PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 14/35, 38/16, C07H 16/12, 21/04, C12N 5/10, 15/63, C12Q 1/68, G01N 33/569

(11) International Publication Number:

WO 97/00067

(43) International Publication Date:

3 January 1997 (03.01.97)

(21) International Application Number:

PCT/US96/10375

A1

(22) International Filing Date:

14 June 1996 (14.06.96)

(30) Priority Data:

60/000,254

15 June 1995 (15.06.95)

US

(71) Applicant (for all designated States except US): UNIVERSITY OF VICTORIA [CA/CA]; 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2 (CA).

(72) Inventor; and

(75) Inventor/Applicant (for US only): NANO, Francis, E. [US/CA]; #4-245 Ontario Street, Victoria, British Columbia V8V IN1 (CA).

(74) Agent: POLLEY, Richard, J.; Klarquist Sparkman Campbell Leigh & Whinston, L.L.P., One World Trade Center, Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204-2988 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, ČA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES

(57) Abstract

Nucleotide sequences isolated from Mycobacterium tuberculosis are disclosed. These sequences are shown to encode immunostimulatory peptides. The invention encompasses, among other things, vaccine preparations formulated using these peptides.

WO 97/00067 PCT/US96/10375

-1-

MYCOBACTERIUM TUBERCULOSIS DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES

CROSS REFERENCE TO RELATED CASES

This application claims the benefit of U.S. Provisional Application No. 60/000,254, filed June 15, 1995, which is incorporated herein by reference.

I. BACKGROUND

5

10

15

20

25

30

35

40

A. THE RISE OF TUBERCULOSIS

Over the past few years the editors of the Morbidity and Mortality Weekly Report have chronicled the unexpected rise in tuberculosis cases. It has been estimated that worldwide there are one billion people infected with M. ruberculosis, with 7.5 million active cases of tuberculosis. Even in the United States, tuberculosis continues to be a major problem especially among the homeless, Native Americans. African-Americans, immigrants, and the elderly. HIV-infected individuals represent the newest group to be affected by tuberculosis. Of the 88 million new cases of tuberculosis expected in this decade approximately 10% will be attributable to HIV infection.

The emergence of multi-drug resistant strains of *M. tuberculosis* has complicated matters further and even raises the possibility of a new tuberculosis epidemic. In the U.S. about 14% of *M. tuberculosis* isolates are resistant to at least one drug, and approximately 3% are resistant to at least two drugs. *M. tuberculosis* strains have even been isolated that are resistant to all seven drugs in the repertoire of drugs commonly used to combat tuberculosis. Resistant strains make treatment of tuberculosis extremely difficult: for example, infection with *M. tuberculosis* strains resistant to isoniazid and rifampin leads to mortality rates of approximately 90% among HIV-infected individuals. The mean time to death after diagnosis in this population is 4-16 weeks. One study reported that of nine immunocompetent health care workers and prison guards infected with drug resistant *M. tuberculosis*, five died. The expected mortality rate for infection with drug sensitive *M. tuberculosis* is 0%.

The unrelenting persistence of mycobacterial disease worldwide, the emergence of a new, highly susceptible population, and the recent appearance of drug resistant strains point to the need for new and better prophylactic and therapeutic treatments of mycobacterial diseases.

B. TUBERCULOSIS AND THE IMMUNE SYSTEM

Infection with M. tuberculosis can take on many manifestations. The growth in the body of M. tuberculosis and the pathology that it induces is largely dependent on the type and vigor of the immune response. From mouse genetic studies it is known that innate properties of the macrophage play a large role in containing disease (1). Initial control of M. tuberculosis may also be influenced by reactive $\gamma\delta$ T cells. However, the major immune response responsible for containment of M. tuberculosis is via helper T cells (Th1) and to a lesser extent cytotoxic T cells (2). Evidence suggests that there is very little role for the humoral response. The ratio of responding Th1 to Th2 cells has been proposed to be involved in the phenomenon of suppression.

Th1 cells are thought to convey protection by responding to *M. tuberculosis* T cell epitopes and secreting cytokines, particularly interferon- γ , which stimulate macrophages to kill *M. tuberculosis*. While such an immune response normally clears infections by many facultative intracellular pathogens, such as *Salmonella*, *Listeria* or *Francisella*, it is only able to contain the growth of other pathogens such as *M. tuberculosis* and *Toxoplasma*. Hence, it is likely that *M. tuberculosis* has the ability to suppress a clearing immune response, and mycobacterial components such as lipoarabinomannan are thought to be potential agents of this suppression. Dormant *M. tuberculosis* can remain in the body for long periods of time and can emerge to cause disease when the immune system wanes due to age or other effects such as infection with HIV-1.

10

15

20

25

30

35

Historically it has been thought that one needs replicating *Mycobacteria* in order to effect a protective immunization. An hypothesis explaining the molecular basis for the effectiveness of replicating mycobacteria in inducing protective immunity has been proposed by Orme and co-workers (3). These scientists suggest that antigens are pinocytosed from the mycobacterial-laden phagosome and used in antigen presentation. This hypothesis also explains the basis for secreted proteins effecting a protective immune response.

Antigens that stimulate T cells from M. tuberculosis infected mice or from PPD-positive humans are found in both the whole mycobacterial cells and also in the culture supernatants (3, 4, 5-7, 34). Recently Pal and Horwitz (8) were able to induce partial protection in guinea pigs by vaccinating with M. tuberculosis supernatant fluids. Similar results were found by Andersen using a murine model of tuberculosis (9). Other studies include reference nos. 34, 12. Although these works are far from definitive they do strengthen the notion that protective epitopes can be found among secreted proteins and that a non-living vaccine can protect against tuberculosis.

For the purposes of vaccine development one needs to find epitopes that confer protection but do not contribute to pathology. An ideal vaccine would contain a cocktail of T-cell epitopes that preferentially stimulate Th1 cells and are bound by different MHC haplotypes. Although such vaccines have never been made there is at least one example of a synthetic T-cell epitope inducing protection against an intracellular pathogen (10). It is an object of this invention to provide *M. tuberculosis* DNA sequences that encode bacterial peptides having an immunostimulatory activity. Such immunostimulatory peptides will be useful in the treatment, diagnosis and prevention of tuberculosis.

II. SUMMARY OF THE INVENTION

The present invention provides DNA sequences isolated from *Mycobacterium tuberculosis*. Peptides encoded by these DNA sequences are shown to stimulate the production of the macrophage-stimulating cytokine, gamma interferon ("INF- γ "), in mice. Critically, the production of INF- γ by CD4 cells in mice has been shown to correlate with maximum expression of protective immunity against tuberculosis (11). Furthermore, in human patients with active "minimal" or "contained" tuberculosis, it appears that the containment of the disease may be attributable, at least in part, to the production of CD4 Th-1-like lymphocytes that release INF- γ (12).

Hence, the DNA sequences provided by this invention encode peptides that are capable of stimulating T-cells to produce INF- γ . That is, these peptides act as epitopes for CD4 T-cells in the immune system. Studies have demonstrated that peptides isolated from an infectious agent and which are shown to be T-cell epitopes can protect against the disease caused by that agent when administered as a vaccine (13, 10). For example, T-cell epitopes from the parasite *Leishmania major* have been shown to be effective when administered as a vaccine (10, 13-14). Therefore, the immunostimulatory peptides (T-cell epitopes) encoded by the disclosed DNA sequences may be used, in purified form, as a vaccine against tuberculosis.

As noted, the nucleotide sequences of the present invention encode immunostimulatory peptides. In a number of instances, these nucleotide sequences are only a part of a larger open reading frame (ORF) of an *M. tuberculosis* operon. The present invention enables the cloning of the complete ORF using standard molecular biology techniques, based on the nucleotide sequences provided herein. Thus, the present invention encompasses both the nucleotide sequences disclosed herein and the complete *M. tuberculosis* ORFs to which they correspond. However, it is noted that since each of the nucleotide sequences disclosed herein encodes an immunostimulatory peptide, the use of larger peptides encoded by the complete ORFs is not necessary for the practice of the invention. Indeed, it is anticipated that, in some instances, proteins encoded by the corresponding ORFs may be less immunostimulatory than the peptides encoded by the nucleotide sequences provided herein.

One aspect of the present invention is an immunostimulatory preparation comprising at least one peptide encoded by the DNA sequences presented herein. Such a preparation may include the purified peptide or peptides and one or more pharmaceutically acceptable adjuvants, diluents and/or excipients. Another aspect of the

WO 97/00067

10

15

20

25

30

35

40

invention is a vaccine comprising one or more peptides encoded by nucleotide sequences provided herein. This vaccine may also include one or more pharmaceutically acceptable excipients, adjuvants and/or diluents.

Another aspect of the present invention is an antibody specific for an immunostimulatory peptide encoded by a nucleotide sequence of the present invention. Such antibodies may be used to detect the present of *M. tuberculosis* antigens in medical specimens, such as blood or sputum. Thus, these antigens may be used to diagnose tuberculosis infections.

The present invention also encompasses the diagnostic use of purified peptides encoded by the nucleotide sequences of the present invention. Thus, the peptides may be used in a diagnostic assay to detect the presence of antibodies in a medical specimen, which antibodies bind to the *M. tuberculosis* peptide and indicate that the subject from which the specimen was removed was previously exposed to *M. tuberculosis*.

The present invention also provides an improved method of performing the tuberculin skin test to diagnose exposure of an individual to *M. tuberculosis*. In this improved skin test, purified immunostimulatory peptides encoded by the nucleotide sequences of this invention are employed. Preferably, this skin test is performed with one set of the immunostimulatory peptides, while another set of the immunostimulatory peptides is used to formulate vaccine preparations. In this way, the tuberculin skin test will be useful in distinguishing between subjects infected with tuberculosis and subjects who have simply been vaccinated. In this manner, the present invention may overcome a serious limitation inherent in the present BCG vaccine/tuberculin skin test combination.

Other aspects of the present invention include the use of probes and primers derived from the nucleotide sequences disclosed herein to detect the presence of *M. tuberculosis* nucleic acids in medical specimens.

A further aspect of the present invention is the discovery that a significant proportion of the immunostimulatory peptides are homologous to proteins known to be located in bacterial cell surface membranes. This discovery suggests that membrane-bound peptides, particularly those from *M. tuberculosis*, may be a new source of antigens for use in vaccine preparations.

III. BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the deduced amino acid sequence of the full length MTB2-92 protein.

Fig. 2 shows an SDS polyacrylamide gel (12%) representing the different stages of the purification of MTB2-92 Lane 1:- Molecular weight markers (high range, GlBCO-BRL, Grand Island, NY, U.S.A.); Lane 2:- the IPTG induced crude bacterial lysate of *E. coli* JM109 containing pMAL-MTB2-92; Lane 3:- Uninduced crude bacterial lysate of *E. coli* JM109 containing pMAL-MTB2-92; Lane 4:- Eluate from the amylose-resin column containing the MBP-MTB2-92 fusion protein; Lane 5:- Eluate shown in previous lane after cutting with protease Factor Xa; Lane 6:- Eluate from the Ni-NTA column, containing MTB2-92.

IV. DESCRIPTION OF THE INVENTION

A. DEFINITIONS

Particular terms and phrases used herein have the meanings set forth below.

"Isolated". An "isolated" nucleic acid has been substantially separated or purified away from other nucleic acid sequences in the cell of the organism in which the nucleic acid naturally occurs, i.e., other chromosomal and extrachromosomal DNA and RNA. The term "isolated" thus encompasses nucleic acids purified by standard nucleic acid purification methods. The term also embraces nucleic acids prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids.

The nucleic acids of the present invention comprise at least a minimum length able to hybridize specifically with a target nucleic acid (or a sequence complementary thereto) under stringent conditions as defined below. The length of a nucleic acid of the present invention is preferably 15 nucleotides or greater in length, although a shorter nucleic acid may be employed as a probe or primer if it is shown to specifically hybridize under stringent conditions with a target nucleic acid by methods well known in the art.

"Probes" and "primers". Nucleic acid probes and primers may readily be prepared based on the nucleic acid sequences provided by this invention. A "probe" comprises an isolated nucleic acid attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed, e.g., in reference nos. 15 and 16.

"Primers" are short nucleic acids, preferably DNA oligonucleotides 15 nucleotides or more in length, which are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods known in the art.

As noted, probes and primers are preferably 15 nucleotides or more in length, but, to enhance specificity, probes and primers of 20 or more nucleotides may be preferred.

Methods for preparing and using probes and primers are described, for example, in reference nos. 15, 16 and 17. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 6 1991, Whitehead Institute for Biomedical Research, Cambridge, MA).

"Substantial similarity". A first nucleic acid is "substantially similar" to a second nucleic acid if, when optimally aligned (with appropriate nucleotide insertions or deletions) with the other nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 75%-90% of the nucleotide bases, and preferably greater than 90% of the nucleotide bases. ("Substantial sequence complementarity" requires a similar degree of sequence complementarity.) Sequence similarity can be determined by comparing the nucleotide sequences of two nucleic acids using sequence analysis software such as the Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, Madison, WI).

"Operably linked". A first nucleic acid sequence is "operably" linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Recombinant". A "recombinant" nucleic acid is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques.

"Stringent Conditions" and "Specific". The nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence, e.g., to a full length *Mycobacterium tuberculosis* gene that encodes an immunostimulatory peptide.

The term "stringent conditions" is functionally defined with regard to the hybridization of a nucleic-acid probe to a target nucleic acid (i.e., to a particular nucleic acid sequence of interest) by the hybridization procedure discussed in Sambrook et al. (1989) (reference no. 15) at 9.52-9.55. See also, reference no. 15 at 9.47-9.52, 9.56-9.58; reference no. 18 and reference no. 19.

Nucleic-acid hybridization is affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide-base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art.

In preferred embodiments of the present invention, stringent conditions are those under which DNA molecules with more than 25% sequence variation (also termed "mismatch") will not hybridize. Such conditions

30

25

10

15

20

35

10

15

20

25

30

35

40

are also referred to as conditions of 75% stringency (since hybridization will occur only between molecules with 75% sequence identity or greater). In more preferred embodiments, stringent conditions are those under which DNA molecules with more than 15% mismatch will not hybridize (conditions of 85% stringency). In most preferred embodiments, stringent conditions are those under which DNA molecules with more that 10% mismatch will not hybridize (i.e. conditions of 90% stringency).

When referring to a probe or primer, the term "specific for (a target sequence)" indicates that the probe or primer hybridizes under stringent conditions substantially only to the target sequence in a given sample comprising the target sequence.

"Purified" - a "purified" peptide is a peptide that has been extracted from the cellular environment and separated from substantially all other cellular peptides. As used herein, the term peptide includes peptides, polypeptides and proteins. In preferred embodiments, a "purified" peptide is a preparation in which the subject peptide comprises 80% or more of the protein content of the preparation. For certain uses, such as vaccine preparations, even greater purity may be necessary.

"Immunostimulatory" - the phrase "immunostimulatory peptide" as used herein refers to a peptide that is capable of stimulating INF- γ production in the assay described in section B 5 below. In preferred embodiments, an immunostimulatory peptide is one capable of inducing greater than twice the background level of this assay determined using T-cells stimulated with no antigens or negative control antigens. Preferably, the immunostimulatory peptides are capable of inducing more than 0.01 ng/ml of INF- γ in this assay system. In more preferred embodiments, an immunostimulatory peptide is one capable of inducing greater than 10 ng/ml of INF- γ in this assay system.

B. MATERIALS AND METHODS

1. STANDARD METHODOLOGIES

The present invention utilizes standard laboratory practices for the cloning, manipulation and sequencing of nucleic acids, purification and analysis of proteins and other molecular biological and biochemical techniques, unless otherwise stipulated. Such techniques are explained in detail in standard laboratory manuals such as Sambrook et al. (15); and Ausubel et al. (16).

Methods for chemical synthesis of nucleic acids are discussed, for example, in reference nos. 20 and 21. Chemical synthesis of nucleic acids can be performed, for example, on commercial automated oligonucleotide synthesizers.

2. ISOLATION OF *MYCOBACTERIUM TUBERCULOSIS* DNA SEQUENCES ENCODING IMMUNOSTIMULATORY PROTEINS

Mycobacterium tuberculosis DNA was obtained by the method of Jacobs et al. (22). Samples of the isolated DNA were partially digested with one of the following restriction enzymes HinPI, Hpall, Acil. Taql, BsaHl, Narl. Digested fragments of 0.2-5kb were purified from agarose gels and then ligated into the BstBl site in front of the truncated phoA gene in one or more of the three phagemid vectors pJDT1, pJDT2, and JDT3.

A schematic representation of the phagemid vector pJDT2 is provided in Mdluli et al. (1995) (reference no. 31). The pJDT vectors were specifically designed for cloning and selecting genes encoding cell wall-associated, cytoplasmic membrane associated, periplasmic or secreted proteins (and especially for cloning such genes from GC rich genomes, such as the *Mycobacterium tuberculosis* genome). The vectors have a *BstBl* cloning site in frame with the bacterial alkaline phosphatase gene (phoA) such that cloning of an in-frame sequence into the cloning site will result in the production of a fusion protein. The phoA gene encodes a version of the alkaline phosphatase that lacks a signal sequence; hence, only if the DNA cloned into the *BstBl* site includes a signal sequence or a transmembrane sequence can the fusion protein be secreted to the medium or inserted into cytoplasmic membrane, periplasm or cell wall. Those clones encoding such fusion proteins may be detected by

WO 97/00067 PCT/US96/10375

- 6 -

plating clones on agar plates containing the indicator 5-bromo-4-chloro-3-indolyl-phosphate. Alkaline phosphatase converts this indicator to a blue colored product. Hence, those clones containing secreted alkaline phosphatase fusion proteins will produce the blue color.

The three vectors in this series (pJDT1, 2 and 3) have the BstBI restriction sites located in different reading frames with respect to the phoA gene. This increases the likelihood of cloning any particular gene in the correct orientation and reading frame for expression by a factor of 3. Reference no. 31 describes pJDT vectors in detail.

3. SELECTION OF SECRETED FUSION PROTEINS

5

10

15

20

25

30

35

40

The recombinant clones described above were transformed into *E. coli* and plated on agar plates containing the indicator 5-bromo-4-chloro-3-indolyl-phosphate. Production of blue pigmentation, produced as a result of the action of alkaline phosphatase on the indicator, indicated the presence of secreted cytoplasmic membrane periplasmic, cell wall associated or outer membrane fusion proteins (because the bacterial alkaline phosphatase gene in the vector lacks a signal sequence and could not otherwise escape the bacterial cell). A similar technique has been used to identify *M. tuberculosis* genes encoding exported proteins by Lim et al. (32).

Those clones producing blue pigmentation were picked and grown in liquid culture to facilitate the purification of the alkaline phosphatase fusion proteins. These recombinant clones were designated according to the restriction enzyme used to digest the *Mycobacterium tuberculosis* DNA (thus, clones designated A#2-1, A#2-2 etc were produced using *Mycobacterium tuberculosis* DNA digested with *Acil*).

4. PURIFICATION OF SECRETED FUSION PROTEINS

PhoA fusion proteins were extracted from the selected E. coli clones by cell lysis and purified by SDS polyacrylamide gel electrophoresis. Essentially, individual E. coli clones are grown overnight at 30°C with shaking in 2 ml LB broth containing ampicillin, kanamycin and IPTG. The cells are precipitated by centrifugation and resuspended in 100 μ L Tris -EDTA buffer. 100 μ L lysis buffer (1% SDS, 1mMEDTA, 25mM DTT, 10% glycerol and 50 mM tris-HCl, pH 7.5) is added to this mixture and DNA released from the cells is sheared by passing the mixture through a small gauge syringe needle. The sample is then heated for 5 minutes at 100°C and loaded onto an SDS PAGE gel (12 cm x 14 cm x 1.5 mm, made with 4% (w/v) acrylamide in the stacking section and 10% (w/v) acrylamide in the separating section). Several samples from each clone are loaded onto each gel.

The samples are electrophoresed by application of 200 volts to the gel for 4 hours. Subsequently, the proteins are transferred to a nitrocellulose membrane by Western blotting. A strip of nitrocellulose is cut off to be processed with antibody, and the remainder of the nitrocellulose is set aside for eventual elution of the protein. The strip is incubated with blocking buffer and then with anti-alkaline phosphatase primary antibody, followed by incubation with anti-mouse antibody conjugated with horse radish peroxidase. Finally, the strip is developed with the NEN DuPont Renaissance kit to generate a luminescent signal. The migratory position of the PhoA fusion protein, as indicated by the luminescent label, is measured with a ruler, and the corresponding region of the undeveloped nitrocellulose blot is excised.

This region of nitrocellulose, which contains the PhoA fusion protein, is then incubated in 1 ml 20% acetronitrile at 37°C for 3 hours. Subsequently, the mixture is centrifuged to remove the nitrocellulose and the liquid is transferred to a new test tube and lyophilized. The resulting protein pellet is dissolved in 100 μ L of endotoxin-free, sterile water and precipitated with acetone at -20°C. After centrifugation the bulk of the acetone is removed and the residual acetone is allowed to evaporate. The protein pellet is re-dissolved in 100 μ L of sterile phosphate buffered saline. This procedure can be scaled up by modification to include IPTG induction 2 hours prior to cell harvesting, washing nitrocellulose membranes with PBS prior to acetonitrile extraction and lyophilization of acetonitrile extracted and acetone precipitated protein samples.

10

15

20

25

30

35

40

5. DETERMINATION OF IMMUNOSTIMULATORY CAPACITY IN MICE

The purified alkaline phosphatase - Mycobacterium nuberculosis fusion peptides encoded by the recombinant clones were then tested for their ability to stimulate INF- γ production in mice. The test used to determine INF- γ stimulation is as essentially that described by Orme et al. (11).

Essentially, the assay method is as follows: The virulent strain M. tuberculosis Erdman is grown in Proskauer Beck medium to mid-log phase, then aliquoted and frozen at -70°C for use as an inoculant. Cultures of this bacterium are grown and harvested and mice are inoculated with 1 x 10⁵ viable bacteria suspended in 200 μ l sterile saline via a lateral tail vein on day one of the test.

Bone marrow-derived macrophages are used in the test to present the bacterial alkaline phosphatase-Mycobacterium tuberculosis fusion protein antigens. These macrophages are obtained by harvesting cells from mouse femurs and culturing the cells in Dulbecco's modified Eagle medium as described by Orme et al. (11). Eight to ten days later, up to ten μg of the fusion peptide to be tested is added to the macrophages and the cells are incubated for 24 hours.

The CD4 cells are obtained by harvesting spleen cells from the infected mice and then pooling and enriching for CD4 cells by removal of adherent cells by incubation on plastic Petri dishes, followed by incubation for 60 minutes at 37°C with a mixture of J11d.2, Lyt-2.43, and GL4 monoclonal antibody (mAb) in the presence of rabbit complement to deplete B cells and immature T cells, CD8 cells, and $\gamma\delta$ cells, respectively. The macrophages are overlaid with 10 $^{\circ}$ of these CD4 cells and the medium is supplemented with 5 U IL-2 to promote continued T cell proliferation and cytokine secretion. After 72 hours, cell supernatants are harvested from sets of triplicate wells and assayed for cytokine content.

Cytokine levels in harvested supernatants are assayed by sandwich ELISA as described by Orme et al. (11).

6. DETERMINATION OF IMMUNOSTIMULATORY CAPACITY IN HUMANS

The purified alkaline phosphatase - Mycobacterium tuberculosis fusion peptides encoded by the recombinant clones or by synthetic peptides are tested for their ability to induce INF- γ production by human T cells in the following manner.

Blood from tuberculin positive people (producing a tuberculin positive skin test) is collected in EDTA coated tubes, to prevent clotting. Mononuclear cells are isolated using a modified version of the separation procedure provided with the NycoPrep^{to} 1.077 solution (Nycomed Pharma AS, Oslo, Norway). Briefly, the blood is diluted in an equal volume of a physiologic solution, such as Hanks Balanced Salt solution (HBSS), and then gently layered over top of the Nycoprep solution in a 2 to 1 ratio in 50 ml tubes. The tubes are centrifuged at 800 x g for 20 minutes and the mononuclear cells are then removed from the interface between the Nycoprep solution and the sample layer. The plasma is removed from the top of the tube and filtered through a 0.2 micron filter and is then added to the tissue culture media. The mononuclear cells are washed twice: the cells are diluted in a physiologic solution, such as HBSS or RPMI 1640, and centrifuged at 400 x g for 10 minutes. The mononuclear cells are then resuspended to the desired concentration in tissue culture media (RPMI 1640 containing 10% autologous serum, Hepes, non-essential amino acids, antibiotics and polymixin B). The mononuclear cells are then cultured in 96 well microtitre plates.

Peptides or PhoA fusion proteins are then added to individual wells in the 96 well plate, and cells are then placed in an incubator (37°C, 5% CO₂). Samples of the supernatants (tissue culture media from the wells containing the cells) are collected at various time points (from 3 to 8 days) after the addition of the peptides or PhoA fusion proteins. The immune responsiveness of T cells to the peptides and PhoA fusion proteins is assessed by measuring the production of cytokines (including gamma-interferon).

10

15

20

25

Cytokines are measured using an Enzyme Linked Immunosorbent Assay (ELISA), the details of which are described in the Cytokine ELISA Protocol in the PharMingen catalogue (PharMingen, San Diego, California). For measuring for the presence of human gamma-interferon, wells of a 96 well microtitre plate are coated with a capture antibody (anti-human gamma-interferon antibody). The sample supernatants are then added to individual wells. Any gamma-interferon present in the sample will bind to the capture antibody. The wells are then washed. A detection antibody (anti-human gamma-interferon antibody), conjugated to biotin, is added to each well, and will bind to any gamma-interferon that is bound to the capture antibody. Any unbound detection antibody is washed away. An avidin peroxidase enzyme is added to each well (avidin binds tightly to the biotin on the detection antibody). Any excess unbound enzyme is washed away. Finally, a chromogenic substrate for the enzyme is added and the intensity of the colour reaction that occurs is quantitated using an ELISA plate reader. The quantity of the gamma-interferon in the sample supernatants is determined by comparison with a standard curve using known quantities of human gamma-interferon.

Measurement of other cytokines, such as Interleukin-2 and Interleukin-4, can be determined using the same protocol, with the appropriate substitution of reagents (monoclonal antibodies and standards).

7. DNA SEQUENCING

The sequencing of the alkaline phosphatase fusion clones was undertaken using the AmpliCycle thermal sequencing kit (Perkin Elmer, Applied Biosystems Division, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.), using a primer designed to read out of the alkaline phosphatase gene into the *Mycobacterium ruberculosis* DNA insert, or primers specific to the cloned sequences.

C. RESULTS

1. IMMUNOSTIMULATORY CAPACITY

More than 300 fusion clones were tested for their ability to stimulate INF- γ production. Of these, 80 clones were initially designated to have some ability to stimulate INF- γ production. Tables 1 and 2 show the data obtained for these 80 clones. Clones placed in Table 1 showed the greatest ability to stimulate INF- γ production (greater than 10 ng/ml of INF- γ) while clones placed in Table 2 stimulated the production of between 2 ng/ml and 10 ng/ml of INF- γ . Background levels of INF- γ production (i.e., levels produced without any added M. nuberculosis antigen) were subtracted from the levels produced by the fusions to obtain the figures shown in these tables.

30

TABLE 1
Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	ТВроп	coding	Similarity (score)
1	Acil#1-152	>40,000	~65,000	-23,400	~633	M. avium acetolactate synthase (98+)
2	AciI#1-247	>40,000	~160,000	~118,400	~3,198	peptide synthetase (153)
3	Acil#1-264	>40,000	~72,500	~30,900	~833	nothing evident
4	AciI#1-435	>40,000	~80,000	~38,400	~1,038	M. smegmatis ethambutol resistance gene EmbA (624)

TABLE 1
Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	TBport	coding	Similarity (score)
5	HinP#1-27	> 20,000	59,000	17,400	471	nothing evident
6	HinP#2-92	>20,000	74,600	33,000	891	1. M. tuberculosis ORF MTCY190.11C (1794+) 2. Cytochrome C oxidase subunit II (141)
7	HinP#2-145	>20,000	60,000	13,900	375	nothing evident
8	HinP#2-150	>20,000	55,000	13,400	362	nothing evident
9	HinP#1-200	>20,000	53,500	11,900	321	nothing evident
10	HinP#3-30	>20,000	69,000	27,400	740	M. leprae chromosome sequence in B983 region (281 ⁺)
11	Acil#2-2	>20,000	70,000	28,400	768	M. leprae chromosome sequence within region B1529 (139)
12	AciI#2-23	>20,000	75,000	33,400	903	Region within sequence MD0009 of the M. leprae chromosome
13	Acil#2-506	>20,000	60,000	18,400	498	nothing evident
14	Acil#2-511	> 20,000	~60,000	~18,400	~498	nothing evident
15	Acil#2-639	> 20,000	~60,000	-18,400	~498	nothing evident
16	Acil#2-822	>20,000	~45,000	~3,400	~93	M. tuberculosis sequence within region MD0074 (U27357) (551 ⁻)
17	AciI#2-823	>20,000	~46,500	~4,900	~ 132	nothing evident
18	Acil#2-825	>20,000	-150,000	~110,000	~2,970	M. tuberculosis sequence MTCY31.03c (431)
19	Acil#2-827	>20,000	~48,000	~6,400	-174	cytochrome d oxidase
20	AciI#2-898	>20,000	~49,000	~7,400	- 201	nothing evident

10

TABLE 1
Immunostimulatory AP-fusion clones

No.	Name	INF	Fus-MW	ТВроп	coding	Similarity (score)
21	Acil#2-1084	>20,000	~73,000	~31,400	~849	Sequences within M. tuberculosis clone X68281 (96 ⁺) and M. leprae clone B983 (122 ⁺)
22	Acil#3-47	>20,000	~55,000	~13,400	~363	nothing evident
23	Acil#3-133	>20,000	~55,000	~13,400	~363	nothing evident
24	Acil#3-166	>20,000	~48,000	~6,400	~ 174	nothing evident
25	Acil#3-167	>20,000	-65,000	-23,400	~633	M. leprae DNA sequence within region B983 (588*)
26	Acil#3-206	>20,000	~65,000	~23,400	~633	M. leprae DNA sequence within chromosome region MD0092 (91)
27	HinP#1-31	14,638	~46,000	-4,400	~120	M. tuberculosis 19 kDa lipo-protein antigen precursor (218)
28	HinP#1-144	13,546	~70,000	~23,900	~645	M. leprae DNA sequence within chromosome region B983 (78)
29	HinP#1-3	11,550	~49,000	~7,400	~200	M. leprae DNA sequence within chromosome region B983 (100 ⁺)
30	Acil#1-486	11,416	~45,000	~3,400	~93	nothing known
31	Acil#1-426	11,135	~47,500	~ 5,900	~160	Dipeptide transport protein (65)
32	Acil#2-916	10,865	- 75,000	~33,400	~903	nothing evident

5

Abbreviations: INF: pg/ml of INF- γ produced using fusion to stimulate immune T-cells. Fus. MW: Relative molecular weight of the fusion protein in Da. TB port.: Estimated amount of fusion attributable to the M. tuberculosis protein. Coding: Amount of DNA needed to encode TB portion of fusion proteins (in base pairs). Similarity: Amino acid sequence similarity seen by analysis of DNA via the BLASTX or TBLASTX-programs. Scores for alignments are indicated in (). Due to the high G+C nature of M. TB DNA many false positives are evident. Only scores above 100 have good credibility.

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

	١

15

20

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
1	Acil#1-62	3,126	~43,000	~1,400	~39	M. tuberculosis MTCY 190.11C cytochrome C oxidase subunit II (198) M. leprae sequence in B1551 region (1087 ⁺)
2	Aci]#2-14	6,907	~45,000	~3,400	~93	nothing evident
3	Acil#2-26	3,089	~72,000	~30,400	~822	nothing evident
4	Acil#2-35	3,907	~45,000	~3,400	~93	Possibly similar to M. leprae sequence in the B983 region (116 ⁺)
5	Acil#2-147	5,464				nothing evident
6	Acil#2-508	7,052	~ 70,000	~28,400	- 768	Similar to sequence of the <i>M. leprae</i> ORF encoding gp U00018 (125) and similar to sequence in the B2168 c2-209 region of <i>M.</i> <i>leprae</i> genome (225*)
7	AciI#2-510	2,445	~69,000	~27,400	~741	nothing evident
8	Acil#2-523	2,479	~50,000	~8,400	~228	Similar to M. tuberculosis sequence z70692 from clone Y427 (96)
9	Acil#2-676	3,651	~70,000	~28,400	~768	Similar to Acil#2-639
10	Acil#2-834	5,942	~60,000	~13,900	~375	nothing evident
11	Acil#2-854	5,560	~44,000	~2,400	~66	nothing evident
12	Acil#2-872	2,361	~47,000	~5,400	-147	nothing evident
13	Acil#2-874	2,171	~45,000	~3,400	~93	nothing evident
14	Acil#2-8841	2,729	~85,000	~43,400	-1173	Isocitrate dehydrogenase (247)
15	Acil#2-894	3,396	~70,000	~28,400	~768	nothing evident
16	Acil#2-1014	6,302	~45,000	~3,400	~93	nothing evident
17	Acil#2-1018	4,642	~55,000	~13,400	~363	nothing evident
18	Acil#2-1025	3,582	-45,000	~3,400	~93	nothing evident
19	Acil#2-1034	2,736	~80,000	~38,400	~ 103	nothing evident

TABLE 2
Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
20	AciI#2-1035	3,454	~46,000	~4,400	-120	nothing evident
21	Acil#2-1089	8,974	~65,000	~23,400	~633	Similar to M. tuberculosis sequence X75361 and sequence in M. bovis MD0057 and U34849 regions. Immunogenic proteins MPB64 and MPT64 are homologous.
22	AciI#2-1090	7,449	~65,000	~23,400	~633	nothing evident
23	AciI#2-1104	5,148	~68,000	~26,400	-714	Similar to M. tuberculosis sequence X80268 and to cds 1 (256) in M. leprae sequence region MD0045 (169*); secreted antigenic protein.
24	AciI#3-9	3,160	~67,000	~25,400	~687	nothing evident
25	Acil#3-12	3,891	~75,000	~33,400	~903	Penicillin binding protein; similar to M. leprae sequence within genomic clone B1529
26	AciI#3-15	4,019	~65,000	~23,400	~633	nothing evident
27	Acil#3-21	2,301	~69,000	-27,400	~741	nothing evident
28	Acil3-78	2,905	~65,000	~23,400	~633	Similar to sequence within M. leprae genomic clone B983
29	Acil#3-134	3,895	~45,000	~3,400	~93	nothing evident
30	Acil#3-204	4,774	~60,000	~13,900	~375	nothing evident
31	Acil#3-214	7,333	~50,000	8,400	~228	nothing evident
32	Aci I #3-243	2,857	~65,000	~23,400	~633	nothing evident
33	Acil#3-281	2,943	~65,000	~23,400	~633	Similar to sequence within M. leprae genomic clone B983
34	Bsa HI#1-21	8,122	~90,000	~48,400	~1,209	nothing evident
35	HinP#1-12	2,905	~66,000	~24,400	~660	possible tyrosine phosphatase

10

TABLE 2

Immunostimulatory AP-fusion clones (cont'd)

No.	Cione Name	INF	Fus-MW	TBport	coding	Similarity (score)
36	HinP#2-23	2,339	~43,000	~1,400	~39	Similar to sequence in M. leprae genomic clone MD0009-0-(B13) (354)
37	HinP#1-142	6,258	~69,000	~27,400	~741	nothing evident
38	HinP#2-4	6,567	~66,000	~24,400	~660	nothing evident
39	HinP#2-143	3,689	~65,000	~23,400	~633	Similar to sequence in <i>M. leprae</i> genomic clone B1529
40	HinP#2-145A	2,314	~64,000	~22,400	~606	nothing evident
41	HinP#2-147	7,021	65,000	23,400	~633	nothing evident
42	HinP#3-28	2,980	70,000	28,400	~768	Similar to M. leprae sequence in genomic clones MD0085 and sequence for M. leprae gp U00013 cds 27 of B1496 region
43	HinP#3-34	2,564	71,000	29,400	~ 795	Similar to sequence in M. leprae genomic clone B2168 (U00018 cds 9)
44	HinP#3-41	3,296	48,000	6,400	-1,728	Similar to antigen 85 complex protein subunit
45	Hpall#1-3	2,360	65,000	23,400	~633	Cytochrome C oxidase subunit II (156) Similar to M. tuberculosis sequence on clone MTCY 190.11c

10

15

20

TABLE 2
Immunostimulatory AP-fusion clones (cont'd)

No.	Clone Name	INF	Fus-MW	TBport	coding	Similarity (score)
46	HpaII#1-8	2,048	110,000	68,400	~1,848	nothing evident
47	HpaII#1-10	4,178	55,000	13,400	~633	Similar to immunogenic proteins MPB64/MPT64
48	Hpall#1-13	3,714	43,000	1,400	~39	nothing evident

Abbreviations: INF: pg/ml of INF- γ produced using fusion to stimulate immune T-cells. Fus. MW: Relative molecular weight of the fusion protein. TB port.: Estimated amount of fusion attributable to the M. tuberculosis protein. Coding: Amount of DNA needed to encode TB portion of fusion proteins. Similarity: Amino acid sequence similarity seen by analysis of DNA via the BLASTX or TBLASTX* programs. Scores for alignments are indicated in (). Due to the high G+C nature of M. TB DNA many false positives are evident. Only scores above 100 have good credibility.

2. DNA SEQUENCING AND DETERMINATION OF OPEN READING FRAMES

DNA sequence data for the sequences of the *Mycobacterium tuberculosis* DNA present in the clones shown in Tables 1 and 2 are shown in the accompanying Sequence Listing. The sequences are believed to represent the coding strand of the *Mycobacterium* DNA. In most instances, these sequences represent only partial sequences of the immunostimulatory peptides and, in turn, only partial sequences of *Mycobacterium tuberculosis* genes. However, each of the clones from which these sequences were derived encodes, by itself, at least one immunostimulatory T-cell epitope. As discussed in part V below, one of ordinary skill in the art will, given the information provided herein, readily be able to obtain the immunostimulatory peptides and corresponding full length *M. tuberculosis* genes using standard techniques. Accordingly, the nucleotide sequences of the present invention encompass not only those sequences presented in the sequence listings, but also the complete nucleotide sequence encoding the immunostimulatory peptides as well as the corresponding *M. tuberculosis* genes. The nucleotide abbreviations employed in the sequence listings are as follows in Table 3:

30

35

40

TABLE 3

·	Symbol	Meaning				
	A	A; adenine				
5	C	C; cytosine				
	G	G; guanine				
	T	T; thymine				
	V	U; uracil				
	М	A or C				
10	R	A or G				
	w	A or T/U				
	S	C or G				
	Υ	C or T/U				
	K	G or T/U				
15	v	A or C or G; not T/U				
	н	A or C or T/U; not G				
	D	A or G or T/U; not C				
	В	C or G or T/U; not A				
20	N	(A or C or G or T/U) or (unknown or other or no base)				
	·	indeterminate*				

* indicates an unreadable sequence compression.

The DNA sequences obtained were then analyzed with respect to the G+C content as a function of codon position over a window of 120 codons using the 'FRAME' computer program (Bibb, M.J.; Findlay, P.R.; and Johnson, M.W.; Gene 30: 157-166 (1984)). This program uses the bias of these nucleotides for each of the codon positions to enable the correct reading frame to be identified.

3. IDENTIFICATION OF T CELL EPITOPES IN THE IMMUNOSTIMULATORY PEPTIDES

The T-Site program, by Feller, D.C. and de la Cruz, V.F., Medlmmune Inc., 19 Firstfield Rd., Gaithersburg, M.D. 20878, U.S.A., was used to predict T-cell epitopes from the determined coding sequences. It uses a series of four predictive algorithms. In particular, peptides were designed against regions indicated by the algorithm "A" motif which predicted alpha-helical periodicity (Margalit, H.; Spouge, J.L.; Comette, J.L.; Cease, K.B.; DeLisi, C.; and Berzofsky, J.A., J. Immunol., 138:2213 (1987)) and amphipathicity and those indicated by the algorithm "R" motif which identifies segments which display similarity to motifs known to be recognized by MHC class I and class II molecules (Rothbard, J.B. and Taylor, W.R., EMBO J. 7:93 (1988)). The other two algorithms identify classes of T-cell epitopes recognized in mice.

4. SYNTHESIS OF SYNTHETIC PEPTIDES CONTAINING T CELL EPITOPES IN IDENTIFIED IMMUNOSTIMULATORY PEPTIDES

A series of staggered peptides were designed to overlap regions indicated by the T-site analysis. These were synthesized by Chiron Mimotopes Pty. Ltd. (11055 Roselle St., San Diego, CA 92121, U.S.A.).

PCT/US96/10375 WO 97/00067

- 16 -

Peptides designed from sequences described in this application include:

Hin P#1-200 (6 peptides)

	Peptide Sequence	Peptide Name
	VHLATGMAETVASFSPS	HPI1-200/2
5	REVVHLATGMAETVASF	HPI1-200/3
	RDSREVVHLATGMAETV	HP11-200/4
	DFNRDSREVVHLATGMA	HPI1-200/5
	ISAAVVTGYLRWTTPDR	HPI1-200/6
	AVVFLCAAAISAAVVTG	HPI1-200/7
10		

Acil#2-827 (14 peptides)

Peptide Sequence	Peptide Name
VTDNPAWYRLTKFFGKL	CD-2/1/96/1
AWYRLTKFFGKLFLINF	CD-2/1/96/2
KFFGKLFLINFAIGVAT	CD-2/1/96/3
FLINFAIGVATGIVQEF	CD-2/1/96/4
AIGVATGIVQEFQFGMN	CD-2/1/96/5
TGIVQEFEFGMNWSEYS	CD-2/1/96/6
EFQFGMNWSEYSRFVGD	CD-2/1/96/7
MNWSEYSRFVGDVFGAP	CD-2/1/96/8
WSEYSRFVGDVFGAPLA	CD-2/1/96/9
EYSRFVGDVFGAPLAME	CD-2/1/96/10
SRFVGDVFGAPLAMESL	CD-2/1/96/11
WIFGWNRLPRLVHLACI	CD-2/1/96/12
WNRLPRLVHLACIWIVA	CD-2/1/96/13
GRAELSSIVVLLTNNTA	CD-2/1/96/14
	VTDNPAWYRLTKFFGKL AWYRLTKFFGKLFLINF KFFGKLFLINFAIGVAT FLINFAIGVATGIVQEF AIGVATGIVQEFQFGMN TGIVQEFFGMNWSEYS EFQFGMNWSEYSRFVGD MNWSEYSRFVGDVFGAP WSEYSRFVGDVFGAPLA EYSRFVGDVFGAPLAME SRFVGDVFGAPLAMESL WIFGWNRLPRLVHLACI WNRLPRLVHLACI

HinP#1-3 (2 peptides)

30

Peptide Sequence	<u>Peptide Name</u>
GKTYDAYFTDAGGITPG	HPI1-3/2
YDAYFTDAGGITPGNSV	HPI1-3/3

35 HinP#1-3 / HinP#1-200 combined peptides

Peptide Sequences		Peptide Name
WPQGKTYDAYFTDAGGI	(HinP#1-3)	HPI1-3/1 (combined)
ATGMAETVASFSPSEGS	(HinP#1-200)	

40

AciI#2-823 (1 peptide)

Peptide Sequence	Peptide Name
GWERRLRHAVSPKDPAO	AI2-823/1

45

55

60

HinP#1-31 (4 peptides)

	Peptide Sequence	<u>Peptide Name</u>
	TGSGETTTAAGTTASPG	HPI1-31/1
50	GAAILVAGLSGCSSNKS	HPI1-31/2
	AVAGAAILVAGLSGCSS	HPI1-31/3
	LTVAVAGAAILVAGLSG	HPI1-31/4

These synthetic peptides were resuspended in phosphate buffered saline to be tested to confirm their ability to function as T cell epitopes using the procedure described in part IV(B)(6) above.

5. CONFIRMATION OF IMMUNOSTIMULATORY CAPACITY USING T CELLS FROM TUBERCULOSIS PATIENTS

The synthetic peptides described above, along with a number of the PhoA fusion proteins shown to be immunostimulatory in mice were tested for their ability to stimulate gamma interferon production in T-cells from tuberculin positive people using the methods described in part IV(B)(6) above. For each assay, 5 x 105 mononuclear cells were stimulated with up to 1 μ g/ml M. tuberculosis peptide or up to 50 ng/ml Pho A fusion protein. M. tuberculosis filtrate proteins, Con A and PHA were employed as positive controls. An assay was run with media alone to determine background levels, and Pho A protein was employed as a negative control.

The results, shown in Table 4 below, indicate that all of the peptides tested stimulated gamma interferon production from T-cells of a particular subject.

TABLE 4

5	Peptide or Pho A Fusion Protein Name	Concentration of Interferon-gamma (pg/ml)	Concentration of Interferon-gamma minus background (pg/ml)
	CD-2/1/96/1	256.6	153.3
	CD-2/1/96/9	187.6	84.3
	CD-2/1/96/10	134.0	30.7
	CD-2/1/96/11	141.6	38.3
10	CD-2/1/96/14	310.2	206.9
	HPI1-3/2	136.3	23.0
	HPI1-3/3	264.2	160.9
	Acil 2-898	134.0	30.7
	Acil 3-47	386.8	283.5
15	M. tuberculosis filtrate proteins (10 µg/ml)	256.6	153.3
	M. tuberculosis filtrate proteins (5 μg/ml)	134.0	30.7
	Con A (10 μg/ml)	2 839	2 735.7
20	PHA (1%)	10 378	10 274.7
	Pho A control (10 µg/ml)	26,7	0
	Background	103.3	0

V. CLONING OF FULL LENGTH MYCOBACTERIUM TUBERCULOSIST-CELL EPITOPE ORFS

Most the sequences presented represent only part of a larger M. tuberculosis ORF. If desired, the full length M. tuberculosis ORFs that include these provided nucleotide sequences can be readily obtained by one of ordinary skill in the art, based on the sequence data provided herein.

A. GENERAL METHODOLOGIES

30

35

25

Methods for obtaining full length genes based on partial sequence information are standard in the art and are particularly simple for prokaryotic genomes. By way of example, the full length ORFs corresponding to the DNA sequences presented herein may be obtained by creating a library of Mycobacterium tuberculosis DNA in a plasmid, bacteriophage or phagemid vector and screening this library with a hybridization probe using standard colony hybridization techniques. The hybridization probe consists of an oligonucleotide derived from a DNA sequence according to the present invention labelled with a suitable marker to enable detection of hybridizing clones. Suitable markers include radionuclides, such as P-32 and non-radioactive markers, such as biotin. Methods for constructing suitable libraries, production and labelling of oligonucleotide probes and colony hybridization are standard laboratory procedures and are described in standard laboratory manuals such as in reference nos. 15 and 16.

40

Having identified a clone that hybridizes with the oligonucleotide, the clone is identified and sequenced using standard methods such as described in Chapter 13 of reference no. 15. Determination of the translation initiation point of the DNA sequence enables the ORF to be located.

10

15

20

25

30

35

40

An alternative approach to cloning the full length ORFs corresponding to the DNA sequences provided herein is the use of the polymerase chain reaction (PCR). In particular, the inverse polymerase chain reaction (IPCR) is useful to isolate DNA sequences flanking a known sequence. Methods for amplification of flanking sequences by IPCR are described in Chapter 27 of reference no. 17 and in reference no. 23.

Accordingly, one aspect of the present invention is small oligonucleotides encompassed by the DNA sequences presented in the Sequence Listing. These small oligonucleotides are useful as hybridization probes and PCR primers that can be employed to clone the corresponding full length *Mycobacterium tuberculosis* ORFs. In preferred embodiments, these oligonucleotides will comprise at least 15 contiguous nucleotides of a DNA sequence set forth in the Sequence Listing, and in more preferred embodiments, such oligonucleotides will comprise at least 20 contiguous nucleotides of a DNA sequence set forth in the Sequence Listing.

One skilled in the art will appreciate that hybridization probes and PCR primers are not required to exactly match the target gene sequence to which they anneal. Therefore, in another embodiment, the oligonucleotides will comprise a sequence of at least 15 nucleotides and preferably at least 20 nucleotides, the oligonucleotide sequence being substantially similar to a DNA sequence set forth in the Sequence Listing. Preferably, such oligonucleotides will share at least about 75%-90% sequence identity with a DNA sequence set forth in the Sequence Listing and more preferably the shared sequence identity will be greater than 90%.

B. EXAMPLE - CLONING OF THE FULL LENGTH ORF CORRESPONDING TO CLONE HinP #2-92

Using the techniques described below, the full length gene corresponding to the clone HinP #2-92 was obtained. This gene, herein termed *mtb2-92* includes an open-reading frame of 1089 bp (identified based on the G+C content relating to codon position). The alternative 'GTG' start codon was used, and this was preceded (8 bps upstream) by a Shine-Dalgarno motif. The gene *mtb2-92* encoded a protein (termed MTB2-92) containing 363 amino acid residues with a predicted molecular weight of 40,436.4 Da.

Sequence homology comparisons of the predicted amino acid sequence of MTB2-92 with known proteins in the database indicated similarity to the cytochrome c oxidase subunit II of many different organisms. This integral membrane protein is part of the electron transport chain, subunits I and II forming the functional core of the enzyme complex.

1. CLONING THE FULL LENGTH GENE CORRESPONDING TO HinP #2-92

The plasmid pHin2-92 was restricted with either *Bam*H1 or *Eco*R1 and then subcloned into the vector M13. The insert DNA fragments were sequenced under the direction of M13 universal sequencing primers (Yanisch-Perron, C. *et al.*, 1985) using the AmpliCycle thermal sequencing kit (Perkin Elmer, Applied Biosystems Division, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.). The 5'-partial MTB2-92 DNA sequence was aligned using a GeneWorks (Intelligenetics, Mountain View, CA, U.S.A.) program. Based on the sequence data obtained, two oligomers were synthesized. These oligonucleotides (SCCCAGCTTGTGATACAGGAGG)'
S'GGCCTCAGCGCGGCTCCGGAGG') represented sequences upstream and downstream, over an 0.8 kb distance, of the sequence encoding the partial MTB2-92 protein in the alkaline phosphatase fusion.

A Mycobacterium tuberculosis genomic cosmid DNA library was screened using PCR (Sambrook, J. et al., 1989) in order to obtain the full-length gene encoding the MTB2-92 protein. Two hundred and ninety-four bacterial colonies containing the cosmid library were pooled into 10 groups in 100 µl distilled water aliquots and boiled for 5 min. The samples were spun in a microfuge at maximal speed for 5 min. The supernatants were decanted and stored on ice prior to PCR analysis.

The 100 μl-PCR reaction contained: 10 μl supernatant containing cosmid DNA, 10 μl of 10X PCR buffer, 250 μM dNTP's, 300 nM downstream and upstream primers, 1 unit *Taq* DNA polymerase.

15

20

25

30

35

40

The reactions were heated at 95°C for 2 min and then 40 cycles of DNA synthesis were performed (95°C for 30 s, 65°C for 1 min, 72°C for 2 min). The PCR products were loaded into a 1% agarose gel in TAE buffer (Sambrook, J. et al., 1989) for analysis.

The supernatant, which produced 800 bp PCR products, was then further divided into 10 samples and the PCR reactions were performed again. The colony which had resulted in the correctly sized PCR product was then picked. The cosmid DNA from the positive clone (pG3) was prepared using the Wizard Mini-Prep Kit (Promega Corp. Madison, WI, U.S.A.). The cosmid DNA was further sequenced using specific oligonucleotide primers. The deduced amino acid sequence encoded by the MTB2-92 protein is shown in Fig. 1.

2. EXPRESSION OF THE FULL LENGTH GENE

The 100 μ l PCR reaction contained: 1 μ g pG3 template DNA, 250 μ M dNTP's, 300 nM of each primer, 10 μ l of 10X PCR buffer, 1 unit *Taq* DNA polymerase. The PCR DNA synthesis cycle was performed as above.

The 1.4 kb PCR products were purified and ligated into the cloning vector pGEM-T (Promega). Inserts were removed by digestion using both the Xbal and HindIII and the 1.4 kb fragment was directionally subcloned into the Xbal and HindIII sites of pMAL-c2 vector (New England Bio-Labs Ltd., 3397 American Drive, Unit 12, Mississauga, Ontario, L4V 1T8, Canada). The gene encoding MTB2-92 was fused, in frame, downstream of the maltose binding protein (MBP). This expression vector was named pMAL-MTB2-92.

3. PURIFICATION OF THE ENCODED PROTEIN

The plasmid pMAL-MTB2-92 was transformed into competent E. coli JM109 cells and a 1 litre culture was grown up in LB broth at 37°C to an OD₃₅₀ of 0.5 to 0.6. The expression of the gene was induced by the addition of IPTG (0.5 mM) to the culture medium, after which the culture was grown for another 3 hours at 37°C with vigorous shaking. Cultures were spun in the centrifuge at 10,000 g for 30 min and the cell pellet was harvested. This was re-suspended in 50 ml of 20 mM Tris-HCl, pH 7.2, 200 mM NaCl, 1 mM EDTA supplemented with 10 mM β mercaptoethanol and stored at -20°C.

The frozen bacterial suspension was thawed in cold water (0°C), placed in an ice bath, and sonicated. The resulting cell lysate was then centrifuged at 10,000 g and 4°C for 30 min, the supernatant retained, diluted with 5 volumes of buffer A and applied to an amylose-resin column (New England Bio-Labs Ltd., 3397 American Drive, Unit 12, Mississauga. Ontario, L4V 1T8, Canada) which had been pre-equilibrated with buffer A. The column was then washed with buffer A until the eluate reached an A₂₈₀ of 0.001 at which point, the bound MBP-MTB2-92 fusion protein was eluted with buffer A containing 10 mM maltose. The protein purified by the amylose-resin affinity column was about 84 kDa which corresponded to the expected size of the fusion protein (MBP: 42 kDa, MTB2-92 plus the histidine tag: 42 kDa).

The eluted MBP-MTB2-92 fusion protein was then cleaved with factor Xa to remove the MBP from the MTB2-92 protein. One ml of fusion protein (1 mg/ml) was mixed with 100 µl of factor Xa (200 µg/ml) and kept at room temperature overnight. The mixture was diluted with 10 ml of buffer B (5 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea) and urea was added to the sample to a final concentration of 6 M urea. The sample was loaded onto the Ni-NTA column (QIAGEN, 9600 De Soto Ave., Chatsworth, CA 91311, U.S.A.) pre-equilibrated with buffer B. The column was washed with 10 volumes of buffer B and 6 volumes of buffer C (60 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea). The bound protein was eluted with 6 volumes of buffer D (1 M imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9, 6 M urea).

WO 97/00067 PCT/US96/10375

- 20 -

At each stage of the protein purification, a sample was analysed by SDS polyacylamide gel electrophoresis (Laemmli, U.S. (1970) *Nature (London)*, 227:680-685) (see Fig. 2).

C. CORRECTION OF SEQUENCE ERRORS

5

10

15

20

25

30

35

40

It is noted that some of the sequences presented in the Sequence Listing contain sequence ambiguities. Naturally, in order to ensure that the immunostimulatory function is maintained, one would utilize a sequence without such ambiguities. For those sequences containing ambiguities, one would therefore utilize the sequence data provided in the Sequence Listing to design primers corresponding to each terminal of the provided sequence and, using these primers in conjunction with the polymerase chain reaction, synthesize the desired DNA molecule using M. tuberculosis genomic DNA as a template. Standard PCR methodologies, such as those described above, may be used to accomplish this.

VI. EXPRESSION AND PURIFICATION OF THE CLONED PEPTIDES

Having provided herein DNA sequences encoding Mycobacterium tuberculosis peptides having an immunostimulatory activity, as well as the corresponding full length Mycobacterium tuberculosis genes, one of skill in the art will be able to express and purify the peptides encoded by these sequences. Methods for expressing proteins by recombinant means in compatible prokaryotic or eukaryotic host cells are well known in the art and are discussed, for example, in reference nos. 15 and 16. Peptides expressed by the nucleotide sequences disclosed herein are useful for preparing vaccines effective against M. tuberculosis infection, for use in diagnostic assays and for raising antibodies that specifically recognize M. tuberculosis proteins. One method of purifying the peptides is that presented in part V(B) above.

The most commonly used prokaryotic host cells for expressing prokaryotic peptides are strains of <u>Escherichia coli</u>, although other prokaryotes, such as <u>Pseudomonas</u> may also be used, as is well known in the art. Partial or full-length DNA sequences, encoding an immunostimulatory peptide according to the present invention, may be ligated into bacterial expression vectors. One aspect of the present invention is thus a recombinant DNA vector including a nucleic acid molecule provided by the present invention. Another aspect is a transformed cell containing such a vector.

Methods for expressing large amounts of protein from a cloned gene introduced into Escherichia coli (E. coli) may be utilized for the purification of the Mycobacterium tuberculosis peptides. Methods and plasmid vectors for producing fusion proteins and intact native proteins in bacteria are described in reference no. 15 (ch. 17). Such fusion proteins may be made in large amounts, are relatively simple to purify, and can be used to produce antibodies. Native proteins can be produced in bacteria by placing a strong, regulated promoter and an efficient ribosome binding site upstream of the cloned gene. If low levels of protein are produced, additional steps may be taken to increase protein production; if high levels of protein are produced, purification is relatively easy.

Often, proteins expressed at high levels are found in insoluble inclusion bodies. Methods for extracting proteins from these aggregates are described in ch. 17 of reference no. 15. Vector systems suitable for the expression of *lacZ* fusion genes include the pUR series of vectors (24), pEX1-3 (25) and pMR100 (26). Vectors suitable for the production of intact native proteins include pKC30 (27), pKK177-3 (28) and pET-3 (29). Fusion proteins may be isolated from protein gels, lyophilized, ground into a powder and used as antigen preparations.

Mammalian or other eukaryotic host cells, such as those of yeast, filamentous fungi, plant, insect, amphibian or avian species, may also be used for protein expression, as is well known in the art. Examples of commonly used mammalian host cell lines are VERO and HeLa cells. Chinese hamster ovary (CHO) cells, and WI38, BHK, and COS cell lines, although it will be appreciated by the skilled practitioner that other prokaryotic and eukaryotic cells and cell lines may be appropriate for a variety of purposes, e.g., to provide higher expression, desirable glycosylation patterns, or other features.

WO 97/00067 PCT/US96/10375

- 21 -

VII. SEQUENCE VARIANTS

It will be apparent to one skilled in the art that the immunostimulatory activity of the peptides encoded by the DNA sequences disclosed herein lies not in the precise nucleotide sequence of the DNA sequences, but rather in the epitopes inherent in the amino acid sequences encoded by the DNA sequences. It will therefore also be apparent that it is possible to recreate the immunostimulatory activity of one of these peptides by recreating the epitope, without necessarily recreating the exact DNA sequence. This could be achieved either by directly synthesizing the peptide (thereby circumventing the need to use the DNA sequences) or, alternatively, by designing a nucleic acid sequence that encodes for the epitope, but which differs, by reason of the redundancy of the genetic code, from the sequences disclosed herein.

10

15

5

Accordingly, the degeneracy of the genetic code further widens the scope of the present invention as it enables major variations in the nucleotide sequence of a DNA molecule while maintaining the amino acid sequence of the encoded protein. The genetic code and variations in nucleotide codons for particular amino acids is presented in Tables 5 and 6. Based upon the degeneracy of the genetic code, variant DNA molecules may be derived from the DNA sequences disclosed herein using standard DNA mutagenesis techniques, or by synthesis of DNA sequences.

TABLE 5
The Genetic Code

First Posit (5' e	ion nd)	Second	Position		Third Position (3' end)
	_l T	С	A	G	ŀ
	Phe	Ser	Tyr	Cys	T
	Phe	Ser	Tyr	Cys	C
T	Leu	Ser	Stop (och)	Stop	A
	Leu	Ser	Stop (amb)	Trp	J G
	Leu	Pro	His	Arg	T
	Leu	Pro	His	Arg	C
С	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	L G
	Ile	Thr	Asn	Ser	T
_	Ile	Thr	Asn	Ser	C
A	Ile	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	L G
	Val	Ala	Asp	Gly	T
G	Val	Ala	Asp	Gly	C
G	Val	Ala	Glu	Gly	A
	[Val (Met)	Ala	Glu	Gly	G

[&]quot;Stop (och)" stands for the ocre termination triplet, and "Stop (amb)" for the amber. ATG is the most common initiator codon; GTG usually codes for valine, but it can also code for methionine to initiate an mRNA chain.

TABLE 6
The Degeneracy of the Genetic Code

Number of Synonymous Codons	Amino Acid	Total Number of Codons
6	Leu, Ser, Arg	18
4	Gly, Pro, Ala, Val, Thr	20
3	Ile	3
2	Phe, Tyr, Cys, His, Gln, Glu, Asn, Asp, Lys	18
1	Met, Trp	_2
Total number of codo	ns for amino acids	61
Number of codons for		_3
Total number of codo		64

Additionally, standard mutagenesis techniques may be used to produce peptides which vary in amino acid sequence from the peptides encoded by the DNA molecules disclosed herein. However, such peptides will retain the essential characteristic of the peptides encoded by the DNA molecules disclosed herein, i.e. the ability to stimulate INF- γ production. This characteristic can readily be determined by the assay technique described above. Such variant peptides include those with variations in amino acid sequence including minor deletions, additions and substitutions.

30

25

While the site for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed protein variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence as described above are well known.

35

40

In order to maintain the functional epitope, preferred peptide variants will differ by only a small number of amino acids from the peptides encoded by the DNA sequences disclosed herein. Preferably, such variants will be amino acid substitutions of single residues. Substitutional variants are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 7 when it is desired to finely modulate the characteristics of the protein. Table 7 shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative substitutions. As noted, all such peptide variants are tested to confirm that they retain the ability to stimulate INF- γ production.

35

45

50

TABLE 7

 Original Residue	Conservative Substitutions
Ala	ser
Arg	lys
Asn	gln, his
Asp	glu
Cys	ser
Gln	asn
${ t Glu}$	asp
Gly	pro
His	asn; gln
Ile	leu, val
Leu	ile; val
Lys	arg; gln; glu
Met	leu; ile
Phe	met; leu; tyr
Ser	thr
Thr	ser
Trp	tyr
Tyr	trp; phe
Val	ile; leu

Substantial changes in immunological identity are made by selecting substitutions that are less conservative than those in Table 7, i.e., selecting residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation. (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histadyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine. However, such variants must retain the ability to stimulate INF- γ production.

40 VIII. USE OF CLONED MYCOBACTERIUM SEQUENCES TO PRODUCE VACCINES

The purified peptides encoded by the nucleotide sequences of the present invention may be used directly as immunogens for vaccination. The conventional tuberculosis vaccine is the BCG (bacille Calmette-Guerin) vaccine, which is a live vaccine comprising attenuated *Mycobacterium bovis* bacteria. However, the use of this vaccine in a number of countries, including the U.S., has been limited because administration of the vaccine interferes with the use of the tuberculin skin test to detect infected individuals (see <u>Cecil Textbook of Medicine</u> (Ref. 33), pages 1733-1742 and section VIII (2) below).

The present invention provides a possible solution to the problems inherent in the use of the BCG vaccine in conjunction with the tuberculin skin test. The solution proposed is based upon the use of one or more of the immunostimulatory *M. tuberculosis* peptides disclosed herein as a vaccine and one or more different immunostimulatory *M. tuberculosis* peptides disclosed herein in the tuberculosis skin test (see section IX (2) below). If the immune system is primed with such a vaccine, it will be able to resist an infection by *M*.

10

15

20

25

30

35

40

tuberculosis. However, exposure to the vaccine peptides alone will not induce an immune response to those peptides that are reserved for use in the tuberculin skin test. Thus, the present invention would allow the clinician to distinguish between a vaccinated individual and an infected individual.

Methods for using purified peptides as vaccines are well known in the art and are described in the following publications: Pal and Horwitz (1992) (reference no. 8) (describing immunization with extra-cellular proteins of Mycobacterium tuberculosis); Yang et al. (1991) (reference no. 30) (vaccination with synthetic peptides corresponding to the amino acid sequence of a surface glycoprotein from Leishmania major); Andersen (1994) (reference no. 9) (vaccination using short-term culture filtrate containing proteins secreted by Mycobacterium tuberculosis): and Jardim et al. (1990) (reference no. 10) (vaccination with synthetic T-cell epitopes derived from Leishmania parasite). Methods for preparing vaccines which contain immunogenic peptide sequences are also disclosed in U.S. Patent Nos. 4,608,251, 4,601,903, 4,599,231, 4,5995230, 4,596,792 and 4,578,770. The formulation of peptide-based vaccines employing M. tuberculosis peptides is also discussed extensively in International Patent application WO 95/01441.

As is well known in the art, adjuvants such as Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA) may be used in formulations of purified peptides as vaccines. Accordingly, one embodiment of the present invention is a vaccine comprising one or more immunostimulatory *M. tuberculosis* peptides encoded by genes including a sequence shown in the attached sequence listing, together with a pharmaceutically acceptable adjuvant.

Additionally, the vaccines may be formulated using a peptide according to the present invention together with a pharmaceutically acceptable excipient such as water, saline, dextrose and glycerol. The vaccines may also include auxillary substances such as emulsifying agents and pH buffers.

It will be appreciated by one of skill in the art that vaccines formulated as described above may be administered in a number of ways including subcutaneous, intra-muscular and intra-venous injection. Doses of the vaccine administered will vary depending on the antigenicity of the particular peptide or peptide combination employed in the vaccine, and characteristics of the animal or human patient to be vaccinated. While the determination of individual doses will be within the skill of the administering physician, it is anticipated that doses of between 1 microgram and 1 milligram will be employed.

As with many vaccines, the vaccines of the present invention may routinely be administered several times over the course of a number of weeks to ensure that an effective immune response is triggered. As described in International Patent Application WO 95/01441, up to six doses of the vaccine may be administered over a course of several weeks, but more typically between one and four doses are administered. Where such multiple doses are administered, they will normally be administered at from two to twelve week intervals, more usually from three to five week intervals. Periodic boosters at intervals of 1-5 years, usually three years, will be desirable to maintain the desired levels of protective immunity.

As described in WO 95/01441, the course of the immunization may be followed by *in vitro* proliferation assays of PBL (peripheral blood lymphocytes) co-cultured with ESAT6 or ST-CF, and especially by measuring the levels of IFN- γ released from the primed lymphocytes. The assays are well known and are widely described in the literature, including in U.S. Patent Nos. 3,791,932; 4.174,384 and 3,949,064.

To ensure an effective immune response against tuberculosis infection, vaccines according to the present invention may be formulated with more than one immunostimulatory peptide encoded by the nucleotide sequences disclosed herein. In such cases, the amount of each purified peptide incorporated into the vaccine will be adjusted accordingly.

Alternatively, multiple immunostimulatory peptides may also be administered by expressing the nucleic acids encoding the peptides in a nonpathogenic microorganism, and using this transformed nonpathogenic

10

15

20

25

30

35

microorganism as a vaccine. As described in International Patent Application WO 95/01441, Mycobacterium bovis BCG may be employed for this purpose, although this approach would destroy the advantage outlined above to be gained from using separate classes of the peptides as vaccines and in the skin test. As disclosed in WO 95/01441, an immunostimulatory peptide of M. nuberculosis can be expressed in the BCG bacterium by transforming the BCG bacterium with a nucleotide sequence encoding the M. nuberculosis peptide. Thereafter, the BCG bacteria can be administered in the same manner as a conventional BCG vaccine. In particular embodiments, multiple copies of the M. tuberculosis sequence are transformed into the BCG bacteria to enhance the amount of M. nuberculosis peptide produced in the vaccine strain.

IX. USE OF CLONED MYCOBACTERIUM SEQUENCES IN DIAGNOSTIC ASSAYS

Another aspect of the present invention is a composition for diagnosing tuberculosis infection wherein the composition includes peptides encoded by the nucleotide sequences of the present invention. The invention also encompasses methods and compositions for detecting the presence of anti-tuberculosis antibodies, tuberculosis peptides and tuberculosis nucleic acid sequences in body samples. Three examples typify the various techniques that may be used to diagnose tuberculosis infection using the present invention: an in vitro ELISA assay, an in vivo skin test assay and a nucleic acid amplification assay.

A. IN VITRO ELISA ASSAY

One aspect of the invention is an ELISA that detects anti-tuberculosis mycobacterial antibodies in a medical specimen. An immunostimulatory peptide encoded by a nucleotide sequence of the present invention is employed as an antigen and is preferably bound to a solid matrix such as a crosslinked dextran such as SEPHADEX (Pharmacia, Piscataway, NJ), agarose, polystyrene, or the wells of a microtiter plate. The polypeptide is admixed with the specimen, such as human sputum, and the admixture is incubated for a sufficient time to allow antimycobacterial antibodies present in the sample to immunoreact with the polypeptide. The presence of the immunopositive immunoreaction is then determined using an ELISA assay.

In a preferred embodiment, the solid support to which the polypeptide is attached is the wall of a microtiter assay plate. After attachment of the polypeptide, any nonspecific binding sites on the microtiter well walls are blocked with a protein such as bovine serum albumin. Excess bovine serum albumin is removed by rinsing and the medical specimen is admixed with the polypeptide in the microtiter wells. After a sufficient incubation time, the microtiter wells are rinsed to remove excess sample and then a solution of a second antibody, capable of detecting human antibodies is added to the wells. This second antibody is typically linked to an enzyme such as peroxidase. alkaline phosphatase or glucose oxidase. For example, the second antibody may be a peroxidase-labeled goat antihuman antibody. After further incubation, excess amounts of the second antibody are removed by rinsing and a solution containing a substrate for the enzyme label (such as hydrogen peroxide for the peroxidase enzyme) and a color-forming dye precursor, such as o-phenylenediamine is added. The combination of mycobacterium peptide (bound to the wall of the well), the human antimycobacterial antibodies (from the specimen), the enzymeconjugated anti-human antibody and the color substrate will produce a color than can be read using an instrument that determines optical density, such as a spectrophotometer. These readings can be compared to a control incubated with water in place of the human body sample, or, preferably, a human body sample known to be free of antimycobacterial antibodies. Positive readings indicate the presence of anti-mycobacterial antibodies in the specimen, which in turn indicate a prior exposure of the patient to tuberculosis.

B. SKIN TEST ASSAY

Alternatively, the presence of tuberculosis antibodies in a patient's body may be detected using an improved form of the tuberculin skin test, employing immunostimulatory peptides of the present invention.

Conventionally, this test produces a positive result to one of the following conditions: the current presence of M. tuberculosis in the patient's body; past exposure of the patient to M. tuberculosis; and prior BCG vaccination. As

noted above, if one group of immunostimulatory peptides is reserved for use in vaccine preparations, and another group reserved for use in the improved skin test, then the skin test will not produce a positive response in individuals whose only exposure to tuberculosis antigens was via the vaccine. Accordingly, the improved skin test would be able to properly distinguish between infected individuals and vaccinated individuals.

5

10

15

20

The tuberculin skin test consists of an injection of proteins from *M. tuberculosis* that are injected intradermally. The test is described in detail in <u>Cecil Textbook of Medicine</u> (Ref. 33), pages 1733-1742. If the subject has reactive T-cells to the injected protein, the cells will migrate to the site of injection and cause a local inflammation. This inflammation, which is generally known as delayed type hypersensitivity (DTH) is indicative of *M. tuberculosis* antibodies in the patient's blood stream. Purified immunostimulatory peptides according to the present invention may be employed in the tuberculin skin test using the methods described in reference 33.

C. NUCLEIC ACID AMPLIFICATION

One aspect of the invention includes nucleic acid primers and probes derived from the sequences set forth in the attached sequence listing, as well as primers and probes derived from the full length genes that can be obtained using these sequences. These primers and probes can be used to detect the presence of *M. tuberculosis* nucleic acids in body samples and thus to diagnose infection. Methods for making primers and probes based on these sequences are well known and are described in section V above.

The detection of specific pathogen nucleic acid sequences in human body samples by polymerase chain reaction amplification (PCR) is discussed in detail in reference 17, in particular, part four of that reference. To detect *M. tuberculosis* sequences, primers based on the sequences disclosed herein would be synthesized, such that PCR amplification of a sample containing *M. tuberculosis* DNA would result in an amplified fragment of a predicted size. If necessary, the presence of this fragment following amplification of the sample nucleic acid could be detected by dot blot analysis (see chapter 48 of reference 17). PCR amplification employing primers based on the sequences disclosed herein may also be employed to quantify the amounts of *M. tuberculosis* nucleic acid present in a particular sample (see chapters 8 and 9 of reference 17). Reverse-transcription PCR using these primers may also be utilized to detect the presence of *M. tuberculosis* RNA, indicative of an active infection.

25

Alternatively, probes based on the nucleic acid sequences described herein may be labelled with suitable labels (such a P^{32} or biotin) and used in hybridization assays to detect the presence of M. tuberculosis nucleic acid in provided samples.

X. USE OF CLONED MYCOBACTERIUM SEQUENCES TO RAISE ANTIBODIES

30

Monoclonal antibodies may be produced to the purified *M. tuberculosis* peptides for diagnostic purposes. Substantially pure *M. tuberculosis* peptide suitable for use as an immunogen is isolated from the transfected or transformed cells as described above. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few milligrams per milliliter. Monoclonal antibody to the protein can then be prepared as follows:

35

40

A. MONOCLONAL ANTIBODY PRODUCTION BY HYBRIDOMA FUSION.

Monoclonal antibody to epitopes of the *M. tuberculosis* peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler and Milstein (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected purified protein over a period of a few weeks. The mouse is then sacrificed, and the antibody-producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall (1980), and derivative

WO 97/00067 PCT/US96/10375

- 28 -

methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Harlow and Lane (1988).

B. ANTIBODIES RAISED AGAINST SYNTHETIC PEPTIDES.

5

10

15

20

25

30

35

An alternative approach to raising antibodies against the *M. nuberculosis* peptides is to use synthetic peptides synthesized on a commercially available peptide synthesizer based upon the amino acid sequence of the peptides predicted from nucleotide sequence data.

In a preferred embodiment of the present invention, monoclonal antibodies that recognize a specific *M. tuberculosis* peptide are produced. Optimally, monoclonal antibodies will be specific to each peptide, i.e. such antibodies recognize and bind one *M. tuberculosis* peptide and do not substantially recognize or bind to other proteins, including those found in healthy human cells.

The determination that an antibody specifically detects a particular M. tuberculosis peptide is made by any one of a number of standard immunoassay methods; for instance, the Western blotting technique (Sambrook et al., 1989). To determine that a given antibody preparation (such as one produced in a mouse) specifically detects one M. tuberculosis peptide by Western blotting, total cellular protein is extracted from a sample of human spurum from a healthy patient and from sputum from a patient suffering from tuberculosis. As a positive control, total cellular protein is also extracted from M. tuberculosis cells grown in vitro. These protein preparations are then electrophoresed on a sodium dodecyl sulfate-polyacrylamide gel. Thereafter, the proteins are transferred to a membrane (for example, nitrocellulose) by Western blotting, and the antibody preparation is incubated with the membrane. After washing the membrane to remove non-specifically bound antibodies, the presence of specifically bound antibodies is detected by the use of an anti-mouse antibody conjugated to an enzyme such as alkaline phosphatase; application of the substrate 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium results in the production of a dense blue compound by immuno-localized alkaline phosphatase. Antibodies which specifically detect the M. tuberculosis protein will, by this technique, be shown to bind to the M. tuberculosis-extracted sample at a particular protein band (which will be localized at a given position on the gel determined by its molecular weight) and to the proteins extracted from the sputum from the tuberculosis patient. No significant binding will be detected to proteins from the healthy patient sputum. Non-specific binding of the antibody to other proteins may occur and may be detectable as a weak signal on the Western blot. The non-specific nature of this binding will be recognized by one skilled in the art by the weak signal obtained on the Western blot relative to the strong primary signal arising from the specific antibody-tuberculosis protein binding. Preferably, no antibody would be found to bind to proteins extracted from healthy donor sputum.

Antibodies that specifically recognize a M. tuberculosis peptide encoded by the nucleotide sequences disclosed herein are useful in diagnosing the presence of tuberculosis antigens in patients.

All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

10

20

25

30

35

40

XI. REFERENCES

- 1. Skamene, E. (1989). Genetic control of susceptibility to Mycobacterial infections. <u>Ref. Infect. Dis.</u> 11:S394-S399.
- 2. Kaufmann, S.H.E. (1991). Role of T-Cell Subsets in Bacterial Infections. <u>Current Opinion in Immunology</u> 3:465-470.
 - 3. Orme, I.M., et al. (1992). T Lymphocytes Mediating Protection and Cellular Cytolysis During the Course of Mycobacterium-Tuberculosis Infection Evidence for Different Kinetics and Recognition of a Wide Spectrum of Protein Antigens. <u>Journal of Immunology</u> 148:189-196.
 - Daugelat, S., et al. (1992). Secreted Antigens of Mycobacterium tuberculosis: characterization with T Lymphocytes from Patients and Contacts after Two-Dimensional Separation. <u>J. Infect. Dis.</u> 166:186-190.
 - Barnes et al. (1989). Characterization of T Cell Antigens Associated with the Cell Wall Protein-Peptidoglycan Complex of Mycobacterium tuberculosis. <u>J. Immunol.</u> 143:2656-2662.
 - 6. Collins et al. (1988). Biological activity of protein antigens isolated from *Mycobacterium tuberculosis* culture filtrate. <u>Infect. lmmun.</u> <u>56</u>:1260-1266.
- Lamb et al. (1989). Identification of Mycobacterial Antigens Recognized by T Lymphocytes, <u>Rev.</u>
 Infect. Dis. 11:S443-S447.
 - 8. Pal, P.G., et al. (1992). Immunization with Extracellular Proteins of Mycobacterium tuberculosis Induces Cell-Mediated Immune Responses and Substantial Protective Immunity in a Guinea Pig Model of Pulmonary Tuberculosis. Infect. Immun. 60:4781-4792.
 - 9. Andersen (1994). Infection & Immunity 62:2536.
 - 10. Jardim et al. (1990). Immunoprotective *Leishmania major* Synthetic T Cell Epitopes. <u>J. Exp. Med.</u> 172:645-648.
 - 11. Orme et al. (1993). Cytokine Secretion by CD4 T Lymphocytes Acquired in Response to Mycobacterium tuberculosis Infection. J. Immunology 151:518-525.
 - 12. Boesen et al. (1995). Human T-Cell Responses to Secreted Antigen Fractions of Mycobacterium tuberculosis. Infection and Immunity 63:1491-1497.
 - 13. Mougneau et al. (1995). Expression Cloning of a Protective Leishmania Antigen. Science 268:536-566.
 - 14. Yang et al. (1990). Oral Salmonella typhimurium (AroA⁻) Vaccine Expressing a Major Leishmanial Surface Protein (gp63) Preferentially Induces T Helper 1 Cells and Protective Immunity Against Leishmaniasis. <u>J. Immunology</u> 145:2281-2285.
 - 15. Sambrook et al. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
 - 16. Ausubel et al., (1987). <u>Current Protocols in Molecular Biology</u>, ed. Greene Publishing and Wiley-Interscience: New York (with periodic updates).
 - 17. Innis et al., (1990). PCR Protocols: A Guide to Methods and Applications. Academic Press: San Diego.
 - 18. Kanehisa (1984). Nuc. Acids Res. 12:203-213, 1984.
 - 19. Wetmur et al. (1968). J. Mol. Biol. 31:349-370.
 - 20. Beaucage et al. (1981) Tetra. Letts. 22:1859-1862.
 - 21. Matteucci et al. (1981). <u>J. Am. Chem. Soc.</u> 103:3185.
 - 22. Jacobs et al. (1991) METHODS IN ENZYMOLOGY 204:537-555.
 - 23. Earp et al. (1990). Nucleic Acids Research 18:3721-3729.

- 24. Ruther et al. (1983). EMBO J. 2:1791.
- 25. Stanley and Luzio (1984). EMBO J. 3:1429.
- 26. Gray et al. (1982). Proc. Natl. Acad. Sci. USA 79:6598.
- 27. Shimatake and Rosenberg (1981). Nature 292:128.
- 28. Amann and Brosius (1985). Gene 40:183.

10

- 29. Studiar and Moffatt (1986). <u>J. Mol. Biol.</u> 189:113.
- 30. Yang et al. (1991). Identification and Characterization of Host-Protective T-Cell Epitopes of a Major Surface Glycoprotein (gp63) from Leishmania major. <u>Immunology</u> 72:3-9.
- 31. Mdluli et al. (1995). New vectors for the in vitro generation of alkaline phosphatase fusions to proteins encoded by G+C-rich DNA. Gene 155:133-134.
 - 32. Lim et al. (1995). Identification of *Mycobacterium tuberculosis* DNA Sequences Encoding Exported Proteins by Using *phoA* Gene Fusions. <u>J. Bact.</u> 177:59-65).
 - 33. <u>Cecil Textbook of Medicine</u>, (1992, 19th edition), Wyngaarden et al, eds. W.B. Saunders, Philadelphia, PA.
- 34. Hubbard et al. (1992). Immunization of mice with mycobacterial culture filtrate culture proteins.

 <u>Clin. exp. Immunol.</u> 87: 94-98.

- 31 -

SEQUENCE LISTING

	(1)	GENERAL INFORMATION
		ICANTS: UNIVERSITY OF VICTORIA INNOVATION AND
5	(1) ALL	DEVELOPMENT CORPORATION
,	(ii)	TITLE OF INVENTION: MYCOBACTERIUM TUBERCULOSIS DNA
	(11)	SEQUENCES ENCODING IMMUNOSTIMULATORY PEPTIDES
	(iii)	
	•	CORRESPONDENCE ADDRESS:
10		(A) ADDRESSEE: Klarquist Sparkman Campbell Leigh
		& Whinston, LLP
		(B) STREET: One World Trade Center, Suite 1600,
		121 S.W. Salmon Street
		(C) CITY: Portland
15		(D) STATE: OR
		(E) COUNTRY: USA
		(F) ZIP: 97204-2988
	(v) COMF	PUTER READABLE FORM:
		(A) MEDIUM TYPE: Disk, 3.5-inch
20		(B) COMPUTER: IBM PC compatible
		(C) OPERATING SYSTEM: MS DOS
		(D) SOFTWARE: WordPerfect 5.1+, ASCII
	(vi)	
		(A) APPLICATION NUMBER: PCT/US96/10375
25		(B) FILING DATE: June 14, 1996
		(C) CLASSIFICATION:
	(vii)	
		(A) APPLICATION NUMBER: 06/000,254
		(B) FILING DATE: 06/15/95
30	(viii)	ATTORNEY/AGENT INFORMATION
		(A) NAME: Richard J. Polley
		(B) REGISTRATION NUMBER: 28,107
		(C) REFERENCE/DOCKET NUMBER: 2847-45176/RJP
	(ix)	TELECOMMUNICATION INFORMATION:
35		(A) TELEPHONE: (503) 226-7391
		(B) TELEFAX: (503) 228-9446
		(2) INFORMATION FOR SEQ ID NO: 1

(i) SEQUENCE CHARACTERISTICS:

WO 97/00067 PCT/US96/10375

- 32 -

	(A) LENGTH: 265	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#1-62	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 1	
	ACGCGGACCT CGAAGTTCAT CATCGAGTGA TACGTGCCAC ACATCTCGGC	50
	GCAGTGGCCC ACGAATGCAN CCGGTCTTGG TGATTTCNTC GATCTGGAAG	100
	ACGTTGACCG ARTTGTTTGC CACCGGGTTA GGCATCACGT CACGCTTGAA	150
	CAAGAACTCC GGCACCCAGA ATGCGTGTGT CACATCGGCT GAGGCCATTT	200
15	GGAATTCGAT ACGCTTGCCG GACGGCAGCA CCAGCACCGG AATTTCGGTG	250
	CTGTGCAACG TCTCG	265
	(2) INFORMATION FOR SEQ ID NO: 2	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 484	
20	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
25	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#1-152	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 2	
	CTGGTACGAC GCCGGCAAGG ACTACGGACG AGGTGGCACA GAATTCAATG	50
30	CGGCGCTCAT CGGAACCGAC GTGCCCGACG NCGTTTGCTC GACGACGATG	100
	GTGNTTCCAN TTCGCCTNAN CGGTGTNCTG ACTGCCNTTG ACGACCTGNT	150
	CGGCCARGTT GGGNTGGACA CAACGGATTA CGTCGATTCG CTGCTGGCCG	200
	ACTATGAGTT CAACGGCCGC CATTACGCTG TGCCGTATGC TCGCTCGACG	250
	CCGCTGTTCT ACTACAACAA GGCGGCGTGG CAACAGGCCG GCCTACCCGA	300
35	CCGCGGACCG CAATCCTGGT CAGAGTTCGA CGAGTGGGGT CCGGAGTTAC	350
	AGCGCGTGGT CGNCGCCGGT CGATCGGCGC ACGGCTGCGT AACGCCGACC	400
	TCATCTCGTG GACGTTTCAG GGACCGAACT GGGCATNCGG CGGTGCCTAC	450
	TCCGACAAGT GGACATTGAC ATTGACCGAG CCCG	484

PCT/US96/10375 WO 97/00067

- 33 -

	(2) INFORMATION FOR SEQ ID NO: 3	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 513	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
10	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#1-239	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 3	
	GGCGGCCAGA CGTCGGAACT CGCGGCCAAT TGGTGTGGTG	50
	TCCTCGACGC AACCGCTTCG CGGTCTTGGC AGTGTTCGAT GCCAATCTGC	100
15	CGGCCGGGAC GCTGCCGGAT GCGGCCCGTT CACCGAGGCT GGTGACAAGA	150
	CCTGGCGTTG TCGTTCCGGG CACTACTCCC NAGGTCGGTC AAGGCACCGT	200
	CAAAGTGTTC AGGTATACCG TCGAGATCGA GAACGGTCTT GATCCCACAA	250
	TGTACGGCGG TGACAANNNN ATTCGCCCAG ATGGTCGACC AGACGTTGAC	300
	CAATCCCAAG GGCTGGACCC ACAATCCGCA ATTCGGCGTT CGTGCGGATC	350
20	GACAGCGGAA AACCCGACTT CCGGATTTCG CTGGTGTCGC CGACGACAGT	400
	GCGCGGGGGN TGTGGCTACG AATTCCGGCT CGAGACGTCC TGCTACAACC	450
	CGTCGTTCGG CGGCATGGAT CGCCAATCGC GGGTGTTCAT CAACGAGGCG	500
	CGCTGGGTAC GCG	513
	(2) INFORMATION FOR SEQ ID NO: 4	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 510	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#1-247	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 4	
	GTGTGCAACC AGTGTGTGTN CGTGTGCGAA CCAGTGTGTA GTGGTAACCA	50
	GGACCACGTT GCAAACCAGT GTTGGAGTGC AGTGTTGCGT GCNAGTGTTG	
	CNCGTTGCAG TGTTNGNCGA GCCGAGATTG GAAGTTNCCG ACATTACCGT	150

- 34 -

	TGCCGACGTT GCCCTCGCCG ACGTTCGCCA AGCCCAGGTT GCGGACACGC	
	CGGTGATTGT GCGTGGGCCA ATGACGGGCT GCTGGCCCGG CCGAATTCCA	250
	AGGCGTCGAT CGGCACGGTG TTCCAGGACC GGGCCGCTCG CTACGGTGAC	300
	CGAGTCTTCC TGAAATTCGG CGATCAGCAG CTGACCTACC GCGACCGTAA	350
5	CGCCACCGCC AACCGGTNNG CCGCGGTGTT GGCCNNNCGC GGCGTCGGCC	400
	CCGGCGACGT CGTTGGCATC ATGTTGCGTA ACTCACCCAG CACAGTCTTG	450
	GCGATGCTGG CCACGGTCAA GTGCGGCGTA TCGCCGGCAT GCTCAACTAC	500
	CACCAGCGCG	510
	(2) INFORMATION FOR SEQ ID NO: 5	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 456	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#1-426	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 5	
	GCAACGGAGA GGTGGACTAT GCCGGACCGG CACCGCGAAG GGGTTGGTGC	50
	CGGCCCGGGT GGTGACGGTG CACATTCTGC GCAATTCGCT GAGTTCCGGT	100
	GGTGACCTTC CTGGGCGCG AGTCTGGGCG CGCTGATGGC GGAGCGAKTG	150
	TGACCGAAGG AANTCNGTTC AACATCCACG GCGTCGGGGG CGTGCTGTAT	200
25	CAAGCGGTCA CCGTCAGGAG ACGCCGACGG TGGTGTCGAT CGTGACGGTG	250
	CTGGTGCTGA TCTACCTGAT CACCAATCTG TTGGTGGATC TGCTGTATGC	300
	GGCCCTGGAC GCCGNNGATN CGCTATGGCT GAGCACACGG GGTTCTGGCT	350
	CGATGCCTNG CGCGGGTTGC GCCGGCGTCC TAAANTCGTG ATCGCGCGGC	400
	GCTGAKCCTG CTGATTCTTG TCGTGGCGGC GTTTCCGTCG TTGTTTACCG	450
30	CAGCCG	456
	(2) INFORMATION FOR SEQ ID NO: 6	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 175	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	

- 35 -

	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-2	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 6	
5	TCNCTTANYC CTTCANCTGN CATCTNTCCC AANNACCGAA NTCTGGACCT	50
	ATSACGNCCA NCTNAANATG NCCCNCGACN AAGGNCNTTG NACGTTCNCT	100
	GKACCACCAN CGGGTTGCAT SCCAAGCTAG NCGAACATCA NASGTTNCGC	150
	GCNTACGAGC CGACCCGCCG CGGCG	175
	(2) INFORMATION FOR SEQ ID NO: 7	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 231	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-23	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 7 CTTCTCGCGC CAGCCGTCCC GCTGTCCGGG ATGCGCTACC GGTCGTCAGC	50
	GCCAAGACGG TGCAGCTCAA CGACGGCGGG TTGGTGCGCA CGGTGCACTT	
	GCCGGCCCC AATGTSGCGG GGCTGCTGAG TGCGGCCGCG TGCCGCTGTT	
	GCAAANNGCG ACCACGTGGT GCCCGCCGC ACGGCCCCGA TCGTCGAAGG	
25	CATGCAGATC CAGGTGACCC GCAAATCGGA T	231
	(2) INFORMATION FOR SEQ ID NO: 8	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 173	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
35	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-26	
	(wi) CROWNER PRECEDENCY, SEC ID NO 8	

- 36 -

	GTTCGNCGCG CTCAAAAGGT TGACGATGGT CACGTCGCAC GTGCTGGCCG	50
	AGACCAAGGT GGATTTCGGT GAAGACCTCA AAGANCTCTA CTCGNATCGT	100
	CAAGGCCCTC AACGACGACC GAAAGGATTT CGTCACCTCG CTGCAGCTGT	150
	TGCTGACGTT CCCATTTCCC AAC	173
5	(2) INFORMATION FOR SEQ ID NO: 9	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 223	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
15	(D) OTHER INFORMATION: AciI#2-35	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 9	
	CCTGTTNCAA CGGTNCNTTC NCGGAACGGA CGACTTCTGA TNCGNNCTCG	
	GNCGTTCCCT CGCACCGGTC GATGGTGATC AAGGTCAGCG TCTTCGCGGT	
20	GGTCATGCTG CTGGTGGCCG CCGGTCTGGT GGTGGTATTC GGGGACTTCC	
20	GGTTTGGTCC CACAACCGTC TACCACGCCA CCTTCACCGA CNCGTNGCGG CTGAANGCAG GCCAGAAGGT TCG	
	(2) INFORMATION FOR SEQ ID NO: 10	223
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 120	
25	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
30	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-272	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 10	
	CAACGAGATC GCACCCGTGA TTAGGAGGTG ACGGTGGCAG CGCCGACCCC	50
35	GTCGAATCGG ATCGAAGTAA CGCTCCGTAG ACGCCAGCTC GTCCGCGCCG	
	ATGCCGACCT GCCACCCGTG	120
	(2) INFORMATION FOR SEQ ID NO: 11	
	(i) SEQUENCE CHARACTERISTICS:	

PCT/US96/10375 WO 97/00067

- 37 -

	(A) LENGTH: 160	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-506	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 11	
	CNGGCNNCCA NCGGGTGCGC CAWGCACGGC CGGTCCGTGC GAGATCGTCN	50
	CNAATGGCAN GCCGGCGCCC AAKANANNNC CGGTACCGTG CCTTCGTNGW	100
	GCAWCCTNGC GACCAACCCC GAGATYGCYA CNCTACNGCC GGKACATGAC	150
	CGTGGTGCGG	160
15	(2) INFORMATION FOR SEQ ID NO: 12	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 133	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
25	(D) OTHER INFORMATION: Acil#2-508	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 12	
	GACTGGNCCC GAYGYTGTGN CCGGHNCGTH GGNCGHGCHG CANTCGAYCC	
	TGGCCGTTGC TTCGGTGCCG GGTTGTTCAT CGCCTTCGAC CAGTTGTGGC	
	GCTGGAACAG CATAGTGGCG CTAGTGCTAT CGG	133
30	(2) INFORMATION FOR SEQ ID NO: 13	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 421	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	

- 38 -

	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-511	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 13	
	GCGNACNCTG CGCATNGCTG CCNGTANCCC GGCGCCNAGG CATGAGN	.NN 50
5	TAGGCCGAAA TGCCTGGTKA ANCTNGCGTG TSGTGGTTGA CCCGCNG	GT 100
	SCNGGCNTAC AKGTGCATGC TGTNGATCGG CAGTGGGAGA GGTGAGCC	GT 150
	GCGGCGTNAA GGTGCGGAGG TTNGASNTCT GGCGGTGTCG GCGTTNG	TG 200
	GCTTTGTTCC CGGCGGTCGC GGGGTGCTCC NGNATTCCGG CGACNAA	NA 250
	AANNCCGGGN AGSACGAYNC CCGTCGACAC CNGGCAAACG CTGAGGGG	CCG 300
10	GCACGGACCC TTCTTCCCGC AATGTGGCGG CGTCAGCGAT CANGACGC	TG 350
	ACCGAGCTGW ACAAGGGTGA CCGGGCTGGT CAACACCGCC AAGAAGTG	CGG 400
	TGGGCTNCCA ATGGCNTGGC G	421
	(2) INFORMATION FOR SEQ ID NO: 14	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 175	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
20	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-523	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 14	
25	CCAGNCCNCC NAACNTGTYN CGNTCTCAYY TCGCCGTCGC TGCCGGTI	
	TGTGTGCACC ATCTGCACCG ACCCGTGKAA CYTCGATCAC GANACTGO	
	GAGNTCAGGC ATNAAAGCCG GAGTGGCACA GCAACGGTCG CTACTGGA	AAT 150
	TGGCGAAGCT GGATGCTGAG CTGAC	175
	(2) INFORMATION FOR SEQ ID NO: 15	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 263	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE.	

WO 97/00067

. 39 -

	(D) OTHER INFORMATION: AciI#2-639	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 15	
	GGGCTGGATT CGAGGCTCGT GCATGNCGTA CGACTANGGG TAGCGCCCAG	50
	CTGCTCAATA CCATCGGTTG GATAACAAAG GCTGAACATG AATGGCNTGA	100
5	TCTCNACAAG CGTGCGGCTC CCACCGACCC CGGCGCCCCT CGAGCCTGGG	150
	GSTGTCGCGA TCCTGATCGC GGCGACACTT TTCGCGACTG TCGTTGCGGG	200
	GTGCGGGAAA AAACCGACCA CGGCGAGCTC CCGAGTCCCG GGTCGCCGTC	250
	GCCGGAAGCC CAC	263
	(2) INFORMATION FOR SEQ ID NO: 16	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 168	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-822	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 16	
	YGCCATGCGA AGCGCACCCC GGTCCGGAAG NCCTGCACAG TTCWNCCGTG	50
	CTCGCCGCGA CGCTACTCCT CGNYTGCGGC GGTCCCAYGC AGCCAYGCAG	100
	CATCACCTTG ACCTTTATCC GCAACGYGYA ATYCCAGGCC AAYGCCGAYG	
	GGATCATCGA YACCKACA	168
25	(2) INFORMATION FOR SEQ ID NO: 17	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 181	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
35	(D) OTHER INFORMATION: Acil#2-854	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 17	
	ACCNGTTCCC GCCGGNCTNA CNCNCGGTGC CGTTGCACCG GCCANCTGCA	
	GCCTGCCCCG ACGCCGAAGT GGTGTTCGCN CCGCGGCCGC TTCGAACCGC	100

- 40 -

	CCGGGATT	GG CACGGTCGGC AABGCATTCG TCAGCNNTGC GCTCGAAGGT	150
	CAACAAGA	AT GTCGGGGTCT ACGCGGTGAA A	181
		(2) INFORMATION FOR SEQ ID NO: 18	
	(i) SEQU	JENCE CHARACTERISTICS:	
5		(A) LENGTH: 95	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: double	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: genomic DNA	
10	(vi)	ORIGINAL SOURCE:	
		(A) ORGANISM: Mycobacterium tuberculosis	
	(ix)	FEATURE:	
	(D)	OTHER INFORMATION: AciI#2-872	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO 18	
15	AGGTKACG	GGT GGCAGCGCCG ACCCCGTCGA ATCGGWTCGA AGAAYGCTCC	50
	GKACACGC	CCA GCTGCGTCCG YGCCGATGCC GACCTGCCAC CCGTG	95
		(2) INFORMATION FOR SEQ ID NO: 19	
	(i) SEQU	JENCE CHARACTERISTICS:	
		(A) LENGTH: 65	
20		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: double	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: genomic DNA	
	(vi)	ORIGINAL SOURCE:	
25		(A) ORGANISM: Mycobacterium tuberculosis	
	(ix)	FEATURE:	
		OTHER INFORMATION: Acil#2-884d	
		SEQUENCE DESCRIPTION: SEQ ID NO 19	
	AKCGGTCA	ACC KACGGGCCGG CCACCGATGC GATTGTCAAC GGATTCCAAG	50
30	TGGTTGY	GCA TGCGC	65
		(2) INFORMATION FOR SEQ ID NO: 20	
	(i) SEQU	JENCE CHARACTERISTICS:	
		(A) LENGTH: 156	
		(B) TYPE: nucleic acid	
35		(C) STRANDEDNESS: double	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: genomic DNA	
	(vi)	ORIGINAL SOURCE:	

- 41 -

(A) ORGANISM: Mycobacterium tuberculo	osis.
(ix) FEATURE:	
(D) OTHER INFORMATION: AciI#2-8841	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 20	
5 TCTTCTACAA GGACGCCTTC GCCAAGCACC AGGAGCTGTT CG	SACGACTTG 50
GNCGTCAACG TCAACAATGG CTTGTCCGAT CTGTACRAGC AA	AGWTCGAGT 100
CGCTGCCGNB CGCAACGCGA CGAGATCATC GAGGACCTAC AC	CCGTTGCCA 150
CGAACA	156
(2) INFORMATION FOR SEQ ID NO: 21	
10 (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 123	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
15 (ii) MOLECULE TYPE: genomic DNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Mycobacterium tubercul	losis
(ix) FEATURE:	
(D) OTHER INFORMATION: AciI#2-8941	
20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 21	
ATNCCGTTCC ACTNCCGCGG CAGCAGCTGG NTTTGCGCAC AC	
AGTGGCGNTT GGTGGGGCCT CGCTGACGGC GAGTNTGGNC GA	
GGTCGGTGNC CTNTCNTCCC GCC	123
(2) INFORMATION FOR SEQ ID NO: 22	
25 (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 636	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
30 (ii) MOLECULE TYPE: genomic DNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Mycobacterium tubercul	losis
(ix) FEATURE:	•
(D) OTHER INFORMATION: Acil#2-898	
35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO 22	
CGGTCWHKCA ANTTGATGBC NGCGCGCAAG GCCGNCATGG T	
AACCACACCA CCGGCTGGNT CCGCATGGAC TTCGTGNTTS CC	

- 42 -

	GGANCTCGAC ATCAATKCAN CCGGAGNAGN ANGCTGACCN AACATNCGCT	200
	CATCGACCGC GGATGTCNAT CGAGNACGST GCCAAGSCGC TGCAGCTGGA	250
	TNCTCGAGCG CGCCATGGAG TNATRTGCGS CCGACGAATN CGTCGAGGTG	300
	ACCCCGGAGA NTCGTGCGGA TSCGCRAAGT CGAGCTGGCC GGCCNGCCGC	350
5	CCGGGCTNMG CAGCCGGGCG CGCACCNAAG GCGCGTGGCN TAGCANACTT	400
	GGCGNGCTGG CCGCGCGAGC GTANACNGCC ACTGCGAAAN TCCANGCCCG	450
	GCTTTTCGCA GCCGGGTTNA CGCTCGTGGG GGTACTGGAT AGCCTGATGG	500
	GCGTGCCCAG NCCCANGTCC GCCGCGTCTG TGTGACGGTC GGCGCGTTGG	550
	TCGCGCTGGC GTGTATGGTG TTGGCCGGGT GCACGGTCAG CCCGCCGCCG	600
10	GCACCCCAGA GCASTGATAC GCCGCGCAGC ACACCG	636
	(2) INFORMATION FOR SEQ ID NO: 23	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 103	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
20	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-916	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 23	
	CTTCCGGCGG GACAACAACA GGTCTCACCG GCGCCACACC CTGACACCTG	
36	ATCGCGTCTG CCGATCCCGG TCGGAGCACC CGGGTTCCAC CGCTGTGCCC	
25	CCC	103
	(2) INFORMATION FOR SEQ ID NO: 24 (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 207 (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
35	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-1014	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 24	
	DECOMMEN DESCRIPTION. DEC ID NO 24	

PCT/US96/10375 WO 97/00067

- 43 -

	GCCACCGGTT CATCGCGTGG TGCTGGTCAC CGCCNGGAAN GCCTCAGCGG	50
	ATCCCCTGCT GCCACCGCCG CCTATCCCTG CCCCAGTCTC GGCGCCGGCA	100
	ACAGTCCCGY CCGTGCAGAA CCTCACGGCT NCTHCCGGGC GGGAGCAGCA	150
	ACAGGTTCTC ACCGGYGCCW NGYACCCGCA CCGATCGCGT CGCCGATTCC	200
5	GGTCGGA	207
	(2) INFORMATION FOR SEQ ID NO: 25	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 204	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
15	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-1025	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 25	
	TTNCGCANNC GTTCATCCAG GTCCACTGGT GTCGCANCTC TCNNTGATGC	
	ACCGGTTCCG GATATATGTC NACATCNCCS TCSTCGTCCT GGTGCTGGTA	
20	CTNACGAACC TGATCGCGCA TTTCACCACA CCGTGNGCGA GCATCGCCAC	
	CGTCCCGGCC GCCYGCGGTC GGACTGGTGA TCTTGGTKCG GAGTAGAGGC	
	CTGG	204
	(2) INFORMATION FOR SEQ ID NO: 26	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 207	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
30	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-1035	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 26	50
35	ATACCNGTCA TCCNGCACAT NGTCAACCTN GAGTCGGTNC TCACCTACGA	
	GGCACGCCCG AGATGCATCA CTGGTGCTCG RTCAGNCCTT CACGGCTTGG	
	CCGCCTTCCG GTAGGACCGT HGCATGCCCG TCTTCGGCGC CTCGGGTGTT	TO

- 44 -

	CGGTCCTGGC TCTCGGGCTG CTGGCCNCTG CGCCCCACCC CGCACCGGGC	
		207
	(2) INFORMATION FOR SEQ ID NO: 27	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 289	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
10	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-1084	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 27	
15	YCNAGNCKCG TNATNGCSGN CKCATNTNAC NGGANCCNGG ATTNCSTACG	50
	CCACNGTGAT CGCGCTGGTN GCCGCGCTGG TGGCGCGTGT ACGTGCTCTC	100
	GTCCACCGGN AANTAAGCGC ACCATCGTGG GCTACTTCAC CTCTGCTGTC	150
	GGGCTCTATC CCGGTGACCA GGTCCGCGTC CTGGGCGTCC NGGTGGGTGA	200
	GATCGACATG ATCGAGCCGC GGTCGTCCGA CGTSAAGATC ACTATGTCGG	250
20	TGTCCAAGGA CGTCAAGGTG CCCGTGSACG NTGCAGGCC	289
	(2) INFORMATION FOR SEQ ID NO: 28	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 198	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
30	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-1089	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 28	
	TTGNACCANG CCTATCGCAA GCCAATCACC TATGACACGC TGTGGCAGGC	50
	TGACACCGAT CCGCTGCCAG TCGTCTTCCC CATTGTGCAA GGTGAACTGA	_
35	GCAANGCAGA CCGGACAACA GGTATCGATA GCGCCGAATG CCGGCTTGGA	
	CCCGGTGAAT TATCAGAACT TYGCAGTCAC GAACGACGGG GTGATTTT	198
	(2) INFORMATION FOR SEQ ID NO: 29	
	(i) SEQUENCE CHARACTERISTICS:	

- 45 -

	(A) LENGTH: 149	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-1090	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 29	
	TCACGANGGT RYNACMGCAA CWCGACCGCC ACGTCASGCC GCCGCGCACG	
	AAGATCACCG TGCCTGCNCG ATGGGTCGTG AACGGAATAG AAYGCAGCGG	100
	TGAGGTCAAN YGCGAAGCCG GGAACCAAAT CCGGTGACCG CGTCGGCAT	149
	(2) INFORMATION FOR SEQ ID NO: 30	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 210	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-1104	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 30	50
	GGACCCGCCA AGCATCAGCC GGTCAACAGC CGCCGCCGGT GGCCAAAGTT	
	CGAGCAGCCG CCGGTATCGT GCTCGGCCCG GCTAGACCAA AAACTTTACG CCAGCGCCCG AAGCCACCCG ACTCCAAGGC CTCGGCCCGG TTGGGTTCGC	
	ACATGGGTGA GTTCTATATG CCCTACCCGG GCACCCGGTT CAACCAGGAA	
		210
30	ACCGTCTCGC (2) INFORMATION FOR SEQ ID NO: 31	
	(i) SEQUENCE CHARACTERISTICS:	
	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 255	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
رر	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	

- 46 -

	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#3-9	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 31	
5	CAGNCCGCTG NCCCGGAACT GTTCCAGCAG CTACAAGACC TTCGACAACG	50
	TNGCGCGTCA ACCTGCANTC GAGCGCAACC TCTCGGTGGC GCTCAACGAG	100
	TGTTCGCCGG CTTCAACCCG CTGGACCCGC GAAACCTCGA CGTGTCCCCG	150
	CTGCCTTCGC TGGCCAAGCG CGCCGCCGAC ATCCTGCGCC AGGACGTGGG	200
	CGGGCAGGTC GACATTTTCG ATGTCAATGT GCCCACCATC CAGTACGACC	250
10	AGAGC	255
	(2) INFORMATION FOR SEQ ID NO: 32	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 164	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
20	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#3-12	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 32	
	AAYNCCNGGC CRTCGACGGT NCCGGTTCNC RCCACCGGTC TATATCCACC	
36	CGGGTCNRCA TTMANANTGA NTMNCCGCCG GTGCGGCCGT CGAGCGTGAC	100
25	CTGGCATCCC CTGAGACGCT GCTGGGTTGC CCCGGGGAGN TCGAMANTCG GGCATCGCAC CATC	150
		164
	(2) INFORMATION FOR SEQ ID NO: 33	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 237	
30	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
35	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acii#3-15	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO 33	

- 47 -

	ACGGACGCA ACGGGATGCG ACCCGATCCC ACCGGTCGCC ACGAGGGACG	50
	CTACTTCGTC GCCGGGCAGC CGANCCGACC GTCNGTTCNG CGANGGCGAC	100
	NGCCGAAGCC GTTGACCCAC NTTGGTCAGC AGCAGCTGGA TSAGTCAGGT	150
	GCCGTTGGTG TTTCGCCGTC AGCGGTGTCG GGGTGGGTGC GTTCTGGGCA	200
5	CCGTCGACTG TGGTGGCCGC TNGCGGGCGN TGGTGGC	237
	(2) INFORMATION FOR SEQ ID NO: 34	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 374	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
15	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#3-47	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 34	
	CNGATNGCTC GGNCTNCGGT ACCNAACTCG NAACTCGCGC CCWYGCGNAC	50
	GCAGGNCCGC GGTTGGCACC ACCAGCGACA TCAATCANGC AGGWKNCCCG	
20	CCACGTTGCA AGACGGCGGC AATCTTCGCC TGTCGCTCAC CGACTTTCCG	150
	CCCAACTTCA ACATCTTGCA CATCGACGGC AACAACGCCG AGGTCGCGGC	200
	GATGATGAAA GCCACCTTGC CGCGCGCGTT CATCATCGGA CCGGACGGCT	
	CGNACGNACG GTCGACACCA ACTACTTCAC CAGCATCGAG CTGACCAGGA	300
	CCGCCCCGCA GGTGGTCACC TACACCATCA ATCCCGAGGC GGTGTGGTCC	350
25	GACGGGACCC CGATCACCTG GCCG	374
	(2) INFORMATION FOR SEQ ID NO: 35	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 26	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
35	(ix) FEATURE:	.: +45
	(D) OTHER INFORMATION: Acil#3-78 (overlaps with Ac	エナサマ-
	167) (xi) SEQUENCE DESCRIPTION: SEQ ID NO 35	
	(YT) DEGREENCE DESCRIPTION: DEG ID NO 33	

- 48 -

	GAGAACTCCG GGCCGANTTT TGGACA	26
	(2) INFORMATION FOR SEQ ID NO: 36	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 204	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
10	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acii#3-133	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 36	
	TGTCGGGTNA RNGTTCGCGT CCATGATTGC TCTTGCAACG CTGTTGACGC	50
15	TTATCAATCA AGTCGTCGGC ACTCCGTATA TTCCCGGTGG CGATTCTCCC	100
	GCCGGGACCG ACTGCTCGGA GCTGGCTTCG TGGGTATCGA ATGCGGCGAC	150
	GGCCAGGCCG GTTTTCGGAG ATAGGTTCAA CACCGGCAAC GAGGAAGCGC	200
	CTTG	204
	(2) INFORMATION FOR SEQ ID NO: 37	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 312	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#3-134	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 37	
	CANNTTAGAC TGTCGTGACA TATCNCNNTN TACNCNTGGN ACGGCCATNA	50
	TTGGATAATN CGTGATAANC ACCACAAGAA TNATTCCTAT GNATATTGTC	100
	GGTACGTTCG CGNCCATGAT TNGCTCTTGC AACGCTGTTG ACGCTTATCA	150
	ATCAAGTCGT CGNCACTCCG TATATTCCCG GTGNCGATTC TCCCGCCGGG	200
35	ACCGACTGCT CRGAGCTGGC TTCGTGGGTA TCGAATGCGS CGACGSCCAG	250
	GCCGGTTTTC GSAGATAGGT TCAACACCGG CAACGAGGAA GCGCCTTGGC	300
	GGCTCGGGGC TN	312
	(2) INFORMATION FOR SEQ ID NO: 38	

- 49 -

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 676	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
10	(D) OTHER INFORMATION: Acil#3-166	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 38	
	AGGCCAATCG NTGATGCGAC TCGAACGGGT TCGGCGCCGA TGACTGTTTC	50
	GCGAAGTTCA TCAGCACCCT CGTTGGCGCG AAGGGCACGA CGGTGTACCG	100
	GWWRYSAMKA CRCYGCYAIG AGIIICIGCS IGIAIIGCGG IGGGAIGGI	150
15	GCCGACCCGA CCAGGTGCGG KGCGTGNCGG CSCAKACWAG ATTGGTTCAA	200
	CCTGGCNATC GGACCNACGA CGCCGACGGT CGGCGCCGCG ACGACGGCAN	250
	ACGGNATNGC GACCCGANTC CNYACCNGGT CGCCACGAGG GACGNCTACT	
	TCGTCGCCNG GCAGCCGACC GANCTCGTTN NNCGCGASGN CGACGCCGAA	
	GCCGTTGACC CACTTGGTCA GCAGCAGCTG GNNATCANGN TCANGGTGCC	400
20	GTTNNGGTGT TTCGCCGTCA GCGGTGTCGG GGTGGGTGCG TTCTGGGCAC	
	CGTCGACTGT GGTGGGCGCT TGCGGGCGTG GTGGCGTTTC TCGGGCTGGT	
	GGGAGCCGGT GTCGTCGGGA CGCTGTTCCT GAATCGAGAC CGGGAGTCCA	
	TCGACGACAA GTACCTCGCN CCTTGAGGCG GTCCGGACTC ACCGGTGAGT	
	TCAACTCCGA CGCGAACGCC ATCGCCCGCS GCAAGCAGGT GTGCCGCCAG	
25	TTGCANASAC GGTGGCGAAC AGCNSA	676
	(2) INFORMATION FOR SEQ ID NO: 39	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 853	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
35	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#3-167	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 39	

- 50 -

	GTGNGCGCGC CNTCGAGCAN GTCTTGGCNG CGANCCCGAB ACAANTGATT	50
	CCCGACATCC GGTACACACC GAACCCCNAA NCGATGCGCC NGGCGGCCCG	100
	CTGGTAGAAA GGGGAAATCG CCAGTGCTGA CTCGCKTCAT CCGACGCCAG	150
	TTGAKCCKTT TKGCGAKCGT CKCCGTAGTG GCAATCGTCG TATTGGGCTG	200
5	GTACTACCTG CGAATTCCGA GTCTGGTGGG TNGTCGSGCA GTACACCTTG	250
	AAGGCCGACT TGCCCGNATC GGGTGGCCTG TATCCGACGG CCAATGTGAC	300
	CTACCGCGGT ATCACCATTG GCAAGGTTAC TGCCGTCGAG SCCACCGACC	350
	AGGGCNGCAC GANGTGACGA TGAGCATCGC CAGNCAACTA SAAAATCSCC	400
	GTCGATGCCT NCGGCGAACG TGCATTCGGN GTCAGCGGTN GGCGAGCAGT	450
10	ACATCGACCT NGTGTCCACC GGTGCTCCGG GTNAAATACT TCTCCTCCGG	500
	ACAGACCATC ACCAANGGCA CCGTTCCCAG TGAGATCGGG CCGGCGCTGG	550
	ACAANTCCSA ATCNGCGGGT TGGCCGCATT NGCCCACGGA GAAGATCGGC	600
	TTGCTGCTCG ACGAGACNGC GCAAGCGGTG GGTGGGCTGG GACCCGCGNN	650
	TTGCAACGGT TGGTCGATTC CACTCAAGCG ATCGTCGGTG ACTTCAAAAC	700
15	CAACATTGGC GACGTCAACG ACATCATCGA GAACTCCGGG CCGATTTTGG	750
	ACAGCCAGGT CAACACGGGT GATCAGATCG ACGCTGGGCG CGCAAATTGA	800
	ACAATSTGGC CGCACAGACC GCNGACCAGG GAKCAGAACG TGCGAAGCAT	850
	CCT	853
	(2) INFORMATION FOR SEQ ID NO: 40	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 209	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#3-204	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 40	
	GCGGTTGGCA CCACCAGCGA NAATCAGCAG GNDCCCGCCA CGTTGCAAGA	50
	CGGCGGCAAT CTTCGCCTGT CGCTCACCGA CTTTCCGCCC AACTTCAACA	100
	TCTTGCACAT CGACGGCAAB AABGCCGAGG TCGCGGCGAT GATGAAAGCC	150
	ACCTTGCCGC GCGCGTTCAT CATCGGACCG GACGGCTCGA CGACGGTCGA	200
35	CACCAACTA	209
	(2) INFORMATION FOR SEQ ID NO: 41	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 166	

- 51 -

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
5	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculcsis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#3-206	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 41	
10	AGATCGTCAG TGAGCAGAAC CCCGCCAAAC CGGCCGCCCG AGGTGTTGTT	50
	CSAGGGCTGA AGNCNCTGCT CGCGACGGTC GCTGCTGGCC GTCGTCGGGA	100
	TCGGGCTTGG CTCGCGCTGT ACTTCACGCC GGCGATGTCG NCCCGCGAGA	150
	TCGTGTATCA TCGGGT	166
	(2) INFORMATION FOR SEQ ID NO: 42	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 221	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#3-214	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 42	
	CCAGNTCCTC NNATATCGAC ACCCTCNACN AAGACCGCTT CGCGAGATCA	50
	ACNCTCAGAT ATNCNNACTA TCNCCNNTNC ACGCACACCT CAACATNANA	100
	NAATNGAACT ATNGNCTTCG CCTCACCACC AAGGTTCAGG TTANCGGCTG	150
	NCGTTTKCTC TKCGCCGGCT CGAACACGCC ATCGTGCGCC GGKACACCCG	200
30	GATGTTTGAC GACCCGCTGC A	221
	(2) INFORMATION FOR SEQ ID NO: 43	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 117	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	

WO 97/00067 PCT/US96/10375

- 52 -

	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#3-281	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 43	
5	CGGYCCGNNC AAYYYGNCGC GCHNCGGYGY AGAGGTCGNY AAGGTCGCCA	50
	AGGTAACGCT GATCGAYGGG NACANGCAAG TATTGGTGNA CTTCACCGTG	100
	GHTHGCTHGC TGTYAGC	117
	(2) INFORMATION FOR SEQ ID NO: 44	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 385	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
15	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: BsaHI#1-21	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 44	
20	GAACCTCCTC GCCCGCGCTT GGCCTAGCAT TAATCGACTG GCACGACAGT	50
	TGCCCGACTG GGTACACGGC ATGGACGCAA CGCGAATGAA TGTGAGTTAG	100
	CTCACTCATT AGGCACCCCA GGCGTTGACA CTTTATGCTT CCGGCTCGTG	150
	TAGTTGTGTG GGAATTGTGG AGCGGATAAC AATTTCGACG ACGAGGAAAC	200
	AGCTGTAGAC ATGGATTGAC GAATTTGAAT ACGACTCACT ATAGGAATTC	250
25	GAGCTCGGTA CCCGGGGATC CTCTAGAGTC CTTCGCCGCG GGTCGCCACC	
	ATCAGGGCCA GTGCGATCGC AAGCGCGGGG TACCGGGCGC CATAGTCTTC	350
	AGCATCGGCG TGTTGACCGC AGAGACCGGA CGGGG	385
	(2) INFORMATION FOR SEQ ID NO: 45	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 285	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
35	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#1-12	

WO 97/00067 PCTA

- 53 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 45	
	CCCGCAGCAG TACCCGCAGN CCCACACCCG CTATNCGCAG CCCGAACAGT	50
	TCGGTGCACA GCCCACCCNA GCTCGGCGTG CCCGGTCAGT ACGGCCAATA	100
	CCAGCAGCCG GGCCAATATG NCCAGCCGGN ACAGTNACGN CCAGCCCGGC	150
5	CAGTACGCNA CCGCCCGGTC AGTACCCCGG GCAATACGGC CCGTATGNCC	200
	AGTCGGGTCA GGGGTCGAAG CGTTCGGTTG CGGTGATCGG CGGCGTGATC	250
	GCCGTGATGG CCGTGCTGTT CATCGGCGCG GTTCT	285
	(2) INFORMATION FOR SEQ ID NO: 46	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 186	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
15	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#1-142	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 46	
20	GCNCGTGNCC GTGCCGCCCG GTTGAACGTG AGCNGCTGNC NATNGCCCCA	50
	GCCGAGACGA GAACGTCCCC GAGGAGTATG CAGACTGGGA AGACGCCGAA	100
	GACTATGACG ACTATGACGA CTATGAGGCC GCAGACCAGG AGGCCGCACG	
	GTCGGCATCC TGGCGACGGC GGTTGCGGGT NCGGTT	186
	(2) INFORMATION FOR SEQ ID NO: 47	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 402	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#1-144	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 47	
	GTCGCTGAAT GTGTTGTCGG AGACCGTGAT CAGACCTATC CGCACCTGAG	
	CGCCGCCTCC ACGGGTGGCT AAGTTCTCCG ACACCATCGG CAAGCGCGAC	
	GAGCAGACTC ANGCACCTAC TAGCCCAGGC CAACCAGGTG GCCAGCATCC	150

- 54 -

	TGGGTGATCG CAGTGAGCAG GTCGACCGCC TATTGGTCAA CGCTAAGACC	200
	CTGATCGCCG CGTTNCAACR GASNGCGCCG CGCGGTCGAC GCCCTGCTGG	250
	GGAACATCTC CGCTTTCTCG CCCAGGYGCA AAACCTTCAT SAACGACAAN	300
	CCGAACCTGA ACCATGTGCT CGAGCNGCGC ATCCTSACSA CCTGTTGGTS	350
5 .	GACSGCAAGG AGGATTTGGC TGAAANCCTN ACGATSTTGG GCAGAKTCAG	400
	CG	402
	(2) INFORMATION FOR SEQ ID NO: 48	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 468	
10	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
15	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#1-200	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 48	
	AGNCCGTGCA CTGGAANCTT CGGCTCAGWT GTCTCCGATG TGGACGGCAA	50
20	SGCTGATGAT CTCCCGGTTG GAAGTCGANT CGATKASAAA TGGCTTGGCG	100
	GCTGGTGGTG TTCGATGCCT GGCACCRACT GGCBACGATC NSCGCCTGGN	
	CGCGATCGGC GCTTAGCTCG GCTGGNNCCC TGTGGTGGGT TTCGACGTGC	
	TCGGTGTTGG TGCTGCTGGT GGTCGAAGGT GTGGCAATCA ACGTTCTGGC	
	TGTTGCGTCG TGATTCGGTA ACCGTCGGTA CCGACGACGA TGCGCCCGGG	
25	CTGCGACTGG CCGTTGTCTT CCTGTGCNNG CCGCCGCGAT CTCGGCGGCN	
	GTGGTGACTG GGTACCTGCG CTGGACGACA CCGGACCGCG ACTTCAATCG	
	GGATTCCCGG GAAGTGGTGC ATCTTGCCAC GGGGATGGCC GAGACGGTCG	450
	CGTCATTCTC CCCGAGCG	468
	(2) INFORMATION FOR SEQ ID NO: 49	
30	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 417	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	

- 55 -

	(D) OTHER INFORMATION: HinPI#2-23	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 49	
	GTCCAAGGCC GTAGCCCACC TCCTGGAAGT CGTACCACGT CGACTCGACC	50
	AGGACGGCTG CAGTCAGCAC TTCGTCAACC CGCGATCATC AACGTGCACC	100
5	TACGGCAGTG TGACGCACCC CGGACCATCG CACTGGCCGG GGTTCACACG	150
	CCGAACACTG CTGACCGCAC TGGATCTGCT GGTCGCATGC ACCACTTCAA	200
	GGTGGTGACG TACCTCAAAA TGGGTTTCCC GTTGTCCACC GAGGAAGTCC	250
	CGCTGATTCA TGGGCAATAA CGCTCCCTAT CCGCAGTGTC ACCAGTGGGT	300
	GCAAGCGGCG ATGGCCAAGT TGGTCGCTGA CCACCCCGAC TACGTTTTCA	350
0	CAACCTCGAC TCGACCGTGG AACATCAAAC CCGGCGATGT GATGCCAGCA	400
	ACCTATGTCG GGATCTG	417
	(2) INFORMATION FOR SEQ ID NO: 50	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 279	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
20	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#2-143	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 50	
	CGGTCGAGCC GATGAACGTC TGCAGTTCAC CGCAACCACG CTCAGCGGTG	
25	CTCCCTTCGA TGCGCAAGCC TGCAAGGCAA TGCCGCGGTG TTGTGGTTCT	
	GGACGCCGTG GTGCCCGTTC TGCAACTGTC AGAAGCCCCC AGCCGCAGCC	
	AGGTAGCGGC CGCTAATCCG GCGGTCACCT TCGTCGGAAT CGCCACCCGC	
	GCCGACGTCG GGGCGATGCA GAGCTTTGTC TCGAAGTACA ACCTGAATTT	
	CACCAACCTC AATGACGCCG ATGGTGTGA	279
30	(2) INFORMATION FOR SEQ ID NO: 51	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 324	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	

· 36 -

	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#2-145	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 51	
	CGGCCCGGCG GCGCCCTGGT GAAGCTTGGA GAATGGGTGA GCGCAGCTGC	50
5	CCACCACACG GGACCGGTGC GGACGCGSTG ACGCGCCTGG TGGTCAGCAN	100
	CNTGGCCGGT CTGCTGTTGT ATGCCAGCTT CCCGCCGCGC AACTGCTGGT	150
	GGCGGCGGTG GTTGGGCTNC GCATTGCTGG CCTGGGTGCT GACCCACCGC	200
	GCGACGACAC CGGTGGGTGG GCTGGGCTAC GGCCTGCTAT TCGGCCTGGT	250
	GTTCTACGTC TCGTTGTTGC CGTGGATCGG CGAGCTGGTG CNCCGGGCCC	300
10	TGGTTGGCAC TGNCGACGAC GTGC	324
	(2) INFORMATION FOR SEQ ID NO: 52	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 229	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
30	(A) ORGANISM: Mycobacterium tuberculosis (ix) FEATURE:	
20	(ix) FEATURE: (D) OTHER INFORMATION: HinPI#2-150	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 52	
	CCAGGCTAGC ACGTATGCTC CGGCTCGTTG TGTGTGGAAT GTGAGCGGAT	ΕΛ
	GACANKNCAC ACAGGADAYA GCTATGACNA TGATTACGCC AAGCTATTTA	
25	GGTGABACTA TAGAATAYTC AAGCTATGCA TCCAAYGCGT TGGGAGCTCT	
	YCCATATGGT CGACCTGCAY GCGGCCGCAC TAGTGATTST THGCGCCGGC	
	NYGCWGCGGC NYAYGACCGC YAAYACCAC	229
	(2) INFORMATION FOR SEQ ID NO: 53	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 293	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
35	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	

(D) OTHER INFORMATION: HinPI#3-28

- 57 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 53	
	CCACACAACA CAAATCTACG TCGTAATGCA GTCGTAAGTC CATCCGACGT	50
	CGATGGCAAG GACAGCACCC GACGGCCAAC GGCATATACA TCGTCGGCTC	100
	GCCGGTCACA AGCACATCAT CATGGACTCG TCCACTACGG CGTACCCGTC	150
5	AACTCGCCCA ACGGATATCG CACCGATGTC GACTGGCCAC CCAGATCTCC	200
	TACAGCGGTG TCTTCGTGCA CTCAGCGCCG TGGTCGGTGG GGGCTCAGGG	250
	CCACACCAAC ACCAGCCATG GCTGCCTGAA CGTCAGCCCG AGC	293
	(2) INFORMATION FOR SEQ ID NO: 54	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 816	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
15	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#3-30	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 54	
20	CGNCGYCGSC GNGCSCTAYC GGTGCGGGAG GGTACAYCCA AGCANTCCGG	50
	GACCGGCCGT CYCGCYGGGA ACGCCGTGCT CCTACAYACC GGCGRCGGGC	100
	GCGTTGCCAC GSCCCGACAC CCCACTACCC NGNCGCGGGC GCCACCRTTG	150
	GCCCGTTNMG GTGGACCCGA NCTTCCCGGC ACCGCTCGAT GTCCAGCCGT	200
	CGCCGCCTAA TCCCGATGGG CCGCMGCCGA CKCCGGGCAT CCTAAGTGCT	250
25	GGGCGGCCGG GCGAGCCGGN TCCGGNTGTT CCGGCATACC GWTGCCSYTG	300
	CCGNCGAACN TGCACGCACC CAACCGCTTG AGCCGTTTCC TGACGGGACG	350
	GGAGGTAGCA ACCAATGAGC ACCATCTTCG AYATCCGSAG CCTGCKACTN	400
	GYCGAWACTG TCTNGCAAAG GTAGTGGTCG TCGGCGGGTT GGTGGTGGTC	450
	TTGGCGGTCG TRGCCGNCTG NCRGCCGGCG CGCRGCTCTA CCGGAAACTG	
30	ACTANACTAC CGTGGTCGCR TATTTTCTST GAGGCGCTCG CGCTGTACCC	550
	AGGAGASAAA GTCCAGATCA TGGGTGTGCG GGTCGGTTCT ATCGACAAGA	
	TCGAGCCGGC CGGCGACAAG ATGCGAGTCA CGTTGCACTA NCAGCAASAA	
	ATACCAGGTG CCGGCCACGC TACCGNYGNW CGMTCCTCAA CCCCAGCCTG	
	GTGGCCTCGC GCACCATCCA GCTGTCACCN NCGTACACCG GCGGCCCGGT	
35	CTTGCAAGAC GGCGCGGTGA TSCCAATCGA GCGCACCCAG RTGCCCGTCG	
	AGTGGGATCA GTTGCG	816
	(2) INFORMATION FOR SEQ ID NO: 55	

(i) SEQUENCE CHARACTERISTICS:

- 58 -

	(A) LENGTH: 117	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#3-34	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 55	
	CAGCCACCTC GTTCGCCGCC GACATCGACT ATCAGCCGAC CCGGCCACTG	50
	CTGACCTGAT CGCCAACAGC TGGAGGCCCT ACCGGCTGCA GTTCAATTCA	100
	CCCGCTGCGG GTCGGCG	117
	(2) INFORMATION FOR SEQ ID NO: 56	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 242	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#3-41	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 56	
	AGGTGTCGTG CTTCATGCCT GGCGCCCAAT CCAGTTTCTA CACCGACTGG	50
	TATCACCCTT CGCAGACAAA CGGCCAGAAC TACACCTACA AGTGGGAGAC	100
	CTTCCTTACC ACACAGATGC CCGCCTGGCT ACAGGCCAAC AAGGCGTGTC	150
	CCCCACAGGC AACGCGGCGG TGGGTCTTTC GATCTCGGGC GGTTCCGCGC	200
30	TGACCCTGGC CGCGTACTAC CCGCAGCAGT TCCCGTACGC CG	242
	(2) INFORMATION FOR SEQ ID NO: 57	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 340	
	(B) TYPE: nucleic acid	
35	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	

- 59 -

	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HpaII#1-3	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 57	
5	TGCTGCAGAT AGCCAAGGAT CCAGTCGTGA TTGATATCAC GTCTTTCCAG	50
	TGAATTGAAG TTTGGCTATC AAAGGGTGAA CTTSAAAGAC GGCACACTGA	100
	CCTATGATGG TGCCGATCCG GAGCGCAAGC GCGCCATGGT TTCCAAGCCA	150
	GAGGGCAAGN ACAAGTACGG CGAAGAGCTG GTCGGGCCGG TGCGCGGGCT	200
	CAACACCGAG GACCGGACCT ACCTGAATTT CGACAAGGTC GAGACGTTGG	250
10	GCAGCAGCAC CGAAATTCCG GTGCTGGTGC TGCCGTCCGG CAAGCGTATC	300
	GAATTCCAAA TGGCCTCAGC CGATGTGATA CACGCATTCT	340
	(2) INFORMATION FOR SEQ ID NO: 58	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 262	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
20	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HpaII#1-8	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 58	- -
	CNGACTCCAA CNAGTGCGNT CAANCNGNTG TNCCNGACAA GAAGGTTCCT	
25	ACATCCGCAA NTCGGTGNAA NGCCACTGTG GATGCCTACG ACGGAACGGT	100
	CACGCTGTAC CAACAGGACG NAAAAGGATC CGGTGCTCAA GGCCTGGATG	150
	CAGGTCTTCC CCGGCACGGT AAAGCCTAAG AGCGACATTG CGCCGGAGCT	200
	TGCCGAGCAN CTGCGGTATC CCGAGGACCT GTTCAAGGTG CAGCGCATGT	262
	TGTTGGCCAA AT	204
30	(2) INFORMATION FOR SEQ ID NO: 59	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 241 (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
26		
35	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(VI) ORIGINAL SOURCE:	

PCT/US96/10375 WO 97/00067

- 60 -

	(ix) FEATURE:	
	(D) OTHER INFORMATION: HpaII#1-10	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 59	
	CCACCANNNA ACRRCACAGC TCCGGCCRRC CGTNCGCAGG CCACCCGCAN	50
5	CGTAGTGCTC AAATTCTTCC AGGACCTCGG TGGGGYACAT CCGTCCACCT	100
	GGTACAAGGC CTTCAACTAC AACCTCGCGA CCTCGCAGCC CATCACCTTC	150
	GACACGTTGT TCGTGCCCGG CACCACGCCA CTGGACAGCA TCTACCCCAT	200
	CGTTCAGCGC GAGCTGGCAC GTCAGACCGG TTTCGGTGCC G	241
	(2) INFORMATION FOR SEQ ID NO: 60	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 243	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HpaII#1-13	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 60	
	CCGGCGGATC TGCGTGACGA NTGTATNCCA CGGNACTACC CGCGGTCCTT	50
	CCTCNANTNC CGCCGGNCCA GNCGCAGNCT NCNGATGTCC NGCTATAACC	
	TGCGCGATCG CCGCCGGGCT GCCCGACAAC ACGGTGNGCG CCGCCGCTGC	
	TTCCGCCAAT TCTGGGTGNC GGCATNCCGG CAGCGCCCGG CCCAGCACTG	
25	AGAGGGGGAC GTTGATGCGG TGGCCGACGG CGTGGCTGCT GGC	243
	(2) INFORMATION FOR SEQ ID NO: 61	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2346	
20	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
35	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-825	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 61	
	_ · · · · · · · · · · · · · · · · · · ·	

- 61 -

	GCGCTGNCAT	TCGNACTTCG	GACNGCGTTN	GCGGTGGTGC	TGATCATGAA	50
	NCTACGACGG	CGCCACCGGC	AGCTTCCCGT	CATGGGTGCT	CTATCCCTGT	100
	GCGCTGGCCA	TGATGGTGTT	CTCGAATKCG	TTCAGCGTNC	TGCGCAGCGC	150
	AGTGANACCG	AGGGTGATGC	CGCCAACCAT	CGACTTGGTC	CGGGTCAACT	200
5	CACGGCTGAC	CGTGTTCGGC	CTGCTCGGCG	GCACCATCGC	TGGTGGCGCG	250
	ATTGCGGCCG	GAGTCGAATT	CGTCTGCACC	CACCTGTTCC	AGCTGCCGGG	300
	CGCGTTGTTC	GTCGTCGTCG	CGATCACCAT	CNNTNNNGCT	TCGCTGTCGA	350
	TNCNCATTCC	GCGCTGGGTC	GAGGTGACCA	GCGGTGAGGT	CCCGGCCACA	400
	TTGAGCTACC	ACCGGGATAG	GGNCAGACTA	CGGCGACNGC	TGGCCGGAGG	450
10	AAGTCAAGAA	CCTCGGCGGA	ACACTCCGAC	AACCGTTGGG	CCGCAACATC	500
	ATTACCTCCC	TGTGGGGTAA	CTGCACCATC	AAGGTGATGG	TCGGCTTTCT	550
	GTTCTTGTAT	CCGGCGTTTG	TCGCCAAGGC	GCACGAAGCC	AACGGGTGGG	600
	TGCAATTGGG	CATGCTGGGC	CTGATCGGCG	CGGCGGCCGC	GGTCGGCAAC	650
	TTCGCCGGCA	ATTTCACCAG	CGCACGCCTG	CAGCTAGGCA	GGCCAGCTGT	700
15	GCKGGTNGTG	CGCTGCACCG	TGCTAGTTAC	CGTGTTAGCC	ATCGCGGCCG	750
	CGGTGGCCGG	CAGCCTGGCA	GCGACAGCNA	TTGCCACCCT	GATCACGGCA	800
	GGGTCCAGTG	CCATTGCTAA	AGCCTCGCTG	GACGCCTCGT	TGCAGCACGA	850
	CCTGCCCGAG	GAGTCGCGGG	CATCGGGGTT	TGGGCGTTCC	GAGTCGACTC	900
	TTCAGCTGGC	CTGGGTGCTG	GGCGGCGCGG	TGGGCGTGTT	GGTGTACACC	950
20	GAGCTGTGGG	TGGGCTTCAC	TGCGGTGAGC	GCGCTGCTGA	TCCTGGGTCT	1000
	GGCTCAGACC	ATCGTCAGCT	TCCGCGGCGA	TTCGCTGATC	CCTGGCCTGG	1050
	GCGGTAATCG	GCCCGTGATG	GCCGAGCAAG	AAACCACCCG	TCGTGGTGCG	1100
	GCGGTGGCGC	CGNAGTGAAG	CGCGGTGTCG	CAACGCTGCC	GGTGATCCTG	1150
				GGTGCATGGC		
25				CGCTTACTCG		
				ACGTGGTCGA		
				CCGGTAAGCG		
				CCGGGCGCCG		
				CCAGCACCTT		
30				GTCGACCCGC		
				GTTGGTGGTC		
				GTCGGTGCGC		
				CGCGGTCGGC		
				GCGCATCATG		
35				CGCGCGGCAG		
				CGGGTGAGGC		
				GACCGGGCTG		
	GAGCGCGGTG	CTGCAGATGA	TCGACCCGCC	CGCGCTTGTC	GGTTGCATCG	1900

- 62 -

	CCCAGGCCAT CGTCGCCGGC CGCCACGAGA TCGAGGACGA GCCCGCGGTG	1950
	GTGGTGTGGC TGGCGTCCGG CTTGGCCGCC GAGACATTCC AGCTGGACTT	2000
	TGTCNGTACC GGCTCGGGTG CCCTGATCAC CGGTTATCGG TTCGACCGNA	2050
	CCGCCCGGGA TCTGCATCTG CTGCTGCCGG ACCCGTACAC ATTCCCGTCG	2100
5	AACCTGCTCA TCGAGCACCC CAACACCGAC CTGCCGGGCA CCGCNGTCGT	2150
	GGGCGGCGNT GGTGAGCGGC GGGCGCCGGC GGGGCGACAC CCGGSTGTKC	2200
	CGCGATCACG ACGTGCTCAC CTCCGGMGTC GTCGGCGTGC GCCTGCSCGG	2250
	GATGCGCGGT GTMCCGGTCG TGTCGCAGGG TTGNCGGCCG ATCGGCTACC	2300
	CATACATCGT CACCGGMGCG GACGGCATAC TGRKCACCGA GCTCGG	2346
10	(2) INFORMATION FOR SEQ ID NO: 62	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 841	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
20	(D) OTHER INFORMATION: Acil#435	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 62	
	CGTTACCCGC TTTACACCAC CGCCAAGGCC AACCTGACCG CGCTCAGCAC	50
	CGGGCTGTCC AGCTGTGCGA TGGCCGACGA CGTGCTGGNC NAGSCCNANS	100
	CCAATGNCGG MMTGCTGCAA NCGGNTNCNG GCCANGCGTT CGGACCGGAC	150
25	GGACGCTGGN CGGTATCAGT CCNGTCGGCT TCAAANCCGA NGGCGTGGGC	200
	GAGGACCTCA AGTCCGRRCC CGGTGGTCTC NAAACCCSGG CTNGTCAACT	
	CCGATNCGTC GCCCAACAAN CCCAACNGCC NGCCATCANC GACTCCKCNG	
	GCACCGCCNG AGGGAAGGGY CCGGNTCGGG ATTCAACGGG TTGGCRWCGC	350
	GGCGCTGCCG TTCNGRATTG GAYCCGGCAN CGTACCCCGG TGATGGGCAG	400
30	CTNACGGGGA NGAACAACCY GSCCSSSACG GCCACCTCGG CCTGGTACCA	450
	GTTACCGCCC CGCAGCCCGG ACCGGCCNGC TGGTGGTGGT TTCCNGCGGC	
	CGGCGCCATC TGGTCCTACA AGGAGGACGG CGATDTCATC TACGGCCANG	550
	TCCCNTGAAA CTGCAGTGGG NCGTCACCGG CCCGGACGGC CGCANTCCAG	600
	CCACTGGGGC AGGTATTTCC GANTCGACAN TCGGACCNGC AACNCCNGCG	650
35	TGGCGCAATC TGCGGTNTNT CCGCTGGCCT GGGCGCCGCC GGNANGCNCG	700
	ACGTGGCGCG CATTGTCGCC TATGACCCGA ACCTGAGCCC TGAGCAATGG	750
	TTCGCCTTCA CCCCGCCCCG GGTTCCGGTG CTGGAATCTC TGCAGCGGTT	800
	GAKCGGGTCA GCGACACCGG TGTTGATGGA CATCGCGACC G	841

- 63 -

	(2) INFORMATION FOR SEQ ID NO: 63	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 471	
	(B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
10	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#1-2/23/9	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 63	
	GCCAGCCGTG ATCGGCTGAC CGGCAGTGAT CACCAACCTC AACGTGGTGC	50
	TGGGCCTCGC TGGCGCTCAC ACGATCGGTT GGACCAGCCG GTGACGTCGC	100
15	TATCAGCGTT GATTCACCGG CTCGCGCAAC GCAAGACCGA CATCTCCAAC	150
	GCCGTGGCCT ACACCAACGC GCCGCCGGCT CGGTCGCCGA TCTCTGTCGC	200
	AGGCTCGCGC CGTTGGCGAA GGTGGTTCGC GAGACCGATC GGGTGGCCGG	250
	CATCGCGGCC GCCGACCACG ACTACCTCGA CAATCTGCTC AACACGCTGC	300
	CGGACAAATA CCAGGCGCTG GTCCGCCAGG GTATGTACGG CGACTTCTTC	350
20	GCCTTCTACC TGTGCGACGT CGTGCTCAAG GTCAACGGCA AGGGCGGCCA	400
	GCCGGTGTAC ATCAAGCTGG CCGGTCAGGA CATGCGGCGG TGCGCGCCGA	450
	AATGAAATCC TTCGCCGAAC G	471
	(2) INFORMATION FOR SEQ ID NO: 64	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 485	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
30	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#1-229/264	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 64	
35	KGTCTCGCGN CCTTNACATC CGGTCGCCNN RCGGTNATCT GCCTGTGGAT	50
	GCCGTCCGGA NGTATNANCN AATGGCCANG AGTNCGTGAC NGCAGNTATG	100
	GNCKCGGNTA TAGTTCCGTT TTGCCCNGGA CTNGGNGCGT GAGGTGGAAC	15
	TANTEGER GTCGGGTGAT ATTTCCGACG GCAAGNCGAC CATATAGGTG	20

- 64 -

GNATNCGACG GCAATAAACA CACGCTCTGG CCACGTTTCT TGGCGGGGAA	250
AGGGGTGATG CTATCGGAGC CAATGGTATC GCGACAACAC TTGCAGATGC	300
CGCCAAGGCC GATCACGCTA ATGACGGATT CGGGGCCACA AACGTTCCCC	350
GTTCTGGCGG TTTTCTCTGA CTACACCTCA GATCAAGGTG TGATTTTGAT	400
GGATCGCGCC AGTTATCGGG CCCATTGGCA GGATGATGAC GTGACGACCA	450
TGTTTCTTTT TTTGGCNATN CGGGTGCGAA TAGCG	485
(2) INFORMATION FOR SEQ ID NO: 65	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 469	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Mycobacterium tuberculosis	
(ix) FEATURE:	
(D) OTHER INFORMATION: AciI#1-264A	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO 65	
GGCGAGGTCA GTGAAGCCGA GGAAGCGGAA AGGAGCGCCC AATACGGAAC	50
CGCCTCTCCC CGCGCGTTGG CCGATTCATT AAATGCAGCT GGCACGACAG	100
GTTTCCCGAC TGGAAMGCGG GCAGTGAGCG CAASGCAATT AATGTGAGTT	150
AGCTCACTCA TTAGGCACCC CAGGCTTTAC ACTTTATGCT TCCGGCTCGT	
ATGTTGTGTG GAATTGTGAG CGGATAACAA TTTCACACAG GAAACAGCTA	
TGACATGATT ACGAATTTAA TACGACTCAC TATAGGGAAT TCGAGCTCGG	
TACCCGGGGA TCCTCTAGAG TCGCTTCGGT TGGCGGCGAC CAGCAGTGGA	350
TCCACGGTGG CCGCCGCGC GGCDTCATAC ACCGCCGCGG CCTCCTTGGC	
CTGTGCGGCC SGCTTAGCGC GCGTGTTGCT GCCGTGCTTA GCCANCTGGC	450
ATAGGGGGCT GCCGCGCC	469
(2) INFORMATION FOR SEQ ID NO: 66	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 290	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Mycobacterium tuberculosis	
(ix) FEATURE:	

(D) OTHER INFORMATION: AciI#1-264C

- 65 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 66	
	CNGGTTCGAC TGATCTAGCT GGGGCCAGAC CGGCACGAGG CGACAGTTAC	50
	CAGTACCTGA CAGACAGGCC GATCGAGCCA AACCGTAGTG AGGACGCAGG	100
5	AGGAACAGGC AGATGCATCT AATGATACCC GCGGAGTATA TCTCCAACGT	150
	GATATATGAA GGTCCGCGTG CTGACTCATT GTATGCCGCC GACCAGCGAT	200
	TGCGACAATT AGCTGACTCA GTTAGAACGA CTGCCGAGTC GCTCAACACC	250
	ACGCTCGACG AGCTGCACGA GAACTGGAAA GGTAGTTTCA	290
	(2) INFORMATION FOR SEQ ID NO: 67	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1306	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: HinPI#2-92	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 67	
	GTGATACAGG AGGCGCCAAC AGTGACACCT CGCGGGCCAG GTCGTTTGCA	50
	ACGCTTGTCG CAGTGCAGGC CTCAGCGCGG CTCCGGAGGG CCTGCCCGTG	100
	GTCTTCGACA GCTGGCGCTC GCAGCAATGC TGGGGGCATT GGCCGTCACC	150
	GTCAGTGGAT GCAGCTGGTC GGAAGCCCTG GGCATCGGTT GGCCGGAGGG	200
25	CATTACCCCG GAGGCACACC TCAATCGAGA ACTGTGGATC GGGGCGGTGA	250
	TCGCCTCCCT GGCGGTTGGG GTAATCGTGT GGGGTCTCAT CTTCTGGTCC	300
	GCGGTATTTC ACCGGAAGAA GAACACCGAC ACTGAGTTGC CCCGCCAGTT	350
	CGGCTACAAC ATGCCGCTAG AGCTGGTTCT CACCGTCATA CCGTTCCTCA	400
	TCATCTCGGT GCTGTTTTAT TTCACCGTCG TGGTGCAGGA GAAGATGCTG	450
30	CAGATAGCCA AGGATCCCGA GGTCGTGATT GATATCACGT CTTTCCAGTG	500
	GAATTGGAAG TTTGGCTATC AAAGGGTGAA CTTCAAAGAC GGCACACTGA	550
	CCTATGATGG TGCCGATCCG GAGCGCAAGC GCGCCATGGT TTCCAAGCCA	600
	GAGGGCAAGG ACAAGTACGG CGAAGAGCTG GTCGGGCCGG TGCGCGGGCT	650
	CAACACCGAG GACCGGACCT ACCTGAATTT CGACAAGGTC GAGACGTTGG	700
35	GCACCAGCAC CGAAATTCCG GTGCTGGTGC TGCCGTCCGG CAAGCGTATC	750
	GAATTCCAAA TGGCCTCAGC CGATGTGATA CACGCATTCT GGGTGCCGGA	800
	GTTCTTGTTC AAGCGTGACG TGATGCCTAA CCCGGTGGCA AACAACTCGG	850
	TCAACGTCTT CCAGATCGAA GAAATCACCA AGACCGGAGC ATTCGTGGGC	900

- 66 -

	CACTGCGCCG AGATGTGTGG CACGTATCAC TCGATGATGA ACTTCGAGGT	950
	CCGCGTCGTG ACCCCCAACG ATTTCAAGGC CTACCTGCAG CAACGCATCG	1000
	ACGGGAAKAC AAACGCCGAG GCCCTGCGGG CGATCAACCA GCCGCCCCTT	1050
	GCGGTGACCA CCCACCCGTT TGATACTCGC CGCGGTGAAT TGGCCCCGCA	1100
5	GCCCGTAGGT TAGGACGCTC ATGCATATCG AAGCCCGACT GTTTGAGTTT	1150
	GTCGCCGCGT TCTTCGTGGT GACGGCGGTG CTGTACGGCG TGTTGACCTC	1200
	GATGTTCGCC ACCGGTGGTG TCGAGTGGGC TGGCACCACT GCGCTGGCGC	1250
	TTACCGGCGG CATGGCGTTG ATCGTCGCCA CCTTCTTCCG GTTTGTGGCC	1300
	GCGGAT	1306
10	(2) INFORMATION FOR SEQ ID NO: 68	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 759	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
20	(D) OTHER INFORMATION: Acil#2-823	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 68	
	GGTGCCTGCC ATCGGTTCGC TGNGCCACNG CTGNCNNATC TTTGGTSTGT	50
	TAGAGGTNWW CCGCGCGGAT RGCNCANTCC TGTTGGNGGG GGTTRTCGCC	100
	ACGATTGCCG CCCGCGCTGA ACCCGACGAC GCCGATGCCC TGCCCACCAC	150
25	GGATCGGCTG NNMMCANCCG AGCGAACCGT GCAGNATGCN TNTKGTTGAC	200
	GAGCCTGCTG GCGCCTTCGC NGGCNCTCGG CGACCATCGG TGCCATCGGA	250
	ACCGCCGTNC GCAACCCACG GCATCCACAN GSTCCANGCA TGGCGGTATC	300
	GCGNTTGGCC GNCGTCACCG GTGCGCTGCT GCTGCTAYGA GCACGTTCAG	350
	CAGACACCAG AAGGTCACTG NTGTTTGCCA TCTGTNGGAA TCACCACCGT	400
30	TGCAACGGMA NTTGTACCGT CGCCGCGGAT CGGGCTCTGG AACACGGGCC	450
	GTGGATTGSC GCGCTGACCG CCATGCTGGT CCNGCCGTGG CAANTGKKTT	500
	TGGGCTTCGT NGCTCNCCGC GTTGTCGCTC TCGCCCGTCA CGTACCGCAC	550
	CATCGAATTG CTGGAGTGTC TGGCGCTGAT CGCAATGGTT CCATTGACCG	600
	CTNTGGSTAT NNNNNCGCCT ANCAGSSSCS TTCGCCACCT CGACCTGACA	650
35	TGGACATGAC CACNGTCCCG TNACCCTGCG CCTGNCTNGG TGGTMTCAGC	700
	GNCNNNTCGY SACGCTGTCT GGSWTGGSRM RCGCNCGGTT GCGCCACGCG	750
	GTTTCGCCG	759

- 67 -

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1041	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
10	(D) OTHER INFORMATION: HinPI#1-31	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 69	
	GKTCNCGGTG ATGTCGACNG TCGGCACGRM GNCGAAACCT CANCGGTCGA	50
	CAGTGTCTGC CCGAGGCCGC AGCCGACGTG CCCCNGGAGA CCGCGCGCCA	100
	ANCACGGTGC CGTACATGTA GCCCGCACGG CGCATCATCG CCGAGCCGGC	150
15	GTAGATGTTT TCCTGCACGG CGTNCSCGGT GAACCCTCCG GCGCCAGCAC	200
	CGSCACCWNT TCCCGCGTCC ACGTCGGCCT GGGTGGTGAC GCCGAGCACC	250
	CCACCGAAAT GATCGACATG GCTGTGGGTG TAGATGACCG SCGACCACGG	300
	GGCGGTCGGC TCCGCGGTGG GCGCGANTAC AAGTCCAGCG CGGCGGCGGC	350
	CACCTCGGTG GACANCCAAN CGGGYNYGAT GACGARWCWG CCCAGTGTCA	400
20	CCNCWMMACG AAGNCTGATA TTGGAGATAT CGAATCCGCG GACCTGATAG	450
	ATGCCCGGCA CCACCTGGTA GAGGCCCTGT TTCGCGGTCA GCTGGGATTG	500
	CCGCCACAGG CTGGGATGCA CCGATGTCGG CGCGGCACCG TCGAGNAACG	550
	AGTACGCGTC GTTGTCCCAC ACCNACGCGA CCATCGGCAG CCTTGATCAC	600
	ACACGGGGAC AGCGCGGCAA TGAATCCGCG ATCGGCGTCG TCGAAATCCG	650
25	TTGTGTCATN GCAACGGTNA ACGAGTGTTC ACCGTGTGCC GCCTGGNATG	700
	ACGGCAGTNG GGAGGTTTGT GTTCCATCGG CACTACATTG CCACTACTAC	750
	GGTGCACGCC GGTAGATGCC GTTGGCGAAC CACGCTACCG ACCAGAAAGA	800
	GAGAATTTTC CGCCGCACCT AGACCTCGGG CCCTCTAACG CGCATACTGC	850
	CGAAGCGGTC CTCAATGCCG ATGGACCGCT ACGACAGGCA AAGGAGCACA	900
30	GGGTGAAGCG TGGACTGACG GNTCGCGGTA GCCGGAGCCG CCATTCTGGT	950
	CGCAGGTCTT TCCGGATGTT CAAGCAACAA GTCGACTACA GGAAGCGGTG	1000
	AGACCACGNA CCGCGNGCAG GCACGACNGC AAGCCCCGGC G	1041
	(2) INFORMATION FOR SEQ ID NO: 70	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 799	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	

- 68 -

	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
5	(D) OTHER INFORMATION: HinPI#1-3	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 70	
	AGATCNAYAC YANCANCANT GCNGTCATCG AGNTGCTGCA GGNCANGGTG	50
	GTCCGTTGGC GAACGTGCTN KGCCNAYACC GGTGCCTTCT CGGCGCNCTN	100
	GGYGCAYNGC GACCAGCTGA TCGGCGNAKG TAATCACCAA CCTCAANNKC	150
10	GGTGCTNGCK ACCKTCGAYK GCAAAGAGYG YGCAATTTGT CGGCCAGTGT	200
	CGACCAGCTG CAGCAGCTGG TCAGCGGCCT GGCCAAGAAC CGGGATNCCG	250
	ANTSGNGGGC GCCATTTCGC CGCTGGNGTC GACGACGACG GATCTTWCGG	300
	AACTGTTGCG GAATTSGCGC CGGCCGCTGC AAGGCAKCCT GGAAAACGCC	350
	CGGCCGCTGG CTACCGAGCT GGACAACCGA AAGGCCNANG GTCAASAACG	400
15	RRATCGAGCA NGCTCGGCGA GGACNATNCC TGCGCCTGTC CGCGCTGGGC	450
	AGTTACGGAG CANTTCGTTC AACATCTAST TSTGCTCGGT GACGATSAAG	500
	ATCAACGGAC CGGCCGGCAG CGACANTCCN TGCTGCCGAT CGGCGGCCAG	550
	CCGGANTCCC AGCAAGGGGA GGTGCGCCTT TGCNTAAATA GGAAGCCAAG	600
	TANGCAAASA CGAASGCSAC CCGTCCGCAC CGGNCATCTT CGGCCTGGTG	650
20	CNTGGTGATC NTGNCGTCGT CCTGATSGNC ATTCGGCTAC AGCGGGTTGC	700
	CTKTCTGGCC ACAKKKCAAA ACCTACGACG CGTATTTCAC CGACGCCGGT	750
	GGGATCACCC CCGGTAACTC GGTTTATGTS TCGGGCCTCA AGGTGGGCG	799
	(2) INFORMATION FOR SEQ ID NO: 71	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 713	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
30	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-827 translation stran	i.
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 71	
35	CTAYCSGCAA NGCTKNGCAG ACGCTCGGCT GCACNGCAGA ANTCGCGGTG	50
	CACCCACGAT TGCCAGTAGC GCGGGCCCAC TCGTGCCTAC TACACTTCGT	100
	CGTAGCCAAA TCANTCGGCC CCGTAGTATC TCCGGAGATG ACAGATGAAT	
	GTCGTCGACA TTTCNGNCGG TGGCAGTTCG GTATCACCAC CGTSTATCAC	200

- 69 -

	TTNCAWYTTC GTNACSYGYT GACCWWCGGC CTGGCNCNCC TKSTKANYRC	250
	GGNTCNAYGC AAACTGCTGT GGTCGTCACC GATAANCCCG CCTGGTATCG	300
	CCTCACCNAA ATTCTTCGGC AAATTGTTCC TGNATCNAAC NTTTGCCATC	350
	GGCGTGGCGA CCGGAATCGT GCAGGNAATK TCAGTTCGGC ATGAACTGGA	400
5	GCGAGTACTC CCGATTCGTC GGCGATGTCT TCGGCGCCCC GCTGGCCATG	450
	GAGNSCTGGC GGCCTTNCTT CTTCGAATCC ACCTTCATCG GGTTGTGGAT	500
	CTTCGGCTGG AACAGGCTGC CCCGGCTGGT GCANTCTNGG CCTGCATCTG	550
	GNATCGTCGC AATNCGCNGG TNCAACGTGT CCGCGTTCTT CATCATCGCN	600
	GGCAAACTCC TTCATGCAGC ATCCGGTCGG CGCGCACTAC AACCCGACCA	650
10	CCGGGCGTGC CGAGTTGAGC AGCATCGNTC NGTGNCNTGC TGACCAACAA	700
	CACCGCACAG GCG	713
	(2) INFORMATION FOR SEQ ID NO: 72	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 274	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
20	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: Acil#2-834 translation strar	10
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 72	50
	CCGCAGCACC GAGGCAAGCA TCGCACCCGT CGATTCCCGC CATCCCGGCG	100
25	ACATGATGGT CATGTCCGAC ACCGACGCCC GCACCTCGCT TCCCGAGTTG	
	ACCGCGCTGC GCGTGGACGC CGCAACGGAT GCGTCGGTTC ATTCGATCCC	
	GGCTCGAAAT TGGCCATGGC GAACGCATCT TGCTGTGATG GTTCGGGCAG	250
	TAGATCTCCA CTGCCGCACT GATAAACTCG GGTCATGGTC GTCGTGAGGC	274
	GGACAGGGTA GAGGCGCATG ACCG	2/4
30	(2) INFORMATION FOR SEQ ID NO: 73	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 252	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
35	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	

- 70 -

	(1X) FEATURE:	
	(D) OTHER INFORMATION: AciI#2-874	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 73	
	GTGATGCCTT CCAGCATTGG ATTGGTCGTC GGTTCGATGC TGTGGCGACA	50
5	GATAAACCGC CTGTTCGGGG TGCGTGGCCT CTGCTGGGCA GCGCACTGCT	100
	CAACGCCGCT CTGCGCTGCT GTGCATGGTG GCCGAGTCGT GTGGGCAGTG	150
	GGTTCACGCC TGGGCGTACT TCACGGCGTT CCTGCTGGCT ACGGTGGCCG	200
	CTCAAACGGT GGTCGCCGCA TCGATATCGT GGATCAGCGT CCTCGCGCCC	250
	GA	252
10	(2) INFORMATION FOR SEQ ID NO: 74	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 160	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
20	(D) OTHER INFORMATION: AciI#2-1018	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 74	
	GGCGCCGCCG TCGTGCTGGC CGCCCGGCCC GGTGGGGGTG CCGGCCAGCG	50
	TGGTTCCGCC AGTGGCCGCG CCGAACGTAT TGGCCGGCGT CCTCGAGCAC	100
	GACAACGACG GGTCGGGGGC GGCGGTGCTG GCCGCGCTGG CCAAGCTGCC	150
25	ACCCGGTGGT	160
	(2) INFORMATION FOR SEQ ID NO: 75	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 393	
	(B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
35	(ix) FEATURE:	
	(D) OTHER INFORMATION: **HinPI#1-27	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 75	

- 71 -

	ATCAGCCGCG GGTCGACGCC GCCGATGACC TCGACGTCGT CGTCGTCGCT	50
	GCCGGTACTC AATCCAATCA CCATCCTCTT ACGCACCTTC TAGGAGTGTG	100
	TTGCTGCGGC AGTGCCGGCC ATTCGTAGAT TCGGGCCTCG CCGTTGTCGT	150
	AGATCTTCGC CCACGACCTC GATGTCTCTA ACGACACTAG TCCGTCCGGC	200
5	ACGCAAACCC CGCACCGTCG GAGTGCTGGT CAGGTATAGA CGGTACAGGA	250
	GGACTTGGTA GGCCTCGAGT ACCGAGGTAC GTCTCCCGTT GCGGCATAGG	300
	CCAGAAGATG AACCGGTGTA GACCGGGCCT GTTGCGAGGG TCGTAGTCGT	350
	AGGTCCCAGA GGTGTCGGAC GCCCAGGTTA ATACACAGCG TGC	393
	(2) INFORMATION FOR SEQ ID NO: 76	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 248	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Mycobacterium tuberculosis	
	(ix) FEATURE:	
	(D) OTHER INFORMATION: #2-147	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO 76	
	GCAGACCTCT GGCCGCTGGT GGTGCTGGGT ACCTGCGCTG GCGACACCGG	50
	ACCGCAGACC GTCAATCGGG ACTCCCGGGA ACGTGGTGCC ATCTTGCCAC	100
	GGGGATGGCC GACGCGGCTC GTCATTCTCC CCGAGCGCAC CGGCCGCCGC	150
	TGTTGACCGG GCCGCGGCGA CTGATGGTGC CCGCACACGC GGGCGGGTTC	200
26	ARCCACCART ACCCCARGTC CAGCGCCGCT CTCGCACGGC GCGGTGTT	248

I claim:

20

25

35

40

- 1. An isolated *Mycobacterium tuberculosis* nucleic acid sequence including a sequence selected from the group consisting of Seq. 1.D. Nos. 1 76.
- 5 2. A purified immunostimulatory peptide encoded by a sequence according to claim 1.
 - 3. An antibody that specifically binds to a peptide according to claim 2.
- 4. A vaccine preparation comprising at least one immunostimulatory peptide according to claim 2 and a pharmaceutically acceptable excipient.
 - 5. A purified immunostimulatory peptide encoded by a nucleotide sequence selected from the group consisting of Seq. I.D. Nos. 1 76.
- 6. A vaccine preparation comprising at least one peptide according to claim 5 and a pharmaceutically acceptable excipient.
 - 7. A purified immunostimulatory *Mycobacterium tuberculosis* peptide, the peptide including at least 5 contiguous amino acids encoded by a nucleic acid sequence selected from the group consisting of Seq. I.D. Nos. 1 76.

8. A vaccine preparation comprising at least one peptide according to claim 7 and a pharmaceutically acceptable excipient.

- A peptide according to claim 7 wherein the peptide includes at least 10 contiguous amino acids encoded by a nucleic acid sequence selected from the group consisting of Seq. I.D. Nos. 1 - 76.
 - 10. A vaccine preparation comprising at least one peptide according to claim 9 and a pharmaceutically acceptable excipient.
- 30 11. A method of making a vaccine comprising:

providing at least one purified peptide encoded by a nucleotide sequence selected from the group consisting of Seq. ID. Nos 1 - 76;

combining the peptide with a pharmaceutically acceptable excipient.

- 12. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
 - (a) Seq. ID Nos. 1 76:
 - (b) nucleotide sequences complementary to a sequence defined in (a); and
 - (c) nucleic acid molecules of at least 15 nucleotides in length which hybridize under conditions of at least 75% stringency to a sequence defined in (a) or (b).
 - 13. A recombinant DNA vector including a nucleic acid molecule according to claim 12.
 - 14. A transformed cell containing a vector according to claim 13.

PCT/US96/10375

- 15. A nucleic acid probe comprising a nucleic acid molecule according to claim 12 and a diagnostic label.
- 16. A method of isolating a Mycobacterium tuberculosis gene which gene encodes an immunostimulatory peptide, the method comprising the steps of:

providing nucleic acids of Mycobacterium tuberculosis;

contacting said nucleic acids with a probe or primer, the probe or primer comprising at least 15 contiguous nucleotides of a polynucleotide having a nucleotide sequence selected from the group consisting of Seq. ID Nos. 1 - 76 and sequences complementary thereto; and

isolating the Mycobacterium tuberculosis gene.

10

15

5

- 17. An isolated Mycobacterium tuberculosis gene produced by the method of claim 16.
- 18. An isolated Mycobacterium tuberculosis nucleic acid molecule, said molecule encoding an immunostimulatory peptide and hybridizing under conditions of at least 75% stringency to a nucleic acid probe comprising at least 20 contiguous bases of a sequence selected from Seq. ID Nos. 1 76.
 - 19. A purified immunostimulatory peptide encoded by the nucleic acid molecule of claim 18.
 - 20. An immunostimulatory preparation comprising:
- 20 a purified peptide according to claim 19; and a pharmaceutically acceptable excipient.
 - 21. An improved tuberculin skin test, the improvement comprising the use of one or more immunostimulatory peptides according to claim 19.

25

35

40

- 22. A vaccine preparation comprising an immunostimulatory membrane peptide isolated from *Mycobacterium* tuberculosis and a suitable excipient.
- 23. A method of detecting the presence of Mycobacterium tuberculosis DNA in a sample comprising contacting the sample with a nucleic acid probe according to claim 15 and detecting hybridization products that include the nucleic acid probe.
 - 24. A method of detecting the presence of Mycobacterium tuberculosis DNA in a sample comprising: selecting two or more nucleic acid primer molecules from the nucleic acid molecules defined in claim 12, said molecules suitable for amplification of a Mycobacterium tuberculosis target sequence;

incubating the sample under conditions suitable to amplify the target sequence; and detecting an amplified product.

- 25. A method of detecting the presence of a Mycobacterium tuberculosis peptide in a sample comprising contacting the sample with an antibody according to claim 3 and detecting the presence of an antibody-peptide complex.
 - 26. A method of detecting the presence of an anti-Mycobacterium tuberculosis antibody in a sample comprising contacting the sample with a peptide according to claim 2 and detecting the presence of an antibody-peptide complex.

(Page 1 of 4)

FIG. 1

1/5

280 140 2 GGCCGTCACCGTCAGTGGATGCAGCTGGTCGGAAGCCCTGGGCATCGGTTGGCCGGAGGGCATTACCCCG CCGGCAGTGGCAGTCACCTACGTCGACCAGCCTTCGGGACCCGTAGCCAACCGGCCTCCCGTAATGGGGC CTCCGTGTGGAGTTAGCTCTTGACACCTAGCCCCGCCACTAGCGGAGGGACCGCCAACCCCATTAGCACA GAGTCGCGCCGAGGCCTCCCGGACGGGCACCAGAAGCTGTCGACCGCGAGCGTCGTTACGACCCCCCGTAA CACTATGTCCTCCGCGGTTGTCACTGTGGAGCGCCCGGTCCAGCAAACGTTGCGAACAGCGTCACGTCCG <u> GAGGCACACCTCAATCGAGAACTGTGGATCGGGGCGGTGATCGCCTCCCTGGCGGTTGGGGTAATCGTGT</u> GTGATACAGGAGGCGCCAACAGTGACACCTCGCGGGCCAGGTCGTTTGCAACGCTTGTCGCAGTGCAGGC CICAGCGCGCTCCGGAGGGCCTGCCCGTGGTCTTCGACAGCTGGCGCTCGCAGCAATGCTGGGGGCATT ග ر ح LALAA ۵ œ **≥** a ဟ A L G œ ග G A V O ٩ œ G w <u>~</u> ග s ≯ م **..** ≯ œ <u>-</u> Σ V ဟ ۵ ပ ш G ග ~ G ဟ z ဟ A \ \ \ G エ **~** O

SUBSTITUTE SHEET (RULE 26)

(Page 2 of 4)

FIG.

2/5

560 490 350 420 ෆ GAAAGGICACCTTAACCTICAAACCGATAGTTTCCCACTTGAAGTTTCTGCCGTGTGACTGGATACTACC CTTTCCAGTGGAATTGGAAGTTTGGCTATCAAAGGGTGAACTTCAAAGACGGCACACTGACTATGATGG GCCGATGTTGTACGGCGATCTCGACCAAGAGTGGCAGTATGGCAAGGAGTAGTAGTAGACCACGACAAAATA A A G T G G C A G C C C C C T C T T C C A C G A C G T C T C C C A G G G C T C C A G C A C T A A C T A T A G T G CCCCAGAGTAGAAGACCAGGCGCCATAAAGTGGCCTTCTTCTTGTGGCTGTGACTCAACGGGGCGGTCAA T T C A C C G T C G T G C A G G A G A A G C T G C A G A T A G C C A A G G A T C C C G A G G T C G T G A T A T C A C G T GGGGTCTCATCTTCTGGTCCGCGGTATTTCACCGGAAGAAGAACACCGACACTGAGTTGCCCCGCCAGTT CGGCTACAACATGCCGCTAGAGCTGGTTCTCACCGTCATACCGTTCCTCATCATCTCGGTGCTGTTTTAI ဟ PLELVLTVIPFLII L O L N ෆ ш K M L O I A K ₩ ¥ <u>~</u> I O LL. > 4 ය ш ဟ 3 z Σ 3 Ø ပ

3/5

700 770 840 630 CGTGGTCGTGGCTTTAAGGCCACGACCACGACGGCAGGCCGTTCGCATAGCTTAAGGTTTACCGGAGTCG CGATGTGATACACGCATTCTGGGTGCCGGAGTTCTTGTTCAAGCGTGACGTGATGCCTAACCCGGTGGCA G T C G G G C C G G G G G C T C A A C A C C G A G G A C C G G A C C T A C C T G A A T T T C G A G G T C G A G G GCACCAGCACCGAAATICCGGTGCTGGTGCTGCCGTCCGGCAAGCGTATCGAATTCCAAATGGCCTCAGC IGCCGATCCGGAGCGCAAGCGCCCATGGTTTCCAAGCCAGAGGCAAGGACAAGTACGGCGAAGAGCTG GCTACACTATGTGCGTAAGACCCACGGCCTCAAGAACAAGTTCGCACTGCACTACGGATTGGGCCACCGT <u> ACGGCTAGGCCTCGCGTTCGCGGGGACCAAAGGTTCGGTCTCCCGTTCCTGTTCATGCCGCTTCTCGAC</u> E F ۵ ۵ ட **-**-ග <u>~</u> <u>ი</u> لىبا ဟ × <u>~</u> P V L V L P ဟ ш Σ ⋖ œ 3 <u>L</u> ¥ ပ — ~ ш S T A D A

FIG. 1 (Page 3 of 4)

(Page 4 of 4)

FIG.

4/5

1120 1050 980 910 CGCCACTGGTGGGCAAACTATGAGCGGCGCCACTTAACCGGGGCGTCGGGCATCCAATCCTGCGAG GCGGTGACCACCCATCCGTTTGATACTCGCCGCGGTGAATTGGCCCCCGCAGCCCGTAGGTTAGGACGCTC GATGGACGTCGTTGCGTAGCTGCCCTTATGTTTGCGGCTCCGGGACGCCCGCTAGTTGGTCGGCGGGGAA TCTACACACCGTGCATAGTGAGCTACTACTTGAAGCTCCAGGCGCAGCACTGGGGGTTGCTAAAGTTCCG AGATGTGGCACGTATCACTCGATGATGACTTCGAGGTCCGCGTCGTGACCCCCCAACGATTTCAAGGC AACAACTCGGTCAACGTCTTCCAGATCGAAGAATCACCAAGACCGGAGCATTCGTGGGCCACTGCGCCG TIGITGAGCCAGTIGCAGAAGGTCTAGCTTCTTTAGTGGTTCTGGCCTCGTAAGCACCCGGTGACGCGGC CTACCTGCAGCAACGCATCGACGGGAATACAAACGCCGAGGCCCTGCGGGCGATCAACCAGCCGCCCTT ۵. o z ග z > ۵. -Ч ۵. Ø O A L R Q 1 E E 1 T K T G م ⋖ Е > В ш V ග L z œ z œ z Σ ග 0 ဟ 0 œ z > エ Ø ۲ ر ဟ z z

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/10375

A. CLASSIFICATION OF SUBJECT MATTER			
IPC(6) :Please See Extra Sheet.			
US CL: 435/6, 7.1, 240.2, 320.1; 514/2; 530/300, 387.1; 536/23.7, 24.32 According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols)			
U.S. : 435/6, 7.1, 240.2, 320.1; 514/2; 530/300, 387.1; 536/23.7, 24.32			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
STN: Medline, Biosis, CAPlus, WPIDS, JAPIO, PATOSEP, PATOSWO; APS search terms: mycobacterium tuberculosis, peptide, polypeptide, protein, epitope, antigen, immunostimulat?, membrane, surface			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appr	ropriate, of the relevant passages	Relevant to claim No.
	TOMMASSEN et al. Use of the enterobacterial outer membrane protein PhoE in the development of new vaccines and DNA probes. Intl. J. Microbiol. Virol. Parasitol. infect. Dis. 1993, VOL. 278, pages 396-406.		1-26
Y	JANSSEN et al. Immunogenicity of a mycobacterial T-cell epitope expressed in outer membrane protein PhoE of Escherichia coli. Vaccine. 1994, Vol.12, pages 406-409.		1-26
Y	Lim et al. Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J. Bacteriol. January 1995, Vol.177, pages 59-65.		
Further documents are listed in the continuation of Box C. See patent family annex.			
Special categories of cited documents: "T" Inter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance "E" earlier document published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step			
L document which may throw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *Y* document in taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document			e claimed invention cannot be
"O" document referring to an oral disclosure, use, exhibition or other means			h documents, such combination
"P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed			
Date of the actual completion of the international search Date of mailing of the international search report			
о остовек 1996 8 ОСТ 1996			
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 Authorized offices Authorized offices Authorized offices Authorized offices Authorized offices			
- Prepar	A /210 (second shoot)(July 1992)+	· / ~	11