Информация

Докладчик

```
:::::::::: {.columns align=center} ::: {.column width="70%"}
```

- Болотина Александра Сергеевна
- студент группы НПИбд-02-19
- Российский университет дружбы народов
- <u>1032192943@pfur.ru</u>
- https://github.com/AleksandraBolotina

```
::: ::: {.column width="30%"}
```

Вводная часть

Актуальность

• Необходим навык математического моделирования, которое является неизбежной составляющей научно-технического прогресса

Объект и предмет исследования

• Задача о конкуренции двух фирм

Цели и задачи

Ознакомление с моделью конкуренции двух фирм для двух случаев (без учета и с учетом социально-психологического фактора) и их построение с помощью языка программирования Modelica.

Выполнение работы

Изучение теории

для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. М – оборотные средства предприятия τ – длительность производственного цикла ρ – рыночная цена товара ρ – себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ – доля оборотных средств, идущая на покрытие переменных издержек. κ – постоянные издержки, которые не зависят от количества выпускаемой продукции. $Q(S/\rho)$ – функция спроса, зависящая от отношения дохода ρ к цене ρ . Она равна количеству продукта, потребляемого

одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме

```
Рис. 4. Уравнения{ #fig:004 width=70% }
```

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p) = 0 при $p \ge pcr$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде 🏬 Рис. 5. Уравнения{

#fig:005 width=70% } Уравнение для рыночной цены р представим в виде

№ Рис. 6. Уравнения{ #fig:006 width=70% } Первый член соответствует количеству

поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр у зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла т. При заданном М уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво. В этом случае уравнение (3) можно заменить алгебраическим соотношением

Рис. 7. Уравнения{ #fig:007 width=70% } Из этого следует, что равновесное значение

цены р равно рис. 8. Уравнения{ #fig:008 width=70% } Уравнение с учетом приобретает

вид 🍃 Рис. 9. Уравнения{ #fig:009 width=70% } Уравнение имеет два стационарных

решения, соответствующих условию dM/dt = 0: 🎤 Рис. 10. Уравнения{ #fig:0010 width=70%

} где ![Рис. 11. Уравнения]image/11.PNG){ #fig:0011 width=70% } Из (7) следует, что при больших постоянных издержках (в случае а 2 < 4b) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, b << a 2) и играют роль, только в случае, когда оборотные

средства малы. При b << a стационарные рис. 12. Уравнения{ #fig:0012 width=70% }

Первое состояние М $^{\circ}$ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние М $^{\circ}$ неустойчиво, так, что при М М $^{\circ}$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу М $^{\circ}$ соответствует начальному капиталу, необходимому для входа в рынок. В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: δ = 1, а параметр τ будем считать временем цикла, с учётом сказанного.

Написание кода

Написала программу на Modelica для случая 1:

```
model lab08.1
parameter Real p_cr = 35;
```

```
parameter Real taul = 18;
  parameter Real pl = 7.7;
  parameter Real tau2 = 13;
  parameter Real p2 = 0.9;
  parameter Real N = 30;
  parameter Real q = 1;
  parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
  parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
  parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
  parameter Real c1 = (p_cr-p1)/(tau1*p1);
  parameter Real c2 = (p_cr-p2)/(tau2*p2);
  parameter Real M0_1=5.4;
  parameter Real M0_2=4.1;
 Real M1 (start=M0_1);
  Real M2 (start=M0_2);
equation
  der (M1) = M1 - (b/c1)*M1*M2 - (a1/c1)*M1*M1;
  der (M2) = (c2/c1)*M2 - (b/c1+0.00053)*M1*M2 - (a2/c1)*M2*M2;
end lab8.1;
```

Написала программу на Modelica для случая 2:

```
model lab08.2
  parameter Real p_cr = 35;
  parameter Real taul = 18;
  parameter Real pl = 7.7;
  parameter Real tau2 = 13;
  parameter Real p2 = 0.9;
  parameter Real N = 30;
  parameter Real q = 1;
  parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
  parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
  parameter Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
  parameter Real c1 = (p_cr-p1)/(tau1*p1);
  parameter Real c2 = (p_cr-p2)/(tau2*p2);
  parameter Real M0_1=5.4;
  parameter Real M0_2=4.1;
  Real M1 (start=M0_1);
  Real M2 (start=M0_2);
equation
  der (M1) = M1 - (b/c1)*M1*M2 - (a1/c1)*M1*M1;
  der (M2) = (c2/c1)*M2 - (b/c1+0.00053)*M1*M2 - (a2/c1)*M2*M2;
end lab8.2;
```

Результаты

Результат

Получила следующий график для случая 1 (см. рис. -@fig:001).

Рис. 13. График для 1 слусая{ #fig:0013 width=70% }

Получила следующий график для случая 2 (см. рис. -@fig:002).

Puc. 14. График для 2 случая{ #fig:0014 width=70% }

Вывод

Вывод

Ознакомилась с моделью конкуренции двух фирм для двух случаев Построила график распространения рекламы.