

THE LAST LECT 5 Minutes	JRE	

- This lecture is divided into 4 different areas
- (Really) last time to talk about the first one

- Due to specific communication requirements, specialized connectivity technologies are being used in the factory.
- We talked about the different wireless communication technologies

- Differentiation of technologies based on their range
- Important metrics
 - Bandwidth
 - Range
 - · Licensed vs. unlicensed band

• We then moved over and talked about field bus systems

• We have covered a number of field bus systems

• Next we talked about Industrial Ethernet techologies

- Same physical connectors
- Similar MAC protocols
- Depending on the real-time requirements, modification of the data link layer

Next step are the IEEE TSN standards (it's NOT a single standard)

• First core principle: scheduling

Second core principle: global time

• Continuation of last lecture

· Milestones for shifting from AVB to TSN

TSN/AVB STANDARDS OVERVIEW					
Standard	Group	Title	Status	Last updated	
IEEE 802.1Qbu	Forwarding and Queuing	Frame preemption	Published	August 30, 2016	
IEEE 802.1Qbv	Forwarding and Queuing	Enhancements for Scheduled Traffic	Published	March 18, 2016	
IEEE 802.1Qca	Stream Reservation (SRP)	Path Control and Reservation	Published	March 11, 2016	
IEEE 802.1Qch	Forwarding and Queuing	Cyclic Queuing and Forwarding	Published	June 28, 2017	
IEEE 802.1Qci	Forwarding and Queuing	Per-Stream Filtering and Policing	Published	September 28, 2017	
IEEE 802.1CB	Stream Reservation (SRP)	Seamless Redundancy	Published	September 28, 2017	
IEEE 802.1AS-Rev	Timing and Synchronization	Timing and Synchronization for Time-Sensitive Applications	Draft 5.0	June 12, 2017	
IEEE 802.1Qcc	Stream Reservation (SRP)	Enhancements and Performance Improvements	Draft 1.1	September 1, 2016	
IEEE 802.1CM	Vertical	Time-Sensitive Networking for Fronthaul	Draft 0.5	October 15, 2016	
IEEE 802.1Qcr	Forwarding and Queuing	Asynchronous Traffic Shaping	PAR approved	June 30, 2016	
IEEE 802.1CS	Stream Reservation	Local Registration Protocol	PAR		

- A number of different standards, drafts and Project Authorization Request (PAR)
- IEEE 802.1Qbu → preemption of Ethernet frames, see example
- IEEE 802.1Qbv → forwarding process that supports scheduled traffic
- IEEE 802.1Qca → stream reservation
- IEEE 802.1Qch → queuing
- IEEE 802.1Qci → stream policy
- IEEE 802.1CB → frame replication, e.g. for a backup path
- IEEE 802.1AS-Rev → see Precision Time Protocol, but via layer 2
- IEEE 802.1Qcc → stream reservation, see example
- Actually, depending on the source, there are a number of related drafts relasted to the TSN task group

- IEEE TSN P802.1CB (FRER)
- E.g. using multiple physical cables to have a backup if one cable breaks

- Preemptive task scheduling known from modern operating systems
- Yellow = scheduled slot
- Green = scheduled traffic
- Blue = best effort frame
- IEEE 802.1CB
- (a) hard real-time requirements not met

Animation of globally synchronized scheduled slots for sending and forwarding packets

• We see the scheduling of packets of streams along with best effort traffic

Dark blue: stream 1Light blue: stream 2Gray: other streamGreen: best effort

• Vertical: 4 different links (first = talker, rest = bridges)

• Horizontal: 7 schedule cyles

- To meet TSN requirements IEEE 802.1 TSN TG defines new configuration models, i.e. IEEE 802.1Qcc (Stream Reservation)
- TSN require dynamic configuration based on application requirements
- Basically two different models for network configuration
- Distributed
 - Using the Stream Reservation Protocol (SRP), a bridged network can be configured in a distributed, plug-and-play manner
- Centralized
 - To compute network paths and transmission schedules, a CNC needs to understand the network's physical topology. The Link Layer Discovery Protocol (LLDP) is the most common protocol.

- Step 1: Talker Advertisement
- Talker = Acts as stream source and advertises the stream
- Listener = Acts as stream destination and "books" the advertised stream
- Domain = A set of talkers, listeners, and bridges that support the resource requirements
- Reservation = A (reserved) path that provides the requested resource requirements
- Stream Reservation class: A traffic class whose bandwidth can be reserved for traffic time-sensitive Streams using the Stream Reservation Protocol (SRP). A priority value is associated with each SR class. SR classes are denoted by consecutive letters of the alphabet, starting with A and continuing for up to seven classes.

• Step 2: Propagation back to talker

- **Centralized Network Configuration (CNC):** A centralized component that configures network resources on behalf of TSN applications (users).
- Centralized User Configuration (CUC): A centralized component that discovers and configures application (user) resources in end stations. A CUC exchanges information with a CNC in order to configure TSN features on behalf of its end stations.
- Workflow
 - Talkers and Listeners communicate their stream quality of service requirements to a Centralized User Configuration (CUC) entity using an end-station specific configuration protocol.
 - The CUC communicates stream quality of service requirements, on behalf of all Talker/Listener groups for its associated application, to a Centralized Network Configuration (CNC) entity using a User/Network
 - The CNC performs necessary calculations to meet stream quality of service requirements in the bridged network, including calculating transmission schedules, determining data paths, etc.
 - If the CNC can satisfy the end stations' stream quality of service requirements, it configures the bridges, Talkers and Listeners