Data processing algorithms

IC cities

Official production flow

Running a city method

After setting up the IC environment

source work_in_python_version 3.7

a city can be run as:

\$ city city_name config_file.conf

irene 10

Input (from the decoder or MC-detsim) – RWF (raw waveforms): a time-ordered signal amplitude for each sensor in ADC.

Output – pmaps (Peak maps): a collection of all the peaks and the slices of waveforms belonging to them.

In RWF files the waveforms are in **RD/sipmrwf** and **RD/pmtrwf**.

Exercise: Using h5ls on rwf_example.h5 find the number of events and sensors inside the file. (h5ls -d will print the content of the table)

1. PMT pedestal removed and subject to baseline restoration (per pmt waveform)

Pedestal - the average of the amplitude of the entire waveform; Deconvolution using BLR algorithm (converts bipolar signal to monopolar)

2. correct wf - ADC to pes (divide each waveform by the factor read from database)

3. zero suppressed – find indices of bins where the **sum** of WFS is above given threshold. Two threshold (for S1 candidate use MAU suppressed corrected WF, for S2 candidates use corrected WF)

4. correct and threshold sipm waveforms – subtract baseline, convert to pes, set to 0 values below given threshold

Baseline is a mode of a waveform (the most frequent value)

Threshold is either 'common' (1 pes for all sipms), or 'individual' (percentage exclusion from calibration runs)

Note: sipm rwf are zero suppressed in FPGA

5. pmap builder: select s1/s2 peaks

S1 peak:

- split in disjoint signals (peaks) (using indices from step 3, allowing small gaps)
- search for peaks that satisfy time and length constraint

Value of ccwf goes below the threshold

5. pmap builder: select s1/s2 peaks

S2 peak:

- split in disjoint signals (peaks)
- search for peaks that satisfy time and length constraint

- pmt signal is rebinned to match sipm binning (from 25 ns to 1 μs)
- include only sipms that have integrated (in time) signal larger than a given threshold (5pes)

pmaps

In **PMAPS** tables are:

- **S1** contains event, peak id, time, bin width, energy = summed wf over pmt for S1 peaks (per time bin) (summed over PMT waveform)
 - **S1pmt** contains event, peak id, pmt id , pmt signal (per pmt, per time bin)(waveforms)
- **S2** contains event, peak id, time, bin width, energy = summed wf over pmt for S2 peaks(per time bin) (summed over pmt waveform)
 - **S2pmt** contains event, peak id, pmt id, pmt signal (per pmt, per time bin)(waveforms)
 - S2Si contains event, peak id, sipm id, sipm signal (per sipm, per time bin)(waveforms)

Exercise: run irene on rwf.h5 file using provided configuration.

Examine output file and find above-mentioned tables. What is the bin width for S1 and S2 peaks? How many S1 peaks were found in event 1046556? And S2? (Use head, tail or grep piping)

dorothea IO

Input (from irene) – pmaps

 Output – kdst (krypton dst): per peak relevant information (time, number of peaks, width, height, position...)

dorothea algorithm

1. select the peaks that satisfy a given set of conditions on peak width, height and energy. The energy is calculated as a sum of bins that have amplitude greater than some en_th (usually 0pes for S2 and 0.5 pes for S1)

Events that contain no peaks with the given condition are filtered out

Note: energy (E) refers to signal detected on PMTs and charge (Q) to signal detected on SiPMs (que está mal pero bueno)

dorothea algorithm

2. build pointlike events

per S1/S2 combination of peaks that passed selection calculate:

- for **S1**: width (in ns), height, energy (above threshold)
- for **S2**: width (in μs), height, energy (above threshold), charge
- Extract xy position of sipms from the database. Find a 2D barycenter of the whole S2 peak (i.e. integrated over peak duration)
- Find Z=1 * (S2_time_at_max_energy-S1_time_at_max_energy) (in mm)
 (Note that drift velocity is just assumed to be 1 mm/µs)

Note: peak_id is resetted and does not correspond to pmaps peak_id!

kdst

DST/Events table contains:

event, time, s1_peak, s2_peak, nS1, nS2, S1w, S1h, S1e, S1t, S2w, S2h, S2e, S2q, S2t, Nsipm, DT, Z, Zrms, X, Y, R, Phi, Xrms, Yrms

Exercise: run dorothea on the previously produced pmaps using provided config file. Is there any event with more than one S1 and one S2?

penthesilea IO

Input (from irene) – pmaps

 Output – hdst (hit dst): per energy deposition (hit) relevant information (position, charge, energy...)

penthesilea algorithm

1. select peaks that satisfy a given set of conditions on peak width, height and energy. The energy is calculated as a sum of bins that have amplitude greater than some en_th (usually 0pes for S2 and 0.5 pes for S1)

Keep events that have one and only 1 S1 (standard configuration but not constrained by the code)

penthesilea algorithm

2. build hits

- rebin S2 waveform (usually to bins of 2 μs width)
- take S1_time_at_max_energy of first S1 peak as beginning time
- per S2 peak:
 - Extract xy the position of the SiPMs from the database for all SiPMs in the peak per time bin:
 - runs reco algorithm (finds X, Y, Q position of a hit)
 - distribute the energy (E) of the bin to hits found
 - If no hit was found, the X, Y position set to 0, Q to NN (-99999)

The result is a collection of X, Y, Z, E, Q ... variables per time bin

penthesilea algorithm

3. create kdst like table

The same procedure as in dorothea.

reco algorithm (corona)

- Ignores sipms with charge below Qth;
- Select hottest sipm with charge above Qlm;
- 3) Finds first barycenter inside Im_radius around the hottest sipm;
- 4) Finds second barycenter in new_lm_radius around first barycenter
- 5) If there are at least msipm sensors the hit is accepted

To set 1 hit per sipm reco paradigm (used for hdst):

```
Qthr = 5 * pes
Qlm = 5 * pes
Im_radius = 0 * mm
new_Im_radius = 0 * mm
msipm = 1
```

To set global barycenter (used for kdst):

```
Qthr = 1 * pes
Qlm = 0 * pes
lm_radius = -1 * mm
new_lm_radius = -1 * mm
msipm = 1
```

1 hit per sipm means that the XY position of the hit will always correspond to an XY position of the SiPMs

hdst

RECO/Events table:

event, time, npeak, Xpeak, Ypeak, nsipm, X, Y, Xrms, Yrms, Z, Q, E, (Qc, Ec, track_id, Ep set to -1)

Exercise:

run penthesilea on pmaps.h5 using provided config file.
What is the charge of the first hit of the event 1046556? Why? What's its energy?

map production

- 1) filter dst to select good kr events
- 2) bin detector in xy (ie you get n_bins x n_bins arrays of E, Z)
- 3) per bin fit E, Z to

$$E_{\rm measured} = E_{\rm true} \times E0 \times {\rm e}^{-Z_{\rm measured/LT}}$$

4) Store 2d maps of E0 and LT

esmeralda 10

Input (from penthesilea) – hdst (from map_production) - maps

Output – cdst (corrected hit dst): the same as hdst with additional energy correction

track information: results of running paolina analysis

esmeralda algorithm

1. correct hits:

- Apply a new charge threshold to the hits. The energy of the hits that don't pass this threshold is redistributed among the hits that have the same time (Z)
 - get rid of failed (NN) hits: energy of those hits is redistributed to the (in Z) closest hits
 - using correction map calculate corrected energy (the units are keV at Kr scale)

$$E_{\text{corrected}} = E_{\text{measured}}/E0 \times e^{Z_{\text{measured/LT}}}$$

This function is run two times:

- 1. for lower threshold used in deconvolution and DNN analysis (5-10pes)
- 2. for higher threshold used for everything else (30-35pes)

esmeralda algorithm

- 2. run paolina functions (finding voxels and tracks for higher thresholded hits):
 - voxelize event
 - find tracks
 - drop end_point voxel if its energy is smaller than a given threshold, redistribute its energy
 - find blobs (energy deposition at the end of the tracks)

cdst

RECO/highTh and RECO/lowTh

The output of correction procedure, has the same structure as the penthesilea output. (Qc, Ec, track_id, Ep have meaningful values)

Tracking/Tracks is per track information containing:

```
event, trackID, energy, length, numb_of_voxels, numb_of_hits, numb_of_tracks, x_min, y_min, z_min, r_min, x_max, y_max, z_max, r_max, x_ave, y_ave, z_ave, r_ave, extreme1_x, extreme1_y, extreme1_z, extreme2_x, extreme2_y, extreme2_z, blob1_x, blob1_y, blob1_z, blob2_x, blob2_y, blob2_z, eblob1, eblob2, ovlp_blob_energy (energy of the hits belonging to both end point blobs), vox_size_x, vox_size_y, vox_size_z
```

Summary/Events table containing per event information:

```
event, evt_energy, evt_charge, evt_ntrks, evt_nhits, evt_x_avg, evt_y_avg, evt_z_avg, evt_r_avg, evt_x_min, evt_y_min, evt_z_min, evt_r_min, evt_x_max, evt_y_max, evt_z_max, evt_r_max, evt_out_of_map (the XYZ position of event is outside detector limits?; if positive energy and average positions will be nans)
```

DST/Events – copied table from penthesilea output

cdst

Exercise: run esmeralda. What is the energy of the first track of event 1046556,? Which energy has the highest energy? Which table has more entries: lowTh or highTh? Why?

Questions?