REPORT

Experiment 1: RC circuit with unit feedback

	rise time	delay time	steady-state error
	(s)	(s)	(V)
Theoretical Result			0.5
Experiment Result	0.285	0.080	0.530
Simulation Result	0.2197	0.0737	0.5000

注意事項:請參考投影片第5頁的定義

1. Calculate the **closed loop transfer function**.

$$\begin{aligned} V_{out} &= -1 \times (V_{out} - V_{in}) \times \frac{1}{0.2s + 1} \\ &\Rightarrow (0.2s + 1)V_{out} = -V_{out} + V_{in} \\ &\Rightarrow (0.2s + 2)V_{out} = V_{in} \\ &\Rightarrow \frac{V_{out}}{V_{in}} = \frac{1}{0.2s + 2} \end{aligned}$$

2. V_{out} and Vin waveform (1 pic):

вув =

3. Simulation

Closed loop transfer function from command window:

The unit step response(1 pic):

ans =

struct with fields:

RiseTime: 0.2197
SettlingTime: 0.3912
SettlingMin: 0.4523
SettlingMax: 0.5000

Overshoot: 0 Undershoot: 0

> Peak: 0.5000 PeakTime: 1.0546

delayTime =

0.0737

sserror =

0.5000

Experiment 2: RC circuit with P-controller and unit feedback

	rise time	delay time	steady-state error
	(s)	(s)	(V)
Theoretical Result			0.0909
Experiment Result	0.050	0.014	0.1
Simulation Result	0.0399	0.0134	0.0909

注意事項:請參考投影片第5頁的定義

1. Calculate K_P and the **closed loop transfer function**.

Assume V_2 is the output of U1. The relation of input and output of difference amplifier:

$$V_2 = V_{out} - V_{in}$$

Assume V_3 is the output of U2. The relation of input and output of inverting amplifier:

$$\frac{0 - V_2}{R_6} + \frac{0 - V_3}{R_7} = 0$$

$$\Rightarrow V_3 = -\frac{R_7}{R_6} V_2$$

Substitute $V_2 = V_{out} - V_{in}$:

$$= \frac{100}{10}(V_{in} - V_{out})$$
$$= 10(V_{in} - V_{out})$$

The relation of input and output of plant:

$$10V_{in} - 10V_{out} = (sR_5C_1 + 1)V_{out}$$

$$\Rightarrow V_{out} = \frac{10V_{in}}{sR_5C_1 + 11}$$

$$\Rightarrow \underline{K_p = 10_\#}$$

$$\Rightarrow \underline{V_{out}} = \frac{10}{0.2s + 11}V_{in}_\#$$

2. V_{out} and Vin waveform (1 pic):

3. Simulation

Closed loop transfer function from command window:

10 -----0.2 s + 11

The unit step response(1 pic):

ans =

struct with fields:

RiseTime: 0.0399
SettlingTime: 0.0711
SettlingMin: 0.8223
SettlingMax: 0.9091

Overshoot: 0
Undershoot: 0

Peak: 0.9091 PeakTime: 0.1917

delayTime =

0.0134

sserror =

0.0909

Discuss:

Try to explain the effect of the gain K_P on the overall system.

Make the response faster and improve the steady state error.

Experiment 3: RC circuit with I-controller and unit feedback

	Maximum	peak time	rise time	delay	settling time	steady-state
	overshoot (%)	(s)	(s)	time (s)	for 5% (s)	error (V)
Theoretical Result						0
Experiment Result	52.83	0.150	0.092	0.055	1.31	0.010
Simulation Result	70.2118	0.1405	0.0509	0.2817	1.5630	0.0064

注意事項:請參考投影片第7頁的定義

1. Calculate K_I and the closed loop transfer function.

The output of U1 V_1 is equal to

$$V_1 = V_{out} - V_{in}$$

The relationship between V_1 and V_2 around U2 is

$$\frac{0 - V_1}{R_6} + \frac{0 - V_2}{\frac{1}{sC_2}} = 0$$

Substitute $V_1 = V_{out} - V_{in}$:

$$\Rightarrow V_2 = \frac{1}{sC_2R_6}(V_{in} - V_{out})$$
$$= \frac{1}{0.01s}(V_{in} - V_{out})$$
$$\Rightarrow K_I = 100_{\#}$$

The relationship between V_2 and V_{out} :

$$\frac{V_{out} - V_2}{R_5} + \frac{V_{out}}{\frac{1}{sC_1}} = 0$$

$$\Longrightarrow V_{out} - V_2 = -sC_1R_5V_{out}$$

Substitute V_2 :

$$\Rightarrow (sC_1R_5 + 1)V_{out} = V_2 = \frac{1}{0.01s}(V_{in} - V_{out})$$
$$\Rightarrow (0.2s + 1)(0.01s)V_{out} + V_{out} = V_{in}$$

$$\Rightarrow \left(\frac{1}{500}s^{2} + \frac{1}{100}s + 1\right)V_{out} = V_{in}$$

$$\Rightarrow V_{out} = \frac{1}{0.002s^{2} + 0.01s + 1}V_{in}$$

2. V_{out} and Vin waveform (1 pic):

3. Simulation

Closed loop transfer function from command window:

The unit step response(1 pic):

ans =

struct with fields:

RiseTime: 0.0509
SettlingTime: 1.5630
SettlingMin: 0.5072
SettlingMax: 1.7021
Overshoot: 70.2118

Undershoot: 0

Peak: 1.7021 PeakTime: 0.1405

delayTime =

0.2817

sserror =

0.0064

Discuss:

Try to explain why the steady-state error is close to zero and the effect of the gain K_I on the overall system.

When the output reach steady state, capacitor C2 will be open circuit because the current through it $\frac{V_{out}-V_{in}-0}{R_6}$ is approximately 0. Therefore, the steady state error is close to zero.

The effect of the gain K_I is to eliminate the steady state error.

Experiment 4: RC circuit with PI-controller and unit feedback

	Maximum	peak time	rise time	delay	settling time	steady-state
	overshoot (%)	(s)	(s)	time (s)	for 5% (s)	error (V)
Theoretical Result						0
Experiment Result	3.774	0.085	0.070	0.019	0.198	0.004
Simulation Result	4.8838	0.0974	0.0358	0.0127	0.2007	0.00064794

注意事項:請參考投影片第7頁的定義

1. Calculate K_P , K_I and the closed loop transfer function.

The difference amplifier:

$$V_1 = V_{out} - V_{in}$$

The PI controller:

$$\frac{0 - V_1}{R_6} + \frac{0 - V_2}{R_7 + \frac{1}{sC_2}} = 0$$

$$\Rightarrow \frac{V_2}{\frac{sC_2R_7 + 1}{sC_2}} = -\frac{V_1}{R_6}$$

$$\Rightarrow V_2 = -\frac{1}{R_6} \times \frac{sC_2R_7 + 1}{sC_2} V_1$$

$$= -\frac{C_2R_7s + 1}{sC_2R_6} V_1$$

$$= \frac{\frac{s}{10} + 1}{\frac{s}{100}} (V_{in} - V_{out})$$

$$= \frac{10s + 100}{s} (V_{in} - V_{out})$$

$$\Rightarrow K_p = 10, K_I = 100_{\#}$$

The plant:

$$\frac{V_{out}}{\frac{1}{sC_1}} + \frac{V_{out} - V_2}{R_5} = 0$$

$$\Rightarrow (sC_1R_5 + 1)V_{out} = V_2$$

$$\Rightarrow V_{out} = \frac{1}{sC_1R_5 + 1}V_2$$

$$= \frac{1}{0.2s + 1} \left(\frac{10s + 100}{s}\right) (V_{in} - V_{out})$$

$$= \frac{10s + 100}{0.2s^2 + s} (V_{in} - V_{out})$$

$$\Rightarrow V_{out} = \frac{\frac{10s + 100}{0.2s^2 + s}}{1 + \frac{10s + 100}{0.2s^2 + s}} V_{in}$$

$$\Rightarrow V_{out} = \frac{10s + 100}{0.2s^2 + 11s + 100} V_{in}$$

2. V_{out} and Vin waveform (1 pic):

3. Simulation

Closed loop transfer function from command window:

The unit step response(1 pic):

ans =

struct with fields:

RiseTime: 0.0358
SettlingTime: 0.2007
SettlingMin: 0.9017
SettlingMax: 1.0488
Overshoot: 4.8838

Undershoot: 0

Peak: 1.0488
PeakTime: 0.0974

delayTime =

0.0127

sserror =

6.4794e-04

Discuss:

Try to explain the effect of PI-controller on the overall system and how to design K_P and K_I .

The PI-controller both the rise time and the steady state errors of the system.

Increasing K_p results in a faster response of the control system. However, an increase in K_p above a certain value can make the system unstable.

Increasing K_i helps in eliminating steady-state error, but increases oscillations and overshoot.