Agrégation Interne

Agrégation interne 1991, épreuve 2

1 Énoncé

Première Partie - Résolution d'une équation différentielle

Soit l'équation différentielle

$$3(x^2 + x)y'' + (8x + 3)y' + 2y = 0.$$
 (E0)

dans laquelle y désigne une fonction inconnue de la variable réelle x.

- 1. Rechercher pour (E0) une solution développable en série entière autour de 0 et vérifiant la condition y(0) = 1. On précisera l'intervalle I sur lequel la fonction f obtenue est solution de (E0).
- 2. Exprimer f à l'aide des fonctions usuelles. On remarquera que f est la restriction à I d'une fonction $x \mapsto (1+x)^{\alpha}$ pour un choix convenable de α .
- 3. En exploitant les résultats précédents, déterminer toutes les solutions de (E0). On en donnera l'expression au moyen des fonctions usuelles.

Deuxième partie - Comparaison d'une série et d'une intégrale

Dans cette partie, $(u_n)_{n\in\mathbb{N}}$ désigne une suite de nombres complexes et $(S_n)_{n\in\mathbb{N}}$ désigne la suite de ses sommes partielles :

$$S_0 = 0$$
, $\forall n \ge 1$, $S_n = u_0 + u_1 + \dots + u_{n-1}$.

On suppose dans les questions II. 1°) à II 4°) que $\sum_{n=0}^{+\infty} u_n$ converge.

1. Prouver que, si une suite $(a_n)_{n\in\mathbb{N}}$ de nombres complexes est convergente. alors le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} \frac{a_n z^n}{n!}$ est $+\infty$.

En déduire que, pour tout $x \in \mathbb{R}$,

$$\sum_{n=0}^{+\infty} \frac{u_n x^n}{n!} \text{ et } \sum_{n=0}^{+\infty} \frac{S_n x^n}{n!}$$

convergent.

2. On pose, pour tout $x \in \mathbb{R}$, $B(x) = e^{-x} \sum_{n=0}^{+\infty} \frac{S_n x^n}{n!}$. Justifier la dérivabilité de la fonction B et prouver que l'on a

$$B(x) = \int_0^x e^{-t} \sum_{n=0}^{+\infty} \frac{u_n t^n}{n!} dt.$$

3. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes, convergente et de limite L. Prouver que l'on a

$$\lim_{x \to +\infty} \left[e^{-x} \sum_{n=0}^{+\infty} \frac{a_n x^n}{n!} \right] = L.$$

- (a) Dans le cas L = 0 d'abord.
- (b) Etendre la propriété au cas L quelconque.
- 4. Prouver l'égalité

$$\sum_{n=0}^{+\infty} u_n = \int_0^{\infty} e^{-t} \sum_{n=0}^{+\infty} \frac{u_n t^n}{n!} dt.$$

5. On suppose, dans cette question, la série $\sum_{n=0}^{+\infty} u_n$ divergente. Prouver que l'intégrale $\int_0^{\infty} e^{-t} \sum_{n=0}^{+\infty} \frac{u_n t^n}{n!} dt$ peut cependant avoir un sens. On pourra utiliser à cet effet une suite géométrique. La suite du problème consiste à montrer par l'étude d'un exemple que, lorsqu'on connaît une solution d'une équation différentielle sous forme d'une série entière :

$$x \mapsto \sum_{n=0}^{+\infty} a_n x^n$$

admettant un certain rayon de convergence R, il peut se produire que, pour certaines valeurs de x supérieures à R, l'intégrale $\int_0^\infty e^{-t} \sum_{n=0}^{+\infty} \frac{a_n x^n t^n}{n!} dt$ converge et fournisse un prolongement de la solution initialement obtenue.

Troisième partie

Soit l'équation différentielle

$$3(x^{2} + x)y'' + (7x + 2)y' + y = 0,$$
(E)

dans laquelle y désigne une fonction numérique inconnue de la variable réelle x.

1. Soit $x_0 > 0$ et soit $(y_0, y_1) \in \mathbb{R}^2$ quelconques. Justifier l'existence et l'unicité d'une solution f de l'équation (E) sur l'intervalle $]0, +\infty[$, vérifiant les conditions

$$f(x_0) = y_0, \quad f'(x_0) = y_1.$$

- 2. Rechercher pour (E) une solution développable en série entière autour de 0, et telle que y(0) = 1. On notera $F(x) = \sum_{n=0}^{+\infty} a_n x^n$ la solution obtenue, dont on précisera le rayon de convergence.
- 3. On pose pour tout x réel $G(x) = \sum_{n=0}^{+\infty} \frac{a_n x^n}{n!}$. Légitimer la définition de G et vérifier que G est solution sur \mathbb{R} de l'équation différentielle

$$3xy'' + (3x+2)y' + y = 0.$$
 (E1)

4. Prouver que l'on a, pour tout $x \in [-1, 1]$,

$$F\left(x\right) = \int_{0}^{+\infty} e^{-t} G\left(xt\right) dt.$$

Quatrième partie. - Etude d'une suite de fonctions

1. Montrer que l'application N, de \mathbb{R}^2 vers \mathbb{R} , définie par

$$\forall (X,Y) \in \mathbb{R}^2, \quad N(X,Y) = \left(X^2 + \frac{1}{2}Y^2\right)^{\frac{1}{2}}$$

est une norme sur \mathbb{R}^2 .

Dans toute la suite, si V=(X,Y) est un élément de \mathbb{R}^2 , on utilisera les notations $N\left(X,Y\right)=\|V\|$ ou $N\left(X,Y\right)=\|(X,Y)\|$.

2. A tout réel t non nul, on associe l'endomorphisme L_t de \mathbb{R}^2 dont la matrice relativement à la base canonique est donnée par

$$A\left(t\right) = \left(\begin{array}{cc} -\frac{2}{3t} & \frac{1}{4} \\ 1 & 0 \end{array}\right).$$

Soit k un réel strictement supérieur à $\frac{1}{\sqrt{2}}$. Montrer qu'il existe un réel t_0 strictement positif tel que

$$\forall t \ge t_0, \quad \forall (X, Y) \in \mathbb{R}^2, \quad ||L_t(X, Y)|| \le k ||(X, Y)||.$$

Dans les questions suivantes, k et t_0 sont fixés ainsi.

3. Soit $V_0 = (a, b)$ un élément de \mathbb{R}^2 . On lui associe la suite des fonctions $(Z_n)_{n \in \mathbb{N}}$, définies sur l'intervalle $[t_0, +\infty[$ et à valeurs dans \mathbb{R}^2 , par les relations suivantes :

$$\forall t \in [t_0, +\infty[, Z_0(t) = V_0; \forall n \in \mathbb{N}, Z_n = (X_n, Y_n),$$

$$\forall n \in \mathbb{N}, \forall t \in [t_0, +\infty[, X_{n+1}(t) = a + \int_{t_0}^t \left[-\frac{2}{3\lambda} X_n(\lambda) + \frac{1}{4} Y_n(\lambda) \right] d\lambda,$$

$$Y_{n+1}(t) = b + \int_{t_0}^t X_n(\lambda) d\lambda.$$

Prouver que $\forall t \geq t_0$,

$$||Z_1(t) - Z_0(t)|| \le k(t - t_0) ||V_0||$$

et que

$$\forall n \geq 1, \quad \forall t \geq t_0, \quad \|Z_{n+1}(t) - Z_n(t)\| \leq k \int_{t_0}^t \|Z_n(\lambda) - Z_{n-1}(\lambda)\| d\lambda.$$

4. En déduire que, $\forall t \geq t_0, \forall p \in \mathbb{N}, \forall n \in \mathbb{N}, n > p$, on a

$$||Z_n(t) - Z_p(t)|| \le ||V_0|| \sum_{m=p+1}^n \frac{k^m (t - t_0)^m}{m!}$$

et que la suite $(Z_n)_{n\in\mathbb{N}}$ converge uniformément sur tout intervalle $[t_0,t_1]$ pour $t_1\in]t_0,+\infty[$, on désigne par Z sa limite.

Cinquième partie

1. Effectuer dans (E1) le changement de fonction inconnue

$$y(x) = z(x) \exp\left(-\frac{x}{2}\right).$$

On appellera (E2) l'équation différentielle obtenue, dont z est la fonction inconnue.

2. Soit l'équation (E3), dont l'inconnue est une fonction de \mathbb{R}^{+*} vers \mathbb{R}^2

$$t \mapsto \begin{pmatrix} X(t) \\ Y(t) \end{pmatrix},$$

$$\begin{pmatrix} X'(t) \\ Y'(t) \end{pmatrix} = A(t) \begin{pmatrix} X(t) \\ Y(t) \end{pmatrix},$$
(E3)

où A(t) désigne la matrice définie en IV 2°).

Soit $t_0 > 0$ et $(a,b) \in \mathbb{R}^2$. Justifier l'existence et l'unicité d'une solution de (E3), sur l'intervalle $]0, +\infty[$ satisfaisant aux conditions $X(t_0) = a$, $Y(t_0) = b$.

- 3. On reprend les notations de la partie IV. Montrer que, sur l'intervalle $[t_0, +\infty[$, la fonction Z est solution de (E3).
- 4. En utilisant ce qui précède, déterminer pour toute solution sur l'intervalle $]0, +\infty[$ de (E1) une fonction de type exponentiel la majorant au voisinage de $+\infty$. On commencera par comparer les solutions de (E2) et de (E3).
- 5. Prouver que, pour $x \in \left[1, 2 + 2\sqrt{2}\right[$ l'intégrale figurant dans l'égalité de la question 4. de la troisième partie, a un sens.
- 6. Prouver que, pour tous x_1, x_2 tels que $0 < x_1 < x_2 < 2 + \sqrt{2}$, il existe $\delta > 0, t_1 > 0, t_2 > 0, M_1, M_2$ tels que :

$$\begin{aligned} \forall x \in \left[x_1, x_2\right], & \forall t \geq t_1, & e^{-t} \left|G'\left(xt\right)\right| \leq M_1 e^{-\delta t}, \\ \forall x \in \left[x_1, x_2\right], & \forall t \geq t_2, & e^{-t} \left|G''\left(xt\right)\right| \leq M_2 e^{-\delta t}. \end{aligned}$$

Prouver alors que :

$$x \mapsto \int_0^{+\infty} e^{-t} G(xt) dt$$

est solution de (E) sur $]-1, 2+2\sqrt{2}[$.