

UNIT II Combinational Circuit Design

Syllabus

Combinational Circuits Design: Arithmetic circuits, code converters, and logic functions implementation using Decoders/ Demultiplexers and Multiplexers. Design of a Priority encoder, Magnitude comparator, Parallel Adder/Subtractor, Concepts of ripple carry and carry look-ahead adders and BCD adder.

Dataflow/ Behavioral/ Structural Modelling: Verilog Data flow/ Behavioral/ Structural Models, Module Ports, Top-Down Design and Nested Modules.

Digital Systems

- A digital system is an electronic system that processes information in digital form (binary values: 0 and 1).
- 0s and 1s are interpreted as:
 - Logic 0 (LOW) \rightarrow 0V (or close to 0)
 - Logic 1 (HIGH) \rightarrow +5V(TTL*), +3.3V(CMOS*)

Examples of large-scale digital systems in the

real world:

^{*}CMOS: Complementary Metal—Oxide—Semiconductor

Digital Circuits

- Digital systems are built using digital circuits (logic gates, combinational and sequential blocks).
- Combinational Circuits
 - Output depends only on the current input.
 - **Examples:** Adders, Subtractors, Encoders, Decoders, Multiplexers, Comparators.
- Sequential Circuits
 - Output depends on the current input and the past state of the circuit.
 - Examples: Flip-flops, Registers, Counters, Shift Registers.
- Parameters to be considered while designing digital circuits: Power dissipation, Area, and Propagation delay.

Arithmetic Circuits

- Arithmetic circuits are a special type of combinational digital circuit that perform mathematical operations(addition, subtraction, multiplication, and division) on binary numbers.
- They form the core of arithmetic logic units (ALUs) inside microprocessors(Intel i3,i5,i7,etc) and microcontrollers(ATMEGA328P on Arduino board)
- Arithmetic circuits are built using logic gates (AND, OR, XOR, NOT, NAND, NOR).

Half Adder

Go, change the world

- It performs the addition of two single-bit binary numbers (A and B).
- **Inputs:** A, B(1-bit each)
- Outputs:

Sum (S): Result (A XORB).

Carry (C): Carry output (A AND C).

• Logic Expressions:

 $Sum(S) = A \oplus B(XOR gate)$

Carry (C) = $A \cdot B$ (AND gate)

Truth table

A	В	Sum (S)	Carry (C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Circuit diagram

Full Adder

- A Full Adder is a combinational logic circuit that adds **three binary inputs**:
 - **A:** First bit, **B:** Second bit, **Cin:** Carry input (from the previous stage)
- Outputs: Sum (S), Carry out (Cout)
- Logic Expressions:

Sum (S) = A
$$\bigoplus$$
 B \bigoplus Cin
Carry (Cout) = (A \cdot B)+(B \cdot Cin)+(A \cdot Cin)

Truth table

A	В	Cin	Sum (S)	Carry (Cout)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1 7

Full Adder

• SOP expression from truth table:

S=A'B'Cin+A'BCin'+AB'Cin'+ABCin

 $=A \oplus B \oplus Cin$

Cout=A'BCin+AB'Cin+ABCin'+ABCin

= Cin(A'B+AB')+AB(Cin'+Cin)

 $=Cin(A \oplus B) + AB$

=AB+ACin+BCin

Circuit diagram

NAND gate realization of Half Adder

$$\operatorname{Sum}=A\overline{B}+\overline{A}B$$

$$=A\overline{B}+\overline{A}B+A\overline{A}+B\overline{B}$$
 Because $A\overline{A}=0$

$$=A\overline{B}+A\overline{A}+\overline{A}B+B\overline{B}$$
 Because $B\overline{B}=0$

$$=A(\overline{B}+\overline{A})+B(\overline{A}+\overline{B})$$

=
$$A(\overline{AB})+B(\overline{AB})$$
 By De-Morgan's Theorem

=
$$\overline{A(\overline{AB})+B(\overline{AB})}$$
 Because $\overline{\overline{A}}$ =A

Sum=
$$\overline{A(\overline{AB})}.\overline{B(\overline{AB})}$$
 By De-Morgan's Theorem

Circuit diagram

Question 1

- Realize a full adder using half adders
- Realize a full adder using NAND gates only.

Full adder using two Half Adders

Go, change the world

$$S = A' B' C_{in} + A' B C'_{in} + A B' C'_{in} + A B C_{in}$$

$$= C_{in} (A' B' + A B) + C'_{in} (A' B + A B')$$

$$=C_{in}$$
 (A Ex-NOR B) + C'_{in} (A Ex-OR B)

=
$$C_{in}$$
 (A \oplus B)' + C'_{in} (A \oplus B)

$$C_O = A B + A C_{in} + B C_{in}$$

= $A B + C_{in} (A B' + A' B)$

Therefore,
$$C_0 = A B + C_{in} (A \oplus B)$$

Therefore, $S = C_{in} \oplus (A \oplus B) = A \oplus B \oplus C_{in}$

Full Adder using only NAND gates

Go, change the world®

Half Subtractor

It subtracts two single-bit binary numbers:

Inputs: A (minuend), B (subtrahend)

Outputs: Difference (D) and Borrow (B)

• Logic Expressions:

Difference(D) = $A \oplus B(XOR gate)$

Borrow(B) = $A' \cdot B$

Truth table

A	В	Diff (D)	Borrow (B)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Circuit diagram

Full Subtractor

- A Full Subtractor is a combinational circuit that subtracts three input bits:
- Inputs: A (minuend), B (subtrahend),
 Bin (borrow in)
- Outputs: Difference(D), Borrow out (Bout)
- Logical Expressions:

Difference: $D=A \oplus B \oplus Bin$

Borrow out : $Bout = \overline{B} \cdot A + Bin \cdot (A \oplus B)$

Truth table

A	В	Bin	Diff (D)	Borrow (Bout)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Question 2

- Design a full subtractor circuit using only NAND gates.
- Design a 4-bit parallel subtractor using full subtractors.

RV College of Full Subtractor using two Half subtractors

Go. change the world

$$B_{out} = \overline{A}B + (\overline{A}\overline{B} + \overline{A}B) B_{in} = \overline{A}B + (AB + \overline{A}\overline{B}) B_{in}$$

$$= \overline{A}B + ABB_{in} + \overline{A}\overline{B}B_{in}$$

$$= \overline{A}B(1 + B_{in}) + ABB_{in} + \overline{A}\overline{B}B_{in} \qquad \because (1 + B_{in}) = 1$$

$$= \overline{A}B + \overline{A}BB_{in} + ABB_{in} + \overline{A}\overline{B}B_{in} = \overline{A}B + BB_{in} (\overline{A} + A) + \overline{A}\overline{B}B_{in}$$

$$= \overline{A}B + BB_{in} + \overline{A}\overline{B}B_{in}$$

$$= \overline{A}B(1 + B_{in}) + BB_{in} + \overline{A}\overline{B}B_{in} \qquad \because (1 + B_{in}) = 1$$

$$= \overline{A}B + \overline{A}BB_{in} + BB_{in} + \overline{A}\overline{B}B_{in} = \overline{A}B + \overline{A}B_{in} (B + \overline{B}) + BB_{in}$$

$$= \overline{A}B + \overline{A}B_{in} + BB_{in}$$

RV College of Engineering® Full Subtractor using NAND gates

Go, change the world®

Borrow Bit (b)

$$Borrow,\,b=\overline{\overline{B\cdot\overline{AB}}\cdot\overline{b_{in}}\overline{[b_{in}\cdot(A\oplus B)]}}=\overline{A}B+b_{in}(\overline{A\oplus B})$$

Parallel Adder

• It is used to add two multi-bit binary numbers simultaneously (in parallel). It is designed using multiple full adders connected together.

4-bit Parallel Adder:

Inputs: Two 4-bit binary numbers $A = A_3A_2A_1A_0$ and $B = B_3B_2B_1B_0$

Output: 4-bit Sum = $S_3S_2S_1S_0$ and a final Carry (C_{OUT})

Block diagram

 $A_0, B_0 \& S_0$: Least significant bits

A₃,B₃ & S₃: Most significant bits

Parallel Adder

- Each full adder adds two input bits (A, B) and a carry-in (C_{in}).
- The carry-out (C_{OUT}) of each full adder is passed to the carry-in of the next higher-order full adder.
- The carry signal "ripples" through the adder chain from the least significant bit (LSB) to the most significant bit (MSB). This is called as Ripple Carry Adder(RCA).
- As each carry must ripple through all full adders, making it slow for large numbers (e.g., 32-bit or 64-bit).
- **Delay** \approx (number of bits) \times (delay of one full adder).

Question 3: Design a 4-bit binary adder/subtractor using TTL IC 7483

- The IC 7483 is a standard 4-bit binary parallel adder integrated circuit from the 74xx TTL logic family.
- IC 7483 pin diagram:

Dual in Line Package(DIP)

4-bit binary adder

Example 1: 7+2=9 (1001)

7 is realized at $A_3A_2A_1A_0 = 0111$

2 is realized at $B_3B_2B_1B_0 = 0010$

Sum $S_3S_2S_1S_0=1001$

Example 2: 9+9=18(10010)

9 is realized at $A_3A_2A_1A_0 = 1001$

2 is realized at $B_3B_2B_1B_0 = 1001$

Sum $S_3S_2S_1S_0 = 0010$

with $C_{OUT} = 1$

4-bit binary subtractor

Subtraction is carried out by adding the 2's complement of the subtrahend.

```
Example 1: 8-3=5 (0101)
```

1's complement of 3 = 1100

Add 1 to get 2's complement=1100+1=1101

8 is realized at $A_3A_2A_1A_0 = 1000$

2's complement of 3 = 1101

Difference($S_3S_2S_1S_0$) = 0101(with C_{OUT} = 1 ignored)

Question 3...

4-bit binary subtractor

- Subtraction is carried out by adding the 2's complement of the subtrahend.
- Note that negative numbers are represented in 2's complement

Example 2: 5-6 = -1 (2's complement:1111)

```
1's complement of 6 = 1001
```

Add 1 to get 2's complement=1001+1=1010

5 is realized at $A_3A_2A_1A_0 = 0101$

2's complement of 6 = 1010

Difference($S_3S_2S_1S_0$) = 1111(with C_{OUT} = 0 result is negative in 2's complement)

4-bit binary adder/subtractor using 7483

 If the control input ADD'/SUB =0, circuit performs addition.

Question 4: Design a BCD adder using IC 7483

- A BCD adder adds two BCD digits and produces output as a BCD digit.
 A BCD or Binary Coded Decimal digit cannot be greater than 9.
- The two BCD digits are to be added using the rules of binary addition. If the sum is less than or equal to 9 and carry is 0, then no correction is needed. The sum is correct and in true BCD form.
- But if the sum is greater than 9 or carry =1, the result is wrong and correction must be done. The wrong result can be corrected adding six (0110) to it.

BCD adder

- For implementing a BCD adder using a binary adder circuit IC 7483, an additional combinational circuit will be required, where the Sum output S_3 – S_0 is checked for invalid values from 10 to 15.
- Using a K-map, the Boolean expression is obtained, $Y=S_3S_2+S_3S_1$

	0/p			
S ₃	S ₂	S ₁	So	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

BCD adder: Circuit Diagram

Go, change the world

(b) Block diagram of BCD adder

Carry Look Ahead Adder

- A Carry Look-Ahead Adder (CLA) is a fast adder circuit that improves upon the Ripple Carry Adder (RCA) by reducing the carry propagation delay.
- In a CLA, the carry signals are generated in parallel using **generate** and **propagate** functions, greatly speeding up the addition.
- Carry Generate (G): A carry is generated at bit i if both inputs are 1.

$$G_i = A_i \cdot B_i$$

Example: Ai=1, Bi=1: Sum will be 0, Carry = 1 (regardless of incoming carry).

• Carry Propagate (P): A carry is propagated through bit i if either A or B is 1.

$$P_i = A_i \bigoplus B_i$$

If a carry comes in, it will pass to the next stage.

Carry Look Ahead Adder

Go, change the world

• Consider a 4-bit binary adder with two inputs:

$$A = A_3A_2A_1A_0$$
 and $B = B_3B_2B_1B_0$

Half adder

 $P_i \oplus C_i$

Half adder

Referring to the RCA shown in fig 1 intermediate carry

equations are given as:

$$egin{aligned} C_1 &= G_0 + (P_0 \cdot C_0) \ C_2 &= G_1 + (P_1 \cdot C_1) \ C_3 &= G_2 + (P_2 \cdot C_2) \end{aligned}$$

Expanding in terms of G and P:

$$egin{align} C_1 &= G_0 + P_0 C_0 \ C_2 &= G_1 + P_1 G_0 + P_1 P_0 C_0 \ C_3 &= G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \ C_4 &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \ \end{array}$$

• These can all be computed in parallel instead of waiting for ripple effect.

Logic circuit of Carry Look

Engineering Ahead Adder $C_1 = G_0 + P_0C_0$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

Go, change the world

Merits and Demerits of CLA Adder

- Since the Boolean function for each output carry is expressed in sum-of products form, each function can be implemented with one level of AND gates followed by an OR gate (or by a two-level NAND).
- The three Boolean functions for C 1, C 2, and C 3 are implemented in the carry look ahead generator shown in Fig. (previous slide).
- This circuit can add in less time because C 3 does not have to wait for C 2 and C 1 to propagate; in fact, C 3 is propagated at the same time as C 1 and C 2.
- This gain in speed of operation is achieved at the expense of additional complexity (hardware).

Code Converter: Binary to Gray

- In normal binary, several bits may change at once (e.g., $3 \rightarrow 4$: $011 \rightarrow 100 \rightarrow$ three bits change).
- Gray code avoids this since only one-bit changes per step.
- This is useful in shaft encoders, Karnaugh maps, error detection, and digital communications.
- For binary bits $B_3B_2B_1B_0 \rightarrow$ Gray bits $G_3G_2G_1G_0$:

$$G_3=B_3$$
 $G_2=B_3\oplus B_2$ $G_1=B_2\oplus B_1$ $G_0=B_1\oplus B_0$

- Gray codes are widely used in shaft encoders, Karnaugh maps, error detection, and digital communications.
- Advantages of gray code:
 https://www.youtube.co
 m/watch?v=W730NOJYX
 AI&t=2s

Truth table

Binary	Gray
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100
1000	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1001
1111	1000

Logic diagram

Code Converter: BCD to Excess-3

- XS-3 is just BCD + 3.
- Unlike BCD, XS-3 avoids all-zeros (0000)
- its self-complementary nature, which simplifies subtraction, and its simplification of arithmetic operations, especially addition, by eliminating the need for correction after a sum exceeds 9

Truth table

Decimal Digit	BCD (8421)	XS-3 Code (BCD + 3)
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Logic Circuit of BCD to Excess-3 Code Converter-Truth Table

Go, change the world®

	BCD	Code			Excess-	-3 Code	
B ₃	B ₂	B ₁	B ₀	X ₃	X ₂	X_1	\mathbf{x}_{0}
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	Χ	Х
1	0	1	1	X	X	Χ	Х
1	1	0	0	X	X	Χ	Х
1	1	0	1	X	X	X	Х
1	1	1	0	X	X	Χ	Х
1	1	1	1	X	X	Х	Χ

Kmap for X0 and X1 output

Go, change the world

K-Map for XS-3 Bit X₀

K-Map for XS-3 Bit X₁

The K-map simplification for the XS-3 bit X₀ is shown in the following figure - The K-map simplification for the XS-3 bit X₁ is depicted below -

$\sqrt{B_1B}$	0			
B_3B_2	00	01	11	10
00	1 0	1	3	1 2
01	1 4	5	1 7	116
11	X 12	X 13	X 15	X 14
10	1 8	9	X 11	X 10

$\sqrt{B_1}$	\mathbf{B}_0			
B_3B_2	00	01	11	10
00		1	1 3	2
01	1 4	5	1 7	ooia
11	X 12	X 13	X 15	X 14
10		9	x 11	X 10

On simplifying this K-map, we obtain the following Boolean expression,

This K-map simplification gives the following Boolean expression,

$$X_0\,=\,\overline{B_0}$$

$$X_1 \, = \, \overline{B_1} \, \overline{B_0} \, + \, B_1 \, B_0$$

Kmap for X2 and X3 output

Go, change the world

K-Map for XS-3 Bit X₂

The K-map simplification for the XS-3 bit X₂ is shown in the figure below.

On simplifying this K-map, we obtain the following Boolean expression,

$$X_2 \, = \, \overline{B_2} \, \, B_1 \, + \, \overline{B_2} \, \, B_0 \, + \, B_2 \, \overline{B_1} \, \, \overline{B_0}$$

K-Map for XS-3 Bit X₃

The K-map simplification for the XS-3 bit X₃ is depicted in the figure below -

This K-map gives the following Boolean expression,

$$X_3 = B_3 + B_2 B_1 + B_2 B_0$$

RV College of Engineering® Logic Circuit of BCD to XS-3 Code Converter Go, change the world®

The logic circuit diagram of the BCD to XS-3 converter is shown in the following figure -

This circuit converters a 4-bit BCD code into an equivalent XS-3 code.

Logic functions implementation using Multiplexers

• A multiplexer (MUX) is a combinational circuit that selects one of many input signals and forwards the selected input to a single output line.

Block

Basic terms:

n:1 MUX: n data inputs, 1 output.

k select lines: where $k = \lceil \log 2 \ n \rceil$. Select lines, and choose which input is connected to the output.

Enable (optional) — an active-high/low input that allows the mux to drive the output only when enabled.

Multiplexer operation

Logic functions implementation Go, change the world[®] using Multiplexers

A Multiplexer can be used to implement any Boolean function by selecting the appropriate combination of inputs.

- If a Boolean expression has (n+1) variables, then 'n' of these variables can be connected to the select lines of the multiplexer. The remaining single variable, along with constants 1 and 0, is used as the input of the multiplexer.
- In general, a Boolean expression of (n+1) variables can be implemented using $Y = \overline{S1} \, \overline{S0} \, D0 + \overline{S1} S0 \, D1 + S1 \overline{S0} \, D2 + S1 S0 \, D3$ multiplexer with 2ⁿ inputs.

4:1 Multiplexer

Truth table

S1	S0	Y
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Logic Equation

4:1 Mux Logic Circuit using basic gates, NAND gates

Engineering®

Go, change the world®

Logic functions implementation using Multiplexers

Go, change the world[®]

$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

'	х	Z	F	
)	0	0	0	F = z
)	0	1	1	
	0	0	1	F = z'
	0	1	0	1 2
)	1	0	0	F = 0
)	1	1	0	1 - 0
	1	0	1	F = 1
	1	1	1	I = 1

The values for the data input lines are determined from the truth table of the function. When x y = 00, output F is equal to z because F = 0 when z = 0 and F = 1 when z = 1. This requires that variable z be applied to data input 0.

(a) Truth table

(b) Multiplexer implementation

Logic functions implementation using 4:1 Mux

- Example: $F(A, B, C) = \sum m (1, 3, 5, 6)$
- Implementation table:

Apply variables B and C to the select lines. The procedures for implementing the function are:

- i. List the input of the multiplexer
- ii. List under them all the minterms in two rows, with the first half of the minterms associated with A' and the second half with A.

	D_0	D_1	D_2	D_3
Ā	0	1	2	3
A	4	5	6	7

C\AB	00	01	10	11
0	0	1	0	1
1	0	1	1	0

Logic functions implementation using 4:1 Mux

The given function is implemented by circling the minterms of the function and applying the following rules to find the values for the inputs of the multiplexer.

- If both the minterms in the column are not circled, apply 0 to the corresponding input.
- If both the minterms in the column are circled, apply 1 to the corresponding input.
- If the only bottom minterm is circled, apply A to the input.
- If the only top minterm is circled, apply A to the input.

	D_0	D_1	D_2	D_3
Ā	0	1	2	3
A	4	5	6	7
	0	1	A	Ā

From the table,

$$D_0 = 0$$
, $D_1 = 1$, $D_2 = A$, $D_3 = A$

C\AB	00	01	10	11
0	0	1	0	1
1	0	1	1	0

Design of logic circuit using MUX

Go, change the world

- Select any two inputs as select lines (AB as select line)
- Write K-Map for AB as row (00,01,10,11) with C as coloumn
- Enter the 1's in the expression into K-Map
- If both row entry is 0 then connect 0 to respective data line (e.g. 0 to D0)
- If both row entry is 1, then connect 1 to respective data line
- Compare the outputs with variable C value in K map if both rows are not same.
- If output is same as C, connect C else connect Cbar

Implementation of F (A, B, C) = \sum m (1, 3, 5, 6) using 4:1 Mux

Implementation of F (A, B, C) = \sum m (1, 3, 5, 6) using 4:1 Mux

Apply variables A and B to the select lines.

Implementation Table

Question 5: Implement the following Boolean function using MUX

$$F(A,B,C,D) = \sum m(0,1,3,4,8,9,15)$$

Assuming A is connected to inputs and B,C,D are connected to select lines.

Implementation Table

	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7
Ā	0	1	2	3	4	5	6	7
A	8	9	10	11	12	13	14	15
	1	1	0	Ā	Ā	0	0	A

Question 6: Implement the following Boolean function using MUX

Go, change the world®

$F(A,B,C,D) = \Sigma(1,3,4,11,12,13,14,15)$

_	A .	В	С	D	F															
	0	0	0	0 1	0	F = D			ABC										8×1 MUX	
	0	0	1	0	0	E = D		D		10	I1	12	13	14	15	15	17	C	$-S_0$	
	0	0	1	1	1	F = D				000	001	010	011	100	101	110	111	В —	S_1	
_	0	1	0	0	1	F 5/			0	0	0	1	0	0	0	1	1	A	$-S_2$	
	0	1	0	1	0	F = D'			1	1	1	0	0	0	1	1	1			
_	0	1	1	0	0				F	D	D	D'	0	0	D	1	1	$D \longrightarrow$	0	
	0	1	1 1	1	0	F = 0						4							1	F
	1 1	0	0	0	0	F = 0		K-map method								0	$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$,		
	1 1	0	1	0 1	0	F = D													5	
			0 0		-			T	ruth	tab	le n	neth	od						7	
	1	1	1	U	1	F = 1														

Question 6: Determine the F in the following

74153 dual 4:1 Multiplexer IC

- It contains two independent 4-input multiplexers on a single chip, each capable of selecting one of four data inputs to be passed to the output.
- Common select lines (S0, S1) for both multiplexers.
- Separate enable inputs (active LOW) for each MUX.
- TTL-compatible inputs/outputs.

Pin Diagram

Function Table

D _{3:0} :	data
S _{1:0} :	select
Y:	output
Gb:	enable

Question 7: Realize a full adder using 74153 MUX IC

Truth table of Full adder

A	В	Cin	Sum (S)	Carry (Cout)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S= F1(A,B,C) =
$$\sum$$
m (1,2,4,7)
Cout= F2(A,B,C) = \sum m (3,5,6,7)

 Assuming B & C are connected to select lines, Mux 1 and Mux 2 are used to realize sum and carry, respectively.

Implementation Tables

Sum

	D_0	D_1	D_2	D_3
Ā	0	1	(2)	ა
Α	4	15	6	7
	Α	Ā	Ā	Α

Cout

	D_0	D_1	D_2	D_3
Ā	0	1	2	3
A	4	(5)	6	7
	0	Α	A	1

Question 7: Realize a full adder using 74153 MUX IC

Question 8

Realize a 8:1 multiplexer using the 74153 IC.

Realize a 8:1 multiplexer using the 74153 IC

Go, change the world

Fig. 3. Eight to One Multiplexer using IC 74LS153

16:1 MUX using 4:1 MUX

Truth Table

S1	50	f
0	0	10
0	1	11
1	0	12
1	1	13

Inputs

RV College of Engineering®

Encoders

• An Encoder is a combinational logic circuit that converts 2^n (or fewer) input lines into an n-bit binary code.

Example: Decimal to BCD encoder

• A Decimal-to-Binary Encoder converts a decimal input (0–9) into its equivalent 4-bit binary output (0000–1001).

Decimal to BCD Encoder

Truth Table

	Decimal Inputs										BCD Output			
D 9	$\mathbf{D_8}$	\mathbf{D}_7	\mathbf{D}_6	\mathbf{D}_5	D ₄	\mathbf{D}_3	$\mathbf{D_2}$	$\mathbf{D_1}$	\mathbf{D}_{0}	A	В	C	D	
1	0	0	0	0	0	0	0	0	0	1	0	0	1	
0	1	0	0	0	0	0	0	0	0	1	0	0	0	
0	0	1	0	0	0	0	0	0	0	0	1	1	1	
0	0	0	1	0	0	0	0	0	0	0	1	1	0	
0	0	0	0	1	0	0	0	0	0	0	1	0	1	
0	0	0	0	0	1	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	1	0	0	0	0	0	1	1	
0	0	0	0	0	0	0	1	0	0	0	0	1	0	
0	0	0	0	0	0	0	0	1	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	1	0	0	0	0	

Circuit Diagram

Priority Encoders

- A priority encoder converts multiple input lines into a binary code on the output lines.
- Unlike a simple encoder, it assigns priority to the inputs if multiple inputs are active at the same time, the highest-priority input determines the output.
- Example: 74HC147 Decimal to BCD active low priority encoder

Pin Diagram:74HC147

74HC147:Function Table

	Inputs									Out	tput	t
D 9	$\mathbf{D_8}$	\mathbf{D}_7	\mathbf{D}_6	\mathbf{D}_5	\mathbf{D}_4	\mathbf{D}_3	$\mathbf{D_2}$	$\mathbf{D_1}$	A	В	C	D
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	L
Н	Н	Н	Н	Н	Н	Н	L	X	Н	Н	L	Н
Н	Н	Н	Н	Н	Н	L	x	X	Н	Н	L	L
Н	Н	Н	Н	Н	L	x	x	X	Н	L	Н	Н
Н	Н	Н	Н	L	x	X	X	X	Н	L	Н	L
Н	Н	Н	L	x	x	x	x	X	Н	L	L	Н
Н	Н	L	X	x	x	x	x	X	Н	L	L	L
Н	L	x	X	X	x	x	x	X	L	Н	Н	Н
L	X	X	X	X	X	X	X	X	L	Н	Н	L

Keypad encoder using 74147

Decimal Keypad

Circuit diagram

With Pull up

Keypad encoder using 74147

Circuit Diagram

- The O/P of the encoder is always low when no key is pressed.
- The zero key is not connected because BCD O/P is zero when no key is pressed.

Priority Encoder with active high I/O lines

8-to-3 Bit Priority Encoder

	Inputs									uts
D ₇	D ₆	D ₅	D_4	D ₃	D_2	D_1	D ₀	Q ₂	Q1	Qo
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	х	0	0	1
0	0	0	0	0	1	х	х	0	1	0
0	0	0	0	1	х	х	х	0	1	1
0	0	0	1	х	х	x	x	1	0	0
0	0	1	х	х	х	х	х	1	0	1
0	1	х	х	х	х	х	х	1	1	0
1	х	х	х	х	x	х	х	1	1	1

Logic Expression for Priority Encoder

$$\begin{split} Q_0 &= \sum \bigl(\, \overline{\boldsymbol{1}}, \, \overline{\boldsymbol{3}}, \, \overline{\boldsymbol{5}}, \, \overline{\boldsymbol{7}}\,\bigr) \\ Q_0 &= \sum \Bigl(\, \overline{\boldsymbol{D}}_7 \, \overline{\boldsymbol{D}}_6 \, \overline{\boldsymbol{D}}_5 \, \overline{\boldsymbol{D}}_4 \, \overline{\boldsymbol{D}}_3 \, \overline{\boldsymbol{D}}_2 \, D_1 \, + \, \overline{\boldsymbol{D}}_7 \, \overline{\boldsymbol{D}}_6 \, \overline{\boldsymbol{D}}_5 \, \overline{\boldsymbol{D}}_4 \, D_3 \, + \, \overline{\boldsymbol{D}}_7 \, \overline{\boldsymbol{D}}_6 \, D_5 \, + \, D_7 \,\bigr) \\ Q_0 &= \sum \Bigl(\, \overline{\boldsymbol{D}}_6 \, \overline{\boldsymbol{D}}_4 \, \overline{\boldsymbol{D}}_2 \, D_1 \, + \, \overline{\boldsymbol{D}}_6 \, \overline{\boldsymbol{D}}_4 \, D_3 \, + \, \overline{\boldsymbol{D}}_6 \, D_5 \, + \, D_7 \,\bigr) \\ Q_0 &= \sum \Bigl(\, \overline{\boldsymbol{D}}_6 \, \Bigl(\, \overline{\boldsymbol{D}}_4 \, \overline{\boldsymbol{D}}_2 \, D_1 \, + \, \overline{\boldsymbol{D}}_4 \, D_3 \, + \, D_5 \,\Bigr) \, + \, D_7 \,\Bigr) \end{split}$$

Output Q₁

$$\begin{split} Q_1 &= \sum \bigl(\, \mathbf{2}, \, \mathbf{3}, \, \mathbf{6}, \, \mathbf{7} \, \bigr) \\ Q_1 &= \sum \Bigl(\, \overline{D}_7 \, \overline{D}_6 \, \overline{D}_5 \, \overline{D}_4 \, \overline{D}_3 \, D_2 \, + \, \overline{D}_7 \, \overline{D}_6 \, \overline{D}_5 \, \overline{D}_4 \, D_3 \, + \, \overline{D}_7 \, D_6 \, + \, D_7 \, \bigr) \\ Q_1 &= \sum \Bigl(\, \overline{D}_5 \, \overline{D}_4 \, D_2 \, + \, \overline{D}_5 \, \overline{D}_4 \, D_3 \, + \, D_6 \, + \, D_7 \, \bigr) \\ Q_1 &= \sum \Bigl(\, \overline{D}_5 \, \overline{D}_4 \, \bigl(D_2 \, + \, D_3 \bigr) \, + \, D_6 \, + \, D_7 \, \bigr) \end{split}$$

Logic Expression for Priority Encoder-contd

Output Q₂

$$\begin{split} Q_2 &= \sum \bigl(\, \textbf{4}, \, \textbf{5}, \, \textbf{6}, \, \textbf{7} \,\bigr) \\ Q_2 &= \sum \Bigl(\, \overline{D}_7 \, \overline{D}_6 \, \overline{D}_5 \, D_4 \, + \, \overline{D}_7 \, \overline{D}_6 \, D_5 \, + \, \overline{D}_7 \, D_6 \, + \, D_7 \,\bigr) \\ Q_2 &= \sum \bigl(\, D_4 \, + \, D_5 \, + \, D_6 \, + \, D_7 \,\bigr) \end{split}$$

Priority Encoder Output Expression

$$\begin{split} \mathbf{Q}_0 &= \sum \left(\, \overline{\mathbf{D}}_6 \left(\, \overline{\mathbf{D}}_4 \, \overline{\mathbf{D}}_2 \mathbf{D}_1 + \overline{\mathbf{D}}_4 \, \mathbf{D}_3 + \mathbf{D}_5 \right) + \mathbf{D}_7 \right) \\ \mathbf{Q}_1 &= \sum \left(\, \overline{\mathbf{D}}_5 \, \overline{\mathbf{D}}_4 \left(\mathbf{D}_2 + \mathbf{D}_3 \right) + \mathbf{D}_6 + \mathbf{D}_7 \right) \\ \mathbf{Q}_2 &= \sum \left(\, \mathbf{D}_4 + \mathbf{D}_5 + \mathbf{D}_6 + \mathbf{D}_7 \right) \end{split}$$

Decoders

Go, change the world®

• A decoder converts binary information from n input lines into a

maximum of 2ⁿ unique output lines.

• Example: 2 to 4 Decoder

Enable	INP	UTS	OUTPUTS				
E	A ₁	A ₀	Υ ₃	Y ₂	Υ ₁	Y ₀	
0	Χ	χ	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

Block Diagram

Block Diagram

Truth Table

Circuit Diagram

3:8 decoder using 2:4 decoder

Logic functions implementation decoder

• A Booleanfunction with n variablescan be implemented using a decoder with n inputs.

Example: Implementation of a full subtractor using 3 to 8 decoder

Truth table

A	В	Bin	Diff (D)	Borrow (Bout)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Minterms

$$D(A,B,Bin) = \sum m (1,2,4,7)$$

Bout(A,B,Bin) = $\sum m (1,2,3,7)$

$$S(x,y,z) = \Sigma(1,2,4,7)$$
 and $C(x,y,z) = \Sigma(3,5,6,7)$

Question 9

Realize a 5 to 32 decoder using 3 to 8 decoders. Show the function table.

Logic function implementation using Demultiplexers

• A demultiplexer is a digital circuit that takes one input and routes it to one of many outputs, depending on select (control) inputs.

• Example: 1 to 4 Demux

Truth table

Select	Inputs	Outputs					
S1	S0	D	C	В	A		
0	0	X	X	X	F		
0	1	X	X	F	X		
1	0	X	F	X	X		
1	1	F	x	X	X		

x-Don't care

Circuit Diagram

Decoder & Demultiplexer

A decoder with an enable line can function as a demultiplexer.

3-bit binary(B2,B1,B0) to Gray (G2,G1,G0) code converter using demultiplexer

Realize 3 bit binary(B2,B1,B0) to Gray (G2,G1,G0) code converter using demultiplexer. **Minterms**

Truth table

Bina	ry In	puts	Gra	Gray Inputs				
B2	B1	В0	G2	G1	G0			
0	0	0	0	0	0			
0	0	1	0	0	1			
0	1	0	0	1	1			
0	1	1	0	1	0			
1	0	0	1	1	0			
1	0	1	1	1	1			
1	1	0	1	0	1			
1	1	1	1	0	0			

G2=
$$\sum m$$
 (4,5,6,7)
G1 = $\sum m$ (2,3,4,5)
G0= $\sum m$ (1,2,5,6)

Circuit diagram

74139 Dual 2-to-4 Line Decoder/Demultiplexer

Pin diagram

Function Table

Decoder A

Ea	A1a	A0a	0a	Ιā	2ā	3a
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Decoder B

Eb	A1b	A0b	0b	Тъ	26	3b
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Magnitude Comparator

- A magnitude comparator is a combinational logic circuit that compares two binary numbers and determines their relative Amagnitude.
- Given two binary numbers A and B (each of n bits), the comparator outputs indicate whether: A > B, A = B, A < B

1-bit Magnitude Comparator

Go, change the world®

A	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

A > B : AB'

A < B : A'B

A = B : A'B' + AB

2-bit Magnitude Comparator

Go, change the world

Comparing two 2-bit binary numbers: $A=A_1A_0$ $B=B_1B_0$

Truth Table

A1	A0	В1	<mark>B0</mark>	A>B	A=B	A <b< th=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Conditions

$$A = B = (A_1 \text{ XNOR } B_1) \cdot (A_0 \text{ XNOR } B_0)$$

2. A>B

If $A_1>B_1$, then A > B (regardless of LSB).

If $A_1=B_1$ and $A_0>B_0$, then A > B.

$$A>B=(A_1\cdot B_1')+igl[(A_1\odot B_1)\cdot (A_0\cdot B_0')igr]$$

3.A
$$<$$
B If $A_1 < B_1$, then A < B.

If $A_1 = B_1$ and $A_0 < B_0$, then A < B.

$$A < B = (A_1' \cdot B_1) + \left[(A_1 \odot B_1) \cdot (A_0' \cdot B_0) \right]$$

2 Bit Comparator Logic Circuit

$$(A = B) = (A_1 \odot B_1) (A_0 \odot B_0)$$

$$(A > B) = (A_1 \overline{B_1}) + (A_1 \odot B_1) (A_0 \overline{B_0})$$

$$(A < B) = (\overline{A_1} B_1) + (A_1 \odot B_1) (\overline{A_0} B_0)$$

Logic Circuit of 4 bit Magnitude Comparator

he world®

Suggested Reading

- TTL,CMOS,ECL IC technologies
- IC Packages
- Datasheets of ICs