

2021

Data Science and AI

Module 3 Part 1:

Exploratory Data Analysis (EDA)

Agenda: Module 3 Part 1

- Introduction to EDA
- Data cleaning & profiling
- Assessing data quality
- Data rejection & imputation
- Exploring & visualising continuous data
- Exploring & visualising categorical data
- Temporal data
- Geographic data

Python EDA Fundamentals

- Where does data come from?
- What does data look like?
- What is Exploratory Data Analysis?
- Where does EDA fit in the Data Science pipeline?

Where does data come from?

- databases
 - data marts
 - data warehouses
- transaction systems
 - cloud
 - mainframes
- distributed file systems
 - Hadoop
- APIs
- scanned documents

- websites
 - downloads of datasets, posts, conversations, etc.
 - web scrapers
- subscribed feeds
 - news
 - IoT devices
- multimedia hosts
 - images
 - video
 - audio
- 5

What does data look like?

- database tables
- reports & extracts
- spreadsheets & workbooks
- structured & semi-structured files
- streams
- encoded files
- bitmaps
- 5

What is Exploratory Data Analysis?

everything we do with a candidate dataset ...

- after it has been rendered essentially usable
- before we start developing analytics and models that address our original problem
- to determine whether it will make a useful **proxy** for understanding the phenomenon we are interested in.

where does it fit?

(within the data science pipeline)

How do we make a dataset "usable"?

wrangling

- sourcing, loading, and precleaning the data so we can see what it really looks like
- fixing critical issues

profiling and cleaning

- understanding the essential characteristics of the data
- applying preliminary transformations to confer context and meaning
- implementing strategies for missing and invalid data

munging

reshaping the data to prepare it for analysis

Where does EDA fit?

• (within in the data science pipeline)

You will have to iterate over each step and over a number of the steps

Data Cleaning & Profiling

- Preliminary data cleaning
- Basic data profiling
- Assessing data quality
- Data rejection and imputation

Data Cleaning & Profiling

def: Data profiling

- examining the characteristics of the dataset
 - data types
 - data ranges (continuous) & categories
- identifying issues with the data

def: Data cleaning

- making the data usable (preparing it for analysis)
 - reformatting
 - data type conversion
 - dealing with dirty data

Data Cleaning & Profiling

Load raw data

- from source system
 - database
 - HFS
 - flat file
 - spreadsheet / workbook
 - semi-structured file (JSON, XML, HTML)
 - API
 - stream (feed, IoT)
 - web scraper
 - scanned text

Fix loading errors

- missing delimiters
 - e.g. badly written mainframe extracts that suppress trailing commas for empty fields
- unexpected delimiters
 - e.g. '|' or tab character used in "CSV" file
- illegal characters
 - e.g. '\u' is normally interpreted as indicating Unicode may need to suppress default behaviour of function used to load the data
- missing control characters
 - EOL
 - EOF
- other?

Parse and convert

- formatted date strings to dates
 - d/m/y, m/d/y, dd/mm/yyyy, dd-mmm-yyyy, day names, month names, ...
- formatted time strings to times
 - AM/PM vs 24-hr
 - time zone conversions
- formatted date+time strings to datetimes
- string to int, string to float
- proprietary formats
 - binary, octal, hexadecimal

What to do when data conversions fail?

- implement a *try* block
 - to catch format conversion failures
- use transformations that can handle missing values
 - or deal with missing values first
- document conversion failures
 - these are *limitations* that should be addressed when interpreting the results of analysis


```
def try_parse_int(s, base=10, val=None):
    try:
      return int(s, base)
    except ValueError:
      return val
```


Detect & fix missing values

- drop rows
- replace with NA
- impute values
 - mean, median, mode
 - of entire column
 - of similar data (grouped by other fields)
 - nearest neighbour
 - assign value from closest point (according to a suitable distance metric)

Dealing with missing or bad data

- replace with NA
- impute values
 - out of range
 - too small: set to minimum possible value?
 - too large: set to maximum possible value?

drop rows

- impossible values (e.g. out of domain)
 - length = green: drop?
 - salary = -1: drop?
- drop columns
 - too many missing or invalid samples

Summarise data

- counts of missing values
- counts of invalid values
- statistical parameters of distribution
 - continuous variables
 - bin frequencies
 - mean, median, maximum, minimum
 - categorical variables
 - category frequencies
 - most frequent (mode), least frequent

Assessing Data Quality

- accuracy, reliability (veracity)
- currency, relevance (value)
- missing and invalid values
 - overall
 - by column
 - by row

issues:

- can we afford to throw out rows with missing data?
- how will imputation of missing/invalid data affect the outcome?

Assessing Data Quality with Python

let df be a Pandas DataFrame object

- view the first few rows:
- check for missing values:
- pairwise correlations:
- (continuous) value ranges:
- (discrete) value counts:
- summary:

```
df.head(), df.head(nrows)
df.isnull(), df.isnull().sum()
df.corr()
df.min(), df.max()
df.value_counts()
df.describe()
pandas_profiling.ProfileReport
pydqc
```


Lab 3.1.1: Data Wrangling and Munging

- Purpose:
 - To explore Python methods for wrangling, munging, and profiling datasets
- Materials:
 - 'Lab 3.1.1.ipynb'

Outliers

def: an observation that is distant from other observations in the sample

- measurement inaccuracy
- measurement errors
 - incl. recording errors
- unusual system behaviour
- external phenomena

Outlier Detection in 1 Dimension

extreme value analysis

- outliers are defined by statistical tests based on mean & variance of sample
 - *z*-test
- mark points with low score as outliers

probabilistic & statistical models

- based on assumed distribution of data
 - calculate probability that each point belongs to the distribution
 - mark points with low probability as outliers

Outlier Detection in Multiple Dimensions

linear models

- reduce data to lower-dimensional spaces
- calculate distance from each point to a reference hyperplane
- mark points with largest distance as outliers
- similar concept to principal component analysis (PCA)

proximity-based models

- define a distance metric and apply to each pair of points
- mark points that are more isolated as outliers
- examples: cluster analysis, density-based analysis, nearest-neighbour analysis

Outlier Detection - cont'd

- outliers vs. anomalies
 - if unsure, analyse data with and without the outliers

Outlier Detection - cont'd

- outliers may not be obvious in one dimension
 - some points may only get separated from the mainstream when looking at several dimensions at once
 - may indicate subsets of behaviour ("classes")

Continuous Data

- Statistics of sample distributions
 - deeper dive: mean, variance, skewness, kurtosis
- Exploring and visualising sample variables
 - histograms
 - box & whisker plots
 - violin plots
- Outlier detection

Mean & Variance

Skewness and Kurtosis

Scatterplot

 shows a 2D relationship within the dataset by plotting one column against another

df.plot(kind='scatter', x='sepal_width', y='sepal_length')

plt.scatter(df['sepal_width'], df['sepal_length'], s = 10, linewidths = 1, alpha = 0.5)

https://matplotlib.org/api/ as gen/matplotlib.pyplot.scatter.html

Histogram

shows the properties of the data sample distribution with no loss of information

plt.hist(y)
plt.title("Gaussian Histogram")
plt.xlabel("Value")
plt.ylabel("Frequency")

df['temp'].hist()

Box & Whisker Plots

- shows multiple features of sample distribution
 - median
 - interquartile range
 - 10th, 90th percentiles

Box & Whisker Plots

get 50 random numbers normally distributed about -1:

y = np.random.randn(50) - 1

create an outlier:

y[49] = 3

plot box & whiskers:

plt.boxplot(y)

Violin Plots

• shows the sample distribution itself

https://matplotlib.org/gallery/statistics/customized_violin.html

Quantiles

- quantiles are popular in reporting because they help to create a sense of what is "normal"
 - 90% of calls last less than 3 minutes, 22 seconds
 - 80% of revenue was derived from 22% of the product range

quantiles are cumulative

 e.g. 80th percentile is a subset of

 90th percentile

Q: what would a plot of all possible quantiles represent?

the cumulative probability function

Discretisation

suppose want to look at intervals ("bins") instead?

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3,
 include_lowest=False, duplicates='raise')

```
pandas.cut(df['temp'], bins = 4).head()

(0.25, 0.5]
(0.25, 0.5]
(0.5, 0.75]
(0.25, 0.5]
(0.5, 0.75]
```

- continuous data can be sorted into specified bins
- bins can be a vector of 'cut' boundaries (for asymmetric bins)
- bin counts can be plotted as a bar chart (discrete version of histogram)

Continuous *n*-Dimensional Data

marginal distribution

- the distribution of the entire sample of a given variable from a multivariate sample
- ignores presence of other (n−1) covariates

conditional distribution

 the distribution of a given variable contingent on values of other (n−1) covariates

for a pair of covariates X, Y

joint distribution: Pr(X = x, Y = y)

conditional distribution: $Pr(X = x \mid Y = y)$ Y has been "marginalised out"

Pairwise Correlations in *n*-Dimensional Data

computes correlation between every pair of columns in a matrix or DataFrame:

1 iris.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.109369	0.871754	0.817954
sepal_width	-0.109369	1.000000	-0.420516	-0.356544
petal_length	0.871754	-0.420516	1.000000	0.962757
petal_width	0.817954	-0.356544	0.962757	1.000000

- only the figures below (or above) the main diagonal are needed
- uses Pearson's correlation by default

Pairwise Correlations in *n*-Dimensional Data – cont'd

can visualise correlations as a pair plot

import seaborn as sns

sns.pairplot(iris)

Visualising 2-Dimensional Data

- scatterplot
- line chart
- bar chart (binned horizontal axis)
- stacked area chart
- many variations of these

Visualising 3-Dimensional Data

3D Scatterplot

Wireframe Plot

Surface Plot

https://matplotlib.org/mpl_toolkits/mplot3d

Visualising 3 Dimensions – cont'd

 adding colour allows stratification by a categorical variable (usually called a "class")

Visualising 3 Dimensions – cont'd

using colour in a scatterplot

using colour and hue in a contour plot

https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57

Visualising 3 Dimensions – cont'd

Slicing

- reduce dimensionality by viewing a plane
- does not have to be parallel to a dimensional axis

http://zulko.github.io/blog/2014/11/29/data-animations-with-python-and-moviepy/

Visualising 3 Dimensions - cont'd

heat map

Visualising > 3 Dimensions

- dimensional reduction
 - e.g. to animated trajectories

https://hypertools.readthedocs.io/en/latest/

Visualising > 3 Dimensions - cont'd

- N-dimensional correlation of categorical dimensions using a heat map
 - vertical axis = cars
 - horizontal = attributes (dimensions)

Visualising > 3 Dimensions – cont'd

radar chart

Toronto

(a) Largest English speaking city

Montréal

(b) Largest French speaking city

Visualising > 3 Dimensions - cont'd

- parallel coordinates
 - can show multiple variables of same scale
 - especially useful for repeated measures
 - each variable is a time point in a longitudinal study

from pandas.tools.plotting import parallel_coordinates

parallel_coordinates (iris, 'species')

Visualising > 3 Dimensions - cont'd

scatterplot with glyphs

options for encoding glyphs:

- size
- colour
- intensity
- transparency
- shape
- texture

Sankey Diagram

state changes, class transitions, redistributions

Categorical Data

- Statistics of discrete distributions
 - class frequencies
- Exploring and visualising sample variables
 - bar plots
 - pie / donut charts
- Outlier detection

Marginal Distributions of Discrete Variables

donut chart recipe ===

The slices will be ordered and plotted counter-clockwise.

```
data = [0.27, 0.67, 0.06]
labels = 'Low', 'Medium', 'High'
colors = ['yellowgreen', 'gold', 'lightskyblue']
plt.pie
```

(data, explode=(0,0), labels=labels, colors=colors, autopct='%1.1f%%', shadow=False)

Income Bracket						
Low	0.27					
Medium	0.67					
High	0.06					

#draw a circle at the center of pie to make it look like a donut:

```
centre_circle = plt.Circle((0,0), 0.5, fc='white', linewidth=1.25)
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
```

Set aspect ratio to be equal so that pie is drawn as a circle:

```
plt.axis('equal')
plt.show()
```


Bar Plots

• styles:

- horizontal, vertical
- grouped, stacked

Conditional Distributions of Discrete Variables

- contingency tables
 - 2D:
 - var1 = rows, var 2 = columns
 - 3D:
 - var3 = planes (1 table for each value of var3)
 - > 3D:
 - multi-dimensional arrays
 - can be represented in code even if we can't visualise them

Lab 3.1.2: Data Profiling

- Purpose:
 - To explore Python methods for exploring and summarising datasets
- Materials:
 - 'Lab 3.1.2.ipynb'

Exploring Large Datasets

randomised sampling

1 bikes.sample(5)

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
9870	9871	2012-02-21	1	1	2	7	0	2	1	1	0.22	0.2727	0.64	0.0000	6	273	279
16419	16420	2012-11-21	4	1	11	21	0	3	1	1	0.36	0.3788	0.50	0.0000	8	97	105
6558	6559	2011-10-05	4	0	10	20	0	3	1	1	0.52	0.5000	0.77	0.1642	18	228	246
15577	15578	2012-10-16	4	1	10	6	0	2	1	1	0.42	0.4242	0.67	0.1642	4	168	172
16855	16856	2012-12-10	4	1	12	2	0	1	1	2	0.38	0.3939	0.94	0.1045	2	3	5

- repeated sampling
 - collect a number of random subsets from the sample population
 - analyse each subset
 - aggregate the results

The Central Limit Theorem

*Suppose we take n samples from a distribution and compute the mean \bar{x}_k of each sample

then, as n $n \to \infty$

- the set of \bar{x}_k approaches a normal distribution
- the mean of \bar{x}_k approaches the mean of the original distribution

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \bar{x}_k = \mu$$

• implication:

by repeated resampling of a non-normal distribution, we can apply all (?) the statistical methods that were designed for normal distributions (as long as the samples are independent and identically distributed)

Lab 3.1.3: The Central Limit Theorem

- Purpose:
 - To test the central limit theorem by experiment
- Materials:
 - 'Lab 3.1.3.ipynb'

Time Series

- What is a time series?
- How are time series represented in Python?

Time Series

def: a sequence of data points representing the state of a system over time

classes of time series:

- temporally deterministic
 - periodic
 - pattern repeats at equal intervals
 - aperiodic
 - state at time t_k is influenced by state at time t_{k-1} but there is no repeating pattern
- stochastic
 - state at time t_k is unrelated to state at time $t_{k\text{-}1}$

Programming with Time Series

- timebase is usually regular
 - seconds, days, or years (typically)
 - may need to cope with leap years
 - no gaps
 - may need to impute or assign NA for missing time points

data = pd.Series([0, 1, 2, 3], index=index)
data

2014-07-04	0
2014-08-04	1
2015-07-04	2
2015-08-04	3
dtvpe: int64	

Visualising Time Series

Static time series

- convert DataFrame to Pandas time series
- timebase is an index of the DataFrame
- default axis labelling is aware of timebase

ts.plot()

Geospatial Data

- How are geospatial data organised?
- Tools for exploring geospatial data
- Visualising geospatial data in Python

Geospatial Data Formats

- GIS
 - range of open (standard) and proprietary formats
 - raster, vector, grid
 - metadata
- typically
 - a list with nested structure
- arrays / lists
 - coordinates
 - attributes
 - built-in (e.g. elevation)
 - user-defined (e.g. derived statistics)

Geospatial Data Formats – cont'd

Keyhole Markup Language

- primarily used for Google Earth
- .KMZ/.KML

Open Streetmap

- largest crowdsourcing GIS data project of the planet Earth
- .OSM

GeoJSON

- open standard format designed for representing simple geographical features
- .geojson

Tools for Exploring Geospatial Data

- interactive maps/ APIs
- base map may be featureless
 - add *tiles* to display features
 - street map
 - topography
 - satellite view
- data organised, rendered in *layers*
- ability to overlay image data from other sources
 - weather
 - satellite view
 - simulations

Geospatial Libraries for Python

Folium

Plot maps

Shapely

manipulation of geometric objects

Fiona

- read/write vector file formats (e.g. shapefiles or geojson)
- projection conversions

Geopandas

all of the above

Visualising Geospatial Data

Geoplot

works with GeoPandas

DataMaps

• interactive SVG maps using D3.js

HOMEWORK

- 1. Load the 'titanic' dataset into a DataFrame
- 2. Using a Jupyter Notebook, explore/profile the data using the techniques covered in this module
- 3. Upload your Notebook to your GitHub repo and share the link with the course instructors.