Deploy Machine Learning Pipeline on Google Cloud Platform

Cloud Computing Project
Andrea Ciccotti - Andrea Bernini - Donato Francesco Pio Stanco

Introduction

The scenario

We imagined the following real scenario:

- a user enters a series of data about a football match
 - the match date, the name of the home team, and the away team.
- Once these parameters have been entered, they will be processed and a prediction of the outcome of the match will be provided in the output, i.e., victory of the home team, draw, or away team.

Tools

- **Flask**, for the creation of the web app through the use of Python, HTML, and CSS code.
- **Docker**, for the creation of a containerized environment in which to run our application.
- **Kubernetes**, for the management of containerized applications, or to completely manage their life cycle.
- Google Cloud Platform (GCP), provides Google Kubernetes Engine which is an implementation of the open source Kubernetes framework, as well as various cloud computing services.

Implementation

Machine Learning Model

- We used a dataset that contains the last 10 season of Serie A.
 - o 70 features and approximately 4000 rows.
- During the **preprocessing** phase:
 - Extrapolation of new features, using the existing ones, to avoid overfitting.
 - Transformation of the categorical features using a JSON to save the string:numbercombinations.
- We have tested several models locally (on Google Colab), and have chosen **Logistic Regression**.
 - o it has the best trade-off between Accuracy and Prediction Time.

Web-App

Our web-app can be divided into two parts:

- Front-end, designed using HTML and CSS.
 - o in which we have a FORM where the user can enter the data on which he wants to obtain a prediction.
- Back-end, developed using *Flask*, to render HTML code and manage HTTP Methods.
 - The main web-path of our application is /predict which allows to manage POST calls obtaining a prediction of the result.

Football-Bet Web App

Deploy Web-App on GKE

- 1. Create a **Cluster** called *football-bet-cluster*, on **Google Kubernetes Engine**.
- 2. Build **Docker Image**, and upload it to **Google Container Registry**.
- 3. Deploy the image on *football-bet-cluster* in order to distribute and manage the application.
- 4. Finally expose the application, http://34.154.93.188:80.

O Google Cloud Platform Multiple Clients API Requests Cloud External IP Addresses 34.168.77.128:80 Cloud Load Balancing football-bet-cluster Kubernetes Engine LoadBalancer Node 2 Node 1 Node n bet-app bet-app Pod

Web App Architecture

Load Test

Simulation with Locust

We used Locust to perform load test:

- it gives you the ability to spread your performance tests across multiple machines.
- the architecture involves **two main components**:
 - Locust Docker container image
 - Container orchestration and management mechanism
- to perform load test we created a separate cluster called loadtesting

Locust Website

Test

- We have decided to apply **horizontal scaling**, adding more "machines" to our resource pool.
 - The goal is not to verify the correctness of the code or data, and furthermore, the responsiveness of the different page elements was not tested in the load/performance test.
- The path we tested for our application is /predict_test (managed back-end with Flask).
- As a case study we have analyzed a load of 100 users and these are entered into the system with a spawn rate of 5 users/second.
- The parameter we analyzed in the tests was the **CPU utilization**.
 - We did a series of tests to be able to understand what was the optimal number of pods to **obtain a lower response time** and also to **not have a large number of failures** during requests.

Request	Statistics								
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes) RPS	Failures/s
POST	/predict_test	12611	49	6473		60004	106	10.4	0.0
	Aggregated	12611	49	6473	1	60004	106	10.4	0.0
Respons	se Time St	atistics							
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (ms)	100%ile (ms)
POST	/predict_test	3300	4900	6900	9700	15000	25000	44000	60000

Test with 7 pods: Locust

Test with 7 pods: Google Resources

Estimated Bill

Costs of the project

- To analyze the costs of our project we used the **Google Cloud Price Calculator** service.
 - The cost of our project with the listed services is **\$225.31** per month for a total of **\$2703.72** for one year.
- Some aspects raises the price of our project:
 - the region chosen
 - the number of clusters used
 - the boot disk capacity of each node

Your Estimated Bill *

Estimated Monthly Cost: USD 255.31

CloudBuild	Cloud Build	1	USD 0.00
	Inbound data processed by load balancer	3.01361083984375e-06 GiB	USD 0.00
	Outbound data processed by load balancer	8.058547973632812e-06 GiB	USD 0.00
4 x FootballBet cluster	e2-medium	2920 total hours per month	USD 61.64
4 x boot disk	Persistent Disk - GKE Standard	100 GiB	USD 40.00
3 x LoadTesting cluster	e2-medium	2190 total hours per month	USD 46.23
3 x boot disk	Persistent Disk - GKE Standard	100 GiB	USD 30.00
GKE Clusters Fee	Zonal Clusters	1460 hours	USD 71.60
	Inbound data processed by load balancer	3.01361083984375e-06 GiB	USD 0.00
	Outbound data processed by load balancer	8.058547973632812e-06 GiB	USD 0.00
Used on standard VM instances IP addresses	Assigned and used in standard VM IPs	1460	USD 5.84
GKE Clusters Fee Zonal Clusters 1460 hours Inbound data processed by load balancer GiB Outbound data processed by load balancer GiB Used on standard VM Assigned and used in 1460			