A Bi-level Stackelberg Game Model for Multi-Energy Retail Package Optimization

Hongjun Gao, *Senior Member, IEEE*, Hongjin Pan, Rui An, Hao Xiao, *Member, IEEE*, Yanhong Yang, *Member, IEEE*, Shuaijia He and Junyong Liu, *Member, IEEE*

$C_{i,\omega}^{ ext{E,R}}$	The cost of purchasing electricity for retailer i in scenario ω .
$C_i^{ m G,R}$	The cost of purchasing natural-gas for retailer i .
B_i^m	The income of retailer i by package m .
$C_{i,j}^{ ext{E,U},m}$ / $C_{i,j}^{ ext{G,U},m}$	The cost of purchasing electricity/natural-gas from retailer i by package m for end-user j .
$C_j^{ m G,B,U}$	The cost of purchasing natural-gas by bilateral contracts for end-user j .
$\mathcal{Q}_{i,j,n}^{ ext{excess}}$	The excess quantity of night-time electricity demand of type n end-user j in package 2 provided by retailer i .
$\mathcal{E}_{i,j,n}$	The peak-valley excess coefficient of type n end-user j in package 3 provided by retailer i .
$Q_{i,j,n}^{ m month}$ / $G_{i,j,n}^{ m month}$	Monthly electricity/natural-gas purchased of type n end-user j from retailer i .
$Q_{t,j,n}^{ m total}$ / $G_{t,j,n}^{ m total}$	The total electricity/natural-gas demand of type n end-user j at period t .
$B_i^{\rm R} / PR_i^{\rm R}$	The income/profit of retailer <i>i</i> .
$R_i^{\mathrm{VaR}}/R_i^{\mathrm{CVaR}}$	The CVaR/VaR value of retailer <i>i</i> .
$C_{i,\omega}^{\mathrm{R}}/F_{i}(y,\omega)$	The cost/risk loss function of retailer i in scenario ω .
$\delta_i/x_{i,\omega}$	Auxiliary variables of retailer <i>i</i> for measuring risk by CVaR.
$S_j^{\mathrm{E,com}}/S_j^{\mathrm{E,eco}}$	The electricity comfort /economy satisfaction of end-user j .
$S_{i}^{G,com} / S_{i}^{G,eco}$	The natural-gas comfort /economy

satisfaction of end-user *j*.

user j.

 S_{j}

The overall energy satisfaction of end-

Other variables

$Q_{t,j,n}^{ m initial}$ / $G_{t,j,n}^{ m initial}$	The demand	initial d of type n	electricity/natural-gas end-user j at period t .
$C_j^{ ext{E,initial}}$ /	The ini	tial electri	city/natural-gas cost of
$C_j^{ ext{G,initial}}$	end-user j.	er <i>j</i> .	

TABLE I*

QUOTATION PARAMETERS

Quotation Parameters	Value
Power generation company 1 (\$/kWh)	0.035
Power generation company 2 (\$/kWh)	0.026
Natural gas company 1 to retailers (\$/m³)	0.20
Natural gas company 2 to retailers (\$/m³)	0.22
Natural gas company 1 to residential/commercial/	0.35/0.45/0.4
industrial end-users (\$/m³)	
Natural gas company 2 to residential/commercial/	0.4/0.5/0.45
industrial end-users (\$/m³)	

Fig. 1* MCP scenarios in the spot market

Fig. 2* Initial electricity demand of end-users

Fig. 3* Initial natural-gas demand of end-users

TABLE II*
PACKAGE PARAMETERS

Package	Parameters	Value	
2	Bundled sale proportion	0.5	
	Limit value of night-time electricity demand	800	
	(kWh)		
	Limit value of electricity demand at peak period		
3	(kWh)	1200	
	Limit value of electricity demand at valley	1000	
	period (kWh)		
	Boundary value of peak-valley excess	800	
	coefficient (kWh)		
4	The first level of electricity demand (kWh)	80000	
	The second level of electricity demand (kWh)	100000	
	The natural-gas quota value (m³)	8000	

 $\label{table III*} \mbox{\footnote{the Parameters Involved in Solving the Model}}$ Other Parameters Involved in Solving the Model

Other Parameters	Value
Risk factor weight of each retailer	0.4
The confidence level	0.95
The size of PSO population	30
The number of iterations	101
The acceleration factors in PSO	2
The iteration precision	10-3
Satisfaction weights of end-users for electricity	0.1/0.4
comfort/economy	