Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Compose functions of real numbers
- Solve systems of linear equations (Standard(s) E.3)
- Find the matrix corresponding to a linear transformation (Standard(s) A.1)
- Determine if a linear transformation is injective and/or surjective (Standard(s) A.3)
- Interpret the ideas of injectivity and surjectivity in multiple ways

Readiness Assurance Resources

The following resources will help you prepare for this module.

 $\bullet \ \, \text{https://www.khanacademy.org/math/algebra2/manipulating-functions/funciton-composition/v/function-composition} \\$

Readiness Assurance Test

Choose the most appropriate response for each question.

- 1) Let $f(x) = x^2 2$ and $g(x) = x^2 + 1$. Compute the composition function $(f \circ g)(x)$.
 - (a) $x^2 1$
 - (b) $x^4 + 2x^2 1$
 - (c) $x^4 4x^2 + 5$
 - (d) $x^4 x^2 2$
- 2) Suppose f(x) and g(x) are real-valued functions satisfying

$$f(2) = 1$$

$$g(2) = 3$$

$$f(3) = 4$$

$$g(3) = 5$$

$$f(4) = 3$$

$$g(4) = 6$$

Compute $(f \circ g)(2)$.

- (a) 2
- (b) 3
- (c) 4
- (d) 5
- 3) Solve the system of linear equations

$$x + 3y = -2$$

$$2x - 7y = 9$$

(a)
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -2\\ 9 \end{bmatrix}$$

4) Let a, b, c be fixed real numbers. How many solutions does the system of linear equations below have?

$$x + 2y + 3z = a$$

$$y - z = b$$

$$y + z = c$$

- (c) Infinitely many
- (d) It depends on the values of a, b, and c.
- 5) What is the matrix corresponding to the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} =$

$$\begin{bmatrix} x + 2y - z \\ y + 3z \\ x + 7y \end{bmatrix}$$
?

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 1 & 7 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 7 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 7 \\ -1 & 0 & 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 1 & 7 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & 0 \\ 1 & 7 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 7 \\ -1 & 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 7 \\ -1 & 3 & 0 \end{bmatrix}$

6) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation with associated matrix $A = \begin{bmatrix} 2 & 3 \\ -1 & -1 \\ 0 & 4 \end{bmatrix}$. Compute

$$T\left(\begin{bmatrix}2\\-1\end{bmatrix}\right).$$

(a)
$$\begin{bmatrix} 5 \\ 7 \\ 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 \\ -1 \\ -4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix}$$

- 7) Which of the following is true of the linear transformation T:?
 - (a) T is neither injective nor surjective
 - (b) T is injective but not surjective
 - (c) T is surjective but not injective
 - (d) T is both injective and surjective
- 8) Which of the following is true of the linear transformation T:?
 - (a) T is neither injective nor surjective
 - (b) T is injective but not surjective
 - (c) T is surjective but not injective
 - (d) T is both injective and surjective
- 9) Let $T:\mathbb{R}^n\to\mathbb{R}^m$ be a linear transformation with associated matrix $A\in M_{m,n}(\mathbb{R})$. Three of the four answer choices are equivalent to each other; which one is not equivalent to the other three?
 - (a) T is injective
 - (b) T has a non-trivial kernel
 - (c) The columns of A are linearly dependent
 - (d) RREF(A) has a non-pivot column
- 10) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with associated matrix $A \in M_{m,n}(\mathbb{R})$. Three of the four answer choices are equivalent to each other; which one is not equivalent to the other three?
 - (a) T is surjective
 - (b) Im $T = \mathbb{R}^m$
 - (c) The columns of A span \mathbb{R}^m
 - (d) RREF(A) has only pivot columns