## Part III – Introduction to Additive Combinatorics (Incomplete)

Based on lectures by Prof Julia Wolf Notes taken by Yaël Dillies

Lent 2024

## Contents

1 Fourier-analytic techniques

2

## 1 Fourier-analytic techniques

Lecture 1

Let  $G = \mathbb{F}_p^n$  where p is a small fixed prime and n is large.

**Notation.** Given a finite set B and any function  $f: B \to \mathbb{C}$ , write

$$\mathbb{E}_{x \in B} f(x) = \frac{1}{|B|} \sum_{x \in B} f(x)$$

Write  $\omega = E^{\frac{\tau i}{p}}$ . Note  $\sum_{a \in \mathbb{F}_p} \omega^a = 0$ .

**Definition 1.1.** Given  $f: \mathbb{F}_p^n \to \mathbb{C}$ , define its **Fourier transform**  $\hat{f}: \mathbb{F}_p^n \to \mathbb{C}$  by

$$\hat{f}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \omega^{x \cdot t}$$

It is easy to verify the inversion formula

$$f(x) = \sum_{t \in \mathbb{F}_p^n} \hat{f}(t) \omega^{-x \cdot t}$$

Indeed,

$$\sum_{t \in \mathbb{F}_p^n} \hat{f} \omega^{-x \cdot t} = \sum_{t \in \mathbb{F}_p^n} \left( \mathbb{E}_y f(y) \omega^{y \cdot t} \right) \omega^{-x \cdot t}$$

$$= \mathbb{E}_y f(y) \sum_t \omega^{(y-x) \cdot t}$$

$$= \mathbb{E}_y f(y) 1_{y=x} p^n$$

$$= f(x)$$

**Notation.** Given a set A of a finite group G, write

•  $1_A$  the characteristic function of A, ie

$$1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

•  $\mu_A$  the characteristic measure of A, ie

$$\mu_A = \alpha^{-1} 1_A$$

where  $\alpha = \frac{|A|}{|G|}$ .

•  $f_A$  for the balanced function of A, ie

$$f_A(x) = 1_A(x) - \alpha$$

Note  $\mathbb{E}_x f_A(x) = 0$ ,  $\mathbb{E}_x \mu_A(x) = 1$ ,  $\widehat{1_A}(0) = \mathbb{E}_x 1_A(x) = \alpha$ . Writing  $-A = \{-a | a \in A\}$ , we have

$$\widehat{1_{-A}}(t) = \mathbb{E}_x 1_{-A}(x) \omega^{x \cdot t}$$

$$= \mathbb{E}_x 1_A(-x) \omega^{x \cdot t}$$

$$= \mathbb{E}_x 1_A(x) \omega^{-x \cdot t}$$

$$= \widehat{1_A}(t)$$

**Example 1.2.** Let  $V \leq \mathbb{F}_p^n$ . Then

$$\widehat{1_V}(t) = \mathbb{E}_x 1_V(x) \omega^{x \cdot t} = \frac{|V|}{|G|} 1_{V^{\perp}}(t)$$

So

$$\hat{\mu}_V(t) = 1_{V^{\perp}}(t)$$

**Example 1.3.** Let  $R \subseteq \mathbb{F}_p^n$  be such that each x is included with probability  $\frac{1}{2}$  independently. Then with high probability

$$\sup_{t \neq 0} \left| \widehat{1_R}(t) \right| = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$$

This is on Example Sheet 1 using a **Chernoff-type bound**: Given  $\mathbb{C}$ -valued independent random variables  $X_1, \ldots, X_n$  with mean 0 and  $\theta \geq 0$ , we have

$$\mathbb{P}\left(\left|\sum_{i}X_{i}\right|\geq\theta\sqrt{\sum_{i}\left\|X_{i}\right\|_{L^{\infty}}^{2}}\right)\leq4\exp\left(-\frac{\theta^{2}}{4}\right)$$

**Example 1.4.** Let  $Q=\{x\in\mathbb{F}_p^n\mid x\cdot x=0\}$ . Then  $|Q|=\left(\frac{1}{p}+O(p^{-n})\right)p^n$  and  $\sup_{t\neq 0}\left|\widehat{1_Q}(t)\right|=O(p^{-\frac{n}{2}})$ . See Example Sheet 1.

**Notation.** Given  $f,g:\mathbb{F}_p^n\to\mathbb{C},$  write

$$\langle f, g \rangle = \mathbb{E}_x f(x) \overline{g(x)}$$
  
 $\langle \hat{f}, \hat{g} \rangle = \sum_t \hat{f}(t) \overline{\hat{g}(t)}$ 

Consequently,

$$||f||_2^2 = \mathbb{E}_x |f(x)|^2$$

$$||\hat{f}||_2^2 = \sum_t |\hat{f}(t)|^2$$

**Lemma 1.5.** For all  $f, g : \mathbb{F}_p^n \to \mathbb{C}$ ,

$$\langle f, g \rangle = \left\langle \hat{f}, \hat{g} \right\rangle$$
 (Plancherel)  
 $\|f\|_2 = \left\| \hat{f} \right\|_2$  (Parseval)

Proof. Exercise.

**Definition 1.6.** Let  $\rho > 0$  and  $f : \mathbb{F}_p^n \to \mathbb{C}$ . Define the  $\rho$ -large spectrum of f to be

$$\operatorname{Spec}_{o}(f) = \{ t \mid |\hat{f}(t)| \ge \rho \|f\|_{1} \}$$

**Example 1.7.** By Example 1.2, if  $V \leq \mathbb{F}_p^n$ , then  $\operatorname{Spec}_{\rho}(1_V) = V^{\perp}$  for all  $\rho > 0$ .

**Lemma 1.8.** For all  $\rho > 0$ ,  $\left| \operatorname{Spec}_{\rho}(f) \right| \leq \rho^{-2} \frac{\|f\|_{2}^{2}}{\|f\|_{1}^{2}}$ .

Proof.

$$\left\|f\right\|_{2}^{2}=\left\|\hat{f}\right\|_{2}^{2}\geq\sum_{t\in\operatorname{Spec}_{\rho}(f)}\left|\hat{f}(t)\right|^{2}\geq\left|\operatorname{Spec}_{\rho}(f)\right|(\rho\left\|f\right\|_{1})^{2}$$

Lecture 2

**Definition 1.9.** Given  $f, g : \mathbb{F}_p^n \to \mathbb{C}$ , define their **convolution**  $f * g : \mathbb{F}_p^n \to \mathbb{C}$  by  $(f * g)(x) = \mathbb{E}_y f(y) g(x - y)$ 

**Example 1.10.** Given  $A, B \subseteq \mathbb{F}_p^n$ ,

$$\begin{split} (1_A*1_B)(x) &= \mathbb{E}_y 1_A(y) 1_B(x-y) \\ &= \frac{1}{p^n} \left| A \cap (x-B) \right| \\ &= \frac{\# \text{ ways to write } x = a+b, a \in A, b \in B}{p^n} \end{split}$$

In particular, the support of  $1_A * 1_B$  is the **sum set** 

$$A + B = \{a + b \mid a \in A, b \in B\}$$

**Lemma 1.11.** Given  $f, g : \mathbb{F}_p^n \to \mathbb{C}$ ,

$$\widehat{f * g}(t) = \widehat{f}(t)\widehat{g}(t)$$

Proof.

$$\widehat{f * g}(t) = \mathbb{E}_x \left( \mathbb{E}_y f(y) g(x - y) \right) \omega^{x \cdot t}$$
$$= \mathbb{E}_y f(y) \mathbb{E}_u g(u) \omega^{(u + y) \cdot t}$$
$$= \widehat{f}(t) \widehat{g}(t)$$

**Example 1.12.**  $\|\hat{f}\|_4^4 = \mathbb{E}_{x+y=z+w} f(x) f(y) \overline{f(z) f(w)}$ . See Example Sheet 1.

**Lemma 1.13** (Bogolyubov). If  $A \subseteq \mathbb{F}_p^n$  is of density  $\alpha > 0$ , then there exists a subspace V of codimension at most  $2\alpha^{-2}$  such that  $V \subseteq (A+A) - (A+A)$ .

*Proof.* Observe that  $(A+A)-(A+A)=\mathrm{supp}(\underbrace{1_A*1_A*1_{-A}*1_{-A}}_q)$ , so we wish to find

V such that g(x)>0 for all  $x\in V$ . Let  $K=\operatorname{Spec}_{\rho}(1_A)$  for some  $\rho>0$  and define  $V=\langle K\rangle^{\perp}$ . By Lemma 1.8, codim  $V\leq |K|\leq \rho^{-2}\alpha^{-1}$ . We calculate

$$\begin{split} g(x) &= \sum_{t \in \mathbb{F}_p^n} 1_A * \widehat{1_A * 1_{-A}} * 1_{-A}(t) \omega^{-x \cdot t} \\ &= \sum_{t \in \mathbb{F}_p^n} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t} \\ &= \alpha^4 + \underbrace{\sum_{t \in K \backslash \{0\}} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t}}_{(1)} + \underbrace{\sum_{t \notin K} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t}}_{(2)} \end{split}$$

Incomplete

We now see that

$$(1) = \sum_{t \in K \setminus \{0\}} \left| \widehat{1}_A(t) \right|^4 \ge 0$$

and

$$|(2)| \leq \sum_{t \notin K} \left| \widehat{1_A}(t) \right|^4 \leq \sup_{t \notin K} \left| \widehat{1_A}(t) \right|^2 \sum_{t \notin K} \left| \widehat{1_A}(t) \right|^2 \leq (\rho \alpha)^2 \left\| 1_A \right\|_2^2 = \rho^2 \alpha^3$$

by Parseval. Picking  $\rho = \sqrt{\frac{\alpha}{2}}$ , we thus get  $\rho^2 \alpha^3 \leq \frac{\alpha^4}{2}$  and g(x) > 0 whenever  $x \in V$ .  $\square$ 

**Example 1.14.** The set  $A = \{x \in \mathbb{F}_2^n \mid |x| \ge \frac{n}{2} + \frac{\sqrt{n}}{2}\}$  has density at least  $\frac{1}{4}$  but there is no coset C of any subspace of codimension  $\sqrt{n}$  such that  $C \subseteq A + A$ . See Example Sheet 1.

**Lemma 1.15.** Let  $A \subseteq \mathbb{F}_p^n$  of density  $\alpha$  be such that  $\operatorname{Spec}_{\rho}(1_A)$  contains some  $t \neq 0$ . Then there exist  $V \leq \mathbb{F}_p^n$  of codimension 1 and  $x \in \mathbb{F}_p^n$  such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\rho}{2}\right)|V|$$

*Proof.* Let  $t \neq 0$  be such that  $\left|\widehat{1}_A(t)\right| \geq \rho \alpha$  and let  $V = \langle t \rangle^{\perp}$ . For  $j = 1, \ldots, p$ , write

$$v_j + V = \{ x \in \mathbb{F}_p^n \mid x \cdot t = j \}$$

the cosets of V. Then

$$\widehat{1_A}(t) = \widehat{f_A}(t)$$

$$= \mathbb{E}_{x \in \mathbb{F}_p^n} (1_A(x)) - \alpha) \omega^{x \cdot t}$$

$$= \mathbb{E}_j \omega^j \mathbb{E}_{x \in v_j + V} (1_A(x) - \alpha)$$

$$= \mathbb{E}_j a_j \omega^j$$

where  $a_j = \frac{|A \cap (v_j + V)|}{|V|} - \alpha$ . Since  $\sum_j a_j = 0$ , we get

$$\rho \alpha \le \left| \widehat{1_A}(t) \right| \le \mathbb{E}_j \left| a_j \right| = \mathbb{E}_j (\left| a_j \right| + a_j)$$

So there is some j such that  $|a_j| + a_j \ge \rho \alpha$ . In particular, this  $a_j$  is positive, so

$$\frac{|A \cap (v_j + V)|}{|V|} \ge \alpha + \frac{\rho \alpha}{2}$$

as wanted.  $\Box$ 

Lecture  $\beta$ 

**Lemma 1.16.** Let  $p \geq 3$  and  $A \subseteq \mathbb{F}_p^n$  of density  $\alpha > 0$  be such that  $\sup_{t \neq 0} \left| \widehat{1_A}(t) \right| = o(1)$ . Then A contains  $(\alpha^3 + o(1)) |G|^2$  three terms arithmetic progressions (aka 3AP). **Notation.** Given  $f, g, h : \mathbb{F}_p^n \to \mathbb{C}$ , write

$$T_3(f,q,h) = \mathbb{E}_x f(x) q(x+d) h(x+2d)$$

Given  $A \subseteq \mathbb{F}_p^n$ , write  $2 \cdot A = \{2a \mid a \in A\}$ . This is distinct from  $2A = \{a+b \mid a, b \in A\}$ .

*Proof.* The number of 3AP (including the trivial ones of the form a, a, a) in A is  $\left|G\right|^2$  times

$$\begin{split} T_3(1_A,1_A,1_A) &= \mathbb{E}_{x,d} 1_A(x) 1_A(x+d) 1_A(x+2d) \\ &= \mathbb{E}_{x,y} 1_A(x) 1_A(y) 1_A(2y-x) \\ &= \mathbb{E}_y 1_A(y) (1_A*1_A)(2y) \\ &= \langle 1_{2\cdot A}, 1_A*1_A \rangle \\ &= \left\langle \widehat{1_{2\cdot A}}, \widehat{1_A}^2 \right\rangle \\ &= \alpha^3 + \sum_{t \neq 0} \widehat{1_A(t)} \widehat{1_{2\cdot A}(t)} \text{ by Plancherel} \end{split}$$

In absolute value, the error term is at most

$$\sup_{t \neq 0} \left| \widehat{1_{2 \cdot A}}(t) \right| \sum_{t} \left| \widehat{1_A}(t) \right|^2 = \alpha \sup_{t \neq 0} \left| \widehat{1_A}(t) \right|$$

**Theorem 1.17** (Meshulam). Let  $p \geq 3$  and  $A \subseteq \mathbb{F}_p^n$  be a set containing only trivial 3AP. Then

$$|A| = O\left(\frac{p^n}{\log(p^n)}\right)$$

*Proof.* By assumption,  $T_3(1_A, 1_A, 1_A) = \frac{\alpha}{v^n}$ . But, as in Lemma 1.16,

$$\left| T_3(1_A, 1_A, 1_A) - \alpha^3 \right| \le \alpha \sup_{t \ne 0} \left| \widehat{1_A}(t) \right|$$

Hence, provided that  $2\alpha^{-2} \leq p^n$ , Lemma 1.15 gives us a subspace  $V \leq \mathbb{F}_p^n$  of codimension 1 and  $x \in \mathbb{F}_p^n$  such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\alpha^2}{4}\right)|V|$$

We iterate this observation. Let  $A_0 = A, V_0 = \mathbb{F}_p^n$ . At step i, we are given a set  $A_i \subseteq V_i$  of density  $\alpha_i$  with only trivial 3AP. Provided that  $2\alpha_i^{-2} \leq p^{\dim V_i}$ , find  $V_{i+1} \leq V_i$  of codimension 1 and  $x \in V_i$  such that  $|A_i \cap (x + V_i)| \geq \left(\alpha_i + \frac{\alpha_i^2}{4}\right) |V_{i+1}|$  and set  $A_{i+1} = \frac{\alpha_i^2}{4}$ 

 $(A_i - x) \cap V_i$ . Note that  $\alpha_{i+1} \ge \alpha_i + \frac{\alpha_i^2}{4}$  and  $A_{i+1}$  only contains trivial 3AP (because, very importantly, 3AP are **translation-invariant**).

Through this iteration, the density of A increases from  $\alpha$  to  $2\alpha$  in at most  $\lceil 4\alpha^{-1} \rceil$  steps, from  $2\alpha$  to  $4\alpha$  in at most  $\lceil 2\alpha^{-1} \rceil$  steps, etc... Since density can't increase past 1, it takes at most

$$\underbrace{[4\alpha^{-1}] + [2\alpha^{-1}] + \dots}_{\lceil \log \alpha^{-1} \rceil \text{ terms}} \le (4\alpha^{-1} + 1) + (2\alpha^{-1} + 1) + \dots \le 8\alpha^{-1} + \log \alpha^{-1} \le 9\alpha^{-1}$$

steps to reach a point where the condition  $2\alpha_i^{-2} \leq p^{\dim V_i}$  is not respected anymore. Now either  $\alpha \leq \sqrt{2}p^{-\frac{n}{4}}$  (in which case the inequality is obvious) or  $\alpha \geq \sqrt{2}p^{-\frac{n}{4}}$  and

$$p^{n-9\alpha^{-1}} \le p^{\dim V_i} \le 2\alpha_i^{-2} \le 2\alpha^{-2} \le p^{\frac{n}{2}}$$

namely  $\alpha \leq \frac{18}{n}$ , as wanted.

Incomplete 6 Updated online