

GUIDE

POUR L'ESTIMATION DES INCERTITUDES DE MESURE DANS LES LABORATOIRES D'ESSAIS SUR LE MATERIAU BETON

VOLUME 1

PROG_3 Janvier 2004 Page 2 sur 25

SOMMAIRE

Préalable	3
Problématique	3
Essais mécaniques et physiques sur éprouvettes de béton durci	4
 Domaine étudié Définitions Limites conventionnelles du champ d'application Identification des catégories de facteurs d'influence Les textes de référence 	4 4 5 6
 Les diagrammes cause-effet Diagrammes relatifs au prélèvement d'échantillon Diagrammes relatifs à la confection des corps d'épreuves Diagrammes relatifs à la conservation des corps d'épreuves sur site Diagrammes relatifs au transport des corps d'épreuves au laboratoire 	7 7 8 9 10
 11. Diagrammes relatifs aux réceptions et préparations des corps d'épreuves 12. Diagrammes relatifs aux mesures sur corps d'épreuves 13. Conditions d'émissions de réserves 14. Les calculs d'incertitude 15. Les besoins en études complémentaires 	11 12 13 18 24
Annexe	25
Processus général de réalisation d'essai	25

PROG_3 – doc1 Janvier 2004 Page 3 sur 25

Préalable

Cette réflexion sur l'estimation des incertitudes de mesure dans les laboratoires d'essais sur le matériau béton est conduite en application de la norme ISO/CEI 17025. Elle prend en compte les éléments de la politique du Cofrac définis en octobre 2002 d'une part, et les besoins réels des clients des laboratoires d'essais d'autre part.

Le groupe de réflexion a été constitué à la demande du Délégué à la qualité et à la normalisation du Réseau des LPC.

La rédaction a été assurée par :

MM Yvon Launaire LRPC de Strasbourg

Geoffrey Priolet métrologie - LRPC de Clermont-Ferrand

Jean-Marie Geoffray LRPC de Clermont-Ferrand

Avec la participation de :

Mme Sylvie Arnaud LRPC de Lyon
MM Benoît Clément LRPC d'Autun
Gérard Métais LRPC d'Autun

Problématique

Pour répondre aux attentes du Cofrac relatives à l'estimation des incertitudes des essais, il est apparu utile d'entreprendre une démarche pour identifier les facteurs d'influences sur le résultat de mesures effectuées sur le matériau béton durci. Ce travail a pris en compte les habitudes acquises (pour ne pas dire les errements antérieurs) du monde du Génie Civil afin de ne pas dérouter complètement les demandeurs d'essais (clients du Réseau) face à nos interprétations de résultats. Pour ce faire, il était clair que nous ne devions pas afficher brutalement une incertitude sans quelques explications ou avertissements. L'essentiel de la démarche a donc consisté à « chiffrer » ce qui pouvait l'être et à expliciter le reste.

Pour chaque essai la liste des facteurs d'influence sur les résultats a été établie, en insistant sur les facteurs majeurs. Pour ces facteurs à influence significative, le groupe de réflexion a veillé à apporter dans la mesure de ses possibilités (moyens techniques et point sur les connaissances actuelles) les solutions permettant d'en assurer la maîtrise. Pour les facteurs dont l'influence a été jugée moins ou non significative, le document apporte les justifications pour leur non prise en compte.

Au sujet de la quantification de l'incertitude de l'essai dont le résultat s'exprime d'une manière quantitative (comme c'est le cas pour la grande majorité des essais relatifs à la caractérisation des bétons), il est clair qu'il est indispensable de disposer d'études « exploitables » sur la fidélité de la méthode. Les études exploitables sur lesquelles il est possible de s'appuyer sont rares et souvent contestables (essais inter-laboratoires) : cependant dans la mesure où elles existent, elles ont été prises en compte avec le maximum de précautions.

Les écarts-types de fidélité constituent dans de nombreux cas la seule ressource, encore faut-il pouvoir les déterminer avec une rigueur adaptée et donc analysée en préalable en fonction de l'identification des facteurs d'influence. En l'absence de solution, des pistes d'études ont été définies pour le « chiffrage » de l'influence du paramètre mal connu ou non maîtrisable.

PROG_3 - doc1 Janvier 2004 Page 4 sur 25

ESSAIS MÉCANIQUES ET PHYSIQUES SUR EPROUVETTES DE BETON DURCI

1. Domaine étudié

Essai de rupture en compression simple sur éprouvettes cylindriques Essai de traction par fendage (essai brésilien) Masse volumique apparente des éprouvettes

2. Définitions

Le traitement des essais cités précédemment implique au préalable de préciser quelques termes (référence à la norme EN 12350-1) qui seront employés dans tout le rapport concernant la réflexion entreprise

Charge de béton

La quantité unitaire de béton frais présenté par le fournisseur de béton (bétonnier) ou par l'entreprise de mise en oeuvre (entreprise). A ce niveau, c'est la quantité de béton transporté dans un véhicule et comprenant une ou plusieurs gâchées (pr. EN 206-1)

§1 : La charge peut être constituée d'une ou plusieurs gâchées : l'élément essentiel portant sur l'unicité de la quantité transportée §2: En cas de modification de composition en cours de déchargement il convient de considérer la création d'une nouvelle

Charge de béton en cours de livraison

Échantillon de béton

Il s'agit du matériau à l'état frais et homogénéisé qui est prélevé dans une charge et qui va être utilisé pour la confection des éprouvettes, que cette dernière opération soit exécutée par le laboratoire du Réseau ou par un tiers. Cet échantillon peut être utilisé pour la confection d'un ou plusieurs types de corps d'épreuves.

§3 : A titre d'exemple, l'échantillon peut être utilisé pour les essais rhéologiques (plasticité) et pour la confection d'éprouvettes pour essais mécaniques.

§4 : Dans le cas où la quantité de l'échantillon n'est pas suffisante pour réaliser tous les corps d'épreuves prévus, il est possible de prélever un nouvel échantillon en l'identifiant correctement : instant du nouveau prélèvement et éventuellement nouvelle plasticité, température, etc...(par exemple)

Échantillon de béton homogénéisation

Corps d'épreuve

C'est l'éprouvette qui a été confectionnée à partir d'une partie ou de la totalité de sur l'échantillon prélevé. La réalisation du corps d'épreuve, son transport, sa préparation à l'essai et toutes les opérations de mesure effectuées sur celui-ci entrent dans le champ d'application du présent document.

Laboratoire LPC

Laboratoire du Réseau des LPC qui applique les plans qualités types concernés de ce Réseau. Ce laboratoire est accrédité par le Cofrac pour les essais concernés.

Laboratoire associé

Laboratoire dont la démarche qualité a été reconnue par le laboratoire LPC concerné et subit des audits réquliers de la part de ce dernier. Ce laboratoire peut être accrédité ou non par le Cofrac pour les essais concernés.

Laboratoire extérieur

Tout laboratoire n'appartenant pas au réseau des LPC et ayant une démarche qualité propre reconnue ou non par le Laboratoire LPC concerné. Ce laboratoire peut être accrédité ou non par le Cofrac pour les essais concernés.

PROG_3 – doc1 Janvier 2004 Page 5 sur 25

3. Limites conventionnelles du champ d'application.

Dans le cas où les prélèvements d'échantillons et la confection des corps d'épreuves sont réalisés par le Laboratoire LPC ou par un de ses laboratoires associés, cette opération sera considérée maîtrisée et sera appréhendée pour la connaissance de l'incertitude des résultats des essais conduits sur ces dits corps d'épreuves.

Dans le cas où les prélèvements d'échantillons et/ou la confection des corps d'épreuves sont réalisés par un laboratoire extérieur ou un tiers, cette opération ne sera pas reconnue maîtrisée et ne sera pas appréhendée pour la connaissance de l'incertitude des résultats des essais conduits sur ces dits corps d'épreuves. Mention en sera portée sur le rapport d'essai.

Ce même type de distinction sera appliqué en ce qui concerne le transport des corps d'épreuves au laboratoire d'essai. En termes concrets :

Tableau 1 - Filse en compte des ope	Tallons availl I dillivee di	u iaboratorie u essai uaris la t	démarche d'estimation des incertitudes	
Opérations		Opérateurs		
	Laboratoire LPC	Laboratoire associé	Laboratoire extérieur ou autre	
Prélèvement de l'échantillon	oui	oui	non	
confection du corps d'épreuve	oui	oui	oui si le laboratoire est indépendant et accrédité par le Cofrac	
Conservation sur site extérieur	oui	oui si les corps d'épreuves sont conservés sous caisson isotherme	oui si le laboratoire est indépendant et accrédité par le Cofrac et si les corps d'épreuves sont conservés sous caisson isotherme	
Conservation sous ambiance contrôlée	oui	oui si la position des sondes est précisée et les relevés de températures fournis	oui si l'appareil d'enregistrement de température a été étalonné, les positions des sondes précisées et les relevés de températures fournis	
Conservation sous ambiance asservie	oui	oui si la position des sondes est précisée et les relevés de températures fournis	oui si l'appareil d'enregistrement de température a été étalonné, les positions des sondes précisées et les relevés de températures fournis	
Transport au laboratoire LPC		oui	non	

Dans le cas particulier des épreuves d'études de béton réalisées par un laboratoire LPC, la réalisation de la charge sera prise en compte dans la démarche d'estimation des incertitudes en intégrant toutes les données propres à la fabrication du béton et aux conditions de présentation de la charge. Compte tenu du caractère spécifique de ces opérations et des moyens mis en oeuvre, ce sujet sera traité ultérieurement.

Dans le cas où certaines opérations ne peuvent pas être prises en compte (pour les raisons précédentes) dans le calcul des incertitudes, l'information est apportée au client demandeur de l'essai sur le rapport d'essais ou sur un document annexe.

Dans les cas signalés précédemment où certaines opérations réalisées par un laboratoire extérieur indépendant et accrédité par le Cofrac peuvent être prises en compte, le dit laboratoire doit attester opérer sous accréditation Cofrac et s'engager à signaler toute anomalie constatée ou dérogation apportée.

Dans le cas de recours à un laboratoire extérieur non indépendant ou non accrédité par le Cofrac, ou à un tiers, aucune opération correspondante ne peut être prise en compte dans l'estimation des incertitudes d'essai ; il en est de même dans le cas où l'opération est effectuée par un opérateur n'appartenant pas à une structure précise de laboratoire.

PROG_3 – doc1 Janvier 2004 Page 6 sur 25

4 - Identification des catégories de facteurs d'influence

Dans un premier temps, la liste exhaustive des facteurs pouvant a priori avoir une influence sur le résultat de l'essai a été établie. Elle inclut bien entendu les paramètres pour lesquels la méthode d'essai (normalisée ou non) fixe une plage de valeurs tolérées (et ce conformément à la politique affichée par le Cofrac). Pour effectuer ce recensement la méthode du diagramme cause - effet a été retenue mais pour des raisons de clarté la méthode dite des 5 M est précisée ci-dessous :

	Tableau 2 – Bases initiales des diagrammes cause-effet			
Catégories M	valeurs explicites			
Méthode	Méthode d'essai en premier lieu Prise en compte des normes existantes Analyses des procédures complémentaires Analyse des dérives méthodiques les plus probables Logiciel de traitement des données			
Matériel	Matériel de fabrication (cas particulier des études) Matériel de prélèvement et de confection des corps d'épreuve Moules de confection (type, taille, raideur Matériel de transport Matériel de conservation et de préparation des corps d'épreuves en laboratoire Matériels d'essais (Presse, balance, appareils de mesures dimensionnelles, thermomètres)			
Matériau	Homogénéisation de l'échantillon État géométrique et aspect du corps d'épreuve État de dessiccation du corps d'épreuve aux différentes phases (surfaçage et rupture) Age du corps d'épreuve cas des bétons traités thermiquement			
Milieu ambiant	Conditions ambiantes à la confection du corps d'épreuves Surface de stockage sur site Conditions de conservation du béton jeune (sur site) conditions de transport au laboratoire d'essai conditions de conservation au laboratoire			
Moyens humains	Analyse des dérives d'application les plus probables (prélèvement, confection, conservation, surfaçage, préparation avant rupture et conduite de montée en charge) Saisie des données Traitement manuel des données			

5. Les textes de référence

Les essais analysés dans la présente démarche s'appuie sur un ensemble de textes de référence issus de la normalisation en vigueur, des programmes d'essais (dans le cas présent, programme 3 du Cofrac), des procédures prévues au Plan Qualité Type du Réseau des LPC, et de certaines recommandations professionnelles (FNTP) pour les matériaux nouveaux.

	Tableau 3 - Références normatives				
	Textes de référence				
Essais	PQ Type	Cofrac Prg 3 N°	Normes du programme Cofrac	Autre norme Afnor en vigueur **	Objet traité
	BFR12 BD21		NFP 18-400 NFP 18-404	NF EN 12390-1 NF EN 12390-2	moules pour éprouvettes Essais d'étude, de convenance et de contrôle – confection et conservation des éprouvettes
		D.5	NFP 18-405		Essais d'information - – confection et conservation des éprouvettes
	BD23 (*)	B5	NFEN 12390-3 NFP 18-411 NFP 18-412	NF EN 12390-4	Essais de compression Caractéristiques des machines hydrauliques pour essais de compression, flexion et traction des matériaux durs
Essai de rupture en	le rupture en sssion simple BD 22 B21		P 18-416	NF EN 12390-3	surfaçage au soufre des éprouvettes cylindriques
compression simple		B21	P 18-415	NF EN 12390-3	surfaçage au sable des éprouvettes cylindriques
			NFP 18-421 NFP 18-422 NFP 18-423	NF EN 12390-2	Mise en place par microtable vibrante Mise en place par aiguille vibrante Mise en place par piquage
	DI IXIZ			Recommandations FNTP	Confection des éprouvettes de béton auto-plaçant
Essai de rupture en traction par fendage (essai dit brésilien)	BD24	В7	NFP 18-408	NF EN 12390-6	Essai de fendage
Masse volumique apparente	BD12	B19	ISO 62-75 Pr EN 12363	NF EN 12390-7	Voir NFP 18-406 paragraphe 4.2

^{*} en cours de modification pour intégrer la nouvelle normalisation

Il convient de préciser que la normalisation étant en évolution permanente, il est nécessaire d'intégrer les nouvelles normes et de retirer les normes annulées par décret. L'application des nouvelles normes peut générer des modifications au plan qualité essais.

^{**} n'excluant pas les normes (encore en vigueur) inscrites au programme 3

PROG_3 - doc1 Janvier 2004 Page 7 sur 25

A titre de rappel, les nouvelles normes devant être utilisées sont les suivantes :

	Tableau 4 – nouvelles normes utilisables				
	Nouvelles normes Anciennes no				
NF EN 12350-1	Essai pour béton frais	Partie 1 : Prélèvement	NFP 18-404 et 405		
NF EN 12390-1	Essai sur béton durci	Partie 1 : Forme, dimensions et autres exigences relatives aux éprouvettes et aux moules	NFP 18-400		
NF EN 12390-2	Essai sur béton durci	Partie 2 : Confection et conservation des éprouvettes pour essais de résistance	NFP 18-404 et 405		
NF EN 12390-3	Essai sur béton durci	Partie 3 : Résistance en compression des éprouvettes	NFP 18-406 annulée par décret		
NF EN 12390-4	Essai sur béton durci	Partie 4 : Résistance en compression – caractéristiques des machines d'essai	NFP 18-411 et 412		
NF EN 12390-6	Essai sur béton durci	Partie 6 : Résistance en traction par fendage d'éprouvettes	NFP 18-408		
NF EN 12390-7	Essai sur béton durci	Partie 7 : masse volumique du béton	NFP 18-406 annulée par décret		

A partir de l'ensemble de ces rubriques il est possible d'établir les diagrammes « cause-effet » pour les différents essais prévus présentement :

6 - Les diagrammes « CAUSE-EFFET »

Compte tenu de l'ensemble des limites de champ d'application et des paramètres précédents, deux séries de diagrammes cause-effet ont été établis : la première concerne la fabrication des corps d'épreuve et leur transport au laboratoire d'essai, la seconde se rapportant à la réalisation proprement dite des mesures. Ces diagrammes sont détaillés ci-après selon les phases principales de traitement.

Tableau 5 – Phases opérationnelles ayant une influence		
Phases principales Opérations particulières		
	Prélèvement de l'échantillon	
Trovovy our lo cito du chantier	Confection du corps d'épreuve	
Travaux sur le site du chantier	Conservation du corps d'épreuve	
	Transport du corps d'épreuve	
Travaux en laboratoire d'essai	Réception et préparation des corps d'épreuves	
	Réalisation des mesures de caractéristiques	

7 - Diagrammes relatifs au prélèvement d'échantillons

	Tableau 6 – Diagramme relatif aux méthodes de prélèvement d'échantillons				
Caus	es recensées	Effets & Observations	Incertitude chiffrable		
Méthode d'essai	Homogénéisation défectueuse Prélèvement sur béton ségré-gué par rapport à l'échantillon	3			
	Prélèvement après chute et secousse (cas des BAP)	5	OUI		
	Quantité prélevée insuffisante (< 1,5 fois le volume utile)	3			
Prise en compte de la nouvelle normalisation (causes complémentaires par rapport aux méthodes d'essais précédentes)	Prélèvement de début ou fin de gâchée	3 – Émission de réserves circonstanciées (Réserve RConf1) si écart constaté sur les résultats : il est alors souhaitable d'examiner la matrice en conduisant l'essai jusqu'à rupture complète			

Tableau 7- Diagramme relatif aux matériels de prélèvement d'échantillons				
Causes recensées Effets			Incertitude chiffrable	
Matériels inadaptés	Matériel d'homogénéisation absorbant	3 si la teneur en eau baisse : (Réserve REch1)		
	Matériel de prélèvement inadapté	3 si la ségrégation est accrue : (Réserve REch2)		

	Tableau 8 – Diagramme relatif au matériau constituant l'échantillon			
	Causes recensées	Effets	Incertitude chiffrable	
Homogénéité l'échantillon	Confection de corps d'épreuves à partir d'un béton mal homogénéisé	1 – Rejet des résultats trop écartés en intégrant l'incertitude admise (Réserve REch3)		
	Confection de corps d'épreuves à partir d'un béton trop froid (température inférieure à 5 °C)	Tilicetitude admise (Reserve REGIS)		

Pour l'influence du milieu ambiant et des moyens humains : Pas d'influence notable

RLPC

GUIDE POUR L'ESTIMATION DES INCERTITUDES Incertitudes des essais sur le matériau béton

PROG_3 - doc1 Janvier 2004 Page 8 sur 25

8 - Diagrammes relatifs à la confection des corps d'épreuves

C	Causes recensées	Effets & Observations	Incertitude chiffrable
Méthode de confection	Remplissage non normalisé du moule pour bétons courants	4 - si on a une information précise une étude paramétrique peut être lancée	Étude paramétrique définir
		Si on n'a pas d'information fiable, émettre la réserve générale (Cofrac) (Réserve REch0)	
	Remplissage du moule à l'aide d'une main écope pour BAP	5 – Émettre réserve RConf4	
	Durée de vibration trop forte	4 - si on a une information précise une étude paramétrique peut être lancée	
		3 -Si on n'a pas d'information fiable, émettre réserve (Réserve RConf3)	
		4 - pour béton avec air entraîné : Règle à ajuster au PQT pour pallier les insuffisances de la norme EN 12390-2 paragraphes 5.2.1 et 5.2.2	
	Durée de vibration insuffisante	4 – si on a une information précise une étude paramétrique peut être lancée	Études
	Vibration ou secousse dans le cas des BAP	5 – Pour le problème des secousses, (émettre réserve RMatu7)	paramétrique à définir
	Piquage défectueux	4 – si on a une information précise une étude paramétrique peut être lancée	
	Rajout superficiel de mortier	4 - si on a une information précise une étude paramétrique peut être lancée.	
		3 -Si on n'a pas d'information fiable, émettre réserve circonstanciée (car bien souvent on peut voir la quantité de mortier rapportée après destruction de l'éprouvette). A noter que le rejet d'une éprouvette peut induire un déclassement du corps d'épreuve	
	Remplissage incomplet du moule	1 refus du corps d'épreuve	
	Mauvais arasement	2 si meulage des faces car on rectifie les surfaces d'appui	
		1 refus si non-meulage car on obtient une épaisseur hétérogène du produit de surfaçage et une mauvaise diffusion de la contrainte pendant l'essai	
	Manque de talochage	2 si meulage des faces car on rectifie les surfaces d'appui	
		4 - si non-meulage et si état très hétérogène (écart >5mm) : rejet car on obtient une épaisseur hétérogène du produit de surfaçage et une mauvaise diffusion de la contrainte pendant l'essai	Étude paramétrique définir si 5> écart>1 mn
	Contact du couvercle avec le béton	2 si le meulage des faces permet de rattraper le défaut sans perturber sensiblement la valeur de l'élancement de l'éprouvette	
		1- si non-meulage (avec écart > 5mm) ou si meulage incapable de corriger le défaut : rejet car on obtient une épaisseur hétérogène du produit de surfaçage et une mauvaise diffusion de la contrainte pendant l'essai	
	Mauvaise identification des moules	3 ou rejet des échantillons; essais non rattachables, mais affectation à étudier au cas par cas en relation avec le client	
Prise en compte de la nouvelle	Non maîtrise de l'age du matériau	3 – Réserve sur la représentativité des résultats (Réserve RConf2): proposer au client une étude complémentaire « fc(âge »	
normalisation (causes	Non-respect des dimensions normalisées de corps d'épreuves	5 – si les dimensions réelles restent dans la plage ±10 % : prise en compte dans le calcul, sinon rejet	OUI
complémentaires par rapport aux	Moules en matériau absorbant	Désormais sans objet	
méthodes d'essais	Rectitude des génératrices de moule défectueuse	2 pour compression 1 rejet pour essais brésilien	
orécédentes)	Non-respect du nombre de couches (bétons courants)	2 – pour essais de rupture	
	Moule déformé en cours de vibration sans perte de matière	1 rejet pour essais brésilien 2 pour compression	
	Éprouvettes transportées trop tard (>3 jours)	2 si aucune autre anomalie, sinon rejet (1)	
Dérives méthodiques probables	piquage des éprouvettes de béton fluidifié (BHP) par adjuvantation	4 – étude paramétrique par types de béton	Étude paramétriqu à définir

	Tableau 9 – Diagramme relatif aux matériels de confection des corps d'épreuves				
	Causes recensées	Effets	Incertitude chiffrable		
Serrage du béton	Vibrateur défectueux (détection par prise en compte des écarts de MVA)	4 si béton non-GS : étude paramétrique à lancer 1 – rejet si béton GS	Étude paramétrique à définir		
	Tige de piquage non conforme	2. Sans incidence majeure			
Coulage du béton	Matériel de coulage inadapté (bétons courants)	2. Sans incidence majeure			
dans les moules	Matériel de coulage inadapté (BAP)	5 – (Réserve RConf4)			

PROG_3 - doc1 Janvier 2004 Page 9 sur 25

	Tableau 10 – Diagramme	e relatif aux corps d'épreuves confectionnés	
	Causes recensées	Effets	Incertitude chiffrable
État géométrique et	Orthogonalité défectueuse	5 – prendre en compte I 'écart sur l'incertitude	
aspect du corps d'épreuve livré au laboratoire	Non-parallélisme des faces	Dans le cas où les faces du corps d'épreuve sont meulées : - si le défaut est faible : le défaut est repris donc RAS - si le défaut est sensible mais tolérable le défaut peut être repris : RAS - si le défaut n'est pas tolérable / norme voir si un meulage plus poussé peut le reprendre donc RAS, ou si le défaut ne peut pas être repris : Il y a alors rejet de l'éprouvette. Dans le cas où la non-orthogonalité résiduelle est tolérable on ne chiffre pas l'incertitude associée mais on admet l'incertitude maximale (appelée par la tolérance de la norme)	OUI
	Moule incomplètement rempli	1 - si spécifications normalisées non satisfaites, 3 - sinon préciser la dérive sur PV	
	Talochage très défectueux	1 si impossibilité d'obtenir un corps d'épreuve conforme aux normes NF EN 12390 1à3, sinon essai normal	
	Éprouvette micro-fissurée	3 suivant gravité jusqu'à refus 1	

	Tableau 11 – Diagramme relatif au milieu ambiant lors de la confection des corps d'épreuves				
Causes recensées Effets Incertitude chiffrable					
Ambiance à la Confection sous intempéries (pluie, neige) hors confection abri		2			

	Tableau 12 – Diagramme relatif aux moyens humains employés pour la confection des corps d'épreuves					
	Causes recensées	Effets	Incertitude chiffrable			
Dérives accidentelles d'applications des méthodes	Couvercle des moules mis en contact avec le béton frais	Déjà traité au 8.1 en insistant sur le fait que les incertitudes sont alors dues à un phénomène aléatoire, ce qui renforce le degré d'incertitude non				
THEUTOGOS	Manipulation prématurée des corps d'épreuve	chiffrable				

9 - Diagrammes relatifs à la conservation des corps d'épreuves sur site

Tableau 13 – Diag	ramme relatif aux méthodes de conserva	tion des corps d'épreuves sur site (avant livraison au laboratoir	re)
Cause	s recensées	Effets & Observations	Incertitude chiffrable
Conservation normale sur site	Étanchéité des moules non assurée	(déjà traité dans la rubrique transport)	
	Éprouvettes conservées en dessous de 15°C ou au-dessus de 25 °C	4 Il serait judicieux d'étudier l'influence sur différents types de bétons (Réserve RMatu2)	Étude paramétrique
Conservation sous ambiance contrôlée	Éprouvettes confectionnées en fin de semaine	4 - Il serait judicieux d'étudier l'influence sur différents types de bétons avec prise en compte de l'influence de la conservation :	« ambiance » à définir
		conservation sur site > 3 jours avec prise en compte des températures hors norme (<15°C ou > 25 °C) et de l'étanchéité des moules. En tous cas réserves à émettre (Réserve RMatu1).	
	Distorsions dans le cas de béton chaud en hiver	3 Émettre réserve à préciser au cas par cas (Réserve RMatu3)	
Conservation avec traitement thermique	Chauffage excessif dans le cas de traitement thermique actif	5 - Émettre réserve si information défectueuse sur le traitement thermique (Réserve RMatu3)	
		4 – si information précise, l'influence peut être appréciée	Étude paramétrique à affiner
	Température des éprouvettes non régulée par celle de l'ouvrage	1 Corps d'épreuve non représentatif du béton dans l'ouvrage	
	Choc thermique à la fin du cycle d'étuvage	2 si aucune autre anomalie et si choc thermique léger, sinon émission de réserves circonstanciées (Réserve RMatu4) si écart constaté sur les résultats. Éventuellement cf Réserve RMatu5	
	Conservation sous bâche	3 – réserve (Réserve RMatu6) en fonction des conditions réelles	Étude paramétrique « ambiance » à définir

PROG_3 - doc1 Janvier 2004 Page 10 sur 25

Tableau 14 – Diagramme	relatif aux matériels utilisés pour la conservation	on des corps d'épreuves sur site (avant livraison au lab	oratoire)
Causes recensées		Effets	Incertitude chiffrable
Conservation sur site	Absence de couvercle imperméable sur le moule après confection	déjà traité au 1.1. Transport	
	Stockage sur surface non plane	2 si béton non fluide	
		Dans le cas de béton fluide, se reporter à la rubrique 1.1. Confection des corps d'épreuve	
	Manque de protection thermique	4 – (Étude pouvant faire l'objet d'une collecte de données pour un stage élève –ingénieur)	Étude paramétrique à définir
Conservation sous ambiance contrôlée	Hétérogénéité thermique faible (caisson non étanche ou détérioré)	2 peu influente pour éprouvettes de contrôle âgées de plus de 7 jours.	
	Volume inadapté du caisson isotherme (trop faible)	Sans objet	
Conservation sous ambiance thermique	Hétérogénéité thermique forte (enceinte défectueuse)	1 non représentatif	

Tableau 15 – Diagramme relatif au milieu ambiant de conservation des corps d'épreuves sur site (avant livraison au laboratoire)					
Causes recensées		Effets	Incertitude chiffrable		
Surface de stockage sur site	non plane et/ou non horizontale	Voir 1.1. confection			
	Aire de stockage inondée	2 voir 1 pour éprouvette d'information			
	Aire de stockage proche de piste de roulement	2 si pas de vibration parasite sinon réserve (Réserve RMatu7)			
Conditions de conservation du	Conservation sans protection thermique	3			
béton jeune sur site	Conservation sans garantie d'étanchéité	3			
	Conservation sans protection contre pollution chimique ou éprouvette gelée	Rejet si éprouvette fortement endommagée sinon émettre Réserve RMatu8			

Pour l'influence du matériau et des moyens humains : Pas d'influence notable

10 - Diagrammes relatifs au transport des corps d'épreuves au laboratoire

Tableau 16 – Diagramme relatif aux méthodes de transports des corps d'épreuves au laboratoire					
Causes recensées Effe		Effets & Observations	Incertitude chiffrable		
État des corps d'épreuves	Éprouvettes démoulées avant transport et en ambiance non normalisée Ou Éprouvettes sans couvercle	4 – Étudier l'influence sur différents types de bétons avec prise en compte de l'influence de la conservation : (éprouvettes confectionnées en fin de semaine). En tous cas réserves à émettre (Réserve RTrans2).	Étude paramétrique « ambiance » à définir		
	Éprouvettes choquées (défaut de calage	1 – rejet si fracture même partielle ou fissures 3 - si ni fracture, ni fissures émettre réserve temporaire dans l'attente des résultats d'essais			
Age des corps d'épreuves au début du transport	Éprouvettes transportées trop jeune vis à vis de l'état du béton	3 – rejet, ou réserves après concertation avec le client (Réserve RTrans1)			
	Éprouvettes de contrôle trans- portées trop jeunes (<16 h)	1 si écart majeur : rejet 3 si écart faible traitement avec réserve (Réserve RTrans1) après concertation avec le Maître d'œuvre			
	Éprouvettes transportées trop tard (>3 jours)	2 si aucune autre anomalie, sinon rejet (1)			

Pour l'influence du matériel de transport : Pas d'influence notable

Tableau 17 – Diagramme relatif au comportement ou à l'état du matériau du corps d'épreuve pendant le transport au laboratoire				
Causes recensées Effets			Incertitude chiffrable	
État de dessiccation du corps d'épreuve livré au laboratoire	Moule non fermé à la livraison du corps d'épreuve	Voir 10.1		
Cas des bétons traités thermiquement	Corps d'épreuve démoulé avant transport	Voir 10.1.		
	Éprouvette micro-fissurée	3 suivant gravité jusqu'à refus (1)		

10.4. Le milieu ambiant

Tableau 18 – Diagramme relatif au milieu ambiant pendant le transport au laboratoire				
Causes recensées Effets Ince				
Conditions de transport au laboratoire d'essai	Transport sans protection contre pollution chimique	3 réserve modulée suivant degré d'altération (Réserve semblable à RMatu8 en introduisant transport à la place de stockage)		
	Transport sans protection contre la dessiccation	Voir 1.1. transport		

PROG_3 – doc1 Janvier 2004 Page 11 sur 25

Tableau 19 – Diagramme relatif aux moyens humains pendant le transport au laboratoire				
Causes rec	Effets	Incertitude chiffrable		
Dérives accidentelles d'applications des méthodes Manipulation prématurée des corps d'épreuve		Voir paragraphe 8.1		

11 - Diagrammes relatifs aux réceptions et préparations des corps d'épreuves

Causes recensées		Effets			Incertitude chiffrable
		Rc	Rtb	MVA	
Réception	Corps d'épreuve âgé de moins de 16 heures	3	3	2	
	Éprouvettes pour essais de traction par fendage confectionnées en moule carton (hors norme)		1		
Conservation en laboratoire	Bac de conservation mal ou non nettoyés	2	2	2	
	Mélange de types de béton (cas du ciment CEM III)	2	2	2	
Surfaçage au soufre	type de soufre inadapté	4			
Surfaçage à la boîte à sable	Emploi avant solidification de la paraffine (deuxième boîte)	1			
	Emploi d'un sable non conforme du point de vue granularité	1			
Meulage des faces	Meulage à sec	2		2	

Tableau 21 – Diagra	mme relatif aux matériels utilisés lors de la réception et de la prépa	ration des	corps d'é	preuve au	laboratoire
Causes recensées		Effets			Incertitude chiffrable
		Rc	Rtb	MVA	
Conservation en salle	Thermomètre non étalonné	3			
	Thermomètre étalonné dont la correction n'est pas prise en compte	2			
Surfaçage au soufre	Défaut de parallélisme après surfaçage (manque d'orthogonalité du bâti de surfaçage)	1			
	Défaut de planéité des marbres de surfaçage	1			
Surfaçage à la boîte à sable	Planéité des boîtes non correcte	1			
	Défaut d'orthogonalité du dispositif de guidage (>1/8°)	1			
	Défaut de coaxialité de 0,5 mm entre les deux boîtes	1			
	Vibrateur défectueux	1			
	Masse du bâti non conforme	1			
Meulage des faces	Meule endommagée	1			

Tableau 22 – Dia	gramme relatif au matériau lors de la réception et de la pr	éparation des	corps d'épre	euve au lab	oratoire
	Causes recensées		Effets	Incertitude chiffrable	
		Rc	Rtb	MVA	
Age du corps d'épreuve de	Béton trop jeune pour supporter le transport	3	3	2	
contrôle livré au laboratoire	Béton trop vieux (manque de temps pour immersion avant essai de rupture)	5	5	2	OUI
État de l'éprouvette	épaufrée	3 (prendre en compte la surface réelle)	1	Prendre en compte le volume réel	Si meulage n'améliore pas le défaut
		2	2 si longueur correcte		Si meulage annule le défaut
	Défaut de planéité après surfaçage	1 resurfacer			
	Défaut d'orthogonalité après surfaçage	1 resurfacer	2 mais à prendre en compte dans le calcul		OUI

Tableau 23 – Diagramme relatif au milieu ambiant lors de la réception et de la préparation des corps d'épreuve au laboratoire						
	Effets		Incertitude chiffrable			
		Rc - Rtb	MVA			
Température de	> 22 °C	3	2			
conservation	< 18 °c	3	2			
Ambiance humide	Conservation dans l'eau < 48 heures	3				
	Attente hors d'eau (avant essai) > 1 heure	2				
	Hygrométrie de conservation < 95 %	3	3			

RLPC

GUIDE POUR L'ESTIMATION DES INCERTITUDES Incertitudes des essais sur le matériau béton

PROG_3 – doc1 Janvier 2004 Page 12 sur 25

Tableau 24 – Di	agramme relatif aux moyens humains lors de la réception et de	la préparation des corps d'épreuve a	u laboratoire	
	Causes recensées	Effets	Incertitude chiffrable	
Réception	Mauvaise identification des corps d'épreuves	1		
	Démoulage retardé(>3 jours après confection)	voir paragraphe10.1		
	Corps d'épreuve épaufré au démoulage	voir paragraphe 11.3.		
Conservation	Immersion incomplète des corps d'épreuve	Voir paragraphe 11.4.		
Surfaçage au soufre	Mélange mal dosé	1		
	Épaisseur de soufre trop importante	1		
	Mélange insuffisamment durci (en cas d'essai pour la maturométrie)	1		
Surfaçage à la boîte à sable	Masse totale en vibration non conforme (28,9 kg prescrits)	4	Contacter LCPC	
Meulage	Éprouvette laissée entre 1 et 2 heures hors ambiance normalisée	2		

12 - Diagrammes relatifs aux mesures sur corps d'épreuves

	Tableau 25- Diagramme relatif aux méthodes de mesures sur cor	ps d'épre	uve		
	Causes recensées		Effets	Incertitude chiffrable	
		Rc	Rtb	MVA	
Vitesse de charge- ment non conforme	>0,06 Mpa/s ou <0,04 Mpa/s pour Rtb		5		Étude paramétrique à
	>0,7 Mpa/s ou <0,3Mpa/s pour Rc	5			définir
Rupture mécanique	Arrêt juste avant rupture (procédure à introduire au PQT)		(investigation complémentaire seulement)		
Pesées	Les éprouvettes sont pesées avec une incertitude relative supérieure à 0,001			5	OUI
	Les éprouvettes sont pesées insuffisamment sèches			1	
Mesure des dimensions	La hauteur est mesurée à partir des faces non traitées (meulage non réalisé)		5	5	OUI
géométriques	La hauteur n'est pas mesurée (hauteur prise arbitrairement égal à320 mm		5	5	Si tolérances de norme respectée OUI
	Le diamètre est pris arbitrairement égal à 160 mm	5	5	5	OUI
Logiciel de traitement	Hypothèses des bases de calcul erronées	1	1	1	

Tableau 26– Diagramme relatif aux matériels de mesures sur corps d'épreuve							
	Coupea recencións		Effets	Incertitude chiffrable			
	Causes recensées	Rc	Rtb	MVA			
Mise en charge (§ norme EN 12-390-4)	Vitesse non constante mais avec fourchette de tolérances respectée	4			Étude à définir pour apprécier l'incertitude		
	Vitesse non constante en dehors de la fourchette de tolérances	1					
	Planéité des plateaux non conforme (tolérance 0,03 mm)	1					
	Rugosité des plateaux extérieure à l'intervalle [0,4/3,2 µm]	1					
	Répétabilité de l'indicateur de force insuffisante	5			OUI		
	Précision de l'indicateur de force non conforme	1					
	Transfert de l'indication de la force non conforme	1					

	Causes recensées	Effets	Incertitude chiffrable
Mise en charge	Positionnement de l'éprouvette sur plateaux sales ou encombrés de débris	1	
	Dans le cas d'essai brésilien (Rtb), oubli des bandes de chargement ou pose de bandes non conformes	1 Essai à rejeter si faciès de rupture incorrect	
	Mauvais centrage de l'éprouvette (erreur de centrage supérieure au 1/100 du diamètre)	4	Étude para- métrique à définir
	Mauvais affichage de la vitesse de montée en charge	1	
Pesée (cas de la MVA)	Balance mal calée (défaut d'horizontalité) (Rtb et MVA)	3 correction des données	
dimensions	Mesures biaises de la hauteur des éprouvettes	3 car non détectables	
	Mauvaises mesure de diamètre (Rc et MVA)	3 correction des données si mesure a posteriori encore possible	
Logiciel	Saisie insuffisante ou erronée des résultats	1	

RLPC

GUIDE POUR L'ESTIMATION DES INCERTITUDES Incertitudes des essais sur le matériau béton

PROG_3 – doc1 Janvier 2004 Page 13 sur 25

Pour l'influence du matériau et du milieu ambiant : Pas d'influence sensible si les tolérances de la norme d'essai sont respectées.

Rappels: Pour l'appréciation des effets, il a été convenu les critères affichés suivants:

- 1 = Hors sujet, rejet
- 2 = peu influents
- 3 = Influents mais non chiffrables:
- 4 = influence inconnue nécessitant une étude paramétrique
- 5 = Influence chiffrable en s'appuyant sur les connaissances acquises dans le Réseau.

13 - Conditions d'émissions de réserves

Dans le cas où les prélèvements d'échantillons et la confection des corps d'épreuves sont réalisés par le Laboratoire LPC ou par un de ses laboratoires associés, ces opérations seront considérées maîtrisées et appréhendées pour la connaissance de l'incertitude des résultats des essais conduits sur ces dits corps d'épreuves.

Dans le cas où les prélèvements d'échantillons et/ou la confection des corps d'épreuves sont réalisés par un laboratoire extérieur ou un tiers, ces opérations ne seront pas reconnues maîtrisées et ne seront pas appréhendées pour la connaissance de l'incertitude des résultats des essais conduits sur ces dits corps d'épreuves. Mention en sera portée sur le rapport d'essai. Ce même type de distinction sera appliqué en ce qui concerne le transport des corps d'épreuves au laboratoire d'essai. En termes concrets :

Tableau 28 -Prise en compte des opérations avant l'arrivée au laboratoire d'essai dans la démarche d'estimation des incertitudes						
Opérations	Opérateurs					
	Laboratoire LPC	Laboratoire associé	Laboratoire extérieur ou autre			
Prélèvement de l'échantillon	oui	oui	non			
confection du corps d'épreuve	oui	oui	oui si le laboratoire est indépendant et accrédité par le Cofrac			
Conservation sur site extérieur	oui	oui si les corps d'épreuves sont conservés sous caisson isotherme	oui si le laboratoire est indépendant et accrédité par le Cofrac et si les corps d'épreuves sont conservés sous caisson isotherme			
Conservation sous ambiance contrôlée	oui	oui si la position des sondes est précisée et les relevés de températures fournis	oui si l'appareil d'enregistrement de température a été étalonné, les positions des sondes précisées et les relevés de températures fournis			
Conservation sous ambiance asservie	oui	oui si la position des sondes est précisée et les relevés de températures fournis	oui si l'appareil d'enregistrement de température a été étalonné, les positions des sondes précisées et les relevés de températures fournis			
Transport au laboratoire LPC		oui	non			

Dans le cas général où les corps d'épreuves ont été confectionnés ou transportés par un organisme extérieur, ceux-ci arrivent regroupés par lots au laboratoire. Le problème de réception se pose dès l'arrivée et celle-ci peut ne pas être réalisée instantanément, ce qui ne permet pas toujours d'émettre les réserves nécessaires. Pour pallier cet inconvénient, le processus général décrit en annexe devra être respecté.

Dans le cas particulier des épreuves d'études de béton réalisées par un laboratoire LPC, la réalisation de la charge sera prise en compte dans la démarche d'estimation des incertitudes en intégrant toutes les données propres à la fabrication du béton et aux conditions de présentation de la charge.

PROG_3 – doc1 Janvier 2004 Page 14 sur 25

Compte tenu du caractère spécifique de ces opérations et des moyens mis en oeuvre, ce sujet sera traité de façon complémentaire et disjointe.

Dans le cas où certaines opérations ne peuvent pas être prises en compte (pour les raisons précédentes) dans le calcul des incertitudes, l'information est apportée au client demandeur de l'essai correspondant : mention explicite sur le rapport d'essais ou sur un document annexe.

Dans les cas précédents où certaines opérations réalisées par un laboratoire extérieur indépendant et accrédité par le Cofrac peuvent être prises en compte, le dit laboratoire doit attester opérer sous accréditation de ce même organisme et s'engager à signaler toute anomalie constatée ou toute dérogation apportée.

Dans le cas de recours à un laboratoire extérieur non indépendant ou non accrédité par le Cofrac ou à un tiers, aucune opération correspondante ne peut être prise en compte dans l'estimation des incertitudes d'essai ; il en est de même dans le cas où l'opération est effectuée par un opérateur n'appartenant pas à une structure précise de laboratoire.

13.1. Réserves générales relatives aux échantillons

En dehors de toutes autres contingences spécifiques à l'essai, il convient d'examiner la représentativité de l'échantillon de béton frais prélevé pour la confection des corps d'épreuves

	Tableau 29 –	Représentativité de l'éch	antillon de béton			
Le béton de la centrale à l'ouvrage	Indicateurs	Niveau de la représentativité	Réserve			
Si les gâchées sont mal	variations des	Les résultats ne sont qu'une image				
homogénéisées ou douteuses	différents dosages d'une gâchée à l'autre	ponctuelle d'une des gâchées et ne peuvent être extrapolées à la charge				
Si les gâchées sont homogènes au niveau de la charge contrôlée, mais si les charges ne sont pas homogènes entre elles	variations de caractéristiques rhéologiques et/ou physiques entre charges	Les résultats ne sont applicables qu'à la charge seule sur laquelle le prélèvement a été effectué	cette population peut être vérifiée. En conséquence, le présent procès-verbal n'a en aucun cas valeur de			
Si les gâchées sont homogènes entre elles et les gâchées aussi		Béton d'ouvrage homogène	Si respect de cette homogénéité garanti, il n'y a pas lieu à réserve : l'échantillon représente bien le béton de la partie d'ouvrage *			

^{*} ne préjuge pas des réserves pouvant être émises sur les corps d'épreuve eux-mêmes (aspect, forme,...).

13.2. Réserves particulières relatives au prélèvement de l'échantillon

S'il est démontré que le matériel utilisé pour effectuer le prélèvement n'est pas conforme aux paragraphes 3.1. et 3.2. de la norme NF EN 12350-1, la réserve (REch1) sera émise :

REch 1: « Le matériel à partir duquel l'échantillon prélevé a été homogénéisé était en matière absorbante : de ce fait, la teneur en eau du béton est préjugée avoir été réduite, et le béton des corps d'épreuves confectionnés ainsi n'est plus représentatif du béton d'ouvrage ».

Si le type de matériel de prélèvement n'est conforme à celui préconisé par la norme NF EN 12350-1 pour les bétons courants ou par la recommandation AFGC (juillet 2000) pour les bétons auto-plaçants, la réserve (REch2) sera émise :

REch 2: « Le matériel de prélèvement de l'échantillon n'était pas adapté au type de béton fabriqué. Cette inadaptation a engendré des phénomènes de ségrégation ; le béton des corps d'épreuves confectionnés ne peut pas être considéré représentatif du béton d'ouvrage ».

PROG_3 – doc1 Janvier 2004 Page 15 sur 25

Dans le cas où les valeurs de masses volumiques apparentes et de caractéristiques mécaniques sont toutes très dispersées (écarts de MVA > 0,1 et écarts de Fc28 > 4 MPa) ,il y a lieu à émettre la réserve (REch3) sur l'homogénéisation de l'échantillon :

REch 3: « Les résultats sont dispersés tant au niveau des masses volumiques apparentes (écart maximal de l'ordre dekg/dm3) qu'au niveau des caractéristiques mécaniques (écart maximal à 28 jours : MPa). Cet état de fait provient essentiellement de la confection des corps d'épreuves à partir d'un échantillon mal ou insuffisamment homogénéisé ».

NdR : Il est fortement conseillé d'adjoindre les clichés des faciès de rupture des corps d'épreuves jugés défectueux

13.3. Réserves particulières relatives à la confection des corps d'épreuves

S'il est démontré que les corps d'épreuves ont été réalisés sur un échantillon prélevé sur la tête de charge qui correspond au premier déversement de béton (volume équivalent à 50 litres environ) ou sur la fin de charge (dernier 100 litres), il est probable que le béton prélevé ait été enrichi en gros éléments au détriment de la partie mortier du béton, et que de ce fait ce béton n'est pas représentatif de la fabrication ; Ce point est d'autant plus grave que le béton est plus fluide. Il conviendra donc d'émettre la réserve **RConf1** :

RConf1: Les prélèvements ont été réalisés en début (en fin) de charge. Le béton ainsi prélevé n'est pas représentatif de la charge puisqu'il est déséquilibré quant à sa teneur en gravillon par rapport au béton moyen de la charge.

Si l'âge du béton frais n'a pas été pris en compte au moment de la confection des corps d'épreuves (variations supérieures à 1,5 heure), le développement de la prise peut être sérieusement perturbé, et ce d'autant plus que le dosage en ciment est élevé, ou que sa chaleur d'hydratation est forte. Il sera donc prudent d'émettre la réserve **RConf2**. Ces phénomènes sont cependant difficiles à déceler au moment de la réception des éprouvettes, et bien souvent il sera nécessaire de disposer d'informations complémentaires précises en provenance du chantier pour appliquer cette réserve ::

RConf2 : L'âge du matériau n'a pas été maîtrisée au moment de la confection : le serrage du béton et le développement des caractéristiques mécaniques peuvent donc avoir été perturbé et de ce fait les valeurs de masse volumique apparente et de résistances mécaniques peuvent être considérées comme suspectes en cas d'écarts constatés par rapport aux valeurs habituelles.

Dans le cas où le serrage par vibration des corps d'épreuves en bétons courants est mal maîtrisé (durée de vibration trop forte) on constate généralement une forte élévation des masses volumiques apparentes par rapport aux valeurs habituelles. Cette forte élévation conduit souvent à la création de sites ségrégués (concentration de gros éléments), qui sont susceptibles de venir perturber la bonne appréciation des caractéristiques mécaniques. Dans ce cas, et après examen des faciès de rupture, il conviendra d'émettre la réserve **RConf3** suivante :

RConf3: Les variations de masse volumique et l'examen des faciès de rupture laissent apparaître une maîtrise incorrecte des durées de vibration des corps d'épreuves. Ces variations sont de nature à induire des écarts plus ou moins sensibles et difficilement appréhendables sur le comportement mécanique de ces corps d'épreuves.

Dans le cas des bétons auto-plaçants, le mauvais remplissage des moules (coulage en plusieurs phases, emploi de main écope,...) conduit systématiquement à des corps d'épreuves hétérogènes dont les performances seront affectées très fortement (perte sur MVA de l'ordre de 0,15 kg/dm3, et perte de résistances en compression pouvant atteindre 10 MPa à 28 jours). Il convient donc d'émettre la réserve **RConf4**, si le recours à ces pratiques est avéré.

PROG_3 - doc1 Janvier 2004 Page 16 sur 25

RConf4: Les variations de masse volumique et l'examen des faciès de rupture laissent apparaître un mauvais coulage des corps d'épreuves. Ces variations sont de nature à induire des écarts pouvant 150 kg/m3 sur les masses volumiques apparentes et 10 MPa sur les valeurs de résistance mécanique à la rupture en compression simple. Les corps d'épreuves doivent donc être considérés comme non représentatifs du béton d'ouvrage.

13.4. Réserves particulières relatives à la conservation sur site des corps d'épreuves

sous ambiance contrôlée

Dans le cas des éprouvettes confectionnées en fin de semaine, il est fréquent de constater que les éprouvettes restent dans les caissons isothermes ou sous capots chauffants pendant plus de 48 heures alors qu'habituellement (coulage pendant les 4 premiers de la semaine) ces éprouvettes subissent ce traitement pendant moins de 24 heures. De ce fait leur maturité se trouve perturbée et le développement de leurs caractéristiques mécaniques également. Il conviendra donc d'émettre la réserve **RMatu1**:

RMatu1: Les éprouvettes, soumises habituellement à une ambiance contrôlée au jeune âge, ont été confectionnées en fin de semaine et de ce fait n'ont pas subi la maturité habituelle. Leurs caractéristiques mécaniques évoluent donc différemment et les valeurs mesurées ne doivent pas être introduites dans les populations statistiques courantes.

Les caractéristiques thermiques générales admises pour la conservation des corps d'épreuves sur site (PAQ) n'ont pas été respectées (absence de caisson isotherme, temps de séjour modifié). De ce fait leur maturité se trouve perturbée et le développement de leurs caractéristiques mécaniques également. Il conviendra donc d'émettre la réserve **RMatu2**:

Rmatu2: Les éprouvettes, soumises habituellement à une ambiance contrôlée au jeune âge, n'ont pas été conservées sur site dans les conditions prescrites au PAQ de l'entreprise. De ce fait elles n'ont pas subi la maturité normale. Leurs caractéristiques mécaniques évoluent donc différemment et les valeurs mesurées ne doivent pas être introduites dans les populations statistiques courantes.

Les corps d'épreuves ont été réalisés à partir d'un béton chaud, ou subissent normalement un traitement thermique défini (PAQ). Les conditions générales admises pour la conservation des corps d'épreuves sur site (PAQ) n'ont pas été respectées (conditions réelles à expliciter). De ce fait leur maturité se trouve perturbée et le développement de leurs caractéristiques mécaniques également. Il conviendra donc d'émettre la réserve **Rmatu3**:

Rmatu3: Les conditions prévues au PAQ pour la conservation des éprouvettes, soumises habituellement à un traitement thermique ou réalisées à partir d'un béton chaud, n'ont pas été respectées (expliciter l'écart constaté sur site. De ce fait elles ont subi une maturité différente. Leurs caractéristiques mécaniques évoluent donc différemment et les valeurs mesurées ne doivent pas être introduites dans les populations statistiques courantes.

Les corps d'épreuves traités thermiquement ont subi un choc thermique trop important après décoffrage ; certains écarts peuvent apparaître sur les caractéristiques physiques et mécaniques. Il conviendra donc d'émettre la réserve **Rmatu4** :

Rmatu4: Les corps d'épreuves ont subi sur site un important choc thermique à l'issue du cycle d'étuvage (passif ou actif à préciser). Les éventuels écarts constatés par rapport aux valeurs habituelles sont imputables à cette anomalie de procédure. Si la partie d'ouvrage n'a pas été soumise à ce même type de choc thermique, les corps d'épreuve ne sont pas représentatifs du béton de l'ouvrage.

Les corps d'épreuves traités thermiquement n'ont pas subi de choc thermique après étuvage (décoffrage ; certains écarts peuvent apparaître sur les caractéristiques physiques et mécaniques. Il conviendra donc d'émettre la réserve **Rmatu5** :

PROG_3 – doc1 Janvier 2004 Page 17 sur 25

Rmatu5: Les corps d'épreuves n'ont pas subi sur site de choc thermique à l'issue du cycle d'étuvage (passif ou actif à préciser) alors que la partie d'ouvrage a subi un important choc thermique. Les corps d'épreuves sont représentatifs du béton fabriqué habituellement mais non représentatifs du béton de la partie d'ouvrage incriminée.

Dans le cas de traitement thermique, il peut arriver que les éprouvettes soient conservées sous bâche avec la partie d'ouvrage préfabriquée au lieu d'être placées en caisson « piloté » par la partie d'ouvrage (capots chauffants par exemple); dans ce cas l'exploitation prévue réglementairement (rapport éprouvette étuvée/éprouvette non étuvée) perd une grande partie de son intérêt et peut même se trouver invalidée en fonction du cahier des charges du chantier. Il convient donc d'émettre la réserve **RMatu6**:

RMatu6: Les corps d'épreuves étuvés destinés à apprécier la résistance mécanique de la pièce préfabriquée étuvée n'ont pas subi un traitement thermique correct car non piloté par la partie d'ouvrage. De ce fait, ils ne sont pas représentatifs cette partie d'ouvrage, et on ne peut pas appliquer l'exploitation réglementaire des résultats. (bien entendu cette réserve ne s'applique pas si le cahier des charges prévoyait la conservation des corps d'épreuves sous bâche).

conservation sur site agressif

Si l'aire de stockage des corps d'épreuves sur site est placée trop près de sources de vibrations (par exemples, proximité d'une piste de roulement d'engins lourds ou vibrants, d'un poste de vibration du béton, proximité d'un site de vibro-fonçage,), les conditions de prise et de durcissement du béton sont dégradées et le développement des caractéristiques mécaniques altéré de façon néfaste. Il est donc nécessaire d'émettre la réserve Rmatu 7 :

RMatu7: Les corps d'épreuves ont été stockés dans des conditions défavorables de post-vibration pendant leur prise et/ou leur durcissement : cet état de fait conduit à une altération de leurs caractéristiques mécaniques finales.

Les éprouvettes conservées sur site n'ont pas été mises à l'abri de polluants chimiques. Si des écarts d'aspects superficiels et/ou de caractéristiques mécaniques sont constatés, il convient d'émettre la réserve RMatu8

RMatu8: Les corps d'épreuves ont été stockés dans des conditions défavorables au niveau protection vis-à-vis de polluants chimiques (à préciser la nature de ceux-ci); l'agression du béton par ceux-ci est de nature à altérer les caractéristiques mécaniques de ces corps d'épreuves et peut conduire à la non-prise en compte des résultats.

13.5. Réserves particulières relatives au transport des corps d'épreuves

Dans le cas des éprouvettes de contrôle sont transportées trop jeunes au laboratoire d'essai (moins de 16 heures après confection). Il conviendra d'émettre la réserve **RTrans1** :

RTrans1: Les éprouvettes de contrôle ont été transportées au laboratoire d'essai trop jeunes puisque le transport a débuté moins de 16 heures après confection; ce transport ne respecte pas les spécifications de la norme NF EN 12390-2 paragraphe 5.6 et génère un endommagement des corps d'épreuves. Une réserve doit donc être émise quant à la représentativité mécanique de ceux-ci.

Lorsque les éprouvettes sont livrées au laboratoire démoulées ou dans leur moule sans couvercle de protection contre la dessiccation, il convient d'émettre la réserve **RTrans2** :

RTrans2: Les éprouvettes de contrôle ont été transportées au laboratoire d'essai après démoulage (ou dans leur moule sans couvercle). Cette anomalie générant une dessiccation plus ou moins importante, les développements de leurs caractéristiques physiques et mécaniques s'en trouvent altérés. Dans aucun cas on ne doit interpréter les valeurs de masse volumique apparente.

PROG_3 - doc1 Janvier 2004 Page 18 sur 25

14 – Les calculs d'incertitudes

14.1. Méthode employée

Les diagrammes cause-effet élaborés, l'influence de chaque cause d'erreur sur le résultat d'essai a été analysée. L'appréciation des effets a permis d'identifier les causes d'incertitudes chiffrables et celles ne pouvant l'être ou nécessitant des études paramétriques complémentaires. Les incertitudes chiffrables correspondent donc à un minimum des incertitudes réelles de chaque essai. Elles sont calculées ci-après. Pour apprécier au mieux l'incertitude globale de chaque essai, une méthodologie basée sur un nombre important d'essai est proposée. L'exemple du LRPC de Clermont-Ferrand est traitée pour illustrer cette approche. Cela permet d'estimer l'incertitude de l'essai dans sa globalité sans pour autant identifier le poids de chaque cause d'erreur. Seules des études paramétriques permettront de les calculer individuellement si nécessaire.

14.2. Les incertitudes « chiffrables » pour l'essai de résistance à la compression simple

Les normes utilisées pour le calcul d'incertitude sont les normes NF EN 12390-1 à 4. Seules les causes suivantes d'incertitude relatives à la partie essai de compression ont été prises en compte :

- le diamètre de l'éprouvette avec une tolérance de 0,5 %
- la perpendicularité du côté par rapport aux extrémités avec une tolérance de I =0 +/- 0,5 mm
- la machine de compression de classe 1

Le calcul est réalisé sur la base de la formule : $Rc = \frac{F}{A}$ (NF EN 12390-3 février 2003)

- Rc = résistance à la compression (MPa)
- F = force appliquée (N)
 A = π.d²/4 surface de l'éprouvette (mm²)

Le résultat est exprimé à partir de trois essais : $Rc = \frac{Rc_1 + Rc_2 + Rc_3}{2}$

L'incertitude sur l'essai est donc $U_{Rc} = \frac{U_{Rci}}{\sqrt{3}}$

<u>Calcul de</u> U_{Rci} : U_{Rci} = K. u_{rci} avec K=2

$$\begin{split} u_{rci} &= \sqrt{\left(\frac{4.}{\pi.(d-l)^2}\right)^2.u_F^2 + \left(\frac{8.F}{\pi.(d-l)^3}\right)^2.\left(u_d^2 + u_l^2\right)} \\ &\text{avec } u_d = \frac{0,005.d}{3} \text{ ; } u_l = \frac{0,5}{6}mm \text{ ; } u_F = 0,87\%.F \end{split}$$

PROG_3 – doc1 Janvier 2004 Page 19 sur 25

Les calculs sont réalisés pour plusieurs qualités de béton et deux dimensions d'éprouvette.

Tableau	Tableau 30 - Incertitude de l'essai de compression simple suivant le niveau de performances des bétons							
Type de béton	Dimension des éprouvettes		Résistance maximale	U _{rc}	Incertitude relative			
	d (m)	L (m)	(MPa)	(MPa)				
« petits » bétons			20	0,22	1,11 %			
Bétons courants	0.16	0,32	50	0,55	1,11 %			
BHP	0,16		90	1,00	1,11 %			
BTHP			200	2,21	1,11 %			
« petits » bétons			20	0,23	1,14 %			
Bétons courants	0.11	0.00	50	0,57	1,14 %			
BHP	0,11	0,22	90	1,02	1,14 %			
BTHP			200	2,27	1,14 %			

14.3. Les incertitudes « chiffrables » pour l'essai de résistance en traction par fendage

La norme utilisée pour le calcul d'incertitude est la norme NF EN 12390-6 octobre 2001.

Les causes d'incertitude pris en compte ne concernent que la partie essai de résistance en traction par fendage. Seules les causes suivantes ont été prises en compte :

- le diamètre de l'éprouvette avec une tolérance de 0,5 %
- la hauteur de l'éprouvette à une tolérance de 0,5 %
- la perpendicularité du côté par rapport aux extrémités avec une tolérance de I = 0 +/- 0,5 mm
- la machine de compression de classe 1

Le calcul est réalisé sur la base de la formule : $f_{ct} = \frac{2.F}{\pi . L.d}$

- F = force appliquée (N)
- d = diamètre de l'éprouvette (mm)
- L = 2.d hauteur de l'éprouvette (mm)

Le résultat est exprimé à partir de trois essais : $fct = \frac{fct_1 + fct_2 + fct_3}{3}$

L'incertitude sur l'essai est donc $U_{\mathit{fct}} = \frac{U_{\mathit{fcti}}}{\sqrt{3}}$

$$\underline{\text{Calcul de}} \, \underline{U_{\mathit{fct}_i}} \text{:} \quad U_{\mathit{fct}_i} \text{= K. } u_{\mathit{fct}_i} \text{ avec K=2}$$

$$u_{fct_i} = \sqrt{\left(\frac{2}{\pi.(L-l').d}\right)^2.u_F^2 + \left(\frac{2.F}{\pi.(L-l').d^2}\right)^2.u_d^2 + \left(\frac{2.F}{\pi.(L-l')^2.d}\right)^2.(u_L^2 + u_{l'}^2)}$$

avec
$$u_F = 0.87\%.F$$
; $u_d = \frac{0.005.d}{3}$; $u_L = \frac{0.005.d}{3}$; $u_{l'} = \frac{0.25}{6}(mm)$

PROG_3 – doc1 Janvier 2004 Page 20 sur 25

Les calculs sont réalisés pour plusieurs qualités de béton.

Tableau 31 - Incertitude de l'essai de traction par fendage suivant le niveau de performances des bétons								
Dimension des éprouvettes			Résistance maximale					
Type de béton	d (m)	L (m)	l' (m)	(MPa)	U _{fct} MPa)	Incertitude relative		
« petits » bétons				2	0,02	1,2 %		
Bétons courants	0.16	0.32	0.16	5	0,06	1,2 %		
BHP	0,10	0,32	0,10	9	0,11	1,2 %		
BTHP				20	0.24	1.2 %		

14.3. Les incertitudes « chiffrables » pour la mesure de la masse volumique du béton durci

La norme utilisée pour le calcul d'incertitude est la norme NF EN 12390-7 septembre 2001.

Les causes d'incertitude suivantes ont été prises en compte :

- le diamètre de l'éprouvette avec une tolérance de 0,5 %
- la hauteur de l'éprouvette avec une tolérance de 0,5 %
- la masse de l'éprouvette pesée avec une précision de 0,1 %

Le calcul est réalisé sur la base de la formule : $D = \frac{m}{V} = \frac{2.m}{\pi . d^3}$

- m = masse de l'éprouvette (kg)
- d = diamètre de l'éprouvette (m)

Le résultat est exprimé à partir de trois essais : $D = \frac{D_1 + D_2 + D_3}{3}$

L'incertitude sur l'essai est donc $U_D = \frac{U_{Di}}{\sqrt{3}}$

Calcul de
$$U_{D_i}$$
: U_{D_i} = K. u_{D_i} avec K=2

$$u_{D_i} = \sqrt{\left(\frac{2}{\pi . d^3}\right)^2 . u_m^2 + \left(\frac{4 . m}{\pi . d^4}\right)^2 . u_d^2}$$

avec
$$u_m = \frac{0.1}{100x^3}.m$$
; $u_d = \frac{0.005.d}{3}$

Les calculs sont réalisés pour plusieurs qualités de béton et deux dimensions d'éprouvettes.

Tablea	Tableau 32 - Incertitude de la mesure de la masse volumique apparente suivant le niveau de valeur							
Type d'éprouvette	d(m)	D (kg)	uD (kg/m3)	UD (kg/m3)	Incertitude relative			
16 x 32	0,16	2,2	7,38 x 10 ⁻³	1,48 x 10 ⁻²	0,67 %			
10 X 32	0,16	2,6	8,72 x 10 ⁻³	1,74 x 10 ⁻²	0,67 %			
11 v 22	0,11	2,2	7,45 x 10 ⁻³	1,49 x 10 ⁻²	0,68 %			
11 x 22	0,11	2,6	8,80 x 10 ⁻³	1,76 x 10 ⁻²	0,68 %			

14.4. Incertitude globale sur les essais de résistance à la compression simple

La donnée présentée au client suite à un essai de compression est la moyenne de trois essais de compression sur trois éprouvettes issues d'un même échantillon de béton. L'analyse statistique proposée pour estimer l'incertitude globale de la résistance d'un échantillon de béton nécessite un nombre important de données d'essai (> 30 lots d'éprouvettes bétons).

PROG_3 – doc1 Janvier 2004 Page 21 sur 25

Le principe est d'analyser l'écart des trois essais de compression par rapport à leur moyenne. La méthode employée est la suivante :

1/ La création d'une base de données de résultats d'essai : elle peut être issue d'une extraction de base de données (logiciel BETSY par exemple) :

	Tableau 33 – Exemple de base de données										
Dossier	Dossier N° Lot Date essai	Date essai	N° Épreuve	Age Épreuve	Type essai	Confection		nce Comp			
							Rc1	Rc2	Rc3		
01/045	22	02/01/2002	25	28	С	V	47.1	45.8	45.9		
01/039	20	03/01/2002	1	28	С	V	50.5	49.2	48.1		
01/039	20	03/01/2002	4	28	С	V	45.5	46	47.2		
01/039	20	03/01/2002	7	28	С	V	46.9	46.4	46.3		
01/039	20	03/01/2002	10	28	С	V	53.6	52.2	52.7		
01/062	13	03/01/2002	13	28	С	V	43.8	44.5	42.1		
01/011	27	04/01/2002	1	28	С	V	43.5	43.3	43.5		

2/ Le nettoyage de la base de données est ensuite pratiqué : les lots pour lesquels, il n'y pas trois éprouvettes ou présentant des anomalies sont supprimés de la base.

3/ Ensuite pour chaque série de trois éprouvettes, sont calculés la moyenne des résultats (valeur annoncée au client) et l'écart observé sur les trois éprouvettes par rapport à la moyenne (Σ ; R_{c1} - Σ ; R_{c2} - Σ ; R_{c3} - Σ).

L'estimation de l'incertitude sur la moyenne à partir de la demi-étendue des trois résultats d'essai de compression ne peut être utilisée. En effet la demi-étendue entre les trois résultats de mesure ne tient pas compte de la répartition des trois résultats d'essai autour de la moyenne. Elle minimise donc la dispersion possible autour de la moyenne. C'est cette dispersion qui permet de calculer l'incertitude sur l'essai.

La comparaison a été réalisée sur les résultats d'essais d'un LRPC (cf. ci-après).

4/ Calcul de l'écart type (u $_{\Sigma}$) des (Rci- Σ) $_{j}$: j est le nombre de lot de trois éprouvettes qui doit être supérieur 30 pour avoir un calcul de l'écart type statistiquement représentatif. 5/ L'incertitude sur la moyenne Σ est alors U $_{\Sigma}$ = 2.u $_{\Sigma}$

Pour exemple sur l'essai de compression sur éprouvette vibrée non-étuvée, l'analyse a été menée sur 305 lots de trois éprouvettes qui correspondent aux essais réalisés sur tous types de bétons livrés à un LRPC sur 1,5 an. Les résistances à la compression mesurées varient de 30 MPa à 95 MPa.

PROG_3 – doc1 Janvier 2004 Page 22 sur 25

L'analyse des écarts maximum à la moyenne en fonction de la qualité du béton ne montre pas une influence de la résistance des bétons sur l'incertitude des résultas de mesures. Le graphique ci-après permet de visualiser les écarts à la moyenne en fonction de la résistance du béton.

Le graphique ci-après permet de visualiser le caractère gaussien de la répartition des écarts maximums à la moyenne.

L'écart type des écarts maximums à la moyenne est de 1,26 MPa soit une incertitude sur la valeur de résistance à la compression annoncée au client de +/- 2,5 MPa.

La même démarche de calcul menée sur la demi-étendue des résistances des trois éprouvettes conduit à des incertitudes de +/- 1,8 MPa.

14.5. Incertitude globale sur les mesures de la masse volumique du béton durci

La donnée présentée au client suite à un essai de mesure de la densité d'un béton est la moyenne de trois mesures de densité sur trois éprouvettes issues d'un même échantillon de béton.

L'analyse statistique proposée pour estimer l'incertitude globale de la mesure de la densité d'un échantillon de béton nécessite un nombre important de données d'essai (> 30 lots d'éprouvettes bétons). Le principe est d'analyser l'écart des trois mesures de densité par rapport à leur moyenne. La méthodologie est la même que pour l'essai de compression. Pour exemple sur cette mesure, l'analyse a été menée sur les 305 lots précédents de trois éprouvettes. Les densités mesurées varient de 2,2 à 2,7 g/cm3.

Le graphique ci-après permet de visualiser les écarts à la moyenne en fonction de la densité du béton.

Le graphique ci-après permet de visualiser le caractère gaussien de la répartition des écarts maximums à la moyenne.

L'écart type des écarts maximums à la moyenne est de 0,007 g/cm3 soit une incertitude sur la valeur de densité du béton annoncée au client de +/- 0,015 g/cm3

14.5. Incertitude globale sur les essais de résistance en traction par fendage

La donnée présentée au client suite à un essai de résistance en traction par fendage d'un béton est la moyenne de trois mesures sur trois éprouvettes issues d'un même échantillon de béton. L'analyse statistique proposée pour estimer l'incertitude globale de l'essai de résistance en traction par fendage d'un béton nécessite un nombre important de données d'essai (> 30 lots d'éprouvettes bétons). Le principe est d'analyser l'écart des trois essais de résistance en traction par fendage par rapport à leur moyenne. La méthodologie serait la même que pour l'essai de compression. Le nombre insuffisant d'éprouvettes par lots disponibles n'a cependant pas permis d'effectuer un traitement.

14.5. Bilan

La démarche proposée est d'établir pour chaque unité du RST son incertitude globale sur les essais de compression, de résistance en traction par fendage et de mesure de la masse volumique selon la méthodologie proposée.

RLPC

GUIDE POUR L'ESTIMATION DES INCERTITUDES Incertitudes des essais sur le matériau béton

PROG_3 – doc1 Janvier 2004 Page 24 sur 25

A titre d'exemple, pour le LRPC ayant servi de test, cette démarche conduit aux résultats ci dessous, en prenant bien en compte que la population testée avait déjà subi un certain écrêtage au niveau de la réception des corps d'épreuve.

15 - Les besoins en études complémentaires

De l'analyse des diagrammes cause-effet, il ressort que l'influence de certains paramètres n'est pas suffisamment précise et que des études paramétriques devraient être réalisées pour avoir des réponses fiables. Les principales études se situent sur des points particuliers aux différents niveaux de la confection des corps d'épreuves, de la conservation des corps d'épreuves sur site, du transport des corps d'épreuves au laboratoire et de la préparation des corps d'épreuves au laboratoire (voir les diagrammes cause-effet). Mais la pertinence de ces besoins reste économiquement à valider.

PROG_3 – doc1 Janvier 2004 Page 25 sur 25

Pièce annexe : Processus général de réalisation d'essai

NB:

Un ensemble de résultats non conformes à une spécification sur un lot ne constitue généralement pas une remise en cause de la qualité des résultats d'essai.

La mesure est réalisée pour vérifier si la caractéristique du corps d'épreuve est conforme à une spécification établie.

Pour qu'un produit soit conforme, la caractéristique de ce produit doit appartenir à l'intervalle de tolérance. On fait généralement l'hypothèse que la distribution de l'incertitude suit une loi normale de Gauss (k =2).