5

보조기억장치와 데이터 저장

강의목차

- 1. 보조기억장치 개요
- 2. 자기테이프 기억장치
- 3. 자기디스크 기억장치
- 4. 광디스크
- 5. 반도체 기억장치
- 6. 클라우드 저장장치의 활용

01 보조기억장치 개요

01 보조기억장치의 필요성

보조기억장치 개요

01 보조기억장치의 필요성

- 1 대용량의 기억장치가 필요함
 -) 컴퓨터 응용분야의 확대 및 데이터 생산량 폭증
 - 컴퓨터가 사용할 프로그램과 데이터를 주기억장치에 모두 저장하기에는 한계가 있음
- 2 비휘발성 기억장치
 - 고전원 공급 없이 데이터를 보관할 수 있어야 함
- 3 주기억장치의 효율적 사용
 -) 지역성의 원리 활용 : 필요한 부분만 주기억장치에 저장하고 나머지는 보조기억장치에 저장

02 기억장치 계층구조

03 보조기억장치의 종류

접근방식	매체 형태	매체 종류
순차	자기테이프	릴 테이프 카트리지 테이프(DAT, DLT, LTO 등)
직접	자기디스크	플로피디스크, 하드디스크
	광디스크	CD-ROM, CD-R, CD-RW, DVD, DVD-R, HD-DVD, Blu-ray(BD-R, BD-RE) 등
	기타 매체	플래시 메모리, SSD

02 자기테이프 기억장치

01 자기테이프 기억장치의 특성

- 순차접근 기억장치
 - › 물리적 순서에 따라 데이터를 저장함·
 - 기록된 순서에 따라 읽을 수 있음
- 원하는 위치에 신속하게 접근할 수 없음
 - 대화식 처리에 직접 사용하기에 적합하지 않음
 -) 데이터의 백업 용으로 사용함

02 초기의 자기테이프 드라이브

출처: 위키백과(Erik Pitti)

IBM System 360 테이프 드라이브 DEC TE 16 9-트랙 테이프 드라이<mark>브</mark>

출처: 위키백과(Dave Fischer)

03 카트리지 테이프

최근의 자기테이프는 카트리지 내부에 장착됨

-) 테이프를 보호하고 다루기 편리하게 함
- DAT (Digital Audio Tape), DLT (Digital Linear Tape), LTO(Linear Tape-Open) 등

자기테이프기억장치

」 저장 용량: LTO-9의 경우 18TB(45TB compressed)

04 테이프 라이브러리

자기테이프 기억장치

대용량 저장장치

-) 최대 수 엑사(10¹⁸)바이트에 이르는 대용량 기억장치
- 1개 이상의 테이프 드라이브와 여러 개의 테이프 카트리지를 보관할 수 있는 슬롯, 테이프를 식별하기 위한 바코드 입력기, 테이프를 자동으로 드라이브에 장착하기 위한 로봇 등이 포함됨
-) 백업, 자주 사용되지 않는 데이터의 저장 등의 용도로 활용됨

StorageTek Powderhorn 테이프 라이브러리

출처:위키백과(Austin Mills)

01 직접접근 저장장치

🦊 직접접근 저장장치란?

- › 데이터의 위치를 지정하여 데이터를 저장하거나 읽어 낼 수 있는 저장장치
- 대화식 처리를 위한 빠른 데이터 처리를 위해서는 직접접근 저장장치가 필요함
- 고 자기디스크, 광디스크, 반도체 저장장치 등

개요

고 사성체가 코팅된 원판 형태의 기록 매체 위에서 판독/기록 헤드를 움직여 원하는 위치에 접근하는 직접접근 저장장치

최초의 디스크 드라이브인 IBM 350 디스크 저장장치 -IBM 305 RAMAC 컴퓨터 시스템에 사용(1956년)-

플로피디스크

-) 산화철로 코팅된 편평하고 둥근 플라스틱으로 구성됨
- 크기: 직경 8인치, 5.25인치, 3.5인치
-) 소형 컴퓨터에서 휴대용 저장 매체로 사용되었으나, 최근에는 USB 플래시 드라이브 등으로 대체되어 사용되지 않음

하드디스크

- 1개의 회전축에 자성체가 코팅된 여러 개의 금속 디스크를 결합하여 고속 회전
-) 액추에이터 암에 연결된 읽기·쓰기 헤드가 각각의 기록면 위에서 이동하여 원하는 위치에서 읽기 · 쓰기를 함

하드디스크

- › 1개의 회전축에 자성체가 코팅된 여러 개의 금속 디스크를 결합하여 고속 회전
- › 액추에이터 암에 연결된 읽기·쓰기 헤드가 각각의 기록면 위에서 이동하여 원하는 위치에서 읽기 ·쓰기를 함
-) 구성품들을 밀봉함으로써 먼지나 이물질로 오염되지 않게 하여 디스크 기록면과 헤드를 가깝게 유지하고 고속으로 정밀하게 동작할 수 있게 함

하드디스크

) 데이터 저장 구조

- 디스크 표면에는 여러 개의 원형 트랙이 배열되어 있음
- 각각의 트랙은 정해진 양의 데이터를 저장하는 구획인 섹터로 나뉨
- 동일 반경에 위치한 트랙의 집합을 실린더라고 함

하드디스크

) 하드디스크의 성능

- 탐색시간 : 헤드가 지정된 트랙으로 이동하는 시간
 - ✓ 수 ms
- 회전지연시간: 디스크가 회전하여 데이터 위치가 헤드에 도달하는 시간으로, 디스크의 회전 속도에 따라 결정됨
 - ✓ 디스크의 회전 속도 : 4,200 ~ 15,000 RPM
 - ✓ 평균 회전지연시간 = 7.1 ~ 2 ms
- 전송시간: 주기억장치와 하드디스크 사이에 데이터를 전송하는 데 소비되는 시간

고성능 디스크의 구성

) 디스크 어레이

- 여러 개의 하드디스크에 데이터를 분산하여 저장함
- 목적
 - ✓ 데이터 저장의 신뢰성을 높임
 - ✓ 접근 성능 향상
- RAID (Redundant Array of Inexpensive Disks)

04 광디스크

01 광 디스크

🥶 광 디스크란?

-) 레이저를 이용하여 기록면에서 데이터를 읽음
-) 한 장의 마스터로부터 대용량 데이터를 인쇄하듯 찍어내어 대량생산이 가능함
 - ⇒ 음악, 영화, 프로그램 설치 디스크 등을 저렴한 비용으로 제작하여 배포할 수 있음

🧾 기록 방법에 따른 분류

종 류	특성
ROM (Read Only Memory)	제작 단계에서 한 번만 기록 가능내용의 추가나 수정 불가
WORM (Write Once Read Many)	 공백 상태로 제작된 디스크에 1회에 한해 기록할 수 있음 데이터의 영구적 기록을 위해 사용
RW (ReWritable)	디스크에 반복적으로 쓰고 지울 수 있음약 1,000회 정도의 재 기록이 가능

CD(Compact Disc)

-) 오디오 용으로 개발된 매체이나, 이후 데이터 저장용으로도 활용됨
-) 직경 120mm의 표준 CD는 74분의 스테레오 음악을 저장할 수 있도록 개발됨
 - 데이터 용량 : 650MB ~ 700MB
- CD-ROM, CD-R, CD-RW

DVD(Digital Versatile Disc)

- › 고화질 영화를 저장하기 위한 기록 매체로 개발됨
 - 해상도 720×480, 5.1채널 돌비 AC3 입체 음향, 다국어 음성 및 자막 등 다양한 기능 제공
-) CD에 비해 파장이 짧은 적색 레이저를 사용하여 기록 용량을 높임
 - 저장 용량 : 4.7GB(싱글 레이어), 8.5GB(듀얼 레이어)

Blu-ray disc

-) 고선명(HD) 비디오를 저장하기 위한 디지털 기록 매체
 - HD 화질의 2시간 분량 비디오를 저장할 수 있음

DVD에 비해 파장이 더욱 짧은 청색 반도체 레이저를

사용하여 DVD에 저장 용량을 높임

• 저장 용량: 25GB(싱글 레이어)

50GB(듀얼 레이어),

100GB, 128GB(BDXL)

03 광 디스크의 데이터 저장

광 디스크

🧾 CLV(Constant Linear Velocity) 형식

-) 광디스크에서 주로 사용되는 방식으로, 일정한 선속도로 회전하여 기록 밀도를 일정하게 유지함
- 고디스크의 중앙에서 바깥쪽으로 향하는 하나의 나선형 트랙
-) CAV 방식에 비해 직접접근 속도가 느림

CLV 형식을 위한 나선형 트랙 구조

03 광 디스크의 데이터 저장

광 디스크

CAV(Constant Angular Velocity) 형식

- 가기디스크에서 주로 사용되는 방식으로, 일정한 각속도로 회전함
-) 직접접근을 빠르게 할 수 있는 방식임
- 」일반 데이터 저장용으로 사용하는 경우를 위해 광디스크 드라이브에서 지원하기도 함

CAV 형식을 위한 동심원 트랙 구조

USB 플래시 드라이브

-) 플래시 메모리 + USB
 - 플래시 메모리: 전기적으로 데이터를 지우고 다시 기록할 수 있는 비휘발성 반도체 메모리
 - USB(Universal Serial Bus): 컴퓨터와 주변기기 사이의 데이터 교환 버스 규격
 - ✓ USB 2.0(최대 480Mbps), USB 3.2(최대 20Gbps)
- 」 컴퓨터가 켜진 상태에서 자유롭게 연결과 분리가 가능함
-) 크기가 작고 가벼워 휴대용 저장장치로 적합함

반도체기억장치

USB 플래시 드라이브

SLC 방식	MLC 방식
(Single Level Cell)	(Multi Level Cell)
• 1개의 기억 소자에 1개의	• 1개의 기억 소자에 2비트
비트를 저장함	이상을 저장함
안정성이 높고 데이터 처리 속도가 빠름가격이 높음	 DLC, TLC, QLC 안정성과 속도가 낮음 가격이 저렴함

SSD(Solid-State Drive)

- ▶ 자기디스크와 동일한 인터페이스를 가지나, 디스크 대신 반도체 메모리를 사용하여 데이터를 저장함
-) 플래시 메모리를 이용하는 방식과 DRAM과 배터리를 사용하는 방식이 있음
 - 주로 플래시 메모리를 사용함

SSD(Solid-State Drive)

) 자기디스크와 비교한 장점과 단점

장점

- 움직이는 기계 부품 없기
 때문에 내구성이 강하고 전력
 소모가 적음
- 기계적인 움직임이 없으므로 데이터를 읽는 시간이 매우 빠름
- 무게가 가벼움

VS.

단점

- 기록과 삭제 횟수가 한정되어 수명이 짧음
- 데이터 기록시 먼저 블록 삭제를 한 후 쓰기를 수행해야 하므로 읽기와 쓰기의 속도가 비대칭임
- 가격이 비쌈

06 클라우드 저장장치의 활용

01 클라우드 저장장치

라우드 저장장치의 활용

🥶 클라우드 컴퓨팅(cloud computing)

› 인터넷을 기반으로 하여 컴퓨터의 계산능력, 저장공간, 서비스 등 다양한 컴퓨터의 자원을 언제 어디서나 필요한 만큼 이용하고 비용을 지불하는 컴퓨팅 방식

🧾 클라우드 저장장치(cloud storage)

-) 서비스를 제공하는 사업자는 다수의 분산된 저장장치로 거대한 저장공간을 구성
-) 사용자(기업이나 기관, 개인 등)는 서비스를 제공자와의 계약을 통해 사용량에 따른 비용을 지불하고 사용

02 파일 호스팅 서비스

라우드 저장장치의 활용

- 필 파일 호스팅 서비스(file hosting service)란?
 -) 사용자에게 파일 저장 공간을 제공하는 인터넷 호스팅 서비스
 - Google Drive, Microsoft OneDrive, DropBox, Apple iCoud Drive, NAVER MYBOX 등
- 파일 호스팅 서비스의 활용
 -) 개인 파일 저장 서비스
 -) 파일 동기화 및 공유 서비스

컴퓨터의 이해

6강 소프트웨어와 정보 시스템

