Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 2, zadanie nr 2

Eva Reszka, Mateusz Roszkowski, Dominika Zając

Spis treści

1.	Proj	\mathbf{ekt}
	1.1.	Sprawdzenie poprawności wartości punktu pracy
	1.2.	Odpowiedzi skokowe procesu
	1.3.	Odpowiedź skokowa w algorytmie DMC
	1.4.	Algorytm DMC
2.	Ćwie	zenie laboratoryjne
	2.1.	Przygotowanie do wykonania ćwiczenia
	2.2.	Wyznaczenie odpowiedzi toru zakłócenie-wyjście
	2.3.	Przekształcenie odpowiedzi skokowej

1. Projekt

- 1.1. Sprawdzenie poprawności wartości punktu pracy
- 1.2. Odpowiedzi skokowe procesu
- $1.3. \ {\rm Odpowied}\acute{\rm z}$ skokowa w algorytmie DMC
- 1.4. Algorytm DMC

2. Ćwiczenie laboratoryjne

Podczas tego zadania laboratoryjnego wykorzystano:

- grzałkę G1 (sygnał sterujący U),
- wentylator W1 (wartość zadana Y_{zad}),
- czujnik temperatury T1 (sygnał wyjściowy Y)

2.1. Przygotowanie do wykonania ćwiczenia

Przed rozpoczęciem pomiarów sprawdzono możliwość sterowania i pomiaru w komunikacji ze stanowiskiem. Punkt pracy grzałki G1 dla zespołu obliczony został wg. wzoru 2.1:

$$G1 = 25 + Z\%5 \tag{2.1}$$

gdzie Z to numer zespołu, zatem dla naszego zespołu Z02 punkt pracy wynosi:

$$G1 = 25 + 2\%5 = 27\tag{2.2}$$

Następnie określono wartość pomiaru temperatury T1 dla obliczonego punktu pracy. W tym celu moc wentylatora W1 ustawiono na 50% za pomocą funkcji <code>sendControls(1, W1)</code>. Wartości mocy grzałki i sygnału zakłócająceego zadawane są poprzez funkcję <code>sendControlsToG1AndDisturbance(G1, Z)</code>. Wartość G1 została ustawiona na 27%, zakłócenia zostały wyłączone (Z=0). Wartość pomiaru temperatury odczytano korzystając z funkcji <code>readMeasurements(1)</code>. Temperatura T1 ustabilizowała się na wartości $\mathbf{27.75}^{\circ}\mathbf{C}$

2.2. Wyznaczenie odpowiedzi toru zakłócenie-wyjście

Zarejestrowano przebieg temperatury T1 dla trzech różnych zmian zakłócenia Z, rozpoczynając od 0 do 5, 15 i 30. Otrzymane przebiegi zmian przedstawiono na Rys. 2.1.

Rys. 2.1. Odpowiedzi skokowe procesu

Na podstawie charakterystyki Y(U) można stwierdzić, że właściwości statyczne obiektu są w przybliżeniu liniowe.

Rys. 2.2. Charakterystyka statyczna obiektu

2.3. Przekształcenie odpowiedzi skokowej