Архитектура модели

Использованная модель включает в себя последовательные этапы обработки аудиосигнала:

- 1. **Предобработка**: аудиосигнал преобразуется в мел-спектрограмму с использованием LogMelFilterBanks.
- 2. Экстракция признаков: далее следуют три последовательных блока:
 - 1 блок: свёртка (Conv1d) (размером 3) → ReLU → BatchNorm → MaxPooling.
 - 2 блок аналогичен
 - В третьем блоке используется AdaptiveAvgPool1d, что позволяет получить фиксированный размер на выходе.
- 3. Эмбеддинги: выход последнего сверточного блока преобразуется через Flatten, затем подается на линейный слой до 128 признаков, за которым снова следует BatchNorm и ReLU.
- 4. **Классификация**: финальный Linear слой с двумя выходами (softmax по умолчанию) классифицирует аудио по двум классам.
- 5. Замеры проводились на GPU: NVIDIA RTX 3090

Эксперимент 1: Подбор количества мел банков

Проверялись три значения числа мел-фильтров (n_mels): 20, 40 и 80. Все три конфигурации сходились с примерно одинаковой скоростью, однако точность отличалась:

Параметр n_mels	Точность на тесте	
20	0.9976	
40	0.9830	
80	0.9964	

Таким образом, наилучший результат был достигнут при $n_mels = 20$, несмотря на его меньшую размерность. Это может быть связано с лучшей обобщающей способностью модели на менее детализированном спектре.

Эксперимент 2: Влияние количества групп в свёртках (grouped convolutions)

Был проведён тест с изменением параметра groups в слоях Conv1d: от 1 (без группировки) до 16 (максимальная разрядность).

Общие наблюдения:

- С ростом количества групп количество параметров и операций (MACs) сильно уменьшается.
- Точность модели остаётся высокой даже при значительном уменьшении числа параметров.
- Скорость обучения (время на эпоху) почти не меняется около 0.38 сек.

Сравнительная таблица:

Groups	Params (тыс.)	MACs	Max Val Acc	Epoch Time
1	18.85k	1.04M	0.9913	0.38s
2	11.94k	0.54M	0.9875	0.39s
4	8.48k	0.28M	0.9851	0.38s
8	6.75k	0.16M	0.9714	0.38s
16	5.89k	0.096M	0.9614	0.38s

Вывод:

Оптимум между точностью и производительностью наблюдается при 4—8 группах. Использование 16 групп ведёт к наименьшему числу параметров, при этом модель всё ещё сохраняет высокую точность, что делает её подходящей для встраиваемых решений.

Итог:

В ходе экспериментов показано, что:

- Качество сопоставимо при примерно одинаковом количестве мел банков
- Групповые свёртки позволяют резко снизить нагрузку на вычисления, сохраняя высокую точность.