Problem Set 4, CS229(Machine Learning)

Ma Yubo

August, 14th, 2021

1 Neural Networks:MNIST image classification

Code Implementation is shown in $p01_nn.py$. And the results are shown below:

Figure 1.1: Training Loss(top) and Dev accuracy(bottom)

2 Off Policy Evaluation and Causal Inference

2.1 Importance Sampling

If $\hat{\pi}_0 = \pi_0$, then we have:

$$E_{s \sim p(s), a \sim \pi_0(s, a)} \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)} R(s, a)$$

$$= \sum_{(s, a)} p(s) \pi_0(s, a) \frac{\pi_1(s, a)}{\pi_0(s, a)} R(s, a)$$

$$= \sum_{(s, a)} p(s) \pi_1(s, a) R(s, a)$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)} R(s, a)$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)} R(s, a)$$
(2.1)

2.2 Weighted Importance Sampling

If $\hat{\pi}_0 = \pi_0$, then we have:

$$\frac{E_{s \sim p(s), a \sim \pi_0(s, a)} \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)} R(s, a)}{E_{s \sim p(s), a \sim \pi_0(s, a)} \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)}}$$

$$= \frac{E_{s \sim p(s), a \sim \pi_1(s, a)} R(s, a)}{\sum_{(s, a)} p(s) \pi_1(s, a)}$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)} R(s, a)$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)} R(s, a)$$
(2.2)

2.3

Consider the case where there is only a single data element $(s^{(0)}, a^{(0)})$ in your observational dataset, then:

$$\frac{E_{s \sim p(s), a \sim \pi_0(s, a)} \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)} R(s, a)}{E_{s \sim p(s), a \sim \pi_0(s, a)} \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)}}$$

$$= \frac{\frac{\pi_1(s^{(0)}, a^{(0)})}{\hat{\pi}_0(s^{(0)}, a^{(0)})} R(s^{(0)}, a^{(0)})}{\frac{\pi_1(s^{(0)}, a^{(0)})}{\hat{\pi}_0(s^{(0)}, a^{(0)})}}$$

$$= R(s^{(0)}, a^{(0)})$$
(2.3)

Under this situation, the estimation of R(s, a) is independent with the policy. Thus the weighted importance sampling estimator is biased.

2.4 Doubly Robust

We will deal with the term below first.

$$E_{s \sim p(s), a \sim \pi_0(s, a)}(E_{a \sim \pi_1(s, a)}\hat{R}(s, a))$$

$$= \sum_{s} \sum_{a} p(s)\pi_0(s, a) \sum_{a'} \pi_1(s, a')\hat{R}(s, a')$$

$$= \sum_{s} \sum_{a'} p(s)\pi_1(s, a')\hat{R}(s, a') \sum_{a} \pi_0(s, a)$$

$$= \sum_{s} \sum_{a'} p(s)\pi_1(s, a')\hat{R}(s, a')$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)}\hat{R}(s, a)$$
(2.4)

2.4.1

If $\hat{\pi}_0 = \pi_0$, then we have:

$$E_{s \sim p(s), a \sim \pi_0(s, a)}((E_{a \sim \pi_1(s, a)}\hat{R}(s, a)) + \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)}(R(s, a) - \hat{R}(s, a)))$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)}\hat{R}(s, a) + E_{s \sim p(s), a \sim \pi_1(s, a)}(R(s, a) - \hat{R}(s, a))$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)}R(s, a)$$

$$(2.5)$$

2.4.2

If $\hat{R}(s,a) = R(s,a)$, then we have the answer directly:

$$E_{s \sim p(s), a \sim \pi_0(s, a)}((E_{a \sim \pi_1(s, a)} \hat{R}(s, a)) + \frac{\pi_1(s, a)}{\hat{\pi}_0(s, a)}(R(s, a) - \hat{R}(s, a)))$$

$$= E_{s \sim p(s), a \sim \pi_0(s, a)}((E_{a \sim \pi_1(s, a)} R(s, a))$$

$$= E_{s \sim p(s), a \sim \pi_1(s, a)} R(s, a)$$
(2.6)

2.5

2.5.1

Drugs are randomly assigned to patients, but the interaction between the drug, patient and lifespan is very complicated: $\pi(s,a)$ is easy to get while R(s,a) is hard to get. So we use regression estimator to learn an estimate $\hat{R}(s,a)$ about R(s,a).

2.5.2

Drugs are assigned to patients in a very complicated manner, but the interaction between the drug, patient and lifespan is very simple: $\pi(s, a)$ is hard to get while R(s, a) is easy to get. So we use importance sampling estimator to learn an estimate $\hat{pi}(s, a)$ about $\pi(s, a)$.

3 Principle Components Analysis

From the definition of $f_{\mu}(x)$, we esaily derive that $f_{\mu}(x) = \mu^{T}x$, where μ is a unit length vector representing the projection (hyper)plane. Then we have:

$$argmin_{\mu:\mu^{T}\mu=1} \sum_{i=1}^{n} ||x^{(i)} - f_{\mu}(x^{(i)})||_{2}^{2}$$

$$= argmin_{\mu:\mu^{T}\mu=1} \sum_{i=1}^{n} (x^{(i)} - \mu^{T}x^{(i)})^{T} (x^{(i)} - \mu^{T}x^{(i)})$$

$$= argmin_{\mu:\mu^{T}\mu=1} \sum_{i=1}^{n} (x^{(i)}^{T}x^{(i)} - \mu^{T}x^{(i)}x^{(i)}^{T}\mu)$$

$$= argmax_{\mu:\mu^{T}\mu=1} \sum_{i=1}^{n} (\mu^{T}x^{(i)}x^{(i)}^{T}\mu)$$

$$= argmax_{\mu:\mu^{T}\mu=1} \sum_{i=1}^{n} (\mu^{T}x^{(i)}x^{(i)}^{T}\mu)$$
(3.1)

which gives the first principal component.

4 Independent Components Analysis

4.1 Gaussian source

Assume sources are distributed according to a standard normal distribution, i.e $s \sim N(0,1)$, then we have

$$l(W) = \sum_{i=1}^{n} (log|W| + \sum_{j=1}^{d} logg'(w_{j}^{T}x^{(i)}))$$

$$= \sum_{i=1}^{n} (log|W| - \sum_{j=1}^{d} \frac{(w_{j}^{T}x^{(i)})^{2}}{2} + C$$
(4.1)

Take derivation on W,

$$\frac{\partial l}{\partial W} = \sum_{i=1}^{n} ((W^{-1})^{T} + Wx^{(i)}x^{(i)}^{T}
= n(W^{-1})^{T} - WX^{T}X
= 0$$
(4.2)

$$\Rightarrow WW^T = \frac{1}{n}(X^T X)^{-1} \tag{4.3}$$

Now, let R be an arbitrary orthogonal matrix and W' = WR. Then we have:

$$W'W'^T = WRR^TW^T = WW^T \tag{4.4}$$

So there exists ambiguity in unmixing matrix caused by the **Rotation invariance** of Gaussian Distribution

4.2 Laplace Source

Assume sources are distributed according to a standard Laplace distribution, i.e $f(s) = \frac{1}{2} exp(|s|)$.

$$l(W) = \sum_{i=1}^{n} (log|W| + \sum_{j=1}^{d} log f(w_j^T x^{(i)}))$$

$$= \sum_{i=1}^{n} (log|W| - \sum_{j=1}^{d} |w_j^T x^{(i)}| + C$$
(4.5)

Take derivation on W,

$$\frac{\partial l}{\partial W} = \sum_{i=1}^{n} ((W^{-1})^{T} - sgn(Wx^{(i)})x^{(i)}^{T})$$
(4.6)

For each sample $x^{(i)}$, therefore, the update rule is:

$$W := W + \alpha((W^{-1})^{T} - sgn(Wx^{(i)})x^{(i)}^{T})$$
(4.7)

5 Markov Decision Process

5.1

$$||B(V_{1}) - B(V_{2})||_{\infty}$$

$$= \gamma \max_{s \in S} |\max_{a_{1} \in A} \sum_{s' \in S} P_{s,a_{1}}(s')V_{1}(s') - \max_{a_{2} \in A} \sum_{s' \in S} P_{s,a_{2}}(s')V_{2}(s')|$$

$$\leq \gamma \max_{s \in S} \max_{a \in A} |\sum_{s' \in S} P_{s,a}(s')(V_{1}(s') - V_{2}(s'))|$$

$$\leq \gamma \max_{s \in S} \max_{s' \in S} |(V_{1}(s') - V_{2}(s')|$$

$$= \gamma \max_{s' \in S} |(V_{1}(s') - V_{2}(s')|$$

$$= \gamma ||V_{1} - V_{2}||_{\infty}$$

$$(5.1)$$

Note we use the property of p.d.f $\sum_{s' \in S} P_{s,a}(s') = 1$ at the second inequality.

5.2

Suppose We have two fixed points V_1 and V_2 satisfying B(V) = V. Then we have $||B(V_1) - B(V_2)||_{\infty} = ||V_1 - V_2||_{\infty}$, which contradicts the γ -contraction max-norm property of Bellman Operator.

6 Reinforcement Learning: The inverted pendulum

Figure 6.1: Scatter about failure nums and log-time before failure

We can observe from figures above that the algorithm tends to converge at about iteration 50-100.

Also, random experiments show diverse results on each trial, which shows the unrobustness of this algorithm.