ESC201: Lecture 15

Dr. Imon Mondal

ASSISTANT PROFESSOR, ELECTRICAL ENGINEERING, IIT KANPUR

2024-25 SEM-I | ESC201 INTRODUCTION TO ELECTRONICS

Goal of Simplification

In the SOP expression:

- 1. Minimize number of product terms
- 2. Minimize number of literals in each term

Simplification \Rightarrow Minimization

Minimization

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$y = \overline{x_1} \cdot x_3 \cdot (\overline{x_2} + x_2) + x_1 \cdot x_3 \cdot (\overline{x_2} + x_2)$$

$$y = \overline{x_1} \cdot x_3 + x_1 \cdot x_3$$

$$y = (\overline{x_1} + x_1) \cdot x_3$$

$$y = x_3$$

Principle used: x + x = 1

$$f = x \cdot y + x \cdot y + x \cdot y$$

Apply the Principle: $x + \overline{x} = 1$ to simplify

$$f = \overline{x} \cdot (\overline{y} + y) + x \cdot \overline{y}$$
$$f = \overline{x} + x \cdot \overline{y}$$

How do we simplify further?

$$f = x. y + x. y + x. y = x. y + x. y + x. y + x. y$$

Principle used: x + x = x

$$f = \bar{x}. \bar{y} + \bar{x}. y + \bar{x}. \bar{y} + \bar{x}. \bar{y}$$

$$= \bar{x}. (\bar{y} + \bar{y}) + (\bar{x} + \bar{x}). \bar{y} = \bar{x} + \bar{y}$$

Simplify

$$f = \overline{x_1} \cdot x_2 \cdot \overline{x_3} \cdot x_4 + \overline{x_1} \cdot x_2 \cdot x_3 \cdot x_4 + x_1 \cdot x_2 \cdot \overline{x_3} \cdot x_4 + x_1 \cdot x_2 \cdot x_3 \cdot x_4 + x_1 \cdot x_3 \cdot x_4 + x_1 \cdot x_2 \cdot x_3 \cdot x_4 + x_1 \cdot$$

Principle: $x + \overline{x} = 1$ and x + x = x

Need a systematic and simpler method for applying these two principles

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply

K-map representation of truth table

X	У	min term
0	0	<u>x</u> . y m0
0	1	x. <u>y</u> m1
1	0	$x.\overline{y}$ m2
1	1	$I_{x.y}$ m3

× \	0	11
0	m_0	m_1
1	m_2	m_3

X	у	f ₁	
0	0	0	
0	1	1	
1		1	
1	1	0	

$$f_2 = \sum (0, 2, 3)$$
 x
 y
 0
 y
 1
 1
 1
 1

$$f = \overline{x}.\overline{y} + x.y$$

Minimization using Kmap

$$f_2 = \sum (2,3)$$

$$f = x.\overline{y} + x. y$$

$$f = x.(\overline{y} + y)$$

$$f = x$$

Combine terms which differ in only one bit position. As a result, whatever is common remains.

$$\Rightarrow$$
 f = \overline{y}

$$\Rightarrow$$
 f = \bar{x}

$$f_2 = \sum_{x} (0,2,3)$$
 x
 0
 0
 1
 1
 1

$$A + A = A$$

$$f = x. y + x. y + x. y$$

$$f = x. (y + y) + x. y$$

$$= x + x. y$$

$$f = x + \overline{x} \cdot y + x \cdot y$$
$$= x + (\overline{x} + x) \cdot y$$
$$= x + y$$

The idea is to cover all the 1's with as few and as simple terms as possible

3-variable K-map representation

x y z min terms	
0 0 0	m0 m1 m2 m3 m4 m5 m6

XX	00	01	11	10_
0	m_0	m ₁	m_3	m_2
1	m_4	m_5	m ₇	m ₆

X	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

XXZ	00	01	11	10
0	0	1	1	0
1	0	1	1	0

XXX	00	01	11	10
0	1	0	1	0
1	0	1	1	0

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

$$f = x.y.z + y.z + x.z$$

$$f = \overline{x} \cdot \overline{z} + x \cdot z$$

$$f = (x.y.z + x.y.z + x.y.z + x.y.z)$$

$$f = x.\overline{y} + x.y$$

$$f = x.(y+y) = x$$

$$f = x + \overline{z}$$

Can we do this?

Note that each encirclement should represent a single product term. In this case it does not.

$$f = x.\overline{y}.\overline{z} + x.\overline{y}.z + x.y.z$$
$$= x.\overline{y} + x.z$$

We do not get a single product term. In general we cannot make groups of 3 terms.

Can we use kmap with the following ordering of variables?

	,			
XX	00	01	10	11
0	0	0	0	0
1	0	1	(-)	0
•				

Can we combine these two terms into a single term?

$$f = x.y.z + x.y.z$$

$$= x.(y.z + y.z)$$

Note that no simplification is possible. Kmap requires information to be represented

These two terms can be combined into a single term but it is not easy to show that on the diagram.

$$f = x.y.z + x.y.z$$

= $x.(y+y).z = x.z$

Kmap requires information to be represented in such a way that it is easy to apply the principle x+x=1

4-variable K-map representation

W	Χ	У	Z	min terms	_	WZ WX	00	01	11	10_
0	0	0	0	m_0		wx \	0	1	3	2
0	0	0	1	$m_{\scriptscriptstyle{1}}$		00				
0	0	1	0	m ₂		01	4	5	7	6
0	0	1	1	m ₃	•	11	12	13	15	14
1	1	1	0	m ₁₄		10	8	9	11	10
1	1	1	1	l m ₁₅		. •			• •	

wx VZ	00	01	11	10
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w}.\overline{x}.\overline{y}.\overline{z} + \overline{w}.\overline{x}.y.\overline{z} + \overline{w}.x.\overline{y}.\overline{z} + \overline{w}.x.y.z$$

+ $w.x.\overline{y}.\overline{z} + w.x.y.\overline{z} + w.x.y.\overline{z}$

$$f = w. y. z + w. x. z + w. y. z + w. x. y. z + w. x. y. z$$

But is this the simplest expression?

WX VZ	00	01	11	10_
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$w. x. y. z + w. x. y. z = w. x. z$$

WX VZ	00	01	11	10_
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$w. \bar{x}. \bar{y}. \bar{z} + \bar{w}. \bar{x}. \bar{y}. \bar{z} = \bar{x}. \bar{y}. \bar{z}$$

$$f = \overline{w}. y. z + \overline{w}. x. z + w. \overline{y}. \overline{z} + w. x. \overline{z} + \overline{x}. \overline{y}. \overline{z}$$

Is this the best that we can do?

Cover the 1's with minimum number of terms

WX VZ	00	01	11	10
00	1	0	1	0
01	0	(-)	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w}. y. z + \overline{w}. x. z + w. x. z + w. x. z + x. y. z$$

WX VZ	00	01	11	10
00	1	0	0	0
01	1	1	0	0
11	0	0	0	0
10	[1]	0	0	1

WX VZ	00	01	11	10
00	1	0	0	0
01	(7)	1	0	0
11	0	0	0	0
10	1	0	0	1

$$f = \overline{w}.x.\overline{y} + w.\overline{x}.\overline{z} + \overline{w}.\overline{y}.\overline{z}$$

$$f = \overline{w}.x.y + w.x.z + \overline{x}.y.z$$

Groups of 4

Groups of 8

wx VZ	00	01	11	10	ı
00	0	1	1	0	
01	0	1	1	0	
11	0	1	1	0	
10	0	1	1	0	

wx VZ	00	01	11	10	•
00	0	0	0	0	
01	1	1	1	1	
11	1	1	1	1	
10	0	0	0	0	

WX VZ	00	01	11	10_
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	_1	0	0	1

WX VZ	00	01	11	10_
00	1	1	1	1
01	0	0	0	0
11	0	0	0	0
10	1	1	1	1

 $\frac{-}{x}$

 \mathcal{X}

Don't care terms

Y_3	Ç	00	01	11	_10_
	ab	0	0		0
	01	0	0	0	0
	11	X	X	X	X
	10	0	0	Х	х

$$y_3 = \overline{a}.\overline{b}.c.d$$

Don't care conditions

$$y_3 = \overline{b}.c.d$$

а	b	С	d	y ₀ y ₁ y ₂ y ₃ y ₄ y ₅ y ₆ y ₇ y ₈ y ₉
0	0	0	0	1000000000
0	0	0	1	0100000000
0	0	1	0	0010000000
0	0	1	1	0001000000
0	1	0	0	0000100000
0	1	0	1	0000010000
0	1	1	0	0000001000
0	1	1	1	0000000100
1	0	0	0	0000000010
 1	0	0	1	0000000001

Don't care terms can be chosen as 0 or 1. Depending on the problem, we can choose the don't care term as 1 and use it to obtain a simpler Boolean expression

Decimal Encoding using Binary Coded Decimal (BCD)

ab	00	01	11	10_
00	0	0	1	0
01	0	0	0	0
11	х	Х	х	х
10	0	0	Х	Х

$$y_3 = \overline{b}.c.d$$

Don't care terms should only be included in encirclements if it helps in obtaining a larger grouping or smaller number of groups.

Don't Care Terms

- Don't care terms can be chosen as 0 or 1
 - Sometimes choosing them as 1 yields simpler expressions in SOP minimization

$$f = (\overline{w} \cdot \overline{z}) + (x \cdot y) + (w \cdot \overline{x})$$

Don't care terms should only be included in encirclements if it helps in obtaining a larger grouping or smaller number of groups.

Encoder

• Inverse of decoders

d_3	d_2	d_1	d_0	В	Α	
0	0	0	1	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	0	1	1	
0 0 1	0 0 1 0	1 0 0	0 0 0	0 1 1	1 0 1	

$$A = \overline{d_2} \quad \overline{d_0}$$

$$B = \overline{d_1} \quad \overline{d_0}$$

 $B = \overline{d_1} \ \overline{d_0}$

You know what to do ©

Dr. Imon Mondal ESC201, 2024-25 Sem-I

33