Министерство образования и науки Российской Федерации Московский физико-технический институт (Государственный университет) Факультет общей и прикладной физики Кафедра биофизики

Пинина Юлия Михайловна

Изучение взаимодействия мембранных белков и липидов

Выпускная квалификационная работа бакалавра

Научный руководитель:

д.ф.-м.н. Гущин И.Ю.

Содержание

1	Введение						
2	Раздел 2						
3	Раздел 3						
	3.1 Подраздел 1	6					
	3.2 Подраздел 2	6					
4	Заключение	7					
Cı	писок литературы						

1 Введение

Мембранные белки играют ключевую роль во многих клеточных процессах и занимают около трети кодирующей части генома. В силу своего расположения они постоянно взаимодействуют с окружающими липидами мембранного бислоя. Липиды регулируют как их расположение и активность, так и межбелковое взаимодействие. В свою очередь, белки оказывают влияние на конфигурацию и свойства липидов.

Бактериородопсин - интегральный мембранный белок, осуществляющий перенос протона через бислой [2]. Впервые бактериородопсин был открыт у архей, мембраны которых имеют некоторую специфичность: вместо обычных жирных кислот гидрофобные части их липидов состоят из изопреновых групп и являются разветвленными. Благодаря таким метильным «ответвлениям» мембраны становятся очень прочными, но при этом сохраняют гибкость. Это влияет и на характер взаимодействия с белком.

В данной работе будет проанализировано взаимодействие бактериородопсина с разветвленными и неразветвленными липидами при моделировании методом молекулярной динамики и проведено сравнение с экспериментальными данными [2,3].

Текст введения. Например:

Эффект рождения электрон-позитронных пар из вакуума под действием электрического поля впервые обсуждался, по-видимому, в работах Заутера [1] в связи с так называемым парадоксом Клейна (см., например, [3]). Вероятность перехода вакуум-вакуум, которая в присутствии постоянного однородного электромагнитного поля отлична от единицы за счёт эффекта рождения e^+e^- -пар, в главном приближении была найдена Гейзенбергом и Эйлером [4], точные формулы в случаях вакуума заряженных частиц со спином 0 и 1/2 получены Швингером [5], а в случае векторных бозонов — Ваняшиным и Терентьевым [6]. Вероятность рождения e^+e^- -пар из вакуума становится заметно отличной от нуля при напряжённости постоянного электрического поля, близкой к характерному для квантовой электродинамики (КЭД) значению

$$E_S = \frac{m^2 c^3}{e \hbar} = 1.32 \cdot 10^{16} \text{ B/cm}$$

(см. [1,3-5]), при котором электрическое поле на комптоновской длине

$$l_C = \frac{\hbar}{mc} = 3.86 \cdot 10^{-11} \text{ cm}$$

совершает над электроном работу mc^2 . Постоянное поле такой напряжённости вряд ли может быть получено в лабораторных условиях. Поэтому многие авторы сосредоточились на теоретическом исследовании процесса рождения пар под действием переменных во времени электрических полей [7–16], хотя и в этом случае надежды на достижение напряжённостей порядка E_S до последнего времени казались весьма призрачными.

$$I \sim I_S = (c/4\pi)E_S^2 = 4.65 \cdot 10^{29} \text{ BT/cm}^2.$$

.....

Однако существуют процессы, для описания которых модель плоской волны использовать невозможно. В частности, плоская электромагнитная волна произвольной интенсивности и спектрального состава не рождает e^+e^- -пар из вакуума [5], поскольку оба инварианта электромагнитного поля плоской волны

$$\mathcal{F} = (\mathbf{E}^2 - \mathbf{H}^2)/2, \quad \mathcal{G} = (\mathbf{E} \cdot \mathbf{H})$$

равны нулю. Поэтому в настоящей работе для описания электромагнитного поля фокусированной волны использована реалистическая трёхмерная модель, предложенная в работе [24]. Эта модель основана на точном решении уравнений Максвелла и была успешно применена в работе [25] для количественного объяснения эффекта анизотропии углового распределения электронов, ускоренных интенсивным лазерным импульсом, который наблюдался в эксперименте [26]. Сразу же отметим, что использование суперпозиции двух фокусированных импульсов позволяет обнаружить рождение e^+e^- -пар при интенсивностях, значительно меньших, чем в случае одиночного импульса [27, 28].

$$N = \frac{e^2 E_S^2}{4\pi^2 \hbar^2 c} \int_V dV \int_0^{\tau} dt \, \epsilon \eta \, \text{cth} \, \frac{\pi \eta}{\epsilon} \exp\left(-\frac{\pi}{\epsilon}\right). \tag{1}$$

Здесь

$$\epsilon = \mathcal{E}/E_S, \quad \eta = \mathcal{H}/E_S$$

— приведённые поля, а \mathcal{E} и \mathcal{H} — инварианты, имеющие смысл напряжённостей электрического и магнитного поля в той системе отсчёта, где они параллельны:

2 Раздел 2

Текст раздела.

.....

$$\mathbf{E}^h = \pm i\mathbf{H}^e, \quad \mathbf{H}^h = \mp i\mathbf{E}^e. \tag{2}$$

.....

$$\mathbf{E}^{e} = \frac{E_{0}e^{-i\varphi}}{(1+2i\chi)^{2}} \exp\left(-\frac{\xi^{2}}{1+2i\chi}\right) \left\{ \left(1 - \frac{\xi^{2}}{1+2i\chi}\right) \mathbf{e}_{x} + \frac{\xi^{2}}{1+2i\chi} (\cos 2\phi \, \mathbf{e}_{x} + \sin 2\phi \, \mathbf{e}_{y}) \right\}$$

$$(3)$$

$$\mathbf{H}^{e} = \frac{E_{0}e^{-i\varphi}}{(1+2i\chi)^{2}} \exp\left(-\frac{\xi^{2}}{1+2i\chi}\right) \left\{ \left[1 - \frac{\xi^{2}}{1+2i\chi} - \frac{2\Delta^{2}}{1+2i\chi} \left(2 - \frac{4\xi^{2}}{1+2i\chi} + \frac{\xi^{4}}{(1+2i\chi)^{2}}\right)\right] \mathbf{e}_{y} - \frac{\xi^{2}}{1+2i\chi} \left[1 - \frac{2\Delta^{2}}{1+2i\chi} \left(3 - \frac{\xi^{2}}{1+2i\chi}\right)\right] (\sin 2\phi \,\mathbf{e}_{x} - \cos 2\phi \,\mathbf{e}_{y}) - \frac{4i\Delta\xi}{1+2i\chi} \left(2 - \frac{\xi^{2}}{1+2i\chi}\right) \sin \phi \,\mathbf{e}_{z} \right\}$$

$$(4)$$

На рис. ?? показаны зависимости инвариантов ϵ и η от пространственных координат x и y в плоскости z=0 в моменты времени $t=0,\,t=\pi/4\omega,\,t=\pi/2\omega.$

Таблица 1: Среднее число пар, рождённых одиночным (слева) и двумя сталкивающимися (справа) циркулярно-поляризованными импульсами e-типа из вакуума, $\Delta=0.1$

$I \cdot 10^{-28},$ BT/CM ²	E_0/E_S	N	$I \cdot 10^{-26},$ BT/CM ²	E_0/E_S	N
0.6	0.203	1.94(-5)	1.0	0.0262	2.36(-8)
0.8	0.234	5.57(-2)	1.5	0.0321	3.12(-3)
1.0	0.262	13.4	2.0	0.0371	3.85
1.5	0.321	7.57(4)	2.5	0.0414	5.20(2)
2.0	0.371	1.42(7)	3.0	0.0454	2.01(4)
2.5	0.414	5.29(8)	4.0	0.0524	3.59(6)
3.0	0.454	7.89(9)	5.0	0.0586	1.33(8)
4.0	0.524	3.70(11)	6.0	0.0642	1.95(9)
5.0	0.586	5.35(12)	7.0	0.0693	1.61(10)
6.0	0.642	4.05(13)	8.0	0.0741	8.94(10)
8.0	0.741	7.17(14)	9.0	0.0786	3.75(11)
10.0	0.829	5.33(15)	10.0	0.0829	1.28(12)

3 Раздел 3

Текст раздела

3.1 Подраздел 1

3.2 Подраздел 2

Текст подраздела

4 Заключение

Текст заключения

Рассмотренные случаи циркулярно-поляризованной и линейно-поляризованной волн позволяют сделать утверждение, что для процесса рождения e^+e^- -пар эффективнее сталкивать лазерные импульсы, а не использовать одиночные, поскольку в этом случае порог рождения пар составляет величину $I\sim 10^{26}~{\rm Br/cm^2}$, что на один-два порядка меньше, чем в случае одиночного импульса. Более того, в данной работе впервые показано, что эффективнее использовать лазерные импульсы с линейной поляризацией. Это вызвано в первую очередь тем, что при одной и той же интенсивности лазерного импульса напряжённость электрического поля линейно-поляризованной волны в $\sqrt{2}$ больше, чем у волны с циркулярной поляризацией. Как показывают расчёты, логарифм числа частиц как функция E_0 - напряжённости каждого поля по отдельности, - практически одинаков для обеих поляризаций. Но если рассматривать $\lg N$ как функцию интенсивности лазерного импульса, то получится, что поле с линейной поляризацией рождает на несколько порядков пар больше, что довольно существенно. Это означает, что на эксперименте эффективнее будет использовать именно линейно-поляризованное электромагнитное поле.

Список литературы

- [1] F. Sauter, Z. Phys. **69**, 742 (1931); **73**, 547 (1931).
- [2] Janos K. Lanyi Bacteriorhodopsin, Annual Review of Physiology, (2004) 665-688
- [3] А. Зоммерфельд, Строение атома и спектры, т. ІІ, ГИТТЛ, Москва (1956).
- [4] W. Heisenberg and H. Euler, Z.Phys. 98, 714 (1936).
- [5] J. Schwinger, Phys. Rev. 82, 664 (1951).
- [6] В. С. Ваняшин, М. В. Терентьев, ЖЭТФ 48, 565 (1965).
- [7] Ф. В. Бункин, И. И. Тугов, ДАН СССР **187**, 541 (1969).
- [8] E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).
- [9] В. С. Попов, Письма ЖЭТФ 13, 185 (1971); ЖЭТФ 34, 709 (1972).
- [10] В.С. Попов, Письма ЖЭТФ 18, 255 (1973) ЯФ 19, 584 (1974).
- [11] Н. Б. Нарожный, А. И. Никишов, ЖЭТФ 38, 427 (1974).
- [12] В. М. Мостепаненко, В. М. Фролов, ЯФ 19, 451 (1974).
- [13] M. S. Marinov and V. S. Popov, Fortschr. Phys. 25, 373 (1977).
- [14] А. А. Гриб, С. Г. Мамаев, В. М. Мостепаненко, Квантовые эффекты в интенсивных внешних полях, Энергоатомиздат, Москва (1988).
- [15] A. Ringwald, Phys. Lett. B 510, 107 (2001); E-print archives hep-ph/01112254, hep-ph/0304139.
- [16] В. С. Попов, Письма в ЖЭТФ **74**, 133 (2001); Phys. Lett. A **298**, 83 (2002); ЖЭТФ **121**, 1235 (2002).
- [17] C. Bula, C. Bamber, D.L. Burke et al., Phys. Rev. Lett. **76**, 3116 (1996).
- [18] D. L. Burke, S. C. Berridge, C. Bula et al., Phys. Rev Lett. 79, 1626 (1997).
- [19] T. Tajima and G. Mourou, Phys. Rev. ST-AB 5, 031301 (2002).
- [20] S. V. Bulanov, T. Zh. Esirkepov, and T. Tajima, Phys. Rev. Lett. **91**, 085001 (2003).
- [21] D. M. Volkov, Z. Phys. **94**, 250 (1935).
- [22] В. Б. Берестецкий, Е. М. Лифшиц, Л. П. Питаевский, *Квантовая электродинами-ка*, Физматлит, Москва (2001).

- [23] В. И. Ритус, А. И. Никишов, Квантовая электродинамика явлений в интенсивном поле, Труды ФИАН **111**, (1979).
- [24] Н. Б. Нарожный, М. С. Фофанов, ЖЭТФ 117, 867 (2000).
- [25] N. B. Narozhny and M. S. Fofanov, Phys. Lett. A **295**, 87 (2002).
- [26] G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. Lett. 78, 3314 (1997).
- [27] N. B. Narozhny, S. S. Bulanov, V. D. Mur, and V. S. Popov, Phys. Lett. A 330, 1 (2004).
- [28] Н. Б. Нарожный, С. С. Буланов, В. Д. Мур, В. С. Попов, Письма ЖЭТФ **80**, 434 (2004).
- [29] Н. Б. Нарожный, А. И. Никишов, ТМФ **26**, 16 (1976).
- [30] С.С. Буланов, Н.Б. Нарожный, В. Д. Мур, В. С. Попов, ЖЭТФ 129, 14 (2006).