实分析第十三周作业

涂嘉乐 PB23151786

2025年5月26日

作业 12A

T1.

证明

 Lemma : 任意一个单调递增的函数 $f:[a,b]\to\mathbb{R}$ 均可以写为一个单调递增的连续函数和一个跳跃函数的和

Proof Of Lemma : 对 $\forall x \in [a,b]$, 定义 $\Delta(x) = F(x+0) - F(x-0)$, 补充定义 $\Delta(a) = F(a+0) - F(a)$, $\Delta(b) = F(b) - F(b-0)$, 定义

$$\begin{cases} J(x) = \sum_{y < x} \Delta(y) \\ F(x) = f(x) - J(x) \end{cases}$$

则根据定义,J(x) 为跳跃函数,F 为单调增的连续函数

回到本题,由 Jordan 分解定理, $\exists g,h:[a,b] \to \mathbb{R}$ 单调递增,使得 f=g-h,而对于 $g,h,\exists g_1,h_1$ 连续, j_1,j_2 跳跃,使得 $g=g_1-j_1,h=h_1-j_2$,因此 $f=(g_1-h_1)-(j_1-j_2)$,因此 j_1-j_2 连续, 而跳跃函数连续只能是恒为常值,因此 $f=g_1-(h_1+c)$,故 g_1,h_1+c 即为所求

T2.

证明 (1). 设 $\Gamma = \{I_{\alpha}\}$ 为 E 的一个 Vitali 覆盖,则对 $\forall \varepsilon > 0, \forall x \in E, \exists I \in \Gamma, \text{s.t. } x \in I$ 且 $|I| < 2\varepsilon$, 若 I 为闭区间,记 I' = I; 若 I 为半开半闭区间,用 I 的闭包 I' 替换 I; 若 I 为开区间,则我们可以适当地将 I 向内缩得到 $I', \text{s.t. } x \in I', |I'| < \varepsilon$,用 I' 替换 I,我们就得到了 $\Gamma' = \{I'_{\alpha}\}$ 仍是 E 的一个 Vitali 覆盖,因此可以假设 $\forall I \in \Gamma, I \subset G$

(2). 考虑 $\Gamma' = \{I_{\alpha} \in \Gamma : I_{\alpha} \subset G\}$, 下面证明 Γ' 仍为 E 的一个 Vitali 覆盖

对 $\forall x \in E$,由 G 是开集知, $\exists \eta > 0$,s.t. $(x - \eta, x + \eta) \subset G$,任取 $b_n \searrow 0$,且 $b_1 < \eta$,由 Γ 是 E 的一个 Vitali 覆盖知,对 $b_1, \exists I_1 \ni x, |I_1| < b_1$,因此 $I_1 \subset (x - \eta, x + \eta) \subset G$,故 $I_1 \in \Gamma'$;对于 b_2, b_3, \cdots ,同理我们可以找到 $I_2, I_3, \cdots \in \Gamma'$,所以我们找到了一列 $\{I_n\} \subset \Gamma'$,s.t. $\lim_{n \to \infty} |I_n| \to 0$,且 $x \in I_n, \forall n$,这就说明 Γ' 是 E 的一个 Vitali 覆盖

T3.

证明 $(i) \Longrightarrow (ii)$: 若 f' 几乎处处存在,则

$$D^+f(x) = D_+f(x) = D^-f(x) = D_-f(x)$$
, a.e $x \in (a,b)$

因此 E_1^c 相对于 E 是满测集, 故 E_1 是零测集

 $(ii) \Longrightarrow (i) : \mathbb{Z} \mathcal{X}$

$$E_2(f) = \{x \in (a,b) : D^-f(x) > D_+f(x)\}\$$

考虑 g(x) = -f(a+b-x), 则 $g:[a,b] \to \mathbb{R}$ 单调递增, 因此 $E_1(g)$ 零测, 又因为

$$\limsup_{h \to 0^+} \frac{g(x+h) - g(x)}{h} = \limsup_{h \to 0^+} -\frac{f(a+b-x+h) - f(a+b-x)}{h}$$
$$= -\liminf_{h \to 0^+} \frac{f(a+b-x+h) - f(a+b-x)}{h}$$

所以 $D^+g(x) = -D_+f(a+b-x)$, 同理有 $D^-g(x) = -D_-f(a+b-x)$, 因此

$$x \in E_1(g) \iff D^+g(x) > D_-g(x) \iff -D_+f(a+b-x) > -D^-f(a+b-x)$$
$$\iff D^-f(a+b-x) > D_+f(a+b-x) \iff a+b-x \in E_2(f)$$

因此 $\forall x \in E_2(f), a+b-x \in E_1(g)$, 故 $E_2(f)$ 也零测, 所以 $E_1(f) \cup E_2(f)$ 零测, 对 $\forall x \notin E_1(f) \cup E_2(f)$

$$D^+f(x) \ge D_+f(x) \ge D^-f(x) \ge D_-f(x) \ge D^+f(x)$$

因此上面四个 Dini 导数相等,故 $\forall x \notin E_1(f) \cup E_2(f), f'$ 存在,故 f' 几乎处处存在

T4.

证明 (1). 对 $\forall a \leq x \leq b$, 有 $f(a) \leq f(x) \leq f(b)$, 所以若 z < f(a), 则 $\{f \leq z\} = \emptyset$ 可测; 若 $z \geq f(b)$, 则 $\{f < z\} = [a, b]$ 可测; 若 $f(a) \leq z < f(b)$

Case 1. $\exists x \in [a,b]$, s.t. f(x) = z, 考虑集合

$$A_z = \{y : y \in [a, b], f(y) \le z\}$$

由于 $x \in A_z$,所以它非空,取 $x_0 = \sup_{y \in A_z} y$,则 $f(x_0) \ge z$,且 $\forall x < x_0, f(x) \le z, \forall x > x_0, f(x) > z$,否则与 x_0 是上确界矛盾! 因此

$$\{f \le z\} = [a, x_0) \ \ \ \ \ \ \ \ \ \ [a, x_0]$$

无论哪一种情形, $\{f \leq z\}$ 都可测

 $Case\ 2.\ \nexists a \leq x \leq b, \text{s.t.}\ f(x) = z,$ 还是考虑集合

$$A_z = \{y : y \in [a, b], f(y) \le z\}$$

$$f(x) = z \qquad f(x) = z \qquad f(x) = z \qquad 0$$

由于 $f(a) \leq z$,所以 $a \in A_z$,故 A_z 非空,取 $x_0 = \sup_{y \in A_z} y$,则 $\forall x < x_0, f(x) \leq z, \forall x > x_0, f(x) > z$,否则与 x_0 是上确界矛盾! 因此

$$\{f \le z\} = [a, x_0] \ \ \ \ \ [a, x_0)$$

无论哪一种情形, $\{f \leq z\}$ 都可测

综上 f 可测

(2). 设 f 的不连续点集合为 Λ ,对 $\forall x \in \Lambda$,我们有 $I_x \stackrel{\mathrm{def}}{=} \left(f(x^-), f(x^+)\right) \subset [f(a), f(b)]$,且 $\forall x_1, x_2 \in \Lambda, x_1 \neq x_2$,则 $I_{x_1} \cap I_{x_2} = \varnothing$,所以

$$\bigsqcup_{x \in \Lambda} I_x \subset [f(a), f(b)]$$

由有理数的稠密性,在每个 I_x 中任取一个有理数 q_x ,因此 I_x 与 q_x 一一对应,由 [f(a),f(b)] 中的有理数可数知, Λ 可数,即 f 的不连续点集合至多可数

作业 12B

T1.

证明 (1). 因为

$$\sqrt{b} - \sqrt{a} = \frac{b - a}{\sqrt{b} + \sqrt{a}} \le \frac{(b - h) - (a - h)}{\sqrt{b - h} + \sqrt{a - h}} = \sqrt{b - h} - \sqrt{a - h}$$

(2). 使用数学归纳法,当 n=1 时,取 $h=a_1$ 得 $\sqrt{b_1}-\sqrt{a_1} \leq \sqrt{b_1-a_1}$;假设命题对 $\forall n < k$ 均成立,下面证明 n=k 时也成立,取 $h=a_k-\sum\limits_{i=1}^{k-1}(b_i-a_i)\geq 0$,则

$$\sqrt{b_k} - \sqrt{a_k} \le \sqrt{b_k - h} - \sqrt{a_k - h} = \sqrt{\sum_{i=1}^k (b_k - a_k)} - \sqrt{\sum_{i=1}^{k-1} (b_k - a_k)}$$

所以

$$\sum_{k=1}^{n} (\sqrt{b_k} - \sqrt{a_k}) \le \sqrt{\sum_{i=1}^{k-1} (b_i - a_i)} + \sqrt{b_k} - \sqrt{a_k} \le \sqrt{\sum_{i=1}^{k} (b_k - a_k)}$$

由数学归纳法, 命题对 $\forall n \in \mathbb{N}$ 均成立

T2.

证明 考虑第 k 次操作后得到的 2^k 个闭区间,它们的长度均为 $\frac{1}{3^k}$,对于每个区间的左、右端点,它 们的三进制展开中, 前 k 项相同, 从第 k+1 项开始, 左端点的三进制展开均为 0, 右端点的三进制 展开均为 2, 即两个端点的三进制展开为

$$(a_1, \cdots, a_k, 0, 0, \cdots), (a_1, \cdots, a_k, 2, 2, \cdots)$$

所以这两个端点在 Cantor-Lebesque 函数上取值的差值为

$$\Delta F = \sum_{n=k+1}^{\infty} \frac{1}{2^n} = \frac{1}{2^k}$$

取第 k 次操作后得到的 2^k 个闭区间的端点 $(a_i, b_i), 1 \le i \le 2^k$, 则

$$\lim_{k \to \infty} \sum_{i=1}^{2^k} (b_i - a_i) = \lim_{k \to \infty} 2^k \cdot \frac{1}{3^k} = 0$$

但是对 $\forall k \in \mathbb{N}$

$$\sum_{i=1}^{2^k} |f(b_i) - f(a_i)| = \sum_{i=1}^{2^k} \frac{1}{2^k} = 1$$

即对 $\varepsilon_0 = 1$, 对 $\forall \delta > 0$, 取 $\left(\frac{2}{3}\right)^k < \delta$, 则对于 $\{(a_i, b_i)\}_{i=1}^{2^k}$, 有 $\sum_{i=1}^{2^k} |f(b_k) - f(a_k)| = 1$, 故它不是绝 对连续函数

T3.

证明 (1). 假设结论不成立,则 $\exists \varepsilon_0, \mathrm{s.t.} \ \forall \delta > 0$,均存在一列两两不交的开区间 $\{(a_k, b_k)\}_{k=1}^\infty \subset [a, b]$, 满足 $\sum\limits_{k=1}^{\infty}(b_k-a_k)<\delta$,但是 $\sum\limits_{k=1}^{\infty}|f(b_k)-f(a_k)|\geq \varepsilon_0$ 另一方面,由 $f\in AC[a,b]$ 知,对 $\forall \varepsilon>0, \exists \delta>0, \mathrm{s.t.}$ 对有限个两两不交的开区间 $\{(a_k,b_k)\}_{k=1}^n$,

若 $\sum\limits_{k=1}^{n}(b_k-a_k)<\delta$,就有 $\sum\limits_{k=1}^{n}|f(b_k)-f(a_k)|<\varepsilon$ 取 $\varepsilon=\frac{\varepsilon_0}{2}$,记此时对应的 δ 为 δ' ,则由假设,存在一列两两不交的开区间 $\{(a_k,b_k)\}_{k=1}^{\infty}\subset[a,b]$,

满足 $\sum_{k=1}^{\infty} (b_k - a_k) < \delta'$, 但是 $\sum_{k=1}^{\infty} |f(b_k) - f(a_k)| \ge \varepsilon_0$, 因此对 $\forall n \ge 1$, 均有

$$\sum_{k=1}^{n} (b_k - a_k) < \delta' \stackrel{f \in AC[a,b]}{\Longrightarrow} \sum_{k=1}^{n} |f(a_k) - f(b_k)| < \frac{\varepsilon_0}{2}$$

$$\sum_{k=1}^{\infty} |f(a_k) - f(b_k)| \le \frac{\varepsilon_0}{2}$$

矛盾!

(2). 由 (1) 知, 对
$$\forall \varepsilon > 0, \exists \delta > 0, \{(a_k, b_k)\}_{k=1}^{\infty} \subset [a, b]$$
 两两不交,只要 $\sum_{k=1}^{\infty} (b_k - a_k) < \delta$,则

 $\sum\limits_{k=1}^{\infty}|f(b_k-f(a_k))|<arepsilon$. 因为 $Z\subset(a,b)$ 为零测集,所以对这个 δ ,存在开集 $O\supset Z, \mathrm{s.t.}\ m(O)<arepsilon$,由 d=1 时的开集结构定理,存在可数个两两不交的开区间 $\{I_{\alpha}\}_{\alpha\in\Lambda}, \mathrm{s.t.}\ O=\bigsqcup\limits_{\alpha\in\Lambda}I_{\alpha}$,由于 f 在 \overline{I}_{α} 上连续知, $\exists m_{\alpha}, M_{\alpha}\in\overline{I}_{\alpha}, \mathrm{s.t.}$

$$\begin{cases} m_{\alpha} = \min_{x \in \overline{I}_{\alpha}} f(x) \\ M_{\alpha} = \max_{x \in \overline{I}_{\alpha}} f(x) \end{cases}$$

且 $(m_{\alpha},M_{\alpha})\subset I_{\alpha}$ (或者 $(M_{\alpha},m_{\alpha})\subset I_{\alpha}$),则 $\sum_{\alpha\in\Lambda}|m_{\alpha}-M_{\alpha}|\leq\sum_{\alpha\in\Lambda}|I_{\alpha}|=m(O)<\delta$,故

$$m(f(Z)) \le m(f(O)) = m\left(f\left(\bigsqcup_{\alpha \in \Lambda} I_{\alpha}\right)\right) \le \sum_{k=1}^{\infty} |f(M_{\alpha}) - f(m_{\alpha})| < \varepsilon$$

令 $\varepsilon \to 0^+$ 即得 m(f(Z)) = 0,因此绝对连续函数将零测集映为零测集