DPP

Operating System

CPU Scheduling

Q1 Consider the following process scenario.

Draces	Arrival	Time	(in	Burst	Time	(In
Process	milliseco	nds)		millised	onds)	
P1	4			5		
P2	5			3		
P3	8			4		
P4	7			2		
P5	3			1		
P6	0			6		
P7	7			2		

The average waiting time of processes for FCFS scheduling algorithm is _____ milliseconds?

Q2 Consider the following process scenario.

Process	Arrival Time milliseconds)	(in	Burst Time (In
	milliseconds)		milliseconds)
P1	5		6
P2	3		3
P3	1		4
P4	2		2
P5	4		1
P6	0		3
P7	1		2

The average waiting time processes for nonpreemptive shortest job first scheduling algorithm is _____ milliseconds (rounded up to 2 decimal places)?

Q3 Consider CPU performance metric throughput which is calculated as:

Throughput =

Number of processes executed

 $Total\ scheduling\ duration\ from\ first\ process\ arrival\ till$ $last\ process\ completion$

For the following process scenario calculate the throughput calculated for non-preemptive SJF algorithm ____ per milliseconds (rounded up to 1 decimal place)?

Process	Arrival Time (ir milliseconds)	Burst Time (in milliseconds)
P1	0	3
P2	4	6
P3	7	4
P4	9	2
P5	8	1
P6	6	3

Q4 Consider CPU performance metric throughput which is calculated as:

Throughput =

 $Number\ of\ processes\ executed$

 $Total\ scheduling\ duration\ from\ first\ process\ arrival\ till$ $last\ process\ completion$

For the following process scenario calculate the throughput calculated for FCFS algorithm as x and for non-preemptive SJF scheduling as y. The value of x - y is ____?

Process	Arrival Time	Burst Time
P1	0	4
P2	0	3
P3	0	1
P4	0	5

- Q5 Consider 4 processes A, B, C and D. All arrived at time 0 in the given order. The processes needed 5ns, 3ns, 9ns and 10ns respectively for their CPU burst to complete. The average turnaround time of processes if executed in FCFS order is _____ns (rounded up to 2 decimal place)?
- Q6 Four processes to be executed on a single processor system arrives at time 0+ in the order A, B, C and D. Their CPU burst time requirements are 4, 1, 6, 2 time units respectively. The completion time of processe A under Round-Robin scheduling with time slice of one time unit is _____?
- Q7 On a system using round robin CPU scheduling, context-switch overhead is given by 's'. Time quantum is 'q'. The CPU efficiency, if q=s is?

 (A) 50%
 - (B) Zero
 - (B) Zero
 - (C) 100%
 - (D) Not predictable
- **Q8** Consider the following process scenario.

I	Proce	Arrival	Time	(in	Burst	Time	(In
•	ss	milliseconds)			milliseconds)		
	P1	0			12		

P2	1	8
P3	2	7
P4	3	2
P5	7	3

The average waiting time processes for preemptive shortest remaining time first scheduling algorithm is _____ milliseconds (rounded up to 1 decimal place)?

Q9 Consider the following process scenario.

Proce	Arrival	Tir	ne (in	Burst	Time	(In
SS	millisecon	ds))		milliseco	onds)	
P1	0				8		
P2	1				4		
P3	2				1		
P4	4				5		

The average waiting time processes for round robin scheduling algorithm is _____ milliseconds with time slice of 3 milliseconds (rounded up to 1 decimal place)?

Q10 A computer system has 2GB of RAM and OS occupies 256MB of RAM. All the user processes are of 128MB and have same characteristics. If the goal is 99% CPU utilization, then the maximum I/O wait that can be tolerated is % (rounded to nearest integer)?

Answer Key

Q1 6~6 Q6 10~10

Q2 4~5 Q7 (A)

Q3 0.3~0.3 Q8 7.4~7.4

Q4 0~0 Q9 7.5~7.5

Q5 14.25~14.25 Q10 72~72

Hints & Solutions

Q1 Text Solution:

The gantt chart for the execution of the processes will be as follows:

The completion time, turn around time and waiting time of processes are as follows:

Proc ess			Complet	Turn around time	Waitin g Time
P1	4	5	12	8	3
P2	5	3	15	10	7
P3	8	4	23	15	11
P4	7	2	17	10	8
P5	3	1	7	4	3
P6	0	6	6	6	0
P7	7	2	19	12	10

Average waiting time = (3+7+11+8+3+0+10)/7 =42/7 = 6

Q2 Text Solution:

The gantt chart for the execution of the processes will be as follows:

	P6	P7	P5	P4	P2	P3	P1]
(0	3	5	6	8	11	15	21

The completion time, turn around time and waiting time of processes are as follows:

		Burst Time	Complet ion Time	Turn around time	Waitin g Time
P1	5	6	21	16	10
P2	3	3	11	8	5
P3	1	4	15	14	10
P4	2	2	8	6	4
P5	4	1	6	2	1
P6	0	3	3	3	0

ID7	11	12	15	17.	12
F /			J	4	_

Average waiting time = (10+5+10+4+1+0+2)/7 =32/7 = 4.57

Q3 Text Solution:

Here when first process will be scheduled at 0 to execute then it will complete till 3 milliseconds. After that there will not be any process in ready state for 1 millisecond till 4 milliseconds. Hence for 1 millisecond the CPU will be idle. After that all processes will run one after another according to algorithm without any idle period.

Total execution time = 3 + 6 + 4 + 2 + 1 + 3 = 19Total execution time including idle period = 19 + 1 = 20

Throughput = 6/20 = 0.3

Q4 Text Solution:

Total burst time = 4 + 3 + 1 + 5 = 13

All processes are arriving at 0 hence all algorithms will have scheduling length = 13 - 0 = 13

Hence for all algorithms throughput = 4 / 13

Hence x = 4/13,

Also y = 4/13

Hence, x - y = 0

Q5 Text Solution:

The gantt chart for the execution of the processes will be as follows:

А	9	В	С	D	
0	5	8		17	27

The completion time and turn-around time of processes are as follows:

Proc	Arrival	Rurst	Completion	Turn
ess		Time		around
C33	Tillie	Tille		time

Α	0	5	5	5
В	0	3	8	8
С	0	9	17	17
D	0	10	27	27

Average turn-around time = (5 + 8 + 17 + 27)/4 =57/4 = 14.25

Q6 Text Solution:

The Gantt chart for the execution of the processes will be as follows:

Process A completes at time 10.

Q7 Text Solution:

CPU efficiency is only when process executes, hence

$$Efficiency = \frac{q}{q+s} * 100\%$$

For q = s

Efficiency = 50%

Q8 Text Solution:

The Gantt chart for the execution of the processes will be as follows:

	P1	P2	P4	P2	P5	P2	Р3	P1]
0		1	3	5	7	10	14	21	32

The completion time, turn-around time and waiting time of processes are as follows:

Proc ess			Complet ion Time	Turn around time	Waitin g Time
P1	0	12	32	32	20
P2	1	8	14	13	5
P3	2	7	21	19	12
P4	3	2	5	2	0
P5	7	3	10	3	0

Average waiting time = (20+5+12+0+0)/5 = 7.4

Q9 Text Solution:

The Gantt chart for the execution of the processes will be as follows:

P1	P2	P3	P1	P4	P2	P1	P4	
0	3	6	7	10	13	14	16	18

The completion time, turn-around time and waiting time of processes are as follows:

Proc ess			Camplet	Turn around time	Waitin g Time
P1	0	8	16	16	8
P2	1	4	14	13	9
P3	2	1	7	5	4
P4	4	5	18	14	9

Average waiting time = (8+9+4+9)/4 = 30/4 = 7.5

Q10 Text Solution:

From 2GB RAM if space for OS is removed then in remaining space only the user processes will be allocated.

Total available RAM = 2GB

OS occupied RAM = 256MB

User process = 128MB

Hence number of user processes (n) = (2GB -256MB) / 128MB

$$= 16 - 2$$

 $= 14$

For IO wait p and number of processes n, CPU utilization = $1-p^n$

$$0.99 = 1 - p^{14}$$
 $p = 0.719686 = 72\%$