MATH 330 – HW #30

Cristobal Forno

December 6, 2017

Question: Let $A = \mathbb{R} \setminus \{-1\}$, that is, A is the set of all integers excluding -1. We define a binary operation \circ on A as follows:

$$a \circ b = ab + a + b$$
, for all $a, b \in A$

Verify the following:

(1) $a \circ b \in \mathbb{A}$ for all $a, b \in \mathbb{A}$.

Proof: A is closed if $a, b \in A$ implies: $a \circ b \in A$. Suppse $a \circ b = ab + a + b = -1$. This means ab + a + b + 1 = (a + 1)(b + 1) = 0. So, either a = -1 or b = -1.

(2) for $a, b, c \in A$, $(a \circ b) \circ c = a \circ (b \circ c)$

Proof: The operation \circ is associative if and only if:

$$(a \circ b) \circ c = a \circ (b \circ c)$$
 for all $a, b, c \in A$

Let's computer both sides of this equation:

$$(a \circ b) \circ c = (ab + a + b) \circ c = (ab + a + b)c + (ab + a + b) + c = abc + ac + bc + ab + a + b + c$$
$$a \circ (b \circ c) = a \circ (bc + b + c) = a(bc + b + c) + a + (bc + b + c) = abc + ac + bc + ab + a + b + c$$

Since both equations are the same, the operation \circ is associative.

(3)
$$a \circ 0 = a = 0 \circ a$$
 for all $a \in A$

Proof: We want to the operation \circ has an identity element 0. We must show that $a \circ 0 = a = 0 \circ a$.

The left side of the equation $a \circ 0 = a(0) + a + 0 = a$.

The right right of the equation $0 \circ a = (0)a + 0 + a = a$.

Since both equations are the same, $a \circ 0 = a = 0 \circ a$. \square

(4) for each $a \in A$, there exits $b \in A$ such that $a \circ b = 0 = b \circ a$ **Proof:** We must show $a \circ b = 0 = b \circ a$.

$$a\circ b=ab+a+b=0=ba+b+a=a\circ b$$

Thus, $a \circ b = 0 = b \circ a$. \square

(5) $a \circ b = b \circ a$ for all $a, b \in A$.

Proof: It is implied by (4) that $a \circ b = b \circ a$. \square

We conclude that (A, \circ) is an abelian group with 0 as an identity element.