MASA-CR-166,029

NASA Contractor Report 166029.

COMPUTER PROGRAM FOR POST-FLIGHT EVALUATION OF A LAUNCH VEHICLE UPPER-STAGE ON-OFF REACTION CONTROL SYSTEM

> NASA-CR-166029 19860004452

R. N. KNAUBER

VOUGHT CORPORATION P. O. Box 225907 Dallas, Texas 75265

NASA Contract NAS1-15000 November 1982

Because of its significant early commercial potential, this EON EARLY DOMESTIC DISSEMINATION Because of its significant early commercial potential, this within the finited matter within the finite matter within Imprimation, which has been developed under a US GOVernment program, is being disseminated within the third
ernment program, is being disseminated. This information
ernment program of neneral publication. ernment program, is being disseminated within the United
This information
States in advance of general publication the recipient with the original publication and used by the recipient with the original publication and used by the recipient with the original publication and used by the recipient with the original publication and used by the recipient with the original publication. States in advance of general publication inistinformation with the exmany be duplicated and used by the recipient with the may be duplicated and used by the number of the number of the publication that it not be numbered by the number of th may be duplicated and used by the recipient with the this press limitation that it not be published Release of the press limitation to other domestive article by the recipient chall information to other domestive article by the recipient chall information to other domestive article by the recipient with the chall with the recipient wi press limitation that it not be published Helease of this information to other domestic parties by the recipient shall he made cubication to the continuous Foreign release may be made only with prior NASA ap-Foreign release may be made only with prior NASA aptropries and appropriate export licenses information in whole proval and appropriate export of this information in whole be marked on any reproduction of this information. Intormation to other domestimitations, be made subject to these 1 mitations, Review for general release November 30, 1985 or in part

NF02229

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

LIBRARY COPY

ner 1 1982

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

COMPUTER PROGRAM FOR POST-FLIGHT EVALUATION OF A LAUNCH VEHICLE UPPER STAGE ON-OFF REACTION CONTROL SYSTEM

SUMMARY

This report describes a FORTRAN IV coded computer program for post-flight evaluation of a launch vehicle upper stage ON-OFF reaction control system. Aerodynamic and thrust misalignment disturbances are computed as well as the total disturbing moments in pitch, yaw, and roll. Effective thrust misalignment angle time histories of the rocket booster motor are calculated. Disturbing moments are integrated and used to estimate the required control system total impulse. Effective control system specific impulse is computed for the boost and coast phases using measured control fuel useage. This method has been used for more than fifteen years for analyzing the NASA Scout Launch Vehicle second and third stage reaction control system performance.

The computer program is set up in FORTRAN IV for a CDC CYBER 175 system. With slight modification it can be used on other machines having a FORTRAN compiler. The program has optional CALCOMP plotting output. With this option the program requires 19K words of memory and has 786 cards. Running time on a CDC CYBER 175 system is less than three (3) seconds for a typical problem.

TABLE OF CONTENTS

																								Page
SUMM	ARY				•	•	•		•	•		•							-	•	•	•	•	1
TABL	E OF	CONTENT	s.		•	•	•		•	•	•	•		<u>į</u> •	•	•	•	•	•	•	•	•	•	ill
LIST	OF I	LLUSTRA	TIONS	5.	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	ıv
LIST	OF S	YMBOLS			•	•	•		•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	V
1.0	INTR	ODUCTIO	N.		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.0	METH	ODOLOGY	• •	• •	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	2
	2.1	Assump	tions			•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	2
	2.2	Equation	ons			•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	3
		2.2.1	Dist	urbi	ing	Mon	en	ts :	and	ı	hr	usi	t M	is	alı	Lgi	me	ent	ե			•	•	3
		2.2.2	Tota																				•	5 5
		2.2.3										•											•	
		2.2.4	Angu	lar	Acc	ele	ra	tio	ns	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	7
3.0	PROG	RAM DES	CRIPT	ON																				
	3.1	Genera	1.				•		•	•	•			•	•		•	•	•	•		•	•	8
	3.2	Program	m Flo	w .		•	•		•	•	•	• •		•	•	•	•	•	•	•	•	•	•	8
	3.3	Subrou	tine	Desc	rip	tıc	n		•	•	•	•		•	•	•	•	•	•		•	•		8
	3.4	Input	Data	Desc	rip	tio	n ·		•	•	•			•	•	•	•	•	•	•	•	•	•	11
		3.4.1	Opti	Ong	and	ጥ፥	±1,	a .																11
		3.4.2	Cons					• •												-	-	•	•	12
		3.4.3	Boos																				•	13
		3.4.4	Boos							-	-		-	-	-	-	-	•	•	•	•	•		15
		3.4.5																						16
									_															17
		3.4.6																						18
		3.4.7 3.4.8																						
		-																						19
		3.4.9	CALC	OMP	PIO	τ ν	ar:	Lab.	res	3	•	• •	•	•	•	•	•	•	•	•	•	•	•	19
	3.5	Output	Data	Des	cri	pti	on	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	20
		3.5.1	Boos	t Ph	220	-	Pi t	tch	_	_	_			_	_	_	_		_	_	_			20
		3.5.2																						21
		3.5.3																						22
		3.5.4																						
		ノ•リ•牛	Coce	υ ΓΩ + Τπ-	226	-	Jy S	- ve	TT A	ar	Tql	υте	3	•	•	•	•	•	•	•	•	•	•	23
		3.5.5																						23
		3.5.6	CALC	OMP	LTO	τs	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	24
Apper	ndıx .	A				•			•				•	•	•									A-1

LIST OF ILLUSTRATIONS

Figure No.	Descriptions	Page
1	Sign Convention	25
2	Disturbed and Undisturbed Motion	26
3	Typical Rate Time Histories	27
4	Flow Chart of UPSTAG	28
5	Sample Problem Input Data	35
6	Sample Problem Printed Output Data	38
7	Sample Problem CALCOMP Plots	43

LIST OF SYMBOLS

		Units
a ₃	cubic coefficient in aerodynamic normal force coefficient versus angle of attack expression	•1/deg ³
$c_{ m N}$	aerodynamic normal force coefficient	• —
$^{\mathrm{C}}$ N $_{\boldsymbol{lpha}}$	aerodynamic normal force coefficient slope at zero angle of attack	.1/deg
C _{reg}	control fuel system regulated gas pressurization compressibility factor	• —
cg	control fuel system unregulated gas pressurization compressibility factor	• —
Fc	control motor force	·lbs
$I_{ ext{sp}}$	control fuel specific impulse	·lb -sec/lb _m
$I_{ extbf{T}}$	control system total impulse	·lb _f -sec
$I_{\mathbf{x}}$	roll moment of inertia	·slug-ft ²
Iy	pitch or yaw moment of inertia	•slug-ft ²
K _t	rate trace paper speed	·in/sec
К _р	rate trace scale factor	.deg/sec/in
L	roll moment	ft-lbs
1 _e	pitch or yaw control moment arm	•ft
1 _r	effective thrust misalignment moment arm	•ft
M	pitching moment	ft-lbs
N	yawing moment	ft-lbs
P	pressure	·psia
Q	dynamic pressure	·lbs/ft ²
$R_{\mathbf{c}}$	roll control moment arm	.ft
S	aerodynamic reference area	·ft ²
T	booster thrust	lbs

LIST OF SYMBOLS (continued)

$^{\mathtt{T}}\mathtt{g}$	temperature of pressurizing gasOR
$v_{\mathbf{g}}$	unregulated pressurizing gas volumein3
Wc	control fuel weightlbs
W _P	rocket booster propellant remaininglbs
x	body stationnches
$\mathbf{z}_{\mathbf{c}}$	location of pitch or yaw control motors from centerlineinches
Greek Letters	
α	angle of attackdeg
β	angle of sideslipdeg
η	total aerodynamic angledeg
heta	pitch attitudedeg
ϵ_{τ}	effective booster thrust misalignmentdeg
$\lambda_{\mathbf{c}}$	pitch and yaw control motor cant angledeg
λ_{7}	orientation angle of thrust misalignmentdeg
$\lambda_{oldsymbol{ heta}}$, $\lambda_{oldsymbol{\psi}}$, $\lambda_{oldsymbol{\phi}}$	rate trace slopesdeg
$ ho_{L}$	weight density of control liquid fuellbs/in3
$oldsymbol{\phi}$	roll attitudedeg
ψ	yaw attitudedeg
Prefix	
9	derivative or differential
Δ	incremental value
Σ	prefix summation sign
Subscripts	
aero	aerodynamic
c	control

Subscripts (continued)

center of mass cg consumed cons aerodynamic center ср đ disturbance gas g L liquid N normal force 0 initial value pitch p R roll regulated gas reg

T total

У yaw

τ booster thrust

Special Notation

rem

integral with respect to time

remaining

dots above a variable denote derivative with

respect to time

1.0 INTRODUCTION

Post-flight analysis of a reaction controlled launch vehicle upper stage should include computation of the disturbing pitch, yaw, and roll moments, control fuel consumption, estimated control fuel specific impulse, as well as other performance measures. The method presented herein, provides a useful tool to aid in these tasks for an ON-OFF reaction controlled vehicle. It is a straightforward deterministic approach based on uncoupled rigid body equations of motion. Impulse and control fuel useage is based on integration of the absolute value of average duty cycles required to balance disturbing moments and optional inputs for additional impulse such as used during limit cycle operation. Being straightforward and simple this important evaluation method is sometimes overlooked in post-flight evaluation of reaction-control systems.

The method has been used for more than fifteen years for evaluating the ON-OFF hydrogen peroxide reaction control systems on the second and third stages of the NASA SCOUT (SCientific Orbital Utility Test) Vehicle. Use of this method has led to an accurate data bank on the booster rocket motors thrust misalignment and roll torque characteristics and control system specific impulse deviations. It has also been useful in helping diagnose rocket motor failures.

Input data required includes dynamic pressure, angles of attack and sideslip, angular accelerations or angular rate trace slopes, booster thrust and weight time histories, mass properties, control fuel or pressurization variables, and vehicle control moment arms. Optional input includes incremental rates at control motor firings and/or incremental impulse.

Methodology and a detailed computer program description is presented herein. Details of the computer program including a sample problem and detailed input and output descriptions are presented in Section 3. A complete FORTRAN listing is presented in Appendix A.

2.0 METHODOLOGY

This section presents the methodology and equations which can be used to compute pitch, yaw and roll disturbing moments, effective thrust misalignment, total impulse expended by the control system, control fuel consumption and effective overall control system specific impusle. Knowledge of vehicle angular rate time histories and control motor firings from telemetry data is required. Booster thrust, dynamic pressure, angles of attack and sideslip, are also required. If the ON-OFF control system is a regulated pressure system an option of computing fuel useage is included based on measured pressure and temperature of the unregulated pressure supply.

2.1 Assumptions

Major assumptions and approximations made in the method are:

- . non-spinning three-axes stabilized vehicle,
- ON-OFF reaction control motors which are off sufficiently long to define angular accelerations about each axis.
- · aerodynamic and mass properties symmetry in pitch and yaw,
- · no gyroscopic cross-coupling terms,
- aerodynamic coefficients are non-linear with angle of attack and can be described by a cubic for normal force coefficient and a linear variation of aerodynamic center with absolute value of angle of attack,
- control impulse expended assumes balance of disturbing moments plus an additional impulse supplied as input,
- control impulse calculations assume independence of pitch, yaw, and roll control motors (no mixing of pitch-roll or yaw-roll, etc.),
- optional calculation of control fuel useage from unregulated pressure and temperature assumes nitrogen pressure regulated system without venting and non-varying temperature on regulated side.
- . no rocket motor jet damping in pitch, yaw, and roll,
- · no aerodynamic damping

2.2 Equations

2.2.1 Disturbing Moments and Thrust Misalignment

The angular equations of motion in pitch, yaw and roll based on the previously mentioned assumptions are (see Figure 1 for sign conventions):

(2-1)
$$I_y \ddot{\theta} = 57.3 \Sigma M = 57.3 \left[M_C + M_\tau + M_{aero} \right]$$

(2-2)
$$I_y \ddot{\psi} = 57.3 \Sigma N = 57.3 \left[N_c + N_r + N_{aero} \right]$$

(2-3)
$$I_{X}\ddot{\phi} = 57.3 \Sigma L = 57.3 \left[L_{C} + L_{D} \right]$$

Control moments are:

$$(2-4) \qquad M_C = -F_{Cp} I_C \qquad (ft-lbs)$$

$$(2-5) N_C = -F_{C_V} 1_C (ft-lbs)$$

(2-6)
$$L_{c} = -2 F_{cR} R_{c}$$
 (ft-1bs)

where the control moment arm is,

(2-7)
$$l_c = [(x_c - x_{cg}) \cos \lambda_c + z_c \sin \lambda_c] / 12$$
 (ft)

Booster induced moments which are produced by all sources (i.e., angular, offset, swirl, jet damping, etc.) are all lumped into an effective thrust misalignment angle in the pitch and yaw planes.

(2-8)
$$M_{\tau} = T \epsilon_{\tau_n} l_{\tau} / 57.3$$
 (ft-1bs)

$$(2-9) \qquad N_{\tau} = T \epsilon_{\tau_{V}} 1_{\tau} / 57.3 \qquad (ft-lbs)$$

where the thrust side force is assumed to act at the nozzle throat,

$$(2-10) 1_{\tau} = (x_{\tau} - x_{cg}) / 12 (ft)$$

aerodynamic moments are,

(2-11)
$$M_{aero} = C_N S Q (x_{cg} - x_{cp}) \tan \alpha / 12 \tan \eta$$
 (ft-1bs)

(2-12)
$$N_{aero} = -C_N S Q (x_{cg} - x_{cp}) \tan \beta / 12 \tan \eta$$
 (ft-lbs)

total aerodynamic angle (η) is,

$$(2-13) \eta = \tan^{-1} \sqrt{\tan^2 \alpha + \tan^2 \beta}$$

aerodynamic normal force coefficient is a cubic function of ' η ',

(2-14)
$$C_N = C_{N\alpha} \eta + a_3 \eta^3$$

and aerodynamic center is,

(2-15)
$$x_{cp} = x_{cp_0} + \frac{\partial x_{cp}}{\partial \alpha} | \eta |$$
 inches

Total disturbing moments are computed from equations 2-1, 2-2, and 2-3 when the control motors are off, i.e.,

(2-16)
$$M_D = I_V \ddot{\theta} / 57.3$$
 (ft-lbs)

$$(2-17)$$
 $N_D = I_y \ddot{\psi} /57.3$ (ft-lbs)

(2-18)
$$L_D = I_X \dot{\phi} /57.3$$
 (ft-lbs)

An effective moment due to the rocket booster is,

$$(2-19) \qquad M_r = M_D - M_{aero}$$
 (ft-lbs)

$$(2-20) N_{\tau} = N_{D} - N_{aero} (ft-lbs)$$

An effective thrust misalignment can then be computed from equations (2-8), (2-9), and (2-16) through (2-20) for periods when the control motors are off. Pitch, yaw and total effective thrust misalignment is,

(2-21)
$$\epsilon_{r_p} = \left[I_y \ddot{\theta} - 57.3 \text{ M}_{aero} \right] / \text{T} I_\tau$$
 (degrees)

$$(2-22) \epsilon_{r_y} = \left[I_y \ddot{\psi} -57.3 N_{\text{aero}} \right] / T I_r (degrees)$$

(2-23)
$$\epsilon_r = \sqrt{\epsilon_r^2 + \epsilon_r^2}$$
 (degrees)

Total thrust misalignment angle and orientation angle (λ_{7}) is shown in Figure 1.

(2-24)
$$\lambda_r = \tan^{-1} \left(\epsilon_{ry} / \epsilon_{rp} \right)$$

2.2.2 Total Impulse Expended

Total impulse expended by the control system is the integral of the absolute value of thrust-time histories of each control motor.

(2-25)
$$I_T = \sum \int |F_i| dt$$
 ; i= 1,2,3,....n motors

This information is not usually available. Estimation of this from motor commands and preflight measured thrust levels is often inaccurate when short pulse widths are commanded. During a boost phase the disturbing torques are generally large enough for the control system to operate on one side of the deadband resulting in a long period of single direction control motor pulsing (Figure 2). When this occurs the average angular impulse expended by the pitch yaw and roll control motors balances that produced by the disturbances. The linear impulse is,

$$(2-26) I_{T} = \int \left[|M_{D}/1_{c}| + |N_{D}/1_{c}| + |L_{D}/R_{c}| \right] dt + \Delta I_{T}$$

where ΔI_T is an additional impulse,

When the control system deadband is crossed opposite motors fire (Figure 2). If this occurs the impulse expended includes the balance of disturbances plus the balancing of the opposite motor plus the impulse expended by the opposite motor. For this reason the program includes an input table of an "additional" impulse (ΔI) time history which can be estimated by other means such as angular rate changes and measured motor pulse widths.

An option for computing the impulse from supplied changes in pitch, yaw and roll rates is available to cover periods of no disturbance such a limit cycle operation during a coast period. A typical rate trace is presented in Figure 3. The linear impulse required to produce the motion is,

(2-27)
$$\Delta I_T = \sum \left[|I_y \Delta \dot{\theta} / 57.3 \, I_c| + |I_y \Delta \dot{\psi} / 57.3 \, I_c| + |I_x \Delta \dot{\phi} / 57.3 \, R_c| \right]$$

With this option the absolute values of incremental pitch, yaw and roll rates must be supplied as a time history as described in the input data description (paragraph 3.4).

2.2.3 Control Fuel Useage

Measured control fuel useage can be input directly to the program to be used to compute an effective specific impulse.

$$(2-28) ISD = IT / WC (lbf-sec/lbm)$$

This is computed as a running time history during the boost and coast phases.

If a closed pressure regulated liquid monopropellant control system is used there is an option to compute the liquid expelled from measured unregulated pressure and temperature. The following assumptions are made:

- . total mass of pressurizing gas does not change
- . regulated side gas pressurant is the same temperature as the unregulated side
- . liquid monopropellant density is constant
- . the compressibility factor of the gas on the regulated side does not change

The amount of propellant expended is:

$$\Delta W_{c} = \frac{\rho_{L} C_{reg} V_{g}}{P_{reg}} \left\{ \frac{P_{go} T_{g}}{C_{go} T_{go}} - \frac{P_{g}}{C_{g}} \right\} + \frac{\rho_{L} \Delta V_{g}}{T_{go}} \left\{ \frac{T_{g}}{T_{go}} - 1 \right\}$$

where,

The zero subscript denotes values at the start of operation when a known quantity of fuel is in the tanks such as at initial operation.

The computer program includes a short subroutine (C) which computes the compressibility factor for dry diatomic nitrogen based on a curve fit. The curve fit is accurate for pressures in the range of 400 to 3000 psia and temperatures between 50 and 100 degrees Fahrenheit. The curve fit is,

(2-30)
$$C_g = 0.9977 + 1.657738 \times 10^{-5} (P_g-1400) + 1.264881 \times 10^{-8} (P_g-1400)^2 + 4.5833 \times 10^{-4} (T_g - 522)^2$$

Control fuel remaining is the initial value minus that consumed,

$$(2-31) \qquad W_{C_{rem}} = W_{C_0} - \Delta W_{C}$$
 (1bs)

A time history comparison of the control fuel useage computed from measurements with that based on calculated total impulse and effective average specific impulse is output by the program.

2.2.4 Angular Accelerations

Angular accelerations between control motor firings are used to compute the disturbing moments (equations 2-16 through 2-18). An optional input includes the slope and scale factors from a plotted time history or oscillograph record as shown in the sketch below.

The angular acceleration is computed as,

(2-32)
$$\vec{\theta} = K_t K_p \tan \lambda_{\theta}$$
 (deg/sec)

where,

 $K_{\mbox{\scriptsize t}}$ is the paper speed in length units per second.

 K_{D} is the rate scale factor in degrees per second per length unit.

 $\lambda_{\boldsymbol{\mathcal{H}}}$ is the slope of the rate trace in degrees.

3.0 PROGRAM DESCRIPTION

3.1 General

This computer program is programmed in FORTRAN IV for a CDC CYBER 175 system. The coding is compatible with ANSI standards. It is arranged to operate with standard card input and line printer output. Optional CALCOMP plotting is based on standard CALCOMP plotters and software.

A main routine (UPSTAG) and four subroutines require approximately 19K words of computer memory. All output is stored in array variables to facilitate a well formatted print and CALCOMP plot output format.

Program flow and user instructions are presented in the following paragraphs. Input and output of a sample problem is illustrated along with the detailed descriptions.

3.2 Program Flow

Program flow is straightforward in five basic parts:

- input data
- . calculation of boost phase disturbances and impulse
- . calculation of coast phase variables
- output data on line printer
- . optional CALCOMP plots

A flow chart of the main routine (UPSTAG) is presented in Figure 4. A complete listing of the FORTRAN program and subroutines other than the standard CALCOMP library subroutines are presented in Appendix A.

Descriptions of the four subroutines are presented in the following paragraphs.

3.3 Subroutine Description

Four subroutines are used to support the UPSTAG main program; C, CURVE, DASH, and TBLU. A brief description of each is presented below.

 \overline{c}

This short subroutine computes the compressibility factor for dry diatomic nitrogen by a curve fit over the pressure range of 400 to 3000 psia and a temperature range of 50 to 100 degrees Fahrenheit. The call statement is,

CALL C(P, T, CR)

where.

- P is the input nitrogen pressure (psia)
- T is the input nitrogen temperature (degrees Rankine)
- CR is the output compressibility factor

CURVE

This subroutine is used to set up the sequence of CALCOMP plots for pitch, yaw, and roll disturbing moments and the effective thrust misalignments. Plots are set up for a 20 x 20 divisions per inch graph paper having a grid size of 10 x 7 1/2 inches (see the output data description in this section for a sample plot output). The data to be plotted is passed to this subroutine via common in arrays PVAR, YVAR, RVAR, and TVAR. Solid dashed and dash-dot line plots are accomplished by the subroutine DASH. The call statement is.

CALL CURVE (NP, NQ, IROLL, NTITLE, DYP, DYR, DYET, DX)

where,	
NP	input number of time points in the arrays to be plotted
NQ	input controls
	NQ = 0 if aerodynamic moments are zero only the total disturbing moments are plotted
	NQ = 1 total disturbing moments in addition to aerodynamic
	and thrust misalignment moments are plotted
IROLL	input control integer
	IROLL = O roll disturbing moment not plotted
	IROLL = 1 roll disturbing moment is plotted
NTITLE	input title description of 80 characters with eight (8)
	'ten-letter' words
DYP	input ordinate scale factor for the pitch and yaw moments
	(ft-lbs per inch).
DYR	input ordinate scale factor for the roll moment (ft-lbs per
	inch)
DYET	input ordinate scale factor for thrust misalignment (degrees
	per inch)
TC	input abscissa scale factor for time (seconds per inch)

Note that care must be taken in selecting scale factors so that plotted data falls on grid. Limiting of the plotted data is automatically invoked in CURVE through the call statements to DASH.

DASH

This subroutine plots a curve on a CALCOMP plotter for a set of ordinates and abscissas. The style and type of line drawn is selected by the user. Note that the CALCOMP plot is specified in inches; plotting on metric paper requires appropriate scaling change before entering this subroutine.

The call statement is,

CALL DASH (X, Y, NP, Z1, Z2, SPACE, XSCALE, YSCALE, LSYMB, XLIM, YLIM) where.

X - input array of	f abscissa values
--------------------	-------------------

Y - input array of ordinate values

NP - number of points in X and Y to be plotted

Z1 - for dashed-dot lines this is length of long line measured in inches (see sketch below)

- for dashed-dot lines this is length of short line measured in inches (see sketch)

SPACE - for dashed style lines this is the length of the space between lines measured in inches.

SPACE = 0 gives a solid line plot

SPACE = negative gives special CALCOMP symbols at each point

XSCALE - abscissa plot scale factor (units per inch)
YSCALE - ordinate plot scale factor (units per inch)

LSYMB - special CALCOMP symbol code number used if SPACE is negative (see code below)

- (+) LSYMB gives straight solid lines between symbol points - (-) LSYMB gives only symbols at each point without lines

XLIM - plot limiting of the abscissa (inches) points out of range, range will appear at this limit

YLIM - plot range of ordinate (inches)

For ease in use, the following styles are typically possible,

LINE	TYPE	Zl	Z 2	SPACE	LSYMB
	Solid			0.	0.
	Dashed	0.25	0.25	0.10	0.
	Dashed	0.07	0.07	0.07	0.
	Dashed Dot	0.5	0.03	0.07	0.
*************************************	Symbols			-0.1	+2
Δ Δ Δ Δ	Symbols (no line)			-0.1	-2

TBLU

This is a single table lookup subroutine. It is based on linear interpolation between points for a single array having alternating values of abscissas and ordinates. The abscissas must be in ascending order.

The call to this subroutine is:

CALL TBLU (NT, Y, X, T, M)

ТИ	-	number of values in table 'T' including abscissas and ordinates.
Y	_	is the ordinate to be found.
X	-	is the given abscissa.
T	-	is the table of alternating abscissas and ordinates.
M	-	is the table locator to begin the table search. M must be
		an integer value from 1 to NT. This index is changed by the

subroutine to the location found in the lookup.

3.4 Input Data Description

Input data descriptions are presented in the following subparagraphs. A sample problem input data listing is presented in Figure 5 for reference. The input data can be separated into the following groups:

- 1) option control card and title
- 2) constants
- 3) trajectory and vehicle characteristics tables
- 4) angular accelerations (not shown in Figure 5)
- 5) rate trace scale factors and slopes
- 6) additional impulse table and incremental rates
- 7) control fuel
- 8) coast phase only constants (not shown in Figure 5)
- 9) CALCOMP plot variables

3.4.1 Options and Title

The first card of input contains six integer control constants for the run. These are input in fields of five (5) columns. The number must be right justified. The input format is (1015).

FORTRA N NAME	COLUMN	DESCRIPTION
IOPT1	5	option for input of pitch, yaw, and roll disturbing accelerations IOPT1 = 0 input angular acceleration tables IOPT1 = 1 input angular rate trace slopes and scale factors
IOPT2	10	option for input of control fuel useage IOPT2 = O read in table of fuel remaining time history IOPT1 = 1 read constants, pressure and temperature time histories and compute control fuel useage

FORTRAN NAME	COLUMN	DESCRIPTION
IOPT3	15	coast input impulse option IOPT3 = O no incremental rates input IOPT3 = 1 input pitch yaw and roll incremental rates versus time during coast to compute impulse
IOPT4	20	CALCOMP plot option IOPT4 = O no plot IOPT4 = 1 CALCOMP plot output
IOPT5	25	boost and coast phase calculations IOPT5 = 0 boost phase only IOPT5 = +1 boost and coast phases IOPT5 = -1 coast phase only
IOPT6	30	boost phase impulse option IOPT6 = 0 boost phase impulse computed from disturbing moments and additional impulse
		IOPT6 = 1 boost phase impulse computed from incremental rates

The second and third card of input contains two lines of an arbitrary title which is output at the top of the printed page. Each card contains 80 columns of hollerith data. It is read with a format of (8A10).

3.4.2 Constants

Constants are input with fields of 10 columns. The fourth card contains five (5) time parameters as described below.

FORTRAN NAME	COLUMN	DESCRIPTION
TP	sec	time of stage ignition (flight time)
TBO	sec	end of boost phase for stage being studied (flight time)
TSTEP	sec	output step size desired during the boost phase (this is also the integration step size for impulse expended)
TCOAST	sec	time of coast phase termination (flight time)
TSTEPC	sec	output step size for the coast phase

The next two cards of boost phase constants are input only if IOPT5 is zero or positive. The constants are read with format (6E10.3).

FORTRAN NAME	SYMBOL	UNITS	DESCRIPTION
TX	x ₇	inches	body station of booster nozzle throat
XC	xc	inches	body station of pitch and yaw control motors
ZC	z _c	inches	location of pitch and yaw control motors away from centerline
RC	$12R_{c}$	inches	roll control motor moment arm
WH202I	W _C	lbs	weight of control fuel onboard at stage ignition
CNAS	$^{c_{N_{\pmb{lpha}}}\!s}$	ft ² /deg	aerodynamic normal force coefficient slope at zero angle of attack times reference area
XCP	x _{cp}	inches	body station of aerodynamic center at zero angle of attack
ETA	$\lambda_{\mathbf{c}}$	degrees	pitch and yaw control motor forward cant angle
CN3	a ₃ S	ft^2/deg^3	cubic coefficient in aerodynamic normal force times reference area
DCP	$\partial x_{cp}/\partial \alpha$	inch/deg	incremental change in aerodynamic center per degree angle of attack

3.4.3 Boost Phase Tables (IOPT5 = 0, +1)

When the boost phase disturbances are analyzed (IOPT5 = 0 or +1) the following eight (8) tables are input: dynamic pressure, angle of attack, angle of sideslip, booster thrust, weight of booster propellant remaining versus time, and roll moment of inertia, pitch or yaw moment of inertia, and center of mass versus percent propellant consumed. The first three tables of aerodynamic parameters are input with format (15/(7E10.3)). The first card of each table is an integer number of values to be read into the table. This number is input in columns 1 through 5 and must be right justified. The table is entered with alternating values of abscissa and ordinate with seven (7) numbers per card. These three tables are dimensioned for 300 numbers. See Figure 5 for the sample problem input. The descriptions follow.

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NQ	1		~		aa 400	number of values in table Q
Q	NQ	tf	sec	Q	lbs/ft ²	dynamic pressure versus flight time
NALPH	1				-	number of values in table ALPH
ALPH	NALPH	^t f	sec	α	deg	angle of attack versus flight time
NBETA	1				-	number of values in table BETA
BETA	NBETA	tf	sec	β	deg	angle of sideslip versus flight time

The remaining input tables are dimensioned for 200 numbers each. These are read with format (15/(6F10.3)). The first card of each table contains an integer number (right justified in columns 1 through 5) indicating the number of numbers included in the table. The table is read in with alternating abscissas and ordinates in fields of ten (10) with six (6) numbers per card. The descriptions of these tables follow.

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
ntt	1					number of values in table TT
TT	NTT	ts	sec	T	lbs	booster thrust versus time after stage ignition
NNWP	1				-	number of values in table WP
WР	NNWP	t _s	sec	W _{prem}	lbs	booster propellant weight remaining versus time after booster ignition
NWX	1				-	number of values in table AIXX
AIXX	NWX	%Wcons		Ix	slug-ft ²	roll moment of inertia versus percent of booster propellant consumed
NWY	1	~-			-	number of values in table AIYY

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
AIYY	NWY	%Wcons		Iy	slug-ft ²	pitch or yaw moment of inertia versus percent of booster propellant consumed
NXCG	1				-	number of values in table XCG
XCG	NXCG	%W _{cons}		xcg	inches	center of mass body station versus percent of booster propellant consumed

3.4.4 Boost Phase Angular Accelerations (IOPT1 = 0)

Angular acceleration tables are input only when the boost phase is analyzed (IOPT5 - 0 or +1) and the acceleration input option IOPT1 = 0. These are read in with format (I5/(6E10.3)).

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NTHE	1				-	number of values in table THEDD
THEDD	NTHE	^t f	sec	$\ddot{ heta}$	deg/sec ²	pitch angular acceleration versus flight time when control motors are off
NPSI	1				-	number of values in table PSIDD
PSIDD	NPSI	^t f	sec	$\ddot{\psi}$	deg/sec ²	yaw angular acceleration versus flight time when control motors are off
NPHI	1				-	number of values in table PHIDD
PHIDD	NPHI	^t f	sec	$\ddot{oldsymbol{\phi}}$	deg/sec ²	roll angular acceleration versus flight time when control motors are off

3.4.5 Boost Phase Rate Slopes (IOPT1 = 1)

When IOPT1 = 1 and IOPT5 = 0 or +1 the angular accelerations are computed from the slopes of the rate traces and their scale factors (see paragraph 2.2.4 and equation 2-32). A single card containing the six (6) rate trace scale factors is input before the slope table. These are input with format (6E10.3) and have the following definitions:

FORTRAN NAME	UNITS	COLUMNS	DESCRIPTION
XKTHE	deg/sec/inch	1-10	pitch rate trace scale factor
XKPSI	deg/sec/inch	11-20	yaw rate trace scale factor
хкрні	deg/sec/inch	21 - 30	roll rate trace scale factor
XKTP	inches/sec	31-40	<pre>pitch rate trace paper speed (inverse of time scale factor)</pre>
XKTY	inches/sec	41-50	yaw rate trace paper speed (inverse of time scale factor)
XKTR	inches/sec	51 - 60	roll rate trace paper speed (inverse of time scale factor)

Three tables of the pitch, yaw and roll rate trace slopes are entered next with format (15/(6El0.3)).

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NTHE	1				-	number of values in THEDD
THEDD	NTHE	tf	sec	$\lambda_{oldsymbol{ heta}}$	deg	pitch rate trace slope versus flight time when control motors are off
NPSI	1				-	number of values in table PSIDD
PSIDD	NPSI	tf	sec	$\lambda_{m{\psi}}$	deg	yaw rate trace slope versus flight time when control motors are off
NPHI	1				-	number of values in table PHIDD
PHIDD	NPHI	tf	sec	$\lambda_{oldsymbol{\phi}}$	deg	roll rate trace slope versus flight time when control motors are off

3.4.6 Incremental Impulse

Total impulse calculations include allowance for an incremental impulse which is precalculated. This allows for impulse not covered by moment balance during boost in any of three axes of control. It is up to the user to define entries into this table. This table is input with format (15/6E10.3). The impulse is cumulative or a continuous sum.

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NRI	1				-	number of values in table RI
RI	NRI	tf	sec	IT	lb-sec	sum of incremental impulse versus flight time

When (IOPT3 = 1) incremental rates are also used to compute impulse, such as, during limit cycle motion. Additional tables are required. These are input as an incremental absolute value of rate changes between time points (not cumulative). These incremental rates are summed in the program to estimate total impulse.

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NDPR	1				-	number of values in table DPR
DPR	NDPR	^t f	sec	$\Delta \dot{ heta}$	deg/sec	incremental pitch rate between time points versus flight time (absolute values)
NDYR	1				-	number of values in table DYR
DYR	и́рук	tf	sec	$\Delta \dot{\psi}$	deg/sec	incremental yaw rate between time points versus flight time (absolute values)
NDRR	1				-	number of values in table DRR
DRR	NDRR	tf	sec	$\Delta\dot{\phi}$	deg/sec	incremental roll rate between time points versus flight time (absolute values)

3.4.7 Control Fuel

When IOPT2 = 0 the control fuel remaining versus flight time is input with format (15/(6E10.3)).

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NW	1				-	number of values in table W
W	NW	tf	sec	W _c	lbs	control fuel weight remaining versus flight time

When IOPT2 = 1 the control fuel remaining is computed from the unregulated pressure and temperature of the pressurizing gas. The alternate input includes a card containing five (5) constants followed by two tables. These are,

FORTRAN NAME	COLUMN	SYMBOL	UNITS	DESCRIPTION
DENS	1-10	$ ho_{ m L}$	lbs/in ³	density of liquid control fuel
COMFAC	11-20	$\mathtt{c}_{\mathtt{reg}}$		compressibility factor of gas on regulated side
PREREG	21-30	$P_{ extbf{reg}}$	psia	regulated pressure of system
DVOL	31-40	$\Delta \mathtt{v}_{\mathtt{reg}}$	ın ³	initial volume of gas on regulated side of system
VOLN2	41 - 50	v_{g}	ın ³	volume of unregulated side of pressurization system

The following tables are then entered with format (I5/6E10.3)).

FORTRAN NAME	NO. OF VALUES	ABSCISSA	UNITS	ORDINATE	UNITS	DESCRIPTION
NNP	1					number of values in table P
P	NNP	^t f	sec	$P_{\mathbf{g}}$	psia	unregulated gas pressure versus flight time
NNT	1				-	number of values in table T
T	NNT	tf	sec	$^{\mathrm{T}}\mathbf{g}$	of	unregulated gas temperature versus flight time

3.4.8 Coast Phase Constants (IOPT5 = -1)

When no boost phase is analyzed (IOPT5 = -1) nine (9) constants are input with format (6E10.3). These are,

FORTRAN NAME	COLUMN	SYMBOL	UNITS	DESCRIPTION
RC	1-10	12R _c	inches	roll control motor moment arm
WH202I	11-20	Wco	lbs	value of control fuel onboard at stage ignition
AMY	21-30	12·1 _c	ınches	pitch or yaw control motor moment arm
RIXX	31-40	$I_{\mathbf{x}}$	slug-ft ²	roll moment of inertia
YYYY	41-50	Iy	slug-ft ²	pitch or yaw moment of inertia
WH202M	51-60	W _c	lbs	control fuel onboard at stage burnout
(next card)				
WH202C	1-10		lbs	calculated control fuel at stage burnout
BOIMP	11-20	IŢ	lb-sec	total impulse expended during boost phase
RIC	21-30	$\mathtt{I}_{\mathtt{T}}$	lb-sec	incremental impulse expended during the boost phase

3.4.9 CALCOMP Plot Variables (IOPT4 = 1)

This group of input data is required if the optional CALCOMP plots are desired (IOPT4 = 1). It includes scale factors, plot options and a title. The first card in this group is the title card containing 80 columns of alphanumeric information to be included at the top of each plot. It is read into array NTITLE with format (8A10). The next card contains the variable IROLL in column 5. This is an integer control constant;

IROLL = 0 no roll moment plotted
IROLL = 1 roll moment time history is plotted

The third card contains four scale factor constants. These are read with format (4E10.3) and are,

FORTRAN NAME	COLUMNS	UNITS	DESCRIPTION
SFT	1-10	sec/in	abscissa time scale factor of plots (note plot is limited to 7 inches along abscissa axis)
SFPYM	11-20	ft-lbs/in	pitch and yaw moment scale factor (plot is limited to + 3 inches)
SFET	21 - 30	de g/in	thrust misalignment scale factor (plot is limited to + 3 inches)
SFRM	31-40	ft-lbs/in	roll moment scale factor (plot is limited to + 5 inches)

Note that there is no plotted information if the boost phase is deleted (IOPT5 = -1).

3.5 Output Data Description

Output includes printed data and optional CALCOMP plots (if IOPT4 = 1). A detailed description of the output is presented in the following paragraphs with a sample problem output of Figures 6 and 7 for reference. The printed output occurs in five basic pages,

- · pitch boost phase variables
- yaw boost phase variables
- · roll boost phase variables
- · boost phase system summary data
- · coast phase data

3.5.1 Boost Phase - Pitch (IOPT5 = 0, +1)

This page of output includes the time histories of pitch variables during the boost phase. Both stage time (measured from ignition) and flight time (measured from liftoff) are included. Refer to Figure 6 for the output layout. The definitions of the printed names follow,

LABEL	SYMBOL	UNITS	DESCRIPTION
FLIGHT TIME	^t f	sec	flight time
STAGE TIME	t _s	sec	stage time (measured from booster ignition)
ANGULAR ACCEL	$\ddot{ heta}$	deg/sec ²	pitch angular acceleration
MOMENT OF INER	Iy	slug-ft ²	pitch moment of inertia
AERO MOMENT	M _{aero}	ft-lbs	aerodynamic pitching moment (Equation 2-11)
MISALIGN MOMENT	M _T	ft-lbs	pitching moment due to booster (Equation 2-19)
TOTAL MOMENT	M_{D}	ft-lbs	total pitch disturbing moment (Equation 2-16)
THRUST MISALN	[€] r _p	deg	pitch component of effective thrust misalignment (Equation 2-21)
IMPULSE	IŢ	lb-sec	total impulse due to pitch control motors during boost phase

3.5.2 Boost Phase - Yaw (IOPT5 = 0, +1)

This page format contains the following variables.

LABEL	SYMBOL	UNITS	DESCRIPTION
FLIGHT TIME	t_f	sec	flight time
STAGE TIME	t _s	sec	stage time measured from booster ignition
ANGULAR ACCEL	$\ddot{\psi}$	deg/sec ²	yaw angular acceleration
MOMENT OF INER	Iy	slug-ft ²	pitch or yaw moment of inertia
AERO MOMENT	N _{aero}	ft-lbs	yaw component of aerodynamic moment (Equation 2-12)
MISALIGN MOMENT	N ₇	ft-lbs	yaw moment due to booster (Equation 2-20)

LABEL	SYMBOL	UNITS	DESCRIPTION
TOTAL MOMENT	N_{D}	ft-lbs	total yaw disturbing moment (Equation 2-17)
THRUST MISALN	$\epsilon_{ au_{ extbf{y}}}$	deg	yaw component of effective thrust misalignment (Equation 2-22)
IMPULSE	IT	lb-sec	yaw contribution to total impulse during boost phase

3.5.3 Boost Phase - Roll (IOPT5 = 0, +1)

This page format includes the following variables,

LABEL	SYMBOL	UNITS	DESCRIPTION
FLIGHT TIME	tf	sec	flight time
STAGE TIME	t _s	sec	stage time measured from booster ignition
ANGULAR ACCEL	$\ddot{\phi}$	deg/sec ²	roll angular acceleration
MOMENT OF INER	$I_{\mathbf{x}}$	slug-ft ²	roll moment of inertia
TOTAL MOMENT	$\mathtt{I}_{\overline{\mathbb{D}}}$	ft-lbs	total roll disturbing moment (Equation 2-18)
IMPULSE	ΙŢ	lb-sec	yaw contribution to total impulse during boost phase
C.G. POINT	xcg	inches	body station of center of mass
CALCULATED CONSUM	₩ _e	lbs	calculated control fuel consumed based on total pitch yaw and roll inpulse and average specific impulse (Equations 2-26)
CALCULATED REMAIN	W _{c rem}	lbs	calculated control fuel remaining based on total impulse computed and average specific impulse

3.5.4 Boost Phase System Variables (IOPT5 = 0, +1)

This page format includes the following summary data,

LABEL	SYMBOL	UNITS	DESCRIPTION
FLIGHT TIME	t_f	sec	flight time
STAGE TIME	t_s	sec	stage time measured from booster ignition
THRUST	T	lbs	booster thrust
TOTAL MISALIGN	ϵ_{7}	deg	total effective booster thrust misalignment
LAMDA	λ_{τ}	deg	roll orientation of thrust misalignment (Equation 2-24)
SPECIFIC IMPULSE	I _{sp}	sec	effective specific impulse during the boost phase (Equation 2-28)
TOTAL IMPULSE	IŢ	lb-sec	total pitch yaw and roll impulse expended (Equation 2-26)
FUEL CONSUM	Wc	lbs	control fuel consumed measured or computed by Equation 2-29
FUEL REMAIN	Wrem	lbs	control fuel remaining based on measured or Equation 2-29

3.5.5 Coast Phase (IOPT5 = \pm 1)

This page of output includes the coast phase performance and total flight results on total impulse.

LABEL	SYMBOL	UNITS	DESCRIPTION
FLIGHT TIME	^t f	sec	flight time
STAGE TIME	t _s	sec	stage time measured from booster ignition
COAST IMPULSE	IŢ	lb-sec	total impulse expended during coast

LABEL	SYMBOL	UNITS	DESCRIPTION
TOTAL IMPULSE	$I_{ extbf{T}}$	lb-sec	total impulse including boost and coast phases
COAST ISP	I _{sp}	lb_{f} -sec/ lb_{m}	effective specific impulse during the coast phase
TOTAL ISP	I _{sp}	lb _f -sec/lb _m	effective specific impulse including boost and coast phases
COAST FUEL	We	lbs	control fuel consumed during the coast phase only
TOTAL FUEL	W _C	lbs	control fuel consumed including the boost and coast phases
FUEL REM MEAS	W _{rem}	lbs	control fuel remaining based on measured data or Equation (2-29)
FUEL REM CALC	W _{rem}	lbs	calculated control fuel remaining based on effective average specific impulse and impulse expended

3.5.6 CALCOMP Plots (IOPT4 = 1)

The optional CALCOMP plots include the pitch, yaw and roll disturbing moments and the effective thrust misalignment versus flight time. Plots from the sample problem are presented in Figure 7.

Figure 1 Sign Convention

Figure 2 Disturbed and Undisturbed Motion

Figure 3
Typical Rate Time Histories

Figure 4 (continued) Flow Chart of UPSTAG

Figure 4 (concluded) Flow Chart of UPSTAG

Figure 5 Sample Problem Input Data

		1 0					
SAMPLE PROI	1 1 BLEM FOR UF	STAG PROG	RAM				
SCOUT VEHIC	CLE 5-192C	SECOND ST 0.25	AGE DISTUR! 160.4	BING MOMENT 1.0	rs		
86.16 448.51	126.44 467.76	14.93	16.89	119.3	0.472		
109.0	5.0	0.00358	6.3				
555	138.680	84.500	DYNAMIC PI 131.201	RESSURE 85.000	124.079	85.500	
84.000	86.000	112.148	86.500	106.786	87.000	101.354	
87.500	95.946	88.000	90.751	88.500	86.363	89.000	
84.740	89.500 75.215	82.326 91.500	90.000 72.610	79.853 92.000	90.500 69.868	77.682 92.500	
91.000	93.000	64.742	93.500	63.296	94.000	61.789	
94.500	60.204	95.000	58.548	95.500	56.802	96.000	
54.926	96.500 50.252	52.932 98.500	97.000 49.688	51.202 99.000	97.500 48.966	50.74 0 99.500	
98.000 48.175	100.000	47.271	100.500	46.257	101.000	45.146	
101.500	43.869	102.000	42.476	102.500	41.000	103.000	
39.436	103.500 33.763	37.732 105.500	104.000 33.372	35.870 106.000	104.500 32.956	34.135 106.500	
32.511	107.000	31.957	107.500	31.278	108.000	30.516	
108.500	29.649	109.000	28.698	109.500	27.650	110.000	
26.515	110.500 20.100	25.259 112.500	111.000 17.952	23.909 113.000	111.500 15.659	22.088 113.500	
13.171	114.000	10.499	114.500	10.009	115.000	9.824	
115.500	9.585	116.000	9.311	116.500	9.003	117.000	
8.664	117.500 7.023	8.285 119.500	118.000 6.524	7.894 120.000	118.500 6.320	7.476 120.500	
6.120	121.000	5.900	121.500	5.601	122.000	5.336	
122.500	4.992 124.500	123.000 3.368	4.632 125.000	123.500 3.158	4.223 125.500	124.000 2.948	
126.000	2.739	126.500	2.532	127.000	2.325	127.500	
2.121	128.000	1.918	128.500	1.716	129.000	1.515	
129.500	1.324 131.500	130.000 .971	1.235 132.000	130.500 .883	1.146 132.500	131.000 .797	
133.000	.710	133.500	. 625	134.000	.540	134.500	
.455	135.000 .329	.414 137.000	135.500 .301	.386 137.500	136.000 .273	.357 138.000	
136.500	138.500	.218	139.000	.190		130.000	
555		A' 84.500	LPHA .136	85.000	.134	85.500	
84.000	.087 86.000	.100	86.500	.231	87.000	.167	
87.500	.258	88.000	.252. 90.000	88.500 .197	.245 90.500	89.000 .306	
91.000	89.500 .181	.291 91.500	.217	92.000	.149	92.500	
.085	93.000	.163	93.500	.097	94.000	.246	
94.500	.154 96.500	95.000 .312	.215 97.000	95.500 .333	.292 97.500	96.000 .323	
.217	.462	98.500	.494	99.000	.449	99.500	
.539	100.000	.588	100.500	.504	101.000 .397	.531	
101.500	.535 103.500	102.000 .373	.428 104.000	102.500 .273	104.500	103.000 .264	
105.000	.213	105.500	.164	106.000	.210	106.500	
.274	107.000 .231	.215 109.000	107.500 .303	.339 109.500	108.000 .205	.335 110.000	
108.500	110.500	.183	111.000	.024	111.500	.002	
112.000	.050	112.500	003	113.000	.224 115.000	113.500 .091	
.050	114.000 .211	.176 116.000	114.500 .097	.159 116.500	.153	117.000	
.246	117.500	.046	118.000	.210	118.500	.061	
119.000	.101	119.500	.272 121.500	120.000 .182	.174 122.000	120.500 .447	
.371	121.000 .011	.297 123.000	.092	123.500	.077	124.000	
632	124.500	465	125.000	.032	125.500	588 127.500	
126.000	295 128.000	126.500 280	065 128.500	127.000 445	691 129.000	004	
129.500	235	130.000	480	130.500	753	131.000	
518 133.000	131.500 636	077 133.500	132.000 854	215 134.000	132.500	411 134.500	
074	135.000	246	135.500	418	136.000	597	
136.500	774 138.500	137.000 316	929 139.000	137.500 437	291	138.000	
136	179.268	319	139.000				

```
BETA
222
                                             85.000
                       84.500
                                   -.417
                                                        -.359
                                                                  85.500
             -.440
  84.000
                                             -.351
88.500
                                  86.500
                                                       87.000
                                                                   -.136
            86.000
                        -.386
   -.400
                                                                  89.000
                       88.000
                                                         .021
                                   -.023
              .052
  87.500
                                                       90.500
                                                                    .185
                         .147
                                  90.000
                                              .081
    .248
            89.500
                                             92.000
                                                                  92.500
              .276
                       91.500
                                    .013
                                                        -.161
  91.000
                        -.273
                                  93.500
                                             -.216
                                                       94.000
                                                                  -.083
            93.000
   -.279
                                            95.500
                                                        -.341
                                                                  96.000
             -.107
                       95.000
                                  -.284
  94.500
                                                       97.500
                                  97.000
            96.500
                                             -.140
                                                                   -.161
                        -.262
   -.315
                                                                  99.500
                                            99.000
                                                        -.306
             -.318
                       98.500
                                  -.335
  98.000
                                             .075
                        .141
                                 100.500
                                                      101.000
                                                                   -.048
           100.000
   -.138
                                            102.500
                                                                 103.000
                                                         .127
             -.067
                      102.000
                                  -.011
 101.500
                                                      104.500
                                 104.000
                                             -.492
                                                                   -.592
           103.500
                       -.333
   -.112
                                                                 106.500
                      105.500
                                  -.400
                                           106.000
                                                       -.140
             -.580
 105.000
                                                      108.000
                                                                  -.303
                                 107.500
           107.000
                                            -.472
                        -.477
   -.389
                                           109.500
                                                      .137
                                                                 110.000
                      109.000
                                  -.013
 108.500
             -.180
                                                                   -.557
                        .288
                                            -.107
           110.500
                                 111.000
    .337
                                                                 113.500
                                 -.587
                                           113.000
                                                       -.398
                      112.500
            -.831
 112.000
                                 114.500
                                                      115.000
                                                                    .219
                         .044
                                              .163
           114.000
   -.224
                                                        -.818
                      116.000
                                           116.500
                                                                 117.000
 115.500
                                 -1.006
            -.429
                                                                   -.440
           117.500
                                             -.013
                                                      118.500
                         .022
                                 118.000
   -.406
                                                         .505
                                                                 120.500
                                           120.000
                      119.500
             -.590
                                   -.055
 119.000
                                                      122.000
                                              .109
                                                                    .886
                                 121.500
 .304
          121.000
                        -.083
                                                      .094
                                           123.500
                                                                 124.000
                      123.000
                                  -.090
              .151
                                 125.000
                                             -.158
                                                                  -.521
   -.643
           124.500
                        -.292
                     126.500
                                   .092
                                                                 127.500
                                            127.000
                                                       -.322
              .069
 126.000
                                                      129.000
                                                                  -.088
                        .135
                                 128.500
    .292
           128.000
                                            -.310
                                .459
                                            130.500
                                                         .065
                                                                 131.000
                     130.000
 129.500
              .284
                                                                    .389
                                                      132.500
                                             .450
                        .014
   -.348
           131.500
                                                        -.013
                                                                 134.500
                    133.500
                                -.339
135.500
                                           134.000
           .062
 133.000
                    .āž7
137.000
    .400
                                                      136.000
                                                                   -.433
                                            -.094
                                                                 138.000
                                 .437
                                           137.500
                                                         .100
 136.500
             -.081
             BOOSTER THRUST VERSUS TIME (CASTOR II)

0.0 .21 42713.6 .46
   -.206
            138.500
 66
                                              .46
6.36
                                                      40156.7
            0.0
44017.7
    0.00
                         3.36
                                                      51153.7
    1.86
                                                      60198.0
                                             12.36
           54410.5
62885.3
                                 57460.7
                       10.36
    8.36
                                                      67299.6
                        16.36
                                 65194.0
                                              18.36
   14.36
                                 70342.4
                                              23.86
                                                      71204.5
           68908.8
                        22.36
   20.36
                                              29.36
                                                      71214.3
                        27.86
                                 71612.4
            71801.8
   25.86
                                              34.96
35.96
                                                      69507.8
                                 69206.1
            70392.3
                        31.86
   30.86
                                                      65433.8
                        35.86
                                 66835.9
           67122.7
   35.56
                                                      10049.3
                                15760.3
                                              36.86
           27492.7
                        36.66
   36.46
            5339.6
                        37.86
                                 1697.8
                                              38.36
                                                        440.0
   37.26
                                    0.0
                                            100.00
                                                          0.0
              21.0
                        40.00
   39.41
             BOOSTER WEIGHT OF PROPELLANT REMAINING TIME HISTORY
 66
           8274.34 .21
7984.04 3.36
                                              .46
6.36
    0.00
                                 7733.81
                                                      7197.29
    1.86
                                                      5967.30
                                              12,36
                        10.36
                                 6396.28
           6805.81
    8.36
                                 5041.14
                                              18.36
                                                      4557.46
                        16.36
           5511.28
   14.36
                        22.36
                                                      3159.52
                                 3547.13
                                              23.86
           4056.87
   20.36
                                              29.36
                                                      1746.67
                                 2130.12
           2643.79
   25.86
           1372.14
                                              34.96
                                                      372.10
                        31.86
                                 1126.46
   30.86
                                 157.85
                                              35.96
                                                       133.41
            227.09
                        35.86
   35.56
                                                        22.04
                                  31.58
                                              36.86
             47.56
                        36.66
   36.46
                                                          .89
                                  2.87
             10.67
                        37.86
                                              38.36
   37.26
                                    0.00
                                            100.00
                                                         0.00
   39.41
              0.00
                        40.00
             IXX ROLL INERTIA US. % PROPELLANT CONSUMED
 10
                                                50.
                                                       367.84
                                 410.55
             427.89 25.
                         100.
                                  206.10
            299.68
     75.
              TYY PITCH YAU INERTIA US. % PROPELLANT CONSUMED
 10
                                                50. 41600.69
          49263.29
                               45824.92
                          25.
      0.
     75.
                         100.
                                28031.35
          36058.32
              XCG US. * PROPELLANT CONSUMED
 10
                                                50.
                                                       258.44
            282.03
                          25.
                                  272.09
      0.
     75.
            238.53
                         100.
                                  206.76
```

Figure 5 (concluded) Sample Problem Inout Data

```
3.96
PITCH SLOPES
                                                             3.96
                                                                           3.96
                                2.318
     2.825
                  2.841
 198
                                86.76
                                               5.00
                                                            87.26
                    5.90
     86.36
                                                           89.86
91.76
94.46
                                                                           6.99
                                88.86
91.16
93.56
                                               6.20
                    7.60
7.50
8.90
     87.86
     90.66
                                                                         9.50
11.50
12.50
                                               9.50
     92.76
                                              11.10
11.50
12.50
13.00
                                                           96.86
                                95.96
     95.26
97.56
99.86
                  10.50
                   11.50
                                98.36
                                                          101.26
                               100.46
                                                                         13.00
                   12.20
                                                                         12.89
                  12.70
   101.96
                                                          105.66
                                                                         13.10
                  12.90
                               104.96
                                              13.00
   104.16
                                                          107.86
                               107.16
                                                                         14.20
                  13.00
                                              13.70
   106.46
                                                                         14.50
                  13.20
                                              14.30
                                                          110.16
   108.66
                                                                         13.40
                  12.60
                               111.86
                                              12.50
                                                          112.66
   110.96
                               114.36
117.06
                                                          115.16
117.56
                                              14.20
                  13.60
   113.46
                                              15.80
                                                                         15.90
                  15.10
   116.46
                  16.90
                               119.26
                                              17.20
                                                          120.06
                                                                         18.00
   118.46
                               121.46
                                              20.00
                                                          121.76
                                                                         21.30
   120.96
                  16.00
                               122.66
                                              11.10
                                                          123.06
                                                                           3.20
   122.36
                               124.76
                                               0.00
                                                          186.16
                                                                           8.89
                   .80
    123.66
                                       YAU SLOPES
  98
                                87.16
                                              -4.90
                                                                         -2.80
                                                            87.96
     86.26
                  -2.50
                  -4.90
-2.50
                                89.46
91.46
94.06
96.36
                                              -3.90
                                                            90.16
                                                                         -1.90
     88.96
                                              -3.00
                                                            92.06
                                                                         -1.20
     90.66
                  -1.00
   93.16
95.66
97.46
100.46
                                              -2.48
                                                            94.66
                                                                         -2.60
                                              -2.10
                                                            97.06
                                                                         -3.00
                                              -2.40
                  -2.10
-3.80
-2.30
-2.20
                                98.66
                                                            99.66
                                                                         -2.10
                               101.16
                                                          102.15
                                                                         -2.20
   102.96
                                                          105.16
                                              -2.00
                                                                         -1.80
                               106.56
                                              -3.00
                                                                         -2.40
                   -1.00
                               109.16
                                               -.30
                                                           110.16
                                                                           -.89
    108.16
                                                                           1.00
                    0.00
                               112.16
                                                .89
                                                          113.16
    111.16
                                                          116.66
120.66
122.41
123.26
                                                                           .20
                    .30
                               115.66
                                                 .20
                                                                            .60
    117.36
                     .10
                               119.36
                                                 .50
                                              3.50
-2.70
-.20
                                                                           0.00
   121.66
                    -.30
                               122.26
                   -1.00
                               123.06
    123.86
                    1.00
                               124.46
    186.16
                    0.00
                                       ROLL SLOPES
                                                           88.76
     86.96
                    3.50
                                87.96
                                               1.20
                                                                            .10
                                                           93.56
98.36
                                                                           1.00
                    1.10
                                91.66
96.76
99.76
                                               1.00
     89.96
     95.16
                                               1.10
                                                                           1.00
                                               1.20
                                                          101.16
                               194.86
                                                 .96
                                                          105.46
                                                                           8.99
   103.36
                    1.20
                                                          198.56
                                                                         -1.48
                    -.50
                                              -1.00
                   -1.40
                               110.86
                                               -.60
                                                          111.76
                                                                         -2.00
    109.16
                               113.46
                                               -.40
                                                           114.16
                                                                           0.99
                   -.60
    112.76
                               121.66
                                               0.00
                                                           122.36
                                                                           2.00
                    0.00
    118.16
                                                8.00
                    0.00
                               186.16
    123.16
                   INCREMENTAL IMPULSE US. FLIGHT TIME 98. 0.0 102.
  22
                                                0.0
                     0.0
3.9
                                                                            2.8
       86.
                                                                           63.0
                                  110.
      106.
                                  122.
                                                                          530.0
       118.
                   209.3
                   981.0 160. 981.0
PITCH DELTA RATES DURING COAST
      126.
  22
                                                                           8.94
                                 126.
                                               0.00
                                                             130.
         ø.
                    9.99
      134.
                                  138.
                                                             142.
                                                                           3.56
                    5.44
                    0.00
                                               3.87
                                                             154.
                                                                           0.00
       146.
                                  150.
                    5.09
       156.
                   YAU DELTA RATES DURING COAST 0.00 126. 0.00
  22
                                                                         10.62
                                                             130.
                                               5.22
5.22
                                                             142.
                                                                           7.27
                    5.11
       134.
                                  138.
                  6.99 150. 3.58

5.34 160. 3.58

ROLL DELTA RATES DURING COAST

0. 160. 0. FLIGHT TIME

119.4 90. 119.35 95.

109.7 105. 104.2 110.

95.8 120. 90.3 125.

75.8 140.

68.5 155.
       146.
       156.
  35
                                                                         114.7
        80.
       100.
                                                                          99.8
                                                                          84.6
       130.
       145.
                    66.0
SAMPLE PROBLEM - SCOUT S-192C SECOND STAGE DISTURBANCES CALCOMP PLOT OPTION WITH ROLL PLOT
                                   0.1
                   2000.
#EOR
```

Figure 6 Sample Problem Printed Output Data

UPPER STAGE MOMENT ROUTINE PITCH VARIABLES TIME HISTORIES SAMPLE PROBLEM FOR UPSTAG PROGRAM SCOUT VEHICLE S-192C SECOND STAGE DISTURBING MOMENTS

PAGE - 1 A

SEC SEC DEG/S/S SLUG-FT2 FT-LB FT-LB FT-LB DEG LB-SEC 86.16 0.00 1.16 49263.3 105.23 888.61 993.84 0.000 0.00 87.00 .84 1.40 49058.9 113.94 1082.82 1196.76 .1082 59.00 88.00 1.84 1.45 48786.2 153.04 1084.68 1237.73 .1011 136.89 89.00 2.84 1.23 48509.0 119.37 925.81 1045.18 .0831 209.56 90.00 3.84 1.37 48222.1 104.41 1052.34 1156.74 .0908 279.34 91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .083 537.19
87.00 .84 1.40 49058.9 113.94 1082.82 1196.76 .1082 59.07 88.00 1.84 1.45 48786.2 153.04 1084.68 1237.73 .1011 136.89 89.00 2.84 1.23 48509.0 119.37 925.81 1045.18 .0831 209.56 90.00 3.84 1.37 48222.1 104.41 1052.34 1156.74 .0908 279.34 91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114
87.00 .84 1.40 49058.9 113.94 1082.82 1196.76 .1082 59.07 88.00 1.84 1.45 48786.2 153.04 1084.68 1237.73 .1011 136.89 89.00 2.84 1.23 48509.0 119.37 925.81 1045.18 .0831 209.56 90.00 3.84 1.37 48222.1 104.41 1052.34 1156.74 .0908 279.34 91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08
87.00 .84 1.40 49058.9 113.94 1082.82 1196.76 .1082 59.07 88.00 1.84 1.45 48786.2 153.04 1084.68 1237.73 .1011 136.89 89.00 2.84 1.23 48509.0 119.37 925.81 1045.18 .0831 209.56 90.00 3.84 1.37 48222.1 104.41 1052.34 1156.74 .0908 279.34 91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08
88.00 1.84 1.45 48786.2 153.04 1084.68 1237.73 .1011 136.89 89.00 2.84 1.23 48509.0 119.37 925.81 1045.18 .0831 209.56 90.00 3.84 1.37 48222.1 104.41 1052.34 1156.74 .0908 279.34 91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155<
89.00 2.84 1.23 48509.0 119.37 925.81 1045.18 .0831 209.56 90.00 3.84 1.37 48222.1 104.41 1052.34 1156.74 .0908 279.34 91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45965.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39
90.00
91.00 4.84 1.59 47924.9 89.54 1244.08 1333.62 .1032 357.91 92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155 944.50 98.00 11.84 2.28 45565.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39 1802.36 1938.76 .1140 1168.49 100.00 13.84 2.43 44648.9 170.
92.00 5.84 1.75 47627.6 68.37 1387.64 1456.01 .1108 445.52 93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155 944.50 98.00 11.84 2.28 45565.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39 1802.36 1938.76 .1140 1168.49 100.00 13.84 2.43 44648.9 170.46 1725.25 1895.71 .1058 1283.52 101.00 14.84 2.52 43696.3
93.00 6.84 1.79 47316.9 68.71 1407.59 1476.30 .1083 537.19 94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155 944.50 98.00 11.84 2.28 45565.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39 1802.36 1938.76 .1140 1168.49 100.00 13.84 2.43 44648.9 170.46 1725.25 1895.71 .1058 1283.52 101.00 14.84 2.55 44176.3 145.90 1819.42 1965.33 .1085 1398.47 102.00 15.84 2.52 43696.3 109.93 1814.84 1924.76 .1054 1513.40 103.00 16.84 2.57 43209.6 119.75 1815.33 1935.07 .1028 1626.57 104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1963.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1679.87 .0770 2574.16
94.00 7.84 1.87 46991.5 98.60 1436.56 1535.16 .1066 630.88 95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155 944.50 98.00 11.84 2.28 45565.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39 1802.36 1938.76 .1140 1168.49 100.00 13.84 2.43 44648.9 170.46 1725.25 1895.71 .1058 1283.52 101.00 14.84 2.55 44176.3 145.90 1819.42 1965.33 .1085 1398.47 102.00 15.84 2.52 43696.3 109.93 1814.84 1924.76 .1054 1513.40 103.00 16.84 2.57 43209.6
95.00 8.84 2.01 46659.0 80.91 1554.03 1634.94 .1114 729.01 96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155 944.50 98.00 11.84 2.28 45565.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39 1802.36 1938.76 .1140 1168.49 100.00 13.84 2.43 44648.9 170.46 1725.25 1895.71 .1058 1283.52 101.00 14.84 2.55 44176.3 145.90 1819.42 1965.33 .1085 1398.47 102.00 15.84 2.52 43696.3 109.93 1814.84 1924.76 .1054 1513.40 103.00 16.84 2.57 43209.6 119.75 1815.33 1935.07 .1028 1626.57 104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.58 42213.6 41.85 1861.59 1903.44 .1005 1848.33 106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
96.00 9.84 2.20 46318.6 76.08 1700.88 1776.96 .1179 834.10 97.00 10.84 2.28 45970.5 108.24 1717.62 1825.86 .1155 944.50 98.00 11.84 2.28 45565.7 145.28 1664.50 1809.79 .1085 1055.19 99.00 12.84 2.46 45114.5 136.39 1802.36 1938.76 .1140 1168.49 100.00 13.84 2.43 44648.9 170.46 1725.25 1895.71 .1058 1283.52 101.00 14.84 2.55 44176.3 145.90 1819.42 1965.33 .1085 1398.47 102.00 15.84 2.52 43696.3 109.93 1814.84 1924.76 .1054 1513.40 103.00 16.84 2.57 43209.6 119.75 1815.33 1935.07 .1028 1626.57 104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.59 41702.5<
97.00 10.84
98.00 11.84
99.00 12.84
100.00 13.84 2.43 44648.9 170.46 1725.25 1895.71 .1058 1283.52 101.00 14.84 2.55 44176.3 145.90 1819.42 1965.33 .1085 1398.47 102.00 15.84 2.52 43696.3 109.93 1814.84 1924.76 .1054 1513.40 103.00 16.84 2.57 43209.6 119.75 1815.33 1935.07 .1028 1626.57 104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.58 42213.6 41.85 1861.59 1903.44 .1005 1848.33 106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 3968
101.00 14.84 2.55 44176.3 145.90 1819.42 1965.33 .1085 1398.47 102.00 15.84 2.52 43696.3 109.93 1814.84 1924.76 .1054 1513.40 103.00 16.84 2.57 43209.6 119.75 1815.33 1935.07 .1028 1626.57 104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.58 42213.6 41.85 1861.59 1903.44 .1005 1848.33 106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995
103.00 16.84 2.57 43209.6 119.75 1815.33 1935.07 .1028 1626.57 104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.58 42213.6 41.85 1861.59 1903.44 .1005 1848.33 106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3<
104.00 17.84 2.56 42715.8 57.72 1849.10 1906.82 .1021 1738.34 105.00 18.84 2.58 42213.6 41.85 1861.59 1903.44 .1005 1848.33 106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
105.00 18.84 2.58 42213.6 41.85 1861.59 1903.44 .1005 1848.33 106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
106.00 19.84 2.59 41702.5 40.36 1847.79 1888.15 .0978 1956.92 107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
107.00 20.84 2.69 41057.8 39.05 1891.23 1930.28 .0978 2065.11 108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
108.00 21.84 2.79 40374.9 57.26 1911.69 1968.95 .0966 2174.32 109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
109.00 22.84 2.73 39687.5 48.14 1845.67 1893.81 .0912 2281.29 110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
110.00 23.84 2.88 38995.1 20.14 1942.96 1963.10 .0941 2386.89 111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
111.00 24.84 2.50 38304.2 3.09 1667.78 1670.87 .0794 2485.27 112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
112.00 25.84 2.51 37613.3 5.16 1643.97 1649.13 .0770 2574.16
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
113.00 26.84 2.68 36925.1 17.93 1710.70 1728.63 .0793 2663.62 114.00 27.84 2.78 36237.0 9.38 1749.22 1758.60 .0802 2754.98
115.00 28.84 2.96 35325.0 4.40 1822.85 1827.26 .0825 2847.49
116.00 29.84 3.01 34344.1 4.17 1800.45 1804.62 .0805 2939.67
117.00 30.84 3.15 33375.2 9.73 1825.40 1835.14 .0808 3030.57
118.00 31.84 3.29 32421.6 7.42 1854.23 1861.65 .0821 3121.48
119.00 32.84 3.44 31477.1 3.01 1887.73 1890.75 .0821 3212.36
120.00 33.84 3.62 30532.8 4.52 1925.33 1929.85 .0823 3303.53
121.00 34.84 3.87 29588.6 7.03 1990.98 1998.01 .0836 3395.89
122.00 35.84 3.90 28661.8 8.88 1941.81 1950.70 .0835 3487.43
123.00 36.84 .86 28120.6 1.63 420.81 422.44 .1129 3541.99
124.00 37.84 .11 28043.5 -8.77 61.59 52.82 .0963 3552.91
125.00 38.84 0.00 28033.2 .3938 0.000044 3554.12
126.00 39.84 0.00 28031.4 -3.05 3.05 0.00 1.5225 3554.12
126.44 40.28 0.00 28031.490 .90 0.00 0.0000 3554.12

Figure 6 (continued) Sample Problem Printed Output Data

UPPER STAGE MOMENT ROUTINE YAW VARIABLES TIME HISTORIES SAMPLE PROBLEM FOR UPSTAG PROGRAM SCOUT VEHICLE S-192C SECOND STAGE DISTURBING MOMENTS

PAGE - 1 B

FLIGHT	STAGE	ANGULAR	MOMENT	AERO	MISALIGN	TOTAL	THRUST	******
TIME	TIME	ACCEL	OF INER.	MOMENT	MOMENT	MOMENT	_	IMPULSE
SEC	SEC	DEG/5/5	SLUG-FT2	FT-LB	FT-LB	FT-LB	DEG	LB-SEC
86.16	0.00	49	49263.3	277.92	-700.20	-422.28	0.0000	0.00
87.00	.84	88	49058.9	92.79	-846.47	-753.68	0845	31.71
88.00	1.84	57	48786.2	13.97	-496.52	-482.55	0463	71.23
89.00	2.84	95	48509.0	-139.64	-663.45	-803.09	0595	112.15
90.00	3.84	46	48222.1	-42.93	-346.87	-389.80	0299	149.95
91.00	4.84	53	47924.9	-136.54	-309.24	-445.78	0257	176.32
92.00	5.84	27	47627.6	73.88	-299.16	-225.28	0239	197.39
93.00	6.84	20	47316.9	115.07	-281.94	-166.87	0217	209.65
94.00	7.84	45	46991.5	33.27	-404.89	-371.63	0300	226.40
95.00	8.84	46	46659.0	106.88	-484.74	-377.86	0347	249.61
96.00	9.84	39	46318.6	110.44	-427.54	-317.10	0296	271.01
97.00	10.84	57	45970.5	45.51	-506.32	-460.82	0340	294.85
98.00	11.84	44	45565.7	100.00	-449.14	-349.14	0293	319.51
99.00	12.84	45	45114.5	92.95	-448.39	-355.43	0284	340.80
100.00	13.84	55	44648.9	-40.87	-391.39	-432.26	0240	364.43
101.00	14.84	55	44176.3	13.19	-436.98	-423.79	0261	389.92
102.00	15.84	44	43696.3	2.83	-339.59	-336.76	0197	412.39
103.00	16.84	45	43209.6	26.35	-365.29	-338.94	0207	432.20
104.00	17.84	39	42715.8	104.02	-395.90	-291.88	0219	450.55
105.00	18.84	36	42213.6	113.96	-378.27	-264.31	0204	466.61
106.00	19.84	48	41702.5	26.90	-375.80	-348.89	0199	484.17
107.00	20.84	50	41057.8	86.63	-447.04	-360.41	0231	504.27
108.00	21.84	24	40374.9	51.79	-221.17	-169.38	0112	519.11
109.00	22.84	08 .	39687.5	2.07	-58.10	-56.03	0029	525.35
110.00	23.84	14	38995.1	-48.47	-47.74	-96.21	0023	529.52
111.00	24.84	03	38304.2	13.78	-30.58	-16.80	0015	532.58
112.00	25.84	.13	37613.3	85.77	.84	86.62	.0000	534.45
113.00	26.84	.19	36925.1	31.86	90.63	122.49	.0042	539.98
114.00	27.84	.08	36237.0	-2.35	53.50	51.16	.0025	544.53
115.00	28.84	.05	35325.0	-10.59	40.13	29.53	.0018	546.62
116.00	29.84	.04	34344.1	43.21	-19.67	23.54	0009	547.96
117.00	30.84	.03	33375.2	16.07	1.25	17.32	.0001	548.98
118.00	31.84	.04	32421.6	_ • 46	24.87	25.33	.0011	550.03
119.00	32.84	.08	31477.1	17.59	28.58	46.16	.0012	551.76
120.00	33.84	.11	30532.8	-13.12	70.58	57.46	.0030	554.24
121.00	34.84	.06	29588.6	1.97	27.84	29.81	.0012	556.29
122.00	35.84	.36	28661.8	-17.61	199.87	182.26	.0086	561.20
123.00	36.84	48	28120.6	1.60	-237.35	-235.76	0637	562.43
124.00	37.84	.14	28043.5	8.92	60.27	69.19	.0942	566.26
125.00	38.84	01	28033.2	1.90	-6.29	-4.39	0720	567.75
126.00	39.84	0.00	28031.4	71	.71	0.00	.3561	567.85
126.44	40.28	0.00	28031.4	87	.87	0.00	0.0000	567.85

Figure 6 (continued) Sample Problem Printed Output Data

UPPER STAGE MOMENT ROUTINE ROLL VARIABLES TIME HISTORIES SAMPLE PROBLEM FOR UPSTAG PROGRAM

PAGE - 1 C

SCOUT VEHICLE S-192C SECOND STAGE DISTURBING MOMENTS

FLIGHT	STAGE	ANGULAR	MOMENT	TOTAL		C.G.		ATED FUEL
TIME	TIME	ACCEL	OF INER	MOMENT	IMPULSE	POINT	CONSUM	REMAIN
SEC	SEC	DEG/S/S	SLUG-FT2	FT-LB	LB-SEC	INCH	LB	LB
86.16	0.00	.56	427.8	4.19	0.00	282.030	0.000	119.369
87.00	.84	.55	426.8	4.07	2.47	281.439	.669	118.700
88.00	1.84	.18	425.4	1.36	1.93	280.651	1.507	117.862
89.00	2.84	.05	424.0	.36	.61	279.849	2.313	117.057
90.00	3.84	.18	422.6	1.30	.59	279.020	3.084	116.285
91.00	4.84	.17	421.1	1.22	.90	278.161	3.839	115.530
92.00	5.84	.16	419.6	1.17	.85	277.301	4.619	114.750
93.00	6.84	.16	418.0	1.17	.83	276.403	5.364	114.005
94.00	7.84	.18	416.4	1.32	.89	275.462	6.157	113.212
95.00	8.84	.23	414.7	1.68	1.07	274.501	7.029	112.340
96.00	9.84	.21	413.0	1.49	1.13	273.517	7.937	111.432
97.00	10.84	.17	411.3	1.25	.97	272.511	8.899	110.470
98.00	11.84	.16	407.9	1.17	.86	271.252	9.869	109.500
99.00	12.84	.23	403.4	1.64	1.70	269.794	10.841	108.528
100.00	13.84	.19	398.7	1.30	2.45	268.290	11.841	107.528
101.00	14.84	.16	393.9	1.13	5.96	266.763	12.852	106.517
102.00	15.84	.17	389.0	1.17	3.62	265.212	13.843	105.526
103.00	16.84	.19	384.1	1.25	3.94	263.639	14.799	104.570
104.00	17.84	.17	379.1	1.14	4.20	262.043	15.735	103.634
105.00	18.84	.11	374.0	.72	4.29	260.421	16.640	102.729
106.00	19.84	03	368.9	21	4.08	258.769	17.543	101.826
107.00	20.84	09	361.2	58	5.03	256.490	18.471	100.899
108.00	21.84	18	352.8	-1.10	6.20	254.037	19.369	100.000
109.00	22.84	22	344.3	-1.35	7.32	251.567	20.189	99.180
110.00	23.84	16	335.8	94	8.11	249.080	20.983	98.387
111.00	24.84	13	327.3	75	21.83	246.598	21.809	97.560
112.00	25.84	27	318.8	-1.48	35.94	244.116	22.561	96.808
113.00	26.84	09	310.3	46	49.77	241.644	23.342	96.027
114.00	27.84	01	301.9	08	63.19	239.172	24.126	95.243
115.00	28.84	0.00	291.1	0.00	99.60	235.627	25.066	94.303
116.00	29.84	0.00	279.7	0.00	136.15	231.745	26.000	93.370
117.00	30.84	0.00	268.4	0.00	172.73	227.910	26.922	92.448
118.00	31.84	0.00	257.3	0.00	209.30	224.136	27.844	91.525
119.00	32.84	0.00	246.3	0.00	261.73	220.398	28.884	90.485
120.00	33.84	0.00	235.3	0.00	314.15	216.661	29.932	89.437
121.00	34.84	0.00	224.3	0.00	366.58	212.923	30.986	88.383
122.00	35.84	.16	213.4	.58	419.21	209.255	32.056	87.314
123.00	36.84	.06	207.1	.23	474.79	207.113	32.855	86.515
124.00	37.84	0.00	206.2	0.00	530.08	206.808	33.357	86.012
125.00	38.84	0.00	206.1	0.00	755.50	206.767	34.994	84.375
126.00	39.84	0.00	206.1	0.00	981.00	206.760	36.612	82.757
126.44	40.28	0.00	206.1	0.00	981.00	206.760	36.612	82.757

Figure 6 (continued) Sample Problem Printed Output Data

UPPER STAGE MOMENT ROUTINE TIME HISTORIES OF SYSTEM

PAGE - 1 D

SAMPLE PROBLEM FOR UPSTAG PROGRAM SCOUT VEHICLE S-1920 SECOND STAGE DISTURBING MOMENTS

FLIGHT TIME	STAGE TIME	THRUST	TOTAL MISALGN DEG	LAMDA DEG	SPECIFIC IMPULSE SEC	TOTAL IMPULSE LB-SEC	FUEL CONSUM LB	FUEL REMAIN
SEC	SEC	LB	DEG	שבע	350	LB-SEC	LB	LB
86.16	0.00	0.	0.0000	0.00	0.00	0.00	0.00	119.37
87.00	.84	41205.	.1373	321.98	*****	93.24	.00	119.37
88.00	1.84	43963.	.1112	335.40	*****	210.05	.01	119.36
89.00	2.84	45446.	.1022	324.37	*****	322.32	.01	119.36
90.00	3.84	46996.	.0956		*****	429.88	.02	119.35
91.00	4.84	48646.	.1064	346.04	563.76	535.12	.95	118.42
92.00	5.84	50296.	.1133	347.83	342.58	643.77	1.88	117.49
93.00	6.84	51935.	.1104	348.67	266.15	747.68	2.81	116.56
94.00	7.84	53564.	.1107	344.26	229.51	858.17	3.74	115.63
95.00	8.84	55143.	.1167	342.67	209.82	979.68	4.67	114.70
96.00	9.84	56668.	.1216	345.89	195.13	1106.23	5.67	113.70
97.00	10.84	58118.	.1204	343.57	185.98	1240.32	6.67	112.70
98.00	11.84	59486.	.1124	344.90	179.36	1375.56	7.67	111.70
99.00	12.84	60843.	.1174	346.03	174.29	1510.99	8.67	110.70
100.00	13.84	62187.	.1085	347.22	170.69	1650.40	9.67	109.70
101.00	14.84	63439.	.1116	346.49	166.34	1791.35	10.77	108.60
102.00	15.84	64594.	.1072	349.40	162.56	1929.41	11.87	107.50
103.00	16.84	65699.	.1048	348.62	159.05	2062.70	12.97	106.40
104.00	17.84	66752.	.1045	347.91	155.88	2193.09	14.07	105.30
105.00	18.84	67686.	.1026	348.51	152.89	2319.22	15.17	104.20
106.00	19.84	68490.	.0998	348.50	152.35	2445.17	16.05	103.32
107.00	20.84	69253.	.1005	346.70	152.07	2574.41	16.93	102.44
108.00	21.84	69970.	.0972	353.40	151.59	2699.63	17.81	101.56
109.00	22.84	70618.	.0913	358.20	150.57	2813.96	18.69	100.68
110.00	23.84	71193.	.0941	358.59	149.44	2924.52	19.57	99.80
111.00	24.84	71497.	.0795	358.95	149.23	3039.67	20.37	99.00
112.00	25.84	71796.	.0770	.03	148.54	3144.55	21.17	98.20
113.00	26.84	71709.	.0794	3.03	148.09	3253.37	21.97	97.40
114.00	27.84	71614.	.0803	1.75	147.69	3362.70	22.77	96.60
115.00	28.84 29.84	71352. 70951.	.0825 .0805	1.26 359.37	148.23 146.89	3493.71 3623.78	23.57 24.67	95.80 94.70
116.00 117.00	30.84	70403.	.0808	.04	145.61	3752.28	25.77	93.60
118.00	31.84	69230.	.0821	.77	144.43	3880.81	26.87	92.50
119.00	32.84	69301.	.0821	.87	143.94	4025.85	27.97	91.40
120.00	33.84	69399.	.0823	2.10	143.52	4171.91	29.07	90.30
121.00	34.84	69496.	.0836	.80	142.96	4318.75	30.21	89.16
122.00	35.84	66855.	.0839	5.88	142.52	4467.84	31.35	88.02
123.00	36.84	10620.	.1296	330.57	140.95	4579.21	32.49	86.88
124.00	37.84	1819.	.1348	44.38	138.25	4649.25	33.63	85.74
125.00	38.84	248.	.0721	266.51	140.28	4877.37	34.77	84.60
126.00	39.84	6.	1.5636	13.17	141.56	5102.97	36.05	83.32
126.44	40.28	0.	0.0000	0.00	139.38	5102.97	36.61	82.76

(Note: ****** results when the computed number overflows the available output field width)

Figure 6 (concluded) Sample Problem Printed Output Data

UPPER STAGE MOMENT ROUTINE COAST VARIABLES TIME HISTORIES

PAGE - 1 E

SAMPLE PROBLEM FOR UPSTAG PROGRAM
SCOUT VEHICLE S-192C SECOND STAGE DISTURBING MOMENTS

	FLIGHT	STAGE	COAST	TOTAL	COAST	TOTAL	COAST	TOTAL	FUEL RE	MAINING
	TIME	TIME	IMPULSE	IMPULSE	ISP	ISP	FUEL	FUEL	MEAS	CALC
	SEC	SEC	LB-SEC	LB-SEC	SEC	SEC	LB	LB	LB	LB
	126.44	40.28	48.3	5151.3	0.00	140.96	0.00	36.54	82.76	82.35
	127.00	40.84	109.9	5212.8	153.26	139.90	.72	37.26	82.04	81.84
	129.00	42.84	329.6	5432.5	100.58	136.43	3.28	39.82	79.48	80.00
	131.00	44.84	498.7	5601.6	99.01	134.72	5.04	41.58	77.72	78.58
	133.00	46.84	617.2	5720.2	102.92	134.47	6.00	42.54	76.76	77.59
	135.00	48.84	725.3	5828.3	104.26	133.98	6.96	43.50	75.80	76.68
	137.00	50.84	823.0	5926.0	103.44	133.17	7.96	44.50	74.80	75.87
	139.00	52.84	932.7	6035.7	104.13	132.65	8.96	45.50	73.80	74.95
	141.00	54.84	1054.4	6157.3	104.43	132.02	10.10	46.64	72.66	73.93
	143.00	56.84	1154.5			130.58	11.38	47.92	71.38	73.09
	145.00	58.84	1233.0	6335.9	97.42	128.78	12.66	49.20	70.10	72.43
	147.00	60.84	1323.3	6426.2		128.94	13.30	49.84	69.46	71.68
	149.00	62.84	1425.4			129.33	13.94	50.48	58.82	70.82
	151.00	64.84	1518.2	6621.2			14.44	50.98	68.32	70.05
	153.00	66.84	1601.8	6704.8			14.80	51.34	57 . 96	69.35
	155.00	68.84	1760.7	6863.7			15.16	51.70	67.60	68.02
	157.00	70.84	1908.8	7011.8			15.80	52.34	66.96	66.78
	159.00	72.84	1970.6	7073.5			16.44	52.98	66.32	66.26
	160.40	74.24	2001.5	7104.4			16.76	53.30	56.00	66.00
*E		. , , , ,	_001.0	. 20 , 1			200.0	32.20	1	32130

Figure 7
Sample Problem CALCOMP Plots

Figure 7 (continued) Sample Problem CALCOMP Plots

Figure 7 (concluded) Sample Problem CALCOMP Plots

APPENDIX A

FORTRAN PROGRAM LISTING

A complete FORTRAN source program listing is presented in the following pages. It starts with the main routine (UPSTAG) and is followed by the subroutines arranged in alphabetical order. There are a total of 481 cards in UPSTAG. The total program including subroutines contains 805 cards.

```
*DECK UPSTAG
      PROGRAM UPSTAG(INPUT, OUTPUT, TAPE5 = INPUT, TAPE6 = OUTPUT)
      UPSTAG IS A PROGRAM FOR POST-FLIGHT ANALYSIS OF THE PITCH, YAW
      AND ROLL DISTURBANCES AND CONTROL FUEL CONSUMPTION FOR AN ON-OFF
C
      REACTION CONTROLLED UPPER STAGE ROCKET VEHICLE.
      COMMON PUAR(200,9), YUAR(200,9), RUAR(200,9), TUAR(200,9)
      DIMENSION NTITLE(8), LTITL(16), P(200), T(200), U(200), DPR(200),
                 DYR(200), DRR(200), THEDD(200), PHIDD(200), PSIDD(200),
                 TT(200), UP(200), XCG(200), AIXX(200), AIYY(200), RI(200),
                 Q(300), ALPH(300), BETA(300), CUAR(200,10), BRACK(200)
      READ OPTIONS
C
      READ( 5,830) IOPT1, IOPT2, IOPT3, IOPT4, IOPT5, IOPT6
      READ TWO CARDS OF ARBITRARY LABELING
C
      READ( 5,860) (LTITL(J), J=1,16)
      READ TIME PARAMETERS
C
      READ( 5,850) TO, TBO, TSTEP, TCOAST, TSTEPC
      INITIALIZE ALL COUNTERS, INDICES, AND SUMS
C
      AINT=0.0
      BINT = 0.0
      CINT=0.0
      KKK = 0
      LLL=0
       I C = 0
       I T = 0
       TP = TO
       IT0=T0+1.
       ITCO-TBO+1.
       MPHD=1
       MTT = 1
       MG = 1
       MA = 1
       MB = 1
       MDP = 1
       MDY=1
       MDR = 1
```

7

9

10

12

13

14

15

16

17

18

19

98

21

55

23

24

25

95

27

58

59

30

31

35

33

34

35

```
36
         MR=1
                                                                                                                   37
         MP=1
                                                                                                                   38
         MT = 1
        MU=1

MUP=1

MIX=1

MIY=1

MCG=1

MTD=1

MPSD=1

IF (IOPT5 .LT. 0 ) GO TO 90
                                                                                                                   39
                                                                                                                   40
                                                                                                                   41
                                                                                                                   42
                                                                                                                   43
                                                                                                                   44
                                                                                                                   45
                                                                                                                   46
                                                                                                     47
48
49
50
        READ IN CONSTANTS
C
        READ( 5,850) XT,XC,ZC,RC,WFUELI,CNAS,XCP,ETA,CN3,DCP
ETA=ETA/57.3
        READ AERODYNAMIC PARAMETER TABLES Q, ALPHA, BETA
READ( 5,880) NQ,(Q(I),I=1,NQ)
READ( 5,880) NALPH,(ALPH(I),I=1,NALPH)
READ( 5,880) NBETA.(BETA(I).I=1.NBETA)
C
                                                                                                                51
                                                                                                                 52
         READ( 5,880) NBETA, (BETA(I), I=1, NBETA)
                                                                                                                  53
         READ IN BOOSTER THRUST AND PROPELLANT REMAINING TIME HISTORIES 54
        READ( 5,840) NTT, (TT(I), I=1,NTT)
                                                                                                                  55
         READ( 5,840) NNUP, (UP(I), I=1, NNUP)
                                                                                                                  56
         CONVERT PROPELLANT REMAINING TO PER-CENT WEIGHT REMAINING
C
                                                                                                                  57
         WTIGN=UP(2)
                                                                                                                   58
         DO 10 I=2.NNUP.2
                                                                                                                   59
    10 UP(I)=(UTIGN-UP(I))*100.0/UTIGN
                                                                                                                   60
C
         READ IN MASS PROPERTIES VERSUS PERCENT BOOSTER PROPELLANT CONSUMED
                                                                                                                   61
        READ( 5,840) NUX, (AIXX(I), I=1, NUX)
                                                                                                                   65
        READ( 5,840) NWX,(AIXX(I),I=1,NWX)
READ( 5,840) NWY,(AIYY(I),I=1,NWY)
READ( 5,840) NXCG,(XCG(I),I=1,NXCG)
TEST FOR INPUT OF ANGULAR ACCELERATION VALUES
IF (IOPT1 .GT. 0 ) GO TO 20
READ IN ANGULAR ACCELERATIONS
READ( 5,840) NTHE,(THEDD(J),J=1,NTHE)
READ( 5,840) NPSI,(PSIDD(J),J=1,NPSI)
READ( 5,840) NPHI,(PHIDD(J),J=1,NPHI)
                                                                                                                   63
                                                                                                                   64
C
                                                                                                                   65
                                                                                                                   66
C
                                                                                                                   67
                                                                                                                   68
                                                                                                                  69
                                                                                                                   70
```

100 DPRATE = DPR(I)

DO 110 I=2, NDYR, 2

71

105

```
DYR(I) = DYRATE + DYR(I)
                                                                                   106
                                                                                  107
  110 DYRATE = DYR(I)
 108
                                                                                   109
                                                                                  110
                                                                                  111
                                                                                  112
                                                                                  113
                                                                                  114
                                                                                  115
                                                                                  116
C
                                                                                  117
                                                                               118
                                                                                 119
                                                                                 120
                                                                                  121
 150 T(I) = T(I) + 460.0
                                                                                  122
                                                                                 123
                                                                                 124
                                                                                 125
                                                                                  126
      READ( 5,850) RC, WFUELI, YMA, RIXX, YIYY, WFUELM, WFUELC, BOIMP, RIC
                                                                                  127
      GO TO 440
                                                                                   128
C
                                                                                   129
      CONTINUE
TTIME=TP-TO
KKK=KKK+1
GET FUEL FUEL REMAINING ARRAY
IF (IOPT2 .EQ. 0 ) GO TO 170
CALL TBLU (NNP, PRES, TP, P, MP)
CALL TBLU (NNT, TEMP, TP, T, MT)
CALL C (PRES, TEMP, CF)
  160 CONTINUE
                                                                                  130
                                                                                   131
                                                                                  132
C
                                                                                 133
                                                                                 134
                                                                              135
                                                                                  136
      CALL C (PRES, TEMP, CF)
                                                                                   137
      DW=CONST1*((P(2)*TEMP)/(CI*T(2))-PRES/CF)+CONST2*((TEMP/T(2))-1.0) 138
      TVAR(KKK,9)=WFUELI-DW
                                                                                  139
      GO TO 180
                                                                                   140
```

	CALL TBLU (NW, WWT, TP, W, MW) TVAR(KKK,9) = WWT OBTAIN IXX, IYY, CP IN TERMS OF TIME OCALL TBLU (NNWP, WWP, TTIME, WP, MWP) CALL TBLU (NWX, AAIXX, WWP, AIXX, MIX) CALL TBLU (NWY, AAIYY, WWP, AIYY, MIY) CALL TBLU (NXCG, XXCG, WWP, XCG, MCG) CALL TBLU (NXCG, XXCG, WWP, XCG, MCG) COMPUTE THE SUM OF THE MOMENT DISTURBANCES COMPUTE THE SUM OF THE MOMENT DISTURBANCES OBTAIN THE ANGULAR ACCELERATIONS FROM TABLE LOOKUP ROUTINE CALL TBLU (NTHE, TTHEDD, TP, THEDD, MTD) CALL TBLU (NPSI, PPSIDD, TP, PSIDD, MPSD) CALL TBLU (NPSI, PPSIDD, TP, PSIDD, MPHD)	153
С	CALL TBLU (NPHI, PPHIDD, TP, PHIDD, MPHD) CALL TBLU (NPHI, PPHIDD, TP, PHIDD, MPHD) COMPUTE THE SUM OF MOMENTS PVAR(KKK, 7) = AAIYY*TTHEDD/57.3 PVAR(KKK, 7) = AAIYY*PPSIDD/57.3 RVAR(KKK, 5) = AAIXX*PPHIDD/57.3	154 155 156 157 158
С	NEFINE X1 AND XC	159 160
С	X2=(XT-XXCG)/12. COMPUTE THRUST MISALIGNMENT COMPONENTS CALL TBLU (NTT,TTT,TTIME,TT,MTT) CALL TBLU (NG,QQ,TP,Q,MQ) CALL TBLU (NALPH,AALPH,TP,ALPH,MA) CALL TBLU (NBETA,BBETA,TP,BETA,MB) IF (AALPH.NE.0.) GO TO 190 IF (BBETA.NE.0.) GO TO 190 AERO=0. AB=0. PVAR(KKK,5)=0. GO TO 200	161 162 163 164 165 166 167 168 169 170 171 172
C C	COMPUTE TOTAL AERODYNAMIC ANGLE AND AERODYNAMIC MOMENTS 90 TNA=TAN(AALPH/57.3) TNB=TAN(BBETA/57.3)	174 175

		TANETA=SQRT(TNA*TNA+TNB*TNB) AB=57.3*ATAN(TANETA)	176 177
		AERO=(CNAS*AB+CN3*AB**3)*QQ*(XXCG-XCP-DCP*ABS(AB))/12.	178
		PVAR(KKK,5)=AERO*TNA/TANETA	179
		YVAR(KKK,5)=-AERO*TNB/TANETA	180
	200	PVAR(KKK,6)=PVAR(KKK,7)-PVAR(KKK,5)	181
	200	YVAR(KKK,6)=YVAR(KKK,7)-YVAR(KKK,5)	182
		IF (TTT .GT. 0.) GO TO 210	183
		ETP=0.0	184
		ETY=0.0	185
		GO TO 220	186
C			187
_	210	ETP=(PUAR(KKK,7)-PUAR(KKK,5))/(TTT*X2)	188
		ETY=(YUAR(KKK,7)-YUAR(KKK,5))/(TTT*X2)	189
C		COMPUTE TOTAL THRUST MISALIGNMENT	190
	220	ETOT=SQRT(ETP**2+ETY**2)	191
		PUAR(KKK,8)=ETP*57.3	192
		YUAR(KKK,8)=ETY*57.3	193
		TUAR(KKK,4)=ETOT*57.3	194
		IF (ETP) 230,270,310	195
		IF (ETY) 240,250,260	196
	240	ETOR=ATAN(ETY/ETP)*57.3+180.0	197
		GO TO 350	198
C			199
	250	ETOR=180.0	200
_		GO TO 350	201
C			202
	560	ETOR = ATAN(ETY/ETP) *57.3+180.0	203
		GO TO 350	204
C	000	TE (EBU) DOA DOA DA	205
		IF (ETY) 280,290,300	206
	280	ETOR=270.0	207
С		GO TO 350	208
U	204	ETOR=0.0	209
	E 3 0	LIUN-0+0	210

```
211
      GO TO 350
                                                                                212
C
                                                                                213
  300 ETOR = 90.0
                                                                                214
      GO TO 350
                                                                                215
C
                                                                                 216
  310 IF (ETY) 320,330,340
                                                                                217
  320 ETOR = ATAN(ETY/ETP) $57.3+360.0
                                                                                 218
      GO TO 350
                                                                                 219
C
                                                                                 925
  330 ETOR = 0.0
                                                                                 155
      GO TO 350
                                                                                 222
                                                                                 553
  340 ETOR=ATAN(ETY/ETP)*57.3
                                                                                 224
  350 TUAR(KKK,5)=ETOR
                                                                                 225
      GET TIME ARRAY
                                                                                 556
      PUAR(KKK,1)=TP
                                                                                 227
      YUAR (KKK, 1) = TP
                                                                                 855
      RUAR(KKK,1)=TP
                                                                                 559
      TUAR(KKK,1)=TP
                                                                                 230
      PUAR(KKK,2)=TTIME
                                                                                 531
      YUAR(KKK,2) *TTIME
                                                                                 535
      RUAR(KKK,2)=TTIME
                                                                                 233
      TUAR(KKK,2) = TTIME
                                                                                 234
      GET BRACK ARRAY
C
                                                                                 235
      BRACK(KKK) * (XC-XXCG) * COS(ETA)/12.+(ZC*SIN(ETA))/12.
                                                                                 236
      COMPUTE HYDROGEN PEROXIDE FUEL USED
Ĉ
                                                                                 237
      TUAR(KKK,8)=TUAR(1,9)-TUAR(KKK,9)
                                                                                 853
      INTEGRATE MOMENTS IN PITCH AND YAU
C
                                                                                 239
      IF (KKK-1 .LE. 0 ) GO TO 370
                                                                                 240
      IF (IOPT6 .LE. 0 ) GO TO 360
                                                                                 241
      CALL TBLU (NDPR, DP, TP, DPR, MDP)
                                                                                 242
      CALL TBLU (NDYR, DY, TP, DYR, MDY)
                                                                                 243
      CALL TBLU (NDRR, DR, TP, DRR, MDR)
                                                                                 244
      AINT * AAIYY*DP/(57.3*BRACK(KKK))
                                                                                 245
      BINT = AAIYY*DY/(57.3*BRACK(KKK))
```

```
CALL TBLU (NRI, CINT, TP, RI, MR)
                                                                             246
    CINT=CINT+AAIXX*DR/(57.3*(RC/12.0))
                                                                             247
                                                                             248
    GO TO 370
                                                                             249
360 AINT = AINT + ABS((PUAR(KKK, 7) + PUAR(KKK-1, 7)) * (TUAR(KKK, 1) - TUAR(KKK-1,
                                                                             250
   11))/(2.0*BRACK(KKK)))
                                                                             251
    BINT *BINT + ABS((YUAR(KKK, 7) + YUAR(KKK-1, 7)) * (TUAR(KKK, 1) - TUAR(KKK-1, 252
                                                                             253
   11))/(2.0*BRACK(KKK)))
    CALL TBLU (NRI, CINT, TP, RI, MR)
                                                                             254
    CINT=CINT+ABS(6.0*(RUAR(KKK,5)+RUAR(KKK-1,5))*(TUAR(KKK.1)-
                                                                             255
   1 -TUAR(KKK-1,1))/RC)
                                                                             256
    FIND TOTAL IMPULSE
                                                                             257
370 TUAR(KKK,7)=AINT+BINT+CINT
                                                                             258
    COMPUTE THE SPECIFIC IMPULSE
                                                                             259
    IF (TUAR(KKK,8) .NE. 0 ) GO TO 380
                                                                             260
    TUAR(KKK.6)=0.0
                                                                             261
    GO TO 390
                                                                             292
                                                                             263
380 TUAR(KKK,6)=TUAR(KKK,7)/TUAR(KKK,8)
                                                                             264
                                                                             265
390 CONTINUE
    PUAR(KKK, 3) = TTHEDD
                                                                             566
    PUAR(KKK, 4) = AAIYY
                                                                             267
    PUAR(KKK,9) = AINT
                                                                             898
    YUAR(KKK,3)=PPSIDD
                                                                             563
    YUAR(KKK,4)=AAIYY
                                                                             270
    YUAR(KKK,9)=BINT
                                                                             271
    RVAR(KKK,3)=PPHIDD
                                                                             272
    RVAR(KKK,4)=AAIXX
                                                                             273
    RUAR(KKK,6)=CINT
                                                                             274
    RUAR(KKK,7)=XXCG
                                                                             275
    TUAR(KKK,3)=TTT
                                                                             276
    IF (IT .NE. 0 ) GO TO 400
                                                                             277
    TP=ITO
                                                                             278
    I T = 1
                                                                             279
    GO TO 160
                                                                             589
```

```
281
C
  400 IF (TBO-(TP+TSTEP) .LE. 0 ) GO TO 410
                                                                                 585
                                                                                 283
      TP - TP + TSTEP
                                                                                 284
      GO TO 160
                                                                                 285
                                                                                 286
  410 IF (TBO-TP .LE. 0 ) GO TO 420
                                                                                 287
      TP - TBO
                                                                                 588
      GO TO 160
                                                                                 589
                                                                                 290
  420 AUGISP * TUAR (KKK, 6)
                                                                                 291
      DO 430 I=1,KKK
                                                                                 292
      RUAR(I,8)=TUAR(I,7)/AUGISP
                                                                                 593
  430 RUAR(I,9)=TUAR(1,9)-RUAR(I,8)
                                                                                 294
      IF (IOPT5 .LE. 0 ) GO TO 580
                                                                                 295
      BOIMP = TUAR (KKK, 7)
                                                                                 296
      UFUELM=TUAR(KKK,9)
                                                                                 297
      WFUELC=RVAR(KKK.9)
                                                                                 865
      RIC=RUAR(KKK,6)
                                                                                 599
      YMA=BRACK(KKK)
                                                                                 300
      RIXX=AAIXX
                                                                                  301
      YIYY=AAIYY
                                                                                  302
  440 CONTINUE
                                                                                  303
      TTIME = TP-TO
                                                                                  304
      LLL=LLL+1
                                                                                  305
      CVAR(LLL.1)=TP
                                                                                  306
      CVAR(LLL,2)=TTIME
                                                                                  307
      IF (IOPT2 .GT. 0 ) GO TO 450
                                                                                  308
      CALL TBLU (NW, WWT, TP, W, MW)
                                                                                  309
      CVAR(LLL,9)=WUT
                                                                                  310
      GO TO 460
                                                                                  311
                                                                                  312
  450 CALL TBLU (NNP, PRES, TP, P, MP)
                                                                                  313
      CALL TBLU (NNT, TEMP, TP, T, MT)
                                                                                  314
      CALL C (PRES, TEMP, CF)
      DU = CONST1*((P(2)*TEMP)/(CI*T(2))-PRES/CF)+CONST2*((TEMP/T(2))-1.0)
                                                                                  315
```

```
316
    CVAR(LLL,9)=UFUELI-DW
460 CVAR(LLL,8)=UFUELI-CVAR(LLL,9)
                                                                            317
    CVAR(LLL,7) = UFUELM-CVAR(LLL,9)
                                                                            318
    IF (IOPT3 .LE. 0 ) GO TO 470
                                                                            319
    CALL TBLU (NDPR, DP, TP, DPR, MDP)
                                                                           320
                                                                            321
    CALL TBLU (NDYR, DY, TP, DYR, MDY)
    CALL TBLU (NDRR, DR, TP, DRR, MDR)
                                                                           322
    PIMP=YIYY*DP/(57.3*YMA)
                                                                            353
    YIMP=YIYY*DY/(57.3*YMA)
                                                                            324
    RIMP=RIXX*DR/(57.3*(RC/12.0))
                                                                            325
                                                                            326
    CUAR(LLL.3)=PIMP+YIMP+RIMP
    CUAR(LLL,4)=CUAR(LLL,3)+BOIMP
                                                                            327
                                                                            358
    GO TO 480
                                                                            359
470 CALL TBLU (NRI, TIMP, TP, RI, MR)
                                                                            330
                                                                            331
    CUAR(LLL,4)=BOIMP+TIMP-RIC
    CUAR(LLL,3)=CUAR(LLL,4)-BOIMP
                                                                            335
480 IF (CUAR(LLL,7) .NE. 0.) GO TO 490
                                                                            333
    CUAR(LLL.5)=0.0
                                                                            334
    GO TO 500
                                                                            335
                                                                            336
                                                                            337
490 CUAR(LLL,5)=CUAR(LLL,3)/CUAR(LLL,7)
500 IF (CUAR(LLL,8) .NE. 0.) GO TO 510
                                                                            338
                                                                            339
    CUAR(LLL.6)=0.0
    GO TO 520
                                                                            340
                                                                            341
510 CUAR(LLL,6)=CUAR(LLL,4)/CUAR(LLL,8)
                                                                            342
520 IF (IC .GT. 0 ) GO TO 530
                                                                            343
    TP=ITCO
                                                                            344
                                                                            345
    I C = 1
    GO TO 440
                                                                            346
                                                                            347
530 IF (TCOAST-(TP+TSTEPC) .LE. 0.) GO TO 540
                                                                            348
    TP=TP+TSTEPC
                                                                            349
    GO TO 440
                                                                            350
```

```
C
                                                                               351
  540 IF (TCOAST-TP .LE. 0.) GO TO 550
                                                                               352
                                                                               353
      TP * TCOAST
      GO TO 440
                                                                               354
C
                                                                               355
  550 AUGISP = CUAR(LLL.5)
                                                                               356
      DO 570 I=1.LLL
                                                                               357
      IF (AUGISP .NE. 0.) GO TO 560
                                                                               358
      CFUELC=0.0
                                                                               359
      GO TO 570
                                                                               360
                                                                               361
  560 CFUELC=CVAR(I,3)/AUGISP
                                                                               362
  570 CVAR(I.10)=WFUELM-CFUELC
                                                                               363
      IF (IOPT5 .LT. 0 ) GO TO 630
                                                                               364
  580 XKKK=KKK
                                                                               365
      XP=XKKK/50.
                                                                               366
      NP=KKK/50
                                                                               367
      XNP=NP
                                                                               368
      IF(XP.GT.XNP)NP=NP+1
                                                                               369
      NLL=0
                                                                               370
      NPP=1
                                                                               371
  590 IF (NP-NPP .GT. 0 ) GO TO 600
                                                                               372
      NFL=NLL+1
                                                                               373
      NLL=KKK
                                                                               374
      GO TO 610
                                                                               375
C
                                                                               376
  600 NFL=NLL+1
                                                                               377
      NLL=NLL+50
                                                                               378
  610 URITE( 6,690) NPP
                                                                               379
      WRITE( 6,870) (LTITL(J), J=1,16)
                                                                               380
      WRITE( 6.700)
                                                                               381
      WRITE( 6,710) ((PUAR(I,J),J=1,9),I=NFL,NLL)
                                                                               385
      WRITE( 6,720) NPP
                                                                               383
      WRITE( 6,870) (LTITL(J), J=1,16)
                                                                               384
      URITE(6,730)
                                                                               385
```

```
URITE( 6,710) ((YUAR(I,J),J=1,9),I=NFL,NLL)
                                                                                                                   386
     URITE( 6,740) NPP

URITE( 6,870) (LTITL(J), J=1,16)

URITE( 6,750)

URITE( 6,760) ((RUAR(I,J), J=1,9), I=NFL, NLL)

URITE( 6,770) NPP

URITE( 6,870) (LTITL(J), J=1,16)

URITE( 6,880)

URITE( 6,880) ((TUAR(I,J), J=1,9), I=NFL, NLL)

IF (NP-NPP .LE. 0 ) GO TO 620

NPP=NPP+1
      URITE( 6,740) NPP
                                                                                                                   387
                                                                                                                   388
                                                                                                                   389
                                                                                                                   390
                                                                                                                  391
                                                                                                                   392
                                                                                                                   393
    URITE( 6,780)

URITE( 6,820) ((TUAR(I,J),J=1,9),1=NFL,NLL,

IF (NP-NPP .LE. 0 ) GO TO 620

NPP=NPP+1

GO TO 590

CONTINUE

IF (TOPT5 .LE. 0 ) GO TO 670
                                                                                                                   394
                                                                                                                   395
                                                                                                                   396
                                                                                                                   397
                                                                                                                   398
620 CONTINUE
                                                                                                                   399
                                                                                                                   400
630 XLLL=LLL
                                                                                                                   401
     XC=XLLL/50.
                                                                                                                   402
      NC=LLL/50
                                                                                                                   403
      XNC = NC
                                                                                                                   404
     IF(XC.GT.XNC)NC=NC+1
                                                                                                                   405
      NCLL=0
                                                                                                                   406
      NCPP=1
                                                                                                                   407
NCPP=1
640 IF (NC-NCPP .GT. 0 ) GO TO 650
                                                                                                                   408
     NCFL=NCLL+1

NCLL=LLL

GO TO 660

NCFL=NCLL+1

NCLL=NCLL+50

URITE( 6,790) NCPP

URITE( 6,870) (LTITL(J),J=1,16)
      NCFL=NCLL+1
                                                                                                                   409
                                                                                                                   410
                                                                                                                   411
                                                                                                                   412
650 NCFL=NCLL+1
                                                                                                                   413
                                                                                                                   414
660 URITE( 6,790) NCPP
                                                                                                                   415
                                                                                                                   416
      WRITE( 6,800)
URITE( 6,810) ((CUAR(I,J),J=1,10),I=NCFL,NCLL)
                                                                                                                   417
                                                                                                                  418
      IF (NC-NCPP .LE. 0 ) GO TO 670
                                                                                                                   419
      NCPP=NCPP+1
                                                                                                                   420
```

```
421
      GO TO 640
                                                                              422
                                                                              423
  670 CONTINUE
                                                                              424
      IF (IOPT4 .LE. 0 ) GO TO 680
      READ( 5,860) (NTITLE(J), J=1,8)
                                                                              425
                                                                              426
      NOPL = 0
                                                                              427
      IF(Q(2).GT.0.)NQPL=1
      READ( 5.840) IROLL, SFT, SFPYM, SFET, SFRM
                                                                              428
      CALL CURVE (KKK, NOPL, IROLL, NTITLE, SFPYM, SFRM, SFET, SFT)
                                                                              429
                                                                              430
  680 CONTINUE
                                                                              431
      STOP
      THIS ENDS THE UPSTAG EXECUTION. ONLY FORMAT STATEMENTS REMAIN.
                                                                              432
C
  690 FORMAT (1H1.25X,26HUPPER STAGE MOMENT ROUTINE,14X,6HPAGE =,12,2H A
                                                                              433
     1/25X,31H PITCH VARIABLES TIME HISTORIES)
                                                                              434
  700 FORMAT (//4X.6HFLIGHT.2X.5HSTAGE.2X.7HANGULAR,2X.6HMOMENT.4X.4HAER
                                                                              435
     10,3X,8HMISALIGN,3X,5HTOTAL,3X,6HTHRUST/2(4X,4HTIME),4X,5HACCEL,2X.
                                                                              436
     28HOF INER..2X,3(6HMOMENT,3X),6HMISALN,1X,7HIMPULSE/5X,3HSEC,5X,3HS
                                                                              437
     3EC.3X.7HDEG/S/S.1X.8HSLUG-FT2.3X.3(5HFT-LB.4X).3HDEG.4X.6HLB-SEC//
                                                                              438
                                                                              439
     4)
                                                                              440
  710 FORMAT (3X.F7.2.1X.F6.2.2X.F6.2.2X.F8.1.1X.F8.2.1X.F8.2.1X.F8.2.1X
     1,F7.4,1X,F7.2)
                                                                              441
  720 FORMAT (1H1.25X.26HUPPER STAGE MOMENT ROUTINE.14X.6HPAGE =.12,2H B
                                                                              442
                                                                              443
     1/25X.31H
                 YAW VARIABLES TIME HISTORIES)
                                                                              444
  730 FORMAT (//4X,6HFLIGHT,2X,5HSTAGE,2X,7HANGULAR,2X,6HMOMENT,4X,4HAER
     10,3X,8HMISALIGN,3X,5HTOTAL,3X,6HTHRUST/2(4X,4HTIME),4X,5HACCEL,2X,
                                                                              445
     28HOF INER., 2X, 3(6HMOMENT, 3X), 6HMISALN, 1X, 7HIMPULSE/5X, 3HSEC, 5X, 3HS
                                                                              446
     3EC, 3X, 7HDEG/S/S, 1X, 8HSLUG-FT2, 3X, 3(5HFT-LB, 4X), 3HDEG, 4X, 6HLB-SEC//
                                                                              447
                                                                              448
  740 FORMAT (1H1,25X,26HUPPER STAGE MOMENT ROUTINE,14X,6HPAGE =,12,2H C
                                                                              449
                                                                              450
     1/25X,31H ROLL VARIABLES TIME HISTORIES)
  750 FORMAT (//4x,6HFLIGHT,2x,5HSTAGE,2x,7HANGULAR,1x,6HMOMENT,4x,5HTOT
                                                                              451
                                                                              452
     1AL,13X,4HC.G.,4X,18H CALCULATED FUEL /2(4X,4HTIME),4X,5HACCEL,2X,
     27HOF INER, 3X, 6HMOMENT. 2X, 7HIMPULSE. 3X, 5HPOINT, 3X, 7H CONSUM, 3X, 7HRE
                                                                              453
     3MAIN /5X,3HSEC,5X,3HSEC,3X,7HDEG/S/S.1X.8HSLUG-FT2,2X,5HFT-LB,3X,6
                                                                              454
     4HLB-SEC, 4X, 4HINCH, 7X, 2HLB, 7X, 2HLB//)
                                                                              455
```

```
760 FORMAT (3X,F7.2,1X,F6.2,2X,F6.2,2X,F8.1,1X,F8.2,1X,F7.2,1X,F8.3.1X
                                                                             456
                                                                             457
   1,F8.3,1X,F8.3)
770 FORMAT (1H1,25X,26HUPPER STAGE MOMENT ROUTINE,14X,6HPAGE =,12,2H D
                                                                             458
               TIME HISTORIES OF SYSTEM
                                                                             459
780 FORMAT (//4X.6HFLIGHT, 2X, 5HSTAGE, 11X, 5HTOTAL, 10X, 8HSPECIFIC. 2X.5HT
                                                                             460
   10TAL, 2(4X, 4HFUEL)/2(4X, 4HTIME), 3X, 6HTHRUST, 2X, 7HMISALGN, 2X, 5HLAMDA
                                                                             461
   2.2X.2(7HIMPULSE,2X),6HCONSUM,2X,6HREMAIN/5X,3HSEC,5X,3HSEC,5X,2HLB
                                                                             462
   3.6X,3HDEG,5X,3HDEG,5X,3HSEC,4X,6HLB-SEC,4X,2HLB,6X,2HLB//)
                                                                             463
790 FORMAT (1H1, 25X, 26HUPPER STAGE MOMENT ROUTINE, 14X, 6HPAGE =. 12.2H E
                                                                             464
   1/25X.31H COAST VARIABLES TIME HISTORIES)
                                                                             465
800 FORMAT (//, 4X, 6HFLIGHT, 2X, 5HSTAGE, 3X, 5HCOAST, 3X, 5HTOTAL, 2X, 5HCOAST
                                                                             466
   1..2X.5HTOTAL, 3X, 5HCOAST, 3X, 5HTOTAL, 2X, 14HFUEL REMAINING, /5X, 4HTIME
                                                                             467
   2.3X.4HTIME, 3X, 2(7HIMPULSE, 1X), 1X, 2(3HISP, 4X), 4HFUEL, 4X, 4HFUEL, 3X, 1
                                                                             468
               CALC /5X,3HSEC,5X,3HSEC,3X,2(6HLB-SEC,2X),1X,2(3HSEC,4X
                                                                             469
                                                                             470
   4).2HLB.7X.2HLB,6X,2HLB,6X.2HLB//)
810 FORMAT (3X,F7.2,1X,F6.2,1X,F7.1,1X,F7.1,1X,F6.2,1X,F6.2,1X,F7.2.1X
                                                                             471
                                                                             472
   1.F7.2.1X,F7.2,1X,F7.2)
820 FORMAT (3X,F7.2.1X,F6.2,2X,F7.0,1X,F7.4,1X,F7.2,1X,F7.2.1X,F8.2.1X
                                                                             473
                                                                             474
   1.F6.2.2X,F7.2)
                                                                             475
830 FORMAT (1015)
840 FORMAT (I5/(6E10.3))
                                                                             476
850 FORMAT (6E10.3)
                                                                             477
                                                                             478
860 FORMAT (8A10)
                                                                             479
870 FORMAT (1X.8A10)
                                                                             480
880 FORMAT (15/(7E10.3))
                                                                             481
    END
```

```
- A-16 -
```

```
1
*DECK C
     SUBROUTINE C (PAT, TAT, CAT)
      THIS SUBROUTINE COMPUTES THE COMPRESSIBILITY FACTOR FOR DRY
С
      NITROGEN FOR 50-100 DEG F. AND 400-3000 PSIA
C
      PP=PAT-1400.
                                                                             6
      CAT = .9977+1.657738E-5*PP+1.264881E-8*PP*PP+4.5833E-4*(TAT-522.)
      RETURN
      END
*DECK CURVE
      SUBROUTINE CURVE (NP,NQ,IROLL,NTITLE,DY,DYR,DYET,DX)
      THIS SUBROUTINE PERFORMS THE CALCOMP PLOT SETUP FOR PITCH, YAW
C
C
      AND ROLL MOMENTS AND THRUST MISALIGNMENT.
      DIMENSION NTITLE(8), X(400), Y(400)
      COMMON PUAR(200,9), YUAR(200,9), RUAR(200,9), TUAR(200,9)
                                                                             7
      DATA Z1.Z2.Z3/0.42.0.07.0.14/
C
      SET UP INITIAL AXIS VARIABLES
                                                                            10
      YF = -2. *DY
                                                                            11
      NDX = DX
                                                                            12
      CALL PLOTS (5HCAL19,0,4HPLOT)
                                                                            13
      DO 10 J=1.NP
                                                                            14
   10 X(J) = PUAR(J,1)
                                                                            15
C PLOT PITCH MOMENTS
      CALL SYMBOL (0.5.9.9.0.10.NTITLE,0.,80)
                                                                            16
      CALL SYMBOL (0.5,9.5,0.10,45H PITCH AND YAW DISTURBING
                                                                            17
     1 MOMENTS, 0., 45)
                                                                            18
      CALL SYMBOL(3.5,9.3,0.07,12HTOTAL MOMENT,0.,12)
                                                                            19
      CALL PLOT(3.4.9.3.3)
                                                                            20
      CALL PLOT(2.4,9.3,2)
                                                                            21
                                                                            22
      CALL PLOT(2.4,9.15,3)
                                                                            23
      CALL PLOT(2.6.9.15.2)
                                                                            24
      CALL PLOT(2.7,9.15,3)
      CALL PLOT(2.9,9.15,2)
                                                                            25
```

```
· 14-4 -
```

```
35
      CALL PLOT(3.0.9.15.3)
      CALL PLOT(3.2,9.15,2)
                                                                              27
      CALL PLOT(3.3,9.15,3)
                                                                              82
      CALL PLOT(3.4,9.15,2)
                                                                              29
      CALL SYMBOL(3.5.9.15,0.07,26HTHRUST MISALIGNMENT MOMENT .0..26)
                                                                              30
      CALL PLOT(2.4,9.0,3)
                                                                              31
      CALL PLOT(2.8,9.0,2)
                                                                              32
                                                                              33
      CALL PLOT(2.90,9.0,3)
      CALL PLOT(2.95.9.0.2)
                                                                              34
      CALL PLOT(3.05,9.0,3)
                                                                              35
      CALL PLOT(3.4,9.0,2)
                                                                              36
      CALL SYMBOL(3.5.9.0.0.07.18HAERODYNAMIC MOMENT .0..18)
                                                                              37
      NTI=X(1)/DX
                                                                              38
      XF=NTI*NDX
                                                                              39
      CALL PLOT (1..7..-3)
                                                                              40
      CALL AXIS (0.,-2.,20HFLIGHT TIME SECONDS ,-20,6.,0.,XF,DX)
                                                                              41
      DO 20 J=1.NP
                                                                              42
      X(J) = (X(J) - XF)/DX
                                                                              43
   20 Y(J) = PUAR(J, 7)
                                                                              44
      CALL AXIS (0.,-2.,19HPITCH MOMENT FT-LBS,19,4.,90.,YF,DY)
                                                                              45
      CALL DASH (X.Y.NP.Z1.Z1.0..1..DY.0.7..3.)
                                                                              46
      IF (NQ.EQ.0) GO TO 50
                                                                              47
      DO 30 J=1.NP
                                                                              48
   30 Y(J)=PVAR(J.6)
                                                                              49
      CALL DASH (X,Y,NP,Z3,Z3,Z2,1.,DY,0,7.,3.)
                                                                              50
      DO 40 J-1,NP
                                                                              51
   40 Y(J)=PUAR(J.5)
                                                                              52
      CALL DASH (X,Y,NP,Z1,Z2,Z3,1.,DY,0,7..3.)
                                                                              53
C PLOT YAW MOMENTS
                                                                              54
   50 CALL PLOT (0.,-5.,-3)
                                                                              55
      CALL AXIS (0.,-2.,20HFLIGHT TIME SECONDS ,-20,6.,0.,XF,DX)
                                                                              56
      CALL AXIS (0.,-2.,17HYAW MOMENT FT-LBS,17,4.,90.,YF,DY)
                                                                              57
      DO 60 J-1.NP
                                                                              58
   60 \text{ Y(J)=YVAR(J.7)}
                                                                              59
      CALL DASH (X,Y,NP,Z1,Z1,0.,1.,DY,0,7.,3.)
                                                                              60
```

```
- 4-13 -
```

```
61
      IF (NQ.EQ.0) GO TO 90
                                                                              62
      DO 70 J-1,NP
                                                                              63
  70 Y(J)=YVAR(J,6)
     CALL DASH (X,Y,NP,Z3,Z3,Z2,1.,DY,0,7.,3.)
                                                                              64
                                                                              65
      DO 80 J=1.NP
                                                                              66
  80 Y(J)=YVAR(J.5)
                                                                              67
      CALL DASH (X,Y,NP,Z1,Z2,Z3,1.,DY,0,7.,3.)
                                                                              68
  90 CALL PLOT (-1.,-2.,-3)
                                                                              69
      CALL PLOT (12.,0.,-3)
                                                                              70
      CALL PLOT (0.,0.,999)
                                                                              71
C CHECK AND PLOT ROLL MOMENTS
                                                                              72
      IF (IROLL.EQ.0) GO TO 110
                                                                              73
      YFR=-4.*DYR
                                                                              74
      CALL PLOTS (5HCAL19,0,4HPLOT)
                                                                              75
      CALL SYMBOL (1..9.8, 0.10, NTITLE, 0., 80)
                                                ROLL DISTURBING MOMENT, 0.
                                                                              76
      CALL SYMBOL (1.,9.5,0.10,35H
                                                                              77
     1,35)
                                                                              78
      CALL PLOT (1.,5.,-3)
                                                                              79
      CALL AXIS (0.,-4.,20HFLIGHT TIME SECONDS ,-20,6.,0.,XF,DX)
      CALL AXIS (0.,-4.,29HROLL DISTURBING MOMENT FT-LBS,29,8.,90.,YFR,D
                                                                              80
                                                                              81
     1YR)
                                                                              82
      DO 100 J=1,NP
                                                                              83
  100 Y(J)=RUAR(J,5)
      CALL DASH (X,Y,NP,Z1,Z1,0.,1.,DYR,0,7.,5.)
                                                                              84
      CALL PLOT (11.,-5.,-3)
                                                                              85
                                                                              86
      CALL PLOT (0..0.,999)
                                                                              87
C PLOT THRUST MISALIGNMENTS
                                                                              88
  110 CALL PLOTS (5HCAL19.0.4HPLOT)
                                                                              89
      YFET=-DYET
                                                                              90
      CALL SYMBOL (1.,9.8,0.10,NTITLE,0.,80)
      CALL SYMBOL (1.,9.5,0.10,32H
                                                 THRUST MISALIGNMENT, 0., 32
                                                                              91
                                                                              95
     1)
                                                                              93
      CALL PLOT (1.,7.,-3)
      CALL AXIS (0.,-1.,20HFLIGHT TIME SECONDS ,-20.6.,0.,XF,DX)
                                                                              94
      CALL AXIS (0.,-1.,19HPITCH COMPONENT DEG,19,3.,90.,YFET,DYET)
                                                                              95
```

	DO 120 J=1,NP	96
120	Y(J)=PUAR(J,8)	97
	CALL DASH (X,Y,NP,Z1,Z1,0.,1.,DYET,0,7.,3.)	98
	CALL PLOT (0.,-3.,-3)	99
	CALL AXIS (0.,-1.,20HFLIGHT TIME SECONDS ,-20,6.,0.,XF,DX)	100
	CALL AXIS (0.,-1.,17HYAW COMPONENT DEG,17,2.,90.,YFET,DYET)	101
	DO 130 J=1,NP	102
130	Y(J)=YVAR(J,8)	103
	CALL DASH (X,Y,NP,Z1,Z1,0.,1.,DYET,0,7.,3.)	104
	CALL PLOT (0.,-4.,-3)	105
	CALL AXIS (0.,0.,20HFLIGHT TIME SECONDS ,-20,6.,0.,XF,DX)	106
	CALL AXIS (0.,0.,9HTOTAL DEG,9,2.,90.,0.,DYET)	107
	DO 140 J=1,NP	108
140	Y(J)=TVAR(J,4)	109
	CALL DASH (X,Y,NP,Z1,Z1,0.,1.,DYET,0,7.,3.)	110
	CALL PLOT (11.,0.,-3)	111
	CALL PLOT (0.,0.,999)	112
	RETURN	113
	END	114

```
*DECK DASH
      SUBROUTINE DASH (X,Y,NP,Z1,Z2,SPACE,XSCALE,YSCALE,LSYMB,XLIM,YLIM)
      SYMBOLS, DASHED, DASHED-DOT LINES OR SOLID LINES WITH OR WITHOUT
      SYMBOLS BASED ON A SET OF SEQUENTIAL POINTS GIVEN IN
      THE INPUT 'X' ABSCISSA ARRAY AND THE 'Y' ORDINATE ARRAY
      DIMENSION X(1),Y(1)
      DO 10 I=1.NP
      XA=X(I)/XSCALE
      YA=Y(I)/YSCALE
      IF (ABS(XA).GT.XLIM) GO TO 10
      IF (ABS(YA).GT.YLIM) GO TO 10
                                                                                  11
                                                                                  12
      CALL PLOT (XA, YA, 3)
                                                                                  13
      GO TO 20
   10 CONTINUE
                                                                                  14
                                                                                  15
   20 IF (SPACE) 330,310,30
      THIS SUBROUTINE PLOTS A CALCOMP PLOT WITH A WIDE VARIETY OF
                                                                                  16
                                                                                  17
   30 K=0
      PI2=1.5708
                                                                                  18
                                                                                  19
      Z = Z1
                                                                                  20
      ZB = ZS
                                                                                  21
      IF (22 .GT. 0.) GO TO 40
      ZB = Z1
   40 \text{ ZD} = \text{Z}
      LZ=0
      SL = 0.
                                                                                  95
      NF = NP-1
                                                                                  27
      DO 300 J=1,NF
                                                                                  S8
      XA=X(J)/XSCALE
                                                                                  29
      IF (ABS(XA)-XLIM .GT. 0.) GO TO 300
                                                                                  30
      XB = X(J+1)/XSCALE
                                                                                  31
      IF (ABS(XB)-XLIM .GT. 0.) GO TO 300
                                                                                  35
      YA=Y(J)/YSCALE
      IF (ABS(YA)-YLIM .GT. 0.) GO TO 300
                                                                                  33
      YB * Y(J+1)/YSCALE
                                                                                  34
      IF (ABS(YB)-YLIM .GT. 0.) GO TO 300
                                                                                  35
```

```
36
      DY=YB-YA
                                                                                 37
      DX=XB-XA
      IF (DX .NE. 0.) GO TO 80
                                                                                 38
                                                                                 39
      IF (DY) 50.60,70
                                                                                 40
   50 TH -- PI2
                                                                                 41
      GO TO 90
                                                                                 42
   60 TH=0.
      GO TO 90
                                                                                 43
                                                                                 44
   70 TH-PI2
                                                                                 45
      GO TO 90
   80 TH=ATAN(DY/DX)
                                                                                 46
                                                                                 47
   90 DX=XB-XA
                                                                                 48
      DY=YB-YA
      DZ=SQRT(DX*DX+DY*DY)
                                                                                 49
    TEST TO SEE WHAT IS GOING ON
                                                                                 50
      IF (K) 100,180,220
                                                                                 51
                                                                                 52
  100 K=1
      SL=SPACE
                                                                                 53
      IF (DZ-SPACE) 110,120,150
                                                                                 54
    SPACE IS LARGER THAN DZ
                                                                                 55
  110 SL=SL-DZ
                                                                                 56
      CALL PLOT (XB, YB, 3)
                                                                                 57
      GO TO 300
                                                                                 58
   NEXT POINT IS EXACTLY ONE SPACE
                                                                                 59
  120 K=0
                                                                                 60
      IF (LZ .NE. 0 ) GO TO 130
                                                                                 61
      2D = 2B
                                                                                 62
      L2 = 1
                                                                                 63
      GO TO 140
                                                                                 64
  130 ZD=Z
                                                                                 65
      LZ = 0
                                                                                 66
  140 SL=0.
                                                                                 67
      CALL PLOT (XB, YB, 3)
                                                                                 68
      GO TO 300
                                                                                 69
C
   NEXT POINT MORE THAN ONE SPACE AWAY
                                                                                 70
```

1

```
150 XA=XA+SPACE*COS(TH)
                                                                                  71
                                                                                  72
      YA=YA+SPACE*SIN(TH)
      IF (ABS(XA)-XLIM .GE. 0.) GO TO 300
                                                                                  73
      IF (ABS(YA)-YLIM .GE. 0.) GO TO 300
                                                                                  74
                                                                                  75
      K = 0
      IF (LZ .NE. 0 ) GO TO 160
                                                                                  76
                                                                                  77
      2D = 2B
      L.Z = 1
                                                                                  78
                                                                                  79
      GO TO 170
  160 ZD=Z
                                                                                  80
      LZ = 0
                                                                                  81
  170 SL=0.
                                                                                  85
      CALL PLOT (XA, YA, 3)
                                                                                  83
      GO TO 90
C K=0 LINE BEING DRAWN ZD LENGTH NOT DRAWN RESUME AS IS LINE STARTING
  180 IF (DZ-ZD) 190,200,210
C LINE GOES AT LEAST TO NEXT POINT
                                                                                  87
  190 K=0
                                                                                  88
      ZD = ZD - DZ
                                                                                  89
      CALL PLOT (XB, YB, 2)
                                                                                  90
      GO TO 300
                                                                                  91
    LINE ENDS AT NEXT POINT
                                                                                  92
  200 K=-1
                                                                                  93
      SL=SPACE
                                                                                  94
      ZD=0.
                                                                                  95
      CALL PLOT (XB, YB, 2)
                                                                                  96
      GO TO 300
                                                                                  97
    LINE ENDS BEFORE NEXT POINT
                                                                                  98
  210 K=1
                                                                                  99
      SL = SPACE
                                                                                 100
      XA * XA + ZD * COS (TH)
                                                                                 101
      YA=YA+ZD*SIN(TH)
                                                                                 102
      IF (ABS(XA)-XLIM .GE. 0.) GO TO 300
                                                                                 103
      IF (ABS(YA)-YLIM .GE. 0.) GO TO 300
                                                                                 104
      CALL PLOT (XA.YA.2)
                                                                                 105
```

		2D=0.	106
		GO TO 90	107
C	K۱	=1 IS IN SPACE	108
_		2D=0.	109
		IF (DZ-SL) 230,240,270	116
	230		111
		SL=SL-DZ	112
		CALL PLOT (XB, YB, 3)	113
		GO TO 300	114
C	SL	* D Z	115
•		K = 0	116
		IF (LZ .NE. 0) GO TO 250	116
		ZD = ZB	118
		L2 = 1	119
		GO TO 260	126
	250	2D = 2	121
		LZ = 0	123
	260	CALL PLOT (XB, YB, 3)	123
		GO TO 300	124
C	SI	L IS LESS THAN DZ	125
•		K=0	126
	2.0	ÎF (LZ .NE. 0) GO TO 280	127
		2D=2B	128
		L2=1	128 129 130
		GO TO 290	130
	280		131
		12=0	132
	290	XA=XA+SL*COS(TH)	133
		YA=YA+SL*SIN(TH)	133
		IF (ABS(XA)-XLIM .GE. 0.) GO TO 300	135
		IF (ABS(YA)-YLIM .GE. 0.) GO TO 300	136
		SL=0.	137
		CALL PLOT (XA, YA, 3)	139
		GO TO 90	138
	300	CONTINUE	146
		· · · · · · · · · · · · · · · · · · ·	

	GO TO 370	141
C	STRAIGHT LINE PLOT OPTION	142
•	310 DO 320 J=I,NP	143
	XA=X(J)/XSCALE	144
	YA=Y(J)/YSCALE	145
	IF (ABS(XA)-XLIM .GT. 0.) GO TO 320	146
	IF (ABS(YA)-YLIM .GT. 0.) GO TO 320	147
	CALL PLOT (XA, YA, 2)	148
	320 CONTINUE	149
	GO TO 370	150
C		151
U	330 NSM=IABS(LSYMB)	158
		153
	IF (LSYMB .LT. 0) GO TO 340	154
	K = -2	
	GO TO 350	155
	340 K=-1	156
	350 DO 360 J=1,NP	157
	XA=X(J)/XSCALE	158
	YA=Y(J)/YSCALE	159
	IF (ABS(XA)-XLIM .GT. 0.) GO TO 360	160
	IF (ABS(YA)-YLIM .GT. 0.) GO TO 360	161
	CALL SYMBOL (XA,YA,0.07,NSM,0.0,K)	168
	360 CONTINUE	163
	370 CALL PLOT (0.,0.,3)	164
	RETURN	165
	END	166
	CIID	100

```
*DECK TBLU
       SUBROUTINE TBLU (NT,Y,X,T,M)
       SINGLE TABLE LOOKUP SUBROUTINE
           NT - NUMBER OF VALUES IN ARRAY
           Y - RETURNED ORDINATE
          X - ABSCISSA VALUE CALLED
         T - INPUT TABLE OF ALTERNATING ABSCISSAS AND ORDINATES
ORDINATES MUST BE MONOTONICALLY INCREASING
M - PREVIOUS INDEX USED IN THIS TARLE LOOKUP
          M = PREVIOUS INDEX USED IN THIS TABLE LOOKUP
THIS INDEX GETS CHANGED TO CURRENT VALUE
MENSION T(1)
                                                                                             10
       DIMENSION T(1)
                                                                                             11
   10 IF (T(M)-X) 50,20,30
                                                                                             12
                                                                                             13
   20 Y=T(M+1)
                                                                                             14
       RETURN
   30 IF (T(1)-X.LT.0.) GO TO 40
                                                                                             15
       M = 1
                                                                                             16
       GO TO 20
                                                                                             17
   40 M=M-2
                                                                                             18
       GO TO 10
                                                                                             19
   50 MM=M+2
                                                                                             98
       IF (MM-NT-1.LE.0) GO TO 60
                                                                                              21
                                                                                             22
       M = NT-1
       GO TO 20
                                                                                             23
   60 IF (T(MM)-X.GT.0.) GO TO 70
                                                                                              25
       M = M M
       GO TO 50
                                                                                              56
   70 M=MM-2
                                                                                              27
       DT = T(MM) - T(M)
                                                                                              85
       IF (DT.NE.0.) GO TO 80
                                                                                              59
       Y=T(M+1)
                                                                                              30
       RETURN
                                                                                              31
   80 DY=T(MM+1)-T(M+1)
                                                                                              35
       DDT=X-T(M)
                                                                                              33
       Y = T(M+1) + DY * DDT / DT
                                                                                              34
       RETURN
                                                                                              35
       END
                                                                                              36
```

1 Report No	2 Government Accession No	3 Recipient's Catalog No		
NASA CR-166029		<u> </u>		
4 Title and Subtitle	ST-FLIGHT EVALUATION OF A LAUNCH	5 Report Date November 1982		
	OFF REACTION CONTROL SYSTEM	6 Performing Organization Code		
7 Author(s)	8 Performing Organization Report No			
R. N. KNAUBER	R. N. KNAUBER			
9 Performing Organization Name and Ad	dress	10 Work Unit No		
VOUGHT CORPORATION P.O. Box 225907		11 Contract or Grant No		
DALLAS, TX 75265		NAS1-15000		
,		13 Type of Report and Period Covered		
12 Sponsoring Agency Name and Address		Contractor Report		
	National Aeronautics and Space Administration			
Washington, DC 20546	=======================================	490-02-02-77-00		
15 Supplementary Notes				

Langley Technical Monitor: Robert J. Keynton

16 Abstract

This report describes a FORTRAN IV coded computer program for post-flight evaluation of a launch vehicle upper stage ON-OFF reaction control system. Aerodynamic and thrust misalignment disturbances are computed as well as the total disturbing moments in pitch, yaw, and roll. Effective thrust misalignment angle time histories of the rocket booster motor are calculated. Disturbing moments are integrated and used to estimate the required control system total inpulse. Effective control system specific inpulse is computed for the boost and coast phases using measured control fuel useage. This method has been used for more than fifteen years for analyzing the NASA Scout Launch Vehicle second and third-stage reaction control system performance.

The computer program is set up in FORTRAN IV for a CDC CYBER 175 system. With slight modification it can be used on other machines having a FORTRAN compiler. The program has optional CALCOMP plotting output. With this option the program requires 19K words of memory and has 786 cards. Running time on a CDC CYBER 175 system is less than three (3) seconds for a typical problem.

17	7 Key Words (Suggested by Author(s)) COMPUTER PROGRAM, POST-FLIGHT ANALYSIS, ON-OFF REACTION CONTROLS, RIGID BODY MOMENTS		18 Distribution Statement EEDD-Distribution Subject Category 61		
19	Security Classif (of this report)	20 Security Classif (of this page)		21 No of Pages	22 Price
	UNCLASSIFIED	UNCLASSIFIED		78	

