Calculus II

Homework

Series absolute convergence, the ratio and root tests

1.	Let x	$\in (0,$	1).	Express	the	following	using	\boldsymbol{x} and	$\sqrt{1}$	$-x^2$
----	---------	-----------	-----	---------	-----	-----------	-------	----------------------	------------	--------

(a) $\sin(\arcsin(x))$.

(e) $\sin(2\arccos(x))$.

(b) $\sin(2\arcsin(x))$.

(f) $\sin(3\arccos(x))$.

(c) $\sin(3\arcsin(x))$.

(g) $\cos(2\arcsin(x))$.

(d) $\sin(\arccos(x))$.

(h) $\cos(3\arccos(x))$.

2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a) $\cos^2(\arctan x)$.

(c) $\frac{1}{\cos(\arcsin x)}$.

(b) $-\sin^2(\operatorname{arccot} x)$.

(d) $-\frac{1}{\sin(\arccos x)}$.

3. Rewrite as a rational function of t. This problem will be later used to derive the Euler substitutions (an important technique for integrating).

(a) $\cos(2\arctan t)$.

(g) $\cos(2\operatorname{arccot} t)$.

(b) $\sin(2 \arctan t)$.

(h) $\sin(2\operatorname{arccot} t)$.

(c) $\tan (2 \arctan t)$.

(i) $\tan (2 \operatorname{arccot} t)$.

(d) $\cot (2 \arctan t)$.

(j) $\cot (2 \operatorname{arccot} t)$.

(e) $\csc(2\arctan t)$.

(k) $\csc(2\operatorname{arccot} t)$.

(f) $\sec (2 \arctan t)$.

(1) $\sec (2 \operatorname{arccot} t)$.

4. Compute the derivative (derive the formula).

(a) $(\arctan x)'$.

(d) $(\arccos x)'$.

(b) $(\operatorname{arccot} x)'$.

(c) $(\arcsin x)'$.

(e) Let arcsec denote the inverse of the secant function. Compute $(\operatorname{arcsec} x)'$.

5. (a) Let $a+b \neq k\pi$, $a \neq k\pi + \frac{\pi}{2}$ and $b \neq k\pi + \frac{\pi}{2}$ for any $k \in \mathbb{Z}$ (integers). Prove that

$$\frac{\tan a + \tan b}{1 - \tan a \tan b} = \tan(a + b) \quad .$$

(b) Let x and y be real. Prove that, for $xy \neq 1$, we have

$$\arctan x + \arctan y = \arctan \left(\frac{x+y}{1-xy}\right)$$

1

if the left hand side lies between $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

6. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)
$$\int x \sin x dx$$
.

(b)
$$\int xe^{-x}dx$$
.

(c)
$$\int x^2 e^x dx$$
.

(d)
$$\int x \sin(-2x) dx.$$

(e)
$$\int x^2 \cos(3x) dx.$$

(f)
$$\int x^2 e^{-2x} dx.$$

(g)
$$\int x \sin(2x) dx$$
.

(h)
$$\int x \cos(3x) dx.$$

(i)
$$\int x^2 e^{2x} dx.$$

(j)
$$\int x^3 e^x dx$$
.

7. Evaluate the indefinite integral. Illustrate the steps of your solutions.

(a)
$$\int x^2 \cos(2x) dx.$$

(b)
$$\int x^2 e^{ax} dx$$
, where a is a constant.

(c)
$$\int x^2 e^{-ax} dx$$
, where a is a constant.

(d)
$$\int x^2 \frac{(e^{ax} + e^{-ax})^2}{4} dx$$
, where a is a constant.

(e)
$$\int \frac{1}{\cos^2 x} dx$$
. (Hint: This problem does not require integration by parts. What is the derivative of $\tan x$?)

(f)
$$\int (\tan^2 x) dx$$
. (Hint: This problem does not require integration by parts. We can use $\tan^2 x = \frac{1}{\cos^2 x} - 1$ and the previous problem.)

(g)
$$\int x \tan^2 x dx$$
. (Hint: $\tan^2 x dx = d(F(x))$, where $F(x)$ is the answer from the preceding problem).

(h)
$$\int e^{-\sqrt{x}} dx$$
.

(i)
$$\int \cos^2 x \, dx$$
.

(j)
$$\int \frac{x}{1+x^2} dx$$
 (Hint: use substitution rule, don't use integration by parts)

(k)
$$\int (\arctan x) dx$$
.

(1)
$$\int (\arcsin x) dx$$
.

(m)
$$\int (\arcsin x)^2 dx$$
. (Hint: Try substituting $x = \sin y$.)

(n)
$$\int \arctan\left(\frac{1}{x}\right) dx$$
.

(o)
$$\int \sin x e^x dx$$

(p)
$$\int \cos x e^x dx$$

(q)
$$\int \sin(\ln(x)) dx$$
.

(r)
$$\int \cos(\ln(x)) dx$$
.

(s)
$$\int \ln x dx$$

(t)
$$\int x \ln x \, dx$$
.

(u)
$$\int \frac{\ln x}{\sqrt{x}} dx$$
.

(v)
$$\int (\ln x)^2 dx$$
.

(w)
$$\int (\ln x)^3 dx$$
.

(x)
$$\int x^2 \cos^2 x dx$$
. (This problem is related to Problem 7.d as $\cos x = \frac{e^{ix} + e^{-ix}}{2}$).

8. Compute $\int x^n e^x dx$, where n is a non-negative integer.

9. Integrate. Illustrate the steps of your solution.

(a)
$$\int \frac{1}{x+1} dx$$

(b)
$$\int \frac{x-1}{x+1} dx$$

(c)
$$\int \frac{1}{(x+1)^2} \mathrm{d}x$$

(d)
$$\int \frac{x}{(x+1)^2} dx$$

$$(e) \int \frac{1}{(2x+3)^2} \mathrm{d}x$$

(f)
$$\int \frac{x}{2x^2 + 3} \mathrm{d}x$$

(g)
$$\int \frac{1}{2x^2 + 3} dx$$

(h)
$$\int \frac{x}{2x^2 + x + 1} dx .$$

(i)
$$\int \frac{x}{2x^2 + x + 3} \mathrm{d}x$$

(j)
$$\int \frac{x}{x^2 - x + 3} \mathrm{d}x$$

$$\text{(k)} \int \frac{1}{\left(x^2+1\right)^2} \mathrm{d}x$$

(1)
$$\int \frac{1}{(x^2+x+1)^2} dx$$

(m)
$$\int \frac{1}{(x^2+1)^3} dx$$

10. Let a, b, c, A, B be real numbers. Suppose in addition $a \neq 0$ and $b^2 - 4ac < 0$. Integrate

$$\int \frac{Ax+B}{ax^2+bx+c} dx .$$

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

11. Let a, b, c, A, B be real numbers and let n > 1 be an integer. Suppose in addition $a \neq 0$ and $b^2 - 4ac < 0$. Let

$$J(n) = \int \frac{1}{\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)^n} \mathrm{d}x \quad .$$

(a) Express the integral

$$\int \frac{Ax + B}{\left(ax^2 + bx + c\right)^n} \mathrm{d}x$$

via J(n).

(b) Express J(n) recursively via J(n-1)

The purpose of this exercise is to produce a formula in form ready for implementation in a computer algebra system.

12. Integrate. Some of the examples require partial fraction decomposition and some do not. Illustrate the steps of your solution.

(a)
$$\int \frac{1}{4x^2 + 4x + 1} dx$$

(b)
$$\int \frac{1}{1-x^2} \mathrm{d}x$$

(c)
$$\int \frac{1}{5 - x^2} dx$$

(d)
$$\int \frac{x}{4x^2 + x + \frac{1}{16}} dx$$

(e)
$$\int \frac{x+1}{2x^2+x} dx$$

$$(f) \int \frac{x}{4x^2 + x + 5} \mathrm{d}x$$

$$(g) \int \frac{x}{4x^2 + x - 5} \mathrm{d}x$$

(h)
$$\int \frac{x}{3x^2 + x - 2} dx$$

(i)
$$\int \frac{x}{3x^2 + x + 2} dx$$

(j)
$$\int \frac{x}{2x^2 + x + 1} dx$$

(k)
$$\int \frac{x}{2x^2 + x - 1} \mathrm{d}x$$

(l)
$$\int \frac{1}{x^2 + x + 1} \mathrm{d}x$$

(m)
$$\int \frac{1}{2x^2 + 5x + 1} dx$$

13. Evaluate the indefinite integral. Illustrate all steps of your solution.

(a)
$$\int \frac{x^3 + 4}{x^2 + 4} dx$$

(b)
$$\int \frac{4x^2}{2x^2 - 1} dx$$

(c)
$$\int \frac{x^3}{x^2 + 2x - 3} dx$$

(d)
$$\int \frac{x^3}{x^2 + 3x - 4} dx$$

(e)
$$\int \frac{x^3}{2x^2 + 3x - 5} dx$$

(f)
$$\int \frac{x^2 + 1}{(x - 3)(x - 2)^2} dx$$

(g)
$$\int \frac{x^4}{(x+1)^2(x+2)} dx$$

(h)
$$\int \frac{15x^2 - 4x - 81}{(x-3)(x+4)(x-1)} dx$$

(i)
$$\int \frac{x^4 + 10x^3 + 18x^2 + 2x - 13}{x^4 + 4x^3 + 3x^2 - 4x - 4} dx$$

Check first that $(x-1)(x+2)^2(x+1) = x^4 + 4x^3 + 3x^2 - 4x - 4$

(j)
$$\int \frac{x^4}{(x^2+2)(x+2)} dx$$

(k)
$$\int \frac{x^5}{x^3 - 1} \mathrm{d}x$$

(1)
$$\int \frac{x^4}{(x^2+2)(x+1)^2} dx$$

(m)
$$\int \frac{3x^2 + 2x - 1}{(x - 1)(x^2 + 1)} dx$$

(n)
$$\int \frac{x^2 - 1}{x(x^2 + 1)^2} dx$$

14. Integrate

$$\int \frac{x^6 - x^5 + \frac{9}{2}x^4 - 4x^3 + \frac{13}{2}x^2 - \frac{7}{2}x + \frac{11}{4}}{x^5 - x^4 + 3x^3 - 3x^2 + \frac{9}{4}x - \frac{9}{4}} \mathrm{d}x \quad .$$

15. Integrate.

(a)
$$\int \frac{1}{3 + \cos x} \mathrm{d}x.$$

(b)
$$\int \frac{1}{4 + \cos x} dx.$$

(c)
$$\int \frac{1}{3 + \sin x} dx.$$

(d)
$$\int \frac{1}{2 + \tan x} dx$$
. (Hint: this integral can be done simply with the substitution $x = \arctan t$.)

(e)
$$\int \frac{\mathrm{d}x}{2\sin x - \cos x + 5}.$$

16. Integrate. The answer key has not been proofread, use with caution.

(a)
$$\int \sin(3x)\cos(2x)dx.$$

(b)
$$\int \sin x \cos(5x) dx.$$

(c)
$$\int \cos(3x)\sin(2x)dx.$$

(d)
$$\int \sin(5x)\sin(3x)dx.$$

(e)
$$\int \cos(x)\cos(3x)dx.$$

17. Integrate.

(a)
$$\int \sin^2 x \cos x dx.$$

(b)
$$\int \sin^2 x dx$$
.

(c)
$$\int \cos^3 x dx$$
.

(d)
$$\int \sin^3 x \cos^4 x dx.$$

18. Integrate.

(a)
$$\int \sec x dx$$
.

(b)
$$\int \sec^3 x dx$$
.

(c)
$$\int \tan^3 x dx$$
.

(d)
$$\int \sec^2 x \tan^2 x dx$$
.

19. Find a linear substitution (via completing the square) to transform the radical to a multiple of an expression of the form $\sqrt{u^2+1}$, $\sqrt{u^2-1}$ or $\sqrt{1-u^2}$.

(a)
$$\sqrt{x^2 + x + 1}$$
.

(b)
$$\sqrt{-2x^2 + x + 1}$$
.

20. Compute the integral.

(a)
$$\int \frac{\sqrt{1+x^2}}{x^2} \mathrm{d}x.$$

21. Compute the integral using a trigonometric substitution.

(a)
$$\int \frac{\sqrt{9-x^2}}{x^2} dx .$$

22. Compute the integral.

(a)
$$\int \sqrt{x^2 + 1} dx$$

(b)
$$\int \sqrt{x^2 + 2} dx$$

(c)
$$\int \sqrt{x^2 + x + 1} dx$$

(d)
$$\int \sqrt{(2x^2 + 2x + 1)} \mathrm{d}x$$

(e)
$$\int \sqrt{(3x^2 + 2x + 1)} dx$$

$$(f) \int \frac{\sqrt{x^2+1}}{x+1} \mathrm{d}x$$

23. Let $b^2 - 4ac < 0$ and a > 0 be (real) numbers. Show that

$$\int \sqrt{(ax^2+bx+c)} \mathrm{d}x = \frac{\sqrt{a}D}{2} \left(\ln \left(\sqrt{\left(\frac{2xa+b}{2\sqrt{D}a}\right)^2 + 1} + \frac{2xa+b}{2\sqrt{D}a} \right) + \frac{2xa+b}{2\sqrt{D}a} \sqrt{\left(\frac{2xa+b}{2\sqrt{D}a}\right)^2 + 1} \right) + C,$$

where $D = \frac{4ac - b^2}{4a^2}$.

24. Integrate

(a)
$$\int \sqrt{1-x^2} dx$$

(b)
$$\int \sqrt{2-x^2} dx$$

(c)
$$\int \sqrt{-x^2 + x + 1} dx$$

(d)
$$\int \sqrt{2-x-x^2} dx$$

(e)
$$\int \frac{\sqrt{1-x^2}}{1+x} dx$$

$$(f) \int \frac{\sqrt{1-x^2}}{2+x} \mathrm{d}x$$

25. Integrate

(a)
$$\int \sqrt{x^2 - 1} dx$$

(b)
$$\int \sqrt{x^2 - 2} dx$$

(c)
$$\int \sqrt{2x^2 + x - 1} dx$$

(d)
$$\int \sqrt{x^2 + x - 1} dx$$

26. (a) Express x, dx and $\sqrt{x^2 + 1}$ via θ and $d\theta$ for the trigonometric substitution $x = \cot \theta$, $\theta \in (0, \pi)$.

(b) Express x, dx and $\sqrt{x^2 + 1}$ via t and dt for the Euler substitution $x = \cot(2 \arctan t)$, t > 0. Express t via x.

27. Let the variables x and t be related via $\sqrt{x^2 + 1} = x + t$.

(a) Express x via t.

(b) Express $\sqrt{x^2 + 1}$ via t alone.

(c) Express dx via t and dt.

- (a) Express x, dx and $\sqrt{x^2+1}$ via θ and $d\theta$ for the trigonometric substitution $x=\tan\theta, \theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{x^2 + 1}$ via t and dt for the Euler substitution $x = \tan(2 \arctan t)$, $t \in (-1, 1)$. Express t via x.
- 29. Let the variables x and t be related via $\sqrt{x^2 + 1} = \frac{x}{t} 1$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2+1}$ via t alone.
 - (c) Express dx via t and dt.
- (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\cos\theta, \theta\in[0,\pi]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x = \cos(2 \arctan t)$, t > 0. Express t via x.
- 31. Let the variables x and t be related via $\sqrt{-x^2+1} = (1-x)t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{-x^2+1}$ via t alone.
 - (c) Express dx via t and dt.
- 32. (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\sin\theta, \theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x = \sin(2 \arctan t)$, $t \in [-1, 1]$. Express t via x.
- 33. Let the variables x and t be related via $\sqrt{-x^2+1} = 1 xt$.
 - (a) Express x via t.
 - (b) Express $\sqrt{-x^2+1}$ via t alone.
 - (c) Express dx via t and dt.
- (a) Express x, dx and $\sqrt{x^2 1}$ via θ and $d\theta$ for the trigonometric substitution $x = \csc \theta$, $\theta \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right]$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x = \sec(2\arctan t)$, $t \in (-\infty, -1) \cup [1, 0)$. Express tvia x.
- 35. Let the variables x and t be related via $\sqrt{x^2 1} = (x + 1)t$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2-1}$ via t alone.
 - (c) Express dx via t and dt.
- (a) Express x, dx and $\sqrt{1-x^2}$ via θ and $d\theta$ for the trigonometric substitution $x=\csc\theta, \theta\in\left[0,\frac{\pi}{2}\right]\cup\left[\pi,\frac{3\pi}{2}\right)$.
 - (b) Express x, dx and $\sqrt{1-x^2}$ via t and dt for the Euler substitution $x = \csc(2 \arctan t)$, $t \in (-\infty, -1) \cup [0, 1)$. Express t
- 37. Let the variables x and t be related via $\sqrt{x^2 1} = \frac{1}{t} x$.
 - (a) Express x via t.
 - (b) Express $\sqrt{x^2-1}$ via t alone.
 - (c) Express dx via t and dt.
- 38. Compute the limits. The answer key has not been fully proofread, use with caution.

 - $\begin{array}{ll} \text{(a)} & \lim\limits_{x\to 0}\frac{\sin x}{x}.\\ \text{(b)} & \lim\limits_{x\to 0}\frac{x}{\ln(1+x)}. \end{array}$
 - (c) $\lim_{x \to 0} \frac{x^2}{x \ln(1+x)}$. (d) $\lim_{x \to 0} \frac{x^2}{\sin x \ln(1+x)}$.

 - (e) $\lim_{x \to 0} \frac{\sin^2 x}{(\ln(1+x))^2}$.

- (f) $\lim_{x \to 0} \frac{\cos x 1}{\sin x \ln(1+x)}.$
- (g) $\lim_{x \to 0} \frac{\arctan x x}{x^3}$.
- (h) $\lim_{x \to 0} \frac{\arcsin x x}{x^3}.$
- (i) $\lim_{x \to 1} \frac{x}{x 1} \frac{1}{\ln x}$.
- (j) $\lim_{x \to 0} \frac{\cos(nx) \cos(mx)}{x^2}.$

- (k) $\lim_{x \to 0} \frac{\arcsin x x \frac{1}{6}x^3}{\sin^5 x}$. (l) $\lim_{x \to 1} \frac{\sin(\pi x) \ln x}{\cos(\pi x) + 1}$.
- (m) $\lim_{x \to 0} \frac{\sin x x}{\arcsin x x}$

- (n) $\lim_{x\to 0} \frac{\sin x x}{\arctan x x}$
- (o) $\lim_{x \to \infty} x \sin\left(\frac{2}{x}\right)$.

- 39. Compute the limit.
 - (a) $\lim_{x \to \infty} \left(\frac{x-2}{x} \right)^x$.
 - (b) $\lim_{x\to\infty} \left(\frac{x-2}{x}\right)^{2x}$
 - (c) $\lim_{x \to \infty} \left(\frac{x}{x+3} \right)^{2x}$
- 40. Find the limit.
 - (a) $\lim_{x \to \infty} \left(1 \frac{2}{x}\right)^x$.
 - (b) $\lim_{x \to 0} (1-x)^{\frac{1}{x}}$.

- (c) $\lim_{x \to \infty} \left(\frac{x}{x-5} \right)^x$.
- (d) $\lim_{x \to \infty} \left(\frac{x}{x-2} \right)^{3x+2}$.
- 41. Determine whether the integral is convergent or divergent. Motivate your answer.
 - (a) $\int \frac{1}{(x-1)^{\frac{3}{2}}} dx$.
 - (b) $\int_{0}^{\infty} \frac{1}{\sqrt[5]{1+x}} \mathrm{d}x.$
 - (c) $\int_{0}^{\infty} \frac{1}{\sqrt[5]{1+x}} dx.$
 - (d) $\int_{-\infty}^{\infty} \frac{1}{\sqrt[5]{1+x}} \mathrm{d}x.$
 - (e) $\int_{0}^{\infty} \frac{1}{2 3x} dx.$
 - (f) $\int_{-\pi}^{0} \frac{1}{(2-3x)^2} dx$.
 - (g) $\int_{0}^{0} \frac{1}{(2-3x)^{1.00000001}} dx.$
 - $\text{(h)} \int_{-\infty}^{\infty} \frac{1}{2x-1} \mathrm{d}x.$
 - (i) $\int_{-\infty}^{\infty} e^{-3x} dx.$
 - (j) $\int_{0}^{5} 2^{x} dx.$

- (k) $\int x^3 dx$.
- (1) $\int_{-\infty}^{\infty} x e^{-x^2} dx.$
- (m) $\int_{-\infty}^{\infty} \sqrt{x} e^{-\sqrt{x}} dx.$
- (n) $\int_{-\infty}^{\infty} \sin^2 x dx.$
- (o) $\int_{0}^{\infty} \frac{1}{x^2 + x 2} dx$.
- $(p) \int_{-\infty}^{\infty} \frac{1}{x^2 + x + 1} \mathrm{d}x.$
- $(q) \int_{-\infty}^{\infty} \frac{1}{x^2 x 1} dx.$
- (r) $\int_{-\infty}^{\infty} \frac{1}{x^2 x 1} \mathrm{d}x.$
- (s) $\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 2} \mathrm{d}x.$
- (t) $\int_{-\infty}^{\infty} \frac{1}{x \ln x} \mathrm{d}x.$

 $\text{(u)} \int_{100}^{\infty} \frac{1}{x(\ln x)^2} \mathrm{d}x.$

 $(x) \int_{0}^{2} x^{3} \ln x dx.$

(v) $\int_{0}^{1} \ln x dx.$

(y) $\int_{0}^{1} \frac{e^{\frac{1}{x}}}{x^2} dx$.

(w) $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx.$

- $(z) \int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^2} \mathrm{d}x.$
- 42. Determine whether the integral is convergent or divergent. Motivate your answer. The answer key has not been proofread, use with caution.
 - (a) $\int_{0}^{\infty} \sin x^2 dx$ (This problem is more difficult and may re-

quire knowledge of sequences to solve).

43. Match the graphs of the parametric equations x = f(t), y = g(t) with the graph of the parametric curve $\gamma : \begin{vmatrix} x & = & f(t) \\ y & = & g(t) \end{vmatrix}$

(c)

44.

Match the graph of the curve to its graph in polar coordinates and to its polar parametric equations.

(b)

(e)

(i) $r = 1 + \sin(\theta) + \cos(\theta)$

(ii)
$$r = \theta, \theta \in [-\pi, \pi]$$
.

(iii)
$$r = \cos(3\theta), \theta \in [0, 2\pi].$$

(iv)
$$r = \frac{1}{4}\sqrt{\theta}, \theta \in [0, 10\pi].$$

(v)
$$r = 2 + \sin(5\theta)$$
.

(vi)
$$r = 2 + \cos(3\theta)$$
.

(a)

(b)

45.

- (a) Sketch the curve given in polar coordinates by $r=2\sin\theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.
- (b) Sketch the curve given in polar coordinates by $r = 4\cos\theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.
- (c) Sketch the curve given in polar coordinates by $r=2\sec\theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.
- (d) Sketch the curve given in polar coordinates by $r = 2 \csc \theta$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.
- (e) Sketch the curve given in polar coordinates by $r = 2\sec\left(\theta + \frac{\pi}{4}\right)$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.
- (f) Sketch the curve given in polar coordinates by $r=2\csc\left(\theta+\frac{\pi}{6}\right)$. What kind of a figure is this curve? Find an equation satisfied by the curve in the (x, y)-coordinates.

46. Find the values of the parameter t for which the curve has horizontal and vertical tangents.

(a)
$$x = t^2 - t + 1, y = t^2 + t - 1$$

(c)
$$x = \cos(t), y = \sin(3t)$$

(b)
$$x = t^3 - t^2 - t + 1, y = t^2 - t - 1.$$

(d)
$$x = \cos(t) + \sin(t)$$
, $y = \sin(t)$.

47. Show that the parametric curve has multiple tangents at the point and find their slopes.

- (a) $x = \cos t$, $y = 2\sin(2t)$, two tangents at (x, y) = (0, 0).
- (b) $x = \cos t \sin(3t)$, $y = \sin(t) \sin(3t)$, six tangents at (x, y) = (0, 0).
- (c) $x = \cos t, y = \sin(3t)$, find the two points at which the curve has double tangent and find the slopes of both pairs

of tangents.

(d) $x=t^3-t^2-t+1$, $y=t^2-t-1$, find a point where the curve has double tangent and find the slopes of the tangents.

- 48. Find the length of the curve.
 - (a) $y = x^2, x \in [1, 2]$.
 - (b) $y = \sqrt{x}, x \in [1, 2].$
 - (c) $x = \sqrt{t} 2t$ and $y = \frac{8}{3}t^{\frac{3}{4}}$ from t = 1 to t = 4.

 - (e) $\gamma: \left| \begin{array}{ccc} x(t) & = & \frac{1}{t}+t \\ y(t) & = & 2\ln t \end{array} \right., t \in [1,2]$.
 - (f) One arch of the cycloid

$$\gamma: \left| \begin{array}{rcl} x(t) & = & t - \sin t \\ y(t) & = & 1 - \cos t \end{array} \right., t \in [0, 2\pi]$$

(g) The cardioid

$$\gamma: \left| \begin{array}{rcl} x(t) & = & (1+\sin t)\cos t \\ y(t) & = & (1+\sin t)\sin t \end{array} \right., t \in [0,2\pi]$$

- 49. Set up an integral that expresses the length of the curve and find the length of the curve.

 - (b) $\begin{vmatrix} x(t) & = \sin t + \cos t \\ y(t) & = \sin t \cos t \end{vmatrix}, t \in [0, \pi]$
- 50. Give a geometric definition of the cycloid curve using a circle of radius 1. Using that definition, derive equations for the cycloid curve. Find area locked between one "arch" of the cycloid curve and the *x* axis.
- 51. (a) The curve given in polar coordinates by $r = 1 + \sin 2\theta$ is plotted below by computer. Find the area lying outside of this curve and inside of the circle $x^2 + y^2 = 1$.
 - (b) The curve given in polar coordinates by $r = \cos(2\theta)$ is plotted below by computer. Find the area lying inside the curve and outside of the circle $x^2 + y^2 = \frac{1}{4}$.
 - (c) Below is a computer generated plot of the curve $r = \sin(2\theta)$. Find the area locked inside one petal of the curve and outside of the circle $x^2 + y^2 = \frac{1}{4}$.
- 52. The answer key has not been proofread, use with caution.
 - (a) Sketch the graph of the curve given in polar coordinates by $r = 3\sin(2\theta)$ and find the area of one petal.
 - (b) Sketch the graph of the curve given in polar coordinates by $r = 4 + 3\sin\theta$ and find the area enclosed by the curve.
- 53. List the first 4 elements of the sequence.

(a)
$$a_n = \frac{(-1)^n}{n}$$
.

(b)
$$a_n = \frac{1}{n!}$$
.

(c)
$$a_n = \cos(\pi n)$$
.

(d)
$$a_n = \frac{(-1)^n}{2n+1}$$
.

(e)
$$a_n = \frac{\sqrt{5}}{5} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

54. List the first 5 elements of the sequence.

(a)
$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{3}{a_n} \right), a_1 = 1.$$

(b)
$$a_n = a_{n-1} + a_{n-2}, a_1 = 1, a_2 = 1.$$

(c)
$$a_n = \frac{\left(\frac{1}{2} - n\right)}{n} a_{n-1}, a_0 = 1.$$

(d)
$$a_n = a_{n-1} + 2n + 1, a_0 = 1.$$

(e)
$$a_n := \frac{1}{n} a_{n-1}, a_1 = 1.$$

55. Give a simple sequence formula that matches the pattern below.

(a)
$$\left(1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots\right)$$
.

(b)
$$\left(-1, \frac{1}{5}, -\frac{1}{25}, \frac{1}{125}, -\frac{1}{625}, \frac{1}{3125} \dots \right)$$

(c)
$$\left(-5, 2, -\frac{4}{5}, \frac{8}{25}, -\frac{16}{125}, \frac{32}{625}, \dots\right)$$

(d)
$$(4,7,10,13,16,19,\dots)$$

(e)
$$\left(-2, \frac{3}{4}, -\frac{4}{9}, \frac{5}{16}, -\frac{6}{25}, \frac{7}{36}, \dots\right)$$

(f)
$$(0,-1,0,1,0,-1,0,1,0,-1,0,1,\dots)$$

56. Determine if the sequence is convergent or divergent. If convergent, find the limit of the sequence.

(a)
$$a_n = n$$
.

(b)
$$a_n = 2^n$$
.

(c)
$$a_n = 1.0001^n$$
.

(d)
$$a_n = 0.999999^n$$

(e)
$$a_n = n - \sqrt{n+1}\sqrt{n+2}$$

(f)
$$a_n = \frac{\ln n}{n}$$
.

$$(g) \ a_n = \frac{\ln n}{\sqrt[10]{n}}.$$

(h)
$$a_n = \frac{1}{n}$$
.

(i)
$$a_n = \frac{1}{n!}$$
.

(j)
$$a_n = \frac{n^n}{n!}$$
.

(k)
$$a_n = \cos n$$
.

(1)
$$a_n = \cos\left(\frac{1}{n}\right)$$

(m)
$$a_n = \left(\frac{n+1}{n}\right)^n$$
.

(n)
$$a_n = \left(\frac{2n+1}{n}\right)^n$$
.

(o)
$$a_n = \left(\frac{n+1}{n}\right)^{2n}$$
.

$$(p) \ a_n = \left(\frac{n+1}{2n}\right)^n.$$

57. Express the infinite decimal number as a rational number.

(a)
$$0.\overline{9} = 0.99999...$$

(b)
$$1.\overline{6} = 1.6666...$$

(c)
$$1.\overline{3} = 1.3333...$$

(d)
$$1.\overline{19} = 1.191919...$$

(e)
$$0.\overline{09} = 0.0909090909...$$

(f)
$$2.\overline{16} = 2.16161616...$$

(g)
$$2014.\overline{2014} = 2014.2014201420142014...$$

58. Express the sum of the series as a rational number.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n + 5^n}{10^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{5^n - 3^n}{7^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{3^{n+1} + 7^{n-1}}{21^n}$$

(e)
$$\sum_{n=0}^{\infty} \frac{2^{n+1} + (-3)^{n-1}}{5^n}$$

59. Sum the telescoping series (a sum is "telescoping" if it can be broken into summands so that consecutive terms cancel).

11

(a)
$$\sum_{n=0}^{\infty} \frac{-6}{9n^2 + 3n - 2}$$

(b)
$$\sum_{n=3}^{\infty} \frac{3}{n^2 - 3n + 2}$$
.

- (c) $\sum_{n=2}^{\infty} \ln\left(1 \frac{1}{n^2}\right)$. (Hint: Use the properties of the logarithm to aim for a telescoping series).
- 60. Use partial fractions to sum the telescoping series (a sum is "telescoping" if it can be broken into summands so that consecutive terms cancel).

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2n}{n^4 - 3n^2 + 1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{2n+1}{n^4+2n^3-n^2-2n}$$

(d)
$$\sum_{n=3}^{\infty} \frac{n^2 + n + 2}{n^4 - 5n^2 + 4}$$

61. Find whether the series is convergent or divergent using an appropriate test. Some of the problems require the alternating series test. The test states the following.

Alternating series test. Suppose $b_n \searrow 0$. Then $\sum (-1)^n b_n$ is convergent.

Here, $b_n \searrow 0$ means the following.

- The sequence of numbers b_n is decreasing.
- The sequence decreases to 0, that is,

$$\lim_{n \to \infty} b_n = 0$$

(a)
$$\sum_{n=1}^{\infty} (-1)^n \ln n$$
.

(c)
$$\sum_{n=2}^{\infty} \frac{n}{\ln n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}.$$

(d)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

62. Use the integral test, the comparison test or the limit comparison test to determine whether the series is convergent or divergent. Justify your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$
.

(f)
$$\sum_{n=2}^{\infty} \frac{1}{(2n+1)\ln(n)}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{2n^2 + n^3}$$
.

$$(g) \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3}{3n^5 + n}$$

(h)
$$\sum_{n=2}^{\infty} \frac{1}{(2n+1)(\ln(n))^2}$$
.

(d)
$$\sum_{n=0}^{\infty} \frac{1}{3^n + 5}$$
.

(i) Determine all values of
$$p$$
, q r for which the series

(e)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

$$\sum_{n=30}^{\infty} \frac{1}{n^p (\ln n)^q (\ln(\ln n))^r}$$

is convergent.

63. Establish whether the series is convergent or divergent. Use the ratio or root tests. Show all your work. The answer key has not been proofread, use with caution.

12

(a)
$$\sum_{n=0}^{\infty} (-1)^n n^2 3^{-n}$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{4n} \right)^n$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{4n+1}{n} \right)^n$$

$$(d) \sum_{n=1}^{\infty} \frac{n^n}{4^n n!}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(4n)^n}{n!}$$

64. Except for $x=\pm e$, use the ratio test to determine all real values of x for which

$$\sum_{n=0}^{\infty} x^n \frac{n!}{n^n}$$

is convergent. You are expected to use in your solution the fact that

$$\lim_{x \to 0} \left(1 + \frac{x}{n} \right)^n = e^x \quad .$$