Functional analysis

Mike Antonenko
Based on lectures by Vladimir Peller

Typeset on March 1, 2021

Introduction

Let *X* be a vector space over a field $K \in \{\mathbb{R}, \mathbb{C}\}$.

Definition. A map $f: X \to \mathbb{R}$ is called a *norm*, iff we have

- 1. If $x \in X \setminus 0$, then f(x) > 0; and f(0) = 0.
- 2. f(kx) = |k| f(x) for all $k \in \mathbb{R}$, $x \in X$.
- 3. $f(x+y) \le f(x) + f(y)$ for all $x, y \in X$.

Definition. A pair $(V, ||\Box|)$, where $||\Box||$ is a norm on a vector space V, is called a *normed space*. A normed space is *Banach*, iff it is complete.

Completions

Definition. \widehat{X} is called a *completion* of X, iff \widehat{X} is complete and X is dense in \widehat{X} .

Theorem. A completion \widehat{X} exists.

Proof. Call two Cauchy sequences $\{x_n\}$ and $\{y_n\}$ equivalent, iff $\|x_n - y_n\| \to 0$, and let \widehat{X} be the resulting quotient. Since the point-wise sum of two Cauchy sequences is Cauchy, in this natural way we may introduce vector space structure on \widehat{X} . The norm on \widehat{X} is introduced as

$$||[x_n]|| := \lim_{n \to \infty} ||x_n||.$$

This map is defined correctly:

1. The limit on the right always exists: since $\{x_n\}$ is Cauchy, the sequence $\{\|x_n\|\}$ of reals is Cauchy, which implies it must converge.

2. If
$$[x_n] = [y_n]$$
, then $||x_n|| - ||y_n||| \le ||x_n - y_n|| \xrightarrow[n \to \infty]{} 0$. Therefore, $||[x_n]|| = ||[y_n]||$.

X is embedded into \widehat{X} by mapping $x \in X$ into the class of the constant sequence at x. It is easy to see that this map preserves norms.

Theorem. Let \widehat{X}_2 be another completion of X. Then exists a bijection $f: \widehat{X} \to \widehat{X}_2$ which is linear, preserves norms, and maps the embedded X into the embedded X.

These two theorems endow us with the right to never consider pathological incomplete spaces.

Proof. Map
$$[x_n] \in \widehat{X}$$
 into $\lim x_n \in \widehat{X}_2$.

Exercise 1. The space C[a,b] with the norm $||f||_2 = \int |f|$ is not complete. Define

$$f_n(x) = \begin{cases} 0, & x \in [a, c], \\ n(x - c), & x \in [c, c + 1/n], \\ 1, & x \in [c + 1/n, b]. \end{cases}$$

Then f_n is a Cauchy sequence which does not have a limit in C[a, b].

Proof. It is easy to see that the limit of $\{f_n\}$ is $[x \ge c]|_{[a,b]}$, so it does not have a continuous limit. Nevertheless, it is Cauchy, since

$$||f_n-f_m||=\frac{1}{2}\left|\frac{1}{n}-\frac{1}{m}\right|\xrightarrow{\min\{m,n\}\to\infty}0.$$

Equivalent norms

Definition. We say norms are *equivalent*, iff the metrics they generate are Lipschitz equivalent.

3

Exercise 2. Norms are equivalent iff they generate the same topology.

Exercise 3. In infinite-dimensional spaces, there are norms which are not equivalent.

Proof. For example, consider X = C[0,1], L^1 -norm and the sup-norm on it. It is true that L^1 -norm does not surpass the sup-norm, but there is no constant for the opposite inequality: we can think of a function with an arbitrarily large sup-norm, but constant integral.

Theorem. If *X* is finite-dimensional, then every two norms on *X* are equivalent.

Proof. Suppose dim X = n, and e_1, \dots, e_n is a basis. Let $x = a_1e_1 + \dots + a_ne_n$. Let $\|\Box\|$ be a norm on X. Define a new *norm* as

$$|x| = \sqrt{a_1^2 + \dots + a_n^2}.$$

Then

$$||x|| \le \sum_{i=1}^{n} |a_i| ||e_i||$$

$$\le M \sum_{i=1}^{n} |a_i|$$

$$\le M \left(\sum_{i=1}^{n} |a_i| \right)^{\frac{1}{2}}$$

$$= M|x|.$$

The function $x \mapsto ||x||$ is continuous in the norm $|\Box|$. Let $|x_k - x| \to 0$. Then

$$\left| \|x_k\| - \|x\| \right| \le \|x_k - x\|$$

$$\le M\sqrt{n}|x_k - x|$$

$$\to 0.$$

Consider the set $S = \{x \in E \mid |x| = 1\}$. S is compact in $|\Box|$. $\varphi|_S$ is continuous and nonzero. Then $\varphi > \delta$ for some $\delta > 0$, so

$$\left\| \frac{x}{|x|} \right\| \ge \delta \iff \|x\| \ge \delta |x|.$$

Corollary. Every finite-dimensional normed vector space is complete.

Proof. Every Euclidean space is complete.

Corollary. A finite-dimensional subspace of a normed space is closed.

Proof. It is complete, and every convergent sequence is Cauchy sequence.

Definition. The set $M \subseteq X$ is bounded, iff

$$\sup_{m\in M}||m||<+\infty.$$

Lemma (on an almost-perpendicular). Let E be a normed space, and F < E its closed proper subspace. Then for every $\epsilon > 0$ exists a vector $x \in E$ such that ||x|| = 1 and $\operatorname{dist}(x, F) > 1 - \epsilon$.

Proof. Let $y \in E \setminus F$. Then d = dist(y, F) > 0, since F is closed. Let $\delta > 0$. By definition of infimum, there exists $a \in F$ such that

$$d \le ||y - a|| \le d + \delta.$$

Put $y_2 = y - a$. Since $a \in F$, $dist(y_2, F) = dist(y, F) = d$. Define

$$x = \frac{y_2}{d+\delta} = \frac{y-a}{d+\delta}.$$

Then $||x|| \le 1$, but

$$\operatorname{dist}(x,F) = \operatorname{dist}\left(\frac{y}{d+\delta},F\right) \ge \frac{\operatorname{dist}(y,F)}{d+\delta} = \frac{d}{d+\delta}.$$

Since the δ is arbitrary, and by increasing the norm of x we do not get closer to F, we get the desired.

Theorem. Let *X* be a normed space. Equivalent are:

- 1. *X* is finite-dimensional.
- 2. Every bounded subset of *X* is relatively compact.

Proof of $1 \implies 2$. From corollary on page 5.

Proof of 2 \Longrightarrow 1. Suppose X is not finite-dimensional. We assert that there exists a bounded sequence that does not have a convergent subsequence (so in no way the closure of a bounded subset that contains this sequence can be compact). We show this by induction: suppose x_1, \ldots, x_n are already built. By the almost-perpendicular lemma there exists x_{n+1} such that $||x_{n+1}|| = 1$ and

$$\operatorname{dist}(x_{n+1},\operatorname{span}\{x_1,\ldots,x_n\}) > 1/2$$

(since X is not finite-dimensional, the span here is a proper subspace of X). Continuing to infinity, we get a sequence $\{x_n\}$. It is bounded (all its members are on the unit sphere). Nevertheless, no subsequence of it is Cauchy by construction.

Linear operators

Definition. A linear operator $T: X \to Y$ is *bounded*, iff T(B) is bounded, where B is the unit ball in X.

Lemma. Let X and Y be normed vector spaces, and $T: X \to Y$ a linear operator. The following are equivalent:

- 1. *T* is continuous.
- 2. T is continuous at 0.
- 3. *T* is bounded.

Proof of $1 \Leftrightarrow 2$. Let $x \in X$. T is continuous at x iff for every convergent $x_n \to x$ the sequence Tx_n

also converges (to Tx). Now observe that

$$||Tx_n - Tx|| = ||T(x_n - x)||.$$

Proof of $2 \Rightarrow 3$. Consider

$$D = \left\{ y \in Y \mid \left\| y \right\| \le 1 \right\}.$$

There is $\delta > 0$ such that, if $||x|| \le \delta$, then $Tx \in D$. Let $z \in D$. Since

$$||T\delta z|| \leq 1,$$

we have

$$||Tz|| \leq 1/\delta$$
.

Proof of $3 \Rightarrow 1$. Let $||x|| \le 1$. Then $||Tx|| \le M$, so $||x|| < \epsilon$ implies $||Tx|| \le M\epsilon$.

Operator norm

Definition. Let T is a continuous operator. Its *norm* is

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||}.$$

Exercise 4. ||T|| is indeed a norm.

Lemma. An operator is bounded iff it has finite norm.

Proof. Obvious.

Lemma. A linear combination of continuous operators is continuous.

Proof.

$$||(kA+B)|| \le |k|||A|| + ||B||.$$

The space of bounded operators is complete

Definition. $\mathcal{B}(X,Y)$ is the set of bounded linear operators $X \to Y$ with the obvious structure of a vector space and the standard operator norm as the norm.

Theorem. Let *Y* be complete. Then $\mathcal{B}(X,Y)$ is complete.

I have seen three quite concise proofs of this theorem and understood neither. Here is a long one, my own.

Proof. Let $\{T_n\}$ be a Cauchy sequence. Fix $x \in X$. $\{T_n x\}$ is a Cauchy sequence in Y:

$$||T_n x - T_m x|| \le ||T_n - T_m|| ||x||$$

$$\le \epsilon ||x||.$$

By completeness of *Y*, there is a limit $t \leftarrow T_n x$.

The map $x \mapsto t$ we have just build is a linear operator. Call it T. T_n is a Cauchy sequence, so $||T_n|| \le M$ for some M. Then T itself is bounded:

$$||Tx|| \le ||T_nx|| + \epsilon$$

 $\le M||x|| + \epsilon$.

We assert that $||T_nx - Tx|| \to 0$. Suppose otherwise:

$$\exists \, \epsilon > 0 \ \forall \, n_0 \in \mathbb{N} \ \exists \, n > n_0 \ \exists \, x \in B \colon \|T_n x - T x\| > \epsilon.$$

Since $\{T_n\}$ is Cauchy,

$$\forall\,\delta>0\,\,\exists\,n_1\in\mathbb{N}\,\,\forall\,k,l>n_1\,\,\forall\,x\in B\colon \left\|T_kx-T_lx\right\|\leq\delta.$$

Fix this $\delta > 0$ and take the corresponding n_1 . From the first line with quantifiers, there exist $n > n_1$ and $x \in B$ such that

$$||T_nx-Tx||>\epsilon.$$

From the second one, for any $m > n_1$ we get

$$||T_n x - Tx|| \le ||T_n x - T_m x|| + ||T_m x - Tx||$$

 $\le \delta + ||T_m x - Tx||.$

Since $Tx = \lim_{m\to\infty} T_m x$, there is m_0 such that $||T_m x - Tx|| \le \delta$ for all $m > m_0$. Take $m_1 = \max\{m_0, n_1\}$. Then, for any $m > m_1$,

$$||T_n x - Tx|| \le \delta + ||T_m x - Tx||$$

$$\le 2\delta.$$

Now launch $n_1 \to \infty$ and, consequently, $\delta \to 0$. We get a contradiction:

$$\epsilon < ||T_n x - T x|| \le 2\delta.$$

Remark. Our proof does not use the boundedness of operators in the space $\mathcal{B}(X,Y)$.

Functionals

Definition. A *functional* is a linear operator $X \to K$.

Definition. The *dual* X^* of X is the space $\mathcal{B}(X,K)$ of continuous functionals.

Corollary. X^* is complete.

Proof. Since *K* is complete in either case.

Strong convergence

Definition. A sequence of operators $T_n \to T$ converges *strongly* or *point-wise*, iff $T_n x \to T x$ for all $x \in X$.

Lemma. If $||T_n - T|| \to 0$, then $T_n \to T$ strongly.

Proof. Since

$$|T_nx-Tx|\leq ||T_n-T|||x|.$$

Remark. The converse is not true.

Definition. $l^p = L^p(\mathbb{N}, \#)$ is the space of real-valued sequences which converge in the L^p norm (with respect to the cardinality measure).

Proof of the remark. Consider the operators

$$s_k(c_0, c_1, \dots) = (c_k, c_{k+1}, \dots)$$

on l^p . $||s_k|| = 1$, since there are sequences with a single unit and other elements zero and applying s_k does not lessen the sequence norm anyway. Nevertheless, $s_k \to 0$ pointwise (strongly), since all the sequences in l^p converge.