- **4.3** La formule $u_{n+1} = u_n + r$ équivaut à $u_{n+1} u_n = r$.
 - 1) $u_{n+1} u_n = ((n+1)+2) (n+2) = 1$ $(u_n)_{n \in \mathbb{R}}$ est une suite arithmétique de raison 1.
 - 2) $u_{n+1}-u_n=\left((n+1)^2+1\right)-(n^2+1)=(n^2+2\,n+2)-(n^2+1)=2\,n+1$ La suite $(u_n)_{n\in\mathbb{R}}$ n'est pas une suite arithmétique : la différence $u_{n+1}-u_n$ n'est pas constante.
 - 3) $u_{n+1} u_n = (5(n+1)+3) (5n+3) = (5n+8) (5n+3) = 5$ $(u_n)_{n \in \mathbb{R}}$ est une suite arithmétique de raison 5.
 - 4) $u_{n+1} u_n = \frac{(n+1)+2}{n+1} \frac{n+2}{n} = \frac{n+3}{n+1} \frac{n+2}{n} = \frac{(n+3)n (n+2)(n+1)}{n(n+1)}$ $= \frac{(n^2+3n) - (n^2+3n+2)}{n(n+1)} = \frac{-2}{n(n+1)}$

La suite $(u_n)_{n\in\mathbb{R}}$ n'est pas une suite arithmétique : la différence $u_{n+1}-u_n$ n'est pas constante.

- 5) $u_{n+1} u_n = u_n + 4 u_n = 4$ $(u_n)_{n \in \mathbb{R}}$ est une suite arithmétique de raison 4.
- 6) $u_{n+1} u_n = u_n + n 1 u_n = n 1$ La suite $(u_n)_{n \in \mathbb{R}}$ n'est pas une suite arithmétique : la différence $u_{n+1} - u_n$ n'est pas constante.