Foundations of Computation

Parser Coursework Part A

December 13, 2021

Convert the grammar G to an equivalent grammar G_0 in Chomsky normal form.

The terminals Σ are given by $\Sigma := \{+, *, (,), 1, 0, x\}$

The variables V are given by $V := \{S, T, F\}$, where S is the start symbol

The rules R of the grammar are given by

$$S \rightarrow S + T \mid T$$

$$T \to T * F \mid F$$

$$F \rightarrow (S) \mid 1 \mid 0 \mid x$$

1. Add new start variable S_0

Rewrite grammar:

$$S_0 \to S$$

$$S \rightarrow S + T \mid T$$

$$T \to T * F \mid F$$

$$F \rightarrow (S) \mid 1 \mid 0 \mid x$$

2. Eliminate e-rules $A \rightarrow e$

Not applicable in our case

3. Eliminate all unit rules $A \rightarrow B$

Remove $T \to F$. Add $T \to (S) \mid 1 \mid 0 \mid x$

Rewrite grammar:

$$S_0 \to S$$

$$S \rightarrow S + T \mid T$$

$$T \rightarrow T * F \mid (S) \mid 1 \mid 0 \mid x$$

$$F \rightarrow (S) \mid 1 \mid 0 \mid x$$

Remove $S \to T$. Add $S \to T * F \mid (S) \mid 1 \mid 0 \mid x$

Rewrite grammar:

$$S_0 \to S$$

$$S \to S + T \mid T * F \mid (S) \mid 1 \mid 0 \mid x$$

$$T \rightarrow T * F \mid (S) \mid 1 \mid 0 \mid x$$

$$F \rightarrow (S) \mid 1 \mid 0 \mid x$$

Remove $S_0 \to S$. Add $S_0 \to S + T \mid T * F \mid (S) \mid 1 \mid 0 \mid x$

Rewrite grammar:

$$S_0 \to S + T \mid T * F \mid (S) \mid 1 \mid 0 \mid x$$

$$S \rightarrow S + T \mid T * F \mid (S) \mid 1 \mid 0 \mid x$$

$$T \rightarrow T * F \mid (S) \mid 1 \mid 0 \mid x$$

$$F \rightarrow (S) \mid 1 \mid 0 \mid x$$

4. Eliminate rules of form $A \to u_1 u_2 ... u_k$ for $k \ge 3$

Remove $S \to S + T$, then add the rules:

$$S \to ST_1$$

$$T_1 \rightarrow +T$$

Remove $S_0 \to S + T$, then add the rules:

$$S_0 \to ST_1$$

$$T_1 \rightarrow +T$$

Remove $S_0 \to T * F$, then add the rules:

$$S_0 \to TF_1$$

$$F_1 \to *F$$

Remove $S \to T * F$, then add the rules:

$$S \to TF_1$$

$$F_1 \to *F$$

Remove $T \to T * F$, then add the rules:

$$T \rightarrow TF_1$$

$$F_1 \to *F$$

Remove $S_0 \to (S)$, then add the rules:

$$S_0 \to (S_1$$

$$S_1 \to S$$
)

Remove $S \to (S)$, then add the rules:

$$S \to (S_1)$$

$$S_1 \rightarrow S$$

Remove $T \to (S)$, then add the rules:

$$T \to (S_1)$$

$$S_1 \rightarrow S$$

Remove $F \to (S)$, then add the rules:

$$F \to (S_1$$

$$S_1 \rightarrow S$$

In summary, remove S + T, T * F and (S)

Introduce the following:

$$T_1 \to +T$$

$$F_1 \to *F$$

$$S_1 \to S$$
)

Rewrite grammar:

$$S_0 \to ST_1 \mid TF_1 \mid (S_1 \mid 1 \mid 0 \mid x)$$

$$S \to ST_1 \mid TF_1 \mid (S_1 \mid 1 \mid 0 \mid x)$$

$$T \rightarrow TF_1 \mid (S_1 \mid 1 \mid 0 \mid x)$$

$$F \rightarrow (S_1 \mid 1 \mid 0 \mid x)$$

$$T_1 \rightarrow +T$$

$$F_1 \to *F$$

$$S_1 \to S$$

5. Replace terminals with variables

Replace $T_1 \to +T$ with $T_1 \to PT$. Add $P \to +$

Replace
$$F_1 \to *F$$
 with $F_1 \to MF$. Add $M \to *$

Replace
$$S_1 \to S$$
) with $S_1 \to SR_1$. Add $R_1 \to$)

Replace $S_0 \to (S_1 \text{ with } S_0 \to L_1S_1, S \to (S_1 \text{ with } S \to L_1S_1, T \to (S_1 \text{ with } T \to L_1S_1, F \to (S_1 \text{ with } F \to L_1S_1. \text{ Add } L_1 \to (S_1 \text{ with } S_1 \to S_1))$

Rewrite grammar:

$$S_0 \rightarrow ST_1 \mid TF_1 \mid L_1S_1 \mid 1 \mid 0 \mid x$$

$$S \rightarrow ST_1 \mid TF_1 \mid L_1S_1 \mid 1 \mid 0 \mid x$$

$$T \rightarrow TF_1 \mid L_1S_1 \mid 1 \mid 0 \mid x$$

$$F \to L_1 S_1 \mid 1 \mid 0 \mid x$$

 $T_1 \rightarrow PT$ $F_1 \rightarrow MF$ $S_1 \rightarrow SR_1$ $P \rightarrow +$ $M \rightarrow *$ $R_1 \rightarrow)$ $L_1 \rightarrow ($