SPPH 604 001 Lab Exercise: Data wrangling

Contents

Knit your file	4
Optional 2: Calculating variance of a sample	4
Optional 1: Missing values	3
Optional $[0\%]$	3
Problem 4: Considering eligibility criteria [20%]	3
Problem 3: Table 1 for subset [10%]	3
Problem 2: Table 1 [10%]	2
Problem 1: Basic Manipulation [60%]	2
Problem	1

Problem

Use the functions we learned in Lab 1 to complete Lab 1 Exercise. We will use Right Heart Catheterization Dataset saved in the folder named 'Data/wrangling/'. The variable list and description can be accessed from Vanderbilt Biostatistics website.

A paper you can access the original table from this paper (doi: 10.1001/jama.1996.03540110043030). We have modified the table and corrected some issues. Before you start, please knit your file at least once and check whether a pdf file is created. Once you finished, please knit your file and submit the knitted pdf (recommended) or word file **ONLY**.

```
# Load required packages
library(dplyr)
library(tableone)
```

```
# Data import: name it rhc
#rhc <- ...("Data/wrangling/rhc.csv", ...)
```

Problem 1: Basic Manipulation [60%]

- (I) Continuous to Categories: Change the Age variable into categories below 50, 50 to below 60, 60 to below 70, 70 to below 80, 80 and above [Hint: the cut function could be helpful]
- (II) Re-order: Re-order the levels of race to white, black and other
- (III) Set reference: Change the reference category for gender to Male
- (IV) Count levels: Check how many levels does the variable "cat1" (Primary disease category) have? Regroup the levels for disease categories to "ARF", "CHF", "MOSF", "Other". [Hint: the nlevels and list functions could be helpful]
- (V) Rename levels: Rename the levels of "ca" (Cancer) to "Metastatic", "None" and "Localized (Yes)", then re-order the levels to "None", "Localized (Yes)" and "Metastatic"
- (VI) comorbidities:
 - Create a new variable called "numcom" to count number of comorbidities illness for each person (12 categories) [Hint: the rowSums command could be helpful],
 - Report maximum and minimum values of numcom:

```
# See head of comorbidities
# head(rhc[,c("cardiohx", "chfhx", "dementhx", "psychhx", "chrpulhx", "renalhx",
# "liverhx", "gibledhx", "malighx", "immunhx", "transhx", "amihx")])
# your codes here
```

- (VII) Anlaytic data: Create a dataset that has only the following variables
 - age, sex, race, cat1, ca, dnr1, aps1, surv2md1, numcom, adld3p, das2d3pc, temp1, hrt1, meanbp1, resp1, wblc1, pafi1, paco21, ph1, crea1, alb1, scoma1, swang1
 - name the dataset as rhc2

Problem 2: Table 1 [10%]

Re-produce the sample table 1 from the rhc2 data (see the Table below). In your table, the variables should be ordered as the same as the sample. Please re-level or re-order the levels if needed. [Hint: the tableone package might be useful]

	No RHC	RHC
n	3551	2184
age (%)		
[-Inf, 50)	884 (24.9)	540 (24.7)
[50,60)	546 (15.4)	$371\ (17.0)$
[60,70)	812 (22.9)	577(26.4)
[70,80)	809 (22.8)	529(24.2)
[80, Inf)	500 (14.1)	167 (7.6)
sex = Female (%)	1637(46.1)	906 (41.5)
race (%)		
white	2753 (77.5)	1707 (78.2)

	No RHC	RHC
black	585 (16.5)	335 (15.3)
other	213 (6.0)	142 (6.5)
cat1 (%)		
ARF	1581 (44.5)	909 (41.6)
CHF	247 (7.0)	209 (9.6)
Other	955 (26.9)	208 (9.5)
MOSF	768 (21.6)	858 (39.3)
ca (%)		
None	2652 (74.7)	1727 (79.1)
Localized (Yes)	638 (18.0)	334 (15.3)
Metastatic	261 (7.4)	123 (5.6)
dnr1 = Yes (%)	499 (14.1)	155 (7.1)
aps1 (mean (SD))	50.93 (18.81)	60.74 (20.27)
surv2md1 (mean (SD))	0.61 (0.19)	0.57(0.20)
numcom (mean (SD))	1.52(1.17)	1.48(1.13)
adld3p (mean (SD))	1.24(1.86)	1.02(1.69)
das2d3pc (mean (SD))	20.37(5.48)	20.70(5.03)
temp1 (mean (SD))	37.63 (1.74)	37.59(1.83)
hrt1 (mean (SD))	112.87 (40.94)	118.93 (41.47)
meanbp1 (mean (SD))	84.87 (38.87)	68.20 (34.24)
resp1 (mean (SD))	$28.98 \ (13.95)$	26.65 (14.17)
wblc1 (mean (SD))	15.26 (11.41)	$16.27 \ (12.55)$
pafi1 (mean (SD))	$240.63 \ (116.66)$	$192.43 \ (105.54)$
paco21 (mean (SD))	39.95 (14.24)	36.79 (10.97)
ph1 (mean (SD))	7.39(0.11)	7.38(0.11)
crea1 (mean (SD))	1.92(2.03)	2.47(2.05)
alb1 (mean (SD))	3.16 (0.67)	2.98 (0.93)
scoma1 (mean (SD))	22.25 (31.37)	18.97 (28.26)

Problem 3: Table 1 for subset [10%]

Produce a similar table as Problem 2 but with only male sex and ARF primary disease category (cat1). Add the overall column in the same table. [Hint: filter command could be useful]

Problem 4: Considering eligibility criteria [20%]

Produce a similar table as Problem 2 but only for the subjects who meet all of the following eligibility criteria: (i) age is equal to or above 50, (ii) age is below 80 (iii) Glasgow Coma Score is below 61 and (iv) Primary disease categories are either ARF or MOSF. [Hint: droplevels.data.frame can be a useful function]

Optional [0%]

Optional 1: Missing values

- (I) Any variables included in rhc2 data had missing values? Name that variable. [Hint: apply function could be helpful]
- (II) Count how many NAs does that variable have?

(III) Produce a table 1 for a complete case data (no missing observations) stratified by swang1.

Optional 2: Calculating variance of a sample

Write a function for Bessel's correction to calculate an unbiased estimate of the population variance from a finite sample (a vector of 100 observations, consisting of numbers from 1 to 100).

```
Vector <- 1:100
#variance.est <- function(?){?}
#variance.est(Vector)</pre>
```

Hint: Take a closer look at the functions, loops and algorithms shown in lab materials. Use a for loop, utilizing the following pseudocode of the algorithm:

Naïve algorithm [edit]

A formula for calculating the variance of an entire population of size *N* is:

$$\sigma^2 = \overline{(x^2)} - ar{x}^2 = rac{\sum_{i=1}^N x_i^2 - (\sum_{i=1}^N x_i)^2/N}{N}.$$

Using Bessel's correction to calculate an unbiased estimate of the population variance from a finite sample of *n* observations, the formula is:

$$s^2 = \left(rac{\sum_{i=1}^n x_i^2}{n} - \left(rac{\sum_{i=1}^n x_i}{n}
ight)^2
ight) \cdot rac{n}{n-1}.$$

Therefore, a naive algorithm to calculate the estimated variance is given by the following:

```
• Let n \leftarrow 0, Sum \leftarrow 0, SumSq \leftarrow 0

• For each datum x:

• n \leftarrow n+1

• Sum \leftarrow Sum +x

• SumSq \leftarrow SumSq +x \times x

• Var = (SumSq -(Sum \times Sum)/n)/(n-1)
```

Verify that estimated variance with the following variance function output in R:

```
var(Vector)
```

[1] 841.6667

Knit your file

Please knit your file once you finished and submit the knitted PDF or doc file. Please also fill-up the following table:

Group name: ** xyz **

Student initial	% contribution
Student 1 initial	x%
Student 2 initial	x%
Student 3 initial	x%