Rajalakshmi Engineering College

Name: Yadhu Nandhana R

Email: 241801321@rajalakshmi.edu.in

Roll no: 241801321 Phone: 7448879488

Branch: REC

Department: I AI & DS FD

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

Sample Test Case

if (root == NULL) {

return createNode(data);

root->left = insert(root->left, data);

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Input: 3
5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
Answer
#include <stdio.h>
#include <stdlib.h>
struct Node {
   int data:
  struct Node* left;
   struct Node* right;
};
struct Node* createNode(int data) {
  struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
  newNode->left = newNode->right = NULL;
   return newNode;
}
struct Node* insert(struct Node* root, int data) {
```

```
} else {
         root->right = insert(root->right, data);
       return root;
     }
     void displayTreePostOrder(struct Node* root) {
       if (root == NULL) {
         return;
       }
       displayTreePostOrder(root->left);
       displayTreePostOrder(root->right);
       printf("%d ", root->data);
    int findMinValue(struct Node* root) {
       if (root == NULL) {
         printf("Tree is empty.\n");
          exit(1);
       }
       struct Node* current = root;
       while (current->left != NULL) {
          current = current->left;
       return current->data;
 int main() {
       struct Node* root = NULL;
       int n, data;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
          scanf("%d", &data);
         root = insert(root, data);
       }
بنواayTree
printf("\n");
نما
                                                         241801321
       displayTreePostOrder(root);
       int minValue = findMinValue(root);
```

printf("The minin return 0; }	num value in the BS	ST is: %d", minValue);	241801321
Status : Correct			Marks : 10/10
241801321	241801321	241801321	241801321
241801321	24,180,132,1	241801321	241801321