COMPLEMBNT

1) Vérifions via un test statistique que le créficient Basocié à la vitesse des rafales ne soit pas inférieur à 0,02

to: B, =0,02

H, Br < 0,02

 $T = \frac{\beta_r - 0.02}{\beta_r}$ +(n-P)

4730

Br - 0,02 ~ N(0,1)

50,02140 88-0105 010026232

-0,5370

P-value = P (Br < 0,537 / th) = 0,7 Ja P-value est elevée donc en regette 40

$$T = \frac{SCR}{6^2} \sim \chi(n)$$

$$t = \frac{t_{6,61}}{(0,5)^2} = 307,66$$

3) Démontrons théoriquement que la vraineublance du modéle complet est toujours supérieure à celle du modéle selectionné entoté

Soient deux modèles Met M+2

Considérons que M conespond à un modèle avec [M] variables et M+1 correspond au modèle M auguel on a regonté me variable supplémentaire

Nous avons:

$$R^{2}(\mathcal{M}) = \frac{\| \mathcal{I}(\mathcal{M}) - \mathcal{I}\|^{2}}{\| \mathcal{I} - \mathcal{I}\|^{2}} = 1 - \frac{SCR(\mathcal{M})}{SCT}$$

Cherchono la Vinain cuiblance
$$\mathcal{L}(Y_1B_16^2) = \prod_{A=1}^{n} f_{Y_1}(Y_1)$$

$$= \left(\frac{1}{2\pi6^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2c^2}\sum_{A>1}^{n}(Y_1 - Y_1B_1)^2\right]$$

$$= \left(\frac{1}{2\pi6^2}\right)^{\frac{n}{2}} \exp\left[-\frac{1}{2c^2}\|Y_1 - Y_1B_1\|^2\right]$$

$$\mathcal{L}(Y_1B_16^2) \text{ maximal pour } \beta \text{ extimateur}$$

$$\text{des } MC \text{ et } \delta^2 = \|Y_1 - Y_1B_1\|^2$$

$$Nows aroms:$$

$$\max_{\beta_1,\beta_2} \mathcal{L}(Y_1B_1\beta_2) = \left(\frac{n}{2\pi3CR} + \frac{n}{2}\right)^2 \exp\left(-\frac{n}{2}\right)$$

$$= \frac{n}{2\pi3CR} \exp\left(-\frac{n}{2}\right)$$

$$= \mathcal{L}(Y_1B_1\delta^2)$$

/car 114-xB112= SCR

sons l'hypothère nulle, nous avons:

mux
$$\mathcal{L}_{o}(Y_{1}B_{0},6^{2}) = \left(\frac{h}{2\pi scr_{o}}\right)^{\frac{\eta}{2}} exp\left(\frac{h}{2}\right) \left(\frac{h}{2}\right)$$

$$= \mathcal{L}_{o}(Y_{1}B_{0},\delta^{2})$$

On a demontré que:

R²(Mr1) > P²(M)

SCR(M+1) < SCR(M)

Donc en considerant les résultats (I) et (I) en jeut affirmer que la vraisemblance du modéle complet est royons supérieure à celle du modèle selectionné emboité.

4) Faisons le test de vraisemblance entre ces deux modèles. Nous allors faire un test pour le modèle complet avec toutes les variables y compris l'interaction entre les variables qualifatives et le modèle emboîté selectionné Obtenu à l'aide de la méthode ell relection de variables bac word. Ho: B1 = B2 = B...=B9 = 0 7 i e [2,9] | Bi 70 max Lo(Y, Bo162) max [(Y, B, 62) -2h/n ~ X(2) Région contique Ba= { YER": An < 20 }

Cherchions 20

comme la region de reget X e K est experient à -2h(x) > &' On restera à un niveau approximaty & 5: -2h (x) > ×1-a (p-9) $(z) - 2 \ln (\lambda) > \chi_{35}^{2} (12) = 21,02607$ Lo (Y, Bo, B2) L (YIB, 62) Ic = [21,02607,+00] KN: >= 0,146 $-2l_{-}(k) = -2l_{-}(0,14.6)$ 281445 - on (x) = 8,445 € Ic Donc on accepte tto

Il fant considerer le modéle emboisé sile d'onné hes variables non prises n'ont pas un groud intérêt à priori

6) sur la bast des 20 premiers nésides du modèle selectionné, faisons un test d'adlquatrion -à la loi normale centrée et variance qu'on prosisera

Faisons le 1st d'adéquation à la loi normale W(0,62)

avec 62 = 0/22 la variance empirique Corrigée - de l'echants lloss

les residus sont continus donc un test de Khi deux sercit pors très approprié. On dec de de jaire le fest d'adiquation de Kolmogor-Somirnor. D = max $1 \le i \le n$ $1 \le n$

Voici le tableau des données à 10° près

	 ,		
Xi	F(Ki)	F(x)-21	F(xi)-i-1
0154	0170	0,65	0170
0,46	0168	0,08	0163
0132	0162	0147	0,52
0,21	0,58	0128	0.743
017	0157	1132	0,37
D, 13	0155	0125	0130
0110	8154	0,79	0124
0108	0153	0,13	0,18
-0,00	0,49	0,04	0(09
-0,04	0148	01018	6,03
-0,09	0,46	0108	0 63
-0113	0,44	0108	0100
-0174	0,44	012	0,115
-0,19	0142	012	0,22
-0125	0,39:	8135	PL3-9
-0133	0.37	101429	0137
-0145	013.2	0152	0147
-0157	0128	0,62	0156
-0,88	018	0/76	0,71
I-niux	0,06	0,33	01.48.

AN: $D = \max \left\{ \left| F(V_i) - \frac{i}{n} \right| / \left| F(X_i) - \frac{i-1}{n} \right| \right\}$ = 0,93 2 = 0(05 Da = 0125408 on regette D=0193> Da donc Ho. NB: Un histogramme st jait en annexe du rapport par illustras la joine des 20 premiers. un echantillor Nous avons très jaible pour avoir une convergence des residus.