N-dimensional hypervolumes to study stability of complex ecosystems (Barros et al. 2016) - *Read in detail!*

Introduction

- Ecosystem components range from species/functional groups through to habitat types and structure
- Ecosystems are changing and we need to understand there responses
- Stability is multifaceted...
- Biodiversity-Ecosystem Functioning (BEF)
 - * Understanding how biodiversity maintains and promotes productivity
- Fewer studies have looked at perturbation-biodiversity
 - * Functional diversity can change across environment /disturbance gradients
 - * Relationship of ecosystem function and biodiversity

- Ecosystem stability is no easily summarised by a single metric

- * Using multiple components should provide better results...
- * Components often have temporal oscillations..
 - · In 2D these converge on a point...
 - in 3D (and n-dimensions) it becomes more complex ⇒ N-Dimensional Hypervolumes!

N-Dimensional Hypervolumes

- * These oscillations become a trajectory in n-dimensional space
- * A cloud of points...
- * If conditions are disturbed than the trajectory will change ⇒ new hypervolume
- * They can be used to test departure from a stable state
- * Also convergence on new stable state or return to old (i.e. different measure of stability can be tested)
- Choosing components (Choice of components depends on the kind of study)
 - * Stability of biodiversity at community scale
 - · Time series of species abundances
 - · Community weighted means (CWMs) and varience (CWVs) of functional traits
 - * Larger Scale
 - · Taxonomic functional traits
 - · Phylogenetic diversity metrics
 - * Ecosystem Mosaics
 - · Proportions of habitat patches
- The Framework!
 - Step 1 Choice of Components

- * Their example contructs n-dimensional hypervolumes in time-series of n-ecosystem traits at equilibrium.
- * My study will also look at space
- Step 2 Data Treatment and Hypervolume calculation
 - * Number of dimensions must be fixed to maintain comparability
 - * Need comparable units (centred and scaled)
 - * Not correlated!! (Look at PCAs, PCoAs etc to get around this?)
 - Try not to exceed 5-8 variables to avoid disjointed and holey hypervolumes
 - Hypervolume calculations follow a multi-dimensional kernal density estimator procedure. See Blonder et al. (2014)
- Step 3 Comparing hypervolumes and analysis of community changes
 - * Sufficiently large changes in environmental conditions should produce shifts in community structure. ⇒ These should be seen in the constructed hypervolumes...
 - * Three possible measures
 - Overall similarity ⇒ Overlap
 - Changes in mean values of components ⇒ Distance between centeroids
 - Changes in Variance ⇒ Changes in hypervolume size
- Step 4 Complementary metrics for more detailed analysis
 - * Hypervolume comparisons don't really tell you what changed so there is need for further analysis looking at the specific components used...
- Working Example
 - * Based on simulated data (Don't really understand this!)
 - * Habitats under climate change (CC) and land use change (LUC)
 - * calculated hypervolume every 15 years of simulation
 - * used actual abundances instead of relative not interested in dominance/structural changes.
 - · This also meant the differences between hypervolumes were bigger (easier to see)
 - * hypervolume overlap was significantly affected by CC & LUC
 - * hypervolumes on traits and on Plant Functional Diversity (PFDs)
 - * Trait hypervolumes tended to be smaller

Discussion

- Environmental changes impact biodiversity at many levels
- Need to measure contribution of different taxanomic, functional or landscape entities
- Analysing Magnitude of Change
 - * Size ⇒ Variance
 - * Mean ⇒ Position of centeroid
 - ∗ Similarity ⇒ Overlap

- N-dimensional hypervolumes do not summarise components as one metric but describe them as an n-dimensional cloud!
- Assessing type of change
 - * can be informative about what facets of an ecosystem were most affected by ecosystem perturbation
 - * complimentary measures are important though!
- Following changes in time
 - Since hypervolumes define different ecosystem structures they can be used to test all types of ecosystem stability
 - · Persistence ⇒ Time before change once perturbation starts
 - Resilience ⇒ Return to state after perturbation
 - · Resistance $R \Rightarrow$ Amount of change after perturbation
 - Variability ⇒ Variation before vs after perturbation
 - * Implications for ecosystem services
 - * Small overlaps may still indicate changes in ecosystem state. I think this study saw overlaps = 0 this is not as likely on real data!.
- Advantages of hypervolumes
 - * Ecosystems are made up of a multiplicity of components
 - * Allows for detection of finer changes
 - * negates problems with habitat mosaics and ecotone interactions
 - * Can be used to predict future responses and resilience to extreme events/perturbations

References

Barros, C., Thuiller, W., Georges, D., Boulangeat, I. & Münkemüller, T. (2016), 'N- dimensional hypervolumes to study stability of complex ecosystems', *Ecology Letters* **19**(7), 729–742.

URL: http://doi.wiley.com/10.1111/ele.12617

Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. (2014), 'The n -dimensional hypervolume', *Global Ecology and Biogeography* **23**(5), 595–609.

URL: http://doi.wiley.com/10.1111/geb.12146