Increasing the Action Gap

Mark Gluzman

iDDA, CUHK (Shenzhen)

March 18, 2019

Motivation Example

- Let $\pi \in \Pi$ be a stationary deterministic policy.
- $Q^{\pi}(x_1, a_2) = 0 + \gamma V^{\pi}(x_1)$
- Note that for any $\pi \in \Pi$, we have $Q^{\pi}(x_1, a_2) > Q^{\pi}(x_1, a_1)$, therefore $V^*(x_1) = 0$. The value difference between optimal and second best action, *action gap*, is

$$Q^*(x_1, a_2) - Q^*(x_1, a_1) = \varepsilon$$

2/25

Nonstationarity

- Let Π be a set of all stationary deterministic policies.
- Note $\Pi = \{\pi_1, \pi_2 : \pi_1(x_1) = a_1; \pi_2(x_1) = a_2\}.$
- From the Bellman eq., $V^{\pi_1}(x_1) = 1 + \gamma \left[\frac{1}{2} V^{\pi_1}(x_1) + \frac{1}{2} V^{\pi_1}(x_2) \right] = \frac{\gamma}{2} V^{\pi_1}(x_1) \varepsilon$

$$V^{\pi_1}(x_1) = -\frac{\varepsilon}{1 - \gamma/2}, \quad V^{\pi_2}(x_1) = 0$$

Why
$$Q^*(x_1, a_2) - Q^*(x_1, a_1) = \varepsilon$$
?

 $Q^*(x_1, a_1) = -\varepsilon$ does not describe the value of any stationary policy!

Why the size of action gap is important?

- When the MDP can be solved exactly, there is no issue.
- When the MDP has to be solved approximately, small perturbations in the Q-function may result in identifying a wrong action to be the optimal.

Extended state space

Idea: let do not change the action if we return to the state after one time-step.

5/25

Standard approach

 In the algorithms based on value iterations, we update Q-factors according to the Bellman equation.

The Bellman operator:

$$TQ(x,a) := r(x,a) + \gamma \mathbb{E} \Big[\max_{b \in A} Q(x',b) \Big].$$

- Iterations $Q_{k+1} = TQ_k$ converge to the optimal $Q^*(x,a)$ from which one can obtain an optimal policy $\pi^*(x) = \arg\max_{x \in A} Q^*(x,a)$.
- Can we modify the algorithm so that its iterations will converge to $\tilde{Q}^*(x,a)$ s.t.
 - $\pi^*(x) = \arg\max_{a \in A} \tilde{Q}^*(x, a)$.
 - $\tilde{Q}^*(x, \pi^*(x)) \tilde{Q}^*(x, a) \ge Q^*(x, \pi^*(x)) Q^*(x, a)$?

Consistent Bellman operator

The consistent Bellman operator (CB operator):

$$T_{CB}Q(x,a) := r(x,a) + \gamma \mathbb{E}\Big[\mathbb{I}_{x \neq x'} \max_{b \in A} Q(x',b) + \mathbb{I}_{x=x'}Q(x,a)\Big]. \tag{1}$$

• The consistent Bellman operator is optimality-preserving and gap-increasing!

Example

Let $Q_k(x_1, a_1) = 0$, $Q_k(x_1, a_2) = 1$ and, for extended MC $Q_k((x_1, a_1), \times) = 10$. Consider a transition $(x, a, y, r) = (x_1, a_1, x_1, 1)$.

- The Bellman Operator: $Q_{k+1}(x_1,a_1)=TQ(x_1,a_1)=r+\gamma\max_bQ(x_1,b)=1+\gamma$
- The consistent Bellman Operator: $Q_{k+1}(x_1,a_1)=T_{CB}Q(x_1,a_1)=r+\gamma Q(x_1,a_1)=1$
- The Bellman Operator on Extended MC: $Q_{k+1}(x_1,a_1)=TQ(x_1,a_1)=r+\gamma Q_k((x_1,a_1),\times)=1+10\gamma$

Optimality-preserving operator

Definition

An operator T' is *optimality-preserving* if, for any $Q_0 \in \mathcal{Q}$ and $x \in X$, for iterations

$$Q_{k+1} = T'Q_k$$

the limit

$$\tilde{V}(x) := \lim_{k \to \infty} \max_{a \in A} Q_k(x, a)$$

exists, is unique s.t. $\tilde{V}(x) = V^*(x)$, and for all $a \in A$,

$$Q^*(x, a) < V^*(x) \Longrightarrow \limsup_{k \to \infty} Q_k(x, a) < V^*(x).$$

- At least one optimal action remains optimal
- Suboptimal actions remain suboptimal

Gap-increasing operator

Definition

An operator T' is gap-increasing if, for all $Q_0 \in \mathcal{Q}, x \in X, a \in A$ letting

$$Q_{k+1} = T'Q_k \quad \text{ and } \quad V_k(x) := \max_b Q_k(x,b)$$

we have

$$\liminf_{k \to \infty} \left[V_k(x) - Q_k(x, a) \right] \ge V^*(x) - Q^*(x, a)$$

Main Result

Theorem

Let T be the Bellman operator. Let T' be an operator with the property that there exists $\alpha \in [0,1)$ s.t. for all $Q \in \mathcal{Q}$, $x \in X$, $a \in A$

Then T' is both optimality-preserving and gap-increasing.

Consistent Bellman Operator

Theorem

Let T be the Bellman operator. Let T' be an operator with the property that there exists $\alpha \in [0,1)$ s.t. for all $Q \in \mathcal{Q}$, $x \in X$, $a \in A$

- $2 T'Q(x,a) \ge TQ(x,a) \alpha[V(x) Q(x,a)].$

Then T' is both optimality-preserving and gap-increasing.

The consistent Bellman operator:

$$\begin{split} T_{CB}Q(x,a) &= r(x,a) + \gamma \mathbb{E}\Big[\mathbb{I}_{x \neq x'} \max_{b \in A} Q(x',b) + \mathbb{I}_{x = x'}Q(x,a)\Big] \\ &= TQ(x,a) - \gamma P(x|x,a) \Big[V(x) - Q(x,a)\Big]. \end{split}$$

- Obvious
- $2 \ 1 > \alpha \geq \max_{x,a} \gamma P(x|x,a), \text{ for example } \alpha = \gamma.$

Family of Convergent Operators

The advantage learning (AL) operator:

$$T_{AL}Q(x,a) := TQ(x,a) - \alpha[V(x) - Q(x,a)]$$
(2)

Intuition:

We may subtract up to $\max_b Q_k(x,b) - Q_k(x,a)$ from $Q_k(x,a)$ at each iteration.

$$\max_b Q_k(x,b) - Q_k(x,a)$$
 is the action gap for Q_k , not Q^* .

The persistent advantage learning (PAL) operator:

$$T_{PAL}Q(x, \mathbf{a}) := \max \left\{ T_{AL}Q(x, a), r(x, a) + \gamma \mathbb{E}Q(x', \mathbf{a}) \right\}$$
 (3)

Intuition:

We encourage greedy policies which infrequently switch between actions.

α -Lazy Operator

- The AL (2) and PAL (3) operators are not contractions, but cannot have more than 1 fixed point. The CB operator (1) is a contraction map.
- The α -Lazy Operator may have multiple fixed points:

$$T_{\alpha-Lazy}Q(x,a) := \begin{cases} Q(x,a), & \text{if } Q(x,a) \leq TQ(x,a) \text{ and} \\ & TQ(x,a) \leq \alpha V(x) + (1-\alpha)Q(x,a) \\ & TQ(x,a), & \text{otherwise} \end{cases}$$

- $T_{\alpha-Lazy}$ is optimality-preserving and gap-increasing
- $T_{\alpha-Lazy}$ is not a contraction map and may have multiple fixed points.

Experimental Results on Atari games

- Initialize function Q_{θ} with random weights, replay memory D to capacity N.
- for episode = 1, ..., M
 - for t = 1, ..., T
 - Choose action a_t according to $\epsilon-$ greedy policy w.r.t. $\max_a Q_{\theta_t}(x_t,a)$
 - Observe (x_{t+1}, r_t) . Store (x_t, a_t, r_t, s_{t+1}) in D.
 - Sample minibatch $\left\{(x_j,a_j,r_j,x_{j+1})\right\}_{j\in M}$ from D. Set $y_j=r_j+\gamma\max_{a\in A}Q_{\theta_t}(x_{j+1},a')$
 - Find $heta_{t+1}$ that minimizes $rac{1}{|M|}\sum\limits_{j\in M}\left(y_j-Q_{ heta}(x_j,a_j)
 ight)^2$

We will compare:

- Standard DQL: $y_j = r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a')$
- $\bullet \ \, \mathsf{AL-DQL:} \ \, y_j = r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a') \alpha [\max_b Q_{\theta_t}(x_j, b) Q_{\theta_t}(x_j, a_j)]$
- $$\begin{split} \bullet \quad \mathsf{PAL-DQL:} \ y_j &= r_j + \gamma \max_{a'} Q_{\theta_t}(x_{j+1}, a') \\ \alpha \min \left[\max_b Q_{\theta_t}(x_j, b) Q_{\theta_t}(x_j, a_j), \max_b Q_{\theta_t}(x_{j+1}, b) Q_{\theta_t}(x_{j+1}, a_j) \right] \end{split}$$

Figure 7: Performance of trained agents in function of the α parameter. Note that $\alpha=1.0$ does not satisfy our theorem's conditions. We attribute the odd performance of Seaquest agents using Persistent Advantage Learning with $\alpha=0.9$ to a statistical issue.

Over 60 games:

Operator	DQL	AL-DQL	PAL-DQL
Best score amount 60 games	12*	21*	31*
The median score improvement	0%	8.4%	9.1%
The average score improvement	0%	27%	32.5%

^{*} For 2 games the score was equal for all three settings.

Action gap and value function estimation

Figure: Learning curves for two Atari games: Asterix and Space Invaders

Figure: Action gap and estimated value function for one Atari game (Space Invaders)

Conclusion and open questions

• The results of the article indicate that there are many practical optimality-preserving operators which do not preserve suboptimal Q-values and are not contraction.

Is it possible to find weaker conditions on operators to be optimality-preserving?

The consistent Bellman operator was proposed:

$$T_{CB}Q(x, a) = r(x, a) + \gamma \mathbb{E}\left[\mathbb{I}_{x \neq x'} \max_{b \in A} Q(x', b) + \mathbb{I}_{x = x'}Q(x, a)\right]$$
$$= TQ(x, a) - \gamma P(x|x, a) \left[V(x) - Q(x, a)\right]$$

Then the authors generalized it to the advantage learning (AL) operator:

$$T_{AL}Q(x,a) := TQ(x,a) - \alpha[V(x) - Q(x,a)], \quad \alpha \in [0,1).$$
 (4)

What is the probabilistic interpretation of α and advantage learning?

3 The existence of a broad family of optimality-preserving operators have been revealed: CB, AL, PAL, $\alpha-$ Lazy.

Which of these operators, if any, should we preferred to the Bellman operator? Is it possible to find a "maximal efficient" optimality-preserving operator?

Proofs

Lemma

Let $Q \in \mathcal{Q}$ and π^Q be the policy greedy with respect to Q: $\pi^Q(x) := \arg \max_a Q(x, a)$. Let T' be an operator with the properties that, for all $x \in X$ and $a \in A$:

- \P $T'Q(x,a) \leq TQ(x,a)$, and
- 2 $T'Q(x, \pi^{Q}(x)) = TQ(x, \pi^{Q}(x)).$

Consider the sequence

$$Q_{k+1} := T'Q_k$$

with $Q_0 \in \mathcal{Q}$, and let

$$V_k := \max_a Q_k(x, a),$$

Then

the sequence ($V_k: k \in \mathbb{N}$) converges, and, for all $x \in X$

$$\lim_{k \to \infty} V_k(x) \le V^*(x).$$

Proof of Lemma

For an arbitrary $x \in X$, consider a sequence $\{V_k(x)\}_{k=0}^{\infty}$

• The sequence $\{V_k(x)\}_{k=0}^{\infty}$ is bounded:

$$\limsup_{k \to \infty} Q_k(x, a) = \limsup_{k \to \infty} (T')^k Q_0(x, a) \le \limsup_{k \to \infty} T^k Q_0(x, a) = Q^*(x, a)$$

• Fact: if we have a bounded sequence of real numbers $\{b_0, b_1, ..., b_k, ...\}$ s.t.

$$b_{k+1} \ge b_k - c\gamma^k$$
, $\gamma \in [0,1)$ and $c > 0$,

then the sequence $\{b_k\}_{k=0}^{\infty}$ converges.

• Let $a_k := \arg \max_a Q_k(x, a), P_k := P(\cdot | x, a_k), P_{1:k} = P_k P_{k-1} ... P_1.$

$$\begin{aligned} V_{k+1}(x) &\geq r(x, a_k) + \gamma \mathbb{E}_{P_k} V_k(x') \\ &= T Q_{k-1}(x, a_k) + \gamma \mathbb{E}_{P_k} [V_k(x') - V_{k-1}(x')] \\ &\geq T' Q_{k-1}(x, a_k) + \gamma \mathbb{E}_{P_k} [V_k(x') - V_{k-1}(x')] \\ &= V_k(x) + \gamma \mathbb{E}_{P_k} [V_k(x') - V_{k-1}(x')] \\ &\geq V_k(x) + \gamma \mathbb{E}_{P_{1:k}} [V_1(x'') - V_0(x'')] \\ &\geq V_k(x) - \gamma^k ||V_1 - V_0||_{\infty}. \end{aligned}$$

Proof of the main theorem

Theorem

Let T be the Bellman operator. Let T' be an operator with the property that there exists $\alpha \in [0,1)$ s.t. for all $Q \in \mathcal{Q}$, $x \in X$, $a \in A$

- $T'Q(x,a) \le TQ(x,a)$
- $2 T'Q(x,a) \ge TQ(x,a) \alpha[V(x) Q(x,a)].$

Then T' is both

- 1. optimality-preserving:
 - 1.1 $\lim_{k \to \infty} V_k(x) = V^*(x)$
 - 1.2 $Q^*(x,a) < V^*(x) \Longrightarrow \limsup_{k \to \infty} Q_k(x,a) < V^*(x)$.
- 2. gap-increasing: $\liminf_{k\to\infty} \left[V_k(x) Q_k(x,a)\right] \geq V^*(x) Q^*(x,a)$

Proof of the main theorem

• Note that $V_k(x) - Q_k(x, \pi_k^Q(x)) = 0$ and we can apply the previous lemma: $\lim_{k \to \infty} V_k(x) = \tilde{V}(x)$ exists, where

$$\begin{cases} Q_k(x, a) = T'Q_{k-1}(x, a) \\ V_k(x) = \max_a Q_k(x, a) \end{cases}$$

- We want to get $\tilde{V}(x) = V^*(x)$. Let's show that $\tilde{V}(x) = \max_{a \in A} T\tilde{Q}(x,a)$, where $\tilde{Q}(x,a) = \limsup_{k \to \infty} Q_k(x,a)$.
- $\tilde{Q}(x,a) \le T\tilde{Q}(x,a).$

$$\begin{split} \tilde{Q}(x,a) &= \limsup_{k \to \infty} T'Q_k(x,a) \leq \limsup_{k \to \infty} TQ_k(x,a) \\ &= \limsup_{k \to \infty} \left[r(x,a) + \gamma E[\max_b Q_k(x',b)] \right] \\ &\leq r(x,a) + \gamma E[\max_b \limsup_{k \to \infty} Q_k(x',b) \\ &= T\tilde{Q}(x,a). \end{split}$$

Proof of the main theorem: $\tilde{Q}(x,a) \geq T\tilde{Q}(x,a)$.

$$\tilde{Q}(x,a) \ge T\tilde{Q}(x,a).$$

- $Q_{k+1}(x, a) \ge TQ_k(x, a) \alpha[V_k(x) Q_k(x, a)] = r(x, a) + \gamma \mathbb{E}V_k(x') \alpha V_k(x) + \alpha Q_k(x, a).$
- Taking \limsup of both sides:

$$\tilde{Q}(x,a) \geq r(x,a) + \gamma \mathbb{E} \tilde{V}(x') - \alpha \tilde{V}(x) + \alpha \tilde{Q}(x,a) = T \tilde{Q}(x,a) - \alpha \tilde{V}(x) + \alpha \tilde{Q}(x,a).$$

- $\tilde{Q}(x,a) \ge \frac{1}{1-\alpha} \left[T\tilde{Q}(x,a) \alpha \tilde{V}(x) \right]$
- Taking $\max_{a \in A}$ of both sides:

$$\tilde{V}(x) \geq \tfrac{1}{1-\alpha} \Big[\max_{a \in A} T \tilde{Q}(x,a) - \alpha \tilde{V}(x) \Big] \Longrightarrow \tilde{V}(x) \geq \max_{a \in A} T \tilde{Q}(x,a).$$

Proof of the main theorem: gap-increasing

Observe that the statement:

$$\lim_{k \to \infty} \inf \left[V_k(x) - Q_k(x, a) \right] \ge V^*(x) - Q^*(x, a)$$

is equivalent for the following one for optimality-preserving operators:

$$\limsup_{k \to \infty} Q_k(x, a) \le Q^*(x, a). \tag{5}$$

The statement (5) has already been proved in the Lemma.

References

- Bellemare, Marc G., Ostrovski, Georg, Guez, Arthur, Thomas, Philip S., and Munos, Rémi. Increasing the action gap: New operators for reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.
- Some insights how to interpreted and choose α for the AL operator: Greg Farquhar, The Advantage Learning Operator, 2016, http://aims.robots.ox.ac.uk/wp-content/uploads/2015/07/RL_minproject_v1-Greg.pdf
- New optimality-preserving operators on Q-functions:
 Yingdong Lu, Mark S. Squillante, Chai Wah Wu, "A General Family of Robust Stochastic Operators for Reinforcement Learning", 2018, https://arxiv.org/abs/1805.08122