Computer Networks

Signal Encoding Techniques (Digital to Digital)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Analog Signal

Analog Signal

Digital Signal

Signal Encoding Techniques

Digital Data -> Digital Signals

Digital Data → Digital Signals

Evaluation Criterias of Encoding Techniques

- ☐ Signal spectrum, DC component and bandwidth
 - ☐ No DC component is desirable
 - ☐ Encoding with less bandwidth is preferable
- **□**Clocking
 - ☐ Transmitted signal can be used by the receiver for synchronizing
- □ Error detection
 - ☐ Encoding scheme can have some inbuilt error detection mechanism

NRZ-L

 $PSD(f) = A^2T_b sinc^2(\pi fT_b)$

0 = High level

1 = Low level

PSD(f): This represents the Power Spectral Density as a function of frequency f.

A: This is the amplitude of the signal.

T_b: This represents the time duration of each bit in the signal.

- Problems:
 - Lack of clock recovery during long string of 0 or 1s
 - Has d.c. component

NRZ-I

$$PSD(f) = A^2T_b sinc^2(\pi f T_b)$$

- 1 = change of signal level (on-off or off-on)
- 0 = no change of signal level
- Fixes clocking problem for long string of 1 bits
- Problems:
 - Lack of clock recovery during long string of 0 bits
 - Has d.c. component

Performance of Encoding Schemes

Bipolar-AMI

Uses 3 signal levels: +V, 0, $-V^{PSD}(f) = A^2T_b sinc^2(\pi fT_b) sin^2(\pi fT_b)$

- 0 = no signal (0 voltage) 1 = alternating +V and -V
- No d.c. component (alternating +V and -V)
- Can detect some bit errors (consecutive +V or -V)
- Problems:
 - Loss of synchronization during long string of 0 bits
 - Inefficient usage: 3 signal levels is used to represent 2

Pseudoternary

 $PSD(f) = A^{2}T_{b}sinc^{2}(\pi fT_{b})sin^{2}(\pi fT_{b})$

Same as Bipolar-AMI except reverses signaling:

1 = no signal (0 voltage)

0 = alternating +V and -V

Performance of Encoding Schemes

Manchester Encoding

Always transition in middle of bit period:

0 = high-to-low transition1 = low-to-high transition

$$PSD(f) = A^{2}T_{b}sinc^{2}\left(\frac{\pi f T_{b}}{2}\right)sin^{2}\left(\frac{\pi f T_{b}}{2}\right)$$

Transition at beginning of bit period when necessary

- Good clock recovery, error detection capability, no d.c. component
- Bandwidth requirement is higher

Differential Manchester Encoding

$$PSD(f) = A^{2}T_{b}sinc^{2}\left(\frac{\pi f T_{b}}{2}\right)sin^{2}\left(\frac{\pi f T_{b}}{2}\right)$$

0 = transition at beginning of bit period (low-to-high or high-to-low, depending on previous output level)
1 = no transition at beginning of bit period

- Similar properties as Manchester encoding
- Bandwidth requirement is higher 😟

Performance of Encoding Schemes

B8ZS

- ☐Based on Bipolar-AMI
- ■8 consecutive 0s are encoded as:
 - If the last voltage pulse preceding this octet was + → encode as 000+-0-+
 - If the last voltage pulse preceding this octet was → encode as 000-+0+-

HDB3

Polarity of Preceding

☐Based on Bipolar-AMI

	Number of Dipolar Pulses (ones) since Last Substitution	
Pulse	Odd	Even
	000-	+ 0 0 +

-00 -

000 +

Advantages B8ZS and HDB3

- No d.c. component
- Fixes clocking problem for long string of both 0 and 1s
- Error detection capability

Comparison of Encoding Schemes

Unipolar vs Polar Encoding

■Polar

One logic state represented by positive voltage and the other by negative voltage

□Unipolar

All signal elements have the same sign

Summary

- □Signal encoding techniques (Digital data → Digital signals):
 - Different encoding techniques discussed
 - NR7-I and NR7-I
 - Bipolar-AMI and Pseudoternary
 - Manchester and Differential Manchester
 - B8ZS and HDB3
 - Comparison of the encoding schemes