Electronics Systems

Timing Issues

Luca Fanucci

[Adapted from Rabaey's Digital Integrated Circuits, Second Edition, @2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

Timing Issues .2

Static vs Dynamic Storage

Static storage

- preserve state as long as the power is on
- have positive feedback (regeneration) with an internal connection between the output and the input
- useful when updates are infrequent (clock gating)

Dynamic storage

- store state on parasitic capacitors
- only hold state for short periods of time (milliseconds)
- require periodic refresh
- usually simpler, so higher speed and lower power

Latches vs Flipflops

Latches

- level sensitive circuit that passes inputs to Q when the clock is high (or low) - transparent mode
- input sampled on the falling edge of the clock is held stable when clock is low (or high) - hold mode

→ Flipflops (edge-triggered)

- edge sensitive circuits that sample the inputs on a clock transition
- positive edge-triggered: $0 \rightarrow 1$
- negative edge-triggered: $1 \rightarrow 0$
- built using latches (e.g., master-slave flipflops)

Timing Classifications

Synchronous systems

- All memory elements in the system are simultaneously updated using a globally distributed periodic synchronization signal (i.e., a global clock signal)
- Functionality is ensure by strict constraints on the clock signal generation and distribution to minimize
- Clock skew (spatial variations in clock edges)
- Clock jitter (temporal variations in clock edges)

Asynchronous systems

- Self-timed (controlled) systems
- No need for a globally distributed clock, but have asynchronous circuit overheads (handshaking logic, etc.)

□ Hybrid systems

- Synchronization between different clock domains
- Interfacing between asynchronous and synchronous domains

Timing Issues .8

Review: Synchronous Timing Basics

 \Box Under ideal conditions (i.e., when $t_{clk1} = t_{clk2}$)

$$T \ge t_{c-q} + t_{plogic} + t_{su}$$
 T (clock period) $t_{hold} \le t_{cdlogic} + t_{cdreg}$

the contamination delay is the minimum amount of time from when an input changes until any output starts to change its value. This change in value does not imply that the value has reached a stable condition.

Set-Up Time Violation

Set-Up Time Violation

Hold Time Violation

Hold Time Violation

$$t_{hold2} \le t_{cdlogic} + t_{cdreg1}$$

Example for evaluating minimum Clock Period

Timing Issues .14

DF8 is a static, master-slave D flip-flop with 1x drive strength.

Truth Table

24.0	Ą
0 84	8
LP "	<u>ب</u>

	q	b
	C	٥
	¢	
	a	3
	٠	4
	C	٥
	a	3
	٥	2
	a	3
Ì	ů)
ì		

Cap [pF]	0,010 0,010
Pin	O O

Power

1.736 µW/MHz

Area

0.423 mils² 273 µm²

0,035	1,0	66,0
0,020	0,80	0,79
0,015	0,75	0,74
Load	Delay C->Q	Delay C->QN

	Setup	Hold
D->C	0,17	0,04

DF84 is a static, master-slave D flip-flop with 4x drive strength.

Truth Table

Capacitance

Cap [pF]	0,010
Pin	O

Power

2.88 µW/MHz

Area

 $0.48 \, \text{mils}^2$ 310 $\, \mu\text{m}^2$

Load	0,015	0,020	0,035
Delay C->Q	0,65	0,70	06,0
Delay C->QN	0,64	69'0	0,89
	Setup	Hold	
D->C	0,17	0,04	

0.35 µm CMOS

DFA

DFA is a static, master-slave D flip-flop with 1x drive strength. RESET is asynchronous and active low.

e
9
Ta
th
2
-

tance	an In
Capaci	Din

Cap [pF]	0,010	0,010	0,020
Pin	C	O	RN

Area

Power

0.536 mils^2 $346 \text{ } \mu\text{m}^2$

			4 773 MANAMI
	Setup	Hold	ZI IIMIMA CITTI
D->C	0,16	0,04	
RN->C	0,01	0,73	

Load	0,015	0,020	0,035
Delay C->Q	0,84	06'0	1,2
Delay C->QN	0,84	0,89	1,1

NO2 is a 2-input NOR gate with 1x drive strength.

Truth Table

σ	1	0	0
В	0	~	×
A	0	×	-

Capacitance

Cap [pF]	0,015 0,015
Pin	A B

Area

0.085 mils² 55 µm²

Power

0.422 µW/MHz

20	_	6
0,020	0,31	0,29
0,015	0,24	0,23
0,010	0,13	0,11
Load [pF]	Delay A->Q [ns] 0,13	Delay B->Q [ns] 0,11

EN1 is a 2-input EXCLUSIVE-NOR (XNOR) gate with 1x drive strength.

Truth Table

2.5				
O	Ļ	0	0	•
В	0	-	0	-
A	0	0	~	~

B ENI O

Capacitance

Cap [pF]	0,020
Pin	A B

Area

0.169 mils² 109 µm²

Power

0.576 µW/MHz

Load [pF]	0,010	0,015	0,020
Delay A->Q [ns]	0,28	0,35	0,40
Delay B->Q [ns]	[ns] 0,27	0,33	0,39

ON21 is an OR / NAND circuit providing the logical function Q = NOT [(A+B).C].

Truth Table

8				
Ø	L	-	0	0
С	×	0	$\overline{}$	-
В	0	×	~	×
Α	0	×	×	·
2.0				

DINZ I

m

ی

Capacitance

Cap [pF]	0,015 0,015 0,015
Pin	A B C

Area

0.141 mils² 91 µm²

Power

0.446 µW/MHz

Load [pF]	0,010	0,015	0,020
Delay A->Q [ns]	0,16	0,23	0,34
Delay B->Q [ns]	0,17	0,24	0,35
Delay C->Q [ns]	ls] 0,14	0,20	0,30

Example for evaluating minimum Clock Period

Timing Issues .21

Example for evaluating minimum Clock Period

Review: Synchronous Timing Basics

 \Box Under ideal conditions (i.e., when $t_{clk1} = t_{clk2}$)

$$T \ge t_{c-q} + t_{plogic} + t_{su}$$

 $t_{hold} \le t_{cdlogic} + t_{cdreg}$

Under real conditions, the clock signal can have both spatial (clock skew) and temporal (clock jitter) variations

- positive (clock and data flowing in the same direction) or negative skew is constant from cycle to cycle (by definition); skew can be (clock and data flowing in opposite directions)
- litter causes T to change on a cycle-by-cycle basis

Review: Synchronous Timing Basics

Sources of Clock Skew and Jitter in Clock Network

□ Skew

- manufacturing device variations in clock drivers
- interconnect variations
- environmental variations (power supply and temperature)

□ Jitter

- clock generation
- capacitive loading and coupling
- environmental variations (power supply and temperature)

Positive Clock Skew

Clock and data flow in the same direction

- 7

Positive Clock Skew

Clock and data flow in the same direction

 $T + \delta \ge t_{c-q} + t_{plogic} + t_{su}$ so $T \ge t_{c-q} + t_{plogic} + t_{su} - \delta$

 t_{hold} : $t_{hold} + \delta \le t_{cdlogic} + t_{cdreg}$ so $t_{hold} \le t_{cdlogic} + t_{cdreg} - \delta$

> 0: Improves performance, but makes $_{hold}$ harder to meet. If t_{hold} is not met (race conditions), the circuit malfunctions independent of the clock period!

Negative Clock Skew

Clock and data flow in opposite directions

-

thold:

Negative Clock Skew

Clock and data flow in opposite directions

 $t_{hold} + \delta \le t_{cdlogic} + t_{cdreg}$ So $t_{hold} \le t_{cdlogic} + t_{cdreg} - \delta$ $T + \delta \ge t_{c-q} + t_{plogic} + t_{su}$ so $T \ge t_{c-q} + t_{plogic} + t_{su} - \delta$

 \square δ < 0: Degrades performance, but t_{hold} is easier to meet (eliminating race conditions)

Clock Jitter

□ Jitter causes T to vary on a cycle-bycycle basis

. ⊢

Clock Jitter

□ Jitter causes T to vary on a cycle-by-cycle basis

 $T-2t_{jitter} \geq t_{c-q} + t_{plogic} + t_{su} \quad \text{so} \quad T \geq t_{c-q} + t_{plogic} + t_{su} + 2t_{jitter}$

 Jitter directly reduces the performance of a sequential circuit

Combined Impact of Skew and Jitter

Constraints
 on the
 minimum
 clock period
 (δ > 0)

$$\mathsf{T} \geq \mathsf{t}_{\mathsf{c-q}} + \mathsf{t}_{\mathsf{plogic}} + \mathsf{t}_{\mathsf{su}} - \delta + 2\mathsf{t}_{\mathsf{jitter}}$$
 thold

$$t_{\text{hold}} \leq t_{\text{cdlogic}} + t_{\text{cdreg}} - \delta - 2t_{\text{jitter}}$$

 $- \delta > 0$ with jitter: Degrades performance, and makes t_{hold} even harder to meet. (The acceptable skew is reduced by jitter.)

Example of a Clock Generator

- □ Chip with 10.000 FF
- Each FF has a Cin=50 fF for the clock input
- Clock Generator needs to drive Ctot= 500pF

Example of a Clock Generator

- □ High Power consumption
- □ Supply line noise
- □ High current density in interconnection (elettromigration!)

Timing Issue

Clock Distribution Networks

- Clock skew and jitter can ultimately limit the performance of a digital system, so designing a clock network that minimizes both is important
- In many high-speed processors, a majority of the dynamic power is dissipated in the clock network.
- To reduce dynamic power, the clock network must support clock gating (shutting down (disabling the clock) units)

□ Clock distribution techniques

- Balanced paths (H-tree network, matched RC trees)
- In the ideal case, can eliminate skew
- Could take multiple cycles for the clock signal to propagate to the leaves of the tree

Clock grids

- Typically used in the final stage of the clock distribution network
- Minimizes absolute delay (not relative delay)

H-Tree Clock Network

□ If the paths are perfectly balanced, clock skew is zero

Clock Grid Network

□ Distributed buffering reduces absolute delay and makes clock gating easier, but is sensitive to variations in the buffer delay

secondary clock buffers

The secondary buffers isolate the local clock nets from the upstream load and amplify the clock signals degraded by the RC network

- decreases absolute skew
- gives steeper clocks
- Only have to bound the skew within the local logic area

DEC Alpha 21164 (EV5) Example

- □ 300 MHz clock (9.3 million transistors on a 16.5x18.1 mm die in 0.5 micron CMOS technology - 4 layer metal)
- single phase clock
- 3.75 nF total clock load
- Extensive use of dynamic logic
- □ 20 W (out of 50) in clock distribution network
- Two level clock distribution
- Single 6 inverter stage main clock buffer at the center of the chip
- Secondary clock buffers drive the left and right sides of the clock grid in m3 and m4
- Total equivalent driver size of 58 cm !!

Clock Skew in Alpha Processor

Dealing with Clock Skew and Jitter

- To minimize skew, balance clock paths using H-tree or matched-tree clock distribution structures.
- If possible, route data and clock in opposite directions; eliminates races at the cost of performance.
- The use of gated clocks to help with dynamic power consumption make jitter worse.
- Shield clock wires (route power lines V_{DD} or GND next to clock lines) to minimize/eliminate coupling with neighboring signal nets.
- Use dummy fills to reduce skew by reducing variations in interconnect capacitances due to interlayer dielectric thickness variations.
- effects on skew and jitter. Power supply noise fundamentally Beware of temperature and supply rail variations and their limits the performance of clock networks.

What is a PLL?

□ A PLL is a negative feedback system where an oscillatorgenerated signal is phase and frequency locked to a reference signal.

How are PLL's Used?

- □ Frequency Synthesis (e.g. generating a 1 GHz clock from a 100 MHz reference)
- Skew Cancellation (e.g. phase-aligning an internal clock to the IO clock) (May use a DLL instead)
- Extracting a clock from a random data stream (e.g. seriallink receiver)

Charge-Pump PLL Block Diagram

- Phase-Frequency Detector (PFD)
 Voltage-Controlled Oscillator (VCO) □ VCO Level-Shifter (LS)
 - Charge-Pump (CP)Low-Pass Filter (LPF)

□ Feedback Divider (FBDIV)

Components in a Nutshell

- PFD: outputs digital pulse whose width is proportional to phase error
- CP: converts digital error pulse to analog error current
- LPF: integrates (and low-pass filters) error current to generate VCO control voltage
- VCO: low-swing oscillator with frequency proportional to control voltage
- LS: amplifies VCO levels to full-swing
- DIV: divides VCO clock to generate FBCLK clock

