Linear Regression

Krisztian Buza

Department of Artificial Intelligence Eötvös Loránd University Budapest, Hungary

Motivating Example

Which line fits the data best?

Basic Concepts and Notations

- Data table
- instance (observation, object, row)
- feature (attribute, column, variable)
- label (class label, target)

- labeled data
- unlabeled data

We may use RMSE to measure how well a model fits the data:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}$$

 \hat{y}_i = predicted label of the i-th instance

 y_i = true label of the i-th instance

n =number of instances

Models we consider:

$$\hat{y} = w_0 + w_1 x$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}$$

Once the data is given, the error (RMSE) is the function of w_0 and w_1 .

"hypothesis" (or hypothesis function)

Models we consider:

$$\hat{y} \neq w_0 + w_1 x$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}$$

Once the data is given, the error (RMSE) is the function of w_0 and w_1 .

price (€)

A y

Size (m²)

value of the hypothesis function for the *i*-th instance

Linear Regression with One Variable

Example: A Simple Linear Model

Models of the form price = w * size (with various values of w) Sum of squared error of the model as function of w

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- General procedure:
 - Step 1 Set w to some random value
 - **Step 2** Increase or decrease the value of w a bit so that the error decreases
 - Step 3 Repeat Step 2 as long as you can decrease the error

Observations about the Error

- Observation 1 positive slope $(a > 0) \rightarrow w$ should be decreased negative slope $(a < 0) \rightarrow w$ should be increased
- Observation 2
 close to the minimum, the slope is very low →
 if the absoulte value of the slope is high, you can
 decrease of increase the value of w a bit more

Observations about the Error

- **Observation 1** positive slope $(a > 0) \rightarrow w$ should be decreased negative slope $(a < 0) \rightarrow w$ should be increased
- Observation 2
 close to the minimum, the slope is very low →
 if the absoulte value of the slope is high, we can
 decrease or increase the value of w a bit more

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - Step 1 Set w to some random value
 - Step 2 $w \leftarrow w \varepsilon s$ where s is the slope and ε is a small number such as $0.00001 = 10^{-5}$
 - Step 3 Repeat Step 2 as long as you can decrease the error

Derivatives

• Mathematically, the slope of function f (or f(x)) corresponds to its derivative, denoted as f', $\frac{d}{dx} f(x)$ or $\frac{\partial f}{\partial x}$ (in case of multiple variables)

f	f'
c (constant)	0
cx (where c is a constant)	С
x^2	2x
x^c (where c is a constant)	cx^{c-l}
h(x) + g(x)	h'(x) + g'(x)
h(g(x))	h'(g(x)) g'(x)

Illustration: Some Functions and Their Derivatives

- We consider models of the form $\hat{y} = w x$
- Data
 x
 y
 33
 20
 45
 32
 61
 35
- Sum of squared errors (SSE) for this particular data:

$$(33w - 20)^2 + (45w - 32)^2 + (61w - 35)^2$$

- We consider models of the form $\hat{y} = w x$
- Data
 x
 y
 33
 20
 45
 32
 61
 35

Sum of squared errors (SSE) for this particular data:

$$z$$
 $z^2 + (45w - 32)^2 + (61w - 35)^2$

- We consider models of the form $\hat{y} = w x$
- Data
 x
 y
 33
 20
 45
 32
 61
 35

Sum of squared errors (SSE) for this particular data:

$$z$$
 $z^2 + (45w - 32)^2 + (61w - 35)^2$

The derivative of the SSE is:

2z

- We consider models of the form $\hat{y} = w x$
- Data
 x
 y
 33
 20
 45
 32
 61
 35

Sum of squared errors (SSE) for this particular data:

$$(33w-20)^2 + (45w-32)^2 + (61w-35)^2$$

$$2(33w-20)$$

- We consider models of the form $\hat{y} = w x$
- Data
 x
 y
 33
 20
 45
 32
 61
 35

Sum of squared errors (SSE) for this particular data:

$$(33w - 20)^2 + (45w - 32)^2 + (61w - 35)^2$$

$$2(33w-20)33$$

- We consider models of the form $\hat{y} = w x$
- Data
 x
 y
 33
 20
 45
 32
 61
 35

Sum of squared errors (SSE) for this particular data:

$$(33w - 20)^2 + (45w - 32)^2 + (61w - 35)^2$$

$$2(33w-20)33+2(45w-32)45+2(61w-35)61$$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - **Step 1** Set w to some random value, e.g. 0.3
 - **Step 2** The new value of w is $0.3 \varepsilon s$

$$\varepsilon = 0.00001$$

 $s = 2 (33*0.3 - 20) 33 + 2 (45*0.3 - 32) 45 + 2 (61*0.3 - 35) 61 = -4369$
that is: $w \leftarrow 0.34369$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - **Step 1** Set w to some random value, e.g. 0.3
 - **Step 2** The new value of w is $0.34369 \varepsilon s$

$$\varepsilon = 0.00001$$
 $s = 2 (33*0.34369 - 20) 33 + 2 (45*0.34369 - 32) 45 + 2 (61*0.34369 - 35) 61 = -3771.76$

that is: $w \leftarrow 0.3814$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - **Step 1** Set w to some random value, e.g. 0.3
 - **Step 2** The new value of w is $0.3814 \varepsilon s$

$$\varepsilon = 0.00001$$

 $s = 2 (33*0.3814 - 20) 33 + 2 (45*0.3814 - 32) 45 + 2 (61*0.3814 - 35) 61 = -3256.26$
that is: $w \leftarrow 0.4140$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - **Step 1** Set w to some random value, e.g. 0.3
 - **Step 2** The new value of w is $0.4140 \varepsilon s$

$$\varepsilon = 0.00001$$

 $s = 2 (33*0.4140 - 20) 33 + 2 (45*0.4140 - 32) 45 + 2 (61*0.4140 - 35) 61 = -2810.62$

that is: $w \leftarrow 0.4421$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - **Step 1** Set w to some random value, e.g. 0.3
 - **Step 2** The new value of w is $0.4421 \varepsilon s$

$$\varepsilon = 0.00001$$

 $s = 2 (33*0.4421 - 20) 33 + 2 (45*0.4421 - 32) 45 + 2 (61*0.4421 - 35) 61 = -2426.49$

that is: $w \leftarrow 0.4664$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = w x$
- Procedure:
 - **Step 1** Set w to some random value, e.g. 0.3
 - **Step 2** The new value of w is $0.4664 \varepsilon s$

$$\varepsilon = 0.00001$$

 $s = 2 (33*0.4664 - 20) 33 + 2 (45*0.4664 - 32) 45 + 2 (61*0.4664 - 35) 61 = -2094.31$
that is: $w \leftarrow 0.4873$

 Instead of RMSE, we can minimize the sum of squared errors.

```
We
Cor
Pro
_ 
_
```

$$s = 2 (33*0.4664 - 20) 33 + 2 (45*0.4664 - 32) 45 + 2 (61*0.4664 - 35) 61 = -2094.31$$

that is: $w \leftarrow 0.4873$

- We consider models of the form $\hat{y} = w x$
- Data

Sum of squared errors (SSE):

$$\sum_{i=1}^{n} \left(\hat{y}_i - y_i \right)^2$$

$$\sum_{i=1}^{n} 2x_i(\hat{y}_i - y_i)$$

- Instead of RMSE, we can minimize the sum of squared errors.
- We use gradient descent to minimize the error
- Consider models of the form $\hat{y} = wx$
- Procedure:
 - Step 1 Set w to some random value
 - Step 2 $w \leftarrow w \varepsilon \sum_{i=1}^{\infty} 2x_i(\hat{y}_i y_i)$
 - Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

Linear Regression with Two Variables

Linear Regression with Two Variables

- We consider models of the form $\hat{y} = w^{(1)}x^{(1)} + w^{(2)}x^{(2)}$
- Data

Sum of squared errors (SSE):

$$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$\hat{y}_i = w^{(1)} x_i^{(1)} + w^{(2)} x_i^{(2)}$$

• Given a dataset, SSE is a function of $w^{(1)}$ and $w^{(2)}$

Error as Function of $w^{(1)}$ and $w^{(2)}$

- The tangent is not a line, but a plane
- Two slopes: w.r.t. $w^{(1)}$ and $w^{(2)}$
- Two partial derivatives: w.r.t. $w^{(1)}$ and $w^{(2)}$

- Calculation of partial derivatives:
 - when calcuating the partial derivative w.r.t. $\boldsymbol{w}^{(1)}$, $\boldsymbol{w}^{(2)}$ should be treated as constant
 - when calcuating the partial derivative w.r.t. $\boldsymbol{w}^{(2)}$, $\boldsymbol{w}^{(1)}$ should be treated as constant

Partial Derivatives in Case of Two Variables

• Sum of Squared Errors (SSE):
$$\sum_{i=1}^n \left(\hat{y}_i - y_i\right)^2$$

$$\hat{y}_i = w^{(1)}x_i^{(1)} + w^{(2)}x_i^{(2)}$$

- Partial Derivative of SSE w.r.t. $w^{(1)}$: $\sum_{i=1}^n 2x_i^{(1)}(\hat{y}_i-y_i)$
- Partial Derivative of SSE w.r.t. $w^{(2)}$: $\sum_{i=1}^{n} 2x_i^{(2)}(\hat{y}_i y_i)$

Minimization of the Error (Two Variables)

- We consider models of the form $\hat{y} = w^{(1)}x^{(1)} + w^{(2)}x^{(2)}$
- Procedure:
 - Step 1 Set $w^{(1)}$ and $w^{(2)}$ to some random values

- Step 2
$$w^{(1)} \leftarrow w^{(1)} - \epsilon \sum_{i=1}^{n} 2x_i^{(1)} (\hat{y}_i - y_i)$$

$$w^{(2)} \leftarrow w^{(2)} - \epsilon \sum_{i=1}^{n} 2x_i^{(2)} (\hat{y}_i - y_i)$$

where
$$\hat{y}_i = w^{(1)}x_i^{(1)} + w^{(2)}x_i^{(2)}$$

 Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

Linear Regression with Multiple Variables

Linear Regression with m Variables

$$\hat{y} = w^{(1)}x^{(1)} + w^{(2)}x^{(2)} + \dots + w^{(m)}x^{(m)} = \sum_{j=1}^{m} w^{(j)}x^{(j)}$$

Dot Product a.k.a. Scalar Product

$$\vec{w} = \mathbf{w} = (w^{(1)}, w^{(2)}, \dots, w^{(m)})$$

 $\vec{x} = \mathbf{x} = (x^{(1)}, x^{(2)}, \dots, x^{(m)})$

$$\vec{w}\vec{x} = \mathbf{w}\mathbf{x} = \sum_{j=1}^{m} w^{(j)} x_i^{(j)}$$

Linear Regression with m Variables

Partial Derivatives in Case of *m* Variables

• Sum of Squared Errors: $E = \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$ $\hat{y}_i = w^{(1)} x_i^{(1)} + w^{(2)} x_i^{(2)} + \dots + w^{(m)} x_i^{(m)} = \sum_{i=1}^{m} w^{(j)} x_i^{(j)}$

• Partial Derivative w.r.t. $w^{(1)}$: $\frac{\partial E}{\partial w^{(1)}} = \sum_{i=1}^n 2x_i^{(1)}(\hat{y}_i - y_i)$

- - -

• Partial Derivative w.r.t. $w^{(j)}$: $\frac{\partial E}{\partial w^{(j)}} = \sum_{i=1}^n 2x_i^{(j)}(\hat{y}_i - y_i)$

Gradient

$$\nabla E = \left(\frac{\partial E}{\partial w^{(1)}}, ..., \frac{\partial E}{\partial w^{(m)}}\right)$$

Minimization of the Error (*m* Variables)

- We consider models of the form $\hat{y} = \sum_{i=1}^{m} w^{(j)} x^{(j)}$
- Procedure:
 - **Step 1** Set $w^{(1)}, w^{(2)}, ..., w^{(m)}$ to some random values
 - **Step 2** for *j* in 1...*m*

$$w^{(j)} \leftarrow w^{(j)} - \epsilon \sum_{i=1}^{n} 2x_i^{(j)} (\hat{y}_i - y_i)$$

where
$$\hat{y}_i = \sum_{j=1}^m w^{(j)} x_i^{(j)}$$

 Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

Models without Bias Term

$$\hat{y} = wx$$

$$\hat{y} = \sum_{j=1}^{m} w^{(j)} x^{(j)}$$

Models with a Bias Term

$$\hat{y} = b + wx$$

$$\hat{y} = b + \sum_{j=1}^{m} w^{(j)} x^{(j)}$$

$$\hat{y} = b + w^{(1)}x^{(1)} + w^{(2)}x^{(2)} + \dots + w^{(m)}x^{(m)} = b + \sum_{i=1}^{m} w^{(i)}x^{(i)}$$

$$\hat{y} = \underbrace{b} + \underbrace{w^{(1)}}_{(0)} x^{(1)} + \underbrace{w^{(2)}}_{(0)} x^{(2)} + \dots + \underbrace{w^{(m)}}_{(m)} x^{(m)} = \underbrace{b} + \sum_{j=1}^{m} \underbrace{w^{(j)}}_{(0)} x^{(j)}$$

Minimization of the Error (*m* Variables)

- We consdier models of the form $\hat{y} = \sum_{i=1}^{m} w^{(j)} x^{(j)}$
- Procedure:
 - **Step 1** Set $w^{(1)}, w^{(2)}, ..., w^{(m)}$ to some random values
 - **Step 2** for j in 1...m

$$w^{(j)} \leftarrow w^{(j)} - \epsilon \sum_{i=1}^{n} 2x_i^{(j)} (\hat{y}_i - y_i)$$

Learning rate

where
$$\hat{y}_i = \sum_{j=1}^m w^{(j)} x_i^{(j)}$$

 Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

"The model converges" (slang!)

too low

Convergence may be very slow

"The model converges" (slang!)

0.8

10

too low

Convergence may be very slow

Learning Rate and the Objective Function of the Optimization

- Your model converges with $\varepsilon = 10^{-5}$.
- What if you receive a new dataset containing 1000-times more instances?
- The **sum** of squared errors will be 1000-times larger.
- Optimize the <u>average</u> (mean) of squared errors instead of the sum of squared errors.
- This corresponds to a division by *n* in the partial derviatives and in the update formulas respectively.

Minimization of the Error (*m* Variables)

- We consider models of the form $\hat{y} = \sum_{i=1}^{m} w^{(j)} x^{(j)}$
- Procedure:
 - **Step 1** Set $w^{(1)}, w^{(2)}, ..., w^{(m)}$ to some random values
 - Step 2 for j in 1...m

$$w^{(j)} \leftarrow w^{(j)} - \epsilon \frac{1}{n} \sum_{i=1}^{n} 2x_i^{(j)} (\hat{y}_i - y_i)$$

where
$$\hat{y}_i = \sum_{j=1}^m w^{(j)} x_i^{(j)}$$

 Step 3 Repeat Step 2 as long as you can non-negligibly decrease the error

Summary

Summary

- Revision of mathematical concepts
 - vector, dot product
 - (partial) derivatives, gradient
 - convergence and divergence
- Linear regression: $\hat{y} = \vec{w}\vec{x}$
- Learning as an optimisation task
 - Optimisation technique we considered: gradient descent
 - Further optimisation techniques: stochastic gradient descent, batch gradient descent, ADAM
- Learning rate should be set carefully

Essential Concepts

- Vector
- Dot product or Scalar Product
- (Partial) Derivative of a function
- Gradient
- Gradient Descent
- Learning Rate
- Model Equation
- Parameters of a Model

- Parameters of a Model
- Objective Function
- Convergence
- Divergence
- Instance or Observation or Object
- Attribute or Feature
- Target or Label
- RMSE (root mean squared error)