EAS501 Midterm Review

February 28, 2024

Contents

1 Introduction		
2	Matlab	3
3	Vectors 3.1 Dot product	3 3 4 4 4 5 5 5
4	Matrices4.1 Matrix vector product as a linear combination4.2 Operations4.3 Properties4.4 Matrix Inverse4.5 Problems	6 6 7 7
5 6		8 8 9 10 11
7	6.2 Problems	11 12
7	7.1 Accuracy vs Precision	13 13 13 15 15 18
8	Integration 8.1 Left point approximation	19 19 20

	8.3	Midpoint Rule	20
	8.4	Trapezoid Rule	21
	8.5	Simpson's Rule	21
	8.6	Gaussian Quadrature	
	8.7	Problems	21
9	Roo		22
	9.1	Bisection Method	22
	9.2	Regula Falsi Method	23
	9.3	Newton Rhapson Method	23
	9.4	Secant Method	24
	9.5	Fixed Point Method	24
10	Non	dinear Systems	25
	10.1	Fixed-point	25
	10.2	Multidimensional Newton-Rhaphson	25
		10.2.1 Jacobian	
		10.2.2 formula	25

1 Introduction

These notes surely have some errors. If there are any discrepancies between these notes and the lecture notes, always assume the lecture notes are correct

2 Matlab

refer to UB learns.

3 Vectors

- A vector is an organized collection of number called components.
 - For physicists, a vector is an arrow with a magnitude and length.
 - For data scientists, a vector might be a collection of data.
 - For a mathematician, a vector might be an element of a vector space.
- We can column vectors:

 $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

• and row vectors:

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

- vectors have the following operations:
 - addition
 - subtraction
 - scalar multiplication
 - cross product
 - transpose

3.1 Dot product

Definition:

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = |\mathbf{v}| \cdot |\mathbf{w}| \cdot \cos(\theta) = \sum_{i=1}^n v_i \cdot w_i$$

Example: Let
$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$.

The dot product of \mathbf{v} and \mathbf{w} is calculated as:

$$\mathbf{v} \cdot \mathbf{w} = (1 \cdot 4) + (2 \cdot 5) + (3 \cdot 6) = 4 + 10 + 18 = 32$$

3.2 Properties

The follow properties are also true:

• Commutative Property:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

• Distributive Property:

$$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{w} + \mathbf{x}) = \mathbf{u} \cdot \mathbf{w} + \mathbf{u} \cdot \mathbf{x} + \mathbf{v} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{x}$$

• Associative Property:

$$a(\mathbf{u} \cdot \mathbf{v}) = (a\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (a\mathbf{v})$$

3.3 Norms

Norms give us information about the size of a vector. Each norm gives us a different perspective on the "size" or "length".

p-norm:

$$\|\mathbf{u}\|_p = \left(\sum_{i=1}^n |u_i|^p\right)^{1/p}$$

2-norm (Euclidean norm):

$$\|\mathbf{u}\|_2 = \sqrt{\sum_{i=1}^n |u_i|^2}$$

1-norm:

$$\|\mathbf{u}\|_1 = \sum_{i=1}^n |u_i|$$

 ∞ -norm:

$$\|\mathbf{u}\|_{\infty} = \max_{i} |u_i|$$

3.3.1 All norms obey the following rules

• Positive Definiteness:

$$\|\mathbf{u}\|_p \ge 0$$
 and $\|\mathbf{u}\|_p = 0$ if and only if $\mathbf{u} = \mathbf{0}$

• Scalar Multiplication:

$$||k\mathbf{u}||_p = |k|||\mathbf{u}||_p$$

• Triangle Inequality:

$$\|\mathbf{u} + \mathbf{v}\|_p \le \|\mathbf{u}\|_p + \|\mathbf{v}\|_p$$

3.4 Cauch-Schwartz Inequality

Tells us the upper bound on the inner product (dot product) of two vectors.

$$|\mathbf{u}\cdot\mathbf{v}|\leq\|\mathbf{u}\|\|\mathbf{v}\|$$

3.5 Linear combinations of vectors

- A linear combination of vectors is a weighted sum of the vectors.
- An example of a linear combination of vectors is given by:

$$a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$$

where a,b, and c are scalars.

• If this doesn't make sense to you, pause here before you continue. This will come back a lot after the midterm.

3.6 Problems

• What does it mean if the dot product of two vectors equals 0?

4 Matrices

A matrix is a collection of 2D numbers. They can represent a collection of data, a system of linear equations, a linear mapping (more on this after the midterm), an adjacency matrix of a graph, a markov transition matrix, an epic movie from 1999, etc. etc.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \end{bmatrix}$$

• the size of a matrix is $m \times n$ where m is the number of rows and n is the number of columns. In the above example, m = 4, and n = 5. We write

$$A \in \mathbb{R}^{4 \times 5}$$

• The transpose of matrix A is denoted as A^{\top} , which is given by:

$$A^{\top} = \begin{bmatrix} 1 & 6 & 11 & 16 \\ 2 & 7 & 12 & 17 \\ 3 & 8 & 13 & 18 \\ 4 & 9 & 14 & 19 \\ 5 & 10 & 15 & 20 \end{bmatrix}$$

4.1 Matrix vector product as a linear combination

Let A be an $m \times n$ matrix represented as a collection of column vectors:

$$A = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}$$

where \mathbf{c}_i represents the *i*-th column vector of A.

Now, let \mathbf{x} be a vector of size n:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The product of A and \mathbf{x} can be expressed as:

$$A\mathbf{x} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

This multiplication yields:

$$A\mathbf{x} = x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \dots + x_n\mathbf{c}_n$$

Thus, multiplying the matrix A by the vector \mathbf{x} results in a linear combination of the column vectors of A.

4.2 Operations

- Addition/ Subtraction of equally sized matrices
- Matrix Vector products
- Matrix Matrix products
- Matrix Powers

- Block Matrices
- Trace = sum of the diagnoal elements
- outer product
- matrix determinant (know up to 3x3 by hand)

4.3 Properties

- 1. Commutative Property: A + B = B + A
- 2. Associative Property: (A + B) + C = A + (B + C)
- 3. Identity Element: $A + \mathbf{0} = \mathbf{0} + A = A$, where $\mathbf{0}$ is the zero matrix of appropriate size.
- 4. Associative Property: (AB)C = A(BC)
- 5. Distributive Properties:
 - Matrix-Matrix Multiplication: A(B+C) = AB + AC
 - Matrix-Scalar Multiplication: k(AB) = (kA)B = A(kB)
- 6. Matrix Multiplication is generally **not** commutative: $AB \neq BA$ for most matrices A and B.
- 7. Matrix-Vector Multiplication: $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$
- 8. Scalar-Vector Multiplication: $k(A\mathbf{x}) = (kA)\mathbf{x}$

Properties of Determinants:

- 1. Multiplicative Property: det(AB) = det(A) det(B) for matrices A and B of the same size.
- 2. Scalar Multiplication: $det(aA) = a^n det(A)$ for a scalar a and an $n \times n$ matrix A.
- 3. Determinant of the Transpose: $\det(A^{\top}) = \det(A)$ for any square matrix A.
- 4. The determinant of a mtrix is equal to the area parallelogram defined by the columns of the matrix.

4.4 Matrix Inverse

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

4.5 Problems

- outer product of two vectors
- trace of a matrix
- matrix determinant

5 Matrix Norms, Graphs, and Markov Chains

5.1 Matrix Norms

Matrix norms give us information about the "size" or "extent" of a matrix.

$$1\text{-norm (largest column 1-norm)}: \quad \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$$
 Infinite norm (largest row 1-norm):
$$\|A\|_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^n |a_{ij}|$$
 Frobenius norm (square root of sum of elements squared):
$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
 2-norm (spectral norm):
$$\|A\|_2 = \sigma_{\max}(A) \leq \|A\|_F$$

5.2 Graphs

- Graph a collection of vertices connected by edges.
- Adjacency matrix matrix representation of a graph including connections, weights, and direction.
- Path finite sequence of edges that connects two vertices
- Length number of edges in a path.
- A^n (i,j) = number of paths of length n between i and j

Figure 1: Graphs and their Adjacency Matrices

• graphs can get complex

• mathematicians have developed powerful algorithms for extracting information from these networks

5.3 Markov Chains

• the probability vector tells us about the current state of the system.

$$p_n = \begin{bmatrix} 0.8\\0.1\\0.1 \end{bmatrix}$$

• The markov transition matrix tells us how this system will change in one iteration.

$$M = \begin{bmatrix} 0.8 & 0.1 & 0.4 \\ 0.1 & 0.6 & 0.2 \\ 0.1 & 0.3 & 0.4 \end{bmatrix}$$

• Multiplying the transition matrix by the probability vector gives us the

$$Mp_n = \begin{bmatrix} 0.8 & 0.1 & 0.4 \\ 0.1 & 0.6 & 0.2 \\ 0.1 & 0.3 & 0.4 \end{bmatrix} \begin{bmatrix} 0.8 \\ 0.1 \\ 0.1 \end{bmatrix} = \begin{bmatrix} 0.8(0.8) + 0.1(0.1) + 0.4(0.1) \\ 0.1(0.8) + 0.6(0.1) + 0.2(0.1) \\ 0.1(0.8) + 0.3(0.1) + 0.4(0.1) \end{bmatrix} = \begin{bmatrix} 0.73 \\ 0.15 \\ 0.12 \end{bmatrix} = p_{n+1}$$

- So in general we have $p_n = M^n p_0$ (derive this yourself)
- Markov chain transition matrices are **stochastic** matrix:
 - square
 - all entries are non-negative
 - all columns add to 1
- important properties include:
 - $-\lim_{n\to\infty} M^n = M_{\infty}$
 - All values of M_{∞} are strictly positive
 - All columns of M_{∞} are the same
 - $-p_{\infty}$ is a column of M_{∞} (it doesn't matter the original p_0)

• if the Markov chain transition matrix is also **regular** (it has strictly positive values for some M^k) then, it will reach an equilibrium p_{∞} , otherwise, it will not.

5.4 Problems

6 Linear Systems and RREF

- a system of linear equations is when we have 2 or more linear equations that are describing the same system.
- Solving a system of linear equations can lead to one of three outcomes:
 - one unique solution
 - infinite number of solutions
 - no solutions
- How can we find a solution to a system of linear equations? One way is RREF.

6.1 RREF

System of linear equations:

$$2x + 3y = 5$$
$$4x - y = 3$$

Matrix-vector multiplication form:

$$\begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

Augmented matrix form:

$$\left[\begin{array}{cc|c}2&3&5\\4&-1&3\end{array}\right]$$

With RREF we can do the following to the augmented matrix form:

- swap rows
- multiply a row by a scalar
- add rows

Convince yourself that these are all legal algebraic operations on the system of linear equations.

When a matrix is in RREF form:

- It is in echelon form (echelon = "steps")
- Each pivot is 1
- Each column with a pivot only has a non-zero number at that pivot

RREF tells us if a system of linear equations has:

- one unique solution number of pivots equals number of rows AND the matrix is square
- infinite solutions number of pivots is less than the number of rows OR columns, AND all rows are consistant
- No solution inconsistent row

If one of these statements is true then ALL are true (and vice versa)

- A is invertable (A⁻¹ exists)
- $det(A) \neq 0$
- rref(A) has n-pivots
- $\operatorname{rref}(A) = I$
- Ax = b has a unique solution for all $b \in \mathbb{R}^{n \times 1}$

```
3 8 0
                                                                     8
                                                                  3
                                                                        0
Row
                          add -1 times the 2nd row to the 3rd row
Operation
                 2
                     1
                                                                        1
                                                               0 0 0 3
               1 2
                    - 4
               3 8
                     0
                                                        3
                                                              0
Row
                         multiply the 3rd row by 1/3
Operation
                  2
                     1
2:
                  0
                                                       0
               0
                  8
               3
                     0
                                                                  3
                                                                     8
                                                                        0
Row
                          add -1 times the 3rd row to the 2nd row
Operation
                  2
                     1
3:
               0 0 1
                                                                    0 1
               3
                     0
                  8
                                                                        0
Row
                          add -3 times the 2nd row to the 1st row
Operation
                    0
4:
               0 0 1
                                                                 0 0 1
```

6.2 Problems

• why do we pivot? (Gaussian elimination with pivoting?)

7 Interpolation

7.1 Accuracy vs Precision

- On your own, study the following:
 - significant figure
 - single precision (32-bit, 7 sig figs)
 - double precision (64-bit, 15 sig figs)
 - rounding
 - chopping
 - round-off errors
 - condition number

7.2 Interpolation

Here's the idea. We have a data set (temperature values in buffalo at different times, for example) but the data is not complete. We want to come up with a good estimate for the missing values based on the known values. There are two main types of interpolation, global interpolation and piecewise interpolation:

7.2.1 Global interpolation

• Use all of the data to construct one function over the entire domain.

Example: Polynomial interpolation

• Construct a polynomial function that passes through a given set of data points.

- We have a set of n data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n),$
- We want to find a polynomial function f(x) such that $f(x_i) = y_i$ for i = 1, 2, ..., n.
- The general form of a polynomial of degree n-1 is given by:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

• To find the coefficients $a_0, a_1, \ldots, a_{n-1}$, we substitute each data point (x_i, y_i) into the polynomial:

$$f(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_{n-1} x_1^{n-1} = y_1$$

$$f(x_2) = a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_{n-1} x_2^{n-1} = y_2$$

$$\vdots$$

$$f(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_{n-1} x_n^{n-1} = y_n$$

- These equations form a system of linear equations
- We can express it in matrix form as $V\mathbf{a} = \mathbf{y}$, where V is the Vandermonde matrix, \mathbf{a} is the column of unknown vector of coefficients $[a_0, a_1, \dots, a_{n-1}]^T$, and \mathbf{y} is the column vector of y-values $[y_1, y_2, \dots, y_n]^T$.
- Vandermonde matrix V is constructed by arranging the powers of x_i as columns:

$$V = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- The solution to the system $V\mathbf{a} = \mathbf{y}$ can be found by solving for \mathbf{a} , which gives us the coefficients of the polynomial function f(x).
- However, V has a huge condition number. Its not stable! So maybe this isn't the best way of doing it...

Example: Lagrange Interpolation:

• Instead of simple polynomials, we can construct polynomials with certain constraints that will be better suited for interpolation.

$$L_i(x) = \prod_{\substack{j=1\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

• Properties of Lagrange Polynomials:

1.

$$\sum_{i=1}^{n} L_i(x) = 1 \quad \text{for all } x$$

2.

$$L_i(x_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Figure 2: The first 4 lagrange polynomials, interpolating a n=4 data set

7.2.2 Runge's Phenomena and Chebyshev points

7.2.3 Piecewise interpolation

- Use one equation between each set of data points
- Each interpolating function between two data points is called a **spline**.
- Given n-data points (also called knots), we need n-1 splines
- In this class, we'll study:
 - linear splines
 - cubic splines

- hermite interpolation
- Radial basis interpolation
- The idea is always the same:
 - 1. Assume a certain form of the spline function
 - 2. Apply conditions that each spline must adhere to. For example:
 - splines must return the same value at the same point
 - splines must be continuous
 - 3. Use these conditions to create a solvable system of linear equations.
 - 4. Solve for the unknowns to find the equations for each spline.
- Example: linear splines:

- 1. Assume splines of the form $f_i(x) = a_i + b_i(x x_i)$
- 2. Apply the following condition:
 - Splines must return the correct y value at each data point
 - ullet Linear splines must be ${\bf C}^0$ continuous at each data point
- 3. Use this condition to create a set of linear equations
- 4. Solve

(Example in class)

• Example 2: cubic splines

- 1. Assume splines of the form $f_i(x) = a_i + b_i(x x_i) + c_i(x x_i)^2 + d_i(x x_i)^3$
 - 4 unknowns for each spline, we are going to need to impose some conditions to solve this
- 2. Apply the following conditions
 - Splines must return the correct y value at each knot
 - Splines must be C⁰ continuous at common knots
 - Splines must be C¹ continuous at common knots
 - Splines must be C² continuous at common knots
 - we still need two more equations to solve this system! Pick one of the following:
 - natural cubic splines
 - Clamped Cublic splines
 - "not-a-knot"
- 3. Use this condition to create a set of linear equations
- 4. Solve
- Example 2: **Hermite interpolation** (we are given data points, and their derivative at a point)
 - 1. Assume splines of the form $f_i(x) = p_i\left(\frac{x-x_i}{h_i}\right)$ where

$$p_{i}(t) = (2t^{3} - 2t^{2} + 1)y_{i} + (t^{3} - 2t^{2} + t)h_{i}y_{i}' + (-2t^{3} + 3t^{2})y_{i+1} + (t^{3} - t^{2})h_{i}y_{i+1}'$$

- 2. Apply the following conditions
 - $p_i(1) = p_{i+1}(0)$
 - $-\ p_{i}^{'}(1)=p_{i+1}^{'}(0)$
 - . . .
- 3. Create a system of linear equations
- 4. Solve
- Example 2: Radial Basis Interpolation (functions depend only on radial distance between points)

- 1. Assume splines of the form $s(x) = \sum_{i=1}^{n} w_i \phi(\|x x_i\|)$, where s(x) is the interpolating function, x is the input vector, x_i are the data points, w_i are the weights to be determined, $\phi(\|x x_i\|)$ is the radial basis function, and n is the number of data points.
- 2. Apply the following conditions

$$- s(x_i) = f_i$$

- 3. Create a system of linear equations
- 4. Solve

With radial basis interpolation we can choose our kernel ϕ , based on the problem:

- Gaussian
- Multiquadratic
- Inverse Multiquadratic
- Polyharmonic Spline

7.3 Problems

- How many sig figs in 0.001234?
- Round 0.00024382 to 2 sig figs with chopping

8 Integration

- You've learned to integrate functions in you calculus class.
- What if we want to integrate functions that don't have a nice analytic solutions?
- We use numerical integration methods.

8.1 Left point approximation

$$\int_{b}^{a} f(x)dx \approx \sum_{i=1}^{n-1} f(x_i)h_i$$

- Where $h_i = x_i x_{i-1}$
- ullet x_i is the left data point
- local error: $O(h^2)$
- global error: O(h)

8.2 Right Point approximation

$$\int_{b}^{a} f(x)dx \approx \sum_{i=1}^{n-1} f(x_i)h_i$$

- Where $h_i = x_i x_{i-1}$
- ullet x_i is the right data point
- - local error: $O(h^2)$
- global error: O(h)

8.3 Midpoint Rule

$$\int_{b}^{a} f(x)dx \approx \sum_{i=1}^{n} f(\overline{x_i})h_i$$

• Where $\overline{x_i} = \frac{x_{i-1} + x_i}{2}$

 $\bullet \ h_i = x_i - x_{i-1}$

• local error: $O(h^3)$

• global error: $O(h^2)$

8.4 Trapezoid Rule

$$\int_{b}^{a} f(x)dx \approx \sum_{i=1}^{n} \frac{1}{2} (f(x_{i-1}) + f(x_{i}))h_{i}$$

 $\bullet \ h_i = x_i - x_{i-1}$

• local error: $O(h^3)$

• global error: $O(h^2)$

8.5 Simpson's Rule

$$\int_{b}^{a} f(x)dx \approx \sum_{i=1}^{n} \frac{x_{i} - x_{i-1}}{6} \left[f(x_{i-1}) + 4f\left(\frac{x_{i} + x_{i-1}}{2}\right) + f(x_{i}) \right]$$

• local error: $O(h^5)$

• global error: $O(h^4)$

8.6 Gaussian Quadrature

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

• Quadrature rule that gives an exact result for $\int_{-1}^{1} f(x)dx$ where f(x) is a polynomial of degree 2n-1 or less.

• the weights, w_i are predefined (look them up wikipedia)

• So, a 7 point Gaussian quadrature can integrate a polynomial of degree 2(7) - 1 = 13 or less, **exactly** over the interval [-1, 1]

8.7 Problems

9 Root Finding

- We are looking for places where a function, f, has a root (f(x) = 0)
- solving an equation f(x) = g(x) is the same as finding the roots of the function h(x) = f(x) g(x)
- let ϵ be a small number.
 - convergence criteria: our guess for the root, $f(x_i)$ is smaller than ϵ
- let δ be a comparitively large number
 - divergence criteria: the difference between two successive guesses, $f(x_1)$ and $f(x_2)$ is larger than δ

9.1 Bisection Method

- solve for f(x) = 0 in $x \in [a, b]$
- Guess two values for x (a and b) such that f(a)f(b) < 0 (if there is a sign change, meaning f(x) must cross 0)
- let the midpoint be $m = \frac{a+b}{2}$
- Algorithm:
 - check $|b-a| < \delta$, the divergence criteria, return m
 - check $|f(m)| < \epsilon$, the convergence criteria, return m
 - if f(a)f(m) < 0, set new interval to [a, m] and repeat
 - if f(b)f(m) < 0, set new interval to [m, b]

9.2 Regula Falsi Method

- Again, guess two values for x (a and b) such that f(a)f(b) < 0 (if there is a sign change, meaning f(x) must cross 0)
- Draw a line connecting (a, f(a)), (b, f(b)): $y(s) = f(a) + \frac{f(b) f(a)}{b a}(s a)$
- Solve for where this line crosses the axis (ie. y(s) = 0): $s = \frac{bf(a) af(b)}{f(a) f(b)}$
- check $|b-a|<\delta$, the divergence criteria, return s
- check $|f(m)| < \epsilon$, the convergence criteria, return s
- if f(a)f(s) < 0, set new interval to [a, s] and repeat
- if f(b)f(s) < 0, set new interval to [s, b]

9.3 Newton Rhapson Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- might diverge. When?
- is divergence dependent on the initial guess?

9.4 Secant Method

$$x_{n+1} = x_n - f(x_n) \frac{f(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

9.5 Fixed Point Method

- a fixed point of a function f(x) is a point x_0 such that $f(x_0) = x_0$
- split f(x) into a linear part, ax and a non-linear part g(x)
- Example from homework

Nonlinear Systems 10

Lets do root finding for n-nonlinear equations with n unknowns

$$f_1(x_1, x_2, \dots, x_n) = 0 (1)$$

$$f_2(x_1, x_2, \dots, x_n) = 0 (2)$$

$$\vdots (3)$$

$$\vdots (3)$$

$$f_n(x_1, x_2, \dots, x_n) = 0$$

We can write it as a vector equation:

$$f(\mathbf{x}) = 0$$

10.1 Fixed-point

• like before, lets split it into a nonlinear and a linear part \$

$$f(\mathbf{x}) = g(\mathbf{x}) + A\mathbf{x} = 0$$

• Now lets do the rest by hand with an example...

10.2 Multidimensional Newton-Rhaphson

First lets understand the Jacobian:

Jacobian 10.2.1

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Here, f_1, f_2, \ldots, f_m are the components of the vector-valued function $f(\mathbf{x})$, and x_1, x_2, \ldots, x_n are the variables.

10.2.2 formula

$$x_{i+1} = x_i - (J_i)^{-1} \cdot f(x_i)$$