

การแข่งขันเคมีโอถิมปิกระดับชาติ ครั้งที่ 10 คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ 29 เมษายน 2557 เวลา 8:30 – 13:30 น.

เฉลยข้อสอบภาคทฤษฎี

ศูนย์ สอวน	•••••	 •••••
u		
ເລຍປະນຸລຳຕັດສຸລ	9.1	

เฉลยโจทย์ข้อที่ 1 (13 คะแนน)

1.1 (3.5 คะแนน)

ปริมาณของ
$$Zn^{2+}$$
 ในน้ำเสีย = 428 mg/L (0.5 คะแนน)

วิธีคำนวณ (3 คะแนน)

Anode:
$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$
 (0.5)

Cathode:
$$\operatorname{Zn}^{2+}(\operatorname{aq}, 1.0 \,\mathrm{M}) + 2\mathrm{e}^{-} \longrightarrow \operatorname{Zn}(\mathrm{s})$$
 (0.5)

$$E_{cell} = E_{cell}^{o} - \frac{RT}{nF} \ln Q$$

หรือ
$$E_{cell} = E^o_{cell} - \frac{RT}{nF} ln \frac{[Zn_{anode}^{2+}]}{[Zn_{cathode}^{2+}]}$$

แทนค่า (0.5)

$$0.065 = 0 - \frac{(8.314 \text{ J/K} \cdot \text{mol})(273 + 27 \text{ K})}{(2 \text{ mol e}^{-})(96,500 \text{ J/V} \cdot \text{mol e}^{-})} \times \ln \frac{[\text{Zn}_{\text{anode}}^{2+}]}{1.0 \text{ mol/L}}$$

$$0.065 = -\frac{0.025847}{2 \text{ V}} \times 2.303 \log \frac{[Zn_{\text{anode}}^{2+}]}{1.0 \text{ mol/L}}$$

$$0.065 = -\frac{0.05952}{2 \text{ V}} \log \frac{[Zn_{\text{anode}}^{2+}]}{1.0 \text{ mol/L}}$$

$$0.065 = -0.02976 \{ log [Zn^{2+}_{anode}] - log (1.0) \}$$

$$0.065 = -0.02976 \{ log [Zn^{2+}_{anode}] - 0 \}$$

$$\log \left[Zn^{2+}_{\text{anode}} \right] = -\frac{0.065}{0.02976} = -2.1841$$

$$[Zn^{2+}_{anode}] = 6.5443 \times 10^{-3} \text{ mol/L}$$
 (0.5)

=
$$(6.5443 \times 10^{-3} \text{ mol/L}) \times (65.4 \text{ g/mol}) = 0.427994 \text{ g/L}$$
 (0.5)

= 428 mg/L

1.2 (9.5 คะแนน)

1.2.1 (2 คะแนน)

วิธีคำนวณ (1.5 คะแนน)

สมการ
$$3Zn^{2+}(aq) + 2PO_4^{3-}(aq) \longrightarrow Zn_3(PO_4)_2(s)$$
 $K_{sp} = 9.0 \times 10^{-33}$ (0.5)

จำนวนโมลของ Zn =
$$\frac{400 \text{ mg Zn}}{1 \text{ L}} \times \frac{90 \text{ m}^3}{1 \text{ day}} \times \frac{10^3 \text{ L}}{1 \text{ m}^3} \times \frac{1 \text{ g Zn}}{10^3 \text{ mg Zn}} \times \frac{1 \text{ mol Zn}}{65.4 \text{ g Zn}}$$
$$= 550.46 \text{ mol/day}$$
(0.5)

ปริมาณ Na₃PO₄ ที่ใช้

$$= \frac{550.46 \text{ mol Zn}}{1 \text{ day}} \times \frac{2 \text{ mol PO}_4^{3-}}{3 \text{ mol Zn}} \times \frac{1 \text{ mol Na}_3 \text{PO}_4}{1 \text{ mol PO}_4^{-3}} \times \frac{164.0 \text{ g Na}_3 \text{PO}_4}{1 \text{ mol Na}_3 \text{PO}_4} \times \frac{1 \text{ kg}}{1000 \text{ g}}$$

$$= 60.18 \text{ kg/day}$$
(0.5)

1.2.2 (1.5 คะแนน)

เลือกใช้สารละลายของลิแกนค์ X (0.5 คะแนน)

เหตุผลหรือวิธีคิด (1 คะแนน)

อัตราส่วนโดยโมลของ $\mathbf{Zn}: \mathbf{X}, \ \mathbf{Zn}: \mathbf{Y}, \ \mathbf{Zn}: \mathbf{Z}$ คือ $2:1,\ 1:1,\ 1:1$ โจทย์กำหนดความเข้มข้นและประสิทธิภาพการสกัดของสารละลายทั้ง 3 ชนิดเท่ากัน ดังนั้นควรเลือก สารละลาย \mathbf{X} เนื่องจากอัตราส่วน \mathbf{Zn} /ligand สูงสุด ด้วยจำนวนโมลของลิแกนด์ที่เท่ากัน สารละลาย \mathbf{X} สามารถสกัด \mathbf{Zn} ได้ปริมาณมากที่สุด

1.2.3 (1.5 คะแนน)

ปริมาณไฟฟ้า =
$$\frac{1.0 \times 10^8}{}$$
 คูลอมป์/วัน (0.5 คะแนน) ตอบในรูป $x.x \times 10^x$

วิธีคำนวณ (1 คะแนน)

สมการ
$$Zn^{2+}(aq, 1.0 M) + 2e^- \rightarrow Zn(s)$$
 (0.5)

$$C = \frac{(400-5) \text{ mg Zn}}{1 \text{ L}} \times \frac{90 \text{ m}^3}{1 \text{ day}} \times \frac{10^3 \text{ L}}{1 \text{ m}^3} \times \frac{1 \text{ g Zn}}{10^3 \text{ mg Zn}} \times \frac{1 \text{ mol Zn}}{65.4 \text{ g Zn}} \times \frac{2 \text{ mol e}^-}{1 \text{ mol Zn}} \times \frac{96500 \text{ C}}{1 \text{ mol e}^-}$$
(0.5)

 $= 1.0491 \times 10^8 \text{ Coulomb/day}$

1.2.4 (1.5 คะแนน)

วิธีคำนวณ (1 คะแนน)

สมการ
$$2(R-SO_3^-H^+) + Zn^{2+}(aq) \rightarrow 2(R-SO_3)^-Zn^{2+}) + 2H^+(aq)$$
 (0.5)

น้ำหนักของเรซิน =
$$\frac{550.46 \text{ mol Zn}}{1 \text{ day}} \times \frac{2 \text{ mol H}^+}{1 \text{ mol Zn}} \times \frac{1 \text{ g resin}}{1.1 \text{ mmol H}^+} \times \frac{1 \text{ mmol}}{10^{-3} \text{ mol}} \times \frac{1 \text{ kg}}{1000 \text{ g}}$$
(0.5)
$$= 1,000.83 \text{ kg/day}$$

1.2.5 (3 คะแนน)

วิธีการบำบัดน้ำเสียที่ประหยัดที่สุด คือ วิธีตกตะกอนเป็น zinc phosphate (0.5 คะแนน)

วิธีคำนวณ (2.5 คะแนน)

วิธีการสกัดด้วยตัวทำละลาย

สูตร โมเลกุลของ X คือ $C_{18}H_{22}O_4N_4S_4$ มวล โมเลกุล = 486.4 g/mol

ปริมาณ
$$X = \frac{550.46 \text{ mol Zn}}{1 \text{ day}} \times \frac{1 \text{ mol X}}{2 \text{ mol Zn}} \times \frac{486.4 \text{ g X}}{1 \text{ mol X}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 133.87 \text{ kg/day}$$
 (0.5)

ราคา X =
$$\frac{133.87 \text{ kg}}{1 \text{ day}} \times \frac{1,000 \text{ Baht}}{5 \text{ kg}} = 26,774 บาท/วัน$$
 (0.5)

(ไม่ต้องคิดราคาตัวทำละลายอินทรีย์ ราคาก็สูงกว่าวิธีตกตะกอนฟอสเฟต)

วิธีอิเล็กโทรลิซิส

ค่าไฟฟ้า =
$$\frac{1.0491 \times 10^8 \text{ C}}{1 \text{ day}} \times \frac{3 \text{ Baht}}{10,000 \text{ C}} = 31,473 \text{ บาท/วัน}$$
 (0.5)

วิธีแลกเปลี่ยนไอออน

ราคาเรซิน =
$$\frac{1,001 \text{ kg}}{1 \text{ day}} \times \frac{5,000 \text{ Baht}}{25 \text{ kg}} \times \frac{1}{50 \text{ times}} = 4,003 \text{ บาท/วัน}$$
 (0.5)

เฉลยโจทย์่ข้อที่ 2 (11 คะแนน)

2.1 สมการเคมีแสดงปฏิกิริยาการไทเทรตเมื่อใช้ฟืนอล์ฟทาลีนเป็นอินดิเคเตอร์

(1 คะแนน)

 $NaOH + HCl \rightarrow NaCl + H_2O$

 $Na_2CO_3 + HCl \rightarrow NaHCO_3 + NaCl$

(ตอบถูกครบทั้ง 2 สมการจึงได้คะแนน)

สมการเคมีแสคงปฏิกิริยาการไทเทรตเมื่อใช้โบรโมครีซอลกรีนเป็นอินดิเคเตอร์

(1 คะแนน)

 $NaOH + HCl \rightarrow NaCl + H_2O$

 $Na_2CO_3 + HCl \rightarrow NaHCO_3 + NaCl$

 $NaHCO_3 + HCl \rightarrow NaCl + CO_2(g) + H_2O$

(ตอบถูกครบทั้ง 3 สมการจึงได้คะแนน ในกรณี CO₂ ไม่ระบุสถานะ (g) ก็ได้)

2.2

ร้อยละโดยมวลของ NaOH = 11.79 (0.5 คะแนน)

ร้อยละโดยมวลของ $Na_2CO_3 = 88.21$ (0.5 คะแนน)

ตอบเลขนัยสำคัญ 4 ตัว

วิธีคำนวณ (3.5 คะแนน)

เนื่องจากปริมาตร HCl ที่จุดยุติกรณีใช้โบรโมครีซอลกรีนเป็นอินดิเคเตอร์น้อยกว่า 2 × 16.25 mL แสดงว่า ของแข็งตัวอย่างมี NaOH + Na₂CO₃ (ไม่มี NaHCO₃ เพราะ NaHCO₃ จะทำปฏิกิริยากับ NaOH)

เมื่อใช้ฟืนอล์ฟทาลีนเป็นอินดิเคเตอร์ :
$$mol\ NaOH + mol\ Na_2CO_3 = X + Y$$
 (0.25)

mol HCl =
$$\frac{16.25 \text{ mL HCl soln}}{25.00 \text{ mL sample}} \times \frac{0.1665 \text{ mol HCl}}{1000 \text{ mL HCl soln}} \times \frac{1 \text{ mol base}}{1 \text{ mol HCl}}$$
 (0.25)

$$= 1.082 \times 10^{-4} \text{ mol/mL}$$
 (0.25)

$$1.082 \times 10^{-4} = X + Y$$
 หรือ $X = 1.082 \times 10^{-4} - Y$ [1]

เมื่อใช้โบรโมครีซอลกรีนเป็นอินดิเคเตอร์:
$$mol\ NaOH + mol\ Na_2CO_3 = X + 2Y$$
 (0.25)

mol HCl =
$$\frac{28.25 \text{ mL HCl soln}}{25.00 \text{ mL sample}} \times \frac{0.1665 \text{ mol HCl}}{1000 \text{ mL HCl soln}} \times \frac{1 \text{ mol base}}{1 \text{ mol HCl}}$$
(0.25)

$$= 1.881 \times 10^{-4} \text{ mol/mL}$$
 (0.25)

$$1.881 \times 10^{-4} = X + 2Y$$
 หรือ $X = 1.881 \times 10^{-4} - 2Y$ [2]

สมการ [1] = สมการ [2] แก้สมการเพื่อหาค่า X และ Y

$$Y = (1.881 - 1.082) \times 10^{-4} = 0.799 \times 10^{-4} \text{ mol/mL}$$
 (0.5)

ແລະ
$$X = (1.082 - 0.799) \times 10^{-4} = 0.283 \times 10^{-4} \text{ mol/mL}$$
 (0.5)

% NaOH =
$$\frac{0.283 \times 10^{-4} \text{ mol NaOH}}{1 \text{ mL sample}} \times \frac{40.0 \text{ g NaOH}}{1 \text{ mol NaOH}} \times \frac{100.00 \text{ mL sample}}{0.9601 \text{ g sample}} \times 100$$
 (0.25)
= 11.79 %

$$\% \text{ Na}_{2}\text{CO}_{3} = \frac{0.799 \times 10^{-4} \text{ mol Na}_{2}\text{CO}_{3}}{1 \text{ mL sample}} \times \frac{106.0 \text{ g Na}_{2}\text{CO}_{3}}{1 \text{ mol Na}_{2}\text{CO}_{3}} \times \frac{100.00 \text{ mL sample}}{0.9601 \text{ g sample}} \times 100$$
 (0.25)
$$= 88.21 \%$$

2.3 (3 คะแนน) ทำเครื่องหมาย x ในกราฟเพื่อระบุจุคสมมูลทุกจุด และเขียนสมการเคมีแสดงปฏิกิริยาการ ใทเทรตที่แต่ละจุดสมมูล

ปริมาตร HCl (mL)

2.4 การเปลี่ยนแปลงความเข้มข้นของสารละลาย NaOH = 11.2 % (1 คะแนน)
ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ (นักเรียนไม่ต้องแสดงวิธีคำนวณ)

$$CO_2(g) + 2OH^- \longrightarrow CO_3^{2-} + H_2O(1)$$

คำนวณโมล OH^- ที่ทำปฏิกิริยากับ CO_2 ดังนี้

$$mol \; OH^{-} \; = \; \; 0.330 \; g \; CO_{2} \times \frac{1 \; mol \; CO_{2}}{44.0 \; g \; CO_{2}} \; \times \frac{2 \; mol \; OH^{-}}{1 \; mol \; CO_{2}} \; = \; \; 0.0150 \; mol$$

การเปลี่ยนแปลงความเข้มข้นของสารละลาย NaOH $= \frac{0.0150}{0.134} \times 100 = 11.2 \%$

โจทย์ข้อที่ 3 (11 คะแนน)

3.1 (4 คะแนน)

3.1.1 สมการไอออนิกที่คุลแล้วของปฏิกิริยาที่เกิดขึ้นคือ

(0.5 คะแนน)

$$H_2C_2O_4 + 2OH^- \longrightarrow C_2O_4^{2-} + 2H_2O$$

3.1.2 เมื่อเกิดปฏิกิริยาสมบูรณ์ สารละลายผสมก่อนเข้าสู่ภาวะสมคุลมีความเข้มข้นของสาร/ไอออนดังนี้
(1 คะแนน)

ความเข้มข้นของ NaOH =	0	mol/L
ความเข้มข้นของ H ₂ C ₂ O ₄ =	0	mol/L
ความเข้มข้นของ HC ₂ O ₄ - =	0	mol/L
ความเข้มข้นของ C ₂ O ₄ ²⁻ =	0.025	mol/L

3.1.3 เมื่อสารละลายผสมเข้าสู่ภาวะสมคุล สมการของปฏิกิริยาเป็นดังนี้ (1 คะแนน)

$$C_2O_4^{2-} + H_2O \Rightarrow HC_2O_4^{-} + OH^{-}$$
 $HC_2O_4^{-} + H_2O \Rightarrow H_2C_2O_4 + OH^{-}$

สารละลายผสมที่ภาวะสมคุลมีความเข้มข้นของไอออนและค่า pH ดังนี้

3.1.2 วิธีคำนวณ (นักเรียนไม่ต้องแสดงวิธีคำนวณ)

 $mol \ H_2C_2O_4 \ = \ 25.00 \ mL \ H_2C_2O_4 \times \frac{0.050 \ mol \ H_2C_2O_4}{1000 \ mL \ H_2C_2O_4} \ = \ 0.00125 \ mol \ H_2C_2O_4$

mol NaOH = $25.00 \text{ mL NaOH} \times \frac{0.100 \text{ mol NaOH}}{1000 \text{ mL NaOH}} = 0.00250 \text{ mol NaOH}$

NaOH และ $H_2C_2O_4$ ทำปฏิกิริยากันหมดพอดี เกิด $C_2O_4{}^{2-}$

ความเข้มข้นของ NaOH = 0 mol/L

ความเข้มข้นของ $H_2C_2O_4 = 0$ mol/L

ความเข้มข้นของ $HC_2O_4^- = 0 \text{ mol/L}$

ความเข้มข้นของ $C_2O_4^{2-}=25.00~\text{mL}~\text{H}_2C_2O_4~\text{soln} imes \frac{0.050~\text{mol}~\text{H}_2C_2O_4}{1000~\text{mL}~\text{H}_2C_2O_4~\text{soln}} imes \frac{1~\text{mol}~\text{H}_2C_2O_4}{1~\text{mol}~\text{C}_2O_4^{2-}} imes \frac{1}{50.00~\text{mL}~\text{soln}} imes \frac{1000~\text{mL}~\text{soln}}{1~\text{L}~\text{soln}} = 0.025~\text{mol/L}~\text{C}_2O_4^{2-}$

3.1.3 วิธีคำนวณ (นักเรียนไม่ต้องแสดงวิธีคำนวณ)

$$C_2O_4^{2-} + H_2O \rightleftharpoons HC_2O_4^{-} + OH^{-} \quad K_{b1} = \frac{[HC_2O_4^{-}][OH^{-}]}{[HC_2O_4^{2-}]} = \frac{K_w}{K_{a1}} = \frac{1.0 \times 10^{-14}}{6.4 \times 10^{-5}} = 1.6 \times 10^{-10}$$

$$HC_2O_4^- + H_2O \rightleftharpoons H_2C_2O_4 + OH^- \quad K_{b2} = \frac{K_w}{K_{a2}} = \frac{1.0 \times 10^{-14}}{5.9 \times 10^{-2}} = 1.7 \times 10^{-13}$$

 K_{b2} มีค่าน้อยกว่า K_{b1} มาก ถือว่าปฏิกิริยาขั้นที่ 2 ของ $C_2O_4{}^{2-}$ ตัดทิ้งได้

$$K_{b1} = \frac{(x)(x)}{0.025 - x} = 1.6 \times 10^{-10}$$

 K_{b1} มีค่าน้อย ดังนั้น x น้อยกว่า 0.025 มาก นั่นคือ $(0.025-x)\approx 0.025$

$$[OH^-] = x = \sqrt{0.025 \times 1.6 \times 10^{-10}} = 2.0 \times 10^{-6} \text{ mol/L}$$

$$pOH = -\log [OH^{-}] = -\log (2.0 \times 10^{-6}) = 5.70$$

$$pH = 14.00 - pOH = 14.00 - 5.70 = 8.30$$

3.2 (2 คะแนน)

3.2.1 สมการที่คุลแล้วของปฏิกิริยาการแยกสารละลาย $H_2C_2O_4$ ด้วยกระแสไฟฟ้าคือ (1.5 คะแนน)

- 3.3 (2.5 คะแนน)
 - 3.3.1 สมการที่คุลแล้วของปฏิกิริยาการไทเทรตคือ

(1 คะแนน)

 $3(H_2C_2O_4 \longrightarrow 2CO_2 + 2H^+ + 2e^-)$ $Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$ $Cr_2O_7^{2-} + 3H_2C_2O_4 + 8H^+ \longrightarrow 2Cr^{3+} + 6CO_2 + 7H_2O$ (ตอบเฉพาะปฏิกิริยารวม ต้องถูกทั้งหมดจึงจะได้คะแนน)

3.3.2 ร้อยละโดยมวลของ $H_2C_2O_4$ ในใบชะพลู = 1.13 (0.5 คะแนน) ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ (1 คะแนน)

ปริมาณ
$$H_2C_2O_4 = 20.50 \text{ mL } K_2Cr_2O_7 \times \frac{0.0102 \text{ mol } K_2Cr_2O_7}{1000 \text{ mL } K_2Cr_2O_7} \times \frac{3 \text{ mol } H_2C_2O_4}{1 \text{ mol } K_2Cr_2O_7}$$
 (0.5)
$$\times \frac{90.0 \text{ g } H_2C_2O_4}{1 \text{ mol } H_2C_2O_4} \times \frac{100 \text{ g sample}}{5.001 \text{ g sample}}$$
 (0.5)
$$= 1.13 \%$$

3.4 (2.5 คะแนน)

ความเข้มข้นของ
$$C_2O_4{}^{2-}$$
 ในปัสสาวะ = 4.2×10^{-3} mg/100 mL (0.5 คะแนน) ตอบเลขนัยสำคัญ 2 ตัว

วิธีคำนวณ (2 คะแนน)

$$[Ca^{2+}] = \frac{19.5 \text{ mg Ca}^{2+}}{100 \text{ mL urine}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol Ca}^{2+}}{40.0 \text{ g Ca}^{2+}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$

$$= 4.875 \times 10^{-3} \text{ mol/L}$$
(0.5)

 $CaC_2O_4(s) \rightleftharpoons Ca^{2+}(aq) + C_2O_4^{2-}(aq)$

$$[Ca^{2+}][C_2O_4^{2-}] = K_{sp} = 2.3 \times 10^{-9}$$
 (0.5)

$$(4.875 \times 10^{-3})[C_2O_4^{2-}] = 2.3 \times 10^{-9}$$

$$[C_2O_4^{2-}] = 4.72 \times 10^{-7} \text{ mol/L}$$
 (0.5)

$$= \frac{4.72 \times 10^{-7} \text{ mol C}_2 \text{O}_4^{2-}}{1000 \text{ mL urine}} \times \frac{88.0 \text{ g C}_2 \text{O}_4^{2-}}{1 \text{ mol C}_2 \text{O}_4^{2-}}$$
(0.25)

$$\times \frac{1000 \text{ mg}}{1 \text{ g}} \times 100 \text{ mL urine}$$
 (0.25)

$$= 4.15 \times 10^{-3} \text{ mg/}100 \text{ mL}$$

เฉลยโจทย์ข้อที่ 4 (10 คะแนน)

4.1 (3 คะแนน) สัญลักษณ์ชาตุที่แท้จริงของ A-F เป็นดังนี้

$$A = \begin{bmatrix} Br \end{bmatrix} \quad B = \begin{bmatrix} Sr \end{bmatrix} \quad C = \begin{bmatrix} Xe \end{bmatrix} \quad D = \begin{bmatrix} S \end{bmatrix} \quad E = \begin{bmatrix} Al \end{bmatrix}$$
 (2.5 คะแนน)

4.2 (2 คะแนน) ใดเมอร์ของสารประกอบที่เกิดจาก **A** และ **E** คือ

4.3 (2 คะแนน) โครงสร้างแบบจุดของ $\mathbf{DO}_{\mathbf{x}}$ โดยแสดงรูปร่างและระบุประจุฟอร์มัลบนทุกอะตอม

4.4 (1 คะแนน) ปฏิกิริยาการเกิดสารประกอบฟลูออไรค์ของ ${f C}$ เป็นลำคับขั้น

$$Xe(g) + F_2(g) \rightarrow XeF_2(s)$$
 $XeF_2(s) + F_2(g) \rightarrow XeF_4(s)$ $XeF_4(s) + F_2(g) \rightarrow XeF_6(s)$ (1 คะแนน) (ไม่ต้องระบุสถานะกีได้)

4.5 (1 คะแนน) ใอออนของธาตุที่มีโครงสร้างอิเล็กตรอนเหมือนกัน

ไอออนที่เป็น isoelectronic กัน คือ $Sr^{2+} \, \mathfrak{uar} \, Br^- \qquad \qquad (0.5 \, \mathfrak{n} = \mathfrak{uu})$ โครงสร้างอิเล็กตรอนแบบเต็ม $1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^6 \, 3d^{10} \, 4s^2 \, 4p^6 \qquad (0.5 \, \mathfrak{n} = \mathfrak{uu})$

4.6 (1 คะแนน) เรียงลำดับค่าอิเล็กโทรเนกาติวิตีจากน้อยไปมากของธาตุ **A-E**

ลำดับค่าอิเล็กโทรเนกาติวิตี $Sr < Al < Xe \approx S < Br$ (1 คะแนน)

วิธีคิด

A-F : $n + l + m_l$ of last electron filled = 5

A-E are main group elements IA – VIIIA from different groups (A omitted for clarity sake)

	possibility	deduction	
A_2C – linear	XY ₂ : VII-II-VII	A = gr VII	
	XY ₂ E ₃ : VII-VIII-VII	C = gr II or VIII	
BD – ionic compound	\mathbf{BD} – ionic compound I-VII (ruled out because $\mathbf{A} = \operatorname{gr} \operatorname{VII}$)		
	II-VI		
$\mathbf{A}_2\mathbf{D}$ - bent	XY_2E (ruled out, if $\mathbf{A} = \text{gr VII}$, \mathbf{D} would be gr IV))	D = gr VI	
	XY ₂ E : VII-VI-VII		
from D = gr VI		$\mathbf{B} = \operatorname{gr} \operatorname{II}$	
from $\mathbf{B} = \operatorname{gr} \mathbf{II}$		C = gr VIII	
EO _x is amphoteric E has an odd oxidation number	$\mathbf{E} = \text{gr III or V (not gr VII (already used) or I) with}$ quantum n^o info, \mathbf{E} could be Al or Sb Al ₂ O ₃ is known to have elevated mp (2,072 °C) fyi: Sb ₂ O ₃ 's mp = 656 °C	E = gr III	

Find out elements:

F is transition metal, last electron is in n*d* orbital (l = 2, n = 3-5)

- 1st row txn n = 3, (n + l) = 5, $m_l = 0$, could be V or Ni (spin up or spin down).
- 2^{nd} row txn n = 4, (n + l) = 6, $m_l = -1$, impossible because the half-filled or filled is preferred.

เฉลยโจทย์ข้อที่ 5 (10.5 คะแนน)

5.1 (7.5 คะแนน)

5.1.1 (1.5 คะแนน) สมการแสดงปฏิกิริยาที่เกิดขึ้น

ครึ่งสมการออกซิเคชัน	$Au + 2CN^{-} \longrightarrow [Au(CN)_{2}]^{-} + e^{-}$	(0.5 คะแนน)
ครึ่งสมการรีคักชั้น	$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	(0.5 คะแนน)
สมการรวม	$4Au + 8CN^{-} + O_2 + 2H_2O \longrightarrow 4[Au(CN)_2]^{-} + 4OH^{-}$	(0.5 คะแนน)

5.1.2 (3 คะแนน) แผนผังระดับพลังงานของออร์บิทัลโมเลกุลของ CN⁻ พร้อมทั้งบรรจุอิเล็กตรอน (แสดงเฉพาะเวเลนซ์ออร์บิทัล)

5.1.3 (3 คะแนน)

เลือกคำตอบโดยเขียนเครื่องหมาย ✓ ในช่อง □ (1) \Box a = b \Box a < b ความยาวพันธะของ a และ b (0.5 คะแนน) \Box c > d \Box c = d ความยาวพันธะของ c และ d (0.5 คะแนน) ผลการเปรียบเทียบความยาวพันธะระหว่างคู่ a-b และ c-d (0.5 คะแนน) 🔲 เป็นไปในทิศทางเดียวกัน ☑ เป็นไปในทิศทางตรงกันข้าม เมื่ออันดับพันธะมากขึ้น ความยาวพันธะลดลง คำอธิบาย (1 คะแนน) CN = 2.5, $CN^- = 3$, $Cl_2 = 1$, $Cl_2^- = 0.5$

(2) ใอออนหรือโมเลกุลที่ เป็น paramagnetic CN และ Cl_2^- (เพราะมีอิเล็กตรอนเดี่ยว CN มี 1 อิเล็กตรอนใน σ_z (0.5 คะแนน) และ Cl_2^- มี 1 อิเล็กตรอนใน π^*)

5.2 (3 คะแนน)

5.2.1 ชื่อ IUPAC ของสารประกอบเชิงซ้อน

5.2.2 โครงสร้างที่เป็นไปได้ของไอออนเชิงซ้อนนี้

(1 คะแนน)

5.2.3 Fe ควรใช้ไฮบริดออร์บิทัลแบบ

 $d^2 sp^3$ (ถ้าตอบ $\mathrm{sp}^3\mathrm{d}^2$ ให้ 0.5 คะแนน)

(1 คะแนน)

เฉลยโจทย์ข้อที่ 6 (10 คะแนน)

6.1 ความหนาแน่นของ **rutile TiO2** =
$$\frac{4.25}{}$$
 g/cm³ (0.5 คะแนน)

วิธีคำนวณ (2 คะแนน)

มวล
$$TiO_2 = 47.9 + (2 \times 16.0) = 79.9 \text{ g/mol}$$
 (0.5 คะแนน)
จากรูปหรือข้อมูล $Z = 2$, 1 unit cell ของ rutile TiO_2 มี TiO_2 อยู่ 2 โมเลกุล
คังนั้น มวล rutile TiO_2 ค่อ 1 unit cell = $\frac{79.9 \text{ g/mol} \times 2 \text{ molecules}}{6.02 \times 10^{23} \text{ molecules/mol}}$
= $\frac{26.5 \times 10^{-23} \text{ g}}{6.02 \times 10^{23} \text{ molecules/mol}}$ (0.5 คะแนน)

ปริมาตรของ rutile unit cell = $a \times b \times c$ = $(4.59 \text{ Å}) \times (4.59 \text{ Å}) \times (2.96 \text{ Å})$
= $\frac{62.4 \text{ Å}^3}{153 \text{ mms}}$ (0.5 คะแนน)

ความหนาแน่นของ rutile TiO_2 = $\frac{336}{162 \text{ min}}$
= $\frac{26.5 \times 10^{-23} \text{ g/unit cell}}{(62.4 \times 10^{-30} \text{ m}^3) \times (10^6 \text{ cm}^3/\text{m}^3)}$ (0.5 คะแนน)
= 4.25 g/cm^3

วิธีคำนวณ (1.5 คะแนน)

วิธีคิดแบบเคียวกับ rutile TiO₂ แต่ลำหรับ anatase TiO₂ มี TiO₂ 4 โมเลกุลต่อ 1 unit cell

คังนั้น มวล anatase TiO₂ ต่อ 1 unit cell =
$$\frac{79.9 \text{ g/mol} \times 4 \text{ molecules}}{6.02 \times 10^{23} \text{ molecules/mol}}$$

= $\frac{53.09 \times 10^{-23} \text{ g}}{6.02 \times 10^{23} \text{ molecules/mol}}$ (0.5 คะแนน)

ปริมาตรของ anatase unit cell = $a \times b \times c = (3.78 \text{ Å}) \times (3.78 \text{ Å}) \times (9.51 \text{ Å})$

= $\frac{135.88 \text{ Å}^3}{15$ (0.5 คะแนน)

= $\frac{330}{15$ มาตร

= $\frac{53.09 \times 10^{-23} \text{ g/unit cell}}{(135.88 \times 10^{-30} \text{ m}^3) \times (10^6 \text{ cm}^3/\text{m}^3)}$ (0.5 คะแนน)

= $\frac{3.90 \text{ g/cm}^3}{10}$

ดังนั้น ${
m TiO_2}$ ตัวอย่างมีโครงสร้างเป็น

☐ rutile TiO ₂	☐ anatase TiO ₂	✓ ไม่ใช่ทั้ง rutile และ anatase TiO₂	(0.5 คะแนน
---------------------------	----------------------------	--------------------------------------	------------

วิธีคำนวณ (1 คะแนน)

จาก Bragg's Law:
$$n\lambda = 2d \sin \theta$$
 ระยะห่างที่น้อยที่สุดระหว่างระนาบคือ $n=1$ โดย $\lambda=110\times 10^{-12}$ m, $d=1.35\times 10^{-10}$ m มุมระหว่างรังสีเอกซ์และระนาบผลึก (θ): $\sin \theta = \frac{n\lambda}{2d} = \frac{1\times 110\times 10^{-12}\,\mathrm{m}}{2\times 1.35\times 10^{-10}\,\mathrm{m}} = 0.047$ (0.5 คะแนน)
$$\theta = \sin^{-1}\left(0.407\right)$$
 (0.5 คะแนน)
$$= 24.0 \, ^{\circ}$$

วิธีคิด (3 คะแนน)

ปริมาตรรวมของไอออนใน unit cell = ปริมาตรของ
$$Ca^{2+}$$
 + ปริมาตรของ Ti^{4+} + $(3 \times \text{ปริมาตรของ } O^{2-})$

$$= \frac{4}{3}\pi r_{Ca}^3 + \frac{4}{3}\pi r_{Ti}^3 + \left(3 \times \frac{4}{3}\pi r_O^3\right)$$

$$= \frac{4}{3}\pi (1.06 \text{ Å})^3 + \frac{4}{3}\pi (0.75 \text{ Å})^3 + 4\pi (1.32 \text{ Å})^3 \qquad (0.5 \text{ กะแนน})$$

$$= 4.99 \text{ Å}^3 + 1.77 \text{ Å}^3 + 28.90 \text{ Å}^3 = \underline{35.66 \text{ Å}^3} \qquad (0.5 \text{ กะแนน})$$

จากรูป 1 unit cell มี CaTiO $_3$ 1 โมเลกุล (Z = 1)

(0.5 คะแนน)

มวลของ CaTiO3 ต่อ 1 unit cell

$$= \frac{(1 \text{ molecule}) \times [\text{atomic mass Ca + atomic mass Ti + 3(atomic mass O) g/mol}]}{6.02 \times 10^{23} \text{ molecules/mol}}$$

$$= \frac{(1 \text{ molecule}) \times [40.1 + 47.9 + 3(16.0) \text{ g/mol}]}{6.02 \times 10^{23} \text{ molecules/mol}} = \frac{136.0 \text{ g}}{6.02 \times 10^{23}} = 2.26 \times 10^{-22} \text{ g}$$
 (0.5 คะแนน)

ปริมาตรของ unit cell =
$$\frac{\mathbf{n} \mathbf{36}}{\mathbf{n} \mathbf{7} \mathbf{1} \mathbf{n} \mathbf{n} \mathbf{1} \mathbf{n} \mathbf{1} \mathbf{u} \mathbf{u} \mathbf{u}}$$
 = $\frac{2.26 \times 10^{-22} \, \mathrm{g}}{3.98 \, \mathrm{g/cm}^3}$ = $56.78 \times 10^{-24} \, \mathrm{cm}^3 = \underline{56.78 \, \mathring{A}^3}$ (0.5 คะแนน)

% packing efficiency =
$$\frac{\text{volume of atom}}{\text{volume of unit cell}} \times 100 = \frac{35.66 \text{ Å}^3}{56.78 \text{ Å}^3} \times 100$$
 (0.5 AZIIII)
$$= 62.8 \%$$

เฉลยโจทย์ข้อที่ 7 (7 คะแนน)

7.1 สมการที่คุลแล้ว

7.2
$$k_2 = 0.019$$
 $L \cdot mol^{-1} \cdot s^{-1}$ (0.5 คะแนน) $k_3 = 0.037$ $L \cdot mol^{-1} \cdot s^{-1}$ (0.5 คะแนน) ตอบทศนิยม 3 ตำแหน่ง

วิธีคำนวณ (2.75 คะแนน)

ราคทานาน (2.75 พะแนน)

จากกฎอัตรา
$$R = -\frac{1}{3} \frac{\Delta[BrO^-]}{\Delta t} = \frac{\Delta[BrO_3^-]}{\Delta t} = \frac{1}{2} \frac{\Delta[Br^-]}{\Delta t}$$
 (0.75 พะแนน)

จากโจทย์ ปฏิกิริยานี้เป็นปฏิกิริยาอันดับสองเทียบกับ BrO^-

 $R = -\frac{1}{3} \frac{\Delta[BrO^-]}{\Delta t} = k [BrO^-]^2$

เมื่อเพียนในรูป $-\frac{\Delta[BrO^-]}{\Delta t} = k_1 [BrO^-]^2$ พบว่า $k_1 = 0.056 \, \text{L·mol}^{-1} \cdot \text{s}^{-1}$

เมื่อเพียนในรูป $\frac{\Delta[BrO_3^-]}{\Delta t} = k_2 [BrO^-]^2$ (0.5 พะแนน)

 $\frac{1}{3} (k_1 [BrO^-]^2) = k_2 [BrO^-]^2$

ดังนั้น $k_2 = \frac{1}{3} k_1 = \frac{1}{3} \times 0.056$ (0.5 พะแนน)

 $= 0.019 \, \text{L·mol}^{-1} \cdot \text{s}^{-1}$

เมื่อเพียนในรูป $\frac{\Delta[Br^-]}{\Delta t} = k_3 [BrO^-]^2$

เมื่อเขียนในรูป
$$\frac{\Delta[BrO^-]^2}{\Delta t} = k_3 [BrO^-]^2$$

$$\frac{2}{3} \frac{\Delta[BrO^-]}{\Delta t} = k_3 [BrO^-]^2$$

$$(0.5 กะแนน)$$

$$\frac{2}{3} (k_1 [BrO^-]^2) = k_3 [BrO^-]^2$$

$$k_2 = \frac{2}{3} k_1 = \frac{2}{3} \times 0.056$$

$$(0.5 กะแนน)$$

$$k_3 = \frac{2}{3}k_1 = \frac{2}{3} \times 0.056$$
 (0.5 คะแนน)
= 0.037 L·mol⁻¹·s⁻¹

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 10

วิธีคำนวณ (1.75 คะแนน)

เฉลยโจทย์ข้อที่ 8 (8 คะแนน)

ความเข้มข้นของสารละลาย
$$AgNO_3 = 0.01$$
 mol/L (0.5 คะแนน) ความเข้มข้นของสารละลาย $NH_3 = 0.10$ mol/L (0.5 คะแนน) ความเข้มข้นของสารละลาย $KNO_3 = 0.10$ mol/L (0.5 คะแนน)

ตอบทศนิยม 2 ตำแหน่ง

วิธีคำนวณ (0.75 คะแนน)

ความเข้มข้นของสารละลาย AgNO ₃	=	0.03 mol/L ×	25 mL 75 mL	(0.25 คะแนน)
	=	0.01 mol/L		
ความเข้มข้นของสารละลาย NH ₃	=	$0.30 \text{ mol/L} \times$	25 mL 75 mL	(0.25 คะแนน)
	=	0.10 mol/L		
ความเข้มข้นของสารละลาย KNO3	=	$0.30 \text{ mol/L} \times$	25 mL 75 mL	(0.25 คะแนน)
	=	0.10 mol/L		

$Ag \rightarrow Ag^{+}(x M) + e^{-}$ ปฏิกิริยาครึ่งเซลล์ด้าน A : 8.3 (0.25 คะแนน) x < 0.01 M เพราะใช้ไปในการรวมตัวกับ NH_3 $Ag^+(0.01 M) + e^- \rightarrow Ag$ ความเข้มข้นค้านนี้เปลี่ยนแปลงน้อยมาก ปฏิกิริยาครึ่งเซลล์ด้าน B : (0.25 คะแนน) ถือว่า ความเข้มข้นเท่าเดิม ปฏิกิริยารวม คือ (0.25 คะแนน) $Ag^{+}(0.01 M) \rightarrow Ag^{+}(x M)$ ด้าน A คือ ขั้ว แอโนด (0.25 คะแนน) ด้าน B คือ ขั้ว แคโทค (0.25 คะแนน)

8.4 ความเข้มข้นของ
$$Ag^+$$
 ด้าน $A= \frac{3 \times 10^{-8}}{900} \mod L$ (0.5 คะแนน)

วิธีคำนวณ (1.25 คะแนน)

8.5 ค่าคงที่ของการเกิดสารเชิงซ้อน
$$[{
m Ag}({
m NH}_3)_2]^+ =$$
 $5.2 imes 10^7$ $(0.5 กะแนน)$ ตอบในรูป $a.b imes 10^c$

วิธีคำนวณ (1.75 คะแนน)

$$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$$
เริ่มต้น 0.01 0.10 (0.25 กะแนน)
ทำปฏิกิกิริยาไป 0.01 - x 2(0.01 - x) (0.25 กะแนน)
หลังปฏิกิริยา x 0.10 - 2(0.01 - x) 0.01 - x (0.25 กะแนน)

 $K =$ ค่าคงที่ของการเกิดสารเชิงช้อน $[Ag(NH_3)_2]^+$
 $= \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2}$ (0.5 กะแนน)

 $= \frac{[0.01 - x]}{[x][0.10 - 2(0.01 - x)]^2}$ (0.25 กะแนน)

ในที่นี้ $x = 3 \times 10^{-8} \text{ mol/L}$

คังนั้น $K = \frac{[0.01 - 3 \times 10^{-8}]}{(3 \times 10^{-8})[0.10 - 2(0.01 - 3 \times 10^{-8})]^2}$ (0.25 กะแนน)

 $= 5.2 \times 10^7$

เฉลยโจทย์ข้อที่ 9 (15 คะแนน)

9.1 (5 คะแนน)

$$\Delta E = -370.0 \qquad kJ \qquad (1.0 \text{ neull})$$

วิธีคำนวณ (4 คะแนน)

9.2 (5 คะแนน)

9.2.1
$$\Delta G^{\circ} = 91.8$$
 kJ (1.0 กะแนน)

วิธีคำนวณ (2 คะแนน)

จาก
$$\Delta H^{\circ}_{reaction} = \Delta H^{\circ}_{f(product)} - \Delta H^{\circ}_{f(reactant)}$$

$$= \Delta H^{\circ}_{f} \{NH_{3}(g) + HCl(g)\} - \Delta H^{\circ}_{f} \{NH_{4}Cl(s)\}$$

$$= \{(-46.3) + (-92.3)\} - \{(-315.4)\}$$

$$= 176.8 \text{ kJ} \qquad (0.5 กะแบบ)$$

$$= S^{\circ}_{(product)} - S^{\circ}_{(reactant)}$$

$$= S^{\circ}_{NH_{3}(g)} + HCl(g)\} - S^{\circ}_{NH_{4}Cl(s)}\}$$

$$= (193.0 + 187.0) - (94.6)$$

$$= 285.4 \text{ J/K·mol} \qquad (0.5 กะแบบ)$$

$$= 285.4 \text{ J/K·mol} \qquad (0.5 กะแบบ)$$

$$= (176.8 \text{ kJ}) - (298 \text{ K}) \times \left(285.4 \frac{\text{J}}{\text{K·mol}} \times \frac{1 \text{ kJ}}{1000 \text{ J}}\right) \qquad (1.0 กะแบบ)$$

$$= 91.8 \text{ kJ}$$

เนื่องจาก ΔG° มีค่าเป็นบวก แสคงว่า ปฏิกิริยาเกิดขึ้นเองไม่ได้ ปฏิกิริยาจะเกิดขึ้นได้เองเมื่อ ΔG° มีค่าเป็นถบ

การพิจารณาจะเริ่มต้นจาก $\Delta G^{\circ}=0$

จาก
$$\Delta G^{\rm o} = \Delta H^{\rm o} - T \Delta S^{\rm o}$$
 $0 = \Delta H^{\rm o} - T \Delta S^{\rm o}$ $0 = (176.8 \text{ kJ}) - T \times \left(285.4 \frac{\text{J}}{\text{K} \cdot \text{mol}} \times \frac{1 \text{ kJ}}{1000 \text{ J}}\right)$

9.3 (5 คะแนน)

วิธีคำนวณ (1 คะแนน)

จาก
$$m = \frac{w_2}{w_1} \times \frac{1000}{M_2}$$

$$m = \frac{3.60}{200.0} \times \frac{1000}{180.0}$$

$$= 0.10 \text{ mol/kg}$$

$$\Delta T_f = K_f m$$

$$\Delta T_f = 5.0 - 4.8 = 0.2 \,^{\circ}\text{C}$$

$$0.2 \,^{\circ}\text{C} = K_f \times (0.10 \text{ mol/kg})$$

$$K_f = 2.0 \,^{\circ}\text{C} \cdot \text{kg/mol}$$

$$(0.5 \, \text{กะшии})$$

9.3.2

วิธีคำนวณ (2 คะแนน)

Solution to Problem 10 (12.5 points)

10.1 (3.5 points) If the reagent(s) used is correct, write $\sqrt{ }$ in the correct column, if not, specify the correct reagent(s).

Step	Reagents	Correct	Incorrect and change to	Points (3.5)
A	1. NaHCO ₃		NaOH or K ₂ CO ₃	0.5
	2. HCO ₂ H		CO ₂	0.5
	3. H ₂ O, H ⁺	√		0.25
В	1. NaBH ₄		LiAlH ₄	0.5
	2. H ₂ O, H ⁺	V		0.25
C	CH ₃ OH, H ⁺ , Δ		1. NaOH or K ₂ CO ₃ 2. CH ₃ I	0.25 0.25
D	PCl ₃	√		0.25
E	1. NaCN	√		0.25
	2. H ₂ O, H ⁺		H ₂ , Pd/C or H ₂ , Ni or 1. LiAlH ₄ , 2. H ₂ O, H ⁺	0.5

10.2 (5.5 points) Draw the structures for compounds **A-I** and suggest the suitable reagents **R1** and **R2**.

Compounds/reagents	Structures/reagents	Points (5.5)
A	H ₃ CO	0.5
В	H ₃ CO CO ₂ H	0.5
C	H ₃ CO CO ₂ H	0.5
D	H ₃ CO COCI	0.5
E	H ₃ CO	0.5
F	H ₃ CO	0.5
G	H_3CO NO_2	0.5
Н	H_3CO NH_2	0.5
I	H_3CO $+N_2$	0.5
R1	AlCl ₃	0.5
R2	CuBr	0.5

10.3 (3.5 points) Choose the correct absolute configuration and optical activity for compounds **I** and **II** and draw a dash-wedge notation or staggered conformation (Newman projection) as required for each compound in the boxes.

Cpd	Fischer Projection	Points	Dash-wedge Notation	Points
I	CH_2OH H — $CH=CH_2$ \square R -configuration \square S -configuration	0.5	e.g. HOH ₂ C H	0.5
	Optically ✓ active ☐ inactive	0.25		
Cpd	Fischer Projection	Points	Staggered conformation (in the form of Newman Projection)	Points
II	\square <i>R</i> -configuration $CO_2H \qquad \checkmark S$ -configuration $HOH_2C \qquad CN$	0.5	e.g. CN HO ₂ C CH ₂ OH HOH ₂ C CO ₂ H	
	HO_2C CH_2OH R -configuration S -configuration	0.5	CN or CO ₂ H NC CH ₂ OH HOH ₂ C CN	1.0
	Optically □ active ☑ inactive	0.25	HOH ₂ C CN	

Solution to Problem 11 (12 points)

11.1 (2.5 points) Structures of compounds:

11.2 (1.5 points) The relationships between each pair of compounds are as follows:

11.2.1 (2) and (3) are diastereomers (or anomers) to each other.

11.2.2 (4) and (5) are diastereomers (or anomers) to each other.

11.2.3 (2) and (4) are structural isomers to each other.

11.3 (2 points)

- 11.3.1 (0.5 points) The composition of α -D-fructofuranose (4) and β -D-fructofuranose (5)
 - is \square (4) > (5)
- \checkmark (4) < (5)

11.3.2 (0.5 points) This process is called

mutarotation

11.3.3 (1 points) The mechanism of the interconversion of (1) and (5) is shown below:

$$\begin{array}{c} CH_2OH \\ = O \\ HO H \\ OH \\ OH \\ CH_2OH \end{array}$$

11.4 (1 points) The structure(s) of methyl glycoside (6):

11.5 (5 points)

(0.5 points) The reagent(s) which can be used to differentiate between fructose and glucose

is (are): ☐ phenylhydrazine ☑ Br₂/H₂O ☐ Tollens' reagent

Structures of the products from the reaction of glucose and fructose with the reagents are:

Glucose with:	Fructose with:	
Glucose with: (1) (0.75 points) excess phenylhydrazine ☐ Negative test ☐ Positive test and the product is H C=N-NHPh C=N-NHPh HO-H HO-H HO-H	Fructose with: (0.75 points) excess phenylhydrazine Negative test Positive test and the product is H C=N-NHPh C=N-NHPh HO-H HO-H	
H——OH CH₂OH	H——OH CH ₂ OH	
(2) (0.75 points) Br₂/H₂O ☐ Negative test ☐ Positive test and the product is OH ☐ OH	(0.75 points) Br₂/H₂O ✓ Negative test ☐ Positive test and the product is	
(3) (0.75 points) Tollens' reagent ☐ Negative test ☐ Positive test and the product is ☐ O ☐ O ☐ H — OH ☐ H — OH ☐ H — OH ☐ CH₂OH	(0.75 points) Tollens' reagent ☐ Negative test ☐ Positive test and the product is ☐ O ☐ O ☐ H — OH ☐ H — OH ☐ H — OH ☐ CH ₂ OH	