ST553 HW8

Nick Sun
May 29, 2019

Problem 1

We have 2 machines, 4 operators (which is our random effect), and 2 boxes per machine-operator combination. In notation, this is a = 2, b = 4, n = 2. If we define γ to be the vector of random effect parameters, we have

$$\gamma = \begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
(\alpha\beta)_{11} \\
(\alpha\beta)_{12} \\
(\alpha\beta)_{13} \\
(\alpha\beta)_{14} \\
(\alpha\beta)_{21} \\
(\alpha\beta)_{22} \\
(\alpha\beta)_{23} \\
(\alpha\beta)_{24}
\end{pmatrix}$$

and our design matrix Z would be

where there would be 2 copies of each unique row (one for each of the two replicates for the operator-machine combos).

Interesting note; knitr only supports matrices that are 10 columns or less by default - you can change this in the preamble by including \setcounter{MaxMatrixCols}{20}

Problem 2

a. From Problem 12.2, define the model with assumptions and constraints

We can define the model as follows:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

where y_{ijk} is the *lth* dental filling from the *ith* condensation method, *jth* gold alloy, *kth* dentist, α_i is the fixed effect of condensation method i, β_j is the fixed effect of gold alloy j, γ_k is the random effect of dentist k, $(\alpha\beta)_{ij}$ is the fixed interaction effect of the gold alloy j and the condensation method i, $(\alpha\gamma)_{ik}$ is the random

interaction effect of the condensation method and the dentist k, $(\beta \gamma)_{jk}$ is the random interaction effect of the gold alloy and dentist k, and ϵ_{ijk} is the random error.

The assumptions are that $\gamma_k \sim N(0, \sigma_{\gamma}^2)$, $(\alpha \gamma)_{ik} \sim N(0, \sigma_{\alpha \gamma}^2)$, $(\beta \gamma)_{ik} \sim N(0, \sigma_{\beta \gamma}^2)$, $\epsilon_{ijk} \sim N(0, \sigma^2)$ and all of these terms are independent from one another.

Lastly, the constraints on the fixed effects are that

$$\sum_{i=1}^{3} \alpha_i = \sum_{j=1}^{8} \beta_j = \sum_{i=1}^{3} (\alpha \beta)_{ij} = \sum_{j=1}^{8} (\alpha \beta)_{ij} = 0$$

b. Calculate the covariance in terms of the model parameters for observations from the same dentist

For observations that had the same dentist and gold alloy, but different condensation method

$$cov(y_{ijk}, y_{i'jk}) = cov(\gamma_k, \gamma_k) + cov((\beta \gamma)_{ik}, (\beta \gamma)_{ik}) = \sigma_{\gamma}^2 + \sigma_{\beta \gamma}^2$$

For obserations that have the same dentist and condensation method, but different gold alloy

$$cov(y_{ijk}, y_{ij'k}) = cov(\gamma_k, \gamma_k) + cov((\alpha\beta)_{ik}, (\alpha\beta)_{ik}) = \sigma_{\gamma}^2 + \sigma_{\alpha\gamma}^2$$

For obserations that had the same dentist but different gold alloys and condensation methods,

$$cov(y_{ijk}, y_{i'j'k}) = cov(\gamma_k, \gamma_k) = \sigma_{\gamma}^2$$

c. Derive the variance for the difference in sample means between condensation methods $\mathbf{1}$ and $\mathbf{2}$

$$.4\sigma_{\alpha\gamma}^2 + .05\sigma^2$$

Work shown in appendix.

Problem 3

For Problem 12.6, write down the model

Here our experimental units are the gallons of milk. Each of our 8 gallons of milk are subjected to one of four abuse treatments. After the treatments are applied, each gallon is split into 5 groups and sent to one of five randomly selected laboratories.

The treatments are random effects since a repeat of the experiment would probably select different abuse durations. The laboratories are a random effect since a repeat of this experiment would probably select different laboratories. The samples which are sent to the labs are nested inside of our experimental units. Since each lab gets a different set of 5 samples, the samples are nested inside of the laboratories as well.

$$y_{ijkl} = \mu + \alpha_i + \beta_{j(i)} + \gamma_k + (\alpha \gamma)_{ik} + (\beta \gamma)_{j(i)k} + \epsilon_{ijkl}$$

where y_{ijkl} is the counts of bacteria in the *lth* replicate from the *kth* lab, *jth* sample nested in the *ith* abuse treatment, μ is the overall mean, α_i sit eh random effect of the *ith* abuse treatment, $\beta_{j(i)}$ is the *jth* sample nested in the *ith* abuse treatment, γ_k is the random effect of the *kth* laboratory, $(\alpha \gamma)_{ik}$ si the random

interaction of the kth laboratory and the ith treatment, $(\beta\gamma)_{j(i)k}$ is the random interaction between the jth sample and the kth laboratory, and ϵ_{ijkl} is the random error.

The assumptions are that

$$\alpha_{i} \sim N(0, \sigma_{\alpha}^{2})$$

$$\beta_{j(i)} \sim N(0, \sigma_{\zeta}^{2} \beta(\alpha)))$$

$$(\alpha \gamma)_{ik} \sim N(0, \sigma_{\alpha \gamma}^{2})$$

$$(\beta \gamma)_{j(i)k} \sim N(0, \sigma_{\beta(\alpha)\gamma}^{2})$$

$$\epsilon_{ijkl} \sim N(0, \sigma^{2})$$

There are no coefficient constraints since there are no fixed effects in this model.

The output of PROC MIXED is displayed below:

Type 3 Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F
abuse	3	11518698815	3839566272	Var(Residual) + 2 Var(sample*lab(abuse)) + 4 Var(abuse*lab) + 10 Var(sample(abuse)) + 20 Var(abuse)	MS(sample(abuse)) + MS(abuse*lab) - MS(sample*lab(abuse))	11.718	54.86	<.0001
sample(abuse)	4	761700	190425	Var(Residual) + 2 Var(sample*lab(abuse)) + 10 Var(sample(abuse))	MS(sample*lab(abuse))	16	0.19	0.9420
lab	4	608473263	152118316	Var(Residual) + 2 Var(sample*lab(abuse)) + 4 Var(abuse*lab) + 16 Var(lab)	MS(abuse*lab)	12	2.15	0.1372
abuse*lab	12	849857647	70821471	Var(Residual) + 2 Var(sample*lab(abuse)) + 4 Var(abuse*lab)	MS(sample*lab(abuse))	16	69.34	<.0001
sample*lab(abuse)	16	16342850	1021428	Var(Residual) + 2 Var(sample*lab(abuse))	MS(Residual)	40	0.90	0.5746
Residual	40	45409000	1135225	Var(Residual)				

We see that we have significant evidence to say that the abuse treatments does have an influence on the count of bacteria in milk (pvalue < .0001). However, we do not have significant evidence to say that the lab has an effect on the count of bacteria in milk (pvalue = .1372).