Aula 7: Circuitos

Curso de Física Geral III F-328

1° semestre, 2017

Ponto essencial

Para resolver um circuito de corrente contínua, é preciso entender se as cargas estão ganhando ou perdendo energia potencial elétrica quando passam através dos elementos do circuito.

Fonte de força eletromotriz

Fonte de energia em um circuito DC

Resolver um circuito de corrente contínua (DC) é calcular o valor e o sentido da corrente. Como vimos, para que se estabeleça uma corrente duradoura num condutor, é necessário manter uma diferença de potencial entre suas extremidades. No caso prático, isto é feito por um dispositivo chamado *fonte de força eletromotriz* (*fem*), cujo símbolo é:

Trabalho da fonte

Dentro da fonte, um elemento de carga positiva dq deve se mover de um ponto de potencial mais baixo (–) para outro de potencial mais alto (+), necessitando de uma energia para isso. Então a fonte deve realizar um trabalho dW sobre um elemento de carga dq a fim de forçá-lo a ir do terminal (–) para o terminal (+).

$$\varepsilon = \frac{dW}{dq} \quad \left(\frac{J}{C} = \text{volt}\right)$$

Tipos de fem

Fonte de tensão ideal

- Modelo idealizado de uma bateria
- Bombeamento de cargas sem nenhuma resistência
- Não há energia dissipada na fonte

$$\longrightarrow V = V_b - V_a = \varepsilon$$

Fonte de tensão real

- Qualquer bateria na prática
- Movimento das cargas afetado pela resistência interna r da bateria
- Há energia dissipada na fonte

(para o sentido de *i* como na figura)

Leis de Kirchhoff – Nó

Lei dos Nós = Conservação de Carga

Nó:

- Ponto do circuito onde três fios ou mais se encontram
- Lei dos nós: A soma algébrica das correntes é nula em um nó
- Não há acúmulo ou destruição de carga em um nó
- Convenção:
 - Corrente entrando: positivo
 - Corrente saindo: negativo

$$\sum i = 0$$

Nó
$$a: +i-i_1-i_2=0$$

Leis de Kirchhoff - Malha

Lei das Malhas = Conservação de Energia

Malha

- Percurso fechado em um circuito
- Lei das malhas: A soma algébrica das diferença de potencial é nula em uma malha
- Não há acúmulo ou destruição de energia potencial em uma

malha

- Convenção:
 - Ganho de energia: positivo
 - Perda de energia: negativo

Iniciando no ponto *a*:

$$+\varepsilon - Ri = 0$$

Aplicação das Leis de Kirchhoff

Fonte

- de A a B: $\Delta V = -\epsilon$ (perda)
- de B a A: $\Delta V = +\epsilon$ (ganho)

Capacitor

- de A a B: $\Delta V = -q/C$ (perda)
- de B a A: $\Delta V = +q/C$ (ganho)

Resistor

- de A a B: $\Delta V = -Ri$ (perda)
- de B a A: $\Delta V = +Ri$ (ganho)

Circuito de malha única

Através da energia

Em um intervalo de tempo dt:

• A equação de potência ($P = Ri^2$) estabelece que uma energia térmica aparece no resistor do circuito:

$$\rightarrow dU = Pdt = Ri^2 dt$$

Do princípio de conservação da energia temos:

$$\varepsilon i dt = R i^2 dt \Leftrightarrow \varepsilon = Ri$$

$$i = \frac{\mathcal{E}}{R}$$

cuja unidade é o ampère (A).

Circuito de malha única

Através do potencial

Regra das malhas de Kirchhoff:

A soma algébrica das variações de potencial encontradas ao longo de um caminho fechado qualquer de um circuito deve ser nula.

Partindo do ponto *a* no sentido da corrente:

$$V_a + \varepsilon - iR = V_a \Longrightarrow \varepsilon - iR = 0$$

$$i = \frac{\varepsilon}{R}$$

No caso de uma fonte real (com resistência interna r)

$$\varepsilon - ir - iR = 0$$

$$i = \frac{\varepsilon}{r + R}$$

Associação de resistores em série

Associação em série

- Mesma corrente passa através dos resistores
- Soma das diferenças de potencial entre as extremidades de cada resistor é igual à diferença de potencial aplicada

$$V = iR_1 + iR_2 = i \left(R_1 + R_2 \right) \Leftrightarrow V = R_{eq}i$$

Comparando:
$$R_{eq} = R_1 + R_2$$

Para três ou mais resistores em série:

$$R_{eq} = R_1 + R_2 + R_3 + \dots = \sum_{i} R_i$$

Associação de resistores em paralelo

Associação em paralelo

- Mesma diferença de potencial para cada resistor
- Soma das correntes passando através de cada resistor é igual à corrente total

$$i_1 = \frac{V}{R_1}, \quad i_2 = \frac{V}{R_2}$$

$$i = i_1 + i_2 = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \Leftrightarrow i = \frac{V}{R_{eq}}$$

Comparando:
$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Para três ou mais resistores em paralelo:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots = \sum_{i} \frac{1}{R_i}$$

Estratégia de resolução

Etapas

- Desenhar o circuito colocando em evidência as associações
 - Série: R uma depois da outra
 - Paralelo: Separação da corrente
 - Pode deslocar uma junção de fios ao longo de um fio
- Calcular a R_{eq} da associação menor
- Desenhar o novo circuito
- Calcular a R_{eq} da associação menor
- ... até obter somente uma R_{eq}

Estratégia de resolução - várias malhas

Etapas

- Identificar os nós
- Numerar cada ramo (entre dois nós)
- Atribuir uma corrente i_i em um sentido hipotético
- Escrever a lei dos nós para (n-1) nós
- Escrever a lei das malhas passando ao menos uma vez por ramo (sentido arbitrário)
- Resolver o sistema de equações
- Se uma corrente é negativa, seu sentido é oposto ao suposto

Verificação

• Soma das potências fornecidas pelas fontes igual a soma das potências dissipadas nos resistores

Exemplo - Circuito de várias malhas

Duas malhas: Calcular i_1, i_2, i_3

Nó a:
$$i_3 = i_2 + i_1$$
 (1)

Malha (I): sentido anti-horário a partir de a

$$-i_{1}R_{1} - \varepsilon_{1} - i_{1}R_{1} + \varepsilon_{2} + i_{2}R_{2} = 0 \quad (2)$$

Malha (II): sentido horário a partir de a

$$+i_3R_1 - \varepsilon_3 + i_3R_1 + \varepsilon_2 + i_2R_2 = 0$$
 (3)

As equações (1), (2) e (3) podem ser apresentadas na forma:

$$\begin{pmatrix} 1 & 1 & -1 \\ 2R_1 & -R_2 & 0 \\ 0 & R_2 & 2R_1 \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \varepsilon_2 - \varepsilon_1 \\ \varepsilon_3 - \varepsilon_2 \end{pmatrix}$$

$$AI = B$$

⇒ Resolver o sistema de equações lineares não-homogêneo:

Teorema de Cramer

Sejam as matrizes C_1 , C_2 , C_3 ... C_N obtidas pela substituição das colunas 1, 2, 3... N da matriz A, pelo vetor B, respectivamente. Assim a corrente i_j (no ramo j) será dada por:

$$i_j = \frac{\det[C_j]}{\det[A]}$$

Solução – Caso particular

Sejam:
$$\begin{cases} \varepsilon_1 = 3,0 \text{V}, & \varepsilon_2 = 6,0 \text{V} \\ R_1 = 2,0 \Omega, & R_2 = 4,0 \Omega \end{cases}$$

Calcular i_1 , i_2 , i_3

Nó a:
$$i_3 = i_2 + i_1$$
 (1)

Malha (I): sentido anti-horário a partir de a

$$-i_1R_1 - \varepsilon_1 - i_1R_1 + \varepsilon_2 + i_2R_2 = 0$$

$$4.0i_1 - 4.0i_2 = 3.0 \quad (2)$$

Malha (II): sentido horário a partir de a

$$+i_3R_1 - \varepsilon_2 + i_3R_1 + \varepsilon_2 + i_2R_2 = 0$$

Resolvendo (1), (2) e (3) teremos:

$$\begin{cases} i_1 = 0,50 & A \\ i_2 = -0,25 & A \Rightarrow 0,25 & A \\ i_3 = 0,25 & A \end{cases}$$

Sinal negativo de i_2 : Sentido *real* da corrente i_2 é contrário ao indicado na figura

Resolver com o método geral do slide anterior

Amperimetros e voltimetros

Amperimetro

- Instrumento usado para medir corrente elétrica
- Sempre colocado em série no circuito onde se quer medir a corrente
- Para que a resistência do amperímetro (R_A) não altere o valor da corrente a ser medida:

$$\longrightarrow R_A << (r + R_1 + R_2)$$

Voltímetro

- Instrumento usado para medir diferença de potencial
- Sempre colocado em paralelo com o trecho onde se quer medir a diferença de potencial
- Para que a resistência do voltímetro (R_V) não altere o valor da diferença de potencial a ser medida:

$$R_V >> R_1$$

Na prática, um único instrumento (*multímetro*) realiza as duas medidas anteriores, além da medida das resistências.

Questão Moodle

O circuito abaixo mostra quatro resistores e quatro amperímetros ligados à fonte de $fem\ V$. Sabese que a corrente no amperímetro A_1 é 6,0 A e que a corrente no amperímetro A_2 é 2,0 A. Se a resistência de R_4 é dada, que outra informação é necessária para determinar o valor de V, a fem da bateria?

Escolha uma:

- a. a leitura do amperímetro A₄;
- b. a resistência de R₁;
- \bigcirc c. a leitura do amperímetro A_4 e o valor da resistência de R_1 ;
- d. a leitura do amperímetro A₄ e o valor da resistência de R₂;
- e. as resistências de R₁, R₂ e R₃;

Circuito RC

A corrente em um circuito fica constante se há um capacitor?

Não, o capacitor se carrega ou se descarrega, modificando a corrente

Circuitos RC

- Circuitos contendo resistores e capacitores
- Correntes e potenciais variam com o tempo
 - Apesar das fontes (fem) que alimentam estes circuitos serem independentes do tempo, ocorrem efeitos dependentes do tempo com a introdução de capacitores

Estes efeitos são úteis para controle do funcionamento de máquinas e motores

Carregar um capacitor

Chave S fechada em t = 0

- A carga inicial do capacitor é nula
- Assim que *S* se fecha, surge uma corrente dependente do tempo no circuito
- Essa corrente inicia o processo de carga do capacitor

Carregar um capacitor - Carga

Resolver (estudar) este circuito é encontrar a expressão da corrente i(t) que satisfaça à equação:

$$\varepsilon - \frac{q}{C} - iR = 0 \qquad \text{(lei das malhas)}$$

Como
$$i = \frac{dq}{dt}$$
: $\frac{dq}{dt} = \frac{\varepsilon}{R} - \frac{q}{RC} \Rightarrow \frac{dq}{dt} = \frac{C\varepsilon}{RC} - \frac{q}{RC} = -\frac{q - C\varepsilon}{RC}$:

$$\int_{0}^{q} \frac{dq}{q - C\varepsilon} = -\frac{1}{RC} \int_{0}^{t} dt \iff \ln\left(\frac{q - C\varepsilon}{-C\varepsilon}\right) = -\frac{t}{RC} \implies q - C\varepsilon = -C\varepsilon e^{-t/RC}$$
(faz-se $u = q - C\varepsilon$: $du = dq$)

$$q(t) = C\varepsilon(1 - e^{-t/RC})$$

$$= Q_f(1 - e^{-t/RC})$$

onde $Q_f \equiv C\varepsilon$ é a carga final do capacitor

Carregar um capacitor - Corrente

$$i = \frac{dq}{dt} \longrightarrow i(t) = C\varepsilon \left(\frac{1}{RC}e^{-t/RC}\right)$$

$$i(t) = \frac{\varepsilon}{R}e^{-t/RC}$$

$$= i_0 e^{-t/RC}$$
onde $i_0 \equiv \frac{\varepsilon}{R}$ é a corrente inicial

Observe que a corrente tem valor inicial igual a \mathcal{E}/R e decresce até zero, quando capacitor se torna completamente carregado

Um capacitor em processo de carga, inicialmente (*t*=0) funciona como um fio de ligação comum em relação à corrente de carga.

Decorrido um longo tempo, ele funciona como um fio rompido.

$$\begin{cases} t = 0 \Rightarrow q(0) = 0, i(0) = \frac{\mathcal{E}}{R} \\ t = \infty \Rightarrow q(\infty) = C\mathcal{E}, i(\infty) = 0 \end{cases}$$

Circuito RC - Constante de tempo

O produto RC que aparece nas expressões de q(t) e i(t) tem dimensão de tempo e é a chamada *constante de tempo capacitiva* do circuito RC:

$$\tau = RC$$

Se
$$t = RC \implies q(t) = 0.63 C\varepsilon$$
 e $i(t) = 0.37 \frac{\varepsilon}{R}$

Carregar um capacitor - Exemplo

http://ngsir.netfirms.com/englishhtm/RC_dc.htm

(carga de um capacitor)

Descarregar um capacitor

Lei das malhas:
$$-Ri + \frac{q}{C} = 0$$

Como
$$i = -\frac{dq}{dt} \longrightarrow R\frac{dq}{dt} + \frac{q}{C} = 0$$

Cujas soluções são:
$$\begin{cases} q(t) = Qe^{-t/RC} \\ i(t) = -\frac{dq}{dt} = i_0 e^{-t/RC} ; \quad i_0 \equiv \frac{Q}{RC} \end{cases}$$

No processo de descarga, tanto a carga como a corrente diminuem exponencialmente com o tempo.

$$t=0 \Rightarrow q(0)=Q; i(0)=i_0$$

 $t=\infty \Rightarrow q(\infty)=0; i(\infty)=0$

Questão Moodle

Suponha que a corrente que carrega um capacitor é mantida constante. Qual dos gráficos baixo descreve corretamente a diferença de potencial através do capacitor em função do tempo?

Descarregar um capacitor

Chave S fechada em t = 0

- A carga inicial do capacitor é Q
- O capacitor vai se descarregar através de R
- Como variam agora q(t) e i(t) no circuito?

$$t=0 \implies q(0) = Q$$
$$t \neq 0 \implies q(t)$$

Descarregar um capacitor

Lei das malhas:
$$-Ri + \frac{q}{C} = 0$$

Como
$$i = -\frac{dq}{dt} \longrightarrow R\frac{dq}{dt} + \frac{q}{C} = 0$$

Cujas soluções são:
$$\begin{cases} q(t) = Qe^{-t/RC} \\ i(t) = -\frac{dq}{dt} = i_0 e^{-t/RC} ; i_0 = \frac{Q}{RC} \end{cases}$$

No processo de descarga, tanto a carga como a corrente diminuem exponencialmente com o tempo.

$$t=0 \Rightarrow q(0)=Q; i(0)=i_0$$

 $t=\infty \Rightarrow q(\infty)=0; i(\infty)=0$

Exemplo

28

Um capacitor de capacitância C está descarregando através de uma resistência R.

a) Após 4 constantes de tempo (t = 4RC), qual a porcentagem de carga que ainda resta no capacitor em relação ao seu valor de carga inicial?

$$q = Q e^{-t/RC} \Rightarrow q(4RC) = Qe^{-\frac{4RC}{RC}} \Rightarrow$$

$$\frac{q}{Q} = e^{-4} = 0.018 \Rightarrow 1.8\% de Q.$$

b) Em que instante a energia armazenada no capacitor será igual à um quarto do seu valor inicial ?

$$U = \frac{q^2}{2C} = \frac{Q_0^2}{2C} e^{-2t/RC} = \frac{1}{4} U_0 = \frac{1}{4} \frac{Q_0^2}{2C}$$

$$\ln \frac{1}{4} = -\frac{2t}{RC} \implies t = RC \ln 2 \cong 0,70\tau.$$

c) Qual é a energia dissipada no resistor durante a descarga do capacitor?

R: $U = \frac{Q^2}{2C}$. Por quê? (Reobtenha esta resposta integrando $dU = Ri^2 dt$)

Resumo

- Fonte
 - Mantém uma diferença de potencial

- Associação de resistores
 - Em série

$$R_{eq} = \sum_{i} R_{i}$$

- Leis de Kirchhoff
 - Lei dos nós

$$\longrightarrow \sum i = 0$$

- Circuitos RC
 - Carga

$$q(t) = C\varepsilon(1 - e^{-t/RC})$$

- Em paralelo $\frac{1}{R_{eq}} = \sum_{i} \frac{1}{R_{i}}$
- Lei das malhas

Descarga

 $q(t) = Qe^{-t/RC}$

Desafio: Resolver o circuito abaixo

Lista de exercícios — Capítulo 27

Informações complementares

Os exercícios do Livro texto capítulo Circuitos:

Consultar:

https://www.ggte.unicamp.br/ea

Aulas gravadas:

http://lampiao.ic.unicamp.br/weblectures (Prof. Roversi)

ou

UnivespTV e Youtube (Prof. Luiz Marco Brescansin)