

FIT2090 BUSINESS INFORMATION SYSTEMS AND PROCESSES

Lecture 7 : Analysing Process Flows

CLAYTON, FACULTY OF INFORMATION TECHNOLOGY MONASH UNIVERSITY

Reference: Chapter 5, Laguna & Marklund, 2nd Edition, CRC Press Sections © 2013 CRC Press All rights reserved

Principles

- Businesses need to measure business process performances to provide feedback on their business improvement programs
- By analysing measures such as cycle times of processes, businesses can gain insights into their business improvement programs
- Businesses also need to manage their capacity so that their operations are lean with minimal waste

Objectives

On completion of this lecture, you will be able to:

- Describe the operational variables used to study processes in terms of stock and flow
- Describe the relationship between these operational variables using Little's Law
- Analyse cycle time and capacity

Why should we study/understand – analysing process flows

- An understanding of the operational variables of business processes is a fundamental skill/knowledge of business analysts
- By applying the above knowledge, business analysts are able to analyse the performance of business processes using measures such as cycle times for capacity planning and process design/planning

Contents

- Processes and Flows Important Concepts
 - Throughput
 - WIP
 - Cycle Time
 - Little's Formula
- Cycle Time Analysis
- Capacity Analysis
- Managing Cycle Time and Capacity
 - Cycle time reduction
 - Increasing Process Capacity
- Theory of Constraints

Stocks and Flows

Stocks

- items on shelves
- employees
- financial balance in an account

... in a business process

- "work-in-progress"
- "work-in-process"(number of jobs in 'system')

Flows

- rate of sales
- hiring rate
- outgoings per week

- "throughput"(jobs per time)

Business Processes and Flows

A process = A set of activities that transforms inputs to outputs Two main methods for processing jobs

- 1. **Discrete processing** each item is distinct
 - Examples: Cars, cell phones, tax files, etc.

"Job" = work unit

- 2. Continuous processing no individual items
 - Examples: Gasoline, electricity, consultancy duration etc.

Three main types of flow structures

- 1. **Divergent** Several outputs derived from one input
 - Example: Dairy and oil products
- **2. Convergent** Several inputs put together to one output
 - Example: Car manufacturing, general assembly lines
- **3. Linear** One input gives one output
 - Example: Hospital treatment

Example

In manufacturing, material flow names are given according to the shape of the dominant flow:

V-plant

Process dominant by divergent flows

A-Plant

A process dominant by converging flows

I-Plant

A process dominant by linear flows

Flow rate is defined as the number of jobs per unit time

 $R_i(t)$ = rate of incoming jobs through all entry points into the process

 $R_o(t)$ = rate of outgoing jobs through all exit points from the process

Process Throughput

- Inflow and Outflow rates typically vary over time (see figure on next slide)
 - $-R_i(t) = Arrival/Inflow rate of jobs at time t$
 - $-R_o(t)$ = Departure/Outflow rate of finished jobs at time t
 - IN = Average inflow rate over time
 - OUT = Average outflow rate over time
- A stable system must have IN = OUT = λ
 - $-\lambda$ = the process flow rate in
 - $-\lambda$ = the process flow rate out
 - $-\lambda$ = process throughput

Process Inflow and Outflow vary over time

Data for L&M, Figure 5.1 Pg 141

At t=8, outflow is 10 and inflow is 4 Average $\Sigma Ro(t)$ Ro(t) $\Sigma Ri(t)$ $R_{i}(t)$ IN OUT inflow 6 6 4 6 3.5 2 16 9 2.7 5.3 3 2.8 20 Average 5 13 2.6 29 14 4.8 2.3 outflow 5 34 18 4.9 2.6 3.5 38 4.8 10 28 5 4 42 33 3.7 4.7 6 35 4.8 3.5 48 6 41 4.6 3.7 50 6 4.7 56 48 6 63 54 4.8 4.2

Process Inflow and Outflow vary over time

IN = Average of inflow

= Sum of $R_i(t)$ / no. of time periods

OUT _Average of outflow

= Sum of $R_o(t)$ / no. of time periods

Over 30 periods, IN = OUT = approx. 5 jobs

Work-In-Process ("WIP")

- WIP(t) comprises all jobs that have entered the process but not yet left it
 - including jobs waiting for the previous batch to be completed
- WIP(t) = Work in process at time t
 - WIP(t) increases when $R_i(t)>R_o(t)$
 - WIP(t) decreases when $R_i(t) < R_o(t)$
- WIP = Average work in process over time

The Seven Zeros of JIT

- Zero Defects: Quality at the source
- Zero Lot Size: To avoid batching delays
- Zero Setups: To minimize setup delay and allow production in small lots
- Zero Breakdowns: To avoid stopping tightly coupled line
- Zero Handling: To promote flow of parts
- Zero Lead Time: To ensure rapid replenishment of parts
- Zero Surging: Necessary in system without WIP buffers.

The WIP Level Varies With Process Inflow and Outflow

Process Cycle Time

- The difference between a job's departure time and its arrival time = cycle time
 - One of the most important attributes of a process
 - Also referred to as throughput time
- The cycle time includes both value adding and non-value adding activity times
 - Processing time
 - Inspection time
 - Transportation time
 - Storage time
 - Waiting time
- Cycle time is a powerful tool for identifying process improvement potential

Little's Formula (Due to J.D.C. Little (1961))

- States a fundamental and very general relationship between the average: WIP, Throughput (= λ) and Cycle time (CT)
 - The cycle time refers to the time the job spends in the system or process

Little's Formula: WIP = λ ·CT

- Implications, everything else equal
 - Shorter cycle time ⇔lower WIP

Turnover ratio = 1/CT

- If λ increases \Rightarrow to keep WIP at current levels CT must be reduced
- A related measure is (inventory) turnover ratio
 - Indicates how often the WIP is entirely replaced by a new set of jobs

Cycle time, Throughput and WIP

Throughput: a job arrives every 6 minutes = 1/6 jobs per minute

Exercise

Insurance company processes an average of 12,000 claims/yr. On average at any one time, there are 600 applications at various stages of processing. If there are 50 working weeks/yr, how many weeks (on average) does processing a claim take?

 λ = 12,000 claims/year

WIP = 600 jobs

WIP = $\lambda \cdot CT$

 $CT = WIP / \lambda = 600 / 12,000$

= 1/20 years

= (1/20)*50 = 2.5 working weeks

How can cycle time be reduced?

Either reduce WIP or increase the throughput rate.

CT = WIP/ λ = (300/12,000)*50 = 1.25 working weeks

Redesign process by reducing the average WIP to **300**, thus CT is reduced to 1.25 weeks

Overview

- Processes and Flows Important Concepts
 - Throughput
 - WIP
 - Cycle Time
 - Little's Formula
- Cycle Time Analysis
- Capacity Analysis
- Managing Cycle Time and Capacity
 - Cycle time reduction
 - Increasing Process Capacity

Cycle Time Analysis

- The task of calculating the average cycle time for an entire process or process segment
 - Assumes that the average activity times for all involved activities are available
- In the simplest case a process consists of a sequence of activities on a single path
 - The average cycle time is just the sum of the average activity times involved
- ... but in general we must be able to account for
 - Rework
 - Multiple paths
 - Parallel activities

Rework

- Many processes include control or inspection points where if the job does not conform it will be sent back for rework
 - The rework will directly affect the average cycle time!
- Definitions
 - T = sum of activity times in the rework loop
 - r = percentage of jobs requiring rework (rejection rate)
- Assuming a job is never reworked more than once

$$CT = (1+r)T$$

Assuming a reworked job is no different than a regular job

$$CT = T/(1-r)$$

Some Beautiful Mathematics

Not for examination...

Repeated reworking:

Cycle Time (CT) =
$$T + r^*T + r^*(r^*T) + r^*r^*r^*T + ... + r^n * T + ...$$

Therefore: $r^*CT = r^*T + r^*(r^*T) + r^*r^*r^*T + ... + r^n * T + ...$
 $= CT - T$
Therefore: $T = CT(1 - r)$
 $CT = T/(1-r)$

Example – Rework effects on the average cycle time

Consider a process consisting of

- Three activities, A, B & C taking on average 10 min. each
- One inspection activity (I) taking 4 minutes to complete.
- X% of the jobs are rejected at inspection and sent for rework

What is the average cycle time?

- a) If no jobs are rejected and sent for rework.
- b) If 25% of the jobs need rework but never more than once.
- c) If 25% of the jobs need rework but reworked jobs are no different in quality than ordinary jobs.

a) If no jobs are rejected and sent for rework.

b) If 25% of the jobs need rework but never more than once.

CT =
$$(1+r)T$$

10 + $(1+0.25)*(10+10+4) = 40$ mins
A B C I

a) If 25% of the jobs need rework but reworked jobs are no different in quality than ordinary jobs.

CT = T/(1-r)
CT = 10 +
$$(10+10+4)/(1-0.25)$$
 = 42 mins
A B C I

Example

What is the average cycle time for this process?

$$CT = T/(1-r)$$

Cycle Time (CT) = 10 + (10+10+4)/0.75 = 42 minutes

Example – Processes with Multiple Paths

- Consider a process segment consisting of 4 activities A, B, C and D with activity times 10,15, 30 & 20 minutes respectively
- On average 20% of the jobs are routed via B and 80% go straight to activity C.

For 100 jobs:

80 take 10+30+20 = 60 minutes → 4800 total

20 take 10+15+20 = 45 minutes → 900 total

Average = 4800+900 / 100 = 57 minutes

Multiple Paths

- It is common that there are alternative routes through the process
 - For example: jobs can be split in "fast track" and normal jobs
- Assume that m different paths originate from a decision point
 - $-p_i$ = The probability that a job is routed to path i
 - $-T_i$ = The time to go down path i

$$CT = p_1T_1+p_2T_2+...+p_mT_m = \sum_{i=1}^{m} p_iT_i$$

Example – Processes with Multiple Paths

Consider a process segment consisting of 4 activities A, B, C and D with activity times 10,15, 30 & 20 minutes respectively

On average 20% of the jobs are routed via B and 80% go straight to activity C.

What is the average cycle time?

Example – Processes with Multiple Paths

Consider a process segment consisting of 4 activities A, B, C and D with activity times 10,15, 30 & 20 minutes respectively

On average 20% of the jobs are routed via B and 80% go straight to activity C.

$$CT = p_1T_1+p_2T_2+...+p_mT_m = \sum_{i=1}^{m} p_iT_i$$

$$CT = 10 + (0.8*30) + (0.2*15) + 20 = 57$$
 minutes

Processes with Parallel Activities

- If two activities related to the same job are done in parallel the contribution to the cycle time for the job is the maximum of the two activity times.
- Assuming
 - M process segments in parallel
 - T_i = Average process time for process segment i to be completed

$$CT_{parallel} = Max\{T_1, T_2, ..., T_M\}$$

Example – Cycle Time Analysis of Parallel Activities

Consider a process segment with 5 activities A, B, C, D & E with average activity times: 12, 14, 20, 18 & 15 minutes

What is the average cycle time for the process segment?

12 + Max{14, 20, 18} + 15

$$A B C D E$$

= 12 + 20 + 15 = 47 minutes

Cycle Time Efficiency

 Measured as the percentage of the total cycle time spent on value adding activities.

Cycle Time Efficiency =

Theoretical Cycle Time CT

- Theoretical Cycle Time = the cycle time which we would have if only value adding activities were performed
 - That is if the activity times, which include waiting times, are replaced by the processing times

Flowchart Cycle Time Example

L&M Fig. 5.6 p.158

Cycle time analysis Exercise 5.9, Pg 176

Flow-chart Pg 177 Figure 5.12

Exercise

Assuming a job is never reworked more than once in the same rework loop.

Define

T_i =Activity time for activity i (i=A,B,C,D,E,F,G,H,I,J,K,L,M,N)

CT =Average cycle time for the process in question

Let CT₁ represent the average cycle time for the rework loop consisting of activities B, D and F.

Let CT₂ represent the average cycle time of the rework loop consisting of activities H, I, J, K, L, and M.

$$\begin{split} \text{CT}_1 &= 1.15 \,\, ^* \, (\text{T}_{\text{B}} + \text{T}_{\text{D}} + \text{T}_{\text{F}}) = 1.15 \,\, ^* \, (12 + 23 + 10) \,\, = 1.15 \,\, ^* \, 45 \\ &= 51.75 \,\, \text{minutes} \\ \text{CT}_2 &= 1.05 \,\, ^* \, (\text{T}_{\text{H}} + \text{max}\{\text{T}_{\text{I}}, \, \text{T}_{\text{J}}, \, \text{T}_{\text{K}} + \text{T}_{\text{L}}\} + \text{T}_{\text{M}}) \\ &= 1.05 \,\, ^* \, (30 \, + \, \text{max}\{21, \, 25, 13 + 10\} \, + \, 15) \\ &= 1.05 \,\, ^* \, \, 70 \,\, = 73.5 \,\, \text{minutes} \\ \text{CT} &= \text{T}_{\text{A}} + \, (0.7 \,\, ^* \, \text{CT}_{\text{1}}) \, + \, 0.3 \,\, ^* \, (\text{T}_{\text{C}} + \text{T}_{\text{E}} + \text{T}_{\text{G}}) \, + \, \text{CT}_{\text{2}} + \, \text{T}_{\text{N}} \\ &= 23 \, + \, (0.7 \,\, ^* \, 51.75) \, + \, 0.3 \,\, ^* \, (25 + 26 + 31) \, + \, 73.5 \, + \, 18 \\ &= 175.325 \,\, \text{minutes} \end{split}$$

Overview

- Processes and Flows Important Concepts
 - Throughput
 - WIP
 - Cycle Time
 - Little's Formula
- Cycle Time Analysis
- Capacity Analysis
- Managing Cycle Time and Capacity
 - Cycle time reduction
 - Increasing Process Capacity

Capacity Analysis

- Focus on assessing the capacity needs and resource utilization in the process
 - 1. Determine the **number of jobs** flowing through different process segments
 - 2. Determine **capacity requirements** and **utilization** based on the flows obtained in 1.
- The capacity requirements are directly affected by the process configuration
 - ⇒ Flowcharts are valuable tools
 - ⇒ Special features to watch out for
 - Rework
 - Multiple Paths
 - Parallel Activities
- Complements the cycle time analysis!

The Effect of Rework on Process Flows

- A rework loop implies an increase of the flow rate for that process segment
- Definitions
 - N = Number of jobs flowing through the rework loop
 - n = Number of jobs arriving to the rework loop from other parts of the process
 - r = Probability that a job needs rework
- Assuming a job is never reworked more than once

$$N = (1+r)n$$

Assuming a reworked job is no different than a regular job

$$N = n/(1-r)$$

Example – Capacity Analysis with Rework

$$N = (1+r)n = (1+0.25)100 = 125$$

Multiple Paths and Parallel Activities

Multiple Paths and process flows

- The flow along a certain path depends on
 - The number of jobs entering the process as a whole (n)
 - The probability for a job to go along a certain path
- Defining
 - N_i = number of jobs taking path i
 - p_i = Probability that a job goes along path i

$$N_i = n \cdot p_i$$

Parallel Activities and process flows

- All jobs still have to go through all activities
 - if they are in parallel or sequential does not affect the number of jobs flowing through a particular activity

Analyzing Capacity Needs and Utilization (I)

- Need to know
 - Processing times for all activities
 - The type of resource required to perform the activity
 - The number of jobs flowing through each activity
 - The number of available resources of each type

Step 1 – Calculate unit load for each resource

- The total resource time required to process one job
 - N_i = Number of jobs flowing through activity i for every new job entering the process
 - T_i = The processing time for activity i in the current resource
 - M = Total number of activities using the resource

Unit load for Resource = $\sum_{i=1}^{M} N_i \cdot T_i$

Unit Load for R1 = 2*1 + 5*0.3 + 2*1 = 5.5 min

Activity	Processing Time (T)	Resource	No. of Jobs (N)
1	2 min	R1	1
2	5 min	R1	0.3
3	2 min	R1	1
4	3 min	R2	1.1
5	4 min	R2	1.1

Analyzing Capacity Needs and Utilization (II)

Step 2 – Calculate the unit capacity

The number of jobs per time unit that can be processed

Unit capacity for resource j = 1 / Unit load for resource j

Step 3 – Determine the resource pool capacity

- A resource pool is a set of identical resources available for use
- Pool capacity is the number of jobs per time unit that can be processed
 - Let M = Number of resources in the pool

Pool capacity = M*Unit capacity = M / Unit load

Let's say available resource for R1 is 2

In other words we have two people (or two machines) that can do tasks assigned to R1

Unit Load	5.5 minutes	
Unit Capacity	1/ 5.5 jobs per min	
Pool Capacity	2 x 1/5.5 jobs per min	0.36 jobs per min

Analyzing Capacity Needs and Utilization (III)

Capacity is related to resources not to activities!

- The process capacity is determined by the **bottleneck**
 - The bottleneck is the resource or resource pool with the smallest capacity (the slowest resource in terms of jobs/time unit)
 - The slowest resource will limit the process throughput

Capacity Utilization

- The theoretical process capacity is obtained by focusing on processing times as opposed to activity times
 - Delays and waiting times are disregarded
 - \Rightarrow The actual process throughput \leq The theoretical capacity!

$$Capacity\ Utilization = \frac{Actual\ Throughput}{Theoretical\ Pr\ ocess\ Capacity}$$

Example

Resource type	Pool Capacity	Pool Capacity
	(jobs/min) x 60 =	(jobs/hour)
R1	0.36	21.6
R2	0.13	7.8
R3	0.17	10.2

So, R2 is the bottleneck and the Process Capacity is 7.8 jobs/hour Let's say in reality, the actual throughput is only 6 jobs/hour Then Capacity Utilisation is $(6/7.8) \times 100\% = 76.9\%$

Overview

- Processes and Flows Important Concepts
 - Throughput
 - WIP
 - Cycle Time
 - Little's Formula
- Cycle Time Analysis
- Capacity Analysis
- Managing Cycle Time and Capacity
 - Cycle time reduction
 - Increasing Process Capacity

Cycle time Reduction

Cycle time and capacity analysis provide valuable information about process performance

- Helps identify problems
- Increases process understanding
- Useful for assessing the effect of design changes

Ways of reducing cycle times through process redesign

- 1. Eliminate activities
- 2. Reduce waiting and processing time
- 3. Eliminate rework
- 4. Perform activities in parallel
- 5. Move processing time to activities not on the critical path
- 6. Reduce setup times and enable batch size reduction

Example – Critical Activity Reduction

Consider a process with three sequences or paths

Sequence (Path)	Time required (minutes)	
1. A→B →E	12+14+15 = 41	Critical path
2. A→C →E	12+20+15 = 47 = CT	
3. A →D →E	12+18+15 = 45	

- ⇒ By moving 2 minutes of activity time from path 2 to path 1 the cycle time is reduced by 2 minutes to CT=45 minutes
- i.e. when we move some work content from the critical path to a non critical path we can decrease the cycle time

Example

Path Length

To reduce cycle time, we can redesign the process by moving some work from the critical path to a non critical activity, such as E in this case.

Suppose we move 4 min from C to E, this reduces the CT for the critical path to 56 min and the other path also becomes a critical path, i.e. its CT is also 56 min

Increasing Process Capacity

- Two fundamental ways of increasing process capacity
 - 1. Add resource capacity at the bottleneck
 - Additional equipment, labor or overtime
 - Automation

2. Reduce bottleneck workload

- Process redesign
 - Shifting activities from the bottleneck to other resources
 - Reducing activity time for bottleneck jobs
- When the goal is to reduce cycle time and increase capacity careful attention must be given to
 - The resource availability
 - The assignment of activities to resources

Theory of Constraints (TOC) (I)

- An approach for identifying and managing bottlenecks
 - To increase process flow and thereby process efficiency
- TOC is focusing on improving the bottom line through
 - Increasing throughput
 - Reducing inventory
 - Reducing operating costs
 - ⇒ Need operating policies that move the variables in the right directions without violating the given constraints
- Three broad constraint categories
 - 1. Resource constraints
 - 2. Market constraints
 - 3. Policy constraints

Theory of Constraints (TOC) (II)

TOC Methodology

- 1. Identify the system's constraints
- 2. Determine how to exploit the constraints
 - Choose decision/ranking rules for processing jobs in bottleneck
- 3. Subordinate everything to the decisions in step 2
- 4. Elevate the constraints to improve performance
 - For example, increasing bottleneck capacity through investments in new equipment or labor
- 5. If the current constraints are eliminated return to step 1
 - Don't loose inertia, continuous improvement is necessary!
- See example 5.18, Chapter 5 in Laguna & Marklund

Example - Applying the TOC Methodology

Consider a process with 9 activities and 3 resource types (X,Y,Z). Activities 1, 2 & 3 require 10 minutes of processing and the other activities 5 minutes each.

There are 3 jobs, following different paths being processed

Job	Routing	Demand (Units/week)	Profit Margin
Α	4, 8, and 9	50	\$20
В	1, 2, 3, 5, 6, 7, and 8	100	\$75
С	2, 3, 4, 5, 6, 7, 8, and 9	60	\$60

Activities 1, 2 & 3 utilize resource X, activities 4, 5, & 6 resource Y and activities 7, 8 & 9 resource Z. Each resource have 2400 minutes of weekly processing time available

Step 1. Identify system constraints Resource Utilisation Calculations

Resource	Requirements (min/week)	Utilisation
X	(30X100) + (20X60)=4,200 Job B Job C	4,200/2,400=175%
Υ	(5X50)+(10X100)+(15X60) = 2,150 Job A Job B Job C	2,150/2,400 = 90%
Z	(10X50)+(10X100)+(15X60)=2,400 Job A Job B Job C	2,400/2,400=100%

- Resource X is the bottleneck in this problem
- Resource X required over 100% utilisation, so the process is constrained by Resource X

Step 2: Determine how to exploit the system's constraint

Consider 3 rules to process jobs and calculate total weekly profit for each rule.

- 2.1 Rank jobs based on profit margins
 - -> B,C, A
- 2.2 Rank jobs based on their profits per direct labour hour:
 - e.g. Job A has \$1.33 (\$20/15) per direct labour hour, Job B has \$1.50 and C has \$1.20
 - -> B,A,C
- 2.3 Rank jobs based on their contribution per minute of the constraint, i.e. ratio of profit and direct labour in Resource X (the bottleneck)

Job B has \$2.50 per direct labour per minute in Resource X

Profit/Labour in Resource = \$75/30 = \$2.50

Job C has \$3.00

Job A – its contribution is irrelevant because A jobs are not routed to Resource X

-> C,B, A (where A is a 'free' job w.r.t. Resource X

How can Resource X be utilised more effectively?

Step 3. Subordinate everything to the decisions in step 2

Calculate the no. of jobs of each type to be processed, utilisation of each resource, total weekly profit – depends on ranking rule in step 2

- 3.1 Max no. of B jobs = 80 per week, i.e. maximum that X can complete (2400/30=80)
- If 80 B jobs are processed then no Job C is processed because no more capacity left in X
- Job A can be processed because it does not use Resource X.
- Resource Y is not a constraint because its max, utilisation is 90%.
- After Job B, 1,600 minutes left (2400-800) are left in Resource Z
- -> 160 (i.e.1600/10 = 160) Job A can be processed
- Demand for Job A is 50 per week so this can be satisfied
- See resource utilisation table below:

Resource	Requirements (min/week)	Utilisation
Χ	80 jobs X 30 mins/each job = 2400 mins	2400/2400=100%
Υ	(10 X 80)+(5 X 50)=1,050	1,050/2400=44%
Z	(10X80)+(10X50)=1,300	1,300/2400=54%

Total profit of this processing plan (i.e. B,C,A) is \$75X80 + \$20X50 = \$7,000

Step 3. Subordinate everything to the decisions in step 2

3.2 From rule 2.2, ranking is B,A,C,

Job A does not require Resource X so processing plan is the same as for rule 2.1 (see previous slide),

Total profit is also \$7,000

- 3.3 (**C,B,A**) Calculate max number of Job C that can be processed through bottleneck 120 Job C can be processed each week (2,400/20)
 - -> Entire demand for Job C (120) can be met.

Subtract capacity from bottleneck and calculate max number of Job B that can be processed with remaining capacity

->40 Job B (1,200/30)

Job A requires Resource Z. Updated capacity of Resource Z is 1,300 min (after subtracting times for Jobs B (40 X 10) and C (60 X 15))

-> Entire demand for Job A can be met

Utilisation for ranking rule 2.3

Resource	Requirements (min/week)	Utilisation
X	(30x40) + (20x60)=2,400	2400/2400 = 100%
Υ	(5x50)+(10x40)+(15x60)=1,550	1550/2400=64%
Z	(10x50)+(10x40)+(15x60)=1,800	1,800/2400=75%

Total profit of plan 2.3 is \$20X50 + \$75X40+\$60X60=**\$7,600**

Rule 2.3 gives better results in constrained processes as shown in this example where the goal is selecting the **mix of products or services** that maximizes total profit.

- Restaurant has 28 tables
- Historically there are usually tables reserved for which customers fail to arrive

# No Shows	Probability
0	0.1
1	0.25
2	0.3
3	0.2
4	0.15

Restaurant decides to "overbook"

Profit per table: \$60

Loss of goodwill if booked table unavailable: \$30

How many overbookings per night yields the most profit?

Expected profit with one overbooking (29 reservations accepted)

#Shows	29	28	27	26	25
Prob.	0.1	0.25	0.3	0.2	0.15
Covers	28	28	27	26	25
Profit	1,680	1,680	1,620	1,560	1,500
Turned away	1	0	0	0	0
Cost	30	0	0	0	0
Net Profit	1,650	1,680	1,620	1,560	1,500
Expected Profit (Net Profit X Prob.)	165	420	486	312	225
Overall Expected Profit		\$1,608			

Which number of overbookings is best?

Number of overbookings	Overall expected Profit
0	1,557
1	1,608
2	1,636.5
3	1,638
4	1.621.5

3 overbookings is best

Expected profit is just \$1.50 more for three overbookings than two overbookings

Example

	Product A	Product B
Profit	\$80	\$50
Demand	100 units	200 units
Resource	0.4 hours/unit	0.2 hours/unit
Resource available	60 I	nours

How should the resources be allocated to maximize profit?

Contd.

	Product A	Product B
Profit	\$80	\$50
Demand	100 units	200 units
Resource	0.4 hours/unit	0.2 hours/unit
Resource available	60 hours	
Profit	\$80/0.4 = \$200 per hour	\$50/0.2 = \$250 per hour

Profit → only produce product B

Constraint → the demand for product B is only 200

Solution:

- Use 200*0.2 = 40 hours meeting all the demand for product B
- Use 20 hours to produce 20/0.4 = 50 units of product A
- **Profit** = 50*200 + 80*50 = 10000 + 4000 = \$14,000

Drum, Buffer, Rope (DBR) Concept

Theory of Constraints applied to Supply Chains

- End customer demand drives the pace of a supply chain
- One supplier in the chain may be more constrained than the other suppliers
- Aim of supply chain is to maximise its capability to meet demand by maintaining a buffer of the key component to protect against stockouts downstream of this key component manufacturer
- Set inventory levels at other suppliers of the chain according to the demand and buffer levels to minimise total supply chain inventory costs

Summary

- Three operational variables in a process i.e. throughput, work-in-process and process cycle
- The relationship between these operational variables using Little's Law
- Analysis of process performance: process cycle time, capacity
- Theory of Constraints

