Nama: Ketut Satria Wibisana

NIM : 1103213148

Laporan Analisis Hyperparameter MLP Regression

1. Analisis Hyperparameter: Jumlah Hidden Layer dan Neuron

- Eksperimen: Menguji jumlah hidden layer (1, 2, 3) dengan berbagai jumlah neuron (4, 8, 16, 32, 64, ...).
- Untuk mencari konfigurasi jumlah hidden layer dan neuron yang memberikan performa terbaik dalam memprediksi kualitas wine.

Hasil:

- Jumlah Hidden Layer:
 - 1 Hidden Layer: Pada umumnya, satu hidden layer memberikan hasil yang cukup baik untuk dataset ini, namun bisa kurang optimal dalam menangkap pola-pola kompleks.
 - 2 Hidden Layer: Model dengan dua hidden layer cenderung memberikan hasil yang lebih baik karena kemampuan untuk memodelkan hubungan yang lebih kompleks.
 - 3 Hidden Layer: Meskipun model ini memiliki kapasitas untuk menangani lebih banyak kompleksitas, namun terkadang hasilnya tidak lebih baik dari model dengan dua hidden layer, dan dapat menunjukkan tanda-tanda overfitting jika jumlah neuron terlalu besar.

• Jumlah Neuron:

- Neuron yang Lebih Sedikit (4, 8, 16): Untuk jumlah neuron yang lebih kecil, model mungkin underfitting dan tidak dapat menangkap hubungan yang cukup kompleks di dalam data.
- Neuron yang Lebih Banyak (32, 64): Jumlah neuron yang lebih banyak cenderung memberikan hasil yang lebih baik, dengan kapasitas yang lebih besar untuk menangkap kompleksitas data, tetapi juga meningkatkan risiko overfitting pada model yang lebih rumit.

Rekomendasi:

• 2 Hidden Layer dengan 32 Neuron adalah konfigurasi yang paling optimal dalam eksperimen ini, memberikan keseimbangan yang baik antara kompleksitas model dan kemampuan generalisasi.

- 2. Analisis Hyperparameter: Fungsi Aktivasi
 - Eksperimen: Menguji lima fungsi aktivasi yang berbeda: linear, sigmoid, ReLU, softmax, dan tanh.
 - Tujuan: Untuk menentukan fungsi aktivasi terbaik yang dapat meningkatkan kinerja model dalam memprediksi kualitas wine.

Hasil:

- Linear: Fungsi aktivasi linear bekerja dengan baik untuk regresi karena tidak membatasi output ke rentang tertentu. Namun, seringkali memberikan hasil yang kurang baik dibandingkan fungsi aktivasi lain yang lebih non-linear.
- Sigmoid: Fungsi aktivasi sigmoid cenderung menyebabkan masalah dengan gradien yang sangat kecil (vanishing gradient problem), sehingga pelatihan menjadi lebih lambat dan kurang efektif.
- ReLU: ReLU memberikan hasil terbaik karena sifatnya yang non-linear dan dapat mengatasi masalah vanishing gradient, serta lebih cepat dalam pelatihan.
- Softmax: Softmax lebih sering digunakan untuk masalah klasifikasi, bukan regresi, sehingga performanya sangat buruk dalam kasus ini.
- Tanh: Tanh memberikan hasil yang lebih baik daripada sigmoid, tetapi tidak sebaik ReLU dalam hal kecepatan konvergensi dan kemampuan untuk menangani data regresi.

Rekomendasi:

- ReLU adalah pilihan terbaik untuk model regresi dalam eksperimen ini karena efisiensinya dalam menangani masalah vanishing gradient dan konvergensi yang cepat.
- 3. Analisis Hyperparameter: Epochs
 - Eksperimen: Menguji model dengan berbagai jumlah epoch: 1, 10, 25, 50, 100, dan 250.
 - Tujuan: Untuk menemukan jumlah epoch yang paling efektif untuk konvergensi tanpa menyebabkan overfitting.

Hasil:

- Epoch Rendah (1, 10): Model dengan jumlah epoch rendah cenderung mengalami underfitting karena belum cukup lama berlatih untuk menangkap pola dalam data.
- Epoch Menengah (25, 50): Model dengan 25 hingga 50 epoch menunjukkan kinerja terbaik, di mana model cukup terlatih untuk menangkap pola dalam data tanpa overfitting.
- Epoch Tinggi (100, 250): Jumlah epoch yang sangat tinggi menunjukkan tanda-tanda overfitting, di mana MSE pada data pelatihan terus menurun, tetapi MSE pada data pengujian mulai meningkat.

Rekomendasi:

• 50 Epoch adalah jumlah epoch yang optimal, memberikan keseimbangan antara pelatihan yang cukup lama untuk mempelajari pola dan menghindari overfitting.

- 4. Analisis Hyperparameter: Learning Rate
 - Eksperimen: Menguji learning rate yang berbeda: 10, 1, 0.1, 0.01, 0.001, dan 0.0001.
 - Tujuan: Untuk mencari learning rate yang optimal yang memberikan konvergensi terbaik tanpa menyebabkan divergensi atau konvergensi yang terlalu lambat.

Hasil:

- Learning Rate Tinggi (10, 1): Learning rate yang terlalu tinggi menyebabkan model tidak dapat konvergen, dengan fluktuasi besar dalam loss selama pelatihan.
- Learning Rate Menengah (0.1, 0.01): Learning rate antara 0.1 dan 0.01 memberikan kinerja terbaik, dengan konvergensi yang cepat dan stabil.
- Learning Rate Rendah (0.0001): Learning rate yang sangat rendah menyebabkan pelatihan berjalan sangat lambat dan memerlukan jumlah epoch yang lebih banyak untuk konvergen.

Rekomendasi:

- Learning Rate 0.001 memberikan hasil yang optimal, memungkinkan model untuk belajar dengan cepat tanpa terlalu banyak fluktuasi atau membutuhkan banyak epoch.
- 5. Analisis Hyperparameter: Batch Size
 - Eksperimen: Menguji berbagai ukuran batch size: 16, 32, 64, 128, 256, dan 512.
 - Tujuan: Untuk menemukan ukuran batch yang memberikan keseimbangan terbaik antara kecepatan pelatihan dan generalisasi model.

Hasil:

- Batch Size Kecil (16, 32): Batch size kecil memberikan hasil yang lebih baik dalam hal generalisasi tetapi dengan pelatihan yang lebih lambat.
- Batch Size Menengah (64, 128): Ukuran batch ini memberikan keseimbangan terbaik antara waktu pelatihan dan performa.
- Batch Size Besar (256, 512): Meskipun pelatihan lebih cepat, batch size yang sangat besar cenderung menyebabkan model overfit dan tidak mampu menangkap pola generalisasi dengan baik.

Rekomendasi:

• Batch Size 64 atau 128 adalah yang paling optimal, memberikan kecepatan pelatihan yang baik sambil menghindari masalah overfitting.

Kesimpulan Akhir:

Setelah menganalisis eksperimen dengan berbagai hyperparameter, konfigurasi yang paling optimal untuk model ini adalah sebagai berikut:

• Jumlah Hidden Layer: 2

• Jumlah Neuron per Hidden Layer: 32

• Fungsi Aktivasi: ReLU

• Jumlah Epoch: 50

Learning Rate: 0.001Batch Size: 64 atau 128

Dengan konfigurasi ini, model berhasil mencapai keseimbangan terbaik antara kemampuan generalisasi dan kecepatan pelatihan.