Adapting Large Language Models for the Dynamic World

Presenter: Zixuan Ke

https://vincent950129.github.io/

LLMs in A Fixed World?

Packed with knowledge and excels in many tasks

LLMs in A Dynamic World!

Packed with knowledge and excels in many tasks

The world is **ever- changing**

Emerging domains/events/topics /information

LLMs in A Dynamic World

Packed with knowledge and excels in many tasks

How to adapt LLMs for the dynamic world?

Emerging domains/events/topics /information

LLMs in A Dynamic World: Plan

How to adapt LLMs for the **dynamic world?**

- Black-box LLM: Retrievedaugmented Generation (RAG)
- White-box LLM: Continual Pre-training
- Future Work

Bridging the Preference Gap between Retrievers and LLMs, Ke et al, arXiv 2024
Continual Pre-training of Language Models, Ke et al, ICLR 2023
Adapting a Language Model While Preserving its General Knowledge, Ke et al, EMNLP 2022

LLMs in A Dynamic World

How to adapt LLMs for the **dynamic world?**

Main idea: integrating fresh, external information to the LLMs without retraining the LLMs (no need to worry about the LLMs' parameters)

Retrieval-augmented Generation (RAG)

Retrievers

Retrieve task-relevant information, **pack** it into the context of the LLM

Existing work fine-tunes retrievers or LLMs or both to improve downstream tasks

A general belief: ranking is the most important, as humans read from top to bottom

However, LLMs may exhibit preferences different from humans and yield sub-optimal predictions using the retrieved information

Retrieval-augmented Generation

Retrieval-augmented Generation

Dataset

Question Answering (NQ and HotpotQA):

Candidate passages are retrieved from WikiPedia Pages

Personalized Generation (Emails and Books):

Candidate passages are retrieved from reviews/emails authored by the same user in the past

	#Training	#Val.	#Test	Avg. #Tokens
NQ	79,168	8,757	3,610	517.82
HotpotQA	68,659	5,600	5,600	564.83
Email	13,305	764	1,227	173.85
Book	20,789	41,331	41,331	124.52

Context length < maximum length

Instruction: Finish the passage in the

user voice

Review title: Perfect solution for long-

range planning!

Review product: 2018 - 2022 artwork

five-year planner...

Review start: Wow! I've been

searching for something like this and was so pleased when it came in! the

Remaining part: 2-page-per-month

style works. The blocks on the calendar

are big enough to write quite a bit....

Target

Query

Preference Gap

Ranking: reads sequentially and order is crucial Selection: can ignore irrelevant

Ranking: order does not impact much

Selection: significantly impact (either positively or negatively)

.....(potentially more, e.g., repetition)

The general belief that ranking is most important DOES NOT hold for LLMs!

This is a crucial insight as it **confirms** the preference gap and highlights the importance of **bridging this preference gap** to enhance RAG.

Bridge model

- ☐ Fix the Retriever and the LLM and train an intermediate bridge model
 - ☐ LLMs are often only available as black-boxAPIs and fine-tuning is not an option
 - ☐ Retrievers **only consider reranking**, not applicable
 to other possible
 preference gap

Seq2seq Format

- ☐ Not only rerank, but also dynamically select passages for each query
- ☐ Potentially employ more advanced strategies like repetition

[Finish the passage in the user voice...] $[id_0] \text{ Wow! it's even more beautiful than i anticipated!}$ $[id_1] \text{ this bible is even more beautiful than...}$ $[id_1] \text{ this bible is even more beautiful than...}$

 $[id_2]$

 $[id_2]$

Input: [Query]

Output: {Passage IDs}

Typical RAG

- ☐ No ground truth relevance label for what should be retrieved
- ☐ But only ground truth label for the downstream tasks

Existing Approaches: Supervised learning

- ☐ Use the supervision provided by the LLM, such as the perplexity of downstream tasks
 - ☐ E.g., Feed candidate passage into LLMs and use the perplexity as relevance score
 - Only Point-wise suspension!

However

- ☐ Sequential supervision is missing or sparse
 - ☐ Nearly impossible to feed all possible retrieved sequences into the LLM to obtain supervision
- ☐ Rely on intermediate relevance label
 - ☐ Not end-to-end training on the downstream tasks

BGM: Supervised Learning + Reinforcement Learning

- ☐ Supervised Learning
 - ☐ Synthesizing silver passage sequence based on greedy search
 - We select only the useful passages by incrementally selects the next passage that maximized the downstream task performance

BGM: Supervised Learning + Reinforcement Learning Reinforcement learning ☐ Downstream task performance as reward, passage IDs as action space, bridge model as policy model ☐ Much more supervision (recall that we only consider permutation or deletions in the silver passage sequence)

☐ Train end-to-end on the downstream tasks

Bridging the Gap: Results

No external information
Randomized GTR retriever
GTR retriever
GTR + Reranker

		i			
Model	NQ	HotpotQA	Email	Book	
Metric	EM	EM	BLEU	BLEU	
Naïve	33.07	28.01	5.57	11.5	
Random	43.71	26.1	8.55	8.61	
GTR	43.79	25.8	9.76	8.75	
PSR	43.6	25.51	9.08	9.14	
BGM	45.37	35.64	10.42	12.07	
	İ		i i		

BGM is effective in adapting retrieved passages

Naïve is not always the worst

LLM already possesses a substantial amount of relevant knowledge (e.g., Book is from Amazon review)

GTR < BGM

HotpotQA is sensitive to irrelevant passages and has the most improvement

NQ typically only requires one retrieved passage, so the improvement is less

PSR < BGM

Pure reranking is not sufficient. Selection must also be taken into account.

LLMs in A Dynamic World

How to adapt LLMs for the dynamic world?

Retrieval-augmented may not solve all problems (active research!). Another way is to update the parameters of LLMs with emerging data

This is, continual learning: (1) mitigate forgetting; and (2) encourage knowledge transfer

Post-training of Language Models

Two Needs:

- □ Due to polysemy, LM should be specialized or adapted to the target domain (existing methods' focus, may destroy useful general knowledge)
- ☐ General pre-trained knowledge should be preserved (our focus, a more informed adaptation that identifies what should be preserved and what should be updated)

(A) Post-training

First, we post-train on a specific domain

(We use RoBERTa in this work)

(B) Fine-tuning

End-tasks

ASC-Restaurant

ASC-Phone

ASC-Camera

After (A), the performance is evaluated by end-tasks

Each end-task **corresponding** to one domain and has its **own** training and testing set.

ASC: Aspect Sentiment Classification

Post-training of Language Model

Post-training of Language Models

- Detect importance of units for general knowledge
- Soft-masking the important units in posttraining

- ☐ How to detect importance of general knowledge
- → How to convert the importance into soft-masks

Post-training of Language Models

Goal: Compute the importance of units for **general** knowledge

Why?

- 1) Not all units are important
- 2) Given the important units, we can protect them afterward

No training involved. We only need the importance

First, we added virtual parameters $oldsymbol{g}_l.$

Each virtual parameter $g_{l,i}$ in \boldsymbol{g}_l corresponding to an attention head or neurons (units)

It is **initialized as all 1's** and has its gradient but will **never change**.

Why? We only use its gradient to compute importance

The gradient of L_{impt} w.r.t g_l will be used to compute importance.

Due to **randomness**, same input will result in different output representation
Their distance indicates the **robustness**

Units that are important to the robustness

their changes will cause the pretrained LM to change significantly

Units that are important to the pre-trained/general knowledge

So, the distance can be used as a **proxy** for general knowledge!

Based on the intuition, we propose another L_{impt} , which does not need pre-training data

KL: how different given two representations

 f_{LM}^1/f_{LM}^2 : Transformer with different dropouts

 x_m : The domain data

For general knowledge,

$$L_{\mathrm{impt}} = \mathsf{KL}(f_{\mathrm{LM}}^{1}(\boldsymbol{x}_{m}), f_{\mathrm{LM}}^{2}(\boldsymbol{x}_{m}))$$

$$\boldsymbol{\nabla}_{\boldsymbol{g}_{l}}^{m} = \frac{\partial L_{\mathrm{impt}}(\boldsymbol{x}_{m})}{\partial_{\boldsymbol{g}_{l}}}$$

$$I_l = \frac{1}{M} \sum_M |\boldsymbol{\mathcal{V}}_{\boldsymbol{g}_l}^m|$$

Importance of units for general knowledge

Post-training of Language Models

Goal: Soft-mask the **gradient** based on the importance

Why?

- 1) We need to protect them when training a new domain
- 2) We want to encourage knowledge transfer

Soft-masking

First, we normalize the importance so that they are comparable

$$I_l = |Tanh(Norm(I_l))|$$
 make sure the importance is [0,1]

Next, we soft-mask the gradient (in backward pass)

$$\nabla'_l = (1 - I_l) \otimes \nabla_l$$

This only affects the backward pass so forward KT and full LM are still possible Not only provides protection, but also allow knowledge transfer KL loss as $L_{
m impt}$

Use gradient to indicate importance, but the gradient does not optimize the layer

 I_l indicates the importance for general knowledge

		Camera	Phone	Restaurant	Al	ACL	PubMed	Average
No post-train		78.82	83.75	79.81	60.98	66.11	72.38	73.64
MLM MLM (Adapter)		84.39	82.59	80.84	68.97	68.75	72.84	76.4
		83.62	82.71	80.19	60.55	68.87	71.68	74.6
SoTA post- training baselines	MLM+KD	82.79	80.08	80.4	67.76	68.19	72.35	75.26
	MLM+AdaptedDeiT	86.86	83.08	79.7	69.72	69.11	72.69	76.86
	MLM+SimCSE	84.91	83.46	80.88	69.1	69.89	72.77	76.84
	MLM+TaCL	81.98	81.87	81.12	64.04	63.18	69.46	73.61
	DGA	88.52	85.47	81.83	71.99	71.01	73.65	78.74

w/o Pre-trained < MLM

Not surprising, as post-training has been demonstrated to improve performance in the literature.

MLM (Adapter) < MLM

Efficient tuning like adapter may not have sufficient trainable parameters for post-training

w/o Pre-trained < MLM < SoTA < DGA

DGA is better than pure MLM and SoTA post-training. DGA can not only mitigate forgetting of the general knowledge but also adapt to suite the target domain

SoTA < DGA

SoTAs either only focus on preserving knowledge (KD), or adapting to the target domain, which are not enough

Adapting LLMs for A Dynamic World

A more ambitious vision is to make LLMs fully autonomous, which requires LLMs to self-initiate and adapt to new circumstances, so that the AI system can independently acquire new knowledge.

My vision: humans are intrinsically motivated by novelty to learn; same principle can also apply to AI system!

An Example of Autonomy

Retrievalaugmented Generation

LLMs in a dynamic world

Post-training (continual learning)

User: Finish the sentence in Vincent's tone System: Sorry, I didn't fully understand, do you

mean:

Option-1: Vincent as the artist Vincent Van Gogh?
Option-2: Any specific person called Vincent? It
would be good if you could provide more information

In this example, the system

- Encounters a novel prompt (i.e., novelty) that the agent does not understand or there is ambiguity
- Identifies which aspects it understands, or which aspect is challenging (i.e., characterization)
- Adapts by posing questions or offering choices (i.e., adaptation)

A Possible Framework

- Continual LLMs to detect novelty (if the input is normal, it can simply give output to the application)
- Relevance detection to check whether the novelty is relevant to the task it is focused on
- Characterization to identifying understandable and unclear parts
- Planner to generate a strategy for responses, e.g., asking questions to user
- Feedback needs to be continually integrated
- Knowledge base may be needed to augment and retain essential knowledge

A Possible Framework

Most existing works

are dedicated to the black part, which includes active research areas like retrieval-augmented generation and continual learning.

The other components remain largely unexplored!

Adapting LLMs for A Dynamic World

Active Research

Retrievalaugmented Generation

Post-training (continual learning)

Fully autonomous LLMs

