Projet de Conception : Optimisation d'un Système de Fluidisation Gaz-Solide

Groupe 15

Sohane Said Nouh 300347924

Sokhna Maty Diouf 300390103

Bineta Ly 300382852

Département de Génie chimique et biologique

CHG2712

Université d'Ottawa

04 décembre 2024

Avant-propos

Ce rapport présente l'analyse et le dimensionnement d'un système de fluidisation gaz-solide sous pression, dans le cadre d'un projet du cours de CHG2712. L'objectif principal est de déterminer le diamètre nominal minimum du tube nécessaire pour rendre le système opérationnel, en tenant compte des pressions de fonctionnement imposées ($10\ bar$ et $20\ bar$), ainsi que des propriétés des gaz et des particules.

Le projet repose sur l'utilisation de l'outil Solver dans Excel pour résoudre les équations clés du processus de fluidisation. Ces équations incluent celles permettant de calculer la vitesse terminale des particules, les pertes de pression, ainsi que l'application des principes de Bernoulli, Richardson-Zaki, et de la continuité. Solver a été utilisé pour optimiser les dimensions du tube et ajuster les paramètres du système en fonction des résultats obtenus.

Les calculs ont été effectués pour différentes pression de fonctionnement, en tenant compte des propriétés de l'argon comme gaz de fluidisation et du carbonate de calcium comme particule de fluidisation. Le rapport présente les résultats obtenus, notamment le diamètre nécessaire, les pertes de pression et le temps de séjour du gaz dans le système. Il aborde également les hypothèses formulées lors des calculs et discute des ajustements à apporter pour rendre le système opérationnel à des pressions plus élevées ou avec des tubes plus petits.

Table des matières

ıab	ie des mai	tieres	2
1	Introduc	tion	6
2	Résultat	s et discussion	7
3	Conclusi	ons et recommendations	8
4	Référenc	ces	8
5	Annexe		8
5	.1 Calo	culs détaillés :	8
	5.1.1	Calculs des propriétés initiales	8
	5.1.2	Calculs de fluidisation minimale	10
	5.1.3	Calculs de la hauteur élargie du lit	10
	5.1.4	Pertes de pression dans le système	11
	5.1.5	Calculs du Temps de séjour	11
	5.1.6	Résolution avec Solver	11
5	.2 Dor	nnées supplémentaires :	11
	5.2.1	Propriétés de l'argon et du carbonate de calcium	11
	5.2.2	Tableaux des résultats	12
6	Tableau	d'attribution des tâches	16
7	Page éth	ique	17

Liste des figures

Aucune entrée de table d'illustration n'a été trouvée.

Liste des tableaux

(1)	8
(2)	S
(3)	c
(3)	
(4)	c

Nomenclature

Symbole	Description	Unités
g	Accélération dû à la gravité	$m_{/_{S^2}}$
A_{c-m}	Aire de la colonne centrale de fluidisation	m^2
C_1	Constante de fluidisation	
C_2	Constante de fluidisation	
R	Constante des gaz parfaits	$m^3.Pa/_{K.mol}$
D_{c-m}	Diamètre de la colonne centrale de fluidisation	m
D_p	Diamètre de la particule	m
H_{static}	Hauteur du lit statique	m
μ_p	Masse de la particule	kg
M_g	Masse molaire de l'argon	$^{kg}/_{mol}$
$ ho_g$	Masse volumique de l'argon	$^{kg}/_{m^3}$
$ ho_p$	Masse volumique de la particule	$^{kg}/_{m^3}$
Ar	Nombre d'Archimède	
$arepsilon_{mf}$	Porosité minimale de fluidisation	
P	Pression d'opération de l'argon	bar/Pa
φ	Sphéricité	
T	Température du gaz	K
μ	Viscosité du gaz	Pa. s

$$\underline{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1 Introduction

(introduire le but d'un lit fluidisé, j'ai la référence, je parle à moi-même, ne vous inquiétez pas

Ce projet a pour but d'étudier un système de fluidisation gaz-solide sous pression où l'objectif principal est de déterminer le diamètre nominal minimum du tube nécessaire pour le rendre opérationnel à des pressions données de 10 bar et 20 bar. Le système utilise de l'argon comme gaz de fluidisation et du carbonate de calcium comme particules. Les propriétés de ces éléments permettent de calculer la vitesse terminale des particules et d'évaluer la performance du système en termes de pertes de pression et de temps de séjour du gaz.

Le système fonctionne dans une boucle fermée. L'argon est d'abord comprimé par un compresseur à vitesse variable, avant d'être introduit dans la colonne de fluidisation. Arrivée au niveau de cette dernière, l'argon fluidise les particules de carbonate de calcium, permettant une suspension homogène dans le lit. Le gaz traverse ensuite le vortexmètre, qui mesurera son débit, avant d'être refroidi par l'échangeur de chaleur. Après refroidissement, effectuera le meme voyage : c'est une boucle.

(Je vais refaire le bloc après) whyy? CELUI QU'ON AVAIT CA ALLAIT JUSTE QUE LA PHOTO EST PAS ENTIERE LA

Afin de simplifier l'analyse, des hypothèses ont été posées :

- L'argon un gaz parfait et le compresseur est supposé comme idéal;
- Les particules de carbonate de calcium sont sphériques avec une sphéricité de 0,85;

- La rugosité des tuyaux et des composants du système est supposée constate et est égale
 à celle de l'acier inoxydable 316;
- Le système fonctionne en régime turbulent ;
- Le lit fluidisé est supposé stable tout au long de l'opération ;
- Le diamètre initial arbitraire de 0.0281 mètres a été choisi.

Cependant, le modèle présente plusieurs limites dues aux hypothèses simplificatrices utilisées. En premier lieu, l'argon est considéré comme un gaz parfait, négligeant ainsi les effets de la compressibilité et de la température. Aussi, bien que la sphéricité des particules de carbonate de calcium soit supposée constante, ceci ne reflète pas parfaitement leur forme réelle. Enfin, les pertes de pressions dans le système sont estimées à partir de formules standard, ce qui peut ne pas refléter les pertes réelles.

2 Résultats et discussion

Approche de conception

- Décrire les étapes suivies pour :
 - o Calculer la friction, pertes de charge, diamètre optimal.
 - o Intégrer les conditions pour valider les hypothèses.

• \Constats des paramètres de conception

- Présenter les résultats calculés :
 - o Diamètre final minimal.
 - o Diamètre nominal standard.
 - Pertes de pression totales.
 - o Puissance requise.
 - o Temps de séjour des particules.

• Discussion des résultats

- Analyse critique:
 - o Pourquoi ces résultats sont réalistes ou non.
 - Réponses aux questions de conception : Expliquer pourquoi une certaine hypothèse ou méthode est justifiée.
- Identifier les limites des résultats.

3 Conclusions et recommendations

• Résumé des constatations :

• Récapitulatif des valeurs clés (diamètre, perte de pression, puissance).

• Recommandations:

- Modifications potentielles pour améliorer le système.
- Considérations pour réduire encore le diamètre ou améliorer la performance.

4 Références

Aucune source spécifiée dans le document actif.

5 **Annexe**

Dans cette annexe, nous présentons les calculs nécessaires pour analyser et dimensionner le système de fluidisation gaz-solide sous pression. Chaque étape inclut une explication des formules utilisées, les hypothèses appliquées, et les résultats obtenus pour les différentes conditions de fonctionnement. Les calculs concernent principalement les propriétés initiales du gaz et des particules, la détermination des pertes de pression, les paramètres de fluidisation, et le temps de séjour du gaz dans le système.

5.1 Calculs détaillés :

5.1.1 Calculs des propriétés initiales

5.1.1.1 Masse volumique de l'argon

La masse volumique du gaz de l'argon $\rho_g(^{kg}/_{m^3})$ est calculée en utilisant la loi des gaz parfait. En effet, ce gaz est supposé parfait dans nos hypothèses. La température du gaz est supposée constante tout au long de son voyage dans la boucle. La seule variable qu'on va prendre en compte sera la pression utilisée. De ce fait, la masse volumique de l'argon, dépendra de la pression utilisée lors du calcul. La procédure du calcul s'annonce ainsi :

La loi des gaz parfait est donnée par l'équation suivante :

$$PV = nRT (1)$$

Or on sait que :
$$\rho_g \left(\frac{kg}{m^3} \right) = \frac{m}{V} = \frac{n \times M_g}{V}$$
 (2)

L'équation (2) donne
$$V = \frac{n \times M_g}{\rho_g}$$
 (3)

En intégrant l'expression de V, (3) dans (1), on obtient :

$$\rho_g \left({}^{kg}/_{m^3} \right) = \frac{{}^{P \times M_g}}{{}^{RT}} \tag{4}$$

5.1.1.2 Aire de la colonne centrale du lit fluidisé

L'aire de la colonne centrale de fluidisation A_{c-m} permet de calculer la vitesse du gaz, les pertes de pressions, le volume du lit mais aussi intervient dans le calcul de la masse des particules.

$$A_{c-m} = \frac{\pi (D_{c-m})^2}{4}$$
 (5)

5.1.1.3 Nombre d'Archimède

Le nombre d'Archimède Ar est un nombre adimensionnel. Il a pour but de caractériser la dynamique des particules dans le lit fluidisé. Il est calculé en fonction du diamètre des particules, les masses volumiques du fluide et des particules et de la viscosité de l'argon.

$$Ar = \frac{g \times \rho_g(\rho_p - \rho_g) \times D_p^3}{\mu^2}$$
 (6)

5.1.1.4 Porosité de la fluidisation minimale

La porosité minimale de fluidisation ε_{mf} représente la fraction de vide dans le lit à la condition minimale de fluidisation. Son but est d'assurer une fluidisation stable et l'optimisation du fonctionnement du système. Elle est calculée en fonction de la sphéricité de la particule φ .

$$\varepsilon_{mf} = (14\varphi)^{-1/3} \tag{7}$$

5.1.1.5 Coefficients de fluidisation

Les coefficients de fluidisation C_1 et C_2 sont des constantes utilisées pour déterminer les pertes de pression dans le lit fluidisé. C_1 est lié au régime de fluidisation et dépend du nombre de Reynolds $\mathcal{R}e$ et C_2 quant à lui, corrige les effets de l'expansion du lit.

$$C_1 = \frac{300 \times (1 - \varepsilon_{mf})}{7}$$

$$C_2 = \frac{\varepsilon_{mf}^3}{1.75}$$
(8)

$$C_2 = \frac{\varepsilon_{mf}^3}{1.75} \tag{9}$$

5.1.1.6 Masse des particules

La masse totale des particules dans le lit fluidisé est calculée à partir de la hauteur statique du lit et de la porosité minimale de fluidisation.

$$\mu_p = A_{c-m} H_{static} \times (1 - \varepsilon_{mf}) \rho_p$$
 (10)

5.1.2 Calculs de fluidisation minimale

5.1.2.1 Reynolds minimale de fluidization

Le nombre de Reynolds minimal de fluidisation $\mathcal{R}e_{mf}$ permet de déterminer à quelle stade les particules commenceront à se fluidiser sous l'effet de l'argon. Il permet, ainsi de vérifier que le régime de fluidisation est stable dans le système.

$$\mathcal{R}e_{mf} = \sqrt{C_1^2 + C_2 Ar} - C_1$$

5.1.2.2 <u>Vitesse minimale de fluidisation</u>

5.1.2.3 <u>Vitesse superficielle</u>

5.1.3 Calculs de la hauteur élargie du lit

	5.1.3.1	Reynolds	terminal (et condition	du choix	du paramètre
--	---------	----------	------------	--------------	----------	--------------

5.1.3.2 Reynolds particule

5.1.3.3 <u>Vitesse terminale et Vitesse terminale*</u>

5.1.3.4 Porosité élargie du lit

5.1.3.5 Hauteur du lit élargie

5.1.4 Pertes de pression dans le système

5.1.4.1 Perte dans le vortexmètre

5.1.4.2 Perte dans l'échangeur de chaleur

5.1.4.3 Perte dans le lit fluidisé

5.1.5 Calculs du Temps de séjour

5.1.5.1 Volume total

5.1.5.2 Temps de séjour

5.1.6 Résolution avec Solver

5.1.6.1 Le diamètre minimal

5.1.6.2 <u>La vitesse terminale</u>

5.1.6.3 Les pertes de pression totales

5.2 Données supplémentaires :

5.2.1 Propriétés de l'argon et du carbonate de calcium

Propriété du gaz donnée :		
Type de gaz	T du Gaz en (Celsius)	Viscosité (Pa.s)
Argon	20	2,23E-05

Propriétés de notre particule :					
Type de particule :	Masse volumique (kg/m^3):	Diamètre des particules (m) :	Sphéricité des particules :	Hauteur du lit statique en (m): Facteurs multiplicatif (U	mf):
Carbonate de Calcium	2700	0,0005	0,85	0,35	2

5.2.2 <u>Tableaux des résultats</u>

5.2.2.1 <u>Résultat, à P = 10 bar</u>

Pertes de Frictions des autres sections :			
<u>Vortexmètre :</u>			
Perte de pression	ΔΡ	233,9905349	
Masse volumique Argon :	ρg	16,3904451	
Friction	Fv	-14,27603299	J/Kg
<u>L'échangeur de chaleur :</u>			
Chute de pression :	ΔΡ	-2300	
Masse volumique Argon :	ρg	16,3904451	
Friction	Fhex	140,3256584	J/Kg
Données sur la colonne de fluidisation:			
Diamètre colonne inférieure	Dc-b	0,3556	m
Aire colonne inférieure	Ac-b	0,099314666	m
Diamètre colonne centrale	Dc-m	0,154051	m
Aire colonne centrale	Ac-m	0,018638842	m
Diamètre colonne supérieure	Dc-t	0,3556	m
Aire colonne supérieure	Ac-t	0,099314666	m
Hauteur colonne inférieure	Нс-ь	0,9398	m
Hauteur colonne centrale	Hc-m	2,4384	m
Hauteur colonne supérieure	Hc-t	0,9398	m

	Symbole:	Valeur:	Unité:	L/D	Longueur Equivalente
Rugosité	ε	4,57E-05	m		
Diamètre externe	-	0,0381	m		
épaisseur	-	0,003048	m		
Diamètre interne	D	0,023758771	m		
Longueur Totale	L	16	m		
Rugosité Relative	ε/D	0,001304	-		
Pression	P1	1000000	Pa		
Masse Molaire	М	0,03995	Kg/mol	Kexp 1=	0,9910919
Constante de Gaz Parfaits	R	8,3145	Pa*m^3/mol*K	Kcont 1=	0,433214286
Température	T	293,15	K	Kexp 2 =	0,659872527
Masse Volumique	ρg	16,3904451	kg/m^3	Kcont 2 =	0,066813191
Ball valves (UBV)	-	5	-	K (Ball valve) =	0,07
Check Valve (X)	-	2	-	220	5,226930
Tee Flow through run	-	6	-	120	2,851052
Tee Flow through branch	-	5	-	300	7,127631
90 elbow long	-	2	-	40	0,950351
90 elbow Standard	-	10	-	320	7,602807
45 elbow standard	-	1	-	15	0,356382
Longueur équivalente totale	Ľ	40,11515227	m	Totale =	24,115152
Viscosité	μ	0,0000223	Pa*s		
Aire	Α	0,000443341	m^2		
Vitesse	V	11,89669416	m/s		
débit	Q	0,005274291	m^3/s		
Nombre de Reynold	Re	207747,6632			
Facteur de friction	f	0,005689448	-		
Friction du système	F	3355,611832	J/Kg		
Pression	P2	945000,0285	Pa		
Perte de Pression		54999,97151	Pa		

Données FIMA trouvées en fonction de nos calculs :		
	11,17560086	ni3/min
	0,549999715	
Temps de séjour :		
t=	45,89652746	sec

Données de la fluidisation :		
Expension:	€mf	0,43801032
constante :	C ₁	24,0852719
constante :	C ₂	0,04801921
Nombre d'Archimède :	Ar	1,08E+05
Nb Reynolds minimale fluidisation :	Remf	5,20E+01
Vitesse minimale fluidisation :	Umf	1,41E-01
Vitesse superficielle :	Us	0,28297312
sphéricité de la particule :	ф	0,85
masse volumique des particules :	ρs	2700
Diamètre des particules :	Ds	0,0005
Hauteur du lit :	Hstatic	0,35
gravité :	g	9,81
Volume de lit :	Vlit	0,00652359
Nb Reynolds particule :	NRep	5,23E+02
Vitesse terminale	Vt	1,56020824
Correction due eux effets de paroi	Vt*	1,54859157
expension 2	ε2	0,49251575
Nb Reynold terminal	Ret	573,374609
Hauteur au point de fluidisation	H2	0,38759112
Volume colonne inférieure	Vc-b	0,09333592
Volume colonne centrale	Vc-m	0,04544895
Volume colonne supérieure	Vc-t	0,09333592
Volume du tuyau	Vpipe	0,00709345
Masse des particules :	Мр	9,89872073
Volume particules	Vparticule	0,00366619
Exposant n pour l'expension	n	2,4

Perte de Pression fluidisation			
Perte de pression dans le lit :	ΔPlit	-5178,27034	Pa
Perte de pression de la plaque orifice :	ΔPorifice	-1553,4811	Pa

5.2.2.2 <u>Résultat à P = 20 bar</u>

Pertes de Frictions des autres sections :			
Vortexmètre:			
Perte de pression	ΔΡ	456,3206336	
Masse volumique Argon :	ρg	32,7808902	kg/m^3
Friction	Fv	-13,92032464	J/Kg
<u>L'échangeur de chaleur :</u>			
Chute de pression :	ΔΡ	-2300	
Masse volumique Argon :	ρg	32,7808902	kg/m^3
Friction	Fhex	70,16282919	J/Kg
Données sur la colonne de fluidisation :			
Diamètre colonne inférieure	Dc-b	0,3556	m
Aire colonne inférieure	Ac-b	0,099314666	
Diamètre colonne centrale	Dc-m	0,154051	
Aire colonne centrale	Ac-m	0,018638842	m
Diamètre colonne supérieure	Dc-t	0,3556	m
Aire colonne supérieure	Ac-t	0,099314666	m
Hauteur colonne inférieure	Hc-b	0,9398	m
Hauteur colonne centrale	Hc-m	2,4384	m
Hauteur colonne supérieure	Hc-t	0,9398	m

	Symbole:	Valeur:	Unité:	L/D	Longueur Equivalente
Rugosité	ε	4,57E-05	m		<u> </u>
Diamètre externe	-	0,0381	m		
épaisseur	-	0,003048	m		
Diamètre interne	D	0,021165838	m		
Longueur Totale	L	16	m		
Rugosité Relative	ε/D	0,001304	-		
Pression	P1	2000000	Pa		
Masse Molaire	М	0,03995	Kg/mol	Kexp 1 =	0,9929269
Constante de Gaz Parfaits	R	8,3145	Pa*m^3/mol*K	Kcont 1=	0,433214286
Température	T	293,15	K	Kexp 2 =	0,659872527
Masse Volumique	ρg	32,7808902	kg/m^3	Kcont 2 =	0,059521479
Ball valves (UBV)	-	5	•	K (Ball valve) =	0,07
Check Valve (X)	-	2	1	220	4,656484
Tee Flow through run	-	6	1	120	2,539901
Tee Flow through branch	-	5	1	300	6,349751
90 elbow long	-	2	-	40	0,846634
90 elbow Standard	-	10	-	320	6,773068
45 elbow standard	-	1	-	15	0,317488
Longueur équivalente total	L'	37,48332561	m	Totale =	21,483326
Viscosité	μ	0,0000223	Pa*s		
Aire	Α	0,000351853	m^2		
Vitesse	V	11,60027053	m/s		
débit	Q	0,004081586	m^3/s		
Nombre de Reynold	Re	360927,0787	•		
Facteur de friction	f	0,005592171	-		
Friction du système	F	3020,051277	J/Kg		
Pression	P2	1901000,031	Pa		

Données FIMA trouvées en fonction de nos calculs :		
	8,648398803	pi3/min
	0,989999693	Bar
Temps de séjour :		
t =	58,94959723	sec

Données de la fluidisation :		
Masse des particules :	Мр	9,898721
Expension:	€mf	0,43801
constante:	C1	24,08527
constante:	C2	0,048019
Nombre d'Archimède :	Ar	2,16E+05
Nb Reynolds minimale fluidisation :	Remf	8,05E+01
Vitesse minimale fluidisation :	Umf	0,109491
Vitesse superficielle :	Us	0,218983
sphéricité de la particule :	ф	0,85
masse volumique des particules :	ρs	2700
Diamètre des particules :	Ds	0,0005
Hauteur du lit :	Hstatic	0,35
gravité :	g	9,81
Volume de lit :	Vlit	0,006524
Nb Reynolds particule :	NRep	7,57E+02
Vitesse terminale	Vt	1,09986
Correction due eux effets de paroi	Vt*	1,09167
expension 2	ε2	0,512035
Nb Reynold terminal	Ret	808,3941
Hauteur au point de fluidisation	H2	0,403095
Volume colonne inférieure	Vc-b	0,093336
Volume colonne centrale	Vc-m	0,045449
Volume colonne supérieure	Vc-t	0,093336
Volume du tuyau	Vpipe	0,00563
Volume particules	Vparticule	0,003666
Exposant n pour l'expension	n	2,4

Perte de Pression fluidisation			
Perte de pression dans le lit :	ΔPlit	-5146,64347	Pa
Perte de pression de la plaque orifice :	ΔP orifice	-1543,99304	Pa

6 **Tableau d'attribution des tâches**

Section	Auteures principales	Co-auteures	Édition
Pages préliminaires			
Introduction			
Résultats et			
discussion			
Conclusion			
Calculs			

- S.S (Sohane Said)
- S.M.D (Sokhna Maty Diouf)
- B.L (Bineta Ly)

7 Page éthique

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (Ne pas toucher)