EECS 16B CSM

Bryan Ngo

Differential Equations

RC Circuits

EECS 16B CSM

Bryan Ngo

Computer Science Mentors

2021-09-14

C Circuits

1 Differential Equations

Who am I?

EECS 16B CSM

Bryan Ngo

Differential Equations BC Circuits

- 3nd year majoring in EECS
- took EECS 16B Spring 2020
- Pertinent fact: was in Cory for 4 hours

Who are you?

EECS 16B CSM

Bryan Ngo

Differentia Equations

- Name
- Pronouns
- Year/Major
- Pertinent fact

Logistics

EECS 16B CSM

Bryan Ngo

Differentia Equations

- 2 unexcused absences during the semester
- excused absences: email bryanngo@berkeley.edu & cc mentors@berkeley.edu
 with subject line [Request for Absence] <course>
- Slides available at https://github.com/bdngo/16b-csm

Expectations

Me to You

EECS 16B CSM

Bryan Ngo

Differentia Equations

- Be skeptical
- Constant feedback
- Become passionate about 16B

Expectations

You to Me

EECS 16B CSM

Bryan N

fferentia _luations

EECS 16B CSM

Bryan Ngo

Differential Equations

RC Circuits

Differential Equations

Differential Equations

EECS 16B CSM

ryan Ng

Differential Equations

Equations

Concept check!

Differential Equations

EECS 16B CSM

Bryan Ng

Differential Equations

RC Circui

Concept check!

$$\frac{d}{dt}x(t) = f(x,t) \tag{1}$$

- Focusing on first-order ODEs
- Relates the derivative in other terms
- 3Blue1Brown video

Exponential Differential Equation

Homogeneous

EECS 16B CSM

Bryan Ng

Differential Equations

$$\frac{d}{dt}x(t) = \lambda x(t) \implies x(t) = x_0 e^{\lambda t}$$
 (2)

Exponential Differential Equation

Non-Homogeneous

EECS 16B CSM

Bryan Ng

Differential Equations

$$\frac{d}{dt}x(t) = \alpha x(t) + \beta \tag{3}$$

EECS 16B CSM

Bryan Ngo

Differential Equations

RC Circuits

Undamped Impulse Response

EECS 16B CSM

Bryan Ngo

Differential Equations

Undamped Impulse Response

EECS 16B CSM

$$V_C \stackrel{+}{=} C \stackrel{I_C}{=} F$$

$$C\frac{d}{dt}V_C = -\frac{V_C}{R}$$

$$C\frac{d}{dt}V_C = -\frac{V_C}{R}$$
$$\frac{d}{dt}V_C = \underbrace{-\frac{1}{RC}}_{\lambda}V_C$$

$$\Rightarrow V_C(t) = V_0 e^{-\frac{1}{RC}t} = V_0 e^{-\frac{1}{\tau}t}$$
 (6)

