Limbaje Formale, Automate și Compilatoare

Curs 1

2019-20

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- Limbaje şi gramatici de tip 3 (regulate)

Limbaje Formale, Automate și Compilatoare

Titulari curs:

O. Captarencu: otto@info.uaic.ro
 http://profs.info.uaic.ro/~otto/lfac.html

A. Moruz:mmoruz@info.uaic.ro

Sistem evaluare

- 7 seminarii, 6 laboratoare;
- AS = activitatea la seminar (max 10 puncte);
- AL = activitatea la laborator (max 10 puncte);
- T1,T2 teste scrise în săptămânile 8, respectiv în sesiune;
 Punctajul final se obţine astfel:

```
P = 3 * AS + 3 * AL + 2 * T1 + 2 * T2
```

- Condiţii miminale de promovare: $AS \ge 5$, $AL \ge 5$, $T1 \ge 5$, $T2 \ge 5$;
- Punctaj minim pentru promovare: P ≥ 50;
- Nota finală (N) se va stabili astfel:
 dacă P < 50: N = 4, altfel: N = round(P/10) (rotunjirea se face la cel mai apropiat întreq);

Sistem evaluare

- AS = activitatea la seminar (max 10 puncte):
 - media notelor de la două teste scrise, notate de la 0 la 10 (fără rotunjiri)
- AL = activitatea la laborator (max 10 puncte):
 - 1 test laborator, 1 proiect (note de la 0 la 10)
 - AL = media celor 2 note (fără rotunjiri)

Tematica cursului (partea I)

Tematica cursului (partea I)

Tematica cursului (partea I)

- Limbaje şi gramatici
- Limbaje regulate; gramatici, automate, expresii regulate
- Limbaje independente de context; gramatici, automate pushdown

Tematica cursului (partea II)

- Limbaje de programare: proiectare şi implementare
- Analiza lexicală
- Analiza sintactică
- Traducere în cod intermediar

Bibliografie (selecții)

- A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: Compilers:
 Principles, Techniques, and Tools. Boston: Addison-Wesley, 2007
- Gh. Grigoras. Constructia compilatoarelor Algoritmi fundamentali, Ed. Universitatii Al. I. "Cuza Iasi", ISBN 973-703-084-2, 274 pg., 2005
- Mopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2006). Introduction to Automata Theory, Languages, and Computation (3rd ed.). Addison-Wesley
- J. Toader Limbaje formale şi automate, Editura Matrix Rom, Bucuresti, 1999.
- J. Toader, S. Andrei Limbaje formale şi teoria automatelor. Teorie şi practică, Editura Universitatii "Al. I. Cuza", Iasi, 2002.

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- Limbaje şi gramatici de tip 3 (regulate)

• Alfabet: V o mulţime finită (elementele lui V = simboluri)

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ε sau λ.

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ϵ sau λ .
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notaţie: |u|.

$$|\epsilon| = 0$$

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ϵ sau λ .
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notație: |u|.

$$|\epsilon| = 0$$

• V^* - multimea tuturor cuvintelor peste alfabetul V, inclusiv ϵ .

$$\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$$

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ϵ sau λ .
- ullet Lungimea unui cuvânt u: numarul simbolurilor sale. Notație: |u|.

$$|\epsilon| = 0$$

• V^* - multimea tuturor cuvintelor peste alfabetul V, inclusiv ϵ .

$$\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,\ldots\}$$

ullet V $^+$ - multimea tuturor cuvintelor nenule peste alfabetul V

$$\{0,1\}^+ = \{0,1,00,01,10,11,000,001,\ldots\}$$

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

Concatenarea a doua cuvinte x, y: cuvântul x · y obţinut din simbolurile lui x, în ordinea în care apar, urmate de cele ale lui y de asemenea în ordinea în care apar:

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

Concatenarea este asociativă

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenarea este asociativă
- (V^*, \cdot) este monoid (ϵ este element neutru), se numeşte monoidul liber generat de V.

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenarea este asociativă
- (V^*, \cdot) este monoid (ϵ este element neutru), se numeşte monoidul liber generat de V.
- Cuvântul v este un prefix al cuvântului u dacă $\exists w \in V^* : u = vw$; dacă $w \in V^+$, atunci v este un prefix propriu al lui u.

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenarea este asociativă
- (V^*, \cdot) este monoid (ϵ este element neutru), se numeşte monoidul liber generat de V.
- Cuvântul v este un prefix al cuvântului u dacă $\exists w \in V^* : u = vw$; dacă $w \in V^+$, atunci v este un prefix propriu al lui u.
- Cuvântul v este un sufix al cuvântului u dacă $\exists w \in V^* : u = wv$; dacă $w \in V^+$, atunci v este un sufix propriu al lui u.

- Fie V un alfabet. O submulţime L ⊆ V* este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere (matematică) finită.
- O descriere poate fi:

- Fie V un alfabet. O submulţime L ⊆ V* este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere (matematică) finită.
- O descriere poate fi:
 - neformală (în limbaj natural):
 - multimea cuvintelor peste alfabetul {0, 1} care contin un numar par de 0.
 - $L = \{x \in V^+ : |x| \text{ este par}\}.$
 - $\bullet \ \{a^nb^n|n\in N\}.$
 - $\{w \in \{0,1\}^* | w \text{ se termina in } 00\}.$

- Fie V un alfabet. O submulţime L ⊆ V* este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere (matematică) finită.
- O descriere poate fi:
 - neformală (în limbaj natural):
 - multimea cuvintelor peste alfabetul {0, 1} care contin un numar par de 0.
 - $L = \{x \in V^+ : |x| \text{ este par}\}.$
 - $\bullet \ \{a^nb^n|n\in N\}.$
 - $\{w \in \{0,1\}^* | w \text{ se termina in } 00\}.$
 - formală (descriere matematică):
 - o descriere inductivă a cuvintelor
 - o descriere generativă a cuvintelor (gramatică generativă)
 - o descriere a unei metode de recunoaştere a cuvintelor din limbaj (automat finit, automat pushdown, etc.)

Operaţii cu limbaje

- Operatiile cu multimi (reuniune, intersectie etc)
- Produs de limbaje: $L_1 \cdot L_2 = \{u \cdot v | u \in L_1, v \in L_2\}$

Exemplu:

$$L_1 = \{a^n, n \ge 1\}, L_2 = \{b^n, n \ge 1\}$$

 $L_1 \cdot L_2 = \{a^n b^m, n \ge 1, m \ge 1\}$

- Iteraţia (produsul Kleene): $L^* = \bigcup_{n>0} L^n$, unde:
 - $L^0 = \{\epsilon\}$
 - $\bullet L^{n+1} = L^n \cdot L$

$$L = \{a\}, L^0 = \{\epsilon\}, L^1 = L, L^2 = \{aa\}, \dots, L^n = \{a^n\}$$

 $L^* = \{a^n, n > 0\}$

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- 5 Limbaje și gramatici de tip 3 (regulate)

Gramatici

Definiție 1

O gramatica este un sistem G = (N, T, S, P), unde:

- N şi T sunt două alfabete disjuncte:
 - N este multimea neterminalilor
 - T este multimea terminalilor
- ullet $S \in N$ este simbolul de start (neterminalul iniţial)
- P este o multime finita de reguli (producţii) de forma $x \to y$, unde $x, y \in (N \cup T)^*$ şi x conţine cel puţin un neterminal.

Derivare

Definiție 2

Fie G = (N, T, S, P) o gramatica şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq și v = pyq.

Derivare

Definiție 2

Fie G = (N, T, S, P) o gramatica şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq şi v = pyq.

• Daca $u_1 \Rightarrow u_2 \dots \Rightarrow u_n, n > 1$, spunem ca u_n este derivat din u_1 în G si notam $u_1 \Rightarrow^+ u_n$.

Derivare

Definiție 2

Fie G = (N, T, S, P) o gramatica şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq şi v = pyq.

- Daca $u_1 \Rightarrow u_2 \ldots \Rightarrow u_n, n > 1$, spunem ca u_n este derivat din u_1 în G şi notam $u_1 \Rightarrow^+ u_n$.
- Scriem $u \Rightarrow^* v$ dacă $u \Rightarrow^+ v$ sau u = v.

Limbaj generat

Definiție 3

Limbajul generat de gramatica G este:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Limbaj generat

Definiție 3

Limbajul generat de gramatica G este:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Definiție 4

Două gramatici G_1 și G_2 sunt echivalente dacă $L(G_1) = L(G_2)$.

- $G = (N, T, S, P), N = \{S, X, A\}, T = \{a, b\}, P \text{ constă din: }$

 - 2 $aX \rightarrow aAb$
 - $3 Xb \rightarrow bA$
 - lacktriangledown aA o aa
- $L(G) = \{ab, abb, aabb\}$
- Gramatică echivalentă cu un singur neterminal ?
- Ce limbaj generează gramatica dacă sunt eliminate utlimele două reguli?

- $L = \{a^n b^n | n \ge 1\}$
- Definiţia inductivă:
 - ab ∈ L
 - Daca $X \in L$, atunci $aXb \in L$
 - Nici un alt cuvânt nu face parte din L

- $L = \{a^n b^n | n \ge 1\}$
- Definiţia inductivă:
 - ab ∈ L
 - Daca $X \in L$, atunci $aXb \in L$
 - Nici un alt cuvânt nu face parte din L
- Definiţia generativă:
 - $G = (\{X\}, \{a, b\}, X, P)$, unde $P = \{X \to aXb, X \to ab\}$
 - Derivarea cuvântului a³b³:

$$X \Rightarrow aXb \Rightarrow a(aXb)b \Rightarrow aa(ab)bb$$

- $L = \{a^n b^n c^n | n \ge 1\}$
- $G = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P \text{ constă din: }$

 - $S \rightarrow aSXc$
- Derivarea cuvântului a³b³c³:
 - $S \Rightarrow^{(2)} a\underline{S}Xc \Rightarrow^{(2)} aa\underline{S}XcXc \Rightarrow^{(1)} aaab\underline{c}XcXc \Rightarrow^{(3)} aaa\underline{b}XccXc \Rightarrow^{(4)} aaabbc\underline{c}Xc \Rightarrow^{(3)} aaabb\underline{c}Xcc \Rightarrow^{(3)} aaabbbccc \Rightarrow^{(4)} aaabbbccc = a^3b^3c^3$

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- 5 Limbaje și gramatici de tip 3 (regulate)

Gramatici de tip 0 (generale)

Nu exista restrictii asupra regulilor

- Gramatici de tip 0 (generale)
 Nu exista restrictii asupra regulilor
- ② Gramatici de tip 1 (dependente de context) reguli de forma $pxq \rightarrow pyq$ unde $x \in N$, $y \neq \epsilon$, $p,q \in (N \cup T)^*$, $S \rightarrow \epsilon$, caz în care S nu apare în dreapta regulilor

- Gramatici de tip 0 (generale)
 Nu exista restrictii asupra regulilor
- ② Gramatici de tip 1 (dependente de context) reguli de forma pxq → pyq unde x ∈ N, y ≠ ε, p, q ∈ (N ∪ T)*, S → ε, caz în care S nu apare în dreapta regulilor
- **3** Gramatici de tip 2 (independente de context) reguli de forma $A \rightarrow y$ unde $A \in N$ și $y \in (N \cup T)^*$

- Gramatici de tip 0 (generale)
 Nu exista restrictii asupra regulilor
- ② Gramatici de tip 1 (dependente de context) reguli de forma pxq → pyq unde x ∈ N, y ≠ ε, p, q ∈ (N ∪ T)*, S → ε, caz în care S nu apare în dreapta regulilor
- **3** Gramatici de tip 2 (independente de context) reguli de forma $A \rightarrow y$ unde $A \in N$ şi $y \in (N \cup T)^*$
- **Gramatici de tip 3 (regulate)** reguli $A \rightarrow u$ sau $A \rightarrow uB$ unde $A, B \in N$ si $u \in T^*$.

Tip 1: $pxq \rightarrow pyq$ unde $x \in N$, $y \neq \epsilon$, $p,q \in (N \cup T)^*$, $S \rightarrow \epsilon$

- $G = (N, T, S, P), N = \{S, A, B\}, T = \{a, b, c\}, P$:
 - $(1)S \rightarrow aaAc$
 - (2) $aAc \rightarrow aAbBc$
 - $(3)bB \rightarrow bBc$
 - $(4)Bc \rightarrow Abc$
 - $(5)A \rightarrow a$

Gramatica tip 1

- $G = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P$:
 - $(1)S \rightarrow abc$
 - (2) $S \rightarrow aSXc$
 - $(3)cX \rightarrow Xc$ (nu este regulă de tip 1!, gramatica va fi de tip 0)
 - $(4)bX \rightarrow bb$

Tip 2: $A \rightarrow y$ unde $A \in N$ şi $y \in (N \cup T)^*$

Tip3: $A \rightarrow u$ sau $A \rightarrow uB$ unde $A, B \in N$ şi $u \in T^*$.

• G:

$$(1)x \rightarrow axb$$

(2)
$$x \rightarrow \epsilon$$

(Gramatică tip 2)

• G:

$$(1)x \rightarrow ax$$

$$(2)x \rightarrow bx$$

(3)
$$x \rightarrow \epsilon$$

(Gramatică tip 3)

Fie

$$G = (\{E\}, \{a, +, -, (,)\}, E, \{E \rightarrow a, E \rightarrow (E + E), E \rightarrow (E - E)\})$$

- Ce tip are gramatica G?
- Construiti derivari din E pentru cuvintele (a + a) si ((a + a) a)
- Cuvantul (a + a a) poate fi derivat din E?
- Descrieti limbajul L(G)
- Fie $G = (\{A, B\}, \{a, b\}, A, \{A \rightarrow aA, A \rightarrow B, B \rightarrow bB, B \rightarrow \epsilon\})$
 - Ce tip are gramatica G?
 - Descrieti limbajul L(G)

Clasificarea limbajelor

- Un limbaj L este de tipul j daca exista o gramatica G de tipul j astfel incat L(G) = L, unde $j \in \{0, 1, 2, 3\}$.
- Vom nota cu \mathcal{L}_j clasa limbajelor de tipul j, unde $j \in \{0, 1, 2, 3\}$.
- Are loc: $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$
- Incluziunile sunt stricte:
 - orice limbaj de tip j + 1 este si de tip $j \in \{0, 1, 2\}$
 - exista limbaje de tip j care nu sunt de tip j + 1, $j \in \{0, 1, 2\}$

Proprietăți

- ullet Fiecare din familiile \mathcal{L}_j cu $0 \leq j \leq 3$ contine toate limbajele finite
- Fiecare din familiile \mathcal{L}_j cu $0 \le j \le 3$ este inchisa la operatia de reuniune:

$$L_1, L_2 \in \mathcal{L}_j \Longrightarrow L_1 \cup L_2 \in \mathcal{L}_j,$$

$$\forall j : 0 \le j \le 3$$

Notații alternative pentru gramatici de tip 2: BNF

The syntax of C in Backus-Naur Form

```
<translation-unit> ::= {<external-declaration>}*
<external-declaration> ::= <function-definition>
                           <declaration>
<function-definition> ::= {<declaration-specifier>}* <declarator> {<declaration>}* <compound-statement
<declaration-specifier> ::= <storage-class-specifier>
                            <type-specifier>
                            <type-qualifier>
<storage-class-specifier> ::= auto
                              register
                              static
                              extern
                              typedef
<type-specifier> ::= void
                     char
```

gramatici DTD

 generează mulţimea documentelor XML cu o anumită structură (limbaj independent de context)

```
<!ELEMENT family (person)+>
<!ELEMENT person (name,addrres*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
```

gramatici DTD

• Un "cuvânt" din limbajul generat de gramtica DTD:

```
<?xml verson = "1.0">
<!DOCTYPE family SYSTEM "family.dtd">
<family>
    <person>
        <name>John</name>
        <address>First address</address>
        <address>Second address</address>
    </person>
   <person>
        <name>Sam</name>
   </person>
  <person>
        <name>Sarah</name>
        <address>First address</address>
    </person>
</family>
```

XML Schema

rol similar gramaticilor DTD

```
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="family">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="name" type="xs:string"/>
      <xs:element name="address type = "xs:string" min0ccurs = "0" max0ccures="unbounded">
    </xs:sequence>
  </xs:complexType>
</xs:element>
</xs:schema>
```

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- 3 Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- 5 Limbaje şi gramatici de tip 3 (regulate)

Gramatici de tip 3

- O gramatică G = (N, T, S, P) este de tip 3 dacă regulile sale au forma: $A \rightarrow u$ sau $A \rightarrow uB$ unde $A, B \in N$ si $u \in T^*$.
- Exemplu: $G = (\{D\}, \{0, 1, ..., 9\}, D, P)$

Unde P este:

$$D \rightarrow 0D|1D|2D|\dots|9D$$

$$D \rightarrow 0|1|\dots|9$$

• Fie gramatica $G = (\{A, B\}, \{I, d\}, A, P)$ unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ ($I = litera$, $d = cifra$)

• Fie gramatica $G = (\{A, B\}, \{I, d\}, A, P)$ unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ ($I = \text{litera}$, $d = \text{cifra}$)
 $L(G)$: multimea identificatorilor

• Fie gramatica $G = (\{A, B\}, \{+, -, d\}, A, P)$ unde P este:

$$A \rightarrow +dB|-dB|dB, \ B \rightarrow dB|\epsilon \ (d = cifra)$$

• Fie gramatica $G = (\{A, B\}, \{I, d\}, A, P)$ unde P este:

$$A \rightarrow IB, B \rightarrow IB|dB|\epsilon$$
 (I = litera, d = cifra)

L(G): multimea identificatorilor

• Fie gramatica $G = (\{A, B\}, \{+, -, d\}, A, P)$ unde P este:

$$A \rightarrow +dB|-dB|dB$$
, $B \rightarrow dB|\epsilon$ ($d = cifra$)

L(G): multimea constantelor intregi

Limbaje Formale, Automate și Compilatoare

Curs 2

2019-20

Curs 2

- Forma normală pentru gramatici de tip 3
- 2 Proprietăți de închidere pentru \mathcal{L}_3
- 3 Automate finite deterministe
- Automate finite nedeterministe

Forma normală

 O gramatică de tip 3 este in formă normală daca regulile sale sunt de forma A → a sau A → aB, unde a ∈ T, si, eventual S → ε (caz in care S nu apare in dreapta regulilor).

 Pentru orice gramatica de tip 3 exista o gramatica echivalenta in forma normala.

Forma normală

- Obtinerea gramaticii in forma normala echivalenta cu o gramatica de tip 3:
 - Se poate arata ca pot fi eliminate regulile de forma A → B
 (redenumiri) si cele de forma A → ε (reguli de stergere), cu
 exceptia, eventual a regulii S → ε.
 - Orice regula de forma $A \to a_1 a_2 \dots a_n$ se inlocuieste cu $A \to a_1 B_1, B_1 \to a_2 B_2, \dots, B_{n-2} \to a_{n-1} B_{n-1}, B_{n-1} \to a_n, n > 1, B_1, \dots, B_{n-1}$ fiind neterminali noi.
 - Orice regula de forma $A \to a_1 a_2 \dots a_n B$ se inlocuieste cu $A \to a_1 B_1$, $B_1 \to a_2 B_2, \dots, B_{n-2} \to a_{n-1} B_{n-1}, B_{n-1} \to a_n B, n > 1, B_1, \dots, B_{n-1}$ fiind neterminali noi
 - Transformarile care se fac nu modifica limbajul generat de gramatica

Curs 2

- Forma normală pentru gramatici de tip 3
- $oldsymbol{2}$ Proprietăți de închidere pentru \mathcal{L}_3
- 3 Automate finite deterministe
- Automate finite nedeterministe

Fie L, L_1, L_2 limbaje regulate: există gramaticile G, G_1, G_2 de tip 3 astfel ca $L = L(G), L_1 = L(G_1)$ şi $L_2 = L(G_2)$.

Atunci, următoarele limbaje sunt de asemenea regulate:

- $0 L_1 \cup L_2$
- $2 L_1 \cdot L_2$

- $L_1 \setminus L_2$

Închiderea la reununiune

Fie L, L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1), L_2 = L(G_2)$.

Presupunem $N_1 \cap N_2 = \emptyset$

Închiderea la reuniune: se arata ca $L_1 \cup L_2 \in \mathcal{L}_3$:

Gramatica
$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$$

LFAC (2019-20) Curs 2 7/30

Închiderea la operația de produs

Fie L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1), L_2 = L(G_2)$.

Presupunem $N_1 \cap N2 = \emptyset$

Gramatica $G = (N_1 \cup N_2, T_1 \cup T_2, S_1, P)$ unde P consta din:

- regulile de forma $A \rightarrow uB$ din P_1 ($B \in N_1$)
- reguli $A o uS_2$ pentru orice regula de forma A o u ($u \in T_1^*$) din P_1
- toate regulile din P₂

este de tip 3 si genereaza limbajul L_1L_2 .

Exemplu

$$L = \{uc^n, u \in \{a, b\}^+, n \ge 2\}$$

$$L = L_1 \cdot L_2$$
, unde: $L_1 = \{a, b\}^+, L_2 = \{c^n, n \ge 2\}$

G1:

G2:

G

 $(\{S_1, S_2\}, \{a, b, c\}, S_1, P),$

P:

- $S_2 \rightarrow cc$

Închiderea la operația de iterație

Fie *L* limbaj de tip 3 (regulat).

Fie G = (N, T, S, P) de tip 3 care genereaza L(L = L(G)).

Presupunem ca simbolul de start S nu apare in partea dreapta a vreunei reguli.

Gramatica G' = (N, T, S, P') unde P' consta din

- reguli $A \rightarrow uB$ din P $(B \in N)$
- reguli $A \to uS$, pentru orice regula $A \to u$ din P ($u \in T^*$), diferită de $S \to \epsilon$
- ullet regula ${\cal S}
 ightarrow \epsilon$

este de tip 3 si generează L*

Exemplu

$$L = \{a^{n_1}b^{m_1}a^{n_2}b^{m_2}\dots a^{n_k}b^{m_k}, n_i, m_i \ge 1 \forall i \in \{1, k\}, k \ge 0\}$$

$$L = \{a^nb^m, n \ge 1, m \ge 1\}^*$$

G:

G':

- $\mathbf{O} S \rightarrow \mathbf{X}$

- $2 x \rightarrow ax$ $2 x \rightarrow ax$
- $v \rightarrow bv$

 $\Psi V \rightarrow bV$

- \bullet $S \rightarrow \epsilon$

Închiderea la intersecție

Fie L_1, L_2 limbaje de tip 3 (regulate).

Fie $G_1 = (N_1, T_1, S_1, P_1)$ si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3, în formă normală, cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Gramatica $G = (N_1 \times N_2, T_1 \cap T_2, (S_1, S_2), P)$, unde P constă din:

- ullet $(S_1,S_2) o\epsilon$, dacă $S_1 o\epsilon\in P_1$ și $S_2 o\epsilon\in P_2$
- ullet $(A_1,B_1) o a(A_2,B_2)$, dacă $A_1 o aA_2\in P_1$ și $B_1 o aB_2\in P_2$
- ullet $(A_1,A_2) o a$, dacă $A_1 o a\in P_1$ și $A_2 o a\in P_2$

este de tip 3 și generează limbajul $L_1 \cap L_2$

Exemplu

 $L(G1) = \{ w \in \{0,1\}^*, \text{ w contine cel putin un simbol '0'} \},$

$$L(G2) = \{ w \in \{0,1\}^*, \text{ w se termina cu '1'} \}$$

 $L(G) = \{w \in \{0,1\}^*, \text{ w contine cel putin un simbol '0' si se termina cu '1'}\}$

G

G1:

G2:

2 $S_1 \to 0A$ **2** $S_2 \to 1S_2$

3 $S_1 \to 0$ **3** $S_2 \to 1$

 $A \rightarrow 1A$

1 S₁ → 1**S**₁

 $A \rightarrow 0$

2
$$S_2 \rightarrow 1S_2$$
 2 $(A, S_2) \rightarrow 1(A, S_2)$

$$(S_1, S_2) \rightarrow 0(A, S_2)$$

$$(A, S_2) \rightarrow 0(A, S_2)$$

⑤
$$(A, S_2)$$
 → 1

Exemplu

 $L(G1) = \{ w \in \{0,1\}^*, \text{ w contine cel putin un simbol '0'} \},$

$$L(G2) = \{ w \in \{0,1\}^*, \text{ w se termina cu '1'} \}$$

 $L(G) = \{w \in \{0,1\}^*, \text{ w contine cel putin un simbol '0' si se termina cu '1'}\}$

G1:

G2 :

$$left{0} S
ightarrow 1S$$

$$S_1 \rightarrow 0A$$

②
$$S_1 \to 0A$$
 ② $S_2 \to 1S_2$ ② $X \to 1X$

3
$$S_2 \to 1$$

$$\bigcirc$$
 $X \rightarrow 1$

$$A \rightarrow 0$$

Curs 2

- Forma normală pentru gramatici de tip 3
- 2 Proprietăți de închidere pentru \mathcal{L}_{3}
- Automate finite deterministe
- Automate finite nedeterministe

Automate finite

- Mecanism de recunoaştere (acceptare) pentru limbaje
- Limbaje de tip 3
- Mulţime finită de stări

Automate finite

Definiție 1

Un automat finit determinist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q şi Σ sunt mulţimi finite, nevide, numite mulţimea stărilor respectiv alfabetul de intrare
- q₀ ∈ Q este starea iniţială
- $F \subseteq Q$ este mulţimea stărilor finale
- δ este o funcție , $\delta: Q \times \Sigma \to Q$, numită funcția de tranziție

Reprezentare prin diagrame(grafuri) de tranziție

Stări:

s

Stare iniţială:

0

Stări finale:

1

Funcția de tranziție:

(i) a

Reprezentare prin matricea de tranziţie

$$A = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$

Intrare	а	b
Stare δ		
q0	q0	q1
q1	q1	q1

Limbajul acceptat

- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to Q$
 - $\hat{\delta}(q,\epsilon) = q, \forall q \in Q;$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a)), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*$

Limbajul acceptat

Definiție 2

Limbajul acceptat (recunoscut) de automatul $A = (Q, \delta, \Sigma, q_0, F)$ este mulţimea :

$$L(A) = \{w | w \in \Sigma^*, \hat{\delta}(q_0, w) \in F\}.$$

- Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) ajunge într-o stare finală.
- $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$. Din acest motiv, $\hat{\delta}$ va fi notată de asemenea cu δ .
- Două automate A și A' sunt echivalente, dacă L(A) = L(A')

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

Automate deterministe pentru:

- $L = \{ w \in \{0,1\}^* | w \text{ conține un număr par de 0} \}$
- $L = \{w \in \{0,1\}^* | w \text{ se termina cu } 11\}$

Curs 2

- Forma normală pentru gramatici de tip 3
- 2 Proprietăți de închidere pentru \mathcal{L}_{3}
- 3 Automate finite deterministe
- Automate finite nedeterministe

Automate finite nedeterministe

Definiție 3

Un automat finit nedeterminist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție, $\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observaţie:

A este automat determinist, dacă

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Intrare	а	b	С
Stare			
0	{0}	{1,3}	Φ
1	Φ	{2}	Φ
2	Φ	{4}	Φ
3	Φ	{4}	Φ
4	Φ	Φ	{4}

Extensia lui δ la cuvinte

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

Extensia lui δ la cuvinte

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$
 - $\hat{\delta}(q,\epsilon) = \{q\}, \forall q \in Q;$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*.$

Limbajul acceptat

Definiție 4

Limbajul acceptat (recunoscut) de automatul finit nedeterminist $A = (Q, \Sigma, \delta, q_0, F)$ este mulţimea :

$$L(A) = \{ w | w \in \Sigma^*, \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

 Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) poate să ajungă într-o stare finală.

Teorema 1

Pentru orice automat nedeterminist A, există unul determinist A' echivalent.

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$
- Pentru aplicaţii se construiesc doar stările accesibile din starea iniţială

Exemplu

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

Au loc:

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

Au loc:

• $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w), \forall w \in \Sigma^*$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

Au loc:

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \bigcup_{s \in \{q_0\}} \delta(s, w) = \delta(q_0, w)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a)$

Au loc:

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \bigcup_{s \in \{q_0\}} \delta(s, w) = \delta(q_0, w)$
- $w \in L(A') \Leftrightarrow$ $\delta'(Q_0, w) \in F' \Leftrightarrow \delta'(Q_0, w) \cap F \neq \emptyset \Leftrightarrow \delta(q_0, w) \cap F \neq \emptyset$ $\Leftrightarrow w \in L(A)$

Limbaje Formale, Automate și Compilatoare

Curs 3

2019-20

Structura cursului

1 Automate finite cu ϵ -tranziţii

Automatul determinist minimal

Curs 3

1 Automate finite cu ϵ -tranziţii

2 Automatul determinist minimal

Automate finite cu ϵ -tranziţii

Definiție 1

Un automat finit cu ϵ -tranziții este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție , $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observaţie:

- A este automat nedeterminist, dacă $\delta(q, \epsilon) = \emptyset, \forall q \in Q$
- A este automat determinist, dacă, în plus:

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Extensia lui δ la cuvinte

- Cl(q)-mulţimea stărilor la care se poate ajunge prin ϵ -tranziţii:
 - $q \in Cl(q)$
 - $q' \in Cl(q) \Rightarrow \delta(q', \epsilon) \subseteq Cl(q)$
- Dacă $S \subseteq Q$, atunci notăm:

$$Cl(S) = \bigcup_{q \in S} Cl(q)$$

- Extensia lui δ la cuvinte: $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

 - $\hat{\delta}(q, ua) = Cl(\delta(\hat{\delta}(q, u), a))), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

Extensia lui δ la cuvinte

• $\hat{\delta}(q, a) = Cl(\delta(Cl(q), a)), \forall q \in Q, \forall a \in \Sigma$

- În cazul automatelor cu ϵ tranziţii vom păstra notaţia $\hat{\delta}$ pentru extensie pentru că, în general, $\hat{\delta}(q,\epsilon) \neq \delta(q,\epsilon)$ şi $\hat{\delta}(q,a) \neq \delta(q,a), a \in \Sigma$.
- $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*$

Limbajul acceptat

Definiție 2

Limbajul acceptat (recunoscut) de automatul cu ϵ -tranziţii

$$A = (Q, \Sigma, \delta, q_0, F)$$
 este mulţimea :

$$L(A) = \{ w | w \in \Sigma^*, \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

 Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) poate să ajungă într-o stare finală.

Automatul determinist echivalent

Teorema 1

Pentru orice automat A cu ϵ - tranziții există un automat A' determinist echivalent cu A

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (Q', \Sigma, \delta', q'_0, F')$ unde:

- $Q' = 2^Q$
- $q_0' = CI(q_0)$
- $\delta'(S, a) = Cl(\bigcup_{s \in S} \delta(s, a))$ $S \in Q', a \in \Sigma$
- $S \in F' \Leftrightarrow S \cap F \neq \emptyset$

Automatul determinist echivalent

Teorema 1

Pentru orice automat A cu ϵ - tranziţii există un automat A' determinist echivalent cu A

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (Q', \Sigma, \delta', q'_0, F')$ unde:

- $Q' = 2^Q$
- $q_0' = CI(q_0)$
- $\delta'(S, a) = CI(\bigcup_{s \in S} \delta(s, a))$ $S \in Q', a \in \Sigma$
- $S \in F' \Leftrightarrow S \cap F \neq \emptyset$

Au loc:

- $\delta'(q_0', w) = \hat{\delta}(q_0, w), \forall w \in \Sigma^*$
- L(A') = L(A)

Automatul determinist echivalent - algoritm

- Intrare: Automatul A (cu ε tranziţii) ; CI(S)
- leşire: Automatul determinist $A' = (Q', \Sigma, \delta', q'_0, F')$, echivalent cu A.

```
q_0' = CI(\{q_0\}); Q' = \{q_0'\};
marcat(q'_0) = false; F' = \emptyset;
if (q'_0 \cap F \neq \emptyset) then F' = F' \cup \{q'_0\};
while (\exists S \in Q' \&\&! marcat(S)) {
       for (a \in \Sigma){
            S' = CI(\bigcup_{s \in S} \delta(s, a));
           \delta'(S, a) = S';
           if (S' \notin Q'){
              Q' = Q' \cup \{S'\};
              marcat(S') = false;
              if (S' \cap F \neq \emptyset) then F' = F' \cup \{S'\};
       marcat(S) = true;
```

Exemplu

Exemplu

Curs 3

1 Automate finite cu ϵ -tranziţii

Automatul determinist minimal

Stări accesibile

• Fie $A = (Q, \Sigma, \delta, q_0, F)$ automat finit determinist

Starea q este accesibilă în A dacă există un cuvânt $w \in \Sigma^*$ astfel încât $q = \delta(q_0, w)$.

Stări inseparabile

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist.

Definiție 3

Stările q_1 şi q_2 sunt inseparabile în raport cu F, (notat $q_1 \rho q_2$) ddacă

$$\forall w \in \Sigma^* : \delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \in F$$

Stări inseparabile

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist.

Definiție 3

Stările q_1 și q_2 sunt inseparabile în raport cu F, (notat $q_1 \rho q_2$) ddacă

$$\forall w \in \Sigma^* : \delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \in F$$

- Dacă există $w \in \Sigma^*$ cu $\delta(q_1, w) \in F$ şi $\delta(q_2, w) \notin F$ (sau invers), stările q_1 şi q_2 sunt separabile (de către w), şi notăm q_1 sep q_2
- q_1 sep $q_2 \Leftrightarrow \neg q_1 \rho q_2$.

Stări inseparabile

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist.

Definiție 3

Stările q_1 și q_2 sunt inseparabile în raport cu F, (notat $q_1 \rho q_2$) ddacă

$$\forall w \in \Sigma^* : \delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \in F$$

- Dacă există w ∈ Σ* cu δ(q₁, w) ∈ F şi δ(q₂, w) ∉ F (sau invers),
 stările q₁ şi q₂ sunt separabile (de către w), şi notăm q₁ sep q₂
- q_1 sep $q_2 \Leftrightarrow \neg q_1 \rho q_2$.
- Observație: dacă $q_1 \in F$ și $q_2 \notin F$, atunci q_1 sep q_2

Automat minimal

Observaţii:

- Relatia ρ este relaţie de echivalenţă.
- $\exists a \in \Sigma : \delta(p, a) \text{ sep } \delta(q, a) \Longrightarrow p \text{ sep } q.$

Automat minimal

Observaţii:

- Relatia ρ este relaţie de echivalenţă.
- $\exists a \in \Sigma : \delta(p, a) \text{ sep } \delta(q, a) \Longrightarrow p \text{ sep } q.$

Teorema 2

Fie A un automat determinist cu toate stările accesibile. Daca toate stările din A sunt separabile în raport cu F, atunci nu există un alt automat A' cu număr mai mic de stări şi L(A) = L(A').

Automatul minimal

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist si relaţia ρ .

- Dacă $\forall q_1, q_2 \in Q : q_1 \text{ sep } q_2$, atunci A este minimal.
- Altfel, automatul minimal:

$$A_{
ho} = (Q/
ho, \Sigma, \delta_{
ho}, [q_0], F/
ho)$$

• Q/ρ - clasele de echivalență ale relației ρ :

$$Q/\rho = \{[q]|q \in Q\}$$

- $\delta_{\rho}([q], a) = [\delta(q, a)]$
- $[q_0]$ clasa de echivalență în care se află starea q_0
- $F/\rho = \{[a] | a \in F\}$

Automatul minimal

Fie automatul minimal: $A_{\rho} = (Q/\rho, \Sigma, \delta_{\rho}, [q_0], F/\rho)$

- Q/ρ clasele de echivalență ale relației ρ :
- $\delta_{\rho}([q], a) = [\delta(q, a)]$
- $[q_0]$ clasa de echivalență în care se află starea q_0
- $F/\rho = \{[q] | q \in F\}$

Teorema 3

Fie automatul determinist A, cu toate stările accesibile. Automatul A_{ρ} construit ca mai sus este automatul cu număr minim de stări care acceptă limbajul L(A).

- Fie $A = (Q, \Sigma, \delta, q_0, F), Q = \{q_0, q_1, \dots, q_n\}$
- Tablou separabil[q_i, q_i]:
 - $separabil[q_i, q_j] = 1$ ddacă $q_i \underline{sep} q_j$ ($separabil[q_i, q_j] = 0$ ddacă $q_i \rho q_j$)
 - iniţial separabil $[q_i, q_i] = 1$ ddacă $q_i \in F, q_i \notin F$ (sau invers)
 - Pentru stările q_i, q_j , dacă există $a \in \Sigma$ cu $\delta(q_i, a)$, $\delta(q_j, a)$ separabile, atunci q_i, q_j vor fi separarbile, adică : dacă $separabil[q_i, q_j] = 0$ și există $a \in \Sigma$ cu $separabil[\delta(q_i, a), \delta(q_i, a)] = 1$, atunci $separabil[q_i, q_i] = 1$

- $lista[p, r] : (p \neq r)$
 - definită pentru perechi de stări cu separabil[p, r] = 0

- $lista[p, r] : (p \neq r)$
 - definită pentru perechi de stări cu separabil[p, r] = 0
 - $lista[p, r] = \{(q_i, q_j) | separabil[q_i, q_j] = 0 \land exista \ a \in \Sigma : p = \delta(q_i, a), \ r = \delta(q_j, a), \ (q_i, q_j) \neq (p, r) \}$

- Se iniţializează tabloul separabil (separabil[q_i, q_j] = 1, dacă q_i ∈ F, q_i ∉ F sau invers)
- Pentru orice q_i , q_i ($0 \le i < j \le n$) cu separabil[q_i , q_i] = 0:

- Se iniţializează tabloul separabil (separabil[q_i, q_j] = 1, dacă q_i ∈ F, q_i ∉ F sau invers)
- Pentru orice q_i , q_i ($0 \le i < j \le n$) cu separabil[q_i , q_i] = 0:
 - Dacă există $a \in \Sigma$ cu *separabil*[$\delta(q_i, a), \delta(q_i, a)$] = 1, atunci:
 - $separabil[q_i, q_j] = 1$
 - trebuie modificat tabloul *separabil* pentru toate perechile de stări a căror separabilitate depinde de q_i , q_j (perechile de stări din $lista[q_i, q_i]$)

- Se iniţializează tabloul separabil (separabil[q_i, q_j] = 1, dacă q_i ∈ F, q_i ∉ F sau invers)
- Pentru orice q_i , q_i ($0 \le i < j \le n$) cu separabil[q_i , q_i] = 0:
 - Dacă există $a \in \Sigma$ cu *separabil*[$\delta(q_i, a), \delta(q_i, a)$] = 1, atunci:
 - $separabil[q_i, q_i] = 1$
 - trebuie modificat tabloul *separabil* pentru toate perechile de stări a căror separabilitate depinde de q_i , q_j (perechile de stări din $lista[q_i, q_i]$)
 - Altfel (pentru orice $a \in \Sigma$ are loc separabil[$\delta(q_i, a), \delta(q_i, a)$] = 0):
 - pentru orice $a \in \Sigma$ cu $\delta(q_i, a) \neq \delta(q_j, a)$ adaugă (q_i, q_j) la $lista[\delta(q_i, a), \delta(q_i, a)]$

```
//initializarea tablourilor,
se marchează perechile F \times (Q - F) si (Q - F) \times F
1.for (i=0; i \le n-1; i++)
2.
       for (j=i+1,j<=n; j++) {
3.
            lista[qi,qj]=\emptyset;
4.
            if ((qi \in F \&\& qj \notin F) \mid | (qi \notin F \&\& qj \in F))
5.
                separabil[qi,qj]=1;
6.
            else
7.
                separabil[qi,qj]=0;
8.
```

```
9.for (i=0; i \le n-1; i++)
10.
        for (j=i+1, j <= n; j++) {
        //se selecteaza doar starile inseparabile
11.
             if (separabil[qi,qj]==0) {
                 //daca exista a astfel incat \delta(qi, a) sep \delta(qj, a)
                 //inseamna ca qi si qj sunt separabile
12.
                 if (\exists a \in \Sigma : separabil[\delta(qi, a), \delta(qi, a)] == 1)
                     // qi si qj devin separabile si la fel toate
                     // perechile de stari dependente de qi,qj
13.
                     update_separabil(qi, qi);
14.
15.
                 else {
16.
                        for (a \in \Sigma : \delta(qi, a) \neq \delta(qj, a) \& (qi, qj) \neq (\delta(qi, a), \delta(qj, a)))
17.
                             adauga (qi, qj) la lista[\delta(qi, a), \delta(qj, a)]
18.
19.
20.
```

```
// qi si qj devin separabile si la fel toate

// perechile de stari dependente de qi,qj

update\_separabil(qi,qj){

separabil[qi,qj] = 1;

for ((q'_i,q'_j) \in lista[qi,qj]){

if (separabil[q'_i,q'_j] == 0)

update\_separabil(q'_i,q'_j);

}
```


q1	q2	q3	q4	
0	0	0	1	q0
	0	0	1	q1
		0	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
0	0	(0) 1	1	q0
	0	0	1	q1
		0 (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
0	0	1	1	q0
	0	(0) 1	1	q1
		0 (q1,q2) (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
(0) 1	0	1	1	q0
	(0) 1	1	1	q1
		(0)1 (q1,q2) (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
1	0	1	1	q0
	1	1	1	q1
		1 (q1,q2) (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

Limbaje Formale, Automate și Compilatoare

Curs 4

2019-20

Curs 4

- 🚺 Corectitudinea algoritmului pentru determinarea relaţiei ρ
- Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm

Curs 4

- $oldsymbol{0}$ Corectitudinea algoritmului pentru determinarea relației ho
- 2 Gramatici de tip 3 și automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm

```
//initializarea tablourilor,
se marchează perechile F \times (Q - F) si (Q - F) \times F
1.for (i=0; i \le n-1; i++)
2.
       for (j=i+1,j<=n; j++) {
3.
            lista[qi,qi]=\emptyset;
4.
            if ((qi \in F \&\& qj \notin F) \mid (qi \notin F \&\& qj \in F))
5.
                separabil[qi,qj]=1;
6.
           else
7.
                separabil[qi,qj]=0;
8.
```

```
9.for (i=0: i \le n-1: i++)
10.
       for (j=i+1,j<=n; j++) {
        //se selecteaza doar starile inseparabile
11.
             if (separabil[qi,qj]==0) {
                 //daca exista a astfel incat \delta(qi, a) sep \delta(qi, a)
                 //inseamna ca qi si qj sunt separabile
                 if (\exists a \in \Sigma : separabil[\delta(qi, a), \delta(qj, a)] == 1)
12.
                     // qi si qj devin separabile si la fel toate
                     // perechile de stari dependente de qi,qj
13.
                     update_separabil(qi, qi);
14.
15.
                 else {
                        for (a \in \Sigma : \delta(qi, a) \neq \delta(qj, a) \&\& (qi, qj) \neq (\delta(qi, a), \delta(qj, a)))
16.
                             adauga (qi, qj) la lista[\delta(qi, a), \delta(qj, a)]
17.
18.
19.
20.
```

Corectitudinea algoritmului

Teorema 1

Algoritmul se termină întotdeauna și în final se obține, pentru orice două stări q_i și q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

Corectitudinea algoritmului

Teorema 1

Algoritmul se termină întotdeauna şi în final se obţine, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

(⇐=) Se arată că:

P(k): Pentru orice două stări q_i şi q_j ($0 \le i < j \le n$) separabile de către un cuvânt w cu $|w| \le k$ ($\delta(q_i, w) \in F, \delta(q_j, w) \notin F$), are loc:

$$separabil[q_i, q_j] = 1.$$

Inducţie după |w|.

Corectitudinea algoritmului

Teorema 1

Algoritmul se termină întotdeauna şi în final se obţine, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

(⇒) Se arată că:

pentru oricare două stări q_i , q_j ($0 \le i < j \le n$) pentru care $separabil[q_i, q_j] = 1$, are loc:

 q_i sep q_j .

Inducţie asupra momentului în care algoritmul face $separabil[q_i, q_j] = 1$.

Curs 4

- 1 Corectitudinea algoritmului pentru determinarea relaţiei ρ
- Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm

De la gramatici de tip 3 la automate finite

 Pentru orice gramatică G de tip 3 (în formă normală) există un automat A (nedeterminist) astfel ca L(A) = L(G):

În gramatica G	În automatul A
T	$\Sigma = T$
N	$Q = N \cup \{f\}, F = \{f\}$
S	$q_0 = S$
q o ap	$oldsymbol{p} \in \delta(oldsymbol{q},oldsymbol{a})$
q o a	$f \in \delta(q,a)$
dacă $\mathcal{S} ightarrow \epsilon$	se adaugă S la F

De la automate finite la gramatici de tip 3

 Pentru orice automat finit (nedeterminist) există o gramatică G de tip 3 astfel ca L(A) = L(G):

În automatul A	În gramatica G
Σ	$T = \Sigma$
Q	N = Q
q_0	$S=q_0$
$m{p} \in \delta(m{q},m{a})$	q o ap
$\delta(q,a)\cap F\neq\emptyset$	q ightarrow a
dacă $q_0 \in F$	se adaugă $q_0 ightarrow \epsilon$

Curs 4

- 1 Corectitudinea algoritmului pentru determinarea relaţiei ρ
- 2 Gramatici de tip 3 și automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm

Închiderea la diferență

• Dacă $L \in \mathcal{L}_3$ atunci $\overline{L} = (\Sigma^* \setminus L) \in \mathcal{L}_3$

Fie $A = (Q, \Sigma, \delta, q_0, F)$ automat cu L(A) = L.

Automatul A' care recunoaşte $\overline{L} = \overline{L(A)}$:

$$A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

Închiderea la diferență

• Dacă $L \in \mathcal{L}_3$ atunci $\overline{L} = (\Sigma^* \setminus L) \in \mathcal{L}_3$

Fie $A = (Q, \Sigma, \delta, q_0, F)$ automat cu L(A) = L.

Automatul A' care recunoaşte $\overline{L} = \overline{L(A)}$:

$$A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$$

• Dacă $L_1, L_2 \in \mathcal{L}_3$ atunci $L_1 \setminus L_2 \in \mathcal{L}_3 : L_1 \setminus L_2 = L_1 \cap \overline{L_2}$

Închiderea la produs

• Fie $A_1=(Q_1,\Sigma,\delta_1,q_{01},\{f_1\})$ şi $A_2=(Q_2,\Sigma,\delta_2,q_{02},\{f_2\})$ automate cu o singură stare finală astfel încât $L_1=L(A_1)$ şi $L_2=L(A_2)$.

Automatul A (cu ϵ -tranziţii) care recunoaşte $L_1 \cdot L_2$:

$$A = (Q_1 \cup Q_2, \Sigma, \delta, q_{01}, \{f_2\})$$

Închiderea la reuniune

• Fie $A_1 = (Q_1, \Sigma_1, \delta_1, q_{01}, \{f_1\})$ şi $A_2 = (Q_2, \Sigma_2, \delta_2, q_{02}, \{f_2\})$ automate cu o singură stare finală astfel încât $L_1 = L(A_1)$ şi $L_2 = L(A_2)$.

Automatul *A* (cu ϵ -tranziţii) care recunoaşte $L_1 \cup L_2$:

$$A = (Q_1 \cup Q_2 \cup \{q_0, f\}, \Sigma_1 \cup \Sigma_2, \delta, q_0, \{f\})$$

Închiderea la iterație

• Fie $A = (Q, \Sigma, \delta, q_{01}, \{f\})$ automat cu o singură stare finală astfel încât L(A) = L.

Automatul A (cu ϵ -tranziţii) care recunoaşte L^* (= $L(A)^*$):

$$A = (Q \cup \{q_0, f\}, \Sigma, \delta', q_0, \{f\})$$

Curs 4

- 1 Corectitudinea algoritmului pentru determinarea relaţiei ρ
- Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm

Expresii regulate - definiție

Reprezentarea limbajelor de tip 3 prin expresii algebrice

Definiție 1

Dacă Σ este un alfabet atunci o expresie regulată peste Σ se definește inductiv astfel:

- \emptyset , ϵ , a ($a \in \Sigma$) sunt expresii regulate ce descriu respectiv limbajele \emptyset , $\{\epsilon\}$, $\{a\}$.
- Dacă E, E₁, E₂ sunt expresii regulate atunci:
 - $(E_1|E_2)$ este expresie regulată ce descrie limbajul $L(E_1) \cup L(E2)$
 - $(E_1 \cdot E_2)$ este expresie regulată ce descrie limbajul $L(E_1)L(E_2)$
 - (E*) este expresie regulată ce descrie limbajul L(E)*

Expresii regulate - definiție

Reprezentarea limbajelor de tip 3 prin expresii algebrice

Definiție 1

Dacă Σ este un alfabet atunci o expresie regulată peste Σ se definește inductiv astfel:

- \emptyset , ϵ , a ($a \in \Sigma$) sunt expresii regulate ce descriu respectiv limbajele \emptyset , $\{\epsilon\}$, $\{a\}$.
- Dacă E, E₁, E₂ sunt expresii regulate atunci:
 - $(E_1|E_2)$ este expresie regulată ce descrie limbajul $L(E_1) \cup L(E2)$
 - $(E_1 \cdot E_2)$ este expresie regulată ce descrie limbajul $L(E_1)L(E_2)$
 - (E*) este expresie regulată ce descrie limbajul L(E)*
- Ordinea de prioritate a operatorilor este ∗, ⋅, |

Exemple

- \bullet $(a|b)|(c|d) \longrightarrow \{a,b,c,d\}$
- $(0|1) \cdot (0|1) \longrightarrow \{00, 01, 10, 11\}$
- $a^*b^* \longrightarrow \{a^nb^k|n,k\geq 0\}$
- $(0|1|2|...|9)(0|1|2...|9)^*$ descrie mulţimea întregilor fără semn
- $(a|b|c|...|z)(a|b|c|...|z|0|1|2...|9)^*$ descrie mulţimea identificatorilor

Două expresii regulate E_1, E_2 sunt echivalente, și scriem $E_1 = E_2$ dacă $L(E_1) = L(E_2)$

Proprietăți

- (p|q)|r = p|(q|r)
- (pq)r = p(qr)

- (p|q)r = pr|qr
- $\bullet \ \epsilon | pp^* = p^*$
- $\bullet \ \epsilon | p^* p = p^*$

De la o expresie regulată la automatul finit

Teorema 2

Pentru orice expresie regulată E peste Σ există un automat finit (cu ϵ - tranziții) A, astfel încât L(A) = L(E).

Demonstratie: inducție structurală.

• Dacă $E \in \{\emptyset, \epsilon, a\}$ $(a \in \Sigma)$ atunci automatul corespunzător este respectiv:

Demonstrație

• $E = E_1 | E_2$

• $E = E_1 E_2$

• $E = E_1^*$

Reprezentarea expresiilor regulate sub formă de arbore

• Intrare: Expresia regulată $E = e_0 e_1 \dots e_{n-1}$ Precedența operatorilor: prec(|) = 1, prec(·) = 2, prec(*) = 3 (prec(()= 0).

- leşire: Arborele asociat: t.
- Metoda: Se consideră două stive:
 - STIVA1 stiva operatorilor
 - STIVA2 stiva arborilor (care va conţine arborii parţiali construiţi)
 - Metoda tree(r, tS, tD)

Algoritm

```
i = 0;
while(i < n) {
     c = e_i;
     switch(c) {
         case '(': { STIVA1.push(c); break; }
         case simbol (din alfabet): { STIVA2.push(tree(c,NULL,NULL)); break; }
         case operator: {
              while (prec(STIVA1.top())>=prec(c))
                    build_tree();
              STIVAl.push(c); break;
         case ')': {
              do { build_tree();} while(STIVA1.top()!= '(');
              STIVA1.pop(); break;
     i++:
while(STIVA1.not_empty()) build_tree();
t = STIVA2.pop();
```

Algoritm

```
build.tree()
    op = STIVA1.pop();
    t1 = STIVA2.pop();
    switch (op) {
        case '*': {
            t = tree(op, t1, NULL);
            STIVA2.push(t); break;
        }
        case'|', '.': {
            t2 = STIVA2.pop();
            t = tree(op, t2, t1);
            STIVA2.push(t); break;
        }
}
```

Exemplu

$$a^* \cdot (b|a) \cdot b^*$$

Curs 4

- 1 Corectitudinea algoritmului pentru determinarea relaţiei ρ
- Gramatici de tip 3 şi automate finite
- Proprietăţi de închidere pentru clasa limbajelor de tip 3
- Expresii regulate
- Automatul echivalent cu o expresie regulată
 - Algoritm

Automatul echivalent cu o expresie regulată

• $E = E_1 | E_2$

• $E = E_1 E_2$

• $E = E_1^*$

Observaţii

- pentru orice apariţie a unui simbol din Σ, cât şi pentru ε, dacă acesta apare explicit în E, este nevoie de 2 stări în automatul construit.
- fiecare din apariţiile operatorilor | şi * dintr-o expresie regulată E introduce două noi stări în automatul construit
- operatorul · nu introduce alte stări
- dacă n este numărul de simboluri din E iar m este numărul de paranteze împreună cu apariţiile simbolului · , atunci numărul stărilor automatului echivalent cu E este p = 2(n m).

Algoritm

- Intrare: Expresia regulată E cu n simboluri dintre care m sunt paranteze şi apariţii ale operatorului produs;
- leşire:Automatul (cu p=2(n-m) stări) cu ϵ tranziţii echivalent cu E
- Metoda:
- 1. Se construiește arborele atașat expresiei *E*;
- 2. Se parcurge arborele în preordine şi se ataşează nodurilor vizitate, exceptând pe cele etichetate cu produs, respectiv numerele 1, 2, ..., n m;

Exemplu

$$E = a|b^* \cdot c$$

- 3. Se parcurge arborele în postordine şi se ataşează fiecărui nod N o pereche de numere (N.i, N.f) care reprezintă starea iniţială respectiv finală a automatului echivalent cu expresia corespunzătoare subarborelui cu rădăcina N, astfel:
 - Dacă nodul are numărul k (de la pasul 2) atunci:

$$N.i = 2k - 1, N.f = 2k;$$

Dacă nodul este etichetat cu produs şi S este fiul stâng al lui N, iar
 D fiul drept, atunci:

$$N.i = S.i$$
 jar $N.f = D.f$

Exemplu

$$E = a|b^* \cdot c$$

4. Se parcurge din nou arborele obţinut în postordine.

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

- 4. Se parcurge din nou arborele obținut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

- 4. Se parcurge din nou arborele obţinut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

4. Se parcurge din nou arborele obţinut în postordine.

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f, \epsilon) = D.i$$

4. Se parcurge din nou arborele obținut în postordine.

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f, \epsilon) = D.i$$

Dacă N este etichetat cu * (D nu există în acest caz):

$$\delta(N.i, \epsilon) = \{S.i, N.f\},\$$

$$\delta(S.f,\epsilon) = \{S.i, N.f\}$$

- 4. Se parcurge din nou arborele obţinut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f,\epsilon) = D.i$$

Dacă N este etichetat cu * (D nu există în acest caz):

$$\delta(N.i, \epsilon) = \{S.i, N.f\},$$

$$\delta(S.f, \epsilon) = \{S.i, N.f\}$$

5. Starea inițială a automatului este N.i, starea finală N.f, unde N este nodul rădăcină;

Exemplu

$$E = a|b^* \cdot c$$

Exemplu

δ	а	b	С	ϵ
1	Ø	Ø	Ø	$\{3, 5\}$
2	Ø	Ø	Ø	Ø
3	4	Ø	Ø	Ø
4	Ø	Ø	Ø	{2 }
5	Ø	Ø	Ø	{6,7}
6	Ø	Ø	Ø	{9}
7	Ø	8	Ø	Ø
8	Ø	Ø	Ø	$\{6, 7\}$
9	Ø	Ø	10	Ø
10	Ø	Ø	Ø	{2}

Corectitudinea algoritmului

Teorema 3

Algoritmul descris este corect: automatul cu ϵ - tranziţii obţinut este echivalent cu expresia regulată E.

Demonstrație:

- Modul în care au fost alese perechile (i, f) de stări pentru fiecare nod al arborelui construit corespunde construcţiilor din teorema 2.
- Deasemenea, tranziţiile care se definesc în pasul 5 al algoritmului urmăresc construcţia din teorema 1.

Automatul obținut este echivalent cu expresia dată la intrare.

Limbaje Formale, Automate și Compilatoare

Curs 5

2019-20

Curs 5

- Automatul echivalent cu o expresie regulată
 - Algoritm
- Gramatici şi limbaje independente de context
- Forma redusă pentru gramatici independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor

Curs 5

- Automatul echivalent cu o expresie regulată
 - Algoritm
- 2 Gramatici şi limbaje independente de context
- Forma redusă pentru gramatici independente de context
- 4 Eliminarea regulilor de ştergere şi a redenumirilor

Automatul echivalent cu o expresie regulată

• $E = E_1 | E_2$

• $E = E_1 E_2$

ı

Observaţii

- pentru orice apariţie a unui simbol din Σ, cât şi pentru ε, dacă acesta apare explicit în E, este nevoie de 2 stări în automatul construit.
- fiecare din apariţiile operatorilor | şi * dintr-o expresie regulată E introduce două noi stări în automatul construit
- operatorul · nu introduce alte stări
- dacă n este numărul de simboluri din E iar m este numărul de paranteze împreună cu apariţiile simbolului · , atunci numărul stărilor automatului echivalent cu E este p = 2(n m).

Algoritm

- Intrare: Expresia regulată E cu n simboluri dintre care m sunt paranteze şi apariţii ale operatorului produs;
- leşire:Automatul (cu p=2(n-m) stări) cu ϵ tranziţii echivalent cu E
- Metoda:
- 1. Se construiește arborele atașat expresiei *E*;
- 2. Se parcurge arborele în preordine şi se ataşează nodurilor vizitate, exceptând pe cele etichetate cu produs, respectiv numerele $1, 2, \ldots, n m$;

$$E = a|b^* \cdot c$$

- 3. Se parcurge arborele în postordine şi se ataşează fiecărui nod N o pereche de numere (N.i, N.f) care reprezintă starea iniţială respectiv finală a automatului echivalent cu expresia corespunzătoare subarborelui cu rădăcina N, astfel:
 - Dacă nodul are numărul k (de la pasul 2) atunci:

$$N.i = 2k - 1, N.f = 2k;$$

Dacă nodul este etichetat cu produs şi S este fiul stâng al lui N, iar
 D fiul drept, atunci:

$$N.i = S.i$$
 iar $N.f = D.f$

$$E = a|b^* \cdot c$$

4. Se parcurge din nou arborele obţinut în postordine.

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

- 4. Se parcurge din nou arborele obţinut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i, a) = N.f$$

- 4. Se parcurge din nou arborele obţinut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

4. Se parcurge din nou arborele obţinut în postordine.

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f,\epsilon) = D.i$$

4. Se parcurge din nou arborele obținut în postordine.

Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:

Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a) = N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f,\epsilon) = D.i$$

Dacă N este etichetat cu * (D nu există în acest caz):

$$\delta(N.i, \epsilon) = \{S.i, N.f\},\$$

$$\delta(S.f,\epsilon) = \{S.i, N.f\}$$

- 4. Se parcurge din nou arborele obţinut în postordine.
 - Dacă N este nodul curent iar S si D sunt fii sai, atunci, în funcție de eticheta lui N, se execută următoarele:
 - Dacă N este etichetat cu a (deci este frunza):

$$\delta(N.i,a)=N.f$$

Dacă N este etichetat cu |:

$$\delta(N.i, \epsilon) = \{S.i, D.i\},$$

$$\delta(S.f, \epsilon) = N.f, \ \delta(D.f, \epsilon) = N.f$$

Dacă N este etichetat cu · :

$$\delta(S.f, \epsilon) = D.i$$

Dacă N este etichetat cu * (D nu există în acest caz):

$$\delta(N.i, \epsilon) = \{S.i, N.f\},$$

$$\delta(S.f, \epsilon) = \{S.i, N.f\}$$

5. Starea inițială a automatului este *N.i*, starea finală *N.f*, unde N este nodul rădăcină;

$$E = a|b^* \cdot c$$

δ	а	b	С	ϵ
1	Ø	Ø	Ø	{3,5}
2	Ø	Ø	Ø	Ø
3	4	Ø	Ø	Ø
4	Ø	Ø	Ø	{2 }
5	Ø	Ø	Ø	{6,7}
6	Ø	Ø	Ø	{9}
7	Ø	8	Ø	Ø
8	Ø	Ø	Ø	$\{6, 7\}$
9	Ø	Ø	10	Ø
10	Ø	Ø	Ø	{2 }

Corectitudinea algoritmului

Teorema 1

Algoritmul descris este corect: automatul cu ϵ - tranziţii obţinut este echivalent cu expresia regulată E.

Demonstrație:

- Modul în care au fost alese perechile (i, f) de stări pentru fiecare nod al arborelui construit corespunde construcţiilor din teorema 2.
- Deasemenea, tranziţiile care se definesc în pasul 5 al algoritmului urmăresc construcţia din teorema 1.

Automatul obținut este echivalent cu expresia dată la intrare.

Curs 5

- Automatul echivalent cu o expresie regulată
 - Algoritm
- Gramatici şi limbaje independente de context
- Forma redusă pentru gramatici independente de context
- 4 Eliminarea regulilor de ştergere şi a redenumirilor

Gramatici independente de context

- Gramatici de tip 2 (independente de context): G = (N, T, S, P)
 - N şi T sunt mulţimi nevide, finite, disjuncte de neterminali (variabile), respectiv terminali
 - $S \in N$ este simbolul de start
 - $P = \{x \rightarrow u | x \in N, u \in (N \cup T)^*\}$ este mulţimea regulilor (producţiilor).
- Un limbaj L este de tip 2 (independent de context: $L \in \mathcal{L}_2$) dacă există o gramatică G de tip 2 astfel încât L(G) = L

Derivări extrem stângi/drepte

Fie
$$G = (N, T, S, P)$$
 si $w \in L(G)$

- derivare extrem stângă pentru w: derivarea în care, la orice pas se înlocuieşte cel mai din stânga neterminal din cuvântul obţinut
- derivare extrem dreaptă pentru w: derivarea în care, la orice pas se înlocuieşte cel mai din dreapta neterminal din cuvântul obţinut

$$G = (\{E\}, \{a, b, +, *), (\}, E, P)$$
 unde:

$$P: E \rightarrow E + E|E*E|(E)|a|b$$

Fie
$$a + (b * a)$$

Derivare extrem stângă:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow a + (E*E) \Rightarrow a + (b*E) \Rightarrow a + (b*a)$$

Derivare extrem dreaptă:

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a) \Rightarrow E + (b * a) \Rightarrow a + (b * a)$$

Există derivări care nu sunt nici extrem drepte nici extrem stângi!

Arbori sintactici

Definiție 1

Un arbore sintactic (arbore de derivare, arbore de parsare) în gramatica G este un arbore ordonat, etichetat, cu următoarele proprietăți:

- rădăcina arborelui este etichetată cu S ;
- fiecare frunză este etichetată cu un simbol din T sau cu ϵ ;
- fiecare nod interior este etichetat cu un neterminal;
- dacă A etichetează un nod interior care are n succesori etichetaţi de la stânga la dreapta respectiv cu X₁, X₂,..., X_n, atunci A → X₁X₂...X_n este o regulă.
 Dacă A are un succesor etichetat cu ϵ (pentru regula A → ϵ), nodul etichetat cu A nu mai are alţi succesori.

Arbori sintactici

Definiție 2

- Frontiera unui arbore de derivare este cuvântul w = a₁a₂ ... an unde ai, 1 ≤ i ≤ n sunt etichetele nodurilor frunză în ordinea de la stânga la dreapta.
- Arbore de derivare pentru un cuvânt w: arbore de derivare cu frontiera w.

$$G = (\{E\}, \{a, b, +, *\}, (\}, E, P)$$
 unde:
 $P : E \to E + E|E * E|(E)|a|b$

$$a + (b * a)$$

Derivare extrem stångă:

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + (E) \Rightarrow$$

 $a + (E * E) \Rightarrow a + (b * E) \Rightarrow a + (b * a)$

Derivare extrem dreaptă:

$$E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (E * E) \Rightarrow E + (E * a) \Rightarrow E + (b * a) \Rightarrow a + (b * a)$$

Arbore de derivare pentru a + (b * a):

Ambiguitate

Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

• Echivalent: w are 2 derivări extrem stângi(drepte) distincte.

Ambiguitate

Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

• Echivalent: w are 2 derivări extrem stângi(drepte) distincte.

Gramatica precedentă este ambiguă: cuvântul a + b * a are 2 arbori de derivare:

Ambiguitate

Definiție 3

O gramatică G este ambiguă dacă există un cuvânt w în L(G) care are 2 arbori de derivare distincți.

- Echivalent: w are 2 derivări extrem stângi(drepte) distincte.
- Problema ambiguității gramaticilor de tip 2 este nedecidabilă: nu există un algoritm care pentru o gramatică oarecare G să testeze dacă G este sau nu ambiguă

Exemplu: o gramatică echivalentă neambiguă

 $G = (\{E, T, F\}, \{a, b, +, *\}, (\}, E, P) \text{ unde } P$:

- \bullet $E \rightarrow E + T$
- \bullet $E \rightarrow T$
- \bullet $T \rightarrow T * F$
- \bullet $T \rightarrow F$
- \bullet $F \rightarrow (E)$
- $F \rightarrow a|b$

Arbore de derivare pentru a + b * a:

Curs 5

- Automatul echivalent cu o expresie regulată
 - Algoritm
- Gramatici şi limbaje independente de context
- Forma redusă pentru gramatici independente de context
- 4 Eliminarea regulilor de ştergere şi a redenumirilor

Simboluri inutile

- Un simbol X din N ∪ T este accesibil dacă există o derivare de forma S ⇒⁺ αXβ
- Un simbol A din N este productiv dacă există o derivare de forma $A \Rightarrow^+ w$, $w \in T^*$
- Un simbol este inutil dacă este inaccesibil sau neproductiv

Gramatici în formă redusă

Definiție 4

O gramatică este în formă redusă, dacă nu conține simboluri inutile.

 Orice limbaj independent de context poate fi generat de o gramatică în formă redusă.

Eliminarea simbolurilor inutile

- Pentru orice gramatică independentă de context G există o gramatică G' de acelaşi tip în formă redusă echivalentă cu G.
- Pentru eliminarea simbolurilor inutile:
 - Se determină şi apoi se elimină simbolurile neproductive şi toate regulile ce conţin măcar unul dintre acestea.
 - Se determină apoi se elimină simbolurile inaccesibile şi toate regulile aferente.

Eliminarea simbolurilor neproductive - algoritm

- Intrare: G = (N, T, S, P)
- leşire: G' = (N', T, S, P'), L(G') = L(G), N' conţine doar simboluri productive

```
egin{aligned} N_0 &= \emptyset; & i = 0; \\ & \text{do } \{ \\ & i = i+1; \\ & N_i = N_{i-1} \cup \{A | A 
ightarrow lpha \in P, lpha \in (N_{i-1} \cup T)^*\}; \\ \} & \text{while } N_i \neq N_{i-1}; \\ N' &= N_i; \\ P' &= \{A 
ightarrow lpha \in P | A \in N', lpha \in (N' \cup T)^*\}; \end{aligned}
```

- Un simbol A este productiv ddacă $A \in N'$
- Consecință: $L(G) \neq \emptyset$ ddacă $S \in N'$

$$G = (\{S, A, B, C\}, \{a, b, c\}, S, P)$$
, unde P este:

- $S \rightarrow a|aA|bC$
- \bullet $A \rightarrow aAB$
- B → bac
- ullet C o aSb

Gramatica G' cu toate simbolurile productive:

$$G' = (\{S, B, C\}, \{a, b, c\}, S, P')$$
, unde P' este:

- $S \rightarrow a|bC$
- B → bac
- C → aSb

Eliminarea simbolurilor inaccesibile

- Intrare: G = (N, T, S, P)
- ullet leşire: $G'=(N',T',S,P'),\,L(G')=L(G),\,N',\,T'$ conţin doar simboluri accesibile

```
\label{eq:V0} \begin{array}{l} V_0 = \{S\}; \ i = 0; \\ \text{do } \{ \\ i = i + 1; \\ V_i = V_{i-1} \cup \{X | X \in \mathbb{N} \cup \mathbb{T}, \ \exists A \to \alpha X \beta \in P, A \in (V_{i-1} \cap \mathbb{N})\}; \\ \} \ \text{while} \ V_i \neq V_{i-1}; \\ N' = V_i \cap \mathbb{N}; \\ T' = V_i \cap \mathbb{T}; \\ P' = \{A \to \alpha \in P | A \in \mathbb{N}', \alpha \in (\mathbb{N}' \cup \mathbb{T}')^*\}; \end{array}
```

■ X accesibil ddacă X ∈ V_i

$$G = (\{S, A, B, C\}, \{a, b, c\}, S, P)$$
, unde P este:

- $S \rightarrow a|aA|bC$
- A → aAB
- ullet B o bac
- C → aSb
- Eliminarea simbolurilor neproductive duce la:

$$\textit{G}' = (\{\textit{S},\textit{B},\textit{C}\},\{\textit{a},\textit{b},\textit{c}\},\textit{S},\{\textit{S}\rightarrow\textit{a}|\textit{bC},\textit{B}\rightarrow\textit{bac},\textit{C}\rightarrow\textit{aSb}\})$$

• Eliminarea simbolurilor inaccesibile duce la:

$$G' = (\{S,C\},\{a,b\},S,\{S\rightarrow a|bC,C\rightarrow aSb\})$$

• Ce se întâmplă dacă se aplică algoritmii în ordinea inversă?

Curs 5

- Automatul echivalent cu o expresie regulată
 - Algoritm
- Gramatici şi limbaje independente de context
- Forma redusă pentru gramatici independente de context
- Eliminarea regulilor de ştergere şi a redenumirilor

Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma $A \to \epsilon$)

```
\label{eq:N0} \begin{split} N_0 &= \{A|A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ & i = i+1; \\ & N_i = N_{i-1} \cup \{X|X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

Eliminarea regulilor de ştergere

- Intrare: G = (N, T, S, P)
- leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine reguli de ştergere (reguli de forma $A \to \epsilon$)

```
\label{eq:N0} \begin{split} N_0 &= \{A | A \in N, \ A \rightarrow \epsilon \in P\}; \ i = 0; \\ \text{do } \{ \\ i &= i+1; \\ N_i &= N_{i-1} \cup \{X | X \in N, \ \exists X \rightarrow \alpha \in P, \alpha \in N_{i-1}^*\}; \\ \} \text{ while } N_i \neq N_{i-1}; \\ N_\epsilon &= N_i; \end{split}
```

Are loc:

- $\bullet \ \ N_0 \subseteq N_1 \ldots \subseteq N_i \subseteq N_{i+1} \subseteq \ldots N_{\epsilon} \subseteq N$
- \bullet $A \in N_{\epsilon} \iff A \Rightarrow^{+} \epsilon$

Eliminarea regulilor de ştergere

P' se obţine din P astfel:

• în fiecare regulă $A \to \alpha \in P$ se pun în evidență simbolurile din N_{ϵ} ce apar în α :

$$\alpha = \alpha_1 X_1 \alpha_2 X_2 \dots \alpha_n X_n \alpha_{n+1}, X_i \in N_{\epsilon}$$

 se înlocuieşte fiecare regulă de acest fel cu mulţimea de reguli de forma

$$A \rightarrow \alpha_1 Y_1 \alpha_2 Y_2 \dots \alpha_n Y_n \alpha_{n+1}$$
 unde $Y_i = X_i$ sau $Y_i = \epsilon$

în toate modurile posibile (2^n)

- se elimină toate regulile de ştergere
- pentru a obţine cuvântul nul (dacă S este în N_{ϵ}) se adaugă S' simbol de start nou şi regulile $S' \to S$, $S' \to \epsilon$

Exemplu

$$G = (\{S, A, B, C\}, \{a, b, c\}, S, P), \text{ unde P}:$$

- \bullet $A \rightarrow aA|aB$
- lacktriangledown B
 ightarrow bB|C
- $C \rightarrow cC | \epsilon$

$$G' = (\{S', S, A, B, C\}, \{a, b, c\}, S', P')$$
 unde P' :

- lacksquare $S' o S | \epsilon$
- ullet $S \rightarrow aAbC|aAb|B|C$
- $A \rightarrow aA|aB|a$
- lacksquare B o bB|b|C
- lacksquare C o cC|c

Limbaje Formale, Automate și Compilatoare

Curs 6

2019-20

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- 3 Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Eliminarea redenumirilor $(A \rightarrow B, A, B \in N)$

- Intrare: G = (N, T, S, P)
 leşire: G' = (N, T, S, P'), L(G') = L(G), P' nu conţine redenumiri
- for $(A \in N)$ $N_0 = \{A\}; i = 0;$ do{ i = i + 1; $N_i = N_{i-1} \cup \{C | C \in N, \exists B \rightarrow C \in P, B \in N_{i-1}\};$ } while $N_i \neq N_{i-1}$; $N_A = N_i$: $//N_A = \{X \in N | A \Rightarrow^* X\}$ $P' = \{X \to \alpha \in P | \alpha \notin N\}$ for $(X \to \alpha_1 | \alpha_2 | \dots | \alpha_n \in P')$ for $(A \in N \&\& X \in N_A, X \neq A)$ $P' = P' \cup \{A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n\}$

Exemplu

$$G = (\{x, y, z\}, \{a, b, c\}, x, P), \text{ unde P:}$$

- $x \rightarrow y|ax|a$
- $y \rightarrow z|by|b$
- lacktriangledown z
 ightarrow cz|c

$$N_x = \{x, y, z\}, N_y = \{y, z\}, N_z = \{z\}$$

Gramatica echivalentă fără redenumiri $G' = (\{x, y, z\}, \{a, b, c\}, x, P')$ unde P':

- \bullet $x \rightarrow ax|a|by|b|cz|c$
- $y \rightarrow by|b|cz|c$
- ullet $z \rightarrow cz|c$

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- 3 Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Forma normală Chomsky

Definiție 1

O gramatică este în formă normală Chomsky dacă regulile sale au forma:

 $A \rightarrow BC$, $A \rightarrow a$ (şi eventual $S \rightarrow \epsilon$) ($A, B, C \in N$ şi $a \in T$).

Teorema 1

Orice limbaj independent de context poate fi generat de o gramatică în formă normală Chomsky.

Demonstrație

• Se elimină regulile de ștergere și redenumirile

Demonstraţie

- Se elimină regulile de ştergere şi redenumirile
- Se elemină regulile care nu sunt în formă normală Chomsky: Dacă A → x₁x₂...x_n, n > 1 este o astfel de regulă atunci o înlocuim cu A → Y₁Y₂...Y_n unde:
 - $Y_i = x_i$, dacă $x_i \in N$ (neterminalii rămân la fel)
 - $Y_i = x_a$ dacă $x_i = a \in T$ (x_a este neterminal nou) şi se adaugă regula $x_a \to a$

Demonstraţie

- Se elimină regulile de ştergere şi redenumirile
- Se elemină regulile care nu sunt în formă normală Chomsky: Dacă $A \to x_1 x_2 \dots x_n$, n > 1 este o astfel de regulă atunci o înlocuim cu $A \to Y_1 Y_2 \dots Y_n$ unde:
 - $Y_i = x_i$, dacă $x_i \in N$ (neterminalii rămân la fel)
 - $Y_i = x_a$ dacă $x_i = a \in T$ (x_a este neterminal nou) şi se adaugă regula $x_a \to a$
- O regulă de forma $A \rightarrow Y_1 Y_2 \dots Y_n$, dacă n > 2, o înlocuim cu:
 - $\bullet \ A \rightarrow Y_1 Z_1$
 - $Z_1 \rightarrow Y_2 Z_2$
 -
 - $Z_{n-3} \to Y_{n-2}Z_{n-2}$
 - $Z_{n-2} \rightarrow Y_{n-1} Y_n$, unde Z_1, Z_2, \dots, Z_{n-2} sunt neterminali noi.

Exemplu

$$G = (\{S, A\}, \{a, b, c\}, S, P), \text{ unde P}:$$

- ullet S o aSb|cAc
- \bullet $A \rightarrow cA|c$

Gramatica echivalentă în formă normală Chomsky

$$G = (\{S, A, x_a, x_b, Z_1, Z_2\}, \{a, b, c\}, S, P'), \text{ unde } P'$$
:

- $S \rightarrow x_a Z_1 | x_c Z_2$
- $Z_1 \rightarrow Sx_b$
- \bullet $Z_2 \rightarrow Ax_c$
- \bullet $A \rightarrow x_c A | c$
- $x_a \rightarrow a$
- \bullet $x_b \rightarrow b$
- \bullet $x_c \rightarrow c$

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- 5 Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Algoritmul Cocke Younger Kasami (CYK)

- Problema recunoaşterii în gramatici de tip 2: dată o gramatică de tip 2 si un cuvânt w, să se decidă dacă $w \in L(G)$
- Problema recunoaşterii în gramatici în formă normală Chomsky se poate rezolva cu algoritmul CYK în timp $O(n^3)$.
- Dacă $w = a_1 a_2 \dots a_n$ atunci se constuiesc mulţimile

$$V_{ij} = \{A|A \Rightarrow^+ a_i a_{i+1} \dots a_{i+j-1}\}$$

inductiv pentru $j = 1, \dots, n$

$$w \in L(G) \Leftrightarrow S \in V_{1n}$$

Algoritmul Cocke Younger Kasami

- Pentru *j* = 1:
 - $V_{i1} = \{A|A \Rightarrow^+ a_i\} = \{A|\exists A \rightarrow a_i \in P\}$
- Pentru *j* > 1, *V_{ij}*:
 - Dacă $A \Rightarrow^+ a_i a_{i+1} \dots a_{i+j-1}$:

$$A \Rightarrow BC \Rightarrow^{+} a_{i}a_{i+1} \dots a_{i+j-1}$$
 §i
$$B \Rightarrow^{+} a_{i}a_{i+1} \dots a_{i+k-1}$$
 ($B \in V_{ik}$)
$$C \Rightarrow^{+} a_{i+k}a_{i+k+1} \dots a_{i+j-1}$$
 ($C \in V_{i+k}$)
unde $1 < i < n+1-i$, $1 < k < i-1$

• $V_{ij} = \bigcup_{k=1}^{j-1} \{A|A \rightarrow BC \in P, B \in V_{ik}, C \in V_{i+k \ j-k}\}$

Algoritmul Cocke Younger Kasami

Notaţie:

$$\{A|A \rightarrow BC \in P, B \in V_{ik}, C \in V_{i+k}\} = V_{ik} \circ V_{i+k}\}$$

Atunci:

pentru
$$2 \le j \le n, 1 \le i \le n + 1 - j$$
:

$$V_{ij} = \bigcup_{k=1}^{j-1} (V_{ik} \circ V_{i+k j-k})$$

Algoritmul Cocke Younger Kasami

- Intrare: G = (N, T, S, P) în formă normală Chomsky, $w = a_1 a_2 \dots a_n$
- leşire: $w \in L(G)$?

```
for (i=1; i<=n; i++) V_{i1} = \{A | \exists A \to a_i \in P\}; for (j=2; j<=n; j++) \text{for (i=1; i<=n+1-j; i++)} \{ V_{ij} = \emptyset; \text{for (k=1; k<=j-1; k++)} V_{ij} = V_{ij} \cup (V_{ik} \circ V_{i+k-j-k}); \} if (S \in V_{1n}) w \in L(G) else w \notin L(G)
```

Exemplu

$$G = (\{S, X, Y, Z\}, \{a, b, c\}, S, P)$$
, unde P:

- \circ $S \rightarrow XY$
- $\bullet X \to XY|a$
- \bullet $Y \rightarrow YZ|a|b$
- ullet Z o c

$$w = abc$$

Exemplu

$$G = (\{S, X, Y, Z\}, \{a, b, c\}, S, P)$$
, unde P:

- \circ $S \rightarrow XY$
- $\bullet X \to XY|a$
- $Y \to YZ|a|b$
- ullet Z o c

$$w = abc$$

$V_{11}=\{X,Y\}$	$V_{12} = \{S,X\}$	$V_{13}=\{\mathcal{S},\mathcal{X}\}$
$V_{21} = \{Y\}$	$V_{22} = \{Y\}$	
$V_{31} = \{Z\}$		

$$S \in V_{13} \Leftrightarrow abc \in L(G)$$

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- 3 Problema recunoaşterii: algoritmul Cocke Younger Kasami
- Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Automate pushdown

- Automat finit + memorie pushdown (stiva)
- Model fizic:

Automate pushdown-definiție

Definiție 2

Un automat pushdown este un 7-uplu: $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$:

- Q este mulţimea (finită) a stărilor
- Σ este alfabetul de intrare
- Γ este alfabetul memoriei pushdown (stivei)
- q₀ ∈ Q este starea iniţială
- $z_0 \in \Gamma$ este simbolul iniţial din stivă
- $F \subseteq Q$ este mulţimea stărilor finale
- $\delta: Q \times (\Sigma \cup {\epsilon}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$

Modelul este nedeterminist

Configurația unui automat pushdown

Configurație: $(q, w, \gamma) \in Q \times \Sigma^* \times \Gamma^*$

1 : γ (primul simbol din γ) reprezintă vârful stivei

Automate pushdown

Configurație inițială: $(q_0, w, z_0) \in Q \times \Sigma^* \times \Gamma^*$

Relația de tranziție între configurații

• Configurația curentă $(q, aw, z\beta)$ și $(q', \alpha) \in \delta(q, a, z)$ $(q, q' \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma, \alpha, \beta \in \Gamma^*)$

Relația de tranziție între configurații

• $(q, aw, z\beta) \vdash (q', w, \alpha\beta)$

Relația de tranziție între configurații

Fie $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ un automat pushdown.

Relaţia de tranziţie între configuraţii:

$$(q, aw, z\beta) \vdash (q', w, \alpha\beta) \text{ dacă } (q', \alpha) \in \delta(q, a, z)$$

 $(q, q' \in Q, a \in \Sigma \cup \{\epsilon\}, z \in \Gamma, \alpha, \beta \in \Gamma^*)$

• Calcul: închiderea reflexivă şi tranzitivă a relaţiei de mai sus: dacă C_1, \ldots, C_n configuraţii astfel încât:

$$C_1 \vdash C_2 \vdash \ldots \vdash C_n$$

se scrie: $C_1 \vdash^+ C_n$ dacă $n \ge 2$, $C_1 \vdash^* C_n$, dacă $n \ge 1$

Limbajul recunoscut

Prin stări finale (dacă $F \neq \emptyset$)

$$L(M) = \{ w \in \Sigma^* | (q_0, w, z_0) \vdash^* (q, \epsilon, \gamma), \ q \in F, \ \gamma \in \Gamma^* \}$$

Prin golirea stivei (dacă $F = \emptyset$)

$$L_{\epsilon}(M) = \{ w \in \Sigma^* | (q_0, w, z_0) \vdash^* (q, \epsilon, \epsilon), \ q \in Q \}$$

Exemplu

Automat care recunoaște limbajul $\{a^nb^n|n \ge 1\}$:

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, a, a) = \{(q_0, aa)\}$
- **3** $\delta(q_0, b, a) = \{(q_1, \epsilon)\}$
- **3** $\delta(q_1, b, a) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$

• Un automat pushdown ce recunoaște limbajul $\{waw^R | w \in \{0,1\}^*\}$

- Un automat pushdown ce recunoaște limbajul $\{waw^R|w\in\{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

- Un automat pushdown ce recunoaşte limbajul $\{waw^R|w\in\{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$\textbf{\textit{M}} = (\{\textit{q}_0, \textit{q}_1, \textit{q}_2\}, \{0, 1, \textit{a}\}, \{0, 1, \textit{z}\}, \delta, \textit{q}_0, \textit{z}, \{\textit{q}_2\})$$

- 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$

- Un automat pushdown ce recunoaște limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$\textbf{\textit{M}} = (\{\textit{q}_0, \textit{q}_1, \textit{q}_2\}, \{0, 1, \textit{a}\}, \{0, 1, \textit{z}\}, \delta, \textit{q}_0, \textit{z}, \{\textit{q}_2\})$$

- 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- **3** $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$
- Un automat pushdown ce recunoaște limbajul $\{ww^{R}|w \in \{0,1\}^*\}$?

- Un automat pushdown ce recunoaște limbajul $\{waw^R | w \in \{0,1\}^*\}$
 - Fiecare 0 sau 1 citit se introduce în stivă
 - a la intrare produce pregătirea scoaterii a câte un simbol din stiva dacă el coincide cu cel din intrare

$$\textbf{\textit{M}} = (\{\textit{q}_0, \textit{q}_1, \textit{q}_2\}, \{0, 1, \textit{a}\}, \{0, 1, \textit{z}\}, \delta, \textit{q}_0, \textit{z}, \{\textit{q}_2\})$$

- 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\})$
- $\delta(q_0, a, i) = \{(q_1, i)\}$
- $\delta(q_1, i, i) = \{(q_1, \epsilon)\}$
- $\delta(q_1,\epsilon,z)=\{(q_2,\epsilon)\}$
- Un automat pushdown ce recunoaște limbajul $\{ww^R|w\in\{0,1\}^*\}$?
- Un automat pushdown ce recunoaşte limbajul $\{ww|w \in \{0,1\}^*\}$?

Echivalența definițiilor privind recunoașterea

Teorema 2

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Echivalența definițiilor privind recunoașterea

Teorema 2

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă
$$M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$$
, considerăm $M' = (Q \cup \{q_f, q_0'\}, \Sigma, \Gamma \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$ cu δ' :

Teorema 2

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$, considerăm $M' = (Q \cup \{q_f, q_0'\}, \Sigma, \Gamma \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$ cu δ' :

• $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)

Teorema 2

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$, considerăm $M' = (Q \cup \{q_f, q_0'\}, \Sigma, \Gamma \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$ cu δ' :

- $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
- $\delta'(q, a, z) = \delta(q, a, z), \ \forall q \in Q, \ a \in \Sigma \cup \{\epsilon\}, \ z \in \Gamma \ (M' \ \text{face aceleaşi tranziţii ca şi } M)$

Teorema 2

Pentru orice automat pushdown M cu $F = \emptyset$, există un automat pushdown M' cu stări finale astfel ca $L(M') = L_{\epsilon}(M)$.

Dacă $M=(Q,\Sigma,\Gamma,\delta,q_0,z_0,\emptyset)$, considerăm $M'=(Q\cup\{q_f,q_0'\},\Sigma,\Gamma\cup\{z_0'\},\delta',q_0',z_0',\{q_f\})$ cu δ' :

- $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
- $\delta'(q, a, z) = \delta(q, a, z), \forall q \in Q, \ a \in \Sigma \cup \{\epsilon\}, \ z \in \Gamma \ (M' \ \text{face aceleași tranziții ca și } M)$
- $\delta'(q, \epsilon, \mathbf{z}'_0) = \{(q_f, \epsilon)\}, \forall q \in Q \ (M' \ \text{va trece în starea finală doar dacă stiva lui } M \ \text{este vidă})$

Teorema 3

Pentru orice automat pushdown M cu $F \neq \emptyset$, există un automat pushdown M' cu $F = \emptyset$ astfel ca $L_{\epsilon}(M') = L(M)$.

Teorema 3

Pentru orice automat pushdown M cu $F \neq \emptyset$, există un automat pushdown M' cu $F = \emptyset$ astfel ca $L_{\epsilon}(M') = L(M)$.

Dacă $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$, considerăm

$$\mathit{M}' = (\mathit{Q} \cup \{\mathit{q}_{\epsilon}, \mathit{q}'_{0}\}, \Sigma, \Gamma \cup \{\mathit{z}'_{0}\}, \delta', \mathit{q}'_{0}, \mathit{z}'_{0}, \emptyset)$$

$$\textit{M}' = (\textit{Q} \cup \{\textit{q}_{\epsilon},\textit{q}'_{0}\}, \Sigma, \Gamma \cup \{\textit{z}'_{0}\}, \delta',\textit{q}'_{0},\textit{z}'_{0},\emptyset)\text{, cu }\delta'\text{:}$$

$$M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$$
:

• $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)

- $M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$:
 - $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
 - a) $\delta'(q, a, z) = \delta(q, a, z), \forall q \in Q, a \in \Sigma, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M, pentru orice simbol întâlnit)
 - b) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z)$, dacă $q \in Q \setminus F$, $z \in \Gamma$ (se fac aceleaşi ϵ -tranziții ca în M, dacă starea nu este finală)
 - c) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z) \cup \{(q_{\epsilon}, \epsilon)\}, q \in F, z \in \Gamma \text{ (daca M ajunge într-o stare finală, } M' \text{ poate trece într-o stare specială)}$

- $M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$:
 - $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
 - a) $\delta'(q, a, z) = \delta(q, a, z), \forall q \in Q, a \in \Sigma, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M, pentru orice simbol întâlnit)
 - b) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z)$, dacă $q \in Q \setminus F$, $z \in \Gamma$ (se fac aceleaşi ϵ -tranziții ca în M, dacă starea nu este finală)
 - c) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z) \cup \{(q_{\epsilon}, \epsilon)\}, q \in F, z \in \Gamma \text{ (daca M ajunge într-o stare finală, } M' \text{ poate trece într-o stare specială)}$
 - $\delta'(q,\epsilon,z_0')=\{(q_\epsilon,\epsilon)\}$, dacă $q\in F$ (cazul 2(c), în situația în care în stivă este z_0')

- $M' = (Q \cup \{q_{\epsilon}, q'_0\}, \Sigma, \Gamma \cup \{z'_0\}, \delta', q'_0, z'_0, \emptyset), \text{ cu } \delta'$:
 - $\delta'(q'_0, \epsilon, z'_0) = \{(q_0, z_0 z'_0)\}$ (fără să citească niciun simbol, M' trece în configurația inițială a lui M)
 - a) $\delta'(q, a, z) = \delta(q, a, z), \forall q \in Q, a \in \Sigma, z \in \Gamma$ (M' face aceleaşi tranziţii ca şi M, pentru orice simbol întâlnit)
 - b) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z)$, dacă $q \in Q \setminus F$, $z \in \Gamma$ (se fac aceleaşi ϵ -tranziții ca în M, dacă starea nu este finală)
 - c) $\delta'(q, \epsilon, z) = \delta(q, \epsilon, z) \cup \{(q_{\epsilon}, \epsilon)\}, q \in F, z \in \Gamma \text{ (daca M ajunge într-o stare finală, } M' \text{ poate trece într-o stare specială)}$
 - $\delta'(q,\epsilon,z_0')=\{(q_\epsilon,\epsilon)\}$, dacă $q\in F$ (cazul 2(c), în situația în care în stivă este z_0')
 - δ'($q_{\epsilon}, \epsilon, z$) = {(q_{ϵ}, ϵ)}, dacă $z \in \Gamma \cup \{z'_0\}$ (M' rămâne în starea q_{ϵ} și se extrage vârful stivei)

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Automatul pushdown echivalent cu o gramatică de tip

Teorema 4

Pentru orice gramatică G există un automat pushdown M fără stări finale astfel încât $L_{\epsilon}(M) = L(G)$

Automatul pushdown echivalent cu o gramatică de tip

Teorema 4

Pentru orice gramatică G există un automat pushdown M fără stări finale astfel încât $L_{\epsilon}(M) = L(G)$

- Fie G = (N, T, S, P)
- Construim $M = (\{q\}, T, N \cup T, \delta, q, S, \emptyset)$ unde:

 - $\delta(q, a, a) = \{(q, \epsilon)\}, \forall a \in T$
 - $\delta(q, x, y) = \emptyset$, în restul cazurilor
- $\bullet \ \ w \in L(G) \Leftrightarrow S \Rightarrow^+ w \Leftrightarrow (q, w, S) \vdash^+ (q, \epsilon, \epsilon) \Leftrightarrow w \in L_{\epsilon}(M)$
- M simulează derivările extrem stângi din G

Exemplu

- $G = (\{x\}, \{a, b\}, x, \{x \to axb, x \to ab\})$
- Automatul pushdown echivalent:

$$M = (\{q\}, \{a, b\}, \{a, b, x\}, \delta, q, x, \emptyset)$$

- $\delta(\mathbf{q}, \mathbf{a}, \mathbf{a}) = \{(\mathbf{q}, \epsilon)\}$
- $\delta(q,b,b) = \{(q,\epsilon)\}$

Gramatica echivalentă cu un automat pushdown

Teorema 5

Pentru orice automat pushdown M există o gramatică G astfel încât $L(G) = L_{\epsilon}(M)$

Gramatica echivalentă cu un automat pushdown

Teorema 5

Pentru orice automat pushdown M există o gramatică G astfel încât $L(G) = L_{\epsilon}(M)$

- Fie $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, \emptyset)$
- Construim $G = (N, \Sigma, S, P)$ astfel:
 - $N = \{[qzp]|p, q \in Q, z \in \Gamma\} \cup \{S\}$
 - P conţine toate regulile de forma:

 - dacă $(p, \epsilon) \in \delta(q, a, z)$, atunci: $[qzp] \rightarrow a$
 - dacă $(p,z_1z_2\dots z_m)\in \delta(q,a,z)$, atunci, pentru orice secvență de stări $q_1,\dots,q_m\in Q$:

$$[qzq_m] \to a[pz_1q_1][q_1z_2q_2]\dots[q_{m-1}z_mq_m]$$

• Are loc: $[qzp] \Rightarrow^+ w \Leftrightarrow (q, w, z) \vdash^+ (p, \epsilon, \epsilon)$

Curs 6

- Eliminarea redenumirilor din gramatici de tip 2
- Forma normală Chomsky
- Problema recunoaşterii: algoritmul Cocke Younger Kasami
- 4 Automate pushdown
- Legătura dintre automatele pushdown şi limbajele de tip 2
- 6 Automate pushdown deterministe

Automate pushdown deterministe

Definiție 3

Automatul pushdown $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ este determinist dacă funcția de tranziție $\delta : Q \times (\Gamma \cup \{\epsilon\}) \times \Gamma \longrightarrow 2^{Q \times \Gamma^*}$ îndeplinește condițiile:

- ② Dacă $\delta(q, \epsilon, z) \neq \emptyset$ atunci $\delta(q, a, z) = \emptyset, \forall a \in \Sigma$

Un automat pushdown determinist poate avea ϵ -tranziji

Automate pushdown deterministe

Definiție 3

Automatul pushdown $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ este determinist dacă funcția de tranziție $\delta : Q \times (\Gamma \cup \{\epsilon\}) \times \Gamma \longrightarrow 2^{Q \times \Gamma^*}$ îndeplinește condițiile:

- ② Dacă $\delta(q, \epsilon, z) \neq \emptyset$ atunci $\delta(q, a, z) = \emptyset, \forall a \in \Sigma$

Un automat pushdown determinist poate avea ϵ -tranziji

$$M = (\{q_0, q_1, q_2\}, \{0, 1, a\}, \{0, 1, z\}, \delta, q_0, z, \{q_2\})$$

- $\delta(q_0, a, i) = \{(q_1, i)\}$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

 $\mathcal{L}_{2DET} = \{L | \exists M \text{ automat pushdown determinist astfel ca } L = L(M) \}.$

- Clasa L_{2DET} este o clasă proprie a clasei de limbaje L₂ (L_{2DET} ⊂ L₂).
- $\bullet \ \{ww^R | w \in \{0,1\}^*\} \in \mathcal{L}_2 \setminus \mathcal{L}_{2DET}$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

 $\mathcal{L}_{2DET} = \{L | \exists M \text{ automat pushdown determinist astfel ca } L = L(M) \}.$

- Clasa L_{2DET} este o clasă proprie a clasei de limbaje L₂ (L_{2DET} ⊂ L₂).
- - 2 $\delta(q_0, i, j) = \{(q_0, ij)\}, (i, j \in \{0, 1\}, i \neq j)$
 - $\delta(q_0, i, i) = \{(q_0, ii), (q_1, \epsilon)\}$
 - $\delta(q_1,i,i) = \{(q_1,\epsilon)\}$
 - $\delta(q_1, \epsilon, z) = \{(q_2, \epsilon)\}$

\mathcal{L}_{2DET} - Limbaje de tip 2 deterministe

Definiție 4

O gramatică G este deterministă dacă:

- Orice regulă este de forma $A \to a\alpha$, unde $a \in T$ iar $\alpha \in (N \cup T)^*$
- Pentru orice $A \in N$, dacă $A \to a\alpha$, $A \to b\alpha'$ sunt reguli, atunci $a \neq b$

Pentru orice gramatică deterministă G există un automat pushdown determinist M astfel ca L(G) = L(M)