Computer Architecture

Digital logic: Part 2

Combinational logic

Agenda

- Two types of logic
- Combinational Logic
 - Decoder
 - Multiplexer
 - Two-level logic and PLA
- Timing

Two types of logic in digital systems

Logic: In a digital system, it refers to the set of rules and structures that govern how binary values (0s and 1s) are processed to produce a specific outcome. (i.e., the implementation of logic expressions in Boolean algebra.)

Two types of logic:

- Combinational logic: Output depends solely on the current inputs, without any memory of past states. It's used for operations that need immediate calculation, like arithmetic and data selection.
- Sequential logic: Output depends on both current inputs and past states, providing memory through components like flip-flops and registers. Sequential logic enables systems to remember information and operate in stages, crucial for tasks that need state retention and timing control.

Circuits for combinational logic

Decoders

A ₁	A_0	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

- A decoder is a lookup table
- Each pattern of the inputs A₁A₀ is mapped to a pattern of the outputs

Implementation of the 2:4 decoder

Multiplexor (mux)

It is a selector ⇒ the output is one of the inputs that is selected by a control.

S	D ₁	D ₀	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

sum of products:

$$Y = \bar{S}\bar{D}_1D_0 + \bar{S}D_1D_0 + SD_1\bar{D}_0 + SD_1D_0$$

Simplifying the expression using K-map

Or, using tristate buffer

4:1 multiplexers

Two-level logic:

- Sum-of-products form is called two-level logic
- It consists of literal connected to a level of AND gates connected to a level of OR gates.
- The circuits can be simplified using techniques like bubble pushing and K-map.

Two-level logic and PLAs

- The sum-of-products representation corresponds to a common structured-logic implementation called a programmable logic array (PLA).
- A PLA has a set of inputs and corresponding input complements (which can be implemented with a set of inverters), and two stages of logic.
 - The first stage is an array of AND gates that form a set of product terms (also, called minterms); each product term can consist of any of the inputs or their complements.
 - The second stage is an array of OR gates, each of which forms a logical sum of any number of the product terms.

Implementation of 4:1 multiplexer

Tristates implementation

 The enable signal (S₁S₀) can be formed using AND gates and inverters.

Implementation of 4:1 multiplexer

Hierarchical implementation:

 Using two stages of 2:1 multiplexers

Logic with multiplexers

- Multiplexers can be used as lookup tables with the appropriate data inputs.
 - e.g., a 4:1 mux can be used to implement a two-input AND gate. A and
 B serve as select lines. (the inputs make it behave like an AND gate)

Logic with multiplexers

- 2:1 multiplexers can be used as AND gate.
 - Combine the rows to eliminate the right most input variable by expressing the output in terms of this variable. (By this way, we can represent use 2^{N-1} input multiplexer to perform any N-input logic function.)

Exercise (example 2.12 in Harris and Harris)

Alyssa P. Hacker needs to implement the function

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

to finish her senior project, but when she looks in her lab kit, the only part she has left is an 8:1 multiplexer.

How does she implement the function?

Solution

Y	=	AB	+	BC	+	ĀBC
		AD				ADC

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Solution

()
Y =	= AR	+ BC	+ ABC
(• -	- 70	1 00	1 ADC

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Exercise

Can you construct the same boolean function with a 4:1 multiplexer and an inverter?

$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$					
Α	В	С	Υ		
0	0	0	1		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	0		
1	1	1	0		

Solution

						_	
Y	=	AB	+	BC	+	ABC	
•					•		

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Timing

An output takes time to change in response to an input change.

- The figure (called timing diagram) shows the transient response of the buffer circuit when the input changes.
- The transition from LOW to HIGH is called rising edge.
- The transition from HIGH to LOW is called falling edge.
- The blue arrow indicates the rising edge of Y is caused by the rising edge of A.

Propagation and contamination delay

The figure shows that A is initially either HIGH or LOW and changes to the other state at a particular time; we are interested only in the fact that it changes, not what value it has. In response, Y changes some time later.

- t_{pd}: the propagation delay, the maximum time from when an input changes until the output or outputs reach their final value.
- t_{cd}: the contamination delay, the minimum time from when an input changes until any output starts to change its value.

Why there are delays?

- Time required for capacitance
- The speed of light

Critical path and short path

- A path refers to a sequence of interconnected components (such as logic gates, multiplexers, etc.) through which a signal travels from an input to an output.
- The critical path is the longest path that signals must traverse in a digital circuit.
 (also, the slowest path since it is the longest one.)
- The short path is the shortest path through the circuit. (also, the fastest one.)

Calculating the delay of a circuit

- worst-case value: generally, designers take the worst-case value (i.e., the propagation delay of the critical path) as the delay of the circuit.
- Manufacturers normally supply data sheets specifying these delays for each gate.
 - Calculating t_{pd} and t_{cd} requires delving into the lower levels of abstraction beyond the scope of this course. But we use the data sheets from the manufactures.

Critical path waveform

So, when A changes from 1 to 0, the delay of this circuit is:

$$t_{pd} = 2t_{pd_AND} + t_{pd_OR}$$

Short path waveform

Short Path

Exercise (example 2.16 in Harris and Harris)

Given the propagation delays for the components given below, compare the worst-case timing of the three four-input multiplexer designs. What is the critical path for each design?

Given your timing analysis, why might you choose one design over the other?

Gate	t _{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

Exercise (example 2.16 in Harris and Harris)

Critical path:

(a) 1 NOT + 1 AND + 1 OR

(b) 1 NOT + 1 AND + Transite (enable to Y)

(c) 2 * Transit(D to Y)

Glitch

A glitch refers to an unintended and temporary fluctuation in the output signal.

- shortest path: going through two gates;
- critical path: going through three gates;
- when B transitions from 1 to 0, n2 falls before n1 can rise.
- until n1 rise, the two inputs to the OR gate are 0, and the output Y drops to 0.
- When n1 eventually rises, Y returns to 1.

Glitch

- Glitches usually don't cause problems, but it is important to recognize them in timing diagrams.
- We can eliminate glitches by adding redundant implicants.

