Asymptotic Relative Efficiencies of the Score and Robust Tests in Genetic Association Studies

Yuan Xue xueyuan115@mails.ucas.ac.cn

University of Chinese Academy of Sciences—July 29, 2018

1 Introduction

1.1 notation

The null hypothesis is $H_0: \lambda = 1$. The likeliood and log-likelihood function:

likelihood function: $L_n(\lambda_1, \lambda_2, \eta)$

log-likelihood function $l_n(\lambda, \eta, \theta)$

we work with $l_n(\lambda, 1 - \theta - + \theta \lambda, \eta)$, where θ is explicitly epressed.

$$x_1 = \lambda$$

$$x_2 = 1 - \theta - \theta \lambda$$

$$x_3 = \eta$$

Denote

$$\begin{split} l_{n,\mu} = & \partial l_n / \partial x_\mu \quad \text{for} \quad \mu = 1, 2, 3 \\ l_{n,\mu\nu} = & \partial^2 l_n / \partial x_\mu \partial x_\nu \quad \text{for} \mu = 1, 2, \nu = 1, 2, 3 \\ l_{n,33} = & \partial^2 l_n / \partial x_3 \partial x_3 \\ l_{n,\mu\nu} = & l_{n,\nu\mu} \quad \text{for} \mu, \nu = 1, 2 \\ l_{n,\mu\nu} = & l_{n,\nu\mu}^T \quad \text{for} \mu = 1, 2, \nu = 3 \\ L_{\mu\nu}(\eta) = & E_{H_0}(l_{1,\mu\nu}(1,1,\eta)) \quad \text{for} \mu = 1, 2, 3, \nu = 1, 2, 3 \end{split}$$

$$s(\theta,\eta) = l_{1,1}(1,1,\eta) + \theta l_{1,2}(1,1,\eta) - (L_{13}^T(\eta) + \theta L_{23}^T(\eta))L_{33}^{-1}(\eta)l_{1,3}(1,1,\eta)$$
$$\mu(\lambda,\theta) = E_{H_1,\eta_0}(s(\theta,\eta_\theta))$$
$$\sigma(\theta) = (I_{\lambda\lambda})^{-1} = A_{\eta_0}\theta^2 + 2B_{\eta_0}\theta + C_{\eta_0}$$
$$A_{\eta} = L_{23}(\eta)L_{33}^{-1}(\eta)L_{32} - L_{22}(\eta)$$
$$B_{\eta} = L_{13}(\eta)L_{33}^{-1}(\eta)L_{31}(\eta) - L_{12}(\eta)$$
$$C_{\eta} = L_{13}(\eta)L_{33}^{-1}(\eta)L_{31}(\theta) - L_{11}(\eta)$$

$$\sigma(\eta, \theta_i, \theta_j) = A_{\eta}\theta_i\theta_j + B_{\eta}(\theta_i + \theta_j) + C_{\eta}$$

when $\theta = \theta^{(0)}$ is the true value $Z(\theta^{(0)})$ is the asymptotically most powerful (optimal). Let $\hat{\eta}_n$ satisfy $\partial l_n/\partial \eta|_{H_0,\hat{\eta}_n} = l_{n,3}(1,1,1,\hat{\eta}_n) = 0$. Let η_0 be the true value (unknown) of η under either H_0 or H_1 , Let $\hat{\eta}_{0,n}$ be the MLE of η under H_0 , and $(\hat{\eta}_{1,n},\hat{\lambda}_n)$ be that of (η,λ) under H_1 .

1.2 Pitman ARE

$$e_P(Z_{MERT}, Z(\theta^{(0)})) = \frac{(\rho_{\theta_i, \theta^{(0)}} + \rho_{\theta_j, \theta^{(0)}})^2}{2(1 + \rho_{\theta_i, \theta_j})}$$
$$\rho_{\theta_i, \theta_j} = \frac{\sigma(\eta_0, \theta_i, \theta_j)}{\sigma(\eta_0, \theta_i, \theta_i)\sigma(\eta_0, \theta_i, \theta_j)^{1/2}}$$

1.3 Chernoff ARE

$$\begin{split} \tilde{e}_C(Z_{MERT},Z_{\theta^{(0)}}) &= \frac{\tilde{Q}_{Z_{MERT}}}{\tilde{Q}_{Z_{\theta^{(0)}}}} \\ \tilde{Q}_{Z_{\theta^{(0)}}} &= 2\left(1 - \Phi\left(\frac{\mu^{(1)}(\lambda_0,\theta^{(0)})}{2\sigma(\theta^{(0)})}\right)\right) \\ \tilde{Q}_{Z_{MERT}} &= 2\left(1 - \Phi\left(\left[\frac{\mu^{(1)}(\lambda_0,\theta_i)}{2\sigma(\theta_i)} + \frac{\mu^{(1)}(\lambda_0,\theta_j)}{2\sigma(\theta_j)}\right]/\sqrt{8(1 + \rho_{\theta_i,\theta_j})}\right)\right) \\ \mu^{(1)}(\lambda,\theta) &= \partial \mu(\lambda,\theta)/\partial \lambda \end{split}$$

 λ_0 be the null hypothesis, $H_0:\lambda_0\in\Lambda_0$

1.4 Hodges-Ledmann ARE

$$e_{HL}(Z_{MERT}, Z_{\theta}) = \frac{d_{Z_{MERT}}(\lambda)}{d_{Z_{\theta}(\lambda)}}$$

$$d_{Z_{\theta}}(\lambda) = \frac{\mu^{2}(\lambda, \theta)}{\sigma^{2}(\theta)}$$

$$d_{Z_{MERT}}(\lambda) = \mu^{2}_{MERT}(\lambda) = [\mu(\lambda, \theta_{i})/\sigma(\theta_{i}) + \mu(\lambda, \theta_{j})/\sigma(\theta_{j})]/\sqrt{2(1 + \rho_{\theta_{i}, \theta_{j}})}$$

1.5 Bahadur ARE

$$e_B(Z_{MERT}, Z_{\theta}) = e_{HL}(Z_{MERT}, Z_{\theta})$$

$$\tilde{e}_B(Z_{MERT}, Z_{\theta}) = \frac{\tilde{c}_{Z_{MERT}}}{\tilde{c}_{Z_{\theta}}}$$

$$\tilde{c}_{Z_{MERT}} = 1 - \Phi(\mu_{MERT}^{(1)}(1))$$

$$\tilde{c}_{Z_{\theta}} = 1 - \Phi(\mu^{-1}(1, \theta_0) / \sigma(\theta_0))$$

$$\mu(1, \theta_0) = 0$$

1.6 Algorithm

likelihood function

$$L_n(\lambda_1, \lambda_2, \eta) = \frac{\lambda_1^{r_1} \lambda_2^{r_2} exp(r\eta)}{\{1 + exp(\eta)\}^{n_0} \{1 + \lambda_1 exp(\eta)\}^{n_1} \{1 + \lambda_2 exp(\eta)\}^{n_2}}$$
(1)

log-likelihood function $l_n(\lambda, \eta, \theta)$

we work with $l_n(\lambda, 1 - \theta - + \theta \lambda, \eta)$, where θ is explicitly epressed.

$$x_1 = \lambda$$

$$x_2 = 1 - \theta - \theta \lambda$$

$$x_3 = \eta$$

Denote

$$\begin{split} l_{n,\mu} &= \partial l_n / \partial x_\mu \quad \text{for} \quad \mu = 1, 2, 3 \\ l_{n,\mu\nu} &= \partial^2 l_n / \partial x_\mu \partial x_\nu \quad \text{for} \quad \mu = 1, 2, \nu = 1, 2, 3 \\ l_{n,33} &= \partial^2 l_n / \partial x_3 \partial x_3 \\ l_{n,\mu\nu} &= l_{n,\nu\mu} \quad \text{for} \quad \mu, \nu = 1, 2 \\ l_{n,\mu\nu} &= l_{n,\nu\mu}^T \quad \text{for} \quad \mu = 1, 2, \nu = 3 \\ L_{\mu\nu}(\eta) &= E_{H_0}(l_{1,\mu\nu}(1,1,\eta)) \quad \text{for} \quad \mu = 1, 2, 3, \nu = 1, 2, 3 \end{split}$$

- input: Y, G, $\theta^{(0)}$, θ_i , θ_j
- output: $e_P(Z_{MERT}, Z_{\theta^{(0)}})$, $\tilde{e}_C(Z_{MERT}, Z_{\theta^{(0)}})$, $e_{HL}(Z_{MERT}, Z_{\theta^{(0)}})$, $e_B(Z_{MERT}, Z_{\theta^{(0)}})$
- step 1 Estimate $\hat{\eta}$, where $\hat{\eta}$ satisfy $\partial l_n/\partial \eta|_{H_0,\hat{\eta}_n}=l_{n,3}(1,1,\hat{\eta}_n)=0$.
- step 2 Compute $l_n(1,1,\hat{\eta}); l_{n,\mu}(1,1,\hat{\eta}), \text{ for } \mu=1,2,3; l_{n,\mu\nu}(1,1,\hat{\eta}) \text{ for } \mu=1,2,3, \nu=1,2,3.$
- step 3 Compute $L_{\mu\nu}(\hat{\eta}) = E_{H_0}(l_{1,\mu\nu}) = \frac{1}{n} l_{n,\mu\nu}(1,1,\hat{\eta})$
- step 4 Compute $\sigma(\theta^{(0)})$, $\sigma(\theta_i)$, $\sigma(\theta_i)$, $\sigma(\theta^{(0)}, \theta_i)$, $\sigma(\theta^{(0)}, \theta_i)$, $\sigma(\theta_i, \theta_i)$, where

$$\sigma(\theta_i, \theta_j) = A_{\hat{\eta}} \theta_i \theta_j + B_{\hat{\eta}} (\theta_i + \theta_j) + C_{\hat{\eta}}$$

$$A_{\eta} = L_{23}(\eta)L_{33}^{-1}(\eta)L_{32} - L_{22}(\eta)$$

$$B_{\eta} = L_{13}(\eta)L_{33}^{-1}(\eta)L_{31}(\eta) - L_{12}(\eta)$$

$$C_{\eta} = L_{13}(\eta)L_{33}^{-1}(\eta)L_{31}(\eta) - L_{11}(\eta)$$

step 5 Compute $\mu(\lambda, \theta^{(0)}), \mu(\lambda, \theta_i), \mu(\lambda, \theta_j)$,

$$\mu(\lambda,\theta) = E_{H_1,\eta_0}(s(\theta,\eta_\theta)) = \frac{1}{n}(l_{n,1}(n,1,\hat{\eta}) + \theta l_{n,2}(n,1,\hat{\eta}) - (L_{13}^T(\eta) + \theta L_{23}^T(\eta))L_{33}^{-1}(\eta)l_{n,3}(1,1,\eta))$$

step 6 Compute $\mu^{(1)}(\lambda,\theta^{(0)}), \mu^{(1)}(\lambda,\theta_i), \mu^{(1)}(\lambda,\theta_j),$

$$\mu(\lambda,\theta) = E_{H_1,\eta_0}(s(\theta,\eta_\theta)) = \frac{1}{n}(l_{n,11}(n,1,\hat{\eta}) + \theta l_{n,21}(n,1,\hat{\eta}) - (L_{13}^T(\hat{\eta}) + \theta L_{23}^T(\hat{\eta}))L_{33}^{-1}(\hat{\eta})l_{n,31}(1,1,\hat{\eta}))$$

$$\mu(\lambda,\theta) = E_{H_1,\eta_0}(s(\theta,\eta_\theta)) = \frac{1}{n} (l_{n,11}(n,1,\hat{\eta}) + \theta l_{n,21}(n,1,\hat{\eta}) - (L_{13}^T(\hat{\eta}) + \theta L_{23}^T(\hat{\eta})) L_{33}^{-1}(\hat{\eta}) l_{n,31}(1,1,\eta))$$
$$= L_{11}(\hat{\eta}) + \theta L_{21}(\hat{\eta}) - (L_{13}^T(\hat{\eta}) + \theta L_{23}^T(\hat{\eta})) L_{33}^{-1}(\hat{\eta}) L_{31}(\hat{\eta}))$$

step 7 Compute $e_P(Z_{MERT}, Z(\theta^{(0)}))$.

$$e_P(Z_{MERT}, Z(\theta^{(0)})) = \frac{(\rho_{\theta_i, \theta^{(0)}} + \rho_{\theta_j, \theta^{(0)}})^2}{2(1 + \rho_{\theta_i, \theta_i})}$$

$$\rho_{\theta_i,\theta_j} = \frac{\sigma(\hat{\eta}, \theta_i, \theta_j)}{\sigma(\hat{\eta}, \theta_i, \theta_i)\sigma(\hat{\eta}, \theta_i, \theta_j)^{1/2}}$$

step 8 Compute

$$\begin{split} \tilde{e}_C(Z_{MERT},Z_{\theta^{(0)}}) &= \frac{\tilde{Q}_{Z_{MERT}}}{\tilde{Q}_{Z_{\theta^{(0)}}}} \\ \tilde{Q}_{Z_{\theta^{(0)}}} &= 2\left(1-\Phi\left(\frac{\mu^{(1)}(\lambda_0,\theta^{(0)})}{2\sigma(\theta^{(0)})}\right)\right) \\ \tilde{Q}_{Z_{MERT}} &= 2\left(1-\Phi\left(\left[\frac{\mu^{(1)}(\lambda_0,\theta_i)}{2\sigma(\theta_i)} + \frac{\mu^{(1)}(\lambda_0,\theta_j)}{2\sigma(\theta_j)}\right]/\sqrt{8(1+\rho_{\theta_i,\theta_j})}\right)\right) \\ \lambda_0 &= 1 \end{split}$$

step 9 Compute

$$e_{HL}(Z_{MERT},Z_{\theta}) = \frac{d_{Z_{MERT}}(\lambda)}{d_{Z_{\theta}(\lambda)}}$$

$$d_{Z_{\theta}}(\lambda) = \frac{\mu^{2}(\lambda,\theta)}{\sigma^{2}(\theta)}$$

$$d_{Z_{MERT}}(\lambda) = \mu^{2}_{MERT}(\lambda) = [\mu(\lambda,\theta_{i})/\sigma(\theta_{i}) + \mu(\lambda,\theta_{j})/\sigma(\theta_{j})]/\sqrt{2(1+\rho_{\theta_{i},\theta_{j}})}$$

step 10 Compute

$$\begin{split} e_B(Z_{MERT}, Z_\theta) &= e_{HL}(Z_{MERT}, Z_\theta) \\ \tilde{e}_B(Z_{MERT}, Z_\theta) &= \frac{\tilde{c}_{Z_{MERT}}}{\tilde{c}_{Z_\theta}} \\ \tilde{c}_{Z_{MERT}} &= 1 - \Phi(\mu_{MERT}^{(1)}(1)) \\ \tilde{c}_{Z_\theta} &= 1 - \Phi(\mu^{-1}(1, \theta^{(0)}) / \sigma(\theta^{(0)})) \end{split}$$