${\bf Estadística~I} \\ {\bf Grado~en~Matemáticas,~UAM,~2018-2019}$

Contrastes de hipótesis (paramétricas)

Contrastes para UNA distribución

Normal $N(\mu; \sigma^2)$

Hipótesis nula H_0		Región de rechazo R
$\mu = \mu_0$	σ conocida	$ \overline{x} - \mu_0 > z_{\alpha/2} \left(\sigma/\sqrt{n}\right)$
	σ desconocida	$ \overline{x} - \mu_0 > t_{\{n-1; \alpha/2\}} \left(s/\sqrt{n} \right) $
$\mu \ge \mu_0$	σ conocida	$\overline{x} < \mu_0 - z_\alpha \left(\sigma / \sqrt{n} \right)$
	σ desconocida	$\overline{x} < \mu_0 - t_{\{n-1;\alpha\}} \left(s / \sqrt{n} \right)$
$\mu \leq \mu_0$	σ conocida	$\overline{x} > \mu_0 + z_\alpha \left(\sigma / \sqrt{n} \right)$
	σ desconocida	$\overline{x} > \mu_0 + t_{\{n-1;\alpha\}} \left(s / \sqrt{n} \right)$
$\sigma = \sigma_0$		$\frac{(n-1)s^2}{\sigma_0^2} \notin \left(\chi^2_{\{n-1; 1-\alpha/2\}}, \ \chi^2_{\{n-1; \alpha/2\}}\right)$
$\sigma \geq \sigma_0$		$\frac{(n-1)s^2}{\sigma_0^2} < \chi^2_{\{n-1; 1-\alpha\}}$
$\sigma \le \sigma_0$		$\frac{(n-1)s^2}{\sigma_0^2} > \chi^2_{\{n-1;\alpha\}}$

 $\overline{\mathbf{BER}(p)}$

Hip. nula H_0	Región de rechazo R
$p = p_0$	$ \overline{x} - p_0 > z_{\alpha/2} \sqrt{p_0(1 - p_0)} / \sqrt{n}$
$p \ge p_0$	$\overline{x} < p_0 - z_\alpha \sqrt{p_0(1 - p_0)} / \sqrt{n}$
$p \le p_0$	$\overline{x} > p_0 + z_\alpha \sqrt{p_0(1 - p_0)} / \sqrt{n}$

 $\mathbf{Poisson}(\lambda)$

Hip. nula H_0	Región de rechazo R
$\lambda = \lambda_0$	$ \overline{x} - \lambda_0 > z_{\alpha/2} \sqrt{\lambda_0/n}$
$\lambda \geq \lambda_0$	$\overline{x} < \lambda_0 - z_\alpha \sqrt{\lambda_0/n}$
$\lambda \le \lambda_0$	$\overline{x} > \lambda_0 + z_\alpha \sqrt{\lambda_0/n}$

Contrastes para DOS distribuciones

Normales $N(\mu_1; \sigma_1^2), N(\mu_2; \sigma_2^2)$

Hipótesis nula H_0		Región de rechazo R
$\mu_1 = \mu_2$	σ_1, σ_2 conocidas	$ \overline{x}_1 - \overline{x}_2 > z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	$\sigma_1 = \sigma_2$ desconocidas	$ \overline{x}_1 - \overline{x}_2 > t_{\{n_1 + n_2 - 2; \alpha/2\}} \ s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	$\sigma_1 \neq \sigma_2$ desconocidas	$ \overline{x}_1 - \overline{x}_2 > t_{\{f; \alpha/2\}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\mu_1 \le \mu_2$	σ_1, σ_2 conocidas	$\overline{x}_1 - \overline{x}_2 > z_\alpha \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
	$\sigma_1 = \sigma_2$ desconocidas	$\overline{x}_1 - \overline{x}_2 > t_{\{n_1 + n_2 - 2; \alpha\}} \ s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	$\sigma_1 \neq \sigma_2$ desconocidas	$\overline{x}_1 - \overline{x}_2 > t_{\{f;\alpha\}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\sigma_1 = \sigma_2$		$\frac{s_1^2}{s_2^2} \notin \left(\{ F_{n_1-1; n_2-1; 1-\alpha/2} \}, \ F_{\{n_1-1; n_2-1; \alpha/2\}} \right)$
$\sigma_1 \leq \sigma_2$		$\frac{s_1^2}{s_2^2} > F_{\{n_1 - 1; n_2 - 1; \alpha\}}$

• n_1, n_2 tamaños muestrales, $\overline{x}_1, \overline{x}_2$ medias muestrales, s_1, s_2 cuasi-desviaciones típicas muestrales

•
$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

• f es el entero más próximo a $\frac{(s_1^2/n_1+s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1-1}+\frac{(s_2^2/n_2)^2}{n_2-1}}$

Proporciones p_1, p_2

Hipótesis nula H_0	Región de rechazo R
$p_1 = p_2$	$ \overline{x}_1 - \overline{x}_2 > z_{\alpha/2} \sqrt{\overline{p}(1-\overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}$
$p_1 \le p_2$	$\overline{x}_1 - \overline{x}_2 > z_{\alpha} \sqrt{\overline{p}(1-\overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}$

• n_1, n_2 tamaños muestrales, $\overline{x}_1, \overline{x}_2$ proporciones muestrales

$$\bullet \ \overline{p} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$$