Noip模拟赛

题目名称	Stack	Cube	Zuma
可执行文件名	stack	cube	zuma
单个测试点时限	1s	1s	1s
内存限制	256MB	256MB	256MB
测试点个数	20	20	20
单个测试点分数	5	5	5
题目类型	传统	传统	传统
提交文件需加后缀			
C++语言	stack.cpp	cube.cpp	zuma.cpp
C语言	stack.c	cube.c	zuma.c
Pascal语言	stack.pas	cube.pas	zuma.pas

Stack

题目描述

栈是常用的一种数据结构,有n个元素在栈顶端一侧等待进栈,栈顶端另一侧是出栈序列。你已经知道栈的操作有两种:push和pop,前者是将一个元素进栈,后者是将栈顶元素弹出。现在要使用这两种操作,由一个操作序列可以得到一系列的输出序列。请你编程求出对于给定的n,计算并输出由操作数序列1,2,…,n,经过一系列操作可能得到的输出序列总数 mod 7的值。

输入格式

一个整数 n_0 。

输出格式

一个数,即可能输出序列的总数目。

样例输入	样例输出
3	5

数据范围与约定

对于40%的数据, $n \leq 15$ 。

对于100%的数据,n < 1000。

Cube

题目描述

草坪上有n个方块标号从1到n,它们一开始被分别放在n个栈中。

现在有p个两种操作:

- Mxy: 把x所在的栈放到y所在的栈的栈顶,不改变原栈中元素的相对顺序。
- Cx: 求有多少个方块在x的下方(栈顶为最上方,栈底为最下方)。

输入格式

第一行两个整数n, p。

接下来p行每行描述一个操作。

输出格式

对每个C操作输出结果。

样例输入	样例输出
6	1
M 1 6	0
C 1	2
M 2 4	
M 2 6	
C3	
C 4	

数据范围与约定

对于30%的数据, $n, p \leq 20$ 。

对于60%的数据, $n, p \leq 1000$ 。

对于100%的数据, $n, p \leq 30000$ 。

Zuma

题目描述

有一个简化版的祖玛游戏。**n**个白球和黑球排成一排,任意的连续**3**个球都不为同一种颜色。你手里有无限个黑球和白球。每回合你可以将一个球插到任意的位置,如果出现;连续**3**个以上的球是同一种颜色,就去掉这些球。直到没有球为止。

请你求出你最少需要插入多少球。

输入格式

输入一个01串,0代表白球,1代表黑球。

输出格式

输出一个整数即答案。

样例输入	样例输出
01001101011001100	2

数据范围及约定

对于30%的数据, $n \leq 7$ 。

对于70%的数据, $n \leq 50$ 。

对于100%的数据, $n \leq 200$ 。