

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019

Term Examination, March - 2019

தரம் :- 13 (2019)

சுட்டெண்						
----------	--	--	--	--	--	--

அநிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் <mark>பகு</mark>தி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

		னிதம் I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	200
	3	(60)
	4	
	5	
A	6	
•	7	
-	8	
	9	
•	10	
	11	
	12	
	13	
В	14	
	15	
	16	
ŀ	17	
	ா I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

	குத்தறிவுக் கோட்	்பாட்டைப் பய	ன்படுத்தி எல்ல	π <i>n ∈ Z</i> + இģ	ந்கும்
$\sum_{r=1}^{n} r 2^{r-1}$	= 1 + (n-1)2	2^n எனக் காட்டு)க.		
—, -					
•••••				••••••	
•••••		•••••		••••••	•••••
		•••••		•••••	
•••••					
y=3- x ,yவேறு விதம	y = x+1 இன் ாகவோ சமனில	ா வரைபுகளை லி <i>x</i> + <i>x</i> +	ஒரே வரிப்பட	த்தில் வரைக	
y = 3 - x , y வேறு விதம	y = x + 1 இன்	ா வரைபுகளை லி <i>x</i> + <i>x</i> +	ஒரே வரிப்பட	த்தில் வரைக	s. இதிலிரு ந் தே
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	7 = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>
y = 3 — x , ງ வேறு விதம மெய்ப்பெறுமா	y = x + 1 இன் ாகவோ சமனில ன வீச்சைக் கால	ா வரைபுகளை லி x + x + ண்க.	ஒரே வரிப்பட 1 ≤ 3 ஐத்	த்தில் வரைக திருப்தி	s. இதிலிருந்தே செய்யும் <i>x</i>

குறிக்கும் புள்ள இழிவுப் பெறுமா	ுனர்காயம் உ	v mitania (السيست شرة د	காயம் நா	owi n			
இரிவுப பெயிமா	ത്വമ്യമാപ്പന ജ	உயர்வுப் 🤇	யெறுமானதை	றதயும் கா	6001 6 .			
		••••••	•••••	•••••••	••••••	••••••	••••••	•••••
			••••••	••••••		••••••••••	••••••	•••••
			•••••	•••••		••••••	••••••	•••••
								•••••
	•••••			•••••		••••••	••••••	•••••
								•••••
								•••••
								•••••
	க்கொள்வோம்							•••••
$0 तळा$								•••••
								•••••
								•••••
								•••••
	க்கொள்வோம்	o. $\lim_{x\to\beta}$	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{2} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என		•••••
$0 என$	க்கொள்வோம்	o. $\lim_{x\to\beta}$	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	
$0 என$	க்கொள்வோம்	o. lim _{x→β}	$\frac{\tan^2 x - \tan^2 \beta}{\sqrt{x} - \sqrt{\beta}}$	$\frac{3}{7} = 4\sqrt{\beta} t$	an β Se	<i>c</i> ² β என	க்காட்டுக 	

05)	ஒரு வளையி C ஆனது $0< heta<rac{\pi}{2}$ இந்கு $x=2+\cos 4 heta$, $y=4\sin 2 heta$ எனும்
	சமன்பாடுகளால் தரப்படுகின்றது. பெறுதி $\frac{dy}{dx}$ ஐ $ heta$ இன் சார்பில் கண்டு $ heta=rac{\pi}{8}$ ஆகவுள்ள
	புள்ளியில் வளையி C யிற்கு வரையப்பட்டுள்ள செவ்வனின் சமன்பாடு $x-\sqrt{2}y+2=0$ எனக் காட்டுக.
06)	$\frac{d}{dx}\left\{\frac{1}{\sin x\cos x}\right\} = \frac{2}{\cos^2 x} - \frac{1}{\sin^2 x\cos^2 x}$ எனக் காட்டுக. இதிலிருந்து $\int C \csc^2 x Sec^2 x dx$ ஐக் காண்க.

07)	i.	ருவில் நிழந்நப்பட்டுள்ள பிரதேசம் S	
		ன் பரப்பளவைக் காண்க.	
	ii.		
		சங்கோணங்களினூடாகத் சுழற்றும் 1	
		பாது உருவாகும் திண்மத்தின் $y=e^{-x}$	
		னவளவு $rac{\pi}{2}(1-e^{-4})$ எனக் காட்டுக. 0 2	
	••••		
	••••		•••••
	••••		•••••
	••••		
08)	 		
08)		(1, 2) என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் ியினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	 ர்னும்
08)		$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B\equiv (-2,1)$ என்	 ர்னும்
08)	புஎ 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B\equiv (-2,1)$ என்	ம் எனும்
08)	ப്പരി 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B\equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	ப്പരി 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B\equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B\equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	
08)	புள் 	$(1,2)$ என்னும் புள்ளியில் இருந்து 3 அலகு தூரத்தில் $B \equiv (-2,1)$ என் \mathbb{R} யினூடு செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.	

	வட்டம் S இனதும்.
11.	வட்டம் $\mathbf S$ ஐ நிமிர்கோண முறையாக இடைவெட்டுகின்ற மையம் (5, 5) ஐ உ
	வட்டத்தினதும் சமன்பாடுகளைக் காண்க.
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
	$ o [0,\pi/2)f(x)=tan^{-1}(x)$ உம், $ o (0,\pi/2)g(x)=cot^{-1}(x)$ எனக் கொள்வோம். $2tan^{-1}(1/2)+cot^{-1}(3/4)$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$
g: R	$ ightarrow \left(0, \frac{\pi}{2}\right] \ g(x) = \cot^{-1}(x)$ எனக் கொள்வோம். $2 \tan^{-1}(\frac{1}{3}) + \cot^{-1}(\frac{3}{4})$

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 13 (2019)

இணைந்த கணிதம் - IB

பகுதி – B

- 11) (a) f(x) என்பது 2 இலும் கூடிய படியைக் கொண்ட ஒரு பல்லுறுப்பி எனவும் a, b ஆகியன வேறுவேறான மெய்யெண்கள் எனவும் கொள்வோம். f(x) ஐ (x-a)(x-b) இனால் வகுக்கப்படும் போது மீதி $\frac{f(a)-f(b)}{a-b}x+\frac{af(b)-bf(a)}{a-b}$ எனக் காட்டுக.
 - $f(x) = x^3 + \lambda x^2 + \mu x 1$ எனக் கொள்வோம். இங்கு $\lambda, \mu \in R$ ஆகும். f(x) ஆனது (x-2)(x+1) இனால் வகுக்கப்படும் போது வரும் மீதி 5 எனின் λ, μ இன் பெறுமானங்களைக் காண்க.
 - (b) $a,b\in R$ இற்கு $f(x)=x^2+ax+b^2$ எனவும் சமன்பாடு f(x)=0 இன் மூலங்கள் \propto , β எனவும் கொள்வோம்.
 - (i) $\propto +\beta = -a$ எனவும் $\propto \beta = b^2$ எனவும் காட்டுக.
 - (ii) $|a| \ge 2 |b|$ எனின் மூலங்கள் மெய்யானவை எனக் காட்டுக.
 - (iii) $|a| \geq 2 \, |b|$ எனின் $|\propto|$, $|\beta|$ ஆகியவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டை a,b இன் சார்பில் காண்க.
 - (iv) |a|<2 |b| எனின் $|\propto|$, |eta| மூலங்களாகக் கொண்ட சமன்பாடு x^2-2 |b| $x+b^2=0$ எனக் காட்டுக.

12)

- (a) 6 ஆண்களிலிருந்தும் 5 பெண்களிலிருந்தும் 5 பேர்களைக் கொண்ட குழுவொன்றை தெரிந்தெடுக்கத்தக்க விதங்களின் எண்ணிக்கையை பின்வரும் ஒவ்வொரு சந்தர்ப்பத்திலும் காண்க.
 - (i) குழுவில் 3 ஆண்களும் 2 பெண்களும் இருக்கக் கூடியவாறு.
 - (ii) இரு பாலாரும் இருக்கக் கூடியவாறு
 - (iii) இரு பாலாரும் இருக்கக் கூடியவாறும் ஆனால் குறித்த ஒரு ஆணும் குறித்த ஒரு பெண்ணும் ஒன்றாக குழுவில் இல்லாதவாறும்.
- (b) $r \in Z^+$ இந்கு $U_r = \frac{r}{(r+1)(r+2)(r+3)}$ எனவும் $f(r) = \frac{\lambda r + \mu}{(r+1)(r+2)}$ எனவும் கொள்வோம். இங்கு λ, μ என்பன மாறிலிகள் $r \in Z^+$ இந்கு $U_r = f(r) f(r+1)$ ஆகுமாறு λ, μ இன் பெறுமானங்களைக் காண்க.

இதிலிருந்து $\sum_{r=1}^n U_r = \frac{1}{4} - \frac{2n+3}{2(n+2)(n+3)}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^{\infty} U_r$ ஒருங்குகின்றதா? காரணம் தருக. $\sum_{r=3}^{\infty} U_r$ ஐக் காண்க.

13.

- (a) ஒரு நேர்நிறைவெண் சுட்டிக்கான த மோய்வரின் தேற்றத்தைக் கூறுக.
 - i. $n\in Z^+$ எனவும் $-\pi<\theta\leq\pi$ இற்கு $Z=\cos\theta+\sin\theta$ எனவும் கொள்வோம். $Z^n+\frac{1}{Z^n}=2\cos n\ \theta$ எனவும் $Z^n-\frac{1}{Z^n}=2i\sin n\ \theta$ எனவும் காட்டுக. $\frac{Z^{2n}-1}{Z^{2n}+1}=i\tan n\ \theta$ ஐ உய்த்தறிக.
 - ii. $\left(\frac{\sqrt{3}+i}{2}\right)^6 + \left(\frac{i-\sqrt{3}}{2}\right)^6 = -2$ எனக் காட்டுக.
- (b) $Z_1 = \frac{1+i}{1-i}$ எனவும் $Z_2 = \frac{\sqrt{2}}{1-i}$ எனவும் கொள்வோம். Z_1, Z_2 ஆகியவற்றை a+ib வடிவில் எடுத்துரைக்க. இங்கு $a,b \in R$. Z_1, Z_2 ஆகிய சிக்கலெண்களின் மட்டையும் தலைமை வீசலையும் காண்க. ஆகண் வரிப்படமொன்றில் Z_1, Z_2 , $Z_1 + Z_2$ ஆகியவற்றைக் குறித்துக் காட்டுக. $Arg\left(\frac{1+\sqrt{2}+i}{1-i}\right) = \frac{3\pi}{8}$ எனக்காட்டி $\tan\frac{3\pi}{8}$ இன் பெறுமானத்தை உய்த்தறிக.
- 14) (a) $x \neq 0$ இந்கு $f(x) = \frac{1-x}{x^2}$ எனக் கொள்வோம். $x \neq 0$ இந்கு $f'(x) = \frac{x-2}{x^3}$ எனவும் $f''(x) = -\frac{2(x-3)}{x^4}$ எனவும் காட்டுக. இங்கு f(x) இன் முதலாம், இரண்டாம் பெறுதிகளாகும். அணுகுகோடுகளையும் திரும்பற்புள்ளியையும் விபத்திப் புள்ளியையும் காட்டி y = f(x) இன் வரைபைப் பரும்படியாக வரைக.

- i. y ஐ a θ இன் சார்பில் காண்க.
- ii. ஏணியின் நீளம் y இன் மிகச்சிறிய பெறுமானம் $2\sqrt{2}\,a$ மீற்றர் எனக் காட்டுக.
- 15) (a) $\frac{1}{x^3-8} = \frac{A}{x-2} + \frac{Bx+C}{x^2+2x+4}$ ஆக இருக்கத்தக்கதாக A,B,C ஆகிய மாறிலிகளின் பெறுமானங்களைக் காண்க. இதிலிருந்து $\int \frac{1}{x^3-8} \, dx$ ஐக் காண்க.
 - (b) i. $n \neq -1$ எனக்கொள்வோம். பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int x^n (lnx)^2 dx$ ஐக் காண்க.
 - ii. $\int_1^2 \frac{(\ln x)^2}{x} dx$ ஐக் காண்க.
 - (c) $t= anrac{x}{2}$ எனும் பிரதியீட்டை பயன்படுத்தியோ அல்லது வேறுமுறையாகவோ $\int_0^\pi rac{1}{1+\sin x} \ dx = 2$ எனக் காட்டுக.
 - *a* ஒரு மாறிலியாக இருக்க.
 - $\int_0^a f(x) \ dx = \int_0^a f(a-x) \ dx$ ஐப் பயன்படுத்தி $\int_0^\pi \frac{x \sin x}{1+\sin x} \ dx$ ஐக் காண்க.

16) தெக்காட்டின் தளத்திலே முதலாம் கால்வட்டத்தில் அமைந்த இருசமபக்க செங்கோண முக்கோணி ABC ஆகும். $A\equiv (1,0)A\hat{C}B=\pi/2$, AB=5 அலகும் ஆகும். AB என்னும் பக்கத்தினது நேர்கோட்டு சமன்பாடு $l_1\equiv 4y-3x+3=0$ இனால் தரப்படுகின்றது. பக்கம் BC, AC யினது சமன்பாடுகள் முறையே l_2 , l_3 இனைக் காண்க. அதோடு Δ ABC யின் பரப்பளவைக் காண்க.

மேலும் முக்கோணம் ABC யின் உச்சிகளினூடு செல்லும் வட்டம் $S^{'}$ இனது சமன்பாட்டை பெறுக. $S^{'}=0$ மற்றும் பக்கம் BC எனும் கோடு $l_2=0$ வெட்டும் புள்ளிகள் B,C யினூடு செல்லும் வட்டங்களின் பொது சமன்பாடு $S^{'}$ இனைக்காண்க. $S^{'}$ ஆனது $S^{'}=0$ இன் மையத்தினூடு செல்லும் எனின் $S^{''}=0$ இனைக்காண்க. அதோடு $S^{''}=0$ இனது மையம் ஆனது வட்டம் $S^{'}=0$ இற்கு உள்ளே இருக்கும் எனக்காட்டுக.

17)

- (i) $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$ இற்கு $\tan 4 \theta \cot 2\theta = 0$ ஐத் தீர்க்க.
- (ii) $\tan(A+B)$ இனது விரிவை $\tan A$, $\tan B$ இன் சார்பில் எழுதுக. இதிலிருந்து $\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$ எனக் காட்டுக.
- (iii) $\tan 4 \, \theta = \frac{4 \tan \theta \, (1 tan^2 \theta)}{tan^4 \, \theta 6 \tan^2 \theta + 1}$ எனக் காட்டுக. (ii), (iii) இலிருந்து $\tan 4 \theta \cot 2 \theta = \frac{(t^2 1)(t^4 14 \, t^2 + 1)}{2t \, (t^4 6t^2 + 1)}$ எனக் காட்டுக. இங்கு $t = \tan \theta$ இதிலிருந்து $(t^2 1) \, (t^4 14 \, t^2 + 1) = 0$ இன் ஆறுமூலங்களையும் எழுதி $t^4 14 \, t^2 + 1 = 0$ இன் மூலங்களை காண்பதன் மூலம் $\tan \frac{\pi}{12}$, $\tan \frac{5\pi}{12}$ இன் பெறுமானங்களை உய்த்தறிக.
- (iv) ΔABC யில் BD:DC=m:n ஆகுமாறு பக்கம் BC மீது உள்ள புள்ளி D ஆகும். $B\hat{A}D=\propto$, $C\hat{A}D=\beta$, $C\widehat{D}A=\theta$ எனின் முக்கோணிக்குரிய சைன் விதியை உபயோகித்து $(m+n)\cot\theta=m\cot\propto-n\cot\beta$ எனக் காட்டுக.

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 13 (2019)

இணைந்த கணிதம் $oldsymbol{ iny}$ II ${
m A}$

மூன்று மணித்தியாலம் 10 நிமிடம்

|--|

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கணி	ிதம் I
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	7 00
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத்தாஎ	т I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

	பகுதி - А
01)	
	எறியப்படும் துணிக்கை $\frac{u}{g}$ நேரத்தின் பின் ஏற்படும் கணநிலை தடைகாரணமாக தன்
	வேகத்தின் அரைவாசி வேகத்தை உடனடியாக இழந்து பின் புவியீர்ப்பின் கீழ் நிலைக்குத்தாக இயங்கி தரையை அடைகின்றது. துணிக்கையின் இயக்கத்திற்கான வேகநேர வரைபை வரைந்து அதில் இருந்து துணிக்கை அடைந்த அதி உயர் உயரத்தையும் துணிக்கை இயங்கிய நேரத்தையும் காண்க.
02)	சீரான அகலம் d ஆகவுள்ள ஒரு நேரான பாதையின் மத்தியகோட்டின் வழியே ஒரு மோட்டார் சைக்கிள் ஓட்டி v வேகத்துடன் செல்கின்றார். பாதையின் ஒரு கரையில் உள்ள சிறுவன் தனக்கு முன்னால் $\frac{\sqrt{3}}{2}$ d தூரத்தில் மோட்டார் சைக்கிள் உள்ளபோது பாதையை சரி நேரே கடக்கும் நோக்குடன் சீரான வேகத்துடன் ஓடுகின்றான். ஆனால் சிறுவன் மோட்டார் சைக்கிளுடன் மோதுகிறான் எனில், சிறுவனின் வேகத்தையும் மோட்டார் சைக்கிள் சார்பாக சிறுவனின் வேகத்தையும் காண்க.

03)	கிடைத்தரையில் உள்ள புள்ளி O இல் இருந்து நிலைக்குத்து தளம் ஒன்றில் u வேகத்துடன் எறியப்படும் துணிக்கை ஒன்று அடையும் அதி உயர் உயரம் துணிக்கையின் எறியற்புள்ளியூடான கிடைவீச்சின் அரைப்பங்கு எனில் துணிக்கையின் எறியற்புள்ளி ஊடான
	கிடைவீச்சு $\frac{4u^2}{5g}$ எனக் காட்டுக.
	ஒன்றுக்கொன்று எதிர் திசைகளில் சம கதிகளில் இயங்கி ஒன்றுடன் ஒன்று நேரடியாக மோதுகின்றன. மோதலின் பின் கோளம் A ஒய்வடையும் எனில் A,B இன் திணிவுகளுக்கு
	இடையிலான விகிதம் $1+2e$: 1 எனக் காட்டுக. இங்கு e கோளங்களுக்கு இடையிலான மீளமைவுக் குணகம் ஆகும்.
	மளமைவுக் குணகம் ஆகும்.

											ன் கிடை	
Sin^{-1}	$\left(\frac{1}{q}\right)$ σ	ாய்வான	பாதை	5யில்	மேல்நே	ாக்கி ப	மாறா	வேகம்	и	உடன்	இயங்கு	திற
இருசு	ந்தர்ப்பா	ங்களிலுப்	ம் இ யக்	கத்திற்	கான த	െ ചിെ	சகள்	சமன்	எனில்	எஞ்சி	തിன் ഖള	വ്വതര
காண்	க.											
•••••												
•••••		•••••	•••••		•••••	•••••		•••••		•••••	•••••••	
•••••	•••••			••••••								
												•••••
் 2 <i>α</i> நீ கோல் தொட்	ளமான இவுள்ள	சீரான ஒரு ப நிலையி	கோல் புள்ளி	AB ன் C சுவ	ா முனை ரிலிருந் _ള	ர A ஒι	ப்பமான ருத்திலு த்துடன்	ī நினை புள்ள : அன	லக்குத் _? ஒப்பமா	து சுவ(ரன மு	நக்கெதிர ளையின் எணத்தை	ராக மீத
2 <i>a</i> ந் கோல் தொட் சார்பா	ளமான இன்ள டு சப கக் கா	சீரான ஒரு ப நிலையி எண்க.	கோல் புள்ளி (1லுள்ளத	AB ன் C சுவ நு கே	ர் முலை ரிலிருந் _§ ால் நி	ர A ஒட நு <i>l</i> தூ லைக்கு <i>§</i>	ப்பமான ரத்திலு த்துடன்	ī நிலை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவ(ரன மு ம் கோ	நக்கெதிர ளையின்	ராக மீத
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் ாணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத்
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (
2 <i>a</i> நீ கோல் தொட் சார்பா	ளமான ிலுள்ள டு சப கக் கா	சீரான ஒரு ப றநிலையி எண்க.	கோல் புள்ளி (AB ன் C சுவ ஞ கே	ா முனை ரிலிருந் _§ ால் நி	π A ஒι நு <i>l</i> தூ லைக்குத	ப்பமான ரத்திலு த்துடன்	ர நினை புள்ள அன	லக்குத் ஒப்பமா மக்குட	து சுவர என மு ம் கோ	நக்கெதிர ளையின் எணத்தை	ராக மீத , (

$ \underline{a} = 2, \underline{b} $		•••••						
••••••	•••••		•		•••••	•••••••	••••••	••••••
•••••	•••••			•••••	••••••	•••••	••••••	
•••••							•••••	••••••
•••••							•••••	•••••
			17		5///		•••••	••••••
•••••								•••••
•••••		•••••				•••••		•••••
								தூரத்தூ
								தூரத்தூ
								தூரத்தூ
<i>P</i> , <i>Q</i> நிகர்த் நகர்த்தப்பட								தூரத்தூ
நகர்த்தப்பட 	ഖിബെധ്വள്	Px P+Q தூரத	த்தூடாக 	நகர்த்தப்ப	படும் என	க்காட்டுக .		
நகர்த்தப்பட 		Px P+Q தூரத	த்தூடாக 	நகர்த்தப்ப	படும் என	க்காட்டுக .		
	ഖിബെധ്വள്	Px P+Q gmgg	<u>த்தூடாக</u>	நகர்த்தப்ட 	படும் என	க்காட்டுக.		
நகர்த்தப்பட	ഖിബെധ്വണ്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட	ഖിണെய്വள്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட	ഖിണെய്വள്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட 	ഖിണെய്വள്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட	ഖിണെய്വள്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட	ഖിണെய്വள്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட	ഖിണെய്വள്	Px P+Q 到可奖	<u></u>	நகர்த்தப்ப 	படும் என	க்காட்டுக .		
நகர்த்தப்பட 	ഖിണെய്വள്	Px P+Q gmgg	<u> </u> <u> </u>	நகர்த்தப்ட 	படும் என	 ந்காட்டுக.		
நகர்த்தப்பட 	ഖിബെധ്വണ്	Px P+Q gmgg	<u> </u> <u> </u>	நகர்த்தப்ட 	படும் என	 ந்காட்டுக.		
நகர்த்தப்பட 	ഖിബെധ്വണ്	Px P+Q 委可可拿	<u></u>	நகர்த்தப்ப	படும் என	.		
<u>"</u>	ഖിണെய്വണ്	Px P+Q 委可可拿	<u></u>	நகர்த்தப்ப	படும் என	.		

$A^{'}$, $B^{'}$, $C^{'}$ என்ப	200702042					
		•••••		•••••		••••••
						•••••
		11/07				
•••••						•••••
						• • • • • • • •
A, B என்பன காண்க.	ா யாதுமளாவிய	நிகழ்ச்சிகள்	$P(A) = \frac{1}{4} , A$	$P(B/A) = \frac{2}{5}$	எனின் <i>P(B</i>	?)
	ர யாதுமளாவிய	நிகழ்ச்சிகள்	$P(A) = \frac{1}{4} , A$	$P(B/A) = \frac{2}{5}$	எனின் P(B	?)
	ர யாதுமளாவிய	நிகழ்ச்சிகள்	$P(A) = \frac{1}{4} , A$	$P(B/A) = \frac{2}{5}$	எனின் <i>P(B</i>	?)
	ா யாதுமளாவிய	நிகழ்ச்சிகள்	$P(A) = \frac{1}{4} , I$	$P(B/A) = \frac{2}{5}$	எனின் <i>P</i> (<i>B</i>	?)
காண்க. 						
காண்க. 						
காண்க. 						
காண்க. 						
காண்க. 						
காண்க. 						
காண்க.						
காண்க. 						
காண்க. 						
காண்க.						
காண்க.						
காண்க.						

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 13 (2019)

இணைந்த கணிதம் – IIB

பகுதி - B

- 11) (a) கிடைத்தரையில் இருந்து நிலைக்குத்தாக மேல்நோக்கி 2u கதியுடன் எறியப்படும் 2m திணிவுடைய ஒப்பமான கோளவடிவ துணிக்கை A ஆனது கிடைத்தரையில் இருந்து $\frac{3u^2}{2g}$ உயரத்தில் மேல்நோக்கிய இயக்கத்தில் உள்ளபோது நிலைக்குத்தாக மேல் இருந்து விழவிடப்பட்ட சமபருமனும் 2m திணிவும் உடைய ஒப்பமான கோளம் B ஆனது 2u வேகத்துடன் A உடன் நேரடியாக மோதுகின்றது. இரு கோளங்களுக்கு இடையிலான மீளமைவுக்குணகம் $\frac{1}{3}$ ஆகும்.
 - (i) B ஆனது A உடன் மோதுவதற்கு சற்றுமுன் A இன் கதியைக் காண்க.
 - (ii) மோதலுக்கு சந்றுப்பின் A, B இன் வேகங்களைக் காண்க.
 - (iii) A ஆனது தரையில் இருந்து எ<mark>றியப்பட்</mark>டதில் இருந்து மீண்டும் தரையை அடைவது வரைக்கான வேகநேர வரை<mark>பை வரைந்து</mark> அதில் இருந்து A ஆனது எறியப்பட்டு எவ்வளவு நேரத்தின் பின் மீண்டும் தரையை அடையும் எனக் காண்க.
 - (iv) B ஆனது A ஐ மோதிய பின் B இன் இயக்கத்திற்கான வேநேர வரைபை இன்னோர் வரிப்படத்தில் வரைந்து அதில் இருந்து B ஆனது A ஐ மோதியதில் இருந்து எவ்வளவு நேரத்தில் தரையை அடிக்கும் எனக் காண்க.
 - (b) கிடைத்தரையில் இருந்து h உயரத்தில் சீரான கதி $u=\sqrt{\frac{gh}{2}}$ உடன் கிடைத்திசையில் பறக்கும் பறவை A இனை ஒரு கணத்தில் அதற்கு நேர் கீழே தரையில் உள்ள பறவை B அவதானிக்கின்றது. h உயரத்தில் இருந்து மெதுவாக விழவிடப்படும் துணிக்கை தரையை அடிக்க எடுக்கும் நேரம் அளவு வரை B ஆனது A ஐ அவதானித்த பின் உடனடியாக A ஐ தாக்கும் நோக்குடன் சீரான கதியில் ஒரு நேர் திசையில் 2h தூரம் பறந்து A ஐ தாக்குகின்றது.
 - $i. \quad B$ ஆனது A ஐ எவ்வளவு நேரத்துக்கு அவதானிக்கின்றது.
 - ii. B ஆனது A ஐ அவதானித்த நேரத்தில் A பறந்த தூரம் யாது?
 - iii. *B* இன் பூமி சார்பான இயக்கத் திசையை காண்க.
 - ${
 m iv}$. சார்பு வேகக் கோட்பாட்டை பயன்படுத்தி வேக முக்கோணியை வரைந்து அதில் இருந்து $V_{B,A}$, $V_{B,E}$ என்பவற்றைக் காண்க.

படத்தில் காட்டப்பட்டவாறு ABC ஆனது M திணிவுள்ள BC=CA=a ஆகுமாறு உள்ள இரு சமபக்க செங்கோண முக்கோண வடிவில் உள்ள ஆப்பு ஒன்றின் திணிவு மையத்தின் ஊடான நிலைக்குத்து குறுக்குவெட்டாகும். முகம் BC ஆனது ஒப்பமான கிடை மேசை ஒன்றை தொட்டுக் கொண்டு இருக்க m திணிவுள்ள ஓர் ஒப்பமான துணிக்கை P ஆனது உச்சி A இல் வைக்கப்பட்டு AB இன் அதிஉயர் சரிவுக்கோட்டின் வழியே இயங்குமாறு தொகுதி மெதுவாக விடப்படுகின்றது. தொடரும் இயக்கத்தில் ஆப்பானது $\frac{g}{2}$ ஆர்முடுகலுடன் இயங்குகின்றது எனில்,

- i. m=2M எனக் காட்டுக.
- ii. துணிக்கையின் ஆப்பு சார்பான ஆர்முடுகலைக் காண்க.
- iii. துணிக்கை B ஐ அடையும் போ<mark>து ஆப்</mark>பு இயங்கிய தூரத்தைக் காண்க.

படத்தில் காட்டப்பட்டவாறு கிடைத்தரையில் உள்ள புள்ளி C யில் இருந்து 6a உயரத்தில் A இல் நிலைப்படுத்தப்பட்ட மையம் O வில் $\frac{2\pi}{3}$ கோணத்தை அமைக்கும் a ஆரையுடைய வட்ட வடிவ ஒப்பமான குழாய் ஒன்றின் A யில் உள்ள தொடலி கிடையாக உள்ளவாறு நுனி A இல் m திணிவுள்ள ஒப்பமான துணிக்கை P வைக்கப்பட்டு படத்தில் காட்டப்பட்டவாறு கிடைத்தரையில் உள்ள புள்ளி D யில் இருந்து கிடையுடன் 60° இல் $4\sqrt{ag}$ வேகத்துடன் ABC யைக் கொண்ட நிலைக்குத்து தளத்தில் m திணிவுள்ள துணிக்கை Q ஆனது எறியப்படுகின்றது.

- i. துணிக்கை Q ஆனது P ஐ கிடையாக மோதுகின்றது எனக்காட்டுக.
- ii. இரு துணிக்கைகளும் பூரணமீள்தன்மை உடையவை எனில் P இயங்கத் தொடங்கும் வேகத்தை காண்க.

- iii. துணிக்கை P ஆனது B இல் வெளியேறும் வேகத்தைக் காண்க.
- iv. துணிக்கை P ஆனது C இந்கு மேலே செல்லும் அதிஉயர் உயரத்தைக் காண்க.
- 13) இயற்கை நீளம் a யையுடைய மீளதன்மை இழையின் ஒரு நுனி கிடைத்தரையில் இருந்து உயரமான ஒரு புள்ளி O க்கு இணைக்கப்பட்டு மறுமுனையில் 2m திணிவுள்ள துணிக்கை ஒன்று இணைக்கப்பட்டு நிலைக்குத்தாக சமநிலையில் தொங்கும் போது துணிக்கை O வின் மட்டத்திற்கு கீழே 3a தூரத்தில் உள்ள புள்ளி A யில் சமநிலை அடையும் எனில் இழையின் மீள்தன்மை மட்டைக் காண்க. துணிக்கை சமநிலையில் உள்ள போது நிலைக்குத்தாக கீழ்நோக்கி $2\sqrt{ag}$ என்ற வேகம் துணிக்கைக்கு வழங்கப்படுகிறது.
 - i. துணிக்கை O விலிருந்து நிலைக்குத்தாக கீழே x தூரத்தில் உள்ள போது (x>a) x ஆனது $\ddot{x}+\frac{g}{2a}$ (x-3a)=0 என்பதால் தரப்படும் எனக் காட்டுக. துணிக்கையின் இயக்கம் எளிமைஇசை இயக்கம் எனக் காட்டுக.
 - ii. மேலே உள்ள இயக்கச் சமன்பாட்டின் தீர்வானது $x-3a=\alpha\cos\omega t+\beta\sin\omega t$ எனும் வடிவில் இருப்பின் α,β,ω என்பவற்றைக் காண்க.
 - iii. எளிமைஇசை இயக்கத்தின் மையத்தையும் வீச்சைத்தையும் காண்க.
 - iv. (ii) இலிருந்து துணிக்கை இயங்கத் தொடங்கி எவ்வளவு நேரத்தின் பின் இழை தொய்யுமெனக் கண்டு அக்கணத்தில் துணிக்கையின் வேகத்தைக் காண்க.
 - v. துணிக்கையானது O ஐ மட்டு<mark>மட்டாக அடையு</mark>ம் எனக் காட்டி எடுக்கும் நேரத்தையும் காண்க.
- 14) (a) 0 குறித்து A,B இன் தானக் காவிகள் \underline{a} , \underline{b} ஆகும். $\overrightarrow{OC} = \frac{a}{2}$, $\overrightarrow{OD} = \frac{1}{3}$ \underline{b} ஆகுமாறு C, D என்ற புள்ளிகள் உள்ளன. AD, BC என்பவை M இல் இடைவெட்டுகின்றன.

 $DM = \lambda \, DA$, $MC = \mu \, BC$ எனக் கொண்டு

- i. \overrightarrow{DM} ஐ λ,\underline{a} , \underline{b} சார்பாகக் காண்க.
- iii. பொருத்தமான காவிக் கூட்டல்களை உபயோகித்து λ,μ ஐக் காண்க.
- iv. E என்பது BA இல் 2:1 என்ற விகிதத்தில் உள்ளது. O, M, E என்பன நேர்கோட்டுப் புள்ளிகள் எனக் காட்டுக.
- (b) oxy தளத்தில் (o, o) (o, a), (-a, o), (o, -a), (a, o) ஆகிய புள்ளிகளில் முறையே $5i+5j,\ i+j, 2i+2j, 3i+3j, 4i+4j$ ஆகிய விசைகள் தாக்குகின்றன. '
 - i. தொகுதியின் விளையுளைக் காண்க.
 - ii. விளையுளின் தாக்க கோட்டின் சமன்பாட்டைக் காண்க.
 - iii. விளையுளை (0, 0) ஊடாக தாக்குமாறு செய்வதற்கு சேர்க்க வேண்டிய இணையின் பருமனையும் போக்கையும் காண்க.
 - iv. விசைத்தொகுதி (0, 0) பற்றி இடஞ்சுழியாக ஒரு செங்கோணத்தினூடாக சுழற்றப்படின் புதிய விளையுளின் தாக்கக்கோட்டின் சமன்பாட்டைக் கண்டு பழைய, புதிய விளையுள்களின் தாக்கக்கோடுகள் X அச்சை ஒரே புள்ளியில் வெட்டும் எனக் காட்டுக.

15) (a) மூன்று சர்வ சமமான சீரான கோல்களால் ஆன முக்கோணி ABC ஆனது BC கிடையாகவும் A கீழே இருக்குமாறும் BC இன் நடுப்புள்ளி ஒரு கரடான முளை மீது தங்கியுள்ளது. A ல் பிரயோகிக்கப்படும் கிடை விசை P இனால் BC கிடையுடன் கோணம் θ அமைக்குமாறு வழுக்காது BC, முளை மீது நாப்பத்தில் இருக்கும் எனக் கொண்டு $\frac{2 \tan \theta}{3 + \tan^2 \theta} \leq \mu$ எனக்காட்டுக.

 μ — உராய்வுக் குணகம், $\mu \geq \frac{1}{\sqrt{3}}$ என உய்த்தறிக.

AB, BC, CD, AC ஆகிய இலேசான கோல்களால் ஆக்கப்பட்ட சட்டப்படல் படத்திலுள்ளவாறு A இலும் D இலும் சுயாதீனமானப் பிணைக்கப்பட்டுள்ளது. B இல் 2w நிறை தொங்குகிறது. போவின் குறியீட்டு முறையில் தகைப்பு வரிப்படத்தை வரைந்து கோல்களிலுள்ள தகைப்புகளை, இழுவையா, உதைப்பா என வேறுபடுத்துக. தகைப்பு வரிப்படத்தில் இருந்து பிணையல்கள் A, D இல் உள்ள மறுதாக்கங்களைக் கணிக்க.

a ஆரையுடைய சீரான அரைவட்ட சுடரின் திணிவு மையம் மையத்திலிருந்து $\frac{4a}{3\pi}$ தூரத்தில் உள்ளது எனக் காட்டுக.

O வை மையமாகவுள்ள சீரான அரைவட்ட அடரின் விட்டம் $AOB.OC \perp AB$ ஆகுமாறு C பரிதியிலுள்ள புள்ளி OPQR என்ற சதுரம் வெட்டி அகற்றப்படுகிறது. இங்கு $OP=\frac{a}{2}$ ஆகுமாறு P,OB இல் உள்ளது. மீதியின் புவிஈர்ப்பு மையத்தை OA,OC இலிருந்து காண்க. இம்மீதி A இலிருந்து சுயாதீனமாக தொங்கவிடப்படின் AB கிடையுடன் அமைக்கும் கோணம் யாது?

17) நிபந்தனை நிகழ்தகவை வரையறுக்க.

 $A,\ B$ என்ற இருவர் ஒரு போட்டியில் ஈடுபடுகின்றனர். ஒரு போட்டியில் A வெல்லும் நிகழ்தகவு $\frac{2}{5},\ B$ வெல்லும் நிகழ்தகவு $\frac{1}{3}$ ஆகும். A முதலில் விளையாடுவார். ஒருவர் வென்றவுடன் போட்டி நிறுத்தப்படும்.

- ${
 m i.}$ 2ம் சந்தர்ப்பத்தில் ${
 m A}$ வெல்லும் நிகழ்தகவு யாது?
- ii. 2ம் சந்தர்ப்பத்தல் B வெல்லும் நிகழ்தகவு யாது?
- iii. x ஆம் சந்தர்ப்பத்தில் A வெல்லும் நிகழ்தகவு யாது?
- iv. A போட்டியில் வெல்லும் நிகழ்தகவு யாது?

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

