COMP 4418 – Exercise Sheet: Fair Allocations I

Exercise I: Identical Valuations

Consider an allocation instance $\langle N, M, v \rangle$ where agents have identical valuations. That is, for any $i, j \in N$ and any $g \in M$, we have that $v_i(g) = v_j(g)$. Prove that under identical valuations:

- i. All allocations have the same USW.
- ii. An allocation that maximizes ESW will satisfy MMS.
- iii. No allocation can have an envy graph with a cycle.

Exercise II: Envy and Proportionality

Give an example of an instance with indivisible items where:

- i. An envy-free allocation does not exist but a proportional allocation exists.
- ii. A PROP allocation exists that is not EF, even though an EF allocation exists for the instance.
- iii. An allocation that is simultaneously PROP and EF1 exists.
- iv. An EF1 allocation exists such that its envy-graph has a cycle.

Exercise III: Leximin versus MMS

Give an example of an instance with indivisible items where:

- i. Every leximin optimal allocation is MMS.
- ii. No leximin optimal allocation is MMS.
- iii. There exists an MMS allocation that maximizes ESW but isn't leximin optimal.
- iv. There is an MMS allocation that has maximum USW.

Exercise IV: Applying Greedy Round Robin

Consider the following instance with n = 3 agents and m = 6 items For this instance, identify:

- i. Two distinct maximum USW allocations.
- ii. A PROP allocation.
- iii. Three distinct $\frac{1}{2}$ -MMS allocations.

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	<i>g</i> ₄	<i>g</i> ₅	g 6
v_1	100	10	20	30	50	90
v_2	100	20	30	20	20	10
<i>v</i> ₃	100	23	17	17	24	19

Exercise V: Balanced Allocations and EFI Consider an allocation instance $\langle N, M, v \rangle$ where m = kn. Suppose we add an additional constraint that each agent must receive exactly k items. For this setting prove that:

- i. There exists an instance where the Envy Graph Algorithm fails to produce an EF1 allocation that is balanced.
- ii. Round Robin will return an EF1 allocation where each agent receives k items.