

Huitian Diao (Yolanda)

References:

ENCODE ChIP-seq pipeline: https://www.encodeproject.org/pipelines/ENCPL138KID/

Using sticky notes for feedback

"I've got a good handle on things..."

"I think I understand but I'm still working through things..."

"I'm not understanding and I'm a little lost right now..."

Get course material

Q&A.1

• Why when using some packages we need to include the full path but for others we don't have to?

Step 1. Where are the executables?

```
%%bash
which grep
which fastqc
/usr/bin/grep
/Users/yolandatiao/anaconda/bin/fastqc
```

Step 1. How the computer find the executables?

```
%%bash
printenv | grep "PATH"
```

PATH=/Users/yolandatiao/anaconda/envs/HDpython3/bin:/Users/yolandatiao/anaconda/envs/HDpython3/bin:/Users/yolandatiao/Documents/0_Bioinformatics2017/201804_Cousera_Unix/Code/newCmd:/Users/yolandatiao/Documents/0_Bioinformatics2017/201804_Cousera_Unix/Code/Commands:/Users/yolandatiao/anaconda/bin:/Users/yolandatiao/anaconda/bin:/Users/yolandatiao/anaconda/bin:/Users/yolandatiao/anaconda/bin:/Users/yolandatiao/local/bin:/Users/yolandatiao/local/bin:/Users/yolandatiao/local/bin:/Library/Frameworks/Mono.framework/Versions/Current/Commands

DNA in the nucleus is highly condensed

Protein-DNA interaction is crucial For transcription regulation

ChIP-seq: identify DNA binding sites for proteins

ChIP-seq analysis steps

Practice 4.1 (Dump-fastqc)

Tips:

- SRA run selector:

 https://www.ncbi.nlm.nih.gov
 /Traces/study/?go=home
- fastq-dump
- fastqc

Objectives:

- 1. Find Run numbers for ChIP-seq data from this paper:
 - B. H., Immunity, 2016
 - 1.1 Search for GEO accession number from paper
 - 1.2 Find SubSerie for ChIP-seq data
 - 1.3 Search for ChIP-seq data accession number in SRA Run Selector
 - 1.4 Save Runinfo Table
- 2. For the first file in the RunInfoTable:
 Save the first 50000 spots into a file named test_50000.fastq
- 3. Run fastqc for test_50000.fastq Check the quality of the sequence

ChIP-seq analysis steps

Contents

1. Intro to ChIP-seq

- 1.1 mechanism of ChIP-seq
- 1.2 ChIP-seq analysis intro
- 1.3 Fastqc

2. Alignment and Quality control

- 2.1 Trim_galore
- 2.2 Alignment and filter

3. Peak calling

- 3.1 Intro to peak calling algorithm
- 3.2 MACS2 peak calling
- 3.3 ChIP-QC

4. Data visualization

- 4.1 Data preparation for visualization
- 4.2 UCSC genome browser

5. Peak annotation and pathway analysis

- 5.1 Differential analysis with DiffBind
- 5.2 Peak annotation with ChIPseeker

6. Downstream analysis

6.3 Pathway analysis with ClusterProfiler

Practice 4.2 (Dump-multiqc)

Tips:

Q2.2: Self-help

Google: generate array of number in shell

Google: shell seq output scientific

notation

Google: shell convert stdout to array

Q3: Self-help

Google: multiqc documentation

Questions:

- 1. Find Run numbers for ChIP-seq data from this paper:
 - B. H., Immunity, 2016
 - 1.1 Search for GEO accession number from paper
 - 1.2 Find SubSerie for ChIP-seq data
 - 1.3 Search for ChIP-seq data accession number in SRA Run Selector
 - 1.4 Save Runinfo Table
- Build a folder named Sample_fastq
 - 2.1 Redirect to the new folder
 - 2.2 Save the first 500 spots of each file into **SRRXXXXX.500.fastq** with a **for loop**
 - 2.3 Run fastqc on all the files
- 3. Run multiqc on the fastqc outputs

Read fastqc and multigc outputs. What did you find?

Why trim Adapter -- Adapter contamination leads to lower alignment rate

Adapters are ligated to DNA molecules during library preparation

In Illumina sequencing, 3' end adapter would be sequenced if DNA insert is shorter than number of sequencing cycles

Alignment: ChIP-seq v.s. RNA-seq

File formats – fastq, sam

Fastq File

Sequence identifier
Sequence
Quality score identifier (+)
Quality score

@SIM:1:FCX:1:15:6329:1045 1:N:0:2

TCGCACTCAACGCCCTGCATATGACAAGACAGAATC

+

<>;##=><9=AAAAAAAAAA9#:<#<;<<<????#=

Sam File

Header

@HD VN:1.3 SO:coordinate

@SQ SN:conticA LN:443

@SQ SN:contigB LN:1493

@SQ SN:contigC LN:328

Alignment info

readID43GYAX15:7:1:1202:19894/1 256 contig43 613960 1 65M * 0 0 CCAGCGCGAACGAAATCCGCATGCGTCTGGTCGTTGCACGGAACGGCGGCGGTGTGATGCAC GGC EDDEEDEE=EE?DE??DDDBADEBEFFFDBEFFEBCBC=?BEEEE@=:?::?7?:8-6?7?@??# AS:i:0 XS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:65 YT:Z:UU

Name	mo S	Sam Flag	Ref	Position	MAPQ	CIGAR	Mate	Mate Pos	Temp	Read	Read	Add. Info
	iie s		Name		quality	string	name		length	Sequence	Quality	

^{*} Columns separated by Tab (/t)