3.1 Alternate Variable Types and Interactions

Dr. Bean - Stat 5100

1 Why Interactions?

Example (HO 3.1.1): $Y = \text{cycles}, X_1 = \text{charge_rate}, X_2 = \text{temperature}$

All models we have discussed in this class assume that the effects of the explanatory variables are additive.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

In other words, the effect of each explanatory variable can be considered **separate** from all other explanatory variables.

What if the **real** effect of X_1 on Y actually depends on X_2 as well?

What would it mean for the effect of charge_rate on cycles to depend on temperature?

- We "know": higher charge_rate → lower cycles, and higher temperature → higher cycles
- But maybe: higher charge_rate and higher temperature → much higher cycles
- "much" higher here: significantly more than could be attributed to the sum of the effects of charge_rate and temperature only (often called synergy)

Whenever the effect of an explanatory variable (X_k) on the response (Y) depends on the values of other explantory variables, you have an **interaction effect**.

Metaphor: The bachelorette - the relationship of each potential suitor (X_k) with the bachelorette (Y) is partially depends upon the other potential suitors.

How is an interaction effect different from multicollinearity?

Muticollinearity only has to do with relationships among the X_k and has nothing to do with Y. Interactions have everything to do with the relationship between the X_k 's and Y.

Define an interaction term as a new predictor variable:

$$X_{3} = X_{1} \cdot X_{2}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \varepsilon_{i}$$

$$= \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i1}X_{i2} + \varepsilon_{i}$$

Note: sometimes β_{12} instead of β_3

1.1 How to interpret interaction terms?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

- if X_1 increases by 1 unit, then we expect an average change of $\beta_1 + \beta_3 X_2$ in Y
 - the effect of X_1 on Y depends on X_2
 - if the interaction term is non-zero, we *cannot* separate the effect of X_1 from the effect of X_2 . We must consider them jointly (unless X_1 or $X_2 = 0$).

1.2 Best Practices

- Don't check all possible interactions. Only include an interaction term in a linear model if its output is interpretable.
- Include all lower-ordered terms that compose an interaction term, regardless of the significance of the lower interaction term.
 - Prevents forcing lower ordered coefficients to zero.
 - Maintains a flexible response surface and facilitates interpretation.

1.3 Things to remember about interactions:

- Unless the X_k are standardized, the interaction term $X_3 = X_1 * X_2$ is likely to be collinear with either X_1 or X_2 .
 - This will ruin inference for the "lower order" terms, but not the interaction term.
- Two-way interactions are often interpretable, but higher order interactions (ex: $X_4 = X_1 * X_2 * X_3$) become difficult to interpret.
 - A plot of residuals from a non-interaction model against the potential interaction term may help to determine inclusion (if a trend is apparent).
- If your problem is best solved by including multiple, high-ordered, interaction terms, then regression trees/random forests is likely a better approach (more in Module 4).

1.4 Polynomial Predictors

- Up to this point, we have limited ourselves to modeling variables that share a linear relationship.
- If a variable X_k shares a quadratic, or higher-order (often called "curvilinear") relationship with Y, then that means that the effect of X_k on Y depends upon itself (i.e. interacts with itself).

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \beta_4 X_1^2 + \beta_5 X_2^2 + \varepsilon$$

- Handle higher-ordered terms the same way we handle other interaction terms:
 - include lower-order terms
 - standardize to reduce multicollinearity

- coefficient interpretations important: – if X_1 increases by 1 unit (and X_2 held constant), then we expect an average change in Y of $\beta_1 + \beta_3 X_2 + \beta_4 \cdot (2X_1 + 1)$

For those who have taken calculus, you may see a relationship between one unit increase in X_k with the $\frac{\partial Y}{\partial X_k}$.

2 Alternate Variable Types

Up to this point we have only focused on quantitative variables:

- Values are represented as numbers where number order and magnitude matters.
- Quantiative variables can be either:
 - Continuous: can take on any value (theoretically infinite number of decimal places) within a range.
 - Discrete: can only take on a discrete (countable) set of values.

We now wish to also consider qualitative variables

- Cannot be measured/ordered on a numerical scale.
- SAS can't recognize words/letters in a regression model, and it will treat a set of numbered factored levels as quantitative (and thus order the levels).
- Because of this, we use **dummy/indicator variables** to include qualitative predictors in a model.

2.1 Dummy Variables

Consider the following student demographic variables (qualitative in bold): (age, height, **Utah** residency status, weight, major college)

Use an indicator variable to include residency status in model

$$X = I_{\text{resident}} = \begin{cases} 1 & \text{if student is resident of Utah} \\ 0 & \text{otherwise} \end{cases}$$

Things get a little more complicated for major college as we have to create multiple dummy variables to represent a single categorical variable:

$$X_1 = I_{\text{College of Science}} = \begin{cases} 1 & \text{if student's major is within the college of science} \\ 0 & \text{otherwise} \end{cases}$$

$$X_2 = I_{\text{College of Engineering}}$$

$$\vdots$$

$$X_7 = I_{\text{School of Business}}$$

If there are eight colleges in the University, why would I only have seven dummy variables?

Values of 0 for all seven indicator variables means the person is a member of the eighth college. This college would be referred to as the base class on which all things are compared.

3 Example (See HO 3.1.1)

 $Y = \text{months}, X_1 = \text{size}, X_2 = \text{type of firm}$

Note that
$$X_2 = I_{\text{[firm = stock]}} = \begin{cases} 1 & \text{if firm = stock} \\ 0 & \text{otherwise} \end{cases}$$

Model with only qualitative predictor:

$$Y = \beta_0 + \beta_2 X_2 + \varepsilon$$

- equivalent to a two-sample t-test
- special case of one-way ANOVA model (proc glm, STAT 5200)

$$Y_{i,j} = \mu_i + \epsilon_{i,j}, \qquad i = 1, 2; j = 1, \dots, n_i$$

$$= \mu + \alpha_i + \epsilon_{i,j}, \qquad \sum_{i=1}^{2} \alpha_i = 0$$

$$\epsilon_{i,j} \quad iid \quad N(0, \sigma^2)$$

Model with both qualitative and quantitative predictor:

• Additive

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Interaction

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

Note how the additive and interaction models differ: (in the size (X_1) vs. months (Y) relationship for each firm type)

- Additive:
 - stock $(X_2 = 1)$: $Y = (\beta_0 + \beta_2) + \beta_1 X_1 + \varepsilon$
 - mutual $(X_2 = 0)$: $Y = \beta_0 + \beta_1 X_1 + \varepsilon$
- Interaction

- stock
$$(X_2 = 1)$$
: $Y = (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X_1 + \varepsilon$
- mutual $(X_2 = 0)$: $Y = \beta_0 + \beta_1 X_1 + \varepsilon$

Note that the additive model results in two parallel lines, where the difference between stock and mutual firms are separated by a constant distance β_2 . Whereas in the interaction model, both the slope and the intercept are different.

3.1 Note on interactions between qualitative predictors.

- possibly very interesting
- numerically much easier in [two-way] ANOVA setting (proc glm, STAT 5200), as ANOVA doesn't require the use of dummy variables.