

## **Probability and Random Processes**

### **Contact Information**

Instructor: Dr. Keivan Mallahi-Karai Office: Research I, 108.

Email: k.mallahikarai@jacobs-university.de Office Hours: TBA

# **Course Objectives**

This module aims at providing a basic knowledge of probability theory and random processes suitable for students in engineering, Computer Science, and Mathematics. The module provides students with basic skills needed for formulating real-world problems dealing with randomness and probability in mathematical language, and methods for applying a toolkit to solve these problems. Mathematical rigor is used where appropriate. A more advanced treatment of the subject is deferred to the third-year module Stochastic Processes.

The lecture comprises the following topics

- Brief review of number systems, elementary functions, and their graphs
- Outcomes, Events & Sample Space. Combinatorial probability.
- · Conditional probability and Bayes' formula.
- Binomials & Poisson-Approximation
- Random Variables, distribution and density functions.
- Independence of random variables.
- · Conditional Distributions and Densities.
- Transformation of random variables.
- Joint distribution of random variables and their transformations.
- Expected Values & Moments, Covariance.

- · High dimensional probability: Chebyshev and Chernoff bounds.
- Moment Generating Functions & Characteristic Functions.
- · The Central limit theorem.
- Random Vectors & Moments, Covariance matrix, Decorrelation.
- · Multivariate normal distribution.
- · Markov chains, stationary distributions.

#### Homework

There will be 8 homework for this course. You can find Problem sets on the course page. The grade will be calculated based on the top 6 grades. Late homework will not be accepted. You are encouraged to work in groups, but each class participants has to write the homework by themselves. You are encouraged to use books or internet resources, but do not search for the problems appearing on the assignments.

#### Final exam

The final exam is based on all the topics discussed in class during this semester. The exam period is in the range 90-120 minutes. The exam is structure as follows:

| Question type                                          | Points |
|--------------------------------------------------------|--------|
| Conceptual multiple choice and true-false questions    | 30     |
| Computational myltiple choice and true-false questions | 30     |
| Seen problems (similar to homework problems)           | 20     |
| Unseen problems                                        | 20     |

## **Grade Policies**

The grade in this class is fully based on the performance in the final exam. The bonus points collected by doing homework and Moodle quizzes can raise your grade by up to 0.66 points. The bonus points will only be added if the final grade is at least 45.

## **The Code Of Academic Integrity**

Rules and regulations found in The Code Of Academic Integrity apply to this class.

# **Syllabus Change Policy**

This syllabus is only a guide for the course and is subject to change with advanced notice.

This syllabus is only intended as guidance for class participants. In particular, it is subject to modification in case needs arise.

## **Textbooks**



Fundamentals of probability.

S. Ghahramani

Large set of exericsees



Probability and random processe.

G. Grimmet and D.Stirzacker.

Large set of exercises

Additional topics



Probability theory

Ya. Sinai

More advenced

Additional topics

# Course schedule

| 1  | Fri, 2. Sep. 2022  | Basica ideas of probability                                      |             |          |
|----|--------------------|------------------------------------------------------------------|-------------|----------|
| 2  | Wed, 7. Sep. 2022  | Pascal's equiprobabable model, sample space                      |             |          |
| 3  | Fri, 9. Sep. 2022  | Counting, Birthday paradox                                       |             |          |
| 4  | Wed, 14. Sep. 2022 | Inclusion and exclusion                                          | PS 1 Posted |          |
| 5  | Fri, 16. Sep. 2022 | Geometric probability                                            |             |          |
| 6  | Wed, 21. Sep. 2022 | Conditional probability, independence                            |             |          |
| 7  | Fri, 23. Sep. 2022 | Bayes' formula                                                   | PS 2 posted | PS 1 due |
| 8  | Wed, 28. Sep. 2022 | Random variables, discrete random variables, distribution        |             |          |
| 9  | Fri, 30. Sep. 2022 | Properties of distribution function, continuous random variables |             |          |
|    | Wed, 5. Oct. 2022  | Research day; class does not meet                                |             |          |
| 10 | Fri, 7. Oct. 2022  | Important classes of random variables                            | PS 3 posted | PS 2 due |
|    | Wed, 12. Oct. 2022 | Practice Exam                                                    |             |          |
|    | Fri, 14. Oct. 2022 | Discussion of Practice exam                                      |             |          |
| 11 | Wed, 19. Oct. 2022 | Expectation and variance for discrete random variables           |             |          |
| 12 | Fri, 21. Oct. 2022 | Properties of expectation, applications                          | PS4 posted  | PS3 due  |
| 13 | Wed, 26. Oct. 2022 | Expectation and variance for continuous random variables         |             |          |
| 14 | Fri, 28. Oct. 2022 | Joint distribution, marginals, independence of random variables  |             |          |
| 15 | Wed, 2. Nov. 2022  | Properties of independent s random variable, covariance          | PS 5 posted | PS4 due  |
| 16 | Fri, 4. Nov. 2022  | Joint density for continuous random variables                    |             |          |
| 17 | Wed, 9. Nov. 2022  | Conditional distribution and conditional expectation             |             |          |
| 18 | Fri, 11. Nov. 2022 | Conditional density functions                                    |             |          |
| 19 | Wed, 16. Nov. 2022 | Concentration inequalities, the law of large numbers             | PS6 posted  | PS5 due  |
| 20 | Fri, 18. Nov. 2022 | The central limit theorem and applications                       |             |          |
| 21 | Wed, 23. Nov. 2022 | Practice Exam II                                                 |             |          |
| 22 | Fri, 25. Nov. 2022 | Markov property, Markov chains, examples                         | PS7 posted  | PS6 due  |
| 23 | Wed, 30. Nov. 2022 | Computation with Markov chains, long term behavior               |             |          |
| 24 | Fri, 2. Dec. 2022  | Stationary distribution for Markov chains                        | PS 8 posted |          |
| 25 | Wed, 7. Dec. 2022  | Review                                                           |             | PS7 due  |
|    |                    |                                                                  |             |          |