Rady, odhad súčtu radu, rekurencie

Niektoré známe rady

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \quad (|x| < 1)$$

$$\sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$$

$$\ln(\frac{1}{1-x}) = \sum_{k=1}^{\infty} \frac{x^k}{k} \quad (|x| < 1)$$

$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

Niektoré známe rady

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$\cosh(x) = \frac{e^{x} + e^{-x}}{2}$$

$$\sinh(x) = \frac{e^{x} - e^{-x}}{2}$$

Rady - príklad

Nájdite súčet radu:

$$\ln 2 + \frac{(\ln 2)^2}{2!} + \frac{(\ln 2)^3}{3!} + \dots$$

Vieme, že

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

a teda

$$\ln 2 + \frac{(\ln 2)^2}{2!} + \frac{(\ln 2)^3}{3!} + \dots = e^{\ln 2} - 1 = 2 - 1 = 1.$$

Súčet radu

Theorem

Nech $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ je mocninový rad. Potom $\exists r \geq 0$ také, že rad $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ konverguje v intervale $(x_0-r;x_0+r)$ a diverguje v $(-\infty;x_0-r)\bigcup (x_0+r;\infty)$. Číslo r voláme polomer konvergencie.

Súčet radu

Theorem

Nech mocninový rad $\sum_{n=0}^{\infty} a_n x^n$ má polomer konvergencie r. Nech

$$\sum_{n=0}^{\infty} a_n x^n = f(x) \ v(-r; r). \ Potom \ v(-r; r):$$

- $\sum_{n=0}^{\infty} a_n n x^{n-1} = f'(x),$
- $\bullet \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} = \int f(x) dx.$

Rady - príklad

Nájdite súčet radu:

$$\sum_{m\geq 1} \frac{2m+7}{5^m} = \sum_{m\geq 0} \frac{2m+7}{5^m} - 7 = 2\sum_{m\geq 0} m(\frac{1}{5})^m + 7\sum_{m\geq 0} (\frac{1}{5})^m - 7 =$$

$$\sum_{m\geq 1} x^m = \frac{1}{1-x} / x \frac{d}{dx}$$

$$\sum_{m\geq 1} mx^m = \frac{x}{(1-x)^2}$$

$$= 2\frac{1/5}{(1-1/5)^2} + 7\frac{1}{1-1/5} - 7 = \frac{19}{8}.$$

Odhad súčtu radu

Theorem

Nech g(x) je neklesajúca pre nezáporné hodnoty x. Potom

$$\int_0^n g(t)dt \leq \sum_{i=1}^n g(j) \leq \int_1^{n+1} g(t)dt.$$

Odhad súčtu radu

Example

Ako rýchlo rastie
$$f(n) = \sum_{j=0}^{n} j^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$
?

n členov, najväčší n^2 , zrejme teda $f(n) = \mathcal{O}(n^3)$. Lepší odhad?

$$\sum_{i=1}^{n-1} j^2 \le \int_1^n x^2 dx = \frac{n^3 - 1}{3}.$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 \ge \int_0^n x^2 dx = \frac{n^3}{3}.$$

$$\forall n \geq 1: \frac{n^3}{3} \leq f(n) \leq \frac{(n+1)^3-1}{3}.$$

Z toho:
$$f(n) \sim \frac{n^3}{3}$$
.

Rekurencie

Nájdite taký vzťah pre výpočet x_n , aby nebolo potrebné poznať iné členy rekurencie.

$$x_{n+1} = x_n + 3$$
, $n \ge 0, x_0 = 1$.

Niekoľko členov rekurencie:

$$x_0 = 1$$

$$x_1 = x_0 + 3 = 1 + 3 = 4$$

$$x_2 = x_1 + 3 = x_0 + 3 + 3 = 1 + 3 + 3 = 7$$

$$x_3 = x_2 + 3 = x_1 + 3 + 3 = x_0 + 3 + 3 + 3 = 1 + 3 + 3 + 3 = 10$$

Vidíme, že

$$x_n = 3n + 1, \quad n \ge 0.$$

. . .

Lineárna rekurencia

Definition

Rovnicu

$$x_i c_0 + x_{i-1} c_1 + x_{i-2} c_2 + \dots + x_{i-n} c_n = a,$$
 (1)

 $i=n,n+1,n+2,\ldots$, kde x_i aj koeficienty c_0,\ldots,c_n sú prvky poľa T, voláme lineárna rekurentná rovnica n-tého rádu s konštantnými koeficientami. Ak a=0, rovnicu voláme homogénna, inak nehomogénna.

Definition

Postupnosť x_0, x_1, x_2, \ldots sa volá riešenie rovnice (1), keď pre každé $i=n, n+1, n+2, \ldots$ platí rovnica (1). Prvkom $x_0, x_1, x_2, \ldots, x_{n-1}$ hovoríme počiatočné podmienky.

Poznámka: keď sú dané počiatočné podmienky $x_0, x_1, x_2, \ldots, x_{n-1}$ pre rovnicu (1), je jej riešenie jednoznačne určené.

Fact

Priestor riešení homogénnej lineárnej rekurentnej rovnice (1) na poľom T, tvorí lineárny vektorový priestor dimenzie n.

Charakteristický polynóm lin. rek. rov.

Definition

Pre rovnicu (1) je polynóm $f(x) = c_0 x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n$ tzv. charakteristický polynóm lin. rek. rov. (1).

Example

$$x_i - x_{i-1} - x_{i-2} = 0.$$

$$f(x) = x^2 - x - 1.$$

Theorem

Keď $\alpha_1,\alpha_2,\ldots,\alpha_n$ sú všetky korene char. polynómu f(x) homogénnej rovnice (1), ktoré nie sú násobné, potom postupnosti $s_i^{(k)}=\alpha_k^i$ sú lineárne nezávislé riešenia rovnice (1). Každé riešenie homogénnej rovnice (1) má teda tvar

$$s_i = \sum_{k=1}^n b_k \alpha_k^i, \quad b_1, b_2, \dots, b_n \in T$$

Example

Fibonacciho postupnosť:

$$F_{i+2} = F_{i+1} + F_i, \quad i \ge 0, F_0 = F_1 = 1.$$

Charakteristický polynóm: $f(x) = x^2 - x - 1$.

Korene: $x_1, x_2 = \frac{1 \pm \sqrt{5}}{2}$.

Všeobecné riešenie: $s_i = c_1(\frac{1+\sqrt{5}}{2})^i + c_2(\frac{1-\sqrt{5}}{2})^i$.

Konkrétne riešenie:

$$F_0 = c_1 + c_2 = 1, \quad F_1 = c_1(\frac{1+\sqrt{5}}{2}) + c_2(\frac{1-\sqrt{5}}{2}).$$

Riešením sústavy dostaneme: $c_1 = \frac{x_1}{\sqrt{5}}, c_1 = \frac{-x_2}{\sqrt{5}}.$

Konkrétne riešenie: $F_i = \frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{i+1} - (\frac{1-\sqrt{5}}{2})^{i+1}], i \geq 0.$

Theorem

Keď α je koreň char. polynómu homogénnej rovnice (1), ktorý je I-násobný. Potom $\alpha^i, i\alpha^i, i^2\alpha^i, \ldots, i^{l-1}\alpha^i$ sú lineárne nezávislé riešenia rovnice (1).

Example

Rekurencia: $x_{i+2} = 2x_{i+1} - x_i$

Charakteristický polynóm: $f(x) = x^2 - 2x + 1 = (x - 1)^2$.

Dvojnásobný koreň: $\alpha=1$.

Všeobecné riešenie: $x_i = c_1 1^i + c_2 i 1^i$.

Nehomogénna rekurencia 1. rádu

$$x_{n+1} = b_{n+1}x_n + c_{n+1}, \quad n \ge 0.$$

 x_0 - daná počiatočná podmienka.

Riešenie:

pomocou substitúcie $b_1b_2b_3...b_ny_n=x_n, \quad n\geq 0.$

Nehomogénna rekurencia 1. rádu

Example

Rekurencia:
$$x_{n+1} = 3x_n + n$$
, $n \ge 0$, $x_0 = 0$.
 $x_n = 3^n y_n$, $n \ge 1$
 $y_0 = 0$
 $3^{n+1} y_{n+1} = 3.3^n x_n + n$
 $y_{n+1} = y_n + \frac{n}{3^{n+1}}$
 $y_n = y_0 + \sum_{i=0}^{n-1} \frac{i}{3^{i+1}}$
 $x_n = 3^n \sum_{i=0}^{n-1} \frac{i}{3^{i+1}}$
 $x_n = \frac{1}{4}(3^n - 2n - 1)$

Rekurentná nerovnosť

Theorem

Nech postupnosť $\{x_n\}$ spĺňa rekurentnú nerovnosť v tvare

$$x_{n+1} \leq b_0 x_n + b_1 x_{n-1} + \cdots + b_p x_{n-p} + G(n), \quad n \geq p,$$

kde $\forall i: b_i \geq 0$, $\sum b_i > 1$. Nech c je kladný reálny koreň polynómu $f(x) = x^{p+1} - b_0 x^p - \dots - b_p x^0$ a nech platí $G(n) = o(c^n)$. Potom $\forall \varepsilon > 0$ platí $x_n = \mathcal{O}((c + \varepsilon)^n)$.

Rekurentná nerovnosť

Example

$$\begin{split} &h(n+2) \leq h(n+1) + h(n) \\ &G(n) = 0 \\ &f(x) = x^2 - x - 1 \\ &\text{kladný koreň: } c = \frac{1+\sqrt{5}}{2} > 1 \\ &\text{ďalej platí } 0 = o(c^n) \\ &\text{a teda } \forall \varepsilon > 0 \text{ platí } h(n) = \mathcal{O}((\frac{1+\sqrt{5}}{2} + \varepsilon)^n). \end{split}$$