Una visión intuitiva de la complejidad

Mauricio Toro 25 de mayo de 2016

Programa iterativo con una entrada

En este capítulo veremos los pasos para escribir un programa iterativo con una sola entrada, usualmente llamada "n"

1. Escribir el programa o algoritmo

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= n; j++)
        print(i+"*"+j+"="+i*j);</pre>
```

2. Etiquetar el programa

```
for (int i = 1; i <= n; i++) // C1*n for (int j = 1; j <= n; j++) //C2*n2
```

- 3. Calcular el T(n) sumando todas las anotaciones $T(n) = (C2 + C3)n^2 + C1.n$
- 4. Aplicar la notación O $T(n) \ es \ O((C2+C3)n^2+C1.n)$
- 5. Aplicar la regla de la suma $T(n) \ es \ O((C2+C3)n^2)$
- 6. Aplicar la regla del producto $T(n) \ es \ O(n^2)$

Capítulo 2

Programa

iterativo con varias entradas

En este capítulo veremos los pasos para escribir un programa iterativo con varias entradas, usualmente llamadas n, m o V, E.

1. Escribir el programa o algoritmo

```
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++)
        print(i+"*"+j+"="+i*j);</pre>
```

2. Etiquetar el programa

CAPÍTULO 2. PROGRAMA ITERATIVO CON VARIAS ENTRADAS 4

for (int i = 1; i <= n; i++) // C1*n for (int j = 1; j <= m; j++) //C2*n.m
$$print(i+"*"+j+"="+i*j); //C3*n.m$$

3. Calcular el T(n) sumando todas las anotaciones

$$T(n,m) = (C2 + C3)n.m. + C1.n$$

4. Aplicar la notación O

$$T(n, m)$$
 es $O((C2 + C3)n.m + C1.n)$

5. Aplicar la regla de la suma

$$T(n, m)$$
 es $O((C2 + C3)n.m)$

6. Aplicar la regla del producto

$$T(n, m)$$
 es $O(n.m)$

Capítulo 3

Programa

En este capítulo veremos cómo calcular la complejidad de un programa recursivo.

1. Escribir el programa o algoritmo

```
SubProceso result <- Fibo( n )
  Definir result Como Entero;
Si n <= 1 Entonces
    result <- n;
Sino
    result<-Fibo(n-1)+Fibo(n-2);</pre>
```

2. Etiquetar el programa

3. Escribir el T(n) como una ecuación de recurencia

$$T(n) = C1 + C2 + C3$$
, si $n \le 1$
 $T(n) = C4 + T(n-1) + T(n-2)$, de lo contrario

4. Resolver la ecuación de recurrencia usando la teoría de polinomio característico, teorema maestro o https://www.wolframalpha.com/

$$T(n) = C * 2^n + C$$

5. Aplicar la notación O

$$T(n)$$
 es $O(C*2^n+C)$

6. Aplicar la regla de la suma

$$T(n)$$
 es $O(C*2^n)$

7. Aplicar la regla del producto

$$T(n)$$
 es $O(2^n)$

