Laboratorio de Inteligencia Computacional

11 de Agosto de 2022

Cristián J. Figueroa

Clustering

Corresponde a la organización de un conjunto de patrones de entrada en grupos, basado en una medida de similitud Aplicaciones:

Segmentación de Imágenes y Texturas Reconocimiento de Patrones Data Mining y Text Mining Marketing Diagnóstico Médico Mejorar Experiencia de Clientes Segmentación de tiendas, E-commerce.

Vectores en un Espacio de Entrada Multidimensional

Visualización de Datos Multidimensionales

Dificultad en la visualización directa de vectores con más de 3 atributos

Las proyecciones deben preservar las distancias y la topología entre el espacio de entrada y el espacio de salida, tanto como sea posible.

Principio Funcionamiento Algoritmos Clustering

$$j^* = \operatorname{argmin}_{i=1,...,N} ||x(t) - w_i||,$$

Centroide Ganador

Espacio de Entrada

$$\Delta w_{j^*}(t) = w_{j^*}(t+1) - w_{j^*}(t) = \alpha(t)[x(t) - w_{j^*}(t)],$$

Ley de Ajuste Auto-Organizativa Fuerte
de los Vectores Centroides

Principio Funcionamiento Algoritmos Clustering

$$\Delta w_i(t) = w_i(t+1) - w_i(t) = \alpha(t)h(t)[x(t) - w_i(t)],$$

Ley de Ajuste Auto-Organizativa Débil de los Vectores Centroides

Mapa Auto-Organizativo de Kohonen

$$\Delta w_i(t) = w_i(t+1) - w_i(t) = \alpha(t)h_{ij^*}(t)[x(t) - w_i(t)],$$

$$h_{ij^*}(t) = e^{-\frac{\|p_i - p_{j^*}\|^2}{L(t)^2}}, \qquad L(t) = L_i \left(\frac{L_f}{L_i}\right)^{\left(\frac{t}{t_{max}}\right)}$$

$$\alpha(t) = \alpha_i \left(\frac{\alpha_f}{\alpha_i}\right)^{\left(\frac{t}{t_{max}}\right)}$$

Mapa Auto-Organizativo de Kohonen (2)

Algoritmo SOM

- 1. Inicializar los vectores centroides
- 2. Presentar un vector de entrada a la red
- 3. Encontrar la unidad ganadora
- 4. Actualizar los vectores centroides
- 5. Aumentar el contador de las iteraciones
- 6. Volver al punto 2

Variantes: Gas Neuronal (NG)

$$\Delta w_{i}(t) = \epsilon(t)h_{\lambda}(t)(x(t) - w_{i}(t)),$$

$$h_{\lambda}(t) = e^{-\frac{k}{\lambda(t)}} \qquad \lambda(t) = \lambda_{i} \left(\frac{\lambda_{f}}{\lambda_{i}}\right)^{\left(\frac{t}{t_{max}}\right)}$$

$$\epsilon(t) = \epsilon_{i} \left(\frac{\epsilon_{f}}{\epsilon_{i}}\right)^{\left(\frac{t}{t_{max}}\right)}$$

Variantes: Gas Neuronal (2)

Demostración del algoritmo NG para un conjunto de entrada formado por *clusters* bidimensionales. En el video se aprecia la actualización de los vectores centroides.

Esquemas de Visualización Existentes

SOM / Mapa de Sammon (NLM)

- No proporciona una función de mapeo
- Carga Computacional O(N²)
- **■** Estrategia de Optimización Cuadrática
- No utiliza la grilla de salida del SOM

DIPOL - SOM

- Posee una capa de proyección adicional a la de SOM
- **■** Vectores posición son actualizados
- Dos modos de entrenamiento: off-line y on-line
- Función vecindad medida en el espacio de salida de SOM

$$d_{ij^*}^w = \|w_i - w_{j^*}\|$$
 $Dir = \operatorname{sgn}(d_{ij^*}^p - d_{ij^*}^w)$ $d_{ij^*}^p = \|p_i - p_{j^*}\|$
$$\Delta p_i = Dir \times \alpha^p(t) \times H_{ij^*}^p(t) \times (p_{j^*}(t) - p_i(t))$$
 Ley de Ajuste de los Vectores Posición

Proyecciones TOpológicas (TOP)

Ley de Ajuste Esquema TOP

Medidas de Desempeño

Preservación de Distancias

$$E = \frac{1}{\sum_{j=1}^{N} \sum_{i=1}^{j} d_{ij^w}} \sum_{j=1}^{N} \sum_{i=1}^{j} \frac{\left[d_{ij^w} - d_{ij^p}\right]^2}{d_{ij^w}}$$

Error o *stress* de Sammon

Preservación de Topología

$$P_3(k,i) = \left(\prod_{j=1}^k \frac{d^{G_V}w_i, w_{n_j^A(i)}}{d^{G_V}(w_i, w_{n_j^V(i)})} \bullet \frac{d^A(p_i, p_{n_j^A(i)})}{d^A(p_i, p_{n_j^V(i)})}\right)^{\frac{1}{2k}}$$

$$P_m = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{k=1}^{N-1} \log(P_3(k,i))$$
 Producto Topográfico modificado

Medidas de Desempeño (2)

Preservación de Topología

$$q_{m_{ji}} = \begin{cases} 3, & \text{if } NN_{ji^w} = NN_{ji^p} \\ 2, & \text{if } NN_{ji^w} = NN_{jl^p}, l \in [1, n], i \neq l \\ 1, & \text{if } NN_{ji^w} = NN_{jt^p}, t \in [n, k], n < k \\ 0, & \text{otro caso.} \end{cases}$$

$$q_m = rac{1}{3n imes N} \sum_{j=1}^N \sum_{i=1}^n q_{m_{ji}}$$
 Medida $\mathbf{q_m}$

Bases de Datos

Base de Datos Iris

- Benchmark
- 150 ejemplos con 4 atributos
- 3 clases con 50 ejemplos cada una:
 - Iris Setosa
 - Iris Virgínica
 - Iris Versicolor

Flor de Lis

Comoral		
General ID de nodo	Clus	1
Datos importados	Cius	
Datos exportados		
Notas		
1.5.1.5.5		
Entrenamiento		
Variables		
Rol de variable cluster	Segmento	
Estandarización interna	Estandarización	
Número de clusters		
-Método de especificación	Especificado por el usuar	
Número máximo de clusters	10	
Criterio de selección		
Método cluster	Ward	
Máximo preliminar	50	
-Mínimo	2	
Máximo final	20	ı
Corte CCC	3	F
Codificación de las variables d	ŧ	
Codificación ordinal	Rango	
Codificación nominal	GLM	
Semillas de cluster inicial		
Método de inicialización de ser	rPredeterminado	
-Radio mínimo	0.0	
Desviación durante entrenami		
Opciones de entrenamiento	,,,,	
-Utilizar predeterminados	Sí	
-Opciones		
Valores ausentes		
-Variables de intervalo	Predeterminado	
-Variables de Intervaio -Variables nominales	Predeterminado	
-Variables nominales -Variables ordinales	Predeterminado	
•		
Método de imputación de scor	IIIVIIIguno	
Puntuación	Comments	
Rol de variable cluster	Segmento or	
Ocultar variables originales	Sí	
Editor de etiquetas de cluster		
Informe		
Gráficos del cluster	Sí	
Perfil del árbol	Sí	
Gráfico y tabla de distancia	Sí	+

Comoral		
General ID de nodo	Clus	1
Datos importados	Cius	
Datos exportados		
Notas		
1.5.1.5.5		
Entrenamiento		
Variables		
Rol de variable cluster	Segmento	
Estandarización interna	Estandarización	
Número de clusters		
-Método de especificación	Especificado por el usuar	
Número máximo de clusters	10	
Criterio de selección		
Método cluster	Ward	
Máximo preliminar	50	
-Mínimo	2	
Máximo final	20	ı
Corte CCC	3	F
Codificación de las variables d	ŧ	
Codificación ordinal	Rango	
Codificación nominal	GLM	
Semillas de cluster inicial		
Método de inicialización de ser	rPredeterminado	
-Radio mínimo	0.0	
Desviación durante entrenami		
Opciones de entrenamiento	,,,,	
-Utilizar predeterminados	Sí	
-Opciones		
Valores ausentes		
-Variables de intervalo	Predeterminado	
-Variables de Intervaio -Variables nominales	Predeterminado	
-Variables nominales -Variables ordinales	Predeterminado	
•		
Método de imputación de scor	iiviriguno	
Puntuación	Comments	
Rol de variable cluster	Segmento or	
Ocultar variables originales	Sí	
Editor de etiquetas de cluster		
Informe		
Gráficos del cluster	Sí	
Perfil del árbol	Sí	
Gráfico y tabla de distancia	Sí	+

Iniciar SAS Enterprise Miner

- Seguir las instrucciones para ejecutar la aplicación SAS Enterprise Miner en el PC.
- Pinchar Nuevo proyecto
- Nombre del proyecto:
 DIE Lab 202101
- Directorio del Servidor SAS: Dejar el default
- Siguiente
- Finalizar

Conociendo la interfaz

Crear Diagrama y Datos

- Sobre Diagramas, botón derecho y crear un diagrama
- Nombrar Clustering al diagrama.
- Aceptar
- Sobre Fuentes de Datos, botón derecho y crear una fuente de datos
- Siguiente
- Examinar
- Seleccionar librería sampsio
- Seleccionar archivo llamado Custdet1 en la columna nombre.
- Presionar Aceptar.
- Presionar Siguiente 6 veces
- Presionar Finalizar

Proyecto Creado

Crear flujo

- Arrastrar con el mouse el nodo fuente de datos Custdet1 a la ventana del diagrama o «área de dibujo»
- De las carpetas ubicadas «arriba del área de dibujo» pinchar sobre Exploración/Explore y arrastrar con el mouse el nodo Cluster a la ventana del diagrama o «área de dibujo»
- Nota: SAS sigue la metodología llamada SEMMA (Sample, Explore, Modify, Model, Assess) para llevar a cabo proyectos de Data Mining (Proceso KDD). En SAS Enterprise Miner existe una carpeta con nodos especializados para cada uno de los pasos de esta metodología.
- Conectar el nodo fuente de datos Custdet1 al nodo Cluster acercando el mouse al nodo Custdet1, presionando y arrastrando hasta el nodo Cluster.

Flujo Creado

Trabajo sobre el «área de dibujo»

- En el «área de dibujo» presionar botón derecho sobre el nodo Custdet1
- Presionar ejecutar
- Presionar Sí
- Presionar Aceptar
- Aparecerá un símbolo color verde en el extremo inferior derecho del nodo indicando que la ejecución fue exitosa.
- Para explorar los datos presionar botón derecho del mouse sobre el nodo Cluster y seleccionar Editar Variables.
- Aparecerá una ventana con el detalle de cada variable existente en la fuente de datos. Seleccionar las variables que se explorarán manteniendo presionada la tecla CTRL del teclado y eligiendo los nombres de las variables respectivas.

Elegir variables para exploración

Exploración de variables

- Como ejemplo, elegir las variables Age (edad), Edlevel (Nivel educacional) e Income (salario)
- Presionar botón Explorar
- Aparecerá una ventana con histogramas producidos para cada una de las variables seleccionadas
- Todos los histogramas están enlazados. Cuando se elige un intervalo en uno de estos histogramas, los intervalos asociados en los otros histogramas son destacados.
- Ver lo que sucede cuando se elige el intervalo Elementary para la variable Nivel Educacional
- Ver lo que sucede cuando se elige el intervalo College para la variable Nivel Educacional

Histogramas enlazados

Exploración de variables

- Para cambiar el número de intervalos en un histograma dado presionar botón derecho del mouse sobre el histograma (considere como ejemplo el histograma salario)
- Presionar propiedades del histograma (primera opción)
- Seleccionar el número de intervalos (por ejemplo 20 en vez del 10 que viene por default)
- Presionar Aceptar
- Para integrar datos en una ventana de intervalos arrastrar el mouse a través de una ventana de intervalos definida (considere como ejemplo el histograma salario arrastrando el mouse desde 32.670 hasta 43.560)
- Cerrar la ventana de exploración

Elegir variables para cluster

- Volviendo a la ventana donde se listan las variables, elegir todas las variables (desde Acctnum hasta Wcoat) manteniendo presionada la tecla SHIFT del teclado.
- Bajo la columna llamada Usar elegir una de las casillas con nombre Predeterminado y cambiar a No
- Seleccionar bajo la columna Nombre la variable Income (salario)
- Para la variable Income, bajo la columna llamada Usar cambiar a Sí
- Para la variable Numcars (número de automóviles), bajo la columna llamada Usar cambiar a Sí
- Presionar Aceptar
- Presionar botón derecho del mouse sobre el nodo Cluster y ejecutar
- Presionar Sí
- Presionar Resultados...
- La ventana resultados abre con 4 componentes

Entendiendo los resultados

• En la ventana Trazado de Segmento presionar sobre el fragmento color rojo en Segment Variable 5 para la Variable = Income. Se puede ver el siguiente texto:

```
Segment Variable = 5
Percent (Sum) = 99,56522
Formatted Value = 13613:27225
```

- Esto significa que en el cluster número 5, el 99,56522% de personas tienen un salario cuyo valor está entre 13613 y 27225 (unidades monetarias).
- Haga un ejercicio similar con los otros segmentos.

Entendiendo los resultados (II)

• Para ver el número de personas en el cluster número 5 presionar Segment N°5 en la ventana Tamaño del Segmento. Se puede ver el siguiente texto:

```
Segment Id = 5
Frequency of Cluster = 230
```

- Esto significa que el cluster número 5 incluye 230 personas.
- Explore y entienda los datos

Entendiendo los resultados (III)

- Seleccionar en la parte inferior de la ventana Segment Plot alguno de los colores con Formatted value dado (Como ejemplo, considere Formatted Value = 27225:40838)
- Ahora se puede ver la distribución de Formatted Value para Income (salario) entre 27225 y 40838 unidades monetarias entre diferentes clusters.
- Para ver la Distancia entre Clusters seleccionar Ver→Distancia Cluster →Trazado
- Dé alguna interpretación a la ubicación de los clusters en el plano de visualización.
- Cerrar la ventana Plot
- Cerrar resultados del Cluster

Cambiar parámetros del algoritmo

- En la tabla Propiedad/Valor elegir Número de clusters → Método de especificación. Cambiar Automático por Especificado por usuario.
- En máximo número de clusters colocar el número de clusters que se desea especificar (considere como ejemplo 3)
- Presionar botón derecho del mouse sobre el nodo cluster
- Presionar ejecutar.
- Seleccionar Sí.
- Seleccionar Resultados...

Cambiar variables de análisis

- En la tabla Propiedad/Valor elegir método Automático nuevamente en Número de Clusters.
- Presionar botón derecho del mouse sobre el nodo cluster
- Seleccionar Editar Variables
- Para la variable Age (edad) bajo la columna Usar cambiar el uso a Sí.
- Seleccionar OK.
- Presionar botón derecho del mouse sobre el nodo cluster
- Presionar ejecutar.
- Seleccionar Sí
- Seleccionar Resultados...
- Analice y comente resultados.

Actividades

Actividad 1

- Encuentre los segmentos de cliente que serían más propensos a aceptar una oferta de autos.
- Proponga 1 set de variables (atributos) para el análisis.
- Analice los resultados para diferente número de clusters.
- Formule sus recomendaciones para gatillar campañas de marketing más precisas, y explique las razones de sus recomendaciones.

Actividades (II)

Actividad 2

- Encuentre los segmentos de clientes que serían más propensos a aceptar una oferta de artículos (defina un conjunto de artículos que los clientes compran) según la cantidad de hijos.
- Proponga 1 set de variables (atributos) para el análisis.
- Analice los resultados para diferente número de clusters.
- Formule sus recomendaciones para gatillar campañas de marketing más precisas, y explique las razones de sus recomendaciones.

Informe

En el informe de resultados incluya:

- 1. Los sets de variables > 3 (atributos) que fueron elegidos para el análisis.
- 2. Número de clusters que fue usado para el análisis para cada set de variables.
- 3. Sus recomendaciones (customer segments) para campañas de marketing según cada combinación de variables.
- 4. Resumen de sus recomendaciones (customer segments) para las campañas de marketing.
- 5. Explicación para las razones de sus recomendaciones.

Listado de variables

ACCTNUM - Account Number	LINENS – Linens Purch.
AGE - Age	LUXURY – Luxury Items
AMOUNT - Dollars Spent	MARITAL – Married (y/n)
APPAREL - Apparel Purch.	MENSWARE – Mens Apparel
APRTMNT - Rents Apartment	MOBILE - Occupied < 1Year
BLANKETS - Blankets Purch.	NTITLE – Name Prefix
COATS - Coats Purch.	NUMCARS - Number of Cars
COUNTRY - Country Code	NUMKIDS - Number of Kids
CUSTDATE - Date 1st Order	OUTDOOR - Outdoor Prod.
DINING – Total Dining	PROMO13 - Promo: 8-13 Months
DISHES - Dishes Purch.	PROMO7 - Promo: 1-7 Months
DOMESTIC - Domestic Prod.	PURCHASE – Purchase (y/n)
EDLEVEL - Education Level	RACE - Race
FLATWARE - Flatware Purch.	RECENCY - Recency
FREQUET - Order Frequency	RETURN - Total Returns
HEAT – Heating Type	SEX - Sex
HHAPPAR - His/Her Apparel	STATECOD – State Code
HOMEACC - Home Furniture	TELIND – Telemarket Ind.
HOMEVAL – Home Value	TMKTORD – Telemarket Ord.
INCOME – Yearly Income	TOWELS - Towels Purch.
JEWELRY – Jewelry Purch.	TRAVTIME – Travel Time.
JOB – Job Category	VALRATIO - \$ Value per Mailing
KITCHEN - Kitchen Prod.	WAPPAR – Ladies Apparel
LAMPS – Lamps Purch.	WCOAT – Ladies Coats