Package Demo: emdatr

Gopi Goteti

May 12, 2014

This vignette first provides an overview of the EMDAT database¹ and discusses some of the issues with EMDAT data - particularly, lack of entire data accessibility, static and inconsistent summary reports and the lack of auxiliary financial and demographic data. This is followed by a description of the R package *emdatr* and how it address some of the above issues with EMDAT data. The use of *emdatr* is demonstrated, followed by the duplication of summary graphics presented in the one of EMDAT's recent publications.

1 Overview of EMDAT Database

The International Disaster Database, EMDAT from the Center for Research on the Epidemiology of Disasters (CRED, Belgium) is often used as a reference for losses on human life and property resulting from natural and man-made disasters. This database has over 20,000 country-level records from the early 1900s to the present. Data is available for free from EMDAT.

Some issues with EMDAT data are as follows.

• Data Inaccessibility

- EMDAT provides only partial information on the geographical extent of the disaster. Country information is always provided, but the specific provinces and sub-provinces within a country are not provided through the website. The region field displayed on the website typically includes a couple of provinces followed by "...".
- It appears that access to the entire database is restricted and it is unclear why EMDAT does not release their entire database.

• Static and Inconsistent Summary Reports

- Annual reports published by EMDAT 2 are inconsistent with one another in terms of number of disasters per year or the total number of people affected or killed. For instance, number of disasters in 2002

¹http://www.emdat.be/database

 $^{^2 \}rm Annual$ Disaster Statistical Review (ADSR) Reports for 2008 through 2012 were obtained from http://www.emdat.be/publications

were reported to be 428 in the Annual Disaster Statistical Review (ADSR) report for 2012. But the same number in the 2011, 2010, 2009 and 2008 reports is 421, 421, 422 and 421, respectively!

The above issue could partly be due to the static nature of these reports. Whereas data gets updated in the database, the reports generated in the past are not. In the generation of "Web 2.0", a dynamic summary reporting site is reasonable to expect.

• Data Conventions

 Country names used by EMDAT are not always the same as those used by ISO 3166 convention³. This issue is relevant when making spatial maps using R.

• Lack of Auxiliary Information

- Financial losses reported by EMDAT are from the year of occurrence of the disaster and are not adjusted for inflation.
- Annual GDP and population data are often used to project (or "normalize)" historical monetary losses to the present⁴. EMDAT does not provide such information.

2 R Package emdatr

The R package *emdatr* addresses some of the above-mentioned issues with the EMDAT data. The goal of the package is to promote the use of EMDAT data, bring transparency to the data, shed light on the limitations of the data, and make the analysis of the data easier through the R language.

2.1 Cleaned and Enhanced EMDAT Data

Raw data was obtained from the EMDAT website and was cleaned, formatted and enhanced. Following is an overview of this procedure.

- **Typographical errors** in country names and disaster types were corrected.
- ISO 3166 convention Country names from EMDAT were mapped to the ISO names by visually comparing the names. The mismatch is names was either due to abbreviations used by EMDAT, for instance Is for Islands, or anglicized spelling used by ISO. Some countries could not be assigned an ISO name due to geographical splits. Hence, the former countries of Czechoslovakia, Yugoslavia, Serbia Montenegro and Soviet Union have been assigned an ISO name of X_X.

³http://en.wikipedia.org/wiki/ISO_3166

⁴For instance,

- GDP and population data from the World Bank⁵ was added, when available, to each of the EMDAT events. Some country codes in the World Bank data have also been found to be inconsistent with ISO 3166 convention. Hence, ROM, PSE, TMP, ZAR were assigned the codes of ROU, WBG, TLS, COD, respectively.
- EMDAT's financial losses are always reported in USA Dollars from the year of occurrence of the disaster. Adjustment of historical losses for inflation requires Consumer Price Index (CPI). The USA CPI from the Bureau of Labor Statistics⁶ is used in the package to adjust for inflation.

2.2 Getting the Data

After installing the package, load the package along with RCurl (for data extraction from bitbucket.org), ggplot (for graphics) and plyr (for data manipulation).

```
> require(emdatr)
> require(RCurl)
> require(ggplot2)
> require(plyr)
```

The single main function provided by *emdatr* is *extract_emdat*. This could be used to extract a sample of the EMDAT data (which comes with this package) or the entire data. First, load the sample data that comes with the package.

```
> losses_2013 <- extract_emdat()
> dim(losses_2013)
[1] 545   18
> head(losses_2013)
```

	Start	End	Country	Locat	ion
200	24/04/2013	24/04/2013	Afghanistan	Kameh, Dehbala, Lalpur, S	
201	10/8/2013	14/08/2013	Afghanistan	Chakardar, Chak, Jaghatu,	
202	1/8/2013	7/8/2013	Afghanistan	Kabul, Khost, Kunar, Pakt	
203	25/04/2013	29/04/2013	Afghanistan	Baghlan, Ghor, Balkh pro	
204	4/2/2013	10/2/2013	Afghanistan	Hirat, Parwan, Kandahar,	
205	15/09/2013	15/09/2013	Afghanistan	Ruyi Du Ab district (Sama	
			Type	SubType	Name Killed
200	earthquake	(seismic ad	ctivity) ear	chquake (ground shaking)	18
201			flood	general flood	31
202			flood	general flood	52
203			flood	general flood	20

 $^{^5 {\}rm http://databank.worldbank.org/data/home.aspx}$

⁶http://www.bls.gov/cpi/tables.htm

204					flood	ge	eneral	l flood	10)
205		i	ndustrial	. 6	accident		C	ollapse Coal	l mine 28	3
	TotAffe	ected	EstDamag	e,	DisNo	Group	Year	ISO_alpha3	ISO_cntry	
200		3531	N	Α	2013-0151	geophysical	2013	AFG	Afghanistan	
201		NA	N	Α	2013-0343	hydrological	2013	AFG	Afghanistan	
202		2597	N	Α	2013-0279	hydrological	2013	AFG	Afghanistan	
203		9500	N	Α	2013-0178	hydrological	2013	AFG	Afghanistan	
204		5000	N	Α	2013-0148	hydrological	2013	AFG	Afghanistan	
205		17	N	Α	2013-0359	${\tt technological}$	2013	AFG	Afghanistan	
	region	Pop	GDP							
200	Asia	NA	NA							
201	Asia	NA	NA							
202	Asia	NA	NA							
203	Asia	NA	NA							
204	Asia	NA	NA							
205	Asia	NA	NA							

The default options of *extract_emdat* do not make any adjustments for inflation. Next, obtain the entire dataset with the *inflation* option enabled. This might take a few seconds. The result is that all historical financial losses are adjusted for inflation resulting in equivalent dollar amounts in 2013. If a different year of adjustment is desired, change the *base_year* accordingly.

```
Start
                    End
                            Country
                                            Location
  10/6/1954 10/6/1954 Afghanistan
                                        North Region
  10/6/1956 10/6/1956 Afghanistan
                                               Kabul
3 00/07/1956 00/07/1956 Afghanistan
4 00/04/1963 00/04/1963 Afghanistan
  12/6/1964 12/6/1964 Afghanistan
                                              Karkar
6 00/01/1969 00/00/1969 Afghanistan Paktia province
                           Type
                                                     SubType Name Killed
1 earthquake (seismic activity) earthquake (ground shaking)
                                                                     2000
 earthquake (seismic activity) earthquake (ground shaking)
                                                                      100
3
                          flood
                                                                      51
4
                          flood
                                                                      107
5
                                                                      74
            industrial accident
                                                   explosion Mine
                                                     drought
                        drought
                                                                      NA
                                            Group Year ISO_alpha3
  TotAffected EstDamage
                                                                     ISO_cntry
                            DisNo
                     NA 1954-0009
                                      geophysical 1954
                                                              AFG Afghanistan
1
           NA
         2000
                   25.0 1956-0008
                                      geophysical 1956
                                                              AFG Afghanistan
```

```
3
                      NA 1956-0039
                                      hydrological 1956
                                                                 AFG Afghanistan
4
           NA
                      NA 1963-0065
                                      hydrological 1963
                                                                 AFG Afghanistan
5
          400
                      NA 1964-0033
                                     technological 1964
                                                                 AFG Afghanistan
6
        48000
                     0.2 1969-9007 climatological 1969
                                                                 AFG Afghanistan
  region Pop
                    GDP Damage_Adjusted_2013
1
    Asia
          NA
                     NA
                                            NA
2
    Asia
          NA
                     NA
                                    214.11489
3
    Asia
          ΝA
                     NA
                                            NA
4
    Asia
          NA
               751.1112
                                            NA
               800.0000
                                            NA
5
    Asia
          NA
    Asia
          NA 1408.8889
                                      1.26952
```

All financial losses from EMDAT are reported in Millions of US Dollars. Adjustment for inflation is currently based on the relative ratio of the Consumer Price Index (CPI) of the United States - i.e., the adjustment factor is the ratio of CPI in the base_year and the CPI in the year of the disaster. However, such adjustment may be inappropriate since it does not account for any direct economic changes in the country of occurrence. Future updates to the package could incorporate such economic effects.

3 Duplicating Select Graphics from ADSR 2012 Report

Example graphics shown in this section are intended to duplicate those shown in EMDAT's ADSR report from 2012⁷. Graphics shown in this section represent the unique set of charts and graphs shown in the ADSR 2012 report and not the entire set of graphics.

From the entire dataset, identify natural disasters only.

3.1 Figure 1, ADSR Report 2012

Identify number killed and affected per year from 1990 through 2012.

```
> gfx_deaths <- aggregate(cbind(Killed, TotAffected) ~ Year, data = nat_data,
+ FUN = sum)</pre>
```

 $^{^7{\}rm Guha\text{-}Sapir}$ D, Hoyois Ph., Below. R. Annual Disaster Statistical Review 2012: The Numbers and Trends. Brussels: CRED; 2013., http://www.emdat.be/publications

Figure 1: Trends in Victims, Millions, Sum of Killed and Total Affected. Compare with Figure 1, pg. 3 of the ADSR report from 2012.

```
> # total in millions
> gfx_deaths$Total <- (gfx_deaths$Killed + gfx_deaths$TotAffected)/10^6
> gfx_deaths <- gfx_deaths[, c("Year", "Total")]</pre>
> gfx_deaths <- gfx_deaths[gfx_deaths$Year %in% seq(1990, 2012), ]
> gfx_deaths <- droplevels(gfx_deaths)</pre>
   Plot number killed or affected by year, similar to the barplot in EMDAT's
ADSR report from 2012 (Figure 1, pg. 3 of the ADSR report). See Figure 1.
> gfx_bar <- ggplot(gfx_deaths, aes(x = Year, y = Total))</pre>
> gfx_bar <- gfx_bar + geom_bar(position = "dodge", stat = "identity", fill = "blue")
> gfx_bar <- gfx_bar + ylab("Reported Victims (in Millions)")</pre>
> gfx_bar \leftarrow gfx_bar + ylim(0, 800)
> gfx_bar <- gfx_bar + theme(axis.text.x = element_text(angle = 45, hjust = 1))
> gfx_bar <- gfx_bar + geom_text(aes(label = round(Total), hjust = 0.5, vjust = 0),
      size = 4)
   Number of events per year from 1990 through 2012.
> gfx_events <- as.data.frame(table(nat_data$Year), stringsAsFactors = FALSE)
> colnames(gfx_events) <- c("Year", "Total_Events")</pre>
> gfx_events <- gfx_events[gfx_events$Year >= 1990 & gfx_events$Year <= 2012, ]
> gfx_events[gfx_events$Year == 2002, ]
    Year Total Events
103 2002
                   422
```


Figure 2: Trends in Disaster Occurrence, EMDAT Reported Disasters Per Year. Compare with Figure 1, pg. 3 of the ADSR report from 2012. Note that the number of events in 2002 were reported to be 428 in the ADSR 2012 report. But the same number in the 2011, 2010, 2009 and 2008 reports is 421, 421, 422 and 421, respectively!

Plot number of events by year, similar to the lineplot in EMDAT's ADSR report 2012 (Figure 1, pg. 3 of the ADSR report). See Figure 2.

```
> gfx_line <- ggplot(gfx_events, aes(x = Year, y = Total_Events, group = 1))
> gfx_line <- gfx_line + geom_line()
> gfx_line <- gfx_line + ylab("Disasters Per Year")
> gfx_line <- gfx_line + ylim(0, 500)
> gfx_line <- gfx_line + theme(axis.text.x = element_text(angle = 45, hjust = 1))</pre>
```

3.2 Figure 3 and 6, ADSR Report 2012

In order to replicate the graphic on top 10 countries by loss ((Figure 3 and 6, pg. 15-16 of the ADSR report), a generic function is developed below which could not only be used with loss but also other variables.

```
> Fn_Get_Top_Countries <- function(input_df, var_name, plot_title) {
+    var_vec <- c("Events", "EstDamage", "TotAffected", "Killed")
+    stopifnot(colnames(input_df) == colnames(nat_data))
+    stopifnot(var_name %in% var_vec)
+
+    fun_name <- "sum"</pre>
```

```
if (var_name == "Events") {
          fun_name <- "length"</pre>
          var_name <- "Year"</pre>
      7
      # summary by country per natural disaster group
      data_by_group <- aggregate(as.formula(paste(var_name, " ~ ISO_cntry + Group")),
          data = input_df, FUN = fun_name)
      colnames(data_by_group) <- c("Country", "Group", var_name)</pre>
      # totals by country
      data_agg <- aggregate(as.formula(paste(var_name, " ~ ISO_cntry")), data = input_df,</pre>
          FUN = fun_name
      colnames(data_agg) <- c("Country", "Totals")</pre>
      data_agg <- data_agg[order(data_agg$Totals, decreasing = TRUE), ]</pre>
      cntrys_10 <- data_agg$Country[1:10]</pre>
      # merge above two data frames
      out_df <- merge(data_by_group, data_agg, by = "Country")</pre>
      out_df <- out_df[order(out_df$Totals, decreasing = TRUE), ]</pre>
      out_df <- out_df[out_df$Country %in% cntrys_10, ]</pre>
      out_df <- droplevels(out_df)</pre>
      out_df$Country <- factor(out_df$Country, levels = rev(cntrys_10))</pre>
      # percentage share
      out_df$Pers <- out_df[, var_name] * 100/out_df$Totals</pre>
      return(out_df)
+ }
   Use the above function to get natural disaster counts by disaster Group for
2012 for the top 10 countries.
> nat_2012 <- nat_data[nat_data$Year == 2012, ]</pre>
> nat_2012 <- droplevels(nat_2012)</pre>
> gfx_2012_counts <- Fn_Get_Top_Countries(nat_2012, "Events")
> head(gfx_2012_counts, 10)
                            Group Year Totals
          Country
                                                     Pers
38
            China climatological
                                     1
                                            28 3.571429
39
            China hydrological
                                            28 46.428571
                                    13
                                            28 21.428571
40
            China
                      geophysical
                                     6
            China meteorological
                                     8
                                            28 28.571429
                                   1
175 United States hydrological
                                        25 4.000000
176 United States climatological 5
                                          25 20.000000
177 United States meteorological 19 25 76.000000
```

```
134 Philippines hydrological 9 21 42.857143
135 Philippines meteorological 9 21 42.857143
136 Philippines geophysical 3 21 14.285714
```

Barplot of top 10 countries by number of natural disasters in 2012. See Figure 3.

```
> gfx_bar \leftarrow ggplot(gfx_2012\_counts, aes(x = Country, y = Year, group = Group))
> gfx_bar \leftarrow gfx_bar + geom_bar(aes(fill = Group), position = "stack", stat = "identity")
> gfx_bar \leftarrow gfx_bar + ylab("Number of Events") + xlab(NULL)
> gfx_bar \leftarrow gfx_bar + coord_flip()
```


Figure 3: Top 10 countries by number of events in 2012. Compare with Figure 3, pg. 15 of the ADSR report from 2012.

Use the above function to get natural disaster losses by disaster Group for 2012 for the top 10 countries.

```
> gfx_2012_losses <- Fn_Get_Top_Countries(nat_2012, "EstDamage")
> head(gfx_2012_losses, 10)
```

```
Group EstDamage
         Country
                                            Totals
                                                           Pers
67 United States climatological 20800.000 98469.00 21.12339924
68 United States meteorological 77495.000 98469.00 78.69989540
69 United States
                   hydrological
                                  174.000 98469.00 0.17670536
           China climatological
                                   20.200 19754.53 0.10225501
12
13
                   hydrological 14970.333 19754.53 75.78176108
           China meteorological 3216.000 19754.53 16.27980778
14
```

```
15 China geophysical 1548.000 19754.53 7.83617613
28 Italy climatological 1322.601 17137.60 7.71753876
29 Italy hydrological 15.000 17137.60 0.08752684
30 Italy geophysical 15800.000 17137.60 92.19493440
```

Pieplot of these top 10 countries. See Figure 4.

```
> gfx_pie <- ggplot(gfx_2012_losses, aes(x = "", y = Pers, fill = Group))
> gfx_pie <- gfx_pie + facet_wrap(~Country)
> gfx_pie <- gfx_pie + geom_bar(width = 1, stat = "identity")
> gfx_pie <- gfx_pie + coord_polar(theta = "y")
> gfx_pie <- gfx_pie + theme(axis.ticks = element_blank(), axis.text.y = element_blank(),
+ axis.text.x = element_blank())
> gfx_pie <- gfx_pie + xlab("") + ylab("")</pre>
```


Figure 4: Top 10 countries by losses in 2012. Compare with Figure 6, pg. 16 of the ADSR report from 2012. Note the discrepancies in this plot and the one from ADSR. For instance, Mexico is in the above graphic and not in the ADSR graphic, whereas Philippines is present in the ADSR graphic and not in the above graphic. Also the percentage share of the Group is not always the same between these two graphics.

3.3 Map 3, ADSR Report 2012

In Map 3 of the ADSR Report (see pg. 33) the color scheme of the barplots and the color scheme of the continental regions in the map overlap resulting

in a misrepresentation of the summary statistics. Below code reproduces the statistics presented in Map 3.

First, compute the regional disaster losses and the percent share of each region within each Group.

> gfx_reg1 <- ddply(nat_2012[, c("EstDamage", "Group", "region")],</pre>

.(region, Group),

summarize,

```
tot_by_group = sum(EstDamage, na.rm = TRUE))
 gfx_reg2 <- ddply(nat_2012[, c("EstDamage", "Group", "region")],</pre>
                     .(Group),
                    summarize,
                    tot_by_reg = sum(EstDamage, na.rm = TRUE))
> gfx_reg <- merge(gfx_reg1, gfx_reg2, by = "Group", all.x = TRUE)
> gfx_reg$share <- gfx_reg$tot_by_group * 100 / gfx_reg$tot_by_reg
> head(gfx_reg)
           Group
                   region tot_by_group tot_by_reg
                                                          share
1 climatological
                   Africa
                                 0.000
                                          26632.80 0.00000000
2 climatological Americas
                              22460.000
                                          26632.80 84.33209860
3 climatological
                     Asia
                                 20.200
                                          26632.80 0.07584632
4 climatological
                               4152.601
                                          26632.80 15.59205508
                   Europe
5
     geophysical Americas
                                675.000 18536.31 3.64150068
     geophysical
                      Asia
                               2061.314
                                          18536.31 11.12040938
  Plot percent share of each region within each Group. See Figure 5
> gfx_bar <- ggplot(gfx_reg, aes(x = Group, y = share, group = region))</pre>
> gfx_bar <- gfx_bar + geom_bar(aes(fill = Group), position = "dodge", stat = "identity")
> gfx_bar <- gfx_bar + facet_wrap(~region, scales = "free_y")</pre>
> gfx_bar <- gfx_bar + ylab("Percent Share") + xlab(NULL)</pre>
```

> gfx_bar <- gfx_bar + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank())

4 Maps using rworldmap

Make a map of global financial losses from all disasters for 2013.

During the vignette creation process, the following code on making a map resulted in an error, possibly due to formatting errors in the TeX script. Some expertise in TeX is required to resolve this error, but the author does not have it. The below code works on its own but not within the vignette creation process. Hence, the below three chunks of code are not evaluated and are only shown for reference. Future updates to the package would try to fix this error.

First, get the total loss by country using the ISO3 country names.

Figure 5: Percent share of disaster losses by disaster group. Compare with Map 3, pg. 33 of the ADSR report from 2012.

```
+ summarize,
+ total = sum(EstDamage, na.rm = TRUE))
> # remove "X__X" introduced during the cleaning process
> losses_cntry <- losses_cntry[losses_cntry$ISO_alpha3 != "X__X", ]
> # convert to billions; exclude 0s and NAs
> losses_cntry$total <- losses_cntry$total / 10^3
> losses_cntry <- losses_cntry[!is.na(losses_cntry$total) & losses_cntry$total > 0, ]
> head(losses_cntry)
> summary(losses_cntry)
```

Using the rworldmap package, create a data frame compatible with rworldmap plotting functions.

```
+ addLegend = FALSE)
> gfx_map <- do.call(addMapLegend,
+ c(gfx_map,
+ legendLabels = "all",
+ legendWidth = 0.3,
+ sigFigs = 1))</pre>
```

5 Summary

The EMDAT database provides valuable information on human and financial losses from natural disasters around the world. Some of the issues with the EMDAT data are lack of entire data accessibility, static and inconsistent summary reports, and the lack of auxiliary financial and demographic data. The *emdatr* package addresses some of these issues. The examples provided in this vignette demonstrate the functionality provided by the *emdatr* package. The goal of the *emdatr* package is to promote the use of EMDAT data, bring transparency to the data, shed light on the limitations of the data, and make the analysis of the data easier through the R language and the plethora of open source packages built around it.