(1) Prove that the squares of the singular values $\sigma_1 \geq \sigma_2$ of A are the roots of the quadratic equation

$$X^{2} - \operatorname{tr}(A^{\top}A)X + |\det(A)|^{2} = 0.$$

(2) If we let

$$\mu(A) = \frac{a_{11}^2 + a_{12}^2 + a_{21}^2 + a_{22}^2}{2|a_{11}a_{22} - a_{12}a_{21}|},$$

prove that

$$\operatorname{cond}_2(A) = \frac{\sigma_1}{\sigma_2} = \mu(A) + (\mu(A)^2 - 1)^{1/2}.$$

(3) Consider the subset S of 2×2 invertible matrices whose entries a_{ij} are integers such that $0 \le a_{ij} \le 100$.

Prove that the functions $\operatorname{cond}_2(A)$ and $\mu(A)$ reach a maximum on the set \mathcal{S} for the same values of A.

Check that for the matrix

$$A_m = \begin{pmatrix} 100 & 99 \\ 99 & 98 \end{pmatrix}$$

we have

$$\mu(A_m) = 19,603 \quad \det(A_m) = -1$$

and

$$\operatorname{cond}_2(A_m) \approx 39,206.$$

(4) Prove that for all $A \in \mathcal{S}$, if $|\det(A)| \geq 2$ then $\mu(A) \leq 10,000$. Conclude that the maximum of $\mu(A)$ on \mathcal{S} is achieved for matrices such that $\det(A) = \pm 1$. Prove that finding matrices that maximize μ on \mathcal{S} is equivalent to finding some integers n_1, n_2, n_3, n_4 such that

$$0 \le n_4 \le n_3 \le n_2 \le n_1 \le 100$$

$$n_1^2 + n_2^2 + n_3^2 + n_4^2 \ge 100^2 + 99^2 + 99^2 + 98^2 = 39,206$$

$$|n_1 n_4 - n_2 n_3| = 1.$$

You may use without proof that the fact that the only solution to the above constraints is the multiset

$$\{100, 99, 99, 98\}.$$

(5) Deduce from part (4) that the matrices in S for which μ has a maximum value are

$$A_m = \begin{pmatrix} 100 & 99 \\ 99 & 98 \end{pmatrix} \quad \begin{pmatrix} 98 & 99 \\ 99 & 100 \end{pmatrix} \quad \begin{pmatrix} 99 & 100 \\ 98 & 99 \end{pmatrix} \quad \begin{pmatrix} 99 & 98 \\ 100 & 99 \end{pmatrix}$$

and check that μ has the same value for these matrices. Conclude that

$$\max_{A \in \mathcal{S}} \operatorname{cond}_2(A) = \operatorname{cond}_2(A_m).$$