Automata

def: Deterministic Finite Automata

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q := finite set of states

 $\Sigma :=$ finite alphabet

 $\delta := Q \times \Sigma \to Q$, Transition Function

 $q_0 := \text{start state}$

 $F := \subseteq Q$, set of accepting states

def: NFA

Like DFA but
$$\delta:=Q\times(\Sigma\cup\{\varepsilon\})\to P(Q),$$
 where $P(Q)=\{s|s\subset Q\}$

def: Regular Expressions

RegEx of Σ is:

- 1. $e \in \Sigma$
- 2. ϕ , empty set
- 3. ε , empty string
- 4. $R = R_1 \vee R_2$
- 5. $R = R_1 || R_2$
- 6. $R = R_1^*$

def: Context Free Grammars

$$G = (V, \Sigma, R, s)$$

V := Variables

 $\Sigma := \text{Terminals}$

R := set of rules on the terminal

 $s \in V :=$ starting variable

def: Pushdown Automata

Alternative to CFL.

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

Q := finite set of states

 $\Sigma := \text{input alphabet}$

 $\Gamma := \text{ stack alphabet}$

 $\delta := Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to Q \times \Gamma_{\varepsilon}$, transition function

def: Turing Machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$$

Q :=set of states

 $\Gamma :=$ alphabet of tape

 $\Sigma := \subset \Gamma$ alphabet of input

$$\delta := Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

 $q_{acc} := M$ accepts if it visits

 q_{rej} M rejects if it visits

thm: CFL-PDA equivalence

A language is CFL iff \exists PDA s.t $\mathcal{L}(P) = L$

Automata Language

def: Language

$$\mathcal{L}(M) = \{ x \in \Sigma^* \mid M(x) \text{ accepts } \}$$

def: Regular

L regular iff $L = \mathcal{L}(M)$ for some DFA M.

def: Equivalent Relation

$$x \sim_L x' \to \forall z \in \Sigma^*, xz \in L \iff x'z \in L$$

def: Context Free Language

$$L$$
 is CFL if \exists CFG s.t $\mathcal{L}(G) = L$

def: Chomsky Normal Form

Every rule in the form:

 $A \to BC$

 $A \rightarrow a$

thm: Regular Closure

- 1. Closed under union
- 2. Closed under intersection
- 3. Closed under complement
- 4. Closed under concatenation
- 5. Closed under *
- 6. Closed under reverse

thm: Pumping Lemma

if L is regular, then $\exists p \in \mathbb{N} \text{ s.t }$, if $w \in L$ with length $\geq p$, then w = xyz s.t:

- 1. $|y| \ge 1$
- 2. $xy^kz \in L$
- $3. |xy| \leq p$

thm: Myhill-Nerode

L is regular iff the number of equivalency classes in \tilde{L} is finite.

Number of equivalency classes equals the minimum number of states a DFA of L must have.

thm: CFG

if CFG G in normal form and $w \in \mathcal{L}(G)$, then w's parsing tree is of length $\leq 2n-1$

thm: Pumping Lemma for CFL

if L is CFL, then $\exists p \in \mathbb{N} \text{ s.t}$ if $w \in L, |w| \ge p$, then w = uvxyz s.t:

- 1. |vy| > 0
- $2. |vxy| \leq p$
- 3. $uv^i xy^i z \in L, \forall i \in \mathbb{N}_0$

thm: CFL closure

- 1. if L_1 CFL and L_2 CFL, then $L_1 \vee L_2$ CFL
- 2. if L_1 CFL and L_2 regular, then $L_1 \wedge L_2$ CFL

Decidability

def: Recursively Enumerable

L is Recursively Enumerable if there exists a Turing Machine M such that $\mathcal{L}(M) = L$

def: **Decider**

M that halts at all inputs.

def: Decidable

L is decidable if there exists a decider M such that $L = \mathcal{L}(M)$.

def: Enumerator

TM has output tape and can only print.

M is enumerator for L if it only outputs all words in L.

def: $R\mathcal{E}$

Set of all Recursively Enumerable languages.

def: \mathbf{Co} - $R\mathcal{E}$

$$\text{Co-}R\mathcal{E} = \{ L \mid \overline{L} \in R\mathcal{E} \}$$

def: R

Set of all decidable languages.

def: **Encoding** $\langle \rangle$

Can encode anything into a string of 1s and 0s.

def: Computable Function

f is computable if there exists a TM M such that, for all inputs $w \in \Sigma^*, M(w)$ alts with only f(w) on tape.

def: Mapping Reduction

 $f: \Sigma^* \to \Sigma^*$ is a mapping reduction from languages A to B if:

- 1. f is computable
- 2. $x \in A \iff f(x) \in B$

If so, then $A \leq_m B$

thm: $R\mathcal{E}$ Enumerator

 $L \in R\mathcal{E} \iff L$ has an enumerator

thm: \mathbf{R}

$$R = R\mathcal{E} \wedge \text{Co-}R\mathcal{E}$$

thm: Rice's Theorem

Let $P \subset R\mathcal{E}$ be nontrivial, meaning that $P \neq \emptyset$ nor $R\mathcal{E}$.

$$L = \{ \langle M \rangle \mid \mathcal{L}(M) \in P \}$$

is not decidable

thm: Closure under reduction

Let
$$A \leq_m B$$

- 1. $A \notin R\mathcal{E} \to B \notin R\mathcal{E}$
- 2. $A \notin \text{Co-}R\mathcal{E} \to B \notin \text{Co-}R\mathcal{E}$
- 3. $A \notin R \rightarrow B \notin R$

Decidability Problems

def: Acceptance Problem

 $A_M = \{ (\langle M \rangle, x) \mid x \in \mathcal{L}(M) \}$

def: Halting Problem

 $\operatorname{Halt}_{TM} = H_{TM} = \{ (\langle M \rangle, x) \mid M(x) \text{ halts } \}$

def: $\mathbf{Empty}_{TM} = E_{TM}$

 $\{ \langle M \rangle \mid \mathcal{L}(M) = \phi \}$

def: $\mathbf{E}\mathbf{Q}_{TM}$

 $\{ (\langle M_1 \rangle, \langle M_2 \rangle) \mid \mathcal{L}(M_1) = \mathcal{L}(M_2) \}$

def: Busy Beaver Function

 a_n = number of TMs with at most n states. bb(n) = max number of steps in the computation of $M_i(\epsilon)$

thm: $A_{DFA} \in R$

thm: $A_{CFG \in R}$

thm: $A_{TM} \in R\mathcal{E}, \notin \text{Co-}R\mathcal{E}$

thm: $H_{TM} \in R\mathcal{E}, \notin \text{Co-}R\mathcal{E}$

thm: $\text{Empty}_{TM} \notin R$

thm: $EQ_{TM} \notin R$

thm: bb(n) is not computable

If it were, $Halt_{TM} \in R$ because it gives us the step in which we can halt.

Runtime

def: Big O notation

f(n) = O(g(n)) if $\exists c > 0, n > 0$ such that: $f(n) \le c \cdot g(n), \forall n \in \mathbb{N}$

def: TM Runtime

M runs in t(n) if $\forall x$ of length $\leq n$, M(x) halts after at most t(n) steps.

def: Verifier

TM V is verifier if $L = \{ x \in \Sigma^* \mid \exists w \in \Sigma^*, V(x, w) = 1 \}$ V is poly-time if it runs in poly with respect to |x|

def: **DTIME**(t(n))

 $\{L \mid \exists M \text{ such that } \mathcal{L}(M) = L \land M \text{ runs in } O(t(n)) \}$

def: Poly-Time Computable

f is poly-time computable if \exists TM M that runs in poly(|x|) and M(x) has f(x) on tape when it halts

def: Poly-time Reduction Map

f is a poly-time reduction map from A to B if:

- 1. f is poly-time computable
- 2. if $x \in A$, then $f(x) \in B$
- 3. if $x \notin A$, teh $f(x) \notin B$

If f exists, then $A \leq_p B$

$def: \mathbf{P}$

 $\bigcup_{c=1}^{\infty} \mathrm{DTIME}(n^c)$

$\mathrm{def}\colon\,\mathbf{NP}$

 $NP = \bigcup_{c=1}^{\infty} \text{NTIME}(n^c)$ $L \in NP \iff L$ has poly-time verifier

def: NP-Hard

 $A \in \text{NP-Hard if } \forall L \in NP, L \leq_p A$

def: NP-Complete

 $A \in \text{NP-Complete}$ if $A \in \text{NP-Hard}$ and $A \in \text{NP}$

thm: Multi-tape to single run-time

 \exists single-tape universal TM U that, given $(\langle M \rangle, x)$ where M is multi-tape and M(x) runs in t(n), U simulates M(x) in $O(|\langle M \rangle|^2 \cdot t(n)^2)$

thm: Time Hierarchy Theorem

Can solve more with more time $t_2(n) \ge n^2 t_1(n)^2 \to \text{DTIME}(t_1(n)) \nsubseteq \text{DTIME}(t_2(n))$

thm: **P** closed under \leq_p

 $A \leq_p B$ and $B \in P \to A \in P$

thm: NP-Hard closed under \leq_p

 $A \leq_p B$ and $A \in \text{NP-Hard} \rightarrow B \in \text{NP-Hard}$

NP Languages

def: 3-CNF

An logic expression consisting of AND of clauses. Clauses are 3 variables with the OR/negation operator.

def: 3-SAT

 $\{ \langle \phi \rangle \mid \phi \text{ is satisfiable } \}$

def: Vertex-Cover

 $C \subseteq V(G)$ is a vertex-cover if $\forall (u, v) \in E(G), u \in C$ or $v \in C$

def: Independent-Set

 $I \subseteq V(G)$ is independent-set if $\forall u, v \in I, (u, v) \notin E(G)$

def: Knapsack

$$\left\{ \begin{array}{l} \{ \ (\{a_1,...,a_k\},\{b_1,...,b_k\}),B,t \ \mid \ \exists I \subseteq [k] \ \text{s.t.} \\ \sum_{i \in I} a_i \geq t \land \sum_{i \in I} b_i \leq B \ \right\} \end{array}$$

def: Dominating Set

A set D is dominating in G if every vertex in V(G) is either in D or adjacent to some vertex in D.

def: Clique

A subset of vertices that create a complete graph.

NP-Complete

thm: 3-SAT in NP-Complete

 $\{ \langle \phi \rangle \mid \phi \text{ is 3-CNF and } \exists \text{ assignment } x \text{ s.t } \phi(x) = 1 \}$

thm: Subset-Sum in NP-Complete

$$\{ (A,T) \mid \exists S \subseteq A \text{ s.t. } \sum_{s \in S} s = t \}$$

thm: A_{NP} in NP-Complete

$$\{(\langle M \rangle, x, 1^k) \mid \exists w \text{ s.t } M(x, w) = 1 \text{ in } \leq k \text{ steps } \}$$

thm: Independent-Set in NP-Complete

$$\{ (\langle G \rangle, k) \mid G \text{ has IS of size } \geq k \}$$

thm: Partition in NP-Complete

$$\{ S \mid S \text{ is a set and } \exists T \subseteq S \text{ s.t } \sum_{x \in T} x = \sum_{y \in S \setminus T} \}$$

thm: Vertex-Cover in NP-Complete

 $\{ (\langle G \rangle, k) \mid G \text{ has a vertex-cover of size } \leq k \}$

thm: Dominating Set in NP-Complete

 $\{(\langle G \rangle, k) \mid G \text{ has a dominating set of size } \leq k \}$

thm: Clique in NP-Complete

 $\{ (\langle G \rangle, k) \mid G \text{ has a clique of size } \geq k \}$

NP

thm: Knapsack in NP