Lekcija 3

3 Metrika u grafovima. Povezanost. Spektri grafa

3.1 Metrika u grafovima. Povezanost

Neka je dat graf $G = (V, E), V = \{x_1, x_2, \dots, x_n\}, E = \{e_1, e_2, \dots, e_m\}.$

Definicija 1. Rastojanje izmedju dva čvora x i y, $x, y \in V$, u oznaci d(x, y), je dužina najkraćeg puta koji ih povezuje. Ako ovaj put ne postoji (tj. graf G nije povezan) to se označva sa $d(x, y) = +\infty$.

Definicija 2. Dijametar grafa G, u oznaci d(G), je medjusobno rastojanje dva njegova najudaljenija čvora,

$$d(G) = \max_{x,y \in V} d(x,y).$$

Pojam dijametra je interesantan ako je G povezan graf. U protivnom $d(G) = +\infty$.

Definicija 3. Ekscentricitet čvora $x, x \in V$, povezanog grafa G, u oznaci e(x), je njegovo maksimalno rastojanje u odnosu na preostale čvorove

$$e(x) = \max_{y \in V} d(x, y).$$

Definicija 4. Radijus povezanog grafa G, u oznaci r(G), definisan je sa

$$r(G) = \min_{x \in V} e(x) .$$

Definicija 5. Pod rastojanjem čvora x, povezanog grafa G, u oznaci R(G), podrazumeva se zbir njegovih rastojanja u odnosu na preostale čvorove,

$$R(X) = \sum_{y \in V} d(x, y) .$$

Definicija 6. Centar povezanog grafa G, C(G), je skup čvorova čiji su ekscentriciteti jednaki radijusu grafa,

$$C(G) = \{x \mid x \in V, e(x) = r(G)\}.$$

Definicija 7. Periferija povezanog grafa G, P(G), je skup čvorova čiji su ekscentriciteti jednaki dijametru grafa,

$$P(G) = \{x \mid x \in V, e(x) = d(G)\}.$$

Definicija 8. Neka je G = (V, E), $V = \{x_1, x_2, \ldots, x_n\}$, povezan graf. Pod matricom rastojanja podrazumeva se matrica $S = (s_{ij})$, reda $n \times n$, definisana sa

$$s_{ij} = \begin{cases} 0, & i = j \\ d(x_i, x_j), & i \neq j \end{cases},$$

$$i = 1, 2, \dots, n, j = 1, 2, \dots, n.$$

Pitanje: Kakve osobine ima matrica S?

Za nalaženje matrice S može se iskoristiti sledeći iterativni postupak.

Postupak(MATRAS)

1. Na osnovu matrice susedstva $A^1=A=(a_{ij}^{(1)})$ formira se matrica $S^{(1)}=(s_{ij}^{(1)})$, na osnovu jednakosti $s_{ij}^{(1)}=a_{ij}^{(1)}$ za svako $i=1,2,\ldots,n$ i $j=1,2,\ldots,n$. Proverava se da li postoji indeksni par $i,j,\,i\neq j$, tako da je $s_{ij}^{(1)}=0$. Ako takav par ne postoji, ovo je kraj izračunavanja i važi

$$S = S^{(1)} = (s_{ij}^{(1)}).$$

Ako takav par postoji, postupak se nastavlja.

2. Pretpostavimo da smo na osnovu matrica $A^1, A^2, \ldots, A^{k-1}$ formirali matrice $S^{(1)}, S^{(2)}, \ldots, S^{(k-1)}$. Na osnovu matrice A^k formiramo matricu $S^{(k)} = (s_{ij}^{(1)})$ na sledeći način:

$$s_{ij}^{(k)} = \begin{cases} 0, & \text{ako je } i = j \\ s_{ij}^{(k-1)}, & \text{ako je } s_{ij}^{(k-1)} \neq 0 \\ k, & \text{ako je } s_{ij}^{(k-1)} = 0 \text{ i } a_{ij}^{(k)} \neq 0 \\ 0, & \text{ako je } s_{ij}^{(k-1)} = 0 \text{ i } a_{ij}^{(k)} = 0 \end{cases}$$

za svako i = 1, 2, ..., n i j = 1, 2, ..., n.

3. Proverava se da li postoje indeksi i i $j, i \neq j$, za koje važi jednakost $s_{ij}^{(k)}=0$. Ako takav par ne postoji ovo je kraj izračunavanja i važi

$$S = S^{(k)}.$$

Ako takav par postoji, izračunava se matrica A^{k+1} i ponavlja se postupak 2.

Domaći zadatak: Na osnovu navedenog postupka formirati algoritam za nalaženje matrice S.

Flojdov algoritam za netežinske grafove

Za nalaženje matrice $S = (s_{ij})$ može se koristiti i sledeći algoritam:

 $\begin{aligned} & \textbf{Algoritam (Flojd)} \\ & \textbf{for } k := 1 \textbf{ to } n \textbf{ do} \\ & \textbf{for } i := 1 \textbf{ to } n \textbf{ do} \\ & \textbf{for } j := 1 \textbf{ to } n \textbf{ do} \\ & S_{ij}^{(k)} := \min \left\{ s_{ij}^{(k-1)}, \, s_{ik}^{(k-1)} + s_{kj}^{(k-1)} \right\}, \end{aligned}$

pri čemu je inicijalno $s_{ij}^{(0)}=a_{ij}^{(0)}=a_{ij},$ za svako $i=1,2,\ldots,n$ i $j=1,2,\ldots,n$.

Kako je pomenuto, graf G=(V,E) je povezan ako i samo ako za svaka dva njegova čvora postoji put koji ih povezuje. U protivnom je nepovezan i sastoji se iz povezanih celina koje se zovu komponente povezanosti, i izolovanih čvorova.

Definicija 9. Čvor u grafu čijim se udaljavanjem iz datog grafa, zajedno sa incidentnim granama, povećava broj komponenti povezanosti naziva se artikulacioni čvor. Graf koji sadrži bar jedan artikulacioni čvor naziva se separabilan.

Definicija 10. Grana grafa čijim se udaljavanjem iz grafa, bez incidentnih čvorova, povećava broj komponenti povezanosti naziva se most. Ako je most incidentan sa čvorom stepena 1, naziva se viseći most.

Definicija 11. Maksimalno povezan podgraf, tj. podgraf grafa G, koji ne sadrži artikulacione čvorove naziva se blok grafa G.

Definicija 12. Najmanji broj čvorova koje treba udaljiti iz povezanog grafa tako da postane nepovezan naziva se povezanost po čvorovima i označava se sa k(G).

Definicija 13. Najmanji broj grana koje treba udaljiti iz povezanog grafa tako da postane nepovezan, naziva se povezanost po granama i označava se sa m(G).

Zadatak 1. Graf G = (V, E) definisan je skupovima $V = \{1, 2, 3, 4, 5\}$ i $E = \{\{1, 2\}, \{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}\}$. Naći dijametar i radijus grafa G, rastojanja za svaki čvor, centar i periferiju grafa, matricu rastojanja.

Rešenje. Moguća prezentacija grafa prikazana je na sledećoj slici

Rastojanja izmedju čvorova su:

$$d(1,2) = 1$$
, $d(1,3) = 1$, $d(1,4) = 2$, $d(1,5) = 1$,
 $d(2,3) = 2$, $d(2,4) = 1$, $d(2,5) = 1$,
 $d(3,4) = 3$, $d(3,5) = 2$,
 $d(4,5) = 2$.

Tako je dijametar grafa G, d(G),

$$d(G) = \max_{x,y \in V} d(x,y) = d(3,4) = 3.$$

Ekscentriciteti za svaki čvor su

$$\begin{split} &e(1) = \max_{x \in V} d(1,x) = 2 \,, \quad e(2) = \max_{x \in V} d(2,x) = 2 \,, \quad e(3) = \max_{x \in V} d(3,x) = 3 \\ &e(4) = \max_{x \in V} d(4,x) = 2 \,, \quad e(5) = \max_{x \in V} d(5,x) = 2 \,. \end{split}$$

Radijus grafa je

$$r(G) = \min_{x \in V} e(x) = 2.$$

Centar grafa je skup

$$C(G) = \{x \mid x \in V, e(x) = r(x)\} = \{1, 2, 5\}.$$

Periferija grafa je skup

$$P(G) = \{x \mid x \in V, e(x) = d(x)\} = \{3, 4\}.$$

Matricu rastojanja, vežbe radi, formirajmo pomoću algoritma MATRAS. Kako je matrica incidentnosti A

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad \text{važi} \qquad S^{(1)} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Kako je

$$A^{2} = \begin{bmatrix} 3 & 1 & 0 & 1 & 1 \\ 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{bmatrix} \qquad \Rightarrow \qquad S^{(2)} = \begin{bmatrix} 0 & 1 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 0 & 2 \\ 2 & 1 & 0 & 0 & 2 \\ 1 & 1 & 2 & 2 & 0 \end{bmatrix}$$

Kako je $s_{34} = s_{43} = 0$, mora se naći i A^3 :

$$A^{3} = AA^{2} = \begin{bmatrix} 2 & 5 & 3 & 1 & 4 \\ 5 & 2 & 1 & 3 & 4 \\ 3 & 1 & 0 & 1 & 1 \\ 1 & 3 & 1 & 0 & 1 \\ 4 & 4 & 1 & 1 & 2 \end{bmatrix} \qquad \Rightarrow \qquad S^{(3)} = \begin{bmatrix} 0 & 1 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 2 & 0 & 3 & 2 \\ 2 & 1 & 3 & 0 & 2 \\ 1 & 1 & 2 & 2 & 0 \end{bmatrix}$$

Zadatak 2. Na grafu prikazanom na slici uočiti: artikulacione čvorove (a), mostove (m) i viseće mostove (mv).

Rešenje

3.2 Spektri grafa

Definicija 14. Neka je G = (V, E), $V = \{v_1, v_2, \dots, v_n\}$, $E = \{e_1, e_2, \dots, e_m\}$ graf sa n čvorova i m grana, čija je matrica susedstva $A = (a_{ij})$, reda $n \times n$. Polinom po λ

$$f_{\lambda}(G) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n, \qquad (1)$$

je karakteristični polinom grafa G. Sopstvene vrednosti matrice A, tj. nule polinoma $f_{\lambda}(G)$,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$

su (ordinarne) sopstvene vrednosti grafa G.

Kako je matrica A realna i simetrična (binarna), sve sopstvene vrednosti λ_i , $i=1,2,\ldots,n$, su realne.

Teorema 1. Važe jednakosti

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = 0$$
 i $\sum_{i=1}^n \lambda_i^2 = \sum_{i=1}^n d_i = 2m$.

Proof. Neka je $A^k = (a_{ij}^{(k)}), k$ -ti stepen matrice A tada važi jednakost

$$\lambda_1^k + \lambda_2^k + \dots + \lambda_n^k = \operatorname{tr}(A^k) = \sum_{i=1}^n a_{ik}^{(k)}.$$

Za k = 1 važi

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \operatorname{tr}(A) = 0$$
.

Za k=2 važi

$$\lambda_1^2 + \lambda_2^2 + \dots + \lambda_n^2 = \operatorname{tr}(A^2) = \sum_{i=1}^n a_{ii}^{(2)} = \sum_{i=1}^n d_i = 2m.$$

 $\operatorname{Za} k = 3$

$$\lambda_1^3 + \lambda_2^3 + \dots + \lambda_n^3 = \operatorname{tr}(A^3) = \sum_{i=1}^n a_{ii}^{(3)} = 6C_3(G),$$

gde je $C_3(G)$ broj ciklusa dužine 3 u grafu G, tj. broj trouglova u grafu G.

Teorema 2. Za karakteristični polinom (1) važe jednakosti

$$a_1 = 0 \quad i \quad a_2 = -m \,.$$

Proof. Neka je

$$f_{\lambda}(G) = \det(\lambda I - A) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_n = \prod_{i=1}^n (\lambda - \lambda_i).$$

Tada na osnovu Vijetovih pravila važe jednakosti

$$a_1 = -(\lambda_1 + \lambda_2 + \cdots + \lambda_n) = 0$$
,

i

$$a_2 = \sum_{1 \le i < j \le n} \lambda_i \lambda_j = \frac{1}{2} \left(\left(\sum_{i=1}^n \lambda_i \right)^2 - \sum_{i=1}^n \lambda_i^2 \right) = \frac{1}{2} (0 - 2m) = -m.$$

Teorema 3. Neka su $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$, $|V_1| = |V_2| = n$ i $|E_1| = |E_2| = m$, dva izomorfna grafa. Tada oni imaju jednake karakteristične polinome.

Proof. Neka su $f_{\lambda}(G_1) = \det(\lambda I - A_1)$ i $f_{\lambda}(G) = \det(\lambda I - A_2)$, redom karakteristični polinomi grafova G_1 i G_2 , pri čemu su A_1 i A_2 odgovarajuće matrice susedstva. kako su grafovi G_1 i G_2 izomorfni, postoji permutaciona matrica P, reda $n \times n$, tako da je

$$A_2 = P \cdot A_1 \cdot P^T$$
, $P \cdot P^T = I$ i $\det P = \det P^T = 1$.

Tada je

$$f_{\lambda}(G_2) = \det(\lambda I - A_2) = \det(\lambda I - PA_1P^T) = \det(\lambda PP^T - PA_1P^T) =$$

= $\det(P(\lambda I - A_1)P^T) = \det P \cdot \det(\lambda I - A_1) \det P^T = \det(\lambda I - A_1) =$
= $f_{\lambda}(G_1)$.

Pitanje: Zašto je važan ordinarni spektar

$$\operatorname{Spec} A = (\lambda_1, \lambda_2, \dots \lambda_n)$$
?

- 1. Ordinarni spektar sadrži n elemenata, a matrica A n^2 . To znači da je za njegovo pamćenje potrebno mnogo manje memorijskog prostora.
- 2. Poznavanjem ordinarnog spektra grafa možemo odrediti sve karakteristike grafa.

Pitanje: kako odrediti spektar?

1. Za nalaženje ordinarnog spektra treba naći nule polinoma (1), tj. korene jednačine (karakteristične jednačine)

$$f_{\lambda}(G) = 0. (2)$$

Za rešavanje ove jednačine postoji veliki broj sukcesivnih i simultanih numeričkih metoda u numeričkoj linearnoj algebri.

2. Postoje gotovi programski paketi za nalaženje nula jednačine (2).

Razmotrimo spektre nekih karakterističnih grafova.

Kompletan graf $G = K_n$

Stepen svakog čvora v_i , u kompletnom grafu K_n (|V|=n) je $d_i=n-1$. Tako on sadrži $m=\frac{n(n-1)}{2}$ grana. Njegov (ordinarni) spektar je

$$\operatorname{Spec}(K_n) = (n-1, \underbrace{-1, \dots, -1}_{n-1}).$$

Tako, na primer, za n=5

$$Spec(K_5) = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (4, -1, -1, -1, -1)$$

K,

Zvezda $G = K_{1,n-1}$

Zvezda ima n čvorova i m=n-1grana. Niz stepena čvorova je

$$D = (d_1, d_2, \dots, d_n) = (n - 1, \underbrace{1, \dots, 1}_{n-1}).$$

Njen spektar je

$$\operatorname{Spec}(K_{1,n-1}) = \left(\sqrt{n-1}, \underbrace{0, \dots, 0}_{n-2}, -\sqrt{n-1}\right).$$

Tako, na primer, za n=7 je

$$Spec(K_{1,6}) = \left(\sqrt{6}, 0, 0, 0, 0, 0, -\sqrt{6}\right)$$

Put $G = P_n$

Put od n čvorova i m=n-1grana. Niz stepena čvorova je

$$D = (d_1, d_2, \dots, d_n) = (\underbrace{2, 2, \dots, 2}_{n-2}, 1, 1).$$

Ordinarne sopstvene vrednosti su

$$\lambda_{n-i+1} = 2\cos\frac{i\pi}{n+1}, \quad i = 1, 2, \dots, n.$$

Tako, na primer

Spec
$$(P_5) = \left(2\cos\frac{5\pi}{6}, 2\cos\frac{4\pi}{6}, 2\cos\frac{3\pi}{6}, 2\cos\frac{2\pi}{6}, 2\cos\frac{\pi}{6}\right).$$

Ciklus $G = C_n$

Ciklus od n čvorova ima m=n grana. Svako čvor v_i je stepena d=2. Ordinarne sopstvene vrednosti su

$$\lambda_i = 2\cos\frac{2\pi i}{n}, \quad i = 0, 1, \dots, n - 1.$$

Tako je

Spec
$$(C_5) = \left(2, 2\cos\frac{2\pi}{5}, 2\cos\frac{4\pi}{5}, 2\cos\frac{6\pi}{5}, 2\cos\frac{8\pi}{5}, \right)$$
.

Kompletan bipartitni graf $G = K_{p,q}, p + q = n$

Kompletan bipartitni graf sa n=p+q čvorova ima m=pq grana. Ordinarni spektar je

$$\operatorname{Spec}(K_{p,q}) = \left(\sqrt{pq}, \underbrace{0, 0, \dots, 0}_{p-2}, -\sqrt{pq}\right).$$

Tako, na primer,

$$Spec(K_{2,3}) = \left(\sqrt{6}, 0, 0, 0, -\sqrt{6}\right).$$

Petersonov graf Pet_{10}

Ima n=10 čvorova, m=15 grana. On je regularan, stepena regularnosti d=3. Ordinarni spektar je

$$Spec(Pet_{10}) = (3, 1, 1, 1, 1, 1, -2, -2, -2, -2).$$

Njaveća ordinarna sopstvena vrednost $\lambda_1 = \rho(G)$ zove se ordinarni spektralni radijus grafa G.

Suma apsolutnih vrednosti ordinarnih sopstvenih vrednosti naziva se energija grafa

$$E(G) = \sum_{i=1}^{n} |\lambda_i|.$$

3.2.1 Laplasov spektar grafa G

Neka je $G=(V,E),\ V=\{v_1,v_2,\ldots,v_n\},\ E=\{e_1,e_2,\ldots,e_m\}$ graf sa n čvorova i m grana, čija je matrica susedstva $A=(a_{ij}),$ reda $n\times n$ i $D=diag(d_1,d_2,\ldots,d_n)$ dijagonalna matrica stepena čvorova.

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots, 0 \\ \vdots & & & \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

Matrica L = D - A je Laplasova matrica grafa G. Sopstvene vrednosti matrice $L = (l_{ij})_{n \times n}$

$$\mu_1 \ge \mu_2 \ge \cdots \mu_{n-1} \ge \mu_n = 0,$$

su Laplasove sopstvene vrednosti grafa G.

Teorema 4. Važe jednakosti

$$\mu_1 + \mu_2 + \dots + \mu_{n-1} = 2mm,$$

$$\mu_1^2 + \mu_2^2 + \dots + \mu_{n-1}^2 = \sum_{i=1}^n d_i^2 + 2m,$$

$$\mu_1^3 + \mu_2^3 + \dots + \mu_{n-1}^3 = \sum_{i=1}^n d_i^3 + 3\sum_{i=1}^n d_i^2 - 6C_3(G).$$

Proof.

$$\mu_1 + \mu_2 + \dots + \mu_{n-1} = \operatorname{tr}(L) = \operatorname{tr}(D - A) = \operatorname{tr}D - \operatorname{tr}A =$$

$$= \sum_{i=1}^n d_i - 0 = 2m.$$

$$\mu_1^2 + \mu_2^2 + \dots + \mu_{n-1}^2 = \operatorname{tr}(D - A)^2 = \operatorname{tr}(D^2 - 2DA + A^2) =$$

$$= \operatorname{tr}(D^2) - 2\operatorname{tr}(DA) + \operatorname{tr}(A^2) =$$

$$= \sum_{i=1}^n d_i^2 - 0 + \sum_{i=1}^n d_i = \sum_{i=1}^n d_i^2 + 2m$$

$$\mu_1^3 + \mu_2^3 + \dots + \mu_{n-1}^3 = \operatorname{tr}(L^3) = \operatorname{tr}(D - A)^3 = \operatorname{tr}(D^3 - 3D^2A + 3DA^2 - A^3) =$$

$$= \operatorname{tr}(D^3) - 3\operatorname{tr}(D^2A) + 3\operatorname{tr}(DA^2) - \operatorname{tr}(A^3) =$$

$$= \sum_{i=1}^n d_i^3 - 0 + 3\sum_{i=1}^n d_i^2 - 6C_3(G) =$$

$$= \sum_{i=1}^n d_i^3 + 3\sum_{i=1}^n d_i^2 - 6C_3(G).$$

Sa

$$M_1(G) = \sum_{i=1}^n d_i^2$$
 i $F(G) = \sum_{i=1}^n d_i^3$,

označavaju se topološki indeksi bazirani na stepenima čvorova poznati pod nazivom prvi Zagreb indeks i F-index (forgotten topological index).

Laplasova sopstvena vrednost μ_1 naziva se Laplasov spektralni radijus grafa G. Sopstvena vrednost μ_{n-1} naziva se indeks povezanosti (algebarske povezanosti grafa). Ako je $\mu_{n-1} > 0$ graf je povezan. Ako je $\mu_{n-2} > \mu_{n-1} = 0$ tada je graf nepovezan, tj. ima dve komponente povezanosti. Važi i obrnuto. Važi i opštiji rezultat: Graf G ima p komponenti povezanosti ako i samo ako je

$$\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-p} > \mu_{n-p+1} = \cdots = \mu_n = 0$$
.

Invarijanta grafa ili topološki index grafa, je veli;ina koja zavisi od parametara grafa, a koja je nepromenljiva u odnosu na izomorfizam.

Najčešće korišćene invarijante grafa koje su bazirane na spektrima grafa su:

 \bullet Kirhofov (Kirchhoff) indeks, Kf(G), definisan sa

$$Kf(G) = n \sum_{i=1}^{n-1} \frac{1}{\mu_i}$$
 (za povezane grafove)

• Laplasova energija grafa, LE(G), definisana sa

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right| ;$$

 \bullet Laplacian—energy—like (Kao Laplasova energija), LEL(G), definisana sa

$$LEL(G) = \sum_{i=1}^{n-1} \sqrt{\mu_i}.$$

Laplasovi spektri za neke klase grafova

1. $G = K_n$ (Kompletan graf)

$$LSpec(K_n) = (\mu_1, \mu_2, \dots \mu_{n-1}, 0) = (n, n, \dots, n, 0)$$

2. $G = K_{1,n-1}$ (Zvezda)

$$LSpec(K_{1,n-1}) = (n, 1, 1, \dots, 1, 0)$$

3. $G = P_n$ (Put)

$$\mu_{n-i} = 2 - 2\cos\frac{\pi i}{n}, \quad i = n - 1, \dots, 0.$$

4. $G = C_n$ (Ciklus)

$$\mu_{n-i} = 2 - 2\cos\frac{2\pi i}{n}, \quad i = n - 1, \dots, 0.$$

5. $G = K_{p,q}, p + q = n$ (Kompletan bipartitni graf)

$$LSpec(K_{p,q}) = (p + q, \underbrace{p, \dots, p}_{q-1}, \underbrace{q, \dots, q}_{p-1}, 0).$$

6. $G = Pet_{10}$

$$LSpec(Pet_{10})(5, 5, 5, 5, 2, 2, 2, 2, 2, 0)$$
.