Rol	ne : Dipali Chavan I No: I4139
#impo impor from impor	rting necessary libraries t tensorflow as tf tensorflow import keras t pandas as pd t numpy as np
<pre>impor impor impor %matp</pre> [2]: #impo	t numpy as np t matplotlib.pyplot as plt t random lotlib inline rt dataset and split into train and test data
mnist (x_tr	<pre>= tf.keras.datasets.mnist ain, y_train), (x_test, y_test) = mnist.load_data() atshow(x_train[1])</pre>
0 0 -	otlib.image.AxesImage at 0x216d2a9c9d0> 5 10 15 20 25
10 - 15 - 20 - 25 -	
[4]: plt.i	mshow(-x_train[0], cmap="gray") otlib.image.AxesImage at 0x216d321cac0>
0 - 5 - 10 -	
15 - 20 - 25 -	
x_tes	5 10 15 20 25 in = x_train / 255 t = x_test / 255
keras keras keras])	<pre>= keras.Sequential([.layers.Flatten(input_shape=(28, 28)), .layers.Dense(128, activation="relu"), .layers.Dense(10, activation="softmax") .summary()</pre>
Layer ===== flatt	"sequential" (type)
dense ===== Total Traina	(Dense) (None, 128) 100480 _1 (Dense) (None, 10) 1290 ====================================
loss=	.compile(optimizer="sgd", "sparse_categorical_crossentropy", cs=['accuracy'])
y_tra Epoch 1875/1 Epoch	875 [====================================
Epoch 1875/1 Epoch 1875/1 Epoch 1875/1 Epoch	875 [=======================] - 3s 2ms/step - loss: 0.2860 - accuracy: 0.9197 - val_loss: 0.2582 - val_accuracy: 0.9290 4/10 875 [===================] - 3s 2ms/step - loss: 0.2551 - accuracy: 0.9286 - val_loss: 0.2334 - val_accuracy: 0.9348 5/10 875 [==================] - 3s 2ms/step - loss: 0.2325 - accuracy: 0.9351 - val_loss: 0.2150 - val_accuracy: 0.9390 6/10
Epoch 1875/1 Epoch 1875/1 Epoch	875 [====================================
1875/1 [9]: test_ print print	875 [====================================
Loss=0 Accura 10]: n=ran	cy=0.954 dom.randint(0,9999) nshow(x_test[n])
0 - 5 - 10 -	
15 - 20 - 25 -	
11]: x_tra	[[[0., 0., 0.,, 0., 0., 0.],
	[0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],, [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.]], [0., 0., 0.,, 0., 0.]],
	[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.]], [[0., 0., 0.,, 0., 0.]],
	[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.]],
	[[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],
	[0., 0., 0.,, 0., 0., 0.]], [[0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],, [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],
	[0., 0., 0.,, 0., 0., 0.]], [[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.],, [0., 0., 0.,, 0., 0., 0.],
12]: x_tes 12]: array([[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.]]]) t [[[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.],
	[0., 0., 0.,, 0., 0., 0.],, [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.]], [[0., 0., 0.,, 0., 0., 0.]],
	[0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],, [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.]], [0., 0., 0.,, 0., 0.]],
	[0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],, [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.]],,
	[[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.],
	[[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.], , [0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0., 0.],
	[0., 0., 0.,, 0., 0., 0.]], [[0., 0., 0.,, 0., 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.], [0., 0., 0.,, 0., 0.],
plt.i	[0., 0., 0., 0., 0., 0.]]]) cted_value=model.predict(x_test) mshow(x_test[n])
	<pre>(predicted_value[n]) 3 [=============] - 0s 1ms/step</pre>
10 - 15 - 20 -	
1.076	5 10 15 20 25 6590e-06 9.9045217e-01 9.6445804e-04 1.1881288e-03 5.5083026e-05 7796e-03 5.1782565e-04 5.0224096e-04 4.8863539e-03 3.5130000e-04]
histo # dic plt.p plt.p plt.t	tory.history() ry.history.keys() t_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) lot(history.history['accuracy']) lot(history.history['val_accuracy']) itle('model accuracy') label('accuracy')
plt.x	label('epoch') egend(['Train', 'Validation'], loc='upper left') now() model accuracy Train
0.94 - 0.92 - 0.90 - 0.88 -	- Validation
0.86 - 0.84 -	0 2 4 6 8 epoch
histo # dic plt.p	tory.history() ry.history.keys() t_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) lot(history.history['loss'])
plt.p plt.t plt.y plt.x	lot(history.history['val_loss']) itle('model loss') label('loss') label('epoch') egend(['Train', 'Validation'], loc='upper left')
0.6 -	model loss Train Validation
© 0.4 - 0.3 - 0.2 -	
n []:	0 2 4 6 8 epoch

	Name:Dipali Chavan Roll No: I4139
In [1]:	<pre>import numpy as np import pandas as pd import random</pre>
	<pre>import tensorflow as tf import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score</pre>
	<pre>from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Conv2D, Dense, MaxPooling2D from tensorflow.keras.optimizers import SGD from tensorflow.keras.utils import to_categorical from tensorflow.keras.datasets import mnist</pre>
In [2]:	<pre>(X_train, y_train), (X_test, y_test) = mnist.load_data()</pre>
In [3]:	<pre>print(X_train.shape)</pre>
In [4]:	(60000, 28, 28) X_train[0].min(), X_train[0].max()
Out[4]: In [5]:	<pre>(0, 255) X_train = (X_train - 0.0) / (255.0 - 0.0) X_test = (X_test - 0.0) / (255.0 - 0.0)</pre>
Out[5]:	<pre>X_train[0].min(), X_train[0].max()</pre> (0.0, 1.0)
In [6]:	<pre>def plot_digit(image, digit, plt, i): plt.subplot(4, 5, i + 1) plt.imshow(image, cmap=plt.get_cmap('gray'))</pre>
	<pre>plt.title(f"Digit: {digit}") plt.xticks([]) plt.yticks([]) plt.figure(figsize=(16, 10)) for i in range(20):</pre>
	plot_digit(X_train[i], y_train[i], plt, i) plt.show() Digit: 5 Digit: 0 Digit: 4 Digit: 1 Digit: 9
	Digit: 2 Digit: 1 Digit: 3 Digit: 1 Digit: 4
	2 1 2
	Digit: 3 Digit: 5 Digit: 3 Digit: 6 Digit: 1
	3 3 6
	Digit: 7 Digit: 2 Digit: 8 Digit: 6 Digit: 9
	7 2 8 6 9
In [7]:	<pre>X_train = X_train.reshape((X_train.shape + (1,)))</pre>
In [8]:	<pre>X_test = X_test.reshape((X_test.shape + (1,)))</pre> <pre>y_train[0:20]</pre>
	array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9], dtype=uint8)
In [9]:	<pre>model = Sequential([Conv2D(32, (3, 3), activation="relu", input_shape=(28, 28, 1)), MaxPooling2D((2, 2)), Flatten(), Dense(100, activation="relu"),</pre>
In [10]:	<pre>Dense(10, activation="softmax")])</pre>
In [10]:	<pre>optimizer = SGD(learning_rate=0.01, momentum=0.9) model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"]) model.summary()</pre>
	Model: "sequential" Layer (type) Output Shape Param # ===================================
	conv2d (Conv2D) (None, 26, 26, 32) 320 max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0) flotten (Flotten) (None, 5400) 0
	flatten (Flatten) (None, 5408) 0 dense (Dense) (None, 100) 540900 dense_1 (Dense) (None, 10) 1010
	Total params: 542,230 Trainable params: 542,230 Non-trainable params: 0
In [11]:	<pre>model.fit(X_train, y_train, epochs=10, batch_size=32)</pre> Epoch 1/10
	1875/1875 [====================================
	Epoch 4/10 1875/1875 [====================================
	1875/1875 [====================================
	Epoch 7/10 1875/1875 [====================================
	Epoch 7/10 1875/1875 [====================================
Out[11]: In [12]:	Epoch 7/10 1875/1875 [====================================
Out[11]: In [12]:	Epoch 7/10 1875/1875 [====================================
Out[11]: In [12]:	Epoch 7/10 1857/1875 [====================================
Out[11]: In [12]:	18 10ms/step - loss: 0.0145 - accuracy: 0.9955
Out[11]: In [12]:	Floor 1/30 185 18ms/step 10ss 8.0145 accuracy; 8.9995 1875/1875 185 18ms/step 10ss 8.0107 accuracy; 8.9999 1875/1875 185 185 18ms/step 10ss 8.0802 accuracy; 8.9999 1875/1875 185
Out[11]: In [12]:	Epoch 7/36
Out[11]: In [12]:	Floor 1/30 185 18ms/step 10ss 8.0145 accuracy; 8.9995 1875/1875 185 18ms/step 10ss 8.0107 accuracy; 8.9999 1875/1875 185 185 18ms/step 10ss 8.0802 accuracy; 8.9999 1875/1875 185
Out[11]: In [12]:	18s 19ms/step 10ss
Out[11]: In [12]:	18s 10ms/step 10ms 18ms 18
Out[11]: In [12]:	18 18 18 18 18 18 18 18
Out[11]: In [12]:	18 18ma/scep 18s 18ma/scep 10ss: 0.0145 - accuracy: 0.9985
Out[11]: In [12]:	1
Out[11]: In [12]:	1.00
Out[11]: In [12]:	Sect 7/3
Out[11]: In [12]:	Becommon Lib
Out[11]: In [12]: Out[13]:	State 1.0 1.
Out[11]: In [12]: Out[13]:	The part
Out[11]: In [12]: Out[13]:	Table Tabl
Out[13]: In [13]: Out[13]: In [14]:	Table 1708
Out[11]: In [12]: Out[13]: In [14]:	The first The
Out[11]: In [12]: Out[13]: In [14]:	18. (2. man) 18. (
Out [11]: In [12]: In [13]: Out [13]: In [14]:	1.50 1.50

In []	Name:Dipali Chavan Roll No:I4139
In [1]:	<pre>import pandas as pd import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split</pre>
	<pre>from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix, recall_score, accuracy_score, precision_score RANDOM_SEED = 2021 TEST_PCT = 0.3 LABELS = ["Normal", "Fraud"]</pre>
In [2]: In [3]:	<pre>#check for any null values print("Any nulls in the dataset", dataset.isnull().values.any()) print('') print("No. of unique labels", len(dataset['Class'].unique()))</pre>
	<pre>print("Label values", dataset.Class.unique()) #0 is for normal credit card transcation #1 is for fraudulent credit card transcation print('') print("Break down of Normal and Fraud Transcations") print(pd.value_counts(dataset['Class'], sort=True))</pre>
	Any nulls in the dataset False No. of unique labels 2 Label values [0 1] Break down of Normal and Fraud Transcations 0 284315
In [4]:	<pre>1 492 Name: Class, dtype: int64 #visualizing the imbalanced dataset count_classes = pd.value_counts(dataset['Class'], sort=True) count_classes.plot(kind='bar', rot=0) plt.xticks(range(len(dataset['Class'].unique())), dataset.Class.unique())</pre>
Out[4]:	plt.title("Frequency by observation number") plt.xlabel("Class") plt.ylabel("Number of Observations") Text(0, 0.5, 'Number of Observations') Frequency by observation number
	250000 -
	200000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 15000
	50000 - 50000 -
In [4]:	#Save the normal and fradulent transcations in seperate dataframe normal_dataset = dataset[dataset.Class == 0] fraud_dataset = dataset[dataset.Class == 1]
	<pre>#Visualize transcation amounts for normal and fraudulent transcations bins = np.linspace(200, 2500, 100) plt.hist(normal_dataset.Amount, bins=bins, alpha=1, density=True, label='Normal') plt.hist(fraud_dataset.Amount, bins=bins, alpha=0.5, density=True, label='Fraud') plt.legend(loc='upper right') plt.title("Transcation Amount vs Percentage of Transcations")</pre>
	plt.xlabel("Transcation Amount (USD)") plt.ylabel("Percentage of Transcations") plt.show() Transcation Amount vs Percentage of Transcations 0.005 Normal Fraud
	0.0004 - 0.0003 - 0.0002 -
	0.000 1000 1500 2000 2500 Transcation Amount (USD)
In [5]: Out[5]:	Time V1 V2 V3 V4 V5 V6 V7 V8 V9 V2 V2 V26 V27 V28 Amount Class 0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62 0 1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.078803 0.085102 -0.255425 -0.0225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2.69 0
	2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0 1.791461 0.247676 1.34704 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0 1.791461 0.904672 -0.185226 1.791461 0.247676 1.791461 0.247676 1.387024 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0 1.791461 0.904672 -0.185226 1.791461 0.904672
	284803 172787.0 -0.732789 -0.055080 2.035030 -0.738589 0.868229 1.058415 0.024330 0.294869 0.584800 0.214205 0.924384 0.012463 -1.016226 -0.606624 -0.395255 0.068472 -0.053527 24.79 0 284804 172788.0 1.919565 -0.301254 -3.249640 -0.557828 2.630515 3.031260 -0.296827 0.708417 0.432454 0.232045 0.578229 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561 67.88 0 284805 172788.0 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708 -0.686180 0.679145 0.392087 0.265245 0.800049 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533 10.00 0 284806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546 -0.649617 1.577006 -0.414650 0.486180 0.261057 0.643078 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649 217.00 0
In [6]:	<pre>284807 rows × 31 columns sc = StandardScaler() dataset['Time'] = sc.fit_transform(dataset['Time'].values.reshape(-1,1)) dataset['Amount'] = sc.fit_transform(dataset['Amount'].values.reshape(-1,1))</pre>
In [7]:	<pre>raw_data = dataset.values #The last element contains if the transcation is normal which is represented by 0 and if fraud then 1 labels = raw_data[:,-1] #The other data points are the electrocadriogram data data = raw_data[:,0:-1]</pre>
In [8]:	<pre>train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size = 0.2, random_state = 2021) min_val = tf.reduce_min(train_data) max_val = tf.reduce_max(train_data) train_data = (train_data - min_val) / (max_val - min_val)</pre>
In [9]:	<pre>test_data = (test_data - min_val) / (max_val - min_val) train_data = tf.cast(train_data, tf.float32) test_data = tf.cast(test_data, tf.float32) train_labels = train_labels.astype(bool) test_labels = test_labels.astype(bool)</pre>
	<pre>#Creating normal and fraud datasets normal_train_data = train_data[~train_labels] normal_test_data = test_data[rest_labels] fraud_train_data = train_data[train_labels] fraud_test_data = test_data[test_labels]</pre>
	print("No. of records in Fraud Train Data=",len(fraud_train_data)) print("No. of records in Normal Train Data=",len(normal_train_data)) print("No. of records in Fraud Test Data=",len(fraud_test_data)) print("No. of records in Normal Test Data=",len(normal_test_data)) No. of records in Fraud Train Data= 389 No. of records in Normal Train Data= 227456 No. of records in Fraud Test Data= 103
In [10]:	No. of records in Normal Test Data= 103 No. of records in Normal Test Data= 56859 nb_epoch = 50 batch_size = 64 input_dim = normal_train_data.shape[1] #num of columns, 30 encoding_dim = 14
In [11]:	hidden_dim1 = int(encoding_dim / 2) hidden_dim2 = 4 learning_rate = 1e-7 #input layer input_layer = tf.keras.layers.Input(shape=(input_dim,))
	<pre>#Encoder encoder = tf.keras.layers.Dense(encoding_dim, activation="tanh", activity_regularizer = tf.keras.regularizers.12(learning_rate))(input_layer) encoder = tf.keras.layers.Dropout(0.2)(encoder) encoder = tf.keras.layers.Dense(hidden_dim1, activation='relu')(encoder) encoder = tf.keras.layers.Dense(hidden_dim2, activation=tf.nn.leaky_relu)(encoder) #Decoder</pre>
	<pre>decoder = tf.keras.layers.Dense(hidden_dim1,activation='relu')(encoder) decoder = tf.keras.layers.Dropout(0.2)(decoder) decoder = tf.keras.layers.Dense(encoding_dim,activation='relu')(decoder) decoder = tf.keras.layers.Dense(input_dim,activation='tanh')(decoder) #Autoencoder autoencoder = tf.keras.Model(inputs = input_layer,outputs = decoder)</pre>
	autoencoder.summary() Model: "model" Layer (type) Output Shape Param # ====================================
	dense (Dense) (None, 14) 434 dropout (Dropout) (None, 14) 0 dense_1 (Dense) (None, 7) 105 dense_2 (Dense) (None, 4) 32 dense_3 (Dense) (None, 7) 35
	dropout_1 (Dropout) (None, 7) 0 dense_4 (Dense) (None, 14) 112 dense_5 (Dense) (None, 30) 450 ===================================
In [12]:	Total params: 1,168 Trainable params: 1,168 Non-trainable params: 0 cp = tf.keras.callbacks.ModelCheckpoint(filepath="autoencoder_fraud.h5", mode='min', monitor='val_loss', verbose=2, save_best_only=True) #Define our early stopping
	<pre>early_stop = tf.keras.callbacks.EarlyStopping(</pre>
In [13]: In [14]:	<pre>autoencoder.compile(metrics=['accuracy'],loss= 'mean_squared_error',optimizer='adam') history = autoencoder.fit(normal_train_data,normal_train_data,epochs = nb_epoch,</pre>
	<pre>verbose=1,</pre>
	Epoch 2/50 3545/3554 [===================================
	3527/3554 [===================================
	3539/3554 [===================================
	3529/3554 [===================================
	Epoch 10: val_loss improved from 0.00002 to 0.00002, saving model to autoencoder_fraud.h5 3554/3554 [==============] - 6s 2ms/step - loss: 1.6682e-05 - accuracy: 0.2510 - val_loss: 1.6469e-05 - val_accuracy: 0.3492 Epoch 11/50 3526/3554 [=====================] - ETA: 0s - loss: 1.6569e-05 - accuracy: 0.2484 Epoch 11: val_loss improved from 0.00002 to 0.00002, saving model to autoencoder_fraud.h5 Restoring model weights from the end of the best epoch: 1. 3554/3554 [================] - 7s 2ms/step - loss: 1.6561e-05 - accuracy: 0.2484 - val_loss: 1.6237e-05 - val_accuracy: 0.2865 Epoch 11: early stopping
In [15]:	<pre>plt.plot(history['loss'],linewidth = 2,label = 'Train') plt.plot(history['val_loss'],linewidth = 2,label = 'Test') plt.legend(loc='upper right') plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch')</pre>
	#plt.ylim(ymin=0.70, ymax=1) plt.show() Model Loss Tain Test
	0.0025 - 0.0020 - 9 0.0015 - 0.0010 -
	0.0005 0.0000 0 2 4 6 8 10 Epoch
In [16]:	<pre>test_x_predictions = autoencoder.predict(test_data) mse = np.mean(np.power(test_data - test_x_predictions, 2),axis = 1) error_df = pd.DataFrame({'Reconstruction_error':mse,</pre>
In [17]:	<pre>threshold_fixed = 50 groups = error_df.groupby('True_class') fig,ax = plt.subplots() for name,group in groups:</pre>
	ax.hlines(threshold_fixed,ax.get_xlim()[0],ax.get_xlim()[1],colors="r",zorder=100,label="Threshold") ax.legend() plt.title("Reconstructions error for normal and fraud data") plt.ylabel("Reconstruction error") plt.xlabel("Data point index") plt.show() Reconstructions error for normal and fraud data
	50 - 40 - 10 -
	20 -
In [19]:	<pre>threshold_fixed = 52 pred_y = [1 if e > threshold_fixed else 0</pre>
	<pre>conf_matrix = confusion_matrix(error_df.True_class,pred_y) plt.figure(figsize = (4,4)) sns.heatmap(conf_matrix,xticklabels = LABELS,yticklabels = LABELS,annot = True,fmt="d") plt.title("Confusion matrix") plt.ylabel("True class") plt.xlabel("Predicted class") plt.show()</pre>
	<pre>#Print Accuracy, Precision and Recall print("Accuracy :", accuracy_score(error_df['True_class'], error_df['pred'])) print("Recall :", recall_score(error_df['True_class'], error_df['pred'])) print("Precision :", precision_score(error_df['True_class'], error_df['pred']))</pre> <pre>Confusion matrix</pre>
	- 50000 - 40000
	- 30000 - 20000 - 103 0
	Normal Fraud Predicted class
	Accuracy: 0.9981917769741231 Recall: 0.0 Precision: 0.0 C:\Users\Manish\.conda\envs\tensorflow\lib\site-packages\sklearn\metrics_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behaviorwarn_prf(average, modifier, msg_start, len(result))

```
In [ ]:
              Name:Dipali Chavan
              Roll No: 14139
  In [1]:
            import matplotlib.pyplot as plt
            import seaborn as sns
            import matplotlib as mpl
            import matplotlib.pylab as pylab
            import numpy as np
            %matplotlib inline
  In [2]:
            #Data Prepration
            import re
  In [3]:
            sentences = """We are about to study the idea of a computational process.
            Computational processes are abstract beings that inhabit computers.
            As they evolve, processes manipulate other abstract things called data.
            The evolution of a process is directed by a pattern of rules
            called a program. People create programs to direct processes. In effect,
            we conjure the spirits of the computer with our spells."""
          Clean Data
  In [4]:
            # remove special characters
            sentences = re.sub('[^A-Za-z0-9]+', ' ', sentences)
            # remove 1 letter words
            sentences = re.sub(r'(?:^|)\w(?:$|)', '', sentences).strip()
            # lower all characters
            sentences = sentences.lower()
          Vocabulary
  In [5]:
            words = sentences.split()
            vocab = set(words)
  In [6]:
            vocab_size = len(vocab)
            embed_dim = 10
            context_size = 2
          Implementation
  In [7]:
            word_to_ix = {word: i for i, word in enumerate(vocab)}
            ix_to_word = {i: word for i, word in enumerate(vocab)}
          Data bags
  In [8]:
            # data - [(context), target]
            data = []
            for i in range(2, len(words) - 2):
Loading [MathJax]/extensions/Safe.js [words[i - 2], words[i - 1], words[i + 1], words[i + 2]]
```

```
target = words[i]
               data.append((context, target))
          print(data[:5])
          [(['we', 'are', 'to', 'study'], 'about'), (['are', 'about', 'study', 'the'], 'to'), (['abo
         ut', 'to', 'the', 'idea'], 'study'), (['to', 'study', 'idea', 'of'], 'the'), (['study', 'the', 'of', 'computational'], 'idea')]
         Embeddings
In [9]:
          embeddings = np.random.random_sample((vocab_size, embed_dim))
         Linear Model
In [10]:
          def linear(m, theta):
               w = theta
               return m.dot(w)
         Log softmax + NLLloss = Cross Entropy
In [11]:
          def log_softmax(x):
               e_x = np.exp(x - np.max(x))
               return np.log(e_x / e_x.sum())
In [12]:
          def NLLLoss(logs, targets):
               out = logs[range(len(targets)), targets]
               return -out.sum()/len(out)
In [13]:
          def log_softmax_crossentropy_with_logits(logits, target):
               out = np.zeros_like(logits)
               out[np.arange(len(logits)), target] = 1
               softmax = np.exp(logits) / np.exp(logits).sum(axis=-1, keepdims=True)
               return (- out + softmax) / logits.shape[0]
         Forward function
In [14]:
          def forward(context_idxs, theta):
               m = embeddings[context_idxs].reshape(1, -1)
               n = linear(m, theta)
               o = log_softmax(n)
               return m, n, o
         Backward function
In [15]:
          def backward(preds, theta, target_idxs):
               m, n, o = preds
               dlog = log_softmax_crossentropy_with_logits(n, target_idxs)
               dw = m.T.dot(dlog)
               return dw
```

```
Optimize function
```

theta = np.random.uniform(-1, 1, (2 * context_size * embed_dim, vocab_size))

```
In [18]:
    epoch_losses = {}
    for epoch in range(80):
        losses = []
        for context, target in data:
             context_idxs = np.array([word_to_ix[w] for w in context])
             preds = forward(context_idxs, theta)
             target_idxs = np.array([word_to_ix[target]])
             loss = NLLLoss(preds[-1], target_idxs)
             losses.append(loss)
             grad = backward(preds, theta, target_idxs)
             theta = optimize(theta, grad, lr=0.03)
             epoch_losses[epoch] = losses
```

Analyze

Plot loss/epoch

```
In [19]: ix = np.arange(0,80)

fig = plt.figure()
  fig.suptitle('Epoch/Losses', fontsize=20)
  plt.plot(ix,[epoch_losses[i][0] for i in ix])
  plt.xlabel('Epochs', fontsize=12)
  plt.ylabel('Losses', fontsize=12)
Out[19]: Text(0, 0.5, 'Losses')
```

Epoch/Losses

Predict function

```
In [20]:
           def predict(words):
               context_idxs = np.array([word_to_ix[w] for w in words])
               preds = forward(context_idxs, theta)
               word = ix_to_word[np.argmax(preds[-1])]
               return word
In [21]:
           # (['we', 'are', 'to', 'study'], 'about')
predict(['we', 'are', 'to', 'study'])
          'about'
Out[21]:
         Accuracy
In [22]:
           def accuracy():
               wrong = 0
               for context, target in data:
                    if(predict(context) != target):
                        wrong += 1
               return (1 - (wrong / len(data)))
In [23]:
           accuracy()
Out[23]: 1.0
In [24]:
           predict(['processes', 'manipulate', 'things', 'study'])
          'effect'
Out[24]:
In [ ]:
```

```
In [ ]:
           Name: Dipali Chavan
           Roll No: 14139
  In [1]:
          from tensorflow.keras.preprocessing.image import load_img
          from tensorflow.keras.preprocessing.image import img_to_array
          from keras.applications.vgg16 import preprocess_input
          from keras.applications.vgg16 import decode_predictions
          from keras.applications.vgg16 import VGG16
          # load an image from file
          image = load_img('download.jpg', target_size=(224, 224))
          # convert the image pixels to a numpy array
          image = img_to_array(image)
          # reshape data for the model
          image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
          # prepare the image for the VGG model
          image = preprocess_input(image)
          # load the model
          model = VGG16()
          # predict the probability across all output classes
          yhat = model.predict(image)
          # convert the probabilities to class labels
          label = decode_predictions(yhat)
          # retrieve the most likely result, e.g. highest probability
          label = label[0][0]
          # print the classification
          print('%s (%.2f%%)' % (label[1], label[2]*100))
          Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg16/v
          gg16_weights_tf_dim_ordering_tf_kernels.h5
          Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet
          _class_index.json
          castle (34.03%)
  In [2]:
          # load an image from file
          image = load_img('download2.png', target_size=(224, 224))
          # convert the image pixels to a numpy array
          image = img_to_array(image)
          # reshape data for the model
          image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
          # prepare the image for the VGG model
          image = preprocess_input(image)
          # load the model
          model = VGG16()
          # predict the probability across all output classes
          yhat = model.predict(image)
          # convert the probabilities to class labels
          label = decode_predictions(yhat)
          # retrieve the most likely result, e.g. highest probability
          label = label[0][0]
          # print the classification
          print('%s (%.2f%%)' % (label[1], label[2]*100))
          valley (44.85%)
  In [3]:
          # load an image from file
Loading [MathJax]/extensions/Safe.js img('download3.jpg', target_size=(224, 224))
```

```
# convert the image pixels to a numpy array
image = img_to_array(image)
# reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# prepare the image for the VGG model
image = preprocess_input(image)
# load the model
model = VGG16()
# predict the probability across all output classes
yhat = model.predict(image)
# convert the probabilities to class labels
label = decode_predictions(yhat)
# retrieve the most likely result, e.g. highest probability
label = label[0][0]
# print the classification
print('%s (%.2f%%)' % (label[1], label[2]*100))
1/1 [=======] - 2s 2s/step
golden_retriever (84.78%)
```

In []: