

Image Processing & Vision

Lecture 05: Feature Descriptors

Hak Gu Kim

hakgukim@cau.ac.kr

Immersive Reality & Intelligent Systems Lab (IRIS LAB)

Graduate School of Advanced Imaging Science, Multimedia & Film (GSAIM)

Chung-Ang University (CAU)

Recap: Local Feature

- Global template matching → Local feature detection
- Consider the problem of finding images of an elephant using a template
- An elephant looks different from different viewpoints
- What happens if parts of an elephant are obscured from view by trees, rocks, other elephants?

Template

Hak Gu Kim

Image

Normalized correlation map

Recap: Edges

An edge is a place of rapid change in the image intensity function

extreme of derivatives 1st derivative in horizontal axis

Edges corresponding to

Recap: DoG & LoG

- Two Generic Edge Detection Approaches:
- Local extrema of a first derivative operator
- Zero crossings of a second derivative operator

 Laplacian of Gaussian is based on a zero crossings of a second derivative operator method

Recap: Canny Edge Detection

- 1 Apply directional derivatives of Gaussian
- ② Compute gradient magnitude and gradient direction
- **3** Non-maximum suppression (NMS)
- 4 Link and threshold

Original image

Gradient magnitude

Result of non-maximum suppression

Recap: Corner

Key Property:

- In the region around a corner, image gradient has two or more dominant directions
- Corners are robust and distinctive

- 1 Compute image gradient over small region
- 2 Compute the covariance matrix
- 3 Compute eigenvectors and eigenvalues
- 4 Use threshold on eigenvalues to detect corners

Sum over local window region around corner

Gradient with respect to each direction (x or y)

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_x I_x & \sum_{p \in P} I_x I_y \\ \sum_{p \in P} I_y I_x & \sum_{p \in P} I_y I_y \end{bmatrix}$$

- Visualization of Eigenvalues and Eigenvectors as an Ellipse
- Eigenvectors determines the orientation of the ellipse
- Eigenvalues determines the axis lengths of the ellipse
 - $\frac{1}{\sqrt{\lambda_{max}}}$: The direction of the fastest change
 - $\frac{1}{\sqrt{\lambda_{min}}}$: The direction of the slowest change

$$\mathbf{M} = \begin{bmatrix} \sum_{p \in P} I_{\chi} I_{\chi} & \sum_{p \in P} I_{\chi} I_{y} \\ \sum_{p \in P} I_{y} I_{\chi} & \sum_{p \in P} I_{y} I_{y} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} \end{bmatrix}^{-1}$$
Eigenvectors Eigenvalues

Use threshold on eigenvalues to detect corners

Cornerness:

$$C = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$
$$= \det(\mathbf{M}) - \alpha \cdot \operatorname{tr}(\mathbf{M})^2$$

 $0.04 \le \alpha \le 0.06$

- Flat region: $|C| \leq \epsilon$
- Edge: C < 0
- Corner: C > 0

Corner response map

Corner detection result ($\sigma = 1$)

Topics

- Feature Descriptors
- Basic Feature Descriptors
- SIFT

Difficulty of Matching: Photometric Transformations

How do we match the correspondences between two images?

Difficulty of Matching: Geometric Transformations

How do we match the correspondences between two images?

Good Local Features

How do we know which corner goes with which?

Good Local Features

• Patch around the local feature is much more informative

Image Intensity

Just use the pixel values of the patch

- Pros: Perfectly fine if geometry and appearance is unchanged
- Cons: Very sensitive to absolute intensity values

Image Gradients & Edges

Just use the Edge values/signs of the patch

- Pros: Invariant to absolute intensity values
- Cons: Very sensitive to deformations

Color Histogram

Count the colors in the image using a histogram

Color Histogram

Count the colors in the image using a histogram

Spatial Histograms

Count the colors in each local region using a histogram

- **Pros:** Invariant to some deformations and retains rough spatial layout
- **Cons:** Sensitive to rotation

Summary of Features

Representation	Result	Approach	Technique
Intensity	Dense (2D)	Template Matching	Normalized correlation, Sum of squared difference (SSD)
Edge	Relatively sparse (1D)	Derivatives	$\nabla^2 G$, Canny edge
Corner / Blob	Sparse (0D)	Locally distinct features	Harris corner, SIFT

Invariant Local Features

 Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Advantages of Invariant Local Features

- Locality: Features are local, so robust to occlusion and clutter
- Distinctiveness: Individual features can be matched to a large-scale database of objects
- Quantity: Many features can be generated for even small objects
- Efficiency: Close to real-time performance

Scale Invariant Feature Transform (SIFT)

- The scale-invariant feature transform (SIFT) is an algorithm to detect, describe, and match local features in images
- SIFT describes both a detector and descriptor
- Applications: object recognition, robotic mapping and navigation, image stitching, 3D modeling, gesture recognition, video tracking, etc.
 - 1 Multi-scale extrema detection
 - ② Keypoint localization
 - 3 Orientation assignment
 - 4 Keypoint descriptor

SIFT: Multi-Scale Extrema Detection

- Begin by detecting points of interest (i.e., keypoints)
- The image is convolved with Gaussian filters at different scales

SIFT: Multi-Scale Extrema Detection

- Begin by detecting points of interest (i.e., keypoints)
- The image is convolved with Gaussian filters at different scales
- Then the difference of successive Gaussianblurred images are taken

SIFT: Multi-Scale Extrema Detection

- Begin by detecting points of interest (i.e., keypoints)
- The image is convolved with Gaussian filters at different scales
- Then the difference of successive Gaussianblurred images are taken
- Keypoints are taken as maxima/minima of the DoG at multiple scales

Gaussian variance The largest one is selected of Scale Difference of Gaussian (DoG)

SIFT: Keypoint Localization

- Scale-space extrema detection produces too many keypoint candidates, some of which are unstable
- In keypoint localization, we reject points which are low contrast (and are therefore sensitive to noise) or poorly localized along an edge

- How do we decide whether a keypoint is poorly localized or well-localized?
- In SIFT, compute the ratio of the eigenvalues of covariance matrix and

check if it is greater than a threshold

SIFT: Keypoint Localization

- (a) 233 x 189 image
- (b) 832 DoG extrema in (a)
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principal curvatures

- Each keypoint is assigned one or more orientations based on local image gradient directions
- This is the key step in achieving invariance to rotation on the Gaussian-smoothed image, ${\cal L}$

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1} \left[\left(L(x+1,y) - L(x-1,y) \right) / \left(L(x,y+1) - L(x,y-1) \right) \right]$$

- **Gradient orientation:** Direction of arrows
- Gradient magnitude: Length of arrows

- **Gradient orientation:** Direction of arrows
- Gradient magnitude: Length of arrows

- **Gradient orientation:** Direction of arrows
- Gradient magnitude: Length of arrows

- Gradient orientation: Direction of arrows
- Gradient magnitude: Length of arrows

- Gradient orientation: Direction of arrows
- Gradient magnitude: Length of arrows

- Gradient orientation: Direction of arrows
- Gradient magnitude: Length of arrows

- Gradient orientation: Direction of arrows
- Gradient magnitude: Length of arrows

- Gradient orientation: Direction of arrows
- Gradient magnitude: Length of arrows

- Gradient orientation: Direction of arrows
- Gradient magnitude: Length of arrows

- **Gradient orientation:** Direction of arrows
- Gradient magnitude: Length of arrows

• Gradient magnitude by a Gaussian kernel

- Orientation Assignment method:
- Create histogram of local gradient directions computed at selected scale
 - Histogram of 36 bins (10 degree increments)
- Assign canonical orientation at peak of smoothed histogram
 - Gaussian-weighted voting
- Each key specifies stable 2D coordinates: (x, y, scale, orientation)
 - Highest peak and peaks above 80% of highest also considered for calculating

dominant orientations

SIFT: Keypoint Descriptor

Keypoint detection

- How to assign a location, scale and orientation to each keypoint
- This ensured invariance to image location, scale and rotation

Keypoint description

— The descriptor is highly distinctive and partially invariant to the remaining variations such as illumination, 3D viewpoint, etc.

SIFT: Keypoint Descriptor

- Thresholded image gradients are sampled over 16 x 16 array of locations in scale space (weighted by a Gaussian with sigma half the size of the window)
- Create array of orientation histograms
- 8 Orientations x (4 x 4) histogram array

SIFT: Keypoint Descriptor

- Descriptor is normalized to unit length (i.e., magnitude of 1) to reduce the effects of illumination change
- If brightness values are scaled (multiplied) by a constant, the gradients are scaled by the same constant, and the normalization cancels the change
- If brightness values are increased/decreased by a constant, the gradients do not change

Summary: SIFT

1 Scale-space representation and local extreme detection

- Use DoG/LoG Pyramid
- 3 scales/octave, down-sample by factor of 2 each octave

② Keypoint localization

 Select stable keypoints by thresholding on the magnitude of extrema and ratio of principal curvatures

③ Keypoint orientation assignment

Based on histogram of local image gradient directions

4 Keypoint descriptor

- Histogram of local gradient directions Vector with $8 \times (4 \times 4) = 128$ dimensions
- Vector normalization