Cancer: Genetic disease caused by the progressive accumulation of mutations.
Loss of function mutation on tumour-suppression genes
Gain of function mutation on proto-oncogenes
Cell cycle regulation: cyclin and cyclin-dependent kinases.
G1 checkpoint: before cell proceed into S-phase and replicate DNA
○ Cyclin D bind to Cdk4/6
 Cdk phosphorylate retinoblastoma(Rb) protein, which dissociates from E2F transcription factor allow transcription of Cyclin E/A.
○ Cyclin E/A binds to Cdk2, promote expression of S-phase promoting genes.
Retinoblastoma (Lof of tumour-suppression gene), no inhibition in expression of cyclin A/E
• Inherited retinoblastoma
Heterozygous cell (Rb+/Rb-), accumulation of mutation lead to cancer forming
 Sporadic retinoblastoma Non-inheritory, accumulation of mutation causes loss of function in both Rb alleles.
 G0 stage: terminal stage for differentiated cells, non-proliferative functional stage. Cancer can lead to inappropriate exiting from G0 stage.
G1 stage: Check for cell size and nutrient availability,
• S phase checkpoint: Check for complete replication of the gene before advancing into G2 phase. S-checkpoint mutation lead to cancer cells with many DNA aberrations.
G2 phase checkpoint: Check for genome integrity before mitosis, cell size check.
M-phase checkpoint: Check for proper attachment of microtubule spindles to kinetochores before separating sister chromatids.
Apoptosis: programmed cell death
Chromatin compaction, cytoplasm condensation, fragmented nuclear envolope, intact cell membrane, no inflammation
Necrosis: Injury/stress induced cell death
Leakage of cell content, induce inflammation
Apoptotic pathway:
• Instrinsic
○ Trophic factor binding activates PI3K pathway, activates PKB, phosphorylates bad
○ Bad phosphorylation allow 14-3-3 binding sequestrate bad, does not inhibit Bcl2
○ Bcl2 protein normally binds with bax, prevent oligomer formation
○ If Bax form oligomer, allow exiting of cytochrome C
○ Cytochrome C exit, bind with apaf 1 in cytosol, activates apaf1
○ Apaf-1 induce cleavage of procaspase 9 into caspase 9
○ Caspase 9 induce cleavage of procaspase 3 into caspase 3
○ Caspase 3 induce downstream degradation of organelles —> apoptosis
• Extrinsic
 Tumour Necrosis Factor α (TNF-α): extrinsic signal that induce cell death.
 TNFα bind with TNF-α receptor on cell surface, promote TNF complex assembly (FADD and TRADD)

	8 and activation of caspase 8
 Caspase 8 induce cleavage of various downstream proc 	
 Caspase 8 also induce inhibition of Bcl2, allow bax to for 	rm oligomer, activating intrinsic pathway
enescence	
 Telomere is a length of repetitive guanine rich sequence 	
 Length shortens over time, maintained by ribonucleoprof 	tein telomerase in stem cells
 Replicative senescence: telomere shortens over the cycle 	les, functional DNA shortened causes mutations
 Senescent cells show phenotypic changes, produce infla 	ammatory cytokines, DNA damage induce apoptosis (p
 Senescence mechanism reduce proliferative capacity, re 	educe chance of cancer formation.

Cell cycle checkpoints
G1 detail
Rb
Apoptosis/necrosis
2 apoptotic pathways
Senescence