

OSP on Arduino – Training – Appendix 3

Using the Arduino OSP evaluation kit – OTP burning of SAID

Sense the power of light

Part A3 – OTP burning of SAID

The customer area

The burning process

Burning in practice

OTP introduction

OTP in SAID

- The SAID has an OTP to store (configuration) data specific for itself
- OTP abbreviates One-Time Programmable memory
 - "One-time": Think of it as a bunch of fuses
 - "Memory": Intact a fuse represents a 0, burned it represents a 1
- The SAID OTP is split in two areas: foundry and customer
- foundry area
 - stores 13 bytes configuration data
 - set by ams-OSRAM during manufacturing
 - Examples are trim values for the internal oscillator, voltage, ...
 - this area is locked for writing
- customer area
 - stores 19 bytes configuration data
 - set by the end-customer
 - 2 bytes (13 bits) are SAID hardware features the customer can configure
 - remaining 17 bytes are free, e.g. for color calibration values
 - this area has a lock, by default 0/unlocked, but the customer can write a 1/lock

address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0									
O1	address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
02	00								
03	01								
Foundry	02								
Foundry	03								
O7	04								
O7	05				Fou	ndrv			
08	06								
08	07				are	ea			
0A 0B 0C DD ch_clustering haptic_driver spi_mode sync_pin_en star_net_en i2c_bridge_en otp_addr_en otp_addr_en otp_addr_en otp_addr 0F 10 11 11 12 13 14 15 16 17 18 19 14 19 14 19 14 18 19 14 18 19 14 18 19 14 15 16 17 18 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	08					Ju			
OB	09								
OC	0A								
OD	0B								
0E	0C								
0F 10 11 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E cust lock	0D		ch_clustering		haptic_driver	spi_mode	sync_pin_en	star_net_en	i2c_bridge_en
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E cust lock	0E					otp_addr_en	st	tar_net_otp_ad	dr
11	0F								
12 13 14 15 16 17 18 19 19 1A 1B 1C 1D 1E cust lock	10								
13 14 15 16 17 18 19 11A 1B 1C 1D 1E cust lock	11								
14	12								
15	13								
16	14				Cust				
17	15				Custo	omer			
18	16								
19 1A 1B 1C 1D 1E cust lock	17				are	ea			
1A	18								
1B 1C 1D 1E cust lock	19								
1C	1A								
1D 1E cust_lock	1B								
1E cust_lock	1C								
	1D								
1F crc or other usage	1E	cust_lock							
	1F				crc or oth	ner usage			

ch_clustering

For higher drive currents

- The SAID has 9 drivers (in 3 channels)
- Each capable of driving 24 mA or even 48 mA
- It is possible to cluster drivers
 - One driver becomes the main (triangle arrow tail)
 - the others the aggregates (arrow-head)
 - 8 clustering option available
- The PWM of main is enforced on its aggregates
- The current of main is enforced on its aggregates
- On the PCB:
 the main and aggregates need to be wired together
- The OTP:
 needs to be burned for the associated cluster mode
 in bits ch_clustering

haptic_driver

Using LED drivers for a haptic actuator

										O
0D		ch_clustering		haptic_driver		spi_mode	sync_pin_en	star_net_en	i2c_bridge_en	1
0E			L		C	tp_addr_en	st	ar_net_otp_ad	dr	
				•					·	
1E	cust_lock									
1F				crc or oth	ner	usage				

- When the haptic_driver bit is set in the OTP, the SAID acts as a driver for a haptic actuator
- This implicitly selects clustering mode 3 (all driver aggregated to one output)
- Gives a power of $\underbrace{48+48+48}_{\text{ch0}} + \underbrace{24+24+24}_{\text{ch1}} + \underbrace{24+24+24}_{\text{ch2}} = 288\text{mA}$
- Also, the driver frequency is implicitly divided by 4, resulting in 150 Hz mode or 300 Hz mode (see FAST_PWM)

PWM speed	FAST_PWM	PWM label	PWM actual	Haptic actual	Haptic label
Slow	0	500 Hz	586 Hz	146 Hz	150 Hz
Fast	1	1 000 Hz	1 172 Hz	293 Hz	300 Hz

7.13.8		SETUP (0x4C) SETUP register.	No paylo	oad. Ansv	ver is 8-bit.		
	Table 2	8: READSETUP re		ster READSETUP			
	Bit	Bit name	Default	Access	Bit description		
	7	FAST_PWM	0x0	RW	This bit allows to control the PWM speed and by this the dynamic range of the color: "0": 500Hz PWM frame rate with 15 bits dynamic range "1": 1000Hz PWM frame rate with 14 bits dynamic range		

spi_mode

Manchester or 2-wire SPI

								X
0D		ch_clustering	haptic_drive	spi_mode	sync_pin_en	star_net_en	i2c_bridge_en	
0E				otp_addr_en	st	ar_net_otp_ad	dr	
		•		•			•	
1E	cust_lock							
1F			crc or ot	her usage				
								-

- The first SAID in the chain is typically configured for MCU mode (with a pull-up on P and a pull-down on N)
- By default, the MCU mode is of type A
 - Downstream telegrams ("commands") use Manchester encoding on P line
 - Upstream telegrams ("responses") use P line for DATA and N line for CLK
- By setting OTP bit **spi_mode**, the mode becomes type B aka 2-wire SPI
 - Downstream telegrams ("commands") and upstream telegrams ("responses") both use P line for DATA and N line for CLK
- "RAM-hackers": SAID would need to have this bit set before receiving reset and init therefore, setting this bit in P2RAM is ineffective

MCU mode type A

MCU mode type B

sync_pin_en

Sync via telegram or pin

0D		ch_clustering	haptic_driver	spi_mode	sync_pin_en	star_net_en	i2c_bridge_en
0E				otp_addr_en	Sta	r_net_otp_ad	dr
1E	cust_lock						
1F			crc or oth	er usage			

- Sending setpwm telegrams to multiple nodes causes variation in their color/brightness-switch moment
- The SAID has a sync feature
- When the SYNC_EN bit is set in the CURRENT register, new PWM values are not applied until a sync signal is received
- The sync signal can be either software, given form the sync telegram, or hardware, from a toggling of the sync pin
- The OTP bit sync_pin_en configures the method (default 0 is telegram, 1 is sync pin)
- Pin B1 is used as the sync pin
- When **sync_pin_en** is set, B1 can no longer be used as LED driver

Table 2: Pin de	escription of	AS1163	
Pin number	Pin name	Pin type ⁽¹⁾	Description ⁽²⁾
QFN 3x3 16	•	•	
12	R2	ANA	Driver 0 of channel 2 (Red), also SDA
13	B1	ANA	Driver 2 of channel 1 (Blue), also SYNC
14	G1	ANA	Driver 1 of channel 1 (Green) also for parallel address configuration

i2c_bridge_en

Configure channel 2 for I2C

0D		ch_clustering	haptic_driver	spi_mode	sync_pin_en	star_net_er	i2c_bridge_en
0E				otp_addr_en	st	ar_net_otp_a	ddi
1E	cust_lock						
1F			crc or oth	er usage			

- The SAID has a built-in I2C bridge
- This is an alternative function of the drivers in channel 2
- Enabled by setting i2c_bridge_en to 1
- When i2c_bridge_en is set,
 R2, G2, and B2 can no longer be used as LED driver

Pin number	Pin name	Pin type ⁽¹⁾	Description ⁽²⁾	
QFN 3x3 16		•		
10	B2	ANA	Driver 2 of channel 2 (Blue), als	o INT
11	G2	ANA	Driver 1 of channel 2 (Green), a	Iso SCL
12	R2	ANA	Driver 0 of channel 2 (Red), als	SDA
12	D1	ΛΝΛ	Driver 2 of abappal 4 (Plue) als	- CVNC

Star network

Enabling and setting a branch mask

0D		ch_clustering	haptic_driver	spi mode	evne nin en	ctor not on	i2c_bridge_en
VD		cii_ciustering	napuc_unver	spi_mode	Syric_piri_eri	Star_Het_eH	IZC_DITUGE_ET
0E				otp_addr_en	st	tar_net_otp_ad	dr
1E	cust_lock						
1F			crc or oth	er usage			

- The SAID supports star networks
- This is implemented as an address filter
- The filtering must be enabled and the filter mask configured
- The SAID is said to be a "branch starter"
- To enable filtering set star_net_en in OTP to 1
- To set the filter in OTP, set otp_addr_en to 1
 and star_net_otp_addr to the wanted filter mask
- To set the filter via pins, set otp_addr_en to 0
 and use R1 and G1 (star_net_otp_addr remains unused)
- Pins R1 and G1 define the mask through a resistor configuration
- With star_net_en=1 and otp_addr_en=0,
 R1 and G1 can no longer be used as LED driver
- "RAM-hackers": SAID would need to have this bit set before receiving
 reset and init therefore, setting this bit in P2RAM is ineffective

Din number	Din	Din 4 (1)	Decement on (2)	
Pin number	Pin name	Pin type ⁽¹⁾	Description ⁽²⁾	
QFN 3x3 16				
14	G1	ANA	Driver 1 of channel 1 (Green), als	for parallel address configuration
15	R1	ANA	Driver 0 of channel 1 (Red), also f	or parallel address configuration
16	B0	ΔΝΔ	Driver 2 of channel 0 (Blue)	

G1	R1	Internal bits	Corresponding parallel address
VDD/2	VDD/2	00 00	0b000
VDD/2	GND	00 01	0b001
VDD/2	VDD	00 10	0b010
GND	VDD/2	01 00	0b011
GND	GND	01 01	0b100
GND	VDD	01 10	0b101
VDD	VDD/2	10 00	0b110
VDD	GND	10 01	0b111

cust_lock

Blocking OTP modifications

- Once **cust_lock** has been set to 1, no more OTP modifications (customer area) are possible
- Option: use 1F as a CRC checksum area
- One could use the same CRC as for the telegrams; see aoosp_crc module

Sense the power of light

Part A3 – OTP burning of SAID

The customer area

The burning process

Burning in practice

OTP mirror

Also known as P2RAM

The OTP contents is mirrored in a RAM

- Known as the OTP mirror or as P2RAM
- Sometimes OTP means just fuses (narrow sense: "the persistent tech")
- Sometimes OTP means fuses+P2RAM (broad sense: "configuration store") [these slides]

Behavior

- At power-on reset ("PoR") the configuration bits are "copied" from the fuses to the mirror
- The controller in the SAID always reads config bits from the mirror, never from the fuses
- Telegrams can be sent to the controller to modify the mirror (readopt, setotp)
 The controller can then use the "new" bits
- These bits are in P2RAM, so not persistent, they are lost after a power cycle (also lost after a load telegram; a reset telegram is not enough)
- The **burn** telegram burns the P2RAM into the fuses (making the configuration persistent)

Intermezzo on authenticating for OTP changes

Setting the SAID password

- Telegrams related to changing the OTP require elevated privileges
- Those telegrams include (for details, see next slides)
 - setotp
 - cust, burn, idle
 - gload, load
- The MCU must first authenticate by sending the correct password (using the settestpw telegram)
- After sending this password, the SAID is in "test mode"
- In test mode, the SAID does not fully function (e.g. does not forward telegrams)
- Leave test mode by sending the incorrect password (e.g. 0)
- The aolibs have a password store: function aoosp_said_testpw_get() returns the password
- This function is used by e.g. macro aoosp_exec_setotp() to set password, read/modify/write otp and clr password
- By default, the password store is empty, see aoosp_said_testpw_get() for options on how to fill it
- Ask ams-OSRAM representative for the actual SAID password

OTP burn process

First phase: preparing the OTP image

- First step is to prepare a configuration image in the P2RAM
- After a PoR all fuses are loaded into the P2RAM
- Make the SAID addressable (send a reset and an init telegram)
- Read the "old" (current) contents of the OTP (mirror) via telegrams readotp.
- Authenticate for OTP writes by sending the correct password (via telegram settestpw)
- Create "new" OTP image in P2RAM by sending setotp telegrams
- De-authenticate to make the SAID behave normal again (via telegram settestpw(0))
- The P2RAM mirror should now contain the desired image to be burned in OTP fuses
- Recall: every 1 in the fuses must be a 1 in the mirror a 1 can never be changed back to a 0
- Unless the lock is set, a next burn will be possible setting even more bits to 1 (e.g. lock bit)
- Next step is the actual burning

The "macro" function aoosp_exec_setotp() takes care of set pw, set OTP, clr pw

OTP burn process

Second phase: burning

2 BURN

- Second step is to burn the P2RAM image into the fuses
- Assumption is that we continue from previous step, so SAID is addressable and not authenticated
- Authenticate for burn by sending the correct password (via telegram settestpw)
- Make sure the customer area is activated (send telegram cust)
- Lower the supply voltage (see upcoming slide)
- Start the burning (copy P2RAM to fuses) by send telegram burn
- Wait 5ms for burning to be complete
- Deactivate the customer area (send telegram idle)
- Raise the supply voltage to normal
- De-authenticate to make the SAID behave normal again (via telegram settestpw(0))
- Next step is the verification

OTP burn process

Third phase: verification

- Third step is to verify the fuses are burned correctly
- Assumption is that we continue from previous step, so SAID is addressable and not authenticated
- Suggested is to first clear the P2RAM (e.g. writing 0xAA everywhere) with setotp
- Authenticate for load by sending the correct password (via telegram settestpw)
- Make sure the customer area is activated (send telegram cust)
- Suggested: configure different guard-band for more thorough check (send telegram gload)
- Load the fuses into the P2RAM mirror (send telegram load)
- Deactivate the customer area (send telegram idle)
- De-authenticate to make the SAID behave normal again (via telegram settestpw(0))
- Check the P2RAM (and thus the fuses) have correct values (use readotp)

D A3

Burning needs a low supply voltage

Using a lab power supply

The actual burn process needs to occur at 2V7

We can relatively easily try it on the OSP32 board – stretching the SAID specs

Flash the firmware sketch (that burns the OTP)

- Over USB flash the sketch that burns the firmware
- Add a prompt for the operator to lower the voltage, and sketch waits (e.g. for press on A button) to start burning

Execute the firmware sketch to burn the OTP

- Replace USB cable with lab power supply; start at 5V, lower (without interruption) to 4V when prompted
- 4V is out-of-spec for SAID burning, but is needed for the 3V3 LDO on the OSP32 board (with headroom)

Sense the power of light

Part A3 – OTP burning of SAID

The customer area

The burning process

Burning in practice

Complete example

aoosp_otpburn

The library aoosp comes with a complete example

- It is called aoosp_otpburn
- By default, it writes a 0x01 to OTP location 0x1D for the SAID with address 0x003
- Gives prompt on OLED to lower and raise voltage, and waits for A-button

Notes

- Need to get the SAID password and get that in the aolib's password store
- Need to flash firmware over USB, then replace USB by lab supply as shown before
- Can only try this sketch once, other runs need different OTP address or value
- Sketch operates the SAID out of spec
- This leads to higher failures rates then wanted in mass production

address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
00									
01									
02									
03									
04									
05									
06									
07									
08									
09									
0A									
0B									
0C									
0D		ch_clustering		haptic_driver	spi_mode	sync_pin_en	star_net_en	i2c_bridge_en	
0E					otp_addr_en	star_net_otp_addr			
0F									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
1A									
1B									
1C									
1D	1)							
1E	ourt_lock								
1F	crc or other usage								
	-								

Mass manufacturing

Lowering ppm failures

The OSP32 example will lead to higher failure rates (too high ppm due to wrong voltage)
The following sequence is proposed for mass production

- reset/init
- settestpw
 - setotp
 - cust
 - burn
 - (within 15µs) lower voltage, wait (5ms), raise voltage
 - idle
 - optionally verify: setotp(0), cust, gload, load, idle, readopt, compare
- settestpw(0)

This does require quick synchronization between sending the burn and lowering the voltage

CIM OSRAM