Theory Assignment 4 CS5280

Darpan Gaur CO21BTECH11004

Problem 5.2

$$m = w_0(x_0)w_0(y_0)c_0r_1(x_0)w_1(x_1)r_2(x_1)w_2(y_2)w_1(y_1)w_2(x_3)$$

Conisder the following version order on the variables:

$$x_0 \ll x_1 \ll x_3, \quad y_0 \ll y_1 \ll y_2$$

Building the $MVSG(m, \ll)$ we have the following edges:

- \bullet $r_1(x_0) \implies t_0 \to t_1$
- $\bullet \ r_2(x_1) \implies t_1 \to t_2$
- $r_2(x_1), w_3(x_3)$ and $x_2 \ll x_3 \implies t_2 \to t_3$
- $r_1(x_0), w_3(x_3)$ and $x_0 \ll x_3 \implies t_1 \to t_3$

Figure 1: MVSG for m

In figure 1, we see that MVSG is acyclic. Appropriate version for t_{∞} is x_3 and y_2 , i.e., $r_{\infty}(x_3)$, $r_{\infty}(y_2)$.

Problem 5.6

$$m = w_1(x)c_1r_2(x)r_3(x)c_2r_4(x)w_3(x)c_4c_3$$

Figure 2 shows the execution of m under MVTO protocol.

Here $w_3(x_3)$ step is rejected because $r_4(x_1)$ has already been scheduled, such that $ts(t_1) < ts(t_3) < ts(t_4)$. Hence, transaction t_3 is aborted, as it creates a new version x_3 , however transaction t_4 has already read the version x_1 .

Figure 2: m execution under MVTO protocol

Problem 5.9

The proposed protocol is nor correct and does not guarantee MVSR schedules. Consider the following schedule:

$$m = w_0(x_0)w_0(y_0)c_0r_1(x_0)r_1(y_0)r_2(x_0)r_2(y_0)w_1(x_1)c_1w_2(y_2)c_2$$

Consider the following version order on the variables: $x_0 \ll x_1$, $y_0 \ll y_2$ Building the MVSG(m, \ll) we have the following edges:

- \bullet $r_1(x_0) \implies t_0 \rightarrow t_1$
- $r_2(x_0), w_1(x_1) \text{ and } x_0 \ll x_1 \implies t_2 \to t_1$
- $r_1(y_0), w_2(y_2)$ and $y_0 \ll y_2 \implies t_1 \to t_2$

Figure 3 shows the MVSG for m. As graph is cyclic, hence m is not in MVSR.

Figure 3: MVSG for m