

Having thus described the preferred embodiments,
the invention is now claimed to be:

1. A method for calibrating a coincidence imaging system which includes a plurality of radiation detectors,
5 the method comprising:
 - measuring a plurality of coincidence radiation events associated with a point radiation source;
 - assigning initial values for a set of fitting parameters;

10 applying a minimization algorithm including:
 - calculating lines of response (LOR) based upon the fitting parameters and the measured radiation events,
 - generating a figure of merit characterizing the apparent size of the point radiation source based upon the LOR's, and
 - optimizing the fitting parameters to produce a minimized figure of merit;
 - and

20 extracting from the optimized fitting parameters a correction factor relating to a positional coordinate of a detector.
2. A method for imaging using a plurality of radiation detectors, the method comprising:
 - measuring a plurality of coincidence radiation events associated with a point radiation source;
 - assigning initial values for at least one fitting parameter;
 - 30 calculating lines of response (LOR) based upon the at least one fitting parameter and the measured radiation events;
 - generating a figure of merit characterizing the apparent size of the point radiation source based upon the LOR's;

optimizing the at least one fitting parameter using
a minimization algorithm which includes
iteratively repeating the calculating and
generating steps to produce a minimized figure
of merit;

5 extracting from the at least one optimized fitting
parameter at least one correction factor;

acquiring a set of radiation data from an associated
subject;

10 correcting the radiation data for camera misalignment
by correcting the spatial coordinates of the
detected radiation events using the at least one
correction factor; and

15 reconstructing an image representation from the
corrected radiation data.

3. The imaging method as described in claim 2,
wherein the at least one fitting parameter includes:
a parameter related to the radial positional
coordinate of a detector.

20 4. The imaging method as described in claim 2,
wherein the at least one fitting parameter includes:
a parameter related to the tangential positional
coordinate of a detector.

5. The imaging method as described in claim 2,
25 wherein the at least one fitting parameter includes:
a parameter related to the orientational positional
coordinate of a detector.

6. The imaging method as described in claim 2,
wherein:
30 the step of generating a figure of merit includes
summing a distance of closest approach of each
LOR to a spatial point; and

the at least one fitting parameter includes the positional coordinates of the spatial point.

7. The imaging method as described in claim 2, wherein:

5 the step of generating a figure of merit includes summing the square of a distance of closest approach of each LOR to a spatial point; and the at least one fitting parameter includes the positional coordinates of the spatial point.

10 8. The imaging method as described in claim 7, wherein the step of generating a figure of merit further includes:

discarding LOR's whose distance of closest approach is greater than a preselected distance.

15 9. The imaging method as described in claim 2, wherein the step of generating a figure of merit further includes:

obtaining a crossing point of each pair of LOR's; and calculating a standard deviation of the crossing points.

20 10. The imaging method as described in claim 2, wherein the step of generating a figure of merit further includes:

obtaining a distance of closest approach for each 25 pair of LOR's; and calculating a standard deviation of the obtained distances.

30 11. The imaging method as described in claim 2, wherein the number of detectors is N and the fitting parameters include:

Δr_i , $i=1$ to N , where Δr_i is a correction for the radial coordinate of the i th detector;

Δt_j , $j=1$ to N , where Δt_j is a correction for the tangential coordinate of the j th detector; and $\Delta \theta_k$, $k=2$ to N , where $\Delta \theta_k$ is a correction for the orientational coordinate of the k th detector.

5 **12.** The imaging method as described in claim 11, wherein the fitting parameters further include:
positional coordinates of the point radiation source.

10 **13.** A method of PET imaging comprising:
coincidence detecting radiation events from a
calibration source with at least two detector
heads;
calculating correction factors that correct for
mechanical misalignment of the detector heads
from the coincidence detected calibration source
radiation;
15 during a diagnostic imaging procedure performed on a
subject, generating image data in response to
radiation collected with the detector heads;
correcting the image data with the correction
factors; and
20 reconstructing the corrected image data into an image
representation.

erl
Aj 25 **14.** A coincidence imaging system comprising:
a gantry;
a plurality of flat panel detectors disposed about
the gantry;
a data memory which stores measured data about
radiation events detected by the detectors;
a calibration memory which stores a plurality of
calibration parameters for correcting data
measured during a patient scan; and
30 a processor in communication with the calibration
memory and with the data memory which calculates
the calibration parameters by a minimization

algorithm that includes optimizing fitting parameters with respect to acquired radiation data associated with a point radiation source.

5 15. The imaging system of claim 14 wherein the minimization algorithm further includes:

calculating lines of response (LOR) based upon the fitting parameters and the measured data;

10 generating a figure of merit characterizing the apparent size of the point radiation source based upon the LOR's; and

optimizing the fitting parameters to produce a minimized figure of merit.

15 16. The imaging system of claim 15 wherein the calibration parameters include:

parameters relating to positional coordinates of the plurality of detectors.

20 17. The imaging system of claim 16, wherein:
the gantry is a rotatable gantry which acquires measured data over a range of gantry angular positions.

25 18. The imaging system of claim 14, wherein:
the figure of merit is generated by summing the square of a distance of closest approach of each LOR to a spatial point; and
the fitting parameters include the positional coordinates of the spatial point.

30 19. The imaging system of claim 14, wherein the generating of the figure of merit includes:

obtaining a crossing point of each pair of LOR's; and calculating a variance of the crossing points.

SEARCHED INDEXED
SERIALIZED FILED
APR 22 1988
FBI - WASHINGTON, D.C.

and
a)

20. The imaging system of claim 14, wherein the minimization algorithm further includes:

discarding measured data about radiation events whose energy is outside a preselected energy range.

00000000 - 00000000