STAC67: Regression Analysis

Lecture 11

Sohee Kang

Feb. 24, 2021

Outline of the Lecture

- Write the CI and PI in terms of matrix notation
- Re-write the Sum of Squares in ANOVA with quadratic forms
- Prove that MSE is the unbiased estimator of σ^2
- Introduce the adjusted R^2

Properties of a prediction Y_{pred_0}

The prediction of a new observation

$$Y_0 = \underline{x}_0' \underline{\beta} + \epsilon_0$$

 $Y_0 = \underbrace{x_0'}_{0} \underbrace{\beta}_{0} + \epsilon_0$ for a vector of values of independent variables $\underbrace{x_0}_{0}$ is

$$\widehat{Y}_{pred_0} = \underline{x}_0' \widehat{\beta}$$

• The mean and variance of \hat{Y}_{pred_0} are $E(\hat{Y}_{pred}) = \chi_0 B$ $Vor(\hat{Y}_{pred}) = (1 + \chi_0(x'x)^{-1} \chi_0^{-1}) + (1 + \chi_0(x'x)^{-1} \chi_0^{-1}) +$

Moreover, when $\underline{\epsilon} \sim N(\underline{0}, \sigma^2 I)$ then

Properties of a prediction \widehat{Y}_{pred_0}

- The variance of a prediction for a new observation is larger than the variance of the estimator of the mean response even though the point estimate is the same. That is, for a vector of values of predictor variables x_0
 - Prediction:

$$\widehat{Y}_{\textit{pred}_0} = \underline{x}_0' \widehat{eta}$$
 with variance $[1 + \underline{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \underline{x}_0] \sigma^2$

• Mean response:

$$\widehat{Y}_{0} = \underbrace{x'_{0}\widehat{\beta}}_{0} \quad \text{with variance} \quad \underbrace{x'_{0}(\boldsymbol{X}'\boldsymbol{X})^{-1}x_{0}\sigma^{2}}_{/} \\ \qquad \qquad \boldsymbol{N} \left(\underbrace{X'_{0} \, \boldsymbol{\beta}}_{/} \, \underbrace{X'_{0} \, (X'_{0}X)^{-1}X'_{0}\sigma^{2}}_{/} \right)$$

Estimates and precision: summary

Consider the model $Y = \mathbf{X}\underline{\beta} + \epsilon$, with $E(\underline{\epsilon}) = 0$, $Var(\underline{\epsilon}) = \mathbf{I}\sigma^2$

Quantity	y Estimator	Variance of the estimator
\underline{eta}	B	(x,x)-1 65
E(Y)	3= HY	62 H
£	e = (1-4) }	
~ Y ₀	70 B	$\left(+ \chi^{\varrho}(\chi_{ X})_{- X^{\varrho}} \right) \rho_{s}$

Analysis of Variance and Quadratic Forms

- Quadratic forms of \underline{Y} : $\underline{Y}'A\underline{Y}$, where A is a symmetric matrix of coefficients called defining matrix
- Next section: Study the properties of residual, regression and total sum of squares and sum of squares used in inference
- ullet They are all quadratic forms of \underline{Y}

Partitioning of total sum of squares

We know that

$$\widetilde{Y} = \widehat{\widetilde{Y}} + \widehat{e}$$

 We will generalize the partitioning of the total sum of squares that we had for simple linear regression, i.e.

$$SST = SSR + SSE$$

$$\sum (\hat{y}_i - \hat{y})^2 = \sum (\hat{y}_i - \hat{y})^2 + \sum (\hat{y}_i - \hat{y}_i)^2$$

to multiple linear regression.

Total sum of squares

• $SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$ in matrix notation:

Exercise

Show that $SST = Y'Y - \frac{1}{n}Y'JY$, where **J** is the $n \times n$ square matrix with all elements equal to 1.

$$SST = \sum Y_{i}^{2} - n \sqrt{y^{2}}$$

$$= \sum Y_{i}^{2} - n \left(\frac{1}{\sqrt{y}} \sum Y_{i} \right)^{2}$$

$$= \sum Y_{i}^{2} - n \left(\frac{1}{\sqrt{y}} \sum Y_{i} \right)^{2}$$

$$= \sum Y_{i}^{2} - n \left(\frac{1}{\sqrt{y}} \sum Y_{i} \right)^{2}$$

- SST is a quadratic form of Y because
- The defining matrix associated is

Residual sum of squares

• $SSE = \sum_{i=1}^{n} e_i^2$ in matrix notation:

Exercise

• SSE is a quadratic forms of Y because

$$SSE = Y'(I - H)Y$$

• The defining matrix is I - H.

Regression sum of squares

• $SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$ in matrix notation:

Exercise

Show that
$$SSR = \widehat{\beta}' X' Y - \frac{1}{n} Y' J Y$$

$$= \widehat{\Sigma} Y \widehat{\lambda}^{2} - \widehat{\lambda} Y^{2}$$

$$= \widehat{\beta}' \widehat{\lambda} \times \widehat{\beta} - \frac{1}{n} Y' J Y$$

$$= \widehat{\beta}' \widehat{\lambda} \times \widehat{\beta} - \frac{1}{n} Y' J Y$$

$$= \widehat{\beta}' \widehat{\lambda} \times \widehat{\lambda$$

Regression sum of squares

- SSR is a quadratic forms of Y because $y' \times (x' \times)^{-1} \times (y' 1) = y' + (y' 1) = y' +$
- The defining matrix associated is: $H \frac{1}{2}J$

Exercise

Check that

$$\begin{array}{c}
SST = SSR + SSE \\
\sqrt{\left(I - \frac{1}{n} I \right)} y = y \left(\left(+ - \frac{1}{n} I \right) + y \left(I + H \right) \right) \\
= y' \left(I - \frac{1}{n} I \right) y
\end{array}$$

Degrees of freedom

- For now: the number of values in the calculation of a statistic that can freely vary.
- SST has $\Lambda 1$
- SSE has $\Lambda (p+1)$ SSR has (p+1)-1

degrees of freedom

degrees of freedom

degrees of freedom.

Mean squares

- Mean squares: sum of squares divided by its associated degrees of freedom
- Regression mean squares:

$$MSR = \frac{SSR}{P}$$

Residual mean squares:

$$MSE = \frac{SSE}{\sqrt{-(p+1)}}$$

Analysis of variance table

 Analysis of variance (ANOVA) table to display the sum of squares and degrees of freedom

Source of	Sum of di	f Mean	44.5 10
variation	squares	squares	F= MSR MSF
Regression	SSR (p+1)-	$MSR = \frac{SSR}{(p+1)^{-1}}$	
Residual		$H()MSE = \frac{SSE}{n - (\beta + 1)}$) \range ((p+1)-1, n-(p+1))
Total	SST ^-		

• The results in the ANOVA table will be used to construct a global test for the regression coefficients.

Ho:
$$B_1 = B_2 = \cdots = B_p = 0$$

Hr: at least one B; $\neq 0$

Properties of a quadratic form of a random vector

Var (e) = (I-H) 62 E(e) = 0 HY= XB

Consider a quadratic form

$$U = Z'AZ$$

of a random vector \underline{Z} where \boldsymbol{A} is a symmetric matrix (the defining matrix). We have

$$E(\underline{Z}'\mathbf{A}\underline{Z}) = \operatorname{tr}[AV\alpha(z)] + \underline{E}(z)'A \underline{E}(z)$$

$$Var(\underline{Z}'\mathbf{A}\underline{Z}) = 2 + r(AV\alpha(z)AV\alpha(z))$$

$$+ 4 \underline{E}(z)'AV\alpha(z)AE(z)$$

Unbiased estimator of σ^2

Exercise: Show that $E(e'e) = (n - p')\sigma^2$.

Hint: use that $tr(\mathbf{M}) = p'$ (without proof) and the quadratic formulation of e'e.

$$E(e'e) = tr(Var(e)) + E(e)'E(e)$$

$$= tr((I-H)6^{2}) to$$

$$= 6^{2}(r-p) = 6^{2}(r-p)$$

$$= 6^{2}(r-p) = 6^{2}(r-p)$$

Exercise: Show that the estimator

$$MSE = s^2 = \frac{e'e}{n-p'}$$

is an unbiased estimator of σ^2 .

E(e'e/(n-p')) =
$$\frac{1}{n-p'} \cdot (n-p') \cdot 6^2 = 62$$

Thus is an unbiased estimator.

Coefficient of multiple determination

$$R^2 = \frac{SSR}{SST}$$

- Fraction of the variation in Y explained by the model (i.e. its linear relationship with X_1, \ldots, X_p)
- We have $0 \le R^2 \le 1$

Exercise Show that

- 2 $R^2 = 1$ when $\hat{Y}_i = Y_i$ for each i = 1, ..., n, i.e. when all the observations fall on the fitted regression surface.

Adjusted coefficient of multiple determination}

- Adding more X to the model R^2 .
- Adjusted R^2 : modified measure that accounts for the number of variables in the model.
- Adjusted coefficient of multiple determination:

$$R_{adj}^2 = 1 - \frac{\frac{SSE}{n-p'}}{\frac{SST}{n-1}} = 1 - \left(\frac{n-1}{n-p'}\right) \frac{SSE}{SST}$$

- R_{adi}^2 does not have the same interpretation as R^2 .
- \bullet R_{adi}^2 may decrease when we add a new variable because
- R_{adi}^2 useful for selecting explanatory variables.