AIFA Problem Reduction Search

18/01/2024

Koustav Rudra

Problem Reduction Search

- Planning how best to solve a problem that can be recursively decomposed into sub-problems in multiple ways
 - Matrix multiplication problem
 - Tower of Hanoi
 - Theorem proving

Formulation

- AND/OR Graph
 - An OR node represents a choice between possible decompositions
 - An AND node represents a given decomposition
- Game Trees
 - Max/Min nodes
 - Max nodes represent the choice of my opponent
 - Min nodes represent my choice

Each node has a separate optimization criteria

• This is when heuristics is not present

AO*: Example

Algorithm AO*

- Initialize: Set $G^*=\{s\}$, f(s)=h(s)
 - If $s \in T$, terminate and label s as solved
- Terminate:
 - If s is solved, then Terminate
- Select: Select a nonterminal leaf node n from the marked subtree
- Expand:
 - Make explicit the successors of n
 - For each new successor, m:
 - Set f(m)=h(m)
 - If m is terminal, label m solved
- Cost revision: Call cost-revision(n)
- Loop: Go to Step 2

Cost Revision in AO*: cost-revise(n)

- Create $Z=\{n\}$
- If Z = {} return
- Select a node m from Z such that m has no descendants in Z
- If m is an AND node with successors $r_1, r_2, ..., r_k$:
 - Set $f(m) = \sum (f(r_i) + C(m, r_i))$
 - Mark the edge to each successor of m
 - If each successor is labeled SOLVED
 - Then label m as SOLVED

Cost Revision in AO*: cost-revise(n)

- If m is an OR node with successors $r_1, r_2, ..., r_k$:
 - Set $f(m) = \min\{f(r_i) + C(m, r_i)\}$
 - Mark the edge to the best successor of m
 - If the marked successor is labeled SOLVED
 - Then label m as SOLVED
- If the cost of label m has changed,
 - Then insert those parents of m into Z for which m is a marked successor

OPEN SET		SELECT	TER	EXPANDED	COST RE	VISION
[1(7)]		1(7)	N	[2(4,N),3(3,N)]		[1(7)]
START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED	NEW LIST
[1(7)]	N	1(7)	[1(10)]	[(1,2),(1,3)]	N	[]

OPEN SET	SELECT	TER	EXPANDED	COST REVISION
[2(4),3(3)]	3(3)	N	[2(4,N),6(9,S),7(7,S)]	[3(3)]

START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED	NEW LIST
[3(3)]	N	3(3)	[3(7)]	[(3,7)]	S	[1(10)]
[1(10)]	N	1(10)	[1(14)]	[(1,2),(1,3)]	N	

OPEN SET		SELECT	TER	EXPANDED	COST REVISION	
[2(4),6(9),7(7)]		2(4)	N	[4(2,N),5(5,N),6(9,S),7(7,S)]	[2(4)]	
START LIST	RET	SELECT	UPDATE	FDGF MARK	SOLVED NEW LIST	

START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED	NEW LIST
[2(4)]	N	2(4)	[2(4)]	[(2,4)]	N	[]

OPEN SET		SELECT	TER	EXPANDED	COST REV	VISION
[4(2),5(5),6(9),7(7)]	4(2)	N	[8(3,S),9(10,S),5(5,N),6(9,S),7(7,S)]		[4(2)]
START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED	NEW LIST

START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED	NEW LIST
[4(2)]	N	4(2)	[4(14)]	[(4,8),(4,9)]	S	[2(4)]
[2(4)]	N	2(4)	[2(6)]	[(2,5)]	N	[1(14)]
[1(14)]	N	1(14)	[1(16)]	[(1,2),(1,3)]	N	[]

OPEN SET		SELECT	TER	EXPANDED	COST REVISION
[8(3),5(5),9(10),6(9),	7(7)]	5(5)	N	[8(3,S),9(10,S),10(3,S),11(4,S),6(9,S),7(7,S)]	[5(5)]
START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED NEW LIST

START LIST	RET	SELECT	UPDATE	EDGE MARK	SOLVED	NEW LIST
[5(5)]	N	5(5)	[5(7)]	[(5,10),(5,11)]	S	[2(6)]
[2(6)]	N	2(6)	[2(8)]	[(2,5)]	S	[1(16)]
[1(16)]	N	1(16)	[1(18)]	[(1,2),(1,3)]	S	[]

Thank You