Лекция 3 Методы интегрирования (продолжение)

21.2 Вычисление рациональных интегралов от тригонометрических функций

Пусть трансцендентную функцию, содержащую тригонометрические функции $\sin x$ и $\cos x$ можно рационализировать. Тогда рациональные интегралы вида $\int R \sin x, \cos x \, dx$ можно решать методом замены переменной с помощью *универсальной тригонометрической подстановки* $t = tg \frac{x}{2}$ при $-\pi < x < \pi$. (1)

В этом случае

$$x = 2arctgt$$
, $dx = \frac{2dt}{1+t^2}$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$. (2)

После замены переменной получим $\int R \sin x, \cos x \, dx = \int R \, dt$, т.е. интеграл от рациональной дроби.

M21.2.1 Пример 1. Найти интеграл
$$\int \frac{dx}{\cos x + \sin x}$$

Решение: используем универсальную тригонометрическую подстановку;

$$\int \frac{dx}{\cos x + \sin x} = \left[t = tg \frac{x}{2}, dx = \frac{2dt}{1+t^2}, \sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2} \right] =$$

$$= \int \frac{2dt}{1+t^2} : \left(\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} \right) = \int \frac{2dt}{1+t^2} \cdot \frac{1+t^2}{-t^2+2t+1} = -2 \int \frac{dt}{t^2-2t-1} =$$

$$= -2 \int \frac{d -1}{1-t^2-2} = \left[-1 = z \right] -2 \int \frac{dz}{z^2-1-t^2-2} = -2 \cdot \frac{1}{2\sqrt{2}} \ln \left| \frac{z-\sqrt{2}}{z+\sqrt{2}} \right| + C =$$

$$= -\frac{1}{\sqrt{2}} \ln \left| \frac{t-1-\sqrt{2}}{t-1+\sqrt{2}} \right| + C = -\frac{1}{\sqrt{2}} \ln \left| \frac{tg \frac{x}{2}-1-\sqrt{2}}{tg \frac{x}{2}-1+\sqrt{2}} \right| + C.$$

M21.2.2 Пусть подынтегральная функция R (in x, cos x) является нечетной относительно cos x: R (in x, -cos x) = -R (in x, cos x). В этом случае лучше использовать подстановку $t = \sin x, dt = \cos x dx$.

M25.2.3 Пример 1. Найти интеграл
$$J = \int \frac{\cos^3 x}{2 + \sin x} dx$$
.

Решение: подынтегральная функция является нечетной относительно $\cos x$. Используем подстановку $t = \sin x$, при этом предварительно выразим $\cos^2 x$ через $\sin x$.

$$J = \int \frac{\cos^2 x}{2 + \sin x} \cos x dx = \int \frac{1 - \sin^2 x}{2 + \sin x} d \sin x = t = \int \frac{1 - t^2}{2 + t} dt.$$

Подынтегральная функция с новым аргументом является неправильной рациональной дробью.

Разделив числитель на знаменатель, неправильную рациональную дробь представим в виде суммы целой части и правильной дроби: $\frac{-t^2+1}{t+2} = -t + 2 - \frac{3}{t+2}$. Тогда получим:

$$J = \int \frac{1 - t^2}{2 + t} dt = \int \left(-t + 2 - \frac{3}{t + 2} \right) dt = -\frac{t^2}{2} + 2t - 3\ln|t + 2| + C = -\frac{\sin^2 x}{2} + 2\sin x - 3\ln \sin x + 2 \right) + C$$

M21.2.4 Если подынтегральная функция $R \sin x, \cos x$ является нечетной относительно $\sin x$: $R \sin x, \cos x = -R \sin x$, то используют подстановку $t = \cos x, dt = -\sin x dx$.

M21.2.5 Пример. Найти интеграл $J = \int \frac{\sin^3 x}{\cos^2 x + 1} dx$.

Решение: поскольку подынтегральная функция является нечетной $\left(\frac{ext}{\cos^2 x + 1}\right) = -\frac{\sin^3 x}{\cos^2 x + 1}$, то используем подстановку $t = \cos x$, $dt = -\sin x dx$:

$$J = \int \frac{\sin^3 x}{\cos^2 x + 1} dx = \int \frac{\sin^2 x}{\cos^2 x + 1} \sin x dx = -\int \frac{1 - \cos^2 x}{\cos^2 x + 1} d \cos x = -\int \frac{1 - t^2}{t^2 + 1} dt = \int \frac{t^2 - 1}{t^2 + 1} dt = \int \frac{t^2 + 1 - 2}{t^2 + 1} dt = \int \left(1 - \frac{2}{t^2 + 1}\right) dt = t - 2 \operatorname{arct} g t + C = \cos x - 2 \operatorname{arct} g \cos x + C$$

$$\mathbf{M21.2.6} \text{ Если подынтегральная функция } R \sin x, \cos x \operatorname{grangetch} \text{ четной относительно } \sin x \text{ и}$$

$$\cos x \text{ , т.е. } R \operatorname{sin} x, -\cos x = R \operatorname{sin} x, \cos x \text{ , то целесообразно использовать подстановку}$$

t = tgx, x = arctgx, $dx = \frac{dt}{1+t^2}$. Из тригонометрии известно, что $1 + tg^2x = \frac{1}{\cos^2 x}$, отсюда $\cos x = \frac{1}{t+\sqrt{1+t^2}}$, $\sin x = tgx \cdot \cos x = \frac{t}{t+\sqrt{1+t^2}}$. Тогда

$$\int R \sin x, \cos x \, dx = \int R \left(\frac{t}{t + \sqrt{1 + t^2}}, \frac{1}{t + \sqrt{1 + t^2}} \right) \frac{dt}{1 + t^2}.$$

M21.2.7 Пример. Найти интеграл $J = \int \frac{dx}{\cos^2 x + \sin x \cos x}$.

Решение: подынтегральная функция является четной относительно $\sin x$ и $\cos x$.

$$J = \int \frac{dx}{\cos^2 x + \sin x \cos x} = \begin{bmatrix} t = tgx, dx = \frac{dx}{1+t^2} \\ \sin x = \pm \frac{t}{\sqrt{1+t^2}}; \cos x = \pm \frac{1}{\sqrt{1+t^2}} \end{bmatrix} = \int \frac{dt}{1+t^2} = \int \frac{dt}{1+t^2} dt$$

$$= \int \frac{d (+1)}{t+1} = \ln|t+1| + C = \ln|tgx+1| + C.$$

M21.2.8 В заключение в качестве важного частного случая рассмотрим интегралы вида $\int \sin^m x \cos^n x dx$, где m, n - натуральные числа.

Если хотя бы одно из чисел m,n нечетно, то подынтегральная функция является нечетной либо относительно синуса, либо относительно косинуса, что позволяет применить замену $t = \sin x, dt = \cos x dx$ или $t = \cos x, dt = -\sin x dx$.

Если оба числа m, n четные, то подынтегральная функция является четной относительно $\sin x$ и $\cos x$, что позволяет применить подстановку t = tgx, x = arctgx, $dx = \frac{dt}{1+t^2}$.

21.3 Нахождение рациональных интегралов от функций, содержащих радикалы

M21.3.1 Пусть подынтегральная функция является рациональной функцией от радикалов различных степеней (в частном случае от одного радикала): $\int R \sqrt[4]{u}, \sqrt[m_2]{u}, ..., \sqrt[m_k]{u} \, dx$, где $m_1, m_2, ..., m_k$ - натуральные числа, $u = \frac{ax+b}{cx+d}$ (в частных случаях может быть u = ax+b или даже u = x); a, b, c, d - действительные числа и $c^2 + d^2 \neq 0$.

Тогда интегралы вида $\int R \sqrt[n]{u}, ..., \sqrt[m_k]{u} \, dx$ приводятся к интегралам от рациональных дробей с помощью подстановки $u = t^n$, где n - наименьшее общее кратное чисел $m_1, m_2, ..., m_k$ (НОК $(m_1, m_2, ..., m_k) \neq n$).

М21.3.2 Пример. Найти интеграл
$$J = \int \frac{\sqrt[3]{x-1} + \sqrt[4]{x-1}}{\sqrt[4]{x-1}} dx$$
.

Решение: НОК $\{4,6\}$ = 12 . Прямая подстановка $x-1=t^{12}$, $dx=12t^{11}dt$: $J=\int \frac{t^4+t^3}{t^{12}\left(\!\!\!\left(+t^2\right)\!\!\!\right)} 12t^{11}dt=$

$$=12\int \frac{t^{2} + 1}{t^{2} + 1} dt = 12\int \frac{t^{2} + 1 - 1}{t^{2} + 1} dt = 12\left(\int \frac{t^{2} + 1}{t^{2} + 1} dt - \int \frac{t + 1}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt - \int \frac{t}{t^{2} + 1} dt\right) = 12\left(\int \frac{t}{t^{2} + 1} dt$$

21.4 Нахождение рациональных интегралов от функций, содержащих квадратные радикалы из квадратных двучленов

Интегралы с подынтегральными функциями, содержащими выражения $\sqrt{x^2 \pm a^2}$, $\sqrt{a^2 - x^2}$, приводятся к рациональным интегралам вида $\int R$ € in x, $\cos x$ dx с помощью следующих тригонометрических подстановок:

M21.4.1
$$\int R(x, \sqrt{a^2 - x^2}) dx$$
 - подстановка $x = a \sin t$ или $x = a \cos t$;

M21.4.2
$$\int R(x, \sqrt{a^2 + x^2}) dx$$
 - подстановка $x = atgt$ или $x = actgt$;

M21.4.3
$$\int R \left(x, \sqrt{x^2 - a^2} \right) dx$$
 - подстановка $x = \frac{a}{\cos t}$ или $x = \frac{a}{\sin t}$;

3 a m e v a n u e: при применении подстановки $x = a \sin t$ к выражению $\sqrt{a^2 - x^2}$ получим $\sqrt{a^2 - a^2 \sin^2 t} = a \sqrt{1 - \sin^2 t} = a |\cos t|$. Но, поскольку, областью существования функции $y = \sqrt{a^2 - x^2}$ является интервал $x \in \P$ а, a и $x = a \sin t$, то $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. Но в интервале $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ функция $\cos t \ge 0$ и поэтому $\sqrt{a^2 - a^2 \sin^2 t} = a \sqrt{1 - \sin^2 t} = a |\cos t| = a \cos t$.

Аналогично $\sqrt{a^2 - a^2 \cos^2 t} = a\sqrt{1 - \cos^2 t} = a \sin t$

М21.4.4 Пример 1. Найти интеграл $\int \frac{x^2 dx}{\sqrt{4-x^2}}$.

Решение:
$$\int \frac{x^2 dx}{\sqrt{4 - x^2}} = \mathbf{I} = 2\sin t, dx = 2\cos t dt = \int \frac{4\sin^2 t \cdot 2\cos t dt}{\sqrt{4 - 4\sin^2 t}} = \frac{8}{2} \int \frac{\sin^2 t \cos t dt}{\sqrt{1 - \sin^2 t}} = \int \frac{4\sin^2 t \cdot 2\cos t dt}{\sqrt{1 - \sin^2 t}} = \int \frac{\sin^2 t \cos t dt}{\sqrt{1 - \sin^2 t \cos t}} = \int \frac{\sin^2 t \cos t dt}{\sqrt{1 - \sin^2 t \cos t}} = \int \frac{\sin^2 t \cos t dt}{\sqrt{1 - \sin^2 t \cos t}} = \int \frac{\sin^2 t \cos t dt}{\sqrt{1 - \sin^2 t \cos t}} = \int \frac{\sin^2 t \cos t dt}{\sqrt{1 - \sin^2 t \cos t}} = \int \frac{\sin$$

M21.4.5 Пример 2. Найти $\int \frac{dx}{\sqrt{(5+x^2)}}$.

Решение:

$$\int \frac{dx}{\sqrt{(5+x^2)^3}} = \left[x = 5tgt, dx = \frac{5dt}{\cos^2 t}\right] = \int \frac{5dt}{\cos^2 t \sqrt{(5+25tg^2t)^3}} = \left[1 + tg^2 t = \frac{1}{\cos^2 t}\right] = \int \frac{5dt}{\cos^2 t \cdot 5^3 \cdot \frac{1}{\cos^3 t}} = \frac{1}{25} \int \cot t dt = \frac{1}{25} \sin t + C = \left[t = arctg\frac{x}{5}\right] = \frac{1}{25} \sin \left(arctg\frac{x}{5}\right) + C.$$

М21.4.6 Пример3. Найти интеграл $\int x^3 \sqrt{x^2 - 1} dx$.

$$\int x^{3} \sqrt{x^{2} - 1} dx = \left[x = \frac{1}{\cos t}, dx = \frac{\sin t dt}{\cos^{2} t} \right] = \int \frac{1}{\cos^{3} t} \sqrt{\frac{1}{\cos^{2} t} - 1} \frac{\sin t}{\cos^{2} t} dt =$$

$$= \int \frac{\sin^2 t dt}{\cos^6 t} = \int \frac{\sin^2 t}{\cos^2 t} \cdot \frac{1}{\cos^2 t} \cdot \frac{dt}{\cos^2 t} = \int tg^2 t + tg^2 t dt = tgt = \int z^2 t + z^2 dz = \int z^2 dz + \int z^4 dz = \frac{z^3}{3} + \frac{z^5}{5} + C = \frac{tg^3 t}{3} + \frac{tg^5 t}{5} + C = \frac{1}{3} tg^3 \left(\arccos \frac{1}{x} \right) + \frac{1}{5} tg^5 \left(\arccos \frac{1}{x} \right) + C.$$

С помощью рассмотренных интегралов можно интегрировать функции, содержащие квадратные корни из квадратичных трехчленов вида $\sqrt{ax^2+px+q}$. Квадратные трехчлены в таких интегралах предварительно методом дополнения до полных квадратов приводятся к двучленам $\sqrt{x^2\pm a^2}$, $\sqrt{a^2-x^2}$ и затем используются вышеуказанные тригонометрические подстановки.

М21.4.7 Пример. Найти интеграл $\int \sqrt{3+2x-x^2} dx$.

Решение:
$$\int \sqrt{3 + 2x - x^2} dx = \begin{bmatrix} \sqrt{2} - 2x + 1 - 4 \end{bmatrix} = 4 - \sqrt{2} - 1 \end{bmatrix} = \int \sqrt{4 - 4x - 1} dx - 1 \end{bmatrix} = \sqrt{4 - 4x - 1} dx -$$

Контрольные вопросы:

- 1. Что называется универсальной тригонометрической подстановкой? В каких случаях она применяется?
- 2. Как интегрируются функции, содержащие радикалы от выражений вида $\frac{ax+b}{cx+d}$?
- 3. Как интегрируются функции, содержащие квадратные радикалы из квадратных двучленов? Как интегрируются функции, содержащие квадратные радикалы из квадратных трехчленов?