Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

Although new claims have been added, it is believed that no excess claims fees are due since, during the prosecution of the present application, Applicants have previously paid for 143 total claims over 20 and Applicants have previously paid for 2 independent claims over 3.

In other words, Applicants *have previously paid* for a total of 163 claims including 5 independent claims.

Claims 1-163 (Cancelled).

164. (Currently Amended) A complimentary complementary metal oxide semiconductor (CMOS) integrated circuit, comprising:

a transmitter including[,]

a tunable oscillator having a tuning input,

a mixer having a first input coupled the <u>tunable</u> oscillator, a second input, and an output, and

a phase detector having a first input coupled to the mixer output, a second input, and an output coupled to the tuning input; and

a local oscillator coupled to the second input of the mixer

- 165. (Currently Amended) The CMOS integrated circuit of claim 164 wherein the tunable oscillator comprises a voltage controlled oscillator.
- 166. (Previously Presented) The CMOS integrated circuit of claim 164 wherein the transmitter further comprises a bandpass filter coupled between the mixer output and the first input of the phase detector.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

167. (Previously Presented) The CMOS integrated circuit of claim 166 wherein the transmitter further comprises a limiter coupled between the bandpass filter and the first input of the phase detector.

168. (Currently Amended) The CMOS integrated circuit of claim 164 wherein the transmitter further comprises a charge pump coupled between the phase detector output and the tuning input of the oscillator.

169. (Currently Amended) The CMOS integrated circuit of claim 164 wherein the transmitter further comprises a loop filter coupled between the phase detector output and the oscillator tuning input.

170. (Currently Amended) The CMOS integrated circuit of claim 164 wherein the tunable oscillator comprises a voltage controlled oscillator, the CMOS integrated circuit further comprising a bandpass filter coupled to the mixer, a limiter coupled between the bandpass filter and the first input of the phase detector, a charge pump coupled to the phase detector output, and a loop filter coupled between the charge pump and the tuning input of the oscillator.

171. (Previously Presented) The CMOS integrated circuit of claim 164 wherein the mixer comprises a subsampling mixer.

172. (Previously Presented) The CMOS integrated circuit of claim 171 wherein the mixer comprises a track and hold circuit coupled to the inputs of the mixer and the output of the mixer, and a bandpass circuit coupled to the first input of the mixer and the output of the mixer.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

173. (Previously Presented) The CMOS integrated circuit of claim 172 wherein the

mixer further comprises an input circuit disposed between the first input of the mixer and the

track and hold circuit.

174. (Previously Presented) The CMOS integrated circuit of claim 172 wherein the

mixer further comprises a buffer disposed between the track and hold circuit and the output of

the mixer.

175. (Previously Presented) The CMOS integrated circuit of claim 172 wherein the

bandpass circuit comprises an inductor coupled to the first input of the mixer and a capacitor

coupled to the output of the mixer.

176. (Previously Presented) The CMOS integrated circuit of claim 172 wherein the

track and hold circuit comprises a switch between the first input of the mixer and the output of

the mixer, the switch being adapted for control by a signal applied to the second input of the

mixer from the local oscillator.

177. (Previously Presented) The CMOS integrated circuit of claim 176 wherein the

switch comprises a transistor having a gate coupled to the second input of the mixer, a source

coupled to the first input of the mixer, and a drain, and wherein the bandpass circuit comprises

a capacitor coupled to the drain, and an inductor coupled to the source.

178. (Previously Presented) The CMOS integrated circuit of claim 177 wherein the

capacitor and inductor cooperate to provide a time constant related to a signal frequency

applied to the first input of the mixer from the tunable oscillator.

Page 4 of 29

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

179. (Previously Presented) The CMOS integrated circuit of claim 172 wherein the track and hold circuit comprises a transistor having an input node coupled to the first input of the mixer and an output node coupled to the output of the mixer, and a current source coupled to the output of the mixer, the current source being adapted for control by a signal applied to the second input of the mixer.

180. (Previously Presented) The CMOS integrated circuit of claim 179 wherein the current source comprises a second transistor having a gate coupled to the first input of the mixer, a drain coupled to the output of the mixer, and a source, and wherein the bandpass circuit comprises a capacitor coupled to the output of the mixer and an inductor coupled to the drain of the second transistor.

181. (Previously Presented) The CMOS integrated circuit of claim 180 wherein the capacitor and inductor cooperate to provide a time constant related to a signal frequency applied to the first input of the mixer from the tunable oscillator.

182. (Currently Amended) A transmission system, comprising:

a transmitter including[,]

a tunable oscillator having a tuning input,

a subsampling mixer having a first input coupled the $\underline{\text{tunable}}$ oscillator, a second input, and an output, and

a phase detector having a first input coupled to the mixer output, a second input, and an output coupled to the tuning input; and

a local oscillator coupled to the second input of the mixer.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

183. (Currently Amended) The transmission system of claim 182 wherein the <u>tunable</u> oscillator comprises a voltage controlled oscillator.

184. (Previously Presented) The transmission system of claim 182 wherein the transmitter further comprises a bandpass filter coupled between the subsampling mixer output and the first input of the phase detector.

185. (Previously Presented) The transmission system of claim 184 wherein the transmitter further comprises a limiter coupled between the bandpass filter and the first input of the phase detector.

186. (Currently Amended) The transmission system of claim 182 wherein the transmitter further comprises a charge pump coupled between the phase detector output and the tuning input of the oscillator.

187. (Currently Amended) The transmission system of claim 182 wherein the transmitter further comprises a loop filter coupled between the phase detector output and the oscillator tuning input.

188. (Currently Amended) The transmission system of claim 182 wherein the <u>tunable</u> oscillator comprises a voltage controlled oscillator, the transmission system further comprising a bandpass filter coupled to the mixer output, a limiter coupled between the bandpass filter and the first input of the phase detector, a charge pump coupled to the phase detector output, and a loop filter coupled between the charge pump and the tuning input of the oscillator.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

189. (Previously Presented) The transmission system of claim 171 wherein the mixer comprises a track and hold circuit coupled to the inputs of the mixer and the output of the mixer, and a bandpass circuit coupled to the first input of the mixer and the output of the mixer.

190. (Previously Presented) The transmission system of claim 189 wherein the mixer further comprises an input circuit disposed between the first input of the mixer and the track and hold circuit.

191. (Previously Presented) The transmission system of claim 189 wherein the mixer further comprises a buffer disposed between the track and hold circuit and the output of the mixer.

192. (Previously Presented) The transmission system of claim 189 wherein the bandpass circuit comprises an inductor coupled to the first input of the mixer and a capacitor coupled to the output of the mixer.

193. (Previously Presented) The transmission system of claim 189 wherein the track and hold circuit comprises a switch between the first input of the mixer and the output of the mixer, the switch being adapted for control by a signal applied to the second input of the mixer from the local oscillator.

194. (Previously Presented) The transmission system of claim 193 wherein the switch comprises a transistor having a gate coupled to the second input of the mixer, a source coupled to the first input of the mixer, and a drain, and wherein the bandpass circuit comprises a capacitor coupled to the drain, and an inductor coupled to the source.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

195. (Previously Presented) The transmission system of claim 194 wherein the capacitor and inductor cooperate to provide a time constant related to a signal frequency applied to the first input of the mixer from the tunable oscillator.

196. (Previously Presented) The transmission system of claim 189 wherein the track and hold circuit comprises a transistor having an input node coupled to the first input of the mixer and an output node coupled to the output of the mixer, and a current source coupled to the output of the mixer, the current source being adapted for control by a signal applied to the second input of the mixer.

- 197. (Previously Presented) The transmission system of claim 196 wherein the current source comprises a second transistor having a gate coupled to the first input of the mixer, a drain coupled to the output of the mixer, and a source, and wherein the bandpass circuit comprises a capacitor coupled to the output of the mixer and an inductor coupled to the drain of the second transistor
- 198. (Previously Presented) The transmission system of claim 197 wherein the capacitor and inductor cooperate to provide a time constant related to a signal frequency applied to the first input of the mixer from the tunable oscillator.
- 199. (Currently Amended) A complementary complementary metal oxide semiconductor (CMOS) transmitter system, comprising:

first oscillator means for generating a first signal having a tunable frequency, the first oscillating means comprising tuning means for tuning the frequency of the first signal;

mixer means for mixing the first signal with a second signal to produce a mixed signal;

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

detector means for detecting a phase difference between the mixed signal and an input signal, and generating an error signal which is a function of the phase difference, the tuning means being responsive to the error signal; and

second oscillator means for generating the second signal.

200. (Previously Presented) The CMOS transmitter system of claim 199 wherein the first oscillator means comprises a voltage controlled oscillator, the tuning means being responsive to a voltage of the error signal.

201. (Previously Presented) The CMOS transmitter system of claim 199 further comprising filter means for filtering the mixed signal before being applied to the detector means, the filtered mixed signal comprising a difference frequency between the tuned frequency of the first signal and a frequency of the second signal.

202. (Previously Presented) The CMOS transmitter system of claim 201 further comprising means for limiting the filtered mixed signal from the filter means before being applied to the detector means.

203. (Previously Presented) The CMOS transmitter system of claim 199 further comprising means for sourcing current to the tuning means responsive to the error signal.

204. (Previously Presented) The CMOS transmitter system of claim 199 further comprising means for filtering the error signal from the detecting means before being applied to the tuning means.

Page 9 of 29

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

205. (Previously Presented) The CMOS transmitter system of claim 199 wherein the first oscillator means comprises a voltage controlled oscillator, the tuning means being responsive to a voltage of the error signal, the CMOS transmitter system further comprising filter means for filtering the mixed signal before being applied to the detector means, the filtered mixed signal comprising a difference frequency between the tuned frequency of the first signal and a frequency of the second signal, means for limiting the filtered mixed signal from the filter means before being applied to the detector means, current means for sourcing current to the tuning means responsive to the error signal, and means for filtering the current sourced error signal from the current means before being applied to the tuning means.

- 206. (Previously Presented) The CMOS integrated circuit of claim 199 wherein the mixer means comprises a subsampling mixer.
- 207. (Previously Presented) The CMOS integrated circuit of claim 206 wherein the subsampling mixer comprises track and hold means for tracking and holding the first signal in response to the second signal, and limiting means for limiting the response of the track and hold means to a frequency band, the first signal being within the frequency band.
- 208. (Previously Presented) The CMOS integrated circuit of claim 207 further comprising means for buffering first signal before being applied to the track and hold means.
- 209. (Previously Presented) The CMOS integrated circuit of claim 207 wherein the limiting means comprises an inductor and capacitor each being coupled to the track and hold means.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

210. (Previously Presented) The CMOS integrated circuit of claim 207 wherein the track and hold means comprises a switch in a path of the first signal, the switch being controlled by the second signal.

211. (Previously Presented) A transmitter system, comprising:

first oscillator means for generating a first signal having a tunable frequency, the first oscillating means comprising tuning means for tuning the frequency of the first signal;

mixer means for mixing the first signal with a second signal to produce a mixed signal;

filter means for filtering the mixed signal to generate a difference signal between the frequency of the first signal and a harmonic of the second signal; and

detector means for detecting a phase difference between the filtered mixed signal and an input signal, and generating an error signal which is a function of the phase difference, the tuning means being responsive to the error signal; and

second oscillator means for generating the second signal.

- 212. (Previously Presented) The transmitter system of claim 211 wherein the first oscillator means comprises a voltage controlled oscillator, the tuning means being responsive to a voltage of the error signal.
- 213. (Previously Presented) The transmitter system of claim 211 wherein the second signal comprises a frequency different from the frequency of the first oscillator means
- 214. (Previously Presented) The transmitter system of claim 211 further comprising means for limiting the filtered mixed signal from the filter means before being applied to the detector means.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

215. (Previously Presented) The transmitter system of claim 211 further comprising means for sourcing current to the tuning means responsive to the error signal.

216. (Previously Presented) The transmitter system of claim 211 further comprising means for filtering the error signal from the detecting means before being applied to the tuning

means.

217. (Previously Presented) The transmitter system of claim 211 wherein the first oscillator means comprises a voltage controlled oscillator, the tuning means being responsive to a voltage of the error signal, and the second signal comprises a frequency different from the frequency of the first oscillator means, the transmitter system further comprising means for limiting the filtered mixed signal from the filter means before being applied to the detector means, current means for sourcing current to the tuning means responsive to the error signal, and

means for filtering the current sourced error signal from the current means before being applied

to the tuning means.

218. (Previously Presented) The transmitter system of claim 211 wherein the mixer comprises track and hold means for tracking and holding the first signal in response to the second signal, and limiting means for limiting the response of the track and hold means to a

frequency band, the first signal being within the frequency band.

219. (Previously Presented) The transmitter system of claim 218 further comprising

means for buffering first signal before being applied to the track and hold means

220. (Previously Presented) The transmitter system of claim 218 wherein the limiting

means comprises an inductor and capacitor each being coupled to the track and hold means.

Page 12 of 29

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

221. (Previously Presented) The transmitter system of claim 218 wherein the track and hold means comprises a switch in a path of the first signal, the switch being controlled by the second signal.

222. (New) A spread spectrum wireless communications device, comprising:

an integrated circuit that employs complementary metal oxide semiconductor (CMOS) technology, the integrated circuit comprising a local oscillator and a transmitter,

wherein the transmitter comprises a tunable oscillator, a mixer and a phase detector, wherein the tunable oscillator comprises a tuning input,

wherein the mixer comprises a first input, a second input and an output, the first input of the mixer being operatively coupled to the tunable oscillator,

wherein the phase detector comprises a first input, a second input and an output, the first input of the phase detector being operatively coupled to the output of the mixer, the output of the phase detector being operatively coupled to the tuning input, and

wherein the local oscillator is operatively coupled to the second input of the mixer.

- 223. (New) The spread spectrum wireless communications device according to claim 222, wherein the integrated circuit is part of a single integrated circuit chip.
- 224. (New) The spread spectrum communications device according to claim 222, wherein the spread spectrum communications device comprises a radio frequency (RF) wireless communications device.
- 225. (New) The spread spectrum communications device according to claim 224, wherein the RF wireless communications device performs spread spectrum modulation.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

226. (New) The spread spectrum communications device according to claim 224, wherein the RF wireless communications device performs direct sequence spread spectrum modulation.

227. (New) The spread spectrum communications device according to claim 226, wherein the RF wireless communications device performs orthogonal frequency division modulation.

228. (New) The spread spectrum communications device according to claim 224, wherein the RF wireless communications device performs frequency hopping.

229. (New) The spread spectrum communications device according to claim 228, wherein the RF wireless communications device performs orthogonal frequency division modulation.

230. (New) The spread spectrum communications device according to claim 224, wherein the RF wireless communications device supports a plurality of spread spectrum modulation techniques.

231. (New) The spread spectrum wireless communications device according to claim 224, wherein the integrated circuit is part of a single integrated circuit chip.

232. (New) The spread spectrum wireless communications device according to claim 222, wherein the spread spectrum wireless communications device performs frequency hopping.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

233. (New) The spread spectrum wireless communications device according to claim 222, wherein the spread spectrum wireless communications device performs direct sequence spread spectrum modulation.

234. (New) The spread spectrum wireless communications device according to claim 222, wherein the spread spectrum wireless communications device supports a plurality of different wireless spread spectrum modulation techniques.

235. (New) The spread spectrum wireless communications device according to claim 222, wherein the spread spectrum wireless communications device performs orthogonal frequency division multiplexing.

236. (New) The spread spectrum wireless communications device according to claim 222, wherein the spread spectrum wireless communications device supports communications using direct sequence spread spectrum modulation and communications using orthogonal frequency division multiplexing.

237. (New) The spread spectrum wireless communications device according to claim 222, wherein the spread spectrum wireless communications device supports communications using frequency hopping and communications using orthogonal frequency division multiplexing.

238. (New) The CMOS integrated circuit according to claim 164, wherein the transmitter is part of a wireless communications device.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

- 239. (New) The CMOS integrated circuit according to claim 238, wherein the wireless communications device comprises a radio frequency (RF) wireless communications device.
- 240. (New) The CMOS integrated circuit according to claim 239, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 241. (New) The CMOS integrated circuit according to claim 239, wherein the RF wireless communications device performs direct sequence spread spectrum modulation.
- 242. (New) The CMOS integrated circuit according to claim 241, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 243. (New) The CMOS integrated circuit according to claim 239, wherein the RF wireless communications device performs frequency hopping.
- 244. (New) The CMOS integrated circuit according to claim 243, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 245. (New) The CMOS integrated circuit according to claim 238, wherein the wireless communications device comprises an RF spread spectrum wireless communications device.
- 246. (New) The CMOS integrated circuit according to claim 238, wherein the CMOS integrated circuit is part of a single integrated circuit chip.
- 247. (New) The CMOS integrated circuit according to claim 246, wherein the single integrated circuit chip comprises a receiver.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

248. (New) The transmission system according to claim 182, wherein the transmitter is part of a wireless communications device.

- 249. (New) The transmission system according to claim 248, wherein the wireless communications device comprises a radio frequency (RF) wireless communications device.
- 250. (New) The transmission system according to claim 249, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 251. (New) The transmission system according to claim 249, wherein the RF wireless communications device performs direct sequence spread spectrum modulation.
- 252. (New) The transmission system according to claim 251, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 253. (New) The transmission system according to claim 249, wherein the RF wireless communications device performs frequency hopping.
- 254. (New) The transmission system according to claim 253, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 255. (New) The transmission system according to claim 248, wherein the wireless communications device comprises an RF spread spectrum wireless communications device.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

256. (New) The transmission system according to claim 249, wherein the transmitter is part of a single integrated circuit chip.

257. (New) The transmission system according to claim 256, wherein the single integrated circuit chip comprises a receiver of the wireless communications device.

258. (New) The transmission system according to claim 248,

wherein the wireless communications device comprises a spread spectrum wireless communications device.

wherein the transmitter is part of a single integrated circuit chip, and

wherein the single integrated circuit chip is part of the spread spectrum wireless communications device.

- 259. (New) The transmission system according to claim 258, wherein the single integrated circuit chip comprises a receiver of the spread spectrum wireless communications device.
- 260. (New) The CMOS transmitter system according to claim 199, wherein the CMOS transmitter system is part of a wireless communications device.
- 261. (New) The CMOS transmitter system according to claim 260, wherein the wireless communications device comprises a radio frequency (RF) wireless communications device.
- 262. (New) The CMOS transmitter system according to claim 261, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

- 263. (New) The CMOS transmitter system according to claim 261, wherein the RF wireless communications device performs direct sequence spread spectrum modulation.
- 264. (New) The CMOS transmitter system according to claim 263, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 265. (New) The CMOS transmitter system according to claim 261, wherein the RF wireless communications device performs frequency hopping.
- 266. (New) The CMOS transmitter system according to claim 265, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 267. (New) The CMOS transmitter system according to claim 260, wherein the wireless communications device comprises an RF spread spectrum wireless communications device.
- 268. (New) The CMOS transmitter system according to claim 267, wherein the CMOS transmitter system is part of a single integrated circuit chip.
- 269. (New) The CMOS transmitter system according to claim 268, wherein the single integrated circuit chip comprises a receiver of the wireless communications device.
- 270. (New) The transmitter system according to claim 211, wherein the transmitter system is part of a wireless communications device.
- 271. (New) The transmitter system according to claim 270, wherein the wireless communications device comprises a radio frequency (RF) wireless communications device.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

- 272. (New) The transmitter system according to claim 271, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 273. (New) The transmitter system according to claim 271, wherein the RF wireless communications device performs direct sequence spread spectrum modulation.
- 274. (New) The transmitter system according to claim 273, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 275. (New) The transmitter system according to claim 271, wherein the RF wireless communications device performs frequency hopping.
- 276. (New) The transmitter system according to claim 275, wherein the RF wireless communications device performs orthogonal frequency division multiplexing.
- 277. (New) The transmitter system according to claim 270, wherein the wireless communications device comprises an RF spread spectrum wireless communications device.
 - 278. (New) The transmitter system according to claim 271,

wherein the transmitter system employs complementary metal oxide semiconductor (CMOS) technology, and

wherein the first oscillator means, the mixer means, the filter means, the detector means and the second oscillator means are part of a single integrated circuit chip.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

279. (New) The transmitter system according to claim 278, wherein the single integrated circuit chip comprises a receiver of the wireless communications device.

280. (New) The spread spectrum wireless communications device according to claim 222, wherein the tunable oscillator comprises a voltage controlled oscillator.

281. (New) The spread spectrum wireless communications device according to claim 222, wherein the transmitter comprises a bandpass filter that is operatively coupled between the output of the mixer and the first input of the phase detector.

282. (New) The spread spectrum wireless communications device according to claim 281, wherein the transmitter comprises a limiter that is operatively coupled between the bandpass filter and the first input of the phase detector.

283. (New) The spread spectrum wireless communications device according to claim 222, wherein the transmitter comprises a charge pump that is operatively coupled between the output of the phase detector and the tuning input.

284. (New) The spread spectrum wireless communications device according to claim 222, wherein the transmitter comprises a loop filter that is operatively coupled between the output of the phase detector and the tuning input.

285. (New) The spread spectrum wireless communications device according to claim 222.

wherein the tunable oscillator comprises a voltage controlled oscillator,

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

wherein the integrated circuit comprises a bandpass filter, a limiter, a charge pump and a loop filter,

wherein the bandpass filter is operatively coupled to the mixer,

wherein the limiter is operatively coupled between the bandpass filter and the first input of the phase detector,

wherein the charge pump is operatively coupled to the phase detector output, and

wherein the loop filter is operatively coupled between the charge pump and the tuning input.

- 286. (New) The spread spectrum wireless communications device according to claim 222, wherein the mixer comprises a subsampling mixer.
- 287. (New) The spread spectrum wireless communications device according to claim 286,

wherein the mixer comprises a track and hold circuit and a bandpass circuit,

wherein the track and hold circuit is operatively coupled to the first input of the mixer, the second input of the mixer and the output of the mixer, and

wherein the bandpass circuit is operatively coupled to the first input of the mixer and the output of the mixer.

288. (New) The spread spectrum wireless communications device according to claim 287, wherein the mixer comprises an input circuit that is disposed between the first input of the mixer and the track and hold circuit.

U.S. Application No. 09/695,715, filed October 23, 2000 Attorney Docket No. 15258US03 Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

- 289. (New) The spread spectrum wireless communications device according to claim 287, wherein the mixer comprises a buffer that is disposed between the track and hold circuit and the output of the mixer.
- 290. (New) The spread spectrum wireless communications device according to claim 287,

wherein the bandpass circuit comprises an inductor and a capacitor, wherein the inductor is operatively coupled to the first input of the mixer, and wherein the capacitor is operatively coupled to the output of the mixer.

291. (New) The spread spectrum wireless communications device according to claim 287.

wherein the track and hold circuit comprises a switch that is disposed between the first input of the mixer and the output of the mixer, and

wherein the switch is controlled by a signal that is applied to the second input of the mixer from the local oscillator.

292. (New) The spread spectrum wireless communications device according to claim 291,

wherein the switch comprises a transistor having a gate, a source and a drain, wherein the gate is operatively coupled to the second input of the mixer, wherein the source is operatively coupled to the first input of the mixer, wherein the bandpass circuit comprises a capacitor and an inductor, wherein the capacitor is operatively coupled to the drain, and wherein the inductor is operatively coupled to the source.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

293. (New) The spread spectrum wireless communications device according to claim 292, wherein the capacitor and the inductor cooperate to provide a time constant that is related to a signal frequency that is applied to the first input of the mixer from the tunable oscillator.

294. (New) The spread spectrum wireless communications device according to claim 287.

wherein the track and hold circuit comprises a transistor and a current source, wherein the transistor includes an input node and an output node,

wherein the input node of the transistor is operatively coupled to the first input of the mixer.

wherein the output node of the transistor is operatively coupled to the output of the mixer, wherein the current source is operatively coupled to the output of the mixer, and wherein the current source is controlled by a signal that is applied to the second input of the mixer.

.295. (New) The spread spectrum wireless communications device according to claim 294.

wherein the current source comprises a second transistor having a gate, a drain and a source.

wherein the gate is operatively coupled to the first input of the mixer, wherein the drain is operatively coupled to the output of the mixer, wherein the bandpass circuit comprises a capacitor and an inductor, wherein the capacitor is operatively coupled to the output of the mixer, and wherein the inductor is operatively coupled to the drain of the second transistor.

Attorney Docket No. 15258US03

Amendment dated January 23, 2007

Accompanying Request for Continued Examination (RCE) dated January 23, 2007

296. (New) The spread spectrum wireless communications device according to claim 295, wherein the capacitor and the inductor cooperate to provide a time constant that is related to a signal frequency that is applied to the first input of the mixer from the tunable oscillator.

297. (New) The spread spectrum wireless communications device according to claim 231, wherein the single integrated circuit chip comprises a receiver of the spread spectrum wireless communications device.