See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/230695371

# Density Functional Investigation of the Difference in the Magnetic Structures of the Layered Triangular Antiferromagnets CuFeO 2 and AgCrO 2

**ARTICLE** in CHEMISTRY OF MATERIALS · AUGUST 2011

Impact Factor: 8.35

**READS** 

56

### 3 AUTHORS:



# Yuemei Zhang

University of California, Riverside

22 PUBLICATIONS 278 CITATIONS

SEE PROFILE



#### Erjun Kan

Nanjing University of Science and Technology

102 PUBLICATIONS 1,612 CITATIONS

SEE PROFILE



# Myung-Hwan Whangbo

North Carolina State University

704 PUBLICATIONS 14,990 CITATIONS

SEE PROFILE



# Density Functional Investigation of the Difference in the Magnetic Structures of the Layered Triangular Antiferromagnets CuFeO<sub>2</sub> and AgCrO<sub>2</sub>

Yuemei Zhang, <sup>†</sup> Erjun Kan, <sup>‡</sup> and Myung-Hwan Whangbo\*, <sup>†</sup>

ABSTRACT: The layered triangular antiferromagnets CuFeO<sub>2</sub> and AgCrO<sub>2</sub> exhibit ferroelectric polarization when they adopt a helical spiral-spin magnetic structure. Application of magnetic field parallel to the *c*-axis or doping Fe sites with Al or Ga is necessary for CuFeO<sub>2</sub> to have a helical spiral spin order. However, AgCrO<sub>2</sub> adopts a helical spiral spin order in the absence of such extrinsic factors. A probable cause for this difference between the two systems was examined by evaluating the relative stabilities of their helical spiral and collinear spin structures on the basis of density functional calculations. In contrast to the case of AgCrO<sub>2</sub>, the collinear \frac{\partitus}{\partitus} state is only slightly higher in energy than the helical spiral-spin state Q<sub>a+b</sub> in CuFeO<sub>2</sub> so that extrinsic factors such as oxygen vacancy and applied





#### 1. INTRODUCTION

Multiferroic (i.e., magnetic ferroelectric) materials have received much attention due to the potential of controlling their physical properties by either magnetic or electric field. A centrosymmetric crystalline solid can become ferroelectric (FE) when it loses inversion symmetry, which is often induced either by cooperative Jahn-Teller distortion 1b,2 or by chiral magnetic order. 1f,3 The FE polarization driven by magnetic order has been discussed in terms of exchange striction<sup>4</sup> or spin-orbit coupling (SOC).<sup>5</sup> The layered triangular antiferromagnets such as CuFeO<sub>2</sub><sup>6</sup> and AgCrO<sub>2</sub><sup>7</sup> exhibit FE polarization when their magnetic structure acquires a helical spiral-spin order in the chains of  $M^{3+}$  (M = Fe, Cr) ions of their MO<sub>2</sub> layers. The MO<sub>2</sub> layers of AMO<sub>2</sub> (A = Cu, M = Fe; A = Ag, M = Cr) are made up of edge-sharing MO<sub>6</sub> octahedra <sup>8,9</sup> containing high-spin M<sup>3+</sup> (d<sup>5</sup>, S = 5/2 for M = Fe;  $d^3$ , S = 3/2 for M = Cr) ions (Figure 1a). <sup>10</sup> Each MO<sub>2</sub> layer can be viewed in terms of the MO<sub>4</sub> chains of edge-sharing FeO<sub>6</sub> octahedra running along the a-, b-, or (a+b)direction. Adjacent MO<sub>2</sub> layers of AMO<sub>2</sub> are stacked along the c-direction with A+ (d10) ions intercalated between the MO2 layers to form linear O-A-O bridges (Figure 1b) such that there are three MO<sub>2</sub> layers per unit cell. Although CuFeO<sub>2</sub> and AgCrO<sub>2</sub> are similar in crystal structure, they show an interesting difference in magnetic structure. The magnetic ground state of CuFeO<sub>2</sub> has the  $\uparrow\uparrow\downarrow\downarrow$  spin arrangement in each FeO<sub>2</sub> layer (Figure 2a) with their spins parallel to the *c*-axis. <sup>11</sup> This magnetic structure is modified by magnetic field H applied along the c-direction; the magnetic structure changes from the 1114 arrangement under  $H < \sim 7$  T to the helical spiral-spin structure under  $H \approx 7-13$  T to the  $\uparrow \uparrow \uparrow \downarrow \downarrow$  structure (Figure 2b) under



Figure 1. (a) An isolated FeO<sub>2</sub> layer of CuFeO<sub>2</sub> made of edge-sharing FeO<sub>6</sub> octahedra showing the intralayer spin exchange paths  $J_1$ ,  $J_2$ , and  $J_3$ . (b) A zoomed-in view of how two adjacent FeO<sub>2</sub> layers of CuFeO<sub>2</sub> are linked by O-Cu-O bridges showing the interlayer spin exchange J<sub>4</sub>. The Fe, Cu, and O atoms are indicated by red, blue, and white circles, respectively. The numbers 1-4 in (a, b) refer to the spin exchange paths  $J_1-J_4$ , respectively. (c) The values of  $J_1-J_4$  (in meV) found for CuFeO<sub>2</sub> and AgCrO<sub>2</sub> obtained from GGA+U calculations. The numbers outside the parentheses are the as-calculated values, and those inside the parentheses are the reduced values using the overestimation factor f = 3.24 for CuFeO<sub>2</sub> and f = 1.42 for AgCrO<sub>2</sub> (see the text for details).

 $H > \sim 13 \text{ T}$ . The helical spiral-spin state can also be induced into CuFeO2 without applying magnetic field by doping the Fe

Received: April 22, 2011 August 24, 2011 Revised:

<sup>&</sup>lt;sup>†</sup>Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States

<sup>&</sup>lt;sup>‡</sup>Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China



Figure 2. The collinear magnetic structures of  $CuFeO_2$  below 10 K under magnetic field: (a) the  $\uparrow\uparrow\downarrow\downarrow$  structure under magnetic field lower than  $\sim$ 7 T and (b) the  $\uparrow\uparrow\uparrow\downarrow\downarrow$  structure under magnetic field greater than  $\sim$ 13 T. The filled and empty circles represent the spins of the  $Fe^{3+}$  ions that are aligned along the positive and negative c-axis directions, respectively.

sites with Al or Ga atoms. <sup>6b,13</sup> In contrast, AgCrO<sub>2</sub> adopts a helical spiral-spin state in the absence of applied magnetic field H.

The magnetic structure of CuFeO<sub>2</sub> at low temperature was examined by inelastic neutron scattering measurements, 14 and the resulting spin wave dispersion relations were theoretically analyzed to find that the three intralayer spin exchanges  $J_1 - J_3$ and the interlayer spin exchange J<sub>4</sub> (Figure 1) are all antiferromagnetic. Other magnetic properties of CuFeO2 were also investigated in a number of studies. 16 So far, however, it has not been explained why CuFeO2 requires a magnetic field applied parallel to the c-axis to adopt a helical spiral spin order, but AgCrO<sub>2</sub> does not. To answer this question, one needs to estimate the relative energies of the collinear and helical spiral spin states of CuFeO2 and AgCrO2, which in turn requires the knowledge of their spin exchange interactions. The spin exchange parameters of CuFeO<sub>2</sub> were deduced experimentally, 14,15 but those of AgCrO<sub>2</sub> were not. In contrast, the spin exchange parameters of AgCrO2 were evaluated on the basis of density functional theory (DFT) calculations,  $^{7b}$  but those of CuFeO<sub>2</sub> were not.

In the present work, we examine the difference in the magnetic structures of  $CuFeO_2$  and  $AgCrO_2$  on the basis of DFT calculations. We first evaluate the spin exchange parameters of  $CuFeO_2$  by performing DFT calculations and then determine the relative stabilities of the helical spiral and collinear spin structures of  $CuFeO_2$  and  $AgCrO_2$  in terms of their spin exchange parameters and finally propose a most-likely reason why  $CuFeO_2$  and  $AgCrO_2$  differ in their magnetic structures under magnetic field.

### 2. DETAILS OF CALCULATIONS

Our spin-polarized DFT calculations employed the projector augmented wave method  $^{17}$  coded in the Vienna ab initio simulation package,  $^{18}$  the generalized gradient approximation (GGA) for the exchange and correlation corrections,  $^{19}$  and the plane wave cutoff energies of 500 and 400 eV for the calculations without and with including the effect of SOC, respectively. To describe the electron correlation associated with the Fe 3d states, the GGA plus on-site repulsion U (GGA+U) method was applied with an effective U = 4 eV on the Fe atom. As in the case of  ${\rm AgCrO_{22}}^{7b}$  we consider the four spin exchange interactions  ${\rm J_1-J_4}$  defined in Figure 1 and evaluate their values by performing GGA+U calculations for the five ordered spin states of CuFeO<sub>2</sub> defined in Figure 3.

#### 3. SPIN EXCHANGE INTERACTIONS

We determine the four spin exchange parameters  $J_1-J_4$  of CuFeO<sub>2</sub> (Figure 1) by performing mapping analysis<sup>20</sup> on the



**Figure 3.** The five ordered spin states of CuFeO<sub>2</sub> constructed using a (3a, 2b, c) supercell, where the filled and empty circles represent up-spin and down-spin Fe<sup>3+</sup> sites, respectively. In (a–d), all three FeO<sub>2</sub> layers of the (3a, 2b, c) supercell have the same spin arrangement, so that the spin arrangement of only one FeO<sub>2</sub> layer is shown. In (e), the spins are ferromagnetic in each FeO<sub>2</sub> layer, but the (3a, 2b, c) supercell consists of one up-spin and two down-spin layers. For each state, the number in each square bracket refers to the relative energy per three FUs determined from GGA+U calculations, and the energy expression to the total spin exchange energy per three FUs with N=5.

basis of the five ordered spin states (FM, AF1, AF2, AF3, AF4) shown in Figure 3. The relative energies, per three formula units (FUs), of these states were determined from our GGA+U calculations as summarized in Figure 3. The energies of these states can also be described in terms of the spin Hamiltonian,

$$\hat{H} = -\sum_{i < j} J_{ij} \hat{S}_i \cdot \hat{S}_j \tag{1}$$

where  $J_{ij}$  (=  $J_1$ – $J_4$ ) is the spin exchange parameter for the spin exchange interaction between the spin sites i and j. By applying the energy expressions obtained for spin dimers with N unpaired spins per spin site (N = 5 for CuFeO<sub>2</sub>), <sup>20</sup> the total spin exchange energies of the five ordered spin states (per three FUs) are written as summarized in Figure 3. Thus, by mapping the relative energies of the five ordered spin states determined by the GGA +U calculations onto the corresponding relative energies determined from the above spin exchange energies, we obtain the values of  $J_1$ – $J_4$  summarized in Figure 1c, where the corresponding values of  $AgCrO_2$  are also listed for comparison. (To compare the spin exchange interactions of  $CuFeO_2$  with those of  $AgCrO_2$ , it is necessary to use the effective spin exchanges  $J_i^{eff} = S^2J_{ii}$  where S = 5/2 and 3/2 for  $CuFeO_2$  and  $AgCrO_2$ , respectively.)

Figure 1c shows that the intralayer exchanges  $J_1$  and  $J_3$  as well as the interlayer exchange J<sub>4</sub> of CuFeO<sub>2</sub> are substantially antiferromagnetic (AFM), namely,  $J_1-J_4 = -0.77$ , -0.15, -0.28, and -0.24 meV, respectively. These values are the same in sign as, and are comparable in magnitude to, the corresponding spin exchanges deduced from the inelastic neutron scattering measurements (namely, -0.45, -0.20, -0.26, and -0.13 meV, respectively). 14 In each FeO2 layer, spin frustration 21 occurs in the  $(J_1, J_1, J_1)$  and  $(J_3, J_3, J_3)$  triangles and in the  $(J_1, J_1, J_3)$  line segments. Between adjacent FeO2 layers, spin frustration occurs in the isosceles  $(J_1, J_4, J_4)$  triangles. That is, both the intralayer and the interlayer interactions are spin-frustrated in CuFeO<sub>2</sub>, as found for AgCrO<sub>2</sub>. 7b The spin exchange interactions of CuFeO<sub>2</sub> differ from those of AgCrO<sub>2</sub> in two aspects: (a) Among J<sub>1</sub>-J<sub>4</sub>, the AFM interlayer spin exchange J<sub>4</sub> is the strongest interaction in AgCrO<sub>2</sub> but is quite weak in CuFeO<sub>2</sub>, and (b) the intralayer exchange J2 is ferromagnetic (FM) in AgCrO2 but is AFM in

CuFeO<sub>2</sub>. As discussed in the next section, these two differences are important in explaining why a magnetic field applied parallel to the *c*-axis is necessary for CuFeO<sub>2</sub> to adopt the helical spiral-spin structure while this is not the case for AgCrO<sub>2</sub>.

It is known that GGA+U electronic structure calculations generally overestimate the magnitude of spin exchange interactions. To find the overestimation factors f for the calculated spin exchange parameters of CuFeO<sub>2</sub> and AgCrO<sub>2</sub> (Figure 1c), we calculate their Curie—Weiss temperatures  $\theta$  using the mean field approximation, <sup>23</sup> namely,

$$\theta = \frac{S(S+1)}{3k_B} \sum_{i} z_{i} J_{i}$$
 (2)

where the summation runs over all nearest neighbors of a given spin site,  $z_i$  is the number of nearest neighbors connected by the spin exchange parameter  $J_{ij}$  and S is the spin quantum number of each spin site (i.e., S = 5/2 for  $Fe^{3+}$  in  $CuFeO_2$  and S = 3/2 for  $Cr^{3+}$  in  $AgCrO_2$ ). Thus, for  $CuFeO_2$  and  $AgCrO_2$ ,  $\theta$  can be approximated by

$$\theta \approx 2S(S + 1)(J_1 + J_2 + J_3 + J_4)/k_B$$
 (3)

The as-calculated  $J_1-J_4$  values of Figure 1c lead to  $\theta=-292$  and -283 K for CuFeO<sub>2</sub> and AgCrO<sub>2</sub>, respectively, while the corresponding experimental values are  $-90^{24}$  and -200 K,  $^{25}$  respectively. Thus, according to the experimental Curie—Weiss temperatures and the mean-field theory, the as-calculated  $J_1-J_4$  values are overestimated by a factor of f=3.24 and 1.42 for CuFeO<sub>2</sub> and AgCrO<sub>2</sub>, respectively. Figure 1c also lists, in parentheses, the values of  $J_1-J_4$  reduced using the overestimation factor f. For CuFeO<sub>2</sub>, the reduced  $J_1-J_4$  values are -0.24, -0.05, -0.09, and -0.07 meV, respectively, which are smaller in magnitude than the corresponding values deduced from the inelastic neutron scattering measurements  $^{14}$  (see above) approximately by a factor of 2.

# 4. RELATIVE STABILITIES OF THE HELICAL SPIRAL AND COLLINEAR SPIN STRUCTURES

To probe why a magnetic field applied parallel to the c-axis is needed for CuFeO<sub>2</sub> to acquire a helical spiral-spin structure, we first determine the magnetic anisotropy of CuFeO<sub>2</sub> by performing GGA+U+SOC calculations for its  $\uparrow\uparrow\downarrow\downarrow$  state. These calculations reveal that the spin orientation parallel to the c-axis (//c) is more stable than that perpendicular to the c-axis ( $\perp c$ ) by 0.12 meV per FU; namely, the magnetic anisotropy of each Fe<sup>3+</sup> (S = 5/2) ion is very weak. This is not surprising because, to a first approximation, L = 0 for the Fe<sup>3+</sup> ion in each FeO<sub>6</sub> octahedron so that the effect of SOC should be weak. This suggests that the spin orientation of CuFeO<sub>2</sub> might be easily influenced by extrinsic factors such as oxygen vacancy and applied magnetic field.

Since  $CuFeO_2$  can switch from the  $\uparrow\uparrow\downarrow\downarrow$  state to the helical spiral-spin state depending on the strength of applied magnetic field  $\mathbf{H} < \sim 13$  T, the two states should be close in energy. (Note that 1 T is equivalent to 0.67 K.) Such a field-dependence is not known for  $AgCrO_2$ , which adopts the helical spiral-spin state, thereby implying that the  $\uparrow\uparrow\downarrow\downarrow$  state is much less stable than the helical spiral-spin state in  $AgCrO_2$ . To verify these implications, we examine the relative stabilities of several helical spiral and collinear spin states of  $CuFeO_2$  and  $AgCrO_2$  in terms of their spin exchange parameters  $J_1-J_4$ . In estimating the relative stabilities of these states, we employ the reduced  $J_1-J_4$  values obtained from the as-calculated values by the overestimation



**Figure 4.** Plots of the spin exchange energy  $E(\theta)$ , per FU, of the helical spiral-spin structure  $Q_{a+b} = (q, q)$  calculated as a function of the helical rotation angle  $\theta = q \times 360^{\circ}$  for CuFeO<sub>2</sub> and AgCrO<sub>2</sub> using their spin exchange parameters  $J_1 - J_4$  reduced by the overestimation factor f = 3.24 for CuFeO<sub>2</sub> and by f = 1.42 for AgCrO<sub>2</sub>.

factor f. However, the use of the as-calculated  $J_1-J_4$  values leads essentially to the same conclusion. As a representative example of the helical spiral-spin structure, we consider the helical spiral-spin structure  $Q_{a+b}=(q,q)$  as a function of the helical rotation angle  $\theta=q\times360^\circ$  (q=1/5,1/4,1/3,1/2). In  $Q_{a+b}=(1/3,1/3)$ , for example, the helical spiral-spin chains run along the positive a-direction with clockwise helical-rotation of  $120^\circ$ , and the spiral-spin chains repeat along the positive b-direction while advancing the helical-rotation clockwise by  $120^\circ$ . In terms of  $J_1-J_4$ , the energy  $E(\theta)$  of the  $Q_{a+b}$  structure as a function of  $\theta$  is written as

$$E(\theta) = \{ -3J_1[2\cos\theta + \cos 2\theta] - 3J_2[1 + 2\cos 3\theta] - 3J_3[2\cos 2\theta + \cos 4\theta] - J_4[3 + 4\cos\theta + 2\cos 2\theta] \} (N^2/4)$$
(4)

The  $E(\theta)$  vs  $\theta$  plots calculated for CuFeO<sub>2</sub> and AgCrO<sub>2</sub> using their spin exchange parameters (reduced by the overestimation factor f) are presented in Figure 4 in the region of  $\theta = 60 - 180^{\circ}$  (i.e., q = 1/6 - 1/2).

$$\Delta E = (-0.50J_1 + 2J_2 - 0.50J_3 - 0.33J_4)(N^2/4)$$
 (5)

where N=5 for CuFeO<sub>2</sub> and N=3 for AgCrO<sub>2</sub>. Thus,  $\Delta E$  is large for AgCrO<sub>2</sub> due to the strong AFM J<sub>4</sub> and the FM J<sub>2</sub>, while  $\Delta E$  is small for CuFeO<sub>2</sub> due to the weak AFM J<sub>4</sub> and the AFM J<sub>2</sub>.

Since the  $Q_{a+b}$  (q=1/3) and  $\uparrow\uparrow\downarrow\downarrow$  states of CuFeO<sub>2</sub> are close in energy, the extrinsic factors such as oxygen vacancy and applied magnetic field might easily affect which state,  $Q_{a+b}$  (q=1/3) or  $\uparrow\uparrow\downarrow\downarrow$ , CuFeO<sub>2</sub> adopts. It has been suggested that an O vacancy in a FeO<sub>2</sub> layer creates Fe<sup>2+</sup> ions at the FeO<sub>5</sub> square pyramids

Table 1. Spin Exchange Energies (per FU) of the  $\uparrow\uparrow\downarrow\downarrow$ ,  $Q_{a+b}$  (q=1/3,1/4,1/5), and  $\uparrow\uparrow\uparrow\downarrow\downarrow$  states of CuFeO<sub>2</sub> and AgCrO<sub>2</sub> in Terms of Their Spin Exchange Parameters  $J_1-J_4$ 

| state               | energy expression (per FU) <sup>a</sup>          | CuFeO <sub>2</sub> , meV/FU | AgCrO <sub>2</sub> , meV/FU |
|---------------------|--------------------------------------------------|-----------------------------|-----------------------------|
| <b>↑</b> ↑↓↓        | $(J_1 - J_2 + J_3 - 0.33J_4)(N^2/4)$             | $-1.58^{b}$                 | $-2.94^{c}$                 |
| $Q_{a+b} (q = 1/3)$ | $(1.50J_1 - 3J_2 + 1.50J_3)(N^2/4)$              | -2.17                       | -7.01                       |
| $Q_{a+b} (q = 1/4)$ | $(J_1 - J_2 + J_3 - 0.33J_4)(N^2/4)$             | -1.58                       | -2.94                       |
| $Q_{a+b} (q = 1/5)$ | $(0.19J_1 + 0.62J_2 + 1.31J_3 - 0.87J_4)(N^2/4)$ | -0.77                       | +0.88                       |
| <b>↑</b> ↑↑↓↓       | $(0.20J_1 + 0.20J_2 + J_3 - 0.87J_4)(N^2/4)$     | -0.49                       | +0.94                       |

 $<sup>^</sup>aN = 5$  for CuFeO<sub>2</sub>, and N = 3 for AgCrO<sub>2</sub>.  $^b$  Using the  $J_1 - J_4$  values reduced by the overestimation factor f = 3.24 (see the text).  $^c$  Using the  $J_1 - J_4$  values reduced by the overestimation factor f = 1.42 (see the text).

around the vacancy site, and the uniaxial magnetism of such Fe<sup>2+</sup> ions<sup>28,29</sup> provides a driving force for the surrounding Fe<sup>3+</sup> ions to orient their moments along the c-axis leading to the  $\uparrow\uparrow\downarrow\downarrow$  state. An applied magnetic field tends to orient the moment of a magnetic ion perpendicular to the field when the field is not strong so that the Zeeman levels of the ion are almost equally populated. Thus, under such magnetic field applied along the c-axis, the spin orientation of CuFeO2 would be governed by two competing factors: the oxygen-vacancy effect favoring the //c-spin orientation and the magnetic-field effect favoring the ⊥c-spin orientation. Then, the adoption of the helical spiral-spin structure under magnetic field  $H \approx 7-13$  T implies that the magnetic-field effect overcomes the oxygen-vacancy effect, so the intra- and interlayer spin frustration of CuFeO<sub>2</sub> is reduced by adopting the helical spiral-spin structure, as found for AgCrO<sub>2</sub>. The occurrence of the  $\uparrow\uparrow\uparrow\uparrow\downarrow\downarrow$  structure under H >  $\sim$ 13 T suggests that the energy gap between adjacent Zeeman levels of the Fe<sup>3+</sup> ion become large, so only the lower-lying Zeeman levels are preferentially populated, thereby resulting in more moments parallel to the field direction.

#### 5. CONCLUDING REMARKS

The spin exchanges of CuFeO<sub>2</sub> are frustrated, as found for AgCrO<sub>2</sub>, but the two systems differ; the AFM interlayer exchange  $J_4$  is strong in AgCrO<sub>2</sub> but weak in CuFeO<sub>2</sub>, and the intralayer exchange  $J_2$  is FM in AgCrO<sub>2</sub> but AFM in CuFeO<sub>2</sub>. In contrast to the case of AgCrO<sub>2</sub>, therefore, the  $\uparrow\uparrow\downarrow\downarrow$  state is only slightly higher in energy than the helical spiral-spin state  $Q_{a+b}$  (q=1/3) in CuFeO<sub>2</sub> so that extrinsic factors such as oxygen vacancy and applied magnetic field can influence whether it adopts the  $\uparrow\uparrow\downarrow\downarrow\downarrow$  or  $Q_{a+b}$  (q=1/3) structure.

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: mike\_whangbo@ncsu.edu.

# ■ ACKNOWLEDGMENT

The research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant No. DE-FG02- 86ER45259, and also by computing resources at the NERSC and the HPC Centers.

# **■** REFERENCES

(1) (a) Ederer, C.; Spaldin, N. A. Curr. Opin. Solid State Mater. Sci. 2005, 9, 128. (b) Ramesh, R.; Spaldin, N. A. Nat. Mater. 2007, 6, 21. (c) Khomskii, D. Physics 2009, 2, 20. (d) Dawber, M.; Rabe, K. M.; Scott, J. F. Rev. Mod. Phys. 2005, 77, 1083. (e) Eerenstein, W.; Mathur, N. D.; Scott, J. F. Nature (London) 2006, 442, 759. (f) Cheong, S. W.;

Mostovoy, M. Nat. Mater. 2007, 6, 13. (g) Tokura, Y. Science 2006, 312, 1481.

- (2) Kan, E.; Xiang, H.; Lee, C.; Wu, F.; Yang, J. L.; Whangbo, M. Angew. Chem., Int. Ed. 2010, 49, 1603.
- (3) (a) Mostovoy, M. Phys. Rev. Lett. 2006, 96, 067601. (b) Yamasaki, Y.; Miyasaka, S.; Kaneko, Y.; He, J.-P.; Arima, T.; Tokura, Y. Phys. Rev. Lett. 2006, 96, 207204. (c) Sergienko, I.; Sen, C.; Dagotto, E. Phys. Rev. Lett. 2006, 97, 227204. (d) Fiebig, M. J. Phys. D 2005, 38, R123. (e) Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Nature (London) 2003, 426, 55. (f) Hur, N.; Park, S.; Sharma, P. A.; Ahn, J. S.; Guha, S.; Cheong, S.-W. Nature (London) 2004, 429, 392.
- (4) (a) Chapon, L. C.; Radaelli, P. G.; Blake1, G. R.; Park, S.; Cheong, S.-W. *Phys. Rev. Lett.* **2006**, *96*, 097601. (b) Choi, Y. J.; Yi, H. T.; Lee, S.; Huang, Q.; Kiryukhin, V.; Cheong, S.-W. *Phys. Rev. Lett.* **2008**, *100*. 047601.
- (5) (a) Xiang, H. J.; Whangbo, M.-H. *Phys. Rev. Lett.* **2007**, 99, 257203. (b) Xiang, H. J.; Wei, S.-H.; Whangbo, M.-H.; Da Silva, J. L. F. *Phys. Rev. Lett.* **2008**, 101, 037209. (c) Zhang, Y.; Xiang, H. J.; M.-H. Whangbo, M.-H. *Phys. Rev. B* **2009**, 79, 054432. (d) Malashevich, A.; Vanderbilt, D. *Phys. Rev. Lett.* **2008**, 101, 037210. (e) Katsura, H.; Nagaosa, N.; Balatsky, A. V. *Phys. Rev. Lett.* **2005**, 95, 057205.
- (6) (a) Kimura, T.; Lashley, J. C.; Ramirez, A. P. Phys. Rev. B 2006, 73, 220401(R).
  (b) Nakajima, T.; Mitsuda, S.; Kanetsuki, S.; Prokes, K.; Podlensnyak, A.; Kimura, H.; Noda, Y. J. Phys. Soc. Jpn. 2007, 76, 043709.
  (c) Arima, T. J. Phys. Soc. Jpn. 2007, 76, 073702.
- (7) (a) Seki, S.; Onose, Y.; Tokura, Y. *Phys. Rev. Lett.* **2008**, *101*, 067204. (b) Kan, E. J.; Xiang, H. J.; Zhang, Y.; Lee, C.; Whangbo, M.-H. *Phys. Rev. B* **2009**, *80*, 104417.
- (8) (a) Prewitt, C. T.; Shannon, R. D.; Rogers, D. B. *Inorg. Chem.* **1971**, *10*, 719. (b) Pabst, A. *Am. Mineral.* **1946**, *31*, 539. (c) Soller, W.; Thompson, A. J. *Phys. Rev.* **1935**, *47*, 644.
- (9) Gehle, E.; Sabrowsky, H. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1975, 30, 659.
- (10) (a) Doumerc, J.-P.; Wichainchai, A.; Ammar, A.; Pouchard, M.; Hagenmuller, P. *Mater. Res. Bull.* **1986**, 21, 745. (b) El Ataoui, K.; Doumerc, J.-P.; Ammar, A.; Fournès, L.; Wattiaux, A.; Grenier, J.-C.; Pouchard, M. *J. Alloys Comp.* **2004**, 368, 79.
- (11) Mitsuda, S.; Mase, M.; Prokes, K.; Kitazawa, H.; Katori, H. A. J. Phys. Soc. Jpn. **2000**, 69, 3513.
- (12) (a) Mitsuda, S.; Mase, M.; Prokes, K.; Kitazawa, H.; Aruga Katori, H. *J. Phys. Soc. Jpn.* **2000**, *69*, 3513. (b) Petrenko, O. A.; Balakrishnan, G.; Lees, M. R.; Paul, D. McK.; Hoser, A. *Phys. Rev. B* **2000**, *62*, 8983.
- (13) (a) Kanetsuki, S.; Mitsuda, S.; Nakajima, T.; Anazawa, D.; Katori, H. A.; Prokes, K. *J. Phys.: Condens. Matter* **2007**, *19*, 145244. (b) Seki, S.; Yamasaki, Y.; Shiomi, Y.; Iguchi, S.; Onose, Y.; Tokura, Y. *Phys. Rev. B* **2007**, *75*, 100403(R). (c) Terada, N.; Nakajima, T.; Mitsuda, S.; Kitazawa, H.; Kaneko, K.; Metoki, N. *Phys. Rev. B* **2008**, *78*, 014101.
- (d) Mitsuda, S.; Nakajima, T.; Yamano, M.; Takahashi, K.; Yamazaki, H.; Masuda, K.; Kaneko, Y.; Terada, N.; Prokes, K.; Kiefer, K. *Phys. B* **2009**, 404, 2532.
- (14) Ye, F.; Fernandez-Baca, J. A.; Fishman, R. S.; Ren, Y.; Kang, H. J.; Qiu, Y.; Kimura, T. Phys. Rev. B 2007, 99, 157201.

(15) (a) Fishman, R. S. J. Appl. Phys. **2008**, 103, 07B109. (b) Fishman, R. S.; Ye, F.; Fernandez-Baca, J. A.; Haraldsen, J. T.; Kimura, T. Phys. Rev. B **2008**, 78, 140407(R). (c) Haraldsen, J. T.; Ye, F.; Fishman, R. S. Phys. Rev. B **2010**, 82, 144441.

- (16) (a) Terada1, N.; Narumi, Y.; Sawai, Y.; Katsumata, K.; Staub, U.; Tanaka, Y.; Kikkawa, A.; Fukui, T.; Kindo, K.; Yamamoto, T.; Kanmuri, R.; Hagiwara, M.; Toyokawa, H.; Ishikawa, T.; Kitamura1, H. Phys. Rev. B 2007, 75, 224411. (b) Lummen, T. T. A.; Strohm, C.; Rakoto, H.; Nugroho, A. A.; van Loosdrecht, P. H. M. Phys. Rev. B 2009, 80, 012406. (c) Lummen, T. T. A.; Strohm, C.; Rakoto, H.; van Loosdrecht, P. H. M. Phys. Rev. B 2010, 81, 224420. (d) Ye, Fe.; Ren, Y.; Huang, Q.; Fernandez-Baca, J. A.; Dai, P.; Lynn, J. W.; Kimura, T. Phys. Rev. B 2006, 73, 220404. (e) Eyert, V.; Frésard, R.; Maignan, A. Phys. Rev. B 2008, 78, 052402. (f) Malvestuto, M.; Bondino, F.; Magnano, E.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Parmigiani, F. Phys. Rev. B 2011, 83, 134422. (g) Plumer, M. L. Phys. Rev. B 2007, 76, 144411. (h) Plumer, M. L. Phys. Rev. B 2008, 78, 094402. (i) Quirion, G.; Tagore, M. J.; Plumer, M. L.; Petrenko, O. A. Phys. Rev. B 2008, 77, 094111.
- (17) (a) Blöchl, P. E. *Phys. Rev. B* **1994**, *50* (17), 953. (b) Kresse, G.; Joubert, D.**1999**, *59*, 1758.
- (18) Kresse, G.; Furthmüller J. Comput. Mater. Sci. 1996, 6, 15. Phys. Rev. B 1996, 54, 11169.
- (19) Perdew, J. P.; Burke, S.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (20) (a) Dai, D.; Whangbo, M.-H. *J. Chem. Phys.* **2001**, *114*, 2887. (b) Dai, D.; Whangbo, M.-H. *J. Chem. Phys.* **2003**, *118*, 29. (c) Whangbo, M.-H.; Koo, H.-J.; Dai, D. *J. Solid State Chem.* **2003**, *176*, 417.
- (21) (a) Greedan, J. E. J. Mater. Chem. **2001**, 11, 37. (b) Dai, D.; Whangbo, M.-H. J. Chem. Phys. **2004**, 121, 672.
- (22) (a) Xiang, H. J.; Lee, C.; Whangbo, M.-H. *Phys. Rev. B: Rapid Commun.* **2007**, 76, 220411(R). (b) Koo, H.-J.; Whangbo, M.-H. *Inorg. Chem.* **2008**, 47, 128. (c) Koo, H.-J.; Whangbo, M.-H. *Inorg. Chem.* **2008**, 47, 4779.
- (23) Smart, J. S. Effective Field Theory of Magnetism; Saunders: Philadelphia, 1966.
- (24) Takeda, K.; Miyake, K.; Hitaka, M.; Kawae, T.; Ysguchi, N.; Mekata, M. J. Phys. Soc. Jpn. 1994, 63, 2017.
- (25) Olveira, G. N. P.; Lopes, A. M. L.; Mendonça, T. M.; Araújo, J. P.; Moreira, J. A.; Almeida, A.; Amaral, V. S.; Correia, J. G. *Hyperfine Interact.* **2010**, *197*, 123.
- (26) Oohara, Y.; Mitsuda, S.; Yoshizawa, H.; Yaguchi, N.; Kuriyama, H.; Asana, T.; Mekata, M. *J. Phys. Soc. Jpn.* **1994**, *63*, 847.
- (27) Seki, S.; Onose, Y.; Tokura, Y. Phys. Rev. Lett. 2008, 101, 067204.
- (28) Whangbo, M.-H.; Dai, D.; Lee, K.-S.; Kremer, R. K. Chem. Mater. 2006, 18, 1266.
  - (29) Dai, D.; Whangbo, M.-H. Inorg. Chem. 2005, 44, 4407.