# 物理化学实验

B.H.Zhang

2021年12月7日

## 1 实验一:燃烧焓的测定



图 1.1: 蔗糖的雷诺校正曲线。纵坐标  $\theta$  为温度 (去单位为摄氏度 °C),横坐标 t 为时间 (去单位为秒 s),C 点与 A 点纵 坐标差值为升高温度为 1.020°C



图 1.2: 苯甲酸的雷诺校正曲线。纵坐标  $\theta$  为温度 (去单位为摄氏度 °C),横坐标 t 为时间 (去单位为秒 s),C 点与 A 点 纵坐标差值为升高温度为 1.629°C

| 点        | 素糖       | 苯      | 甲酸       |
|----------|----------|--------|----------|
| 时间 $t/s$ | 温差 Δθ/°C | 时间 t/s | 温差 Δθ/°C |
| 0        | 0.000    | 0      | 0.000    |
| 60       | 0.009    | 60     | 0.002    |
| 120      | 0.016    | 120    | 0.004    |
| 180      | 0.019    | 180    | 0.006    |
| 240      | 0.023    | 240    | 0.007    |
| 300      | 0.027    | 300    | 0.008    |
| 330      | 0.029    | 330    | 0.009    |
| 360      | 0.129    | 360    | 0.055    |
| 390      | 0.477    | 390    | 0.364    |
| 420      | 0.693    | 420    | 0.762    |
| 450      | 0.821    | 450    | 1.068    |
| 480      | 0.902    | 480    | 1.270    |
| 510      | 0.960    | 510    | 1.385    |
| 540      | 1.002    | 540    | 1.469    |
| 570      | 1.027    | 570    | 1.533    |
| 600      | 1.053    | 600    | 1.575    |
| 630      | 1.075    | 630    | 1.609    |
| 660      | 1.094    | 660    | 1.638    |
| 690      | 1.110    | 690    | 1.660    |
| 720      | 1.122    | 720    | 1.681    |
| 750      | 1.134    | 750    | 1.697    |
| 780      | 1.146    | 780    | 1.711    |
| 810      | 1.550    | 810    | 1.723    |
| 840      | 1.163    | 840    | 1.725    |
| 870      | 1.172    | 870    | 1.733    |
| 900      | 1.178    | 900    | 1.740    |
| 930      | 1.185    | 930    | 1.746    |
| 960      | 1.191    | 960    | 1.751    |
|          |          | 990    | 1.756    |

表 1: 实验数据(标有粉色,是点火;标有蓝色,是结束反应)

## 2 实验二: 蔗糖水解



图 2.1:  $\ln{(\alpha_t - \alpha_\infty)}$  对时间 t (去除单位为 min) 作图,得到直线的表达式为 $\ln{(\alpha_t - \alpha_\infty)} = -0.01621t + 2.91$ ,应满足形式  $\ln{(\alpha_t - \alpha_\infty)} = -kt + \ln{(\alpha_0 - \alpha_\infty)}$ 。拟合曲线对应的斜率为-0.01621,其相反数即为反应速率常数k = 0.01621。

| 时间 $t/{ m min}$                    | 3     | 5     | 7     | 9     | 11    | 13    | 15    | 17    | 19    | 25    | 35    | 50   | 70   | 90    |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|
| $a'_t$ (原始数据)                      |       |       |       |       |       |       |       |       |       |       |       |      |      |       |
| $a_t$ (修正数据)                       | 12.35 | 11.90 | 11.55 | 11.15 | 10.85 | 10.45 | 10.05 | 9.80  | 9.45  | 8.20  | 6.60  | 4.35 | 1.45 | -0.40 |
| $a_t - a_{\infty}$                 | 16.95 | 16.50 | 16.15 | 15.75 | 15.45 | 15.05 | 14.65 | 14.40 | 14.05 | 12.80 | 11.20 | 8.95 | 6.05 | 4.20  |
| $\ln\left(a_t - a_{\infty}\right)$ | 2.83  | 2.80  | 2.78  | 2.76  | 2.74  | 2.71  | 2.68  | 2.67  | 2.64  | 2.55  | 2.42  | 2.19 | 1.80 | 1.44  |
| $a_{\infty} = -4.60$               |       |       |       |       |       |       |       |       |       |       |       |      |      |       |

表 2: 实验数据计算整理

# 3 实验三: 饱和蒸气压的测定

| 序号 | 真空度 /Pa   | $T/\mathrm{K}$ | 蒸气压 p/Pa | $\frac{1}{T}/\mathrm{K}^{-1}$ | $\ln p/\mathrm{Pa}$ |
|----|-----------|----------------|----------|-------------------------------|---------------------|
| 1  | -94250.00 | 298.15         | 8580.00  | 0.0033540                     | 9.06                |
| 2  | -91590.00 | 303.15         | 11240.00 | 0.0032987                     | 9.33                |
| 3  | -88950.00 | 307.15         | 13880.00 | 0.0032557                     | 9.54                |
| 4  | -85350.00 | 311.15         | 17480.00 | 0.0032139                     | 9.77                |
| 5  | -83340.00 | 313.15         | 19490.00 | 0.0031934                     | 9.88                |
| 6  | -81810.00 | 315.15         | 21020.00 | 0.0031731                     | 9.95                |
| 7  | -77230.00 | 318.15         | 25600.00 | 0.0031432                     | 10.15               |

表 3: 实验数据计算整理



图 3.1: 饱和蒸气压 p (去单位为帕斯卡 Pa) 与热力学温度 K (去单位为开尔文 K) 的关系图,指数函数拟合,得到的  $\frac{-2628.00}{T}+12.63$  。



图 3.2: 饱和蒸气压的自然对数  $\ln p$  (去单位为帕斯卡 Pa) 与热力学温度之倒数  $\frac{1}{T}$  (去单位为开尔文的倒数  $\mathrm{K}^{-1}$ ) 的关系图。线性拟合得到的方程为 $\ln p = \frac{-5137}{T} + 26.28$ 应满足方程 $\ln p = -\frac{\Delta_{\mathrm{vap}}H_{\mathrm{m}}}{RT} + Constant$ ,斜率为 $-\frac{\Delta_{\mathrm{vap}}H_{\mathrm{m}}}{R} = -5137$ ,解得 $\Delta_{\mathrm{vap}}H_{\mathrm{m}} = 42709\mathrm{J}\cdot\mathrm{mol}^{-1}$ 。

#### 6 实验六:原电池电动势的测定



图 6.1: 利用四次多项式拟合得到的 E-T 曲线,其中横坐标为热力学温度 T (单位: 开尔文 K),纵坐标为原电池  $\mathrm{Zn}_{(\mathrm{s})}|\mathrm{ZnSO_4}(0.1\mathrm{mol/L})|\mathrm{CuSO_4}(0.1\mathrm{mol/L})|\mathrm{Cu}_{(\mathrm{s})}$  的电池电动势 E (单位: 伏特 V)。多项式拟合结果为: $E(T)=1.18\times 10^{-7}T^4-0.0001455T^3+0.06726T^2-13.82T+1066$ ,公式中的 E(T) 与 T 视作无量纲数,即: $E(T)=\frac{E(T)}{\mathrm{V}}$ , $T=\frac{T}{\mathrm{K}}$ ,上式两边对温度 T 求一阶导数,E(T) 恒压下为温度 T 的函数,得: $\left(\frac{\partial E}{\partial T}\right)_p=\frac{\mathrm{d}E(T)}{\mathrm{d}T}=4.72\times 10^{-7}T^3-0.0004364T^2+0.1345T-13.82。$ 

### 7 实验七:溶液表面张力的测定



图 7.1: 利用函数  $\sigma=a+b\ln{(c+d)}$  拟合得到的  $\sigma-c$  曲线。其中 a,b,d 均为参数,c 为乙醇溶液的浓度 (去除单位为:  $\mathrm{mol\cdot m^{-1}}$ ) , $\sigma$  为溶液表面张力(去除单位为:  $\mathrm{N\cdot m^{-2}}$ ) 得到的拟合拟合结果为:  $\sigma=0.13308212+0.0507109\ln{(c+3.66669084)}$ ,回归系数  $R^2=0.993$ 。



图 7.2: 利用  $\sigma-c$  的拟合结果求出  $\Gamma-c$  曲线。其中  $\Gamma$  是溶质在表面层的吸附量(去除单位为  $\mathrm{mol\cdot m^{-2}}$ ,纵坐标为  $1\times 10^{-5}\mathrm{mol\cdot m^{-2}}$ ),计算公式为 $\Gamma=\frac{c}{RT}\left(\frac{\mathrm{d}\sigma}{\mathrm{dc}}\right)_T$ ,其中 T 取实验温度  $T=293.15\mathrm{K}$ 。



图 7.3:  $\frac{c}{\Gamma} - c$  关系图,纵坐标为  $\frac{c}{\Gamma}$  (去单位为 m<sup>-1</sup>),横坐标为 c (去单位为 mol·m<sup>-3</sup>)。利用一次拟合,得到一直线,关系式为  $\frac{c}{\Gamma} = 4.806 \times 10^4 c + 1.762 \times 10^8$ ,应符合关系式  $\frac{c}{\Gamma} = \frac{c}{\Gamma_\infty} + \frac{1}{K\Gamma_\infty}$ ,故其斜率之倒数为  $\Gamma_\infty = 2.081 \times 10^{-5} \mathrm{mol\cdot m^{-2}}$ 

### 8 实验八:弱电解质电离平衡常数的测定



图 8.1:  $\frac{c\Lambda_m}{c^{\ominus}}$  (去单位为  $\mathbf{S} \cdot \mathbf{m}^2 \cdot \mathbf{mol}^{-1}$ ) 对  $\frac{1}{\Lambda_m}$  (去单位为  $\mathbf{mol} \cdot \mathbf{S}^{-1} \cdot \mathbf{m}^{-2}$ ) 作图,得到的方程为 $\frac{c\Lambda_m}{c^{\ominus}} = 2.657 \times 10^{-8} \frac{1}{\Lambda_m} - 1.867 \times 10^{-6}$ ,用斜率除以  $\Lambda_{m,\infty}^2$ ,就得到 $K_c^{\ominus} = 1.741 \times 10^{-5}$ 。

# 9 实验九:二元相图



图 9.1: 乙醇-环已烷汽-液平衡相图,左侧两条曲线为本组测量所得,使用五次多项式拟合,其交点坐标通过解方程得到为(0.566,337.72K);右侧为邻组数据,汽相采用五次多项式拟合,液相采用二次多项式拟合,其交点通过解方程得到为(0.541,337.42K),求平均值,得到乙醇与环已烷二组分的最低沸点为337.57K

### 10 实验十: 皂化反应



图 9.2: 乙醇-环己烷汽-液平衡相图,左侧两条曲线为本组测量所得,使用五次多项式拟合,其交点坐标通过解方程得到为(0.566,337.72K);右侧为邻组数据,汽相采用五次多项式拟合,液相采用二次多项式拟合,其交点通过解方程得到为(0.541,337.42K),求平均值,得到乙醇与环己烷二组分的最低沸点为337.57K

| 序号 | T/K    | $n_{\mathrm{D}}^{30}(测)$ | $n_{\rm D}^{30}(真)$ | x <sub>环己烷</sub> (l) | $n_{\rm D}^{30}(测)$ | $n_{\rm D}^{30}(真)$ | x <sub>环己烷</sub> (g) |
|----|--------|--------------------------|---------------------|----------------------|---------------------|---------------------|----------------------|
| 1  | 351.15 | 1.358                    | 1.357               | 0.000                | 1.358               | 1.357               | 0.000                |
| 2  | 349.19 | 1.3596                   | 1.3586              | 0.018                | 1.3646              | 1.3636              | 0.076                |
| 3  | 347.36 | 1.3611                   | 1.3601              | 0.036                | 1.3708              | 1.3698              | 0.146                |
| 4  | 345.45 | 1.3624                   | 1.3614              | 0.051                | 1.382               | 1.381               | 0.287                |
| 5  | 344.33 | 1.3648                   | 1.3638              | 0.078                | 1.3838              | 1.3828              | 0.312                |
| 6  | 343.25 | 1.3661                   | 1.3651              | 0.093                | 1.3861              | 1.3851              | 0.344                |
| 7  | 341.90 | 1.3681                   | 1.3671              | 0.116                | 1.3895              | 1.3885              | 0.395                |
| 8  | 340.87 | 1.3699                   | 1.3689              | 0.136                | 1.3931              | 1.3921              | 0.451                |
| 9  | 339.92 | 1.3713                   | 1.3703              | 0.152                | 1.3938              | 1.3928              | 0.463                |
| 10 | 338.80 | 1.3782                   | 1.3772              | 0.238                | 1.3954              | 1.3944              | 0.489                |
| 11 | 338.37 | 1.3799                   | 1.3789              | 0.259                | 1.3956              | 1.3946              | 0.492                |
| 12 | 337.95 | 1.3872                   | 1.3862              | 0.359                | 1.3973              | 1.3963              | 0.520                |
| 13 | 337.75 | 1.3915                   | 1.3905              | 0.424                | 1.3976              | 1.3966              | 0.524                |
| 14 | 337.68 | 1.3975                   | 1.3965              | 0.524                | 1.399               | 1.398               | 0.550                |
| 15 | 337.65 | 1.3988                   | 1.3978              | 0.546                | 1.3994              | 1.3984              | 0.557                |
| 16 | 338.25 | 1.4081                   | 1.4063              | 0.702                | 1.3992              | 1.3974              | 0.539                |
| 17 | 340.19 | 1.4096                   | 1.4078              | 0.732                | 1.4007              | 1.3989              | 0.565                |
| 18 | 341.27 | 1.4112                   | 1.4094              | 0.765                | 1.4021              | 1.4003              | 0.590                |
| 19 | 344.36 | 1.4129                   | 1.4111              | 0.799                | 1.4049              | 1.4031              | 0.623                |
| 20 | 347.19 | 1.4153                   | 1.4135              | 0.851                | 1.4105              | 1.4087              | 0.751                |
| 21 | 348.44 | 1.4192                   | 1.4174              | 0.937                | 1.4137              | 1.4119              | 0.816                |
| 22 | 350.16 | 1.4196                   | 1.4178              | 0.946                | 1.4162              | 1.4144              | 0.870                |
| 23 | 351.75 | 1.42                     | 1.4182              | 0.955                | 1.42                | 1.4182              | 0.955                |
| 24 | 353.60 | 1.422                    | 1.4202              | 1.000                | 1.422               | 1.4202              | 1.000                |

表 4: 实验数据处理

| $c_0$                                                                                        | $\kappa_0 = 1.036 \text{ S} \cdot \text{m}^{-1}$ |       |       |        |        |        |        |        |        |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $t / \min$                                                                                   | 1                                                | 2     | 3     | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     |
|                                                                                              | 0.8960                                           | ).795 | 0.729 | 0.680  | 0.645  | 0.617  | 0.594  | 0.576  | 0.561  | 0.548  | 0.537  | 0.527  | 0.518  | 0.511  | 0.504  |
| $(\kappa_0 - \kappa_t) / \mathrm{S} \cdot \mathrm{m}^{-1}$                                   | 0.1400                                           | 0.241 | 0.307 | 0.356  | 0.391  | 0.419  | 0.442  | 0.460  | 0.475  | 0.488  | 0.499  | 0.509  | 0.518  | 0.525  | 0.532  |
| $\frac{(\kappa_0 - \kappa_t)}{t} / \mathrm{S} \cdot \mathrm{m}^{-1} \cdot \mathrm{min}^{-1}$ | 0.1400                                           | 0.120 | 0.102 | 0.0890 | 0.0782 | 0.0698 | 0.0631 | 0.0575 | 0.0528 | 0.0488 | 0.0454 | 0.0424 | 0.0398 | 0.0375 | 0.0355 |

表 5: 25°C 时皂化反应电导率随时间的变化关系 (数据处理)

| $c_0$                                                                                        | $\kappa_0 = 1.139 \; \mathrm{S \cdot m^{-1}}$ |        |       |       |        |        |        |        |        |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------------|-----------------------------------------------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $t / \min$                                                                                   | 1                                             | 2      | 3     | 4     | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     |
| $\kappa_t / \mathrm{S} \cdot \mathrm{m}^{-1}$                                                |                                               |        |       |       |        |        | 0.610  |        |        |        |        |        |        |        |        |
| , , , , , , , , , , , , , , , , , , , ,                                                      | 0.2150                                        |        |       |       |        |        |        |        |        |        |        |        |        |        |        |
| $\frac{(\kappa_0 - \kappa_t)}{t} / \mathbf{S} \cdot \mathbf{m}^{-1} \cdot \mathbf{min}^{-1}$ | 1 0.215 (                                     | ).165( | 0.133 | 0.112 | 0.0964 | 0.0848 | 0.0756 | 0.0683 | 0.0622 | 0.0572 | 0.0529 | 0.0492 | 0.0460 | 0.0432 | 0.0407 |

表 6: 30°C 时皂化反应电导率随时间的变化关系 (数据处理)



图 10.1: 25°C 时皂化反应进行情况,横坐标为  $\frac{\kappa_0 - \kappa_t}{t}$ (去单位为  $S \cdot m^{-1} \cdot min^{-1}$ ),纵坐标为  $\kappa_t$ ( 去单位为  $S \cdot m^{-1}$ )。线性拟合方程为 $\kappa_t = 3.583 \frac{\kappa_0 - \kappa_t}{t} + 0.3716$ 



图 10.2: 30°C 时皂化反应进行情况,横坐标为  $\frac{\kappa_0 - \kappa_t}{t}$ (去单位为  $S \cdot m^{-1} \cdot min^{-1}$ ),纵坐标为  $\kappa_t$ ( 去单位为  $S \cdot m^{-1}$ )。线性拟合方程为 $\kappa_t = 2.271 \frac{\kappa_0 - \kappa_t}{t} + 0.4371$