Project 2: Presentation STAT GU4243 Applied Data Science

Cynthia Rush Columbia University

February 28, 2018

PROJECT DESCRIPTION

- ▶ Carry out model assessment and selection for image classification.
- ► Evaluate different modeling/analysis strategies and decide what's best.
- ▶ Present sound evidence in the form of model assessment, validation, and comparison.
- ▶ Communicate your decision and supporting evidence clearly and convincingly in an accessible fashion.

Cynthia Rush · GR5206 2/9

Model Comparison

Baseline Model

- ▶ Use provided SIFT descriptors as features.
- ▶ Implement a gradient boosting machine on decision stumps.

Task 1 will be implementing the above strategy and tuning it correctly

Proposed Strategy

- ▶ Consider better features and better models
- ▶ Implement structured comparison to establish the value added by new features and new methods

Cynthia Rush · GR5206 3/9

Submission of Project 3

- ▶ A well-documented GitHub repo (following starter codes instruction).
- ▶ A main.rmd that carries out the project.

main.rmd uses feature.R.

- (1) A file of feature processing codes (feature.R):
 - ► Takes as input folder of images
 - ▶ Outputs a folder of "feature" objects with features for the images
 - ► Format is RData, or other R readable file
 - ▶ Make sure you keep track of the file names of the images.

Cynthia Rush · GR5206 4/9

Submission of Project 3

main.rmd uses train.R

- (2) A file of training codes (train.R):
 - ▶ Inputs a path for training image features
 - ▶ Inputs a file containing training image names and labels
 - ▶ Outputs trained classifiers (in the form of RData, or other R readable file); One for the baseline model and one for the new model.

Note that model training should include any necessary parameter tuning.

main.rmd uses test.R

- (3) A file of testing codes (test.R):
 - ▶ Inputs a path for test image features
 - ▶ Inputs a trained classifier from the output of train.R

▶ Output predicted labels

Cynthia Rush · GR5206 5 / 9

PROJECT 3 SUBMISSION

On Monday

- ▶ We'll fork all project repos to save a time-stamped version of your code
- ➤ You'll be given 1850 test images (no label) and SIFT features
- ► Run your feature.R (or feature.py, whatever)
- ▶ Run test.R to give test image prediction
- ▶ Time limit 30 mins
- ▶ We'll ask you to submit processed test image features (that can be used in your train.R and test.R files) and test image classifications using advanced and baseline models

train.R is prepared before Monday

- ▶ Can use any methods to generate features
- ▶ Want base and advanced model
- ► Training model can take > 30 mins (you won't do this again in class)

▶ Include any tuning step here

Cynthia Rush · GR5206 6 / 9

SUBMISSION OF PROJECT 3

You should also prepare a presentation (12 min/group) for this project

- ► Methodology details
 - ► How did you perform model selection?
 - ▶ How did you perform model assessment?
- ► Model details
 - ▶ What features are you using?
 - What classifier are you using?
 - ▶ What do you estimate to be its accuracy?
- ▶ Performance comparison between baseline and new model
 - ► Time/cost analysis.

Some more info

- ▶ Not everyone has to be 'on stage' during the presentation.
- ▶ Can use Powerpoint or other tools.
- ▶ I will let you know the order of the presentations on Sunday.

Cynthia Rush · GR5206 7/9

EVALUATION OF PROJECT 3

Ease of reproducibility by the client (5 points)

- ▶ Are codes for the proposed methods well-annotated and documented?
- ► Can the analysis be re-run nearly automatically using the 'main.rmd'?

Level of reproducibility (5 points)

- ► Can the client derive the same evaluation conclusion as presented in the team's final presentation?
- ▶ How close are the reported performances (presentation and online) to the reproduced performances?

Cynthia Rush · GR5206 8 / 9

EVALUATION OF PROJECT 3

Portability of proposed strategies (5 points)

- ▶ Computational speed for feature extraction and model training.
- ▶ Computational speed for prediction.
- ▶ Memory use for model training and prediction.

Presentation and organization (5 points)

- ▶ Is the the intuition behind the proposed strategies convincing?
- ▶ Is it supported by adequate and appropriate evidence?
- ▶ Is the GitHub organized and prepared so that it's easy to understand the proposed strategies and their advantages and limitations?

Cynthia Rush · GR5206 9 / 9