Candidate's Name:			•••••	•••••	•••••	•••••	•••••	••••••
Star Arms	Ran	dom	No.			Pers	sonal	No.
Signature:	1				N		1	

(Do not write your School/Centre Name or Number anywhere on this booklet.)

P525/1 CHEMISTRY Paper 1 (Theory) Nov./Dec. 2023 2¾ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1 (Theory)

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in section A and six questions in section B.

All questions must be answered in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equation(s) where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$. Molar volume of gas at s.t.p is 22.4 litres. Standard temperature = 273 K.

Standard pressure = 101325 Nm^{-2} .

	For Examiners' Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
1 1			1.1	A 1.	-1-146			-2 - 4	11-	7.7	1		1 104	**Te-	mat ×		

©2023 Uganda National Examinations Board

Turn Over

SECTION A (46 MARKS)

Answer all questions in this section.

1. (a) Kinetic data for the decomposition of nitrogen(V) oxide is shown in table 1.

Table 1

$[N_2 O_5]$ (mol dm ⁻³)	Initial Rate (mol dm ⁻³ s ⁻¹)
0.0016	0.12
0.0024	0.18
0.0032	x

Calculate the;

	(i)	order of the reaction.		(1½ marks)
y P				
	11			
) (/	47			
				, ((())
		rate constant for the reaction.		(1½ marks)
	(iii)	value of x.		(01 mark)
inn.		7 3 7 d		<u>n. 0.31 </u>
(b)	Nam	ne two methods that can be used	1000	(01
				Choid?

	from	alkyl bei	nzene.		soapless				(02 ma
		•••••	•••••						••••••
(b)	Stata			•••••			••••••••••••••••••••••••••••••••••••••		
(b)	State								raant
	(i)	one adv	vantage of	f soaples	s deterge	ent ove	r soapy	y dete	(01 m
				1					•••••
•••••	(ii)	one dis	sadvantage	of soap	less deter	rgent o	ver so	apy d	etergen
			Ü						(01 m
******				• • • • • • • • • • • • • • • • • • • •			••••		
(a)	A cor	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound (Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound (Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma
(a)	A cor Calcu	mpound ulate the	Q consists empirical	s of 94.1 formula	1% sulp of Q .	hur, th	e rest	being	hydrog (02 ma

(c)		e an equation for the reaction of Q with acidified romate(VI) solution.	potassium (1½ marks
(a)	The	atomic number of cobalt is 27.	
	(i)	Write the electronic configuration of cobalt.	(01 mark
	(ii)	State how cobalt is able to form ions with oxida +2 and +3.	ation state of (02 marks
····			
A \	77.71	and the contract of the contra	4 4 (77) 11 11
(b)	solut	n concentrated ammonia solution was added to co ion, a blue precipitate was formed which dissolve in solution. Write equation(s) for the reaction(s)	ed giving a red- that took place.
(b)	solut	ion, a blue precipitate was formed which dissolve	ed giving a red- that took place. (03 marks
(b) 	solut	ion, a blue precipitate was formed which dissolve in solution. Write equation(s) for the reaction(s)	ed giving a red- that took place. (03 marks
State	solut	ion, a blue precipitate was formed which dissolve in solution. Write equation(s) for the reaction(s)	reaction(s) that
State	solut brow what want take CH ₃	ion, a blue precipitate was formed which dissolve in solution. Write equation(s) for the reaction(s) would be observed and write equation(s) for the place when the following pairs of substances are $C = CH_2$ and bromine in tetrachloromethane.	reaction(s) that
woul	solut brow what want take CH ₃	ion, a blue precipitate was formed which dissolve in solution. Write equation(s) for the reaction(s) would be observed and write equation(s) for the place when the following pairs of substances are $C = CH_2$ and bromine in tetrachloromethane.	reaction(s) that
State woul	solut brow what want take CH ₃	ion, a blue precipitate was formed which dissolve in solution. Write equation(s) for the reaction(s) would be observed and write equation(s) for the place when the following pairs of substances are $C = CH_2$ and bromine in tetrachloromethane. CH_3 ervation	reaction(s) that

	Observation		(½ ma
	Equation	(P f may)	(01 ma
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
(c)		acidified potassium dichromate((VI)
	solution. Observation		(01 ma
	Equation		(01 ma
	The same of the same of the same	ex a laterial profession of the same group	
		Espiria voni a nsyver in (a).	
			(01 ma
(a)	Define the term standard		(01 ma
(a) (b)	Define the term standard	d enthalpy of formation.	(01 ma
	The bond energies of son	d enthalpy of formation. ne bonds are shown in table 2.	(01 ma
	The bond energies of son Table 2 Bond	d enthalpy of formation.	(01 ma
	The bond energies of son	ne bonds are shown in table 2. Bond enthalpy (kJ mol ⁻¹)	(01 ma
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612	
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-l-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar
	The bond energies of son Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹) +413 +347 +612 formation of but-1-ene.	(03 mar

7. The boiling points of some chlorides of period 3 elements of the Periodic Table are shown in table 3.

Table 3

Formula of chlorides	NaCl	$MgCl_2$	Al ₂ Cl ₆	SiCl ₄
Boiling points (°C)	1465	1418	423	57

(a)	State the trend in the bo	iling points	of the chloride	s. (01 mark)
•••••					
•••••					
(b)	Explain your answer in				 5 marks)
	1				
	A Shirt of San	about seen		1.	
	· Colalis d'arb				
,					
	1 16				
	o *	· * * * *		1	
) ji					
					••••••
		•••••••••••••••••••••••••••••••••••••••	••••••		•••••
		·····	•••••••	••••••	•••••
			••••••••••		•••••
			•••••		

8.	Write from	e equation(s) to show how methylethanoate can be synthesised starting ethene. (05 marks)
9.	(a)	State Kohlrausch's law. (01 mark)
	,	
	(b)	The molar conductivities at infinite dilution for some electrolytes at 18 °C are shown below.
		$BaCl_2$, $\Lambda \infty = 240.6 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$.
		NH_4Cl , $\Lambda \infty = 129.6 \Omega^{-1} \text{cm}^2 \text{mol}^{-1}$.
		$Ba(OH)_2$, $\Lambda \infty = 457.6 \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$.
		Determine the molar conductivity of NH ₄ OH at 18 °C. (03 marks)
	(c)	State one application of conductivity measurements. (01 mark)
		200 (C. 12.1.)

SECTION B (54 MARKS)

Answer any six questions from this section.

Any additional question(s) answered will **not** be marked.

10. Complete each of the following equations and in each case outline a mechanism for the reaction.

(a) $(CH_3 CH_2)_3 C - Br \xrightarrow{CH_3 CH_2 O^- Na^+ / CH_3 CH_2 OH}$

(3)	2,		•
		Heat	(01 mark)
Mechanism			(02 marks)

Mechanism (02 marks)

	The state of the s	
HBr	,	•••••••••
(c) 127	► combine som gry je som seje in i	
No. i		(01 mark)
Mechanism:		(02 1)

Mechanism: (02 marks)

- 11. Beryllium and magnesium are elements in group (II) of the Periodic Table.
 - (a) Explain the following:
 - (i) The first ionisation energy of beryllium is higher than that of magnesium. (02 marks)

(b)		yllium reacts with aqueous sodium hydrox ation for the reaction.	kide solution. Write a (1½ ma
	•••••		
(c)	oxid	e the conditions under which beryllium or le react with the following substances and ation(s) for the reaction(s):	
	(i)	Water.	(02 m
	(ii)	Sodium hydroxide.	(2½ m
 (a)	Calc	ium phosphate(V), $Ca_3(PO_4)_2$, is spare the;	ingly soluble in wate
 (a)	Calc	ium phosphate(V), $Ca_3(PO_4)_2$, is spar	phosphate(V) in wate
(a)	Calc Write	ium phosphate(V), $Ca_3(PO_4)_2$, is spare the;	ingly soluble in wate

	(b)	The solubility product of calcium phosphate(V) is $2.0 \times 10^{-29} \text{mol}^{5} \text{ dm}^{-15}$
		at 25 °C. Calculate the solubility of calcium phosphate(V) in gdm ⁻³ at 25 °C. (03 marks)
	•••••	
		(i) aqueous sodium phosphate(V) were added. (02 marks)
		(ii) dilute nitric acid were added. (02 marks)
13.	of c	ne a reagent which can be used to distinguish between the following pairs ompounds and in each case state what would be observed if each member eparately treated with the reagent: OH and CH ₂ OH (03 marks)
	Rea	gent
	1 17	40

(Observation	ns	
		the same bases and their	
(1	o)	C — CH_3	CH ₂ CHO (03 marks)
R	leagent	~	
0	bservation	is planting the second	O(mana - 11 See See See See See See See See See
			(1)
14,14.	••••••		21 (6 2017) 2
		NH_2	NHCH ₃
(c		and	(03 marks)
R	eagent		rous baro's
o	bservation	s	
			BCC2478
4. (a) Some o	elements in group (IV) of the Peri ete the table by;	odic Table are given in table 4.
	(i)	writing the formula of the oxide i	in which each element is in
		the +4 oxidation state.	$(1\frac{1}{2} marks)$
	` '	stating the class of each oxide.	(1½ marks)
19	Table -	Formula of oxide	Class of oxide.
-	Element	Tomain or enter	
	Tin		
-	Silicon	9 10.	
	Lead		

	(b)	Write	e an equation for the reaction between;	
		(i)	tin(IV) oxide and concentrated sodium hydroxide.	(1½ marks)
		(ii)	lead(IV) oxide and cold concentrated hydrochloric a	cid. (1½ marks)
	(c)	conce	the condition and write an equation for the reaction bentrated nitric acid and;	etween
		(i)	tin. Condition	(½ mark)
j.)		Equation	(01 mark)
		(ii)	lead. Condition	(½ mark)
			Equation	(01 mark)
15.	(a)	Write	e an equation for the ionisation of benzoic acid in water	. (01 mark)
	(b)		ulate the <i>pH</i> of a solution containing 2.06 g of benzoic a	(04 marks)
	(The	acid a	dissociation constant, Ka , for benzoic acid = 6.3×10^{-1}	⁵ mol dm ⁻³ .)

•••••		
•••••		
(c)	4.32 g of sodium benzoate was dissolved in one dm^3 of in (b). Calculate the pH of the resultant solution.	benzoic acid (04 marks)
	account in normand in a spirit for some in by the	
	and the same of th	
		•••••
		······
		•••••
 (a)	During the extraction of aluminium from bauxite, Al_2O_2 ore is first purified.	$3 \cdot 2H_2O$, the
	(i) Name two major impurities in the ore.	(01 mark)

Turn Over

16.

(b)	Describe how aluminium is obtained from the pure ore.
	(Equations are not required.) (02 marks
•••••	
 (a)	State what is meant by the term partition coefficient . (01 mark
1	State what is meant by the term partition coefficient . (01 mark
	State what is meant by the term partition coefficient . (01 mark
	State what is meant by the term partition coefficient . (01 mark
	State what is meant by the term partition coefficient . (01 mark
	State what is meant by the term partition coefficient . (01 mark
	State what is meant by the term partition coefficient . (01 marks) 4.5 g of an impure sample of zinc sulphide was dissolved in excess concentrated solution of ammonia and the solution diluted to 500 cm ³
	4.5 g of an impure sample of zinc sulphide was dissolved in excess concentrated solution of ammonia and the solution diluted to 500 cm ³ . The resultant solution was shaken with 25 cm ³ of carbon tetrachloride and allowed to settle. 12.5 cm ³ of aqueous layer required 20.0 cm ³ of a 0.25 M hydrochloride.
	4.5 g of an impure sample of zinc sulphide was dissolved in excess concentrated solution of ammonia and the solution diluted to 500 cm ³ . The resultant solution was shaken with 25 cm ³ of carbon tetrachloride and allowed to settle. 12.5 cm ³ of aqueous layer required 20.0 cm ³ of a 0.25 M hydrochloric acid for complete reaction, while 25.0 cm ³ of the carbon tetrachloride
	4.5 g of an impure sample of zinc sulphide was dissolved in excess concentrated solution of ammonia and the solution diluted to 500 cm ³ . The resultant solution was shaken with 25 cm ³ of carbon tetrachloride and allowed to settle. 12.5 cm ³ of aqueous layer required 20.0 cm ³ of a 0.25 M hydrochloric acid for complete reaction, while 25.0 cm ³ of the carbon tetrachloride layer required 12.5 cm ³ of a 0.025 M hydrochloric acid for complete
	4.5 g of an impure sample of zinc sulphide was dissolved in excess concentrated solution of ammonia and the solution diluted to 500 cm ³ . The resultant solution was shaken with 25 cm ³ of carbon tetrachloride and allowed to settle. 12.5 cm ³ of aqueous layer required 20.0 cm ³ of a 0.25 M hydrochloric acid for complete reaction, while 25.0 cm ³ of the carbon tetrachloride layer required 12.5 cm ³ of a 0.025 M hydrochloric acid for complete

(ii) complexed ammonia.	(272 marks)
(c) Determine the percentage by mass of zinc in the impure zi	

Turn Over

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1		1			1		1		,							1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4	* * * * * * * * * * * * * * * * * * * *				¥						10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.5 Cl 17	40.0 Ai 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25			58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31		74.9 As 33	79.0 Se 34		83.8 Ki 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	1.000	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Ri 86
223 Fr 87	226 Ra 88	227 Ac 89		1 110				28 G				r 10 u	1 eff			,	
The same of the sa	1	Andrew S	139 La 57			144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64			1		169 Tm 69	173 Yb 70	175 Li 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95	247 Cm 96		251 Cf 98	Es	Fm	256 Md 101	254 No 102	260 Lv 103

16

