Class 7

Sabrina Koldinger (A16368238)

Class 7 Clustering methods

The broad goal here is to find groupings in your input data.

kmeans

First, make some data to cluster.

```
x=rnorm(1000)
hist(x)
```

Histogram of x

MAke a vector of length 60 with 30 points centered at -3 and 30 points centered at 3.

```
tmp=c(rnorm(30, mean = -3), rnorm(30, mean = 3))
  tmp
 [1] -1.993215 -2.545352 -3.672325 -2.906536 -3.095059 -3.517621 -3.777858
 [8] -1.832730 -2.063347 -3.761910 -3.567369 -2.284752 -3.692237 -2.978851
[15] -1.638371 -2.640830 -3.262984 -2.595547 -3.577998 -3.182104 -3.286236
[22] -3.143687 -3.435739 -3.203561 -3.735788 -2.044038 -3.778846 -3.589206
[29] -2.874677 -3.175576
                          3.283563
                                    4.212834
                                              2.485628
                                                        1.917040
[36]
     5.343970
               4.662216
                          2.426890
                                    2.699276
                                              2.596221
                                                        3.428800
                                                                  4.200494
[43]
     4.457996
               3.486060
                          2.774215
                                    2.552768
                                              3.815276
                                                        2.958822
                                                                  3.508970
[50]
     4.031265
               2.935926
                          2.504427
                                    3.276542
                                              3.280792 2.344021
                                                                  2.796407
[57]
     3.413238
               1.747618 2.768272
                                    3.554944
```

I will now make a small x and y data set with 2 groups of points.

```
x= cbind(x=tmp, y=rev(tmp))
plot(x)
```



```
k=kmeans(x,centers=2)
 k
K-means clustering with 2 clusters of sizes 30, 30
Cluster means:
       Х
              у
1 -3.028478 3.247340
2 3.247340 -3.028478
Clustering vector:
Within cluster sum of squares by cluster:
[1] 32.15525 32.15525
(between_SS / total_SS = 94.8 %)
Available components:
[1] "cluster"
              "centers"
                         "totss"
                                    "withinss"
                                               "tot.withinss"
[6] "betweenss"
              "size"
                         "iter"
                                    "ifault"
   Question: from your result object k how many point are in each cluster?
 k$size
[1] 30 30
   Question: What "component" of your result object details the cluster membership?
 k$cluster
Question: what about cluster center?
 k$centers
```

```
x y
1 -3.028478 3.247340
2 3.247340 -3.028478
```

Plot clusters

```
plot(x, col=k$cluster)
points(k$centers, col="blue", pch=15,cex=2)
```


We can cluster into 4 groups

```
k4=kmeans(x,centers=4)
k4
```

K-means clustering with 4 clusters of sizes 9, 14, 30, 7

Cluster means:

x y
1 3.145453 -2.216575
2 2.741933 -3.455099
3 -3.028478 3.247340
4 4.389150 -3.219113

Clustering vector:

 $[39] \ 2\ 2\ 2\ 4\ 4\ 2\ 1\ 1\ 4\ 2\ 1\ 4\ 2\ 1\ 1\ 2\ 2\ 2\ 1\ 2\ 1\ 1$

Within cluster sum of squares by cluster:
[1] 3.441073 4.585824 32.155249 2.597549
(between_SS / total_SS = 96.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

plot(x, col=k4\$cluster)

A big limitation of kmeans is that it does what you ask even if the clusters are silly.

hclust

The main base R function for Hierarchical clustering is hclust. unlike kmeans, you can not just pass it your data as an input. You need to calculate a distance matrix.

```
d=dist(x)
hc=hclust(d)
hc

Call:
hclust(d = d)

Cluster method : complete
Distance : euclidean
Number of objects: 60

Use plot()

plot(hc)
abline(h=10, col="red")
```

Cluster Dendrogram

d hclust (*, "complete") To make the "cut" and get our cluster membership vector we can use the cutree() function. Make a plot of our data colored by hclust results.

PCA- Principal Component Analysis

Here we will do Principal Component Analysis (PCA) on some food data from the UK.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139
Fresh_potatoes	720	874	566	1033
Fresh_Veg	253	265	171	143
Other_Veg	488	570	418	355
Processed_potatoes	198	203	220	187
Processed_Veg	360	365	337	334
Fresh_fruit	1102	1137	957	674
Cereals	1472	1582	1462	1494
Beverages	57	73	53	47
Soft_drinks	1374	1256	1572	1506
Alcoholic_drinks	375	475	458	135
Confectionery	54	64	62	41

```
#dont do this
#rownames(x)=x[,1]
#x=x[,-1]
```

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

```
nrow(x)
```

[1] 17

ncol(x)

[1] 4

17 rows and 4 columns

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

It is more effective to use the row.names=1 since it will not end up removing columns of data if run multiple times.

Q3: Changing what optional argument in the above barplot() function results in the following plot?

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

pairs(x, col=rainbow(10), pch=16)

PCA to the rescue

The main "base" R function for PCA is called prcomp().

```
pca=prcomp(t(x))
summary(pca)
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 2.921e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

How much variance is captured in 2 PCs. 96.5%

To make our main "PC score plot" or PC1 vs PC2 plot", "PC plot", or "ordination plot".

```
attributes(pca)
```

\$names

```
[1] "sdev" "rotation" "center" "scale" "x"
```

\$class

[1] "prcomp"

We are after the pca\$x result component to make our main PCA plot.

```
pca$x
```

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

```
mycols=c("orange", "red", "blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col=mycols, pch=16, xlab="PC1(67.4%)", ylab="PC2(29%)")
```


Another important result from PCA is how the original variables (in this case foods) contribute to the PCs. This is contained in the pca\$rotation object- people often call this the "loadings" or "contributions" to the PCs.

pca\$rotation

	PC1	PC2	PC3	PC4
Cheese	-0.056955380	0.016012850	0.02394295	-0.409382587
Carcass_meat	0.047927628	0.013915823	0.06367111	0.729481922
Other_meat	-0.258916658	-0.015331138	-0.55384854	0.331001134
- Fish		-0.050754947		0.022375878
Fats_and_oils	-0.005193623	-0.095388656	-0.12522257	0.034512161
Sugars	-0.037620983	-0.043021699	-0.03605745	0.024943337
Fresh_potatoes	0.401402060	-0.715017078	-0.20668248	0.021396007
Fresh_Veg	-0.151849942	-0.144900268	0.21382237	0.001606882
Other_Veg	-0.243593729	-0.225450923	-0.05332841	0.031153231
Processed_potatoes	-0.026886233	0.042850761	-0.07364902	-0.017379680
Processed_Veg	-0.036488269	-0.045451802	0.05289191	0.021250980
Fresh_fruit	-0.632640898	-0.177740743	0.40012865	0.227657348
Cereals	-0.047702858	-0.212599678	-0.35884921	0.100043319
Beverages	-0.026187756	-0.030560542	-0.04135860	-0.018382072
Soft_drinks	0.232244140	0.555124311	-0.16942648	0.222319484

We can make a plot along PC1

```
library(ggplot2)
contrib= as.data.frame(pca$rotation)
ggplot(contrib)+ aes(PC1, rownames(contrib))+geom_col()
```

