуска маслостанции от алгоритма управления смазкой мельницы, проверяются следующие условия:

- есть уровень масла в баке (RDCR_OIL_LVL Local:4:I.Data.5);
- не нажата кнопка «СТОП» на операторской панели (HMI.RDCR_LUBE_PMP_SP_PB);
- отсутствует блокировка по протоку (RDCR_LUBE_FLOW_INTRLK), формирование описано ниже;
- нет команды на останов маслостанции *PP08_STOP* от алгоритма управления смазкой мельницы.

Если вышеперечисленное выполняется, то сигналом PP08_ST_CMD Local:8:O.Data.13 включается пускатель насоса и становится на программный «самоподхват» обратной связью от пускателя PP08_RN Local:1:I.Data.13.

OCTAHOB HACOCA PP08

Насос остановится если выполнится одно из условий:

- есть команда на останов:
 - нажата кнопка «СТОП» на операторской панели (HMI.RDCR_LUBE_PMP_SP_PB);
 - или команда на останов маслостанции *PP08_STOP* от алгоритма управления смазкой мельницы;
- низкий уровень масла в баке (отсутствует сигнал RDCR_OIL_LVL Local:4:I.Data.5);
- низкий проток масла (отсутствует сигнал RDCR_LUBE_FLOW_INTRLK), формирование описано ниже.

БЛОКИРОВКА ПО ПРОТОКУ МАСЛА

ОПИСАНИЕ ОШИБКИ

В текущей реализации, оставленной специалистами METSO, (см рис. 2) алгоритм работает так:

Блокировка срабатывает (снимается сигнал $RDCR_LUBE_FLOW_INTRLK$) если нет сигнала с реле протока ($RDCR_OIL_FLOW_LOW_LOCAl:4:I.Data.8$) и не сработал 2 секундный таймер TON ($RDCR_LUBE_FLOW_BYPASS$). Таймер начинает считать при наличии протока или по собственному самоподхвату до срабатывания (нормально закрытый контакт с $RDCR_LUBE_FLOW_BYPASS.DN$).

Т.е. при низком протоке таймер шунтирует аварию на 2 секунды, но при срабатывании сбрасывает сам себя и начинает счёт по новому. На один прогон цикла выполнения программы ПЛК шунт снимается, включается блокировка по протоку, которая разбирает «схему» включения пускателя насоса. Но так как длительность 1 прогона равна ~1300 микросекундам, за это время пускатель не успевает отключится. Со следующего прогона проток снова шунтируется таймером на 2 секунды. Остановка насоса не происходит.

Таймер задумывался для игнорирования отсутствия протока на момент запуска насоса, но ошибка в алгоритме привела к постоянному шунтированию блокировки.

ИСПРАВЛЕНИЕ ОШИБКИ

Рисунок 5: Исправленная LD логика формирования блокировки по протоку масла.

В приведённой на рисунке выше LD логике:

- если насос остановлен (PPO8_RN = 0) , то отсутствие протока шунтируется (RDCR_LUBE_FLOW_BYPASS.DN = 1) ;
- при включении насоса (PP08_RN = 1) или снижении протока (RDCR_OIL_FLOW_LOW = 0) при рабочем насосе (PP08_RN = 1), запускается таймер TOF (RDCR_LUBE_FLOW_BYPASS), блокировка шунтируется (RDCR_LUBE_FLOW_BYPASS.DN = 1) на 2 секунды, до срабатывания таймера;
- если за 2 секунды проток не восстановится, то шунт снимается (RDCR_LUBE_FLOW_BYPASS.DN = 0), формируется блокировка насоса (RDCR_LUBE_FLOW_INTRLK = 0).