### Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación



## IIC2115 - Programación como Herramienta para la Ingeniería

Análisis de datos - Exploración, limpieza y depuración

**Profesora:** Francesca Lucchini **Prof. Coordinador**: Hans Löbel

### ¿Qué es el análisis de datos en Python?

- Esencialmente, buscamos responder preguntas relevantes, o descubrir aspectos desconocidos, en base a la evidencia dada por los datos
- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
  - Limpiar y transformar los datos
  - Explorar distintas dimensiones de los datos
  - Calcular estadísticas de los datos
  - Visualizar los datos
  - Construir modelos predictivos



### ¿Qué es el análisis de datos en Python?

- Esencialmente, buscamos responder preguntas relevantes, o descubrir aspectos desconocidos, en base a la evidencia dada por los datos
- Desde un punto de vista práctico, consiste principalmente en utilizar herramientas para:
  - Limpiar y transformar los datos
  - Explorar distintas dimensiones de los datos
  - Calcular estadísticas de los datos
  - Visualizar los datos
  - Construir modelos predictivos

#### Librerías Open-Source, permiten uso comercial





### En esta primera parte nos centraremos en Pandas

- Permite manipular, analizar y visualizar datos.
- Puede ser vista como una herramienta para trabajar datos almacenados en una estructura de tabla o de serie de tiempo.
- Se basa en, y generaliza a, la librería Numpy.
- 2 Estructuras principales
  - Series
  - DataFrame



### En un DataFrame, cada columna es un Series

| 60 | Comuna | Manzana | Predial | Línea de<br>construcción | Material estructural | Calidad<br>construcción | Año<br>construcción |
|----|--------|---------|---------|--------------------------|----------------------|-------------------------|---------------------|
| 0  | 9201   | 1       | 1       | 1                        | E                    | 4                       | 1940                |
| 1  | 9201   | 1       | 1       | 2                        | E                    | 4                       | 1960                |
| 2  | 9201   | 1       | 2       | 1                        | Е                    | 4                       | 1930                |
| 3  | 9201   | 1       | 3       | 1                        | E                    | 4                       | 1960                |
| 4  | 9201   | 1       | 4       | 1                        | E                    | 3                       | 1925                |

### El primero paso siempre es explorar los datos

- Abrirlos y describirlos
- Identificar la presencia de valores nulos y outliers
- Corregir lo que corresponda



```
import pandas as pd
import numpy as np

df = pd.read_csv("data.csv")
```

1 display(df.describe())

|       | ApplicantIncome | CoapplicantIncome | LoanAmount | Loan_Amount_Term | Credit_History |  |
|-------|-----------------|-------------------|------------|------------------|----------------|--|
| count | 614.000000      | 614.000000        | 592.000000 | 600.00000        | 564.000000     |  |
| mean  | 5403.459283     | 1621.245798       | 146.412162 | 342.00000        | 0.842199       |  |
| std   | 6109.041673     | 2926.248369       | 85.587325  | 65.12041         | 0.364878       |  |
| min   | 150.000000      | 0.000000          | 9.000000   | 12.00000         | 0.000000       |  |
| 25%   | 2877.500000     | 0.000000          | 100.000000 | 360.00000        | 1.000000       |  |
| 50%   | 3812.500000     | 1188.500000       | 128.000000 | 360.00000        | 1.000000       |  |
| 75%   | 5795.000000     | 2297.250000       | 168.000000 | 360.00000        | 1.000000       |  |
| max   | 81000.000000    | 41667.000000      | 700.000000 | 480.00000        | 1.000000       |  |

1 df['Property\_Area'].value\_counts()

Semiurban 233 Urban 202 Rural 179

Name: Property\_Area, dtype: int64

```
1 def conteo_nulo(x):
 2
        return sum(x.isnull())
 4 df.apply(conteo_nulo, axis = 0)
Loan ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                    22
Loan_Amount_Term
                    14
Credit History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
 1 df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
 1 df.apply(conteo_nulo, axis = 0)
Loan_ID
                     0
Gender
                    13
Married
                     3
Dependents
                    15
Education
                     0
Self_Employed
                    32
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                     0
Loan_Amount_Term
                    14
Credit_History
                    50
Property_Area
                     0
Loan_Status
                     0
dtype: int64
```

### Muchas veces exploraremos múltiples fuentes

- Cuando todo está en un (1) DataFrame, la cosa fluye...
- Pero la mayoría de las veces, tenemos más de uno
- Pandas entrega varios mecanismos para enfrentar esto



```
def make_df(cols, ind):
    data = {c: [str(c) + str(i) for i in ind] for c in cols}
    return pd.DataFrame(data, ind)

make_df('ABC', range(3))

A B C
```

**0** A0 B0 C0**1** A1 B1 C1

**2** A2 B2 C2

```
1  df1 = make_df('AB', [1, 2])
2  df2 = make_df('AB', [3, 4])
3  dfc = pd.concat([df1, df2], axis=1,)
4  display(df1, df2, dfc)
```

# **A B 1** A1 B1

**2** A2 B2

## **A B 3** A3 B3

**4** A4 B4

|   | Α   | В   | Α   | В   |
|---|-----|-----|-----|-----|
| 1 | A1  | B1  | NaN | NaN |
| 2 | A2  | B2  | NaN | NaN |
| 3 | NaN | NaN | А3  | ВЗ  |
| 4 | NaN | NaN | A4  | В4  |

|   | employee | group       |
|---|----------|-------------|
| 0 | Bob      | Accounting  |
| 1 | Jake     | Engineering |
| 2 | Lisa     | Engineering |
| 3 | Sue      | HR          |

|   | employee | hire_date |
|---|----------|-----------|
| 0 | Lisa     | 2004      |
| 1 | Bob      | 2008      |
| 2 | Jake     | 2012      |
| 3 | Sue      | 2014      |

```
1 df3 = pd.merge(df1, df2)
2 df3
```

|   | employee | group       | hire_date |
|---|----------|-------------|-----------|
| 0 | Bob      | Accounting  | 2008      |
| 1 | Jake     | Engineering | 2012      |
| 2 | Lisa     | Engineering | 2004      |
| 3 | Sue      | HR          | 2014      |

### Agregación es la más común de las tareas exploratorias

- Analizar tendencias o buscar patrones se hace difícil si el análisis es individual
- Para evitar esto, datos generalmente se analizan de manera agregada
- Además de esto, la agregación suele ser a nivel grupal y no global
- Pandas permite enfrentar estos problemas con una serie de mecanismos que facilitan la exploración

### Agregación es la más común de las tareas exploratorias

| Aggregation                 | Description                     |
|-----------------------------|---------------------------------|
| count()                     | Total number of items           |
| first(),last()              | First and last item             |
| <pre>mean(), median()</pre> | Mean and median                 |
| <pre>min(), max()</pre>     | Minimum and maximum             |
| std(),var()                 | Standard deviation and variance |
| mad()                       | Mean absolute deviation         |
| prod()                      | Product of all items            |
| sum()                       | Sum of all items                |

### Función groupby permite combinar todo





```
1 import seaborn as sns
2 planets = sns.load dat
```

2 planets = sns.load\_dataset('planets')

3 planets.head()

| ₽ |   | method          | number | orbital_period | mass  | distance | year |
|---|---|-----------------|--------|----------------|-------|----------|------|
|   | 0 | Radial Velocity | 1      | 269.300        | 7.10  | 77.40    | 2006 |
|   | 1 | Radial Velocity | 1      | 874.774        | 2.21  | 56.95    | 2008 |
|   | 2 | Radial Velocity | 1      | 763.000        | 2.60  | 19.84    | 2011 |
|   | 3 | Radial Velocity | 1      | 326.030        | 19.40 | 110.62   | 2007 |
|   | 4 | Radial Velocity | 1      | 516.220        | 10.50 | 119.47   | 2009 |

#### 1 planets.dropna().describe()



#### 1 planets.groupby('method')['orbital\_period'].median()

method Astrometry 631.180000 Eclipse Timing Variations 4343.500000 Imaging 27500.000000 Microlensing 3300.000000 Orbital Brightness Modulation 0.342887 Pulsar Timing 66.541900 Pulsation Timing Variations 1170.000000 Radial Velocity 360.200000 Transit 5.714932 Transit Timing Variations 57.011000 Name: orbital\_period, dtype: float64

1 planets.groupby('method')['year'].describe()

| ₽ | •                                                                       |       | mean        | std      | min    | 25%     | 50%    | 75%     | max    |  |
|---|-------------------------------------------------------------------------|-------|-------------|----------|--------|---------|--------|---------|--------|--|
|   | method                                                                  |       |             |          |        |         |        |         |        |  |
|   | Astrometry                                                              | 2.0   | 2011.500000 | 2.121320 | 2010.0 | 2010.75 | 2011.5 | 2012.25 | 2013.0 |  |
|   | <b>Eclipse Timing Variations</b>                                        | 9.0   | 2010.000000 | 1.414214 | 2008.0 | 2009.00 | 2010.0 | 2011.00 | 2012.0 |  |
|   | Imaging                                                                 | 38.0  | 2009.131579 | 2.781901 | 2004.0 | 2008.00 | 2009.0 | 2011.00 | 2013.0 |  |
|   | Microlensing                                                            | 23.0  | 2009.782609 | 2.859697 | 2004.0 | 2008.00 | 2010.0 | 2012.00 | 2013.0 |  |
|   | Orbital Brightness Modulation Pulsar Timing Pulsation Timing Variations | 3.0   | 2011.666667 | 1.154701 | 2011.0 | 2011.00 | 2011.0 | 2012.00 | 2013.0 |  |
|   |                                                                         | 5.0   | 1998.400000 | 8.384510 | 1992.0 | 1992.00 | 1994.0 | 2003.00 | 2011.0 |  |
|   |                                                                         | 1.0   | 2007.000000 | NaN      | 2007.0 | 2007.00 | 2007.0 | 2007.00 | 2007.0 |  |
|   | <b>Radial Velocity</b>                                                  | 553.0 | 2007.518987 | 4.249052 | 1989.0 | 2005.00 | 2009.0 | 2011.00 | 2014.0 |  |
|   | Transit                                                                 | 397.0 | 2011.236776 | 2.077867 | 2002.0 | 2010.00 | 2012.0 | 2013.00 | 2014.0 |  |
|   | Transit Timing Variations                                               | 4.0   | 2012.500000 | 1.290994 | 2011.0 | 2011.75 | 2012.5 | 2013.25 | 2014.0 |  |

### Tablas dinámicas son otra forma de agrupar

- Nos permiten agregar valores utilizando múltiples dimensiones y funciones
- Además, pandas permite crear rangos para las variables a analizar, permitiendo un análisis más fino



```
1 import numpy as np
2 import pandas as pd
3 import seaborn as sns
4 titanic = sns.load_dataset('titanic')
5 titanic.head()
```

| ₽ |   | survived | pclass | sex    | age  | sibsp | parch | fare    | embarked | class | who   | adult_male | deck | embark_town | alive | alone |
|---|---|----------|--------|--------|------|-------|-------|---------|----------|-------|-------|------------|------|-------------|-------|-------|
|   | 0 | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | S        | Third | man   | True       | NaN  | Southampton | no    | False |
|   | 1 | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | С        | First | woman | False      | С    | Cherbourg   | yes   | False |
|   | 2 | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | S        | Third | woman | False      | NaN  | Southampton | yes   | True  |
|   | 3 | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | S        | First | woman | False      | С    | Southampton | yes   | False |
|   | 4 | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | S        | Third | man   | True       | NaN  | Southampton | no    | True  |

```
1 titanic.groupby('sex')[['survived']].mean()

survived
sex
female 0.742038
male 0.188908
```

```
1 titanic.groupby(['sex', 'class'])['survived'].aggregate('mean')
□→ sex
          class
   female First
                   0.968085
          Second
                  0.921053
          Third
                  0.500000
          First
                  0.368852
   male
          Second
                  0.157407
          Third
                  0.135447
   Name: survived, dtype: float64
```

```
1 titanic.pivot_table('survived', index='sex', columns='class')
\Box
    class
            First Second
                            Third
      sex
    female 0.968085 0.921053 0.500000
         0.368852 0.157407 0.135447
    male
     1 age = pd.cut(titanic['age'], [0, 18, 80])
     2 titanic.pivot_table('survived', ['sex', age], 'class')
\Box
            class
                    First Second
                                    Third
              age
      sex
    female (0, 18] 0.909091 1.000000 0.511628
           (18, 80) 0.972973 0.900000 0.423729
           (0, 18] 0.800000 0.600000 0.215686
     male
           (18, 80) 0.375000 0.071429 0.133663
```

```
1 fare = pd.qcut(titanic['fare'], 2)
      2 titanic.pivot_table('survived', ['sex', age], [fare, 'class'])
\Box
                  (-0.001, 14.454]
                                         (14.454, 512.329]
                  First Second Third
                                                          Third
                                         First
                                                  Second
       sex
           (0, 18]
                    NaN 1.000000 0.714286 0.909091 1.000000 0.318182
     female
           (18, 80]
                    NaN 0.880000 0.444444 0.972973 0.914286 0.391304
           (0, 18]
                    NaN 0.000000 0.260870 0.800000 0.818182 0.178571
           (18, 80]
                    0.0 0.098039 0.125000 0.391304 0.030303 0.192308
```

```
1 titanic.pivot_table(index='sex', columns='class',
                               aggfunc={'survived':sum, 'fare':'mean'})
     2
\Box
          fare
                                      survived
    class First
                    Second
                             Third
                                      First Second Third
      sex
    female 106.125798 21.970121 16.118810
                                                     72
                                               70
           67.226127 19.741782 12.661633
                                               17
                                                     47
     male
```

### Cómo podemos presentar todo esto en Python

- Existen varias maneras en Python de presentar resultados gráficamente. Todas comparten la facilidad de uso y gran calidad de la presentación
- Con el fin de facilitar su uso, Pandas incorpora varias visualizaciones adecuadas a Series y DataFrame



```
df['ApplicantIncome'].hist(bins=50)
plt.show()
```





```
df['ApplicantIncome_log'] = np.log(df['ApplicantIncome'])
df['ApplicantIncome_log'].hist(bins=50)
plt.show()
```



### Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación



## IIC2115 - Programación como Herramienta para la Ingeniería

Análisis de datos - Exploración, limpieza y depuración

**Profesora:** Francesca Lucchini **Prof. Coordinador**: Hans Löbel