## Iperbolicità di Gromov in più variabili complesse

2\* Aprile 2022



Scuola Normale Superiore di Pisa

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

# Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo  $\Omega \subseteq \mathbb{C}^n, n \geq 2$  un dominio limitato con bordo  $C^2$ , cioè esiste  $\rho \in C^2(\mathbb{C}^n)$  tale che  $\Omega = \{\rho(z) < 0\}$ . Come  $\rho$  si può prendere  $-\delta(x)$  per  $x \in \Omega$  e  $\delta(x)$  per  $x \in \mathbb{C}^n \setminus \Omega$ , dove  $\delta(x) = \mathrm{dist}(x, \partial\Omega)$ .

# Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo  $\Omega \subseteq \mathbb{C}^n, n \geq 2$  un dominio limitato con bordo  $C^2$ , cioè esiste  $\rho \in C^2(\mathbb{C}^n)$  tale che  $\Omega = \{\rho(z) < 0\}$ . Come  $\rho$  si può prendere  $-\delta(x)$  per  $x \in \Omega$  e  $\delta(x)$  per  $x \in \mathbb{C}^n \setminus \Omega$ , dove  $\delta(x) = \mathrm{dist}(x, \partial\Omega)$ .

#### Definizione

Dato  $p \in \partial\Omega$ , lo spazio tangente complesso a  $\partial\Omega$  in p è  $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$ . Diciamo che  $\Omega$  è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial \rho^{2}}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in  $H_p \partial \Omega$  per ogni  $p \in \Omega$ .

# Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo  $\Omega \subseteq \mathbb{C}^n, n \geq 2$  un dominio limitato con bordo  $C^2$ , cioè esiste  $\rho \in C^2(\mathbb{C}^n)$  tale che  $\Omega = \{\rho(z) < 0\}$ . Come  $\rho$  si può prendere  $-\delta(x)$  per  $x \in \Omega$  e  $\delta(x)$  per  $x \in \mathbb{C}^n \setminus \Omega$ , dove  $\delta(x) = \mathrm{dist}(x, \partial\Omega)$ .

#### Definizione

Dato  $p \in \partial\Omega$ , lo spazio tangente complesso a  $\partial\Omega$  in p è  $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p),Z\rangle = 0\}$ . Diciamo che  $\Omega$  è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial \rho^{2}}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in  $H_p \partial \Omega$  per ogni  $p \in \Omega$ .

Nel seguito, lavoriamo sempre sotto l'ipotesi che  $\Omega$  sia strettamente pseudoconvesso.

# Domini strettamente pseudoconvessi e metrica di Kobayashi

#### Definizione

Sia  $\mathbb D$  il disco unitario in  $\mathbb C$ , data  $f:\mathbb D\longrightarrow\mathbb C^n$  olomorfa indichiamo con Df(z) il differenziale di f in  $z\in\mathbb D$ . La metrica di Kobayashi su  $\Omega$  è

$$K(x;Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f: \mathbb{D} \longrightarrow \Omega$$
 olomorfa con  $f(0) = x, Df(0)v = Z\},$ 

che induce la distanza di Kobayashi  $d_K$ .

# Domini strettamente pseudoconvessi e iperbolicità di Gromov

#### Definizione

Sia (X, d) uno spazio metrico, dati  $x, y \in X$  il prodotto di Gromov con punto base w è  $(x, y)_w = \frac{1}{2} (d(x, w) + d(y, w) - d(x, y))$ . Dato  $\delta \geq 0$ , diciamo che X è  $\delta$ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni  $x,y,z,w \in X$ .

# Domini strettamente pseudoconvessi e iperbolicità di Gromov

#### Definizione

Sia (X, d) uno spazio metrico, dati  $x, y \in X$  il prodotto di Gromov con punto base w è  $(x, y)_w = \frac{1}{2} (d(x, w) + d(y, w) - d(x, y))$ . Dato  $\delta \geq 0$ , diciamo che X è  $\delta$ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$ .

Fissato  $w \in X$ , il bordo iperbolico è  $\partial_G X$  costruito come classe di equivalenza delle successioni  $(x_i)$  che convergono a infinito, cioè tali che  $\lim_{i,j\to\infty}(x_i,x_j)_w=\infty$ ; due tali successioni  $(x_i),(y_i)$  sono equivalenti se  $\lim_{i\to\infty}(x_i,y_i)_w=\infty$ .

# Domini strettamente pseudoconvessi e iperbolicità di Gromov

#### Definizione

Sia (X,d) uno spazio metrico, dati  $x,y\in X$  il prodotto di Gromov con punto base w è  $(x,y)_w=\frac{1}{2}\big(d(x,w)+d(y,w)-d(x,y)\big)$ . Dato  $\delta\geq 0$ , diciamo che X è  $\delta$ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni  $x,y,z,w \in X$ .

#### Teorema

(Balogh-Bonk)  $(\Omega, d_K)$  è Gromov iperbolico, e il bordo iperbolico  $\partial_G \Omega$  può essere identificato con il bordo euclideo  $\partial \Omega$ . Inoltre, la distanza di Carnot-Carathéodory  $d_H$  su  $\partial \Omega$  (quella indotta dalla forma di Levi) sta nella classe canonica di distanze su  $\partial_G X$ , cioè esiste  $\varepsilon > 0$  tale che  $d_H(a,b) \simeq \exp((a,b)_w)$  per ogni  $a,b \in \partial_G X$ .

# Conseguenze: estensioni al bordo di funzioni olomorfe

#### Corollario

Siano  $\Omega_1, \Omega_2 \subseteq \mathbb{C}^n$  che soddisfano le ipotesi del teorema di Balogh-Bonk, e sia  $f: \Omega_1 \longrightarrow \Omega_2$  una funzione olomorfa propria. Allora f si estende a  $\bar{f}: \bar{\Omega}_1 \longrightarrow \bar{\Omega}_2$  tale che  $\bar{f}(\partial \Omega_1) \subseteq \partial \Omega_2$  e la restrizione al bordo è lipschitziana rispetto alle metriche di Carnot-Carathéodory sui bordi.

#### Teorema

(Wolff-Denjoy) Sia  $f: \mathbb{D} \longrightarrow \mathbb{D}$  olomorfa e senza punti fissi. Allora esiste un unico  $\tau \in \partial \mathbb{D}$  tale che  $f^k \longrightarrow \tau$  uniformemente sui compatti.

#### Teorema

(Wolff-Denjoy) Sia  $f: \mathbb{D} \longrightarrow \mathbb{D}$  olomorfa e senza punti fissi. Allora esiste un unico  $\tau \in \partial \mathbb{D}$  tale che  $f^k \longrightarrow \tau$  uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici, valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

#### Teorema

(Wolff-Denjoy) Sia  $f: \mathbb{D} \longrightarrow \mathbb{D}$  olomorfa e senza punti fissi. Allora esiste un unico  $\tau \in \partial \mathbb{D}$  tale che  $f^k \longrightarrow \tau$  uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici, valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Usando il teorema di Balogh-Bonk e il fatto che le funzioni olomorfe sono delle semicontrazioni rispetto a  $d_K$ , si ottiene una generalizzazione del teorema di Wolff-Denjoy per domini strettamente pseudoconvessi.

#### Teorema

(Wolff-Denjoy) Sia  $f : \mathbb{D} \longrightarrow \mathbb{D}$  olomorfa e senza punti fissi. Allora esiste un unico  $\tau \in \partial \mathbb{D}$  tale che  $f^k \longrightarrow \tau$  uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici, valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Usando il teorema di Balogh-Bonk e il fatto che le funzioni olomorfe sono delle semicontrazioni rispetto a  $d_K$ , si ottiene una generalizzazione del teorema di Wolff-Denjoy per domini strettamente pseudoconvessi.

#### Corollario

Sia  $f: \Omega \longrightarrow \Omega$  una funzione olomorfa. Allora vale una delle seguenti:

- 1. le orbite di f sono limitate;
- 2. le orbite di f convergono a un punto del bordo.

## Conseguenze: altre conseguenze (da decidere)

Inserire l'articolo di Zimmer, ma guarda anche Bracci-nonricordo-Zimmer.

## Strada per la dimostrazione del teorema di BB

• Dato (Z, d) spazio metrico completo e limitato, si può costruire uno spazio iperbolico (Con(Z), r) tale che Z è identificato con il bordo.

## Strada per la dimostrazione del teorema di BB

- Dato (Z, d) spazio metrico completo e limitato, si può costruire uno spazio iperbolico (Con(Z), r) tale che Z è identificato con il bordo.
- Per una metrica che soddisfa certe ipotesi, la distanza indotta differisce per una costante da una funzione g simile alla r della suddetta costruzione; questo ci permette di dire che  $\Omega$  con tale distanza è iperbolico.

## Strada per la dimostrazione del teorema di BB

- Dato (Z, d) spazio metrico completo e limitato, si può costruire uno spazio iperbolico (Con(Z), r) tale che Z è identificato con il bordo.
- Per una metrica che soddisfa certe ipotesi, la distanza indotta differisce per una costante da una funzione g simile alla r della suddetta costruzione; questo ci permette di dire che  $\Omega$  con tale distanza è iperbolico.
- La metrica di Kobayashi soddisfa le suddette ipotesi.

#### Teorema

Sia (Z,d) uno spazio metrico completo e limitato e sia  $Con(Z) = Z \times (0 \times D(Z)]$ , dove D(Z) è il diametro di Z. La funzione  $r: Con(Z) \times Con(Z) \longrightarrow [0,+\infty)$  data da

$$r((z,h),(z',h')) = 2\log\left(\frac{d(z,z') + h \vee h'}{\sqrt{hh'}}\right)$$

è una distanza su Con(Z) che lo rende uno spazio iperbolico, il cui bordo può essere identificato con Z.

#### Teorema

Sia (Z,d) uno spazio metrico completo e limitato e sia  $Con(Z) = Z \times (0 \times D(Z)]$ , dove D(Z) è il diametro di Z. La funzione  $r: Con(Z) \times Con(Z) \longrightarrow [0,+\infty)$  data da

$$r((z,h),(z',h')) = 2\log\left(\frac{d(z,z') + h \vee h'}{\sqrt{hh'}}\right)$$

è una distanza su Con(Z) che lo rende uno spazio iperbolico, il cui bordo può essere identificato con Z.

Traccia della dimostrazione: è facile verificare che r è una distanza.

#### Teorema

Sia (Z,d) uno spazio metrico completo e limitato e sia  $Con(Z) = Z \times (0 \times D(Z)]$ , dove D(Z) è il diametro di Z. La funzione  $r: Con(Z) \times Con(Z) \longrightarrow [0,+\infty)$  data da

$$r((z,h),(z',h')) = 2\log\left(\frac{d(z,z') + h \vee h'}{\sqrt{hh'}}\right)$$

è una distanza su Con(Z) che lo rende uno spazio iperbolico, il cui bordo può essere identificato con Z.

Traccia della dimostrazione: è facile verificare che r è una distanza. Dati  $r_{ij} \geq 0$  tali che  $r_{ij} = r_{ji}$  e  $r_{ij} \leq r_{ik} + r_{kj}$ , allora  $r_{12}r_{34} \leq 4((r_{13}r_{24}) \vee (r_{14}r_{23}))$ .

Siano  $x_i = (z_i, h_i) \in \text{Con}(Z)$  per  $i \in \{1, 2, 3, 4\}$ , poniamo  $d_{ij} = d(z_i, z_j)$  e  $r_{ij} = d_{ij} + h_i \vee h_j$ .

Siano  $x_i = (z_i, h_i) \in \text{Con}(Z)$  per  $i \in \{1, 2, 3, 4\}$ , poniamo  $d_{ij} = d(z_i, z_j)$  e  $r_{ij} = d_{ij} + h_i \vee h_j$ . Segue che

$$(d_{12} + h_1 \vee h_2)(d_{34} + h_3 \vee h_4)$$

$$\leq 4\Big( \big( (d_{13} + h_1 \vee h_3)(d_{24} + h_2 \vee h_4) \big) \big( (d_{14} + h_1 \vee h_4)(d_{23} + h_2 \vee h_3) \big) \Big),$$

Siano  $x_i = (z_i, h_i) \in \text{Con}(Z)$  per  $i \in \{1, 2, 3, 4\}$ , poniamo  $d_{ij} = d(z_i, z_j)$  e  $r_{ij} = d_{ij} + h_i \vee h_j$ . Segue che

$$(d_{12} + h_1 \vee h_2)(d_{34} + h_3 \vee h_4)$$

$$\leq 4 \Big( \big( (d_{13} + h_1 \vee h_3)(d_{24} + h_2 \vee h_4) \big) \big( (d_{14} + h_1 \vee h_4)(d_{23} + h_2 \vee h_3) \big) \Big),$$

che ci dà

$$r(x_1, x_2) + r(x_3, x_4) \le (r(x_1, x_3) + r(x_2, x_4))(r(x_1, x_4) + r(x_2, x_3)) + C,$$

da cui segue l'iperbolicità di (Con(Z), r).

Usando le definizioni, troviamo che una sequenza  $(x_i)$  in (Con(Z), r) converge a infinito se e solo se la sequenza  $(z_i)$  è di Cauchy e  $h_i \longrightarrow 0$ , ma essendo Z completo segue che il limite di  $(x_i)$  può essere identificato con  $z \in Z$  limite di  $(z_i)$ ;

Usando le definizioni, troviamo che una sequenza  $(x_i)$  in  $(\operatorname{Con}(Z), r)$  converge a infinito se e solo se la sequenza  $(z_i)$  è di Cauchy e  $h_i \longrightarrow 0$ , ma essendo Z completo segue che il limite di  $(x_i)$  può essere identificato con  $z \in Z$  limite di  $(z_i)$ ; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito.

Usando le definizioni, troviamo che una sequenza  $(x_i)$  in (Con(Z), r) converge a infinito se e solo se la sequenza  $(z_i)$  è di Cauchy e  $h_i \longrightarrow 0$ , ma essendo Z completo segue che il limite di  $(x_i)$  può essere identificato con  $z \in Z$  limite di  $(z_i)$ ; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito.

Devo dire che  $\partial_C Con(Z)$  e Z sono isometrici (?) con questa

Devo dire che  $\partial_G \text{Con}(Z)$  e Z sono isometrici (?) con questa identificazione.

#### Definizione

Una metrica di Finsler su  $\Omega$  è una funzione continua  $F: \Omega \times \mathbb{C}^n \longrightarrow [0, +\infty)$  tale che F(x; tZ) = |t| F(x; Z) per ogni  $x \in \Omega, Z \in \mathbb{C}^n, t \in \mathbb{C}$ .

#### Teorema

Sia F una metrica di Finsler su  $\Omega$  tale che esistono delle costanti  $\varepsilon_0 > 0, s > 0, C_1 > 0, C_2 \ge 0$  tali che per ogni  $x \in \Omega$  con  $\delta(x) < \varepsilon_0$  e  $Z \in \mathbb{C}^n$  si ha

$$\left(1 - C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1/C_2) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le F(x; Z) 
\le \left(1 + C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + C_2 \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$
(1)

Allora esiste  $C \geq 0$  tale che per ogni  $x, y \in \Omega$  vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C. \tag{2}$$

Idea della dimostrazione: per la maggiorazione, si cercano delle curve che siano quasi geodetiche, cioè danno la distanza a meno di una costante additiva, e si integra lungo quelle curve.

*Idea della dimostrazione:* per la maggiorazione, si cercano delle curve che siano quasi geodetiche, cioè danno la distanza a meno di una costante additiva, e si integra lungo quelle curve.

Per la minorazione, bisogna mostrare che le curve trovate sono ottimali.

### Proposizione

Per ogni  $\varepsilon > 0$  esistono  $\varepsilon_0 > 0$  e  $C \ge 0$  tali che per ogni  $x \in \Omega$  con  $\delta(x) < \varepsilon_0$  e per ogni  $Z \in \mathbb{C}^n$  si ha

$$(1 - C\delta^{1/2}(x)) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left( 1 + C\delta^{1/2}(x) \right) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

## Proposizione

Per ogni  $\varepsilon > 0$  esistono  $\varepsilon_0 > 0$  e  $C \ge 0$  tali che per ogni  $x \in \Omega$  con  $\delta(x) < \varepsilon_0$  e per ogni  $Z \in \mathbb{C}^n$  si ha

$$(1 - C\delta^{1/2}(x)) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left( 1 + C\delta^{1/2}(x) \right) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo;

## Proposizione

Per ogni  $\varepsilon > 0$  esistono  $\varepsilon_0 > 0$  e  $C \ge 0$  tali che per ogni  $x \in \Omega$  con  $\delta(x) < \varepsilon_0$  e per ogni  $Z \in \mathbb{C}^n$  si ha

$$(1 - C\delta^{1/2}(x)) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left( 1 + C\delta^{1/2}(x) \right) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo;

con un opportuno biolomorfismo, ci si sposta in  $\mathbb{C}^n$ ;

## Proposizione

Per ogni  $\varepsilon > 0$  esistono  $\varepsilon_0 > 0$  e  $C \geq 0$  tali che per ogni  $x \in \Omega$  con  $\delta(x) < \varepsilon_0$  e per ogni  $Z \in \mathbb{C}^n$  si ha

$$(1 - C\delta^{1/2}(x)) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left( 1 + C\delta^{1/2}(x) \right) \left( \frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo:

con un opportuno biolomorfismo, ci si sposta in  $\mathbb{C}^n$ ; stringendo l'immagine del biolomorfismo tra due ellissoidi complessi, uno contenuto e uno che lo contiene, seguono le stime volute.

2\* Aprile 2022

## Proposizione

Per ogni  $\varepsilon > 0$  esistono  $\varepsilon_0 > 0$  e  $C \ge 0$  tali che per ogni  $x \in \Omega$  con  $\delta(x) < \varepsilon_0$  e per ogni  $Z \in \mathbb{C}^n$  si ha

$$\left(1 - C\delta^{1/2}(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le K(x; Z) 
\le \left(1 + C\delta^{1/2}(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$

#### Corollario

Esiste  $C \geq 0$  tale che per ogni  $x, y \in \Omega$  si ha

$$g(x,y) - C \le d_K(x,y) \le g(x,y) + C. \tag{3}$$

Traccia della dimostrazione: siano  $d_1,d_2$  le metriche di Kobayashi su  $\Omega_1,\Omega_2$ , allora per ogni  $x,y\in\Omega_1$  si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

Traccia della dimostrazione: siano  $d_1, d_2$  le metriche di Kobayashi su  $\Omega_1, \Omega_2$ , allora per ogni  $x, y \in \Omega_1$  si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

inoltre, poiché f è propria esiste  $C_1 \geq 1$  tale che per ogni  $x \in \Omega_1$  abbiamo

$$\delta_1(x)/C_1 \le \delta_2(f(x)) \le C_1\delta_1(x),$$

dove  $\delta_j$  è la distanza dal bordo in  $\Omega_j$ .

Traccia della dimostrazione: siano  $d_1,d_2$  le metriche di Kobayashi su  $\Omega_1,\Omega_2$ , allora per ogni  $x,y\in\Omega_1$  si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

inoltre, poiché f è propria esiste  $C_1 \ge 1$  tale che per ogni  $x \in \Omega_1$  abbiamo

$$\delta_1(x)/C_1 \le \delta_2(f(x)) \le C_1\delta_1(x),$$

dove  $\delta_j$  è la distanza dal bordo in  $\Omega_j$ . Mettendo assieme queste due disuguaglianze e il Corollario, dette  $d_H^j$  le rispettive distanze di Carnot-Carathéodory, troviamo che esiste  $C_2 \geq 0$  tale che per ogni  $x,y \in \Omega_1$  si ha

$$d_H^2\Big(\pi\big(f(x)\big),\pi\big(f(y)\big)\Big) \le C_2\Big(d_H^1\big(\pi(x),\pi(y)\big) + \delta_1^{1/2}(x) \vee \delta_1^{1/2}(y)\Big).$$

Traccia della dimostrazione: siano  $d_1,d_2$  le metriche di Kobayashi su  $\Omega_1,\Omega_2$ , allora per ogni  $x,y\in\Omega_1$  si ha

$$d_2(f(x), f(y)) \le d_1(x, y);$$

inoltre, poiché f è propria esiste  $C_1 \ge 1$  tale che per ogni  $x \in \Omega_1$  abbiamo

$$\delta_1(x)/C_1 \le \delta_2(f(x)) \le C_1\delta_1(x),$$

dove  $\delta_j$  è la distanza dal bordo in  $\Omega_j$ . Mettendo assieme queste due disuguaglianze e il Corollario, dette  $d_H^j$  le rispettive distanze di Carnot-Carathéodory, troviamo che esiste  $C_2 \geq 0$  tale che per ogni  $x,y \in \Omega_1$  si ha

$$d_H^2\Big(\pi\big(f(x)\big),\pi\big(f(y)\big)\Big) \leq C_2\Big(d_H^1\big(\pi(x),\pi(y)\big) + \delta_1^{1/2}(x) \vee \delta_1^{1/2}(y)\Big).$$

Da queste disuguaglianze è facile concludere.



## Fine

Grazie per l'attenzione!