ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 3.3.2 Исследование вольт-амперной характеристики ваккумного диода

Цель работы: Определение удельного заряда электрона на основе закона «трёх вторых» для вакуумного диода.

Оборудование: Вакуумная лампа с цилиндрическим анодом; амперметр; многопредельные микроамперметр и вольтметр постоянного тока; стабилизированные источники постоянного тока и постоянного напряжения.

Теоретические сведения:

Рис. 1: Расположение электродов в диоде

В работе исследуется зависимость величины тока, проходящего через вакуумный диод, от напряжения на нём. Наибольший интерес представляет та область значений положительного напряжения на диоде, для которой пространственный заряд (электронное облако) в лампе существенно влияет на распределение электрического поля между катодом и анодом. Электрическое поле этого заряда «экранирует» поле вблизи катода, из-за чего лишь незначительная часть электронов, способных преодолеть энергетический барьер («работу выхода») и высвобождаемых из катода, создаёт ток через диод.

Выведем зависимость величины анодного тока от напряжения. Вакуумный диод имеет цилиндрическую форму, следовательно задача обладает цилиндрической симметрией, запишем теорему Гаусса в дифференциальной форме:

$$\frac{d}{dr}(r\frac{d\varphi}{dr}) = -\frac{r\rho}{\varepsilon_0}$$

где $\rho(\mathbf{r})$ – объёмная плотность заряда, зависящая от расстояния до оси, граничные условия возьмём в виде

$$\varphi(r_K) = 0, \quad \varphi(r_A) = U$$

В стационарном случае полный ток, пересекающий цилиндрическую поверхность радиуса $r_K < r < r_A$ постоянен, следовательно

$$I = -2\pi r \rho v l = const \tag{1}$$

где v — скорость электронов, набираемая на пройденной ими разности потенциалов (начальной скоростью вылета электронов из катода пренебрегаем (предполагаем $eU \ll m{v_0}^2/2$), однако при малых напряжениях U вклад начальной скорости может оказаться существенным, и «закон 3/2» не будет выполняться):

$$\frac{mv^2}{2} = \varphi(r) - \varphi(r_K) = \varphi(r) \tag{2}$$

С помощью уравнений (1), (2) получаем уравнение:

$$\frac{d}{dr}(r\frac{d\varphi}{dr}) = \frac{I}{2\pi\varepsilon_0} \cdot \sqrt{\frac{m}{2e\varphi}} \tag{3}$$

Также необходимо наложить ещё одно граничное условие, кототрое следует из условия $j_{max}\gg j$, то есть в предположении, что плотность тока в диоде значительно меньше максимального тока электронов, который может обеспечить катод. Тогда в предельном случае сколь угодно малые, отличные от нуля значения $E(r_A)$ приведут к неограниченному увеличению плотности тока j. это означает, что объёмный заряд вблизи катода полностью экранирует внешнее поле.

$$\left. \frac{d\varphi}{dr} \right|_{r=r_K} = 0$$

Заметим, что если функция $\varphi_0(r)$ есть решение уравнения (3) при некотром U_0 , которому сответствует сила тока I_0 , введём функцию

$$\varphi(r) = k\varphi_0(r), \quad I = k^{3/2} \cdot I_0$$

то уравнение (3) не изменит своего вида, отсюда находим, что

$$\frac{U}{U_0} = k, \quad \frac{I}{I_0} = k^{3/2}, \quad I = I_0 \frac{U^{3/2}}{U_0^{3/2}}$$

легко установить, что $I \sim U^{3/2}$. Применимость данного закона ограничивается только двумя сделанными предположениями: 1) малость начальных скоростей электронов и 2) равенство нулю электричесокго поля на поверхности катода.

В пределе $r_K \to 0$ существует аналитическое решение уравнения (3) в виде $\varphi(r) = U \cdot (r/r_A)^{\beta}$. Подставив эту функцию в выражение (3), найдём, что $\beta = 3/2$. Отсюда получаем зависимость силы анодного тока от напряжения:

$$I = \beta \frac{4}{9} \varepsilon_0 \frac{2\pi l}{r_A} \sqrt{\frac{2e}{m}} \cdot U^{3/2} \tag{4}$$

где β – коэффициент, зависящий от отношения $r_{\rm A}/r_{\rm K}~(\beta \to 1~{\rm при}~r_{\rm A}/r_{\rm K} \to 0).$

Экспериментальная установка:

Рис. 2: Схема экспериментальной установки

Исследования проводятся на диоде с косвенным накалом (ток пропускается через расположенную вблизи катода нить накала). Отметим, что длина l меньше полной длины анода примерно в два раза. Благодаря этому рабочая часть катода достаточно удалена от его торцов, и следовательно, электрическое поле в активной части диода с хорошей точностью можно считать радиальным.

Схема экспериментальной установки изображена на рис. 2. Для питания цепи накала и анода используются два регулируемых источника напряжения. Ток накала $I_{\rm H}$ измеряется амперметром. Анодное напряжение U измеряется вольтметром, анодный ток I — миллиамперметром.

Обработка данных: Некоторые параметры диода: $r_{\rm A}=9.5$ мм, l=9 мм, $\beta^2=0.95$ Перед началом измерений следует дать прогреться лампе 5–10 минут. Будем исследовать зависимость анодного тока от напряжения при четырёх различных значениях тока накала: $I_{\rm H1}=1.3$ А, $I_{\rm H2}=1.4$ А, $I_{\rm H3}=1.5$ А, $I_{\rm H4}=1.6$ А. Ниже в таблицах представлены результаты измерений анодного тока и напряжения:

Таблица 1

$I_{\scriptscriptstyle \mathrm{H}}=1{,}3\mathrm{A}$		$I_{\scriptscriptstyle \mathrm{H}}=1,\!4\mathrm{A}$			
I, MKA		I, MKA		U, B	
3,62	250,75	6,74	274,76	0,5	7,0
12,87	309,82	17,79	335,49	1,0	8,0
23,33	371,59	30,46	400,94	1,5	9,0
36,40	443,68	45,71	468,71	2,0	10,0
50,95	862,60	62,13	909,50	2,5	15,0
69,68	1353,7	81,27	1413,6	3,0	20,0
87.44	1929,0	101,54	2005,9	3,5	25,0
108,49	2576,0	121,99	2652,9	4,0	30,0
129,60	3264,6	146,11	3360,4	4,5	35,0
150,02	4014,0	168,15	4114,4	5,0	40,0
173,79	4816,1	192,32	4926,8	5,5	45,0
197,40	5754,4	219,82	5871,0	6,0	50,0

Таблица 2

$I_{\text{\tiny H}} = 1.5 { m A}$		$I_{\scriptscriptstyle \mathrm{H}}=1,\!6\mathrm{A}$			
I, MKA		I, MKA		U, B	
12,54	304,02	21,12	332,77	0,5	7,0
24,04	364,0	35,89	398,95	1,0	8,0
40,02	460,0	53,77	467,95	1,5	9,0
36,40	535,59	71,57	575,40	2,0	10,0
56,47	951,20	93,52	1004,3	2,5	15,0
76,02	1473,3	112,42	1541,1	3,0	20,0
96,01	2073,3	136,48	2148,2	3,5	25,0
117,30	2729,6	162,59	2822,4	4,0	30,0
163,58	3448,4	188,02	3546,7	4,5	35,0
188,60	4219,4	211,7	4321,3	5,0	40,0
214,25	5033,2	239,24	5231,0	5,5	45,0
239,59	5990,0	267,88	6117,0	6,0	50,0

Далее, построим графики зависимостей ln(I)(ln(U)) для каждого из значений тока накала.

Из графика найдем коэффициент наклона прямой, сравним его с теоретическим значением k=3/2:

$$k_{1,3} = (1,578 \pm 0,005), \quad \varepsilon_k = 0,32\%$$

значение отличается от теоретически предсказанного на $\approx 5\%$. Видно, что практически во всем диапазоне напряжений зависимость получается линейной с хорошей точностью. Все погрешности точек на графике здесь и далее расчитаны по формуле

$$a = f(x_1, x_2, ..., x_n)$$

$$\sigma_a = \sum \frac{\partial f}{\partial x_i}^2 \cdot \sigma_{x_i}^2$$

$$k_{1,4} = (1,487 \pm 0,010), \quad \varepsilon_k = 0,67\%$$

значение отличается от 3/2 меньше чем на 1%. При токе накала $I_{\rm H}=1,4~A$ зависимость все ещё линейна с хорошей точностью.

При токе накала $I_{\rm H}=1.5~A$ точки хуже ложатся на прямую, в основном из-за первых трёх, завышенные значения которых могут быть связаны с тем, что при малых напряжениях и вклад в начальную скорость электронов может сносить тепловое движение, которое тем существеннее, чем больше ток накала, поэтому такого отклонения не наблюдалось при меньших токах. Посчитаем коэффициент k без учёта первых трёх точек:

$$k_{1,5} = (1,465 \pm 0,009), \quad \varepsilon_k = 0,61\%$$

значение отличается от предполагаемого на $\approx 2,5\%$. За исключением первых трёх точек зависимость линейна.

Опять заметим, что значения тока в первых трёх точках явно завышены (по сравнению с теорией), как и в предыдущем случае, это может быть вызвано влиянием тепловых скоростей. Расчитаем угол наклона исключая первые три точки из рассмотрения:

$$k_{1,6} = (1,408 \pm 0,014), \quad \varepsilon_k = 0,99\%$$

значение отличается от предполагаемого на $\approx 6.5\%$. Как и в предыдущем случае, за исключением первых трёх точек зависимость близка к линейной.

Теперь построим графики зависимости $I(U^{3/2})$, по углу наклона прямой найдём коэффициент пропорциональности, по формуле (4) рассчитаем удельный заряд e/m:

$$\frac{e}{m} = \frac{1}{\beta^2} \frac{81}{128} \frac{k^2 \cdot r_A^2}{\pi^2 \varepsilon_0^2 l^2}$$

$$k_{1,3} = (16,10 \pm 0,07), \quad \varepsilon_k = 0,43\%$$

$$\frac{e}{m} = (246,0 \pm 2,1) \cdot 10^9 \text{ Km} \cdot \text{kg}^{-1}, \quad \varepsilon = 2\varepsilon_k = 0,86\%$$

Табличное значение удельного заряда: $e/m=176\cdot 10^9~{\rm Kn\cdot m^{-1}}$. Полученное значение отличается от табличного на $\approx 40\%$, что является плохим результатом.

$$k_{1,4} = (16,44 \pm 0,05), \quad \varepsilon_k = 0,30\%$$

$$\frac{e}{m} = (256,7 \pm 1,5) \cdot 10^9 \text{ Km} \cdot \text{kg}^{-1}, \quad \varepsilon = 2\varepsilon_k = 0,60\%$$

Результат отличается от табличного значения на $\approx 45\%$, что получается ещё хуже, чем в первом случае.

$$k_{1,5} = (17,10 \pm 0,07), \quad \varepsilon_k = 0,55\%$$

$$\frac{e}{m} = (266,7 \pm 2,9) \cdot 10^9 \text{ Km} \cdot \text{kg}^{-1}, \quad \varepsilon = 2\varepsilon_k = 1,10\%$$

В этом случае первые три точки почти не вносят изменений в коэффициент наклона прямой и его погрешность, поэтому можно их не выкидывать. Полученный удельный заряд отличается от табличного на $\approx 51\%$, что может указывать на то, что чем выше ток накала, тем хуже выполняется "закон трёх-вторых".

$$k_{1,6} = (17.15 \pm 0.07), \quad \varepsilon_k = 0.54\%$$

$$\frac{e}{m} = (268.2 \pm 2.9) \cdot 10^9 \text{ Kp} \cdot \text{kg}^{-1}, \quad \varepsilon = 2\varepsilon_k = 1.08\%$$

Аналогично предыдущему случаю, коэффициент наклона будем искать беря все точки. В последнем случае отличие значения от табличного составляет $\approx 52\%$, что ещё лучше подтверждает границы применимости "закона трёх-вторых".

Вывод: В данной работе исследовался "закон трёх-вторых"для вакуумного диода, с его помощью рассчитывался удельный заряд электрона. Количественный результат сильно не совпал с табличным значением (погрешность наилучшего значения ≈ 40%, наихудшего ≈ 52%). Однако, предположение о границах применимости данного закона подтвердилась экспериментом — при больших значениях тока накала всё больше влияла тепловая скорость электронов, и значение удельного заряда электрона, полученное с помощью формулы, не учитывающей тепловое движение, всё больше отличалось от табличного.