Algoritmi e Strutture Dati

Capitolo 11 Grafi e visite di grafi grafi, teoria dei grafi, problemi su grafi

Origini storiche

Nel 1736, il matematico Eulero, affrontò l'annoso problema dei 7 ponti di Königsberg (Prussia):

È possibile o meno fare una passeggiata che parta da un qualsiasi punto della città e percorra una ed una sola volta ciascuno dei 7 ponti?

Origini storiche (2)

Eulero affrontò il problema schematizzando topologicamente la pianta della città, epurando così l'istanza da insignificanti dettagli topografici:

...e così Königsberg venne rappresentata con un insieme di 4 punti (uno per ciascuna zona della città), opportunamente uniti da 7 linee (una per ciascun ponte)

Definizione di grafo (non orientato)

Un grafo G=(V,E) consiste in:

- un insieme V di vertici (o nodi);
- un insieme E di coppie (non ordinate) di vertici, detti archi.

Esempio

Grafo di Eulero associato alla città di Königsberg:

$$V=\{A,B,C,D\},$$

 $E=\{(A,B), (A,B), (A,D), (B,C), (B,C), (B,D), (C,D)\}$

Nota: È più propriamente detto multigrafo, in quanto contiene archi paralleli.

...esempi

Rook's Graph

un nodo per ogni posizione della scacchiera

c'è un arco fra due nodi/posizioni se e solo se una torre può spostarsi dall'una all'altra posizione

Definizione di grafo diretto

Un grafo diretto D=(V,A) consiste in:

- un insieme V di vertici (o nodi);
- un insieme A di coppie ordinate di vertici, detti archi diretti.

...esempi

un altro esempio: grafo sociale della classe di ASD

i nodi rappresentano le persone in aula

c'è un arco (u,v) se la u conosce nome e cognome di v

Terminologia


```
G=(V,E) grafo non diretto
```

n=|V| numero di vertici

m=|E| numero di archi

u ed v sono adiacenti (vicini)

(u,v) è incidente a u e a v (detti estremi)

 $\delta(u)$: grado di u: #archi incidenti a u

grado di $G = \max_{v \in V} \{\delta(v)\}$

Terminologia

G=(V,E) grafo diretto

n=|V| numero di vertici

m=|E| numero di archi

u ed v sono adiacenti (vicini)

(u,v) è uscente da u ed entrante in v

 $\delta_{\text{out}}(u)$: grado uscente di u: #archi uscenti da u

 $\delta_{in}(u)$: grado entrante in u: #archi entranti in u

grado entrante di $G = \max_{v \in V} \{\delta_{in}(v)\}$

grado uscente di $G = \max_{v \in V} \{\delta_{out}(v)\}$

che relazione c'è fra grado dei nodi e numero di archi?

Una semplice proprietà

cosa ottengo se sommo i gradi di ogni nodo?

$$\sum_{v \in V} \delta(v) = 2m$$

domanda (sui grafi diretti): cosa ottengo se sommo il grado uscente/entrante di tutti i nodi?

Una semplice proprietà

cosa ottengo se sommo i gradi di ogni nodo?

$$\sum_{v \in V} \delta_{out}(v) = \sum_{v \in V} \delta_{in}(v) = m$$

Terminologia

- cammino: sequenza di nodi connessi da archi
- lunghezza di un cammino: #archi del cammino
- *distanza*: La lunghezza del più corto cammino tra due vertici si dice *distanza* tra i due vertici

distanza fra L e A: 4

in un grafo orientato, il cammino deve rispettare il verso di orientamento degli archi

Terminologia

- G è connesso se esiste un cammino per ogni coppia di vertici
- *ciclo*: un cammino chiuso, ovvero un cammino da un vertice a se stesso
- il diametro è la massima distanza fra due nodi
 - $\max_{u,v \in V} dist(u,v)$
 - il diametro di un grafo non connesso è ∞

...esempi

...altri due grafi di diametro 2

Terminologia

• Grafo pesato: è un grafo G=(V,E,w) in cui ad ogni arco viene associato un valore definito dalla funzione peso w (definita su un opportuno insieme, di solito i reali).

quanti archi può avere un grafo di n nodi?

due grafi molto particolari

Grafo totalmente sconnesso: è un grafo G=(V,E) tale che $V\neq\emptyset$ ed $E=\emptyset$.

Grafo completo: per ogni coppia di nodi esiste un arco che li congiunge.

Il grafo completo con n vertici verrà indicato con K_n

$$m = |E| = n \cdot (n-1)/2$$

come è fatto un grafo connesso con il minimo numero di archi?

Definizione

Un albero è un grafo connesso ed aciclico.

Teorema

Sia T=(V,E) un albero; allora |E|=|V|-1.

dim. (per induzione su |V|)

caso base: |V|=1

Γ

|E|=0=|V|-1

caso induttivo: |V|>1

Sia n il numero di nodi di T

poiché Tè connesso e aciclico ha almeno una foglia (nodo con grado 1)

se tutti i nodi avessero grado almeno 2 ci sarebbe un ciclo (riuscite a vedere perché?)

rimuovendo tale foglia si ottiene grafo connesso e aciclico con n-1 nodi che per ipotesi induttiva ha n-2 archi

Esercizio

Sia G=(V,E) un grafo non orientato. Dimostrare che le seguenti affermazioni sono tutte equivalenti:

- (a) Gè un albero;
- (b) due vertici qualsiasi di G sono collegati da un unico cammino semplice;
- (c) G è connesso, ma se viene rimosso un arco qualsiasi da E, non grafo risultante non è connesso;
- (d) G è connesso e |E|=|V|-1;
- (e) G è aciclico e |E|=|V|-1;
- (f) G è aciclico, ma se un arco qualsiasi viene aggiunto a E, il grafo risultante contiene un ciclo.

per un grafo connesso con n nodi e m archi vale: $n-1 \le m \le n(n-1)/2$

Esercizio

Sia G=(V,E) un grafo non orientato. Dimostrare che le seguenti affermazioni sono tutte equivalenti:

- (a) Gè un albero;
- (b) due vertici qualsiasi di G sono collegati da un unico cammino semplice;
- (c) G è connesso, ma se viene rimosso un arco qualsiasi da E, non grafo risultante non è connesso;
- (d) Gèco
- (e) Gèac
- (f) Gèac risultar

se G è connesso

$$m=\Omega(n)$$
 e $m=O(n^2)$

grafo

per un grafo connesso con n nodi e m archi vale:

$$n-1 \le m \le n(n-1)/2$$

Nota bene: se un grafo ha m≥n-1 archi, non è detto che sia connesso. Quanti archi deve avere un grafo per essere sicuramente connesso?

Definizione

...tornando al problema dei 7 ponti

Dato un grafo G, un ciclo (rispettivamente un cammino) Euleriano è un ciclo (rispettivamente un cammino non chiuso) di G che passa per tutti gli archi di G una e una sola volta.

Teorema (di Eulero)

Un grafo G ammette un ciclo Euleriano se e solo se tutti i nodi hanno grado pari. Inoltre, ammette un cammino Euleriano se e solo se tutti i nodi hanno grado pari tranne due (i due nodi di grado dispari sono gli estremi del cammino).

il problema dei 7 ponti non ammette soluzione!

perché i grafi?

i grafi costituiscono un linguaggio potente per descrivere oggetti e problemi algoritmici

nodi: incroci

archi: strade

... attualmente aciclico ⊗ ma almeno è connesso ☺

problema:

trovare il cammino minimo fra due nodi

problema:

trovare il cammino minimo fra due nodi

reti sociali

reti sociali

reti sociali

Kevin Spacey

Millie Bobby Brown

Kevin Bacon

Rocco Siffredi

distanza dal nodo Kevin Bacon

Kevin Bacon

Paolo Villaggio

reti "delle dipendenze"

nodi: compiti da svolgere arco (u,v): u deve essere eseguito prima di v

esempi:

- -esami e propedeuticità
- -moduli software di un progetto e dipendenze

-...

reti "delle dipendenze"

nodi: compiti da svolgere arco (u,v): u deve essere

eseguito prima di v

problema:

trovare un ordine in cui eseguire i compiti in modo da rispettare le dipendenze

reti "delle dipendenze"

nodi: compiti da svolgere

arco (u,v): u e v non possono

essere svolti insieme

esempio:

- -date esami e vincoli
- -certi esami non possono essere svolti lo stesso giorno (stesso anno, usano la stessa aula, ecc.)

problemi:

-trovare max #di compiti eseguibili

-trovare min #di "gruppi" di compiti, t.c. compiti dello stesso gruppo possono essere eseguiti insieme

colorazione di un grafo

colorare i nodi del grafo risultante usando il minimo numero χ di colori in modo che due nodi adiacenti non abbiano lo stesso colore

reti "delle dipendenze"

nodi: compiti da svolgere arco (u,v): u e v non possono essere svolti insieme

massimo insieme indipendente

trovare l'insieme X di nodi di cardinalità massima tale che per ogni u,v in X, u e v non sono adiacenti

 χ : numero cromatico

un esempio

giorni disponibili:

mercoledi giovedi venerdi sabato domenica

possiamo fare meglio?

possiamo usare 3 colori?

un esempio

$$\chi(G)=3$$

possiamo usare 2 colori?

..no: ogni ciclio da tre (triangolo) ha bisogno di almeno tre colori!

Esercizio

Dire quali delle seguenti figure possono essere disegnate senza staccare la penna dal foglio (e senza ripassare più volte sulla stessa linea). Motivare la risposta.

