Particle spectrograph

Wave operator and propagator

$\mathfrak{r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0 0		$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\int_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Quadratic (free) action	$S_{F} == \iiint (\frac{1}{6} \left(-2 t_{1} \; \omega_{\kappa \alpha}^{\; \alpha'} \; \omega_{\kappa \alpha}^{\; \; \kappa} - 6 t_{1} \; \omega_{\kappa \lambda}^{\; \; \kappa \lambda} \; \omega_{\kappa \lambda}^{\; \; \prime} + 6 \; f^{\alpha \beta} \; \tau_{\alpha \beta} + 6 \; \omega^{\alpha \beta \chi} \; \sigma_{\alpha \beta \chi} + 1 \right)$	$6 r_1 \partial_i \omega^{\kappa \lambda}_{ \kappa} \partial^i \omega_{ \alpha}^{ \alpha} - 4 r_1 \partial^\beta \omega^{\theta \alpha}_{ \kappa} \partial_\theta \omega_{\alpha\beta}^{ \kappa} - 4 r_1 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} + 4 r_1 \partial_\theta \omega_{\alpha\beta}^{ \kappa}$	$\partial_{\kappa}\omega^{\theta\alpha\beta} + 6r_1\partial_{\alpha}\omega_{\lambda}^{\ \alpha}_{\ \ \theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 6r_1\partial_{\theta}\omega_{\lambda}^{\ \alpha}_{\ \ \alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} + 6r_1\partial_{\alpha}\omega_{\lambda}^{\ \alpha}_{\ \ \theta}\partial_{\kappa}\omega^{\kappa\lambda\theta} -$	$12r_1\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - 3t_1\partial^\alpha f_{\ \theta\kappa}\partial^\kappa f_{\ \alpha}^{\ \theta} - 3t_1\partial^\alpha f_{\ \kappa\theta}\partial^\kappa f_{\ \alpha}^{\ \theta} - 3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} +$	$2t_1\ \omega_{\kappa\alpha}^{\ \alpha}\ \partial^{\kappa}f'_{\ \prime} + 2t_1\ \omega_{\kappa\lambda}^{\ \lambda}\ \partial^{\kappa}f'_{\ \prime} + 4t_1\partial^{\alpha}f_{\ \kappa\alpha}\partial^{\kappa}f'_{\ \prime} - 2t_1\partial_{\kappa}f^{\lambda}_{\ \lambda}\partial^{\kappa}f'_{\ \prime} +$	$12t_1\ \omega_{_{l}\kappa\theta}\ \partial^\kappa f^{'\theta} - 2t_1\ \omega_{_{l}\alpha}^{\ \alpha}\ \partial^\kappa f^{'}_{\ \kappa} - 2t_1\ \omega_{_{l}\lambda}^{\ \lambda}\ \partial^\kappa f^{'}_{\ \kappa} + 3t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\lambda\alpha} +$	$3t_1\partial_\kappa f_{\lambda}^{\lambda}\partial^\kappa f_{\lambda}^{\theta} + 3t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - 2t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} + 4r_1\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} -$	$4r_1\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} + 4r_1\partial^{\beta}\omega_{\alpha}^{\ \alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime} - 16r_1\partial^{\beta}\omega_{\alpha}^{\ \lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime} -$	$6r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}+6r_1\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}))[t,\ x,\ y,\ z]dzdydxdt$

$\omega_{1^{-}\alpha}^{#2} f_{1^{-}\alpha}^{#1} f_{1^{-}\alpha}^{#2}$	0 0 0	0 0 0	0 0 0	$\frac{t_1}{3\sqrt{2}}$ 0 $\frac{ikt_1}{3}$	$\frac{t_1}{3}$ 0 $\frac{1}{3}$ \bar{l} $\sqrt{2}$ kt_1	0 0 0	$\sqrt{2} kt_1 = 0$
$\omega_{1^-}^{*1}{}_{lpha}$ ω_{1}^{*}	0	0	0	$\frac{\varepsilon}{\tau_2}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\vec{l}kt_1 - \frac{1}{3}\vec{l} \cdot$
$a\beta f_{1+\alpha\beta}^{*1}$	$\frac{t_1}{\sqrt{2}} -\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$ $\omega_{1}^{\#2}$	i	$-\frac{t_1}{\sqrt{2}}$ 0	$\frac{ikt_1}{\sqrt{2}} \qquad 0$	0 0	0 0	0 0	0
	$\omega_1^{#1} + \alpha^\beta \frac{k}{k}$	$\omega_1^{#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_1^{#1} + \alpha$	$f_{1}^{#2} + \alpha$

×		T		ر <u>ا</u> 2	1			
$\omega_{2}^{#1}$ $\omega_{2}^{#1}$ $\alpha_{3}^{#1}$ $\alpha_{2}^{#1}$ α_{3}	0		0	$0 k^2 r_1 + \frac{t_1}{2}$				
αβ	됩	7	٦ <u>.</u>	×		$\omega_{0^{\text{-}}}^{\#1}$	0	C
$f_{2}^{#1}$	- <u>i kt</u> 1	>	$k^2 t_1$	0		$f_{0}^{#2}$	0	C
$ u_2^{\#1} $	<u>t</u> 1	7	$\sqrt{2}$	0		$\omega_{0}^{\#1}$ $f_{0}^{\#1}$ $f_{0}^{\#2}$ $\omega_{0}^{\#1}$	0	C
)	$\alpha\beta$,	.αβ	χβχ		$\omega_{0}^{\#1}$	0	C
	$\omega_2^{#1} + \alpha \beta$	ı	$f_{2}^{#1} + \alpha \beta$	$\omega_2^{#1} +^{\alpha eta \chi}$		-	$\omega_{0}^{\#1}$ \dagger	£#1 +
	J			3			3	Ч
uge generators	Multiplicities 1	T	1	1	3	m	3	
Source constraints/gauge generators	SO(3) irreps	0 = 0	$\tau_{0}^{#1} == 0$	$\tau_0^{#2} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \ \sigma_{1}^{\#1}{}^{\alpha} == 0 \ \ 3$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	

2-		$\sigma_0^{\#}$	L . ├	$\tau_{0}^{\#_{1}}$	$\tau_0^{\#}$	2 +	$\sigma_0^{\#1}$	•
0	$\sigma_{0^+}^{\#1}\dagger$	$\sigma_0^{\#}$		$\tau_0^{\#_1}$	$\tau_0^{\#}$		$\sigma_0^{\#_1}$	
0	$\tau_{0}^{\#1}$ †	0		0	0		0	
0	$\tau_{0}^{\#2}$ †	0		0	0		0	
ω_{0}^{-1}	$\sigma_{0^{+}}^{\#1} \dagger \\ \tau_{0^{+}}^{\#1} \dagger \\ \tau_{0^{+}}^{\#2} \dagger \\ \sigma_{0^{-}}^{\#1} \dagger$	0		0	0		$-\frac{1}{t_1}$	
3								
	$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0		O)	2	$\frac{1}{2k^2r_1+t_1}$	
20	$\tau_2^{\#1}_{+\alpha\beta}$		$(1+2k^2)^2t_1$	4 k ²	$(1+2k^2)^2t_1$		0	
Total constraints:	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	2	$(1+2k^{-})^{-}t_{1}$	$T^{#1} + \alpha \beta$ $2i\sqrt{2}k$	$(1+2k^2)^2t_1$		0	
Total cor		$\sigma_{2+}^{*1} + \alpha \beta$	7	$r^{#1} + \alpha \beta$.2+ .	200	$\sigma_{2}^{#1} + {}^{\alpha \rho \chi}$	

0

 $\tau_2^{\#1}\alpha\beta - 2ik\sigma_2^{\#1}\alpha\beta == 0$

 $\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$