FMI, Mate, Anul I Logică matematică

Seminar 5

(S5.1) Arătați că pentru orice formule φ , ψ , χ , avem:

(i)
$$\psi \models \varphi \rightarrow \psi$$
;

(ii)
$$(\varphi \to \psi) \land (\psi \to \chi) \models \varphi \to \chi$$
;

(iii)
$$\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$$
;

(iv)
$$\varphi \lor (\varphi \land \psi) \sim \varphi$$
;

(v)
$$\varphi \wedge \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \vee (\psi \rightarrow \chi);$$

(vi)
$$\models \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$$

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a, b \in \{0, 1\}$,

$$\begin{aligned} 1 &\rightarrow a = a, & a &\rightarrow 1 = 1, & 0 &\rightarrow a = 1, & a &\rightarrow 0 = \neg a, \\ 1 &\wedge a = a, & 0 &\wedge a = 0, & 1 &\vee a = 1, & 0 &\vee a = a \end{aligned}$$

și $a \rightarrow b = 1 \Longleftrightarrow a \leq b$.

(i) Fie $e: V \to \{0,1\}$ a.î. $e \models \psi$, deci $e^+(\psi) = 1$. Avem că

$$e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1.$$

Prin urmare, $e \models \varphi \rightarrow \psi$.

(ii) Fie $e: V \to \{0,1\}$ a.î. $e \models (\varphi \to \psi) \land (\psi \to \chi)$, deci $e^+((\varphi \to \psi) \land (\psi \to \chi)) = 1$. Avem că

$$1 = e^+((\varphi \to \psi) \land (\psi \to \chi)) = (e^+(\varphi) \to e^+(\psi)) \land (e^+(\psi) \to e^+(\chi)),$$

de unde tragem concluzia că $e^+(\varphi) \to e^+(\psi) = 1$ şi $e^+(\psi) \to e^+(\chi) = 1$. Prin urmare, $e^+(\varphi) \le e^+(\psi)$ şi $e^+(\psi) \le e^+(\chi)$. Obţinem atunci, din tranzitivitatea lui \le , că $e^+(\varphi) \le e^+(\chi)$. Rezultă că

$$e^+(\varphi \to \chi) = e^+(\varphi) \to e^+(\chi) = 1.$$

Prin urmare, $e \models \varphi \rightarrow \chi$.

(iii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Conform (S4.5).(ii), trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi),$$

deci că

$$e^+(\varphi) \to (e^+(\psi) \to e^+(\chi)) = e^+(\varphi) \land e^+(\psi) \to e^+(\chi).$$

Metoda 1: Ne folosim de următoarele tabele:

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\psi) \rightarrow e^+(\chi)$	$e^+(\varphi) \to (e^+(\psi) \to e^+(\chi))$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	0	1
0	0	1	1	1
0	0	0	1	1

Metoda 2: Raţionăm direct. Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b) $e^+(\varphi) = 1$. Atunci

$$e^+(\varphi) \rightarrow (e^+(\psi) \rightarrow e^+(\chi)) = 1 \rightarrow (e^+(\psi) \rightarrow e^+(\chi)) = e^+(\psi) \rightarrow e^+(\chi),$$

 $e^+(\varphi) \wedge e^+(\psi) \rightarrow e^+(\chi) = 1 \wedge e^+(\psi) \rightarrow e^+(\chi) = e^+(\psi) \rightarrow e^+(\chi).$

(iv) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Conform (S4.5).
(ii), trebuie să demonstrăm că

$$e^+(\varphi \lor (\varphi \land \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \lor (e^+(\varphi) \land e^+(\psi)) = e^+(\varphi).$$

Avem cazurile:

(a)
$$e^+(\varphi) = 1$$
. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 1 \vee (1 \wedge e^+(\psi)) = 1 \vee e^+(\psi) = 1 = e^+(\varphi).$$

(b) $e^+(\varphi) = 0$. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 0 \vee (0 \wedge e^+(\psi)) = 0 \vee 0 = 0 = e^+(\varphi).$$

(v) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Conform (S4.5).(ii), trebuie să demonstrăm că

$$e^+(\varphi \wedge \psi \to \chi) = e^+((\varphi \to \chi) \vee (\psi \to \chi)),$$

deci că

$$(e^+(\varphi) \land e^+(\psi)) \rightarrow e^+(\chi) = (e^+(\varphi) \rightarrow e^+(\chi)) \lor (e^+(\psi) \rightarrow e^+(\chi)).$$

Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$\begin{split} (e^{+}(\varphi) \wedge e^{+}(\psi)) &\to e^{+}(\chi) &= (0 \wedge e^{+}(\psi)) \to e^{+}(\chi) \\ &= 0 \to e^{+}(\chi) = 1, \\ (e^{+}(\varphi) \to e^{+}(\chi)) \vee (e^{+}(\psi) \to e^{+}(\chi)) &= (0 \to e^{+}(\chi)) \vee (e^{+}(\psi) \to e^{+}(\chi)) \\ &= 1 \vee (e^{+}(\psi) \to e^{+}(\chi)) = 1. \end{split}$$

(b) $e^+(\varphi) = 1$. Avem următoarele subcazuri:

(b1)
$$e^+(\psi) = 0$$
. Atunci

$$\begin{split} (e^+(\varphi) \wedge e^+(\psi)) &\to e^+(\chi) &= (1 \wedge 0) \to e^+(\chi) \\ &= 0 \to e^+(\chi) = 1, \\ (e^+(\varphi) \to e^+(\chi)) \vee (e^+(\psi) \to e^+(\chi)) &= (1 \to e^+(\chi)) \vee (0 \to e^+(\chi)) \\ &= e^+(\chi) \vee 1 = 1. \end{split}$$

(b2) $e^+(\psi) = 1$. Atunci

$$\begin{split} (e^+(\varphi) \wedge e^+(\psi)) &\to e^+(\chi) &= (1 \wedge 1) \to e^+(\chi) = 1 \to e^+(\chi) \\ &= e^+(\chi), \\ (e^+(\varphi) \to e^+(\chi)) \vee (e^+(\psi) \to e^+(\chi)) &= (1 \to e^+(\chi)) \vee (1 \to e^+(\chi)) \\ &= e^+(\chi) \vee e^+(\chi) = e^+(\chi). \end{split}$$

(vi) Fie $e:V \to \{0,1\}$ o evaluare arbitrară.

$$e^{+}(\neg\varphi\to(\neg\psi\leftrightarrow(\psi\to\varphi))) = \neg e^{+}(\varphi)\to(\neg e^{+}(\psi)\Leftrightarrow(e^{+}(\psi)\to e^{+}(\varphi))).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare,

$$\neg e^{+}(\varphi) \rightarrow (\neg e^{+}(\psi) \Leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi))) = 0 \rightarrow (\neg e^{+}(\psi) \Leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi)))$$
$$= 1.$$

(b) $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ şi, prin urmare,

$$\neg e^{+}(\varphi) \rightarrow (\neg e^{+}(\psi) \Leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi))) = 1 \rightarrow (\neg e^{+}(\psi) \Leftrightarrow (e^{+}(\psi) \rightarrow 0))$$

$$= \neg e^{+}(\psi) \Leftrightarrow (e^{+}(\psi) \rightarrow 0)$$

$$= \neg e^{+}(\psi) \Leftrightarrow \neg e^{+}(\psi)$$

$$= 1.$$

(S5.2) Confirmați sau infirmați:

- (i) pentru orice $\varphi, \psi \in Form, \models \varphi \land \psi$ dacă și numai dacă $\models \varphi$ și $\models \psi$;
- (ii) pentru orice $\varphi, \psi \in Form, \models \varphi \lor \psi$ dacă și numai dacă $\models \varphi$ sau $\models \psi$.

Demonstrație:

(i) Este adevărat. Avem:

$$\models \varphi \land \psi \iff \text{pentru orice } e: V \to \{0,1\}, e^+(\varphi \land \psi) = 1$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, e^+(\varphi) \land e^+(\psi) = 1$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, e^+(\varphi) = 1 \text{ si } e^+(\psi) = 1$$

$$\iff \text{pentru orice } e: V \to \{0,1\}, e^+(\varphi) = 1 \text{ si}$$

$$\text{pentru orice } e: V \to \{0,1\}, e^+(\psi) = 1$$

$$\iff \models \varphi \text{ si } \models \psi.$$

(ii) Nu este adevărat! Dacă luăm $e_1: V \to \{0,1\}, \ e_1(x) = 1$ pentru orice $x \in V$, şi $e_2: V \to \{0,1\}, \ e_2(x) = 0$ pentru orice $x \in V$, avem că $e_1 \not\models \neg v_0$ și $e_2 \not\models v_0$, deci v_0 și $\neg v_0$ nu sunt tautologii, pe când $v_0 \vee \neg v_0$ este tautologie.

(S5.3) Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Să se demonstreze:

- (i) Dacă $\Gamma \models \varphi$ şi $\Gamma \models \varphi \rightarrow \psi$, atunci $\Gamma \models \psi$.
- (ii) $\Gamma \cup \{\varphi\} \models \psi$ dacă și numai dacă $\Gamma \models \varphi \rightarrow \psi$.
- (iii) $\Gamma \models \varphi \land \psi$ dacă şi numai dacă $\Gamma \models \varphi$ şi $\Gamma \models \psi$.

Demonstrație:

(i) Fie e un model al lui Γ . Vrem să arătăm că e este model al lui ψ . Cum $\Gamma \models \varphi$ şi $\Gamma \models \varphi \rightarrow \psi$, avem $e \models \varphi$ şi $e \models \varphi \rightarrow \psi$. Atunci $e^+(\varphi) = 1$ şi $e^+(\varphi \rightarrow \psi) = 1$. Deoarece $e^+(\varphi \rightarrow \psi) = e^+(\varphi) \rightarrow e^+(\psi) = 1 \rightarrow e^+(\psi) = e^+(\psi)$, rezultă că $e^+(\psi) = 1$, adică $e \models \psi$.

- (ii) " \to " Fie eun model al lui $\Gamma.$ Vrem să arătăm că e este model al lui $\varphi \to \psi.$ Avem două cazuri:
 - (a) $e^+(\varphi) = 0$. Atunci $e^+(\varphi \to \psi) = 0 \to e^+(\psi) = 1$, deci $e \models \varphi \to \psi$.
 - (b) $e^+(\varphi)=1$, deci $e\models\varphi$. Atunci $e\models\Gamma\cup\{\varphi\}$, aşadar $e\models\psi$, adică $e^+(\psi)=1$. Rezultă că $e^+(\varphi \to \psi) = 1 \to 1 = 1$, deci $e \models \varphi \to \psi$.

"\(\infty\)" Fie e un model al lui $\Gamma \cup \{\varphi\}$. Atunci $e^+(\varphi) = 1$ şi $e \models \Gamma$, deci, din ipoteză, $e^+(\varphi \to \psi) = 1$. Obţinem atunci, ca la (i), că $e^+(\psi) = 1$, adică $e \models \psi$.

(iii) Avem

$$\Gamma \models \varphi \land \psi \iff \text{ pentru orice model } e \text{ al lui } \Gamma, \ e^+(\varphi \land \psi) = 1$$

$$\iff \text{ pentru orice model } e \text{ al lui } \Gamma, \ e^+(\varphi) \land \ e^+(\psi) = 1$$

$$\iff \text{ pentru orice model } e \text{ al lui } \Gamma, \ e^+(\varphi) = e^+(\psi) = 1$$

$$\iff \text{ pentru orice model } e \text{ al lui } \Gamma, \ e \models \varphi \text{ si } e \models \psi$$

$$\iff \Gamma \models \varphi \text{ si } \Gamma \models \psi.$$

(S5.4) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule σ, χ ,

$$\Gamma \cup \{\neg \chi\} \vdash \neg(\sigma \to \sigma) \Rightarrow \Gamma \vdash \chi.$$

Demonstrație: Avem

- (1) $\Gamma \cup \{\neg \chi\} \vdash \neg(\sigma \to \sigma)$ Ipoteză
- $\Gamma \vdash \neg \chi \to \neg (\sigma \to \sigma)$ (2)Teorema deducției
- (3)(4)
- Teorema deducţiei $\Gamma \vdash (\neg \chi \to \neg (\sigma \to \sigma)) \to ((\sigma \to \sigma) \to \chi) \quad \text{(A3) şi Propoziția 3.27.(i)}$ $\Gamma \vdash (\sigma \to \sigma) \to \chi \quad \text{(MP): (2), (3)}$ $\Gamma \vdash \sigma \to \sigma \quad \text{Propozițiile 2.24 ci. 2.29 (```)}$ (5)Propozițiile 3.34 și 3.28.(ii)
- $\Gamma \vdash \chi$ (6)(MP): (4), (5).

(S5.5) Să se arate că pentru orice formule σ, χ ,

- (i) $\{\chi, \neg \chi\} \vdash \sigma$;
- (ii) $\vdash \neg \chi \rightarrow (\chi \rightarrow \sigma)$;
- (iii) $\vdash \neg \neg \sigma \rightarrow \sigma$;
- (iv) $\vdash \sigma \rightarrow \neg \neg \sigma$.

Demonstrație: Demonstrăm (i):

- $\vdash \neg \chi \rightarrow (\neg \sigma \rightarrow \neg \chi)$ (A1)
- Teorema deducției
- $(2) \qquad \{\neg \chi\} \qquad \vdash \neg \sigma \rightarrow \neg \chi$ $(3) \qquad \{\neg \chi\} \qquad \vdash (\neg \sigma \rightarrow \neg \chi) \rightarrow (\chi \rightarrow \sigma)$ $(4) \qquad \{\neg \chi\} \qquad \vdash \chi \rightarrow \sigma$ (A3) și Propoziția 3.27.(i)
- (MP): (2), (3)
- Teorema deducției.

Punctul (ii) se obține din (i) aplicând de două ori Teorema deducției:

- $\begin{array}{cccc} (1) & \{\chi, \neg \chi\} & \vdash \sigma & \text{ (i)} \\ (2) & \{\neg \chi\} & \vdash \chi \rightarrow \sigma & \text{Teorema deducţiei} \\ (3) & \vdash \neg \chi \rightarrow (\chi \rightarrow \sigma) & \text{Teorema deducţiei.} \end{array}$

Demonstrăm (iii):

- (2)
- (3)

Demonstrăm (iv):

- $(1) \vdash \neg \neg \neg \sigma \rightarrow \neg \sigma \qquad (iii)$ $(2) \vdash (\neg \neg \neg \sigma \rightarrow \neg \sigma) \rightarrow (\sigma \rightarrow \neg \neg \sigma) \qquad (A3)$ $(3) \vdash \sigma \rightarrow \neg \neg \sigma \qquad (MP)$ (MP): (1), (2).