第四篇 图论

主要内容

- 第七章 无向图
- 第八章 有向图

第七章 无向图

н

主要内容

- 7.1 三个古老的问题
- 7.2 若干基本概念
- 7.3 路径、圈及连通性
- 7.4 Euler图和Hamilton图
- 7.5 平面图
- 7.6 图的着色
- 7.7 树与生成树

7.1 三个古老的问题——图论的起源

■第一个图论问题

□Könisberg's seven bridge problem(哥尼斯堡七桥问

七桥问题与一笔画

是否可从某处出发经过每座桥恰只一次, 然后再回到起点?

- ■瑞士数学家Euler在1736年证明此问题无解
- Euler——图论之父

环游世界与Hamilton问题

■十二面体的20个顶点代表世界上20个城市, 能否从某个城市出发在十二面体上依次经 过每个城市恰好一次最后回到出发点?

Hamilton圈 (环球旅行游戏)

地图着色与四色问题

- 任意一张地图,最少 需要用多少颜色來着 色,才能让相邻的两 块涂上不同的颜色?
 - □ 1852年提出四色猜想
 - □ 1879年A.Kempe宣布 证明了四色定理
 - □ 1890年Heawood发现 Kempe的错误
 - □ 1976年美国数学家K. Appel及W.Haken在计 算机的辅助下解決

图论的应用

- ■广播频道与着色问题
 - □当两个广播电台距离太近时,若给它们相同的频道会产生干扰。如何设置每个电台的频道,使 得它们既不相互干扰,又使频道总数最少?

广播频道与着色问题

■图的点着色(Coloring)

药品存放与无关集

- ■化学药品存放问题
 - □ 某些药品放置太近可能爆炸,有两个实验室,最多能有多少药品能放在一起

药品存放与无关集

配对问题与匹配(Matching)

- ■配对问题
 - □有一些机器人要分配任务,并不是所有机器人 都能够完成所有的任务,要求每个机器人都要 分配一项工作,怎么分?

电灯管道与覆盖集(Covering)问题

- ■电灯管道问题
 - □某座办公大楼平面图如下,每道走廊都装设了电灯,其开关可设于此走廊两端的转角口其中之一。要使安裝了开关的转角口越少越好,要怎么安裝?

信息流传与广播问题(Broadcasting)

- ■信息流传问题
 - □班上有一件事情要宣布,班长想打电話告訴全班。但若他一个个打似乎太慢了。假设一个班有五十人,打一通电话需要一分钟,那总共就需要四十九分钟。但若是他打了第一个电话后,便请第一个同学再打给別人;第二通电话打了之后,又再请第二个同学打给別人;依此类推,但问题是,也许某些同学沒有某些同学的电话,那么这时,怎样在最短时间内打完所有电话?

۲

计算机网络与连通度(Connectivity)问题

- 计算机网络断线问题
 - □一公司内有多部计算机并连成网络,我们想知道其网络设计得好不好。考虑若有某线路毁损后,所有的机器是否仍可彼此互通?进一步,讨论该网络设计可保证在同时至多有几条线路毁损后仍互通?

7.2 若干基本概念

■图

- M
 - 定义7.2.1 无向图G是一个二元组<V,E>
 - □ *V* : vertex set 顶点集
 - 常写作*V*(*G*), 也称点(*point*), 结点(*node*), 接点(*junction*)
 - ■非空有限集
 - 它的元素,习惯上用数字或小写英文字母*a,b,c,u,v,w,x,y,z*等(或加足标)表示
 - □ *E* : edge set 边集合
 - 常写作*E*(*G*), 也称边(edge), 线(line), 枝(branch)
 - V中元素无序偶的可重集
 - 它的元素,常用字母e(可加足标)表示
 - 边e=(a,b)亦记为ab
 - 口有的书上将无向图G定义成一个三元组< V,E, $\psi>$,V是顶点集,E是边集,而 ψ 则是E到V中元素的无序偶之集的一个映射

М

图的图形表示

 $G=<V,E>=<\{a,b,c,d\},\{(a,b),(a,c),(b,d),(b,c),(d,c),(a,d),(b,b)\}>$

- r
 - 结点偶对可以是有序的,也可以是无序的
 - 若边*e*所对应的偶对<*a*,*b*>是有序的,则称*e*是有向边
 - □有向边简称弧,a叫弧e的始点,b叫弧e的终点
 - 若边*e*所对应的偶对(*a*,*b*)是无序的,则称*e*是 无向边
 - ■有向图
 - ■无向图
 - ■混合图

例

 $G'=<V',E'>=<\{a,b,c,d,e,f\},\{< a,b>,< b,a>,< b,c >,< c,c>,< a,d>,< e,e>\}>$

r

简单图

- 只讨论V是有限集的情况
 - \square 若#V(G)=p,#E(G)=q,则称G是一个(p.q)图
 - $\square p$ 称为图G的阶
 - □(1,0)图——孤立点或平凡图
 - □ (*p*,0)图(*p*≥2)——空图或零图
 - □ 若E(G)是一个普通集合(即每个元素的重度为1),且 $a \in V(G)$,(a,a) $\notin E(G)$,则称图G是一个简单图
 - 线(*a*,*a*)叫自环线
 - 表示重度为 $i(\ge 2)$ 的i条线叫做互相平行的
 - 简单图——没有自环线和平行线的图。

例

a •

• d

c •

• b

(5,0)图

■ 定义7.2.2

■ 定义7.2.3

- □与顶点u相关联(即以u为端点)的边的条数叫做u的**度**,用d(u)表示
 - 度为0的顶点——图的孤立点
 - 度为1的顶点——图的端点
 - 全由孤立结点构成的图称为零图
 - $\Delta(G)$ ——图G中顶点度的最大值
 - $\delta(G)$ ——图G中顶点度的最小值

例

$$d(1)=2$$
, $d(2)=d(3)=3$, $d(4)=d(5)=d(6)=4$, $d(7)=3$, $d(8)=1$, $d(9)=d(10)=0$, $\Delta(G)=4$, $\delta(G)=0$

正则图

- 各结点的度数均相同的图称为正则图,各结点的次数均为k时称为k度正则图
 - □3度正则图又叫三次图

完全图

■ p阶p-1度正则图叫做p阶完全图,用 K_p 表示

提问: p阶完全图有多少条边?

$$\frac{p(p-1)}{2}$$

٧

握手定理

■ 定理7.2.1 设G是一个(p,q)图,它的结点集合,则 **1** 图由度为奇数的证

$$\sum_{u \in G} d(u) = 2q$$

- 1. 图中度为奇数的顶点个数有什么特点?
- 2. 是否存在奇数阶奇数度正则图?

证明 图中顶点度之和是指图中与各个顶点相关联的边数之和,每条边(包括自环线和平行线)都将恰好被计数两次,所以定理成立。

推论1 在图中,次数为奇数的结点必为偶数个推论2 不存在奇数阶奇数度正则图

思考题

- p阶简单图中顶点的最大度数是多少?
- ■证明: 在任何 $p(p \ge 2)$ 阶简单图中,至少有两个顶点具有相同的度
- 设G是一个有19条边的图,且图中顶点的度至少是3,那么G的阶最大是多少?
- 说明下面的序列中哪些不可能是图的度序 列,哪些不可能是简单图的度序列
 - \Box (1,3,3,3,3,4,4,5)
 - \square (7,6,5,4,3,2,2)
 - \square (6,6,5,4,3,3,1)
 - \Box (2,4,4,3,3)

М

子图

- 设 G_1 和 G_2 是两个图
 - (1)若 $V(G_1) \subseteq V(G_2)$, $E(G_1) \subseteq E(G_2)$,则称 G_1 是 G_2 的子图,记作 $G_1 \leq G_2$;
 - (2)若 $V_1 = V_2$, $E_1 \subseteq E_2$,则称 G_1 是 G_2 的生成子图
 - (3)设 $W \subseteq V(G)$,所谓由W导致的G的导出子图<W>是这样一个图:它的顶点集是W,并且连接W中那些在G中原先被连接的顶点偶
 - 即在*G*中去掉不属于*W*的顶点以及与它们相关联的边后 留下的那部分

例

 H_2 ——G的含有五 个顶点的导出子图

 H_3 ——G的生成子图

图的运算

- 设 $G=\langle V, E\rangle$ 是一个图,且 $S\subseteq V$, $L\subseteq E$, $u\in V$, $e\in E$, $e'\notin E$
 - □ *G-S*, *G-u*——导出子图<*V-S*>, <*V*-{*u*}>
 - □ *G-L*, *G-e*——生成子图<*V*, *E-L*>, <*V*, *E*-{*e*}>
 - $\Box G+e'$ —< $V, <math>E \cup \{e'\}>$
 - □例

二部图

- 定义7.2.4
 - □若无向图G=<V,E>的顶点集合V(G)存在一个划分 $V(G)=V_1\cup V_2$,使得 $<V_1>$ 和 $<V_2>$ 都是空图,则称G为二部图或双图或二分图。类似可定义n部图。
 - □若 V_1 的每一顶点都与 V_2 的每一顶点邻接,则称G为完全二部图,记为 $K_{m,n}$,这里 $m= | V_1 | , n= | V_2 |$
 - 易知 $K_{m,n}$,是(m+n,mn)图

例

 $K_{3,3}$

二部图G

$$\sum_{u \in V_1} d(u) = \sum_{v \in V_2} d(v) = |E|$$

练习

■下列图中哪些是二部图?

证明: 必要性:若 $G = \langle V,E \rangle$ 为二部图, $C = (v_0,v_1,v_2,...,v_k,v_0)$ 为任一回路,不妨设 $v_0 \in V_1$,则 v_0,v_2,v_4 ... $\in V_1,v_1,v_3,v_5$... $\in V_2,k$ 必为奇数,不然,不存在边(v_k,v_0)。C中共有k+1条边,故C是偶数长度的回路。

充分性:不妨设G为任何回路长度均为偶数的连通图.取定 v_0 ∈V后,定义V的一个划分:

$$V_1 = \{v | d(v_0, v)$$
是偶数}(易见 $v_0 \in X$); $V_2 = V - X$

用反证法证 $V_2(V_1)$ 中的任二点不相邻接.若 $v_i,v_j \in V_2 \land (v_i,v_j) \in E$,则 $d(v_0,v_i),d(v_0,v_j)$ 都为奇数,由此推出G中有过 v_0,v_i,v_j 的长为奇数的回路的矛盾.

Ŋ

图的同构

- 定义7.2.5
 - □图G和图H称为同构的,记作 $G \cong H$,是指: 存在

$$f: V(G) \rightarrow V(H)$$
 1-1,onto

- 使得 $u,v \in G$, u Adj v iff f(u) Adj f(v), 即f保持 邻接关系不变
- □两图同构是相互的: $G\cong G' \Leftrightarrow G'\cong G$.
- □两图同构时不仅结点之间要有一一对应关系,而 且要求这种对应关系保持结点间的邻接关系.

例

$$f: V(G) \rightarrow V(G')$$

 $f(1)=a, f(2)=b, f(3)=c,$
 $f(4)=d$
 $\forall x,y \in V(G), 若x Adj y,$
则 $f(x) Adj f(y)$

$$1 \rightarrow a, 2 \rightarrow b, 3 \rightarrow c, 4 \rightarrow d, 5 \rightarrow e, 6 \rightarrow f$$

两图同构的必要条件

- ■结点数相等
- ■边数相等
- 度数相同的结点数相等
- 注意: 不是充分条件

м

思考题

■下图中G=(V, E)与G'=(V', E')同构吗?

补图

- 定义7.2.6
 - □ 设G和H是 K_p 的两个生成子图,若E(G)∩ E(H)= Φ , E(G)∪ E(H)= $E(K_p)$, 则称图H与图G互补,记为H= G^c 或H=G

۲

自补图

■ 若图H是图G的补图,且 $G\cong H$,则称G为自补图

自补图的阶只可能是4k,或4k+1

证明:设(n,m)图G是自补图,则 $\sim G$ 的边数为n(n-1)/2-m=m

: n(n-1)=4m

思考题

- 用红色和蓝色的笔给 K_6 的边着色。对于任何一种随意的涂边方式,总有一个所有边被涂上红色的 K_3 ,或一个所有边被涂上蓝色的 K_3
- 推论:任何6人的人群中,或者有3人互相认识,或者 有3人彼此陌生

顶点无关集

- 定义7.2.7
 - □图G的顶点无关集(或称孤立集、独立集)S是 V(G)的非空子集,且 $\forall u,v \in S$,u NAdj v
 - □图G的线无关集(或称一个匹配)L是 $E(G)\neq\Phi$ 的非空子集,且 $\forall e_1,e_2\in L$, e_1 NAdj e_2
 - 口含有最多边数的匹配称为G的最大匹配
 - □包含G的每个顶点的线无关集(即每个顶点的度都为1的生成子图)称为G的一个1-因子或一个完美匹配
 - □最大匹配与完美匹配均不唯一

匹配——例

交替链*

■ 如果二部图*G*中的一条链由不属于匹配*M*的 边和属于*M*的边交替组成,且链的两端点不 是*M*中边的端点,那么称此链为*G*中关于匹配 *M*的交替链

М

标记法求交替链*

■ 首先把X中所有不是M的边的端点用()加以标记,然后交替进行以下所述的过程I和II。

I.选一个X的新标记过的结点,比如说 x_i ,用(x_i)标记不通过在M中的边与 x_i 邻接且未标记过的Y的所有结点。对所有X的新标记过的结点重复这一过程

II.选一个Y的新标记过的结点,比如说 y_i ,用(y_i)标记通过M的边与 y_i 邻接且未标记过的X的所有结点。对所有Y的新标记过结点重复这一过程。

(1) 把x2标记(*)

- (2) 从 x_2 出发,应用过程I,把 y_1 和 y_3 标记 (x_2)
- (3)从 y_1 出发,应用过程II,把 x_3 标记 (y_1) 。从 y_3 出发,应用过程II,把 x_4 标记 (y_3)
- (4)从 x_3 出发,应用过程I,把 y_4 标记 (x_3) ,因 y_4 不是M中边的端点,说明已找到了一条交替链,即 (x_2,y_1,x_3,y_4)

М

求最大匹配*

- ■找出一条关于匹配M的交替链γ
- 把 γ 中属于M的边从M中删去,而把 γ 中不属于M的边添到M中,得到一新集合M、,此M'也是G的匹配
 - □添入的边自身不相交
 - □添入的边不与M中不属于γ的边相交
- 反复进行这样的过程,直至找不出关于*M*的 交替链为止

例

- 取一个初始匹配M={ x_1 y_5, x_3y_1, x_4y_3 }
- y₅, x_3y_1 , x_4y_3 }
 用标记法从点 x_2 开始求得一条交替链: $\gamma=(x_2y_1x_3y_4)$
- 用γ调整匹配M:将γ中属于M的边删去并将其中不属于M的其它边添加到M中,形成M'
- 因对M'用标记法只能 从y₂开始,但都不能求出 M'的任何交替链,故判 定M'是一个最大匹配

$$M = \{x_1 y_5, x_3 y_1, x_4 y_3\}$$

$$M = \{x_2 y_1, x_1 y_5, x_3 y_4, x_4 y_3\}$$

■ 某教研室有4位教师:A,B,C,D.A能教课程5;B能教 1,2;C能教1,4;D能教课程3.能否适当分配他们的任务,使4位教师担任4门不同课并且不发生安排教师教他不能教的课的情况?

М

7.3 路径、圈及连通性

■ 定义7.3.1

设 $v_i \in G$, $v_i Adj v_{i+1} (0 \le 0 \le n-1)$,则:

- 口顶点序列 $v_0v_1...v_n$ 称为一条 v_0 到 v_n 的长度为n的**通道**。 $若v_0=v_n$,则称它为**闭通道**
- 口没有重复边的通道称为迹,闭迹成为圈。
- □完全没有重复顶点的通道称为**路径**, 闭路径称 为**初等圈**
- □通常,用k-通道表示长度为k的通道

 $v_1v_2v_3v_4v_5$ 是一条4-路径 $v_1v_2v_3v_4v_3$ 是一条4-通道 $v_1v_2v_3v_4v_5v_6v_3v_7$ 是一条7-迹 $v_1v_2v_3v_4v_5v_6v_3v_7v_1$ 是一个圈(闭迹)

- 定义7.3.2 设 $G=\langle V,E\rangle$ 是图,且 v_i 、 v_i \in V。
 - □如果从 v_i 到 v_j 存在一条路径,则称 v_j 从 v_i 可达。 v_i 自身认为从 v_i 可达
 - □图G中,如果任两结点可达,则称图G是连通的 (connected),称G为连通图;
 - □称G的极大连通子图G'(没有包含G'的更大的子图G''是连通的)是G的连通分图(简称分图,或连通支,简称支)。
 - 口仅有一个孤立结点的图定义它为连通图

三支图

□在一个具有n个结点的简单图G=<V,E>中,如果 $从v_1$ 到 v_2 有一条通道,则 $从v_1$ 到 v_2 有一条长度不大于n-1的路径

证明: 假定从 v_1 到 v_2 存在一条通道(v_1 ,..., v_i ,..., v_2), 如果其中有相同的结点 v_k , 如(v_1 ,..., v_i ,..., v_k ,..., v_k ,..., v_2), 则删去从 v_k 到 v_k 的这些边,它仍是从 v_1 到 v_2 的路径,如此反复地进行直至(v_1 ,..., v_i ,..., v_2)中没有重复结点为止,得到一条路径。

路径的长度比所经结点数少1,图中共*n*个结点,故路径长度不超过*n*-1。

Ŋ.

■ 在图 $G=\langle V,E\rangle$ 中,从结点 v_i 到 v_j 最短路径的长度叫从 v_i 到 v_j 的距离,记为 $d(v_i,v_j)$ 。若从 v_i 到 v_j 不存在路径,则 $d(v_i,v_i)=\infty$

$$d(v_1, v_5) = 2$$
$$d(v_1, v_2) = 1$$
$$d(v_1, v_6) = 3$$

割点和桥

- 定义7.3.3
 - □ 设图G是连通图,若S \subset V(G),且G-ST连通或为孤立点,则称S为G的点分离集(割点集);若L \subseteq E(G),且G-LT连通,则称L为G的线分离集(割边集);
 - □特殊的,若 $u \in V(G)$,且G u不连通,则称u为G的<mark>割点</mark> (cut-node).若 $e \in E(G)$,且G e不连通,则称u为G的割边 (cut-edge) (**桥**, bridge)
- G的极大的没有割点的子图称为G的块(block)
- G的极大完全子图称为G的 $\overline{\mathbf{J}}$ (clique)
- *G*的每条边及每个非割点都恰好属于一个块,而 每条边至少属于一个团

٧

点连通度、线连通度

- 定义7.3.4
 - \square 设G是简单图,则G的点连通度 $\gamma(G)$ 是使连通图G变成不连通图必须去掉的顶点数;线连通度 $\varepsilon(G)$ 是使连通图G变成不连通图所必须去掉的边数。

$$\gamma(G) = \begin{cases} 0 & G$$
不连通
$$p-1 & G$$
为完全图
$$\min\{\#S \mid S \notin G\}$$
 G 为连通非完全图

$$\varepsilon(G) = \begin{cases} 0 & G$$
不连通
$$p-1 & G$$
为完全图
$$\min\{\#L \mid L \notin G\} \}$$
 G 为连通非完全图

М

■ 例7.3.4

$$\gamma(G)=2$$
, $\varepsilon(G)=3$

- 定理7.3.1
 - □对任何简单连通图G,有 $\gamma(G) \le \epsilon(G) \le \delta(G)$

М

■ 定理7.3.3

- $\square p$ 阶连通图至少有p-1条边证明:对p行数学归纳法
 - (1) p=1时,一阶连通图有0条边 p=2时,二阶连通图有1条边 p=3时,三阶连通图至少有2条边
 - (2) 假设k阶连通图至少有k-1条边, $k \ge 3$,现考虑k + 1阶连通图G,取G中一非割点u,由G的连通性可知 $d(u)\ge 1$,而G-u是k阶连通图,它至少有k-1条边,故G至少有k条边

r

■ 定理7.3.2

□设C(G)表示(p,q)图G的支图数,则有:

$$p$$
- $C(G) \leq q$

证明: 设 $p_1,p_2,...,p_{C(G)}$ 和 $q_1,q_2,...,q_{C(G)}$ 是G的每一个 分图的顶点数和边数

由于各分图都是连通子图,所以有 $q \geq p_i$ -1

则
$$\sum q_i \geq \sum (p_i - 1)$$
,即 $q \geq p - C(G)$

思考题

- (n,n-1)连通图至少有一个奇度顶点(n>1)
- 若图*G*恰有两个奇度顶点,则必有连接这两顶点 的路径
- 若图*G*中顶点的最小度数大于等于2,则图*G*必含 圈
- 至少有n条边的n阶图必含圈
- 若图G中顶点的最小度数大于等于k,则G有k长路
- 简单连通非完全图G中,必有顶点u,v,w,使得 u Adj v, v Adj w, u NAdj w
- 若图G不连通,则图G的补图连通

۲

思考题

- 顶点x是连通图G的割点,iff $\exists u,v \in G$,使得连接u和v的路径都经过x
- 边e是G的桥,iffe不包含在G的任一圈中
- 若连通图中每个顶点的度为偶数,则G无桥
- 设G是n阶简单图 $(n \ge 3)$,如果 $\forall u, v \in G$ 有 $d(u)+d(v) \ge n-1$

那么G是连通的

7.4 Euler 图和Hamilton图

- 定义7.4.1
 - □包含图中所有顶点、所有边的迹叫*Euler*迹,闭的*Euler*迹叫*Euler*圈,恰由*Euler*圈组成的图叫 *Euler*图。

■ 定理7.4.1

 \square 图G为欧拉图 iff G的每一结点的度均为偶数

证明(1)必要性

设图G是Euler图,那么它显然是一个连通图,另一方面,由于图G本身为一闭迹,它每经过一个顶点一次,便经过与之相关联的两条边,因而各顶点的度均为该闭迹经历此顶点的次数的两倍,从而均为偶数。

P

(2) 充分性

若G连通且每个顶点的度为偶数,那么由7.3节的习题 6. 可知图G必含圈。

设 C_1 是G的圈,若 C_1 =G,则G是Euler图。

否则考虑图 $G_1 = G - E(C_1)$,它由若干孤立点及若干非平凡连通支组成,且每个顶点的度为偶数,于是它的每个非平凡支必含圈

任取一个与 C_1 有公共顶点的圈 C_2 (由G的连通性,这样的圈必存在),若 $C_1 \cup C_2 = G$,则G是Euler图。

否则考虑图 $G_2 = G - (E(C_1) \cup E(C_2))$,它的每个顶点的度仍为偶数,从 G_2 中取一个与 C_1 或 C_2 有公共顶点的圈 C_3 ,再考虑图 $G_3 = G - (E(C_1) \cup E(C_2) \cup E(C_3))$

如此继续下去,设在第t步我们得到图:

G-($E(C_1)$ \cup $E(C_2)$ \cup ... \cup $E(C_t)$)为空图。

这样 $G = C_1 \cup C_2 \cup ... \cup C_t$ 为Euler图。

- 推论 图G含Euler迹,iffG连通且恰有两个奇度顶点
- 下图中的各图是否可以一笔画出?

思考题

- 有2k个奇度点的连通图至少需要几笔才能画下来?
- $\Diamond C(G)$ 表示图G的分图数,若G是Euler图,则 $\forall u \in G$, $C(G-u) \leq d(u)/2$

H

Hamilton图

- 定义7.4.2
 - □包含图中所有顶点(恰好一次)的路径叫 Hamilton路径,包含图中所有顶点(恰好一次) 的圈叫Hamilton圈,含有Hamilton圈的图叫 Hamilton图

Hamilton图的充分条件

- 定理7.4.2
 - □设G是p阶简单图(p≥3),如果 $\forall u,v \in G$:

$$d(u)+d(v)\geq p-1$$

那么G中有一条Hamilton路径

证明:前面已证这样的图是连通的,故G中任意两点之间有路 径,设 $P=v_1v_2...v_m$ 是G中最长的一条路径(长度为m-1)可证明它 就是一条Hamilton路径,即m=p

假若不然,若m < p,我们可以按以下方法构造一条m长路径: 在m < p时,由P的最长性可知, v_1 , v_m 只能与P中的点邻接, 分两种情况讨论

那么 $v_{\rm m}$ 必与 $v_{\rm i1-1}, v_{\rm i2-1}, \dots v_{\rm ik-1}$ 之一,比如说 $v_{\rm j-1}$ 邻接,否则与 $v_{\rm m}$ 邻接的顶点不超过m-1-k个,即 $d(v_{\rm l})$ + $d(v_{\rm m})$ $\leq k+m$ -1-k < p-1

矛盾

现在已经构造得到一个m长的圈,重新标记图的顶点使这个圈为 $u_1u_2...u_mu_1$

因为G连通,且前面假设 m < p,所以G中必有一个不属于该圈的顶点 u_x 与该圈的某一个顶点邻接

于是G有一条m长路径 $u_{\mathbf{x}}u_{\mathbf{R}}u_{\mathbf{R}+1}...u_{\mathbf{m}}u_{1}u_{2}...u_{\mathbf{R}-1}$,与P是最长路矛盾

۳.

■推论

□ $\forall u,v \in G, d(u)+d(v)\geq p$,那么p阶图G是 *Hamilton*图

证明:已证明这样的图中有Hamilton路径 $P=v_1v_2...v_p$

那么 v_p 必与 $v_{i1-1}, v_{i2-1}, \dots v_{ik-1}$ 之一,比如说 v_{j-1} 邻接,否则与 v_p 邻接的顶点不超过p-1-k个,即 $d(v_1)$ + $d(v_p) \le k+p$ -1-k<p

在这种情况下 $v_1v_2...v_{i-1}v_p v_{p-1}...v_i v_1$ 是一个Hamilton圈

۲

■注意: 定理7.4.2的条件是充分的但非必要

■ 推论 在简单无向图中,若每一顶点的度数大于等于 $p/2(p \ge 3)$,则该图是Hamilton图

Ŋ.

■ 例7.4.3 在七天内安排七门课的考试,要求由同一教师主考的两门课不能排在连续的两天。每位教师至多主考四门课。问是否存在这样的安排?

解:用七门考试课程作图G的七个顶点,两个顶点之间连线的条件是:这两个顶点代表的课程不是同一教师主考。这样,图G的每个顶点的度至少是3,所以任何两顶点的度和至少是6,于是存在满足题中要求的安排。

判断Hamilton图的方法

■ 【方法一】 标记法

□例7.4.4

- ■如果图中有Hamilton圈,那么它必然交替经过标有A的顶点和标有B的顶点
- ■图中共有九个顶点标有A,而仅有七个顶点标有B,所以该图中不可能存在Hamilton圈(也不可能含有Hamilton8) 路径)

٧

【方法二】 Hamilton 图的必要条件

- 定理7.4.3
 - □ 若G=<V,E>是Hamilton图,则对V的每个非空真子集S均有:C(G-S)≤ | S |

证明:设H是图的一个Hamilton圈,则对于S中的任一顶点 v_1 ,H- v_1 是一条包含G中除 v_1 外的所有顶点的路径。

若再取S中的顶点 v_2 ,则 $C(H-v_1-v_2) \le 2$,由数学归纳法原理可得 $C(H-S) \le |S|$

又H-S是G-S的一个生成子图,故

$$C(G-S) \leq C(H-S) \leq |S|$$

例

■注意: 是必要条件, 非充分条件

■推论 若图G=<V,E>含有Hamilton路径,则对于V的任意一个真子集S,有

$$C(G-S) \leq |S|+1$$

r

思考题

- 若G有度为1的顶点,G是否可能是Hamilton图
- 若G有割点,G是否可能是Hamilton图
- 若G有桥,G是否可能是Hamilton图

任意两点的度数之和为2n

■ 若 $m \neq n$, $K_{m,n}$ 是否是Hamilton图,若m = n呢?解:若 $m \neq n$, $K_{m,n}$ 不是Hamilton图不妨设m > n,|X| = m, |Y| = n则 $\omega(G-Y) = m > |Y| = n$ 若m = n, $K_{m,n}$ 是Hamilton图

Hamilton图对编码的一个应用

- 把圆周等分成2ⁿ个扇形,每一扇形代表一个n位二进制串用以表示旋转指针的位置.当n=3时右下图是一例.由于交界附近会出现误差,自然要求相邻二数尽可能接近,即要求相邻二数只有一位不同
- 此问题可归结为求立方图 $G=\langle V,E\rangle,V=\{000,001,...,$ 111 $\}$, $\langle ijk,uvw\rangle\in E$ 当且仅当条件成立,的一条Hamilton路.(解存在但不唯一)

练习

■ 己知关于a, b, c, d, e, f和g的下述事实:

a 讲英语; b 讲英语和汉语; c 讲英语、意大利语和俄语; d 讲日语和汉语; e 讲德国和意大利语; f 讲法语、日语和俄语; g 讲法语和德语

试问这七个人应如何排座位,才能使每个人都能和他身边的人交谈?

解:结点为客人;会共同语言的2结点相邻接.则问题归结为求此图的一条 Hamilton回路

加权图

- 定义7.4.3
 - 口在无向图*G*的每条边上都指定了一个正实数(某些时侯,可规定取非负实数)后,*G*就被称作加权图(也有称网络的)。边上的实数叫做这条边的权,边*uv*上的权记作 *W*(*u*,*v*)
 - W实际上是E(G)到正实数之集R+的函数,称它为图G的权函数
- 定义7.4.4
 - □ 在加权图G中,如果u,v,x∈ G ,总有

$$W(u,x)+W(x,v)\geq W(u,v)$$

则称W为距离权,G叫距离权加权图,W(u,v)叫边uv的长度,图G中通道、迹、路径或圈的长度是指它们所含边的长度之和。

巡回售货员问题(TSP)

- Traveling Salesman Problem巡回售货员问题
 - □一个售货员希望去访问n个城市的每一个,开始和结束于v₁城市。每两城市间都有一条直接通路,我们记v_i城市到v_j城市的距离为W(i,j),问题是去设计一个算法,它将找出售货员能采取的最短路径
 - □定义7.4.5
 - 在距离权加权(完全)图中求最短长度的Hamilton圈的问题叫巡回售货员问题

TSP问题的复杂性

- ■最原始的方法
 - □找出所有可能的旅行路线,从中选取路径长度最短的简单回路

序号	路径	长度
1	$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	18
2	$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	11
3	$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	23
4	$a \rightarrow b \rightarrow d \rightarrow b \rightarrow a$	11
5	$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	23
6	$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$	18

可能的解有(n-1)!/2个, $(n-1)!/2>2^{n-2}$, $(n\geq 4)$

М

NP完全问题(NP_Complete)

- non-deterministic polynomial ——非确定性多项式 (NP)
- ■P问题
 - □ 可以由一个确定型图灵机在多项式表达的时间内解决的问题
- NP问题
 - □ 在给定肯定解的情况下,可在多项式时间内验证的问题
- NP完全问题
 - □NP中"最难"的问题
 - □ TSP
 - □无法在多项式表达的时间内解决

练习

- ■请画出满足以下条件的图
 - □是Euler图,但不是Hamilton图
 - □不是Euler图,但是Hamilton图
 - □既是Euler图,又是Hamilton图
 - □既不是Euler图,又不是Hamilton图

图的矩阵表示

■ 设图 $G=\langle V,E\rangle$ 是一个简单图,其中 $V=\{v_1, v_2, ..., v_n\}$,n阶方阵 $A=(a_{ij})$,称为G的邻接矩阵。其中第i行i列的元素

$$a_{ij} = \begin{cases} 0 & v_i v_j \notin E \\ 1 & v_i v_j \in E \end{cases}$$

例 下图的邻接矩阵是:

r

$A^{(n)}$ 的元素的意义

■ 设G的邻接矩阵为A,则矩阵 $A^{(l)}$ (l=1,2,...)的第i行j列的元素 a_{ij} ^(l)表示图G中连接结点 v_i 到 v_i 长度为l的通道的数目

$$a_{ij}^{(2)} = \sum_{k=1}^{n} a_{ik} a_{kj}$$

■例:由矩阵的乘法运算,图的邻接矩阵A的各次幂如下:

$$A^{3} = \begin{bmatrix} 2 & 3 & 3 & 0 & 0 \\ 3 & 2 & 3 & 0 & 0 \\ 3 & 3 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{4} = \begin{bmatrix} 6 & 5 & 5 & 0 & 0 \\ 5 & 6 & 5 & 0 & 0 \\ 5 & 5 & 6 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

■利用邻接矩阵可知

- □判断G中任意两个结点是否相可达
 - 对l=1, 2, ..., n-1。依次检查 $A^{(l)}$ 的(i, j)项元素 $a_{ij}^{(l)}$ ($i\neq j$)是否为0,若都为0,那么结点 v_i 与 v_j 不可达,否则 v_i 与 v_i 之间有路径
- □计算结点v_i与v_i之间的距离
 - 若 $a_{ij}^{(1)}$, $a_{ij}^{(2)}$, ..., $a_{ij}^{(n-1)}$ 中至少有一个不为0,则可断定 v_i 与 v_j 可达,使 $a_{ij}^{(l)} \neq 0$ 的最小的 l 即为 $d(v_i,v_j)$

■ 设图 $G=\langle V,E\rangle$,其中 $V=\{v_1, v_2, ..., v_n\}$,n 阶方阵 $A=(P_{ij})$,称为G的可达性矩阵。其中第i行j列的元素

$$P_{ij} = \begin{cases} 1 & v_i \pi v_j \text{之间有路径} \\ 0 & \text{否则} \end{cases}$$

例 下图的可达性矩阵如下:

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

可达性矩阵的计算

- 通过对图G的邻接矩阵A进行运算可得到G的可达性矩阵P。其方法如下:
 - 1. 由A计算 A^2 , A^3 ,…, A^n
 - 2. 计算 $B=A+A^2+...+A^n$
 - 3. 将矩阵B中非零元素改为1,所得到的矩阵即为可达性矩阵P

练习

■ 设图G=<V,E>,其中 $V=\{v_1, v_2, ..., v_n\}$,邻接矩阵 $v_1 v_2 v_3 v_4$

$$A = \begin{bmatrix} v_1 & 0 & 1 & 0 & 1 \\ v_2 & 1 & 0 & 1 & 1 \\ v_3 & 0 & 1 & 0 & 0 \\ v_4 & 1 & 1 & 0 & 0 \end{bmatrix}$$

- (1) $d(v_1) = ? d(v_2) = ?$ $(d(v_1) = 2, d(v_2) = 3)$
- (2) 图G是否完全图? (N)
- $(3) v_1 到 v_2 长为3的路有几条? (4)$

7.5 平面图

■ 一工厂有*A、B、C*三个车间和*L、M、N*三个仓库, 因为工作需要车间与仓库间将设专用车道,为了避 免车祸,车道最好没有交点,问这可能吗?

线相交处没有顶点的交叉叫假交叉

Ŋ,

■ 一印刷电路板的设计如下图,但现在只剩下一层板子了,能否做到呢?

改变图的连线方式去掉一个图所有假交叉的过程叫平面嵌入

- 定义7.5.1
 - □说一个图是可平面的(planar),或简单地称其为<mark>平面图</mark> (plane graph),是指这个图能平面嵌入。一个不可平面的 图称为非平面图。
- 定理7.5.1 K₅不是平面图
- 定理7.5.2 K_{3.3}不是平面图
- K_5 和 $K_{3,3}$ 是两个最简单、但是非常重要的非平面图,称为Kuratowski图

称一个图中本质上不能去掉的假交叉个数为图的交叉数,交叉数加1叫做这个图的厚度(thickness)

H

平面图的面(face)

- 定义7.5.2
- 也叫区域(region)
- 平面图*G*的面是*G*中的 边所包围的区域,它不 再被*G*的边分成子区域。 其中面积无限的区域称

为无限面。面积有限的 r_1 的边界: $v_1v_2v_3v_1$

区域称为有限面。包围 r_2 的边界: $v_2v_4v_5v_8v_5v_3v_2$ 6次面

该面的边所构成的闭通 r_3 的边界: $v_1v_2v_4v_6v_7v_6v_4v_5v_3v_19$ 次面

道称为这个面的边界

(Boundary),它的长度称为该面的**次数**

(deg(r))

定理7.5.3 平面图中所有面的 次数之和等于边数的两倍

Boundary of R_1 :

欧拉公式

- 定理7.5.4(Euler)
 - □对任何连通平面图G,若G有p个顶点,q条边,r个面,则:

$$p-q+r=2$$

证明:对边数进行归纳。

- (i) 当q=0时,图只有一个顶点没有边,因此,p=1,q=0,r=1,欧拉公式成立。
 - (ii) 当q=1时,有两种情况:
 - (1)这条边是自回路,此时p=1,q=1,r=2
- (2)这条边不是自回路,此时p=2,q=1,r=1显然,这两种情况,欧拉公式都成立。
- (iii) 设 $q=k(p\geq 1)$ 时欧拉公式成立,现考虑有k+1条边,r个面的p阶连通平面图G.分两种情况讨论:
- (1) 若G有1度点u,则G-u是一有k条边,r个面的p-1阶连通平面图由归纳假设,有(p-1)-k+r=2,即p-(k+1)+r=2,欧拉公式成立
- (2)若G没有1度点,在有限面的边界中取一边e,则G-e是一有k条边,r-1个面的p阶连通平面图,由归纳假设,有p-k+(r-1)=2,即p-(k+1)+r=2,欧拉公式成立
- 总之, 欧拉公式对所有有k+1条边的连通平面图成立

r

思考题

■ 若G是无向平面(p,q)图,有C(G)个分图,r个面,证明:

$$p - q + r = C(G) + 1$$

٧

■ 定理7.5.5 若G是一个有 $p(p \ge 3)$ 个顶点,q条边的简单连通平面图,且每个面的次数都不小于 $L(L \ge 3)$,那么

$$q \le (p-2) L/(L-2)$$

证明:有欧拉公式得,图G有q-p+2个面,由于每个面的次数不小于L,且所有面的次数之和为2q,所以

$$2q \ge L(q-p+2)$$

化简得*q*≤(*p*-2) *L*/(*L*-2)

- 容易证明(p-2) L/(L-2)是关于L单调下降的
 - □所以对阶大于2的简单平面图可取L=3,得到

 \square 对二部图来说, $L \ge 4$,有

$$q \le 2p-4$$

- Y
 - 推论1 K_5 是非平面图 证明: p=5,q=10, 结果3 $p-6\geq q$ 不成立
 - 推论2 $K_{3,3}$ 不是平面图 证明: p=6,q=9, 结果2 $p-4\ge q$ 不成立
 - ■推论3 Peterson图不是平面图。
 - ■推论4 若G是阶不小于11的平面图,则G[©]不是平面图。
 - ■推论5 在任何简单平面图*G*中,必存在度不超过5的顶点。

۲

□推论5

证明:用反证法

设(p,q)图G是简单连通平面图,所有顶点的次数不小于6

则 *q*≤3*p*-6

又 $2q=\sum d(v)\geq 6p$,即 $q\geq 3p$,矛盾 故存在 v_0 ,其次数 $d(v_0)\leq 5$

库拉托夫斯基(Kuratowski)定理

■ K_5 和 $K_{3,3}$ 称为库拉托夫斯基图

- 波兰数学家Kuratowski于1930年建立的关于图的可 平面性的一个充分必要条件
 - \Box 设G是一个图,如下定义G上的一种初等收缩运算:
 - 1. 从E(G)中删除边uv,用一个新符号w代替u和v在E(G)中的一切出现;
 - 2. 从V(G)中删除u和v,把w添加到V(G)中如果从G出发经过一系列初等收缩运算后得到图G',那么便称G收缩到G'
- 定理7.5.6
 - □ 图G是平面图 iff 它的每一个子图都不能收缩到 K_5 和 $K_{3,3}$

思考题

■以下哪些图可以作平面嵌入

练习

- ■证明: 顶点数不少于4的简单连通平面图中, 至少有3个顶点之度不大于5
- $p(p \ge 3)$ 个顶点r个面的简单连通平面图中有 $r \le 2p-4$
- 少于30条边的简单平面图至少有一个顶点的度不大于4

7.6 图的着色

- 图的着色有三种类型
 - I. 图的顶点着色
 - II. 图的线着色
 - III. 平面图的面着色
 - IV. III型着色问题可以转化为I型着色

■ 定义7.6.1 对偶图

- □将平面图*G*嵌入平面后, 通过以下手续(简称*D*过 程):
- (1) 对图G的每个面 D_i 的内部作一顶点且仅作一顶点 v^* ;
- (2)经过每两个面 D_i 和 D_j 的 每一共同边界 e^*_k 作一 条边 e^*_k = (v^*_i,v_j) 与 e_k 相交;
- (3)当且仅当 e_k 只是面 D_i 的 边界时, v^*_i 恰存在一自 回路与 e_k 相交。
- 所得的图称为图G的对偶图,记为G

G与G*的关系

- 平面图G的对偶图G*是平面图
- 若连通平面图G是(p,q)图,则它有q-p+2个面,则G*是(q-p+2,q)图,有p个面
- *G*中面的次数为*G**中面中点的度数
- *G*的圈对应着*G**的线分离集
- 通过对偶图,面着色可转换为点着色
- 若平面图G的对偶图G*与G同构,则称G为自对偶图。如果(p,q)图是自对偶图,则 q=2(p-1)

色数

- 定义7.6.2
 - 口设S是k种颜色之集,若用S中的全部颜色实现了图G的顶点着色,那么称这种着色为G的一种(顶点)k-着色。使G有k-着色的最小k值叫G的色数,用 $\chi(G)$ 表示。另外,若 $k \ge \chi(G)$,则称G是(顶点)k-可着色的
- 定义7.6.3
 - 口设S是k种颜色之集,若用S中的全部颜色实现了图G的线着色,那么称这种着色为G的一种线k-着色。使G有线k-着色的最小k值叫G的色指数,用q(G)表示。另外,若 $k \ge q(G)$,则称G是线k-可着色的

(a)

(b)

练习

■求出下面所示各图的色数

■求出下面所示各图的色指数

■ 定理7.6.1

口设S是k种颜色之集,简单地用 $\{1,2,...,k\}$ 表示。如果图G有顶点k-着色,令

 $N_i = \{v \mid v \in G \land v \hat{A} \hat{A} \hat{A} \in i\}$ $1 \le i \le k$ 那么 $N_i \in G \hat{A} \hat{A} \hat{A} \in i$ 那么 $N_i \in G \hat{A} \hat{A} \in i$ 那么 $N_i \in G \hat{A} \in i$ 和, $N_i \in G \hat{A} \in i$

且 M_i 是G的顶点无关集($1 \le i \le k$),那么图G有顶点k-着色。

证明 因为所给出的是图G的顶点k-着色,所以这k种颜色在着色过程中全被用上,这说明 N_i 非空($1 \le i \le k$)。

按照顶点着色的定义,对任意两个顶点 $u, v \in N_i$,因为u和v着有相同的颜色i,故u NAdj v,这说明 N_i 是顶点无关集 $(1 \le i \le k)$ 。又若 $i \ne j$,则有 $N_i \cap N_J = \Phi$ (因为一个顶点只能着一种颜色),且 $\cup N_i = V(G)$ (因为每一个顶点被着有一种颜色)。故 $\{N_1, N_2, ..., N_k\}$ 是V(G)的一个划分。

反之,由于 M_i 是G的顶点无关集($1 \le i \le k$),故对任意两个顶点 $u, v \in M_i$,有 $u \ NAdj \ v$,这样任一置换:

 $f: \{M_1, M_2, \ldots, M_k\} \rightarrow S$

都是G的一个顶点k-着色

■ 定理7.6.2 设G是一个图,那么 $\chi(G) \leq \Delta(G) + 1$

证明 显然只需证明定理对连通图成立

【法一】对图G的阶p行数学归纳法:

(1) 〖归纳基础〗

p=1时,一阶连通图 G 是平凡图, $\chi(G)=1$, $\Delta(G)=0$ 。所以 $\chi(G) \leq \Delta(G)+1$

(2) 〖归纳步骤〗

假设定理对一切k阶连通图成立, k≥1。考虑k+1阶连通图G,取G中一非割点u,则G-u是k阶连通图,由归纳假设有:

$$\chi(G-u)\leq\Delta(G-u)+1$$

因为 $\Delta(G-u)\leq\Delta(G)$,所以 $\chi(G-u)\leq\Delta(G)+1$,于是G-u是($\Delta(G)+1$)-可着色的。现在考虑用 $\Delta(G)+1$ 种颜色的全部或部分对G-u进行顶点着色,由于 $d(u)\leq\Delta(G)$,故至少有一种颜色未分配给u的邻接顶点,用这种颜色对u进行着色,所以G是($\Delta(G)+1$)-可着色的,即:

$$\chi(G) \leq \Delta(G) + 1$$

根据数学归纳法原理, 定理成立。

【法二】简记 $\Delta(G)$ 为 Δ ,并设 $S = \{1,2,...,\Delta,\Delta+1\}$ 是 $\Delta+1$ 种颜色之集, $u \in G$ 是 G 中度为 Δ 的顶点。 今构造 G 的一个 $\Delta+1$ 着色如下:

用色1着顶点u,因u的度为 Δ ,故恰有 Δ 个顶点与它相邻接,用 $\{2,3,...,\Delta,\Delta+1\}$ 中的 Δ 种颜色对它们进行着色。于是得到图G的部分顶点的 $\Delta+1$ 着色。

对于G中已着色的任一顶点v,设它着有色x,因为 $d(v) \le \Delta$,故可用 $S - \{x\}$ 中的全部或部分颜色给v的邻接顶点着色,如此继续下去,可得到 G 的一个 $\Delta + 1$ 着色,故 $\chi(G) \le \Delta(G) + 1$

■注意

- □定理7.6.2的结果是不能改进的
- □存在一些图使得定理中的等号成立
- □例:
 - 完全图 K_p , $\Delta(K_p)=p-1$, 而 $\chi(K_p)=p$
 - 令 C_k 表示恰由一个k-圈组成的图,那么 $\Delta(G)=2$,而

$$x(C_k) = \begin{cases} 2 & \text{当k为偶数} \\ 3 & \text{当k为奇数} \end{cases}$$

1941年Brook证明了: 使 $\chi(G) = \Delta(G) + 1$ 成立的图只有奇圈 C_k 和完全图 K_p

- 易知: χ(G)=1 iff 图G不含边,即图G是平凡图或空图
- 定理7.6.3 设G是至少有一条边的图,那么: χ(G)=2 iff 图G不含奇数长的初等圈。

证明显然只需证明定理对连通图G成立。

(1) 必要性

前面已经提到过,含奇圈的图的色数不小于3,所以必要性显然。

(2) 充分性

设G是一个不含奇圈的连通图,任取 $x \in V(G)$,令:

 $Y = \{y \mid y \in V(G) \mid x,y \geq i \in A$ 的路径}

由7.3节的习题 2.可知{Y,Z}是V(G)的一个划分。

倘若存在 Y 中的两顶点 y_1 和 y_2 , y_1 Adj y_2 ,那么将存在x和 y_2 之间的一条偶长路径(x和 y_1 之间的一条奇长路径加上边 y_1y_2),这与 y_2 \in Y 矛盾,因此 Y 是点无关集。同理可证 Z 也是点无关集。

因此, $\chi(G)=2$ 。

思考题

- (8,13)简单连通平面图是否可以只用2种颜色 着色
- ■二部图是否有2-着色

五色定理

- 定理7.6.4 任何平面图均是5-可着色的。 证明:对图的顶点数作归纳
 - (i) 当 $n \leq 5$ 时,显然成立
 - (ii) 假设k个顶点时成立,考虑k+1阶简单连通平面图G.

由定理7.5.5之推论5知图G至少存在一顶点 v_0 其次数 $d(v_0) \le 5$.

显然 $G-v_0$ 是k阶简单连通平面图,由归纳假设,可用5种颜色进行着色。

假设已用红、黄、蓝、绿、黑5种颜色对G- v_0 着好了色,现在考虑对G中顶点 v_0 的着色

- ① 若d(v0)<5,显然可用它的邻接顶点 所着颜色之外的一种颜色对v0进行 着色,即G可以用5种颜色着色
- ② 若d(v0)=5,显然只需要考虑与v0邻 接的顶点被着以不同的5种颜色的 情况进行讨论

令 W_1 ={x|x\in G,且x着红色或蓝色}, W_2 ={x|x\in G,且x着黄色或绿色},考 虑 W_1 导致的G的导出子图< W_1 >

■ 若v₁和v₃分属于<W₁>的两个不同连通分图,那么将v₁所在分图的红蓝色对调,并不影响图 G-v₀的正常着色。然后将v₀着上红色,即得图G的正常着色

 $若v_1$ 和 v_3 属于< W_1 >的同 一分图中,则v1和v3之间 必有一条顶点属于红蓝 集的路径P,它加上 v_0 可 构成回路 $C:(v_0,v_1,P,v_3,v_0)$ 由于C的存在,将黄绿集 分为两个子集,一个在C内,另一个在C外,于是黄 绿集的导出子图至少有 两个分图.一在C内.一在 C外。于是问题转化为① 的类型,对黄绿集按①的 办法处理,即得图G的正 常着色。证毕。

м

树与生成树

- 定义7.7.1
 - □一个不含圈的(简单)连通图称为树(tree),以树为支的不连通图称为森林(forest)。树中度为1的顶点称为树叶。

- \blacksquare 定理7.7.1 p阶图G为树,iff下列条件之一成立
 - 1. G是(p,p-1)无圈图。
 - 2. G是(p,p-1)连通图。
 - 3. G的任何两点之间存在唯一一条路径。
 - 4. G的任一边都是桥。
 - 5. G不含圈,但加入任一边后便形成圈。

证明(1): 树 \Rightarrow (1),即证p阶无圈图恰有p-1条边对p作归纳。

(i) p=1时,q=0,显然q=p-1

(ii)假设p=k时命题成立,现证明p=k+1时也成立。

现设k阶无圈连通图恰有k-1条边(k>1)。我们考虑 k+1阶树T。因为T不含圈,故它有度为1的顶点,令d(u)=1,那么T-u是k阶无圈连通图,由归纳假设,它恰有k-1条边。于是T恰有k条边。

证明(2): $(1) \Rightarrow (2)$, 即证(p,p-1)无圈图必连通

假若不然,即G不连通,设 C_1 , C_2 ,…, C_k 是G的全部k个支,其中 $k \ge 2$ 。用k-1条边把这些连通支连成连通图G,显然G,仍然不含圈,因此G'是p阶树,由(1),它恰有p-1条边。于是:

$$(p-1)+(k-1)=p-1$$

得k=1,与k≥2矛盾。

证明(3): (2) ⇒(3)

- ① 因为G连通,故任何两点之间有路径存在。
- ② 假若G的某两点u、v之间存在两条不同的路径,那么G必含圈,显然去掉圈中一边e后所得的图G-e仍然连通,且它是(p,p-2)图,这与p阶连通图至少有p-1条边相矛盾。所以G的任何两点之间的路径是唯一的。

证明(4): (3) \Rightarrow (4), 即要证明G连通,且去掉任一边后G便变成不连通图

考虑G的任一边uv,由条件,它是连接顶点u和v的唯一一条路径,去掉它后u、v之间便没有路径了,故G变成了不连通图。

证明(5): $(4) \Rightarrow (5)$,

- ① 先证明G不含圈。假若G含圈,那么去掉圈中一边e后所得的图G-e仍然连通,即e不是桥。
- ② 由G的连通性可直接推知加入任一边后它便 形成圈。

证明(6): $(5) \Rightarrow G$ 是树,只需证明G连通

任给两顶点u、v,若uv \in G,则uv是u、v之间的路径,否则,G+uv是一含圈图,故u、v之间应有一条除uv之外的路径。总之,对于任意两顶点u,v,G中存在u,v之间的路径,即G是连通的。

- ■树也被称为
 - □最大无圈图
 - □最小连通图

■ 定理7.7.2 任一棵阶不小于2的树中至少有两片树叶

证明: 若T中每个顶点的次数 ≥ 2 ,则 $\Sigma d(v_i)\geq 2p$

若T中只有一个顶点次数为1,其它顶点次数>2.则

 $\Sigma d(v_i) \ge 2(p-1)+1=2p-1$

都与 $\Sigma d(v_i)=2(p-1)$ 矛盾。

所以,T中至少有两个顶点次数为1。证毕。

思考题

- 设树T有7条边,问T有多少个结点?
- 一棵树有两个2度顶点,一个3度顶点,三个4度顶点,则该树有多少片树叶?
- 恰有两片树叶的树有何特征?
- 恰有*p*-1片树叶的树有何特征?
- 一棵树(或森林)最多需要多少种颜色就可进行着 色?
- 设G是一个森林,由3个分图组成,若G有15个结点,问G有多少条边?
- 互不同构的2阶树有几棵? 互不同构的4阶树有几棵?

Ŋ,

生成树

- 定义7.7.2 给定一个无向图G,若G的一个生成子图T是树,则称T为G的生成树或支撑树。
- 图G的生成树不是唯一的

■ 定理7.7.3 G含生成树,iff G连通

证明 必要性显然,现证充分性。考虑连通图 G,若它不含圈,那么它本身就是一棵生成 树。若它含圈,则去掉圈中一边后所得的 图(设为 G_1)仍然连通,如果 G_1 无圈,那么 G_1 是G的生成树,否则从 G_1 的某圈中去掉一边 后所得的图(设为 G_2)仍然连通,如果 G_2 无圈, 那么 G_2 是G的生成树,否则继续上面的步骤 直到打破G的所有圈就得到G的一棵生成树。

构造连通图G=(V, E)的生成树的方法

■破圈法

最小生成树

- 设图 $G=\langle V,E,W\rangle$ 是赋权连通简单无向图,W是E到非负实数的函数,边 $\langle i,j\rangle$ 的权记为W(i,j)。若T是G的生成树,T中树枝的权之和称为T的权,记为 $W(T)=\sum W(i,j)$ 。所有生成树中具有最小权的生成树称为最小生成树
- 定理8.6—9设G是边权全不相同的简单连通图,C是一条简单回路,则C上权最大的边e必定不在G的最小生成树中

求最小生成树方法

■破环法

■ 避环法(Kruskal算法)

М

思考题

- 树和森林最多需要多少种颜色来进行点着色?
- 设p>1,且 d_1 , d_2 ,…, d_p 都是正整数, $d_1+d_2+…+d_p=2(p-1)$ 。请问 d_1 , d_2 ,…, d_p 是否是一棵树的度序列。
- ■画出所有不同构的六阶树
- ■下图给出的带权图的最小生成树的权是()

第八章有向图

8.1 有向图的概念

- ■无向图中的概念大都可推广到有向图
- 定义8.1.1
 - □有向图D是一个二元组<V,E>,其中V是一非空集合,它的元素称为图的顶点,V称为D的顶点集。 E是V中元素**有序偶**的可重集,它的元素叫做图的有向边,或弧(arc),E称为D的边集。如果e=<a,b>∈<math>E,则称a和b邻接(或b邻接于a),记作a Adb,顶点a与b分别称为边e的始点与终点。

■ 定义8.1.2

□设D是一有向图,若 $\forall a,b \in D(a \neq b)$, $a A d j b \Rightarrow b$ NAd j a,则称D为单向有向完全图;若 $\forall a,b \in D$ $(a \neq b)$,有 $a A d j b \perp b b A d j a$,则称D为有向完全图。

简单有向图

非简单图

四阶单向 有向完全图

(d)

三阶有向 完全图

通道与半通道

- 有向图中,通道、迹、路径、圈等概念完 全类似于无向图中的相应概念
- 在序列 $v_0v_1v_2...v_n$ 中
 - □边 v_iv_{i+1} 是以 v_i 为始点, v_{i+1} 为终点的($0 \le i \le n-1$),称序列是从 v_0 到 v_n 的<mark>通道</mark>(迹、路径)。
 - 口若序列中,或者 v_i Adj v_{i+1} ,或者 v_{i+1} Adj v_i , $(0 \le i \le n-1)$,则称它为一条半通道(迹、路径)。

$$v_2v_3v_4v_6v_7v_2$$
 — 圏 $v_4v_6v_7v_2v_3$ — 路径 $v_5v_4v_6v_7v_2v_1$ — 半路径

r

结点的度

- 定义8.1.3
 - 口设D是一有向图,u是D的顶点,那么称以u为始点的边数为u的出度,记为od(u); 称以u为终点的边数为u的入度,记为id(u)。
- ■有向图中显然

$$\sum_{u \in D} id(u) = \sum_{u \in D} od(u) = q$$

$$id(1)=0, od(1)=2,$$

 $id(2)=0, od(2)=1,$
 $id(3)=1, od(3)=1,$
 $id(4)=2, od(4)=3,$
 $id(5)=3, od(5)=2,$
 $id(6)=2, od(6)=1,$
 $id(7)=2, od(7)=1,$
 $id(8)=1, od(8)=0$

$$\sum_{u \in D} id(u) = \sum_{u \in D} od(u) = q = 11$$

8.2 有向图的可达性、连通性和顶点基

- 定义8.2.1
 - □设D是一个有向图,且u, v∈ D,若存在从顶点u到顶点v的一条路径,便说从顶点u到顶点v是可达的。
 - □可达性是一个有向图(或无向图)的顶点集上的二 元关系
 - ■自反
 - ■传递
 - 一般来说,不是对称的,也不是反对称的
 - ■对于无向图,可达性是图的顶点集上的一个等价关系。

可达矩阵的 计算与无向 图相同

$$P = \begin{bmatrix} v_1 & 1 & 1 & 0 & 1 \\ v_2 & 0 & 0 & 0 & 0 \\ v_3 & 1 & 1 & 0 & 1 \\ v_4 & 1 & 1 & 0 & 1 \end{bmatrix}$$

可达集

- 定义8.2.2
 - □设D是一个有向图,又设u∈ D,令 R(u)={ $v \mid v$ ∈ D且从顶点u到顶点v是可达的} 则称R(u)为u的可达集。另若X⊆V(D),令 R(X)={ $v \mid v$ ∈ D且存在u∈X,从顶点u到顶点v是可达的}

则称R(X)是X的可达集

□显然

$$R(X) = \bigcup_{u \in X} R(u)$$

$$R(v_1)=R(v_2)=R(v_3)=R(v_4)=R(v_5)=\{v_1,v_2,v_3,v_4,v_5,v_6\}$$
,

$$R(v_6) = \{v_6\}$$
,

$$R(v_7) = \{v_6, v_7\},$$

$$R(v_8) = \{v_6, v_7, v_8\},$$

$$R(v_9) = \{v_9\}$$
,

$$R(v_{10}) = \{v_{10}\},$$

$$R({v_1,v_8,v_9,v_{10}})=R({v_5,v_8,v_9,v_{10}})=V(D)$$

顶点基

- 定义8.2.3
 - □设D是一个有向图,B⊆V(D),若R(B)=V(D),且 $\forall B$ '⊂B都有R(B') $\subset V$,则称集合B是图D的顶点基

$$\{v_1, v_8, v_9, v_{10}\}, \quad \{v_2, v_8, v_9, v_{10}\}, \quad \{v_3, v_8, v_9, v_{10}\}, \\ \{v_4, v_8, v_9, v_{10}\}, \quad \{v_5, v_8, v_9, v_{10}\}$$

۲

强连通图、弱连通图

- 定义8.2.4
 - □设D是一有向图,若 $\forall u,v \in D$,从顶点u到顶点v是可达的,且从顶点v到顶点u也是可达的,则称D是强连通图。
 - □若 $\forall u,v \in D$,或者顶点u到顶点v是可达的,或者从顶点v到顶点u是可达的,则称D是**单向**(**侧**)**连通图**。
 - 口若不考虑**D**中边的方向,**D**所对应的无向图(称为**D**的基础图)是连通的,即**D**中任意两个顶点之间都存在半通道,则称**D**是**弱连通图**。

强连通

(b)

弱连通 非单向连通

(c)

单向连通

强连通图或单向连通图必是弱连通图 强连通图必是单向连通图 有向图不是弱连通的,必是不连通的

Ŋ,

■ 定义8.2.5

□有向图*D*的极大强(单向、弱)连通子图叫*D*的强(单向、弱)分图

 $<\{1,2,3\}>$, $<\{4\}>$, $<\{5\}>$ 和 $<\{6\}>$ 是D的强分图 $<\{1,2,3,4,5\}>$ 和 $<\{5,6\}>$ 是D的两个单向分图

D本身是一个弱连通图

۲

■ 定理8.2.1

□有向图D的诸强分图的顶点集之集形成了V(D)的一个划分证明 只要证明D的每一顶点恰好位于一个强分图中。

任给 $u \in D$,设:

 $K(u) = \{v \mid v \in D \perp u, v \geq u \in T \leq v \mid v \in D \land u \in R(v) \land v \in R(u) \}$

显然由它导出的D的导出子图< K(u)>是一个包含u的强分图,由此,D的每一顶点位于它的某一强分图中。

现在假定D有顶点x同在D的两个不同的强分图<K(u)>和 < K(v)>中,那么<math>u、x之间是相互可达的,v、x之间也是相互可达的,从而u、v之间是相互可达的,这与<K(u)>和<<math>K(v)>是D的两个不同的强分图这一假定相矛盾。

综上, D的每一顶点恰好位于它的一个强分图中。 定理得证。

- 定理8.2.1的证明给出了一种求强分图的方法
- ■尽管有向图的每一顶点恰好位于一个强分图中,但有向图的边,可能包含也可能不包含在其强分图中
- 如果边<*u*,*v*>的两顶点*u*和*v*在一个强分图中,则该边也在该强分图中
- 若边<*u*,*v*>属于一个强分图,那么边<*u*,*v*>必是一个圈的一部分
- ■单向分图和弱分图
 - □有向图的每一顶点和每一条边至少属于一个单 向分图
 - □有向图的每一顶点和每一条边恰好属于一个弱 分图

完全路径

- 定义8.2.6
 - □设*D*是一个有向图,如果*D*中一条路径经过*D*的所有项中一条路径经过*D*的所有项点,那么它便叫做*D*的一条完全路径。同样可以定义完全通道(迹、圈)。
 - ■由圈组成的图是强连通的
 - 在任何一个圈上加上一些有向 边所得的图也是强连通的
 - 如果一个有向图中存在一个完全圈,那么这个有向图是强连通的
 - □反之不然

■ 定理8.2.2

□有向图D强连通的充分必要条件是它有一条完全闭通道。

证明(1)充分性

设 $v_1v_2...v_tv_1$ 是D的一条完全闭通道,则 $u,v \in D$,由闭通道的完全性可知,必存在i, $j(1 \le i,j \le t)$ 使得 $u = v_i$, $v = v_j$,不妨假定i < j,这样, $v_iv_{i+1}...v_j$ 是一条从u到v的通道, $v_jv_{j+1}...v_tv_1...v_{i-1}v_i$ 是一条从v到u的通道,这说明从顶点u到顶点v是可达的,从顶点v到顶点u也是可达的,故v是强连通的。

(2) 必要性

若D是强连通的,设 u_1 , u_2 , ..., u_n 为D的全部顶点。那么存在从 u_1 到 u_2 的通道 P_1 , 从 u_2 到 u_3 的通道 P_2 , ..., 从 u_{n-1} 到 u_n 的通道 P_n , 从 u_n 到 u_1 的通道 P_n , 依 P_1 , P_2 , ..., P_n 的次序连接这n条通道即得D的一条完全闭通道。

١

例

$$v_3v_1v_2v_4v_3v_5v_6v_3$$

 $u_1u_3u_2u_4u_3u_5u_6u_7u_8u_6u_7u_5u_4u_3u_2u_1$

Н

■ 定理8.2.3

□有向图**D**单向连通的充分必要条件是它有一条 完全通道

证明(1)充分性

设 $v_1v_2...v_t$ 是D的一条完全通道,则 $u,v \in D$,由通道的完全性可知,必存在i, $j(1 \le i,j \le t)$ 使得 $u = v_i$, $v = v_j$,这样,若i < j,那么 $v_iv_{i+1}...v_j$ 是一条从u到v的通道,若i > j,那么 $v_iv_{j+1}...v_i$ 是一条从v到u的通道,这说明或者从顶点u到顶点v是可达的,或者从顶点v到顶点u是可达的,故D是单向连通的。

(2) 必要性

为了证明必要性,需要一条引理:

引理 设有向图D是一个单向连通图,X是V(D)的非空子集,那么存在 $x \in X$,使得x能通过D的有向边达到X中的每一顶点,即 $X \subset R(x)$ 。

证明 对#X行数学归纳法:

(1) 〖归纳基础〗

#X=1, 2时, 由单向连通性的定义, 引理显然成立。

(2) 〖归纳步骤〗

假设引理在# $X = k(k \ge 2)$ 时成立,考虑V(D)的k+1元子集 $X = \{v_1, v_2, ..., v_k, v_{k+1}\}$ 。由归纳假设,存在 $v_i \in X$ - $\{v_{k+1}\}$ 使得 v_i 能达到所有的 v_j ,其中 $j \le k$,如果从 v_i 到 v_{k+1} 是可达的,则取 $x = v_i$,否则,由于D是单向连通的, v_{k+1} 到 v_i 是可达的,取 $x = v_{k+1}$,这样x能通过D的有向边达到X中的每一顶点。

根据数学归纳法原理,引理得证。

定理必要性的证明:

若n阶有向图D是单向连通的,根据引理,

存在 $x_1 \in V(D)$ 使得 x_1 能达到V(D)中每一顶点,

存在 $x_2 \in V(D)$ - $\{x_1\}$ 使得 x_2 能达到V(D)- $\{x_1\}$ 中每一顶点,

...,

存在 $x_{n-1} \in V(D)$ - $\{x_1, x_2, ..., x_{n-2}\}$ 使得 x_{n-1} 能达到V(D)- $\{x_1, x_2, ..., x_{n-2}\}$ 中每一顶点。

现在设 x_1 经过通道 P_1 达到 x_2 ,

x,经过通道P,达到x3,…,

 x_{n-1} 经过通道 P_{n-1} 达到 x_n 。

依 P_1 , P_2 , ..., P_{n-1} 的次序连接这n-1条通道即得D的一条完全通道。

■ 定理8.2.4

□有向图*D*弱连通的充分必要条件是它有一条完全半通道。

 D_1 中,yxuvyzw是一条完全通道

 D_2 中,vuwxyz是一条完全通道

是否强连通?

■ 定义8.2.7

口设D是一个有向图, K_1 , K_2 ,…, K_p 是它的全部p个强分图,那么D的聚图(ConDensation,或称商图) D^* 是这样一个有向图: $V(D^*)=\{K_1, K_2, \ldots, K_p\}$,而 K_i Adj K_j ,当且仅当 $i\neq j$ 并且存在 $u \in K_i$ 和 $v \in K_i$ 使得在D中有u Adj v。

■ 定理8.2.5

 \square 如果D是一个有向图,那么它的聚图D*是一个无圈图

证明 假定在 D^* 中存在一个圈 $K_{i1}K_{i2}...K_{im}K_{i1}$ 。设在D中,u是 K_{i1} 的一个顶点,v是 K_{i2} 的一个顶点。因为 $K_{i1}K_{i2}...K_{im}K_{i1}$ 是 D^* 中的一个圈,故在D中,u和v是彼此可达的,即它们在同一强分图中,于是 $K_{i1}=K_{i2}$,这与圈的定义矛盾。

■ 定理8.2.6

□每个无圈有向图D有唯一的顶点基: $B = \{u \mid u \in D \}$ 且 $id(u) = 0\}$ 。

证明 设D的顶点基为 B^* , 往证 $B=B^*$ 。

显然B中的每个顶点必在B*中,即 $B\subseteq B$ *。下面证明R(B)=V(D),从而B=B*(因为由顶点基的定义,若 $B\subset B$ *,则 $R(B)\subset V(D)$)。

 $\diamondsuit X = V(D) - R(B)$,可以证明 $X = \Phi$

假若不然,必存在 $x_0 \in X$,由X的定义,有 $x_0 \notin B$,即 $id(x_0) > 0$ 。可推知存在 $x_1 \neq x_0$ 使得 $x_1 A dj x_0$,显然 $x_1 \notin B$,即 $id(x_1) > 0$ 。同样,存在 $x_2 \neq x_1$ 、 x_0 使得 $x_2 A dj x_1$,由于D无圈,故此推理可以无限进行下去,矛盾。

■推论

- □在无圈有向图中,必存在入度为0的顶点。
- □有向图的聚图有唯一的顶点基。

v

■ 定理8.2.7

□设D是一个有向图,B*是D的聚图D*的唯一顶点基。那么D的顶点基是这样一个顶点集合B: 它是从B*中的每个强分图中各取一个顶点组成的。

证明 显然,D的每个顶点是从B中的某一顶点可达的,即R(B)=V(D)。必须证明B是具有这一性质的最小集合。

为了证明最小性,只要证明:不存在顶点 $v \in B$ 使得v是从另一顶点 $u \in B$ 可达的。

假若不然,那么在 D^* 中,从包含u的那个强分图可达到包含v的那个强分图,与 B^* 的最小性矛盾。

(b)所示的图 D^* 的唯一顶点基: $\{K_1, K_2, K_6\}$

 $|K_1| = 3, |K_2| = 1, |K_6| = 2$

(a)所示的图D共有3*1*2=6个不同的顶点基: {a,d,1},{a,d,m},{b,d,l},{b,d,m},{c,d,l}和{c,d,m}

有向图在资源分配中的应用

- 很多计算机(网络)系统允许多道程序的执行
- 这些程序共享着计算机系统中的硬件和软件资源
- 操作系统控制这些资源对各用户程序的分配
- 当一个程序要求使用某种资源时,向操作系统发出对这一资源的请求,操作系统必须保证这一请求得到满足。
- 对资源的请求可能会出现循环等待的现象
 - \square 例如:程序 p_1 占有着资源 r_1 并请求使用资源 r_2
 - \square 程序 p_2 占有着资源 r_2 并请求使用资源 r_1
 - □ 结果: 程序 p_1 和 p_2 都不能继续运行——死锁状态
- 避免死锁或者限制它的影响是操作系统的一种功能
- 有向图能够模拟计算机系统中的资源请求,帮助发现和纠 正死锁。

- 假定程序的一切资源请求必须在该程序完成执行之前得到满足,若资源请求暂时得不到满足,则程序控制着已占有的资源等待这一请求得到满足
- $\Diamond P_t = \{p_1, p_2, ..., p_m\}$ 表示计算机系统在时刻t执行的程 序集。设 $A_t \subseteq P_t$ 是一活动程序集,或者说是在时刻t已经分 配得到了一部分它们所请求的资源的程序集。又设 $R_t = \{r_1, r_2, r_3\}$ r_2 , ..., r_n }是系统在时刻t的资源集。那么系统资源分配图 $G_t = \langle R_t, E \rangle$ 是一个有向图,它表示在时刻t系统的资源分 配状况,其中 $E = \{ \langle r_i, r_i \rangle \mid \Delta A_t + \Delta A_t +$ 并请求使用资源 r_i 的程序}。

 $A_{t} = \{p_{1}, p_{2}, p_{3}, p_{4}\}$, 而程序 占有与请求资源的情况为:

- $\square p_1$ 占有着资源 r_4 且请求使用 r_1
- $\square p_2$ 占有着资源 r_1 且请求使用 r_2 和 r_3
- $\square p_3$ 占有着资源 \mathbf{v}_2 且请求使用 \mathbf{r}_3
- $\square p_4$ 占有着资源 r_3 且请求使用 r_1 和 r_4

时刻t的系统资源分配图

可以证明,计算机系统在时刻t处于死锁状态的充分必要条件是:系统资源分配图 G_t 包含有非平凡的强分图。

Ŋ,

8.3 根树及其应用

- 有向树
- 定义8.3.1
 - □ 恰有一个入度为 0 的顶点,其余顶点的入度 均为 1 的弱连通有向图称为根树。在根树中, 入度为 0 的顶点称作树根,出度为 0 的顶点 称作树叶,出度大于 0 的顶点称作分支点, 从根至某顶点的距离称为该顶点的级,所有 顶点的级的最大值称为该根树的高度。
- 与无向图中的树一样, p阶根树有p-1条边

树根: v₀

树叶: v₁,v₃,v₄,v₆

分支点: v₀,v₂,v₅

 v_0 的级: 0

 v_1 和 v_2 的级: 1

 v_3, v_4 和 v_5 的级: 2

v₆的级: 3

根树的高度: 3

约定: 总把树根画在上方, 所有有向边的方向都由上而 下,省略箭头

М

■ 定义8.3.2

- □根树是按以下规则构成的有向图:
 - 1. 平凡图是根树, 其顶点称作该根树的根
 - 2. 设m是一正整数, $T_i = \langle V_i, E_i \rangle$ 是以 r_i 为根的根树 (i=1,2,...,m),并且 V_1 、 V_2 、...、 V_m 两两互不相交, $r_0 \not\in V_i (i=1,2,...,m)$ 。那么称有向图 $\langle V; E \rangle$ 是以 r_0 为根的根树,并且称 T_1 、 T_2 、...、 T_m 为T的子树,其中 $V = \{r_0\} \cup V_1 \cup V_2 \cup ... \cup V_m$,

 $E = \{ \langle r_0, r_1 \rangle, \langle r_0, r_2 \rangle, \dots, \langle r_0, r_m \rangle \} \cup E_1 \cup E_2 \cup \dots \cup E_m^{\circ}$

□显然,定义8.3.1与定义8.3.2是等价的

■ 定理8.3.1

口设 v_0 是有向图D的入度为 0 的顶点。D是以 v_0 为根的根树当且仅当从 v_0 到D的任意顶点都恰好有一条路径。

证明(1)必要性

若D是以 v_0 为根的根树,任取D的一顶点 $v \neq v_0$ 。

一方面,由D的弱连通性可知,必存在从 v_0 到v的半路径,设其为 $P = v_0 v_1 v_2 \dots v_{t-1} v_t$ (其中 $v_t = v$)。

因为 $id(v_0)=0$,所以 $v_0Adj v_1$;

而 $id(v_1)=1$,所以 $v_1 Adj v_2$;

依次,可归纳证明 v_{i-1} Adj v_i (i=1,2,...,t),即P为从 v_0 到v的路径。

另一方面,若从 v_0 到v有两条路径 P_1 和 P_2 ,则至少有一个 P_1 和 P_2 的公共顶点的入度大于 1 ,这与D是根树矛盾。

(2) 充分性

显然D是弱连通的。

对于D的任一顶点 $v\neq v_0$,由于存在从 v_0 到v的路径,故 $id(v)\geq 1$ 。

另一方面,若id(v)>1,则至少存在两个顶点 v_1 与 v_2 和 v_3

这样,只要将从 v_0 到 v_1 与 v_2 的两条路径均延长至v便得到两条从 v_0 到v的路径,与条件矛盾。

这就证明了D是以 v_0 为根的根树。

m元根树

- \blacksquare 定义8.3.3 设T为根树。

 - 2. 如果对于m元根树T的每个顶点u皆有od(u) = 0或od(u) = m,则称T为完全m元根树。
- 例:四皇后问题

- r
 - ■完全二元根树在计算机科学中非常有意义
 - ■可用来研究算法的效率
 - 定义8.3.4
 - □设V是以 v_0 为根的二元根树T的全体树叶组成的集合,W是V到 R_+ 的函数,则称<T;W>为叶加权二元(根)树。对于<math>T的任意树叶v,称W(v)为v的权,并称 $\sum W(v) d(v_0,v)$ 为<T;W>的叶加权路径长度,其中 $d(v_0,v)$ 为 v_0 到v的距离。
 - □简单地说,所谓叶加权二元树就是对二元根树的 每一片树叶指定一个正实数

例

■ 如果用树叶表示字母或符号, 用分支点表示判断,用权表 示字母或符号出现的频度, 则叶加权路径长度就表示算 法的平均执行时间

■ 例:

- □ 图 (a)和(b)表示了识别 *A,B,C,D*四个符号的两个算法
- □ *A*,*B*,*C*,*D*的出现频度分别为 0.5,0.3,0.05,0.15
- □ 图(a)的叶加权路径长度为2
- □ 图(b)的叶加权路径长度为1.7
- □ 因此图(b)表示的算法优于图 (a)表示的算法。

(a)

A吗?

N
B吗?

N
C吗?
N
C吗?
C
(b)

Y

最优叶加权二元树

- 定义8.3.5
 - □设<T;W>是叶加权二元树。如果对任一叶加权二元树<T';W'>,只要对于任意正实数r,T和T'中权等于r的叶的数目相同,就有<T;W>的叶加权路径长度不大于<T';W'>的叶加权路径长度,则称<T;W>为最优叶加权二元树
- 求某问题的最佳算法归结为求最优叶加权二元树
- Huffman算法是一种求最优叶加权二元树的有效方法
 - □ David Huffman提出

Huffman算法

- 求权分别为 w_1 , w_2 , ..., w_t 的最优叶加权二元树
 - 1. 根据给定的t个权值 w_1 , w_2 , ..., w_t 构成t棵根树组成的集合 $F = \{T_1, T_2, ..., T_t\}$, 其中每棵 T_i 仅有一个顶点: 带权值 w_i 的树根。
 - 2. 在F中选取两棵树根的权值最小的根树作为子树构造得一棵新的根树,且该根树的根的权值 为其两棵子树的根的权值之和。
 - 3. 在F中删除这两棵根树,同时将新构造的根树加入F中。
 - 4. 重复步骤(2)和(3),直到F中只含一棵树为止。 这棵树就是最优叶加权二元树

例

■ 求权分别为7,5,2,4的最优叶加权二元树

二元有序根树

- 定义8.3.6
 - □为每一个分支点的所 有子树规定了次序的 根树称为有序根树
 - 口约定,在图示有序根 树时,总是把树根画 在上方,并规定同一 分支点的子树的次序 从左到右排列
 - □例:用有序根树表示 算术表达式
 - $a \times b (c \div (D e) + f)$

■借用家族树的名称来称呼有序根树的顶点

 v_1 、 v_4 、 v_7 和 v_9 分别是 v_0 、 v_1 、 v_3 和 v_7 的长子

 v_1 和 v_2 皆是 v_3 的兄长

 v_2 是 v_1 的大弟, v_3 是 v_2 的大弟

v₁和v₂分别是v₄等的父亲与叔父

v₄和v₇是堂兄弟

二元定位有序根树

- 定义8.3.7
 - □为每个分支点的所有子树规定了位置的有序根 树称为定位有序根树
- ■用得最多的定位有序根树是二元定位有序 根树,称为二叉树

(a)

二叉树与前缀码

- 在二叉树中,可用字母表{0,1}上的字符串唯一地 表示每一个顶点:
 - □用空串 ε 表示根,若用 β 表示某内部顶点,则分别用 β_0 和 β_1 表示它的左儿子和右儿子。这样,每个顶点都有了唯一的编码表示,并且不同顶点的编码表示不同

- H
- 通信中,我们常用5位0、1序列表示一个英文字母(26<2⁵)
- 各字母的使用频率不同,定长的序列浪费 空间
 - □e,t用得频繁
 - □q和z用得稀少
- ■用较短序列去表示使用频繁的字母
- ■用较长的序列去表示用得稀少的字母

Question

- 00表示e,01表示t,0001表示q
- 收到信息串0001时,传递的内容是e? t? 还是q?
- ■解决方案
 - □前缀码

前缀码与完全二叉树

- 定义8.3.8
 - □二叉树全体树叶的编码表示的集合称为该二叉树 的前辍编码
 - □前辍码序列中,没有一个序列是另一序列的前缀
 - □例: {000,001,01,10,11}
- 在完全二元树中,把每一结点的引出左枝记上0, 右枝记上1,从根到每一片树叶所经过边的记号 串集合构成前缀码
- 以符号的出现频度作为权的最优叶加权完全 二叉树的前辍编码,即*Huffman*编码

例

■ 八个符号的出现频度分别为0.2,0.19,0.18,0.17, 0.15,0.1,0.005,0.005和2⁻¹,2⁻²,2⁻³,2⁻⁴,2⁻⁵,2⁻⁶,2⁻⁷,2⁻⁷时的Huffman编码及压缩效果

