Théorie des langages rationnels : THLR CM 4

Uli Fahrenberg

EPITA Rennes

S3 2022

Aperçu

Programme du cours

- Mots, langages
- 2 Langages rationnels, expressions rationnelles
- Automates finis
- Langages non-rationnels
- Langages reconnaissables, minimisation

Aperçu 000000

Dernièrement : Expressions rationnelles, langages rationnels

- poly chapitre 3, sections 3.1.1 et 3.1.2
- plus démonstration que L rationnel ⇒ Pref(L) rationnel

Dernièrement : Expressions rationnelles

Bonus

Soit Σ un alphabet.

Définition

Les expressions rationnelles sur Σ :

- \bigcirc Ø et ε sont des expressions rationnelles
- ② pour tout $a \in \Sigma$, a est une expression rationnelle
- 0 e_1 et e_2 expressions rationnelles $\Rightarrow e_1 + e_2$, $e_1 \cdot e_2$ et e_1^* aussi

Définition

Le langage dénoté par une expression rationnelle e sur Σ :

- ② $L(a) = \{a\}$ pour tout $a \in \Sigma$
- $(e_1 + e_2) = L(e_1) \cup L(e_2), L(e_1.e_2) = L(e_1).L(e_2),$ $L(e^*) = (L(e))^*$

Dernièrement : Langages rationnels

Définition

Les langages rationnels sur Σ :

- \bigcirc \emptyset et $\{\varepsilon\}$ sont des langages rationnels
- ② pour tout $a \in \Sigma$, $\{a\}$ est un langage rationnel
- **③** L_1 et L_2 languages rationnels ⇒ $L_1 \cup L_2$, $L_1.L_2$ et L_1^* aussi

Théorème

 $L \subseteq \Sigma^*$ est rationnel ssi il existe une expression rationnelle e telle que L = L(e).

5 minutes de réflexion

Vrai ou faux?

Apercu

- **1** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- Chaque sous-ensemble d'un langage rationnel L est rationnel.

Pour chaque expression rationnelle suivante sur alphabet $\Sigma = \{a, b\}$, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a* b*
- $a^* + b^*$
- (aaa)*
- $(a + b)^*ab(a + b)^*ba(a + b)^*$
- $(a^*b)^*(b^*a)^*$

5 minutes de réflexion

Vrai ou faux?

Apercu

- **1** Si L_1 et L_2 sont rationnels, alors $L_1 \cup L_2$ est rationnel
- ② Si L_1 et L_2 sont rationnels, alors $L_1 \cap L_2$ est rationnel
- Ohaque sous-ensemble d'un langage rationnel L est rationnel. →

Pour chaque expression rationnelle suivante sur alphabet $\Sigma = \{a, b\}$, trouvez deux mots qui appartiennent de leur langage et deux autres qui ne l'appartiennent pas :

- a*b*
- $a^* + b^*$
- (aaa)*
- $(a+b)^*ab(a+b)^*ba(a+b)^*$
- (a*b)*(b*a)*

Bonus

Bonus : monoïdes et demi-anneaux

La structure $(\Sigma^*,.,\varepsilon)$ des mots sur Σ forme un monoïde.

- comme un groupe, mais sans inverses
- (et pas commutative)

En fait, le monoïde libre sur Σ .

• donc tout monoïde est un quotient d'un monoïde Σ^* pour quelque Σ

La structure $(\mathcal{P}(\Sigma^*), \cup, ., \emptyset, \{\varepsilon\})$ des langages sur Σ forme un demi-anneau.

- o comme un anneau, mais sans inverses additifs
- ullet langages finis sur Σ : le demi-anneau idempotent libre sur Σ

Avec l'étoile de Kleene, $(\mathcal{P}(\Sigma^*), \cup, ., ^*, \emptyset, \{\varepsilon\})$ forme un algèbre de Kleene.

- structure algébrique fondamentale pour l'informatique
- mais c'est quoi les algèbres de Kleene libres?

Bonus : algèbres de Kleene

Un demi-anneau est une structure algébrique $(S, \oplus, \otimes, \mathbb{O}, \mathbb{1})$ telle que

- ullet (S, \oplus, \mathbb{O}) forme un monoïde commutatif,
- $(S, \otimes, 1)$ forme un monoïde,
- $x(y \oplus z) = xy \oplus xz$, $(x \oplus y)z = xz \oplus yz$ et $x \mathbb{0} = \mathbb{0}x = \mathbb{0}$

S est idempotent si $x \oplus x = x$.

Théorème

L'ensemble de langages finis forme le demi-anneau idempotent libre.

Une algèbre de Kleene est un demi-anneau idempotent S équipé avec toutes les sommes géométriques $\bigoplus_{n\geq 0} x^n$, pour tout $x\in S$, et telle que $x\otimes (\bigoplus_{n\geq 0} y^n)\otimes z=\bigoplus_{n\geq 0} (xy^nz)$ pour tout $x,y,z\in S$.

Théorème

L'ensemble de langages rationnels forme l'algèbre de Kleene libre.

Un peu de maths

Nombres

- des entiers naturels : $\mathbb{N} = \{0, 1, 2, \dots\}$
- des entiers relatifs : $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- des nombres rationnels : $\mathbb{Q} = \{\frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0\}$
- des nombres réels : $\mathbb{R} = ?$
- (des nombres complexes : on s'en fout ici)

Construction

Die natürlichen Zahlen hat Gott gemacht, alles andere ist Menschenwerk L. Kronecker 1886

• de \mathbb{N} à \mathbb{Z} : $\mathbb{N} \times \mathbb{N}$ modulo la relation d'équivalence

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1 + y_2 = x_2 + y_1$$

• de \mathbb{Z} à \mathbb{Q} : $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ modulo la relation d'équivalence

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1 y_2 = x_2 y_1$$

ullet de $\mathbb Q$ à $\mathbb R$: via des suites convergentes / suites de Cauchy :

• soit
$$S = \{(x_0, x_1, \dots) \in \mathbb{Q}^{\infty} \mid \lim_{m,n \to \infty} (x_m - x_n) = 0\}$$

• soit \sim la relation d'équivalence sur S défini par

$$(x_0,x_1,\dots)\sim (y_0,y_1,\dots)\Longleftrightarrow \lim_{m,n\to\infty}(x_m-y_n)=0$$

• alors $\mathbb{R} = S_{/\sim}$

Dénombrabilité

Définition

Un ensemble S est dénombrable s'il existe une bijection $f: \mathbb{N} \to S$.

- N est triviellement dénombrable.
- N est triviellement denombrable. \mathbb{Z} est dénombrable via la bijection $f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ est pair,} \\ \frac{n+1}{2} & \text{si } n \text{ est impair:} \end{cases}$

$$\mathbb{Z} = \{0,1,-1,2,-2,\dots\}$$

Q⁺ est dénombrable comme suite :

Argument de la diagonale de Cantor

Théorème (G. Cantor 1891)

 \mathbb{R} n'est pas dénombrable.

- lacktriangle Supposons que $\mathbb R$ soit dénombrable, alors l'intervalle ouvert $S = \{x \mid 0 < x < 1\}$ l'est aussi.
- ② Soit $E = \{x_0, x_1, \dots\}$ une énumération de S. Notons alors

$$x_0 = 0, c_{00} c_{01} c_{02} \dots$$

 $x_1 = 0, c_{10} c_{11} c_{12} \dots$
 $x_2 = 0, c_{20} c_{21} c_{22} \dots$
:

- Soit $d_n = 9 c_{nn}$ pour tout $n \ge 0$ et $y = 0, d_0 d_1 d_2 \dots$
- **○** Alors $y \in S$, mais $y \neq x_n$ pour tout $n \geq 0$, donc $y \notin E$.

Nombres réels

Bonus bonus

Vous vous souvenez?

Définition

Un langage L est récursivement énumerable s'il existe un algorithme qui énumère tout les mots de L.

Théorème

Il existe un langage qui n'est pas récursivement énumerable.

- L'ensemble de tous algorithmes est dénombrable. (Pourquoi ? Qu'est-ce que?)
- Chaque algorithme n'énumère guère qu'un langage.
- L'ensemble de langages n'est pas dénombrable. (Pourquoi ?)

L'ensemble de langages n'est pas dénombrable

- Soit Σ un alphabet (un ensemble fini non-vide)
- Un langage est un sous-ensemble $L \subseteq \Sigma^*$
- \Rightarrow L'ensemble de langages : $\mathcal{P}(\Sigma^*)$

Théorème

 $\mathcal{P}(\Sigma^*)$ n'est pas dénombrable.

L'ensemble de langages n'est pas dénombrable

- Soit Σ un alphabet (un ensemble fini non-vide)
- Un langage est un sous-ensemble $L \subseteq \Sigma^*$
- \Rightarrow L'ensemble de langages : $\mathcal{P}(\Sigma^*)$

Théorème

 $\mathcal{P}(\Sigma^*)$ n'est pas dénombrable.

- Supposons que $\mathcal{P}(\Sigma^*)$ soit dénombrable, alors le sous-sensemble $\mathcal{J} = \{L \subseteq \Sigma^* \mid L \text{ infini } \}$ l'est aussi.
- ② Soit $E = \{L_0, L_1, ...\}$ une énumération de \mathcal{J} . Chaque L_i est dénombrable, alors notons $L_i = \{w_{i,0}, w_{i,1}, ...\}$.
- Alors $L \in \mathcal{J}$, mais $L \neq L_i$ pour chaque i: il n'est pas dans notre énumération E.

