

Inverse Problems 1: convolution and deconvolution

Lesson 1: introduction to convolution

Luca Ratti September 3, 2019

University of Helsinki

Table of contents

- 1. Motivation
- 2. Convolution in 1D: mathematical description
- 3. Convolution in 1D: examples
- 4. Convolution in 2D: a brief excursion
- 5. About the course

Motivation

Examples of convolution

Convolution is a mathematical model describing physical phenomena like image blurring and averaging of signals

Defocus aberration

Credits: https://en.wikipedia.org/wiki/Deconvolution

Examples of convolution

Convolution is a mathematical model describing physical phenomena like image blurring and averaging of signals

Motion blur

Examples of convolution

Convolution is a mathematical model describing physical phenomena like image blurring and averaging of signals

Blurred audio signal

Deconvolution

The task of deconvolution is to restore the original signal from the blurred one.

Original

Deconvolution

The task of deconvolution is to restore the original signal from the blurred one.

Deconvolution

The task of deconvolution is to restore the original signal from the blurred one.

Main idea

Convolution occurs when the value of a signal in one point is influenced by the values of the points close by

Main idea

Convolution occurs when the value of a signal in one point is influenced by the values of the points close by

4/13

Main idea

Convolution occurs when the value of a signal in one point is influenced by the values of the points close by

Main idea

Convolution occurs when the value of a signal in one point is influenced by the values of the points close by

Convolution in 1D: mathematical description

Replace each element of a vector with the average of the one before, itself and the one after.

Replace each element of a vector with the average of the one before, itself and the one after.

The idea is rather simple...

Replace each element of a vector with the average of the one before, itself and the one after.

The idea is rather simple...

$$c_4 = ???$$

Replace each element of a vector with the average of the one before, itself and the one after.

The idea is rather simple...

$$c_4 = \frac{1}{3}(f_3 + f_4 + f_5)$$

Replace each element of a vector with the average of the one before, itself and the one after.

The idea is rather simple...

$$c_i = \frac{1}{3}(f_{i-1} + f_i + f_{i+1})$$

Replace each element of a vector with the average of the one before, itself and the one after.

The idea is rather simple...

$$c_i = \frac{1}{3}f_{i-1} + \frac{1}{3}f_i + \frac{1}{3}f_{i+1}$$

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

We assume p satisfy a normalization property: $\sum_{\ell=-\nu}^{\nu}p_{\ell}=$ 1. Examples:

• no convolution effect: p = [1];

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

- no convolution effect: p = [1];
- average over 3 elements: $p = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$;

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

- no convolution effect: p = [1];
- average over 3 elements: $p = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$;
- average over 5 elements: $p = [\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}];$

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

- no convolution effect: p = [1];
- average over 3 elements: $p = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$;
- average over 5 elements: $p = [\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}];$
- · average over 5 elements, different weights: $p=\left[\frac{1}{10},\frac{2}{10},\frac{4}{10},\frac{2}{10},\frac{1}{10}\right]$

The effect of the proximal points is described by a vector defined as Point Spread Function:

$$p \in \mathbb{R}^m$$
, with $m = 2\nu + 1$

The vector is typically indexed as follows:

$$p = [p_{-\nu}, p_{-\nu+1}, \dots, p_{-1}, p_0, p_1, \dots p_{\nu-1}, p_{\nu}]$$

- no convolution effect: p = [1];
- average over 3 elements: $p = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$;
- average over 5 elements: $p = [\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}];$
- average over 5 elements, different weights: $p = \left[\frac{1}{10}, \frac{2}{10}, \frac{4}{10}, \frac{2}{10}, \frac{1}{10}\right]$
- average over 5 elements, asymmetric: $p = \left[\frac{1}{10}, \frac{1}{10}, \frac{3}{10}, \frac{3}{10}, \frac{3}{10}, \frac{2}{10}\right]$

Mathematical formulation

1D-signal: consider a vector $f \in \mathbb{R}^n$.

Point Spread Function: take $p \in \mathbb{R}^m$, $m = 2\nu + 1$.

Mathematical formulation

1D-signal: consider a vector $f \in \mathbb{R}^n$.

Point Spread Function: take $p \in \mathbb{R}^m$, $m = 2\nu + 1$.

The **convolution** between f and p is a vector $p * f \in \mathbb{R}^n$ such that:

Convolution formula

$$(p * f)_j = \sum_{\ell=-\nu}^{\nu} p_{\ell} f_{j-\ell}$$

= $p_{-\nu} f_{j+\nu} + \dots + p_0 f_j + \dots + p_{\nu} f_{j-\nu}$

Mathematical formulation

1D-signal: consider a vector $f \in \mathbb{R}^n$.

Point Spread Function: take $p \in \mathbb{R}^m$, $m = 2\nu + 1$.

The **convolution** between f and p is a vector $p * f \in \mathbb{R}^n$ such that:

Convolution formula

$$(p * f)_j = \sum_{\ell=-\nu}^{\nu} p_{\ell} f_{j-\ell}$$

= $p_{-\nu} f_{j+\nu} + \dots + p_0 f_j + \dots + p_{\nu} f_{j-\nu}$

Problem: the formula requires the knowledge of the values $f_{-\nu+1}, f_{-\nu+2}, \ldots, f_0$ and also $f_{n+1}, \ldots, f_{n+\nu}$. How to define them? There is not an unique convention (next lesson).

Convolution in 1D: examples

Convolution with a symmetric filter (zero extension of f)

Convolution with a symmetric filter (zero extension of f)

Convolution with a symmetric filter (zero extension of f)

Convolution with a symmetric filter (zero extension of f)

Convolution with a symmetric filter (zero extension of *f*)

Convolution with a symmetric filter (zero extension of \emph{f})

Convolution with a symmetric filter (zero extension of f)

Convolution with a symmetric filter (zero extension of f)

Convolution with a symmetric filter (zero extension of \emph{f})

Convolution with a symmetric filter (zero extension of *f*)

9/13

Convolution with an asymmetric filter (periodic extension of f)

Convolution with an asymmetric filter (periodic extension of \emph{f})

Convolution with an asymmetric filter (periodic extension of f)

Convolution with an asymmetric filter (periodic extension of \emph{f})

Convolution with an asymmetric filter (periodic extension of \emph{f})

9/13

9/13

Convolution in 2D: a brief excursion

The same idea holds for 2D convolution, as explained by the illustration: in this case the signal is a matrix and the point spread function is a smaller square matrix.

2D convolution

The same idea holds for 2D convolution, as explained by the illustration: in this case the signal is a matrix and the point spread function is a smaller square matrix.

2D convolution

2D convolution

Example 2

The same idea holds for 2D convolution, as explained by the illustration: in this case the signal is a matrix and the point spread function is a smaller square matrix.

2D convolution

About the course

• Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)

- Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)
- Algebraic detour: the cause of ill-posedness; Singular Value Decomposition and Truncated SVD (2-3)

- Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)
- Algebraic detour: the cause of ill-posedness; Singular Value Decomposition and Truncated SVD (2-3)
- · Regularization: Tikhonov (4)

- Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)
- Algebraic detour: the cause of ill-posedness; Singular Value Decomposition and Truncated SVD (2-3)
- · Regularization: Tikhonov (4)
- Regularization: sparsity and Total Variation (5)

- Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)
- Algebraic detour: the cause of ill-posedness; Singular Value Decomposition and Truncated SVD (2-3)
- · Regularization: Tikhonov (4)
- · Regularization: sparsity and Total Variation (5)
- · Compressed Sensing, a brief overview (6)

- Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)
- Algebraic detour: the cause of ill-posedness; Singular Value Decomposition and Truncated SVD (2-3)
- · Regularization: Tikhonov (4)
- · Regularization: sparsity and Total Variation (5)
- · Compressed Sensing, a brief overview (6)
- 2D convolution and deconvolution (6)

- Introduction to convolution 1D: matrix representation of the inverse problem, naïve inversion (1)
- Algebraic detour: the cause of ill-posedness; Singular Value Decomposition and Truncated SVD (2-3)
- · Regularization: Tikhonov (4)
- · Regularization: sparsity and Total Variation (5)
- · Compressed Sensing, a brief overview (6)
- · 2D convolution and deconvolution (6)
- · Convolutional Neural Networks (7)

In the end of the course, the teaching staff would like you to:

1. have a solid grasp of the matematical concepts of **convolution** and **deconvolution**;

- 1. have a solid grasp of the matematical concepts of **convolution** and **deconvolution**;
- get a flavour of what inverse problems are, and of one of the most important mathematical theory to tackle them: regularization;

- 1. have a solid grasp of the matematical concepts of **convolution** and **deconvolution**;
- get a flavour of what inverse problems are, and of one of the most important mathematical theory to tackle them: regularization;
- 3. be able to **implement** what you have learnt (hands-on approach, homework program tailored to the course);

- 1. have a solid grasp of the matematical concepts of **convolution** and **deconvolution**;
- get a flavour of what inverse problems are, and of one of the most important mathematical theory to tackle them: regularization;
- be able to implement what you have learnt (hands-on approach, homework program tailored to the course);
- (optional, but recommended) actively explore the field of deconvolution, by a small project, and learn how to report scientific findings.

Practical information

- · Lectures: Tue 12:15 14, Wed 14:15 16;
- Matlab exercises: online (MOOC) + exercise session: Thu 12:15-14;
- · completion: home exam
- project: (optional) related to the topics of Inverse Problems 1 or Inverse Problems 2;
- material and additional information: https: //courses.helsinki.fi/en/mast31401/130419888;
- · contact: heli.virtanen@helsinki.fi