INF01118 – Técnicas Digitais para Computação: AP05

Professor Fernando R. Nascimento - 2009/1

Objetivos: Análise do comportamento temporal (tempos de propagação, tempos de subida e descida) e elétrico de portas lógicas tipo **CMOS** através de medidas com um osciloscópio digital de dois canais.

- **1.** Estudar a datasheet do integrado **CD4001** (por exemplo em <u>4000 series CMOS Logic Ics</u>) para responder as perguntas listadas abaixo:
 - Quais portas lógicas tem dentro desse circuito integrado e qual a pinagem do mesmo (número do pino com função de **todos** os sinais de entrada, de saída e os pinos de energia)?
 - Quais os valores típicos, minimos e máximos de V_{IH}, V_{IL}, V_{OH}, V_{OL}, I_{OH}, I_{OL}, tp_{HL} e tp_{LH} do componente.
 - Explicar o que significam cada um dos parâmetros acima citados?
- 2. Montar um circuito com **três NOR** em série (as duas entradas de cada NOR são ligadas juntas) e fazer as **medidas temporais** solicitadas:
 - a) Copiar (fotografar ou fazer gráficos) a tela do osciloscópio com o sinal de Entrada, juntamente com a Saida do terceiro NOR (<u>usar o canal 1 e o canal 2</u>), mostrando detalhadamente os tempos de propagação (tpHL e tpLH) e os tempos de subida e de descida da **Saida**, em relação a **Entrada**.
 - Mostrar só os trechos de transição (LH e depois HL), portanto são dois gráficos, um gráfico para cada caso. Ainda em relação a Saída, medir e mostrar numa tabela os tempos de propagação (t_{dHL} , t_{dLH} e t_{d}) e os tempos de subida e de descida (t_{RHL} e t_{RLH} , os tempos para os valores entre 10% <=> 90% do valor final maximo). O valor de t_{d} deve ser calculado à partir de t_{dHL} e t_{dLH} .
 - Marcar claramente nos gráficos as diversas medições pedidas. Não esquecer de mostrar nos dois gráficos no relatório, os valores nos eixos X (tempo) e Y (tensão) com suas respectivas unidades. Os gráficos/fotos devem ser claras e conter as informações pedidas.
 - Apresentar o diagrama esquemático usado, as fotos/gráficos, os calculos e as tabelas pedidas.
 - b) Suponha que um processador pipeline seja construido, onde cada estágio tem 6 portas lógicas NOR em série (iguais as usadas nessa experiência). Qual seria a frequência maxima de operação de cada estágio desse pipeline, considerando-se que o tempo dos registradores é igual a zero e que os tempos de atraso de cada porta lógica são os mesmos medidos nessa aula? Compare a frequência de operação de um processador construido com as portas lógicas dessa aula com as dos processadores atuais (2,0 GHz). Explique as diferenças nos valores encontrados.

Observações:

- 1 usar a tensão de alimentação do integrado de acordo com a turma: A: 3,0 V; B: 5,0 V; C: 10,0 V e D: 15,0 V.
- 2 para fazer as medidas, a entrada **E** deve receber uma onda quadrada de **2,0 MHz** (com níveis de 0 à tensão de alimentação usada no integrado, à partir do gerador de funções).
- 3 enviar ao professor, ainda hoje, email com assunto: <u>AP05, turma X, nome_alunos</u>. Arquivar e comprimir com Zip os dados e fotos coletados/calculados em aula.

Roteiro para o Relatório:

- 1. Nas linhas iniciais; código do laboratório (AP05), data, nome(s), matrícula(s) e turma.
- 2. introdução (parágrafo dizendo do que se trata esta aula de laboratório e as tarefas a serem realizadas)
- 3. apresentar todas as informações solicitadas no item 1.
- 4. capturar e apresentar os graficos pedidos e os cálculos do item 2.a. Comparar os tempos obtidos e responder as demais perguntas do item 2.b .
- 5. Conclusão: interesse no laboratório, dificuldades e sugestões.