Numerical Computation Assignment 2

- 1. Suppose $f \in \mathcal{O}(h^k)$, and $g \in \mathcal{O}(h^m)$, with m < k. Show that $f + g \in \mathcal{O}(h^m)$.
- 2. Prove that $f(h) = h^3$ is not in $\mathcal{O}(h^4)$ (Hint: Proof by contradiction.)
- 3. Rewrite $\sqrt{x+1} \sqrt{x}$ to get tid of subtractive cancellation when x is very large.
- 4. Use a Taylor's expansion to rid the expression $1 \cos^2 x$ of subtractive cancellation for x small. Use a $\mathcal{O}(x^6)$ approximate.
- 5. Find the roots of the equation $x^2 + 3x 8^{-14} = 0$ with three-digit accuracy.