Abstract Algebra

Week 3 HW

shaozewxy

August 2022

1

(1.7.11)

Write out the cycle decomposition of the eight permutation in S_4 corresponding to the elements of D_8 given by the action of D_8 on the vertices of a square.

1: 1

r: $(1\ 2\ 3\ 4)$

 r^2 : $(1\ 3)(2\ 4)$

 r^3 : (1 4 3 2)

 $s: (2\ 4)$

 $sr: (1\ 2)(3\ 4)$

 sr^2 : (1 3)

 sr^3 : $(1\ 4)(2\ 3)$

 $\mathbf{2}$

(1.7.17)

Let G be a group and let G act on itself by left conjugation, so each $g \in G$ map G to G by

$$x \mapsto gxg^{-1}$$

For fixed $g \in G$, prove that conjugation by g is an isomorphism from G onto itself. Deduce that x and gxg^{-1} have the same order for all x in G and that for any subset A of G, $|A| = |gAg^{-1}|$.

Fixing $g \in G$, define $\phi_g : G \to G$ by

$$\phi_q(x) = gxg^{-1}$$

First NTS ϕ_g is injective:

$$\forall x, y \in G, \phi_q(x) = \phi_q(y) \to gxg^{-1} = gyg^{-1} \to g^{-1}(gxg^{-1})g = g^{-1}(gyg^{-1})g$$

Therefore x=y, i.e. ϕ_g is injective.

Then NTS ϕ_g is surjective:

$$\forall x \in G, \exists g^{-1}xg \in G, \phi_g(g^{-1}xg) = g(g^{-1}xg)g^{-1} = g.$$

Therefore ϕ_q is surjective.

Since ϕ_g is defined from an action, it is already a homomorphism, and therefore ϕ_g is an isomorphism.

Now since ϕ_g is an isomorphism, $\exists \phi_g^{-1}, \forall x \in G, \phi_g^{-1}(\phi_g(x)) = 1$.

Given $a, b \in G, \phi_q(a) = b$, and assume |a| = m, |b| = n.

This means $\phi_q(a)^m = \phi_q(a^m) = 1 = b^m$

Therefore $|b| \leq |a|$.

Similarly $\phi_g^{-1}(b)^n = \phi_g^{-1}(b^n) = 1 = a^n$.

Therefore $|a| \leq |b|$.

This shows that $\forall a, b \in G, \phi_g(a) = b$, we have |a| = |b|.

Therefore we have $\forall x \in G, |x| = |gxg^{-1}|$.

We can similarly define a map $\psi_g:A\mapsto gAg^{-1}$ by

$$\forall x \in A, \psi_q(x) = gxg^{-1}$$

First NTS ψ_q is well defined:

 $\forall x \in A, \psi_g(x) = gxg^{-1}$ which by definition is in gAg^{-1} . Therefore ψ_g is well-defined.

Then NTS ψ_g is both injective and surjective. Which is similar to what we did for showing ϕ_g is invertible. Therefore \exists a bijection ψ_g between A and gAg^{-1} .

Therefore $|A| = |gAg^{-1}|$

3

(1.7.19)

Let H be a subgroup of the finite group G and let H act on G by left multiplication. Let $x \in G$ and let \mathcal{O} be the orbit of x under the action of H. Prove that the map

$$H \to \mathcal{O}$$
 defined by $h \mapsto hx$

is a bijection. From this and the preceding exercise deduce Lagrange's Theorem:

If G is a finite group and H is a subgroup of G then |H| divides |G|.

This map is by nature surjective.

Only NTS it is injective:

$$\forall g, h \in H, gx = hx \to (gx)x^{-1} = (hx)x^{-1} \to g = h.$$

Therefore the map is injective and therefore a bijection.

4

(2.2.7)

Let $n \in \mathbb{Z}$ with $n \geq 3$. Prove the following:

- (a) $Z(D_{2n}) = 1$ if n is odd
- (b) $Z(D_{2n}) = \{1, r^k\}$ if n = 2k.

Given $s \in D_{2n}$, we have

$$\forall sr^{i} \in D_{2n}, sr^{i}s(sr^{i})^{-1} = sr^{i}sr^{-i}s$$
$$= sr^{2i}$$

 $sr^{2i}=s \rightarrow r^{2i}=1 \rightarrow 2i=n$ or i=0 since n is odd, it can only be that i=0, i.e. $sr^0=s.$

However $sr^is^{-1} = r^{-i}$. Therefore $\nexists sr^i \in Z(D_{2n})$

Similarly,

$$\forall r^i \in D_{2n}, r^i s r^{-i} = r^{2i} s$$

 $r^{2i}s = s \rightarrow r^{2i} = 1$ and we can see that r^{2i} must be 1.

This shows that only 1 is in $Z(D_{2n})$ when n is odd.

Using the same logic from above, we can see that when n=2k, we can let i=k so that $r^i=r^k\in Z(G)$.

Therefore $\{1, r^i\} = Z(G)$ when n = 2k.

```
5
```

(2.2.10)

Let H be a subgroup of G and any nonempty subset A of G define $N_H(A)$ to be the set $\{h \in H | hAh^{-1} = A\}$. Show that $N_H(A) = N_G(A) \cap H$ and deduce that $N_H(A)$ is a subgroup of H.

First NTS $N_H(A) \subseteq N_G(A) \cap H$:

 $\forall h \in N_H(A)$, since $h \in H \leq G$ and $hAh^{-1} = A \to h \in N_G(A)$.

Therefore $h \in N_G(A) \cap H$, i.e. $N_H(A) \subseteq N_G(A) \cap H$.

Then NTS $N_G(A) \cap H \subseteq N_H(A)$:

 $\forall h \in N_G(A) \cap H$, since $h \in H$ and $hAh^{-1} = A$, $h \in N_H(A)$.

Therefore $N_G(A) \cap H \subseteq N_H(A)$.

Therefore $N_G(A) \cap H = N_H(A)$.

Since $H \leq G, N_G(A) \leq G, \rightarrow N_H(A) = N_G(A) \cap H \leq G$.

Since $N_H(A) \subseteq H$, $\to N_H(A) \le H$.

6

(2.3.17)

7

(2.3.25)

8

(3.1.9)

9

(3.1.32)

10

(3.1.33)