Name	C	0	R	R	E	C	7	(0	ſ	ĺ,	T	0	11	
Group			1110								- Cr	,		11	

Course Name: Theoretical Computer Science

Midterm exam

Instructor: Manuel Mazzara

Year: 2021-2022 (Spring Semester)

Time allowed: 80 minutes Max grade: 20 points

Task 1 (4 points). Construct in a graphical form a DFSA which corresponds to $M_1 \cup M_2$: (NDFSA solutions will get 0 points)

Name	C	0	R	R	E	C	T	C	0	1	(0 -	T		()	-
Group										-		<u> </u>	1	IV	

Task 2 (3 points). Complete the Pumping Lemma (multiple options are correct in (3)):

Let L be a regular language. Then (1) integer $m \ge 1$ such that (2) string w in L of length at least m can be written as w = xyz, satisfying the following conditions: (3)

- (1)(a) there exists
 - b) for every
- (2) a) there exists
 - (b) every
- (3) a) $|y| \ge 0$

 - c) $|xyz| \leq m$
 - (d) $|xy| \leq m$
 - e) $\exists i \geq 0 \ xyiz \notin L$
 - f) $\forall i \geq 0 \ xyiz \notin L$
 - g) $\exists i \geq 0 \ xyiz \in L$
 - $(h) \forall i \geq 0 \ xyiz \in L$

Task 3 (2 points). Construct a complement of M_1 over the alphabet $\{0,1\}$:

Name	C	0	R	R	E	C	T	<	0	-	()	T	I	0	N)	
Group							T					'			10	

Task 4 (4 points). Construct a complete DFSA over the alphabet {0,1} that accepts the words including a substring 00101.

Task 5 (1 point). Which of the following statements are true about PDA:

- (a) It has an external memory with an initial start symbol
- b) It has an external memory that follows First in First Out Policy (FIFO)
- © It can manipulate the external memory as part of performing a transition
- It uses the external memory to decide which transition has to be made
- e It can be used for parsing programming languages
- f) Regular languages are recognized by PDAs

Task 6 (1 point). Is $L = \{a^m b^n | n > 0, m > 0\}$ a regular language?

- a) Yes, which can be proved using pumping lemma
- b Yes, but we cannot prove it using pumping lemma
- c) No, but we cannot prove it using pumping lemma
- d) No, which can be proved using pumping lemma

Name	C	0	R	R	E	C	T	5	0	1	(0	T	i	0	N)	
Group											<u> </u>		- 0.		10	

Task 7 (5 points). Solve ONE of the exercises:

a) Construct a DPDA that recognizes the language: $L = \{a^m b^n c^p d^q | (m, n, p, q \ge 1) \land (m + q = n + p)\}$

b) Construct a DPDA that recognizes the language: $L = \{a^m b^n a^m | (m \ge 0) \land (n \ge 0)\}$

