Floor (integer part) taking an expression evaluating to a c.f. and yielding an integer. $expr \leftarrow ip \{expr: expr\}$ $\mathbf{else} \, o \, \mathbf{fail}$ Fraction part taking an expression evaluating to a c.f. and yielding a c.f. $expr \leftarrow fp \left\{ expr': expr \right\}$ $egin{aligned} \left\{ egin{aligned} expr' \ \end{aligned}
ight\} &
ightarrow egin{aligned} \mathbf{match} & expr' \ \\ n' + rac{1}{d'} &
ightarrow & 0 + rac{1}{d'} \end{aligned}$ Reciprocal for continued fraction values $expr \leftarrow recip \left\{ expr'' : expr \right\}$ expr'' \rightarrow match c $0+rac{1}{d''}
ightarrow d''$ else $\rightarrow 0 + \frac{1}{c}$ Add an integer (on the left) to a continued fraction $expr \leftarrow plus \{int: expr, cf: expr\}$ $\mathbf{else} \, o \, \mathbf{fail}$ Negate for continued fraction values $expr \leftarrow negate \left\{ expr''': expr \right\}$ - sym expr''' juxt \rightarrow match expr''' $n''' + \frac{1}{d''''} \rightarrow \mathbf{match} \ d''''$ $2 + \circ \rightarrow \left(-n''' - 1\right) + \frac{1}{2 + \circ}$ $ext{else}
ightarrow ext{match} \ d''''$ $1+\frac{1}{e} \rightarrow \mathbf{match} \ e$ $l+rac{1}{f}
ightarrow \left(-n'''-1
ight)+rac{1}{\left(l+1
ight)+rac{1}{}}$ $\mathbf{else} \, \to \, \mathbf{fail}$ else \rightarrow match d''''

 $m+rac{1}{e'}
ightarrow \left(-n'''-1
ight)+rac{1}{1+rac{1}{\left(m-1
ight)+rac{1}{}}}$

else $\rightarrow -n''' + \circ$

 $\mathbf{else} \, o \, \mathbf{fail}$