Applied Machine Learning

- k-Means clustering algorithm
- Soft assignment of clusters
- Hierarchical k-Means
- k-Medoids

k-Means Clustering

- 1. Initialization: choose k data items as cluster centers \mathbf{c}_i
- 2. While (cluster centers have significant changes)
 - 1. For each data item \mathbf{x}_i
 - closest_center_from(x_i).assign(x_i)
 - 2. For each empty cluster center \mathbf{c}_i
 - c_j.assign(select_far_item_from(c_j))
 - For each cluster center \mathbf{c}_i
 - \mathbf{c}_{j} .center = \mathbf{c}_{j} .mean()

Soft Assignment of Clusters

- Items may be at a similar distance to more than one cluster center
 - Hard assignment: item i assigned to cluster center j through $\delta_{i,j}$
 - Soft assignment: item i assigned to cluster center j with weight $w_{i,j}$

$$\sum_{j} w_{i,j} = 1 \qquad w_{i,j} > 0$$

$$w_{i,j} = \frac{S_{i,j}}{\sum_{l=1}^{k} S_{i,l}}$$

- Affinity between point \mathbf{x}_i and center \mathbf{c}_j

- σ : scaling parameter
- the longer the distance between \mathbf{x}_i and \mathbf{c}_j in units of σ , the smaller the affinity

Hard Assignment vs Soft Assignment

Hard assignment

$$\Phi(\delta, c) = \sum_{i,j} \delta_{i,j} \left[(\mathbf{x}_i - \mathbf{c}_j)^{\mathsf{T}} (\mathbf{x}_i - \mathbf{c}_j) \right]$$

.
$$\delta_{i,j} = \begin{cases} 1 & \mathbf{x_i} \text{ belongs to cluster } j \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{j} \delta_{i,j} = 1 \qquad \sum_{i} \delta_{i,j} > 0$$

$$\sum_{i} \delta_{i,j} > 0$$

Soft assignment

$$\Phi(\delta, c) = \sum_{i,j} w_{i,j} \left[(\mathbf{x}_i - \mathbf{c}_j)^{\mathsf{T}} (\mathbf{x}_i - \mathbf{c}_j) \right]$$

$$w_{i,j} = \frac{S_{i,j}}{\sum_{l=1}^{k} S_{i,l}}$$

$$\sum_{j} w_{i,j} = 1 \qquad \qquad w_{i,j} > 0$$

$$\mathbf{c}_{j}.\mathsf{center} = \frac{\sum_{i} w_{i,j} \mathbf{x}_{i}}{\sum_{i} w_{i,j}}$$

Hierarchical k-Means

- Each k-Means iteration needs distances from each of the k clusters to all items
- Hierarchical k-means:
 - ullet subsample dataset at random to identify cluster centers using small k
 - allocate every item in the dataset to clusters
 - in each of the k clusters:
 - cluster recursively with k-Means, or with hierarchical k-Means

k-Medoids

- Option when items cannot be averaged to compute centers
- Cluster centers can be data items
- 1. Initialization: choose k data items at random as cluster centers \mathbf{c}_i
- 2. While (cluster centers have significant changes)
 - 1. For each data item \mathbf{x}_i
 - closest_center_from(\mathbf{x}_i).assign(\mathbf{x}_i)
 - For each cluster center \mathbf{c}_i
 - \mathbf{c}_{j} .center = \mathbf{c}_{j} .choose_best_medoid()

- k-Means clustering algorithm
- Soft assignment of clusters
- Hierarchical k-Means
- k-Medoids

Applied Machine Learning