3.9 Relative rates

1. relative rates 相對率

Application of implicit differentiation. 跑干若飛 — $v_{\rm ph} = v_{\rm fl}$ 用其他函數的變化率來表示某個函數的變化率. Method: Implicit differentiation 隱微分.

0.1 Relative rates

Example 0.1 Air is being pumped into a spherical balloon so that its volume increases at a rate of 100 cm³/s. How fast is the radius of the balloon increasing when the diameter is 50 cm?

灌氣球, 體積(V)以 100 cm^3/s 增加. 半徑(r)在 25 cm 的增加率?

Given: $\frac{dV}{dt} = 100 \text{ cm}^3/\text{s}$. Ask: when r = 25 cm, $\frac{dr}{dt} = ?$

The formula for the volume of a sphere: $V = \frac{4}{3}\pi r^3$.

Ans: $\frac{1}{25\pi}$ cm/s.

Note: 先微完再代 $f'(a) = \frac{d}{dx} f(x) \Big|_{x=a} \neq (f(a))'(=0)$, 答案別忘記單位.

Example 0.2 A ladder 5 m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1 m/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 3 m from the wall?

一梯長 5 m 依牆而立, 梯底(x)以 1 m/s 滑離, 梯頂(y)在底離 3 m 的下滑率?

Let the bottom of the ladder x m from from the wall and the top y m from the ground.

Given:
$$\frac{dx}{dt} = 1$$
 m/s. Ask: when $x = 3$ m, $-\frac{dy}{dt} = ?$ (注意方向, y 往上, 下滑率 = $-$ 增高率.)

The formula for the relation of x and y:

Pythagorean Theorem 畢氏定理: $x^2 + y^2 = 5^2 = 25$.

Use implicit differentiation:
$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0.$$

$$\implies y = 4 \text{ and } -\frac{dy}{dt} = \frac{x}{y}\frac{dx}{dt} = \frac{3}{4} \cdot 1 = \frac{3}{4}.$$

Ans:
$$\frac{3}{4}$$
 m/s.

Example 0.3 A water tank has the shape of an inverted circular cone with base radius 2 m and height 4 m. If water is being pumped into the tank at a rate of 2 m^3/min , find the rate at which the water level is rising when the water is 3 m deep.

半徑 2 m 的倒圓錐的水塔以 $2 m^3/min$ 注入水, 找 3 m 深時的高度(h)變化率.

Given:
$$\frac{dV}{dt} = 2 m^3/min$$
. Ask: when $h = 3 m$, $\frac{dh}{dt} = ?$

Let h be the height and r be the radius of water, then h/r = 4/2, $r = \frac{h}{2}$.

The formula for the volume of a circular cone: $V = \frac{1}{3}\pi r^2 h = \frac{1}{12}\pi h^3$.

Ans: $\frac{8}{9\pi}$ m/min.

Example 0.4 Car A is traveling west at 90 km/h and car B is traveling north at 100 km/h. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 60 m and car B is 80 m from the intersection?

A車西行 90 km/h, B 車北行 100 km/h, 當 A 離交會點 60 m, B 離 80 m, 兩 車接近率?

Let x and y be the distance from the intersection to A and B, respectively, and let z be the distance from A to B.

Given:
$$-\frac{dx}{dt} = 90 \text{ km/h}, -\frac{dy}{dt} = 100 \text{ km/h}.$$
 (注意方向)

Ask: when x = 0.06 km and y = 0.08 km, $-\frac{dz}{dt} = ?$ (注意單位)

The formula for the relation of x, y and z:

 $Pythagorean\ Theorem\$ 畢氏定理: $x^2+y^2=z^2$

Use implicit differentiation:
$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt}$$
.
When $x = 0.06$ and $y = 0.08$, $z = 0.1$.

$$\implies -\frac{dz}{dt} = \frac{1}{z}(-x\frac{dx}{dt} - y\frac{dy}{dt}) = \frac{1}{0.1}(0.06 \cdot 90 + 0.08 \cdot 100) = 134.$$

Ans: 134 km/h.

Example 0.5 A man walks along a straight path at a speed of 1.5 m/s. A searchlight is located on the ground 6 m from the path and is kept focused on the man. At what rate is the searchlight rotating when the man is 8 m from the point on the path closest to the searchlight?

一人以 1.5 m/s 行直路, 一燈離路 6 m 追人, 當人離最近點 8 m 的燈<mark>轉</mark>率?

Let x be the distance form the man to the point on the path closest to the light, and let θ be the angel between the beam and the perpendicular $\pm i \beta$ to the path.

Given:
$$\frac{dx}{dt} = 1.5 \text{ m/s}$$
. Ask: when $x = 8 \text{ m}$, $\frac{d\theta}{dt} = ?$

From graph: $\tan \theta = \frac{x}{6}$.

[Sol 1] Use implicit differentiation:
$$\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{6} \frac{dx}{dt}$$
.

When
$$x = 8$$
, $\cos \theta = \frac{6}{\sqrt{8^2 + 6^2}} = \frac{3}{5}$.

$$\implies \frac{d\theta}{dt} = \frac{1}{6}\cos^2\theta \frac{dx}{dt} = \frac{1}{6} \cdot \left(\frac{3}{5}\right)^2 \cdot 1.5 = 0.09.$$

[Sol 2]
$$\theta = \tan^{-1} \frac{x}{6}$$
, $u = \frac{x}{6}$, $\frac{d}{du} \tan^{-1} u = \frac{1}{1 + u^2}$.

Use chain rule:
$$\frac{d\theta}{dt} = \frac{1}{1 + (x/6)^2} \frac{1}{6} \frac{dx}{dt} = \frac{1}{1 + (8/6)^2} \frac{1}{6} (1.5) = 0.09.$$

Ans: 0.09 rad/s.

