UNTDF

Profesor Guillermo Eduardo Prisching

E-mail: gprisching@untdf.edu.ar

Memorias

Cómo potenciar el rendimiento:

- Mejorar la implementación de hardware
- Mejorar la arquitectura de hardware

D+l de técnicas para aumentar el rendimiento

- 1) Memoria Caché
- 2) Predicción de Ramas
- 3) Ejecución fuera de orden c/cambio de registros
- 4) Ejecución especulativa

Objetivo: proporcionar instrucciones o datos de Memoria Principal tan rápido como sea posible

- 1) Bajar la latencia
- 2) Aumentar el ancho de banda

Primera aproximación

Utilizar una MC para los datos y otra MC para las instrucciones a.k.a "Caché Dividida"

Se requiere una arquitectura que brinde acceso independiente a MP a cada una de las MCs

Segunda aproximación

Utilizar varios niveles de MC

Se agregan diferentes niveles de Caché entre el Procesador y la MP

Trade off → a mayor capacidad menor velocidad de acceso

Sistema con tres niveles de Caché (A.Tanenbaum)

- Propiedad Inclusiva: todos los niveles están relacionados en conjuntos y sub-conjuntos
- Propiedad de Localidad de referencia: temporal, espacial

- Se organizan en bloques de tamaño fijo denominados línea o entrada o renglón
- Tamaño típico de cada línea va de 4Bytes a 64KBytes
- Cada línea se numera secuencialmente comenzando desde el 0

- Ante una referencia a MP el circ. controlador verifica si está en la MC
- Si no, se elimina la línea de MC y se busca en MP o en una Caché de nivel inferior.
- Una vez recuperada se reemplaza en la última MC accedida

Tasa de aciertos

 $\rightarrow h = k - 1/k$

Tasa de fallos

- $\rightarrow 1-h$
- Tiempo de acceso medio $\rightarrow c + (1-h) m$

Una Memoria Caché mal diseñada (baja tasa de aciertos) es peor que no tenerla

Función de correspondencia

- Dado que la MC es de inferior capacidad a la MP debe elegirse como almacenar una porción de ésta
- Existen tres aproximaciones
 - I. Mapeo Directo
 - II. Mapeo Asociativo
 - III. Mapeo Asociativo por Conjuntos

Correspondencia Directa

¿porqué se llama Mapeo Directo?

Porque cada bloque de memoria tiene asignado **uno y solo un renglón/entrada** de la Memoria Caché

Descripción de una línea/entrada/renglón de Caché:

Bit de validez: indica si la entrada contiene datos válidas. Cuando arranca el sistema todas las entradas son NO VÁLIDAS.

Campo Etiqueta (Tag): identifica al bloque de memoria de donde provienen los datos

Campo de Datos: contiene una copia de los datos de Memoria Principal.

Supongamos el siguiente escenario:

MC: 64KBytes

Long de línea: 32Bytes

MP: 4MBytes

Long de palabra de MP: 4Bytes (32bits)

UNTDF

Entrada	Bit de validez	Etiqueta	Datos	Direcciones de M.Ppal que usan esta entrada
0	×			0-7, 16384-16391, 32768-32775
1	×			8-15, 16392-16399,32776-32783
2	×			16-23, 16400-16407, 32784-32791
*	*	***	****	****
*	*	****	****	****
*	*	***	** **	****
2047	X			16376-16383, 32760-32767,

Función de correspondencia (Método de acceso a la MC)

Se utiliza la dirección de MP dividiendola en tres campos:

(1)	(2)	(3)		
Etiqueta (<u>Tag</u>)	#Línea	Palabra		

- (1) Corresponde a los bits almacenados como TAG en una línea/entrada de la Caché
- (2) Indica cuál línea entrada de Caché contiene los datos correspondientes, si están presentes.
- (3) Indica a cuál palabra se hace referencia dentro de la línea/entradas

Expresión de correspondencia DIRECTA:

 $i = j \mod m$

i: nro línea de la MC

j: nro de bloque de la MP

m: cantidad de líneas en la MC

Dirección de la MP = s + w

Etiqueta (Tag)	Linea	Palabra		
<u>s-r</u>	ŗ	<u>w</u>		

w son los bits menos significativos e identifican cada palabra dentro de un bloque de memoria principal.

son los bits restantes de la palabra de dirección de Memoria Principal y especifican uno de los 2 soloques de la Memoria Ppal.

La lógica de la caché interpreta estos **s** bits como una Etiqueta <u>Taag</u> de **s** - **r** bits (parte más significativa)

 \underline{r} es el campo de línea el cuál identifica a una de las $\underline{m} = 2^{r}$ líneas de la Caché.

Conclusiones

La técnica de **Mapeo Directo** es simple y poco costosa de implementar. Su principal desventaja es que hay una posición concreta de Caché para cada bloque dado.

Favorece intercambios continuos con la MP bajando la tasa de aciertos h

UNTDF

Memoria Caché

Supongamos el siguiente escenario:

MC: 64KBytes

Long de línea: 32Bytes Líneas de MC: 2048

MP: 4MBytes

Long de palabra de MP: 4Bytes (32bits)

Lineas de direcciones: 20

UNTDF

MP 4MB

Addr	Datos	Boque
0		
***		B0
7		
8		
***	•••	B1
15		
***	•••	•••
16376		D2047
***	•••	B2047
16383		
16384		
•••	•••	B0
16391		
•••		•••
32760		B2047
•••		1
32767		
1,048,575		B2047
		128
1,048,575		

Linea	Ţag	Campo Datos 32Bytes == 8 Palabras MP						
0								
2047								

Correspondencia ASOCIATIVA:

- Resuelve la desventaja de la correspondencia DIRECTA
- Este método permite que cada bloque de MP pueda cargarse en cualquier línea de la caché.
- Para lograrlo, el campo de etiqueta identifica UNIVOCAMENTE un bloque de MP

UNTDF

Organización de MC asociativa – Williams Stallings

Correspondencia ASOCIATIVA:

- Una dirección de memoria se divide en dos campos 1) para la etiqueta (Tag), 2) para la palabra dentro de la línea de la MC
- Mayor flexibilidad → Cualquier bloque puede ser reemplazado cuando es necesario escribir en la MC
- Desventaja: requiere electrónica + compleja para examinar en paralelo las todas los Tag

Correspondencia Asociativa

Determinar como serán las etiquetas y campo de palabra en el siguiente escenario:

MC: 64KBytes

Long de línea: 32Bytes Líneas de MC: 2048

MP: 4MBytes

Long de palabra de MP: 4Bytes (32bits)

Lineas de direcciones: 20

Correspondencia ASOCIATIVA POR CONJUNTOS:

- Converge lo mejor de los dos mundos
- Un bloque B_i puede asignarse a cualquiera de las k líneas del conjunto i de la MC
- La etiqueta de de una dirección de MP es mucho más corta y se compara sólo con las etiquetas del mismo conjunto

UNTDF

Organización de MC asociativa por conjuntos – William Stallings

Correspondencia ASOCIATIVA POR CONJUNTOS:

$$m = v x k$$

 $i = j mod v$

i = número de conjunto de cache

j = número de bloque de memoria principal

m = número de líneas de la cache

v = cantidad de conjuntos

k = cantidad de líneas del conjunto

Memoria Caché

Correspondencia ASOCIATIVA POR CONJUNTOS:

Etiqueta (tag) Línea Palabra

Dirección de memoria principal

Correspondencia ASOCIATIVA POR CONJUNTOS:

Existe dos casos extremos

1)
$$v = m$$

2)
$$v = 1$$

Correspondencia ASOCIATIVA POR CONJUNTOS:

Existe dos casos extremos

- 1) v = m, $k = 1 \rightarrow se$ comporta como una correspondencia directa
- 2) v = 1, $k = m \rightarrow se$ comporta como una asociativa completa