Departamento de Matemática	Universidade do Minho		
ópicos de Matemática 3º teste – 15 des			
Lic. em Ciências de Computação - 1º ano	duração: duas horas		
Nome	Nº		
Grupo I. Em cada uma das questões seguintes, diga se é verdadeira (V) assinalando a opção conveniente:) ou falsa (F) a proposição,		
1. Dado um conjunto A , para todas as funções f e g de A em A , se $g\circ f$ então f e g são injetivas.	°é injetiva, V□ F□		
2. Dados A e B conjuntos e f função de A em B , para todos os subconju $f(X\cap Y)=f(X)\cap f(Y)$	untos X e Y de A , $\bigvee \square$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
3. Se θ é uma relação de equivalência num conjunto A e $a,b\in A$, então [têm o mesmo número de elementos.	$[a]_{ heta} \in [b]_{ heta}$ $\bigvee \Box \ \ F \ \Box$		
4. O conjunto $\{\{\{1\},\{2\}\},\{3\},\{\{4,5\}\}\}$ é uma partição de $B=\{\{1\},\{2\}\},\{3\},\{3\},\{3\}\}$	$2\}, \{3\}, \{4\}, \{5\}\}. \ V \square \ F \square$		
5. Para $A=\{2,3,4\}$ e $B=\{1,2\}$, $\omega_{\{1,4\}}\cup\omega_{\{2,3\}}$ é uma relação de equiva	alência em $A \cup B$. $V \square F \square$		
6. Se R é uma relação de ordem parcial num conjunto A e $a,b,c\in A$ são $(c,b),(a,c),(b,a)\in R$, então $a=b=c$.	tais que $ \mbox{$V \square$ } \mbox{$F \square$} $		
7. Para qualquer c.p.o. (A,\leq) e qualquer subconjunto não vazio X de A , um elemento maximal, então $A\backslash X$ admite um elemento minimal.	se X admite $V \square \ F \square$		

Grupo II. Considere o conjunto $A=\{1,2,3,4,5,6\}$. Dê exemplo, ou justifique que não existe, de:

8. Para quaisquer c.p.o.'s A e B e qualquer função isótona $f:A\to B$, se $x,y\in A$ são tais que

 $V \square F \square$

1. uma relação binária cujo fecho de equivalência é $\theta=\omega_{\{1,2,3\}}\cup\omega_{\{4,5\}}\cup\omega_{\{6\}}$ em A;

2. uma função f de A em A injetiva mas não sobrejetiva;

f(x)||f(y), então x||y.

3. uma função f de A em $A\times A$ tal que $f^\leftarrow(f^\rightarrow(X))=X$, para todo $X\subseteq A$;
4. uma relação de ordem parcial \leq em A tal que 1, 2 e 3 são os únicos elementos maximais de A e 4 e 6 são os únicos elementos minimais de A .
Grupo III. Sejam A um conjunto não vazio, $a \in A$ e ρ a relação binária definida em $\mathcal{P}(A)$ por
$X \rho Y \Leftrightarrow X \setminus \{a\} = Y \setminus \{a\} \qquad (X, Y \subseteq A).$
1. Mostre que ρ é uma relação de equivalência em $\mathcal{P}(A)$.

2.	Determine	as	classes	$[\emptyset]_{a}$	е	$[A]_a$

3. Considere a função
$$f:A\to \mathcal{P}(A)/\rho$$
 definida por $f(x)=[\{x\}]_{\rho}$, para todo $x\in A$. Mostre que se f é sobrejetiva então A tem, no máximo, 2 elementos.

4. Para
$$A=\{1,2,3\}$$
 e $a=2$, indique o conjunto quociente definido por $\rho.$

Grupo IV. Considere o c.p.o. (A,\leq) definido pelo diagrama de Hasse apresentado. Indique, caso exista:

3. $\inf \emptyset \in \sup \emptyset$;

4. Um subconjunto X de A com cinco elementos maximais;

5. Um subconjunto X de A com 6 elementos que é um reticulado para a ordem parcial induzida pela ordem do c.p.o. A;

6. Um subconjunto X de A tal que $\operatorname{Maj} X = \operatorname{Min} X$.