

3r ESO

Rodrigo Alcaraz de la Osa. Traducció: Óscar Colomar (99 @ocolomar)

Lei de Boyle-Mariotte

"A temperatura constant, el volum d'una massa fixa de gas és inversament proporcional a la pressió que aquest exerceix."

Matemàticament:

$$pV = \text{constant}$$
o
$$p_1V_1 = p_2V_2,$$

on:

- p_1 és la pressió inicial.
- V_1 és el volum inicial.
- p_2 és la pressió final.
- V_2 és el volum final.

Exemple

El volum d'aire als pulmons d'una persona és de 615 mL aproximadament, a una pressió de 1 atm. La inhalació ocorre quan la pressió dels pulmons descendeix a 0.989 atm. Fins quin volum s'expandeixen els pulmons?

Solució

No ens ho diuen explícitament però hem de suposar que la **temperatura** roman **constant**, pel que hem d'aplicar la llei de **Boyle-Mariotte**:

$$p_1V_1=p_2V_2,$$

on $p_1 = 1$ atm, $V_1 = 615$ mL, $p_2 = 0.989$ atm i V_2 és el que ens demanen.

Aillem V_2 :

$$V_2 = \frac{p_1 V_1}{p_2} = \frac{1 \text{ atm} \cdot 615 \text{ mL}}{0.989 \text{ atm}} = 621.8 \text{ mL}$$

Lei de Charles

"Per a una certa quantitat de gas a **pressió constant**, el seu volum és directament proporcional a la seva temperatura."

Matemàticament:

$$\frac{V}{T} = \text{constant}$$
o
$$\frac{V_1}{T_1} = \frac{V_2}{T_2},$$

on:

- V_1 és el volum inicial.
- T_1 és la temperatura inicial (¡en K!).
- V_2 és el volum final.
- T_2 és la temperatura final (¡en K!).

Exemple

Si una certa massa de gas, a pressió constant, omple un recipient de 20 L de capacitat a la temperatura de 124 °C, quina temperatura aconseguirà la mateixa quantitat de gas a pressió constant, si el volum augmenta a 30 L?

Solució

Ens diuen explícitament que la **pressió** roman **constant**, pel que apliquem la llei de **Charles**:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2},$$

on $V_1 = 20$ L, $T_1 = 124$ °C = 397 K, $V_2 = 30$ L i T_2 és el que ens demanen.

Aïllem T_2 :

$$T_2 = T_1 \cdot \frac{V_2}{V_1} = 397 \,\mathrm{K} \cdot \frac{30 \,\mathrm{L}}{20 \,\mathrm{L}} = 595.5 \,\mathrm{K} = 322.5 \,\mathrm{^{\circ}C}$$

Lei de Cay-Lussac

"La pressió que exerceix un **volum fix** de gas és directament proporcional a la seva temperatura."

Matemàticament:

$$\frac{p}{T} = \text{constant}$$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2},$$

on:

- p_1 és la pressió inicial.
- T_1 és la temperatura inicial (¡en K!).
- p_2 és la pressió final.
- T_2 és la temperatura final (¡en K!).

Exemple

És perillós que els envasos d'aerosols s'exposin a la calor. Si una llauna de fixador per als cabells a una pressió de 4 atm i a una temperatura ambient de 27 °C es llança al foc i l'envàs aconsegueix els 402 °C, quina serà la seva nova pressió?

Solució

Suposem que l'envàs manté el seu **volum fix**, pel que apliquem la llei de **Gay-Lussac**:

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}, on$$

on $p_1 = 4$ atm, $T_1 = 27$ °C = 300 K, $T_2 = 402$ °C = 675 K i p_2 és el que ens demanen.

Aillem p_2 :

$$p_2 = T_2 \cdot \frac{p_1}{T_1} = 675 \,\mathrm{K} \cdot \frac{4 \,\mathrm{atm}}{300 \,\mathrm{K}} = 9 \,\mathrm{atm}$$