INDR 371 HOMEWORK-6

1. (35 pts)Consider the following cost matrix to solve a warehouse location problem to minimize the total setup and transportation costs.

	Warehouse sites		
Cust. Loc.	A	В	С
1	100	1000	200
2	1000	100	200
3	500	500	500
Fixed Cost	300	300	X

What is the **largest integer value** for X (fixed cost of cite C) for which the greedy algorithm we have seen in the class gives a solution that is not optimal, regardless of how one break the ties?

 $2.~(35~\mathrm{pts})$ Assume that we have the following closeness ratings for the four departments we want to place in a $2x2~\mathrm{grid}$ layout plan.

Dep	1	2	3	4
1	_	A	Е	О
2	A	_	Е	О
3	Е	Е	_	О
4	О	О	О	_

Prove or disprove the following claim:

• The layout given below is an optimal solution that maximizes the closeness score for any grading scale in which an A relationship has a strictly more value than an E relationship and an E relationship has a strictly larger value than an O relation.

1	4
2	3

3. (30 pts) Write a small code snippet in your favorite coding environment to implement Johnson's Algorithm to solve the two-machine flow-shop problem given in the provided file schedule.xlsx. **Upload your code** and screenshots for the answer.