DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 PRUNE AND SEARCH

MIDTERM

- Exam will be open on Monday Oct 12 and closed at 11:59pm Friday Oct 16 (8th week)
- Topics
 - Analyze algorithm
 - Correctness (loop invariant)
 - Efficiency (cost-time columns)
 - Asymptotic notations
 - Divide and conquer
 - Solving recurrence (substitution, recursion tree, master theorem)

MIDTERM REVIEW

- A review of homework assignments will be arranged next Friday Oct 9th.
- I will be reviewing homework questions based on demands.
 - Please leave the question number in the discussion board

AGENDA

- The topics moving forward will be assessed in the final exam.
- Order statistic
- Prune and search steps
- Selection algorithm

ORDER STATISTIC

- The *i*th order statistic of a set of *n* elements is the *i*th smallest element.
- The **median** of A[1..n].
 - The "halfway point" of the set.
 - Regardless of the parity of n.
 - Medians occur at $i = \left\lfloor \frac{n+1}{2} \right\rfloor$ and $i = \left\lceil \frac{n+1}{2} \right\rceil$.
 - Names: lower median and upper median, respectively.
 - By convention, we use the lower median.
 - We often use $i = \left\lfloor \frac{n+1}{2} \right\rfloor$ (the lower mid) as the **halfway point** (**midpoint**) of an array A[1..n].

PRUNE AND SEARCH

- Decrease and conquer
 - Divide the problem into a number of subproblems that are smaller instances of the same problem.
 - Prune the subproblems and eliminate some instances based on certain criteria.
 - Conquer the original problem by solving remaining subproblem <u>recursively</u>.
 - As the problem gets smaller, a straight-forward method can be used.
- Example: Binary search, Selection

SELECTION PROBLEM

- Problem
 - Input: An array A[1..n] that contains n distinct numbers, and an integer $i \in [1, n]$.
 - Output: An element $x \in A$ that x is greater than exactly i-1 other elements of $A \iff i$ th statistic
- Example
 - Input: Array $A = \{8, 25, 3, 37, 12, 16, 7, 22\}$, and i = 4.
 - Output: x = 12
- Algorithm?

SELECTION PROBLEM BRAIN STORMING

- Problem
 - Input: An array A[1..n] that contains n distinct numbers, and an integer $i \in [1, n]$.
 - Output: An element $x \in A$ that x is greater than exactly i-1 other elements of A.
- How many ways to find the *i*th statistic of A[1..n]?
- What is their complexities?

SELECTION PROBLEM SOLUTION 1

- Sort the numbers in array A in increasing order Fastest $O(n \cdot \log n)$
- Return A[i]. $\Theta(1)$

SELECTION PROBLEM SOLUTION 2

• Perform i scans. Each scan finds the min of the array excluding the min found in previous scans.

SE	LECT-BY-SCAN (A, n, i)	Cost	Time (Worst-case Scenario)
I	$\mathbf{for} j = 1 \mathbf{to} i$	$\Theta(1)$	i+1
2	k = j	$\Theta(1)$	i
3	MIN = A[k]	$\Theta(1)$	i
4	$\mathbf{for}k = j\mathbf{to}n$	Θ(1)	$\sum_{j=1}^{i} t_j$
5	if $A[k] < MIN$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
6	MIN = A[k]	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
7	Swap $A[j]$ and $A[k]$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$

- Perform i scans. Each scan finds the min of the array excluding the min found in previous scans.
- Running time $T(n) = \Theta(i) + \Theta(1) + \Theta\left(\sum_{j=1}^{i} t_j\right) +$

$$\Theta\left(\sum_{j=1}^{i}(t_j-1)\right)$$

, where t_j denotes the # of exe of line 4 for a value of j.

SEL	ECT-BY-SCAN (A, n, i)	Cost	Time (Worst-case Scenario)
l f	$\mathbf{or} j = 1 \mathbf{to} i$	$\Theta(1)$	i+1
2	k = j	Θ(1)	i
3	MIN = A[k]	$\Theta(1)$	i
4	$\mathbf{for}k = j\mathbf{to}n$	Θ(1)	$\sum_{j=1}^{i} t_j$
5	if $A[k] < MIN$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
6	MIN = A[k]	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
7	Swap $A[j]$ and $A[k]$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$

- Perform i scans. Each scan finds the min of the array excluding the min found in previous scans.
- Obviously, for a value of j, the **for**-statement (line 4) will execute n j + 1 + 1 = n j + 2 times.
- Running time

$$T(n) = \Theta(i) + \Theta(1) + \Theta\left(\sum_{j=1}^{i} (n - j + 2)\right) + \Theta\left(\sum_{j=1}^{i} (n - j + 1)\right)$$

SE	LECT-BY-SCAN (A, n, i)	Cost	Time (Worst-case Scenario)
I	$\mathbf{for} j = 1 \mathbf{to} i$	$\Theta(1)$	i+1
2	k = j	Θ(1)	i
3	MIN = A[k]	$\Theta(1)$	i
4	$\mathbf{for}k = j\mathbf{to}n$	Θ(1)	$\sum_{j=1}^{i} t_j$
5	if $A[k] < MIN$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
6	MIN = A[k]	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
7	Swap $A[j]$ and $A[k]$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$

- Perform i scans. Each scan finds the min of the array excluding the min found in previous scans.
- Obviously, for a value of j, the **for**-statement (line 4) will execute n-j+1+1=n-j+2 times.
- Running time $T(n) = \Theta(i) + \Theta(1) + \Theta(in \frac{i(1+i)}{2} + 2i) + \Theta(in \frac{i(1+i)}{2} + 1i) + \Theta(in \frac{i(1+i)}{2} + 1i) + O(in \frac{i(1+i)}{2} + O(in \frac{i(1+i)}{2} + O(in$

SE	LECT-BY-SCAN (A, n, i)	Cost	Time (Worst-case Scenario)
I	$\mathbf{for}j = 1\mathbf{to}i$	Θ(1)	i+1
2	k = j	$\Theta(1)$	i
3	MIN = A[k]	$\Theta(1)$	i
4	$\mathbf{for}k = j\mathbf{to}n$	Θ(1)	$\sum_{j=1}^{i} t_j$
5	if $A[k] < MIN$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
6	MIN = A[k]	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
7	Swap $A[j]$ and $A[k]$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$

- Perform i scans. Each scan finds the min of the array excluding the min found in previous scans.
- Obviously, for a value of j, the **for**-statement (line 4) will execute n j + 1 + 1 = n j + 2 times.
- Running time $T(n) = \Theta(i) + \Theta(1) + O(i^{2}) + O(i^{2$

 $=O(i^2)$

SEI	LECT-BY-SCAN (A, n, i)	Cost	Time (Worst-case Scenario)
I	$\mathbf{for}j=1\mathbf{to}i$	$\Theta(1)$	i+1
2	k = j	$\Theta(1)$	i
3	MIN = A[k]	$\Theta(1)$	i
4	$\mathbf{for} \ k = j \ \mathbf{to} \ n$	Θ(1)	$\sum_{j=1}^{i} t_j$
5	if $A[k] < MIN$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
6	MIN = A[k]	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$
7	Swap $A[j]$ and $A[k]$	Θ(1)	$\sum_{j=1}^{i} (t_j - 1)$

SELECTION PROBLEM SOLUTION 3

- Step I: Randomly pick a number y in A. Divide A into two subarrays A_1 and A_2 , such that
 - All the numbers in A_1 are < y; all the numbers in A_2 are > y
 - What the relationship between $|A_1|$ and i?

SELECTION PROBLEM SOLUTION 3

• **Step 2**: **Prune** the subarrays based on the relation between $|A_1|$ and i.

RANDOMIZED SELECT ALGORITHM SOLUTION 3

- Let the input be (A, p, r, i)
 - A is the array
 - -p is the low index
 - r is the high index
 - i is the ith order statistic
 of A that we
 wish to find

```
RANDOMIZED-SELECT (A, p, r, i)
Bottoms-
            I if p == r
                  return A[p]
out case
            3 q = RANDOMIZED-PARTITION (A, p, r)
Partition
           4 | k = q - p + 1
           5 if i == k
                  return A[q]
Prune (5, 7)- 6
           7 elseif i < k
and-
search (8,9) 8
                  return RANDOMIZED-SELECT(A, p, q - 1, i)
           9 else return RANDOMIZED-SELECT(A, q + 1, r, i - k)
```

- After RANDOMIZED-PARTITIONing the input A[p..r], use q to denote the **pivot** index.
- Use the instance $A = \{8, 25, 3, 37, 12, 10, 35, 15, 28, 16, 7, 22\}, i = 8.$
- Compare the length of A[p..q] = k with i.
 - Case I

- q =_____; the length of A[p..q] = k =_____;
- -i _____ k, the ith order statistic of A is _____.

- After RANDOMIZED-PARTITIONing the input A[p..r], use q to denote the **pivot** index.
- Use the instance $A = \{8, 25, 3, 37, 12, 10, 35, 15, 28, 16, 7, 22\}, i = 8.$
- Compare the length of A[p..q] = k with i.
 - Case 2

- q =_____; the length of $A[p..q] = k = _____;$
- -i _____ k, the ith order statistic of A lies in subarray _____.

Recurse on A[______]. Find the _____ th order statistic of A[______].

- After RANDOMIZED-PARTITIONing the input A[p..r], use q to denote the **pivot** index.
- Use the instance $A = \{8, 25, 3, 37, 12, 10, 35, 15, 28, 16, 7, 22\}, i = 8.$
- Compare the length of A[p..q] = k with i.
 - Case 3

- q =_____; the length of A[p..q] = k =_____;
- -i _____ k, the ith order statistic of A lies in subarray _____.

Is 22 still the 8th order statistic of A[q + 1..r]? What is the next step and what is the new goal?

- After RANDOMIZED-PARTITIONing the input A[p..r], use q to denote the **pivot** index.
- Use the instance $A = \{8, 25, 3, 37, 12, 10, 35, 15, 28, 16, 7, 22\}, i = 8.$
- Compare the length of A[p..q] = k with i.
 - Case 3

$$\begin{bmatrix}
A[p.. \mathbf{q} - 1] \\
8 & 3 & 10 & 7
\end{bmatrix}$$

A[q]

- q =_____; the length of $A[p..q] = k = _____;$
- -i _____ k, the ith order statistic of A lies in subarray _____.

Recurse on A[______]. Find the _____ th order statistic of A[______].

RANDOMIZED SELECT ALGORITHM COST-TIME COLUMNS

- Complete the **costtime** columns of the RANDOMIZED-SELECT (A, p, r, i)on input A[p...r].
 - Use function f(r-p+1) to denote the cost of RANDOMIZED-PARTITION (A, p, r)

RANDOMIZED-SELECT (A, p, r, i)	Cost	Time	Time
(11, p, r, t)	C 03t	(Best)	(Worst)
I if $p == r$			
2 return $A[p]$			
3 $q = RANDOMIZED-PARTITION(A, p, r)$			
$4 \mid k = q - p + 1$			
5 if i == k			
6 return $A[q]$			
7 elseif $i < k$			
8 return RANDOMIZED-SELECT $(A, p, q - 1, i)$			
9 else return RANDOMIZED-SELECT $(A, q + 1, r, i - k)$			

RANDOMIZED SELECT ALGORITHM COST-TIME COLUMNS

- Complete the **costtime** columns of the RANDOMIZED-SELECT (A, p, r, i)on input A[p...r].
 - Use function f(r-p+1) to denote the cost of RANDOMIZED-PARTITION (A, p, r)

RANDOMIZED-SELECT (A, p, r, i)	Cost	Time	Time
RANDOMIZED-SELECT (A, p, r, t)	Cost	(Best)	(Norm.)
$ \mathbf{if} p == r$	$\Theta(1)$	base	base
2 return $A[p]$	$\Theta(1)$	base	base
3 $q = RANDOMIZED-PARTITION(A, p, r)$	f(r-p+1)	1	1
$4 \mid k = q - p + 1$	$\Theta(1)$	1	1
5 if i == k	$\Theta(1)$	1	1
6 return $A[q]$	Θ(1)	1	0
7 elseif $i < k$	Θ(1)	0	1
8 return RANDOMIZED-SELECT $(A, p, q - 1, i)$	T(q-p)	0	0/1
9 else return RANDOMIZED-SELECT $(A, q + 1, r, i - k)$	T(r-q)	0	1/0

RANDOMIZED SELECT ALGORITHM RUNNING TIME FUNCTION

• Best-of-all scenario

$$-x=$$

- Normal scenario
 - *x* lies in _____.
- The running time of the normal scenario T(r-p+1)

$$= \Theta(1) + \frac{9 \text{ else return RANDOM}}{f(r-p+1) + max} \{T(q-p), T(r-q)\}$$

D	RANDOMIZED-SELECT (A, p, r, i)	Cost	Time	Time
	ANDOMIZED-SELECT (A, p, T, t)	Cost	(Best)	(Norm.)
I	if $p == r$	$\Theta(1)$	base	base
2	return $A[p]$	$\Theta(1)$	base	base
3	q = RANDOMIZED-PARTITION (A, p, r)	f(r-p+1)	1	1
4	k = q - p + 1	$\Theta(1)$	1	1
5	$\mathbf{if}\ i == k$	$\Theta(1)$	1	1
6	return $A[q]$	$\Theta(1)$	1	0
7	elseif $i < k$	$\Theta(1)$	0	1
8	return RANDOMIZED-SELECT $(A, p, q - 1, i)$	T(q-p)	0	0/1
9	else return RANDOMIZED-SELECT $(A, q + 1, r, i - k)$	T(r-q)	0	1/0

RANDOMIZED PARTITION ALGORITHM

- The algorithm uses a <u>random</u> number generator to generate a value $i \in [p, r]$.
- Then it moves A[i] to the tail of (sub)array A[p..r].

- RANDOMIZED-PARTITION (A, p, r)
- $I \mid i = RANDOM(p, r)$
- 2 exchange A[r] with A[i]
- 3 return PARTITION (A, p, r)

• Lastly, it applies normal partition on A[p..r].

RANDOMIZED PARTITION ALGORITHM RUNNING TIME

- Complete the cost and time columns.
 - Use f'(r-p+1) to denote the cost of partitioning A[p..r] around A[r].

RANDOMIZED-PARTITION (A, p, r)	Cost	Time (Best)	Time (Norm.)
I i = RANDOM(p, r)	$\Theta(1)$	1	1
2 exchange $A[r]$ with $A[i]$	Θ(1)	1	1
3 return PARTITION (A, p, r)	f'(r-p+1)	1	1

• The running time of the algorithm on (sub)array A[p..r]

$$f(r-p+1)$$

= $\Theta(1) + f'(r-p+1)$

THE PARTITION PROCEDURE

- The **PARTITION** procedure uses the tail of (sub)array A[p..r] as the **pivot** to partition A[p..r] in to three parts.
 - Subarray A[p ... i] that contains the elements < pivot
 - A[i+1] the pivot
 - Subarray A[i + 2...r] that contains the elements > pivot.

THE PARTITION PROCEDURE RUNNING TIME

- Best-case scenario
 - _
- Worst-case scenario
 - _____
- The running time of **PARTITION**ing (sub)array A[p..r] in the worst-case f'(r-p+1)

$$= \mathbf{\Theta}(\mathbf{1}) + \mathbf{\Theta}(r-p) + \mathbf{\Theta}(r-p-1)$$

$$= \Theta(1) + \Theta(r - p)$$

D	PARTITION (A, p, r)		Time	Time
			(Best)	(Worst)
I	x = A[r]	$\Theta(1)$	1	1
2	i = p - 1	$\Theta(1)$	1	1
3	$\mathbf{for}j=p\;\mathbf{to}\;r\;-1$	$\Theta(1)$	r-p	r-p
4	if $A[j] \leq x$	$\Theta(1)$	r-p-1	r-p-1
5	i = i + 1	$\Theta(1)$	0	r-p-1
6	exchange $A[i]$ with $A[j]$	$\Theta(1)$	0	r-p-1
7	exchange $A[i+1]$ with $A[r]$	$\Theta(1)$	1	1
8	return $i+1$	$\Theta(1)$	1	1

RANDOMIZED PARTITION ALGORITHM RUNNING TIME (COMING BACK)

• The running time of the algorithm on (sub)array A[p..r]

$$f(r-p+1)$$

= $\Theta(1) + f'(r-p+1)$

R	RANDOMIZED- PARTITION (A, p, r)	Coct	Time	
(n, p, r)	Cost	(Best)	(Norm.)	
I	i = RANDOM(p, r)	$\Theta(1)$	1	1
	O- [] [,]	$\Theta(1)$	1	1
3	return PARTITION (A, p, r)	f'(r-p+1)	1	1

, where f'(r-p+1) is the running time of the **PARTITION** procedure.

•
$$f'(r-p+1) = \Theta(1) + \Theta(r-p)$$

•
$$f(r-p+1) = \Theta(1) + \Theta(1) + \Theta(r-p) = \Theta(1) + \Theta(r-p)$$

RANDOMIZED SELECT ALGORITHM RUNNING TIME FUNCTION (BACK)

• The running time of the normal scenario T(r-p+1)

$$= \Theta(1) + \Theta(r - p) + \Theta(1) + \Theta(r - p) + \Theta(1) + \Theta(1)$$

$$\max_{T(r-q)} \{T(q-p),\$$

$$= \Theta(1) + \Theta(r - p) +$$

R	ANDOMIZED-SELECT (A, p, r, i)	Cost	Time (Best)	Time (Norm)
I	if $p == r$	$\Theta(1)$	base	base
2	return $A[p]$	$\Theta(1)$	base	base
3	q = RANDOMIZED-PARTITION (A, p, r)	f(r-p+1)	1	1
4	k = q - p + 1	$\Theta(1)$	1	1
5	$\mathbf{if}\ i == k$	$\Theta(1)$	1	1
6	return $A[q]$	$\Theta(1)$	1	0
7	elseif $i < k$	$\Theta(1)$	0	1
8	return RANDOMIZED-SELECT $(A, p, q - 1, i)$	T(q-p)	0	0/1
9	else return RANDOMIZED-SELECT $(A, q + 1, r, i - k)$	T(r-q)	0	1/0

$$max\{T(q-p), T(r-q)\}$$

APPLY RANDOMIZED-SELECT ON A[1..n]

 $= \Theta(1) + \Theta(\frac{n-1}{n-1}) + \max\{T(\frac{q-1}{n-1}), T(\frac{n-q}{n-1})\} = T(n)$

- Call RANDOMIZED SELECT (A, ___, ___, i)
 n = ______.
- The running time of the worst-case
 scenario

$$T(r-p+1)$$

$$= \mathbf{\Theta}(\mathbf{1}) + \mathbf{\Theta}(r-p) + \begin{cases} 7 \text{ eiself } \\ 8 \text{ r} \\ 9 \text{ else r} \end{cases}$$

$$\max \{T(q-p), T(r-q)\}$$

RANDOMIZED-SELECT (A, p, r, i)		Cost	i ime	ı ime
	ANDOI IIZED-SEELET (A, p, T, t)	Cost	(Best)	(Norm.)
I	if $p == r$	$\Theta(1)$	base	base
2	return $A[p]$	$\Theta(1)$	base	base
3	q = RANDOMIZED-PARTITION (A, p, r)	f(r-p+1)	1	1
4	k = q - p + 1	$\Theta(1)$	1	1
5	if $i == k$	$\Theta(1)$	1	1
6	return $A[q]$	$\Theta(1)$	1	0
7	elseif $i < k$	$\Theta(1)$	0	1
8	return RANDOMIZED-SELECT $(A, p, q - 1, i)$	T(q-p)	0	0/1
9	else return RANDOMIZED-SELECT $(A, q + 1, r, i - k)$	T(r-q)	0	1/0
r-q				

Time Time

APPLY RANDOMIZED-SELECT ON A[1..n] BEST CASE

• Simplify the running time function of the normal scenario

$$T(n) = \Theta(n) + \max\{T(q-1), T(n-q)\}$$

- The **best-case** scenario of the normal case

- q = _____
- yielding T(n) =______.
- $T(n) = O(\underline{\hspace{1cm}}).$

APPLY RANDOMIZED-SELECT ON A[1..n] Worst case

• Simplify the running time function of the normal scenario

$$T(n) = \Theta(n) + \max\{T(q-1), T(n-q)\}$$

- The worst-of-all scenario
 - q = _____
 - yielding T(n) =______.
 - $T(n) = O(\underline{\hspace{1cm}}).$

RANDOMIZED-SELECT TIME COMPLEXITY

- The **best-case** scenario of the normal case $T(n) = \underline{\Theta(n) + T(n/2)} = O(\underline{n})$.
- The worst-case scenario of the normal case $T(n) = \underline{\Theta(n) + T(n-1)} = O(\underline{n^2})$.
- The expected time complexity
 - We can find any order statistic in **expected** linear time, assuming that the elements are <u>distinct</u>. E[T(n)] = O(n)
 - See textbook page 217 219 for proof.
- Improvement?

NEXT UP SELECT IN WORST-CASE LINEAR TIME

REFERENCE