Α31 ΚΡΥΠΤΟΓΡΑΦΙΑ

Φυλλάδιο ασκήσεων #2

Θεόδουλος Γαρεφαλάκης

4 Μαρτίου 2022

- 1. Έστω $G:\{0,1\}^\ell \to \{0,1\}^n$ μία ασφαλής PRG.
 - (α΄) Δείξτε ότι η $G': \{0,1\}^{2\ell} \to \{0,1\}^n$ με $G'(s1,s2) = G(s_1) \oplus G(s_2)$ είναι ασφαλής.
 - (β') Δείξτε ότι η $G'': \{0,1\}^{\ell} \to \{0,1\}^{2n}$ με G''(s) = (G(s),G(s)) δεν είναι ασφαλής.
- 2. (α΄) Έστω μία PRG, $G: \mathcal{S} \to \mathcal{R}$, όπου $|\mathcal{R}| \geq 2|\mathcal{S}|$, για την οποία υπάρχει αποτελεσματικός αλγόριθμος ο οποίος αποφασίζει εάν ένα δοσμένο $r \in \mathcal{R}$ ανήκει στην εικόνα της G. Αποδείξτε ότι η G δεν είναι ασφαλής.
 - (β΄) Έστω η γραμμική απεικόνιση $L: \mathbb{F}_2^n \to \mathbb{F}_2^m$, με m>n. Δείξτε ότι η L δεν είναι ασφαλής PRG.
 - (γ΄) Κατασκευάστε ένα αντίπαλο στο παιχνίδι του ορισμού ασφαλείας της PRG, $G:\mathcal{S}\to\mathcal{R}$, ο οποίος κάνει $O(|\mathcal{S}|)$ βήματα και έχει μη αμελητέο πλεονέκτημα. Συμπεράνετε ότι για να είναι ασφαλής η G, πρέπει το $|\mathcal{S}|$ να είναι υπερ-πολυωνυμικό.
- 3. Έστω $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ μία ασφαλής PRF.
 - (α΄) Δείξτε ότι η $F_1(k,x)=(F(k,x),F(k,x\oplus 1^n))$ δεν είναι ασφαλής.
 - (β΄) Δείξτε ότι η $F_2(k,(x,y)) = (F(k,x),F(k,y))$ δεν είναι ασφαλής.
 - (γ') Δείξτε ότι η $F_3(k,x) = F(k,x) \oplus x$ είναι ασφαλής.
- 4. Η Αλίκη επικοινωνεί με το Βασίλη χρησιμοποιώντας ένα σύστημα κρυπτογράφησης τύπου Feistel. Ειδικότερα, κάθε block έχει μήκος 128 bits, ο αλγόριθμος έχει 3 γύρους και το κοινό, κρυφό κλειδί της Αλίκης και του Βασίλη είναι το (k_1,k_2,k_3) , όπου $k_i\in\mathbb{F}_2^{64}$, i=1,2,3 είναι το κλειδί του i γύρου. Το αρχικό (καθαρό) μήνυμα χωρίζεται σε δύο μέρη των 64 bits έκαστο (το αριστερό και το δεξιό) L_0 και R_0 . Στη συνέχεια ο αλγόριθμος κρυπτογράφησης υπολογίζει τα

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} + F(k_i, R_{i-1}),$

για i=1,2,3. Η απεικόνιση $F:\mathbb{F}_2^{64}\times\mathbb{F}_2^{64}\longrightarrow\mathbb{F}_2^{64}$ είναι η F(k,R)=R+k. (Στους παραπάνω ορισμούς, η πράξη «+» είναι πρόσθεση στο \mathbb{F}_2^{64} .) Το κρυπτογραφημένο μήνυμα είναι το (L_3,R_3) . Η Αλίκη, για να σας επιδείξει τον αλγόριθμο της, δέχεται να κρυπτογραφήσει ένα τυχαίο μήνυμα, ας πούμε το (L'_0,R'_0) . Δείξτε πώς μπορείτε, με δεδομένο το (L_3,R_3) και το ζεύγάρι καθαρού μηνύματος (L'_0,R'_0) και κρυπτογραφήματος (L'_3,R'_3) , να υπολογίσετε το καθαρό μήνυμα (L_0,R_0) .

Αφού καταφέρατε να παραβιάσετε την ασφάλεια του συστήματος τους, η Αλίκη και ο Βασίλης αποφασίζουν να το βελτιώσουν με τον εξής τρόπο: επιλέγουν μία απεικόνιση $\sigma:\mathbb{F}_2^{64}\longrightarrow\mathbb{F}_2^{64}$ και τροποποιούν την απεικόνιση F, να είναι $F(k,R)=\sigma(R)+k$. Η απεικόνιση σ είναι γνωστή σε όλους (δεν είναι μέρος του κλειδιού). Για ευκολία, επιλέγουν τη σ να είναι \mathbb{F}_2 -γραμμική απεικόνιση. Είναι το κρυπτοσύστημα τους τώρα ασφαλέστερο; Θα ήταν ασφαλέστερο εάν είχε περισσότερους γύρους;

Υπόδειξη: εκφράστε τα L_0, R_0 συναρτήσει των L_3, R_3 των κλειδιών k_1, k_2, k_3 και της σ . Υπολογίστε τις διαφορές $L_0 - L_0'$ και $R_0 - R_0'$. Τι παρατηρείτε;