- [1] 以下の問いに答えよ。
- (1) t を実数の定数とする。実数全体を定義域とする関数 f(x) を $f(x) = -2x^2 + 8tx 12x + t^3 17t^2 + 39t 18$ と定める。このとき、関数 f(x) の最大値を t を用いて表せ。
- (2) (1)の「関数 f(x) の最大値」を g(t) とする。 $t\,\,\dot{m}\,\,t \geq -\frac{1}{\sqrt{2}}$ の範囲を動くとき、g(t) の最小値を求めよ。

[2014 東京大]

- [2] $f(x) = \frac{1}{3}x^3 \frac{1}{2}ax^2$ とおく。ただし a > 0 とする。
- (1) $f(-1) \le f(3)$ となる a の範囲を求めよ。
- (2) f(x) の極小値が f(-1) 以下となる a の範囲を求めよ。
- (3) $-1 \le x \le 3$ における f(x) の最小値を a を用いて表せ。

[2010 筑波大]

- [3] 次の問いに答えよ
- (1) 2 次関数 f(x) が

$$f(x) = 6x^2 - \left(\int_0^1 f(t) \, dt\right)^2$$

をみたすとき、f(x)を求めよ。

(2) 2 次関数 g(x) が

$$g(x) = 4x^2 - \left(\int_0^1 |g(t)| \, dt\right)^2$$

をみたすとき、g(x)を求めよ。

[2015 横浜国立大]

[4] 0 < t < 1 として、放物線 $C: y = x^2$ 上の点 (t, t^2) における接線を l とする。 C と l と x 軸で囲まれる部分の面積を S_1 とし、 C と l と直線 x = 1 で囲まれる部分の面積を S_2 とする。 $S_1 + S_2$ の最小値を求めよ。

[2014 一橋大]

[5] 2 つの放物線 $C: y = \frac{1}{2}x^2$, $D: y = -(x - a)^2$ を考える。

aは正の実数である。

- (1) C 上の点 $P\left(t,\frac{1}{2}t^2\right)$ における C の接線 l を求めよ。
- (2) l がさらに D とも接するとき、l を C と D の共通接線という。
- 2本(C と D の)の共通接線 l_1, l_2 を求めよ。
- (3) 共通接線 l_1 , l_2 と C で囲まれた図形の面積を求めよ。

[2007 名古屋大]

[6] k を実数とする。3 次関数 $y = x^3 - kx^2 + kx + 1$ が極大値と極小値を もち、極大値から極小値を引いた値が $4|k|^3$ になるとする。

[2019 九州大]

[解答欄]

このとき、kの値を求めよ。