Lineare DGL n-te Ordnous mit leondestes les ettirierten

$$Ly := y^{(n)} + \alpha_{n-1} y^{(n-1)} + ... + \alpha_n y' + \alpha_0 y$$

 $(Ly)(x) = b(x)$

homogene Lösak y''(x) - y'(x) = 0

7. Bille char. Polynom indem y durch ? "ersetzt" wird

$$\Rightarrow p(\lambda) = \lambda^3 - \lambda = \lambda(\lambda^2 - 1) = \lambda(\lambda - 1)(\lambda + 1)$$

2. Bestimme Nollskler und ordne diese wieder nach R, CIR (ohne leonjusieke Komplexe Wete)

$$M := \{\lambda_1, \ldots, \lambda_m, \lambda_{m+1}, \ldots, \lambda_{m+s}\}$$

Die Nollskillen von p(2) sind: $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = -1$

3. Bilde Fundamatalsystem aus M

Fall 7: n; ER. Sci le, die zuselärige als. Vielkehleit

ne ?; x e ?; x, x k; -1 e ?, x sind linear unobh. Lösuyan.

Fell 2: 7; = x + iB EC \ R, d.L. &, BER, B = 0

=) $e^{\alpha x} \cdot \cos(\beta x)$, $x e^{\alpha x} \cdot \cos(\beta x)$, ..., $x^{(k_j - \eta)} e^{\alpha x} \cdot \cos(\beta x)$

 e^{x} sin(βx), $x \cdot e^{x}$ sin(βx), ..., $x^{(k;-1)}e^{x}$ sin(βx)

sind 2 k; linear unch. Lösuger.

För alle D; EM erhält man ein Fundamentalsystem

=)
$$y_1(x) := e^{0x} = 1$$
, $y_2(x) := e^{x}$, $y_3(x) := e^{-x}$

bilden en Funderentalsystem der homogenen Gleichurg.

=)
$$\gamma_h(x) = \alpha \cdot 1 + b \cdot e^x + c \cdot e^{-x}$$
 (a,b, c $\in \mathbb{R}$)

dildet die algemeire Lösurg de homogenen bleichurg

spezielle inhomogene Lösung $y_h(x) = \alpha + be^x + ce^{-x} \quad (a,b,c \in \mathbb{R})$ $b(x) = x^2 + 2x + 3$

Bsp.: $y'''(x) - y'(x) = 3 + 2x + x^2$

1. Wähle einen Ausetz:

Wähle $y, \delta \in \mathbb{R}$ und q ein Polynon von Gred m so, class entredo: $b(x) = q(x) \cdot e^{y \cdot x} \cdot cos(\delta x)$ ode $b(x) = q(x) \cdot e^{y \cdot x} \cdot sin(\delta x)$

Notre deux de lessets his yp mit p char. Polyn. von (Ly)(x) = 0

Fell 1:
$$\rho(z + i\delta) \neq 0$$

Withle Ausalz $\gamma_{\rho}(x) := (\hat{q}(x) \cdot \cos(\delta x) + \hat{q}(x) \cdot \sin(\delta x)) e^{z \cdot x}$

Fell 2! $y + i \delta$ ist eine x - facte NST von β Withte Ansatz $y_{\beta}(x) := x^{\gamma} (\hat{q}_{i}(x) \cdot cos(\delta x) + \hat{q}_{i}(x) \cdot sin(\delta x)) e^{\delta x}$

(gr, gr sind undstiniste Polyhou vom Grad m)

20 ist einter NST von p $\sim Ansetz:$ $y_{p}(x) = x \left(A_{o} + A_{1}x + A_{2}x^{2}\right) = A_{o}x + A_{1}x^{2} + A_{2}x^{3}$

2. Bilde m+1 Ableitungen

$$\gamma_{P}^{(k)} = A_0 + 2A_1x + 3A_2x^2$$
 $\gamma_{P}^{(k)} = 2A_1 + 6A_2x$
 $\gamma_{P}^{(k)} = 6A_2$

3. Natze Angele und setze mit blx) skich

$$\sim 6A_2 - A_0 - 2A_{1x} - 3A_{2}x^2 = 3 + 2x + x^2$$

4. Die allgemein Lösung (Esst sich mittels $y(x) = y_h(x) + y_p(x)$ bilden $y(x) = y_h(x) + y_p(x) = \alpha + be^x + ce^{-x} - 5x - x^2 - \frac{1}{3}x^3$