Obtención de datos estadisticos

```
In [22]: import pandas as pd
         import seaborn as sb
         import numpy as np; np.random.seed(0)
         import matplotlib.pyplot as plt
         #import matplotlib.pyplot as plt
         import seaborn as sb
         import sklearn
         from sklearn.cluster import KMeans
         from sklearn.metrics import pairwise_distances_argmin_min
         from sklearn.metrics import confusion matrix, classification report
         from sklearn.preprocessing import scale
         import sklearn.metrics as sm
         from sklearn import datasets
         %matplotlib inline
         from mpl_toolkits.mplot3d import Axes3D
         import os
         nb_path = os.path.abspath("Datos_estadisticos_national MPI Rural.ipynb")
         gdp_csv = os.path.join(os.path.dirname(nb_path), "Datasets/MPI_national.c
         datos = pd.read csv(gdp csv, engine='python')
         from matplotlib import cm
         plt.rcParams["figure.figsize"] = (30,22)
         plt.style.use("ggplot")
```

Out[22]: (102, 8)

In [23]:

Out[23]:

	ISO	Country	MPI Urban	Headcount Ratio Urban	Intensity of Deprivation Urban	MPI Rural	Headcount Ratio Rural	Intensity of Deprivation Rural
0	KAZ	Kazakhstan	0.000	0.0	33.3	0.000	0.09	33.3
1	SRB	Serbia	0.000	0.1	41.4	0.002	0.50	40.3
2	KGZ	Kyrgyzstan	0.000	0.1	40.2	0.003	0.70	37.1
3	TUN	Tunisia	0.000	0.1	35.6	0.012	3.18	38.7
4	ARM	Armenia	0.001	0.2	33.3	0.001	0.39	36.9
97	CAF	Central African Republic	0.289	58.2	49.7	0.519	89.79	57.8
98	LBR	Liberia	0.290	60.5	48.0	0.481	84.86	56.6
99	SOM	Somalia	0.293	55.9	52.4	0.651	96.92	67.2

```
In [24]: | filas=len(datos)
Out[24]: 102
In [25]: time datas - ad mood accordance.
In [26]:
Out[26]: ISO
                                                                                                                                     object
                            Country
                                                                                                                                    object
                           MPI Urban
                                                                                                                                  float64
                            Headcount Ratio Urban
                                                                                                                                 float64
                            Intensity of Deprivation Urban float64
                           MPI Rural
                                                                                                                                 float64
                            Headcount Ratio Rural
                                                                                                                                  float64
                            Intensity of Deprivation Rural
                                                                                                                          float64
                            dtype: object
In [27]: datas[MDT Haban] dasaniba()
Out[27]: count
                                                   102.000000
                           mean
                                                      0.078343
                                                         0.093693
                            std
                           min
                                                         0.000000
                           25%
                                                          0.007250
                            50%
                                                            0.034500
                           75%
                                                            0.125750
                                                             0.459000
                           Name: MPI Urban, dtype: float64
In [28]: datas [ [ ] adams | Datis | [ ] dasaniba ()
Out[28]: count
                                                   102.000000
                                                      16.809804
                           mean
                                                       18.498448
                            std
                                                         0.000000
                           min
                            25%
                                                          1.950000
                            50%
                                                         8.400000
                            75%
                                                          27.575000
                                                       82.500000
                           max
                           Name: Headcount Ratio Urban, dtype: float64
In [29]: Little Control of Demoinstic Control of Contro
Out[29]: count
                                                    102.000000
                           mean
                                                        41.678431
                                                         5.135908
                            std
                           min
                                                       33.300000
                           25%
                                                      37.200000
                           50%
                                                       41.550000
                            75%
                                                         45.675000
                                                          55.700000
                            Name: Intensity of Deprivation Urban, dtype: float64
```

Segunda 'Parte

```
In [30]:
Out[30]: count 102.000000
      mean
            0.214676
      std
            0.201208
            0.000000
      min
      25%
            0.025000
            0.160000
      50%
      75%
            0.384500
      max 0.669000
      Name: MPI Rural, dtype: float64
In [31]:
Out[31]: 0.16
In [32]:
Out[32]: count 102.000000
     mean
           40.036176
      std
           33.270714
            0.090000
      min
            6.745000
      25%
      50%
           36.055000
      75%
            70.130000
            96.920000
      max
      Name: Headcount Ratio Rural, dtype: float64
In [33]:
Out[33]: 36.055
In [34]:
Out[34]: count
           102.000000
      mean
           46.824510
            8.783191
      std
           33.300000
      min
      25%
           40.225000
      50%
           44.800000
      75%
            53.425000
            69.500000
      Name: Intensity of Deprivation Rural, dtype: float64
In [35]:
Out[35]: 44.8
```


Country

In [45]:

Out[45]:

	ISO	Country	MPI Urban	Headcount Ratio Urban	Intensity of Deprivation Urban	MPI Rural	Headcount Ratio Rural	Intensity of Deprivation Rural
0	KAZ	Kazakhstan	0.000	0.0	33.3	0.000	0.09	33.3
1	SRB	Serbia	0.000	0.1	41.4	0.002	0.50	40.3
2	KGZ	Kyrgyzstan	0.000	0.1	40.2	0.003	0.70	37.1
3	TUN	Tunisia	0.000	0.1	35.6	0.012	3.18	38.7
4	ARM	Armenia	0.001	0.2	33.3	0.001	0.39	36.9
97	CAF	Central African Republic	0.289	58.2	49.7	0.519	89.79	57.8
98	LBR	Liberia	0.290	60.5	48.0	0.481	84.86	56.6
99	SOM	Somalia	0.293	55.9	52.4	0.651	96.92	67.2
100	TCD	Chad	0.351	64.8	54.1	0.609	93.41	65.2
101	SSD	South Sudan	0.459	82.5	55.7	0.591	94.00	62.8

102 rows × 8 columns

In [46]: dataframe = pd.read_csv(gdp_csv)

Out[46]:

	ISO	Country	MPI Urban	Headcount Ratio Urban	Intensity of Deprivation Urban	MPI Rural	Headcount Ratio Rural	Intensity of Deprivation Rural
0	KAZ	Kazakhstan	0.000	0.0	33.3	0.000	0.09	33.3
1	SRB	Serbia	0.000	0.1	41.4	0.002	0.50	40.3

In [47]:

Tn [49].

Out[49]:

	MPI Urban	Headcount Ratio Urban	Intensity of Deprivation Urban	MPI Rural	Headcount Ratio Rural	Intensity of Deprivation Rural
MPI Urban	1.000000	0.981233	0.705851	0.856086	0.854226	0.775371
Headcount Ratio Urban	0.981233	1.000000	0.684539	0.847173	0.847278	0.760670
Intensity of Deprivation Urban	0.705851	0.684539	1.000000	0.696237	0.686322	0.744445
MPI Rural	0.856086	0.847173	0.696237	1.000000	0.975488	0.843500
Headcount Ratio Rural	0.854226	0.847278	0.686322	0.975488	1.000000	0.817546
Intensity of Deprivation Rural	0.775371	0.760670	0.744445	0.843500	0.817546	1.000000

```
In [99]: datos1=datos.drop(columns=['ISO','Country'])
    colormap = plt.cm.viridis
    plt.figure(figsize=(16,16))
    plt.title("MPI National", y=1.05, x=1.5)
    sb.heatmap(datos1.astype(float).corr(),linewidths=0.1,vmax=1.0, square=Tr
```



```
In [106]: datos3 = datos.pivot("Country", "Intensity of Deprivation Rural", "MPI Rura
          plt.figure(figsize=(16,16))
          plt.title("MPI Rural", y=1.05, x=1.5)
                                                                                   MPI Rural
```

Brazil Burundi Congo, Democratic Republic of the Cote d'Ivoire Haiti India Iraq Jordan Kenya

People's Democratic Republic
Liberia Madagascar Maldives , Republic of Montenegro Namibia Nicaragua Nigeria Palestine, State ofa Saint Lucia Senegal Sierra Leone Sudan Viet Nam Zambia

```
In [76]: X = np.array(dataframe[["Headcount Ratio Rural", "MPI Rural", "Intensity of
         y = np.array([x for x in range(len(dataframe.index))])
```

Out[76]: (102, 3)

07-May-21, 12:04 PM 12 of 15

```
In [78]: fig = plt.figure()
ax = Axes3D(fig)
```



```
In [82]: Nc = range(1,20)
kmeans = [KMeans(n_clusters=i) for i in Nc]
kmeans
score = [kmeans[i].fit(X).score(X) for i in range(len(kmeans))]
score
plt.plot(Nc,score)
plt.xlabel('Number of clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
```



```
In [86]: kmeans = KMeans(n_clusters=5).fit(X)
    centroids = kmeans.cluster_centers_
```

```
[[1.82766667e+01 7.82000000e-02 4.28800000e+01]
[6.81100000e+01 3.57950000e-01 5.24300000e+01]
```

```
In [87]: labels = kmeans.predict(X)
C = kmeans.cluster_centers_
    colores=['red', 'green', 'blue', 'cyan', 'yellow']
    asignar=[]
    for row in labels:
        asignar.append(colores[row])

    fig=plt.figure()
    ax = Axes3D(fig)
    ax.scatter(X[:,0],X[:,1],X[:,2], c=asignar, s=60)
```



```
In [56]: f1= dataframe["Intensity of Deprivation Urban"].values
    f2= dataframe['MPI Rural'].values

plt.scatter(f1,f2,c=asignar,s=70)
    plt.scatter(C[:,0],C[:,1], marker='*', c=colores, s=1000)
```


07-May-21, 12:04 PM

15 of 15

	precision	recall	f1-score	support	
0	0.00	0.00	0.00	1	
1	0.03	1.00	0.06	1	
2	0.00	0.00	0.00	1	
3	0.05	1.00	0.09	1	
4	0.00	0.00	0.00	1	
5	0.00	0.00	0.00	1	
6	0.00	0.00	0.00	1	
7	0.00	0.00	0.00	1	
8	0.00	0.00	0.00	1	
9	0.00	0.00	0.00	1	
10	0.00	0.00	0.00	1	
11	0.00	0.00	0.00	1	
12	0.00	0.00	0.00	1	
13	0.00	0.00	0.00	1	
14	0.00	0.00	0.00	1	
15	0.00	0.00	0.00	1	
16	0.00	0.00	0.00	1	
1 7	^ ^^	0 00	0 00	1	