RNA

Exon junction complex modulates m⁶A distribution

N6-methyladenosine (m⁶A) is the most prevalent base modification in the mammalian transcriptome and is reported to have roles in many cellular processes, including RNA splicing and stability. It is deposited at DRACH motifs (D = A/G/U R = A/G, H = A/C/U) by the METTL3-METTL14 methyltransferase complex, although only a fraction of these motifs is modified in cellular RNA. Moreover, m⁶A is deposited unevenly along mRNAs, with highest levels found in 3' untranslated regions (UTRs) and within unusually long internal exons, but the mechanism underlying this non-uniform modification pattern has been unclear. Now, two studies demonstrate that the exon junction complex (EIC) helps to shape this characteristic distribution by excluding m⁶A from exon junctions.

In the first study, Yang et al. showed that m⁶A is more sparsely and uniformly distributed in nascent mRNA than mature mRNA, suggesting that the distinctive m⁶A distribution develops dynamically during mRNA processing. Thus, they next investigated the known link between m⁶A demethylases (ALKBH5 and FTO) and splicing by performing immunoprecipitations with ALKBH5 and FTO to identify interacting splicing-related proteins. The protein that interacted most strongly with ALKBH5 was EIF4A3, the RNA-binding component of the EJC, which is deposited 24 nucleotides upstream of exon junctions during splicing and remains bound after mRNAs are transported to the cytoplasm. The effects of these proteins on m⁶A in mature mRNAs were tested by small interfering RNA (siRNA)-based knock-down analysis. Whereas depletion of ALKBH5 had minimal effects on global m⁶A levels, knock down of EIF4A3 resulted in a dramatic

increase in m⁶A. Regions with increased m⁶A (short internal exons and regions close to splice junctions of long internal exons) were consistent with regions at which EJC is known to assemble. These results indicate that EIF4A3 restricts m⁶A levels at exon junctions, but not by promoting demethylation.

To determine if EIF4A3 might instead interfere with deposition of m⁶A, the effect of siRNA-mediated depletion of EIF4A3 on transcriptome-wide METTL3 occupancy was assessed. Not only did METTL3 occupancy increase with EIF4A3 depletion, but regions of increased occupancy highly correlated with regions that had higher m⁶A levels in EIF4A3-depleted cells. Analysis of reporter constructs confirmed that the effect of EIF4A3 on METTL3 occupancy and m⁶A levels was dependent on splicing, and that tethering of EIF4A3 to exon junctions was sufficient to suppress binding of METTL3 and m⁶A deposition. These observations are consistent with a model whereby the assembly of EJC at exon junctions during splicing restricts the accessibility of these regions to METTL3 and deposition of m⁶A, leading to comparatively higher levels of m⁶A at more accessible, EJC-depleted regions such as the 3'UTR.

Uzonyi et al. reached similar conclusions but by a different route. They began by showing that an intact DRACH motif was both necessary and sufficient for m⁶A deposition, with m⁶A levels reflecting the number of motifs present – except in the proximity of introns, which seemed to inhibit modification of nearby motifs. They generated a computational model (m⁶Apred-1) to predict m⁶A distribution based on the modification of all eligible DRACH motifs (the seven most prevalent consensus sequences) within the mRNA; this model better predicted m⁶A patterns for genes lacking introns than those containing them, further supporting the notion that introns influence m6A distribution. Analysis of multiple publicly available single-nucleotide resolution transcriptomewide m6A datasets indicated that m6A was depleted within ~200 nucleotides of exon junctions. The dependence of these m6A 'exclusion zones' on proximity to an exonintron border was confirmed experimentally and a fixed size exclusion zone parameter (within 100 nucleotides of an exon–intron junction) was incorporated into an updated computational model (m 6 Apred-2). This new model more accurately captured m 6 A distribution in exon-containing genes than did m 6 Apred-1, confirming the importance of exon–intron architecture in shaping m 6 A distribution.

Exon-intron architecture – specifically exon density – has been reported to be strongly correlated with RNA stability, and RNA stability to be inversely correlated with m⁶A levels. Analysis of both existing and newly generated data by Uzonyi et al. confirmed these relationships but also showed that exon density and m⁶A levels were inversely correlated. Notably, reducing m⁶A levels via METTL3 depletion abrogated the correlation between exon density and RNA stability, indicating that m⁶A is the mechanistic link between exon density and RNA stability.

Finally, given that EJC binds to exon junctions (that is, within m⁶A exclusion zones), the authors investigated its role in modulating m⁶A distribution. Degron-mediated depletion of Y14, a core EIC component. resulted in an increase of m⁶A within, but not outside of, exclusion zones. Additionally, m⁶Apred-2 became less predictive of m⁶A distribution as cells were depleted of Y14 whereas m⁶Apred-1 became more so. These data indicate that EJC is responsible for establishing m⁶A exclusion zones at exon boundaries. In conclusion, Uzonyi et al. propose that m⁶A distribution is dependent on sequence motifs and exon-intron architecture, whereby DRACH motifs are m⁶A modified by default unless they are in proximity to an EJC-bound splice junction.

Now that the mechanism underlying m⁶A distribution has been established, it will be interesting to investigate whether it has functional significance beyond the link to RNA stability established here.

Dorothy Clyde

Original articles: Yang, X. et al. Exon junction complex shapes the m6A epitranscriptome. Nat. Commun. 13, 7904 (2022); Uzonyi, A. et al. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell https://doi.org/10.1016/j.molcel.2022.12.026 (2023)