AM213A Homework 1

Owen Morehead

January 30, 2022

1. Let $A \in \mathbb{C}^{m \times m}$ be both upper-triangular and unitary. Show that A is a diagonal matrix. Does the same hold if $A \in \mathbb{C}^{m \times m}$ is both lower-triangular and unitary?

WLOG, suppose A is upper-triangular and unitary $(A^* = A^{-1})$. We know that since A is upper-triangular, so is its inverse, A^* (previously proved).

$$a_{ij} = 0$$
 for $i > j$, and $\bar{a}_{ji} = 0$ for $j > i$.

Therefore we have $a_{ij} \neq 0$ only if i = j, hence matrix A is a diagonal matrix.

The proof is analogous if A is lower-triangular and unitary. So yes, the same does hold if $A \in \mathbb{C}^{m \times m}$ is both lower-triangular and unitary.

$$a_{ij} = 0$$
 for $i < j$, and $\bar{a}_{ii} = 0$ for $j < i$.

Therefore we have $a_{ij} \neq 0$ only if i = j, hence matrix A is a diagonal matrix.

- 2. Prove the following in each problem.
 - (a) Let $A \in \mathbb{C}^{m \times m}$ be invertible (nonsingular) and $\lambda \neq 0$ is an eigenvalue of A. Show that $1/\lambda$ is an eigenvalue of A^{-1} .

We can prove this with the following:

$$Av = \lambda v \rightarrow v = \lambda A^{-1}v \rightarrow \frac{v}{\lambda} = A^{-1}v$$

Hence by definition, $1/\lambda$ is an eigenvalue of A^{-1} .

(b) Let $A, B \in \mathbb{C}^{m \times m}$. Show that AB and BA have the same eigenvalues.

For a scalar $\lambda \neq 0$, If λ is an eigenvalue of AB, then there is $v \neq 0$ such that $ABv = \lambda v$. Let y = Bv which is also a non-zero vector. So $y \neq 0$ (otherwise y = 0 would imply that $\lambda = 0$ or v = 0, and by definition both do not equal zero). Now we have:

$$Ay = \lambda v \rightarrow BAy = BABv = B(ABv) = B(\lambda v) = \lambda Bv = \lambda y.$$

And to finish the proof, consider the case that $\lambda = 0$ is an eigenvalue of AB. Then, utilizing the properties of determinant, 0 = det(AB) = det(A)det(B) = det(B)det(A) = det(BA). This implies that 0 is also an eigenvalue of BA iff it is an eigenvalue of AB. \square

Or we can prove with the following: If $det(A) \neq 0$, then:

$$det(AB - \lambda I) = det(A^{-1}A)det(AB - \lambda I) = det(A^{-1})det(AB - \lambda I)det(A)$$
$$= det(A^{-1}ABA - \lambda I) = det(BA - \lambda I).$$

(c) Let $A \in \mathbb{R}^{m \times m}$. Show that A and A^* have the same eigenvalues. Hint, Use $det(M) = det(M^T)$ for any square matrix $M \in \mathbb{R}^{m \times m}$ in connection to the definition of characteristic polynomials. Hint, when a real-valued matrix A has a complex eigenvalue λ , then $\bar{\lambda}$ is also an eigenvalue of A.

The characteristic polynomial of a matrix A is given by $p_A(\lambda) = \sum_i c_i \lambda^i$. Since A is a real matrix, the c_i coefficients are also all real. We also know that λ is a root of $p_A(x) = 0$, i.e., $\sum_i c_i \lambda^i = 0 \to \sum_i c_i \bar{\lambda}^i = 0$. So we see that $\bar{\lambda}$ is also a root of $p_A(\lambda) = 0$ as assumed. Now for the rest of the proof.

The eigenvalues are found by solving

$$det(A - \lambda I) = 0.$$

We also know that

$$(A - \lambda I)^T = A^T - \lambda I^T = A^T - \lambda I.$$

Thus

$$det(A - \lambda I) = det(A^T - \lambda I).$$

This shows that the two matrices, A and A^T have the same characteristic polynomial, hence they share the same eigenvalues.

- 3. Let $A \in \mathbb{C}^{m \times m}$ be hermitian. Suppose that for nonzero eigenvectors of A, there exists corresponding eigenvalues λ satisfying $Ax = \lambda x$.
 - (a) Prove that all eigenvalues of A are real, i.e., $\lambda = \lambda^*$.

We know that $Ax = \lambda x$ for $x \in \mathbb{C}$ and $x \neq 0$. We also know that matrix A is Hermitian, $A = A^*$. Therefore we can expand,

$$\lambda ||x||^2 = \lambda x^* x = x^* (\lambda x) = x^* A x = (Ax)^* x = (\lambda x)^* x = x^* \lambda^* x = \lambda^* ||x||^2.$$

Therefore we have $\lambda ||x||^2 = \lambda^* ||x||^2$, and since $x \neq 0$, it must be true that $\lambda = \lambda^*$, or in other words, all eigenvalues of A are real.

(b) Let x and y be eigenvectors corresponding to distinct eigenvalues. Show that (x, y) = 0, i.e., they are orthogonal.

Since x and y are eigenvectors with respective eigenvalues λ and μ , we can write, $Ax = \lambda x$ and $Ay = \mu y$ with $\lambda \neq \mu$. In a similar fashion to part a, we can write:

$$y^*\lambda x = (y^*A)x = (Ay)^*x = (\mu y)^*x = y^*\mu x.$$

We can take the steps as shown above since A is hermitian, and as proved in part a, $\lambda = \lambda^*$, and similarly, $\mu = \mu^*$. From above we have $y^*\lambda x = y^*\mu x$, and since by definition, $\lambda \neq \mu$, we must have $y^*x = x^*y = 0$, or in other words, x and y are orthogonal.

4. A matrix A is called positive definite if and only if (Ax, x) > 0 for all $x \neq 0$ in \mathbb{C}^m . Show that A is Hermitian and positive definite if and only if $\lambda_i > 0$, $\forall \lambda_i \in \Lambda(A)$, the spectrum of A.

We first assume that A is Hermitian and positive definite. We use the theorem that states, if $A \in \mathbb{C}^{m \times m}$ is Hermitian $(A = A^*)$, then A has real eigenvalues, λ_i where i = 1, 2, ..., m, not necessarily distinct, and m corresponding eigenvectors, u_i form an orthonormal basis for \mathbb{C}^m .

For any arbitrary $x \neq 0$, we can write $x = \sum_{i=1}^{m} \alpha_i u_i$.

We can now write the inner product,

$$(Ax, x) = x^*A^*x = x^*Ax = \sum_{i=1}^{m} \lambda_i \alpha_i^* u_i^* u_i \alpha_i.$$

Which simplifies to,

$$(Ax, x) = \sum_{i=1}^{m} \lambda_i |\alpha_i|^2.$$

We can write this by definition of eigenvalues and eigenvectors, $Au = \lambda u$, and by the fact that eigenvectors can be scaled (x in the above equation is a set of eigenvectors). Since we assume A is Hermitian and positive definite, then by definition:

$$x^*A^*x > 0 \to \sum_{i=1}^m \lambda_i |\alpha_i|^2 > 0.$$

Since by definition, $|\alpha_i|^2 > 0 \, \forall \, \alpha_i$, we can conclude that $\lambda_i > 0$, $\forall \lambda_i \in \Lambda(A)$, i.e., all the eigenvalues of a Hermitian positive definite matrix must be positive.

On the other hand, suppose A is a Hermitian matrix whose eigenvalues, $\lambda_1 \leq \lambda_2 ... \leq \lambda_n$, are all positive. Then, as done in the first part of the proof, let the orthonormal basis of eigenvectors be denoted by $u_1, u_2, ..., u_m$, such that any $x \in \mathbb{C}^m$ can be written as, $x = \sum_{i=1}^m \alpha_i u_i$.

As already shown,

$$x^*Ax = \sum_{i=1}^m \lambda_i |\alpha_i|^2 \ge \lambda_1 \sum_{i=1}^m |\alpha_i|^2.$$

Assuming $x \neq 0$, then $0 \neq ||x||^2 = \sum_{i=1}^m |\alpha_i|^2$. Since all the eigenvalues are assumed to be positive, we must have that A is positive definite,

$$x^*Ax > 0$$
.

- 5. Suppose A is unitary $(A^{-1} = A^*)$.
 - (a) Let (λ, x) be an eivenvalue-vector pair of A. Show λ satisfies $|\lambda| = 1$.

Since A is unitary $(A^*A = I)$, we can prove this as follows:

$$x^*x = x^*(A^*A)x = (Ax)^*(Ax) = (\lambda x)^*(\lambda x) = ||\lambda||^2 x^*x.$$

Now it must be true that $||\lambda||^2 = 1 \to |\lambda| = 1$, since $x \neq 0$.

(b) Prove or disprove $||A||_F = 1$.

By definition $||A||_F = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2)^{1/2} = \sqrt{tr(A^*A)}$. Since A is unitary, $A^*A = I_n$ where n is the dimension of A. Thus we have

$$||A||_F = \sqrt{tr(I_n)} = \sqrt{n} \neq 1 \text{ for } n > 1.$$

Thus, for example, for a 2x2 unitary matrix A, $||A||_F = \sqrt{tr(I_2)} = \sqrt{2} \neq 1$.

- 6. Let $A \in \mathbb{C}^{m \times m}$ be skew-hermitian, i.e., $A^* = -A$.
 - (a) Show that the eigenvalues of A are pure imaginary.

Similar to the proof process of Problem 3, we can write:

$$\lambda ||x||^2 = \lambda x^* x = x^* (\lambda x) = x^* A x = -x^* A^* x = -(Ax)^* x = -(\lambda x)^* x = -\lambda^* ||x||^2.$$

$$\to \lambda^* = -\lambda$$

i.e., λ is purely imaginary.

(b) Show that I - A is non-singular (I - A) is invertible, $\operatorname{null}(I - A) = \{0\}$ are equivalent statements).

To prove this we want to use the property for a non-singular matrix, A, Ax = 0 only has the trivial solution x = 0. Let $(I - A)x = 0 \to x = Ax$. Then we have,

$$x^*x = (Ax)^*x = x^*A^*x = -x^*Ax = -x^*x.$$

We see that

$$x^*x = -x^*x \to x^*x = 0 \to x = 0.$$

Hence, I - A is non-singular.

7. Show that $\rho(A) \leq ||A||$, where $\rho(A)$ is the spectral radius of A (i.e., the largest absolute value $|\lambda|$ of an eigenvalue λ of A.

For any eigenvalue, λ , and corresponding eigenvector, $x \in \mathbb{C}^m \setminus 0$, we have by definition, $Ax = \lambda x$. Thus we can write,

$$|\lambda|||x|| = ||Ax||$$

$$\to |\lambda| = \frac{||Ax||}{||x||} \le \sup_{y \in \mathbb{C}^m \setminus \{0\}} \frac{||Ay||}{||y||} = ||A||$$

where we used the definition of induced matrix norm. This leads us to $|\lambda| = \rho(A) \le |A|$. \square

- 8. Let A be defined as an outer product, $A = uv^*$, where $u \in \mathbb{C}^m$ and $v \in \mathbb{C}^n$
 - (a) Prove or disprove $||A||_2 = ||u||_2 ||v||_2$.

I will prove this statement. For any n-vector, x, we can bound $||Ax||_2$ as follows:

$$\frac{||Ax||_2}{||x||_2} = \frac{||uv^*x||_2}{||x||_2} = \frac{|v^*x|||u||_2}{||x||_2} \le ||u||_2||v||_2.$$

The last inequality is due to the Cauchy-Schwarz inequality. Therefore, $||A||_2 \le ||u||_2 ||v||_2$. If we let x = v in the above equation, we can see that the equality holds, i.e.,

$$||A||_2 = ||u||_2 ||v||_2.$$

(b) Prove or disprove $||A||_F = ||u||_F ||v||_F$. (Note: For a vector u, $||u||_F = ||u||_2$ by definition.)

I will prove this statement. Note that $A_{ij} = u_i v_j$, $||A||_F = ||uv^*||_F$. Therefore we have:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^m |A_{ij}|^2} = \sqrt{\sum_{i=1}^m \sum_{j=1}^m |u_i|^2 |v_j|^2} = \sqrt{(\sum_{i=1}^m |u_i|^2)(\sum_{j=1}^m |v_j|^2} = ||u||_F ||v||_F.$$

- 9. Let $A, Q \in \mathbb{C}^{m \times m}$, where A is arbitrary and Q is unitary.
 - (a) Show that $||AQ||_2 = ||A||_2$.

First note that we have:

$$||Qx||_2 = (Qx, Qx)_2 = (x, Q^*Qx)_2 = (x, x)_2 = ||x||_2.$$

Hence we can write:

$$||AQ||_2 = \sup_{x \in \mathbb{C}^m \setminus \{0\}} \frac{||AQx||_2}{||x||_2} = \sup_{Qx \in \mathbb{C}^m \setminus \{0\}} \frac{||AQx||_2}{||Qx||_2} = \sup_{y \in \mathbb{C}^m \setminus \{0\}} \frac{||Ay||_2}{||y||_2} = ||A||_2.$$

(b) Show that $||AQ||_F = ||QA||_F = ||A||_F$.

$$||AQ||_F = \sqrt{Tr[(AQ)^*AQ]} = \sqrt{Tr[AQ(AQ)^*]} \sqrt{Tr[(AQQ^*A^*]} = \sqrt{Tr[(AA^*]]} = ||A||_F$$
 and similarly:

$$||QA||_F = \sqrt{Tr[(QA)^*QA]} = \sqrt{Tr[(A^*Q^*QA]} = \sqrt{Tr[A^*A]} = ||A||_F$$

where we have used the fact that Tr[XY] = Tr[YX] to prove that

$$||AQ||_F = ||A||_F = ||QA||_F.$$

10. We say that $A, B \in \mathbb{C}^{m \times m}$ are unitarily equivalent if $A = QBQ^*$ for some unitary $Q \in \mathbb{C}^{m \times m}$.

(a) Show that if A and B are unitarily equivalent, then they have the same singular values. (Hint, note that every matrix has a SVD and their singular values are uniquely defined).

Let $A = U_1 \Sigma_1 V_1^*$ and $B = U_2 \Sigma_2 V_2^*$. If A and B are unitarily equivalent, there exists a unitary matrix Q such that $A = QBQ^*$.

$$A = U_1 \Sigma_1 V_1^* = Q U_2 \Sigma_2 V_2^* Q^* = (Q U_2) \Sigma_2 (Q V_2)^*.$$

In other words, $(QU_2)\Sigma_2(QV_2)^*$ is an SVD of A. (QU_2) and $(QV_2)^*$ are unitary matrices. Since we know that the SVD of a matrix is unique, $\Sigma_1 = \Sigma_2$, i.e., A and B have the same singular values.

(b) Show that the converse of Pt. a is not necessarily true.

To show that the converse is not necessarily true, I will provide a counterexample of two matrices, $A, B \in \mathbb{C}^{m \times m}$ that have the same singular values but are not unitarily equivalent. Consider the matrices: $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}$.

We can show that A and B share the same singular values: $A^T A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$

$$A^T A - \lambda I = 0 \to \begin{pmatrix} 2 - \lambda & 0 \\ 0 & 0 - \lambda \end{pmatrix} = 0 \to \lambda = \{2\} \to \text{singular values} = \{\sqrt{2}\}.$$

$$B^T B = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\mathbf{B}^T B - \lambda I = 0 \to \begin{pmatrix} 2 - \lambda & 0 \\ 0 & 0 - \lambda \end{pmatrix} = 0 \to \lambda = \{2\} \to \text{singular values} = \{\sqrt{2}\}.$$

We see that A and B share the same singular values.

We can perform SVD on each matrix to evaluate further. For matrix A we have:

$$\Sigma = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}, \, det(\Sigma) = 0.$$

For $\lambda = 2$ we have:

$$(A^T A - \lambda I)\vec{x_1} = 0 \to \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

$$0 = 0 \rightarrow \vec{x_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \, \vec{x_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$U = \begin{pmatrix} x_1 & x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$V = \frac{1}{\sigma_1} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$

Since we only have one nonzero σ_i , and we need one more vector, v_2 , we can find the orthogonal vector to all the vectors by finding the null space of the matrix whose rows

are the vectors,
$$\begin{pmatrix} -1\\1 \end{pmatrix}$$
. Normalizing v_2 , we are left with: $V = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$

Thus we have the SVD of matrix A:

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

For matrix B we have:

$$\Sigma = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}, det(\Sigma) = 0.$$
For $\lambda = 2$ we have:
$$(A^T A - \lambda I)\vec{x_1} = 0 \to \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

$$0 = 0 \to \vec{x_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{x_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$U = \begin{pmatrix} x_1 x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$V = \frac{1}{\sigma_1} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Since we only have one nonzero σ_i , and we need one more vector, v_2 , we can find the orthogonal vector to all the vectors by finding the null space of the matrix whose rows are the vectors, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Normalizing v_2 , we are left with: $V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Thus we have the SVD of matrix B:

$$\begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus we see that although A and B share the same singular values, they cannot be unitarily equivalent.

11. Find the relative condition number of the following functions and discuss if there is any concern of being ill-conditioned. If so, discuss when.

(a)
$$f(x_1, x_2) = x_1 + x_2$$

$$J_{1\times 2} = \left(\frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2}\right) = (1,1)$$

$$||J||_{\infty} = 2$$

$$\kappa(x_1, x_2) = \frac{||J||_{\infty} ||x_0||_{\infty}}{||f(x_1, x_2)||_{\infty}} \text{ where } x_0 = (x_1, x_2)^T \to \kappa(x_1, x_2) = \frac{2(\max\{|x_1|, |x_2|\})}{|x_1 + x_2|}$$

This quantity is large if $|x_1 + x_2| \approx 0$. So there is concern of this problem becoming ill-conditioned if this is true. This is true when $x_1 \approx -x_2$.

(b)
$$f(x_1, x_2) = x_1 x_2$$

The relative condition number is:

$$\kappa(x_1, x_2) = \frac{||J||_{\infty} ||x_0||_{\infty}}{||f(x_1, x_2)||_{\infty}} = \frac{(|x_1| + |x_2|)(\max\{|x_1|, |x_2|\})}{|x_1 x_2|}$$

Recall that for $x_1, x_2 \in \mathbb{C}$, we have that $|x_1x_2| = |x_1||x_2|$. Now we must distinguish the two cases. If $|x_1| > |x_2|$, we have:

$$\kappa(x) = \frac{|x_1|^2 + |x_2||x_1|}{|x_2||x_1|} = \frac{|x_1|}{|x_2|} + 1.$$

If $|x_1| \leq |x_2|$, we have:

$$\kappa(x) = \frac{|x_2|^2 + |x_2||x_1|}{|x_2||x_1|} = \frac{|x_2|}{|x_1|} + 1.$$

We see that this problem becomes ill-conditioned when $|x_1| \gg |x_2|$ or $|x_2| \gg |x_1|$.

(c)
$$f(x) = (x-2)^9$$

$$\kappa(x) = \frac{||J_0|| \cdot ||x||}{||f(x_0)||}$$

$$J = f' = \frac{df}{dx} = 9(x - 2)^8$$

$$\kappa(x) = \frac{|9(x - 2)^8| \cdot |x|}{|(x - 2)^9|} = \frac{|9x|}{|x - 2|}.$$

We see this problem becomes ill conditioned when x=2.

12. Note that the function $f(x) = (x-2)^9$ in Pt. c of Problem 9 can also be expressed as $g(x) = x^9 - 18x^8 + 144x^7 - 672x^6 + 2016x^5 - 4032x^4 + 5376x^3 - 4608x^2 + 2304x - 512$. Mathematically, these two functions are identical.

From part c in Problem 11 we found that $f(x) = (x-2)^9$ becomes ill conditioned when x=2, i.e., the condition number, $\kappa(x=2)$, is large. This condition number tells us how much precision of accuracy is lost by arithmetic methods when we calculate values from the function. This problem is ill conditioned at x=2, meaning the loss of accuracy represented by the condition number is high enough to mess up calculations as we can see by comparing f(x) and g(x) for values close to x=2. Computing g(x) involves many more floating point operations, which is why the function is much less accurate compared to f(x) near this ill-conditioned point. In general terms, for small changes in the inputs near x=2, there is a large change in the resulting function which involves more floating point operations because that function is ill-conditioned. This is why we get such different y values for g(x) when compared to f(x) near x=2.

Figure 1: Plot showing comparison between f(x) and g(x).