Universidade de São Paulo Escola Politécnica - Engenharia de Computação e Sistemas Digitais

FeedForward Networks

Prof. Artur Jordão

Overview

Components

- Weight vectors (weights for short)
 - Real values (randomly initialized)
- Neurons
 - Units composed of weights that receive a set of inputs and perform dot product
 - Each neuron has its own weights
- Layers
 - Neurons organized at the same level
 - The first layer is the data input (x)
- Activations (σ)
 - Non-linear transformations

Components

FeedForward Networks

• In this architecture, we have 6 neurons (6 activations), 3 layers and $m \times 3 + 3 \times 2 + 2 \times 1$ weights (parameters)

Definitions

- Let $\mathcal{F}(\cdot, \theta)$ be a neural network parametrized by a set of weights (parameters) θ
- Given an input x, the network predicts \overline{y} according to its parameters θ
 - It means $\bar{y} = \mathcal{F}(x, \theta)$
- We can decompose $\mathcal F$ into a set of functions/transformations f layers
 - $\mathcal{F}(x,\theta) = \bar{y} \Rightarrow f_L(\dots, f_2(f_1(x,\theta_1), \theta_2), \theta_L) = \bar{y}$
 - *L* defines the **depth** of the network
- Note that each f_i has its own set of parameters θ_i

Activations

- An activation, $\sigma(\cdot)$, receives an input and applies a transformation to it
 - Such a transformation should be non-linear
- Most activations have no trainable parameters
- Despite simple, the activation plays an important role in the success of network
 - It injects nonlinearities into each $f(\cdot,\cdot)$; hence, into the full network

The Role of Activation

- The composition of linear functions is indeed a linear function
- A linear function of a linear function is also a linear function
- Therefore, without nonlinearities, a neural network would be linear
 - No matter how many neurons/layers it has

Popular Activations

Perceptron

Introduction

Perceptron

- The first neural network
 - It occupies an important place in the history of pattern recognition algorithms
- Perceptron belongs to the family of linear models
- Perceptron components
 - Single layer and single neuron
 - Step Activation $\sigma = \begin{cases} 1, y \ge 0 \\ 0, otherwise \end{cases}$

The Perceptron Convergence Theorem

Perceptron

- The Perceptron Convergence Theorem states that if there exists an exact solution, then the perceptron is guaranteed to find an exact solution in a finite number of steps
 - Proof: Rosenblatt (1962); Block (1962); Minsky et al. (1969); Hornik et al. (1989); Barron et al. (1993)
- Exact solution means: if the training data set is linearly separable

Rosenblatt et al. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. 1962

Block et al. Analysis of a four-layer series-coupled perceptron. Reviews of Modern Physics, 1962

Minsky et al. Perceptrons: An Introduction to Computational Geometry. MIT Press, 1969

Hornik et al. Multilayer feedforward networks are universal approximators. Neural Networks, 1989

Barron et al. Universal approximation bounds for superpositions of a sigmoidal function. Transactions on Information Theory, 1993

Limitations

Perceptron

- Perceptron is confined to solving linear problems
 - Remember that it belongs to the family of linear models
- The XOR problem
 - Formally: $\mathcal{F}([0,1], w) = 1$, $\mathcal{F}([1,0], w) = 1$, $\mathcal{F}([1,1], w) = 0$, $\mathcal{F}([0,0], w) = 0$
 - This was the first major dip in the popularity of neural networks

Final Note

Perceptron

 On being asked, "How is Perceptron performing today?" I am often tempted to respond, "Very well, thank you, and how are Neutron and Electron behaving?"
Frank Rosenblatt, inventor of the perceptron

Multilayer Perceptron (MLP)

Introduction

Multilayer Perceptron

- Also known as Vanilla neural network and Feedforward network
- Different from Perceptron, MLP has multiple layers and neurons (as its name suggests)

Hidden Layer

Multilayer Perceptron

Layers for which the training data does not show the desired output (it is hidden)

The Universal Approximator Theorem

Perceptron

- Universal approximators
 - Models with the ability to approximate any continuous function
- An MLP with one hidden layer and a sufficient number of neurons is able to approximate any function [Hornik et al. (1989); Barron et al. (1993)]
 - Neural networks are therefore said to be universal approximators

- Dive into Deep Learning
 - Chapter 5 Multilayer Perceptrons
 - 5.1.1 Hidden Layers
 - 5.1.2 Activation Functions

- Artificial Intelligence A Modern Approach Fourth Edition
 - Chapter 22 Deep Learning
 - 22.1 Simple Feedforward Networks
 - 22.1.1 Networks as complex functions

- The Hundred-page Machine Learning Book
 - Chapter 6 Neural Networks and Deep Learning
 - 6.1 Neural Networks

