

IEL – protokol k projektu

Marek, Pazúr xpazurm00

15. prosince 2023

Obsah

1	Příklad 1	2
2	Příklad 2	8
3	Příklad 3	12
4	Příklad 4	16
5	Příklad 5	20
6	Shrnutí výsledků	24

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$	
В	95	115	650	730	340	330	410	830	340	220	

Metoda postupného zjednodušování obvodu

Krok 1 - Spojení paralelních rezistorů R_5 , R_6 do R_{56} a sériově zapojených rezistorů R_7 , R_8 do R_{78} .

$$R_{56} = \frac{R_5 \times R_6}{R_5 + R_6} = \frac{410 \times 830}{410 + 830} = 274.4355\Omega$$

$$R_{78} = R_7 + R_8 = 340 + 220 = 560\Omega$$

Krok 2 - Součet napětí zdrojů U_1 a U_2 .

$$U = U_1 + U_2 = 95 + 115 = 210V$$

Krok 3 - Transfigurace trojúhelníku $R_1,\,R_2,\,R_3$ na hvězdu $R_A,\,R_B,\,R_C.$

$$R_A = \frac{R_1 \times R_2}{R_1 + R_2 + R_3} = \frac{650 \times 730}{650 + 730 + 340} = 275.8721\Omega$$

$$R_B = \frac{R_1 \times R_3}{R_1 + R_2 + R_3} = \frac{650 \times 340}{650 + 730 + 340} = 128.4884\Omega$$

$$R_C = \frac{R_2 \times R_3}{R_1 + R_2 + R_3} = \frac{730 \times 340}{650 + 730 + 340} = 144.3023\Omega$$

Krok 4 - Spojení sériově zapojených rezistorů $R_B,\,R_{56}$ do R_{B56} a $R_C,\,R_4$ do R_C4 .

$$R_{B56} = R_B + R_{56} = 128.4884 + 274.4355 = 402.9239\Omega$$

$$R_{C4} = R_C + R_4 = 144.3023 + 330 = 474.3023\Omega$$

Krok 5 - Spojení paralelně zapojených rezistorů $R_{B56},\,R_{C4}$ do $R_{RBC456}.$

$$R_{BC456} = \frac{R_{B56} \times R_{C4}}{R_{B56} + R_{C4}} = \frac{402.9239 \times 474.3023}{402.9239 + 474.3023} = 217.8546\Omega$$

Krok 6 - Vyjádření R_{EKV} ze zbylých, sériově zapojených rezistorů R_A , R_{BC456} , R_{78} .

$$R_{EKV} = R_{ABC45678} = R_A + R_{BC456} + R_{78} = 275.8721 + 217.8546 + 560 = 1053.7267\Omega$$

Nyní lze ze zjednodušeného obvodu s jedním zdrojem a rezistorem (R_{EKV}) snadno vypočítat celkový proud I procházející obvodem.

Výpočet proudu

$$U = 210V$$

$$R_{EKV} = 1053.7267\Omega$$

$$I = ?$$

$$I = \frac{U}{R} = \frac{210}{1053.7267} = 0.1993A$$

Tímto jsme získali hodnotu celkového proudu v obvodu I=0.1993A, což nám umožňuje řešit obvod opačným směrem a dopočítat zbylé, neznáme hodnoty.

Nyní již jdeme opačným směrem - z obvodu níže lze pomocí Ohmova zákonu vypočítat napětí na rezistorech $R_A,\,R_{BC456},\,R_{78}$

$$U_{RA} = R_A \times I = 275.8721 \times 0.1993 = 54.9793V$$

$$U_{RBC456} = R_{BC456} \times I = 217.8546 \times 0.1993 = 43.4168V$$

$$U_{R78} = R_{78} \times I = 560 \times 0.1993 = 111.6039V$$

Již známe napětí na rezistoru R_{BC456} , tudíž po "přepojení"rezistorů zpátky na **paralelní dvojci** R_{B56} a R_{C4} , víme, že napětí uvnitř jejich smyčky bude na obou rezistorech stejné (lze ověřit 2. Kirchhoffovým zákonem).

$$U_{RBC456} = U_{RB56} = U_{RC4} = 43.4168V$$

S touto informací vypočítáme proudy protékající oběma větvemi - I_{RB56} pomocí Ohmova zákonu a I_{RC4} rozdílem celkového proudu I a I_{RB56} (1. Kirchhoffův zákon).

$$I_{RB56} = \frac{U_{RB56}}{R_{B56}} = \frac{43.4168}{402.9239} = 0.1078A$$

$$I_{RC4} = I - I_{RB56} = 0.1993 - 0.1078 = 0.0915A$$

S hodnotami proudů na větvích I_{RB56} a I_{RC4} bychom mohli dopočítat zbývající hodnoty napětí na všech rezistorech v dané smyčce, avšak zde jen postačí zjistit, kolik napětí odebírá rezistor R_4 , jelikož se chystáme využít 2. Kirchhofova zákonu (viz. další krok).

$$U_{R4} = I_{RC4} \times R_4 = 0.0915 \times 330 = 30.2076V$$

Zpětná transfigurace hvězdy na trojuhelník - cílem příkladu je zjistit proud a napětí na rezistoru R_2 , což nyní dokážeme pomocí 2. Kirchhofova zákonu, kde se součet napětí ve smyčce se musí rovnat nule.

Známe napětí zdroje, na rezistorech R_4 a R_{78} , takže jako předposlední krok postačí jednoduchá rovnice.

$$-U + U_{R2} + U_{R4} + U_{R78} = 0$$

$$-210 + U_{R2} + 30.2076 + 111.603896 = 0$$

$$U_{R2} = 210 - 30.2076 - 111.603896$$

$$U_{R2} = 68.1885V$$

Výpočet proudu I_{R2}

$$I_{R2} = \frac{U_{R2}}{R_2} = \frac{68.1885}{730} = 0.0934A$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
\mathbf{E}	250	150	335	625	245	600	300

Metoda Théveninovy věty

Z původního obvodu lze vytvořit náhradní, zjednodušený obvod se skutečným zdrojem napětí U_i a vnitřním odporem R_i

Krok 1 - Výpočet U_i (Odpojení zátěže a výpočet napětí na výstupních svorkách naprázdno)

Zde si pro získání hodnoty U_i pomůžeme postupným zjednodušováním obvodu.

Nejdříve vypočítáme R_{EKV}

Spojíme rezistory R_2,R_3 a R_4,R_5 v sérii

$$R_{23} = R_2 + R_3 = 335 + 625 = 960\Omega$$

 $R_{45} = R_4 + R_5 = 245 + 600 = 845\Omega$

Poté nově vzniké rezistory R_{23} , R_{45} spojíme paralelně

$$R_{2345} = \frac{R_{23} \times R_{45}}{R_{23} + R_{45}} = \frac{960 * 845}{960 + 845} = 449.4183\Omega$$

Vyjádření R_{EKV}

$$R_{EKV} = R_{12345} = R_1 + R_{2345} = 150 + 449.4183 = 599.4183\Omega$$

Výpočet celkového proudu v obvodu

$$I = \frac{U}{R_{EKV}} = \frac{250}{599.4183} = 0.4171A$$

Výpočet napětí na větvi pro získání proudu I_2

Vypočítáme napětí U_{R1} a odečteme od celkového napětí ve smyčce, tímto získáme napětí na větvi s rezistory $R_2,\,R_3$

$$U_{R1} = I * R_1 = 0.4171 * 150 = 62.5650V$$

 $U_{R23} = U - U_{R1} = 250 - 62.5650 = 187.4350V$

$$I = I_1 + I_2$$
$$I_2 = I - I_1$$

$$I_1 = \frac{U_{R23}}{R_2 + R_3} = \frac{187.4350}{335 + 625} = 0.1952A$$

$$I_2 = I - I_1 = 0.4171 - 0.1952 = 0.2219A$$

Výpočet U_i

$$U_i = U_{R5} = R_5 * I_2 = 600 \times 0.2219 = 133.14V$$

Krok 2 - Výpočet R_i (Odpojení zátěže, zkratování zdroje a výpočet odporu mezi výstupními svorkami jako odpor náhradního zdroje R_i)

Postup

Spojení sériově zapojených rezistorů R_2 , R_3

$$R_{23} = R_2 + R_3 = 335 + 625 = 960\Omega$$

Spojení paralelně zapojených rezistorů R_{23} a R_1

$$R_{123} = \frac{R_1 \times R_{23}}{R_1 + R_{23}} = \frac{150 * 960}{150 + 960} = 129.7297\Omega$$

Spojení sériově zapojených rezistorů R_{123} a R_4

$$R_{1234} = R_{123} + R_4 = 129.7297 + 245 = 374.7297\Omega$$

Spojení paralelně zapojených rezistorů R_{1234} a $R_5={\rm získání\ hodnoty\ }R_i$

$$R_i = R_{12345} = \frac{R_{1234} \times R_5}{R_{1234} + R_5} = \frac{374.7297 * 600}{374.7297 + 600} = 230.6668\Omega$$

 \mathbf{Krok} 3 - Výpočet I_{R6} a U_{R6} v náhradním (ekvivalentním) obvodu

 $U_i = 133.14 V$ $R_i = 230.6668 \Omega$ $R_6 = 300 \Omega$

$$I = I_{R6} = \frac{U_i}{R_i + R_6} = \frac{133.14}{230.6668 + 300} = 0.2509A$$
$$U_{R6} = R_6 \times I_{R6} = 300 \times 0.2509 = 75.27V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Α	120	0.9	0.7	53	49	65	39	32

Metoda uzlových napětí

Na začátek si pro usnadnění práce a "zpřehlednění"obvodu označíme všechny uzly a proudy protékající větvemi.

Jeden z uzlů, označený R, slouží jako referenční uzel s nulovým potenciálem.

Krok 1 - sestavení rovnic podle 1. Kirchhofova zákonu

1. Kirchhofův zákon tvrdí, že algebraický součet proudů v uzlu je roven nule, tudíž si pro každý uzel vytvoříme rovnici, která tento vztah popisuje.

Ze zadání již známe ideální zdroje proudu: $I_1=0.9\mathrm{A},\,I_2=0.7\mathrm{A}$

Rovnice uzlů

$$A: 0.9 + I_{R2} - I_{R1} = 0$$

$$B: 0.7 - I_{R2} - I_{R3} = 0$$

$$C: I_{R3} - 0.7 - I_{R4} + I_{R5} = 0$$

Abychom mohli ve výpočtu SLR pokračovat, tak si musíme postupně vyjádřit všechny proudy I_{R1} až I_{R5}

Krok 2 - vyjádření proudů (pomocí rozdílu potenciálů mezi uzly)

Nejdříve si zvolíme větev, na které protéká požadovaný proud I_{Rn} a vytvoříme si podle ní náhradní obvod.

Například chceme zjistit I_{R2} :

Využijeme 2. Kirchhoffův zákon (kde algebraický součet napětí ve smyčce se rovná nule) pro danou smyčku ve směru proudu.

$$U_{R2} + U_A - U_B = 0$$

$$U_{R2} = I_{R2} * R_2$$

$$I_{R2} * R_2 + U_A - U_B = 0$$

$$I_{R2} = \frac{U_B - U_A}{R_2} = \frac{U_B - U_A}{49}$$

Stejný postup platí pro všechny zbylé proudy.

Tudíž po vyjádření všech proudů máme:

$$I_{R1} = \frac{U_A}{53}$$

$$I_{R2} = \frac{U_B - U_A}{49}$$

$$I_{R3} = \frac{U_B - U_C}{65}$$

$$I_{R4} = \frac{U_C}{39}$$

$$I_{R5} = \frac{120 - U_C}{32}$$

\mathbf{Krok} 3 - dosazení do rovnic a uprava soustavy

Po dosazení proudů do rovnic získáme následující soustavu:

$$A: 0.9 + \frac{U_B - U_A}{49} - \frac{U_A}{53} = 0$$

$$B: 0.7 - \frac{U_B - U_A}{49} - \frac{U_B - U_C}{65} = 0$$

$$C: \frac{U_B - U_C}{65} - 0.7 - \frac{U_C}{39} + \frac{120 - U_C}{32} = 0$$

Soustavu rovnic si upravíme tak, abychom ji mohli napsat do maticového tvaru.

$$\begin{pmatrix} \frac{-1}{53} - \frac{1}{49} & \frac{1}{49} & 0 \\ \frac{1}{49} & \frac{-1}{49} - \frac{1}{65} & \frac{1}{65} \\ 0 & \frac{1}{65} & \frac{-1}{32} - \frac{1}{65} - \frac{1}{39} \end{pmatrix} \times \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} -0.9 \\ -0.7 \\ -3.05 \end{pmatrix}$$

Pomocí matice lze nyní "jednoduše"
vypočítat hodnota U_C použitím Cramerova pravidla.

$$|A| = \begin{vmatrix} \frac{-1}{53} - \frac{1}{49} & \frac{1}{49} & 0 \\ \frac{1}{49} & \frac{-1}{49} - \frac{1}{65} & \frac{1}{65} \\ 0 & \frac{1}{65} & \frac{-1}{32} - \frac{1}{65} - \frac{1}{39} \end{vmatrix} = \frac{-2621}{42133728}$$

$$|A_{U_C}| = \begin{vmatrix} \frac{-1}{53} - \frac{1}{49} & \frac{1}{49} & -0.9\\ \frac{1}{49} & \frac{-1}{49} - \frac{1}{65} & -0.7\\ 0 & \frac{1}{65} & -3.05 \end{vmatrix} = \frac{-12569}{3376100}$$

$$U_C = \frac{|A_{U_C}|}{|A|} = \frac{\frac{-12569}{3376100}}{\frac{-2621}{42133728}} = \frac{-0.00372293475}{-0.00006220669} = 59.8478V$$

Krok 4 - Stanovení napětí U_{R4} a proudu I_{R4}

$$U_{R4} = U_C = 59.8478V$$

$$I_{R4} = \frac{U_C}{R_4} = \frac{59.8478}{39} = 1.5346A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{L_2} = U_{L_2} \cdot \sin(2\pi f t + \varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

									200
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
В	2	4	11	15	100	85	220	95	80

Metoda smyčkových proudů

Převod jednotek - Předtím, než začneme řešit příklad, si převedeme fyzikální veličiny na stejné jednotky.

$$L_1 = 100 \text{mH} = 0.1 \text{H}$$

$$L_2 = 85 \text{mH} = 0.085 \text{H}$$

$$C_1 = 220\mu\text{F} = 220 \cdot 10^{-6}F = 0.00022 F$$

$$C_2 = 95\mu \text{F} = 90 \cdot 10^{-6} F = 0.00009 F$$

Nová tabulka pro přehlednost.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
В	2	4	11	15	0.1	0.085	0.00022	0.00009	80

Krok 1 - Určení úhlové rychlosti

$$\omega = 2\pi f = 2 \cdot 80\pi = 160\pi$$

$$160\pi = 502.6548rad \cdot s_{-1}$$

 $\mathbf{Krok}\ \mathbf{2}$ - Výpočet impendancí kondenzátorů a cívek

Vzorce pro výpočet:

$$Z_C = -\frac{j}{\omega \cdot C}$$

$$Z_L = j \cdot \omega \cdot L$$

Impendance kondenzátorů

$$Z_{C1} = -\frac{j}{\omega \cdot C_1} = -\frac{j}{160\pi \cdot 0.00022} = -9.0429j\Omega$$

$$Z_{C2} = \frac{j}{\omega \cdot C_2} = -\frac{j}{160\pi \cdot 0.00009} = -22.1049j\Omega$$

Impendance cívek

$$Z_{L1} = j \cdot \omega \cdot L_1 = 160\pi \cdot 0.1 = 50.2655j\Omega$$

$$Z_{L2} = j \cdot \omega \cdot L_2 = 160\pi \cdot 0.085 = 42.7257j\Omega$$

 \mathbf{Krok} 3 - Sestavení rovnic podle smyčkových proudů v obvodu

$$i_A: I_A \cdot (Z_{L1} + Z_{C1} + R_1 + R_2) + I_B \cdot (-Z_{C1} - R_1) + I_C \cdot (-R_2) = 0$$

$$i_B: I_A \cdot (-Z_{C1} - R_1) + I_B \cdot (Z_{C1} + R_1 + Z_{L2}) + I_C \cdot (-Z_{L2}) - u_1 = 0$$

$$i_C: I_A \cdot (-R_2) + I_B \cdot (-Z_{L2}) + I_C \cdot (Z_{L2} + R_2 + Z_{C2}) + u_2 = 0$$

Nyní rovnice lehce poupravíme a zároveň převedeme do maticového tvaru:

$$A = \begin{pmatrix} (Z_{L1} + Z_{C1} + R_1 + R_2) & (-Z_{C1} - R_1) & (-R_2) \\ (-Z_{C1} - R_1) & (Z_{C1} + R_1 + Z_{L2}) & (-Z_{L2}) \\ (-R_2) & (-Z_{L2}) & (Z_{L2} + R_2 + Z_{C2}) \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix}$$

Při pohledu na matici je zřejmé, že je **symetrická** podle hlavní diagonály (zvýrazněno barevně pro lepší viditelnost).

$$\begin{pmatrix} (Z_{L1} + Z_{C1} + R_1 + R_2) & (-Z_{C1} - R_1) & (-R_2) \\ (-Z_{C1} - R_1) & (Z_{C1} + R_1 + Z_{L2}) & (-Z_{L2}) \\ (-R_2) & (-Z_{L2}) & (Z_{L2} + R_2 + Z_{C2}) \end{pmatrix}$$

Krok 4 - Výpočet proudů I_A , I_B a I_C pomocí Cramerova pravidla (dosazené hodnoty)

$$|A| = \begin{vmatrix} (50.2655j - 9.0429j + 11 + 15) & (9.0429j - 11) & (-11) \\ (9.0429j - 11) & (-9.0429j + 11 + 42.7257i) & (-42.7257j) \\ (-15) & (-42.7257j) & (42.7257j + 15 - 22.1049j) \end{vmatrix}$$

$$\det(A) = -13035.2034 + 56853.0720j$$

$$|A_{IA}| = \begin{vmatrix} 0 & (9.0429j - 11) & (-11) \\ 2 & (-9.0429j + 11 + 42.7257j) & (-42.7257j) \\ -4 & (-42.7257j) & (42.7257j + 15 - 22.1049j) \end{vmatrix}$$

$$\det(A_{IA}) = -1326.5132 - 2239.638i$$

$$|A_{IB}| = \begin{vmatrix} (50.2655j - 9.0429j + 11 + 15) & 0 & (-11) \\ (9.0429j - 11) & 2 & (-42.7257j) \\ (-15) & -4 & (42.7257j + 15 - 22.1049j) \end{vmatrix}$$
$$\det(A_{IB}) = 5310.9718 - 1736.6256j$$

$$|A_{IC}| = \begin{vmatrix} (50.2655j - 9.0429j + 11 + 15) & (9.0429j - 11) & 0\\ (9.0429j - 11) & (-9.0429j + 11 + 42.7257j) & 2\\ (-15) & (-42.7257j) & -4 \end{vmatrix}$$

$$\det(A_{IC}) = 1374.3453 - 4162.1314j$$

$$I_A = \frac{|A_{IA}|}{|A|} = \frac{1326.5132 - 2239.638j}{-13035.2034 + 56853.0720j} = -0.0425 - 0.0136jA$$

$$I_B = \frac{|A_{IB}|}{|A|} = \frac{5310.9718 - 1736.6256j}{-13035.2034 + 56853.0720j} = -0.0494 - 0.0821jA$$

$$I_C = \frac{|A_{IC}|}{|A|} = \frac{374.3453 - 4162.1314j}{-13035.2034 + 56853.0720j} = -0.0710 + 0.0097jA$$

Krok 5 - Výpočet I_{L2}

Využijeme 1. Kirchhoffova zákonu, který tvrdí, že algebraický součet proudů v uzlu se rovná nule.

$$I_{L2} + I_C - I_B = 0$$

$$I_{L2} = I_B - I_C$$

$$I_{L2} = -0.0494 - 0.0821j - (-0.0710 + 0.0097j) = 0.0216 - 0.0918jA$$

Krok 6 - Konečný výpočet $u_{L2},\,|U_{L2}|$ a φ_{L2}

$$u_{L2} = Z_{L2} \cdot I_{L2} = 42.7257j \cdot (0.0216 - 0.0918jA) = 3.9222 + 0.9229iV$$

$$|U_{L2}| = \sqrt{Re(u_{L2})^2 + Im(u_{L2})^2} = \sqrt{(3.9222)^2 + (0.9229)^2} = 4.0293V$$

$$\varphi_{L2} = \arctan\frac{Im(u_{L2})}{Re(u_{L2})} = \frac{0.9229}{3.9222} = 0.2353rad = 13^{\circ}28'54"$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
	E	40	2	100	13
t = 0 s S U + (R	C	¹ c	

Analytické řešení RC obvodu

Popis rovnicemi:

1.
$$I = I_C = I_R = \frac{U_R}{R}$$

2.
$$(U_R + u_C) - U = 0$$

3.
$$u'_C = \frac{1}{c} \cdot I_c = \frac{I}{C}$$

Krok 1 - Vyjádření rovnice s $u_C^\prime,\,u_C$

Dosadíme 1. do 3. $\Rightarrow u_C' = \frac{U_R}{R \cdot C}$

Vyjádříme U_R z 2. $\Rightarrow U_R = U - u_C$

Dosadíme $\Rightarrow u'_C = \frac{U_R}{R \cdot C} = \frac{U - u_C}{R \cdot C}$

Dosadíme hodnoty ze zadání do rovnice a upravíme ji:

$$u_C' = \frac{40 - u_C}{200}$$

$$u_C' = \frac{40}{200} - \frac{u_C}{200}$$

$$u_C' + \frac{u_C}{200} = \frac{40}{200}$$

Je zřejmé, že nám vyšla nehomogenní, differenciální rovnice 1. řádu.

Krok 2 - Očekávané řešení

Očekávané řešní rovnice má tento tvar:

$$u_C(t) = k(t) \cdot e^{\lambda \cdot t}$$

Vytvoříme charakteristickou rovnici - λ

$$u_C' + \frac{u_C}{200} - \frac{40}{200}$$

$$\lambda + \frac{1}{200} = 0$$

$$\lambda = -\frac{1}{200}$$

Krok 3 - Derivace rovnice

Nyní dosadíme λ do očekávaného řešení rovnice:

$$u_C = k(t) \cdot e^{-\frac{t}{200}}$$

A zderivujeme:

$$u'_C = k'(t) \cdot e^{-\frac{t}{200}} + k(t) \cdot e^{-\frac{t}{200}} \cdot (-\frac{1}{200})$$

Nyní již známe $u_C^\prime,\,u_C,$ takže můžeme dosadit zpátky do rovnice:

$$u_C' + \frac{u_C}{200} = \frac{40}{200}$$

$$k'(t) \cdot e^{-\frac{t}{200}} + k(t) \cdot e^{-\frac{t}{200}} \cdot \left(-\frac{1}{200}\right) + k(t) \cdot e^{-\frac{t}{200}} \cdot \frac{1}{200} = \frac{40}{200}$$

Rovnici jde upravit (zvýrazněno barevně pro lepší viditelnost)

$$k'(t) \cdot e^{-\frac{t}{200}} + k(t) \cdot e^{-\frac{t}{200}} \cdot \left(-\frac{1}{200}\right) + k(t) \cdot e^{-\frac{t}{200}} \cdot \frac{1}{200} = \frac{40}{200}$$

Po upravě nám zbyde rovnice v tomto tvaru:

$$k'(t) \cdot e^{-\frac{t}{200}} = \frac{40}{200}$$

$$k'(t) = \frac{40}{200} \cdot e^{\frac{t}{200}}$$

Krok 4 - Integrace rovnice

$$k'(t) = \frac{40}{200} \cdot e^{\frac{t}{200}}$$

$$k(t) = \frac{40}{200} \cdot \int e^{\frac{t}{200}} dt$$

$$k(t) = \frac{40}{200} \cdot \frac{200}{1} \cdot e^{\frac{t}{200}} + k$$

$$k(t) = 40 \cdot e^{\frac{t}{200}} + k$$

Krok 5 - Dosazení do očekávaného řešení

$$u_C(t) = (40 \cdot e^{\frac{t}{200}} + k) \cdot e^{-\frac{t}{200}}$$

Rovnici jde upravit vykrácením po vynásobení (zvýrazněno barevně pro lepší viditelnost)

$$u_C(t) = 40 \cdot e^{\frac{t}{200}} \cdot e^{-\frac{t}{200}} + k \cdot e^{-\frac{t}{200}}$$

$$u_C(t) = 40 + k \cdot e^{-\frac{t}{200}}$$

Krok 6 - Dosazení počáteční podmínky $u_C(\mathbf{t})=13\mathrm{V},$ kde $\mathbf{t}{=}0\Rightarrow$ výpočet konstanty k

$$u_C(0) = u_{CP}$$

$$u_{CP} = 40 + k \cdot e^{-\frac{t}{200}}$$

$$13 = 40 + k \cdot e^{-\frac{0}{200}}$$

$$13 = 40 + k$$

$$k = -27$$

Krok 7 - Dokončení rovnice

Integrační konstantu k použijeme v rovnici a vyjde nám:

$$u_C(t) = 40 - 27 \cdot e^{-\frac{t}{200}}$$

Krok 8 - Provedení kontroly (dosazením hodnot do původní rovnice) Nejdříve si vyjádříme u_C^\prime

$$u'_C + u_C \cdot \frac{1}{200} = \frac{40}{200}$$

$$u_C(t) = 40 - 27 \cdot e^{-\frac{t}{200}}$$

$$u'_C + (40 - 27 \cdot e^{-\frac{t}{200}}) \cdot \frac{1}{200} = \frac{40}{200}$$

$$u'_C + \frac{40}{200} - \frac{27 \cdot e^{-\frac{t}{200}}}{200} = \frac{40}{200}$$

 $u_C' = \frac{27 \cdot e^{-\frac{t}{200}}}{200}$

Nyní dosadíme do sestavené differenciální rovnice s časem t=0

$$u'_C + u_C \cdot \frac{1}{200} = \frac{40}{200}$$

$$\frac{27 \cdot e^{-\frac{t}{200}}}{200} + \frac{40 - 27 \cdot e^{-\frac{t}{200}}}{200} = \frac{40}{200}$$

$$\frac{27 \cdot e^0}{200} + \frac{40 - 27 \cdot e^0}{200} = \frac{40}{200}$$

$$\frac{27}{200} + \frac{13}{200} = \frac{40}{200}$$

$$\frac{40}{200} = \frac{40}{200}$$

$$0 = 0$$

Levá strana se rovná pravé, tudíž zkouška proběhla úspěšně.

Shrnutí výsledků

Příklad	Skupina	$ m V\acute{y}sledky$			
1	В	$U_{R2} = 68.1885V$	$I_{R2} = 0.0934A$		
2	E	$U_{R6} = 75.27V$	$I_{R6} = 0.2509A$		
3	A	$U_{R4} = 59.8478V$	$I_{R4} = 1.5346A$		
4	В	$ U_{L_2} = 4.0293V$	$\varphi_{L_2} = 13^{\circ}28'54$ "		
5	E	$u_C(t) = 40 - 27 \cdot e^{-\frac{t}{200}}$			