Low thermal conductive chalcogenides for high performance thermoelectric energy conversion

Kanishka Biswas

New Chemistry Unit
Jawaharlal Nehru Centre for Advanced Scientific
Research (JNCASR)
Bangalore, India
kanishka@jncasr.ac.in

Thermoelectrics (TE)

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa.

"Electricity from waste-heat"

"Refrigeration without moving parts and chemical refrigerant"

Importance of Thermoelectrics

Total energy consumption

65 % of utilized energy rejected as waste heat

With about ~65 % of the utilized energy being lost as waste heat. ~20 % conversion to the useful form can have significant impact on overall energy utilization.

Thermoelectric materials allow the direct conversion between thermal and electrical energy.

Applications

Direct Heat to Electricity Conversion

Waste Heat Recovery/Power generation

- Large scale: Power plant (Chemical/thermal/Nuclear)
- Medium scale: Automobile

Space power generation

Solar-thermoelectrics

Cooling/Refrigeration

- Commercial cooler/warmer
- Spot cooling: microprocessor, laser diode
- Luxury vehicle: Cool/warm seat

The Mars Science Laboratory rover, Curiosity, is powered by its Radioisotope Thermoelectric Generator.

JPL-Caltech/NASA

Thermoelectric material

Seebeck Coefficient Electrical conductivity

G. J. Snyder and E. S. Toberer, *Nat. Mater.* 2008, **7**, 105-114.

Thermal conductivity (electrical + lattice)

Best thermoelectric materials: Highly doped narrow band gap semiconductor eg. Bi₂Te₃, PbTe.

Decoupling of electrical and phonon transport is essential for thermoelectrics

State of art thermoelectric bulk materials

G. Tan, L. D. Zhao and M. G. Kanatzidis, *Chem. Rev.* 2016, **116**, 12123.

$$\eta = \frac{\Delta T}{T_{hot}} \frac{\sqrt{1 + ZT_{avg}} - 1}{\sqrt{1 + ZT_{avg}} + \frac{T_{cold}}{T_{hot}}}$$

Pb-free high performance materials are desired for mass-market applications

$$ZT = \frac{S^2 \sigma}{\kappa} T$$

Bulk nanostructured thermoelectric materials

Decrease the thermal conductivity

Science 2004, 303, 818-821 **Nature 2012**, 489, 414-418.

LAST-m (Ag_{0.86}Pb₁₈SbTe₂₀) n-type

Phonon scattering mechanism in thermoelectric material

Short wavelength phonon

Mid/long wavelength phonon

Scattering cross section = d^6/λ^4

Mid/long wavelength heat-carrying phonon heavily scattered by nanoparticles Vines, C. J., Shakouri, A., Majumdar, A., Kanatzidis, M. G., *Adv. Mater* **2010**, 22, 3970

$$\Delta G_{\text{mix}} = \Delta H_{\text{mix}} - T \Delta S_{\text{mix}}$$

ΔH of compound formation dominates over ΔS of mixing when nanostructures forms in matrix

Pseudo-ternary vs. pseudo-binary

Nanostructures are good for phonon scattering, but they scatter carrier as well

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

$$\Delta H_{mix} = H_{solid \ solution} - \Sigma H_{reactant}$$

$$\Delta G_{mix} < 0, \ \text{for solid \ solution}$$

$$\Delta S_{mix} = S_{solid \ solution} - \Sigma S_{reactant}$$

Enthalpy plays important role over entropy in binary systems (like PbTe/PbSe, GeTe/GeSe and PbTe/PbS), phase separation/nanostructuring can easily occur.

Pseudo-ternary system- Entropy of mixing dominates over enthalpy in ternary system, thus solid solution is favored. Pseudo-ternary system is rich in point defect.

GeTe-GeSe-GeS

Strategy 1: Reduction of κ_{lat} by alloying of GeTe with GeSe and GeS.

Strategy 2: Further decrease in κ_{lat} by Sb doping in $(GeTe)_{1-2x}(GeSe)_x(GeS)_x$ and by Spark Plasma Sintering.

M. Samanta and K. Biswas, *J. Am. Chem. Soc.* 2017, 139, 9382

Manisha Samanta

Extended Solid Solution: (GeTe)_{1-2x}(GeSe)_x(GeS)_x

Phonons with mean free paths smaller than 10 nm comprise ~90% of the κ_{lat} for IV-VI metal tellurides. (Lee, S.; Esfarjani, K.; Luo, T.; Zhou, J.; Tian, Z.; Chen, G. *Nat. Commun.* **2014**, *5*, 3525.)

Thermal conductivity: Point defect scattering

Callaway Model:

$$k_{lat} = \frac{k_B}{2v\pi^2} \left(\frac{2\pi k_B T}{h}\right)^3 \int_0^{\frac{\theta_D}{T}} \frac{\tau_C(x, T) x^4 e^x}{(e^x - 1)^2} dx$$

Sample	${ m A} \ [10^{-42}~{ m s}^3]$	B [10 ⁻¹⁷ s K ⁻¹]
GeTe	1.002	1.18
$GeTe_{0.9}Se_{0.05}S_{0.05}$	13.9	2.03

$$\tau_C^{-1} = \tau_B^{-1} + \tau_{PD}^{-1} + \tau_U^{-1} + \tau_{ep}^{-1} = \frac{v}{L} + (A\omega^4) + (B\omega^2 T exp\left(-\frac{\theta_D}{3T}\right) + C\omega^2$$

Electrical Transport Properties of Sb doped GeTe_{0.9}Se_{0.05}S_{0.05}

Sample	Carrier concentration (p) $\times 10^{20}$ /cm ³
$Ge_{0.98}Sb_{0.02}Te_{0.9}Se_{0.05}S_{0.05}$	5.18
$Ge_{0.95}Sb_{0.05}Te_{0.9}Se_{0.05}S_{0.05}$	2.39
$Ge_{0.90}Sb_{0.1}Te_{0.9}Se_{0.05}S_{0.05}$	1.16
$\begin{array}{c} Ge_{0.90}Sb_{0.1}Te_{0.9}Se_{0.05}S_{0.05} \\ (SPS) \end{array}$	1.02
$Ge_{0.85}Sb_{0.15}Te_{0.9}Se_{0.05}S_{0.05}$	0.96

- Seebeck Coefficient increases with Sb doping
- Electrical conductivity decreases with Sb doping

M. Samanta and K. Biswas, *J. Am. Chem. Soc.* 2017, 139, 9382

Low lattice thermal Conductivity in (GeTe)_{1-2x}(GeSe)_x(GeS)_x

Pseudo-ternary vs. pseudo-binary

- Low $k_{lat} \sim 0.7$ W/mK is achieved in $Ge_{0.9}Sb_{0.1}Te_{0.9}Se_{0.05}S_{0.05}$ (SPS).
- GeTe-GeSe-GeS psedo ternary system shows lower k_{lat} than GeTe-GeSe and GeTe-GeS pseudo binary system.
- Phonon scattering mainly occurs due to effective point defect scattering involving a broad set of multiple types of mass fluctuations such as Ge/Sb, Te/Se, Te/S and Se/S.

ZT = 2.1 in Pb free GeTe based system

M. Samanta, K. Biswas, *J. Am. Chem. Soc.* 2017, 139, 9382

Extrinsic approach- Introduction of point defects, nanoprecipitates and grain boundaries.

They scatters the phonons heavily, but scatters the electrons/holes as well.

Intrinsic low thermal conductivity is of practical interest due to its robustness against grain size, temperature range and other structural variations.

Ultralow Thermal Conductivity in Zintl Type TlInTe₂

- ➤ 1/T dependence of lattice thermal conductivity suggests dominant anharmonic Umklapp phonon scattering.
- \triangleright Ultralow lattice thermal conductivity approaching theoretical amorphous-limit (κ_{min}) at high temperatures.

M. K. Jana, K. Pal, A. Warankar, P. Mandal, U. V. Waghmare, K. Biswas, *J. Am. Chem. Soc*, 2017, 139, 4350

Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe₂

- Anionic and cationic substructures resembling 1D-zintl compounds
- Covalently bonded chains of (InTe₄) tetrahedra along the z-axis (violet)
- Each TI⁺ cation is centered in a distorted square antiprism of Te ions (Thompson cubes)
- Anionic chains are held electrostatically by chains of TI+ cations.

Ultralow Thermal Conductivity in Zintl Type TlInTe₂

Structural parameters from Rietveld refinement							
	а	b	С	Vol (ų)			
I4/mcm	8.47980 (27)	8.47980 (27)	7.18894 (28)	516.94 (5)			
	Х	у	Z	U_{iso} (Å ²)			
ln	0	0.5	0.25	0.01674			
Te	0.18098	0.68098	0	0.0235			
				U ₁₁	U ₂₂	U ₃₃	
TI	0	0	0.25	0.02759	0.02759	0.07442	

Anisotropic, large atomic displacement parameters (ADPs) of TI⁺

Manoj

Structure and bonding in TlInTe₂

- Covalent bonding within (InTe₄) tetrahedron and isolated TI⁺ cations.
- Spherical charge density around Tl⁺ cation → 6s² lone electron pair
- Spherical lone pairs are unstable and are known to form stereochemical lobes by distorting the structure.

(e.g. Lone-pair driven monoclinic distortion of perovskite BiMnO₃)

- Steep potential wells for In and Te atoms but flat potential well for TI atoms
- No apparent distortion in the average structure
- Consequently, phonons may be highly anharmonic

(Nielsen et al, Energy Environ. Sci. 2013, 6, 570)

Tl - intrinsic rattler

Filled-skutterudite

Low temperature heat capacity of TlInTe₂

Debye-Einstein model

$$C_P/T = \gamma + \beta T^2 + \sum_i \left(A_i (\Theta_{E_i})^2 \cdot \left(T^2\right)^{-\frac{3}{2}} \cdot \frac{\mathrm{e}^{\frac{\Theta_{E_i}}{T}}}{\left(\mathrm{e}^{\frac{\Theta_{E_i}}{T}} - 1\right)^2} \right)$$

- ➤ Low temperature specific heat capacity shows the contribution of Einstein oscillators with frequencies of about 17, 30 and 55 cm⁻¹
- ➤ The low-energy Einstein modes are related to low-frequency, localized optic-like vibrations. The latter can scatter the heat-carrying acoustic phonons and suppress thermal conductivity significantly.

THz spectra of TllnTe₂

Pankaj Mandal, IISER, Pune

Phonon dispersion of TlInTe₂

Umesh Waghmare, JNCASR, Bangalore

Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe

synchrotron experiments at the Indian Beamline, PF, KEK, Japan

S. Roychowdhury, M. K. Jana, J. Pan, S. N. Guin, D. Sanyal, U. V. Waghmare, K. Biswas, *Angew. Chem. Int. Ed.* 2018, 57, 4043

Positron annihilation spectroscopy: Role of Ag vacancy

The S-parameter represents the fraction of positrons annihilating with the low-momentum valence electrons with respect to the total number of positrons annihilated

Ultralow thermal conductivity

Subhajit Roychowdhury

Low-T Heat Capacity for AgCuTe

Debye-Einstein model

$$C_P/T = \gamma + eta T^2 + \sum_i \left(A_i (\Theta_{E_i})^2 \cdot \left(T^2
ight)^{-rac{3}{2}} \cdot rac{\mathrm{e}^{rac{\Theta_{E_i}}{T}}}{\left(\mathrm{e}^{rac{\Theta_{E_i}}{T}} - 1
ight)^2}
ight)$$

➤The low-energy Einstein modes (26, 52 and 103 cm⁻¹) are related to low-frequency, localized optic-like vibrations which can scatter the heat-carrying acoustic phonons and suppress thermal conductivity significantly.

Phonon Density of States

Electronic transport properties of AgCuTe

Sample	Carrier Concentration (cm ⁻³)	Mobility (cm²/Vs)
AgCuTe	9.74 X 10 ¹⁸	676
AgCuTe _{0.90} Se _{0.10}	6.24 X 10 ¹⁸	361
AgCuTe _{0.85} Se _{0.15}	4.53 X 10 ¹⁸	297

Electronic structure

Thermoelectric Figure of Merit

International Edition: DOI: 10.1002/anie.201801491

German Edition: DOI: 10.1002/ange.201801491

Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe

Subhajit Roychowdhury, Manoj K. Jana, Jaysree Pan, Satya N. Guin, Dirtha Sanyal, Umesh V. Waghmare, and Kanishka Biswas*

Media Coverage

"JNCASR's novel material to convert waste heat into electricity", (March 03, 2018).

"No side effects: Finding compound that conducts electricity, not heat", (March 12, 2018).

"New material raises hope of turning waste heat into power", (March 04, 2018).

"Can Waste Heat Generate **Electricity? These Bengaluru** Researchers Say Yes!", (March 12, 2018).

DD & Rajya Sabha TV

Conclusions

- Entropy driven extended solid solutions/point defects can scatter phonons heavily, thereby decreases the κ_{lat} .
- Intrinsic low thermal conductivity is an attractive paradigm for developing high performance thermoelectric.
- ➤ Bonding hierarchy: Coexistent of rigid covalent substructure with weakly bound ionic substructure resembling the *phonon-glass* electron-crystal.
- ➤ Large ADPs and strained lone pair as signatures of low thermal conductivity in search of new thermoelectric materials.
- ➤ Soft optical phonons generated by local vibration of selective lattice and complex crystal structure reduce the thermal conductivity.

Acknowledgements

Thank you

Excellent Collaborators

- ➤ Prof. Umesh Waghmare, JNCASR
- > Prof. Dirtha Sanyal, VECC, Kolkata
- Prof. Pankaj Mandal, IISER, Pune

Generous Funding

- Materials for Energy, DST, India
- Science and Engineering Board (SERB), India
- Sheiq Saqr Laboratory, JNCASR
- ➤ New Chemistry Unit, JNCASR