# Which Loans Might Default? Lending Club Data Analysis and Prediction

Meskerem Goshime September 22, 2022

#### **Data Wrangling and Data Cleaning**

- → I started with loan data from 2007-2015 with 74 columns and 759,339 rows.
- → Columns with 50k or more missing values were dropped.
- → Null values were imputed with 0 or 'Other' where it made sense.
- → After that, remaining rows with missing values were dropped.
- → Took care of inconsistency in data entry by combining similar values in some columns.

#### **Outliers Handling**

- → The most significant outliers were in annual\_inc and dti columns.
- → Max Annual income = 9 million, 99.7 percentile 379 k
- → Max dti = 380, 99.7 percentile 39
- → Rows with values beyond the 99.7 percentile in the respective columns were removed.

#### **Feature Selection**

- → Columns with redundant data were dropped.
- → Columns that are highly correlated were dropped.
- → Dropped columns that seem unnecessary based on my intuition from the data exploration
- → I ended up with 31 columns from 74.
- → In the end I selected 10 columns out of the 31 using Feature Importance.

## **EDA - Interest Rate of Borrowers in Bad Loan Status is Significantly Higher**



### **EDA - Bad Loan Statuses Correspond with Higher Median DTI Value**



### EDA - Lower DTI Corresponds with Higher Annual Income



#### **EDA - Zip Codes with Highest Default Ratio**

| Zip Code | Loans in<br>Bad Status | Loan Count | % in Bad Status |
|----------|------------------------|------------|-----------------|
| 415xx    | 12                     | 75         | 0.160           |
| 736xx    | 12                     | 83         | 0.144           |
| 237xx    | 26                     | 191        | 0.136           |
| 126xx    | 28                     | 209        | 0.133           |
| 638xx    | 20                     | 154        | 0.129           |
| 668xx    | 13                     | 105        | 0.123           |

#### **Preprocessing & Training Data Development**

- → Grade and sub-grade columns columns were encoded as numeric columns.
- → The Categorical columns were encoded using One Hot Encoding.
- → The numeric columns were standardized using StandardScaler.
- → Target and Predictor Variables.
  - Loan status was chosen as the target variable (y).
  - The rest of the columns became the predictor variables (X).
- → The data was split into Training Set, X\_train, y\_train (80%) and Test Set, X\_test, y\_test (20%).

#### **Modeling - Random Forest Classifier**

→ Chosen n-estimator value: 500

→ ROC/AUC Score: 0.74



#### **Modeling - Logistic Regression**

→ ROC/AUC Score: 0.72



#### **Modeling - Gradient Boosting**

→ n\_estimator value: 600

→ Max\_depth: 3

→ ROC AUC Score: 0.77



#### **Best Performing Model - Gradient Boosting**

Best performing model - Gradient Boosting

- → Best ROC/AUC score 0.77
- → Minimizes the false positives while also keeping the false negatives low.

#### **Planned Improvements**

- → Try PCA dimensionality reduction to see if the performance of the model will improve.
- → Try resampling method to handle the imbalance in the data.

## "All models are wrong, but some models are useful."

George E. P. Box

#### **Project Files**

Project Notebooks Project Report

#### **Special Thanks**

- → For Husain Battiwala for making the data available on Kaggle!
- → For Tony Paek for his amazing mentorship!
- For my husband and boys for their encouragement and support!