Classification

chapter 4 of An Introduction to Statistical Learning (ISL)

Henrique Laureano

http://leg.ufpr.br/~henrique

Laboratory of Statistics and Geoinformation (LEG) ${\sf UFPR/DEST/LEG}$

What we read (long description)

Springer Texts in Statistics

Gareth James
Daniela Witten
Trevor Hastie

An Introduction to Statistical Learning

with Applications in R

Robert Tibshirani

Clas	ssification 12
4.1	An Overview of Classification
4.2	Why Not Linear Regression?
4.3	Logistic Regression
	4.3.1 The Logistic Model
	4.3.2 Estimating the Regression Coefficients
	4.3.3 Making Predictions
	4.3.4 Multiple Logistic Regression
	4.3.5 Logistic Regression for >2 Response Classes 13
4.4	Linear Discriminant Analysis
	4.4.1 Using Bayes' Theorem for Classification 13
	4.4.2 Linear Discriminant Analysis for $p = 1 \dots 13$
	4.4.3 Linear Discriminant Analysis for $p > 1$
	4.4.4 Quadratic Discriminant Analysis
4.5	A Comparison of Classification Methods

What we read (short description)

At chapter 4 are discussed three of the most widely-used classifiers.

- Logistic Regression
- Linear Discriminant Analysis (LDA)
- K-Nearest Neighbors (KNN)

What we didn't read

More computer-intensive methods are discussed in later chapters, such as

- Generalized Additive Models (GAM)
- Trees
- Random Forests
- Boosting
- Support Vector Machines (SVM)

- 1 Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
 - The model framework
 - Estimating the Regression Coefficients
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

We could consider encoding the response, Y, as a quantitative variable, e.g.,

Predict the medical condition of a patient on the basis of her symptoms.

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

We could consider encoding the response, Y, as a quantitative variable, e.g.,

Predict the medical condition of a patient on the basis of her symptoms.

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

Unfortunately, this coding implies an ordering on the outcomes.

Each possible coding would produce a fundamentally different linear model that would ultimately lead to different sets of predictions.

That leads us to other questions,

- What if the response variable values did take on a natural ordering, such as mild, moderate, and severe?
- For a binary (two level) qualitative response, the situation is better.
 - However, if we use linear regression, some of our estimates might be outside the [0, 1] interval.
 - However, the dummy variable approach cannot be easily extended to accommodate qualitative responses with more than two levels.

That leads us to other questions,

- What if the response variable values did take on a natural ordering, such as mild, moderate, and severe?
- For a binary (two level) qualitative response, the situation is better.
 - However, if we use linear regression, some of our estimates might be outside the [0, 1] interval.
 - However, the dummy variable approach cannot be easily extended to accommodate qualitative responses with more than two levels.

For these reasons, it is preferable to use a classification method that is truly suited for qualitative response values, such as the ones presented next.

Curiously,

it turns out that the classifications that we get if we use linear regression to predict a binary response will be the same as for the linear discriminant analysis (LDA) procedure we discuss later.

- 1 Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
 - The model framework
 - Estimating the Regression Coefficients
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

A classic 'book example dataset relationship'

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.

.. a very pronounced relationship between balance and default.

- Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
 - The model framework
 - Estimating the Regression Coefficients
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

To start, a comparison with Linear Regression

FIGURE 4.2. Classification using the Default data. Left: Estimated probability of default using linear regression. Some estimated probabilities are negative! The orange ticks indicate the 0/1 values coded for default (No or Yes). Right: Predicted probabilities of default using logistic regression. All probabilities lie between 0 and 1.

Some math, but with just one predictor

The model and its relations

Some math, but with just one predictor

The model and its relations

For example,

$$p(X) = 0.2 \Rightarrow \frac{0.2}{1 - 0.2} = \frac{1}{4}$$
 and $p(X) = 0.9 \Rightarrow \frac{0.9}{1 - 0.9} = 9$.

Maximum likelihood

The estimates \hat{eta}_0 and \hat{eta}_1 are chosen to maximize a math equation called a

likelihood function

$$I(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'})).$$

Maximum likelihood

The estimates \hat{eta}_0 and \hat{eta}_1 are chosen to maximize a math equation called a

likelihood function

$$I(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'})).$$

The coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ are unknown, and must be estimated. The general method of maximum likelihood is preferred, since it has better statistical properties.

Maximum likelihood is a very general approach that is used to fit many of the non-linear models examined throughout the book. In the linear regression setting, the least squares approach is in fact a special case of maximum likelihood.

- 1 Why Not Linear Regression?
- 2 A typical dataset
- 3 Logistic Regression
 - The model framework
 - Estimating the Regression Coefficients
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

- 1 Why Not Linear Regression?
- 2 A typical dataset
- Logistic Regression
 - The model framework
 - Estimating the Regression Coefficients
- 4 Linear Discriminant Analysis (LDA)
- 5 K-Nearest Neighbors (KNN)

and...

laureano@ufpr.br