

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

		Выполнили студенты гр. МИР-22-26	
		<u>Гребенщиков Кирилл Владимирович</u> (фамилия, имя, отчество)	
		(подпись)	
Проверил:			
<u>ст. преподаватель Д.А.</u> (должность, Ф.И.О. руководителя по	Карлов о практической подготовке от кафедры)		
(оценка)	(подпись)		
(лата)			

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

		Выполнили студенты гр. МИР-22-26	
		Тятенков Артём Александрович (фамилия, имя, отчество)	
		(подпись)	
Проверил:			
<u>ст. преподаватель Д.А.</u> (должность, Ф.И.О. руководителя по	<u>Карлов</u> практической подготовке от кафедры)		
(оценка)	(подпись)		
(дата)			

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

		Выполнили студенты гр. МИР-22-26	
		Стрельников Максим Романович (фамилия, имя, отчество)	
		(подпись)	
Проверил:			
ст. преподаватель Д.А. I (должность, Ф.И.О. руководителя по п			
(оценка)	(подпись)		
(дата)			

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет Кафедра «Информационные технологии и автоматизированные системы» направление подготовки: 15.03.06 Мехатроника и робототехника

	Выполнили студенты гр. МИР-22-26	
	<u>Козлов Павел Дмитриевич</u> (фамилия, имя, отчество)	
	(подпись)	
Проверил:		
<u>ст. преподаватель Д.А. Карлов</u> (должность, Ф.И.О. руководителя по практической подготовке от кафедры)		
(оценка) (подпись)		
(дата)		

РЕФЕРАТ

Лодка на радиоуправлении.

Объектом исследования является радиоуправляемая лодка.

Предмет исследования – управление лодкой при помощи пульта дистанционного управления.

Целью исследования является создание лодки на дистанционном управлении.

Для определения метода реализации проекта был изучен принцип судостроения и был произведён анализ работы устройств на дистанционном управлении.

В результате проведенного исследования разработан план-проект по созданию лодки на радиоуправлении.

Содержание

Введение	4
Необходимые материалы	5
Характеристики лодки	13
Организационно-штатная структура	14
Заключение	15
Список литературы	16

Введение

Лодка на радиоуправлении которая будет носить название "Титаник". Лодка будет работать на базе микроконтроллера Arduino nano с сервоприводом и управляться при помощи пульта дистанционного управления по воде за счёт воздушных винтов, соединённых с электродвигателем. А также лодка будет способна поворачивать за счёт килей, которые будут расположены за аэровинтами, соединёнными с сервоприводом при помощи рычага. А также на лодке будет находится орудие, которое будет управляется за счёт сервоприводов при помощи дистанционного управления и стрелять страйк-больными шариками так же при помощи пульта дистанционного управления. Держатся на плаву лодка будет благодаря воздушной камере от велосипеда.

Цель исследования: спроектировать и запрограммировать лодку на радиоуправлении на Arduino nano.

Задачи исследования:

- 1. Составить список комплектующих.
- 2. Составить схему подключения элементов управления.
- 3. Собрать схему элементов лодки
- 4. Написать код в Arduino IDE для передвижения лодки.

Характеристика кафедры ИТАС:

- 1) Основы программирования на Python.
- 2) Подготовка данных для анализа.
- 3) Методы визуализации данных.
- 4) Информационные технологии для распределенного реестра и блокчейна.
 - 5) Информационные технологии анализа социальных сетей.
 - 6) Компьютерное моделирование роботов-манипуляторов.

Необходимые материалы

Мы составили список комплектующих, которые нам понадобятся для создания лодки ду.

Список комплектующих:

- 1. Плата Arduino nano (2шт) (рис.1)
- 2. Сервопривод (1шт) (рис.2)
- 3. Электромотор (5В) (2шт) (рис.3)
- 4. Аккумулятор (9В) (рис.4)
- 5. Н-мост (L298B) (рис.5)
- 6. Радиомодуль (2шт) (рис.6)

Рисунок 1 – Arduino Nano

Рисунок 2 – сервопривод

Рисунок 3 – электромотор

Рисунок 4 - аккумулятор

Рисунок 5 – Н-мост

Рисунок 6 - радиомодуль

В ходе работы, мы использовали следующие схемы (рис.7) и (рис.8)

Рисунок 8 – схема платы

Рисунок 9 – распиновка контроллера

Пользуясь информацией в интернете, мы смогли собрать нашу схему для передвижения лодки. Готовая модель (рис. 10), (рис.11),(рис.12)

Рисунок 10 – готовая схема передвижения лодки ду

Рисунок 11 – макетная схема устройства лодки

Рисунок 12 — принципиальная схема пульта управления

Для того, чтобы схема правильно работала, в программе Arduino IDE был написан следующий код:

```
#include <iarduino MultiServo.h>
 #include <SPI.h> // Подключаем библиотеку для работы с SPI-интерфейсом
 #include <nRF24L01.h> // Подключаем файл конфигурации из библиотеки RF24
 #include <RF24.h> // Подключаем библиотеку для робота для работы с модулем NRF24L01
 #define IN1 8 // Input1 подключен к выводу 8
 #define IN2 7 // Input2 подключен к выводу 7
 #define IN3 6 // Input3 подключен к выводу 6
 #define IN4 2 // Input4 подключен к выводу 2
 #define EN1 3 // Input4 подключен к выводу 3
 #define EN2 5 // Input4 подключен к выводу 5
 #define CE 10 // Homep пина Arduino, к которому подключен вывод CE радиомодуля
 #define CSN 9 // Номер пина Arduino, к которому подключен вывод CSN радиомодуля
 RF24 radio (CE,CSN); // Создаём объект radio с указанием выводов СЕ и CSN
 int potValue[1]; // Создаём массив для приёма значений джойстика
 void setup() {
  Serial.begin(9600);
  pinMode (EN1, OUTPUT);
  pinMode (IN1, OUTPUT);
  pinMode (IN2, OUTPUT);
 pinMode (IN1, OUTPUT);
 pinMode (IN2, OUTPUT);
 pinMode (EN2, OUTPUT);
pinMode (IN4, OUTPUT);
pinMode (IN3, OUTPUT);
 MSS.servoSet(0, SERVO MG996R); // Сервопривод MG996R подключён к выводу №0 на плате
расширения РСА9685
 MSS.begin();
radio.begin(); // Инициализация модуля NRF24L01
radio setChannel(5); // Обмен данными будет вестись на пятом канале (2,405 \Gamma\Gammaц)
radio setDataRate (RF24_2MBPS); // Скорость обмена данными 2 Мбит/сек
radio_setPALevel(RF24_PA_HIGH); // Выбираем высокую мощность передатчика (-6dBm)
radio.openReadingPipe (1, 0x7878787878LL); // Открываем трубу ID передатчика
radio.startListening(); // Начинаем прослушивать открываемую
void loop() {
if(radio.available()) { // Если в буфер приёмника поступили данные
  radio.read(&potValue, sizeof(potValue)); // Читаем показания потенциометра
  analogWrite(EN1, map(potValue[0],509,1023,0,255)); // Регулируем скорость электромотора при
движении вперёд
  Serial.print(potValue[1]);
```

```
#include <SPI.h> // Подключаем библиотеку для работы с SPI-интерфейсом
#include <nRF24L01.h> // Подключаем файл конфигурации из библиотеки RF24
#include <RF24.h> // Подключаем библиотеку для работа для работы с модулем NRF24L01
#define CE 10 // Номер пина Arduino, к которому подключен вывод СЕ радиомодуля
#define CSN 9 // Номер пина Arduino, к которому подключен вывод CSN радиомодуля
RF24 radio(CE,CSN); // Создаём объект radio с указанием выводов CE и CSN
byte address[][6] = {"1Node", "2Node", "3Node", "4Node", "5Node", "6Node"}; //возможные номера труб
byte OX = 4; // Ось X джостика на 4 аналоговом
byte OY = 5; // Ось Y джостика на 5 аналоговом
byte transmit data[2]; // массив, хранящий передаваемые данные
byte latest_data[2]; // массив, хранящий последние переданные данные
                 // флажок отправки данных
void setup() {
 Serial begin (9600); //открываем порт для связи с ПК
 radio.begin():
                     // активировать модуль
 radio setAutoAck(1); // режим подтверждения приёма, 1 вкл 0 выкл
 radio setRetries(0, 15); // (время между попыткой достучаться, число попыток)
 radio enableAckPayload(); // разрешить отсылку данных в ответ на входящий сигнал
 radio setPayloadSize(32); // размер пакета, в байтах
 radio openWritingPipe(address[0]); // мы - труба 0, открываем канал для передачи данных
 radio.openWritingPipe(address[0]); // мы - труба 0, открываем канал для передачи данных
 radio_setChannel(0x60); // выбираем канал (в котором нет шумов!)
radio.setPALevel (RF24 PA MAX); // уровень мощности передатчика. На выбор RF24 PA MIN,
RF24 PA LOW, RF24 PA HIGH, RF24 PA MAX
radio.setDataRate (RF24 250KBPS); // скорость обмена. На выбор RF24_2MBPS, RF24_1MBPS,
RF24_250KBPS
//должна быть одинакова на приёмнике и передатчике!
//при самой низкой скорости имеем самую высокую чувствительность и дальность!!
radio.powerUp(); //начать работу
 radio.stopListening(); //не слушаем радиоэфир, мы передатчик
void loop() {
 transmit_data[0] = map(analogRead(OX), 509, 1023, 0, 255); // получить значение
 // в диапазоне 0..1023, перевести в 0..255, и записать на 1 место в массиве
 transmit data[1] = map(analogRead(OY), 509, 1023, 0, 255);
 for (int i = 0; i < 2; i++) {
                              // в цикле от 0 до числа каналов
 if (transmit_data[i] != latest_data[i]) { // если есть изменения в transmit_data
                         // поднять флаг отправки по радио
   latest\_data[i] = transmit\_data[i]; // запомнить последнее изменение
```

11

Характеристики лодки

Корпус:		
Длина	32.5 см	
Ширина	19.5 см	
Высота	15.5 см	
Macca	1.5 кг	
Материал	Пластик	
Технические характеристики:		
Радиус связи	1100м	
Предполагаемая скорость	20км/ч	
Количество батареек	4 шт.	

Организационно-штатная структура

Тятенков Артём Александрович - руководитель группы. Во время проведения летней практики в центре робототехники занимался аппаратной составляющей радиоуправляемой лодки.

Стрельников Максим Романович - программный инженер группы. Во время проведения летней практики в центре робототехники занимался созданием кода.

Козлов Павел Дмитриевич — ответственный за сбор информации. Во время проведения летней практики в центре робототехники занимался сбором необходимой информации для дальнейшего развития проекта.

Гребенщиков Кирилл Владимирович — ответственный за обработку и оформление информации. Во время проведения летней практики в центре робототехники занимался обработкой собранной информации и её конспектированием.

Заключение

Нам удалось выполнить все поставленные задачи, а именно:

- 1. Составили список комплектующих.
- 2. Разработали схему подключения элементов управления.
- 3. Собрать схему для передвижения лодки.
- 4. Написать программу в Arduino IDE для передвижения лодки.

Список источников

- 1. Картинки комплектующих https://www.pngwing.com/ru
- 2. Datasheet драйвера L298N https://arduinomaster.ru/uroki-arduino/shema-raboty-n-mosta-dlya-upravleniya-dvigatelyami/
 - 3. Datasheet Arduino nano http://arduino-kid.ru/arduino_nano_datasheet
 - 4. Datasheet сервопривода -

 $\underline{https://iaduino.ru/lib/6faa4f588b9f18197eb547ad2e8c4cb6.pdf}$