... previamente en IIC2133

Problemas de satisfacción de restricciones

Definición

Un problema de satisfacción de restricciones o constraint satisfaction problem (CSP) es una tripleta (X, D, C) tal que

- $X = \{x_1, \dots, x_n\}$ es un conjunto de variables
- $D = \{D_1, \dots, D_n\}$ es un conjunto de dominios respectivos
- $C = \{C_1, \dots, C_m\}$ es un conjunto de restricciones

donde cada restricción involucra un subconjunto de variables de X. Una solución es una asignación de las variables en sus dominios tal que se satisfacen todas las restricciones.

Observemos que

- No necesariamente las variables son del mismo dominio
- Una restricción C_i puede involucrar 1, 2 o más variables de X

¿Es fácil resolver los CSP?

Las 8 reinas y el sudoku son ejemplos de la clase de problemas CSP

¿Qué tan rápido pueden resolverse los problemas de esta clase?

Existe un problema central en computación que puede ayudarnos

Definición

El problema de decisión SAT toma como input una fórmula en lógica proposicional $\varphi \in \mathcal{L}(P)$ y responde si φ es satisfacible

Ejemplo

Para el conjunto $P = \{p\}$

- $\varphi_1 = p \rightarrow \neg p$ es satifacible, pues $\sigma(\varphi_1) = 1$ para la valuación $\sigma(p) = 0$
- $\varphi_2 = p \land \neg p$ no es satifacible, pues no existe valuación que la haga verdadera

¿Es fácil resolver los CSP?

Ahora, para $\varphi \in \mathcal{L}(P)$, podemos interpretar la pregunta

como un CSP donde

- X = P, conjunto de variables proposicionales
- $D = \{B \dots, B\} \text{ con } B = \{0, 1\}$
- Restricción de que el valor de verdad de φ sea 1 al evaluar los valores asignados a cada variable

Si tuviéramos una forma eficiente de resolver un CSP, podríamos usarla para resolver SAT

; Es fácil resolver los CSP?

Teorema

El problema de decisión SAT es NP-completo

Los problemas NP-completos son considerados difíciles

- Es un problema abierto saber si se pueden resolver de manera eficiente
- Además, todo problema NP-completo sirve para resolver otro problema NP-completo

Con esto, los CSP servirían para resolver cualquier problema NP-completo

Conclusión: los CSP son difíciles

SAT

- En teoría de la complejidad computacional, el Problema de satisfacibilidad booleana (también llamado SAT) fue el primer problema identificado como perteneciente a la clase de complejidad NP-completo.
- Su NP-completitud fue demostrada por Stephen Cook en 1971 (el Teorema de Cook).1 Hasta entonces el concepto de problema NPcompleto no había sido definido.
- Cook recibió el Premio Turing en 1982

Backtracking

La estrategia de backtracking se basa en el siguiente principio

- 1. Realizar una asignación de la variable x_k cuando ya se han asignado x_1, \ldots, x_{k-1}
- 2. Se verifica si la nueva asignación **parcial** $x_1, \ldots, x_{k-1}, x_k$ puede terminar en una solución al problema
- 3. Si no es así, nos retractamos y deshacemos la asignación de x_k

El paso de retractarse se conoce como backtrack

- Permite descartar tuplas que violan alguna restricción
- Lo hacemos sin necesidad de conocer la tupla completa
- Nos ahorramos revisar $|D_{k+1}| \times \cdots \times |D_n|$ tuplas

Backtracking es igual o más rápido que la fuerza bruta

Backtraking

- El término "backtrack" fue introducido por el matemático D. H. Lehmer (1905 – 1991) en los 1950s.
- Es mucho más rápido que el ataque por fuerza bruta.
- Depende de "funciones" del usuario, que definen el CSP. Es una metaheurística, que a diferencia de otras, garantiza que encontrará todas las soluciones de un problema finito en un tiempo limitado.

Backtracking II

Clase 16

IIC 2133 - Sección 2

Prof. Mario Droguett

Sumario

Introducción

Un ejemplo

Extensiones de Backtracking

Cierre

A continuación, un algoritmo para determinar si una asignación parcial de las 8 reinas puede dar lugar a una solución válida

A continuación, un algoritmo para determinar si una asignación parcial de las 8 reinas puede dar lugar a una solución válida

```
input: Arreglo T[0...7],
           indice 0 < i < 8
  output: true ssi hay solución
  Queens(T, i):
     if i = 8: return true
   for v = 0...7:
2
         if Check(T, i, v):
3
             T[i] \leftarrow v
             if Queens(T, i+1):
                return true
6
     return false
7
```

A continuación, un algoritmo para determinar si una asignación parcial de las 8 reinas puede dar lugar a una solución válida

```
input: Arreglo T[0...7],
                                                input: Arreglo T[0...7],
           indice 0 < i < 8
                                                         índices 0 \le i, i \le 7
  output: true ssi hay solución
                                                output: false ssi es ilegal
  Queens(T, i):
                                                Check(T, i, v):
     if i = 8: return true
                                                    for j = 0 ... i - 1:
     for v = 0...7:
2
                                                       if v = T[i]:
                                              2
         if Check(T, i, v):
3
                                                           return false
                                              3
             T[i] \leftarrow v
                                                       if |(v-T[j])/(i-j)| = 1:
                                              4
             if Queens(T, i+1):
                                                           return false
                                              5
                 return true
6
                                                    return true
                                              6
     return false
7
```

6

7

A continuación, un algoritmo para determinar si una asignación parcial de las 8 reinas puede dar lugar a una solución válida

```
input: Arreglo T[0...7],
                                                input: Arreglo T[0...7],
           indice 0 < i < 8
                                                         índices 0 \le i, i \le 7
  output: true ssi hay solución
                                                output: false ssi es ilegal
  Queens(T, i):
                                                Check(T, i, v):
     if i = 8: return true
                                                   for i = 0 ... i - 1:
     for v = 0...7:
2
                                                       if v = T[i]:
                                              2
         if Check(T, i, v):
3
                                                           return false
                                              3
             T[i] \leftarrow v
                                                       if |(v-T[j])/(i-j)| = 1:
             if Queens(T, i+1):
                                                           return false
                                              5
                 return true
                                                    return true
                                              6
     return false
```

¿Cómo podemos modificar el algoritmo para obtener una solución?

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

■ En un conjunto de n variables $X = \{x_1, \ldots, x_n\}$

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

- En un conjunto de *n* variables $X = \{x_1, \dots, x_n\}$
- con valores posibles en dominios $D = \{D_1, \dots, D_n\}$

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

- En un conjunto de *n* variables $X = \{x_1, ..., x_n\}$
- con valores posibles en dominios $D = \{D_1, \ldots, D_n\}$
- tenemos $|D_1| \times |D_2| \times \cdots \times |D_n|$ tuplas posibles

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

- En un conjunto de *n* variables $X = \{x_1, ..., x_n\}$
- con valores posibles en dominios $D = \{D_1, \dots, D_n\}$
- tenemos $|D_1| \times |D_2| \times \cdots \times |D_n|$ tuplas posibles

Luego, en el caso particular de que $|D_i| = K$ para todo i,

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

- En un conjunto de *n* variables $X = \{x_1, ..., x_n\}$
- con valores posibles en dominios $D = \{D_1, \ldots, D_n\}$
- tenemos $|D_1| \times |D_2| \times \cdots \times |D_n|$ tuplas posibles

Luego, en el caso particular de que $|D_i| = K$ para todo i,

revisar todas las tuplas es $\mathcal{O}(K^n)$

La complejidad de las posibles soluciones para CSP cumplen,

La complejidad de las posibles soluciones para CSP cumplen,

■ la estrategia de fuerza bruta revisa todas las tuplas

La complejidad de las posibles soluciones para CSP cumplen,

■ la estrategia de fuerza bruta revisa todas las tuplas

 $\mathcal{O}(K^n)$

La complejidad de las posibles soluciones para CSP cumplen,

■ la estrategia de fuerza bruta revisa **todas las tuplas**

- $\mathcal{O}(K^n)$
- el backtracking puede revisar menos tuplas, pero sigue siendo proporcional

La complejidad de las posibles soluciones para CSP cumplen,

- lacksquare la estrategia de fuerza bruta revisa **todas las tuplas** $\mathcal{O}(K^n)$
- \blacksquare el backtracking puede revisar menos tuplas, pero sigue siendo proporcional $\mathcal{O}(\mathcal{K}^n)$

La complejidad de las posibles soluciones para CSP cumplen,

- lacktriangle la estrategia de fuerza bruta revisa **todas las tuplas** $\mathcal{O}(K^n)$
- \blacksquare el backtracking puede revisar menos tuplas, pero sigue siendo proporcional $\mathcal{O}(K^n)$

Es decir, asintóticamente estas estrategias tienen la misma complejidad

La complejidad de las posibles soluciones para CSP cumplen,

- lacktriangle la estrategia de fuerza bruta revisa **todas las tuplas** $\mathcal{O}(K^n)$
- \blacksquare el backtracking puede revisar menos tuplas, pero sigue siendo proporcional $\mathcal{O}(K^n)$

Es decir, asintóticamente estas estrategias tienen la misma complejidad

¿Cuál es más rápido en la práctica?

La complejidad de las posibles soluciones para CSP cumplen,

- lacktriangle la estrategia de fuerza bruta revisa **todas las tuplas** $\mathcal{O}(K^n)$
- \blacksquare el backtracking puede revisar menos tuplas, pero sigue siendo proporcional $\mathcal{O}(K^n)$

Es decir, asintóticamente estas estrategias tienen la misma complejidad

¿Cuál es más rápido en la práctica?

No olvidar: Backtracking es igual o más rápido que la fuerza bruta

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

Cada posible asignación genera un camino

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

- Cada posible asignación genera un camino
- Las nuevas asignaciones abren nuevos caminos

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

- Cada posible asignación genera un camino
- Las nuevas asignaciones abren nuevos caminos
- A la colección de todas estas alternativas le llamamos grafo implícito

Otra interpretación del backtracking

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

- Cada posible asignación genera un camino
- Las nuevas asignaciones abren nuevos caminos
- A la colección de todas estas alternativas le llamamos grafo implícito

El ejemplo por excelencia para visualizar el grafo implícito es el **problema de recorrer un laberinto**

Supongamos que nos interesa salir de un laberinto dado que estamos en Θ

Supongamos que nos interesa salir de un laberinto dado que estamos en Θ

Podemos resolver este problema con backtracking

Planteamos el problema como un CSP

Variables?

- Variables?
- Dominios?

- Variables?
- Dominios?
- Restricciones?

- Variables?
- Dominios?
- Restricciones?
- Qué define el éxito?

Planteamos el problema como un CSP

- Variables?
- Dominios?
- Restricciones?
- Qué define el éxito?

Caracterizamos por Θ la posición actual

En cada nueva posición Θ solo podemos elegir dar un paso en las direcciones libres y distintas de aquella de la cual venimos

Debemos hacer backtrack cuando llegamos a un camino sin salida: solo muros y celdas ya visitadas

No hay más opciones: ¿hasta dónde nos arrepentimos con el backtrack?

Sabemos que ir al norte no funcionó. Probamos otra opción yendo al sur.

En este caso, logramos llegar a una solución que encuentra la salida

Le agregamos etiquetas a las posiciones, de modo que sabemos cuáles hemos visitado (visited). Todas comienzan como nonvisited y la salida se marca como exit

```
input: Conjunto de variables sin asignar X, posición x, dominios D,
            restricciones R
   isSolvable(X, x, D, R):
      if x = exit: return true
1
      if x = visited: return false
2
      x \leftarrow visited
3
      for v \in \{N, E, S, W\}:
4
          if x + v \neq wall:
5
              x \leftarrow x + v
6
              if isSolvable(X, x, D, R):
                  return true
8
      x \leftarrow nonvisited
9
       return false
10
```

Hay varios problemas clásicos que se resuelven mediante backtracking

Recorrido del caballo de ajedrez (Knight's tour problem)

- Recorrido del caballo de ajedrez (Knight's tour problem)
- Problema de la mochila (capacidad versus número de items)

- Recorrido del caballo de ajedrez (Knight's tour problem)
- Problema de la mochila (capacidad versus número de items)
- Balance de carga

- Recorrido del caballo de ajedrez (Knight's tour problem)
- Problema de la mochila (capacidad versus número de items)
- Balance de carga
- Coloreo de mapas (Sudoku es un caso particular)

Hay varios problemas clásicos que se resuelven mediante backtracking

- Recorrido del caballo de ajedrez (Knight's tour problem)
- Problema de la mochila (capacidad versus número de items)
- Balance de carga
- Coloreo de mapas (Sudoku es un caso particular)

En general, puzzles NP-completos podemos atacarlos con alguna idea de backtracking

☐ Identificar pseudocódigo base para backtracking y sus partes

- ☐ Identificar pseudocódigo base para backtracking y sus partes
- ☐ Aplicar las ideas de backtracking para resolver algunos problemas

- ☐ Identificar pseudocódigo base para backtracking y sus partes
- ☐ Aplicar las ideas de backtracking para resolver algunos problemas
- ☐ Identificar mejoras de desempeño para backtracking

Sumario

Introducción

Un ejemplo

Extensiones de Backtracking

Cierre

Ejercicio (I2 P4 - 2022-2)

Para asegurar la conectividad del trasporte en el extremo sur del país existen tramos en los cuales se utilizan barcazas para llevar vehículos (autos particulares y camiones) entre dos puntos que no tienen conectividad por tierra. La capacidad de la barcaza se define en función de los metros lineales de vehículos que puede acomodar (4 filas de vehículos de máximo 15 metros cada fila son 60 metros lineales de capacidad máxima) y el peso máximo total que puede transportar (por ejemplo 240.000 kilos de carga). Así una barcaza B se define como

(B.n_filas, B.m_por_fila, B.max_carga).

Los vehículos V que están a la espera de transporte están en una fila y tienen determinado su largo y peso (V.largo, V.peso) expresados en metros y kilogramos.

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

Denotaremos por w_i y ℓ_i el peso y largo del auto i-ésimo.

■ Variables $X = \{x_1, ..., x_n\}$, una para cada auto indicando si se sube o no a la barcaza

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

- Variables $X = \{x_1, ..., x_n\}$, una para cada auto indicando si se sube o no a la barcaza
- lacksquare Dominios idénticos para cada variable: $\{0,1\}$, donde 1 indica que sí se sube

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

- Variables $X = \{x_1, ..., x_n\}$, una para cada auto indicando si se sube o no a la barcaza
- \blacksquare Dominios idénticos para cada variable: $\{0,1\}$, donde 1 indica que sí se sube
- Restricciones

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

- Variables $X = \{x_1, ..., x_n\}$, una para cada auto indicando si se sube o no a la barcaza
- Dominios idénticos para cada variable: $\{0,1\}$, donde 1 indica que sí se sube
- Restricciones
 - Peso máximo: W = B.max_carga tal que

$$\sum_{i=1}^n x_i \ w_i \le W$$

Ejercicio (12 P4 - 2022-2)

(a) [1 pto.] Identifique las Variables, Dominios y Restricciones del problema.

Denotaremos por w_i y ℓ_i el peso y largo del auto i-ésimo.

- Variables $X = \{x_1, ..., x_n\}$, una para cada auto indicando si se sube o no a la barcaza
- Dominios idénticos para cada variable: $\{0,1\}$, donde 1 indica que sí se sube
- Restricciones
 - Peso máximo: W = B.max_carga tal que

$$\sum_{i=1}^n x_i w_i \leq W$$

• Largo máximo: $L = (B.n_filas) \cdot (B.m_por_fila)$ tal que

$$\sum_{i=1}^n x_i \, \ell_i \leq L$$

Ejercicio (12 P4 - 2022-2)

(b) [3 ptos.] Diseñe un algoritmo para definir qué vehículos de la fila transportar de modo de maximizar la cantidad de vehículos sin superar la capacidad de la barcaza (en metros lineales totales y la carga máxima de la misma). No considere la capacidad de cada fila de la barcaza, sino la capacidad total.

Ejercicio (12 P4 - 2022-2) Supondremos que

Ejercicio (12 P4 - 2022-2)

Supondremos que

X[0...n-1] es el arreglo para guardar los valores binarios

Ejercicio (12 P4 - 2022-2)

- X[0...n-1] es el arreglo para guardar los valores binarios
- Y[0...n-1] es el arreglo para guardar la asignación óptimo, inicializado con ceros

Ejercicio (12 P4 - 2022-2)

- X[0...n-1] es el arreglo para guardar los valores binarios
- Y[0...n-1] es el arreglo para guardar la asignación óptimo, inicializado con ceros
- \blacksquare #(X) entrega el número de autos asignados en X

Ejercicio (12 P4 - 2022-2)

- X[0...n-1] es el arreglo para guardar los valores binarios
- Y[0...n-1] es el arreglo para guardar la asignación óptimo, inicializado con ceros
- $\blacksquare \#(X)$ entrega el número de autos asignados en X
- $\ell(i)$ entrega el largo del auto i

Ejercicio (12 P4 - 2022-2)

- X[0...n-1] es el arreglo para guardar los valores binarios
- Y[0...n-1] es el arreglo para guardar la asignación óptimo, inicializado con ceros
- #(X) entrega el número de autos asignados en X
- $\ell(i)$ entrega el largo del auto i
- $\mathbf{w}(i)$ entrega el peso del auto i

```
Ejercicio (12 P4 - 2022-2)
input : X[0...n-1] arreglo, L largo permitido,
          W peso permitido, i índice a asignar en X
Backtrack (X, L, W, i):
   if i = n:
        if \#(X) > \#(Y):
            Y \leftarrow \text{copia de } X
    else:
       for j \in \{0, 1\}:
            if asignar X[i] \leftarrow j no supera restricciones :
                X[i] \leftarrow i
                Backtrack(X, L-j \cdot \ell(i), W-j \cdot w(i), i+1)
```

```
Ejercicio (12 P4 - 2022-2)
input : X[0...n-1] arreglo, L largo permitido,
         W peso permitido, i índice a asignar en X
Backtrack (X, L, W, i):
   if i = n:
       if \#(X) > \#(Y):
           Y \leftarrow \text{copia de } X
   else:
       for j \in \{0, 1\}:
           if asignar X[i] \leftarrow j no supera restricciones:
               X[i] \leftarrow i
               Backtrack(X, L-j \cdot \ell(i), W-j \cdot w(i), i+1)
El algoritmo se llama con Backtrack(X, L, W, 0) y una vez que termina,
Y contiene la asignación óptima.
```

Sumario

Introducción

Jn ejemplo

Extensiones de Backtracking

Cierre

Consideremos ahora el problema de determinar **todas** las soluciones a un CSP

Consideremos ahora el problema de determinar **todas** las soluciones a un CSP

Nos interesan las soluciones explícitamente

Consideremos ahora el problema de determinar **todas** las soluciones a un CSP

- Nos interesan las soluciones explícitamente
- O solo queremos contarlas

Consideremos ahora el problema de determinar **todas** las soluciones a un CSP

- Nos interesan las soluciones explícitamente
- O solo queremos contarlas

En ambos casos, necesitamos que el algoritmo **no se detenga** al encontrar la primera solución

Encontrar todas las soluciones

```
input: Conjunto de variables sin asignar X, dominios D,
            restricciones R
  isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
          if x = v no rompe R:
5
              x \leftarrow v
              if isSolvable(X - \{x\}, D, R):
                   return true
7
              x \leftarrow \emptyset
      return false
g
```

¿Cómo modificar el algoritmo genérico para encontrar todas las soluciones?

Encontrar todas las soluciones

```
input: Conjunto de variables sin asignar X, dominios D,
            restricciones R
  isSolvableAll(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
          if x = v no rompe R:
5
              x \leftarrow v
              if isSolvableAll(X - \{x\}, D, R):
6
                   Se marca x \leftarrow v como solución
7
              x \leftarrow \emptyset
      return false
9
```

Incluso en este escenario, Backtracking es mejor que fuerza bruta

Ahora, nos interesa poder informar mejor al Backtracking

Ahora, nos interesa poder informar mejor al Backtracking

 Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo
- \blacksquare Puede haber *mejores* elementos de D_i para elegir primero

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo
- \blacksquare Puede haber *mejores* elementos de D_i para elegir primero

Estos casos nos permiten proponer las siguientes mejoras que detallaremos

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo
- \blacksquare Puede haber *mejores* elementos de D_i para elegir primero

Estos casos nos permiten proponer las siguientes mejoras que detallaremos

Podas

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo
- \blacksquare Puede haber *mejores* elementos de D_i para elegir primero

Estos casos nos permiten proponer las siguientes mejoras que detallaremos

- Podas
- Propagación

Ahora, nos interesa poder informar mejor al Backtracking

- Gracias a las características del problema, sabemos que hay caminos que ya no es necesario revisar
- El dominio para x_i quizás no es D_i completo
- \blacksquare Puede haber *mejores* elementos de D_i para elegir primero

Estos casos nos permiten proponer las siguientes mejoras que detallaremos

- Podas
- Propagación
- Heurísticas

Backtracking es capaz de determinar si una asignación puede terminar en solución

Backtracking es capaz de determinar si una asignación puede terminar en solución

■ Las soluciones inviables se descartan según las restricciones R del CSP

Backtracking es capaz de determinar si una asignación puede terminar en solución

- Las soluciones inviables se descartan según las restricciones R del CSP
- Requiere llamados recursivos

Backtracking es capaz de determinar si una asignación puede terminar en solución

- Las soluciones inviables se descartan según las restricciones R del CSP
- Requiere llamados recursivos
- Posiblemente, muchos llamados

Backtracking es capaz de determinar si una asignación puede terminar en solución

- Las soluciones inviables se descartan según las restricciones R del CSP
- Requiere llamados recursivos
- Posiblemente, muchos llamados

¿Podemos hacerlo mejor?

Backtracking es capaz de determinar si una asignación puede terminar en solución

- Las soluciones inviables se descartan según las restricciones R del CSP
- Requiere llamados recursivos
- Posiblemente, muchos llamados

¿Podemos hacerlo mejor?

Agregaremos nuevas restricciones que se deducen de las iniciales

Llamaremos podas a estas nuevas restricciones y se revisan junto a las originales

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
8
               x \leftarrow \emptyset
      return false
9
```

Llamaremos podas a estas nuevas restricciones y se revisan junto a las originales

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
               x \leftarrow \emptyset
8
      return false
9
```

Llamaremos podas a estas nuevas restricciones y se revisan junto a las originales

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
               x \leftarrow \emptyset
8
      return false
9
```

Pueden ser más costosas de checkear, pero vale la pena en la práctica

Dominios

Consideremos el siguiente tablero de Sudoku parcialmente completado

Dominios

Si asignamos el valor 1 a la posición (0,0), ¿cambió el dominio válido para alguna variable?

1						
						9
	7				6	8
					1	4
			3			2
		1		5	3	7
	5					3
				9		5

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

Existen restricciones que invalidan ciertos valores de D_i

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

- Existen restricciones que invalidan ciertos valores de D_i
- Backtracking clásico los revisa igual

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

- Existen restricciones que invalidan ciertos valores de D_i
- Backtracking clásico los revisa igual
- Esas soluciones parciales nunca serán válidas

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

- Existen restricciones que invalidan ciertos valores de D_i
- Backtracking clásico los revisa igual
- Esas soluciones parciales nunca serán válidas

¿Podemos hacerlo mejor?

Backtracking chequea todos los valores posibles en el dominio D_i de la variable x_i

- Existen restricciones que invalidan ciertos valores de D_i
- Backtracking clásico los revisa igual
- Esas soluciones parciales nunca serán válidas

¿Podemos hacerlo mejor?

Cambiaremos los dominios de las demás variables luego de una asignación

Llamaremos propagación a la acción de modificar dominios luego de una asignación

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
8
               x \leftarrow \emptyset
      return false
9
```

Llamaremos propagación a la acción de modificar dominios luego de una asignación

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v, propagar
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
               x \leftarrow \emptyset, propagar
8
      return false
9
```

Llamaremos propagación a la acción de modificar dominios luego de una asignación

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v, propagar
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
               x \leftarrow \emptyset, propagar
8
      return false
9
```

Ojo al deshacer asignaciones, pues hay que reestablecer dominios propagados

Consideremos el siguiente tablero de Sudoku parcialmente completado: ¿por qué celda partimos llenando?

Consideremos el siguiente tablero de Sudoku parcialmente completado: ¿por qué celda partimos llenando?

Nos interesa minimizar la posibilidad de fracasar

¿Será mejor la (0,8)?

1						
						9
	7				6	8
					1	4
			3			2
		1		5	3	7
	5					3
				9		5

¿Ahora cuál sería razonable escoger?

					1
					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
			9		5

¿Ahora cuál sería razonable escoger?

					1
					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
					6
			9		5

Backtracking chequea los valores válidos en el dominio D_i de la variable x_i en un orden arbitrario

Backtracking chequea los valores válidos en el dominio D_i de la variable x_i en un orden arbitrario

No solo puede afectar el orden en que se asignan valores

Backtracking chequea los valores válidos en el dominio D_i de la variable x_i en un orden arbitrario

- No solo puede afectar el orden en que se asignan valores
- También puede afectar el orden en que se itera sobre las variables disponibles

Backtracking chequea los valores válidos en el dominio D_i de la variable x_i en un orden arbitrario

- No solo puede afectar el orden en que se asignan valores
- También puede afectar el orden en que se itera sobre las variables disponibles

De hecho, si dispusiéramos de un oráculo que nos dice el mejor orden de asignación, el problema se vuelve **lineal**!

Backtracking chequea los valores válidos en el dominio D_i de la variable x_i en un orden arbitrario

- No solo puede afectar el orden en que se asignan valores
- También puede afectar el orden en que se itera sobre las variables disponibles

De hecho, si dispusiéramos de un oráculo que nos dice el mejor orden de asignación, el problema se vuelve **lineal**!

Guiaremos la búsqueda según algunos criterios (falibles)

Llamaremos heurísticas a las estrategias para catalogar variables y valores según *qué tan buenos son*

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{alguna variable de } X
2
      for v \in D_x:
3
           if x = v no rompe R:
               x \leftarrow v
5
               if isSolvable(X - \{x\}, D, R):
6
                    return true
7
8
               x \leftarrow \emptyset
      return false
9
```

Llamaremos heurísticas a las estrategias para catalogar variables y valores según *qué tan buenos son*

```
isSolvable(X, D, R):

if X = \emptyset: return true

x \leftarrow \text{la mejor variable de } X

for v \in D_x de mejor a peor:

if x = v no rompe R:

x \leftarrow v

if isSolvable(X - \{x\}, D, R):

return true

x \leftarrow \emptyset

return false
```

Llamaremos heurísticas a las estrategias para catalogar variables y valores según *qué tan buenos son*

```
isSolvable(X, D, R):

if X = \emptyset: return true

x \leftarrow \text{la mejor variable de } X

for v \in D_x de mejor a peor:

if x = v no rompe R:

x \leftarrow v

if isSolvable(X - \{x\}, D, R):

return true

x \leftarrow \emptyset

return false
```

Las heurísticas tratan de aproximar la realidad, pueden equivocarse

Posible heurística: partir por la variable con dominio más pequeño

					1
					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
					16
			9		5

Posible heurística: partir por el valor con menos apariciones

4			2				
8						1	
7		4					
325							
3 2				5			
35	8						2
1					3		
9		5					
6							

Backtracking mejorado

Podemos incorporar estas mejoras según convenga en un problema particular

```
isSolvable(X, D, R):
      if X = \emptyset: return true
1
      x \leftarrow \text{la mejor variable de } X
2
      for v \in D_x de mejor a peor :
3
           if x = v no rompe R:
               x \leftarrow v, propagar
5
               if isSolvable(X - \{x\}, D, R):
6
                   return true
7
8
               x \leftarrow \emptyset, propagar
      return false
9
```

Sumario

Introducción

Un ejemplo

Extensiones de Backtracking

Cierre

☐ Identificar pseudocódigo base para backtracking y sus partes

- ☐ Identificar pseudocódigo base para backtracking y sus partes
- ☐ Aplicar las ideas de backtracking para resolver algunos problemas

- ☐ Identificar pseudocódigo base para backtracking y sus partes
- ☐ Aplicar las ideas de backtracking para resolver algunos problemas
- ☐ Identificar mejoras de desempeño para backtracking