Animação

Luis Rivera

Animação ou Simulação

Animação

 Gera variação de objetos no tempo de acordo à ação desejada

Pixar

Simulação

 Prediz como os objetos variam no tempo de acordo às leis físicas

University of Illinois

Animação Baseada em Física

Animação Baseada em Física

Aplicação

- Medias
 - Filmes e propagandas
- Engenharia
 - Verificação de resistências e impactos
- Medicina
 - Entendimento dos movimentos do corpo humano
- Outros

Animação por Computador

- Animação Tradicional
 - Desenhos
 - Sequência de imagens
 - Modelos físicos
 - Fotos de bonecos em diferentes posições de animação
- Animação por Computador
 - Animação assistida por computador
 - KeyFrames
 - Animação gerada por computador
 - Técnicas de baio nível
 - Mecanismos que ajudam especificar os movimentos
 - (exem. Todos os movimentos de virar para a direita)
 - Técnicas de alto nível
 - Descrever o comportamento do ator
 - (exem. Gire para a direita devagar)

- Classificados por Magnet-Thalmann e Thalmann, 1991
 - a) KeyFrames
 - Definidos os quadros críticos
 - Os intermediados gerados por interpolação

Posição da esfera para os key frames 20,50 e 80

b) Script

- Sequência de instruções numa linguagem interpretável
 - Controle de objetos, propriedades, textura e comportamento
- Exemplo:

```
b =GeoSphere(); s = sphere ()
animate on
(
at time 0 (move b [-100, 0, 0]; scale s [1, 1, 0.25])
at time 35 move b [0, 100, 0]
at time 100 (move b [200, 0, 0]; scale s [1, 1, 3])
```


c) Procedimental

- Modelos de geração de movimento implementados usando linguagem procedimental
 - Modelos baseados em leis físicas

d) Representacional

- Objeto varia sua forma
 - Articulados: ao andar
 - Deformação suave: cabelos, gestos, etc.
 - Morphing: transformação

e) Estocástica

- Usa processos aleatórios para controlar grupos de objetos
 - Partículas

f) Comportamental

- Regras de comportamento para um conjunto de objetos
 - Grupos, bandos, etc.

Canal Alpha

- Pixel para transparência
 - Branco (opaca) ← cinza → Preto (transparente)
 - Pixel R(8bits), G(8bits), B(8bits), A(8bits) = 32bits

Captura de Movimento

Movimento de ator real → ator virtual

- Rotoscopia
 - Base vídeo de movimento

Exterminador do futuro

Animação de Personagens 3D

- 1:Cintura
- 2:Virilha Direita
- 3:Virilha Esquerda
- 4:Joelho Direito
- 5:Joelho Esquerdo
- 6:Tornozelo Direito
- 7:Tornozelo Esquerdo
- 8:Ponta do Pé Direita
- 9: Ponta do Pé Esquerda
- 10:Espinha Dorsal 1
- 11:Espinha Dorsal 2
- 12:Espinha Dorsal 3
- 13:Ombro Direito
- 14:Ombro Esquerdo
- 15:Cotovelo Direito
- 16:Cotovelo Esquerdo
- 17:Pulso Direito
- 18:Pulso Esquerdo
- 19:Pescoço

Cinemática

- Dada a posição inicial e final
 - Calcular a trajetória dos corpos
 - Braços, pernas, etc.
 - Usada em robótica, jogos, etc.
- Direta
 - Estrutura em jerarquia
 - Ação de superiores → efeito de inferiores
- Inversa
 - Estrutura em jerarquia
 - Ação de inferiores → efeito de superiores

Ossos

- Segmentos rígidos, em jerarquia
- Com articulações

Esqueleto

- Conjunto de ossos e articulações
 - Jerarquia
- Controladores por cinemática inversa

Animação com deformação

- Massa muscular
 - Malhas e latices
- Cabelos e pelos
 - Interpolação de cabelos guias
- Facial
 - Expressões
 - Morphing
 - Sequencia de texturas
- Corpos
 - Molas

Sistema de Partículas

- Permite criar objetos sem arestas e faces
 - Neve, chuva, fogo, nuvens, etc.
- Contribui na modelagem de multidões, exércitos, grupos, etc.
- Propriedades geométricas e Físicas simples
 - Ponto
 - Massa
 - Velocidade
 - Aceleração
 - Quantidade de movimento

Propriedades de Partículas

- Três graus de liberdade
 - Deslocamento em x, y, z
- Posição (p).
- Não tem volume
 - Não tem orientação
- Tem massa (m)
- Pode ter velocidade (v), aceleração (a)
- Influencia de forças (f)
 - Internas e externas

Dinâmica de Sistema de Partículas

Dinâmica de partículas em Animação

- As partículas podem ter condutas interessantes
 - Restringidas por molas, barras, forças externas
- Não há ponto de aplicação da força
 - Não há torques, momentos angulares
- Força resultante f_{resul} define comportamento da partícula

$$f_{resul} = f_{grav} + f_{ext} + f_{mola} + f_{apli} + f_{rest} + f_{atri}$$

Animação de Partículas

Mostrar o Aplicativo Básico: Iup Led

Forças que atuam sobre a partícula

- Gravidade: $\mathbf{f}_{grav} = m (0, -g, 0)$
- Externa: f_{ext} vento, magnético, etc.
- Atrito: f_{fric} = c. |N|t caso de contato com superfície de coef. c
- Aplicada: f_{apl} aplicada pelo usuário

• Mola:
$$\mathbf{f}_{\text{mola_a}} = - \left[k_s \left(|\mathbf{L}| - r \right) + k_d \frac{\mathbf{i.L}}{|\mathbf{L}|} \right] \frac{\mathbf{L}}{|\mathbf{L}|}, \quad \mathbf{f}_{\text{mola_b}} = - \mathbf{f}_{\text{mola_a}}$$

 $\mathbf{L} = \mathbf{X}_{a}$ - \mathbf{X}_{b} : vetor distância entre a e b

r: distância de repouso

 k_s : constante de elasticidade

 k_d : constante de amortecimento

 $\mathbf{i}: \mathbf{v}_{a} - \mathbf{v}_{b}$, derivada de \mathbf{L} no tempo

Estado de uma partícula

- Uma partícula, no instante *t_i* tem:
 - **X**(t_i): posição no espaço
 - $\mathbf{v}(t_i)$: velocidade linear ($\mathbf{X}'(t_i)$)
 - Estado:

$$S(t_i) = [X(t_i), v(t_i)]$$

- No instante $t_{i+1} = t_{i+1} + dt$ a posição será
 - $S(t_{i+1}) = [X(t_{i+1}), V(t_{i+1})] = S(t_i) + \Delta S(t_i).$

 Δ **S** (t_i) é variação da posição **X** e a velocidade **v**

Representação básica de partículas

Uma partícula se caracteriza por

- Massa (m)
- Posição (X)

Partícula:

- Velocidade (v)
- Força resultante (f)

m	Massa
<u>X</u>	Posição
<u>V</u>	Velocidade
f	Acumulador de forças

y X m f

Posição no espaço face

 Na prática pode ter outras propriedades adicionais, com restrições

Dinâmica da Partícula

- A variação do estado ΔS(t_i) determina:
 - Var. da posição $\Delta \mathbf{X}(t_i)$ é a velocidade $\mathbf{v}(t_i) = \mathbf{X}'(t_i)$
 - Var. de la veloc. $\Delta \mathbf{X}(t_i)$ é a aceleração $\mathbf{a}(t_i) = \mathbf{X}''(t_i)$
 - Por Newton $\mathbf{f}_{resul}(t_i) = m.\mathbf{a}(t_i)$ \rightarrow $\mathbf{a}(t_i) = \mathbf{f}_{resul}(t_i)/m$
 - A aceleração $\mathbf{a}(t_i) = \mathbf{X}''(t_i)$
- Um problema de Equação Diferencial Ordinária (EDO) com valor inicial
 - Dados

$$\mathbf{S}(t_i) = [\mathbf{X}(t_i), \mathbf{X'}(t_i)] \quad \mathbf{y}$$

 $\mathbf{S'}(t_i) = [\mathbf{X'}(t_i), \mathbf{X''}(t_i)],$
calcular $\mathbf{S}(t_{i+1}) = [\mathbf{X}(t_{i+1}), \mathbf{X'}(t_{i+1})]$

Soluções numéricas

Método de Euler

- Calcula $\mathbf{s}(t_1)$ a partir de $\mathbf{s}(t_0)$ y $\mathbf{s}'(t_0)$:
 - $\mathbf{s}(t_1) = \mathbf{s}(t_0) + (t_1 t_0) \mathbf{s}'(t_0)$
- Bons resultados para equações de primeira derivada (velocidade)
- Em presença de aceleração (2da derivada) não é apropriada

