La siguiente tarea consiste en algunos ejercicios en los que te pedimos que generes código en R para examinar la función característica de los ítems en el modelo de Rasch. Además, te pedimos reflexionar sobre algunas preguntas de interpretación.

- 1. Elabora las siguientes funciones en R:
 - (a) ProbAcertar, la cual calcula para cierto valor del parámetro θ_p y cierto valor del parámetro β_i la probabilidad según el modelo de Rasch de que la persona p acierte el ítem i. $Permite\ al\ usuario\ especificar\ los\ valores\ de\ \theta_p\ y\ \beta_i$.
 - (b) ProbFallar, la cual hace lo mismo que la función anterior salvo que calcula la probabilidad de fallar el ítem.
 - (c) CCIAcertar, la cual genera el tabulado de las probabilidades en el modelo de Rasch asociadas con la curva característica de un ítem con cierto grado de dificultad β_i . Es decir, el tabulado tiene que dar, para un rango de valores de θ que el usuario puede especificar, la probabilidad de acertar el ítem. Permite al usuario especificar el valor de β_i , el valor mínimo y máximo de θ y el tamaño de los pasos intermedios para este rango de θ .
 - (d) CCIFallar, la cual hace lo mismo que la función anterior salvo que genera las probabilidades de fallar el ítem.
- 2. (a) Utiliza la función CCIAcertar para ítems con los siguientes grados de dificultad: -2.34, -1.23, +0.15 y +3.34. Especifica como valores de θ en el tabulado: $(-6.00, -5.99, -5.98, \dots, +5.99, +6.00)$; es decir, queremos para cada uno de estos ítems las probabilidades de acertarlo para los valores de θ en el rango de -6 a +6 con pasos de 0.01.
 - (b) Aplica el mismo procedimiento para la función CCIFallar.
- 3. Una vez generado estos tabulados, guarda el resultado para cada ítem en un archivo csv. (Da nombres claros a estos archivos.)
- 4. Genera las siguientes figuras, leyendo directamente la información en los archivos .csv creados en el ejercicio anterior.
 - (a) Una figura para cada una de los cuatro ítems que represente simultáneamente (es decir, en la misma figura) las curvas características tanto de acertar como de fallar el ítem.
 - (b) Una sola figura que integre las curvas características de acertar para los cuatro reactivos.
- 5. (a) A partir de los tabulados y/o las figuras, estima para cada uno de los cuatro reactivos el nivel de θ para el cual la probabilidad de acertar el ítem es igual a 0.80.
 - (b) Deriva con base en la ecuación básica del modelo de Rasch (la cual da la probabilidad de acertar el ítem para valores de θ_p y β_i)

$$P_{pi} = \frac{1}{1 + e^{-(\theta_p - \beta_i)}}$$

la función inversa, la cual permite conocer el valor de θ_p a partir del valor de β_i y la probabilidad P_{pi} de acertar el ítem. (Recuerda que la función inversa de la exponencial e^x es la función logarítmica $\log x$.)

(c) Utiliza la función anterior para conocer los valores exactos de θ en el ejercicio (a).