4 Zeros

54 Localitzeu els zeros de les funcions

- a) $f_1(x) = \sin x 2 0.3x$,
- b) $f_2(x) = x^3 e^x + 3$.

Trobeu-los usant els mètodes de bisecció, Newton i secant.

55 Sigui I = [0, 1] i considerem la iteració

$$x_0 = 0.5$$
, $x_{k+1} = g(x_k)$, $k = 0, 1, 2, \dots$

on $g(x) = \frac{1}{3} (5x^3 - 7x^2 + x + 2)$.

- a) Vegeu que $g(I) \subset I$.
- b) Demostreu que $L \equiv \max_{x \in [0,1]} \{ |g'(x)| \} = \frac{34}{45}$.
- c) Demostreu que l'equació $f(x) \equiv 5x^3 7x^2 2x + 2 = 0$, quan $x \in I$, té una única arrel.
- d) Sigui α l'arrel de l'apartat anterior. Quantes iteracions (n) del mètode inicial cal fer per tal d'assegurar que $|x_n \alpha| \leq \frac{1}{2} 10^{-6}$?
- e) A partir de $x_0 = 0.5$, feu 3 iteracions del mètode de Newton-Raphson, aplicat a la funció f(x), arrodonint cada iterat x_{i+1} a 5 decimals, abans de calcular el següent. Comproveu que, amb aquesta precisió, $x_2 = x_3$.

56 En el cas del moviment el·líptic en el problema de dos cossos, per a trobar la posició en l'òrbita, en un determinat temps, cal resoldre l'equació de Kepler

$$f(x) \equiv x - e\sin(x) - M = 0 ,$$

on $e \in (0,1)$ (excentricitat) i $M \in R$ (anomalia mitjana) són constants conegudes.

- (a) Demostreu que f(x) té un únic zero real α , el qual està situat entre (M-e) i (M+e).
- (b) Es considera la iteració simple $x_{k+1} = e \sin(x_k) + M \ (\forall k \ge 0)$, amb $x_0 = M$. Demostreu que la successió $(x_k)_{k>0}$ convergeix a α .
- (c) En el cas e = 0.1, doneu una estimació a priori de quants iterats de la iteració simple anterior faran falta per a obtenir una precisió de 10^{-20} . I si e = 0.9?
- (d) Es canvia la iteració simple anterior per la de Newton-Raphson, amb la mateixa condició inicial $x_0 = M$. Feu una estimació de quantes iteracions caldria fer ara, en els dos casos de l'apartat anterior.
- 57 a) Sigui a > 0 fixat. Es considera la iteració

$$x_{k+1} = g(x_k) \equiv +\sqrt{x_k + a} \; , \; \forall k \ge 0 \; ,$$

amb un valor inicial $x_0 \ge -a$ per tal que la successió $(x_n)_{n>0}$ estigui ben definida.

- a) Demostreu que, si la successió és convergent, llavors el seu límit α és l'arrel més gran de la funció $f(x) = x^2 x a$. Deduïu que $\alpha > 1$.
- b) Vegeu que la iteració proposada és localment convergent en un entorn del valor α anterior.
- c) Es considera la successió generada amb la condició inicial $x_0 = 1$. Vegeu que és estrictament monòtona creixent i que està fitada superiorment (per tant, és convergent i, pel primer apartat, el seu límit és el valor α).
 - Nota. Les gràfiques de les funcions y = g(x) i y = x us poden donar idees, però cal fer les demostracions sense dibuixos.
- d) Continuant de l'apartat anterior, feu una estimació d'un valor n_0 , independent de a, tal que $|x_n \alpha| < 10^{-6}|x_0 \alpha|$, $\forall n \geq n_0$.

58 Sigui a > 0 un valor real. Volem calcular $\alpha = \frac{1}{a}$ amb molta precisió, sense fer la divisió. Per això, considerem la funció

$$f(x) = \frac{1}{x} - a \; ,$$

l'únic zero de la qual és α .

- (a) Escriviu la iteració que s'obté aplicant el mètode de Newton-Raphson a la funció f(x). Comproveu que es pot passar d'un iterat al següent fent només dos productes i una resta.
- (b) Sigui $(x_n)_{n\geq 0}$ una successió generada pel mètode anterior. Vegeu que $x_{n+1} \alpha = -a(x_n \alpha)^2$.
- (c) En el cas a=3 i prenent $x_0=0.3$, de manera que $|e_0|=0.0333\ldots$, quantes iteracions k caldria fer per a assegurar que $|x_k-\alpha|<10^{-1000}$?
- **59** Sigui $f: R \to R$ una funció tantes vegades diferenciable com calgui. I sigui α una arrel doble (i no triple) de f. O sigui, $f(\alpha) = 0$, $f'(\alpha) = 0$, $f''(\alpha) \neq 0$. En aquest cas, és conegut que el mètode de Newton-Raphson per a trobar α té ordre 1.

Es considera la funció $g(x) = \frac{f(x)}{f'(x)}$, la qual està ben definida en un entorn de α i verifica $g(\alpha) = 0$.

(a) Comprova que el mètode de Newton-Raphson aplicat a la funció g(x) dóna

$$x_{k+1} = x_k - \frac{f(x_k)f'(x_k)}{f'(x_k)^2 - f(x_k)f''(x_k)}$$
.

- (b) Demostra que aquesta iteració, suposant que és convergent a α i que $f'''(\alpha) \neq 0$, té ordre 2. Calcula el coeficient asimptòtic de l'error en funció de derivades adequades de f en α .
- (c) Aplicació: Per a $f(x) = x^2 + x^3$ i $\alpha = 0$, es considera $x_0 = 1$. Fes 2 iterats del mètode de Newton-Raphson aplicat a f. Fes també 2 iterats del mètode de Newton-Raphson aplicat a g = f/f'.
- **60** A la primera meitat del segle XIII, Fibonacci va resoldre l'equació $x^3 + 2x^2 + 10x 20 = 0$.
- (a) Demostra que l'equació anterior només té una arrel real (sigui α), i troba l'interval I de longitud 1 i d'extrems enters que conté α .

(b) Es consideren els dos mètodes iteratius

$$x_{k+1} = \frac{20 - 2x_k^2 - x_k^3}{10} \equiv g(x_k) , \quad x_{k+1} = \frac{20}{10 + 2x_k + x_k^2} \equiv h(x_k) .$$

Quin dels dos és millor per a trobar α ? Per què?

- (c) Se suposa que x_0 és el punt mig de I i que es poden fer els càlculs amb precisió il·limitada. Per al mètode definit per la iteració h(x), quants iterats són necessaris per a obtenir α amb 20 decimals correctes?
- **61** Volem trobar els zeros positius de la funció $f(x) = \frac{1}{2}x^2 + x \cos(x)$.
 - a) Demostreu que f té un únic zero positiu, α . Trobeu un interval I de longitud 1 i extrems enters tal que $\alpha \in I$.
 - b) Considerem la funció $g(x) = -1 + \sqrt{1 + 2\cos x}$. Demostreu que g(x) està ben definida si $x \in I$ i que α és l'únic punt fix de g en I.
 - c) Trobeu una constant L tal que 0 < L < 1 i $|g(x) g(y)| \le L|x y|$, per a tot $x, y \in I$.
 - d) Considerem el procés iteratiu $x_{k+1} = g(x_k)$, amb x_0 el punt mig de I. Trobeu $k_0 \ge 0$ tal que si $k \ge k_0$ llavors $|x_k \alpha| \le 10^{-30}$.
 - e) Considerem ara el procés iteratiu $x_{k+1} = h(x_k)$, on $h(x) = \cos x \frac{1}{2}x^2$. És localment convergent? En tal cas, és millor o pitjor que l'anterior?
- **62** Es considera l'equació

$$e^{4x+1} = \frac{1}{x+3}$$
, $x > -3$.

- (a) Demostreu que té una única solució real i que aquesta pertany a l'interval I = (-1,0).
- (b) Es consideren els dos mètodes iteratius

$$\exp(4x_k + 1) = \frac{1}{x_{k+1} + 3}$$
 i $\exp(4x_{k+1} + 1) = \frac{1}{x_k + 3}$, $\forall k \ge 0$.

Només un d'ells és localment convergent a la solució de l'apartat (a). Quin?

- (c) Pel mètode localment convergent anterior (el notem $x_{k+1} = g(x_k)$), demostreu que $g(I) \subset I$. Si es comença amb $x_0 \in I$, feu una estimació a priori de quants iterats són necessaris per a aconseguir una precisió de $\frac{1}{2}10^{-10}$.
- 63 (a) Sigui $f: R \to R$ una funció suficientment derivable amb continuïtat, i α un zero de multiplicitat $p \geq 2$: $f(\alpha) = 0, f'(\alpha) = 0, \dots, f^{(p-1)}(\alpha) = 0, f^{(p)}(\alpha) \neq 0$. Sigui (x_n) una successió generada pel mètode de Newton-Raphson, aplicat a la funció f, tal que convergeix cap a α i $x_n \neq \alpha$ ($\forall n \geq 0$). Demostreu que l'ordre de convergència és 1 i trobeu el coeficient asimptòtic de l'error.

(b) Trobeu l'ordre i el coeficient asimptòtic si afegim la hipòtesi $f^{(p+1)}(\alpha) \neq 0$, i modifiquem el mètode de Newton-Raphson de la manera següent:

$$x_{n+1} = x_n - p \frac{f(x_n)}{f'(x_n)} .$$

(c) Aplicant el mètode de Newton-Raphson a una determinada funció obtenim la successió

i	x_i
0	0.5
1	0.333505
2	0.221832
3	0.147464
4	0.0980568
5	0.0652386
6	0.0434272

Sembla convergir cap a 0, però no quadràticament sinó linealment, indicant que $\alpha=0$ és una arrel múltiple. Quina és la seva multiplicitat?

64 (a) Sigui g(x) una funció $p(\geq 1)$ vegades diferenciable amb continuïtat en un entorn d'un punt fix $\alpha = g(\alpha)$ i que verifica

$$g^{(j)}(\alpha) = 0 \ \forall j = 1, 2, \dots, p-1, \ g^{(p)}(\alpha) \neq 0.$$

Demostreu que el mètode iteratiu $x_{n+1} = g(x_n)$, si dóna una successió convergent a α , té ordre de convergència p. Quin és el coeficient asimptòtic de l'error?

(b) Sigui c>0 un valor real fixat. Per a calcular $\alpha=c^{1/3}$ es vol usar una fórmula iterativa de la forma:

$$x_{n+1} = px_n + \frac{qc}{x_n^2} + \frac{rc^2}{x_n^5} \quad \forall n \ge 0 ,$$

on p, q i r han de ser constants. Determineu els valors de p, q i r per tal que el mètode sigui adequat per a trobar α i tingui l'ordre més gran possible (us ha de donar ordre 3).

(c) Per a la fórmula trobada a l'apartat (b), considerem el cas c=2. Se sap que $\alpha \approx 1.26$ i es pren $x_0=1$. Suposant que els càlculs es poden fer amb precisió infinita, feu una estimació de quants iterats farien falta per a aconseguir una precisió de 10^{-100} .