Single Displacement & Combustion Reactions Notes

A Single Displacement Reaction occurs when one element displaces (or replaces) another element in a chemical compound

General form: $A + BC \rightarrow AC + B$ In this reaction, B has been replaced by A in BC, leaving B to exist by itself

Types of Single Displacement Reactions:

A metal displacing another metal in an ionic compound

$$Al_{(s)} + FeCl_{2(aq)} \rightarrow Fe_{(s)} + AlCl_{3(aq)}$$

A metal displacing Hydrogen in water or an acid

Metal

Lithium Potassium Barium

Calcium

Magnesium

Aluminum Zinc Chromium Iron

Cadmium Cobalt

Nickel

Tin Lead Hydrogen Copper

Mercury

Platinum

Gold

Displaces Hydrogen..

Reactivity

MOST

LEAST

$$Mg_{(s)} + HCI_{(aq)} \rightarrow MgCI_{2(aq)} + H_{2(g)}$$

A non-metal displacing another non-metal in an ionic compound

$$Cl_{2(g)} + NaBr_{(aq)} \rightarrow NaCl_{(aq)} + Br_{2(I)}$$

Some metals are more reactive than others and can be ranked relative to one another. This is called the **Metal Activity Series.** We can use the activity series to predict the products in Single Displacement Reactions.

A metal (element) higher up on the series will replace any element lower down

$$Zn_{(s)} + CoCl_{2(aq)} \rightarrow Co_{(s)} + ZnCl_{2(aq)}$$

 $Fe_{(s)} + Mg(NO_3)_{2(aq)} \rightarrow No \text{ Reaction}$

Displacement of Hydrogen

Notice that **Hydrogen** is also on the list. **Anything above Hydrogen will displace** it in an *acid*

Some <u>highly reactive</u> elements can also replace the **Hydrogen** in water

- > These include: Lithium, Potassium, Barium, Calcium and Sodium
- ➤ Metal will take **Hydroxide** from the water, leaving **H₂ Gas**

$$\circ$$
 Na_(s) + H₂O_(I) \rightarrow NaOH_(aq) + H_{2(g)}

Activity Series of Halogens

There is also a series for **Halogens** that can be used to determine whether certain anions can be replaced in reactions

> This series works the same way as the Metal Series (higher replaces lower)

$$Cl_2 + NaBr \rightarrow NaCl + Br_2$$

$$Cl_2 + NaF \rightarrow No Reaction$$

Combustion Reactions

A **combustion reaction** occurs when a substance is reacted with oxygen. This reaction releases energy in the form of **heat and light**, as well as several oxides. Many things can undergo combustion, but most of the compounds that do are known as **Hydrocarbons**

A Hydrocarbon is a compound made exclusively out of Carbon and Hydrogen (sometimes Oxygen)

Here is a table of common Hydrocarbons

Name	Formula	Use
Methane	CH₄	Fuel for cooking
Ethane	C ₂ H ₆	Raw Material for plastics
Propane	C₃H ₈	Fuel for cooking
Butane	C ₄ H ₁₀	Fuel in lighters
Acetylene (Ethyne)	C ₂ H ₂	Fuel for welding
Benzene	C ₆ H ₆	Common solvent

Complete Combustions reacts to produce the same products all the time: Carbon Dioxide & Water in plentiful oxygen

- ightharpoonup General formula: $C_xH_v + O_2 \rightarrow CO_2 + H_2O$
- > This will produce a **blue** flame , as there is plenty of oxygen for the reaction

 \triangleright

Incomplete Combustions reacts to produce the a variety of products:

Carbon Dioxide, Carbon Monoxide, Carbon (soot) & Water in limited oxygen

- ightharpoonup General formula: $C_xH_y + O_2 \rightarrow C_2H_2 + CO_2 + CO_3 + CO_4 + CO_4 + CO_4 + CO_5 + CO_5$
- > This will produce a **yellow/orange** flame , as there is limited oxygen for the reaction

