Introduction

World where all the devices and appliances are connected to a network & are used collaboratively to achieve complex tasks that require a high degree of intelligence

Internet of Things is an interaction between the physical and digital worlds using sensors and actuators

Things means Devices

The **Internet of Things (IoT)** is the network of physical objects—devices, vehicles, buildings and other items embedded with electronics, software, sensors, and network connectivity—that enables these objects to collect and exchange data.

Why do we need IoT

Real time monitoring of health parameters of a patient. Once data is on cloud storage, it can accessed through internet for better management and timely action from hospital.

Why do we need IoT

While patient is on the way to hospital, monitoring of his health parameters may enable the Doctors and other hospital staff to take necessary arrangements.

Many 'Things' sharing the data

Wearable Tech

Healthcare

Smart Appliances

CISCO says: Internet of Everything

Networked Connection of People, Process, Data, Things

IoT: 3 basic features

IoT is about reaching from Human dependence to 'collaborative' machines

Benefits of IoT

Efficient resource utilization

Minimizing human efforts

Big data analysis and AI

Improved security

Saves time

IoT Ecosystem

IoT Ecosystem

Basic IoT Architecture

IoT Ecosystem

IoT Open Systems Interconnection model (OSI model)

IoT Taxonomy (Terminology)

Perception Layer

This layer consists of all the sensors, their interfacing and management of the data received from various sensors

Pre-processing

This layer consists of data processing from various sensors, before it is shared to the Gateway stage. Pre – processing helps to uniform the data in a specific format.

Limitations of processing everything in Cloud

- Mobility: Smart devices are mobile & changing network conditions makes communication difficult
- Reliable & real-time actuation: Latency sensitive applications need real-time responses.
- Scalability: Multiple devices increases the latency

Communication

Communication challenges which needs to be addressed:

- Addressing & Identification: Each smart device needs to be identified with a unique address in the network
- Low Power Communication: Communication between devices needs to be low power consuming
- Routing protocol with low memory requirement & efficient communication protocol
- · High speed & Lossless communication

IoT: A 4-stage system

Applications

IoT case study: Smart City

Development Boards

Arduino UNO, Rasberry Pi Node MCU, Arduino MKR100 ESP320 STM8, STM32 Intel Galileo Beagle Bone.....and many others

Reference

- IBM
- CISCO
- Edureka Videos
- https://www.youtube.com/watch?v=LlhmzVL5bm8
- https://www.youtube.com/watch?v=17HMbyNaDjM&list=PL9ooVrP1 https://www.youtube.com/watch?v=17HMbyNaDjM&list=PL9ooVrP1 https://www.youtube.com/watch?v=17HMbyNaDjM&list=PL9ooVrP1 hQOGccfBbP5tJWZ1hv5sIUWJl&index=13
- https://www.youtube.com/watch?v=UrwbeOIlc68
- https://www.hindawi.com/journals/jece/2017/9324035/fig3/