

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/799,961	03/12/2004	. Randy L. Hoffman	200316547-1	1458
22879	7590 12/08/2006		EXAMINER	
HEWLETT PACKARD COMPANY			KRAIG, WILLIAM F	
P O BOX 27	2400, 3404 E. HARMON	NY ROAD		
INTELLECTUAL PROPERTY ADMINISTRATION			ART UNIT	PAPER NUMBER
FORT COLLINS, CO 80527-2400		2815		

DATE MAILED: 12/08/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

	Application No.	Applicant(s)			
	10/799,961	HOFFMAN ET AL.			
Office Action Summary	Examiner	Art Unit			
	William Kraig	2815			
The MAILING DATE of this communication app	_				
Period for Reply					
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period w - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 6(a). In no event, however, may a reply be tim rill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONEI	I. lely filed the mailing date of this communication. D (35 U.S.C. § 133).			
Status	•	·			
1) Responsive to communication(s) filed on 11 Se	eptember 2006.				
2a) ☐ This action is FINAL . 2b) ☒ This	This action is FINAL . 2b)⊠ This action is non-final.				
3) Since this application is in condition for allowar	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is				
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.					
Disposition of Claims					
 4) Claim(s) 1-57 is/are pending in the application. 4a) Of the above claim(s) 21-36 and 45-47 is/are withdrawn from consideration. 5) Claim(s) is/are allowed. 6) Claim(s) 1-20,37-44 and 48-57 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/or election requirement. 					
Application Papers					
9) ☐ The specification is objected to by the Examiner 10) ☑ The drawing(s) filed on 12 March 2004 is/are: a Applicant may not request that any objection to the Replacement drawing sheet(s) including the correction 11) ☐ The oath or declaration is objected to by the Examiner	a) accepted or b) objected to drawing(s) be held in abeyance. See ion is required if the drawing(s) is obj	e 37 CFR 1.85(a). ected to. See 37 CFR 1.121(d).			
Priority under 35 U.S.C. § 119					
12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.					
Attachment(s)	Δ. Π. 1-1-1 · Δ	(DTO 442)			
 Notice of References Cited (PTO-892) Notice of Draftsperson's Patent Drawing Review (PTO-948) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date <u>5/8/06</u>. 	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ite			

DETAILED ACTION

Specification

1. The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed.

The following title is suggested: "Transistor with Multiple Component Oxide Channel".

Claim Objections

2. Claims 1, 18, 37 and 48 are objected to. Claims 1, 18, 37 and 48 contain the limitations "each A is selected from the group of Ga, In, each B is selected from the group of Ge, Sn, Pb" and "each of A and B are different". In view of the first limitation the latter limitation does not further limit the claims and the Examiner suggests that it (the latter limitation) be removed from the claims.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

3. Claims 1-20, 37-44 and 48-57 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The claims contain references to a formula of the form $A_xB_xO_x$, and then further claim wherein "each x is independently a non-zero number" and further specific ratios of

the variable x. However, as it is known in the art, a formula of the form $A_xB_xO_x$ inherently possesses a ratio of the values of x (1:1), and the values of x cannot, by their very nature be considered to be independent, nor can they be considered to have a ratio other than 1:1. The Examiner will examine the claims with the assumption that each value of x can be independent, but suggests a change to a formula such as $A_xB_yO_z$, etc, for clarity.

4. Claims 2, 5, 7, 9, 11, 13, 15, 17, 50, 52, 54 and 56 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

The claims contain references to formulae of the type $A_xB_xO_x$, wherein A and B are ostensibly elements from a given group. Therefore, in view of the fact that A and B are not numeric values, it is unclear what is meant by "a ratio of A:B, wherein A, and B, are each in a range of about .05 to about .95". The Examiner will examine the claims with the assumption that the ratio refers to the ratio of the values of x for each element in the given formula, which, as discussed above will be viewed as separately independent.

5. Claim 18 is rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claim 18 contains the limitation "the channel". There is no antecedent basis in the claim for this limitation.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 6. Claims 1, 2, 4, 5, 18, 20, 37 and 41-44 are rejected under 35 U.S.C. 102(b) as being anticipated by Hamada et al. (Japan Patent # JP405251705A) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 1, Fig. 4 of Hamada et al. discloses a semiconductor device, comprising:

a drain electrode (10);

a source electrode (11);

a channel (8) contacting the drain electrode (10) and the source electrode (11), wherein the channel includes one or more compounds of the formula $A_xB_xO_x$, wherein each A is selected from the group of Ga, In, each B is selected from the group of Ge, Sn, Pb, each O is atomic oxygen (the material comprising 8 is disclosed to be ITO (InSnO)), each x is independently a non-zero number (The Abstract of Chen et al. teaches that ITO consists of In₂O₃ and Sn₂O₅ at 80 and 20 molecular percent respectively, or In₈Sn₂O₁₇ total), and each of A and B being different (A is In, B is Sn); and

a gate dielectric (3) positioned between a gate electrode (9) and the channel (8).

Application/Control Number: 10/799,961 Page 5

Art Unit: 2815

Regarding claim 4, Fig. 4 of Hamada et al. discloses the semiconductor device of claim 1 (with evidence provided by Chen et al.), wherein the one or more compounds of the formula $A_xB_xO_x$ is indium-tin oxide.

Regarding claims 2 and 5, Fig. 4 of Hamada et al. discloses the semiconductor device of claims 1 and 4 (with evidence provided by Chen et al.), wherein the one or more compounds of the formula $A_xB_xO_x$ includes a ratio of A:B, wherein each of A and B are in a range of about .05 to .95 (Chen et al. discloses ITO having a ratio of .8:.2, which satisfies the limitations of this claim).

Regarding claim 18, Fig. 4 of Hamada et al. discloses a semiconductor device, comprising:

a drain electrode (10);

a source electrode (11);

means for controlling current flow (8) to electrically coupled to the drain electrode (10) and the source electrode (11), wherein the means for controlling current flow (8) includes one or more compounds of the formula $A_xB_xO_x$, wherein each A is selected from the group of Ga, In, each B is selected from the group of Ge, Sn, Pb, each O is atomic oxygen (the material comprising 8 is disclosed to be ITO (InSnO)), each x is independently a non-zero number (The Abstract of Chen et al. teaches that ITO consists of In_2O_3 and Sn_2O_5 at 80 and 20 molecular

percent respectively, or In₈Sn₂O₁₇ total), and each of A and B being different (A is In, B is Sn) (Cillessen et al., Col. 2, Lines 13-21) (Cillessen describes the use of compounds of oxides including Ga, In, Ge, Sn and Pb, for the semiconductor material in a switching element); and

a gate electrode (6) separated from the channel (8) by a gate dielectric (3).

Regarding claim 20, Fig. 4 of Hamada et al. discloses the semiconductor device of claim 18, wherein the source (11), drain (10), and gate (6) electrodes include a substantially transparent material (ITO).

Regarding claim 37, Fig. 4 of Hamada et al. discloses a semiconductor device formed by the steps, comprising:

providing a drain electrode (10);

providing a source electrode (11);

depositing a channel (8) including a composition (composition including one or more precursor compounds that include A_x and one or more compounds that include B_x , wherein each A is selected from the group of Ga, In, each B is selected from the group Ge, Sn, Pb) to form a multicomponent oxide (ITO), (each x is independently a non-zero number (The Abstract of Chen et al. teaches that ITO consists of In_2O_3 and Sn_2O_5 at 80 and 20 molecular percent respectively, or $In_8Sn_2O_{17}$ total), and wherein each of A and B are different (A is In, B is Sn)) from

the composition to electrically couple the drain electrode (10) and the source electrode (11) (see Fig. 4 of Hamada et al.);

providing a gate electrode (9); and

providing a gate dielectric (3) positioned between the gate electrode (9) and the channel (8).

Hamada et al., however, fails to disclose the step of providing a precursor composition.

The claim to providing a precursor composition is a product by process limitation and is given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). The particular process of providing a precursor composition is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al.

Regarding claim 41, the claims to a method wherein depositing the channel includes vaporizing the precursor composition to form a vaporized precursor composition, and depositing the vaporized precursor composition using a physical vapor deposition technique including one or more of dc reactive sputtering, rf sputtering, magnetron sputtering, ion beam sputtering are product by process limitations and are given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). This particular process of vaporizing the precursor composition to form a

vaporized precursor composition, and depositing the vaporized precursor composition using a physical vapor deposition technique including one or more of dc reactive sputtering, rf sputtering, magnetron sputtering, ion beam sputtering is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al.

Regarding claim 42, Fig. 4 of Hamada et al. discloses the semiconductor device of claim 37, wherein providing the source (11), the drain (10), and the gate (9) electrodes includes providing a substantially transparent form of the source, the drain, and the gate electrodes (ITO).

Regarding claim 43, the claim to providing a liquid form of the precursor composition is a product by process limitation and is given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). The particular process of providing a liquid form of the precursor composition is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al.

Regarding claim 44, the claim to an ink-jet deposition technique for forming the channel is a product by process limitation and is given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). The particular ink-jet

deposition technique for forming the channel is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

7. Claims 6, 7, 8, 9 and 38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada et al. (Japan Patent # JP405251705A) in view of Phillips et al. ("Transparent Conducting Thin Films of GalnO₃", Appl. Phys. Let. Vol. 65 (1), July 1994) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 6, Fig. 4 of Hamada et al. discloses the semiconductor device of claim 1 (with evidence provided by Chen et al.), but fails to disclose the specifics claimed in claim 6.

Phillips et al. teaches the use of $Galn_{1-x}Sn_xO_3$ as a replacement for a layer of ITO.

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the $GaIn_{1-x}Sn_xO_3$ layer of Phillips et al. into the device of Hamada et al.

The ordinary artisan would have been motivated to modify Hamada et al. in the above manner for the purpose of further lowering the conductivity of the transparent oxide semiconductor channel region of Hamada et al. and increasing the transparency of the transparent oxide semiconductor channel region. (Hamada et al., Paragraph 25) (Phillips et al., Page 117, Final Paragraph)

Regarding claim 8, Hamada et al. and Phillips et al. disclose the semiconductor device of claim 1 (with evidence provided by Chen et al.), wherein the one or more compounds of the formula $A_xB_xO_x$ is gallium-indium-tin oxide (Phillips et al., Page 115, Col. 2, Top Paragraph).

Regarding claims 7 and 9, Hamada et al. and Phillips et al. disclose the semiconductor device of claims 6 and 8 (with evidence provided by Chen et al.), wherein the one or more compounds of the formula $A_xB_xC_xO_x$ includes a ratio of A:B:C, wherein each of A, B and C are in a range of about .025 to .95 (Phillips et al. discloses $Galn_{1-x}Sn_xO_3$ (0<=x<=20), which satisfies the limitations of this claim).

Regarding claim 38, Hamada et al. and Phillips et al. disclose the semiconductor device of claim 37, but fails to disclose the one or more precursor compounds including one or more precursor components that include C_x , wherein each C is selected from the group of Ga, In, Ge, Sn, Pb, each x is independently a non-zero number, and wherein

each of A, B, and C are different. (See rejection of claim 6 above, wherein the combination of Hamada et al. and Phillips et al. is shown to disclose GaSnInO). The claim to providing a precursor composition is a product by process limitation and is given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). The particular process of providing a precursor composition is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al. and Phillips et al. (See rejection of claim 6 above, wherein the combination of Hamada et al. and Phillips et al. is shown to disclose GaSnInO).

8. Claims 10-13 and 39 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada et al. (Japan Patent # JP405251705A) in view of Phillips et al. ("Transparent Conducting Thin Films of GalnO₃", Appl. Phys. Let. Vol. 65 (1), July 1994) further in view of Minami ("Transparent and Conductive Multicomponent Oxide films prepared by magnetron sputtering", Minami, J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 10, Hamada et al. and Phillips et al. disclose the semiconductor device of claim 6 (with evidence provided by Chen et al.), but fail to specifically disclose the limitations added by claim 10.

Phillips et al., however, does disclose that both GaGeInO and GaInSnO are transparent conducting oxides with desirable properties (more transparent then other known TCOs).

Minami teaches that a transparent conducting oxide will always be obtained when combining oxides which are TCO film materials or transparent conductors.

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teaching of Minami into the devices of Hamada et al. and Phillips et al. and combine the GaGelnO and GalnSnO of Phillips et al. to form a new multicomponent oxide. The ordinary artisan would have been motivated to modify Hamada et al. and Phillips et al. in the above manner for the purpose of creating a new multicomponent oxide suitable for use as the channel of a switching device employed for use in a light emitting system because of its specific electrical, optical and chemical properties and its specific bandgap energy and workfunction, which can be controlled by altering the chemical composition (Minami, Conclusion).

The claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

Regarding claim 12, Hamada, Phillips and Minami disclose the semiconductor device of claim 1 (with evidence provided by Chen et al.), wherein the one or more compounds of the formula A_xB_xO_x is gallium-indium-germanium-tin oxide (combination of GalnSnO and GaGelnO would result in GalnGeSnO).

Regarding claims 11 and 13, the claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

Regarding claim 39, Hamada et al., Phillips et al. and Minami disclose the semiconductor device of claim 38, but fails to disclose wherein the one or more precursor compounds includes one or more precursor compounds that include D_x, wherein each D is selected from the group of Ga, In, Ge, Sn, Pb, each x is independently a non-zero number, and wherein each of A, B, C, and D are different. (See rejection of claim 10 above, wherein the combination of Hamada et al., Phillips et al. and Minami is shown to disclose GalnGeSnO).

The claim to providing a precursor composition is a product by process limitation and is given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). The particular process of providing a precursor composition is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al. and Phillips et al. (See rejection of claim 10 above, wherein the combination of Hamada et al., Phillips et al. and Minami is shown to disclose GalnGeSnO).

Application/Control Number: 10/799,961

Chen et al. (U.S. Patent Publication # 2005/0037237).

Art Unit: 2815

9. Claims 14-17 and 40 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada et al. (Japan Patent # JP405251705A) in view of Phillips et al. ("Transparent Conducting Thin Films of GalnO₃", Appl. Phys. Let. Vol. 65 (1), July 1994) further in view of Minami ("Transparent and Conductive Multicomponent Oxide films prepared by magnetron sputtering", Minami, J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999), further in view of D ("Transparent Conducting PbO₂ films prepared by activated reactive evaporation", Phys. Rev. B 33,2660 - 2664 (1986)) with evidence provided by

Page 14

Regarding claim 14 and 16, Hamada, Phillips and Minami disclose the semiconductor device of claims 1 and 10 (with evidence provided by Chen et al.), but fail to disclose the one or more compounds of formula $A_xB_xC_xD_xO_x$ including E_x , to form a compound of the formula $A_xB_xC_xD_xE_xO_x$, wherein each E is selected from the group of Ga, In, Ge, Sn, Pb, each O is atomic oxygen, each x is independently a non-zero number, and wherein each of A, B, C, D, and E are different.

D discloses a transparent conductive oxide semiconductor of PbO₂.

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the PbO₂ of D into the device of Hamada et al., Phillips et al. and Minami and combine the PbO₂ of D into the GaGelnSnO of Hamada, Phillips et al., and Minami to form a new multicomponent oxide (GaGelnSnPbO). The ordinary artisan would have been motivated to modify Hamada et al. and Phillips et al. in the above manner for the purpose of creating a new multicomponent oxide suitable for use as the

channel of a switching device employed for use in a light emitting system because of its specific electrical, optical and chemical properties and its specific bandgap energy and workfunction, which can be controlled by altering the chemical composition (Minami, Conclusion). The ordinary artisan would have expected a reasonable degree of success in this combination because Minami teaches that a transparent conducting oxide will always be obtained when combining oxides which are TCO film materials or transparent conductors.

The claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

Regarding claims 15 and 17, the claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

Regarding claim 40, Akimoto, Hamada, Phillips, Minami and D disclose the semiconductor device of claim 39, wherein the one or more precursor compounds includes one or more precursor compounds that include E_x, wherein each E is selected from the group of Ga, In, Ge, Sn, Pb, each x is independently a non-zero number, and wherein each of A, B, C, D, and E are different (Cillessen et al., Col. 2, Lines 13-21). (See rejection of claims 14 and 16 above, wherein the combination of Akimoto, Hamada, Phillips, Minami and D is shown to disclose GaInGeSnPbO)

The claim to providing a precursor composition is a product by process limitation and is given no patentable weight so long as the final product of said claim is the same as or obvious over the prior art. *In re Thorpe*, 777 F.2d 695, 698, 227 USPQ 964, 966 (Fed. Cir. 1985). The particular process of providing a precursor composition is therefore irrelevant given that the final product of the claim is anticipated by Hamada et al. and Phillips et al. (See rejection of claims 14 and 16 above, wherein the combination of Akimoto, Hamada, Phillips, Minami and D is shown to disclose GalnGeSnPbO).

10. Claims 48-50 are rejected under 35 U.S.C. 103(a) as being unpatentable over Akimoto (U.S. Patent # 6476788) in view of Hamada et al. (Japan Patent # JP405251705A) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 48, Figs. 1-3 of Akimoto discloses a display device, comprising: a plurality of pixel devices (Akimoto, Col. 5, Lines 15-21) configured to operate collectively to display images (Akimoto, Col. 5, Lines 48-54), where each of the pixel

Application/Control Number: 10/799,961

Art Unit: 2815

devices includes a semiconductor device 28 (Akimoto, Col. 5, Lines 15-21) configured to control light emitted by the pixel device (see Fig. 2 of Akimoto), the semiconductor device including:

a channel (300) contacting a drain (4, 5) and a source (2, 3);

a gate electrode (1); and

a gate dielectric (12) positioned between the gate electrode (1) and the channel (300) and configured to permit application of an electric field to the channel (see Fig. 3C of Akimoto).

Akimoto, however, fails to disclose the specifics of the semiconductor device as are claimed.

Hamada et al. teaches a similar semiconductor device wherein a semiconductor device in a display device includes a drain electrode 10, a source electrode 11, a channel (8) contacting the drain electrode (10) and the source electrode (11), wherein the channel includes one or more compounds of the formula $A_xB_xO_x$, wherein each A is selected from the group of Ga, In, each B is selected from the group of Ge, Sn, Pb, each O is atomic oxygen (the material comprising 8 is disclosed to be ITO (InSnO)), each x is independently a non-zero number (The Abstract of Chen et al. teaches that ITO consists of In_2O_3 and Sn_2O_5 at 80 and 20 molecular percent respectively, or $In_8Sn_2O_{17}$ total), and each of A and B being different (A is In, B is Sn), a gate electrode 9, and a gate dielectric 3 positioned between the gate electrode 9 and the channel 8 and configured to permit application of an electric field to the channel (see Fig. 4 of Hamada et al.).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the specific properties of the device of Hamada et al. into the device of Akimoto. The ordinary artisan would have been motivated to modify Akimoto in the above manner for the purpose of building a switching device for driving a photoelectric transducer wherein the properties of said device are not influenced by light (Paragraph 1, Hamada et al.).

Regarding claim 49, Akimoto and Hamada (with evidence provided by Chen et al.) disclose the display of claim 48, wherein the source (11), drain (10), and gate (6) electrodes include a substantially transparent material (ITO).

Regarding claim 50, Akimoto and Hamada (with evidence provided by Chen et al.) disclose the device of claim 48, wherein the one or more compounds of the formula $A_xB_xO_x$ includes a ratio of A:B, wherein each of A and B are in a range of about .05 to .95 (Chen et al. discloses ITO having a ratio of .8:.2, which satisfies the limitations of this claim).

11. Claims 51 and 52 are rejected under 35 U.S.C. 103(a) as being unpatentable over Akimoto (U.S. Patent # 6476788) in view of Hamada et al. (Japan Patent # JP405251705A) further in view of Phillips et al. ("Transparent Conducting Thin Films of GalnO₃", Appl. Phys. Let. Vol. 65 (1), July 1994) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 51, Akimoto and Hamada (with evidence provided by Chen et al.) disclose the display of claim 48.

Phillips et al. teaches the use of $Galn_{1-x}Sn_xO_3$ as a replacement for a layer of ITO.

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the GaIn_{1-x}Sn_xO₃ layer of Phillips et al. into the device of Akimoto and Hamada et al.

The ordinary artisan would have been motivated to modify Akimoto and Hamada et al. in the above manner for the purpose of further lowering the conductivity of the transparent oxide semiconductor channel region of Akimoto and Hamada et al. and increasing the transparency of the transparent oxide semiconductor channel region.

(Hamada et al., Paragraph 25) (Phillips et al., Page 115, Paragraphs)

Regarding claim 52, Akimoto, Hamada et al. and Phillips et al. (with evidence provided by Chen et al.), disclose the device of claim 51, wherein the one or more compounds of the formula $A_xB_xC_xO_x$ includes a ratio of A:B:C, wherein each of A, B and C are in a range of about .025 to .95 (Phillips et al. discloses $GaIn_{1-x}Sn_xO_3$ (0<=x<=20), which satisfies the limitations of this claim).

12. Claims 53 and 54 are rejected under 35 U.S.C. 103(a) as being unpatentable over Akimoto (U.S. Patent # 6476788) in view of Hamada et al. (Japan Patent # JP405251705A) further in view of Phillips et al. ("Transparent Conducting Thin Films of

GalnO₃", Appl. Phys. Let. Vol. 65 (1), July 1994) further in view of Minami ("Transparent and Conductive Multicomponent Oxide films prepared by magnetron sputtering", Minami, J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 53, Akimoto, Hamada et al. and Phillips et al. disclose the semiconductor device of claim 51 (with evidence provided by Chen et al.), but fail to specifically disclose the limitations added by claim 53.

Phillips et al., however, does disclose that both GaGeInO and GaInSnO are transparent conducting oxides with desirable properties (more transparent then other known TCOs).

Minami teaches that a transparent conducting oxide will always be obtained when combining oxides which are TCO film materials or transparent conductors.

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the teaching of Minami into the devices of Hamada et al. and Phillips et al. and combine the GaGeInO and GaInSnO of Phillips et al. to form a new multicomponent oxide. The ordinary artisan would have been motivated to modify Hamada et al. and Phillips et al. in the above manner for the purpose of creating a new multicomponent oxide suitable for use as the channel of a switching device employed for use in a light emitting system because of its specific electrical, optical and chemical properties and its specific bandgap energy and workfunction, which can be controlled by altering the chemical composition (Minami, Conclusion).

The claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

Regarding claim 54, the claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

13. Claims 55 and 56 are rejected under 35 U.S.C. 103(a) as being unpatentable over Akimoto (U.S. Patent # 6476788) in view of Hamada et al. (Japan Patent # JP405251705A) further in view of Phillips et al. ("Transparent Conducting Thin Films of GalnO₃", Appl. Phys. Let. Vol. 65 (1), July 1994) further in view of Minami ("Transparent and Conductive Multicomponent Oxide films prepared by magnetron sputtering", Minami, J. Vac. Sci. Technol. A 17(4), Jul/Aug 1999) further in view of D ("Transparent Conducting PbO₂ films prepared by activated reactive evaporation", Phys. Rev. B

33,2660 - 2664 (1986)) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 55, Akimoto, Hamada, Phillips and Minami disclose the semiconductor device of claim 53 (with evidence provided by Chen et al.), but fail to disclose the one or more compounds of formula $A_xB_xC_xD_xO_x$ including E_x , to form a compound of the formula $A_xB_xC_xD_xE_xO_x$, wherein each E is selected from the group of Ga, In, Ge, Sn, Pb, each O is atomic oxygen, each x is independently a non-zero number, and wherein each of A, B, C, D, and E are different.

D discloses a transparent conductive oxide semiconductor of PbO₂.

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the PbO₂ of D into the device of Hamada et al., Phillips et al. and Minami and combine the PbO₂ of D into the GaGeInSnO of Hamada, Phillips et al., and Minami to form a new multicomponent oxide (GaGeInSnPbO). The ordinary artisan would have been motivated to modify Hamada et al. and Phillips et al. in the above manner for the purpose of creating a new multicomponent oxide suitable for use as the channel of a switching device employed for use in a light emitting system because of its specific electrical, optical and chemical properties and its specific bandgap energy and workfunction, which can be controlled by altering the chemical composition (Minami, Conclusion). The ordinary artisan would have expected a reasonable degree of success in this combination because Minami teaches that a transparent conducting oxide will always be obtained when combining oxides which are TCO film materials or transparent conductors.

The claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

Regarding claim 56, the claims to a specific composition ratio of the claimed compound are considered to be an optimization of ranges. *In re Aller, Lacey, and Hall*, 105 USPQ 233 (CCPA 1955). It would have been obvious to one of ordinary skill in the art to modify the composition ratio of the claimed composition to form a composition with properties ideal for use as the channel of a switching device employed for use in a light emitting system (i.e., workfunction and transparency).

14. Claims 3 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Hamada et al. (Japan Patent # JP405251705A) in view of Wager ("Transparent Electronics", Science, Vol. 300 (2003)) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claims 3 and 19, Fig. 4 of Hamada et al. discloses the semiconductor device of claims 1 and 18 (with evidence provided by Chen et al.), but fails to specifically disclose that the transparent oxide is formed in a single-phase crystalline form.

Wager teaches that it is desirable to form transparent oxides in a single crystalline form (Page 1245, Col. 2, Bottom Paragraph).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the single crystalline transparent oxide of Wager into the device of Hamada et al. The ordinary artisan would have been motivated to modify Hamada et al. in the above manner for the purpose of maximizing the mobility of the oxide film (Wager, Cols. 2 and 3, Bridging Paragraph).

15. Claim 57 is rejected under 35 U.S.C. 103(a) as being unpatentable over Akimoto (U.S. Patent # 6476788) in view of Hamada et al. (Japan Patent # JP405251705A) in view of Wager ("Transparent Electronics", Science, Vol. 300 (2003)) with evidence provided by Chen et al. (U.S. Patent Publication # 2005/0037237).

Regarding claim 57, Akimoto and Hamada et al. discloses the semiconductor device of claim 48 (with evidence provided by Chen et al.), but fails to specifically disclose that the transparent oxide is formed in a single-phase crystalline form.

Wager teaches that it is desirable to form transparent oxides in a single crystalline form (Page 1245, Col. 2, Bottom Paragraph).

It would have been obvious to one of ordinary skill in the art at the time of the invention to incorporate the single crystalline transparent oxide of Wager into the device of Hamada et al. The ordinary artisan would have been motivated to modify Hamada et al. in the above manner for the purpose of maximizing the mobility of the oxide film (Wager, Cols. 2 and 3, Bridging Paragraph).

Application/Control Number: 10/799,961 Page 25

Art Unit: 2815

Response to Arguments

16. Applicant's arguments with respect to all claims have been considered but are most in view of the new ground(s) of rejection.

Conclusion

17. Any inquiry concerning this communication or earlier communications from the examiner should be directed to William Kraig whose telephone number is 571-272-8660. The examiner can normally be reached on Mon-Fri 7:30-4:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ken Parker can be reached on 571-272-2298. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

WFK ['] 11/17/2006

EUBERG LEE PRINGARY EXAMINER