UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT DEPARTAMENTO DE MATEMÁTICA - DMAT

Professora: Graciela Moro

Assuntos: Espaços vetoriais, subespaços vetoriais, combinação linear, independência linear, subespaço gerado, base e dimensão, mudança de base

Segunda Lista de Exercícios

- 1. Verifique se \mathbb{R}^2 com as operações definidas por:
 - i. (x,y)+(s,t)=(s,y+t), onde $\mathbf{u}=(x,y)$ e $\mathbf{v}=(s,t)$ pertencem a \mathbb{R}^2
 - ii. $\alpha(x,y) = (\alpha x, y)$, onde $\alpha \in \mathbb{R}$ e $\mathbf{u} = (x,y) \in \mathbb{R}^2$.

é um espaço vetorial.

- 2. Moste que \mathbb{R}^2 com as operações definidas por:
 - i. (x,y)+(s,t)=(x+s,y+t), onde $\mathbf{u}=(x,y)$ e $\mathbf{v}=(s,t)$ pertencem a \mathbb{R}^2
 - ii. $\alpha(x,y)=(\alpha x,\alpha y)$, onde $\alpha\in\mathbb{R}$ e $\mathbf{u}=(x,y)$ e $\mathbf{v}=(s,t)$ pertencem a \mathbb{R}^2 .

é um espaço vetorial.

- 3. Verifique se em cada um dos itens abaixo o subconjunto W é um subespaço do espaço vetorial V. Para os casos em que W é subespaço de V, exiba uma base para W.
 - (a) $V = \mathbb{R}^3$ e $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y z = 0\}$
 - (b) $V = \mathbb{R}^3$ e $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 = 1\}$
 - (c) $V = P_n \in W = \{ p \in P_n : p(0) = p(1) \}$
 - (d) V = M(2,2) e $S = \{X \in M_2 / det(X) = 0\}$ (S é o conjunto das matrizes singulares)
 - (e) V=M(2,2) e $F=\{X\in M_2 \ /AX=XA\}$ (F é o conjunto das matrizes que comutam com a matriz A)
 - (f) $V = P_1 \in W = \left\{ p(x) \in P_1 : \int_0^1 p(x) dx = 0 \right\}$
 - (g) $V = \mathbb{R}^3 \in W = \left\{ (x, y, z) \in \mathbb{R}^3 : \det \begin{bmatrix} x & y & z \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} = 0 \right\}$
 - (h) $V = M_{2\times 2}$ e $W = \{A \in M_{2\times 2} : A^2 = A\}$
- 4. a) Verifique se o conjunto $S = \{A \in M(3,3); A \text{ \'e uma matriz anti } \text{sim\'etrica}\}$ é um subespaço vetorial de M(3,3).
 - **b)** Considere o subconjunto de M_2 , dado por
 - $W = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in M_2 \nearrow b = a \text{ e } d = -a \right\}. \text{ Verifique se o subconjunto } W \text{ \'e um espaço vetorial.}$
- 5. Sejam $U = \{a + bx + cx^2 + dx^3 \in P_3 / a + b c + 3d = 0\}$ e $W = \{p(x) \in P_3 / p'(-1) = 0\}$ dois subespaços vetoriais de P_3 . Determine $U \cap W$.
- 6. Verifique se o conjunto $W = \{(1,2,3), (1,3,1), (0,3,1), (1,4,5)\} \subset \mathbb{R}^3 \in L.I$ ou L.D.
- 7. Dado o conjunto $W=\{(1,1,3),(1,2,1),(0,1,3),(1,4,5)\}\subset\mathbb{R}^3$, extrair um subconjunto de vetores L.I.
- 8. Seja $\{u, v, w\}$ um conjunto L.I. de vetores de um espaço vetorial V. Verifique se o conjunto $\{u + v 3w, u + 3v w, v + w\}$ é um conjunto L.I ou L.D.
- 9. a) Se o conjunto $\beta = \{v_1, v_2, ..., v_n\}$ é um conjunto Linearmente Independente então o o conjunto $\alpha = \{v_1, \overrightarrow{0}, v_2, ..., v_n\}$ é LI ou LD? Justifique sua resposta.

- **b)** Considere o subespaço $N = \{\overrightarrow{0}\}$. Qual é a base e a dimensão de N.
- 10. Qual o subespaço gerado pelas matrizes $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ e $\begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$?
- 11. Sejam $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / a + b + c = 0 \right\}$ e $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} / b + 2d = 0 \right\}$ dois subespaços vetoriais de M_2 . Determine os geradores de $U \cap W$.
- 12. Considere o espaço vetorial P_3 e o conjunto $W = \{p(x) \in P_3; p''(1) = 0\}$.
 - (a) Verifique se W é um subespaço vetorial de P_3 .
 - (b) Obtenha os geradores de W.
- 13. a) Encontre as coordenadas do vetor $p=1+t+t^2+t^3$ em relação base $\alpha=\left\{2,1+t,t+t^2,t^2+t^3\right\}$ de P_3
 - b) O conjunto $\beta = \{2, t^2, t + t^2\}$ é LI ou LD? Justifique sua resposta
- 14. Mostre com um exemplo que a união de dois subespaços vetoriais de um mesmo espaço vetorial não precisa ser um subespaço vetorial desse espaço.
- 15. Considere o subespaço Sde \mathbb{R}^4 gerado pelos vetores $\mathbf{v}_1 = (1, -1, 0, 0), \mathbf{v}_2 = (0, 0, 1, 1), \mathbf{v}_3 = (-2, 2, 1, 1)$ e $\mathbf{v}_4 = (1, 0, 0, 0)$.
 - (a) O vetor $(2, -3, 2, 2) \in S = ger\{v_1, v_2, v_3, v_4\}$? Justifique.
 - (b) Exiba uma base para $S = ger\{v_1, v_2, v_3, v_4\}$. Qual é a dimensão deste espaço?
 - (c) $S = ger\{v_1, v_2, v_3, v_4\} = \mathbb{R}^4$? Por quê?
- 16. Responda se os subconjuntos abaixo são subespaços de M(2,2).

(a)
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ com } a, b, c, d \in \mathbb{R} \text{ e } b = c \text{ e } a = -b \right\}$$

(b)
$$V = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \text{ com } a,b,c,d \in \mathbb{R} \text{ e } b = d \right\}$$

Em caso afirmativo, determine:

- i) uma base para $W_1 \cap W_2$
- ii) $W_1 + W_2$ é soma direta? iii) $W_1 + W_2 = M(2, 2)$?
- 17. Considere os subespaços de \mathbb{R}^5 , $W_1 = \{(x, y, z, t, w)/x + z + w = 0, x + w = 0\}$, $W_2 = \{(x, y, z, t, w)/y + z + w \in W_3 = \{(x, y, z, t, w)/2x + t + 2w = 0\}$.
 - (a) Determine uma base para o subespaço $W_1 \cap W_2 \cap W_3$.
 - (b) Determine uma base e a dimensão de $W_1 + W_3$.
 - (c) $W_1 + W_2$ é soma direta? Justifique.
 - (d) $W_1 + W_2 = \mathbb{R}^5$?
- 18. Seja $B \in M(n,n)$ uma matriz fixada e considere $W = \{A \in M(n,n)/A^T + AB = 0\}$
 - (a) Mostre que W é subespaço de M(n,n)
 - (b) Considerando n=2 e $B=\begin{bmatrix}1&1\\2&0\end{bmatrix}$ determine uma base e a dimensão de W.
- 19. Para que valores de k os vetores $\{(1,2,0,k),(0,-1,k,1),(0,2,1,0),(1,0,2,3k)\}$ geram um subespaço de dimensão 3?
- 20. Considere os seguintes subespaços de P_3 :

$$U = \left\{ p \in P_3 : p''(1) = 0 \right\}$$

e $W = \left\{ p \in P_3 : p'(1) = 0 \right\}$

Determine $\dim(U+W)$ e $\dim(U\cap W)$.

- 21. Considere o subespaço W de P_3 que é gerado pelos polinômios $p_1(x)=1+2x+x^2, p_2(x)=-1+2x^2+3x^3$ e $p_3(x)=-1+4x+8x^2+9x^3$ e o subespaço de P_3 , $U=\{p\in P_3:p(0)=0\}$
 - (a) Determine uma base e a dimensão de W.
 - (b) Determine uma base para $U \cap W$.
 - (c) Determine uma base para U + W.
- 22. Sejam $U = ger\{(1,0,0),(1,1,1)\}$ e $V = ger\{(0,1,0),(0,0,1)\}$ subespaços gerados do \mathbb{R}^3 . Determine:
 - (a) uma base e a dimensão de $U \cap W$.
 - (b) $U + W = \mathbb{R}^3$?
- 23. Considere o seguinte subespaço de M(2,2)

$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M(2,2) : a+b=c+d=0 \right\}$$

- (a) Determine uma base e indique a dimensão de S.
- (b) Construa uma base de M(2,2) que contenha a base de S obtida no ítem a).
- 24. Determine a dimensão e encontre uma base do espaco-solução do sistema

$$\begin{cases} x - 3y + z = 0 \\ 2x - 6y + 2z = 0 \\ 3x - 9y + 3z = 0 \end{cases}$$

- 25. Dê exemplos de dois subespaços do \mathbb{R}^3 tais que $V_1+V_2=\mathbb{R}^3$. A soma é direta? Justifique sua resposta.
- 26. Sejam U e W subespaços de \mathbb{R}^4 de dimensão 2 e 3, respectivamente. Mostre que a dimensão de $U \cap W$ é pelo menos 1. O que ocorre se a dimensão de $U \cap W$ for 2? Pode ser 3? Justifique sua resposta.
- 27. O conjunto $A = \{(1,0,2), (a^2,a,0), (1,0,a)\}$ é uma base para um subespaço do \mathbb{R}^3 de dimensão 2 se e somente se a=2?
- 28. Seja $S=\{X\in M_{3\times 1}:AX=0\}$ o espaço solução do sistema $\left\{\begin{array}{l} x+y+az=0\\ x+ay+z=0\\ ax+y+z=0 \end{array}\right.$. Determine os

valores de a para os quais S seja: a própria origem; uma reta que passa pela origem; e, um plano que passa pela origem.

29. Considere os conjuntos $U = \{A \in M(2,2)/tr(A) = 0\}$ e $W = ger\left\{\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix}\right\}$ subespaços do espaço vetorial V. Determine uma base e a dimensão de U + W e $U \cap W$

- 30. Sejam $\beta = \{(1,0),(0,1)\}, \beta_1 = \{(-1,1),(1,1)\}, \beta_2 = \{\sqrt{3},1),(\sqrt{3},-1)\} \in \beta_3 = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 .
 - (a) Encontre a matrizes mudança de base:

i.
$$[I]^{\beta_1}_{\beta}$$
 ii. $[I]^{\beta}_{\beta_1}$ iii. $[I]^{\beta}_{\beta_2}$ iv. $[I]^{\beta}_{\beta_3}$.

(b) Quais são as coordenadas do vetor v=(3,-2) em relação à base

i.
$$\beta$$
 ii. β_1 iii. β_2 iv. β_3 .

- (c) As coordenadas de um vetor \mathbf{u} em relação à base β_1 são dadas por $[\mathbf{u}]_{\beta_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ Quais as coordenadas do vetor **u** em relação à base: **i.** β **ii**. β_2 **iii**. $\bar{\beta}_3$
- 31. Sejam $P_4 = \{p = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 \setminus a_0, a_1, a_2, a_3, a_4 \in \mathbb{R}\}, \alpha = \{1, x, x^2, x^3, x^4\}$ e $\beta = \{1, x, x^2, x^3, x^4\}$ e $\beta = \{1, x, x^2, x^3, x^4\}$ $\{2, 2x, 4x^2, 8x^3, 16x^4\}.$
 - (a) Determine $[I]^{\alpha}_{\beta}$...

(b) Se
$$[p]_{\alpha} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$
, determinar $[p]_{\beta}$

- (c) Determine o polinômio p cujas coordenadas são dadas no item b) acima.
- 32. Considere o seguinte subespaço de $M_2: W = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] / d = 0 \right\}$. Sejam

$$\alpha = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -11 & 0 \end{bmatrix} \right\}$$

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

- (a) Detemine $[I]^{\alpha}_{\beta}$
- (b) Se $[v]_{\beta} = \begin{bmatrix} \pi \\ e \\ 0 \end{bmatrix}$, determine $[v]_{\alpha}$.
- 33. Sejam α e β bases de \mathbb{R}^3 . Determine a base β sabendo que $\alpha = \{(1, -1, 0), (0, 1, 0), (0, 0, -1)\}$ e a matriz mudança de base de α para β é

$$[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

- 34. Seja $\alpha = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -2 & 0 \end{pmatrix} \right\}$ uma base para um subespaço de $M_{2\times 2}$ e $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 2 \end{bmatrix}$ onde β é também uma base para um subespaço de $M_{2\times 2}$
 - (a) Determine a base β .
 - (b) Se $[v]_{\beta} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, determine $[v]_{\alpha}$.
- 35. Seja E um espaço vetorial qualquer e $\alpha = \{u_1, u_2, u_3\}$ uma base de E. Considere ainda os vetores $v_1 = u_1 + u_2, v_2 = 2u_1 + u_2 u_3$ e $v_3 = -u_2$.
 - (a) Determine a matriz S de mudança da base $\beta = \{v_1, v_2, v_3\}$ para a base $\alpha = \{u_1, u_2, u_3\}$.
 - (b) Calcule as coordenadas do vetor $w = v_1 + v_2 v_3$ na base $\{u_1, u_2, u_3\}$.
- 36. Sejam α e β bases de um espaço vetorial V
 - (a) Mostre que det $\left([I]^{\alpha}_{\beta}[I]^{\beta}_{\alpha}\right) = 1$
 - (b) Determine $[I]^{\alpha}_{\alpha}$
- 37. Verifique se as afirmações abaixo são **VERDADEIRAS** ou **FALSAS**. Se forem verdadeiras, demonstre. Se forem falsas, dê um contra-exemplo.
 - (a) A interseção de dois subespaços vetoriais nunca é vazia.
 - (b) A matriz $\begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix}$ pertence ao subespaço $W = ger\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \right\}$.
 - (c) Se os vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} são LI então os vetores \overrightarrow{u} \overrightarrow{v} , \overrightarrow{v} \overrightarrow{w} e \overrightarrow{u} \overrightarrow{w} são LI's.
 - (d) $W = ger\{(1,2,0),(2,4,0)\}$ é um plano no \mathbb{R}^3 que passa pela origem.
 - (e) Se $\beta = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ é uma base de um espaço vetorial V, então o conjunto $A = \{\overrightarrow{v}_1 + \overrightarrow{v}_3, \overrightarrow{v}_1 + \overrightarrow{v}_2, \overrightarrow{v}_1 + \overrightarrow{v}_2 + \overrightarrow{v}_3\}$ é lineramente independente.

- (f) O subespaço $W=\{p\in P_3: p'(1)=0\ {\rm e}\ p''(-1)=0\}$ é gerado pelos polinômios $p_1=1$ e $p_2=-9x+3x^2+x^3.$
- (g) O conjunto $\{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ é sempre uma base para o subespaço $ger\{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$.

ALGUMAS RESPOSTAS:

- 1. Não é espaço vetorial.
- 2. É espaço vetorial
- 3. (a) Sim. Uma das bases é: $\beta = \{(1,0,2),(0,1,3)\}$
 - (b) Não
 - (c) Sim. Uma das bases é: $\beta = \{1, x x^n, x^2 x^n, ..., x^{n-1} x^n\}$
 - (d) Não
 - (e) Sim. Aqui, para encontrar a base, tome um exemplo para uma matriz fixa A.
 - (f) Sim. Uma das bases é: $\beta = \{1 2x\}$
 - (g) Sim. Uma das bases é: $\beta = \{(1,1,0), (0,1,1)\}$
 - (h) Não.
- 4. a) Sim b) Sim
- 5. Uma possibilidade de expressar $U \cap W$ é $U \cap W = \{a + bx + cx^2 + dx^3 \in P_3 \ / \ c = -a \ \text{e } b = 2c 3d\}$ ou $U \cap W = \{p(x) = a + (-2a 3d)x ax^2 + dx^3; \ a, d \in \mathbb{R}\}$.
- 6 É LD
- 7. Um exemplo é $W_1 = \{(1,1,3), (1,2,1), (0,1,3)\}$
- 8. É L.D.
- 9.
- 10. $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2 : a + b 2c + 2d = 0 \right\}$
- 11. Uma das possibilidades é: $U \cap W = \begin{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$
- 12. a) Sim b) $W = ger\{1, x, x^3 3x^2\}$
- 13. a) $[p]_{\alpha} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ b) Linearmente independente.
- 14.
- 15. b) $\beta = \{(1,-1,0,0),\, (0,0,1,1), (1,0,0,0)\}$ e dim W=3
- 16. i) $\alpha = \left\{ \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ ii) Não iii) Sim
- 17. a) Uma das bases é: $\beta = \{(1,0,0,0,-1)\}$
 - b) Uma das bases é: $\beta = \{(1,0,0,0,-1), (0,1,0,0,0), (0,0,0,1,0), (1,0,0,-2,0), (0,0,1,0,0)\}$
- 18. $\alpha = \left\{ \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \right\}$
- 19. k = 1 ou $k = -\frac{3}{2}$
- 20. $\dim(U + W) = 4 \text{ e } \dim(U \cap W) = 2$
- 21. a) Uma das bases é: $\beta=\left\{1+2x+x^2,-1+2x^2+3x^3\right\},$ $\dim W=2$

- b) Uma das bases é: $\beta = \left\{\frac{2}{3}x + x^2 + x^3\right\}$ c) Uma das bases é: $\beta = \left\{1 + 2x + x^2, -1 + 2x^2 + 3x^3, x, x^2\right\}$
- 22. a) Uma das bases é: $\beta = \{(0, 1, 1)\}, \dim(U \cap W) = 1$
- 23. a)Uma base é $\beta = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \right\}$ e dim S = 2.
 - b) Um exemplo é: $\beta = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$
- 24. Uma base é $\beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \right\}$ e dim W = 2.
- 25.
- 26.
- 27. Falso. a = 0 ou a = 2
- 28. i) $a \neq 1, a \neq -2$ b) $a \neq 1, a = -2$ c) a = 1
- 29. Uma possibilidade é: $\beta_{U\cap W} = \left\{ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \right\} e \beta_{U+W} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$
- 30. a) i) $[I]_{\beta}^{\beta_1} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ ii. $[I]_{\beta_1}^{\beta} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ iii. $[I]_{\beta_2}^{\beta} = \begin{bmatrix} \frac{\sqrt{3}}{6} & \frac{1}{2} \\ \frac{\sqrt{3}}{6} & -\frac{1}{2} \end{bmatrix}$ iv. $[I]_{\beta_3}^{\beta} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$
 - b) i) $[v]_{\beta} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ ii. $[v]_{\beta_1} = \begin{pmatrix} -\frac{5}{2} \\ \frac{1}{2} \end{pmatrix}$ iii. $[v]_{\beta_2} = \begin{pmatrix} \frac{\sqrt{3}}{2} 1 \\ \frac{\sqrt{3}}{2} + 1 \end{pmatrix}$ iv. $[v]_{\beta_3} = \begin{pmatrix} \frac{3}{2} \\ -1 \end{pmatrix}$
 - c) i) $[u]_{\beta} = \begin{pmatrix} -4\\4 \end{pmatrix}$ ii. $[u]_{\beta_2} = \begin{pmatrix} -\frac{2\sqrt{3}}{3} + 2\\ -\frac{2\sqrt{3}}{2} 2 \end{pmatrix}$ iii) $[u]_{\beta_3} = \begin{pmatrix} -2\\2 \end{pmatrix}$
- 31. a) $[I]^{\alpha}_{\beta} = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{8} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{12} \end{bmatrix}$ b) $[p]_{\beta} = \begin{bmatrix} \frac{1}{2} \\ 1 \\ \frac{3}{4} \\ \frac{1}{2} \\ \frac{1}{5} \end{bmatrix}$ c) $p(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4$
- 32. a) $[I]^{\alpha}_{\beta} = \begin{bmatrix} 1 & 1 & 11 \\ 1 & -1 & 1 \\ 1 & 1 & 11 \end{bmatrix}$ b) $[v]_{\alpha} = \begin{bmatrix} \frac{1}{2}\pi + \frac{11}{12}e \\ \frac{1}{2}\pi \\ \frac{e}{2} \end{bmatrix}$
- 33. $\beta = \{(1, -2, -2), (0, 1, 1), (0, -1, -2)\}$
- 34. a) $\beta = \left\{ \begin{pmatrix} -\frac{5}{4} & -\frac{3}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \begin{pmatrix} \frac{3}{4} & \frac{3}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \begin{pmatrix} \frac{3}{4} & \frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \right\}$
 - $\mathbf{b}) [v]_{\alpha} = \begin{bmatrix} 0 \\ -3 \\ -1 \end{bmatrix}$
- 35. a) $[I]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 0 \end{pmatrix}$ b) $[w]_{\alpha} = \begin{pmatrix} 3 \\ 3 \\ -1 \end{pmatrix}$
- 36. b) $[I]_{\alpha}^{\alpha} = I_n$
- 37. a) V b) V c) F d) F e) V f) V g) F