Linear Programming

Linear Programming – Lecture Content

- LP Definition
- LP Motivation & application
- Solving LP
 - Convex space
 - Complexity
 - Simplex method
- IP
 - LP approximation using rounding technique
- LP Duality

LP Definition

Linear Programming Introduction

A Linear Programming model seeks to maximize or minimize a linear function, subject to a set of linear constraints.

The linear model consists of the following components:

- A set of decision variables.
- An objective function.
- A set of constraints.

Linear Programming

The name is historical, it should really be called Linear Optimization.

The problem consists of three parts:

A linear function to be maximized

maximize
$$f(\mathbf{x}) = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

Problem constraints

subject to
$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &\leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &\leq b_2 \\ & \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &\leq b_m \end{aligned}$$

Non-negative variables

e.g.
$$x_1, x_2 \ge 0$$

Linear Programming

The problem is usually expressed in matrix form and then it becomes:

Maximize $\mathbf{c}^{\top}\mathbf{x}$

subject to $Ax \leq b, x \geq 0$

where A is a $m \times n$ matrix.

The objective function, $\mathbf{c}^{\top}\mathbf{x}$, and constraints, $A\mathbf{x} \leq \mathbf{b}$, are all linear functions of \mathbf{x} .

Matrix Form Transformation

 $\begin{aligned} &\text{Maximize} & &\mathbf{c}^{\top}\mathbf{x} \\ &\text{subject to} & &\text{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \end{aligned}$

- Important for some mathematical analysis and software solvers usage
- For a constraint of "equal or greater then" $a_1x_1+a_2x_2+....+a_nx_n>=b_i$
 - Multiply be -1 to flip sign $-a_1x_1-a_2x_2-\dots-a_nx_n \le -b_1$
- For a constraint of equality $a_1x_1+a_2x_2+....+a_nx_n=b_i$
 - write as two inequalities $a_1 x_1 + a_2 x_2 + + a_n x_n \le b_i$ & $a_1 x_1 + a_2 x_2 + + a_n x_n \ge b_i$
- For minimum problem
 - Solve as maximum for Objective function –z (argmin(z) = argmax(-z))
- For a negative x_i ≤o
 - Define new variable x_i'=- x_i, assign and solve
- For an unrestricted sign x_i (urs)
 - Define new variables $x_i' \ge 0$ and $x_i'' \ge 0$ as $x_i = x_i' x_i''$, assign and solve.

LP Motivation & Application

Linear Programming Motivation

- The Importance of Linear Programming
- Many real world problems lend themselves to linear programming modeling.
- Many real world problems can be approximated by linear models.
- There are well-known successful applications in:
 - Manufacturing
 - Marketing
 - Finance (investment)
 - Advertising
 - Agriculture

The Galaxy Industries Production Problem -Prototype Example

Galaxy manufactures two toy doll models:

- Space Ray
- Zapper.

Resources are limited to

- 1000 pounds of special plastic.
- 40 hours of production time per week.

The Galaxy Industries Production Problem -Prototype Example

Marketing requirement

- Total production cannot exceed 700 pieces.
- Number of pieces of Space Rays cannot exceed number of pieces of Zappers by more than 350.

Technological requirement

- Space Rays requires 2 pounds of plastic and 3 minutes of labor per piece.
- Zappers requires 1 pound of plastic and 4 minutes of labor per piece.

Profit

- Space Ray \$8 profit per piece
- produce Zappers \$5 profit per piece

Management is seeking a production schedule that will increase the company's profit.

The Galaxy Linear Programming Model

Decisions variables:

- $\bullet X_1 = \# Space Rays$
- $\bullet X_2 = \# Zappers$

Objective Function:

 Weekly profit, to be maximized

The Galaxy Linear Programming Model (2)

```
Max 8X_1 + 5X_2 (Weekly profit)

subject to

2X_1 + 1X_2 \le 1000 (Plastic)

3X_1 + 4X_2 \le 2400 (Production Time)

X_1 + X_2 \le 700 (Total production)

X_1 - X_2 \le 350 (Mix)

X_j \ge 0, j = 1,2 (Nonnegativity)
```

Linear Programming – another Example

- Locating a new machine to an existing layout of 3 existing machines
- The 3 known machines are located at following (x, y) coordinates
 - (3,0), (0,-3), (-2,1)
- Goal is to locate the new machine at position (x_0, y_0) where sum of distances from other machines is minimal using street distance
- Street distance between point (x_d, y_d) to (x_s, y_s) is

$$d=|x_d-x_s|+|y_d-y_s|$$

· So,

Minimize
$$Z = |x_o-3|+|y_o|+|x_o|+|y_o+3|+|x_o+2|+|y_o-1|$$

Linear Programming – another Example (2)

Solution: absolute value cannot be included in a linear programming. Recall $|x| = \max\{x, -x\}$

Minimize
$$z = (P_{1x} + P_{1y}) + (P_{2x} + P_{2y}) + (P_{3x} + P_{3y})$$

Subject to $P_{1x} \ge -(x_0 - 3)$
 $P_{1x} \ge x_0 - 3$
 $P_{1y} \ge -(y_0)$
 $P_{1y} \ge y_0$
 $P_{2x} \ge -(x_0 + 2)$
 $P_{2x} \ge x_0 + 2$
 $P_{2y} \ge -(y_0 - 1)$
 $P_{2y} \ge y_0 - 1$
 $P_{3x} \ge -(x_0)$
 $P_{3x} \ge x_0$
 $P_{3y} \ge -(y_0 + 3)$
 $P_{3y} \ge y_0 + 3$
 $P_{1x} P_{1y} \ge 0$ for $i = 1,2,3$

- Minimize $|x_0-3|+|y_0|+|x_0|+|y_0+3|+|x_0+2|+|y_0-1|$
- x_o, y_o, P_{ix}, P_{iy} are our new variables
- P_{ix} represents horizontal distance to the ith machine P_{iy} represents vertical distance to the ith machine

Linear Programming – another Example (3)

- P_{ix} represents horizontal distance to the ith machine
- P_{iy} represents vertical distance to the ith machine
- The Objective function reflects the desire to minimize total distance between new machine to all others
- The constraints relate the P variables in terms of $x_{oi}y_{oi}$
- The constraints for each P_{ix} (or P_{iy}) variable allow each P_{ix} (or P_{iy}) to equal the maximum of x_o - x_i and $-(x_o$ - x_i)
- Since Program is minimization and smallest any of variables can be is max {x_o-x_i, -(x_o-x_i)} each P_{ix} naturally equal its least possible value
 - This value will be the absolute value of $x_0 x_1$

Solving LP

Linear Programming – 2D example

$$\max_{x_1,x_2} f(x_1,x_2)$$

Cost function:

$$f(x_1, x_2) = 0x_1 + 0.5x_2$$

Inequality constraints:

$$x_1 + x_2 \le 2$$
 $x_1 \le 1.5$
 $x_1 + \frac{8}{3}x_2 \le 4$

$$x_1, x_2 \ge 0$$

 $x_{1}, x_{2} \geq 0$

Example – feasible region from inequalities

Inequality constraints:

 $x_1, x_2 \ge 0$

Inequality constraints:

$$x_1 + x_2 \le 2$$

 $x_1, x_2 \ge 0$

$$x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Inequality constraints:

$$x_1 + x_2 \leq 2$$
$$x_1 \leq 1.5$$

 $x_1, x_2 \ge 0$

$$x_1 + x_2 \leq 2$$
$$x_1 \leq 1.5$$

$$x_1, x_2 \ge 0$$

$$x_1 + x_2 \le 2$$
 $x_1 < 1.5$

$$x_1 + \frac{8}{3}x_2 \le 4$$

$$x_1, x_2 \ge 0$$

LP example

$$\max_{x_1,x_2} f(x_1,x_2)$$

Cost function:

$$f(x_1, x_2) = 0x_1 + 0.5x_2$$

$$x_1 + x_2 \le 2$$
 $x_1 \le 1.5$

$$\begin{array}{rcl}
 x_1 & \leq & 1.5 \\
 x_1 + \frac{8}{3}x_2 & \leq & 4
 \end{array}$$

$$x_1, x_2 \ge 0$$

LP example

LP example – change of cost function

Linear Programming – optima at vertices

- The key point is that for any (linear) objective function the optima only occur at the corners (vertices) of the feasible polygonal region (never on the interior region).
- Similarly, in 3D the optima only occur at the vertices of a polyhedron (and in nD at the vertices of a polytope).
- However, the optimum is not necessarily unique: it is possible to have a set of optimal solutions covering an edge or face of a polyhedron.

Convex Set

- A set D⊆Rⁿ is convex if the line joining n-dim vector points x and y lies inside D
 - Formally if for all $x,y \in D$ and for all $\lambda \in [0,1]$, the **line** segment $\lambda x + (1-\lambda)y \subseteq D$

- Convex set is closed under intersection (intersection of convex sets is convex)
 - The line segment between any two vectors in the intersection also belongs to each of the convex sets, and therefore lies in the intersection as well

Polyhedron are Convex

- Any equality of the form $a^Tx = b$ is a **hyperplane**
- Any inequality of the form $a^Tx \le b$ is a **halfspace**
- For the matrix form of $Ax \le b$, $x \ge o$, the intersection of halfSpaces is a **polyhedron**. If a polyhedron is bounded it is called **polytope**
- halfspace is convex:

```
Given a^Tx \ge b and a^Ty \ge b

Let p = \lambda x + (1 - \lambda)y and prove a^Tp \ge b (0 \le \lambda \le 1)

1) a^Tx \ge b \rightarrow \lambda a^Tx \ge \lambda b

2) a^Ty \ge b \rightarrow (1 - \lambda)a^Ty \ge (1 - \lambda)b

So 1 + 2 \rightarrow \lambda a^Tx + (1 - \lambda)a^Ty \ge b

And we get \lambda a^Tx + (1 - \lambda)a^Ty = a^T(\lambda x + (1 - \lambda)y) = a^Tp \ge b
```

- Corollary: Polyhedron is convex
 - Intersection of convex sets (halfSpaces)

LP Optimum on vertices

- Linear function optimum over convex set is on the convex vertices
 - a **convex combination** is a linear combination of points (which can be vectors, scalars) where all coefficients are non-negative and sum to 1.

$$p = \sum \lambda_i x_i$$
, $\sum \lambda_i = 1$, $0 \le \lambda_i \le 1$

- As a particular example, every convex combination of two points lies on the line segment between the points.
- The convex polyhedron is identical to the set of all its vertices convex combinations.
- Thus, $z(p) = c^T p$ = $c^T \Sigma \lambda_i x_i = \Sigma \lambda_i c^T x_i = \Sigma \lambda_i z(x_i) \le \Sigma \lambda_i z(x_{Max}) = z(x_{Max}) \Sigma \lambda_i = z(x_{Max})$
- In addition, for LP Local optimum over adjacent vertices is also global

Feasible Set - Summary

Each linear inequality divides n-dimensional space into Two halfSpaces, one where The inequality is satisfied, and one where it's not.

Feasible Set: solutions to a family of linear inequalities.

The feasible set is the intersection of the halfSpaces where all inequalities are satisfied.

An intersection of halfSpaces is called a convex polyhedron. So the feasible set is a convex polyhedron.

A bounded and nonempty polyhedron is called a convex polytope.

Feasible Set

- Convex set
- segment line
- Convex combination
- hyperplane
- Halfspace
 - convexity
- Polyhedron\Polytope
 - Convexity
- LP Feasible Set
 - A convex polyhedron

Optimal objective value

- with respect to feasible set
 - feasible set is empty
 - problem is not feasible
 - Feasible set is unbounded
 - if in direction of increase (for maximum problem) then cost function is unbounded on feasible set.
 - if in direction of decrease (for maximum problem) then cost has maximum on feasible set.
 - Feasible set is bounded and nonempty (a polytope)
 - cost has a maximum (or minimum) on feasible set.
 - This case is most common for real problems in economics and engineering

Solving Linear Programming – Complexity Outline

- Linear Programming is in P
- Interior-point Method (Poly time)
 - Karmarkar 84
- Ellipsoid Method (Poly time)
 - Khaciyan 79
- Simplex Method
 - Dantzig, 47
 - Worst-Case Exponential
 - The Klee Minty Construction, 72
 - Good in practice and wildly used
 - Average-Case: polynomial
 - Smoothed Complexity: Polynomial

Simplex Method – General Idea

- Two Phase Method
 - 1st Phase: Find Initial Vertex.
 - Converting LP to standard form using slack, access and artificial variables.
 - Similar Ideas of those shown in the begging when transforming into matrix form
 - Done in Polynomial Time
 - 2nd Phase:
 - Given Initial Vertex run greedily to next vertex where increase slope is the largest.
 - Stop when there is no option to increase.
 - Surely terminates since always increase function, hence no vertex repeats twice

Smoothed Analysis of Algorithms:

worst case $\max_{x} T(x)$

average case $avg_r T(r)$

smoothed complexity $\max_{x} avg_{r} T(x+\varepsilon r)$

Smoothed Analysis of Algorithms

 Interpolate between Worst case and Average Case.

Consider neighborhood of every input instance

If low, have to be unlucky to find bad input instance

Smoothed Analysis of Simplex Method

 $\begin{array}{ll}
\text{max} & z^T x \\
\text{s.t.} & A x \leq y
\end{array}$

$$\max z^T x$$

s.t.
$$(A + \sigma G) x \le y$$

Smoothed Analysis of Simplex Method

- Worst-Case: exponential
- Average-Case: polynomial
- Smoothed Complexity: polynomial

max
$$z^T x$$
 max $z^T x$
s.t. $\mathbf{a}_i^T x \le \pm 1$, s.t. $(\mathbf{a}_i + \sigma \mathbf{g}_i)^T x \le \pm 1$
 $||\mathbf{a}_i|| \le 1$

Integer Programing

Integer Programming (IP)

- An LP problem with an additional constraint that variables will only get an integral value, maybe from some range.
- BIP binary integer programming: variables should be assigned only 0 or 1.
- Can model many problems.
- · NP-hard to solve!

An integer linear program in canonical form is expressed as:

$$egin{array}{ll} ext{maximize} & \mathbf{c}^{ ext{T}}\mathbf{x} \ ext{subject to} & A\mathbf{x} \leq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}, \ ext{and} & \mathbf{x} \in \mathbb{Z}^n, \end{array}$$

and an IP in standard form is expressed as

$$egin{array}{ll} ext{maximize} & \mathbf{c}^{ ext{T}}\mathbf{x} \ ext{subject to} & A\mathbf{x}+\mathbf{s}=\mathbf{b}, \ \mathbf{s} \geq \mathbf{0}, \ \mathbf{x} \geq \mathbf{0}, \ ext{and} & \mathbf{x} \in \mathbb{Z}^n, \end{array}$$

IP Formulation

Prove BIP is NPC

• BIP Search Problem:

Find
$$x_n$$
 that Minimize $\sum c_n x_n$ Subject to: $Ax \ge b$
$$x \ge 0$$

$$x_n \in \{0, 1\}$$

• BIP Decision Problem:

Is there
$$x_n$$
 such that $\Sigma c_n x_n \leq K$
$$\text{Subject to:} \quad Ax \geq b \\ \quad x \geq 0 \\ \quad x_n \in \{0, \, 1\}$$

Prove BIP is NPC

- BIP ∈ NP since given a certificate a verifier would check in poly time that all constraints are satisfied and the sum is at most K.
- Reduction of Vertex Cover Decision problem to BIP Decision Problem would prove it is NPH (next slide), and therefore NPC
- VC Search Problem:

Given a graph G(V,E) and a number K find the smallest subset of nodes $V'\subseteq V$ such that each edge in the graph touches at least one node of the subset V'.

VC ≤_p BIP

 VC decision problem: Given a graph G(V,E) and a number K is there a subset of at most K nodes V'⊆V such that each edge in the graph touches at least one node of the subset V'.

So, for each vertex v ∈ V we define x_v - if v in the cover then x_v equals 1, otherwise o.
 We get the following BIP:

$$\mathbf{x}_{\mathsf{V}} = \begin{cases} 1 & \mathsf{V} \in \mathsf{VC} \\ 0 & \mathsf{V} \notin \mathsf{VC} \end{cases}$$

Does $\langle G, k \rangle$ Satisfy $\sum x_v \leq K$

Subject to: $x_v + x_u \ge 1$ for every edge (u,v) \in V

 $X_{V} \in \{0,1\}$ for every $v \in V$

Solving IP using LP relaxation + rounding

- IP is NPC (BIP is polynomial-time reducible to IP).
- How to solve?
- One approach is relaxation of IP to LP. Can be done immediately by converting the integer constraint to real positive constraint
- OPT(LP) is at least not worse then OPT(IP) due to constraint relaxation (increasing feasible set).
- The solution of the LP will probably not be included in the original IP non-convex feasible set.
 - Only linear constraints are kept satisfied
 - Rounding should be done wisely so linear constraint stay satisfied
- Approximation analysis purpose to show additive or constant factor approximation boundary

Example: LP relaxation + Rounding + Approximation

Formulation of vertex cover

- Input: undirected graph G = (V, E)
- Goal: Find $S \subseteq V$ such that
 - 1) $\forall \{i, j\} \in E, \{i, j\} \cap S \neq \phi$
 - 2) |S| is minimized

Formulation of IP version of vertex cover:

Let
$$x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$

minimize
$$\sum_{i \in V} x_i$$
subject to
$$x_i \in \{0, 1\}, \forall i \in V$$
$$x_i + x_j \ge 1, \forall \{i, j\} \in E.$$

subject to $x_i \in \{0,1\}, \forall i \in V$

 $x_i + x_j \ge 1$, $\forall \{i, j\} \in E$.

Example: LP relaxation + Rounding + Approximation

Formulation of LP Relaxation version of vertex cover:

minimize
$$\sum_{i \in V} x_i$$
subject to
$$0 \le x_i \le 1, \ \forall i \in V$$
$$x_i + x_j \ge 1, \ \forall \{i, j\} \in E.$$

This is LP and solvable in polynomial time.

Rounding procedure:

$$x_i^* = \begin{cases} 1 & \text{if } x_i \ge \frac{1}{2} \\ 0 & \text{if } x_i < \frac{1}{2} \end{cases}$$

Claim LP relaxation using rounding technique returns a feasible solution.

Proof. Since $\forall (i,j) \ x_i + x_j \geq 1$, hence there exists at least one vertex which is greater than $\frac{1}{2}$; i.e., $x_i \geq \frac{1}{2} \Rightarrow x_i^* = 1$. Which guarantees the feasible solution existence.

Claim Solving LP relaxation using rounding technique is 2-approximation for Vertex Cover.

$$x_i^* = \begin{cases} 1 & \text{if } x_i \ge \frac{1}{2} \\ 0 & \text{if } x_i < \frac{1}{2} \end{cases}$$

Proof.

$$\sum_{i \in V} x_i^* \le \sum_{i \in V} 2x_i = 2 \sum_{i \in V} x_i = 2 \cdot \text{OPT}_{LP} \le 2 \cdot \text{OPT}_{IP}$$

$$\implies \text{Round} \le 2 \cdot \text{OPT}_{IP}$$

Example:
LP relaxation +
Rounding +
Approximation

LP Duality

LP Duality

Primal and Dual Algebra

Primal

$$Max C'X$$

$$s.t. AX \le b$$

$$X \ge 0$$

<u>Dual</u>

Min
$$\sum_{i} b_{i} Y_{i}$$

s.t. $\sum_{i} a_{ij} Y_{i} \ge c_{j}$ $j = 1,...,n$
 $Y_{i} \ge 0$ $i = 1,...,m$

Min b'Y
$$s.t. \quad A'Y \ge C$$

$$Y \ge 0$$

Duality in LP

- Whenever we solve an LP problem, we solve two problems:
 - Primal resource allocation problem
 - Dual resource valuation problem
- Primal problem has n variables and m constraints
- Dual problem have m variables and n constraints
- The right-hand sides of the dual constraints come from the objective function coefficients in the primal problem
- Coefficient of the objective function in the dual problem come from the right-hand side of the original problem.
- Maximum in primal turns into minimum in dual

Example

Primal

Max
$$40x_1 + 30x_2$$
 (profits)

s.t. $x_1 + x_2 \le 120$ (land)

 $4x_1 + 2x_2 \le 320$ (labor)

 $x_1, x_2 \ge 0$

(land) (labor)

Min $120y_1 + 320y_2$

s.t. $y_1 + 4y_2 \ge 40$ (x_1)

 $y_1 + 2y_2 \ge 30$ (x_2)

 $y_1, y_2 \ge 0$

Relations between Primal and Dual

The dual of the dual problem is again the primal problem.

Weak duality: Let x and y be any feasible solution to the PLP and DLP respectively. Then $c^Tx \le y^Tb$.

Strong duality: if PLP is feasible and has a finite optimum then DLP is feasible and has a finite optimum.

Furthermore, if x^* and y^* are optimal solutions for PLP and DLP then $c^Tx^* = y^{*T}b$

Theorem (The Weak Duality Theorem).

Let $P = \max(c^{\top}x \mid Ax \leq b, x \geq 0, x \in \mathbb{R}^n)$, and let D be its dual LP, $\min(b^{\top}y \mid A^{\top}y \geq c, y \geq 0, y \in \mathbb{R}^m)$.

If x is a feasible solution for P and y is a feasible solution for D, then $c^{\top}x \leq b^{\top}y$.

Proof.

$$c^{\top}x = x^{\top}c$$

 $\leq x^{\top}(A^{\top}y)$ (Since y feasible for D and $x \geq 0$)
 $= (Ax)^{\top}y$
 $\leq b^{\top}y$ (Since x is feasible for P and $y \geq 0$)

Four Possible Primal Dual Problems

Dual Primal	Finite optimum	Unbounded	Infeasible
Finite optimum	1	х	х
Unbounded	x	x	2
Infeasible	x	3	4

Corollary of Weak Duality

Primal unbounded

D infeasible because min(D) < ∞ if it was feasible

Four Possible Primal Dual Problems

Dual Primal	Finite optimum	Unbounded	Infeasible	
Finite optimum	1	x	x	
Unbounded	х	х	2	>
Infeasible	x	3	4	

Corollary of Weak Duality

Dual unbounded

P infeasible because $max(P) > -\infty$ if it was feasible

Specific Case Example:

It's possible for both P,D to be infeasible. For example:

A=o, b<o, c>o

Remaining possibilities
Due to **strong duality** (if
one is feasible, then also
the other one)

Questions

THANKS!

Questions:

- What is the time complexity of the simplex method according to:
 - 1. Worst-Case analysis?
 - 2. Smoothed complexity analysis?
- IP and LP which one belong to P / NPC?
- What characteristics of LP causes its optimum to be on the vertices?