Plan du cours

I.	Introduction	1
II.	Définition de la symétrie axiale	2
III.	Propriétés de la symétrie axiale	3
IV.	Symétrique d'un point, d'une figure 1. Symétrique d'un point par rapport à une droite	
V.	Axes de symétrie	8

I. Introduction

Activité 1

\rightarrow	· Q)u∈	r	en	าล	rq	ue	Z-1	V O	us	C	aı	าร	С	es	5	tr	οi	S	ir	na	aç	ge	S	?																																	
											٠												٠					 ٠	•		 •	•	٠	 	•					٠				 	٠	٠	 		 ٠	 ٠	٠	 ٠	 ٠	 	٠	 ٠		
											•			•		•		•		•			٠			٠	•	 ٠		·			٠	 		•	 	•	 	٠		•	 ·	 •		٠		 •	 ٠	 ٠	٠	 ·	 ·	 	÷	 ٠	 •	

Activité 2

Dans cet exercice, on se propose de tracer la figure symétrique d'une des figures ci-dessus en utilisant un papier calque.

- Pour cela, placer le calque exactement le long de la droite.
- Scotcher ensuite votre papier calque à l'aide de deux petits morceaux.
- Décalquer la figure choisie.
- Faire pivoter votre feuille autour de la droite, puis repasser les contours.

II. Définition de la symétrie axiale

ightarrow Dans quelle figure observe-t-on une symétrie axiale?

Définition

Exemples :

III. Propriétés de la symétrie axiale

Activité d'introduction

Dans la figure ci-dessous, les parties du haut et du bas sont symétriques par rapport à la droite (d). Les longueurs sont exprimées en cm.

- 1. Par rapport à la droite (d), les symétriques de chacun des points A, C, S et M sont, dans l'ordre,
- 2. Par rapport à la droite (d), les symétriques de chacun des segments [TP], [AE] et [EC] sont, dans l'ordre,
- 3. Par rapport à la droite (d), les symétriques de chacun des angles $\widehat{TPM},\widehat{PMT}$ et \widehat{MTP} sont, dans l'ordre,
- 4. Les angles \widehat{EAC} et sont symétriques par rapport à la droite (d).

Or :
$$\widehat{TPM} = \dots$$

Donc :
$$\widehat{EAC} = \dots$$

5. Les angles \widehat{MTP} et sont symétriques par rapport à la droite (d).

6. Les segments [MT] et sont symétriques par rapport à la droite (d).

7. Les segments [AE] et sont symétriques par rapport à la droite (d).

→ Construire l'image d'une figure par une symétrie axiale revient à "décalquer plier" cette figure par rapport à une droite donnée. Une telle construction n'entraîne pas de déformation ni de changement de mesure quel-quelle soit.

IV. Symétrique d'un point, d'une figure

1. Symétrique d'un point par rapport à une droite

Première méthode (à l'équerre) :

On trace la droite perpendiculaire à la droite (d) passant par A grâce à l'équerre et on y reporte la distance séparant A de (d) soit en utilisant la règle, soit le compas.

A vous de jouer!

Deuxième méthode (au compas) :

On reporte deux distances prises entre n'importe quel point de l'axe de symétrie et le point A.

A vous de jouer!

Remarque : Lorsqu'un point est situé sur l'axe de symétrie, son symétrique est

Définition

Deux points E et E' sont symétriques par rapport à une droite (d) si (d) est la médiatrice de [EE'] : c'est à dire si la droite (d) est perpendiculaire à [EE'] et passe par son milieu.

<u>|||ustration</u>

Exercice d'application 1

Construire A' et B', les symétriques respectifs des points A et B par rapport à la droite (d).

2. Symétrique de figures usuelles

• Symétrique d'une droite

Propriété

Le symétrique d'une **droite** (d) par rapport à une droite (Δ) est

• Symétrique d'un segment

Propriété

• Symétrique d'un cercle

Propriété