Scratch paper

Anonymous Università di Torino March 2020

Abstract Poche idee, ben confuse.

1 Introduction

2 Abstract samples

Let M be a structure of signature L. The sample-expansion of M is a 3-sorted expansion $\langle M, \omega, \bar{M} \rangle$, where $\bar{M} = M^{<\omega}$. These three sorts are called home-sort, integer-sort, and sample-sort, respectively. We put a bar over the symbols that denotes elements of sample-sort. The size of a sample $\bar{a} \in \bar{M}$ is the length of \bar{a} as an element of $M^{<\omega}$. This is denoted by $\ln \bar{a}$. The same symbol \bar{a} may be used for tuples of samples of the same size. The usual notation $|\bar{a}|$ is used the length of such tuples, for instance, if $\bar{a} \in \bar{M}^n$ then $|\bar{a}| = n$. We write $\bar{a}.i$ for the i-th element of the sample \bar{a} . Then $\bar{a}_i \in M^{|\bar{a}|}$. The language of this expansion is denoted by \bar{L} ; it comprises

- 1. all symbols of *L*, these apply to the home-sort;
- 2. $0, 1, +, \cdot$ which apply to the integer-sort;
- 3. a ternary relation of sort \bar{M} , ω , M that holds if $\bar{x}.i = y$.
- 4. for every $\varphi(x) \in \bar{L}$, where here for clarity |x| = 1, there is relation symbol of sort \bar{M} , ω that holds for those \bar{a} and $i < \ln \bar{a}$ such that $\varphi(\bar{a}.i)$;

When $\varphi(x)$ is the formula x=x, then 4 above implies that $\ln \bar{x}$ is definable. Also, from 4 it easily follows that the function $|\{i < \ln \bar{a} : \varphi(\bar{a}.i)\}|$ is definable.

As in the integer-sort we can interpret the field of rational numbers, below we will freely use rational numbers when this clarify the notation. For instance we define

$$\operatorname{Fr}_{\bar{a}} \varphi(x) = \frac{|\{i < \operatorname{lh} \bar{a} : \varphi(\bar{a}.i)\}|}{\operatorname{lh} \bar{a}}$$

and use that it is a definable function in \bar{L} .

2.1 Definition Let U be a monster model of inaccessible cardinality $\kappa > |L|$ and let $\langle U, \omega, \overline{U} \rangle$ be the corresponding sample-expansion. We denote by $\langle U, \omega^*, \overline{U}^* \rangle$ a saturated elementary extension of $\langle U, \omega, \overline{U} \rangle$ of cardinality κ . Note that we can assume that the home-sort of this extension is U, in fact as all saturated models of cardinality κ are isomorphic. The elements of \overline{U} are called finite samples, those of \overline{U}^* are called internal samples.

To any internal sample \bar{a} we associate a finitely additive measure on the definable subsets of U. Define

$$\Pr_{\bar{a}} \left[\varphi(\mathcal{U}) \right] = \sup \left\{ r \in \mathbb{Q} \ : \ r < \operatorname{Fr}_{\bar{a}} \varphi(x) \right\}$$

2.2 Definition Let x be a tuple of variables of the home-sort. An external sample is a global type $p(\bar{x}) \subseteq \bar{L}(\mathfrak{U}, \omega^*, \bar{\mathfrak{U}}^*)$ such that for every formula $\varphi(x) \in \bar{L}$ the set $\{i \in \omega^* : p(\bar{x}) \vdash \varphi(\bar{x}.i)\}$ is definable and bounded.

For every external sample $p(\bar{x})$ there is an $n \in \omega^*$ such that $p(\bar{x}) \vdash \text{lh } \bar{x} = n$ and the (nonstandard) cardinality of the set $\{i \in \omega^* : p(\bar{x}) \vdash \varphi(\bar{x}.i)\}$ is well-defined.

Therefore, to any external sample $p(\bar{x})$ we associate a finitely additive probability measure on the definable subsets of U. Define

$$\Pr_{\bar{p}}\left[\varphi(\mathfrak{U})\right] \ = \ \sup\left\{r \in \mathbb{Q} \ : \ r < \frac{\left|\left\{i < \operatorname{lh}\bar{x} \ : \ p(\bar{x}) \vdash \varphi(\bar{x}.i)\right\}\right|}{\operatorname{lh}\bar{x}}\right\}$$

2.3 Notation Let z be a tuple of variables of the home-sort. For any external sample $p(\bar{x})$, and every formula $\varphi(\bar{x};z) \in \bar{L}(\mathfrak{U},\omega^*,\bar{\mathfrak{U}}^*)$, and $b \in \mathfrak{U}^{|z|}$ we write $\varphi(\bar{p};b)$ for $p(\bar{x}) \vdash \varphi(\bar{x};b)$. We also write

$$\varphi(\bar{p};\mathcal{U}) = \left\{b \in \mathcal{U}^{|z|} : \varphi(\bar{p};b)\right\}$$

Sets of this form are called externally definable. This notation intentionally confuses $p(\bar{x})$ with any of its realizations (suggestively denoted by \bar{p}) in some elementary extension of $\bar{\mathcal{U}}$.

The following notions are standard

- **2.4 Definition** Let z be a tuple of variables of the home-sort. Let M be given. An external sample $p(\bar{x})$ is
 - 1. invariant if for every $\varphi(\bar{x};z) \in \bar{L}(\mathcal{U},\omega^*,\bar{\mathcal{U}}^*)$ the set $\varphi(\bar{p};\mathcal{U})$ is invariant over M;
 - 2. finitely satisfiable if for every formula $\varphi(\bar{x}, z) \in \bar{L}(\mathcal{U}, \omega^*, \bar{\mathcal{U}}^*)$ if $\varphi(\bar{p}; \mathcal{U}) \neq \emptyset$, then $\varphi(\bar{a}; \mathcal{U}) \neq \emptyset$ for some $a \in \bar{M}$;
 - definable over M if for every $\varphi(\bar{x};z) \in \bar{L}(\mathcal{U},\omega^*,\bar{\mathcal{U}}^*)$ the set $\varphi(p;\mathcal{U})$ is definable over \bar{M} .
- **2.5 Fact** If an external sample $p(\bar{x})$ is finitely satisfiable in M, then for every $\varepsilon > 0$ there is an $\bar{a} \in \bar{M}$ such that

$$\Pr_{\bar{n}} \left[\varphi(\mathcal{U}) \right] \approx_{\varepsilon} \Pr_{\bar{a}} \varphi(x)$$

As usual, finite satisfiability implies invariance.

- **2.6 Fact** Let M be given. Let $p(\bar{x})$ be a finitely satisfiable external sample. Then p is invariant. \square
- **2.7 Definition** Let M be given. A external sample $p(\bar{x})$ is uniformly satisfiable if for every

 $\varphi(\bar{x};z) \in \bar{L}(\bar{M})$ there is an $r \subseteq M^s$ such that $\varphi(p;b) \leftrightarrow \varphi(r;b)$ for every $b \in \mathcal{U}^{|z|}$.

Note that uniform satisfiability implies definability.

- **2.8 Definition** Let M be given. An external sample is smooth if it is invariant and realized in $\overline{\mathbb{U}}^*$ (by some internal sample).
- **2.9 Lemma** Let M be given. Then every smooth external sample $p(\bar{x})$ is uniformly satisfiable.

Proof. Let $s \in \overline{\mathcal{U}}^{s*}$ be an internal sample that realizes $p(\bar{x})$. Let $\varphi(\bar{x};z) \in L$ be given. Firstly, note that $\varphi(p;\mathcal{U}) = \varphi(s;\mathcal{U})$ is definable in $\overline{\mathcal{U}}^{s}$ hence, by invariance, it is definable in \overline{M} .

Secondly, we prove that $p(\bar{x})$ is finitely satisfiable. Let $b \in \mathcal{U}^{|z|}$ be given and pick $b' \equiv_{\bar{M}} b$ be such that $s \downarrow_{\bar{M}} b'$. By invariance, $\varphi(s;b') \leftrightarrow \varphi(s;b)$. Therefore there is an $r \in M^s$ such that $\varphi(r;b') \leftrightarrow \varphi(s;b)$. This proves finite satisfiability. By finite satisfiability, the following type is inconsistent

$$q(z) = \left\{ \varphi(s;z) \not\leftrightarrow \varphi(r;z) : r \in M^{s} \right\}$$

Hence compatness yields some finitely many $r_i \subseteq M^s$ such that

$$\forall z \bigvee_{i=1}^{n} \left[\varphi(s;z) \leftrightarrow \varphi(r_i;z) \right]$$

By the definability of $p(\bar{x})$, which we proved in 1, there are some formulas $\vartheta_i(z) \in L(\bar{M})$ equivalent to $\varphi(s;z) \leftrightarrow \varphi(r_i;z)$. Hence we have

$$\forall z \bigwedge_{i=1}^{n} \left[\vartheta_{i}(z) \leftrightarrow \left[\varphi(s;z) \leftrightarrow \varphi(r_{i};z) \right] \right]$$

By elementarity, there is an $r \in M^s$ such that the formula above holds with s replaced by r. Therefore $\forall z \left[\varphi(s;z) \leftrightarrow \varphi(r;z) \right]$. Hence r is as required by Definition 2.7.

Let $p(\bar{x})$ be a external sample. The support of $p(\bar{x})$ is the set of those $a \in \mathcal{U}^{|x|}$ such that $p(\bar{x}) \vdash \bar{x}(a) \neq 0$.

2.10 Lemma Let M be given. Let $p(\bar{x})$ be a uniformly satisfiable external sample. Then the support of $p(\bar{x})$ is a finite subset of M.

Proof. Apply Definition 2.7 to the formula $\bar{x}(z) \neq 0$. Then there is an $r \in M^s$ such that for every $b \in \mathcal{U}^{|z|}$.

$$p(\bar{x}) \vdash \bar{x}(b) \neq 0 \rightarrow r(b) \neq 0.$$

As *r* has finite support, the lemma follows.

2.11 Fact Let M be given. Let $p(\bar{x})$ be a global type with a finite support enumerated by the tuple a. Then there is type q(y), where y is a tuple of variables of real-sort of length |a|, with parameters in U, \bar{M} and no variable of sample-sort such that

$$p(\bar{x}) \leftrightarrow \exists y \left[q(y) \cup \{\bar{x}(a) = y\} \right]$$

Proof.

- **2.12 Lemma** Let M be given. Let $p(\bar{x})$ be a global type, then the following are equivalent
 - 1. $p(\bar{x})$ is smooth;
 - *2.* $p(\bar{x})$ is uniformly satisfiable.

Proof. Implication $1\Rightarrow 2$ has been proved in Lemma ??. Here we prove $2\Rightarrow 1$. By Lemma 2.10, $p(\bar{x})$ has a finite support $A\subseteq M$. Now apply Fact 2.11. As the type q(y) is relized in $\bar{\mathcal{U}}^*$, so is $p(\bar{x})$. Invariance is clear by finite satisfiability.

3 The Erdős-Hajnal property

Let $\varphi(x;z) \in L$. We say that $\varphi(x;z)$ has the Erdős-Hajnal property if there is a constant $\delta \in (0,1)$, which depends soley on $\varphi(x;z)$, such that for every finite $A \subseteq \mathcal{U}^{|x|}$ and $B \subseteq \mathcal{U}^{|z|}$ there are $A_0 \subseteq A$ and $B_0 \subseteq B$ such that $|A_0| > \delta |A|$, $|B_0| > \delta |B|$ and $A_0 \times B_0$ is either disjoint from or contained in $\varphi(\mathcal{U};\mathcal{U})$.

- **3.1 Definition** We say that $\varphi(x;z) \in L$ is a distal formula if there are some formulas $\eta_i(z;\bar{z}) \in L$, where i = 0,1 and $|\bar{z}| = n \cdot |z|$ for some n, such that for every $a \in \mathcal{U}^{|x|}$ and every finite set $B \subseteq \mathcal{U}^{|z|}$ there is a tuple $\bar{b} \in B^n$ such that $\varphi(a;B) = \eta_i(B;\bar{b})$ and $\eta_0(z;\bar{b}) \to \varphi(a;z) \to \eta_1(z,\bar{b})$.
- **3.2 Theorem** Assume $\eta(x;z) \in L$ has vc-dimension $k < \infty$. Then for every $\varepsilon > 0$ and every finite $B \subseteq \mathfrak{U}^{|z|}$ there is a $B_0 \subseteq B$ of cardinality $< (k/\varepsilon^2) \ln(k/\varepsilon)$.
- **3.3 Theorem (Chernikov-Starchenko)** Assume T is nip. Then every distal formula has the Erdős-Hajnal property.

Proof. Let $\psi(z;\bar{z})$ be the formula given by distality. Write $\vartheta(z;\bar{z})$ for the formula

$$\forall x \; \big[\psi(x;\bar{z}) \to \varphi(x;z) \big] \; \vee \; \forall x \; \big[\psi(x;\bar{z}) \to \neg \varphi(x;z) \big].$$

Let $s \in \mathcal{U}^s$ be the indicator function of A. Let $\bar{b} \in \mathcal{U}^{|\bar{z}|}$ be such that $\psi(s; \bar{b}) > \varepsilon$.

- **3.4 Proposition** Let $\varphi(z;z) \in L$ be given. Below, we write \bar{z} for the tuple of variables z_1, \ldots, z_n , where $|z_i| = |z|$. The following are equivalent
 - 1. there is a formula $\psi(x;\bar{z}) \in L$ such that for every finite set $B \subseteq \mathcal{U}^{|z|}$ and every $a \in \mathcal{U}^{|x|}$ there is a $\bar{b} \in B^n$ such that $\psi(a;\bar{b})$ and $\psi(x;\bar{b})$ decides all formulas $\varphi(x;b)$ for $b \in B$;
 - 2. there are two formulas $\eta_i(z;\bar{z})$, where i=0,1, such that for every $a\in \mathcal{U}^{|x|}$ there is a $\bar{b}\in B^n$ such that $\varphi(a;B)=\eta_i(B;\bar{b})$ and $\eta_0(z;\bar{b})\to \varphi(a;z)\to \eta_1(z,\bar{b})$.

4 Recycle bin

Below, ε always ranges over the positive standard reals. If a and b are (hyper)reals, we write $a \approx_{\varepsilon} b$ for $|a - b| < \varepsilon$. We write $a \approx b$ if $a \approx_{\varepsilon} b$ holds for every ε .

4.1 Lemma Let M be given. Let $p(x^s)$ be smooth. Then for every ε there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathcal{U}^{|z|}$ we have $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_j(x)$ and $\operatorname{Fr} \vartheta_i(p) \approx_{\varepsilon} \operatorname{Fr} \vartheta_i(p)$ for some i, j.

Then for every $b \in \mathcal{U}^{|z|}$ there is an $r \in R$

$$p(x^{s}) \vdash x^{s}(b) > 0 \leftrightarrow r(b) > 0$$
 such that

As Write $\operatorname{supp}(R)$ for the union of $\operatorname{supp}(r)$ for $r \in R$. Then $p \vdash \operatorname{supp}(x^s) \subseteq \operatorname{supp}(R)$. In particular $p \vdash \operatorname{supp}(x^s) = A$ for some finite $A \subseteq M$.

$$\varphi(p;z) \leftrightarrow r(z) > 0$$

Let $p(x^s)$ be external sample that is uniformly finitely satisfiable w.r.t. all $\varphi(x^s;z) \in L$. Then there is an $r \in M^s$ such that

$$x^{s}(z_i) \approx_{\varepsilon} \mu_i$$

4.2 Fact Let M and $\varphi(x;z) \in L$ be given. Let $p(x^s)$ be a definable, uniformly finitely satisfiable external sample. Then there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathcal{U}^{|z|}$ we have $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_i(x)$ and $\bar{\vartheta}_i(p) \approx_{\varepsilon} \bar{\vartheta}_i(p)$ for some i,j.

Proof. Let
$$\psi_r(z)$$
, for $r \in R \subseteq M^s$

Let

Pick finite $F \subseteq \mathbb{R}$ such that for every b we have $\overline{\varphi}(p;b) \approx_{\varepsilon} \mu$ for some $\mu \in F$. By Definition $\ref{eq:property}$ there is a finite set $R \subseteq M^s$ such that for every $b \in \mathcal{U}^{|z|}$ and every $\mu \in F$ we have $\varphi(p;b) \approx_{\varepsilon} \mu \leftrightarrow \varphi(r;b) \approx_{\varepsilon} \mu$ for some $r \in R$. Therefore for every $b \in \mathcal{U}^{|z|}$ we have that $\varphi(p;b) \approx_{2\varepsilon} \varphi(r;b)$ for some $r \in R$. Let $A \subseteq \mathcal{U}^{|z|}$ be a finite set containing supp(r) for all $r \in R$. Let $\vartheta_i(x)$ enumerate the formulas $x \in B$ and $x \notin B$, as B ranges over the subsets of A.

We prove that these formulas are as required by the proposition. Fix some $b \in \mathcal{U}^{|z|}$ and let $r \in R$ be such that $\varphi(p;b) \approx_{2\varepsilon} \varphi(r;b)$. Let

$$B_0 = \{a \in \operatorname{supp}(r) : \varphi(a;b)\}$$

$$B_1 = \{a \in \operatorname{supp}(r) : \neg \varphi(a;b)\}$$

Clearly,
$$x \in B_0 \to \varphi(x;b) \to x \notin B_1$$
.

4.3 Definition Let $\varphi(x^s; z) \in L$ and M be given. We say that $p(x^s)$ is weakly approximable if there are some finitely many $r_i \in M^s$, say $0 \le i < n$, such that for every $b \in \mathcal{U}^{|z|}$ we have $\varphi(p; b) \leftrightarrow \varphi(r_i; b)$ for some i.

Let $\varphi(x;z) \in L$ and M be given. Let $\mathcal{B} = \varphi(p;\mathcal{U})$. Let $p(x^s)$ be weakly approximable. Then there is a finite cover of \mathcal{B} , say $\mathcal{B}_1, \ldots, \mathcal{B}_n$, such that all the types $p_i(x) = \{\varphi(x;b) : b \in \mathcal{B}_i\}$ are consistent.

4.4 Fact Let M be given. Let $p(x^s)$ be external sample. Suppose for every $\varphi(x) \in L(\mathfrak{U})$ and ε there are $\vartheta_1(x), \vartheta_2(x) \in L(M)$ such that $\vartheta_1(x) \to \varphi(x) \to \vartheta_2(x)$ and $\bar{\vartheta}_2(p) \approx_{\varepsilon} \bar{\vartheta}_1(p)$. Then p is finitely satisfiable.

Proof. Let $\varphi_i(x)$, for $0 \le i < n$, be given. We claim that there is an $r \in \bar{M}$ such that $\bar{\varphi}_i(p) \approx_{3\varepsilon} \bar{\varphi}_i(r)$ for every i.

Let $\vartheta_{i,1}(x)$ and $\vartheta_{i,2}(x)$ be as in the fact. As $\vartheta_{i,1}(p) \leq \varphi_i(p) \leq \vartheta_{i,2}(p)$, then $\vartheta_{i,1}(p) \approx_{\varepsilon} \varphi_i(p)$. By elementarity there is an $r \in \bar{M}$ such that $\vartheta_{i,1}(r) \approx_{\varepsilon} \vartheta_{i,1}(p)$ and $\vartheta_{i,2}(r) \approx_{\varepsilon} \vartheta_{i,2}(p)$. Then the claim follows immediately.

- **4.5 Lemma** The following are equivalent for every external sample $p(x^s)$
 - 1. p is smooth and invariant;
 - 2. for every finite $B \subseteq \mathcal{U}^{|z|}$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ for all $b \in B$;
 - 2. for every $\varphi_i(x;z) \in L$, every $b_i \in \mathbb{U}^{|z|}$, and every ε , there is an $r \in \bar{M}$ such that $\bar{\varphi}_i(p;b_i) \approx_{\varepsilon} \bar{\varphi}_i(r;b_i)$, for every $0 \leq i < n$;
 - 2. for every $\psi_0(x), \ldots, \psi_{n-1}(x) \in L(\mathfrak{U})$ and every ε , there is an $r \in \bar{M}$ such that $\bar{\psi}_i(p) \approx_{\varepsilon} \bar{\psi}_i(r)$, for every i < n;
 - 4. there are finitely many formulas $\vartheta_i(x) \in L(M)$ such that for every $b \in \mathbb{U}^{|z|}$ we have that $\vartheta_i(x) \to \varphi(x;b) \to \vartheta_j(x)$ and $\bar{\vartheta}_j(p) \bar{\vartheta}_i(p) < \varepsilon$ for some i,j.

Proof. Let *s* be an internal sample that realizes $p(x^s)$.

1 \Rightarrow 2. Let B and ε be given. Let $\bar{b} = \langle b_i : i < n \rangle$ be an enumeration of B. Let $\mu_i \in \mathbb{R}$ be such that $\bar{\varphi}(p;b_i) \approx \mu_i$ for every i < n. Let \bar{b}' be such that $s \downarrow_{\bar{M}} \bar{b}' \equiv_{\bar{M}} \bar{b}$. By invariance, $\bar{\varphi}(s;b_i') \approx \mu_i$. Therefore there is an $r \in \bar{M}$ such that $\bar{\varphi}(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{\bar{M}} \bar{b}$, we obtain $\bar{\varphi}(r;b_i) \approx_{\varepsilon} \mu_i$.

1 \Rightarrow 2. Let $\psi_i(x) = \varphi_i(x;b_i)$ for some $\varphi_i(x;z) \in L$ and $b_i \in \mathcal{U}^{|z|}$. Let $\bar{b} = \langle b_i : i < n \rangle$. Let $\mu_i \in \mathbb{R}$ be such that $\bar{\varphi}_i(p;b_i) \approx \mu_i$. Let \bar{b}' be such that $s \downarrow_{\bar{M}} \bar{b}' \equiv_{\bar{M}} \bar{b}$. By invariance, $\bar{\varphi}_i(s;b_i') \approx \mu_i$. Therefore there is an $r \in \bar{M}$ such that $\bar{\varphi}_i(r;b_i') \approx_{\varepsilon} \mu_i$ for every i < n. As $\bar{b}' \equiv_{\bar{M}} \bar{b}$, we obtain $\bar{\varphi}_i(r;b_i) \approx_{\varepsilon} \mu_i$.

1 \Rightarrow 3. By smoothness we it suffices to prove 3 with *s* for *p*. The type

$$p(z) = \left\{ \bar{\varphi}(s;z) \not\approx_{\varepsilon} \bar{\varphi}(r;z) : r \in \bar{M} \right\}$$

is inconsistent by 2. Hence compatness yields the required $r_1, \ldots, r_n \in \bar{M}$.

3⇒2. Clear.

2⇒1 Assume 2. We prove that *p* is invariant. Pick some $b \equiv_{\bar{M}} b'$ and some ε . Let

 $r,r' \in \overline{M}$ be such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$ and $\overline{\varphi}(p;b') \not\approx_{\varepsilon} \overline{\varphi}(r';b')$. As $\overline{\varphi}(r;b) \approx \overline{\varphi}(r';b')$ follows from $b \equiv_{\overline{M}} b'$, we obtain $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(p;b')$.

We prove that p is smooth.

$$p(x^{s}) = \left\{ \bar{\varphi}(x^{s};b) \approx_{\varepsilon} \mu_{b} : b \in \mathcal{U}^{|z|} \right\}$$

- **4.6 Definition** Let $\varphi(x;z) \in L$ and M be given. A external sample $p(x^s)$ is
 - 1. invariant if $\bar{\varphi}(p;b) \approx \bar{\varphi}(p;b')$ for every $b \equiv_{\bar{M}} b'$;
 - 2. (pointwise) approximable if, for every $b \in \mathbb{U}^{|z|}$ and every ε , there is an $r \in \overline{M}$ such that $\overline{\varphi}(p;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;
 - 3. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \overline{\varphi}(p;b) < \varepsilon\}$ is definable over \overline{M} .

The following is a useful characterization of smooth samples.

5 Old stuff/garbage

We write $\operatorname{supp}(p)$ for the support of p, that is, the set of those a in \mathbb{U} such that $p \vdash (a \in x^s) > \varepsilon$ for some standard positive ε . If s is a smooth sample $\operatorname{supp}(s)$ is defined to be $\operatorname{supp}(p)$ for $p(x^s) = \operatorname{tp}(s/\overline{\mathbb{U}})$.

Let s be an external sample. For every formula $\varphi(x;z) \in L$ and every $b \in \mathcal{U}^{|z|}$ we define

$$\operatorname{Av}_{x/s}\varphi(x;b) = \frac{\left|\left\{a \in s : \varphi(a;b)\right\}\right|}{|s|},$$

When possible we abbreviate $\operatorname{Av}_{x/s}\varphi(x;b)$ with $\overline{\varphi}(s;b)$.

We write $\operatorname{ft}(a)$, for the standard part of the hyperrational number a. That is, the unique real number μ such that $\mu \approx a$.

The standard part of Av_s induces a finite probability measure on the algebra of definable subsets of $\mathcal{U}^{|x|}$. This measure has an unique extension to a Lebesgue probability measure on a σ -algebra. This is known as the Loeb measure.

All definitions and facts in this section are relative to some given formula $\varphi(x;z) \in L$ and some model M.

- **5.1 Definition** Let $\varphi(x;z) \in L$ and M be given. We say that a sample s is smooth if, for every $s' \equiv_M s$ and every $b \in \mathcal{U}^{|z|}$, we have $\bar{\varphi}(s';b) \approx \bar{\varphi}(s;b)$.
- **5.2 Definition** Let $\varphi(x;z) \in L$ and M be given. An external sample s is
 - 1. invariant if, for every $b, b' \in \mathcal{U}^{|z|}$ such that $b \equiv_M b'$, we have $\overline{\varphi}(s;b) \approx \overline{\varphi}(s;b')$;
 - 2. definable if, for every ε , the set $\{b \in \mathcal{U}^{|z|} : \bar{\varphi}(s;b) < \varepsilon\}$ is definable over M;
 - 3. finitely satisfiable if, for all $b \in \mathcal{U}^{|z|}$ there is an $r \in \overline{M}$ such that $\overline{\varphi}(s;b) \approx_{\varepsilon} \overline{\varphi}(r;b)$;

	Smooth roughly means internal and invariant.		
5.3		t Let $\varphi(x;z) \in L$ and M be given. The following are equivalent for every external ple s	
	1.	s is smooth;	
	2.	there is an invariant internal sample $s' \equiv_M s$.	
	Proof. 1 \Rightarrow 2. Let s be smooth and let $s' \equiv_M s$ be any internal sample. If $b, b' \in$ and $b \equiv_M b'$, then $b' = fb$ for some $f \in \operatorname{Aut}(\bar{\mathbb{U}}^*/M)$. Then $\bar{\varphi}(s'; fb) \approx \bar{\varphi}(f^{-1}s')$ Moreover, by smothness $\bar{\varphi}(f^{-1}s'; b) \approx \bar{\varphi}(s'; b)$. The infariace in s' follows.		
	for inte	1. It suffices to prove that if s is internal and invariant then it is smooth. Suppose a contradiction that there is an $s' \equiv_M s$ such that $\bar{\varphi}(s';b) \not\approx_{\varepsilon} \bar{\varphi}(s;b)$. Pick a small sample $s'' \equiv_{M,s} s'$. Then $\bar{\varphi}(s'';b) \not\approx_{\varepsilon} \bar{\varphi}(s;b)$. As $s'' \equiv_{M} s$ are both in $\bar{\mathcal{U}}^*$, in $s'' = fs$ for some $f \in \operatorname{Aut}(\bar{\mathcal{U}}^*/M)$. Hence we obtain $\bar{\varphi}(s;f^{-1}b) \not\approx_{\varepsilon} \bar{\varphi}(s;b)$ ich contradics the invariance of s .	
5.4	is (1	finition Let $\varphi(x;z) \in L$ and M be given. Let $\mathbb{B} \subseteq \mathbb{U}^{ z }$ be arbitrary. We say that s uniformly) approximable on \mathbb{B} if for every ε there is a finite sample $r \in \overline{M}$ such that $b) \approx_{\varepsilon} \overline{\varphi}(r,b)$ for every $b \in \mathbb{B}$. (The sample r depends on ε , not on b .)	
5.5	$\bar{\varphi}(s)$	nma Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on $\mathbb B$ and such that $g(b) > \varepsilon$ for every $b \in \mathbb B$. Then there is a finite cover of $\mathbb B$, say $\mathbb B_1, \ldots, \mathbb B_n$, such that all types $p_i(x) = \{\varphi(x;b) : b \in \mathbb B_i\}$ are consistent.	
	sup	of . Let $r \in \bar{M}$ be as in Definition 5.4. As r is finite, we may assume that $p(r) = \{a_1, \ldots, a_n\}$. Let $\mathcal{B}_i = \{b \in \mathcal{B} : \varphi(a_i; b)\}$. As $\bar{\varphi}(r; b) > 0$ for all $b \in \mathcal{B}$, so \mathcal{B}_i are the required cover of \mathcal{B} .	
5.6	$\langle b_i :$	collary Let $\varphi(x;z) \in L$ and M be given. If s be approximable on $\langle b_i : i < \omega \rangle$, where $i < \omega \rangle$ is a sequence of indiscernibles such that $\overline{\varphi}(s;b_i) > \varepsilon$ for every $i < \omega$, then the $\varepsilon \{ \varphi(x;b_i) : i < \omega \}$ is consistent.	
5.7		rollary Let $\varphi(x;z) \in L$ and M be given. Let s be approximable on C . Then for every ε is a pair of distict $c,c' \in C$ such that $\operatorname{Av}_{x/s} \big[\varphi(x;c) \not\leftrightarrow \varphi(x;c') \big] < \varepsilon$	
	c, c' the a fin infin	of. Suppose for a contradiction that $\operatorname{Av}_{x/s}[\varphi(x;c) \leftrightarrow \varphi(x;c')] \geq \varepsilon$ for all distict $\in \mathbb{C}$. Apply Lemma 5.5 to the folmula $\psi(x;z,z') = [\varphi(x;z) \leftrightarrow \varphi(x;z')]$ and set $\mathbb{B} = \{\langle c,c' \rangle \in \mathbb{C}^2 : c \neq c' \}$. The sets \mathbb{B}_i obtained from Lemma 5.5 induce nite coloring of the complete graph on \mathbb{C} . By the Ramsey theorem there is an nite monochromatic set $A \subseteq \mathbb{C}$. Hence $\{\varphi(x;a) \leftrightarrow \varphi(x;a') : a,a' \in A, a \neq a' \}$ is sistent. As $ A > 2$, this is impossible.	

4. generically stable if all of the above hold.

6 The nip formulas

6.1	Theorem Let $\varphi(x;z) \in L$ and M be given and assume that $\varphi(x;z)$ is nip. Then every sample is approximable on M over M .	
	Proof . Questo è Vapnik-Chervonenkis.	
	For smooth samples the Vapnik-Chervonenkis Theorem can be strengthened as follows. (The difference is that below b ranges over $\mathfrak{U}^{ z }$.)	
6.2	Corollary Let $\varphi(x;z) \in L$ be nip. Every smooth sample s is approximable on U over M .	
	Proof . By Theorem 6.1, there is an $r \in \bar{M}$ such that $\bar{\varphi}(s;b) \approx_{\varepsilon} \bar{\varphi}(r;b)$ for all $b \in M^{ z }$.	
	Suppose for a contradiction that $\bar{\varphi}(s;b')\not\approx_{\varepsilon}\bar{\varphi}(r;b')$ for some $b'\in\mathcal{U}^{ z }$. Pick a $s'\subseteq\mathcal{U}^{ x }$ such that $b'\downarrow_M s'\equiv_M s$. By the smoothness of s , we obtain $\bar{\varphi}(s';b')\not\approx_{\varepsilon}\bar{\varphi}(r;b')$. As $b'\downarrow_M s'$, the same formula holds for some $b\in M^{ z }$. Once again by smoothness, $\bar{\varphi}(s;b)\not\approx_{\varepsilon}\bar{\varphi}(r;b)$. A contradiction.	
6.3	Definition ?? We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x;z_1,z_n) \in L$ such that for every finite set $B \subseteq \mathcal{U}$ and every $a \in \mathcal{U}^{ x }$ there are $b_1,,b_n \in B$ such that $\psi(a;b_1,,b_n)$ and $\psi(x;b_1,,b_n)$ decides all formulas $\varphi(x;b)$ for $b \in B$.	
6.4	Definition ??* We say that $\varphi(x;z) \in L$ is distal if there is a formula $\psi(x_1,,x_n;z) \in L$ such that for every finite set $A \subseteq \mathcal{U}^{ x }$ and every $b \in \mathcal{U}^{ z }$ there are $a_1,,a_n \in A$ such that $\psi(a_1,,a_n,z)$ and $\psi(a_1,,a_n,z)$ decides all formulas $\varphi(a;z)$ for $a \in A$.	
	For every finite sample $r \in \bar{M}$ and every $\mu \in \mathbb{R}$ there is a formula $\psi(z) \in L(\operatorname{supp} r)$ such that $\bar{\varphi}(r;z) = \mu \leftrightarrow \psi(z)$. The formula $\psi(z)$ depends on r .	
	When $\varphi(x;z)$ is distal	
	If $\varphi(x;z)$ is distal then there is a formula ψ such that for every $r\in M^f$ there is $r_0\in M$	
6.5	Theorem (false) The following are equivalent	
	1. $\varphi(x;z) \in L$ is distal;	
	2. for every sample $s \in \mathcal{U}_*^{f_*^+}$, if s is generically stable then s is smooth.	
	There is a formula $\psi(x_1,, x_n; z)$ such that for every $r \in \bar{M}$	
	there are a_1, \ldots, a_n such that $\varphi(r; b) = \mu \ \psi(x_1, \ldots, x_n; z)$	
	We say that $p(x)$ is honestly definable if for every $\varphi(x,y) \in L$ there is a formula $\psi(y,z) \in L$ such that for every finite A , there is a b such that	

$$A \subseteq \psi(\mathcal{U}, b) \subseteq \varphi(p, \mathcal{U})$$

For $\varphi(x,y) \in L$ and $m \in M$ let

$$\varphi_m(x,y) = \varphi(m,y) \leftrightarrow \varphi(x,y)$$

$$A \subseteq \psi_{m,\varphi}(\mathcal{U}) \subseteq \varphi_m(p,\mathcal{U})$$

If p(x) is generically stable (definition as in the OP) then for every $\varphi(x,y) \in L$ and $m \in M$ there is a formula $\vartheta_{\varphi,m}(y)$ such that for every a in the monster model

$$\vartheta_{\varphi,m}(a) \quad \Leftrightarrow \quad [\varphi(m,a) \leftrightarrow \varphi(x,a)] \in p$$

Let q(x) be an M-invariant global type such that $q_{\uparrow M}(x) = p_{\uparrow M}(x)$. Then both q and p contain the formulas

$$\forall y \left[\vartheta_{\varphi,m}(y) \to \left[\varphi(m,y) \leftrightarrow \varphi(x,y)\right]\right]$$

We write $p(x) \sim_M q(x)$ if

$$\varphi(p; \mathcal{U}) \neq \varnothing \Leftrightarrow \varphi(q; \mathcal{U}) \neq \varnothing$$

for every $\varphi(x,z) \in L(M)$