Esercizio di oggi: Remediation e Mitigazione di Minacce di Phishing e Attacchi DoS

Parte 1. Minaccia di Phishing

Scenario: Immagina di essere un amministratore di sicurezza per una media azienda che ha scoperto una campagna di phishing mirata contro i propri dipendenti. Gli attaccanti inviano email fraudolente che sembrano provenire da fonti affidabili, inducendo i dipendenti a divulgare informazioni sensibili o a scaricare malware.

1. Identificazione della Minaccia

Cos'è il Phishing

Il phishing è una tecnica di ingegneria sociale utilizzata dagli attaccanti per indurre le vittime a fornire informazioni sensibili, come credenziali di accesso, dati bancari o a scaricare software malevolo. Solitamente avviene tramite email che sembrano provenire da enti affidabili (banche, colleghi, fornitori, ecc.), ma che in realtà sono fraudolente.

Come funziona un attacco di Phishing

Un attacco di phishing può includere:

- Un'email con un link a un sito fasullo che imita un portale ufficiale.
- Un allegato contenente malware.
- Una richiesta urgente (es. "Aggiorna la tua password subito!") per spingere l'utente ad agire in fretta.

Impatto sulla sicurezza aziendale

Un attacco riuscito può:

- Consentire l'accesso non autorizzato ai sistemi aziendali.
- Portare al furto di dati sensibili o riservati.
- Consentire la diffusione di malware o ransomware.

• Danneggiare la reputazione dell'azienda.

2. Analisi del Rischio

Impatto Potenziale

- Perdita di dati sensibili (clienti, dipendenti, progetti interni).
- Interruzione dell'operatività aziendale.
- Sanzioni legali in caso di violazione di normative (es. GDPR).
- Danni reputazionali significativi.

Risorse Potenzialmente Compromesse

- Credenziali di accesso ai sistemi interni.
- Informazioni personali di dipendenti e clienti.
- File e database aziendali.
- Email aziendali e comunicazioni riservate.

3. Pianificazione della Remediation

Azioni previste

- Identificazione e blocco delle email fraudolente
 - Analisi tecnica delle email sospette tramite ispezione degli header (intestazioni).
 - Verifica delle firme di autenticazione:
 - SPF (Sender Policy Framework): controllo dell'indirizzo
 IP del mittente rispetto al dominio.
 - DKIM (DomainKeys Identified Mail): verifica della firma digitale associata al contenuto dell'email.
 - DMARC (Domain-based Message Authentication, Reporting, and Conformance): verifica del rispetto delle policy SPF/DKIM da parte del mittente.

 Blocco degli indirizzi IP o domini sospetti a livello di gateway email.

Comunicazione ai dipendenti

- Email interna con allegato uno screenshot di esempio dell'email fraudolenta.
- Indicazioni pratiche su come visualizzare gli header e riconoscere una mail sospetta.

Verifica e monitoraggio

- Analisi tramite strumenti SIEM per tracciare l'origine dei tentativi di phishing.
- Controllo dei click e degli accessi a link sospetti attraverso
 DNS logging o firewall.

4. Implementazione della Remediation

Passaggi pratici

Filtri Anti-Phishing e Sicurezza Email

- Aggiornamento dei filtri email per rilevare pattern simili all'email fraudolenta.
- Implementazione o aggiornamento delle regole di rifiuto
 DMARC per il dominio aziendale.

• Controllo dell'email originale

- Utilizzo di strumenti come MXToolbox, Google Admin
 Toolbox o direttamente dal client di posta per analizzare:
 - Return-Path, Received, From header.
 - Assenza o fallimento delle verifiche SPF/DKIM.
 - Differenze tra dominio visibile e reale (es. spoofing del dominio).

Formazione con GoPhish

- Implementazione di GoPhish, piattaforma open source per simulazioni di phishing.
- Creazione di campagne simulate personalizzate in base ai modelli osservati.

- Monitoraggio dei risultati: utenti che cliccano, compilano form, segnalano l'email.
- Debriefing con i dipendenti che hanno "fallito" la simulazione per migliorare il comportamento futuro.

Aggiornamento delle policy di sicurezza

- Introduzione di un piano di risposta agli incidenti di phishing (playbook).
- o Obbligo di utilizzo di 2FA per tutti i sistemi aziendali sensibili.

5. Extra

Di seguito vi dimostro come può essere simulato un **penetration testing** (su **kali**), con **gophish** un'attacco di phishing. Per l'esempio io ho simulato, come in un videogame (**Call of duty: Warzone**), la vittima possa ricevere una email da parte di **Activision** (azienda statunitense produttrice del gioco in questione), di una conferma di amicizia in game, e se l'utente in questione non fosse un'amicizia richiesta, viene chiesto **di cambiare immediatamente la password**:

Parte 2. Attacco DoS (Denial of Service)

Scenario: Immagina di essere un amministratore di sistema per una media azienda che ha subito un attacco DoS (Denial of Service). Gli attaccanti inondano i server aziendali di richieste, rendendo i servizi web inaccessibili agli utenti legittimi.

1. Identificazione della Minaccia

Cos'è un attacco DoS

Un attacco DoS (Denial of Service) è un attacco informatico che mira a rendere un servizio, un server o una rete indisponibile per gli utenti legittimi. Questo viene realizzato inondando il sistema di richieste false o inutili, sovraccaricando le risorse e impedendo il normale funzionamento del servizio.

Come funziona

- Gli attaccanti inviano un'enorme quantità di traffico verso il server o la rete bersaglio.
- Il sistema diventa sovraccarico e non riesce più a gestire le richieste legittime.
- Alcune varianti includono il DDoS (Distributed DoS), dove il traffico proviene da molteplici dispositivi compromessi (botnet).

Impatto sulla disponibilità

L'attacco colpisce il principio di **disponibilità** della sicurezza informatica, causando:

- Interruzione dei servizi web o applicazioni aziendali.
- Perdita di produttività e fiducia da parte dei clienti.
- Potenziali perdite economiche.

2. Analisi del Rischio

Impatto potenziale

- Impossibilità di accedere a servizi critici (es. portale clienti, email, ecommerce).
- Interruzione delle comunicazioni interne ed esterne.
- Costi per ripristinare i servizi e possibili danni alla reputazione aziendale.

Servizi critici compromessi

- Server web aziendali: pubblici o interni.
- Applicazioni aziendali online: CRM, ERP, portali clienti.
- VPN e connessioni remote usate dai dipendenti.
- Servizi DNS e posta elettronica.

3. Pianificazione della Remediation

Azioni previste

Identificazione delle fonti dell'attacco

- Analisi dei log firewall, router e server per identificare IP e pattern sospetti.
- Utilizzo di strumenti come Wireshark, NetFlow, o sistemi SIEM.

Mitigazione del traffico malevolo

- Filtraggio del traffico in base a indirizzo IP, geolocalizzazione, user agent o frequenza delle richieste.
- Attivazione di protezioni lato ISP o tramite servizi specializzati (Cloudflare, Akamai, AWS Shield).

4. Implementazione della Remediation

Passaggi pratici

Bilanciamento del carico (Load Balancing)

- Distribuzione del traffico su più server per evitare il sovraccarico di uno solo.
- Utilizzo di soluzioni come HAProxy, NGINX o servizi cloud.

• Servizi di mitigazione DoS esterni

- Attivazione di protezioni tramite CDN e servizi anti-DDoS (es. Cloudflare, Azure DDoS Protection).
- Impostazione di rate limiting e CAPTCHA nei punti critici (login, API).

• Firewall e configurazioni di rete

- Regole firewall per bloccare IP noti malevoli, protocolli non usati o traffico anomalo.
- Impiego di IPS (Intrusion Prevention Systems) per rilevamento e blocco in tempo reale.

5. Mitigazione dei Rischi Residuali

Misure preventive

• Monitoraggio continuo del traffico di rete

- Implementazione di strumenti di network monitoring (Zabbix, Nagios, Prometheus).
- o Alert automatici su picchi anomali di traffico.

• Collaborazione col team di sicurezza

- o Definizione di una policy di risposta agli incidenti DoS.
- o Simulazione di attacchi per preparare il personale.

• Test di resilienza periodici

- o Pen test specifici per la resilienza da DoS.
- Verifica delle configurazioni firewall e delle risorse allocate ai server.

6. Extra

Qui ho simulato un'ambiente di penetration testing, (con macchina attaccante un **kali** e la vittima **windows xp**), con un programma in **python** che genera pacchetti di dati casuali e li invia a un indirizzo IP e una porta specifici tramite il **protocollo UDP**. Ogni pacchetto è di 1 KB e il numero di pacchetti da inviare è scelto dall'utente.


```
(kali@kali)-[~]
s nmap -sU 192.168.50.102
Starting Nmap 7.94SVN ( https://nmap.org ) at 2025-03-05 10:02 EST
Stats: 0:00:02 elapsed; 0 hosts completed (1 up), 1 undergoing UDP Scan
UDP Scan Timing: About 4.00% done; ETC: 10:03 (0:00:48 remaining)
Stats: 0:00:02 elapsed; 0 hosts completed (1 up), 1 undergoing UDP Scan
UDP Scan Timing: About 5.00% done; ETC: 10:03 (0:00:38 remaining)
Nmap scan report for 192.168.50.102
Host is up (0.00056s latency).
Not shown: 999 open|filtered udp ports (no-response)
PORT STATE SERVICE
137/udp open netbios-ns
MAC Address: 08:00:27:79:16:8F (Oracle VirtualBox virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 14.20 seconds
```


