Problem Set 9

Warren Kim

 $March\ 17,\ 2023$

Section 5.1 Question 2 part (a), (d)

For each of the following linear operators T on a vector space V, compute the determinant of T and the characteristic polynomial of T.

(a)
$$V = \mathbb{R}^2$$
, $T \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a - b \\ 5a + 3b \end{pmatrix}$

(d)
$$V = \mathcal{M}_{2\times 2}(\mathbb{R}), \ T(A) = 2A^t - A$$

Response

(a) Let $\beta = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ be a basis for \mathbb{R}^2 . Then, we have

$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
$$T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
$$[T]_{\beta} = \begin{pmatrix} 2 & -1 \\ 5 & 3 \end{pmatrix}$$

Taking the determinant of $[T]_{\beta}$, we get

$$\det([T]_{\beta}) = 6 - -5 = 11$$

To compute the characteristic polynomial,

$$\det([T]_{\beta} - \lambda I) = \begin{vmatrix} 2 - \lambda & -1 \\ 5 & 3 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(3 - \lambda) - -5$$
$$= \lambda^2 - 5\lambda + 6 + 5$$
$$\det([T]_{\beta} - \lambda I) = \lambda^2 - 5\lambda + 11$$

(d) Let
$$\beta = \{e_1, e_2, e_3, e_4\} \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$
 be a basis for $\mathcal{M}_{2\times 2}$. Then, we have
$$T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \\ = 2e_1 + 0e_2 + 0e_3 + 0e_4$$

$$T \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 2 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} \\ = 0e_1 + -1e_2 + 2e_3 + 0e_4$$

$$T \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \\ = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} \\ = 0e_1 + 2e_2 + -1e_3 + 0e_4$$

$$T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} \\ = 0e_1 + 0e_2 + 0e_3 + 1e_4$$

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Taking the determinant of $[T]_{\beta}$, we get

$$\det([T]_{\beta}) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$= a_{11}C_{11} - a_{12}C_{12} + a_{13}C_{13} - a_{14}C_{14}$$

$$= 1 \begin{vmatrix} -1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + 0 + 0 + 0$$

$$= a_{11}(a_{31}C_{31} - a_{32}C_{32} + a_{33}C_{33})$$

$$= 1 \left(0 + 0 + 1 \begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} \right)$$

$$= 1(1(1 - 4))$$

$$\det([T]_{\beta}) = -3$$

To compute the characteristic polynomial,

$$\det([T]_{\beta} - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 & 0 \\ 0 & -1 - \lambda & 2 & 0 \\ 0 & 2 & -1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix}$$

$$= a_{11}C_{11} - a_{12}C_{12} + a_{13}C_{13} - a_{14}C_{14}$$

$$= 1 - \lambda \begin{vmatrix} -1 - \lambda & 2 & 0 \\ 2 & -1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} + 0 + 0 + 0$$

$$= a_{11}(a_{31}C_{31} - a_{32}C_{32} + a_{33}C_{33})$$

$$= (1 - \lambda) \left(0 + 0 + 1 - \lambda \begin{vmatrix} -1 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix} \right)$$

$$= (1 - \lambda)((1 - \lambda)((-1 - \lambda)^2 - 4))$$

$$= (1 - \lambda)^2((-1 - \lambda)^2 - 4)$$

$$= (1 - \lambda)^2(\lambda^2 + 2\lambda + 1 - 4)$$

$$= (1 - \lambda)^2(\lambda^2 + 2\lambda - 3)$$

$$= (\lambda^2 - 2\lambda + 1)(\lambda^2 + 2\lambda - 3)$$

$$= (\lambda^4 + 2\lambda^3 - 3\lambda^2) - (2\lambda^3 + 4\lambda^2 - 6\lambda) + (\lambda^2 + 2\lambda - 3)$$

$$= \lambda^4 - 6\lambda^2 + 8\lambda - 3$$

- (a) Prove that the linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of T.
- (b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
- (c) State and prove results analogous to (a) and (b) for matrices.

Response

(a) $Proof. \implies$

Let T be invertible. We want to prove that 0 is not an eigenvalue of T. Recall that T is invertible if and only if $\det(T) \neq 0$. This implies that $N(T - \lambda I) = \{0\}$. Thus, 0 cannot be an eigenvalue of T.

 \leftarrow

Assume 0 is not an eigenvalue of T by the previous statement. Then, we know that there exists no eigenvector x such that T(x) = 0. Therefore, we have that $N(T) = \{0\}$. From the rank-nullity theorem, we have

$$\begin{aligned} nullity(T) + rank(T) &= dim(V) \\ 0 + rank(T) &= dim(V) \\ dim(R(T)) &= dim(V) \\ dim(W) &= dim(V) \end{aligned}$$

Thus, T is invertible.

(b) $Proof. \implies$

Assume a scalar λ is an eigenvalue with eigenvector $x \in V$ of T. We are given that T is invertible, so we have

$$T(x) = \lambda x$$

$$T^{-1}T(x) = T^{-1}(\lambda x)$$

$$x = \lambda T^{-1}(x)$$

$$\lambda^{-1}x = \lambda^{-1}\lambda T^{-1}(x)$$
 from (a), we know that $\lambda \neq 0$
$$\lambda^{-1}x = T^{-1}(x)$$

$$\lambda^{-1}\lambda = 1$$

Thus, λ^{-1} is an eigenvalue of T^{-1} .

 \Leftarrow

Assume a scalar λ^{-1} is an eigenvalue with eigenvector $y \in V$ of T^{-1} . We are given that T^{-1} is invertible, so we have

$$T^{-1}(y) = \lambda^{-1}y$$

$$TT^{-1}(y) = T(\lambda^{-1}y)$$

$$y = \lambda^{-1}T(y)$$

$$\lambda y = \lambda \lambda^{-1}T(y)$$
 from (a), we know that $\lambda \neq 0$
$$\lambda y = T(y)$$

$$\lambda \lambda^{-1} = 1$$

Thus, λ is an eigenvalue of T.

(c) Analogous proof for (a): An $n \times n$ matrix A is invertible if and only if zero is not an eigenvalue of A.

 $Proof. \implies$

Let A be invertible. We want to prove that 0 is not an eigenvalue of A. If A is invertible, this means that it is one-to-one and onto, meaning there is no non-zero vector such that Ax = 0. So, 0 cannot be an eigenvalue of A.

 \Leftarrow

Assume 0 is not an eigenvalue by the previous statement. Then, we know that the only vector that satisfies Ax = 0 is the zero vector. This implies that A is one-to-one, which also implies that A is invertible.

Analogous proof for (b): Given that A is invertible, prove that a scalar λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1} .

 $Proof. \implies$

Assume a scalar λ is an eigenvalue with eigenvector $x \in V$ of T. We are given that T is invertible, so we have

$$A(x) = \lambda x$$

$$A^{-1}A(x) = A^{-1}(\lambda x)$$

$$x = \lambda A^{-1}(x)$$

$$\lambda^{-1}x = \lambda^{-1}\lambda A^{-1}(x)$$
 from (a), we know that $\lambda \neq 0$

$$\lambda^{-1}x = A^{-1}(x)$$
 from $\lambda^{-1}\lambda = 1$

Thus, λ^{-1} is an eigenvalue of A^{-1} .

 \Leftarrow

Assume a scalar λ^{-1} is an eigenvalue with eigenvector $y \in V$ of A^{-1} . We are given that A^{-1} is invertible, so we have

$$A^{-1}(y) = \lambda^{-1}y$$

$$AA^{-1}(y) = A(\lambda^{-1}y)$$

$$y = \lambda^{-1}A(y)$$

$$\lambda y = \lambda \lambda^{-1}A(y)$$
from (a), we know that $\lambda \neq 0$

$$\lambda y = A(y)$$

$$\lambda \lambda^{-1} = 1$$

Thus, λ is an eigenvalue of A.

A scalar matrix is a square matrix of the form λI for some scalar λ ; that is, a scalar matrix is a diagonal matrix in which all the diagonal entries are equal.

- (a) Prove that if a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$.
- (b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.
- (c) Prove that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Response

(a) Proof. Let A and λI be similar square matrices. We want to prove that $A = \lambda I$. Let $A = B\lambda IB^{-1}$, where B is invertible. Then we have

$$A = B\lambda I B^{-1}$$

$$= \lambda (BIB^{-1})$$

$$= \lambda (BB^{-1})$$

$$= \lambda (I)$$

$$A = \lambda I$$

$$BI = B$$

- (b) *Proof.* Let A be a diagonalizable matrix having only one eigenvalue λ . Let $A = BDB^{-1}$, where B is invertible and D is diagonal. Since A only has one eigenvalue, D must be the scalar matrix λI . From (a), we have $A = \lambda I$, so A is a scalar matrix. \square
- (c) *Proof.* Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Taking the characteristic polynomial of the matrix, we get

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1\\ 0 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)^2 - 0$$
$$\det(A - \lambda I) = (1 - \lambda)^2$$

Because we only have one eigenvalue $\lambda = 1$, there is no ordered basis with 2 linearly independent vectors. By definition, A is diagonalizable if and only if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. Because there is no such ordered basis for A, A is not diagonalizable. \square

For any square matrix A, prove that A and A^t have the same characteristic polynomial (and hence the same eigenvalues).

Response

Proof. We want to prove that A and A^t have the same characteristic polynomial. Recall that the characteristic polynomial is defined as $f(x) = \det(A - \lambda I)$. Let f(x) and g(x) be the characteristic polynomials for A and A^t respectively. Then we have

$$f(x) = \det(A - \lambda I)$$

$$= \det((A - \lambda I)^t)$$

$$= \det(A^t - \lambda I^t)$$

$$= \det(A^t - \lambda I)$$

$$f(x) = g(x)$$

$$\det(A) = \det(A^t)$$

Let T be the linear operator on $\mathcal{M}_{n\times n}(\mathbb{R})$ defined by $T(A)=A^t$.

- (a) Show that ± 1 are the only eigenvalues of T.
- (b) Describe the eigenvectors corresponding to each eigenvalue of T.
- (c) Find an ordered basis β for $\mathcal{M}_{2\times 2}(\mathbb{R})$ such that $[T]_{\beta}$ is diagonal.
- (d) Find an ordered basis β for $\mathcal{M}_{n\times n}(\mathbb{R})$ such that $[T]_{\beta}$ is diagonal for n>2.

Response

(a) We want to show that the only eigenvalues for T are ± 1 . Let λ be an eigenvalue of T and A be its corresponding eigenvector. Then we have

$$T(A) = \lambda A$$

$$A^{t} = \lambda A$$

$$T(A^{t}) = T(\lambda A)$$

$$= \lambda T(A)$$

$$A = \lambda T(A)$$

$$= \lambda (\lambda A)$$

$$= \lambda^{2} A$$

$$0 = \lambda^{2} A - A$$

$$= (\lambda^{2} - 1) A$$

$$(A^{t})^{t} = A$$

$$T(A) = \lambda A$$

Since we defined A to be an eigenvector of T, by definition it cannot be 0. So, we have

$$(\lambda^2 - 1)A = 0$$
$$(\lambda + 1)(\lambda - 1) = 0$$
$$\lambda = \pm 1$$

So, the only eigenvalues of T are ± 1 .

(b) For $\lambda = -1$

$$T(A) = \lambda A$$

= -1A
 $A^t = -A$ $T(A) = A^t$

When $\lambda = -1$, the matrix A is skew-symmetric, so the set of skew-symmetric matrices are eigenvectors that correspond to $\lambda = -1$.

For $\lambda = 1$

$$T(A) = \lambda A$$

= 1A
 $A^t = A$ $T(A) = A^t$

When $\lambda = 1$, the matrix A is symmetric, so the set of symmetric matrices are eigenvectors that correspond to $\lambda = 1$.

9

(c)
$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

(d) Let B_{ii} be the $n \times n$ matrix with the ii^{th} element 1, and all others 0. Then, we have $\beta = (B_{ii})_{i=1,2,\dots,n} \cup (B_{ij} + B_{ji})_{i>j} \cup (B_{ij} - B_{ji})_{i>j}$

For each of the following matrices $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, test A for diagonalizability, and if A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

- (a) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$
- (d) $\begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$
- (e) $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$
- $\begin{array}{cccc}
 (g) & \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}
 \end{array}$

Response

(a)

$$det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ 0 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)^2 - 0$$

- (a) Clearly, $(1 \lambda)^2 = (1 \lambda)(1 \lambda)$ splits.
- (b) Solving for λ , we get $\lambda = 1$ with multiplicity 2. We test for $multiplicity = n rank(A \lambda I)$

$$multiplicity = n - rank(A - 1I)$$
$$2 = 2 - rank \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
$$= 2 - 1$$
$$2 \neq 1$$

This matrix is not diagonalizable.

(b)

$$\det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)^2 - 9$$
$$= \lambda^2 - 2\lambda + 1 - 9$$
$$= \lambda^2 - 2\lambda - 8$$

- (a) Clearly, $\lambda^2 \lambda 8 = (\lambda + 2)(\lambda 4)$ splits.
- (b) Solving for λ , we get $\lambda=-2,4.$ We test for $multiplicity=n-rank(A-\lambda I)$ When $\lambda=-2$

$$\begin{aligned} multiplicity &= n - rank(A - -2I) \\ 1 &= rank(A + 4I) \\ &= 2 - rank \begin{pmatrix} 3+3 \\ 3+3 \end{pmatrix} \\ &= 2-1 \\ 1 &= 1 \end{aligned}$$

When $\lambda = 4$

$$\begin{aligned} multiplicity &= n - rank(A - 4I) \\ 1 &= rank(A + 4I) \\ &= 2 - rank \begin{pmatrix} -3 + 3 \\ 3 + -3 \end{pmatrix} \\ &= 2 - 1 \\ 1 &= 1 \end{aligned}$$

Therefore, this matrix is diagonalizable.

To find the eigenvectors, we find $(A - \lambda I)x = 0$ For $\lambda = -2$

$$0 = (A - \lambda I)x$$

$$= (A - 2I)x$$

$$= \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

For $\lambda = 4$

$$0 = (A - \lambda I)x$$

$$= (A - 4I)x$$

$$= \begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

So we have $Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. To find the diagonal matrix D, recall $D = Q^{-1}AQ$

$$\begin{split} D &= Q^{-1}AQ \\ &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 4 \\ 2 & 4 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} -4 & 0 \\ 0 & 8 \end{pmatrix} \\ &= \begin{pmatrix} -2 & 0 \\ 0 & 4 \end{pmatrix} \end{split}$$

$$Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \ D = \begin{pmatrix} -2 & 0 \\ 0 & 4 \end{pmatrix}$$

(c)

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 \\ 3 & 2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(2 - \lambda) - 12$$
$$= \lambda^2 - 3\lambda + 2 - 12$$
$$= \lambda^2 - 3\lambda - 10$$

- (a) Clearly, $\lambda^2 3\lambda 10 = (\lambda 5)(\lambda + 2)$ splits
- (b) Solving for λ , we get $\lambda=-2,5.$ We test for $multiplicity=n-rank(A-\lambda I)$ When $\lambda=-2$

$$\begin{aligned} multiplicity &= n - rank(A - \lambda I) \\ 1 &= 2 - rank(A - -2I) \\ &= 2 - rank \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix} \\ &= 2 - 1 \\ 1 &= 1 \end{aligned}$$

When $\lambda = 5$

$$\begin{aligned} multiplicity &= n - rank(A - \lambda I) \\ 1 &= 2 - rank(A - 5I) \\ &= 2 - rank\begin{pmatrix} -4 & 4 \\ 3 & -3 \end{pmatrix} \\ &= 2 - 1 \\ 1 &= 1 \end{aligned}$$

Therefore, this matrix is diagonalizable.

To find the eigenvectors, we find $(A - \lambda I)x = 0$ For $\lambda = -2$

$$0 = (A - \lambda I)x$$

$$= (A - -2I)x$$

$$= \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$

For $\lambda = 5$

$$0 = (A - \lambda I)x$$

$$= (A - 5I)x$$

$$= \begin{pmatrix} -4 & 4 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

So we have $Q = \begin{pmatrix} 4 & 1 \\ -3 & 1 \end{pmatrix}$. To find the diagonal matrix D, recall $D = Q^{-1}AQ$

$$D = Q^{-1}AQ$$

$$= \frac{1}{7} \begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ -3 & 1 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -8 & 5 \\ 6 & 5 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} -14 & 0 \\ 0 & 35 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}$$

$$Q = \begin{pmatrix} 4 & 1 \\ -3 & 1 \end{pmatrix}, \ D = \begin{pmatrix} -2 & 0 \\ 0 & 5 \end{pmatrix}$$

(d)

$$\det(A - \lambda I) = \begin{vmatrix} 7 - \lambda & -4 & 0 \\ 8 & -5 - \lambda & 0 \\ 6 & -6 & 3 - \lambda \end{vmatrix}$$

$$= a_{13}C_{13} - a_{23}C_{23} + a_{33}C_{33}$$

$$= 0 - 0 + (3 - \lambda) \begin{vmatrix} 7 - \lambda & -4 \\ 8 & -5 - \lambda \end{vmatrix}$$

$$= (3 - \lambda)((7 - \lambda)(-5 - \lambda) - -32)$$

$$= (3 - \lambda)(\lambda^2 - 2\lambda - 35 + 32)$$

$$= (3 - \lambda)(\lambda^2 - 2\lambda - 3)$$

$$= (3 - \lambda)(\lambda - 3)(\lambda + 1)$$

$$= (\lambda - 3)^2(\lambda + 1)$$

- (a) Clearly, $(\lambda 3)^2(\lambda + 1) = (\lambda 3)(\lambda 3)(\lambda + 1)$ splits
- (b) Solving for λ , we get $\lambda = -1, 3$. We test for $multiplicity = n rank(A \lambda I)$ When $\lambda = -1$

$$\begin{aligned} multiplicity &= n - rank(A - \lambda I) \\ 1 &= 3 - rank(A - -1I) \\ &= 3 - rank \begin{pmatrix} 8 & -4 & 0 \\ 8 & -4 & 0 \\ 6 & -6 & 4 \end{pmatrix} \\ &= 3 - 2 \\ 1 &= 1 \end{aligned}$$

When $\lambda = 3$

$$\begin{split} multiplicity &= n - rank(A - \lambda I) \\ 2 &= 3 - rank(A - 3I) \\ &= 3 - rank \begin{pmatrix} 4 & -4 & 0 \\ 8 & -8 & 0 \\ 6 & -6 & 0 \end{pmatrix} \\ &= 3 - 1 \\ 2 &= 2 \end{split}$$

Therefore, this matrix is diagonalizable.

To find the eigenvectors, we find $(A - \lambda I)x = 0$) For $\lambda = -1$

$$0 = (A - \lambda I)x$$

$$= (A - -1I)x$$

$$= \begin{pmatrix} 8 & -4 & 0 \\ 8 & -4 & 0 \\ 6 & -6 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

For $\lambda = 3$

$$0 = (A - \lambda I)x$$

$$= (A - 3I)x$$

$$= \begin{pmatrix} 4 & -4 & 0 \\ 8 & -8 & 0 \\ 6 & -6 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

So, we have $Q = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$. To find the diagonal matrix D, recall $D = Q^{-1}AQ$

$$\begin{split} D &= Q^{-1}AQ \\ &= \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 \\ 4 & -2 & 0 \\ 3 & -3 & 2 \end{pmatrix} \begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 4 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} -1 & 1 & 0 \\ 4 & -2 & 0 \\ 3 & -3 & 2 \end{pmatrix} \begin{pmatrix} -2 & 3 & 0 \\ -4 & 3 & 0 \\ -3 & 0 & 3 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \\ &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \end{split}$$

$$Q = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \ D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(e)

$$\det(A - \lambda I) = \begin{vmatrix} 0 - \lambda & 0 & 1 \\ 1 & 0 - \lambda & -1 \\ 0 & 1 & 1 - \lambda \end{vmatrix}$$

$$= a_{11}C_{11} - a_{12}C_{12} + a_{13}C_{13}$$

$$= -\lambda \begin{vmatrix} -\lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} - 0 + 1 \begin{vmatrix} 1 & -\lambda \\ 0 & 1 \end{vmatrix}$$

$$= -\lambda(\lambda^2 - \lambda - -1) + (1 - 0)$$

$$= -\lambda(\lambda^2 + \lambda + 1) + 1$$

$$= \lambda^3 - \lambda^2 + \lambda - 1$$

(a)
$$\lambda^3 - \lambda^2 + \lambda - 1 = (\lambda^2 + 1)(1 - \lambda)$$
 cannot split

This matrix is not diagonalizable.

(f)

$$\det(A - \lambda I) = \begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 2 \\ 0 & 0 & 3 - \lambda \end{pmatrix}$$
$$= a_{11}C_{11} - a_{21}C_{21} + a_{31}C_{31}$$
$$= (1 - \lambda) \begin{vmatrix} 1 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} - 0 + 0$$
$$= (1 - \lambda)((1 - \lambda)(3 - \lambda) - 0)$$
$$= (1 - \lambda)(1 - \lambda)(3 - \lambda)$$

- (a) Clearly, the characteristic polynomial $(1 \lambda)(1 \lambda)(3 \lambda)$ splits
- (b) Solving for λ , we get $\lambda=1,3.$ We test for $multiplicity=n-rank(A-\lambda I)$ When $\lambda=1$

$$\begin{aligned} multiplicity &= n - rank(A - \lambda I) \\ 1 &= 3 - rank(A - 1I) \\ &= 3 - rank \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \\ &= 3 - 2 \\ 1 &= 1 \end{aligned}$$

When $\lambda = 3$

$$\begin{split} multiplicity &= n - rank(A - \lambda I) \\ 2 &= 3 - rank(A - 3I) \\ &= 3 - rank \begin{pmatrix} -2 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \\ &= 3 - 2 \\ 2 \neq 1 \end{split}$$

This matrix is not diagonalizable.

(g)

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ -1 & -1 & 1 - \lambda \end{vmatrix}$$

$$= a_{11}C_{11} - a_{12}C_{12} + a_{13}C_{13}$$

$$= (3 - \lambda) \begin{vmatrix} 4 - \lambda & 2 \\ -1 & 1 - \lambda \end{vmatrix} - 1 \begin{vmatrix} 2 & 2 \\ -1 & 1 - \lambda \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 - \lambda \\ -1 & -1 \end{vmatrix}$$

$$= (3 - \lambda)((4 - \lambda)(1 - \lambda) - 2) - (2 - 2\lambda - 2) + (-2 - (-4 + \lambda))$$

$$= (3 - \lambda)((4 - \lambda)(1 - \lambda) + 2) - (4 - 2\lambda) + (2 - \lambda)$$

$$= (3 - \lambda)((4 - \lambda)(1 - \lambda) + 2) + (-2 + \lambda)$$

$$= \lambda^3 - 8\lambda^2 + 20\lambda - 16$$

- (a) Clearly, $\lambda^3 8\lambda^2 + 20\lambda 16 = (\lambda 2)(\lambda 2)(\lambda 4)$ splits
- (b) Solving for λ , we get $\lambda=2,4$. We test for $multiplicity=n-rank(A-\lambda I)$ When $\lambda=2$

$$\begin{aligned} multiplicity &= n - rank(A - \lambda I) \\ 2 &= 3 - rank(A - 1I) \\ &= 3 - rank \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix} \\ &= 3 - 1 \\ 2 &= 2 \end{aligned}$$

When $\lambda = 4$

$$\begin{aligned} multiplicity &= n - rank(A - \lambda I) \\ 1 &= 3 - rank(A - 3I) \\ &= 3 - rank \begin{pmatrix} -1 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & -1 & -3 \end{pmatrix} \\ &= 3 - 2 \\ 1 &= 1 \end{aligned}$$

Therefore, this matrix is diagonalizable.

To find the eigenvectors, we find $(A - \lambda I)x = 0$) For $\lambda = 2$

$$0 = (A - \lambda I)x$$

$$= (A - 2I)x$$

$$= \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

For $\lambda = 4$

$$0 = (A - \lambda I)x$$

$$= (A - 4I)x$$

$$= \begin{pmatrix} -1 & 1 & 1 \\ 2 & 0 & 2 \\ -1 & -1 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix},$$

So, we have $Q = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$. To find the diagonal matrix D, recall $D = Q^{-1}AQ$

$$\begin{split} D &= Q^{-1}AQ \\ &= \frac{1}{2} \begin{pmatrix} -1 & -1 & -3 \\ 2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ -1 & 0 & -1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} -1 & -1 & -3 \\ 2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 4 \\ 0 & -2 & 8 \\ -2 & 0 & -4 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{pmatrix} \\ &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \end{split}$$

$$Q = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 2 \\ -1 & 0 & -1 \end{pmatrix}, \ D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Section 5.2 Question 3 part (a), (c)

For each of the following linear operators T on a vector space V, test T for diagonalizability, and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

(a) $V = P_3(\mathbb{R})$ and T is defined by T(f(x)) = f'(x) + f''(x).

(c)
$$V = \mathbb{R}^3$$
 and T is defined by $T \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_2 \\ -a_1 \\ 2a_3 \end{pmatrix}$

Response

(a) Let $f(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3$. Then, $f'(x) = a_2 + 2a_3 x + 3a_4 x^2$ and $f''(x) = 2a_3 + 6a_4 x$. So, $T(a_1 + a_2 x + a_3 x^2 + a_4 x^3) = a_2 + 2a_3 x + 3a_4 x^2 + 2a_3 + 6a_4 x$ $= a_2 + 2a_3 + (2a_3 + 6a_4)x + 3a_4 x^2$

Let γ be the standard basis for V. Then, we have

$$[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

To get the characteristic polynomial, we do

$$\det([T]_{\gamma} - \lambda I) = \begin{pmatrix} 0 - \lambda & 1 & 2 & 0 \\ 0 & 0 - \lambda & 2 & 6 \\ 0 & 0 & 0 - \lambda & 3 \\ 0 & 0 & 0 & 0 - \lambda \end{pmatrix}$$
$$= \begin{pmatrix} -\lambda & 1 & 2 & 0 \\ 0 & -\lambda & 2 & 6 \\ 0 & 0 & -\lambda & 3 \\ 0 & 0 & 0 & -\lambda \end{pmatrix}$$
$$= \lambda^{4}$$

- (a) Clearly, $\lambda^4 = (-\lambda)(-\lambda)(-\lambda)(-\lambda)$ splits
- (b) Solving for λ , we get that $\lambda = 0$ with multiplicity 4. We test for $multiplicity = n rank(A \lambda I)$.

$$\begin{aligned} multiplicity &= n - rank([T]_{\gamma} - 0I) \\ 4 &= 4 - rank \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ &= 4 - 3 \\ 4 \neq 1 \end{aligned}$$

This linear operator is not diagonalizable.

(c) Let γ be the standard basis for V. Then, we have

$$[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

18

To get the chraracteristic polynomial, we do

$$\det([T]_{\gamma} - \lambda I) = \begin{pmatrix} 0 - \lambda & 1 & 0 \\ -1 & 0 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{pmatrix}$$

$$= \begin{pmatrix} -\lambda & 1 & 0 \\ -1 & -\lambda & 0 \\ 0 & 0 & 2 - \lambda \end{pmatrix}$$

$$= a_{13}C_{13} - a_{23}C_{23} + a_{33}C_{33}$$

$$= 0 - 0 + (2 - \lambda) \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix}$$

$$= (2 - \lambda)(\lambda^2 - 1)$$

$$= (2 - \lambda)(\lambda^2 + 1)$$

$$= (2\lambda^2 + 2 - \lambda^3 - \lambda)$$

$$= -\lambda^3 + 2\lambda^2 - \lambda + 2$$

$$= \lambda^3 - 2\lambda^2 + \lambda - 2$$

(a) Clearly, $\lambda^3 - 2\lambda^2 + \lambda - 2$ cannot be split

This matrix is not diagonalizable

Section 5.2 Question 9 part (a)

Let T be a linear operator on a finite-dimensional vector space V, and suppose there exists an ordered basis β for V such that $[T]_{\beta}$ is an upper triangular matrix.

(a) Prove that the characteristic polynomial for T splits.

Response

Proof. The chraracteristic polynomial is defined as $f(\lambda) = \det([T]_{\beta} - \lambda I)$. Since $[T]_{\beta}$ is upper triangular, we can rewrite this as $f(\lambda) = \prod_{i=1}^{n} (([T]_{\beta})_{ii} - \lambda)$, which splits.

Let T be a linear operator on a finite-dimensional vector space V with the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ and corresponding multiplicities m_1, m_2, \ldots, m_k . Suppose that β is a basis for V such that $[T]_{\beta}$ is an upper triangular matrix. Prove that the diagonal entries of $[T]_{\beta}$ are $\lambda_1, \lambda_2, \ldots, \lambda_k$ and that each λ , occurs m_i times $(1 \leq i \leq k)$

Response

The characteristic polynomial is defined by $f(\lambda) = \det([T]_{\beta} - \lambda I)$. Since $[T]_{\beta}$ is upper triangular, we know that $\det([T]_{\beta} - \lambda I)$ is also upper triangular, so we can rewrite the characteristic polynomial as $f(\lambda) = \prod_{i=1}^{k} (([T]_{\beta})_{ii}) - \lambda I)$. This shows that $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the diagonal entries of $[T]_{\beta}$ and also that each λ_i occurs m_i times $(1 \leq i \leq k)$.

Let T be an invertible linear operator on a finite-dimensional vector space V.

- (a) Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1} (Exercise 9 of Section 5.1). Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .
- (b) Prove that if T is diagonalizable, then T^{-1} is diagonalizable.

Response

(a) Proof. Let $E_{\lambda}(T)$ be the eigenspace of T corresponding to λ . From (5.1.9), we have that for any eigenvalue of T, λ^{-1} is an eigenvalue of T^{-1} . We must prove that x is an eigenvector of T corresponding to λ , if and only if x is an eigenvector of T^{-1} corresponding to λ^{-1} .

$$T(x) = T(\lambda \lambda^{-1}x)$$

$$= T(\lambda(\lambda^{-1}x))$$

$$= T(\lambda T^{-1}(x))$$

$$= \lambda T T^{-1}(x)$$

$$= \lambda x$$

$$\lambda^{-1}x = T^{-1}(x)$$

$$\begin{split} T^{-1}(x) &= T^{-1}(\lambda^{-1}\lambda x) \\ &= T^{-1}(\lambda^{-1}(\lambda x)) \\ &= T^{-1}(\lambda^{-1}T(x)) \\ &= \lambda^{-1}T^{-1}(T(x)) \end{split} \qquad \lambda x = T(x) \\ T^{-1}(x) &= \lambda^{-1}x \end{split}$$

So, x is an eigenvector of T corresponding to λ if and only if x is also an eigenvector of T corresponding to λ^{-1} . So, we can write that $E_{\lambda}(T) = E_{\lambda}^{-1}(T^{-1})$. Therefore, the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .

(b) *Proof.* Given that T is diagonalizable, we know that it has n linearly independent eigenvectors. From (a), we have that any eigenvector of T is also an eigenvector of T^{-1} . So, T^{-1} also has n linearly independent eigenvectors. Thus, T^{-1} is also diagonalizable.