Travaux Dirigés

MODULE M2103

2020-2021

Sommaire

TCP-IP (Adressage classique) - 1	3
TCP-IP (Adressage classique) – 2	13
Configuration de sous-réseaux	15
Planification de sous-réseaux et configuration d'adresses	15
TCP-IP (Adressage CIDR)	16
TCP-IP (Fragmentation)	18
TCP-IP (Décodage)	20
TCP-IP (Routage)	23
Aide-Mémoire	25

TCP-IP (Adressage classique) - 1

Position

Bit

Convertissez les nombres binaires donnés en nombres décimaux

Convertissez les nombres binaires donnés en nombres décimaux :								
Valeur		_	_			_	_	
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	1	0	0	0	0	1	0	0
Volor								
Valeur					_			
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	0	1	1	0	1	0	1	1
Valeur					_		_	
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	1	1	0	1	0	1	0	1
Valeur								
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	0	1	0	1	1	0	0	1
Valeur								
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0

www.uvsq.fr	Mars 2021	3

2. Effectuez les conversions suivantes de décimal en binaire

,								
Valeur décimale				10	6			
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	0	1	1	0	1	0	1	0
Valeur décimale				13	35			
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	1	0	0	0	0	1	1	1
Valeur décimale				21	6			
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	1	1	0	1	1	0	0	0
Valeur décimale				45	5			
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	0	0	1	0	1	1	0	1
Valeur décimale		_	_	93	3	_	_	
Exposant	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Position	128	64	32	16	8	4	2	1
Bit	0	1	0	1	1	1	0	1

www.uvsq.fr Mars 2021

3. Vous devez calculer l'adresse réseau, les adresses des hôtes et l'adresse de diffusion des réseaux donnés.

Adresse/préfixe donnés

178.8.2.193 /25

de

.<u>11</u>000001

Pour chaque ligne, entrez les valeurs du type d'adresse.

	Type d'adresse	Entrez le DERNIER octet en binaire	Entrez le DERNIER octet en notation décimale	Entrez l'adresse complète en notation décimale
-	Réseau	1000000	128	178.8.2.128
→	Diffusion	1111111	255	178.8.2.255
	Première adresse d'hôte utilisable	10000001	193	178.8.2.193
\vdash	Dernière adresse d'hôte utilisable	11111110	254	178.8.2.254

Adresse/préfixe donnés 142.200.21.108 /30

de

.01101100

Pour chaque ligne, entrez les valeurs du type d'adresse.

- 1				
	Type d'adresse	Entrez le DERNIER octet en binaire	Entrez le DERNIER octet en notation décimale	Entrez l'adresse complète en notation décimale
\mid	Réseau	01101100	108	142.200.21.108
ł	Diffusion	01101111	111	142.200.21.111
ł	Première adresse d'hôte utilisable	01101101	109	142.200.21.111
l	Dernière adresse d'hôte utilisable	01101110	110	142.200.21.110

Adresse/préfixe donnés

146.91.239.247 /20

de

<u>.1110</u>1111.11110111

Pour chaque ligne, entrez les valeurs du type d'adresse.

	Type d'adresse	Entrez le DERNIER octet en binaire	Entrez le DERNIER octet en notation décimale	Entrez l'adresse complète en notation décimale
 	Réseau	.11100000	224	146.91.224.0
→	Diffusion	.1110 <i>1111</i>	239	146.91.239.255
→	Première adresse d'hôte utilisable	.11100000	224	146.91.224.1
\vdash	Demière adresse d'hôte utilisable	.11101111	239	146.91.239.254

5 www.uvsq.fr Mars 2021

Adresse/préfixe donnés de

156.232.206.63 /17

<u>. 1</u> 1001110.00111111

Pour chaque ligne, entrez les valeurs du type d'adresse. Type d'adresse Entrez le DERNIER octet Entrez le DERNIER octet Entrez l'adresse complète en notation décimale en notation décimale en binaire 128 156.232.128.0 .10000000 Réseau .11111111 **255** Diffusion 156.232.255.255 Première adresse d'hôte **128** 156.232.128.1 .10000000 utilisable Demière adresse d'hôte **255** .11111111 156.232.255.254 utilisable

4. Pour chaque paire de masques et d'adresses d'hôte, vous devez déterminer l'adresse réseau correspondante.

		_	_	
Adresse d'hôte	10	38	99	22
Masque de sous-réseau	255	255	224	0
Adresse d'hôte en binaire	00001010	00100110	01100011	00010110
Masque de sous-réseau en binaire	11111111	11111111	11100000	00000000
Adresse réseau en binaire	00001010	00100110	01100000	0000000
Adresse réseau en décimale	<mark>10</mark>	<mark>38</mark>	<mark>96</mark>	0

Adresse d'hôte	10	101	195	222
Masque de sous-réseau	255	255	254	0
Adresse d'hôte en binaire	00001010	01100101	11000011	11011110
Masque de sous-réseau en binaire	11111111	11111111	111111110	00000000
Adresse réseau en binaire	00001010	01100101	11000000	00000000
Adresse réseau en décimale	10	<mark>101</mark>	194	0

Adresse d'hôte	10	132	33	185
Masque de sous-réseau	255	255	255	252
Adresse d'hôte en binaire	00001010	10000100	00100001	10111001
Masque de sous-réseau en binaire	11111111	11111111	11111111	11111100
Adresse réseau en binaire	00001010	10000100	00100001	<mark>10111001</mark>
Adresse réseau en décimale	<mark>10</mark>	<mark>132</mark>	<mark>33</mark>	<mark>184</mark>

5. Pour chaque paire de masques et d'adresses d'hôte, vous devez déterminer le nombre maximal d'hôtes pour le réseau donné

		_	_	_	
Adresse réseau	10	0	0	0	
Masque de sous-réseau	255	255	255	128	
Adresse réseau en binaire	00001010	00000000	00000000	00000000	
Masque de sous-réseau en binaire	11111111	11111111	11111111	10000000	
Nombre d'hôtes	2^7-2 = 126				
Nombre d'hôtes	2^7-2 = 126				

Adresse réseau	10	0	0	0	
Masque de sous-réseau	255	255	248	0	
Adresse réseau en binaire	00001010	00000000	00000000	00000000	
Masque de sous-réseau en binaire	11111111	11111111	11111000	00000000	
Nombre d'hôtes	2^11-2 = 2046				

		_		
Adresse réseau	10	0	0	0
Masque de sous-réseau	255	255	255	252
Adresse réseau en binaire	00001010	00000000	00000000	00000000
Masque de sous-réseau en binaire	11111111	11111111	11111111	11111100
Nombre d'hôtes	2^2-2 = 2			

6. Pour chaque paire de masques et d'adresses d'hôte, vous devez définir les hôtes et les adresses réseau et de diffusion.

Adresse réseau en décimale	10	139	148	0
Masque de sous-réseau en décimale	255	255	252	0
Adresse réseau en binaire	00001010	10001011	10010100	00000000
Masque de sous-réseau en binaire	11111111	11111111	11111100	00000000
Première adresse IP d'hôte utilisable en décimale	Premi <mark>10</mark> ictet	Deuxic <mark>139</mark> ctet	Troisi <mark>148</mark> ctet	Quatr <mark>1</mark> me octet
Dernière adresse IP d'hôte utilisable en décimale	Premi <mark>10</mark> ctet	Deuxid 139 ctet	Troisi 151 ctet	Qua 254 e octet
Adresse de diffusion en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Prochaine adresse réseau en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet

Adresse réseau en décimale	10	249	128	0
Masque de sous-réseau en décimale	255	255	128	0
Adresse réseau en binaire	00001010	11111001	10000000	00000000
Masque de sous-réseau en binaire	11111111	11111111	10000000	00000000
Première adresse IP d'hôte utilisable en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Dernière adresse IP d'hôte utilisable en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Adresse de diffusion en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Prochaine adresse réseau en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet

Adresse réseau en décimale	10	107	252	128
Masque de sous-réseau en décimale	255	255	255	128
Adresse réseau en binaire	00001010	01101011	11111100	10000000
Masque de sous-réseau en binaire	11111111	11111111	11111111	10000000
Première adresse IP d'hôte utilisable en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Dernière adresse IP d'hôte utilisable en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Adresse de diffusion en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet
Prochaine adresse réseau en décimale	Premier octet	Deuxième octet	Troisième octet	Quatrième octet

7. D'après la topologie illustrée et la liste d'adresses IP possibles, affectez une adresse IP et un masque de sous-réseau appropriés aux interfaces du routeur Router0 répondant aux conditions requises des hôtes de chaque réseau, tout en occasionnant le moins d'adresses IP inutilisées possible.

Adresse réseau	Nombre d'hôtes	Attribué au réseau
10.3.105.190/16	<mark>65 534</mark>	
10.0.1.186/23	510	Réseau C
10.0.10.14/27	30	
10.2.7.195/21	2 046	
10.0.2.72/24	<mark>254</mark>	Réseau B
10.0.4.31/26	62	Réseau A

8. Vous devez concevoir et appliquer un système d'adressage IP pour la topologie présentée dans le schéma de topologie suivant. On vous fourni un bloc d'adresses que vous devez diviser en sous-réseaux pour proposer un schéma d'adressage logique pour le réseau. Les interfaces des routeurs et des PCs pourront alors être configurés en respectant votre système d'adressage IP.

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Passerelle par défaut
R1	Fa0/1.20	192.168.1.65/27	255.255.255.224	S/O
Ki	S0/0/0	192.168.1.97/30	255.255.255.252	S/O
R2	Fa0/1.20	192.168.1.1/26	255.255.255.192	S/O
K2	S0/0/0	192.168.1.98/30	255.255.255.252	S/O
PC1	Carte réseau	192.168.1.66/27	255.255.255.224	
PC2	Carte réseau	192.168.1.2/26	255.255.255.192	

Tâche 1 : découpage en sous-réseaux de l'espace d'adressage

Étape 1 : examen des besoins du réseau

L'espace d'adressage 192.168.1.0/24 a été mis à votre disposition pour votre conception de réseau. Le réseau est constitué des segments suivants :

- Le réseau local connecté au routeur R1 a besoin d'adresses IP en nombre suffisant pour prendre en charge 15 hôtes (15 adresses + 1 adresse routeur = 16 <=2^5-2=30).
- Le réseau local connecté au routeur R2 a besoin d'adresses IP en nombre suffisant pour prendre en charge 30 hôtes (30 adresses + 1 adresse routeur = 31<=2⁶-2=62).
- La liaison entre le routeur R1 et le routeur R2 nécessite des adresses IP à chacune de ses
- extrémités (2 adresses = 2 <=2²-2=2).

Le plan doit disposer de <u>sous-réseaux de taille différente</u> et utiliser <u>les tailles de sous-</u> **réseaux les plus petites** pour s'ajuster au nombre approprié d'hôtes.

 Étape 2 : questions à prendre en considération lors de la conception de la conception de la combien de sous-réseaux ce réseau a-t-il besoin ? 	réseau <mark>3</mark>
Sous-réseau 1 • Sur combien de bits sera définie la partie HOST ID ?	5

• Quel est le masque de sous-réseau de ce réseau dans la notation en décimale à point ? 255.255.255.252 (1110 0000)

_	,	_
50	us-réseau	•,
uu	u5-1	_

- Quel est le masque de sous-réseau de ce réseau dans la notation en décimale à point ? 255.255.255.192 (1100 0000)

Sous-réseau 3

- Quel est le masque de sous-réseau de ce réseau dans la notation en décimale à point ? 255.255.252 (1111 1100)

Sous-réseau 1

	Octet 1	Octet2	Octet 3	Octet 4
@réseau binaire	1100 0000	1010 1000	0000 0001	0100 0000
Masque sous- réseau binaire	1111 1111	1111 1111	1111 1111	1110 0000
@réseau décimal	192	168	1	64
Masque sous- réseau décimal	255	255	255	252

Sous-réseau 2

	Octet 1	Octet2	Octet 3	Octet 4
@réseau binaire	1100 0000	1010 1000	0000 0001	0000 0000
Préfixe sous- réseau binaire	1111 1111	1111 1111	1111 1111	1100 0000
@réseau décimal	192	168	1	0
Préfixe sous- réseau décimal	255	255	255	192

Sous-réseau 3

	Octet 1	Octet2	Octet 3	Octet 4
@réseau binaire	1100 0000	1010 1000	0000 0001	0110 0000
Préfixe sous- réseau binaire	1111 1111	1111 1111	1111 1111	1111 1100
@réseau décimal	192	168	1	96

Préfixe sous-	255	255	255	252
réseau décimal				

Étape 3 : affectation des adresses de sous-réseau au schéma de topologie

1. Le sous-réseau au réseau raccordé à R1.

192.168.1.64/27

2. Le sous-réseau à la liaison entre R1 et R2.

192.168.1.96/30

3. Le sous-réseau au réseau raccordé à R2.

192.168.1.0/26

Tâche 2 : définition des adresses d'interface

Notez aussi les adresses à utiliser dans le tableau fourni sous le schéma de topologie !!!!

Attribuer les adresses appropriées aux interfaces des périphériques

1. l'interface du reseau local sur R1.	192.168.1.65/27	
2. Le PC1.	400 400 4 00/07	

3. L'interface du réseau étendu sur R1. 192.168.1.97/30

4. L'interface du réseau étendu sur R2. 192.168.1.98/30

5. L'interface du réseau local sur R2.

192.168.1.1/26

192.168.1.66/27

6. Le PC2.

192.168.1.2/26

TCP-IP (Adressage classique) - 2

Exercice 1

- 1. Quelles informations statiques sont à configurer dans une machine pour l'insérer dans un réseau TCP/IP raccordé à Internet ? @IP + Masque + passerelle
- 2. Convertir la représentation hexadécimale C22F1582 d'une adresse IP en sa représentation décimale.= C2.2F.15.82=194.47.21.130
- 3. Imaginons qu'on ait codé à l'origine la partie réseau des adresses de classe B sur 20 bits au lieu de 16. Combien de réseaux de classe B y aurait-il eu ? = 2^20=1 048 576

Exercice 2

- 1. Quelles sont les classes des adresses réseaux suivantes?
 - a) 192.18.97.39 (adresse IP de www.javasoft.com) => classe C
 - b) 138.96.64.15 (www.inria.fr) => classe B
 - c) 193.49.184.6 (www.u-picardie.fr) => classe C
 - d) 18.181.0.31 (www.mit.edu) => classe A
 - e) 226.192.60.40 => classe D
- 2. Pour chacune de ces classes, étant donné un réseau y appartenant, combien d'adresses de machines peuvent, a priori, être utilisées?
- 3. Un réseau sur l'internet utilise le masque de sous-réseau 255.255.240.0. Quel est le nombre maximal d'hôtes qu'il peut gérer ?
- 4. Soit une adresse IP de classe B décomposée en sous-réseaux de façon à disposer d'au moins 76 sous-réseaux. Combien d'ordinateurs peut-il y avoir par réseau ?

Exercice 3

Votre entreprise vient de se voir attribuer l'adresse IP 214.123.115.0. Vous devez créer 10 sous-réseaux distincts pour les 10 succursales de l'entreprise, à partir de cette adresse IP.

- 1. Quel masque de sous-réseau devez vous utiliser ? (donner le masque en notation décimal (ex: 255.255.0.0) ou en nombre de bits (ex: 255.255.0.0 → /16)
- 2. Combien d'adresses IP (machines ou routeurs) pourra recevoir chaque sous-réseau
- 3. Quelle est l'adresse de broadcast du 5ième sous-réseau utilisable?
- 4. Combien d'adresses IP distinctes est-il possible d'utiliser avec un tel masque, tous sous-réseaux possibles confondus?

Exercice 4

Un ordinateur a pour adresse IP « 193.222.8.98 » et le masque de sous-réseau associé est « 255.255.255.192 »

- 1. Quelle est la classe du réseau? (A, B, ou C)
- 2. Quelle est l'adresse du sous-réseau?
- 3. Quel est l'adresse de broadcast qui permet de diffuser les datagrammes sur ce réseau?

Il faut se connecter à un serveur d'adresse IP 193.222.8.171

- 4. Appartient-il au même sous réseau?
- 5. Si non, indiquer le mécanisme qui permet au paquet d'atteindre sa destination.

Exercice 5

Soient 3 stations IP connectées sur le même câble Ethernet :

@IP_A = 192.168.32.97 @IP_B = 192.168.32.65 @IP_C = 192.168.32.49

Aucune passerelle par défaut n'est configurée dans les stations.

1. Le masque de sous réseau est 255.255.255.128. La station A peut-elle communiquer avec la station B, avec la station C ? Justifier. Quelle est l'adresse de broadcast pour la station A, pour la station B, pour la station C ?

- 2. Le masque de sous réseau est 255.255.255.192. La station A peut-elle communiquer avec la station B, avec la station C ? Justifier. Quelle est l'adresse de broadcast pour la station A, pour la station B, pour la station C ?
- 3. Le masque de sous réseau est 255.255.255.224. La station A peut-elle communiquer avec la station B, avec la station C ? Justifier. Quelle est l'adresse de Broadcast pour la station A, pour la station B, pour la station C ?

Configuration de sous-réseaux

Planification de sous-réseaux et configuration d'adresses

Vous avez été chargé de mettre en œuvre la topologie suivante mais avec un nouveau modèle d'adressage IP. On vous a attribué le bloc d'adresses IP 192.168.12.0 /24. Vous devez configurer les réseaux existants et prévoir les évolutions futures.

Les attributions de sous-réseaux sont les suivantes :

- 1^{er} sous-réseau, réseau étendu WAN existant, liaison série point à point (2 adresses);
- 2^e sous-réseau futur réseau WAN, liaison série point à point (2 adresses);
- 3^e sous-réseau futur réseau WAN, liaison série point à point (2 adresses);
- 4º sous-réseau, réseau local existant du fournisseur de services Internet (ISP), jusqu'à 10 hôtes (R1-ISP <-> Eagle Serveur);
- 5^e sous-réseau, réseau local existant des participants (connecté au routeur R2-Central), jusqu'à 58 hôtes;
- 6e sous-réseau, futur réseau local des participants, jusqu'à 30 hôtes;
 =====
- Pour le serveur, configurez la deuxième adresse IP utilisable la plus élevée sur le sous-réseau LAN existant du fournisseur de services Internet.
- Pour l'interface Fa0/0 du routeur R1-ISP, configurez l'adresse IP utilisable la plus élevée sur le sous-réseau LAN existant du fournisseur de services Internet.
- Pour l'interface S0/0/0 du routeur R1-ISP, configurez l'adresse utilisable la plus élevée sur le sous-réseau WAN existant.

- Pour l'interface S0/0/0 du routeur R2-Central, utilisez l'adresse utilisable la plus basse sur le sous-réseau WAN existant.
- Pour l'interface Fa0/0 du routeur R2-Central, utilisez l'adresse utilisable la plus élevée sur le sous-réseau LAN existant des participants.
- Pour les hôtes 1A et 1B, utilisez les deux premières adresses IP (les deux adresses utilisables les plus basses) du sous-réseau LAN existant des participants.

Table d'adressage

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Passerelle par défaut
R1-ISP	Fa0/0			S/O
IXT-IOI	S0/0/0			S/O
R2-Central	Fa0/0			S/O
NZ-Gentral	S0/0/0			S/O
PC1A	Carte réseau			
PC1B	Carte réseau			
Eagle Server	Carte réseau			

TCP-IP (Adressage CIDR)

Exercice 1

Un grand nombre d'adresses IP consécutives sont disponibles; elles commencent à 198.16.0.0. Supposons que quatre organisations, A, B, C et D, réclament l'une après l'autre, respectivement 4000, 2000 (2^11), 4000 (2^12) et 8000 (2^13) adresses. Pour chacune des ces organisations, donnez les premières et dernières adresses IP assignées et le masque en utilisant la notation w.x.y.z/s.

Exercice 2

Un routeur vient de recevoir les nouvelles adresses IP suivantes : 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21 et 57.6.120.0/21. Si elles utilisent, toutes, la même ligne de sortie, peuvent elles être agrégées ? Si oui, jusqu'où ? Sinon, pourquoi ?

```
57.6.96.0/21 \rightarrow 57.6.0110\ 0000.0
57.6.104.0/21 \rightarrow 57.6.0110\ 1000.0
57.6.112.0/21 \rightarrow 57.6.0111\ 0000.0
57.6.120.0/21 \rightarrow 57.6.0111\ 1000.0
Route agrégée 57.6.96.0/19
```

Exercice 3

La plage d'adresses IP de 29.18.0.0 à 29.18.127.255 a été agrégée en 29.18.0.0/17 dans la table de routage d'un routeur. Un bloc de 1024 adresses, qui étaient jusque-là non assignées, de 29.18.60.0 à 29.18.63.255, est subitement affecté à un hôte sur une ligne de sortie différente de la table. Faut-il subdiviser l'adresse agrégée en ses blocs consécutifs, ajouter le nouveau bloc dans la table et voir s'il existe une autre possibilité d'agrégation ? Sinon, que peut-on faire à la place ?

```
Route agrégée 29.18.0.0/17 → 29.18.0000 0000.0 - 29.18.0111 1111.255
```

Nouvelle adresses assignées sur une ligne de sortie différente !! 29.18.60.0/22 → 29.18.0011 1100.0 - 29.18.0011 1111.255

Il faut donc subdiviser l'adresse agrégée en ses blocs consécutifs, ajouter le nouveau bloc dans la table et voir s'il existe une autre possibilité d'agrégation.

Exercice 4

Un routeur possède les entrées (CIDR) suivantes dans sa table de routage :

Adresse/masque	Prochain saut
135.46.56.0/22	Interface E0
135.46.60.0/22	Interface E1
192.53.40.0/23	Routeur R1
Par défaut	Routeur R2

Que fait le routeur s'il reçoit un paquet avec les adresses suivantes :

- a) 135.46.63.10 → il envoie le paquet à l'Interface E1
- b) 135.46.57.14 → il envoie le paquet à l'Interface E0
- c) 135.46.52.2 → il envoie le paquet à l'Interface R2
- d) 192.53.40.7 → il envoie le paquet à l'Interface R1
- e) 192.53.56.7 → il envoie le paquet à l'Interface E0

TCP-IP (Fragmentation)

Exercice 1

Un datagramme IP contenant 2000 octets de données est émis sur un réseau A de MTU = 4096.

En passant par un routeur R1, il atteint le réseau B de MTU = 1024 octets. Il passe ensuite par un routeur R2 pour atteindre un réseau C de MTU = 512 octets.

La structure de l'en-tête du datagramme dans le réseau A est présentée ci-dessous :

0		4	8	3 1	16	24	31
	4		5	0	0 ? ? ?=2020		
1234			<mark>34</mark>	x00	0		
	9 Protocole			Total de contrôle en-tête			
Adresse IP source							
	Adresse IP destination						

- a) Compléter le champ en-tête ci-dessus
- b) Indiquer la structure de l'en-tête des datagrammes dans les réseaux B et C. Le total de contrôle de l'en-tête n'est pas à calculer.

Exercice 2

Soit une ligne de communication reliant dans cet ordre : un hôte A, un routeur R1, un routeur R2 et un hôte B. Supposons qu'un message TCP contenant 900 octets de données et 20 octets d'en-tête soit remis au protocole IP sur l'hôte A pour transmission à l'hôte B. Indiquez la valeur des champs *LEN* (*Longueur totale*), *ID* (*Identification*), *DF*, *MF* et Fragment Offset de l'en-tête IP dans chaque paquet transmis sur les trois liaisons. On supposera que les tailles maximales de trames générées sur les liaisons entre A et R1, R1 et R2, R2 et B sont respectivement de :

- 1024 octets avec un en-tête de 14 octets inclus (A et R1),
- 512 octets avec un en-tête de 8 octets inclus (R1 et R2),
- 512 octets avec un en-tête de 12 octets inclus (R2 et B).

Exercice 3

Un datagramme IP utilisant l'option *Routage strict par la source* doit être fragmenté. Pensezvous que l'option est copiée dans chaque fragment ou qu'il suffit de la placer dans le premier fragment ? Justifier votre réponse.

Le bit copie indique comment le routeur traite les options pendant la fragmentation.

1→ Copie indique que l'option doit être recopiée dans tous les fragments

Donc il faut avoir la même information sur chaque fragment pour respecter le Routage strict.

Exercice 4

La plupart des algorithmes de réassemblage de datagrammes IP utilisent un temporisateur pour éviter qu'un fragment perdu n'occupe indéfiniment les tampons de réassemblage. Supposons qu'un datagramme soit découpé en 4 fragments. Les trois premiers fragments arrivent, mais le dernier est retardé. Finalement, le temporisateur expire et les trois fragments sont éliminés de la mémoire du récepteur. Un peu plus tard, le dernier fragment arrive. Quel traitement lui réserver ?

Le dernier fragment sera également éliminé de la mémoire du récepteur

TCP-IP (Décodage)

Exercice 1

1. Décoder la trame suivante:

00 40 05 13 65 80 00 40 05 13 65 7D 08 00 45 10 00 2C 00 11 00 00 40 06 60 EC 80 DE 0C 02 80 DE 0C 01 3F 09 00 15 0D 99 04 A9 00 00 01 60 02 08 00 25 06 00 00 02 04 05 B4 0D 0A

2. Décoder les trames Ethernet suivantes et en déduire le but de l'échange (les trames sont données sans préambule et sans CRC).

Message 1:

FF FF FF FF FF 08 00 20 02 45 9E 08 06 00 01 08 00 06 04 00 01 08 00 20 02 45 9E 81 68 FE 06 00 00 00 00 00 81 68 FE 05

Paquet ARP

Type de réseau N2: 0x00 01		Type de réseau N3: 0x08 00
LEN @ N2 : 0x06		Code opération : 0x00 01 (Requête)
@ Eth source: 0		8 00 20 02 45 9E
		@ IP source: 129.104.254.6
		@ Eth destination:
00 00 00 00 00		
@ IP destination: 129.104.254.5		

Message 2:

08 00 20 02 45 9E 08 00 20 07 0B 94 08 06 00 01 08 00 06 04 00 02 08 00 20 07 0B 94 81 68 FE 05 08 00 20 02 45 9E 81 68 FE 06

Paquet ARP

Type de réseau N2: 0x00 01		Type de réseau N3: 0x08 00	
LEN @ N2 : 0x06		Code opération : 0x00 02 (Réponse)	
	@ Eth source: 0	8 00 20 07 0B 94	
		@ IP source: 129.104.254.5	
		@ Eth destination:	
08 00 20 02 45 9E			
@ IP destination: 129.104.254.6			

Exercice 2

Un analyseur de réseau est disposé sur un réseau local Ethernet afin de permettre l'observation des trames circulant effectivement sur le support physique de communication. La structure du dispositif de mesure est la suivante :

On y voit deux réseaux Ethernet appartenant à la même organisation, interconnectés via un routeur A, ainsi qu'une connexion vers l'extérieur réalisée via le routeur B. Une trace a été obtenue par l'analyseur:

08 00 20 0a 70 66 08 00 20 0a ac 96 08 00 4f 00 00 7c 3f 86 00 00 fb 01 49 af c0 21 9f 06 84 e3 3d 05 07 27 28 84 e3 3c 20 c0 2c 41 12 c0 46 47 05 c0 21 9f 02 c0 21 9f 06 c0 46 47 06 c0 2c 41 1a 84 e3 3c 1e 84 e3 3d 87 00 00 00 aa 56 2f 00 00 00 29 36 8c 41 00 03 86 2b 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37

Durée de vie : 0xFB	Protocole: 0x01 (ICMP)	Total de contrôle en-tête : 0x49 AF			
	@ IP source: 192.33.159.6				
@ IP destination: 132.227.61.5					
07 27 28 84 e3 3c 20 c0 2c 41 12 c0 46 47 05 c0 21 9f 02 c0 21 9f 06 c0 46 47 06 c0 2c 4					
1a 84 e3 3c 1e 84 e3 3d 87 00 (40 octets)					

- Décoder les deux trames précédentes.
- Quel est le but de cet échange ? ICMP (Ping)
- Quelles sont les classes d'adressage IP utilisées sur les réseaux émetteur et destinataire? IPv4
- Quel est le type de message ICMP

Packet 1: Echo Request Packet 2: Echo Reply

TCP-IP (Routage)

1) Exploitation des tables de routage des postes et des routeurs

Un réseau est constitué de 3 segments Ethernet (L1, L2 et L3), de 3 routeurs IP (R1, R2 et R3), d'une liaison spécialisée (W1) et de 4 stations de travail (A, B, C et D), conformément au schéma ci-dessous

www.uvsq.fr L3 Mars 2021

Les passerelles par défaut des stations sont :

Station	Α	В	С	D
Passerelle par défaut	R1	-	R2	R3

Les tables de routage des routeurs sont:

R1			
Réseau	Routeur à		
cible	utiliser		
L1	Local		
L2	Local		
L3	R2		

R2				
Réseau	Routeur à			
cible	utiliser			
W1	local			
L2	local			
L1	R1			
L3	R3			

R3				
Réseau	Routeur à			
cible	utiliser			
W1	local			
L3	local			
L1	R2			
L2	R2			

Pour chacun des cas suivants, indiquer si la réponse du ping arrive et quelles trames sont générées sur quels réseaux. On précisera les Mac adresses source et cible de chaque trame (on ne représentera pas les trames ARP).

• D ping A

Le ping arrive. ICMP request et ICMP replay

-

• B ping A

B ping R2

R3 ping C

• R3 ping A

• A ping C

Aide-Mémoire

1. La trame Ethernet

64 bits	48 bits	48 bits	16 bits		32 bits
Preamble	Destination address	Source address	Туре	Data	CRC

- «preamble» détermine le début d'une trame ;
- «Destination address» détermine la destination de la trame ;
- «Source address» détermine l'expéditeur de la trame ;
- «Type» définit le type de contenu de la trame ; ainsi il est possible de déterminer quel protocole va utiliser le paquet reçu :

Туре	Utilisation
0800	IP
0805	X.25 niveau 3
0806	ARP
0807	XNS
6001 à 6006	DEC
8035	RARP
8098	Appletalk

- «Data»: les données brutes de la trame à passer au protocole déterminé par le champ «type»
- «CRC»: le checksum (contrôle de parité) de la trame permettant d'assurer son intégrité.

2. Le datagramme IP

L'en-tête IP est aligné sur des mots de 32 bits. Sa longueur est donc multiple de 4 octets. Par défaut, sans option, l'en-tête IP fait 20 octets de long.

4 bits	4 bits	8 bits	16 bits		
Version	IHL	TOS	Total length		
	Identif	ication	Flags Fragment offset		
T	TTL Protocol			Header checksum	
	Source address				
Destination address					
Options					
Padding					
Data					

• «Version» indique le format de l'en-tête. Ce champ sert à l'identification de la version courante du protocole. La version décrite ici (et aujourd'hui utilisée) porte le n°4;

- «IHL (*IP Header Length*)» est la longueur de l'en-tête IP exprimée en mots de 32 bits (5 au minimum) ;
- «TOS (*Type Of Service*)» définit le type de service à appliquer au paquet en fonction de certains paramètres comme le délai de transit, la sécurité. Codé sur 8 bits, il comprend les champs suivants :

	I)	D	T	R	0	0	
Champ	Valeur							
« P (Precedence) » (3 bits)	111	contr	ôle d	lu ré	seat	ı		
décrit la priorité	110	contr	ôle i	nter	-rése	aux		
	101	CRIT	IC/I	ECP				
	100	flash	prio	ritai	re			
	011	flash						
	010	imme	édiat					
	001	prior	itaire	9				
	000	routii	ne					
« D (Delay) » décrit le	0	norm	al					
souhait en matière de temps	1	privil	légie	r les	che	min	s à	temps de traversée faible
de traversée								
« T (Throughput) » décrit le	0	norm	al					
souhait en matière de débit	1	privil	légie	r les	che	min	s à	débit élevé
« R (Reliability) » décrit le	0	norm	al					
souhait en termes de fiabilité	1	privil	légie	r les	che	min	s à	fiabilité élevée

- «Total Length» est la longueur totale du datagramme, en-tête et données inclus, exprimée en octets;
- «Identification» est une valeur fournie par l'émetteur aidant au réassemblage des différents fragments du datagramme. Le seul usage de ce champ est donc de permettre à une entité réceptrice de reconnaître les datagrammes qui appartiennent à un même datagramme initial et qui doivent donc faire l'objet d'un réassemblage;
- «Flags» est utilisé par la fragmentation. Il est composé de deux indicateurs : DF (Don't Fragment) pour interdire la fragmentation et de MF (More Fragment) pour signifier des fragments à suivre :

- «Fragment Offset» indique la position relative du fragment dans le datagramme initial, le déplacement étant donné en unités de 64 bits;
- «Time To Live» représente une indication de la limite supérieure du temps de vie d'un datagramme. Cette valeur est comprise entre 0 et 255;
- «Protocol» indique le protocole (de niveau supérieur) utilisé pour le champ de données du datagramme :

Code	Abréviation	Nom du protocole	Référence
(déc)		-	
1	ICMP	Internet Control Message Protocol	[RFC792]
2	IGMP	Internet Group Management Protocol	[RFC1112]
3	GGP	Gateway-to-Gateway Protocol	[RFC823]
4	IP	IP in IP (encapsulation)	
5	ST	Stream	[RFC1190]
6	TCP	Transmission Control Protocol	[RFC793]
7	UCL	UCL	
8	EGP	Exterior Gateway Protocol	[RFC888]
9	IGP	any private Interior Gateway Protocol	
10	BBN-RCC-MON	BBN RCC Monitoring	
11	NVP-II	Network Voice Protocol	[RFC741]
12	PUP	PUP	
13	ARGUS	ARGUS	
14	EMCON	EMCON	
15	XNET	Cross Net Debugger	
16	CHAOS	Chaos	
17	UDP	User Datagram Protocol	[RFC768]
36	XTP	XTP	
37	DDP	Datagram Delivery Protocol	
45	IDRP	Inter-Domain Routing Protocol	
46	RSVP	Reservation Protocol	
47	GRE	General Routing Encapsulation	
48	MHRP	Mobile Host Routing Protocol	
54	NHR	NBMA Next Hop Resolution Protocol	

- «Header Checksum» est une zone de contrôle d'erreur portant uniquement sur l'entête du datagramme;
- «Source Address » est l'adresse IP de la source du datagramme ;
- «Destination Address» est l'adresse IP de destination du datagramme ;
- «Options» sert à des fonctions de contrôle utiles dans certaines situations (estampillage temporel, sécurité, routage particulier, etc.). Le champ est donc de longueur variable. Il est constitué d'une succession d'options élémentaires, également de longueurs variables. Les options sont codées sur le principe TLV (type, longueur, valeur). La longueur indique la taille complète de l'option en octets. Les options possibles sont :

Type (déc.)	Option	Objet	
Ô	End of Options List (EOOL)	Utilisée si la fin des options ne coïncide pas avec la fin de l'en-tête.	
1	No Operation (NOP)	Pour aligner le début de l'option suivante sur 32 bits.	
130	Security (SEC)	Permet aux hôtes d'indiquer des restrictions liées à la sécurité (ex : non classifié, confidentiel, restreint, top secret, etc.).	
131	Loose Source Route (LSR)	Permet à la source du datagramme de fournir des informations à utiliser par les passerelles pour le routage du datagramme vers sa destination et d'enregistrer l'information concernant la route (série d'adresses Internet); un routeur ou une route peut utiliser n'importe quelle route avec un nombre quelconque de passerelles intermédiaires pour atteindre la prochaine adresse indiquée dans la route.	
68	Time Stamp (TS)	Enregistrement de l'heure de chaque passage de passerelle.	
133	Extended Security (E-SEC)		
7	Record Route (RR)	Permet d'enregistrer la route d'un datagramme (en fait, l'adresse de chaque passerelle traversée).	
136	Stream ID (SID)	Permet de véhiculer un identifieur de flux ; utilisée à des fins de débogage et de mesure.	
137	Strict Source Route (SSR)	Idem LSR, si ce n'est qu'un routeur ou un hôte doit envoyer directement le datagramme à la prochaine adresse indiquée dans la route.	

A titre d'exemple, la structure de l'option RR est :

Champs Type: 7

«Padding» permet d'aligner l'en-tête sur 32 bits.

3. Le paquet ARP (Address Resolution Protocol) / RARP (Reverse ARP)

Le protocole ARP permet à une machine d'obtenir l'adresse Ethernet (physique) d'une autre machine, connaissant son adresse IP. Le protocole RARP fait l'inverse. Un paquet ARP (ou RARP) est structuré de la façon suivante :

161	bits	16 bits
Hard	ware	Protocol
Hlen	Plen	Operation
	Sender HA	(bytes 0–3)
Sender HA (bytes 4–5)		Sender IA (bytes 0–1)
Sender IA	(bytes 2–3)	Target HA (bytes 0-1)
	Target HA	(bytes 2–5)
	Target IA	(bytes 0–3)

- « Hardware» définit le type d'interface pour laquelle l'émetteur cherche une réponse ;
- « Protocol» définit le type de protocole pour lequel une requête a été émise ;
- «Hlen» définit la taille de l'adresse physique en octets ;
- «Plen» définit la taille de l'adresse au niveau protocolaire ;
- «Operation» décrit le type d'opération à effectuer par le récepteur ;

Exemple: 00 01 pour une requête;

00 02 pour une réponse ;

- «Sender HA» définit l'adresse Ethernet (physique) de l'émetteur ;
- «Sender IA» définit l'adresse de niveau protocolaire (IP) demandé de l'émetteur
- «Target HA» définit l'adresse Ethernet du récepteur ;
- «Target IA» définit l'adresse de niveau protocolaire demandé du récepteur.

4. Le message ICMP (Internet Control Message Protocol)

Le protocole ICMP est utilisé lorsqu'un imprévu se produit ou pour tester Internet. Les messages

ICMP ont tous en commun le même format pour le premier mot de 32 bits.

8 bits	8 bits	16 bits
Tyne	Code	Checksum
rype	Code	Checksum

Type	Message	Objet
0	Echo Reply	Réponse en écho.
3	Destination Unreachable	Destination inaccessible.
4	Source Quench	Interruption de la source.
5	Redirect	Redirection, changement de route.
8	Echo	Demande d'écho.
11	Time Exceeded	Temps de vie d'un datagramme dépassé.
12	Parameter Problem	Datagramme mal formé.
13	Timestamp	Demande de date d'estampillage.
14	Timestamp Reply	Réponse à une demande d'estampillage.
15	Information Request	Demande d'information.
16	Information Reply	Réponse à une demande d'information.
17	Address Mask Request	Demande de masque d'adresse.
18	Address Mask Reply	Réponse à une demande de masque d'adresse.

A titre d'exemple, l'échange de messages Echo et Echo Reply fonctionne de la manière suivante. L'adresse source dans un message Echo (type=8) sera l'adresse destinataire du message Echo Reply (type=0). Pour constituer un message Echo Reply, les adresses source et destination sont simplement inversées. Les données reçues dans un message Echo doivent être retournées dans le message Echo Reply. Deux champs du message, *Identifier* et *Sequence Number*, sont utilisés par l'émetteur de «l'écho» pour mettre en correspondance les réponses avec les requêtes. Par exemple, l'identificateur peut correspondre à un port TCP ou UDP pour identifier une session et le numéro de séquence être incrémenté pour chaque requête d'écho émise. Le répondeur retourne les mêmes valeurs dans sa réponse.

8 bits	8 bits	16 bits	
8 ou 0	0	Checksum	
Identifier		Sequence Number	
Optional Datas			