Below we identify $(M_\star)^{\hat{}}$ via J with this translation invariant subspace. From the construction the following is obvious: If T is an identity preserving Schwarz map with preadjoint $T_\star \in L(M_\star)$, then \hat{T} is an identity preserving Schwarz map on \hat{M} such that $(T_\star)^{\hat{}} = \hat{T}^! \mid (M_\star)^{\hat{}}$.

Theorem 2.5. Let $^{\mathsf{T}}$ be an identity preserving semigroup of Schwarz type with generator A on the predual of a W*-algebra M . If $^{\mathsf{T}}$ is uniformly ergodic with finite dimensional fixed space , then every $\gamma \in \sigma(A) \cap iR$ is a pole of the resolvent R(.,A) and dim ker $(\gamma - A) \leq \dim \operatorname{Fix}(\mathsf{T})$.

<u>Proof.</u> Let $D = \{\lambda \in \mathbb{C} : Re(\lambda) > 0\}$ and R the M_{\star} -valued pseudoresolvent of Schwarz type induced by R(.,A) on D. Then

$$P = \lim_{\mu \downarrow 0} \mu R(\mu)$$

exists in the uniform operator topology and rank(P) = dim Fix(7) < $^{\infty}$. From this we obtain rank(P) = rank($^{\hat{P}}$) < $^{\infty}$ where $^{\hat{P}}$ is the canonical extension of P onto (M*) $^{\hat{A}}$. Since $^{\hat{P}}$ = $\lim_{\mu \downarrow 0} \mu R(\mu)$ it follows that

$$\dim \operatorname{Fix}((\lambda - i\alpha)\hat{R}(\lambda)) \leq \operatorname{rank}(\hat{P}) < \infty$$

(Proposition 2.1) for all $\alpha \in \mathbb{R}$. Therefore the assertion follows from Lemma 2.2.

The consequences of this result for the asymptotic behavior of one-parameter semigroups will be discussed in D-IV, Section 4 .

NOTES.

Section 1. The Perron-Frobenius theory for a single positive operator on a non-commutative operator algebra is worked out in Albeverio-Høegh-Krohn (1978) and Groh (1981). The limitations of the theory (in the continuous as in the discrete case)