Assignment 2

12011323 Mar. 8, 2022

Ch.2 - Ex.1

(a) n^2

Double the input size $(2n)^2 = 4n^2$, it becomes as 4 times slow as before.

Increase the input size by one $(n + 1)^2 = n^2 + 2n + 1$, it uses 2n + 1 more time, or increases the time in a rate of $\frac{2n+1}{n^2}$.

(b) n^3

Double the input size $(2n)^3 = 8n^3$, it becomes as 8 times slow as before.

Increase the input size by one $(n+1)^3 = n^3 + 3n^2 + 3n + 1$, it uses $3n^2 + 3n + 1$ more time, or increases the time in a rate of $\frac{3n^2 + 3n + 1}{n^3}$.

(c) $100n^2$

Double the input size $100(2n)^2 = 400n^2$, it becomes as 4 times slow as before.

Increase the input size by one $100(n+1)^2 = 100n^2 + 200n + 100$, it uses 200n + 100 more time, or increases the time in a rate of $\frac{2n+1}{n^2}$.

(**d**) $n \log n$

Double the input size $(2n)\log(2n) = 2(n\log n) + (2\log 2)n$, it doubles the time and add $(2\log 2)n$ more time, a.k.a. it increases the time in a rate of $1 + \frac{2\log 2}{\log n}$.

Increase the input size by one $(n + 1) \log(n + 1)$, it uses $\log(n + 1) + n \log \frac{n+1}{n}$ more time, or increase the time in a rate of $(\log(n + 1) + n \log \frac{n+1}{n})/(n \log n)$.

(e) 2ⁿ

Double the input size $2^{2n} = (2^n)^2$, now its running time can be considered as the square of the previous one.

Increase the input size by one $2^{n+1} = 2 \cdot 2^n$, it becomes as 2 times slow as before.

Ch.2 - Ex.5

(a) False Assume that f(n) = 2, g(n) = 1, here we can find k = 0, c = 2 s.t. $\forall x > k$, $f(x) \le c \cdot g(x)$, a.k.a. f(n) = O(g(n)). However, $\log_2 f(n) = 1$, $\log_2 g(n) = 0$ for all n, it's trivial that we cannot find a fair $\{k, c\}$ s.t. $\forall x > k$, $f(x) \le c \cdot g(x)$, which means $\log_2 f(n)$ is not $O(\log_2 g(n))$.

- **(b) False** Assume that f(n) = 2n, g(n) = n, then $2^{f(n)} = 4^n$ while $2^{g(n)} = 2n$, we cannot find a pair of $\{k, c\}$ s.t. $\forall x > k$, $f(x) \le c \cdot g(x)$, since for a certain n, should have $c \ge 2^n$.
- (c) True We already have k_1, c_1 s.t. $\forall x > k_1, f(x) \le c_1 \cdot g(x)$, then for the same pair of k, c, we still can say $\forall x > k_1, f(x)^2 \le (c_1 \cdot g(x))^2$. A.k.a. we find a pair $k_2 = k_1, c_2 = c_1^2$ s.t. $\forall x > k_2, f(x)^2 \le c_2 \cdot g(x)^2$, which is the definition of big-O notation, say $f(n)^2 = O(g(n)^2)$.