Probabilità Appunti

Giovanni Palma e Alex Basta

Contents

Chapter 1

Introduzione

Appunti di Probabilità presi in base alle lezioni di Elly Shlein, qui si è piddini

Chapter 2

Spazi di probabilità

2.1 Concetti introduttivi

Innanzi tutto andiamo a definire che cosa intendiamo per esperimento aleatorio, esito, probabilità Con la dicitura esperimento aleatorio indicheremo qualunque fenomeno (fisico, economico, sociale, ...) il cui esito non sia determinabile con certezza a priori. Il nostro obiettivo è di fornire una descrizione matematica di un esperimento aleatorio, definendo un modello probabilistico, un esito invece è un ipotetico risultato di un'esperimento aleatorio sulla base di un cosiddetto spazio campionario un insieme che contiene tutti gli esiti possibili dell'esperimento

Example 2.1.1

- Esperimento aleatorio: Lancio di un dado.
- Spazio campionario: $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Esito: 4.

Note:

In casi piu' complessi ci saranno vari sotto-esperimenti aleatori, come 10 lanci di un dato.

Adesso forniamo vere e priorie definizioni

Definition 2.1.1: evento

Si definisce **evento** un'affermazione riguardante l'ipotetico esito univoco dell'esperimento, di cui si può affermare con certezza se è vero o falso una volta noto l'esito

Example 2.1.2

Esper. aleatorio: Lancio del dado A = "esce un numero pari"

Definition 2.1.2: Spazio camipionario

Lo spazio campionario è l'insieme di tutti i possibili esiti di un esperimento casuale e viene denotato con Ω

Notare che non si afferma "tutti e solo tutti", quindi **qualsiasi** insieme che contiene gli esiti possibili può essere considerato uno spazio campionario

Example 2.1.3 (Lancio dado)

Possiamo porre come spazio campionario:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

ma anche

$$\Omega = \mathbb{R}$$

Definition 2.1.3: Esiti favorevoli

Esiti per cui un evento è vero sono detti esiti favorevoli.

Definition 2.1.4: Evento in termine di insiemi

Un evento si puo' definire anche come il sotto
insieme dello spazio campionario Ω formato da tutti gli esiti favor
evoli dell'evento.

Example 2.1.4

 $\Omega = \{1, 2, 3, 4, 5, 6\} \implies A = \text{"esce un numero pari"} \implies \{2, 4, 6\}$ sono gli esiti favorevoli dell'evento A.

Note:

La definizione insiemistica di un evento dipende dallo spazio campionario Ω definito, poiché l'evento è un sottoinsieme di Ω . Tuttavia, l'insieme degli esiti favorevoli di un evento è fisso, e rappresenta l'insieme evento di cardinalità massima possibile, ovvero l'insieme degli esiti favorevoli $A \subseteq \Omega$.

Definition 2.1.5

- \bullet Ω e' l'evento certo
- ullet \emptyset e' l'evento impossibile
- $\omega \in \Omega$ e' un evento elementare $(A = \{\omega\})$

Example 2.1.5

Lancio un dado.

A = "esce un numero tra 1 e 6"

B = "esce un numero maggiore di 6"

C = "esce il numero 3"

- Se $\Omega = \{1, 2, 3, 4, 5, 6\}$, allora:
 - $-A = \Omega$ (evento certo),
 - $-B = \emptyset$ (evento impossibile),
 - $-C = \{3\}$ (evento con un solo esito favorevole).
- Se $\Omega = \mathbb{R}$, allora:
 - $A = \{1, 2, 3, 4, 5, 6\}$ ⊂ Ω (evento quasi certo),
 - $-B = (6, +\infty)$ (evento quasi impossibile),
 - $-C = \{3\}$ (evento con un solo esito favorevole).

2.2 Regole del calcolo probabilistico

Ad ogni relazione logica possiamo associare un'operazione insiemistica:

Connettivi Logici	Connettvi Insiemistici
$A \vee B$	$A \cup B$
$A \wedge B$	$A \cap B$
$\neg A$	A^c
$A \implies B$	$A \subseteq B$
$A \iff B$	A = B

Note:

Nella prima colonna, A e B sono eventi come affermazioni, mentre nella colonna di destra sono degli insiemi.

2.2.1 Assiomi della probabilita'

Poniamo tre assiomi fondamentali da cui possiamo partire per derivare tutte le operazioni e proprieta' che ci servono:

Note:

Per noi tutti i sottoinsiemi di Ω sono eventi (anche se non sara' sempre cosi)

Definition 2.2.1: Assiomi fondamentali della probabilità

Assioma 1. A ciascun sottoinsieme (o evento) A di Ω è assegnato un numero $\mathbb{P}(A)$ che verifica:

$$0 \leq \mathbb{P}(A) \leq 1$$
.

Tale numero $\mathbb{P}(A)$ si chiama **probabilità** dell'evento A.

Assioma 2. $\mathbb{P}(\Omega) = 1$.

Assioma 3. Vale la proprietà di additività numerabile^a: sia $A_1, A_2, \ldots, A_n, \ldots$ una successione di sottoinsiemi di Ω tra loro disgiunti^b e sia

$$A=\bigcup_{n=1}^{\infty}A_n.$$

Allora

$$\mathbb{P}(A) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

Note:

Quindi, per il primo assioma, esiste una funzione probabilita' $\mathbb{P}(A): \mathcal{P}(\Omega) \to [0,1]$.

Definition 2.2.2: Spazio di probabilità

La coppia (Ω, \mathbb{P}) si dice **spazio di probabilità** o modello matematico dell'esperimento aleatorio

2.2.2 Conseguenze degli assiomi

Theorem 2.2.1

Sia Ω spazio campionario e \mathbb{P} probabilità su Ω ((Ω , \mathbb{P}) è uno spazio di probabilità con \mathbb{P} : $\mathcal{P}(A) \to [0,1]$). Dagli assiomi ??, ??, ?? deduciamo le cose seguenti:

1.
$$\mathbb{P}(\emptyset) = 0$$

^aAnche detta σ -additività.

^bIn formule: $A_i \cap A_j = \emptyset$, per ogni $i \neq j$. In altri termini, non hanno elementi in comune.

2. Additività finita: $(A_i)_{i=1,\dots,n}$. $\forall i \neq j$. $A_i \cap A_j = \emptyset \implies \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$

3. $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$

4. Monotonia: $A \subseteq B \implies \mathbb{P}(A) \leqslant \mathbb{P}(B)$

Dimostrazione: 1. Devo mostrare che $\mathbb{P}(\emptyset) = 0$. Per semplicità definiamo $p := \mathbb{P}(\emptyset)$. Uso l'assioma ?? con la successione $(A_n)_{n \in \mathbb{N}}$ dove $\forall i \in \mathbb{N}$. $A_i = \emptyset$, che sono tutti eventi disgiunti. Quindi:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) = \sum_{i=1}^{\infty} p.$$

Inoltre:

$$\bigcup_{i=1}^{\infty} A_i = \emptyset \implies p = \sum_{i=1}^{\infty} p.$$

L'equazione è soddisfatta solo per p = 0.

2. Supponiamo di avere una sequenza finita disgiunta A_1, \ldots, A_n . Definisco $(B_i)_{i \in \mathbb{N}}$ tale che $B_i = A_i$ per $i = 1, \ldots, n$ e $B_i = \emptyset$ per i > n. Usando l'assioma ??:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) = \sum_{i=1}^{n} \mathbb{P}(A_i).$$

3. Per definizione di complemento, $A^c \cup A = \Omega$ e $A^c \cap A = \emptyset$. Per additività:

$$\mathbb{P}(A^c) + \mathbb{P}(A) = \mathbb{P}(\Omega) = 1$$
 (per l'assioma ??).

4. Se $A \subseteq B$, allora $B = A \cup (B \setminus A)$, con $A \in B \setminus A$ disgiunti. Per additività:

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \geqslant \mathbb{P}(A).$$

 ${\mathfrak Q}$

Theorem 2.2.2 Probabilità unione non disgiunta

Siano A e B eventi:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \tag{2.1}$$

Dimostrazione: $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$. Per additività:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B).$$

Osservando che:

$$\mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) = \mathbb{P}(A), \quad \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B) = \mathbb{P}(B),$$

si ottiene la formula.

Note: 🛉

La formula si complica con un numero di eventi maggiore di 2. Per n=3:

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(A \cap C) + \mathbb{P}(A \cap B \cap C).$$

2.3 Probabilita' discreta

Finora sappiamo solo le "regole" che deve seguire una funzione per essere una probabilita'. Passiamo ora a vedere come calcolare il valore di un certo tipo di probabilita', la probabilita' discreta:

Definition 2.3.1: Probabilità discreta

Chiamo probabilità discreta una funzione probabilità \mathbb{P} su Ω , tale che:

$$\exists \overline{\Omega} \subseteq \Omega, \ \overline{\Omega}$$
 e' finito o numerabile. $\mathbb{P}(\overline{\Omega}) = 1$

Ovvero, una probabilita' e' discreta se il suo spazio campionario minimo e' finito o numerabile. Questa condizione e' necessaria per poter poi definire un modo per effettivamente calcolare il valore della probabilita' (discreta) di un qualunque evento.

Diamo prima una definizione di una tale probabilità:

Definition 2.3.2: Delta di Dirac

Sia $\Omega = \mathbb{R}$, $x_0 \in \mathbb{R}$, allora si chiama delta di Dirac centrato in x_0 la funzione:

$$\delta_{x_0}: \mathcal{P}(\mathbb{R}) \to [0, 1]$$

$$A \mapsto \delta_{x_0}(A) = \begin{cases} 1 & x_0 \in A \\ 0 & x_0 \notin A \end{cases}$$

Notare che per definizione, la funzione di Dirac è una probabilità discreta, dato che soddisfa tutti gli assiomi per essere una probabilità' e il suo spazio campionario minimo e' formato da un solo elemento di Ω , quindi e' discreta (ma non molto utile dato che puo' assumere solo due valori). Però, tramite le delta di Dirac, siamo in grado di costruire qualunque altra probabilità discreta:

Sia $\Omega = \mathbb{R}$. Prendiamo un numero contabile n di eventi singoletto $x_1, x_2, \ldots, x_n \in \mathbb{R}$ a cui corrispondono $p_1, p_2, \ldots, p_n \in \mathbb{R}$ tale che:

$$\forall i = 1, ..., n. \ p_i \in [0, 1], \qquad \sum_{i=1}^n p_i = 1$$

Definiamo la funzione:

$$\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$$

$$A \mapsto \sum_{i=1}^{n} p_i \delta_{x_i}(A)$$

 \mathbb{P} è una combinazione lineare di delta di Dirac. Essendo una combinazione convessa, $\mathbb{P} \in [0,1]$ e si può dimostrare che soddisfa gli altri due assiomi (?? e ??), quindi è una probabilità discreta! Variando le x e le p è possibile generare qualsiasi funzione \mathbb{P} discreta.

Example 2.3.1

 $\Omega = \{1, 2, 3, 4, 5, 6\}, \ \forall i = 1, ..., 6. \ x_i = i, \ p_i = \frac{1}{6}, \ \text{la funzione } \mathbb{P} \ \text{associata è:}$

$$P(A) = \sum_{i=1}^{6} \frac{1}{6} d_{x_i}(A)$$

$$A = \{1, 2, 3, 4, 5, 6\} \implies P(A) = 1$$

$$B = (6, +\infty) \implies P(B) = 0$$

$$C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \implies P(C) = 1$$

Definition 2.3.3

Si chiama evento quasi certo un evento A tale che $\mathbb{P}(A) = 1$.

Definition 2.3.4

Si chiama evento quasi impossibile un evento A tale che $\mathbb{P}(A) = 0$.

Posso allargare Ω quanto voglio perché tanto fuori dall'insieme minimo che comprende tutti gli eventi possibili le probabilità che aggiungo sono quasi impossibili e quindi hanno probabilità 0 e non cambiano il valore totale della somma.

2.3.1 Probabilita' uniforme

Theorem 2.3.1 Principio di porbabililità uniforme

Si cosideri un esperimento aleatorio c
n spazio campionario $\Omega = \{w_1, \dots, w_N\}$ finito e discreto, con esiti sono equiprobabil
i $\mathbb{P}(\{w_1\}) = \mathbb{P}(\{w_2\}) = \dots = \mathbb{P}(\{w_N\}).$

Si dice allora che \mathbb{P} è la **probabilità uniforme** su Ω e valgono le seguenti proprietà:

1. Dato un qualunque evento elementare $A = \{w_i\}$, si ha:

$$\mathbb{P}(A) = \frac{1}{N}$$

2. Dato un qualunque evento $A \subseteq \Omega$, vale la formula di Laplace:

$$\mathbb{P}(A) = \frac{|A|}{N} = \frac{\text{numero di esiti favorevoli}}{\text{numero di esiti possibili}}$$

Dimostrazione: 1. Dimostro il punto 1:

Per ipotesi sappiamo che $\mathbb{P}(\{w_1\}) = \mathbb{P}(\{w_2\}) = \cdots = \mathbb{P}(\{w_N\})$ e per il *principio di additività* si può costruire il seguente sistema:

$$\begin{cases} \mathbb{P}(\{w_1\}) + \mathbb{P}(\{w_2\}) + \dots + \mathbb{P}(\{w_N\}) = 1 \\ \mathbb{P}(\{w_1\}) = \mathbb{P}(\{w_2\}) \\ \mathbb{P}(\{w_2\}) = \mathbb{P}(\{w_3\}) \\ \vdots \\ \mathbb{P}(\{w_{N_1}\}) = \mathbb{P}(\{w_N\}) \end{cases}$$

Da cui si ricava che:

$$\forall i \in [1, \dots, N] \quad \mathbb{P}(\{w_i\}) = \frac{1}{N}$$

2. Dimostro il punto 2: Sia $A = \{w_{i_1}, \dots, w_{i_k}\}$, con $k \leq N$. Per definizione di probabilità:

$$\mathbb{P}(A) = \mathbb{P}(\{w_{i_1}, \dots, w_{i_k}\}) = \mathbb{P}(\{w_{i_1}\}) + \dots + \mathbb{P}(\{w_{i_k}\}) = \frac{k}{N}$$

Chapter 3

Probabilita' Condizionata

3.1 Definizione e motivazioni

Supponiamo di sapere che un evento di un'esperimento aleatorio si e' avverato. Finora abbiamo visto solo casi in cui gli eventi non si influenzavano (*indipendenti*), ma succede spesso nella realta' che se si sa che un certo evento e' avvenuto, allora questo ci da' informazioni aggiuntive che possono cambiare la probabilita' di altri eventi di cui ancora non sappiamo gli esiti.

Chiamiamo B l'evento che e' avvenuto e A un altro evento di cui vogliamo sapere la probabilita'. Prima di avere informazioni su B, la probabilita' di A era semplicemente $\mathbb{P}(A)$, ma ora ci poniamo la domanda: "se so che si e' verificato B, come cambia $\mathbb{P}(A)$?". Denotiamo questa nuova probabilita' con:

chiamata la probabilita' condizionata di A dato B .

Definition 3.1.1: Probabilita' Condizionata

Prendo due eventi A, B su uno spazio di probabilita' (Ω, \mathbb{P}) . Definisco probabilita' condizionata a B di A la funzione:

$$\begin{split} \mathbb{P}(A|B): \mathcal{P}(\Omega) &\to [0,1] \\ A &\mapsto \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \end{split}$$

E' possibile dimostrare che una certa funzione e' anch'essa una probabilita' (sempre discreta), verifichiamo gli assiomi (fissiamo $B \subseteq \Omega$ con $\mathbb{P}(B) > 0$):

- 1. $\mathbb{P}(A|B) \in [0,1], \forall A \subseteq \Omega$
- 2. $\mathbb{P}(\Omega|B) = 1$
- 3. σ addittivita': $(A_i)_{i \in \mathbb{N}}$ disgiunti:

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} \mathbb{P}(A_i | B)$$

Lasciate al lettore in quanto davvero molto facili, quasi banali. Se non riesci a farle fai schifo. Vediamo ora, con un esempio, come mai e' proprio questa la definizione utilizzata:

Example 3.1.1

• Lancio del dado: $\Omega = \{1, 2, 3, 4, 5, 6\}$, \mathbb{P} probabilita' uniforme:

$$\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}, \forall \omega \in \Omega, \text{ ovvero:}$$

$$\mathbb{P}(A) = \frac{\text{casi favorevoli in } A}{\text{casi possibili}}$$

A = "esce un numero maggiore di 3" = $\{3,4,5,6\}$ e B = {"esce un numero pari"} = $\{2,4,6\}$, domanda: quanto vale $\mathbb{P}(A|B)$?

 $P(A) = \frac{4}{6}$ come abbiamo gia visto.

Ora abbiamo un'informazione in piu': sappiamo che B si e' avverato. Questo significa che si restringe l'insieme di valori che possono essere usciti al lancio del dado. ATTENZIONE! cio' non vuol dire che cambia lo spazio campionario perche' l'esperimento e' lo stesso, ma cambiano i *veri* casi favorevoli e i *veri* casi possibili:

$$P(A|B) = \frac{\text{"veri casi favorevoli di A"}}{\text{veri casi possibili}} = \frac{|A \cap B|}{|B|} = \frac{2}{3}$$

• Vediamo anche cosa accade quando la probabilita' non e' uniforme, come con un dado a 4 facce truccato:

$$\Omega = \{1, 2, 3, 4\}, \ \mathbb{P}(4) = \frac{1}{15}, \mathbb{P}(3) = \frac{2}{15}, \mathbb{P}(2) = \frac{4}{15}, \mathbb{P}(1) = \frac{8}{15}$$

 $A = \{3, 4\}, B = \{2, 4\}$

$$\mathbb{P}(A|B) = \frac{\text{"probabilita' dei veri casi favorevoli di A"}}{\text{probabilita' dei veri casi possibili}} = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Note:

Se ${\mathbb P}$ e' la probabilita' uniforme allora:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{|A \cap B|}{|B|}$$

Note:

B e' fissato nella definizione di propbabilita' condizionata, ovvero:

$$\mathbb{P}(A|B) \neq \mathbb{P}(B|A)$$

Quindi il ruolo di A e B e' completamente diverso

Note:

Se $B = \Omega$, allora $\mathbb{P}(A|B) = \mathbb{P}(A)$ dato che la conoscenza del fatto che si e' avverato Ω e' ovvio e non ci cambia. Se $A = \Omega$, allora $\mathbb{P}(\Omega|B) = 1$ (per proprieta', dato che e' sempre una probabilita')

3.2 Regola della catena

La probabilita' condizionata in genere e' nota e si usa per calcolare la probabilita' dell'intersezione:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B)$$

Questa formula e' detta regola della catena e vale in generale con n eventi:

Proposition 3.2.1 Regola della catena (generalizzata)

$$(A_i)_{i=1,...,n}$$
, $\mathbb{P}(A_1 \cap ... \cap A_{n-1}) > 0$, allora:

$$\mathbb{P}(A_1 \cap ... \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)...\mathbb{P}(A_n|A_1 \cap ... A_{n-1})$$

Note:

La condizione funziona grazie alla monotonia, dato che $0 < \mathbb{P}(A_1 \cap ... \cap A_{n-1}) \leq \mathbb{P}(A_1 \cap ... \cap A_j), 1 \leq j \leq n-1$ quindi siamo certi che l'intersezione degli eventi che sono avvenuti e' maggiore di 0.

:
$$P(A_1) \frac{P(A_1 \cap A_2)}{P(A_1)} \dots \frac{P(A_1 \cap \dots \cap A_n)}{P(A_1 \cap \dots \cap A_{n-1})} = P(A_1 \cap \dots \cap A_n)$$

TODO: migliora un po

Example 3.2.1

Un'urna contiene tre palline bianche, due palline nere e una pallina rossa. Si eseguono tre estrazioni senza reimmissione. Qual 'e la probabilit'a di estrarre nell'ordine una bianca, una rossa e una nera? Sono interessato solo ad alcuni eventi, quindi non c'e' bisogno di descrivere l'intero esperimento aleatorio. Per prima cosa definisco l'evento:

A = "estrarre in ordine una bianca, una rossa e una nera"

Voglio trovare P(A). Notiamo che dobbiamo determinare tre sottoesperimenti in relazione (dato che non c'e' reimissione). Quindi dopo ogni sottoesperimento cambia la composizione dell'urna, e sappiamo come calcolare la probabilita' condizionata:

 B_i = "estraggo una pallina bianca all' i-esimo turno"

 R_i = "estraggo una pallina rossa all' i-esimo turno"

 N_i = "estraggo una pallina nera all' i-esimo turno"

Esistono tre famiglie di eventi: $(B_i)_{i=1,\dots,k}$, $(R_i)_{i=1,\dots,k}$, $(N_i)_{i=1,\dots,k}$ dove i indica il turno al quale viene estratta la pallina. Quindi possiamo scrivere A come relazione fra sottoeventi:

$$A = B_1 \cap R_2 N_3$$

Quindi:

$$P(A) = P(B_1 \cap R_2 \cap N_3) = P(B_1)P(R_2|B_1)P(N_3|B_1 \cap R_2)$$

Solo ora possiamo passare ai valori numerici. Dato che gli esiti sono equiprobabili e lo spazio campionario e' finito, la probabilita' e' uniforme:

$$P(B_1) = \frac{1}{2}, P(R_2) = \frac{1}{5}, P(N_3) = \frac{1}{2}$$

$$P(A) = \frac{1}{20}$$

Per esperimenti da sottoesperimenti di cui conosco le probabilita' condizionate, e' possible rappresentare ogni evento come un nodo:

$$\Omega = \text{primo nodo}$$

e ogni probabilita' come un ramo che partiziona il nodo (tanti rami quanti gli insiemi della partizione) che rappresenta poi un altro evento (condizionato dalla seconda in poi).

La regola della catena la leggo sul diagramma ad albero:

percorso: $\Omega \to B_1 \to R_2 \to N_3$ ha probabilita' $P(B_1 \cap R_2 \cap N_3)$ che si calcola facendo il prodotto delle probabilita' dei relativi rami che si usano nel percorso.

E' uno strumento utile per convincerci che stiamo usando le formule guiste, ma non le sostituisce e puo' diventare laborioso per problemi complessi.

Example 3.2.2

Ci sono due urne: la prima contiene due palline rosse e una bianca; la seconda contiene tre palline rosse e due bianche. Si lancia una moneta: se esce testa si estrae una pallina dalla prima urna, se esce croce si estrae una pallina dalla seconda urna. Qual 'e la probabilit'a che l'esito del lancio della moneta sia testa e la pallina estratta sia bianca?

2 sottoesperimenti:

- lancio della moneta
- estrazione da un'urna

Nota che i sottoesperimenti sono indipendenti dall'esito di altri esperimenti. Sono gli esiti, ovvero i risultati, che possono dipendere dagli esiti di altri esperimenti.

A = "esce testa ed estraggo una pallina bianca"

Devo esprimere A con eventi che

$$T =$$
 "esce testa"

U = estraggo una pallina bianca

Disegna lo zio pera di diagramma che non mi metto a fare, se @GiovanniPalma vuole puo' farlo

$$A = T \cap U$$
, $P(A) = P(T)P(U|T)$

3.3 Indipendenza di eventi

E' possibile che sapere che un evento B e' avvenuto non altera la probabilita' di un altro evento A. Possiamo esprimere questa relazione in modo matematico cosi':

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$

Utilizzando la definizione di probabilita' condizionata, possiamo usare un'identita' equivalente che useremo come definizione:

Definition 3.3.1: Eventi indipendenti

Due eventi A, B si dicono indipendenti se:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \tag{3.1}$$

E viene denatato $A \perp \!\!\! \perp B$

Usiamo questa definizione dato che e' esplicitamente simmetrica, ovvero se A e indipendente a B allora vale anche il contrario:

$$A \perp\!\!\!\perp B \iff B \perp\!\!\!\!\perp A$$

ed e' definita (e banalmente vera) anche quando $\mathbb{P}(A) = 0$ o $\mathbb{P}(B) = 0$. In particolare si noti il seguente teorema:

Theorem 3.3.1 Teorema della simmetria tra eventi indipendenti

Sia $\mathbb{P}(B) > 0$ allora:

$$A \perp \!\!\!\perp B \iff \mathbb{P}(A|B) = \mathbb{P}(A)$$

Dall'altro lato, sia $\mathbb{P}(A) > 0$ allora:

$$A \perp \!\!\!\perp B \iff \mathbb{P}(B|A) = \mathbb{P}(B)$$

Dimostrazione: Verrà fornita solo la dimostrazione del primo punto, la seconda parte è analoga. Assumo $\mathbb{P}(B) > 0$, si ha:

• $A \perp \!\!\!\perp B \implies \mathbb{P}(A|B) = \mathbb{P}(A)$:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

• $\mathbb{P}(A|B) = \mathbb{P}(A) \implies A \perp \!\!\!\perp B$:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

 \odot

Note:

Si noti che se $\mathbb{P}(A) > 0$ e $\mathbb{P}(B) > 0$ allora, le tre uguaglianze seguenti sono equivalenti:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$$

Note:

• L'indipendenza e' diversa dalla disgiunzione:

$$A \perp \!\!\!\perp B \neq A \cap B = \emptyset$$

infatti sono relazioni ortogonali:

$$A \perp \!\!\!\perp B \wedge A \cap B = \emptyset \iff \mathbb{P}(A)\mathbb{P}(B) = 0 \iff \mathbb{P}(A) = 0 \vee \mathbb{P}(B) = 0$$

• L'indipendenza e' diverso dall'essere sottoinsieme non-vuoto:

$$A \perp\!\!\!\perp B \neq A \subseteq B \lor B \subseteq A$$

infatti:

$$A \perp \!\!\!\perp B \land A \subseteq B \iff \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A) \iff \mathbb{P}(B) = 1$$

Quindi in generale due eventi sono indipendent quando la loro intersezione ha "le giuste proporzioni".

Adesso fornirò un altro teorema piuttosto importante:

Proposition 3.3.1 Sull'indipendenza di eventi complomentari

Siano A, B due eventi indipendenti, allora:

$$A \perp \!\!\!\perp B \iff A^c \perp \!\!\!\perp B, A \perp \!\!\!\perp B^c, A^c \perp \!\!\!\perp B^c$$

 ${\it Dimostrazione:}\ \ {\it Dimostro}$ solo la prima parte, le altre sono analoghe.

Assumo A, B due eventi indipendenti, debbo dimostrare la seguente uguaglianza:

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(A^c) \cdot \mathbb{P}(B)$$

Dato che

$$B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$$

E dato che $(A \cap B)$ e $(A^c \cap B)$ sono disgiunti, per ?? (additività finita) si ha:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B)$$

E dato che $A \perp \!\!\!\perp B$ si ha:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B) = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) + \mathbb{P}(A^c \cap B)$$

Quindi:

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(B) - \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(B) \cdot (1 - \mathbb{P}(A)) = \mathbb{P}(A^c) \cdot \mathbb{P}(B)$$

 \odot

3.3.1 Generalizzazione su n eventi

Come nel caso con solo due eventi, n > 2 eventi si dicono indipendenti quando, sapendo che qualsiasi numero degli altri eventi si e' avverato, la probabilita' dell'evento non cambia. Questo deve valere per tutti gli n eventi, ovvero:

$$\mathbb{P}\left(A_i \middle| \bigcup_{j=1, j \neq i}^n A_j\right) = P(A_i) \quad \forall i = 1, ..., n$$

Si puo' dimostrare, usando la definizione di probabilita' condizionata, che questa identita' equivale a dire:

Definition 3.3.2: Eventi indipendenti (per n eventi)

Sia $(A_i)_{i\in I}$ una famiglia di eventi in uno spazio di probabilita'. Si dice che questi eventi sono indipendenti quando **per ogni sottoinsieme** finito $J\subseteq I$. |J|>2:

$$\mathbb{P}\left(\bigcap_{j\in J}A_j\right) = \prod_{j\in J}\mathbb{P}(A_j)$$

3.3.2 Esercizi

Example 3.3.1 (Calcolo di eventi indipendenti con probabilita condizionata)

TESTO:

Si lancia un dado a 6 facce

A = "Esce un numero > 4"

B = "Esce un numero pari"

Determinare P(A) e P(A|B)

DETTAGLIO SVOLGIMENTO:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{5, 6\}$$

$$B = \{2, 4, 6\}$$

$$P(A) = \frac{3}{6} = \frac{1}{3}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$

Dato che P(A) = P(A|B), per il teorema ?? si ha che $A \perp \!\!\! \perp B$

Ecco un altro eserzio:

Example 3.3.2

TESTO

Lanciamo una moneta e un dado a 4 facce.

Determinare uno spazio di prob. che descriva l'esperimento aleatorio

SOLUZIONE

$$\Omega = \{(T,1), (T,2), (T,3), (T,4), (C,1), (C,2), (C,3), (C,4)\}$$

$$P(T,1) = \frac{1}{8} = P(C,4) = \frac{1}{8}$$

T = "esito del lancio moneta e testa"

C= "esito del lancio moneta è croce"

 D_i = "è uscito il numero i"

$$P(C) = \frac{1}{2}, \quad P(T) = \frac{1}{2}$$

$$P(D_i|C) = \frac{1}{4}$$

$$P(D_i|T) = \frac{1}{4}$$

 $A="\`{\rm e}$ uscito testa e il numero i"

$$P(A) = P(T) \cdot P(D_i|T) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$$

Analogamente per $C \cap D_i$

3.4 Bayes

Ci sono delle situazioni nelle quali puo' esserci richiesto di calcolare la probabilita' condizionata "inversa" conoscendo quella diretta. Possiamo vare cio' usando la definizione di probabilita' condizionate

Theorem 3.4.1

Siano A, B due eventi t.c. P(A), P(B) > 0:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Example 3.4.1 (4.1)

Ci sono due urne: la prima urna contiene una pallina bianca e due palline rosse, mentre la seconda contiene due palline bianche e cinque palline rosse. Si lancia una moneta: se esce testa si estrae una pallina dalla prima urna, se esce croce si estrae una pallina dalla seconda. Sapendo che 'e stata estratta una pallina bianca, calcolare la probabilit'a che l'esito del lancio della moneta sia stato testa.

EVENTI

 $T=\mathrm{esce}\ \mathrm{testa}$

B =estrazione pallina bianca

 $\Omega = \{t, c\} \times \{b, r\}$

 $\mathbb{P}(T|B) = \frac{P(B|T)P(T)}{P(B)} = \frac{P(B|T)P(T)}{P(B|T)P(T) + P(B|T^c)P(T^c)} = \frac{1/3 \cdot 1/2}{1/3 \cdot 1/2 + 2/7 \cdot 1/2} \text{ probabilita' totali e bayes}$

Example 3.4.2

Esempio 5.1. In un'urna ci sono due palline che possono essere rosse (R) o bianche (B). La composizione esatta non 'e nota, quindi le composizioni possibili sono: RR, RB, BB. (H0, H1, H2) Supponiamo che, in base alle informazioni a disposizione, sia ragionevole assegnare uguale probabilit'a pari a 1/3 alle tre composizioni (ipotesi) possibili, che denotiamo H0, H1 e H2. 1) Se si estrae una pallina dall'urna, qual 'e la probabilit'a che sia bianca? 2) Si effettuano tre estrazioni con reimmissione: sapendo che le prime due palline estratte sono bianche, qual 'e la probabilit'a che anche la terza pallina estratta sia bianca?

Il paradosso viene dal fatto che dobbiamo tenere traccia dell'asimmetria iniziale e denotare le diverse composizioni come ipotesi possibili.

EVENTI

 $B_i = {
m estraggo}$ una pallina bianca all'i-esima estrazione

1) $P(B_1) = P(B_1|H_0)P(H_0) + P(B_1|H_1)P(H_1) + P(B_1|H_2)P(H_2) = 1/2$ probabilita' totali e prob. unifore delle H

Ce l'aspettiamo dato che c'e' completa simmetria fra i rami delle H con la distribuzione di palline

2) $P(B_3|B_1 \cap B_2) = P(B_3 \cap B_2 \cap B_1)/P(B_1 \cap B_2) =$ usare ancora il partizionamento per H per applicare probabilita' totali

3.4.1 Formula di Boyes

Quando si deve calcolare una probabilità condizionata di eventi "nell'ordine temporale sbagliato", ad esempio se si calcolare P(A|B) ma si conosce solo P(B|A), si può utilizzare uno strumento utilissimo facilmente derivabile dalla matematica della probabilità condizionata, ovvero la formula di Bayes:

Theorem 3.4.2 Formula di Bayes

Siano A e B due eventi tali che $\mathbb{P}(A) > 0$ e $\mathbb{P}(B) > 0$, allora:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Dimostrazione: Per definizione di $\mathbb{P}(A|B)$ si ha:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Utilizzando la regola della catena possiamo rimuovere il numeratore come segue:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B|A)\mathbb{P}(A)$$

Quindi:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Example 3.4.3

Ci sono due urne: la prima urna contiene una pallina bianca e due palline rosse, mentre la seconda contiene due palline bianche e cinque palline rosse. Si lancia una moneta: se esce testa si estrae una pallina dalla prima urna, se esce croce si estrae una pallina dalla seconda. Sapendo che è stata estratta una pallina bianca, calcolare la probabilità che l'esito del lancio della moneta sia stato testa. Svolgimento:

T= "esce testa"

 \odot

Chapter 4

Calcolo Combinatorio

Quando abbiamo numero finito di elementi, e' possibile contare gli elementi dell'evento per ridurre il problema di probabilita' a un problema di conteggio -i dobbiamo imparare a contare

Dato un certo insieme, dobbiamo calcolarne la cardinalita' utilizzando i giusti stumenti matematici

Theorem 4.0.1 Calcolo probabilita' uniforme (Laplace)

Se Ω e' finito, $\Omega = \{w_1, ..., w_N\}$ e $\forall i = 1, ..., N$. $\mathbb{P}(\{w_i\}) = \frac{1}{N}$ (probabilita' uniforme), allora $\forall A \subseteq \Omega$ (evento):

$$\mathbb{P}(A) = \frac{|A|}{N}$$

Dobbiamo introdurre:

• Fattoriali:

$$-0! := 1$$

- $(n+1)! := (n+1) \cdot n!$

• Coefficenti Binomiali:

$$(n,k) = \frac{n!}{k!(n-k)!} \quad \forall n,k \in \mathbb{N}. n \geq k$$

In generale:

$$(n,k) = (n,n-k)$$

Dal triangolo di Tartaglia, possiamo visualizzare altre proprieta' (oltre alla simmetria)

Vedremo che (n, k) sono il numero di modi diversi che abbiamo per selezionare k sottoinsiemi diversi da un insieme di cardinalita' n.

Theorem 4.0.2 Formula di Newton

$$(a+b)^{n} = \sum_{k=0}^{n} (n,k)a^{k}b^{n-k}$$

Quindi anche il coefficente deriva da un problema di conteggio.

4.1 Metodo (Principio) delle Scelte Successive

E' un algoritmo per determinare la cardinalita' di un insieme. Vediamo un esempio:

Example 4.1.1

Alfabeto di 36 caratteri dove ognuno dei numeri corrisponde a un carattere alfanumerico. <u>Domanda</u>: "Quante possibili password distinte di 8 caratteri esistono in questo alfabeto?" $\Omega = \text{Alfanumerici} \times ... \times \text{Alfanumerici} 8 \text{ volte}.$

- Scelte:
 - 1. un carattere dei 36 totali

:

2. (e' cosi 8 volte)

Quindi
$$|\Omega| = 36 \times ... \times 36 = 36^8$$

E se vogliamo evitare di ripetere i caratteri? Vediamo le scelte:

- 1. un carattere dei 36 totali
- 2. un carattere dei 35 possibili

:

3.

4. un carattere dei 29 possibili

Quindi $|\Omega| = 36 \times 35 \times ... \times 29 = \frac{36!}{28!}$

Definiamo il principio generale:

Theorem 4.1.1 Non proprio un teorema

Ciascun elemetno di un insieme A puo' essere determinato tramite sola sequenza di k scelte, dove per ogni scelta ci sono $n_1,, n_k$ possibilita', allora:

$$|A| = n_1 \times ... \times n_k$$

Note:

Puo' essere riscritto come teorema formale ma E' TROPPO DIFFICILE PER NOI INFORMATICI quindi non lo facciamo!!!!

Example 4.1.2

52 carte (13 tipi 4 semi)

1. A = iniseme dei full (un tris e una coppia), |A| = ?

4 scelte:

- tipo di carta nel tris (13)
- tipo di carta nella coppia (12)
- semi nel tris (4)
- semi nella coppia (6)

|A| = 131246 =casi favorevoli

2. A = doppie coppie (due coppie di tipo diverso e una carta libera), |A| = ?

Scelte:

• tipo nella prima coppia (13)

- tipo nella seconda coppia (12)
- semi nella prima coppia (6)
- semi seconda (6)
- tipo singolo (11)
- seme singolo (4)

|A| = 131266114 **SBAGLIATO!!**

Perche' non ci interessa dell'ordine delle due coppie (bisogna dedurlo dalla definizione di A), quindi NON c'e' una prima e seconda coppia (anche sopra era sbagliato vederlo cosi') dato che non c'e' l'ordine.

Combinazioni dei tipi che compongono 2 coppie $(13 \times 12/2)$

4.2 Disposizioni e Combinazioni

Dato un insieme E con n elementi, indichiamo con $DR_{n,k}$ le sequenze ordinate di k elementi di E. Sostanzialmente, $DR_{n,k} = E \times E \dots \times E$ k volte, ovvero:

$$DR_{n,k} = E^k$$

Quindi usando il principio delle scelte successive:

$$|DR_{n,k}| = n^k$$

dato che per ogniEabbiamo una scelta fra \boldsymbol{n} elementi.

Note:

Indicando tale insieme con $DR_{n,k}$, l'insieme E sparisce, dato che ci interessa solo la **cardinalita**' di tale insieme e non ce ne frega un cavolo dei sui elementi.

Example 4.2.1 (Iniziamo a calcolare le probabilita'!)

Presa un urna con n palline numerate $(E = \{1, ..., n\})$ e si estraggono k palline con reinbussolamento.

$$\Omega = E \times ... \times E = DR_{n,k}$$

Quindi $|\Omega| = n^k$, e la probabilita' uniforme e' data da:

$$\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|} = n^{-k}$$

Example 4.2.2

Determinare spazi campionari per i seguenti esperimenti:

- Scelta casuale di una parola di 8 lettere
- Scelta di colonne deltotocalcio (risultato di 13 partite)

Quindi lo usiamo nei casi di estrazione con reinbussolamento quando ci interessa l'ordine.

Dato un insieme E di n elementi, l'insieme delle disposizioni (senza ripetizione) di k elementi dell'insieme E e' l'insieme delle sequenze ordinate di k elementi distinti, ovvero:

$$D_{n,k} := \{(x_1, ..., x_k) | x_1, ..., x_k \in E \land x_i \neq x_j \text{se} i \neq j\}$$

Note:

 $D_{n,k}$ e' un sottoinsieme **stretto** di $DR_{n,k}$.

Usando le scelte successive:

$$|D_{n,k}| = n \times (n-1) \times ... \times (n-k+1) = \frac{n!}{(n-k)!}$$

L'esperimento aleatorio di riferimento e' l'estrazione senze reimissione.

Definition 4.2.1: Permutazioni

 $P_n = D_{n,n}$, quindi: $|P_n| = n!$

Definition 4.2.2

Dato un insieme E di n elementi, indichiamo con $C_{n,k}$ la classe dei sottoinsiemi di E contenenti k elementi, ovvero:

$$C_{n,k} = \{ A \subseteq E | |A| = k \}$$

Siamo passati da sequenze a sottoinsiemi, ovvero non ci interessa piu' dell'ordine:

sottoinsieme = sequenza non ordinata