Konsep Dasar Probability & Counting

Video #1 dari Seri Video Belajar Probabilitas Dasar

Apa itu Probability?

Probability adalah pengukuran terhadap suatu kemungkinan atau peluang.

Pemahaman terkait probability merupakan dasar untuk melangkah ke **Statistika Inferensi** (*Inferential Statistics*).

Terminologi

- Hasil dari suatu percobaan (trial) dikenal sebagai outcome.
- Himpunan dari seluruh kemungkinan outcome pada suatu probability experiment dikenal sebagai sample space.
- Bagian dari sample space dikenal sebagai event.
- Event bisa terdiri dari satu atau lebih outcomes.

Probability Experiments

Probability Experiments adalah aksi atau percobaan (*trial*) yang menghasilkan suatu perhitungan, pengukuran, atau respon (*counts, measurements, or responses*).

Probability Experiments: contoh

Tree Diagram

Tree Diagram digunakan untuk memberikan gambaran secara visual terkait setiap outcome dari suatu probability experiment.

Tree Diagram: contoh

Probability Experiment

Sample Space

Event

- Event umumnya direpresentasikan dengan huruf
 kapital (uppercase letters), seperti A, B, dan C.
- Suatu event yang terdiri dari sebuah outcome dikenal sebagai simple event.

Event: contoh

- Event melempar sebuah koin dan dadu enam sisi serta mendapatkan head dan 3 merupakan simple event dan bisa direpresentasikan sebagai A = {H3}.
- Sedangkan event melempar sebuah koin dan dadu enam sisi serta mendapatkan head dan bilangan genap bukan merupakan simple event karena memiliki 3 kemungkinan outcomes; event ini bisa direpresentasikan sebagai B = {H2, H4, H6}.

Fundamental Counting Principle

- Pemanfaatan Tree Diagram untuk menghitung banyaknya outcome dari sejumlah event tidaklah praktis.
- Sebagai alternatif, kita bisa memanfaatkan Fundamental
 Counting Principle untuk mengetahui jumlah kemungkinan outcomes dari dua atau lebih event yang muncul secara berurutan.

Fundamental Counting Principle: contoh

Suatu sistem pengamanan menerapkan 4 digit bilangan (0-9) sebagai kode akses

Berapa banyak kemungkinan kode akses yang bisa dibentuk?

$$= 10 \times 10 \times 10 \times 10$$
$$= 10^4 = 10,000$$

Fundamental Counting Principle: studi kasus

Suatu sistem pengamanan menerapkan 4 digit bilangan (0-9) sebagai kode akses

Berapa banyak kemungkinan dari kode akses yang bisa dibentuk apabila setiap angka hanya bisa digunakan sekali saja?

Types of Probability

- Probability dapat dituliskan dalam format pecahan, desimal, atau persentase.
- Probability untuk kemunculan event E dapat dituliskan sebagai P(E).

Terdapat 3 tipe probability:

- Classical (theoretical)Probability
- Empirical (statistical)Probability
- Subjective Probability

Classical (theoretical) Probability

Classical Probability digunakan ketika setiap outcome pada sample space memiliki peluang yang sama untuk muncul.

$$P(E) = \frac{\text{Number of outcomes in event } E}{\text{Total number of outcomes in sample space}}.$$

Classical (theoretical) Probability: contoh

Event A:
Pelemparan sebuah
dadu 6 sisi dan
mendapatkan angka 3

 $A = \{3\}$ $P(A) = \frac{1}{6} \approx 0.167$

Event B:
Pelemparan sebuah
dadu 6 sisi dan
mendapatkan angka 7

Event C:
Pelemparan sebuah
dadu 6 sisi dan
mendapatkan angka

lebih kecil dari 5.

Empirical (statistical) Probability

Empirical Probability didasarkan pada **observasi** dari **probability experiments**.

$$P(E) = \frac{\text{Frequency of event } E}{\text{Total frequency}}$$

Empirical (statistical) Probability: contoh

Suatu perusahaan melakukan survey online dengan memilih sejumlah responden secara acak untuk dimintai keterangan seberapa sering mereka melakukan recycle. Sejauh ini mereka mendapatkan data dari 2,451 responden.

Response	Number of times, f
Always	1054
Often	613
Sometimes	417
Rarely	196
Never	171
	$\Sigma f = 2451$

Berapa probability untuk orang selanjutnya yang akan disurvey memberikan response "Always"?

$$P(\text{always}) = \frac{1054}{2451}$$
$$\approx 0.430$$

Law of Large Number

Ketika suatu probability experiment dilakukan secara berulang-ulang, maka nilai empirical probability yang dihasilkan akan mendekati nilai theoretical probability dari event terkait.

Law of Large Number: simulasi

http://digitalfirst.bfwpub.com/stats_applet/stats_applet_10_prob.html

Subjective Probability

Subjective Probability didasarkan pada intuisi, educated guesses, dan estimasi.

Contoh:

- Seorang dokter memberikan estimasi keberhasilan dari proses operasi yang ditanganinya sebesar 90%.
- Seorang mahasiswa merasa yakin bahwa peluangnya untuk lulus di matakuliah statistika adalah 70%.

Range of Probability

Probability dari suatu event \mathbf{E} akan memiliki jangkauan antara $\mathbf{0}$ sampai dengan $\mathbf{1}$.

$$0 \le P(E) \le 1$$

Event E dengan

$$P(E) \le 0.05$$

dikategorikan sebagai unusual event.

Complementary Events

Complement dari event E adalah semua oucomes pada sample space yang tidak disertakan pada event E; Complement dari event E direpresentasikan sebagai \boldsymbol{E}'

$$P(E) + P(E') = 1$$

$$P(E) = 1 - P(E')$$

$$P(E') = 1 - P(E)$$

Complementary Events: contoh

Pada pelemparan sebuah dadu enam sisi, E adalah event mendapatkan angka setidaknya 5.

$$E = \{5, 6\}$$

$$E' = \{1, 2, 3, 4\}$$

Complementary Events: studi kasus

Response	Number of times, f
Always	1054
Often	613
Sometimes	417
Rarely	196
Never	171
	$\Sigma f = 2451$

Berapa probability untuk orang selanjutnya yang akan disurvey memberikan response **bukan** "Always"?

$$P(\text{always}) = \frac{1054}{2451}$$
$$\approx 0.430.$$

$$P(always^{'}) = 1 - 0.43 = 0.57$$

Probability: studi kasus

Suatu probability experiment melibatkan pelemparan koin dan pemutaran spinner (yang terbagi dalam 8 bagian). Berapakah probability untuk kedua event berikut:

- Event A: Mendapatkan Tail dan angka ganjil
- Event B: Mendapatkan head atau angka > 3

Indonesia Belajar

Banyak Belajar Biar Bisa Bantu Banyak Orang

