$$\phi: G \rightarrow G' - group homomorphism iff$$

$$\forall g_1, g_2 \in G \quad \phi(g_1, g_2) = \phi(g_1) \cdot \phi(g_2)$$

Properties

- 1) Let $\phi:G\to G'$ be surj-group homomorphism If G is abelian group, so is G'
- 2) Camposition of 2 group homomorphisms is a group homomorphism

Proof

(et $\phi_i: G \to G'$ $\phi_i: G' \to G''$ be g.h.Show $\phi_i \circ \phi_i: G \to G''$ for $a, b \in G$ $(\phi_2 \circ \phi_i) (a.b) = \phi_2(\phi_i(a.b))$ $= \phi_2(\phi_i(a) \cdot \phi_i(b))$ $= \phi_2(\phi_i(a)) \cdot \phi_2(\phi_i(b))$ $= (\phi_2 \circ \phi_i)(a) \cdot (\phi_2 \circ \phi_i)(b)$

4) Let
$$\phi: G \rightarrow G'$$
 be a g.h.

If $a \in G$ then $(\phi(a))^{-1} = \phi(a^{-1})$

Proof
let acc,
$$\exists a^{-1} \in G$$
 s.t. $aa^{-1} = a^{-1}a = e$
Consider $\phi(e)$, by (\exists) $\phi(e) = e'$
 $\phi(e) = \phi(aa^{-1}) = \phi(a) \cdot \phi(a^{-1}) = e'$

$$(\phi(\alpha))^{-1} = \phi(\alpha^{-1})$$

Definition

Let
$$f:A \rightarrow B$$
 (SA DSB
Set $f(C) = f(x) \mid x \in C_3$
is the image of C in B

5) (et
$$\phi: G \to G'$$

If $H \leq G$ then $\phi(H) \leq G'$
 G'
 G'

Proof $\phi(H) \subseteq G' \quad \text{satisfies} \quad \text{conditions};$ 1. $a',b' \in \phi(H)$ $\exists a,b \in H \quad \phi(a) = a' \land \phi(b) = b'$ 2. By prop $\exists a' \in \phi(H)$ 3. $a' \in \phi(H)$ $\exists a \in H \quad \phi(a) = a'$ by prop $\exists a \in H \quad \phi(a) = a'$ where $a' \in H \quad bc$ $c \in H \quad bc$

The
$$(a')'' = (((a))'')' = ((a'))''$$

6) Let
$$\phi: G \to G'$$
 be a g.h.
If $H' \leq G'$ then $\phi^{-1}(H') \leq G$

Definition

Let
$$\phi: G \rightarrow G'$$
 be a group homomorphism
then the subgroup
 $\phi^{-1}(3e^{3}) = 3 \times 66 \mid \phi(x) = e^{3}$
 $= 3 \times 66 \mid \phi(x) = \phi(e) 3$
 $= \phi^{-1}(3\phi(e) 3)$
denoted **ker** ϕ

Examples

1)
$$\phi: S_n \to \mathbb{Z}_2$$
, $\phi(\sigma) = S_0$ if σ even

 S_1 if σ odd

 S_2 becomes phism S_3
 S_3
 S_4
 S_4
 S_5
 S_5
 S_6
 S_6

2)
$$\phi: \mathbb{Z} \to \mathbb{Z}_n$$
 $\phi(m) = m \mod n = 0$

where $m = nktr$

group homomorphism $w/$
 $\ker \phi = 3 m \in \mathbb{Z} \mid \phi(m) = n = 03$
 $= 2 m \in \mathbb{Z} \mid m = k = 03$
 $= 2 m \in \mathbb{Z} \mid m = k = 03$
 $= 2 k \mid k \in \mathbb{Z}_3$
 $= 2 k \mid k \in \mathbb{Z}_3$
 $= n \mid \mathbb{Z}_3 = n \mid k \in \mathbb{Z}_3$

Why are kernels important?)))