This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

INTERCONNECTING BOARD AND PRODUCTION THEREOF, STRUCTURE COMPRISING BOARD, INTERCONNECTING BOARD AND FIXING BOARD, AND CONNECTOR BETWEEN BOARD AND INTERCONNECTING BOARD

Patent number:

JP10012990

Publication date:

1998-01-16

Inventor:

YAMAZAKI KOZO; SAIKI HAJIME

Applicant:

NGK SPARK PLUG CO LTD

Classification:

- international:

H05K1/14; H05K1/03

- european:

Application number:

JP19970082123 19970313

Priority number(s):

Abstract of **JP10012990**

PROBLEM TO BE SOLVED: To provide an interconnection board being interposed between an LGA board and a printed board in order to interconnect them easily, a production method therefor, a structure comprising a board, the interconnection board and a fixing board, and a connector for the board and the interconnection board.

SOLUTION: An easily deformable soft metal body 206 is passed through a through hole made through an interconnecting board body 1 such that the soft metal body 206 projects from any one of the opposite surfaces (first and second surfaces) of the interconnecting board body with the projecting height being differentiated on the opposite surfaces thus producing an interconnecting board 209. The projecting height is set differently from that of the soft metal body 206 depending on the material and the coefficient of thermal expansion of an LGA board 220, a printed board 240 and the interconnecting board body 1 thus setting the interval A1 between the LGA board 220 and the interconnecting board body 1 and the interval A2 between the interconnecting board body 1 and the printed board 240 correctly.

Also published as:

EP0804057 (A2)

US6080936 (A1)

EP0804057 (A3)

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-12990

(43)公開日 平成10年(1998) 1月16日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ			技術表示箇所
H05K	1/14			H05K	1/14	· G	
	1/03	6 1 0		•	1/03	610D	

審査請求 未請求 請求項の数23 FD (全 27 頁)

(21)出願番号	特願平9-82123	(71)出顧人	000004547 日本特殊陶業株式会社	
(22)出願日	平成9年(1997)3月13日	(72)発明者	愛知県名古屋市瑞穂区高辻町14番18号 山崎 耕三	
(31)優先権主張番号 (32)優先日	特願平8-130658 平 8 (1996) 4 月26日		愛知県名古屋市瑞穂区高辻町14番18号 本特殊陶業株式会社内	日
(33) 優先權主張国	日本 (JP)	(72)発明者	斉木 一 爱知県名古屋市瑞穂区高辻町14番18号 本特殊陶業株式会社内	日

(54) 【発明の名称】 中継基板、その製造方法、基板と中継基板と取付基板とからなる構造体、基板と中継基板の接続 体

(57)【要約】

【課題】LGA基板とプリント基板との間に介在させて容易に両者を接続し、しかも寿命が長く接続信頼性の高い構造体とするための、中継基板、その製造方法、さらに、基板と中継基板と取付基板とからなる構造体、基板と中継基板の接続体を提供する。

【解決手段】中継基板本体1に設けた貫通孔に、容易に変形する軟質金属体206を中継基板本体の両面(第1、第2面)の少なくともいずれかから突出するように貫挿し、この突出部の突出高さを両面で異なった高さとした中継基板209とする。LGA基板220やプリント基板240、中継基板本体1の材質や熱膨張係数に応じてこの突出高さを設定し、軟質金属体206の突出高さを異なるものとすることで、基板220と中継基板本体1との間隔A1と、中継基板本体1とプリント基板240との間隔A2とを適正な間隔とする。

【特許請求の範囲】

【請求項1】面接続パッドを有する基板と該面接続パッ ドと対応する位置に面接続取付パッドを有する取付基板 との間に介在させ、

第1面側で該面接続パッドと接続させ、第2面側で該面 接続取付パッドと接続させることにより該基板と該取付 基板とを接続させるための中継基板であって、

第1面と第2面とを有する略板形状をなし、該第1面と 該第2面の間を貫通する複数の貫通孔を有する中継基板 本体と、

該貫通孔内に貫挿され、該第1面より突出した第1突出 部および第2面より突出した第2突出部のうち少なくと もいずれかを備え、かつ第1突出高さ21と第2突出高 さ22が異なる軟質金属体と、を有する中継基板。

【請求項2】前記第1突出高さ21に対して前記第2突 出高さ22が大きい軟質金属体を有する請求項1に記載 の中継基板。

【請求項3】前記軟質金属体は、

前記第2突出部を有し、

第1面よりほとんど突出しない請求項2に記載の中継基 20 板。

【請求項4】前記基板はセラミックからなり、前記中継 基板本体は、該基板をなすセラミックと略同材質のセラ ミックからなる請求項2または3に記載の中継基板。

【請求項5】前記第2突出高さZ2に対して前記第1突 出高さ21が大きい軟質金属体を有する請求項1に記載 の中継基板。

【請求項6】前記軟質金属体は、

前記第1突出部を有し、

第2面よりほとんど突出しない請求項5に記載の中継基 30 板。

【請求項7】前記中継基板本体の有する熱膨張係数が、 前記基板および前記取付基板の有する熱膨張係数の中間 の値である請求項1~3、5、6のいずれかに記載の中 継基板。

【請求項8】前記第1及び第2突出部のうち、少なくと も前記突出高さの高い側の突出部は、その突出高さがそ の突出部の最大径よりも高い略柱状にされていることを 特徴とする請求項1~7のいずれかに記載の中継基板。

【請求項9】前記中継基板本体の貫通孔内壁面に金属層 40 を有し、該金属層と前記軟質金属と溶着している請求項 1~8のいずれかに記載の中継基板。

【請求項10】前記中継基板本体に前記第1面と第2面 とを識別するための標識を設けたことを特徴とする請求 項1~9のいずれかに記載の中継基板。

【請求項11】前記標識は前記第2面側から見て識別で きるように設けたことを特徴とする請求項10に記載の 中継基板。

【請求項12】面接続パッドを有し熱膨張係数α1の基 板と、該面接続パッドと対応する位置に面接続取付パッ 50

ドを有し熱膨張係数 α 2 の取付基板と、の間に中継基板 を介在させてなる基板と中継基板と取付基板とからなる 構造体であって、

該中継基板は、

第1面と第2面とを有する略板形状をなし、該第1面と 該第2面の間を貫通する複数の貫通孔を有し、熱膨張係 数αmの中継基板本体と、

該貫通孔内に貫挿され、該第1面より突出した第1突出 部および第2面より突出した第2突出部のうち少なくと もいずれかを備えた軟質金属体と、を有し、

該基板と中継基板とは、該第1面側でA1の間隔をなし て、該軟質金属体と前記面接続パッドとを該軟質金属体 より融点の低いハンダで接続することにより接続し、

該中継基板と取付基板とは、該第2面側でA2の間隔を なして、該軟質金属体と前記面接続取付パッドとを該軟 質金属体より融点の低いハンダで接続することにより接 続してなり、

該間隔Α1とΑ2のうち、α1とαmとの差と、α2と αmとの差の大きい側の間隔を他よりも大きくしてなる ことを特徴とする基板と中継基板と取付基板とからなる 構造体。

【請求項13】前記軟質金属体の第1突出高さ21と第 2 突出高さ Z 2 の うち、前記 α 1 と α m と の 差 と 、 α 2 とαmとの差の大きい側の突出高さを他よりも大きくし てなることを特徴とする請求項12に記載の基板と中継 基板と取付基板とからなる構造体。

【請求項14】前記第1及び第2突出部のうち、少なく とも突出高さの高い側の突出部は、その突出高さがその 最大径よりも高い略柱状にされていることを特徴とする 請求項13に記載の基板と中継基板と取付基板とからな る構造体。

【請求項15】前記基板の材質がセラミックであり、 前記中継基板本体の材質が該基板と略同材質のセラミッ

前記取付基板の材質がエポキシ、BTレジン、ガラスエ ポキシ、ガラスBTレジン等の樹脂であり、

少なくとも前記第2突出部を有し、

前記間隔をA1<A2としてなることを特徴とする請求 項12~14のいずれかに記載の基板と中継基板と取付 基板とからなる構造体。

【請求項16】面接続パッドを有する基板と、

該基板と該基板の該面接続パッドと対応する位置に面接 続取付パッドを有する取付基板との間に介在させ、第1 面側で該面接続パッドと接続させ、第2面側で該面接続 取付パッドと接続させることにより該基板と該取付基板 とを接続させるための中継基板と、を接続した基板と中 継基板との接続体であって、

該中継基板は、

第1面と第2面とを有する略板形状をなし、該第1面と 該第2面の間を貫通する複数の貫通孔を有し、該基板の

材質と略同材質からなる中継基板本体と、

該貫通孔内に貫挿され、第2突出高さ22の第2突出部 を備える軟質金属体と、を有し、

該基板と中継基板とは、該第1面側でA1の間隔をなし て、該軟質金属体と該面接続パッドとを該軟質金属体よ り融点の低いハンダで接続することにより接続されてお り、間隔A1と第2突出高さZ2とは、A1<Z2の関 係となっていることを特徴とする基板と中継基板との接

【請求項17】請求項1~11のいずれかに記載の中継 10 基板の製造方法であって、

前記中継基板本体の前記貫通孔に、前記第1面側または 第2面側のいずれかから溶融した軟質金属を注入して前 記軟質金属体を形成する工程を有する中継基板の製造方 法。

【請求項18】請求項17に記載の中継基板の製造方法 であって、

前記中継基板本体の下側に、溶融した軟質金属に濡れな い材質からなり、前記貫通孔に対応した位置にそれぞれ 凹部を有する溶融軟質金属受け治具を配置する工程と、 20 前記貫通孔に注入された溶融軟質金属を少なくとも該凹 部および貫通孔内に保持し、その後、溶融軟質金属を冷 却し、凝固させる工程と、を有する中継基板の製造方 法。

【請求項19】請求項17に記載の中継基板の製造方法 であって、

溶融した軟質金属に濡れない材質からなり平面を有する 溶融軟質金属受け治具の該平面を、前記中継基板本体の 下側となった第1面または第2面に密着させて配置する 工程と、

前記貫通孔に注入された溶融軟質金属を少なくとも貫通 孔内に保持しつつ冷却し、凝固させる工程と、を有する 中継基板の製造方法。

【請求項20】請求項17~19に記載の中継基板の製 造方法であって、

所定形状の軟質金属からなる金属片を該貫通孔の前記第 1面側または第2面側端部に載置する工程と、

その後加熱して該金属片を溶融し、該貫通孔に溶融した 軟質金属を流動させて注入せしめる工程と、を有する中 継基板の製造方法。

【請求項21】前記金属片は、球形状の軟質金属である 請求項20に記載の中継基板の製造方法。

【請求項22】請求項1~11のいずれかに記載の中継 基板の製造方法であって、

溶融した軟質金属に濡れない材質からなり前記貫通孔に 対応した位置にそれぞれ凹部を有する溶融軟質金属受け 治具の該凹部上端部に該凹部の径より大きい寸法の軟質 金属からなる金属片をそれぞれ載置する工程と、

前記中継基板本体の貫通孔に該金属片がはまりこむよう に該中継基板本体を該溶融軟質金属受け治具の上方に配 50 置する工程と、

加熱して該金属片を溶融させつつ、溶融した軟質金属に 濡れない材質からなる荷重治具により上方から金属片お よび中継基板本体を押圧して、中継基板本体の貫通孔に 溶融した軟質金属を注入すると共に、溶融軟質金属受け 治具の凹部内に溶融した軟質金属を注入する工程と、 該溶融した軟質金属を少なくとも該凹部および貫通孔内 に保持しつつ冷却し、凝固させる工程と、を有する中継 基板の製造方法。

【請求項23】請求項22に記載の中継基板の製造方法 であって、

前記溶融軟質金属受け治具の凹部上端部に金属片を載置 する工程前に、該凹部内に凹部の径よりも小さい寸法で 軟質金属からなる小金属片を、該小金属片を溶融させる と共に前記金属片を溶融させて凹部内に注入したとき に、溶融した小金属片と金属片とが接触して一体となる ように、それぞれの凹部内に少なくとも1つ以上投入す る工程を有する中継基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、BGA型集積回路 パッケージ等の面接続端子を有する基板と、この面接続 端子に対応する位置に同様に面接続端子を備え、この基 板を取付けるためのマザーボード等の取付基板との間に 介在させる中継基板、その製造方法、および基板と中継 基板と取付基板とからなる構造体、基板と中継基板の接 続体に関する。

[0002]

【従来の技術】近年の集積回路(IC)技術の進展によ り、ICチップに設けられる入出力端子の数が増大し、 それに伴い、ICチップを搭載するIC搭載基板に形成 される入出力端子も増大している。しかし、入出力端子 を基板の周縁部に設ける場合には、端子の数に従って基 板サイズの増大を招き、IC搭載基板のコストアップや 歩留りの低下を生じ好ましくない。

【0003】そこで、IC搭載基板の主表面(平面)に ピンを格子状または千鳥状に並べるいわゆる PGA (ピ ングリッドアレイ)型基板が広く用いられている。しか し、更に端子数を増加したり、サイズを小さくするに は、基板表面にピンを取付けるPGA型基板では限界が ある。

【0004】そこで、以下のような手法が行われてい る。即ち、基板表面上にピンに代えてパッド(ランド) を格子状または千鳥状に並べて形成し、このパッドに、 略球状(ボール状)の高温ハンダやCu、Ag等のハン ダ濡れ性の良い金属からなる端子部材を予め共晶ハンダ 付けしたバンプを設けておく。一方、相手方のマザーボ ードなどのプリント基板(PCB)にもIC搭載基板の パッドと対応する位置にパッドを形成し、このパッド に、共晶ハンダペーストを塗布しておく。その後、両者

を重ねて加熱し、ハンダペーストを溶融させてハンダ付 けによって端子部材を介して両者を接続することが行わ れる。一般には、パッドのみ格子状に設けた基板はLG A(ランドグリッドアレイ)型基板と、パッド上にボー ル状の端子部材(接続端子)を備えた基板はBGA(ボ ールグリッドアレイ)型基板と呼ばれる。

【0005】ところで、このようにしてIC搭載基板、 プリント基板の平面上に線状や格子状 (千鳥状も含む) にパッドやバンプなどの端子を形成し、IC搭載基板と プリント基板を接続する場合(以下、このような接続を 10 面接続ともいう)には、IC搭載基板とプリント基板の 材質の違いにより熱膨張係数が異なるので、平面方向に 熱膨張差が発生する。即ち、端子部材から見ると、接続 しているIC搭載基板およびプリント基板が平面方向に ついてそれぞれ逆方向に寸法変化しようとするので、端 子部材やパッドにはせん断応力が働くこととなる。

【0006】このせん断応力は、面接続される端子のう ち、最も離れた2つの端子間で最大となる。即ち、例え ば端子が格子状にかつ最外周の端子が正方形をなすよう に形成されている場合、それぞれこの正方形の最外周の 20 対角上に位置する2つの端子間で最も大きな熱膨張差が 発生し、最も大きなせん断応力が掛かることとなる。特 に、LGA型やBGA型などの基板をプリント基板と接 続する場合には、端子間の間隔 (ピッチ) が比較的大き く、従って、最も離れた端子間の距離が大きくなりやす い。特に、LGA型やBGA型基板にセラミック製基板 を用いた場合、一般にガラスエポキシ製のプリント基板 とは、熱膨張係数が大きく異なるので、発生するせん断 応力が大きくなる。

[0007]

【発明が解決しようとする課題】このようなせん断応力 が掛かると、IC搭載基板に形成したパッドとハンダと の密着強度(接合強度)がそれほど大きくない場合には 両者間で接合が破壊する、即ち、パッドから端子部材と 共にハンダが外れることがあるので、密着強度を十分大 きくすることが望まれる。

【0008】しかし、このパッドとハンダの密着強度を 高くすると、次には、繰り返し熱応力によってパッドの 近傍のハンダにパッドに略平行なクラックが入り、つい には破壊(破断)するので、いずれにしても高い接続信 40 頼性を得ることはできなかった。パッド近傍のハンダ は、多くの場合上述のように共晶ハンダが用いられ、比 較的硬くて脆く、また熱や応力により経時変化を生じや すいため繰り返し応力でクラックを生ずるからである。

【0009】この問題は、特に、比較的熱膨張係数の小 さいセラミック製LGA型基板(またはBGA型基板) と比較的熱膨張係数の大きいガラスエポキシ等の樹脂製 プリント基板との間で生じやすい。なお、この場合に は、クラックはセラミック基板側のパッド近傍の共晶ハ ンダ部分で生ずることが多い。セラミックは硬く、応力 50 を吸収しがたいが、樹脂製プリント基板は比較的柔らか く、また樹脂製プリント基板上に形成されたCu等から なるパッドも柔らかいので応力を吸収するからである。

【0010】ところで、特開平8-55930号公報に おいては、絶縁基体下面の凹部底面に形成されたパッド に、所定の寸法関係を満たすボール状端子をロウ付けし た半導体素子収納用パッケージが開示され、これによ り、ボール状の端子を正確、且つ強固にロウ付固着でき る旨が示されている。しかし、かかる発明においては、 絶縁基体(IC搭載基板)に凹部を設け、更にこの凹部 底面にパッドを設けなければならず、形状が複雑である ので、製造が面倒であり、コストアップとなる。また、 このような凹部内にロウ材を設け、ボール状端子をロウ 付けするのは困難であった。

【0011】更に、LGA型基板をプリント基板に接続 するには、まずLGA型基板のランド(パッド)に、ボ ール状の高温ハンダやCu球等の端子部材を、共晶ハン ダ等の端子部材に比して低融点のハンダ(以下、低融点 ハンダともいう)ペースト等で仮固定した上で、リフロ ーしてパッドに端子部材をハンダ付けしてBGA型基板 とする。ついで、プリント基板側パッドに低融点ハンダ ペーストを塗布し、上記BGA型基板をプリント基板に 載置して、端子部材をプリント基板側パッドと位置合わ せする。その後、再リフローしてプリント基板側パッド と端子部材をハンダ付けするという面倒な手順によって

【0012】さらに、ICチップメーカは、ICチップ を載置するLGA型基板を購入し、ICチップをこの基 板に載置しフリップチップ接続した後に、この接続に使 用したハンダ(例えば高温ハンダ)よりも融点の低い低 融点ハンダ(例えば共晶ハンダ)によって基板のパッド (ランド) に端子部材を接続する必要がある。 したがっ て、ICチップを基板にフリップチップ接続するための 設備のほかに、パッドにハンダペースト(例えば共晶ハ ンダペースト)を塗布したり、端子部材をパッド上に載 置するなどのパッドに端子部材を接続するための設備、 即ち、LGA型基板をBGA型基板とするための設備が 必要となる。

【0013】本発明は、かかる問題点に鑑みてなされた ものであって、基板と取付基板との相互の接続を容易に し、しかも、耐久性、信頼性の高い接続を可能とする中 継基板、およびその製造方法、さらには、基板と中継基 板と取付基板とからなる構造体、基板と中継基板との接 続体を提供することを目的とする。

[0014]

【課題を解決するための手段】しかして、前記目的を達 成するための請求項1に記載の発明は、面接続パッドを 有する基板と該面接続パッドと対応する位置に面接続取 付パッドを有する取付基板との間に介在させ、第1面側 で該面接続パッドと接続させ、第2面側で該面接続取付

8

パッドと接続させることにより該基板と該取付基板とを接続させるための中継基板であって、第1面と第2面とを有する略板形状をなし、該第1面と該第2面の間を貫通する複数の貫通孔を有する中継基板本体と、該貫通孔内に貫挿され、該第1面より突出した第1突出部および第2面より突出した第2突出部のうち少なくともいずれかを備え、かつ第1突出高さZ1と第2突出高さZ2が異なる軟質金属体と、を有する中継基板を要旨とする。即ち、突出高さZ1とZ2を比較したときに、Z1≠Z2とする。

【0015】ここで、基板としては、ICチップやその他の電子部品などが実装されるIC搭載基板等の配線基板が挙げられる。また、面接続パッドとは、取付基板との電気的接続のために基板上に設けられる端子であって、面接続によって接続を行うためのパッドを指す。なお、面接続とは、前述したようにチップや基板、マザーボードの平面上に線状や格子状(千鳥状も含む)にパッドやバンプなどの端子を形成し、基板とマザーボードを接続する場合の接続方法を指し、線状の配置の例としては、例えば四角形の枠状配置が挙げられる。また、面接 20 続パッドを有する基板の例としては、パッド(ランド)を格子状に配列したLGA型基板が挙げられるが、必ずしもパッドが格子状に配列されていなくとも良い。

【0016】一方、取付基板は、前記基板を取付けるた めの基板であって、マザーボード等のプリント基板が挙 げられる。この取付基板には、面接続によって基板を取 付けるための面接続取付パッドが形成されている。この 面接続取付パッドとは、基板との電気的接続のために取 付基板上に設けられる端子であって、面接続によって接 続を行うためのパッドを指す。面接続取付パッドを有す 30 る取付基板の例としては、パッドを格子状に配列したプ リント基板が挙げられるが、必ずしもパッドが格子状に 配列されていなくとも良いし、複数の基板を取付けるた めにそれぞれの基板に対応する面接続取付パッド群を複 数有していても良い。なお、本発明の中継基板は、基板 と取付基板の間に介在して、それぞれと接続するもので あるので、便宜的に基板と接続する側を第1面側、取付 基板と接続する側を第2面側として両者を区別すること とする。

【0017】さらに、貫通孔は、単一の孔で構成される 40 のが通常であるが、その他、互いに近接して設けられた 複数の小貫通孔の集まり(小貫通孔群)をも含む。この 場合には、小貫通孔それぞれに貫挿された軟質金属が全体として1つの軟質金属体を構成する。

【0018】また、軟質金属体とは、熱膨張係数の違いなどによって、基板と取付基板間、あるいは、基板と中継基板本体間や中継基板本体と取付基板間で発生する応力を変形によって吸収する柔らかい金属からなるものであって、具体的な材質としては、鉛(Pb)やスズ(Sn)、亜鉛(2n)やこれらを主体とする合金などが挙 50

げられ、Pb-Sn系高温ハンダ(例えば、pb90%-Sn10%合金、Pb95%-Sn5%合金等)やホワイトメタルなどが挙げられる。なお、鉛、ズス等は再結晶温度が常温にあるので、塑性変形をしても再結晶する。したがって、繰り返し応力がかかっても容易に破断(破壊)に至らないので都合がよい。その他、純度の高い銅(Cu)や銀(Ag)も柔らかいので用いることができる。

【0019】また、突出高さとは、中継基板本体表面から突出している軟質金属体の頂部までの高さをいい、表面と軟質金属体とが面一の場合や表面より窪んでいるばあいには、突出高さはゼロである。即ち、第1突出高さ Z1とは、中継基板本体第1面からこの第1面側に突出する軟質金属体の頂部までの高さをいい、第2突出高さ Z2とは、中継基板本体第2面からこの第2面側に突出する軟質金属体の頂部までの高さをいう。

【0020】なお、中継基板と基板や取付基板との接続、即ち、軟質金属体と面接続パッドや面接続取付パッドとの接続は、軟質金属体よりも融点の低いハンダを用いれば良い。このようなハンダを用いる場合には、両者の融点に適度の差を持つように選択するのが好ましく、例えば、軟質金属体としてPb90%-Sn10%の高温ハンダ(融点301℃)を用いた場合には、Pb36%-Sn64%共晶ハンダ(融点183℃)やその近傍の組成(Pb20~50%、Sn80~50%程度)のPb-Sn合金などを用いればよい。また、その他の成分として、In、Ag、Bi、Sb等を適当量添加したものを用いても良い。

【0021】この請求項1に記載の発明は、第1面側で基板と、第2面側で取付基板と面接続する中継基板に関するものである。この手段によれば、中継基板本体に貫揮された軟質金属体が、熱膨張係数の違いなどによって生ずる基板と取付基板あるいは基板と中継基板、中継基板と取付基板の間に生じる応力を変形(例えば塑性変形)によって吸収する。したがって、軟質金属体が破断することもなく、また、基板の面接続パッドや取付基板の面接続取付パッド(以下、これらを単にパッドともいう)あるいはその近傍のハンダや軟質金属体が応力によって破壊したり破断したりすることがなくなる。しかも、中継基板本体が軟質金属体から受ける応力は、中継基板本体の貫通孔壁面に対して垂直方向から受けるので、中継基板本体自身が破壊し難い。

【0022】さらに、軟質金属体は第1面側と第2面側の少なくともいずれかにおいて、突出部を備えるので、基板または取付基板と中継基板の間に生ずる応力を、この突出部でより多く吸収できる。突出部は中継基板本体の貫通孔に拘束されずに変形できるので、より多くの変形が可能であり、容易に変形して応力を開放するからである。また、中継基板本体の貫通孔に貫挿された軟質金属体の一部を突出部としているので、軟質金属体のうち

中継基板本体の第1または第2面と交差する部分近傍 (即ち、突出部の根元部)に掛かる応力は軟質金属の変 形で緩和されるため、クラック等を生じることがない。 【0023】さらに、中継基板に設けた軟質金属体が、 第1面側と第2面側で異なる突出高さを有している(Z 1≠22)ので、基板と取付基板の間に中継基板を介在 させて接続したとき、基板と中継基板本体との間隔(距 離)と、取付基板と中継基板本体との間隔とを異なるも のとすることができる。この間隔が大きいほど応力を吸 収できるが、一方、基板と取付基板との間隔には制限が 10 あるのが通常である。したがって、基板や取付基板の熱 膨張係数やパッド等の強度を考慮して、適切な距離を選

【0024】さらに、前記目的を達成するための請求項2に記載の発明は、前記第1突出高さ21に対して前記第2突出高さ22が大きい軟質金属体を有する請求項1に記載の中継基板を要旨とする。即ち、突出高さ21と22を比較したときに、21<22とする。

択することができる。

【0025】この手段によれば、基板および取付基板と接続したときに、基板と中継基板本体と間隔よりも中継 20 基板本体と取付基板との間隔を大きくすることができる。したがって、中継基板本体と取付基板との間に発生する熱膨張係数の違いによる応力などをより多く吸収できる。これにより、取付基板の面接続取付パッドあるいはその近傍のハンダや軟質金属体が応力によって破壊したり破断したりすることがなくなる。

【0026】さらに、前記目的を達成するための請求項3に記載の発明は、前記軟質金属体は、前記第2突出部を有し、第1面よりほとんど突出しない請求項2に記載の中継基板を要旨とする。即ち、突出高さZ2>Z1≒ 300とする。

【0027】この手段によれば、軟質金属体は、第2突 出部を有するが第1面よりほとんど突出しない形状であ るので、基板と中継基板とは第1面側の接続用のハンダ による厚み程度の間隔(距離)を有する、一方、中継基 板と取付基板とは少なくとも第2突出部の高さの分だけ 間隔をおいて接続される。つまり、ほとんど突出しない 第1面側では、基板と中継基板本体との間隔が十分小さ くなり、逆に第2突出部を有する第2面側では、中継基 板本体と取付基板との間隔を大きくできる。したがっ て、第2面側での熱膨張係数の差、即ち、中継基板本体 と取付基板との熱膨張係数の差等による応力を十分に吸 収できる。かくして、中継基板を基板と取付基板の間に 介在させた場合のうち、中継基板(中継基板本体)と取 付基板との間にかかる応力を最も緩和することができ、 取付基板の面接続取付パッドあるいはその近傍の第2面 側の接続用のハンダや軟質金属体が破壊することがなく なる。なお、ほとんど突出しない第1面において軟質金 属体は、第1面と略同一面をなすか、あるいは第1面よ り陥没していてもよい。

【0028】さらに、前記目的を達成するための請求項4に記載の発明は、前記基板はセラミックからなり、前記中継基板本体は、該基板をなすセラミックと略同材質のセラミックからなる請求項2または3に記載の中継基板を要旨とする。

【0029】この手段によれば、基板と中継基板本体と は略同材質のセラミックであるので、両者の間には、熱 膨張差がほとんど発生せず、応力もほとんど発生しな い。一方、中継基板本体と取付基板の間隔は、第2突出 部により比較的大きくされるので、この両者の間の応力 は緩和される。即ち、基板、中継基板、取付基板の三者 の間に発生する応力が小さいので、これらを接続した場 合に高い接続信頼性を有する長寿命の構造体とすること ができる。

【0030】なお、基板に用いるセラミックの材質としては、アルミナが広く用いられているが、その他、ムライト、窒化アルミ、ガラスセラミック等、製造の容易さや熱伝導率、熱膨張係数の大きさなどを考慮して用いられている。中継基板本体に用いるセラミックは、接続する基板に用いられている材質と略同材質のものを選択すればよく、例えば、アルミナ、ムライト、窒化アルミ、ガラスセラミックなどが挙げられる。

【0031】また、中継基板本体をセラミックとすると、中継基板本体の強度が高く、さらには耐熱性が高いので、高強度で、リワークなどによって繰り返し加熱されても変形等を生じない点でも好ましい。

【0032】さらに、前記目的を達成するための請求項5に記載の発明は、前記第2突出高さ22に対して前記第1突出高さ21が大きい軟質金属体を有する請求項1に記載の中継基板を要旨とする。即ち、突出高さ21と22を比較したときに、21>22とする。

【0033】この手段によれば、基板および取付基板と接続したときに、基板と中継基板本体と間隔を中継基板本体と取付基板との間隔よりも大きくすることができる。したがって、基板と中継基板本体との間に発生する熱膨張係数の違いなどによる応力をより多く吸収できる。したがって、軟質金属体が破断することもなく、また、基板の面接続パッドあるいはその近傍のハンダや軟質金属体が応力によって破壊したり破断したりすることがなくなる。

【0034】さらに、前記目的を達成するための請求項6に記載の発明は、前記軟質金属体は、前記第1突出部を有し、第2面よりほとんど突出しない請求項5に記載の中継基板を要旨とする。即ち、突出高さZ1>Z2=0とする。

【0035】この手段によれば、軟質金属体は、第1突 出部を有するが第2面よりほとんど突出しない形状であ るので、基板と中継基板とは少なくとも第1突出部の高 さの分だけ間隔(距離)を有するが、一方、中継基板と 取付基板とは、接続用のハンダによる厚み程度の間隔を

50

おいて接続される。つまり、ほとんど突出しない第2面側では、中継基板本体と取付基板との間隔が十分小さくなり、逆に第1突出部を有する第1面側では、基板と中継基板本体との間隔を大きくできる。したがって、第1面側での熱膨張係数の差による応力等を十分に吸収できる。かくして、中継基板を基板と取付基板の間に介在させた場合のうち、基板と中継基板(中継基板本体)との間にかかる応力を最も緩和することができ、基板の面接続パッドあるいはその近傍の第1面側の接続用のハンダや軟質10金属体が破壊することがなくなる。なお、突出しない第2面において軟質金属体は、第2面と略同一面をなすか、あるいは第2面より陥没していてもよい。

【0036】さらに、前記目的を達成するための請求項7に記載の発明は、前記中継基板本体の有する熱膨張係数が、前記基板および前記取付基板の有する熱膨張係数の中間の値である請求項1~3、5、6のいずれかに記載の中継基板を要旨とする。

【0037】この手段によると、中継基板本体の有する 熱膨張係数を、基板及び取付基板の有する熱膨張係数の 20 中間の値としたので、基板と取付基板、基板と中継基板 および中継基板と取付基板間で熱膨張係数の違いによっ て生ずる応力をより緩和することができる。

【0038】さらに、前記目的を達成するための請求項8に記載の発明は、前記第1及び第2突出部のうち、少なくとも前記突出高さの高い側の突出部は、その突出高さがその突出部の最大径よりも高い略柱状にされていることを特徴とする請求項1~7のいずれかに記載の中継基板を要旨とする。

【0039】突出部が略球状または略半球状である場合 30 には、基板あるいは取付基板との間隔を広くするために 突出高さと高くすると、同時に突出部の最大径も大きく なるので、隣接する軟質金属体との間隔 (ピッチ) による制限が生じる。この手段によると、そのような制限が なく、突出高さの高い側で基板あるいは取付基板との間 隔を広くできる。その上、突出部の径が相対的に細くなって変形が容易になるのでより多くの応力を吸収できる。

【0040】さらに、前記目的を達成するための請求項 9に記載の発明は、前記中継基板本体の貫通孔内壁面に 40 金属層を有し、該金属層と前記軟質金属と溶着している 請求項1~8のいずれかに記載の中継基板を要旨とす る。

【0041】このように貫通孔内壁面の金属層と軟質金属体を溶着させると、金属層を介して中継基板本体を一体化させることができる。したがって、貫通孔内に貫挿された軟質金属体が貫通孔から抜け落ちたり、貫通孔の軸方向に位置ズレを起こしたりすることがない。

【0042】貫通孔内に形成する金属層の材質や形成方 法は、中継基板本体の材質、貫通孔の寸法、溶着する軟 50 質金属体の材質等を考慮して適宜選択すればよい。特に、中継基板本体がセラミックである場合には、未焼成セラミック板に貫通孔を穿孔した後、金属ペーストを貫通孔内に塗布して同時焼成したり、セラミックを焼成した後に貫通孔内に金属ペースト塗布して焼き付けて形成する手法が使用でき、例えば、W、Mo、MoーMn、Ag、AgーPd、Cu等で形成することができる。また、軟質金属との溶着性の改善や酸化防止等のため、また、軟質金属との溶着性の改善や酸化防止等のため、あい。メッキやAuメッキ等を施すことも可能である。その他、蒸着やスパッタリングによって金属層を形成しても良く、この上に更にCuやNi、Auメッキ等を施しても良い。また、無電解メッキによって直接質孔内面に金属層を析出させる手法によっても良く、例えば、Cu、Niメッキを施しても良い。

【0043】なお、金属層を有さない中継基板としても良い。このようにすると、金属層を形成する必要が無く、コストを下げることができる。なお、この場合には、中継基板本体の貫通孔に軟質金属体が固着していないので、軟質金属体が貫通孔から抜け落ちるのを防止するため、第1面側および第2面側の少なくともいずれかで、貫通孔より径大の突出部としておくと良い。

【0044】さらに、前記目的を達成するための請求項10に記載の発明は、前記中継基板本体に前記第1面と第2面とを識別するための標識を設けたことを特徴とする請求項1~9のいずれかに記載の中継基板を要旨とする。

【0045】この手段によると、標識を設けるので、基板と中継基板との接続、中継基板と取付基板との接続、 あるいは、基板、中継基板、取付基板の三者間の接続を行うときに、第1面と第2面、即ち、基板との接続面と取付基板との接続面とを誤ることがない。基板等のパッドの配置は、一般的には格子状(千鳥状をも含む)にされることが多い。したがって、中継基板の軟質金属体の配置もこれに対応した配置となるので、中継基板の第1面と第2面との識別が困難となることがある。

【0046】もし、中継基板の第1面と第2面を取り違えて接続すると、本来予定されていた基板と中継基板本体との間隔や中継基板本体と取付基板との間隔を保つことができなくなるので、本来得られるはずの接続部分の信頼性が低下する危険性がある。標識を設けることでこのような誤りを防止でき、結果として中継基板と基板や取付基板との接続信頼性を高く保つことができる。また、標識は中継基板本体に設けたので、認識が容易となり、基板や取付基板との接続などによる加熱後も標識を認識できる。

【0047】ここで、標識は、第1面または第2面のいずれかに設ければ良いが、両面に設けても良い。また、標識としては、中継基板本体の適当な部分に、インクの印刷、セラミックやガラス、メタライズインク等の同時

焼成や焼き付け、レーザマーキング等により識別可能な 文字、記号その他を形成すればよい。また、中継基板本 体に切り欠き、貫通孔等を設けて標識としても良い。

【0048】さらに、前記目的を達成するための請求項 11に記載の発明は、前記標識は前記第2面側から見て 識別できるように設けたことを特徴とする請求項10に 記載の中継基板を要旨とする。

【0049】この手段によると、標識が第2面側から見て識別できる。中継基板を基板や取付基板と接続する場合、まず基板と中継基板とを接続しておき、その後これ 10を取付基板と接続する場合も多いと考えられる。基板と中継基板の接続体は第2面側から見ると、軟質金属体が端子(バンプ)のように見えるので、接続体全体で1つのBGA型基板あるいはLGA型基板のように扱うことができるからである。したがって、第2面側から標識を識別できるようにしておくと、取付基板との接続前に、正しく基板と中継基板とが接続していることが確認できる。なお、標識を第2面側から見て識別できるように設けるのには、具体的には、第2面上に標識を付したり、第2面側から見えるように中継基板本体に切り欠きや貫 20通孔等を設けたりすることが挙げられる。

【0050】さらに、前記標識は前記第1面から見て識別できるように設けたことを特徴とする請求項10に記載の中継基板を要旨としても良い。この手段によると、標識が第1面側から見て識別できる。中継基板を基板や取付基板と接続する場合、まず中継基板と取付基板とを接続しておき、その後これに基板と接続する場合が考えられる。この場合、第1面側から標識を識別できるようにしておくと、基板の接続前に正しく中継基板と取付基板とが接続していることが確認できる。なお、標識を30第1面側から見て識別できるように設けるのには、具体的には、第1面上に標識を付したり、第1面側から見えるように中継基板本体に切り欠きや貫通孔等を設けたりすることが挙げられる。

【0051】さらに、前記目的を達成するための請求項 12に記載の発明は、面接続パッドを有し熱膨張係数α 1の基板と、該面接続パッドと対応する位置に面接続取 付パッドを有し熱膨張係数α2の取付基板と、の間に中 継基板を介在させてなる基板と中継基板と取付基板とか らなる構造体であって、該中継基板は、第1面と第2面 40 とを有する略板形状をなし、該第1面と該第2面の間を 貫通する複数の貫通孔を有し、熱膨張係数 a mの中継基 板本体と、該貫通孔内に貫挿され、該第1面より突出し た第1突出部および第2面より突出した第2突出部のう ち少なくともいずれかを備えた軟質金属体と、を有し、 該基板と中継基板とは、該第1面側でA1の間隔をなし て、該第1突出部と前記面接続パッドとを該軟質金属体 より融点の低いハンダで接続することにより接続し、該 中継基板と取付基板とは、該第2面側でA2の間隔をな して、該第2突出部と前記面接続取付パッドとを該軟質 50 金属体より融点の低いハンダで接続することにより接続してなり、該間隔A1とA2のうち、 α 1と α mとの差と、 α 2と α mとの差の大きい側の間隔を他よりも大きくしてなることを特徴とする基板と中継基板と取付基板とからなる構造体を要旨とする。即ち、 $|\alpha$ 1- α m|> $|\alpha$ 2- α m|である場合に、A1>A2とし、 $|\alpha$ 1- α m|< $|\alpha$ 2- α m|である場合に、A1<A2とする。

【0052】基板(熱膨張係数α1) -中継基板本体 (αm) 間、中継基板本体 (αm) -取付基板 (α2) 間には、熱膨張係数の差に起因する熱膨張差が発生する。この手段によれば、中継基板本体に貫挿された軟質金属体が、熱膨張係数の違いによって生ずる基板と取付基板あるいは基板と中継基板、中継基板と取付基板の間に生じる応力を変形 (例えば塑性変形) によって吸収する。したがって、軟質金属体が破断することもなく、また、基板の面接続パッドや取付基板の面接続取付パッドあるいはその近傍のハンダや軟質金属体が応力によって破壊したり破断したりすることがなくなる。

【0053】さらに、軟質金属体は第1面側と第2面側の少なくともいずれかにおいて、突出部を備えるので、基板または取付基板と中継基板の間に生ずる応力を、この突出部でより多く吸収できる。突出部は中継基板本体の貫通孔に拘束されずに変形できるので、より多くの変形が可能であり、容易に変形して応力を開放するからである。また、中継基板本体の貫通孔に貫挿された軟質金属体の一部を突出部としているので、軟質金属体のうち中継基板本体の第1または第2面と交差する部分近傍

(即ち、突出部の根元部) に掛かる応力は軟質金属の変形で緩和されるため、クラック等を生じ破断することがない。

【0054】さらに、熱膨張係数の差($|\alpha 1 - \alpha m$ |、 $|\alpha m - \alpha 2$ |)が大きい側には、より大きな熱膨張差が発生するが、この手段によると、より大きな熱膨張差が生じる側の間隔(A1またはA2)を大きくしているので、熱膨張差による応力をより多く吸収でき、したがって、熱膨張差の大きい側においてもパッドあるいはその近傍のハンダや軟質金属体が破壊したり破断したりすることが無くなる。

【0055】さらに、前記目的を達成するための請求項 13に記載の発明は、前記軟質金属体の第1突出高さ Z 1と第2突出高さ Z 2のうち、前記 α 1と α mとの差と、 α 2と α mとの差の大きい側の突出高さを他よりも大きくしてなることを特徴とする請求項12に記載の基板と中継基板と取付基板とからなる構造体を要旨とする。即ち、 $|\alpha 1 - \alpha m| > |\alpha 2 - \alpha m|$ である場合に、Z 1 > Z 2 とし、 $|\alpha 1 - \alpha m| < |\alpha 2 - \alpha m|$ である場合に、Z 1 < Z 2 とする。

【0056】この手段によると、軟質金属体の突出高さ 21、22のうち熱膨張係数の差の大きい側の高さを他 よりも高くするので、容易に間隔A1またはA2を他よりも大きくすることができる。しかも、熱膨張係数の差が大きい側では、変形が容易な軟質金属体が高く突出しているので、より大きく変形して応力を吸収でき、さらにパッドあるいはその近傍のハンダや軟質金属体が破壊したり破断したりすることが無くなって接続の信頼性が高くなる。

【0057】さらに、前記目的を達成するための請求項 14に記載の発明は、前記第1及び第2突出部のうち、 少なくとも突出高さの高い側の突出部は、その突出高さ 10 がその最大径よりも高い略柱状にされていることを特徴 とする請求項13に記載の基板と中継基板と取付基板と からなる構造体を要旨とする。

【0058】突出部が略球状または略半球状である場合には、基板あるいは取付基板との間隔を広くするために突出高さと高くすると、同時に突出部の最大径も大きくなるので、隣接する軟質金属体との間隔(ピッチ)による制限が生じる。この手段によると、そのような制限がなく、突出高さの高い側で基板あるいは取付基板との間隔を広くできる。その上、突出部の径が相対的に細くな20って変形が容易になるのでより多くの応力を吸収できる。

【0059】さらに、前記目的を達成するための請求項15に記載の発明は、前記基板の材質がセラミックであり、前記中継基板本体の材質が該基板と略同材質のセラミックであり、前記取付基板の材質がエポキシ、BTレジン、ガラスエポキシ、ガラスBTレジン等の樹脂であり、少なくとも前記第2突出部を有し、前記間隔が、A1<A2としてなることを特徴とする請求項12~14のいずれかに記載の基板と中継基板と取付基板とからな30る構造体を要旨とする。

【0060】取付基板の材質はセラミックに比較して熱膨張係数が大きいエポキシ等の樹脂であるので、基板と取付基板とを直接接続した場合には両者間に熱膨張差に起因する応力が発生する。しかし、この手段によれば、基板と取付基板との間には中継基板が介在している。しかも、基板と中継基板本体の材質が略同材質のセラミックであるので、基板と中継基板本体の間には、熱膨張係数の差はほとんどなく、熱膨張差もほとんど発生しない。したがって、基板と中継基板本体との間には応力は40ほとんど発生せず、大半の応力は中継基板本体と取付基板との間に発生することとなる。これにより、基板の面接続パッドあるいはその近傍のハンダや軟質金属体が応力によって破壊されたり破断することはなくなる。

【0061】一方、中継基板本体と取付基板との間で発生した応力は、軟質金属からなる第2突出部が容易に変形するのでこれによって吸収される。さらに、間隔に関してA1<A2となるようにしているので、さらに第2面側においてより多くの応力が吸収できるようにされている。したがって、中継基板本体と取付基板との間にお50

いても応力が吸収され、取付基板の面接続取付パッドやその近傍のハンダが破壊したり破断したりすることがなくなる。即ち、結果として基板ー中継基板間、中継基板ー取付基板間の応力が緩和され、いずれにおいても破壊が防止され、信頼性の高い接続ができる。

【0062】さらに、前記目的を達成するための請求項 16に記載の発明は、面接続パッドを有する基板と、該 基板と該基板の該面接続パッドと対応する位置に面接続 取付パッドを有する取付基板との間に介在させ、第1面 側で該面接続パッドと接続させ、第2面側で該面接続取 付パッドと接続させることにより該基板と該取付基板と を接続させるための中継基板と、を接続した基板と中継 基板との接続体であって、該中継基板は、第1面と第2 面とを有する略板形状をなし、該第1面と該第2面の間 を貫通する複数の貫通孔を有し、該基板の材質と略同材 質からなる中継基板本体と、該貫通孔内に貫挿され、第 2突出高さ Z 2 の第 2 突出部を備える軟質金属体と、を 有し、該基板と中継基板とは、該第1面側でA1の間隔 をなして、該軟質金属体と該面接続パッドとを該軟質金 属体より融点の低いハンダで接続することにより接続さ れており、間隔A1と第2突出高さZ2とは、A1<2 2の関係となっていることを特徴とする基板と中継基板 との接続体を要旨とする。

【0063】この手段によれば、基板と中継基板本体の材質は略同材質なので、両者の間には熱膨張差はほとんど発生せず、熱応力もほとんど発生しない。したがって、基板の面接続パッドあるいはその近傍のハンダや軟質金属体が破壊したり破断したりすることがない。また、両者の間隔A1は小さく(狭く)ても良い。間隔を広くして応力を吸収する必要がないからである。一方、この基板と中継基板との接続体を取付基板と接続した場合、取付基板の材質が基板や中継基板本体と異なるときには、熱膨張係数が異なり、熱膨張差による応力が生じる。しかし、軟質金属からなる第2突出部が中継基板本体の第2面側に形成されているので、この応力はこの第2突出部の変形によって吸収される。

【0064】さらに、この第2突出部の突出高さ(第2突出高さ)Z2が、Z2>A1となる高さとされている。中継基板本体と取付基板との間には第2突出部があるので、両者の間隔A2は第2突出部の突出高さZ2より大きくなり、A2>Z2>A1となる。即ち、この手段によれば、中継基板本体と取付基板との間隔A2を基板と中継基板本体との間隔A1よりも必ず大きくすることができるので、間隔A2が大きい分だけ応力を吸収することができる。したがって、本手段による接続体に取付基板を接続して三者からなる構造体を構成した場合に、中継基板本体と取付基板との間でも応力が吸収され、結果として接続信頼性の高い構造体とすることができる。

【0065】さらに、前記目的を達成するための請求項

17に記載の発明は、請求項1~11のいずれかに記載の中継基板の製造方法であって、前記中継基板本体の前記貫通孔に、前記第1面側または第2面側のいずれかから溶融した軟質金属を注入して前記軟質金属体を形成する工程を有する中継基板の製造方法を要旨とする。

【0066】この手段によれば、中継基板本体の貫通孔 に第1面側または第2面側のいずれかから溶融した軟質 金属を注入して軟質金属体を形成するので、容易に軟質 金属体を形成できる。

【0067】さらに、前記目的を達成するための請求項 10 18に記載の発明は、請求項17に記載の中継基板の製造方法であって、前記中継基板本体の下側に、溶融した軟質金属に濡れない材質からなり、前記貫通孔に対応した位置にそれぞれ凹部を有する溶融軟質金属受け治具を配置する工程と、前記貫通孔に注入された溶融軟質金属を少なくとも該凹部および貫通孔内に保持し、その後、溶融軟質金属を冷却し、凝固させる工程と、を有する中継基板の製造方法を要旨とする。

【0068】この手段によれば、貫通孔内に注入された 軟質金属は、中継基板本体の下側の溶融軟質金属受け治 20 具の各凹部及び貫通孔内に保持され、その後の冷却して 凝固させることで、貫通孔に貫挿された突出部を有する 軟質金属体を有する中継基板が容易に形成される。

【0069】また、この手段によれば、各凹部の形状や凹部の体積と注入される軟質金属の体積との違いなどにより、突出部の形状等を任意に変化させることができる。即ち、例えば、軟質金属の体積が治具の凹部の体積と中継基板本体の貫通孔の体積との和よりも多い場合には、溶融した軟質金属は貫通孔の上端面から溢れ、その表面張力により略半球あるいは略球状の盛り上がりとな30り、凝固後もその形状の突出部となる。一方、凹部内の軟質金属は、凝固後には略凹部の形状に倣った形状の突出部となる。

【0070】また、軟質金属の体積と凹部の体積および 貫通孔の体積の和とがほぼ等しい場合には、溶融した軟 質金属は貫通孔の上端面と略面一の高さまで充填され、 貫通孔の上面側には突出部は形成されず、凹部内の軟質 金属は突出部を形成する。さらに、軟質金属の体積が凹 部の体積と貫通孔の体積との和より少ない場合には、軟 質金属が貫通孔内壁面の金属層に濡れる場合など軟質金 属が中継基板本体と一体となるようにしておけば、側面 は凹部の側壁の形状に倣い、下端即ち、突出部の頂部は 略半球状となった突出部が、凹部内で形成されることと なる。

【0071】なお、溶融軟質金属受け治具の材質としては、溶融した軟質金属に濡れない性質を有し、耐熱性のあるものから適宜選択すればよいが、例えば、カーボンや窒化ホウ素などを用いれば、凹部などの工作も容易である。また、耐熱性の高いアルミナ、ムライト、窒化珪素等のセラミックを用いても良い。

【0072】さらに、前記目的を達成するための請求項19に記載の発明は、請求項17に記載の中継基板の製造方法であって、溶融した軟質金属に濡れない材質からなり平面を有する溶融軟質金属受け治具の該平面を、前記中継基板本体の下側となった第1面または第2面に密着させて配置する工程と、前記貫通孔に注入された溶融軟質金属を少なくとも貫通孔内に保持しつつ冷却し、疑固させる工程と、を有する中継基板の製造方法を要旨とする。

【0073】この手段によれば、貫通孔内に注入された 軟質金属は、中継基板本体の下側の溶融軟質金属受け治 具の平面で止まって貫通孔内あるいはその上面側に保持 され、その後の冷却して凝固させることで、治具の平面 と密着した側(下側)にはほとんど突出せず、かつ貫通 孔に貫挿された軟質金属体を有する中継基板が容易に形 成される。また中継基板本体の上側には、注入した軟質 金属の体積によって突出部が形成される。

【0074】また、この手段によれば、貫通孔の体積と注入される軟質金属の体積との違いなどにより、上面側にできる突出部の形状等を変化させることができる。即ち、例えば、軟質金属の体積が中継基板本体の貫通孔の体積よりも多い場合には、溶融した軟質金属は貫通孔の上端面から溢れ、その表面張力により略半球あるいは略球状の盛り上がりとなり、凝固後もその形状の突出部となる。一方、中継基板本体の下面側では、軟質金属は治具の平面に倣って突出しないかあるいはほとんど突出しない平面状となる。

【0075】さらに、前記目的を達成するための請求項20に記載の発明は、請求項17~19に記載の中継基板の製造方法であって、所定形状の軟質金属からなる金属片を該貫通孔の前記第1面側または第2面側端部に載置する工程と、その後加熱して該金属片を溶融し、該貫通孔に溶融した軟質金属を流動させて注入せしめる工程と、を有する中継基板の製造方法を要旨とする。

【0076】この手段によれば、貫通孔に軟質金属を注入するにあたり、所定形状の軟質金属からなる金属片を貫通孔の第1面側または第2面側端部に載置し、その後加熱して金属片を溶融させ貫通孔に溶融した軟質金属を流動させて注入する。したがって、載置した軟質金属を加熱して溶融すればよいので、溶融した軟質金属を取り扱う必要がない。また、加熱によって各貫通孔に溶融した軟質金属を一挙に注入することができるので、容易に中継基板を形成できる。さらに、注入される軟質金属の体積は、所定形状を有する金属片の体積となるので一定となり、軟質金属体の寸法を容易に一定とすることができる。したがって、突出部の高さや形状についても一定となり、基板や取付基板との接続性の高い中継基板とすることができる。

【0077】ここで、所定形状の軟質金属からなる金属片は、一定形状であり一定の体積を有する金属片を用い

れば良く、形状そのものは、球状、立方体状等いずれの 形状でも良い。金属片は溶融させるので、溶融前の形状 は問わないからである。

【0078】さらに、前記目的を達成するための請求項 21に記載の発明は、前記金属片は、球形状の軟質金属 である請求項20に記載の中継基板の製造方法を要旨と する。

【0079】この手段によれば、所定形状の金属片として球状の金属片を用いるので、その直径を管理して一定の直径を有する球状の金属片を用いることで、その体積 10が一定にできて好ましい。また、球状の金属片は入手も容易である。さらに、この場合には、軟質金属球を貫通孔の端部に載置するに場合にも、載置のしかたに方向性がないので載置が容易にできる。また、複数の球状の軟質金属(軟質金属球)を中継基板本体上にばらまいた後に傾けるなどして適当に揺動させると、中継基板本体の貫通孔にはまった軟質金属球は動かなくなり、貫通孔にはまらなかった軟質金属球は動かなくなり、貫通孔にはまらなかった軟質金属球は中継基板本体を傾けることで容易に除去できるので、軟質金属球の載置も容易となる。 20

【0080】さらに、前記目的を達成するための請求項 22に記載の発明は、請求項1~11のいずれかに記載 の中継基板の製造方法であって、溶融した軟質金属に濡 れない材質からなり前記貫通孔に対応した位置にそれぞ れ凹部を有する溶融軟質金属受け治具の該凹部上端部に 該凹部の径より大きい寸法の軟質金属からなる金属片を それぞれ載置する工程と、前記中継基板本体の貫通孔に 該金属片がはまりこむように該中継基板本体を該溶融軟 質金属受け治具の上方に配置する工程と、加熱して該金 属片を溶融させつつ、溶融した軟質金属に濡れない材質 30 からなる荷重治具によって上方から金属片および中継基 板本体を押圧して、中継基板本体の貫通孔に溶融した軟 質金属を注入すると共に、溶融軟質金属受け治具の凹部 内に溶融した軟質金属を注入する工程と、該溶融した軟 質金属を少なくとも該凹部および貫通孔内に保持しつつ 冷却し、凝固させる工程と、を有する中継基板の製造方 法を要旨とする。

【0081】この手段によれば、軟質金属からなる金属片は、溶融軟質金属受け治具の凹部上端部に載置され、中継基板本体の貫通孔にはまりこむようにされるので、ずれたり転がったりすることがなく、確実に貫通孔内に注入できる。また、凹部の形状に倣った突出部が形成できるので、半球状等の形状に限らず所望の形状の突出部を形成することができる。また、載置した軟質金属からなる金属片を加熱して溶融すればよいので、溶融した軟質金属を取り扱う必要がない。また、加熱によって各貫通孔に溶融した軟質金属を一挙に注入することができるので、容易に中継基板を形成できる。さらに、注入される軟質金属の体積は、所定形状を有する金属片の体積となるので一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、軟質金属体の寸法を容易に一定となり、対象を表している。

することができる。したがって、突出部の高さや形状に ついても一定となり、基板や取付基板との接続性の高い 中継基板とすることができる。

【0082】なお、溶融軟質金属受け治具の材質としては、溶融した軟質金属に濡れない性質を有し、耐熱性のあるものから適宜選択すればよいが、例えば、カーボンや窒化ホウ素などを用いれば、凹部などの工作も容易である。また、耐熱性の高いアルミナ、ムライト、窒化珪素等のセラミックを用いても良い。

【0083】さらに、前記目的を達成するための請求項23に記載の発明は、請求項22に記載の中継基板の製造方法であって、前記溶融軟質金属受け治具の凹部上端部に金属片を載置する工程前に、該凹部内に凹部の径よりも小さい寸法で軟質金属からなる小金属片を、該小金属片を溶融させると共に前記金属片を溶融させて凹部内に注入したときに、溶融した小金属片と金属片とが接触して一体となるように、それぞれの凹部内に少なくとも1つ以上投入する工程を有する中継基板の製造方法を要盲とする。

【0084】凹部内に多くの軟質金属を注入したい場合、載置する金属片の寸法を大きくすれば良い。しかし、金属片の寸法が大きくなりすぎると、加熱時に各々の凹部に注入される前に隣接する金属片が接触して受け治具上面に拡がることがある。また、更に金属片の寸法が大きい場合には、隣接する凹部に注入するための金属片と接触して所定の位置(凹部上端部)に載置できないこともある。しかし、この手段によれば、予め受け治具の凹部内に小金属片を投入しておくので、上述のように隣接する金属片が接触する等の不具合は生じないで、凹部内に多くの軟質金属を保持させることができる。したがって、例えば、凹部の形状を深さの深い(細長の)形状とし、その凹部形状に倣った略柱状の突出部が形成するなど、体積の多い突出部形状を形成することができる。

【0085】なお、この場合に、前記溶融金属受け治具の凹部上端部に金属片を載置したときに、即ち、溶融前に前記投入した小金属片と載置した金属片とが接触しないように小金属片を凹部に投入するのが好ましい。金属片が凹部内に投入した小金属片と接触する場合には、金属片を凹部の上端部に載置するときに小金属片と接触するために金属片が凹部上端縁にぴったりと接触せず、金属片が安定に載置できなかったり、載置することそのものが困難となる。逆に金属片を接触しないように小金属片を投入すれば、金属片が凹部上端部に安定して載置することができる。

質金属を取り扱う必要がない。また、加熱によって各貫 通孔に溶融した軟質金属を一挙に注入することができる ので、容易に中継基板を形成できる。さらに、注入され る軟質金属の体積は、所定形状を有する金属片の体積と なるので一定となり、軟質金属体の寸法を容易に一定と 50 好ましい。また、球状の金属片は入手も容易である。さ らに、この場合には、軟質金属球を貫通孔の端部に載置するに場合にも、載置のしかたに方向性がないので載置が容易にできる。また、複数の球状の軟質金属(軟質金属球)を溶融金属受け治具上にばらまいた後に傾けるなどして適当に揺動させると、受け治具の凹部にはまった軟質金属球は動かなくなり、凹部にはまらなかった軟質金属球は中継基板本体を傾けることで容易に除去できるので、軟質金属球の載置も容易となる。

[0087]

【発明の実施の形態】本発明の実施の形態を図面を参照 10 しつつ説明する。

(実施形態1)以下では、まず中継基板の製造方法について図1~3を参照しつつ説明する。まず、周知のセラミックグリーンシート形成技術によって、貫通孔Hを有するアルミナセラミックグリーンシートGを用意する。このシートGの貫通孔Hの内周面H1に、図1(a)に示すように、タングステンペーストPを塗布する。

【0088】次いで、このシートGを還元雰囲気中で最高温度約1550℃にて焼成し、図1(b)に示すようなセラミック製中継基板本体1およびタングステンを主成20分とする下地金属層2を形成する。焼成後の中継基板本体(以下、本体ともいう)1は、厚さ0.3mmで、一辺25mmの略正方板形状を有し、第1面1aと第2面1bとの間を貫通する貫通孔Hの内径はφ0.8mmで、1.27mmのピッチで格子状に、縦横各19ヶ、計361ヶ(=19×19)の貫通孔が形成されている。また、下地金属層2の厚さは約10μmである。

【0089】さらに、この下地金属層2上に、図1(c)に示すように、厚さ約 2μ mの無電解Ni-Bメッキ層3を形成して、両者で後述するように軟質金属を溶着す30る金属層4を形成する。さらに、Ni-Bメッキ層3の酸化防止のため、厚さ 0.1μ mの無電解金メッキ層5を形成する。

【0090】次いで、図2(a)に示すように、それぞれの貫通孔Hの位置に対応させて半径0.45mmの半球状の凹部J1が図中上面に形成してあり、カーボンからなる溶融軟質金属受け治具(以下、受け治具ともいう)」を用意し、中継基板本体1の第2面1bと治具Jの上面が対向し、貫通孔Hが凹部J1と一致するように本体1を載置する。カーボンからなる溶融軟質金属受け治具40」は、後述する高温ハンダなどの溶融金属に濡れにくい性質を有するものである。なお、受け治具Jの凹部J1の頂部(図中最下部)には、受け治具Jを下方に貫通する小径(Φ0.2mm)のガス抜き孔J2がそれぞれ形成されている。さらに、それぞれの貫通孔Hの第1面側端部(図中上端)には、90%Pb-10%Snからなり、直径0.9mmの高温ハンダボールBを載置する。

【0091】次いで、窒素雰囲気下で、最高温度360 ℃、最高温度保持時間1分のリフロー炉にこれらを投入 し、高温ハンダボールBを溶融させる。すると、溶融し 50 た高温ハンダは、重力で図中下方に下がり、貫通孔Hに注入され、金属層4(Ni-Bメッキ層3)に溶着する。中継基板本体1の第2面1b側(図中下方)では、受け治具Jの凹部J1があるため、高温ハンダはこの凹部J1の形状に倣って半球状に盛り上がる。一方、中継基板本体1の第1面1a側(図中上方)では、受け治具Jの凹部J1と貫通孔Hとのなす体積よりも高温ハンダの体積が多い分だけ、上方に盛り上がる。この上方への盛り上がり形状は、高温ハンダの表面張力によって形成され、体積により略球状、半球状などの形状になる。本例では、略半球状となった。

【0092】なお、金メッキ層5は、溶融した高温ハンダ中に拡散して消滅するので、高温ハンダとNi-Bメッキ層3とは直接溶着し、高温ハンダからなる軟質金属体6は、中継基板本体1に固着される。また、受け治具Jのガス抜き孔J2は、溶融した高温ハンダが下方に移動するときに、排除される空気を逃がす役割をするが、受け治具Jがハンダに濡れず、ガス抜き孔J2が小径であるので、ハンダがガス抜き孔J2に浸入することはない。このようにすることで、貫通孔Hに高温ハンダからなる軟質金属体6を形成した。

【0093】図3に示すように、この軟質金属体6は、 中継基板本体1の貫通孔Hに貫挿され、本体1に金属層 4を介して固着されている。また、第2面1b (図中下 面) 側では、受け治具」の凹部 J 1 に倣って本体 1 から の高さ(第2突出高さ) Z 2が0. 4mm、半径が0. 43mmの略半球状の突出部(盛り上がり部)6bを備 え、第1面1a (図中上面) 側では、表面張力により同 様に本体1からの高さ(第1突出高さ)21が0.2m m、半径が0. 43mmの略半球状の突出部(盛り上が り部) 6 a を備える。なお、軟質金属体 6 の突出部 6 b の突出高さZ2は勿論、突出部6aの突出高さZ1も一 定の高さとなった。一定体積の高温ハンダボールBを用 いたからである。また、ハンダボールBの直径したがっ て体積を変化させると、突出部6aと6bの突出高さを 異なるものとすることができる。本例において、ハンダ ボールBを直径の小さいものに代えると、突出部6aの 突出高さ21を低くでき、直径の大きいものに代えると 突出部6bの突出高さ21を高くできる。

【0094】このようにして、図3に示すような中継基板9を完成した。即ち、この中継基板9は、アルミナセラミックからなり、板形状をなし、第1面1aと第2面1bとの間を貫通する複数の貫通孔Hを有する中継基板本体1と、この貫通孔H内に貫挿され両面より突出した突出部6a、6bを備え、かつ第1突出高さZ1と第2突出高さZ2が異なる軟質金属体6とを有する。更に具体的には、突出高さはZ1<Z2とされている。

【0095】次いで、完成した中継基板9を以下のようにして、基板および取付基板と接続した。まず、中継基板9を接続する基板として、図4(a)に示すような、厚

さ1.0mm、一辺25mmの略正方形状のLGA型基 板20を用意した。このLGA型基板は、アルミナセラ ミックからなり、図中上面20aにICチップをフリッ プチップ接続により載置するためのフリップチップパッ ド21を備え、図中下面20bに外部接続端子としてパ ッド(面接続パッド)22を備えている。このパッド2 2は、直径0.86mmで、中継基板9の軟質金属体6 の位置に適合するように、ピッチ1. 27mmの格子状 に縦横各19ヶ配列され、下地のモリブデン層上に無電 解Ni-Bメッキが施され、さらに酸化防止のために薄 10 く無電解金メッキが施されている。また、図示しない内 部配線によって、フリップチップパッド21とパッド2 2とがそれぞれ接続している。

【0096】また、取付基板として、図4(b)に示すよ うなプリント基板40を用意した。プリント基板40 は、厚さ1.6mm、一辺30mmの略正方形板状で、 ガラスエポキシ(JIS:FR-4)からなり、主面4 Oaには、LGA型基板20のパッド22と、したがっ て、中継基板9の軟質金属体6とも対応する位置に、パ ッド(面接続取付パッド)42が形成されている。この 20 パッド42は、厚さ25μmの銅からなり、直径0.7 2mmで、ピッチ1. 27mmで格子状に縦横各19 ケ、計361ヶ形成されている。

【0097】このプリント基板40を、図5(a)に示す ように、パッド42のある主面40aが上になるように 置き、パッド42上に低融点ハンダペースト7b(本例 では共晶ハンダペースト)を250μmの厚さで塗布す る。次いで、上述の方法によって形成した中継基板9を 載置する。このとき、各パッド42と軟質金属体6上の 中継基板本体第2面(図中下面)1b側の突出部6bと30 の位置を合わせるようにする。このようにすると、中継 基板9とプリント基板40はハンダペースト7bの粘着 力により仮固定された状態となる。

【0098】さらに、予めパッド22上に厚さ250μ mの低融点ハンダ(共晶ハンダ)ペースト7aを塗布し ておいた基板20を、図5(b)に示すように、パッド2 2のある面20bが下になるようにして中継基板9上に 載置する。このとき、各パッド22と軟質金属体6上の 中継基板本体第1面(図中上面)1a側の突出部6aと の位置を合わせるようにする。このようにすると、基板 40 20と中継基板9とはハンダペースト7aの粘着力によ り仮固定された状態となる。

【0099】次いで、基板20と中継基板9と取付基板 40とを、窒素雰囲気下で、最高温度218℃、200 ℃以上保持時間 2 分のリフロー炉に投入し、低融点ハン ダペースト7a、7bをそれぞれ溶融させ、図6に示す ように、ハンダ層8a、8bを介して一挙にパッド22 およびパッド42と軟質金属体6(突出部6a、6b) とをそれぞれ接続させる。

金属体6は溶融しない。これにより、中継基板9はLG A型基板20に接続され、同時にプリント基板40にも 接続され、基板、中継基板、取付基板の三者が接続、結 合した構造体(以下、単に構造体ともいう) 50 が完成 する。このようにすることで、基板20は、中継基板9 を介して、取付基板40に接続されたことになる。これ により、中継基板本体1の第1面1aとLGA型基板2 0の下面20bとの間隔A1は0.24mm、また、中 継基板本体1の第2面1bとプリント基板40の上面4 0 a との間隔A 2 は 0. 4 4 mm と な り、A 1 < A 2 と なった。軟質金属体6の上下の突出部6 a 、6 b の突出 高さ21、22が異なり、21<22となっていたから である。

【0101】なお、上記に如く三者を接続させるときに は、ハンダペースト7中にフラックスが含まれているの で、パッド22および42が金メッキ層などによって酸・ 化防止されていなくとも接続することができる。

【0102】従来では、まず、LGA型基板20のパッ ド22に低融点ハンダペーストを塗布し、高温ハンダ等 でできたボール状の端子部材を1つずつパッド22に載 置した後、リフローして端子を形成し、BGA型基板と する。その後、プリント基板40のパッド42に低融点 ハンダペーストを塗布し、BGA型基板を載置してリフ ローし三者を接続していた。あるいは、プリント基板4 0のパッド42に低融点ハンダペーストを塗布し、高温 ハンダ等でできたボール状の端子部材を1つずつパッド 42に載置した後、低融点ハンダペーストを塗布したL GA型基板を載置した後、リフローして三者を接続して いた。

【0103】しかし、上述のようにすれば、基板20お よびプリント基板40に低融点ハンダペーストを塗布し た上で、プリント基板40、中継基板9、基板20を順 に重ねて加熱するだけで、プリント基板40に基板20 を容易に接続できるため、LGA型基板を一旦BGA型 基板とするなどのボール状端子部材をパッド(22、4 2)上に1つずつ載置する工程が不要となる。

【0104】なお、上述の例では、プリント基板40と 中継基板9とLGA型基板20をこの順に重ね、リフロ ーして、基板20と中継基板9、および中継基板9とプ リント基板40とを一挙に接続(ハンダ付け)した例を 示したが、このように一挙に製作しない方法も採ること ができる。即ち、中継基板9を、いったんLGA型基板 20に取付けて中継基板付基板(基板と中継基板との接 続体)とした後に、さらにプリント基板40に接続して も良い。また、中継基板9とプリント基板40とを先に 接続しておいても良い。いずれにしても、本例の中継基 板9を使用すれば、端子部材をパッド上に1つずつ載置 する必要はなく、1回ないしは2回の加熱(リフロー) によって、基板と取付基板とを中継基板を介して接続す 【0100】なお、このとき、高温ハンダからなる軟質 50 ることができる。したがって、ICチップメーカやユー

26

ずにおいて、面倒な工程や設備を省略することができ る。

【0105】なお、2回に分けて加熱する場合には、上 記ハンダペースト7aと7bを融点の異なるハンダペー ストとしておいても良い。即ち、基板20と中継基板9 とを先に接続させ、その後プリント基板40を接続させ る場合には、ハンダペースト7aにペースト7bよりも 融点の高いハンダペーストを用いる。中継基板付基板と プリント基板とをハンダペースト7bを溶融させて接続 する時に、ハンダ層8aが溶融しない温度とすること で、基板と中継基板とが位置ズレを起こさないようにで きるからである。逆に、プリント基板40と中継基板9 とを先に接続させ、その後基板20を接続させる場合に は、ハンダペースト7bにペースト7aよりも融点の高 いハンダを用いる。中継基板付取付基板と基板とをハン ダペースト7aを溶融させて接続する時に、ハンダ層8 bが溶融しない温度とすることで、中継基板9とプリン ト基板40とが位置ズレを起こさないようにできるから である。

【0106】また、本例における接続体50において 20 は、基板20と中継基板本体1の間ではほとんど応力は生じない。これは、基板20と中継基板本体1とは同じ材質であり、熱膨張差が生じないからである。一方、中継基板本体1とプリント基板40の間では応力が発生する。中継基板本体1とプリント基板40とは材質が異なるからである。この場合、最大応力は、軟質金属体6のプリント基板40側の突出部6b部、およびプリント基板40近傍のハンダ層8bに発生する。ところが、軟質金属体6(突出部6b)は、容易に塑性変形するから、突出部6bにおいて変形して応力を緩和する。したがっ 30 て、中継基板本体1とプリント基板40の間に発生した応力が結果として小さくなり、破壊しにくい信頼性のある接続とすることができる。

【0107】特に、従来では、破壊が生じ易かった基板20側のパッド22近傍のハンダ層8aには、中継基板9により応力がかからない。一方、中継基板9とプリント基板40との間の応力は軟質金属体6が変形して吸収するので、軟質金属体6の突出部6bは破壊し難く、また、プリント基板40のパッド42金属のハンダ層8bも破壊し難くなる。

【0108】上記例では、中継基板9の突出部6a、6b上に低融点ハンダ層を設けないで、基板20やプリント基板40のパッド上に低融点ハンダペースト7a、7bを塗布し、これによって三者を接続した例を示したが、突出部6a、6bに低融点ハンダ層を設ける方法も採用でき、このようにすると更に接続が容易となる。

【0109】例えば、その方法として以下のようなものがある。即ち、図3に示した中継基板9に対して以下のようにして低融点ハンダ層を形成する。図7に示すように、中継基板本体1の貫通孔Hの位置に合わせて貫通孔 50

(充填孔) L1(直径0.86mm×高さ0.17mm)を形成した板状カーボン治具(転写板) Lを2枚用意し、この貫通孔L1にそれぞれ低融点ハンダ(共晶ハンダ)ペースト7をスキージによって刷り込み充填する。このようにすることで、貫通孔L1に充填されたペースト7の量は容易に一定量となる。この転写板Lの貫通孔L1の位置をそれぞれ軟質金属体6(貫通孔H)の位置に合わせ、カーボン台座治具M上に、転写板L、中継基板本体1、転写板Lの順に重ねてセットする(図7(a)参照)。

【0110】その後、窒素雰囲気下で、最高温度220℃、最高温度保持時間1分のリフロー炉にこれらを投入し、低融点ハンダペースト7を溶融させる。なお、この温度条件では軟質金属体6は溶融しない。溶融した低融点ハンダは、図7(b)に示すように、軟質金属体6の上下の突出部6aおよび6bに濡れて拡がり、それぞれハンダ層8a、8bとなり、図8に示すようなハンダ層付中継基板10が形成される。このハンダ層8a、8bは、ペースト7の量が一定に規制されているので、各々一定量(体積)となり、高さも各盛り上がり部において均一になる。

【0111】ハンダ層付中継基板10を用いると、この中継基板10と基板20をプリント基板40に順に重ねて加熱するだけで、プリント基板40に基板20を容易に接続できるため、LGA型基板をいったんBGA型基板とする工程が不要であり、さらに、プリント基板にハンダペーストを塗布する工程が不要となる。

【0112】なお、上述のようなハンダ層8a、8bを有する中継基板10を、いったんLGA型基板20に取付けて中継基板付基板とした後に、さらにプリント基板40に接続しても良い。また、ハンダ層付中継基板10とプリント基板40とを先に接続しておいても良い。いずれにしても、ハンダ層8aや8bを有する中継基板10を使用すれば、低融点ハンダペーストを塗布したり、端子部材をパッド上に1つずつ載置する必要はなく、1回ないしは2回の加熱(リフロー)によって、基板と取付基板とを中継基板を介して接続することができる。したがって、さらにICチップメーカやユーザにおいて、面倒な工程や設備を省略することができる。

【0113】なお、2回に分けて加熱する場合には、上記ハンダ層8aと8bを融点の異なるハンダで形成しておいても良い。即ち、基板20と中継基板10とを先に接続させ、その後プリント基板40を接続させる場合には、ハンダ層8aにハンダ8bよりも融点の高いハンダを用いる。中継基板付基板とプリント基板とをハンダ層8bを溶融させて接続する時に、ハンダ層8aが溶融しない温度とすることで、基板と中継基板とが位置ズレを起こさないようにできるからである。逆に、プリント基板40と中継基板10とを先に接続させ、その後基板20を接続させ場合には、ハンダ層8bにハンダ8aより

も融点の高いハンダを用いる。中継基板付取付基板と基板とをハンダ層8aを溶融させて接続する時に、ハンダ層8bが溶融しない温度とすることで、中継基板10とプリント基板40とが位置ズレを起こさないようにできるからである。

【0114】(実施形態2)上記例においては、軟質金属体6の突出部6a、6bのいずれもが形成され、突出高さの差が比較的小さいものを示したが、突出高さの差が大きくなるように形成するようにしても良い。他の実施の形態として、一方の面に大きく突出するようにした10中継基板について説明する。まず、上記第1実施形態において図1を参照して説明したのと同様にして、アルミナセラミックからなり、貫通孔Hの内周に金属層4を有する中継基板本体を形成する。本例における中継基板本体1も第1実施形態例と同様に、厚さ0.3mm、1辺25mmの略正方形状で、貫通孔Hの内径はφ0.8mmで、1.27mmのピッチで格子状に縦横各19ケ、計361ヶの貫通孔が形成されている。

【0115】次いで、図9(a)に示すように、中継基板 本体1の貫通孔Hの図中上端側に高温ハンダボールBを 20 載置するのであるが、これには、以下のようにすると容 易である。即ち、貫通孔Hに対応する位置にボールBの 直径よりもわずかに大きい透孔(貫通孔)SHを有する ボール規制板Sを用意しておき、これを中継基板本体1 の図中上方に配置しておく。次いで、高温ハンダボール Bをボール規制板S上に散播き、中継基板本体1と規制 板Sを保持しつつ揺動させると、ボールBは規制板S上 を転がって次々に透孔SH中に落ち込んで移動できなく なる。その後、すべての透孔SH中にボールが落ち込ん だら、規制板S上の不要なボールBを除去することで、 図9(a)のように、各貫通孔Hの上端にボールBが載置 できたことになる。本例では、直径0.9mmの高温ハ ンダボール(90%Pb-10%Sn)Bを用い、規制 板の厚さは0.5mm、透孔SHの直径は1.0mmと した。

【0116】その後、図9(b)に示すように、規制板Sを取り外し、耐熱性を有し溶融した高温ハンダに濡れない材質であるアルミナセラミックからなり、上面Daが平面である載置台D上に、上方に高温ハンダボールBが載置された中継基板本体1を載せる。なお、載置台D上 40に中継基板本体1を載せておき、その後上述した方法によってボールBを貫通孔H上端に載置しても良い。

【0117】さらに、窒素雰囲気下で、最高温度360 ℃、最高温度保持時間1分のリフロー炉にこれらを投入し、高温ハンダボールBを溶融させる。すると、溶融した高温ハンダは、重力で図中下方に下がり、貫通孔Hに注入され、金属層4 (Ni-Bメッキ層3) に溶着する。その後冷却することで、中継基板本体1の貫通孔Hに高温ハンダからなる軟質金属体206が貫挿された中継基板209が出来上がる。

【0118】ただし、中継基板本体1の図中下面側には 載置台Dがあるため、溶融した高温ハンダは、この載置 台Dの上面Daの平面形状に倣う。したがって、図9 (c)に示すように、軟質金属体206は、中継基板本体 1の下面側では、ほぼ本体下面と面一となり、突出しないあるいはほとんど突出部のない形状となる。本例では、中継基板本体1の下面からの突出高さZyは0.0 3mmであった。一方、中継基板本体1の図中上面側では、概略、貫通孔Hの体積よりも高温ハンダの体積が多い分だけ、上方に盛り上がり、突出部206xとなる。この上方への盛り上がり形状は、高温ハンダの表面張力によって形成され、体積により略球状、半球状などの形状になる。本例では、最大径0.9mm、中継基板本体上面からの突出高さZx0.7mmの略球状(3/4球状)となった。

【0119】なお、第1実施形態と同様に、金メッキ層5は、溶融した高温ハンダ中に溶食されて拡散してしまうので、高温ハンダからなる軟質金属体206は、直接Ni-Bメッキ層(金属層4)と溶着して、中継基板本体1と固着される。また、高温ハンダ溶融時に中継基板本体1と載置台Dの上面Daとの間に隙間があると、溶融した高温ハンダがこの隙間を通じて図中横方向に拡がって相互に繋がってしまうことがあるので、中継基板本体1が載置台Dの上面Daに密着するように(浮き上がらないように)、中継基板本体1に荷重を掛けたり、押さえたりすると良い。

【0120】図10に示すように、この中継基板209は、上下面で突出高さ2x、2yが大きく異なっている。そこで、2つの面(上下面)を区別するために、耐熱性インクで、図9(c)における上面、即ち、突出部206xのある側の中継基板本体表面に標識MKを付した。

【0121】しかして、このような中継基板209を第 1実施形態と同様にLGA型基板220やプリント基板 240と接続する。まず、中継基板209と接続する基 板として、図11(a)の上方に示すような、厚さ1.0 mm、一辺25mmの略正方形状のLGA型基板220 を用意した。このLGA型基板220は、アルミナセラ ミックからなり、図中上面220aにICチップをフリ ップチップ接続により載置するためのフリップチップパ ッド221を備え、図中下面220bに外部接続端子と してパッド(面接続パッド)222を備えている。この パッド222は、直径0.86mmで、中継基板の軟質 金属体の位置に適合するように、ピッチ1.27mmの 格子状に縦横各19ヶ配列され、下地のモリブデン層上 に無電解Ni-Bメッキが施され、さらに酸化防止のた めに薄く無電解金メッキが施されている。また、パッド 222は、図示しない内部配線によって、フリップチッ プパッド221とそれぞれ接続している。

【0122】また、取付基板として、図11(a)の下方

50

に示すようなプリント基板 240 を用意した。プリント 基板 240 は、厚さ 1.6 mm、一辺 230×125 m mの略矩形板状で、ガラスエポキシ(JIS:FR-4)からなり、主面 240 aには、LGA型基板 220 のパッド 222 と対応する位置に、したがって、中継基板 209 の軟質金属体 206 とも対応する位置に、パッド 242 が形成されている。このパッド 242 は、直径 0.72 mm、厚さ 25μ mの銅からなり、ピッチ 1.27 mmで格子状に縦横各 19 ケ、計 361 ケ形成されている。なお、このプリント基板 240 は、このような 10 パッド 242 の群が縦 29 、横 4 列の計 8 群形成されており、基板 220 を同時に 8 ケ接続できるようになっている。

【0123】このプリント基板240を、図11(a)に示すように、パッド242のある主面240aが上になるように置き、パッド242上に低融点ハンダペースト207bを塗布しておく。ついで、中継基板209を図9とは上下逆向きにして載置する。このとき、各パッド242と軟質金属体206上の突出部206xとの位置を合わせるようにする。なお、上述のように標識MKを20付してあるので、容易に突出部206xのある面を判別できた。

【0124】さらに、パッド222上に低融点ハンダペースト207aを塗布した基板220を、パッド222のある面220bが下になるようにして中継基板209上に載置する。このとき、各パッド222と軟質金属体206との位置を合わせるようにする。

【0125】次いで、基板220と中継基板209と取付基板240とを、窒素雰囲気下で、最高温度218℃、200℃以上保持時間2分のリフロー炉に投入し、低融点ハンダペースト207a、207bをそれぞれ溶融させ、低融点ハンダ層208a、208bを介して一挙にパッド222およびパッド242と軟質金属体206とをそれぞれ接続させる。

【0126】なお、このとき、高温ハンダからなる軟質 金属体206は溶融しない。これにより、図11(b)に 示すように、中継基板209はLGA型基板220に接 続され、同時にプリント基板240にも接続され、基 板、中継基板、取付基板の三者が接続、結合した構造体 250が完成する。このようにすることで、基板220 40は、中継基板209を介して、取付基板240に接続されたことになる。

【0127】これにより、中継基板本体1の上面(第1面)とLGA型基板220の下面220bとの間隔A1は0.05mm、また、中継基板本体1の下面(第2面)とプリント基板240の上面240aとの間隔A2は0.72mmととなり、基板220と中継基板本体1との間隔A1よりも中継基板本体1と取付基板240との間隔A2が大きい(A1<A2)構造体250を製作することができた。軟質金属体206が、第1面側には50

ほとんど突出しないために第1突出高さZ1 (=Zy) が小さく、第2面側には突出部206xを有しているために第2突出高さZ2 (=Zx) が大きくなったからである。

【0128】特に本例では、アルミナセラミックからなるLGA型基板220とアルミナセラミックからなる中継基板本体1との間隔A1が、中継基板本体1とガラスエポキシからなるプリント基板240との間隔A2に比較して非常に小さくできた。このようにすると、この構造体250が加熱又は冷却されたときに、材質が同じであるLGA型基板220と中継基板209(中継基板本体1)との間には、熱膨張差により応力はほとんど発生しない。一方、中継基板209とプリント基板240との間には、応力が発生する。

【0129】したがって、LGA型基板220のパッド 222やその近傍のハンダ層208aが破壊することは ない。一方、中継基板209とプリント基板240との 間に生じる熱応力のうち中継基板側に掛かる応力は、軟 質金属体206に対し突出部(第2突出部)206xの 第2面近傍において第2面に沿う方向(第2面との交差 面方向)に掛かる。しかし、この応力は軟質金属の変形 により吸収され緩和されてしまう。さらに、突出部20 6xにより間隔A2が大きくされているので、このあい だでも突出部206xが変形して応力を緩和する。ま た、中継基板209とプリント基板240との間の熱応 力のうちプリント基板側に掛かる応力は、パッド242 に対し主面240a方向に掛かる。しかし、パッド24 2は比較的強固にプリント基板に固着されており、しか もCuからなるので変形して応力を吸収しやすいため、 容易には破壊しない。したがって、中継基板209を介 さないで、LGA型基板220とプリント基板240を 従来のように接続した場合に比較して、両者間の接続が 破壊されることが無くなり、あるいは長寿命となる。

【0130】なお、図12に示すように、上記例とは逆に突出部206×が基板220のパッド222と接続するように、即ち、突出部206×が第1突出部となるように図9(c)と上下同じにして用いた場合には、基板220と中継基板本体1との間隔A1が0.72mm、中継基板本体1とプリント基板240との間隔A2が0.05mmの構造体251となった。この場合には、軟質金属体206の突出部206×があるために第1突出高さZ1(=Zx)が大きいので、間隔A1は大きな値となり、一方、第2突出高さZ2(=Zy)は小さいので、間隔A2はA1に比較して小さな値となったのである。

【0131】このようにするのが好ましい場合としては、例えば、基板の材質がアルミナより熱膨張係数の小さい窒化アルミからなり、取付基板が中継基板本体と略同材質のアルミナからなる場合が挙げられる。中継基板本体と取付基板との間には熱膨張差はほとんど発生せ

ず、その一方で、基板と中継基板本体との間には熱膨張差が生じるので、基板と中継基板本体との間隔を大きくし、突出部206xで応力を吸収するようにすると良いからである。また、このような配置は、例えば、アルミナ等のセラミックからなる基板と、ガラスエポキシ等の樹脂材料からなる取付基板との間に中継基板本体が樹脂材料からなる中継基板を介在させる場合などにおいても適用できる。

【0132】上述の例では、プリント基板240と中継基板209とLGA型基板220をこの順に重ね、リフ10ローして、基板220と中継基板209、および中継基板209とプリント基板240とを一挙に接続(ハンダ付け)して三者からなる構造体250を形成した例を示した。しかし、第1実施形態においても説明したように、一挙に構造体250を製作しない方法も採ることができる。即ち、図13(a)に示すように、中継基板209を、一旦LGA型基板220に取付けて中継基板付基板(基板と中継基板の接続体)260とした後に、さらにプリント基板240に接続しても良い。また、図13(b)に示すように、中継基板209とプリント基板24 200とを先に接続して中継基板付プリント基板 (中継基板と取付基板の接続体)270としても良い。

【0133】特に、一旦このような接続体260、27 0を形成する場合には、上述したように、中継基板本体 に第1面と第2面を識別できるような標識MKを設けて おくと良い。基板や取付基板との接続時に誤って接続す ると、基板ー中継基板本体間の間隔A1や中継基板本体 取付基板間の間隔A2が予定されていた値と大きく異 なったものとなってしまい、接続信頼性や寿命に大きく 影響する可能性があるからである。特に標識MKを本体 30 1の第2面に設けておくと、図13(a)に示すように、 基板と中継基板の接続体260を形成した状態で、正し く中継基板209が基板220に接続されていることが 容易に確認できる。同様に標識MK′を本体1の第1面 に設けておくと、図13(b)に示すように、中継基板と 取付基板の接続体270を形成した状態で、正しく中継 基板209が取付基板240に接続されていることが容 易に確認できる。

【0134】なお、本第2実施態様における中継基板2 09においても、軟質金属体206の両面側に低融点ハ 40 ンダ層を形成したハンダ層付中継基板とすれば、基板や 取付基板との接続がより簡易となる。その手法として は、前記第1実施態様において使用したような転写板を 用いる方法の他、軟質金属体206の下方に前記第1実 施態様において使用した溶融軟質金属受け治具Jと同様 な構造の治具を用いて低融点ハンダ層を形成する手法や 低融点ハンダからなる金属片を軟質金属体上に載置して 溶融させて低融点ハンダ層を形成する手法などがある。

【0135】即ち、軟質金属体の突出部に対応した凹部 を形成した治具のこの凹部内に低融点ハンダからなる金 50 属片 (例えば低融点ハンダボール) を投入しておき、その後、この凹部に軟質金属体の突出部を挿入する。さらに、中継基板本体を治具側に押圧しつつ加熱して金属片を溶融させると、低融点ハンダが突出部表面に濡れ拡がってハンダ層が形成できる。また、透孔を有するボール規制板のこの透孔が軟質金属体上方に位置するように配置し、低融点ハンダボールをこの規制板上に散播いて適当に揺動する。すると、ボールが透孔に落ち込んで動けなくなる。その後規制板を傾ける等して不要なボールを除去することで、軟質金属体上に低融点ハンダボールが載置できたこととなる。その後加熱すれば、溶融した低融点ハンダが軟質金属体上に濡れ拡がって低融点ハンダ層が形成できる。

【0136】(実施形態3)次に、軟質金属体の突出部形状を球状、半球状でなく、柱状とした実施形態について説明する。上記第1実施形態において図1を参照して説明したのと同様にして、アルミナセラミックからなり、貫通孔Hの内周に金属層4を有する中継基板本体1を用意しておく。本例における中継基板本体1は、上記第1実施形態で使用したものと同様なもので、厚さ0.3mm、1辺25mmの略正方形状で、貫通孔Hの内径はゆ0.8mmで、1.27mmのピッチで格子状に縦横各19ケ、計361ヶの貫通孔が形成されている。なお、本例における中継基板本体1においては、金属層4を形成するのと同時に、メタライズインクを印刷し同時焼成することにより一方の面(図中下面)に標識MKを形成してある。

【0137】次いで、貫通孔H内に軟質金属体306を 貫挿する。本例では前記第1実施態様において説明した 溶融軟質金属受け治具Jと同様な構造の治具を用いて柱 状の軟質金属体306を形成する。即ち、図14(a)に 示すように、耐熱性があり溶融した高温ハンダに濡れない材質であるカーボンからなるハンダ片保持治具Nの上 面には、貫通孔Hにそれぞれ対応した位置に、直径0. 9mm、深さ1.95mmで、先端が円錐状の凹部N1 が形成されている。また、保持治具Nの凹部N1の頂部 (図中最下部)には、保持治具Nを下方に貫通する小径 (φ0.2mm)のガス抜き孔N2がそれぞれ形成されている。

【0138】まず、この保持治具Nの各凹部N1に直径 0.8mmの高温ハンダ(Pb90%-Sn10%ハンダ)ボールD1を投入しておく。本例では、各凹部にそれぞれ2ヶ投入した。次いで、凹部N1の端部(上端)に直径1.0mmの高温ハンダ(Pb90%-Sn10%ハンダ)ボールD2を載置する。なお、ボールD2を保持治具Nの凹部N1に載置するのには、上記第2実施形態例において高温ハンダボールBを貫通孔Hの端部に載置するときに利用したボール規制板Sと同様なボール規制板を利用すると容易に載置できて都合がよい。このとき、凹部N1内に既に投入されているボールD1とボ

ールD2とが接触しないで、かつ後述する高温ハンダの溶融時には両者が接触するように、間隔をわずかに空けておくのが好ましい。このようにするとボールD2が凹部N1の上端縁にぴったりと接触して動かなくなり(あるいは動き難くなり)、後述する中継基板本体1を載せるときの位置合わせが容易になるからである。

【0139】その後、図14(b)に示すように、ボール D2の図中上方に中継基板本体1を載置する。このと き、貫通孔HにボールD2がはまるように位置決めをす る。さらに、中継基板本体1の上方、即ち、ボールD2 10 のある側とは反対側から、耐熱性があり溶融した高温ハ ンダに濡れない材質であるステンレスからなる荷重治具 Qの平面(図中下面)Q1を本体1の上面に押し当てる ようにして載せて、下方に圧縮する。

【0140】次いで、窒素雰囲気下で、最高温度360 ℃、最高温度保持時間1分のリフロー炉にこれらを投入 し、高温ハンダボールD1、D2を溶融させる。する と、溶融した高温ハンダD2は、荷重治具Qにより図中 下方に押し下げられた本体1の貫通孔H内に貫挿される とともに、貫通孔4の内周の金属層4と溶着する。一 方、貫通孔Hの上端部では、荷重治具Qの平面Q1に倣 って平面状になる。また、高温ハンダD2は、保持治具 Nの凹部N1内にも注入される。すると、溶融した高温 ハンダD1と接触し、両者は表面張力により一体となろ うとする。ところが、はんだD2は、金属層4と溶着し 本体1と一体となっているので、本体1から離れて下方 に落下することができないため、重力に抗して高温ハン ダD1を上方に引き上げる形で一体化する。なお、本体 1は荷重治具Qにより保持治具Nの上面N3に押し当て られた状態まで押し下げられる。また、ガス抜き孔N2 30 は、高温ハンダボールD1、D2を溶融させるときに、 凹部N1内に閉じこめられた空気を逃がす役割をする。

【0141】その後、冷却して高温ハンダを凝固させる と、図15に示すように、中継基板本体1の図中下方側 には、側面は凹部N1の側壁の形状に倣い、図中下端即 ち、突出部の頂部は略半球状となった突出部306xを 有し、上方側にはほとんど突出しない形状の軟質金属体 306が貫挿された中継基板309が形成された。本例 では、突出部306xは、横断面の直径(最大径)0. 88mm、突出高さ2x1.75mmであり、その直径 40 (最大径)よりも頂部までの高さの高い略円柱状となっ た。一方、図中上面側においては上面からの突出高さ2 yは0.01mmであった。なお、本例では中継基板本 体1に形成した標識MKが、図15図中下面側になるよ うに配置した。したがって、標識MKは、突出部306 xの形成された面と同じ面に形成されていることとな り、突出部306xの形成された面を表す標識として使 用できる。

【0142】ついで、図16(a)に示すように、軟質金 属体306の上面に直径0.4mmの低融点ハンダボー 50

ル(Pb-Sn共晶ハンダボール)Eyを載置する。な お、このボールEyを載置するには、ボール規制板R' を軟質金属体の上方に透孔RH'が位置するようにセッ トし、この規制板R'上にボールEyを散播いて揺動 し、透孔RH'にボールEyを落とし込む方法によると 容易に載置できる。本例においては、規制板R'の厚み は0.5mm、透孔RH'の直径は0.6mmである。 【0143】ところで、ハンダボールEyを載置するに あたっては、保持治具Nの凹部N1に突出部306xが はまりこんだ状態のまま、即ち、図15において、荷重 治具Qのみ除去した状態、あるいは、図16(a)に示す ように、突出部306xの先端がそれぞれはまりこむ凹 部U1を有する軟質金属体保持治具Uを用い、この治具 Uの凹部U1に突出部306xの先端をそれぞれ嵌め込 んだ状態で行うと都合がよい。軟質金属体306は柔ら かく変形しやすい高温ハンダから形成されているからで ある。

【0144】しかる後、窒素雰囲気下で、最高温度220℃、最高温度保持時間1分のリフロー炉にこれらを投入し、低融点ハンダボールEyを溶融させる。なお、この温度条件では軟質金属体306は溶融しない。溶融した低融点ハンダは、軟質金属体306の図中上面に濡れて拡がり、ハンダ層308yとなる(図16(b)参照)。このハンダ層308yは、低融点ハンダボールEyの体積が一定に規制されているので、一定量(体積)となり、高さも均一になる。本例においては、基板本体1の図中上面からハンダ層308yの頂部(図中最上端)までの高さが0.08mmであった。

【0145】このようにして、図16(b)に示すよう に、図中上下面の間を貫通する貫通孔Hを有する中継基 板本体1と、貫通孔H内に貫挿され図中下面より突出し た突出部306xを有する軟質金属体306とを有する 中継基板309について、図中上面側の軟質金属体30 6上に形成され軟質金属体306よりも低い融点を有す るハンダ層308yを有するハンダ層付中継基板310 が形成できた。なお、本例においては、軟質金属体30 6の上下両面にハンダ層を設けるのではなく、図中上方 にのみハンダ層308yを設けたが、例えば、第1、2 実施態様で説明した手法を用いることにより、上下両面 に設けたハンダ層付中継基板310°を形成することも できる(図17(a)参照)。これとは逆に、下面即ち、 突出部306xの頂部にのみハンダ層308xを形成し たハンダ層付中継基板310"とすることもできる(図 17(b)参照)。

【0146】次いで、ハンダ層308yを有するハンダ層付中継基板310とLGA型基板320とを重ねて加熱して両者を接続し、図18(a)に示すように、接続体360を形成する。この接続体360では、基板320と中継基板本体1との間隔A1は0.03mmとなった。一方、中継基板本体1から図中下方に突出する突出

部306xの突出高さZ2(=Zx)は1.75mmである。また、この接続体360については、図中下方から見ると、中継基板本体1に形成した標識MKが確認できるので、中継基板310と基板320とが正しく接続していることが確認できる。

【0147】その後、パッド342上に低融点ハンダペースト(共晶ハンダペースト)を塗布したプリント基板340を用意し、突出部306xとパッド342との位置を合わせるようにして接続体360をプリント基板340上に載置する。その後、加熱することによりパッド10342上の低融点ハンダペーストを溶融させ、図18(b)に示すように、基板320一中継基板310ープリント基板340の三者を接続した構造体350を形成した。この構造体350は、基板320と中継基板本体1との間隔A1は0.03mmとなり、一方、中継基板本体1とプリント基板340との間隔A2は1.78mmとなった。

【0148】即ち、第1、2実施形態の場合に比較して、本体1とプリント基板340の間隔A2を大きくできた。突出部(第2突出部)306xの突出高さZ2が20大きくされているからである。このようにすると、この間隔A2が大きくなった分、中継基板本体1とプリント基板340との間に生ずる応力を緩和することができる。また、突出部306xは、その径に比して高さが高い柱状の形状となっているので、この形状自体も変形が容易なようになっており、ここでも応力を吸収できる。さらに、軟質金属体からできた突出部306xは、それ自身が変形容易で応力を吸収できる。

【0149】通常の場合、隣接する軟質金属体の間隔 (面接続パッド相互の間隔) は、所定の値にされている 30 ので、突出部の最大径は、この間隔によって制限され る。一方、突出部の高さについては、許容範囲大きい場 合が多いと考えられる。したがって、突出部を柱状とす ると突出部の最大径の制限内で、高さの許容範囲まで高 い突起を形成できるので、基板や取付基板と中継基板本 体との間隔をより大きく、しかも突出部を相対的に細く できるので、より多くの応力緩和ができる。したがっ て、このような略柱状の突出部を介在させた基板ー中継 基板間、あるいは中継基板-取付基板間の接続信頼性を 向上させ、接続部の寿命を長くすることができる。な お、パッド342上に設ける低融点ハンダペーストは、 中継基板310に形成されたハンダ層308yよりも低 融点のハンダペーストを用いることもできる。このよう にすると、ハンダ層308yを溶融させずにハンダペー スト307bを溶融させて、中継基板310とプリント 基板340とを接続することもできる。

【0150】(信頼性評価)次いで、図19に示すように基板-中継基板本体の間隔A1および中継基板本体-取付基板の間隔A2を変えた場合の基板-中継基板-取付基板の構造体450についての接続信頼性評価を行っ 50

た。本例において評価に供した試料は、以下のようなものである。即ち、中継基板 409は、アルミナセラミック(熱膨張係数 α m = 7×10^{-6})からなり貫通孔Hの内周に金属層 4 を有する中継基板本体 1 を有し、P b 90 - S n 10 高温ハンダからなる軟質金属体 406 を有する。中継基板本体 1 は、厚さ 0.3 mm、 1 辺 25 m mの略正方形状で、貫通孔Hの内径は ϕ 0.8 mmで、 1.27 mmのピッチで格子状に縦横各 19 ケ、計 36 1 ケの貫通孔Hが形成されている。

【0151】また、基板として、厚さ t 1.0 mm、一辺25 mmの略正方形平板状の評価用LGA型基板420を用意した。このLGA型基板420は、中継基板本体と略同材質のアルミナセラミック(熱膨張係数 α 1=7×10⁻⁶)からなり、下面420 bに外部接続端子としてパッド(面接続パッド)422を備えている。このパッド422は、直径0.86 mmで、中継基板の軟質金属体の位置に適合するように、ピッチ1.27 mmの格子状に縦横各19ヶ配列され、下地のモリブデン層上に無電解Ni-Bメッキが施され、さらに酸化防止のために薄く無電解金メッキが施されている。

【0152】また、取付基板として、評価用プリント基板 440 を用意した。プリント基板 440 は、厚さ 1.6 mm、 230×125 mmの略矩形板状で、ガラスエポキシ(JIS:FR-4、熱膨張係数 $\alpha 2 = 15 \times 10^{-6}$)からなり、主面 440 a には、LGA型基板 4200のパッド 422と、したがって、中継基板 409の軟質金属体 406とも対応する位置に、パッド 442が形成されている。このパッド 442は、厚さ 25μ mの銅からなり、直径 72 mmで、ピッチ 1.27 mmで格子状に縦横各 19 ケ、計 361 ケ形成されている。なお、このプリント基板 440 は、このようなパッド 442 の群が縦 2 列、横 4 列の計 8 群形成されており、基板 420 を同時に 8 ケ接続できるようになっている。

【0153】そしてこの三者は、低融点ハンダ(Pb37%-Sn63%共晶ハンダ)層408a、408bによって相互に接続されて構造体450を構成している。また、構造体450を構成したときに、すべてのパッド422および442を直列に接続するようなディジーチェーンを構成するように、この基板420の内部配線420 Iおよびプリント基板440の配線440Wが構成されている。したがって、ディジーチェーンの両端で導通の有無を測定した場合、構造体450のすべてのパッド422、442において導通している場合にのみ導通と判定され、いずれかのパッドにおいて破断が生じた場合には、不導通と判定されるようになっている。

【0154】本例では、軟質金属体406の第1面および第2面側からの突出高さ21、22を変え、これに伴って間隔A1、A2を変えることにより、冷熱サイクル試験(-40~125℃)を行った場合に、いずれかのパッドの破断するまでの平均寿命(MTBF)を測定した。供

試試料数はいずれも32ヶである。なお、試料No. 4 においては、突出高さ22を大きくするため、上記第3 実施形態において説明した手法を用いて、第2突出部が 略柱状になるように形成したものを用いた。

【0155】また、比較例としてNo. 5に中継基板4 09を介在させないで基板420とプリント基板440 を接続した場合についても表示した。この場合、本例の 軟質金属体406に相当する端子部材として直径0.9 mm、Pb90-Sn10高温ハンダボールを用い、本 例と同様に共晶ハンダで接続し、基板とプリント基板の 間隔A0は1.0mmとした。また各試料についても、 基板とプリント基板の間隔A0(=A1+t+A2、t は中継基板本体の厚み=0.3mm)を表示した。結果 を表1および図20に示す。寿命(MTBF値)は、図 20に示す正規ー対数プロットの傾きより求めた。

[0156]

【表1】

番	突出高	さ(mm)	間隔(mm)			寿命	£-1°
号	Z 1	Z 2	A 0	A 1	. A 2	(サイクル)	
1	0.03	0.70	1. 07	0.05	0.72	1500	С
2	0.30	0.30	0.98	0.34	0.34	1050	С
3	0.70	0. 03	1. 07	0.72	0.05	570	ъ
4	0.01	1. 75	2. 11	0.03	1. 78	1950	С
5			1. 00			820	а

注) モード欄における記号は、以下の意味である。

a:基板のパッド422近傍のハンダ408aの破断。

b:プリント基板のパッド442近傍のハンダ408bの破断。

c:軟質金属体406の第2面側根元部の破断

【0157】図20及び表1より明らかなように、中継 基板409を介在させない従来のもの(No. 5)に比 して、中継基板409を介在させた場合には、間隔A1 30 =A2とした場合(No. 2)、即ち、中継基板本体1 を基板420とプリント基板440のちょうど中間に位 置させた場合でも、寿命が約1. 3倍延びることが判 る。さらに中継基板本体1を基板420側に近づけた場 合(No. 1)には、寿命が約1.8倍となる。また、 第2突出部を柱状にして第2突出高さZ2および間隔A 2を大きくした場合(No. 4)には、さらに寿命が 2. 3倍に延びた。一方、中継基板本体1をプリント基 板440側に近づけすぎる(No.3)と、逆に寿命が 短くなることも判る。

【0158】なお、試料No. 1とNo. 3は、突出高 さZ1とZ2、および間隔A1とA2が逆転した関係と なっている。これに対して寿命は、No. 1の方がN o. 3の場合より長くなっている。この結果からも中継 基板の第1面と第2面とを誤って接続すると本来得られ るはずの信頼性 (寿命) が得られないことが判る。した がって、前述したように、第1面と第2面とを識別する 標識を設けることは、このような誤りを防止する上で好 ましいことが裏付けられた。

で破断していたかを調査し、基板のパッド422付近の ハンダ408aで破断していた場合をモードa、プリン ト基板のパッド442付近のハンダ408bで破断して いた場合をモードb、軟質金属体406の第2面側根元 部(第2突出部の根元部)の破断の場合をモード c とし て表1に示した。

【0160】この結果から以下のことが理解される。即 ち、中継基板本体1の材質が基板420の材質と略同材 質であるため、基板420-中継基板本体1の間には、 熱膨張差はほとんど発生しないので、応力もほとんど生 じない。一方、中継基板本体1 (比較例No. 5の場合 は基板420)とプリント基板440とは材質や熱膨張 係数が異なるので、熱膨張差が発生し、両者の間には、 せん断方向の応力が発生する。

【0161】中継基板409を介在させない比較例(N o. 5) においては、このために、モードa であるパッ ド422近傍のハンダ408aでの破断を生じたものと 考えられる。基板のパッド422とプリント基板のパッ ド442とを比較すると、セラミックからなる変形しが たい基板420上に形成され、しかも比較的硬いモリブ デンメタライズを主とするパッド422は応力を吸収し 難い。これに対して、比較的変形しやすい樹脂からなる 【0159】さらに、試験後の試料について、どの部分 50 プリント基板440上に形成され、しかも柔らかい銅か らなるパッド442は応力を吸収しやすいので、特に選 択的に基板側で破断したと考えられる。

【0162】一方、中継基板409を介在させた場合に は、いずれの場合(No. 1~4)においても、パッド 422の付近のハンダ層408aが破断するモードaは 生じなくなる。間隔A1の値の大小に拘わらず、基板4 20と中継基板本体1との間の熱膨張差がないため、基 板420のパッド422付近に応力がかからないからで ある。その代わり、中継基板本体1とプリント基板44 0との間にせん断応力が生じる。しかし、この応力は、 軟質金属体406の第2突出部の変形によって多くが吸 収される。このことは、例えば、比較例No. 5におい て基板とプリント基板との間隔A0=1. 0mmであっ たものが、試料No. 2においては、実質的に中継基板 本体とプリント基板との間隔A2=0.34mm(約3 4%) に置き換わったにも拘わらず、No. 5の寿命 (850サイクル) よりもNo. 2の寿命 (1050サ イクル)が延びていることからも判る。

【0163】これは、軟質金属体406と中継基板本体1の第2面との交差部分近傍(突出部の根元部)で軟質20金属体が変形して応力を吸収するほか、第2突出部406bが傾くようにして変形するなどして応力を吸収したためと考えられる。特に中継基板本体1とプリント基板440との間隔A2が大きくなるにつれて、この第2突出部の変形する量は大きくなるので、間隔A2が大きくなるにつれて、即ち、No.3、2、1、4の順に寿命が長くなる結果とも良く符合する。さらに、試料No.4においては、第2突出部406bが柱状にされ撓み変形をも起こしやすくなっているので、より応力を吸収したために、寿命が延びたものと思われる。逆に、あまり30に間隔A2が小さくなった場合には、第2突出部で十分応力を吸収できず、したがって、試料No.3のように、モードbで破壊し、寿命も従来よりも短くなる。

【0164】なお、上記中継基板本体1の材質をアルミナセラミックからガラスエポキシ樹脂に変えた場合には、上記結果とは逆に、突出高さZ1を大きくZ2を小さくし、本体1をプリント基板440に近づけて、間隔A1を大きくA2を小さくするほど寿命が延びた。

【0165】このことから、応力がより大きく生じる側の突出高さ(上記アルミナセラミック製の中継基板本体 401を用いる例では第2突出高さ22)をより大きくし、これにより間隔(上記例では間隔A2)をより大きくすることで寿命を延ばし、接続信頼性を向上させることができることが判る。

【0166】即ち、基板や中継基板、取付基板の材質や 熱膨張係数に応じて突出高さZ1とZ2を異ならせるこ とで、構造体の寿命を延ばし、信頼性のあるものとする ことができる。特に本例のように基板と中継基板(本 体)の材質が略同材質の場合、あるいはこの両者の熱膨 張係数の差(| α1-αm|) が中継基板本体とプリン 50 ト基板の熱膨張係数の差($\mid \alpha m - \alpha 2 \mid$)よりも小さい場合においては、Z1 < Z2とし、これによってA1 <A2とすることにより、構造体の寿命を延ばすことができる。逆に、基板と中継基板の熱膨張係数の差($\mid \alpha$ $1-\alpha m \mid$)が中継基板本体とプリント基板の熱膨張係数の差($\mid \alpha m - \alpha 2 \mid$)よりも大きい場合においては、Z1 > Z2とし、これによってA1>A2とすることにより、構造体の寿命を延ばすことができる。

【0167】上記第1、2、3実施形態を例として本発明を説明したが、本発明はこれらの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更して用いることができる。

【0168】上記実施形態においては、中継基板本体1の材質としてアルミナを使用した例を示したが、これに限定されることはなく、窒化アルミ、窒化珪素、炭化珪素、ムライトその他のセラミックを用いることができる。特に、中継基板本体1には、比較的高い応力が掛かるので、破壊強度や靱性の高いものを適宜選択すると良い。また、基板や取付基板の材質によっては、ガラスエポキシやBTレジン等の樹脂系材料を用いても良く、基板に樹脂系材料製の基板を用いる場合には、熱膨張係数が近似した値となるので、特に好ましい。

【0169】基板についても、上記したアルミナ製基板に限定されず、その他、窒化アルミ、窒化珪素、ムライト、ガラスセラミック等のセラミック材料を、適宜選択して用いることができる。さらに、ガラスエポキシやBTレジン等の樹脂系材料を用いた基板でも良い。また、基板は、集積回路チップを搭載したものに特に限定はされない。即ち、集積回路チップのほか、トランジスタ等の能動素子、抵抗やコンデンサ等の電子部品を搭載したものでも良い。

【0170】さらに、取付基板についても、上記実施例においては、ガラスエポキシ製のプリント基板を用いた例を示したが、特に限定されることはない。即ち、その他BTレジンやフェノール樹脂等を用いたもの、例えば、ガラスBTレジン樹脂や、紙フェノール樹脂でもあるいはエポキシ樹脂やBT樹脂を単独で用いても良く、アルミナ等のセラミックを用いた基板であっても良い。また、取付基板としては、マザーボードを例示したが、基板を単数取付けるものであっても、複数取付けるものであってもよい。

【0171】また、上記実施形態においては、溶融した 軟質金属やハンダをはじく性質を持つ治具として、カー ボン (黒鉛) やアルミナ、ステンレスを用いた例を示し たが、耐熱性があり、使用する溶融金属に対して濡れ性 のないものであれば良く、カーボンの他、窒化ホウ素、 窒化珪素、アルミナ等のセラミックや、ステンレス、チ タン等の金属であってもよい。特に、上述した転写板や ハンダ片保持治具、ボール規制板などは板状体であるた め、ステンレス等の金属を用いると、割れ等が生じ難く

都合がよい。また、エッチングにより透孔を髙精度かつ 容易に形成できる点でも都合がよい。一方、熱膨張係数 を小さくしたり、熱による反り等を防止するには、セラ ミックを用いるのが都合がよい。

【図面の簡単な説明】

【図1】中継基板本体を形成する工程を示す部分拡大断 面図である。(a)は焼成前の状態、(b)は焼成後の 状態、(c)はメッキを施した状態を示す。

【図2】第1実施形態にかかり、中継基板本体に軟質金 属体を注入する工程を示す部分拡大断面図である。

(a) は注入前の状態、(b) は注入後の状態を示す。

【図3】中継基板本体に軟質金属体を貫挿した中継基板 を示す部分拡大断面図である。

【図4】中継基板と接続する基板 (a) およびプリント 基板(b)の断面図である。

【図5】中継基板を基板および取付基板と接続する工程 を示す断面図である。(a)は中継基板をプリント基板 に重ねた状態、(b)は更に基板を重ねた状態を示す。

【図6】 基板と中継基板と取付基板とを接続した状態 (構造体)を示す断面図である。

【図7】軟質金属体に第1面側及び第2面側ハンダ層を 形成する工程を示す部分拡大断面図である。(a)は転 写板をセットした状態、(b)はリフロー後の状態の中 継基板を示す部分拡大断面図である。

【図8】完成したハンダ層付中継基板の状態を示す部分 拡大断面図である。

【図9】第2実施形態にかかり、中継基板本体に軟質金 属体を注入、貫挿する工程を説明する部分拡大断面図で ある。(a)は中継基板本体上に軟質金属ボールをセッ トした状態、(b)はボールをセットした中継基板本体 30 を載置台に置いた状態、(c)は注入後の状態を示す。

【図10】第2実施形態にかかる中継基板の部分拡大断 面図である。

【図11】中継基板を基板および取付基板と接続する工 程を示す断面図である。(a)は取付基板、中継基板、 の順に基板に重ねた状態、(b)は三者を接続した状態 (構造体)を示す。

【図12】中継基板を上下逆向きに接続した構造体を示 す断面図である。

【図13】中継基板を基板又は取付基板と接続する工程 40 40、240、340、440:プリント基板 を示す断面図である。(a)は基板と中継基板の接続、

(b) は中継基板と取付基板の接続を示す。

【図14】第3実施形態にかかり、中継基板本体に軟質 金属体を注入、貫挿する工程を説明する部分拡大断面図 である。(a)は治具の凹部内及び上端部に軟質金属ボ ールをセットした状態、(b)中継基板本体をセットし 荷重治具で押圧する状態を示す。

【図15】中継基板本体に軟質金属を注入、貫挿し、柱 状の突出部を形成した中継基板状態を説明する部分拡大 断面図である。

【図16】軟質金属体の上面側にハンダ層を形成する工 10 程を示す部分拡大断面図である。(a)は上面側に低融 点ハンダボールをセットした状態、(b) は上面側にハ ンダ層を形成した状態を示す。

【図17】軟質金属体の上面側及び下面側、または下面 側にハンダ層を形成した状態を示す部分拡大断面図であ

【図18】柱状の突出部を有する中継基板を基板や取付 基板と接続した状態を示す断面図である。(a)は基板 と接続した状態、(b)は基板及び取付基板と接続した 状態を示す。

【図19】信頼性評価にかかる構造体の状態を示す部分 拡大断面図である。

【図20】冷熱サイクル数に対する故障割合の関係を示 すグラフである。

【符号の説明】

1:中継基板本体

2:下地金属層

3:Ni-Bメッキ層

4:金属層

5:金メッキ層

6、206、306、406:軟質金属体

6a、6b、206x、306x:突出部

8a, 8b, 208x, 208y, 308x, 308 y:ハンダ層

9、109、209、309、409:中継基板

10、210、、310、310′310″:ハンダ層 付中継基板

20、220、320、420:LGA型基板

21、221、321:フリップチップパッド

22、222、322、422:パッド

42、242、342、442:パッド

【図5】 【図7】 (a) (a) (P) 8ą **(b)** 【図9】 【図10】 (a) Zx 【図12】 222 206x

【図11】

【図14】

【図16】 【図17】

【図18】

【図19】

【図20】

