Optimization of Distributed Phased Arrays

Akash Anand, Palos Verdes Peninsula High School, Rancho Palos Verdes, CA, USA

Engineering Problem and Objectives

- Phased arrays allow for **inexpensive** beam steering
- Necessary for new technology such as 5G

Problem: As current phased arrays increase in size, they become very expensive and inflexible

Beamforming of a Signal. Credit:

Metaswitch.

Self Developed CAD of UAV for 5G

Objectives:

- **1. Mathematically derive** calibration equations for phase and frequency
- 2. Write **original MATLAB code** to validate calibration equations
- 3. Build hardware model (full software defined phased array prototype) to validate equations and simulation

Data Analysis and Results

$$d = \frac{\Delta \phi}{2\pi} \left(\frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} \right)$$
 Distance/Phase Offset Calibration Equation

• A chi-square analysis has p-value = 0.952

• With 99% certainty, calculated distances matches actual distances

Actual Distance (m)	Phase @ 1210 MHz (deg)	Phase @ 1215 MHz (deg)	Phase @ 1220 MHz (deg)	Phase @ 1225 MHz (deg)	Phase @ 1230 MHz (deg)	Calculated Distance (m)	Percent Off (%)
4.62	-50.768	-82.735	-105.208	-137.147	-162.474	4.6312	-0.242%
4.72	159.79	133.776	106.698	76.199	49.82	4.6149	2.227%
4.92	-121.592	-159.468	172.592	142.078	116.214	5.0512	-2.667%
5.22	157.447	118.744	91.328	63.255	28.01	5.2614	-0.793%
5.62	-70.515	-98.696	-134.118	-171.817	161.628	5.4513	3.002%

Project Design

Testing Setup.

Credit: Author

Software Defined Radio-based hardware built to validate mathematical model Complex processes I learned: radios, SDRs, PCB build, and testing

Interpretations and Conclusions

Newly derived calibration equations correlate with the MATLAB simulation and hardware test results – verifies results 👄

• Power increases by 6 dB

Main Benefits of Distributed Phased Arrays

- 1. Transmitter to receiver distance can remain unknown, very helpful for sending signals to moving objects
- 2. Software based system is much **more flexible**
- 3. Able to **reduce costs** by 80% compared to a hardware phased array

Phase/Frequency Adjustments of Waves created by me