

1.1 Définitions préliminaires et détermination des performances

1.1.1 Définitions

Informations analogiques et numériques

- Une information analogique peut prendre, de manière continue, toutes les valeurs possibles dans un intervalle donné. Un signal analogique peut être représenté par une courbe continue. Les grandeurs physiques (température, vitesse, position, tension, ...) sont des informations analogiques.
- Une information numérique sous la forme d'un mot binaire est constituée de plusieurs bits (variables binaires 0/1). Cette information numérique est en général issue d'un traitement (échantillonnage et codage) d'une information analogique. On parle de conversion analogique numérique (CAN).

Systèmes automatiques ou asservis

Un système asservi est commandé par une (ou des) entrée(s) qu'il transforme en grandeur(s) de sortie. Les entrées sont de deux types :

- la loi de consigne e(t) est une grandeur de commande qui est modifiable;
- la perturbation : c'est une entrée parasite qui nuit au bon fonctionnement du système. On ne peut pas modifier les perturbations.

La sortie s(t) est une grandeur **observable** (par des capteurs) qui permet de juger de la qualité de la tâche accomplie.

1 Rappels sur la modélisation Précision en position – Écart statique ε_S

Le système est piloté par un échelon. On définit alors l'écart statique ε_S comme l'écart entre la consigne fixe et la réponse s(t) en régime permanent.

Systèmes suiveurs et régulateurs

Précision en vitesse ε_V

Encore appelé écart de traînage ou écart de poursuite, il représente la différence entre une consigne variable de type rampe et la réponse en régime permanent.

font varier la position du système. Il doit donc de façon automatique revenir

Rapidité

La rapidité est caractérisée par le temps que met le système à réagir à une variation brusque de la grandeur d'entrée (temps de réponse). Cette notion est fortement liée à la notion de précision dynamique.

Figure 1.2 – Système régulateur.

Détermination du temps de réponse à n% (En pratique n = 5).

- 1. Tracer sur le même graphe la consigne e(t) et la réponse du système s(t).
- 2. Tracer la droite correspondant à la valeur asymptotique de s(t).
- 3. Tracer la bande correspondant à une variation de $\pm n\%$ de la valeur asympto-
- 4. Relever la dernière valeur à partir de laquelle s(t) coupe la bande et n'en sort plus.

Temps (s)

Figure 1.4 - Performances sur une réponse à un échelon.

Stabilité

La stabilité traduit la propriété de convergence temporelle asymptotique vers un état d'équilibre.

Xavier Pessoles Sciences Industrielles de l'Ingénieur 1.2 Modéliser les systèmes asservis – Transformée de Laplace

1.2.2 Théorèmes

Theorem 1.2.1 Théorème de la valeur initiale

$$\lim_{t\to 0^+} f(t) = \lim_{p\in\mathbb{R}, p\to\infty} pF(p)$$

Theorem 1.2.2 Théorème de la valeur finale

$$\lim_{t\to\infty}f(t)=\lim_{p\in\mathbb{R},p\to0}pF(p)$$

Theorem 1.2.3 Théorème du retard

$$\mathcal{L}\left[f\left(t-t_{0}\right)\right]=e^{-t_{0}p}F(p)$$

Theorem 1.2.4 Théorème de l'amortissement

$$\mathcal{L}\left[e^{-at}f\left(t\right)\right] = F(p+a)$$

1.3 Modélisation par fonction de transfert et schéma-blocs

1.3.1 Définitions

Fonction de transfert - Transmittance

Soit un système linéaire continu linéaire invariant dont on note le signal d'entrée e et le signal de sortie s, régit par une équation différentielle à coefficient constants. Dans le domaine de Laplace et sous les conditions de Heaviside, on définit la fonction de transfert du système par la fonction H telle que :

$$H(p) = \frac{S(p)}{E(p)} = \frac{\sum_{i=0}^{m} b_i p^i}{\sum_{i=0}^{n} a_i p^i} = \frac{N(p)}{D(p)}.$$

Classe, ordre, pôles et zéros

H(p) est une fonction rationnelle en p. En factorisant le numérateur et le dénominateur, H(p) peut s'écrire sous cette forme :

$$H(p) = \frac{N(p)}{D(p)} = K \frac{(p - z_1)(p - z_2) \dots (p - z_m)}{p^{\alpha}(p - p_1)(p - p_2) \dots (p - p_n)}$$

- Les z_i sont les **zéros** de la fonction de transfert (réels ou complexes).
- Les p_i sont les **pôles** de la fonction de transfert (réels ou complexes).
- Le degré de D(p) est appelé ordre n du système ($n \ge m$ pour les systèmes physiques).
- L'équation D(p) = 0 est appelée équation caractéristique.
- S'il existe une (ou des) racines nulles d'ordre α de D(p), un terme p^{α} apparaît au dénominateur. α **est la classe (ou type) de la fonction de transfert**. Il correspond au nombre d'intégrations pures du système.

Modélisation d'un bloc

Soit un système d'entrée E(p), de sortie S(p), caractérisé par une fonction de transfert H(p). Ce système est alors représenté par le schéma bloc ci-contre. La relation entrée – sortie du système se met alors sous la forme :

$$S(p) = E(p) \cdot H(p)$$
.

Modélisation d'un comparateur

Soit l'équation $S(p) = E_1(p) - E_2(p)$. Cette équation se traduit par le schéma ci-contre.

$$E_1(p)$$

$$E_2(p)$$

$$E_2(p)$$

1.3.2 Algèbre de blocs

Pour modifier un schéma-blocs, il faut s'assurer que lorsque on modifie une partie du schéma, les grandeurs d'entrée et de sortie sont identiques avant et après la transformation.

Blocs en série

$$\xrightarrow{E(p)} H_1(p) \longrightarrow H_2(p) \xrightarrow{S(p)}$$

$$\Leftrightarrow \underbrace{E(p)}_{H_1(p)H_2(p)} \underbrace{S(p)}_{S(p)}$$

Blocs en parallèle

Réduction de boucle - À MAITRISER PARFAITEMENT

Comparateurs en série

Point de prélèvement $E(p) \xrightarrow[R(p)]{} H_1(p) \xrightarrow{S(p)} \Leftrightarrow \underbrace{E(p) \xrightarrow[R(p)]{} H_1(p)} S(p) \xrightarrow[R(p)]{} H_2(p)H_1(p) \xrightarrow[R(p)]{} H_2(p)H_1(p)H_2(p)H_2(p)H_1(p)H_2$

1.3.3 Fonctions usuelles

Fonction de transfert en boucle fermée - FTBF

Formule de Black

$$H(p) = \frac{S(p)}{E(p)} = \frac{H_1(p)}{1 + H_1(p)H_2(p)}$$

Fonction de transfert en boucle ouverte - FTBO

$$FTBO(p) = \frac{R(p)}{\varepsilon(p)} = H_1(p)H_2(p)$$

Théorème de superposition

Soit un système d'entrées E_1 et E_2 et de sortie S. On note $H_1 = \frac{S}{E_1}$ lorsque E_2 est nulle et $H_2 = \frac{S}{E_2}$ lorsque E_1 est nulle. En superposant, on a alors : $S = H_1E_1 + H_2E_2$.

1.4 Modélisation des systèmes du premier et du deuxième ordre

1.4.1 Systèmes d'ordre 1

Système d'ordre 1 Les systèmes du premier ordre sont régis par une équation différentielle de la forme suivante :

$$\tau \frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = Ke(t).$$

Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \tau p}$$

On note:

- τ la constante de temps en secondes ($\tau > 0$);
- K le gain statique du système (K > 0).

Réponse à un échelon d'un système du premier ordre

On appelle réponse à un échelon, l'expression de la sortie s lorsque on soumet le système à un échelon d'amplitude E_0 . Lorsque $E_0 = 1$ (1/p dans le domaine de Laplace) on parle de **réponse indicielle**. Ainsi, dans le domaine de Laplace :

$$S(p) = E(p)H(p) = \frac{E_0}{p}\frac{K}{1+\tau p}.$$

Analytiquement, on montre que $s(t) = KE_0u(t)\left(1 - e^{-\frac{t}{\tau}}\right)$.

Si la réponse indicielle d'un système est caractéristique d'un modèle du premier ordre (pente à l'origine non nulle et pas d'oscillation), on détermine :

- le gain à partir de l'asymptote KE_0 ;
- la constante de temps à partir de $t_{5\%}$ ou du temps pour 63 % de la valeur finale.

Les caractéristiques de la courbe sont les suivantes :

- valeur finale $s_{\infty} = KE_0$;
- pente à l'origine non nulle;
- $-t_{5\%}=3\tau$;
- pour $t = \tau$, $s(\tau) = 0.63 s_{\infty}$.

- Réponse à une rampe d'un système du premier ordre

On appelle réponse à une rampe, l'expression de la sortie s lorsque on soumet le système à une fonction linéaire de pente k:

$$S(p) = E(p)H(p) = \frac{k}{p^2}\frac{K}{1+\tau p}.$$

Analytiquement, on montre que $s(t) = Kk\left(t - \tau + \tau e^{-\frac{t}{\tau}}\right)u(t)$.

Les caractéristiques de la courbe sont les suivantes :

- pente de l'asymptote Kk;
- intersection de l'asymptote avec l'axe des abscisses : $t = \tau$.

Temps (s)

1.4.2 Systèmes d'ordre 2

Systèmes d'ordre 2 Les systèmes du second ordre sont régis par une équation différentielle de la forme suivante :

$$\frac{1}{\omega_0^2} \frac{\mathrm{d}^2 s(t)}{\mathrm{d}t^2} + \frac{2\xi}{\omega_0} \frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = Ke(t).$$

Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega_0^2}}.$$

On note:

- K est appelé le gain statique du système (rapport des unités de S et de E);
- ξ (lire xi) est appelé coefficient d'amortissement (sans unité);

$$E(p) \longrightarrow \frac{K}{1 + \frac{2\xi}{\omega_0}p + \frac{p^2}{\omega_0^2}} \qquad S(p)$$

— ω_0 pulsation propre du système (rad/s ou s^{-1}).

Suivant la valeur du coefficient d'amortissement, l'allure de la réponse temporelle est différente.

- Pour $\xi = 0$ le système n'est pas amorti (oscillateur harmonique) la réponse à un échelon est une sinusoïde d'amplitude KE_0 ($2KE_0$ crête à crête).
- Pour $\xi \approx 0,69$ on obtient le système du second ordre le plus rapide **avec dépassement**. Le temps de réponse à 5% est donné par $t_{r5\%} \cdot \omega_0 \approx 3$.
- Pour $\xi = 1$ on obtient le système du second ordre le plus rapide **sans dépassement**.

1.5 Réponse fréquentielle des SLCI

1.5.1 Définitions

On peut définir un signal sinusoïdal sous la forme $f(t) = A \sin(\omega \cdot t + \varphi)$ et on note :

- *A* : l'amplitude de la sinusoïde;
- ω : la pulsation en rad/s;
- φ : la phase à l'origine en rad.

On a par ailleurs:

— $T = \frac{2\pi}{\omega}$: la période de la sinusoïde en s;

—
$$f = \frac{1}{T}$$
: fréquence de la sinusoïde en Hz.

Une étude harmonique consiste en solliciter le système par des sinusoïdes de pulsations différentes et d'observer son comportement en régime permanent. Le diagramme de Bode est constitué d'un diagramme de gain (rapport des amplitudes des sinus en régime permanent) et d'un diagramme de phase (déphasage des sinus en régime permanent).

Soit H(p) une fonction de transfert. On pose $p = j\omega$ et on note :

- $H_{\rm dB}(\omega) = 20 \log |H(j\omega)|$ le gain décibel de la fonction de transfert;
- $\varphi(\omega) = \operatorname{Arg}(H(j\omega)).$

On note $H(p) = G_1(p)G_2(p)$. On a :

- $-- H_{dB}(\omega) = G1_{dB}(\omega) + G2_{dB}(\omega);$
- $-\varphi(\omega) = \operatorname{Arg}(G1_{dB}(\omega)) + \operatorname{Arg}(G2_{dB}(\omega)).$

1.5.2 Gain

- Diagramme de Bode d'un gain pur

- Fonction de transfert : H(p) = K.
- Diagramme de gain : droite horizontale d'ordonnée 20 log *K*.
- Diagramme de phase : droite horizontale d'ordonnée 0°.

1.5.3 Intégrateur

- Diagramme de Bode d'un intégrateur

- Fonction de transfert : $H(p) = \frac{K}{p}$.
- Diagramme de gain asymptotique : droite de pente -20dB/decade passant par le point $(1,20 \log K)$.
- Diagramme de phase asymptotique : droite horizontale d'ordonnée −90 °.

1.5.4 Dérivateur

- Diagramme de Bode d'un dérivateur

- Fonction de transfert : H(p) = Kp.
- Diagramme de gain asymptotique : droite de pente 20 dB/decade passant par le point $(1, 20 \log K)$.
- Diagramme de phase asymptotique : droite horizontale d'ordonnée +90 °.

1.5.5 Systèmes d'ordre 1

- Diagramme de Bode d'un système du premier ordre

- Fonction de transfert : $H(p) = \frac{K}{1 + \tau p}$.
- Diagramme de gain asymptotique :
 - pour $\omega < \frac{1}{\tau}$: droite horizontale d'ordonnée $20 \log K$;

— pour
$$\omega > \frac{1}{\tau}$$
: droite de pente –20dB/decade.

- Diagramme de phase asymptotique :
 - pour ω < 1/τ : droite horizontale d'ordonnée 0 °;
 pour ω > 1/τ : droite horizontale d'ordonnée −90 °.

1.5.6 Systèmes d'ordre 2

- Diagramme de Bode d'un système du deuxième ordre

— Fonction de transfert : $H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} + \frac{p^2}{\omega_0^2}}$.

Cas où ξ < 1.

- Diagramme de gain asymptotique :
 - pour $\omega < \omega_0$: droite horizontale d'ordonnée 20 log K;
 - pour $\omega > \omega_0$: droite de pente -40dB/decade.
- Diagramme de phase asymptotique :
 - pour $\omega < \omega_0$: droite horizontale d'ordonnée 0°;
 - pour $\omega > \omega_0$: droite horizontale d'ordonnée –180°.

Dans le **cas où** $\xi > 1$, le dénominateur admet deux racines (à partie réelle négative) et peut se mettre sous la forme $(1 + \tau_1 p)(1 + \tau_2 p)$. On se ramène alors au tracé du produit de deux premier ordre.

Phénomène de résonance

Le phénomène de résonance s'observe lorsque $\xi < \frac{\sqrt{2}}{2}$. La pulsation de résonance

est inférieure à la pulsation propre du système : $\omega_r = \omega_0 \sqrt{1 - 2\xi^2}$. À la résonance, l'amplitude maximale est de $A_{\rm max} = \frac{K}{2\xi\sqrt{1-\xi^2}}$. (Attention, sur le diagramme de Bode, on lit $20 \log A_{\text{max}}$ lorsque $\omega = \omega_r$.)

1.5.7 Retard

- Diagramme de Bode d'un retard pur
 - Fonction de transfert : $H(p) = e^{-Tp}$.
 - Diagramme de gain asymptotique : gain nul.
 - Diagramme de phase asymptotique : $arg(H(p)) = -\tau \omega$... à tracer.

1.5.8 Tracé du diagramme de Bode

Méthode 1 : sommation dans le diagramme de Bode

- 1. décomposer la fonction de transfert à tracer en fonction de transfert élémentaire (fonctions de transfert élémentaires vues ci-dessus);
- 2. tracer chacune des fonctions de transfert;

3. sommer les tracés dans le diagramme de gain et dans le diagramme des phases.

Méthode 2 : tableau de variations

- 1. décomposer la fonction de transfert à tracer en fonction de transfert élémentaire (fonctions de transfert élémentaires vues ci-dessus);
- 2. réaliser un tableau de variation : pour chacune des fonctions élémentaires, donner les pulsations de coupure et les pentes ;
- 3. sommer les pentes;
- 4. tracer le diagramme de Bode.