Flow

Det: A flow on a graph
$$G=(V,E)$$
 is a map $f:V^2 \to \mathbb{R}$

such that

•
$$f(x,y) = -f(y,x) \quad \forall x,y \in V$$

•
$$f(x,y) = 0$$

•
$$\sum f(x,y) = 0$$

Ex: Consider
$$f$$
 s.t.
 $f(a,b) = 6$ $f(b,d) = 3$
 $f(a,c) = -6$ $f(c,d) = -3$
 $f(b,c) = 3$

Directed Multigraphs

- · e: o o notated as (e, x, y) e order of x and y is important
- · Let $\vec{E} = \{(e,x,y) \mid e \in E; x,y \in V; e = xy\}.$
- · For e=(e, x, y), let e=(e, y, x).
- · Similarly for FCE, let F= {ë | ê EF}. Note È= É.
- · For X, Y = V and F = ; let F(X, Y) = {(e, u, v) = F | u ∈ X, v ∈ Y, u ≠ v}.
- · For SCV, the Complement of S (3) is V15.

Flow on Directed Multigraphs

· Given
$$X,Y \subseteq V$$
 and a function $f: \vec{E} \longrightarrow R$, let

$$f(x,y) = \sum_{\vec{e} \in \vec{E}(x,y)} f(\vec{e})$$

$$f(u, X) = f(\{u\}, X)$$

Stagle vertex

I.e. a flow with no exceptions

Lemma: In a circulation, the net flow across any cut is zero. cut $P_{roof:} s(s,\bar{s}) = s(s,v) - s(s,s)$

$$f(s,v) = \{f(s,v) = 0 \text{ by bullet } 2$$

Corollary: If f is a circulation and exxy is a bridge, then f(e) = f(e) = 0.

Networks

Def! Let $G=(V,\vec{E})$ be a directed multigraph, let s, $t\in V$ be two fixed vertices called the source and sink, and let $c: \vec{E} \to IR$ be a map called a cupicity function. N=(G,s,t,c) is a network.

Def! A function S! E -> IR is a (s.t-) flow in N if

- · f(e) = f(e) Ve E
- · f(u,V) = 0 but V\{5, E}
- $f(\vec{e}) \leq c(\vec{e})$ $\forall \vec{e} \in \vec{E}$

Def: It sev such that ses and tes, we call (s,s) an sit-cut in N, and the capacity of the cut is defined to be

$$L(5,\overline{5}) = \sum_{e \in \vec{E}(5,\overline{5})} L(\vec{e})$$

Max-Flow Min-Cut Theorem

Theorem: (Ford-Fulkerson, 1956) In every network, the maximum total value of a flow is equal to the minimum capacity or an s,t-cut.

Observation: For every cut (5,5) in N, 5(5,5) = 5(5,V).

Proof: $f(s, \overline{s}) = f(s, V) - f(s, \overline{s})$ = $f(s, V) + \xi f(u, V)$ = f(s, V)

 $\Rightarrow \text{ For any cut } (s,\overline{s}), \ f(s,V) \leq c(s,\overline{s}) \ \text{ since } \ f(s,\overline{s}) \leq c(s,\overline{s}).$ i.e. max-flow $\leq \min \text{-cut}$.

Max-Flow Min-Cut Theorem

Need only show that max-flow is greater than some cut.

Proof: Suppose f is a maximum flow in N. Let S be the set of vertices reachable from s along an s-v walk W in N where $V \in W$, $f(\tilde{e}) < C(\tilde{e})$.

If tes, then let W_t be the witnessing s-t walk. Let $E=\min_{\tilde{e}\in W_t} ((\tilde{e})-f(\tilde{e}))$. Called an (f-) any menting part.

Define $f'(\vec{e}) = \begin{cases} f(\vec{e}) + \vec{e} & \text{if } \vec{e} \in U_{\vec{e}} \\ f(\vec{e}) - \vec{e} & \text{if } \vec{e} \in U_{\vec{e}} \end{cases}$ $f(\vec{e}) = \begin{cases} f(\vec{e}) + \vec{e} & \text{if } \vec{e} \in U_{\vec{e}} \\ f(\vec{e}) & \text{otherwise} \end{cases}$

f'(s,V) > f(s,V) and so f was not a maximum thou. So $t \notin S$. Thus, $\forall \vec{e} \in \vec{E}(s,\vec{s})$ $f(\vec{e}) = c(\vec{e})$.

 $c(s,\overline{s}) = \sum_{\tilde{e} \in \tilde{E}(s,\overline{s})} c(\tilde{e}) \leq \sum_{\tilde{e} \in \tilde{E}(s,\overline{s})} s(\tilde{e}) = s(s,\overline{s}) = s(s,\overline{s}) = s(s,\overline{s})$