List of Relevant Courses Taken Outside of Formal Studies

No.	Course	Year	Instructor(s)	Short Description/ Syllabus	Resources
1	6 S191: Intro-	Dec,	Alexander	Intensive introduction to deep learning with applications	Lecture
	duction to Deep	2022	Amini, Ava	in computer vision, NLP, biology, and more. Covers foun-	Slides
	Learning [MIT]		Amini	dational deep learning algorithms and practical neural net-	
				work building in TensorFlow. Concludes with a project	
				proposal competition judged by industry experts. Top-	
				ics include Deep Sequence Modeling, TensorFlow, Music	
				Generation, Deep Computer Vision, Generative Modeling,	
				Facial Detection, Uncertainty, Bias, Reinforcement Learn-	
				ing, Debiasing, Robustness, Text-to-Image Generation, and	
				Robot Learning. Prerequisites: Calculus, Linear Algebra.	
				Python experience helpful but not required	
2	CS224N: Natural	Jun,	Christopher	Word Vectors, Word Vectors and Language Models, Back-	Lecture
	Language Pro-	2023	Manning	propagation and Neural Network Basics, Dependency Pars-	Slides
	cessing with Deep			ing, Recurrent Neural Networks, Sequence to Sequence	
	Learning [Stanford			Models and Machine Translation, Transformers, Pretrain-	
	University]			ing, Post-training (RLHF, SFT, DPO), Benchmarking and	
				Evaluation, Efficient Neural Network Training, Speech	
				Brain-Computer Interface, Reasoning and Agents, Con-	
				vNets, Tree Recursive Neural Networks and Constituency	
				Parsing, An Introduction to Responsible NLP, NLP, lin-	
	CCC TO C	a	G. T	guistics, and philosophy	- .
3	CS25: Transform-	Sep,	Steven Feng,	Introduction to NLP history, Transformer architectures, re-	Lecture
	ers United [Stan-	2023	Div Garg,	cent trends, breakthroughs, applications, challenges, and	Slides
	ford University]		Emily Bun-	AI agents, intuitions behind language models and their im-	
			napradist,	plications, the history and evolution of Transformer archi-	
			Seonghee Lee	tectures, driven by advancements in compute, Evolution	
				of open language models, including major techniques and models like Alpaca, QLoRA, and PPO. Discussion on fu-	
				ture trends in alignment, Introduction to Mixtral 8x7B, a	
				Sparse Mixture of Experts (SMoE) language model. Analysis of expert routing decisions and architectural details,	
				Enhancements to the LM learning process, introduction to	
				Precision LMs (PLMs), and their application in resource-	
				limited environments, ntegration of multimodal capabili-	
				ties into LLMs, introduction to CogVLM, CogAgent, and	
				discussion on research directions in multimodal models,	
				Amortized Bayesian inference for LLMs using GFlowNets,	
				focusing on intractable posterior distributions, and appli-	
				cations in multi-step reasoning, Insights into pretraining	
				LLMs, with a focus on StarCoder for code generation. Dis-	
				cussion on data governance, scaling laws, and evaluation	
				cussion on data governance, scanng laws, and evaluation	

No.	Course	Year	Instructor(s)	Short Description/ Syllabus	Resources
4	CS F441 Intro-	Jul,	Venkat Ra-	Introduction, motivation, and syllabus overview; adapta-	Lecture
	duction to Com-	2024	maswamy	tion, change blindness, hyperbolic discounting; single neu-	Slides
	putational Neuro-			ron function, Golgi, Cajal & the Neuron doctrine, Place	
	science [BITS Pi-			cells & Grid Cells; mirror neurons, "Jennifer Aniston"	
	lani(Hyderabad)]			neurons, interface of Neuroscience; introduction to Neu-	
				roanatomy, the mammalian visual system; neuroanatomy	
				continued, visual system - Dorsal stream & Ventral stream;	
				mammalian cerebral cortex, cortical wiring, cell membrane,	
				proteins & transmembrane proteins; basic neurophysiology:	
				Diffusion, Ion Channels, Sodium-Potassium Pump, resting	
				potential, action potential initiation; the cell membrane	
				as an R-C circuit, membrane equation, Nernst equation,	
				Goldman-Hodgkin-Katz equation, cable equation; solving	
				the membrane equation, synaptic input modeling; the squid	
				giant axon, Hodgkin-Huxley experiments, active mem-	
				brane, Hodgkin-Huxley equations; guest lecture by Aditya	
				Asopa (NCBS) on electrophysiological methods; Leaky In-	
				tegrate and Fire Neuron model, Perceptrons, Supervised	
				Learning, Long-term Potentiation (LTP), Spike-timing De-	
				pendent Plasticity (STDP); geometry of Perceptrons, Loss	
				functions, and energy landscapes; Perceptron Rule, Gra-	
				dient Descent, Stochastic Gradient Descent; Perceptron	
				Convergence Theorem; guest lecture by Vishnu Sreekumar	
				(IIIT Hyderabad) on the role of context in memory; the	
				XOR problem, Multilayer perceptrons, and error backprop-	
				agation, Introduction to Convolutional Networks	