Adaptive Algebraic Multigrig Preconditionering with Graph Modularity Matching

Austen Nelson ¹ and Panayot S. Vassilevski¹

¹Portland State University, ajn6@pdx.edu, panayot@pdx.edu

MTH 510 — Multilevel Methods June 15, 2023

Overview

- $lue{1}$ Background
 - Problem Statement
 - Algebraic vs Geometric Multigrid
 - Anisotropy
 - Heterogeneous Coefficients
- 2 Algorithm
- Results

Problem Statement

Want to solve the linear matrix system:

$$Ax = b$$

Where *A* is symmetric positive definite.

A common source of problems like this is from numerical discretizations of elliptic partial differential equations:

$$\begin{cases} -\Delta u = f &, \text{ in } \Omega \\ u = 0 &, \text{ on } \partial \Omega \end{cases}$$

Algebraic vs Geometric Multigrid

Geometric Multigrid

- Requires a hierarchy of refinements (h or p)
- Interpolation and restriction operators come from this hierarchy

Algebraic Multigrid

- No knowledge of problem structure/nature required
- 'Black Box' for the end user
- Takes a matrix and algebraically finds the interpolation and restriction operators

Anisotropy

Let $\Omega \subset \mathbb{R}^3$.

We can modify our original PDE to be of the form:

$$\begin{cases} -\nabla \cdot (\beta \nabla u) = f &, \text{ on } \Omega \\ u = 0 &, \text{ on } \partial \Omega \end{cases}$$

Where

$$\beta = \varepsilon \mathbf{I} + \mathbf{b} \mathbf{b}^{\mathsf{T}}$$

for small $\varepsilon > 0$ and

$$\boldsymbol{b} = \begin{bmatrix} \cos \theta \cos \phi \\ \sin \theta \cos \phi \\ \sin \phi \end{bmatrix}$$

Heterogeneous Coefficients

Adaptivity Algorithm

Start with the 'identity' preconditioner, B = I.

- Finding 'Near Null' Vectors
 - Search for an 'algebraically smooth' error vector by iterating on the system $A\mathbf{x} = 0$ with a random starting guess with the preconditioner B.
 - When the convergence stalls, $Ax \approx 0$ and x is a linear combination of eigenvectors of A associated with small eigenvalues.
 - If the test converged, i.e

$$\frac{\|x\|_A}{\|x_{init}\|_A} < \varepsilon$$

then return the current preconditioner *B*.

• Normalize this iterate to create the weight vector:

$$\mathbf{w} = \frac{\mathbf{x}}{\|\mathbf{x}\|_A}$$

• Construct the weighted matrix $\overline{A} = (\overline{a}_{ij})_{i,j=1}^n$ where $\overline{a}_{ij} = -w_i a_{ij} w_j$. Note that if \boldsymbol{w} is 'good enough' then \overline{A} has positive row sums:

$$r_i \equiv \sum_i \overline{a}_{ij} \approx a_{ii} w_i^2 \ge 0$$
 since $a_{ii} > 0$

Adaptivity Algorithm

• With positive row sums we can perform clustering of A through pairwise aggregation iterations on the modularity matrix, $B = (b_{ij})_{i,j=1}^n$, associated with \overline{A} : Let $\mathbf{r} = (r_i)_{i=1}^n$ and $T = \sum_{i=1}^n r_i$.

$$B = \overline{A} - \frac{1}{T} r r^T$$

• Performing these actions recursively gives a hierarchy aggregations, $\{P_k\}_{k=1}^{\ell}$, which in turn define a hierarchy of matrices, $\{A_k\}_{k=1}^{\ell+1}$:

$$A_1 = A, \quad A_{k+1} = P_k^T A_k P_k$$

Adaptivity Algorithm

- Now we put w into the range of P_1 , specifically such that $w = P_1 \mathbf{1}_2$. We do this by scaling row i of P_1 by w_i .
- Using this modified hierarchy of aggregation operators and the resulting hierarchy of matrices we define an AMG V-cycle, denoted B_{new} .
- Create the composite preconditioner by composing B with B_{new} with the following algorithm: Initialize: $\mathbf{x} = 0$.
 - x = x + Br
 - r = r Ax
 - $\mathbf{x} = \mathbf{x} + B_{new}\mathbf{r}$
 - r = r Ax
 - $\mathbf{x} = \mathbf{x} + B\mathbf{r}$

Output x.

- Define the new preconditioner, B as the steps above.
- Return to the first step to search for new near null.

9/10

Results