Mathematical Induction

Use induction to prove that 2 divides $n^2 + n$ for all positive integers n.

Let P(n) denote the proposition that $n^2 + n$ is divisible by 2 for all positive integers n.

BASIS STEP: P(1) is true since 2 divides 2.

INDUCTIVE STEP: Let us assume P(n), that is $n^2 + n$ is divisible by 2 for an arbitrary positive integer n. This is our inductive hypothesis.

We have to show that P(n+1), that is $(n+1)^2+(n+1)$ is also divisible by 2 assuming the inductive hypothesis P(n).

Proof: $(n+1)^2 + (n+1) = n^2 + n + 2(n+1)$

 $n^2 + n$ is divisible by 2 using the inductive hypothesis.

2(n+1) is divisible by 2 the definition of divisibility since n+1 is an integer.

Thus, the sum $(n + 1)^2 + (n + 1) = n^2 + n + 2(n + 1)$ is also divisible by 2.

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $n^2 + n$ is divisible by 2 for all positive integers n.