COMP20230: Data Structures & Algorithms Lecture 4: Complexity Analysis (Big- \mathcal{O})

Dr Andrew Hines

Office: E3.13 Science East School of Computer Science University College Dublin

Housekeeping

Scribes

If you want to pick a lecture you can use wiki to self-select and organise.

It the wiki gets corrupted or anyone complains I'll just wipe and assign randomly.

Lab

First Lab is today at 14:00 in E1.17 SCE

Outline

Today:

- ullet Yesterday: Running time and theoretical analysis, Big- ${\cal O}$
- Today: Big- \mathcal{O} , Big- Ω (omega) and Big- Θ (theta)

From the tutorial

Estimating Running time analysis can be difficult and subjective – implementation vs pseudocode

Example 1: Constant Running Time

- The simplest function we can think of is the constant function: f(n) = c
- For some fixed constant c, such as c = 5, c = 27, or c = 210. For any argument n the constant function assigns the value c. It does not matter what n is, f(n) will always be c.
- The constant function characterises the number of steps to perform a primitive operation (simple arithmetic, assignment, array access etc.) on a computer.

Example 1: Constant Running Time

Algorithm Return the first element of an array

1: function first_element(array):

Input: an array of size nOutput: the first element

2: **return** array[0] #2 ops: return and access array[0]

How many operations are performed in this function?

What if the list has 10 elements? 1,000 elements?

Independent of input size

Always 2 operations performed (index[0] and return)

Example 2: Linear Running Time

Given an input n the linear function always assigns the value n itself

$$f(n) = n$$

- Arises when we need to perform an operation over n elements (e.g. for loop)
- Represents the best we can achieve for any algorithm which requires reading n elements into memory, since this requires n operations

Example 2: Linear Running Time

Algorithm Return the index of the max value in an array

```
    function argmax(array):
    Input: an array of size n
    Output: the index of the maximum value
    index ← 0 #1 op: assignment
    foreach i in [1, n-1] do #2 op per loop
    if array[i] > array[index] then #3 ops per loop
    index ← i #1 op per loop, sometimes
    endif
    endfor
    return index #1 op: return
```

How many operations if the list has 10 or 10,000 elements?

Number of operations varies proportional to the size of the input

list: 6n + 2

Time in the foreach loop gets longer as the input list grows

Example 3: Quadratic Running Time

- For each *n* assigns the product of *n* with itself $f(n) = n^2$
- common in algorithm analysis, usually where there are nested loops
- simple nested loops
- loops with changing indices

Beware functions in loops and inner loop ranges

If the function alters the value of the range or if the nested ranges interact!

Example 3: Quadratic Running Time

Algorithm Return possible products of the numbers in an array

1: function possible_products(array):

Input: an array of size n

Output: list of all possible products between elements in the list

```
2: products \leftarrow [] #1 op: make an empty list
```

```
3: for i in [0, n-1] do #2 op per loop
```

```
4: for j in [0, n-1] do #2 op per loop per loop
```

```
5: products.append(array[i] * array[j])
```

```
#4 \text{ ops per loop per loop}
```

```
7: endfor
```

```
9: return products #1 op: return
```

How many operations if the list has 10 or 10,000 elements?

```
Requires about 6n^2 + 2n + 2 operations
```

Elements added to list must be multiplied by every other element

- log function defined as (constant b > 0) $f(n) = log_b n$ $x = log_b n$ if and only if $b^x = n$
- computing the logarithm function exactly for any integer n
 involves the use of calculus, but we can use an approximation
 that is good enough without calculus
- compute the smallest integer greater than or equal to $log_a n$, since this number is equal to the number of times we can divide n by a until we get a number less than or equal to 1

Example: Estimating Logs

$$log_2 12 = 4$$

 $12/2/2/2 = 0.75 \le 1$

- This base-2 approximation arises in algorithm analysis, since a common operation in many algorithms is to repeatedly divide an input in half.
- Base 2 logarithm is most common in computer science: logn = log₂n

Algorithm Return index of a item in an array

```
1: function binarysearch(myarray, elem):
Input: a sorted array myarray and an element elem
Output: the index of (an) elem in the array or a arbitrary big number
 \begin{array}{l} 2 \colon \mathsf{low} \leftarrow \mathsf{0} \\ 3 \colon \mathsf{high} \leftarrow \mathsf{n-1} \end{array} 
     while (low <= high) do
          mid \leftarrow (low + high) / 2
6:
7:
8:
9:
10:
12:
13:
14:
          if myarray[mid] > elem then
              high \leftarrow mid - 1
              else
              if myarray[mid] < elem then
                    \mathsf{low} \leftarrow \mathsf{mid} + 1
                    else
                    return mid
                endif
            endif
15: return size of myarray +1 #to show the elem is not in the array
```

- Given an initial call of BinarySearch(myarray, elem), what is the worst case running time?
- Worst case is if elem is not found. Then count how many iteration until we reach the base case (low > high)

Algorithm Binary Search

```
 function binarysearch(myarray, elem):

Input: sorted array, search element
Output: elemindex
2: low ← 0
3: high ← r
    high \leftarrow n − 1
    while (low <= high) do
       mid \leftarrow (low + high) / 2
       if myarray[mid] > elem then
           high \leftarrow mid - 1
           else
           if myarray[mid] < elem then
                low \leftarrow mid + 1
                else
                return mid
             endif
15: return size of myarray +\ 1
```

- After iteration number:
 - 1: there are n/2 items to search in

2:
$$(n/2)/2 = n/4$$

k: $(n/2^k)$

- The last step occurs when
- $1 \le n/2^k$ and $n/2^{k+1} < 1$
- worst case is $\mathcal{O}(\log n)$

Algorithm Binary Search

```
 function binarysearch(myarray, elem):

Input: sorted array, search element
Output: elemindex
2: low ← 0
3: high ← r
    high \leftarrow n − 1
    while (low <= high) do
       mid \leftarrow (low + high) / 2
       if myarray[mid] > elem then
           high \leftarrow mid - 1
           else
           if myarray[mid] < elem then
                low \leftarrow mid + 1
                else
                return mid
             endif
         endif
15: return size of myarray +\ 1
```

Big-O Rules

If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.

$\mathsf{Big}\text{-}\mathcal{O}\;\mathsf{Rules}$

- Forget about lower-order terms
- Forget about constant factors
- Use the smallest possible degree

Example

- It is true that 2n is $\mathcal{O}(n^{50})$ this is not a helpful upper bound
- Instead, we say it is O(n), by discarding the constant factor and using the smallest possible degree

Running Time to Big- \mathcal{O} Induction Examples

$$T(n) = 7n - 2$$

7n-2 is $\mathcal{O}(n)$

Need c > 0 and $n_0 \ge 1$ such that $7n - 2 \le cn$ for $n \ge n_0$

This is true for c = 7 and $n_0 = 1$

$$T(n) = 3n^3 + 20n^2 + 5$$

 $3n^3 + 20n^2 + 5$ is $\mathcal{O}(n^3)$

Need c>0 and $n_0\geq 1$ such that $3n^3+20n^2+5\leq cn^3$ for $n\geq n_0$

This is true for c = 4 and $n_0 = 21$

$T(n) = 3\log(n) + 5$

3log(n) + 5 is $\mathcal{O}(log(n))$

Need c > 0 and $n_0 \ge 1$ such that $3log(n) + 5 \le clogn$ for $n \ge n_0$

This is true for c = 8 and $n_0 = 2$

Estimating Big- \mathcal{O}

Simpler Rule for Big- \mathcal{O}

Only examine loops / recursion.

A loop over a fixed range [i-n] is typically $\mathcal{O}(n)$.

A loop within a loop is typically $\mathcal{O}(n^2)$

When its not obvious, use induction

$\overline{\mathsf{Big}}$ - Ω ($\overline{\mathsf{Big}}$ - Omega)

Recall that f(n) is $\mathcal{O}(g(n))$ if $f(n) \leq cg(n)$ for some constant c as n grows

Upper Bound: Big- \mathcal{O}

Big- \mathcal{O} expresses the idea that f(n) grows no faster than g(n). g(n) acts as an upper bound to f(n)'s growth rate

What if we want to express a **lower bound**, i.e., the fact that a function does not grow slower than another one?

$\overline{\mathsf{Big}}$ - Ω ($\overline{\mathsf{Big}}$ - Omega)

Recall that f(n) is $\mathcal{O}(g(n))$ if $f(n) \leq cg(n)$ for some constant c as n grows

Upper Bound: Big-O

Big- \mathcal{O} expresses the idea that f(n) grows no faster than g(n). g(n) acts as an upper bound to f(n)'s growth rate

What if we want to express a **lower bound**, i.e., the fact that a function does not grow slower than another one?

Lower Bound: Big-Ω

We say f(n) is $\Omega(g(n))$ if $f(n) \ge cg(n)$ f(n) grows no slower than g(n)

Big-Θ (Big-Theta)

What about an upper and lower bound?

Big-Θ

We say f(n) is $\Theta(g(n))$ iff f(n) is **both** $\mathcal{O}(g(n))$ and $\Omega(g(n))$ i.e. f(n) grows the same as g(n) (tight-bound)

Putting some numbers on it...

Example

All this maths can seem a little abstract so what if we had an operation that took 1 nanosecond to execute, i.e. $T(n) = 1 \times 10^{-9}$ seconds

	Time								
Function	$(n=10^3)$	$(n=10^4)$	$(n=10^5)$						
$\log_2 n$	10 ns	13.3 ns	16.6 ns						
\sqrt{n}	31.6 ns	100 ns	316 ns						
n	$1~\mu \mathrm{s}$	$10~\mu \mathrm{s}$	$100~\mu \mathrm{s}$						
$n \log_2 n$	$10~\mu \mathrm{s}$	$133~\mu\mathrm{s}$	$1.7 \mathrm{\ ms}$						
n^2	$1 \mathrm{\ ms}$	100 ms	10 s						
n^3	1 s	$16.7 \min$	11.6 days						
n^4	$16.7 \mathrm{min}$	$116 \mathrm{days}$	3171 yr						
2^n	$3.4 \cdot 10^{284} \text{ yr}$	$6.3 \cdot 10^{2993} \text{ yr}$	$3.2 \cdot 10^{30086} \text{ yr}$						

What's missing?

- Space Complexity (memory) will see this later after we study data structures
- Power consumption we will not look at this, but it is correlated with number of operations
- Examples of Exponential running time and factorial running time – more later

Speed and Efficiency: But what about other algorithm attributes?

Correctness, Security, Robustness, Clarity, Maintainability

What's missing?

- Space Complexity (memory) will see this later after we study data structures
- Power consumption we will not look at this, but it is correlated with number of operations
- Examples of Exponential running time and factorial running time – more later

Speed and Efficiency: But what about other algorithm attributes?

Correctness, Security, Robustness, Clarity, Maintainability

Examples of how other evaluation methods

Unit Testing, Penetration Testing, Performance Testing, Code Coverage, Code Reviews

Conclusion

- The Big-O notation gives an upper bound of the complexity of an algorithm (an algorithm takes at most a certain amount of time)
 - Forget about lower-order terms
 - Forget about constant factors
- Big- Ω is a lower bound (an algorithm takes at least a certain amount of time)
- Big- Θ is an upper and lower bound (tight-bound)

Math to review

Properties of logarithms

$$log_b(xy) = log_bx + log_by$$

$$log_b(\frac{x}{y}) = log_bx - log_by$$

$$log_bxa = alog_bx \ log_ba = \frac{log_xa}{log_xb}$$

Properties of exponentials

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

$$\frac{a^b}{a^c} = a^{(b-c)}$$

$$b = a^{\log_a b}$$

$$b^c = a^{c*\log_a b}$$

$Big-\mathcal{O}$ Cheat Sheet

Big-O Complexity Chart

Common Data Structure Operations

	Time Complexity								
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	0(n)	0(n)	0(n)	0(1)	0(n)	0(n)	0(n)	0(n)
Stack	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n log(n))
Hash Table	N/A	0(1)	0(1)	0(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	0(log(n))	0(log(n))	0(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Red-Black Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree	N/A	0(log(n))	0(log(n))	0(log(n))	N/A	0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

Source:http://bigocheatsheet.com