### Lecture 9

## 常用分布及其应用-II

ruanyl@buaa.edu.cn September 2016, Beihang University

### 9.1 正态分布

定义 9.1.1 随机变量 X 称为具有参数为  $\mu$  和  $\sigma^2(\mu \in \mathbb{R}, \sigma > 0)$  的 **正态分布**, 如果 X 具有密度函数

$$f(x|\mu,\sigma^2) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, x \in \mathbb{R}$$
 (9.1)

通常记作  $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$ . 若  $X \sim \mathcal{N}\left(0, 1\right)$ , 则称 X 服从**标准正态分布**.

可以验证  $f(x|\mu,\sigma^2)$  是一个概率密度函数. 容易看出关于  $f(x|\mu,\sigma^2)$  的无穷积分收敛. 令  $y=(x-\mu)/\sigma$ , 那么

$$\int_{-\infty}^{\infty} f(x|\mu, \sigma^2) \, dx = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy$$

2

注意到

$$\left(\int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy\right)^2 = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy \int_{-\infty}^{\infty} e^{-\frac{1}{2}z^2} dz$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y^2 + z^2)} dy dz$$
$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{1}{2}r^2} r dr d\theta = 2\pi$$

因此

$$\int_{-\infty}^{\infty} f(x|\mu, \sigma^2) dx = \frac{1}{(2\pi)^{1/2}} \cdot (2\pi)^{1/2} = 1$$

注记 9.1.1 由上面的变量代换看出,  $X \sim \mathcal{N}\left(\mu,\sigma^2\right)$  那么  $Y = \frac{X-\mu}{} \sim \mathcal{N}\left(0,1\right)$ .

3

**定理 9.1.1**  $X \sim \mathcal{N}(0,1)$ , 那么 X 存在任意阶矩, 并且  $\forall k =$ 0. 1. 2. ...

$$E\left(X^{2k+1}\right) = 0,$$

$$E\left(X^{2k}\right) = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2k-1).$$

■ 容易看出  $E(X^0) = 1$ , 并且由密度函数对称性  $E(X^{2k+1}) = 0$ . 当  $n \ge 2$  由分部积分

$$E(X^{n}) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} x^{n} e^{-\frac{1}{2}x^{2}} dx$$

$$= -\frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} x^{n-1} d\left(e^{-\frac{1}{2}x^{2}}\right)$$

$$= (n-1) E\left(X^{n-2}\right)$$

因此定理成立.

### 由此可见标准正太分布 $\mathcal{N}(0,1)$ 的期望为 0, 方差为 1.

### 定理 9.1.2 $X \sim \mathcal{N}(\mu, \sigma^2)$ , 那么

- (1)  $E(X) = \mu$ ;
- (2)  $Var(X) = \sigma^2$ ;
- $(3) \psi(t) = E(e^{tX}) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right), t \in \mathbb{R}.$
- **(**1)

$$E(X) = \int_{-\infty}^{\infty} x \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$= \sigma \int_{-\infty}^{\infty} \frac{x-\mu}{\sigma} \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$+ \mu \int_{-\infty}^{\infty} \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$= \mu$$

(2) 由 (9.1.1), 标准正太分布 2 阶矩为 1,

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2} dx$$

$$= \sigma^2 \int_{-\infty}^{\infty} \left(\frac{x - \mu}{\sigma}\right)^2 \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2} dx$$

$$= \sigma^2 \int_{-\infty}^{\infty} y^2 \frac{1}{(2\pi)^{1/2}} e^{-\frac{1}{2} y^2} dy = \sigma^2$$

(3) 对  $t \in \mathbb{R}$  下列积分存在,

$$E\left(e^{tX}\right) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\left(2\pi\right)^{1/2} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

通过配完全平方

$$-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2 + tx = -\frac{1}{2\sigma^2}\left(x-\mu\right)^2 + \frac{2\sigma^2t}{2\sigma^2}x$$

$$= -\frac{1}{2\sigma^2} \left[ x - \left( \mu + \sigma^2 t \right) \right]^2 + \frac{2\mu\sigma^2 t + \sigma^4 t^2}{2\sigma^2}$$
$$= -\frac{1}{2\sigma^2} \left[ x - \left( \mu + \sigma^2 t \right) \right]^2 + \mu t + \frac{1}{2}\sigma^2 t^2$$

因此

$$E\left(e^{tX}\right) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

根据生成函数与矩的关系, 可以通过计算  $\psi^{(n)}(0)$  来验证定理 9.1.1. 例如  $\mathcal{N}(\mu, \sigma^2)$  的 0 阶矩, 1 阶矩, 2 阶矩分别为

$$\psi^{(0)}(0) = \psi(0) = 1$$

$$\psi'(0) = \left[ \left( \mu + \sigma^2 t \right) \exp\left( \mu t + \frac{1}{2} \sigma^2 t^2 \right) \right]_{t=0} = \mu$$

$$\psi''\left(0\right) = \left[\left[\sigma^2 + \left(\mu + \sigma^2 t\right)^2\right] \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)\right]_{t=0} = \sigma^2 + \mu^2$$

定理 9.1.3  $X \sim \mathcal{N}(\mu, \sigma^2)$ . 令  $Y = aX + b \ (a \neq 0)$ , 那么  $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$ .

■  $Y \supset \mathcal{N}(a\mu + b, a^2\sigma^2)$  具有相同的生成函数,

$$E(e^{tY}) = E(e^{atX+bt}) = e^{\mu(at) + \frac{1}{2}\sigma^2(at)^2}e^{bt} = e^{(a\mu+b)t + \frac{1}{2}(a\sigma)^2t^2}$$

亦可用密度变换公式直接证明.

lli

**定理 9.1.4** 随机变量  $X_1,...,X_n$  相互独立,  $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ , k = 1, 2, ...n. 那么

$$Y = X_1 + \cdots + X_n \sim \mathcal{N}\left(\sum_{k=1}^n \mu_k, \sum_{k=1}^n \sigma_k^2\right)$$

### ■ Y的生成函数为

$$E\left(e^{tY}\right) = E\left(e^{t\sum_{k=1}^{n}X_{k}}\right) = \prod_{k=1}^{n}E\left(e^{tX_{k}}\right) = e^{\left(\sum \mu_{k}\right)t + \frac{1}{2}\left(\sum \sigma_{k}^{2}\right)t^{2}}$$

亦可用密度卷积公式直接证明.

lli

这一结论也可以进一步推广为: 随机变量  $X_1,...,X_n$  相互独立,  $X_k \sim \mathcal{N}\left(\mu_k,\sigma_k^2\right)$ , k=0,1,2,...n.  $a_k \in \mathbb{R}$  (k=0,1,2,...n) 不全 $0,b \in \mathbb{R}$ . 那么

$$Y = a_1 X_1 + \cdots + a_n X_n + b \sim \mathcal{N}\left(\sum_{k=1}^n a_k \mu_k + b, \sum_{k=1}^n a_k^2 \sigma_k^2\right)$$

定义 9.1.2 随机变量  $X_1, ..., X_n$  的平均值  $\frac{1}{n}(X_1 + \cdots + X_n)$  称为样本平均, 通常记为  $\bar{X}$ .

利用上面的定理可知, 如果随机变量  $X_1,...,X_n$  相互独立,  $X_k \sim \mathcal{N}\left(\mu,\sigma^2\right)$ . 那么 $\bar{X} \sim \mathcal{N}\left(\mu,\sigma^2/n\right)$ .

### 9.2 协方差矩阵

**定义 9.2.1** 随机向量  $X = (X_1, ..., X_n)^T$  的期望为

$$E(X) = (EX_1, ..., EX_n)^T$$

X的协方差矩阵为

$$C(X) = E\left[ (X - E(X)) (X - E(X))^{T} \right]$$

这里  $E(\cdot)$  对矩阵的作用理解为对矩阵的每一个元素取期望.

**注记 9.2.1** 若假设  $EX_i^2 < \infty, \forall i = 1, ..., n$ , 那么运用 Schwarz 不等式可知, X 的期望, 方差-协方差矩阵都是存在的.

为简化书写,记

$$\sigma_{i} = \left(E\left[\left(X_{i} - E\left(X_{i}\right)\right)^{2}\right]\right)^{1/2}, \rho_{ij} = \rho_{ji} = cov\left(X_{i}, X_{j}\right) / \left(\sigma_{i}\sigma_{j}\right)$$

例题 9.2.1 假设  $EX_i^2 < \infty$ ,  $\forall i = 1, 2$ , 写出  $(X_1, X_2)$  的协方差矩阵 C,  $\det C$  以及 (C 非退化时) $C^{-1}$ 

$$\left(\begin{array}{cc} (X_{1}-EX_{1}) (X_{1}-EX_{1}) & (X_{1}-EX_{1}) (X_{2}-EX_{2}) \\ (X_{2}-EX_{2}) (X_{1}-EX_{1}) & (X_{2}-EX_{2}) (X_{2}-EX_{2}) \end{array}\right)$$

那么  $(X_1, X_2)$  的协方差矩阵 C 为

$$C = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{21}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$

当 C 非退化时, 即  $\det C \neq 0$ ,  $(\sigma_1 > 0, \sigma_2 > 0, \rho_{12} \in (-1, 1))$ , 那 么  $C^{-1}$  存在, 并且  $\det C = \sigma_1^2 \sigma_2^2 \left(1 - \rho_{12}^2\right)$ ,

$$C^{-1} = \frac{1}{\det C} \left( \begin{array}{cc} \sigma_2^2 & -\rho_{12}\sigma_1\sigma_2 \\ -\rho_{21}\sigma_1\sigma_2 & \sigma_1^2 \end{array} \right)$$

$$=\frac{1}{1-\rho_{12}^2}\left(\begin{array}{cc} \frac{\frac{1}{\sigma_1^2}}{\sigma_1^2} & -\rho_{12}\frac{1}{\sigma_1\sigma_2}\\ -\rho_{21}\frac{1}{\sigma_1\sigma_2} & \frac{1}{\sigma_2^2} \end{array}\right)$$

li

# **定理 9.2.1** 随机向量 $X = (X_1, ..., X_n)^T$ 的协方差矩阵 C(X) 是对称, 正半定矩阵.

■ 对称性容易看出. 为证明正半定性, 任取  $z \in \mathbb{R}^n$ ,

$$z^{T}C(X) z = \sum_{i=1}^{n} \sum_{j=1}^{n} E[z_{i}(X_{i}-E(X_{i}))(X_{j}-E(X_{j})z_{j})]$$
$$= E[z^{T}(X-EX) \cdot (z^{T}(X-EX))^{T}]$$

因此  $z^T C(X) z \ge 0$ ,  $\forall z$ , 即正半定.



**例题 9.2.2** 假设  $EX_i^2 < \infty$ ,  $\sigma_i > 0$ ,  $\forall i = 1, 2$ , 其相关系数  $|\rho| < 1$ , 那么  $(X_1, X_2)$  的协方差矩阵 C 是对称正定的, 并且存在下三角矩阵 G, 使得  $C = GG^T$ .

**注记 9.2.2** 这一结论称为 C 的 Cholesky 分解. 它对一般的对称正定矩阵成立:假设 A 为对称正定矩阵, 那么存在下三角矩阵 G, 其对角元素为正, 使得  $A = GG^T$ .

■ 根据题设  $\det C \neq 0$ , 因而非退化, 从而是对称正定的. 令

$$G = \left(egin{array}{cc} \sigma_1 & 0 \ 
ho\sigma_2 & \sigma_2 \left(1-
ho^2
ight)^{1/2} \end{array}
ight)$$

则有

$$GG^T = \left(egin{array}{cc} \sigma_1^2 & 
ho\sigma_1\sigma_2 \ 
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight) = C$$

h

例题 9.2.3 假设  $Z = (Z_1, Z_2)$  为随机向量,  $Z_i \sim \mathcal{N}(0, 1)$ , i = 1, 2 相互独立, 那么  $(Z_1, Z_2)$  的协方差矩阵为单位矩阵.

### 9.3 二元正态分布

例题 9.3.1 假设  $Z = (Z_1, Z_2)^T$  为随机向量,  $Z_i \sim \mathcal{N}(0, 1), i = 1, 2$  相互独立 .  $\mu_i \in \mathbb{R}, \sigma_i > 0, i = 1, 2, |\rho| < 1.$  令  $\mu = (\mu_1, \mu_2)^T$ ,

$$\left( egin{array}{c} X_1 \ X_2 \end{array} 
ight) = G \left( egin{array}{c} Z_1 \ Z_2 \end{array} 
ight) + \mu, G = \left( egin{array}{cc} \sigma_1 & 0 \ 
ho\sigma_2 & \sigma_2 \left( 1 - 
ho^2 
ight)^{1/2} \end{array} 
ight)$$

试写出  $X = (X_1, X_2)^T$  的联合密度函数与协方差矩阵.

■ 由于 Z<sub>1</sub>, Z<sub>2</sub> 相互独立, 其联合密度函数为

$$g(z_1, z_2) = \frac{1}{2\pi} \exp \left[ -\frac{1}{2} \left( z_1^2 + z_2^2 \right) \right], (z_1, z_2) \in \mathbb{R}^2.$$

由题解得

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \frac{1}{\left(1 - \rho^2\right)^{1/2} \sigma_1 \sigma_2} \begin{pmatrix} \sigma_2 \left(1 - \rho^2\right)^{1/2} & 0 \\ -\rho \sigma_2 & \sigma_1 \end{pmatrix} \begin{pmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{pmatrix}$$

#### 或者写作

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}, Z_2 = rac{1}{\left(1 - 
ho^2
ight)^{1/2}} \left(rac{X_2 - \mu_2}{\sigma_2} - 
ho rac{X_1 - \mu_1}{\sigma_1}
ight)$$

因此由密度变换公式得到  $(X_1,X_2)$  的联合密度函数

$$f(x_1, x_2) = g(z_1, z_2) |\det G|^{-1}$$

$$= \frac{1}{2\pi (1 - \rho^2)^{1/2} \sigma_1 \sigma_2} \cdot \exp \left\{ -\frac{1}{2 (1 - \rho^2)} \left[ \left( \frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left( \frac{x_1 - \mu_1}{\sigma_1} \right) \left( \frac{x_2 - \mu_2}{\sigma_2} \right) + \left( \frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right] \right\}$$

下面计算  $X_1, X_2$  的协方差矩阵. 由题设  $X = GZ + \mu, EX = \mu$ ,

$$C(X) = E\left[(X-\mu)\cdot(X-\mu)^T\right] = E\left[GZ\cdot(GZ)^T\right]$$

$$= GE \left[ Z \cdot Z^T \right] G^T = GG^T$$

h

#### 基于上面的计算我们有

**定义 9.3.1** 如果  $X = (X_1, X_2)$  具有如下联合密度函数,  $(x_1, x_2) \in \mathbb{R}^2$ 

$$f(x_1, x_2) = \frac{1}{2\pi (1 - \rho^2)^{1/2} \sigma_1 \sigma_2} \cdot \exp\left\{-\frac{1}{2 (1 - \rho^2)} \left[ \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$

那么称  $X = (X_1, X_2)$  具有参数为  $\mu = (\mu_1, \mu_2)^T$ ,  $C = GG^T$  的**二元正太分布**. 记作  $X \sim \mathcal{N}(\mu, C)$ . 这里  $\sigma_1 > 0$ ,  $\sigma_2 > 0$ ,  $\rho \in (-1, 1)$ . det  $C = \sigma_1^2 \sigma_2^2 \left(1 - \rho^2\right) = 0$  时称该二元正太分布为退化的.

结合我们在例题 (9.2.1, 9.2.2) 中计算过的 C 和  $C^{-1}$ , 容易看到, 定义 (9.3.1) 的二元正太分布密度也可以表达为简洁的矩阵形式:  $\forall x = (x_1, x_2)^T$ 

$$f(x) = \frac{1}{2\pi (\det C)^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T C^{-1} (x - \mu) \right\}$$

从定义 (9.3.1) 的二元正太分布密度的表达式可以看出

定理 9.3.1 如果  $X = (X_1, X_2)^T \sim \mathcal{N}(\mu, C)$ ,那么关于  $X_1$  和  $X_2$  的边际分布仍然是正太分布,  $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ , $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ .

#### 正太条件分布

**定理 9.3.2** 如果  $(X_1, X_2)$  具有如定义 (9.3.1) 所给出的二元正太分布, 那么  $X_2$  在给定  $X_1 = x_1$  时的条件分布是一个正态分布, 其期望方差分别为

$$E(X_2|x_1) = \mu_2 + \rho \sigma_2 \cdot \frac{x_1 - \mu_1}{\sigma_1}, Var(X_2|x_1) = (1 - \rho^2) \sigma_2^2$$

■ 注意到二元正太分布  $(X_1, X_2)$  是由  $Z = (Z_1, Z_2)^T \sim \mathcal{N}(0, I)$  经过线性变换而得到的 (例题 (9.3.1)):

$$\begin{cases} X_1 = \sigma_1 Z_1 + \mu_1, \\ X_2 = \sigma_2 \left[ \rho Z_1 + \left( 1 - \rho^2 \right)^{1/2} Z_2 \right] + \mu_2. \end{cases}$$

将 $X_2$ 重写为

$$X_2 = \sigma_2 (1 - \rho^2)^{1/2} Z_2 + \sigma_2 \rho Z_1 + \mu_2$$

就可以看出, 当  $X_1 = x_1$  给定 (从而  $Z_1 = (X_1 - \mu_1)/\sigma_1$  也给定),  $X_2$  的条件分布就由  $Z_2$  在给定  $Z_1$  时的条件分布决定, 然而  $Z_1, Z_2$  是相互独立的, 因此  $Z_2$  在给定  $Z_1$  时的条件分布就是  $Z_2$  的分布. 由于  $Z_2 \sim \mathcal{N}(0,1)$ , 因此  $Z_2$  在给定  $Z_1 = x_1$  时的条件分布是

$$\mathcal{N}\left(\mu_2+\sigma_2
ho\cdotrac{X_1-\mu_1}{\sigma_1},\left(1-
ho^2
ight)\sigma_2^2
ight).$$

III

### 正太分布独立与不相关等价

如果  $X_1, X_2$  相互独立, 那么它们是不相关的, 反过来的结论一般不成立. 但对正太分布, 我们有

**定理 9.3.3** 如果  $X = (X_1, X_2)^T$  服从二元正太分布. 那么  $X_1, X_2$  相互独立当且仅当它们互不相关.

■ 独立则有不相关. 反过来, 假设  $X_1, X_2$  不相关, 那么相关系数  $\rho=0$ , 此时定义 (9.3.1) 中的联合密度函数变为,  $\forall\,(x_1,x_2)\in\mathbb{R}^2$ 

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \cdot \exp\left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - \frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]$$

$$= \frac{1}{(2\pi)^{1/2}\sigma_1} \exp\left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2\right].$$

$$\frac{1}{(2\pi)^{1/2}\sigma_2} \exp\left[-\frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]$$

即  $f(x_1,x_2)$  分解为  $\mathcal{N}\left(\mu_1,\sigma_1^2\right)$ ,  $\mathcal{N}\left(\mu_2,\sigma_2^2\right)$  的密度的乘积, 因此  $X_1,X_2$  相互独立.

同样的推理可证明

**定理 9.3.4** 如果  $X = (X_1, X_2)^T$  服从二元正太分布. 那么  $X_1, X_2$  相互独立当且仅当其协方差矩阵为对角矩阵.

#### 正太分布的线性变换

在例题 (9.3.1) 中我们看到, 如果  $Z = (Z_1, Z_2)^T \sim \mathcal{N}(0, I)$ , 那 么  $X = (X_1, X_2)^T = GZ + \mu$  服从正太分布  $\mathcal{N}(\mu, GG^T)$ . 一般地, 我们有

**定理 9.3.5** 如果  $X = (X_1, X_2)^T$  服从二元正太分布  $\mathcal{N}(\mu, C)$ . L 为  $1 \times 2$  或者  $2 \times 2$  矩阵, Y = LX. 那么  $Y \sim \mathcal{N}(L\mu, LCL^T)$ , 即正太分布的线性变换仍然是正态分布.

■ 若  $L = (l_1, l_2)$ , 即  $Y = l_1 X_1 + l_2 X_2$ , 由例题 (9.3.1) 可知, 存在  $a_1, a_2$  使得  $Y = a_1 Z_1 + a_2 Z_2$ , 其中  $Z_1, Z_2$  是相互独立的标准正太分布, 因此 Y 也服从正态分布 (定理 (9.1.4)). 若 L 为 2 × 2 退化

矩阵, 可归为前一种情形. 若 L 为  $2 \times 2$  非退化矩阵, 可运用密度变化公式证明.

### 9.4 多元正态分布

定义 9.4.1 多元随机变量  $X = (X_1, ..., X_n)^T \in \mathbb{R}^n$  称为具有 n 元正太分布, 如果它具有如下密度函数,  $x \in \mathbb{R}$ 

$$f(x|\mu,\Sigma) = \frac{1}{\left(2\pi\right)^{n/2} \left(\det\Sigma\right)^{1/2}} \exp\left\{-\frac{1}{2} \left(x-\mu\right)^T \Sigma^{-1} \left(x-\mu\right)\right\},\,$$

其中  $\Sigma$  为对称正定矩阵. 通常记作  $X \sim \mathcal{N}(\mu, \Sigma)$ .

**注记 9.4.1** 一个等价定义: 多元随机变量  $X = (X_1, ..., X_n)^T \in \mathbb{R}^n$  称为具有 n 元正太分布, 如果任意的线性组合  $Y = \sum_{i=1}^{n} a_i X_i$  都服从 (一维) 正态分布 (含退化情形, 例如所有  $a_i = 0, Y \sim \mathcal{N}(0,0)$ )

多元正太分布许多性质与二元情形类似,例如我们有

**定理 9.4.1** 如果  $X = (X_1, ..., X_n)^T$  服从多元正太分布.  $X_1, ..., X_n$ 相互独立当且仅当它们互不相关.

**定理 9.4.2** 如果  $X = (X_1, ..., X_n)^T$  服从多元正太分布.  $X_1, ..., X_n$ 相互独立当且仅当其协方差矩阵为对角矩阵.

定理 9.4.3 如果  $X = (X_1, ..., X_n)^T$  服从多元正太分布  $\mathcal{N}(\mu, \Sigma)$ . L 为  $m \times n$  矩阵, Y = LX. 那么  $Y \sim \mathcal{N}(L\mu, L\Sigma L^T)$ .

■ 一般情形可通过生成函数证明. 仅证明 L 为可逆矩阵的情形. 由于线性变换 y = Lx 的 Jacobian 行列式为  $\det L$ , 由密度变换公式, Y 的密度为

$$f(L^{-1}x) \cdot \frac{1}{|\det L|} = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2} |\det L|} \exp\left\{-\frac{1}{2} (L^{-1}x - \mu)^T \Sigma^{-1} (L^{-1}x - \mu)\right\}$$

$$= \frac{1}{\left(2\pi\right)^{n/2} \left(\det\left(L\Sigma L^{T}\right)\right)^{1/2}} \cdot \exp\left\{-\frac{1}{2} \left(x - L\mu\right)^{T} \left(L^{-1}\right)^{T} \Sigma^{-1} \left(L^{-1}\right) \left(x - L\mu\right)\right\}$$

因此 Y 服从期望  $L\mu$ ,协方差  $\left(\left(L^{-1}\right)^T\Sigma^{-1}\left(L^{-1}\right)\right)^{-1}=L\Sigma L^T$  的正态分布.

**例题 9.4.1** 用 I 表示单位矩阵. 如果  $\mu \in \mathbb{R}$ ,  $\sigma > 0$ ,  $X \sim \mathcal{N}\left(\mu, \sigma^2 I\right)$ , A 为正交矩阵. 令 Y = AX, 那么  $Y \sim \mathcal{N}\left(A\mu, \sigma^2 I\right)$ , 即正交变换不改变 X 的协方差及其各分量独立性.

■ 直接运用上一结论.

lh