The largest linear space of operators satisfying the Daugavet Equation in L_1

R. V. Shvidkoy
Department of Mathematics
University of Missouri - Columbia
Columbia, MO 65211
USA

E-mail: mathgr31@showme.missouri.edu

March 14, 1999

Abstract

We find the largest linear space of bounded linear operators on $L_1(\Omega)$ that being restricted to any $L_1(A)$, $A \subset \Omega$, satisfy the Daugavet equation.

1 Introduction.

Let (Ω, Σ, μ) be an arbitrary measure space without atoms of infinite measure. Let also $\Sigma^+ = \{A \in \Sigma : \mu(A) > 0\}$. If $A \in \Sigma^+$, $L_1(A)$ stands for the space of (classes of) μ -integrable functions supported on A. If T is a bounded linear operator on $L_1(\Omega)$ and $A \in \Sigma^+$, we denote by T_A the restriction of T onto $L_1(A)$. Finally, $\mathcal{L}(L_1(\Omega))$ denotes the space of all bounded linear operators on $L_1(\Omega)$.

The purpose of this note is to give an explicit description of the largest linear space \mathcal{M} of operators $T \in \mathcal{L}(L_1(\Omega))$ satisfying the following identity:

$$||Id_A + T_A|| = 1 + ||T_A||, (1)$$

for any set $A \in \Sigma^+$.

Identity (1) is known as the Daugavet equation and is investigated in a series of works (see [4] and [6] for recent results and further references). It was first discovered by Babenko and Pichugov ([1]) that all the compact operators on $L_1[0,1]$ satisfy (1), if A = [0,1]. Later, Holub proved the same result for the weakly compact operators on an arbitrary atomless $L_1(\Omega)$ (see [3]). Plichko and Popov in their work [5] found much broader (in case of atomless μ) linear class of so-called narrow operators satisfying the Daugavet equation, and in fact their proof works for operators from $L_1(A)$ to $L_1(\Omega)$, whenever $A \in \Sigma^+$.

So, finding the largest class of such operators naturally completes this line of results.

2 Main result.

In the sequel it is convenient to denote $\Sigma_A^+ = \{B : B \subset A, B \in \Sigma^+\}$, whenever $A \in \Sigma^+$.

We define \mathcal{M} as the set of all operators $T \in \mathcal{L}(L_1(\Omega))$ that meet the following condition:

for every $\varepsilon > 0$ and $A \in \Sigma^+$ there is a $B \in \Sigma_A^+$ with $\mu(B) < \infty$ such that $\left\| \chi_B \cdot T\left(\frac{\chi_B}{\mu(B)} \right) \right\| < \varepsilon$.

This condition simply means that the operator T can shift sufficiently many functions from their supports.

Let us state our main result.

Theorem 1 Every linear set of operators satisfying (1) for any $A \in \Sigma^+$ is contained in \mathcal{M} , and \mathcal{M} is itself a closed linear space consisting of such operators.

The main ingredient in the proof of this theorem is the following proposition.

Proposition 2 For an operator $T \in \mathcal{L}(L_1(\Omega))$ the following conditions are equivalent:

(i) T and -T satisfy (1) for all $A \in \Sigma^+$;

(ii) For every $\varepsilon > 0$ and $A \in \Sigma^+$ there is an $A' \in \Sigma_A^+$ such that if $B \in \Sigma_{A'}^+$ then we can find a $B' \in \Sigma_B^+$ with the following properties:

a)
$$\left\| \frac{\chi_{B'}}{\mu(B')} - \frac{\chi_B}{\mu(B)} \right\| < \varepsilon$$
,

b)
$$\left\|\chi_{B'} \cdot T\left(\frac{\chi_{B'}}{\mu(B')}\right)\right\| < \varepsilon;$$

(iii) $T \in \mathcal{M}$.

Proof. (i) implies (ii). We begin with the following observation.

Suppose $S: L_1(A) \mapsto L_1(\Omega)$ is a bounded linear operator, then any given $\varepsilon > 0$ there is a set $A_1 \in \Sigma_A^+$ with $\mu(A_1) < \infty$ such that for every non-negative function $f \in S(L_1(A_1))$ we have $||Sf|| > ||S|| - \varepsilon$.

Indeed, we can assume that $\mu(A) < \infty$ and choose $g^* \in S(L_1^*(\Omega))$ so that $||S^*g^*|| > ||S|| - \varepsilon$. Then, regarding S^*g^* as an element of $L_{\infty}(A)$ we find a set $A_1 \in \Sigma_A^+$ with $\theta S^*g^*(A_1) \subset (||S|| - \varepsilon, ||S||]$, where θ is a sign. Now, if $f \in S(L_1(A))$, $f \geq 0$ and supp $(f) \subset A_1$, then $||Sf|| > \theta g^*(Sf) = \theta S^*g^*(f) > ||S|| - \varepsilon$, from where the observation follows.

We know that $||Id_A + T_A|| = 1 + ||T_A||$. By scaling, without loss of generality we can and do assume that $||T_A|| = 1$. So there is an $A_1 \in \Sigma_A^+$ with $\mu(A_1) < \infty$ such that

$$\left\| \frac{\chi_B}{\mu(B)} + T\left(\frac{\chi_B}{\mu(B)}\right) \right\| > 2 - \varepsilon, \tag{3}$$

whenever $B \in \Sigma_{A_1}^+$. We also know that $||Id_{A_1} - T_{A_1}|| = 1 + ||T_{A_1}|| > 2 - \varepsilon$. Thus there exists an $A' \in \Sigma_{A_1}^+$ such that

$$\left\| \frac{\chi_B}{\mu(B)} - T\left(\frac{\chi_B}{\mu(B)}\right) \right\| > 2 - \varepsilon, \tag{4}$$

whenever $B \in \Sigma_{A'}^+$.

We prove that A' is the desired set.

To this end, let us fix $B \in \Sigma_{A'}^+$. It follows from (3), (4) and a theorem of Dor [2] that there are two disjoint measurable sets Ω_1 and Ω_2 in Ω such that

$$\int_{\Omega_1} \left| T\left(\frac{\chi_B}{\mu(B)}\right) \right| (t)dt > (1 - \varepsilon)^2, \tag{5}$$

and

$$\int_{\Omega_2} \frac{\chi_B}{\mu(B)}(t)dt > (1 - \varepsilon)^2.$$

The last inequality implies

$$\mu(B \cap \Omega_1) = \mu(B) \int_{B \cap \Omega_1} \frac{\chi_B}{\mu(B)}(t)dt < \mu(B) \int_{\Omega \setminus \Omega_2} \frac{\chi_B}{\mu(B)}(t)dt$$

$$< (1 - (1 - \varepsilon)^2)\mu(B) = (2\varepsilon - \varepsilon^2)\mu(B).$$
(6)

Let us put $B' = B \setminus \Omega_1$ and show that B' meets conditions a) and b). First,

$$\left\| \frac{\chi_{B'}}{\mu(B')} - \frac{\chi_B}{\mu(B)} \right\| = \int_{\Omega} \left| \frac{\chi_{B'}}{\mu(B')} - \frac{\chi_{B'}}{\mu(B)} + \frac{\chi_{B'}}{\mu(B)} - \frac{\chi_B}{\mu(B)} \right| (t)dt$$

$$\leq 1 - \frac{\mu(B')}{\mu(B)} + \frac{\mu(B \cap \Omega_1)}{\mu(B)} = 2\frac{\mu(B \cap \Omega_1)}{\mu(B)}$$

and taking into account (6), we obtain

$$\left\| \frac{\chi_{B'}}{\mu(B')} - \frac{\chi_B}{\mu(B)} \right\| < 2(2\varepsilon - \varepsilon^2). \tag{7}$$

Second, from (5), (7) and $||T_A|| = 1$ it follows that

$$\left\| \chi_{B'} \cdot T \left(\frac{\chi_{B'}}{\mu(B')} \right) \right\| = \int_{B'} \left| T \left(\frac{\chi_{B'}}{\mu(B')} \right) \right| (t) dt$$

$$< \int_{B'} \left| T \left(\frac{\chi_B}{\mu(B)} \right) \right| (t) dt + 2(2\varepsilon - \varepsilon^2)$$

$$\leq \int_{\Omega \setminus \Omega_1} \left| T \left(\frac{\chi_B}{\mu(B)} \right) \right| (t) dt + 2(2\varepsilon - \varepsilon^2)$$

$$< 3(2\varepsilon - \varepsilon^2).$$

In view of arbitrariness of ε , this gives the desired result.

It is obvious that (iii) follows from (ii).

Let us finally prove that (iii) implies (i). Since \mathcal{M} is stable under scalar multiplication, it is sufficient to prove (1) only for T.

To this end, we fix an arbitrary $A \in \Sigma^+$ and as above for any given $\varepsilon > 0$ we find an $A' \in \Sigma_A^+$ with $\mu(A') < \infty$ such that for every $B \in \Sigma_{A'}^+$, $\left\| T\left(\frac{\chi_B}{\mu(B)}\right) \right\| > \|T_A\| - \varepsilon$. By condition (2), there is a $B_0 \in \Sigma_{A'}^+$ such that $\left\| \chi_{B_0} \cdot T\left(\frac{\chi_{B_0}}{\mu(B_0)}\right) \right\| < \varepsilon$. This means that $\frac{\chi_{B_0}}{\mu(B_0)}$ and $T\left(\frac{\chi_{B_0}}{\mu(B_0)}\right)$ are almost disjoint functions, and as a consequence we have the following estimate:

$$\begin{aligned} \|Id_A + T_A\| &\geq \left\| \frac{\chi_{B_0}}{\mu(B_0)} + T\left(\frac{\chi_{B_0}}{\mu(B_0)}\right) \right\| \\ &= \int_{B_0} \left| \frac{\chi_{B_0}}{\mu(B_0)} + T\left(\frac{\chi_{B_0}}{\mu(B_0)}\right) \right| (t)dt + \int_{\Omega} \left| T\left(\frac{\chi_{B_0}}{\mu(B_0)}\right) \right| (t)dt \\ &- \int_{B_0} \left| T\left(\frac{\chi_{B_0}}{\mu(B_0)}\right) \right| (t)dt \\ &> 1 - \varepsilon + \|T_A\| - \varepsilon - \varepsilon = 1 + \|T_A\| - 3\varepsilon. \end{aligned}$$

This finishes the proof. \Box

Now we are in a position to prove our main result.

Proof of Theorem 1.

Proposition 2 easily implies that \mathcal{M} is largest and consists of operators satisfying (1) for all $A \in \Sigma^+$. \mathcal{M} is obviously closed and stable under scaling. So, the only thing we have to prove is that if operators U and V belong to \mathcal{M} , then their sum belong to \mathcal{M} too. To show this, we check condition (ii) of Proposition 2 for U + V. Further on, we assume that $||V|| \leq 1$.

Indeed, let $A \in \Sigma^+$ and $\varepsilon > 0$ be arbitrary. Applying Proposition 2 to the operator U we find a set $A' \in \Sigma_A^+$ as in condition (ii). Then, by the same proposition applied to V we find a set $A'' \in \Sigma_{A'}^+$ with the correspondent properties. To show that A'' is the required set, suppose $B \in \Sigma_{A''}^+$. By the choice of A'' there is a $B' \in \Sigma_B^+$ such that

$$\left\| \frac{\chi_{B'}}{\mu(B')} - \frac{\chi_B}{\mu(B)} \right\| < \frac{\varepsilon}{4},\tag{8}$$

and

$$\left\| \chi_{B'} \cdot V\left(\frac{\chi_{B'}}{\mu(B')}\right) \right\| < \frac{\varepsilon}{4}. \tag{9}$$

Since $B' \subset A'$, by the analogous property of A', there is a $B'' \in \Sigma_{B'}^+$ with

$$\left\| \frac{\chi_{B''}}{\mu(B'')} - \frac{\chi_{B'}}{\mu(B')} \right\| < \frac{\varepsilon}{4},\tag{10}$$

and

$$\left\|\chi_{B''}\cdot U\left(\frac{\chi_{B''}}{\mu(B'')}\right)\right\|<\frac{\varepsilon}{2}.$$

From (8) and (10) we get $\left\|\frac{\chi_{B''}}{\mu(B'')} - \frac{\chi_B}{\mu(B)}\right\| < \varepsilon$. So, if we prove that

$$\left\|\chi_{B''}\cdot V\left(\frac{\chi_{B''}}{\mu(B'')}\right)\right\|<\frac{\varepsilon}{2},$$

then

$$\left\|\chi_{B''}\cdot (V+U)\left(\frac{\chi_{B''}}{\mu(B'')}\right)\right\|<\varepsilon,$$

and we are done. But this easily follows from (9), (10) and the facts that $||V|| \le 1$ and $B'' \subset B'$.

The proof is completed. \Box

References

- [1] V. F. Babenko and S. A. Pichugov, On a property of compact operators in the space of integrable functions, *Ukranian Math. J.* **33** (1981), 374-376.
- [2] L. E. Dor, On projections in L_1 , Ann. of Math. 102 (1975), 463-474.
- [3] J. R. Holub, Daugavet's equation and operators on $L_1(\mu)$, *Proc. Amer. Math. Soc.* **100** (1987), 295–300.
- [4] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the Daugavet property, *C.R.Acad.Sci.Paris* **325.1** (1997), 1291-1294. (to appear in Trans. Amer. Math. Soc.)
- [5] A. M. Plichko and M. M. Popov, Symmetric function spaces on atomless probability spaces, *Rozpr.Mat.* **306** (1990), 1-85.
- [6] R. V. Shvidkoy, Geometric aspects of the Daugavet property, (to appear).