Some rules of Probability and Statistics

Def P is a probability measure if

- 1. $0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$
- 3. $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$

for all events $A \subset \Omega$ where Ω is the sample space.

Basic principle of counting

If an experiment can be divided into j subexperiments where the first has n_1 outcomes

second has n_2 outcomes

jth has n_i outcomes

then the experiment totally has $n_1 \cdot n_2 \cdots n_i$ outcomes.

Addition theorem $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

A and B are independent events if $P(A \cap B) = P(A)P(B)$ Def

The conditional probability of A given B is $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Def

Bayes theorem

$$\underline{\underline{\text{If}}} \qquad A_1, \dots, A_n \text{ is a partition of } \Omega$$

$$\text{(i.e. } i \neq j \Rightarrow A_i \cap A_j = \emptyset \text{ and } \bigcup_{i=1}^n A_i = \Omega \text{).}$$

$$\underline{\text{then}} \qquad P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^n P(B|A_i)P(A_i)} \text{ for each } k = 1, 2, \dots, n.$$

Combinatorics

The number of ways to choose k elements among n possible, without replacement and without respect to the order, is

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 2\cdot 1}$$

Random

X discrete: **Probability fcn**: p(x) = P(X = x)

Distribution fcn: $P(X \le a) = F(a) = \sum_{x \le a} p(x)$, variables

X cont.:

Density fcn: $f(x) = \frac{d}{dx}P(X \le x)$ Distribution fcn: $P(X \le a) = F(a) = \int_{-\infty}^a f(x) \, dx$.

Expected value and variance

X discrete:

The **expected value** of X: $\mu = E(X) = \sum_{x \in \Omega} x \, p(x)$. **Variance** of X: $\sigma^2 = V(X) = \sum_{x \in \Omega} (x - \mu)^2 \, p(x)$.

X cont:

Expected value of X: $\mu = E(X) = \int_{x \in \Omega} x f(x) dx$. **Variance** of X: $\sigma^2 = V(X) = \int_{x \in \Omega} (x - \mu)^2 f(x) dx$.

Covariance of X and Y: $C(X,Y) = E((X - \mu_x)(Y - \mu_y))$ Correlation of X and Y: $\rho = \frac{C(X,Y)}{\sqrt{V(X)V(Y)}}$

Standard dev. $\sigma = \sqrt{V(X)}$.

Linearity: E(aX + bY) = a E(X) + b E(Y) for all random

variables X and Y and real numbers a and b.

If X, Y indep. then $V(aX + bY) = a^2V(X) + b^2V(Y)$.

 $E(g(X)) = \int_{\mathbb{R}} g(x) f(x) dx$ $V(X) = E(X^2) - (E(X))^2$ Rules:

 $C(X,Y) = \iint_{\mathbb{R}^2} xy f(x,y) - E(X)E(Y)$ $C(\sum_i a_i X_i, \sum_k b_k Y_k) = \sum_i \sum_k a_i b_k C(X_i, Y_k)$

denoted by $N(\mu, \sigma^2)$ where μ is the expected value and σ^2 is the variance Normal distribution N(0,1) is called standard normal distribution with density function $\Phi(x)$

If $X \in N(\mu, \sigma^2)$ then $P(X \leq x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

Symmetry: $\Phi(-x) = 1 - \Phi(x)$

<u>Probabilities</u>: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$

Def The random variables X_1, X_2, \ldots, X_n are a **sample** of X if all variables, X_i , is distributed as X, $i = 1, \ldots, n$, and all variables are independent of each other at all levels.

CLT (Central Limit Theorem)

 X_1, \ldots, X_n is a sample where

 $E(X_i) = \mu \text{ and } V(X_i) = \sigma^2, i = 1, ..., n$

then $P\left(\frac{\sqrt{n}}{\sigma}(\bar{X} - \mu) \le x\right) \to \Phi(x)$ as $n \to \infty$. This implies that $\sum_{i=1}^{n} X_i$ is approximately $N(n\mu, n\sigma^2)$ and \bar{X} is approximately $N(\mu, \sigma^2/n)$ for large n.

Approximations Condition Approximative distribution Distribution

> $Bin(n,\pi)$ $n > 10 \text{ and } \pi < 0.1$ $Po(n\pi)$

Bin(n,p) $np(1-p) \ge 10$ N(np, np(1-p))

 $\lambda \ge 15$ $Poi(\lambda)$ $N(\lambda,\lambda)$

Inference

Def A point estimator, θ^* , of a parameter θ is **unbiased** if $E(\theta^*) = \theta$. If θ_1^* and θ_2^* are unbiased estimators of θ , then θ_1^* is **better** (or **more efficient**) than θ_2^* om $V(\theta_1^*) < V(\theta_2^*)$.

Point estimation $\underline{\text{If}}$ $E(X) = \mu, V(X) = \sigma^2 \text{ and } X_1, \dots, X_n \text{ is a sample of } X$ $\underline{\text{then}}$ unbiased point estimators of μ and σ^2 are: $\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ $\hat{\sigma}^2 = S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \mu^2$ if μ is known $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \bar{X}^2 \right)$

if μ is unknown.

Distributions, expected values and variances

	X	p(x), f(x)	E(X)	V(X)	
	Bern(p)		p	p(1-p)	
butions	$\operatorname{Bin}(n,p)$	$\begin{pmatrix} n \\ x \end{pmatrix} p^x (1-p)^{n-x}$ $x = 0, 1, 2, \dots, n$	igg np	np(1-p)	
Discrete distributions	$\operatorname{Poi}(\lambda)$	$e^{-\lambda} \lambda^x / x!$ $x = 0, 1, 2, \dots$	λ	λ	
Discre	$\operatorname{Geo}(\pi)$	$ \begin{vmatrix} (1-\pi)^{x-1}\pi \\ x = 1, 2, 3, \dots \end{vmatrix} $	$1/\pi$	$(1-\pi)/\pi^2$	
ions	R(a,b)	$ \begin{vmatrix} 1/(b-a) \\ a \le x \le b \end{vmatrix} $	(a+b)/2	$(a-b)^2/12$	
distributions	$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x} \\ x > 0$	$1/\lambda$	$1/\lambda^2$	
Cont.	$N(\mu, \sigma)$	$(\sigma\sqrt{2\pi})^{-1}e^{-(x-\mu)^2/(2\sigma^2)}$ $x \in \mathbb{R}$	μ	σ^2	

Confidence intervals

Assume X_1, \ldots, X_m and Y_1, \ldots, Y_n are independent and normally distributed $N(\mu_X, \sigma)$ and $N(\mu_Y, \sigma)$ respectively. Then a $100(1 - \alpha)\%$ confidence interval for the parameter θ is:

θ	Conf. int.	Remark
μ_X	$\bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{m}}$	σ known
μ_X	$\bar{x} \pm t_{\alpha/2}(m-1)\frac{s}{\sqrt{m}}$	σ unknown
σ^2	$\left(0, (m-1)s^2/(\chi^2_{1-\alpha}(m-1))\right)$	
$\mu_X - \mu_Y$	$\bar{\Delta} \pm t_{\alpha/2}(m+n-2)s_{\Delta}\sqrt{\frac{1}{m}+\frac{1}{n}}$	σ okänd $\bar{\Delta} = \bar{x} - \bar{y}$ $s_{\Delta}^2 = \frac{(m-1)s_X^2 + (n-1)s_Y^2}{m+n-2}$

Hypothesis testing

Assume X_1, \ldots, X_n is a sample of a random variable with distribution F with parameter θ . To test the hypothesis

 $\left\{ \begin{array}{ll} H_0 & : & \theta = \theta_0 \quad \text{(null hypothesis)} \\ H_1 & : & \theta \in \Theta \quad \text{(alternative hypothesis)} \end{array} \right.$

the test statistic $U = U(X_1, ..., X_n)$ is used, and the critical region C_{α} which corresponds to Θ according to the distribution

 F_U of U under H_0 at level α of significance. The test rule is

 $\int \text{ Reject } H_0 \text{ if } u \in C_\alpha$

Do not reject H_0 if $u \notin C_{\alpha}$

		(eject m if $a \not\subseteq C_{\alpha}$		
θ	H_0	H_1	u	F_U	C_{lpha}
π if $n\pi_0(1-\pi_0) > 5$	$\pi = \pi_0$	$\begin{array}{c} \pi < \pi_0 \\ \pi > \pi_0 \\ \pi \neq \pi_0 \end{array}$	$\frac{\sqrt{n}(p-\pi_0)}{\sqrt{\pi_0(1-\pi_0)}}$	N(0,1)	$u < -\lambda_{\alpha}$ $u > \lambda_{\alpha}$ $ u > \lambda_{\alpha/2}$
$ \begin{array}{c c} \pi_1, \pi_2 \\ \text{if } n_1 p_1 (1 - p_1) > 5 \\ \text{and } n_2 p_2 (1 - p_2) > 5 \end{array} $	$\pi_1 = \pi_2$	$\begin{aligned} \pi_1 < \pi_2 \\ \pi_1 > \pi_2 \\ \pi_1 \neq \pi_2 \end{aligned}$	$\frac{p_1 - p_2}{\sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}}$	N(0,1)	$u < -\lambda_{\alpha}$ $u > \lambda_{\alpha}$ $ u > \lambda_{\alpha/2}$
μ if σ is known	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}$	N(0,1)	$ \{u < -\lambda_{\alpha}\} $ $ \{u > \lambda_{\alpha}\} $ $ \{ u > \lambda_{\alpha/2}\} $
μ if σ is unknown	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$\frac{\sqrt{n}(\bar{x}-\mu_0)}{\sigma}$	t(n-1)	$ \{u < -t_{\alpha}(n-1)\} $ $ \{u > t_{\alpha}(n-1)\} $ $ \{ u > t_{\alpha/2}(n-1)\} $
σ	$\sigma = \sigma_0$	$ \begin{aligned} \sigma &< \sigma_0 \\ \sigma &> \sigma_0 \\ \sigma &\neq \sigma_0 \end{aligned} $	$\frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2(n-1)$	
$\mu_X - \mu_Y$ if σ is known	$\mu_X = \mu_Y$	$\mu_X < \mu_Y$ $\mu_X > \mu_Y$ $\mu_X \neq \mu_Y$	$\frac{\bar{x} - \bar{y}}{\sigma\sqrt{\frac{1}{m} + \frac{1}{n}}}$	N(0,1)	$ \{u < -\lambda_{\alpha}\} $ $ \{u > \lambda_{\alpha}\} $ $ \{ u > \lambda_{\alpha/2}\} $
$\mu_X - \mu_Y$ if σ is unknown	$\mu_X = \mu_Y$	$\mu_X < \mu_Y$ $\mu_X > \mu_Y$ $\mu_X \neq \mu_Y$	$\frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$	t(m+n-2)	$ \begin{aligned} &\{u < -t_{\alpha/2}(m+n-2)\}\\ &\{u > t_{\alpha}(m+n-2)\}\\ &\{ u > t_{\alpha/2}(m+n-2)\}\end{aligned} $
$F \text{ where} $ $E_i = NP(X \in I_i H_0)$	$F = F_0$	$F \neq F_0$	$\sum_{i} \frac{(O_i - E_i)^2}{E_i}$	$\chi^2(k-1)$	$\{u > \chi_{\alpha}^2(k-1)\}$

Assume X_1, \ldots, X_n is a sample of $X \in Bern(p)$. For testing H_0 against H_1 , reject H_0 at level α of significance if $\alpha_0 < \alpha$ where

H_0	H_1	u	F_U	α_0
$p = p_0$	$p < p_0$	$\sum_{i} x_{i}$	$Bin(n, p_0)$	$P(U < u H_0)$
	$p > p_0$			$P(U > u H_0)$
	$p \neq p_0$			$\begin{cases} 2P(U < u H_0) & \text{om } u < np_0 \\ 2P(U > u H_0) & \text{om } u > np_0 \end{cases}$

Type I error is to reject H_0 when H_0 is true. $P(\text{Type I error}) = \alpha$. Type II error is to not reject H_0 when H_1 är true. $P(\text{Type II error}) = \beta$. Test **power** is the probability to reject H_0 when H_1 is true, i.e. $1 - \beta$.

Normal distribution values

 $\Phi(x)$

Table over values of $\Phi(x) = P(X \le x)$ where $X \in N(0,1)$. For x < 0, use the relation $\Phi(x) = 1 - \Phi(-x)$.

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
\boldsymbol{x}	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Percentiles:

Some values of λ_{α} such that $P(X > \lambda_{\alpha}) = \alpha$ where $X \in N(0, 1)$

α	λ_{lpha}	α	λ_{lpha}
0.1	1.281552	0.005	2.575829
0.05	1.644854	0.001	3.090232
0.025	1.959964	0.0005	3.290527
0.01	2.326348	0.0001	3.719016

t percentiles

 $0 \quad t_{\alpha}(df)$

Table over values of $t_{\alpha}(df)$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737
	'							

χ^2 percentiles

Table over values of $\chi^2_{\alpha}(df)$.

df	α 0.999	0.995	0.99	0.95	0.05	0.01	0.005	0.001
1	0.0000	0.0000	0.0002	0.0039	3.8415	6.6349	7.8794	10.8276
2	0.0020	0.0100	0.0201	0.1026	5.9915	9.2103	10.5966	13.8155
3	0.0243	0.0717	0.1148	0.3518	7.8147	11.3449	12.8382	16.2662
4	0.0908	0.2070	0.2971	0.7107	9.4877	13.2767	14.8603	18.4668
5	0.2102	0.4117	0.5543	1.1455	11.0705	15.0863	16.7496	20.5150
6	0.3811	0.6757	0.8721	1.6354	12.5916	16.8119	18.5476	22.4577
7	0.5985	0.9893	1.2390	2.1673	14.0671	18.4753	20.2777	24.3219
8	0.8571	1.3444	1.6465	2.7326	15.5073	20.0902	21.9550	26.1245
9	1.1519	1.7349	2.0879	3.3251	16.9190	21.6660	23.5894	27.8772
10	1.4787	2.1559	2.5582	3.9403	18.3070	23.2093	25.1882	29.5883
12	2.2142	3.0738	3.5706	5.2260	21.0261	26.2170	28.2995	32.9095
14	3.0407	4.0747	4.6604	6.5706	23.6848	29.1412	31.3193	36.1233
17	4.4161	5.6972	6.4078	8.6718	27.5871	33.4087	35.7185	40.7902
20	5.9210	7.4338	8.2604	10.8508	31.4104	37.5662	39.9968	45.3147
25	8.6493	10.5197	11.5240	14.6114	37.6525	44.3141	46.9279	52.6197
30	11.5880	13.7867	14.9535	18.4927	43.7730	50.8922	53.6720	59.7031
50	24.6739	27.9907	29.7067	34.7643	67.5048	76.1539	79.4900	86.6608
100	61.9179	67.3276	70.0649	77.9295	124.342	135.807	140.169	149.449

Values of the Poisson distribuion

Table over values of $F(x) = P(X \le x)$ where $X \in Po(\lambda)$.

λ	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0.5	0.607	0.910	0.986	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1	0.368	0.736	0.920	0.981	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	0.135	0.406	0.677	0.857	0.947	0.983	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000
3	0.050	0.199	0.423	0.647	0.815	0.916	0.966	0.988	0.996	0.999	1.000	1.000	1.000	1.000
4	0.018	0.092	0.238	0.433	0.629	0.785	0.889	0.949	0.979	0.992	0.997	0.999	1.000	1.000
5	0.007	0.040	0.125	0.265	0.440	0.616	0.762	0.867	0.932	0.968	0.986	0.995	0.998	0.999
6	0.002	0.017	0.062	0.151	0.285	0.446	0.606	0.744	0.847	0.916	0.957	0.980	0.991	0.996

Values of the Binomial distribution

Table over values of $P(x) = P(X \le x)$ where $X \in Bin(n, p)$.

For p > 0.5, use the relation $P(X \le x) = P(Y \ge n - x)$ where $Y \in Bin(n, 1-p)$.

	P	0.0, as		. 0100101	(<u>_</u> "	1 (1 :	_ ''	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 1 0	Dorogra	$, \perp P).$
n	p	0	1	2	3	4	5	6	7	8	9	10
3	0.1	0.729	0.972	0.999	1.000		_	_	_	_	_	
	0.2	0.512	0.896	0.992	1.000	_	_	_	_	_	_	_
	0.3	0.343	0.784	0.973	1.000	_	_	_	_	_	_	_
	0.4	0.216	0.648	0.936	1.000	_	_	_	_	_	_	_
	0.5	0.125	0.500	0.875	1.000	_	_	_	_	_	_	_
4	0.1	0.656	0.948	0.996	1.000	1.000	_	_	_	_	_	_
	0.2	0.410	0.819	0.973	0.998	1.000	_	_	_	_	_	_
	0.3	0.240	0.652	0.916	0.992	1.000	_	_	_	_	_	_
	0.4	0.130	0.475	0.821	0.974	1.000	_	_	_	_	_	_
	0.5	0.062	0.312	0.688	0.938	1.000	_	_	_	_	_	_
5	0.1	0.590	0.919	0.991	1.000	1.000	1.000	_	_	_	_	_
	0.2	0.328	0.737	0.942	0.993	1.000	1.000	_	_	_	_	_
	0.3	0.168	0.528	0.837	0.969	0.998	1.000	_	_	_	_	_
	0.4	0.078	0.337	0.683	0.913	0.990	1.000	_	_	_	_	_
	0.5	0.031	0.188	0.500	0.812	0.969	1.000	_	_	_	_	_
6	0.1	0.531	0.886	0.984	0.999	1.000	1.000	1.000	_	_	_	_
	0.2	0.262	0.655	0.901	0.983	0.998	1.000	1.000	_	_	_	_
	0.3	0.118	0.420	0.744	0.930	0.989	0.999	1.000	_	_	_	_
	0.4	0.047	0.233	0.544	0.821	0.959	0.996	1.000	_	_	_	_
	0.5	0.016	0.109	0.344	0.656	0.891	0.984	1.000		. –	_	_
7	0.1	0.478	0.850	0.974	0.997	1.000	1.000	1.000	1.000	_	_	_
	0.2	0.210	0.577	0.852	0.967	0.995	1.000	1.000	1.000	_	_	_
	0.3	0.082	0.329	0.647	0.874	0.971	0.996	1.000	1.000	_	_	_
	0.4	0.028	0.159	0.420	0.710	0.904	0.981	0.998	1.000	_	_	_
	0.5	0.008	0.062	0.227	0.500	0.773	0.938	0.992	1.000		_	_
8	0.1	0.430	0.813	0.962	0.995	1.000	1.000	1.000	1.000	1.000	_	_
	0.2	0.168	0.503	0.797	0.944	0.990	0.999	1.000	1.000	1.000	_	_
	0.3	0.058	0.255	0.552	0.806	0.942	0.989	0.999	1.000	1.000	_	_
	0.4	0.017	0.106	0.315	0.594	0.826	0.950	0.991	0.999	1.000	_	_
	0.5	0.004	0.035	0.145	0.363	0.637	0.855	0.965	0.996	1.000		_
9	0.1	0.387	0.775	0.947	0.992	0.999	1.000	1.000	1.000	1.000	1.000	_
	0.2	0.134	0.436	0.738	0.914	0.980	0.997	1.000	1.000	1.000	1.000	_
	0.3	0.040	0.196	0.463	0.730	0.901	0.975	0.996	1.000	1.000	1.000	_
	0.4	0.010	0.071	0.232	0.483	0.733	0.901	0.975	0.996	1.000	1.000	_
	0.5	0.002	0.020	0.090	0.254	0.500	0.746	0.910	0.980	0.998	1.000	
10	0.1	0.349	0.736	0.930	0.987	0.998	1.000	1.000	1.000	1.000	1.000	1.000
	0.2	0.107	0.376	0.678	0.879	0.967	0.994	0.999	1.000	1.000	1.000	1.000
	0.3	0.028	0.149	0.383	0.650	0.850	0.953	0.989	0.998	1.000	1.000	1.000
	0.4	0.006	0.046	0.167	0.382	0.633	0.834	0.945	0.988	0.998	1.000	1.000
	0.5	0.001	0.011	0.055	0.172	0.377	0.623	0.828	0.945	0.989	0.999	1.000

Trigonometrics

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta \quad \sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
$$\cos\alpha = \frac{1}{2}(e^{i\alpha} + e^{-i\alpha}) \quad \sin\alpha = \frac{1}{2i}(e^{i\alpha} - e^{-i\alpha}) \quad \tan\alpha = \frac{e^{i\alpha} - e^{i\alpha}}{i(e^{i\alpha} + e^{-i\alpha})}$$

Some special sums and series

Binomial theorem:
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

If
$$|a| < 1$$
 then $\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$, $\sum_{k=1}^{\infty} k a^k = \frac{a}{(1-a)^2}$ and $\sum_{k=1}^{\infty} \frac{a^k}{k} = -\ln(1-a)$
Taylor series: $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$, $\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$, $\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$