Approximation diophantienne dans les variétés abéliennes

Manuel Pégourié-Gonnard

Université Pierre et Marie Curie

Soutenance de thèse 22 octobre 2012 (version corrigée)

Introduction: rappels historiques

Grappes et conditions de décompte

Énoncés des résultats principaux

Stratégie générale

Inégalités de Vojta et Mumford

Résultats de décompte

Théorème de Roth

Théorème

Intro

Soient $\xi \in \mathbf{R}$ un nombre algébrique et $\varepsilon > 0$ un réel. Il n'existe qu'un nombre fini d'entiers p et q tels que

$$\left|\frac{p}{q} - \xi\right| < |q|^{-2-\varepsilon} .$$

- Version quantitative: connue.
- Version effective: problème ouvert.

Théorème de Roth étendu

Théorème (Ridout)

Soit $\xi \in \mathbf{Q}$ un nombre algébrique. Soient par ailleurs k un corps de nombres et S un ensemble fini de places de k, étendues de façon arbitraire à $k(\xi)$. Pour tout $\varepsilon > 0$, il n'existe qu'un nombre fini de points $x \in k$ tels que

$$\prod_{v \in \mathcal{S}} |x - \xi|_v^{\Delta_v} < H_2(x)^{-2-\varepsilon}$$

où $\Delta_v = [k(\xi)_v : \mathbf{Q}_v]/[k(\xi) : \mathbf{Q}]$ et chaque valeur absolue est normalisée de façon à prolonger une des valeurs absolues usuelles de O.

Théorème (Schmidt, Schlickewei)

Soient n un entier et $L_0, \ldots, L_n \in \overline{\mathbb{Q}}[X_0, \ldots, X_n]$ des formes linéaires indépendantes. Soient par ailleurs k un corps de nombres et \mathcal{S} un ensemble fini de places de k, étendues de façon arbitraire à $k(L_0, \ldots, L_n)$. Pour tout $\varepsilon > 0$, l'ensemble des points $x \in \mathbf{P}^n(k)$ tels que

$$\prod_{v \in \mathcal{S}} \prod_{i=0}^{n} \left(\frac{|L_i(x)|_v}{\|x\|_v} \right)^{\Delta_v} < H_2(x)^{-n-1-\varepsilon}$$

est contenue dans une union finie de sous-variété linéaires strictes de ${\bf P}^n$.

Ex-conjecture de Mordell

Théorème (Faltings 1983)

Soient C une courbe projective de genre $g \ge 2$ et k un corps de nombres. Alors C(k) est fini.

- Autre démonstration indépendante : Vojta 1991.
- Versions quantitatives: Rémond 2002, Farhi 2003.

Ex-conjecture de Mordell-Lang

Théorème (Faltings 1991, théorème I)

Soit V une sous-variété d'une variété abélienne $\mathcal A$ définie sur un corps de nombres k. Si V ne contient pas de translaté de sous-variété abélienne non nulle, alors V(k) est fini.

• Version quantitative : Rémond 2002.

Approximation sur les variété abéliennes

Théorème (Faltings 1991, théorème II)

Soit V une sous-variété quelconque de \mathcal{A} , v une place de k, et $\varepsilon > 0$. Il n'existe qu'un nombre fini de points x dans $\mathcal{A}(k)$ tels que

$$0 < \operatorname{dist}_v(x, V) \leqslant H(x)^{-\varepsilon}$$
.

Corollaire (Ex-conjecture de Lang)

Soit A une variété abélienne plongée dans \mathbf{P}^n et E un hyperplan de \mathbf{P}^n . Alors $A \setminus E$ ne possède qu'un nombre fini de points entiers.

Versions quantitatives

- Cas des courbes elliptiques : Gross-Silverman 1995, Farhi 2003, Wagener 2012.
- Cas général (avec restrictions): MPG 2012.

Multiplication des approximations exceptionnelles

Proposition

Soit $\mathcal B$ une sous-variété abélienne et $V=Z+\mathcal B$. On considère $\varepsilon>0$ et $x\in\mathcal E(V,\varepsilon)\cap\Gamma$. De plus, on note $\hat h_{\inf}(\mathcal B\cap\Gamma)$ l'infemum de $\hat h(y)$ lorsque y parcourt l'ensemble des points d'ordre infini de $\mathcal B(\overline{\mathbb Q})\cap\Gamma$, ou $+\infty$ si cet ensemble est vide.

Pour tout $0 < \tau \le 1$, il existe $\varepsilon' > 0$ explicite tel que l'ensemble $\mathcal{E}(V, \varepsilon') \cap \Gamma$ contient au moins

$$\operatorname{Card} \left(\mathcal{B}(\overline{\mathbf{Q}})_{\operatorname{tor}} \cap \Gamma \right) \left(2 \left\lfloor \sqrt{\tau \hat{h}(x) / \hat{h}_{\operatorname{inf}}(\mathcal{B} \cap \Gamma)} \right\rfloor + 1 \right)$$

points de hauteur normalisée supérieure ou égale à $(1-\sqrt{\tau})^2 \hat{h}(x)$ (avec la convention $(+\infty)^{-1}=0$).

Obstruction au décompte explicite

Corollaire

Soit $\mathcal B$ une sous-variété abélienne et $V=Z+\mathcal B$. Supposons que pour un certain $\varepsilon_0>0$ et un certain Γ de type fini, il existe R et N tels que

$$\operatorname{Card}\{x \in \mathcal{E}(V, \varepsilon_0) \cap \Gamma \text{ tel que } \hat{h}(x) \geqslant R\} \leqslant N.$$

Alors, pour tout $\varepsilon > \varepsilon_0$, il existe $B = B(\varepsilon_0, R, N, \hat{h}_{\min}(\mathcal{B} \cap \Gamma))$ explicite tel que les points de $\mathcal{E}(V, \varepsilon) \cap \Gamma$ sont tous de hauteur normalisée inférieure à B.

Conditions pour le décompte

Soient $F \subset \mathcal{A}(\overline{\mathbf{Q}})$ un sous-ensemble et $\tau > 0$ un réel.

Définition

On dit que F satisfait $C_1(\tau, \varepsilon)$ s'il existe deux points distincts x et y dans F et $\mathcal B$ une sous-variété abélienne telle que $x \in \mathcal{E}((V:\mathcal{B}),\varepsilon)$ avec $x-y \in \mathcal{B}$ et $\hat{h}(x-y) \leqslant \tau \hat{h}(x)$. On dit que F satisfait $C_1(\tau, \varepsilon)$ si F ne satisfait pas $\overline{C}_1(\tau, \varepsilon)$.

Définition

On dit que F satisfait $\overline{C}(\tau)$ s'il existe une sous-variété abélienne ${\mathcal B}$ de ${\mathcal A}$ dont un translaté est contenu dans V et deux points distincts x et y dans F, tels que $x - y \in \mathcal{B}$ et $\hat{h}(x - y) \leq \tau \hat{h}(x)$. On dit que F satisfait la condition $C(\tau)$ si F ne satisfait pas $\overline{C}(\tau)$.

Cas d'un translaté de sous-variété abélienne

Théorème

Soient $V = z + \mathcal{B}$ et une famille x_1, \ldots, x_p de points de $\mathcal{A}(k)$ satisfaisant à $C(\varepsilon/2d)$ et telle que pour tout i,

$$0 < \operatorname{dist}_v(x_i, V) < \omega_v H_2(x_i)^{-\lambda_v \varepsilon} \ \forall v \quad et \ \hat{h}(x_i) > \omega \Lambda^{(4g)^{4g^2}}$$

avec $\sum \lambda_v \Delta_v = 1$ et certains ω_v tels que $\prod \omega_v \leqslant \omega$, ainsi que

$$\Lambda = 34\varepsilon^{-2} \left(5(\deg A)(3g^2d)^g \right)^{2g+2}$$

$$\omega = d^{g+1}c_{\mathcal{A}} + (g+1)\deg \mathcal{A}\Big(d^gh_1(V) + 2(2(d+1))^{n+1}\Big)$$

$$p \leqslant 2 \cdot \sqrt{\frac{d}{\varepsilon}} (4g)^{4g^2+1} (\log \Lambda) \left(120760 (\deg \mathcal{A}) d \, \varepsilon^{-1} \right)^r \ .$$

Cas d'un translaté de sous-variété abélienne

Théorème

Soient $V = z + \mathcal{B}$ et une famille x_1, \ldots, x_p de points de $\mathcal{A}(k)$ satisfaisant à $C(\varepsilon/2d)$ et telle que pour tout i,

$$0 < \prod_{v \in \mathcal{S}} \operatorname{dist}_v(x_i, V)^{\Delta_v} < H_2(x_i)^{-\varepsilon} \quad \text{et } \hat{h}(x_i) > \omega \Lambda^{(4g)^{4g^2}}$$

avec

$$\Lambda = 34\varepsilon^{-2} (5(\deg A)(3g^2d)^g)^{2g+2}$$

$$\omega = d^{g+1}c_A + (g+1)\deg A (d^gh_1(V) + 2(2(d+1))^{n+1})$$

$$p \leqslant 2 \cdot 5^{\operatorname{Card} \mathcal{S}} \cdot \sqrt{\frac{d}{\varepsilon}} (4g)^{4g^2 + 1} (\log \Lambda) \left(120760 (\deg \mathcal{A}) d \, \varepsilon^{-1} \right)^r \ .$$

Cas d'un translaté de sous-variété abélienne

Théorème

Soient $V = z + \mathcal{B}$ et une famille x_1, \ldots, x_p de points de $\mathcal{A}(k)$ satisfaisant à $C(\varepsilon/2d)$ et telle que pour tout i,

$$0 < \prod_{v \in \mathcal{S}} \operatorname{dist}_v(x_i, V)^{\Delta_v} < H_2(x_i)^{-\varepsilon} \exp(-d\omega \Lambda^{(4g)^{4g^2}})$$

avec

$$\Lambda = 34\varepsilon^{-2} (5(\deg A)(3g^2d)^g)^{2g+2}$$

$$\omega = d^{g+1}c_A + (g+1)\deg A (d^gh_1(V) + 2(2(d+1))^{n+1})$$

$$p \leqslant 2 \cdot 5^{\operatorname{Card} \mathcal{S}} \cdot \sqrt{\frac{d}{\varepsilon}} (4g)^{4g^2 + 1} (\log \Lambda) \left(120760 (\deg \mathcal{A}) d \, \varepsilon^{-1} \right)^r \; .$$

Cas général

Théorème

Soit une famille x_1, \ldots, x_n de points de $\mathcal{A}(k)$ satisfaisant à $C(\frac{\varepsilon}{d^{M}(2M)^{(M+1)u}})$ et telle que

$$0 < \prod_{v \in \mathcal{S}} \operatorname{dist}_v(x_i, V)^{\Delta_v} < H_2(x_i)^{-\varepsilon}$$

$$\hat{h}(x_i) > (h_1(V) + c_A) \varepsilon^{-2(4g)^{4g^2}} d^M (3M)^{(M+1)u+3}$$

pour tout i, avec $M=\left(2^{34}\,c_{A}'\,d\right)^{(r+1)g^{5(u+1)^2}}+1.$ Alors on a

$$p \leqslant 5^{\operatorname{Card} S} M^2 \left(d^M (3M)^{(M+1)u} \right)^{(r+1)/2} \varepsilon^{-r-1/2} \log(e/\varepsilon) .$$

Idée rayonnante de Vojta

- Séparation en petits points et grands points.
- Séparation des grands points en cônes.
- Inégalité de Vojta pour la finitude.
- Inégalités de Vojta et Mumford explicites pour le décompte.

Inégalité de ...

Il n'existe pas de famille d'approximations exceptionnelles (x_1,\ldots,x_m) , pour m assez grand, telle que

Vojta

- $\hat{h}(x_1) \geqslant \alpha_V$
- $\cos(x_i, x_i) \geqslant 1 \gamma_V$
- $\hat{h}(x_i) \geqslant \beta_{\rm V} \hat{h}(x_{i-1})$

Mumford

- $\hat{h}(x_1) \geqslant \alpha_{\mathbf{M}}$
- $\cos(x_i, x_i) \geqslant 1 \gamma_{\mathbf{M}}$
- $\hat{h}(x_1) \leqslant \hat{h}(x_i) \leqslant \beta_{\mathbf{M}} \hat{h}(x_1)$

Inégalité de Vojta

Théorème

Il n'existe dans $\mathcal{A}(\overline{\mathbf{Q}})$ aucune famille de points x_1, \dots, x_m avec $m \geqslant g+1$ satisfaisant simultanément aux conditions suivantes :

$$0 < \operatorname{dist}_{v}(x_{i}, V) < \omega_{v}^{-1} H_{2}(x_{i})^{-\lambda_{v}\varepsilon} \quad \forall v \in \mathcal{S}$$

$$\hat{h}(x_{1}) > \omega \Lambda_{4}^{(2mg)^{mg}}$$

$$\hat{h}(x_{i}) > \hat{h}(x_{i-1}) \cdot \Lambda_{4}^{(2mg)^{mg}}$$

$$\cos(x_{i}, x_{j}) > 1 - (m \eta)^{-1}$$

avec certains ω_v tels que $\prod \omega_v \leqslant \omega$ et

$$\eta = \left(86N \cdot 5^{g} d\varepsilon^{-1}\right)^{\frac{m}{m-g}} \qquad \Lambda_{4} = \eta \left(\left(\sqrt{2} m g d\right)^{g} \deg \mathcal{A}\right)^{m}$$

$$\omega = d \max \left(d^{g} h_{1}(\mathcal{A}), c_{\Theta}, \hat{c}_{\Theta}\right) + (g+1) \deg \mathcal{A}\left(d^{g} h_{1}(V) + \left(4d\right)^{n+2}\right)$$

Inégalité de Mumford Cas des translatés de sous-variété abélienne

Théorème

Soient $\phi > 0$ et $\rho > 0$ tels que

$$\frac{\rho^2}{4} + \rho\phi + 2\phi \leqslant \frac{\varepsilon}{2d} \ .$$

Si x et y sont deux points de $\mathcal{A}(\mathbf{Q})$ tels que

$$0 < \operatorname{dist}_{v}(z, V) \leqslant H_{2}(z)^{-\lambda_{v}\varepsilon} \quad \forall v \in \mathcal{S} \quad \text{où } z \text{ est } x \text{ ou } y$$

$$\hat{h}(x) > \frac{2}{\varepsilon} d(u+1) \Big(\log(d) + (2 + \frac{\varepsilon}{d}) \hat{c}_{\Theta} + 2c'_{\Theta} + 11 \log(n+1) \Big)$$

$$\cos(x, y) \geqslant 1 - \phi$$

$$\hat{h}(x) \leqslant \hat{h}(y) \leqslant (1 + \rho) \hat{h}(x)$$

alors $x - y \in \mathcal{B}(\mathbf{Q})$.

alors $\{x_1, \ldots, x_m\}$ satisfait $\overline{C}(\tau)$.

Inégalité de Mumford — Cas général

Théorème

Soient $\phi>0$ et $\rho>0$, on note $\tau=\rho^2/4+\rho\phi+2\phi$ et on suppose

$$au \leqslant rac{arepsilon}{d^m (2m)^{(m+1)u}} \quad avec \ m = \left(2^{34} \, h^0_{\!\mathcal{A}} \, d
ight)^{(r+1)g^{5(u+1)^2}} + 1 \ .$$

Si x_1, \ldots, x_m est une famille de points de Γ telle que

$$0 < \operatorname{dist}_{v}(x_{i}, V) \leqslant H_{2}(x_{i})^{-\lambda_{v}\varepsilon} \quad \forall v \in \mathcal{S}$$

$$\hat{h}(x_{m}) \geqslant \frac{4}{\varepsilon} d^{m-1} (2m)^{(m+1)u+1} \Big(h_{1}(V) + 4dm \big(\log d + c'_{\Theta} + \hat{c}_{\Theta} \big) \Big)$$

$$\cos(x_{i}, x_{j}) \geqslant 1 - \phi$$

$$\hat{h}(x_{m}) \leqslant \hat{h}(x_{i}) \leqslant (1 + \rho) \hat{h}(x_{m})$$

Par cône trongué

Lemme

Soit x_1, \ldots, x_n une famille de points de Γ satisfaisant $C(\tau)$ et

$$0 < \operatorname{dist}_{v}(x_{i}, V) \leqslant H_{2}(x_{i})^{-\lambda_{v}\varepsilon} \quad \forall v \in \mathcal{S}$$
$$\hat{h}(x_{i}) \geqslant \alpha$$
$$\cos(x_{i}, x_{j}) \geqslant 1 - \gamma$$

avec $\alpha = \max(\alpha_{V}, \alpha_{M})$ et $\gamma = \min(\gamma_{V}, \gamma)$. Alors on a

$$p \leqslant (m-1) \left\lceil \frac{\ln \beta_{\rm V}}{\ln \beta_{\rm M}} \right\rceil$$
.

Tous les grands points

Fait

Soient r un entier et $\gamma > 0$ un réel. On peut recouvrir \mathbf{R}^r par $|(1+\sqrt{8/\gamma})^r|$ ensembles dans chacun desquels deux points quelconques satisfont $\cos(x,y) \ge 1 - \gamma$.

Lemme

Soit x_1, \ldots, x_p une famille de points de Γ satisfaisant $C(\tau)$ et

$$0 < \operatorname{dist}_{v}(x_{i}, V) \leqslant H_{2}(x_{i})^{-\lambda_{v}\varepsilon} \quad \forall v \in \mathcal{S}$$
$$\hat{h}(x_{i}) \geqslant \alpha$$

$$p \leqslant (m-1) \left[\frac{\ln \beta_{\rm V}}{\ln \beta_{\rm M}} \right] (1 + \sqrt{8/\gamma})^r$$
.

Décompte trivial des petits points

Fait

Soient E un espace euclidien de dimension r et deux réels ρ et μ . On peut recouvrir toute boule (fermée) de rayon ρ par des boules (ouvertes) de rayon μ en nombre inférieur à $(2\frac{\rho}{\mu}+1)^r$.

Corollaire

Soit Γ un sous-groupe de type fini de $\mathcal{A}(\overline{\mathbf{Q}})$; on note r le rang de Γ et $\hat{h}_{\min}(\Gamma)$ le minimum de $\hat{h}(x)$ quand x parcourt l'ensemble des points d'ordre infini de Γ . Pour tout réel positif R, on a

$$\operatorname{Card}\left\{x \in \Gamma \text{ tel que } \hat{h}(x) \leqslant R\right\} \leqslant \operatorname{Card}\Gamma_{\operatorname{tor}}\left(1 + 2\sqrt{R/\hat{h}_{\min}(\Gamma)}\right)^r$$

où Γ_{tor} désigne l'ensemble des points de torsion de Γ .

Inégalité de Liouville

Proposition

Pour tout point $x \in \mathbf{P}^n(\overline{\mathbf{Q}})$, on a soit $x \in V(\overline{\mathbf{Q}})$ soit

$$\prod_{v \in \mathcal{S}} \operatorname{dist}_v(x, V)^{\Delta_v} \geqslant \frac{1}{(n+1)^{3/2} (3d)^{d(u+1)} H_1(V) H_2(x)^d}.$$

Corollaire

Si R est un réel supérieur ou égal à

$$\frac{1}{\varepsilon} \left(h_1(f_V) + d(u+1) \log(3d) + \frac{3}{2} \log(n+1) + d\hat{c}_{\Theta} \right) ,$$

il n'existe aucun point $x \in \mathcal{A}(\overline{\mathbf{Q}})$ tel que

$$0 < \prod_{v \in \mathcal{C}} \operatorname{dist}_v(x, V)^{\Delta_v} \leqslant e^{-dR} H_2(x)^{-\varepsilon} \quad \text{et} \quad \hat{h}(x) \leqslant R \ .$$