Chapitre 9 : Fonctions d'une variable réelle

Cadre:

Il s'agit d'étendre l'étude de la continuité et de la dérivabilité d'une variable réelle à des applications $f:A\to E$ où A est une partie de $\mathbb R$ et E un espace vectoriel normé sur $\mathbb K=\mathbb R$ ou $\mathbb C$ (au programme : seulement de dimension finie).

Rappel:

Si E_1 , E_2 , F sont des espaces normés, une application bilinéaire $B: E_1 \times E_2 \to F$ est continue si et seulement si il existe $C \ge 0$ tel que $\forall (x_1, x_2) \in E_1 \times E_2, ||B(x_1, x_2)|| \le C||x_1||||x_2||$.

De plus, lorsque E_1 et E_2 sont de dimension finie, toute application bilinéaire $B: E_1 \times E_2 \to F$ est continue.

Cas particuliers importants: le produit usuel, le produit de deux matrices, les produits scalaires, le produit vectoriel sont continus.

I Rappels sur la continuité

A) Exemples

Les applications lipschitziennes sont continues

Un composée, une somme de fonctions continues sont continues.

Si $f: A \to E_1$ et $g: A \to E_2$ sont continues, et si B est bilinéaire continue, alors $x \mapsto B(f(x), g(x))$ est continue.

Si E est de dimension finie, et $\mathfrak{B}=(e_1,...e_n)$ est une base de E, alors une application $f:A\to E$ se décompose de manière unique en $f=\sum_{k=1}^n f_k e_k$ où $f_k:A\to \mathbb{K}$.

f est alors continue si et seulement si toutes les applications coordonnées le sont.

En particulier, si les f_k sont polynomiales ou rationnelles et les dénominateurs ne s'annulant pas, alors f est continue.

B) Prolongement par continuité en un point

Théorème:

Soit $f: A \to E$ une application et $a \in \overline{A} \setminus A$. f a un prolongement continu en a si et seulement si f(x) a une limite $b \in E$ quand x tend vers a.

Dans ce cas, le prolongement par continuité de f est unique et obtenu en posant f(a) = b.

C) Continuité sur une partie et continuité uniforme

Définition:

 $f:A\to E$ est dite continue sur A si elle est continue en tout point $a\in A$, c'est-à-dire $\forall a\in A, \forall \varepsilon>0, \exists \alpha>0, \forall y\in A, |y-a|<\alpha\Rightarrow \|f(y)-f(a)\|\leq \varepsilon$ (1)

Les deux premiers quantificateurs sont identiques, donc ils peuvent être permutés :

$$\forall \varepsilon > 0, \forall a \in A, \exists \alpha > 0, \forall y \in A, |y - a| < \alpha \Rightarrow ||f(y) - f(a)|| \le \varepsilon$$
 (1')

 $f: A \rightarrow E$ est dite uniformément continue sur A si :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall a \in A, \forall y \in A, |y - a| < \alpha \Rightarrow ||f(y) - f(a)|| \le \varepsilon$$
 (2)

Entre (1') et (2), on a échangé deux quantificateurs différents.

Mais
$$(\exists \alpha > 0, \forall a \in A, P(a, \alpha)) \Rightarrow (\forall a \in A, \exists \alpha > 0, P(a, \alpha))$$

Donc on peut en déduire que toute fonction $f: A \to E$ uniformément continue sur A est continue sur A.

Caractérisation de l'uniforme continuité :

On verra plus loin qu'une fonction $f: A \to E$ est uniformément continue si et seulement si il existe une fonction $\omega: \mathbb{R}_+ \to \mathbb{R}_+$ continue en 0 telle que :

$$\omega(0) = 0 \text{ et } \forall x, y \in A, ||f(x) - f(y)|| \le \omega(|x - y|)$$

Ainsi, l'uniforme continuité est en quelque sorte une généralisation du caractère lipschitzien.

D) Continuité et compacité

Théorème (Heine):

Toute fonction continue sur une partie compacte d'un espace normé est uniformément continue sur cette partie.

L'image d'une partie compacte par une application continue est un compact.

En particulier, si $f: X \to \mathbb{R}$ est continue sur la partie compacte non vide X d'un espace normé, alors f est bornée et atteint ses bornes.

NB:

Les compacts d'un espace normé de dimension finie sont les fermés bornés. Par exemple, tout segment est compact; si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l, l'ensemble $\{u_n,n\in\mathbb{N}\}\cup\{l\}$ est compacte.

Démonstration du cas particulier (les autres ont déjà été vus) :

Dans ce cas, f(X) est un compact non vide de \mathbb{R} , il est donc borné et non vide. Donc f(X) admet des bornes inférieures et supérieures, qui sont dans f(X) car c'est un fermé.

Exercices à connaître :

(1) Si $f: \mathbb{R} \to \mathbb{R}$ est uniformément continue, alors il existe a,b>0 tels que $\forall x \in \mathbb{R}, |f(x)| \le a|x|+b$. Mais la réciproque est fausse, par exemple avec $x \mapsto \sin(x^2)$.

Démonstration :

Soit $f: \mathbb{R} \to \mathbb{R}$, uniformément continue.

Alors
$$\forall \varepsilon > 0, \exists \alpha > 0, \forall (x, y) \in \mathbb{R}^2, |y - x| < \alpha \Rightarrow ||f(x) - f(y)|| < \varepsilon$$

On veut montrer qu'il existe a, b > 0 tels que $\forall x \in \mathbb{R}, |f(x)| \le a|x| + b$.

On pose $\varepsilon = 1$.

Il existe alors $\alpha > 0$ tel que $\forall (x, y) \in \mathbb{R}^2, |y - x| < \alpha \Rightarrow ||f(x) - f(y)|| \le 1$ Soit x > 0

On pose pour
$$i \in [0, n]$$
, $x_i = i.h$ avec $h = \frac{\alpha}{2}$, $n = \lceil \frac{x}{h} \rceil$.

On a ainsi
$$|x_{i+1} - x_i| = h < \alpha$$
, soit $|f(x_{i+1}) - f(x_i)| < 1$

Et
$$|x_n - x| < \alpha$$
 donc $|f(x_n) - f(x)| < 1$

Donc en sommant :

$$|f(x)| \le |f(x) - f(0)| + |f(0)|$$

$$\le |f(x_1) - f(0)| + |f(x_2) - f(x_1)| + \dots + |f(x) - f(x_n)| + |f(0)|$$

$$\le n + 1 + |f(0)|$$

$$\le \frac{|x|}{h} + 1 + |f(0)|$$

D'où le résultat avec $a = \frac{1}{h}$, b = 1 + |f(0)|, valable aussi pour x < 0.

On note $f: x \mapsto \sin(x^2)$.

Alors f est continue, telle que $|\sin(x^2)| \le 1$, mais pas uniformément continue :

On pose
$$x_n = \sqrt{2n\pi + \frac{\pi}{2}}$$
, $y_n = \sqrt{2n\pi}$

On a alors
$$\lim_{n\to+\infty} x_n - y_n = 0$$
, et $\lim_{n\to+\infty} f(x_n) - f(y_n) = 1 \neq 0$

On peut poser $\varepsilon = \frac{1}{2}$. Alors pour tout $\alpha > 0$, il existe N tel que $\forall n \ge N, |x_n - y_n| < \alpha$, mais $|f(x_n) - f(y_n)| = 1 > \frac{1}{2}$

Donc f n'est pas uniformément continue.

Remarque:

Caractérisation de l'uniforme continuité avec les suites :

 $f:A\to E$ est uniformément continue si et seulement si pour tout couple de suites $(x_n)_{n\in\mathbb{N}},\ (y_n)_{n\in\mathbb{N}}$ de A telles que $\lim_{n\to+\infty}(x_n-y_n)=0$, on a $\lim_{n\to+\infty}(f(x_n)-f(y_n))=0$.

Démonstration:

- Si f n'est pas uniformément continue, il existe $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ suites de A telles que $\lim_{n \to +\infty} x_n - y_n = 0$ et $f(x_n) - f(y_n) \not\to 0$

En effet, il existe $\varepsilon > 0$ tel que $\forall \alpha > 0, \exists (x, y) \in A^2, |x - y| < \alpha \text{ et } ||f(x) - f(y)|| \ge \varepsilon$

Pour
$$\alpha = \frac{1}{n}$$
, on prend $(x_n, y_n) \in A^2$ vérifiant $|x_n - y_n| < \frac{1}{n}$ et $||f(x_n) - f(y_n)|| \ge \varepsilon$

Et les deux suites introduites conviennent.

- Soit f uniformément continue et $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ deux suites telles que $\lim_{n \to +\infty} x_n - y_n = 0$.

Soit $\varepsilon > 0$. Comme f est uniformément continue, il existe $\alpha > 0$ tel que $\forall (x,y) \in A^2$, $\forall (x,y) \in A^2, |x-y| < \alpha \Rightarrow ||f(x)-f(y)|| < \varepsilon$

Comme $\lim_{n \to +\infty} x_n - y_n = 0$, il existe un rang N tel que $\forall n \ge N, |x_n - y_n| < \alpha$

Et donc pour $n \ge N$, on aura $||f(x_n) - f(y_n)|| < \varepsilon$.

(2) $f: \mathbb{R} \to E$ est uniformément continue si et seulement si :

$$\forall \varepsilon > 0, \exists A > 0, \forall (x, y) \in \mathbb{R}^2, ||f(x) - f(y)|| \le \varepsilon + A|x - y|$$

Démonstration :

Soit $f: \mathbb{R} \to E$.

Supposons que $\forall \varepsilon > 0, \exists A > 0, \forall (x, y) \in \mathbb{R}^2, ||f(x) - f(y)|| \le \varepsilon + A|x - y|$.

Soit $\varepsilon > 0$. Il existe donc A > 0 tel que $||f(x) - f(y)|| \le \frac{\varepsilon}{2} + A|x - y|$

Donc pour
$$|x-y| < \frac{\varepsilon}{2(A+1)}$$
, on a alors $||f(x)-f(y)|| < \frac{\varepsilon}{2} + A \frac{\varepsilon}{2(A+1)} < \varepsilon$

Réciproquement, soit f uniformément continue.

Soit $\varepsilon > 0$; il existe $\alpha > 0$ tel que $\forall (x, y) \in \mathbb{R}^2, |x - y| < \alpha \Rightarrow ||f(x) - f(y)|| < \varepsilon$

Soit $(x, y) \in \mathbb{R}^2$, avec $y \ge x$.

On note
$$h = \frac{\alpha}{2}$$
, $N = \left\lceil \frac{y - x}{h} \right\rceil$

Alors pour tout $i \in [0, N]$, $|(x+ih)-(x+(i+1)h)| = h < \alpha$

Et
$$|y - (x + Nh)| < h < \alpha$$

Donc
$$|f(x) - f(y)| \le |f(x) - f(x+h)| + ... + |f(x+Nh) - f(y)| \le (N+1)\varepsilon$$

Mais
$$N = \left[\frac{y-x}{h}\right] \le \frac{y-x}{h} + 1$$

Donc
$$|f(x)-f(y)| \le \frac{\varepsilon}{h}(y-x) + \varepsilon$$

On peut donc prendre $A = \frac{\mathcal{E}}{h}$.

(3) Si $f: \mathbb{R} \to \mathbb{R}$ est continue et *T*-périodique, alors f est uniformément continue.

Démonstration:

Soit $\varepsilon > 0$. Comme f est uniformément continue sur [0,2T] (car c'est un compact), il existe $\alpha > 0$ tel que $\forall (x,y) \in [0,2T]^2, |x-y| < \alpha \Rightarrow ||f(x)-f(y)|| < \varepsilon$

On note alors $\alpha' = \min(\alpha, T)$.

Soit alors $(x, y) \in \mathbb{R}^2$, supposons que $|x - y| < \alpha'$, montrons que $||f(x) - f(y)|| \le \varepsilon$.

Comme $|x-y| \le T$, il existe un entier relatif N tel que $x-NT \in [0,2T]$ et $y-NT \in [0,2T]$.

On a alors
$$|x - NT - (y - NT)| = |x - y| \le \alpha$$

Donc
$$||f(x) - f(y)|| = ||f(x - NT) - f(y - NT)|| \le \varepsilon$$

Ce qui achève la démonstration.

(4) Relèvements:

On appelle relèvement de $f: A \to \mathbb{U}$ (cercle unité de \mathbb{C}) toute application $\varphi: A \to \mathbb{R}$ telle que $\forall x \in A, f(x) = e^{i\varphi(x)}$ (où A est un ensemble quelconque)

Problème:

Si f possède une certaine régularité, peut on choisir φ avec la même régularité? En général non. Par exemple, l'application $\operatorname{Id}_{\operatorname{U}}$ n'a pas de relèvement continu.

Théorème du relèvement C^1 :

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{U}$ de classe C^1 .

Alors il existe $\varphi: I \to \mathbb{R}$ de classe C^1 telle que $f = e^{i\varphi}$.

Démonstration:

Analyse:

Si $\forall t \in I, f(t) = e^{i\varphi(t)}$ où φ est de classe C^1 , alors $\forall t \in I, f'(t) = i\varphi'(t)e^{i\varphi(t)}$

C'est-à-dire $\forall t \in I, \varphi'(t) = -i \frac{f'(t)}{f(t)}$ (f ne s'annule pas car à valeurs dans U)

Synthèse:

Soit $t_0 \in I$. On peut écrire $f(t_0) = e^{i\alpha_0}$ où $\alpha_0 \in \mathbb{R}$.

On pose alors pour $t \in I$, $\varphi(t) = \alpha_0 - i \int_{t_0}^t \frac{f'(s)}{f(s)} ds$

Comme f est de classe C^1 et ne s'annule pas, $\frac{f}{f'}$ est continue et donc φ est de classe C^1 .

De plus, φ est à valeurs réelles :

On doit montrer que $\forall t \in I, \varphi(t) = \overline{\varphi}(t)$, c'est-à-dire :

$$\forall t \in I, -i \int_{t_0}^{t} \frac{f'(s)}{f(s)} ds = i \int_{t_0}^{t} \frac{\overline{f'}(s)}{\overline{f}(s)} ds$$

Ou encore $\forall t \in I$, $\int_{t_0}^{t} \frac{\overline{f}(s)f'(s) + f(s)\overline{f'}(s)}{|f(s)|^2} ds = 0$

Ce qui est vrai car $\forall s \in I, |f(s)|^2 = 1$, c'est-à-dire $f(s)\bar{f}(s) = 1$,

Donc
$$\forall s \in I, f'(s)\bar{f}(s) + f(s)\underbrace{\bar{f}}_{=\bar{f}'}(s) = 0$$

De plus, φ est un relèvement de f:

Considérons *h* définie par $h(t) = f(t)e^{-i\varphi(t)}$.

On a $h(t_0) = 1$ et h est dérivable, et $\forall t \in I, h'(t) = e^{-i\varphi(t)}(f' - i.f.\varphi')(t) = 0$

Donc $\forall t \in I, h(t) = 1$.

Théorème du relèvement continu:

Soit $f:[a,b]\to \mathbb{U}$ continue. Alors il existe $\varphi:[a,b]\to \mathbb{R}$, continue et unique à 2π près, telle que $f=e^{i\varphi}$.

Démonstration:

Unicité à 2π près :

Si $\forall t \in [a,b]$, $f(t) = e^{i\varphi_1(t)} = e^{i\varphi_2(t)}$ où φ_1 et φ_2 sont continues et réelles, alors $\forall t \in [a,b]$, $\varphi_1(t) - \varphi_2(t) \in 2\pi\mathbb{Z}$

Donc d'après le théorème des valeurs intermédiaires, $\varphi_1 - \varphi_2 = \text{cte} = 2\pi k_0$

Pour l'existence :

- Si
$$f([a,b]) \subset U \setminus \{-1\}$$
, c'est-à-dire $\forall t \in [a,b]$, $f(t) \neq -1$.

On pose alors pour $t \in [a,b]$, $\varphi(t) = 2\operatorname{Arctan}\left(\frac{\operatorname{Im} f(t)}{\operatorname{Re}(f(t)) + 1}\right)$ (qui est bien définie)

(Justification du choix :

Si
$$f(t) = x(t) + iy(t) = e^{i\theta}$$
 où $x(t) \in \mathbb{R}$ et $y(t) \in \mathbb{R}$, alors

$$\begin{cases} x = \cos \theta = \frac{1 - u^2}{1 + u^2} \\ y = \sin \theta = \frac{2u}{1 + u^2} \end{cases}$$
 où $u = \tan \frac{\theta}{2}$ et donc $u = \frac{y}{x + 1}$ et $\theta = 2 \operatorname{Arctan}\left(\frac{y(t)}{x(t) + 1}\right)$)

Alors φ est continue (car composée de fonctions continues), et on a

 $\forall t \in [a,b], f(t) = e^{i\varphi(t)}$ (Voir justification)

- Si f n'est pas surjective; il existe $u_0 = e^{i\theta_0}$ tel que $\forall t \in [a,b], f(t) \neq u_0$

On pose alors $g(t) = -e^{-i\theta_0} f(t)$

On peut alors appliquer le cas précédent à g puis $f(t) = e^{i(\theta_0 + \pi + \varphi_1(t))}$ (où φ_1 est continue telle que $\forall t \in [a,b], g(t) = e^{i\varphi_1(t)}$)

- Dans le cas général :

 $f:[a,b] \to \mathbb{U}$ est continue, donc uniformément continue sur [a,b]. Donc il existe $\alpha > 0$ tel que pour tous $x,y \in [a,b]$, si $|x-y| < \alpha$ alors |f(x)-f(y)| < 2

Ainsi, pour tout $c \in [a,b]$, $f_{/[c,c+\alpha]}$ n'est pas surjective car

$$\forall x \in [c, c + \alpha], |f(c) - f(x)| < 2 \text{ donc } f(x) \neq -f(c).$$

On pose alors
$$N = \left\lceil \frac{b-a}{\alpha} \right\rceil$$

Et pour
$$k \in [0, N]$$
, $a_k = a + kN$, et $a_{N+1} = b$

Ainsi, pour tout $i \in [0, N]$, $f_{[a_i, a_{i+1}]}$ n'est pas surjective, il existe $\varphi_i : [a_i, a_{i+1}] \to \mathbb{R}$ qui soit un relèvement de $f_{[a_i, a_{i+1}]}$.

On a alors $f(a_1) = e^{i\varphi_1(a_1)} = e^{i\varphi_2(a_1)}$

Donc il existe $n_1 \in \mathbb{Z}$ tel que $\varphi_2(a_1) = \varphi_1(a_1) + 2n_1\pi$

Quitte à remplacer φ_2 par $\varphi_2-2n_1\pi$, on peut supposer que $n_1=0$, c'est-à-dire que $\varphi_2(a_1)=\varphi_1(a_1)$

Et on a toujours $f_{[a_1,a_2]} = e^{i\varphi_2}$

On recommence ensuite en a_2 ...

On considère alors $\varphi:[a,b] \to \mathbb{R}$ définie par $\forall i \in [0,N], \varphi_{[a_i,a_{i+1}]} = \varphi_i$

Ainsi, par construction des φ_i , φ est continue.

Remarque:

Le résultat est vrai aussi pour un intervalle *I* quelconque :

En effet

Il existe une suite de segment croissants (au sens de l'inclusion) $(K_n)_{n\in\mathbb{N}}$ telle que $I=\bigcup_{n\in\mathbb{N}}K_n$.

On applique le théorème du relèvement continu à $f_{/K_a}$

On trouve alors $\varphi_n: K_n \to \mathbb{R}$ continues telles que $f_{/K_n} = e^{i\varphi_n}$

Soit $t_0 \in K_0$. Pour tout $n \in \mathbb{N}$, φ_{n/K_0} est un relèvement continu de $f_{/K_0}$.

Donc $arphi_{n/K_0}$ et $arphi_0$ sont deux relèvements continus de $f_{/K_0}$.

On peut donc supposer (quitte à modifier φ_n) que $\varphi_{n/K_0} = \varphi_0$ et donc $\varphi_{n/K_0}(t_0) = \varphi_0(t_0)$

On a alors pour tout $n,m\in\mathbb{N}$ tels que n>m, $\varphi_{n/K_m}=\varphi_m$ car ce sont deux relèvements continus de $f_{/K_m}$ qui prennent la même valeur en t_0 .

On pose alors pour tout $t \in I$, $\varphi(t) = \varphi_n(t)$ où n est tel que $t \in K_n$.

Ainsi, par construction, φ est continue et c'est un relèvement de f.

(5) Module de continuité uniforme d'une application bornée :

Soient I un intervalle de \mathbb{R} et $f: I \to E$ une application bornée où E est un evn. Pour $\delta \geq 0$, on pose $\omega_f(\delta) = \sup\{ \|f(x) - f(y)\|, |x - y| \leq \delta \}$. Alors ω_f est définie et croissante sur \mathbb{R}_+ , vérifie $\omega_f(0) = 0$ et $\forall \alpha, \beta \geq 0, \omega_f(\alpha + \beta) \leq \omega_f(\alpha) + \omega_f(\beta)$

De plus, ω_f est continue en 0 si et seulement si f est uniformément continue sur I.

Démonstration:

Soit $\delta \ge 0$.

Alors $\{ ||f(x) - f(y)||, |x - y| \le \delta \}$ est non vide (contient 0) et majoré par $2 ||f||_{\infty}$.

Donc $\omega_f(\delta)$ existe pour tout $\delta \ge 0$.

On note $A(\delta) = \{ ||f(x) - f(y)||, |x - y| \le \delta \}$

Alors pour $\delta, \delta' \ge 0$ tels que $\delta \ge \delta'$, on a $A(\delta') \subset A(\delta)$.

Donc $\omega_f(\delta') \le \omega_f(\delta)$

De plus, $\omega_f(0) = \sup \{ ||f(x) - f(y)||, x = y \} = \sup \{ 0 \} = 0$

Soient $\alpha, \beta \ge 0$. Montrons que $\omega_f(\alpha + \beta) \le \omega_f(\alpha) + \omega_f(\beta)$.

Soit $(x, y) \in I^2$, supposons que $y \ge x$ et $|x - y| \le \alpha + \beta$

Si $x + \alpha \ge y$, alors $|x - y| \le \alpha$ et donc $||f(x) - f(y)|| \le \omega_f(\alpha) \le \omega_f(\alpha) + \omega_f(\beta)$, soit en passant à la borne supérieure pour $|x - y| \le \alpha + \beta$, $\omega_f(\alpha + \beta) \le \omega_f(\alpha) + \omega_f(\beta)$.

Si $x + \alpha \le y$, alors

$$||f(x) - f(y)|| \le ||f(x) - f(x + \alpha)|| + ||f(x + \alpha) - f(y)|| \le \omega_f(\alpha) + \omega_f(\beta)$$

 $\operatorname{car} |x + \alpha - y| \le \beta$

Montrons maintenant que f est uniformément continue si et seulement si $\lim_{\delta \to 0} \omega_f(\delta) = 0$

Remarque:

Par définition de ω_f , on a $\forall (x,y) \in I^2$, $||f(x) - f(y)|| \in A(|x-y|)$

Donc $\forall (x, y) \in I^2, ||f(x) - f(y)|| \le \omega_f(|x - y|)$

Supposons que $\lim_{\delta \to 0} \omega_f(\delta) = 0$.

Soit $\varepsilon > 0$. Il existe alors $\alpha > 0$ tel que $\forall \delta \in [0, \alpha], \omega_{\varepsilon}(\delta) \leq \varepsilon$

Pour $(x, y) \in I^2$, si $|x - y| \le \alpha$, alors $||f(x) - f(y)|| \le \omega_f(|x - y|) \le \varepsilon$

Donc f est uniformément continue.

Réciproquement, supposons que f est uniformément continue.

Soit $\varepsilon > 0$. Il existe $\alpha > 0$ tel que $\forall (x, y) \in I^2, |x - y| < \alpha \Rightarrow ||f(x) - f(y)|| < \varepsilon$

Pour $\delta \leq \alpha$, $A(\delta)$ est alors majoré par ε , et donc $\omega_f(\delta) \leq \varepsilon$.

E) Cas des fonctions réelles d'une variable réelle : théorème de la valeur intermédiaires et conséquences

Théorème:

Soit $f:[a,b] \to \mathbb{R}$ une application continue sur [a,b] telle que [a,b]. Alors il existe $c \in [a,b]$ tel que f(c) = 0.

L'image d'un intervalle par une application continue à valeurs réelles est encore un intervalle.

L'image d'un segment par une application continue à valeurs réelles est un segment.

F) Fonctions monotones et homéomorphismes

Théorème (de la limite monotone):

Soient $a,b \in \overline{\mathbb{R}}$ et $f:[a,b[\to \mathbb{R} \text{ croissante. Alors } f \text{ a une limite finie en } b \text{ si et seulement si elle est majorée. Si elle n'est pas majorée, alors <math>\lim_{x \to b} f(x) = +\infty$

On a des énoncés analogues pour f décroissante et pour a au lieu de b.

Définition:

On appelle homéomorphisme entre A et B toute application $f:A\to B$ bijective, continue et de réciproque continue.

Théorème:

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une application continue. Alors :

- (1) f est injective si et seulement si elle est strictement monotone. De plus, si f est injective, c'est un homéomorphisme de I sur son image $J = f\{I\}$.
- (2) f est un homéomorphisme entre I et J si et seulement si $J = f\{I\}$ et f est soit injective soit strictement monotone.

II Dérivation des fonctions d'une variable réelle

A) Dérivabilité et dérivée en un point

C'est la même chose que pour les fonctions numériques :

Soient $a \in \mathbb{R}$, A un voisinage de a et $f: A \to E$. f est dite dérivable en a si le taux

d'accroissement $\frac{f(x)-f(a)}{x-a}$ a une limite lorsque x tend vers a. Dans ce cas, cette

limite est appelée dérivée de f en a, et notée f'(a).

Extension:

Le cas échéant, on pourra aussi considérer les dérivées à droite et à gauche en a.

Propriétés:

Si f est dérivable en a, alors f est continue en a.

Soit $(e_1,...e_n)$ une base de E, et $f: A \to E$ se décomposant en $f(x) = \sum_{i=1}^n f_i(x)e_i$.

Fonctions d'une variable réelle, dérivation et intégration

Alors f est dérivable en $a \in A$ si et seulement si toutes les f_i le sont et on a alors $f'(a) = \sum_{i=1}^n f'_i(a)e_i$.

B) Caractérisation par un développement limité

Théorème:

Soit f définie dans un voisinage de a. Alors f est dérivable en a si et seulement si elle admet un développement limité d'ordre 1 en a f(a) = f(a) + k(x-a) + o(x-a) et dans ce cas f'(a) = k.

C) Opérations

Théorème:

- Soient $f,g:A\to E$ des fonctions dérivables en a et $\lambda\in\mathbb{K}$. Alors $f+\lambda g$ est dérivable en a, et $(f+\lambda g)'(a)=f'(a)+\lambda g'(a)$
- Soient $f: A \to E_1$ et $g: A \to E_2$ dérivables en a et $B: E_1 \times E_2 \to F$ bilinéaire continue. Alors $k: x \mapsto B(f(x), g(x))$ est dérivable en a et

$$k'(a) = B(f'(a), g(a)) + B(f(a), g'(a))$$

- Soient $f: A \to B \subset \mathbb{R}$ dérivable en $a, g: B \to E_2$ dérivable en b = f(a). Alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = f'(a)g'(f(a))$

Démonstration (pour le deuxième point) :

Comme B est continue, il existe M tel que

$$\forall (V_1, V_2) \in E_1 \times E_2, ||B(V_1, V_2)|| \le M ||V_1|| ||V_2||.$$

On a des développements limités :

$$f(a+h) = f(a) + h \cdot f'(a) + o_1(h)$$
 et $g(a+h) = g(a) + h \cdot g'(a) + o_2(h)$

où
$$\lim_{h\to 0} \frac{o_j(h)}{h} = 0$$
 pour $j = 1,2$.

Alors

$$B(f(a+h),g(a+h)) = B(f(a)+hf'(a)+o_1(h),g(a)+hf'(a)+o_2(h))$$

= $k(a)+h(B(f'(a),g(a))+B(f(a),g'(a)))+R(h)$ (*)

avec
$$R(h) = B(f(a), o_2(h)) + hB(f'(a), hg'(a) + o_2(h)) + B(o_1(h), g(a+h))$$

Donc
$$||R(h)|| \le M(||f(a)|||o_2(h)|| + |h|||f'(a)|||hg'(a) + o_2(h)|| + ||o_1(h)|||g(a+h)||)$$

Et
$$\frac{\|R(h)\|}{h} \xrightarrow{h \to 0} 0$$

Donc (*) est un DL de k en a, donc k est dérivable en a et k'(a) est bien l'expression souhaitée.

Exemple:

Soit $x \in \mathbb{R} \mapsto P(x) \in M_n(\mathbb{R})$ une application dérivable telle que pour tout $x \in \mathbb{R}$, P(x) est orthogonale. Alors pour tout $x \in \mathbb{R}$, $P'(x)^t P(x)$ est antisymétrique. Si de plus

n est impair, alors $\forall x \in \mathbb{R}, \det(P'(x)) = 0$ (le déterminant d'une matrice antisymétrique d'ordre impair est nul)

En effet:

Comme $\forall x \in \mathbb{R}, P(x) \in O_n(\mathbb{R})$, on a $\forall x \in \mathbb{R}, P(x)^t P(x) = I_n$

On pose $B: M_n(\mathbb{R})^2 \to M_n(\mathbb{R})$, bilinéaire continue (on est en dimension finie) $(M,N) \mapsto MN$

Alors $\forall x \in \mathbb{R}, B(P(x), P(x) = I_n$

Et en dérivant $\forall x \in \mathbb{R}, P'(x)^t P(x) + P(x)^t P'(x) = 0$

C'est-à-dire $\forall x \in \mathbb{R}, P'(x)^t P(x) = -t(P'(x)^t P(x))$

Donc $\forall x \in \mathbb{R}, P'(x)^t P(x) \in A_n(\mathbb{R})$.

De plus, le déterminant d'une matrice antisymétrique d'ordre impair est nul.

En effet, soit $A \in A_n(\mathbb{R})$.

Alors ${}^{t}A = -A$, et det $A = \det^{t}A = \det(-A) = (-1)^{n} \det A = -\det A$ donc det A = 0.

Ainsi, pour tout $x \in \mathbb{R}$, $\det(P'(x)^t P(x)) = 0$.

Mais comme P(x), on a det(P'(x)) = 0.

D) Fonction dérivée sur un intervalle, dérivées successives

1) Fonction dérivable et fonction dérivée

Si A est un intervalle ouvert, f est dite dérivable sur A si elle l'est en tout point de A. Par extension, si A est un intervalle fermé ou semi-fermé, f sera dite dérivable si elle l'est sur l'intérieur de A et admet une dérivée à droite en sa borne inférieure éventuelle a et à gauche en sa borne supérieure éventuelle b (on note alors $f'(a) = f'_{d}(a)$ et $f'(b) = f'_{g}(b)$)

Dans ce cas, l'application $x \in A \mapsto f'(x)$ est l'application dérivée de f. Elle est notée f, c'est aussi une application de A dans E.

Lorsque f' est à son tour dérivable, on note f'' sa dérivée. Par récurrence, on définit les dérivées successives éventuelles de la manière suivante : $f^{(0)} = f$ et pour $n \ge 0$, la dérivée d'ordre n+1, $f^{(n+1)}$, est, si elle existe, la dérivée de $f^{(n)}$.

2) Espaces de fonctions dérivables

Pour $k \in \mathbb{N}$, on note $D^k(I,E)$ l'espace vectoriel des applications $I \to E$ admettant des dérivées jusqu'à l'ordre k inclus et $C^k(I,E)$ le sous-espace de $D^k(I,E)$ constitué des applications f telles que $f^{(k)}$ est continue sur I.

On pose aussi
$$C^{\infty}(I, E) = \bigcap_{k \in \mathbb{N}} D^k(I, E) = \bigcap_{k \in \mathbb{N}} C^k(I, E)$$

Propriétés:

On a:

$$C^{0}(I,E) \supset D^{1}(I,E) \supset \dots \supset C^{k-1}(I,E) \supset D^{k}(I,E) \supset C^{k}(I,E) \supset C^{\infty}(I,E)$$

Une composée d'applications de classe C^k (ou D^k) est aussi de classe C^k (ou D^k)

(Leibniz): soient $f: A \to E_1$, $g: A \to E_2$ de classe D^k (resp. C^k) et $B: E_1 \times E_2 \to F$ bilinéaire continue.

Alors $h: x \mapsto B(f(x), g(x))$ est aussi de classe D^k (resp. C^k) et on a :

$$\forall x \in A, h^{(k)}(x) = \sum_{j=0}^{k} C_k^j B(f^{(j)}(x), g^{(k-j)}(x))$$

E) Fonctions de classe C^k par morceaux

Soit $k \in \mathbb{N} \cup \{\infty\}$. Une application $f:[a,b] \to E$ est dite de classe C^k par morceaux s'il existe une subdivision $S = (a = a_0 < a_1 < ... < a_n = b)$ de [a,b] telle que la restriction de f à chaque sous—intervalle $[a_i,a_{i+1}[$ $(i \in [0,n-1]])$ a un prolongement C^k à $[a_i,a_{i+1}]$. Cela équivaut à dire que f est de classe C^k sur $[a,b] \setminus S$ et que f et toutes ses dérivées d'ordre inférieur à k admettent des limites à gauche et à droite en tout point de S (à droite seulement en a et à gauche seulement en b)

Une fonction $f: I \to E$ définie sur un intervalle non compact I est dit de classe C^k par morceaux si sa restriction à tout segment de I l'est.

Remarques:

Pour k=0, on dit plutôt continue par morceaux. Une application continue par morceaux sur un segment est bornée.

Dans le cas d'un intervalle non compact, f peut avoir une infinité de discontinuités. Par exemple, la fonction partie entière est de classe C^{∞} par morceaux sur \mathbb{R} .

Propriétés:

L'ensemble des fonctions de classe C^k par morceaux à valeurs dans E est un espace vectoriel.

Si f et g sont de classe C^k par morceaux et B bilinéaire continue, alors B(f,g) est de classe C^k par morceaux (B, f, g) définis correctement)

III Cas particulier des fonctions à valeurs réelles

On considère ici uniquement des applications $f: A \to \mathbb{R}$ où A est une partie de \mathbb{R} .

A) Dérivées particulières

1) Dérivée logarithmique

Si f est dérivable et ne s'annule pas sur un intervalle I, alors $\ln |f|$ est aussi dérivable sur I de dérivée $\frac{f'}{f}$.

Attention:

C'est faux pour une fonction à valeurs complexes, par exemple $x \mapsto e^{ix}$.

2) Dérivée d'un déterminant

Si $x \mapsto A(x) \in M_n(\mathbb{R})$ est une application dérivable, alors $x \mapsto \det A(x)$ l'est aussi et sa dérivée est la somme des déterminants obtenus en dérivant successivement chaque colonne (resp. chaque ligne)

Remarque:

$$t \mapsto M(t) = (a_{i,j}(t))_{\substack{i=1..n \ i=1..n}} \in M_n(\mathbb{R})$$
 est dérivable signifie que pour tout

$$(i, j) \in [1, n]^2$$
, $t \mapsto a_{i, j}(t)$ est dérivable, et dans ce cas $M'(t) = (a_{i, j}'(t))_{\substack{i=1..n \ j=1..n}}$.

Ici,

$$\frac{d(\det M(t))}{dt} = \begin{vmatrix} a'_{1,1}(t) & a_{1,2}(t) & \cdots \\ \vdots & \vdots & \vdots \\ a'_{n,1}(t) & a_{n,1}(t) & \cdots \end{vmatrix} + \begin{vmatrix} a_{1,1}(t) & a'_{1,2}(t) & \cdots \\ \vdots & \vdots & \vdots \\ a_{n,1}(t) & a'_{n,1}(t) & \cdots \end{vmatrix} + \dots + \begin{vmatrix} a_{1,1}(t) & \cdots & a'_{1,n}(t) \\ \vdots & \vdots & \vdots \\ a_{n,1}(t) & \cdots & a'_{n,n}(t) \end{vmatrix}$$

$$\neq \det(M'(t))$$

(Il suffit de développer selon la première colonne et faire par récurrence sur *n*)

B) Les théorèmes de Rolle et des accroissements finis

Théorème (Rolle):

Soit $f:[a,b] \to \mathbb{R}$ continue sur [a,b], dérivable sur]a,b[et telle que f(a) = f(b). Alors il existe $c \in]a,b[$ tel que f'(c) = 0.

(Accroissements finis): Soit $f:[a,b] \to \mathbb{R}$ continue sur [a,b] et dérivable sur [a,b[. Alors il existe $c \in [a,b[$ tel que (b-a)f'(c) = f(b) - f(a)

Extension de Rolle à 'une borne infinie':

Si f est continue sur $[a,+\infty[$, dérivable sur $]a,+\infty[$ tendant vers 0 en $+\infty$ et telle que f(a)=0, alors il existe c>a tel que f'(c)=0 (Il suffit d'appliquer Rolle à $g:x\mapsto f\left(a+\frac{x}{1-x}\right)$ prolongée en 1 par g(1)=0)

Les théorèmes sont faux pour des fonctions à valeurs dans un autre espace que \mathbb{R} . Par exemple, $f: x \in [0,2\pi] \mapsto e^{ix} \in \mathbb{C}$ est de classe C^{∞} telle que $f(0) = f(2\pi)$ mais f' ne s'annule pas.

Application:

Si $P \in \mathbb{R}[X]$ est scindé, alors P' aussi. Il en est de même pour aP + P', $a \in \mathbb{R}$.

Démonstration

Soit
$$P = \prod_{i=1}^{n} (X - a_i)^{m_i}$$
 tel que $a_1 < ... < a_n \ (\deg P = \sum_{i=1}^{n} m_i = d, m_i \ge 1)$

Chaque a_i est racine de P de multiplicité $m_i - 1$, donc on a déjà $\sum_{i=1}^{n} (m_i - 1) = d - n$

racines. Il en manque n-1:

Sur chaque segment $[a_i, a_{i+1}]$ pour $i \in [1, n-1]$, on a $P(a_i) = P(a_{i+1}) = 0$. Et P est réel, continu sur $[a_i, a_{i+1}]$, dérivable sur $]a_i, a_{i+1}[$.

Chapitre 9 : Fonctions d'une variable réelle

Donc d'après le théorème de Rolle, il existe $b_i \in [a_i, a_{i+1}]$ tel que $P'(b_i) = 0$

On a donc n-1 racines supplémentaires, distinctes des autres.

Donc P'est scindé.

Montrons maintenant que aP + P' est scindé.

Si a = 0, le résultat est vu.

Sinon:

On a
$$P = \prod_{i=1}^{n} (X - \Omega_i)^{m_i}$$
, et $P' = K \prod_{i=1}^{n} (X - \Omega_i)^{m_i - 1} \prod_{i=1}^{n-1} (X - \lambda_i)$

Où
$$\Omega_1 < \lambda_1 < \Omega_2 < \lambda_2 < \dots < \lambda_{n-1} < \Omega_n$$

Ainsi,
$$P'+aP = \prod_{i=1}^{n} (X - \Omega_i)^{m_i - 1} \left(a \prod_{i=1}^{n} (X - \Omega_i) + K \prod_{i=1}^{n-1} (X - \lambda_i) \right)$$

On note
$$R = a \prod_{i=1}^{n} (X - \Omega_i) + K \prod_{i=1}^{n-1} (X - \lambda_i)$$
.

Ainsi, pour tout $i \in [1, n-1]$, on a

$$R(\Omega_i)R(\Omega_{i+1}) = K^2 \prod_{j=1}^{n-1} (\Omega_i - \lambda_j) \prod_{j=1}^{n-1} (\Omega_{i+1} - \lambda_j) < 0, \text{ puisque } \prod_{j=1}^{n-1} (\Omega_i - \lambda_j) \text{ a le signe}$$

de
$$(-1)^{n-i}$$
 et $\prod_{j=1}^{n-1} (\Omega_{j+1} - \lambda_j)$ celui de $(-1)^{n-i-1}$.

Ainsi, pour tout
$$i \in [1, n-1]$$
, il existe $\mu_i \in]\Omega_i, \Omega_{i+1}[$ tel que $(P'+aP)(\mu_i) = 0$

On a ainsi n-1 valeurs distinctes, et distinctes des Ω_i

On a donc ici encore trouvé d-1 racines pour un polynôme de degré d, donc il est scindé puisqu'il s'écrit $\prod^{d-1} (X-\beta_i) \times Q$, avec Q de degré 1 donc scindé.

Autre démonstration :

Les Ω_i sont racines de P'+aP avec des multiplicités au moins égales à m_i-1 .

Sur $[\Omega_i, \Omega_{i+1}]$, on applique le théorème de Rolle à $f: t \mapsto e^{at} P(t)$:

f est de classe C^{∞} , et $f(\Omega_i) = f(\Omega_{i+1})$

Donc il existe $\mu_i \in]\Omega_i, \Omega_{i+1}[$ tel que $f'(\mu_i) = 0$

Mais on a $f'(t) = e^{a.t} (aP(t) + P'(t))$

Donc μ_i est racine de aP + P'

On a ainsi encore d-1 racines, et la dernière existe pour la même raison.

Soient *P*, *Q* scindés, et
$$Q = \sum_{j=0}^{d} a_j X^j$$

Alors
$$R = \sum_{j=0}^{d} a_j P^{(j)}$$
 est scindé.

Démonstration : par récurrence.

- Si d = 1, on vient de le faire.
- Soit $d \ge 1$, supposons le résultat vrai pour tout polynôme Q scindé de degré d.

Alors $Q = (X - \eta)Q_1$ où Q_1 est de degré d et scindé.

On pose alors
$$D: \mathbb{R}[X] \to \mathbb{R}[X]$$

 $P \mapsto P'$

Ainsi,
$$R = (\widetilde{Q}(D))(P) = ((D - \eta \operatorname{Id}) \circ \widetilde{Q}_1(D))(P)$$

Et $S = \widetilde{Q}_1(D)(P)$ est scindé par hypothèse de récurrence, puis $(D - \eta \operatorname{Id})(S)$ puisque c'est le cas d = 1.

Donc R est scindé.

C) Conséquences du théorème de Rolle

Théorème (de prolongement C^1):

Soient $a \in \mathbb{R}$, $b \in \overline{\mathbb{R}}$ et $f :]a,b[\to \mathbb{R}$ de classe C^1 . f a un prolongement C^1 en a si et seulement si f' a une limite en a (l'existence d'une limite pour f est alors automatiquement assurée)

Exemple:

$$f: x \mapsto \frac{1}{\sin x} - \frac{1}{x}$$
 a un prolongement C^1 sur $]-\pi, \pi[$

(Remarque : il ne suffit pas d'appliquer le théorème, il ne donnera que le caractère C^1 par morceaux ; il faut aussi vérifier que les limites à droite et à gauche sont égales)

Monotonie, convexité:

Propriétés de régularité :

- (1) Une fonction monotone sur un intervalle admet une limite à gauche et une limite à droite en tout point où cela a un sens, et elle est continue, sauf éventuellement en les points d'un ensemble fini ou dénombrable.
- (2) Une fonction convexe sur un intervalle *I* admet une dérivée à gauche et une dérivée à droite en tout point où cela a un sens. Elle est lipschitzienne sur tout segment inclus dans *I*; en particulier, elle est continue, sauf, éventuellement, en les bornes de *I*.

Caractérisation des applications constantes, monotones ou convexes sur un intervalle :

- (1) Une application est constante sur un *intervalle* si et seulement si elle est dérivable de dérivée nulle.
- (2) Une application dérivable est croissante sur un intervalle I si et seulement si sa dérivée est positive ; elle est strictement croissante si et seulement si sa dérivée est positive et l'intérieur de $\{x \in I, f'(x) = 0\}$ est vide.
- (3) Une application deux fois dérivable est convexe sur un intervalle si et seulement si sa dérivée seconde est positive.

Attention : Une fonctions dérivable de dérivée nulle sur $A \subset \mathbb{R}$ n'est pas nécessairement constante, elle ne l'est que sur tout intervalle inclus dans A; on la dit localement constante.

Règle de l'Hôpital (hors programme):

Pour f et g réelles dérivables au voisinage de a, si f et g tendent vers 0 en a et si $\frac{f'}{g'}$

a une limite $b \in \overline{\mathbb{R}}$ en a, alors $\frac{f}{g}$ a aussi cette limite en a.

Théorème de Darboux :

La dérivée d'une fonction f dérivable sur un intervalle I, bien qu'elle puisse ne pas être continue, vérifie quand même le théorème de la valeur intermédiaire.

Démonstration:

Pour $[a,b] \subset I$, on applique le théorème de la valeur intermédiaire aux fonctions

continues définies par
$$g(x) = \begin{cases} \frac{f(x) - f(a)}{x - a} & \text{si } x \neq a \\ f'(a) & \text{si } x = a \end{cases}$$
 et $h(x) = \begin{cases} \frac{f(x) - f(b)}{x - b} & \text{si } x \neq b \\ f'(b) & \text{si } x = b \end{cases}$

On remarque que $J = g([a,b]) \cup h([a,b])$ est un intervalle (réunion de deux intervalles sécants en g(b) = h(a)) contenant f'(a) et f'(b).

Mais d'après le théorème des accroissements finis, g([a,b]) et h([a,b]) sont inclus dans f'([a,b]), donc J aussi. Donc on a $[f'(a), f'(b)] \subset J \subset f'([a,b])$

D) Réciproque d'une application de classe C^k et difféomorphisme entre deux intervalles

Théorème:

Soient I, J deux intervalles de \mathbb{R} , et $f: I \to J$ une application bijective dérivable. Alors f est monotone, sa dérivée est de signe constant, et f^{-1} , réciproque de f, est dérivable en $b = f(a) \in I$ si et seulement si $f'(a) \neq 0$, et dans ce cas on a $(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$

Définition:

On appelle difféomorphisme de classe C^k entre I et J toute application $f: I \to J$ bijective, de classe C^k et dont la réciproque est aussi de classe C^k .

Théorème :

Soit $k \ge 1$. Une application $f: I \to J$ est un C^k -difféomorphisme si et seulement si elle est de classe C^k , bijective et f' ne s'annule pas.

IV Approximation uniforme des fonctions continues

Théorème:

- (1) Toute fonction continue sur un segment et à valeurs dans un espace normé E est limite uniforme d'une suite de fonctions affines par morceaux et continues.
- (2) Elle est aussi limite uniforme d'une suite de fonctions en escaliers.

Théorème qu'on peut aussi énoncer sous la forme :

L'ensemble des fonctions affines par morceaux et continues est une partie dense de l'espace normé $(C^0([a,b],E),\|\ \|_{\infty})$. L'ensemble des fonctions en escalier est dense dans le même espace.

Démonstration:

On considère l'ensemble B([a,b],E) des fonctions bornées muni de $\| \|_{\infty}$

Et les sous-espaces C des fonctions continues, $\mathcal{E}([a,b],E)$ des fonctions en escalier et A des fonctions affines par morceaux partout continues sur [a,b].

On va donc montrer que $\overline{A} = C^0$ et $C^0 \subset \overline{\mathcal{E}}$.

Soit $f \in C$. Montrons que pour tout $\varepsilon > 0$, il existe $\varphi_1 \in \varepsilon([a,b], E)$ et $\varphi_2 \in A$ tels que $||f - \varphi_1||_{\infty} \le \varepsilon$ et $||f - \varphi_2||_{\infty} \le \varepsilon$.

Soit donc $\varepsilon > 0$.

Comme f est continue sur le compact [a,b], elle y est uniformément continue.

Il existe donc $\alpha > 0$ tel que $\forall (x, y) \in [a, b]^2, |x - y| \le \alpha \Rightarrow ||f(x) - f(y)||_E \le \varepsilon$

On pose alors $a_i = a + \alpha . i$ pour $i \in [0, N-1]$ où N est le plus grand entier tel que $a + (N-1)\alpha < b$

Et on pose aussi $a_N = b$.

Considérons alors $\varphi_1 \in \mathcal{E}([a,b], E)$ défini par $\forall i \in [0, N-1], \varphi_{1/[a_i, a_{i+1}]} = f(a_i)$ et $\varphi_1(a_N) = f(b)$.

On a alors $||f - \varphi_1||_{\infty} \le \varepsilon$.

En effet, pour $x \in [a,b]$, on a :

Soit x = b, et $f(x) = \varphi_1(x)$

Soit $x \in [a, b[$, et il existe $i \in [0, N-1]]$ tel que $x \in [a_i, a_{i+1}[$,

Et alors $||f(x) - \varphi_1(x)||_E = ||f(x) - f(a_i)||_E \le \varepsilon$

Donc $\forall x \in [a,b], ||f(x) - \varphi_1(x)||_{\mathcal{E}} \le \varepsilon$, c'est-à-dire $||f - \varphi_1||_{\infty} \le \varepsilon$.

Considérons φ_2 tel que pour tout $i \in [0, N-1]$, φ_2 est affine sur $[a_i, a_{i+1}]$ et $\varphi_2(a_i) = f(a_i)$, $\varphi_2(a_{i+1}) = f(a_{i+1})$.

Ainsi, $\varphi_2 \in A$

Et pour tout $x \in [a,b]$, il existe $i \in [0,N-1]$ tel que $x \in [a_i,a_{i+1}]$

On note alors $t \in [0;1]$ tel que $x = t.a_{i+1} + (1-t).a_i$.

On a ainsi $\varphi_2(x) = t \cdot \varphi_2(a_{i+1}) + (1-t)\varphi_2(a_i) = tf(a_{i+1}) + (1-t)f(a_i)$

Donc $||f(x) - \varphi_2(x)||_{E} \le t . ||f(x) - f(a_{i+1})||_{E} + (1-t) ||f(x) - f(a_i)||_{E} \le t\varepsilon + (1-t)\varepsilon = \varepsilon$

(Car $|x - a_{i+1}| \le |a_i - a_{i+1}| \le \alpha$ et $|x - a_i| \le |a_i - a_{i+1}| \le \alpha$)

D'où $||f - \varphi_2||_{\infty} \le \varepsilon$.

Ainsi, on a montré les inclusions $C^0 \subset \overline{\mathcal{E}}$, $C^0 \subset \overline{A}$.

On verra qu'une limite uniforme d'une suite de fonctions continues est continue, et donc que $\overline{A} \subset C^0$, puisque A est constituée de fonctions continues.

Donc $\overline{A} = C^0$ pour $\| \|_{\infty}$.

Remarque (hors programme) :

L'adhérence de $\varepsilon([a,b],E)$ dans $(B([a,b],E)\|_{\infty})$ est l'ensemble des fonctions réglées, c'est-à-dire des fonctions admettant une limite à droite et à gauche en tout point.

Fonctions d'une variable réelle, dérivation et intégration

Théorème (Weierstrass):

- (1) (algébrique) toute fonction continue sur un segment [a,b] est limite uniforme sur [a,b] d'une suite de fonctions polynomiales.
- (2) (trigonométrique) toute fonction continue sur $\mathbb R$ et 2π -périodique est limite uniforme d'une suite de polynômes trigonométriques.

Précision:

Pour tout $n \in \mathbb{Z}_{i}$, on défini e_{n} par $\forall t \in \mathbb{R}, e_{n}(t) = e^{i.n.t}$

Ainsi, les $e_n : \mathbb{R} \to \mathbb{C}$ sont continus, 2π -périodiques.

Et $(e_n)_{n\in\mathbb{Z}}$ est libre.

On note alors pour $n \in \mathbb{N}$, $T_n = \text{Vect}(e_k, |k| \le n)$ et $T = \bigcup_{k \in \mathbb{N}} T_k = \text{Vect}(e_k, k \in \mathbb{Z})$.

Un élément de *T* est appelé polynôme trigonométrique.

Démonstration (de Bernstein) du théorème :

(1) On se ramène à [a,b] = [0,1].

En effet, supposons le théorème de Weierstrass établi sur [0,1] et soit $f:[a,b] \to \mathbb{C}$ continue.

Posons, pour $t \in [0,1]$, g(t) = f(t.b + (1-t).a). Alors g est continue sur [0,1].

Il existe alors une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes telle que $\|P_n - g\|_{\infty,[0,1]} \xrightarrow[n\to+\infty]{} 0$

On définit alors $Q_n = P_n \left(\frac{X - a}{b - a} \right)$

Pour tout $x \in [a,b]$, en posant $t = \frac{x-a}{b-a} \in [0,1]$, on a x = t.b + (1-t).a et donc

$$|f(x)-Q_n(x)| = |g(t)-P_n(t)| \le ||P_n-g||_{\infty [0,1]}$$

C'est-à-dire $||f - Q_n||_{\infty,[a,b]} \le ||P_n - g||_{\infty,[0,1]}$, d'où la limite.

Maintenant:

Soit $f:[0,1] \to \mathbb{C}$. On associe le polynôme de Bernstein de f, défini par :

$$B_n(f) = \sum_{k=0}^{n} C_n^k f\left(\frac{k}{n}\right) X^k (1-X)^{n-k}$$

(Pour $x \in [0,1]$, $B_n(f)(x)$ est le barycentre de la famille des $\left(f\left(\frac{k}{n}\right), \lambda_k\right)$ avec

$$\lambda_k = C_n^k x^k (1-x)^{n-k} \ge 0 \text{ et } \sum_{k=0}^n \lambda_k = 1$$

Propriétés : pour tout $n \ge 1$,

$$- \sum_{k=0}^{n} C_{n}^{k} X^{k} (1-X)^{n-k} = 1$$

-
$$\sum_{k=0}^{n} C_n^k \frac{k}{n} X^k (1-X)^{n-k} = X$$
 (c'est-à-dire $B_n(Id) = X$)

$$- \sum_{k=0}^{n} C_{n}^{k} \left(\frac{k}{n}\right)^{2} X^{k} (1-X)^{n-k} = X^{2} + \frac{X(1-X)}{n}$$

$$- \sum_{k=0}^{n} C_{n}^{k} \left(X - \frac{k}{n} \right)^{2} X^{k} (1 - X)^{n-k} = \frac{X(1 - X)}{n}$$

En effet:

La première égalité est simplement une réécriture de $(1-X+X)^n$

Posons pour
$$t \in \mathbb{R}$$
, $\varphi_X(t) = \sum_{k=0}^n C_n^k e^{kt} X^k (1-X)^{n-k} = (e^t X + 1 - X)^n$

Ainsi,
$$\varphi_X$$
 est dérivable et $\varphi'_X(t) = \sum_{k=0}^n C_n^k k e^{kt} X^k (1-X)^{n-k} = n(e^t X + 1 - X)^{n-1} X e^t$

Avec t = 0, on a $\sum_{k=0}^{n} C_n^k k X^k (1 - X)^{n-k} = nX$ d'où la deuxième égalité.

En redérivant

$$\varphi''_{X}(t) = \sum_{k=0}^{n} C_{n}^{k} k^{2} e^{kt} X^{k} (1-X)^{n-k} = n(n-1)(e^{t}X+1-X)^{n-2} X^{2} e^{t} + nX(e^{t}X+1-X)^{n-1} e^{t}$$

et donc en t = 0:

$$\sum_{k=0}^{n} C_{n}^{k} k^{2} X^{k} (1-X)^{n-k} = n(n-1)X^{2} + nX \text{ d'où la troisième}$$

Enfin.

$$\sum_{k=0}^{n} C_{n}^{k} (X - \frac{k}{n})^{2} X^{k} (1 - X)^{n-k} = X^{2} \sum_{k=0}^{n} C_{n}^{k} X^{k} (1 - X)^{n-k}$$

$$-2X \sum_{k=0}^{n} C_{n}^{k} \frac{k}{n} X^{k} (1 - X)^{n-k} + \sum_{k=0}^{n} C_{n}^{k} \left(\frac{k}{n}\right)^{2} X^{k} (1 - X)^{n-k}$$

$$= X^{2} - 2X^{2} + X^{2} + \frac{X(1 - X)}{n} = \frac{X(1 - X)}{n}$$

Application au théorème :

Soit $f:[0;1] \to \mathbb{C}$ continue.

Montrons que la suite des polynômes de Bernstein convient pour le théorème, c'est-à-dire que $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \|f - B_n(f)\|_{\infty} \leq \varepsilon$

On note ω le module de continuité uniforme de f sur [0;1] (qui existe car f est continue sur [0;1] donc bornée)

Pour $x \in [0;1]$ et $n \in \mathbb{N}$, on a:

$$|f(x) - B_n(f)(x)| = |f(x) - \sum_{k=0}^n C_n^k f(\frac{k}{n}) x^k (1 - x)^{n-k}|$$

$$= \left| \sum_{k=0}^n C_n^k (f(x) - f(\frac{k}{n})) x^k (1 - x)^{n-k} \right| (\operatorname{car} \sum_{k=0}^n C_n^k x^k (1 - x)^{n-k} = 1)$$

$$\leq \sum_{k=0}^n C_n^k |f(x) - f(\frac{k}{n})| x^k (1 - x)^{n-k}$$

Soit
$$\alpha > 0$$
. On pose $I_1 = \{k \in [0, n], |x - \frac{k}{n}| \le \alpha\}, I_2 = [0, n] \setminus I_1$
Et $S_j = \sum_{k \in I_k} C_n^k (f(x) - f(\frac{k}{n})) x^k (1 - x)^{n-k} \quad (j = 1, 2)$

Majorons S_1 avec ω :

On a
$$|S_1| = \sum_{k \in I} C_n^k \omega(\alpha) x^k (1-x)^{n-k} \le \sum_{k=0}^n C_n^k \omega(\alpha) x^k (1-x)^{n-k} = \omega(\alpha)$$

Majorons S_2 :

Si
$$k \in I_2$$
, alors $\frac{\left|x - \frac{k}{n}\right|}{\alpha} \ge 1$, donc $\frac{\left|x - \frac{k}{n}\right|}{\alpha} \le \frac{\left(x - \frac{k}{n}\right)^2}{\alpha^2}$

Donc

$$|S_{2}| \leq \sum_{k \in I_{2}} C_{n}^{k} \frac{(x - \frac{k}{n})^{2}}{\alpha^{2}} 2||f||_{\infty} x^{k} (1 - x)^{n - k}$$

$$\leq \sum_{k=0}^{n} C_{n}^{k} \frac{(x - \frac{k}{n})^{2}}{\alpha^{2}} 2||f||_{\infty} x^{k} (1 - x)^{n - k}$$

$$\leq \frac{2||f||_{\infty}}{\alpha^{2}} \frac{x(1 - x)}{n} \leq \frac{||f||_{\infty}}{2\alpha^{2}n}$$

Car $\forall x \in [0,1], x(1-x) \le 1/4$

On a donc, pour tout $n \ge 1$ et $\alpha > 0$:

$$\forall x \in [0,1], |f(x) - B_n(f)(x)| \le \omega(\alpha) + \frac{\|f\|_{\infty}}{2\alpha^2 n}$$

Donc
$$||f - B_n(f)||_{\infty} \le \omega(\alpha) + \frac{||f||_{\infty}}{2\alpha^2 n}$$

Si on prend
$$\alpha = \frac{1}{n^{1/3}}$$
, on a pour tout $n \ge 1$: $||f - B_n(f)||_{\infty} \le \omega(n^{1/3}) + \frac{||f||_{\infty}}{2n^{1/3}} \longrightarrow 0$

Remarque:

Si f est positive, les $B_n(f)$ le sont aussi sur [0,1].

Si f est croissante ou convexe, il en est de même pour les $B_n(f)$.

Pour les polynômes trigonométriques :

- Si $f: \mathbb{R} \to \mathbb{C}$ est paire et continue, posons $g(x) = f(\operatorname{Arccos}(x))$ pour $x \in [-1,1]$ Alors $\forall t \in \mathbb{R}, f(t) = g(\cos t)$.

En effet, c'est vrai sur $[0,\pi]$, puis sur $[-\pi,\pi]$ par parité et enfin sur $\mathbb R$ par périodicité. $g:[-1,1] \to \mathbb C$ est continue, donc limite uniforme d'une suite $(P_n)_{n\in\mathbb N}$ de polynômes,

disons
$$P_n = \sum_{k=0}^{d(n)} a_k(n) X^k$$

Donc pour tout $t \in \mathbb{R}$, $|f(t) - P_n(\cos t)| = |g(x) - P_n(x)| \le ||g - P_n||_{\infty}$ en posant $x = \cos t$

Et $P_n(\cos t) = \sum_{k=0}^{d(n)} a_k(n) \cos^k t$ est un polynôme trigonométrique

Car pour tout
$$k \in [0, n]$$
, $\cos^k t = \left(\frac{e^{it} + e^{-it}}{2}\right)^k \in \text{Vect}(e_j, |j| \le k)$

- Si f est impaire dérivable en 0 et π ,

on a
$$f(\pi) = f(-\pi) = -f(\pi)$$
 donc $f(\pi) = f(-\pi) = 0$

On pose
$$h(t) = \begin{cases} \frac{f(t)}{\sin t} & \text{si } t \notin \pi \mathbb{Z}, \\ f'(0) & \text{si } t \in 2\pi \mathbb{Z}, \\ f'(\pi) & \text{si } t \in \pi + 2\pi \mathbb{Z}, \end{cases}$$

Comme $f(0) = f(\pi)$ et f est dérivable en 0 et π , h est continue sur \mathbb{R} , paire et 2π périodique. Il existe donc une suite $(Q_n)_{n\in\mathbb{N}}$ de polynômes trigonométriques telle que $\|h-Q_n\|_{\infty} \xrightarrow[n\to+\infty]{} 0$.

Donc
$$\forall t \in \mathbb{R}, |f(t) - \sin t \times Q_n(t)| = |\sin t| |h(t) - Q_n(t)| \le ||h - Q_n||_{\infty}$$

Or, $t \mapsto \sin t \times Q_n(t)$ est encore un polynôme trigonométrique.

Donc f est bien limite uniforme d'une suite de polynômes trigonométriques.

- Si f est impaire (pas forcément dérivable)

On a alors $f(0) = f(\pi) = 0$

Pour tout $\varepsilon > 0$, il existe $k_{\varepsilon} : \mathbb{R} \to \mathbb{C}$, continue, impaire et 2π -périodique dérivable en 0 et π telle que $\|k_{\varepsilon} - f\|_{\mathbb{H}} \le \varepsilon$.

On peut en effet, pour $\alpha \in]0,\pi[$ suffisamment petit, définir k par

Sur
$$[-\alpha, \alpha]$$
, k est affine telle que $k(\alpha) = f(\alpha)$ et $k(-\alpha) = f(-\alpha)$

Sur
$$[-\alpha + \pi, \alpha + \pi]$$
, k est affine telle que $k(\pi - \alpha) = f(\pi - \alpha)$, $k(\pi + \alpha) = f(\pi + \alpha)$

Et
$$k = f$$
 sur $[\alpha, -\alpha + \pi] \cup [\alpha + \pi, 2\pi - \alpha]$

On a ainsi
$$||f - k||_{\infty} = \max \left(\sup_{t \in [-\alpha, \alpha]} |f(t) - k(t)|, \sup_{t \in [\pi - \alpha, \pi + \alpha]} |f(t) - k(t)| \right)$$

Comme f est continue en 0 et π , on peut choisir $\alpha>0$ tel que les bornes supérieures soient inférieures à $\varepsilon/2$

Ensuite, on approche k à $\varepsilon/2$ près par un polynôme trigonométrique R, et on a finalement

$$||f - R||_{\infty} \le ||f - k||_{\infty} + ||k - R||_{\infty} \le 2\varepsilon/2 = \varepsilon$$

- Pour f quelconque, on la décompose en une somme d'une fonction paire et d'une fonction impaire (continues), on applique les points précédents à ces deux fonctions et la somme des deux polynômes trouvés convient