Note: Preview of slides from (proofStrategies.tex) by Qirui Li (https://orcid.org/0000-0002-6042-1291). For educational and non-commercial use only. Any unlawful use will be prosecuted.

© 2025 Qirui Li Licensed under CC BY-NC-SA 4.0. You may modify, share, or adapt with proper attribution, for non-commercial educational use only, and must include the license link: https://github.com/honeymath/Linear-Algebra-Slides/blob/main/LICENSE

Full license: https://creativecommons.org/licenses/by-nc-sa/4.0/

Before reviewing proof

Make sure you are able to do QR decomposition, calculating determinant, calculating A^n , calculating e^A , able to solve differential equations y' = Ay, able to solve applicational problems (like the one in homework).

Able to verify if a matrix is diagonalizable (by verifying if it satisfies a polynomial). Able to diagonalize a matrix, able to find Jordan canonical form....

You must be able to do all computations. In an efficient way.

Given 2×2 matrix. Its characteristic polynomial is given by

$$\det \left(tI_2 - \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = t^2 - (a+d)t + (ad-bc)$$

Suppose the polynomial is given by $(t - \lambda_1)(t - \lambda_2)$ with $\lambda_1 \neq \lambda_2$. In this case, it is diagonalizable.

Since
$$(A - \lambda_1)(A - \lambda_2) = 0$$
, we have $A(A - \lambda_1) = \lambda_2(A - \lambda_1)$ and $A(A - \lambda_2) = \lambda_1(A - \lambda_2)$.

Therefore, the matrix

$$\begin{pmatrix} a-\lambda_1 & b \\ c & d-\lambda_1 \end{pmatrix} \qquad \text{eigenmatrix of eigenvalue λ_2}$$

$$\begin{pmatrix} a-\lambda_2 & b \\ c & d-\lambda_2 \end{pmatrix} \qquad \text{eigenmatrix of eigenvalue λ_1}$$

3

Excercise. Suppose $2a + b \neq 0$. Given the following matrix

$$\begin{pmatrix} b & a \\ 2b & 2a \end{pmatrix}$$

What is its eigenvalue and what is its eigenvector?

No matter what, this matrix is always **not invertible** since columns are colinear. Therefore, 0 must be an eigenvalue of it. Therefore, by looking at the trace, the other eigenvalue must be 2a + b.

Therefore
$$A - 0I = \begin{pmatrix} b & a \\ 2b & 2a \end{pmatrix}$$
 is the eigenmatrix of eigenvalue $2a + b$

$$A - (2a + b)I = \begin{pmatrix} -2a & a \\ 2b & -b \end{pmatrix}$$
 is the eigenmatrix of eigenvalue 0.

So

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

is eigenvector of eigenvalue 2a + b. And

$$\begin{pmatrix} a \\ -b \end{pmatrix}$$

is an eigenvector of eigenvalue 0.

Therefore, we can even write down its diagonalization

$$\begin{pmatrix} 1 & a \\ 2 & -b \end{pmatrix}^{-1} \begin{pmatrix} b & a \\ 2b & 2a \end{pmatrix} \begin{pmatrix} 1 & a \\ 2 & -b \end{pmatrix} = \begin{pmatrix} 2a+b & 0 \\ 0 & 0 \end{pmatrix}$$

!!

When eigenvalues are given , finding eigenvectors is extremely easy, you should able to be compute within 10 seconds in mind.

Excercise. Write down an eigenvector of the following matrix

$$\begin{pmatrix} 0 & -2 \\ 3 & 5 \end{pmatrix}$$

of eigen value 2.

Excercise. Write down an eigenvector of the following matrix

$$\begin{pmatrix} 3 & 4 \\ 3 & 7 \end{pmatrix}$$

of eigen value 9.

The most important fact

Theorem 1

If P_1, \ldots, P_n are projection matrices $P_i^2 = P_i$ and

$$P_1 + \ldots + P_n = I$$

Then $P_i P_i = 0$

Proof We consider a matrix

$$Q = \begin{pmatrix} P_1 & P_2 & \cdots & P_n \end{pmatrix}$$

$$R = \begin{pmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{pmatrix} \qquad S = \begin{pmatrix} P_1 & \cdots & & & \\ & P_2 & \cdots & & \\ & & \ddots & & \\ & & & P_n \end{pmatrix}$$

This definition implies that QR = I.

The most important fact

$$RQ = \begin{pmatrix} P_1^2 & P_1 P_2 & \cdots & P_1 P_n \\ P_2 P_1 & P_2^2 & \cdots & P_2 P_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ P_n P_1 & P_n P_2 & \cdots & P_n^2 \end{pmatrix}$$

Furthermore, QS = Q, SR = R. So

$$(S - RQ)^2 = S^2 - SRQ - RQS + RQRQ = S - RQ$$

This implies S - RQ is a projection matrix. However, $P_i^2 = P_i$ so $tr(S - RQ) = 0 \implies S-RQ = 0 \implies P_iP_j = 0$.

The most important fact

Theorem 2

Suppose $P_i \vec{v_i} = \vec{v_i}$ for $1 \le i \le k$ and $P_i P_j = 0$ for $1 \le i, j \le k$. Then

$$\vec{v}_1,\ldots,\vec{v}_k$$

is linearly independent.

For $i \neq j$,

$$P_i \vec{v}_j = P_i P_j \vec{v}_j = 0$$

So if

$$a_1\vec{v}_1+\ldots+a_k\vec{v}_k=0$$

Multiply P_i we have

$$0+0+\ldots+0+a_iP_i\vec{v_i}+0+\cdots=P_i0=0 \implies a_i\vec{v_i}=0 \implies a_i=0.$$

Of different eigenvalue

Excercise. Show that eigenvectors from different eigenvalue must be linearly independent.

Suppose $A\vec{v_i} = \lambda_i \vec{v_i}$ with $\lambda_i \neq \lambda_i$. Assume

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \ldots + a_k\vec{v}_k = 0.$$

Multiply by A, we have

$$a_1\lambda_1\vec{v}_1 + a_2\lambda_2\vec{v}_2 + \ldots + a_k\lambda_k\vec{v}_k = 0.$$

Subtract this equation by λ times the first equation, we have

$$a_2(\lambda_2-\lambda_1)\vec{v}_2+\ldots+a_k(\lambda_k-\lambda_1)\vec{v}_k=0$$

By induction hypothesis, $a_2 = \ldots = a_k = 0$. So $a_1 \vec{v}_1 = 0$.

Of different eigenvalue

Proof by spectural decomposition. Assume \vec{v} is an eigenvector of eigenvalue μ

$$(\lambda + \epsilon) \mathscr{P}_{\lambda} \vec{v} = A \mathscr{P}_{\lambda} \vec{v} = \mathscr{P}_{\lambda} A \vec{v} = \mathscr{P}_{\lambda} \mu \vec{v}$$

This implies

$$(\lambda - \mu + \epsilon) \mathscr{P}_{\lambda} \vec{\mathbf{v}} = \mathbf{0}$$

If $\lambda \neq \mu$, this implies $\mathscr{P}_{\lambda} \vec{v} = 0$, in particular, taking constant part, we have $P_{\lambda} \vec{v} = 0$. Therefore $P_{\mu_1} + \ldots + P_{\mu_k} + P_{\lambda} + \ldots + P_{\mu_m} = I$, multiply \vec{v} we have $P_{\mu} \vec{v} = \vec{v}$.

We have already proved eigenvectors of normal matrices are perpendicular each other. Now let us write some shorter proof for some cases.

Excercise.Let $A = A^H$ be Hermitian matrices, Show that eigenvectors of different eigenvalues of A are automatically Hermitian orthogonal.

Solution.Let $A\vec{v}=\lambda\vec{v}$ and $A\vec{w}=\mu\vec{w}$ with $\lambda\neq\mu$. Since $A=A^H$, λ,μ are all real numbers.

$$\vec{v}^H \mu \vec{w} = \vec{v}^H A \vec{w} = \vec{v}^H A^H \vec{w} = \vec{v}^H \lambda \vec{w}.$$

This implies that

$$\vec{v}^H \vec{w} = 0.$$

Excercise.Let $A = -A^H$ be skew Hermitian matrices, Show that eigenvectors of different eigenvalues of A are automatically Hermitian orthogonal.

Solution.Let $A\vec{v}=\lambda\vec{v}$ and $A\vec{w}=\mu\vec{w}$ with $\lambda\neq\mu$. Since $A=-A^H$, $\overline{\lambda}=-\lambda,\overline{\mu}=-\mu$ are all purely imaginary numbers.

$$\vec{v}^H \mu \vec{w} = \vec{v}^H A \vec{w} = -\vec{v}^H A^H \vec{w} = -\vec{v}^H \overline{\lambda} \vec{w} = \vec{v}^H \lambda \vec{w}.$$

Excercise.Let $A^{-1} = A^H$ be Unitary matrices, Show that eigenvectors of different eigenvalues of A are automatically Hermitian orthogonal.

Solution.Let
$$A\vec{v}=\lambda\vec{v}$$
 and $A\vec{w}=\mu\vec{w}$ with $\lambda\neq\mu$. Since $A^{-1}=A^{H}$, $\overline{\lambda}=\frac{1}{\lambda},\overline{\mu}=\frac{1}{\mu}$.

$$\vec{v}^H \mu \vec{w} = \vec{v}^H A \vec{w} = \vec{v}^H (A^H)^{-1} \vec{w} = \vec{v}^H (\overline{\lambda})^{-1} \vec{w} = \vec{v}^H \lambda \vec{w}.$$

Excercise.Let $AA^H = A^HA$ be Normal matrices, Show that eigenvectors of different eigenvalues of A are automatically Hermitian orthogonal.

Solution.We first prove a lemma. That if $AA^H = A^HA$, then Ax = 0 implies $A^Hx = 0$. Indeed,

$$Ax = 0 \implies x^H A^H Ax = 0 \implies x^H A A^H x = 0 \implies A^H x = 0$$

Therefore $Ax = \lambda x \implies A^H x = \overline{\lambda} x \implies x^H A = \lambda x^H$.

$$\vec{\mathbf{v}}^H \mu \vec{\mathbf{w}} = \vec{\mathbf{v}}^H A \vec{\mathbf{w}} = \vec{\mathbf{v}}^H \lambda \vec{\mathbf{w}}.$$

Excercise.Let $A = A^T$ be real, positive definite matrix. Then all eigenvalues of A are positive

Solution.If
$$Av = \lambda v$$
, then $0 < v^T A v = \lambda \underbrace{v^T v}_{>0}$ therefore $\lambda > 0$

$$e^X = \lim_{n \to \infty} \left(1 + \frac{X}{n}\right)^n$$

Corollary 1

For any X_1, X_2, \ldots, X_k

$$\lim_{n \to \infty} \left(1 + \frac{X_1}{n} + \frac{X_2}{n^2} + \dots + \frac{X_k}{n^k} \right)^n = e^{X_1}$$

In other words, all X_2, \ldots, X_k is ignorable.

Excercise. Show that if A is real matrix, $A = A^T$ and all eigenvalues of A are positive, then A is positive definite.

Excercise.If
$$AB = BA$$
, then $e^A e^B = e^{A+B}$

$$e^{A}e^{B} = \lim_{n \to \infty} (I + A/n)^{n} (I + B/n)^{n} = \lim_{n \to \infty} ((I + A/n)(I + B/n))^{n}$$

= $\lim_{n \to \infty} (I + (A + B)/n + AB/n^{2})^{n} = e^{A+B}$

Excercise.If $A = -A^H$, show that e^A is a unitary matrix

$$e^{A}(e^{A})^{H} = e^{A}e^{A^{H}} = e^{A+A^{H}} = e^{0} = I$$

Excercise.If $A = A^H$, show that e^A is a positive definite matrix.

Since $A=A^H$, all eigenvalues are real numbers. We have $(e^A)^H=e^{A^H}=e^A$. Also e^A is a real matrix. Furthermore, the eigenvalue of e^A is $e^A>0$. So e^A is a real symmetric matrix with all positive eigenvalues, it is positive definite

Excercise. Show that any real positive definite matrix A can be written as e^X for a unique matrix X. We call this X as $X = \ln A$

Excercise. Show that if A B are two positive definite matrix with AB = BA, then AB is also a positive definite matrix.

$$AB = e^{\ln A}e^{\ln B} = e^{\ln A + \ln B}$$

so AB is a positive definite matrix.

Excercise.If A is a normal matrix. Show that e^A admits a decomposition $e^A = PU$ where P is a positive definite matrix, U is a unitary matrix commute with P.

Eigenvalue and normal matrices

Show that if A is skew-Hermitian, then e^A is unitary