

Creating Interpretable Collaborative Patterns for Auditing

You Chen

Department of Biomedical Informatics,
Vanderbilt University

You.chen@vanderbilt.edu

http://hiplab.org/~ychen

6-Nearest Neighbor Network-Vanderbilt Medical

Center (1 day of accesses)

CADS on Vanderbilt Dataset

CADS on Northwestern Dataset

But Relationships Decay...

(Malin, Nyemba, & Paulett – JBI 2011)

- ♦ EMR <user, user> relationships
- EMR <department, department> relationships

Department Level

Auditing Medical Record Accesses through Department Interactions

Hospital Departmental Relations Can Be Inferred

(Chen, Nyemba, & Malin - AMIA 2012)

• Probability department d_i accesses a patient's record, given department d_j accessed the record.

Department (d_i)	Department (d_j)	Min Certainty	Max Certainty			
Intradepartmental Relations						
4East OB/GYN	4East OB/GYN	0.74319	0.7669			
Adult Emergency Medicine	Adult Emergency Medicine	0.74024	0.78453			
Cancer Infusion Center	Cancer Infusion Center	0.73171	0.844			
8N Inpatient Medicine	8N Inpatient Medicine	0.7197	0.80909			
Newborn Nursery	Newborn Nursery	0.70406	0.72727			
Interdepartmental Relations						
DOT Radiology	Orthopaedics	0.99621	1			
Nursing Education and Development	Medical Information Services	0.95833	1			
Main OR - Trauma/Renal	Medical Information Services	0.94444	1			
Life Flight Event Medicine	Emergency Medicine	0.90805	1			
Emergency Medicine Admin	Adult Emergency Medicine	0.91489	0.94186			

Organization Level-Department

Certainty to Model Relationship Among Departments

Cert(Emergency medicine (d_1) ->Lifeflight event medicine (d_3)) = 4/7 Lifeflight event medicine (d_3) -> Cert(Emergency medicine (d_1)) = 4/4

(c) A confidence social network of departments

Evolution of A Global Network Over the Time

The changes become smaller over time (centralization: green > blue > red)

Degree of relations between departments changes little over time >82.5% of the change resides in [-0.25, 0.25]

Using reciprocity to characterize the mutual interaction between all pairs of departments in the global network

Inpatient Admin -> VUH Admitting 0.75

VUH Admitting -> Inpatient Admin 0.12

Although the relations of the network are very unbalanced, the unbalance is stable over time

Time	Week 1	Week 2	Week 3	Week 4
Reciprocity	0.267	0.2814	0.2858	0.2871

$$Reciprocity = \frac{\sum_{\forall d_i, d_j \in D, i \neq j} |(Cert(d_i \rightarrow d_j) - a) \times (Cert(d_j \rightarrow d_i) - a)|}{\sum_{\forall d_i, d_j \in D, i \neq j} (Cert(d_i \rightarrow d_j) - a)^2}$$

$$a = \frac{\sum_{\forall d_i, d_j \in D, i \neq j} Cert(d_i \to d_j)}{2 \times |E|}$$

Evolution of Local Network Relations Can be Used Detect "Strange" Behavior

Each point in the P_{start} corresponds to a local network

A Local network for p₆

$$Score(p_k) = \frac{\sum_{\forall d_i, d_j \in D_k} Cert(d_i \to d_j)}{2 \times |E_k|}$$

Over 80% of local networks whose size is less than 5

Over 80% of local networks has number of departments change less than 2

Most Patients Network Suggest They Are "Normal"

Approximately 99% of patients are normal because they have a change of reciprocity <0.1

p2 has -0.93 change of local network score and -0.79 change of local reciprocity from the 1st to the 2nd week

Breast Center, [Anonymized Street Location], Care/Eskind Diab Acces, Disease Management Service, Eskind Diabetes - Adult, Free Stipends, Internal Medicine, VIM, VMG Physician Billing Services, Vanderbilt Home Care Primary

Findings

- The changes in the score of local networks do not justify the claim that the patient has been intruded upon, but may provide a reason for an investigation that incorporates more nuanced domain knowledge

But Do You Believe the Data?

Survey Population

(Chen, Lorenzi, Nyemba, Schildcrout & Malin – IJMI 2014)

Vanderbilt University Medical Center areas

34 respondents did the survey and 26 of them are valuable

Survey Questions

- Departmental interactions
- Conditional probabilities of accessing a record (conditioned on the HCO area)
- "Given someone from Coding & Charge Entry accessed the record, what's the chance someone from the following Area accessed the record?

Emergency Medicine

Coding & Charge Entry Interactions (one week, ~620 points)

Survey Questions

Survey Questions

MIS RESPONDENT(10)

CODE RESPONDENT(7)

PSY RESPONDENT(9)

MIS Rules

CODE Rules

ANE RESPONDENT(8)

MIS Rules

CODE Rules

PSY Rules

ANE Rules

Hypothesis

- 1) Employees can distinguish between high, and low likelihood rules for all HCO areas
- 2) Employees can distinguish between high and low likelihood rules for their own HCO area
- 3) employees can distinguish between high, and low likelihood rules in their own HCO area better than they can in other HCO areas

One respondent has 8 observations The total number of observations is 8*26=208

Respondent	Respondent Type	Rule Type	Rule Class	Average Score of
(ID)	(P)	(R)	(C)	Responses
1	MIS	ANE	High	3
1	MIS	ANE	Low	2
1	MIS	CODE	High	3.3
1	MIS	CODE	Low	2.1
1	MIS	MIS	High	3.1111
1	MIS	MIS	Low	2.125
1	MIS	PSY	High	2.9
1	MIS	PSY	Low	2.05

Hypothesis Test 1 – Rules of All HCO Areas:

Low

High

Low

High

High

Low

High

Low

Hypothesis Test1 – Rules of All HCO Areas:

One-sided t-test, 95% confidence

Linear Mixed Effects Model

Rule class: high or low Respondent type: MIS, CODE, PSY, ANE

Rules type: MIS, CODE, PSY, ANE

 $lemr(aveScore \sim h \times p + r + (1 | id), data)$

Random effect of each participant

$$Y = \beta_0 + \beta_1(h = 1) + \beta_2(p = code) + \beta_3(p = psy) + \beta_4(p = ane)$$

+ $\beta_5(r = code) + \beta_6(r = psy) + \beta_7(r = ane)$
+ $\beta_8(p = code)(h = 1) + \beta_9(p = psy)(h = 1) + \beta_{10}(p = ane)(h = 1)$

How MIS respondents distinguish high and low likelihood of rules for all HCO areas

E(y | p=mis, h=0, r=ALL) =
$$\beta_0$$
+ β_5 + β_6 + β_7 ;
E(y | p=mis, h=1, r=ALL) = β_0 + β_1 + β_5 + β_6 + β_7 ;
E(y | p=mis, h=1, r=ALL)-E(y | p=mis, h=0, r=ALL) = β_1

How about CODE, PSY and ANE?

Distribution of respondents' average score for low rules

Certain respondents are inclined to assign large likelihoods (upper right section of the plot),

while others are included to assign small likelihoods (the lower left section of the plot).

β	β values	description	p value
		MIS respondents distinguish high	
β_1	0.351557	and low likelihood rules for all HCO	
		areas	1.91*10 ⁻⁹
		CODE respondents distinguish high	
$\beta_1+\beta_8$	0.521492	and low likelihood rules for all HCO	
		areas	1.11*10-6
		PSY respondents distinguish high	
$\beta_1 + \beta_9$	0.677858	and low likelihood rules for all HCO	
		areas	9.33*10 ⁻⁸
		ANE respondents distinguish high	
$\beta_1 + \beta_{10}$	0.691166	and low likelihood rules for all HCO	
1 - 10		areas	1.22*10-8

Respondents from four areas can distinguishing between high and low likelihood rules for all HCO areas

Hypothesis Test 2– Self Assessment:

Linear Mixed Effects Model One-sided t-test, 95% confidence

Hypothesis Test 3— Bias Toward Own Rules

Linear Mixed Effects Model One-sided t-test, 95% confidence

Hypothesis Test 3 – Bias Toward Own Rules

Linear Mixed Effects Model One-sided t-test, 95% confidence

Conclusions

- Healthcare organization employees generally understand what goes on around them...
 - ... and for other sections of the organization as well!
- Automated healthcare organizational modeling may be possible.
- Anomalies detection through collaborative patterns may be reliable!

Q&A Thanks!