What is claimed is:

1. A kit for determining a concentration of a vitamin D component comprising:

5

- a releasing composition; and
- a detecting composition,
- the releasing composition comprises an aqueous base component and facilitates in releasing the vitamin D component from a vitamin D component binding-protein, the detecting composition facilitates in determining the concentration of the vitamin D component.

15

- 2. A kit of claim 1 being useful for determining the concentration of the vitamin D component present in a mammal fluid.
- 3. A kit of claim 1 wherein the mammal fluid is selected from the group consisting of milk, whole blood, serum, plasma and mixtures thereof.
- 4. A kit of claim 1 wherein the mammal fluid comprises a human serum.
 - 5. A kit of claim 1 wherein the vitamin D component is selected from the group consisting of a metabolite of vitamin D_2 , D_3 , D_4 , D_5 , and D_6 .

- 6. A kit of claim 1 wherein the vitamin D component comprises a 25-OH-D.
- 7. A kit of claim 1 wherein the vitamin D component comprises a 1, $25-(OH)_2-D$.

20

35

- 8. A kit of claim 1 wherein the aqueous base component comprises NaOH.
- 9. A kit of claim 1 wherein the aqueous base component comprises KOH.
 - 10. A kit of claim 1 wherein the releasing composition comprises about 0.1 to about 1.0 M of the aqueous base component.

11. A kit of claim 1 wherein the releasing composition comprises about 0.35 to about 0.5 M of the aqueous base component, wherein the aqueous base component is NaOH.

- 12. A kit of claim 1 wherein the releasing composition is substantially free of an organic solvent.
 - 13. A kit of claim 1 wherein the releasing composition further comprises a cyclo-oligomer component.

14. A kit of claim 13 wherein the cyclo-oligomer component comprises a cyclodextrin.

- 15. A kit of claim 13 wherein the cyclo-oligomer component is selected from the group consisting of alphacyclodextrin and beta-randomly methylated cyclodextrin.
- 16. A kit of claim 13 wherein the releasing composition comprises about 0.01 to about 5% of the cyclo-oligomer component.
 - 17. A kit of claim 13 wherein the releasing component comprises about 2% of the cyclo-oligomer component, wherein the cyclo-oligomer component is an alphacyclodextrin.

18. A kit of claim 13 wherein the releasing component comprises about 0.05% of the cyclo-oligomer component, wherein the cyclo-oligomer component is a beta-randomly methylated cyclodextrin.

5

- 19. A kit of claim 1 wherein the releasing component further comprises about 0.5 to about 5% of a metal salicylate, including sodium salicylate.
- 10 20. A kit of claim 1 wherein the releasing component further comprises about 0.01 to about 0.1% of a surfactant.
- 21. A kit of claim 20 wherein the surfactant is selected from the group consisting of tween-20 and triton X-100.
 - 22. A kit of claim 1 wherein the releasing composition forms a homogeneous mixture with a mammal fluid.
- 20 23. A kit of claim 1 wherein the releasing composition comprises
 - about 0.1 to about 1.0 M of an aqueous base component;

25

- about 0.01 to about 5% of a cyclo-oligomer component; and
 - about 0.01 to about 5% of a metal salicylate.

- 24. A kit of claim 23 wherein the aqueous base component is NaOH, the cyclo-oligomer component is cyclodextrin and the metal salicylate is sodium salicylate.
- 25. A kit of claim 1 wherein the detecting composition comprises a host component and a partner component,

wherein the host component binds to the partner component to form a partner/host complex, the concentration of the complex is proportional to the concentration of the vitamin D component.

5

20

f

- 26. A kit of claim 25 wherein the host component comprises an antibody, portions thereof, or mixtures thereof.
- 10 27. A kit of claim 25 wherein the host component is labeled with a chemiluminescent label, a fluorescent label or a radio-active label.
- 28. A kit of claim 25 wherein the host component is an antibody labeled with acridinium.
 - 29. A kit of claim 25 wherein the partner component comprises a vitamin D component linked to a separator component, the separator component is a solid phase or an antibody.
 - 30. A kit of claim 29 wherein the separator component comprises a magnetic particle.
- 25 31. A kit of claim 29 wherein the partner component comprises a vitamin D component linked to a magnetic particle.
- 32. A kit of claim 31 wherein the partner component competes with the vitamin D component to bind to the host component.
 - 33. A kit of claim 32 wherein the host component is an antibody labeled with acridinium.

35

34. A kit of claim 32 wherein the partner component

ŧ

binds to the host component through at least one intermediate binding component.

- 35. A kit of claim 34 wherein the intermediate component is labeled.
 - A kit of claim 34 wherein the intermediate component is labeled and the host component is not labeled.
- 37. A kit of claim 34 wherein at least one intermediate 10 binding component comprise a vitamin D binding-protein.
- 38. A kit of claim 25 wherein the partner component competes with a vitamin D component to form a complex with the host component, the partner component comprises 15 a vitamin D component linked to a magnetic particle, the partner component binds to the host component through a vitamin D binding-protein, the host component comprises an antibody labeled with acridinium.

20

39. A kit of claim 38 wherein the concentration of the complex is inversely proportional to the concentration of the vitamin D component.

40. A kit of claim 1 wherein the concentration of the

25

vitamin D component is determined with a higher precision than that of an assay kit relying on an organic solvent, to release the vitamin D component from the binding-

protein.

- 41. A kit of claim 1 wherein the releasing composition forms a homogeneous mixture with a body fluid containing the vitamin D component.
- 42. A kit for determining a concentration of a vitamin D 35 component comprising:

10

a releasing composition comprising about 0.1 to about 1.0 M of NaOH or KOH, 0 to about 5% of a cyclodextrin, 0 to about 5% of salicylate and 0 to about 0.1% of a surfactant,

- a detecting composition comprising an antibody labeled with acridinium and a partner component, wherein the partner component competes with a vitamin D component to form a complex with the antibody, the partner component comprises a vitamin D component linked to a magnetic particle, the partner component binds to the antibody through a vitamin D binding-protein.
- 15 43. A kit of claim 42 wherein the releasing composition comprises about 0.35 to about 0.5 M of NaOH, about 2% of alpha-cyclodextrin and about 2% of salicylate, the releasing composition being substantially free of an organic solvent.

20

25

- 44. A releasing composition comprising an aqueous base component, wherein the releasing composition facilitates in releasing a vitamin D component from a binding-protein, the releasing composition being useful in determining the concentration of a vitamin D component.
- 45. A releasing composition of claim 44 wherein the aqueous base component comprises NaOH.
- 46. A releasing composition of claim 44 wherein the aqueous base component comprises KOH.
 - 47. A releasing composition of claim 44 comprising about 0.1 to about 1.0 M of the aqueous base component.

35

48. A releasing composition of claim 44 comprising about

- 0.35 to about 0.5 M of the aqueous base component, wherein the aqueous base component is NaOH.
- 49. A releasing composition of claim 44 being substantially free of an organic solvent.
 - 50. A releasing composition of claim 44 further comprising a cyclo-oligomer component.
- 10 51. A releasing composition of claim 50 wherein the cyclo-oligomer component comprises a cyclodextrin.
- 52. A releasing composition of claim 50 wherein the cyclo-oligomer component is selected from the group consisting of alpha-cyclodextrin and beta-randomly methylated cyclodextrin.
 - 53. A releasing composition of claim 50 comprising about 0.01 to about 5% of the cyclo-oligomer component.
 - 54. A releasing composition of claim 50 comprising about 2% of the cyclo-oligomer component, wherein the cyclo-oligomer component is an alpha-cyclodextrin.
- 55. A releasing composition of claim 50 comprising about 0.05% of the cyclo-oligomer component, wherein the cyclo-oligomer component is a beta-randomly methylated cyclodextrin.
- 56. A releasing composition of claim 44 further comprising about 0.5 to about 5% of a metal salicylate, including sodium salicylate.
- 57. A releasing composition of claim 44 further comprising about 0.01 to about 0.1% of a surfactant.

- 58. A releasing composition of claim 57 wherein the surfactant is selected from the group consisting of tween-20 and triton X-100.
- 5 59. A releasing composition of claim 44 wherein the releasing composition forms a homogeneous mixture with a body fluid sample containing the vitamin D component.
- 60. A releasing composition of claim 59 wherein a detecting composition is added to the homogeneous mixture to determine the concentration of the vitamin D component.
- 61. A releasing composition of claim 44 being employed in a biochemical assay.
 - 62. A releasing composition of claim 61 wherein the biochemical assay is a homogeneous biochemical assay.
- 20 63. A releasing composition comprising
 - about 0.1 to about 1.0 M of an aqueous base component;
- about 0.01 to about 5% of a cyclo-oligomer component; and
- about 0.01 to about 5% of a metal salicylate, the releasing composition is useful in determining the concentration of a vitamin D component.
 - 64. A releasing component of claim 63 wherein the aqueous base component is NaOH, the cyclo-oligomer component is cyclodextrin and the metal salicylate is sodium salicylate.

- 65. A releasing component of claim 63 being substantially free of an organic solvent.
- 66. A method of assaying a body fluid sample for the concentration of a vitamin D component, the method comprising the steps of:

releasing the vitamin D component from the vitamin D component binding-protein by contacting the sample with a releasing composition in a holder; and

determining the concentration of the vitamin D component.

- 15 67. A method of claim 66 wherein the vitamin D is released into a homogeneous mixture of the body fluid sample and the releasing composition.
- 68. A method of claim 66 wherein the releasing composition comprises
 - about 0.1 to about 1.0 M of an aqueous base component;
- 0 to about 5% of a cyclo-oligomer component;
 - 0 to about 5% of a metal salicylate; and
 - 0 to about 0.1% of a surfactant.

69. A method of claim 68 wherein the aqueous base component is NaOH, the cyclo-oligomer component is cyclodextrin, the metal salicylate is sodium salicylate and the surfactant is tween-20.

70. A method of claim 66 wherein the releasing

37

35

composition is substantially free of an organic solvent, including an organic solvent.

71. A method of claim 67 wherein the determining step includes the steps of:

adding a detecting composition to the holder, the detecting composition comprises a host component and a partner component, the host component binds to the partner component to form a partner/host complex;

isolate the complex in the tube;

measuring the concentration of the complex by
measuring the concentration of the host component in the
complex, the concentration of the complex is proportional
to the concentration of the vitamin D component.

- 72. A method of claim 71 wherein the host component is an antibody labeled with acridinium.
 - 73. A method of claim 72 wherein the concentration of the host is measured by detecting the emitted level of chemiluminescence.
 - 74. A method of claim 71 wherein the partner component competes with a vitamin D component to form a complex with the host component, the partner component comprises a vitamin D component linked to a magnetic particle, the partner component binds to the host component through a vitamin D binding-protein.
 - 75. A method of claim 66 wherein the determining step includes the steps of:

adding a partner component and a vitamin D binding-

35

30

protein to the tube, the partner component competes with the vitamin D component to bind to the vitamin D component binding-protein to form a partner/binding-protein complex;

5

15

isolate the partner/binding-protein complex in the tube; and

adding a host component, the host component binds to the partner/binding-protein complex to form a partner/binding-protein/host component complex.

measuring the concentration of the partner/binding-protein/host component complex by measuring the concentration of the host component in the complex, the concentration of the complex is proportional to the concentration of the vitamin D component.

- 76. A method of claim 75 wherein the host component is an antibody labeled with acridinium.
 - 77. A method of claim 75 wherein the concentration of the host is measured by detecting the emitted level of chemiluminescence.

- 78. A method of claim 75 wherein the partner component comprises a vitamin D component linked to a magnetic particle.
- 79. A method of claim 66 providing a more precise determination of the vitamin D component as compared to method using a releasing composition comprising an organic solvent.
- 80. A method of assaying a body fluid sample for the concentration of a 25-OH-D component, the method

comprising the steps of:

releasing the 25-OH-D from the 25-OH-D binding-protein by contacting the sample with a releasing composition in a holder, including a cuvette, the releasing composition comprises about 0.1 to about 1.0 M of an aqueous base component, 0 to about 5% of a cyclooligomer component, 0 to about 5% of a metal salicylate, and 0 to about 0.1% of a surfactant; and

10

adding a detecting composition to the holder,

the detecting composition comprises an antibody labeled with acridinium, a 25-OH-D binding-protein and a partner component, the partner component comprises a 25-OH-D linked to a magnetic particle,

the partner component competes with the released 25-OH-D to bind to the 25-OH-D binding-protein to form a partner/binding-protein complex,

the antibody binds to the partner/bindingprotein complex to form an antibody/bindingprotein/partner component complex;

25

isolating the antibody/binding-protein/partner component complex in the tube; and

measuring the concentration of the antibody/bindingprotein/partner component complex by measuring the
concentration of the labeled antibody in the complex, the
concentration of the complex is proportional to the
concentration of the vitamin D component.

35 81. A method of claim 80 wherein the concentration of the labeled antibody is measured by detecting the emitted

10

15

level of chemiluminescence.

- 82. A method of claim 80 wherein the releasing composition comprises about 0.35 to about 0.5 M of NaOH, about 2% of alpha-cyclodextrin and about 2% of salicylate.
- 83. A method of claim 80 wherein the releasing composition is substantially free of an organic solvent, including an organic solvent.
- 84. A method of assaying a body fluid sample for the concentration of a vitamin D component, the method comprising the steps of:

forming a homogeneous mixture of a body fluid sample containing the vitamin D component and a releasing component; and

adding a detecting composition to the mixture to determine the concentration of the vitamin D component.