Lecture 25: Jordan form; Singular Value Decompositions (Sections 5.6-6.3)

Thang Huynh, UC San Diego 3/14/2018

Recall that if A is diagonalized, A is similar to a diagonal matrix Λ whose entries are eigenvalues of A.

Recall that if A is diagonalized, A is similar to a diagonal matrix Λ whose entries are eigenvalues of A. How if A cannot be diagonalized?

If A has s independent eigenvectors, it is similar to a matrix with s blocks:

Jordan form
$$J = M^{-1}AM = \begin{vmatrix} J_1 \\ & \ddots \\ & & J_s \end{vmatrix}$$
.

▶ Property. Two matrices are similar if and only if they share the same Jordan form *J*.

If A has s independent eigenvectors, it is similar to a matrix with s blocks:

Jordan form
$$J = M^{-1}AM = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix}$$
.

Each J_i has only a single eigenvalue λ_i and one eigenvector:

Jordan block
$$J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \cdot & & \\ & & \cdot & 1 \\ & & & \lambda_i \end{bmatrix}$$
.

▶ Property. Two matrices are similar if and only if they share the same Jordan form *J*.

▶ Example.
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
, and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ all lead to $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

► Example.
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$, and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ all lead to $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

These four matrices have eigenvalues 1 and 1 with only one eigenvector. How to find a matrix M such that $M^{-1}TM = J$?

▶ Example.
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
, and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ all lead to $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

These four matrices have eigenvalues 1 and 1 with only one eigenvector. How to find a matrix M such that $M^{-1}TM = J$?

▶ Definition. If A is an $n \times n$ matrix, a generalized eigenvector of A corresponding to the eigenvalue λ is a nonzero vector \mathbf{x} satisfying

$$(A - \lambda I)^p \boldsymbol{x} = 0$$

for some positive integer p.

$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 has an eigenvalue $\lambda = 1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

 $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ has an eigenvalue $\lambda=1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

•
$$(A-I)x = 0 \Rightarrow x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and

•
$$(A-I)^2 \mathbf{x} = 0 \Longrightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

 $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ has an eigenvalue $\lambda=1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

•
$$(A - I)\mathbf{x} = 0 \Rightarrow \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and

•
$$(A-I)^2 \mathbf{x} = 0 \Longrightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

 $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ has an eigenvalue $\lambda=1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

•
$$(A-I)x = 0 \Rightarrow x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and

•
$$(A-I)^2 \mathbf{x} = 0 \Longrightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

$$M^{-1}TM = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J.$$

Example. For
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Which of the

following matrices are the Jordan forms of A and B?

$$J_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad J_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad J_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Recall we can decompose a matrix A as LU or QR.

Recall we can decompose a matrix A as LU or QR.

(SVD) Any
$$m \times n$$
 matrix A can be factored into

$$A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$$

• columns of U (m by m) are eigenvectors of AA^T

Recall we can decompose a matrix A as LU or QR.

(SVD) Any $m \times n$ matrix A can be factored into

$$A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$$

- columns of U (m by m) are eigenvectors of AA^T
- columns of V (n by n) are eigenvectors of $A^{T}A$

Recall we can decompose a matrix A as LU or QR.

(SVD) Any $m \times n$ matrix A can be factored into

$$A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$$

- columns of U (m by m) are eigenvectors of AA^T
- columns of V (n by n) are eigenvectors of $A^{T}A$
- The r singular values on the diagonal of Σ (m by n) are the square roots of the nonzero eigenvalues of both AA^T and A^TA.

Example. Consider
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
.

► Example. Consider $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Then A has rank 2, and $AA^T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ with eigenvalues $\lambda = 3$ and 1.

► Example. Consider $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Then A has rank 2, and $AA^T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ with eigenvalues $\lambda = 3$ and 1.

$$A = U\Sigma V^T = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6}\\ -1/\sqrt{2} & 0 & 1/\sqrt{2}\\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}.$$

A least squares solution \hat{x} of the linear system

$$Ax = b$$

is the one minimizing $\|Ax - b\|$. To solve this, we can solve the associate normal system

$$A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}.$$

If A has full rank, A^TA is invertible and the system Ax = b
has unique least squares solution

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}.$$

• If A has full rank, A^TA is invertible and the system Ax = b has unique least squares solution

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}.$$

But how if A does not have full rank?

If A has full rank, A^TA is invertible and the system Ax = b
has unique least squares solution

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}.$$

• But how if A does not have full rank? The least squares problem still has a solution, but it is no longer unique, i.e., there are many x that minimize ||Ax - b||.

If A has full rank, A^TA is invertible and the system Ax = b
has unique least squares solution

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}.$$

• But how if A does not have full rank? The least squares problem still has a solution, but it is no longer unique, i.e., there are many x that minimize ||Ax - b||. The optimal solution of the Ax = b is the vector x that has the minimum length. We denote this solution by x[†], and the matrix which produces x[†] from b is called the pseudoinverse of A and is denoted by A[†].

If A has full rank, A^TA is invertible and the system Ax = b
has unique least squares solution

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b}.$$

• But how if A does not have full rank? The least squares problem still has a solution, but it is no longer unique, i.e., there are many x that minimize ||Ax - b||. The optimal solution of the Ax = b is the vector x that has the minimum length. We denote this solution by x[†], and the matrix which produces x[†] from b is called the pseudoinverse of A and is denoted by A[†].

$$\boldsymbol{x}^{\dagger} = A^{\dagger} \boldsymbol{b}.$$

How to find A^{\dagger} ?

How to find A^{\dagger} ? If the SVD of A is $A = U\Sigma V^{T}$, then

$$A^{\dagger} = V \Sigma^{\dagger} U^{T}.$$

The singular values $\sigma_1, \ldots, \sigma_r$ are on the diagonal of Σ , and their reciprocals $\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r}$ are on the diagonal of Σ^{\dagger} .

How to find A^{\dagger} ? If the SVD of A is $A = U\Sigma V^{T}$, then

$$A^{\dagger} = V \Sigma^{\dagger} U^{T}.$$

The singular values $\sigma_1, \ldots, \sigma_r$ are on the diagonal of Σ , and their reciprocals $\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r}$ are on the diagonal of Σ^{\dagger} .

▶ Example. Find the pseudoinverse of $A = [-1 \ 2 \ 2]$.

How to find A^{\dagger} ? If the SVD of A is $A = U\Sigma V^{T}$, then

$$A^{\dagger} = V \Sigma^{\dagger} U^{T}.$$

The singular values $\sigma_1, \ldots, \sigma_r$ are on the diagonal of Σ , and their reciprocals $\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r}$ are on the diagonal of Σ^{\dagger} .

▶ Example. Find the pseudoinverse of $A = [-1 \ 2 \ 2]$.

The SVD of A is

$$A = [1][3\ 0\ 0] \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}.$$

How to find A^{\dagger} ? If the SVD of A is $A = U\Sigma V^{T}$, then

$$A^{\dagger} = V \Sigma^{\dagger} U^{T}.$$

The singular values $\sigma_1, \ldots, \sigma_r$ are on the diagonal of Σ , and their reciprocals $\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r}$ are on the diagonal of Σ^{\dagger} .

▶ Example. Find the pseudoinverse of $A = [-1 \ 2 \ 2]$.

The SVD of A is

$$A = [1][3\ 0\ 0] \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}.$$

Then the pseudoinverse of A is

$$A^{\dagger} = \begin{bmatrix} -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix} [1] = \begin{bmatrix} -\frac{1}{9} \\ \frac{2}{9} \\ \frac{2}{9} \end{bmatrix}.$$