

Calculus 1 Limits Dr. Adam Larios

## Calculus 1 Limits

Dr. Adam Larios

30 August 2017

### Idea of a Limit

Calculus 1 Limits Dr. Adam Larios

We write

$$\lim_{x \to c} f(x) = L$$

if the values of f(x) approach L as x approaches c.

• Example:

Use the graph to estimate

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta}.$$



#### Definition of a Limit

Calculus 1 Limits

Dr. Adam Larios

#### Limit

A function f is defined on an interval around c, except perhaps at the point x=c. We define the limit of the function f(x) as x approaches c to be a number L (if one exists) such that f(x) is as close to L as we want whenever x is sufficiently close to c (but  $x \neq c$ ). If L exists, we write

$$\lim_{x \to c} f(x) = L$$





Calculus 1 Limits

Dr. Adam Larios Given the graph below, compute  $\lim_{x\to 3} x^2 + 2$ 

(a) 
$$\lim_{x\to 3} x^2 + 2 = 10$$

(b) 
$$\lim_{x \to 3} x^2 + 2 = 11$$

(c) 
$$\lim_{x\to 3} x^2 + 2 = 12$$

(d) 
$$\lim_{x\to 3} x^2 + 2 = 13$$





### Limit Properties

Calculus 1 Limits

Dr. Adam Larios

#### Properties of Limits

Assuming all the limits on the right-hand side exist:

- $2 \lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$

- **5** For any constant k,  $\lim_{x \to c} k = k$
- $\mathbf{6} \lim_{x \to c} x = c$

Calculus 1 Limits

Dr. Adam Larios

Use algebra to compute  $\lim_{x\to 1} x^2(x^3+2)$ .

- a)  $\lim_{x\to 1} x^2(x^3+2) = 3$
- b)  $\lim_{x \to 1} x^2(x^3 + 2) = 2$
- c)  $\lim_{x \to 1} x^2(x^3 + 2) = 4$
- d) Does not Exist



### Clicker Question

Calculus 1 Limits

Dr. Adam Larios

Suppose that  $\lim_{x \to 2} f(x) = 5$ . Use algebra to compute  $\lim_{x \to 2} x^2 (f(x) + 2)$ .

a) 
$$\lim_{x\to 2} x^2 (f(x) + 2) = 20$$

b) 
$$\lim_{x\to 2} x^2 (f(x) + 2) = 35$$

c) 
$$\lim_{x\to 2} x^2 (f(x) + 2) = 100$$

d) 
$$\lim_{x\to 2} x^2 (f(x) + 2) = 28$$



### One and Two Sided Limits

Calculus 1 Limits Dr. Adam Larios



For the function graphed we have that

$$\lim_{x \to 2^{-}} f(x) = L_1$$
$$\lim_{x \to 2^{+}} f(x) = L_2$$

If the left and right hand limits were equal, that is, if  $L_1=L_2$ , then we would say that  $\lim_{x\to 2}f(x)$  exists. However, since they are not equal, we say the limit does not exist.

### Other Limits Which Do not Exist

Calculus 1 Limits

Dr. Adam Larios Here are three examples in which the limit fails to exist.



$$f(x) = \begin{cases} 1 & \text{if } x < -4\\ 2 & \text{if } -4 \le x < -2\\ 3 & \text{if } -2 \le x < 2 \end{cases}$$

## Limits at Infinity

Calculus 1 Limits

Dr. Adam Larios

#### Limits at Infinity

If f(x) gets as close to a number L as we please when x gets sufficiently large, then we write

$$\lim_{x \to \infty} f(x) = L$$

Similarly, if f(x) approaches L when x is negative and has a sufficiently large absolute value, then we write

$$\lim_{x\to -\infty} f(x) = L$$

For example, consider the graph of f(x) = 1/x.

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = 0$$



# Where does the following limit fail to exist?

Calculus 1 Limits

Dr. Adam Larios

(a) 
$$x = -3$$

(b) 
$$x = -1$$

(c) 
$$x = 2$$

(d) It exists everywhere





## How is this graph different?

Calculus 1 Limits

Dr. Adam Larios





### **Definition of Continuity**

Calculus 1

Dr. Adam Larios

#### Continuous

The function f is continuous at x=c if f is defined at x=c and if

$$\lim_{x \to c} f(x) = f(c)$$

In other words, f(x) is as close as we want to f(c) provided x is close enough to c. The function is continuous on an interval [a,b] if it is continuous at every point in the interval.





## **Definition of Continuity**

Calculus 1 Limits

Dr. Adam Larios

#### Continuous

The function f is continuous at x=c if f is defined at x=c and if

$$\lim_{x \to c} f(x) = f(c)$$

In other words, f(x) is as close as we want to f(c) provided x is close enough to c. The function is continuous on an interval [a,b] if it is continuous at every point in the interval.



If the function can be made continuous then the limit should exist and should have the value needed to make the function continuous.



#### Some Theorems

Calculus 1 Limits

Dr. Adam Larios

#### Continuity of Sums, Products, and Quotients of Functions

Suppose that f and g are continuous on an interval and that b is a constant. Then, on that same interval, 1. bf(x) is continuous.

- 2. f(x) + g(x) is continuous.
- 3. f(x)g(x) is continuous.
- 4. f(x)/g(x) is continuous, provided  $g(x) \neq 0$  on the interval.

#### Continuity of Composite Functions

If f and g are continuous, and if the composite function f(g(x)) is defined on an interval, then f(g(x)) is continuous on that interval.