Section Summary

22.1 Magnets

- Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and currents, and the creation of magnetic fields by currents.
- There are two types of magnetic poles, called the north magnetic pole and south magnetic pole.
- North magnetic poles are those that are attracted toward the Earth's geographic north pole.
- Like poles repel and unlike poles attract.
- Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

22.2 Ferromagnets and Electromagnets

- Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
- All magnetism is created by electric current.
- Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
- The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually in millimeter-sized regions called domains.
- Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced to be magnetic.
- Above a material's Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
- Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

22.3 Magnetic Fields and Magnetic Field Lines

- Magnetic fields can be pictorially represented by magnetic field lines, the properties of which are as follows:
- 1. The field is tangent to the magnetic field line.
- 2. Field strength is proportional to the line density.
- 3. Field lines cannot cross.
- 4. Field lines are continuous loops.

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

• Magnetic fields exert a force on a moving charge q, the magnitude of which is

$$F = \text{qvB sin } \theta$$
,

where θ is the angle between the directions of ν and B.

• The SI unit for magnetic field strength B is the tesla (T), which is related to other units by

$$IT = \frac{1 \text{ N}}{C \cdot \text{m/s}} = \frac{1 \text{ N}}{A \cdot m}$$
.

- The *direction* of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of v, the fingers in the direction of B, and a perpendicular to the palm points in the direction of F.
- The force is perpendicular to the plane formed by v and B. Since the force is zero if v is parallel to B, charged particles often follow magnetic field lines rather than cross them.

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications

• Magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius

$$r = \frac{mv}{qB}$$
,

where v is the component of the velocity perpendicular to B for a charged particle with mass m and charge q.

22.6 The Hall Effect

- The Hall effect is the creation of voltage ε , known as the Hall emf, across a current-carrying conductor by a magnetic field.
- The Hall emf is given by

$$\varepsilon = \text{Blv}(B, v, \text{ and } l, \text{ mutually perpendicular})$$

for a conductor of width l through which charges move at a speed v.

22.7 Magnetic Force on a Current-Carrying Conductor

• The magnetic force on current-carrying conductors is given by $F = IIB \sin \theta$,

where I is the current, l is the length of a straight conductor in a uniform magnetic field B, and θ is the angle between I and B. The force follows RHR-1 with the thumb in the direction of I

22.8 Torque on a Current Loop: Motors and Meters

• The torque τ on a current-carrying loop of any shape in a uniform magnetic field. is $\tau = \text{NIAB sin } \theta$,

where N is the number of turns, I is the current, A is the area of the loop, B is the magnetic field strength, and θ is the angle between the perpendicular to the loop and the magnetic field.

22.9 Magnetic Fields Produced by Currents: Ampere's Law

• The strength of the magnetic field created by current in a long straight wire is given by $B = \frac{\mu_0 I}{2\pi r} (\text{long straight wire}),$

where I is the current, r is the shortest distance to the wire, and the constant $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$ is the permeability of free space.

- The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it.
- The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the path (magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as Ampere's law.
- The magnetic field strength at the center of a circular loop is given by

$$B = \frac{\mu_0 I}{2R}$$
 (at center of loop),

where R is the radius of the loop. This equation becomes $B = \mu_0 nI/(2R)$ for a flat coil of N loops. RHR-2 gives the direction of the field about the loop. A long coil is called a solenoid.

• The magnetic field strength inside a solenoid is

$$B = \mu_0$$
nI (inside a solenoid),

where n is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and direction.

22.10 Magnetic Force between Two Parallel Conductors

• The force between two parallel currents I_1 and I_2 , separated by a distance r, has a magnitude per unit length given by

$$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}.$$

• The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.

22.11 More Applications of Magnetism

• Crossed (perpendicular) electric and magnetic fields act as a velocity filter, giving equal and opposite forces on any charge with velocity perpendicular to the fields and of magnitude

$$v = \frac{E}{B}$$
.