20/10/2023

QUICK SORT ALGORITHM

QUICK SORT ALGORITHM

New way to partitioning of array (Ek Step Chalna Mujhe Aata hai)

Step 01: Find pivot (It is always end element of array)

- To place pivot such that the element to the right of pivot > a[pivot]
- To place pivot such that the element to the Left of pivot < a[pivot]

Step 02: Now apply recursion for left and right part of pivot (Baki ka recusion sambhal lega)

Stunt = 0

End = 7

Pivot = End

i = Start -1

j = Start

```
αυί εκ δαπ + ( α , s + απ + , επ d ) ξ

Whi λ ( Ĵ ∠ Pivot ) ξ

if ( α [ j] ∠ α [ Pivot ] ) ξ

i++;

swap( α [ j] , α [ i] );

j++;

swap( α [ i] , α [ pivot ] );

swap( α [ i] , α [ pivot ] );
```

First STEP

Chaina AATA Hai

Janha Pen Me 4

Ko Uski Ryht

Position Pen

RAKhana janta

HU-

$$Stust = 0$$

 $End = 7$
 $Pivot = End$
 $i = Stent - 1$
 $j = Stent - 1$

$$S+\omega + = 0$$

 $End = 7$
 $Pivot = End$
 $i=1$
 $j=3$

$$S+\omega + = 0$$

 $End = 7$
 $Pivot = End$
 $i=1$
 $j=45$

$$Stut = 0$$

 $End = 7$
 $pivot = End$
 $i = x 2$
 $j = 5 6$

$$S+\omega + = 0$$

 $End = 7$
 $pivot = End$
 $i = 2$
 $j = k 7$

$$Stwt = 0$$

 $End = 7$
 $pivot = End$
 $i = 2$
 $j = 7$

(8)


```
STEP2 PICUMSIM Call
```

Total 5.6 =
$$O(N^2) + O(N)$$

= $O(N^2)$
Total 5.6 = $O(N) + (1)$
= $O(N)$

6 11	1
(67) 2)
(675) 3	/
(62-58) 4	> 7 Entry
(3)	8-1
(1) 6) 0
Main	=) N-1
-	70(N)
Stack Call	(S.C.)

(1)
$$start = 0$$
 $End = 7$ $PI = 7$ $i = -1$ $j = 0$

$$i = -1 \quad j = 0 \quad 871 \quad j = 1 \quad 8765 \quad 4321$$

$$i = -1 \quad j = 1 \quad 471 \quad j = 2 \quad 11$$

$$i = -1 \quad j = 2 \quad 671 \quad j = 3 \quad 11$$

$$i = -1 \quad j = 3 \quad 571 \quad j = 4 \quad 11$$

$$i = -1 \quad j = 4 \quad 471 \quad j = 5 \quad 11$$

$$i = -1 \quad j = 6 \quad 271 \quad j = 7$$

$$i = -1 \quad j = 6 \quad 271 \quad j = 7$$

$$i = 0 \quad Suap(811) \Rightarrow 1765 \quad 4328$$

(3)
$$5+\omega + 1 = 1$$
 $\varepsilon \omega = 1-1$ $PI = 6$ $i = 0$ $j = 1$ $= 3-1$ $= 6$

Steat =
$$i+1$$
 End = 6 PI = 6 $i=1$ $j=2$

$$=1+1$$

$$=2$$

(5)
$$s+\omega t = 2$$
 $end = i-1$ $p_1 = 5$ $i=1$ $j=2$

$$= 6-1$$

$$= 5$$

$$i=1$$
 $j=2$ 678 $j=3$ (1) (2) 65 43 (3) (3)
$$i=1$$
 $j=3$ 573 $j=4$

$$i=1$$
 $j=4$ 473 $j=5$

$$i=1$$
 $j=5$ 473 $j=5$

$$i=1$$
 $j=5$ 473 $j=5$

$$i=2$$
 $swap(6,3) \Rightarrow (12)3$ 5 4 6 78

- 4 91 viznt position

Steat = it | End = 4 | PI = 4 | i= 3.
$$j=4$$

$$= 3+1$$

$$= 4$$

RECURSIVE TREE

CASP