Final - 2024

1

1 point

Given a cache with 256 blocks. How many bits are needed for the Cache reference?	8
Given each block is 1024 bytes. How many bits are needed for the offset in the block?	10
What is the Tag size in bits	8
What is the DATA size of one block in bits ?	
How many total bits are needed for one block?	
For the full cache, how many bits are needed? (no commas)	

2

The memory address is 8632ACF5	
Given: Cache Block size (in bytes) is	8192
The Block Offset width (in bits) is	
Given: The TAG width (in bits) is	11
What is the Cache Index size in bits	
How many Blocks are there in Cache	
What is the TAG for this instruction?	
What is the INDEX for this instruction?	
What is the byte offset of the block	

The memory address is 68CD51F1	
Given Cache Block size (in bytes) is	32768
The Offset width (in bits) is	
Given The Tag width (in bits) is	8
What is the Cache Index size in bits	
How many Blocks are there in the Cache?	
What is the TAG for this instruction?	
What is the INDEX for this instruction?	
What is the byte Offset of the block	

Given: The cache contains 4096 blocks Each block holds 4096 bytes	
What is the size (in bits) of the Tag	
Given this memory address. 0111100000110101110010101100101	1
What is the tag	
What is the Index	
What is the Offset	
What is the address in hex (all CAPS)	
How many bits is the Offset?	
How many bits are needed for the Cache Index?	

Answer the following question about this cache configuration

Tag is 7 bits how many different tags will there be?	
Index is 18 bits how many different cache blocks are there?	
How many bits wide will the offset be?	
Given the above information how big is the block size (in BITS)?	

6

PC	Tag	Index	Address (Jersey #)	Value
0	Bulls	100	28	Obi Enechionyia
1	Heat	011	35	Aric Holman
2	Magic	111	15	Sindarius Thornwell
3	Hawks	010	10	Jeremiah Martin
4	Jazz	011	11	Mike Conley
5	Magic	111	15	Rodney Purvis
6	76ers	001	65	John Petrucelli
7	Magic	000	40	Braian Angola-Rodas
8	Mavericks	111	23	Alessandro Pajola
9	76ers	101	13	R.J. Hampton
10	Mavericks	100	20	Rashad Vaughn
11	Heat	000	0	Yante Maten

12	Jazz	011	19	Xavier Sneed
13	Hawks	000	32	Reid Travis
14	Heat	010	18	DeAndre Liggins
15	Magic	111	15	Sindarius Thornwell
16	Celtics	011	43	Javonte Green
17	Bulls	010	34	Justin Lewis

What will be the state of the cache after Fetching this 18 memory locations?

Tag	Index	Jersey#	State <u>H</u> it or <u>M</u> iss
	000		
	001		
	010		
	011		
	100		
	101		
	110		
	111		

Given this line of code, how will the Signal flags be set?			
STUR	X3,	[X19,	96]
Signal Flags	Value		
Reg2Loc			
ALUSrc			
ALUOp			
ALU Control			
MemRead			
MemWrite			
MemToReg			
RegWrite			
What Type of Instruction (R, I, CB, D)	D		

Specify the Value used at the following checkpoints		
Checkpoint	Value	
A - Reg 1		
B - Reg 2		
C - alt Reg 2		
D - Src 2, what value is passed to the ALU		

8 1 point

Look at the two slides below. One instruction is an Add, the other is a SUBI, one uses three registers the other uses two. Explain the difference in the data paths and the similarities.

Provide at least two differences - include the values of the Control Signals Provide at least four similarities - include the values of the Control Signals

Tracing Datapath Ex: ADD X0, X1, X2

Tracing Datapath Ex: SUBI X0, X1, #2

Edit View Insert Format Tools Table
12pt \vee Paragraph \vee \mid
<i>I</i> _Ø
p
1 point
Which instructions have the signal RegWrite = 0
STUR
CBZ
LDUR
AND
1 point
Which instructions have the signal ALUSrc = 1
STUR
ANDI
LDUR
AND

Whic	ch instructions have the	signal Reg2Loc = 1	
	STUR		
	ANDI		
	LDUR		
	AND		
	CBZ		
1 pc			tion.
Matc	ch the Hazard with the ca	ause and possible solu	tion
Stri	ucture Cause		
00.0			
	ntrol Cause		
Cor			
Cor	ntrol Cause ta Cause		
Cor			
Cor	ta Cause ssible answers		
Cor	ta Cause sible answers :: Instruction cannot ex		nat are needed to execute the
Cor	ta Cause ssible answers		nat are needed to execute the
Dat	ta Cause sible answers Instruction cannot eximinatruction are not yes When an instruction	et available.	se the hardware does not
Dat	ta Cause sible answers Instruction cannot exinstruction are not yes When an instruction support the combina Coccurs when the pip	et available. cannot execute becau ition of instructions that	se the hardware does not

Match the Hazard with the cause and possible solution

Structure Solution	-
Control Solution	-
Data Solution	- ×

Possible answers

- Reorder lines of code if possible or add in some NOPs
- Have two different kinds of memory
- Rewrite code to take the 'false' path as frequently as possible

Match the Hazard with the cause and possible solution

Control Example	
Data Example	·
Structure Example	·

Possible answers

- ... A CBZ takes the 'true' path and skips over the immediately following instructions
- One type of memory used for Instruction and Data Fetch and Data access can not happen at the same time
- An R-Type instruction (ADD X1, X2, X3) uses a register that an LDUR instruction has not retrieved the value from memory (LDUR X1, [X19, #24])

For each action listed on the left select the Stage in which it is performed

If the MemRead signal is set then the address from the ALU is used to retrieve the value from memory	
The ALU executes the desired instruction (ADD, ORR, SUB,)	
Current PC is incremented by 4	
Instruction Memory is accessed to retrieve the next instruction	
If the MemWrite signal is set then the value from 'Read data 2' is saved to memory	
Registers to be used are identified and values are retrieved from the Register File	
If the RegWrite signal is set then the value passed by the MemoryMux is saved to the desired Reg	
The ALU calculates the address of the memory value to be used in the MEM stage	
Possible answers	
ij ID ij EX ij MEM	1 IF II WB

Convert Decimal to 32-bit FP

For example:

of example.				
Decimal #	Sign bit	Expone nt	Fraction	
-4.75	1	10000 001	0011	
10.12500 0		10000 010		
43.01562 5		10000 100		
86.03125 0			01011000001	
-98.17187 500				

17

Convert to FP binary	
-0.390625	
Convert Integer to Binary	Convert Fraction to Binary
What is the sign bit?	
How many places did you	need to move the decimal?

	Positive to the left. Negative to the right
What is the decimal value	of the Bias
What is the binary value o	of the Bias? 8 bits
What then is the significa decimal) No trailing 0s	nt (digits to the right of the
What is the full binary val 1 bit for the sign 8 bits for the exponent Remaining bits for the fac fractional portion	ue of the FP # ction. No trailing 0s for the
What is the HEX value of	the number (all CAPS)

Convert to FP binary. For the Fractional portion do NOT include the trailing 0s		
413.031250		
Convert Integer to binary	Convert Fraction to binary (no trailing Os)	
	00001	
What is the sign bit?		
How many places did	you need to move the decimal?	
	Positive to the left. Negative to the right	
What is the decimal v	value of the Bias	
What is the binary va	lue of the Bias	
What then is the sign No trailing Os	ificant (digits to the right of the decimal)	
1001110100001		
What is the full binar trailing 0s for the frac	y value of the FP # 1 bit, 8 bits, No ctional portion	

What is the decimal value of the Bias		
What is the binary value of the Bias		
What then is the significant (digits to	o the right of the decimal). No not incl	ude trailing 0
What is the full binary value of the F	FP#	
Sign	xponent	Significand
What would be the value of the num in the trailing zeros to make a 32 bit	nber in HEX Use all caps. For this you number.	will need to a

20

Do not include Trailing 0s in the Fractional portion		
27.359375		
Integer	Fraction	
	010111	
What is the sign bit?		
How much did you need to move the decimal? Remember: Pos to the left. Neg to the right		
What is the decimal value of the Bias		
What is the binary value of the Bias		
What then is the significant (digits to the right of the decimal)	1011010111	

What is the full binary value of	the FP #. No trailing 0	ls .
Sign Significant	Exponent	
What would the HEX value of t ALL CAPS. This will be an 8 dig		

21 1 point

Associate the line of code with the category

iple the value of X1	Multiply by 33
reate the 2s complement of register	Integer divide by 8
ssible answers ### ADD X3, X3, X3, LSL 5	IULI X1, X1, 3
	late the Reminder
	X3, #-1
	DI X3, X3, #1
∷ ΔDD ¥1 ¥1 ¥1 ISI 1	IIII I V2 V2 22

1 point

22

Below is code for a simple looping program. The table below contains the Machine Code. You need to decipher the code and fill in the table with the values of the different cells. If a field is all zeros include ALL zeros.

```
loop
                             x14, #1
  80001238 F10005DF CMP
                              Exit; 0x80001270
  8000123C 540001AD B.LE
  80001240 910021AD ADD
                             x13, x13, #8
  80001244 F84001A9 LDUR
                             x9,[x13,#0]
1. 80001248 D10005CE SUB
                             x14, x14, #1
                             x10, x10, x9
  8000124C | 8B09014A | ADD
                             x11, x9
  80001250 EB09017F CMP
                              check_smallest ; 0x80001260
  80001254 5400006A B.GE
                             x11,x9
  80001258 AA0903EB MOV
                             loop; 0x80001238
  8000125C 17FFFFF7 B
```

•

		R	Format			
Opcode – 11 bits	Rm - 5 bits	Shamt – 6 bits	Rn - 5 bits	Rd - 5 bits	Operation	Hex Instructio n value
				01010	ADD X10, X10, X9	8B09014 A
		000000	11111		ORR X11, XZR, X9	AA0903E B
		СВ	Format	- T.	•	
Opcode – 8 bits	Address -	19 bits		Rt - 5		
					B.GE CheckSmalle st	5400006 A
				01101	B.LE Exit	540001A D
		I F	ormat		•	•
Opcode – 10 bits	Immediat	e – 12 bits	Rn - 5	Rd - 5		
			01101		ADDI X13, X13, #8	910021A D
D Format						
Opcode - 11	Address – 9	Op2 - 2	Rn - 5	Rt - 5		
		00			LDUR X9, [X13, #0]	F84001A 9

•

List 4 different kinds of **I - Type** instructions. Include any registers, addresses or immediate values needed

Edit View Insert Format Tools Table

12pt
$$\vee$$
 Paragraph \vee B I $\underline{\cup}$ \underline{A} \vee $\underline{\mathscr{D}}$ \vee \top^2 \vee

$$I_{\mathcal{D}} \quad \blacksquare \quad \vee \quad \sqrt{\mathsf{x}} \quad \diamondsuit$$

p

24 1 point

> Given this line of Code (which is an R Format) what are the values for the respective fields

IICIGS					
	opcode	Rm	shamt (enter all 6 characters to fill the field)	Rd	Hex Value
AND X11, X9, X13					

Given the Cycles per Instruction Type. Determine The CPI per Instruction Type and the Weighted CPI. All answers should have TWO decimal places. Even if the second decimal is 0. If the number is less than 1 include the leading 0.

Examples 2.00 1.50 1.66, 0.10, 0.25

Examples 2.00 1.50 1					
Instruction Type	Add	Store	Branch	FP	
Cyles per Instruction Type	1	12	5	2	
Instruction Type Mix	40%	20%	15%	25%	
CPI per Instruction Type					Weighted CPI

Order chips from slowest to fastest

Slowest

	::	2.0 GHz cycles per second
--	----	---------------------------

fastest

Application A on Computer A							
CPU Time (secs)	20.00						
Cycles	70.00E+9						
Cycle Rate (cycles / sec)	3.50E+9						
· ·	We have created a new chip and have tested Application A. It runs in 12 secs and requires an additional 20% in instruction cycles						
Application A on Computer B							
CPU Time (secs) 12.00							
Cycles (enter whole number no decimals)	109	Х					
Cycle Rate (enter whole number no decimals)	x10 ⁹						

Given three pieces of information about the application parameters calculate the missing piece. If number is less then 1 include the leading 0. Only include the significant fractional portion, no trailing zeros. Do not include commas or spaces.

\cap	.5,	1	5	5	2	1	7
v	·.J,	Д,	. J .	J.	۷.	⊥.	/

	, -		
СРІ	# of Instructions	Clock Rate Cycles/Sec	CPU Time
2.25	20000000	90000000	0.5
3	100000000	100000000	
1.5	100000000		0.3
1.5	125000000		0.75
3.5		350 000 000	1.25
4		5 000 000	120
	150 000 000	5 000 000	66
	12 000	240 000	0.3

Compare Performance of Chip X to Chip Z

Compare refroima	nce of Chip X to Chip Z					
	Chip X	Chip Z				
Instruction Cycles	27 000 000 000					
Cycle Rate (Cycles/Sec) 4.2 GHz		3.5 GHz				
If the new chip design for Computer Z decreases instruction cycles by 20% and has a cycle time of 3.5 GHz,						
Calculate the run ti include two decim a	me on Computer X. Only Ils.	Sec				
Calculate the total No commas or space	cycles on the new chip Z.					
Calculate the run ti Only include two d	me on the new chip Z. ecimals.	Secs				
Which chip ran the Z)	application faster? (X or					

30

1 point

The cells in Yellow are steps along the way which you will need to solve for the Green cells.

Do NOT include commas or spaces, If the answer does not have a decimal portion do not include it. DO include the leading zero is answer is less than 1 BAD BAD BAD $\,$

GOOD

12000000 12 12.1 12000000 0.4 0.4

Processor B runs App X

			I		T
		Run Time	0.0002 secs		
# of Cycles	# of Instructions	Instr Type	Cycles per Instructions	% of Instructions	CPI for Instruction Type
	500,000	Add/Mov Instr	1		
	250,000	Branch	2		
	500,000	Multiply	3	0.4	1.2
Total Cycles	Total # of Instructions				Average CPI
	Clock Rate GHz	Clock Rate (cycles / sec)			
	Cycle Time (Sec/Cyc) x 10 ^-12	Clock Cycle Time (sec / cycle)			