Dissecting DOTA

Statistical analysis of Dota 2

- Sathkrith (1st year MSCS)
- Madhukara S Holla (1st year MSCS)

Background

- Game of 10 players, 5 in each team
- Each player controls a unique hero
- Objective is to destroy the enemy's Ancient (core structure)
- Different roles in the game
 - Carry
 - Support
 - Mid / off-laner
- Resources and buildings
 - Gold and Experience
 - Towers and Barracks
- Team strategies and dynamics
 - Resource acquisition
 - Item acquisition
 - Phases of the game

Problem Description

Does a specific distribution of in-game resources among various team roles lead to a higher likelihood of winning?

What constitutes this optimal distribution strategy?

Summary of the Data

Dataset:

- Player roles
- Heroes picked
- Player rank skill level
- Resource metrics with timestamps
 - Gold earned
 - Experience gained
 - Player net-worth
 - Timestamp
 - Objectives secured
- Match duration
- Match outcome win / loss

Assumptions:

- Independence: Each match is an independent event
- Homoscedastic: Variance of resource distribution is consistent across matches
- Linearity: Relationship between resources and match outcome is linear
- No perfect multicollinearity: No two variables predict each other perfectly (some correlation exists: gold vs exp)
- No extreme outliers: All players in the game are similarly skilled

Sampling restrictions:

- Limit the number of matches having the same players
- Matches should be sampled from the
 - Same skill bracket
 - Same patch of the game

Statistical Analysis

- Proposed methodology: Multiple Logistic Regression
- Individual models according to game phase:
 - o 10 minute Early game
 - o 30 minute Mid game
 - End of the game
- Response variable: Match outcome
- Predictors:
 - Resources for each role
 - Player roles
 - Overall team resources
 - Interaction terms Player x Resource
- Additional variables to consider:
 - Objectives captured
 - Game duration
 - Enemy team's resources

Difficulties:

- Interaction and correlations
 - Resources are not isolated
 - Multicollinearity due to player interaction and synergies
- Random effects
 - Different heroes and playstyle
 - Different game strategies
- Correlation vs Causation
 - Resource allocation has an association with the outcome, but it doesn't mean a specific allocation increases chances of winning

Finish EDA and Confirm model assumptions

Questions

Thank You