Amendments to the Claims

1. (Currently Amended) A compound of the formula

where

X is methylene or hydroxymethylene;

R1 a) is hydrogen; or

b) is C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkanoyl, C_1 - C_8 -alkoxycarbonyl, or heterocyclyl- C_0 - C_4 -alkyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, halogen, cyano, oxide, oxo, trifluoromethyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxycarbonyl, aryl or heterocyclyl;

 R^2 a) is C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkylsulphonyl, C_3 - C_8 -cycloalkylsulphonyl, aryl- C_0 - C_8 -alkylsulphonyl, heterocyclylsulphonyl, C_3 - C_1 -cycloalkyl- C_1 - C_8 -alkanoyl, C_3 - C_1 -cycloalkyl- C_1 - C_8 -alkanoyl, aryl- C_3 - C_8 -cycloalkyl- C_3 - C_8 -cycloalkanoyl, aryl- C_3 - C_8 -alkoxycarbonyl, optionally N-mono or N,N-di- C_1 - C_8 -alkylated carbamoyl- C_0 - C_8 -alkyl, or heterocyclyl- C_0 - C_4 -alkyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkoxy, amino, C_1 - C_8 -alkylamino, di- C_1 - C_1

b) together with R₁ and the nitrogen atom to which they are bonded, is a saturated or partly unsaturated 4-8-membered heterocyclic ring which may contain an additional nitrogen, oxygen or sulphur atom or an -SO- or -SO2- group, and the additional nitrogen atom may optionally be substituted by C₁-C₈-alkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxycarbonyl, aryl or heterocyclyl radicals, in which case this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 members and the second ring may also contain a nitrogen, oxygen or sulphur atom or an -SO- or -SO2- group, and the nitrogen atom of the second ring may optionally be substituted by C₁-C₈-alkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxycarbonyl, aryl or heterocyclyl radicals, and all ring systems mentioned may be substituted by 1-4 C₁-C₈-alkyl, halogen, hydroxyl, oxide, oxo, trifluoromethyl, C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkyl, halogen, hydroxyl, oxide, oxo, trifluoromethyl, C₁-C₈-alkylcarbonylamino, C₁-C₈-alkylamino, N₁N-di-C₁-C₈-alkylamino, aryl-C₀-C₄-alkyl, aryloxy-C₀-C₄-alkyl, aryl-C₀-C₄-alkyl, aryl-C₀-C₄-alkyl, aryl-C₀-C₄-alkyl, aryl-C₀-C₄-alkyl, heterocyclyl-C₁-C₈-alkoxy, or heterocyclyloxy-C₀-C₄-alkyl, heterocyclyl-C₀-C₄-alkyl, heterocyclyl-C₀-C₄-alkyl-C₁-C₈-alkoxy;

R³ is hydrogen, C₁-C₄-alkyl, C₁-C₈-alkoxycarbonyl or C₁-C₈-alkanoyl;

R⁴ is hydrogen, C₁-C₄-alkyl, C₁-C₈-alkoxycarbonyl or C₁-C₈-alkanoyl;

 R^5 are each independently is hydrogen, or C_1 - C_3 -alkyl-or, together with the earbon-atom to which they are bonded, are a C_3 - C_3 -cycloalkylidene radical;

(A) R⁶ is a heterocyclyl radical which is substituted by from one to four radicals selected from C₁-C₆-alkyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkoxy, C₁₋₆-alkyl, C₃₋₈-cycloalkoxy-C₁₋₆-alkyl, C₁₋₆-alkyl, C₁₋₇-alkoxy, polyhalo-C₁₋₆-alkyl, polyhalo-C₂₋₇-alkoxy, nitro, amino, C₂-C₆-alkenyl, C₁-C₆-alkoxy, C₁-C₆-alkanoyloxy, hydroxyl, halogen, oxide, oxo, cyano, carbamoyl, carboxy, C₁-C₆-alkylenedioxy, phenyl, phenoxy, phenylthio, phenyl-C₁-C₆-alkyl or phenyl-C₁-C₆-alkoxy, each of which are optionally substituted by halogen, C₁-C₆-alkyl, C₁₋₆-alkoxy, hydroxyl, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₁₋₆-alkoxycarbonyl, hydroxy-C₁₋₆-alkyl or trifluoromethyl, pyridylcarbonylamino-C₁₋₆-alkyl, C₂₋₇-alkenyloxy, C₁₋₆-alkoxy-C₁₋₆-

alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkoxy-C₁₋₆-alkyl, methoxybenzyloxy, hydroxybenzyloxy, methylenedioxybenzyloxy, dioxolanyl-C₁₋₆-alkoxy, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, C₃₋₈cycloalkyl-C₁₋₆-alkoxy, hydroxy-C₂₋₇-alkoxy, carbamoyloxy-C₂₋₇-alkoxy, pyridylcarbamovloxy-C2-7-alkoxy, benzovloxy-C2-7-alkoxy, C1-6-alkoxycarbonyl, C1-6alkylcarbonylamino, C1-6-alkylcarbonylamino-C1-6-alkyl, C1-6-alkylcarbonylamino-C2-7alkoxy, (N-C1-6-alkyl)-C1-6-alkylcarbonylamino-C1-6-alkyl, (N-C1-6-alkyl)-C1-6alkylcarbonylamino-C2-7-alkoxy, C3-8-cycloalkylcarbonylamino-C1-6-alkyl, C3-8cvcloalkylcarbonylamino-C2-7-alkoxy, C1-6-alkoxy-C1-6-alkyl, hydroxy-C1-6-alkyl, hydroxy-C2-7-alkoxy-C1-6-alkyl, hydroxy-C2-7-alkoxy-C1-6-alkoxy, C1-6-alkoxycarbonylamino-C1.6-alkyl, C1.6-alkoxycarbonylamino-C2.7-alkoxy, C1.6-alkylaminocarbonylamino-C₁₋₆-alkyl, C₁₋₆-alkylaminocarbonylamino-C₂₋₇-alkoxy, C₁₋₆-alkylaminocarbonyl-C₁₋₆alkyl, C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy-C₁₋₆alkyl, di-C1-6-alkylaminocarbonyl-C1-6-alkyl, di-C1-6-alkylaminocarbonyl-C1-6-alkoxy, C1-6-alkylcarbonyloxy-C1.6-alkyl, C1.6-alkylcarbonyloxy-C2.6-alkoxy, cyano-C1.6-alkyl, cyano-C1-6-alkoxy, 2-oxooxazolidinyl-C1-6-alkyl, 2-oxo-oxazolidinyl-C1-6-alkoxy, C1-6alkoxycarbonyl-C₁₋₆-alkyl, C₁₋₆-alkoxycarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylsulphonylamino-C₁₋ 6-alkyl, C1-6-alkylsulphonylamino-C2-7-alkoxy, (N-C1-6-alkyl)-C1-6-alkylsulphonylamino-C1.6-alkyl, (N-C1.6-alkyl)-C1.6-alkylsulphonylamino-C2.7-alkoxy, C1.6-alkylamino-C1.6alkyl, C1.6-alkylamino-C2.7-alkoxy, di-C1.6-alkylamino-C1.6-alkyl, di-C1.6-alkylamino-C2.7alkoxy, C1.6-alkylsulphonyl-C1.6-alkyl, C1.6-alkylsulphonyl-C1.6-alkoxy, carboxy-C1.6alkyl, carboxy-C1-6-alkoxy, carboxy-C1-6-alkoxy-C1-6-alkoxy-C1-6alkylcarbonyl, acyl-C₁₋₆-alkoxy-C₁₋₆-alkyl, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxycarbonylamino. (N-hydroxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, (N-hydroxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, (N-hydroxy)aminocarbonyl-C₁₋₆-alkyl, (N-hydroxy)aminocarbonyl-C₁₋₆alkoxy, C₁₋₆-alkoxy-aminocarbonyl-C₁₋₆-alkyl, 6-alkoxyaminocarbonyl-C₁₋₆-alkoxy, (N-C1.6-alkoxy)-C1.6-alkylaminocarbonyl-C1.6-alkyl, (N-C1.6-alkoxy)-C1.6-alkylaminocarbonyl-C1-6-alkoxy, (N-acyl)-C1-6-alkoxy-C1-6-alkylamino, C1-6-alkoxy-C1-6alkylcarbamovl, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxy-C₁₋₆-alkylcarbamovl, C₁₋₆-alkoxy-C₁₋₆alkylcarbonyl, C1-6-alkoxy-C1-6-alkylcarbonylamino, (N-C1-6-alkyl)-C1-6-alkoxy-C1-6alkylcarbonylamino, 1-C₁₋₆-alkoxy-C₁₋₆-alkylimidazol-2-yl, 1-C₁₋₆-alkoxy-C₁₋₆alkyltetrazol-5-yl, 5-C₁₋₆-alkoxy-C₁₋₆-alkyltetrazol-1-yl, 2-C₁₋₆-alkoxy-C₁₋₆-alkyl-4-

oxoimidazol-1-yl, carbamoyl-C1-6-alkyl, carbamoyl-C1-6-alkoxy, C1-6-alkylcarbamoyl, di-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkylsulphonyl, C₁₋₆-alkylamidinyl, acetamidinyl-C₁₋₆-alkyl, O-methyloximyl-C₁₋₆-alkyl, O₃N-dimethylhydroxylamino-C₁₋₆-alkyl, C₃₋₆-cycloalkyl-C₁₋₆alkanovl, arvl-C1.6-alkanovl or heterocyclyl-C1.6-alkanovl, or else pyridyl, pyridyloxy, pyridylthio, pyridylamino, pyridyl-C1-6-alkyl, pyridyl-C1-6-alkoxy, pyrimidinyl, pyrimidinyloxy, pyrimidinylthio, pyrimidinylamino, pyrimidinyl-C1-6-alkyl, pyrimidinyl-C1-6-alkoxy, thienyl, thienyl-C1-6-alkyl, thienyl-C1-6-alkoxy, furyl, furyl-C1-6-alkyl or furyl-C₁₋₆-alkoxy, each of which is optionally substituted by halogen, C₁₋₆-alkyl, C₁₋₆-alkoxy or dihydroxy-C₁₋₆-alkylaminocarbonyl, piperidinoalkyl, piperidinoalkoxy, piperidinoalkoxyalkyl, morpholinoalkyl, morpholinoalkoxy, morpholinoalkoxyalkyl, piperazinoalkyl, piperazinoalkoxy, piperazinoalkoxyalkyl, [1,2,4]-triazol-1-ylalkyl, [1,2,4]-triazol-1-vlalkoxy, [1,2,4]-triazol-4-vlalkyl, [1,2,4]-triazol-4-vlalkoxy, [1,2,4]oxadiazol-5-ylalkyl, [1,2,4]-oxadiazol-5-ylalkoxy, 3-methyl-[1,2,4]-oxadiazol-5-ylalkyl, 3methyl-[1,2,4]-oxadiazol-5-ylalkoxy, 5-methyl-[1,2,4]-oxadiazol-3-ylalkyl, 5-methyl-[1,2,4]-oxadiazol-3-ylalkoxy, tetrazol-1-ylalkyl, tetrazol-1-ylalkoxy, tetrazol-2-ylalkyl, tetrazol-2-vlalkoxy, tetrazol-5-vlalkyl, tetrazol-5-vlalkoxy, 5-methyl-tetrazol-1-vlalkyl, 5methyl-tetrazol-1-ylalkoxy, thiazol-4-ylalkyl, thiazol-4-ylalkoxy, oxazol-4-ylalkyl, oxazol-4-vlalkoxy, 2-oxo-pyrrolidinylalkyl, 2-oxo-pyrrolidinylalkoxy, imidazolylalkyl, imidazolylalkoxy, 2-methyl-imidazolylalkyl, 2-methyl-imidazolylalkoxy, N-methylpiperazinoalkyl, N-methylpiperazinoalkoxy, N-methylpiperazinoalkoxyalkyl, dioxolanyl, dioxanyl, dithiolanyl, dithianyl, pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl, 4-methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3-hydroxypyrrolidinyl, 3,4-dihydroxypyrrolidinyl, 3-acetamidomethylpyrrolidinyl, 3-C₁₋₆-alkoxy-C_{1.6}-alkyl-pyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3,5-dimethylmorpholinyl, 4,4-dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, 2-oxoimidazolidinyl, 2-oxooxazolidinyl, 2-oxopyrrolidinyl, 2-oxo-[1,3]oxazinyl, 2-oxotetrahydropyrimidinyl and the -O-CH₂CH(OH)CH₂NR_x radical where NR_x is a mono- or di-C_{1.6}-alkylamino, piperidino, morpholino, piperazino or N-methylpiperazino radical; or

(B) R⁶ is phenyl substituted by C₁-C₆-alkylenedioxy, furyl, thienyl, pyridyl, pyrimidyl, indolyl, quinolinyl, pyrazinyl, triazolyl, imidazolyl, benzothiazolyl, pyrazyl, tetrahydropyranyl.

azetidinyl, morpholinyl, tetrahydroquinolyl, tetrahydroisoquinolyl, quinazolinyl, quinoxalinyl, isoquinolyl, benzo[b]thienyl, isobenzofuranyl, benzoimidazolyl, 2oxobenzoimidazolyl, oxazolyl, thiazolyl, pyrrolyl, pyrazolyl, triazinyl, dihydrobenzofuranyl, 2-oxodihydrobenzo [d][1,3]oxazinyl, 4-oxodihydroimidazolyl, 5oxo-4H[1,2,4]triazinyl, 3-oxo-4H-benzo [1,4]thiazinyl, tetrahydroquinoxalinyl, 1,1,3trioxodihydro-2H-1λ6-benzo[1,4]thiazinyl, 1-oxopyridyl, dihydro-3Hbenzo[1,4]oxazinvl, 3,4-dihvdro-2H-benzo[1,4]oxazinvl, 2-oxotetrahydrobenzo[e][1,4]diazepinyl, 2-oxodihydrobenzo[e][1,4]diazepinyl, 1Hpyrrolizinyl, phthalazinyl, 1-oxo-3H-isobenzofuranyl, 4-oxo-3H-thieno[2,3-d] pyrimidinyl, 3-oxo-4H-benzo[1,4]oxazinyl, [1,5]naphthyridyl, dihydro-2H-benzo [1,4]thiazinyl, 1,1-dioxodihydro-2H-benzo[1,4]thiazinyl, 2-oxo-1H-pyrido[2,3-b] [1,4]oxazinyl, dihydro-1H-pyrido[2,3-b][1,4]oxazinyl, 1H-pyrrolo[2,3-b]pyridyl, benzo [1.3]dioxolvl, benzooxazolvl, 2-oxobenzooxazolvl, 2-oxo-1,3-dihydroindolyl, 2.3-dihydroindolyl, indazolyl, benzofuranyl, dioxolanyl, dioxanyl, dithiolanyl, dithianyl, pyrrolidinyl, piperidinyl, piperazinyl, 4-methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3-hydroxypyrrolidinyl, 3,4-dihydroxypyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3,5-dimethylmorpholinyl, 4,4-dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, tetrahydropyranyl, 2-oxoimidazolidinyl, 2-oxooxazolidinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, 2-oxo[1,3]oxazinyl, 2-oxoazepanyl, or 2-oxotetrahydropyrimidinyl;

or a prodrug thereof, or a salt thereof.

(Cancelled)

3. (Currently Amended) The compound according to Claim 1-or-2, in which R² is C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkylsulphonyl, C₃-C₈-cycloalkylsulphonyl, aryl-C₀-C₈-alkylsulphonyl, C₃-C₁₂-cycloalkyl-C₁-C₈-alkanoyl, C₃-C₁₂-cycloalkyl-C₃-C₈

halogen, cyano, hydroxyl, oxide, trifluoromethyl, C₁-C₈-alkoxy or optionally N-mono- or N,N-di-C₁-C₈-alkylated carbamoyl.

- (Currently Amended) The compound according to Claim 1-or-2, in which R¹ a) is hydrogen; or
 - b) is C₁-C₈-alkyl or C₃-C₈-cycloalkyl;

 R^2 a) is C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkanoyl, heterocyclyl- C_1 - C_8 -alkanoyl, C_3 - C_{12} -cycloalkyl- C_1 - C_8 -alkanoyl or aryl- C_1 - C_8 -alkanoyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, C_1 - G_8 -alkylamino, cyano, halogen, hydroxyl, C_1 - G_8 -alkanoylamino, C_1 - G_8 -alkoxy, oxide, oxo, trifluoromethyl or aryl; or

b) together with R¹ and the nitrogen atom to which they are bonded, is a saturated or partly unsaturated, 4-8-membered heterocyclic ring which may contain an additional nitrogen or oxygen atom, in which case the additional nitrogen atom may optionally be substituted by C₁-C₈-alkyl or C₁-C₈-alkanoyl, in which case this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 ring members and the second ring may also contain a nitrogen or oxygen atom, and the nitrogen atom of the second ring may optionally be substituted by C₁-C₈-alkyl or C₁-C₈-alkanoyl, and all ring systems mentioned may be substituted by 1-4 C₁-C₈-alkyl, hydroxyl, oxide, oxo, C₁-C₈-alkoxy, C₁-C₈-alkoxy-C₁-C₈-alkoxy, C₁-C₈-alkanoylamino or aryloxy-C₀-C₄-alkyl-C₁-C₈-alkoxy.

 (Currently Amended) The compound according to Claim 1-er-2, in which X is methylene;

R1 a) is hydrogen; or

b) is C1-C8-alkyl or C3-C8-cycloalkyl;

 R^2 a) is C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkanoyl, heterocyclyl- C_1 - C_8 -alkanoyl, C_3 - C_{12} -cycloalkyl- C_1 - C_8 -alkanoyl or aryl- C_1 - C_8 -alkanoyl, which radicals may be substituted by 1-4 C_1 - C_8 -alkyl, C_1 - C_8 -alkylamino, cyano, halogen, hydroxyl, C_1 - C_6 -alkanoylamino, C_1 - C_8 -alkoxy, oxide, oxo, trifluoromethyl or aryl; or

b) together with R¹ and the nitrogen atom to which they are bonded, is a saturated or partly unsaturated, 4-8-membered heterocyclic ring which may contain an additional nitrogen or oxygen atom, in which case the additional nitrogen atom may optionally be substituted by C_1 - C_8 -alkyl or C_1 - C_8 -alkanoyl, in which case this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 ring members and the second ring may also contain a nitrogen or oxygen atom, and the nitrogen atom of the second ring may optionally be substituted by C_1 - C_8 -alkyl or C_1 - C_8 -alkanoyl, and all ring systems mentioned may be substituted by 1-4 C_1 - C_8 -alkyl, hydroxyl, oxide, oxo, C_1 - C_8 -alkoxy, C_1 - C_8 -

R3 is hydrogen;

R4 is hydrogen;

R5 are each independently is hydrogen or C1-C8-alkyl; and

R6 is as defined in Claim 1.

(Currently Amended) The compound according to Claim 1-or 2, in which the R6 radical 6. is selected from the group consisting of furyl, thienyl, pyridyl, pyrimidyl, indolyl, quinolinyl, benzoimidazolyl, di-C1-6-alkoxypyrimidinyl, 2- and 5-benzo[b]thienyl, 6- and 7-isoquinolyl, 6and 7-tetrahydroguinolyl, 6- and 7-tetrahydroisoguinolyl, 6-quinoxalinyl, 6- and 7-quinazolinyl, dihydro-3H-benzo[1,4]oxazinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, 3-oxo-4Hbenzo[1,4]oxazinyl, 2-oxobenzooxazolyl, 2-oxo-1,3-dihydroindolyl, 2,3-dihydroindolyl, indazolyl or benzofuranyl; and 6- and 7-quinolyl, 6- and 7-isoquinolyl, 6- and 7-tetrahydroquinolyl, oxotetrahydroquinolyl, 6and 7-tetrahydroisoguinolyl, 6-quinoxalinyl, 6- and 7-quinazolinyl, indolyl, dihydro-3Hbenzo[1,4]oxazinvl, 3,4-dihydro-2H-benzo[1,4]oxazinvl, 3-oxo-3,4-dihydro-2Hbenzo[1,4]oxazinyl, 3-oxo-4H-benzo[1,4]oxazinyl, 2-oxobenzooxazolyl, 2-oxo-2,3dihydrobenzooxazolyl, 2-oxo-1,3-dihydroindolyl, 2,3-dihydroindolyl, indazolyl, benzofuranyl, 2,3-dihydrobenzothiazinyl, imidazolyl, benzoimidazolyl, pyridinyl, pyrrolo[2,3-b]pyridinyl, pyrrolo[3,2-c]pyridinyl, pyrrolo[2,3-c]pyridinyl, pyrrolo[3,2-b]pyridinyl, [1,2,3]triazolo[1,5alpyridinyl, [1,2,4]triazolo[4,3-alpyridinyl, imidazo[1,2-alpyrimidinyl, imidazo[1,5-alpyridinyl or naphthyl or cyclohexenophenyl, each of which is substituted by from one to four radicals selected from C1.6-alkyl, cyano, oxo, oxide, trifluoromethyl, hydroxyl, halogen, carbamoyl, carboxy, C1-6-alkoxy, hydroxy-C2-7-alkoxy, C1-6-alkoxy-C1-6-alkoxy, di-C1-6-alkylamino, 2,3dihydroxypropoxy, 2,3-dihydroxypropoxy-C₁₋₆-alkoxy, 2,3-dimethoxypropoxy, methoxybenzyloxy, hydroxybenzyloxy, phenethyloxy, methylenedioxybenzyloxy, dioxolanyl-C₁₋₆-alkoxy, cyclopropyl-C₁₋₆-alkoxy, pyridylcarbamoyloxy-C₁₋₆-alkoxy, 3-morpholino-2hydroxypropoxy, benzyloxy-C1-6-alkoxy, picolyloxy, C1-6-alkoxycarbonyl, C1-6-alkoxy-C1-6alkoxy-C1-6-alkyl, C1-6-alkylcarbonylamino, C1-6-alkylcarbonylamino-C1-6-alkyl, C1-6alkylcarbonylamino-C1-6-alkyl, (N-C1-6-alkyl)-C1-6-alkylcarbonylamino-C1-6-alkyl, (N-C1-6alkyl)-C1-6-alkylcarbonylamino-C1-6-alkoxy, C3-6-cycloalkylcarbonylamino-C1-6-alkyl, C3-6cycloalkylcarbonylamino-C1.6-alkoxy, C1.6-alkoxy-C1.6-alkyl, hydroxy-C1.6-alkyl, hydroxy-C2.7alkoxy-C1-6-alkyl, hydroxy-C2-7-alkoxy-C1-6-alkoxy, C1-6-alkoxycarbonylamino-C1-6-alkyl, C1-6alkoxycarbonylamino-C2-7-alkoxy, C1-6-alkylaminocarbonylamino-C1-6-alkyl, C1-6alkylaminocarbonylamino-C2-7-alkoxy, C1-6-alkylaminocarbonyl-C1-6-alkyl, C1-6alkylaminocarbonyl-C1-6-alkoxy, C1-6-alkylaminocarbonyl-C1-6-alkoxy-C1-6-alkyl, di-C1-6alkylaminocarbonyl-C₁₋₆-alkyl, di-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylcarbonyloxy-C1.6-alkyl, C1.6-alkylcarbonyloxy-C1.6-alkoxy, cyano-C1.6-alkyl, cyano-C1.6-alkoxy, 2oxooxazolidinyl-C₁₋₆-alkyl, 2-oxooxazolidinyl-C₁₋₆-alkoxy, C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl, C₁₋₆alkoxycarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylsulphonylamino-C₁₋₆-alkyl, C₁₋₆-alkylsulphonylamino-C₂. 7-alkoxy, (N-C1-6-alkyl)-C1-6-alkylsulphonylamino-C1-6-alkyl, (N-C1-6-alkyl)-C1-6alkylsulphonylamino-C1.6-alkoxy, C1.6-alkylamino-C1.6-alkyl, C1.6-alkylamino-C2.7-alkoxy, di-C_{1.6}-alkylamino-C_{1.6}-alkyl, Di-C_{1.6}-alkylamino-C_{2.7}-alkoxy, C_{1.6}-alkylsulphonyl-C_{1.6}-alkyl, C_{1.6}alkylsulphonyl-C₁₋₆-alkoxy, carboxy-C₁₋₆-alkyl, carboxy-C₁₋₆-alkoxy, carboxy-C₁₋₆-alkoxy alkyl, C1.6-alkoxy-C1.6-alkylcarbonyl, acyl-C1.6-alkoxy-C1.6-alkyl, (N-C1.6-alkyl)-C1.6-alkoxycarbonylamino, (N-hydroxy)-C1-6-alkylaminocarbonyl-C1-6-alkyl, (N-hydroxy)-C1-6alkylaminocarbonyl-C1.6-alkoxy, (N-hydroxy)aminocarbonyl-C1.6-alkyl, (Nhydroxy)aminocarbonyl-C1-6-alkoxy, C1-6-alkoxyaminocarbonyl-C1-6-alkyl, 6-alkoxyaminocarbonyl-C₁₋₆-alkoxy, (N-C₁₋₆-alkoxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkyl, (N-C₁₋₆alkoxy)-C1-6-alkylaminocarbonyl-C1-6-alkoxy, (N-acyl)-C1-6-alkoxy-C1-6-alkylamino, C1-6alkoxy-C₁₋₆-alkylcarbamoyl, (N-C₁₋₆-alkyl)-C₁₋₆-alkoxy-C₁₋₆-alkylcarbamoyl, C₁₋₆-alkoxy-C₁₋₆alkylcarbonyl, C1-6-alkoxy-C1-6-alkylcarbonylamino, (N-C1-6-alkyl)-C1-6-alkoxy-C1-6alkylcarbonylamino, 1-C₁₋₆-alkoxy-C₁₋₆-alkylimidazol-2-yl, 1-C₁₋₆-alkoxy-C₁₋₆-alkyltetrazol-5-yl, 5-C1.6-alkoxy-C1.6-alkyltetrazol-1-yl, 2-C1.6-alkoxy-C1.6-alkyl-4-oxoimidazol-1-yl, carbamoyl-C1.6-alkyl, carbamovl-C1.6-alkoxy, C1.6-alkylcarbamovl, di-C1.6-alkylcarbamovl, C1.6alkylsulphonyl, piperidinoalkyl, piperidinoalkoxy, piperidinoalkoxyalkyl, morpholinoalkyl, morpholinoalkoxy, morpholinoalkoxyalkyl, piperazinoalkyl, piperazinoalkoxy, piperazinoalkoxyalkyl, [1,2,4]-triazol-1-ylalkyl, [1,2,4]-triazol-1ylalkoxy, [1,2,4]-triazol-4-ylalkyl, [1,2,4]-triazol-4-ylalkoxy, [1,2,4]-oxadiazol-5-ylalkyl, [1,2,4]-oxadiazol-5-ylalkoxy, 3-methyl-[1,2,4]-oxadiazol-5-ylalkyl, 3-methyl-[1,2,4]-oxadiazol-5-ylalkoxy, 5-methyl-[1,2,4]-oxadiazol-3-ylalkyl, 5-methyl-[1,2,4]-oxadiazol-3-ylalkoxy, tetrazol-1-ylalkyl, tetrazol-1-ylalkoxy, tetrazol-2-ylalkyl, tetrazol-2-ylalkoxy, tetrazol-5-ylalkyl, tetrazol-5-vlalkoxy, 5-methyltetrazol-1-vlalkyl, 5-methyltetrazol-1ylalkoxy, thiazol-4-ylalkyl, thiazol-4-ylalkoxy, oxazol-4-ylalkyl, oxazol-4-ylalkoxy, 2oxopyrrolidinylalkyl, 2-oxopyrrolidinylalkoxy, imidazolylalkyl, imidazolylalkoxy, 2methylimidazolylalkyl, 2-methylimidazolylalkoxy, N-methylpiperazinoalkyl, Nmethylpiperazinoalkoxy, N-methylpiperazinoalkoxyalkyl, pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl, 4-methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3hydroxypyrrolidinyl, 3,4-dihydroxypyrrolidinyl, 3-acetamidomethylpyrrolidinyl, 3-C₁₋₆-alkoxy-C_{1.6}-alkyl-pyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3,5-dimethylmorpholinyl, 4,4dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, 2-oxoimidazolidinyl, 2oxooxazolidinyl, 2-oxopyrrolidinyl, 2-oxo-[1,3]oxazinyl and 2-oxotetrahydropyrimidinyl.

7. (Currently Amended) A compound of the formula

where

X is methylene or hydroxymethylene; R¹ a) is hydrogen; or b) is C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxycarbonyl, or heterocyclyl-C₀-C₄-alkyl, which radicals may be substituted by 1-4 C₁-C₈-alkyl, halogen, cyano, oxide, oxo, trifluoromethyl, C₁-C₈-alkoxy, C₁-C₈-alkoxycarbonyl, aryl or heterocyclyl;

 $R^2\ a)\ is\ C_1-C_8-alkyl,\ C_3-C_8-cycloalkyl,\ C_1-C_8-alkylsulphonyl,\ C_3-C_8-cycloalkylsulphonyl,\ aryl-C_0-C_8-alkylsulphonyl,\ heterocyclylsulphonyl,\ C_3-C_1-cycloalkyl-C_1-C_8-alkanoyl,\ C_3-C_1-cycloalkyl-C_1-C_8-alkanoyl,\ C_3-C_1-cycloalkyl-C_1-C_8-alkanoyl,\ C_1-C_8-cycloalkyl-C_1-C_8-alkanoyl,\ C_1-C_8-alkanoyl,\ C_1-C_8-alkoxycarbonyl,\ optionally\ N-mono\ or\ N,\ N-di-C_1-C_8-alkylated\ carbamoyl-C_0-C_8-alkyl,\ or\ heterocyclyl-C_0-C_4-alkyl,\ which\ radicals\ may\ be\ substituted\ by\ 1-4\ C_1-C_8-alkyl,\ C_3-C_8-cycloalkyl,\ C_3-C_8-cycloalkyl,\ amino,\ C_1-6-alkylamino,\ di-C_1-6-alkylamino,\ di-C_1-6-alkylamino,\ or\ N,\ N-di-C_1-C_8-alkylated\ carbamoyl,\ C_1-C_8-alkoxycarbonyl,\ C_1-C_8-alkylated\ carbamoyl,\ C_1-C_8-alkoxycarbonyl,\ C_1-6-alkylated\ oxy,\ aryl\ or\ heterocyclyl;\ or\ displays a property of the process of t$

b) together with R₁ and the nitrogen atom to which they are bonded, is a saturated or partly unsaturated 4-8-membered heterocyclic ring which may contain an additional nitrogen, oxygen or sulphur atom or an -SO- or -SO2- group, and the additional nitrogen atom may optionally be substituted by C1-C8-alkyl, C1-C8-alkanoyl, C1-C8-alkoxycarbonyl, aryl or heterocyclyl radicals, in which case this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 members and the second ring may also contain a nitrogen, oxygen or sulphur atom or an -SO- or -SO2- group, and the nitrogen atom of the second ring may optionally be substituted by C_1 - C_8 -alkvl, C_1 - C_8 -alkanoyl, C_1 - C_8 -alkoxycarbonyl, aryl or heterocyclyl radicals. and all ring systems mentioned may be substituted by 1-4 C₁-C₈-alkyl, halogen, hydroxyl, oxide, oxo, trifluoromethyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy- C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 $alkoxycarbonylamino,\ C_1-C_8-alkylcarbonylamino,\ C_1-C_8-alkylamino,\ N,N-di-C_1-C_8-alkylamino,$ $aryl-C_0-C_4-alkyl$, $aryloxy-C_0-C_4-alkyl$, $aryl-C_0-C_4-alkyl-C_1-C_8-alkoxy$, $aryloxy-C_0-C_4-alkyl-C_1-C_8-alkyl-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-alkyl-C_1-C_8-al$ alkoxy, heterocyclyl-C₀-C₄-alkyl, heterocyclyloxy-C₀-C₄-alkyl, heterocyclyl-C₀-C₄-alkyl-C₁-C₈alkoxy or heterocyclyloxy-C₀-C₄-alkyl-C₁-C₈-alkoxy; R³ is hydrogen, C₁-C₄-alkyl, C₁-C₈-alkoxycarbonyl or C₁-C₈-alkanoyl; R⁴ is hydrogen, C₁-C₄-alkyl, C₁-C₈-alkoxycarbonyl or C₁-C₈-alkanoyl;

R⁵ are each independently<u>is</u> hydrogen, <u>or</u> C₁-C₈-alkyl or, tegether with the earbon atom to which they are bonded, are a C₃-C₈-cycloalkylidene radical;

 R^6 is an unsubstituted polycyclic, unsaturated hydrocarbon radical excluding naphthyl, or a polycyclic, unsaturated hydrocarbon radical excluding naphthyl, which is substituted by from one to four radicals selected from C_1 -

 C_{6} -alkyl, $C_{3.8}$ -cycloalkyl, $C_{3.8}$ -cycloalkoxy, $C_{3.8}$ -cycloalkoxy- $C_{1.6}$ -alkyl, $C_{3.8}$ -cycloalkoxy- $C_{1.6}$ -alkoxy, C_1 - C_6 -alkylamino, di- C_1 - C_6 -alkylamino, amino- $C_{1.6}$ -alkyl, amino- $C_{2.7}$ -alkoxy, polyhalo- C_{1-6} -alkyl, polyhalo- C_{2-7} -alkoxy, nitro, amino, C_2 - C_6 -alkenyl, C_1 - C_6 -alkoxy, C_1 -C₆-alkanoyloxy, hydroxyl, halogen, oxide, oxo, cyano, carbamoyl, carboxy, C₁-C₆alkylenedioxy, phenyl, phenoxy, phenylthio, phenyl- C_1 - C_6 -alkyl or phenyl- C_1 - C_6 -alkoxy. each of which are optionally substituted by halogen, C_1 - C_6 -alkyl, $C_{1.6}$ -alkoxy, hydroxyl, C_1 - C_6 -alkylamino, di- C_1 - C_6 -alkylamino, $C_{1.6}$ -alkoxycarbonyl, hydroxy- $C_{1.6}$ -alkyl or trifluoromethyl, pyridylcarbonylamino- $C_{1.6}$ -alkyl, $C_{2.7}$ -alkenyloxy, $C_{1.6}$ -alkoxy- $C_{1.6}$ alkoxy, C_{1-6} -alkoxy- C_{1-6} -alkoxy- C_{1-6} -alkyl, methoxybenzyloxy, hydroxybenzyloxy. methylenedioxybenzyloxy, dioxolanyl- $C_{1.6}$ -alkoxy, $C_{3.6}$ -cycloalkyl- $C_{1.6}$ -alkyl, $C_{3.6}$ cycloalkyl-C₁₋₆-alkoxy, hydroxy-C₂₋₇-alkoxy, carbamoyloxy-C₂₋₇-alkoxy. pyridylcarbamoyloxy-C₂₋₇-alkoxy, benzoyloxy-C₂₋₇-alkoxy, C₁₋₈-alkoxycarbonyl, C₁₋₈alkylcarbonylamino, $C_{1.6}$ -alkylcarbonylamino- $C_{1.6}$ -alkyl, $C_{1.6}$ -alkylcarbonylamino- $C_{2.7}$ alkoxy, (N-C_{1.6}-alkyl)-C_{1.6}-alkylcarbonylamino-C_{1.6}-alkyl, (N-C_{1.6}-alkyl)-C_{1.6}-alkyl) alkylcarbonylamino-C2-7-alkoxy, C3-8-cycloalkylcarbonylamino-C1-8-alkyl, C3-8cycloalkylcarbonylamino- C_{2-7} -alkoxy, C_{1-6} -alkoxy- C_{1-6} -alkyl, hydroxy- C_{1-6} -alkyl, hydroxy- $C_{2.7}\text{-alkoxy-}C_{1.6}\text{-alkyl, hydroxy-}C_{2.7}\text{-alkoxy-}C_{1.6}\text{-alkoxy, }C_{1.6}\text{-alkoxy-carbonylamino-}C_{1.6}\text{-alkoxy-}C_{1.$ alkyl, $C_{1.6}$ -alkoxycarbonylamino- $C_{2.7}$ -alkoxy, $C_{1.6}$ -alkylaminocarbonylamino- $C_{1.6}$ -alkyl, C_{1.6}-alkylaminocarbonylamino-C_{2.7}-alkoxy, C_{1.6}-alkylaminocarbonyl-C_{1.6}-alkyl, C_{1.6}alkylaminocarbonyl- $C_{1.6}$ -alkoxy, $C_{1.6}$ -alkylaminocarbonyl- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkyl, di- $C_{1.6}$ alkylaminocarbonyl- $C_{1.6}$ -alkyl, di- $C_{1.6}$ -alkylaminocarbonyl- $C_{1.6}$ -alkoxy, $C_{1.6}$ alkylcarbonyloxy- $C_{1.6}$ -alkyl, $C_{1.6}$ -alkylcarbonyloxy- $C_{2.6}$ -alkoxy, cyano- $C_{1.6}$ -alkyl, cyano- $C_{1.6}$ -alkoxy, 2-oxooxazolidinyl- $C_{1.6}$ -alkyl, 2-oxo-oxazolidinyl- $C_{1.6}$ -alkoxy, $C_{1.6}$ alkoxycarbonyl-C₁₋₆-alkyl, C₁₋₆-alkoxycarbonyl-C₁₋₆-alkoxy, C₁₋₆-alkylsulphonylamino-C₁₋ $_{6}$ -alkyl, $C_{1.6}$ -alkylsulphonylamino- $C_{2.7}$ -alkoxy, (N- $C_{1.6}$ -alkyl)- $C_{1.6}$ -alkylsulphonylamino- $C_{1.6}$ -alk s-alkyl, (N-C_{1.6}-alkyl)-C_{1.6}-alkylsulphonylamino-C_{2.7}-alkoxy, C_{1.6}-alkylamino-C_{1.6}-alkyl, C_{1.6}-alkylamino-C_{2.7}-alkoxy, di-C_{1.6}-alkylamino-C_{1.6}-alkyl, di-C_{1.6}-alkylamino-C_{2.7}-alkoxy, $C_{1.6}$ -alkylsulphonyl- $C_{1.6}$ -alkyl, $C_{1.6}$ -alkylsulphonyl- $C_{1.6}$ -alkoxy, carboxy- $C_{1.6}$ -alkyl, carboxy-C_{1.6}-alkoxy, carboxy-C_{1.6}-alkoxy-C_{1.6}-alkyl, C_{1.6}-alkoxy-C_{1.6}-alkylcarbonyl, acyl- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkyl, (N- $C_{1.6}$ -alkyl)- $C_{1.6}$ -alkoxycarbonylamino, (N-hydroxy)- $C_{1.6}$ alkylaminocarbonyl-C₁₋₆-alkyl, (N-hydroxy)-C₁₋₆-alkylaminocarbonyl-C₁₋₆-alkoxy, (N- $\label{eq:hydroxy} \mbox{hydroxy)aminocarbonyl-} C_{\text{1.6}}\mbox{-alkyl, (N-hydroxy)aminocarbonyl-} C_{\text{1.6}}\mbox{-alkoxy, } C_{\text{1.6}}\mbox{-alkoxy,}$ aminocarbonyl- C_{1-6} -alkyl, 6-alkoxyaminocarbonyl- C_{1-6} -alkoxy, (N- C_{1-6} -alkoxy)- C_{1-6} -alkoxy alkylaminocarbonyl- $C_{1.6}$ -alkyl, (N- $C_{1.6}$ -alkoxy)- $C_{1.6}$ -alkylaminocarbonyl- $C_{1.6}$ -alkoxy, (Nacyl)- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkylamino, $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkylcarbamoyl, (N- $C_{1.6}$ -alkyl)- $C_{1.6}$ -

alkoxy- $C_{1.6}$ -alkylcarbamoyl, $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkylcarbonyl, $C_{1.6}$ -alkoxy- $C_{1.6}$ alkylcarbonylamino, (N- $C_{1.6}$ -alkyl)- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkylcarbonylamino, 1- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkylimidazol-2-yl, 1- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkyltetrazol-5-yl, 5- $C_{1.6}$ -alkoxy- $C_{1.6}$ alkyltetrazol-1-yl, 2- $C_{1.6}$ -alkoxy- $C_{1.6}$ -alkyl-4-oxoimidazol-1-yl, carbamoyl- $C_{1.6}$ -alkyl, carbamoyl- $C_{1:6}$ -alkoxy, $C_{1:6}$ -alkylcarbamoyl, di- $C_{1:6}$ -alkylcarbamoyl, $C_{1:6}$ -alkylsulphonyl, $C_{1.6}$ -alkylamidinyl, acetamidinyl- $C_{1.6}$ -alkyl, O-methyloximyl- $C_{1.6}$ -alkyl, O,Ndimethylhydroxylamino- $C_{1.6}$ -alkyl, $C_{3.6}$ -cycloalkyl- $C_{1.6}$ -alkanoyl, aryl- $C_{1.6}$ -alkanoyl or heterocyclyl-C₁₋₆-alkanoyl, or else pyridyl, pyridyloxy, pyridylthio, pyridylamino, pyridyl- C_{1-6} -alkyl, pyridyl- C_{1-6} -alkoxy, pyrimidinyl, pyrimidinyloxy, pyrimidinylthio, pyrimidinylamino, pyrimidinyl- $C_{1.6}$ -alkyl, pyrimidinyl- $C_{1.6}$ -alkoxy, thienyl, thienyl- $C_{1.6}$ alkyl, thienyl- $C_{1.6}$ -alkoxy, furyl, furyl- $C_{1.6}$ -alkyl or furyl- $C_{1.6}$ -alkoxy, each of which is optionally substituted by halogen, $C_{1.6}$ -alkyl, $C_{1.6}$ -alkoxy or dihydroxy- $C_{1.6}$ alkylaminocarbonyl, piperidinoalkyl, piperidinoalkoxy, piperidinoalkoxyalkyl, morpholinoalkyl, morpholinoalkoxy, morpholinoalkoxyalkyl, piperazinoalkyl, piperazinoalkoxy, piperazinoalkoxyalkyl, [1,2,4]-triazol-1-ylalkyl, [1,2,4]-triazol-1ylalkoxy, [1,2,4]-triazol-4-ylalkyl, [1,2,4]-triazol-4-ylalkoxy, [1,2,4]-oxadiazol-5-ylalkyl, [1,2,4]-oxadiazol-5-ylalkoxy, 3-methyl-[1,2,4]-oxadiazol-5-ylalkyl, 3-methyl-[1,2,4]oxadiazol-5-ylalkoxy, 5-methyl-{1,2,4}-oxadiazol-3-ylalkyl, 5-methyl-{1,2,4}-oxadiazol-3ylalkoxy, tetrazoi-1-ylalkyl, tetrazoi-1-ylalkoxy, tetrazoi-2-ylalkyl, tetrazoi-2-ylalkoxy, tetrazol-5-ylalkyl, tetrazol-5-ylalkoxy, 5-methyl-tetrazol-1-ylalkyl, 5-methyl-tetrazol-1ylalkoxy, thiazol-4-ylalkyl, thiazol-4-ylalkoxy, oxazol-4-ylalkyl, oxazol-4-ylalkoxy, 2-oxopyrrolidinylalkyl, 2-oxo-pyrrolidinylalkoxy, imidazolylalkyl, imidazolylalkoxy, 2-methylimidazolylalkyl, 2-methyl-imidazolylalkoxy, N-methylpiperazinoalkyl, Nmethylpiperazinoalkoxy, N-methylpiperazinoalkoxyalkyl, dioxolanyl, dioxanyl, dithiolanyl, dithianyl, pyrrolidinyl, piperidinyl, piperazinyl, pyrrolyl, 4-methylpiperazinyl, morpholinyl, thiomorpholinyl, 2-hydroxymethylpyrrolidinyl, 3-hydroxypyrrolidinyl, 3,4dihydroxypyrrolidinyl, 3-acetamidomethylpyrrolidinyl, 3-C₁₋₆-alkoxy-C₁₋₆-alkylpyrrolidinyl, 4-hydroxypiperidinyl, 4-oxopiperidinyl, 3,5-dimethylmorpholinyl, 4,4dioxothiomorpholinyl, 4-oxothiomorpholinyl, 2,6-dimethylmorpholinyl, 2-oxoimidazolidinyl, 2-oxooxazolidinyl, 2-oxopyrrolidinyl, 2-oxo-[1,3]oxazinyl, 2-oxotetrahydropynmidinyl and the -O-CH₂CH(OH)CH₂NR_x radical where NR_x is a mono- or di-C_{1.6}-alkylamino, piperidino, morpholino, piperazino or N-methylpiperazino radical;

or a prodrug thereof, or a salt thereof.

- 8. (Cancelled)
- (Previously Presented) A pharmaceutical preparation comprising, as an active pharmaceutical ingredient, a compound according to Claim 1 or 7 in free form or as a pharmaceutically usable salt.
- 10. (Previously Presented) A process for preparing a medicament for the treatment of hypertension, heart failure, glaucoma, myocardial infarction, kidney failure or restenoses, which comprises blending a compound according to Claim 1 or 7 with a pharmaceutically inert, inorganic or organic excipient.
- 11. (Previously Presented) A process according to Claim 10, characterized in that the preparation is effected additionally with one or more agents having cardiovascular action, for example α- and β-blockers such as phentolamine, phenoxybenzamine, prazosin, terazosin, tolazine, atenolol, metoprolol, nadolol, propranolol, timolol, carteolol etc.; vasodilators such as hydralazine, minoxidil, diazoxide, nitroprusside, flosequinan etc.; calcium antagonists such as amrinone, benevelan, diltiazem, fendiline, flunarizine, nicardipine, nimodipine, perhexilene, verapamil, gallopamil, nifedipine etc.; ACE inhibitors such as cilazapril, captopril, enalapril, lisinopril etc.; potassium activators such as pinacidil; anti-serotoninergics such as ketanserin; thromboxane-synthetase inhibitors; neutral endopeptidase inhibitors (NEP inhibitors); angiotensin II antagonists; and also diuretics such as hydrochlorothiazide, chlorothiazide, acetazolamide, amiloride, bumetanide, benzthiazide, ethacrynic acid, furosemide, indacrinone, metolazone, spironolactone, triamteren, chlorthalidone etc.; sympatholytics such as methyldopa, clonidine, guanabenz, reserpine; and other agents which are suitable for the treatment of hypertension, heart failure or vascular diseases in humans and animals which are associated with diabetes or renal disorders such as acute or chronic renal failure.

12. (Previously presented) A method for the treatment of hypertension, heart failure, myocardial infarction, kidney failure or restenoses, characterized in that the human or animal body is treated with an effective amount of a compound according to Claim 1 or 7.