# Lecture 01 Logic and Mathematical Proofs

Ryan McWay<sup>†</sup>

 $^{\dagger}Applied\ Economics,$  University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August 7th, 2023

Course Preview

•00000

#### THIS COURSE

- ▶ Review of graduate-level mathematics necessary for the 1st year sequence.
- ▶ Aimed at PhD-track. MS-track is encouraged.
- ► This sets the foundation (Not exhaustive).
- ▶ By the end you should feel confident tackling a variety of math situations in a short period.
- ▶ Syllabus on Github repo. Repo is the most up-to-date place for course content.
- ► This course is **optional**.

### PREVIEW OF COURSE

- 1. Logic, Proofs, Sets, & Topology
- 2. Uni-variate Calculus & Multi-variate Calculus
- 3. Linear Algebra
- 4. Functions & Optimization
- 5. Probability & Statistics
- 6. Dynamic Programming

#### ABOUT THE INSTRUCTOR



Ryan McWay

- ► Current: 2nd Year APEC PhD student
- ▶ Background:  $SLU \rightarrow USF \rightarrow UMich \rightarrow UMN$
- ► Research: Development, Behavior, Urban, Environment

#### DAILY ICEBREAKER

- ► Attendance via prompt:
  - ► Name
  - ► Hometown
  - ▶ Program and track
  - ► Research interests
  - ▶ Daily Icebreaker: Imagine you are a professional baseball player or wrestler. What is you walk up (intro) song?



# FIGHT WITH MATH...



Don't just read it; fight it!

Logic

# Topic: Logic

- ► General background
  - ▶ Logic is at the heart of reasoning and arguments.
  - ► Expressed in words and formalized through math, this is a foundation of theoretical arguments.
  - ▶ Deduce information correctly. Not deducing correct information.
- ▶ Why do economists' care?
  - ► Foundation for theory
  - ► Criteria to evaluate arguments
- ► Application in this career
  - ► Creating logical arguments
  - ► How you think about research
  - Evaluating theory and conclusions from empirical evidence

- General background
  - ► Logic is at the heart of reasoning and arguments.
  - Expressed in words and formalized through math, this is a foundation of theoretical arguments.
  - ▶ Deduce information correctly. Not deducing correct information.
- ▶ Why do economists' care?
  - ► Foundation for theory
  - ► Criteria to evaluate arguments
- ► Application in this career
  - Creating logical arguments
  - ► How you think about research

- General background
  - ► Logic is at the heart of reasoning and arguments.
  - Expressed in words and formalized through math, this is a foundation of theoretical arguments.
  - ▶ Deduce information correctly. Not deducing correct information.
- ▶ Why do economists' care?
  - ► Foundation for theory
  - ► Criteria to evaluate arguments
- ► Application in this career
  - ► Creating logical arguments
  - ► How you think about research
  - ► Evaluating theory and conclusions from empirical evidence

- 1. Logical Statements
- 2. Necessary Conditions
- 3. Sufficient Conditions

## 0. TERMINOLOGY

| $\forall$ | For al |
|-----------|--------|
|           |        |

- √ For an
- : Such that
- Given
- · Therefore
- · · Because
- ∧ And
- ∨ Or
- √ Negation
- Equivalent or identical.
- ⇒ Implies, then, or sufficient
- ⇔ If and only if, or necessary and sufficient
- $\subset \quad \text{Strict subset} \quad$
- ⊆ Subset
- ∈ In, or an element of the following set
- $\square$  End of Proof. QED (quod erat demonstrandum  $\sim$  it has been demonstrated).

# 0. TERMINOLOGY

Aa ALPHA [a]

ἄλφα

ήτα

Bβ BETA [b]

Γγ GAMMA [g] γάμμα  $\Delta\delta$ DELTA [d]

Eε EPSILON [e] Ε ψιλόν Zζ ZETA [dz] ζήτα

H<sub>η</sub>

Θθ THETA [t<sup>b</sup>]

θήτα

βῆτα

It iota [i] Kκ KAPPA [k]

Λλ

λάμβδα

 $M\mu_{_{_{_{_{_{_{_{_{_{_{m}}}}}}}}}}\mu$ 

μũ

σῖγμα

ὧ μένα

 $N_{\nu}$ 

Ξξ XI [ks] ξεί Oo OMICRON [0]

 $\prod_{\substack{\text{PI } [p] \\ \pi \in I}} \pi$ 

κάππα

 $P\rho$ 

ρũ

Ψεĩ

 $\sum_{\text{SIGMA [S]}} \sigma \varsigma$ 

TT

ταῦ

νũ

Υυ UPSILON [tt]

ὖ ψιλόν

Ф(

øεĩ

ὂ μικρόν

CHI [kh]

 $\Psi_{\Psi}$ 

 $\Omega \omega$ 

McWau

Math Review 2023: Logic & Proofs

Aug. 7th, 2023

#### 1. LOGICAL STATEMENTS

- ▶ Logical Statement: Use a set of facts to infer/assume a new fact.
  - ► Hypothesis (If): Premise with set of facts
  - ► Conclusion (Then): New set of facts inferred if hypothesis is true.
  - e.g., **If** I study throughout the course, **then** I earn a higher grade.
- ► Family of statements:
  - ightharpoonup Tautologies: Statement is always true (1 = 1)
  - ightharpoonup Contradictions: Statement is always false (2=3)
  - ightharpoonup Statement:  $A \implies B$
  - ightharpoonup Contrapositive:  $\neg B \implies \neg A$
  - ightharpoonup Converse:  $B \implies A$
  - ▶ Inverse:  $\neg A \implies \neg B$

## 1. LOGICAL STATEMENTS

- Axiom: Statements assumed to be true.
  - ightharpoonup e.g., a = b,  $b = c \implies a = c$
- ► Theorem: A statement proven to be true.
- ▶ Corollary: A theorem that follows from another theorem.
- ▶ Lemma: A minor theorem used to prove another theorem.

#### 2. Necessary Condition

- $\triangleright$  A is necessary for B
  - ▶ If B is true, A must be true:  $B \implies A$ .
  - ▶ If A is not true, B is not true:  $\neg A \implies \neg B$
- $\triangleright$  A is needed to make the argument.



# 3. SUFFICIENT CONDITION

- $\triangleright$  A is sufficient for B
  - ▶ If A is true, B must be true:  $A \implies B$
  - ▶ If B is not true, A is not either:  $\neg B \implies \neg A$
- ightharpoonup A allows you to state B, but not necessary to make argument.



# 4. Necessary and Sufficient (If and Only If $\sim$ 1ff)

- ightharpoonup If A is sufficient for B, B is necessary for A.
- ▶ If  $A \implies B$  and  $B \implies A$ , then  $A \iff B$  (iff)
  - ightharpoonup A is necessary and sufficient for B.
  - $\triangleright$  A and B are equivalent statements.
  - $\triangleright$  A is true iff B is true: A iff B

# DEMONSTRATION: NECESSARY AND SUFFICIENT

#### Ouestion:

Is this statement true: "If I open the door, I used the key."

# DEMONSTRATION: NECESSARY AND SUFFICIENT

#### Ouestion:

Is this statement true: "If I open the door, I used the key."

#### Answer:

Logic: Open Door (A)  $\Longrightarrow$  Used Key (B) Necessary: You need a key (B) to open the door (A).  $B \Longrightarrow A$ . Sufficient: If you do not have the key  $(\neg B)$ , then there is no way to open the door  $(\neg A)$ . So  $A \Longrightarrow B$ .

# PRACTICE: NECESSARY AND SUFFICIENT CONDITIONS

1. Scoring more touchdowns than your opponent in American football means you won the game.

# PRACTICE: NECESSARY AND SUFFICIENT CONDITIONS

1. Scoring more touchdowns than your opponent in American football means you won the game.

Answer: Show Work

Sufficient but not necessary.

# PRACTICE: NECESSARY AND SUFFICIENT CONDITIONS

- 1. Scoring more touchdowns than your opponent in American football means you won the game.
- 2. Obtaining a learner's permit will lead to earning a driver's license.

# PRACTICE: NECESSARY AND SUFFICIENT CONDITIONS

- 1. Scoring more touchdowns than your opponent in American football means you won the game.
- 2. Obtaining a learner's permit will lead to earning a driver's license.

Answer: \ Show Work

Necessary but not sufficient.

- 1. Scoring more touchdowns than your opponent in American football means you won the game.
- 2. Obtaining a learner's permit will lead to earning a driver's license.
- 3. All even whole numbers must be divisible by two.

# PRACTICE: NECESSARY AND SUFFICIENT CONDITIONS

- 1. Scoring more touchdowns than your opponent in American football means you won the game.
- 2. Obtaining a learner's permit will lead to earning a driver's license.
- 3. All even whole numbers must be divisible by two.

Answer: Show Work

Both necessary and sufficient.

Topic: Proofs

- ► General background
  - ▶ Method for proving or disproving a logical statement
- ▶ Why do economists' care?
  - ▶ Determine which theories are incorporated into economic theory
- ► Application in this career
  - ► Theory papers and well-developed theory sections of empirical papers.
  - ▶ Often in appendix sections to prove statements articulated as part of an argument in a paper.

- ► General background
  - ▶ Method for proving or disproving a logical statement
- ▶ Why do economists' care?
  - ▶ Determine which theories are incorporated into economic theory
- ► Application in this career
  - ► Theory papers and well-developed theory sections of empirical papers.
  - ▶ Often in appendix sections to prove statements articulated as part of an argument in a paper.

- ► General background
  - ▶ Method for proving or disproving a logical statement
- ▶ Why do economists' care?
  - ▶ Determine which theories are incorporated into economic theory
- ► Application in this career
  - ► Theory papers and well-developed theory sections of empirical papers.
  - ▶ Often in appendix sections to prove statements articulated as part of an argument in a paper.

- 1. Truth Tables
- 2. Existence & Uniqueness
- 3. Direct Proofs
- 4. Proof by Contradiction
- 5. Proof by Induction
- 6. Proof by Contrapositive

#### ASSUMPTIONS ARE THE CORE OF PROOFS...





Proofs



Smbc-comics.com

- ▶ Shows how the truth/falsity of a compound statement depends on the truth/falsity of the simple statements from which it's constructed.
- ► Statements = {Known to be true, known to be false, truth unknown }
- ▶ Truth table for  $(P \rightarrow Q)$ :

| P | Q            | $P \iff Q$ |
|---|--------------|------------|
| Τ | Т            | T          |
| Τ | $\mathbf{F}$ | F          |
| F | Т            | F          |
| F | $\mathbf{F}$ | ${ m T}$   |

#### **DEMONSTRATION: TRUTH TABLE**

Question:

Construct a truth table for  $(P \to Q) \lor (Q \to P)$ 

| P | Q | $P \rightarrow Q$ | $Q \rightarrow P$ | $(P \to Q) \lor (Q \to P)$ |
|---|---|-------------------|-------------------|----------------------------|
| T | Т | T                 | T                 | T                          |
| T | F | F                 | T                 | T                          |
| F | Т | Τ                 | F                 | T                          |
| F | F | Т                 | Т                 | Т                          |

Proofs

#### **DEMONSTRATION: TRUTH TABLE**

Question:

Construct a truth table for  $(P \to Q) \lor (Q \to P)$ 

#### Answer:

| P            | Q | $P \rightarrow Q$ | $Q \rightarrow P$ | $(P \to Q) \lor (Q \to P)$ |
|--------------|---|-------------------|-------------------|----------------------------|
| Τ            | Т | Т                 | Т                 | T                          |
| T            | F | F                 | ${ m T}$          | ${ m T}$                   |
| F            | T | T                 | F                 | ${ m T}$                   |
| $\mathbf{F}$ | F | T                 | ${ m T}$          | T                          |

Proofs

## 2. Existence and Uniqueness

Existence: Can an answer to the truth of a statement (viz., proof) be found.

- Sometimes you can prove no answer can exist.
- ▶ Uniqueness: An assertion that there is exactly one statement that is true for that family of statements.
  - $\triangleright$  x is the family P(x).
- ▶ Ideally, you want a statement which exists and is unique.
  - $\triangleright$  Ex. If "x + 2 = 3, then x = 1" is a statement that exists and is unique.

# APPLICATION: EQUILIBRIUM EXISTS

#### Existence of Equilibrium II Theorem:

Suppose that each consumer's preferences are continuous, strongly monotonic, and convex. Suppose also that, for each consumer  $i, \omega_i \gg 0$ . Then there exists a Walrasian equilibrium  $(p^*, x^*)$  for  $\varepsilon$ .

# 3. Proof by Deduction (Direct Proof)

- ightharpoonup Show  $A \implies B$
- ▶ Deductive reasoning: Use a set of premises that lead to a conclusion.
- $\triangleright$  Sometimes we need to strengthen A but adding assumptions (e.g., weak assumptions are preferred).

## **DEMONSTRATION: DIRECT PROOF**

#### **Question:**

Let m be an even integer and p be any integer. Then  $m \times p$  is an even integer.

#### Answer

#### Proof.

m is an even integer so  $\exists$  an integer q such that  $m=2\times q$  by the definition of an even integer. Therefore, we can make the statement:

$$m \times p = (2 \times q) \times p = 2 \times (q \times p)$$

So,  $m \times p$  is an even integer.

#### **Question:**

Let m be an even integer and p be any integer. Then  $m \times p$  is an even integer.

#### Answer:

## Proof.

m is an even integer so  $\exists$  an integer q such that  $m = 2 \times q$  by the definition of an even integer. Therefore, we can make the statement:

$$m \times p = (2 \times q) \times p = 2 \times (q \times p)$$

So,  $m \times p$  is an even integer.

#### 4. Proof by Contradiction

- $\blacktriangleright A \implies B \equiv \neg A \text{ and } \neg B \equiv \neg B \implies \neg A.$
- ▶ E.g., If the conclusion is not untrue, then the premise must be untrue.

## **DEMONSTRATION: PROOF BY CONTRADICTION**

#### Ouestion:

Walras' Law:  $\forall x \in x(p, w)$  that maximizes consumer utility, then  $x \times p = w$ .

#### Answer.

## Proof

Suppose  $\exists x \in x(p, w) : x \times p < w \ (\neg B)$ , then there must be another  $y \in x(p, w)$  that is affordable and  $y \succ x$  by the assumption of "local non-satiation". Therefore, since y exists and is affordable, then x does not maximize utility  $(\neg A)$ .

#### **DEMONSTRATION: PROOF BY CONTRADICTION**

#### Ouestion:

Walras' Law:  $\forall x \in x(p, w)$  that maximizes consumer utility, then  $x \times p = w$ .

#### Answer:

#### Proof.

Suppose  $\exists x \in x(p,w) : x \times p < w \ (\neg B)$ , then there must be another  $y \in x(p,w)$  that is affordable and  $y \succ x$  by the assumption of "local non-satiation". Therefore, since y exists and is affordable, then x does not maximize utility  $(\neg A)$ .

#### 5. Proof by Induction



Professor Schmidt demonstrates the concept of proof by induction.

- ► Inductive reasoning: Drawing conclusions by reasoning a series of specific examples generalizes.
- ▶ Often used by indexing through integers.

# **DEMONSTRATION: PROOF BY INDUCTION**

Question:

$$P(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Answer:

Proof

Note that P(1) is true because  $1 = \frac{1 \times 2}{2}$ . Assume P(n) is true for  $k \in n$  integers:  $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$ . Add (k+1) to both sides.

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$

This is P(k+1), implying that P(k) is true for all P(n).

## **DEMONSTRATION: PROOF BY INDUCTION**

Question:

$$P(n): 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

Answer:

Proof.

Note that P(1) is true because  $1 = \frac{1 \times 2}{2}$ . Assume P(n) is true for  $k \in n$  integers:  $1 + 2 + \cdots + k = \frac{k(k+1)}{2}$ . Add (k+1) to both sides.

$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)=\frac{(k+1)(k+2)}{2}$$

This is P(k+1), implying that P(k) is true for all P(n).

## 6. PROOF BY CONTRAPOSITIVE

▶ Double Negation:

$$\neg B \implies \neg A \equiv \neg \neg A \implies \neg \neg B \equiv A \implies B.$$

 $\triangleright$  Convenient when there is a universal quantifier  $(\forall)$  present included by the contrapositive.

## DEMONSTRATION: PROOF BY CONTRAPOSITIVE

#### **Question:**

Suppose  $x \in \mathbb{Z}$ . If 7x + 9 is even, then x is odd.

#### Answer:

## Proof

Suppose x is **not** odd (i.e., even) implying x = 2a for some integer a. Then,

$$7x + 9 = 7(2a) + 9 = 14a + (8+1) = 2(7a+4) + 1 = 2b + 1$$

if b = 7a + 4. Consequently, 2b + 1 is odd for all b. Therefore 07x + 9 is **not** even.

## DEMONSTRATION: PROOF BY CONTRAPOSITIVE

#### **Question:**

Suppose  $x \in \mathbb{Z}$ . If 7x + 9 is even, then x is odd.

#### Answer:

Proof.

Suppose x is **not** odd (i.e., even) implying x = 2a for some integer a. Then,

$$7x + 9 = 7(2a) + 9 = 14a + (8+1) = 2(7a+4) + 1 = 2b + 1$$

if b = 7a + 4. Consequently, 2b + 1 is odd for all b. Therefore 07x + 9 is **not** even.

Math Review 2023: Logic & Proofs

1. If x is odd, then  $x^2$  is odd.

1. If x is odd, then  $x^2$  is odd.

Answer: Show Work

 $x^2$  is odd by definition of an odd number.

- 1. If x is odd, then  $x^2$  is odd.
- 2. Suppose  $x \in \mathbb{Z}$ . If  $x^2 = 6x + 5$  is even, then x is odd.

- 1. If x is odd, then  $x^2$  is odd.
- 2. Suppose  $x \in \mathbb{Z}$ . If  $x^2 = 6x + 5$  is even, then x is odd.

Answer: Show Work

By contrapositive,  $x^2 = 6x + 5$  is odd and therefore not even.

- 1. If x is odd, then  $x^2$  is odd.
- 2. Suppose  $x \in \mathbb{Z}$ . If  $x^2 = 6x + 5$  is even, then x is odd.
- 3. There are infinitely many prime numbers.

## PRACTICE: PROOFS

- 1. If x is odd, then  $x^2$  is odd.
- 2. Suppose  $x \in \mathbb{Z}$ . If  $x^2 = 6x + 5$  is even, then x is odd.
- 3. There are infinitely many prime numbers.

Answer: Show Work

Proof by contradiction.

#### Review

Course Preview

#### REVIEW OF LOGIC

- 1. Logical Statement: Necessary to provide clarity to your statements
- 2. Necessary vs. Sufficient Conditions: Aiming to make statements that are both (iff)

- 1. Truth Tables
- 2. Four methods to prove a statement:
  - ▶ Direct proof
  - ▶ Proof by contradiction
  - ▶ Proof by induction
  - ► Proof by Contrapositive

- ▶ Readings on Logic & Proofs before Lecture 02:
  - ► B&S Appendix A
  - ► Hammack Ch. 4 & 10
- ► Readings on Sets & Topology before Lecture 02:
  - ▶ B&S Ch. 11
  - ► S&B Ch. 12
- ► Assignment:
  - ► Problem Set 01 (PS01)
  - ► Solution set will be available following end of Lecture 02
- ► Struggling?
  - 1. Read the 'Encouraged Reading'
  - 2. Review 'Supplementary material'
  - 3. Reach out directly

# N & S CONDITIONS QUESTION 1 ANSWER:



- ▶ Not Necessary: If you won the game (B), you may have scored other points but less touchdowns  $(\neg A)$ .
- ▶ Sufficient: If you score more touchdowns (A) (and therefore more overall points), then you will win the game (B).

# N & S CONDITIONS QUESTION 2 ANSWER:



- ▶ Necessary: A learner's permit (A) is required before you can get a drivers license (B).
- ▶ Not Sufficient: Not all learners  $(\neg A)$  successfully earn their drivers license  $(\neg B)$ .

# N & S CONDITIONS QUESTION 3 ANSWER:



- ▶ Necessary: To be divisible by 2 (B), you must be a even whole number (A).
- ▶ Sufficient: If you are an even whole number (A), you will have no remainder if divided by two (B).

# PROOFS QUESTION 1 ANSWER:

◆ QUESTION

#### Proof.

Suppose x is odd. Then x = 2a + 1 for some  $a \in \mathbb{Z}$ , by definition an odd number. Thus  $x^2 = (2a + 1)^2 = 4a^2 + 4a + 1$ . This  $2(2a^2 + 2a) + 1$ . So  $x^2 = 2b + 1$  for an integer b. Therefore,  $x^2$  is odd, by definition of an odd number.

# PROOFS QUESTION 2 ANSWER:

◆ QUESTION

#### Proof.

Suppose *x* is **not** odd. Thus *x* is even, so x = 2a for some integer *a*. So  $x^2 - 6x - 5 = (2a)^2 - 6(2a) - 5 = 2(2a^2 - 6a - 2) + 1$ . Then  $x^2 - 6x + 5 = 2b + 1$  for  $b = 2a^2 - 6a - 2$ . Consequently,  $x^2 - 6x + 5$  is odd, and therefore not even.

# PROOFS QUESTION 3 ANSWER:



#### Proof.

Suppose there are only finite prime numbers. Then they can be listed as  $p_1, p_2, \ldots, p_n$ . Then  $p_n$  is the final and largest prime number. Consider a number  $a = (p_1 \cdot p_2 \cdots p_n) + 1$ . a has at least one prime divisor (e.g.,  $p_k$  in the list). So there is some integer c such that  $(p_1 \cdot p_2 \cdots p_{k-1}p_kp_{k+1} \cdots p_n) + 1 = c \cdot p_k$ . Divide both sides by  $p_k$ . Now we have  $\frac{1}{p_k} = c - (p_1 \cdot p_2 \cdots p_{k-1}p_{k+1} \cdots p_n)$ . The expression on the right is an integer (i.e., which prime is a part of) **but** the left is not an integer. This is a contradiction. Therefore, there must be no finite range of prime numbers.  $\Box$