UNCLASSIFIED

AD NUMBER ADB034148 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; DEC 1977. Other requests shall be referred to Air Force Materials Laboratory, AFML/LTN, Wright-Patterson AFB, OH 45433. **AUTHORITY** afml, DoDD 5260.20 per document marking

MANUFACTURING METHODS FOR CUTTING, MACHINING AND DRILLING COMPOSITES

VOLUME I — COMPOSITES MACHINING HANDBOOK

GRUMMAN AEROSPACE CORPORATION BETHPAGE, NEW YORK 11714 AUGUST 1978

FINAL TECHNICAL REPORT AFML-TR-78-103, VOLUME I

Distribution limited to U.S. Government agencies only; test and evaluation; statement applied December 1977. Other requests for this document must be referred to AFML/LTN, Wright-Patterson AFB, Ohio 45433.

MANUFACTURING TECHNOLOGY DIVISION
AIR FORCE MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

Paul T. Pirrung
PAUL F. PIRRUNG
Project Engineer

FOR THE COMMANDER

R. C. TOMASHOT

Chief

Non-Metals/Composites Branch Manufacturing Technology Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFML/LTN, W-P AFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/30 January 1979 - 300

THE PASPERT HAS REEN DELIMITED AND CLEARED FOR FUGILIC RELEASE URSEN DES DISECTIVE \$2.20.20 AND NO RESTRUCTIONS AND INCOMES UPCA

CAROLINA STATE OF THE STATE OF

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Covernment thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

Paul F. Pirrung
PAUL F. PIRRUNG

Project Engineer

FOR THE COMMANDER

P C TOMASHOT

Chief

Non-Metals/Composites Branch Manufacturing Technology Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFML/LTN, W-P AFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

AIR FORCE/56780/30 January 1979 - 300

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER	
AFML-TR-78-103, Volume I		
4. TITLE (end Subtitie)		S. TYPE OF REPORT & PERIOD COVERED
Manufacturing Methods for Cutting, N	Tachining and	Final Technical Report
Drilling Composites, Volume I - Com	0	August 1976 - August 1978
Machining Handbook	10011000	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
Warren Marx and Sidney Trink	F33615-76-C-5280	
9. PERFORMING ORGANIZATION NAME AND ADORESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Grumman Aerospace Corporation		
Bethpage, New York 11714		Project No. 322-6
11. CONTROLLING OFFICE NAME AND AODRESS		12. REPORT DATE
Air Force Materials Laboratory (AFI	ML/LTN)	August 1978
Air Force Wright Aeronautical Labor		13. NUMBER OF PAGES
Wright-Patterson Air Force Base, Ol	144	
14. MONITORING AGENCY NAME & AODRESS(II ditterent	1S. SECURITY CLASS. (of thie report)	
	Unclassified	
	150. DECLASSIFICATION/DOWNGRADING SCHEDULE	

16. DISTRIBUTION STATEMENT (of this Report)

Distribution limited to U.S. Government agencies only; test and evaluation; statement applied December 1977. Other requests for this document must be referred to AFML/LTN, Wright-Patterson AFB, Ohio 45433

17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)

Cutting Boron/Epoxy Graphite-Kevlar/Epoxy Steel-Rule Die Blanking Machining Graphite/Epoxy Kevlar/Epoxy Radial Sawing

Drilling Graphite-Boron/Epoxy Fiberglass/Epoxy Laser Cutting
Composites Hybrid Composite Ultrasonic Drilling Water-Jet Cutting

Bandsawing Nondestructive Evaluation

20. ABSTRACT (Continue on reverse elde il necessary and identify by block number)

High-quality, low-cost manufacturing methods were established for cutting, machining and drilling of composites. Production nondestructive evaluation (NDE) techniques, capable of insuring structural integrity, were also developed. Materials addressed in this program included graphite/epoxy and hybrids/thereof, boron/epoxy, Keivar/epoxy and fiberglass/epoxy. Program highlights are described below.

Conventional cutting methods were compared to new technology methods such as water-jet, laser and reciprocating cutting. Although the high-speed water-jet and reciprocating cutters worked well with some uncured materials, the slower laser cutter was able to handle all of the materials studied. Steel-rule die blanking was found to be well suited for cutting multiple plies of uncured materials. With regard to cured materials, the water-jet could effectively cut graphite/epoxy, Kevlar/epoxy and fiberglass/epoxy, while the low-power (250 watts) laser could effectively cut only Kevlar/epoxy. The feasibility of producing preplaced holes by blanking was demonstrated and verified by tensile tests.

Several, new low-cost techniques were established for drilling of graphite/epoxy and hybrids thereof. High-speed (21,000 rpm) drilling of graphite/epoxy doubled the life of solid carbide tools. The use of ultrasonic adapters on portable drilling units increased drill life by 100 percent with graphite-boron/epoxy hybrids. Tool geometries that can be successfully applied to Kevlar/epoxy were established. New cutting tool designs for inserted-compacted diamond tools were generated.

Operating parameters were established for routing, trimming, beveling, countersinking and counterboring. In general, diamond-cut carbide router bits were effective for routing and trimming graphite/epoxy and fiberglass/epoxy. Diamond-chip and opposed-helix router bits had to be used to cut boron/epoxy and Kevlar/epoxy, respectively. Modification of the countersink relief and rake angles substantially improved tool life (from 50 to 300 holes) (when drilling graphite/epoxy.)

A comprehensive review of all available NDE techniques that could be applied to the inspection of cut, drilled and machined composites was made. The most effective technique that could reliably be applied in a low-cost production mode was tracer fluoroscopy. A prototype, automated inspection system was developed and evaluated under simulated production conditions to facilitate integration of the system with the manufacturing process. Projected time savings for the approach compared to that for manual techniques exceeded 80 percent.

FOREWORD

This Final Technical Report covers the work performed under Contract F33615-76-C-5280 for the contract period of 2 August 1976 through 2 August 1978. This contract with Grumman Aerospace Corporation, Bethpage, New York, was initiated under Manufacturing Methods Project No. 322-6, "Manufacturing Methods for Cutting, Machining, and Drilling of Composites". The work was administered under the technical direction of Mr. Paul Pirrung/AFML/LTN, Non-Metals/Composites Branch, Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

The Composites Machining Handbook, Volume I, is a concise summary of program results and recommendations. A comprehensive discussion of the overall program is contained in Volume II, Tests and Results.

The program was directed by Mr. Warren Marx, Project Manager. Others assisting on the project were Mr. Sidney Trink, Principal Investigator, of Advanced Materials and Processes Development, Mr. Jack Jenkins and Mr. Leonard Ober of Manufacturing Technology, and Mr. Alfred Weyhreter of Quality Control.

The cooperation and assistance rendered by the following personnel are hereby acknowledged: Mr. John T. Connelly, Arvey Corporation; Mr. John B. Cheung and Mr. G. H. Hurlburt, Flow Research, Inc.; Mr. Roger Arel, Gerber Garment Technology, Inc.; Mr. Thomas J. Labus, ITT Research Institute; Mr. Edward More, Hamilton Standard Division of United Aircraft Corporation; Mr. Gerald K. Faaborg, McCartney Manufacturing Co.; Mr. Frank J. Penoza, Pen Associates, Inc.; Mr. Daniel Ford and Mr. William Hoyt, TFI Corp.; and Mr. Conrad M. Banas, United Technology Research Center.

CONTENTS

Section		Page
1	INTRODUCTION	1
	1.1 Material Combinations and Forms	1
	1.2 Use of the Handbook	1
2	CUTTING UNCURED COMPOSITES	3
	2.1 Water-Jet Cutting	3
	2.2 Laser Cutting	3
	2.3 Reciprocating Mechanical Cutting	3
	2.4 Steel-Rule Die Blanking	3
3	MACHINING RECOMMENDATIONS FOR CURED COMPOSITES	6
	3.1 Sawing	6
	3.1.1 Stationary Radial Sawing	6
	3.1.2 Portable Radial Sawing	6
	3.1.3 Bandsawing	6
	3.2 Laser Cutting	9
	3.3 Water-Jet Cutting	9
	3.4 Drilling, Countersinking and Counterboring	9
	3.5 Diamond Drilling, Countersinking, Counterboring and Reaming	9
	3.6 Ultrasonic Drilling, Countersinking and Counterboring	19
	3.7 Routing, Trimming and Beveling	19
4	EQUIPMENT	22
	4.1 Stationary and Portable Saws	22
	4.2 Bandsaws	22
	4.3 Laser Cutter	22
	4.4 Water/Fluid-Jet Cutter	27
	4.5 Reciprocating Mechanical Cutter	27
	4.6 Ultrasonic Drilling Equipment	27
	4.6.1 Portable Rotary Drilling Unit	27
	4.6.2 Stationary Drilling Machines	31
	4.7 Portable Drilling Equipment	31

CONTENTS (Cont)

Section			Page
		4.7.1 Spacematic Drill	31
		4.7.2 Gardner-Denver Drill (MM-8 Series)	35
		4.7.3 Portable Hone	35
		4.7.4 Manual Drill Motors	35
	4.8	Stationary Drilling Equipment	36
	4.9	Routing Equipment	36
		4.9.1 Portable Routers	36
		4.9.2 Stationary Routers	36
5	CUT	TING TOOLS	50
	5.1	Tool Materials	50
		5.1.1 Conventional Tool Materials	50
		5.1.2 Diamond Cutting Tools	50
		5.1.3 Other Cutting Tool Materials	52
	5.2	Cutting Tool Configurations	52
6	CUT	TING FLUIDS	78
	6.1	General	78
	6.2	Cutting Fluid Types	78
	6.3	Application Recommendations	78
7		LITY CONTROL AND NON-DESTRUCTIVE EVALUATION HNIQUES	79
	7.1	Process Damage/Inspection Criteria	79
	7.2	Quality Inspection Process Procedure - Tracer Fluoroscopy	83
	1.2	7.2.1 Introduction	83
		7.2.2 Related Documents	83
		7.2.3 Implementation	83
0	CAEI		
8		ETY	86
	8.1	Inhalation Hazards	86
	8.2	Skin Contact Hazards	86
	8.3	Ingestion Hazards	86
	8.4	Sight Hazards	87
	8.5	Burn Hazards	87
	8.6	Fire Hazards	87
	8.7	Hearing Hazards	87

CONTENTS (Cont)

Section			Page
	8.8	Waste Hazards	87
	8.9	Radiation Hazards	88
9	COST	ANALYSIS	89
	9.1	General	89
	9.2	Cost Equations	89
		9.2.1 Radial Sawing and Bandsawing	89
		9.2.2 Laser Cutting	89
		9.2.3 Water-Jet Cutting	90
		9.2.4 Reciprocating Mechanical Cutting	90
		9.2.5 Blanking	90
		9.2.6 Drilling	90
		9.2.7 Routing, Trimming and Beveling	90
	9.3	Cutting Tool Cost	92
	9.4	Use of Cost Equations	92
		9.4.1 Problem No. 1	92
		9.4.2 Problem No. 2	96
		9.4.3 Problem No. 3	99
		9.4.4 Problem No. 4	101
	Appe	endix A	A - 1

ILLUSTRATIONS

Figure		Page
1-1	Rapid-Access Index for Cured Material and Process Combinations	2
1-2	Rapid-Access Index for Basic Advanced Composite Materials	2
2-1	Water-Jet Cutting of Uncured Composites	4
2-2	Cutting of Uncured Composites With a 250-Watt ${\rm CO_2}$ Laser	4
2-3	Reciprocating Mechanical Cutting of Uncured Composites	5
2-4	Steel-Rule Die Blanking of Uncured Composites	5
3-1	Process Criteria Summary	7
3-2	Stationary Radial Sawing	7
3-3	Portable Radial Sawing	8
3-4	Bandsawing	8
3-5	Laser Cutting of Kevlar/Epoxy Laminates	10
3-6	Water-Jet Cutting Parameters for Cured Composite Laminates	16
3-7	Summary Matrix of Compiled Drilling Data	11
3-8	Effect of Tool Diameter On Feedrate for HSS and Carbide Tools	12
3-9	Effect of Linear Feet Travelled on Wear Land Development	13
3-10	Diameter-Hand Feedrate Selection Chart	14
3-11	Summary of Metal-Matrix Diamond Tool Operating Parameters	15
3-12	Cutting Tool and Equipment Selection Chart for Assembly Drilling	16
3-13	Summary of Countersinking (100°) Parameters for Fasteners Up to 0.250-Inch in Diameter	17
3-14	Summary of Counterboring Parameters for Holes Up to 0.625-Inch in Diameter	18
3-15	Basic Routing Parameters	19
3-16	Effect of Cut Depth on Routing of Graphite/Epoxy	20
3-17	Effect of Cut Depth on Roto-Recipro Routing, Beveling and Trimming of B/Ep and B-Gr/Ep Hybrids	21
4-1	Stationary Radial Saw	23
4-2	Stationary Radial Saw Specification	24
4-3	Portable Radial Saw	24
4-4	Portable Radial Saw Specification	24

ILLUSTRATIONS (Cont)

Figure	Pag	, E
4-5	DoAll Zephyr Friction Saw	
4-6	Stationary Bandsaw Specification	
4-7	250-Watt Laser Cutting System	
4-8	250-Watt Laser Cutting System Specification	ļ
4-9	Water-Jet Cutting System	ļ
4-10	Water-Jet Cutting System Specification	į
4-11	Reciprocating Mechanical Cutting System	ı
4-12	Reciprocating Mechanical Cutter Specification	ı
4-13	Portable Rotary Ultrasonic Drilling Unit	ŀ
4-14	Portable Rotary Ultrasonic Drill Specification	ŀ
4-15	Branson UMT-5 Ultrasonic Drilling Machine	j J
4-16	Stationary Ultrasonic Drilling Equipment Specification	
4-17	Modified Spacematic Drill for Composites	
4-18	Spacematic Drill Specification	
4-19	Gardner-Denver Portable Drill	
4-20	Gardner-Denver Portable Drill Specification	,
4-21	Portable Honing Fixture	ı
4-22	Portable Hone Fixture Specification 40)
4-23	Cleco Air-Driven Drilling Motor	,
4-24	Cleco Hand Drilling Unit Specification	
4-25	Rockwell/Delta Stationary Drill Press)
4-26	Rockwell/Delta Stationary Drill Press Specification 44	;
4-27	Portable Buckeye Router)
4-28	Portable Buckeye Router Specification)
4-29	Stationary Routers	r
4-30	Stationary Marwin Profiler Specification 48	3
4-31	Stationary Onsrud Router Specification	3
4-32	Stationary Roto-Recipro Router)
4-33	Stationary Roto-Recipro Router Specification)
5-1	Diamond-Plated Cutoff Wheel	}
5-2	Carbide-Tipped Radial Saw Blade	}
5-3	HSS Circular Saw Blade for Kevlar/Epoxy	

ILLUSTRATIONS (Cont)

Figure	Page
5-4	Tungsten Carbide-Coated Bandsaw Blade
5-5	Diamond-Plated Bandsaw Blade
5-6	Modified Carbon-Steel Bandsaw Blade
5-7	Diamond Grit Router Bit
5-8	Carbide Opposed-Helix Router Bit
5-9	Carbide Diamond-Cut Router Bit
5-10	Carbide-Tipped Twist Drill
5-11	Solid Carbide Twist Drill
5-12	Solid Carbide Combination Drill/Countersink 60
5-13	HSS (Cobalt) Piloted Core Drill 61
5 -1 4	HSS (M-2) Reamer
5-15	Solid Carbide (C-6) Reamer
5-16	Diamond-Impregnated (Sintered)/ Plated Drill/Countersink 64
5-17	Diamond-Impregnated (Sintered) Core Drill for Ultrasonic UMT-3 or UMT-5 Unit
5-18	Diamond-Plated Core Drill (Non-Ultrasonic) 66
5-19	HSS Jancy Counterbore Drill
5-20	Carbide Slant Drill
5-21	Diamond-Impregnated Hone (Adjustable)
5-22	Carbide-Tipped Two-Fluted Countersink (Piloted, Steel Threaded Shank)
5-23	Carbide Combination Drill/Modified Countersink 70
5-24	Diamond-Plated Countersink (100°) Finishing Tool, Inserted Pilot and Threaded
5-25	Pilot for Diamond Countersink
5-26	Diamond-Impregnated Countersink (100°), Ultrasonic for UMT-3 or UMT-5 Unit
5-27	HSS (Weldon) Countersink
5-28	Carbide-Tipped Three-Fluted Counterbore, Reduced Shank and Removable Pilot
5-29	Diamond-Plated Counterbore, Piloted and Threaded 76
5-30	Diamond-Impregnated (Sintered) Counterbore

ILLUSTRATIONS (Cont)

Figure		Page
7-1	Induced Flaws and NDE Detection Methods	80
7-2	Severity of Flaws From Machining Operations	81
7-3	NDE Methods For Finding Flaws in Composite Edges	82
9-1	Symbols for Cost Equations	91
9-2	Purchase Cost of Cutting Tools	93
9-3	Cutting Tool Cost Summary	94
9-4	Comparative Costs for Trimming 200 Inches of Uncured Graphite/Epoxy Periphery	95
9-5	Cost Comparison for Trimming a Single-Ply Graphite/Epoxy Prepreg with 200-Inch Periphery	97
9-6	Comparative Costs for Trimming a 120-Inch Periphery in 1/8-Inch-Thick Graphite/Epoxy	98
9-7	Comparative Drilling Costs for Graphite/Epoxy	100
9-8	Cost Comparison-Conventional Vs. Ultrasonic Drilling	102

Section 1

INTRODUCTION

The purpose of this handbook is to provide starting recommendations for cutting, machining, and drilling of composites. These data will serve to formulate a baseline for efficient methodization and planning, but do not preclude the necessity for refinement testing based upon specific requirements.

The data presented herein represent a compilation of that generated by development testing and current industry experience. New approaches as well as recommended methods were evaluated by Grumman to establish comprehensive guidelines.

1.1 MATERIAL COMBINATIONS AND FORMS

Process evaluation was performed on a wide range of baseline materials and graphite/epoxy hybrid material combinations. The baseline materials used in the program include Avco 5505-III-F boron/epoxy, Hercules 3501-5/A-S graphite/epoxy, Kevlar 49-CS3481/CS800 preimpregnated cloth, and Hexcel F161-7781(E) fiberglass/epoxy. In addition, graphite/epoxy hybrids were used which included combinations with boron/epoxy, fiberglass/epoxy and Kevlar/epoxy. Evaluations were performed in the cured laminate condition and to a limited extent in the uncured condition. Rapid-access indexes for all material and process combinations are given in Figures 1-1 and 1-2.

1.2 USE OF THE HANDBOOK

Given a specific part description and an operation to be performed, operational, equipment and tooling requirements can be established as follows:

- (1) Use the Table of Contents or Rapid-Access Indexes to locate the process to be used
- (2) Consult machining recommendations and locate workpiece category most closely representing the specified part
- (3) Select feed, speed and cutting tool design from the applicable table
- (4) Find cutting tool design in Section 5 for the operational requirements
- (5) Use Section 4 to determine equipment capability.

	3.1 SAV	V OPERA	TIONS	3.2	3.3	3.4 CON	V. DRIL	L OPER	ATIONS	3.5 U/S	DRILLI	NG OPS	3.6
PROCESS MATERIAL	STATIONARY RADIAL SAW	PORTABLE RADIAL SAW	BANDSAW	LASER	WATER-JET	DRILLING	REAMING	COUNTERSINKING	COUNTERBORING	DRILLING	COUNTERSINKING	COUNTERBORING	ROUTING
GRAPHITE/EPOXY	3-2	3-3	3-4		3-6	3-7 3-12	3-7 3-11	3-13	3-14				3-15
BORON/EPOXY		3-3	3-4		3-6	3-11 3-12	3-11	3-13	3-14	3-11	3-11	3-14	3-15
FIBERGLASS/EPOXY	3-2	3-3	3-4		3-6	3-7 3-12	3-11	3-13	3-14				3-15
KEVLAR/EPOXY	3-2	3-3	3-4	3-5	3-6	3-12		3-13	3-14				3-15
GRAPHITE/EPOXY + BORON/EPOXY	3-2	3-3	3-4		3-6	3-11 3-12	3-11	3-13	3-14	3-11	3-11	3-14	
GRAPHITE/EPOXY + FIBERGLASS/EPOXY		3-3	3-4		3-6	3-7 3-12	3-7	3-7	3-14				
GRAPHITE/EPOXY + KEVLAR/EPOXY		3-3	3-4		3-6				3-14				

2566-096W

Figure 1-1 Rapid-Access Index for Cured Material and Process Combinations

PROCESS MATERIAL	2.1 WATER JET CUTTING	2.2 LASER CUTTING	2.3 RECIPROCATING MECHANICAL CUTTER	2.4 STEEL RULE DIE BLANKING
GRAPHITE/EPOXY	2-1	2-2	2-3	2-4
BORON/EPOXY	2-1	2-2		2-4
FIBERGLASS/EPOXY	2-1	2-2	2-3	2-4
KEVLAR/EPOXY	2-1	2-2	2-3	2-4

2566-175W

Figure 1-2 Rapid-Access Index For Basic Advanced Composite Materials

Section 2

CUTTING UNCURED COMPOSITES

The most widely used method for cutting uncured composite materials has been manual cutting with a carbide disc cutter, scissors or power shear. However, alternate and/or advanced technology processes exist which are more amenable to rate production. Such processes include water-jet cutting, laser cutting, reciprocating mechanical cutting, and steel rule die blanking. Each of these processes poses different advantages or limitations (see Section 4.0) and must be considered in terms of the application requirements and constraints.

The following cutting recommendations should be considered as starting points which must be refined in terms of specific applications:

2.1 WATER-JET CUTTING

Water-jet cutting provides a fast, numerical control (N/C)-compatible, approach to composites cutting. A summary of water-jet cutting parameters for single-ply and multiple-ply laminates is shown in Figure 2-1. Cutting parameters shown are based upon best visual cuts.

2.2 LASER CUTTING

Laser cutting provides a programmable omni-directional cutting approach which requires accessibility from only one surface. Laser cutting parameters and feedrate capabilities for a 250-watt carbon dioxide laser are summarized in Figure 2-2.

2.3 RECIPROCATING MECHANICAL CUTTING

This technology is particularly applicable to broadgoods cutting, requires access from only one side and does not impose any heat damage to the edge of the composite. It may require a cover material for protection from the compacting foot which rides on the surface of the workpiece. Parameters are shown in Figure 2-3.

2.4 STEEL-RULE DIE BLANKING

Steel-rule die blanking is a fast method for trimming an entire part periphery. This process, although new to composites, is a relatively standard method for commercial cutting of metals and non-metals (see Figure 2-4).

MATERIAL	NUMBER OF PLIES	NOZZLE DIAMETER, inch	PRESSURE, ksi	FEED, ipm
GRAPHITE/EPOXY	1	0.003	50	3000
	3	0.003	55	2400
	30 (MAX)	0.010	55	60
BORON/EPOXY	1	0.014	60	600
	3	0.014	55	900
	24 (MAX)	0.014	55	480
KEVLAR/EPOXY	1	0.003	60	3000
	3	0.006	55	3000
	16 (MAX)	0.010	55	30
FIBERGLASS/EPOXY	1	0.006	60	3000
	3	0.010	55	600
	12 (MAX)	0.010	55	30

⁽¹⁾ STANDOFF DISTANCE CONSTANT AT 0.12 INCH.

2566-097W

Figure 2-1 Water-Jet Cutting of Uncured Composites

MATERIAL	NUMBER OF PLIES	ASSIST GAS PRESSURE, psi	FEEDRATE,
KEVLAR/EPOXY BROADGOODS	1 2 3 4 5 8	8 8 8 8 8	300 300 300 300 300 300
FIBERGLASS/EPOXY BROADGOODS	1 2 3 4	8 8 8	300 150 90 60
GRAPHITE/EPOXY TAPE	1 2 3	8 8 8	300 150 90
BORON/EPOXY TAPE	1 2 3 4	8 8 8 8	270 120 60 30
GRAPHITE/EPOXY BROADGOODS	1	5	300

⁽¹⁾ LASER PARAMETERS INCLUDED: 2.5-INCH FOCAL LENGTH LENS, NITROGEN ASSIST GAS, 0.060-INCH NOZZLE GAP, AND 0.03-INCH NOZZLE ORIFICE DIAMETER.

2566-198W

Figure 2-2 Cutting of Uncured Composites With a 250-Watt CO₂ Laser

MATERIAL	NUMBER OF PLIES	CUTTING MODE	CUTTER WIDTH, in.	CUTTER SPEED, strokes/ min	FEED,
GRAPHITE/EPOXY	1	CHOPPING OR SLICING	0.25	5000	900
	5	CHOPPING OR SLICING	0.25	5000	900
	8	SLICING	0.25	6000	900
	13	SLICING	0.25	5500	600
	21	SLICING	0.25	5500	600
FIBERGLASS/EPOXY	1	CHOPPING	0.25	5300	600
-	4	CHOPPING	0.25	3100	600
KEVLAR/EPOXY	1	CHOPPING	0.25	3700	600
	6	CHOPPING	0.25	5000	600
BORON/EPOXY	N/A	YIELDS EXCESSIVE	CUTTER DAMA	GE	

2566-098W

Figure 2-3 Reciprocating Mechanical Cutting of Uncured Composites

MATERIAL	MAXIMUM NUMBER OF PLIES	CUT EDGE APPEARANCE
GRAPHITE/EPOXY	18	EXCELLENT
BORON/EPOXY	18	EXCELLENT
KEVLAR/EPOXY	12	GOOD-SOME FRAYED FIBERS
FIBERGLASS/EPOXY	27	EXCELLENT

NOTES: (1) ALL BLANKING WAS DONE WITH POLYETHYLENE COVER SHEETS.

(2) MATERIAL WAS CUT AGAINST A MILD STEEL PLATE.

2199-006В

Figure 2-4 Steel-Rule Die Blanking of Uncured Composites

Section 3

MACHINING RECOMMENDATIONS FOR CURED COMPOSITES

This section addresses those processes related to cured composites that are required for edge contouring or fastener hole generation at either the detail part or assembly level. The data presented are generally related to pure machining parameters without consideration of specific application constraints or requirements. Effective use of the "Composite Machining Handbook" requires that, as a minimum, these data be tempered by equipment, cutting tool and quality characteristics (see Sections 4, 5 and 6).

The data presented within this section represent many sources which include both industry-wide inputs and data generated during developmental testing. As such, both conventional and advanced technology techniques are included to reflect the latest state-of-the-art. A criteria summary reflecting pertinent process considerations is shown in Figure 3-1 to aid in application selection.

3.1 SAWING

Radial sawing and bandsawing represent conventional approaches to composite cutting that utilize readily available, low-cost capital equipment.

3.1.1 Stationary Radial Sawing

Stationary radial sawing provides a fast and accurate approach to composite cutting, but is limited to straight-line cuts and parts which can be easily handled. As-cut quality is of high standard (see Figure 3-2).

3.1.2 Portable Radial Sawing

Portable radial sawing offers cutting features similar to those for the stationary approach except that, being portable, it offers a greater degree of freedom and can be utilized on the production floor. One of the drawbacks with portable sawing, however, is high tool wear (see Figure 3-3).

3.1.3 Bandsawing

Bandsawing lends itself to rough cutting; however, a post-process finishing operation is normally required. Contour trimming can be performed within minimum cutting radius constraints. Cutting tolerances are a function of operator skill (see Figure 3-4).

PROCESS	OPERATING PARAMETERS	COST FACTORS	LIMITATIONS & POTENTIAL PROBLEMS	ADVANTAGES
SAW RADIAL	FEED (IPM)SPEED (SFM)CUTTER MAT'LCOOLANT	CUTTING RATE CUTTER WEAR RATE CUTTER COST	STRAIGHT CUTS ONLY MANUAL OPERATION SLOW CUTTING RATES OUT-OF-PLANE CUTTING	EOUIPMENT AVAILABLE NO CAPITAL INVESTMENT FINISHED CUT PORTABLE
BAND SAW	• FEED (IPM) • SPEED (SFM) • BLADE MAT'L • BLADE GEOMETRY • COOLANT	CUTTING RATE BLADE WEAR RATE BLADE COST	ROUGH CUTTING ONLY MANUAL OPERATION MATERIAL BREAKOUT STATIONARY PROCESS	EOUIPMENT AVAILABLE EASY TO OPERATE CUT PATTERNS
DRILLING REAMING	FEED (IPR)SPEED (SFM)TOOL MAT'LCOOLANT	PENETRATION RATE TOOL WEAR TOOL COST TOOL CHANGE TIME	MATERIAL BREAKOUT HOLE TOLERANCES LOCAL DELAMINATION MANUAL OPERATION	STANDARD PROCESS EOUIPMENT AND TOOL AVAILABLE PORTABLE
COUNTER SINK ING AND COUNTER BORING	FEED (IPR)SPEED SFMTOOL MA'LCOOLANT	PENETRATION RATE TOOL WEAR RATE TOOL COST TOOL CHANGE TIME	TOLERANCE CONTROL HIGH WEAR MANUAL OPERATION	STANDARD PROCESS EOUIPMENT AVAILABLE PORTABLE
ROUTING, BEVELING AND TRIMMING	FEED (IPR)SPEED (SFM)TOOL MAT'LCOOLANT	CUTTING RATE TOOL WEAR TOOL COST	HIGH CUTTING FORCES DIRTY PROCESS SLOW CUTTING RATES	FINISHED CUT CUTS PATTERN
WATER JET	• FEED (IPM) • PRESSURE (PSI) • NOZZLE DIA	CUTTING RATE NOZZLE LIFE	REOUIRES ACCESS TO BOTH SIDES OF WORK PIECE POOR PORTABILITY HIGH CAPITAL COST EXIT SIDE DELAMINATION	OMNI DIRECTION CUTTING PROCESS FINISHED CUT LOW CUTTING FORCES CLEAN PROCESS ADAPTABLE TO AUTOMATION
LASER	FEED (IPM) POWER (WATTS) OPTICS GAS PRESSURE (PSI) BACKUP MAT'L	CUTTING RATE OPERATING COSTS	HEAT DAMAGE HIGH CAPITAL COST THICKNESS LIMITATIONS	OMNI-DIRECTIONAL ADAPTABLE TO AUTOMATION REOUIRES ACCESS TO ONE SIDE OF PART ONLY

2566-099W

Figure 3-1 Process Criteria Summary

MATERIAL	THICKNESS, in.	SPEED,	FEED,	TOOL TYPE	AVERAGE TOOL DIAMETRAL WEAR, in./in. ² X 10 ⁻⁵ (1)	COOLANT APPLICATION
GRAPHITE/EPOXY	TO 0.50	7000	40-90	5-1	0.5	MIST
FIBERGLASS/EPOXY	0.12 TO 0.25	7000	40-60	5-1	0.5	MIST
BORON/EPOXY + GRAPHITE/EPOXY	0.25 TO 0.50	7000	15-40	5-1	1.5	MIST
KEVLAR/EPOXY	TO 0.12	7000	65	5-3	N/A	MIST
(1) _{AFTER HIGH POINT}	S ARE WORN.					

2566-100W

Figure 3-2 Stationary Radial Sawing

MATERIAL	THICKNESS,	SPEED, sfm	FEED ipm	TOOL TYPE	DIAMETRAL WEAR, in./in. ² (X 10 ⁻⁵)	COOLANT APPLICATION
GRAPHITE/EPOXY	TO 0.06 0.06 TO 0.12 0.12 TO 0.25	7500 7500 7500	100-130 80-100 45-80	5–1	6	MIST
BORON/EPOXY	TO 0.12	7500	50-90	5-1	70	MIST
FIBERGLASS/ EPOXY	TO 0.12	7500	80-100	51	2	MIST
KEVLAR/EPOXY	TO 0.12	7500	50	5-2	N/A	MIST
GRAPHITE/EPOXY + BORON/EPOXY	TO 0.09 0.09 TO 0.35	7500	80-100 40-80	5-1	20	MIST
GRAPHITE/EPOXY + FIBERGLASS/ EPOXY	TO 0.06 0.06 TO 0.25	7500 7500	100-160 60-100	5-1	2.5	MIST
GRAPHITE/EPOXY + KEVLAR/EPOXY	TO 0.06 0.06 TO 0.25	7500 7500	80-100 30-80	5-3	N/P	MIST

2566-101W

Figure 3-3 Portable Radial Sawing

MATERIAL	THICKNESS,	SPEED, sfm	FEED, ipm	TOOL TYPE	WEAR RATE, in./in.2 (X 10 ⁻⁵) (1)	COOLANT APPLICA- TION
GRAPHITE/EPOXY	TO 0.06 0.06 TO 0.25	2000-4000 2000-4000	40-100 20-40	5-4	7	NR
FIBERGLASS/EPOXY	TO 0.12	2000-4000	17-80	5-4	7	NR
BORON/EPOXY	TO 0.12	4000	25-85	5-5	20	MIST
KEVLAR/EPOXY	TO 0.12	5000	75	5-6	N/A	NR
GRAPHITE/EPOXY + BORON/EPOXY	TO 0.091 0.09 TO 0.50	4000	35-120 20-35	5-5 OR 5-4	20 6	MIST
GRAPHITE/EPOXY + FIBERGLASS/EPOXY	TO 0.06 0.06 TO 0.25	2000-4000	50-130 20-50	5-4	7	NR
GRAPHITE/EPOXY + KEVLAR/EPOXY	TO 0.06 0.06 TO .25	4000	20-30 10-20	5-4 OR 5-6	6 N/A	NR

(1)_{BLADE LENGTH OF 9.5 FEET.}

3.2 LASER CUTTING

Laser cutting is limited to Kevlar/epoxy because of charring effects encountered with both graphite/epoxy and boron/epoxy (see Figure 3-5).

3.3 WATER-JET CUTTING

Water-jet cutting systems can penetrate reinforced epoxy systems of which graphite/epoxy and Kevlar/epoxy can be most readily severed. The balance of the materials can also be cut as shown in Figure 3-6, but at extremely slow feedrates. For each of these materials, the tendency to delaminate occurs as discussed in Section 7.0.

3.4 DRILLING, COUNTERSINKING AND COUNTERBORING

Conventional operations are normally applied to those materials not containing boron/epoxy because of tool life considerations. Summary drilling data charts are given in Figures 3-7 and 3-11 for both high-speed steel and carbide tools. In general, due to poor tool life and hole quality, high-speed steel cutting tools are not recommended for more than a few holes in composite materials. Two exceptions are the Jancy counterbore for drilling Kevlar/epoxy and the Weldon countersink for countersinking Kevlar/epoxy. Parameter selection within the data chart is based upon workpiece and operational requirements. Cutting speeds are obtained directly from the chart while feed and tool life are obtained in conjunction with Figures 3-8 and 3-9, respectively. If manual operations are involved, operator effort requirements can be obtained from Figure 3-10. Summary of countersinking and counterboring data charts are given in Figures 3-13 and 3-14.

3.5 DIAMOND DRILLING, COUNTERSINKING, COUNTERBORING AND REAMING

Diamond cutting tools are utilized in a metal matrix form for cutting, machining, and drilling. Application is usually to boron/epoxy laminates or hybrids containing boron/epoxy. Since diamond cutting tools are sensitive to heat generation, the use of coolant is recommended in most applications to extend tool life. These cutting tools can be utilized in either conventional or rotary ultrasonic drilling equipment. Specific tool selection criteria and designs are presented in Section 5. Summary drilling charts for metal matrix diamond tool is given in Figures 3-11 and 3-12. Information contained within this chart highlights hole size limitations, diamond grit size and concentration, feed, speed and projected tool life. Summary countersinking and counterboring data charts are shown in Figures 3-13 and 3-14.

THICKNESS, in.	ASSIST GAS	ASSIST GAS PRESSURE, psi	NOZZLE DIAMETER, in.	FEEDRATE,
0.035	N ₂	8	0.03	150
0.105	N ₂	8	0.03	20

2566-103W

Figure 3-5 Laser Cutting of Kevlar/Epoxy Laminates

	THICKNESS,	WATER-JET CUTTING PARAMETER					
MATERIAL	in.	PRESSURE, ksi	NOZZLE DIA, in.	FEEDRATE, ipm			
GRAPHITE/EPOXY	1/16 1/8 1/4	55 60 60	0.008 0.010 0.014	60 30 7			
BORON/EPOXY	1/ 16 1/8	60 60	0.012 0.010	120 120			
KEVLAR/EPOXY	1/16 1/8	55 55	0.006 0.010	120 30			
FIBERGLASS/EPOXY	1/8	60	0.010	6			
HYBRID BORON-GR APHITE / EPOXY	1/16 1/8 1/4	60 60 60	0.012 0.012 0.014	14 12 9			
HYBRID GRAPHITE-KEVLAR/ EPOXY	1/16 1/4	60 60	0.010 0.014	15 5			
HYBRID GRAPHITE-FIBERGLASS/ EPOXY	1/16 1/4	55 55	0.012 0.012	9			

2566-104W

Figure 3-6 Water-Jet Cutting Parameters for Cured Composite Laminates

Figure 3-7 Summary Matrix of Compiled Drilling Data

2566-105W

HH	
100/120 100/120 200/250 900/1050 900/1050 250/275 500 200/250 400/250 126/15	CORE DARLA (MACH) CORE DAILL CORE DAILL COFFHAN CORE COFFHAN CORE COFFHAN CORE COFFHAN CORE COFFHAN CORE CO
MH LH L LH VL/L LH VL/L LH VL/L HH LH LH <t< td=""><td>FEEO LH I MH VL HH SPEEO (SFM) 100/125 175/225 200/250 75 50/100 WEAR H H H LA</td></t<>	FEEO LH I MH VL HH SPEEO (SFM) 100/125 175/225 200/250 75 50/100 WEAR H H H LA
MH	FEE 0 LH VL/L MM VL/L MH SPEC (SFM) 100/125 75/100 125/150 40/50 50 WEAR H H H H H H
MH	FEE 0 LH VL/L MH VL/L M SPEE 0 (SFM) 60/75 80/100 125/150 40/50 50 WEAR H H H H H
The color of the	FEEO MH M MH M SPEEO (SFM) 120 200 200 150 WEAR H H H H
MH LH LH L L LH L LH L LH LH LH HH LH LH	FEED LH I LH L SPEE0 (SFM) 100/125 175/225 200/250 H H
56/60 125/150 126/150 150/200 100/120 155/150 156/200	FEE 0 LH L LH L LH L SPEE 0 (SFM) 100/125 150/200 200/250 75 50 WEAR
15,20 60,80 70,100 70,100 80,85 A HA A A HA	SPEE0 MH 1 MH 1 SPEE0 (SFM) 50/60 60/75 100/120 50 WEAR H H H H H
	SPEE0 (SFM) 15/20 20/30 20/30 10/15 WEAR H H H I

2566-199W

Figure 3-8 Effect of Tool Diameter on Feedrate for HSS and Carbide Cutting Tools

Figure 3-9 Effect of Linear Feet Travelled on Wear Land Development

Figure 3-10 Diameter-Hand Feedrate Selection Chart

2199-016B

MATL	OPERATING	U/S CORE DRILLING1, 2, 4	U/S DRILL C'SINKING 1,2,3,4,6	U/S C'SINKING 1,2,3	PWR FEED CORE DRILLING	HONING 7	OFF-HAND C'SINKING 3
YXO93/3TIH9AAA	SIZE (IN.) GR IT CONCEN. FEED SPEED (RPM) LIFE (NO. HOLES)				.190 – .50 60 – 80 100 2".4"/MIN 4500 – 3500 300 MIN	.190 – .50 220 AVG 100 LH 500 – 400 250 – 400	.190 – .50 60 – 100 100 LH 500 – 450 300 MIN
BOBON/EPOXY 30, 40 & 50% B-G/E	SIZE (IN.) GRIT CONCEN. FEED SPEED (RPM) LIFE (NO HOLES) SIZE (IN.) GRIT CONCEN. FEED SPEED (RPM) LIFE (NO HOLES)	.190 – .500 60 – 80 100 1-1 1/4" MIN/AIR 4000 – 2250 200 – 400 .190 – .500 80 – 100 100 1-1 1/4" MIN/AIR 4000 – 2250	.190 – .500 60 – 80 100 1-1 1/4" MIN/AIR 4000 – 2250 75 – 100 .190 – .500 60-80DR/ 80-100 CSK 100 1-1 1/4" MIN/AIR 4000 – 2250	TO .500 60 – 80 100 1-1 1/4" MIN/AIR 4000 – 2250 75 – 150 TO .37 60 – 80 100 1-1 /4" MIN/AIR 4000 – 2250	.190 – .50 60 – 80 100 1"/MIN 4500 – 3500 100 – 200 .190 – .50 60 – 80 1"/MIN 5000 – 3000	.190 – .500 220 AVG 100 LH 500 – 400 75 – 150 .190 – .500 220 AVG. LH 500 – 400	.190500 60 - 100 100 LH 500 - 400 30 - 60 ⁵ .190500 60 - 100 LH 500 - 400
	NOTES:	U/S FREQ-20 kHz WATER COOLANT PLATED COUNTERSINK	4.0.0	SINTERED CONSTRUCTION FINISHING OPERATION LIFE DEPENDS ON COUNTERSINK	IN 7.	FREON TB-1 COOLANT	COOLANT

Figure 3-11 Summary of Metal-Matrix Diamond-Tool Operating Parameters

2566-107W

EQUIPMENT COOLANT TYPES APPLICATION 8	CONVENTIONAL NONE	CONVENTIONAL WATER	CONVENTIONAL NONE	ULTRASONIC WATER	ULTRASONIC WATER	ULTRASONIC WATER	ULTRASONIC WATER	CONVENTIONAL NONE	CONVENTIONAL NONE
T00L TYPE 1,2,7	5-11	5-18 6	5-10	5-16 OR 5-17 3, 5	5-17 4, 5	5-16 OR 5-17 3, 5	5-17	5-19	5-11 OR 5-12
FEED, ipr	0.001	0.001	0.001	1-1% IN/MIN IN AIR	3000.	1-1% IN/MIN IN AIR	5000.	0.001	0.001
SPEED, rpm	21,000	4,000	000'9	4,000 - 2,250	4,000 - 3,000	4,000 - 2,250	4,000 - 3,000	000′9	5,500
THICKNESS, inch	UP TO 0.50	UP TO 0.50	UP TO 0.50	UP TO 1.00	UP TO 0.40	UP TO 1.0	UP TO 0.40	UP TO 0.250	UP TO 0.50
MATERIAL	GRAPHITE/EPOXY	GRAPHITE/EPOXY PLUS	FIBERGLASS/EPOXY	GRAPHITE/EPOXY PLUS		BORON/EPOXY		KEVLAR/EPOXY	FIBERGLASS/EPOXY

JOTES

- LIFE, 0.006 INCH WEARLAND, EXCEPT AS NOTED
- PARAMETERS FOR DRILL DIAMETERS 0.125 THROUGH 0.250 INCH, EXCEPT AS NOTED
- DRILL DIAMETERS UP TO 0.50 INCH
- 4 DRILL DIAMETERS UP TO 0.375 INCH
- LIFE FOR DIAMOND TOOLS SEE FIGURE 3-11
- BACKUP HOLES WITH POLYURETHANE FOAM

9

- BACKUP HOLES TO ELIMINATE BREAKOUT
- SEE SECTION 4

2566-108W

Figure 3-12 Cutting Tool and Equipment Selection Chart for Assembly Drilling

MATERIAL	SPEED, rpm	FEED, ipr	TOOL TYPE 1	EQUIPMENT TYPES 3	COOLANT APPLICATION
GRAPHITE/EPOXY	2400 - 2700	HEAVY HAND	5-22	CONVENTIONAL	NONE
	21,000	0.001	5-23	CONVENTIONAL	NONE
GRAPHITE/EPOXY PLUS	500 - 600	LIGHT HAND	5-24 & 5-25 2	CONVENTIONAL	WATER
BORON/EPOXY	4,000	1-1¼ IN/MIN IN AIR	5-24 2	ULTRASONIC	
BORON/EPOXY	500	LIGHT HAND	5-24 & 5-25 2	CONVENTIONAL	WATER
5011014/21/07/1	4,000	1-1¼ IN/MIN IN AIR	5-26 2	ULTRASONIC	WATER
KEVLAR/EPOXY	1350 - 1950	LIGHT HAND	5-27	CONVENTIONAL	NONE
FIBERGLASS/EPOXY	2400	.002	5-12	CONVENTIONAL	NONE

NOTES

- 1 LIFE 0.006 INCH WEARLAND EXCEPT AS NOTED
- 2 LIFE FOR DIAMOND TOOLS SEE FIGURE 3-11
- 3 SEE SECTION 4

2566-109W

Figure 3-13 Summary of Countersinking (100°) Parameters for Fasteners Up to 0,250-Inch in Diameter

MATERIAL	SPEED, rpm	FEED, ipr	TOOL TYPE	EQUIPMENT TYPES 4	COOLANT APPLICATION
GRAPHITE/EPOXY	4800	0.005	5-28	CONVENTIONAL	NONE
GRAPHITE/EPOXY PLUS BORON/EPOXY	500	MEDIUM HAND	5-29 2	CONVENTIONAL	HANGSTERFERS HE-2 (20-1) MIX
	4000	1.0/M/MIN IN AIR	5-30	ULTRASONIC	WATER
GRAPHITE/EPOXY PLUS KEVLAR/EPOXY	3600	0.001	5-28	CONVENTIONAL	NONE
GRAPHITE/EPOXY PLUS FIBERGLASS/ EPOXY	3600	0.001	5-28	CONVENTIONAL	NONE
BORON/EPOXY	500	MEDIUM HAND	5-29 2	CONVENTIONAL	HANGSTERFERS HE-2 (20-1) MIX
	4000	1.0 IN/MIN IN AIR	5-30	ULTRASONIC	WATER
KEVLAR/EPOXY	6000	0.0006	5-28	CONVENTIONAL	NONE
FIBERGLASS/EPOXY	3600	0.001	5-28	CONVENTIONAL	NONE

NOTES

- 1 LIFE 0.006 INCH WEARLAND EXCEPT AS NOTED
- 2 LIFE FOR DIAMOND PLATED TOOLS IS 0.0064 (AMOUNT OF EXPOSED DIAMOND)
- 3 LIFE FOR DIAMOND SINTERED TOOLS (60-80 GRIT) IS 6 X 10⁻⁵ PER 0.200 INCH DEPTH
- 4 SEE SECTION 4

2566-110W

Figure 3-14 Summary of Counterboring Parameters for Holes Up to 0.625-Inch in Diameter

3.6 ULTRASONIC DRILLING, COUNTERSINKING AND COUNTERBORING

Diamond cutting tools are utilized in a metal matrix form to drill, countersink and counterbore. Sintered diamond cutting areas are used in core drills and counterbores. Water is used as a coolant to cool the seals, gland and the tool, and also to wash away cutting debris. The combination of water pressure and ultrasonic excitation ejects the material core from the drill. In general, when drilling is done conventionally, high tool wear and breakage occur. The application of ultrasonic excitation to core drilling has been found to reduce these problems and give higher cutting rates. Specific tool selection criteria and designs are presented in Section 5. Summary drilling charts for metal-matrix diamond tools are given in Figures 3-11 and 3-12. The information contained in these charts highlights hole size limitations, diamond grit size and concentration, feed, speed and projected tool life. Summary countersinking and counterboring data charts are given in Figures 3-13 and 3-14.

3.7 ROUTING, TRIMMING AND BEVELING

Routing, trimming and beveling are presented together, since they are similar operations using, in most cases, the same cutting tools. Basically, routing involves plunging a cutter through a flat or contoured part with the aid of an offset template that describes the part perimeter. Trimming is used in finishing operations and gives a fractional depth of cut. Beveling is performed similarly but at a specified angular cut. Basic routing parameters are shown in Figure 3-15 while the effects of depth of cut upon manual feedrate are shown in Figures 3-16 and 3-17.

MATERIAL	THICKNESS, in.	SPEED,	FEED, ipm	TOOL TYPE	TOOL DIAMETRAL WEAR, in./in. ³ (X 10 ⁻⁴)	COOLANT APPLICATION
GRAPHITE/EPOXY	TO 0.12 0.12 TO 0.25	850	25-50 10-25	5-9	2.5 TO 4.0	MIST MIST
FIBERGLASS/EPOXY	TO 0.12	850	20-50	5-9	2.5	MIST
KEVLAR/EPOXY	TO 0.12	1300	60-80	5-8	N/A	NONE
BORON/EPOXY	TO 0.125	850	4-101	5-7	4.0 TO 10.0	MIST

2566-111W

(1) 60 STROKES/MINUTE

Figure 3-15 Basic Routing Parameters

Figure 3-16 Effect of Cut Depth on Routing of Graphite/Epoxy

2566-113W

Figure 3-17 Effect of Cut Depth on Roto-Recipro Routing, Beveling and Trimming of B/Ep and B-Gr/Ep Hybirds

Section 4

EQUIPMENT

A variety of machine tools, both portable and stationary, were evaluated for their effectiveness in cutting, machining, and drilling advanced composites. Characteristics of those types which were found to be acceptable are discussed. It should be pointed out that, although a specific manufacturer's equipment was shown to be acceptable, it should not be construed as the best available. It was not the intent of this program to compare various manufacturer's equipment but rather to identify basic performance requirements.

4.1 STATIONARY AND PORTABLE RADIAL SAWS

There are general-purpose machines (Figures 4-1 to 4-4) capable of cutting the complete range of cured composite materials. Appropriate saw blades must be used with each material to give the best finished edge. In all cases, finish cuts are made that require little or no post-processing. In general, radial saws are very versatile machines when making straight or cutoff cuts. Use of guides on the machine or accessory tooling gives accurate net cuts. Coolant (soluble oil/water mix) should be used whenever possible. Dry cutting creates more heat, thereby shortening the life of the saw blade and increasing cutting effort.

4.2 BANDSAWS

There are also general-purpose machines (Figures 4-5 and 4-6) capable of cutting the complete composite range of cured materials. Appropriate saw blades must be used with each material to give the best cut. In most cases, a bandsaw cut is a rough cut, requiring post-processing. Straight cuts or gentle curves can be made.

4.3 LASER CUTTER

This is usually a computer-directed system (Figures 4-7 and 4-8) capable of cutting the complete range of uncured and some cured advanced composite materials. Cutting energy is supplied by a 250-watt (minimum), continuous-wave carbon dioxide gas laser. The installation consists of four basic parts: the laser, a transport carriage to move the laser, a numerical control (N/C) unit to guide the carriage and a cutting table to support the work-piece. The benefits of laser-cutting composites are low cutting forces and omnidirectional cutting which facilitates trimming of many configurations. One to five plies of uncured laminates can be cut successfully, even though a bead of partially cured epoxy resin develops along the cut edge. Except for 1/16-inch-thick, cured graphite/epoxy and Kevlar/epoxy

2199-020B

Figure 4-1 Stationary Radial Saw

MANUFACTURER	ROCKWELL MANUFACTURING CO.
MODEL/SIZE	NO. 34-450, TABLE SIZE 27 METERS X 36 INCHES
BLADE SIZE	8-INCH DIAMETER
HORSEPOWER	1-1/2 HP
SPEED	3400 RPM
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFICANTLY AFFECTED BY COMPOSITE CUTTING. WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATION	1.0 INCH
ACCESSORIES FOR COMPOSITE CUTTING	DUST EXHAUST AND COOLANT SPRAY

2199-022B

Figure 4-2 Stationary Radial Saw Specification

2199-021B

Figure 4-3 Portable Radial Saw

MANUFACTURER	DOTCO INC.
MODEL	NO. 106-2749, (HAND-HELD)
BLADE SIZE	3-INCH DIAMETER
HORSEPOWER	0.8 HP
SPEED	11,000 RPM
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFICANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATION	0.5 INCH
ACCESSORIES FOR COMPOSITE CUTTING	DUST EXHAUST AND COOLANT SPRAY.

2199-023B

Figure 4-4 Portable Radial Saw Specification

2566-114W

Figure 4-5 DoAll Zephyr Friction Saw

MANUFACTURER	DOALL
MODEL	NO. 36-2A
BLADE SIZE	1/2 (OR 1/4) X 174 (OR 120) INCHES
SPEED	25-6000 SFM (VARIABLE)
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFICANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PRE- VENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATIONS	0.50 INCH
ACCESSORIES FOR COMPOSITE CUTTING	DUST EXHAUST

2199-025B

Figure 4-6 Stationary Bandsaw Specification

2199-026B

Figure 4-7 250-Watt Laser Cutting System

MMAN
ANTLY H HOULD

2566-115W

Figure 4-8 250-Watt Laser Cutting System Specification

materials, none of the other composite materials can be penetrated with this 250-watt laser. The laser produces a heat-affected charred area on the cut edge of cured materials that may require postprocessing. Although higher powered lasers can cut thicker materials, the heat-affected zone is correspondingly greater.

4.4 WATER/FLUID-JET CUTTER

This new equipment can cut the complete range of both uncured and cured advanced composite materials. The equipment (Figures 4-9 and 4-10) can be easily adapted to a photoelectric trace system or computer-directed. The benefits of cutting composites by a fluid jet are low cutting forces, no heat damage, narrow cutting width requiring minimal energy input to the workpiece and omnidirectional cutting which facilitates trimming of many configurations. Cut quality improves with increasing nozzle pressure, increasing nozzle orifice diameter, decreasing traverse speed and decreasing material thickness and hardness. The softer materials cut with a better edge quality than the harder ones. Cutting is accomplished by a water or fluid jet stream 0.003 to 0.014 inch in diameter. It should be noted that a hand-held cutting head has been recently marketed.

4.5 RECIPROCATING MECHANICAL CUTTER

This is a very versatile, computer-directed machine capable of cutting the complete range of uncured composites only (Figures 4-11 and 4-12). The automated cutting system is built around a 12x6-foot, two-axis plotting table equipped with a stepper-motor-driven, dual carriage. Several controllable tools mounted on the carriage are designed to perform scribing, drafting, cutting or pickup operations. Tool and carriage motions are controlled by a prepunched binary tape reader and attached computer, or by manual console. The automated system provides position accuracy of ± 0.005 inch and a head displacement of 1200 ipm. Cutting of the composite material is accomplished by a reciprocating knife operating at 6000 strokes per minute in two modes -- chopping or slicing. The cutting knife penetrates through the material into closely packed plastic bristles that constitute the surface of the vacuum cutting table.

4.6 ULTRASONIC DRILLING EQUIPMENT

4.6.1 Portable Rotary Drilling Unit

This drilling system (Figure 4-13) was originally designed and developed for Air Force Contract No. F33615-71-C-1706 ("Ultrasonic Machining") completed in December 1972. It was subsequently implemented in production for drilling F-14 titanium alloy sheet engine ducts. The completely portable unit is capable of drilling and countersinking boron/epoxy and hybrids of boron/epoxy and graphite/epoxy. The Quackenbush drill provides positive

2199-028B

Figure 4-9 Water-Jet Cutting System

TYPE	WATER-JET STATIONARY PHOTOELECTRIC TRACE, COMPUTER DIRECTED OR PORTABLE MANUALLY OPERATED.
MANUFACTURER	FLOW INDUSTRIES, McCARTNEY OR CAMSCO
MODEL	NO. 55/50
HORSEPOWER	50 HP AND 60,000 PSI
FEEDRATE (COMPOSITES)	1-3000 IPM
CUTTING AREA	VARIABLE
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT, NOT SIGNIFICANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATION	DEPENDS ON MATERIAL TYPE (SEE TEXT)
ACCESSORIES FOR COMPOSITE CUTTING	WATER AND PARTICLE DISPOSAL

2566-200W

Figure 4-10 Water-Jet Cutting System Specification

Figure 4-11 Reciprocating Mechanical Cutting System

MANUFACTURER	GERBER GARMENT TECHNOLOGY, INC.
MODEL	SYSTEM 90 COMPUTER-DIRECTED
FEEDRATE (COMPOSITES)	300-600 IPM
CUTTING TABLE (STANDARD)	12 X 6 FEET
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT, NOT SIGNIFICANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL (UNCURED) THICKNESS LIMITATIONS	DEPENDS ON MATERIAL (SEE TEXT)
ACCESSORIES FOR COMPOSITE CUTTING.	NONE REQUIRED

2199-0318

Figure 4-12 Reciprocating Mechanical Cutter Specification

2199-032B

Figure 4-13 Portable Rotary Ultrasonic Drilling Unit

TYPE	ROTARY ULTRASONIC DRILL
MANUFACTURER	DRESSER INDUSTRIES (OUACKENBUSH) — AIR-POWERED DRILL — BRANSON SONIC POWER CO. (ULTRASONIC POWER SUPPLY & ADAPTOR).
MODEL	15BOGDABV-S150 (OUACKENBUSH DRILL). UD-12 (POWER SUPPLY) 150 WATT, 20,000 Hz. UDP-(DRILL ADAPTOR) 20,000 Hz
HORSEPOWER	1.7 HP
WEIGHT	19 POUNDS
COOLANT	THROUGH FLUID DRILL ADAPTORS
FEED	POSITIVE RANGE (0.00025 TO 0.008 IPR)
SPEED	150 TO 3000 RPM
DRILL SIZE	UP TO 3/8 INCH DIAMETER
NOSEPIECE	DRILL BUSHING ADAPTED FOR HOLD-DOWN SCREWS
SPINDLE AND CHUCK CONCENTRICITY	0.001 INCH (MAXIMUM)
EOUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT NOT SIGNIFICANTLY AFFECTED BY COMPOSITE CUTTING; WITH APPROPRIATE PREVENTIVE MAINTENANCE, IT SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATIONS.	0.50-INCH (STROKE LIMITATION)
ACCESSORIES FOR COMPOSITE DRILLING.	WATER AND PARTICLE DISPOSAL

2566-116W

Figure 4-14 Portable Rotary Ultrasonic Drill Specification

spindle speed and feed control. An ultrasonic resonator, coupled directly to the drill spindle, receives ultrasonic power through two brushes from a 150-watt/20,000-Hz power supply. The ultrasonic resonance is transferred to the core drill through a combination adaptor/fluid drill holder. Drill speed can be varied by changing gears; feed can be held constant for all diameters up to 3/8 inch maximum diameter. The drill bushing has slots for hold-down screws which secure the bushing to the drill template. The drills are diamond-sintered core drills; their weight must be kept to a minimum. Countersinking can also be combined with ultrasonic drilling by the addition of a countersink depth control and use of a combination drill/countersink. The application of ultrasonic energy results in a 100 percent increase in the number of holes drilled in boron/epoxy. The equipment specification is given in Figure 4-14.

4.6.2 Stationary Drilling Machines

The Branson UMT-3 machine has an ultrasonic machining head (with both manual and automatic feed) mounted to a cast iron base with a compound work table. The UMT-3 drive system was modified for use with a 3/4-horsepower motor with a speed range of 0-10,000 rpm. Speed is changed by a variable autotransformer that is calibrated for rpm output with a strobe instrument (Strobatac Type 1531-AB). The ultrasonic power supply for the UMT-3 drilling machine gives a maximum output power of 250 watts to the drill spindle resonator at a frequency of 20 Khz (converted from 60 Hz electrical energy). The output from the power supply is wired directly to the resonator's piezoelectric transducer.

A UMT-5 machine (Figure 4-15) is also available which is similar to the UMT-3 unit but with increased power and rapid tool advance. The power supply provides 600 watts to the drill spindle resonator at a frequency of 20 kHz. This provides 0.0007 to 0.001 inch peak amplitude at the spindle end. The drill machine has an infinite feed range with speeds to 6000 rpm. The spindle is fitted with a specially designed micrometer-adjustable countersink depth control. The drill machine tools are water-cooled. Tools used are all-diamond types -- either sintered or plated.

Specifications for both types of machines are given in Figure 4-16.

4.7 PORTABLE DRILLING EQUIPMENT

4.7.1 Spacematic Drill

The Model 62 Spacematic drill (Figure 4-17) is an air-operated, hydraulically controlled portable tool that clamps to the work surface by means of an expanding collet which picks up the previous hole drilled or a template. It drills and countersinks in one operation to a depth accuracy of 0.002 inch. Close spindle concentricity combined with the use of

Figure 4-15 Branson UMT-5 Ultrasonic Drilling Machine

MANUFACTURER	BRANSON SONIC POWER CO., DANBURY, CONN.
MODEL	UMT-5 DRILL SPINDLE RESONATES AT 20 KHz, IS DRIVEN BY J32A POWER SUPPLY OF 600 WATTS
HORSEPOWER	1 HP
WEIGHT	45 LBS
COOLANT	THROUGH-SPINDLE (GRUMMAN DESIGN), SPINDLE INTERNALLY PORTED FOR DRILL COUNTERSINK (GAC DESIGN)
FEED	VARIABLE FEED, AIR-ASSISTED
SPEEDS	VARIABLE TO 10,000 RPM
DRILL SIZE	OPTIMUM DRILL WEIGHT FOR RESONATING IS 35 GRAMS-THIN WALL CORE DRILLS TO 4 INCHES HAVE BEEN MADE
NOSEPIECE	THREADED SPINDLE ADAPTED FOR CORE DRILLS
SPINDLE CONCENTRICITY	0.005 INCH (GRUMMAN-MODIFIED) 0.001 INCH WITH TEST FITTING
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFI- CANTLY AFFECTED BY COMPOSITE DRILLING AND WITH APPROPRIATE PREVENTATIVE MAIN- TENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATIONS	LIMITED ONLY BY DRILL CONFIGURATION
ACCESSORIES FOR COMPOSITE MACHINING	WATER AND PARTICLE DISPOSAL

2566-118W

Figure 4-16 Stationary Ultrasonic Drilling Equipment Specification

ТҮРЕ	AIR-OPERATED, HYDRAULICALLY CONTROLLED PORTABLE TOOL THAT CLAMPS TO WORK SURFACE.
MANUFACTURER	DEUTSCH FASTENER CORP. ARCADIA, CALIFORNIA
MODEL	62
HORSEPOWER	0.75 HP UNDER FULL LOAD
AIR CONSUMPTION	28 CFM AT 90 TO 100 PSI
WEIGHT	6 POUNDS (WITHOUT VACUUM ATTACHMENT)
COOLANT	OUTSIDE APPLICATION REQUIRED
FEED	PNEUMATIC WITH HYDRAULIC CONTROL; ADJUSTMENTS FROM 0.001 IPR TO 0.012 IPR.
SPEEDS	400, 1000, 1800, 2800, 6000 RPM
DRILL SIZE	3/16 DRILL, 3/8 COUNTERSINK
SPINDLE CONCENTRICITY	0.0005 TIR
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFI- CANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTATIVE MAIN- TENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS	0.50 INCH
ACCESSORIES FOR COMPOSITE DRILLING	VACUUM ATTACHMENT FOR MOUNTING COOLANT SPRAY AND DUST REMOVAL

2566-120W

Figure 4-18 Spacematic Drill Specification

short, rigid drill/countersinks produces holes of high dimensional and surface quality. Grumman has designed and modified existing units by providing vacuum pads to permit power feeding without the use of a pull-up expanding collet. The collet mechanism can broach a hole in composites when activated. Equipment specifications are given in Figure 4-18.

4.7.2 Gardner-Denver Drill (MM-8 Series)

This portable air-feed drill (Figure 4-19) which is available with high-speed capability, is air-powered and has many features and components that allow adaptation to varied applications. The drill may be mounted by bracketing it to, or into, a jig plate. Attachment using drill bushings and hold-down screws is also possible. Varying feeds, six speed choices, rapid advance, dwell, and automatic control are some of the many features available. The equipment is nominally rated to 5/16 inch capacity. Quality, high-production holes can be obtained with this unit. Equipment specifications are given in Figure 4-20.

4.7.3 Portable Hone

The portable hone is a Grumman-designed fixture utilizing a Cleco Model 11DPV-15, variable-speed drill motor (Figure 4-21) as the power source. Hones are commercially purchased and are modified for attachment purposes. Locating the fixture is done by positioning a tapered cone, projecting from the bottom of the fixture, into the countersunk hole. Vertical alignment is provided by three adjustable feet. The fixture spindle is springloaded. Honing is accomplished by utilizing a slow oscillating hand feed while rotation takes place. A speed of 500 rpm has been found satisfactory for boron composities. The hone diameter is adjustable and finished hole sizes to +0.0005/-0.0000 inch can be attained. Holes should be left 0.0005 to 0.0010 inch under-sized prior to honing. Coolant is supplied from an outside source into the fixture base. Freon and water have been used for boron and graphite composites, respectively. This fixture works well where low curvatures are encountered. Equipment specifications are given in Figure 4-22.

4.7.4 Manual Drill Motors

Air-driven drill motors, such as the Cleco unit shown in Figure 4-23, are generally preferred over elective motors because of their lighter weight, ability to stall repeatedly without motor burnout, and elimination of hazardous electrical shocks. They provide a wide range of variable speeds and can apply up to 300 pounds of controlled force to the drill point. Equipment specifications are given in Figure 4-24.

4.8 STATIONARY DRILLING EQUIPMENT

The stationary Rockwell/Delta drill press shown in Figure 4-25 provides variable speeds by a pulley arrangement and manual feed by rack-and-pinion action. A 1-1/2-HP motor drives the spindle with a 1/2-inch-diameter capacity check. This type of drill press is a standard piece of equipment found in most shops. Equipment specifications are given in Figure 4-26.

4.9 ROUTING EQUIPMENT

4.9.1 Portable Routers

The Buckeye (Figure 4-27) and Dotco routers are standard, aircraft industry types driven by air. These very versatile routers, used mainly with guiding tools, are capable of routing, trimming and beveling the complete range of cured composite materials except boron/epoxy and boron/epoxy hybrids. The edge in most cases does not require post-processing providing the correct router bit is used (see Figure 4-28).

4.9.2 Stationary Routers

The Marwin Profiler and the Onsrud Router (Figure 4-29) are stationary machines with constant or variable speeds, capable of routing, trimming and beveling the complete range of cured materials, except boron/epoxy and boron/epoxy hybrids. When using the Marwin Profiler, the workpiece is clamped to the table and the profile cut using a guide rim against a template. The feed is manual through a mechanical advantage. A template is always used with the Marwin Router which is manually fed. In most cases, the edge does not require post-processing providing the correct router-bit is used. Equipment specifications are given in Figure 4-30 and 4-31.

The stationary Roto-Recipro router (Figure 4-32) is ideal equipment for routing, trimming and beveling cured boron/epoxy and boron/epoxy hybrids (Figure 4-33). When the Buckeye router is mounted on the Roto-Recipro machine, it provides high torque and minimum feed (surface feet per minute) for the router bit. The reciprocating motion of the router bit provides even wear to the router and also gives a better finish as the number of strokes per minute increase. A finish cut can be obtained with diamond router bits (the finer the diamond grit, the better the finish).

2566-121W

Figure 4-19 Gardner-Denver Portable Drill

TYPE	AIRFEED DRILL
ITPE	AIRFEED DRILL
MANUFACTURER	GARDNER-DENVER COMPANY, PNEUTRONICS DIVISION, GRAND HAVEN, MICHIGAN 49417
MODEL	MM-8 SERIES
HORSEPOWER	0.3 HP REGARDLESS OF SPEED
AIR CONSUMPTION	18 CFM AT LOAD, 20 AT FREE SPEED
WEIGHT	13 POUNDS
COOLANT	OUTSIDE SOURCE REQUIRED
FEED	POSITIVE AIRFEED
SPEED	800, 1500, 2900, 5600, 10,500, 21,000 RPM
DRILL SIZE	UP TO 5/16 INCH DIAMETER
MOUNTING	MOUNT IN, OR BRACKET TO, JIG OR DRILL BUSHING TIP FOR HOLD DOWN SCREWS
SPINDLE AND CHUCK CONCENTRICITY	0.001 INCH AT SPINDLE
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFI- CANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTATIVE MAINTEN- ANCE SHOULD GIVE NORMAL SERVICE LIFE
COMPOSITE MATERIAL THICKNESS LIMITATIONS	0.50 INCH
ACCESSORIES FOR COMPOSITE CUTTING	COOLANT SPRAY AND DUST REMOVAL

2566-122W

Figure 4-20 Gardner-Denver Portable Drill Specification

Figure 4-21 Portable Honing Fixture

PORTABLE HONING FIXTURE
GRUMMAN AEROSPACE CORPORATION
ST4761 (HONING FIXTURE) WITH CLECO 11DPV15 VARIABLE SPEED DRILL MOTOR (POWER SOURCE).
8 TO 15 CFM
0.45 HP
TBI FREON APPLIED BY SPRAY MIST THROUGH FIXTURE BASE.
HANDFEED, 0.37 INCH (MAX) STROKE
500 RPM
0.190 TO 0.502 INCH
FIXTURE BASE LOCATING CONE POSITIONS IN HOLE COUNTERSINK.
0.001 INCH (MAXIMUM)
EQUIPMENT DESIGNED SPECIFICALLY FOR BORON HONING. WITH APPROPRIATE PREVENTATIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
0.62 INCH
COOLANT SPRAY

2566-123W

Figure 4-22 Portable Hone Fixture Specification

ТҮРЕ	AIR-OPERATED, HAND-HELD
MANUFACTURER	CLECO/OR ZEPHYR
MODEL	11 DPV-15 (CLECO)
HORSEPOWER	0.8
AIR CONSUMPTION	20 CFM
WEIGHT	3.9 LBS
COOLANT	OUTSIDE APPLICATION REQUIRED
FEED	HAND
SPEEDS	VARIABLE 450 THRU 1250 RPM
DRILL SIZE	UP TO 3/8 IN. DIA
SPINDLE CONCENTRICITY	0.008 TIR
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFI- CANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTATIVE MAIN- TENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS	0.50 INCH
ACCESSORIES FOR COMPOSITE DRILLING	COOLANT SPRAY AND DUST REMOVAL

2566-125W

Figure 4-24 Cleco Hand Drilling Unit Specification

Figure 4-25 Rockwell/Delta Stationary Drill Press

TYPE	AIR-OPERATED				
MANUFACTURER	DELTA MFG DIV OF ROCKWELL INT				
MODEL	70-6X0				
HORSEPOWER	1 1/2				
COOLANT	OUTSIDE APPLICATION REQUIRED				
FEED	HAND				
SPEEDS	VARIABLE 375 - 4200 RPM				
DRILL SIZE	UP TO 0.50 IN. DIA				
SPINDLE CONCENTRICITY	0.001 TIR				
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT AND NOT SIGNIFI- CANTLY AFFECTED BY COMPOSITE CUTTING AND WITH APPROPRIATE PREVENTATIVE MAIN- TENANCE SHOULD GIVE NORMAL SERVICE LIFE.				
COMPOSITE MATERIAL THICKNESS	0.50 INCH				
ACCESSORIES FOR COMPOSITE DRILLING	COOLANT SPRAY AND DUST REMOVAL				

2566-127W

Figure 4-26 Rockwell/Delta Stationary Drill Press Specification

2566-128W

Figure 4-27 Portable Buckeye Router

ТҮРЕ	PORTABLE AIR DRIVEN (STANDARD) AIRCRAFT TYPE)
MANUFACTURER	BUCKEYE-WESTERN, INC.
MODEL	BWR-191
сниск	1/4 INCH DIAMETER
HORSEPOWER	0.9 HP
SPEED	16,000 RPM
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT; NOT SIGNIFICANTLY AFFECTED BY COMPOSITE MACHINING; WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATIONS	0.50 INCH
ACCESSORIES FOR COMPOSITE MACHINING	DUST EXHAUST AND COOLANT SPRAY.

2566-129W

Figure 4-28 Portable Buckeye Router Specification

A. Marwin

B. Onsrud

2566-177W

Figure 4-29 Stationary Routers

MANUFACTURER	MARWIN LIMITED
MODEL	30D
СНОСК	3/8 INCH DIAMETER
SPEED	10,800 RPM (MAXIMUM)
FEED	HAND-DRIVEN MECHANICAL ADVANTAGE
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT; NOT SIGNIFICANTLY AFFECTED BY COMPOSITE MACHINING; APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATIONS	0.50 INCH
ACCESSORIES FOR COMPOSITE MACHINING.	DUST EXHAUST AND COOLANT SPRAY

2566-123W

Figure 4-30 Stationary Marwin Profiler Specification

MANUFACTURER	ONSRUD MACHINE WORKS
MODEL	A-1024
сниск	1/4 INCH DIAMETER
SPEED	20,000 RPM
FEED	HAND
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT; NOT SIGNIFICANTLY AFFECTED BY COMPOSITE MACHINING; WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.
COMPOSITE MATERIAL THICKNESS LIMITATIONS	0.50 INCH
ACCESSORIES FOR COMPOSITE MACHINING.	DUST EXHAUST AND COOLANT SPRAY.

2566-131W

Figure 4-31 Stationary Onsrud Router Specification

2566-133W
Figura 4-32 Stationary Roto-Recipro Router

MANUFACTURER	THE PRODUCTO MACHINE CO.					
MODEL	4F					
сниск	1/4 INCH DIAMETER					
SPEED	0-350 STROKES/MINUTE 16,000 RPM WITH ROUTER MOTOR					
FEED	HAND					
EQUIPMENT RELIABILITY	COMMERCIAL EQUIPMENT; NOT SIGNIFI- CANTLY AFFECTED BY COMPOSITE MACHINING; WITH APPROPRIATE PREVENTIVE MAINTENANCE SHOULD GIVE NORMAL SERVICE LIFE.					
COMPOSITE MATERIAL THICKNESS LIMITATIONS	0.50 INCH					
ACCESSORIES FOR COMPOSITE MACHINING	DUST EXHAUST AND COOLANT SPRAY.					

2566-132W

Figure 4-33 Stationary Roto-Recipro Router Specification

Section 5

CUTTING TOOLS

The selection of appropriate cutting tools for cutting, drilling, and machining of composites is mandatory for efficient production. Improper selection increases cutting tool acquisition and replacement costs, and reduces cutting rates and part quality. The following subsections should be used as a guide to select both cutting tool materials and configurations.

5.1 TOOL MATERIALS

Selection of the optimum cutting tool material has a major influence on productivity. This subsection discusses both conventional tool materials (high-speed steel and carbides) and diamond materials.

5.1.1 Conventional Tool Materials

Although high-speed steel provides the lowest cost cutting tools (purchase price), it has severe limitations for application to reinforced epoxy materials because of short tool life and poor cut quality. However, high-speed steel should be considered for cutting and drilling of Kevlar/epoxy.

Carbides offer the advantages of both higher hot hardness and increased abrasion resistance which particularly makes carbide a very attractive cutting tool material over high-speed steel. The general grade of carbide is usually a C2 or C-13. (C-13 is more abrasive-resistant but is difficult to purchase). Carbide materials would be generally recommended for all applications which do not contain boron/epoxy. It should be noted that, in the case of drilling, either solid carbide or carbide-tipped drills can be used, but solid carbides have approximately double the tool life.

5.1.2 Diamond Cutting Tools

Diamond cutting tools are utilized in a metal matrix form for cutting, machining, and drilling. Application is usually to boron/epoxy laminates or hybrids containing boron/epoxy. Since diamond cutting tools are sensitive to heat generation, the use of coolant is recommended in most applications to extend tool life. These cutting tools can be utilized in either conventional or rotary ultrasonic drilling equipment. In general, when drilling is done conventionally, high wear and tool breakage occur. The application of ultrasonic excitation to core drilling has been found to reduce these problems and yield higher cutting rates.

In selecting diamond tools, grit size, concentration and types of metal matrix must be considered. The grit size to be used is a function of the final finish required. For example, a grit size of 40 may be considered as coarse, 60 as standard and 100 or greater as fine. Fine grit sizes are subject to loading-up during the cutting operation. Grit sizes greater than 200 are available for extra-fine finishes. These diamond tools are generally fabricated by plating or sintering.

Diamond-plated tools are made by coating diamond abrasive grit to a formed tool surface by electrodeposition. Grit and tool blanks are placed in a plating solution in which a metallic coating, generally nickel, is deposited on the tool blank. The plated material anchors the diamond abrasive to the cutting tool surface. A single layer of highly concentrated diamonds results. The diamonds secured by this plating process are usually highly exposed, providing lower temperature operation and freer cutting. Rapid stock removal is obtained. Because of the limited depth of diamonds and plating wear, however, shorter tool life is experienced. Plated tools can be salvaged by replating.

Sintered diamond tools represent another alternative. These tools are made by sintering a mixture of diamond grit and bonding material to the desired configuration. Hard, abrasive-resistant metallic bonds are recommended for composites. The impregnated section is sintered to a steel tool blank. Although these tools are not as free-cutting as plated tools and require use of coolants, they withstand erosion better and have longer wear life because of their multi-layer construction. Sintered tools can refurbish themselves by exposing new diamond edges and therefore cut freer than plated tools after a few holes.

In the non-ultrasonic mode, metal-matrix diamond tools have a tendency to become congested with coolant sludge when honing boron-graphite/epoxy. Once the matrix is congested, the hones seize, twist and, in some cases, break. Cleaning with Freon is required to maintain normal operation.

Drilling of composite/metallic laminates has met with reasonable success in the ultrasonic mode. Aluminum elements do not present a problem. Because titanium causes high wear and requires use of slow rates, sheet thicknesses under 0.06 inch only (Reference 7) can be drilled.

An important point in using diamond core-drills is that a few test holes should be drilled first to confirm the hole size before proceeding with production drilling. Although diamond core drills are purchased to a diametrical tolerance of plus or minus 0.002 inch, the drill diameters often exceed this tolerance. Normal drilled hole drawing tolerance is plus 0.003 inch.

A new technology evolving within diamond cutting tools is that of the diamond-compacted, inserted-tooth cutting tools. These cutting tools are intended to be competitive with carbides, offering better abrasion resistance and dimensional stability. However, at this time, there are reliability problems with the compacted diamond attachments and sufficient testing has yet to be performed that will substantiate feasibility.

5.1.3 Other Cutting Tool Materials

Cutting tool materials other than high-speed steels, carbides and diamonds have also been evaluated in this and other programs. Due to either poor cutting characteristics and/or high tool wear, silicon carbide, aluminum oxide, and Borazon materials are not recommended for composite cutting or drilling. Preliminary tests did not show promise.

5.2 CUTTING TOOL CONFIGURATIONS

Cutting tool configurations for each of the recommended machining conditions given in Section 3 can be found in Figures 5-1 through 5-30. These cutting tools represent the latest state-of-the-art and will undoubtedly be subject to refinement as additional production experience is gained.

NOTES:

- 1. ALT. MANUFACTURERS CUTWELL, LUNZER
- 2. SLOTTED BLADE TO IMPROVE COOLING

D	T	Н	W	GRIT	С	SPEC	MANUFACTURER
8	3/32	5/8	1/16	60	1/16	R-805	SAMPLE MARSHALL
3	3/32	3/4	1/16	60	1/16	R-805	SAMPLE MARSHALL

2199-043B

Figure 5-1 Diamond-Plated Cutoff Wheel

2566-134W

Figure 5-2 Carbide-Tipped Radial Saw Blade

NOTE: 1 - STRAIGHT BACK TEETH

Α	В	С	D	Е	F NO. TEETH	G HOOK	MANUFACTURER
8.0	3.25	5/8	0.055	0.065	126-130	+5°	SIMONDS-STYLE 4-MS

2566-135W

Figure 5-3 HSS Circular Saw Blade for Kevlar/Epoxy

1 - CONTINUOUS EDGE

2566-136W

Figure 5-4 Tungsten Carbide-Coated Bandsaw Blade

NOTE:

1-ALT MANUFACTURERS - CUTWELL, LUNZER

L	Т	W	GRIT	SPEC	MANUFACTURER
120''	0.050	1/4	60		SAMPLE MARSHALL
2566-137W					

Figure 5-5 Diamond-Plated Bandsaw Blade

NOTE:

1. LAP EDGES OF TEETH, INDICATED BY ARROWS - 0.005-0.010"

Р	W	L	TYPE	SET
18	1/4	114"	PRECISION	RAKER

2199-048B

Figure 5-6 Modified Carbon Steel Bandsaw Blade

NOTE:

1. ALT MANUFACTURERS - CUTWELL, LUNZER

D	L	S	GRIT	Т	SPEC	MANUFACTURER
0.250	2.0	1.0	40/50	0.250	R-810	SAMPLE MARSHALL

2566-138W

Figure 5-7 Diamond-Grit Router Bit

Figure 5-8 Carbide Opposed-Helix Router Bit

А	В	С	D	E HELIX <	NO. FLUTES	NO. CHIP BRKS	TANGENT HOOK	F CHIP BRK <
0.375	2.50	1.00	0.375	30°	16	6	5°	30°
0.250	2.50	1.00	0.250	30°	12	6	5°	30°

Figure 5-9 Carbide Diamond-Cut Router Bit

*DIMENSIONS AND TOLERANCES NOT SPECIFIED TO BE PER USAS B94.11-1967 2566-141W

Figure 5-10 Carbide-Tipped Twist Drill

NOTES:

CT GEOMETRIC FEATURE	VALUE	TOL.
SPLIT WEB CENTRALITY	.003	TIV
ALIGNMENT OF SPLIT	.002	TIV
HELIX ANGLE, DEG	20	±1
WEB TAPER, IN/IN.	.032	REF
DRILL BK TAPER, IN/IN.	.0005	
MARGIN WIDTH, IN.	.015	±.010 005

Α	В	С	С
.2500	14 ⁺³ ° -0°	.001	.005 .010

2566-142W

Figure 5-11 Solid Carbide Twist Drill

FOR USE ON GRAPHITE/EPOXY

GEOMETRIC FEATURE

- a) HELIX ANGLE $20^{\circ} \pm 1^{\circ}$
- b) WEB AT POINT .050 \pm .005 IN.
- c) WEB TAPER .032 IN./IN. d) C'SINK RELIEF = $4^{\circ} \pm 1^{\circ}$
- e) MARGIN WIDTH .015 $^{+.010}_{-.005}$ IN.
- f) DRILL POINT $135^{\circ} \pm 3^{\circ}$
- g) NOTCH RAKE ANGLE 0° AXIAL \pm 2°
- h) POINT GEOMETRY PER GAC MFG. STD CD 2700-D11. EXCEPT POINT IS MODIFIED TO 135°
- i) DRILL BACK TAPER .0005 IN/IN .0010
- j) IDENT. NO. CSZ114105 CSZ114104 SAME AS ABOVE EXCEPT DRILL DIA'S .1910 .1905

2566-143W

Figure 5-12 Solid Carbide Combination Drill/Countersink

Α 118⁰ .2505 4.0 2.0 .234 .25

2566-144W

NOTES:

Figure 5-13 HSS (Cobalt) Piloted Core Drill

2566-145W

Figure 5-14 HSS (M-2) Reamer

Figure 5-15 Solid Carbide (C-6) Reamer

Figure 5-16 Diamond-Impregnated (Sintered)/Plated Drill/Countersink

NOTES:

1 - MAX. ECCENTRICITY TO BE .001 T.I.R. FOR DIAS A, B, & D.

△ GRIT 80-100, CONC-100, APPROX KNOOP HARDNESS OF 4500 Kg/mm² HOLD "D" DIA TO LOW SIDE OF TOLERANCE (-.000)

3 - "L" LENGTH DEPENDS ON RESONANCE AND MIN MATL THICKNESS TO BE DRILLED - RESONANCE 20 KHz

D	L	Q	Т	MANUFACTURER
0.247	1.0	3/16	0.020	CUTWELL OR LUNZER

2566-148W

Figure 5-17 Diamond-Impregnated (Sintered) Core Drill for Ultrasonic UMT-3 or UMT-5 Unit

А	В	С	GRIT	MANUFACTURER
.200	2-1/4	~ .041	00 -	SAMPLE MARSHALL, LUNZER AND ABRASIVE TECH

2566-149W

Figure 5-18 Diamond-Plated Core Drill (Non-Ultransonic)

NOTE: USED ON KEVLAR/EPOXY.

1	Α	В	С	D	MANUFACTURER
	.250	2.25	110°	5°	JANCY ENGINEERING CO. DAVENPORT, IOWA

2566-150W

Figure 5-19 HSS Jancy Counterbore Drill

NOTE:

FOR LIMITED USE ON KEVLAR/EPOXY HOLE SIZES LESS THAN 3/16

Α	В	С	D	MANUFACTURER
.250	2.5	26°	45°	PEN ASSOCIATES

2566-151W

Figure 5-20 Carbide Slant Drill

Figure 5-21 Diamond-Impregnated Hone (Adjustable)

Α	В	С	D	E
.1875	7/16	.190	.719	.312

2566-153W

Figure 5-22 Carbide-Tipped Two-Fluted Countersink (Piloted, Steel Threaded Shank)

NOTE:

FOR USE ON GRAPHITE/EPOXY

GEOMETRIC FEATURE

- a) HELIX ANGLE $20^{\circ} \pm 1^{\circ}$
- b) WEB AT POINT .050 \pm .005 IN.
- c) WEB TAPER .032 IN./IN. d) C'SINK RELIEF = 18° ± 2°
- e) MARGIN WIDTH .015 $^{+.010}_{-.005}$ IN.
- f) DRILL POINT 135° ± 3° g) NOTCH RAKE ANGLE 5° AXIAL ± 1°
- h) POINT GEOMETRY PER GAC MFG. STD CD 2700-D11. EXCEPT POINT IS MODIFIED TO 135°

2566-154W

IDENT. NO. CSZ 114105

Figure 5-23 Carbide Combination Drill/Modified Countersink

Figure 5-25 Pilot for Diamond Countersink

O	Q	٦	MANUFACTURER
0.38	0.250	0.63	CUT WELL OR LUNZER

NOTES

MAX ECCENTRICITY TO BE .001 T.I.R. FOR DIA'S A, B & D

DIAMOND GRIT – CONC 100, IMPREGNATED (SINTERED) APPROX
KNOOP HARDNESS OF 4500 Kg/mm², ALT DIAMOND ELECTRO-NICKEL PLATE

L - LENGTH DEPENDS ON RESONANCE AND ACCESSIBILITY - RESONANCE IS 20 kHz

SLOTS AND COOLANT HOLES, 2 PLCS FOR LESS THAN 1/2 IN. DIA AND 3 PLCS FOR GREATER THAN 1/2 IN. DIA

2566-157W

Figure 5-26 Diamond-Impregnated Countersink (100°), Ultrasonic for UMT-3 or UMT-5 Unit

	Α	В	С	D	Е	F	G	MANUFACTURER
0.2	50	1/4-28 UNF	2.0	.312	100°	0.437	0.250	WELDON

2566-158W

Figure 5-27 HSS (Weldon) Countersink

Figure 5-28 Carbide-Tipped, Three-Fluted Counterbore, Reduced Shank and Removable Pilot

NOTES:

MAX ECCENTRICITY TO BE .001 T.I.R. FOR SURFACES INDICATED

VIBRO-ENGRAVE OR ETCH TOOL NO. WHERE SHOWN

H/T TO RC 50/53 - AIR HARDEN AND DRAW AT 900° F. MAT'L A-6

DIAMOND 40 GRIT FOR ROUGH COUNTERBORE, 80-100 GRIT FOR FINISHING

2566-160W

Figure 5-29 Diamond-Plated Counterbore, Piloted and Threaded

2566-161W

Figure 5-30 Diamond-Impregnated (Sintered) Counterbore

Section 6

CUTTING FLUIDS

6.1 GENERAL

The primary function of cutting fluids during cutting, machining or drilling of composites is to act as a coolant. Cutting composites with diamond tools generates heat. Since diamond tools are sensitive to the amount of heat generated, it is important to utilize a coolant. On the other hand, tool life of carbide drills used on graphite/epoxy is not increased by applying coolants. A secondary function of the cutting fluid is to minimize dust generation and/or flush away residue. Where metal/composite combinations are encountered, the cutting fluid may be required to cool the epoxy matrix and prevent thermal damage.

6.2 CUTTING FLUID TYPES

Water and water-soluble oils are probably the most common coolants used. The use of water alone is generally limited to diamond core drilling. Because some cutting fluids leave a compound residue, Freon is an acceptable alternative, particularly if required for an assembly drilling situation. Freon TB-1, Isopar-M and Hangsterfers HE-2 coolants have been tested and found to be a compatible with epoxy matrix composites.

6.3 APPLICATION RECOMMENDATIONS

The general forms of application are spray mist or flooding. The advantages of using spray mist are that spray mist is easily applied and a collection system is not required. Another form of cooling is forced fluid such as that encountered when pushing the coolant through diamond core drills. In this application, fluid chucks or special spindle fluid coupling adaptors can be used.

It is generally recommended that coolants be used with all forms of diamond cutting tools. It is also necessary to utilize a coolant for all diamond drilling applications if tool life is to be maximized.

The use of coolants, however, will not serve as a panacea for all operations. For example, drilling tests conducted on graphite/epoxy with both carbide-tipped drills and solid carbide drills at 6000 rpm and 0.001 ipr (actual feed) showed a slight decrease in tool life (about 15 percent). For this reason, the coolant recommendations outlined in Section 3 should be followed.

Section 7

QUALITY CONTROL AND NON-DESTRUCTIVE EVALUATION TECHNIQUES

7.1 PROCESS DAMAGE/INSPECTION CRITERIA

Flaws in composite materials can easily be generated by cutting, machining and drilling operations. These flaws may cause the part to be totally rejected or returned to manufacturing for costly repair. The types of damage that can occur are:

- Delamination separation of the laminates
- Breakout splintering of the material, usually at the drill exit surface or bottom surface of the cut
- Microcrack intra-laminate cracks, usually 0.080 to 0.400 inch (maximum) in length
- Fiber/resin pullout tearing out of resin or fiber from drilled, cut or machined surfaces
- Shreading fraying of the top, middle or bottom surface leaving material unsightly and difficult to inspect for flaws.

Recent structural tests have shown that flaws such as delaminations as large as $1/2 \times 1/2$ inch can be tolerated in certain composite designs. Should design requirements be such that smaller flaws cannot be tolerated, several nondestructive evaluation methods may be used to find them.

Figure 7-1 shows the types of flaws that can occur in four different composite materials and the suggested NDE methods for evaluating these flaws.

Figure 7-2 shows the severity of flaws that can occur as a result of certain operations. The depth of the flaw is measured from the hole or part edge to the furthest distance the delamination or crack has progressed. Additional information on the speeds and feeds that cause these flaws can be found in Appendix A. The NDE methods used for detecting the flaws are listed below. A brief description of the methods and their limitations are contained in Figure 7-3. It is recommended that designs be formulated so that small microcracks, resin/fiber pull-out and minor breakout flaws need not be required as part of the inspection procedure; this would eliminate boroscope and dye-penetrant requirements.

			PH	ASE I		PHASE II		PHAS	E III			PHASE I		
	,		CU1	TING		ORILLING		MACH	NING		NONOESTR	RUCTIVE EVALUATION METHOO		00
MATERIAL	OAMAGE	RADIAL SAW	BANO	WATER JET	HAND RAOIAL SAW	ORILLING	HANO ROUTE	COUNTER SINK	HAND TRIM	COUNTER BORE	TRACER FLUOROSCOPY	OYE PENETRANT	FIBER OPTICS/ BOROSCOPE	VIOEO SCAN
GRAPHITE/EPOXY KEVLAR/EPOXY	OE- LAMINATION BREAKOUT		У	х	×		×	×	х		×			×
	MICRO CRACKS FIBER/RESIN PULLOUT SHREODING			×	×		×	×		×	×	×	×	×
FIBERGLASS/ EPOXY	OE LAMINATION				^			x		×	×			X
	BREAKOUT MICRO CRACKS FIBER/RESIN PULLOUT													
	SHREDDING													
GRAPHITE & FIBERGLASS/ EPOXY	OE- LAMINATION		×	×	×		×			×	×			×
	BREAKOUT MICRO- CRACKS		×								×	×	×	
	FIBER/RESIN PULLOUT		х	×							×		×	
	SHREODING		_	×										×
GRAPHITE/EPOXY	LAMINATION			×		×	×				×			×
	MICRO- CRACKS	X	×			×	×				×	x	×	×
	FIBER/RESIN PULLOUT SHREOOING	×				×					×		×	
GRAPHITE/EPOXY & BORON/ EPOXY	OE LAMINATION BREAKOUT	×	х	×		X					×			X
	MICRO- CRACKS			×		^					×	×	×	Î
	FIBER/RESIN PULLOUT SHREDOING	×	×	x		×					×		×	
BORON/EPOXY	OE- LAMINATION			×	-						×			х
	BREAKOUT MICRO- CRACKS	×	×								×			
	FIBER/RESIN PULLOUT SHREDOING	×									×		×	
KEVLAR/ EPOXY	DE- LAMINATION BREAKOUT		×		×	×		×	×		×			х
	MICRO- CRACKS FIBER/RESIN													
	PULLOUT SHREOOING				×	×		×						×

2199-060B

Figure 7-1 Induced Flaws and NDE Detection Methods

		TYPE	TYPE AND DEPTH OF FLAW (INCH)							
OPERATION	DELAMI- NATION	BREAKOUT	MICRO- CRACKS	PULLOUT FIBER/RESIN	SHREADING					
CUTTING										
RADIAL SAW	NONE	MINOR	NONE	0.001 - 003	NONE					
BANDSAW	0.0 - 0.080	0 - 0.120	0.0 - 0.60	0.001003	BOTTOM PLIES					
WATER-JET	0 - 0.300	MINOR	MINOR	MINOR	BOTTOM PLIES					
HAND RADIAL SAW	0.0 - 0.125	NONE	MINOR	MINOR	NONE					
MACHINING										
HAND ROUTING	0.0 - 0.030	MINOR	MINOR	MINOR	TOP AND BOTTOM PLIES; PROBLEM WITH KEVLAR					
ROUTING	0.0 - 0.070	MINOR	TRANSVERSE CRACKS	MINOR	TOP AND BOTTOM PLIES					
HAND TRIMMING	0.0 - 0.090	MINOR	TRANSVERSE CRACKS	MINOR	MINOR					
COUNTERBORING	0.0 - 0.040	NONE	NONE	NONE	NONE; KEVLAR POSSIBLE					
COUNTERSINKING	MINOR 0.005	NONE	NONE	NONE	TOP PLY WITH KEVLAR					
DRILLING	0.0 - 0.270	MAJOR PROBLEM	MINOR	0.001003	NONE					

2199-061B

Figure 7-2 Severity of Flaws From Machining Operations

NDE METHOD	MATERIALS REQUIRED	TYPE OF FLAWS FOUND	LIMITATIONS
VISUAL	BOROSCOPE, FLASHLIGHT, MIRROR, 10X HAND LENS	SURFACE DELAMINATIONS, RESIN/FIBER PULLOUT, BREAKOUT, MICROĆRACKS, SHREADING	EVALUATION SUBJECTIVE: CONFUSE TOOL MARKS WITH FLAWS; TIME- CONSUMING
TRACER FLUOROS- COPY	TRACER (DI-IODOBUTANE) X-RAY GENERATION SOURCE, TV CAMERA, VIDEO DISPLAY, SAFETY PROCEDURES	DELAMINATIONS, BREAK- OUT	FIND CRACKS AND DELAMINATIONS 0.010 AND LARGER. SURFACE FRAYING CAN GIVE FALSE POSITIVES
DYE PENETRANT	WATER-WASHABLE PENE- TRANT, SELF-DRYING DEVELOPER, SOLVENT, BLACKLIGHT	MICROCRACKS, DELAMI- NATIONS, FIBER/RESIN PULLOUT	VERY SENSITIVE; USE FOR SMALL CRACKS, TOOL MARKS AND KEVLAR INTERFERE; INTERPRETATION SUBJECTIVE, TIME- CONSUMING

2566-162W

Figure 7-3 NDE Methods For Finding Flaws In Composite Edges

7.2 QUALITY INSPECTION PROCESS PROCEDURE - TRACER FLUOROSCOPY

This section describes an automated inspection procedure for detecting flaws produced during cutting, machining or drilling of composites.

7.2.1 Introduction

This procedure outlines the requirements for detecting flaws such as cracks or delaminations occurring in composite materials as a result of cutting, machining or drilling operations. The instructions herein apply to composites such as graphite/epoxy, fiberglass/epoxy, graphite/epoxy plus boron/epoxy and other hybrids. The flaws caused by cutting, machining and drilling operations originate at composite edges or holes and consequently lend themselves to tracer fluoroscopy evaluation. The concept may be integrated into an automated inspection system.

7.2.2 Related Documents

- MIL-STD-453 Inspection, Radiographic
- XXXX-XX Related process specification for certification of radiographers
- XXXX-XX Applicable operator manuals for video scanning and display systems
- XXXX-XX Applicable processing specification stating defect allowable criteria.

7.2.3 Implementation

7.2.3.1 Requirements

- 7.2.3.1.1 Work Areas Work areas wherein tracer fluoroscopy is to be performed shall adhere to the premises, equipment and safety requirements of MIL-STD-453.
- 7.2.3.1.2 Personnel Personnel performing tracer fluoroscopy shall be certified for radiographic inspection per applicable military or company specifications. Personnel shall also be instructed in the care, use and handling of tracer material as well as following the safety recommendations of the material supplier.

7.2.3.1.3 Materials and Equipment

Test samples of the same composite material and thickness as that being tested shall be prepared by drilling and/or cutting. Flaws such as delaminations shall be placed into the composites so they emanate from the hole or cut composite edge. The size of the test sample flaws shall be such that they can be detected by the tracer fluoroscopy system with a degree of confidence required by design considerations.

X-Ray Source - A portable x-ray unit with a beryllium window is recommended. Voltage output requirements should range from 10 to 110 KV and 5 MA with stepless KV and MA.

T.V. Camera -

Fluoroscopy Screens -

Video Tape System - a video tape system, capable of operating off a video display is recommended if a permanent record of flaws detected is required.

Tracer Material - the tracer material recommended is 1, 4 diiodobutane (DIB), chemical formula, $I(CH_2)_4I$, specific gravity 2.3.

Miscellaneous - rubber gloves, aspirator, cotton swabs, lead identification tape, wiping cloths.

7.2.3.2 Testing Procedure

7.2.3.2.1 Application of Tracer Material

- Tracer solution shall be applied with a cotton swab or similar applicator and shall adequately wet the composite edge or hole so that sufficient liquid is present to penetrate the flawed area.
- Tracer solution which runs down the side of the composite from the edge or hole shall be wiped dry immediately so as not to cause false positive indications.
- When applying the tracer, personnel shall wear rubber gloves, work in a well ventilated area, wear an aspirator especially if considerable DIB is used.
- Tracer material will be effective within two minutes and retain most of its absorption characteristics up to six hours. No evidence of tracer is usually seen after 24 hours and the material evaporates within 48 hours.

7.2.3.2.2 Mark Area

- Each hole or edge shall be marked and identified with lead tape or other effective radiographic marking procedure so as to maintain adequate traceability to the part and materials.
- Acceptable parts which have satisfactorily met the applicable inspection requirements shall be marked in a manner and location harmless to the part and which shall preclude removal, smearing or obliteration by subsequent handling.

7.2.3.2.3 Fluoroscopic Inspection

• Arrange work piece, X-ray generation source, fluoroscopic screen, TV camera and video output display.

- If fluoroscopy is being undertaken in an exposed area, shielding of the X-ray source and subsequent radiation scatter monitoring must be accomplished. Subsequent radiation leakage checks should be made with appropriate Geiger counters.
- Calibrate system by applying DIB Tracer onto standard and establishing correct voltage of the system to adequately observe the flaw in the standard. Note voltage and distance settings for the standard.
- Set image enhancement controls to give best contrast and edge enhancement of the flawed area. Note settings of video display system and remove composite standard.
- Place composite structure into fixture for automated system, or into fluoroscopy unit for manual inspection. Check setting from standard and proceed to inspect composite. Note flaws from video monitor.
- Record video monitor data onto video tape machine should permanent records of the flaws be needed.
- Calibrate the system with the composite standard after each appropriate production run.

Section 8

SAFETY

Composite materials are composed of small-diameter fibers in an epoxy matrix. When subjected to cutting, drilling, or machining operation, composite materials can produce dust or slivers. Safety and health requirements for composites to avoid potential hazards are described below.

8.1 INHALATION HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material - Mixing -

Application - Curing, Laser Cutting, Sanding, Routing,

Grinding, Drilling, Sawing, and Polishing.

Control Measures: Local Exhaust Ventilation Enclosures, Barriers, Wet

Machining Methods, Limited Exposure Time, Respirators, Medical Surveillance, Periodic Exposure Testing, Training,

Vacuum Facility for Waste Collection.

8.2 SKIN CONTACT HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material - Mixing -

Application, Sanding, Routing, Grinding, Drilling, Sawing,

and Polishing.

Control Measures: Local Exhaust Ventilation Enclosures, Barriers, Wet

Machining Methods, Special Washing Facilities, Emergency

Showers, Gloves, Sleeves, Aprons or Smocks, Barrier Creams,

Medical Surveillance, Training.

8.3 INGESTION HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material - Mixing -

Application, Sanding, Routing, Grinding, Drilling, Sawing,

and Polishing.

Control Measures: Eating, Drinking, and Smoking away from Work Station, Good

Personal Hygiene.

8.4 SIGHT HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material - Mixing -

Application - Curing, Laser Cutting, Radio Frequency Curing, Sanding, Routing, Grinding, Drilling, Sawing, and Polishing.

Control Measures: Sight Protection Devices, Emergency Eye Wash Facility,

Medical Surveillance, Shielding, Periodic Exposure Testing,

Interlocked Facilities.

8.5 BURN HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material - Mixing -

Application, Laser Cutting, Radio Frequency Curing.

Control Measures: Enclosures, Barriers, Emergency Showers, Gloves, Sleeves,

Aprons or Smocks, Barrier Creams, Medical Surveillance,

Training, Shielding, Interlocked Facilities.

8.6 FIRE HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material - Mixing -

Application - Curing, Laser Cutting, Sanding, Routing,

Grinding, Drilling, Sawing, and Polishing.

Control Measures: Wet Collection Systems for Exhaust Systems, Special Storage

and Dispensing, Training, Emergency Fire Procedures,
Automatic and Manual Fire Equipment, Specially Designed

Facilities.

8.7 HEARING HAZARDS

Typical Operations: Sanding, Routing, Grinding, Drilling, Sawing, Polishing.

Control Measures: Acoustically Treated Facilities, Special Tools and Equipment,

Limited Exposure Time, Personal Protective Equipment,

Audiometric Testing, Periodic Exposure Monitoring.

8.8 WASTE HAZARDS

Typical Operations: General Cleaning, Chemical Treatment, Material Application,

Laser Cutting, Sanding, Routing, Grinding, Drilling, Sawing,

and Polishing.

Control Measures: Segregation, Special Containers, and Labeling.

8.9 RADIATION HAZARDS

Typical Operations: Radiographic or Fluoroscopic Inspection

Control Measures: Limited-Access Area, Personal Dosimeters, Medical Sur-

veillance and Interlocked Facilities

Section 9

COST ANALYSES

9.1 GENERAL

Reliable cost analyses require several key ingredients including good machining parameters, the relationship of tool life to these machining parameters, and valid cost equations which describe the process. This section defines the required equations and gives illustrative examples of application. It should also be pointed out that accurate prediction of tool life data requires an extensive data base which obviously could not be generated within the scope of one program. The tool life data presented within this manual should, therefore, be treated as initial data points for subsequent expansion and trend development.

9.2 COST EQUATIONS

Equations that can be used to calculate recurring costs for various material removal processes are described. These equations represent derivations from the standard cost equations developed by the Machinability Data Center.

9.2.1 Radial Sawing and Bandsawing

9.2.2 Laser Cutting

$$C = M \quad \left[\frac{L}{V_1}\right] \quad \frac{1}{E} \quad + \quad \frac{L}{V} \quad \left[\mathring{m} \quad Cg\right]$$

$$FEED \quad UTILIZATION \quad ASSIST \; GAS$$

$$TIME \quad RATE \quad COST$$

9.2.3 Water Jet Cutting

$$C = M \quad \begin{bmatrix} \frac{L}{V_1} \end{bmatrix} \quad \frac{1}{E}$$

$$FEED \quad UTILIZATION$$

$$TIME \quad RATE$$

9.2.4 Reciprocating Mechanical Cutting

$$C = M \quad \begin{bmatrix} L \\ \overline{V_1} \end{bmatrix} \quad \frac{1}{E} \quad + \quad \frac{L}{T_t} \quad \begin{bmatrix} Cp \\ (\overline{K_1}+1) \end{bmatrix} \quad + \quad C_R \end{bmatrix}$$

$$FEED \quad UTILIZATION \quad TOOL \quad TOOL$$

$$TIME \quad RATE \quad DEPRECIATION \quad RECONDITION$$

$$COST \quad COST$$

9.2.5 Blanking

9.2.6 Drilling

$$C = M \begin{bmatrix} \frac{D(L+e)}{3.82 \, f_r V} + \frac{LD \, t_d}{3.82 \, f_r T_L} \end{bmatrix} + \frac{LD}{3.82 \, f_r T_L} \begin{bmatrix} \frac{Cp}{(K_1+1)} + C_R \end{bmatrix}$$

$$FEED \quad DULL \, TOOL \quad TOOL \quad REPLACEMENT \quad DEPRECIATION \quad COST \quad COST$$

9.2.7 Routing, Trimming and Beveling

$$C = M \quad \left[\begin{array}{c} L \\ \hline V_1 \end{array} \right. + \quad \frac{Lh \ Tw \ td}{T_M} \right] + \quad \frac{Lh \ Tw}{T_M} \quad \left[\begin{array}{c} Cp \\ \hline (K_1 + 1) \end{array} \right. + \quad C_R \right]$$
 FEED DULL TOOL TOOL TIME REPLACEMENT DEPRECIATION RECONDITIONING COST

A listing of symbols for cost equations is given in Figure 9-1.

SYMBOL	DEFINITION	
С	COST FOR MACHINING ONE WORKPIECE; \$/WORKPIECE	
Cg	COST OF LASER ASSIST GAS; \$/POUND	
Cp	PURCHASE COST OF TOOL OR CUTTER; \$/CUTTER	
c _R	TOOL RECONDITIONING COST;\$	
D	DIA. OF WORK IN TURNING OF TOOL IN MILLING, DRILLING, REAMING, TAPPING; INCHES	
е	EXTRA TRAVEL AT FEEDRATE (f_r OR f_t) INCLUDING APPROACH, OVERTRAVEL, AND ALL POSITIONING MOVES; INCHES.	
E	UTILIZATION RATE; PERCENT/100	
fr	FEED PER REVOLUTION; IN./REV.	
h	MATERIAL THICKNESS; INCHES	
κ ₁	NO. OF TIMES TOOL, OR DRILL, OR REAMER IS RESHARPENED BEFORE BEING DISCARDED	
К ₄	TOTAL NUMBER OF PARTS TO BE MADE ON TOOL	
L	LENGTH OF WORKPIECE IN TURNING AND MILLING OR SUM OF LENGTH OF ALL HOLES OF SAME DIAMETER IN DRILLING, REAMING, TAPPING; INCHES.	
m	LASER ASSIST GAS FLOW RATE; POUNDS/MINUTE	
M	LABOR + OVERHEAD COST ON LATHE, MILLING MACHINE OR DRILLING MACHINE; \$/MIN.	
MF	LABOR + OVERHEAD FOR TOOL FABRICATION; \$/MIN.	
NL	NO. OF WORKPIECES IN LOT	
t _d	TIME TO REPLACE DULL CUTTER IN TOOL CHANGER STORAGE UNIT; MIN.	
tL	TIME TO LOAD AND UNLOAD WORKPIECE; MIN.	
t _o	TIME TO SETUP MACHINE TOOL FOR OPERATION; MIN.	
t _s	TIME TO RESHARPEN LATHE TOOL, MILLING CUTTER, DRILL, REAMER OR TAP; MIN./TOOL	
TL	TOOL LIFE IN CIRCUMFERENTIAL TRAVEL; FEET	
T _M	TOOL LIFE MEASURED IN MAXIMUM TOOL WIDTH OR DIAMETRAL WEAR; INCHES	
T _W	TOOL WEAR RATE FOR CROSS SECTIONAL AREA CUT; IN/IN ²	
T _t	TOOL LIFE MEASURED IN INCHES TRAVEL OF WORK OR TOOL TO DULL A DRILL, REAMER, TAP OR ONE MILLING CUTTER TOOTH; IN.	
V	CUTTING SPEED; FT/MIN.	
V ₁	FEED; INCHES/MINUTE	

2566-196W

Figure 9-1 Symbols for Cost Equations

9.3 CUTTING TOOL COST

Representative costs of selected cutting tools are presented in Figures 9-2 and 9-3.

9.4 USE OF COST EQUATIONS

The establishment of parametric process data, as presented in the previous sections, allows for the comparative analyses of various approaches. To illustrate how this data can be utilized, a series of manufacturing problems are presented within which a series of alternatives are exercised.

9.4.1 Problem No. 1:

To cut a contour pattern in graphite/epoxy prepreg for single-ply quantities, and multiple-ply quantities of 6 and 12. The trimmed periphery is specified at 200 inches.

Alternatives:

- Manual trimming with knife
- N/C water-jet trimming (55 ksi)
- N/C laser trimming (250 and 500 watts)
- N/C reciprocating cutter (Gerber System 90)

Assumptions:

- Maximum cutting speed is 600 ipm (due to machine dynamics)
- Average cutting speed is 2/3 of maximum
- Set-up time is not included for various alternatives
- Manual trimming cannot be accomplished in stack-ply quantities

Solution:

Manual trimming costs were based on actual average trimming costs for a horizontal stabilizer. Feedrates for water-jet, laser, and reciprocating cutting were obtained from Section 2.0. Based upon these feedrates, total cutting time was established and burdened at \$25 per hour for labor and \$25 per hour for equipment. Maintenance and supply costs of \$3.00, \$0.60, and \$0.36-per hour were used for water-jet, laser and reciprocating cutting, respectively. Inert cutting gas consumption and cutter wear were included as miscellaneous costs. For the illustrative problem, comparative trimming costs are shown in Figure 9-4 based upon a 30-percent machine duty cycle.

PROCESS	TOOL DESCRIPTION	
RADIAL SAW (STATIONARY)	60-GRIT, DIAMOND-PLATED, 8-INCH-DIAMETER X 3/32-INCH-THICK (WITH OR WITHOUT SIDES GROUND)	
	● MEDIUM-GRIT TUNGSTEN CARBIDE, 6.5-INCH-DIAMETER	33.50
	 HSS, 126 STRAIGHT-BACKED TEETH, 8-INCH-DIAMETER 	34.15
RADIAL SAW	60-GRIT, DIAMOND-PLATED, 3-INCH-DIAMETER X 3/32-INCH-THICK	40.00(1)
(PORTABLE)	• 40-GRIT, DIAMOND-PLATED, 3-INCH-DIAMETER X 3/32-INCH-THICK	40.00(2)
BANDSAW	MEDIUM-GRIT, TUNGSTEN CARBIDE, 1/2-IN. X 13.5-FT. LONG	61.58 ⁽²⁾
	• 60-80-GRIT DIAMOND-PLATED, 1/4 OR 1/2-INCH-WIDE	28.00/FT.
ROUTING	OUTING • CARBIDE, 1/4-INCH-DIAMETER, DIAMOND CUT	
(2) UI	NIT COST FOR 15-PIECE QUANTITIES NIT COST FOR 36-PIECE QUANTITIES NIT COST FOR 500-PIECE QUANTITIES	

2566-163W

Figure 9-2 Purchase Cost Of Cutting Tools

TYPE OF TOOL	MATERIAL	SIZE, IN.	PURCHASE COST,\$	RECONDITIONING COST	AVERAGE NUMBER OF RESHARPENINGS
TWIST DRILL	HSS	1/8	0.59	30%	NONE
		3/16	0.59	ТО	NONE
		1/4	0.80	40%	NONE
DR/CSK (WINSLOW)		3/16	16.00	OF	NONE
PILOT C'SINK		7/16	2.80	ORIGINAL	NONE
REAMER		3/16	3.00	COST	NONE
		1/8	5.58		1-2
TWIST DRILL	CARBIDE-TIPPED	3/16	8.98	MAX. 50%	1-2
		1/4	9.03	OF	1-2
REAMER		1/2	17.15	ORIGINAL	1-2
		1/4	11.59	COST	1
TWIST DRILL	SOLID CARBIDE	1/8 (.1285)	7.34	MAX. 50%	2
		3/16 (.190)	10.65	OF	2
		1/4	12.22	ORIGINAL	2
DR/C'SINK				COST	
DRIVMATIC (WINSLOW)		3/16	35.00		2
PILOT C'SINK,		7/16	14.03		2
REAMER		3/16	30.00		1
U/S CORE DRILL	METAL MATRIX	3/16	55.00		4
	(SINTERED)	1/4	60.00	MAX.	4
		1/2	75.00		4
U/S DRILL/C'SINK	METAL MATRIX/	3/16 (.190)	65.00	OF	4
	PLATED	1/4	75.00		4
		1/2	90.00	50% OF	4
U/S C'SINK, DIAMOND		5/8	35.00		4
STD. DIAM. CORE DR.		3/16	30.00	ORIGINAL	4
		1/4	35.00		4
		1/2	45.00	COST	4

2566-197W

NOTE: PRICES ARE AVERAGE AND VARY WITH LOT SIZE, MARKET CONDITIONS, ETC.

Figure 9-3 Cutting Tool Cost Summary

2566-164W

Figure 9-4 Comparative Costs for Trimming 200 Inches of Uncured Graphite/Epoxy Periphery

Another consideration in selecting a programmable process over a manual one is equipment utilization. For the selected trimming problem, all three programmable systems are shown to be more cost-effective than manual trimming at utilization rates of at least 15 percent (see Figure 9-5).

9.4.2 Problem No. 2:

To trim a contour pattern in a 0.125-inch-thick graphite/epoxy part with a total perimeter length of cut of 120 inches. The part is relatively flat (beam or rib edge) and requires crack-free edges.

Alternatives:

- Manual routing
- Rough bands aw trim within 0.12 inch and rout net
- Water-jet cut
- Water-jet cut within 0.12 inch and then rout to net trim
- Portable-saw net over 90 percent of perimeter and final 10-percent hand rout
- Machine rout

Assumptions:

- Maximum carbide router tool life per cut is 0.0015-inch diametral wear
- Three cutting positions per router bit before changing
- Maximum bandsaw wear life is 0.008 inch
- Maximum radial saw diametral wear life is 0.015 inch
- Setup times for manual and machine operations are 1.2 and 3.0 minutes, respectively

Solution:

Typical cutting rates and tool wear rates for each approach were selected from Section 3.0. Based on part geometry and cut description, set-up and handling times were obtained using the Advanced Composite Cost Estimating Manual as a guideline. Costs were compiled and plotted in Figure 9-6. It should be noted that amortized equipment costs are not included in Figure 9-6.

If water-jet cutting were capable of producing a crack-free edge, it would appear to be very attractive; but such is not the case based upon current technology for graphite/epoxy. Therefore, a post-processing treatment, such as router trimming, must be added and unfavorable costs result. The most effective means of trimming appears to be routing, with machine routing (not including amortized equipment cost) having an advantage over manual routing due to slightly increased tool life. Also interesting to note is the comparison of

2566-165W

Figure 9-5 Cost Comparison for Trimming a Single-Ply Graphite/Epoxy Prepreg with 200-Inch Periphery

Figure 9-6 Comparative Costs for Trimming a 120-inch Periphery in 1/8-Inch-Thick Graphite/Epoxy

portable radial saw costs with that of stationary sawing. From this example, stationary radial sawing is one-half the cost of portable sawing due to lower cutting tool costs. Where stationary radial sawing can be utilized for the complete trimming operation, it is very attractive in terms of cost compared to any other approach. Bandsawing followed by router trimming is the most expensive approach of those considered.

9.4.3 Problem No. 3:

To drill and countersink 0.190-inch-diameter holes in 0.15-inch-thick graphite/epoxy laminates.

Alternatives:

- Manual drilling with HSS drill and countersink
- Manual drilling with carbide drills and countersinks
- Portable drilling with a carbide combination drill/countersink tool at 0.001 ipr feed and 6000 rpm speed
- Portable drilling with a carbide combination drill/countersink tool at 0.001 ipr feed and 21,000 rpm speed
- Portable drilling with a megadiamond combination drill countersink tool (assume 1000 hole life), at 0.001 ipr and 4,000 rpm

For each case compute the unit cost per hole.

Solution:

Summarized costs for each of the manufacturing alternatives are plotted in Figure 9-7. From the summary data it can be seen that off-hand drilling with high-speed steel (HSS) cutting tools is the most costly due to two reasons: hand operation which requires three separate operations and high cutting tool consumption. Simply by switching from HSS cutting tools to solid carbide, unit drilling costs are cut almost in half with the same three operations. Portable drilling equipment affords the advantage of combination drill-countersinking with the same tool and thereby eliminating two operations. It has also been shown, that under similar drilling conditions, a more rigid machining platform (i.e., portable drill equipment) yields 3 to 6 times drill life. Therefore, the third alternative (same conditions used for B-1 horizontal stabilizer) yields an additional 75 percent reduction in cost. High-speed drilling (21,000 rpm) developed within the current program demonstrated its ability to not only penetrate over three times faster but also double tool life. As a result, this high-speed operation reduces costs another 50 percent.

Figure 9-7 Comparative Drilling Costs for Graphite/Epoxy

Another approach to lowering drilling costs was to develop new, long-lasting tools such as compacted diamond inserts. Initial testing indicated that cutting-tool change costs could be halved with this approach, but initial data indicate that the cutting tools must be run at lower speeds (4000 rpm), therefore sacrificing penetration rate. This penetration rate constraint must be overcome before these cutting tools can become viable. Currently, these cutting tools are being fabricated at experimental rates and cost 250 dollars each. It would be reasonable to expect that this cost could be halved with production quantities; unit cutting tool cost per hole would then be competitive. In addition, the reliability of these new cutting tools has yet to be demonstrated and much work appears needed before further evaluation would be warranted.

9.4.4. Problem No. 4:

To drill 0.190-inch-diameter holes in 0.375-inch-thick boron/epoxy laminates.

Alternatives:

- Portable drilling using diamond core drills
- Ultrasonic portable drilling using diamond core drills

For each case compute the unit cost per hole.

Solution:

The same basic method used previously to develop drilling cost is again used. Comparative costs are shown in Figure 9-8. As can be seen, ultrasonically assisted portable drilling reduces unit costs by 70 percent due to increased feed capabilities (twice as great) and decreased wear (88 percent longer life) for an equivalent circumferential distance traveled.

2500-10011

Figure 9-8 Cost Comparison - Conventional Vs. Ultrasonic Drilling

APPENDIX A

	H N N N N N N N N N N N N N N N N N N N	30V 19	0	- L		FLAWS FOU	CONDITIONING	FLAWS FOUND BEFORE MOISTURE CONDITIONING	FLAW	S FOUND	FLAWS FOUND AFTER MOISTURE CONDITIONING	IRE
MATERIAL	N.	TYPE(1)	sfm sfm	ipm	COOLANT(3)	VISUAL	TRACER	PENETRANT	VISUAL	TRACER	PENETRANT	MINOR
GR/EP + B/EP	0.500		7154(2)	14	MIST	MINOR	NONE	MINOR	NO CHANGE	NONE	NO CHANGE	NONE
GR/EP	0.310		7154(2)	44	MIST	MINOR	NONE	NONE	NO CHANGE	NONE	NONE	NONE
GR/EP	0.310		7154	102	MIST	MINOR	NONE	MINOR	NO CHANGE	NONE	NO CHANGE	NONE
B/EP	0.125	PLATED 60 GRIT	7154	102	MIST	POROSITY	NONE	PORSITY	NO CHANGE	NONE	NO CHANGE	NONE
FG/EP	0.125		7154	24	MIST	NONE	NONE	NONE	NONE	NONE	NONE	NONE
FG/EP	0.125		7154	69	MIST	NONE	NONE	NONE	NONE	NONE	NONE	NONE
GR/EP + B/EP	0.508		7154	14	MIST	NONE	NONE	NONE	NONE	NONE	NONE	NONE
GR/EP	0.250		7154	32	MIST	NONE	NONE	NONE	NONE	NONE	NONE	NONE

NOTES:

(1) SIDES GROUND

(2) BLADE EXTENDED 2.125 INCHES ABOVE WORK PIECE

(3) HANGSTERFERS – HE2 (20:1) WATER MIX

2566-180W

Figure A-1 Moisture Conditioning Test of Stationary Radially (Sawed Specimens)

	THICKNESS	BLADE	SPEED.	FEED		FLAWS FOU	CONDITIONING	FLAWS FOUND BEFORE MOISTURE CONDITIONING	FLAW	S FOUND	FLAWS FOUND AFTER MOISTURE CONDITIONING	RE
MATERIAL	ż	TYPE(1)	sfm	mdi	COOLANT(2)	VISUAL	TRACER	PENETRANT	VISUAL	TRACER	PENETRANT	MICRO
GR/EP + B/EP	0.1185		2000	31	MIST	NONE	NONE	MINOR	NONE	NONE	NO CHANGE	NONE
GR/EP + B/EP	0.485	DIAMOND	2000	28	DRY	NONE	NONE	NONE	NONE	NONE	NONE	NONE
GR/EP + B/EP	0.485	PLATED 60 GRIT	4000	34	DRY	NONE	NONE	MINOR	NONE	NONE	NO CHANGE	NONE
GR/EP + B/EP	0.091		4000	34	DRY	MINOR	NONE	NONE	NO CHANGE	NONE	NONE	YES (NIL)
GR/EP + KEV/EP	0.280	TUNGSTEN	4000	32	DRY	NONE	NONE	KEVLAR INTERFERED	NONE	NONE	NO	NONE
GR/EP + B/EP	0.334	CARBIDE	4000	13	DRY	NONE	NONE	NONE	NONE	NONE	NONE	NONE
GR/EP + KEV/EP	0.280	MED GRIT	2000	21	DRY	NONE	NONE	KEVLAR INTERFERED	NONE	NONE	NO CHANGE	NONE
KEV/EP	0.118	CARBON ⁽¹⁾ STEEL 32T	5400	55	DRY	NONE	NONE	NONE	NONE	NONE	NONE	NONE
GR/EP + FG/EP	0.250	TUNGSTEN CARBIDE COATED; MED GRIT	2000	17	DRY	MINOR DELAMIN- ATION	NONE	MINOR DELAMIN. ATION	NO CHANGE	NONE	NO CHANGE	YES (0.010")
NOTES												

PRECISION WAVE SET (1)

2566-181W

Figure A-2 Moisture Conditioning Tests of Bandsawed Specimens

HAMSTERFERS - HE-2 (20:1 WATER MIX)

								Z	NDT METHOD	0	
						RADIO(TRA	RADIOGRAPHY TRACER	SECTION	MICRO. SECTIONING	VISUAL	PENETRANT
MATERIAL	THICKNESS, IN.	BLADE TYPE	SPEED, sfm	FEED, ipm	C00LANT(3)	FLAW	DEPTH, IN.	FLAW	DEPTH, IN.	FLAW	FLAW
GR/EP + B/EP	0.450		7154	14	DRY	ON	NONE	ON	NONE	MINOR	MINOR
GR/EP	0.310		7154	102	MIST	ON	NONE	ON	NONE	MINOR	MINOR
GR/EP + B/EP	0.450		7154(2)	14	MIST	ON	NONE	ON	NONE	MINOR	ON
GR/EP	0.310		7154	44	MIST	ON	NONE	ON	NONE	MINOR	ON
GR/EP + B/EP	0.508	DIAMOND PLATED ₍₁₎	7154	14	MIST	ON	NONE	ON	NONE	ON	ON
GR/EP	0.310	60 GRIT	7154(3)	44	MIST	ON	NONE	ON	NONE	MINOR	ON
GR/EP	0.500		7154	32	MIST	ON	NONE	ON	NONE	MINOR	ON
GR/EP	0.500		7154	32	MIST	ON	NONE	ON	NONE	NO	NO
B/EP	0.136		7154	69	MIST	ON	NONE	ON.	NONE	POROSITY	POROSITY
B/EP	0.136		7154	102	MIST	NO	NONE	ON	NONE	POROSITY	POROSITY
B/EP	0.136		7154	102	MIST	NO	NONE	ON	NONE	POROSITY	POROSITY
GR/EP	0.310	TUNGSTEN CARBIDE COATED MED GRIT	5790	20	MIST	ON	NONE	OZ	NONE	BREAKOUT	ON
GR/EP	0.490		7154	69	MIST	ON	NONE	ON	NONE	MINOR	MINOR
GR/EP	0.310		7154(3)	44	MIST	ON	NONE	ON	NONE	MINOR	MINOR
GR/EP	0.500	DIAMOND	7154	25	MIST	NO	NONE	NO	NONE	NO	NO
GR/EP	0.310	PLATED 60 GRIT(2)	7154(3)	57	MIST	ON	NONE	ON	NONE	MINOR	ON
FG/EP	0.147		7154	24	MIST	NO	NONE	NO	NONE	NO	ON
FG/EP	0.147		7154	69	MIST	ON	NONE	ON	NONE	ON	ON

2566-182W

Figure A-3 Stationary Radial Saw Non-Destructive Evaluation

NOTES:
(1) SIDES GROUND
(2) SIDES NOT GROUND
(3) BLADE EXTENDED 2.125 INCHES ABOVE MATERIAL
(4) HANGSTERFERS-HE-2 (20:1 WATER MIX)

_	Т	T	_		1		1	1	I			1		_	ī	1		1		1	T	T	_		T
	PENETRANT	FLAW FOUND*	YES	YES	YES	YES	YES	POSSIBLE	YES	YES	ON	ON	YES	ON	ON	ON.	ON	MINOR	ON	O _N	ON	ON	ON	ON	YES
	VISUAL	FLAW	YES	YES	YES	YES	YES	YES	MINOR DE- LAMINATION	YES	ON	ON	NO NO	ON	YES	ON	O.	ON	NO	O.N.	ON	O.N.	ON	NO	YES
NDT METHOD	MICROSECTIONING	DEPTH,	0.075	0.055	090'0	0.070	0.035	0.020	0.010	0.025	NONE	NONE	0.035	NONE	NEGLIGIBLE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	0.250
NDT N	MICRO	FLAW	YES	YES	YES	YES	YES	YES	YES	YES	O _N	O _N	YES	ON	YES	O _Z	O _Z	O _N	ON N	00	ON.	O _N	ON.	ON	YES
-	RADIOGRAPHY TRACER	DEPTH, IN.	0.075	0.040	0.060	0.070	0.035	0.020	NONE	0.020	NONE	NONE	0.035	NONE	NONE	NONE	NONE	NONE	NONE	INTER- FERENCE	INTER- FERENCE	INTER- FERENCE	NONE	NONE	0.250
	RADIOC TR/	FLAW	YES	YES	YES	YES	YES	YES	QN	YES	ON	0 2	YES	QN	QN	ON ON	ON	ON	ON NO	ON	ON	ON	ON	QN	YES
	-	COOLANT	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DAY	DRY	DRY	DRY	DRY
		FEED	41	19	20	20	150	20	18	80	7.0	52	55	98	34	28	34	31	B0	32	21	25	14	12	46
		SPEED, fpm	2000	2000	4000	2000	4000	1000	2000	4000	500 & 2000	5400	3000	4000	4000	2000	4000	2000	4000	4000	2000	2000	4000	4000	4000
		BLADE					TUNGSTEN	MED GRIT			CARBON STEEL 10T RAKER SET 0°	CARBDN STEEL 32T PRECISION WAVE SET			ONOMAIO	PLATED 60 GRIT					TUNGSTEN	MED GRIT			STEEL 32T PRECISION
		THICKNESS, IN.	0.065	0.065	0.270	0.270	0.057	0.057	0.057	0.250	0.600	0.118	0.270	0.136	0.091	0.485	0.485	0.490	0.143	0.280	0.280	0.065	0.334	0.334	0.118
		MATERIAL	GR/EP	GR/EP	GR/EP	GR/EP	GR/EP + FG/EP	GR/EP + FG/EP	GR/EP + FG/EP	GR/EP + FG/EP	GR/EP	KEV/EP	GR/EP	8/EP	GR/EP + 80/EP	GR/EP+ 80/EP	GR/EP + 80/EP	GR/EP + BO/EP	FG/EP	GR/EP + KEV/EP	GR/EP + KEV/EP	GR/EP + KEV/EP	GR/EP + 8/EP	GR/EP + B/EP	KEV/EP

Figure A-4 Bandsaw NDT Evaluation

2566-183W

NOTES: (1) HANGSTERFERS-HE-2 (20:1 WATER MIX)
*POSSIBLE SATURATION WITH PENETRANT OIL

									NDT METHOD		
						RADIO(RADIOGRAPHY TRACER	MICROSE	MICROSECTIONING	VISUAL	PENETRANT
MATERIAL	THICKNESS, IN.	BLADE TYPE	SPEED, fpm	FEED	COOLANT	FLAW	DEPTH, IN.	FLAW	DEPTH, IN.	FLAW	FLAW FOUND*
GR/EP	0.267		7496	58	DRY	ON	NONE	ON	NONE	ON	ON
GR/EP + FG/EP	0.260		7.196	65	DRY	ON	NONE	ON	NONE	ON	ON
B/EP	0.136		7496	98	DRY	ON	NONE	ON	NONE	ON	OZ.
GR/EP + B/EP	0.333		7496	43	DRY	ON	NONE	ON	NONE	ON	ON
GR/EP + B/EP	0.333		7496	43	DRY	ON ON	NONE	ON	NONE	ON	ON
GR/EP	0.067	DIAMOND	7496	132	DRY	ON	NONE	ON	NONE	ON	ON
GR/EP + B/EP	060.0	PLATED (7496	118	DRY	ON	NONE	ON	NONE	ON	ON
GR/EP + KEV/EP	0.064		7496	86	DRY	YES	0.065	YES	0.065	DE. LAMINATION	YES
GR/EP + FG/EP	0.064		7496	167	DRY	YES	0.125	YES	0.100	DE- LAMINATION	YES
FG/EP	0.147		7496	101	DRY	ON	NONE	ON	NONE	ON	ON
B/EP	0.135		7496	94	DRY	NO	NONE	ON	NONE	ON	ON
GR/EP	0.275		7496	46	DRY	ON	NONE	NO	NONE	ON	ON
KEV/EP	0.112	CABBIDE	7496	96	DRY	(2)		ON	NONE	(2)	(1)
GR/EP + KEV/EP	0.271	12 TEETH ALT OP- POSED FACE ANGLE	7496	59	DRY	(2)		YES	0.060	ON	ON
(1) PENETRA (2) SPECIMER	(1) PENETRANT ABSORBED BY ALL KEVLAR TEST (2) SPECIMEN TOO BADLY FRAYED	3Y ALL KEVLA 3AYED		OBSCURED							

Figure A-5 Hand Radial Saw NDT Evaluation

2566-184W

A-6

									NDT METHOD	QO	
			STAND	NOZZLE		RADIOC	RADIOGRAPHY TRACER	MICRO- SECTIONING	RO.	VISUAL	PENETRANT
MATERIAL	THICKNESS, IN.	PRESSURE, KSF	OFF, IN.	DIA, IN.	FEED, ipm	FLAW	DEPTH, IN.	FOUND	DEPTH, IN.	FLAW	FLAW
GR/EP	0.062	55	3/16	0.008	09	YES	0.075	YES	0.021	CRACK	YES
GR/EP	0.134	09	3/16	0.010	30	YES	0.375	YES	0.390	DELAMINATION	YES
GR/EP	0.275	09	1/8	0.014	9.9	YES	0.110	YES	0.300	CRACK	YES
8/EP	0.058	09	3/16	0.012	120	YES	0.250	YES	0.300	NO	YES
8/EP	0.136	09	1/8	0.010	120	YES	0.285	YES	0.290	DELAMINATION	YES
KEV/EP	0.062	55	1/8	900.0	120	YES	THRU	YES	THRU	NO	YES
KEP/EP	0.123	55	1/8	0.010	9.9	NO	NONE	ON	NONE	ON	ON
FG/EP	0.143	09	3/16	0.010	6.0	NO	NONE	ON	NONE	NO	NO
GR/EP + 8/EP	0.095	09	1/8	0.012	14	YES	0.05	YES	0.100	NO	YES
GR/EP + 8/EP	0.154	09	1/8	0.012	4	YES	060:0	YES	0.200	MINOR CRACKS	YES
GR/EP + KEV/EP	0.063	09	1/8	0.010	16	ON	NONE	NO NO	NONE	NO	ON
GR/EP + KEV/EP	0.267	09	1/8	0.014	5	YES ⁽¹⁾	0.100	NO	NONE	NO	ON
GR/EPT + FG/EP	0.067	55	1/8	0.012	6	YES	0.075	YES	0.075	NO	YES
GR/EP + FG/EP	0.253	09	1/16	0.012	6	YES	0.125	YES	0.290	NO	YES
GR/EP + 8/EP	0.321	09	1/8	0.014	6	NO	NONE	NO	NONE	NO	NO
(1) CRACK N	(1) CRACK MAY HAVE BEEN CUT OUT DURING	CUT OUT DURIN	NG SECTIONING	NING							

Figure A-6 Water Jet NDT Evaluation (Flow Industries Inc.)

2566-185W

							NDT METHOD	THOD	
				STAND	NOZZLE		RADIOGRAP	RADIOGRAPHY TRACER	
MATERIAL	THICKNESS IN.	COMPANY	PRESSURE, kpsi	N.	<u> </u>	FEED RATE	FLAW FOUND	DEPTH, IN.	COMMENTS
GR/EP	0.090	ITTRI	81	0.5	0.24	270	YES	0.025 - 0.445	SPORADIC DELAMINATION
GR/EP	0.181	ITTR	100	0.5	0.40	270	YES	0.300 - 0.110	CONTINUOUS DELAMINATION
GR/EP	0.131	MCCARTNEY	40 TO 50	0.5	0.010	72	YES	0.080 - 0.110	
GR/EP	0.134	FLOW IND	09	3/16	0.010	45	YES	0.130 - 0.300	SPORADIC
GR/EP	0.134		09	3/16	0.010	30	YES	0.025	CONTINUOUS GOOD SPECIMEN
GR/EP	0.134		09	3/16	0.008	30	YES	0.075 - 0.220	SPORADIC
GR/EP	0.134		55	3/16	0.012	30	YES	0.175	SPORADIC
GR/EP	0.063		50	3/16	0.012	30	YES	0.080 - 0.300	
GR/EP	0.134		55	3/16	0.010	30	YES	0.120 - 0.350	
GR/EP	0.134	-	09	3/16	0.010	09	YES	0.080 - 0.220	
GR/EP	0.134		40	3/16	0.012	30	YES	0.150 - 0.400	
GR/EP	0.063		55	3/16	0.005	120	YES	0.165	
GR/EP	0.063		09	3/16	0.008	120	YES	0.060	
GR/EP	0.063		55	3/16	0.008	120	YES	0.095	
GR/EP	0.063		35	3/16	0.008	120	YES	0.230	
GR/EP	0.063		55	3/16	0.008	30	YES	0.115	
GR/EP	0.063		09	3/16	0.012	30	YES	0.050	
GR/EP	0.063		55	3/16	0.008	45	YES	0.100	
GR/EP	0.063		90	3/16	0.012	120	YES	0.130	
GR/EP	0.063		09	3/16	0.010	120	YES	0.030 - 0.080	
GR/EP	0.063		55	3/16	0.008	09	YES	0.120	
GR/EP	0.134		09	3/16	0.012	09	YES	0.025 - 0.050	

Figure A-7 Water Jet Evaluation

								Z	NDT METHOD	Q	
						RADIO	RADIOGRAPHY TRACER	MICRO- SECTIONING	RO-	VISUAL	PENETRANT
MATERIAL	THICKNESS, IN.	SPEED, sfm	FEED, ipm	CUTTER	COOLANT(4)	FLAW	DEPTH, IN.	FLAW	DEPTH, IN.	FLAW FOUND	FLAW
GR/EP	0.132	851	46			ON	NONE	ON	NONE	ON	YES
GR/EP	0.132	851	46			ON	NONE	ON	NONE	ON	YES
GR/EP	0.272	851	30			YES	0.030	NO(2)	NONE	YES	YES
GR/EP	0.272	851	30		-	YES	0.020	NO(2)	NONE	YES	ON
GR/EP	0.132	851	22			ON.	NONE	ON	NONE	ON	YES
GR Q	0.132	851	22		-	NO	NONE	NO	NONE	ON	ON
GR/EP + KEV/EP	0.287	851	14			(1)		ON	NONE	ON	ON
GR/EP + KEV/EP	0.287	851	14			(1)		YES	0.100	ON	NO
FG/EP	0.148	851	27			NO	NONE	ON	NONE	ON	YES
FG/EP	0.148	851	27			NO	NONE	ON	NONE	NO	YES
GR/EP + FG/EP	0.266	851	16	CARBIDE		ON	NONE	ON	NONE	ON	YES
GR/EP + FG/EP	0.266	851	16	DIAMOND	MIST	YES	0.020	ON	NONE	ON	YES
GR/EP	0.068	851	83			YES	0.050	YES	0.025	DE- LAMINATION	YES
GR/EP	0.068	851	83			YES	0.065	NO(3)	NONE	ON	ON
GR/EP + KEV/EP	0.075	851	09			Ξ		ON	NONE	(1)	(1)
GR/EP + KEV/EP	0.075	851	09			0		ON	NONE	(1)	(1)
GR/EP + FG/EP	0.065	851	85			YES	0.020	YES	0.035	ON	YES
GR/EP + FG/EP	0.065	851	85			ON	NONE	ON	NONE	ON	ON
GR/EP	0.132	1435	13			YES	0.030	YES	0.050	ON	YES
GR/EP	0.132	1435	13			NO	NONE	NO	NONE	ON	YES MINOR
FG/EP	0.148	1435	18			YES	0.050	YES	0.100	ON	YES
FG/EP	0.148	1435	18			NO	NONE	NO	NONE	ON	ON
GR/EP	0.068	1435	82			NO	NONE	NO	NONE	CN	ON
GR/EP	990.0	1435	82	`	•	NO	NONE	NO	NONE	NO	YES
GR/EP	0.272	1435	82			YES	0.050	YES	0.055	OE- LAMINATION	YES DELAM
(1) INTERFE	(1) INTERFERENCE BY KEVLAR	AR									

2566-187W

⁽²⁾ SURFACE FLAW
(3) FLAW CUT BY CUT OFF WHEEL
(4) HANGSTERFERS.HE-2 (20:1 WATER MIX)

								,			NDT METHOD	НОБ	
								RADIOG	RADIOGRAPHY TRACER	SECTI	MICRO- SECTIONING	VISUAL	PENETRANT
MATERIAL	THICKNESS, IN.	MACHINE	SPEED, sfm	FEED	STROKES PER MIN	CUTTER	COOLANT(3)	FLAW	DEPTH, IN.	FLAW	DEPTH, IN.	FLAW FOUND	FLAW FOUND
GR/EP + KEV/EP	0.064	ONSRUD	1315	44			DRY	YES	0.065	YES	0.065	DE- LAMINATION	(1)
GR/EP + KEV/EP	0.263	ONSRUD	1315	80	I	CARBIDE	DRY	YES	0.020	NO(2)	NONE	TRANSVERSE CRACKS/ DELAM	YES
GR/EP + KEV/EP	0.263	ONSRUD	1315	8	-	OPPOSED	DRY	YES	0.035	NO(2)	NONE	TRANSVERSE CRACKS/ DELAM	YES
KEV/EP	0.102	ONSRUD	1315	59			DRY	YES	0.050	YES	060.0	YES	NO
KEV/EP	0.102	ONSRUD	1315	29	ı		DRY	YES	0.070	YES	0.075	YES	ON
GR/EP	0.086	ONSRUD	723	59	1		MIST	NO	NONE	NO	NONE	NO	ON
GR/EP	0.287	MARWIN	723	10			MIST	NO	NONE	NO	NONE	ON	ON
GR/EP + FG/EP	0.063	MARWIN	723	24	1	CARBIDE	MIST	ON	NONE	ON ON	NONE	OZ	YES
GR/EP +. FG/EP	0.263	MARWIN	723	12)	MIST	ON	NONE	O _N	NONE	OZ	0 2
FG/EP	0.144	MARWIN	723	22			MIST	ON ON	NONE	ON	NONE	ON	YES
B/EP	0.136	ROTO. RECIPRO	723	4	09		MIST	ON	NONE	ON	NONE	ON	ON
B/EP	0.136	ROTO- RECIPRO	851	4	200		MIST	ON	NONE	ON	NONE	ON	ON
GR/EP + B/EP	0.090	ROTO- RECIPRO	851	2	09		MIST	ON	NONE	ON	NONE	ON	ON
GR/EP + B/EP	0.090	ROTO- RECIPRO	851	D.	200	DIAMOND	MIST	ON	NONE	O _N	NONE	OZ	0
GR/EP + B/EP	0.346	ROTO- RECIPRO	851	ιΩ	09	40-50 GRIT	MIST	ON	NONE	ON ON	NONE	0	ON
GR/EP + B/EP	0.346	ROTO- RECIPRO	851	വ	09		MIST	ON	NONE	YES	0.030	0	ON
GR/EP + B/EP	0.500	ROTO- RECIPRO	851	г	200		MIST	ON	NONE	ON	NONE	ON	NONE
NOTES: (1) INTERF (2) CRACKS (3) HANGS1	NOTES: (1) INTERFERENCE FROM KEVLAR (2) CRACKS TO SMALL TO MICROSECTION (3) HANGSTERFERS-HE-2 (20:1 WATER MIX)	KEVLAR MICROSECTI [20:1 WATER I	NON MIX)										

2566-188W

	PENETRANT	FLAW	YES	(1)		YES	YES	ON	ON
IOD	VISUAL	FLAW	TRANSVERSE	02	NO	YES	YES	ON	ON
NDT METHOD	MICRO. SECTIONING	DEPTH, IN.	0.100	O _N	NO	0.100	NONE	NONE	NONE
_	SECTI	FLAW	YES	NO	NO	YES	ON	NO	ON
	RADIOGRAPHY TRACER	DEPTH, IN.	090.0	0.030	0.035	0.090	NONE	NONE	NONE
	RADIOG	FLAW	YES	YES	YES	YES	NO	NO	ON
		COOLANT	DRY	DRY	DRY	MIST	MIST	MIST	MIST
		CUTTER		CARBIDE OPPOSED HFI IX		CACATO	PLATED	40-50 GRIT	
		STROKES PER MIN		1	5	200	200	200	200
		FEED	35	9/	64	20	20	o	6
		SPEED, sfm	1315	1315	1315	851	851	851	851
		MACHINE	ONSRUD	ONSRUD	ONSRUD		ROTO.	RECIPRO	
		THICKNESS, IN.	0.263	0.064	0.102	060.0	0.136	0.346	0.500
		MATERIAL	GR/EP + KEV/EP	GR/EP + KEV/EP	KEV/EP	GR/EP + B/EP	B/EP	GR/EP + B/EP	GR/EP + B/EP

NOTES:
(1) INTERFERENCE FROM KEVLAR
(2) HANGSTERFERS-HE-2 (20:1 WATER MIX)

Figure A-10 Machine Trimming NDT Evaluation

NDT METHOD	PHY MICRO. VISUAL PENETRANT	DEPTH, FLAW DEPTH, FLAW FLAW IN. FOUND	NONE YES 0.065 NO YES	NONE NO NONE NO NO	NONE NO NONE NO	
M TON		-				
	RADIOGRAPHY TRACER	FLAW	NO	ON	NO	
		COOLANT(1)	MIST	MIST	MIST	
		CUTTER	L C	DIAMOND		
		FEED,	47	58	57	
		SPEED, sfm	851	851	851	
		THICKNESS, IN.	0.272	0.245	0.148	
		MATERIAL	GR/EP	GR/EP + FG/EP	FG/EP	

NOTE: (1) HANGSTERFERS-HE-2 (20:1 WATER MIX)

2566-190W

Figure A-11 Manual Beveling NDT Evaluation

2566-189W

MATERIAL	THICKNESS IN.	DRILL	SPEED	FEED	TRACER RADIOGRAPHY	PENETRANT	COMMENTS
GRAPHITE/ EPOXY	0.300	1/8 DIA ROTA-KOTE	0009	0.001	0.020" — 0.085" DELAMINATION ON ALL HOLES	SMALL HOLES DIFFICULT TO TEST. MANY INDICATION DRILL MARKS GIVE FALSE POSITIVES	ALL HOLES FAIRLY SMOOTH; ALL HAVE BREAKOUTS PROGRESSIVELY WORSTENING TO LAST HOLE
GRAPHITE/ EPOXY	0.300	3/16 DIA ROTA-KOTE CARBIDE	0009	0.001	0 – 0.200" DELAMINATION ON ALL HOLES WORSE TOWARD LAST		FIRST HOLES FAIRLY SMOOTH BUT BECOME ROUGHER. ALL HOLES HAVE BREAKOUT WITH CONDITION WORSTENING AT LAST 50 HOLES
GRAPHITE/ EPOXY	0.275	15/16 DIA DIAMOND- TIPPED (80-100 GRIT)	0009	0.001	ALL HOLE DELAM- INATED 0.100" — 0.125"		HOLES FAIRLY SMOOTH, LITTLE BREAKOUT
GRAPHITE/ EPOXY	0.275	1/4 DIA DIAMOND- TIPPED (220 GRIT)	0009	0.001	ALL HOLES DELAM- INATED 0.055" — 0.125"	AND TITO AND	HOLES CLEAN; MINOR BREAKOUT ON LASY PLYS
GRAPHITE/ EPOXY	0.275	1/4 DIA DIAMOND. TIPPED (100 –120 GRIT)	0009	0.001	ALL HOLES DELAMINATED 0.50" — 0.130"	DELAMINATION CAN BE SEEN AT BOTTOM OF HOLE. MANY	MINOR FIBER PULLOUT IN LAST THREE HOLES; MINOR BREAKOUT
GRAPHITÉ/ EPOXY	0.275	1/4 DIA CARBIDE- TIPPED	0009	0.001	ALL HOLES DELAMINATED 0.010" 0.075" NO RELATIONSHIP TO NUMBER OF HOLES DRILLED		FIBER PULLOUT IN ALL HOLES; BREAKOUT INCREASES AS NO. OF HOLES INCREASE, SOME DELAMINATION ON ENTRANCE SIDE.
GRAPHITE/ EPOXY	0.300	1/4 DIA MICROGRAINED CARBIDE	0009	0.001	ALL HOLES DELAMINATED 0— 0.125" DELAMINATION WORSTENING FROM HOLE 1 to 60		FIBER PULLOUT BECOMES PROGRESSIVELY WORSE WITH INCREASED HOLE NUMBER NO SIGNIFICANT BREAKOUT FOR FIRST 20 HOLES. THEN BREAKOUT INCREASES TO LAST HOLE
GRAPHITE/ EPOXY	0.275	1/4 DIA FISH TAIL POINT, CARBIDE- TIPPED	0009	0.001	ALL HOLES DELAMINATED 0.055". — 0.130".		FIBER PULLOUT IN ALL HOLES, MINOR BREAKOUT FROM ALL HOLES
GRAPHITE/ EPOXY	0.300	1/8 DIA ROTA-KOTE HSS	0009	0.001	DELAMINATION AND BREAKOUT ON ALL HOLES TO 0.125" MAX.	MANY INDICATORS HOLES SMALL TO TEST ACCURATELY	SOME FIBER PULLOUT; BAD BREAKOUT ON ALL HOLES
GRAPHITE/ EPOXY	0.275	0.190 DIA ROTA-KOTE HSS	0009	0.001	ALL HOLES DE- LAMINATED 0.110" – 0.140"	SOME FALSE INDICATIONS	HOLES FAIRLY SMOOTH SOME FIBER PULLOUT BREAKOUT ON ALL HOLES;

Figure A-12 Summary of Non-Destructive Evaluation of Drilled Holes (Sheet 1 of 2)

2566-191W (1/2)

		>_						
	COMMENTS	HOLE SMOOTH AT FIRST PROGRESSIVELY GETTING ROUGHER TO HOLE 14. BAD BREAKOUT ON ALL HOLES.	ALL HOLES FAIRLY SMOOTH OF SOME OUALITY THROUGH ALL SIX SOME FIBER PULLOUT, BAD BREAKOUT ON ALL HOLES	HOLE OUALITY ESSENTIALLY THE SAME THROUGH OUT ALL 60 HOLES, BREAKOUT ON ALL HOLES; SOME GOUGING BY DRILL.	HOLE OUALITY SIMILAR FOR ALL 140 HOLES. ALL HOLES DELAMINATED WITH BREAKOUT.	HOLE OUALITY THE SAME FOR ALL 60 HOLES. SOME FIBER PULLOUT, ALL HOLES HAVE BREAKOUT	FAIR SURFACE FINISH IN ALL 120 HOLES. ALL HOLES HAVE BREAKOUT	FAIR SURFACE FINISH IN ALL 250 HOLES. ALL HOLES HAVE BREAKOUT
	PENETRANT	MATERIAL IN HOLE HOLDS PENETRANT, FALSE INDICATIONS					PENETRANT GIVES MANY FALSE POSITIVES	
	TRACER RADIOGRAPHY	DELAMINATION OF HOLE 1 OF 0.120" PROGRESSING TO 0.150" AT LAST HOLE	DELAMINATION IN ALL HOLES 0.120" – 0.150"	ALL HOLES DELAMINATED 0.120" — 0.150"	HOLES DELAMINATED 0.080"	DELAMINATION AT HOLE 1 of 0.120" PROGRESSING TO 0.150" AT HOLE #60	DELAMINATION AT HOLE # 1 OF 0.005" PROGRESSING TO 0.125" AT HOLE # 120	DELAMINATION AT HOLE # 1 OF 0.050 PROGRESSING TO 0.130" AT LAST HOLE # 250
	FEED,	0.003	0.003	0.001	0.001	0.001	0.001	0.001
	SPEED,	3000	0009	0009	0009	2500	21,600	21,000
	DRILL	0.250 DIA TWIST HSS	0.250 DIA TWIST HSS	0.250 DIA CARBIDE TIPPED	0.190 DIA CARBIDE DRILL/C'SINK 2114104 0.2055 DIA	MEGADIAMOND TIPPED	0.250 DIA TWIST, CARBIDE TIPPED	0.190 DIA CARBIDE Z114104
00 111111111111111111111111111111111111	IN.	0 270	0.270	0.270	00.270	0.270	0.275	0.275
	MATERIAL	GRAPHITE/ EPOXY	GRAPHITE/ EPOXY	GRAPHITE/ EPOXY	БРОХУ БРОХУ	GRAPHITE/ EPOXY	GRАРНІТЕ/ ЕРОХУ	GRAPHITE/ EPOXY

2566-191W (2/2)

Figure A-12 Summary of Non-Destructive Evaluation of Drilled Holes (Sheet 2 of 2)

	THICKNESS	DRILL	SPEED, FEED,	FEED,	TRACER		
MATERIAL	ż	TYPE	rpm	ipr	RADIOGRAPHY	PENETRANT	COMMENTS
GRAPHITE/ EPOXY + BORON/ EPOXY	0.223	3/16 DIA QUACKEN- BUSH ULTRASONIC	3000	0.005	27 OF 75 HOLES DELAMINATED 0.055". — 0.070" OTHER HOLES ACCEPTABLE	SOME DELAMIN- ATIONS PICK UP IN HOLE SOME FALSE POSITIVES	HOLES BACKED BY MASONITE; GETTING PROGRESSIVELY WORSE TOWARD HOLE # 75. SOME BREAKOUT; SURFACE RELATIVELY SMOOTH

Figure A-13 Summary of Non-Destructive Evaluation of Ultrasonically Drilled Holes

2566-192W

COMMENTS	DELAMINATION ON ENTRANCE AND EXIT SIDES OF PANEL	DELAMINATION ON ENTRANCE AND EXIT SIDES OF PANEL	DELAMINATION ON ALL HOLES ON ENTRANCE AND EXIT SIDES OF PANEL	DELAMINATION ON ALL ENTRANCE AND EXIT SIDES OF PANEL	ENTRANCE DELAMINATION ON ALL HOLES; ALSO EXIT DELAMINATION	EXIT DELAMINATION ON ALL HOLES. NEGLIGIBLE ENTRANCE DELAMINATION	ALL HOLES BADLY DELAMINATED AT EXIT SIDE SLIGHT ENTRANCE DELAMINATION
PENETRANT	CANNOT DETECT	CANNOT DETECT	CANNOT DETECT	CANNOT DETECT	CANNOT DETECT	CANNOT DETECT	SOME PENETRANT INDICATIONS KEVLAR INTERFERRED
TRACER	AVERAGE DE- LAMINATION THROUGH HOLE 5 IS 0.050" MAXIMUM IS 0.120" INCREASING AT LAST HOLE	NO DELAMINATION THROUGH HOLE 8, AVERAGE DELAMINATION THROUGH HOLE 21 IS 0.055 WITH MAX OF 0.100"	RANGE OF DELAMINATION 0.050" TO 0.75"	DELAMINATION RANGE OF 0.055" TO 0.085" ON ALL HOLES	DELAMINATION RANGE ON ALL HOLES 0.090" TO 0.115"	DELAMINATION RANGE ON ALL HOLES 0.080" TO 0.150"	DELAMINATION RANGE FOR ALL HOLES 0.050" TO 0.150"
FEED,	0.001	0.001	0.001	0.001	0.002	0.001	0.001
SPEED,	0009	3000	0009	0009	3000	0009	0009
DRILL	0.250 DIA JANCY 2 FLUTE C'BORE W/PILOT	0.250 DIA JANCY 2 FLUTE C'BORE WITHOUT PILOT	0.250 DIA TWIST CARBIDE TIPPED	0.250 DIA FISH TAIL CARBIDE TIPPED	0.250 DIA FISH TAIL CARBIDE TIPPED	0.250 DIA SPADE (SLANT) CARBIDE	0.250 DIA FISH TAIL CARBIDE TIPPED
THICKNESS, IN.	0.118	0.118	0.118	0.118	0.118	0.118	0.280
MATERIAL	KEVLAR/ EPOXY	KEVLAR/ EPOXY	KEVLAR/ EPOXY	KEVLAR/ EPOXY	KEVLAR/ EPOXY	KEVLAR/ EPOXY	GRAPHITE/ EPOXY + KEVLAR/ EPOXY

Figure A-14 Summary of Non-Destructive Evaluation of Drilled Holes

-			
COMMENTS	ENTRANCE SIDE OF COUNTER SUNK HOLE BADLY FRAYED + SPLIT	SLIGHT SURFACE DELAMINATION ON SOME HOLES. COUNTER SUNK AREAS LOOK CLEAN	SLIGHT SURFACE DELAMINATION ON VERY FEW HOLES.
PENETRANT	INTERFERENCE FROM KEVLAR	NO SIGNIFICANT INDICATIONS	NO SIGNIFICANT INDICATIONS
TRACER RADIOGRAPHY	INTERFERENCE FROM KEVLAR	LITTLE DELAMINATION 0.005	LITTLE DELAMINATION 0.005"
FEED, IPR	2400 0.002	2400 0.002	2400 0.002
SPEED, FEED, IPR	2400	2400	2400
C'SINK TYPE	2 FLUTE CARBIDE COUNTERSINK Z114105 DRILL/ C'SINK	2 FLUTE CARBIDE COUNTERSINK Z114105 DRILL/C'SINK	2 FLUTE CARBIDE COUNTERSINK Z114105 DRILL/ C'SINK
THICKNESS, IN.	0.275	0.260	0.125
MATERIAL	GRAPHITE/ EPOXY + KEVLAR/ EPOXY	GRAPHITE/ EPOXY + FIBER. GLASS/ EPOXY	FIBER- GLASS/ EPOXY

2566-194W

Figure A-15 Summary of Non-Destructive Evaluation of Countersunk Holes

_		THICKNESS	COLINITEDBODE	CDEEC	COUNT	CHOACT		
	MATERIAL	IN.	TYPE	rpm r	ip.	RADIOGRAPHY	PENETRANT	COMMENTS
	GRAPHITE/ EPOXY	0.270		2400	0.002	NO FLAWS DETECTED	G005	GOOD CLEAN COUNTER BORE
	GRAPHITE/ EPOXY	0.270		2400	0.001	NO FLAWS DETECTED	G005	GOOD CLEAN COUNTER BORE
	GRAPHITE/ EPOXY	0.270		4800	0.0005	SPORADIC DELAMINATION ON A FEW OF THE HOLES 0.020" – 0.050"	G000	GOOD CLEAN COUNTER BORE
	GRAPHITE/ EPOXY + FIBER. GLASS	0.270	3 FLUTE CARBIDE TIPPED	3600	0.001	SLIGHT DELAMINATION ON SOME HOLES 0.200" - 0.040"	GOOD, NO SIGNIFICANT INDICATIONS	SOME ENTRANCE DELAMINATION ON A FEW OF THE 25 COUNTER- BORE HOLES.
	GRAPHITE/ EPOXY +: KEVLAR EPOXY	0.270		3600	0.001	KEVLAR INTERFERRED WITH METHOD	KEVLAR INTERFERRED WITH METHOD	TOP SURFACE OF ALL COUNTER BORES BADLY FRAYED; DIFFICULT TO EVALUATE. NO DELAMINATION SEEN
	FIBER- GLASS/ EPOXY	0.145		3600	0.001	NO DELAMINATION TO 0.020" DETECTED	G00D	ALL HOLES LOOK GOOD; SOME SLIGHT DELAMINATION ON ENTRANCE SIDE OF COUNTER BORE HOLE.
64	2566-195W		i					

Figure A-16 Summary of Non-Destructive Evaluation of Counterbored Holes

