Exercices Classiques — Chapitre 6 Interactions intermoléculaires

Table des matières

1	Interactions intermoléculaires et stéréoisomérie	2
2	Solubilité et interactions intermoléculaires	5
3	Acide maléique et acide fumarique : influence de la stéréochimie sur les propriétés physicochimiques	7

1 Interactions intermoléculaires et stéréoisomérie

Niveau de difficulté : 🛊 🛊 🛊 (application du cours) Compétences visées :

- Écrire les formules de Lewis de stéréoisomères.
- Appliquer la théorie VSEPR pour prévoir une géométrie locale.
- Interpréter un moment dipolaire moléculaire.
- Relier la polarité à des propriétés physiques macroscopiques (température d'ébullition).

Enoncé

Le 1,2-dibromoéthène BrHC=CHBr présente deux stéréoisomères A et B.

- 1. Écrire les formules de Lewis des deux stéréoisomères et prévoir leur géométrie selon la théorie VSEPR.
- 2. Expliquer pourquoi la liaison C-Br est polarisée. Rappeler la définition du moment dipolaire d'une liaison. Le moment dipolaire de la liaison C-Br vaut $\mu = 1,1$ D. Calculer le pourcentage ionique de cette liaison, de longueur d = 194 pm.
- 3. Identifier les stéréoisomères A et B sachant que A est apolaire tandis que B est polaire.
- 4. Températures d'ébullition : Identifier le stéréoisomère qui aura la température de fusion la plus basse.

Données : 1 D = $\frac{1}{3} \times 10^{-29}$ C.m, $e = 1.6 \times 10^{-19}$ C

Corrigé

1. Formules de Lewis et géométries locales (théorie VSEPR)

Les deux stéréoisomères du 1,2-dibromoéthène sont liés à la présence d'une double liaison C=C et de deux substituants différents sur chacun des carbones.

Les deux configurations possibles sont :

— **Isomère cis** (ou configuration absolue Z) les deux atomes de brome sont du même côté de la double liaison.

 — Isomère trans (ou configuration absolue E) les deux atomes de brome sont de part et d'autre de la double liaison.

Chaque atome de carbone est entouré de 3 domaines électroniques (2 simples liaisons et 1 double), donc la géométrie locale est **trigonale plane**.

2. Polarité de la liaison C-Br et moment dipolaire

La liaison C–Br est polarisée car le brome est plus électronégatif que le carbone : le doublet de liaison est délocalisé vers Br, créant un dipôle électrique orienté de C vers Br.

Le moment dipolaire μ d'une liaison est défini par :

$$\mu = q \times d$$

où q est la charge partielle (en C), et d la distance entre les charges (en m).

On exprime ici le pourcentage ionique de la liaison :

$$\mu_{\rm liaison} = 1.1~{\rm D} = \frac{1.1}{3}\times 10^{-29} = 3.67\times 10^{-30}~{\rm C.m}$$

$$d = 194~{\rm pm} = 1.94\times 10^{-10}~{\rm m}$$

$$q = \frac{\mu}{d} = \frac{3.67\times 10^{-30}}{1.94\times 10^{-10}} \approx 1.89\times 10^{-20}~{\rm C}$$
 Pourcentage ionique
$$= \frac{q}{e}\times 100 = \frac{1.89\times 10^{-20}}{1.6\times 10^{-19}}\times 100 \approx 11.8~\%$$

3. Polarité des stéréoisomères

- Dans l'isomère trans, les deux moments dipolaires C-Br sont symétriquement opposés : ils s'opposent et se compensent (voir image ci-dessous) : la molécule est apolaire. C'est donc la molécule A.
- Dans l'isomère **cis** (A), les moments dipolaires s'ajoutent : la molécule est **polaire**. C'est donc la molécule B.

molécule B polaire

molécule A apolaire

4. Température d'ébullition

La température d'ébullition dépend de la force des interactions intermoléculaires. Ici il s'agit d'interactions de Van der Waals :

- L'isomère B (polaire) présente des interactions dipôle-dipôle plus fortes (interaction de Keesom, en plus de celle de London) ⇒ température d'ébullition plus élevée. Il faut fournir davantage d'énergie pour rompre cette liaison.
- L'isomère A (apolaire) interagit uniquement par dispersion (interaction de London) ⇒ température d'ébullition plus faible.

Conclusion : l'isomère **A** aura la température de fusion la plus basse.

Point Méthode

Déterminer le caractère ionique d'une liaison à partir du moment dipolaire

- 1. Convertir le moment dipolaire en unités SI : 1 D = $\frac{1}{3} \times 10^{-29}$ C · m.
- 2. Appliquer la formule $\mu = q \times d$ pour calculer la charge partielle q.
- 3. Déterminer le pourcentage ionique par le rapport q/e.

Remarque : le pourcentage ionique est une grandeur indicative du caractère partiellement ionique d'une liaison covalente polarisée.

Déterminer le caractère polaire d'une molécule Une molécule est dite **polaire** si la somme vectorielle de ses moments dipolaires de liaison ne s'annule pas. Cela dépend de :

- La **polarité de chaque liaison** (différence d'électronégativité entre les atomes).
- La **géométrie de la molécule** (orientation relative des dipôles).

Une molécule contenant des liaisons polaires peut être apolaire si sa géométrie permet une compensation parfaite (comme CO_2 , C_2H_2 , ou ici le *trans*-1,2-dibromoéthène).

? Foire aux erreurs

Ce qu'il faut éviter

- Confondre polarité de liaison (locale) et polarité de molécule (globale) : une molécule peut contenir des liaisons polaires mais être apolaire si les moments se compensent.
- Oublier la géométrie dans l'analyse de polarité : le raisonnement vectoriel est essentiel.
- Calculer un pourcentage ionique sans convertir les unités (D, pm, e).
- Prendre la température de fusion comme indicateur direct de la polarité : attention, la température d'ébullition est plus pertinente ici.

2 Solubilité et interactions intermoléculaires

Niveau de difficulté : ★ ★ (analyse expérimentale) **Compétences visées :**

- Relier une propriété physique (solubilité) à la structure moléculaire.
- Identifier les interactions possibles entre soluté et solvant.
- Hiérarchiser des espèces en fonction de leur capacité à établir des liaisons hydrogène.

Énoncé

La solubilité d'une espèce chimique dans un solvant peut être définie comme la masse maximale de soluté pouvant être dissoute par litre de solution. Elle s'exprime en $g \cdot L^{-1}$.

On s'intéresse ici à la solubilité dans l'eau d'une série de composés ayant un squelette carboné en C5 :

Espèce	Acide pentanoïque	Pentanal	Pentan-1-ol	Pentane
Solubilité dans l'eau $(g \cdot L^{-1})$	40,0	11,7	22,0	$3.8 \cdot 10^{-2}$

- 1. Représenter les composés présentés dans le tableau.
- 2. Expliquer qualitativement la variation des solubilités observées à partir des interactions soluté-solvant.

Corrigé

1. Représentation des composés

On représente les quatre composés en faisant apparaître les groupes caractéristiques distinctifs :

2. Interprétation des solubilités

L'eau est un solvant très polaire, capable de former des **liaisons hydrogène** (donneur et accepteur). Il a également un caractère ionisant et dissociant, favorisant la formation de composés ioniques. La solubilité d'un composé organique dépend principalement de sa capacité à :

- Se dissocier sous forme d'ions
- Former des liaisons hydrogène avec l'eau;
- Former des interactions polaires (Debye) avec l'eau.
- Acide pentanoïque : groupe –COOH très polaire, capable de former plusieurs liaisons hydrogène (accepteur et donneur) ⇒ solubilité très élevée (40,0). Par son caractère acide, l'acide pentanoïque a aussi la possibilité de former des paires d'ions, ce qui rend très grandes sa solubilité dans l'eau.
- Pentan-1-ol : groupe –OH donneur et accepteur de liaison hydrogène ⇒ solubilité élevée (22,0), mais inférieure à celle de l'acide.
- **Pentanal** : groupe carbonyle –CHO polaire, mais accepteur seulement de liaison $H \Rightarrow$ solubilité plus faible (11,7).
- **Pentane** : molécule apolaire, interactions uniquement de dispersion \Rightarrow solubilité quasi nulle (0,038).

On observe une corrélation entre la polarité du groupe fonctionnel et la solubilité dans l'eau.

Point Méthode

Analyser la solubilité d'un composé organique dans l'eau

- 1. Identifier les **groupes fonctionnels** du composé.
- 2. Déterminer s'ils sont capables de :
 - Former des liaisons hydrogène (donneur/accepteur);
 - Interagir par dipôle-dipôle.
- 3. Évaluer l'effet de la chaîne carbonée :
 - Plus elle est longue, plus l'effet hydrophobe est marqué.
- 4. Conclure qualitativement : un composé est d'autant plus soluble dans l'eau qu'il est capable de compenser l'effet hydrophobe par des interactions polaires fortes avec le solvant.

? Foire aux erreurs

Ce qu'il faut éviter

- Croire que toutes les molécules polaires sont très solubles dans l'eau : il faut aussi un site capable de liaison H.
- Oublier que l'eau est un solvant **très structuré** : seuls certains motifs (–OH, –COOH, –NH2…) y sont bien intégrés.
- Sous-estimer l'effet défavorable d'une chaîne hydrocarbonée longue (effet hydrophobe).
- Confondre polarité globale de la molécule et capacité à interagir localement avec l'eau.

3 Acide maléique et acide fumarique : influence de la stéréochimie sur les propriétés physicochimiques

Niveau de difficulté : ★ ★ (analyse approfondie) Compétences visées :

- Identifier un type d'isomérie et distinguer isomérie de constitution et stéréoisomérie.
- Relier la structure moléculaire aux interactions intermoléculaires possibles (liaisons hydrogène, polarité).
- Interpréter des données expérimentales (solubilité, température de fusion, pKa, densité) à l'aide de modèles microscopiques.
- Justifier l'impact de la stéréochimie sur des propriétés macroscopiques.

Énoncé

L'acide **but-2-ène-1,4-dioïque**, de formule semi-développée HOOC—CH=CH—COOH, qui existe sous deux formes stéréoisomères : l'acide maléique et l'acide fumarique. On donne ci-dessous quelques propriétés expérimentales des deux stéréoisomères.

Propriété	Acide maléique	Acide fumarique
Aspect	Solide blanc	Solide blanc
Masse molaire (g \cdot mol ⁻¹)	116	116
Solubilité dans l'eau à 25 °C (g \cdot L ⁻¹)	780	6,3
Température de fusion (°C)	131	287
Masse volumique (g \cdot cm ⁻³)	1,59	1,63
pK_a	1,83 et 6,59	3,0 et 4,4

- 1. Proposer le type de relation d'isomérie entre ses deux formes. En donner une représentation topologique.
- 2. Répertorier les interactions inter- **et** intramoléculaires possibles pour ces deux stéréoisomères. Quelle est la forme la plus disponible pour des interactions intermoléculaires?
- 3. En vous appuyant sur la réponse précédente ainsi que sur les températures de fusion attribuer la bonne stéréochimie (Z ou E) à chacun des deux acides.
- 4. Justifier qualitativement la différence de solubilité dans l'eau entre les deux acides.
- 5. Comparer les valeurs de pK_a des deux diacides : que révèlent-elles sur la stabilisation de la forme basique conjuguée? Relier au rôle éventuel de liaisons hydrogène intramoléculaires.
- 6. Discuter la différence de masse volumique observée.

Corrigé

1. Relation d'isomérie et représentations topologiques

Les deux composés sont des **stéréoisomères de configuration** : la double liaison C=C empêche la rotation libre, et la position relative des deux fonctions ´COOH diffère. On distingue donc les formes **Z** (cis, les deux groupements acides du même côté) et **E** (trans, les groupements opposés). Ce sont des **diastéréoisomères**, non superposables et non images l'un de l'autre.

2. Interactions inter- et intramoléculaires possibles

- Forme (Z): possibilité de former une liaison hydrogène intramoléculaire entre les deux groupements COOH, ce qui réduit la capacité à établir des liaisons hydrogène intermoléculaires.
- Forme (E): impossibilité géométrique de liaison H intramoléculaire, mais forte capacité à établir des liaisons H intermoléculaires entre molécules.

Ainsi, la forme la plus disponible pour des interactions intermoléculaires est l'acide (E).

3. Attribution des stéréochimies à partir des températures de fusion

- L'acide E forme un réseau cristallin très cohérent grâce aux nombreuses liaisons H intermoléculaires ⇒ forte cohésion ⇒ température de fusion élevée (287 °C). Il s'agit donc de l'acide fumarique.
- L'acide Z, stabilisé par ses liaisons intramoléculaires, établit moins de liaisons intermoléculaires ⇒ cohésion plus faible ⇒ température de fusion plus basse (131 °C).

4. Solubilité dans l'eau

- L'acide maléique (Z) est plus soluble car il est plus polaire (orientation des liaisons polarisées): sa structure permet des interactions efficaces avec l'eau (liaisons H avec les groupements COOH), même si une partie est consommée par des liaisons intramoléculaires.
- L'acide fumarique (E), moins polaire (les dipôles s'opposent) et plus "rigide" en réseau cristallin, se dissout difficilement dans l'eau.

Cela explique les solubilités : 780 g/L (maléique) vs 6,3 g/L (fumarique).

5. Comparaison des pKa et rôle des liaisons H

- **Acide maléique (Z)** : $pK_{a1} = 1.83$ (très acide), car la base conjuguée A^- est stabilisée par une liaison H intramoléculaire entre le COO^- et l'autre COOH. $pK_{a2} = 6.59$, plus élevé, car le départ du deuxième proton détruit cette stabilisation.
- **Acide fumarique (E)**: Les deux groupes COOH sont équivalents et éloignés, donc absence de stabilisation intramoléculaire spécifique. Les deux pK_a sont plus proches (3,0 et 4,4).

6. Masse volumique

La nature des interactions modifie la cohésion (fusion, solubilité), plus forte dans le cas de l'acide fumarique : la masse volumique est donc supérieure à celle de l'acide maléique.

Point Méthode

Comment relier la stéréochimie aux propriétés macroscopiques?

- 1. Identifier la possibilité de liaisons hydrogène intra- ou intermoléculaires.
- 2. Relier:
 - Liaisons H intramoléculaires \Rightarrow moins d'interactions intermoléculaires \Rightarrow température de fusion plus faible.
 - Liaisons H intermoléculaires \Rightarrow cohésion du réseau solide accrue \Rightarrow température de fusion plus élevée.
- 3. Vérifier la polarité globale de la molécule : un composé polaire sera en général plus soluble dans l'eau.
- 4. Examiner les pK_a : une base conjuguée stabilisée par une interaction intramoléculaire rend l'acide plus fort.

? Foire aux erreurs

Ce qu'il faut éviter

- Confondre polarité d'une liaison et polarité d'une molécule : l'orientation géométrique des groupes est déterminante.
- Croire que les deux acides ont les mêmes comportements acido-basiques : la stéréochimie modifie les pK_a .
- Assimiler température de fusion et solubilité : ce sont deux propriétés différentes, qui se déduisent de la nature des interactions dominantes.
- Oublier de distinguer liaisons hydrogène intra et inter : c'est la clé de l'exercice.