

Mathematical Introduction

Atli Fannar Franklín, Arnar Bjarni Arnarson Árangursrík forritun og lausn verkefna

School of Computer Science Reykjavík University

Important point

Computer Science ⊂ Mathematics

- Problems often require mathematical analysis to be solved efficiently.
- Using a bit of math before coding can also shorten and simplify code.
- We will now go over various bits and pieces from mathematics that are useful to know.

• Some problems have solutions that form a pattern.

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
 - Solve some small instances by hand.
 - See if the solutions form a pattern.

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
 - Solve some small instances by hand.
 - See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem?

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
 - Solve some small instances by hand.
 - See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem?
 We might need to use DP.

- Some problems have solutions that form a pattern.
- By finding the pattern, we solve the problem.
- Could be classified as mathematical ad-hoc problem.
- Requires mathematical intuition.
- Useful tricks:
 - Solve some small instances by hand.
 - See if the solutions form a pattern.
- Does the pattern involve some overlapping subproblem?
 We might need to use DP.
- Knowing reoccurring identities and sequences can be helpful.

• Often we see a pattern like

$$2, 5, 8, 11, 14, 17, 20, \dots$$

• Often we see a pattern like

$$2, 5, 8, 11, 14, 17, 20, \dots$$

• This is called an arithmetic progression.

$$a_n = a_{n-1} + c$$

 Depending on the situation we may want to get the n-th element

$$a_n = a_1 + (n-1)c$$

Or the sum over a finite portion of the progression

$$S_n = \frac{n(a_1 + a_n)}{2}$$

 Depending on the situation we may want to get the n-th element

$$a_n = a_1 + (n-1)c$$

• Or the sum over a finite portion of the progression

$$S_n = \frac{n(a_1 + a_n)}{2}$$

Remember this one?

$$1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}$$

 $\bullet\,$ Other types of pattern we often see are geometric progressions

$$1, 2, 4, 8, 16, 32, 64, 128, \dots$$

• Other types of pattern we often see are geometric progressions

$$1, 2, 4, 8, 16, 32, 64, 128, \dots$$

More generally

$$s, sr, sr^2, sr^3, sr^4, sr^5, sr^6, \dots$$

$$a_n = sr^{n-1}$$

• Sum over a finite portion

$$\sum_{i=0}^{n} sr^{i} = \frac{s(1-r^{n})}{(1-r)}$$

• Sum over a finite portion

$$\sum_{i=0}^{n} sr^{i} = \frac{s(1-r^{n})}{(1-r)}$$

• Or from the m-th element to the n-th

$$\sum_{i=m}^{n} sr^{i} = \frac{s(r^{m} - r^{n+1})}{(1-r)}$$

• Sometimes doing computation in logarithm can be an efficient alternative.

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++(<cmath>) and Java(java.lang.Math) we have the natural logarithm

```
double log(double x);
```

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++(<cmath>) and Java(java.lang.Math) we have the natural logarithm

```
double log(double x);
and logarithm in base 10
    double log10(double x);
```

- Sometimes doing computation in logarithm can be an efficient alternative.
- In both C++(<cmath>) and Java(java.lang.Math) we have the natural logarithm

```
double log(double x);
and logarithm in base 10
   double log10(double x);
```

• And also the exponential

```
double exp(double x);
```

ullet For example, what is the first power of 17 that has k digits in base b?

- For example, what is the first power of 17 that has k digits in base b?
- Naive solution: Iterate over powers of 17 and count the number of digits.

- For example, what is the first power of 17 that has k digits in base b?
- Naive solution: Iterate over powers of 17 and count the number of digits.
- But the powers of 17 grow exponentially!

$$17^{16} > 2^{64}$$

• What if $k = 500 \ (\sim 1.7 \cdot 10^{615})$, or something larger?

- For example, what is the first power of 17 that has k digits in base b?
- Naive solution: Iterate over powers of 17 and count the number of digits.
- But the powers of 17 grow exponentially!

$$17^{16} > 2^{64}$$

- What if $k = 500 \ (\sim 1.7 \cdot 10^{615})$, or something larger?
- Impossible to work with the numbers in a normal fashion.
- Why not log?

• Remember, we can calculate the length of a number n in base b with $\lfloor \log_b(n) \rfloor + 1$.

- Remember, we can calculate the length of a number n in base b with $\lfloor \log_b(n) \rfloor + 1$.
- But how do we do this with only \ln or \log_{10} ?

- Remember, we can calculate the length of a number n in base b with $\lfloor \log_b(n) \rfloor + 1$.
- But how do we do this with only \ln or \log_{10} ?
- Change base!

$$\log_b(a) = \frac{\log_d(a)}{\log_d(b)} = \frac{\ln(a)}{\ln(b)}$$

Now we can at least count the length without converting bases

• We still have to iterate over the powers of 17, but we can do that in log

$$\ln(17^{x-1} \cdot 17) = \ln(17^{x-1}) + \ln(17)$$

• We still have to iterate over the powers of 17, but we can do that in log

$$\ln(17^{x-1} \cdot 17) = \ln(17^{x-1}) + \ln(17)$$

More generally

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

• For division

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

- We can simplify this even more.
- ullet The solution to our problem is in mathematical terms, finding the x for

$$\log_b(17^x) = k - 1$$

- We can simplify this even more.
- The solution to our problem is in mathematical terms, finding the x for

$$\log_b(17^x) = k - 1$$

• One more handy identity

$$\log_b(a^c) = c \cdot \log_b(a)$$

- We can simplify this even more.
- ullet The solution to our problem is in mathematical terms, finding the x for

$$\log_b(17^x) = k - 1$$

One more handy identity

$$\log_b(a^c) = c \cdot \log_b(a)$$

• Using this identity and the ones we've covered, we get

$$x = \left\lceil (k-1) \cdot \frac{\ln(10)}{\ln(17)} \right\rceil$$

Base conversion

• Speaking of bases.

Base conversion

- Speaking of bases.
- What if we actually need to use base conversion?

Base conversion

- Speaking of bases.
- What if we actually need to use base conversion?
- Simple algorithm

```
template <typename T>
vector<T> toBase(T base, T val) {
    vector<T> res:
    while(val) {
        res.push_back(val % base);
        val /= base;
    return res;
}
```

• Starts from the 0-th digit, and calculates the multiple of each power.

• Comparing doubles, sounds like a bad idea.

- Comparing doubles, sounds like a bad idea.
- What else can we do if we are working with real numbers?

- Comparing doubles, sounds like a bad idea.
- What else can we do if we are working with real numbers?
- We compare them to a certain degree of precision like in binary search.

- Comparing doubles, sounds like a bad idea.
- What else can we do if we are working with real numbers?
- We compare them to a certain degree of precision like in binary search.
- Two numbers are deemed equal if their difference is less than some small epsilon.

```
const double EPS = 1e-9;
if(abs(a - b) < EPS) {
...
}</pre>
```

• Less than operator:

```
if(a < b - EPS) {
...
}</pre>
```

Less than or equal:

```
if(a < b + EPS) {
...
}</pre>
```

• The rest of the operators follow.