Model based on epigenetic factors

Model Parameters: create based on previous linear regression model of methylation and mRNA expression. This includes Single Gene Methylation mRNA expression (SGMM) and Pair Genes Coexpression mRNA expression (PGCM) Model Input: single test subject's measured mRNA expression and methylation across multiple genes Model Output: list of genes with methylation/mRNA expression (in range, low methylation, high methylation)

Single-gene-methylation-mRNA-expression Correlation

mRNA expression which shows significant correlation (Pearson, Spearman) i.e. > 0.5 or < -0.5

```
In [86]: sgdf = pd.read_csv('./sgmm.csv',sep='\t')
sgdf = sgdf.sort_values(['Spearman', 'Pearson'], ascending=[True, True])
sgdf_both = sgdf['Pearson'].lt(-0.5) & sgdf['Spearman'].lt(-0.5)
```

```
In [87]: plt.figure()
    ax = sgdf[sgdf_both].plot.bar(x='Gene', figsize=(15,10))
    plt.axhline(y=-0.5, linewidth=4, color='#d62728')
    ax.set_ylabel('Correlation (Methylation/mRNA expression)')
    ax.set_title('Genes with high correlation between methylation & mRNA expression')
    plt.show()
```

<matplotlib.figure.Figure at 0xad4cc18>


```
In [88]: plt.figure()
    ax = sgdf[~sgdf_both].plot.bar(x='Gene', figsize=(15,10))
    plt.axhline(y=-0.5, linewidth=4, color='#d62728')
    ax.set_ylabel('Correlation (Methylation/mRNA expression)')
    ax.set_title('Genes with Spearman correlation between methylation & mRNA expression')
    plt.show()
```

<matplotlib.figure.Figure at 0xa7f98d0>

Pair-genes- coexpression-mRNA (PGCM)

mRNA expression of 2 genes (A & B) which show significant correlation (Pearson and Spearman) i.e. > 0.5 or < -0.5. For this pair, see if methylation of either gene (A or B) shows significant correlation with the mRNA expression

```
In [90]: mutex = pd.read_csv('./mutex_meth.csv', sep='\t')
mutex.head()
```

Out[90]:

	Gene A	Gene B	p- Value	Log Odds Ratio	Association	Methylation (Pearson & Spearman both)	Methylation (Spearman only)
0	IFNG	IRF1	<0.001	>3	Co- occurence	IRF1	None
1	IFNG	STAT1	<0.001	2.744	Co- occurence	None	None
2	IRF1	STAT1	<0.001	>3	Co- occurence	IRF1	STAT1
3	IFNG	PSMB9	<0.001	1.839	Co- occurence	PSMB9	None
4	IRF1	PSMB9	<0.001	2.323	Co- occurence	PSMB9 IRF1	None

Find and remove rows where methylation of either gene does not affect co-expression of other gene

i.e. remove rows where methylation (Pearson & Spearman) and (Spearman only) have "None" values

```
In [119]: no_meth_spearman_pearson = mutex['Methylation (Pearson & Spearman both)'].str.contains('None')
    no_meth_spearman_only = mutex['Methylation (Spearman only)'].str.contains('None')
    no_meth = no_meth_spearman_pearson & no_meth_spearman_only
    meth_mutex = mutex[~no_meth]
    meth_mutex.head()
```

Out[119]:

	Gene A	Gene B	p- Value	Log Odds Ratio	Association	Methylation (Pearson & Spearman both)	, , ,
0	IFNG	IRF1	<0.001	>3	Co- occurence	IRF1	None
2	IRF1	STAT1	<0.001	>3	Co- occurence	IRF1	STAT1
3	IFNG	PSMB9	<0.001	1.839	Co- occurence	PSMB9	None
4	IRF1	PSMB9	<0.001	2.323	Co- occurence	PSMB9 IRF1	None
5	STAT1	PSMB9	<0.001	2.304	Co- occurence	PSMB9	STAT1

```
In [120]: uniq = mutex['Gene A'].append(mutex['Gene B']).drop_duplicates()
df_count = uniq.to_frame(name='Gene')
```

For each methylated gene, count other genes whose mRNA expression is correlated to methylated gene

MethBothCount: Count of genes whose mRNA expression correlates both with Pearson & Spearman coefficients MethOneCount: Count of genes whose mRNA expression correlates only with Spearman coefficient

Sort genes based on methylation affecting coexpression

Overall percentage of Coexpression affected by methylation Higher weightage when methylation is high(both Spearman and Pearson correlation > 0.5 or < -0.5) Next weightage for medium methylation (only Spearman correlation > 0.5 or < -0.5)

Show genes whose expression is affected by this gene's methylation

Out[124]:

	I	T	T	I	Ι	T	Т
	Gene	MethBothCount	MethOneCount	CoexCount	MethCoex%	Coex	CoexSpearman
172	PTPN6	13	2	17	88.235294	ICAM3 ICAM2 GZMA CCR5 GZMB IFNG PRF1 IRF1 CXCL	CXCL10 CXCL11
2	IRF1	10	5	16	93.750000	IFNG STAT1 PSMB9 CCR5 CCL4 CCL5 CXCL9 CXCL10 G	CCL3 CXCL11 GZMB PRF1 GNLY
22	PSMB9	9	6	15	100.000000	IFNG IRF1 STAT1 CCR5 CCL4 CXCL9 CXCL10 GZMA HLA-C	CCL3 CCL5 CXCL11 GZMB PRF1 GNLY
14	ICAM3	6	3	13	69.230769	ICAM2 CCR5 CCL5 GZMA HLA-DMA PTPN6	VCAM1 CCL3 PRF1
136	PRF1	5	12	18	94.44444	IRF1 PSMB9 CCL4 HLA- DRA PTPN6	IFNG STAT1 ICAM3 CCR5 CCL3 CCL5 CXCL9 CXCL10 C
13	ICAM2	5	1	7	85.714286	ICAM3 CCL5 GZMA HLA- DMA PTPN6	GZMB
110	GZMA	1	11	19	63.157895	PTPN6	IFNG IRF1 PSMB9 CCR5 CCL4 CCL5 CXCL9 GZMB PRF1
153	HLA-G	1	6	8	87.500000	HLA-B	IFNG CCR5 GZMB HLA- DMA HLA-DRA PTPN6
138	HLA-C	1	0	1	100.000000	PSMB9	
145	HLA-B	1	0	2	50.000000	HLA-DRA	
81	CXCL10	0	13	17	76.470588		IFNG IRF1 PSMB9 VCAM1 CCR5 CCL4 CCL5 CXCL9 CXC
155	HLA- DMA	0	5	9	55.55556		IFNG VCAM1 CCR5 CXCL11 HLA-DOB
126	GNLY	0	5	11	45.454545		IRF1 PSMB9 CCL4 CCL5 GZMB
5	STAT1	0	5	15	33.333333		IRF1 PSMB9 CXCL9 CXCL10 CXCL11
158	HLA- DMB	0	2	2	100.000000		HLA-DQA1 HLA-DQA2
156	HLA- DOA	0	1	1	100.000000		HLA-DPA1
167	HLA- DPA1	0	1	2	50.000000		HLA-DOA
125	GZMB	0	1	20	5.000000		HLA-E
0	IFNG	0	0	22	0.000000		
9	IFNGR1	0	0	3	0.000000		
12	ICAM1	0	0	17	0.000000		
15	ICAM4	0	0	2	0.000000		
25	VCAM1	0	0	12	0.000000		
33	CCR5	0	0	20	0.000000		
40	CCL3	0	0	18	0.000000		
50	CCL4	0	0	16	0.000000		
59	CCL5	0	0	18	0.000000		
70	CXCL9	0	0	15	0.000000		

	Gene	MethBothCount	MethOneCount	CoexCount	MethCoex%	Coex	CoexSpearman
95	CXCL11	0	0	18	0.000000		
137	ICAM5	0	0	2	0.000000		
160	HLA- DQA1	0	0	4	0.000000		
169	HLA- DRA	0	0	6	0.000000		
137	HLA-A	0	0	1	0.000000		
139	HLA-E	0	0	2	0.000000		
154	HLA- DOB	0	0	2	0.000000		
159	HLA- DQA2	0	0	2	0.000000		
166	HLA- DRB1	0	0	4	0.000000		

Plot genes whose methylation affects coexpression of other genes

```
In [96]: df2 = df_count['MethCoex%'].eq(0)
plt.figure()
ax = df_count[~df2].plot.bar(x='Gene', secondary_y=['MethCoex%'], figsize=(15,10))
ax.set_ylabel('# Genes coexpressed by Methylation')
ax.right_ax.set_ylabel('% Genes coexpressed affected by Methylation')
plt.show()
```

<matplotlib.figure.Figure at 0xaec00f0>

Plot only genes where methylation does not affect coexpression

```
In [97]: df2 = df_count['MethCoex%'].eq(0)
    plt.figure()
    ax = df_count[df2].plot.bar(x='Gene', secondary_y=['MethCoex%'], figsize=(15,10))
    ax.set_ylabel('# Genes coexpressed by Methylation')
    ax.right_ax.set_ylabel('% Genes coexpressed affected by Methylation')
    plt.show()
```

<matplotlib.figure.Figure at 0xa9f0da0>


```
In [98]:
         # Get prediction interval for individual test data on linear model
         # https://github.com/shahejokarian/regression-prediction-interval/blob/master/linear%20regression%20with%20pre
         diction%20interval.ipynb
         class LRPI:
             def init (self, normalize=False, n jobs=1, t value = 2.13144955):
                 self.normalize = normalize
                 self.n_jobs = n_jobs
                 self.LR = linear_model.LinearRegression(normalize=self.normalize, n_jobs= self.n_jobs)
                 self.t_value = t_value
             def fit(self, X_train, y_train):
                 self.X_train = pd.DataFrame(X_train.values)
                 self.y_train = pd.DataFrame(y_train.values)
                 self.LR.fit(self.X_train, self.y_train)
                 X_train_fit = self.LR.predict(self.X_train)
                 self.MSE = np.power(self.y_train.subtract(X_train_fit), 2).sum(axis=0) / (self.X_train.shape[0] - self
         .X_train.shape[1] - 1)
                 self.X_train.loc[:, 'const_one'] = 1
                 self.XTX_inv = np.linalg.inv(np.dot(np.transpose(self.X_train.values)) , self.X_train.values))
             def predict(self, X_test):
                 self.X_test = pd.DataFrame(X_test.values)
                 self.pred = self.LR.predict(self.X_test)
                 self.X_test.loc[: , 'const_one'] =1
                 SE = [np.dot(np.transpose(self.X_test.values[i]) , np.dot(self.XTX_inv, self.X_test.values[i]) ) for i
          in range(len(self.X_test)) ]
                 results = pd.DataFrame(self.pred , columns=['Pred'])
                 results.loc[:,"lower"] = results['Pred'].subtract((self.t_value)* (np.sqrt(self.MSE.values + np.multip
         ly(SE,self.MSE.values) )), axis=0)
                 results.loc[:,"upper"] = results['Pred'].add((self.t_value)* (np.sqrt(self.MSE.values + np.multiply(SE
         ,self.MSE.values) )), axis=0)
                 return results
         def lm_predict_interval (file, X_test):
             df = pd.read_table(file, index_col=False)
             X = df.iloc[:,1]
             Y = df.iloc[:,2].apply(np.log)
             model = LRPI()
             model.fit(X, Y)
             return(model.predict(X_test))
```

Predict test mRNA expression(log) based single-gene model (mRNA expression:non-log, methylation and filename with raw data)

```
In [99]: # Single-gene: mRNA expression(non-log), methylation, filename which with datapoints
file = sgdf['File']

# Individual's gene measurements
# Each row: mRNA expression(log), Methylation
test = pd.read_csv('./indiv.csv')

result = lm_predict_interval(file[:1].to_string(index=False), test['Methylation'][:1])

test['Pred'] = result['Pred']
test['lower'] = result['lower']
test['upper'] = result['upper']
test.head()
```

Out[99]:

	Gene	Methylation	mRNA_log	Pred	lower	upper
0	IRF1	0.80	8	5.591742	4.115518	7.067967
1	STAT1	0.10	3	NaN	NaN	NaN
2	PSMB9	0.20	4	NaN	NaN	NaN
3	ICAM2	0.05	5	NaN	NaN	NaN
4	ICAM3	0.30	6	NaN	NaN	NaN

Single-Gene-mRNA-methylation model (SGMM)

Predict test mRNA expression based on test methylation and single gene model

Input:

- 1. Sorted(based on correlation) single gene methylation, mRNA expression, raw data
- 2. Test/Individual measured gene methylation and mRNA expression

Output:

Array in decreasing order of importance (based on model)

- 1. Methylation gene, measured methylation, mRNA gene, mRNA expression(log)
- 2. Predicted mRNA expression(log), lower and upper bounds(log)
- 3. Result: True or False (if test is higher than upper mRNA expression limit)

```
In [104]: def measured_meth (test, gene):
             r = test['Gene'].str.contains(gene)
              r = test[r]
              return(r['Methylation'].values[0])
          def measured_mRNA (test, gene):
              r = test['Gene'].str.contains(gene)
              r = test[r]
              return(r['mRNA_log'].values[0])
          # Read mRNA(non-log), methylation datapoints from file
          # Create linear regression model based on it
          # Given measured methylation "test", predict mRNA, upper, lower values
          # Update it in result
          def mrna_predict (file, test, gene, mrnagene, result):
              df = pd.read_table(file, index_col=False)
              df = df[np.isfinite(df.iloc[:,1])]
              df = df[np.isfinite(df.iloc[:,2])]
              zr = df.iloc[:,2] == 0
              df = df[\sim zr]
             X = df.iloc[:,1]
             Y = df.iloc[:,2].apply(np.log)
             model = LRPI()
             model.fit(X, Y)
             X_test = pd.DataFrame.from_items([('Pred', [test])])
              pred = model.predict(X_test)
              row = result['MethGene'].str.contains(gene) & result['mRNAGene'].str.contains(mrnagene)
              row = result[row].index.values
              result.loc[row,['mRNAPred']] = pred['Pred'][0]
              result.loc[row,['PredLower']] = pred['lower'][0]
              result.loc[row,['PredUpper']] = pred['upper'][0]
          # Single-gene: mRNA expression(non-log), methylation(non-log), filename which with datapoints
          sgdf = pd.read_csv('./sgmm.csv', sep='\t')
          sgdf = sgdf.sort_values(['Spearman', 'Pearson'], ascending=[True, True])
          # Consider only significant genes
          sgdf_both = sgdf['Pearson'].lt(-0.5) & sgdf['Spearman'].lt(-0.5)
          sgdf = sgdf[sgdf_both]
          file = sgdf['File']
          # To print columns in specific order, use OrderedDict
          ('PredLower',''),('PredUpper',''),('Result',''),('File',''))))
          out['MethGene'] = sgdf['Gene']
          out['mRNAGene'] = sgdf['Gene']
          out['File'] = sgdf['File']
          # Test or Individual's gene measurements
          # Each row: mMethylation, RNA expression(log)
          test = pd.read_csv('./indiv.csv')
          out['MethMeasured'] = out.apply(lambda row: measured_meth(test,row['MethGene']), axis=1)
          out['mRNAMeasured'] = out.apply(lambda row: measured_mRNA(test,row['mRNAGene']), axis=1)
          sgresult = out.apply(lambda row: mrna_predict(row['File'], row['MethMeasured'], row['MethGene'],
                                                       row['mRNAGene'], out), axis=1)
          out['Result'] = out['mRNAMeasured'] > out['PredUpper']
```

In [105]:

out

Out[105]:

	MethGene	MethMeasured	mRNAGene	mRNAMeasured	mRNAPred	PredLower	PredUpper	Result	File
20	PTPN6	0.80	PTPN6	8	5.59174	4.11552	7.06797	True	./plots-ptpn6.txt
0	IRF1	0.80	IRF1	8	6.17775	4.53456	7.82094	True	./plots-irf1.txt
15	HLA-DMA	1.10	HLA-DMA	8	5.08363	3.42278	6.74448	True	./plots-hladma.txt
11	HLA-B	0.20	HLA-B	4	11.8966	10.0424	13.7508	False	./plots-hlab.txt
2	PSMB9	0.20	PSMB9	4	8.31582	6.52478	10.1069	False	./plots-psmb9.txt
14	HLA-F	1.00	HLA-F	7	6.19796	4.50615	7.88976	False	./plots-hlaf.txt
13	HLA-E	0.90	HLA-E	6	8.84441	7.67011	10.0187	False	./plots-hlae.txt
3	ICAM2	0.05	ICAM2	5	7.24544	5.77926	8.71162	False	./plots-icam2.txt
4	ICAM3	0.30	ICAM3	6	7.08781	6.04515	8.13046	False	./plots-icam3.txt
12	HLA-C	0.10	HLA-C	5	12.0003	10.2939	13.7067	False	./plots-hlac.txt
16	HLA-DMB	2.00	HLA-DMB	9	0.967507	-1.08679	3.0218	True	./plots-hladmb.txt
1	STAT1	0.10	STAT1	3	10.0145	8.52092	11.5081	False	./plots-stat1.txt
19	HLA-DPA1	0.50	HLA-DPA1	3	8.36873	6.291	10.4465	False	./plots-hladpa1.txt

Pair-Gene-coexpression-mRNA model (PGCM)

Predict test mRNA expression based on test methylation and pair gene model

Input:

- 1. Sorted(based on correlation) pair gene methylation, mRNA expression, raw data
- 2. Test/Individual measured gene methylation and mRNA expression

Output:

Array in decreasing order of importance (based on model)

- 1. Methylation gene, measured methylation, mRNA gene, mRNA expression(log)
- 2. Predicted mRNA expression(log), lower and upper bounds(log)
- 3. Result: True or False (if test is higher than upper mRNA expression limit)

```
In [125]:
         # Pair-gene: mRNA expression(non-log), methylation(non-log), filename which with datapoints
         pgdf = pd.read_csv('./pgcm_both.csv', sep=',')
         # Find and remove rows where methylation of either gene does not affect co-expression of other gene
         # i.e. remove rows where methylation (Pearson & Spearman) and (Spearman only) have "None" values
         no_meth_spearman_pearson = pgdf['Methylation (Pearson & Spearman both)'].str.contains('None')
         no_meth_spearman_only = pgdf['Methylation (Spearman only)'].str.contains('None')
         no_meth = no_meth_spearman_pearson & no_meth_spearman_only
         pgdf = pgdf[~no_meth]
         # To print columns in specific order, use OrderedDict
         out['MethGene'] = pgdf['Gene A']
         out['mRNAGene'] = pgdf['Gene B']
         out['File'] = pgdf['File']
         # Test or Individual's gene measurements
         # Each row: mMethylation, RNA expression(log)
         test = pd.read_csv('./indiv.csv')
         out['MethMeasured'] = out.apply(lambda row: measured_meth(test,row['MethGene']), axis=1)
         out['mRNAMeasured'] = out.apply(lambda row: measured_mRNA(test,row['mRNAGene']), axis=1)
         pgresult = out.apply(lambda row: mrna_predict(row['File'], row['MethMeasured'], row['MethGene'],
                                                     row['mRNAGene'], out), axis=1)
         out['Result'] = out['mRNAMeasured'] > out['PredUpper']
```

In [126]: out

Out[126]:

				l		I		I	
	MethGene	MethMeasured		mRNAMeasured		PredLower			File
0	IRF1	0.80	IFNG	4	0.854469	-1.96822	3.67716	True	./plots-ifng-irf1.txt
1	IRF1	0.80	STAT1	3	8.37789	6.92155	9.83424	False	./plots-stat1-irf1.txt
2	PSMB9	0.20	IFNG	4	4.65949	1.57124	7.74773	False	./plots-ifng- psmb9.txt
3	PSMB9	0.20	IRF1	8	8.68088	6.82674	10.535	False	./plots-irf1- psmb9.txt
4	IRF1	0.80	PSMB9	4	5.94286	4.24666	7.63905	False	./plots-psmb9- irf1.txt
5	PSMB9	0.20	STAT1	3	10.16	8.66411	11.656	False	./plots-stat1- psmb9.txt
6	ICAM2	0.05	ICAM3	6	7.57583	6.39129	8.76036	False	./plots-icam3- icam2.txt
7	ICAM3	0.30	ICAM2	5	6.29989	4.84843	7.75136	False	./plots-icam2- icam3.txt
8	IRF1	0.80	CCR5	3	4.05002	1.77622	6.32381	False	./plots-ccr5-irf1.txt
9	PSMB9	0.20	CCR5	3	6.95539	4.51654	9.39424	False	./plots-ccr5- psmb9.txt
10	ICAM3	0.30	CCR5	3	6.81503	4.68624	8.94383	False	./plots-ccr5- icam3.txt
11	IRF1	0.80	CCL4	2	3.8627	1.63157	6.09384	False	./plots-ccl4-irf1.txt
12	PSMB9	0.20	CCL4	2	6.8062	4.39482	9.21758	False	./plots-ccl4- psmb9.txt
13	IRF1	0.80	CCL5	8	5.56954	3.25442	7.88466	True	./plots-ccl5-irf1.txt
14	ICAM2	0.05	CCL5	8	9.77636	7.21074	12.342	False	./plots-ccl5- icam2.txt
15	ICAM3	0.30	CCL5	8	8.66831	6.48355	10.8531	False	./plots-ccl5- icam3.txt
16	IRF1	0.80	CXCL9	5	5.41798	2.36354	8.47243	False	./plots-cxcl9-irf1.txt
17	PSMB9	0.20	CXCL9	5	9.57525	6.19373	12.9568	False	./plots-cxcl9- psmb9.txt
18	IRF1	0.80	CXCL10	8	4.56394	1.43773	7.69016	True	./plots-cxcl10- irf1.txt
19	PSMB9	0.20	CXCL10	8	8.30392	5.05259	11.5552	False	./plots-cxcl10- psmb9.txt
20	IRF1	0.80	GZMA	9	3.37197	0.758197	5.98575	True	./plots-gzma-irf1.txt
21	PSMB9	0.20	GZMA	9	6.93666	4.10937	9.76396	False	./plots-gzma- psmb9.txt
22	ICAM2	0.05	GZMA	9	7.94827	5.08951	10.807	False	./plots-gzma- icam2.txt
23	ICAM3	0.30	GZMA	9	6.72559	4.25408	9.1971	False	./plots-gzma- icam3.txt
24	PRF1	0.70	IRF1	8	6.73477	4.68821	8.78132	False	./plots-irf1-prf1.txt
25	PRF1	0.70	PSMB9	4	6.44182	4.45315	8.43048	False	./plots-psmb9- prf1.txt
26	PRF1	0.70	CCL4	2	4.48771	1.98664	6.98877	False	./plots-ccl4-prf1.txt
27	PSMB9	0.20	HLA-C	5	11.3431	9.65573	13.0304	False	./plots-hlac- psmb9.txt
28	HLA-C	0.10	PSMB9	4	8.86295	6.91749	10.8084	False	./plots-psmb9- hlac.txt
									· · · · · · · · · · · · · · · · · · ·

				еріпіс	1				T
	MethGene	MethMeasured	mRNAGene	mRNAMeasured		PredLower	• • • • • • • • • • • • • • • • • • • •	Result	File
29	HLA-G	1.00	HLA-B	4	7.16486	5.29609	9.03362	False	./plots-hlab-hlag.txt
30	ICAM2	0.05	HLA-DMA	8	9.34865	7.40477	11.2925	False	./plots-hladma- icam2.txt
31	ICAM3	0.30	HLA-DMA	8	8.62507	6.92924	10.3209	False	./plots-hladma- icam3.txt
32	PRF1	0.70	HLA-DRA	6	8.94546	6.50846	11.3825	False	./plots-hladra- prf1.txt
33	HLA-B	0.20	HLA-DRA	6	10.8985	8.57011	13.2269	False	./plots-hladra- hlab.txt
34	ICAM3	0.30	PTPN6	8	7.97993	6.44295	9.5169	False	./plots-ptpn6- icam3.txt
35	PTPN6	0.80	ICAM3	6	5.86746	4.88155	6.85338	False	./plots-icam3- ptpn6.txt
36	ICAM2	0.05	PTPN6	8	9.1047	7.3216	10.8878	False	./plots-ptpn6- icam2.txt
37	PTPN6	0.80	ICAM2	5	4.7189	3.31336	6.12444	False	./plots-icam2- ptpn6.txt
38	PTPN6	0.80	CCL5	8	5.83604	3.66415	8.00793	False	./plots-ccl5- ptpn6.txt
39	GZMA	0.80	PTPN6	8	5.64685	3.52884	7.76486	True	./plots-ptpn6- gzma.txt
40	PTPN6	0.80	GZMA	9	3.65717	1.19924	6.11511	True	./plots-gzma- ptpn6.txt
41	PTPN6	0.80	VCAM1	7	5.30019	3.10743	7.49295	False	./plots-vcam1- ptpn6.txt
42	PTPN6	0.80	CCL3	8	4.36598	2.37939	6.35256	True	./plots-ccl3- ptpn6.txt
43	PTPN6	0.80	CCR5	3	4.2792	2.1389	6.41949	False	./plots-ccr5- ptpn6.txt
44	PTPN6	0.80	GZMB	3	3.62069	1.08079	6.16059	False	./plots-gzmb- ptpn6.txt
45	PTPN6	0.80	CCL4	2	4.11025	1.95916	6.26134	False	./plots-ccl4- ptpn6.txt
46	PTPN6	0.80	IFNG	4	1.30019	-1.66677	4.26715	False	./plots-ifng- ptpn6.txt
47	PRF1	0.70	PTPN6	8	5.97144	3.92401	8.01888	False	./plots-ptpn6- prf1.txt
48	PTPN6	0.80	PRF1	1	4.6108	2.30472	6.91687	False	./plots-prf1- ptpn6.txt
49	IRF1	0.80	PTPN6	8	5.45893	3.56424	7.35363	True	./plots-ptpn6-irf1.txt
50	PTPN6	0.80	IRF1	8	6.43176	4.69452	8.169	False	./plots-irf1-ptpn6.txt
51	PTPN6	0.80	CXCL9	5	5.85984	2.59717	9.12251	False	./plots-cxcl9- ptpn6.txt

In []: