Assignment 9 of Math6321

Due: April 22, 2015, in class

- 1. From the textbook, page 418, Exercises 14.1.
- 2. Consider the linear programming problem

min
$$x_1 + x_2$$

subject to $x_1 + x_2 + x_3 = 1$, $(x_1, x_2, x_3) \ge 0$.

- (a) Find the optimal solution x^* .
- (b) Find the central path, i.e., the each fixed $\tau > 0$, find the central path point $(x_{\tau}, \lambda_{\tau}, s_{\tau})$.
- (c) Show that as τ decreases to 0, x_{τ} converges to the unique optimal solution x^* .
- (d) Draw the projections of the feasible region and the central path in the x_1 - x_2 plane.
- 3. Sparse signal recovery (Compressed Sensing application). Let $x_{true} \in \mathbb{R}^n$ be a sparse signal, that is, only a few coordinates of x are nonzero. We would like to recover x_{true} from the measurements $y \in \mathbb{R}^m$. Assume $y = Ax_{true}$, where A is a given $m \times n$ matrix. We can recover x_{true} by solving the following l_1 minimization problem:

$$\min ||x||_1$$
subject to
$$Ax = y,$$

$$x \in \mathbb{R}^n,$$

where
$$||x||_1 = \sum_{i=1}^n |x_i|$$
.

This problem can be reformulated as a Linear Programming problem as follows:

$$\min \sum_{i=1}^{n} t_{i}$$
 subject to
$$Ax = y,$$

$$x + t \ge 0,$$

$$-x + t \ge 0.$$

In this assignment, you will try to recover x_{true} from the given y and matrix A using the Matlab linear programming routine "linprog". The file "dataHW9.mat" contains A, y and x_{true} , where $A \in \mathbb{R}^{25 \times 100}$, $y \in \mathbb{R}^{25}$ and $x_{true} \in \mathbb{R}^{100}$.

Reformulate the problem so that you can use the Matlab routine. State that formulation in your report. Report your recovered signal x. It should be pretty close to x_{true} .