ORPHEUS:

A MULTI-USER MUSIC RECOMMENDATION SYSTEM

BY THE DUMMY VARIABLES

OUTLINE

Motivation

Process Flow

Recommender Systems

Collaborative Filtering

Model testing

Aggregation strategy

Final product

Matrix Magic

MOTIVATION

- Create a playlist for multiple users with different tastes and preferences and provide a uniformly fantastic listening experience using:
 - Collaborative filtering on implicit feedback
 - Aggregation strategy
 - Multi-users spotify accounts
 - Flask

THE DATASET

The Echo Nest Taste Profile Subset

- 3 GB
- 1,019,318 unique users
- 384,546 unique songs
- 48,373,586 unique user, song, playcount triplets
- On Average each user listens to 47 unique songs or 50% of users listen to 27 unique songs

PROCESS FLOW

RECOMMENDER SYSTEMS

Types of recommender systems:

- 1. Content-based:
 - a. Looks at characteristics of users or items. For example;
 - i. Find similarity of songs based on music tempo,
 - ii. Find similar users based on demographics.
 - b. Difficult to collect
- 2. Collaborative filtering (CF):
 - a. Modelling users' past behavior or the items' rating. For example;
 - i. Identify users who rated the same item similarly.
 - b. Cold start problem.

COLLABORATIVE FILTERING

- 1. Explicit feedback
 - a. User actively input their preference of the product. For example;
 - i. Netflix star rating
- 2. Implicit feedback
 - a. Based in consumption of the item.
 - i. Number of times a song is heard.
 - ii. Repeat purchase of product.

COLLABORATIVE FILTERING

LATENT FACTOR MODEL:

EXPLICIT MODEL

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} \left(r_{ij} - w^T f[j] \right)^2 + \lambda ||w||_2^2$$

IMPLICIT MODEL

$$\min_{x_{\star},y_{\star}} \sum_{u,i} c_{ui} (p_{ui} - x_{u}^{T}y_{i})^{2} + \lambda \left(\sum_{u} \|x_{u}\|^{2} + \sum_{i} \|y_{i}\|^{2} \right)$$

$$c_{ui} = 1 + \alpha r_{ui}$$

MODEL TESTING

MODEL TESTING

20	Ļ1	WiscoDisco 🕮	0.11206	5	Tue, 26 Jun 2012 01:21:55 (-28.5h)
21	Į1	sedielem	0.10952	11	Thu, 09 Aug 2012 17:52:45 (-50.4d)
22	Į1	Francie 25th out	0.10812	3	Fri, 08 Jun 2012 11:27:52
23	11	MML Of	0.10778	16	Wed, 06 Jun 2012 07:33:46 (-15.3h)
24	_	Superman89 150	0.10117	5	Fri, 20 Jul 2012 15:20:35 (-18.4h)
25	_	eggershead teams!	0.09923	5	Thu, 17 May 2012 00:41:58
26	_	AppleCakeMining #	0.09655	12	Mon, 21 May 2012 10:29:26 (-34.8h)
27	_	Andrew Ostapets	0.09132	17	Sun, 29 Jul 2012 21:13:41 (-10d)
28	↑69	seventeen	0.08998	4	Thu, 09 Aug 2012 16:32:37
29	Į1	holy shit	0.08657	13	Mon, 30 Jul 2012 03:09:46 (-46.1d)
30	Į1	jose	0.08657	6	Sat, 30 Jun 2012 17:33:16 (-14.4d)

AGGREGATION STRATEGY

How to adapt recommendations to a group based on individual members' preference?

When forming recommendations for the group:

Average strategy: average happiness of the members.

Most pleasure: happiness of the most happy member.

Least misery: happiness of the least happy member.

Multiplicative: product of each member's happiness.

	INDIVIDUAL RECOMMENDATIONS										
USER	Lifehouse	Lifehouse	Lifehouse	Lifehouse	Lifehouse						
USEN	-	- From	- Falling In	- Storm	- All In						
84250	0.95	0.77	1.00	0.97	0.64						
92650	0.71	0.98	0.89	0.84	0.97						
193650	0.90	0.86	0.86	0.75	0.88						
	GROUP RECOMMENDATIONS										
Least Misery	0.71	0.77	0.86	0.75	0.64						

AGGREGATION STRATEGY

Which strategy performs best?

What strategy to use based on group characteristics?

Best strategy for a group with very similar members?

Best strategy for a small group vs big group?

How to measure group satisfaction?

$$S(u,R) = rac{\sum\limits_{i \in R} \hat{p}(u,i)}{|R|}$$

$$S(g,R) = rac{\sum\limits_{oldsymbol{u} \in g} S(u,R)}{|g|}$$

Cluster users

K-means clustering using latent features.

Create homogeneous and heterogeneous groups of 3, 5, and 7 members.

Derive S(g,R) for each aggregation strategy.

AGGREGATION STRATEGY ANALYSIS

Average aggregation strategy works best especially for heterogenous groups!

HOMOGENOUS: 3-members						HOMOGENOUS: 5-members				HOMOGENOUS: 7-members					
	LM	MP	AV	MU			LM	MP	AV	MU		LM	MP	AV	MU
means	0.51	0.49	0.56	0.52		means	0.48	0.45	0.53	0.51	means	0.51	0.46	0.56	0.52
sds	0.14	0.13	0.12	0.16		sds	0.11	0.09	0.09	0.12	sds	0.15	0.15	0.13	0.18
ANOVA p- value	0.548					ANOVA p- value 0.0719				ANOVA p- value	0.277				
HETEROGENOUS: 3-members						HETEROGENOUS: 5-members			HETI	TEROGENOUS: 7-members					
	LM	MP	AV	MU			LM	MP	AV	MU		LM	MP	AV	MU
means	0.39	0.38	0.47	0.35		means	0.25	0.23	0.36	0.19	means	0.2	0.19	0.32	0.17
sds	0.08	0.07	0.08	0.15		sds	0.06	0.06	0.06	0.1	sds	0.04	0.04	0.04	0.07
ANOVA p- value 0.00481						ANOVA p- value 3.86E-10				ANOVA p- value	8.83E-16				
TukeyHSD Post-hoc test: p-value < 0.05						TukeyHSD Post-hoc test: p-value < 0.05			TukeyHSD Post-hoc test: p-value < 0.05						
variables	AV-	MU-	- FEET - 1103			variables	AV-LM	MU-	AV-	MU-	variables	AV-LM	AV-	MU-	

FINAL PRODUCT

TRY ORPHEUS

CLICK ME!

REFERENCES

CARVALHO, L., MACEDO, H.: USERS' SATISFACTION IN RECOMMENDATION SYSTEMS FOR GROUPS: AN APPROACH BASED ON NONCOOPERATIVE GAMES (2013)

HU, Y., KOREN, Y., VOLINSKY, C.: COLLABORATIVE FILTERING FOR IMPLICIT FEEDBACK DATASETS MASTHOFF, J.: GROUP RECOMMENDER SYSTEMS: COMBINING INDIVIDUAL MODELS (2011)

O' CONNER, M., COSLEY, D., KONSTAN, J.A., RIEDL, J.: POLYLENS: A RECOMMENDER SYSTEM FOR GROUPS OF USERS. ECSCW, BONN, GERMANY (2001)

SEGARAN, T.: PROGRAMMING COLLECTIVE INTELLIGENCE (2007) CHAPTER 2 SHANI, G., GUNAWARDANA, A.: EVALUATING RECOMMENDATION SYSTEMS

Model Testing*

MODEL TESTING

How to Evaluate Implicit Model?

RMSE doesn't make sense!

Neither regression nor classification

Mean Average Precision (mAP)

Precision-at-k (P)

Proportion of correct recommendations within top-k of the predicted ranking

Average Precision (AP)

Precision at each recall point k

Mean Average Precision (mAP)

Average over all users

Used in Million Song Kaggle Competition

Evaluate mAP

Train Users

Test Users (Hidden Songs) Test Users (Visible Songs)