

Concepts importants

Classification multilabel

Classification multilabel

Données Déséquilibrées

• une des deux modalités est fortement majoritaire

• Solutions:

- utiliser des critères de performance adaptés au déséquilibre ;
- ré-échantillonner les données pour se rapprocher d'une situation d'équilibre.

Critères de performance pour données déséquilibrées

balanced accuracy

- Micro-averaged: all samples equally contribute to the final averaged metric
- Macro-averaged: all classes equally contribute to the final averaged metric
- Weighted-averaged: each classes's contribution to the average is weighted by its size

• F1-score

Ré-équilibrage

- Oversampling
- Undersampling

- SMOTE:
- générer de nouveaux individus minoritaires qui ressemblent aux autres, sans être strictement identiques

Importance des variables

• Certains modèle permet de récupérer l'importance des variables dans la prédiction

Random Forest : Score d'impureté

• Importance par permutation: OOB de l'arbre VS OOB en permuttant les valeurs de la variables d'interêt

Deep Learning

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

What I actually do

Classical Machine Learning:

- •Interpretability and explainability are paramount
- Smaller amounts of relatively simple data
- Straightforward feature engineering
- Limited computational power
- •Limited time, need for faster prototyping and operationalization
- Need for varied algorithm choices
- Accuracy of test dataset results is acceptable

Deep Learning:

- •Very high accuracy is a priority (and primes over straightforward interpretability and explainability)
- Large amounts of precisely labeled data
- Complex feature engineering
- •Powerful compute resources available (GPU acceleration)
- •Augmentation and other transformations of the initial dataset will be necessary

Neurone formel (perceptron)

- Entrée x
- Sortie y
- Paramètres w et b
- $\hat{y} = f(\sum (w, x) + b)$

Fonctions d'activation

Exemple pour une séparation linéaire

• W:0,985|2,186

• B = -0.522

х0	x1	\hat{y}
0.896	1.410	3.445
-1.509	-1.438	-5.155
1.443	1.333	3.816
-1.895	-0.613	-3.731
-2.048	-2.420	-7.833

Apprentissage par descente de gradient

- Neuron apprend par optimisation d'une fonction de perte
- Exemple log-vraisemblance négative :

$$L(\hat{y}, y) = -(y. \log(\hat{y}) + (1 - y). \log(1 - \hat{y}))$$

Perceptron ne suffit pas

Réseau de neurone

Interêt du deeplearning

• Reconnaissance d'image

• Traitement automatique de la langue

Reconnaissance vocal

Convolution

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0 x 1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

Problématique du deeplearning

• Boite noire

Nécessite beaucoup de données

• Répète le biais des données

