Sieving Algorithms for the Shortest Vector Problem

Bogdan Ursu

École normale supérieure Paris-Saclay

M1 MPRI Internship

bogdanbear@live.com

 1^{st} of February - 30^{th} of June

September 8, 2016

école——— normale——— supérieure—— paris—saclay—

Hosting Institution

LASEC

- Main activities: research and education.
- Security of communication and information systems.
- Cryptography.

Members:

- Prof. Serge Vaudenay
- 5 PhD students

Lattices

Definition

A lattice \mathcal{L} of dimension n is a discrete subgroup of \mathbb{R}^n .

Geometrically, \mathcal{L} is the intersection points of a n-dimensional grid.

Lattices

- L is also the set of all integer combinations of n linearly independent vectors {b₁,..., b_n}.
- Vectors $\{b_1,...,b_n\}$ will form a basis for \mathcal{L} .
- We focus on integral bases.

$$\mathcal{L}(\{\mathbf{b_1},...,\mathbf{b_n}\}) \stackrel{\textit{def}}{=} \{\sum_{i=1}^n x_i \mathbf{b_i} : x_i \in \mathbb{Z}\}.$$

Shortest Vector Problem

Definition (Shortest vector problem (SVP))

Given a lattice $\mathcal{L} \subseteq \mathbb{R}^n$, find a non-zero lattice vector of minimal length.

A shortest non-zero vector of \mathcal{L} .

The length of the shortest non-zero lattice vector is denoted as $\lambda_1(\mathcal{L})$ - here denoted as λ_1 .

Hardness of SVP

Hardness of SVP

SVP is NP-hard under randomized reductions [1].

A shortest non-zero vector of \mathcal{L} .

Motivation

SVP is fundamental to lattice-based crypto, just like integer factorization is for RSA and discrete logarithm for elliptic curves.

Decision versions of the SVP are at the basis of post-quantum cryptographic primitives [15, 16].

Sieving solvers for the SVP have been introduced in 2001 [2] and continue to be a very active area of current research. Some of the latest papers:

Aug 2015 \rightarrow Present: [3, 5, 4, 10, 11, 13]

Sieving Algorithms (AKS) [2]

- It is possible to sample a large number of lattice vectors in a hyperball $B_n(R)$.
- Radius R is exponentially large, $R = 2^{O(n)}\lambda_1$.
- By computing vector differences, obtain lattice vectors in $B_n(\gamma R)$, where $0 < \gamma < 1$. This process is called sieving.

Sieving Procedure

Lattice vectors in hyperball $B_n(R) \longrightarrow$ lattice vectors in $B_n(\gamma R)$.

Algorithm 1 [2]:Sieving

```
Input: R, 0 < \gamma < 1 and a list List of lattice vectors.
```

- 1: Centers $\leftarrow \emptyset$.
- 2: Result $\leftarrow \emptyset$.
- 3: for $v \in List$ do
- 4: **if** there exists $\mathbf{c} \in Centers$ such that $\|\mathbf{c} \mathbf{v}\| \le \gamma R$ **then**: 5: Add $\mathbf{v} - \mathbf{c}$ to Result
- 6: **else** add **v** to *Centers*.
- 7: **end if**
- 8: end for
- 9: return Result.

September 8, 2016

Norm Reduction

Applying the sieving procedure results in a list of lattice vectors in $B_n(\gamma R)$, albeit at the cost of losing the center vectors.

Radius Reduction

As the initial radius is of the form $2^{O(n)}\lambda_1$, applying the sieving procedure O(n) times will yield vectors of norm close to λ_1 .

The last radius r_0 will be close to λ_1 .

But how to prove correctness?

3 Bound the maximal number of centers N_T which can be lost at one iteration of the sieve using the best known upperbounds on the kissing constant [6].

$$N_T \le 2^{(-log_2(\gamma)+0.401)n+o(n)}$$
.

Choose initial number of vectors sampled to:

$$\#(sieve\ iterations) \times N_T + 1?$$

Problem: What guarantees that the resulting vectors are non-zero?

Correctness September 8, 2016 13 / 41

Solution: Perturb all lattice vectors \mathbf{v} by real vectors \mathbf{x} in a small hyperball $B_n(\epsilon)$.

When sieving use pairs $(\mathbf{v}, \mathbf{v} + \mathbf{x})$ as in:

```
1: Centers ← ∅
2: for each (v, v + x) \in List do
```

- 3: if there is $(\mathbf{v}', \mathbf{v}' + \mathbf{x}') \in Centers$ such that $\|(\mathbf{v}' + \mathbf{x}') - (\mathbf{v} + \mathbf{x})\| \le \gamma R$ then:
- Add $(\mathbf{v} \mathbf{v}', (\mathbf{v} + \mathbf{x}) \mathbf{v}')$ to output.
- 5: else add (v, v + x) to Centers.
- 6: end if
- 7: end for

This sieving procedure preserves perturbations along the execution of the algorithm.

Sampling

Algorithm 2 [2]:Sample

Input: An basis of integral lattice \mathcal{L} .

Output: A vector pair $(\mathbf{v}, \mathbf{v} + \mathbf{x}) \in \mathcal{L} \times B_n(R)$.

- 1: Draw **x** uniformly at random from $B_n(\epsilon)$.
- 2: Compute **v** as $v_i = -int(x_i)$ for all $i = \overline{1, n}$.
- 3: return $(\mathbf{v}, \mathbf{v} + \mathbf{x})$.

Example

- Sample uniformly a real perturbation $\mathbf{x} = (7.4, -2.3, ..., 192.1)$ from a small hyperball $B_n(\epsilon)$.
- Compute $\mathbf{v} = (-7, 2, ..., -192)$.
- The resulting pair is ((-7, 2, ..., -192), (0.4, -0.3, ..., 0.1)).

15 / 41

Tossing

Let \mathbf{s} be the shortest vector and apply a tossing argument.

We define a function τ which sends perturbations from A to B and viceversa. For each \mathbf{x}_i , decide with probability $\frac{1}{2}$ whether to apply τ or not.

Good perturbations in the case where $\max_{\mathbf{x}}\|\mathbf{x}\|<\lambda_1$

We define a perturbation \mathbf{x} to be good when $\mathbf{x} \in A \cup B$. Similarly, a pair $(\mathbf{v}, \mathbf{v} + \mathbf{x})$ is good iff \mathbf{x} is good.

Correctness Tossing September 8, 2016 16 / 41

Function τ might be uncomputable.

s denotes a shortest non-zero vector.

Algorithm 3 [2]:Sample

Input: An basis of integral lattice \mathcal{L} .

Output: A vector pair $(\mathbf{v}, \mathbf{v} + \mathbf{x}) \in \mathcal{L} \times B_n(R)$.

- 1: Draw **x** uniformly at random from $B_n(\epsilon)$.
- 2: Apply τ with $\frac{1}{2}$ probability if $\mathbf{x} \in A \cup B$.
- 3: Compute **v** as $v_i = -int(x_i)$ for all $i = \overline{1, n}$.
- 4: return (v, v + x).
 - Consider all pairs $(\mathbf{v}, \mathbf{v} + \mathbf{x})$, applying the τ function will yield $(\mathbf{v} \pm \mathbf{s}, \mathbf{v} + \mathbf{x})$:
 - The perturbed vector remains unchanged and so does the distribution of \mathbf{x} over $B_n(\epsilon)$.

Correctness

Extra step: when all sieving is complete, compute all the differences of the obtained lattice vectors and output minimal non-zero one.

Finding a collision $(\mathbf{v}, \mathbf{v} + \mathbf{x})$ and $(\mathbf{v}, \mathbf{v} + \mathbf{x}')$ in the algorithm without tossing \longrightarrow Recover \mathbf{s} when using tossing \longrightarrow Recover \mathbf{s} without tossing.

$$\begin{split} P[\text{final list contains } (\mathbf{v},\mathbf{v}+\mathbf{x_1}), (\mathbf{v},\mathbf{v}+\mathbf{x_2})] \geq \\ & \frac{1}{2} P[\text{final list contains } (\mathbf{v}+\mathbf{s},\mathbf{v}+\mathbf{s}+\mathbf{x_1}), (\mathbf{v},\mathbf{v}+\mathbf{x_2})]. \end{split}$$

Correctness September 8, 2016 19 / 41

Initial List Size

In order to have a high probability of success, the initial number of vectors sampled will have to be at least:

$$poly(n) \times \frac{1}{P(x \in A \cup B)} \times (\#sieve \ iterations \times N_T) + N_B + 1).$$

 N_B is the maximal number of vectors in $B_n(r_0)$ we can get without incurring a collision.

$$N_B = 2^{(\log_2(r_0) + 0.401)n + o(n)}$$
.

Complexity Initial List Size September 8, 2016 20 / 41

Instead of using a list size like this:

$$poly(n) \times \frac{1}{P(x \in A \cup B)} \times (\#sieve \ iterations \times N_T) + N_B + 1).$$

Why not use something like this?

$$poly(n) \times \Big(\big(\# sieve \ iterations \times N_T \big) + rac{1}{P(\mathbf{x} \in A \ \cup \ B \)} (N_B + 1) \Big).$$

Center Preselection

Idea: Separate list of pairs into two lists:

- List C will be used to provide centers and reductions.
- List S will be used for providing collisions on good pairs.

Before sieving, extract some pairs from C and label them as Centers.

Algorithm 4 [7]:Sieving

```
Input: Centers, Lists C and S, param. \gamma and R.
 1: C' = S' = \emptyset
 2: for (\mathbf{v}, \mathbf{v} + \mathbf{x}) \in C do
 3: if there is a pair (\mathbf{v}', \mathbf{v}' + \mathbf{x}') \in Centers such that \|\mathbf{v}' + \mathbf{x}' - (\mathbf{v} + \mathbf{x})\| < \gamma R then
                   Add (\mathbf{v} - \mathbf{v}', (\mathbf{v} + \mathbf{x}) - \mathbf{v}') to C'.
 5:
             end if
 6: end for
 7: for (\mathbf{v}, \mathbf{v} + \mathbf{x}) \in S do
             if there exists (\mathbf{v}', \mathbf{v}' + \mathbf{x}') \in Centers such that \|\mathbf{v}' + \mathbf{x}' - (\mathbf{v} + \mathbf{x})\| \le \gamma R then
 8:
                   Add (\mathbf{v} - \mathbf{v}', (\mathbf{v} + \mathbf{x}) - \mathbf{v}') to S'.
10:
             end if
11: end for
12: return C'. S'
```

Supplementary Loss [7]

Red vectors are not centers and will still be lost, as they are not close to any center.

Bounding the Loss [7]

Let $\#Centers = n^2N_T$.

- Process the n^2N_T centers sequentially.
- $p_i \stackrel{def}{=}$ probability that the i^{th} center is far away from all previous centers j, with j < i.
- $E[far away pairs] \leq N_T$, which means that:

$$\sum_{i=1}^{n^2N_T} p_i \leq N_T \implies n^2N_T \times p_{n^2N_T} \leq N_T.$$

As i grows, p_i decreases and thus $p_{n^2N_T} \leq \frac{1}{n^2}$.

Bounding the Loss, contd [7]

We have processed the center pairs sequentially. Non-center pairs are processed sequentially after center preselection, so p_i remains defined the same for them.

$$p_{n^2N_T} \leq \frac{1}{n^2} \implies P(\text{a pair cannot be reduced}) \leq \frac{1}{n^2}$$
.

Improvements Bounding the Loss September 8, 2016

At the end of all the O(n) sieving steps, we expect to be left with a fraction of $(1-\frac{1}{n^2})^{O(n)}$ pairs. Then, we lose at most a fraction of

$$1 - \left(1 - \frac{1}{n^2}\right)^{O(n)} \approx O\left(\frac{1}{n}\right)$$
 pairs.

Therefore, the new initial list size must be:

Improvements Bounding the Loss September 8, 2016 27 / 41

Does It Work?

Optimizing the complexity of the algorithm and using the birthday paradox for collisions as used in [7], the optimal time complexity obtained goes from $2^{2.648n+o(n)}$ to $2^{2.4847n+o(n)}$.

Unfortunately, the state-of-the-art is $2^{2.465n+o(n)}$

Generalization of the SVP

Definition (μ -Approximate SVP or μ SVP)

Given a lattice $\mathcal{L} \subseteq \mathbb{R}^n$, find a non-zero lattice vector of length at most $\mu\lambda_1$.

A $\sqrt{2}$ approximation of λ_1 .

NP-hardness for $\mu = \sqrt{n}$ would imply *NP* =co-*NP*, and for $\mu = \sqrt{n/O(\log(n))}$ the implication would be that co-*NP* \subseteq *AM*. [8]

Improvements μ SVP September 8, 2016 29 / 41

Impact

Our algorithm starts over-performing the state-of-the-art at around $\mu\approx 2.71$.

From $\mu \approx 3.37$, it achieves both lower time and lower space complexities.

Improvements Impact September 8, 2016 30 / 41

Time comparison with previously known bounds

	Modified ListSieve[12]	μ ListSieve-Birthday[17]	new
μ	C _{time}	C _{time}	C _{time}
2.71	1.99758	2.36552	1.75721
3.61	1.77978	1.99933	1.47898
8	1.36434	1.42456	1.0868
15	1.16723	1.19071	0.951187
100	0.903217	0.904852	0.824121

Comparison of previously known time complexity bounds and our new analysis. A table entry c_{time} indicates a time complexity of $2^{c_{time}n+o(n)}$, when $n\to\infty$.

For $\mu = 8$ and n=150, 2^{205} is improved to 2^{165} .

Space comparison with previously known bounds

	Modified ListSieve[12]	μ ListSieve-Birthday[17]	new
μ	C _{space}	C _{space}	C _{space}
2.71	0.833343	0.922173	0.878607
3.61	0.749856	0.800109	0.739491
8	0.59624	0.608519	0.543402
15	0.526077	0.53057	0.475594
100	0.435	0.435284	0.41206

Comparison of previously known time complexity bounds and our new analysis. A table entry c_{space} indicates a space complexity of $2^{c_{space}} n + o(n)$, when $n \to \infty$.

The NV-Sieve Heuristic[14]

- Sample only lattice vectors, no perturbations.
- Assume that at every step, all lattice vectors are uniformly distributed in the corona.
- Covering the corona optimally requires at most $2^{0.2075n+o(n)}$ vectors and $\gamma \to 1$.

Sufficient to sieve from the corona.

The NV-Sieve Heuristic, contd

- Initial list size: #sieve iterations $\times 2^{0.2075n+o(n)} + 1$.
- Overall complexity $2^{0.4150+o(n)}$.

Sufficient to sieve from the corona.

Angular distances

Search for a way to improve quadratic sieve complexity...

When $\gamma \to 1$, we have that:

$$\|\mathbf{v} - \mathbf{w}\| \le \gamma R \iff \theta(\mathbf{v}, \mathbf{w}) \le 60^{\circ}.$$

The limiting case for reducing vectors.

Random Hyperplanes

- Use hyperplanes to classify vectors according to common angles.
- Drawing a hyperplane at random will separate two vectors v, w with probability:

$$\frac{\theta(\mathbf{v},\mathbf{w})}{\pi}$$

Angular Hashes

- Store a normal vector n_i for each hyperplane.
- For each vector \mathbf{v} , compute $sign\langle \mathbf{n_i}, \mathbf{v} \rangle$ and determine the relative position of \mathbf{v} .

Creating Hashes[9]

Hyperplane hashing[9]

- Two vectors will be close when they collide in at least one hashtable.
- ullet Group hyperplanes in groups of k and put each group in a hashtable.
- Use t hashtables. Time complexity decreases from $2^{0.4151n+o(n)}$ to $2^{0.3366n+o(n)}$.

38 / 41

Improvement Ideas

- Use groups of v hashtables and a collision will mean that the vectors collide in all v hashtables
- Or start with hashtables and then group them into groups of v.
- Attempt to use hashing for AKS?

Conclusion and Future Work

Conclusion

- Survey the most important sieving algorithms and heuristics.
- Clean-up the case when perturbation size is larger than λ_1 .
- Our improved analysis/algorithm for μ SVP is exponentially faster in both time and space than the state-of-the-art. \checkmark

Future Work

- Control the distribution of lattice vectors.
- Multi-level hash functions might improve nearest neighbour search (NNS).
- Improve tuple sieving with locality-sensitive hashing LSH. [3]

Questions September 8, 2016

41 / 41

References

- Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions (extended abstract). In STOC (Symposium on Theory of Computing), pages 10–19, New York, NY, USA, 1998. ACM. http://doi.acm.org/10.1145/276698.276705.
- [2] Miklos Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In STOC (Symposium on Theory of Computing), pages 266–275. ACM, July 2001. https://dl.acm.org/citation.cfm?id=380857.
- [3] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. Cryptology ePrint Archive, Report 2016/713, 2016. http://eprint.iacr.org/2016/713.
- [4] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 10–24. http://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch2.
- [5] Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using cross-polytope LSH. In AFRICACRYPT, pages 3–23, 2016. http://dx.doi.org/10.1007/978-3-319-31517-1_1.
- [6] V. I. Levenshtein G. A. Kabatiansky. On bounds for packings on a sphere and in space. Probl. Peredachi Inf., 14(1):3-25, 1978. http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=1518&option_lang=eng.
- [7] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Coding and Cryptology: Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Proceedings, chapter Algorithms for the Shortest and Closest Lattice Vector Problems. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20901-7_10.
- [8] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM, 52(5):789–808, September 2005.
- 2005.

 [9] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In CRYPTO 2015, pages

3-22. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47989-6 1.

- [10] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors using spherical locality-sensitive hashing. In LATINCRYPT, pages 101–118, 2015. http://dx.doi.org/10.1007/978-3-319-22174-8 6.
- [11] Thijs Laarhoven, Michele Mosca, and Joop Pol. Finding shortest lattice vectors faster using quantum search. Des. Codes Cryptography, 77(2-3):375–400, December 2015. http://dx.doi.org/10.1007/s10623-015-0067-5.

References September 8, 2016

1/8

References

- [12] Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors in the presence of gaps. Cryptology ePrint Archive, Report 2011/139, 2011, http://eprint.iacr.org/.
- [13] Artur Mariano, Thijs Laarhoven, and Christian Bischof. Parallel (probable) lock-free hashsieve: a practical sieving algorithm for the svp. 2015, http://eprint.iacr.org/2015/041.
- [14] P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology, pages 181-207, July 2008. ftp://ftp.di.ens.fr/pub/users/pnguyen/JoMC08.pdf.
- [15] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In In STOC. pages 333-342, 2009. http://doi.acm.org/10.1145/1536414.1536461.
- [16] Oded Regey. On lattices, learning with errors, random linear codes, and cryptography. In In STOC, pages 84–93, 2005.
- [17] Wei Wei, Mingjie Liu, and Xiaoyun Wang. Finding shortest lattice vectors in the presence of gaps. In Topics in Cryptology - CT-RSA 2015, pages 239-257. Springer International Publishing, April 2015. http://dx.doi.org/10.1007/978-3-319-16715-2 13.

References September 8, 2016 2 / 8

Good and Bad Bases

Lattice reduction algorithms want to obtain bases with short, almost orthogonal vectors.

The orthogonality defect δ is defined as:

$$\delta(\mathcal{L}) \stackrel{\text{def}}{=} \frac{\prod_{i=1}^n ||b_i||}{\prod_{i=1}^n ||b_i^*||}.$$

It follows that $\delta(\mathcal{L}) \geq 1$ with equality when orthogonal.

Fundamental Parallelepiped

```
Input: \epsilon, B = [b_1|...|b_n]
```

Output: A vector pair $(\mathbf{v}, \mathbf{v} + \mathbf{x}) \in \mathcal{L} \times B_n(R) \subseteq \mathcal{L} \times \mathbb{R}^n$.

- 1: Draw **x** uniformly at random from $B_n(\epsilon)$
- 2: Compute $\mathbf{v} = -\mathbf{x} + (\mathbf{x} \mod P(B))$
- 3: return $(\mathbf{v}, \mathbf{v} + \mathbf{x})$

$$frac(x) = \begin{cases} x - floor(x), & \text{for } x \ge 0\\ x - ceil(x), & \text{for } x < 0. \end{cases}$$

Kissing Number

In geometry, the kissing number is defined as the maximal number of non-overlapping unit spheres that can be arranged such that they each touch another given unit sphere.

n = 2, the kissing number is 6

n = 3, the kissing number is 12

Supplementary slide: GapSVP

$GapSVP_{\beta}$

The $GapSVP_{\beta}$ problem consists in differentiating the instances when:

- λ < 1.
- $\lambda > \beta$.
- \bullet It is a promise problem, so we are allowed to err for instances between 1 and $\beta.$

```
Input: list L of lattice vectors, R and sub-unitary positive \gamma.
```

- 1: Result $\leftarrow \emptyset$.
- 2: for each v, w, x in L do
- 3: if $\|\mathbf{v} \pm \mathbf{w} \pm \mathbf{x}\| \leq \gamma R$ then
- 4: Add $\mathbf{v} \pm \mathbf{w} \pm \mathbf{x}$ to *Result*.
- 5: end if
- 6: end for
- 7: return Result.

Importance of LLL and Lattice Theory outside Crypto

The original applications of LLL were:

- Give polynomial-time algorithms for factorizing polynomials with rational coefficients.
- Finding simultaneous rational approximations to real numbers.
- Solving the integer linear programming problem in fixed dimensions.