TdII 2021 - terzo compito

pubblicato: 13 Aprile 2021; scadenza consegna: 15 Aprile 2021, ore 08:00

I problemi contrassegnati con (*) sono per la lode.

- 1. Data una variabile casuale continua X con pdf $f_X(x)$, determina la pdf $f_Y(y)$ della variabile casuale Y := |X|, lasciandola espressa in funzione di $f_X(x)$.
- 2. Siano X e Y due variabili casuali discrete con $\mathbb{P}\{X=2,Y=3\}=1/3, \mathbb{P}\{X=3,Y=3\}=1/4, \mathbb{P}\{X=3,Y=4\}=1/4$ e $\mathbb{P}\{X=2,Y=1\}=1/6$. Calcola:
 - (a) le probabilità marginali di X e Y;
 - (b) $\mathbb{E}[X]$ e $\mathbb{E}[Y]$;
 - (c) $\mathbb{E}[XY]$;
 - (d) Cov(X,Y).
 - (e) Le variabili *X* e *Y* sono indipendenti?
 - (f) Calcola $\mathbb{P}\{X \leq 3, Y \leq 3\}$.
- 3. (a) Dimostra che se due variabili casuali sono indipendenti allora hanno covarianza nulla.
 - (b) Trova un esempio di due variabili casuali dipendenti a covarianza nulla.
- 4. Siano X_1 , X_2 , X_3 , X_4 variabili casuali indipendenti, ciascuna con media 0 e varianza 1. Definiamo $Y_1 := X_1 + X_2$, $Y_2 := X_2 + X_3$, e $Y_3 := X_3 + X_4$. Calcola la correlazione tra:
 - (a) $Y_1 e Y_2$;
 - (b) $Y_1 e Y_3$.
- 5. Siano X_1, \ldots, X_n misurazioni in cm dell'altezza μ di una persona. Assumiamo che le X_i siano indipendenti e identicamente distribuite con media μ e deviazione standard $\sigma=1$ cm. La media campionaria $\frac{1}{n}\sum_{i=1}^n X_i$ costituisce una stima di μ . Utilizzando la disuguaglianza di Chebyshev, calcola il numero n di misurazioni necessarie per determinare μ con una precisione di 0.5 cm e una confidenza del 90%.
- 6. (*) Risolvi l'esercizio 5 utilizzando il teorema del limite centrale.