Schéma	Caractéristiques	Solution	Nom de l'écoulement
	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$ec{u} = u(y)ec{e}_x ext{avec} u(y) = rac{Uy}{h}$ $p = C^{te}$	Couette plan sans gradient de pression $(\partial p/\partial x = 0)$
$\begin{array}{c c} & u(y) \\ & & \tilde{e}_y \\ & & \tilde{e}_x \end{array}$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\frac{dp}{dx} = C^{te}$ et $\vec{u} = u(y) \vec{e}_x$ avec $u(y) = \frac{1}{2\mu} \frac{dp}{dx} y(h-y)$	Poiseuille plan
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(y) \vec{e}_x$ $\text{avec} u(y) = U \left[\frac{y}{h} - K \frac{y}{h} \left(1 - \frac{y}{h} \right) \right]$ $\text{où} K = \frac{h^2}{2\mu U} \frac{dp}{dx}$	Couette plan avec gradient de pression $(\partial p/\partial x \neq 0)$ = "Couette-Poiseuille"
$\begin{array}{c c} & u(r) \\ & x \\ & \end{array}$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial \theta} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(r) \vec{e}_x$ $\text{avec} u(r) = -\frac{1}{4\mu} \frac{dp}{dx} \left(R^2 - r^2 \right)$	Poiseuille cylindrique
Ω_2 ε_{θ} ε_r R_1 R_2	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial \theta} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = v(r)\vec{e}_{\theta} \text{avec} v(r) = Ar + \frac{B}{r}$	Couette cylindrique = "Couette-Taylor"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\vec{u} = u(y)\vec{e}_x$ avec $u(y) = \frac{g \sin \alpha}{2\nu} y(2h - y)$ $p(y) = \rho g(h - y) \cos \alpha + P_a$	Film tombant
	$\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = u(y,t)\vec{e_x}$ avec $u(y,t) = U\left[1 - \mathrm{erf}\left(\frac{y}{2\sqrt{\nut}}\right)\right]$ $p = C^{te}$	Premier problème de Stokes
$U\cos(\omega t)$	$\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\begin{aligned} \vec{u} &= u(y,t) \vec{e}_x \\ \text{avec} u(y,t) &= U e^{-y/\delta} \cos(\omega t - \frac{y}{\delta}) \\ \text{où} \delta &= \sqrt{\frac{2\nu}{\omega}} \text{et} p = C^{te} \end{aligned}$	Second problème de Stokes