SW 공학 2 SW 공학의 의의

주요 질문

- ✓ SW 공학의 탄생 배경이나 필요성에 대해서 설명해 보세요
- ✓ SW 공학 이란 무엇일까요? 개념에 대해서 설명해 보세요.
- ✓ 전통적인 SDLC 모형에는 어떤 것들이 있나요?
- ✓ SW 개발 방법론이란 무엇인지 설명해 보세요.

SW Crisis (소프트웨어 위기)

- SW 공학 백서 2013

원인	설명
SW 대규모화	■ 프로그램의 복잡도 증가 ■ 개발비용 증대
H/W 대비 가격 상승	■ H/W 는 기술발전에 따른 가격 하락 ■ 인건비는 계속 상승
예산 예측의 어려움	프로젝트 요건 및 요구정의 어려움요구 변경에 대한 대처의 어려움
유지보수의 어려움	개발 적체 현상 발생변경 사항 발생, 변경에 따른 운영 반영

- ✓ 질 좋은 소프트웨어를 경제적으로 생산하기 위하여 공학, 과학 및 수학적 원리와 방법을 적용하는 것 - Watts Humphrey, SEI
- ✓ 소프트웨어의 개발, 운용, 유지보수 및 소멸에 대한 체계적인 접근 방법 IEEE
- ✓ 품질, 효율, 비용, 인정에 관한 공학적인 접근 원리 F.Brooks
- ✓ 소프트웨어 공학은 소프트웨어의 개발, 운용, 유지보수 등의 생명 주기 전반을 체계적이고 서술적이며 정량적으로 다루는 학문이다. 즉, 공학을 소프트웨어에 적용하는 것이다. – Wikipedia

출처:

SW 공학의 목표

- ✓ 오류가 없는 고품질(Quality) 소프트웨어를,
- ✓ 계획된 개발기간을 넘기지 않고,
- ✓ 추가적인 예산의 요청 없이,
- ✓ 사용자가 원하는 기능을,
- ✓ 유지보수가 용이하도록 복원력이 좋은 소프트웨어를 개발하는 것

SW 공학의 필수 요건

- 1) 작업절차 (Process) : 모델, 모형
- 2) 작업방법, (Method) : 방법론
- 3) 산출물 (Product): 테이블정의서, 인터페이스정의서, 요구사항정의서
- 4) 기법/도구(Technique/tool): CASE, Jira, eclipse, ItelliJ

전통적인 SDLC

소프트웨어 개발 타당성 검토로부터 개발, 유지보수, 폐기까지의 전 과정을 하나의 생명주기로 정의하고 단계별 공정을 체계화한 모델

SW 개발 방법론 이란?

SW Engineering 원리를 SW 생명주기에 적용하여 작업절차, 방법, 산출물 등을 체계적으로 정리한 표준 절차나 지침

목적: 개발 생산성 향상, 수행공정 가시화, SW Crisis 해결

요리책에 비유

2 SW 공학의 의의

요리책

VS 객체지향방법론

- 1. 먼저 돼지 등뼈 1kg을 찬물에 6시간 정도 담가 핏물을 빼서 준비합니다.
- 2. 끓는 물 1.5L에 소주 2큰술과 편으로 썬 생강2쪽(약 5g)과 파뿌리 2개를 넣어 줍니다.
- 3. 애벌 삶기 한 돼지 등뼈를 바로 찬물에 옮겨 담아 헹궈줍니다.
- 4. 볼에 고추장 3큰술과 잡내를 잡아줄 된장1큰술을 넣어 줍니다.
- 5. 고춧가루 3큰술과 다진 마늘 2큰술을 넣어 줍니다. (맛술 1큰술을 넣어 주고 마지막으로 쌀뜨물 1컵(200ml)을 넣고 섞어 줍니다.)
- 6. 양념과 물 800ml를 넣고, 압력밥솥에 센 불로 끓이다가 소리가 나면 중불로 줄인 후 20분간 더 끓입니다.

No.	Activity	산출물	기간
1	분석		
1.1	비즈니스 정의		
1.1.1	현행 프로세스 분석	현행업무기능분해도, 업무흐름도	
1.1.2	현행 데이터 분석	현 테이블정의서, ERD, 코드정의서	
1.2	요구사항 도출		
1.2.1	요구사항 수집/검토	인터뷰결과서, 요구사항정의서	
1.2.2	유스케이스 모델링	유스케이스다이어그램, 명세서, 액터카달로그	
1.3	테스트 계획 수립		
1.3.1	총괄테스트 계획서	총괄테스트 계획서	
1.3.2	사용자승인테스트 계획수립	사용자 승인테스트 계획서	
1.4	객체 분석		
1.4.1	객체모델링	분석시퀀스다이어그램, 분석 클래스 다이어그램	
1.4.2	인터페이시스 정의	인터페이스 정의서	
1.5	UI 표준	UI표준 정의서	
2	설계		
2.1	데이터베이스 설계	물리 ERD, 테이블정의서	
2.2	어플리케이션 설계		
2.2.1	화면 설계서	화면설계서	
2.2.2	인터페이스 설계	인터페이스 명세서	
2.2.3	프로그램 설계	시퀀스다이어그램, 클래스다이어그램,배치프로그램 명세서	
2.3	스테이지말 검토	검토결과서, 요구사항 추적메트릭스	
3	구축		
3.1	개발	소스코드	
3.2	단위테스트	단위테스트 결과서	
4	테스트		
4.1	통합테스트	통합테스트 결과서	
4.2	시스템테스트	시스템테스트 결과서	
5	전개		
5.1	전개계획	전개계획서, 사용자 교육계획서	
5.2	전개실행	교육결과서, 설치확인서, 승인테스트 결과서	

전통적 SDLC의 한계

- ✓ 진화적 프로토타이핑 모델을 제외한 모델에서 사용자 참여가 미흡함
- ✓ 문서 위주의 확인 방식이기 때문에 비효율적 가능성 있음
- ✓ 단계별 진행과 승인 프로세스에 의해 생명 주기 전체 진행이 늦어질 가능성 있음
- ✓ 발전적 개발이 필요한 계속 확장되는 시스템에 부적합 가능성 있음