Standard Code Library

Your TeamName

Your School

August 6, 2025

Contents

一切的开始	2
宏定义	2
对拍	2
快速编译运行(配合无插件 VSC)	3
WL Ltm /-t- Ltm	
数据结构	3
ST 表	_
线段树	4
朴素线段树	
例仆奴组....................................	/
数学	9
快速乘	9
快速幂	9
高精度	9
矩阵运算	11
质数筛	12
欧拉函数	12
朴素	12
筛法求欧拉函数	12
素性测试	13
试除法	
Miller–Rabin 素性测试	13
质因数分解	
朴素质因数分解	
Pollard-Rho	
原根	
欧几里得	
扩展欧几里得	
中国剩余定理	
逆元	
组合数	
组合数预处理(递推法)	
预处理逆元法	
Lucas 定理	
求具体值	
FFT & NTT & FWT	
FFT	
NTT	
FWT	
高斯消元法	
同州 仴儿仏	21
图论	22
计算几何	22
字符串	22
1 13 th.	~~
杂项	22

一切的开始

宏定义

● 需要 C++11

```
#include <bits/stdc++.h>
   using namespace std;
   using LL = long long;
   #define FOR(i, x, y) for (decay<decltype(y)>::type i = (x), _##i = (y); i < _##i; ++i)</pre>
    \textit{\#define FORD(i, x, y) for (decay < decltype(x) > :: type i = (x), \_\textit{\#ii} = (y); i > \_\textit{\#ii}; --i) } 
   #ifdef DEBUG
   #ifndef ONLINE_JUDGE
   #define zerol
   #endif
   #endif
   #ifdef zerol
11
   #define dbg(x...) do { cout << "\033[32;1m" << \#x << " -> "; err(x); } while (0)
   void err() { cout << "\033[39;0m" << endl; }</pre>
13
   template<template<typename...> class T, typename t, typename... A>
   void err(T<t> a, A... x) { for (auto v: a) cout << v << ' '; err(x...); }</pre>
   template<typename T, typename... A>
16
   void err(T a, A... x) { cout << a << ' '; err(x...); }</pre>
   #else
18
   #define dbg(...)
   #define err(...)
21
       • 调试时添加编译选项 -DDEBUG, 提交时注释
       ● 注意检查判题系统编译选项, 修改 #ifndef ONLINE_JUDGE
       • FOR ++ 循环 FOR (循环变量名称,循环变量起始值,循环变量结束值(不含))
       ● FORD -循环
       ● err() 调试时输出(支持单层迭代)
```

对拍

:loop

python gen.py > in

if !errorlevel! neq 0 exit /b

• Linux

```
#!/usr/bin/env bash
   g++ -o r main.cpp -02 -std=c++11
   g++ -o std std.cpp -02 -std=c++11
    while true; do
       python gen.py > in
        ./std < in > stdout
        ./r < in > out
        if test $? -ne 0; then
            exit 0
10
        if diff stdout out; then
           printf "AC\n"
12
13
           printf "GG\n"
14
            exit 0
15
        fi
   done
17

    Windows

    @echo off
   setlocal enabledelayedexpansion
   g++ -o r main.cpp -O2 -std=c++11
   g^{++} -o std std.cpp -02 -std=c^{++}11
```

• dbg() 变色输出变量名和变量值(支持单层迭代)

● 黄色 33, 蓝色 34, 橙色 31

```
11
   std.exe < in > stdout
   if !errorlevel! neq 0 exit /b
12
13
   r.exe < in > out
   if !errorlevel! neq 0 exit /b
15
   fc /b stdout out > nul
17
   if !errorlevel! equ 0 (
18
19
       echo AC
   ) else (
20
21
       echo GG
22
       exit /b
23
24
   goto loop
25
   快速编译运行(配合无插件 VSC)
       • Linux
   #!/bin/bash
   g++ $1.cpp -o $1 -O2 -std=c++14 -Wall -Dzerol -g
   if $? -eq 0; then
       ./$1

    Windows

   @echo off
    :: 参数为文件名(不含.cpp后缀)
    g++ %1.cpp -o %1 -02 -std=c++14 -Wall -Dzerol -g
   if %errorlevel% equ 0 (
        %1.exe
    数据结构
   ST 表
       一维
   #define M 10
    struct RMQ {
       int f[22][M];
       inline int highbit(int x) { return 31 - __builtin_clz(x); }
       void init(int* v, int n) {
           FOR (i, 0, n) f[0][i] = v[i];
           FOR (x, 1, highbit(n) + 1)
           FOR (i, 0, n - (1 << x) + 1)
           f[x][i] = min(f[x - 1][i], f[x - 1][i + (1 << (x - 1))]);
11
       int get_min(int l, int r) {
           assert(l <= r);</pre>
13
           int t = highbit(r - l + 1);
14
15
           return min(f[t][l], f[t][r - (1 << t) + 1]);</pre>
       }
16
   };
       二维
   #define maxn 10
   LL n, m, a[maxn][maxn];
2
   struct RMQ2D{
       int f[maxn][maxn][10][10];
       inline int highbit(int x) { return 31 - __builtin_clz(x); }
```

```
inline int calc(int x, int y, int xx, int yy, int p, int q) {
8
            return max(
                \max(f[x][y][p][q], f[xx - (1 << p) + 1][yy - (1 << q) + 1][p][q]),
                \max(f[xx - (1 << p) + 1][y][p][q], f[x][yy - (1 << q) + 1][p][q])
10
11
12
        void init() {
13
            FOR (x, 0, highbit(n) + 1)
14
            FOR (y, 0, highbit(m) + 1)
15
            FOR (i, 0, n - (1 << x) + 1)
            FOR (j, 0, m - (1 << y) + 1) {
17
18
                if (!x && !y) { f[i][j][x][y] = a[i][j]; continue; }
19
                f[i][j][x][y] = calc(
                    i, j,
20
                     i + (1 << x) - 1, j + (1 << y) - 1,
21
                     max(x - 1, 0), max(y - 1, 0)
22
23
                     );
            }
24
25
        inline int get_max(int x, int y, int xx, int yy) {
26
27
            return calc(x, y, xx, yy, highbit(xx - x + 1), highbit(yy - y + 1));
28
   };
29
```

线段树

朴素线段树

- 默认为最大值, 可自行修改 struct Q struct PP operator &
- 注意建树时的下标问题 (1-based)

```
const LL INF = LONG_LONG_MAX;
    #define maxn 10
   LL n;
    namespace SGT {
5
        struct Q {
            LL setv:
            explicit Q(LL setv = -1): setv(setv) {}
            void operator += (const Q& q) { if (q.setv != -1) setv = q.setv; }
        }:
10
11
        struct P {
            LL max:
12
            explicit P(LL max = -INF): max(max) {}
13
14
            void up(Q\& q) { if (q.setv != -1) max = q.setv; }
        };
15
16
        template<typename T>
        P operator & (T&& a, T&& b) {
17
            return P(max(a.max, b.max));
19
        }
        P p[maxn << 2];
20
        Q q[maxn << 2];
21
    #define lson o * 2, l, (l + r) / 2
22
    #define rson o * 2 + 1, (l + r) / 2 + 1, r
        void up(int o, int l, int r) {
24
25
            if (l == r) p[o] = P();
            else p[o] = p[o * 2] & p[o * 2 + 1];
26
            p[o].up(q[o]);
27
28
        void down(int o, int l, int r) {
29
            q[o * 2] += q[o]; q[o * 2 + 1] += q[o];
            q[o] = Q();
31
32
            up(lson); up(rson);
33
        template<typename T>
34
        void build(T&& f, int o = 1, int l = 1, int r = n) {
35
            if (l == r) q[o] = f(l);
36
            else { build(f, lson); build(f, rson); q[o] = Q(); }
37
38
            up(o, l, r);
39
        P query(int ql, int qr, int 0 = 1, int l = 1, int r = n) {
```

```
if (ql > r || l > qr) return P();
41
42
            if (ql <= l && r <= qr) return p[o];</pre>
43
            down(o, l, r);
44
            return query(ql, qr, lson) & query(ql, qr, rson);
45
        void update(int ql, int qr, const Q& v, int o = 1, int l = 1, int r = n) {
46
            if (ql > r || l > qr) return;
47
            if (ql <= l && r <= qr) q[o] += v;</pre>
48
            else {
49
50
                 down(o, l, r);
                 update(ql, qr, v, lson); update(ql, qr, v, rson);
51
52
53
            up(o, l, r);
54
   }
55
56
57
    void solve(){
58
        vector<LL> arr = {1, 5, 7, 4, 2, 8, 3, 6, 10, 9};
59
60
        n = arr.size();
        SGT::build([&](int idx){
61
62
            return SGT::Q(arr[idx-1]);
63
        for(LL i=1; i<=n; i++){</pre>
            dbg(SGT::query(1, i).max);
65
66
        SGT::update(2, 4, SGT::Q(-3));
67
        cout << "MODIFIED\n";</pre>
68
        for(LL i=1; i<=n; i++){</pre>
            dbg(SGT::query(1, i).max);
70
71
   }
72
        • 区间修改,区间累加,查询区间和、最大值、最小值。
    #define maxn 100005
    #define INF LONG_LONG_MAX
   LL a[maxn], n;
    struct IntervalTree {
    #define ls \ o \ * \ 2, l, m
    #define rs \ o \ * \ 2 \ + \ 1, \ m \ + \ 1, \ r
        static const LL M = maxn * 4, RS = 1E18 - 1;
        LL addv[M], setv[M], minv[M], maxv[M], sumv[M];
        void init() {
10
            memset(addv, 0, sizeof addv);
11
12
            fill(setv, setv + M, RS);
            memset(minv, 0, sizeof minv);
13
            memset(maxv, 0, sizeof maxv);
14
            memset(sumv, \Theta, sizeof sumv);
15
16
17
        void maintain(LL o, LL l, LL r) {
            if (l < r) {
18
19
                 LL lc = o * 2, rc = o * 2 + 1;
                 sumv[o] = sumv[lc] + sumv[rc];
20
                 minv[o] = min(minv[lc], minv[rc]);
21
                 maxv[o] = max(maxv[lc], maxv[rc]);
22
            } else sumv[o] = minv[o] = maxv[o] = 0;
23
            if (setv[o] != RS) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (r - l + 1); }
24
            if (addv[o]) { minv[o] += addv[o]; maxv[o] += addv[o]; sumv[o] += addv[o] * (r - l + 1); }
25
        void build(LL o, LL l, LL r) {
27
            if (l == r) addv[o] = a[l];
28
29
            else {
                 LL m = (l + r) / 2;
30
31
                 build(ls); build(rs);
32
            }
            maintain(o, l, r);
33
34
35
        void pushdown(LL o) {
            LL lc = 0 * 2, rc = 0 * 2 + 1;
36
            if (setv[o] != RS) {
37
```

```
setv[lc] = setv[rc] = setv[o];
38
39
                 addv[lc] = addv[rc] = 0;
                 setv[o] = RS;
40
41
             if (addv[o]) {
42
                 addv[lc] += addv[o]; addv[rc] += addv[o];
43
                 addv[o] = 0;
44
             }
45
46
         void update(LL p, LL q, LL o, LL l, LL r, LL v, LL op) {
47
             if (p <= r && l <= q){</pre>
48
49
                 if (p <= l && r <= q) {
                     if (op == 2) { setv[o] = v; addv[o] = 0; }
50
                      else addv[o] += v;
51
52
                 } else {
                      pushdown(o);
53
                      LL m = (l + r) / 2;
54
                      update(p, q, ls, v, op); update(p, q, rs, v, op);
55
                 }
             }
57
58
             maintain(o, l, r);
59
         void query(LL p, LL q, LL o, LL l, LL r, LL add, LL& ssum, LL& smin, LL& smax) {
60
             if (p > r || l > q) return;
             if (setv[o] != RS) {
62
                 LL v = setv[o] + add + addv[o];
63
                 ssum += v * (min(r, q) - max(l, p) + 1);
64
                 smin = min(smin, v);
65
                 smax = max(smax, v);
             } else if (p <= l && r <= q) {
67
                 ssum += sumv[o] + add \star (r - l + 1);
68
                 smin = min(smin, minv[o] + add);
69
                 smax = max(smax, maxv[o] + add);
70
71
             } else {
                 LL m = (l + r) / 2;
72
                 query(p, q, ls, add + addv[o], ssum, smin, smax);
73
                 query(p, q, rs, add + addv[o], ssum, smin, smax);
74
75
             }
76
         }
         // 简化接口
77
78
         void build(int n) {
             build(1, 1, n);
79
80
81
         void range_add(int l, int r, int val) {
82
83
             update(l, r, 1, 1, n, val, 1);
84
85
         void range_set(int l, int r, int val) {
86
87
             update(l, r, 1, 1, n, val, 2);
88
89
         void range_query(int l, int r, LL% sum, LL% min_val, LL% max_val) {
             sum = 0;
91
92
             min_val = INF;
             max_val = -INF;
93
             query(l, r, 1, 1, n, \theta, sum, min_val, max_val);
94
95
         }
96
    } IT;
97
98
    void solve(){
99
        IT.init();
100
         n = 5;
101
102
         vector<int> data = {1, 3, 5, 7, 9};
         for (int i = 0; i < n; i++) {</pre>
103
104
             a[i + 1] = data[i]; // 注意: 线段树从 1 开始索引
105
         }
106
107
         IT.build(n);
108
```

```
LL sum, min_val, max_val;
109
          IT.range_query(1, 5, sum, min_val, max_val);
110
          cout << " " << sum << " " << min_val << " " << max_val << endl;
111
112
113
          IT.range_add(2, 4, 2);
         IT.range_query(1, 5, sum, min_val, max_val);
cout << " " << sum << " " << min_val << " " << max_val << endl;</pre>
114
115
116
          IT.range_set(3, 5, 10);
117
118
          IT.range_query(1, 5, sum, min_val, max_val);
          cout << " " << sum << " " << min_val << " " << max_val << endl;</pre>
119
120
121
          IT.range_query(2, 4, sum, min_val, max_val);
          cout << " " << sum << " " << min_val << " " << max_val << endl;
122
123
    }
```

树状数组

- 单点修改,区间查询
- 频次统计下的 k 小值
- 维护差分数组时的区间修改, 单点查询

```
#define M 100005
2
   namespace BIT {
3
        LL c[M]; // 注意初始化开销
        inline int lowbit(int x) { return x & -x; }
        void add(int x, LL v) { // 单点加
            for (int i = x; i < M; i += lowbit(i))</pre>
                c[i] += v;
8
        LL sum(int x) { // 前缀和
10
            LL ret = 0;
            for (int i = x; i > 0; i -= lowbit(i))
12
                ret += c[i];
13
14
            return ret;
15
        int kth(LL k) { // 频次统计下从小到大第 k 个, 详见应用
            int p = 0;
17
            for (int lim = 1 << 20; lim; lim /= 2)</pre>
18
                if (p + lim < M && c[p + lim] < k) {</pre>
19
                    p += lim;
20
21
                    k = c[p];
                }
22
23
            return p + 1;
24
        LL sum(int l, int r) { return sum(r) - sum(l - 1); } // 区间和
25
        // 区间加(此时树状数组为差分数组, sum(x) 为第 x 个数的值)
26
        void add(int l, int r, LL v) { add(l, v); add(r + 1, -v); }
27
28
   // ---
29
    void solve(){
30
31
        vector<LL> a={9, 9, 9, 9, 5, 3, 3, 1, 1};
        LL n = a.size(), i;
32
33
        for(i=1; i<=n; i++) BIT::add(a[i-1], 1);</pre>
        // 1 1 3 3 3 5 9 9 9 9
34
        for(i=1; i<=n; i++) cout << BIT::kth(i) << ' ';</pre>
35
36
   }
       ● 区间修改、区间查询
   #define maxn 100005
   namespace BIT {
        int n;
        int c[maxn], cc[maxn];
       inline int lowbit(int x) { return x & -x; }
        void init(int siz){ // 初始化
            n = siz;
            for(LL i=0; i<=n; i++){</pre>
                c[i] = cc[i] = 0;
```

```
}
11
12
        void add(int x, int v) { // 不要用这个
13
            for (int i = x; i <= n; i += lowbit(i)) {</pre>
14
                 c[i] += v; cc[i] += x * v;
15
            }
16
17
        void add(int l, int r, int v) { add(l, v); add(r + 1, -v); } // 区间修改
18
        int sum(int x) { // 前缀和
19
20
             int ret = 0;
             for (int i = x; i > 0; i -= lowbit(i))
21
22
                 ret += (x + 1) * c[i] - cc[i];
23
            return ret;
24
        int sum(int l, int r) { return sum(r) - sum(l - 1); } // 区间和
25
    }
26
27
    // --
    void solve(){
28
        LL i, n=8;
29
        BIT::init(n);
30
        BIT::add(2, 4, 2);
31
        for(i=1; i<=n; i++) cout << BIT::sum(i, i) << ' ';</pre>
32
        cout << '\n';
33
        cout << BIT::sum(5) << '\n';</pre>
        cout << BIT::sum(2, 3) << '\n';</pre>
35
   }
36
        三维
    #define maxn 105
2
    namespace BIT{
3
        int n;
        LL c[maxn][maxn][maxn];
5
        inline int lowbit(int x) { return x & -x; }
        void init(int siz){
7
            n = siz;
            for(int i=0; i<=n; i++){</pre>
                 for(int j=0; j<=n; j++){</pre>
10
                     for(int k=0; k<=n; k++){
11
12
                          c[i][j][k] = 0;
13
                     }
                 }
14
            }
15
16
        void update(int x, int y, int z, int d) {
17
            for (int i = x; i <= n; i += lowbit(i))</pre>
18
                 for (int j = y; j <= n; j += lowbit(j))</pre>
19
                     for (int k = z; k <= n; k += lowbit(k))</pre>
20
                         c[i][j][k] += d;
21
22
23
        LL query(int x, int y, int z) {
            LL ret = 0;
24
25
            for (int i = x; i > 0; i -= lowbit(i))
                 for (int j = y; j > 0; j -= lowbit(j))
26
                     for (int k = z; k > 0; k -= lowbit(k))
27
                         ret += c[i][j][k];
28
29
            return ret;
        LL solve(int x, int y, int z, int xx, int yy, int zz) {
31
            return query(xx, yy, zz)
32
            - query(xx, yy, z - 1)
33
34
            - query(xx, y - 1, zz)
35
            - query(x - 1, yy, zz)
            + query(xx, y - 1, z - 1)
36
37
            + query(x - 1, yy, z - 1)
            + query(x - 1, y - 1, zz)
38
            - query(x - 1, y - 1, z - 1);
39
40
        }
   }
41
```

数学

快速乘

```
LL mul(LL a, LL b, LL m) {
       LL ret = 0;
2
       while (b) {
            if (b & 1) {
4
                ret += a;
                if (ret >= m) ret -= m;
           }
           a += a;
           if (a >= m) a -= m;
9
           b >>= 1;
       }
11
       return ret;
12
13
   }
       • O(1)
   LL mul(LL u, LL v, LL p) {
       return (u * v - LL((long double) u * v / p) * p + p) % p;
   }
3
   LL mul(LL u, LL v, LL p) { // 卡常
       LL t = u * v - LL((long double) u * v / p) * p;
       return t < 0 ? t + p : t;
   }
   快速幂
```

● 如果模数是素数、则可在函数体内加上 n %= MOD - 1; (费马小定理)。

```
LL ret = MOD != 1;
       for (x %= MOD; n; n >>= 1, x = x * x % MOD)
3
           if (n & 1) ret = ret * x % MOD;
       return ret;
5
   }
      ● 防爆 LL
       ● 前置模板: 快速乘
   LL bin(LL x, LL n, LL MOD) {
       LL ret = MOD != 1;
2
       for (x \%= MOD; n; n >>= 1, x = mul(x, x, MOD))
3
           if (n & 1) ret = mul(ret, x, MOD);
       return ret;
   }
```

LL bin(LL x, LL n, LL MOD) {

高精度

1

- https://github.com/Baobaobear/MiniBigInteger/blob/main/bigint_tiny.h, 带有压位优化
- 按需实现

```
#include <algorithm>
   #include <cstdio>
    #include <string>
    #include <vector>
    struct BigIntTiny {
        int sign;
        std::vector<int> v;
8
        BigIntTiny() : sign(1) {}
10
        BigIntTiny(const std::string &s) { *this = s; }
11
        BigIntTiny(int v) {
12
            char buf[21];
sprintf(buf, "%d", v);
13
14
             *this = buf;
15
```

```
void zip(int unzip) {
17
18
            if (unzip == 0) {
                 for (int i = 0; i < (int)v.size(); i++)</pre>
19
                    v[i] = get_pos(i * 4) + get_pos(i * 4 + 1) * 10 + get_pos(i * 4 + 2) * 100 + get_pos(i * 4 + 3) * 1000;
20
                 for (int i = (v.resize(v.size() * 4), (int)v.size() - 1), a; i >= 0; i--)
22
                     a = (i % 4 >= 2) ? v[i / 4] / 100 : v[i / 4] % 100, v[i] = (i & 1) ? a / 10 : a % 10;
23
            setsign(1, 1);
24
25
        int get_pos(unsigned pos) const { return pos >= v.size() ? 0 : v[pos]; }
        BigIntTiny &setsign(int newsign, int rev) {
27
28
            for (int i = (int)v.size() - 1; i > 0 && v[i] == 0; i--)
                v.erase(v.begin() + i);
29
            sign = (v.size() == 0 || (v.size() == 1 \&\& v[0] == 0)) ? 1 : (rev ? newsign * sign : newsign);
30
31
            return *this;
32
        }
33
        std::string to_str() const {
            BigIntTiny b = *this;
34
35
            std::string s;
            for (int i = (b.zip(1), 0); i < (int)b.v.size(); ++i)</pre>
36
                s += char(*(b.v.rbegin() + i) + '0');
37
            return (sign < 0 ? "-" : "") + (s.empty() ? std::string("0") : s);</pre>
38
39
        bool absless(const BigIntTiny &b) const {
            if (v.size() != b.v.size()) return v.size() < b.v.size();</pre>
41
             for (int i = (int)v.size() - 1; i >= 0; i--)
42
43
                 if (v[i] != b.v[i]) return v[i] < b.v[i];</pre>
            return false;
44
45
        BigIntTiny operator-() const {
46
47
            BigIntTiny c = *this;
            c.sign = (v.size() > 1 || v[0]) ? -c.sign : 1;
48
            return c;
49
50
        BigIntTiny &operator=(const std::string &s) {
51
            if (s[0] == '-')
52
                 *this = s.substr(1);
53
            else {
54
55
                 for (int i = (v.clear(), 0); i < (int)s.size(); ++i)</pre>
                     v.push_back(*(s.rbegin() + i) - '0');
56
57
                 zip(0);
            }
58
            return setsign(s[0] == '-' ? -1 : 1, sign = 1);
59
60
        bool operator<(const BigIntTiny &b) const {</pre>
61
            return sign != b.sign ? sign < b.sign : (sign == 1 ? absless(b) : b.absless(*this));</pre>
62
63
        bool operator==(const BigIntTiny &b) const { return v == b.v && sign == b.sign; }
        BigIntTiny &operator+=(const BigIntTiny &b) {
65
            if (sign != b.sign) return *this = (*this) - -b;
66
67
            v.resize(std::max(v.size(), b.v.size()) + 1);
            for (int i = 0, carry = 0; i < (int)b.v.size() || carry; i++) {</pre>
68
                 carry += v[i] + b.get_pos(i);
                 v[i] = carry % 10000, carry /= 10000;
70
71
72
            return setsign(sign, 0);
73
        BigIntTiny operator+(const BigIntTiny &b) const {
74
            BigIntTiny c = *this;
75
76
            return c += b;
77
        void add_mul(const BigIntTiny &b, int mul) {
78
            v.resize(std::max(v.size(), b.v.size()) + 2);
79
            for (int i = 0, carry = 0; i < (int)b.v.size() || carry; i++) {</pre>
80
81
                 carry += v[i] + b.get_pos(i) * mul;
                 v[i] = carry % 10000, carry /= 10000;
82
83
            }
84
        BigIntTiny operator-(const BigIntTiny &b) const {
85
            if (b.v.empty() || b.v.size() == 1 && b.v[0] == 0) return *this;
86
            if (sign != b.sign) return (*this) + -b;
87
```

```
if (absless(b)) return -(b - *this);
88
              BigIntTiny c;
89
              for (int i = 0, borrow = 0; i < (int)v.size(); i++) {</pre>
90
                  borrow += v[i] - b.get_pos(i);
91
                  c.v.push_back(borrow);
                  c.v.back() -= 10000 * (borrow >>= 31);
93
94
             return c.setsign(sign, 0);
95
96
97
         BigIntTiny operator*(const BigIntTiny &b) const {
              if (b < *this) return b * *this;</pre>
98
99
              BigIntTiny c, d = b;
              for (int i = 0; i < (int)v.size(); i++, d.v.insert(d.v.begin(), 0))</pre>
100
                  c.add_mul(d, v[i]);
101
102
              return c.setsign(sign * b.sign, 0);
103
104
         BigIntTiny operator/(const BigIntTiny &b) const {
              BigIntTiny c, d;
105
106
              BigIntTiny e=b;
              e.sign=1;
107
108
              d.v.resize(v.size());
              double db = 1.0 / (b.v.back() + (b.get_pos((unsigned)b.v.size() - 2) / 1e4) +
110
                                   (b.get_pos((unsigned)b.v.size() - 3) + 1) / 1e8);
111
              for (int i = (int)v.size() - 1; i >= 0; i--) {
112
                  c.v.insert(c.v.begin(), v[i]);
113
                  int m = (int)((c.get_pos((int)e.v.size()) * 10000 + c.get_pos((int)e.v.size() - 1)) * db);
114
                  c = c - e * m, c.setsign(c.sign, 0), d.v[i] += m;
115
                  while (!(c < e))
                      c = c - e, d.v[i] += 1;
117
118
             return d.setsign(sign * b.sign, 0);
119
         }
120
121
         BigIntTiny operator%(const BigIntTiny &b) const { return *this - *this / b * b; }
         bool operator>(const BigIntTiny &b) const { return b < *this; }</pre>
122
         bool operator<=(const BigIntTiny &b) const { return !(b < *this); }</pre>
123
         bool operator>=(const BigIntTiny &b) const { return !(*this < b); }</pre>
124
         bool operator!=(const BigIntTiny &b) const { return !(*this == b); }
125
    };
126
     矩阵运算
    #define MOD 998244353
    #define M 10
     struct Mat {
         LL m;
         LL ∨[M][M];
         Mat(int siz=2) {
             m = siz;
8
              for(int i=0; i<=m; i++){</pre>
10
                  for(int j=0; j<=m; j++){</pre>
                       v[i][j] = 0;
11
                  }
12
             }
13
14
         void eye() { FOR (i, 0, m) v[i][i] = 1; }
15
         LL* operator [] (LL x) { return v[x]; }
16
         \textbf{const} \ \mathsf{LL*} \ \textbf{operator} \ [] \ (\mathsf{LL} \ \mathsf{x}) \ \textbf{const} \ \{ \ \textbf{return} \ \mathsf{v}[\mathsf{x}]; \ \}
17
         Mat operator * (const Mat& B) {
18
              const Mat& A = *this;
19
              Mat ret;
20
              FOR (k, ⊙, m)
              FOR (i, 0, m) if (A[i][k])
22
23
                  FOR (j, 0, m)
24
                  ret[i][j] = (ret[i][j] + A[i][k] * B[k][j]) % MOD;
              return ret;
25
26
         Mat pow(LL n) const {
27
              Mat A = *this, ret; ret.eye();
28
              for (; n; n >>= 1, A = A \star A)
29
```

```
if (n & 1) ret = ret * A;
30
31
            return ret;
32
        Mat operator + (const Mat& B) {
33
34
            const Mat& A = *this;
             Mat ret;
35
36
             FOR (i, \Theta, m)
            FOR (j, \Theta, m)
37
             ret[i][j] = (A[i][j] + B[i][j]) % MOD;
38
39
             return ret;
40
41
        void pprint() const {
42
            FOR (i, 0, m)
             FOR (j, ⊕, m)
43
            printf("%lld%c", (*this)[i][j], j == m - 1 ? '\n' : ' ');
44
45
        }
46
    };
47
    void solve(){
48
        Mat mat1, mat2;
49
        mat1.eye();
50
        mat1[1][0] = 2; // 0-based
51
52
        mat2.eye();
        mat2[1][1] = 4;
        \texttt{Mat mat3} = \texttt{mat1} \, * \, \texttt{mat2};
54
        mat3.pprint();
55
    }
56
    质数筛
        \bullet \mathcal{O}(n)
    const LL p_max = 1E6 + 100;
    LL pr[p_max], p_sz;
    void get_prime() {
        static bool vis[p_max];
        FOR (i, 2, p_max) {
             if (!vis[i]) pr[p_sz++] = i;
            FOR (j, 0, p_sz) {
                 if (pr[j] * i >= p_max) break;
vis[pr[j] * i] = 1;
                 if (i % pr[j] == 0) break;
            }
        }
12
13
   }
    欧拉函数
    朴素
    int phi(int x)
2
        int res = x;
        for (int i = 2; i <= x / i; i ++ )
4
             if (x % i == 0)
             {
                 res = res / i * (i - 1);
                 while (x % i == 0) x /= i;
        if (x > 1) res = res / x * (x - 1);
11
12
        return res;
   }
13
    筛法求欧拉函数
        • 前置模板: 质数筛
    const LL p_max = 1E5 + 100;
    LL phi[p_max];
```

```
void get_phi() {
3
4
        phi[1] = 1;
        static bool vis[p_max];
5
        static LL prime[p_max], p_sz, d;
        FOR (i, 2, p_max) {
            if (!vis[i]) {
8
                 prime[p_sz++] = i;
                phi[i] = i - 1;
10
11
            for (LL j = 0; j < p_sz && (d = i * prime[j]) < p_max; ++j) {</pre>
12
                 vis[d] = 1;
13
14
                 if (i % prime[j] == 0) {
                     phi[d] = phi[i] * prime[j];
15
                     break;
16
                 }
17
                 else phi[d] = phi[i] * (prime[j] - 1);
18
19
            }
        }
20
   }
    素性测试
    试除法
       • \mathcal{O}(\sqrt{n})
   bool is_prime(int x)
2
        if (x < 2) return false;</pre>
3
        for (int i = 2; i <= x / i; i ++ )
            if (x % i == 0)
                return false;
        return true;
   }
    Miller-Rabin 素性测试
        ● 前置: 快速幂
       • \mathcal{O}(k \times \log^3 n)
   bool miller_rabin(LL n) {
        static vector<LL> tester = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
2
        if (n < 3 || n % 2 == 0) return n == 2;</pre>
        if (n % 3 == 0) return n == 3;
4
        LL u = n - 1, t = 0;
5
        while (u % 2 == 0) u /= 2, ++t;
        for (auto nt: tester) {
            if(nt >= n) continue;
            LL v = bin(nt, u, n);
10
            if (v == 1) continue;
            LL s;
11
            for (s = 0; s < t; ++s) {
12
                 if (v == n - 1) break;
13
                 v = v * v % n;
14
15
            if (s == t) return false;
16
18
        return true;
   }
19
```

质因数分解

朴素质因数分解

- 前置模板:素数筛
- 带指数
- $\mathcal{O}(\frac{\sqrt{N}}{\ln N})$

```
LL factor[30], f_sz, factor_exp[30];
1
2
    void get_factor(LL x) {
        f_sz = 0;
        LL t = sqrt(x + 0.5);
        for (LL i = 0; pr[i] <= t; ++i)</pre>
            if (x % pr[i] == 0) {
6
                factor_exp[f_sz] = 0;
                while (x % pr[i] == 0) {
8
                    x /= pr[i];
                    ++factor_exp[f_sz];
11
12
                factor[f_sz++] = pr[i];
            }
13
        if (x > 1) {
14
            factor_exp[f_sz] = 1;
15
            factor[f_sz++] = x;
16
17
   }
18
       • 不带指数
   LL factor[30], f_sz;
1
   void get_factor(LL x) {
        f_sz = 0;
        LL t = sqrt(x + 0.5);
        for (LL i = 0; pr[i] <= t; ++i)</pre>
5
            if (x % pr[i] == 0) {
                factor[f_sz++] = pr[i];
                while (x % pr[i] == 0) x /= pr[i];
        if (x > 1) factor[f_sz^{++}] = x;
10
   }
    Pollard-Rho
       • 前置: 素数测试
   mt19937 mt(time(0));
    LL pollard_rho(LL n, LL c) {
2
        LL x = uniform_int_distribution < LL > (1, n - 1)(mt), y = x;
        auto f = [\&](LL \ v) \{ LL \ t = mul(v, v, n) + c; return \ t < n ? \ t : t - n; \};
        while (1) {
            x = f(x); y = f(f(y));
            if (x == y) return n;
            LL d = gcd(abs(x - y), n);
            if (d != 1) return d;
   }
11
12
   LL fac[100], fcnt;
13
   void get_fac(LL n, LL cc = 19260817) {
14
        if (n == 4) { fac[fcnt++] = 2; fac[fcnt++] = 2; return; }
15
        if (miller_rabin(n)) { fac[fcnt++] = n; return; }
16
17
        LL p = n;
        while (p == n) p = pollard_rho(n, --cc);
18
        get_fac(p); get_fac(n / p);
19
   }
20
21
   void go_fac(LL n) { fcnt = 0; if (n > 1) get_fac(n); }
   原根
       ● 前置模板: 质因数分解、快速幂
       ● 要求 p 为质数
       • 别忘了调用质因数分解的函数
   LL find_smallest_primitive_root(LL p) {
2
        get_factor(p - 1);
        FOR (i, 2, p) {
3
            bool flag = true;
```

```
FOR (j, 0, f_sz)
6
           if (bin(i, (p - 1) / factor[j], p) == 1) {
               flag = false;
               break;
           if (flag) return i;
10
11
   // assert(0);
12
       return -1;
13
   }
14
   欧几里得
       • 朴素
   int gcd(int a, int b)
1
2
       return b ? gcd(b, a % b) : a;
3
   }
       ● 卡常
   inline int ctz(LL x) { return __builtin_ctzll(x); }
```

}

扩展欧几里得

do {

4

10

11

LL gcd(LL a, LL b) {

a >>= ctz(a);

b -= a;
} while (b);

return a << t;</pre>

int t = ctz(a | b);

b >>= ctz(b);

• 求 ax + by = gcd(a, b) 的一组解

if (a > b) swap(a, b);

if (!a) return b; if (!b) return a;

- 如果 a 和 b 互素,那么 x 是 a 在模 b 下的逆元
- 注意 x 和 y 可能是负数

```
LL ex_gcd(LL a, LL b, LL &x, LL &y) {
    if (b == 0) { x = 1; y = 0; return a; }

LL ret = ex_gcd(b, a % b, y, x);
    y -= a / b * x;

return ret;
}
```

中国剩余定理

• 求解线性同于方程

•

$$\begin{cases} x & \equiv r_1 \pmod{m_1} \\ x & \equiv r_2 \pmod{m_2} \\ & \vdots \\ x & \equiv r_k \pmod{m_k} \end{cases}$$

- 无解返回 -1
- 前置模板: 扩展欧几里得

```
1 LL CRT(LL *m, LL *r, LL n) {
2    if (!n) return 0;
3    LL M = m[0], R = r[0], x, y, d;
4    FOR (i, 1, n) {
5         d = ex_gcd(M, m[i], x, y);
6    if ((r[i] - R) % d) return -1;
```

```
8
           // x = mul((r[i] - R) / d, x, m[i] / d);
          R += x * M;
10
          M = M / d * m[i];
          R %= M;
12
13
       return R >= 0 ? R : R + M;
14
   }
15
   逆元
      ● 如果 p 是素数,使用快速幂(费马小定理)
      ● 前置模板: 快速幂
   inline LL get_inv(LL x, LL p) { return bin(x, p - 2, p); }
      • 如果 p 不是素数, 使用拓展欧几里得
      • 前置模板: 扩展欧几里得
   LL get_inv(LL a, LL M) {
1
       static LL x, y;
       assert(exgcd(a, M, x, y) == 1);
       return (x % M + M) % M;
   }
5
      ● 预处理 1~n 的逆元
   LL inv[N];
   void inv_init(LL n, LL p) {
       inv[1] = 1;
       FOR (i, 2, n)
          inv[i] = (p - p / i) * inv[p % i] % p;
   }
      • 预处理阶乘及其逆元
   LL invf[M], fac[M] = {1};
   void fac_inv_init(LL n, LL p) {
2
       FOR (i, 1, n)
           fac[i] = i * fac[i - 1] % p;
5
       invf[n - 1] = bin(fac[n - 1], p - 2, p);
       FORD (i, n - 2, -1)
          invf[i] = invf[i + 1] * (i + 1) % p;
   }
   组合数
   组合数预处理 (递推法)
   LL C[M][M];
1
   void init_C(int n) {
2
      FOR (i, 0, n) {
          C[i][0] = C[i][i] = 1;
           FOR (j, 1, i)
              C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD;
   }
   预处理逆元法
      • 如果数较小,模较大时使用逆元
      • 前置模板: 逆元-预处理阶乘及其逆元
   inline LL C(LL n, LL m) \{ // n >= m >= 0 \}
       return n < m || m < 0 ? 0 : fac[n] * invf[m] % MOD * invf[n - m] % MOD;
2
```

x = (r[i] - R) / d * x % (m[i] / d);

Lucas 定理

```
• 如果模数较小,数字较大,使用 Lucas 定理
```

```
● 前置模板可选 1: 求组合数(如果使用阶乘逆元,需 fac_inv_init(MOD, MOD);)
```

求具体值

• 分解质因数法

```
int primes[N], cnt;
                         // 存储所有质数
                 // 存储每个质数的次数
   int sum[N];
                   // 存储每个数是否已被筛掉
   bool st[N];
   void get_primes(int n)
                               // 线性筛法求素数
        for (int i = 2; i <= n; i ++ )</pre>
8
        {
            if (!st[i]) primes[cnt ++ ] = i;
            for (int j = 0; primes[j] <= n / i; j ++ )</pre>
10
11
            {
                st[primes[j] * i] = true;
12
                if (i % primes[j] == 0) break;
13
14
        }
15
16
   }
17
18
                              // 求 n! 中的次数
    int get(int n, int p)
19
    {
20
21
        int res = 0;
        while (n)
22
23
            res += n / p;
24
            n /= p;
25
27
        return res;
   }
28
29
30
   vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板
32
33
        vector<int> c;
        int t = 0;
34
        for (int i = 0; i < a.size(); i ++ )</pre>
35
            t += a[i] * b;
37
            c.push_back(t % 10);
38
            t /= 10;
39
        }
40
41
        while (t)
42
43
            c.push_back(t % 10);
44
45
            t /= 10;
46
47
48
        return c;
```

```
}
49
50
    get_primes(a); // 预处理范围内的所有质数
51
52
                                      // 求每个质因数的次数
   for (int i = 0; i < cnt; i ++ )
54
   {
55
        int p = primes[i];
        sum[i] = get(a, p) - get(b, p) - get(a - b, p);
56
   }
57
58
    vector<int> res;
59
    res.push_back(1);
61
    for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘
62
        for (int j = 0; j < sum[i]; j ++ )</pre>
63
            res = mul(res, primes[i]);
64
    FFT & NTT & FWT
    FFT
       • 计算多项式乘法, 可用于高精度乘法
       • \mathcal{O}(n \log n)
    typedef double LD;
    const LD PI = acos(-1.0);
2
    struct Complex {
        LD r, i;
        Complex(LD r = 0, LD i = 0) : r(r), i(i) {}
        Complex operator + (const Complex& other) const {
            return Complex(r + other.r, i + other.i);
        Complex operator - (const Complex& other) const {
10
11
            return Complex(r - other.r, i - other.i);
12
13
        Complex operator * (const Complex& other) const {
            return Complex(r * other.r - i * other.i, r * other.i + i * other.r);
14
15
   };
16
17
    // 快速傅里叶变换, p=1 为正向, p=-1 为反向
18
    void FFT(vector<Complex>& x, int p) {
19
        int n = x.size();
21
        for (int i = 0, t = 0; i < n; ++i) {
            if (i > t) swap(x[i], x[t]);
22
            for (int j = n >> 1; (t ^{-}= j) < j; j >>= 1);
23
24
        for (int h = 2; h <= n; h <<= 1) {
            Complex wn(cos(p * 2 * PI / h), sin(p * 2 * PI / h));
26
            for (int i = 0; i < n; i += h) {</pre>
27
28
                Complex w(1, 0);
                for (int j = 0; j < h / 2; ++j) {
29
                    Complex u = x[i + j];
                    Complex v = x[i + j + h/2] * w;
31
32
                    x[i + j] = u + v;
                    x[i + j + h/2] = u - v;
33
                    w = w * wn;
34
35
                }
            }
36
37
        if (p == −1) {
38
            for (int i = 0; i < n; ++i) {</pre>
39
40
                x[i].r /= n;
            }
41
42
   }
43
44
    // 计算两个多项式的卷积, 返回结果多项式的系数向量
45
    vector<LD> convolution(const vector<LD>& a, const vector<LD>& b) {
46
47
        int len = 1;
```

```
int n = a.size(), m = b.size();
48
49
        while (len < n + m - 1) len <<= 1;</pre>
        vector<Complex> fa(len), fb(len);
50
        for (int i = 0; i < n; ++i) fa[i] = Complex(a[i], 0);</pre>
51
52
        for (int i = 0; i < m; ++i) fb[i] = Complex(b[i], 0);</pre>
        FFT(fa, 1);
53
        FFT(fb, 1);
54
        for (int i = 0; i < len; ++i) {</pre>
55
            fa[i] = fa[i] * fb[i];
56
57
        FFT(fa, -1);
58
59
        vector<LD> res(n + m - 1);
        for (int i = 0; i < n + m - 1; ++i) {</pre>
60
            res[i] = fa[i].r;
61
        }
62
        return res;
63
    }
    NTT
        • 用于大整数乘法时,位数不宜过高(在 MOD=998244353 的情况下,总位数不超过 12324004(3510^2)))
        ● 前置模板: 快速幂、逆元
    const int N = 1e5+10;
    const int MOD = 998244353; // 模数
    const int G = 3; // 原根
    LL wn[N << 2], rev[N << 2];
    int NTT_init(int n_) {
        int step = 0; int n = 1;
        for ( ; n < n_; n <<= 1) ++step;</pre>
        FOR (i, 1, n)
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (step - 1));
10
11
        int g = bin(G, (MOD - 1) / n, MOD);
        wn[0] = 1;
12
        for (int i = 1; i <= n; ++i)</pre>
13
           wn[i] = wn[i - 1] * g % MOD;
14
        return n;
15
16
    }
17
18
    void NTT(vector<LL> &a, int n, int f) {
        FOR (i, 0, n) if (i < rev[i])
19
            std::swap(a[i], a[rev[i]]);
20
21
        for (int k = 1; k < n; k <<= 1) {
            for (int i = 0; i < n; i += (k << 1)) {
   int t = n / (k << 1);</pre>
22
23
                 FOR (j, 0, k) {
24
                     LL w = f == 1 ? wn[t * j] : wn[n - t * j];
25
                     LL x = a[i + j];
26
                     LL y = a[i + j + k] * w % MOD;
27
28
                     a[i + j] = (x + y) % MOD;
                     a[i + j + k] = (x - y + MOD) \% MOD;
29
                 }
30
            }
31
32
        if (f == -1) {
33
            LL ninv = get_inv(n, MOD);
34
            FOR (i, 0, n)
            a[i] = a[i] * ninv % MOD;
36
37
    }
38
39
    vector<LL> conv(vector<LL> a, vector<LL> b){
        int len_a = a.size(), len_b = b.size();
41
        int len = len_a + len_b - 1;
42
        int n = NTT_init(len);
43
        a.resize(n);
44
45
        b.resize(n);
        NTT(a, n, 1);
46
        NTT(b, n, 1);
47
        vector<LL> c(n);
48
```

```
for (int i = 0; i < n; ++i) {
49
50
            c[i] = a[i] * b[i] % MOD;
51
        NTT(c, n, -1);
52
53
        vector<LL> res(len);
        for (int i = 0; i < len; ++i) {</pre>
54
55
            res[i] = c[i];
56
        return res;
57
58
    }
    FWT
    const LL MOD = 998244353;
2
    template<typename T>
    void fwt(vector<LL> &a, int n, T f) {
        for (int d = 1; d < n; d *= 2)</pre>
            for (int i = 0, t = d * 2; i < n; i += t)
                 FOR (j, 0, d)
                 f(a[i + j], a[i + j + d]);
    }
    void AND(LL& a, LL& b) { a += b; }
11
12
    void OR(LL& a, LL& b) { b += a; }
    \boldsymbol{\text{void}} XOR (LL& a, LL& b) {
13
        LL x = a, y = b;
14
        a = (x + y) \% MOD;
15
        b = (x - y + MOD) \% MOD;
16
17
    void rAND(LL& a, LL& b) { a -= b; }
18
    void rOR(LL& a, LL& b) { b -= a; }
19
    void rXOR(LL& a, LL& b) {
        static LL INV2 = (MOD + 1) / 2;
21
22
        LL x = a, y = b;
        a = (x + y) * INV2 % MOD;
23
        b = (x - y + MOD) * INV2 % MOD;
24
25
26
27
    int next_power_of_two(int n) {
        if (n <= 0) return 1;
28
        // __lg(n-1) 返回 n-1 的最高位所在位置 (0-based)
29
        return 1 << (__lg(n - 1) + 1);
30
    }
31
32
    template<typename T, typename F>
33
    vector<LL> conv(vector<LL> a, vector<LL> b, T f, F inv_f){
        LL len_a = a.size(), len_b = b.size(), len = max(len_a, len_b), n = next_power_of_two(len);
35
        a.resize(n), b.resize(n);
36
        fwt(a, n, f), fwt(b, n, f);
37
        vector<LL> c(n);
38
        for (int i = 0; i < n; i++) {</pre>
39
            c[i] = a[i] * b[i] % MOD;
40
41
        fwt(c, n, inv_f);
42
        // 提取结果 (可选)
43
44
        c.resize(len);
45
        return c;
    }
    线性基
    贪心法
    可查询最大异或和
    struct BasisGreedy{
        ULL p[64];
        BasisGreedy(){memset(p, 0, sizeof p);}
        void insert(ULL x) {
```

```
for (int i = 63; ~i; --i) {
                 if (!(x >> i)) // x 的第 i 位是 0
                     continue;
                 if (!p[i]) {
                     p[i] = x;
                     break;
10
11
                 x ^= p[i];
12
            }
13
14
        ULL query_max(){
15
16
            ULL ans = 0;
             for (int i = 63; ~i; --i) {
17
                 ans = std::max(ans, ans ^ p[i]);
18
            }
19
20
            return ans;
21
    };
22
    高斯消元法
    可查询任意大异或和
    struct BasisGauss{
1
        vector<ULL> a;
2
        LL n, tmp, cnt;
3
5
        BasisGauss()\{a = \{0\};\}
        void insert(ULL x){
             a.push_back(x);
        }
10
11
        void init(){
            n = (LL)a.size() - 1;
12
            LL k=1;
13
            for(int i=63;i>=0;i--){
14
                 int t=0;
15
16
                 for(LL j=k;j<=n;j++){</pre>
                     if((a[j]>>i)&1){
17
18
                          t=j;
                          break;
19
                     }
20
21
                 if(t){
22
                     swap(a[k],a[t]);
                     for(LL j=1;j<=n;j++){</pre>
24
                          if(j!=k&&(a[j]>>i)&1) a[j]^=a[k];
25
26
                     k++;
27
                 }
            }
29
30
             cnt = k-1;
             tmp = 1LL << cnt;</pre>
31
            if(cnt==n) tmp--;
32
33
34
35
        LL query_xth(LL x){ // 从小到大, 若 x 为负数,则查询倒数第几个
             if(x<0) x = tmp + x + 1;
36
37
             if(x>tmp) return -1;
             else{
38
                 if(n>cnt) x--;
39
40
                 LL ans=0;
                 for(LL i=0; i<cnt; i++){</pre>
41
                     if((x>>i)&1) ans^=a[cnt-i];
42
43
                 return ans;
44
45
            }
        }
46
    };
```

图论

计算几何

字符串

杂项