MAT257 PSET 7—Question 5

Jonah Chen

November 19, 2021

(a) By way of contradiction, suppose there is an unbounded set $A \subset \mathbb{R}^n$ that is of content zero. Then, there are finitely many closed rectangles $D_i = \prod_{j=1}^M [a_i^j, b_i^j]$ such that both $\bigcup_{i=1}^M D_i \supset A$ and $\sum_{i=1}^M v(D_i) < 1$.

Choose
$$r^2=\sum_{i=1}^N\max_{j=1,\dots,M}\{(a_i^j)^2,(b_i^j)^2\}.$$
 Then, $B_r(0)\supset\bigcup_{i=1}^ND_i.$

However, since A is unbounded $\exists a \in A$ where |a| > r for any r. Then, $a \notin \bigcup_{i=1}^M D_i$ which is a contradiction. So, A cannot be of content zero.

(b) Consider the natural numbers \mathbb{N} . Clearly \mathbb{N} is not of content zero because it is not bounded.

Given $\varepsilon>0$, consider the sequence of closed rectangles $D_i=[n-\frac{\varepsilon}{2^{i+2}},n+\frac{\varepsilon}{2^{i+2}}].$

The natural number n is contained in D_n and $\sum_{i=1}^{\infty}v(D_i)=\sum_{i=1}^{\infty}\frac{\varepsilon}{2^{k+1}}=\frac{\varepsilon}{2}<\varepsilon$. Hence, $\mathbb N$ is of measure zero but not of content zero.