Contents

1	From Reading Group on Durrett			3
	1.1	Measure and Integration		3
		1.1.1	Measure and Probability Spaces	3
		1.1.2	Construction of Measures	5
		1.1.3	Application: Borel and Lebesgue-Stietjes Measure on $\mathbb R$ $\ \ .$	7
		1.1.4	Countable Product Space and Lebesgue Measure on \mathbb{R}^d	8
		1.1.5	Integration	8
		1.1.6	Convergence Concepts	10
		1.1.7	Differentiation	10
	1.2	Indepe	endence	10
		1.2.1	Independence	10
		1.2.2	Law of Large Numbers	10
		1.2.3	Central Limit Theorem	10
	Colo	r code:	highlight, key concepts and definitions, to be added.	

Schedule

- 1. Measure space, measurable functions
- 2. Construction of Lebesgue measure on $\mathbb{R},$ Lebesgue integral
- 3. Convergence concepts, product measure
- 4. Independence
- 5. LLN

CONTENTS 2

- 6. CLT
- 7. Martingale

Chapter 1

From Reading Group on Durrett

Reference: PTE, Folland and Tao.

1.1 Measure and Integration

1.1.1 Measure and Probability Spaces

First of all, why should we discuss measure theory. It's for a better integration theory than the usual Riemann integral. Because we need strong conditions for arguments like:

$$\lim_{n} \int f_n = \int \lim_{n} f_n$$

to hold for Riemann integral. TBA: Relationship with Riemann Integral We'll talk about

- 1. Measure space, construction of measure, Lebesgue measures;
- 2. Integration theory
- 3. Convergence concepts
- 4. Differentiation

Let's start with an abstract measure space. Let Ω be a space. A σ -algebra \mathcal{F} is a collection of subsets called *measurable sets* of Ω such that it's closed under complements and countable unions. Also the $\emptyset \in \mathcal{F}$. We can assign *measure* μ to members in \mathcal{F} . The

reason we need to restrict attention from the power set to \mathcal{F} is that there are examples that violate some properties we want a measure to have. μ satisfies:

$$\mu(\varnothing) = 0$$
 and $\mu\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$ for $(A_i) \subset \mathcal{F}$

The triplet $(\Omega, \mathcal{F}, \mu)$ is called a *measure space*.

A *measurable function* is $X : (\Omega, \mathcal{F}, \mu) \to (Y, \mathcal{H})$ such that for all $H \in \mathcal{H}, X^{-1}(H) \in \mathcal{F}$. Meaning that we can assign a measure to the subsets of \mathcal{H} based on the measure μ and X. Given two measurable spaces, we can check whether a function X is measurable.

1.1.1 Lemma. Suppose $\mathcal{H} = \sigma(\mathcal{G})$, if for all $B \in \mathcal{G}$, $X^{-1}(B) \in \mathcal{F}$, then X is measurable.

Proof. Let $\mathcal{H}' = \{B \subset S \mid X^{-1}(B) \in \mathcal{F}\}$, then we can show \mathcal{H}' is a σ -algebra because X^{-1} preserves complements and union. Then we have $\mathcal{G} \subset \sigma(\mathcal{G}) = \mathcal{H} \subset \mathcal{H}'$, meaning that all $H \in \mathcal{H}$ satisfies the condition.

1.1.2 Open Sets on \mathbb{R} . Every open set $U \subset \mathbb{R}$ is an at most countable union of disjoint open intervals.

Distribution and Density

Distribution is the probability induced by a random variable X, such that $\mu(A) = P(X \in A)$. *Density* is defined via some methods(To be added). It's used to change measure, for example,

$$\int g(X) \, \mathrm{d}P = \int g(x) f(x) \, \mathrm{d}x$$

the latter being the Lebesgue integral over \mathbb{R} to be defined later.

Product Measure Space

Let $(Y_{\alpha}, \mathcal{H}_{\alpha}) : \alpha \in \mathcal{A}$ be a collection of measurable spaces, then we can define a *product* σ -algebra $\otimes_{\alpha} \mathcal{H}_{\alpha} = \sigma \{ \pi_{\alpha}^{-1}(E_{\alpha}) : E_{\alpha} \in \mathcal{H}_{\alpha}, \alpha \in \mathcal{A} \}$ on the product space $\prod_{\alpha} \Omega_{\alpha}$,

1.1.3 Proposition. Let Ω , \mathcal{F} and $(Y_{\alpha}, \mathcal{H}_{\alpha})$ be measurable spaces, let $(Y, \mathcal{H}) = (\prod Y_{\alpha}, \otimes_{\alpha} \mathcal{H}_{\alpha})$. $f: \Omega \to Y$ is $(\mathcal{F}, \mathcal{H})$ -measurable if and only if $f_{\alpha} = \pi_{\alpha} f$ is $\mathcal{F}, \mathcal{H}_{\alpha}$ -measurable for all α .

1.1.4 Proposition (TBA). Product σ -algebra is generally smaller than the σ -algebra on the product space itself. On separable metric space, they coincide.

Probability Space and Random Variables

A measure space is a *probability space* if $\mu = 1$, we write it as (Ω, \mathcal{F}, P) . A random variable/vector is a measurable function on probability space $X : \Omega \to \mathbb{R}/\mathbb{R}^d/\mathbb{C}$ with the Borel σ -algebra, the σ -algebra generated by the open sets.

1.1.5 Measurability. For countable collections of random variables X_n , Y_n , X+Y, XY and $\sup X_n$, $\inf X_n$, $\limsup X_n$, $\liminf X_n$ are measurable. If $\lim_n X_n$ exists, it's also measurable.

Proof. For
$$\sup_n X_n$$
, let $t \in \mathbb{R}$, $\sup_n X_n \in (-\infty, t) \iff X_n < t$, for all t , hence $(\sup_n X_n)^{-1} = \bigcap_n X_n^{-1}(-\infty, t)$.

Now consider finite vector of random variables $X^d := (X_1, \dots, X_d) : \Omega \to \mathbb{R}^d$. Then X^d is measurable iff all X_i are measurable.

1.1.2 Construction of Measures

Motivation

Now we want to show that we can actually find measure on \mathbb{R} and \mathbb{R}^d that are the most useful spaces. We start from abstract construction method inspired by the following observation of measure on \mathbb{R} .

In order to have a natural measure λ on \mathbb{R} , we want the following properties:

- 1. $\lambda_0(a, b] = b a$;
- 2. Measure of union of intervals should be the sum;(we can't have uncountable sum, hence restricted to countable union)
- 3. Apply to all intervals(we can't apply to the power set, hence restrict to the measurable sets).

Now consider the set $S_{\mathbb{R}} = \{(a, b] : a \leq b \in \mathbb{R}\}$, it's too small, we want to extend the natural measure funtion λ_0 to a larger set(we can extend to $\mathcal{B}_{\mathbb{R}}$, even to $\mathcal{L}_{\mathbb{R}}$).

Semi-algebra S is collection of subsets of a space Ω that satisfies the following conditions: closed under intersection and the complements are union of finite disjoint sets in S. Let μ_0 be a what I call semi-pre-measure to (algebra, premeasure) to (outer-measurable sets, outer measure) to (sigma-algebra, measure) where the semi-pre-measure μ_0 satisfies if both $S_N = \bigsqcup^N S_j, S_\infty = \bigsqcup^\infty S_j \in S$

$$\mu_0(\emptyset) = 0; \quad \mu_0(S_N) = \sum_{j=0}^{N} \mu_0 S_j; \quad \mu_0(S_\infty) \le \sum_{j=0}^{\infty} \mu_0 S_j$$

We follow the steps of extension

$$(S, \mu_0) \to (A, \mu_1) \to (M, \mu^*) \to (\sigma(S), \mu)$$

that is semi-algebra and *pre-measure* μ_1 satisfies $\mu_1 \bigsqcup_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} \mu_1 A_i$ as long as the union is also in \mathcal{A} . And we will show that $\mathcal{B}_{\mathbb{R}} \subset \sigma(\mathcal{S})$.

Construction of Abstract Measure

1.1.6 $(S, \mu_0) \to (A, \mu_1)$. We have that $A = \{ \bigsqcup_j^N S_j : S_j \in S \}$ is an algebra. And $\mu_1(A) = \sum_i^N \mu_0 S_j$ is a premeasure.

Proof. $\mu_1(\emptyset) = 0$. Suppose $A = \bigsqcup^{\infty} A_i \in \mathcal{A}$, then there exists $T_l \in \mathcal{S} : l = 1, \dots N_T$, such that $A = \bigsqcup_l T_l$, also for each $A_j = \bigsqcup_k^{N_j} S_{j,k}$.

Let an *outer measure* be a function over the power set such that:

$$\mu^*(\varnothing) = 0$$
 and $\mu^*\left(\bigsqcup^{\infty} A_j\right) \le \sum_j \mu^* A_j$ and $\mu^*(A) \le \mu^*(B)$ for $A \subset B$

Also let \mathcal{M} be the *outer-measurable sets*, that is the collections of A such that

$$\mu^*(E) = \mu^*(E \bigcap A) + \mu^*(E \bigcap A^c)$$
 for all $E \subset X$

1.1.7 $(A, \mu_1) \rightarrow (M, \mu^*)$ Caratheodory's Theorem applied to premeasures. We can find the outer measure induced by μ_1 :

$$\mu_1^*(B) = \inf \left\{ \sum_{j=1}^{\infty} \mu_1 A_j : B \subset \bigcup_{j=1}^{\infty} A_j \right\}$$

we show μ_1^* is indeed an outer measure, Caratheodory states that for outer measures, M of μ_1^* is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is complete.

Proof.

1. Monotone property is easy, for countable subadditivity, we use ε -room method, find a cover C_{ik} of A_i such that :

$$\mu_1^*(A_j) > \sum_k \mu_1^* C_{jk} - \varepsilon$$

2. To show that \mathcal{M} is a σ -algebra we only need to show that for $E_j \in \mathcal{M}$ and any $B \subset \Omega$, we have:

$$\mu^*(B) \ge \mu^*(B \bigcap E) + \mu^*(B \bigcap E)$$

which can be seen by considering finite sum, taking out one E_j at a time and then take limit.

3. Show that the restriction is complete.

1.1.8 $(\mathcal{M}, \mu^*) \to (\sigma(S), \mu)$. We can restrict μ^* to define $\mu = \mu^*|_{\sigma(S)}$, and the resulting measure is complete.

Proof. We show that $\sigma(S) \subset M$ and the restriction is complete.

1.1.3 Application: Borel and Lebesgue-Stietjes Measure on $\mathbb R$

We verify that for any nondecreasing right-continuous function $F : \mathbb{R} \to \mathbb{R}$, the semi-algebra $\mathcal{S}_{\mathbb{R}}$ together with the semi-pre-measure defined by

$$\lambda_0(a,b] = F(b) - F(a)$$

satisfies the conditions set in the previous section. $\mathcal{A}_{\mathbb{R}}$ be the algebra generated by $\mathcal{S}_{\mathbb{R}}$ in turn will generate $\mathcal{B}_{\mathbb{R}}$. We can extend it to a something larger, a complete measure whose domain contains $\mathcal{B}_{\mathbb{R}}$. It will be called the *Lebesgue-Stietjes measure* and *Lebesgue measurable sets* \mathcal{M}_{λ} . The restriction on \mathcal{B} is called *Borel measure*. It's just the completion.

- **1.1.9** Regularity of \mathcal{M}_{λ} . Lebesgue measurable sets are of simple form if you allow for a small error.
 - 1. $\lambda(A) = \inf \{ \lambda U : A \subset U, U \text{ is open} \} = \sup \{ \lambda K : K \subset A, K \text{ is compact} \}$
 - 2. $A = G_{\delta} \setminus N_1 = F_{\sigma} \cup N_2$ where N are null sets.
 - 3. Littlewood's First Principle: Suppose $\lambda(A) < \infty$ then for all $\varepsilon > 0$, there exists B that is a finite union of open intervals such that $A \triangle B < \varepsilon$.

Proof.

1.1.4 Countable Product Space and Lebesgue Measure on \mathbb{R}^d

Product measurable and product measure.

1.1.5 Integration

Integration and measure are the two sides of same coin: integration is the extension of measure from the space of *indicator functions* $\mathbf{1}_A$ of measurable sets to a larger set of functions.

For *simple functions* $f_s = \sum_{j=1}^{N} \mathbf{1}_{A_j}$, we can define $\mu f_s = \sum_{j=1}^{N} \mu(A_j)$ Then for *nonnegative measurable* functions f, we can define

$$\mu f = \sup \{ \mu f_s : f_s \le f \text{ pointwise} \}$$

If $f = f^+ - f^-$ and the integrals of two nonnegative parts are not ∞ , then we say f is *integrable* or in L^1 and $\mu f = \mu f^+ - \mu f^-$.

- **1.1.10 Littlewood's Second Principle.** *Measurable and integrable functions can be approximated by simple well-behaved functions.*
- **1.1.11** Properties of Integral. 1. Monotone $\mu f \leq \mu g$ if $f \leq g$ pointwise.
 - 2. Linearity for a > 0, $\mu(af) = a\mu f$, $\mu(f + g) = \mu f + \mu g$.
 - 3. Monoton Convergence: if $0 \le f_n \uparrow f$ a.e., then $\mu f_n \uparrow \mu f$.

Proof. Folland proves by choosing simple function and a scaling factor α . Tao's proof is essentially the same. PTE proves via Fatou's lemma.

Suppose $f_n \uparrow f$ a.e., if μf exists, we know μf_n must converge because it's a nondecreasing bounded sequence of numbers. Also $\mu f_n \leq \mu f$ by monotonicity.

To show that $\mu f \leq \lim_n \mu f_n$, where $\mu f = \sup \{\mu g : g \text{ is simple, } g \leq f\}$, we only need to show that for all simple $g \leq f$, we have $\mu g \leq \mu f_n$. We can use ε -room method, let $E_n = \{\omega : f_n \geq (1 - \varepsilon)g\}$, $E_n \uparrow \Omega$, and we have $\int f_n \geq \int_{E_n} (1 - \varepsilon)g$, taking \lim (we have yet to show the monotone convergence for simple functions), we have $\lim \int f_n \geq (1 - \varepsilon) \int g$ for all $\varepsilon > 0$.

Remark. These three properties fully characterise the integral. That is given a functional that satisfies the three properties we can find a measure for which the function is the integral.

1.1.12 Inequalities and Controls. Useful inequalities and controls, suppose that $f \in L^1$;

- 1. Jensen's inequality: suppose we have a convex function $\Phi(x)$, then $\mu(\Phi(f)) \geq \Phi \mu f$
- 2. Holder's inequality. For $p, q : \frac{1}{p} + \frac{1}{q} = 1$, we have $||fg||_1 \le ||f||_p ||g||_q$
- 3. Minkowski's inequality: $||f + g||_p \le ||f||_p + ||g||_p$.
- 4. Chebyshev's Inequality:
- 5. For nonnegative measurable functions, $\mu f < \infty \implies f < \infty$ a.e., $\mu f = 0$ implies f = 0 a.e.
- 6. Moment and tail behaviour, if μ is finite,

$$\mu f^r < \infty \implies \sum x^{r-1} \mu(f > x) < \infty$$

Proof. We prove the above inequalities.

- 1. First we show that if $f \in L^1$ then $\Phi(f) \in L^1$ as well.
- 2. First we show that if $f, g \in L^1$ then $fg \in L^1$.

1.1.13 Fubini-Tonelli.

1.1.6 Convergence Concepts

- 1.1.14 Monotone, Fatou and Dominated Convergence.
- 1.1.15 Uniform Integrability.
 - 1.1.7 Differentiation
 - 1.2 Independence
 - 1.2.1 Independence
 - 1.2.2 Law of Large Numbers
 - 1.2.3 Central Limit Theorem