Algoritmi e Strutture Dati

a.a. 2016/17

Prima prova intermedia del 12/01/2017

Nome:

Matricola: E-mail:	
1.	Scrivere una procedura C efficiente <i>intersezione</i> che, date due liste di interi (con ripetizioni), la prima <i>l1</i> ordinata in modo crescente e la seconda <i>l2</i> ordinata in modo decrescente, modifica <i>l1</i> in modo che sia l'intersezione fra <i>l1</i> e <i>l2</i> , ordinata in modo crescente, tenendo conto anche della molteplicità delle occorrenze. Scegliere un tipo di lista adeguato, dare la definizione in C del tipo e motivare la scelta.
2.	Analizzare la complessità della funzione. Dare la definizione di albero binario di ricerca. Dato un albero binario con radice r , scrivere un algoritmo efficiente che verifichi se l'albero radicato in r è un albero binario di ricerca. L'algoritmo restituisce I se l'albero binario è di
	ricerca, 0 altrimenti. Analizzare la complessità dell'algoritmo. [Suggerimento: Può essere utile fare in modo che l'algoritmo calcoli anche il massimo e il

3. Si enunci e si dimostri il teorema fondamentale delle ricorrenze.

Inoltre, per un certo problema sono stati trovati due algoritmi risolutivi $(A_1 \ e \ A_2)$ con i seguenti tempi di esecuzione:

A₁: $T(n) = 7 \cdot T(n/3) + n^2$

minimo delle chiavi presenti nell'albero.]

Cognome:

 $A_2: T(n) = 4 \cdot T(n/2) + \log n$

Utilizzando il teorema precedente si dica quale dei due algoritmi è preferibile per input di dimensione sufficientemente grande.