Planche nº 21. Continuité : étude globale

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***I)

Soit A une partie non vide de \mathbb{R} . Pour x réel, on pose $f(x) = d(x, A) = \inf\{|y - x|, y \in A\}$. Montrer que f est Lipschitzienne.

Exercice nº 2 (**I)

Soit f continue sur [a, b] à valeurs dans [a, b]. Montrer que f a un point fixe.

Exercice no 3 (**I)

Soit f définie sur $[0, +\infty[$ à valeurs dans $[0, +\infty[$, continue sur $[0, +\infty[$ telle que $\frac{f(x)}{x}$ a une limite réelle $\ell \in [0, 1[$ quand x tend vers $+\infty$. Montrer que f a un point fixe.

Exercice nº 4 (****)

Soit f croissante de [a, b] dans lui-même. Montrer que f a un point fixe.

Exercice no 5 (****)

Soit f croissante sur [a, b] telle que f([a, b]) = [f(a), f(b)]. Montrer que f est continue sur [a, b].

Exercice nº 6 (***)

Soit f continue sur \mathbb{R}^+ telle que, pour tout réel positif x, on ait $f(x^2) = f(x)$. Montrer que f est constante sur \mathbb{R}^+ . Trouver un exemple où f n'est pas constante (et donc pas continue).

Exercice nº 7 (***I)

Trouver toutes les applications f de \mathbb{R} dans \mathbb{R} , continues sur \mathbb{R} , vérifiant

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

Exercice nº 8 (**)

Soit f de [0,1] dans lui-même telle que $\forall (x,y) \in ([0,1])^2, \ |f(y)-f(x)| \geqslant |x-y|.$ Montrer que f=Id ou f=1-Id.

Exercice nº 9 (****)

Trouver les fonctions bijectives de [0,1] sur lui-même vérifiant $\forall x \in [0,1], f(2x-f(x)) = x$.

Exercice nº 10 (***I)

Soit f une application de [0,1] dans \mathbb{R} , continue sur [0,1] et vérifiant f(0)=f(1).

- 1) Soit n un entier naturel non nul et soit $a = \frac{1}{n}$. Montrer que l'équation f(x + a) = f(x) admet au moins une solution.
- 2) Montrer (en fournissant une fonction précise) que, si α est un réel de]0,1[qui n'est pas de la forme précédente, il est possible que l'équation $f(x + \alpha) = f(x)$ n'ait pas de solution.
- 3) Application. Un cycliste parcourt 20 km en une heure.
 - a) Montrer qu'il existe au moins un intervalle de temps de durée une demi-heure pendant lequel il a parcouru 10 km.
 - b) Montrer qu'il existe au moins un intervalle de temps de durée 3 min pendant lequel il a parcouru 1 km.
 - c) Montrer qu'il n'existe pas nécessairement un intervalle de temps de durée 45 min pendant lequel il a parcouru 15 km.

Exercice no 11 (**T)

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 , f est-elle injective? f est-elle surjective? $(x,y) \mapsto (x,xy-y^3)$