数字电路 Digital Circuits and System

李文明 liwenming@ict.ac.cn

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

逻辑概念(1)

- 逻辑
 - 指事物的规律性和因果关系
- 逻辑运算
 - 两个表示不同的逻辑状态的二进制数码,按照指定的某种因果关系进行推理运算
- 逻辑代数
 - 逻辑学中的数学分支,在电子领域用二值变量进行描述,称布尔代数,统称逻辑代数

逻辑概念(2)

- 逻辑状态
 - 完全对立、截然相反的二种状态,如:好坏、美丑、真假、有无、高低、开关等
- 逻辑变量
 - 代表逻辑状态的符号, 取值 0 和 1
- 逻辑函数
 - 输出是输入条件的函数,有一定的因果关系
- 逻辑电路
 - 电路的输入和输出具有一定的逻辑关系

二值逻辑

● 在数字电路中,1位二进制数码"0"和"1"不仅可以表示数量的大小, 也可以表示事物的两种不同的逻辑状态,如电平的高低、开关的闭合和断 开、电机的起动和停止、电灯的亮和灭等

● 这种只有两种对立逻辑状态的逻辑关系, 称为二值逻辑

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

三种基本运算

A、B: 开关,值为1,开关闭合;值为0,开关断开

Y: 灯泡, 值为1, 灯亮; 值为0, 灯灭

逻辑 "与(AND)"

● 定义:只有决定结果的全部条件同时具备时, 结果才会发生,又称逻辑乘

● 例:

• 逻辑表达式: $Y = A \cdot B$

符号图:

欧洲标准符号

美国标准符号

有0出0 全1出1

逻辑真值表

逻辑 "或(OR)"

● 定义: 在决定事物结果的诸条件中只要有一个满足, 结果就会发生, 又称逻辑相加

• 例:

逻辑表达式: Y = A + B

● 逻辑符号图:

欧洲标准符号

美国标准符号

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

有1出1 全0出0

逻辑真值表

逻辑 "非(Not)"

● 定义:只要条件具备了,结果便不会发生;如果条件不具备,结果一定发生,又成逻辑求反

• 逻辑表达式: Y = A' 或 $Y = \overline{A}$ 或 Y = -A 或 Y = -A

$$A \longrightarrow Y \qquad A \longrightarrow Y$$

欧洲标准符号

复合逻辑运算 "与非(NAND)"

逻辑表达式: Y = (A ⋅ B)'

● 逻辑符号:

欧洲标准符号

波形图: ABY

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

有0出1 全1出0

逻辑真值表

复合逻辑运算 "或非(NOR)"

逻辑表达式: Y = (A + B)'

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

有1出0 全0出1

逻辑真值表

复合逻辑运算"异或(EXCLUSIVE OR)"

• 逻辑表达式: $Y = A \oplus B = AB' + A'B$

● 逻辑符号: A □ □ Y B □ □ □ Y
 ■ 欧洲标准符号 美国标准符号

● 波形图 A B Y

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

输入相同出0 输入不同出1

"异或"运算的性质

- 交換律 A ⊕ B = B ⊕ A
- ●交换律 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
- 分配律 A(B ⊕ C) = AB ⊕ AC

- $\bullet A \oplus A' = 1$
- $\bullet A \oplus A = 0$
- $\bullet A \oplus 1 = A'$
- $\bullet A \oplus 0 = A$

推论: 当 n 个变量做异或运算时,

若有偶数个变量取1时,则函数为0

若有奇数个变量取1时,则函数为1

复合逻辑运算"同或(EXCLUSIVE NOR)"

• 逻辑表达式: $Y = A \odot B = AB + A'B'$

逻辑符号: A = Y B = Y

欧洲标准符号

美国标准符号

● 波形图

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

逻辑真值表

输入相同出1 输入不同出0

复合逻辑运算"与或非(AND-NOR)"

真值表

• 逻辑表达式: $Y = (A \cdot B + C \cdot D)'$

● 逻辑符号:

欧洲标准符号

美国标准符号

● 波形图:

D	C	В	Α	Υ
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

逻辑代数基本公式(1)

• 数值与数值间的关系

与	或	非
$0 \cdot 0 = 0$	0 + 0 = 0	0' = 1
0 · 1 = 0	0 + 1 = 1	1' = 0
$1 \cdot 0 = 0$	1 + 0 = 1	
1 · 1 = 1	1 + 1 = 1	

• 又称布尔恒等式

/ 变量与常量间的运算 \

序号	公 式	序号	公式
1	$0 \cdot A = 0$	10	1' = 0; 0'= 1
2	$1 \cdot A = A$	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15/	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	1/6	A + (B + C) = (A + B) + C
8	$(\mathbf{A} \cdot \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$	/17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

• 又称布尔恒等式

重叠律

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0; 0' = 1
2	1 · A = A	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B + C) = (A + B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

• 又称布尔恒等式

互补律

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0; 0'= 1
2	$1 \cdot A = A$	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B + C) = (A + B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

• 又称布尔恒等式

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0; 0' = 1
2	$1 \cdot A = A$	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B + C) = (A + B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

• 又称布尔恒等式

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0; 0'= 1
2	1 · A = A	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B + C) = (A + B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

• 又称布尔恒等式

序号	公 式	序号	公式
1	$0 \cdot A = 0$	10	1' = 0; 0'= 1
2	$1 \cdot A = A$	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B + C) = (A + B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

德·摩根定律,又称反演律

• 又称布尔恒等式

序号	公 式	序号	公 式
1	$0 \cdot A = 0$	10	1' = 0; 0'= 1
2	$1 \cdot A = A$	11	1 + A= 1
3	$A \cdot A = A$	12	0 + A = A
4	$A \cdot A' = 0$	13	A + A = A
5	$A \cdot B = B \cdot A$	14	A + A' = 1
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	15	A + B = B + A
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	16	A + (B + C) = (A + B) + C
8	$(A \cdot B)' = A' + B'$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
9	(A ') ' = A	18	$(A+B)'=A'\cdot B'$

还原律

逻辑代数基本公式证明方法(1)

● 证明方法: (1)公式推演法, (2)列真值表法

• 例:证明式(17)的正确性,即证明: $A + B \cdot C = (A + B) \cdot (A + C)$

• 公式推演法: $(A+B)\cdot (A+C)=A\cdot A+A\cdot C+B\cdot A+B\cdot C)$ $=A+A\cdot C+A\cdot B+B\cdot C$ $=A\cdot (1+B+C)+B\cdot C$ $=A+B\cdot C$

逻辑代数基本公式证明方法(2)

• 列真值表法,证明: $A + B \cdot C = (A + B) \cdot (A + C)$

A B C	B·C	A+B·C	A+B	A+C	(A+B) · (A+C)
0 0 0	0	0	0	0	0
0 0 1	0	0	0	1	0
0 1 0	0	0	1	0	0
0 1 1	1	1	1	1	1
1 0 0	0	1	1	1	1
1 0 1	0	1	1	1	1
1 1 0	0	1	1	1	1
1 1 1	1	1	1	1	1

序号	公 式
19	$A + A \cdot B = A$
20	$A + A' \cdot B = A + B$
21	$A \cdot B + A \cdot B' = A$
22	$A \cdot (A + B) = A$
23	$A \cdot B + A' \cdot C + B \cdot C = A \cdot B + A' \cdot C$ $A \cdot B + A' \cdot C + B \cdot C \cdot D = A \cdot B + A' \cdot C$
24	$A \cdot (A \cdot B)' = A \cdot B'$ $A' \cdot (A \cdot B)' = A'$

逻辑代数基本公式证明(1)

• 证明: $A + A \cdot B = A$

• 证明: $A + A' \cdot B = A + B$

$$A + A \cdot B = A \cdot (1 + B)$$
$$= A$$

在两个乘积项相加时,如果其中一项包含另一项,则这一项是多余的,可以删掉

$$A + A' \cdot B = A + A \cdot B + A' \cdot B$$
$$= A + B \cdot (A + A')$$
$$= A + B$$

在两个乘积项相加时,如果其中一项 含有另一项的取反因子,则此取反因 子多余的,可从该项中删除

练习

● 证明: A • (A + B) = A

● 证明: A • B + A' • C + B • C = A • B + A' • C

● 证明: A • B + A' • C + B • C • D = A • B + A' • C

● 证明: A • (A • B) ′ = A • B′

● 证明: A'• (A • B)' = A'

- 概述
- 逻辑代数中的三种基本运算
- 逻辑代数的基本公式和常用公式
- 逻辑代数的基本定理
- 逻辑函数及其表示方法
- 逻辑函数的化简方法
- 具有无关项的逻辑函数及其化简

逻辑代数基本定理 - 代入定理

● 在任何一个包含变量A的逻辑等式中,若以另外一个逻辑式代入式中所有 A的位置,则等式仍然成立

• 即如下公式成立:
$$(A \cdot B \cdot C)' = A' + B' + C'$$

$$(A + B + C)' = A' \cdot B' \cdot C'$$

已知二变量的德•摩根定理: $(A \cdot B)' = A' + B'$

$$(A+B)' = A' \cdot B'$$

$$\therefore A \cdot (B \cdot C))' = A' + (B \cdot C)'$$

注意运算的优先顺序

$$= A' + B' + C'$$

$$(A + (B + C))' = A' \cdot (B + C)'$$
$$= A' \cdot B' \cdot C'$$

逻辑代数基本定理 - 反演定理

- 对于任何一个逻辑式 Y
- ◆ 将所有的· → + , + → · , 0 → 1 , 1 → 0,
 原变量 → 反变量, 反变量 → 原变量
- 得到的结果为 Y'
- 变换原则:
 - 仍需遵守"先括号、然后乘、最后加"的运算优先次序
 - 不属于单个变量上的反号应保留不变
- 【例】若 Y = ((A·B'+C)'+D)'+C, 求 Y'; 解: 依据反演定理直接写出 Y'=(((A'+B)·C')'D')'·C'

反演定理举例

• 例: $Y = A' + B' \cdot (C + D' \cdot E)$ $Y' = A \cdot (B + (C' \cdot (D + E'))$ 与变或时要加括号 $= A \cdot B + A \cdot C' \cdot D + A \cdot C' \cdot E'$

• 例:
$$Y = A \cdot B + (A' \cdot B \cdot C)' + B' \cdot C'$$

$$Y' = (A \cdot B + (A' \cdot B \cdot C)' + B' \cdot C')'$$
 最外层非号不变
$$= (A' + B') \cdot (A + B' + C')' \cdot (B + C)$$

逻辑代数基本定理 – 对偶定理

- 若两逻辑式相等,则它们的对偶式也相等。
- 对偶式:
 - 对于任何一个逻辑式 Y, 若将其·→+,+→·,0→1,1→0
 - -则得到一个新的逻辑式 Y^D, Y^D 就是Y的对偶式,或者说Y和 Y^D 互为对偶式
- 例如

$$Y = A(B + C),$$
 $Y^{D} = A + BC$
 $Y = (AB + CD)',$ $Y^{D} = ((A + B)(C + D))'$

求某一函数 F 的对偶式时,同样要注意保持原函数的运算顺序不变!

对偶定理应用举例

• 例: 试证明 A + BC = (A + B)(A + C)

逻辑代数的基本公式(2)

● 互为对偶式

序号	公 式	序号	公 式
		10	1' = 0; 0'= 1
1	$0 \cdot \mathbf{A} = 0$	11	1 + A= 1
2	$1 \cdot A = A$	12	0 + A = A
3	$A \cdot A = A$	13	A + A = A
4	$A \cdot A' = 0$	14	A + A' = 1
5	$A \cdot B = B \cdot A$	15	A + B = B + A
6	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	16	A + (B + C) = (A + B) + C
7	$A \cdot (B + C) = A \cdot B + A \cdot C$	17	$A + B \cdot C = (A + B) \cdot (A + C)$
8	$(A \cdot B)' = A' + B'$	18	$(A+B)'=A'\cdot B'$
9	(A ') ' = A		

逻辑函数表示方法

- 逻辑真值表
- 逻辑函数式 (逻辑式或函数式)
- 逻辑图
- 波形图
- 卡诺图
- 硬件描述语言

逻辑真值表

● 将输入变量所有的取值下对应的输出值找出来,列成表格,即可得到真值表

输入变量	输出
A B C····	Y ₁ Y ₂
遍历所有可能的输入 变量的取值组合	输出对应的取值

逻辑函数表示方法举例

● 举重裁判电路

[A, B, C]

[Y]

1: 闭合

1: 灯亮

0: 断开

0: 灯暗

逻辑函数: Y = A ⋅ (B + C)

- 逻辑电路图
 - 将逻辑函数式中各变量之间的与、或、非等逻辑关系用图形符号表示出来,就可以画出表示函数关系的逻辑图(logic diagram)
 - 如用逻辑运算的图形符号代替 $Y = A \cdot (B + C)$ 中的代数运算符号得到的逻辑图

	输入	输出	
Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

波形图(waveform)

- 又称时序图(timing diagram)
- 将逻辑函数输入变量每一种可能出现的取值与 对应的输出值按时间顺序依次排列起来,就得 到了表示该逻辑函数的波形图
- 将Y = A·(B + C)给出的输入变量与对应的输出变量取值依时间顺序排列起来,即可得到波形图

卡诺图表示方法

A	00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	m_5	m_7	m_6

二变量卡诺图

三变量 卡诺图

AB CD	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	m_{11}	m_{10}

四变量 卡诺图

硬件描述语言

- HDL (Hardware Description Language)
 - VHDL (Very High Speed Integrated Circuit)
 - Verilog HDL
- EDIF (Electronic Design Interchange Format)

•

```
1 module Compare1 (A, B, Equal, Alarger, Blarger);
      input A, B;
      output Equal, Alarger, Blarger;
      assign Equal = (A \& B) \mid (\sim A \& \sim B);
     assign Alarger = (A \& \sim B);
      assign Blarger = (\sim A \& B);
7 endmodule
9 module shifter (in, A,B,C,clk);
      input in, clk;
      input A,B,C;
     reg A, B, C;
      always @ (posedge clk) begin
13
           A \leq in:
14
           B \leq A;
15
           C \leq B:
16
      end
17
18 endmodule
```


真值表 — 逻辑函数式的转换

- 1. 找出真值表中使逻辑函数为 "1" 的输入变量的组合
- 2. 对应每个输出为"1"变量组合关系为与的关系,即乘积项,其中如图输入变量取值为"1"的写成原变量,输入变量取值为"0"的写成反变量,如 A'B'C
- 3. 将这些乘积项相加,即得到输出的逻辑式

$$Y(A, B, C) = A'B'C + A'BC' + AB'C' + ABC$$

$$= (A'B + AB')C' + (A'B' + AB)C$$

$$= (A \oplus B)C' + (A \oplus B)'C$$

$$= A \oplus B \oplus C$$

真值表

	输入		输出	
Α	В	C	Υ	
0	0	0	0	
0	0	1	1	A'B'C =
0	1	0	1	A'BC' =
0	1	1	0	
1	0	0	1	AB'C' =
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC =

逻辑真值表 一函数式的转换

● 例:

真值表

	输入	输出	
Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

A'B'C'

函数式

$$Y(A, B, C) = A'B'C' + A'BC + AB'C + ABC'$$

A'BC

AB'C

ABC'

逻辑函数式 — 真值表的转换

● 例:写出逻辑函数

Y = AB' + C' 的真值表

	输入	输出	
Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

逻辑函数式—逻辑图转换

● 用逻辑图形符号代替逻辑函数中的逻辑运算符号,并按<mark>运算优先顺序</mark>将它们 连接起来,即可得到所求的逻辑图

● 例: 画出逻辑函数的逻辑电路, Y(A,B,C) = (A + B'C')' + A'BC + C

逻辑图—逻辑函数式转换

- 由逻辑图写逻辑函数式
 - 已知逻辑图,从逻辑图的输入端到输出端逐级写出每个图形符号的输出逻辑式,即可 在输出端得到所求的逻辑函数式

逻辑图 - 真值表 - 逻辑函数式转换练习

● 例:设计一个逻辑电路,当三个输入A、B、C至少有两个为低电平时,该电 路输出为高,试写出该要求的真值表和逻辑表达式,画出实现的逻辑图。

Y = A'B'C' + A'B'C + A'BC' + AB'C'

1、写出真值表

	输入	输出	
Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

2、根据真值表写函数式

$$= A'B'(C' + C) + A'BC' + AB'C'$$

$$= A'B' + A'BC' + AB'C'$$

$$= A'(B' + BC') + AB'C'$$

$$= A'B' + A'C' + AB'C'$$

$$= A'B' + C'(A' + AB')$$

$$= A'B' + C'(A' + B')$$

$$= A'B' + A'C' + B'C'$$
G1

G2

波形图 — 逻辑真值表的转换(1)

- 由波形图写真值表
 - 人波形图上找出每个时间段里输入变量与函数输出的取值,然后将这些输入、输出取值对应列表,得到所求真值表
- 例:已知逻辑函数Y的输出波形,试分析其逻辑功能

	<i>-</i>					
В	Α	Y				
0	0	1				
0	1	0				
1	1	1				
1	0	0				

真值表

逻辑函数式

$$Y = A'B' + AB$$

逻辑功能:

输出和输入是同或关系

波形图 — 逻辑真值表的转换(2)

● 例:已知某个数字逻辑电路的输入输出波形,试画出该组合逻辑电路图,并 判断其逻辑功能

波形图

函数式

$$Y = A'B'C + A'BC' + AB'C' + ABC$$

$$= A'(B'C + BC') + A(B'C' + BC)$$

$$= A'(B \oplus C) + A(B \oplus C)'$$

$$= A \oplus B \oplus C$$

真值表

	输入	输出	
Α	В	U	Υ
0	0	0	0
0	0	1	1
0	1	1	0
0	1	0	1
1	0	0	1
1	0	1	0
1	1	1	1
1	1	0	0

逻辑符号图

电路功能

当输入有奇数个"1" 时,输出为"1"

此电路为"判奇电路"

逻辑真值表—波形图的转换

- 将真值表中所有的输入变量与对应的输出变量取值以此 排列画成以时间为横轴的波形,即得到所求的波形图
- 例:已知逻辑函数的真值表,试画出输入输出波形和输出端的逻辑函数式

函数式
$$Y = A'B'C' + A'B'C + AB'C'$$

 $= A'B'(C' + C) + AB'C'$
 $= A'B' + AB'C'$
 $= B'(A' + AC')$
 $= A'B' + B'C'$

逻辑符号图?

真值表

	输入	输出	
A	В	U	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

逻辑函数的标准形式—最小项

● 在n变量逻辑函数中,若m为包含n个因子的乘积项,而且这n个变量均以原变量或反变量的形式在m中出现一次,则称m为该组变量的最小项。

- 例: 二变量A,B的最小项 A'B', A'B, AB', AB 2² =4个

最小项编号

- 对于n变量函数有 2^n 个最小项
- 输入变量的每一组取值,都使一个对应的最小项的值等于"1"
- 通常用 m; 表示第 i 个最小项, 变量按A₁~ An排列,以原变量 出现时对应的值为 "1",以反 变量出现时对应的值取 "0", 按二进制排列时,其十进制数即 为 i

最小项	取值			十进	(中口	
	A	В	C	制数	编号	
A'B'C'	0	0	0	0	m_o	
A'B'C	0	0	1	1	m_1	
A'BC'	0	1	0	2	m_2	
A'BC	0	1	1	3	m_3	
AB'C'	1	0	0	4	m_4	
AB'C	1	0	1	5	m_5	
ABC'	1	1	0	6	m_6	
ABC	1	1	1	7	m_7	

最小项真值表

编号	ABC	A'B'C'	A'B'C	A'BC	A'BC'	ABC'	ABC	AB'C	AB'C'
m_0	000	1	0	0	0	0	0	0	0
m_1	001	0	1	0	0	0	0	0	0
m_3	011	0	0	1	0	0	0	0	0
m_2	010	0	0	0	1	0	0	0	0
m_6	110	0	0	0	0	1	0	0	0
m_7	111	0	0	0	0	0	1	0	0
m_5	101	0	0	0	0	0	0	1	0
m_4	100	0	0	0	0	0	0	0	1

最小项的性质

- 在输入变量任一取值下,有且仅有一个最小项的值为"1"
- 全体最小项之和为 "1" , 即 $\sum m_i = 1$
- 任何两个最小项之积为 "0" ,即 $\mathbf{i} \neq \mathbf{j}$ 时, $m_i \cdot m_j = 0$
- 两个相邻的最小项之和可以合并,消去一对因子,只留下公共因子
- 相邻: 仅一个变量不同的最小项
- 例

$$A'BC'$$
与 $A'BC$

$$A'BC' + A'BC = A'B(C'+C) = A'B$$

逻辑函数的标准形式—最大项

- 在n变量逻辑函数中,若M为包含n个变量之和,而且这n个变量均以原变量或反变量的形式在M中出现一次,则称M为该组变量的最大项。
- 对于n变量函数有2ⁿ个最大项
- 例如: 两变量A,B的最大项: 2² =4个

$$A'+B'$$
, $A'+B$, $A+B'$, $A+B$

● 三变量A、B、C的最大项: 2³ = 8个

$$A' + B' + C'$$
, $A' + B' + C$, $A' + B + C'$, $A' + B + C$
 $A + B' + C'$, $A + B' + C$, $A + B + C'$, $A + B + C$

最大项的编号

- 輸入变量的每一组取值都使一 个对应的最大项的值为 "0"
- 通常用 M_i表示第i 个最大项, 变量按A₁~ A_n排列,以原变量 出现时对应的值为 "0",以 反变量出现时对应的值取 "1",按二进制排列时,其 十进制数即为i。

最大项	取值			十进制数	编号	
取人火	Α	В	C		<i>≯</i> ₩ ′⊃	
A' + B' + C'	1	~	1	7	M_7	
A' + B' + C	1	~	0	6	M_6	
A' + B + C'	1	0	1	5	M_5	
A'+B+C	1	0	0	4	M_4	
A + B' + C'	0	~	1	3	M_3	
A + B' + C	0	1	0	2	M_2	
A+B+C'	0	0	1	1	M_1	
A+B+C	0	0	0	0	M_{O}	

最大项的真值表

编号	ABC	A + B + C	A + B + C'	A + B' + C'	A + B' + C	A' + B' + C	A' + B' + C'	A' + B + C'	A' + B + C
M_0	000	0	1	1	1	1	1	1	1
M_1	001	1	0	1	1	1	1	1	1
M_3	011	1	1	0	1	1	1	1	1
M_2	010	1	1	1	0	1	1	1	1
M_6	110	1	1	1	1	0	1	1	1
M_7	111	1	1	1	1	1	0	1	1
M_5	101	1	1	1	1	1	1	0	1
M_4	100	1	1	1	1	1	1	1	0

最大项的性质

- 在输入变量任一取值下,有且仅有一个最大项的值为"0"
- 全体最大项之积为 "0"
- 任何两个最大项之和为"1"
- 只有一个变量不同的最大项的乘积等于各相同变量之和

问题和建议?

