Zadanie 77. Niech $L \subseteq \Sigma^*$ będzie CFL. Czy wynika z tego, że $L_{3/4}$ jest CFL?

Nie. Rozwiązanie opiera się na intuicji, że wiele języków, w których długości co najmniej 3 różnych wystąpień symboli są ze sobą związane, nie jest CFL (np. $\{a^nb^na^n:n\in\mathbb{N}\}$). $L_{3/4}$ rozumiemy jako język taki że dla każdego $w\in L_{3/4}$ możemy znaleźć $v\in\Sigma^*$, dla którego |v|=|w|/3 i $wv\in L$. Niech:

$$L = \{a^n b^m a^m b^n : n, m \in \mathbb{N}\}.$$

L jest CFL, ponieważ istnieje generująca go CFG:

$$S \to aSb \mid T$$
$$T \to bTa \mid \varepsilon.$$

Wtedy:

$$L_{3/4} \supset \{a^n b^m a^{(m+n)/2} : n, m \in \mathbb{N} \land n \leqslant m\}.$$

(Do $L_{3/4}$ należą też słowa z b na końcu, dla n>m, ale nie są one istotne dla tego rozwiązania.) Pokażemy, że $L_{3/4}$ nie jest CFL.

Dowód. Załóżmy nie wprost, że $L_{3/4}$ jest CFL. Użyjemy lematu o pompowaniu dla CFL. Niech p – stała z lematu. Weźmy $s=a^pb^pa^p$. $s\in L_{3/4}$. Niech s=uvwxy tak że $|vx|\geqslant 1$ i $|vwx|\leqslant p$. Mamy dwie możliwości:

1. vwx zawiera się w pierwszych 2/3 s. Wtedy vx jest postaci a^ib^j , $i,j \in \mathbb{N}$. Usuńmy v oraz x z s, otrzymując $uwy = a^{p-i}b^{p-j}a^p$, gdzie $i+j \ge 1$. Z lematu $\forall_{k \in \mathbb{N}} uv^kwx^ky \in L_{3/4}$, więc w szczególności $uwy \in L_{3/4}$. Z definicji $L_{3/4}$ uwy musi być postaci $a^nb^ma^{(m+n)/2}$, $n,m \in \mathbb{N}$. Możemy to rozpisać:

$$(m+n)/2=p$$
 (Długość ostatniego ciągu symboli b)
$$(p-i+p-j)/2=p \qquad (n=p-i, \ m=p-j)$$

$$2p-i-j=2p$$

$$i+j=0,$$

co daje sprzeczność z założeniem, że $|vx| = i + j \ge 1$.

- 2. vwx zawiera się w ostatnich 2/3 s. Wtedy vx jest postaci b^ia^j , $i, j \in \mathbb{N}$. Niech $uwy = a^pb^{p-i}a^{p-j}$, gdzie $i+j \ge 1$. Z lematu $uwy \in L_{3/4}$. Teraz mamy do rozpatrzenia:
 - (a) i>0. Wtedy w uwy symboli b jest mniej (p-i) niż symboli a przed nimi (p). Jeśli uwy należy do $L_{3/4}$, to musi być postaci $a^nb^ma^{(m+n)/2}$, gdzie $n\leqslant m$. Dla uwy n=p oraz m=p-i, co daje sprzeczność z $n\leqslant m$.
 - (b) i=0. Wtedy $j\geqslant 1$. Jeśli $uwy=a^pb^{p-i}a^{p-j}=a^pb^pa^{p-j}$ należy do $L_{3/4}$, to musi być postaci $a^nb^ma^{(m+n)/2}$, z czego wynikają równości:

$$(m+n)/2=p-j$$
 (Długość ostatniego ciągu symbol
i $b)$
$$(p+p)/2=p-j \qquad \qquad (m=n=p)$$

$$j=0,$$

co daje sprzeczność z wynikającym z założenia $j \ge 1$.