### Density Map Guided Object Detection in Aerial Images

Changlin Li, Taojiannan Yang, Sijie Zhu, Chen Chen, Shanyue Guan

# Improvements/Suggestions

## 1. Scale-Adaptive CNN (SaCNN) over MCNN

SaCNN uses a single-column CNN with one filter size, combining feature maps from multiple layers to handle scale variations while reducing parameters for efficiency.



### 2. Image-Based Adaptive Thresholding

This approach dynamically adjusts thresholds based on average bounding box sizes from object detection, improving cropping for smaller-scale objects.

### 3. Speed Improvements in Density-Based Cropping

scipy.ndimage.label replaces manual BFS, offering faster performance with near-constant complexity  $O(n\alpha(n))$  and better memory efficiency.

### 4. YOLOv11 Over YOLOv5 for Object Detection

YOLOv11 improves accuracy, inference speed, and model efficiency, particularly enhancing small object detection.

# Implementation Details

#### 1. Model Details

Two new models were trained, SaCNN and YOLOv11, both aimed to boost the accuracy of the object detection. I trained YOLOv11 for 55 epochs with image size = 640 and batch size 16 on Google Colab's T4 GPU. SaCNN was trained on both Kaggle's T4 accelerator and locally on my device, but training took a lot longer than expected.

## 2. Parameter Configuration

| Parameter Configuration | Details                                           |  |  |
|-------------------------|---------------------------------------------------|--|--|
| Image Processing        | Cropping Parameters:                              |  |  |
|                         | Threshold: Adaptive Threshold as per improvements |  |  |
|                         | Minimum bounding box size: 70×70 pixels           |  |  |
| YOLOv11 Training        | Optimizer: SGD                                    |  |  |
|                         | Learning rate: 0.01                               |  |  |
|                         | Momentum: 0.937                                   |  |  |
|                         | Parameter Groups:                                 |  |  |
|                         | 81 weights (decay=0.0)                            |  |  |
|                         | 88 weights (decay=0.0005)                         |  |  |
|                         | 87 bias parameters (decay=0.0)                    |  |  |
| Detection Fusion        | Non-max Suppression:                              |  |  |
|                         | Threshold: 0.7                                    |  |  |
|                         | Maximum bounding boxes after fusion: 500          |  |  |

Table 1: YOLOv11 Parameter Configuration Table

# Training Results

## 1. Training YOLOv11



# 2. Training SaCNN

Could not produce any results as training took longer than expected.

Epoch 1/250: 19%| | 1233/6471 [6:53:50<29:18:05, 20.14s/batch, loss=0.00198]

# Qualitative Results

| Metric        | YOLOv5 Model | YOLOv9 Model | Best from Paper |
|---------------|--------------|--------------|-----------------|
| AP            | 0.500        | 0.510        | 0.294           |
| $AP_{50}$     | 0.504        | 0.520        | 0.532           |
| $AP_{75}$     | 0.498        | 0.490        | 0.306           |
| $AP_{small}$  | 0.608        | 0.620        | 0.216           |
| $AP_{medium}$ | 0.493        | 0.500        | 0.412           |
| $AP_{large}$  | 0.473        | 0.460        | 0.571           |

Table 2: Comparison of performance metrics between YOLOv5, YOLOv9, and the best results from the paper.

Reduced density cropping time from 30 minutes to 27 seconds for training data