

Emittance Glass Coatings on Fibrous Microstructural Investigation of High Ceramic Insulation

Don Ellerby, Dan Leiser, Robert Di Fiore, Jeff Figone and Dane Smith NASA Ames Research Center dellerby@mail.arc.nasa.gov Moffett Field, CA

Ron Loehman^{1,2} and Paul Kotula² ²Sandia National Laboratories ¹University of New Mexico Albuquerque, NM

Sandia National Laboratories

Supported by DOE Contract DE-AC04-94AL85000 at Sandia National Laboratories

Thermal Protection Materials and Systems Branch

Outline

Ames Research Center

- Background
- Space Shuttle Thermal Protection System (TPS)
 - Types of TPS
- Tiles, Blankets, Leading Edges, and Coatings
 - Processing
- Tiles
- Coatings
- Properties
- Mechanical
- Impact Resistance
- Microstructural Examination of Toughened Uni-Piece Fibrous Insulation (TUFI)
- Summary
- Future Work

Thermal Protection Materials and Systems Branch

Typical Surface Temperatures Experienced During Reentry

Ames Developed Thermal Protection Materials Adopted to date on Shuttle

Thermal Protection Materials and Systems Branch

Rigid Fibrous Ceramic Tile and Coating Systems

Tile Systems

- Pure Silica
- Fibrous Refractory Composite Insulation (FRCI)
- Silica and Aluminoborosilicate (Nextel 312) Fibers
- · Alumina Enhanced Thermal Barrier (AETB)
- Silica, Nextel 312, and Alumina Fibers

Coating Systems

- Reaction Cured Glass (RCG)
- Borosilicate Glass and SiB_4 emittance agent
- Toughened Uni-Piece Fibrous Insulation (TUFI)
 - Borosilicate Glass, SiB₆ and MoSi₂

NASA

Raw Materials

Fibers

- Silica
- 1-3 µm diameter
- Nextel 312
- 62% Al₂O₃-14% B₂O₃-24% SiO₂
 - 8.5 µm diameter
- Alumina
- 96% Al₂O₃-3% SiO₂
 - 1-3 μm diameter

Coatings

- Borosilicate glass
- Porous Vycor 7930 w/ added B₂O₃
 - **Emissivity Agents**
 - SiB₄ in RCG
- MoSi₂ in TUFI

Silica Fibers

Aluminoborosilicate Fibers

Thermal Protection Materials and Systems Branch

Drying Oven

Fired ~1275°C

Thermal Protection Materials and Systems Branch

Tile Microstructures

AETB Tile

Typical Coating Process

Ames Research Center

Toughened Uni-Piece Insulation (TUFI) Borosilicate Glass Reaction Cured Glass (RCG) SiB₄ emittance agent **Borosilicate Glass**

MoSi₂ emittance agent SiB₆ flux

Schematic of Reaction Cured Glass

Ames Research Center

HIGH SILICA BOROSILICATE GLASS

PORES

Thermal Protection Materials and Systems Branch

Reaction Cured Glass (RCG) Coating

- High Emittance E>0.8
- 0.38 mm thick
- Compatible with silica tiles
- no devitrification
- match tiles CTE
- RCG coating sits on top of tile surface
 - particle size too large to infiltrate
- Dense coating
- initial moisture barrier
- Poor impact resistance.

Toughened Uni-Piece Fibrous Insulation (TUFI)

- High Emittance E>0.8
- 2.5 mm thick
- Compatible with tile
 no devitrification
- Porous coating
- Material penetrates into the tile
 smaller particle size

- Significantly improved impact resistance
- MoSi₂ act as emissivity agent
- also increases CTE so it matches that of AETB tiles.

Microstructure of TUFI System

- TUFI is applied as three separate coats.
- Results in a graded coating system that is denser near the surface.
 - Two scales of porosity
- regions that appear deficient in glass
- denser regions also have a smaller scale porosity

ž

Comparison of Impact Resistance RCG vs TUFI

Thermal Protection Materials and Systems Branch

Shuttle Flight Testing of LI-900/RCG vs AETB-8/TUFI in BaseHeatshield

TUFI/AETB-8 Tiles Undamaged After Three Flights

Objective of Microstructural Investigation

- accurately investigate the reaction mechanisms. At the time RCG and TUFI were developed, analytical techniques were not available to
- Particularly difficult to analyze for Boron.
- Future improvements in tile coatings will require fundamental understandings of these mechanisms.
- also rely on a better understanding of the current Long term consistency in current coatings will process.
- differences in starting powders affect the final coating? - i.e. if material vendors change, how do slight

Automated X-ray Spectral Image Analysis (AXSIA)

- How do you comprehensively survey the chemistry of a large area of a microstructure?
- Point analyses can be subjective—where to take them from and how many.
- simple mapping alone is not the answer. Mapping has 2D distributions of chemical phases are needed but potential artifacts and requires fore-knowledge.

'Phase images' are needed-a spectrum from each phase and an image describing where in the microstructure it's found

Automated X-ray Spectral Image Analysis (AXSIA)

- Start off with a spectral image—a complete x-ray spectrum from each pixel in a 2D array, sampling the microstructural region of interest (hundreds of microns on a side (SEM) to nanometers on a side (TEM))
- spectrum in the spectrum image using the AXSIA software. Analysis time Perform a complete statistical analysis (information extraction) on every on a spectrum image with over 16,000 spectra is only about a minute.
- image describing that phase's location in the microstructure: 16000 spectra The result is a spectrum from each phase in the microstructure and an are reduced to a handful with no loss of chemical information
- Licensed AXSIA to Thermo NORAN, Inc., a U. S. corporation

Bright Field STEM Images of TUFI

ullet Evidence of dissolution and reprecipitation of SiB $_{
m x}$ and MoSi $_{
m x}$ particles. donde Particle

NASA STEM Images of TUFI Showing Distribution

Comparison of Dark and Bright Field STEM Images

High Resolution Bright Field Image of MoSi₂ Particles

Evidence of crystalline surface layer on MoSi₂ particles.

Elemental Mapping of TUFI Coating Using AXSIA

Bright Field

Image Boron SiB_x

Image Silicon

Oxygen Image

Thermal Protection Materials and Systems Branch

NASA

Elemental Mapping of TUFI Coating Using AXSIA

Summary

- Automated X-ray Spectral Image Analysis shows excellent potential for use in understanding the reactions that occur in tile coatings.
- Images reveal that the reaction mechanisms in TUFI, and presumably RCG, are complex.
 - Evidence of dissolution and reprecipitation of MoSi₂.
- Evidence of Fe and Cu solubility in Mo₅Si₃.
- Appears to be some solubility of B in MoSi, but not in Mo₅Si₃.

Future Work

- Ames Research Center
- Systematic use elemental mapping to investigate the evolution of RCG and TUFI during firing.
- Investigate the influence of SiBx on the coatings
- SiB₄ vs SiB₆
- Different vendors
- How trace impurities affect coating formation
- Look for evidence of reactions at the fiber coating interface
 - Look at interface between fibers
- Investigate changes in tile microstructure during use.
- Improved our understanding of the reaction mechanisms that occur in tile coatings in order to develop improved coatings for future applications.