UNIVERSIDAD NACIONAL DE INGENIERIA

Tarea05: Redes neuronales dinámicas

Carlos Alberto Espinoza Mansilla | Inteligencia Artificial | 01/05/2019

Con el archivo 'DynamicBPModelamiento.m' vamos a comprobar la dependencia de los valores introducidos al programa y como afectan su rapidez de procesamiento y el error del resultado de una red neuronal dinámica.

1er Entrenamiento de u_1:

Introduce learning rate [v w]: 0.04

Introduce learning rate [c: sigmoid center]: 0.06

Introduce learning rate [a: sigmoid slope]: 0.05

Introduce maximum value of error function (percentage %): 15

Validando u_2:

Introduce learning rate [v w]: 0

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0

Introduce maximum value of error function (percentage %): 15

Validando u_3:

Introduce learning rate [v w]: 0

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0

Introduce maximum value of error function (percentage %): 15

2do Entrenamiento de u_1:

Introduce learning rate [v w]: 0.08

Introduce learning rate [c: sigmoid center]: 0.04

Introduce learning rate [a: sigmoid slope]: 0.04

Introduce maximum value of error function (percentage %): 10

Validación de u_2:

Introduce learning rate [v w]: 0

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0

Introduce maximum value of error function (percentage %): 10

Validando u_3:

Introduce learning rate [v w]: 0

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0

Introduce maximum value of error function (percentage %): 10

3er Entrenamiento de u_1:

Introduce learning rate [v w]: 0.03

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0.02

Introduce maximum value of error function (percentage %): 7

Validando u_2:

Introduce learning rate [v w]: 0

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0

Introduce maximum value of error function (percentage %): 7

Validando u_3:

Introduce learning rate [v w]: 0

Introduce learning rate [c: sigmoid center]: 0

Introduce learning rate [a: sigmoid slope]: 0

Introduce maximum value of error function (percentage %): 7

Conclusión:

De acuerdo a nuestras observaciones experimentales reducir el 'learning rate' a valores menores a 0.08 benefician una convergencia más rápida (menor número de iteraciones antes de converger) y que los valores en c: sigmoide center y a: sigmoid slope entre menores sean(tomando en cuenta tamien el % de error agregado) el error total obtenido disminuye.