Infinite Sequence & Series

27.09.2024

CAT 性能优化中心

•0000000000

Table of Contents

1 Sequences	3
1.a Limits of Sequences	
1.b Discussion about Proofs	5
1.c Johann Bernoulli Rule (L'Hôpital's Rule)	6
1.d An Infinite Series	7
1.e Integral Test	
1.f Comparison Test	9
1.g The Ratio Test	
1.h Raabe's Test	11
1.i The Alternating Series Test	12
1.j Exercises	13

1 Sequences

Limits of Sequences

A **Sequence** is a function whose domain is a set of form $\{n \in \mathbb{Z} : n \ge m\}$; m is usually 1 or 0. It is denoted by symbols $\{a_n\}$ or (s_n) ; $(s_n) = (s_1, s_2, ..., s_n)$.

Example

- (a) Consider a sequence $(s_n)_{n\in\mathbb{N}}$ where $(s_n)=\frac{1}{n^2}$. This is the sequence $\left(1,\frac{1}{4},\frac{1}{9},\frac{1}{16},\ldots\right)$ which is a function with domain \mathbb{N} whose values at each n is $\frac{1}{n^2}$.
- **(b)** If $a_n = (n)^{\frac{1}{n}}, n \in \mathbb{N}$ then sequence is $\left(1, (2)^{\frac{1}{2}}, (3)^{\frac{1}{3}}, \ldots\right)$. It turns out $a_{100} \approx 1.0471 \land a_{1000} \approx 1.0069$.

Definition

A Sequence (s_n) of real numbers is said to be converge to real number s provided that for each $\varepsilon > 0$ \exists a number N

$$n > N \Rightarrow |s_n - s| < \varepsilon$$

If (s_n) convergers to s ($\lim_{n\to\infty} s_n = s$). The number s is called limit of sequence (s_n) .

A sequence that does not *converge* to some real number is said to **diverge**.

Discussion about Proofs

••••00000000

Example Prove $\lim \frac{3n+1}{7n-4} = \frac{3}{7}$.

Discussion. For each $\varepsilon > 0$

$$|\frac{3n+1}{7n-4} - \frac{3}{7}| < \varepsilon \Rightarrow \frac{19}{49\varepsilon} + \frac{4}{7} < n$$

Our steps are reversible, so we'll put $N = \frac{19}{49\varepsilon} + \frac{4}{7}$

Formal Proof Let $\varepsilon>0$ and $N=\frac{19}{49\varepsilon}+\frac{4}{7}$. Then $n>N\Rightarrow n>\frac{19}{49\varepsilon}+\frac{4}{7}$

$$\therefore \frac{19}{7(7n-4)} < \varepsilon \Rightarrow |\frac{3n+1}{7n-4} - \frac{3}{7}| < \varepsilon$$

This proves $\lim \frac{3n+1}{7n-4} = \frac{3}{7}$.

Sandwich Theorem

Let $\{a_n\}, \{b_n\} \wedge \{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n \forall n > N$ if $\lim a_n = \lim c_n = L$ then $\lim b_n = L$.

Example $\lim_{n \to \infty} \frac{\cos(n)}{n}$

Sol. As $-1 \le \cos(n) \le 1 \Rightarrow -\frac{1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n} \land \lim_{n \to \infty} \frac{1}{|n|} = 0 = L$. Hence limit converges to 0.

Johann Bernoulli Rule (L'Hôpital's Rule)

•••••••

It states that functions $f \wedge g$ which are defined on open interval I and differentiable on $\{I - c\}$ for a (possibly infinite) accumulation point c of I,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Definition

A sequence $\{a_n\}$ is **nondecreasing** if $a_n \leq a_{n+1} \forall n$. The sequence is **nonincreasing** if $a_n \geq a_{n+1} \forall n$. The sequence is said to be **monotonic** if it is either nondecreasing or nonincreasing.

Monotonic sequence Theorem

If a sequence $\{a_n\}$ is both bounded and monotonic, then sequence *converges*.

Stirling's Approximation

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

An Infinite Series

Definition

Given a sequence of numbers $\{a_n\}$, an expression of form

$$a_1 + a_2 + a_3 + \dots + a_n + \dots$$

is an **infinite series**. a_n is **nth term** of series. The sequence $\{s_n\}$ is defined by

$$s_1 = a_1$$

$$s_2 = a_1 + a_2$$
 .

$$s_n = a_1 + a_2 + \ldots + a_n = \sum_{k=0}^n a_k$$

is the sequence of partial sums of series, the number s_n being nth partial sum. If sequence of partial sum converges to limit ${\bf L}$

$$s_n = L$$

Integral Test

Definition

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n=f(n)$, where f is a continuous, positive, decreasing function of $x \forall x \geq N$. Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ both diverge or both converge.

Example Show that **p-series**

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots, p \in \mathbb{R}$$

converges if p > 1 and diverges if $p \le 1$.

Proof If p > 1, then $f(x) = \frac{1}{x^p}$ is nonincreasing function $\forall x \in \mathbb{R}^+$

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{\varepsilon \to \infty} \left[\frac{x^{-p+1}}{p+1} \right]_{1}^{\varepsilon} = \frac{1}{p-1}$$

If
$$0 then $1-p > 0 \land \int_1^\infty \frac{\mathrm{d}x}{x^p} = \frac{1}{1-p} \lim \bigl(b^{1-p} - 1\bigr) = \infty$$$

Series diverges by integral test.

Comparison Test

Definition

Let $\sum a_n, \sum c_n \wedge \sum d_n$ be series with non negative terms. Suppose that for some integer N

$$d_n \le a_n \le c_n \forall n > N$$

- 1. If $\sum c_n$ converges then $\sum a_n$ also converges.
- 2. If $\sum d_n$ diverges then $\sum a_n$ also diverges.

Limit Comparison Test

Definition

Suppose that $a_n>0 \land b_n>0 \ \forall n\geq N, N\in \mathbb{Z}$

- 1. If $\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$, then $\sum a_n\wedge\sum b_n$ both converge or diverge.
- 2. If $\lim_{n\to\infty}\frac{\bar{a}_n^n}{b_n}=0$ and $\sum b_n$ converges, then $\sum a_n$ coverges.
- 3. If $\lim_{n\to\infty} \frac{a_n^n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Absolute Convergence Test

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$.

The Ratio Test

•••••••

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \rho$$

Then

- 1. Series **converges** absolutely if $\rho < 1$
- 2. Series **diverges** if $\rho > 1$
- 3. Test is inconclusive if $\rho = 1$

The Root Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty}\left(|a_n|\right)^{\frac{1}{n}}=\rho$$

Then

- 1. Series **converges** absolutely if $\rho < 1$
- 2. Series **diverges** if $\rho > 1$
- 3. Test is inconclusive if $\rho = 1$

Raabe's Test

••••••••

Let $\sum a_n$ be any series, then

$$\rho_n \equiv n \left(\frac{a_n}{a_{n+1}} - 1 \right)$$

- 1. Converge if $\rho = \lim_{n \to \infty} \rho_n > 1$
- 2. Diverge if $\lim_{n\to\infty} \rho_n < 1$
- 3. Test is inconclusive if $\rho = 1$

Betrand Test

Let $\sum a_n(a_n>0, \forall n\in\mathbb{N})$ be any series, then

$$\rho_n \equiv \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) \ln(n)$$

- 1. Converges if $\lim_{n\to\infty} \rho_n > 1$
- 2. Diverges if $\lim_{n\to\infty} \rho_n < 1$

The Alternating Series Test

••••••••

The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots$$

converges if

- 1. The u_n 's are all positive.
- 2. The positive u_n 's are nonincreasing $u_n \geq u_{n+1} \forall n \geq N$ for some $N \in \mathbb{Z}$
- 3. $u_n \to 0$

Exercises

1. Show that if $\sum_{n=1}^{\infty} s_n$ converges then

$$\sum_{n=1}^{\infty} \left(\frac{1 + \sin(s_n)}{2} \right)^n$$

converges.

2. Prove that (The Basel problem)

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(HINT: Use fourier series $f(x) = x^2 \land x \in [-\pi, \pi]$)

References

- 1. Springer, "Elementary Analysis", Theory of Calculus, Kenneth A. Ross, edition 2., pp. 33-46,2013
- 2. Pearson, "Early Transcendentals", Thomas's Calculus, George B. Thomas, Jr., edition 13., pp. 572-652, 2014