

# CSC380: Principles of Data Science

**Basic machine learning 2** 

Xinchen Yu

- Classification basics
- Nearest neighbor Classification
- Logistic regression
- Classification: other considerations
  - Binary classification beyond accuracy
  - Multiclass classification

# Classification recap

# Supervised learning setup in one figure



after training, its output predictor f has low test error

Test error: average of  $\ell(y, f(x))$  in test set

#### Classification

- The labels are categorical
- Loss function ℓ: measures the quality of prediction ŷ respect to true label y
  - $\ell(y, \hat{y}) = I(y \neq \hat{y})$
  - I: indicator of predicate; 1 if true; 0 if false
- A classifier f's error on a dataset S is the fraction of examples in S that it predicts incorrectly.
  - f's training / test error is its error on training / test set
  - Accuracy = 1 error



### In-class activity: finding test error

A company develops a simple **spam classifier** f that predicts whether an email is **spam (1)** or **not spam (0)** based on the number of capital letters in the subject line.

f outputs **Spam** if the number of capital letters ≥ 5, and **Not Spam** otherwise.

Suppose the test dataset is as follows. Find *f* 's test error.

| Subject                           | True label | Predicted label |
|-----------------------------------|------------|-----------------|
| "WIN A FREE VACATION NOW!!!"      | 1          | 1               |
| Meeting rescheduled to 3 PM       | 0          | 0               |
| "HUGE DISCOUNT ON ALL ITEMS!!!"   | 1          | 1               |
| URGENT: Please submit your report | 0          | 1               |
| Can you review this document?     | 0          | 0               |

$$f$$
's test error =  $1/5 = 20\%$ 

# **Nearest Neighbor Classification**

### Example: Course Recommendation



Suppose we'd like to build a recommendation system for classes

We've collected information about many past classes

We can frame this as a classification problem:

Predict like/dislike from class features

### **Example: Course Recommendation**





Each course's feature is Represented as points in 5-dimensional space

That's too many dimensions to plot...so we look at 2D projections...

Observation: examples with same labels tend to be closer!

## Nearest neighbor classification

- Given a new course, would like to predict its label (+/-)
- Idea: Find its most similar course in the training set, and use that course's label to predict



# Measuring nearest neighbors

- Oftentimes convenient to work with feature  $x \in \mathbb{R}^d$
- Distances in  $R^d$ :

notation 
$$x(f)$$
:  $x = (x(1), ..., x(d))$ 

- (popular) Euclidean distance  $d_2(x, x') = \sqrt{\sum_{f=1}^d (x(f) x'(f))^2}$
- Manhattan distance  $d_1(x, x') = \sum_{f=1}^{d} |x(f) x'(f)|$
- How to extract features as <u>real values</u>?
  - Boolean features: {Y, N} -> {0,1}
  - Categorical features: {Red, Blue, Green, Black}
    - Convert to {1, 2, 3, 4}?
    - Better one-hot encoding: (1,0,0,0), .., (0,0,0,1)
       (IsRed?/isGreen?/isBlue?/IsBlack?)



## Robustify Nearest Neighbor Classification



Q: Can we predict using 1 nearest neighbor's?

Query point ? Will be classified as + but should be -

**Problem:** predicting using 1 nearest neighbor's label can be sensitive to noisy data

How to mitigate this?

- Training set:  $S = \{ (x_1, y_1), ..., (x_m, y_m) \}$
- **Key insight**: given test example x, its label should resemble the labels of *nearby points*



- Function
  - input: *x*
  - find the k nearest points to x from S; call their indices N(x)
  - output:
    - (classification) the majority vote of  $\{y_i : i \in N(x)\}$
    - (regression) the average of  $\{y_i : i \in N(x)\}$

# k-NN classification example



# Issue 1: scaling

- Features having different scales can be problematic.
- Ex: ski vs. snowboard classification

$$d = \sqrt{(height_1 - height_2)^2 + (weight_1 - weight_2)^2}$$





One solution: feature standardization

## Make sure features are scaled fairly

- Features having different scale can be problematic
- [Definition] Standardization
  - For each feature f, compute  $\mu_f = \frac{1}{m} \sum_{i=1}^m x_f^{(i)}$ ,  $\sigma_f = \sqrt{\frac{1}{m} \sum_{i=1}^m \left( x_f^{(i)} \mu_f \right)^2}$
  - Then, transform the data by  $\forall f \in \{1, ..., d\}, \forall i \in \{1, ..., m\}, \ x_f^{(i)} \leftarrow \frac{x_f^{(i)} \mu_f}{\sigma_f}$

after transformation, each feature has mean 0 and variance 1

- Be sure to keep the "standardize" function and apply it to the test points.
  - Save  $\{(\mu_f, \sigma_f)\}_{f=1}^d$
  - For test point  $x^*$ , apply  $x_f^* \leftarrow \frac{x_f^* \mu_f}{\sigma_f}$ ,  $\forall f$

#### Issue 2: irrelevant features



Mitigation: feature selection

# Issue 3: choosing k

- Q: How would a k-NN classifier predict when k=training set size?
  - Predict majority label everywhere
  - Underfitting

- Q: What is the training error of a 1-NN classifier?
  - 0
  - Overfitting



## Issue 3: choosing k

k can be viewed as a model complexity measure

Smaller *k* results in a more complex model



### Issue 3: choosing k

We'd like to choose appropriate k to balance model bias and complexity

We can choose k in the same way we chose  $\lambda$  in ridge regression

Cross validation



### Scikit-learn nearest neighbors

```
class sklearn.neighbors.NearestNeighbors(*, n_neighbors=5, radius=1.0,
algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None,
n_jobs=None)
[source]
```

Unsupervised learner for implementing neighbor searches.

```
# 1. Load the Iris dataset
iris = load_iris()
X = iris.data  # Features
y = iris.target  # Target labels (species)

# 2. Split the dataset into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. Create the KNN classifier model
knn = KNeighborsClassifier(n_neighbors=3)  # Use 3 nearest neighbors
# 4. Train the model on the training data
knn.fit(X_train, y_train)
```

## Scikit-learn nearest neighbors

```
# 5. Make predictions on the test set
y_pred = knn.predict(X_test)

# 6. Evaluate the model using accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy of the KNN model: {accuracy * 100:.2f}%')

# Optionally, display the predictions vs. actual values
print(f'Predictions: {y_pred}')
print(f'Actual: {y_test}')
```