(due Friday, November 5, by 5:00 p.m. CDT)

No credit will be given without supporting work.

7. Let $\psi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x; \psi) = \frac{\psi}{2^{\psi}} \cdot (2-x)^{\psi-1}, \qquad 0 < x < 2,$$
 zero otherwise.

Recall:
$$F_X(x) = 1 - \frac{1}{2\Psi} \cdot (2-x)^{\Psi} = 1 - \left(1 - \frac{x}{2}\right)^{\Psi}, \quad 0 \le x < 2.$$

Let $Y_1 < Y_2 < ... < Y_n$ denote the corresponding order statistics.

- i) [Proving that $Y_1 = \min X_i \xrightarrow{P} 0$ is super easy, barely an inconvenience.]

 Let $U_n = n Y_1 = n \min X_i$. Find the limiting distribution of U_n .
- "Hint": ① Find the c.d.f. of Y_1 , $F_{Y_1}(x) = F_{\min X_i}(x)$.
 - ② Use $F_{Y_1}(x)$ to find the c.d.f. of U_n , $F_{U_n}(u) = P(U_n \le u)$.
 - $F_{\infty}(u) = \lim_{n \to \infty} F_{U_n}(u)$. If the limit exists, and if $F_{\infty}(u)$ is a c.d.f. of a probability distribution, then that is the limiting distribution of U_n .
- j) [Proving that $Y_n = \max X_i \xrightarrow{P} 2$ is super easy, barely an inconvenience.] Find β so that $V_n = n^{\beta}(2 - Y_n) = n^{\beta}(2 - \max X_i)$ converges in distribution. Find the limiting distribution of V_n .

- "Hint":
- Use $F_X(x)$ to find the c.d.f. of Y_n , $F_{Y_n}(x) = F_{\max X_i}(x)$.
- Use $F_{Y_n}(x)$ to find the c.d.f. of V_n , $F_{V_n}(v) = P(V_n \le v)$. 2
- $F_{\infty}(v) = \lim_{n \to \infty} F_{V_n}(v)$. If the limit exists and IF $F_{\infty}(v)$ is a c.d.f.

of a probability distribution, then that is the limiting distribution of V_n .

- $\lim_{n\to\infty} \left(1 + \frac{a}{n^1}\right)^n = e^a$. Only "interesting" case is interesting.
- Let $\xi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x;\xi) = \frac{1}{2} \xi^4 x^{11} e^{-\xi x^3}, \qquad x > 0,$$
 zero elsewhere.

The maximum likelihood estimator of ξ is $\hat{\xi} = \frac{4n}{\sum_{i=1}^{n} X_i^3}$.

 $W = X^3$ has a Gamma ($\alpha = 4, \theta = \frac{1}{\xi}$) distribution.

Show that $\hat{\xi}$ is asymptotically normally distributed (as $n \to \infty$). g) Find the parameters.

"Hint":

① By CLT,

$$\sqrt{n} \left(\overline{W} - \mu_{W} \right) \stackrel{D}{\rightarrow} N \left(0, \sigma_{W}^{2} \right).$$

If g(x) is differentiable at μ and $g'(\mu) \neq 0$, then

$$\sqrt{n} \left(g\left(\overline{X}\right) - g\left(\mu_{W}\right) \right) \stackrel{D}{\rightarrow} N\left(0, \left[g'(\mu_{W})\right]^{2} \sigma_{W}^{2}\right).$$

That is, for large n,

$$g(\overline{X})$$
 is approximately $N(g(\mu_W), [g'(\mu_W)]^2 \frac{\sigma_W^2}{n})$.

9. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x; \lambda) = \frac{\lambda}{x^2}$$
, $x \ge \lambda$, zero otherwise.

- a) (i) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$.
 - (ii) Suppose n = 4, $x_1 = 5$, $x_2 = 10$, $x_3 = 3$, $x_4 = 20$. Find the maximum likelihood estimate of λ .
- b) Is $\hat{\lambda}$ a consistent estimator of λ ? *Justify your answer*. (NOT enough to say "because it is the maximum likelihood estimator")
- c) Is $\hat{\lambda}$ an unbiased estimator of λ ? If $\hat{\lambda}$ is not an unbiased estimator of λ , construct an unbiased estimator of λ based on $\hat{\lambda}$. (Assume $n \ge 2$.)

Using CourseHero is cheating

