Coordinatization

In \mathbb{R}^3 , we have the *standard basis* \mathbf{i} , \mathbf{j} and \mathbf{k} . When we write a vector in coordinate form, say

$$\mathbf{v} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}, \tag{1}$$

it is understood as

$$\mathbf{v} = 3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}.$$

The numbers 3, (-2) and 5 are the coordinates of \mathbf{v} relative to the standard basis $\xi = (\mathbf{i}, \mathbf{j}, \mathbf{k})$. It has always been understood that a coordinate representation such as that in (1) is with respect to the **ordered** basis ξ . A little thought reveals that it need not be so. One could have chosen the same basis elements in a different order, as in the basis $\xi' = (\mathbf{i}, \mathbf{k}, \mathbf{j})$. We employ notation indicating the coordinates are with respect to the different basis ξ' :

$$[\mathbf{v}]_{\xi'} = \begin{bmatrix} 3 \\ 5 \\ -2 \end{bmatrix}$$
, to mean that $\mathbf{v} = 3\mathbf{i} + 5\mathbf{k} - 2\mathbf{j}$,

reflecting the order in which the basis elements fall in ξ' . Of course, one could employ similar notation even when the coordinates are expressed in terms of the standard basis, writing $[\mathbf{v}]_{\xi}$ for (1), but whenever we have coordinatization with respect to the standard basis of \mathbb{R}^n in mind, we will consider the $[\cdot]_{\xi}$ wrapper to be optional.

Of course, there are many non-standard bases of \mathbb{R}^n . In fact, any linearly independent collection of n vectors in \mathbb{R}^n provides a basis. Say we take

$$\mathbf{u}_1 = \begin{bmatrix} -1 \\ 0 \\ 3 \\ 0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 4 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{u}_4 = \begin{bmatrix} 4 \\ -1 \\ 2 \\ -1 \end{bmatrix}.$$

As per the discussion above, these vectors are being expressed relative to the standard basis of \mathbb{R}^4 . A quick check of a related 4-by-4 determinant reveals these vectors are linearly independent, and hence form a basis of \mathbb{R}^4 .

```
octave:81> det(A)

ans = -17
```

Let us denote the ordered basis as $\alpha = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)$. Every vector of \mathbb{R}^4 can be expressed uniquely as a linear combination of elements in the basis α . Gaussian elimination is a tool that reveals the weights.

Example 1:

Find the coordinatization relative to the basis α of the vector $\mathbf{v} = (8, -3, 13, -5)$.

We can reduce the relevant augmented matrix to RREF:

Thus, $\mathbf{v} = 2\mathbf{u}_1 - \mathbf{u}_2 + \mathbf{u}_3 + 3\mathbf{u}_4$, and

$$[\mathbf{v}]_{\alpha} = \begin{bmatrix} 2 \\ -1 \\ 1 \\ 3 \end{bmatrix}.$$

Matrix of a Linear Transformation

Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation from the n-dimensional vector space \mathcal{V} having ordered basis $\alpha = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ into to the m-dimensional vector space \mathcal{W} , having ordered basis $\beta = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m)$. As we have seen, as soon as one knows the outputs from T for a basis, all of its

behavior is known. Let us suppose we know the outputs of T on the basis α . More specifically, let us assume we know how each $T(\mathbf{v}_k)$, an element of W, is expressed relative to the basis β . Specifically, we know the weights a_{ik} in the expression

$$T(\mathbf{v}_k) = a_{1k}\mathbf{w}_1 + a_{2k}\mathbf{w}_2 + \dots + a_{mk}\mathbf{w}_m$$
, so that $[T(\mathbf{v}_k)]_{\beta} = \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix}$.

Then the matrix of *T* in the ordered bases α and β is

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} [T(\mathbf{v}_1)]_{\beta} & [T(\mathbf{v}_2)]_{\beta} & \cdots & [T(\mathbf{v}_n)]_{\beta} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$
(2)

Note that, if $\mathcal{V} = \mathcal{W}$, it is still possible to have different bases α and β , but if the same basis is used twice, we can simplify the notation and write $[T]^{\alpha}_{\alpha}$ as $[T]_{\alpha}$. You may realize from this discussion that there are many different matrix representations for the same linear transformation T, potentially one for each pair of bases α and β .

Example 2:

In \mathbb{R}^2 and \mathbb{R}^3 consider ordered bases $\alpha = (\mathbf{v}_1, \mathbf{v}_2)$ and $\beta = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$, respectively, where

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$, and $\mathbf{w}_1 = \begin{bmatrix} 4 \\ -2 \\ 0 \end{bmatrix}$, $\mathbf{w}_2 = \begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix}$, $\mathbf{w}_3 = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$.

Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is linear, and produces the following images for the elements in α :

$$T(\mathbf{v}_1) = \begin{bmatrix} 5 \\ -1 \\ 11 \end{bmatrix}$$
 and $T(\mathbf{v}_2) = \begin{bmatrix} 5 \\ 2 \\ -7 \end{bmatrix}$.

Find the matrix $[T]^{\beta}_{\alpha}$.

Since the augmented matrices

$$\begin{bmatrix} 4 & 0 & -1 & 5 \\ -2 & 3 & 2 & -1 \\ 0 & -2 & 3 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}, \quad \text{we have} \quad \begin{bmatrix} T(\mathbf{v}_1) \end{bmatrix}_{\beta} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 4 & 0 & -1 & 5 \\ -2 & 3 & 2 & 2 \\ 0 & -2 & 3 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \quad \text{so} \quad \begin{bmatrix} T(\mathbf{v}_2) \end{bmatrix}_{\beta} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

Thus,

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} [T(\mathbf{v}_1)]_{\beta} & [T(\mathbf{v}_2)]_{\beta} \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 3 & -1 \end{bmatrix}.$$

One expects that, having found the matrix $[T]^{\beta}_{\alpha}$, it can be used to find $[T(\mathbf{v})]_{\beta}$ for any input vector \mathbf{v} . Notice that one obtains

$$[T(\mathbf{v}_1)]_{\beta} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.$$

That is, the result $[T(\mathbf{v}_1)]_{\beta}$ comes from matrix multiplication after expressing \mathbf{v}_1 as (1,0), which is its coordinatization relative to the basis α . Speaking generally, it is the case that

$$[T(\mathbf{v})]_{\beta} = [T]_{\alpha}^{\beta} [\mathbf{v}]_{\alpha}. \tag{3}$$

Example 3:

 \mathcal{P}_3 , the vector subspace of $C(\mathbb{R})$ consisting of at-most-3rd-degree polynomials, has ordered basis $\alpha = (1, x, x^2, x^3)$. Vectors/members of \mathcal{P}_3 can be coordinatized with respect to this basis. For instance, the polynomial

$$p(x) = 2x^3 - x + 7$$
 has coordinates $\begin{bmatrix} p \end{bmatrix}_{\alpha} = \begin{bmatrix} 7 \\ -1 \\ 0 \\ 2 \end{bmatrix}$.

The operation of differentiation, d/dx, is linear, and for each input p(x) from \mathcal{P}_3 the image/result d/dx(p) = p'(x) is in \mathcal{P}_2 and can be represented by coordinates relative to the ordered basis $\beta = (1, x, x^2)$ of \mathcal{P}_2 . We have

$$[d/dx]_{\alpha}^{\beta} = \begin{bmatrix} [d/dx(1)]_{\beta} & [d/dx(x)]_{\beta} & [d/dx(x^{2})]_{\beta} & [d/dx(x^{3})]_{\beta} \\ \downarrow & \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Using this, you can find the derivative of any polynomial in \mathcal{P}_3 . For $p(x) = 2x^3 - x + 7$, for instance, its derivative is

$$\left[d/dx\right]_{\alpha}^{\beta}[p]_{\alpha} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ -1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 6 \end{bmatrix},$$

which should be understood as $p'(x) = 6x^2 - 1$.

An important result is the following, which affirms that matrix multiplication is defined in the right way.

Theorem 1: Suppose \mathcal{U} , \mathcal{V} , and \mathcal{W} are finite-dimensional vector spaces with ordered bases α , β and γ , respectively. Suppose that $S: \mathcal{U} \to \mathcal{V}$ and $T: \mathcal{V} \to \mathcal{W}$ are linear transformations. Then

- The composition $T \circ S$ given by $(T \circ S)(\mathbf{x}) = T(S(\mathbf{x}))$ is a linear transformation from \mathcal{U} to \mathcal{W} .
- The matrix of $T \circ S$ in the ordered bases α and γ is the product of the matrix of S in the ordered bases α and β with the matrix of T in the ordered bases β and γ ; that is

$$[T \circ S]_{\alpha}^{\gamma} = [T]_{\beta}^{\gamma} [S]_{\alpha}^{\beta}.$$

Change of Basis

A special instance is the identity operator id: $\mathbb{R}^n \to \mathbb{R}^n$, given by id(\mathbf{x}) = \mathbf{x} . If ξ represents the standard basis for \mathbb{R}^n , and $\alpha = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is another ordered basis, then

$$\left[\mathrm{id}\right]_{\alpha}^{\xi} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}.$$

We call this a **change-of-basis**, or **transition matrix**, as it maps a vector from its coordinate representation relative to basis α to its representation in another (in this case, the standard) basis, ξ :

$$[\mathbf{v}]_{\xi} = [\mathrm{id}]_{\alpha}^{\xi} [\mathbf{v}]_{\alpha}.$$

What this means is that *any* nonsingular matrix \mathbf{X} can be viewed as a change-of-basis matrix, mapping from coordinates relative to the ordered basis α consisting of the columns of \mathbf{X} to standard coordinates. The matrix which maps from standard coordinates back to coordinates in the ordered basis α is naturally \mathbf{X}^{-1} . That is, if $\left[\operatorname{id}\right]_{\alpha}^{\xi} = \mathbf{X}$, then $\left[\operatorname{id}\right]_{\xi}^{\alpha} = \mathbf{X}^{-1}$.

As with general linear maps, one might use two nonstandard bases $\alpha = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ and β for \mathbb{R}^n . The matrix of the identity map id: $\mathbb{R}^n \to \mathbb{R}^n$ in the ordered bases α and β , since id(\mathbf{v}_i) = \mathbf{v}_i , is found by tailoring the formula (2) appropriately:

$$[\mathrm{id}]_{\alpha}^{\beta} = \begin{bmatrix} [\mathbf{v}_1]_{\beta} & [\mathbf{v}_2]_{\beta} & \cdots & [\mathbf{v}_n]_{\beta} \\ \downarrow & \downarrow & \downarrow \end{bmatrix}.$$

This, too, serves to change coordinates

$$[\mathbf{v}]_{\beta} = [\mathrm{id}]_{\alpha}^{\beta} [\mathbf{v}]_{\alpha}$$

and is thus a change-of-basis matrix. Note that, whenever the same basis is used, we have $[id]_{\alpha} = I$, the usual identity matrix.

Now, suppose **A** is diagonalizable. Then there exists a basis α of \mathbb{R}^n consisting of eigenvectors of **A**. Constructing a matrix **X** from that basis, we have

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1} = \left[\mathrm{id} \right]_{\alpha}^{\xi} \mathbf{\Lambda} \left[\mathrm{id} \right]_{\xi}^{\alpha}.$$

That is, we can view this factorization as a change first from standard coordinates to ones in α (the action of X^{-1}), then rescalings in those coordinates (using eigenvalues, the diagonal elements of Λ , as scalars), followed by a return from coordinates in α to standard ones. More generally, every matrix Λ is is similar to a Jordan form matrix

$$\mathbf{A} = \mathbf{B}\mathbf{J}\mathbf{B}^{-1} = \left[\mathrm{id}\right]_{\beta}^{\xi} \mathbf{J} \left[\mathrm{id}\right]_{\xi'}^{\beta}$$

where β is the ordered basis arising from the columns of the matrix **B**.

Next, let's assume only that the real matrix **A** is *m*-by-*n*, and take **U**, **V** to be the usual matrices of the singular value decompositon of **A**. Write α for the ordered basis of \mathbb{R}^n comprised of the columns of **V**, β for the ordered basis of \mathbb{R}^m arising from the columns of **U**, ξ_m for the standard basis of \mathbb{R}^m , and ξ_n for the standard basis of \mathbb{R}^n . Then

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}} = \left[\mathrm{id}\right]^{\xi_m}_{\beta}\boldsymbol{\Sigma}\left[\mathrm{id}\right]^{\alpha}_{\xi_n}.$$

Similarity

Finally, we mentioned before that there can be many different matrix representations for one linear operator $T: \mathcal{V} \to \mathcal{W}$. In the case where the domain \mathcal{V} and codomain \mathcal{W} are the same, so that one can talk about a matrix $[T]^{\alpha}_{\alpha}$ (abbreviated as $[T]_{\alpha}$), there are still many matrix representations of T, one for each different basis α of \mathcal{V} . However, any two are related, are, in fact similar. Specifically, if α and β are both ordered bases of \mathcal{V} , then

$$[T]_{\alpha} = [\mathrm{id}]_{\beta}^{\alpha} [T]_{\beta} [\mathrm{id}]_{\alpha}^{\beta} = [\mathrm{id}]_{\beta}^{\alpha} [T]_{\beta} ([\mathrm{id}]_{\beta}^{\alpha})^{-1} = \mathbf{C} [T]_{\beta} \mathbf{C}^{-1},$$

where the matrix **C** relating the two is the transition matrix from β -coordinates to α -coordinates.