

Best First Search, Greedy Search, A* Search

Informed Search

- Systematically explore the state space and find the goal.
- Find the solution by systematically generating new states and testing them against goal.
- These strategies are incredibly inefficient in most cases.
- It use the specific knowledge of the problem.
- Core concept of such algorithm is heuristic function.

Best First Search

- Uniform Search Cost is a special case of the best first search.
- A cost function f(n) is applied to each node.
- The nodes are put in OPEN in the order of their f values.
- The nodes with smaller f(n) values are expanded earlier.

Best First Search

Let *fringe* be a priority queue containing the initial state Loop

if *fringe* is empty return failure
Node ← remove-first (fringe)
if Node is a goal

then return the path from initial state to Node else generate all successors of Node, and put the newly generated nodes into fringe according to their f values

End Loop

Heuristic Function

- Heuristic means "Rule of Thumb"
- "Heuristics are criteria, methods or principles for deciding which among several alternative courses of action promises to be the most effective in order to achieve some goal"-Judea Pearl
- h(n)= estimated cost of the cheapest path from node n to a goal node.

Example 1: We want a path from Kolkata to Guwahati Heuristic for Guwahati may be straight-line distance between Kolkata and Guwahati h(Kolkata) = euclideanDistance(Kolkata, Guwahati)

Example 2: 8-puzzle: Misplaced Tiles Heuristics is the number of tiles out of place.

2	8	3
1	6	4
	7	5

Initial State

1	2	3
8		4
7	6	5

Goal state

Greedy Search

- Expand the node with smallest estimated cost to reach the goal.
- H(n) estimates the distance remaining to the goal.

Greedy Search

A* Search

- Algorithm is given by Hart, Nilsson & Rafael in 1968
- A* is best search algorithm with f(n)=g(n)+h(n), g(n) is sum of edge cost from start to n and h(n) is the estimate of lowest cost path from n to goal.
- f(n)=actual distance so far + estimated distance remaining
- h(n) is said to be admissible if it underestimates the cost of any solution that can be reached from n.
- If C*(n) is the cost of the cheapest solution path from n to a goal node and h(n) is admissible then h(n)<=C*(n)
- If h(n) is admissible then the search will find an optimal solution.

A* Algorithm

```
OPEN= nodes on frontier CLOSED= expanded nodes
OPEN={s,nil}
While OPEN is not empty
         remove from OPEN the node <n,p> with minimum f(n)
         place <n,p> on closed
         if n is a goal node,
                   return success(path p)
         for each edge connecting n & m with cost c
                   if <m,q> is on CLOSED and {p|e} is cheaper than q
                            then remove n from CLOSED
                                      put <m,{p|e}> on OPEN
                   else if <m,q> is on OPEN and {p|e} is cheaper than q
                            then replace q with {p|e}
                   else if m is not in OPEN
                            then put < m, \{p \mid e\} > on OPEN
```

A* Algorithm

Steps	Fringe	Node	Comments
		expanded	
1	A		
2	B(26.6)	A	
3	E(27.5), C(35.1), D(35.2)	В	
4	C(35.1), D(35.2), C(41.2)	Е	C is not inserted as there is
	G(92.5)		another C with lower cost.
5	D(35.2), F(37), G(92.5)	C	
6	F(37), G(92.5)	D	
7	H(39), G(42.5)	F	G is replaced with a lower
			cost node
8	G(42.5)	Н	Goal test successful.

2014; us path from sloot (s) to Good (G) using (a) Uniform Cost Seanch (b) B* search 2 (4)