

PERFORMANCE MEASURES AND EVALUATION

- Estimating performance
- Classic performance metrics
- Performance metrics
- How well are ST episodes detected?
- Characteristics of transient ST episodes
- Estimating performance of ST episode detection
- Estimating performance of detecting total ST episode time
- Estimating performance of measuring the ST segment deviation
- Estimating performance of classifying ischaemic and non-ischaemic heart rate related ST episodes
- Assessing the robustness (predicting the "real world" performance)

Estimating performance

- Development and testing database ??
- In the field of developing analyzers of biomedical signals use development database and report performance achieved, and possibly try to predict the analyzer's performance in the "real world" (ANSI/AAMI, Us. FDA, Physionet)
 (Examples: MIT/BIH DB, QT DB, ESC DB, LTST DB, TPEHG DB)
- Due to desired comparison of the results of the evaluation, it is necessary to use ALL records of the database available and UNIQUE performance metrics

Classic performance measures

Performance evaluation

Classic event oriented performance matrix

		Analyzer	Analyzer
		EVENT	NON-EVENT
Reference	event	TP	FN
Reference	non-event	FP	(TN)

TP – number of correctly detected events

FN – number of missed events

FP – number of falsely detected events

TN – number of correctly rejected non-events (undefined for detection task!)

Classic performance measures

Performance evaluation (detection task)

		Analyzer	Analyzer
		EVENT	NON-EVENT
Reference	event	TP	FN
Reference	non-event	FP	(TN)

$$Se = \frac{TP}{TP + FN}$$

The proportion of EVENTS which were correctly detected as events

Positive predictivity:

$$+P = \frac{TP}{TP + FP}$$

The proportion of detected EVENTS which actually were events

Classic performance measures

Performance evaluation (classification task)

		Analyzer	Analyzer
		EVENT	NON-EVENT
Reference	event	TP	FN
Reference	non-event	FP	TN

Sensitivity:

$$Se = \frac{TP}{TP + FN}$$

The proportion of EVENTS which were correctly classified as events

Positive predictivity:)

$$+P = \frac{TP}{TP + FP}$$

The proportion of classified EVENTS which actually were events

Specificity:

$$Sp = \frac{TN}{TN + FP}$$

The proportion of NON-EVENTS which were correctly classified as non-events)

Performance metrics

- The evaluation of an ST detection algorithm or analyzer should answer the following questions:
- How well are ST episodes detected?
- How reliably is ST episode or ischaemic ST episode duration measured?
- How accurately are ST deviations measured?
- How well are ischaemic and non-ichaemic heart rate related ST episodes differentiated ?
- How well will the ST analyzer perform in the "real world"?

How well are ST episodes detected?

Characteristics of transient ST episodes

- Number
- Type (ischaemic, due to heart frequency changes)
- Length
- ST segment level at extrema deviation

Characteristics of analyzer-annotated and reference episodes:

- Episodes contain time dimension
- They differ in length
- There is no one-to-one correspondence

Referenčna epizoda ST

There is no "non-events"

Estimating performance of transient ST segment episode detection

TPs, TPp, FN, FP: Matching test for reference and analyzer-annotated episodes

	Začetek Ekstrem Konec			Začetek Ekstrem Kone	;
REFERENCA			ANALIZATOR		
Analizator $tp_{\rm s}$		Prekriva ekstrem	Referenca $tp_{\rm p}$		Prekriva ekstrem
Analizator $tp_{\rm s}$		Prekriva ≥ 50 % referenčne epizode	Referenca $tp_{\rm p}$		_ Prekriva ≥ 50 % analizatorjeve epizode
Analizator tp_s		Prekriva ≥ 50 % rerefenčne epizode, prekriva ekstrem	Referenca tp_p		Prekriva ≥ 50 % analizatorjeve epizode, prekriva ekstrem
Analizator fn		Ne prekriva 50 % referenčne epizode, ne prekriva ekstrema	Referenca fp		Ne prekriva 50 % analizatorjeve epizode, ne prekriva ekstrema

TPs - Reference episodes that satisfied the matching criteria

TPp - Analyzer-annotated episodes that satisfied the matching criteria

FN - MIssed episodes

FP - Falsely detected episodes

Estimating performance of transient ST segment episode detection Performance measures (ANSI/AAMI, Us. FDA)

Se		Analyzer	
		ST epi.	Other
Ref.	ST epi.	TPs	FN
	Other	-	-

+ <i>P</i>		Analyzer			
		ST epi.	Other		
Ref.	ST epi.	ТРр	-		
	Other	FP	-		

Se - Sensitivity

An estimate of the likelihood of detecting an ST episode

$$Se = TPs / (TPs + FN)$$

+P – Positive predictivity

An estimate of the likelihood that a detection is a true ST episode:

$$+P = TPp / (TPp + FP)$$

(LTST DB, Protocol B, 908 combined ST segment episodes) (Time domain and KLT approach)

Se		Algorithm	
		ST epis	Other
Ref	ST epis	723	185
Ref	Other	-	-

+P		Algorithm	
		ST epis	Other
Ref	ST epis	750	_
Ref	Other	208	_

ST epis – Combined ST segment episodes Se = 79.6% +P = 78.3%

		ESC	DB
		SE [%]
Technique		Se	+P
Time domain	[g]	81	76
	[a]	84	81
RMS method	[g]	_	_
	[a]	84.7	86.1
Time domain	[g]	79.2	81.4
	[a]	81.5	82.5
KLT approach	[g]	85.2	86.2
	[a]	87.1	87.7
Time domain, KLT	[g]	77.2	86.3
	[a]	81.3	89.2
Neural net	[g]	85.0	68.7
	[a]	88.6	78.4
Neural net, KLT	[g]	_	_
	[a]	77	86

			ESC DB		LTST DB		
			SE [%]		SE [%]
_	Technique		Se	+P		Se	+P
	Time domain	[g]	81	76		_	-
		[a]	84	81		-	-
	RMS method	[g]	_	_		-	-
		[a]	84.7	86.1		-	-
	Time domain	[g]	79.2	81.4		-	-
		[a]	81.5	82.5		-	-
	KLT approach	[g]	85.2	86.2	->	77.0	58.8
		[a]	87.1	87.7	->	74.0	61.4
	Time domain, KLT	[g]	77.2	86.3	<-	79.6	78.3
		[a]	81.3	89.2	<-	78.9	80.7
	Neural net	[g]	85.0	68.7		-	-
		[a]	88.6	78.4		-	-
	Neural net, KLT	[g]	_	_		_	-
		[a]	77	86		_	-

Performance metrics

- The evaluation of an ST detection algorithm or analyzer should answer the following questions:
- How well are ST episodes detected ?
- How reliably is ST episode or ischaemic ST episode duration measured?
- How accurately are ST deviations measured?
- How well are ischaemic and non-ichaemic heart rate related ST episodes differentiated ?
- How well will the ST analyzer perform in the "real world"?

Estimating performance of detecting total ST episode time

Analizatorjeva epizoda ST

Referenčna epizoda ST

$$STD Se = \frac{STD_{R \wedge A}}{STD_R}$$
 $STD + P = \frac{STD_{R \wedge A}}{STD_A}$

(ANSI/AAMI, Us. FDA)

Estimating performance of detecting total ST episode time

		ESC	DB				LTS	T DB (I	Protoco	ol B)
		SE [%]	SD [%]		SE [%]	SD	[%]
Technique		Se	+P	Se	+P		Se	+P	Se	+P
Time domain	[g]	81	76	-	-		_	-	-	_
	[a]	84	81	_	_		_	_	_	_
RMS method	[g]	_	_	_	_		_	_	_	_
	[a]	84.7	86.1	75.3	68.2		_	_	_	_
Time domain	[g]	79.2	81.4	_	_		_	_	_	_
	[a]	81.5	82.5	_	_		_	_	_	_
KLT approach	[g]	85.2	86.2	75.8	78.0	->	77.0	58.8	48.5	47.8
	[a]	87.1	87.7	78.2	74.1	->	74.0	61.4	54.8	58.4
Time domain, KLT	[g]	77.2	86.3	67.5	69.2	<-	79.6	78.3	68.4	67.3
	[a]	81.3	89.2	77.6	68.9	<-	78.9	80.7	73.1	74.9
Neural net	[g]	85.0	68.7	73.0	69.5		_	_	_	_
	[a]	88.6	78.4	72.2	67.5		_	_	_	_
Neural net, KLT	[g]	_	_	_	_		_	_	-	_
	[a]	77	86	_	_		_	_	_	_

Performance metrics

- The evaluation of an ST detection algorithm or analyzer should answer the following questions:
- How well are ST episodes detected ?
- How reliably is ST episode or ischaemic ST episode duration measured?
- How accurately are ST deviations measured?
- How well are ischaemic and non-ichaemic heart rate related ST episodes differentiated ?
- How well will the ST analyzer perform in the "real world"?

Estimating performance of measuring the ST segment deviation

- Measurement error = Measurement of the analyzer Reference measurement
- Mean error
- Standard deviation
- Correlation coefficient
- Regression line
- Percentage of measurements of which error did not exceed $100\mu V$ (Discrepant ST segment measurement percentage, p ($100 \mu V$))
- Measurement error in μV which was not exceeded by 95% of measurements (Discrepant ST segment deviation measurement value, e (95%))

Estimating performance of measuring the ST segment deviation

1.02 Meritev - 14.36 [uV]

Ref. [uV]

Performance metrics

- The evaluation of an ST detection algorithm or analyzer should answer the following questions:
- How well are ST episodes detected ?
- How reliably is ST episode or ischaemic ST episode duration measured?
- How accurately are ST deviations measured?
- How well are ischaemic and non-ichaemic heart rate related ST episodes differentiated?
- How well will the ST analyzer perform in the "real world"?

Estimating performance of transient ST segment episode detection

TPs, TPp, FN, FP: Matching test for reference and analyzer-annotated episodes

TPs - Reference episodes that satisfied the matching criteria

TPp - Analyzer-annotated episodes that satisfied the matching criteria

FN - MIssed episodes

FP - Falsely detected episodes

• Extended matching test (SR(u), SA(v)) – status of reference or analyzer-annotated episode after the matching test)

```
if match with ischemic analyzer-annotated ST episodes then
     S_{\rm R}(u) = ischemic;
else if match with heart rate related analyzer-annotated ST episodes then
     S_{\rm R}(u) = heart\ rate\ related;
else
     S_{\rm R}(u) = missed;
endif
if match with ischemic reference-annotated ST episodes then
     S_{\rm A}(\nu) = ischemic;
else if match with heart rate related reference-annotated ST episodes then
     S_{\rm A}(\nu) = heart\ rate\ related;
else
     S_{\rm A}(v) = falsely\ detected;
endif
```

Se		Analy zer		
		Isch	Hrr	Other
Ref.	Isch	a	b	С
	Hrr	d	е	f
	Other	-	-	-

+P		Analy zer		
		Isch	Hrr	Other
Ref.	Isch	g	h	-
	Hrr	i	j	-
	Other	k	l	-

Isch - Ischaemic ST segment episodes

Hrr - Heart rate related ST segment episodes

Other - No ST segment changes

ST epi. - ST segment episodes (Isch + Hrr)

Se		Analy zer		
		Isch	Hrr	Other
Ref.	Isch	a	b	С
	Hrr	d	е	f
	Other	-	-	-

+P		Analy zer		
		Isch	Hrr	Other
Ref.	Isch	g	h	-
	Hrr	i	j	-
	Other	k	l	-

If considering both ischaemic and heart rate related ST change episodes together as ST change episodes of unique type, then the performance matrices can easily be reduced back to two-by-two, with:

TPs =
$$a+b+d+e$$
 FN = $c+f$
TPP = $g+h+i+j$ FP = $k+l$
Se = TPs / (TPs + FN)
+P = TPp / (TPp + FP)

		Analyzer			
		Isch	Hrr		
Ref.	Isch	TP	FN		
	Hrr	FP	TN		

		Analyzer	
		Isch	Hrr
Ref.	Isch	g	h
	Hrr	i	j

Analyzer-annotated ST segment episodes can further be classified between ischaemic and non-ischaemic heart rate related ST episodes. Classic performance measures in terms of *Se* and *Sp* can be used.

$$Se = \frac{TP}{TP + FN} = \frac{g}{g + h}$$

$$Sp = \frac{TN}{TN + FP} = \frac{j}{j+i}$$

 Analyzer using time-domain, KLT and Legendre Polynomial Transform approaches

Groups		Gross	Average			
		Se[%]	Sp[%]	Se[%]	Sp[%]	
HR, ST		97.5	84.2	95.9	81.8	
HR, ST, MD	Bek e	97.8	85.0	98.4	82.5	
HR, LPC		98.5	85.5	97.9	80.4	
HR, LPC, MD		98.4	85.9	98.1	85.2	

Performance metrics

- The evaluation of an ST detection algorithm or analyzer should answer the following questions:
- How well are ST episodes detected ?
- How reliably is ST episode or ischaemic ST episode duration measured?
- How accurately are ST deviations measured?
- How well are ischaemic and non-ichaemic heart rate related ST episodes differentiated?
- How well will the ST analyzer perform in the "real world"?

- Aggregate gross statistics
- Aggregate average statistics
- "Bootstrap method" of random generating new databases
- Noise stress test (assessing performance after adding noise to records)
- Sensitivity analysis by modifying analyzer's architecture parameters

- Aggregate gross statistics
 - How well an analyzer detects a randomly chosen ST episode?
- Aggregate average statistics
 - How well the analyzer performs on a randomly chosen ambulatory record?
- "Bootstrap method" of random generating new databases
- Noise stress test (assessing performance after adding noise to records)
- Sensitivity analysis by modifying analyzer's architecture parameters

		ESC	DB				LTS	T DB (I	Protoco	ol B)
	\blacksquare	SE [%]	SD[%]		SE [%]	SD	[%]
Technique	•	Se	+P	Se	+P		Se	+P	Se	+P
Time domain	[g]	81	76	_	-		_	_	_	_
	[a]	84	81	_	_		_	_	_	_
RMS method	[g]	_	_	_	_		_	_	_	_
	[a]	84.7	86.1	75.3	68.2		_	_	_	_
Time domain	[g]	79.2	81.4	_	_		_	_	_	_
	[a]	81.5	82.5	_	_		_	_	_	_
KLT approach	[g]	85.2	86.2	75.8	78.0	->	77.0	58.8	48.5	47.8
	[a]	87.1	87.7	78.2	74.1	->	74.0	61.4	54.8	58.4
Time domain, KLT	[g]	77.2	86.3	67.5	69.2	<-	79.6	78.3	68.4	67.3
	[a]	81.3	89.2	77.6	68.9	<-	78.9	80.7	73.1	74.9
Neural net	[g]	85.0	68.7	73.0	69.5		_	_	_	_
	[a]	88.6	78.4	72.2	67.5		_	_	_	_
Neural net, KLT	[g]	_	_	_	_		_	_	_	_
	[a]	77	86	_	_		_	_	_	_

- Aggregate gross statistics
- Aggregate average statistics
- "Bootstrap method" of random generating new databases
 - Is the analyzer's performance critically dependent on the choice of the test database?
- Noise stress test (assessing performance after adding noise to records)
- Sensitivity analysis by modifying analyzer's architecture parameters

"Bootstrap" method (necessary assumption: the records of the origin(al) database are representative set of records for the problem domain!):

- (1) Randomly (and with replacement) choose L elements from the original database and insert them into a hypothetical database
- (2) Using the hypothetical database estimate the analyzer's performance
- (3) Repeat steps (1) and (2) many (10.000) times
- (4) Assess the estimates of the performance *distributions* obtained in the step 2 in the sense of 95% confidence limits

		ESC	DB					T DB (Protoco	l B)
		SE [%]		SD[%]			SE [SE [%]		[%]
Technique		Se	+P	Se	+P		Se	+P	Se	+P
Time domain	[g]	81	76	_	_		_	_	_	_
	[a]	84	81	_	_		_	_	_	_
RMS method	[g]	_	_	_	_		_	_	_	_
	[a]	84.7	86.1	75.3	68.2		_	_	_	_
Time domain	[g]	79.2	81.4	_	_		_	_	_	_
	[a]	81.5	82.5	_	_		_	_	_	_
 KLT approach 	[g]	85.2	86.2	75.8	78.0	->	77.0	58.8	48.5	47.8
	[a]	87.1	87.7	78.2	74.1	->	74.0	61.4	54.8	58.4
Time domain, KLT	[g]	77.2	86.3	67.5	69.2	<-	79.6	78.3	68.4	67.3
	[a]	81.3	89.2	77.6	68.9	<-	78.9	80.7	73.1	74.9
Neural net	[g]	85.0	68.7	73.0	69.5		_	_	_	_
	[a]	88.6	78.4	72.2	67.5		_	_	_	_
Neural net, KLT	[g]	_	_	_	_		_	_	_	_
	[a]	77	86	_	_		_	_	_	_

 KLT approach, "bootstrap" distributions as obtained on ESC DB (development database)

 KLT approach, "bootstrap" distributions as obtained on LTST DB (testing database)

- Aggregate gross statistics
- Aggregate average statistics
- "Bootstrap method" of random generating new databases
- Noise stress test (assessing performance after adding noise to records)
 - What is the minimum critical signal-to-noise ratio at which the analyzer's performance is still acceptable ?
- Sensitivity analysis by modifying analyzer's architecture parameters

KLT approach, "bootstrap" distributions as obtained on ESC DB (development database)

Influence of noise stress test

- Aggregate gross statistics
- Aggregate average statistics
- "Bootstrap method" of random generating new databases
- Noise stress test (assessing performance after adding noise to records)
- Sensitivity analysis by modifying analyzer's architecture parameters
 - Are the architecture parameters critically tuned to the development database?

KLT approach, "bootstrap" distributions as obtained on ESC DB (development database)

Influence of KLT feature-vector dimensionality

