Groupe 2

EXERCICE

On justifiera toutes les réponses.

On appelle « fraction égyptienne » toute fraction de la forme $\frac{1}{n}$, n désignant un nombre entier naturel non nul. Dans l'Egypte ancienne, on n'écrivait les nombres rationnels positifs inférieurs à 1 que sous la forme de sommes de « fractions égyptiennes » toutes différentes.

Par exemple,
$$\frac{25}{28}$$
 peut s'écrire $\frac{1}{2} + \frac{1}{4} + \frac{1}{7}$.

Le but du problème est de présenter quelques méthodes de décomposition de nombres rationnels en somme de « fractions égyptiennes » toutes différentes.

Partie A: Exemples

- 1. Calculer la somme des six « fractions égyptiennes » $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$ et $\frac{1}{64}$.
- 2. Décomposer $\frac{5}{8}$ en somme de « fractions égyptiennes » toutes différentes, dont les dénominateurs sont tous des puissances de 2.

Partie B: Présentation d'une méthode de décomposition dans un cas particulier

On s'intéresse au cas où la fraction à décomposer a un numérateur égal à 2 et un dénominateur égal au produit de deux nombres entiers naturels impairs p et q.

- 1. Démontrer la formule $\frac{2}{pq} = \frac{1}{p\left(\frac{p+q}{2}\right)} + \frac{1}{q\left(\frac{p+q}{2}\right)}$
- 2. Justifier que les dénominateurs des fractions précédentes sont des nombres entiers naturels.
- 3. En utilisant la formule établie à la question 1), trouver deux décompositions différentes de $\frac{2}{15}$ en somme de « fractions égyptiennes » différentes.
- 4. Soit n un nombre entier naturel non nul. Donner une décomposition de la fraction $\frac{2}{2n+1}$ en somme de deux « fractions égyptiennes » différentes.

Partie C « Algorithme glouton » de Fibonacci

En 1201, Léonard de Pise (1175-1250), dit « Fibonacci », prouva que tout nombre rationnel compris entre 0 et 1 peut s'écrire sous la forme d'une somme de « fractions égyptiennes » toutes différentes et proposa la méthode suivante pour obtenir une telle décomposition :

« Soustraire à la fraction donnée la plus grande fraction égyptienne possible qui lui est inférieure, répéter l'opération avec la nouvelle fraction, et ainsi de suite jusqu'à ce que l'on obtienne 0. »

- 1. Appliquer cet algorithme à $\frac{13}{81}$ et donner une décomposition de la fraction $\frac{13}{81}$ en somme de trois « fractions égyptiennes » toutes différentes.
- 2. Dans le papyrus Rhind (1650 av JC), exposé au *British Museum*, figure une des plus anciennes approximations du nombre π égale à $\frac{256}{81}$ (écriture moderne).
 - a) Ecrire $\frac{256}{81}$ sous la forme d'une somme d'un entier naturel et d'une fraction comprise entre 0 et 1.
 - b) Proposer une écriture de l'approximation de π donnée dans le papyrus Rhind sous forme d'une somme d'un nombre entier naturel et de « fractions égyptiennes » toutes différentes.