Theorem 1. $\varphi_{\mathcal{N}(0,1)}(t) = e^{-\frac{t^2}{2}}$ $\varphi_{\mathcal{N}(a,\sigma^2)}(t) = e^{ita - \frac{t^2\sigma^2}{2}}$

Theorem 2. X random variable in \mathbb{R}^d , $\mathbb{E}|X_1|^{k_1} \dots |X_d|^{k_d} < \infty$, then $\frac{\partial^{k_1}}{\partial t_1^{k_1}} \dots \frac{\partial^{k_d}}{\partial t_d^{k_d}} \varphi_X(t)$ exists and equals $i^{|k|} \mathbb{E} X_1^{k_1} \dots X_d^{k_d}$.

Remark 3. X_1, \ldots, X_d independent, then $\varphi_{X_1+\ldots+X_d}(t) = \varphi_{X_1}(t) \ldots \varphi_{X_d}(t)$, but opposite is not true in general.

Theorem 4. X_1, \ldots, X_d independent iff $\forall_{t \in \mathbb{R}^d} \varphi_{(X_1, \ldots, X_d)}(t) = \varphi_{X_1}(t_1) \ldots \varphi_{X_d}(t_d)$.

Theorem 5 (Lévy-Cramer). 1. If μ_n, μ probability measures on \mathbb{R}^d and $\mu_n \implies \mu$, then $\forall_{t \in \mathbb{R}^d} \varphi_{\mu_n}(t) \to \varphi_{\mu}(t)$.

2. If μ_n probability measure on \mathbb{R}^d and there exists function $\varphi : \mathbb{R}^d \to \mathbb{C}$ such that $\forall_{t \in \mathbb{R}^d} \varphi_{\mu_n}(t) \to \varphi(t)$ and φ is continuous at 0, then there exists a probability measure μ on \mathbb{R}^d such that $\varphi = \varphi_{\mu}$ and $\mu_n \Longrightarrow \mu$.

Corollary 6. $\mu_n \implies \mu \text{ iff } \varphi_{\mu_n} \to \varphi_{\mu} \text{ pointwise.}$

Theorem 7 (Inverse Fourier Theorem). Suppose that μ is a probability measure on \mathbb{R}^d and $\varphi_{\mu} \in L^1(\mathbb{R}^d)$ such that $\int_{\mathbb{R}^d} |\varphi_{\mu}(x)| dx < \infty$, then μ has the density g given by the formula

$$g(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \varphi_{\mu}(t) e^{-i\langle t, x \rangle} dt.$$