Over-sampled A/D conversion

- The anti-aliasing filter is an analog filter.
- However, in applications involving powerful, but inexpensive, digital processors, these continuous-time filters may account for a major part of the cost of a system.
- Let Ω_N be the highest frequency of the analog signal. Instead, we first apply a very simple anti-aliasing filter (in the analog domain) that has a gradual cutoff (instead of a sharp cutoff) with significant attenuation at $M\Omega_N$. Next, implement the continuous-to-discrete (C/D) conversion at the sampling rate higher than $2M\Omega_N$.
- After that, sampling rate reduction by a factor of M that includes sharp anti-aliasing filtering is implemented in the discrete-time domain.

Using over-sampled A/D conversion to simplify a continuous-time anti-aliasing filter

Example of over-sampled A/D conversion (analog domain)

Example of over-sampled A/D conversion (discrete-time domain)

Oversampling vs. quantization (Oppenheim, Chap. 4)

• We consider the analog signal $x_a(t)$ as widesense-stationary, random process with power-spectral density denoted by $\Phi_{x_ax_a}(e^{jw})$ and the autocorrelation function by $\phi_{x_ax_a}(\tau)$.

• To simplify our discussion, assume that $x_a(t)$ is already bandlimited to Ω_N , i.e.,

$$\Phi_{x_a x_a}(j\Omega) = 0, \quad |\Omega| \ge \Omega_N,$$

Oversampling

- Oversampling: We assume that $2\pi/T = 2M\Omega_N$.
- M is an integer, called the oversampling ratio.

Oversampled A/D conversion with simple quantization and down-sampling

Additive noise model

Using the additive noise model, the system can be replaced by

Its output $x_d[n]$ has two components, one from the signal input $x_a(t)$ and the other from the quantization noise input e[n]. Denote them as $x_{da}[n]$ and $x_{de}[n]$, respectively.

Signal component (assume e[n] = 0)

- Goal: determine the signal-to noise ratio of signal power $\varepsilon\{x_{da}^2\}$ to the quantization-noise power $\varepsilon\{x_{de}^2\}$. ($\varepsilon\{.\}$ denotes the **expectation value**.)
- As $x_a(t)$ is converted into x[n], and then $x_{da}[n]$, we focus on the power of x[n] first.
- Let us analyze this in the time domain. Denote $\phi_{xx}[n]$ and $\Phi_{xx}(e^{jw})$ to be the autocorrelation and power spectral density of x[n], respectively.
- By definition, $\phi_{xx}[m] = \varepsilon \{x[n+m]x[n]\}.$

Power of x[n] (assume e[n] = 0)

• Since $x[n] = x_a(nT)$, it is easy to see that

$$\phi_{xx}[m] = \varepsilon \{x[n+m]x[n]\}$$

$$= \varepsilon \{x_a((n+m)T)x_a(nT)\}$$

$$= \phi_{x_ax_a}(mT)$$

- That is, the autocorrelation function of the sequence of samples is a sampled version of the autocorrelation function.
- The wide-sense-stationary assumption implies that $\varepsilon\{x_a^2(t)\}$ is a constant independent of t. It then follows that

$$\varepsilon\{x^{2}[n]\} = \varepsilon\{x_{a}^{2}(nT)\} = \varepsilon\{x_{a}^{2}(t)\}$$

for all n or t.

Power of $x_{da}[n]$ (assume e[n] = 0)

- Since the decimation filter is an ideal lowpass filter with cutoff frequency $w_c = \pi/M$, the signal x[n] passes unaltered through the filter.
- Therefore, the downsampled signal component at the output, $x_{da}[n] = x[nM] = x_a(nMT)$, also has the same power.
- In sum, the above analyses show that

$$\varepsilon\{x_{da}^{2}[n]\} = \varepsilon\{x^{2}[n]\} = \varepsilon\{x_{a}^{2}(t)\}$$

which shows that the power of the signal component stays the same as it traverses the entire system from the input $x_a(t)$ to the corresponding output component $x_{da}[n]$.

Power of the noise component

• According to previous studies, let us assume that e[n] is a widesense-stationary white-noise process with zero mean and variance Λ^2

 $\sigma_e^2 = \frac{\Delta^2}{12}$

• Consequently, the autocorrelation function and power density spectrum for e[n] are, white noise

$$\phi_{ee}[n] = \sigma_e^2 \delta[n]$$

 The power spectral density is the DTFT of the autocorrelation function. So,

$$\Phi_{ee}(e^{jw}) = \sigma_e^2, \qquad -\pi < w < \pi$$

Power of the noise component (assume $x_a(t)=0$)

- Although we have shown that the power in $x_{da}[n]$ does not depend on M, we will show that the noise component $x_{de}[n]$ does not keep the same noise power.
 - It is because that, as the oversampling ratio M increases, less of the quantization noise spectrum overlaps with the signal spectrum, as shown below.

Review of Downsampling in the Frequency domain (without aliasing)

Illustration of frequency and amplitude scaling

So, when oversampled by M, the power spectrum of $x_a(t)$ and x[n] in the frequency domain are illustrated as follows.

Illustration of frequency for noise

■ By considering both the signal and the quantization noise, the power spectra of x[n] and e[n] in the frequency domain are illustrated as

Noise component power

• Then, by ideal low pass with cutoff $w_c = \pi/M$ in the decimation, the noise power at the output becomes

$$\varepsilon\{e^{2}[n]\} = \frac{1}{2\pi} \int_{-\pi/M}^{\pi/M} \sigma_{e}^{2} dw = \frac{\sigma_{e}^{2}}{M}$$

Powers after downsampling

Next, the lowpass filtered signal is downsampled, and as we have seen, the signal power remains the same. Hence, the power spectrum of $x_{da}[n]$ and $x_{de}[n]$ in the frequency domain are illustrated as follows:

Noise power reduction

• Conclusion: The quantization-noise power $\varepsilon\{x_{de}^2\}$ has been reduced by a factor of M through the decimation (low-pass filtering + downsampling), while the signal power has remained the same.

$$\mathcal{E}\{x_{de}^{2}\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sigma_{e}^{2}}{M} dw = \frac{\sigma_{e}^{2}}{M} = \frac{\Delta^{2}}{12M}$$

• For a given quantization noise power, there is a clear tradeoff between the oversampling factor M and the quantization step Δ .

Oversampling for noise power reduction

• Remember that
$$\Delta = \frac{X_m}{2^B}$$

• Therefore
$$\varepsilon\{x_{de}^2\} = \frac{1}{12M} \left(\frac{X_m}{2^B}\right)^2$$

- The above equation shows that for a fixed quantizer, the noise power can be decreased by increasing the oversampling ratio *M*.
- Since the signal power is independent of M, increasing M will increase the signal-to-quantization-noise ratio.

Tradeoff between oversampling and quantization bits

Alternatively, for a fixed quantization noise power,

$$P_{de} = \varepsilon \{x_{de}^2\} = \frac{1}{12M} (\frac{X_m}{2^B})^2$$

the required value for B is

$$B = -\frac{1}{2}\log_2 M - \frac{1}{2}\log_2 12 - \frac{1}{2}\log_2 P_{de} + \log_2 X_m$$

- From the equation, every doubling of the oversampling ratio M, we need $\frac{1}{2}$ bit less to achieve a given signal-to-quantization-noise ratio.
- In other words, if we oversample by a factor M = 4, we need one less bit to achieve a desired accuracy in representing the signal.