Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

## **VİTMO**

# ЛАБОРАТОРНАЯ РАБОТА №Е ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «УПРАВЛЕНИЕ МНОГОКАНАЛЬНОЙ СИСТЕМОЙ»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

### Содержание

| 1 | Зад                                                            | ание 1. Исследование свойств многоканальной системы           | <b>2</b> |
|---|----------------------------------------------------------------|---------------------------------------------------------------|----------|
|   | 1.1                                                            | Собственные числа матрицы системы                             | 2        |
|   | 1.2                                                            | Передаточная матрица многоканальной системы, ее нули и полюса | 2        |
|   | 1.3                                                            | Структурные свойства многоканальной системы                   | 2        |
|   | 1.4                                                            | Временные характеристики системы                              | 3        |
|   | 1.5                                                            | Графическое представление временных характеристик             | 5        |
|   | 1.6                                                            | Частотные характеристики системы                              | 6        |
|   | 1.7                                                            | Графическое представление частотных характеристик             | 8        |
| 2 | Задание 2. Синтез следящего управления в условиях внешних воз- |                                                               |          |
|   | муг                                                            | цений для многоканальной системы                              | 10       |
|   | 2.1                                                            | Структурные свойства многоканальной системы                   | 11       |
|   | 2.2                                                            | Передаточные матрицы многоканальной системы                   | 11       |
|   | 2.3                                                            | Матрицы и начальные условия генератора внешнего воздействия   | 12       |
|   | 2.4                                                            | Схема моделирования системы                                   | 12       |
|   | 2.5                                                            | Синтез компоненты обратной связи                              | 13       |
|   | 2.6                                                            | Синтез компоненты прямой связи регулятора                     | 14       |
|   | 2.7                                                            | Синтез матрицы коррекции наблюдателя                          | 15       |
|   | 2.8                                                            | Компьютерное моделирование                                    | 15       |
| 3 | Общий вывод по работе                                          |                                                               | 23       |
| 4 | Приложение А                                                   |                                                               | 23       |
| 5 | 5 Приложение Б                                                 |                                                               | 28       |

### Задание 1. Исследование свойств многоканальной системы

Рассмотрим многоканальную систему

$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx, \end{cases} \quad A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 2 \\ -3 & 3 \end{bmatrix}, \ C = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}, \ D = 0;$$

Программа для задания находится в приложении А на листинге 1.

### Собственные числа матрицы системы

Определим собственные числа  $\lambda_i$  матрицы системы A

$$\sigma\left[A\right] = \{1, 1\}$$

Получили кратные неустойчивые собственные числа.

### Передаточная матрица многоканальной системы, ее нули и полюса

Определим передаточную матрицу многоканальной системы по формуле

$$W(s) = C \left[ sI - A \right]^{-1} B + D$$

Получаем

$$W(s) = \begin{bmatrix} \frac{-s-11}{s^2 - 2s + 1} & \frac{7s-4}{s^2 - 2s + 1} \\ \frac{9s-13}{s^2 - 2s + 1} & \frac{1}{s^2 - 2s + 1} \end{bmatrix}$$

Нули и полюса квадратной передаточной матрицы определяются из корней числителя и знаменателя определителя передаточной матрицы. Найдем определитель

$$\det[W(s)] = \frac{-63}{s^2 - 2s + 1}$$

Так как числитель не зависит от s, то нули  $n_i$  отсутствуют. Определим полюса  $\lambda_i$ 

$$s^{2} - 2s + 1 = 0$$
,  $(s - 1)^{2} = 0 \Rightarrow \lambda_{1,2} = 1$ 

Полюса совпали с собственными числами матрицы A.

### Структурные свойства многоканальной системы

Структурные свойства многоканальной системы определяются таким же образом, как и для одноканальной. Найдем ЖНФ матрицы A, переведем B,C в базис собственных векторов A

$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ B_J = \begin{bmatrix} 3 & -3 \\ 4 & -1 \end{bmatrix}, \ C_J = \begin{bmatrix} -3 & 2 \\ -1 & 3 \end{bmatrix};$$

Также найдем матрицу управляемости по выходу и вычислим ее ранг

$$U_{out} = \begin{bmatrix} CU & D \end{bmatrix}, \ U = \begin{bmatrix} B & AB \end{bmatrix} \Rightarrow U_{out} = \begin{bmatrix} -1 & 7 & -13 & 10 & 0 & 0 \\ 9 & 0 & 5 & 1 & 0 & 0 \end{bmatrix}, \ \mathrm{rank} \left[ U_{out} \right] = 2;$$

Таким образом,

- Система полностью управляема по состоянию и стабилизируема
- Система полностью наблюдаема и обнаруживаема
- Система полностью управляема по выходу

### Временные характеристики системы

Для аналитического определения весовых функций воспользуемся обратным преобразованием Лапласа

$$w_k(t) = \mathcal{L}^{-1} \{ W_{l,m}(s) \}$$

Нам пригодятся эти формулы

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)}\right\} = e^{at},\tag{1}$$

$$\mathcal{L}^{-1}\left\{\frac{n!}{(s-a)^{n+1}}\right\} = t^n e^{at};$$
 (2)

Выведем  $w_1(t)$ 

$$w_1(t) = \mathcal{L}^{-1} \{ W_{1,1}(s) \} = \mathcal{L}^{-1} \left\{ \frac{-s - 11}{s^2 - 2s + 1} \right\}$$

Упростим передаточную функцию  $W_{1,1}(s)$ 

$$W_{1,1}(s) = \frac{-s - 11}{s^2 - 2s + 1} = -\frac{s - 1 + 12}{(s - 1)^2} = -\frac{s - 1}{(s - 1)^2} - \frac{12}{(s - 1)^2} = -1 \cdot \frac{1}{(s - 1)} - 12 \cdot \frac{1}{(s - 1)^2}$$

Воспользуемся выражениями (1), (2) и свойствами линейности преобразования Лапласа и вычислим  $w_1(t)$ 

$$w_1(t) = \mathcal{L}^{-1} \left\{ -1 \cdot \frac{1}{(s-1)} - 12 \cdot \frac{1}{(s-1)^2} \right\} = -\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)} \right\} - 12\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)^2} \right\},$$

$$w_1(t) = -e^t - 12te^t;$$

Найдем  $w_2(t)$ 

$$w_2(t) = \mathcal{L}^{-1} \{W_{1,2}\} = \mathcal{L}^{-1} \left\{ \frac{7s - 4}{(s - 1)^2} \right\}$$

Упростим передаточную функцию  $W_{1,2}(s)$ 

$$W_{1,2}(s) = \frac{7s - 4}{(s - 1)^2} = \frac{A}{(s - 1)} + \frac{B}{(s - 1)^2} = \frac{As - A + B}{(s - 1)^2},$$

$$As - A + B = 7s - 4 \Rightarrow \begin{cases} A = 7, \\ -A + B = -4, \end{cases} \Rightarrow B = -4 + A = -4 + 7 = 3,$$

$$W_{1,2}(s) = \frac{7}{(s - 1)} + \frac{3}{(s - 1)^2} = 7 \cdot \frac{1}{(s - 1)} + 3 \cdot \frac{1}{(s - 1)^2}$$

Таким образом, аналогично решению с  $w_1(t)$ , получаем  $w_2(t)$ 

$$w_2(t) = \mathcal{L}^{-1} \left\{ 7 \cdot \frac{1}{(s-1)} + 3 \cdot \frac{1}{(s-1)^2} \right\} = 7e^t + 3te^t$$

Определим  $w_3(t)$ 

$$w_3(t) = \mathcal{L}^{-1}\left\{W_{2,1}(s)\right\} = \mathcal{L}^{-1}\left\{\frac{9s - 13}{\left(s - 1\right)^2}\right\} = \mathcal{L}^{-1}\left\{9 \cdot \frac{1}{\left(s - 1\right)} - 4 \cdot \frac{1}{\left(s - 1\right)^2}\right\} = 9e^t - 4te^t$$

Выведем  $w_4(t)$ 

$$w_4(t) = \mathcal{L}^{-1} \{W_{2,2}(s)\} = \mathcal{L}^{-1} \left\{ \frac{1}{(s-1)^2} \right\} = te^t$$

Итого имеем

$$w_1(t) = -e^t - 12te^t,$$
  

$$w_2(t) = 7e^t + 3te^t,$$
  

$$w_3(t) = 9e^t - 4te^t,$$
  

$$w_4(t) = te^t;$$

Перейдем к переходным функциям. Весовая функция является производной от переходной функции (отличие образа Лапласа в s раз). Значит для поиска переходных функций нужно брать интегралы

$$h_k(t) = \int_0^t w_k(\tau) \, d\tau$$

Нам понадобится формула интегрирования по частям

$$u = u(x), \ v = v(x) : \int u \, dv = uv - \int v \, du;$$

Вычислим  $h_1(t)$ 

$$h_{1}(t) = \int_{0}^{t} w_{1}(\tau) d\tau = \int_{0}^{t} (-e^{\tau} - 12\tau e^{\tau}) d\tau = -\int_{0}^{t} e^{\tau} d\tau - 12 \int_{0}^{t} \tau e^{\tau} d\tau,$$

$$\int_{0}^{t} e^{\tau} d\tau = e^{\tau} \Big|_{0}^{t} = e^{t} - 1,$$

$$\int_{0}^{t} \tau e^{\tau} d\tau = \begin{bmatrix} u = \tau & v = e^{\tau} \\ du = d\tau & dv = e^{\tau} d\tau \end{bmatrix} = \tau e^{\tau} \Big|_{0}^{t} - \int_{0}^{t} e^{\tau} d\tau = t e^{t} - e^{t} + 1,$$

$$h_{1}(t) = -(e^{t} - 1) - 12 (t e^{t} - e^{t} + 1) = -12t e^{t} + 11e^{t} - 11;$$

Найдем  $h_2(t)$ 

$$h_2(t) = \int_0^t w_2(\tau) d\tau = \int_0^t (7e^{\tau} + 3\tau e^{\tau}) d\tau = 7 \int_0^t e^{\tau} d\tau + 3 \int_0^t \tau e^{\tau} d\tau$$

Видим вычисленные ранее интегралы. Подставим и получим

$$h_2(t) = 7(e^t - 1) + 3(te^t - e^t + 1) = 3te^t + 4e^t - 4$$

Вычислим  $h_3(t)$ 

$$h_3(t) = \int_0^t w_3(\tau) d\tau = \int_0^t (9e^{\tau} - 4\tau e^{\tau}) d\tau = 9 \int_0^t e^{\tau} d\tau - 4 \int_0^t \tau e^{\tau} d\tau$$

Аналогично  $h_1(t), h_2(t)$ 

$$h_3(t) = 9(e^t - 1) - 4(te^t - e^t + 1) = -4te^t + 13e^t - 13$$

Найдем  $h_4(t)$ 

$$h_4(t) = \int_0^t w_4(\tau) d\tau = \int_0^t \tau e^{\tau} d\tau = te^t - e^t + 1$$

Таким образом, имеем

$$h_1(t) = -12te^t + 11e^t - 11,$$
  

$$h_2(t) = 3te^t + 4e^t - 4,$$
  

$$h_3(t) = -4te^t + 13e^t - 13,$$
  

$$h_4(t) = te^t - e^t + 1;$$

### Графическое представление временных характеристик

Построим графики  $w_i(t), h_i(t)$  по расчитанным ранее характеристикам. Весовые функции представлены на рис. 1, переходные на рис. 2



Рис. 1: Графики весовых функций  $w_k(t)$ 



### Частотные характеристики системы

Выведем аналитические выражения частотных характеристик системы, таких как АЧХ, ФЧХ, ЛАЧХ, ЛФЧХ. АЧХ находим по формуле

$$A_k(\omega) = |W_{l,m}(i\omega)| = \sqrt{\operatorname{Re}^2\{W_{l,m}(i\omega)\} + \operatorname{Im}^2\{W_{l,m}(i\omega)\}}$$

Найдем  $A_1(\omega)$ 

$$A_1(\omega) = |W_{1,1}(i\omega)| = \left| \frac{-i\omega - 11}{(i\omega - 1)^2} \right|,$$

Приведем  $W_{1,1}(i\omega)$  к виду суммы реальной и мнимой частей. Домножим числитель и знаменатель на комплексно сопряженное к знаменателю число. Упростим выражение и выразим действительную и мнимую части. В конце вычислим  $A_1(\omega)$ 

$$W_{1,1}(i\omega) = \frac{(-i\omega - 11)(i\omega + 1)^2}{(i\omega - 1)^2(i\omega + 1)^2} = \frac{13\omega^2 - 11 + (\omega^3 - 23\omega)i}{\omega^4 + 2\omega^2 + 1} = \frac{13\omega^2 - 11}{(\omega^2 + 1)^2} + \frac{\omega^3 - 23\omega}{(\omega^2 + 1)^2}i,$$

$$A_1(\omega) = \sqrt{\left(\frac{13\omega^2 - 11}{(\omega^2 + 1)^2}\right)^2 + \left(\frac{\omega^3 - 23\omega}{(\omega^2 + 1)^2}\right)^2} = \frac{\sqrt{\omega^6 + 123\omega^4 + 243\omega^2 + 121}}{(\omega^2 + 1)^2};$$

Вычислим оставшиеся  $A_k(\omega)$  аналогично. Сначала приведем  $W_{l,m}(i\omega)$  к нужному виду

$$W_{1,2}(i\omega) = \frac{(7i\omega - 4)(i\omega + 1)^2}{(i\omega - 1)^2(i\omega + 1)^2} = \frac{18\omega^2 - 4}{(\omega^2 + 1)^2} + \frac{-7\omega^3 + 15\omega}{(\omega^2 + 1)^2}i,$$

$$W_{2,1}(i\omega) = \frac{(9i\omega - 13)(i\omega + 1)^2}{(i\omega - 1)^2(i\omega + 1)^2} = \frac{31\omega^2 - 13}{(\omega^2 + 1)^2} + \frac{-9\omega^3 + 35\omega}{(\omega^2 + 1)^2}i,$$

$$W_{2,2}(i\omega) = \frac{(i\omega + 1)^2}{(i\omega - 1)^2(i\omega + 1)^2} = \frac{-\omega^2 + 1}{(\omega^2 + 1)^2} + \frac{2\omega}{(\omega^2 + 1)^2}i;$$

Запишем оставшиеся  $A_k(\omega)$ 

$$A_{2}(\omega) = |W_{1,2}(i\omega)| = \left| \frac{18\omega^{2} - 4}{(\omega^{2} + 1)^{2}} + \frac{-7\omega^{3} + 15\omega}{(\omega^{2} + 1)^{2}} i \right|,$$

$$A_{3}(\omega) = |W_{2,1}(i\omega)| = \left| \frac{31\omega^{2} - 13}{(\omega^{2} + 1)^{2}} + \frac{-9\omega^{3} + 35\omega}{(\omega^{2} + 1)^{2}} i \right|,$$

$$A_{4}(\omega) = |W_{2,2}(i\omega)| = \left| \frac{-\omega^{2} + 1}{(\omega^{2} + 1)^{2}} + \frac{2\omega}{(\omega^{2} + 1)^{2}} i \right|;$$

Вычислим АЧХ

$$A_{2}(\omega) = \frac{\sqrt{\left(18\omega^{2} - 4\right)^{2} + \left(-7\omega^{3} + 15\omega\right)^{2}}}{\left(\omega^{2} + 1\right)^{2}} = \frac{\sqrt{49\omega^{6} + 114\omega^{4} + 81\omega^{2} + 16}}{\left(\omega^{2} + 1\right)^{2}},$$

$$A_{3}(\omega) = \frac{\sqrt{\left(31\omega^{2} - 13\right)^{2} + \left(-9\omega^{3} + 35\omega\right)^{2}}}{\left(\omega^{2} + 1\right)^{2}} = \frac{\sqrt{81\omega^{6} + 331\omega^{4} + 419\omega^{2} + 169}}{\left(\omega^{2} + 1\right)^{2}},$$

$$A_{4}(\omega) = \frac{\sqrt{\left(-\omega^{2} + 1\right)^{2} + \left(2\omega\right)^{2}}}{\left(\omega^{2} + 1\right)^{2}} = \frac{\omega^{2} + 1}{\left(\omega^{2} + 1\right)^{2}} = \frac{1}{\omega^{2} + 1};$$

ЛАЧХ ищется по формуле

$$L_k(\omega) = 20 \log_{10} \left( A_k(\omega) \right)$$

Запишем все  $L_k(\omega)$ 

$$\begin{split} L_1(\omega) &= 20 \log_{10} \left( A_1(\omega) \right) = 20 \log_{10} \left( \frac{\sqrt{\omega^6 + 123\omega^4 + 243\omega^2 + 121}}{\left(\omega^2 + 1\right)^2} \right), \\ L_2(\omega) &= 20 \log_{10} \left( A_2(\omega) \right) = 20 \log_{10} \left( \frac{\sqrt{49\omega^6 + 114\omega^4 + 81\omega^2 + 16}}{\left(\omega^2 + 1\right)^2} \right), \\ L_3(\omega) &= 20 \log_{10} \left( A_3(\omega) \right) = 20 \log_{10} \left( \frac{\sqrt{81\omega^6 + 331\omega^4 + 419\omega^2 + 169}}{\left(\omega^2 + 1\right)^2} \right), \\ L_4(\omega) &= 20 \log_{10} \left( A_4(\omega) \right) = 20 \log_{10} \left( \frac{1}{\omega^2 + 1} \right); \end{split}$$

Таким образом, пользуясь свойствами логарифмов

$$L_{1}(\omega) = 10 \log_{10} \left(\omega^{6} + 123\omega^{4} + 243\omega^{2} + 121\right) - 40 \log_{10} \left(\omega^{2} + 1\right),$$

$$L_{2}(\omega) = 10 \log_{10} \left(49\omega^{6} + 114\omega^{4} + 81\omega^{2} + 16\right) - 40 \log_{10} \left(\omega^{2} + 1\right),$$

$$L_{3}(\omega) = 10 \log_{10} \left(81\omega^{6} + 331\omega^{4} + 419\omega^{2} + 169\right) - 40 \log_{10} \left(\omega^{2} + 1\right),$$

$$L_{4}(\omega) = -20 \log_{10} \left(\omega^{2} + 1\right);$$

ФЧХ ищется по формуле

$$\varphi_k(\omega) = \arctan\left(\frac{\operatorname{Im}\left\{W_{l,m}(i\omega)\right\}}{\operatorname{Re}\left\{W_{l,m}(i\omega)\right\}}\right)$$

У всех  $W_{l,m}(i\omega)$  одинаковые знаментали у действительных и мнимых частей. При делении мнимой части на действительную знаменатели будут сокращаться. Останутся только отношения числителей. Таким образом, запишем  $\varphi_k$ 

$$\begin{split} \varphi_1(\omega) &= \arctan\left(\frac{\operatorname{Im_{q}}\left\{W_{1,1}(i\omega)\right\}}{\operatorname{Re_{q}}\left\{W_{1,1}(i\omega)\right\}}\right) = \arctan\left(\frac{\omega^3 - 23\omega}{13\omega^2 - 11}\right), \\ \varphi_1(\omega) &= \arctan\left(\frac{\operatorname{Im_{q}}\left\{W_{1,2}(i\omega)\right\}}{\operatorname{Re_{q}}\left\{W_{1,2}(i\omega)\right\}}\right) = \arctan\left(\frac{-7\omega^3 + 15\omega}{18\omega^2 - 4}\right), \\ \varphi_1(\omega) &= \arctan\left(\frac{\operatorname{Im_{q}}\left\{W_{2,1}(i\omega)\right\}}{\operatorname{Re_{q}}\left\{W_{2,1}(i\omega)\right\}}\right) = \arctan\left(\frac{-9\omega^3 + 35\omega}{31\omega^2 - 13}\right), \\ \varphi_1(\omega) &= \arctan\left(\frac{\operatorname{Im_{q}}\left\{W_{2,1}(i\omega)\right\}}{\operatorname{Re_{q}}\left\{W_{2,2}(i\omega)\right\}}\right) = \arctan\left(\frac{2\omega}{-\omega^2 + 1}\right); \end{split}$$

 $\Lambda\Phi$ ЧХ имеют такие же аналитические выражения, как и  $\Phi$ ЧХ, только вместо частот  $\omega$  используется логарифмическая шкала  $\log_{10}\left(\omega\right)$ .

### Графическое представление частотных характеристик

Построим графики по расчитанным ранее характеристикам



#### Logarithmic Amplitude-Frequency Characteristics



### Phase-Frequency Characteristics



Рис. 5: Графики ФЧХ  $\varphi_k(t)$ 



Результаты похожи на апериодические звенья 2-го порядка.

### Задание 2. Синтез следящего управления в условиях внешних возмущений для многоканальной системы

Рассмотрим многоканальную систему

$$\begin{cases} \dot{x} = Ax + Bu + B_f f_1, \\ z = C_z x + D_z u - g, \\ y = Cx + Du + D_f f_2, \end{cases} \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

при

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ -3 & 3 \end{bmatrix}, C = \begin{bmatrix} 2 & 1 \\ 3 & -2 \end{bmatrix}, D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix},$$

$$B_f = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}, D_f = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, C_z = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}, D_z = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

$$f_1(t) = \begin{bmatrix} 9\sin(3t) \\ 3\cos(2t) \end{bmatrix}, f_2(t) = \begin{bmatrix} 6\cos(2t) \\ 8\sin(3t) \end{bmatrix}, g(t) = \begin{bmatrix} 3\cos(4t) \\ 6\sin(4t) \end{bmatrix};$$

К измерению доступны только величины y(t), g(t). Программа находится в приложении B на листинге 2.

### Структурные свойства многоканальной системы

В первом задании уже находили ЖНФ матрицы A и соответствующие ей  $B_J, C_{J_y}$ 

$$J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ B_J = \begin{bmatrix} 3 & -3 \\ 4 & -1 \end{bmatrix}, \ C_{J_y} = \begin{bmatrix} -3 & 2 \\ -1 & 3 \end{bmatrix};$$

Найдем  $C_{J_z}$ 

$$A = PJP^{-1}, \ C_{J_z} = C_z \cdot P \Rightarrow C_{J_z} = \begin{bmatrix} -6 & 4\\ 0 & -1 \end{bmatrix}$$

Найдем  $U_{out_y}, U_{out_z}$ 

$$U = \begin{bmatrix} B & AB \end{bmatrix},$$

$$U_{out_y} = \begin{bmatrix} CU & D \end{bmatrix}, \ U_{out_y} = \begin{bmatrix} -1 & 7 & -13 & 10 & -2 & 0 \\ 9 & 0 & 5 & 1 & 0 & 1 \end{bmatrix}, \ \operatorname{rank} \begin{bmatrix} U_{out_y} \end{bmatrix} = 2,$$

$$U_{out_z} = \begin{bmatrix} C_z U & D_z \end{bmatrix}, \ U_{out_z} = \begin{bmatrix} -2 & 14 & -26 & 20 & 2 & 0 \\ -4 & 1 & -4 & 1 & 0 & 1 \end{bmatrix}, \ \operatorname{rank} \begin{bmatrix} U_{out_z} \end{bmatrix} = 2;$$

Таким образом,

- Система полностью управляема по состоянию и стабилизируема,
- $\circ$  Система полностью управляема по выходу y(t),
- $\circ$  Система полностью управляема по виртуальному (регулируемому) выходу z(t),
- $\circ$  Система полностью наблюдаема и обнаруживаема относительно выхода y(t),
- $\circ$  Система полностью наблюдаема и обнаруживаема относительно виртуального (регулируемого) выхода z(t);

### Передаточные матрицы многоканальной системы

Составим передаточную матрицу многоканальной системы от управляющих воздействий u(t) к выходу y(t)

$$W_y(s) = C [sI - A]^{-1} B + D,$$

$$W_y(s) = \begin{bmatrix} \frac{-2s^2 + 3s - 13}{s^2 - 2s + 1} & \frac{7s - 4}{s^2 - 2s + 1} \\ \frac{9s - 13}{s^2 - 2s + 1} & \frac{s^2 - 2s + 1}{s^2 - 2s + 1} \end{bmatrix};$$

Проверим на вырожденность

$$\det\left[W_y(s)\right] = \frac{-2s^2 + 3s - 78}{s^2 - 2s + 1} \neq 0$$

Матрица  $W_y(s)$  невырожденная. Составим аналогично  $W_z(s)$  к выходу z(t)

$$W_y(s) = C_z [sI - A]^{-1} B + D_z,$$

$$W_z(s) = \begin{bmatrix} \frac{2s^2 - 6s - 20}{s^2 - 2s + 1} & \frac{14s - 8}{s^2 - 2s + 1} \\ \frac{-4}{s - 1} & \frac{s}{s - 1} \end{bmatrix};$$

Проверим на вырожденность

$$\det\left[W_z(s)\right] = \frac{2s^2 - 4s + 32}{s^2 - 2s + 1} \neq 0$$

Матрица  $W_z(s)$  невырожденная.

### Матрицы и начальные условия генератора внешнего воздействия

Генератор внешнего воздействия имеет вид

$$\begin{cases} \dot{w} = \Gamma_w w, \\ g = Y_g w, \\ f_1 = Y_1 w, \\ f_2 = Y_2 w, \end{cases} w(0);$$

Определим матрицы  $\Gamma_w, Y_g, Y_1, Y_2$  и начальные условия генератора внешнего воздействия w(0). Возмущения  $f_i, g$  содержат гармоники с частотами  $\omega_1 = 2, \omega_2 = 3, \omega_3 = 4$ . Вспомним модель осциллятора и запишем «большую»  $\Gamma_w$ , состоящую из «маленьких»  $\Gamma_{w_i}$ 

$$\Gamma_{w_i} = \begin{bmatrix} 0 & \omega_i \\ -\omega_i & 0 \end{bmatrix} \Rightarrow \Gamma_w = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 0 \\ -2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & -4 & 0 \end{bmatrix}$$

Таким образом, получится вектор возмущений с начальными условиями при t=0

$$w(t) = \begin{bmatrix} \cos(2t) \\ \sin(2t) \\ \cos(3t) \\ \sin(3t) \\ \cos(4t) \\ \sin(4t) \end{bmatrix}, \ w(t = 0) = \begin{bmatrix} \cos(0) \\ \sin(0) \\ \cos(0) \\ \sin(0) \\ \cos(0) \\ \sin(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix};$$

Осталось матрицами задать амплитуду и гармоники для каждого возмущения. Выходов два, координат у w(t) шесть – матрицы  $Y_i$  будут размера  $2 \times 6$ . Зададим эти матрицы

$$Y_1 = \begin{bmatrix} 0 & 0 & 0 & 9 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \ Y_2 = \begin{bmatrix} 6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 & 0 \end{bmatrix}, \ Y_g = \begin{bmatrix} 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix};$$

### Схема моделирования системы

Построим схему моделирования системы, замкнутой регулятором, состоящим из необходимых для решения данной задачи управления наблюдателей и закона управления

$$u = K\hat{x} + K_w\hat{w} = \begin{bmatrix} K_w & K \end{bmatrix} \begin{bmatrix} \hat{w} \\ \hat{x} \end{bmatrix} = \bar{K}\hat{x}_f,$$

обеспечивающим выполнение целевого условия

$$\lim_{t \to \infty} z(t) = 0$$

Строим графики u(t),  $f_i(t)$ , g(t),  $(x(t), \hat{x}(t))$ ,  $e_x(t)$ ,  $(w(t), \hat{w}(t))$ ,  $e_w(t)$ , y(t), z(t). Схема расположена на рисунке 7



Рис. 7: Схема моделирования системы, замкнутой регулятором

### Синтез компоненты обратной связи

Зададимся эталонной моделью замкнутой системы на основании требований в соответствии с вариантом

$$2 < |\operatorname{Re}\left(\lambda_i^*\right)| < 3,$$

$$0 \le |\operatorname{Im}(\lambda_i^*)| < 7;$$

Пусть

$$\sigma\left(A+BK\right)=\left\{ -2.5\pm i\right\}$$

Тогда матрица Г

$$\Gamma = \begin{bmatrix} -2.5 + i & 0\\ 0 & -2.5 - i \end{bmatrix}$$

Можем переписать в вещественном виде

$$\Gamma = \begin{bmatrix} -2.5 & 1\\ -1 & -2.5 \end{bmatrix}$$

Подберем Y такой, чтобы пара  $(Y,\Gamma)$  была наблюдаема. Проверим, вычислив ранг матрицы наблюдаемости

$$Y = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ rank } \begin{bmatrix} Y \\ Y\Gamma \end{bmatrix} = \text{rank } \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -2.5 & 1 \\ -1 & -2.5 \end{bmatrix} = 2;$$

Пара  $(Y, \Gamma)$  наблюдаема. Пара (A, B) управляема (выяснили ранее через ЖНФ) и  $\sigma(A) \cap \sigma(\Gamma) = \emptyset$ . Следовательно, существует единственное невырожденное решение уравнения Сильвестра

$$AP - P\Gamma = BY$$
.  $K = -YP^{-1}$ :

Вычислим P, после чего найдем матрицу регулятора. Также проверим спектр замкнутой системы. Получаем

$$K = \begin{bmatrix} -0.8523 & 0.9009 \\ -0.9312 & -0.5275 \end{bmatrix}, \ \sigma \left( A + BK \right) = \left\{ -2.5 \pm i \right\};$$

Регулятор синтезирован корректно.

### Синтез компоненты прямой связи регулятора

Составим систему матричных уравнений Франкиса-Дэвисона для синтеза компоненты  $K_w$  регулятора

$$\begin{cases} P\Gamma_w - (A + BK)P - B_f Y_1 = BK_w, \\ (C_z + D_z K)P + D_z K_w = Y_g; \end{cases}$$

В общем виде уравнения имеют вид

$$\begin{cases} AP + BK + Y_1 = P\Gamma, \\ CP + DK + Y_2 = 0; \end{cases}$$

Решение относительно P и K для произвольных  $Y_1$  и  $Y_2$  есть, если

$$\operatorname{rank} \begin{bmatrix} A - I\lambda_{i\Gamma} & B \\ C & D \end{bmatrix} =$$
 число строк

И

- $\circ$  Множество нулей системы W(s) не пересекается со спектром  $\Gamma$ ,
- $\circ$  Система W(s) полностью управляема по выходу,
- Количество входов равно или больше количества выходов системы,
- $\circ$  Если количество входов равно количеству выходов, то система W(s) должна быть невырожденной;

Ранее мы выяснили, что система полностью управляема по выходу y(t) и z(t); количество входов и выходов равно 2;  $W_y(s), W_z(s)$  являются невырожденными. Проверим множества нулей  $W_k(s)$ 

$$W_{\nu}(s): n_{1,2} = 0.7500 \pm 6.1998i,$$

$$W_z(s): n_{1.2} = 1 \pm 3.8730i;$$

Не пересекаются со спектром Г. Осталось проверить ранги матриц

$$\operatorname{rank}egin{bmatrix} (A+BK)-I\lambda_{i\Gamma} & B \ (C_z+D_zK) & D_z \end{bmatrix} =$$
 число строк

Проверим

$$\operatorname{rank}\begin{bmatrix} (A+BK)-I \ (-2.5\pm i) & B \\ (C_z+D_zK) & D_z \end{bmatrix} = \begin{bmatrix} -0.2147\mp i & 0.8459 & 1 & 2 \\ -1.2367 & 0.2147\mp i & -3 & 3 \\ 2.2954 & 3.8018 & 2 & 0 \\ -1.9312 & 0.4725 & 0 & 1 \end{bmatrix} = 4;$$

Все условия выполнены — можно синтезировать  $K_w$ . Используя MATLAB и сvx, получаем

$$K_w = \begin{bmatrix} -3.0612 & -5.0195 & 7.9863 & -12.7069 & 12.2869 & 20.2823 \\ -6.4128 & -0.9151 & -2.9433 & -7.3826 & 17.6422 & -0.5952 \end{bmatrix}$$

### Синтез матрицы коррекции наблюдателя

Синтезируем необходимый для выполнения целевого условия наблюдатель. Составим расширенную систему

$$\begin{cases} \dot{x}_f = \bar{A}x_f + \bar{B}u, \\ y_f = y - g = \bar{C}x_f + Du, \end{cases} \quad x_f = \begin{bmatrix} w \\ x \end{bmatrix},$$
$$\bar{A} = \begin{bmatrix} \Gamma_w & 0_{6\times 2} \\ B_f Y_1 & A \end{bmatrix}, \ \bar{B} = \begin{bmatrix} 0_{6\times 2} \\ B \end{bmatrix}, \ \bar{C} = \begin{bmatrix} D_f Y_2 - Y_g & C \end{bmatrix};$$

Тогда наблюдатель будет иметь вид

$$\begin{cases} \dot{\hat{x}}_f = \bar{A}\hat{x}_f + \left(\bar{B} + \bar{L}D\right)u + \bar{L}\left(\bar{C}\hat{x}_f - y_f\right), \\ \hat{y}_f = \bar{C}\hat{x}_f + Du, \end{cases} \hat{x}_f = \begin{bmatrix} \hat{w} \\ \hat{x} \end{bmatrix},$$

Для нахождения  $\bar{L}$  воспользуемся матричным уравнением типа Риккати

$$\bar{A}P + P\bar{A}^T + Q - \nu P\bar{C}^T R^{-1}\bar{C}P = 0, \ \bar{L} = -P\bar{C}^T R^{-1};$$

при  $\nu = 1, Q = I_{8\times 8}, R = I_{2\times 2}$ . Получаем

$$\bar{L} = \begin{bmatrix} -1.3123 & -0.3266 & 0.4381 & 0.3777 & -0.4550 & 1.2212 & -0.3758 & -6.2985 \\ -0.3869 & -0.1466 & -0.5637 & -1.1609 & -0.5493 & -0.0019 & -3.2880 & 8.3707 \end{bmatrix}^T$$

### Компьютерное моделирование

Выполним компьютерное моделирование замкнутой системы с нулевыми начальными условиями наблюдателей. Результаты расположены на рис. 8–29



Рис. 8: График управления u(t)



Рис. 9: График возмущений  $f_1(t)$ 



Рис. 10: График возмущений  $f_2(t)$ 



Рис. 11: График возмущений g(t)



Рис. 12: График  $(x_1(t), \hat{x}_1(t))$ 





Рис. 14: График  $(x_2(t), \hat{x}_2(t))$ 





Рис. 16: График  $(w_1(t), \hat{w}_1(t))$ 





Рис. 18: График  $(w_2(t), \hat{w}_2(t))$ 





Рис. 20: График  $(w_3(t), \hat{w}_3(t))$ 





Рис. 22: График  $(w_4(t), \hat{w}_4(t))$ 



Рис. 23: График ошибки  $e_{w_4} = w_4(t) - \hat{w}_4(t)$ 



Рис. 24: График  $(w_5(t), \hat{w}_5(t))$ 





Рис. 26: График  $(w_6(t), \hat{w}_6(t))$ 





Рис. 28: График фактического выхода y(t)



Рис. 29: График виртуального выхода z(t)

Все оценки сошлись к истинным траекториям, все ошибки стремятся к нулю, целевое условие достигается – виртуальный выход стремится к нулю.

### Общий вывод по работе

В ходе выполнения работы были исследованы многоканальные системы, определены их передаточные функции. Были рассмотрены временные и частотные характеристики системы, приведены их графические представления. Был синтезирован следящий регулятор при наличии внешних возмущений. Моделирование системы подтвердило корректность расчетов и рассуждений.

### Приложение А

```
% plant parameters
A = [0 \ 1; -1 \ 2];
B = [1 \ 2; \ -3 \ 3];
C = [2 1; 3 -2];
D = [0 \ 0; \ 0 \ 0];
% A eig
A_{eig} = eig(A)
% W(s)
sys = ss(A, B, C, D);
W_s = tf(sys)
% zeros
zeros = zero(sys)
% poles
poles = pole(sys)
% Jordan matrix
[P, J] = jordan(A)
B_J = inv(P) * B
```

```
C_J = C * P
% out
U = [B A*B];
U_{out} = [C*UD]
rank(U_out)
% time
t = 0:0.01:5;
% w(t)
w1 = -exp(t) - 12*t.*exp(t);
w2 = 7*exp(t) + 3*t.*exp(t);
w3 = 9*exp(t) - 4*t.*exp(t);
w4 = t.*exp(t);
% h(t)
h1 = -12*t.*exp(t) + 11*exp(t) - 11;
h2 = 3*t.*exp(t) + 4*exp(t) - 4;
h3 = -4*t.*exp(t) + 13*exp(t) - 13;
h4 = t.*exp(t) - exp(t) + 1;
% w(t) renders
figure;
subplot (2,2,1)
plot(t, w1, 'b', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter','latex', 'FontSize', 12);
ylabel('$w_1(t)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Weight Function $w_1(t)$', 'Interpreter', 'latex', 'FontSize',
    14);
subplot(2,2,2)
plot(t, w2, 'g', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter','latex', 'FontSize', 12);
ylabel('$w_2(t)$', 'Interpreter','latex', 'FontSize', 12);
title('Weight Function $w_2(t)$', 'Interpreter', 'latex', 'FontSize',
    14);
subplot (2,2,3)
plot(t, w3, 'r', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter', 'latex', 'FontSize', 12);
ylabel('$w_3(t)$', 'Interpreter','latex', 'FontSize', 12);
title('Weight Function $w_3(t)$', 'Interpreter', 'latex', 'FontSize',
    14);
subplot (2,2,4)
plot(t, w4, 'm', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter','latex', 'FontSize', 12);
ylabel('$w_4(t)$', 'Interpreter','latex', 'FontSize', 12);
title('Weight Function $w_4(t)$', 'Interpreter', 'latex', 'FontSize',
    14);
% h(t) renders
figure;
subplot(2,2,1)
plot(t, h1, 'b', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter','latex', 'FontSize', 12);
ylabel('$h_1(t)$', 'Interpreter', 'latex', 'FontSize', 12);
```

```
title('Step Response $h_1(t)$', 'Interpreter', 'latex', 'FontSize',
       14);
subplot (2,2,2)
plot(t, h2, 'g', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter', 'latex', 'FontSize', 12);
ylabel('$h_2(t)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Step Response $h_2(t)$', 'Interpreter', 'latex', 'FontSize',
       14);
subplot (2,2,3)
plot(t, h3, 'r', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter', 'latex', 'FontSize', 12);
ylabel('$h_3(t)$', 'Interpreter','latex', 'FontSize', 12);
title('Step Response $h_3(t)$', 'Interpreter','latex', 'FontSize',
       14);
subplot(2,2,4)
plot(t, h4, 'm', 'LineWidth', 1.5); grid on;
xlabel('Time (s)', 'Interpreter', 'latex', 'FontSize', 12);
ylabel('$h_4(t)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Step Response $h_4(t)$', 'Interpreter', 'latex', 'FontSize',
       14);
% freq
omega = logspace(-2, 2, 1000);
A1 = sqrt(omega.^6 + 123*omega.^4 + 243*omega.^2 + 121) ./ (omega.^2)
         + 1).^2;
A2 = sqrt(49*omega.^6 + 114*omega.^4 + 81*omega.^2 + 16) ./ (omega.^6 + 114*omega.^6 + 114*ome
       .^2 + 1).^2;
A3 = sqrt(81*omega.^6 + 331*omega.^4 + 419*omega.^2 + 169) ./ (omega
      .^2 + 1).^2;
A4 = 1 ./ (omega.^2 + 1);
% A(w) renders
figure;
subplot (2,2,1)
semilogx(omega, A1, 'b', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
       FontSize', 12);
ylabel('$A_1(\omega)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Amplitude Response $A_1(\omega)$', 'Interpreter','latex', '
       FontSize', 14);
subplot(2,2,2)
semilogx(omega, A2, 'g', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
       FontSize', 12);
ylabel('$A_2(\omega)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Amplitude Response $A_2(\omega)$', 'Interpreter', 'latex', '
       FontSize', 14);
subplot(2,2,3)
semilogx(omega, A3, 'r', 'LineWidth', 1.5); grid on;
```

```
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$A_3(\omega)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Amplitude Response $A_3(\omega)$', 'Interpreter', 'latex', '
   FontSize', 14);
subplot (2,2,4)
semilogx(omega, A4, 'm', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$A_4(\omega)$', 'Interpreter', 'latex', 'FontSize', 12);
title('Amplitude Response $A_4(\omega)$', 'Interpreter', 'latex', '
   FontSize', 14);
sgtitle ('Amplitude - Frequency Characteristics', 'Interpreter', 'latex'
   , 'FontSize', 16);
% L(w)
L1 = 10 * log10 (omega.^6 + 123*omega.^4 + 243*omega.^2 + 121) - 40 *
    log10 (omega.^2 + 1);
L2 = 10 * log10(49*omega.^6 + 114*omega.^4 + 81*omega.^2 + 16) - 40
   * log10(omega.^2 + 1);
L3 = 10 * log10(81*omega.^6 + 331*omega.^4 + 419*omega.^2 + 169) -
   40 * log10 (omega.^2 + 1);
L4 = -20 * log10(omega.^2 + 1);
% L(w) renders
figure;
subplot (2,2,1)
semilogx(omega, L1, 'b', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$L_1(\omega)$ (dB)', 'Interpreter', 'latex', 'FontSize', 12);
title('Logarithmic Amplitude Response $L_1(\omega)$', 'Interpreter',
   'latex', 'FontSize', 14);
subplot (2,2,2)
semilogx(omega, L2, 'g', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$L_2(\omega)$ (dB)', 'Interpreter', 'latex', 'FontSize', 12);
title('Logarithmic Amplitude Response $L_2(\omega)$', 'Interpreter',
   'latex', 'FontSize', 14);
subplot(2,2,3)
semilogx(omega, L3, 'r', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$L_3(\omega)$ (dB)', 'Interpreter', 'latex', 'FontSize', 12);
title('Logarithmic Amplitude Response $L_3(\omega)$', 'Interpreter',
   'latex', 'FontSize', 14);
subplot (2,2,4)
semilogx(omega, L4, 'm', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$L_4(\omega)$ (dB)', 'Interpreter', 'latex', 'FontSize', 12);
```

```
title('Logarithmic Amplitude Response $L_4(\omega)$', 'Interpreter',
   'latex', 'FontSize', 14);
sgtitle('Logarithmic Amplitude-Frequency Characteristics', '
   Interpreter', 'latex', 'FontSize', 16);
% phi(w)
phi1 = atan2(omega.^3 - 23*omega, 13*omega.^2 - 11);
phi2 = atan2(-7*omega.^3 + 15*omega, 18*omega.^2 - 4);
phi3 = atan2(-9*omega.^3 + 35*omega, 31*omega.^2 - 13);
phi4 = atan2(2*omega, -omega.^2 + 1);
% rad to deg
phi1 = rad2deg(phi1);
phi2 = rad2deg(phi2);
phi3 = rad2deg(phi3);
phi4 = rad2deg(phi4);
% phi(w)
figure;
subplot (2,2,1)
plot(omega, phi1, 'b', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
vlabel('$\varphi_1(\omega) (^\circ)$', 'Interpreter', 'latex', '
   FontSize', 12);
title('Phase-Frequency Characteristic $\varphi_1(\omega)$', '
   Interpreter', 'latex', 'FontSize', 14);
subplot (2,2,2)
plot(omega, phi2, 'g', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_2(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Phase-Frequency Characteristic $\varphi_2(\omega)$', '
   Interpreter', 'latex', 'FontSize', 14);
subplot (2,2,3)
plot(omega, phi3, 'r', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_3(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Phase-Frequency Characteristic $\varphi_3(\omega)$', '
   Interpreter', 'latex', 'FontSize', 14);
subplot (2,2,4)
plot(omega, phi4, 'm', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_4(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Phase-Frequency Characteristic $\varphi_4(\omega)$', '
   Interpreter','latex', 'FontSize', 14);
```

```
sgtitle('Phase-Frequency Characteristics', 'Interpreter', 'latex', '
   FontSize', 16);
% log phi(w)
figure;
subplot (2,2,1)
semilogx(omega, phi1, 'b', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_1(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Logarithmic Phase Characteristic $\varphi_1(\omega)$', '
   Interpreter', 'latex', 'FontSize', 14);
subplot(2,2,2)
semilogx(omega, phi2, 'g', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_2(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Logarithmic Phase Characteristic $\varphi_2(\omega)$', '
   Interpreter','latex', 'FontSize', 14);
subplot(2,2,3)
semilogx(omega, phi3, 'r', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_3(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Logarithmic Phase Characteristic $\varphi_3(\omega)$', '
   Interpreter', 'latex', 'FontSize', 14);
subplot (2,2,4)
semilogx(omega, phi4, 'm', 'LineWidth', 1.5); grid on;
xlabel('Frequency $\omega$ (rad/s)', 'Interpreter', 'latex', '
   FontSize', 12);
ylabel('$\varphi_4(\omega) (^\circ)$', 'Interpreter','latex', '
   FontSize', 12);
title('Logarithmic Phase Characteristic $\varphi_4(\omega)$', '
   Interpreter', 'latex', 'FontSize', 14);
sgtitle('Logarithmic Phase-Frequency Characteristics', 'Interpreter'
   ,'latex', 'FontSize', 16);
```

Листинг 1: Программа для задания 1

### Приложение Б

```
% plant parameters
A = [0 1; -1 2];
B = [1 2; -3 3];
C = [2 1; 3 -2];
D = [-2 0; 0 1];

Bf = [1 2; -1 3];
```

```
Df = [1 0; 0 -1];
Cz = [4 \ 2; -1 \ 1];
Dz = [2 0; 0 1];
G = [-2.5 1;
-1 -2.5];
Y = [1 \ 0; \ 0 \ 1];
Gw = [0 \ 2 \ 0 \ 0 \ 0 \ 0;
  -2 0 0 0 0 0;
   0 0 0 3 0 0;
    0 0 -3 0 0 0;
    0 0 0 0 0 4;
    0 0 0 0 -4 0];
Y1 = [0 \ 0 \ 0 \ 9 \ 0 \ 0;
   3 0 0 0 0 0];
Y2 = [6 \ 0 \ 0 \ 0 \ 0 \ 0;
   0 0 0 8 0 0];
Yg = [0 \ 0 \ 0 \ 0 \ 3 \ 0;
   0 0 0 0 0 6];
% out y
U = [B A*B];
U_out_y = [C*U D]
rank(U_out_y)
% out z
U_out_z = [cz*U Dz]
rank(U_out_z)
% Jordan matrix
[P, J] = jordan(A)
B_J = inv(P) * B
C_J_y = C * P
C_J_z = Cz * P
% W_y(s)
sys_y = ss(A, B, C, D);
W_y_s = tf(sys_y)
% W_z(s)
sys_z = ss(A, B, Cz, Dz);
W_z_s = tf(sys_z)
% zeros
zeros_y = zero(sys_y)
zeros_z = zero(sys_z)
% check O(Y,G)
O_Y_G = [Y; Y*G]
rank_0_Y_G=rank(0_Y_G)
% K regulator synthesis
cvx_begin sdp
variable P(2,2)
A * P - P * G == B * Y;
cvx_end
```

```
K = -Y * inv(P)
ApBK = A + B * K;
eig_ApBK=eig(ApBK)
\% check rank for K_w
CzpDzK = Cz + Dz * K;
eig_G=eig(G);
mat1 = [ApBK-eye(2)*eig_G(1) B; CzpDzK Dz]
mat2 = [ApBK-eye(2)*eig_G(2) B; CzpDzK Dz]
check_mat1=rank(mat1)
check_mat2=rank(mat2)
% solving Frankis - Davison: Kw
cvx_begin sdp
variable Pw(2,6)
variable Kw(2,6)
Pw*Gw-(A+B*K)*Pw-Bf*Y1 == B*Kw;
(Cz+Dz*K)*Pw+Dz*Kw == Yg;
cvx_end
Kw = Kw
% observer
null = [0 0; 0 0; 0 0; 0 0; 0 0; 0 0];
barA=[Gw null; Bf*Y1 A]
barB=[null; B]
barC=[Df*Y2-Yg C]
Q1 = eye(8);
R1 = eye(2);
[Pl,barL,e]=icare(barA',barC',Ql,Rl);
barL=-Pl*barC'*Rl^-1
el=eig(barA+barL*barC)
barK=[Kw K]
```

Листинг 2: Программа для задания 2