

LEVEL I

AD-E430514

AD

TECHNICAL REPORT ARBRL-TR-02255

A RECUIRAN

USER'S MANUAL FOR THE BRL SUBROUTINE
TO EVALUATE SINE, COSINE, AND EXPONENTIAL
INTEGRALS FOR COMPLEX ARGUMENT

James N. Walbert Emma M. Wineholt

August 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Dettroy this report when it is no longer moded. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of train name or manufacturers' names in this report does not constitute indorcement of any commercial product.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
TECHNICAL REPORT ARBRL-TR-02255 AD-A091247	
4. TITLE (and Subtitio)	S. TYPE OF REPORT & PERIOD COVERED
USER'S MANUAL FOR THE BRL SUBROUTINE TO EVALUATE	To the top of the control of the con
SINE, COSINE, AND EXPONENTIAL INTEGRALS FOR	Technical Report
COMPLEX ARGUMENT	T PRITY STATE OF THE STATE OF T
7. AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(s)
. <u></u>	
James N. Walbert	
Emma M. Wineholt P. Performing organization name and address	19. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Ballistic Research Laboratory	AREA & WORK UNIT NUMBERS
ATTN: DRDAR-BLP	
Aberdeen Proving Ground, MD 21005	1L161102AH43
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command	12. REPORT DATE
U.S. Army Ballistic Research Laboratory	August 1980
ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005	76
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release, distribution unlimited	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side it necessary and identity by block number) Sine Integral	
Cosine Integral	:1
Exponential Integral	
Gauss Continued Fraction	
Subroutine	
20. ABSTRACT (Continue on reverse eight if necessary and identify by block number)	jmk
The formulas used in the BRL Sine, Cosine and subroutine are derived in sufficient detail to enab implement the computer code. Estimates of precisio annotated listing of the computer code are included	ole the user to correctly on, sample output, and an

DD 1700 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSFICATION OF THIS PASE (When Date Entered)

TABLE OF CONTENTS

	· · · · · · · · · · · · · · · · · · ·	rage
	NOTATION	5
I.	INTRODUCTION	7
II.	INPUT AND OUTPUT VARIABLES	8
III.	METHODS OF COMPUTATION	
	A. Definitions	9
	B. Series: $ z \leq 10$	9
	C. Gauss Continued Fraction: $10 < z \le 75$	10
	D. Asymptotic Series: z > 75	12
	E. Recurrence Relation for the Exponential Integral	12
	F. Programming Methods	13
IV.	CONCLUSIONS	19
v.	ACKNOWLEDGEMENTS	19
	REFERENCES	21
	APPENDICES	
	A. PRECISION ESTIMATES	23
	B. LISTING OF SUBROUTINE SCINT	25
	C. SAMPLE OUTPUT FROM SUBROUTINE SCINT	37
	D. DERIVATIONS OF THE COMPUTATIONAL FORMULAS	57
	DISTRIBUTION LIST	75

NOTATION

This user's manual is designed to assist the mathematician or programmer using the BRL Sine, Cosine, and Exponential Integral Subroutine. FORTRAN symbols for variables and arithmetic operations are used in the body of the report for consistency with excerpts from the coding.

As an aid to the reader unfamiliar with standard FORTRAN, the following symbols are defined:

	Symbol	Operation	Algebraic Notation	FORTRAN Notation
1.	+	add	a + b =	A + B
2.	-	subtract	a - b =	A - B
3.	*	multiply	a×b =	A * B
4.	/	divide	a + b =	A / B

Numbers are written in specific ways to define their type:

1. Integer: 2

2. Real: 2. or 2.0

3. Standard notation 2.78 x10⁵: 2.78 E+05

(double precision) 2.78 D+05

Acces	sion For	
NTIS	GRA&I	
DTIC	TAB	
Unann	ounced	
Justi	fication	
By	ibution/	
	lability (Codes
	Avail and	/or
Dist	Special	•
	1	
	!!	
A	1 1 .	
	1 1	

I. INTRODUCTION

Sine and cosine integrals occur in applications of Tranter's method to the evaluation of stresses in thick-walled cylinders. The need for highly precise values of the integrals for complex argument led to the development of this BRL subroutine. Although tables of sine, cosine, and exponential integrals have been published, these tables are of necessity limited in scope. Moreover, interpolation between given values in such tables results in loss of accuracy.

While computer subroutines exist for the computation of certain of these integrals for restricted values of the argument, the authors know of no subroutine which is valid for the wide range of complex argument and order of the exponential integral or which has the degree of precision of the subroutine presented in this report.

The three methods used to compute the values of the integrals are

- 1. Series,
- 2. Gauss continued fractions, and
- 3. Asymptotic series.

Each of these methods will be discussed in sufficient detail to enable the user to understand the subroutine. Recourse to special multiple precision codes or integer arithmetic has been deliberately avoided. The goal was to provide a high degree of precision through careful attention to analytic detail.

The subroutine has been written in double-precision FORTRAN IV and has been code-checked on the CDC 7600. Examples run on the CDC 7600 have agreed to 25 significant digits with tables of the sine integral generated by C-B Ling². (See Appendix C). Complex arithmetic has not been used in the computer code; the annotated listing in Appendix B, together with the analysis presented in section III, will serve to illustrate the manner in which real and imaginary parts of the integrals are computed. As a general rule, whenever the real and imaginary parts of a number are stored in an array of length 2, the real part is in the first location and the imaginary part is in the second location.

¹C. J. Tranter, <u>Integral Transforms in Mathematical Physics</u>, Methuen and Co., Ltd., London, England, 1966.

²Chih-Bing Ling, <u>Collected Papers</u>, Vol. II, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1979.

II. INPUT AND OUTPUT VARIABLES

The subroutine statement is

SUBROUTINE SCINT (X, Y, SI, CI, EX, NORDER, ICODE, IERR).

The input variables are X, Y, NORDER, and ICODE. X and Y are double-precision real variables, while NORDER and ICODE are integer variables. ICODE describes to the subroutine the manner in which X and Y are to be interpreted. If

ICODE = 1, the complex argument z is x+iy

= 2, the complex argument z is x EXP(iy)

NORDER is the order n of the exponential integral $E_n(z)$ to be computed.

The output variables are SI, CI, EX, and IERR. SI, CI, and EX are double-precision real arrays of length 2, and IERR is an integer variable used as an error code.

- SI(1) = Re Si(z)
- SI(2) = Im Si(z)
- CI(1) = Re Ci(z)
- CI(2) = Im Ci(z)
- $EX(1) = Re E_n(z), n = NORDER$
- $EX(2) = Im E_n(z), n = NORDER$
- IERR = 0, no errors occurred;
 - = 1, input value for ICODE was not 1 or 2;
 - = 2, the magnitude of z was less than 1.D-48, and interpreted to be 0.;
 - = 3, the argument of z was 180° degrees;
 - = 4, the magnitude of z was negative;
 - = 5, negative order was specified for $E_n(z)$.

It should be noted that not all of the nonzero values for IERR indicate fatal errors. If IERR - 1 or 4, no computations are performed. If IERR = 2 (that is, if z=0), then the sine integral Si(0)=0, while the cosine integral Ci(0) is undefined. If n=NORDER=0 or 1, $E_n(0)$ is also undefined. If n=NORDER>1, $E_n(0)=1/(n-1)$. If IERR = 3, Ci(z) and $E_n(z)$ are not defined for z on the negative real axis; the values of

Si(z) are computed. Finally, if IERR = 5, $E_n(z)$ is not computed, but Si(z) and Ci(z) are.

Appropriate error messages are printed to accompany the nonzero values of IERR. It is necessary to declare the double-precision arrays SI(2), CI(2), and EX(2) in a DIMENSION statement in the calling program.

III. METHODS OF COMPUTATION

A. Definitions

The sine integral is defined by

$$Si(z) = \int_0^z \frac{\sin t}{t} dt$$
 (1)

for all complex z.

The cosine integral is defined by

$$Ci(z) = \gamma + \ln z + \int_0^z \frac{\cos t - 1}{t} dt$$
 (2)

for $|\arg z| < \pi$, where $\gamma = .57721$... is Euler's constant and $\ln z$ is the complex logarithm of z,

$$ln z = log_e |z| + i arg z.$$
 (3)

The exponential integral is defined by

$$E_{n}(z) = \int_{1}^{\infty} \frac{e^{-zt}}{t^{n}} dt$$
 (4)

for Re z > 0 and order n = 0,1,2,...

B. Series: $|z| \leq 10$

Series expansions for Si(z) and Ci(z) are given by

$$Si(z) = \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+1)(2k+1)!}$$
 (5)

and

$$Ci(z) = \gamma + \ln z + \sum_{k=1}^{\infty} \frac{(-1)^k z^{2k}}{(2k)(2k)!}, |arg z| < \pi$$
 (6)

For the exponential integral, one has

$$E_{n}(z) = \frac{(-1)^{n-1}z^{n-1}}{(n-1)!} \left(-\gamma - \ln z + \sum_{k=1}^{n-1} \frac{1}{k} \right) - \sum_{\substack{k=0 \ k \neq n-1}}^{\infty} \frac{(-1)^{k}z^{k}}{(k-n+1)k!}, (7)$$

|arg z | <π

Since the infinite series in Eqs. (5), (6), and (7) are majorized by an infinite series for e^2 , they are absolutely convergent throughout the finite complex plane. The presence of the term in z in Eqs. (6) and (7) invalidates these equations at the origin and along the negative real axis. As |z| increases, the rate of convergence decreases. Numerical experimentation showed agreement between the series and the continued fractions (to be discussed next) in the region $8 |z| \le 12$ to in excess of 28 significant digits. |z| = 10 was therefore chosen as the cutoff point for utilization of the series expansion. See Appendix D for the derivation of these expansions.

C. Gauss Continued Fraction: 10<|z|<75

For the exponential integral, the continued fraction is given by

For the exponential integral, the c
$$E_{n}(z) = e^{-z} \frac{1}{z + \frac{n}{1 + \frac{1}{z + \frac{n+1}{1 + \frac{2}{z + \dots}}}}}$$

(8)

valid for $|arg z| < \pi$. (See Appendix D)

The continued fraction expansion in Eq. (8) can also be used to evaluate the sine and cosine integrals. In particular, for $|arg z| < \frac{\pi}{2}$,

$$Si(z) = \frac{1}{2i} \left[E_1(iz) - E_1(-iz) \right] + \frac{\pi}{2}$$
, (9)

and

$$Ci(z) = -\frac{1}{2} \left[E_1(iz) + E_1(-iz) \right]$$
 (10)

(See Appendix D for the derivations.) Then using the continued fraction in Eq. (8) to evaluate $E_1(\pm iz)$, one obtains the values of Si(z) and Ci(z) from Eqs. (9) and (10), respectively, for $|\arg z| < \frac{\pi}{2}$ and 10 < |z| < 75. For z such that $\frac{\pi}{2} < |\arg z| < \pi$, Si(-z) and Ci(-z) are computed, and then use is made of the fact that

$$Si(z) = -Si(-z)$$
 (11)

and

$$Ci(z) = Ci(-z) + i\pi$$
 (12)

For $\left|\arg z\right|=\frac{\pi}{2}$, a problem arises in Eqs. (9) and (10), since either iz or -iz may lie on the negative real axis, the branch cut for $E_1(z)$. It will be shown in Appendix D that the continued fraction expansion in Eq. (8) is still valid when z<0, if used properly. That is, if z is real and negative, say z=-x, x>0, then define

$$E_1(-x) = -Ei(x) + i \pi , \qquad (13)$$

where

Ei(x) = - P.V.
$$\int_{-x}^{\infty} \frac{e^{-t}}{t} dt$$
, (14)

P.V. denotes the Cauchy principal value of the integral, and the sign of the $i\pi$ term is chosen according to the following convention:

$$\lim_{y\to 0^{+}} E_{1}(-x + iy) = -Ei(x) - i\pi$$

$$\lim_{y\to 0^{-}} E_{1}(-x + iy) = -Ei(x) + i\pi$$
(15)

The continued fraction expansion in Eq. (8) converges to -Ei(x) when z=-x, x<0. Suppose, then, that z=ix, x>0. In this case, iz = -x, and the continued fraction converges to -Ei(x). Since z has been rotated in the positive (anti-clockwise) sense to the negative real axis, π is subtracted from the imaginary part of -Ei(x) (which is 0) to provide the value of $E_1(\text{iz})$. Similarly, if z=-ix, then -iz=-x by rotation in the negative sense, and π is added to the imaginary part of -Ei(x) to obtain the value of $E_1(-\text{iz})$. With these conventions, Eqs. (9) and (10) may be used to compute Si and Ci on the imaginary axis.

The value |z| = 75 was chosen as the cutoff point for use of the continued fraction, since numerical experimentation showed agreement between the continued fraction and the asymptotic series (to be discussed next) to in excess of 26 significant digits in the range |z| = 73 to |z| = 78.

D. Asymptotic Series: |z| > 75

For the exponential integral, the asymptotic series

$$E_n(z) \sim \frac{e^{-z}}{z} - 1 - \frac{n}{z} + \frac{n(n+1)}{z^2} - \frac{n(n+1)(n+2)}{z^3} + \dots$$
 (16)

is valid for $|\arg z| < \frac{3}{2}\pi$, provided that $i\pi$ is added or subtracted from the value of the series, as appropriate, when the branch cut is crossed (see Appendix D). In particular, when z is on the negative real axis, the series in expression (16) is asymptotic to -Ei(x), so the computation of Si and Ci from this asymptotic series is accomplished using Eq. (9) and (10) in exactly the same manner as was described in section C for the continued fraction.

E. Recurrence Relation for the Exponential Integral

For $n \ge 1$, it is shown in Appendix D that

$$E_{n+1}(z) = \frac{1}{n} e^{-z} - z E_n(z)$$
, (17)

for all z. This recurrence relation is stable for increasing h whenever n < |z|, and is stable for decreasing n whenever n > |z|.

F. Programming Methods

Throughout this section, reference is made to program line numbers which can be found in Appendix B. All computations within the subroutine are done using the rectangular coordinate form of the complex quantities. Since input to the subroutine may be in rectangular or polar form, lines 180 through 440 check the form of the input, and convert polar input to rectangular form. Polar input angles are modified, if necessary, to values greater than - 180° and less than or equal to 180° by adding or subtracting an appropriate multiple of 360°. It should be noted that input variables are not modified by the subroutine; in lines 160 and 170, auxiliary variables are assigned.

Lines 500 through 630 comprise the series computation section. The array TSAVE, of length 2, contains the real and imaginary parts of the term

for use in the exponential integral in lines 620 and 630. In lines 580 through 610, the terms of the summation in the quantity

$$-\gamma - \ln |z| + \sum_{I=1}^{NORDER-1} 1/I$$

are computed.

Lines 660 through 880 make up the continued fraction section. The first call to subroutine CONTFR (line 670) is to compute the value of $E_n(z)$, n = NORDER, z input. Lines 680 through 760 compute $E_1(iz)$ for use in Eqs. (9) and (10), as described in section III C. If z lies in the right half-plane (line 690), z is rotated 90° in the counterclockwise sense by setting XT = - Y and YT = X. That is, if z = X + iY, then iz = -Y + iX (lines 730 and 740). If z is in the left half-plane or on the imaginary axis, z is replaced by - z before rotation by $\pm i$ (lines 700 through 720). Subsequent to the computation, Si and Ci are modified in accordance with Eqs. (11) and (12) of section III C (lines 810 through 880). Having computed $E_1(iz)$ in line 750, iz is converted to -iz in lines 770 and 780, and $E_1(-iz)$ is computed in line 790. If the input value of Z was imaginary (X = 0), then either YT (line 740) or YT (line 780) will be 0 with the corresponding XT being negative. As described

in section III C, the imaginary part of the computed E_1 is modified by $\pm \pi$, as appropriate, in line 760 or in line 800. Lines 810 through 840 apply Eqs. (9) and (10).

The asymptotic series computation section is in lines 900 through 1130. The first call to subroutine ASYMP (line 920) computes $E_{\rm n}(z)$, n = NORDER, z input. Lines 950 through 1130 implement Eq. (9), (10), (11), and (12) exactly as described in the continued fraction section above, except of course that subroutine ASYMP is called instead of subroutine CONTFR.

Lines 1160 through 1510 make up the error handling section of the subroutine. For details, see the description of IERR, section II.

Subroutine SERIES is comprised of lines 1640 through 2380. The arrays PSS(100,2), PSC(100,2), and PSE(200,2) are used to store the computed terms of the series for SI, CI, and E_n , respectively. The first index is in each case the term number; the second index corresponds to the real (1) and imaginary (2) part of the term. The terms are computed in descending order and summed in ascending order, to minimize round-off error. For the range of application of the series representations, the terms are monotone decreasing except for perhaps the first two or three terms when |z| > 6, and hence it is unnecessary to sum the series from two directions.

For SI and CI, one requires terms of the form

$$\frac{(-1)^n z^{2n}}{(2n)(2n)!}$$

and

$$\frac{(-1)^n z^{2n+1}}{(2n+1)(2n+1)!}$$

respectively. Letting z=X+iY, these terms are computed as follows:

$$\frac{z^m}{m!}$$
 = FACTR + i FACTI

$$(-1)^n = SW$$

m = EM

14

In line 1740, EM is initialized as 1.D0, and in lines 1760-1770, FACTR and FACTI are initialized as X/EM and Y/EM, respectively. SW is initially given the value + 1.D0 (line 1800). Lines 1820 through 2220 make up the computational loop. The terms for SI are computed first (lines 1830-1840) as

SW*FACTR/EM

and

SW*FACTI/EM

EM is incremented by 1.D0 in line 1940, The sign of SW is changed in line 1950, and FACTR+iFACTI is multiplied by X/EM + i Y/EM (lines 1970-2010). The terms for CI are then computed in lines 2020-2030 as

SW*FACTR/EM

and

SW*FACTI/EM

EM is again incremented by 1.D0 (line 2150), and FACTR+iFACTI is multiplied by X/EM+iY/EM (lines 2170-2210). Note that the sign of SW is not changed this time, since the next term in the series representation for SI has the same sign as the term just computed for CI. The loop index increments, and the next term in the series representation for SI is computed.

Computation of the series representation for $\mathbf{E}_{\mathbf{n}}$ requires terms of the form

$$\frac{(-1)^{m}z^{m}}{(m-n+1)(m!)}$$

Again letting z=X + iY, these terms are computed as

$$\frac{z^{m}}{m!} = FACTR + iFACTI$$

$$(-1)^{m} = ESW$$

m = EM

n-1 = EXFACT

$$\frac{1}{m-n+1} = EXCOEF$$

Since the series representation for E_n contains terms both even and odd powers of z, two terms of the series for E_n are computed each time through the loop. (Hence the dimension PSE (200,z)).

As indicated elsewhere, the array TSAVE, dimensioned 2, holds the real and imaginary parts of the factor

$$\frac{(-1)^{n-1}z^{n-1}}{(n-1)!}$$

used in the series for $E_n(z)$. If n=1, TSAVE(1)=1.00 and TSAVE(2)=0.D0, the values given these variables initially in lines 1780-1790. Once into the computational loop, so long as m#n-1, that is, EM # EXFACT (lines 1850 and 2040), the terms PSE are computed as

ESW*EXCOEF*FACTR

and

ESW*EXCOEF*FACTI

The sign of ESW is changed after each such computation, and FACTR and FACTI are modified as described above.

If m=n-1, that is, EM = EXFACT, the term in z^{n-1} is omitted from the summation, so that PSE=0.D0 (lines 1880-1890 or lines 2070-2080). In this case,

TSAVE(1)=-ESW*FACTR

and

TSAVE(2)=-ESW*FACTI

(lines 1860-1870 or lines 2050-2060). The minus sign occurs because the loop computes terms of the series

$$-\sum_{\substack{k=0\\k\neq n-1}}^{\infty} \frac{(-1)^k z^k}{(k-n+1)k!} = \sum_{\substack{k=0\\k\neq n-1}}^{\infty} \frac{(-1)^{k+1} z^k}{(k-n+1)k!} ,$$

and TSAVE is required to have the value

$$\frac{(-1)^k z^k}{k!}$$

where k=n-1.

The variable TERM is

 $\frac{z^m}{m!}$

and is computed in line 2130. When TERM < EPS, the computation loop is exited (line 2140). Note that if N < NORDER, the loop is not exited, since in this case TSAVE has not yet been computed. In any event, no more than NORDER+1 terms (NMAX) are computed. If, after NMAX terms, TERM is not less than EPS, a message is printed (line 2230). In lines 2250 through 2340, the terms are summed. If NORDER>1, the first term in the series representation is EXFACT, which is added to EX(1) in line 2350.

Subroutine CONTFR is in lines 2390 through 2680. This subroutine computes the 2*NMAXth convergent of the continued fraction in Eq. (8), where NMAX=100. The variable ADD, initialized to NMAX in line 2420, will take on the values 1 to NMAX, in descending order. The variable ADDZ, initialized to NORDER+NMAX in line 2430, will take on the values NORDER to NORDER+NMAX, in descending order. N(1) and N(2) are the real and imaginary parts, respectively, of the value of the convergent at each stage of computation. N(1)+iN(2) is initialized to the value (NORDER+NMAX)+i0.DO in lines 2440-2450.

Lines 2460 through 2560 comprise the main computational loop. z=X+iY is added to W(1)+iW(2) in lines 2470 and 2480. W(1)+iW(2) is inverted by writing

$$1.D0/(W(1)+iW(2)) = W(1)/R - iW(2)/R$$

where R=W(1)*W(1)+W(2)*W(2)

R is computed in line 2490, and in lines 2500 and 2510, the new values of W(1) and W(2) are computed by inverting, multiplying by the current value of ADD, and adding 1.DO.

Next, ADDZ is decreased by 1.DO, and new values of W(1) and W(2) are computed by inverting and multiplying by the current value of ADDZ. Finally, ADD is decreased by 1.DO and the loop begins again. After the final pass through the loop, W(1) and W(2) contain the real and imaginary parts, respectively, of

$$W = \frac{\frac{\text{NORDER}}{1 + \frac{1}{z} + \frac{\text{NORDER} + 1}{1 + \frac{2}{z} + \dots}}}{\frac{1}{z + \text{NORDER} + \text{NMAX}}}$$

The desired convergent is

$$\frac{1}{z+W}$$
,

so, in lines 2570 through 2610, z is added to W and the sum is inverted. In lines 2620 through 2660, this result is multiplied by

$$e^{-2} = e^{-X-iY}$$

$$= e^{-X}\cos Y - ie^{-X}\sin Y.$$

Subroutine ASYMP is in lines 2690 through 3120. As in subroutine SERIES, the values of the terms are saved in the PSE array, and are summed in descending order of the index. As in subroutine CONTFR, only

the function $\mathbf{E}_{\mathbf{n}}$ is computed. The asymptotic expansion requires terms of the form

$$\frac{(-1)^{k-1}(n)(n+1)(...)(n+k-2)}{z^k}$$

for k=2,3,...,NMAX.

These terms are computed in the DO-LOOP in lines 2840 through 2950. The Nth term is obtained from the previous one by multiplying by - (NORDER+N-1) and dividing by z (lines 2850 through 2870). TERM is the magnitude squared of each term; the computation loop is exited prior to the computation of all NMAX terms if TERM is larger than $|z|^{-2}$, or if TERM is less than 1.D-44.

The terms are summed in reverse order in lines 3000 through 3050. To these sums is added z^{-1} (lines 3060 and 3070), after which they are multiplied by e^{-z} (lines 3080 and 3090).

IV. CONCLUSIONS

The accuracy of the derivation and coding of the computational formulas used in this subroutine has been carefully checked. Because sufficiently precise tables are not available, the only means of checking the subroutine for complex z is through alternate computational methods. As has been noted, agreement between series, continued fraction, and asymptotic expansion in their regions of overlap provides some degree of verification. In certain parts of the complex plane, the functions have known values with which the subroutine may be compared. For example, on the imaginary axis, Re Si(z) = 0 and Im Ci(z) = $\pm \frac{\pi}{2}$, precisely the values given by the subroutine in verification runs. Some precision estimates are given in Appendix A.

V. ACKNOWLEDGEMENTS

The authors wish to express their appreciation to Mr. A. S. Elder, who provided much insight to some of the problem areas and who suggested the use of the Gauss continued fraction.

REFERENCES

- 1. C. J. Tranter, Integral Transforms in Mathematical Physics, Methuen and Co., Ltd., London, England, 1966.
- 2. Chih-Bing Ling, Collected Papers, Vol. II, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1979.
- 3. E. J. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, London, England, 1927.
- 4. H. S. Wall, Continued Fractions, D. Van Nostrand Co., Inc., New York, 1948.
- 5. W. Magnus, F. Oberhettinger, and R. P. Soni, <u>Formulas and Theorems</u> for the Special Functions of Mathematical Physics, Springer Verlag, New York, 1966.
- 6. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
- 7. M. Abramowitz and I. Stegun, editors, <u>Handbook of Mathematical Functions</u>, National Bureau of Standards, U.S. Dept. of Commerce, 1965.

APPENDIX A
PRECISION ESTIMATES

APPENDIX A

PRECISION ESTIMATES

A full discussion of error analysis and alternate means of computation of Si, Ci, and E_n will be the subject of a future report by the principal investigator. Preliminary results show that evaluation by Gaussian quadratures agrees with the values obtained by the continued fraction to 27 significant digits in double precision CDC FORTRAN. Applications of the recurrence relation (equation 17) for $E_n(z)$ in a Miller-type algorithm have revealed similar agreement with the series computations and the asymptotic expansions.

Internally, the subroutine determines the limits of computation as follows: the series computations are stopped when the magnitude of the last computed term is less than 1.D-144, or when 100 terms have been computed, whichever comes first. The continued fraction computes the 100th convergent. This value was found to provide the most stable results in the range of application. The asymptotic expansion is terminated in one of three ways: when 200 terms have been computed, when the magnitude of the last computed term was less than 1.D-144, or when the magnitudes of the computed terms reach a minimum.

Internal computations are performed using the rectangular coordinate form of the complex quantities. For this reason, the output of the subroutine will be inherently more precise when the input is in rectangular form. For example, an input of X=0, Y=A, ICODE=1, will produce better results than an input of X=A, Y=90°, ICODE=2, because of both the truncation error involved in converting 90° to $\frac{\pi}{2}$ radians, and the subsequent buildup of errors due to the fact that the computed value of X may not be identically 0.

APPENDIX B
LISTING OF SUBROUTINE SCINT

	SUBROUTINE SCINI (UNIVERSITY OF STREET OF STREET	001000
	IMPLICIT DOUBLE PRECISION (A-H,0-Z)	000110
	DIMENSION SI(2), CI(2), EX(2), TSAVE(2)	000150
	DATA PI/3.14159265358979323846264338327950288419700/.	000130
	* GAMMA/.577215664901532860606512090u824024310421D0/	000140
	IERK=0	000120
	חייא	091000
	\=\	000110
	IF(ICUDE,EQ.1) 6010 5	000180
		061000
	6010 905	00000
10	RHO=DSGRT(x*x+Y*Y)	000210
	IF (KHO.LT.1.0-48) GOTO 910	000.220
	THET=DATAN2(Y•X)	000230
	THETA=THET*180.00/PI	000240
	IF(X.GE.0.D0.OR.DABS(Y).GE.1.D-48) GUTO 50	000220
	00°0≈¥	000700
	IERR=3	000270
	6010 50	000280
9	RHOHX	000290
		000300
	IF (RHO.LT.1.0-48) GOTU 910	000310
	THETA=Y	000320
<u>5</u> 1	IF(TMETA.LE.180.D0) GOTO 20	000330
	THETA=THETA-360.00	000340
	60T0 15	000320
20	IF (THETA.GT180.D0) GOTU 30	000360
	THETA=THETA+360.D0	000370
	6010 20	000380
30	IF(THETA.NE.180.D0) GOTO 40	000330
	THETA=0.00	00000
	IEKR=3	000410
0 +	THET=THETA*PI/180.00	000450
	X=RT0*DCOS(THET)	000430
	Y=KHO*DSIN(THET)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

980	IF (NOWDER.GE.1) GOTO 100	05+000
	NSKUEK=NORDE F	09+000
	NORUER=1	0.000
	IEXX=5	0000
100	IF (RHO.GT.10.DO) 60TO 20U	067000
	NMAX=MAXO(100.NORDER+1)	005000
	EPS=1,00-144	000510
	EXSUM=-GAMMA-DLOG(RHU)	000550
	CALL SERIES (X+Y+SI+CI+EX+NORDER+TSAVE+NMAX+EPS)	000530
	CI(1)=CI(1)-EXSUM	000540
	CI (2) = CI (2) + THET	000220
	IF (NORDER-LE.1) GOTO 120	095000
	NEND=NOKDER-1	000210
	TERM=DBLE (FLOAT (NEND))	000280
	DO 110 I=1, NEND	065000
	EXSUM=EXSUM+1.D0/TERM	009000
110	TERM=TERM=1 .00	0 000 0
120	EX (1) = EX (1) + TSAVE (1) + EXSUM+TSAVE (2) + THET	000620
	EX (2) = EX (2) + TSAVE (2) * EXSUM-TSAVE (1) * THET	000630
	6010 900	00000
200	IF (RH0.GT.75.D0) 60T0 300	000650
	NMAX=100	099000
	CALL CONTFR(X,Y,EX(1),EX(Z),NORDER,NMAX)	00000
		0000
	IF (X, GE, 0, D0) 60T0 210	069000
	00°E=13°D0	000100
	X: IX	012000
	↓ ==↓	000120
210	X	000130
	X=1X	000140
	CALL CONTFRIXT, YT, E1, E2, 1, NMAX)	000120
	IF(XT.LT.0.D0.ANU.YT.E4.0.D0) E2=E2-P1	091000
		07100
	YT==YT	000780
	CALL CONTROLXT - YI - M 3 - M 4 - M - M - M - M - M - M - M - M -	061000

```
009000
              000010
                                                                                000860
                                                                                                                      068000
                                                                                                                                                 016000
                                                                                                                                                                                        000040
                                                                                                                                                                                                    00000
                                                                                                                                                                                                                              000000
                                                                                                                                                                                                                                           00000
                                                                                                                                                                                                                                                       066000
                            000850
                                          000830
                                                       000840
                                                                   000000
                                                                                                        000880
                                                                                                                                    006000
                                                                                                                                                              000050
                                                                                                                                                                          000030
                                                                                                                                                                                                                 096000
                                                                                                                                                                                                                                                                     000100
                                                                                                                                                                                                                                                                                               001050
                                                                                                                                                                                                                                                                                                                                      00100
                                                                                                                                                                                                                                                                                                                                                  090100
                                                                                                                                                                                                                                                                                                                                                                             00100
                                                                                                                                                                                                                                                                                                                                                                                          060100
                                                                                                                                                                                                                                                                                                                                                                                                                    0011100
                                                                                                                                                                                                                                                                                                                                                                                                                                 001120
                                                                                                                                                                                                                                                                                                                                                                                                                                              001130
                                                                                             000870
                                                                                                                                                                                                                                                                                  001010
                                                                                                                                                                                                                                                                                                             001030
                                                                                                                                                                                                                                                                                                                          001040
                                                                                                                                                                                                                                                                                                                                                                 001010
                                                                                                                                                                                                                                                                                                                                                                                                        001100
                                                                                                                                                                                                                                                                                                                                                                                                                                                            001140
                                                                                                                                                              CALL ASYMP(X,Y,EX(1),EX(2),NORDER,NMAX,EPS)
IF(XT.LT.0.D0.AND.YT.EQ.U.D0) E4=E4+F1
SI(1)=(E2-E4+F1)*SW*.500
                                                                                                                                                                                                                                                                                  IF (XT.LT.0.D0.AND.YT.EQ.0.D0) E2=E2-PI
                                                                                                                                                                                                                                                                                                                                      IF(XT.LT.0.D0.AND.YT.E0.0.D0) E4=E4+PI
                                                                                                                                                                                                                                                                                                                         CALL ASYMP(XT.YT.E3.E4.1.NMAX.EPS)
                                                                                                                                                                                                                                                                      ASYMP (XT, YT, E1, E2, 1, NMAX, EPS)
                                                                                                                                                                                                                                                                                                                                                  SI(1)=.500*SW*(E2-E4+PI)
                                                                  IF (Sw.6T.0.00) G0T0 900
CI(2)=CI(2)-PI
                                                                                                                                                                                                                                                                                                                                                                                                        IF (SW. GT. 0. DO) GOTO 900
                                                                                                                                                                                         IF (X.GE.0.D0) GOTO 310
                          SI (2) = .500 +SW* (E3-E1)
                                                                                                                                                                                                                                                                                                                                                                 SI (2) = .500 + SW + (E3-E1)
                                         CI(1)=-.500*(E1+E3)
CI(2)=-.500*(E2+E4)
                                                                                                                                                                                                                                                                                                                                                                             C1(1)=-.5D0*(E1+E3)
                                                                                                                                                                                                                                                                                                                                                                                           CI(2)=-.500*(E2+E4)
                                                                                                                                                                                                                                                                                                                                                                                                                     CI (2) =CI (2) -PI
                                                                                                                                                 EPS=1.0-144
                                                                                                                      6010 900
                                                                                                                                    MAX=200
                                                                                                                                                                                                      SW=-1.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                             60TO 930
                                                                                                                                                                            SW#1.00
                                                                                                                                                                                                                                                                                               XT=-XT
                                                                                                                                                                                                                                                                                                               YT=-Y1
                                                                                                                                                                                                                                             XTX-Y
                                                                                                         Y==Y
                                                                                                                                                                                                                                                                     CALL
                                                                                                                                                                                                                   X-=X
                                                                                                                                                                                                                                 1==/
                                                                                                                                                                                                                                                                                                                                                                                                                                    X==X
                                                                                               X==X
                                                                                                                                                                                                                                                           X=L
                                                                                                                                                                                                                                                                                                                                                                                                                                                 \==\
```

310

300

006	IF (IERK.EQ.0) GOTO 994	001150
300	6010 (905,910,920,930,940),1ERR	001120
604	MD1TF(6.1000)	001180
	666 0109	061100
910	IERK=2	001200
	SI (1) = 0 • D0	001210
	51(2)=0,00	001220
	IF (NORDER,GT.1) GOTO 915	001230
	WRITE (6-1010)	001240
	6010 999	001250
915	EX(1)=1.D0/DBLE(FLOAT(NOWDER-1))	001560
) •	Fx (2) = 0.00	001270
	WRITE (6.1015)	001280
	000	001290
920		001300
1	ST(1)==ST(1)	001310
	ST (5) == \$1 (5)	001320
	01(1)=0.00	001330
	C1 (2) =0*00	001340
		001350
	FX (2) = 0.00	001360
	WDITE(6.1020)	001370
	1010 999 1010 999	001380
0.0		001390
)	WDITE (6.1030)	001400
	0.00 O.00 O.00 O.00 O.00 O.00 O.00 O.00	0014100
070	TE (NSRDER.LT.0) 6010 945	001450
		001430
		001440
	FECTION (PLX) / (PHO*PHO)	001450
	Ex(1)=ERC1*(X*DC0S(Y)=Y*USIN(Y))	001460
	FK(2) ==ERCT*(Y*DCOS(Y)+X*USIN(Y))	001410
	010 090	~
576	WRITE (6.1040)	001490
)		

001200	015100	001520	001530	001540	01550	01260	01510	001580	001280	001600	001610	001620	001630
EX (1) =0.00			FORMAT(1H1,5X,36HINCORRECT VALUE SPECIFIED FOR ICODE.//	* SX.26HNO COMPUTATIONS PERFORMED.)	1010 FORMAT(1H1,5X,38HCI(0), EX(0) NOT DEFINED. SI SET TO 0.) 001550	FORMAT (1H1,5X,48HCI(0) NOT DEFINED. SI SET TO 0. EX=1/(NORDEK-1).)00	FORMAT(1H1,5X,41HCI, EX NOT DEFINED ON NEGATIVE REAL AXIS.// 00	+ 5X+24HSI VALUES WERE COMPUTED.)	NEGATIVE IN POLAR FORM.//		CIFIED - /		
		666	1000		1010	1015	1020		1030		1040		

1

Ą

¥

	SUBHOUTINE SERIES (X.Y.SI.CI.EX.NOKUER.TSAVE.NMAX.EPS)	001640
	IMPLICIT DOUBLE PRECISION (A-H.O-Z) DIMFNATON SI(2).CI(2).Fk(2).TSAVE(2).TSS(100.2).PSC(100.2)	00100
	* * PSE (200*2)	001670
	SI(1)=0°D0	001680
	SI(2)=0*D0	001690
	CI(I)=0*D0	001100
	CI(S)=0*D0	01/100
	Ex(1)=0•D0	001150
	EX(2)=0.00	001730
	EXII • DO	001/100
	EXFACT=DBLE (FLOAT (NORUER-1))	001100
	FACTREX/EM	001100
	FACTI=YEM	07.700
	TSAVE(1)=1.D0	007.700
	TSAVE(2)=0.00	06/100
	SE#1.00	00100
	ESW=1.00	001810
	DO 30 N=1+NMAX	001820
	DSS (Z+1) = SX + FACTR/EX	001830
	DSS(N+2) =SE*FACTI/EM	001840
	IF (EM.NE.EXFACT) GOTO 5	001850
	TSAVE(1) ==ESW*FACTR	001860
	TSAVE(2) =-ESW*FACTI	001870
	PSE (2*N-1+1)=0.00	001880
	PSE (2*N-1,2)=0.00	069100
	6010 10	00100
	EXCUEF=1.D0/(EM-EXFACT)	0016100
	PSE (2*N-1-1) = ESE*EXCOEF*FACTR	001920
	PSE (2*N+1,2) = ESW*EXCOEF*FACTI	001930
_		001240
	35-11-35	001950
		001960
	TEMPR=X/EM	026100
	TEMPI=Y/EM	001980

002190 00200 002110 002130 002150 002170 002230 00700 00200 002030 002040 002020 00200 090200 00200 002100 002120 002140 002160 002180 002200 002210 0022200 002240 0022200 002260 002270 002200 005300 002310 002330 002020 002280 IF (TERM.LT.EPS.AND.N.GT.NORDER) GOTO 40 EX(1) = EX(1) + PSE(2*K+1) + PSE(2*K-1+1) EX(2) = EX(2) + PSE(2*K+2) + PSE(2*K-1+2) TFACT=FACTR*TEMPR-FACTI * TEMPI FACTI=FACTR*TEMPI+FACTI*TEMPH FFACT = FACTR * TEMPR - FACTI * TEMPI FACTI=FACTR+TEMPI+FACTI+TEMPR TERM=FACTR*FACTR+FACTI*FACTI PSE (2*N+1) =ESW*EXCOEF *FACTR PSE (2*N+2) =ESW*EXCOEF *FACTI IF (EM.NE.EXFACT) GOTU 15 EXCOEF=1.DO/(EM-EXFACT) WRITE(6.100) NMAX.TERM PSC (N.2) = SW*FACTI/EM PSC (N+1) =SW*FACTR/EM CI (2) =CI (2) +PSC (K+2) SI(1)=SI(1)+PSS(K+1) SI(2)=SI(2)+PSS(K+2) CI(1)=CI(1)+PSC(K+1) SAVE (1) =-ESW*FACTR ISAVE (2) =-ESW*FACTI PSE (2*N+1)=0.00 PSE (2*N.2) =0.00 FACTR=TFACT N•[=] FACTR=TFACT EM=EM+1.DO TEMPR=X/EM TEMP I=Y ZEM ESW=-ESW CONTINUE **6010 20** NENMAX 00 20 [=N+] Kェー-I

15

20

6

30

09	CONTINUE	002340
	IF (NOWDER.GT.1) EX(1) =EX(1)+1.00/EXF.cT	056700
	RETURN	002360
001	100 FORMAT (1X+15+34H TERMS INSUFFICIENT. LAST TERM WAS+U37+30)	002370
	END	002380

SUBROUTINE CONTFR(X,Y,Ea,EB,NORDER,NMAX) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION W(2) ADD=DBLE(FLOAT(NMAX)) ADDZ=DBLE(FLOAT(NORDER+NMAX))	002390 002400 002420 002420
	002450
R(2) = 2(2) + Y R(3) = 3(2) + Y R(3) = 4(3) + Y(2) + Y(2) R(3) = 4(3) + Y(2) + Y(2) R(3) = 4(3) + Y(2) R(4) = 4(3) + Y(2) R(5) = 4(3) + Y(2)	002490 002490 002500
M(Z)=-ADD+M(Z)/K R=w(1)+w(1)+w(2)+w(2) ADDZ=ADDZ-1.DO W(1)=ADDZ+w(1)/R	002370 002520 002530 002530
	002550 002560 002570 002570
	002590 002600 002610
EMRCT=DEXP(-X) CRSTH=DCOS(Y) SRSTH=DSIN(Y) EA=EMRCT*(CRSTH*W(1)+SRSTH*W(2)) EB=EMRCT*(CRSTH*W(2)-SRSTH*W(1)) RETURN	002620 002630 002640 002650 002650

...

34

-

	SUBROUTINE ASYMP(X.Y.E.K.E.I.*NOKDEK.NMAA.E.P.S.)	06000
	IMPLICIT DOUBLE PRECISION (A-H.O-Z)	002200
	DIMENSION PSE (200+2)	002710
	CBST≅1)COS (∀)	002720
	SBST=0SIN(Y)	002730
	5=UEXP(-X)	002740
	PHOSC=X*X+X*X	007700
	ZINVK=X/RHOSO	002760
	ZINVI=-Y/KHOS@	002770
	EFACT=UBLE (FLOAT (NORUEH))	002780
	EFACTH=ZINVH	002790
	EFACTI=ZINVI	002200
	SAVET=EFACTR*EFACTR+EFACTI*EFACTI	005810
	ER=0.00	002820
	EI=0.00	002830
	DO 10 N=1.0MAX	002840
	TEFACT=-EFACT * (EFACTH * ZINVR-EFACTI * ZINVI)	002850
	EFACTI=-EFACT* (EFACTK*ZINVI+EFACTI*ZINVR)	002860
	EFACTR=TEFACT	002870
	FACTR*EFACT	002880
	IF (TERM.GT.SAVET) GOTO 15	069200
	SAVET=TERM	005200
	PSE(N+1)=EFACTR	005910
	PSE (N.2) =EFACT I	0056700
	EFACT=EFACT+1.00	0056700
	IF (DABS (TERM) .LT.EPS) GOTU 20	056200
10	CONTINUE	056200
	WRITE(6.100) NMAX.TEHM	096700
	NEVEN	0 0 5 3 4 0
	6010 20	005380
15	I-Z=V	066200
5 0	[=\+]	003000
	DO 30 [=1.6N	003010
	X=[-1	30
	ER#ER+PSE (K+1)	003030

APPENDIX C
SAMPLE OUTPUT FROM SUBROUTINE SCINT

TABLE C-1 THE SINE INTEGRAL

This table contains the values of

 $\frac{2}{\pi} *SI(N*\pi/2),$

for integral N from 1 to 200, inclusive. These values may be compared directly with those obtained in reference 2.

/PI) *SI (N*PI/2) 2994 60602 71576 5944 8965 04422 23019 5892) 76 5944 19 5892) 76 5944 19 5892	944 892	• •	Z N4	• •	(2/P1) 4 97444 33335	2/PI) *SI (N*PI/) 97444 72167 27 33335 80280 62	2)	028 700
207	\sim 0	տ ñ	594 780	47007	o 30	990	64752		96509	75798 36691
2442 907	~ C	~ 0	498	344	01	040	288		347	649
3053 141	•		247	774	14	.028	40	-	050	671
7443 164	-3		765	808	16	.974	20	~	434	694
5365 952	OL P		900	140	9 7 6 7	• 022	ຕຸ	₼ 1	136	624
1070 821	~ -		7 4 4 6 6 7	າາ ປີ (2 0 0	ָרָ עַנְיַּ	t t	^	171 375	4 4 7 7
5271 49853	853		466	672	24	.983	0	0	582	558
7662 42385	385	_	025	931	5 6	•015	15	~	468	929
7585 51912	915	4	962	558	58	•985	8	_	675	980
16967 7980	591	3	341	159	30	•013	88	Λı.	565	564
8093 80702 6	702 6	• •	759 723	561	35	.987	30 c	A 14	149	356 PEF
2068 95110 0	110 0	10	904	414	36	986	1 IS	۱ Ai	400	853
8651 15064 9	6 490	0	ın	719	38	.010	20	_	230	508
3635 44275 0	275 0	0	- (628	40	986	6	Λ.	421	869
7335 98608 3	508 3	٣ d	ന വ	665	6	600	4		515 1,45	985 505
3388 VELTO 0 7389 26921 5	921 5	o in	o str	870	† †	008	90		5 4 4 668	408
6723 78909 8	8 606	œ	_	829	48	.991	32	3	299	724
6481 30255 8	255 8	8	9	514	20	•008	7	an .	893	366
1048 84017	210	ന	926	629	55	-992	46	~	916	210
2272 84145 2	145 2	~	225	129	54	• 007	90	_	216	677
2249 32120 3	120 3	\mathbf{c}	·n	187	56	-992	9	$\overline{}$	263	344
6464 61712 0	712 0	0	3	797	58	•006	86	~	346	600
0685 01726 6	726 6	•	183	375	9	.993	23	•	281	643
7057 16834	334	w	703	164	62	• 006	73		417	192
9671 25010	010	70	900	741	40	•993	11		166	831
69 498 0 196	69+	0	529	033	99	•006	ဗ္ဗ	~	328	99
4454 B0208	508	. •	910	551	99	. 994	2	•	940	44]

	597	909	990	485	131	771	990	260	000	029	296	126	485	401	784	850	629	078	14400	841	004	338	416	372	101	566	613	485	470	802	615	944	938
1/2)	5118	9823	8576	6108	9868	5507	2665	1337	6863	0069	8457	1306	3586	9143	9741	5303	2687	8732	17222	5320	1079	2952	0782	6193	1656	2086	1430	0525	4436	0592	8291	1803	8193
SI (N*P1/2	140	192	487	381	185	512	164	878	980	187	463	204	824	933	490	919	155	566	96890	314	150	586	765	966	223	852	99	682	788	117	702	495	868
(2/PI)*	825	954	010	053	266	581	901	735	160	973	713	152	144	655	209	481	070	323	31651	624	159	620	907	376	416	817	825	746	381	869	452	803	376
	.0057	.9943	•0054	9566	.0051	6766	6700	.9951	.0047	.9953	• 0045	• 9955	.0043	.9957	.0041	6366	•0039	.9961	1.00382	.9962	•0036	.9963	.0035	• 9965	•0034	9966	.0033	.9967	.0032	9966	.0031	6966	•0030
Z	70	72	7.	76	78	80	82	48	86	88	06	35	76	96	96	100	102	104	106	108	110	112	114	116	118	120	122	124	126	128	130	132	134
	34	55	13	03	82	16	62	9	36	37	77	40	50	87	95	40	10	28	89339	38	57	90	16	96	96	34	Ę,	13	43	05	76	46	79
(2/1	073	780	450	675	024	567	060	754	209	818	411	651	940	543	365	196	981	190	45155	028	053	580	660	555	940	110	595	969	968	558	784	950	83
5/Id*N) IS	787	620	962	818	999	862	228	602	417	705	486	956	196	172	150	089	307	132	83668	827	467	484	980	977	984	226	971	297	291	250	160	481	47
*(14/2)	334	158	505	949	000	325	689	439	300	770	436	147	176	580	585	318	713	314	3	531	288	336	197	505	155	216	380	151	68+	766	165	32	2
-	6666	.0000	6666	.0000	6666.	• 0000	6666	.0000	6666	.0000	6666	0000	6666	.0000	6666	0000	6666	0000	66.	0000	6666	0000	6666	.0000	6666	.0000	6666.	.0000	6666	0000	6666	0000	6666
z	69	7.	73	75	77	62	81	83	92	87	68	16	93	95	16	66	0	0	0	0	0	-	_	_	~	_	N	N	N	2	2	ا ا	133

										1	
z		#(Id/Z)	/Id*N) IS*(Id/	(2/1		z	•	(2/PI) #	2/Id+N) IS+(Id/2	(2/]	
(1)	0000	351	50+	6477	<u>.</u>	٠,٣	9970	0095	984	759	8
	6666	255	557	6555	9	3	,0029	6720	365	124	Ş
•	0000	352	[4 3	2269	8	*	,9971	5228	0	910	Ξ
ı s	666	23	484	3815	7	J	.0028	4003	Š	727	ŭ
•	0000	515	÷36	9640	8	J	.9971	5632	362	231	9
	6666	62	606	4163	96	Ŧ	,0027	5817	33	878	ô
• 3	0000	338	9	1566	9	•	9972	1690	7	159	8
	6666	37.9	39	5266	23	ഹ	.0027	1800	176	828	Ñ
· LC	000	314	516	2165	9	ഗ	.9973	3746	7	515	7
) LC	6666	97.6	313	1125	6	ഹ	.0026	1629	374	000	9
1	0000	738	305	8571	23	ഹ	.9974	2107	95	949	ñ
) (C	6666	533	323	0846	0	ശ	.0025	2009	360	953	5
) (S	0000	402	576	4784		Ð	.9974	7050	593	410	Ţ
•	6666	747	22	1676	4	ഹ	0025	1680	809	897	~
) (0000	710	7	5219	3	•	9975	8826	46	483	9
(0	6666	523	13	4403	2	vo	0024	1402	47	484	ັນ
•	0000	250	289	6470	0	o	.9975	7660	805	514	9
9	6666	967	361	5906	2	~	.0023	3960	96	186	=
~	0000	322	386	6645	9	~	.9976	3757	329	213	9
. ^	6666	379	847	7429	3	~	.0023	9160	6	707	6
. 🏲	0000	424	184	1459	S		.9976	7306	1 24	13	2
٠,	666	765	576	6667	·	178	.0022	6825	660	036	5
٠,	0000	051	527	6680	6	ω,	.9977	8474	<u>8</u>	786	6
· •	6666	124	22	1154	S	æ	.0022	6784	247	740	7
(C)	0000	703	947	4969	ö	T)	1266.	1418	3	75	5
) (666	46]	767	7507	9	186	.002	5688	Ξ	92	9
Œ	0000	377	14]	9210	8	188	.997Ł	4279	82.	4	5
) Q	666	777	28	196	Š	190	.002	3029	8	63	3
0	000	076	97.	3206	6	192	.997	9186	200	56	7
ď	566	073	21(6345	~	161	• 0020	9051	27	4	6
195	1.00000	67848	98826	82396	41275	196	0.99793	22643	96176	08080	57106
ď	566	352	768	868	=	ச	• 002(685(316	45	ဗ က
ď	000	514	6	516	Ο.	500	.9979	361	906	ò	2

TABLE C-2 THE SINE, COSINE, AND EXEONENTIAL INTEGRALS

This table contains values of SI, CI, Ex_{l} , Ex_{S} , and $\mathrm{Ex}_{\mathrm{l}0}$ for $|\mathrm{z}|$ = 1, 40, and 80, and arg z ranging from -90 degrees to + 90 degrees in 15 degree increments. For this table, the notation

$$(n,z) = E_n(z)$$

has been used. The exponent of each value, and the sign of this exponent, appear in parentheses in front of each value.

	þ	72 85145 89 66192 13 60428 72 32728 39 26430	-	62 41906 84 22880 78 87544 44 56188 91 02018
	PART	37572 79469 27713 63972 86739	9	80562 76384 98878 73744 06891
	IMAGINARY	2 50875 7 96326 1 32564 4 87702 2 56691	TAAG YAANI	59131 9 79754 3 79255 1 26268 5 38889
	Σ	10572 15707 .62471 .22384	Ξ	-30198 -29709 -16188 -14101
05-		11661	06-	
II		****	11	
MAGNITUDE OF Z = 1. ARGUMENT OF Z = -90	REAL HART	(-28) .29666 24887 79092 U9478 (+ 0) .83786 694U9 80208 24U-9 (+ 0)33740 39229 00968 13496 (- 1) .63443 19256 79930 81U70 (- 1) .47573 65782 62179 83944	MAGNITUDE OF Z = 40° ARGUMENT OF Z = -90	(+ 1) .15707 96326 79786 75959 (+16) .30194 59131 80562 41906 (- 1)19020 00789 62087 66961 (- 1)20321 92419 84824 36218 (- 1)21316 58872 67299 75968
		SI(2) CI(2) EX(1.2) EX(5.2) EX(10.2)		SI(Z) CI(Z) EX(1,Z) EX(5,Z) EX(10,Z)

.

7

99848 42759 61199 61117 65838

45239 42474 59069 58175 93317

-.35073 -69932 -.15345 -.21448

(+33) (+6) (-8) (-8)

22249 99548 58192 74446 69476

38801 45239 50709 66883 36901

64331 00002 50115 19470 09812

.69932 .35073 .12402 .12280

111336

SI(Z) CI(Z) EX(1,Z) EX(5,Z) EX(10,Z)

64614 84048

00002 48623 60117

IMAGINARY PART

06- 11

= 80. ARGUMENT OF

7

MAGNITUDE OF

REAL PART

= -75
7
P.
ARGUMENT
= 7
OF
MAGNI TUDE

		REAL PART		IMAGINARY	RY PART	
	SI(Z) CI(Z) EX(1.2) EX(5.2) EX(10.2)	(+ 0) .29974 02274 92505 46979 (+ 0) .79892 87750 41746 96141 (+ 0)14479 80723 99690 16638 (- 1) .57203 80457 33726 32369 (- 1) .38777 29620 71565 23877	79 *1 88 (* 1) 59 (* 0)	10056 33346 11747 41660 .49812 40483 .15925 77958	346 56644 660 92934 483 32539 958 24796 184 20066	65838 82827 28630 77768 25334
			1 OF Z = -75			
44	SI(Z) CI(Z) EX(1•Z) EX(5•Z) EX(10•Z)	HEAL FARI (+15)47283 80594 65682 38H19 (+15)61026 65952 99039 55217 (- 6)48079 13205 39153 35524 (- 6)40792 77989 04173 45642 (- 6)32173 01129 25119 28353	(+15) 17 (+15) 24 (+6) 42 (+6) 53 (+6)	.61026 45952 47283 80894 .62919 95805 .64819 06966	52 99039 94 65683 05 72658 66 55219 80 03363	55217 95899 54553 15754
		MAGNITUDE OF Z = 80, ARGUMENT REAL PART	OF Z = -75	IMAGINARY	RY PART	
	SI(Z) CI(Z) EX(1+Z) EX(5+Z) EX(10+Z)	(+32) .22952 39934 18520 48663 (+30)45941 13087 62031 92634 (-10)12673 95439 94881 78993 (-10)12490 29897 44391 50572 (-10)12197 24444 82197 02556	3 (+30) 34 (+32) 93 (-12) 66 (-12)	.45941 13087 .22952 39934 39676 62813 .19527 32198 .88193 09022	87 62031 34 18520 13 98469 98 41604 22 08863	92634 48663 74101 55629 76213

09 = =
7
96
ARGUME::1
-
= 7
OF
MAGNITUDE

			Kř. A.	AL PART	•			1 4 4	TMAGINARY	PAKT	
			1					•	•		
	-	(o +)	.55637		28347	57734	(0 +)	86455		89181	88368
		6	169677		40552		(0 +)	82167			70376
	X . 1.	(- 5)	19456	04279	57614		(0 +)	.39007	88918		93769
	X (5.		.59342		91145		(0 +)	11186			86784
	Ex(10,2)	(- 1)	,35873		72981			.51873			20471
		MAGN	MAGNITUDE OF	604 = 7		ARGUME TOF	09- = 7				
			RE	AL PART	-			IMA	IMAGINARY	PART	
<i>1</i> E		(+13)	81491	20490	12170	02784	(+14)	11574	17629	71922	48409
	(2) (3)	(+14)	11574		71922		(+13)	.81491		12012	95021
	x	(-10)	22625	91485	73859		(-10)	45559		49524	70431
	X(5,	(-10)	24749		98904		(-10)	41373	72807	90006	48447
	X (1	(-10)	26324		36884	82847	(-10)	36438	00981	39203	94363
		MAGN	MAGNITUDE OF	· 08 = Z		ARGUMENT OF	09- = 7				
			REAL	AL PART				IMAC	IMAGINARY	PART	
		(+28)	.7597a	25855	48254	35041	(+28)	•15404	02557	38707	04288
		(+58)	15404	12557	38707	0424B	(+58)	.75978		48254	35041
	EX (1,2)	(-19)	.18945	18554	48414		(-16)	67267.	58708	02778	50194
		(-16)	.20415		52290		(-16)	.47182		26363	14790
		(-16)	.21925	29816	31364	73050	(-16)	•44605		49913	46583

-45
Ħ
7
96
Ę
RGUMEN
3
AK
•
~
7
9
UDE
7
=
5
Ĭ

IMAGINARY PART	5 48174 19506 33905 2 96173 22429 89740 7 45541 18807 43759 2 99919 57240 76634 4 42968 14939 40464	IMAGINARY PART	6 76188 22945 12960 8 43424 16632 72233 5 79949 34719 79228 2 23432 94590 22757 2 38913 29436 99466	IMAGINARY PART	3 51044 63585 26635 7 98278 48661 77274 7 79073 88748 00420 7 86382 00258 40002 0 33464 64836 98670
/HI	(+ 0)66666 (+ 0)53562 (+ 0) .28997 (- 1) .76072 (- 1) .35524	-45 IMI	(+11) .17136 (+11) .17438 (-14)89756 (-14)78302 (-14)66272	145 IMI	(+23)16643 (+23)16287 (-26) .23987 (-26) .22397 (-26) .20570
REAL PART	+ 0) .74519 21553 53659 28422 (+ 0) .56680 20982 59308 90460 (- 1) .99862 71916 01974 34444 (- 1) .63542 36380 27992 15763 (- 1) .35453 15002 32377 86525 (MAGNITUDE OF Z = 40. ARGUMENT OF Z = REAL PART	+11)	MAGNITUDE OF Z = 80, ARGUMENT OF Z = REAL PART	(+23)16287 98276 48661 77274 (+23) .16643 51044 63585 26635 (-26) .23453 37641 82110 25263 (-26) .23392 78595 98617 08913 (-26) .23194 47875 04430 64062 (
	SI(Z) CI(Z) EX(1,Z) EX(5,Z) EX(5,Z)		EX (1,2) ((2,1) ((2,1) ((2,1) ((2,1) ((2,1) ((2,1) ((2,1) (2,1) (SI(Z) CI(Z) EX(1•Z) EX(5•Z) EX(5•Z)

05- =
7
0
ARGUMENT
<u>.</u>
= 7
<u>)</u>
ITUDE
MAGN

IMAGINARY PART	44529 16450 6580v 71921 31611 08616 22326 47169 .19274 91065 5694v 33612 .47432 88004 8487v 58924 .22209 04666 13963 62340	IMAGINARY PART	.33873 01491 69562 96080 .51181 56458 56701 07337 .22004 78076 79644 64041 .20339 23641 44354 52169 .18506 47537 64260 78647	IMAGINARY PAHT	93023 54076 64162 40543 11513 64309 88702 50161 .32010 19095 37987 54961 .32792 23219 01497 75947 .33425 37625 71799 63580
	00077	06- = 5	(+ 7) (-16) (-16) (-16)	Z = -30	(+15) (+16) (-32) (-32) (-32)
PEAL PART	(+ 0) .86460 65733 55143 209m3 (+ 0) .44723 72493 45376 86804 (+ 0) .16778 31089 48629 43299 (- 1) .67264 52671 14151 54400 (- 1) .35821 64103 57870 27453	MAGNITUDE OF Z = 40. ARGUME TOF	(+ 7) .51181 60029 36333 75742 (+ 7)33873 01491 69562 95e54 (-17)20189 92e05 59119 20e47 (-18)99454 79182 05069 35292 (-19)71379 18629 49964 90217	MAGNITUDE OF Z = 80. ARGUMENT OF REAL PART	(+16)11513 64309 88702 34453 (+15) .93023 54076 64162 40543 (-32)95581 03663 08972 87012 (-32)90913 94977 30063 88053 (-32)85557 27025 42686 96878
	SI(2) CI(2) EX(1,2) EX(5,2) EX(10,2)		SI(2) CI(2) EX(1,2) EX(10,2) EX(10,2)		SI(2) CI(2) EX(1,2) EX(5,2) EX(5,2)

= -15
7
9
ARGUME 1
;
Ħ
?
9
NITUDE
MAG

IMAGINARY PART	82709 (+ 0)22111 80484 81933 62471 3 79109 (+ 0)14559 16753 46085 50583 62243 (- 1) .96314 43837 30428 66655 55534 (- 1) .22817 13966 26851 63533 76442 (- 1) .10691 83372 33648 28971	ARGUMENT OF Z = -15 IMAGINARY PART	8 31562 (+ 3) -,36356 34070 80294 15565 5 47619 (+ 3) -,15184 67068 83203 63166 1 27990 (-18) -,37545 48397 35917 57442 1 62937 (-18) -,34039 84094 53101 45892 5 42706 (-18) -,30434 69589 03545 83384	ARGUMENT OF Z = -15 IMAGINARY PART	#9058 (+ 7) 52353 83308 61328 19961 \$20088 (+ 7) -32435 08966 83409 21105 \$01677 (-35) -29133 01137 22904 64752 \$12302 (-35) -28012 81437 64506 12496 \$69950 (-35) -26715 33819 26509 06426
REAL PART	(+ 0) .92708 06031 16271 (+ 0) .36591 61208 81623 (+ 0) .20670 45715 25099 (- 1) .69646 72318 95616 (- 1) .36232 32605 62719	MAGNITUDE OF Z = 40. REAL PART	(+ 3)15027 59111 85608 (+ 3) .36356 34075 61085 (-18)15304 26437 56411 (-18)14746 67070 56811 (-18)14013 30034 92025	MAGNITUDE OF Z = 80. REAL PART	(+ 7) .32435 10537 63041 (+ 7) .52353 83308 61328 (-35)17615 89030 60227 (-35)16489 88483 46799 (-35)15248 53889 79257
	SI(2) CI(2) Ex(1,2) Ex(5,2) Ex(10,2)		SI(Z) CI(Z) EX(1,Z) EX(1,Z) EX(10,Z)		S1(2) C1(2) EX(1,2) EX(5,2) EX(10,2)

	MAGN	MAGNITUDE OF	= 7	1. ARG	1. ARGUMENT OF	= 7.	0				
		RE	REAL PART	-				IMAC	IMAGINARY	PART	
SI (2) CI (2)	36	.33740	30703				66	0.0000.0	00000	00000	00
EX(1.2) Fx(5.7)	3.2 3.1	.21938 .70454	39343	95520 17203	27367 98335	- -	66	0.00000	00000	00000	00
EX(10,Z)		.36393		14164		_	6	0000000	00000	00000	ŏ
	MAGN]	MAGNITUDE OF	2 = 40.	0. ARG	ARGUMENT OF	" 7	0				
		RE	REAL PART	.				IMA	IMAGINARY	PART	
SI(Z)	3:	.15869	85119 00789	35478	45067	- -	66	0.0000.0	00000	00000	00
EX(1,2)		10367	73261	45165			66	000000	00000	00000	00
EX(10,2)	(-19)	.85297	77609	98886		. •	6	0000000	00000	00000	ŏ
	MAGN]	MAGNITUDE OF	= 7	80. ARGUMENT	UMENT OF	= 7	0				
		RE	REAL PART	.				IMAG	IMAGINARY	PART	
SI(2) CI(2)	::	.15723					66	0.0000.0	00000	00000	ŏŏ
EX(1,2) EX(5,2)	(- 36) (-36)	.22285	43258 93451	68847		J J .	666	000000000000000000000000000000000000000	00000	00000	00
Ex(10•Z)	(-36)	.20078	21545	71055	66 614	-	6	0000000	00000	0000	ŏ

15
= 7
9
ARGUMENT
-
11
7
P
ITUDE
AGN

- 0 0 0 -

			REAL	AL PAKT				IMA	IMAGINARY	PART	
	SI(2) CI(2) EX(1.2) EX(5.2) EX(10.2)	11111	.92708 .36591 .20670 .69646	06031 61208 45715 72318 32605	16271 81623 25099 95616 62719	82709 79109 62243 56534 76442	11111	.22111 .14559 96314 22817 10691	80484 16753 43837 13966 83372	81933 46085 30428 26851 33688	62471 50583 66655 63533 28971
		MAGN	MAGNITUDE OF Z	Z = 40.	•	ARGUMENT OF	51 = 2	A T	TMAGINARY	PART	
50	SI(2) CI(2) EX(1,2) EX(5,2) EX(10,2)	(+ 3) (-18) (-18) (-18)	15027 .36356 15304 14746	9111 4075 6437 7070 0034	85608 61085 56411 56811 92025	31562 47619 27990 62937 4 2 706	(+ + 3) (+ 18) (-18) (-18)	.36356 .15184 .37545 .34039	34070 67068 48397 84094 69589	60294 83203 35917 53101 03545	15565 63166 57442 45892 83384
		MAGN	MAGNITUDE OF RE/	Z = 80.	•	ARGUMENT OF	2 = 15	IMAC	IMAGINARY	PART	
	SI(2) CI(Z) EX(1,2) EX(5,2) EX(10,2)	(+ 7) (+ 7) (-35) (-35)	.32435 .52353 17615 16489	10537 83308 89030 88483 53889	63041 61328 60227 46799 79257	89058 20088 01877 12302 69450	(+ 7) (+ 7) (-35) (-35) (-35)	.52353 32435 29133 28012	83308 08966 01137 81437 33819	61328 83409 22908 64506 26509	19961 21105 64752 12496 06426

50004

→ 10 0 0 0 0

30
7
0F 2
ARGUMENT
-
H
7
P
VITUDE
MAGN

Y

•	71921 47169 33612 58924 62340		96980 07337 64041 52169 78647		40543 50161 54961 75947 63580
PART	65800 22326 56940 84870 13963	Tota	N=++0	PART	64162 88702 37987 01497
IMAGINARY	16450 08616 91065 88004 04666	YORNISANI	01491 58458 78076 23641 47537	IMAGINARY	54076 64309 19095 23219 37625
IMA	.44529 .31611 -19274 -47432	7	33873 51181 22004 20339	IMAG	.93023 .11513 32010 32792
	11111	2 = 30	(+ 7) (+ 7) (-16) (-16) (-16)	2 = 30	(+15) (+16) (-32) (-32) (-32)
	20983 86804 43299 54400 27453	ARGUMENT OF	75742 95854 20847 35292 90217	ARGUMENT OF	34453 40543 87012 88053 96878
_	55143 45376 48629 14151 57870	•	36333 69562 59119 05069 49964	•	88702 64162 08972 30063 42686
AL PART	65733 72493 31689 52671 64103	# 0	1 92 92 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 g	64309 54076 03663 94977 27025
REAL	.86460 .44723 .16778 .67264	MAGNITUDE OF Z	.51181 33873 20189 99454	MAGNITUDE OF Z REAL	-11513 -93023 -95581 -90913
	*****	MAGN	(+ 7) (+ 7) (-17) (-18) (-19)	MAGN	(+16) (+15) (-32) (-32)
	SI(Z) CI(Z) EX(1,Z) EX(5,Z) EX(10,Z)		SI(Z) CI(Z) EX(1,Z) EX(5,Z) EX(10,Z)		SI(Z) CI(Z) EX(1, Z) EX(5, Z) EX(10, Z)
			51		

A COLOR DE SENSO DE LA COLOR D

45
Ħ
7
9
ARGUMENT
-
11
7
9
MAGNI TUDE

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Ţ	.						
	1350 1430 1437 1664 1946 1946 1946 1946 1946 1946 1946			12960	7 9228 22757	99466			26635	00450	98670
PART	19506 22629 18607 18607 57240 14939		PART	25 34 5 1 66 32	23	29436		PART	63585	88748 00258	64836
IHAGINARY	48174 96173 45541 99919 42968		IMAGINARY	76166	79949	38913		IMAGINARY		79073	
IMAG	.53562 .53562 28997 76072		IMAG	17136	.89756 .78302	. 66272		IMAG		23987	20570
	****	£		(+11) (+11)	(-14) (-14)	-14)	1 ال		(+23)	(-26)	56)
	2221	n 7		22	٤٤	Ŀ	= 7		22	, .	٤.
	28422 90460 34444 15763 86525	ARGUMENT OF		68560 12960	07254 07708	41059	ARGUMENT OF		77274	25263	24040
	593659 59308 01974 27992 32377			2340	28422 09158	5960			48661 63585	82110	04430
AL PART	21553 20982 71916 36380 15002	• 0 + = 2	AL PART	43424 76188	99898 48783	62564	Z = 80.	AL PART		37641 8	
REAL	.74519 .56680 .99862 .63542	ITUDE OF	REAL	.17438	90994	87121	ITUDE OF	RE.	16287	23453	.23194
	86222	MAGNI		~~	-14)	14)	MAGNI		23)	287	26
-	22111	2		22	٤.	J	*		23		
	SI(Z) CI(Z) EX(1,Z) EX(5,Z) EX(10,Z)			SI (2) CI (2)	EX(1.2) EX(5.2)	X (10•			51(2)	ر ب	EX(10.2)
				52							

``<u>.</u>''

09
"
0F Z
ARGUMENT (
-
u
0F Z
MAGNI TUDE

	•	88368 70376 93769 86784 20471			48409 95021 70431	94363			04288 35041 50194 14790
	PART	89181 09608 17426 43028 49347		PART	71922			PART	38707 48224 02778 26363 49913
	IMAGINARY	74828 28110 88918 44426 97120		IMAGINARY	17629 50990 14643			IMAGINARY	02557 25855 58708 29981 78368
	IMAC	.82167 .39007 -11186		IMAC	-11574 81491 -45559	.36438		IMAG	15404 75978 49249 47182
7		11111	09 = Z		(+14)	01-)	09 = 7		(+28) (+28) (-19) (-19)
		57934 45068 88333 10476 86837	ARGUMENT OF		02784 48409 75628		ARGUMENT OF		35041 04288 96710 23085 73650
	-	28347 40552 57614 91145 72981	40 . ARG		12170 71922 73859		80. ARG	-	48224 38707 48414 52290 31394
. 7	PAR	44092 43139 04279 92637 57743	17 = 2	IL PART	50990 17629 91485		8 = 2	IL PART	25855 02557 18554 97334 28816
TO DOO! TNOWE	REAL	.55637 .69677 -19456 .59342	MAGNITUDE OF	REAL	.11574	26324	MAGNITUDE OF	REAL	.75974 15404 .18945 .20415
ZOTE		11111	MAGN		(+14) (-10)	(-10)	MAGN		(+28) (+28) (-19) (-19) (-19)
		SI(2) CI(2) EX(1,2) EX(5,2) EX(10,2)			SI(2) CI(2) EX(1,2)				SI(2) CI(2) Ex(1,2) Ex(5,2) Ex(10,2)
					= 3				

MAGNITUDE OF Z = 1, ARGUMENT OF Z = 75

	65838 82827 28630 77768 25334		55217 95899 54553 15754 63999		92634 48663 74101 55629 76213
PART	56684 92934 32539 24796 20066	PART	99039 65683 72658 55219 03363	PART	62031 18520 98469 41604 08863
IMAGINARY	33346 41660 40483 77958 05184	IMAGINARY	45952 80894 95805 06966 44780	IMAGINARY	13087 39934 62813 32198 09022
IMAC	.10056 .11747 49812 15925	M	61026 62919 64819 65368	IMAG	45941 22952 .39676 19527
	*****	2 = 75	(+15) (+15) (-6) (-6)	2 = 75	(+30) (+32) (-12) (-12) (-12)
	46979 96141 16638 32349 23877	ARGUMENT OF	38819 55217 35524 45642 28353	ARGUMENT OF	48663 92534 78993 50572 02556
E	92505 41746 99690 33726 71565	• .	65682 99039 39153 04173 25119	•	18520 62031 94881 44391 82197
REAL PART	02274 87750 80723 80457 29620	= 2 = 2	80 45 13 77 01	II J	39934 13087 95439 29897 24444
RE	.29974 .79892 -14479 .57203	MAGNITUDE OF Z	47283 61026 48079 40792	MAGNITUDE OF Z REAL	.22952 45941 12673 12490
	11111	MAGN	(+15) (+15) (-6) (-6)	MAGN	(+32) (+30) (-10) (-10)
	SI(Z) CI(Z) EX(1•Z) EX(5•Z) EX(10•Z)		SI(Z) CI(Z) EX(1•Z) EX(5•Z) EX(10•Z)		SI(Z) CI(Z) EX(1.5) EX(5.2) EX(10.2)
			54		

06 :
= 7
0F Z
ARGUMENT
-
11
7
OF
ITUDE
MAGN

	85145 66192 60428 32728 26430			41906222880	52	02018			99848 42759 61199 61117 65838									
PART	37572 79489 27713 63972 88739		PART	80562 76384		16890		PART	45239 42474 59069 58175 93317									
IMAGINARY	50875 96326 32564 87702 56691		IMAGINARY		7925 2626			IMAGINARY	000002 48623 60117 64614 84048									
IMA	.10572 .15707 62471 22384 99212		IMAC	.30198	.16188	.11315		IMAC	.35073 69932 .15345 .21448 .28784									
	22662	06		(+16) (-11)		-	9		(+33) (+33) (-8) (-8)									
		÷ 7		2.5	77	Ļ	= 7		ここししし									
	09678 24089 13466 81070 83944	ARGUMENT OF				66961 36218		ARGUMENT OF		22249 99748 58172 74446								
_	79092 80208 00968 79930 62179	40 . ARGI				•-						•-	•-	•		62087 84824		80. ARG
IL PART	24887 69409 39229 19256 65782)7 = 7	AL PART	96326 59131	00789 92419	58872)8 = 2	IL PART	64331 000002 50115 19470 09612									
REAL	.29666 .83786 33740 .63443	MAGNITUDE OF	REA	.30198	19020	21316	MAGNITUDE OF	REAL	.69932 .35073 .12402 .12280									
	(-10)	MAGN		(+ 1) (+16)	22	•	MAGN		(+1)									
	SI(Z) CI(Z) EX(1•Z) EX(5•Z) EX(10•Z)			Z) I Z) I	EX(1,2) EX(5,2)	X (10.			SI(2) CI(2) EX(1,2) EX(5,2) EX(10,2)									
				55														

APPENDIX D

DERIVATIONS OF THE COMPUTATIONAL FORMULAS

APPENDIX D

DERIVATIONS OF THE COMPUTATIONAL FORMULAS

The series expansions in Eqs. (5) and (6) are derived from termby-term integration of the series expansions of the integrands in the integrals in Eqs. (1) and (2), respectively.

From Eq. (1),

$$Si(z) = \int_{0}^{z} \frac{1}{t} \sum_{k=0}^{\infty} \frac{(-1)^{k} t^{2k+1}}{(2k+1)!} dt$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k+1)!} \int_{0}^{z} t^{2k} dt$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2k+1}}{(2k+1)(2k+1)!}.$$

Similarly, from Eq. (2),

Ci(z) -
$$\gamma$$
 - $\ln z = \int_{0}^{2} \frac{1}{t} \left(\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{2k}}{(2k)!} - 1 \right) dt$

$$= \int_{0}^{2} \frac{1}{t} \sum_{k=1}^{\infty} \frac{(-1)^{k} t^{2k}}{(2k)!} dt$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2k)!} \int_{0}^{2} t^{2k-1} dt$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2k}}{(2k)(2k)!} .$$

To derive the series expansion in Eq. (7), one proceeds as follows: from Eq. (4),

$$E_1(z) = \int_1^\infty \frac{e^{-z\tau}}{\tau} d\tau$$

$$= \int_{2}^{\infty} \frac{e^{-t}}{t} dt.$$

It is known³ that Euler's constant γ is given by

$$\gamma = \int_0^1 \frac{1-e^{-t}}{t} dt - \int_1^\infty \frac{e^{-t}}{t} dt .$$

Thus

$$\gamma = \int_{0}^{1} \frac{1-e^{-t}}{t} dt - \int_{1}^{z} \frac{e^{-t}}{t} dt - \int_{z}^{\infty} \frac{e^{-t}}{t} dt$$

$$= \int_{0}^{1} \frac{1-e^{-t}}{t} dt - \int_{1}^{z} \frac{e^{-t}}{t} dt - E_{1}(z) ,$$

provided z is not on the negative real axis or at the origin. Then

$$E_1(z) = -\gamma + \int_0^1 \frac{1-e^{-t}}{t} dt - \int_1^z \frac{e^{-t}}{t} dt$$

³E.J. Whittaker and G.N. Watson, <u>A Course of Modern Analysis</u>, Cambridge University Press, London, 1927, p. 246.

$$\begin{split} E_1(z) &= -\gamma + \int_0^1 \frac{1}{t} \left\{ 1 - \sum_{k=0}^\infty \frac{(-1)^k t^k}{k!} \right\} dt - \int_1^z \frac{1}{t} \sum_{k=0}^\infty \frac{(-1)^k t^k}{k!} dt \\ &= -\gamma - \sum_{k=1}^\infty \frac{(-1)^k}{k!} \int_0^1 t^{k-1} dt - \int_1^z \frac{1}{t} dt - \sum_{k=1}^\infty \frac{(-1)^k}{k!} \int_1^z t^{k-1} dt \\ &= -\gamma - \ln z - \sum_{k=1}^\infty \frac{(-1)^k}{k!} \int_0^z t^{k-1} dt \ , \end{split}$$

or,

$$E_1(z) = -\gamma - \ln z - \sum_{k=1}^{\infty} \frac{(-1)^k z^k}{(k)^k !}$$

Starting with the integral in Eq. (4), an integration by parts yields the recurrence relation of Eq. (17):

$$\int_{1}^{\infty} \frac{e^{-zt}}{t^{n}} dt = \frac{e^{-zt}t^{1-n}}{1-n} \begin{cases} t^{=\infty} \\ t^{=1} \end{cases} + \frac{z}{1-n} \int_{1}^{\infty} \frac{e^{-zt}}{t^{n-1}} dt$$

$$= \frac{1}{n-1} e^{-z} - \frac{z}{n-1} \int_{1}^{\infty} \frac{e^{-zt}}{t^{n-1}} dt ,$$

provided n > 1. That is,

$$E_n(z) = \frac{1}{n-1} \left[e^{-z} - z E_{n-1}(z) \right].$$

From the series expansion for $E_1(z)$ and the recurrence relation in Eq. (17), one can derive the series expansion for $E_n(z)$. To this end, apply the recurrence relation (n-1) times:

60

$$\begin{split} E_{n}(z) &= \frac{1}{n-1} \left[e^{-z} - z \ E_{n-1}(z) \right] \\ &= \frac{e^{-z}}{n-1} - \frac{z}{n-1} \left[\frac{e^{-z}}{n-2} - \frac{z}{n-2} \ E_{n-2}(z) \right] \\ &= \frac{e^{-z}}{n-1} - \frac{ze^{-z}}{(n-1)(n-2)} + \frac{z^{2}}{(n-1)(n-2)} \left[\frac{e^{-z}}{n-3} - \frac{z}{n-3} \ E_{n-3}(z) \right] \\ &= \frac{(-1)^{0}(z)^{0}e^{-z}}{(n-1)} + \frac{(-1)^{1}z^{1}e^{-z}}{(n-1)(n-2)} + \frac{(-1)^{2}z^{2}e^{-z}}{(n-1)(n-2)(n-3)} + \dots \\ &+ \frac{(-1)^{n-2}z^{n-2}e^{-z}}{(n-1)!} + \frac{(-1)^{n-1}z^{n-1}}{(n-1)!} \ E_{1}(z) \end{split}$$

Expanding each of the e^{-z} terms in a power series, and using the series expansion for $E_1(z)$,

$$E_{n}(z) = \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{k}}{(n-1)k!} + \sum_{k=0}^{\infty} \frac{(-1)^{k+1} z^{k+1}}{(n-1)(n-2)k!} + \sum_{k=0}^{\infty} \frac{(-1)^{k+2} z^{k+2}}{(n-1)(n-2)(n-3)k!} + \dots + \sum_{k=0}^{\infty} \frac{(-1)^{k+n-2} z^{k+n-2}}{(n-1)! k!} + \dots + \frac{(-1)^{n-1} z^{n-1}}{(n-1)!} \left(-\gamma - \ln z - \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{k}}{k!} \right).$$

Redefining the indices of summation, and collecting all terms with z^{n-1} ,

$$E_{n}(z) = \sum_{\substack{k=0\\k\neq n-1}}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)k!} + \sum_{\substack{k=1\\k\neq n-1}}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)(n-2)(k-1)!}$$

(Equation continued on next page)

$$+ \sum_{\substack{k=2\\k\neq n-1}}^{\infty} \frac{ \frac{(-1)^k z^k}{(n-1)(n-2)(n-3)(k-2)!}}{(n-1)(n-2)(n-3)(k-2)!} + \ldots + \sum_{\substack{k=n-2\\k\neq n-1}}^{\infty} \frac{(-1)^k z^k}{(n-1)!(k-n+2)!}$$

+
$$\frac{(-1)^{n-1}z^{n-1}}{(n-1)!}$$
 $\left(-\gamma - \ln z + \sum_{k=1}^{n-1} \frac{1}{k}\right)$

$$-\sum_{k=n}^{\infty} \frac{(-1)^k z^k}{(n-1)!(k-n+1)(k-n+1)!}$$

From this last equation, one sees that the only contributions to powers of z less than (n-1) come from the first (n-1) series. In particular, for any integer ℓ such that $0 \le \ell \le (n-2)$, there are $(\ell+1)$ terms with z^{ℓ} given by

$$(-1)^{\ell} z^{\ell} \left\{ \frac{1}{(n-1)\ell!} + \frac{1}{(n-1)(n-2)(\ell-1)!} + \ldots + \frac{1}{(n-1)(n-2)\ldots(n-\ell-1)(0)!} \right\}$$

Repeated factoring of the expression above in braces yields

$$\frac{(-1)^{\ell} z^{\ell}}{(\ell-n+1)\ell!} \left\{ \frac{\ell-n+1}{n-1} + \frac{\ell(\ell-n+1)}{(n-1)(n-2)} + \ldots + \frac{\ell!(\ell-n+1)}{(n-1)(n-2)\ldots(n-\ell)(n-\ell-1)} \right\}$$

$$= \frac{(-1)^{\ell} z^{\ell}}{(\ell-n+1)\ell!} \left\{ \frac{\ell-n+1}{n-1} \left(1 + \frac{\ell}{n-2} \left(1 + \frac{\ell-1}{n-3} \right) \right) + \ldots \right\}$$

$$+ \frac{3}{n-\ell+1} \left(1 + \frac{2}{n-\ell} \left(1 + \frac{1}{n-\ell-1} \right) \right) + \ldots \right) \right\}$$

Since

$$1 + \frac{2}{n-\ell} \left(1 + \frac{1}{n-\ell-1}\right) = 1 + \frac{2}{n-\ell} \left(\frac{n-\ell}{n-\ell-1}\right)$$

(Equation continued on next page)

$$= 1 + \frac{2}{n-\ell-1}$$

$$= \frac{n-\ell+1}{n-\ell-1},$$

one sees that the factored expression compresses to

$$\frac{(-1)^{\ell}z^{\ell}}{(\ell-n+1)\ell!} \left\{ \frac{\ell-n+1}{n-1} \left(1 + \frac{\ell}{n-2} \left(\frac{n-2}{n-\ell-1} \right) \right) \right\}$$

$$= \frac{(-1)^{\ell}z^{\ell}}{(\ell-n+1)\ell!} \left\{ \frac{\ell-n+1}{n-1} \left(1 + \frac{\ell}{n-\ell-1} \right) \right\}$$

$$= \frac{(-1)^{\ell}z^{\ell}}{(\ell-n+1)\ell!} \left\{ \frac{\ell-n+1}{n-1} \left(\frac{n-1}{n-\ell-1} \right) \right\}$$

$$= \frac{(-1)^{\ell}z^{\ell}}{(\ell-n+1)\ell!} \cdot \frac{\ell-n+1}{n-1} \cdot \left(\frac{n-1}{n-\ell-1} \right) \right\}$$

Using this result in the previous equation,

$$E_{n}(z) = \frac{(-1)^{n-1}z^{n-1}}{(n-1)!} \left(-\gamma - \ln z + \sum_{k=1}^{n-1} \frac{1}{k} \right) - \sum_{k=0}^{n-2} \frac{(-1)^{k}z^{k}}{(k-n+1)k!} + \sum_{k=n}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)(n-2)(k-1)!} + \dots + \sum_{k=n}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)!(k-n+2)!} - \sum_{k=n}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)!(k-n+1)(k-n+1)!} + \dots + \sum_{k=n}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)!(k-n+2)!} - \sum_{k=n}^{\infty} \frac{(-1)^{k}z^{k}}{(n-1)!(k-n+1)(k-n+1)!}$$

In the series in this equation, the terms involving z^{ℓ} , where $\ell \geq n$, may be treated in a manner analogous to the terms for which $\ell \leq (n-2)$. Collecting these last n series, one has

$$\sum_{k=n}^{\infty} (-1)^{k} z^{k} \left\{ \frac{1}{(n-1)k!} + \frac{1}{(n-1)(n-2)(k-1)!} + \cdots \right.$$

$$+ \frac{1}{(n-1)!(k-n+2)!} - \frac{1}{(n-1)!(k-n+1)(k-n+1)!} \right\}$$

$$= \sum_{k=n}^{\infty} \frac{(-1)^{k} z^{k}}{(k-n+1)k!} \left\{ \frac{k-n+1}{n-1} \left(1 + \frac{k}{n-2} \left(1 + \frac{k-1}{n-3} \left(1 + \cdots \right) \right) + \frac{k-n+4}{2} \left(1 + \frac{k-n+3}{n-1} \left(1 + \frac{k}{n-2} \left(1 + \frac{k-1}{n-3} \left(1 + \cdots \right) \right) + \frac{k-n+4}{2} \left(1 + \frac{k-n+3}{n-1} \left(1 + \frac{k}{n-2} \left(1 + \frac{k-1}{n-3} \left(1 + \cdots \right) \right) + \frac{k-n+4}{2} \left(1 - \frac{k-n+3}{k-n+1} \right) \right) \cdots \right) \right\}$$

$$= \sum_{k=n}^{\infty} \frac{(-1)^k z^k}{(k-n+1)k!} \left\{ \frac{k-n+1}{n-1} \left(\frac{1-n}{k-n+1} \right) \right\}$$

$$=-\sum_{k=n}^{\infty} \frac{(-1)^k z^k}{(k-n+1)k!}$$

Thus finally, the series representation for

 $E_n(z)$ is given by

$$E_{n}(z) = \frac{(-1)^{n-1}z^{n-1}}{(n-1)!} \left(-\gamma - \ln z + \sum_{k=1}^{n-1} \frac{1}{k}\right) - \sum_{k=0}^{\infty} \frac{(-1)^{k}z^{k}}{(k-n+1)k!}$$

which is Eq. (7).

The continued fraction of Eq. (8) is derived from the Gauss continued fraction by a method found in Wall⁴. The Gauss continued fraction is given by

$$\frac{F(a,b+1,c+1;z)}{F(a,b,c;z)} = \frac{1}{1 - \frac{\frac{a(c-b)}{c(c+1)}z}{(c+1)(c-a+1)}z}$$

$$1 - \frac{\frac{(b+1)(c-a+1)}{(c+1)(c+2)}z}{1 - \frac{(a+1)(c-b+1)}{(c+2)(c+3)}z}$$

where F(a,b,c;z) is the hypergeometric function,

$$F(a,b,c;z) = \sum_{k=0}^{\infty} \frac{(a)_k(b)_k}{(c)_k k!} z^k$$
,

and

$$(a)_k = \frac{\Gamma(a+k)}{\Gamma(a)}$$

the quotient of two gamma functions.

If, in the series for the hypergeometric function, one replaces z by - cz and takes the limit as $c + \infty$, the divergent series

⁴H. S. Wall, <u>Continued Fractions</u>, D. Van Nostrand Co., Inc., New York, 1948, pages 336-352.

 $\Omega(a,b;-z) = 1 - abz + a(a+1)(b)(b+1)\frac{z^2}{2!}$ $- a(a+1)(a+2)(b)(b+1)(b+2)\frac{z^3}{3!} + \dots$

is obtained. Using the same transformation and limit in the continued fraction of Gauss,

Using the divergent series for Ω ,

$$\Omega(a,b;-z) = 1 - abz + a(a+1)(b)(b+1)\frac{z^{2}}{2!} - \dots$$

$$= \frac{\Gamma(a)}{\Gamma(a)} + \frac{\Gamma(a+1)}{\Gamma(a)} \begin{pmatrix} -b \\ 1 \end{pmatrix} z + \frac{\Gamma(a+2)}{\Gamma(a)} \begin{pmatrix} -b \\ 2 \end{pmatrix} z^{2} + \dots$$

$$= \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-u} u^{a-1} du + \frac{1}{\Gamma(a)} \begin{pmatrix} -b \\ 1 \end{pmatrix} z \int_{0}^{\infty} e^{-u} u^{a} du$$

$$+ \frac{1}{\Gamma(a)} \begin{pmatrix} -b \\ 2 \end{pmatrix} z^{2} \int_{0}^{\infty} e^{-u} u^{a+1} du + \dots$$

$$= \frac{1}{\Gamma(a)} \int_{0}^{\infty} \left(1 + \begin{pmatrix} -b \\ 1 \end{pmatrix} zu + \begin{pmatrix} -b \\ 2 \end{pmatrix} \begin{pmatrix} zu \end{pmatrix}^{2} + \dots \right) e^{-u} u^{a-1} du$$

$$= \frac{1}{\Gamma(a)} \int_0^\infty (1+zu)^{-b} e^{-u}u^{a-1}du,$$

where use has been made of the binomial coefficient

$$\begin{pmatrix} j \\ k \end{pmatrix} = \frac{j!}{(j-k)!(k!)} = (-1)^k \begin{pmatrix} k-j-1 \\ k \end{pmatrix}$$

and of the integral representation

$$\Gamma(p) = \int_{0}^{\infty} e^{-u} u^{p-1} du.$$

It follows that

$$\frac{\Omega(a,b+1;-z)}{\Omega(a,b;-z)} = \frac{\int_{0}^{\infty} \frac{e^{-u}u^{a-1}}{(1+zu)^{b+1}} du}{\int_{0}^{\infty} \frac{e^{-u}u^{a-1}}{(1+zu)^{b}} du}.$$

Choosing $b \approx 0$ and using the continued fraction expansion for the quotient on the left,

$$\frac{1}{\Gamma(a)} \int_{0}^{\infty} \frac{e^{-u}u^{a-1}}{(1+zu)} du = \frac{1}{1 + \frac{az}{1 + \frac{1z}{1 + \frac{2z}{1 + 2z}}}}$$

Since $\Omega(a,b;-z) = \Omega(b,a;-z)$,

$$\frac{1}{\Gamma(a)} \int_{0}^{\infty} (1+zu)^{-b} e^{-u} u^{a-1} du$$

$$= \frac{1}{\Gamma(b)} \int_{0}^{\infty} (1+zu)^{-a} e^{-u} u^{b-1} du.$$

Setting b=1,

$$\int_{0}^{\infty} \frac{e^{-u}}{(1+zu)^{a}} du = \frac{1}{\Gamma(a)} \int_{0}^{\infty} \frac{e^{-u}u^{a-1}}{1+zu} du$$

$$= 1 + \frac{1}{\frac{az}{1 + \frac{1z}{1 + \frac{(a+1)z}{1 + ...}}}}$$

It can be shown that the integrals in this last equation converge for all values of z not on the negative real axis. Replace z by $\frac{1}{7}$ in the first of these integrals and let $t = 1 + \frac{u}{2}$.

$$\int_{0}^{\infty} \frac{e^{-u}}{(1 + \frac{1}{z}u)^{a}} du = ze^{z} \int_{1}^{\infty} \frac{e^{-zt}}{t^{a}} dt ,$$

or, on letting a = n,

on letting a = n,
$$E_{n}(z) = \frac{e^{-z}}{z} = \frac{1}{1 + \frac{n/z}{1 + \frac{(n+1)/z}{1 + .}}}$$

This continued fraction may be simplified to the form

E_n(z) = e⁻²
$$\frac{1}{z + \frac{1}{n}}$$

$$\frac{1}{1 + \frac{1}{z + \frac{n+1}{1 + \frac{2}{z + \dots}}}}$$

for $|\arg z| < \pi$, which is Eq. (8).

To derive Eqs. (9) and (10), note that for $\left|\text{arg }z\right|<\frac{\pi}{2}\text{ ,}$

$$E_{1}(iz) = \int_{iz}^{\infty} \frac{e^{-t}}{t} dt$$

$$= \int_{z}^{\infty} \frac{e^{-iu}}{iu} d(iu)$$

$$= \int_{z}^{\infty} \frac{1}{u} (\cos u - i \sin u) du$$

$$= \int_{z}^{\infty} \frac{\cos u}{u} du - i \int_{z}^{\infty} \frac{\sin u}{u} du .$$

Now

$$\int_{z}^{\infty} \frac{\sin u}{u} du = \int_{0}^{\infty} \frac{\sin u}{u} du - \int_{0}^{z} \frac{\sin u}{u} du$$

$$= \frac{\pi}{2} - \operatorname{Si}(z) .$$

Moreover.

$$Ci(z) = \int_{0}^{z} \frac{\cos t - 1}{t} dt + \gamma + \ln z$$

$$= \int_{0}^{s} \frac{\cos t - 1}{t} dt + \int_{s}^{z} \frac{\cos t - 1}{t} dt + \gamma + \ln z$$

$$= \int_{0}^{s} \left\{ \frac{\cos t}{t} - \frac{1}{t} + \frac{1}{t(1+t)} - \frac{1}{t(1+t)} \right\} dt + \int_{s}^{z} \frac{\cos t}{t} dt$$

$$- \int_{s}^{z} \frac{dt}{t} + \gamma + \ln z = \left[- \int_{0}^{s} \left(\frac{1}{1+t} - \cos t \right) \frac{dt}{t} + \gamma \right]$$

$$+ \left[\int_{0}^{s} \left\{ -\frac{1}{t} + \frac{1}{t(1+t)} \right\} dt - \int_{s}^{z} \frac{dt}{t} + \ln z \right] - \int_{z}^{s} \frac{\cos t}{t} dt$$

The first term in square brackets above tends to 0

as $s \rightarrow \infty$, since⁵

$$\gamma = \int_0^\infty \left\{ \frac{1}{1+t} - \cos t \right\} \frac{dt}{t} .$$

The second term in square brackets is

$$\int_{0}^{S} \left\{ -\frac{1}{t} + \frac{1}{t(1+t)} \right\} dt + \int_{z}^{S} \frac{dt}{t} + \ln z = -\int_{0}^{S} \frac{dt}{1+t} + \ln s - \ln z + \ln z$$

⁵W. Magnus, F. Oberhettinger and R.P. Soni, <u>Formulas and Theorems</u> for the Special Functions of Mathematical Physics, Springer Verlag, New York, 1966, page 35.

=-
$$\ln(1+s) + \ln 1 + \ln s = \ln \frac{s}{1+s}$$

and

$$\lim_{S \to \infty} \ln \frac{s}{1+s} = \lim_{S \to \infty} \frac{1}{1+\frac{1}{s}} = \ln 1 = 0.$$

Therefore,

$$Ci(z) = -\int_{2}^{\infty} \frac{\cos t}{t} dt$$

so that

$$E_1(iz) = -Ci(z) + i Si(z) - i \frac{\pi}{2}$$
.

Using Eqs. (11) and (12), it follows that

$$E_{1}(-iz) = -Ci(-z) + i Si(-z) - i \frac{\pi}{2}$$

$$= -Ci(z) + i\pi - i Si(z) - i \frac{\pi}{2}$$

$$= -Ci(z) - i Si(z) + i \frac{\pi}{2}$$

Hence,

$$Si(z) = \frac{1}{2i} \left[E_1(iz) - E_1(-iz) \right] + \frac{\pi}{2}$$

and

$$Ci(z) = -\frac{1}{2} \left[E_1(iz) + E_1(-iz) \right],$$

proving Eqs. (9) and (10).

It remains to derive the asymptotic expansion for $E_n(z)$. To this end, rearrange the recurrence relation in Eq. (17) in the form

$$E_n(z) = \frac{1}{z} \left(e^{-z} - nE_{n+1}(z) \right)$$
,

and use it repeatedly:

$$E_{n}(z) = \frac{1}{z} \left(e^{-z} - n \left(\frac{1}{z} \left(e^{-z} - (n+1) E_{n+2}(z) \right) \right) \right)$$

$$= \frac{e^{-z}}{z} \left(1 - \frac{n}{z} + \frac{n(n+1)}{ze^{-z}} E_{n+2}(z) \right)$$

$$= \frac{e^{-z}}{z} \left(1 - \frac{n}{z} + \frac{n(n+1)}{ze^{-z}} \left[\frac{1}{z} \left(e^{-z} - (n+2) E_{n+3}(z) \right) \right] \right)$$

$$= \frac{e^{-z}}{z} \left(1 - \frac{n}{z} + \frac{n(n+1)}{z^{2}} - \frac{n(n+1)(n+2)}{z^{2}e^{-z}} E_{n+3}(z) \right)$$

$$\vdots$$

$$= \frac{e^{-z}}{z} \left(1 - \frac{n}{z} + \frac{n(n+1)}{z^{2}} - \frac{n(n+1)(n+2)}{z^{3}} + \dots \right)$$

$$+ \frac{n(n+1)(\dots)(n+N)}{z^{N} e^{-z}} E_{n+N+1}(z)$$

Therefore,

$$E_n(z) \sim \frac{e^{-z}}{z} \left(1 - \frac{n}{z} + \frac{n(n+1)}{z^2} - \frac{n(n+1)(n+2)}{z^3} + \ldots\right).$$

This derivation is equivalent to repeated integration by parts starting with the integral in Eq. (4). (see, e.g., Olver⁶, page 67).

⁶F. W. J. Olver, <u>Asymptotics and Special Functions</u>, Academic Press, New York, 1974.

All of the computational formulas used in this report can be found in reference 7. It should be noted that this reference contains several other computational formulas which would, at first glance, seem to provide a more simple means of evaluating Si and Ci for large |z| than the method used in this report. In particular, the sine and cosine integrals may be written in terms of the auxiliary functions

$$f(z) = \int_0^\infty \frac{e^{-zt}}{t^2+1} dt,$$

and

$$g(z) = \int_0^\infty \frac{te^{-zt}}{t^2+1} dt.$$

The functions f and g have asymptotic expansions which are easily derived, but which fail to represent Si and Ci correctly on the imaginary axis. This problem will be examined in more detail in a subsequent report on verification of the present subroutine.

⁷M. Abramowitz and I. Stegun, editors, <u>Handbook of Mathematical</u> <u>Functions</u>, National Bureau of Standards, U.S. Dept. of Commerce, 1965.

DISTRIBUTION LIST

No. of Copies	Organization	No. of	
		30,723	
12	Commander Defense Technical Info ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Communications Research and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	_	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801 Director	2	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI Arthur Hausner, 0025 2800 Powder Mill Road Adelphi, MD 20783
	US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	3	Commander US Army Missile Command ATTN: DRSMI-R DRSMI-YDL DRSMI-HRA, Helen Boyd
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299		Redstone Arsenal, AL 35809 Commander US Army Mobility Equipment Research & Development Command ATTN: DRDME-WC
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 63166	1	DRSNE-RZT Fort Belvoir, VA 22060 Commander US Army Tank Automotive Research and Development Command ATTN: DRDTA-UL
	Director US Army Air Mobility Researc and Development Laboratory Ames Research Center Moffett Field, CA 94035	ch 1	Warren, MI 48090 Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002

75

DISTRIBUTION LIST

No. of Copies		No. of	
	Stanford University Stanford Linear Accelerator Center ATTN: Eric Grosse Numerical Analysis Consultant	1	University of Kentucky Department of Computer Science ATTN: Professor Henry C. Thacher, Jr. 915 Patterson Office Tower Lexington, KY 40506
	SLAC, P.O. Box 4349 Stanford, CA 94305	1	University of Wisconsin-Madison Mathematics Research Center ATTN: Prof. J. Barkley Rosser
1	Towson State University Department of Mathematics ATTN: Miss Margaret Zipp		610 Walnut Street Madison, Wisconsin 53706
	Towson, MD 21204	Abe	erdeen Proving Ground
	Virginia Commonwealth. Univers Department of Math. Sciences ATTN: Mr. Vitalius Benokrait 901 W. Franklin	Ţ.	Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen
	Richmond, VA 23284		Cdr, USATECOM ATTN: DRSTE-TO-F
	University of Delaware Department of Mathematics Department of Mechanical Eng. Newark, DE 19711		Dir, Wpns Sys Concepts Team Bldg E3516, EA ATTN: DRDAR-ACW

University of Illinois Department of Mathematics ATTN: Dr. Evelyn Frank Urbana, IL 61801

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number
2. Loes this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)
4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating cost avoided, efficiencies achieved, etc.? If so, please elaborate.
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.
Name:
Telephone Number:
Organization Address: