In this note we present a characterization of the Continuum Hypothesis which we learned from the book *Problems and Theorems in Classical Set Theory* by Komjath and Totik.

Theorem 1. The Continuum Hypothesis fails if and only if for every partition of \mathbb{R} into countably many pieces, we can find distinct x, y, u, and v in one piece of the partition such that x + y = u + v. (We say that x, y, u, and v are a non-trivial monochromatic solution to x + y = u + v.)

Proof. For one direction, assume that the Continuum Hypothesis holds and fix an increasing and continuous sequence $\langle A_{\alpha} : \alpha < \omega_1 \rangle$ such that

- each A_{α} is a countable subgroup of $(\mathbb{R}, +)$, and
- $\mathbb{R} = \bigcup_{\alpha < \omega_1} A_{\alpha}$.

By recursion, we build a sequence $\langle c_{\alpha} : \alpha < \omega_1 \rangle$ such that

- $c_{\alpha}: A_{\alpha} \to \omega$,
- $\beta < \alpha \Longrightarrow c_{\beta} = c_{\alpha} \upharpoonright A_{\beta}$, and
- A_{α} does not contain a non-trivial monochromatic (with respect to c_{α}) solution to x + y = u + v.

We start by letting $c_0: A_0 \to \omega$ be one-to-one, and clearly if δ is a limit ordinal then we may take $c_\delta = \bigcup_{\alpha < \delta} c_\alpha$. Thus, assume $\alpha = \beta + 1$ and we have defined suitable $c_\beta: A_\beta \to \omega$. We define c_α so that it extends c_β and is one-to-one on $A_\alpha \setminus A_\beta$.

Now suppose we are given four distinct x, y, u, and v in A_{α} with x + y = u + v. If three of these are in A_{β} , then because A_{β} is a subgroup of $(\mathbb{R}, +)$ the fourth is in A_{β} as well and we are done by properties of c_{β} . Thus, at least two of these are in $A_{\alpha} \setminus A_{\beta}$, and we defined c_{α} so that they are sent to different values. In any case, c_{α} takes on at least two values on the set $\{x, y, u, v\}$. To finish, we define $c = \bigcup_{\alpha < \omega_1} c_{\alpha}$ and so CH implies the existence of a partition of \mathbb{R} into countably many pieces for which there is no non-trivial monochromatic solution to x + y = u + v.

For the other direction, assume CH fails and $c: \mathbb{R} \to \omega$. Fix a sequence $\langle r_{\alpha} : \alpha < \omega_2 \rangle$ of distinct reals that are linearly independent over \mathbb{Q} , and define $d: [\omega_2]^2 \to \omega$ by

(0.1)
$$d(\alpha, \beta) = c(r_{\alpha} + r_{\beta}).$$

Claim. There are distinct α , α' , β , and β' such that d is constant on $\{\alpha, \alpha'\} \times \{\beta, \beta'\}$.

Proof. Suppose not, and choose disjoint subsets A and B of ω_2 such that $|A| = \omega_1$ and $|B| = \omega_2$. Given a pair $\{\alpha, \alpha'\}$ of ordinals from A and an $n < \omega$, there is at most one $\beta \in B$ for which

$$d(\alpha, \beta) = d(\alpha', \beta) = n,$$

because of our assumption. Since $|[A]^2| = \aleph_1 < \aleph_2 = |B|$, we can find a $\beta \in B$ such that $d(\alpha, \beta) \neq d(\alpha', \beta)$ whenever $\alpha \neq \alpha'$ are in A. But this means the function d is one-to-one on $A \times \{\beta\}$, which is impossible as A is uncountable.

So fix α , α' , β , and β' as in the claim, so d is constant on $\{\alpha, \alpha'\} \times \{\beta, \beta'\}$. and define $x = r_{\alpha} + r_{\beta}$, $y = r_{\alpha'} + r_{\beta'}$, $u = r_{\alpha} + r_{\beta'}$, and $v = r_{\alpha'} + r_{\beta}$. These four are all distinct because our collection of reals is linearly independent, and clearly

$$(0.3) x + y = r_{\alpha} + r_{\alpha'} + r_{\beta} + r_{\beta'} = u + v.$$

Finally, if d is constant on $\{\alpha, \alpha'\} \times \{\beta, \beta'\}$ with value n then we have by definition

$$c(x) = c(y) = c(u) = c(v) = n.$$

Thus, if $|\mathbb{R}| \geq \aleph_2$ then for every $c : \mathbb{R} \to \omega$ we can find a non-trivial monochromatic solution to x+y=u+v. \square