Matemática Discreta l Clase 18 - Congruencia 3

FAMAF / UNC

19 de mayo de 2020

El Teorema (pequeño) de Fermat

El siguiente lema nos sirve de preparación para la demostración del Teorema (o fórmula) de Fermat.

Lema

Sea p un número primo, entonces

(a)
$$p|\binom{p}{r}$$
, con $0 < r < p$,

(b)
$$(a+b)^p \equiv a^p + b^p \pmod{p}$$
.

Demostración

(a) Escribamos el número binomial de otra forma:

$$\binom{p}{r} = \frac{p!}{r!(p-r)!} = p \cdot \frac{(p-1)!}{r!(p-r)!},$$

luego

$$\binom{p}{r} \cdot r!(p-r)! = p \cdot (p-1)!.$$

Por lo tanto,

- (1) $p | \binom{p}{r} \cdot r! (p-r)!$. Además,
- (2) r
- (3) $r > 0 \Rightarrow p r$

De (1), (2) y (3),

$$p | \binom{p}{r} \cdot r! (p-r)! \qquad \land \qquad p \not | r! (p-r)!$$

por lo tanto (p es primo)

$$p|\binom{p}{r}$$
.

(b) Por el teorema del binomio sabemos que

$$(a+b)^p = \sum_{i=0}^p \binom{p}{i} a^i b^{p-i}.$$

Por (a) es claro que $\binom{p}{i}a^ib^{p-i} \equiv 0 \pmod{p}$, si 0 < i < p.

Luego se deduce el resultado.

El siguiente es el llamado teorema de Fermat.

Teorema

Sea p un número primo y a número entero. Entonces

$$a^p \equiv a \pmod{p}$$
.

Demostración

Dividiremos la demostración en 2 casos (1) $a \ge 0$, (2) a < 0.

(1) $a \ge 0$. Por inducción sobre a.

Caso base a = 0. $0^p \equiv 0 \pmod{p}$, es trivial.

Paso inductivo. Si $k \ge 0$, la hipótesis inductiva es:

$$k^p \equiv k \pmod{p}$$
. (HI)

Debemos probar,

$$(k+1)^p \equiv k+1 \pmod{p}. \tag{T}$$

Ahora bien,

$$(k+1)^p \equiv k^p + 1^p \pmod{p}$$
 (por (b) del lema)
 $\equiv k+1 \pmod{p}$ (por HI).

Es decir $(k+1)^p \equiv k+1 \pmod{p}$, que es lo que queríamos probar.

(2) a<0. Como a<0, entonces -a>0, luego por (1): $(-a)^p\equiv -a\pmod p$ o, equivalentemente

$$(-1)^p a^p \equiv (-1)a \pmod{p} \tag{1}$$

Ahora bien,

p>2, entonces $(-1)^p=-1$, en particular $(-1)^p\equiv -1\pmod p$.

p=2, entonces $(-1)^p=1$, pero como $1\equiv -1\pmod 2$, $(-1)^p\equiv -1\pmod p$.

Luego $(-1)^p \equiv -1 \pmod{p}$ para todo p primo y la ecuación $(\ref{eq:posterior})$ es equivalente a:

$$(-1)a^p \equiv (-1)a \pmod{p}$$

Multiplicando por -1 la ecuación obtenemos $a^p \equiv a \pmod{p}$.

Supongamos que a y p son coprimos, por Fermat

$$p|(a^p-a)=a(a^{(p-1)}-1).$$

Como p no divide a a, tenemos que $p|(a^{(p-1)}-1)$, es decir

Teorema

Si a y p coprimos y p es primo, entonces

$$a^{(p-1)} \equiv 1 \pmod{p}$$
.

Este último enunciado es también conocido como teorema de Fermat.

Definición

Sea $n \ge 1$, La función de Euler se define

$$\phi(n) := |\{x : \mathsf{mcd}(x, n) \land 1 \le x < n\}|.$$

El teorema de Fermat, 2° versión, admite la siguiente generalización, llamada teorema de Euler:

Teorema

Si n un entero positivo y a un número entero coprimo con n, entonces

$$a^{\phi(n)} \equiv 1 \pmod{n}$$
.

Ejemplo

Usar el teorema de Fermat, 2° versión, para calcular el resto de dividir 3⁴⁷ por 23.

Solución

Podemos calcular $3^i \equiv a_i \pmod{23}$ para $0 \le i < 23$. Como alguno se va a repetir, podemos usar eso para hacer el cálculo.

El teorema de Fermat nos evita unos cuantos pasos.

Como 23 es un número primo (y es coprimo con 3)

$$3^{22} \equiv 1 \pmod{23},$$

Luego

$$3^{47} \equiv 3^{22 \cdot 2 + 3} \equiv 3^{22 \cdot 2} 3^3 \equiv (3^{22})^2 3^3 \equiv 3^3 \equiv 27 \equiv 4 \pmod{23}$$

Luego el resto de dividir 3⁴⁷ por 23 es 4.

Algoritmo RSA

Dados primos distintos p y q suficientemente grandes tomamos n = pq.

$$\circ$$
 Sea e con $1 < e < (p-1)(q-1)$ tal que

$$mcd(e, (p-1)(q-1)) = 1.$$

 \circ Sea d tal $0 \leq d < (p-1)(q-1)$ y que

$$ed \equiv 1 \pmod{(p-1)(q-1)}$$
.

Proposición

Si
$$0 \le m < n$$
, entonces

$$m \equiv m^{ed} \pmod{n}$$
.

Algoritmo RSA - procedimiento

Decimos que:

- \circ (e, n) es la clave pública.
- o d es la clave privada.

A le quiere enviar un mensaje encriptado a B.

Preliminares

- \circ A conoce la clave pública (e, n).
- o B conoce la clave pública y una clave privada d.

Protocolo

- o A le quiere enviar el mensaje m a B.
- o A calcula $c \equiv m^e \pmod{n}$ y le envía c = a
- o B descifra el mensaje: $c^d \equiv (m^e)^d \equiv m \pmod{n}$.

Observación

- Los dos primos p y q deberían tener alrededor de 100 dígitos cada uno (longitud considerada segura en este momento).
- o El número e puede elegirse pequeño y se selecciona haciendo prueba y error con el algoritmo de Euclides, es decir probando hasta encontrar un e tal que mcd(e, (p-1)(q-1)) = 1.
- La existencia de d está garantizada por la ecuación lineal de congruencia), pues e y (p-1)(q-1) son coprimos.