Ondas Eletromagnéticas

Ouiz#4

Nome: No. USP:

1) 2,5 pontos:

Considere uma linha de transmissão sem perdas de comprimento l=10m, com impedância característica $Z_0=50\Omega$, terminada em uma carga $Z_L=50+j50\Omega$. A frequência de operação é 1MHz. Supondo velocidade de fase u=0.5c (onde c é a velocidade da luz no vácuo), encontre:

- a) O coeficiente de reflexão na carga
- b) A relação de onda estacionária
- c) A impedância de entrada

2) 2,5 pontos:

Considere uma linha de transmissão sem perdas de comprimento l_I =15m e impedância intrínseca Z_{01} =300 Ω . Esta linha deve ser conectada a outra linha de transmissão (também sem perdas) de comprimento l_2 =3m e impedância intrínseca Z_{02} =150 Ω terminada em uma carga Z_L =150 Ω . A frequência de operação é f=50MHz. Observe que o transformador deve ser conectado entre as duas linhas. Velocidade de fase u=3×10 8 m/s. Sua tarefa é:

- a) Projetar uma seção de 1/4 de comprimento de onda (transformador de quarto de onda) para casar as duas linhas para um SWR=1 na linha principal.
- b) Sem o transformador de quarto de onda, quais seriam o SWR e o coeficiente de reflexão (na carga) da linha principal?

3) 2,5 pontos:

Considere uma linha com Z_0 =600 Ω e comprimento de 150m operando a uma frequência de 400kHz. A constante de atenuação é α =2,4×10⁻³ Np/m e a constante de fase é β =0,0212 rad/m. A impedância de carga é Z_L =424,3 \angle 45° Ω . Encontre:

- a) O comprimento da linha em comprimentos de onda
- b) O coeficiente de reflexão na carga
- c) O coeficiente de reflexão na entrada da linha
- d) A impedância de entrada
- e) Para uma tensão na carga $Vs_L=50 \angle 0^\circ V$, encontre Vs e também a posição onde a tensão é máxima e o módulo desta tensão.

4) 2,5 pontos:

Considere as expressões de tensão e corrente em uma linha de transmissão sem perdas com comprimento l = 2 m como dadas abaixo.

$$V(z,t) = 10\cos(2\pi \times 10^8 t + \pi z) + 20\cos\left(2\pi \times 10^8 t - \pi z + \frac{\pi}{6}\right)$$
$$I(z,t) = 0.4\cos\left(2\pi \times 10^8 t - \pi z + \frac{\pi}{6}\right) - 0.2\cos\left(2\pi \times 10^8 t + \pi z\right)$$

Pede-se

- a) O coeficiente de reflexão na carga sabendo que $\Gamma_{\rm L} = \frac{{\rm V}^-}{{\rm V}^+}$
- b) A impedância característica da linha
- c) A impedância da carga
- d) A porcentagem de potência média entregue à carga
- e) O VSWR da linha