

Using natural language processing to develop a pipeline to analyse media representation of people with disabilities in Web-based news articles

Collection and filtering of Web-based news articles, comparison of open-source sentiment models, and applications of the technology

Bagus Maulana¹

MEng Computer Science

Catherine Holloway, Nicholas Firth

Submission date: 30^{th} April 2018

¹**Disclaimer:** This report is submitted as part requirement for the MEng Degree in Computer Science at UCL. It is substantially the result of my own work except where explicitly indicated in the text. *The report may be freely copied and distributed provided the source is explicitly acknowledged*

Abstract

Report Title: Using natural language processing to develop a pipeline to analyse media representation of people with disabilities in Web-based news articles: Collection and filtering of Web-based news articles, comparison of open-source sentiment models, and applications of the technology

Authors Name: Bagus Maulana

Supervisors Name: Catherine Holloway, Nicholas Firth

Date and Year of Submission: 30th April 2018

Analyses of news media, and representation of groups such as people with disabilities, is a popular research theme in various fields. A common approach is to manually analyse a sample of a few hundred news articles and generalise, but computational natural language processing (NLP) can be used to process articles much faster and vastly increase the sample size, to uncover in-depth information such as trends over time and between different publishers. This project explores the feasibility of developing a computational pipeline that performs data collection (from online news sources), filtering, parsing, sentiment scoring, and statistical analysis to reveal these trends. Results indicate that for some metrics (such as moving average of sentiment score) and on certain keyword categories, minor trends over time and between different publishers are apparent, although inconsistent; but there are still room for improvement, such as by training a domain-specific sentiment scorer with labelled data to improve score accuracy (consistency).

Contents

1	Intr	roduction	2
2	Con	ntext	5
	2.1	Background	5
	2.2	Research Methodology and Sources	7
	2.3	Technical Context	8
3	Req	quirements and Analysis	14
	3.1	Problem Statement	14
	3.2	Requirements	15
		3.2.1 Data Collection	15
		3.2.2 Dataset Filtering	16
		3.2.3 Rule-based Sentence Matching	16
		3.2.4 Sentiment Scoring	16
		3.2.4.1 Comparison of open-source implementations	17
		3.2.4.2 Final implementation	17
		3.2.5 Statistical Analysis and Visualisation	17
	3.3	Analysis of Requirements	18
4	Des	sign and Implementation	19
	4.1	Overall Design	19
	4.2	Dataset Description	20
		4.2.1 Sources	20
		4.2.2 Topics, keywords, key phrases, and query terms	20
		4.2.3 Dataset Size	22
		4.2.4 Limitations	23
	4.3	Components	24
		4.3.1 Data Collection	24
		4.3.2 Dataset Filtering	24
		4.3.3 Rule-based Sentence Matching	24
		4.3.4 Sentiment Scoring	24
		4.3.4.1 Comparison of open-source implementations	24
		4.3.4.2 Final implementation	24
		4.3.5 Statistical Analysis and Visualisation	24

5 Re	sults Evaluation	25
5.1	Focused topic	25
5.2	Comparison of sentiment scorers	26
5.3	Sentiment score: plots and trends	26
5.4	Sentiment score: statistical comparison of different sources	26
5.5	Key terms: plots and trends	26
6 Cc	nclusions	27
6.1	Achievements	27
6.2	Evaluation	27
6.3	Future Work	27
Biblio	ography	28
	her appendices, e.g., code listing	33

Introduction

Natural language processing (NLP) encompasses a wide range of computational techniques for machine understanding of human (natural) language that are often used alongside each other. The review article [1] defines natural language processing as 'a theory-motivated range of computational techniques for the automatic analysis and representation of human language.' The techniques that fall under the umbrella natural language processing include word tokenisation, probabilistic language modelling, translation, part-of-speech parsing, sentiment analysis (or opinion mining), text classification/categorisation, and topic modelling, among other things. The computational models used in natural language processing range from simple rule-based models (e.g. splitting a sentence on whitespace to tokenise words) to statistical machine learning and deep learning models. Natural language processing is now applied for various everyday technologies, for example, information retrieval for search engines such as Google and Bing, and categorisation and topic modelling for recommendation engines used to suggest 'similar' articles.

The obvious advantage of natural language processing is that machines can process vast bodies of human-created literature (books, articles, posts, e-mails, messages, etc.) much faster than humans can, processing thousands or millions of documents per second. This allows for high-level quantitative analyses of all documents in a vast corpora for a given domain to be feasible, which can uncover information previously inaccessible by only reading and generalising from a small sample of documents. For example, this level of quantitative analysis can uncover trends and patterns within a given domain (e.g. how does the popularity of the term 'mentally ill' increase or decrease year-on-year in English news media?).

Various other studies have attempted to utilise natural language processing to perform high-level analyses in the domain of news media. The research done in [2] assembled a vast corpus of regional newspapers in the United Kingdom spanning 150 years to detect long-term patterns of cultural change (e.g. increase of female representation in the news, or when trains overtook horses for transportation) by analysing n-gram trends and named entities. More specifically, in the domain of media representation of specified groups of people, studies such as [3] has attempted to use features based on natural language processing (such as n-grams and part-of-speech tags) to classify racist and sexist posts in social media, although there is still a research gap in this area (especially for news articles, and/or relating to specific groups, such as people with (specific) disabilities or mental illnesses).

Applying natural language processing to perform meta-analyses over large text corpora has various interesting potential applications in improving our understanding of the human world - for example, to detect macroscopic cultural shifts as in [2]. In particular, the representation of specific groups, such as people with disabilities, has been a popular research theme for psychologists, sociologists, and others. For example, the paper [4] analysed a sample of 600 print articles relating to mental illnesses in New Zealand and categorised them to positive and negative depictions, and the predominant themes thereof (e.g. criminality (negative), educational accomplishments (positive)). Applying natural language processing to this area of research would allow the possibility of discovering higher-level trends, by computationally analysing a much larger sample of articles and identify trends by varying independent variables such as year of publication and publisher. In this research, a sample of 305,103 news articles (51,177 after filtering off-topic articles) from British online news sources are used. However, challenges remain as syntax-based statistical natural language processing approaches tend to be more limited in scope and is prone to false positives and negatives, and mitigating these factors is currently an open area of research.

The aim of this project is to utilise these computational natural language processing techniques in order to perform a high-level meta-analysis of literature available in the public news media found online. More specifically, to gather online news articles relating to people with disabilities in British media, and perform natural language processing analyses at scale to identify trends such as term popularity (e.g. 'suffer from ...' vs 'with ...') and variation in positive/negative sentiment.

The goal of this project is to develop a computational pipeline capable of performing this analysis of online media end-to-end. Given a list of topics consisting of keywords (or key phrases) and query terms, this pipeline covers the task of web crawling and scraping to collect a dataset of news articles; filtering relevant articles for the given keywords; matching relevant sentences referring to a keyword; performing sentiment analysis (using open-source libraries) on these sentences; and producing relevant visualisations to show trends as evidence of applications of the technology. This pipeline will be available open source on GitHub (https://github.com/bmaulana/nlp-media)

This project was carried out in a step-by-step approach. The pipeline was developed as individual components: a web scraper and crawler for data collection given a list of queries; a filter to remove irrelevant articles given a list of key terms; a parser to pattern-match relevant sentences given key terms; a sentiment scorer (and results analysis/comparison of different open-source scorers on this domain); and a script to perform statistical analysis on the results and produce relevant plots. A main pipeline script connects these components together by calling them in order for each topic and Web news source (Daily Mail, Daily Express, Guardian). Each component's output is piped to the next component's input by saving its output to a JSON file and having the next component read the previous component's output file, which ensures computation can be 'resumed' without re-running the previous component.

The body of this report is subdivided into four chapters:

- Chapter 2 covers related work on the domain of news media analysis (especially in the context of people with disabilities) and natural language processing, and background information regarding the relevant tools and techniques researched for this project.
- Chapter 3 defines a structured list of requirements, goals, and expectations for this project.
- Chapter 4 documents the design and implementation of the computational pipeline and its components that were used to carry out the data analytics experiment and achieve the stated

goals.

• Chapter 5 discusses the results of the experiment in diagrams, graphs, and tables; and their implications.

Finally, the conclusion (Chapter 6) evaluates the project, summarises key achievements and take-aways, provides recommendation on how this work could be expanded upon, and sets guidelines for further work in this field. Furthermore, the bibliography lists sources that were used as references in this project, and the Appendix section contains the raw results of the experiment (i.e graphs and other data not in Chapter 5).

Context

2.1 Background

Analyses of news media in its various forms (print, online, etc.) has been a consistent research theme. The news media provides a quantifiable depiction of the prevailing society's popular conceptions or views regarding a theme or topic. This is especially applicable with regards to conceptions on particular groups of people, in which the language used in the media reflect on popular views, and has been shown to differ (with statistical significance) in different societies. For example, it was shown that the Canadian press was more likely to name individuals with disability and use appropriate labelling than the Israeli press in 1998 [5]. Furthermore, there is evidence to suggest that news media sources contribute to shape and reinforce beliefs among the society, such as misconceptions and stigma [6].

Public awareness of disability is also a popular research theme. While not related to news media, a review in 2011 [7] found 75 articles and 68 studies that passed a selective inclusion criteria with regards to intellectual disabilities, published in English between 1990 and mid-2011. The topics brought up include the public's knowledge, attitudes, and beliefs about intellectual disability; and varying for socio-demographic characteristics, cross-cultural comparisons, and the effects of interventions.

Analyses of news or other media are primarily carried out by taking a small, statistically representative sample of documents (news articles) from a text corpora (for example, all news articles published in England for a certain period) and analysing them manually. There has also been various such studies within the domain of disability awareness in the media:

- In a 2002 study [4], researchers analysed a sample of 600 print articles relating to mental health or mental illness that was collected by a commercial clipping bureau. The articles were then categorised into positive and negative depictions, then further into sub-samples such as danger to others, criminality, vulnerability, etc. The study found that at the time, in New Zealand, negative themes predominate about 3 to 1 (with 27% being positive). However, given the paper's scope, this conclusion cannot be generalised to learn trends, or how the conclusion varies given certain variables (e.g. time, location).
- A study conducted in 1998 [5] were replicated in 2008 [8] to assess change in representations of disability and persons with disability in the Canadian news media. This study sampled

196 news articles in 1998 and 166 news articles in 2008. It found an increase in the usage of 'person-first' terminology (e.g. person with disabilities) and a decrease in 'disabling language' (e.g. disabled person). This is an attempt to identify trends with regards to media representation of disability, however only provides two data points (1998 and 2008) with relatively small sample size.

• A study in 2005 [9] analysed 1,515 articles relating to autism in Australian news media. All articles were read by two research assistants to ensure they are on-topic and then coded as either 'negative' or 'positive' in overall focus, and then coded into themes (e.g. funding, education, etc.).

By applying natural language processing and computational techniques in analysing text articles, it is possible to develop a computational pipeline that could analyse and extract quantitative information from these articles at a much faster rate, enabling the analyses of a much larger scale of documents within a realistic time frame. While a sample of few hundred or thousand documents is usually enough to provide statistically significant conclusions, by providing an analysis of the full corpora (or a much larger sample), it is possible to uncover additional information from the data set. For example, higher-level trends (such as how the conclusion varies by year, location, publisher, etc.) can be discovered from a quantitative analysis of the larger dataset, by 'splitting' the result set into smaller subsets based on independent variables (e.g. year, location, publisher, etc.) and performing statistical comparisons of dependent variables (e.g. term frequency) between each subset.

Additionally, data collection is much more feasible in scale, cost and time using computational techniques. An automated script can be used to collect news articles published on the Internet at a rate of roughly one article per second, or thousands of articles per hour (varies on Web source, hardware, Internet connection, etc.), a vast improvement over contracting a commercial clipping bureau to provide 600 articles as in [4].

Several studies has taken advantage of this approach to carry a more complete analysis of textual corpora. For example, [2] assembled a corpus of 35.9 million news articles from 120 publishers in the United Kingdom between 1800 and 1950, representing 14% of all news articles published in the United Kingdom over that period. With this approach, the researchers were able to extract quantitative time-series information with regards to cultural trends as present in 35.9 million British news articles over the 150-year period. This amount of large time-series information (represented as n-grams and named entities) allowed them to discover macroscopic cultural trends. By analysing and comparing word (n-gram) trends across various topics, the researchers were able to identify trends that reflect cultural shifts e.g. 'train' increasing in popularity and overtaking 'horse' around 1900, or 'labour party' overtaking 'conservative party' and 'liberal party' in news coverage from the 1920s onward. Additionally, they also used entity recognition to extract named entities from articles and considered trends based on known information about these named entities, such as the proportion of female vs male entities, categories of entities (e.g. politicians, writers, etc.), and age of these entities. They also considered the geographical location of the publication to see how word usage trends (e.g. 'british' vs 'english') differ based on location.

[2]'s study was based on prior discussions and studies on the potential of exploiting large text corpora to detect macroscopic, long-term cultural changes. [10] was one of the first studies to suggest this approach. In this seminal study, a corpus of 5 million digitised English-language books

published over 200 years (or about 4% of all books ever published), provided by Google's effort to digitise books, were analysed to extract how often a given n-gram was used over time. (This data is available on http://www.culturomics.org/) This information is then used to analyse trends in language: the size of the English lexicon, regularisation of English verbs (from 'irregular' suffixes to '-ed'), or how quickly years (e.g. '1950') decline in use. Influenced by [10], several other studies has been published adopting a similar approach:

- an analysis of 1.7 million Victorian-era books [11]
- an analysis of 17,094 US Billboard Hot 100 songs between 1960 and 2010 [12]
- an analysis of a 3.9 million news article sample from the Summary of World Broadcasts (SWB) collection [13]
- an analysis of 2.5 million English-language million news articles from 498 online news outlets from 99 countries [14]

However, there were also criticism of this approach, such that it ignored semantics and context, thus for example 'thirteen hundred words of gibberish and the Declaration of Independence are digitally equivalent' [15], issues with OCR quality and duplicate editions [15], or that the selection of digitised books are biased [16].

There has been some progress in applying natural language processing techniques more specifically in the domain of how (specific) groups of people are represented in the media:

- A study has attempted to extract features (such as n-grams and part-of-speech tags) using natural language processing to classify racist and sexist posts in social media, providing annotations to 6,909 tweets [3].
- Another study explored potential linguistic markers of schizophrenia in social media from a
 dataset of 174 users with self-reported schizophrenia and up to 3,200 tweets per user, and
 control users in a 50:50 split. They used a support vector machine (SVM) approach over
 features based on lexicon-based approaches (i.e. a list of mental health related keywords),
 latent dirichlet allocation (LDA), Brown clustering, character n-grams, and perplexity [17].

However, there is still a visible research gap in this area, for using computational natural language processing specifically for news articles and/or with regards to specific groups, such as people with disabilities (or a specific disability).

To date, advances in natural language processing has made this approach much more feasible, efficient, and effective, even given limited time and hardware constraints. Various free and open-source tools for computational natural language processing and statistical analysis has been developed by the research community, such as nltk [18] and StanfordNLP [19] for natural language processing, scikit-learn [20] for statistical analysis, and matplotlib [21] for plotting. Depending on the type of data analytics performed and the hardware used, these computational tools are able to analyse news articles at a rate of multiple documents per second. Section 2.3 contains a further listing and discussion of these tools, alongside the specific libraries and natural language processing techniques used for this research project.

2.2 Research Methodology and Sources

Background research were carried out by investigating papers from public sources (such as Google Scholar). Research articles were gathered from a list of important topics and query terms related

to the technique (natural language processing) and/or the domain (disability and news media): for example, 'natural language processing review', 'news media' AND 'disability', 'natural language processing' AND ('news media' OR 'cultural trends'), and 'natural language processing' AND 'disability'. Highly-cited research articles are prioritised as examples, as they are deemed to be more 'important' papers or studies within its topic. Additionally, the author looked for highly-cited 'key' papers and review articles within each specific topic, and then looked at its list of citations (older papers), and research articles that cites the review article (newer papers), to expand the list of relevant research papers and examples.

Technical research, on the other hand, were carried out as necessary. After the requirements and components for the pipeline has been decided, research were carried out to find relevant techniques, formulae, algorithms, tools, libraries/packages, and existing implementations that would be useful to implement each component (or sub-tasks within a component). The research were carried out in an iterative approach alongside software development, where initial planning and research would show an initial implementation plan, then implementation would uncover feasibility of these approaches and possible alternatives/refinements to be researched, then further research may reveal new options/refinements to be implemented, and so on. Research or work done on other components/tasks may also reveal possible improvements or alternatives for another task, which may require further research and implementation. Again, more popular tools and libraries are prioritised, although several approaches and implementations were considered for most components and sub-tasks, to be compared for suitability, runtime, results, etc.

The sources used for this literature review are:

- Google Scholar, often used to find research articles to act as 'entry points' towards a research
 topic, to find other studies similar to another research article within a specified topic, or to
 retrieve citation information of a given research paper, book, or popular Python package.
- GitHub topics, used to find repositories that are relevant to a specific task or component, find similar GitHub repositories, gather information about a given repository, and also as a benchmark for topic popularity and range of solutions in a given programming language. Several GitHub pages also curate a list of repositories within a specific topic [22]–[24].
- Python package repositories such as PyPi [25] and Anaconda Cloud [26], which list all available Python packages and shows general information regarding them, and also provides a search function; useful to find relevant packages for a component/task and gather information about a given Python package.
- Official web sites and documentation of Python packages, which list and define capabilities
 (functions and parameters) of the package, useful to explore the functionality of a given package and its capacity to solve a specific task, and to understand the technologies/approaches
 used by the package's implementation (e.g. how is a sentiment model implemented?). Often
 (especially with more popular packages), citation information regarding the package would
 also be available in its web site.

2.3 Technical Context

As mentioned earlier, computational natural language processing techniques are utilised to extract features from collected news articles (text documents) at scale. For this project, the requirements

for the computational pipeline can be subdivided to five main components: data collection, filtering, sentence matching, sentiment scoring, and statistical analysis and data visualisation. Among these components, natural language processing techniques are necessary for filtering, sentence matching, and sentiment scoring. On the other hand, collection is performed using established, general-purpose web-scraping tools. Similarly, statistical analysis and data visualisation is performed using general-purpose statistical tools and metrics. This section will cover the technical tools researched and used for all listed components regardless.

Natural language processing covers three main 'curves' or areas: syntax, semantics, and pragmatics (narratives, understanding). Syntax specifies the way symbols (words, terms, tokens, or n-grams) and groups of symbols are arranged and whether they are well-formed in an expression, whereas semantics specifies what these expressions mean, and pragmatics specifies contextual information [1]. Contemporary (or 'traditional') approaches to natural language processing mainly focus on syntactic analysis, due to the relative ease of extracting syntactic features of text such as term frequency, word co-occurrence, and part-of-speech tags, compared to extracting logical expressions and networks necessary for semantic analysis. However, syntactic analysis is much more limited as it often misses information such as the (semantic) context of a word (e.g. "one" in "there's no one there" (referring to a person) vs "we have only one car" (referring to a quantity)). This paper will focus on mainly syntactic techniques and features, as these are more relevant to this domain of high-level topic matching and sentiment analysis that is feasible with current technology at this scale.

Python was chosen as the main programming language used for this project. The primary reason for this choice is the wide availability and range of existing tools for natural language processing, sentiment analysis, statistical analysis, data visualisation, web scraping and parsing, etc. in Python. A study in 2016 showed that Python is the most popular language for machine learning and data science [27], which correlates to the amount of available tools developers have created for the language. A GitHub search for the topic 'nlp' as of 18 April 2018 reported 1,397 Python and 470 Jupyter (Python interactive 'notebook') repositories with the tag 'natural language processing', compared to the second most popular programming language being Java with only 251 repositories tagged 'nlp' [28]. Furthermore, Python is also an ideal language for quick experimentation due to relatively high-level and low verbosity of the code, such that it is relatively easier to make small changes on the fly. Additionally, the Anaconda distribution of Python [29] is used for its suitability to set up and manage Python environments and packages for data science projects.

For data collection, general-purpose tools for sending HTTP requests (to 'open' web addresses and store HTML web pages programmatically) and parsing HTML code (to parse article text and metadata from 'raw' HTML code) are sufficient. The Requests library [30] is a popular Python tool (with 400,000+ daily downloads) for sending HTTP/1.1 requests simply. A HTTP GET request will retrieve the HTML code (and other information) associated with a given URL from a web server, similar to opening the page on a web browser, stored as a Python object by Requests. Once the HTML code of a web page (given an article's URL) has been stored, the BeautifulSoup library [31] provides simple methods to navigate and search a parse tree (such as HTML code). Given that web pages from the same source/publisher tend to follow a similar structure, BeautifulSoup can be used to parse article text and relevant metadata (e.g. headline, date of publication, outgoing

links in a search page) by searching for specific tags and attributes within the HTML code.

In this project, filtering off-topic articles is done somewhat crudely via ranking term frequency independently for each document. Term frequency is a simple and commonly-used metric for natural language processing, with various existing tools that can compute this metric for thousands of text documents within seconds. To put simply, the term frequency of a term (i.e. a word or token) in a document is the number of times that the term occurs in the document. The popular scikit-learn library [20] provides a tool to measure term frequency of text documents, handling both tokenisation (converting a text document into a list of tokens (terms/words)) and counting word occurrence. It also provides the option to ignore stop words (i.e. common, meaningless words in English, such as 'the' or 'a'), which can often skew the results due to its relative high frequency. Additionally, the nltk library [18] is used for stemming – to reduce all words in the document to its word stem (such that e.g. 'walk', 'walks', 'walked', and 'walking' are equivalent).

Term-frequency ranking is implemented by sorting all terms (words) in the document based on their term frequency. For filtering documents, a constant threshold value is used to determine whether documents are on-topic or not, where a document is on-topic if the keyword's rank is lower than the threshold value (i.e. the keyword is one of the most frequently used terms in the document), and is off-topic if the keyword's rank is higher than the threshold value (i.e. the keyword is rarely used in the document, relative to other terms). As multiple keywords per topic are used, all keywords in the document are first converted to a unique 'keyword token' before term frequency is measured (which will treat all instances of any keyword in the topic as a single term).

In literature related to natural language processing, various more sophisticated approaches has been proposed and used for the task of text classification and filtering off-topic articles. A conventional approach is by calculating term frequency – inverse document frequency (tf-idf) [32], [33], a metric that builds on term frequency by taking into account the relative importance of each word. Inverse document frequency (idf) is calculated by counting the number of documents in a corpus where a term appears – if a term appears more frequently (e.g. common words such as 'the'), it is deemed to be less important and assigned a lower score. However, this approach is unsuitable for this project, given the selective nature of the dataset (where only articles containing certain query terms are collected), thus the idf values of these query terms would be flawed (as they would appear in every document).

Another proposed approach is by using a supervised machine learning model to classify documents into pre-defined categories (the text classification problem). Various approaches were proposed to solve text classification, including Support Vector Matrices (SVM), Naïve Bayes (NB), and k-nearest neighbour (kNN) models [34]. However, this approach is infeasible for this project due to a lack of labelled data of articles and categories, and in this case the categories themselves are poorly defined and non-exclusive (multiple different topics may be discussed within one article). Topic models, which compute the proportion of abstract 'topics' in a document, has also been proposed. Latent dirichlet allocation (LDA) [35] represents documents as random mixtures over latent topics, where each topic is characterized by a distribution over words. However, as these topics are abstract and characterized generatively (i.e. each topic's distribution over words are generated by the model, rather than pre-defined), it is not very useful for the task of classifying whether a document matches pre-defined topics/keywords. Also, both of these approaches are significantly more computationally expensive than tf ranking or tf-idf.

Sentiment scoring of articles is sub-divided into two components: a component to find sentences relevant to a topic (given a list of key terms) in a text document (sentence matching), and another component that performs sentiment analysis on these sentences and transforms it into a real-valued score of each sentence. SpaCy [36] is a popular tool for general natural-language processing tasks, using pre-trained convolutional neural network models for tasks such as tagging, parsing, and entity recognition, and is benchmarked to be the fastest and among the most accurate syntactic parser, able to parse 13,965 words per second in 2015 [37]. Among the information SpaCy extracts from text are lemmas (root words) of terms (e.g. 'mentally' \rightarrow 'mental') and features a rule-based matching engine (retrieve a list of sequences of tokens within a document that matches a given pattern, e.g. tokens with a specified lemma), both which are useful for the task of finding sentences relevant to a topic in a document.

For sentiment scoring of sentences, a variety of open-source tools and pre-trained models dedicated to sentiment analysis were researched for the purpose of comparison. Sentiment analysis, or opinion mining, is defined as "the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions" from natural (human) language [38]. A GitHub search for the topic 'sentiment-analysis' as of 18 April 2018 reported 450 Python and 222 Jupyter repositories with the tag 'sentiment-analysis' [39]. Furthermore, a community-curated list of sentiment analysis methods and implementations exist [22], which served as a useful starting point to explore open-source sentiment analysis implementations.

The particular sentiment analysis implementations that have been explored in this paper are:

- VADER is a parsimonious rule-based model that scores the sentiment of a given sentence, based on the presence of 'sentiment lexicons' (a list of lexical features common to sentiment expression, such as 'good' and 'bad', including slang words, emoticons, and acronyms), and rules such as negations (e.g. 'not good') and increased sentiment intensity given emphasis such as punctuation, capitalisation, and degree modifiers (e.g. 'very') [40].
- vivekn's 'sentiment' repository implements a supervised machine learning approach to sentiment classification trained on an enhanced Naïve Bayes classifier, trained on a publicly available dataset of 25,000 highly-polar movie reviews from the Internet Movie Database (IMDb) using bigrams and trigrams as features [41].
- xiaohan2012's 'twitter-sent-dnn' repository trains a convolutional neural network model with dynamic k-max pooling (DCNN) for modelling (real-valued sentiment scores of) sentences. The sentence model properties considered are the word and n-gram order, and induced feature graph (generated by the DCNN). It was trained on a dataset of 1.6 million tweets with emoticon-based labels. [42]
- kevincobain2000's 'sentiment_classifier' repository trains a supervised machine learning model
 based on a Naïve Bayes and Maximum Entropy Classifier to transform a sentence to positive
 and negative (real-valued) sentiment scores. It considers Word Sense Disambiguation using
 wordnet and word occurrence statistics from nltk's movie review corpus, and uses bigrams
 as features. The training data is a mixture of nltk's movie review corpus, Twitter posts, and
 Amazon customer reviews data. [43]
- OpenAI's 'generating-reviews-discovering-sentiment' repository provides a pre-trained single-layer multiplicative LSTM recurrent neural network model with 4096 units (a relatively simple model optimised for training/convergence time) to generate (real-valued) sentiment

scores of input sentences. It was trained on a dataset of over 82 million Amazon product reviews from May 1996 to July 2014, substantially larger than previous work (and taking one month across four NVIDIA Pascal GPUs to train), and outperforms state-of-the-art models when tested on similar-domain corpora such as Rotten Tomatoes and IMDb reviews. Sentences are represented as a sequence of UTF-8 encoded bytes where for each byte, the model updates its hidden state and predicts a probability distribution over the next possible byte. [44]

- Stanford CoreNLP [19] provides a set of linguistic analysis tools, including sentiment analysis, given input text, while running in a local web server. Its sentiment analysis tool uses a recursive neural network model, representing text as parse trees, and trained on a Sentiment Treebank of fully-labelled parse trees for 215,154 unique phrases and 11,855 sentences from the Rotten Tomatoes movie review corpus; and classifies sentences into five sentiment classes, from 'very negative' to 'very positive' [45]. Although Stanford CoreNLP was written in Java, several packages exist that allow a Stanford CoreNLP local server to be started and queried programmatically in Python [46].
- TextBlob is a general-purpose natural language processing library similar to nltk, SpaCy, or CoreNLP. It provides two sentiment analysis models: PatternAnalyzer, a rule-based classifier based on part-of-speech pattern matching, and NaiveBayesAnalyzer, a Naïve Bayes classifier trained on a dataset of movie reviews. [47]

Several other repositories has also been explored, however deemed unsuitable for this project either due to requiring to be re-trained using labelled training data (which was unavailable for the domain of news articles), or the implementations are broken or infeasible.

For statistical analysis and data visualisation, the conventionally used libraries in Python are numpy [48], scipy [49], scikit-learn [20], and matplotlib [21]. Numpy provides a powerful and efficient n-dimensional array object (often used as requirement for other libraries), and functions to perform mathematical operations over real values, vectors (1-dimensional arrays), and matrices (2-dimensional arrays) such as scalar/vector/matrix addition, multiplication, extracting columns of a matrix to a vector, and boolean filtering [48]. Scipy is a library that extends numpy to provide additional domain-specific functions, providing tools such as sparse matrices and implementations of statistical equations such as estimating distributions [49]. Scikit-learn provides implementations of algorithms for data analysis, feature extraction, and machine learning, such as the CountVectoriser used to compute term frequencies [20]. Matplotlib is a 2D plotting library that produces visual graphs from lists/arrays [21]. It provides the capability to generate various types of plots, such as scatterplots, line plots, histograms, and box-and-whisker plots; modify the plot parameters (such as colours, labels, and bounds), create a grid of axes and plot multiple graphs in the same axes, generate a legend or colorbar, among other features.

The types of plots and statistical analysis metrics that are deemed relevant for this analysis are:

- Scatter plot, used to show the distribution of data within two variables (e.g. year published and sentiment score), and colour could be added to show a third variable (e.g. source/publisher of article). Available on Matplotlib.
- Histogram (and 2D histogram), used to show the distribution of articles relative to variables such as publisher, year of publication, and sentiment score ranges. Available on Matplotlib.

- Box-and-whiskers [50] and violin plot [51], also used to show and compare the distribution of dependent variables (e.g. sentiment score) within different subsets of the data separated by independent variables (e.g. publisher). Available on Matplotlib.
- Line graph, used to show trends in a dependent variable (e.g. sentiment score) over an independent variable (e.g. year of publication). Available on Matplotlib.
- Mean and standard deviation, to quantify the distribution of articles within different subsets of the data separated by independent variables (e.g. publisher and year of publication) and provide a quantitative measure to compare different subsets. Available on SciPy.
- Mann-Whitney U Test [52], a statistical metric that measures whether it is true that given a randomly-selected value from a distribution, and another randomly-selected value from another distribution, the first value is equally likely to be less than or greater than the second value (i.e. there are no statistically significant difference between the two distributions), to show if the difference between two subsets are statistically significant. Available on SciPy.

Requirements and Analysis

3.1 Problem Statement

The primary aim of this project is to utilise available natural language processing techniques in order to perform a high-level meta-analysis of online news articles relating to people with disabilities available in the online British news media, with the goal of revealing trends by varying for independent variables such as source and year published. To achieve this aim, the solution would need to collect and scrape online news articles from the Internet, filter only relevant articles, use available natural language processing tools to extract information from these articles, perform statistical analyses, and show visualisations of the resulting data to show trends. Of particular interest (as a dependent variable) is a sentiment (or opinion, polarity) index of articles (i.e. how positively does an article view people with disabilities?), and how it varies given independent variables such as source and year published. Thus, the general solution defined by this aim would involve the completion of several sub-problems, primarily data collection, filtering, parsing, sentiment scoring, and statistical analysis and visualisation.

The goal of this project is to develop a computational pipeline that implements the general solution. Before the project could be started, the topics relevant to this project has to be defined. Thus, a list of topics relating to the domain of people with disabilities would need to be compiled, each topic consisting of a list of keywords (or key phrases) and query terms related to a specific disability (or disabilities in general). Given this list of topics, this pipeline has to implement these following tasks:

- Web crawling and scraping web pages, using public APIs where possible, to collect a dataset of news articles, given the list of query terms for each topic.
- Filtering relevant articles from the dataset, given the list of keywords for each topic.
- Extracting relevant sentences that refers to a keyword, from the dataset of filtered articles
- Performing sentiment analysis (using open-source libraries and pre-trained models) on the dataset of relevant sentences
- Producing relevant statistical analyses and data visualisation to show trends over independent variables such as source and year published.

As the primary advantage of computational natural language processing is in its speed relative to human reading, the solution must be able to perform these computations quickly and at scale. The total number of documents (online news articles) available (given Daily Mail, Daily Express, and Guardian as sources) is expected to number in the thousands to tens of thousands of documents per topic, or hundreds of thousands of documents in total across all topics. Given this scale, the solution must be able to compute the full pipeline within a feasible timeframe (i.e. not more than a few days), given available general-purpose hardware (Intel i7-6700HQ CPU @ 2.60GHz, NVIDIA GeForce GTX 1060 GPU) to show that the solution is feasible without specialised hardware.

3.2 Requirements

The solutions follows a component-based design, where each sub-problem must be implemented by a component that focuses only on the sub-problem. These components must be linked together via a 'pipeline' script that executes each component in order, and iterates through the list of topics and sources. This is ideal such that changes could be made to a component without affecting (or needing to re-write) code in other components. The list of required components are as follows: data collection, dataset filtering, rule-based sentence matching, sentiment scoring, statistical analysis and visualisation.

3.2.1 Data Collection

The data collection component must be able to find a list of articles related to each topic (a list of query terms) for each supported source (Daily Mail, Daily Express, and Guardian). For each article, the only information required at this stage is a working URL pointing to an online resource containing the article text and relevant metadata. Thus, the information that has to be provided by the component after this stage is a list of URLs pointing to relevant articles given a list of search queries.

Then, after the list of URLs pointing to Web-based news articles has been compiled, the component must be able to scrape these articles and extract the full article text and relevant metadata from each URL. Aside from the full article text, the relevant metadata that needs to be extracted are the article's headline, URL, date of publication, and publication source. The information is returned in the form of an array of JSON objects, with each JSON object containing information (text and metadata) about a single news article. This information must then be saved locally to a file where it will be read by the next component. The file and directory structure must be consistent given source and topic (such that the next component can find it programmatically).

As data collection is expected to consume the longest time (due to the necessity to submit a web request for each article) compared to other components, additional requirements regarding scalability are enforced. The data collection component must run in reasonable time (i.e. less than a day for each topic), given available hardware and a scale of up to tens of thousands of articles per topic. Additionally, it should be possible to resume progress on data collection, such that it is possible to re-run the program at a later date to add new articles without sending web requests for articles already in the collection. It would also help in cases where the program is interrupted, Internet connection is lost, the machine is shut down, etc. Thus, the component should be able to store already-parsed articles to an external file, and read from the external file upon starting to gather a list of already-parsed URLs, and avoid re-parsing existing URLs.

3.2.2 Dataset Filtering

The next component handles dataset filtering. Initially, this component must be able to load the dataset of parsed articles from the file saved by the data collection component. Each file contains a subset of all parsed articles for a specified topic and a specified source. For each article, it must decide whether it is relevant to the topic defined by the subset, given a list of keywords and key phrases unique to each topic. This decision should be based by the article's full text and headline, and should take all keywords and key phrases associated to the topic into account. It should also be able to show/print a sample of an arbitrary number of documents, which would be used to analyse and improve the accuracy of the filter.

Then, it must save all articles deemed on-topic (relevant to the topic) to a new output file, containing an array of JSON objects in the same format and information as in the data collection component's output file. Articles deemed off-topic (not relevant to the topic) must not be saved to the output file. The file and directory structure of the output file must be consistent given source and topic (such that the next component can find it programmatically).

3.2.3 Rule-based Sentence Matching

The next component parses the article text using open-source natural language processing tools to extract relevant information required by the sentiment scoring and statistical analysis components. Given an input file which is the output file of the dataset filtering component, this component should be able to load the article text and metadata of all saved articles. Then, information should be extracted by syntactically parsing each article's text and headline. The sentiment scoring component would require all sentences relating to a keyword or key phrase (containing a keyword, key phrase, or a equivalent term) to be extracted from each article. Additionally, the component should also extract other information as required by the sentiment scoring and statistical analysis components, including the total number of sentences and the number of relevant sentences in the document, and the term frequency of each keyword and key phrase.

After these information has been extracted from the article, it must save the information to a new output file, in the form of an array of JSON objects where each JSON object contains all the information about a single news article (with a key for each 'feature' e.g. relevant sentences). The metadata of each article (headline, date of publication, and source) should also be saved to the new output file, as it would be required as independent variables for the statistical analysis component to analyse trends in the dataset. The file and directory structure of the output file must be consistent given source and topic (such that the next component can find it programmatically).

3.2.4 Sentiment Scoring

The sentiment scoring component computes a real-valued score for each relevant sentence extracted by the previous component, which must correspond to the perceived 'sentiment' of the sentence towards a disability, disabilities, a person with disabilit(y/ies), or people with disabilit(y/ies), referred by the keyword or key phrase, with sufficient accuracy. Given an input file which is the output file of the dataset filtering component, this component should be able to load the relevant sentences and other data for all saved articles.

3.2.4.1 Comparison of open-source implementations

Then, two versions of the sentiment scorer component must be developed. The first version of the sentiment scorer component is used to perform a comparison between several open-source sentiment analysis tools and models for this sentiment scoring task.

This version of the component must select a sample of sentences from the dataset, with a sample size arbitrarily defined by the user. Also, it must implement all open-source sentiment analysis implementations ('sentiment scorer') that were listed in section 2.3. All sentences in the sample must be analysed and given a score by each sentiment scorer, and the component should also allow the user to manually label these sentences as positive, neutral, or negative. With this information, the component must be able to determine the accuracy of each sentiment scorer (i.e. show the proportion of true positives and true negatives, and show a confusion matrix), and store the total, per-sentence, and per-article runtime of each sentiment scorer.

This version of the component will not be used in the final pipeline, but only used as a tool to compare existing sentiment scorer implementations for the domain of sentences in news articles relating to disabilities or people with disabilities.

3.2.4.2 Final implementation

The second version of the sentiment scorer component is used in the final pipeline. This component must perform sentiment analysis for all relevant sentences in the dataset (instead of only a limited sample of sentences). Instead of computing multiple sentiment scores of every sentence using all implemented sentiment scorers, it must only compute one sentiment score using the best-performing sentiment scorer that runs in reasonable time, as shown by the first version of this component. It should also compute the average sentiment score for each article, given information of the sentiment scores for all relevant sentences in the article. Furthermore, the component must run in reasonable time (i.e. less than a day for each topic), given available hardware and a scale of up to tens of thousands of articles per topic.

After the sentiment scorer has scored all relevant sentences in the dataset, it must then save information about all articles, with score labels appended to each sentence, to a new output file. The JSON object format of each article in the output file should be equivalent to the input file's format (i.e. no information from previous components are lost), with the exception of an additional 'sentiment score' key-value pair within each sentence's JSON object. The file and directory structure of the output file must be consistent given source and topic (such that the next component can find it programmatically).

3.2.5 Statistical Analysis and Visualisation

The last component performs statistical analysis and visualisation. This component must read the sentiment scoring component's output files as input files, to load the dataset of news articles and features extracted by previous components about each article. At this point, information extracted about each article by previous components must include: source, publication date, and sentiment score, alongside other information. To combine information about articles from different sources (represented by different files), this component should be capable of reading input from

several different input files in a single run, and collate the information about every unique article in each file to a single dataset.

This component must be able to show trends, visualisations, statistical metrics that show how dependent variables (e.g. sentiment score) differ relative to the independent variables (e.g. publication year and source). The plot types and statistical metrics relevant to this analysis was defined in the end of section 2.3. At a minimum, this component must show how the sentiment score varies relative to publication year and source, and how subsets divided by publication year and source differ in distribution of sentiment scores, using the plots and metrics as defined in section 2.3. Additionally, the component should also show visualisations based on other information extracted by previous components as relevant, such as trends in the term frequency of each keyword and key phrase (as a dependent variable) over time (publication year, as an independent variable).

3.3 Analysis of Requirements

The implementation design (and additional requirements) of this project are highly influenced by the core requirements (i.e. data collection, filtering, parsing, sentiment scoring, and statistical analysis and visualisation). The overall design of the pipeline, with isolated components for each sub-problem, stemmed from having largely independent sub-problems that was required in order to perform the data analysis 'end-to-end' (i.e. from data collection to analysis and visualisation) Also, initial prototypes (and initial 'runs' collecting only a limited number of news articles) showed that data collection took the majority of runtime in the pipeline. For this reason, the requirement where it should be possible to resume progress on data collection (and not repeat the process for existing data) was added.

Furthermore, the format of JSON objects of each output file were largely based on the information extracted by each component, as defined by the requirements. For example, the format of a JSON object in the output file for the data collection component is as follows (each JSON object represents one article in the dataset):

```
{
    "https://www.express.co.uk/comment/columnists/...": {
        "source": "Daily Express",
        "title": "Will she grow out of her stutter?",
        "datetime": "2008-02-12T00:00:00+00:00",
        "section": "comment",
        "subsection": "columnists",
        "text": "..."
}
```

Where the URL and 'source', 'title', 'datetime', and 'text' fields correspond to the requirements of what information needs to be extracted by the data collection component.

Design and Implementation

4.1 Overall Design

To fulfil the stated requirements in chapter 3, the solution that was decided is a computational pipeline consisting of five main components. This solution was used to carry out the experiment to collect and analyse online news articles and visualise potential trends in sentiment/opinion. The results of this experiment is shown in chapter 5.

The high-level design of the pipeline and its main components are defined as follows:

In this experiment, the pipeline is ran once for each source and topic, generating a dataset of all articles for the specified topic from the source with all extracted features, stored in a file. The 'plot' component then loads these files and combines the dataset of all articles for every source within the same topic, and produces various plots to show trends within the topic, and statistical metrics for each possible subset within the topic.

Components pass datasets to each other by storing all information it extracts in a JSON format. The output file of an earlier component is read as the input file for the next component, given the same source and topic. The format of the output/input files is a collection of JSON

objects, where each line consists of a single JSON object, and each JSON object represents a single article. The JSON object contains a key-value pair for each extracted feature, and each component preserves the previous component's information (key-value pairs) while appending the object with additional key-value pairs for each feature it extracts. This design ensures that in case computation is interrupted for any reason, the dataset generated by the previous component has already been saved to a file, and computation can restart from the interrupted component (without having to re-run previous components).

4.2 Dataset Description

4.2.1 Sources

The Internet is an increasingly common medium for news publishers to publish news articles and for consumers to read these articles. As of 2017, 64% of British individuals read and/or download online news, newspapers or magazines, a sharp increase from 20% in 2007 [53].

The Daily Mail (dailymail.co.uk) and the Guardian (theguardian.com) are the two most visited news publisher's web sites as of 2016, with a monthly viewership of 11.85 and 10.05 million respectively [54], and are the main subjects of this experiment. Additionally, The Daily Express (express.co.uk), a slightly smaller newspaper with a monthly viewership of 2.67 million in 2016 [54], is also added as a news source in this experiment, to control for source size and explore how the experiment performs with smaller sample sizes. Furthermore, the Guardian provides an API [55] and the Daily Mail and Daily Express provide advanced search tools [56], [57] to query news articles from their websites, which prove useful in their respective data collection component's implementation, although the pipeline would work with any online news source that provides an internal search tool. Thus, these three news publisher sources (Daily Mail, Guardian, Daily Express) were selected the main subjects of this experiment.

4.2.2 Topics, keywords, key phrases, and query terms

The final list of topics relevant to disabilities and people with disabilities, and the keywords, key phrases, and query terms deemed relevant to each topic, are:

Topic	Keywords and Key Phrases	Query Terms
'disabled'	'disabled', 'disability',	'disabled', 'disability',
	'handicapped', 'cripple',	'ablism', 'ableism',
	'invalid', 'accessible',	'differently abled'
	'ablism', 'ableism',	
	'differently abled'	
'autism'	'autism', 'autistic',	'autism', 'autistic',
	'asperger\'s', 'ASD'	'asperger\'s', 'ASD'
'blind'	'blind', 'blindness',	'blind', 'blindness', 'visual
	'blindism', 'visual	impairment', 'partially
	impairment', 'partially	sighted', 'visually impaired'
	sighted', 'vision loss'	

'cerebral palsy'	'cerebral palsy', 'spastic'	'cerebral palsy', 'spastic'
'deaf'	'deaf', 'deafness', 'hearing	'deaf', 'deafness', 'hearing
	impaired', 'hard of hearing',	impairment', 'hard of
	'hearing loss'	hearing', 'hearing impaired'
'developmental delay'	'developmental delay',	'developmental delay',
	'developmental disability',	'developmental disability',
	'developmental disorder',	'developmental disorder',
	'learning disability', 'slow	'learning disability'
	learner', 'retardation',	
	'intellectual disability'	
'dyslexia'	'dyslexia', 'dyslexic'	'dyslexia', 'dyslexic'
'epilepsy'	"epilepsy', 'epileptic',	'epilepsy', 'epileptic'
1 *11	'seizure'	
'mental illness'	'mental illness', 'mental	'mental illness', 'mental
	health', 'mental disability',	health', 'mental disorder',
	'mental disorder', 'mental	'mental disability', 'mentally
	issue', 'brain injured', 'brain	ill', 'mentally disabled',
	injury', 'brain damaged',	'mentally handicapped'
	'psychological', 'psychiatric',	
	'emotional disorder',	
	'behavioural disorder',	
	'retardation', 'intellectual	
	disability', 'mentally ill',	
	'mentally disabled', 'mentally	
	handicapped'	
'mute'	'mute', 'muteness', 'mutism',	'mute', 'muteness', 'mutism',
	'cannot speak', 'difficulty	'non-verbal'
	speaking', 'synthetic speech',	
	'non-vocal', 'non-verbal'	
'paralysis'	'paraplegic', 'quadriplegic',	'paraplegic', 'quadriplegic',
	'spinal cord', 'paraplegia',	'paraplegia', 'quadriplegia',
	'quadriplegia', 'paralysed',	'paralysis'
	'paralyzed', 'paralysis',	
	'crippled', 'leg braces',	
	'wheelchair'	

'speech impairment'	'speech impairment',	'speech impairment',
	'stutter', 'speech disability',	'stutter', 'speech disorder',
	'speech disorder',	'speech impediment'
	'communication disability',	
	'difficulty speaking',	
	'language impairment',	
	'language disorder',	
	'language disability', 'speech	
	impediment', 'stammer'	

This list of key terms was roughly based on guidelines from the Californian [58] and UK [59] governments (ignoring whether the term is considered 'appropriate' or 'inappropriate', as terms labelled 'inappropriate' are often still commonly used in the news, and relevant to consider when deciding whether an article is on-topic), with a few additions based on other commonly-used terms found on sampled articles from Daily Express, Daily Mail, and Guardian. The list of query terms were based on the list of key words, with words/phrases that could have multiple meanings (or combinations of multiple common words) removed (unless the word/phrase is very commonly used to refer to the disability, such as 'blind' or 'mute', where removing these words will remove a large number of on-topic articles from the dataset).

4.2.3 Dataset Size

The dataset is comprised of all articles found online given the query terms defined in section 4.2.2, published between 2000 to (approximately) late-March/early-April 2018. The size of the initial collected dataset (i.e. all articles collected by the Data Collection component, prior to any further processing) in number of articles, for each source and topic, were:

Topic	Daily Express	Daily Mail	Guardian	Total
Disabled	16,818	24,768	30,598	72,184
Autism	988	6,035	5,780	12,803
Blind	9,467	23,616	32,307	65,390
Cerebral Palsy	509	1,995	1,569	4,073
Deaf	6,795	20,686	8,163	35,644
Developmental	965	3,529	1,517	6,011
Delay				
Dyslexia	283	938	1,980	3,201
Epilepsy	700	2,924	2,368	5,992
Mental Illness	8,102	38,273	29,831	76,206
Mute	1,516	2,273	4,746	8,535
Paralysis	711	4,346	3,879	8,936
Speech	1,777	2,994	1,357	6,128
Impairment				
Total	48,631	132,377	124,095	305,103

After filtering, the size of the dataset that was plotted, in number of articles for each source

and topic, were:

Topic	Daily Express	Daily Mail	Guardian	Total
Disabled	1,852	6,035	8,524	16,411
Autism	128	1,755	1,278	3,161
Blind	775	3,008	3,894	7,677
Cerebral Palsy	25	253	75	353
Deaf	114	747	901	1,762
Developmental	5	130	447	582
Delay				
Dyslexia	19	110	281	410
Epilepsy	58	740	374	1,172
Mental Illness	398	6,794	8,137	15,329
Mute	24	146	284	454
Paralysis	53	1,003	405	1,461
Speech	57	73	85	215
Impairment				
Total	3,508	20,812	24,645	48,965

For the results evaluation, the focus will be on the 'disabled' topic, as it has the highest amount of news articles within its subset, and is the most generalisable topic on disabilities (as it refers to the general theme of disabilities and people with disabilities, rather than a specific topic).

4.2.4 Limitations

As shown in section 4.2.3, the Daily Express has significantly less articles for any given topic than the Daily Mail or the Guardian, sometimes much less so. Some topics, such as cerebral palsy, developmental delay, dyslexia, and speech impairment, are also severely lacking in sample size of articles (post-filter). In particular, cases where there are less than ~200 articles for a source within a topic were problematic to plot or form statistically-significant conclusions regarding trends (e.g. to compare with other sources), as the distribution of the data is too varied. In section 5.4, we show that it was difficult to obtain statistically significant conclusions when comparing to subsets with less than ~200 articles. This means that it is difficult to analyse or compare the Daily Express's subset for topics other than general 'disabled', 'blind', and 'mental illness', due to its relative lack of sample size.

Another limitation with this experiment is the (limited) length of time each news source (Daily Express, Daily Mail, and Guardian) retain articles for in their online archive. Our dataset indicates that by March/April 2018 (when this experiment took place), the Daily Express only retains articles from after ~2007, the Daily Mail only retains articles from after ~2010, and the Guardian only retains articles from after ~2000. This raises an issue when analysing year-on-year trends, as the proportion of articles' sources within a topic are different in each year, and year-on-year differences may be better explained due to this difference in proportion, rather than an actual trend (see also: section 5.3). For this reason, we consider trends over time to be significant only when the trend is consistently repeated for each source's subset (instead of the full dataset for that topic), for all sources with statistically-significant sample size in that topic.

4.3 Components

- 4.3.1 Data Collection
- 4.3.2 Dataset Filtering
- 4.3.3 Rule-based Sentence Matching
- 4.3.4 Sentiment Scoring
- 4.3.4.1 Comparison of open-source implementations
- 4.3.4.2 Final implementation
- 4.3.5 Statistical Analysis and Visualisation

Results Evaluation

5.1 Focused topic

Although the pipeline was run on a list of twelve disability-related topics (as defined in section 4.2.2), this results evaluation will mainly focus on the 'disabled' topic. The 'disabled' topic was chosen as it has the highest amount of news articles within its subset, and it is the most generalisable topic (as it refers to the general theme of disabilities and people with disabilities, rather than a specific topic) (see also: section 4.2.3). This focus on one topic for the whole of Chapter 5 helps keep the numbers and results being discussed consistent throughout Chapter 5. Furthermore, the full result plots for all topics will be available in the Appendix.

However, at several points in this chapter, results from other topics will also be discussed where it would add to the discussion. Information from other topics will be explicitly mentioned (e.g. 'for the ... topic') such that the reader understands where the data does not refer to the 'disabled' topic.

Year-on-year trends are also a consistent theme throughout parts of this chapter. Within the 'disabled' topic, the (post-filtering) sample size that was obtained for each year between 2000 and 2018 is as follows:

Year	Daily Express	Daily Mail	Guardian	Total
2000	0	0	504*	504
2001	0	0	294	294
2002	0	0	334	334
2003	0	2	330	332
2004	0	2	387	389
2005	0	0	381	381
2006	0	0	338	338
2007	51	0	424	475
2008	86	0	424	510
2009	175	0	352	527
2010	157	173	365	695
2011	166	370	607	1,143

2012	238	516	822	1,576
2013	133	473	638	1,244
2014	140	846	544	1,530
2015	177	1,095	526	1,798
2016	260	1,128	640	2,028
2017	220	1,094	506	1,820
2018**	49	336	108	493
Total	1,852	6,035	8,524	16,411

^{*&#}x27;2000' also includes a small amount of articles published before the year 2000.

5.2 Comparison of sentiment scorers

- 5.3 Sentiment score: plots and trends
- 5.4 Sentiment score: statistical comparison of different sources
- 5.5 Key terms: plots and trends

 $[\]ensuremath{^{**}2018}$ is incomplete and would only include articles up to (approximately) late-March/early-April.

Conclusions

- 6.1 Achievements
- 6.2 Evaluation
- 6.3 Future Work

Bibliography

- [1] E. Cambria and B. White, "Jumping NLP curves: A review of natural language processing research," *IEEE Computational intelligence magazine*, vol. 9, no. 2, pp. 48–57, 2014.
- [2] T. Lansdall-Welfare, S. Sudhahar, J. Thompson, J. Lewis, F. N. Team, N. Cristianini, A. Gregor, B. Low, T. Atkin-Wright, M. Dobson, et al., "Content analysis of 150 years of British periodicals," Proceedings of the National Academy of Sciences, vol. 114, no. 4, E457–E465, 2017.
- [3] Z. Waseem, "Are you a racist or am I seeing things? Annotator influence on hate speech detection on Twitter," in *Proceedings of the first workshop on NLP and computational social science*, 2016, pp. 138–142.
- [4] J. Coverdale, R. Nairn, and D. Classen, "Depictions of mental illness in print media: A prospective national sample," Australian & New Zealand Journal of Psychiatry, vol. 36, no. 5, pp. 697–700, 2002.
- [5] N. Gold and G. K. Auslander, "Media reports on disability: A binational comparison of types and causes of disability as reported in major newspapers," *Disability and rehabilitation*, vol. 21, no. 9, pp. 420–431, 1999.
- [6] O. F. Wahl, "Mass media images of mental illness: A review of the literature," Journal of Community Psychology, vol. 20, no. 4, pp. 343–352, 1992.
- [7] K. Scior, "Public awareness, attitudes and beliefs regarding intellectual disability: A systematic review," *Research in Developmental Disabilities*, vol. 32, no. 6, pp. 2164–2182, 2011.
- [8] K. Devotta, R. Wilton, and N. Yiannakoulias, "Representations of disability in the Canadian news media: A decade of change?" *Disability and rehabilitation*, vol. 35, no. 22, pp. 1859– 1868, 2013.
- [9] S. C. Jones and V. Harwood, "Representations of autism in Australian print media," *Disability & Society*, vol. 24, no. 1, pp. 5–18, 2009.
- [10] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, et al., "Quantitative analysis of culture using millions of digitized books," science, vol. 331, no. 6014, pp. 176–182, 2011.
- [11] F. W. Gibbs and D. J. Cohen, "A conversation with data: Prospecting Victorian words and ideas," *Victorian Studies*, vol. 54, no. 1, pp. 69–77, 2011.
- [12] M. Mauch, R. M. MacCallum, M. Levy, and A. M. Leroi, "The evolution of popular music: USA 1960–2010," Royal Society open science, vol. 2, no. 5, p. 150 081, 2015.

- [13] K. Leetaru, "Culturomics 2.0: Forecasting large-scale human behavior using global news media tone in time and space," *First Monday*, vol. 16, no. 9, 2011.
- [14] I. Flaounas, O. Ali, T. Lansdall-Welfare, T. De Bie, N. Mosdell, J. Lewis, and N. Cristianini, "Research methods in the age of digital journalism: Massive-scale automated analysis of news-content—topics, style and gender," *Digital Journalism*, vol. 1, no. 1, pp. 102–116, 2013.
- [15] P. Gooding, "Mass digitization and the garbage dump: The conflicting needs of quantitative and qualitative methods," *Literary and linguistic computing*, vol. 28, no. 3, pp. 425–431, 2013.
- [16] T. Schwartz, "Culturomics: Periodicals gauge culture's pulse," Science, vol. 332, no. 6025, pp. 35–36, 2011.
- [17] M. Mitchell, K. Hollingshead, and G. Coppersmith, "Quantifying the language of schizophrenia in social media," in *Proceedings of the 2nd workshop on Computational linguistics and clinical psychology: From linguistic signal to clinical reality*, 2015, pp. 11–20.
- [18] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text with the natural language toolkit. "O'Reilly Media, Inc.", 2009.
- [19] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky, "The Stanford CoreNLP natural language processing toolkit," in *Association for Computational Linguistics (ACL) System Demonstrations*, 2014, pp. 55–60. [Online]. Available: http://www.aclweb.org/anthology/P/P14/P14-5010.
- [20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.
- [21] J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing In Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.55.
- [22] M. Xia. (Oct. 20, 2017). A curated list of sentiment analysis methods, implementations and misc., [Online]. Available: https://github.com/xiamx/awesome-sentiment-analysis (visited on 04/18/2018).
- [23] Keon. (Apr. 16, 2018). A curated list of resources dedicated to natural language processing (NLP), [Online]. Available: https://github.com/keon/awesome-nlp (visited on 04/18/2018).
- [24] J. Misiti. (Mar. 26, 2017). A curated list of awesome machine learning frameworks, libraries and software, [Online]. Available: https://github.com/josephmisiti/awesome-machine-learning (visited on 04/18/2018).
- [25] P. S. Foundation. (2018). PyPi the python package index, [Online]. Available: https://pypi.org/.
- [26] Anaconda, Inc. (2018). Anaconda cloud, [Online]. Available: https://anaconda.org/.

- [27] J. F. Puget. (Dec. 19, 2016). The most popular language for machine learning is ..., [Online]. Available: https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en.
- [28] GitHub, Inc. (Apr. 18, 2018). Topic: nlp, [Online]. Available: https://github.com/topics/nlp (visited on 04/18/2018).
- [29] Anaconda, Inc. (2018). What is Anaconda? [Online]. Available: https://www.anaconda.com/what-is-anaconda.
- [30] K. Reitz. (2018). Requests: HTTP for humans, [Online]. Available: http://docs.python-requests.org/en/master.
- [31] L. Richardson. (Aug. 11, 2017). Beautiful Soup, [Online]. Available: https://www.crummy.com/software/BeautifulSoup.
- [32] S. Robertson, "Understanding inverse document frequency: On theoretical arguments for IDF," *Journal of documentation*, vol. 60, no. 5, pp. 503–520, 2004.
- [33] K. Sparck Jones, "A statistical interpretation of term specificity and its application in retrieval," *Journal of documentation*, vol. 28, no. 1, pp. 11–21, 1972.
- [34] A. Khan, B. Baharudin, L. H. Lee, and K. Khan, "A review of machine learning algorithms for text-documents classification," *Journal of advances in information technology*, vol. 1, no. 1, pp. 4–20, 2010.
- [35] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," *Journal of Machine Learning Research*, vol. 3, pp. 993–1022, 2003.
- [36] Explosion AI. (2018). SpaCy: Industrial-strength natural language processing in Python, [Online]. Available: https://spacy.io.
- [37] J. D. Choi, J. Tetreault, and A. Stent, "It depends: Dependency parser comparison using a web-based evaluation tool," in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, 2015, pp. 387–396.
- [38] B. Liu, "Sentiment analysis and opinion mining," Synthesis lectures on human language technologies, vol. 5, no. 1, pp. 1–167, 2012.
- [39] GitHub, Inc. (Apr. 18, 2018). Topic: sentiment-analysis, [Online]. Available: https://github.com/topics/sentiment-analysis (visited on 04/18/2018).
- [40] E. Gilbert and C. Hutto, "Vader: A parsimonious rule-based model for sentiment analysis of social media text," in *Eighth International Conference on Weblogs and Social Media (ICWSM-14)*, 2014. [Online]. Available: http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf.
- [41] V. Narayanan, I. Arora, and A. Bhatia, "Fast and accurate sentiment classification using an enhanced naive bayes model," in *International Conference on Intelligent Data Engineering and Automated Learning*, Springer, 2013, pp. 194–201.
- [42] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, "A convolutional neural network for modelling sentences," in *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics*, vol. 1, Baltimore, USA, 2014.

- [43] P. Khaturia. (Jan. 20, 2018). Sentiment classification using word sense disambiguation, [Online]. Available: https://github.com/kevincobain2000/sentiment_classifier (visited on 04/18/2018).
- [44] A. Radford, R. Józefowicz, and I. Sutskever, "Learning to generate reviews and discovering sentiment," *CoRR*, vol. abs/1704.01444, 2017. arXiv: 1704.01444. [Online]. Available: http://arxiv.org/abs/1704.01444.
- [45] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts, "Recursive deep models for semantic compositionality over a sentiment treebank," in *Proceedings of* the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP 2013), 2013, pp. 1631–1642.
- [46] Lynten. (Feb. 14, 2018). Python wrapper for Stanford CoreNLP, [Online]. Available: https://github.com/Lynten/stanford-corenlp (visited on 04/18/2018).
- [47] S. Loria. (2018). Textblob: Simplified text processing, [Online]. Available: http://textblob.readthedocs.io/en/dev.
- [48] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.
- [49] E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, http://www.scipy.org/, 2001. [Online]. Available: http://www.scipy.org.
- [50] J. W. Tukey, Exploratory data analysis. 1977, vol. 2.
- [51] J. L. Hintze and R. D. Nelson, "Violin plots: A box plot-density trace synergism," The American Statistician, vol. 52, no. 2, pp. 181–184, 1998.
- [52] H. B. Mann and D. R. Whitney, "On a test of whether one of two random variables is stochastically larger than the other," *The annals of mathematical statistics*, vol. 18, pp. 50–60, 1 1947.
- [53] Statista. (2018). Share of individuals reading or downloading online news, newspapers or magazines in Great Britain from 2007 to 2017, [Online]. Available: https://www.statista.com/statistics/286210/online-news-newspapers-and-magazine-consumption-in-great-britain/.
- [54] —, (2018). Newspaper websites ranked by monthly visitors in the United Kingdom (UK) from 2013 to 2016 (in million visitors), [Online]. Available: https://www.statista.com/statistics/288763/newspaper-websites-ranked-by-monthly-visitors-united-kingdom-uk/.
- [55] Guardian News and Media Limited. (2016). The Guardian open platform, [Online]. Available: http://open-platform.theguardian.com/.
- [56] Associated Newspapers Ltd. (). Search tips Daily Mail Online, [Online]. Available: http://www.dailymail.co.uk/home/article-10612/Search-Tips.html.
- [57] Express Newspapers. (2018). Search For "— Page 1 Express.co.uk, [Online]. Available: https://www.express.co.uk/search.
- [58] Judicial Council of California. (). Disability terminology chart, [Online]. Available: http://www.courts.ca.gov/partners/documents/7-terminology.pdf.

[59] Department for Work & Pensions: Office for Disability Issues. (Aug. 14, 2014). Inclusive language: Words to use and avoid when writing about disability, [Online]. Available: https://www.gov.uk/government/publications/inclusive-communication/inclusive-language-words-to-use-and-avoid-when-writing-about-disability.

Appendix A

Other appendices, e.g., code listing

 $Put\ your\ appendix\ sections\ here$