Information Theory Practice Sets 3 and 4

Lakshmi Prasad Natarajan

Solutions are not to be returned

Warm-up exercise.

- Recall the formulae and description of
 - data processing inequality
 - definition of sufficient statistics
 - Fisher factorization theorem
 - convergence of a sequence of numbers
 - convergence in probability
 - weak law of large numbers
- Note that if a_1, a_2, \ldots is a sequence of numbers with the limit a, and if f(x) is any function continuous at a, then the sequence $f(a_1), f(a_2), \ldots$ converges to f(a).

Practice Problems

Practice Set 3

- From Cover & Thomas, Chapter 2:
 2.6, 2.15, 2.21, 2.23, 2.28 (only the first part of the question), 2.31, 2.39.
- 2. In the following scenarios, $X = (X_1, ..., X_n)$ where X_i are i.i.d with a distribution that is dependent on a parameter θ . Also, T = f(X) is a function of X. You must show that T is a sufficient statistic of X for θ .
 - (a) X_i are uniformly distributed in the interval $[-\theta, +\theta]$, and $t = (t_1, t_2) = f(x) = f(x_1, \dots, x_n) = (\min_i x_i, \max_i x_i)$.
 - (b) X_i are Gaussian with mean θ and variance 1, and $t = \sum_i x_i$. Is $t = \frac{\sum_i x_i}{n}$ a sufficient statistic?
 - (c) X_i are Gaussian with mean 0 and variance θ , and $t = \sum_i x_i^2$.
- 3. Suppose T is a sufficient statistic of X for θ , and g is an invertible function. Is it true that g(T) is also a sufficient statistic of X for θ ?

Practice Set 4

- 1. Cover & Thomas, Chapter 3: 3.2, 3.6 (use the fact that log is a continuous function), 3.8, 3.9.
- 2. Suppose $|\mathcal{X}| < \infty$ and let X_1, \ldots, X_n be i.i.d on \mathcal{X} with the probability mass function $p_X(x), x \in \mathcal{X}$.
 - (a) Let $a \in \mathcal{X}$. Use the weak law of large numbers to show that

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}\left\{X_{i}=a\right\} \xrightarrow{p} p_{X}(a),$$

where 1 is the indicator function.

(b) We now want to show that when n is large, with high probability, every element $a \in \mathcal{X}$ occurs approximately $p_X(a)$ times in the sequence X_1, \ldots, X_n . That is, show that for any $\epsilon > 0$

$$\lim_{n \to \infty} P \left[\bigcap_{a \in \mathcal{X}} \left\{ \left| \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ X_i = a \right\} - p_X(a) \right| \le \epsilon \right\} \right] = 1$$

Hint: You may want to use the union bound on probability $P[A \cup B] \leq P[A] + P[B]$.

3. Convergence in the mean square sense. We say that random variables Z_1, Z_2, \ldots converge to a random variable Z in the mean square sense if

$$\lim_{n \to \infty} \mathbb{E}\left[|Z_n - Z|^2\right] = 0.$$

This is denoted as $Z_n \xrightarrow{m.s.} Z$.

Show that if X_1, X_2, \ldots are i.i.d with finite mean μ and variance σ^2 , then

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow{m.s.} \mu.$$