REVERSE MATHEMATICS

Exploring the difference hierarchies on μ -calculus and arithmetic

from the point of view of Gale-Stewart games

Leonardo Kawakami Pacheco Tohoku University

February 2, 2023

Two problems related to the difference hierarchies:

- ► Collapse of the alternation hierarchy over various semantics.
- Relation between determinacy and reflection in second-order arithmetic.

MODAL LOGIC

The μ -calculus

•000000000000

- ► Modal logic = propositional logic + modalities
- ▶ Modalities specify *how* some formula is true.
- ► Examples:
 - $\blacktriangleright \Box \varphi := \varphi$ is necessary
 - $\triangleright \Diamond \varphi := \varphi \text{ is possible}$
 - $K_a \varphi$:= the agent a knows that φ
 - $[a]\varphi := after a run of the program a, \varphi holds$
 - $O\varphi$:= it is obligatory that φ
- ► Different logics are interpreted over different classes of Kripke models (labeled directed graphs).

μ -CALCULUS

The μ -calculus

000000000000

- μ -calculus = modal logic + fixed-point operators
- ► Let *E* be the "everyone knows" modality.
- φ is common knowledge iff

$$\varphi \wedge E\varphi \wedge EE\varphi \wedge EEE\varphi \wedge \cdots$$

▶ In the μ -calculus, φ is common knowledge iff

$$\nu X.\varphi \wedge EX.$$

μ -FORMULAS

The μ -calculus

00000000000

Definition

- \triangleright P, \neg P, X, \bot , \top are μ -formulas.
- ▶ If φ , ψ are μ -formulas, then $\varphi \wedge \psi$, $\varphi \vee \psi$ are μ -formulas.
- If φ is a μ -formulas, then $\Box \varphi$, $\Diamond \varphi$, $\nu X.\varphi$, $\mu X.\varphi$ are μ -formulas.

Examples:

- $\blacktriangleright \mu X.P \vee \Diamond X$
- $\blacktriangleright \nu X.\mu Y.(P \land \Diamond X) \lor (\neg Q \land \Diamond Y).$

SEMANTICS — MODALITIES

Kripke models := tuple $\langle \langle W, \rightarrow \rangle, V \rangle$ where

- ▶ $\langle W, \rightarrow \rangle$: directed graph,
- ► *V*: labeling.

The μ -calculus

- $\Box \varphi$ holds at w iff φ holds at all accessible worlds. $\Diamond \varphi$ holds at w iff φ holds at some accessible world.
 - $\blacktriangleright \Diamond \Box P$ holds at w
 - ▶ $\Box \Diamond P$ fails at w
- $\|\varphi\|$ is the set of worlds where φ holds.

SEMANTICS — FIXED-POINTS

Define $\Gamma_{\varphi(X)}(A) = \|\varphi(A)\| = \{w \mid \varphi(A) \text{ holds at } w\}.$

- $\mu X.\varphi(X)$ is the least fixed-point of $\Gamma_{\varphi(X)}$
- $\nu X.\varphi(X)$ is the greatest fixed-point of $\Gamma_{\varphi(X)}$

Let $\psi(X) := P \vee \Diamond X$:

$$M \xrightarrow{P} P$$

$$P \xrightarrow{P} P$$

$$\vdots$$

$$\begin{array}{l} \psi(\bot) \equiv P \\ \psi(\psi(\bot)) \equiv P \lor \Diamond P \\ \psi(\psi(\psi(\bot))) \equiv P \lor \Diamond P \lor \Diamond \Diamond P \\ \psi(\psi(\psi(\psi(\bot)))) \equiv P \lor \Diamond P \lor \Diamond \Diamond P \lor \Diamond \Diamond \Diamond P \\ \vdots \end{array}$$

- $\mu X.P \vee \Diamond X \approx P \vee \Diamond P \vee \Diamond \Diamond P \vee \cdots$
- ► $\Box \mu X.P \lor \Diamond X$ holds at w.
- ▶ $\Box \mu X.P \lor \Diamond X$ is not equivalent to any modal formula.

GAME SEMANTICS — EVALUATION GAMES

Verifier and Refuter discuss whether $\Box \mu X.P \lor \Diamond X$ holds at w.

 $V : \Box \mu X.P \lor \Diamond X \text{ holds at } w$

 $R: \mu X.P \lor \Diamond X$ fails at v_1

 $V : P \lor \Diamond X \text{ holds at } v_1$

 $V : \Diamond X \text{ holds at } v_1$

V :X holds at v_2

 $V: P \lor \Diamond X \text{ holds at } v_2$

 $V : P \text{ holds at } v_2$

- μ repeats infinitely often \implies Refuter wins
- ightharpoonup
 u repeats infinitely often \implies Verifier wins

Kripke semantics and game semantics are equivalent.

The μ -calculus

00000000000000

The valuation of νX and μY depend on each other:

$$\nu X. \underbrace{\mu Y. \underbrace{(P \land \Diamond X) \lor (\neg P \land \Diamond Y)}_{\text{scope of } \nu X}}$$

Alternation depth of φ

Maximum number of codependent alternating μ and ν operators in φ .

Alternation hierarchy

Classifies μ -formulas with respect to their alternation depth.

REVERSE MATHEMATICS

ALTERNATION-HIERARCHY — EXISTING RESULTS

The AH	condition on graph	logic
is strict	none	K
$(pprox \mathcal{B}(G_\delta))$	reflexive	T
	symmetric	В
collapses to	weakly transitive	wK4
alternation-free frag.	transitive	K4
$(\approx \mathcal{B}(G))$	reflexive and transitive	S4
	trans, refl., convergent	S4.2
	trans., refl., weakly connected	S4.3
collapses to	trans., refl., semi-euclidean	S4.3.2
modal logic	(no name)	S4.4
	equivalence relations	S5

Results in red are new.

COLLAPSE TO MODAL LOGIC

Theorem (P., Tanaka)

Fix $n \in \omega$. Let M be a Kripke model such that, for all $\{w_0, \ldots, w_n\} \subseteq W$ and i < n, there is a \rightarrow -path from w_i to w_{i+1} . Then

n many times

- ▶ $\mu X.\varphi$ is equivalent to $\varphi(\cdots(\varphi(\bot)))$, and n many times
- $\nu X. \varphi$ is equivalent to $\varphi(\cdots(\varphi(\top)))$.

Why? Write μX , $\varphi(X)$ as μX . $\alpha(\Diamond \beta(X))$. In an evaluation game:

 $\cdots \rightarrow \Diamond \beta(X)$ holds at $w_i \rightarrow \cdots \rightarrow \Diamond \beta(X)$ holds at $w_i \rightarrow \cdots$

COLLAPSE TO MODAL LOGIC — EXAMPLES

The models below are reflexive and transitive.

Collapse to modal logic

The μ -calculus

Collapse to alternation-free fragment

VARIATIONS

Theorem (P., Tanaka)

The alternation hierarchy collapses to modal logic over equivalence relations on

- ► Non-normal semantics: worlds where everything is possible and nothing is necessary.
- Graded semantics: $\lozenge^{>n}\varphi$ holds iff there are more than n *accessible worlds where* φ *holds*.
- ► Intuitionistic semantics: no excluded middle.

The alternation hierarchy is strict over equivalence relations on

Multimodal semantics.

A model is weakly transitive iff

The μ -calculus

0000000000000

$$wRuRv \implies wRv \text{ or } w = v.$$

On weakly transitive models,

- $\Diamond \mu X. \varphi$ is equivalent to $\Diamond \varphi(\varphi(\bot))$,
- ▶ $\square \nu X. \varphi$ is equivalent to $\square \varphi(\varphi(\top))$.

Theorem (P., Tanaka)

Every μ -formula is equivalent to an alternation-free formula, over weakly transitive models.

TOPOLOGICAL SEMANTICS

Instead of directed graphs $\langle W, \rightarrow \rangle$, we consider topological spaces $\langle W, \tau \rangle$.

Over
$$\mathcal{X} = \langle \langle W, \tau \rangle, V \rangle$$
,

The μ -calculus

0000000000000

 $\Diamond \varphi$ holds at w iff w is a limit point of $\|\varphi\|$.

Theorem (P., Tanaka)

Every μ -formula is equivalent to an alternation-free formula over topological semantics.

Proof sketch.

- ▶ Suppose $\mathcal{X}, w \models \varphi \land \neg \psi$.
- ▶ Then \mathcal{X}_{fin} , $w \models \varphi \land \neg \psi$, with \mathcal{X}_{fin} finite.
- ▶ Then $M, w \models \varphi \land \neg \psi$, with M weakly transitive.

DIFFERENCE HIERARCHY

Difference hierarchy of open sets:

- ► First level: open sets.
- \blacktriangleright Second level: $A \setminus B$, with A, B open.
- ▶ Third level: $A \setminus (B \setminus C)$, with A, B, C open.
- **•** . . .

The μ -calculus

Booleans combinations of open sets are obtained by \cap , \cup , and \neg from open sets.

The difference hierarchy classifies all boolean combinations.

GALE-STEWART GAMES

Fix a payoff $A \subseteq \mathbb{N}^{\mathbb{N}}$.

I and II alternate picking natural numbers.

I wins iff $\alpha = x_0 x_1 x_2 \cdots \in A$.

A game is determined iff one of the players has a winning strategy.

Determinacy axioms

 Γ -Det states that every game with payoff in Γ is determined.

μ -CALCULUS AND DETERMINACY

The μ -calculus

Consider graphs over the natural numbers.

Theorem (Bradfield, Quickert, Duparc)

The μ -calculus defines the winning regions of Gale–Stewart games whose payoffs are boolean combinations of G_{δ} sets.

Theorem (P., Li, Tanaka)

The alternation-free μ -calculus defines the winning regions of Gale-Stewart games whose payoffs are boolean combinations of open sets.

REVERSE MATHEMATICS

Which set existence axioms are needed to prove the theorems of mathematics?

► RCA₀ proves

The μ -calculus

- ▶ the intermediate value theorem;
- existence of an algebraic closure of a countable field;
- determinacy of finite games.
- ► ACA₀ is equivalent to
 - ▶ the Ascoli lemma;
 - every countable commutative ring has a maximal ideal;
 - König's lemma.
- ▶ Π_1^1 -CA₀ is equivalent to
 - ▶ the Cantor/Bendixson theorem;
 - every countable Abelian group is the direct sum of a divisible group and a reduced group;
 - determinacy for difference of two open sets.

REFLECTION PRINCIPLES

- ▶ Π_n^1 -formula: $\forall X_n \exists X_{n-1} \dots QX_1. \varphi(X_1, \dots, X_n)$, where φ has no set quantifier.
- ▶ Π_n^1 -Ref(T) states that

if φ is a Π_n^1 -formula provable in T, then φ is true.

Theorem (Kołodziejczyk, Michalewski)

Over Π_2^1 -CA₀,

$$\Pi^1_3$$
-Ref $(\Pi^1_2$ -CA $_0)$ is equivalent to $\forall n. (\Sigma^0_2)_n$ -Det.

We improved this theorem and proved variations.

The μ -calculus

- ▶ Π_2^1 -Ref(ACA₀) is equivalent to $\forall n. (\Sigma_1^0)_n$ -Det*.
- ▶ ATR₀ is equivalent to Δ_1^0 -Det and Σ_1^0 -Det.
- ▶ Π_1^1 -CA₀ is equivalent to $(\Sigma_1^0)_2$ -Det.
- ▶ Π_3^1 -Ref $(\Pi_1^1$ -CA $_0)$ is equivalent to $\forall n.(\Sigma_1^0)_n$ -Det.
- Σ_1^1 -ID is equivalent to Σ_2^0 -Det.
- ▶ Π_2^1 -CA₀ proves $(\Sigma_2^0)_2$ -Det.
- ▶ Π_3^1 -Ref $(\Pi_2^1$ -CA $_0)$ is equivalent to $\forall n.(\Sigma_2^0)_n$ -Det.

Results in red are new.

Let $\psi_e(i, n)$ state the existence of Y_0, \dots, Y_n such that:

$$X \in Y_0 \in \cdots \in Y_n,$$

 $Y_0 \subseteq_{\beta_i} \cdots \subseteq_{\beta_i} Y_n \subseteq_{\beta_e} \mathcal{N}.$

Theorem (P., Yokoyama)

The μ -calculus

Over ACA₀, if $e \le i$ then $\forall n.\psi_e(i,n)$ is equivalent to Π^1_{e+2} -Ref(Strong Σ^1_i -DC₀).

- Π_3^1 -Ref $(\Pi_1^1$ -CA₀) is equivalent to $\forall n.(\Sigma_1^0)_n$ -Det
 - ▶ Both are equivalent to $\forall n.\psi_1(1,n)$.
- $\Pi^1_3 ext{-Ref}(\Pi^1_2 ext{-CA}_0)$ is equivalent to $\forall n.(\Sigma^0_2)_n ext{-Det}$
 - ▶ Both are equivalent to $\forall n.\psi_1(2,n)$, needs to use multiple inductive definitions.
- Π_2^1 -Ref(ACA₀) is equivalent to $\forall n.(\Sigma_1^0)_n$ -Det*
 - ▶ Modified version of the $\forall n.\psi_e(i, n)$.

REFERENCES I

The μ -calculus

- Luca Alberucci and Alessandro Facchini. "The Modal μ-Calculus Hierarchy over Restricted Classes of Transition Systems". In: *The Journal of Symbolic Logic* 74.4 (2009), pp. 1367–1400.
- Julian C. Bradfield. "The Modal Mu-Calculus Alternation Hierarchy Is Strict". In: *Theoretical Computer Science* 195.2 (1998), pp. 133–153.
- Leszek Aleksander Kołodziejczyk and Henryk Michalewski. "How Unprovable Is Rabin's Decidability Theorem?". In: 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2016, pp. 1–10.

REFERENCES II

The μ -calculus

- Leonardo Pacheco, Wenjuan Li, and Kazuyuki Tanaka. "On One-Variable Fragments of Modal μ -Calculus". In: Computability Theory and Foundations of Mathematics. Wuhan, China: WORLD SCIENTIFIC, 2022, pp. 17–45.
- Leonardo Pacheco and Kazuyuki Tanaka. "The Alternation Hierarchy of the μ -Calculus over Weakly Transitive Frames". In: *Logic, Language, Information, and Computation*. Vol. 13468. 2022, pp. 207–220.
- Leonardo Pacheco and Keita Yokoyama. *Determinacy and Reflection Principles in Second-Order Arithmetic*. 2022. arXiv: 2209.04082 [math].