CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 4 MARZO 2022

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. (i) Se φ e θ sono formule, $(\exists x)(\varphi \lor \theta)$ equivale alla negazione di $(\forall x)((\neg \varphi) \lor (\neg \theta))$? (ii) Siano $a, b, c \in \mathbb{Z}$. Quando, per definizione, c è un minimo comune multiplo tra a e b in \mathbb{Z} ?

Esercizio 2. Si consideri l'applicazione $f:(x,y)\in\mathbb{Z}\times\mathbb{Z}\mapsto |x-y|\in\mathbb{N}.$

- (i) f è iniettiva? f è suriettiva?
- (ii) Descrivere $\overleftarrow{f}(\{0\})$ e $\overleftarrow{f}(\varnothing)$.

Indicato con σ il nucleo di equivalenza di f,

- (iii) per ogni $n \in \mathbb{N}$, descrivere $[(0,n)]_{\sigma}$ e $[(0,n)]_{\sigma} \cap \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a=0 \lor b=0\}$;
- (iv) verificare: $(\forall a, b \in \mathbb{Z})((\exists! n \in \mathbb{N})([(a, b)]_{\sigma} = [(n, 0)]_{\sigma})).$

Sia ora $S = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid |a-b| > 1\}$ e sia ρ la relazione d'ordine definita in S da: per ogni $(a,b),(c,d) \in S^{(\ddagger)}$

$$(a,b) \rho(c,d) \longleftrightarrow ((a,b) = (c,d) \lor |a-b|$$
è un divisore proprio di $|c-d|$).

- (v) La relazione ρ è totale?
- (vi) Determinare in (S, ρ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (vii) (S, ρ) è un reticolo?

Sia poi $T = \{-2, 4, 8, -16, 12, 36, -144, 288\} \times \{0\} \subseteq S$.

- (viii) Disegnare il diagramma di Hasse di (T, ρ) ;
 - (ix) (T, ρ) è un reticolo? Nel caso, è distributivo? Complementato? Booleano?

Esercizio 3. In $\mathbb{R}_0^+ = \{r \in \mathbb{R} \mid r \geq 0\}$ si consideri l'operazione binaria * ponendo per ogni $a, b \in \mathbb{R}_0^+$, $a * b = \max\{a, b\}$, dove il massimo è inteso rispetto all'ordinamento usuale dei numeri reali.

- (i) Decidere se * è commutativa e se è associativa.
- (ii) \mathbb{N} è una parte chiusa di $(\mathbb{R}_0^+, *)$? L'intervallo reale semiaperto [0, 1[è una parte chiusa di $(\mathbb{R}_0^+, *)$?
- (iii) Verificare se in $(\mathbb{R}_0^+,*)$ esistono elementi neutri a destra, neutri a sinistra, neutri.
- (iv) Determinare in $(\mathbb{R}_0^+, *)$ gli elementi cancellabili e, se la domanda ha senso, quelli simmetrizzabili. Che tipo di struttura (semigruppo, monoide, gruppo) è $(\mathbb{R}_0^+, *)$?
- (v) Stabilire se l'operazione indotta in $(\mathbb{R}_0^+,*)$ dall'ordinaria moltiplicazione tra numeri reali è distributiva rispetto a *.
- (vi) Di quale costruzione teorica generale studiata nel corso la definizione di * è un esempio?
- (vii) Se ridefinissimo * come operazione in \mathbb{R} anziché in \mathbb{R}_0^+ (ponendo comunque $a*b = \max\{a,b\}$ per ogni $a,b \in \mathbb{R}$), cambierebbe qualcosa nelle risposte alle domande precedenti?

Esercizio 4. Esiste un numero intero u tale che 81u - 1 sia multiplo di 23? Nel caso, trovarne uno.

Esercizio 5. Per ogni numero naturale n > 1, denotiamo con f_n il polinomio $\bar{7}x^3 + \bar{3}x^2 + x + \bar{1} \in \mathbb{Z}_n[x]$.

- (i) Determinare l'insieme N_1 dei numeri naturali n > 1 tali che f_n sia monico.
- (ii) Determinare l'insieme N_2 dei numeri naturali n > 1 tali che f_n abbia grado 2.
- (iii) Determinare l'insieme N_3 dei numeri naturali n>1 tali che f_n abbia grado 1.
- (iv) Enunciare la formula (o regola) di addizione dei gradi e determinare, al variare di n in $N_1 \cup N_2 \cup N_3$, tutti i polinomi g di \mathbb{Z}_n tali che per f e g valga la formula di addizione dei gradi.
- (v) Per quali $n \in N_1 \cup N_2 \cup N_3$ il polinomio f_n è cancellabile in $\mathbb{Z}_n[x]$?

 $^{(\}ddagger)$ il simbolo ' \longleftrightarrow ', esattamente come ' \iff ', indica il connettivo bicondizionale

Es 4 i) NO, La masione $\exists x (q \lor \theta) \ \ \dot{0} \ \ \forall x (\neg q \land \neg \theta)$ (QV ,) *E ii) e.b, c e 72 e è mem tre e e b su ale 1 ble e Vd (eld 1 bld => cld) Es 2 R: (x,y) E Z x Z +> |x-y| E |N () INIETIVA: NO Va,b∈ Z×Z (f(a)=f(b) => a=b) No, == (1,0) b=(2,1) f(a)=1 f(b)=1 a+b Survietiva: SI Vc e N Jae ZxZ (c= RW) è vero, ad exempio le coppie (x,0) obore x e IL ii) [({o{) = { (x, x) | x ∈ Z}} $\overline{\ell}(\emptyset) = \emptyset$ o mucho d' equis. d. f iii) Vm e IN [(0, m)] = i l'insieme d'tutte le coppie il cui f è m
records = 11 perelsi si prende il veolore ono luto. iv) (Vabe Z) (]! ne IN) ([a.b] = [(n.o)] = [(n.o)] = | n-o| = m, quind sono equal

1x) RETICOLO: SI Distributivo: SI a 1 (bVc) = (a 16) V (a 1c) 121 (36V16) = (12 × 36) V (12 × 16) 12 1 144 = 12 V 4 12 = 12 COMPLEMENTATO: NO ESERCIZIO 3 1Rt 4: Va, b & Rt (2*b = mox {2, b}) i) commutatives: 51
Va, h ∈ Ro (a, b = b = a), i veo, il mox d'elue musi non of persk
doll'ordinamento. Ve.b.c ((axb) *c = ax(b *c)) è uno, è il mox tra 3 muni ii) IN è chiuse, il mos at x, y e IN è x vy, entroub: in IV [0,1[: {x \in | 0 \in x < 1}, ed i sample chisse iii) NEVTRO: O userdo com ut consol solo quello e sx $\forall x \in \mathbb{R}^{3}$ $(x * \epsilon = x)$ mentos à O

