2006年度日本政府(文部科学省) 奨学金留学生選考試験

QUALIFYING EXAMINATION FOR APPLICANTS FOR JAPANESE GOVERNMENT (MONBUKAGAKUSHO) SCHOLARSHIPS **2006**

学科試験 問題

EXAMINATION QUESTIONS

(学部留学生)

UNDERGRADUATE STUDENTS

生 物

BIOLOGY

注意 試験時間は60分。

PLEASE NOTE: THE TEST PERIOD IS 60 MINUTES.

生 物

Nationality		No.	
Name	(Please print full name, family name)	underl	ining

	(2006)
Marks	

Ⅰ 以下の問1~4に答えなさい。

1 次の文は生物の遺伝情報の伝達について記述したものである。下線部(1)と(2)の 過程の名称を下記の選択肢①の中から選び、また空白(1)~(5)に当てはまる語句 を、下記の選択肢②から選んで、その記号を解答用紙の所定欄(1 1 ①(1)~ (2)、②(1)~(5)) にそれぞれ記入せよ。

遺伝情報の伝達経路の中で、始めにDNAの塩基配列に組み込まれた生物の遺伝情(1) 報が維持されるための過程が必要で、それによってDNAから同じ塩基配列をもつ DNAがつくられる。次に、DNAの遺伝情報をもとに、多種多様な形質を発現するた <u>めに、[(1)]とよばれるRNAがつくられる</u>。さらにその暗号が、[(2)]されて、 [(3)]がつくられる。このとき[(1)]のコドンを認識して、対応する[(4)] を運ぶRNAを特に (5)]と呼ぶ。

選択肢①:

Δ	置換	R	結合	\mathcal{C}	転写	D	自己複製
$\overline{}$	且揆	D	和口	C	料 与	U	日し夜袋

選択肢②:

C アミノ酸 A 翻訳 B mRNA D tRNA E タンパク質 F rRNA G 炭水化物

2 次のようなDNAの鋳型鎖があった場合、どのようなRNA鎖がつくられるか。ただし、遺伝情報は左から右に読まれるものとする。RNA鎖を解答用紙の所定欄(I2)に記入せよ。

TACCGGGCTTCG

3 2の遺伝暗号によりつくられるタンパク質のアミノ酸配列を、下の遺伝暗号表を参考にしてつくり、解答用紙の所定欄(I 3)に記入せよ。ただし、この遺伝暗号は4個のアミノ酸配列に対応する。

コドン	アミノ酸	コドン	アミノ酸	コドン	アミノ酸	コドン	アミノ酸
UUU	フェニルアラニン	UCU	セリン	UAU	チロシン	UGU	システイン
UUC	フェニルアラニン	UCC	セリン	UAC	チロシン	UGC	システイン
UUA	ロイシン	UCA	セリン	UAA	終止コドン	UGA	終止コドン
UUG	ロイシン	UCG	セリン	UAG	終止コドン	UGG	トリプトファン
CUU	ロイシン	CCU	プロリン	CAU	ヒスチジン	CGU	アルギニン
CUC	ロイシン	CCC	プロリン	CAC	ヒスチジン	CGC	アルギニン
CUA	ロイシン	CCA	プロリン	CAA	グルタミン	CGA	アルギニン
CUG	ロイシン	CCG	プロリン	CAG	グルタミン	CGG	アルギニン
AUU AUC AUA AUG	イソロイシン イソロイシン イソロイシン メチオニン、 開始コドン	ACU ACC ACA ACG	トレオニン トレオニン トレオニン トレオニン	AAU AAC AAA AAG	アスパラギン アスパラギン リジン リジン	AGU AGC AGA AGG	セリン セリン アルギニン アルギニン
GUU	バリン	GCU	アラニン	GAU	アスパラギン酸	GGU	グリシン
GUC	バリン	GCC	アラニン	GAC	アスパラギン酸	GGC	グリシン
GUA	バリン	GCA	アラニン	GAA	グルタミン酸	GGA	グリシン
GUG	バリン	GCG	アラニン	GAG	グルタミン酸	GGG	グリシン

4 メチオニン アスパラギン酸 トレオニン セリンと続くタンパク質のアミノ酸 配列があるとすると、これに対応するDNAの塩基配列は最大何通りあるか、その数値を解答用紙の所定欄(I 4)に記入せよ。

Ⅲ 細胞呼吸に関する以下の文を読んで、下の問1~3に答えなさい。

好気呼吸の過程は、大きく(1)(2)(3)の3つの段階に分け られる。第1段階(1)では、ブドウ糖が2分子の(4)まで分解される。 第2段階(2)では、(4)はまずacetyl CoAに転化され、これがオキサロ酢 酸に炭素 2 個を与えて(5)を作る。(2)の引き続く過程では、(5)が二 酸化炭素を「老廃物」として放出してオキサロ酢酸に戻る。最後の(3)の段階 では、先立つ2段階の過程に由来する水素原子が最終的に(6)と結びついて水 を作り、この段階で<u>多量のエネルギーが遊離される</u>。

1 上の文の空白に当てはまる語を次から選んで、その記号を解答用紙の所定欄 Ⅱ 1 (1)~(6)) に記入しなさい。

A カルビン回路 B 炭素

C 二酸化炭素

D クエン酸

E シトルリン

F 電子伝達系

G 解糖系

H 水素

I クレブス回路

J 乳酸

K 乳酸発酵 L 窒素

M オルニチン回路 N 酸素

0 ピルビン酸

2 下線回において遊離されたエネルギーはどのような分子に蓄えられるか。答え を解答用紙の所定欄(Ⅱ 2)に、3文字で記入しなさい。

3 (1)(2)(3)の過程はそれぞれ細胞のどこで起るか。下記の中 から選び、その記号を解答用紙の所定欄(Ⅱ 3 (1)~(3)) に記入しなさい。

A 細胞質ゾル

B ゴルジ体

C ミトコンドリアの内膜

D リソソーム

E ミトコンドリアのマトリックス F 核

G 原形質膜

H 色素体

Ⅲ 以下の問1と2に答えなさい。

1 次の文は動物の神経系について記述したものである。空白(1)~(10)に当てはまる語句を、下記の選択肢から選んで、その記号を解答用紙の所定欄(Ⅲ 1 (1)~(10))に記入せよ。

脊椎動物の神経系は (1) 神経系と末梢神経系からなる。脳と (2) は前者に属する。ヒトの脳は大脳、中脳、間脳、小脳、延髄に区分される。大脳は形態的に2つの領域、外側の (3) と内側の (4) に分けられる。 (3) はニューロンの (5) の集まった領域で、 (4) はニューロンの (6) の集まった領域である。脳幹は中脳、間脳、延髄の3つの部分の総称で、生命維持に直接関与する機能中枢を含んでいる。間脳は (7) と (8) からなり、 (7) は、受容体からの信号を大脳に伝えるときの中継点になっている。 (8) は (9) 神経系の中枢となり、また (10) と連なっていて内分泌系にも重要な働きをしている。

選択肢:

A 白質or髄質 B 脳下垂体 C 細胞体 D 自律

E 視床下部 F 脊髄 G 視床 H 神経繊維or軸索

I 中枢 J 灰白質or皮質

2 ヒトの脳は5つの部分に区分される。次の(1)~(10)のような働きをする部分を、脳の区分を示す選択肢から選んで、その記号を解答用紙の所定欄(Ⅲ 2 (1)~(10))に記入せよ。

(1) 心臓の拍動の調節 (2) 体温や血圧の調節

(3) 瞳孔の拡大・縮小 (4) 唾液の分泌の調節

(5) 知的な精神作用を営む (6) からだの平衡を保つ

(7) 感覚情報を統合する (8) 呼吸運動の調節

(9) 随意運動の調節 (10) 眼球の運動の調節

選択肢:

A 大脳 B 中脳 C 間脳 D 小脳 E 延髄

ツチスガリというハチの雌は砂丘に穴を掘り、捕らえた獲物(ミツバチ)をそこに運んで、卵を産みつける。ハチが狩りに出かけるときには、雌は穴に砂をかけて隠す。にもかかわらず、帰って来たときには、雌は隠れた自分の巣穴に直行する。 雌はいかにして隠れた自分の巣穴を見つけるのだろう。動物行動学者のニコ・ティンバーゲンは、次のような実験をして、この問題を調べた。

[実験1]巣穴の周りに20個の乾燥した松ぼっくりをリング状に置いた(図1A)。何回か八チが狩りを行った後、八チの留守中に松ぼっくりの輪を30㎝離れたところに移した(図1B)。八チが帰って来たとき、その着地点を観察した。表1は本当の巣と偽の巣(移された松ぼっくりの輪)への着地数を示している。

図 1

表 1		
ハチの番号	本当の巣	偽の巣
1	0	9
2	0	6
3	0	7
4	0	5
5	0	5
計	0	32

[実験2]この実験では、松ぼっくりの輪と共に、松に特有の匂いをもつ松油を染み込ませたボール紙片を巣の入口の側に置いた(図2C)。ハチの留守中には、松ぼっくりの輪だけを移動させ、この偽の巣には松油を含まないボール紙片を置いた(図2D)。結果は表2の通りである。

本当の巣	偽の巣
0	5
0	5
0	6
0	8
0	5
0	29
	0 0 0 0

- 1 2つの実験で得られた結果からどのようなことが結論できるか。下の選択肢からもっとも適切な文を1つ選んで、その記号を解答用紙の所定欄(Ⅳ 1)に記入しなさい。
- 2 実験2の結果(表2)において、もし本当の巣と偽の巣が全く逆の結果であったら、その結果と実験1の結果から、どのように結論されるか。下の選択肢からもっとも適切な文を1つ選んで、その記号を解答用紙の所定欄(IV2)に記入しなさい。

選択肢:

- A ハチは視覚的手がかりによって自分の巣を見つけている。
- B ハチは嗅覚的手がかりによって自分の巣を見つけている。

	C	ハチは等しい初	見覚的	と嗅覚	覚的手がか	ן נויו	こよって自	分σ)巣を見	見つけてい	いる。
	D	ハチは視覚的と	:嗅覚	的手机	がかりにも	こつで	て自分の巣	を見	つけて	ているが、	前者
		の方が効果がえ	しきし	١.							
	Е	ハチは視覚的と	:嗅覚	的手机	がかりにも	こつで	て自分の巣	を見	しつけて	ているが、	後者
		の方が効果が力	けきい	١.							
3	こオ	1らの実験から、	ハチ	<u>-</u> のこの	D帰巣行重	カにに	はどのよう	な過	過程が関	割与する。	と思わ
	れる	るか。次のリスト	-から	適切な	よ語を 2 つ	選で	び、その記	号を	解答用	用紙の所え	定欄Ⅳ
		3)に記入しな	さい。)							
	Α	化学走性		В	色覚			C	学習		
	D	記憶		Е	光走性			F	太陽二	コンパス	
V X	欠の句	可にもっともよく	(当て	はまる	る語を引き	続	くリストか	ら逞	星んで、	その記号	号を解
á	答用約	低の所定欄(V	1 ~	6)に	記入しな	さい	0				
1	ある	る植物の赤色花と	と白色	花を多	を雑すると		F₁の花の色	は	すべて	桃色花に	:なる。
											-
	この	DF₁どうしを交換	維した	ことき	の F ₂の赤	色:	桃色:白色	色の	tt.		
		のF₁どうしを交続 1:1:0	,		のF₂の赤 9:3:			_	比。 1:1	1:1	
	Α	1:1:0		В		1		_		1:1	
2	A D	1:1:0		В	9:3:	1		_		1:1	
2	A D 精	1:1:0	勿	B E	9:3:	1		C	1 : 1		ť
2	A D 精	1:1:0 1:2:1 子で受精する植物 カシ	勿 B	B E コス ³	9:3: 3:2:	1 1		С	1 : ´		†°
_	A D 精子	1:1:0 1:2:1 子で受精する植物 カシ マツ	勿 B F	B E コス [*] ラン	9:3: 3:2: Eス	1 1	イチョウ	С	1 : ´		t °
2	A D 精 A E 重	1:1:0 1:2:1 子で受精する植物 カシ マツ 复受精をおこなる	勿 B F う植物	B E コス・ラン	9:3: 3:2: Eス	1 1 C G	イチョウ ハイビス	ナフ	1 : 1	タンポ	
_	A D 精 A E 重 A	1:1:0 1:2:1 子で受精する植物 カシ マツ 复受精をおこなる サクラ	勿 B F ら植物 B	B E コ ス ラ フ ゼニニ	9:3: 3:2: Eス ゴケ	1 1 C G	イチョウ ハイビス ソテツ	カ <i>ス</i>	1 : 1 D	タンポ	
_	A D 精 A E 重 A	1:1:0 1:2:1 子で受精する植物 カシ マツ 复受精をおこなる	勿 B F ら植物 B	B E コ ス ラ フ ゼニニ	9:3: 3:2: Eス ゴケ	1 1 C G	イチョウ ハイビス ソテツ	カ <i>ス</i>	1 : 1 D	タンポ	
_	A D 精 A E 重 A E	1:1:0 1:2:1 子で受精する植物 カシ マツ 复受精をおこなる サクラ	勿 B F 植 B F	B E コラン ゼマツ	9:3: 3:2: Eス	1 1 C G G	イチョウ ハイビス ソテツ ヒカゲ <i>ノ</i>	カフ	1:´ D く でラ	タンポ	
3	A D 精 A E 重 A E	1:1:0 1:2:1 子で受精する植物 フツ をおっ サクサ トクリストの中で	か B F 植 B F も	B E コラ ゼマ と B E B	9:3: 3:2: Eス	1 1 C G	イチョウ ハイビス ソ ナカゲ も 全性をもつ	C カカカケラ カケー カケー	1:´ D く でラ	タンポ	

5 人間の活動によって年間に排出される炭素の概量

A 5×10^{5} t B 5×10^{6} t C 5×10^{7} t

D 5×10^{8} t E 5×10^{9} t F 5×10^{10} t

6 二酸化炭素に起因する環境問題

A 酸性雨 B 温暖化 C 熱帯林の減少

D 砂漠化 E オゾン層の破壊 F 富栄養化