Чистые полупроводники

Примесные полупроводники

Донорная примесь (п – тип)

Акцепторная примесь (р – тип)

Рекомбинация

Температурная зависимость сопротивления полупроводников

$$n_e = n_p = Ae^{-\frac{E_g}{2kT}}$$

$$\sigma \sim n \Rightarrow \ln \sigma \sim \frac{1}{T}$$

p–*n* переход

p–*n* переход

Выпрямление тока

К. Браун, 1874 г. Явление односторонней проводимости.

Вольт-амперная характеристика диода

Биполярный транзистор

1947 г.

$$I_{\mathfrak{I}} pprox I_{\mathrm{K}} \quad R_{\mathfrak{I}_{\mathrm{B}}} << R_{\mathrm{BK}} \quad U_{\mathrm{BX}} << U_{\mathrm{BMX}}$$

У. Шокли, У. Браттейн, Дж. Бардин Нобелевская премия 1956 г.

Фотоэффект

1905 г. Эйнштейн: свет состоит из потока дискретных частиц (квантов) – фотонов.

Уравнение Эйнштейна
$$\hbar\omega = A + mv^2/2$$

Энергия кванта расходуется на работу выхода электрона из металла и на сообщение электрону кинетической энергии.

Красная граница фотооффекта соответствует энергии фотона, равной работе выхода

$$\hbar\omega_0 = A$$
$$\lambda_0 = 2\pi c\hbar/A$$

Фотоэлементы

Внешний фотоэффект (Г. Герц, 1887)

Вольфрам: А=4,3 эВ [116]; 5,35 эВ [110]

Металл	A _{BыX} /	А _{вольфрам}
Вольфрам	1,00	272 нм
Молибден	0,92	
Тантал	0,91	
Торий	0,75	
Барий	0,52	484 нм
Цезий	0,40	662 нм

$$\Delta E = 1$$
 эВ => $\lambda_{\text{max}} = 1,23$ мкм

Фотоэлементы

Внутренний фотоэффект

- 1 диэлектрическая пластина
- 2 слой полупроводника
- 3 контактные площадки

$$\Delta E = 1$$
 $\Rightarrow B = > \lambda_{max} = 1,23$ MKM

Солнечные батареи

Светодиоды и лазеры

В обычных лазерах переходы происходят между дискретными уровнями, в полупроводниковых – обусловлены зонной структурой

Полупроводниковые лазеры имеют очень малые размеры (\sim 0,1 мм), активная область очень узкая (\sim 1 мкм) \Rightarrow повышенная угловая расходимость

Пространственные и спектральные характеристики сильно зависят от свойств материала (структуры запрещенной зоны, показателя преломления)

Лазерное излучение возникает непосредственно под действием тока, протекающего через p-n переход \Rightarrow высокий кпд, легкость модуляции излучения

ТермоЭДС (эффект Зеебека, 1821 г.)

Материал	α, мкВ/°
Bi	-68
Ni	-21
Fe	+15
Tl_2S	-780
Se	+1000

Эффект Пельтье

$$Q_{AB} = \Pi_{AB}It$$

