СОДЕРЖАНИЕ

Вв	едени	ie	2
1.	Теоретическая часть		3
	1.1.	Основные сведения о дробных производных Римана-Лиувилля и Маршо	3
	1.2.	Алгоритм поиска симметрий дробно-дифференциальных уравнений	4
2.	Практическая часть		6
		Поиск симметрий дробно-дифференциального обобщения уравнения Шредингера с производными Римана-Лиувилля	6
	۷.۷.	Поиск симметрий дробно-дифференциального обобщения уравнения Шредингера с производными Маршо	10
3a	ключе	ение	13
Сп	исок	литературы	14

ВВЕДЕНИЕ

Целью данной работы является исследование свойств симметрии дробнодифференциального обобщения уравнения Шредингера, полученное путем замены обычных производных на дробные производные Римана-Лиувилля и Маршо.

Для достижения данной цели необходимо выполнить задачи:

- Методами группового анализа в случае оператора Римана-Лиувилля
 - вывести формулы координат продолжения инфинитиземального генератора группы
 - решить определяющую систему и найти координаты допускаемых операторов
- В случае производных Маршо проверить наличие симметрий, полученных на предыдущем шаге, а также исследовать уравнение на наличие симметрии Галиллея.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. ОСНОВНЫЕ СВЕДЕНИЯ О ДРОБНЫХ ПРОИЗВОДНЫХ РИМАНА-ЛИУВИЛЛЯ И МАРШО

Фундаментальное введение в теорию дробных прозводных можно найти в монографии [1]. В данной работе кратко приведем основные сведения о дробных производных Римана-Лиувилля и Маршо, необходимые для группового анализа дробно-дифференциальных уравнений.

Большинство доказательств приведенных ниже формул можно найти, например, в [2] и [3].

Рассмотрим функцию $f(x) \in L_1(a,b)$, где (a,b) конечный интервал.

Определение. Интегро-дифференциальное выражение

$${}_{a}\mathcal{D}_{x}^{\alpha}\left[f\right]\left(x\right) = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dx^{n}} \int_{a}^{x} \frac{f(\xi)}{(x-\xi)^{\alpha-n+1}} d\xi \tag{1}$$

где $\alpha > 0, n = [\alpha] + 1$ называется левосторонней дробной производной Римана-Лиувилля порядка α .

Определение. Интегро-дифференциальное выражение

$${}_{x}\mathcal{D}_{b}^{\alpha}\left[f\right]\left(x\right) = \frac{(-1)^{n}}{\Gamma(n-\alpha)} \frac{d^{n}}{dx^{n}} \int_{x}^{b} \frac{f(\xi)}{(\xi-x)^{\alpha-n+1}} d\xi \tag{2}$$

где $\alpha > 0$, $n = [\alpha] + 1$ называется правосторонней дробной производной Римана-Лиувилля порядка α .

Утверждение. При переходе к пределу $\alpha \to n, n \in \mathbb{N}$, дробные производные (1) и (2) переходят в производную целого порядка $f^{(n)}(x)$.

Утверждение. Если f(x), g(x) аналитические функции, то справедливо обобщенное правило Лейбница:

$${}_{x}\mathcal{D}_{b}^{\alpha}\left[f(x)g(x)\right] = \sum_{n=0}^{\infty} {\alpha \choose n} (-1)^{n}{}_{x}\mathcal{D}_{b}^{\alpha-n}\left[f(x)\right] D_{x}^{n}\left[g(x)\right]$$
(3)

$${}_{a}\mathcal{D}_{x}^{\alpha}\left[f(x)g(x)\right] = \sum_{n=0}^{\infty} {\alpha \choose n} {}_{a}\mathcal{D}_{x}^{\alpha-n}\left[f(x)\right] D_{x}^{n}\left[g(x)\right]$$
(4)

где биномиальные коэффициенты определяются через гамма-функцию:

$$\binom{p}{q} = \frac{\Gamma(p+1)}{\Gamma(q+1)\Gamma(p-q+1)}$$

Утверждение. Пусть $f(x) \in AC^n[a,b]$, тогда справедливы равенства:

$${}_{x}\mathcal{D}_{b}^{\alpha}\left[g(x)f'(x)\right] = (-1)^{n}\left({}_{x}\mathcal{D}_{b}^{\alpha+1}\left[g(x)f(x)\right]\right) - {}_{x}\mathcal{D}_{b}^{\alpha}\left[f(x)D_{x}\left[g(x)\right]\right]$$
(5)

$${}_{a}\mathcal{D}_{x}^{\alpha}\left[g(x)f'(x)\right] = {}_{a}\mathcal{D}_{x}^{\alpha+1}\left[g(x)f(x)\right] - {}_{a}\mathcal{D}_{x}^{\alpha}\left[f(x)D_{x}\left[g(x)\right]\right] \tag{6}$$

Теперь рассмотрим случай бесконечного интервала. Следуя [1], введем операторы дробной производной Маршо. Они оказывается очень удобными при обобщении операторов (1) и (2) на случай $x \in (-\infty, \infty)$. В той же монографии приведены условия, предъявляемые для функции, для которой будет определено применение оператора (см. теорему 5.9). Следует отметить то, что производные Маршо и Римана-Лиувилля в случае бесконечного интервала совпадают на достаточно широком классе функций.

Определение. Лево- и правосторонней дробной производной Маршо порядка $\alpha > 1$ будем называть операторы:

$$\mathbb{D}_{+}^{\alpha}[f(x)] = \frac{\{\alpha\}}{\Gamma(1 - \{\alpha\})} \int_{0}^{\infty} \frac{f^{(n)}(x) - f^{(n)}(x - \xi)}{\xi^{1 + \{\alpha\}}} d\xi \tag{7}$$

$$\mathbb{D}_{-}^{\alpha}[f(x)] = \frac{\{\alpha\}}{\Gamma(1 - \{\alpha\})} \int_{0}^{\infty} \frac{f^{(n)}(x) - f^{(n)}(x + \xi)}{\xi^{1 + \{\alpha\}}} d\xi \tag{8}$$

Здесь $n = [\alpha], \alpha = n + {\alpha}.$

Утверждение. Производные маршо от константы равны нулю. Для дальнейших вычислений нам потребуется формула:

$$\mathbb{D}_{\pm}^{\alpha}[xf'(x)] = \mathbb{D}_{\pm}^{\alpha}[f(x)] + x\mathbb{D}_{\pm}^{\alpha}[f'(x)] \tag{9}$$

1.2. АЛГОРИТМ ПОИСКА СИММЕТРИЙ ДРОБНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Подробно теория классического группового анализа изложена в [4]. Анализ в случае функции одной переменной с оператором дробной производной Римана-Лиувилля подробно рассмотрен в [3] и [2].

Алгоритм построения допускаемых генераторов группы симметрий дифференциального уравнения $F = F(t, x, u, \ldots, \Delta_i, \ldots)$, где Δ_i - некоторый оператор.

1. Рассматриваются инфинитезимальные операторы X вида:

$$X = \xi^{t}(t, x, u) \frac{\partial}{\partial t} + \xi^{x}(t, x, u) \frac{\partial}{\partial x} + \eta^{u}(t, x, u) \frac{\partial}{\partial u}$$

2. Формула продолжения в общем виде:

$$\zeta_{Lu} = L \left(\eta^u - \sum_{i=0}^n \xi^i u_i \right) + \sum_{i=0}^n \xi^i D_i [Lu]$$
(10)

3. Координаты допускаемых операторов ищутся из определяющего уравнения:

$$(\tilde{X}F)\bigg|_{F=0} = 0$$

здесь \tilde{X} - продолженный на необходимые производные оператор X.

В случае ДУЧП дробного порядка вида:

$$F(t, x, u, u_t, {}_{a}\mathcal{D}_{x}^{\alpha}[u], {}_{x}\mathcal{D}_{b}^{\alpha}[u])$$

алгоритм требует некоторых изменений.

1. Рассматриваются инфинитезимальные операторы X вида:

$$X = \xi^{t}(t, x, u) \frac{\partial}{\partial t} + \xi^{x}(t, x, u) \frac{\partial}{\partial x} + \eta^{u}(t, x, u) \frac{\partial}{\partial u}$$

где ξ^t и ξ^x такие, что допускается симметрия x - a = 0 и x - b = 0 (условие инвариантности оператора относительно замены переменных).

2. Формулы продолжений запишутся в виде:

$$\zeta_{\frac{\partial u}{\partial t}} = D_t \left[\eta^u \right] - u_t D_t \left[\xi^t \right] - u_x D_t \left[\xi^x \right] \tag{11}$$

$$\zeta_{a\mathcal{D}_{x}^{\alpha}[u]} = {}_{a}\mathcal{D}_{x}^{\alpha}\left[\eta^{u}\right] + \sum_{n=0}^{\infty} {\alpha \choose n} \frac{n-\alpha}{n+1} {}_{a}\mathcal{D}_{x}^{\alpha-n}\left[u\right] D_{x}^{n+1}\left[\xi^{x}\right] - \\
- \sum_{n=1}^{\infty} {\alpha \choose n} {}_{a}\mathcal{D}_{x}^{\alpha-n}\left[u_{t}\right] D_{x}^{n}\left[\xi^{t}\right] \tag{12}$$

$$\zeta_{x}\mathcal{D}_{b}^{\alpha}[u] = {}_{x}\mathcal{D}_{b}^{\alpha}\left[\eta^{u}\right] + \sum_{n=0}^{\infty} {\alpha \choose n} (-1)^{n} \frac{n-\alpha}{n+1} {}_{x}\mathcal{D}_{b}^{\alpha-n}\left[u\right] D_{x}^{n+1}\left[\xi^{x}\right] - \sum_{n=1}^{\infty} {\alpha \choose n} (-1)^{n} {}_{x}\mathcal{D}_{b}^{\alpha-n}\left[u_{t}\right] D_{x}^{n}\left[\xi^{t}\right]$$
(13)

Однако, расчет можно сильно упростить. Положим, что

$$\xi^{x} = \xi^{x}(t, x), \quad \xi^{t} = \xi^{t}(t, x), \quad \eta^{u} = \eta_{0}^{u}(t, x) + \eta_{1}^{u}u.$$
 (14)

Такие однопараметрические группы преобразований с координатами (14) называются группами линейно-автономных преобразований.

Дробно-дифференциальные операторы не обладают свойством линеаризации. Это связано с их нелокальностью в отличие от операторов

целочисленного дифференцирования. Поэтому нелинейные преобразования не могут преобразовывать линейный дробный оператор в оператор того же вида. На данный момент неизвестно ни одной симметрии дробно-дифференциальных уравнений, не являющейся линейноавтономной симметрией (подробнее см. [3] стр. 138).

В таких предоположениях координаты можно вычислить по формулам:

$$\zeta_{a}\mathcal{D}_{x}^{\alpha}[u] = {}_{a}\mathcal{D}_{x}^{\alpha}\left[\eta_{0}^{u}\right] + \sum_{n=0}^{\infty} {\alpha \choose n} {}_{a}\mathcal{D}_{x}^{\alpha-n}\left[u\right] \left(D_{x}^{n}\left[\eta_{1}^{u}\right] + \frac{n-\alpha}{n+1}D_{x}^{n+1}\left[\xi^{x}\right]\right) - \sum_{n=1}^{\infty} {\alpha \choose n} {}_{a}\mathcal{D}_{x}^{\alpha-n}\left[u_{t}\right]D_{x}^{n}\left[\xi^{t}\right]$$
(15)

$$\zeta_{x}\mathcal{D}_{b}^{\alpha}[u] = {}_{x}\mathcal{D}_{b}^{\alpha}\left[\eta_{0}^{u}\right] + \sum_{n=0}^{\infty} {\alpha \choose n} {}_{x}\mathcal{D}_{b}^{\alpha-n}\left[u\right] \left(D_{x}^{n}\left[\eta_{1}^{u}\right] + (-1)^{n} \frac{n-\alpha}{n+1} D_{x}^{n+1}\left[\xi^{x}\right]\right) - \sum_{n=1}^{\infty} {\alpha \choose n} (-1)^{n} {}_{x}\mathcal{D}_{b}^{\alpha-n}\left[u_{t}\right] D_{x}^{n}\left[\xi^{t}\right] \tag{16}$$

3. Координаты допускаемых операторов ищутся из определяющего уравнения:

$$(\tilde{X}F)\bigg|_{F=0} = 0$$

$$\tilde{X} = X + \zeta^0 \frac{\partial}{\partial u_t} + \zeta^1 \frac{\partial}{\partial_\alpha \mathcal{D}_x^\alpha [u]} + \zeta^2 \frac{\partial}{\partial_x \mathcal{D}_h^\alpha [u]}$$

 $\zeta^0, \zeta^1, \zeta^2$ определяются соответственно по формулам (11), (15), (16).

Данный алгоритм можно обобщить и на случай системы ДУЧП дробного порядка.

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

2.1. ПОИСК СИММЕТРИЙ ДРОБНО-ДИФФЕРЕНЦИАЛЬНОГО ОБОБЩЕНИЯ УРАВНЕНИЯ ШРЕДИНГЕРА С ПРОИЗВОДНЫМИ РИМАНА-ЛИУВИЛЛЯ

Рассматривается дробно-дифферециальное обобщение уравнение Шредингера:

$$i\frac{\partial \psi}{\partial t} = {}_{a}\mathcal{D}_{x}^{\alpha} \left[\psi\right] + {}_{x}\mathcal{D}_{b}^{\alpha} \left[\psi\right], \quad \alpha \in (1,2), \quad t > 0, \quad x \in [a,b]$$
 (17)

Представим функцию $\psi(t,x)$ в виде:

$$\psi(t, x) = u(t, x) + iv(t, x)$$

Тогда (17) можно записать в виде системы:

$$\begin{cases} \frac{\partial u}{\partial t} = {}_{a}\mathcal{D}_{x}^{\alpha} \left[v\right] + {}_{x}\mathcal{D}_{b}^{\alpha} \left[v\right] \\ \frac{\partial v}{\partial t} = -\left({}_{a}\mathcal{D}_{x}^{\alpha} \left[u\right] + {}_{x}\mathcal{D}_{b}^{\alpha} \left[u\right]\right) \end{cases}$$
(18)

Инфинитезимальный генератор будем искать в виде:

$$X = \tau \frac{\partial}{\partial t} + \xi \frac{\partial}{\partial x} + \mu \frac{\partial}{\partial u} + \vartheta \frac{\partial}{\partial v}$$

Тогда инфинитезимальный оператор продолженной группы имеет вид:

$$\tilde{X} = X + \left(\zeta^{u} \frac{\partial}{\partial u_{t}} + \rho^{u} \frac{\partial}{\partial (a \mathcal{D}_{x}^{\alpha} [u])} + \lambda^{u} \frac{\partial}{\partial (x \mathcal{D}_{b}^{\alpha} [u])} \right) + \left(\zeta^{v} \frac{\partial}{\partial v_{t}} + \rho^{v} \frac{\partial}{\partial (a \mathcal{D}_{x}^{\alpha} [v])} + \lambda^{v} \frac{\partial}{\partial (x \mathcal{D}_{b}^{\alpha} [v])} \right)$$

$$(19)$$

Координаты ζ^u , ζ^v будут иметь вид (11), ρ^u , ρ^v вид (15), а λ^u , λ^v соответственно вид (16).

Применим генератор (19) к системе (18):

$$\begin{cases} \zeta^{u} = \rho^{v} + \lambda^{v} \\ \zeta^{v} = -(\rho^{u} + \lambda^{u}) \end{cases}$$
 (20)

Определяющая система примет следующий вид:

$$\begin{cases} uD_{t}\left[\mu_{1}\right] + D_{t}\left[\mu_{0}\right] + \left(_{a}\mathcal{D}_{x}^{\alpha}\left[v\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[v\right]\right) \left(\mu_{1} + D_{t}\left[\tau\right]\right) - D_{x}\left[u\right]D_{t}\left[\xi\right] = \\ = _{a}\mathcal{D}_{x}^{\alpha}\left[\vartheta_{0}\right] + \sum_{n=0}^{\infty} \binom{\alpha}{n}_{a}\mathcal{D}_{x}^{\alpha-n}\left[v\right] \left(D_{x}^{n}\left[\vartheta_{1}\right] + \frac{n-\alpha}{n+1}D_{x}^{n+1}\left[\xi\right]\right) + \\ + _{x}\mathcal{D}_{b}^{\alpha}\left[\vartheta_{0}\right] + \sum_{n=0}^{\infty} \binom{\alpha}{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[v\right] \left(D_{x}^{n}\left[\vartheta_{1}\right] + \left(-1\right)^{n}\frac{n-\alpha}{n+1}D_{x}^{n+1}\left[\xi\right]\right) + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}_{a}\mathcal{D}_{x}^{\alpha-n}\left[_{a}\mathcal{D}_{x}^{\alpha}\left[u\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[u\right]\right]D_{x}^{n}\left[\tau\right] + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}\left(-1\right)^{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[_{a}\mathcal{D}_{x}^{\alpha}\left[u\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[u\right]\right]D_{x}^{n}\left[\tau\right] + \\ + D_{t}\left[\vartheta_{0}\right] + \left(_{a}\mathcal{D}_{x}^{\alpha}\left[u\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[u\right]\right)\left(D_{t}\left[\tau\right] - \vartheta_{1}\right) - D_{x}\left[v\right]D_{t}\left[\xi\right] = \\ = -_{a}\mathcal{D}_{x}^{\alpha}\left[\mu_{0}\right] - \sum_{n=0}^{\infty} \binom{\alpha}{n}_{a}\mathcal{D}_{x}^{\alpha-n}\left[u\right]\left(D_{x}^{n}\left[\mu_{1}\right] + \frac{n-\alpha}{n+1}D_{x}^{n+1}\left[\xi\right]\right) - \\ -_{x}\mathcal{D}_{b}^{\alpha}\left[\mu_{0}\right] + \sum_{n=0}^{\infty} \binom{\alpha}{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[u\right]\left(D_{x}^{n}\left[\mu_{1}\right] + \left(-1\right)^{n}\frac{n-\alpha}{n+1}D_{x}^{n+1}\left[\xi\right]\right) + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}_{a}\mathcal{D}_{x}^{\alpha-n}\left[_{a}\mathcal{D}_{x}^{\alpha}\left[v\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[v\right]\right]D_{x}^{n}\left[\tau\right] + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}\left(-1\right)^{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[_{a}\mathcal{D}_{x}^{\alpha}\left[v\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[v\right]\right]D_{x}^{n}\left[\tau\right] + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}\left(-1\right)^{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[_{a}\mathcal{D}_{x}^{\alpha}\left[v\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[v\right]\right]D_{x}^{n}\left[\tau\right] + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}\left(-1\right)^{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[a\mathcal{D}_{x}^{\alpha}\left[v\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[v\right]\right]D_{x}^{\alpha}\left[v\right] + \\ + \sum_{n=1}^{\infty} \binom{\alpha}{n}\left(-1\right)^{n}_{x}\mathcal{D}_{b}^{\alpha-n}\left[a\mathcal{D}_{x}^{\alpha}\left[v\right] + _{x}\mathcal{D}_{b}^{\alpha}\left[v\right]\right]D_{x}^{\alpha}\left[v\right] + \\ +$$

Расщепив систему (21) по u и v (первые слагаемые в каждой системе), можно сделать вывод о том, что $\mu_1 = \mu_1(x)$, $\vartheta_1 = \vartheta_1(x)$.

Если расщепить по ${}_{a}\mathcal{D}_{x}^{\alpha-n}\left[v\right]$, то получим, что

$$D_x^n [\vartheta_1] + \frac{n - \alpha}{n + 1} D_x^{n+1} [\xi] = 0$$
 (22)

Рассмотрим слагаемые (22) при n = 1 и n = 2:

$$D_x^1 [\vartheta_1] + \frac{1 - \alpha}{2} D_x^2 [\xi] = 0$$
 (23)

$$D_x^2 [\vartheta_1] + \frac{2 - \alpha}{3} D_x^3 [\xi] = 0$$
 (24)

Продифференцируем (23) по х и из полученного выражения вычтем (24), получим, что:

$$D_x^3 \left[\xi \right] = 0 \Rightarrow \xi = Ax^2 + Bx + C \tag{25}$$

Подставляя (25) в (24) получаем, что:

$$D_x^2 \left[\vartheta_1 \right] = 0 \Rightarrow \vartheta_1 = Dx + E \tag{26}$$

Теперь расщепим по $_{x}\mathcal{D}_{b}^{\alpha-n}\left[v\right]$ при n>0, аналогично получаем:

$$D_x^1 [\vartheta_1] - \frac{1 - \alpha}{2} D_x^2 [\xi] = 0$$
 (27)

$$D_x^2 \left[\vartheta_1 \right] + \frac{2 - \alpha}{3} D_x^3 \left[\xi \right] = 0 \tag{28}$$

Подставим (26) в (27), тогда:

$$D = (1 - \alpha)A \tag{29}$$

Но, из (23):

$$D + (1 - \alpha)A = 0 \Rightarrow D = -(1 - \alpha)A \tag{30}$$

Значит, из (29) и (30) следует:

$$D = A = 0$$

Расщепим по $_x\mathcal{D}_b^{\alpha-n}\left[u\right]$ при n>0 (аналогично можно расмотреть $_a\mathcal{D}_x^{\alpha-n}\left[u\right]$), получим:

$$D_x^1 [\mu_1] - \frac{1 - \alpha}{2} D_x^2 [\xi] = 0$$
$$D_x^2 [\mu_1] + \frac{2 - \alpha}{3} D_x^3 [\xi] = 0$$

Сравнивая с (27) и (28), заключаем:

$$\mu_1 = \vartheta_1 = E$$

Теперь расщепим по ${}_a\mathcal{D}_x^\alpha$ [v] и ${}_a\mathcal{D}_x^\alpha$ [u], получим равенства:

$$\mu_1 - D_t \left[\tau \right] = \vartheta_1 - \alpha D_x \left[\xi \right] \tag{31}$$

$$-\vartheta_1 + D_t [\tau] = -\mu_1 + \alpha D_x [\xi]$$
 (32)

Откуда получаем, что:

$$D_{t}[\tau] = \alpha D_{x}[\xi] = \alpha B$$

$$\tau = \alpha B t + f(x)$$
(33)

Расщепим теперь слагаемые вида:

$$\sum_{n=1}^{\infty} {\alpha \choose n}_a \mathcal{D}_x^{\alpha-n} \left[_a \mathcal{D}_x^{\alpha} \left[v\right] + {}_x \mathcal{D}_b^{\alpha} \left[v\right]\right] D_x^n \left[\tau\right]$$

Тогда можно заключить, что:

$$D_x^n[\tau] = 0 \rightarrow D_x^1[\tau] s = f'(x) = 0 \rightarrow f(x) = F \equiv const$$

$$\tau = \alpha B t + F \tag{34}$$

Из оставшихся слагаемых получаем систему:

$$\begin{cases} D_t \left[\mu_0 \right] = {}_{a} \mathcal{D}_x^{\alpha} \left[\vartheta_0 \right] + {}_{x} \mathcal{D}_b^{\alpha} \left[\vartheta_0 \right] \\ D_t \left[\vartheta_0 \right] = -{}_{a} \mathcal{D}_x^{\alpha} \left[\mu_0 \right] - {}_{x} \mathcal{D}_b^{\alpha} \left[\mu_0 \right] \end{cases}$$
(35)

Таким образом, функции μ_0 и ϑ_0 остаются произвольными функциями, удовлетворяющие системе (35), пораждая бесконечномерную группу преобразований.

Таким образом, получаем следующие инфинитезимальные генераторы:

$$X_1 = \frac{\partial}{\partial x} \tag{36}$$

$$X_2 = \frac{\partial}{\partial t} \tag{37}$$

$$X_3 = (u + \mu_0(t, x))\frac{\partial}{\partial u} + (v + \theta_0(t, x))\frac{\partial}{\partial v}$$
(38)

$$X_4 = t \frac{\partial}{\partial t} + x \frac{\partial}{\partial x} \tag{39}$$

Частным случаем (38) при $\mu_0 = v - u$ и $\vartheta_0 = -u - v$ будет преобразование вращения:

$$X = v \frac{\partial}{\partial u} - u \frac{\partial}{\partial v}$$

2.2. ПОИСК СИММЕТРИЙ ДРОБНО-ДИФФЕРЕНЦИАЛЬНОГО ОБОБЩЕНИЯ УРАВНЕНИЯ ШРЕДИНГЕРА С ПРОИЗВОДНЫМИ МАРШО

Теперь рассмотрим дробно-дифференциальное обобщение уравнения Шредингера на всей числовой оси. Как уже было показано (см. теоретическую часть), для этого удобно переходить к производным Маршо. Уравнение принимает вид:

$$i\frac{\partial \psi}{\partial t} = \mathbb{D}_{+}^{\alpha}[\psi] + \mathbb{D}_{-}^{\alpha}[\psi], \quad \alpha \in (1,2), \quad t > 0, \quad x \in (-\infty, \infty)$$
 (40)

Аналогично предыдущему пункту полагаем $\psi(t,x) = u(t,x) + iv(t,x)$ и приходим к системе:

$$\begin{cases} \frac{\partial u}{\partial t} = \mathbb{D}_{+}^{\alpha}[v] + \mathbb{D}_{-}^{\alpha}[v] \\ \frac{\partial v}{\partial t} = -\left(\mathbb{D}_{+}^{\alpha}[u] + \mathbb{D}_{-}^{\alpha}[u]\right) \end{cases}$$
(41)

Общего алгоритма поиска симметрий для оператора дробной производной Маршо нет. Поэтому ограничимся лишь проверкой некоторых симметрий.

Инфинитезимальный генератор будем искать в виде:

$$X = \tau \frac{\partial}{\partial t} + \xi \frac{\partial}{\partial x} + \mu \frac{\partial}{\partial u} + \vartheta \frac{\partial}{\partial v}$$

Тогда инфинитезимальный оператор продолженной группы имеет вид:

$$\tilde{X} = X + \left(\zeta^{u} \frac{\partial}{\partial u_{t}} + \rho^{u} \frac{\partial}{\partial (\mathbb{D}_{+}^{\alpha}[u])} + \lambda^{u} \frac{\partial}{\partial (\mathbb{D}_{-}^{\alpha}[u])} \right) + \left(\zeta^{v} \frac{\partial}{\partial v_{t}} + \rho^{v} \frac{\partial}{\partial (\mathbb{D}_{+}^{\alpha}[v])} + \lambda^{v} \frac{\partial}{\partial (\mathbb{D}_{-}^{\alpha}[v])} \right)$$

$$(42)$$

Координаты ζ^u , ζ^v будут определяться по формуле (11), остальные координаты представим в общем виде (10):

Применим оператор (42) к системе (41):

$$\begin{cases}
D_{t} \left[\mu\right] - u_{t}D_{t} \left[\tau\right] - u_{x}D_{t} \left[\xi\right] = \\
= \mathbb{D}_{-}^{\alpha} \left[\vartheta - \xi v_{x} - \tau v_{t}\right] + \xi D_{x} \left[\mathbb{D}_{-}^{\alpha} \left[v\right]\right] + \tau D_{t} \left[\mathbb{D}_{-}^{\alpha} \left[v\right]\right] + \\
+ \mathbb{D}_{+}^{\alpha} \left[\vartheta - \xi v_{x} - \tau v_{t}\right] + \xi D_{x} \left[\mathbb{D}_{+}^{\alpha} \left[v\right]\right] + \tau D_{t} \left[\mathbb{D}_{+}^{\alpha} \left[v\right]\right] \\
D_{t} \left[\vartheta\right] - v_{t}D_{t} \left[\tau\right] - v_{x}D_{t} \left[\xi\right] = \\
= - \left(\mathbb{D}_{-}^{\alpha} \left[\mu - \xi u_{x} - \tau u_{t}\right] + \xi D_{x} \left[\mathbb{D}_{-}^{\alpha} \left[u\right]\right] + \tau D_{t} \left[\mathbb{D}_{-}^{\alpha} \left[u\right]\right]\right) + \\
+ - \left(\mathbb{D}_{+}^{\alpha} \left[\mu - \xi u_{x} - \tau u_{t}\right] + \xi D_{x} \left[\mathbb{D}_{+}^{\alpha} \left[u\right]\right] + \tau D_{t} \left[\mathbb{D}_{+}^{\alpha} \left[u\right]\right]\right)
\end{cases}$$
(43)

Это не определяющая система, но для удобства будем в неё подставлять различные симметрии, а затем, если это будет необходимо, будем делать замену в силу исходной системы (41).

- 1. $\xi = 1$, $\tau = 0$, $\mu = 0$, $\vartheta = 0$. Поскольку производная Маршо от константы равна нулю, то данные координаты в явном виде обнуляют систему (43).
- 2. $\xi = 0, \tau = 1, \mu = 0, \vartheta = 0$. Аналогично предыдущему пункту.
- 3. $\xi = x, \tau = t, \mu = 0, \vartheta = 0$

$$-u_{t} = \mathbb{D}_{-}^{\alpha} \left[-xv_{x} - tv_{t} \right] + xD_{x} \left[\mathbb{D}_{-}^{\alpha} [v] \right] + tD_{t} \left[\mathbb{D}_{-}^{\alpha} [v] \right] + \\ + \mathbb{D}_{+}^{\alpha} \left[-xv_{x} - tv_{t} \right] + xD_{x} \left[\mathbb{D}_{+}^{\alpha} [v] \right] + tD_{t} \left[\mathbb{D}_{+}^{\alpha} [v] \right]$$

В условиях существования производных Маршо от функций u, v можно поменять порядок интегрирования и дифференцирования. Тогда некоторые слагаемые сократятся:

$$-u_t = \mathbb{D}^{\alpha}_{-}[-xv_x] + x\mathbb{D}^{\alpha}_{-}[v_x] + \mathbb{D}^{\alpha}_{+}[-xv_x] + x\mathbb{D}^{\alpha}_{+}[v_x]$$

Используя формулу (8):

$$-u_t = -\mathbb{D}_-^{\alpha}[v] - x\mathbb{D}_-^{\alpha}[v_x] + x\mathbb{D}_-^{\alpha}[v_x] - \mathbb{D}_+^{\alpha}[v] - x\mathbb{D}_+^{\alpha}[v_x] + x\mathbb{D}_+^{\alpha}[v_x]$$
$$u_t = \mathbb{D}_-^{\alpha}[v]\mathbb{D}_+^{\alpha}[v]$$

В силу (41) получаем тождественное равенство. Аналогичное тождество получаем у второго уравнения системы (43).

- 4. $\xi = 0, \tau = 0, \mu = u, \vartheta = v$. После постановки в явном виде получаем систему (43).
- 5. $\xi = 0, \tau = 0, \mu = -v, \vartheta = u$. Аналогично получаем систему (43).

Таким образом, все основные симметрии, допускаемые уравнением (17) на конечном отрезке допускаются и в случае бесконечного интервала.

Заметим, однако, что в предельном случае $\alpha = 2$, то есть когда дробные производные переходят в классическую вторую производную, уравнение будет допускать аналог преобразования Галлилея при:

$$\xi=t, \tau=0, \mu=\frac{1}{4}xv, \vartheta=-\frac{1}{4}xu$$

Попробуем проверить будет ли иметь место аналог такого преобразования в случае дробного порядка на бесконечном интервале. Положим:

$$\xi = t, \tau = 0$$

Подставим их в (43), получим:

$$\begin{cases} \mu_t - u_x = \mathbb{D}_+^{\alpha}[\vartheta] + \mathbb{D}_-^{\alpha}[\vartheta] \\ \vartheta_t - v_x = -\mathbb{D}_+^{\alpha}[\mu] - \mathbb{D}_-^{\alpha}[\mu] \end{cases}$$

По аналогии с предельным случаем $\alpha = 2$ положим $\mu = \beta xv$, $\vartheta = -\beta xu$. Тогда для первого уравнения системы:

$$u_x = \beta \left(\mathbb{D}_+^{\alpha - 1} [u] + \mathbb{D}_-^{\alpha - 1} [u] \right)$$

Данное равенство возможно только в случае целого $\alpha=2$. При любом другом выборе μ и ϑ усложняется правая часть уравнения и не удается подобрать такие функции, чтобы получить необходимую допускаемую симметрию.

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы был проведен групповой анализ дробно-дифференциального уравнения Шредингера с производными Римана-Лиувилля, в ходе которого была найдена бесконечномерная алгебра операторов, среди которых есть операторы сдвига и однородного растяжения по времени и пространству.

Все данные операторы также допускаются дробно-дифференциальным уравнением Шредингера с производными Маршо, преобразование Галлилея в том виде, в котором допускается классическим уравнением, найдено не было.

СПИСОК ЛИТЕРАТУРЫ

- 1. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
- 2. Касаткин А. А. Симметрии и точные решения уравнений с производными дробного порядка типа Римана–Лиувилля: Дисс. канд. физ.-мат. наук. 2013. УГАТУ. 118 с.
- 3. Лукащук, В. О., С. Ю. Лукащук. Обыкновенные дифференциальные уравнения дробного порядка: основы классической теории и группового анализа. Уфа: УГАТУ, 2022.
- 4. Ибрагимов Н. Х. Группы преобразований в математической физике. М.: Наука, 1983. 280 с.