

(11) **EP 1 064 951 B1**

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 22.08.2007 Bulletin 2007/34

(51) Int Cl.: **A61K** 47/48^(2006.01)

(21) Application number: 00113115.0

(22) Date of filing: 28.06.2000

(54) Erythropoietin derivatives

Erythropoietin Derivate Dérivés de l' Erythropoietine

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

(30) Priority: **02.07.1999 US 142254 23.08.1999 US 150225**

31.08.1999 US 151548 17.11.1999 US 166151

(43) Date of publication of application: 03.01.2001 Bulletin 2001/01

(60) Divisional application: **07010693.5**

(73) Proprietor: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH)

(72) Inventor: Bailon, Pascal Sebastian Florham Park, New Jersey 07932 (US)

(74) Representative: Witte, Hubert et al Grenzacherstrasse, 124 4070 Basel (CH)

(56) References cited:

EP-A- 0 640 619 WO-A-00/32772 WO-A-01/02017 WO-A-01/68141 WO-A-01/76640 WO-A-01/87329 WO-A-99/11781

EP 1 064 951 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

30

40

45

50

55

BACKGROUND OF THE INVENTION

[0001] Erythropoiesis is the production of red blood cells, which occurs to offset cell destruction. Erythropoiesis is a controlled physiological mechanism that enables sufficient red blood cells to be available for proper tissue oxygenation. Naturally occurring human erythropoietin (hEPO) is produced in the kidney and is the humoral plasma factor which stimulates red blood cell production (Carnot, P and Deflandre, C (1906) C.R. Acad. Sci. 143: 432; Erslev, AJ (1953 Blood 8: 349; Reissmann, KR (1950) Blood 5: 372; Jacobson, LO, Goldwasser, E, Freid, W and Pizak, LF (1957) Nature 179: 6331-4). Naturally occurring EPO stimulates the division and differentiation of committed erythroid progenitors in the bone marrow and exerts its biological activity by binding to receptors on erythroid precursors (Krantz, BS (1991) Blood 77: 419).

[0002] Erythropoietin has been manufactured biosynthetically using recombinant DNA technology (Egrie, JC, Strickland, TW, Lane, J et al. (1986) Immunobiol. 72: 213-224) and is the product of a cloned human EPO gene inserted into and expressed in the ovarian tissue cells of the Chinese hamster (CHO cells). The primary structure of the predominant, fully processed form of hEPO is illustrated in SEQ ID NO:1. There are two disulfide bridges between Cys⁷-Cys¹⁶¹ and Cys²⁹-Cys³³. The molecular weight of the polypeptide chain of EPO without the sugar moieties is 18,236 Da. In the intact EPO molecule, approximately 40% of the molecular weight are accounted for by the carbohydrate groups that glycosylate the protein at glycosylation sites on the protein (Sasaki, H, Bothner, B, Dell, A and Fukuda, M (1987) J. Biol. Chem. 262: 12059).

[0003] Because human erythropoietin is essential in red blood cell formation, the hormone is useful in the treatment of blood disorders characterized by low or defective red blood cell production. Clinically, EPO is used in the treatment of anemia in chronic renal failure patients (CRF) (Eschbach, JW, Egri, JC, Downing, MR et al. (1987) NEJM 316: 73-78; Eschbach, JW, Abdulhadi, MH, Browne, JK et al. (1989) Ann. Intern. Med. 111: 992; Egrie, JC, Eschbach, JW, McGuire, T, Adamson, JW (1988) Kidney Intl. 33: 262; Lim, VS, Degowin, RL, Zavala, D et al. (1989) Ann. Intern. Med. 110: 108-114) and in AIDS and cancer patients undergoing chemotherapy (Danna, RP, Rudnick, SA, Abels, RI In: MB, Garnick, ed. Erythropoietin in Clinical Applications-An International Perspective. New York, NY: Marcel Dekker; 1990: p. 301-324). However, the bioavailability of commercially available protein therapeutics such as EPO is limited by their short plasma half-life and susceptibility to protease degradation. These shortcomings prevent them from attaining maximum clinical potency.

[0004] WO 99/11781 describes polypeptides having part or all of the primary structural conformation and biological property of erythropoietin and having an improved in vivo half-life and biological activity due to a modified glycosylation profile.

35 SUMMARY OF THE INVENTION

[0005] This invention provides an erythropoietin conjugate, said conjugate comprising an erythropoietin glycoprotein having at least one free amino group and having the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and analogs thereof which have sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to "n" poly(ethylene glycol) groups of the formula - CO-(CH₂)_x-(OCH₂CH₂)_m-OR with the -CO (i.e. carbonyl) of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein R is lower alkyl; x is 2 or 3; m is from about 450 to about 900; n is from 1 to 3; and n and m are chosen so that the molecular weight of the conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons. This invention further provides compositions containing conjugates described herein in which the percentage of conjugates in the composition in which n is 1 is at least ninety percent.

[0006] Compared to unmodified EPO (i.e., EPO without a PEG attached) and conventional PEG-EPO conjugates, the present conjugates have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity *in vivo*. The conjugates of this invention have the same uses as EPO. In particular, the conjugates of this invention are useful to treat patients by stimulating the division and differentiation of committed erythroid progenitors

DETAILED DESCRIPTION OF THE INVENTION

in the bone marrow in the same way EPO is used to treat patients.

[0007] This invention provides conjugates, said conjugates comprising an erythropoietin glycoprotein having at least one free amino group and having the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said

glycoprotein being covalently linked to "n" poly(ethylene glycol) groups of the formula $-CO-(CH_2)_x-(OCH_2CH_2)_m-OR$ with the -CO (i.e. carbonyl) of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein R is C_1-C_6 -alkyl; x is 2 or 3; m is from about 450 to about 900; n is from 1 to 3; and n and m are chosen so that the molecular weight of the conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons.

[0008] It has been found that the conjugates of this invention can be used in the same manner as unmodified EPO. However, the conjugates of this invention have an increased circulating half-life and plasma residence time, decreased clearance, and increased clinical activity *in vivo*. Because of these improved properties, the conjugates of this invention can be administered once weekly instead of the three times weekly for unmodified EPO. Decreased frequency of administration is expected to result in improved patient compliance leading to improved treatment outcomes, as well as improved patient quality of life. Compared to conventional conjugates of EPO linked to poly(ethylene glycol) it has been found that conjugates having the molecular weight and linker structure of the conjugates of this invention have an improved potency, stability, AUC, circulating half-life, and cost of goods profile.

10

15

20

25

30

35

40

45

50

55

[0009] The conjugates in accordance of this invention can be administered in a therapeutically effective amount to patients in the same way EPO is administered. The therapeutically effective amount is that amount of conjugate necessary for the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells. The exact amount of conjugate is a matter of preference subject to such factors as the exact type of condition being treated, the condition of the patient being treated, as well as the other ingredients in the composition. For example, 0.01 to 10 µg per kg body weight, preferably 0.1 to 1 µg per kg body weight, may be administered e.g. once weekly.

[0010] The pharmaceutical compositions containing the conjugate may be formulated at a strength effective for administration by various means to a human patient experiencing blood disorders characterized by low or defective red blood cell production. Average therapeutically effective amounts of the conjugate may vary and in particular should be based upon the recommendations and prescription of a qualified physician.

[0011] The erythropoietin glycoprotein products prepared in accordance with this invention may be prepared in pharmaceutical compositions suitable for injection with a pharmaceutically acceptable carrier or vehicle by methods known in the art. For example, appropriate compositions have been described in WO97/09996, WO97/40850, WO98/58660, and WO99/07401. Among the preferred pharmaceutically acceptable carriers for formulating the products of the invention are human serum albumin, human plasma proteins, etc. The compounds of the present invention may be formulated in 10 mM sodium/potassium phosphate buffer at pH 7 containing a tonicity agent, e.g. 132 mM sodium chloride. Optionally the pharmaceutical composition may contain a preservative. The pharmaceutical composition may contain different amounts of erythropoietin, e.g. 10 - 1000 μ g/ml, e.g. 50 μ g or 400 μ g.

[0012] The term "erythropoietin" or "EPO" refers to a glycoprotein, having the amino acid sequence set out in (SEQ ID NO: 1) or (SEQ ID NO: 2) or an amino acid sequence substantially homologous thereto, whose biological properties relate to the stimulation of red blood cell production and the stimulation of the division and differentiation of committed erythroid progenitors in the bone marrow. As used herein, these terms include such proteins modified deliberately, as for example, by site directed mutagenesis or accidentally through mutations. These terms also include analogs having from 1 to 6 additional sites for glycosylation, analogs having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site, and analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. These terms include both natural and recombinantly produced human erythropoietin.

[0013] The erythropoietin conjugates of this invention can be represented by Formula 1:

$$P-[NHCO-(CH2)x-(OCH2CH2)m-OR]n (I)$$

wherein x, m, n and R are as above. In Formula I, P is the residue of an erythropoietin glycoprotein described herein, (i.e. without the amino group or amino groups which form an amide linkage with the carbonyl shown in Formula I), having the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells. [0014] In a preferred embodiment of the present invention R is methyl. Preferably, m is from about 650 to about 750 and n is preferably 1.

[0015] In the most preferred embodiment of the present invention R is methyl, m is from about 650 to about 750, and n is 1, i.e. the conjugate as defined above having the formula

wherein m is from 650 to 750, n is 1 and P is as defined above. Preferably m has an average of about 680.

[0016] Preferably, the glycoprotein of the conjugates as defined above is a human erythropoietin. Human erythropoietin and analogous proteins as defined above can be expressed by endogenous gene activation. Preferred human erythropoietin glycoproteins are those of SEQ ID NO:1 and SEQ ID NO:2, most preferably those of SEQ ID NO:1.

[0017] Further, P may be selected from the group consisting of residues of human erythropoietin and analogs thereof

having from 1 to 6 additional sites for glycosylation. As set out in detail below, the preparation and purification of EPO are well known in the art. By EPO is meant the natural or recombinant protein, preferably human, as obtained from any conventional source such as tissues, protein synthesis, cell culture with natural or recombinant cells. Any protein having the activity of EPO, such as muteins or otherwise modified proteins, is encompassed. Recombinant EPO may be prepared via expression in CHO-, BHK- or HeLa cell lines, by recombinant DNA technology or by endogenous gene activation. Expression of proteins, including EPO, by endogenous gene activation is well known in the art and is disclosed, for example in U.S. Patents Nos. 5,733,761, 5,641,670, and 5,733,746, and international patent publication Nos. WO 93/09222, WO 94/12650, WO 95/31560, WO 90/11354, WO 91/06667 and WO 91/09955. The preferred EPO species for the preparation of erythropoietin glycoprotein products are human EPO species. More preferably, the EPO species is the human EPO having the amino acid sequence set out in SEQ ID NO:1 or SEQ ID NO:2, more preferably the amino acid sequence SEQ ID NO:1.

[0018] In an embodiment, P may be the residue of a glycoprotein analog having from 1 to 6 additional sites for glycosylation. Glycosylation of a protein, with one or more oligosaccharide groups, occurs at specific locations along a polypeptide backbone and greatly affects the physical properties of the protein such as protein stability, secretion, subcellular localization, and biological activity. Glycosylation is usually of two types. O-linked oligosaccharides are attached to serine or threonine residues and N-linked oligosaccharides are attached to asparagine residues. One type of oligosaccharide found on both N-linked and O-linked oligosaccharides is N-acetylneuraminic acid (sialic acid), which is a family of amino sugars containing 9 or more carbon atoms. Sialic acid is usually the terminal residue on both N-linked and O-linked oligosaccharides and, because it bears a negative charge, confers acidic properties to the glycoprotein. Human erythropoietin, having 165 amino acids, contains three N-linked and one O-linked oligosaccharide chains which comprise about 40% of the total molecular weight of the glycoprotein. N-linked glycosylation occurs at asparagine residues located at positions 24, 38, and 83 and O-linked glycosylation occurs at a serine residue located at position 126. The oligosaccharide chains are modified with terminal sialic acid residues. Enzymatic removal of all sialic acid residues from the glycosylated erythropoietin results in loss of *in vivo* activity but not *in vitro* activity because sialylation of erythropoietin prevents its binding, and subsequent clearance, by hepatic binding protein.

[0019] The glycoproteins of the present invention include analogs of human erythropoietin with one or more changes in the amino acid sequence of human erythropoietin which result in an increase in the number of sites for sialic acid attachment. These glycoprotein analogs may be generated by site-directed mutagenesis having additions, deletions, or substitutions of amino acid residues that increase or alter sites that are available for glycosylation. Glycoprotein analogs having levels of sialic acid greater than those found in human erythropoietin are generated by adding glycosylation sites which do not perturb the secondary or tertiary conformation required for biological activity. The glycoproteins of the present invention also include analogs having increased levels of carbohydrate attachment at a glycosylation site which usually involve the substitution of one or more amino acids in close proximity to an N-linked or O-linked site. The glycoproteins of the present invention also include analogs having one or more amino acids extending from the carboxy terminal end of erythropoietin and providing at least one additional carbohydrate site. The glycoproteins of the present invention also include analogs having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. Such a rearrangement of glycosylation site involves the deletion of one or more glycosylation sites in human erythropoietin and the addition of one or more non-naturally occurring glycosylation sites. Increasing the number of carbohydrate chains on erythropoietin, and therefore the number of sialic acids per erythropoietin molecules may confer advantageous properties such as increased solubility, greater resistance to proteolysis, reduced immunogenecity, increased serum half-life, and increased biological activity. Erythropoietin analogs with additional glycosylation sites are disclosed in more detail in European Patent Application 640 619, to Elliot published March 1, 1995.

[0020] In a preferred embodiment, the glycoproteins of the present invention comprise an amino acid sequence which includes at least one additional site for glycosylation such as, but not limited to, erythropoietins comprising the sequence of human erythropoietin modified by a modification selected from the following:

```
Asn<sup>30</sup>Thr<sup>32</sup>;
Asn<sup>51</sup> Thr<sup>53</sup>,
Asn<sup>57</sup>Thr<sup>59</sup>;

50 Asn<sup>69</sup>;
Asn<sup>69</sup>Thr<sup>71</sup>;
Ser<sup>68</sup>Asn<sup>69</sup>Thr<sup>71</sup>;
Val<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>;
Ser<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>;
Ser<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>;
Ser<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>Thr<sup>92</sup>;
Ser<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>Ala<sup>162</sup>;
Asn<sup>69</sup>Thr<sup>71</sup>Ser<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>;
```

10

15

30

40

Asn³⁰Thr³²Val⁸⁷Asn⁸⁸Thr⁹⁰; Asn⁸⁹Ile⁹⁰Thr⁹¹; Ser⁸⁷Asn⁸⁹Ile⁹⁰Thr⁹¹; Asn¹³⁶Thr¹³⁸; Asn¹³⁸Thr¹⁴⁰; Thr¹²⁵; and Pro¹²⁴Thr¹²⁵.

10

30

35

40

45

50

55

[0021] The notation used herein for modification of amino acid sequence means that the position(s) of the corresponding unmodified protein (e.g. hEPO of SEQ ID NO:1 or SEQ ID NO:2) indicated by the superscripted number(s) is changed to the amino acid(s) that immediately precede the respective superscripted number(s).

[0022] The glycoprotein may also be an analog having at least one additional amino acid at the carboxy terminal end of the glycoprotein, wherein the additional amino acid includes at least one glycosylation site, i.e. the conjugate as defined above also refers to a compound wherein the glycoprotein has a sequence comprising the sequence of human erythropoietin and a second sequence at the carboxy terminus of the human erythropoietin sequence, wherein the second sequence contains at least one glycosylation site. The additional amino acid may comprise a peptide fragment derived from the carboxy terminal end of human chorionic gonadotropin. Preferably, the glycoprotein is an analog selected from the group consisting of (a) human erythropoietin having the amino acid sequence, Ser Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln (SEQ ID NO:3), extending from the carboxy terminus; (b) the analog in (a) further comprising Ser⁸⁷ Asn⁸⁸ Thr⁹⁰ EPO; and (c) the analog in (a) further comprising Asn³⁰ Thr³² Val⁸⁷ Asn⁸⁸ Thr⁹⁰ EPO.

[0023] The glycoprotein may also be an analog having an amino acid sequence which includes a rearrangement of at least one site for glycosylation. The rearrangement may comprise a deletion of any of the N-linked carbohydrate sites in human erythropoietin and an addition of an N-linked carbohydrate site at position 88 of the amino acid sequence of human erythropoietin. Preferably, the glycoprotein is an analog selected from the group consisting of Gln²⁴ Ser⁸⁷ Asn⁸⁸ Thr⁹⁰ EPO; Gln³⁸ Ser⁸⁷ Asn⁸⁸ Thr⁹⁰ EPO; and Gln⁸³ Ser⁸⁷ Asn⁸⁸ Thr⁹⁰ EPO.

[0024] As used herein, "lower alkyl" means a linear or branched alkyl group having from one to six carbon atoms. Examples of lower alkyl groups include methyl, ethyl and isopropyl. In accordance with this invention, R is any lower alkyl. Conjugates in which R is methyl are preferred.

[0025] The symbol "m" represents the number of ethylene oxide residues (OCH₂CH₂) in the poly(ethylene oxide) group. A single PEG subunit of ethylene oxide has a molecular weight of about 44 daltons. Thus, the molecular weight of the conjugate (excluding the molecular weight of the EPO) depends on the number "m". In the conjugates of this invention "m" is from about 450 to about 900 (corresponding to a molecular weight of about 20 kDa to about 40 kDa), preferably from about 650 to about 750 (corresponding to a molecular weight of about 30 kDa). The number m is selected such that the resulting conjugate of this invention has a physiological activity comparable to unmodified EPO, which activity may represent the same as, more than, or a fraction of the corresponding activity of unmodified EPO. A molecular weight of "about" a certain number means that it is within a reasonable range of that number as determined by conventional analytical techniques. The number "m" is selected so that the molecular weight of each poly(ethylene glycol) group covalently linked to the erythropoietin glycoprotein is from about 20kDa to about 40kDa, and is preferably about 30kDa. [0026] In the conjugates of this invention, the number "n is the number of polyethylene glycol groups covalently bound to free amino groups (including ε-amino groups of a lysine amino acid and/or the amino-terminal amino group) of an erythropoietin protein *via* amide linkage(s). A conjugate of this invention may have one, two, or three PEG groups per molecule of EPO. "n" is an integer ranging from 1 to 3, preferably "n" is 1 or 2, and more preferably "n" is 1.

[0027] The compound of Formula I can be prepared from the known polymeric material:

$$RO(CH_2CH_2O)_m(CH_2)_xCOON$$
(II)

in which R and m are as described above, by condensing the compound of Formula II with the erythropoietin glycoprotein. Compounds of Formula II in which x is 3 are alpha-lower alkoxy, butyric acid succinimidyl esters of poly(ethylene glycol) (lower alkoxy-PEG-SBA). Compounds of Formula II in which x is 2 are alpha-lower alkoxy, propionic acid succinimidyl esters of poly(ethylene glycol) (lower alkoxy-PEG-SPA). Any conventional method of reacting an activated ester with an amine to form an amide can be utilized. In the reaction described above, the exemplified succinimidyl ester is a

leaving group causing the amide formation. The use of succinimidyl esters such as the compounds of formula II to produce conjugates with proteins are disclosed in U.S. Patent No. 5,672,662, issued September 30, 1997 (Harris, et al.). **[0028]** Human EPO contains nine free amino groups, the amino-terminal amino group plus the ε -amino groups of 8 lysine residues. When the pegylation reagent was combined with a SBA compound of Formula II, it has been found that at pH 7.5, a protein:PEG ratio of 1:3, and a reaction temperature of from 20-25°C, a mixture of mono-, di-, and trace amounts of the tri-pegylated species were produced. When the pegylation reagent was a SPA compound of Formula II, at similar conditions except that the protein:PEG ratio was 1:2, primarily the mono-pegylated species is produced. The pegylated EPO can be administered as a mixture, or as the cation exchange chromatography separated different pegylated species. By manipulating the reaction conditions (e.g., ratio of reagents, pH, temperature, protein concentration, time of reaction etc.), the relative amounts of the different pegylated species can be varied.

[0029] Human erythropoietin (EPO) is a human glycoprotein which stimulates the formation of erythrocytes. Its preparation and therapeutic application are described in detail for example in U.S. Patent Nos. 5,547,933 and 5,621,080, EP-B 0 148 605, Huang, S.L., Proc. Natl. Acad. Sci. USA (1984) 2708-2712, EP-B 0 205 564, EP-B 0 209 539 and EP-B 0 411 678 as well as Lai, P.H. et al., J. Biol. Chem. 261 (1986) 3116-3121, an Sasaki, H. et al., J. Biol. Chem. 262 (1987) 12059-12076. Erythropoietin for therapeutic uses may be produced by recombinant means (EP-B 0 148 605, EP-B 0 209 539 and Egrie, J.C., Strickland, T.W., Lane, J. et al. (1986) Immunobiol. 72: 213-224).

10

30

35

40

45

50

55

[0030] Methods for the expression and preparation of erythropoietin in serum free medium are described for example in WO 96/35718, to Burg published 14 November 1996, and in European Patent Publication No. 513 738, to Koch published 12 June 1992. In addition to the publications mentioned above, it is known that a serum-free fermentation of recombinant CHO cells which contain an EPO gene can be carried out. Such methods are described for example in EPA 0 513 738, EP-A 0 267 678 and in a general form by Kawamoto, T. et al., Analytical Biochem. 130 (1983) 445-453, EP-A 0 248 656, Kowar, J. and Franek, F., Methods in Enzymology 421 (1986) 277-292, Bavister, B., Expcology 271 (1981) 45-51, EP-A 0 481 791, EP-A 0 307 247, EP-A 0 343 635, WO 88/00967.

[0031] In EP-A 0 267 678 an ion exchange chromatography on S-Sepharose, a preparative reverse phase HPLC on a C_8 column and a gel filtration chromatography are described for the purification of EPO produced in serum-free culture after dialysis. In this connection the gel filtration chromatography step can be replaced by ion exchange chromatography on S-Sepharose fast flow. It is also proposed that a dye chromatography on a Blue Trisacryl column be carried out before the ion exchange chromatography.

[0032] A process for the purification of recombinant EPO is described by Nobuo, I. et al., J. Biochem. 107 (1990) 352-359. In this process EPO is treated however with a solution of Tween[®] 20, phenylmethylsulfonyl fluoride, ethylmale-imide, pepstatin A, copper sulfate and oxamic acid prior to the purification steps. Publications, including WO 96/35718, to Burg published 14 November 1996, discloses a process for preparing erythropoietin in a serum free fermentation process (EPOsf).

[0033] The specific activity of EPO or EPO conjugates in accordance with this invention can be determined by various assays known in the art. The biological activity of the purified EPO proteins of this invention are such that administration of the EPO protein by injection to human patients results in bone marrow cells increasing production of reticulocytes and red blood cells compared to non-injected or control groups of subjects. The biological activity of the EPO proteins, or fragments thereof, obtained and purified in accordance with this invention can be tested by methods according to Annable, et al., Bull. Wld. Hlth. Org. (1972) 47: 99-112 and Pharm. Europa Spec. Issue Erythropoietin BRP Bio 1997 (2). Another biological assay for determining the activity of EPO protein, the normocythaemic mouse assay, is described in Example 4.

[0034] This invention provides a composition comprised of conjugates as described above. A composition containing at least ninety percent mono-PEG conjugates, i.e. in which n is 1, can be prepared as shown in Example 5. Usually mono-PEG conjugates of erythropoietin glycoproteins are desirable because they tend to have higher activity than di-PEG conjugates.. The percentage of mono-PEG conjugates as well as the ratio of mono-and di-PEG species can be controlled by pooling broader fractions around the elution peak to decrease the percentage of mono-PEG or narrower fractions to increase the percentage of mono-PEG in the composition. About ninety percent mono-PEG conjugates is a good balance of yield and activity. Sometimes compositions in which, for example, at least ninety-two percent or at least ninety-six percent of the conjugates are mono-PEG species (n equals 1)may be desired. In an embodiment of this invention the percentage of conjugates where n is 1 is from ninety percent to ninety-six percent.

[0035] The invention also refers to the corresponding pharmaceutical compositions comprising a conjugate or a composition as described above and a pharmaceutically acceptable excipient.

[0036] The conjugates and compositions of the present invention are especially useful for the preparation of medicaments for the treatment or prophylaxis of diseases correlated with anemia in chronic renal failure patients (CRF), AIDS and for the treatment of cancer patients undergoing chemotherapy.

[0037] An additional embodiment of the present invention refers to a method for the prophylactic and/or therapeutic treatment of disorders involving anemia in chronic renal failure patients (CRF), AIDS and cancer patients undergoing chemotherapy comprising the step of administering to a patient a composition as described above.

[0038] Further, the invention relates to a process for the preparation of compounds as described above which process comprising condensing the compound of Formula II

$$RO(CH_{2}CH_{2}O)_{m}(CH_{2})_{x}COON$$
(II)

with a erythropoietin glycoprotein and in which R, m and x are as defined above.

[0039] The invention refers also to compounds as defined above for the treatment of diseases which are associated with anemia in chronic renal failure patients (CRF), AIDS and cancer patients undergoing chemotherapy.

[0040] The invention will be better understood by reference to the following examples which illustrate but do not limit the invention described herein.

EXAMPLES

15

20

30

40

50

55

EXAMPLE 1: Fermentation And Purification Of Human EPO

a) Inoculum Preparation and Fermentation

[0041] One vial of the Working Cell Bank, originating from an EPO-producing CHO cell line (ATCC CRL8695, disclosed in EP 411 678 (Genetics Institute) can be used) is taken from the gas phase of the liquid nitrogen storage tank. The cells are transferred into glass spinner flasks and cultivated in a hydrogen carbonate-buffered medium in a humidified CO₂ incubator. Typical serum free media used for the inocolum preparation and fermentation are disclosed in European Patent Application 513 738, to Koch published 12 June 1992, or WO 96/35718, to Burg published 14 November 1996, for example contain as medium DMEM/F12 (e.g. JRH Biosciences/Hazleton Biologics, Denver, US, order No. 57-736) and additionally sodium hydrogencarbonate, L+glutamine, D+glucose, recombinant insulin, sodium selenite, diaminobutane, hydrocortisone, iron(II) sulfate, asparagine, aspartic acid, serine and a stabilizer for mammalian cells such as e.g. polyvinyl alcohol, methyl cellulose, polydextran, polyethylene glycol, Pluronic F68, plasma expander polygelin (HEMACCEL®) or polyvinyl pyrrolidone (WO 96/35718).

[0042] The cultures are microscopically checked for the absence of contaminating microorganisms, and the cell densities are determined. These tests are performed at each splitting step.

[0043] After the initial growth period, the cell culture is diluted with fresh medium to the starting cell density and undergoes another growth cycle. This procedure is repeated until a culture volume of approximately 21 per glass spinner flask has been obtained. After approx. 12 doublings 1 to 5 liter of this culture is available which then is used as inoculum for the 101 inoculum fermenter.

[0044] After 3 - 5 days, the culture in the 101 fermenter can be used as inoculum for the 100 I inoculum fermenter.
[0045] After additional 3 - 5 days of cultivation, the culture in the 100 I fermenter can be used as inoculum for the 1000 I production fermenter.

b) Harvesting and Cell Separation

[0046] A batch refeed process is used, i.e. when the desired cell density is reached, approx. 80 % of the culture is harvested. The remaining culture is replenished with fresh culture medium and cultivated until the next harvest. One production run consists of a maximum of 10 subsequent harvests: 9 partial harvests and 1 overall harvest at the end of fermentation. Harvesting takes place every 3 - 4 days.

[0047] The determined harvest volume is transferred into a cooled vessel. The cells are removed by centrifugation or filtration and discarded. The EPO containing supernatant of the centrifugation step is in-line filtered and collected in a second cooled vessel. Each harvest is processed separately during purification.

[0048] A typical process for the purification of EPO-protein is disclosed in WO 96/35718, to Burg published 14 November 1996. The purification process is explained in the following.

a) Blue Sepharose Chromatography

[0049] Blue Sepharose (Pharmacia) consists of Sepharose beads to the surface of which the Cibacron blue dye is covalently bound. Since EPO binds more strongly to Blue Sepharose than most non-proteinaceous contaminants, some proteinaceous impurities and PVA, EPO can be enriched in this step. The elution of the Blue Sepharose column is performed by increasing the salt concentration as well as the pH.

[0050] The column is filled with 80 - 100 l of Blue Sepharose, regenerated with NaOH and equilibrated with equilibration buffer (sodium/ calcium chloride and sodium acetate). The acidified and filtered fermenter supernatant is loaded. After completion of the loading, the column is washed first with a buffer similar to the equilibration buffer containing a higher sodium chloride concentration and consecutively with a Tris-base buffer. The product is eluted with a Tris-base buffer and collected in a single fraction in accordance with the master elution profile.

b) Butyl Toyopearl Chromatography

20

30

35

45

55

[0051] The Butyl Toyopearl 650 C (Toso Haas) is a polystyrene based matrix to which aliphatic butyl-residues are covalently coupled. Since EPO binds more strongly to this gel than most of the impurities and PVA, it has to be eluted with a buffer containing isopropanol.

[0052] The column is packed with 30 - 401 of Butyl Toyopearl 650 C, regenerated with NaOH, washed with a Trisbase buffer and equilibrated with a Trisbase buffer containing isopropanol.

[0053] The Blue Sepharose eluate is adjusted to the concentration of isopropanol in the column equilibration buffer and loaded onto the column. Then the column is washed with equilibration buffer with increased isopropanol concentration. The product is eluted with elution buffer (Tris-base buffer with high isopropanol content) and collected in a single fraction in accordance with the master elution profile.

c) Hydroxyapatite Ultrogel Chromatography

[0054] The Hydroxyapatite Ultrogel (Biosepra) consists of hydroxyapatite which is incorporated in an agarose matrix to improve the mechanical properties. EPO has a low affinity to hydroxyapatite and can therefore be eluted at lower phosphate concentrations than protein impurities.

[0055] The column is filled with 30 - 40 I of Hydroxyapatite Ultrogel and regenerated with a potassium phosphate/calcium chloride buffer and NaOH followed by a Tris-base buffer. Then it is equilibrated with a Tris-base buffer containing a low amount of isopropanol and sodium chloride.

[0056] The EPO containing eluate of the Butyl Toyopearl chromatography is loaded onto the column. Subsequently the column is washed with equilibration buffer and a Tris-base buffer without isopropanol and sodium chloride. The product is eluted with a Tris-base buffer containing a low concentration of potassium phosphate and collected in a single fraction in accordance with the master elution profile.

d) Reversed Phase HPLC on Vydac C4

40 [0057] The RP-HPLC material Vydac C4 (Vydac)consists of silica gel particles, the surfaces of which carry C4-alkyl chains. The separation of EPO from the proteinaceous impurities is based on differences in the strength of hydrophobic interactions. Elution is performed with an acetonitrile gradient in diluted trifluoroacetic acid.

[0058] Preparative HPLC is performed using a stainless steel column (filled with 2.8 to 3.2 liter of Vydac C4 silicagel). The Hydroxyapatite Ultrogel eluate is acidified by adding trifluoro-acetic acid and loaded onto the Vydac C4 column. For washing and elution an acetonitrile gradient in diluted trifluoroacetic acid is used. Fractions are collected and immediately neutralized with phosphate buffer. The EPO fractions which are within the IPC limits are pooled.

e) DEAE Sepharose Chromatography

[0059] The DEAE Sepharose (Pharmacia) material consists of diethylaminoethyl (DEAE) - groups which are covalently bound to the surface of Sepharose beads. The binding of EPO to the DEAE groups is mediated by ionic interactions. Acetonitrile and trifluoroacetic acid pass through the column without being retained. After these substances have been washed off, trace impurities are removed by washing the column with acetate buffer at a low pH. Then the column is washed with neutral phosphate buffer and EPO is eluted with a buffer with increased ionic strength.

[0060] The column is packed with DEAE Sepharose fast flow. The column volume is adjusted to assure an EPO load in the range of 3 - 10 mg EPO/ml gel. The column is washed with water and equilibration buffer (sodium/ potassium phosphate). The pooled fractions of the HPLC eluate are loaded and the column is washed with equilibration buffer. Then the column is washed with washing buffer (sodium acetate buffer) followed by washing with equilibration buffer.

Subsequently, EPO is eluted from the column with elution buffer (sodium chloride, sodium/ potassium phosphate) and collected in a single fraction in accordance with the master elution profile.

[0061] The eluate of the DEAE Sepharose column is adjusted to the specified conductivity. The resulting drug substance is sterile filtered into Teflon bottles and stored at -70 °C.

EXAMPLE 2: Pegylation of EPO with mPEG-SBA

[0062] EPO purified in accordance with the serum free procedure of Example 1 (EPOsf) was homogeneous as determined by analytical methods and showed the typical isoform pattern consisting of 8 isoforms. It had a specific biological activity of 190,000 IU/mg as determined by the normocythaemic mouse assay. The pegylation reagent used was a methoxy-PEG-SBA, which is a compound of Formula II in which R is methyl; x is 3; and m is from 650 to 750 (average about 680, corresponding to an average molecular weight of about 30 kDa).

Pegylation Reaction

[0063] To one hundred milligrams of EPOsf (9.71 ml of a 10.3 mg/ml EPOsf stock, $5.48~\mu$ mol) 10 ml of 0.1 M potassium phosphate buffer, pH, 7.5 containing 506 mg of 30kDa methoxy-PEG-SBA (16.5 μ mol) (obtained from Shearwater Polymers, Inc., Huntsville, Alabama) was added and mixed for 2h at room temperature (20-23 °C). The final protein concentration was 5 mg/ml and the protein:PEG reagent ratio was 1:3. After two hours, the reaction was stopped by adjusting the pH to 4.5 with glacial acetic acid and stored at -20 °C, until ready for purification.

Purification

[0064]

5

10

15

20

25

30

35

40

45

50

- 1. Conjugate Mixture: Approximately 28 ml of SP-SEPHAROSE FF (sulfo-propyl cation exchange resin) was packed into an AMICON glass column (2.2 x 7.5 cm) and equilibrated with 20 mM acetate buffer pH, 4.5 at a flowrate of 150 ml/h. Six milliliters of the reaction mixture containing 30 mg protein was diluted 5-fold with the equilibration buffer and applied onto the column. Unadsorbed materials were washed away with the buffer and the adsorbed PEG conjugate mixture was eluted from the column with 0.175 M NaCl in the equilibration buffer. Unmodified EPOsf still remaining on the column was eluted with 750 mM NaCl. Column was reequilibrated in the starting buffer. Samples were analyzed by SDS-PAGE and their degree of pegylation were determined. It was found that the 0.175M NaCl eluate contained, mono- as well as di- and trace amounts of the tri-pegylated species, whereas the 750 mM NaCl eluate contained unmodified EPOsf.
- 2. **Di-PEG and Mono-PEG-EPOsf:** The purified conjugate mixture eluted from the column in the previous step was diluted 4-fold with the buffer and reapplied onto the column and washed as described. Di-PEG-EPOsf and mono-PEG-EPOsf were separately eluted from the column with 0.1M NaCl and 0.175 M NaCl, respectively. Elution was also performed with 750mM NaCl to elute any remaining unmodified EPOsf.
- Alternatively, the reaction mixture was diluted 5-fold with the acetate buffer and applied onto the SP-Sepharose column (~0.5 mg protein/ml gel). Column was washed and adsorbed mono-PEG-EPOsf,di-PEG-EPOsf and unmodified EPOsf were eluted as described in the previous section.

Results

- [0065] PEG-EPOsf was synthesized by chemically conjugating a linear PEG molecule with a number average molecular weight of 30 kDa. PEG-EPOsf was derived from the reaction between the primary amino groups of EPOsf and the succinimidyl ester derivative of a 30 kDa PEG-butyric acid, resulting in an amide bond.
 - **[0066]** Results are summarized in Table1. Purified conjugate mixture comprised of mono- and di-PEG-EPOsf and was free of unmodified EPOsf as determined by SDS-PAGE analysis. Conjugate mixture accounted for 23.4 mg or 78% of the starting material. Cation exchange chromatographic separation of mono- and di-PEG-EPOsf indicated that monoto di-PEG ratio in the conjugate mixture was almost 1:1. After completion of the reaction, ratio of the individual components of Mono: Di: Unmodified were 40: 38: 20 (%). Overall yield was almost quantitative.

Table 1. Summary of results of EPOsf pegylationSampleProtein (mg)Yield (%)Rxn. Mix.30100

12.0

40

Mono-

(continued)

Sample	Protein (mg)	Yield (%)
Di-	11.4	38
Unmod.	6.0	20
Conju. Mix.	23.4	78

EXAMPLE 3: Pegylation of EPO with mPEG-SPA

5

10

15

30

35

40

45

50

55

[0067] A different aliquot of the EPOsf used in Example 2 was reacted with 30 kDa methoxy-PEG-SPA (Shearwater Polymers, Inc., Huntsville, Alabama). Reaction was performed at a protein:reagent ratio of 1:2 and purification techniques were in accordance with Example 2. Primarily the mono-pegylated species was produced.

EXAMPLE 4: In-vivo activity of pegylated EPO determined by the normocythaemic mouse assay

[0068] The normocythaemic mouse bioassay is known in the art (Pharm. Europa Spec. Issue Erythropoietin BRP Bio 1997(2)) and a method in the monography of erythropoietin of Ph. Eur. BRP. The samples were diluted with BSA-PBS. Normal healthy mice, 7-15 weeks old, were administered s.c. 0.2 ml of the EPO-fraction containing unpegylated EPO or tri-, di- or mono-pegylated EPO from Example 2 or 3. Over a period of 6 days, blood was drawn by puncture of the tail vein and diluted such that 1 μ l of blood was present in 1 ml of an 0.15 μ mol acridine orange staining solution. The staining time was 3 to 10 minutes. The reticulocyte counts were carried out microfluorometrically in a flow cytometer by analysis of the red fluorescence histogram. The reticulocyte counts were given in terms of absolute figures (per 30,000 blood cells analyzed). For the data presented, each group consisted of 5 mice per day, and the mice were bled only once. [0069] In separate experiments, a single dose of unmodified EPO (25 ng of EPO), the PEG(SBA)-EPO mixture from Example 2 (10 ng of conjugate), mono- and di- pegylated EPOs from Example 2 (10 ng of conjugate), the PEG(SPA)-EPO from Example 3 (10 ng of conjugate), and buffer solution were administered to mice. The results are shown in Table 2. The results show the superior activity and the prolonged half life of the pegylated EPO species indicated by the significantly increased amounts of reticulocytes and the shift of the reticulocytes count maximum using the same dose per mouse (10 ng), compared to a dose of 25 ng for unmodified EPO.

TABLE 2

	EPO (Unmodified)	30 kDa SPA PEG	Mono 30K SBA	Di 30K SBA	PEG-EPO SBA Conjugate Mixture	Control Buffer						
72h	1000	1393	1411	994	1328	857						
96h	500	1406	1501	926	1338	697						
120h	~200	1100	1182	791	944	701						
144h	~0	535	607	665	660	708						

EXAMPLE 5: Preparation of Predominantly mono-PEG-EPO

Pegylation Reaction

[0070] Starting with 100 mg (5.48 μ mol) of EPOsf in 100 mM potassium phosphate buffer pH 7.5 prepared in accordance with Example 1, there was added 329 mg (10.96 μ mol) of 30 kDa PEG-SBA reagent dissolved in 3ml I mM HCI. Enough 100 mM potassium phosphate buffer pH 7.5 was added to make the reaction mixture volume to 20 ml. The final protein concentration was 5 mg/ml and the protein : PEG reagent ratio was 1:2. The reaction mixture was mixed for 2h at ambient temperature (20 - 22 °C). After 2h, the reaction was stopped by adjusting the pH to 4.5 with glacial acetic acid and stored frozen at -20 °C until ready for purification.

Purification

[0071] The reaction mixture from the previous step was diluted 1:5 with 10 mM sodium acetate, pH 4.5 and applied to 300 ml SP-Sepharose FF (sulfopropyl cation exchange resin) packed into a 4.2 x 19 cm column. The column was previously equilibrated with the same buffer. Column effluents were monitored at 280 nm with a Gilson UV monitor and recorded with a Kipp and Zonen recorder. The column was washed with 300 ml or 1 bed volume of equilibration buffer to remove excess reagents, reaction byproducts and oligomeric PEG-EPO. It was followed by washing with 2 bed volumes of 100 mM NaCl to remove di-PEG-EPO. Mono-PEG-EPO was then eluted with 200 mM NaCl. During elution of the mono-PEG-EPO, the first 50 ml of the protein peak was discarded and the mono-PEG-EPO was collected as a 150 ml fraction. Unmodified EPOsf remaining on the column was eluted with 750 mM NaCl. All elution buffers were made in the equilibration buffer. All eluted samples were analyzed by SDS-PAGE and by high performance Size Exclusion Chromatography (SEC). The mono-PEG-EPO pool obtained from the 150 ml fraction, which had no detectable unmodified EPOsf, was then concentrated to ~ 4.5 - 7.5 mg/ml and diafiltered into the storage buffer, 10 mM potassium phosphate, 100 mM NaCl , pH 7.5. Concentration/Diafiltration was performed with Millipore Labscale™ TFF System fitted with 50 kDa cut off Millipore Pellicon XL Biomax 50 membrane at ambient temperature. Concentrated mono-PEG-EPO was sterile filtered and stored frozen at - 20 °C.

[0072] Approximately 75% of EPOsf was pegylated. After purification, total yield was ~30% mono-PEG-EPO with no detectable unmodified EPOsf and around 25% di-PEG-EPO. Oligomers, and unpegylated EPOsf accounted for the remaining protein. The mono-PEG-EPO pool obtained from the 150 ml fraction contained approximately 90% mono-PEG-EPO and approximately 10% di-PEG-EPO.

SEQUENCE LISTING

[0073]

[00/3

10

15

20

25

30

35

40

45

(1) GENERAL INFORMATION:

(i) APPLICANT:

(A) NAME: F.Hoffmann-La Roche AG (B) STREET: 124 Grenzacherstrasse

(C) CITY: Basle

(E) COUNTRY: Switzerland

(F) POSTAL CODE (ZIP): CH-4070 (G) TELEPHONE: (61) 688 11 11

(H) TELEFAX: (61) 688 13 95 (I) TELEX: 962 292 hlr ch

(ii) TITLE OF INVENTION: Erythropoietin Conjugates

(iii) NUMBER OF SEQUENCES: 3

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: WORD

(D) SOFTWARE: Patentin Release 2.0

50 <170> Patentin Ver. 2.0

<210> 1

<211> 165

<212> PRT

55 <213> Homo sapiens

<400> 1

	Ala 1	Pro	Pro	Arg	Leu 5	Ile	Cys	Asp	Ser	Arg 10	Val	Leu	Glu	Arg	Tyr 15	Leu
5	Leu	Glu	Ala	Lys 20	Glu	Ala	Glu	Asn	Ile 25	Thr	Thr	Gly	Cys	Ala 30	Glu	His
	Cys	Ser	Leu 35	Asn	Glu	Asn	Ile	Thr 40	Val	Pro	Asp	Thr	Lys 45	Val	Asn	Phe
10	Tyr	Ala 50	Trp	Lys	Arg	Met	Glu 55	Val	Gly	Gln	Gln	Ala 60	Val	Glu	Val	Trp
	Gln 65	Gly	Leu	Ala	Leu	Leu 70	Ser	Glu	Ala	Val	Leu 75	Arg	Gly	Gln	Ala	Leu 80
15	Leu	Val	Asn	Ser	Ser 85	Gln	Pro	Trp	Glu	Pro 90	Leu	Gln	Leu	His	Val 95	Asp
	Lys	Ala	Val	Ser 100	Gly	Leu	Arg	Ser	Leu 105	Thr	Thr	Leu	Leu	Arg 110	Ala	Leu
20	Gly	Ala	Gln 115	Lys	Glu	Ala	Ile	Ser 120	Pro	Pro	Asp	Ala	Ala 125	Ser	Ala	Ala
	Pro	Leu 130	Arg	Thr	Ile	Thr	Ala 135	Asp	Thr	Phe	Arg	Lys 140	Leu	Phe	Arg	Val
25	Tyr 145	Ser	Asn	Phe	Leu	Arg 150	Gly	Lys	Leu	Lys	Leu 155	Tyr	Thr	Gly	Glu	Ala 160
30							Cys	Arg	Thr	Gly	Asp 165					
	<210> 2															
35	<211> 166 <212> PRT															
	<213> Homo =	sapier	ıs													
40																
45																
50																

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His 20 25 305 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe 35 40 45Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp 10 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp 15 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala 120 20 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala 25 Cys Arg Thr Gly Asp Arg

30 <210> 3 <211> 28

<212> PRT

<213> Homo sapiens

35 <400> 3

Ser Ser Ser Lys Ala Pro Pro Pro Ser Leu Pro Ser Pro Ser Arg

1 10 15

Leu Pro Gly Pro Ser Asp Thr Pro Ile Leu Pro Gln

Claims

40

45

50

55

1. A conjugate, said conjugate comprising an erythropoietin glycoprotein having at least one free amino group and having the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; said glycoprotein being covalently linked to "n" poly(ethylene glycol) groups of the formula

with the -CO of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein

R is C_1 - C_6 -alkyl; x is 2 or 3; m is from 450 to 900;

n is from 1 to 3; and

n and m are chosen so that the molecular weight of the conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons.

5 **2.** The conjugate of claim 1, of the formula:

10

15

25

30

35

40

45

50

55

$$P-[NHCO-(CH2)x-(OCH2CH2)m-OR]n (I)$$

wherein x, m, n and R are as defined in claim 1, and P is the residue of the glycoprotein without the n amino group (s) which form amide linkage(s) with the poly(ethylene glycol) group(s).

- 3. The conjugate of any preceding claim, wherein R is methyl.
- 4. The conjugate of any preceding claim, wherein m is from about 650 to about 750.
- 5. The conjugate of any preceding claim, wherein n is 1.
- 6. The conjugate of any preceding claim, wherein R is methyl; m is from about 650 to about 750; and n is 1.
- 20 7. The conjugate of any preceding claim having the formula

wherein m is from 650 to 750, n is 1 and P is as defined in claim 2.

- 8. The conjugate of any preceding claim, wherein the glycoprotein is a human erythropoietin.
- **9.** The conjugate according to any of claims 1 to 7, wherein the human erythropoietin glycoprotein is expressed by endogenous gene activation.
- 10. The conjugate according to any of claims 1 to 9, wherein the glycoprotein has sequence SEQ ID NO:1.
- 11. The conjugate according to any of claims 1 to 8, wherein the glycoprotein has the sequence of human erythropoietin modified by the addition of from 1 to 6 glycosylation sites.
- **12.** The conjugate according to any of claims 1 to 11, wherein the glycoprotein has the sequence of human erythropoietin modified by a modification selected from the group consisting of:

```
Asn<sup>30</sup>Thr<sup>32</sup>;
```

Asn⁵¹Thr⁵³.

Asn⁵⁷Thr⁵⁹;

Asn⁶⁹;

Asn⁶⁹Thr⁷¹;

Ser⁶⁸Asn⁶⁹Thr⁷¹:

Val⁸⁷Asn⁸⁸Thr⁹⁰:

Ser87Asn88Thr90:

Ser87Asn88Gly89Thr90;

Ser87Asn88Thr90Thr92;

Ser87Asn88Thr90Ala162:

Asn⁶⁹Thr⁷¹Ser⁸⁷Asn⁸⁸Thr⁹⁰:

Asn³⁰Thr³²Val⁸⁷Asn⁸⁸Thr⁹⁰;

Asn89Ile90Thr91;

Ser87Asn89Ile90Thr91;

Asn¹³⁶Thr¹³⁸:

Asn¹³⁸Thr¹⁴⁰;

Thr¹²⁵; and

Pro124Thr125.

- 13. The conjugate according to any of claims 1 to 12, wherein the glycoprotein has a sequence comprising the sequence of human erythropoietin and a second sequence at the carboxy terminus of the human erythropoietin sequence, wherein the second sequence contains at least one glycosylation site.
- 5 14. The conjugate of claim 13, wherein the second sequences comprises a sequence derived from the carboxy terminal sequence of human chorionic gonadotropin.
 - 15. The conjugate of claim 13, wherein the glycoprotein has a sequence selected from the group consisting of:
 - (a) the sequence of human erythropoietin and the sequence SEQ ID NO:3 at the carboxy terminus of the human erythropoietin sequence;
 - (b) the sequence in (a) modified by Ser87 Asn88 Thr90; and
 - (c) the sequence in (a) modified by Asn³⁰ Thr³² Val⁸⁷ Asn⁸⁸ Thr⁹⁰.
- 16. The conjugate according to any of claims 1 to 7, wherein the glycoprotein has the sequence of human erythropoietin modified by a rearrangement of at least one glycosylation site.
 - 17. The conjugate of claim 16, wherein the rearrangement comprises deletion of any of the N-linked glycosylation sites in human erythropoietin and addition of an N-linked glycosylation site at position 88 of the sequence of human erythropoietin.
 - **18.** The conjugate of claim 17, wherein the glycoprotein has the sequence of human erythropoietin modified by a modification selected from the group consisting of:

```
25 Gln<sup>24</sup> Ser<sup>87</sup> Asn<sup>88</sup> Thr<sup>90</sup>;
Gln<sup>38</sup> Ser<sup>87</sup> Asn<sup>88</sup> Thr<sup>90</sup>; and
Gln<sup>83</sup> Ser<sup>87</sup> Asn<sup>88</sup> Thr<sup>90</sup>.
```

10

20

30

35

45

50

- 19. A composition comprising conjugates, each of said conjugates comprising an erythropoietin glycoprotein having at least one free amino group and having the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells and selected from the group consisting of human erythropoietin and human erythropoietin modified by the addition of from 1 to 6 glycosylation sites or a rearrangement of at least one glycosylation site; the glycoprotein in each said conjugate being covalently linked to "n" poly(ethylene glycol) groups of the formula -CO-(CH₂)_x-(OCH₂CH₂)_m-OR with the -CO of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; where in each of said conjugates R is C₁-C₆-alkyl; x is 2 or 3; m is from 450 to 900; n is from 1 to 3; n and m are chosen so that the molecular weight of each conjugate minus the erythropoietin glycoprotein is from 20 kilodaltons to 100 kilodaltons; the percentage of conjugates where n is 1 is at least ninety percent.
- **20.** The composition comprising conjugates as defined in any of claims 1 to 18 wherein the percentage of conjugates where n is 1 is at least ninety percent.
 - 21. The composition of according to claims 19 or 20 wherein the percentage of conjugates where n is 1 is at least ninety-two percent.
 - 22. The composition of claim 21 wherein the percentage of conjugates where n is 1 is at least ninety-six percent.
 - 23. The composition of claim 19 or 20 wherein the percentage of conjugates where n is 1 is from ninety percent to ninety-six percent.
 - **24.** A pharmaceutical composition comprising a conjugate or a composition according to any of claims 1 to 23 and a pharmaceutically acceptable excipient.
 - 25. Use of a conjugate or a composition according to any of claims 1 to 23 for the preparation of medicaments for the treatment or prophylaxis of diseases correlated with anemia in chronic renal failure patients (CRF), AIDS and for the treatment of cancer patients undergoing chemotherapy.
 - 26. A process for the preparation of conjugates according to any of claims 1 to 23 which process comprises condensing

the compound of Formula II

FO(CH₂CH₂O)_m(CH₂)_xCOON (II)

with a erythropoietin glycoprotein and in which R, m and x are as defined in any of claims 1 to 6.

- 27. Conjugates according to any of claims 1 to 18 for the treatment of diseases which are associated with anemia in chronic renal failure patients (CRF), AIDS and cancer patients undergoing chemotherapy.
- 28. A conjugate, said conjugate comprising a human erythropoietin glycoprotein having at least one free amino group and having the *in vivo* biological activity of causing bone marrow cells to increase production of reticulocytes and red blood cells, said glycoprotein being covalently linked to "n" poly(ethylene glycol) groups of the formula

$$-CO-(CH_2)_x-(OCH_2CH_2)_m-OR$$

with the -CO of each poly(ethylene glycol) group forming an amide bond with one of said amino groups; wherein

R is methyl;

x is 3:

10

15

20

25

30

35

40

45

50

55

m is from 650 to 750;

n is 1; and

n and m are chosen so that the average molecular weight of the conjugate minus the erythropoietin glycoprotein is about 30 kilodaltons.

Patentansprüche

1. Konjugat, wobei das Konjugat ein Erythropoietinglycoprotein mit mindestens einer freien Aminogruppe umfaßt und die biologische in vivo-Aktivität aufweist, um Knochenmarkzellen zur gesteigerten Erzeugung von Reticulozyten und roten Blutzellen zu veranlassen, und ausgewählt aus der Gruppe bestehend aus Humanerythropoietin und Humanerythropoietin, modifiziert durch die Addition von 1 bis 6 Glycosylierungsstellen oder eine Umlagerung mindestens einer Glycosylierungsstelle, aufweisen, wobei das Glycoprotein kovalent an "n" Poly(ethylenglycol)gruppen der Formel

gebunden ist, wobei die Gruppe -CO jeder Poly (ethylenglycol) gruppe eine Amidbindung mit einer der Aminogruppen bildet; wobei

R C₁-C₆-Alkyl bedeutet;

x 2 oder 3 bedeutet;

m 450 bis 900 bedeutet;

n 1 bis 3 bedeutet; und

n und m so ausgewählt sind, daß das Molekulargewicht des Konjugats abzüglich des Erythropoietinglycoproteins 20 Kilodalton bis 100 Kilodalton beträgt.

2. Konjugat nach Anspruch 1 der Formel:

$$P-[NHCO-(CH2)x-(OCH2CH2)m-OR]n (I)$$

worin x, m, n und R wie in Anspruch 1 definiert sind und P der Rest des Glycoproteins ohne die n Aminogruppe(n), die Amidbindung(en) mit der/den Poly(ethylenglycol)gruppe(n) bildet/bilden, ist.

- 3. Konjugat nach einem vorangehenden Anspruch, wobei R Methyl ist.
- 4. Konjugat nach einem vorangehenden Anspruch, wobei m etwa 650 bis etwa 750 ist.
- 5. Konjugat nach einem vorangehenden Anspruch, wobei n 1 ist.
 - 6. Konjugat nach einem vorangehenden Anspruch, wobei R Methyl ist; m etwa 650 bis etwa 750 ist und n 1 ist.
 - 7. Konjugat nach einem vorangehenden Anspruch der Formel

[CH3O(CH2CH2O)mCH2CH2CH2CO-NH]n-P

worin m 650 bis 750 ist, n 1 ist und P wie in Anspruch 2 definiert ist.

- 15 8. Konjugat nach einem vorangehenden Anspruch, wobei das Glycoprotein Humanerythropoietin ist.
 - 9. Konjugat nach einem der Ansprüche 1 bis 7, wobei das Humanerythropoietinglycoprotein durch endogene Genaktivierung exprimiert wird.
- 20 10. Konjugat nach einem der Ansprüche 1 bis 9, wobei das Glycoprotein die Sequenz SEQ ID NR.: 1 aufweist.
 - 11. Konjugat nach einem der Ansprüche 1 bis 8, wobei das Glycoprotein die Sequenz von Humanerythropoietin, modifiziert durch die Addition von 1 bis 6 Glycosylierungsstellen, aufweist.
- 12. Konjugat nach einem der Ansprüche 1 bis 11, wobei das Glycoprotein die Sequenz von Humanerythropoietin, modifiziert durch eine Modifizierung, ausgewählt aus der Gruppe, bestehend aus:

Asn30Thr32;

Asn⁵¹Thr⁵³;

Asn⁵⁷Thr⁵⁹;

Asn69;

10

30

40

45

Asn⁶⁹Thr⁷¹;

Ser⁶⁸Asn⁶⁹Thr⁷¹;

Val87Asn88Thr90;

35 Ser⁸⁷Asn⁸⁸Thr⁹⁰;

Ser87Asn88Gly89Thr90;

Ser87Asn88Thr90Thr92:

Ser87Asn88Thr90Ala162;

Asn⁶⁹Thr⁷¹Ser⁸⁷Asn⁸⁸Thr⁹⁰;

Asn30Thr32Val87Asn88Thr90:

Asn89Ile90Thr91;

Ser87Asn89Ile90Thr91;

Asn¹³⁶Thr¹³⁸;

Asn138Thr140:

Thr¹²⁵: und

Pro124Thr125

aufweist.

- 13. Konjugat nach einem der Ansprüche 1 bis 12, wobei das Glycoprotein eine Sequenz aufweist, die die Sequenz von Humanerythropoietin und eine zweite Sequenz am Carboxyterminus der Humanerythropoietin-Sequenz umfaßt, wobei die zweite Sequenz mindestens eine Glycosylierungsstelle enthält.
- 14. Konjugat nach Anspruch 13, wobei die zweiten Sequenzen eine Sequenz, abgeleitet von der Carboxy-endständigen Sequenz von Humanchorion-Gonadotropin, umfaßt.
 - 15. Konjugat nach Anspruch 13, wobei das Glycoprotein eine Sequenz aufweist, ausgewählt aus der Gruppe, bestehend aus:

- (a) der Sequenz von Humanerythropoietin und der Sequenz von SEQ ID NR.: 3 am Carboxyterminus der Humanerythropoietin-Sequenz;
- (b) der Sequenz in (a), modifiziert durch Ser⁸⁷Asn⁸⁸Thr⁹⁰; und
- (c) der Sequenz in (a), modifiziert durch Asn³⁰Thr³²Val⁸⁷Asn⁸⁸Thr⁹⁰.

5

10

15

25

30

- 16. Konjugat nach einem der Ansprüche 1 bis 7, wobei das Glycoprotein die Sequenz von Humanerythropoietin, modifiziert durch eine Umlagerung mindestens einer Glycosylierungsstelle, aufweist.
- 17. Konjugat nach Anspruch 16, wobei die Umlagerung die Deletion von beliebigen der N-gebundenen Glycosylierungsstellen in Humanerythropoietin und Addition einer N-gebundenen Glycosylierungsstelle in Position 88 der Sequenz von Humanerythropoietin umfaßt.
 - **18.** Konjugat nach Anspruch 17, wobei das Glycoprotein die Sequenz von Humanerythropoietin, modifiziert durch eine Modifizierung, ausgewählt aus der Gruppe, bestehend aus:

Gln²⁴Ser⁸⁷Asn⁸⁸Thr⁹⁰; Gln³⁸Ser⁸⁷Asn⁸⁸Thr⁹⁰; und Gln⁸³Ser⁸⁷Asn⁸⁸Thr⁹⁰

20 aufweist.

- 19. Zusammensetzung, umfassend Konjugate, wobei jedes der Konjugate ein Erythropoietinglycoprotein mit mindestens einer freien Aminogruppe umfaßt und die biologische in vivo-Aktivität aufweist, um Knochenmarkzellen zur gesteigerten Erzeugung von Reticulozyten und roten Blutzellen zu veranlassen, und ausgewählt aus der Gruppe bestehend aus Humanerythropoietin und Humanerythropoietin, modifiziert durch die Addition von 1 bis 6 Glycosylierungsstellen oder eine Umlagerung mindestens einer Glycosylierungsstelle, aufweisen, wobei das Glycoprotein in jedem Konjugat kovalent an "n" Poly(ethylenglycol) gruppen der Formel -CO- (CH₂)_x- (OCH₂CH₂)_m-OR gebunden ist, wobei die Gruppe -CO jeder Poly(ethylenglycol)gruppe eine Amidbindung mit einer der Aminogruppen bildet; wobei in jedem der Konjugate R C₁-C₆-Alkyl bedeutet; x 2 oder 3 bedeutet; m von etwa 450 bis etwa 900 bedeutet; n 1 bis 3 bedeutet; und n und m so ausgewählt sind, daß das Molekulargewicht von jedem Konjugat abzüglich des Erythropoietinglycoproteins 20 Kilodalton bis 100 Kilodalton beträgt, wobei der Prozentsatz der Konjugate, wenn n 1 ist, mindestens neunzig Prozent beträgt.
- **20.** Zusammensetzung, umfassend Konjugate nach einem der Ansprüche 1 bis 18, wobei der Prozentsatz der Konjugate, wenn n 1 ist, mindestens neunzig Prozent beträgt.
 - **21.** Zusammensetzung nach Ansprüchen 19 oder 20, wobei der Prozentsatz der Konjugate, wenn n 1 ist, mindestens zweiundneunzig Prozent beträgt.
- 22. Zusammensetzung nach Anspruch 21, wobei der Prozentsatz der Konjugate, wenn n 1 ist, mindestens sechsundneunzig Prozent beträgt.
 - 23. Zusammensetzung nach Anspruch 19 oder 20, wobei der Prozentsatz der Konjugate, wenn n 1 ist, von neunzig Prozent bis sechsundneunzig Prozent beträgt.

45

55

24. Pharmazeutische Zusammensetzung, umfassend ein Konjugat oder eine Zusammensetzung nach einem der Ansprüche 1 bis 23 und einen pharmazeutisch verträglichen Exzipienten.

25. Verwendung eines Konjugats oder einer Zusammensetzung nach einem der Ansprüche 1 bis 23 zur Herstellung von Arzneimitteln zur Behandlung oder Prophylaxe von Krankheiten, die mit Anämie bei Patienten mit chronischer Niereninsuffizienz (CRF), AIDS oder zur Behandlung von Krebspatienten, die mit einer Chemotherapie behandelt werden, in Beziehung stehen.

26. Verfahren zur Herstellung von Konjugaten nach einem der Ansprüche 1 bis 23, umfassend die Kondensation der Verbindung der Formel II

$$RO(CH_{2}CH_{2}O)_{m}(CH_{2})_{x}COON$$
(II)

mit einem Erythropoietinglycoprotein und worin R, m und x wie für einen der Ansprüche 1 bis 6 definiert sind.

- 27. Konjugate nach einem der Ansprüche 1 bis 18 zur Behandlung von Krankheiten, die mit Anämie bei Patienten mit chronischer Niereninsuffizienz (CRF), AIDS und Krebspatienten, die mit einer Chemotherapie behandelt werden, verbunden sind.
- 28. Konjugat, wobei das Konjugat ein Humanerythropoietinglycoprotein mit mindestens einer freien Aminogruppe umfaßt und die biologische in vivo-Aktivität aufweist, um Knochenmarkzellen zur gesteigerten Erzeugung von Reticulozyten und roten Blutzellen zu veranlassen, wobei das Glycoprotein kovalent an "n" Poly(ethylen-glycol)gruppen der Formel

$$-CO-(CH2)x-(OCH2CH2)m-OR$$

gebunden ist, wobei die Gruppe -CO jeder Poly(ethylenglycol)gruppe eine Amidbindung mit einer der Aminogruppen bildet; wobei

R Methyl bedeutet;

x 3 bedeutet;

m 650 bis 750 bedeutet;

n 1 bedeutet; und

n und m so ausgewählt sind, daß das durchschnittliche Molekulargewicht des Konjugats abzüglich des Erythropoietinglycoproteins etwa 30 Kilodalton beträgt.

Revendications

10

25

30

45

50

55

1. Conjugué, ledit conjugué comprenant une glycoprotéine érythropoïétine ayant au moins un groupe amino libre et ayant l'activité biologique in vivo consistant à entraîner une augmentation de la production de réticulocytes et d'érythrocytes par les cellules de moelle osseuse, et choisie dans le groupe constitué par l'érythropoïétine humaine et l'érythropoïétine humaine modifiée par l'addition de 1 à 6 sites de glycosylation ou un réarrangement d'au moins un site de glycosylation ; ladite glycoprotéine étant liée de façon covalente à "n" groupes poly(éthylène glycol) de formule

-CO-
$$(CH_2)_x$$
- $(OCH_2CH_2)_m$ -OR

le -CO de chaque groupe poly(éthylène glycol) formant une liaison amide avec l'un desdits groupes amino ; dans laquelle :

R est un groupe alkyle en C₁-C₆;

x vaut 2 ou 3;

m vaut 450 à 900;

n vaut de 1 à 3 : et

n et m sont choisis de manière à ce que la masse moléculaire du conjugué moins celle de la glycoprotéine érythropoïétine soit comprise entre 20 kilodaltons et 100 kilodaltons.

2. Conjugué de la revendication 1, de formule :

$$P-[NHCO-(CH2)x-(OCH2CH2)m-OR]n (I)$$

dans laquelle x, m, n et R sont tels que définis dans la revendication 1, et P est le résidu de la glycoprotéine sans

le(s) n groupe(s) amino qui forment une ou plusieurs liaison(s) amide avec le ou les groupe(s) poly(éthylène glycol).

- 3. Conjugué selon l'une quelconque des revendications précédentes, dans lequel R est un groupe méthyle.
- 5 4. Conjugué selon l'une quelconque des revendications précédentes, dans lequel m vaut d'environ 650 à environ 750.
 - 5. Conjugué selon l'une quelconque des revendications précédentes, dans lequel n vaut 1.
- 6. Conjugué selon l'une quelconque des revendications précédentes, dans lequel R est un groupe méthyle ; m vaut 10 d'environ 650 à environ 750 ; et n vaut 1.
 - 7. Conjugué selon l'une quelconque des revendications précédentes de formule

```
[CH<sub>3</sub>O(CH<sub>2</sub>CH<sub>2</sub>O)<sub>m</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CO-NH]<sub>n</sub>-P
```

dans laquelle m vaut de 650 à 750, n vaut 1 et P est tel que défini dans la revendication 2.

- 8. Conjugué selon l'une quelconque des revendications précédentes, dans lequel la glycoprotéine est une érythropoïétine humaine.
- 9. Conjugué selon l'une quelconque des revendications 1 à 7, dans lequel la glycoprotéine érythropoïétine humaine est exprimée par activation de gènes endogènes.
- 10. Conjugué selon l'une quelconque des revendications 1 à 9, dans lequel la glycoprotéine a la séquence SEQ NO : 1.
- 11. Conjugué selon l'une quelconque des revendications 1 à 8, dans lequel la glycoprotéine a la séquence de l'érythropoïétine humaine modifiée par l'addition de 1 à 6 sites de glycosylation.
- **12.** Conjugué selon l'une quelconque des revendications 1 à 11, dans lequel la glycoprotéine a la séquence de l'érythropoïétine humaine modifiée par une modification choisie dans le groupe constitué par :

```
Asn30Thr32;
                    Asn<sup>51</sup>Thr<sup>53</sup>;
                    Asn57Thr59;
                    Asn<sup>69</sup>;
35
                    Asn<sup>69</sup>Thr<sup>71</sup>;
                    Ser68Asn69Thr71:
                    Val<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>:
                    Ser87Asn88Thr90:
40
                    Ser87Asn88Glv89 Thr90:
                    Ser87Asn88Thr90Thr92:
                    Ser87Asn88Thr90Ala162;
                    Asn<sup>69</sup>Thr<sup>71</sup>Ser<sup>87</sup>Asn<sup>88</sup>Thr<sup>90</sup>:
                    Asn30 Thr32Val87Asn88Thr90:
                    Asn89IIe90Thr91:
45
                    Ser87Asn89IIe90Thr91;
                    Asn136Thr138;
                    Asn138 Thr140;
                    Thr125: et
                    Pro124Thr125
50
```

15

20

25

- 13. Conjugué selon l'une quelconque des revendications 1 à 12, dans lequel la glycoprotéine a une séquence comprenant la séquence de l'érythropoïétine humaine et une seconde séquence à l'extrémité carboxy terminale de la séquence de l'érythropoïétine humaine, dans laquelle la seconde séquence contient au moins un site de glycosylation.
- 14. Conjugué de la revendication 13, dans lequel la seconde séquence comprend une séquence dérivée de la séquence carboxy terminale de la gonadotropine chorionique humaine.

- 15. Conjugué de la revendication 13, dans lequel la glycoprotéine a une séquence choisie dans le groupe constitué par :
 - (a) la séquence de l'érythropoïétine humaine et la séquence SEQ ID NO : 3 à l'extrémité carboxy terminale de la séquence de l'érythropoïétine humaine ;
 - (b) la séquence de (a) modifiée par Ser87 Asn88 Thr90; et
 - (c) la séquence de (a) modifiée par Asn³⁰ Thr³² Val⁸⁷ Asn⁸⁸ Thr⁹⁰.
- 16. Conjugué selon l'une quelconque des revendications 1 à 7, dans lequel la glycoprotéine a la séquence de l'érythropoïétine humaine modifiée par un réarrangement d'au moins un site de glycosylation.
- 17. Conjugué de la revendication 16, dans lequel le réarrangement comprend une délétion de l'un quelconque des sites de glycosylation à liaison N dans l'érythropoïétine humaine et l'addition d'un site de glycosylation à liaison N en position 88 de la séquence de l'érythropoïétine humaine.
- 18. Conjugué de la revendication 17, dans lequel la glycoprotéine a la séquence de l'érythropoïétine humaine modifiée par une modification choisie dans le groupe constitué par :

```
Gln<sup>24</sup> Ser<sup>87</sup> Asn<sup>88</sup> Thr<sup>90</sup> ;
Gln<sup>38</sup> Ser<sup>87</sup> Asn<sup>88</sup> Thr<sup>90</sup> ; et
Gln<sup>83</sup> Ser<sup>87</sup> Asn<sup>88</sup> Thr<sup>90</sup>.
```

5

10

20

25

30

- 19. Composition comprenant des conjugués, chacun desdits conjugués comprenant une glycoprotéine érythropoïétine ayant au moins un groupe amino libre et ayant l'activité biologique *in vivo* consistant à entraîner une augmentation de la production de réticulocytes et d'érythrocytes par les cellules de moelle osseuse, et choisie dans le groupe constitué par l'érythropoïétine humaine et l'érythropoïétine humaine modifiée par l'addition de 1 à 6 sites de glycosylation ou un réarrangement d'au moins un site de glycosylation ; la glycoprotéine dans chacun desdits conjugués étant liée de façon covalente à "n" groupes poly(éthylène glycol) de formule -CO-(CH₂)_x-(OCH₂CH₂)_m-OR, le -CO de chaque groupe poly-(éthylène glycol) formant une liaison amide avec l'un desdits groupes amino ; où dans chacun desdits conjugués R est un groupe alkyle en C₁-C₆; x vaut 2 ou 3; m vaut d'environ 450 à environ 900; n vaut de 1 à 3; et n et m sont choisis de manière à ce que la masse moléculaire de chaque conjugué moins celle de la glycoprotéine érythropoïétine soit comprise entre 20 kilodaltons et 100 kilodaltons; le pourcentage de conjugués dans lesquels n vaut 1 est d'au moins 90 %.
- 20. Composition comprenant des conjugués tels que définis dans l'une quelconque des revendications 1 à 18, dans laquelle le pourcentage de conjugués dans lesquels n vaut 1 est d'au moins 90 %.
 - 21. Composition selon les revendications 19 ou 20, dans laquelle le pourcentage de conjugués dans lesquels n vaut 1 est d'au moins 92 %.
- 40 22. Composition selon la revendication 21, dans laquelle le pourcentage de conjugués dans lesquels n vaut 1 est d'au moins 96 %.
 - 23. Composition selon la revendication 19 ou 20, dans laquelle le pourcentage de conjugués dans lesquels n vaut 1 est compris entre 90 % et 96 %.
 - 24. Composition pharmaceutique comprenant un conjugué ou une composition selon l'une quelconque des revendications 1 à 23 et un excipient pharmaceutiquement acceptable.
- 25. Utilisation d'un conjugué ou d'une composition selon l'une quelconque des revendications 1 à 23, pour la préparation de médicaments destinés au traitement ou à la prophylaxie de maladies liées à une anémie chez les patients souffrant d'insuffisance rénale chronique (CRF), du SIDA et au traitement de patients souffrant d'un cancer traités par chimiothérapie.
- **26.** Processus de préparation de conjugés selon l'une quelconque des revendications 1 à 23, lequel processus comprend la condensation du composé de formule II

$$RO(CH_{2}CH_{2}O)_{m}(CH_{2})_{x}COON$$

$$(II)$$

avec une glycoprotéine érythropoïétine et dans laquelle R, m et x sont tels que définis dans l'une quelconque des revendications 1 à 6.

- 27. Conjugés selon l'une quelconque des revendications 1 à 18, destinés au traitement de maladies associées à une anémie chez les patients souffrant d'insuffisance rénale chronique (CRF), du SIDA et les patients souffrant d'un cancer traités par chimiothérapie.
- 28. Conjugué, ledit conjugué comprenant une glycoprotéine érythropoïétine humaine ayant au moins un groupe amino libre et ayant l'activité biologique *in vivo* consistant à entraîner une augmentation de la production de réticulocytes et d'érythrocytes par les cellules de moelle osseuse, ladite glycoprotéine étant liée de façon covalente à "n" groupes poly(éthylène glycol) de formule

le -CO de chaque groupe poly(éthylène glycol) formant une liaison amide avec l'un desdits groupes amino ; dans laquelle :

R est un groupe méthyle ;

x vaut 3;

10

20

25

30

35

40

45

50

55

m vaut 650 à 750;

n vaut 1; et

n et m sont choisis de manière à ce que la masse moléculaire moyenne du conjugué moins celle de la glyco-protéine érythropoïétine soit d'environ 30 kilodaltons.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9911781 A [0004]
- WO 9709996 A [0011]
- WO 9740850 A [0011]
- WO 9858660 A [0011]
- WO 9907401 A [0011]
- US 5733761 A [0017]
- US 5641670 A [0017]
- US 5733746 A [0017]
- WO 9309222 A [0017]
- WO 9412650 A [0017]
- WO 9531560 A [0017]
- WO 9011354 A [0017]
- WO 9106667 A [0017]
- WO 9109955 A [0017]
- EP 640619 A, Elliot [0019]
- US 5672662 A, Harris [0027]

- US 5547933 A [0029]
- US 5621080 A [0029]
- EP 0148605 B [0029] [0029]
- EP 0205564 B [0029]
- EP 0209539 B [0029] [0029]
- EP 0411678 B [0029]
- WO 9635718 A [0030] [0032] [0041] [0041] [0048]
- EP 513738 A [0030] [0041]
- EP 0513738 A [0030]
- EP 0267678 A [0030] [0031]
- EP 0248656 A [0030]
- EP 0481791 A [0030]
- EP 0307247 A [0030]
- EP 0343635 A [0030]
- WO 8800967 A [0030]
- EP 411678 A [0041]

Non-patent literature cited in the description

- CARNOT, P; DEFLANDRE, C. C.R. Acad. Sci., 1906, vol. 143, 432 [0001]
- ERSLEV, AJ. Blood, 1953, vol. 8, 349 [0001]
- REISSMANN, KR. Blood, 1950, vol. 5, 372 [0001]
- JACOBSON, LO; GOLDWASSER, E; FREID, W;
 PIZAK, LF. Nature, 1957, vol. 179, 6331-4 [0001]
- KRANTZ, BS. Blood, 1991, vol. 77, 419 [0001]
- EGRIE, JC; STRICKLAND, TW; LANE, J et al. Immunobiol, 1986, vol. 72, 213-224 [0002]
- SASAKI, H; BOTHNER, B; DELL, A; FUKUDA,
 M. J. Biol. Chem., 1987, vol. 262, 12059 [0002]
- ESCHBACH, JW; EGRI, JC; DOWNING, MR et al. NEJM, 1987, vol. 316, 73-78 [0003]
- ESCHBACH, JW; ABDULHADI, MH; BROWNE, JK et al. Ann. Intern. Med., 1989, vol. 111, 992 [0003]
- EGRIE, JC; ESCHBACH, JW; MCGUIRE, T; AD-AMSON, JW. Kidney Intl., 1988, vol. 33, 262 [0003]
- LIM, VS; DEGOWIN, RL; ZAVALA, D et al. Ann. Intern. Med., 1989, vol. 110, 108-114 [0003]
- DANNA, RP; RUDNICK, SA; ABELS, RI. Erythropoietin in Clinical Applications-An International Perspective. Marcel Dekker, 1990, 301-324 [0003]

- HUANG, S.L. Proc. Natl. Acad. Sci. USA, 1984, 2708-2712 [0029]
- LAI, P.H. et al. J. Biol. Chem., 1986, vol. 261, 3116-3121 [0029]
- SASAKI, H. et al. J. Biol. Chem., 1987, vol. 262, 12059-12076 [0029]
- EGRIE, J.C.; STRICKLAND, T.W.; LANE, J. et al. *Immunobiol*, 1986, vol. 72, 213-224 [0029]
- KAWAMOTO, T. et al. Analytical Biochem., 1983, vol. 130, 445-453 [0030]
- KOWAR, J.; FRANEK, F. Methods in Enzymology, 1986, vol. 421, 277-292 [0030]
- BAVISTER, B. Expcology, 1981, vol. 271, 45-51 [0030]
- NOBUO, I. et al. *J. Biochem.*, 1990, vol. 107, 352-359 [0032]
- ANNABLE et al. Bull. Wld. Hlth. Org., 1972, vol. 47, 99-112 [0033]
- Pharm. Europa Spec. Issue Erythropoietin BRP Bio, 1997, vol. 2 [0033]