

Figure 1

Figure 2

Figure 3

Figure 4

3

Figure 5

Figure 6

Figure 8

Figure 9

Figure 10

10/16

12/16

Constraint length K	Generators in octal		
3	5	7	
4	15	17	
5	23	35	
6	53	75	
7	113	171	
8	247	371	
9	561	753	
10	1,167	1,545	
11	2,335	3,661	
12	4,335	4,335 5,723	
13	10,533	10,533 17,661	
14	21,675	21,675 27,123	

Table 1

STC-Algorithm (N _T :N _R)	E _b /N₀ dB for 10% FER	Spectral Efficiency (bps/Hz)	E _S /N _o (SNR) dB for 10% FER
Benchmark			
1:1	11.0	1.0	11.0
1:2	4.5	1.0	4.5
1:4	-0.5	1.0	-0.5
STTD (STBC)			
2:1	7.2	1.0	7.2
2:2	2.2	1.0	2.2
STTC-32			
2:1	11.0	2.0	. 14.0
2:2	4.6	2.0	7.6
MC-STTC-256			
2:1	9.6	2.0	12.6
2:2	3.5	2.0	6.5
4:1	12.0	4.0	18.0
4:2	4.0	4.0	10.0
4:4	-1.5	4.0	4.5
BLAST			
uncoded 2:2	12.0	4.0	18.0
coded 2:2	7.1	2.0	10.1

Table 2

Notes: Notation N_T:N_R is used to denote numbers of antennas at each end of the link.

- a) E_S denotes energy per transmitted STS
- b) The benchmark is a 1/2-rate k=9 binary convolutional encoder, with output bits mapped to QPSK symbols. In a static 1:1 channel it achieves 10% FER for an E_b/N_o of 2.2dB and 1% BER for an E_b/N_o of 1.7dB.
- c) The benchmark 1:4 number is approximate, as it has been extrapolated from results at a lower FER
- d) 'STTD' is a concatenation of the benchmark encoder with the STTD block code
- e) 'STTC-32' is the Tarokh STTC with 32 states, and two information bits per STS
- f) 'MC-STTC-256' is a concatenation of the benchmark scheme, a QPSK modulation mapper, and a demux mapper to the different transmit antennas, as described in. It thus has 2^{k-1}=256 states in the trellis, and a spectral efficiency which depends on the number of transmit antennas.
- g) The variants of BLAST shown in the table use 'genie-aided' subtraction of the transmission from the stronger transmit antenna when detecting the transmission from the weaker.
- h) The 'uncoded' BLAST case uses no error correction code (it is raw QPSK), hence it achieves a high spectral efficiency of 4 bps/Hz. The 'coded' case uses two separate benchmark' encoders, one for each antenna.

STC-Algorithm (N _T :N _R)	Spectral efficiency (bps/Hz)	Demodulator soft-metric (LLR) processing (MFLOPS)	Viterbi MLSE processing (MFLOPS)
Benchmark			
1:1	1	0.9	198.4
1:2	1	2.5	198.4
1:4	11	5.0	198.4
STTD (STBC)	·		
2:1	1	2.5	198.4
2:2	1	5.0	198.4
STTC-32			
2:1	2	8.7	12.4
2:2	2	17.4	12.4
MC-STTC-256			
2:1	2	8.7	99.2
2:2	2	17.4	99.2
4:1	4	69.4	168.6
4:2	4	138.9	168.6
4:4	4	277.8	168.6
8:8	8	71,198	1276.4
BLAST (coded)			
2:2	2	0.02+2.5+1.2=3.7	198.4
4:4	4	0.7+5.0+3.7=9.4	198.4
8:8	8	24.8+9.9+8.7=43.4	198.4

Table 3