Solving two-person zero-sum sequential games via efficient computation of Nash equilibria: proof-of-concept on Kuhn's 3-card Poker

DOHMATOB Elvis 1,2

¹Parietal Team, INRIA

²Université Paris-Sud

Problem

Given a sequential two-person zero-sum game (e.g Texas Hold'em Poker), construct an optimal player.

- There are 3 players: nature (player 0), Alice (player 1), and Bob (player 2).
- Players take turns in making moves
- Sets of moves of any two distinct players don't overlap (i.e $A_p \cap A_q = \emptyset$ if $p \neq q$)

- There are 3 players: nature (player 0), Alice (player 1), and Bob (player 2).
- Players take turns in making moves
- Sets of moves of any two distinct players don't overlap (i.e $A_p \cap A_q = \emptyset$ if $p \neq q$)

- There are 3 players: nature (player 0), Alice (player 1), and Bob (player 2).
- Players take turns in making moves
- Sets of moves of any two distinct players don't overlap (i.e $A_p \cap A_q = \emptyset$ if $p \neq q$)

Strategy profiles, simplexes and complexes

Definition

• The *n-simplex*, denoted Δ_n , is the subset of \mathbb{R}^{n+1} defined by

$$\Delta_n := \left\{ x \in \mathbb{R}^{n+1} \mid x_i \ge 0 \ \forall i, \text{ and } \sum_{i=1}^{n+1} x_i = 1 \right\}$$
 (1)

- Each kink $\delta_i := (0, ..., 0, 1, 0, ..., 0)$ of Δ_n represents a pure-strategy. Any non-kink point x of Δ_n represents a mixed-strategy. Thus Δ_n is simply the convex hall of (n+1)-dimensional pure strategies δ_i .
- A complex is an abstract polyhedron whose kinks are themselves simplexes. Points on a complex correspond to behavioural strategies.

Strategy profiles, simplexes and complexes

Definition

• The *n-simplex*, denoted Δ_n , is the subset of \mathbb{R}^{n+1} defined by

$$\Delta_n := \left\{ x \in \mathbb{R}^{n+1} \mid x_i \ge 0 \ \forall i, \text{ and } \sum_{i=1}^{n+1} x_i = 1 \right\}$$
 (1)

- Each kink $\delta_i := (0, ..., 0, 1, 0, ..., 0)$ of Δ_n represents a pure-strategy. Any non-kink point x of Δ_n represents a mixed-strategy. Thus Δ_n is simply the convex hall of (n+1)-dimensional pure strategies δ_i .
- A complex is an abstract polyhedron whose kinks are themselves simplexes. Points on a complex correspond to behavioural strategies.

Strategy profiles, simplexes and complexes

Definition

• The *n-simplex*, denoted Δ_n , is the subset of \mathbb{R}^{n+1} defined by

$$\Delta_n := \left\{ x \in \mathbb{R}^{n+1} \mid x_i \ge 0 \ \forall i, \text{ and } \sum_{i=1}^{n+1} x_i = 1 \right\}$$
 (1)

- Each kink $\delta_i := (0, ..., 0, 1, 0, ..., 0)$ of Δ_n represents a pure-strategy. Any non-kink point x of Δ_n represents a mixed-strategy. Thus Δ_n is simply the convex hall of (n+1)-dimensional pure strategies δ_i .
- A complex is an abstract polyhedron whose kinks are themselves simplexes. Points on a complex correspond to behavioural strategies.

NE minimax and best-response in sequential-games

Thanks to the sequence-form representation, we have:

• NE problem for Alice and Bob is the the saddle-point problem

$$\max_{x \in Q_1} \min_{y \in Q_2} \min_{x \in Q_1} Ax, \qquad (2)$$

where:

$$Q_1 := \{ x \in \mathbb{R}_+^n \mid Ex = e \} \text{ is Alice's complex, and}$$

$$Q_2 := \{ y \in \mathbb{R}_+^m \mid Fy = f \} \text{ is Bob's complex.}$$

$$(3)$$

A saddle-point (x^*, y^*) corresponds to a NE for the game.

• Given a fixed behavioural strategy $y_0 \in Q_2$ for Bob, a best-response behavioural strategy x_0 for Alice ¹ is a solution to the LCP

$$\max_{x \in \Omega_1} \max_{x \in \Omega_2} y_0^T Ax \tag{4}$$

 $^{^{1}\}mathsf{Of}$ course, there is an analogous concept for Bob

NE minimax and best-response in sequential-games

Thanks to the sequence-form representation, we have:

• NE problem for Alice and Bob is the the saddle-point problem

$$\begin{array}{ll}
\text{maximize minimize } y^T A x, \\
x \in Q_1 & y \in Q_2
\end{array} \tag{2}$$

where:

$$Q_1 := \{ x \in \mathbb{R}_+^n \mid Ex = e \} \text{ is Alice's complex, and}$$

$$Q_2 := \{ y \in \mathbb{R}_+^m \mid Fy = f \} \text{ is Bob's complex.}$$

$$(3)$$

A saddle-point (x^*, y^*) corresponds to a NE for the game.

• Given a fixed behavioural strategy $y_0 \in Q_2$ for Bob, a best-response behavioural strategy x_0 for Alice ¹ is a solution to the LCP

¹Of course, there is an analogous concept for Bob.

- The game tree T (from Alice's perspective) is defined as follows. T has a set V(T) of nodes (aka vertices) and a set E(T) of edges.
- Each node v belongs to a single player, p(v), called "the
- For each player $p \in \{0, 1, 2\}$, the set of all nodes at which p
- There are two kinds of nodes: the leaf nodes L(T), at which
- There is a special node root(T) defined by
- In accordance with the rules of the game, every other node

- The game tree T (from Alice's perspective) is defined as follows. T has a set V(T) of nodes (aka vertices) and a set E(T) of edges.
- Each node v belongs to a single player, p(v), called "the player to act at v''; p(v) := 3 if v is a leaf node. At node v, the player p(v) has a set $C(v) \subset A_p$ of possible moves.
- For each player $p \in \{0, 1, 2\}$, the set of all nodes at which p
- There are two kinds of nodes: the leaf nodes L(T), at which
- There is a special node root(T) defined by
- In accordance with the rules of the game, every other node

- The game tree T (from Alice's perspective) is defined as follows. T has a set V(T) of nodes (aka vertices) and a set E(T) of edges.
- Each node v belongs to a single player, p(v), called "the player to act at v''; p(v) := 3 if v is a leaf node. At node v, the player p(v) has a set $C(v) \subset A_p$ of possible moves.
- For each player $p \in \{0, 1, 2\}$, the set of all nodes at which pacts is called the nodes of p, denoted $V_p(T)$.
- There are two kinds of nodes: the leaf nodes L(T), at which
- There is a special node root(T) defined by
- In accordance with the rules of the game, every other node

- The game tree T (from Alice's perspective) is defined as follows. T has a set V(T) of nodes (aka vertices) and a set E(T) of edges.
- Each node v belongs to a single player, p(v), called "the player to act at v"; p(v) := 3 if v is a leaf node. At node v, the player p(v) has a set $C(v) \subset A_p$ of possible moves.
- For each player $p \in \{0, 1, 2\}$, the set of all nodes at which p acts is called the nodes of p, denoted $V_p(T)$.
- There are two kinds of nodes: the leaf nodes L(T), at which the game must end and decision nodes D(T), at which the player to act must make a move. For example in Poker, a leaf node is reached at countdown, or when a player folds, or when the player runs out of money.
- There is a special node root(T) defined by $root(T) := (/, p_0),$
- In accordance with the rules of the game, every other node $y \in V(T) \{root(T)\}\$ is of the form y = v.(c, p(v))

- The game tree T (from Alice's perspective) is defined as follows. T has a set V(T) of nodes (aka vertices) and a set E(T) of edges.
- Each node v belongs to a single player, p(v), called "the player to act at v"; p(v) := 3 if v is a leaf node. At node v, the player p(v) has a set $C(v) \subset A_p$ of possible moves.
- For each player $p \in \{0, 1, 2\}$, the set of all nodes at which p acts is called the nodes of p, denoted $V_p(T)$.
- There are two kinds of nodes: the leaf nodes L(T), at which the game must end and decision nodes D(T), at which the player to act must make a move. For example in Poker, a leaf node is reached at countdown, or when a player folds, or when the player runs out of money.
- There is a special node root(T) defined by $root(T) := (/, p_0),$
- In accordance with the rules of the game, every other node $y \in V(T) \{root(T)\}\$ is of the form y = v.(c, p(v))

- The game tree T (from Alice's perspective) is defined as follows. T has a set V(T) of nodes (aka vertices) and a set E(T) of edges.
- Each node v belongs to a single player, p(v), called "the player to act at v"; p(v) := 3 if v is a leaf node. At node v, the player p(v) has a set $C(v) \subset A_p$ of possible moves.
- For each player $p \in \{0, 1, 2\}$, the set of all nodes at which p acts is called the nodes of p, denoted $V_p(T)$.
- There are two kinds of nodes: the leaf nodes L(T), at which the game must end and decision nodes D(T), at which the player to act must make a move. For example in Poker, a leaf node is reached at countdown, or when a player folds, or when the player runs out of money.
- There is a special node root(T) defined by $root(T) := (/, p_0),$
- In accordance with the rules of the game, every other node $y \in V(T) \{root(T)\}\$ is of the form y = v.(c, p(v))

Sequences and payoff matrix

- Let S_p be the sequences of moves for player p. Then any $\sigma \in S_p$ is either the empty sequence set or can be written as $\sigma_{h_p}c$ where h_p is an information set of p and c is a choice at h_p .
- Precisely,

$$S_p = \{\emptyset\} \cup \{\sigma_h c \mid h \in H_p, c \in C_h\}$$
 (5)

• The payoff matrix $A = (a_{\sigma,\tau})$ by

$$a_{\sigma,\tau} := \sum_{\text{leaf } t: \ \sigma_1(t) = \sigma, \sigma_2(t) = \tau} \beta_0(\sigma_0(t)) a(t) \tag{6}$$

Sequences and payoff matrix

- Let S_p be the sequences of moves for player p. Then any $\sigma \in S_p$ is either the empty sequence set or can be written as $\sigma_{h_p}c$ where h_p is an information set of p and c is a choice at h_p .
- Precisely,

$$S_p = \{\emptyset\} \cup \{\sigma_h c \mid h \in H_p, c \in C_h\}$$
 (5)

• The payoff matrix $A=(a_{\sigma,\tau})$ by

$$a_{\sigma,\tau} := \sum_{\text{leaf } t: \ \sigma_1(t) = \sigma, \sigma_2(t) = \tau} \beta_0(\sigma_0(t)) a(t) \tag{6}$$

Sequences and payoff matrix

- Let S_p be the sequences of moves for player p. Then any $\sigma \in S_p$ is either the empty sequence set or can be written as $\sigma_{h_p}c$ where h_p is an information set of p and c is a choice at h_p .
- Precisely,

$$S_p = \{\emptyset\} \cup \{\sigma_h c \mid h \in H_p, c \in C_h\}$$
 (5)

• The payoff matrix $A=(a_{\sigma,\tau})$ by

$$a_{\sigma,\tau} := \sum_{\text{leaf } t: \ \sigma_1(t) = \sigma, \sigma_2(t) = \tau} \beta_0(\sigma_0(t)) a(t) \tag{6}$$

NE computation Kuhn's Poker

$$e = (1, 0, 0, 0, 0, 0, 0)$$

Non-Linear Ledoit-Wolf: Why? How?

- (p/n large) or (Σ eigenvalues close to one another) ⇒ linear shrinkage OK.
 (p/n small) or (Σ eigenvalues dispersed) ⇒ non-linear shrinkage better.
- Marčenko-Pastur equation: relationship between S and Σ eigenvalues under large-dimensional asymptotics.

Non-Linear Ledoit-Wolf: deeper into the "how?"

- H_n empirical d.f. of sample (\boldsymbol{S}_n) eigenvalues $\boldsymbol{\tau}_n$. $H_n(\boldsymbol{\tau}) \equiv \frac{1}{p} \sum_{i=1}^p \mathbb{1}_{[\tau_i, +\infty[}(\boldsymbol{\tau})$
- F_n e.d.f. of population (Σ_n) eigenvalues λ_n . $Y_n = X_n \Sigma_n^{1/2}$, $X_n \sim \mathcal{N}(\mathbf{0}, \mathsf{Id})$
- F_n (resp. H_n) converges almost surely to F (resp. H).
- Stieltjes transform of a non-decreasing function G: $\forall z \in \mathbb{C}^+$, $m_G(z) \equiv \int_{-\infty}^{+\infty} \frac{1}{u-z} dG(u)$
- Marčenko-Pastur equation: $\forall z \in \mathbb{C}^+, m_F(z) = \int_{-\infty}^{+\infty} \frac{1}{\tau[1-\frac{p}{\varrho}-\frac{p}{\varrho}zm_F(z)]-z} dH(\tau)$

Non-Linear Ledoit-Wolf: Implementation...

$$\frac{Q_{n,p}}{t} : [0, \infty[^p \to [0, \infty[^p]]]$$

$$\mathbf{t} \equiv (t_1, \dots, t_p)^\mathsf{T} \mapsto Q_{n,p}(\mathbf{t}) \equiv (q_{n,p}^1(t), \dots, q_{n,p}^p(t))^\mathsf{T}$$

$$\hat{\boldsymbol{\tau}}_{\boldsymbol{n}} = \underset{\boldsymbol{t} \in [0, \infty[^p}{\operatorname{argmin}} \frac{1}{p} \sum_{i=1}^p [\boldsymbol{q}_{\boldsymbol{n}, \boldsymbol{p}}^i(\boldsymbol{t}) - \lambda_{\boldsymbol{n}, i}]^2$$

$$\overset{\leftarrow}{m}_{n,p}^{\hat{\tau}_n}(\lambda_i) \simeq \frac{n-p}{p\lambda_i} - \frac{n}{p} \frac{1}{\hat{\tau}_{n,i}\lambda_i}$$

$$\hat{m{d}}_i^* = rac{\lambda_i}{|1-rac{p}{c}-rac{p}{c}|^2 \widetilde{m{m}}_{n,n}^{\hat{m{n}}}(\lambda_i)};$$
 Covariance: $S_n^* m{U}_n \hat{m{D}}_n^* m{U}_n^\mathsf{T}$, with $m{S}_n = m{U}_n m{D}_n m{U}_n^\mathsf{T}$

About the $Q_{n,p}$ function

$$Q_{n,p}:[0,\infty[^p \to [0,\infty[^p$$

$$\mathbf{t} \equiv (t_1,\ldots,t_p)^\mathsf{T} \mapsto Q_{n,p}(\mathbf{t}) \equiv (q_{n,p}^1(t),\ldots,q_{n,p}^p(t))^\mathsf{T}$$

$$\forall i=1,\ldots,p \quad q_{n,p}^i(t) \equiv p \int_{(i-1)/p}^{i/p} (F_{n,p}^t)^{-1}(u) du$$

$$(F_{n,p}^t)^{-1}(u) \equiv \sup\{x \in \mathbb{R} : F_{n,p}^t(x) \le u\}$$

$$\begin{split} F_{n,p}^{t}(x) &\equiv \max\left\{1-\frac{n}{p},\frac{1}{p}\sum_{i=1}^{p}\mathbb{1}_{\{t_i=0\}}\right\} \text{ if } x=0,\\ F_{n,p}^{t}(x) &\equiv \lim_{\eta\to 0^+}\frac{1}{\pi}\int_{-\infty}^{+\infty}\operatorname{Im}\left[\frac{\mathbf{m}_{n,p}^{t}(\zeta+i\,\eta)}{\mathbf{m}_{n,p}^{t}(\zeta+i\,\eta)}\right]d\zeta \text{ otherwise} \end{split}$$

$$m\equiv m_{n,p}^{t}(z)$$
 sol. in $\left\{m\in\mathbb{C}:-rac{n-p}{nz}+rac{p}{n}
ight\}$ of $m=rac{1}{p}\sum_{i=1}^{p}rac{1}{t_{i}(1-rac{p}{n}-rac{p}{n}z\mathbf{m})-z}$