This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

12

EUROPEAN PATENT APPLICATION

(21) Application number: 92303376.5

(51) Int. Cl.⁵: **C07D 477/00**, A61K 31/40

(22) Date of filing: 15.04.92

30 Priority: 16.04.91 US 686211 16.04.91 US 686725

(43) Date of publication of application: 21.10.92 Bulletin 92/43

Designated Contracting States :
 CH DE FR GB IT LI NL

(1) Applicant: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065-0900 (US) 72 Inventor: Dininno, Frank
5 Benjamin Court
Old Bridge, NJ 08857 (US)
Inventor: Greenlee, Mark L.
1470 Campbell Street, No. PB-1
Rahway, NJ 07065 (US)
Inventor: Rano, Thomas A.
34 Cascades Terrace
Somerville, NJ 08876 (US)

(74) Representative: Thompson, John Dr. et al Merck & Co., Inc. European Patent Department Terlings Park Eastwick Road Harlow, Essex CM20 2QR (GB)

(54) 2-phenanthridonyl carbapenems.

(57) Carbapenems of the formula

$$\mathbb{R}^{\mathbf{a}}$$
 or $\mathbb{R}^{\mathbf{a}}$ $\mathbb{R}^{\mathbf{a}}$ $\mathbb{R}^{\mathbf{a}}$

are useful antibacterial agents.

BACKGROUND OF THE INVENTION

The present invention relates to antibacterial agents of the carbapenem class, in which the 2-position sidechain is characterized by a phenanthridonyl moiety, substituted by various neutral substituents, as described in more detail further below.

Thienamycin was an early carbapenem antibacterial agent having a broad spectrum; it has the following formula:

10

15

5

20 Later, N-formimidoyl thienamycin was discovered; it has the formula:

25

30

The 2-phenanthridonyl-carbapenems of the present invention are not characterized by a broad antibacterial spectrum such as that of thienamycin or N-formimidoyl thienamycin. Rather, their spectrum of activity is largely limited to gram positive microorganisms, especially methicillin resistant <u>Staphylococus aureus</u> (MRSA), methicillin resistant <u>Staphylococus epidermidis</u> (MRSE), and methicillin resistant coagulase negative <u>Staphylococci</u> (MRCNS). The antibacterial compounds of the present invention thus comprise an important contribution to therapy of these difficult to control pathogens. Moreover, there is an increasing need for agents effective against such pathogens (MRSA/MRCNS) which are at the same time safe, i.e., free from undesirable toxic side effects. No β-lactam antibacterial has yet been found which meets these requirements. And, the current agent of choice, vancomycin, a glycopeptide antibacterial, is experiencing an ever increasing amount of resistance in the MRSA/MRCNS pathogens.

More recently, carbapenem antibacterial agents have been described which have a 2-substituent which is an aryl moiety optionally substituted by, e.g., aminomethyl and substituted aminomethyl. These agents are described in U.S. Patent Nos. 4,543,257 and 4,260,627 and have the formula:

50

55

45

$$R^1$$
 R^2
 H or CH_3
 CH_2NH_2

However, there is no description or suggestion of a phenanthridonyl 2-substituent such as characterizes the compounds of the present invention, nor is there any suggestion of the suprisingly better anti-MRSA/MRCNS activity of the compounds of the present invention.

US-4,978,659 describes a particular class of compounds of the formula:

but this limited teaching in no way suggests the totally different compounds of the present invention, nor their surprisingly better anti-MRSA/MRCNS activity.

SUMMARY OF INVENTION

5

10

15

20

25

30

35

40

45

50

55

The present invention provides novel carbapenem compounds of the formula:

wherein:

R is H or CH₃;

R¹ and R² are independently H, CH₃-, CH₃CH₂-, (CH₃)₂CH-, HOCH₂-, CH₃CH(OH)-, (CH₃)₂C(OH)-, FCH₂CH(OH)-, F₂CHCH(OH)-, F₃CCH(OH)-, CH₃CH(F)-, CH₃CF₂-, or (CH₃)₂C(F)-;

Xh is O or S;

R^a are independently selected from the group consisting of hydrogen and the radicals set out below, provided that not more than four R^a and R^b radicals are other than hydrogen:

- a) a trifluoromethyl group: -CF3;
- b) a halogen atom: -Br, -Cl, -F, or -I;
- c) C₁-C₄ alkoxy radical: -OC₁₋₄ alkyl, wherein the alkyl is optionally mono-substituted by Rq, where

R^q is a member selected from the group consisting of -OH, -OCH₃, -CN, -C(O)NH₂, -OC(O)NH₂, CHO, -OC(O)N(CH₃)₂, -SO₂N(CH₃)₂, -SO₂CH₃, -SO₂CH₃, -F, -CF₃, -COOM^a (where M^a is hydrogen, alkali metal, methyl or phenyl), tetrazolyl (where the point of attachment is the carbon atom of the tetrazole ring and one of the nitrogen atoms is mono-substituted by M^a as defined above) and -SO₃M^b (where M^b is hydrogen or an alkali metal);

- d) a hydroxy group: -OH;
- e) a carbonyloxy radical:
 - -O(C=O)Rs, where

Rº is C₁₋₄ alkyl or phenyl, each of which is optionally mono-substituted by Rq as defined above;

f) a carbamoyloxy radical:

-O(C=O)N(RY)Rz where

 R^y and R^z are independently H, C_{1-4} alkyl (optionally mono-substituted by R^q as defined above), together a 3- to 5-membered alkylidene radical to form a ring (optionally substituted with Rq as defined above) or together a 2- to 4-membered alkylidene radical, interrupted by -O-, -S-, -S(O)- or -S(O)₂- to form a ring (where the ring is optionally mono-substituted with Rq as defined above);

- g) a sulfur radical: $-S(O)_n-R^s$ where n=0-2, and R^s is defined above;
- h) a sulfamoyl group: -SO₂N(R^y)R^z where R^y and R^z are as defined above;
- i) azido: N₃
- j) a formamido group: -N(Rt)(C=O)H,

where

5

10

15

20

25

30

35

 R^t is is H or C_{1-4} alkyl, and the alkyl thereof is optionally mono-substituted by R^q as defined above; k) a $(C_1-C_4$ alkyl)carbonylamino radical: $-N(R^t)(C=O)C_{1-4}$ alkyl, where R^t is as defined above, and the alkyl group is also optionally mono-substituted by Rq as defined above;

- I) a $(C_1-C_4 \text{ alkoxy})$ carbonylamino radical: $-N(R^4)(C=0)OC_{1-4} \text{ alkyl}$, where R^4 is as defined above, and the alkyl group is also optionally mono-substituted by R^4 as defined above;
- m) a ureido group: -N(Rt)(C=O)N(RY)Rz where Rt, Ry and Rz are as defined above;
- n) a sulfonamido group: -N(Rt)SO₂Rs, where Rs and Rt are as defined above;
- o) a cyano group: -CN;
- p) a formyl or acetalized formyl radical: -(C=O)H or -CH(OCH₃)₂;
- q) $(C_1-C_4 \text{ alkyl})$ carbonyl radical wherein the carbonyl is acetalized: $-C(OCH_3)_2C_{1-4}$ alkyl, where the alkyl is optionally mono-substituted by Rq as defined above;
- r) carbonyl radical: -(C=O)Rs, where Rs is as defined above;
- s) a hydroximinomethyl radical in which the oxygen or carbon atom is optionally substituted by a C₁-C₄ alkyl group: -(C=NOR^z)R^y where R^y and R^z are as defined above, except they may not be joined together to form a ring;
- t) a (C₁-C₄ alkoxy)carbonyl radical: -(C=O)OC₁₋₄ alkyl, where the alkyl is optionally mono-substituted by Rq as defined above;
- u) a carbamoyl radical: -(C=O)N(Ry)Rz where Ry and Rz are as defined above;
- v) an N-hydroxycarbamoyl or N(C₁-C₄ alkoxy)carbamoyl radical in which the nitrogen atom may be additionally substituted by a C₁-C₄ alkyl group: -(C=O)-N(OR^y)R^z where R^y and R^z are as defined above, except they may not be joined together to form a ring;
- w) a thiocarbamoyl group: -(C=S)N(Ry)(Rz) where Ry and Rz are as defined above;
- x) carboxyl: -COOMb, where Mb is as defined above;
- y) thiocyanate: -SCN;
 - z) trifluoromethylthio: -SCF3;
 - aa) tetrazolyl, where the point of attachment is the carbon atom of the tetrazole ring and one of the nitrogen atoms is mono-substituted by hydrogen, an alkali metal or a C₁-C₄ alkyl optionally substituted by R^q as defined above:
 - ab) an anionic function selected from the group consisting of:
 - phosphono [P=O(OM b)₂]; alkylphosphono {P=O(OM b)-[O(C₁-C₄ alkyl)]}; alkylphosphinyl [P=O(OM b)-(C₁-C₄alkyl)]; phosphoramido [P=O(OM b)N(R y)R z and P=O(OM b)NHR x]; sulfino (SO₂M b); sulfo (SO₃M b); acylsulfonamides selected from the structures CONM b SO₂R x , CONM b SO₂N(R y)R z , SO₂NM b CON(R y)R z ; and SO₂NM b CN, where

R^x is phenyl or heteroaryl, where heteroaryl is a monocyclic aromatic hydrocarbon group having 5 or 6 ring atoms, in which a carbon atom is the point of attachment, in which one of the carbon atoms has been replaced by a nitrogen atom, in which one additional carbon atom is optionally replaced by a heteroatom selected from O or S, and in which from 1 to 2 additional carbon atoms are optionally replaced by a nitrogen heteroatom, and where the phenyl and heteroaryl are optionally mono-substituted by Rq, as defined above; Mb is as defined above; and Ry and Rz are as defined above;

- ac) C_6 - C_7 cycloalkyl group in which one of the carbon atoms in the ring is replaced by a heteroatom selected from O, S, NH or N(C_1 - C_4 alkyl) and in which one additional carbon atom may be replaced by NH or N(C_1 - C_4 alkyl), and in which at least one carbon atom adjacent to each nitrogen heteroatom has both of its attached hydrogen atoms replaced by one oxygen thus forming a carbonyl moiety and there are one or two carbonyl moieties present in the ring;
- ad) C₂-C₄ alkenyl radical, optionally monosubstituted by one of the substituents a) to ac) above and phenyl which is optionally substituted by Rq as defined above;

4

45

40

50

--

ae) C_2 - C_4 alkynyl radical, optionally monosubstituted by one of the substituents a) to ac) above; af) C_1 - C_4 alkyl radical;

ag) C₁-C₄ alkyl mono-substituted by one of the substituents a) - ac) above;

ah) a 2-oxazolidinonyl moiety in which the point of attachment is the nitrogen atom of the oxazolidinone ring, the ring oxygen atom is optionally replaced by a heteroatom selected from -S- and NRt (where Rt is as defined above) and one of the saturated carbon atoms of the oxazolidinone ring is optionally monosubstituted by one of the substituents a) to ag) above;

 R^b is -H, -OH, -CF₃, -(C=O)R^a, -S(O)_nR^a where n = 0-2, -SO₂NR^yR^z, -(C=O)OC₁₋₄alkyl, -(C=O)N(R^y)R^z, -(C=O)N(OR^y)R^z, -(C=S)N(R^y)R^z, -NH₂, C₁₋₄ alkoxy optionally mono-substituted with R^q, R^x as defined above, C₁₋₄ alkyl optionally mono-substituted on an alpha carbon or higher by one of the substituents a)-ae) as defined for R^a;

M is selected from:

i) hydrogen;

5

10

15

20

25

30

35

40

45

50

55

- ii) a pharmaceutically acceptable esterifying group or removable carboxyl protecting group; or
- iii) an alkali metal or other pharmaceutically acceptable cation.

The present invention also provides novel carbapenem Intermediates of the formula:

wherein:

R is H or CH₃;

Xh is O or S;

R^a and R^b are defined above, with the proviso that R^a additionally includes OP' where P' is defined below, that M^a and M^b of R^a both include M and that the Type d) hydroxy substituent and R^b additionally may be protected hydroxy, OP';

P' is a removable protecting group for hydroxy; and

M is a removable protecting group for carboxy.

Preferred intermediates have the formula:

OH
$$1 \longrightarrow 4$$
 Or $1 \longrightarrow 4$ Or $1 \longrightarrow 4$ Or $1 \longrightarrow 4$ Or $1 \longrightarrow 1$ $1 \longrightarrow 4$ Or $1 \longrightarrow 1$ 1

wherein

5

10

15

20

25

30

35

40

45

50

55

R is H or CH₃;

P' is a removable protecting group for hydroxy;

M is a removable protecting group for carboxy;

 R^a is selected from the group consisting of H, OP', Cl, Br, I, SCH₃, CN, CHO, SOCH₃, SO₂CH₃, CO₂M, CH₂OP' or CONH₂;

 R^b is H, OP', CH2SCH3, CH2CN, CH2CHO, CH2SOCH3, CH2SO2CH3, CH2CO2M , CH2OP', CH2CH2OP' or CH2CONH2; and

with the proviso that the -CH2-OH substituent is in the 3- or 4-position of the phenanthridone.

DETAILED DESCRIPTION OF THE INVENTION

The manufacture of compounds of Formula I may be carried out in a three-stage synthesis scheme followed by a final step which allows for the removal of any protecting groups. The objective of the first synthetic stage is to produce a base phenanthridonyl compound which may be converted to the two-position substituent of the carbapenem of Formula I. The objective of the second synthetic stage is to attach the base phenanthridonyl to the carbapenem. Finally, the objective of the third synthetic stage is to substitute the phenanthridonyl with the desired R^a and R^b. This third synthetic stage may be performed after the first synthetic stage or during or after the second synthetic stage according to the nature of the various R^a and R^b.

Flow Sheets A1 and A2 demonstrate a suggested first stage synthesis. Flow Sheets B and C demonstrate two alternative second stage syntheses. The third synthesis varies according to the selected Ra and Rb.

The suggested first synthesis herein, Flow Sheets A1 and A2, can be generally described as a directed ortho metalation reaction to prepare starting materials required for a Suzuki cross-coupling reaction and finally ring closure to produce the desired phenanthridone platform. This suggested first synthesis is utilized to produce similar phenanthridone compounds by Snieckus, V., Chem. Rev. 1990, 90, 879-933; Fu. J.M. and Snieckus, V., Tet. Lett. 1990, 31, p. 1665; Siddiqui, M.A., et al., Tetrahedron Letters, Vol. 29, No. 43, 5463-5466 (1988); Mills, R.J., et al., J. Org. Chem., 1989, 54, 4372-4385; Mills, R.J., J. Org. Chem., 1989, 54, 4386-4390; Fu, J.M., et al., Tetrahedron Letters, Vol. 31, No. 12, pp 1665-1668 (1990); and Suzuki, A., et al., N., Synthetic Communications, 11(7), 513-519 (1981).

Referring to Flow Sheet A1 compound A1-1 is substituted with a directed metalation group (DMG) by methods according to Snieckus, et al., above. The function of the directed metalation group (DMG) is to orchestrate adornment of the aromatic ring. It is highly desirable of the DMG that it also provide a precursor substituent for the necessary carboxy function or amino function forming the amide linkage of the object phenanthridone. Suitable DMG to serve as a carboxyl precursor are secondary and tertiary amides and oxazolino groups. Specifically, these precursors may be, for example, -CONEt₂, -CONHMe, 4,4-dimethyl-2-oxazolinyl, and the like. In the instance of compound A1-1, DMG is of the carboxyl precursor type. Suitable DMG to serve as an amino precursor are protected primary and secondary amines. Specifically, these precursors may be -NH-t-Boc, -NH-pivaloyl, phenylsulfonamido, and the like. Compound A2-1 as described below is by way of example, of the

amino precursor type.

5

10

15

20

25

30

As the first step of flow Sheet A1, the bromine of compound A1-1 is protected through silylation via halogen metal exchange in the presence of TMS chloride at between about -100 to -50°C to produce any silane A1-2. Incorporation of an ortho substitutent Ra or its appropriate precursor may be made on compound A1-2 in accordance with standard directed metalation procedures described by Snieckus, et al., above. The resultant substituted anyl silane A1-3 is iteratively ortho metalated and treated with an appropriate boron containing electrophile to obtain the requisite aryl boronic acid A1-4. Suitable boron containing electrophiles include lower alkyl borates, such as trimethyl borate and tri-i-propyl borate. Alternatively, and not shown in the Flow Sheets, the ortho metalated compound may be treated with electrophiles such as trialkyltin halides providing the corresponding aryl stannanes which in turn are also useful intermediates in the production of biphenyls as reported by Stille, et al., J. Am. Chem. Soc., 1987, Vol. 109, page 5478-5486. Preparation of biphenyl intermediate A1-6 is accomplished in the Flow Sheets utilizing the Suzuki cross-coupling procedure and the appropriately adorned aryl compounds A1-4 and A1-5. The Suzuki coupling can be generally described as the reaction of an aryl boronic acid with an aryl halide or halide equivalent employing tetrakis(triphenylphosphine) palladium(0) catalyst in the presence of an aqueous solution of sodium carbonate in the solvents toluene/ethanol. The resulting biphenyl compound is isolated by standard methods. Compound A1-5 may itself be produced by standard methods to obtain the halogen substitution, X, the amino moiety -NR'2 and the desired substituents Re or their precursors. The preferred halogen X is bromine, iodine or the halogen equivalent trifluoromethanesulfonyloxy. The preferred amino moiety, -NR'2, may be any of -NO2, -N3, protected amine or amine, substitued with Rb or its precursor. Biphenyl compound A1-6 is subsequently transformed into the halogenated biphenyl A1-7 via ipso substitution of the trimethylsilyl moiety in methylene chloride or other appropriate solvent employing iodine monochloride. Any number of halogenating reagents are suitable such IBr, NBS, I2, Br2, etc., which must be compatible with the already existing functionalities. Finally, the object compound, B1-1, is obtained via transamidizaton of the amino moiety with the latent carboxy precursor in the form of DMG.

Referring to Flow Sheet A2, the regio-isomeric phenanthridone <u>B1-2</u>, may be produced in a manner analogous to that of phenanthridone <u>B1-1</u>. Compound <u>A2-1</u> is dissimilar to compound <u>A1-4</u> in that DMG of compound <u>A2-1</u> is of the amino precursor type. Compound <u>A2-1</u> is reacted with the appropriately adorned compound <u>A2-2</u> to prepare biphenyl intermediate <u>A2-3</u> utilizing the Suzuki cross-coupling procedure. As above biphenyl compound <u>A2-3</u> is transformed into halogenated biphenyl via ipso substitution <u>A2-4</u> and finally into object phenanthridone B1-2 via transamidization.

Presented with Flow Sheet A1 and A2, the skilled artisan will appreciate certain modification as possibly beneficial. In one modification, the ipso substitution of silicon to halogen might be performed after cyclization to form the object phenanthridone. In another modification, compounds A1-5 and A2-2 may be adomed utilizing a DMG substitutent replacing -NR'2 and -CO2Me respectively. As above, the DMG substituent directs adornment of Ra or precursors thereof in manufacture. As above, the DMG should be of the carboxyl precursor type or amino precursor type as appropriate. In yet another modification, the oxocarbonyl of intermediate B1-1 or B1-2 can be converted to a thiocarbonyl to produce Xh as S, using Lawesson type reagents or by treating with phosphorus pentasulfide in an appropriate solvent. Another modification to produce Xh as S is to employ a carbon based DMG wherein the oxocarbonyl moiety is replaced by thiocarbonyl. A suitable carbon based DMG containing thiocarbonyl is -(C=S)NH-phenyl. Although compounds in which Xh is S are suitable, those in which Xh is O are preferred.

Although the foregoing method to produce phenanthridones <u>B1-1</u> or <u>B1-2</u> is preferred herein, there are of course other appropriate methods. In one method, phenanthridone, produced by procedures known in the art, is brominated at the 2-position as taught by Mosby, W.L., J. Chem. Soc., Vol. 76, pp 936 (1954). The 2-bromophenanthridone may also be obtained by the procedure of Walls, L.P., J. Chem. Soc., pp. 1406 (1935). Preparation of N-substituted, 2-bromo-phenanthridones may be prepared as taught by Cookson, R.F., et al., J. Heterocycl. Chem., (1979) 9, 475. Substituted phenanthridones are prepared by Beckmann rearrangement of substituted 9-oxofluorene oximes by the method of Pan, H.-L., and Fletcher, T.L., J. Med. Chem., Vol. 12, pp. 822 (1969). Substituted phenanthridones are prepared by a Schmidt rearrangement of substituted 9-oxofluorene by the method of Pan, H.-L., and Fletcher, T.L., J. Heterocycl. Chem., Vol. 7, pp 313 (1970). Substituted phenanthridones are discussed generally by Keene, B.R.T. and Tissington, P., Adv. Heterocyclic Chem., Vol. 13, pp 315 (1971).

FLOW SHEET A1

$$R^a$$
 $B(OH)_2$
 NR'_2
 $A1-4$
 $A1-5$

FLOW SHEET Al cont'd

A1-6

$$X \xrightarrow{NR_2} DMG$$

$$R^a \rightarrow X$$

$$7 \xrightarrow{R^a \rightarrow NR^b} NR^b$$

$$B1-1$$

FLOW SHEET A2

5

$$R^{a}$$
 $B(OH)_{2}$
 $A2-1$
 $A2-2$

15

 R^{a}
 $A2-1$
 $A2-2$

16

 R^{a}
 $A2-3$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$
 $A2-4$

40

55

The object compound of Flows Sheet A1 and A2, phenanthridone $\underline{B1-1}$ and $\underline{B1-2}$, forms the nucleus of the 2-position substitution of the carbapenem compounds taught herein. As such it is shown to be Ra and Rb substituted. However, it is immediately clear to those skilled in the art that certain Ra and Rb listed above, if substituted on compounds $\underline{A1-1}$, $\underline{A1-5}$, $\underline{A2-1}$ or $\underline{A2-2}$ would not survive or permit the synthesis to compounds $\underline{B1-1}$ or $\underline{B1-2}$. Thus, where a certain Ra or Rb is desired on compound $\underline{B1-1}$ or $\underline{B1-2}$ and this Ra or Rb is not compatible with the synthesis scheme to produce, $\underline{B1-1}$ or $\underline{B1-2}$ then a compatible precursor substituent may be employed through the synthesis.

The identity of the precursor substituent employed is not crucial so long as it does not interfere with the synthesis to <u>B1-1</u> or <u>B1-2</u> and so long as it may be thereafter converted to more desireable substituent. Preferred precursor substituents for R^a are methyl, hydroxymethyl and protected hydroxymethyl. Preferred precursor substituents for R^b are 2-hydroxyethyl or protected 2-hydroxyethyl.

Thus, as to the R^a substituent on compound <u>B1-1</u> or <u>B1-2</u>, it maybe an R^a with or without protecting groups stable to the conditions of producing compound <u>B1-1</u> or <u>B1-2</u>, and stable to the conditions of subsequently adding <u>B1-1</u> or <u>B1-2</u>, to the carbapenem. Alternatively, it may be a stable precursor substituent which is stable to the conditions of making <u>B1-1</u> or <u>B1-2</u>, which is optionally stable to the conditions of adding <u>B1-1</u> or <u>B1-2</u>, to the carbapenem and which is convertible to a desired R^a or to another precursor substituent.

As stated above, the second stage synthesis is to attach the base phenanthridone <u>B1-1</u> or <u>B1-2</u> to the 2-position of the carbapenem. With stable R^a and R^b or suitable precursor substituents therefor, phenanthridone <u>B1-1</u> or <u>B1-2</u> may be added to azetidin-2-one <u>B2</u> in a Grignard reaction as shown in Flow Sheet B. The Grignard

reaction requires that B1-1, for example, be converted to a Grignard reagent by reaction with magnesium and 1,2-dibromoethane in THF from 20°C to 60°C and subsequently contacting B1-1 as a Grignard reagent with B2 in THF at from -70°C to about 20°C to produce azetidin-2-one B3. Alternatively, B1-1 may be reacted with t-butyllithium, n-butyllithium, or the like in THF at from -78° to -50°C followed by the addition of magnesium bromide to produce the same Grignard reagent. R1 of B3 is in practice pyrid-2-yl but may clearly be a variety of substituents including aromatic and heteroaromatic substituents. Further RI might be for example phenyl, 2pyrimidinyl or 2-thiazolyl.

Azetidin-2-one B3 is an intermediate that may be ring closed to a carbapenem. It is on this intermediate that Ra, Rb or precursor substituents may be modified where such modification is incompatible with the carbapenem nucleus.

10

15

20

25

30

35

40

45

50

55

Compound B3 may be ring closed to carbapenem B4 by refluxing in xylene with a trace of p-hydroquinone for about 1 to 2 hours in an inert atmosphere. It is on this intermediate that final elaboration of Ra from a precursor substituent, e.g. hydroxymethyl, may be accomplished. Removal of the carboxyl and hydroxyl protecting groups then provides the final compound of Formula I. Such final elaboration and deprotection is described in further detail below.

FLOW SHEET B

Flow Sheet C shows an alternative preferred second stage synthesis, i.e. attachment of the base phenanthridone such as <u>B1-1</u> to the 2-position of the carbapenem. This synthesis involves a palladium catalyzed cross-coupling reaction between a carbapenem triflate and a suitably substituted arylstannane, a process which is described in U.S. Pat. Appl. 485,096 filed February 26, 1990, corresponding to EP-A-0444889. In order to apply this synthesis, it is first necessary to modify phenanthridone <u>B1-1</u> to the trimethylstannyl-phenanthridone <u>C3</u>. This is accomplished by reacting <u>B1-1</u> with t-butyllithium in THF at from -78° to -50°C followed by the addition of trimethyltin chloride. Alternatively, phenanthridone <u>B1-1</u> may be reacted with hexamethylditin in the presence of a palladium(0) catalyst such as tetrakis(triphenylphosphine)palladium in an inert solvent such as toluene at from 25° to 110°C for from 0.25-24 hours to provide the same stannane <u>C3</u>. Referring to Flow Sheet C, the 2-oxocarbapenam <u>C1</u> is reacted with a suitable trifluoromethanesulfonyl source, such as trifluoromethanesulfonic

B4

anhydride, trifluoromethanesulfonyl chloride and the like, in the presence of an organic nitrogen base, such as triethylamine, diisopropylamine and the like, in polar aprotic solvent, such as tetrahydrofuran or methylene chloride. Optionally, an organic nitrogen base, such as triethylamine and the like, is then added to the reaction solution followed immediately by a silylating agent, such as trimethylsilyl trifluoromethanesulfonate to provide intermediate C2. An aprotic polar coordinating solvent, such as DMF, 1-methyl-2-pyrrolidinone and the like, is added. This is followed by the addition of a palladium compound, such as tris(dibenzylideneacetone)dipalladium-chloroform, palladium acetate and the like, optionally, a suitably substituted phenylphosphine, such as tris(4-methoxyphenyl)phosphine, tris(2,4,6- trimethoxyphenyl)phosphine and the like, and the stannane C3. A halide, source such as lithium chloride, zinc chloride or ammonium chlorides and the like, is added and the reaction solution is allowed to warm and is stirred at a suitable temperature, such as 0° to 50°C for from a few minutes to 48 hours. The carbapenem C4 is obtained by conventional isolation/purification methodology known in the art.

Generally speaking, the milder conditions of the synthesis shown in Flow Sheet C allow for a wider range of functional groups Ra or Rb to be present than the synthesis illustrated in Flow Sheet B. However, in certain cases it is advantageous for the Ra or Rb substituent(s) of the stannane C3 to be introduced in a protected or precursory form. Final elaboration of Ra or Rb from a precursor substituent, e.g. hydroxymethyl, may be accomplished on carbapenem intermediate C4. Removal of hydroxyl and carboxyl protecting groups then provides the final compound of Formula I. Such final elaboration and deprotection is described in further detail below

FLOW SHEET C

5 (R^a)₄ 10 CO₂-p-NB C1 O 15 B1-1Rª. Me₃SiO 20 н н Me₃Sn OSO₂CF₃ 25 Ö C2 **C3** 30 Me₃SiO N-Rb 35 0 CO2-p-NB C4 40

$$p-NB = -CH_2 - NO_2$$

Azetidin-2-one <u>B2</u>, a pyridyl-thioester, is a well known compound in the production of carbapenems. Diverse synthetic schemes useful to make <u>B2</u> may be imagined by the skilled artisan. Particularly useful to the instant invention is a synthetic scheme set out further in Flow Sheet D below in which the symbol R is as defined above. The steps for preparing intermediate <u>B2</u> are analogous to the procedures described, for example, in U.S. Pat. Nos. 4,260,627 and 4,543,257; L.D. Cama et al. <u>Tetrahedron</u>, 39, 2531 (1983); R.N. Guthikonda et al. <u>J. Med. Chem.</u>, 30, 871 (1987) hereby incorporated by reference.

55

FLOW SHEET D

5

10

15

20

25

30

35

40

45

50

55

t-BuMe₂S10

t-BuMe₂S10 CO2H

t-BuMe₂S10

t-BuMe₂S10

a. NaOH/MeOH

b. carbonyl diimidazole/

c. 1. OHCCO₂ ii. socl₂ iii. Ph₃P

d. 6N HCl/MeOH

FLOW SHEET D cont'd

The steps for preparing the 2-oxocarbapenam intermediate <u>C1</u> are well known in the art and are explained in ample detail by D.G. Melillo et al., <u>Tetrahedron Letters</u>, 21, 2783 (1980), T. Salzmann et al., <u>J. Am. Chem. Soc.</u>, 102, 6161 (1980), and L. M. Fuentes, I. Shinkai, and T. N. Salzmann, <u>J. Am. Chem. Soc.</u>, 108, 4675 (1986). The syntheses are also disclosed in U.S. Pat. No. 4,269,772, U.S. Pat. No. 4,350,631, U.S. Pat. No. 4,383,946 and U.S. Pat. No. 4,414,155 all assigned to Merck and Company, Inc. and hereby incorporated by reference.

50

55

The general synthesis description depicted above in the Flow Sheets shows a protected 1-hydroxyethyl substitution on the 6-position of the carbapenem. After final deprotection, a 1-hydroxyethyl substituent is obtained, which is preferred in most cases. However, it has been been found that with certain 2-side-chain selections, the ultimate balance of favorable properties in the overall molecule may be enhanced by selection of

the 6-(1-fluoroethyl) moiety Instead. Preparation of 6-fluoroalkyl compounds within the scope of the present invention is carried out in a straightforward manner using techniques well known in the art of preparing carbapenem antibacterial compounds. See, e.g., J. G. deVries et al., <u>Heterocycles</u>, 23 (8), 1915 (1985); BE 900 718 A (Sandoz) and Japanese Patent Pub. No. 6-0163-882-A (Sanruku Ocean).

In preferred compounds of Formula I, R^1 is hydrogen. More preferably, R^1 is hydrogen and R^2 is (R)- $CH_3CH(OH)$ - or (R)- $CH_3CH(F)$ -. In the most preferred case, R^1 is hydrogen and R^2 Is (R)- $CH_3CH(OH)$ -. While R=H is usually preferred, there are instances in which $R=CH_3$ may provide improved chemical stability, water solubility, or pharmacokinetic behavior. The substituent $R=CH_3$ may be of either configuration, i.e., the α or β -stereoisomer. Additionally, in preferred compounds, at least R^a in the 3- or 7-position of the phenanthridone is other than hydrogen. In the most preferred compounds, in total, two R^a and R^b substituents is other than hydrogen.

Suitable Ra and Rb are described above in the text associated with Formula I. Among preferred Ra are C₁₋₄ alkyl mono-substituted with hydroxy, such as, hydroxymethyl; formyl; alkoxycarbonyl, such as, -COOCH₃; carbamoyl, such as, -CONH₂; hydroxoximinomethyl, such as, -CH=NOH or cyano. Among preferred Rb are hydroxymethyl, hydroxyethyl, -CH₂CHO, -CH₂COOCH₃, -CH₂CONH₂, -CH₂CH=NOH and -CH₂CN.

In regard to this preferred substitution, a hydroxyethyl group may be obtained for Rb of the phenanthridone as shown in Flow Sheets A1 and A2. In Flow Sheet A1, for instance, compound A1-5 may be substituted with -NH(CH $_2$ CH $_2$ OH) or its appropriately protected equivalent where an appropriate protecting group is for example t-butyldiphenylsilyl. Alternatively, for instance, in Flow Sheet A2, the DMG group might be -NH('BOC) which is removed under acid conditions from compound A2-4 which subsequently cyclizes to compound B1-2 where Rb is hydrogen. The nitrogen moiety of compound B1-2 may be alkylated using sodium hydride in appropriate solvent with 2-bromo-t-butyldiphenylsilylethanol to obtain Rb as protected hydroxyethyl. A hydroxymethyl may be obtained in any of positions 7, 1, 2, 3 or 4 for Re as follows. As one method, hydroxymethyl may be substituted on any of rings A1-4 and A1-5 or A2-1 and A2-2 by standard procedures and appropriately protected. Alternatively, methyl, as a precursor substituent, is substituted on starting materials A1-4 and A1-5 or A2-1 and A2-2 in the appropriate positions by well know means and the starting materials reacted to a corresponding methylsubstituted B1-1 or B1-2 according the Flow Sheet A. Subsequently, the methyl substituent(s) of methyl-substituted B1-1 or B1-2 may be oxidized to bromomethyl with N-bromosuccinimide. This oxidation of the precursor substituent, methyl, is advantageously performed prior to substituting the phenanthridone on the azetidin-2one as the oxidizing conditions are incompatible with either the azetidin-2-one or the subsequent carbapenem. In the case of the bromomethyl substituent, conversion to an hydroxymethyl substituted B1-1 or B1-2 may be accomplished by a three-step sequence. Reaction of the bromomethyl compound with potassium acetate in DMF at 80°C gives the corresponding acetoxymethyl compound. Removal of the acetate group, e.g. by hydrolysis with methanolic sodium hydroxide or by reduction with diisobutylaluminium hydride in THF, gives the hydroxymethyl substituted compound B1-1 or B1-2. Further elaboration of of hydroxymethyl substituted B1-1 or B1-2 according to Flow Sheet B produces a corresponding B3 and B4.

20

25

40

45

55

The preferred formyl substitution on the phenanthridone may be obtained on <u>B4</u> from the hydromethyl substitution, in the case of R^a, or hydroxyethyl substitution in the case of R^b, by a Swern oxidation. For example, <u>B4</u> is oxidized in methylene chloride at from -70°C to room temperature employing oxalyl chloride-dimethyl sulfoxide followed by triethylamine as the active agent. Obviously, the position of the resultant formyl substitution will depend upon the position of the hydroxymethyl or hydroxyethyl substitution <u>B4</u>.

The preferred -CH=NOH substitution on the phenanthridone may be conveniently obtained from the formyl substitution just described. This is accomplished simply by exposing the formyl substituted compound to hydroxylamine in an appropriate solvent at room temperature.

The preferred cyano substitution on the phenanthridone may be obtained from the -CH=NOH substitution just described. The -CH=NOH substituted compound is dehydrated with triflic anhydride and triethylamine in a solvent at -70°C.

The preferred -COOCH₃ substitution on the phenanthridone may be obtained from the hydromethyl or hydroxyethyl substituted B3 described above. For example, compound B3 is oxidized with Jones reagent to convert the hydroxymethyl substituent to the carboxylic acid group. The oxidation with Jones reagent may be incompatible with the carbapenem and thus is optimally performed before ring closure. Prior to ring closure, the by acid group is esterified sequentially carboxvlic contacting with 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride, 1-hydroxybenzotriazole, and methanol in an organic solvent at room temperature. Substituted esters may of course be obtained by replacing methanol with the corresponding substituted alcohol. Alternatively, a methyl substituted B1-1 or B1-2, as described above, may be oxidized with chromium trioxide or "Bu₄NMnO₄ to form carboxy.

The preferred carbamoyl substitution on the phenanthridone, may be obtained from B3 by oxidizing the

hydroxymethyl or hydroxyethyl group with Jones reagent to the corresponding carboxylic acid group as described above. This carboxylic acid substituent is converted to the carboxamide group, -CONH₂, by sequentially contacting with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, 1-hydroxybenzotriazole, and ammonia in an organic solvent at room temperature. Substituted amides may of course be obtained by replacing ammonia with the corresponding substituted amine.

Compounds substituted with the preferred R^a or R^b just described may also be obtained by employing the synthesis shown in Flow Sheet C. In this case, the synthetic transformations just described may be carried-out on intermediate $\underline{C3}$ prior to attachment of the phenanthridone side chain to the carbapenem or on $\underline{C4}$ after such attachment.

In the preparation methods described above, the carboxyl group at the 3-position and the hydroxyl group at the 8-position of the carbapenem remain blocked by protecting groups until the penultimate product is prepared. Suitable hydroxyl protecting groups, P', are silyl groups such as trialkylsilyl, aryl(alkyl)alkoxysilyl, alkoxydiarylsilyl and diarylalkylsilyl and carbonate groups such as alkyloxycarbonyl, substituted alkyloxycarbonyl, benzyloxycarbonyl, substituted benzyloxycarbonyl, allyloxycarbonyl and substituted allyloxycarbonyl. The preferred protecting groups, in addition to or including those shown in the schemes, are t-butylmethoxyphenylsilyl, t-butoxydiphenylsilyl, trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, o-nitrobenzyloxycarbonyl, p-nitrobenzyloxycarbonyl, benzyloxycarbonyl, t-butyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl and allyloxycarbonyl. Suitable carboxyl protecting groups, M, in addition to or including those shown in the schemes are described herein below.

Deblocking may be carried out in a conventional manner. For compounds prepared according to Flow Sheet B, deprotection may be carried out in a palladium catalyzed rection in a solution containing potassium 2-ethylhexanoate and 2-ethylhexanoic acid or, alternatively, another suitable nucleophile such as pyrrolidine. Alternatively, for those prepared via Flow Sheet C, deprotection is conducted sequentially. Thus, compound C4 is exposed initially to aqueous acidic conditions, acetic acid or dilute HCl or the like, in an organic solvent such as tetrahydrofuran at 0°C to ambient temperature for from a few minutes to several hours. The resulting desilylated carbapenem may be isolated by conventional techniques, but is more conveniently taken into the final deprotection process. Thus, addition of an inorganic base such as NaHCO₃ or KHCO₃ and 10% Pd/C followed by hydrogenation provides for the removal of the p-nitrobenzyl protecting group and the formation of the final compound of Formula I.

With reference to the above definitions, "alkyl" means a straight or branched chain aliphatic hydrocarbon radical.

The term "heteroatom" means N, S, or O, selected on an independent basis.

The term "heteroaryl" has been defined herein, in relation to the R^x group, to have a specific and limited meaning, being only monocyclic. It is required that the monocyclic heteroaryl have at least one nitrogen atom, and optionally at most only one additional oxygen or sulfur heteroatom may be present. Heteroaryls of this type are pyrrole and pyridine (1 N); and oxazole, thiazole or oxazine (1 N + 1 O or 1 S). While additional nitrogen atoms may be present together with the first nitrogen and oxygen or sulfur, giving, e.g., a thiadiazole (2N's + 1S), the preferred heteroaryls are those where <u>only</u> nitrogen heteroatoms are present when there is more than one. Typical of these are pyrazole, imidazole, pyrimidine and pyrazine (2 N's) and triazine (3 N's).

The heteroaryl group of R^x is always optionally mono-substituted by R^q, defined above, and substitution can be on one of the carbon atoms or one of the heteroatoms, although in the latter case certain substitutent choices may not be appropriate.

Listed in Tables I and II are specific compounds of the instant invention:

45

10

20

25

30

35

40

50

TABLE I

The second secon

F or OH, R is H or Me and A is:

25	#	R ^b	<u>R</u> a	Ra
				position
	1	-H	-och ₃	7
30	2	-H	-OCH ₂ CO ₂ CH ₃	7
	3	-H	-och ₂ ch ₂ oh	4
	4	-H	-CF ₃	7
35	5	-H	-F	7,3,4
	6	-H	-C1	7,4
	7	-H	-Br	7,4
	8	-H	- I	7
40	9	-H	-OH	7,4
	10	-H	-ососн ₃	7
	11	-H	-ocone ₂	7
45	12	-H	-sch ₃	7
	13	-H	-soch ₃	7
	14	-H	-so ₂ ch ₃	7

50

	<u>#</u>	R ^b	<u>R</u> a	Ra
				position
5	15	-H	-SCH ₂ CH ₂ OH	7
	16	-H	-soch ₂ ch ₂ oh	4
	17	-H	-SCH ₂ CONH ₂	7
10	18	-H	-SO ₂ NH ₂	7
,0	19	-H	$-so_2N(CH_3)_2$	3,4
	20	-H	-NHCHO	7,4
	21	-H	-NHCOCH ₃	7
15	22	-H	-NHCO ₂ CH ₃	7
	23	-H	-NHSO ₂ CH ₃	7
	24	-H	-CN	7,3
20	25	-H	-СНО	7,4
	26	-H	-сосн ₃	7
	27	-H	-сосн ₂ он	4
	28	-H	-CH=NOH	4
25	29	-H	-ch=noch3	7
	30	-H	-CH=NOCH ₂ CO ₂ CH ₃	4
	31	-H	-CH=NOCMe2CO2CH3	3
30	32	-H	-CH=NOCMe2CONH2	7
	33	-H	-co ₂ ch ₂ ch ₂ oh	7
	34	-H	-cone ₂	7,4
05	35	-H	-conece3	4
35	36	-H	-CON(CH ₃) ₂	7
	37	-H	-conece ₂ cn	7
	38	-H	-conech ₂ conh ₂	7
40	39	-H	-conech ₂ co ₂ ch ₃	7
	40	-H	-CONHOH	7
	41	-H	-conhoch ₃	4
45	42	-H	-tetrazoly1	7
	43	-H	-со ₂ сн ₃	4
	44	-H	-scF ₃	7

	<u>#</u>	<u>R</u> b	<u>R</u> a	Ra
				position
5	45	-H	$-P0_2NH_2$	7
	46	- H	-coneso2Ph	7
	47	-H	-coneso2ne3	7
	48	-H	-SO ₂ CF ₃	7
10	49	-H	-so ₂ nhcn	7
	50	-H	-SO ₂ NHCONH ₂	7
	51	-H	-CH=CHCN	7
15	52	-H	-CH=CHCONH ₂	7
	53	-H	-CH=CHCO ₂ CH ₃	4
	54	-H	-C=C-CONH ₂	7
20	55	-H	-C≡C-CN	4
20	56	-H	-CH ₂ OH	2
	57	-H	$-CH_2N_3$	4
	58	-H	$-CH_2CO_2CH_3$	4
25	59	-H	$-so_2$ CH $_2$ CH $_2$ OH	7
	60	-H	-CH ₂ I	7
	61	-CH ₂ OCH ₃	-0CH ₃	7
30	62	-CH2OCH2CO2CH3	$-\text{OCH}_2\text{CO}_2\text{CH}_3$	7
	63	-CH ₂ OCH ₂ CH ₂ OH	-OCH ₂ CH ₂ OH	7
	64	-CH ₂ CF ₃	-CF ₃	7
	65	-CH ₂ CH ₂ F	-F	7
35	66	-CH ₂ CH ₂ C1	-C1	7
	67	-CH ₂ CH ₂ Br	-Br	7
	68	-CH ₂ CH ₂ I	-I	7
40	69	-сн ₂ он	-OH	7
	70	-CH ₂ OCOCH ₃	-ососн ₃	7
	71	-CH ₂ OCONH ₂	-OCONH ₂	7
45	72	-CH ₂ SCH ₃	-SCH ₃	7
+0	73	-CH ₂ SOCH ₃	-soch3	7
	74	-CH ₂ SO ₂ CH ₃	-so ₂ cH ₃	7

DOBITION 75	
76 -CH ₂ SOCH ₂ CH ₂ OH -SOCH ₂ CH ₂ OH 7 77 -CH ₂ SCH ₂ CONH ₂ -SCH ₂ CONH ₂ 7 78 -CH ₂ SO ₂ NH ₂ -SO ₂ NH ₂ 7 79 -SO ₂ N(CH ₃) ₂ -SO ₂ N(CH ₃) ₂ 7 80 -CH ₂ CH ₂ NHCHO -NHCHO 7 81 -CH ₂ CH ₂ NHCOCH ₃ -NHCOCH ₃ 7 15 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	on
77 -CH ₂ SCH ₂ CONH ₂ -SCH ₂ CONH ₂ 7 78 -CH ₂ SO ₂ NH ₂ -SO ₂ NH ₂ 7 79 -SO ₂ N(CH ₃) ₂ -SO ₂ N(CH ₃) ₂ 7 80 -CH ₂ CH ₂ NHCHO -NHCHO 7 81 -CH ₂ CH ₂ NHCOCH ₃ -NHCOCH ₃ 7 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
78 -CH ₂ SO ₂ NH ₂ -SO ₂ NH ₂ 7 79 -SO ₂ N(CH ₃) ₂ -SO ₂ N(CH ₃) ₂ 7 80 -CH ₂ CH ₂ NHCHO -NHCHO 7 81 -CH ₂ CH ₂ NHCOCH ₃ -NHCOCH ₃ 7 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
78 -CH ₂ SO ₂ NH ₂ -SO ₂ NH ₂ 7 79 -SO ₂ N(CH ₃) ₂ -SO ₂ N(CH ₃) ₂ 7 80 -CH ₂ CH ₂ NHCHO -NHCHO 7 81 -CH ₂ CH ₂ NHCOCH ₃ -NHCOCH ₃ 7 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
79 -SO ₂ N(CH ₃) ₂ -SO ₂ N(CH ₃) ₂ 7 80 -CH ₂ CH ₂ NHCHO -NHCHO 7 81 -CH ₂ CH ₂ NHCOCH ₃ -NHCOCH ₃ 7 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
81 -CH ₂ CH ₂ NHCOCH ₃ -NHCOCH ₃ 7 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
15 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 20 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
15 82 -CH ₂ CH ₂ NHCO ₂ CH ₃ -NHCO ₂ CH ₃ 7 83 -CH ₂ CH ₂ NHSO ₂ CH ₃ -NHSO ₂ CH ₃ 7 84 -CH ₂ CN -CN 1 20 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
84 -CH ₂ CN -CN 1 85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
85 -CH ₂ CHO -CHO 7 86 -CH ₂ COCH ₃ -COCH ₃ 7	
86 -CH ₂ COCH ₃ -COCH ₃ 7	
$-CH_2COCH_3$ $-COCH_3$ 7	
87 -CH ₂ COCH ₂ OH -COCH ₂ OH 7	
88 -CH ₂ CH=NOH -CH=NOH 7	
²⁵ 89 -CH ₂ CH=NOCH ₃ -CH=NOCH ₃ 7	
-CH2CH=NOCH2CO2CH3 -CH=NOCH2CO2CH3 7	
91 -CH ₂ CH=NOCMe ₂ CO ₂ Me -CH=NOCMe ₂ CO ₂ CH ₃ 7	
92 -CH ₂ CH=NOCMe ₂ CONH ₂ -CH=NOCMe ₂ CONH ₂ 7	
93 -CH ₂ CO ₂ CH ₂ CH ₂ OH -CO ₂ CH ₂ CH ₂ OH 7	
94 -CH ₂ CONH ₂ -H *	
95 -CH ₂ CONHCH ₃ -H *	
³⁵ 96 -CH ₂ CON(CH ₃) ₂ -н *	
97 -CH ₂ CONHCH ₂ CN -H *	
98 -CH ₂ CONHCH ₂ CONH ₂ -H *	
40 99 -CH ₂ CONHCH ₂ CO ₂ Me -H *	
100 -CH ₂ CONHOH -H *	
101 −CH ₂ CONHOCH ₃ −H *	
102 -CH2tetrazoly1 -H *	
103 -CH ₂ CO ₂ CH ₃ -н *	
$104 - CH_2SCF_3 - H$	

	<u>#</u>	<u>R</u> b	<u>R</u> a	Ra
				position
5	105	$-CH_2PO_2NH_2$	-H	* .
3	106	-CH2CONHSO2Ph	-H	*
	107	-CH2CONHSO2NH2	-H	*
	108	$-CH_2SO_2CF_3$	-H	*
10	109	-CH ₂ SO ₂ NHCN	-H	*
	110	-CH ₂ SO ₂ NHCONH ₂	-H	*
	111	-CH ₂ CH=CHCN	-H	*
15	112	-CH ₂ CH=CHCONH ₂	- H	*
	113	-CH ₂ CH=CHCO ₂ CH ₃	-H	*
	114	-CH ₂ C≡C-CONH ₂	-H	*
	115	-CH ₂ C≡C-CN	-H	*
20	116	-CH ₂ CH ₂ OH	-H	*
	117	$-CH_2CH_2N_3$	-H	*
25	118	-CH ₂ CH ₂ CO ₂ CH ₃	-H	*
	119	$-CH_2SO_2CH_2CH_2OH$	-H	*
	120	-CH ₂ CH ₂ I	-H	*
	121	-OH	-H	*
20	122	-0CH ₃	-H	*
30	123	-CF ₃	-H	*
	124	-SO ₂ CH ₃	-H	*
	125	-SO ₂ NH ₂	-H	*
35	126	-NH ₂	-H	*
	127	-H	-conh ₂	7
40	128	-H	-conh ₂	4
	129	-H	-conh ₂	3
	130	-H	-CN	7
	131	-∄	-CN	4
	132	-H	-CN	3
45	133	−H	-CHO	7
	134	-H	-CHO	4

	<u>#</u>	<u>R</u> b	<u>R</u> a	Ra
				position
5	135	-H	-CHO	3
	136	-H	-сн ₂ он	7
	137	-H	-CH ₂ OH	4
10	138	- H	-CH ₂ OH	3
	139	-CH ₂ CN	-conh ₂	7
	140	-CH ₂ CN	-CHO	7
	141	-CH ₂ CN	-сн ₂ он	7
15	142	-CH ₂ CN	-н	*
	143	-CH ₂ CN	-CN	7
	144	-CH ₂ CN	-cone ₂	3
20	145	-CH ₂ CN	-CN	3
	146	-CH ₂ CN	-СH ₂ ОН	3
	147	-CH ₂ CN	-CHO	3
25	148	-CH ₂ CN	-conh ₂	4
	149	-CH ₂ CN	-CN	4
	150	-CH ₂ CN	-СH ₂ ОН	4
	151	-CH ₂ CN	-СНО	4
30	152	-H	-sсн ₃	4
	153	-H	-S(0)CH ₃	4
	154	-H	-S0 ₂ CH ₃	4
35	155	-H	-sch ₃	3
	156	-H	-S(O)CH ₃	3
	157	-H	-so ₂ сн ₃	3
40	158	-H	-Br	3
40	159	-H	-I	3
	160	-H	-Br	4
	161	-H	-I	4

TABLE II

The carbapenem compounds of the present invention are useful per se and in their pharmaceutically acceptable salt and ester forms in the treatment of bacterial infections in animal and human subjects. The term "pharmaceutically acceptable ester or salt" refers to those salt and ester forms of the compounds of the present invention which would be apparent to the pharmaceutical chemist, i.e., those which are non-toxic and which would favorably affect the pharmacokinetic properties of said compounds, their palatability, absorption, distribution, metabolism and excretion. Other factors, more practical in nature, which are also important in the selection, are cost of the raw materials, ease of crystallization, yield, stability, hygroscopicity, and flowability of the resulting bulk drug. Conveniently, pharmaceutical compositions may be prepared from the active ingredients in combination with pharmaceutically acceptable carriers. Thus, the present invention is also concerned with pharmaceutical compositions and methods of treating bacterial infections utilizing as an active ingredient the novel carbapenem compounds of the present invention.

45

50

55

The pharmaceutically acceptable salts referred to above may take the form -COOM. The M may be an alkali

metal cation such as sodium or potassium. Other pharmaceutically acceptable cations for M may be calcium, magnesium, zinc, ammonium, or alkylammonium cations such as tetramethylammonium, tetrabutylammonium, choline, triethylhydroammonium, meglumine, triethanolhydroammonium, etc.

The pharmaceutical acceptable esters of the novel carbapenem compounds of the present invention are such as would be readily apparent to a medicinal chemist, and include, for example, those described in detail in U.S. Pat. No. 4,309,438, Column 9, line 61 to Column 12, line 51, which is incorporated herein by reference. Included within such pharmaceutically acceptable esters are those which are hydrolyzed under physiological conditions, such as pivaloyloxymethyl, acetoxymethyl, phthalidyl, indanyl and methoxymethyl, and those described in detail in U.S. Pat. No. 4,479,947, which is incorporated herein by reference.

10

25

30

35

40

45

The novel carbapenem compounds of the present invention may take the form COOM, where M is a readily removable carboxyl protecting group. Such conventional blocking groups consist of known ester groups which are used to protectively block the carboxyl group during the synthesis procedures described above. These conventional blocking groups are readily removable, i.e., they can be removed, if desired, by procedures which will not cause cleavage or other disruption of the remaining portions of the molecule. Such procedures include chemical and enzymatic hydrolysis, treatment with chemical reducing or oxidizing agents under mild conditions, treatment with a transition metal catalyst and a nucleophile, and catalytic hydrogenation. Broadly, such ester protecting groups include alkyl, substituted alkyl, benzyl, substituted benzyl, aryl, substituted aryl, allyl, substituted allyl and triorganosilyl. Examples of specific such ester protecting groups include benzhydryl, p-nitrobenzyl, 2-naphthylmethyl, allyl, 2-chloroallyl, benzyl, t-butyl, 2,2,2-trichloroethyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, trimethylsilyl, 2-(trimethyl)silylethyl, phenacyl, p-methoxybenzyl, acetonyl, o-nitrobenzyl, p-methoxyphenyl and 4-pyridylmethyl.

The compounds of the present invention are valuable antibacterial agents active against various Grampositive and to a lesser extent Gram-negative bacteria and accordingly find utility in human and veterinary medicine. The antibacterials of the invention are not limited to utility as medicaments; they may be used in all manner of industry, for example: additives to animal feed, preservation of food, disinfectants, and in other industrial systems where control of bacterial growth is desired. For example, they may be employed in aqueous compositions in concentrations ranging from 0.1 to 100 parts of antibiotic per million parts of solution in order to destroy or inhibit the growth of harmful bacteria on medical and dental equipment and as bactericides in industrial applications, for example in waterbased paints and in the white water of paper mills to inhibit the growth of harmful bacteria.

The compounds of this invention may be used in any of a variety of pharmaceutical preparations. They may be employed in capsule, powder form, in liquid solution, or in suspension. They may be administered by a variety of means; those of principal interest include: topically or parenterally by injection (intravenously or intramuscularly).

Compositions for injection, a preferred route of delivery, may be prepared in unit dosage form in ampules, or in multidose containers. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents. Alternatively, the active ingredient may be in powder form for reconstitution, at the time of delivery, with a suitable vehicle, such as sterile water. Topical applications may be formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints, or powders.

The dosage to be administered depends to a large extent upon the condition and size of the subject being treated as well as the route and frequency of administration, the parenteral route by injection being preferred for generalized infections. Such matters, however, are left to the routine discretion of the therapist according to principles of treatment well known in the antibacterial art. Another factor influencing the precise dosage regimen, apart from the nature of the infection and peculiar identity of the individual being treated, is the molecular weight of the chosen species of this invention.

The compositions for human delivery per unit dosage, whether liquid or solid, may contain from 0.1% to 99% of active material, the preferred range being from about 10-60%. The composition will generally contain from about 15 mg to about 1500 mg of the active ingredient; however, in general, it is preferable to employ a dosage amount in the range of from about 250 mg to 1000 mg. In parenteral administration, the unit dosage is usually the pure compound I in sterile water solution or in the form of a soluble powder intended for solution.

The preferred method of administration of the Formula I antibacterial compounds is parenteral by i.v. infusion, i.v. bolus, or i.m. injection.

For adults, 5-50 mg of Formula I antibacterial compounds per kg of body weight given 2, 3, or 4 times per day is preferred. Preferred dosage is 250 mg to 1000 mg of the Formula I antibacterial given two (b.i.d.) three (t.i.d.) or four (q.i.d.) times per day. More specifically, for mild infections a dose of 250 mg t.i.d. or q.i.d. is recommended. For moderate infections against highly susceptible gram positive organisms a dose of 500 mg t.i.d. or q.i.d. is recommended. For severe, life-threatening infections against organisms at the upper limits of sen-

sitivity to the antibiotic, a dose of 1000 mg t.i.d. or q.i.d. is recommended.

For children, a dose of 5-25 mg/kg of body weight given 2, 3, or 4 times per day is preferred; a dose of 10 mg/kg t.l.d. or q.i.d. is usually recommended.

Antibacterial compounds of Formula I are of the broad class known as carbapenems or 1-carbadethiapenems. Naturally occuring carbapenems are susceptible to attack by a renal enzyme known as dehydropeptidase (DHP). This attack or degradation may reduce the efficacy of the carbapenem antibacterial agent. The compounds of the present invention, on the other hand, are significantly less subject to such attack, and therefore may not require the use of a DHP inhibitor. However, such use is optional and contemplated to be part of the present invention. Inhibitors of DHP and their use with carbapenem antibacterial agents are disclosed in the prior art [see European Patent Applications No. 79102616.4 filed July 24, 1979 (Patent No. 0 007 614); and No. 82107174.3, filed August 9, 1982 (Publication No. 0 072 014)].

The compounds of the present invention may, where DHP inhibition is desired or necessary, be combined or used with the appropriate DHP inhibitor as described in the aforesaid patents and published application. Thus, to the extent that the cited European patent applications 1.) define the procedure for determining DHP susceptibility of the present carbapenems and 2.) disclose suitable inhibitors, combination compositions and methods of treatment, they are incorporated herein by reference. A preferred weight ratio of Formula I compound: DHP inhibitor in the combination compositions is about 1:1. A preferred DHP inhibitor is 7-(L-2-amino-2-carboxyethylthio)-2-(2,2-dimethylcyclopropanecarboxamide)-2-heptenoic acid or a useful salt thereof.

The second phenanthridone ring of Formula I is not numbered in this text and claims as convention dictates. In the examples, conventional numbering of this ring is employed per the formula:

EXAMPLE 1

45

55

5

10

20

25

30

35

40

Chlorotrimethylsilane (10.4 mL, 81.9 mmol, 3.0 eq) was added to a stirred solution of $\underline{1}$ (7.0 g, 27.3 mmol) in dry THF (103 mL) at -78°C under N₂. Tert-butyllithium (23.1 mL, 30 mmol, 1.1 eq) was added dropwise at -78°C over 45 minutes. The reaction mixture was warmed to 0°C with an ice bath and then quenched with saturated ammonium chloride solution (25 mL). After removal of THF \underline{in} vacuo the reaction mixture was poured into ether (400 mL) and washed with water, saturated sodium bicarbonate solution (2 x 50 mL), water, and brine. The ethereal layer was dried (MgSO₄), filtered, and evaporated \underline{in} vacuo. Purification using flash chromatography (20% EtOAc/hex) afforded 5.7 g (87%) of aryl silane $\underline{2}$, a white solid.

1H-NMR for $\underline{2}$ [400 MHz, CDCl₃, rotamers]: $\underline{8}$ 0.24 (s, 9H), 1.08 (broad s, 3H), 1.21 (broad s, 3H), 3.23 (broad s, 2H), 7.30 (d, J=8.1 Hz, 2H), 7.50 (d, J=8.1 Hz, 2H).
IR(CHCl₃): 3010, 1615 cm⁻¹.

5

15

20

25

30

35

40

45

50

55

CONEt 2 CONEt₂ B(OH)₂ 10 TMS TMS 2 3

To a stirred solution of N,N,N',N'-tetramethylethylenediamine (2.7 mL, 17.6 mmol, 1.1 eq) in anhydrous THF (100 mL) at -78°C under N₂ was added dropwise sec-butyllithium (13.0 mL, 16.8 mmol, 1.05 eq). After 15 minutes the yellow mixture was treated with a solution of 2 (4.0 g, 16.0 mmol) in dry THF (40 mL), and the resultant red mixture was stirred for 1 hour at -78°C. Trimethylborate (2.0 mL, 17.6 mmol, 1.1 eq) was added dropwise. The reaction flask was warmed to 0°C with an ice bath and then stirred for 5 minutes. The green reaction mixture was quenched with 8% HCl solution (60 mL), stirred for 10 minutes, and the organic solvent concentrated in vacuo. The mixture was poured into ether and the ethereal layer was washed with water (2x), brine, dried (MgSO₄), filtered, and evaporated in vacuo. Purification using flash chromatography (5:3:1 EtOAc/acetone/H₂O) provided 3.77 g (80%) of boronic acid 3, a white foam.

¹H-NMR for 3 [200 MHz, CDCl₃, rotamers]: δ 0.27 (s, 9H), 0.88 to 1.16 (m, 6H), 3.27 to 3.36 (m, 4H), 7.28 (d, J=6.4 Hz, 1H), 7.52 (d, J=7.6 Hz, 1H), 8.15 (s, 1H). IR(CHCl₃): 2960, 1615, 1601 cm⁻¹.

EXAMPLE 3

COOH NO_2 Br Br 4 Known

To a stirred solution of known bromo-nitrobenzoic acid (5.0 g, 20.3 mmol) in dry THF (40.6 mL) under N₂ at room temperature was added dropwise the borane-tetrahydrofuran complex (40.6 mL, 40.6 mmol, 2.0 eq). After stirring at reflux for 1 hour the reaction mixture was quenched with dropwise addition of triethylamine (1 mL) in methanol (50 mL) at 0°C. The solvent was then removed in vacuo to give crude 4. Purification using flash chromatography (30% EtOAc/hex) provided 4.5 g (96%) of 4, an off-white solid.

1H-NMR for 4 [400 MHz, CDCl₃]: δ 1.86 (t, J=5.8 Hz, 1H), 4.74 (d, J=5.8 Hz, 2H), 7.41 (dd, J=8.3, 2.1 Hz, 1H), 7.70 (d, J=8.3 Hz, 1H), 7.85 (s, 1H).

IR(CHCl₃): 3605, 3500 to 3200, 3010, 2880, 1605, 1535, 1355 cm⁻¹.

15

20

25

Aqueous sodium carbonate (8.7 mL, 17.4 mmol, 2.0 eq) was added to a stirred solution of 3 (2.0 g, 8.7 mmol) and tetrakis(triphenylphosphine) palladium (0) (502.8 mg, 5.0 mol%) in toluene (33.5 mL). The resulting two-phase mixture was stirred for 10 minutes under N₂ at room temperature. A solution of 4 (2.8 g, 9.6 mmol, 1.1 eq) dissolved in absolute ethanol (9.6 mL) was added, and the heterogeneous mixture was stirred for 3 hours at reflux under N2. The cooled reaction mixture was poured into ether (175 mL) and washed with water (1X), saturated sodium carbonate solution (2 x 25 mL), water (1X), and brine. The organic layer was dried -(MgSO₄), filtered, and evaporated in vacuo. Purification using flash chromatography (60% EtOAc/hex) provided 2.9 g (83%) of the biphenyl compound 5, a yellow foam.

¹H-NMR for 5 [400 MHz, CDCl₃, rotamers]: δ 0.24 (s, 9H), 0.87 (t, J=7.1 Hz, 3H), 0.94 (t, J=7.1 Hz, 3H), 2.40 (broad s, 1H), 2.72 to 3.65 (broad, 4H), 4.76 (s, 2H), 7.30 to 7.32 (m, 2H), 7.51 to 7.56 (m, 3H), 7.93 (s, 1H). IR(CHCl₃): 3360, 3520 to 3300, 2990, 1620, 1605, 1530 cm⁻¹.

EXAMPLE 5

30 CONEt₂ CONEt 2 NO₂ NO₂ TMS I 5 6

35

40

45

50

Acetic anhydride (6.8 mL, 72.4 mmol, 10.0 eq) was added to a stirred solution of 5 (2.9 g, 7.24 mmol) in dry pyridine (36 mL). The reaction mixture was stirred for 25 minutes at room temperature under N2. The solvent was removed in vacuo and the residual oil azeotroped from toluene. The crude acetate was redissolved in dry dichloromethane (20 mL), and a 1.0 M solution of iodine monochloride in dichloromethane (33 mL, 33.3 mmol, 4.6 eq) was added dropwise over 1 hour using an addition funnel. The reaction mixture was then poured into ether (250 mL) and the organic layer was washed with saturated sodium thiosulfate solution (3 x 30 mL), water (1X), saturated sodium bicarbonate solution (1 x 30 mL), water (1X), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo to afford 3.6 g (quantitative yield) of 6, a yellow oil.

¹H-NMR for 6 [400 MHz, CDCl₃, rotamers]: δ 0.81 (t, J=7.1 Hz, 3H), 0.98 (t, J=7.1 Hz, 3H), 2.14 (s, 3H), 2.78 to 3.65 (broad, 4H), 5.17 (s, 2H), 7.08 (d, J=8.1 Hz, 1H), 7.49 to 7.61 (m, 3H), 7.76 (d, J=8.0 Hz, 1H), 7.97 (s,

IR(CHCl₃): 3010, 1745, 1610, 1530 cm⁻¹.

5
$$I \longrightarrow OAC$$

$$OAC$$

$$OAC$$

$$OAC$$

$$OAC$$

$$OAC$$

$$OAC$$

$$OAC$$

$$OAC$$

A solution of 25% sodium methoxide in methanol (0.53 mL, 2.4 mmol, 1.1 eq) was added to a stirred solution of $\underline{6}$ (1.1 g, 2.2 mmol) in dry methanol (11.0 mL). The reaction mixture was stirred for 10 minutes at room temperature under N₂. Acetic acid (6.0 mL) and dry tetrahydrofuran (11.0 mL) were then added. Iron powder (371.9 mg, 6.7 mmol, 3.0 eq) was added next, and the reaction mixture was stirred at reflux until a white solid had separated (approximately 15 minutes). The reaction mixture was cooled, poured into ice water (250 mL), and the solid filtered. The crude cyclized product was redissolved in hot ethanol (250 mL), filtered through a hot-sintered glass funnel, and the solvent removed in vacuo. Recrystallization from ethanol provided 501 mg (64%) of the cyclized amide $\underline{7}$, a white fluffy solid.

¹H-NMR for $\underline{7}$ [400 MHz, D₆ DMSO]: δ 4.57 (s, 2H), 5.36 (t, J=5.7 Hz, 1H), 7.16 (d, J=8.2 Hz, 1H), 7.33 (s, 1H), 7.93 (d, J=8.4Hz, 1H), 8.00 (d, J=8.4 Hz, 1H), 8.35 (d, J=8.4 Hz, 1H), 8.85 (s,1H), 11.74 (s,1H). IR (KBr): 1670, 1601 cm⁻¹.

EXAMPLE 7

15

20

25

40

To a suspension of $\underline{7}$ (457 mg, 1.3 mmol) in toluene (45 mL) under N_2 was added hexamethylditin (0.28 mL, 1.43 mmol, 1.1 eq), tetrakis (triphenylphosphine) palladium (0) (75 mg, 5.0 mol%), and triphenylphosphine (10.2 mg, 3.0 mol%). After bubbling N_2 through the reaction mixture for 15 minutes, the reaction was heated to reflux for 1 hour under N_2 . The reaction mixture was cooled, poured into ethyl acetate (175 mL), and washed with saturated sodium bicarbonate solution (2 x 25 mL), water (2x), and brine. The organic layer was dried – (MgSO₄), filtered, and evaporated in vacuo.

45 Recrystallization from acetone/hexane provided 469 mg (93%) of stannane <u>8</u>, a white powder.

1H-NMR for <u>8</u> [400 MHz, D₈ DMSO]: δ 0.37 (s,9H), 4.56 (s, 2H), 5.34 (t, J=5.7 Hz, 1H), 7.18 (d, J=8.3 Hz, 1H),
7.33 (s, 1H), 7.72 (d, J=7.7 Hz, 1H), 8.21 (d, J=7.7 Hz, 1H), 8.39 (d, J=8.4 Hz, 1H), 8.55 (s, 1H), 11.63 (s, 1H).

IR(KBr): 1650, 1601, 1540 cm⁻¹.

55

15

20

25

30

35

5

10

To a stirred solution of the bicyclic β-keto ester $\underline{9}$ (288.1 mg, 0.83 mmol) in dry THF (4.1 mL) at -78°C under N₂ was added diisopropylamine (129.0 μL, 0.91 mmol, 1.1 eq). The resultant yellow mixture was stirred for 10 minutes before trifluoromethanesulfonic anhydride (153.0 μL, 0.91 mmol, 1.1 eq) was added. After 15 minutes triethylamine (127.0 μL, 0.91 mmol, 1.1 eq), followed by the trimethylsilyl trifluoromethanesulfonate (176.0 μL, 0.91 mmol, 1.1 eq), was added and the reaction mixture was stirred for 20 minutes.

The reaction mixture was then treated sequentially with anhydrous N-methyl-2-pyrrolidinone (4.1 mL), the $Pd_2(dba)_3$.CHCl₃ catalyst (17.2 mg, 1.6 x 10^{-2} mmol, 2.0 mol%), tris (2,4,6-trimethoxyphenyl) phosphine (35.2 mg, 1.6 x 10^{-2} mmol, 8.0 mol%), the aryl-stannane <u>8</u> (214.0 mg, 0.55 mmol, 0.66 eq), and zinc chloride (0.55 mL, 0.55 mmol, 0.66 eq). The low temperature bath was then removed and the reaction vessel was placed in a warm water bath to quickly reach ambient temperature. The resulting wine-red solution was stirred for 40 minutes at ambient temperature.

The reaction was then poured into ether (250 mL) and washed with water (3x) and brine. The organic layer was dried (MgSO₄), decolorized briefly with Norite, filtered, and evaporated in vacuo. Purification using flash chromatography (100% EtOAc) provided 246 mg (71%) of the coupled product 10, a yellow foam.

¹H-NMR for <u>10</u> [400 MHz, CDCl₃]: δ 0.15 (s, 9H), 1.30 (d, J=6.0 Hz, 3H), 2.73 (broad t, J=5.7 Hz, 1H), 3.26 to 3.34 (complex m, 2H), 3.42 (½ ABX, J_{AB} =18.3 Hz, J_{AX} =8.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.24 to 4.30 (m, 1H), 4.35 (dt, J=9.5, 2.7 Hz, 1H), 4.35 (d

Hz, 1H), 4.75 (d, J=5.8 Hz, 2H), 5.21 (ABq, J=13.3 Hz, Δ_{0} AB=73.8 Hz, 2H), 7.04 (d, J=8.4 Hz, 1H), 7.26 (s, 1H), 7.31 (d, J=8.4 Hz, 2H), 7.44 (d, J=8.1 Hz, 1H), 7.74 (d, J=8.4 Hz, 1H), 7.91 (d, J=8.4 Hz, 2H), 8.04 (s, 1H), 8.43 (d, J=8.1 Hz, 1H), 10.85 (s, 1H).

IR (CHCl₃): 3400, 3010, 2980, 1780, 1725, 1665, 1610, 1520 cm⁻¹. U.V. (CH₃CN): λ = 315 nm, ϵ = 18,000.

EXAMPLE 9

55

50

Acetic acid $(6.3 \mu L, 0.11 \text{ mmol}, 1.0 \text{ eq})$ was added to a stirred solution of $\underline{11}$ (68.8 mg, 0.11 mmol) in 1.3:1.3:1.0 THF/EtOH/H₂O, and the reaction mixture was stirred for 1.75 hours at 40°C. Potassium bicarbonate (23.1 mg, 0.23 mmol, 2.1 eq) was then added. The 10% Pd/C catalyst (6.9 mg, 10% wt) was added next, and the reaction mixture was hydrogenated under a H₂ balloon at ambient temperature for 1 hour. The mixture was then filtered through a pad of celite using water as the eluant, and the THF and EtOH solvent from the filtrate were removed in vacuo. The remaining water was then frozen and lyophilized at 0°C. Crude $\underline{12}$ was redissolved in a minimal amount of H₂O/CH₃CN and purified using Analtech reverse phase prep-plates (6:1 H₂O/CH₃CN) to provide 16.6 mg (36%) of carbapenem $\underline{12}$, a light-yellow solid.

¹H-NMR for $\frac{12}{2}$ [400 MHz, 2:1 D₂O/CD₃CN]: δ 1.69 (d, J=6.3 Hz, 3H), 3.56 (½ ABX, J_{AB}=16.6 Hz, J_{AX}=10.2 Hz, 1H), 3.87 to 3.95 (complex m, 2H), 4.59 to 4.64 (m, 1H), 4.73 (dt, J=9.3, 2.6 Hz, 1H), 5.07 (s, 2H), 7.65 (s,1H), 7.68 (d, J=8.7 Hz, 1H), 8.01 (d, J=8.1 Hz, 1H), 8.52 to 8.59 (m, 3H). IR(KBr): 1755, 1660, 1615 cm⁻¹.

U.V.(MOPS Buffer): λ_{o1} =309 nm, ϵ_{o1} =16,000; λ_{o2} = 326nm, ϵ_{o2} =15,900; λ_{ox1} =309 nm, ϵ_{ext1} =10,600; λ_{ext2} =337 nm, ϵ_{ext2} =9,600; λ_{ox3} =349 nm, ϵ_{ext3} =8,300.

EXAMPLE 10

5

25

30

35

55

TMSO H H

CO₂PNB

TMSO H H

CO₂PNB

TMSO H H

CO₂PNB

A stirred solution of <u>10</u> (121 mg, 0.19 mmol), N-methylmorpholine-N-oxide (33.8 mg, 0.29 mmol, 1.5 eq), and powdered 4Å molecular sieves (96 mg, 500 mg/mmol) in dry dichloromethane (1.9 mL) was treated with tetrapropylammoniumperruthenate (3.4 mg, 5.0 mol%) at room temperature under N₂. The reaction mixture was stirred for 10 minutes before the resulting black mixture was filtered through a short-column of silica gel using 75% EtOAc/hex as an eluant. The filtrate was evaporated <u>in vacuo</u> to afford 67 mg (56%) of aldehyde <u>15</u>, a yellow oil.

¹H-NMR for <u>15</u> [400 MHz, CDCl₃]: δ 0.15 (s, 9H), 1.31 (d, J=6.2 Hz, 3H), 3.31 to 3.38 (complex m, 2H), 3.45 (½ ABX, J_{AB} =18.5 Hz, J_{AX} =8.9 Hz, 1H), 4.27 to 4.31 (m, 1H), 4.39(dt, J=9.5, 2.8 Hz, 1H), 5.25 (ABq, J=13.5

Hz, Δ $_{1}$ $_{AB}$ =68.7 Hz, 2H), 7.39 (d, J=8.7 Hz, 2H), 7.57 (d, J=8.3 Hz, 1H), 7.69 (d, J=8.3 Hz, 1H), 7.79 (s, 1H), 8.00 (d, J=8.7 Hz, 2H), 8.11 (d, J=8.3 Hz, 1H), 8.26 (s, 1H), 8.52 (d, J=8.2 Hz, 1H), 10.05 (s, 1H), 11.53 (s, 1H).

IR (CHCl₃): 3020, 2960, 1780, 1730, 1705, 1670, 1610, 1520 cm⁻¹. U.V. (CH₃CN): λ =301 nm, ϵ =28,230.

EXAMPLE 11

45 TMSO H H H H H H CO₂PNB 16 CO₂Na 15

Anhydrous $1\underline{M}$ HCl in ether (47.0 μ L, 4.7 x 10^{-2} mmol, 0.50 eq) was added to a stirred solution of $\underline{15}$ (58.7 mg, 9.4 x 10^{-2} mmol) in 2:1 THF/H₂O at 0°C and the reaction mixture was stirred for 10 minutes at 0°C. Aqueous sodium bicarbonate solution (0.15 mL, 0.15 mmol, 1.6 eq) was then added and the ice bath was removed. After adding 10% Pd/C (5.8 mg, 10% wt) the reaction mixture was hydrogenated under a H₂ balloon at ambient temperature for 1 hour. The mixture was then filtered through a pad of celite using water as the eluant. The THF from the filtrate was removed in vacuo and the remaining water was frozen and lyophilized at 0°C. Crude $\underline{15}$ was redissolved in a minimal amount of H₂O/CH₃CN and purified using Analtech reverse phase prep-plates

eluted with 7:1 H_2O/CH_3CN . Carbapenem $\underline{16}$ was isolated as a yellowish solid in 37% yield (15.3 mg). ¹H-NMR for $\underline{16}$ [400 MHz, 2:1 D_2O/CD_3CN]: δ 1.71 (d, J=6.3 Hz, 3H), 3.59 (½ ABX, J_{AB} =16.5 Hz, J_{AX} =9.9 Hz, 1H), 3.90 to 3.96 (complex m, 2H), 4.62 to 4.66 (m, 1H), 4.75 (dt, J=9.7, 2.7 Hz, 1H), 8.13 (d, J=8.4 Hz, 1H), 8.19 (s, 1H), 8.21 (d, J=8.3 Hz, 1H), 8.64 (d, J=8.4 Hz, 1H), 8.71 (s, 1H), 8.78 (d, J=8.3 Hz, 1H), 10.39 (s, 1H).

IR (KBr): 3420, 1755, 1690, 1660, 1615 cm⁻¹. UV (MOPS Buffer): λ_0 =305 nm, ϵ_0 =19,600: λ_{ext1} =314 nm, ϵ_{ext1} =10,900; λ_{ext2} =367 nm, ϵ_{ext2} =4,970.

EXAMPLE 12

15
$$\frac{1}{15}$$
 $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$

From $\underline{17}$ (0.5 g, 1.82 mmol), using the general stannylation procedure described for compound $\underline{8}$ was provided 498 mg (76%) of stannane 18, a white solid.

¹H-NMR for <u>18</u> [300 MHz, CDCl₃]: δ 0.36 (s, 9H), 7.41 (d, J=7.8 Hz, 1H), 7.57 to 7.64 (m, 2H), 7.80 (t, J=7.4 Hz, 1H), 8.31 (s, 1H) 8.33 (d, J=8.2 Hz, 1H), 8.59 (d, J=7.1 Hz, 1H), 11.23 (s, 1H). IR (CHCl₃): 3400, 3010, 1665, 1610 cm⁻¹.

EXAMPLE 13

25

30

35

40

45

50

Following the general coupling procedure described for the synthesis of compound $\underline{10}$, the bicyclic β -keto ester $\underline{9}$ (160.5 mg, 0.46 mmol) was coupled to the aryl stannane $\underline{18}$ (150 mg, 0.42 mmol, 0.91 eq) to provide 169 mg (67%) of $\underline{19}$, a yellowish solid.

¹H-NMR for 19 [300 MHz, CDCl₃]: δ 0.15 (s, 9H), 1.31 (d, J=6.3 Hz, 3H), 3.27 to 3.38 (complex m, 3H), 4.25

to 4.34 (complex m, 2H), 5.28 (ABq, J=13.7 Hz, Δ $_{\updayscript{0}}$ $_{AB}$ =53.3 Hz, 2H), 7.31 (d, J=8.4 Hz, 1H), 7.49 (m, 3H), 7.62 (t, J=7.1 Hz, 1H), 7.76 (t, J=7.1 Hz, 1H), 8.08 (d, J=8.7 Hz, 2H), 8.15 (d, J=8.2 Hz, 1H), 8.31 (s, 1H), 8.54 (d, J=7.6 Hz, 1H), 11.40 (s, 1H).

IR (CHCl₃): 3010, 2960, 1780, 1725, 1665, 1610, 1520 cm⁻¹.

UV (CH₃CN): λ=328 nm, ε=14,800.

From $\underline{19}$ (169 mg, 0.28 mmol) in 1:1:1 THF/CH₃CN/H₂O, using the general deprotection procedure described for compound $\underline{12}$, was provided 83 mg (68%) of $\underline{20}$, a yellowish solid.

¹H-NMR for $\underline{20}$ [300 MHz, 2:1 D₂O/CD₃CN]: δ 1.68(d, J=6.4 Hz, 3H), 3.54 (½ ABX, J_{AB}=16.9 Hz, J_{AX}=9.8 Hz, 1H), 3.82 to 3.87 (complex m, 2H), 4.58 to 4.69 (complex m, 2H), 7.71 (d, J=8.5 Hz, 1H), 7.98 (d, J=8.5 Hz, 1H), 8.07 (t, J=7.2 Hz, 1H), 8.29 (t, J=7.2 Hz, 1H), 8.68 (s, 1H), 8.73 (d, J=8.1 Hz, 1H), 8.78 (d, J=8.2 Hz, 1H). IR (KBr): 1755, 1670, 1630, 1605, 1550 cm⁻¹ U.V. (MOPS Buffer): λ_0 =323 nm, ϵ_0 =17,000; λ_{ext1} =316 nm, ϵ_{ext2} =7,900; λ_{ext3} =350 nm, ϵ_{ext3} =8,600.

EXAMPLE 15

To a suspension of sodium hydride (16.7 mg, 0.42 mmol, 1.0 eq, 60% in mineral oil) in anhydrous DMF (4.2 mL) and dry benzene (0.42 mL) was added $\underline{18}$ (150 mg, 0.42 mmol) at 0°C. After the evolution of H₂ gas had subsided the resultant yellow mixture was stirred at 100°C for 30 minutes. The reaction mixture was then cooled to 0°C and iodomethane (39.2 μ L, 0.63 mmol, 1.5 eq) in anhydrous DMF (2.1 mL) was added. After stirring for 3.5 h at 100°C the resultant brown mixture was quenched with dropwise addition of saturated ammonium chloride solution (2 mL at 0°C. The reaction mixture was then poured into ethyl acetate (75 mL) and washed with water (1x), saturated sodium bicarbonate solution (1 x 25 mL), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo. Purification using flash chromatography (20% EtOAc/hex) provided 52.0 mg (33%) of stannane $\underline{21}$, a white solid.

1H-NMR for $\underline{21}$ [300 MHz, CDCl₃]: 8 0.37 (s, 9H), 3.79 (s, 3H), 7.37 (d, J=8.1 Hz), 7.56 (t, J=7.1 Hz, 1H), 7.63 (d, J=8.2 Hz, 1H), 7.75 (t, J=7.2 Hz, 1H), 8.32 (d, J=7.9 Hz, 1H), 8.36 (s, 1H), 8.54 (d, J=7.7 Hz, 1H) IR (CHCl₃): 3010, 2920, 1645, 1600, 1575 cm⁻¹.

Following the general coupling procedure described for compound $\underline{10}$, the bicyclic β -keto ester $\underline{9}$ (58.4 mg, 0.167 mmol) was coupled to the aryl stannane $\underline{21}$ (52.0 mg, 0.14 mmol, 0.84 eq) to provide 56 mg (65%) of 22, a yellow oil.

 1 H-NMR for 22 [300 MHz, CDCl₃]: δ 0.15 (s, 9H), 1.31 (d, J=6.3 Hz, 3H), 3.27 to 3.30 (m, 1H), 3.34 to 3.39 (complex m, 2H), 3.79 (s, 3H), 4.23 to 4.35 (complex m, 2H), 5.30 (ABq, J=13.7 Hz, 4

IR (CHCl₃): 3020, 2970, 1775, 1725, 1650, 1610, 1520 cm⁻¹. U.V.(CH₃CN): λ =333 nm, ϵ =11,700.

EXAMPLE 17

15

20

25

From $\underline{22}$ (56 mg, 0.092 mmol), using the general deprotection procedure described for compound $\underline{12}$, was provided 12.9 mg (32%) of carbapenem $\underline{23}$, a white solid.

¹H-NMR for $\underline{23}$ [300 MHz, D₂O]: δ 1.47(d, J=6.6 Hz, 3H), 3.18 to 3.26 (m, 1H), 3.46 to 3.64 (complex m, 2H), 3.53 (s, 3H), 4.39 to 4.49 (complex m, 2H), 7.27 (d, J=8.9 Hz, 1H), 7.52 (d, J=7.8 Hz, 1H), 7.59 (t, J=7.9 Hz, 1H), 7.74 (t, J=7.4 Hz, 1H), 7.88 (s, 1H), 7.95 (d, J=8.2 Hz, 1H), 8.12 (d, J=8.1 Hz, 1H). IR (KBr): 2980, 1740, 1640, 1605, 1575 cm⁻¹.

U.V. (MOPS Buffer): λ_{o} =320 nm, ϵ_{o} =12,000; λ_{ext1} =317 nm, ϵ_{ext1} =6,700; λ_{ext2} =352 nm, ϵ_{ext2} =5,100.

55

45

15

20

25

To a suspension of sodium hydride (73 mg, 1.82 mmol, 1.0 eq, 60% in mineral oil) in anhydrous DMF (18.2 mL) was added $\underline{17}$ (500 mg, 1.82 mmol) at 0°C. After the evolution of H_2 gas had subsided the resultant yellow mixture was stirred at 100°C for 30 minutes. The reaction mixture was then cooled to 0°C and bromoacetonitrile (0.14 mL, 2.0 mmol, 1.1 eq) in dry DMF (9.1 mL) was added. After stirring for 1 hour at 100°C the resultant black mixture was quenched with dropwise addition of saturated ammonium chloride solution (5 mL) at 0°C. The reaction mixture was then poured into ethyl acetate (175 mL) and washed with water (1x), saturated sodium bicarbonate solution (1 x 50 mL), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo. Recrystallization from ethyl acetate afforded 352 mg (62%) of the N-cyanomethyl compound 24, white crystalline needles.

¹H-NMR for <u>24</u> [300 MHz, D₆ DMSO]: δ 5.53 (s, 2H), 7.68 (d, J=9.2 Hz, 1H), 7.75 (t, J=7.7 Hz, 1H), 7.88 (d, J=8.9 Hz, 1H), 7.93 (t, J=8.1 Hz, 1H), 8.38 (d, J=7.8 Hz, 1H), 7.66 (d, J=8.5 Hz, 1H), 8.77 (s, 1H). IR (KBr): 3000, 2960, 2250, 1660, 1605 cm⁻¹.

EXAMPLE 19

30

40

35

From $\underline{24}$ (382 mg, 0.48 mmol), using the general stannylation procedure described for compound $\underline{8}$, was provided 379 mg (78%) of stannane 25, a white solid.

¹H-NMR for $\underline{25}$ [300 MHz, CDCl₃]: δ 0.38 (s, 9H), 5.33 (s, 2H), 7.35 (d, J=8.2 Hz, 1H), 7.57 (t, J=8.2 Hz, 1H), 7.70 (d, J=8.2 Hz, 1H), 7.80 (t, J=8.4 Hz, 1H), 8.31 (d, J=7.8 Hz, 1H), 8.38 (s, 1H), 8.49 (d, J=6.9 Hz, 1H). IR (CHCl₃): 3010, 2990, 2980, 2920, 2260, 1660, 1615, 1601, 1580 cm⁻¹.

50

45

15

20

25

30

35

40

45

50

55

To a stirred solution of the bicyclic β-keto ester $\underline{9}$ (376.0 mg, 1.08 mmol) in dry THF (5.4 mL) at -78°C under N₂ was added diisopropylamine (0.17 mL, 1.19 mmol, 1.1 eq). The resultant yellow mixture was stirred for 10 minutes before trifluoromethane sulfonic anhydride (0.20 mL, 1.19 mmol, 1.1 eq) was added. After 15 minutes the reaction mixture was treated sequentially with anhydrous N-methyl-2-pyrrolidinone (5.4 mL), the Pd₂(dba)₃·CHCl₃ catalyst (22.4 mg, 2.2x10⁻² mmol, 2.0 mol%), tris (2,4,6-trimethoxyphenyl)phosphine (46.0 mg, 8.6x10⁻² mmol, 8.0 mol%) the aryl stannane $\underline{25}$ (357.2 mg, 0.90 mmol, 0.83 eq), and zinc chloride (0.6 mL, 0.90 mmol, 0.83 eq). The low temperature bath was then removed and the reaction vessel was placed in a warm water bath to quickly reach ambient temperature. The resulting wine-red solution was stirred for 40 minutes at ambient temperature.

The reaction was then poured into ether (250 mL) and washed with water (3x) and brine. The organic layer was dried (MgSO₄), decolorized briefly with Norite, filtered, and evaporated <u>in vacuo</u>. Purification using flash chromatography (80%) EtOAc/hex) provided 201.9 mg (71%) of the coupled product <u>26</u>, a yellow solid.

1H-NMR for <u>26</u> [300 MHz, CDCl₃]: δ 1.40 (d, J=6.3 Hz, 3H), 3.29 to 3.46 (complex m, 3H), 4.28 to 4.42 (complex

m, 2H), 5.29 (ABq, J=13.4 Hz, Δ $_{\mbox{$\mathfrak{Y}$}}$ $_{\mbox{$AB$}}$ = 59.3 Hz, 2H), 5.33 (s, 2H), 7.34 (d, J=8.7 Hz, 1H), 7.49 (d, J=8.5 Hz, 2H), 7.57 to 7.63 (m, 2H), 7.76 (t, J=7.6 Hz, 1H), 8.07 (d, J=8.6 Hz, 2H), 8.12 (d, J=8.2 Hz, 1H), 8.39 (s, 1H),

IR (CHCl₃): 3600, 3200, 2980, 1780, 1730, 1665, 1605, 1520 cm⁻¹. U.V. (CH₃CN): λ=325 nm, ε=10,000.

EXAMPLE 21

8.45 (d, J=8.0 Hz, 1H).

To a stirred solution of $\underline{26}$ (201 mg, 0.356 mmol) and potassium bicarbonate (39.2 mg, 0.392 mmol, 1.1 eq) in 2:1 acetone/H₂O was added 10% Pd/C catalyst (20.1 mg, 10% wt), and the reaction mixture was hydrogenated under an H₂ balloon at ambient temperature for 1.6 hours. The mixture was then filtered through a pad of celite using water as the eluant, and the acetone solvent from the filtrate was removed in vacuo. The remaining water was then frozen and lyophilized at 0°C. Crude $\underline{27}$ was redissolved in a minimal amount of H₂O/CH₃CN and purified using Analtech reverse phase prep-plates (3:1 H₂O/CH₃CN) to provide 43.6 mg (26%) of $\underline{27}$, a white solid.

¹H-NMR for <u>27</u> [300 MHz, 2:1 D₂O/CD₃CN]: δ 1.51 (d, J=6.3 Hz, 3H), 3.36 (½ ABX, J_{AB} =15.6 Hz, J_{AX} =8.9 Hz, 1H), 3.63 to 3.71 (complex m, 2H), 4.43 to 4.57 (complex m, 2H), 5.54 (s, 2H), 7.66 (d, J=9.3 Hz, 1H), 7.67 to 7.83 (m, 2H), 8.01 (t, J=8.8 Hz, 1H), 8.17 to 8.44 (m, 3H).

IR (KBr): 2980, 1755, 1650, 1601, 1570 cm-1.

UV (MOPS Buffer): λ_{o} =316 nm, ϵ_{o} =13,600; λ_{ext1} =312 nm, ϵ_{ext1} =8,100; λ_{ext2} =349 nm, ϵ_{ext2} =5,800.

5 NH CONH₂
10 17 Br 28 Br

From 17 (350 mg, 1.28 mmol) and iodoacetamide (362 mg, 1.92 mmol, 1.5 eq) as the alkylating agent, using the general procedure described for compound 24 was provided 357 mg (84%) of the N-acetamide 28, a white solid.

 1 H-NMR for <u>28</u> [300 MHz, D₆ DMSO]: δ 4.97 (s, 2H), 7.26 (d, J=9.2 Hz, 1H), 7.31 (s, 1H), 7.68 to 7.75 (m, 3H), 7.88 (t, J=7.2 Hz, 1H), 8.36 (d, J=7.8 Hz, 1H), 8.62 (d, J=8.1 Hz, 1H), 8.69 (s, 1H). IR (KBr): 3200, 1685, 1650, 1610 cm⁻¹.

EXAMPLE 23

20

35

40

55

From <u>28</u> (280.7 mg, 0.85 mmol) in anhydrous DMF (8.5 mL), using the general stannylation procedure described for compound <u>8</u>, was provided 69 mg (19%) of stannane <u>29</u>, a yellowish solid.

 1 H-NMR for <u>29 [300 MHz, CDCl₃]</u>: 3 0.36 (s, 9H), 5.02 (s, 2H), 5.39 (broad s, 1H), 6.31 (broad s, 1H), 7.52 (d, J=8.2 Hz, 1H), 7.60 (t, J=7.6 Hz, 1H), 7.65 (d, J=8.2 Hz, 1H), 7.80 (t, J=8.0 Hz, 1H), 8.35 (d, J=8.2 Hz, 1H), 8.39 (s, 1H), 8.52 (d, J=8.2 Hz, 1H).

IR (CHCl₃): 3490, 3410, 3010, 2915, 1690, 1640, 1605, 1570 cm⁻¹.

EXAMPLE 24

HO H H

CO₂PNB

HO H H

CO₂PNB

O CO₂PNB

Following the general coupling procedure described for compound <u>10</u>, the bicyclic β-keto ester <u>9</u> (54.0 mg, 0.15 mmol) was coupled to the aryl stannane <u>29</u> (45.5 mg, 0.13 mmol, 0.83 eq) to provide 11.7 mg (14%) of the coupled product <u>30</u>, a yellowish solid.

¹H-NMR for 30 [300 MHz, CDCl₃]: δ 0.15 (s, 9H), 1.31 (d, J=6.0 Hz, 3H), 3.25 to 3.36 (complex m, 3H), 4.22

to 4.34 (complex m, 2H), 4.99 (s, 2H), 5.28 (ABq, J=13.7 Hz, Δ υ AB=53.3 Hz, 2H), 5.48 (broad s, 1H), 6.42 (broad s, 1H), 7.46 (d, J=8.7 Hz, 2H), 7.53 (s, 2H), 7.60 (t, J=7.5 Hz, 1H), 7.76 (t, J=7.4 Hz, 1H), 8.05 (d, J=8.2 Hz, 2H), 8.14 (d, J=8.5 Hz, 1H), 8.39 (s, 1H), 8.49 (d, J=7.8 Hz, 1H).

IR (CHCl₃): 3490, 3410, 3200, 2860, 1775, 1720, 1695, 1650, 1610, 1575, 1520 cm⁻¹. U.V. (CH₃CN): λ_1 =258 nm, ϵ_1 =25,400; λ_2 =324, ϵ_2 =14,200.

EXAMPLE 25

From <u>30</u> (11.1 mg, 0.017 mmol), using the general deprotection procedure described for compound <u>12</u>, was provided 4.0 mg (49%) of carbapenem 31, a white solid.

¹H-NMR for $\frac{31}{2}$ [300 MHz, 4:1 D₂O/CD₃CN]: δ 1.50 (d, J=6.3 Hz, 3H), 3.34 (½ ABX, J_{AB} = 16.2 Hz, J_{AX} = 8.4 Hz, 1H), 3.68 to 3.71 (complex m, 2H), 4.42 to 4.56 (complex m, 2H), 5.20 (s, 2H), 7.42 (d, J=8.5 Hz, 1H), 7.73 (d, J=8.4 Hz, 1H), 7.81 (t, J=8.4 Hz, 1H), 8.02 (t, J=8.4 Hz, 1H), 8.42 to 8.45 (m, 3H).

IR (KBr): 2980, 1750, 1680, 1640 1610, 1575 cm⁻¹. U.V. (MOPS Buffer): λ_o =318nm, ϵ_o =12,000; λ_{ext1} =280nm, ϵ_{ext2} =6,900; λ_{ext2} =315nm, ϵ_{ext2} =7,500; λ_{ext3} =350nm, ϵ_{ext3} =5,700.

EXAMPLE 26

30

40

45

50

From $\underline{17}$ (2.0 g, 7.3 mmol) and 2-bromo(t-butyldimethylsilyl) ethanol (1.57 mL, 8.7 mmol, 1.2 eq) using the general alkylating procedure described for compound $\underline{24}$, was provided 2.1 g (69%) of bromide $\underline{32}$, a white crystalline solid.

¹H-NMR for 32 [300 MHz, CDCl₃]: δ 0.10 (s, 9H), 0.80 (s, 6H), 4.00 (t, J=6.0 Hz, 2H), 4.47 (t, J=6.0 Hz, 2H), 7.55 to 7.61 (m, 3H), 7.75 (t, J=8.4 Hz, 1H), 8.17 (d, J=7.7 Hz, 1H), 8.32 (s, 1H), 8.51 (d, J=7.9 Hz, 1H). IR (CHCl₃): 3010, 2980, 2930, 2860, 1645, 1605, 1580 cm⁻¹.

The bromide $\underline{32}$ (2.14 g, 5.1 mmol) was stannylated following the general stannylation procedure described for compound $\underline{8}$. The crude TBS-protected stannane was then redissolved in dry THF (51 mL), and tetrabuty-lammonium fluoride (7.6 mL, 7.6 mmol, 1.5 eq) was added at 0°C. The reaction mixture was then stirred for 1h at room temperature, poured into ethyl acetate, and washed with water (1x), saturated ammonium chloride solution (1x), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo. Purification using flash chromatography (40% EtOAc/hex) provided 1.34 g (65%) of stannane $\underline{33}$, a white solid. ¹H-NMR for $\underline{33}$ [300 MHz, CDCl₃]: δ 0.36 (s, 9H), 2.86 (t, J=5.2 Hz, 1H), 4.07 to 4.12 (m, 2H), 4.62 (t, J=5.5 Hz, 2H), 7.43 (d, J=8.2 Hz, 1H), 7.56 to 7.64 (m, 2H), 7.78 (t, J=7.4 Hz, 1H), 8.34 (d, J=8.2 Hz, 1H), 8.40 (s, 1H), 8.51 (d, J=8.2 Hz, 1H).

IR (CHCl₃): 3540 to 3320, 3020, 1630, 1607, 1570cm⁻¹.

EXAMPLE 28

15

25

Following the general coupling procedure described for compound <u>10</u>, the bicyclic β-keto ester <u>9</u> (506 mg, 1.45 mmol) was coupled to the aryl stannane <u>33</u> (509 mg, 1.21 mmol, 0.83 eq) to provide 621 mg (80%) of <u>34</u>, a yellow foam.

¹H-NMR for $\underline{34}$ [300 MHz, CDCl₃]: δ 0.15 (s, 9H), 1.30 (d, J=6.0 Hz, 3H), 2.86 (broad t, J=4,8 Hz, 1H), 3.27 to 3.37 (complex m, 3H), 4.06 (d, J=4.9 Hz, 2H), 4.23 to 4.34 (complex m, 2H), 4.58 (t, J=5.2 Hz, 2H), 5.29 (ABq,

J=13.7 Hz, Δ_{0} AB=53.7 Hz, 2H), 7.42 to 7.59 (m, 5H), 7.70 (t, J=7.6 Hz, 1H), 8.08 (d, J=8.4 Hz, 2H), 8.12 (d, J=8.1 Hz, 1H), 8.39 (s, 1H), 8.46 (d, J=7.8 Hz, 1H).

IR (CHCl₃): 3600 to 3240, 3010, 2960, 1775, 1720, 1640, 1610, 1520 cm⁻¹. U.V. (CH₃CN): λ =330 nm, ϵ =11,300.

50

45

5

25

30

35

40

55

TMSO 10 OH CO2PNB 34 15 HO Η 20 OH CO₂K 35

From 34 (18.9 mg, 2.9x10⁻² mmol), using the general deprotection procedure described for compound 12, was provided 5.4 mg (39%) of carbapenem 35, a yellow solid.

¹H-NMR for 35 [300 mHz, D₂0]: δ 1.47 (d, J=6.3 Hz, 3H), 3.34 (½ ABX, J_{AB}=16.3 Hz, J_{AX} = 9.3 Hz, 1H), 3.64 to 3.97 (complex m, 2H), 4.41 (broad t, J=5.7 Hz, 2H), 4.39 to 4.56 (complex m, 4H), 7.48 (d, J=8.8 Hz, 1H), 7.58 (d, J= 8.2 Hz, 1H), 7.67 (t, J=7.4 Hz, 1H), 7.86 (t, J=7.3 Hz, 1H), 8.11 to 8.16 (m, 2H), 8.26 (d, J=8.2 Hz,

IR (KBr): 2980, 2920, 1750, 1640, 1610, 1580cm⁻¹. UV (MOPS Buffer): λ_0 =324 nm, ϵ_0 =8,680: λ_{sut1} =318 nm, ϵ_{ext1} =5,110; λ_{ext2} =351 nm, ϵ_{ext2} =4,090.

From 17 (500 mg, 1.82 mmol) and 2-bromo-1,1,1-trifluoroethane (1.9 mL, 20.9 mmol, 11.5 eq) using the general alkylating procedure described for compound 24, was provided 189 mg (29%) of bromide 38, a white

¹H-NMR for <u>38</u> [300 MHz, CDCl₃]: δ 5.05 (broad d, J= 7.4 Hz, 2H), 7.26 (d, J=8.3 Hz, 1H), 7.59 to 7.64 (m, 2H), 7.73 (t, J=7.7 Hz, 1H), 8.16 (d, J=8.2 Hz, 1H), 8.34 (s, 1H), 8.50 (d, J=7.2 Hz, 1H). IR (CHCl₃): 3200, 1670, 1610, 1580, 1560 cm⁻¹.

EXAMPLE 31

CF₃ CF3 45 50 SnMe₃ Br 39 38

From 38 (189 mg, 0.53 mmol), using the general stannylaton procedure described for compound 8, was provided 171 mg (73 %) of stannane 39, a white crystalline solid. ¹H-NMR for <u>39</u> [300 MHz, CDCl₃]: δ 0.28 (s, 9H), 5.09 (broad d, J=7.8 Hz, 2H), 7.38 (d, J=8.2 Hz, 1H), 7.57 (d, J=7.1 Hz, 1H), 7.62 (t, J=7.7 Hz, 1H), 7.79 (t, J=7.0 Hz, 1H), 8.32 (d, J=8.2 Hz, 1H), 8.38 (s, 1H), 8.53 (d, J=6.8 Hz, 1H).

IR (CHCl₃): 3010, 2980, 2910, 1660, 1605, 1590, 1575 cm⁻¹.

EXAMPLE 32

5

20

25

30

55

Following the coupling procedure described for compound $\underline{26}$, the bicyclic β -keto ester $\underline{9}$ (80 mg, 0.23 mmol) was coupled to the aryl stannane $\underline{39}$ (91.9 mg, 0.21 mmol, 0.91 eq) to provide 86.7 mg (68%) of carbapenem 40, a yellow solid.

¹H-NMR for 40 [300 MHz, CDCl₃]: δ 1.39 (d, J=6.3 Hz, 3H), 3.32 to 3.43 (complex m, 3H), 4.28 to 4.41 (complex

m, 2H), 5.07 (broad d, J=7.7 Hz, 2H), 5.29 (ABq, J=13.5 Hz, Δ υ AB = 59.5 Hz, 2H), 7.35 (d, J=8.8 Hz, 1H), 7.47 to 7.52 (m, 3H), 7.58 (t, J=7.8 Hz, 1H), 7.73 (t, J=7.7 Hz, 1H), 8.06 (d, J=8.8 Hz, 2H), 8.11 (d, J=8.2 Hz, 1H), 8.38 (s, 1H), 8.49 (d, J=6.7 Hz, 1H).

IR (CHCl₃): 3010, 2970, 1775, 1720, 1670, 1610, 1520 cm⁻¹.

U.V. (CH₃CN): λ =324 nm, ϵ =14,600.

EXAMPLE 33

From $\underline{40}$ (54.7 mg, 0.09 mmol), using the deprotection procedure described for compound $\underline{27}$, was provided 30.4 mg (66%) of carbapenem $\underline{41}$, a white solid.

¹H-NMR for $\frac{41}{2}$ [300 MHz, 2:1 D₂0/CD₃CN]: δ 1.73 (d, J=6.0 Hz, 3H), 3.62 (½ ABX, J_{AB}=16.2 Hz, J_{AX}=10.0 Hz, 1H), 3.87 to 3.93 (complex m, 2H), 4.64 to 4.75 (complex m, 2H), 5.69 (broad d, J=8.7 Hz, 2H), 8.05 to 8.19 (m, 3H), 8.39 (t, J=7.7 Hz, 1H), 8.85 to 8.95 (m, 3H).

IR (KBr): 2980, 1750, 1660, 1650, 1605, 1580 cm⁻¹. U.V. (MOPS Buffer): λ_{o} =322 nm, ϵ_{o} =12,000, λ_{ext1} =315 nm, ϵ_{ext2} =6,300, λ_{ext2} =348 nm, ϵ_{ext2} =4,500.

EXAMPLE 34

5

10

15

20

40

45

50

55

42 Br 43 SnMe₃

From $\underline{42}$ (54.7 mg, 0.17 mmol), using the general stannylation procedure described for compound 8, was provided 34.5 mg (50%) of stannane $\underline{43}$, a white foam.

¹H-NMR for <u>43</u> [300 MHz, CDCl₃]: δ 0.37 (s, 9H), 2.88 (t, J=7.4 Hz, 2H), 4.68 (t, J=7.4 Hz, 2H), 7.38 (d, J=8.2 Hz, 1H), 7.58 (t, J=7.7 Hz, 1H), 7.67 (d, J=8.2 Hz, 1H), 7.78 (t, J=7.7 Hz, 1H), 8.33 (d, J=8.2 Hz, 1H), 8.40 (s, 1H), 8.50 (d, J=8.1 Hz, 1H).

IR (CHCl₃): 3010, 2920, 2260, 1640, 1610, 1580 cm⁻¹.

EXAMPLE 35

HO H H
CO₂PNB
CO₂PNB
CO₂PNB
CN
35

Following the coupling procedure described for compound $\underline{26}$, the bicyclic β -keto ester $\underline{9}$ (50.1 mg, 0.14 mmol) was coupled to the aryl stannane $\underline{43}$ (53.8 mg, 0.13 mmol, 0.91 eq) to provide 25.3 mg (33%) of $\underline{44}$, a white solid.

¹H-NMR for $\frac{44}{2}$ [300 MHz, D₈ DMSO, Poorly resolved]: δ 1.19 (d, J=6.3 Hz, 3H), 2.98 to 3.07 (broad s, 2H), 3.45 to 3.49 (complex m, 2H), 3.62 to 3.74 (m, 1H), 3.98 to 4.07 (m, 1H), 4.25 to 4.36 (m, 1H), 4.60 to 4.70 (broad s, 2H), 5.15 to 5.38, (m, 2H), 7.43 to 7.46 (m, 2H), 7.62 to 7.73 (m, 3H), 7.80 to 7.83 (broad s, 1H), 7.96 to 8.02 (m, 2H), 8.31 to 8.35 (m, 1H), 8.42 to 8.46 (m, 1H), 8.53 (s, 1H). IR (KBr): 3110, 3060, 2960, 2250, 1780, 1715, 1630, 1605, 1575, 1515cm⁻¹.

25

30

35

From $\underline{44}$ (17.8 mg, 3.1×10^{-2} mmol), using the deprotection procedure described for compound $\underline{27}$, was provided 8.5 mg (57%) of carbapenem $\underline{45}$, a white solid ¹H-NMR for $\underline{45}$ [300 MHz, 2:1 D₂0/CD₃CN]: δ 1.74 (d, J=6.4 Hz, 3H), 3.47 (t, J=6.3 Hz, 2H), 3.63 (½ ABX, J_{AB} = 16.7 Hz, J_{AX} = 9.8 Hz, 1H), 3.87 to 4.00 (complex m, 2H), 4.64 to 4.78 (complex m, 2H), 5.16 (t, J=6.8 Hz, 2H), 8.04 (d, J=8.9 Hz, 1H), 8.12 to 8.17 (m, 2H), 8.37 (t, J=7.7 Hz, 1H), 8.84 to 8.92 (m, 3H).

IR (KBr): 2970, 2920, 2250, 1750, 1640, 1610, 1585 cm⁻¹.

U.V. (MOPS Buffer): λ_{o} =319 nm, ϵ_{o} =15,400; λ_{oxt1} =316 nm, ϵ_{oxt2} =9,200; λ_{oxt2} =350 nm, ϵ_{oxt2} =6,600.

EXAMPLE 37

Method A:

40

50

55

45

To a stirred solution of <u>46</u> (200 mg, 0.77 mmol) in concentrated sulfuric acid (12.9 mL) at 0°C was added a solution of sodium azide (75.3 mg, 1.16 mmol, 1.5 eq) in water (1 mL). After stirring the resultant black mixture for 24 hours at room temperature, ice-water (10 mL) was added. The reaction mixture was then stirred for 15 minutes, poured into ethyl acetate (200 mL), and washed with saturated sodium bicarbonate solution (2 x 25 mL), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo to obtain a mixture of 1:1 inseparable bromo-phenanthridone isomers (<u>48</u> and <u>17</u>) in 74% yield (156 mg).

EXAMPLE 38

Method B:

5

10

15

20

25

30

35

A suspension of $\underline{46}$ (200 mg, 0.77 mmol) and hydroxylamine hydrochloride (161 mg, 2.32 mmol, 3.0 eq) in anhydrous pyridine (7.7 mL) was sonicated to afford dissolution. The homogeneous mixture was then stirred at room temperature for 3.5 hour and poured into ether (100 mL). The ethereal layer was washed with water (1x), 1N HCl solution (4 x 15 mL), saturated sodium blcarbonate solution (2 x 15 mL), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo to afford 200 mg (95%) of the hydroxylamine isomers $\underline{47}$, a white solid. [The hydroxylamine isomers $\underline{47}$ was not characterized and was taken to the next step].

A mixture of $\underline{47}$ (104 mg, 0.38 mmol) in an excess amount of polyphosphoric acid (9g) was heated to 200°C. After 30 minutes the resultant black paste was dissolved in ice-water (50 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic layers were then washed with saturated sodium bicarbonate solution (3 x 25 mL), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo. The inseparable 1:1 mixture of the phenanthridone isomers (48 and 17) was isolated in 96% yield (100 mg) as a beige solid.

¹H-NMR for $\frac{48/17}{1}$ [300 MHz, D₆ DMSO, mixture]: δ 7.24 to 7.38 (m, 3H), 7.52 (t, J=6.9 Hz, 1H), 7.64 to 7.71 (m, 2H), 7.79 to 7.89 (m, 2H), 8.22 (d, J=8.5 Hz, 1H), 8.32 (d, J=7.4 Hz, 1H), 8.45 (d, J=7.8 Hz, 1H), 8.56 to 8.60 (m, 2H), 8.75 (s, 1H).

IR (KBr): 3020, 2880, 1685, 1610 cm⁻¹.

Fast atom bombardment mass spectrum: m/e 274, 276 (calculated MH+ for C₁₃H₈BrNO= 274, 276).

50

45

EXAMPLE 39

30

35

40

45

50

55

From an inseparable mixture of compounds $\underline{48}$ and $\underline{17}$ (125 mg, 0.46 mmol), using the general stannylation procedure described for compound $\underline{8}$, was provided 136 mg (83%) of an inseparable 1:1 mixture of stannanes $\underline{49}$ and $\underline{18}$, a white foam.

¹H-NMR for $\underline{49/18}$ [400 MHz, CDCl₃, mixture]: δ 0.36 (s, 9H), 0.40 (s, 9H), 7.29 to 7.32 (m, 3H), 7.47 (t, J=7.7 Hz, 1H), 7.56 to 7.62 (m, 2H), 7.74 (d, J=8.5 Hz, 1H), 7.80 (t, J=7.7 Hz, 1H), 8.33 (d, J=8.3 Hz, 1H), 8.31 (s, 1H), 8.35 (d, J=8.8 Hz, 1H), 8.42 (s, 1H), 8.48 (d, J=7.7 Hz, 1H), 8.55 (d, J=8.2 Hz, 1H), 10.12 (broad s, 1H), 10.23 (broad s, 1H).

IR (CHCl₃, mixture): 3270, 3010, 2915, 1660, 1601, 1555 cm⁻¹.

TMSO
H H
CO2PNB

Following the general coupling procedure described for the synthesis of compound $\underline{10}$, the bicyclic β -keto ester 9 (162.4 mg, 0.47 mmol, 1.1 eq) was coupled to a mixture of the aryl stannanes $\underline{49}$ and $\underline{18}$ (152 mg, 0.42 mmol, 1.1 eq), to provide 172 mg (68%) of a 1.2:1.0 inseparable mixture of compounds $\underline{50}$ and $\underline{19}$, respectively, as a yellow foam.

¹H-NMR for 50/19 [300 MHz, CDCl₃, mixture]: δ 0.15 (s, 18H), 1.31 (d, J=6.3 Hz,6H), 3.27 to 3.48 (complex m,

6H), 4.25 to 4,38 (complex m, 4H), 5.22 (ABq, J=13.6 Hz, Δ $_{\mbox{$\mathcal{V}$}}$ $_{\mbox{$AB$}}$ = 50.5 Hz, 2H), 5.28 (ABq, J=13.7 Hz, Δ $_{\mbox{$\mathcal{V}$}}$ $_{\mbox{$AB$}}$ = 53.4 Hz, 2H), 7.23 (t, 7.6 Hz, 1H), 7.32 to 7.39 (m, 4H), 7.45 to 7.54 (m, 5H), 7.62 (t, J=7.5).Hz, 1H), 7.76 (t, J=7.7 Hz, 1H), 7.95 to 8.05 (m, 3H), 8.06 (d, J=8.6 Hz, 2H), 8.14 (d, J=8.2 Hz, 1H), 8.20 (s, 1H), 8.30 (s, 1H), 8.50 (d, J=8.3 Hz, 1H), 8.56 (d, J=7:7 Hz, 1H,) 11.12 (s, 1H), 11.54 (s, 1H). IR (CHCl₃): 3400, 3040, 3010, 2960, 1775, 1725, 1665, 1610, 1520 cm⁻¹.

45

50

55

From an inseparable mixture of compounds $\underline{50}$ and $\underline{19}$ (80 mg, 0.13 mmol), using the general deprotection procedure described for compound $\underline{12}$, was provided 7.4 mg (13%) of carbapenem $\underline{51}$, a yellow solid, isolated via reverse phase prep-plate chromatography (6:1 H₂O/CH₃CN). The carbapenem $\underline{20}$ was also isolated in 32% yield (18.3 mg).

¹H-NMR for $\frac{51}{2}$ [400 MHz, 2:1 D₂0/CD₃CN]; δ 1.68 (d, J=6.3 Hz, 3H), 3.56 (½ ABX, J_{AB}=16.7 Hz, J_{AX}=9.7 Hz, 1H), 3.86 to 3.95 (complex m, 2H), 4.59 to 4.63 (m, 1H), 4.69 to 4.74 (m, 1H), 7.75 to 7.78 (m, 2H), 7.93 (t, J=7.9 Hz, 1H), 8.05 (d, J=8.1 Hz, 1H), 8.62 to 8.68 (m, 3H).

IR (KBr): 2970, 1750, 1660, 1650, 1610 cm-1. U.V. (MOPS Buffer): λ_{o} =322 nm, ϵ_{o} =13,300, λ_{ext1} =307 nm, ϵ_{ext2} =8,840; λ_{ext2} =330 nm, ϵ_{ext2} =7,970; λ_{ext3} =347 nm, ϵ_{ext3} =7,100.

5

$$CONEt_2$$
 $B(OH)_2$
 TMS
 Br
 TMS
 SOM_2
 $CONEt_2$
 TMS
 SOM_2
 TMS
 SOM_2
 TMS
 SOM_2
 TMS
 SOM_2
 SOM_2

15

20

Following the Suzuki coupling procedure described for compound 5, boronic acid 3 (779.3 mg, 2.7 mmol) was coupled to aryl bromide 52 (590.5 mg, 2.9 mmol, 1.1 eq) providing 812.5 mg (82.5%) of biphenyl 53, a yellow foam.

¹H-NMR for 53 [400 MHz, CDCl₃, rotamers]; δ 0.24 (s, 9H), 0.80(t, J=7.1 Hz, 3H), 0.91(t, J=7.1Hz, 3H), 2.80 to 3.67 (broad, 4H), 7.30 to 7.33 (m, 2H), 7.46 (t, J=8.1 Hz, 1H), 7.52 to 7.58 (m, 3H), 7.90 (d, J=8.8 Hz, 1H). IR (CHCl₃): 3000, 2980, 1610, 1580, 1525 cm⁻¹.

EXAMPLE 43

25 CONEt₂ CONEt₂ 30 TMS Ι <u>54</u> 53

35

40

lodine monochloride in dichloromethane (10.9 mL, 10.9 mmol, 5.0 eq) was added dropwise over 0.5 hour to a stirred solution of 53 (812.5 mg, 2.19 mmol) in dry dichloromethane (10.9 mL). The reaction mixture was then poured in ether (200mL) and washed with saturated sodium thiosulfate solution (2 x 25 mL), water, saturated bicarbonate solution (2 x 25 mL), water and brine. The etheral layer was then dried (MgSO₄), filtered, and evaporated in vacuo. Purification using flash column chromatography (30% EtOAc/hex) afforded 887.7 mg (95.4%) of 54, a yellow foam.

¹H-NMR for 54 [400MHz, CDCl₃, rotamers]: δ 0.75 (t, J=7.0 Hz, 3H), 0.93 (t, J=7.0 Hz, 3H), 2.82 to 3.60 (broad, 45 4H), 7.07 (d, J=8.1 Hz, 1H), 7.46 to 7.51 (m, 2H), 7.56 to 7.60 (m, 2H), 7.73 (d, J=8.1 Hz, 1H), 7.97 (d, J=8.1

Hz, 1H). IR (CHCl₃): 3000, 2980, 1620, 1580, 1525 cm⁻¹.

50

5
CONEt 2

NH

10
$$54$$
 55

To a stirred solution of $\underline{54}$ (158.0 mg, 0.37 mmol) in 3:2:2 AcOH/EtOH/THF (7.0 mL) was added iron powder (103.8 mg, 1.86 mmol, 5.0 eq), and the reaction mixture was stirred at reflux until a white solid had separated (30 minutes). The reaction mixture was poured into ethyl acetate (200 mL) and washed with saturated sodium bicarbonate solution (1 x 25 mL), water, and brine. The organic layer was dried (MgSO₄) filtered and evaporated in vacuo. Chloroform (\sim 10 mL) was added and the product was filtered to afford 119.0 mg (99.5%) of $\underline{55}$, a white solid.

 1 H-NMR for <u>55</u> [400 MHz, D₆ DMSO]: δ 7.24 (t, J=7.7 Hz, 1H), 7.34 (d, J=8.1 Hz, 1H), 7.50 (t, J=7.6 Hz, 1H), 8.42 (d, J=8.1 Hz, 1 H), 8.89 (s, 1H). IR(KBr): 3010, 2990, 2870, 1665, 1600, 1585 cm⁻¹.

EXAMPLE 45

20

25

40

45

From $\underline{55}$ (143.0 mg, 0.44 mmol) and bromoacetonitrile (34.1 μ L, 0.49 mmol, 1.1 eq), using the general alkylating procedure described for compound $\underline{24}$, was provided 124.1 mg (77.4%) of the N-cyanomethyl compound $\underline{56}$, a beige solid. 1H-NMR for $\underline{56}$ [400 MHZ, D₆ DMSO]: δ 5.50 (s, 2H), 7.42 (t, J=7.1 Hz, 1H), 7.66 to 7.72 (m, 2H), 8.01 (d, J=8.5 Hz, 1H), 8.06 (d, J=8.4 Hz, 1H), 8.59 (d, J=8.1 Hz, 1H), 8.94 (s, 1H). IR(KBr): 3060, 2990, 2950, 1660, 1595 cm⁻¹.

EXAMPLE 46

From <u>56</u> (120.0 mg, 0.33 mmol), using the general stannylation procedure described for compound <u>8</u>, was provided 94.5 (70%) of stannane 57, a white solid.

¹H-NMR for $\underline{56}$ [400 MHz, CDCl₃]: $\underline{\delta}$ 0.39 (s, 9H), 5.34 (s, 2H), 7.36 to 7.41 (m, 2H), 7.59 (t, J=7.8 Hz, 1H), 7.72 (d, J=7.7 Hz, 1H), 8.34 to 8.41 (m, 3H).

IR (CHCl₃): 3030, 3010, 2980, 1660, 1610, 1595, 1580 cm⁻¹.

EXAMPLE 47

5

20

25

30

35

40

45

50

55

To a stirred solution of the bicyclic β-keto ester $\underline{9}$ (73.8 mg, 0.21 mmol) in dry THF (1.06 ml) at -78°C under N₂ was added diisopropylamine (32.7 μl, 0.23 mmol, 1.1 eq). The resultant yellow mixture was stirred for 10 minutes before trifluoromethanesulfonic anhydride (39.2 μl, 0.23 mmol, 1.1 eq) was added. After 20 minutes the reaction mixture was treated sequentially with anhydrous N-methylpyrrolidinone (1.06 mL), the Pd₂(dba). $_3$ -CHCl₃ catalyst (4.4 mg, 4.2 x 10⁻³ mmol, 2.0 mol%), the aryl stannane $\underline{57}$ (56.1 mg, 0.14 mmol, 0.66 eq), and zinc chloride (0.14 mL, 0.14 mmol, 0.66 eq). The low temperature bath was then removed and the reaction vessel was placed in a warm water bath to quickly reach ambient temperature. The resulting tea-color solution was stirred for 50 minutes at ambient temperature.

The reaction was then poured into ether (100 mL) and washed with water (3x) and brine. The organic layer was dried (MgSO₄), filtered, and evaporated in vacuo. Purification using flash chromatography (70%, EtOAc/hex) provided 49.4 mg (61.9%) of the coupled product 58, a white solid.

¹H-NMR [400 MHz, D₆ DMSO]: δ 1.18 (d, J=6.2 Hz, 3H), 3.24 to 3.31 (m, 1H), 3.47 to 3.49 (m, 1H), 3.70 ($^{\prime}$ 2ABX, J_{AB}=18.4 Hz, J_{AX}=8.4 Hz, IH), 4.00 to 4.05 (m, 1H), 4.31 (t, J=8.3 Hz, 1H), 5.24 (ABq, J=14.5 Hz,

 Δ_{T} AB=44.7 Hz, 2H), 5.50(s, 2H), 7.39 (d, J=8.4 Hz, 3H), 7.61 (d, J=8.1 Hz, 1H), 7.67 (d, J=3.9 Hz, 2H), 7.93 (d, J=8.6 Hz, 2H), 8.23 (d, J=8.4 Hz, 1H), 8.45 (d, J=7.8 Hz, 1H), 8.51 (s, 1H). IR (KBr): 2920, 2855, 1775, 1720, 1660, 1605, 1518 cm⁻¹. U.V. (CH₃CN): λ = 309 nm, ϵ = 6,317.

From $\underline{58}$ (55.4 mg, 9.8 x 10^{-2} mmol) and 1.0 \underline{M} aqueous sodium bicarbonate solution (0.11 mL, 0.11 mmol, 1.2 eq), using the deprotection procedure described for compound $\underline{27}$, was provided 17.5 mg (39.5%) of carbapenem 59, a white solid.

¹H-NMR [400 MHz, 2:1 D₂O/CD₃CN]: δ 1.62 (d, J=6.5 Hz, 3H), 3.50 (½ABX, J_{AB}= 16.5 Hz, J_{AX}=9.8 Hz, 1H), 3.81 to 3.89 (complex m, 2H), 4.53 to 4.57 (m, 1H), 4.65 (t, J=9.1 Hz, 1H), 5.74 (s, 2H), 7.81 (t, J=7.6 Hz, 1H), 7.90 (d, J=8.1 Hz, 1H), 7.98 (d, J=8.4 Hz, 1H), 8.03 (t, J=7.5 Hz, 1H), 8.59 (d, J=8.4 Hz, 1H), 8.65 (s, 1H), 8.71 (d, J=8.1 Hz, 1H).

IR(KBr): 2970, 1750, 1645, 1610, 1585 cm⁻¹.

30 U.V. (MOPS Buffer): λ_0 =328nm, ϵ_0 =16,500; λ_{ext1} =331nm, ϵ_{ext1} =10,000; λ_{ext2} =345nm, ϵ_{ext2} =9,590.

EXAMPLE 49

25

From <u>55</u> (200 mg, 0.62 mmol) and 2-bromo(t-butyldimethylsilyl)ethanol (0.23 mL, 1.24 mmol, 2.0 eq), using the general alkylating procedure described for compound <u>24</u>, was provided 121.6 mg (40.7%) of <u>60</u>, a white solid.

¹H NMR for $\underline{60}$ [400 MHz,CDCl₃]: δ -0.08 (s, 6H), 0.79 (s, 9H), 3.99 (t, J=6.2 Hz, 2H), 4.49(t, J=6.2 Hz, 2H), 7.27 (t, J=7.6 Hz, 1H), 7.50 (t, J=7.8 Hz, 1H), 7.64 (d, J=8.7 Hz, 1H), 7.85 (d, J=8.4 Hz, 1H), 8.14 (d, J=8.1 Hz, 1H), 8.19 (d, J=8.6 Hz, 1H), 8.59 (s, 1H).

IR(CHCl₃): 3000, 2950, 2930, 2860, 2360, 1640, 1605, 1590, 1575.

55

lodide <u>60</u> (112.2 mg, 0.234 mmol) was stannylated following the general stannylation procedure described for compound <u>8</u>. The crude TBS-protected stannane was then redissolved in dry THF (4.7 mL), and tetrabuty-lammonium fluoride (0.26 mL, 0.26 mmol, 1.1 eq) was added at 0°C. The reaction mixture was then stirred for 15 minutes at 0°C, poured into ethyl acetate, and washed with water (1x), saturated ammonium chloride solution (1x), water (2x), and brine. The organic layer was dried (MgSO₄), filtered, and evaporated <u>in vacuo</u>. Purification using flash chromatography (45% EtOAc/hex) provided 76.8 mg (85%) of stannane <u>61</u>, a white solid.

¹H-NMR for <u>61</u> [400 MHz,CDCl₃]: δ 0.39 (s, 9H), 2.98 (t, J=4.9 Hz, 1H), 4.10(t, J=5.3 Hz, 2H), 4.63 (t, J=5.5 Hz, 2H), 7.33 (t, J=6.9 Hz, 1H), 7.45 (d, J=7.6 Hz, 1H), 7.51 (d, J=7.8 Hz, 1H), 7.71 (d, J=7.7 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 8.39 (s, 1H), 8.42 (d, J=7.9 Hz, 1H).

IR(CHCl₃): 3560 to 3200, 3000, 2920, 1630, 1605, 1580 cm⁻¹.

EXAMPLE 51

15

20

25

40

45

50

55

30

HO

H

H

H

CO₂PNB

$$CO_2$$
PNB

 CO_2 PNB

 CO_2 PNB

 CO_2 PNB

 CO_2 PNB

To a stirred solution of the bicyclic β -keto ester $\underline{9}$ (158.3 mg, 0.45 mmol) in dry THF (2.3 mL) at -78°C under N₂ was added diisopropylamine (70.0 μ L, 0.50 mmol, 1.1 eq). The resultant yellow mixture was stirred for 10 minutes before trifluoromethanesulfonic anhydride (84.1 μ L, 0.50 mmol, 1.1 eq) was added. After 15 minutes triethylamine (69.7 μ L, 0.50 mmol, 1.1 eq), followed by the trimethylsilyl trifluoromethanesulfonate (96.6 μ L, 0.50 mmol, 1.1 eq), was added and the reaction mixture was stirred for 20 minutes.

The reaction mixture was then treated sequentially with anhydrous N-methylpyrrolidinone (2.3 mL), the $Pd_2(dba)3 \cdot CHCl_3$ catalyst (9.4 mg, 9.1 x10⁻³ mmol, 2.0 mol%), the aryl stannane <u>61</u> (117.0 mg, 0.30 mmol, 0.66 eq), and zinc chloride (0.30 mL, 0.30 mmol, 0.66 eq). The low temperature bath was then removed and the reaction vessel was placed in a warm water bath to quickly reach ambient temperature. The solution was stirred for 30 minutes at ambient temperature.

The reaction was then poured into ether (150 mL) and washed with water (3x) and brine. The organic layer was dried (MgSO₄), filtered and evaporated in vacuo. Purification using flash chromatography (60% EtOAc/hex) provided 88.6 mg (45.5%) of the coupled product 62, a yellow oil.

¹H-NMR for <u>62</u> [400 MHz, CDCl₃] δ 0.14 (s, 9H), 1.30 (d, J=6.2 Hz, 3H), 2.86 (t, J=4.8 Hz, 1H), 3.28 to 3.33 (complex m, 2H), 3.41 (½ABX, J_{AB} =18.5 Hz, J_{AX} =8.8 Hz, 1H), 4.08 (complex m, 2H), 4.24 to 4.28 (m, 1H), 4.34

(t, J=9.4 Hz, 1H), 4.61 (t, J=5.1 Hz, 2H), 5.20 (AB $_{\rm q}$, J $_{\rm AB}$ =13.5 Hz, Δ $_{\rm Y}$ $_{\rm AB}$ = 66.7 Hz, 2H), 7.22 to 7.28 (m, 3H), 7.43 to 7.47 (m, 2H), 7.50 (d, J=7.1 Hz, 1H), 7.89 (d, J=8.8 Hz, 2H), 8.03 (d, J=7.5 Hz, 1H), 8.16 (s, 1H), 7.44 (d, J=8.3 Hz, 1H).

IR(CHCl₃): 3680 to 3200, 3010, 2960, 1780, 1730, 1640, 1610, 1585, 1525 cm⁻¹. U.V. (CH₃CN): λ = 314 nm, ϵ = 16,210

Claims

1. A compound of the formula:

R² H R
R
N
A where A is:

15

20

25

30

35

40

45

50

55

5

10

wherein:

R is H or CH₃;

Xh is O or S:

R¹ and R² are independently H, CH₃-, CH₃CH₂-, (CH₃)₂CH-, HOCH₂-, CH₃CH(OH)-, (CH₃)₂C(OH)-, FCH₂CH(OH)-, F₂CHCH(OH)-, F₃CCH(OH)-, CH₃CH(F)-, CH₃CF₂-, or (CH₃)₂C(F)-;

R^a are independently selected from the group consisting of hydrogen and the radicals set out below, provided that not more than four R^a and R^b radicals are other than hydrogen:

- a) a trifluoromethyl group: -CF3;
- b) a halogen atom: -Br, -Cl, -F, or -l;
- c) C₁-C₄ alkoxy radical: -OC₁₋₄ alkyl, wherein the alkyl is optionally mono-substituted by

 R^q , where R^q is a member selected from the group consisting of -OH, -OCH₃, -CN, -C(O)NH₂, -OC(O)NH₂, -CHO, -OC(O)N(CH₃)₂, -SO₂NH₂, -SO₂N(CH₃)₂, -SOCH₃, -SO₂CH₃, -F, -CF₃, -COOM^a (where M^a is hydrogen, alkali metal, methyl or phenyl), tetrazolyl (where the point of attachment is the carbon atom of the tetrazole ring and one of the nitrogen atoms is mono-substituted by M^a as defined above) and -SO₃M^b (where M^b is hydrogen or an alkali metal);

- d) a hydroxy group: -OH;
- e) a carbonyloxy radical: -O(C=O)Rs, where

 R^a is C_{1-4} alkyl or phenyl, each of which is optionally mono-substituted by R^q as defined above; f) a carbamoyloxy radical: $-O(C=O)N(R^y)R^z$ where

R^y and R^z are independently H, C₁₋₄ alkyl (optionally mono-substituted by Rq as defined above), together a 3- to 5-membered alkylidene radical to form a ring (optionally substituted with Rq as defined above) or together a 2- to 4-membered alkylidene radical, interrupted by -O-, -S-, -S(O)- or -S(O)2-, to form a ring (where the ring is optionally mono-substituted with Rq as defined above);

- g) a sulfur radical: -S(O)_n-R^s where n = 0-2, and R^s is defined above;
- h) a sulfamoyl group: -SO₂N(R^y)R^z where R^y and R^z are as defined above;
- i) azido: Na
- j) a formamido group: -N(Rt)(C=O)H, where

 R^t is is H or C_{1-4} alkyl, and the alkyl thereof is optionally mono-substituted by R^q as defined above; k) a $(C_1-C_4$ alkyl)carbonylamino radical: $-N(R^t)(C=O)C_{1-4}$ alkyl, where R^t is as defined above, and the alkyl group is also optionally mono-substituted by R^q as defined above;

- I) a $(C_1-C_4 \text{ alkoxy})$ carbonylamino radical: $-N(R^4)(C=O)OC_{1-4} \text{ alkyl}$, where R^4 is as defined above, and the alkyl group is also optionally mono-substituted by R^4 as defined above;
- m) a ureido group: -N(Rt)(C=O)N(Ry)Rz where Rt, Ry and Rz are as defined above;
- n) a sulfonamido group: -N(Rt)SO₂Rs, where Rs and Rt are as defined above;
- o) a cyano group: -CN;

5

10

15

20

25

30

35

40

45

50

55

- p) a formyl or acetalized formyl radical: -(C=O)H or -CH(OCH₃)₂;
- q) (C₁-C₄ alkyl)carbonyl radical wherein the carbonyl is acetalized: -C(OCH₃)₂C₁₋₄ alkyl, where the alkyl is optionally mono-substituted by Rq as defined above;
- r) carbonyl radical: -(C=O)R^a, where R^a is as defined above;
- s) a hydroximinomethyl radical in which the oxygen or carbon atom is optionally substituted by a C₁-C₄ alkyl group: -(C=NOR²)R² where R² and R² are as defined above, except they may not be joined together to form a ring;
- t) a (C_1 - C_4 alkoxy)carbonyl radical: -(C=O)OC₁₋₄ alkyl, where the alkyl is optionally mono-substituted by R^q as defined above;
- u) a carbamoyl radical: -(C=O)N(Ry)Rz where Ry and Rz are as defined above;
- v) an N-hydroxycarbamoyl or $N(C_1-C_4$ alkoxy)carbamoyl radical in which the nitrogen atom may be additionally substituted by a C_1-C_4 alkyl group: -(C=O)-N(OR y)R z where R y and R z are as defined above, except they may not be joined together to form a ring;
- w) a thiocarbamoyl group: -(C=S)N(Ry)(Rz) where Ry and Rz are as defined above;
- x) carboxyl: -COOMb, where Mb is as defined above;
- y) thiocyanate: -SCN;
- z) trifluoromethylthio: -SCF3;
- aa) tetrazolyl, where the point of attachment is the carbon atom of the tetrazole ring and one of the nitrogen atoms is mono-substituted by hydrogen, an alkali metal or a C₁-C₄ alkyl optionally substituted by Rq as defined above;
- ab) an anionic function selected from the group consisting of: phosphono [P=O(OM b)₂]; alkylphosphono {P=O(OM b)-[O(C₁-C₄ alkyl)]}; alkylphosphinyl [P=O(OM b)-(C₁-C₄alkyl)]; phosphoramido [P=O(OM b)N(R v)R z and P=O(OM b)NHR x); sulfino (SO₂M b); sulfo (SO₃M b); acylsulfonamides selected from the structures CONM b SO₂R x , CONM b SO₂N(R v)R z , SO₂NM b CON(R v)R z ; and SO₂NM b CN, where

R^x is phenyl or heteroaryl, where heteroaryl is a monocyclic aromatic hydrocarbon group having 5 or 6 ring atoms, in which a carbon atom is the point of attachment, in which one of the carbon atoms has been replaced by a nitrogen atom, in which one additional carbon atom is optionally replaced by a heteroatom selected from O or S, and in which from 1 to 2 additional carbon atoms are optionally replaced by a nitrogen heteroatom, and where the phenyl and heteroaryl are optionally mono-substituted by R^q, as defined above; M^b is as defined above; and R^z are as defined above;

- ac) C_5 - C_7 cycloalkyl group in which one of the carbon atoms in the ring is replaced by a heteroatom selected from O, S, NH or N(C_1 - C_4 alkyl) and in which one additional carbon atom may be replaced by NH or N(C_1 - C_4 alkyl), and in which at least one carbon atom adjacent to each nitrogen heteroatom has both of its attached hydrogen atoms replaced by one oxygen thus forming a carbonyl moiety and there are one or two carbonyl moieties present in the ring;
- ad) C₂-C₄ alkenyl radical, optionally monosubstituted by one of the substituents a) to ac) above and phenyl which is optionally substituted by Rq as defined above;
- ae) C_2 - C_4 alkynyl radical, optionally monosubstituted by one of the substituents a) to ac) above; af) C_1 - C_4 alkyl radical;
- ag) C₁-C₄ alkyl mono-substituted by one of the substituents a) ac) above;
- ah) a 2-oxazolidinonyl moiety in which the point of attachment is the nitrogen atom of the oxazolidinone ring, the ring oxygen atom is optionally replaced by a heteroatom selected from -S- and NR^t (where R^t is as defined above) and one of the saturated carbon atoms of the oxazolidinone ring is optionally monosubstituted by one of the substituents a) to ag) above;

 R^b is -H, -OH, -CF₃, -(C=O)R^a, -S(O)_nR^a where n = 0-2, -SO₂NR^yR^z, -(C=O)OC₁₋₄alkyl, -(C=O)N(R^y)R^z, -(C=O)N(OR^y)R^z, -(C=S)N(R^y)R^z, -NH₂, C₁₋₄ alkoxy optionally mono-substituted with R^q, R^x as defined above, C₁₋₄ alkyl optionally mono-substituted on an alpha carbon or higher by one of the substituents a)-ae) as defined for R^a;

M is selected from:

- i) hydrogen;
- ii) a pharmaceutically acceptable esterifying group or removable carboxyl protecting group; or iii) an alkali metal or other pharmaceutically acceptable cation.

2. The compound of Claim 1 wherein R¹ is hydrogen and R² is (R)-CH₃CH(OH)- or (R)-CH₃CH(F)-.

3. A compound according to Claim 2 wherein Ra other than hydrogen is selected from the group consisting of:

-OCH3 -OCH2CH2OH -CF3 -F -F -C1 -Br -OH -OCONH2 -SCH3 -SCH2CH2OH -SO2CH3 -SCH2CH2OH -SO2CH3 -SCH2CH2OH -SO2NH2 -NHCHO -NHCOCH3 -CH -CH -CH -CH -CH -CH -CH -CH -COCH3 -CH -CH -CH -CH -CH -CH -COCH3 -CH	5		
-F -C1 -Br -I -OH -OCOCH3 -OCONH2 -SCH3 -SCH2GH2OH -SO2CH3 -SCH2CH2OH -SO2N(CH3)2 -NHCHO -NHCOCH3 -CN -CH0 -COCH3 -CH=NOCH2CO2CH3 -CH=NOCH2CO2CH3 -CH=NOCH2CO2CH3 -CON1CH2 -CONHCH2CO2CH3 -CON1CH3 -CONHCH3 -CH=NOCH2CO2CH3 -CONHCH2CO1CH3 -CON1CH3 -CONHCH3 -CH=NOCH2CO2CH3 -CONHCH3 -CONHCH2CONH2 -CONHCH3 -CONHCH2CONH2 -CONHCH3 -CONHCH2CONH2 -CONHCH2CO1CH3 -CCONHCH2CONH2 -CONHCH2CO1CH3 -CCONHCH2CONH2 -CONHCH2CO1CH3 -CCONHCH2CONH2 -CCHCCHCN -SO2NHCONH2 -CCHCCHCN -CHCCHCONH2 -CCHCCHCN -CHCCHCONH2 -CCHCCHCN -CHCCHCONH2 -CCHCCHCN -CH2CO1CH3 -CCHCCN -CH2CONH2 -CCHCN -CCHCCN -CCHCN -CCHCCN -CH2CONH2 -CCHCN -CCHC		-осн ₃	-осн ₂ со ₂ сн ₃
-Br -I -OH -OCOCH3 -OCONH2 -SCH3 -SCH2CH2OH -SOCH2CH2OH -SO2NH2 -SO2N(CH3)2 -NHCHO -NHCOCH3 -CN -CH0 -COCH3 -COCH2OH -CH=NOCH2CO2CH3 -CH=NOCH2CONH2 -CH=NOCH2CO2CH3 -CH=NOCH2CONH2 -CONHC -CONHCH2CO2CH3 -CONHCH2 -CONHCH3 -CONHCH2CO2CH4 -CONHCH3 -CONHCH2CO2CH4 -CONHCH3 -CONHCH2CO2CH4 -CONHCH2CONH2 -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -SCF3 -PO2NH2 -CONHCOCH3 -SCP3 -SO2NHCN -SO2NHCONH2 -CH=CHCON -SO2NHCONH2 -CH=CHCO2CH3 -CCH2CO2CH3 -SO2NHCON -SO2NHCONH2 -CH=CHCO2CH3 -CCH2CO2CH3 -SO2NHCON -CH2CO2CH3 -SO2NHCON -CH2CO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.		-OCH ₂ CH ₂ OH	-CF ₃
-Br -I -OH -OCOCH3 -OCONH2 -SCH3 -SCH3 -SOCH3 -SCH2CH2OH -SOCH2CH2OH -SO2NH2 -SO2N(CH3)2 -NHCHO -NHCOCH3 -CN -CH9 -COCH3 -CH9NOCH2CO2CH3 -CH=NOCH2CO2CH3 -CONHCH2CO1 -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH3 -CONHCH2CONH2 -CONHCCH3 -CCONHCH2CONH2 -CONHCCH3 -CCONHCH2CONH2 -CCHCCCO2CH3 -SCF3 -PO2NH2 -CONHCONH2 -CCHCCCO2CH3 -SO2NHCONH2 -CH=CHCCN -CH=CHCONH2 -CH=CHCON -CH=CHCONH2 -CH=CHCON -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CC=CC-CN -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.		-F	-C1
-OCONH2 -SCH3 -SOCH3 -SCH2 -SOCH3 -SOCH2CH2OH -SO2NH2 -SO2N(CH3)2 -NHCHO -NHCOCH3 -NHCO2CH3 -NHSO2CH3 -CN -CH0 -COCH3 -CH=NOCH2CO2CH3 -CH=NOCMe2CONH2 -CH=NOCMe2CO2Me -CO2CH2CH2OH -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHOH -CONHOCH3 -CCONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2NHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCN -CH=CHCNH2 -CH=CHCN -CH=CHCNH2 -CH=CHCN -CH=CHCNH2 -CH=CHCN -CH=CHCNH2 -CH=CHCN -CH=CHCNH2 -CH=CHCN -CH=CHCNH3 -SCH_2CONH2 -CH=CHCN -CH=CHCNH3 -SCH_2CONH2 -CH=CHCN -SCH_2CONH2 -CH=CHCN -SCH_2CONH2 -CH=CHCN -SCH_2CONH2 -CH=CHCN -SCH_2CONH2 -CH=CHCN -SCH_2CONH2 -SCH_2CONH2 -CH=CHCN -SCH_2CONH	10	-Br	-I
-SOCH3 -SO2CH3 -SCH2CH2OH -SOCH2CH2OH -SO2NH2 -SO2N(CH3)2 -NHCHO -NHCOCH3 -NHCO2CH3 -NHSO2CH3 -CN -CHO -COCH3 -CH=NOCH3 -CH=NOCH2CO2CH3 -CH=NOCH2CO1H2 -CH=NOCH2CO2CH3 -CH=NOCH2CO1H2 -CH=NOCH2CO2CH3 -CONHCH3 -CH=NOCH2CO2CH3 -CONHCH3 -CON(CH3)2 -CONHCH2CO1H2 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2CH3 -SO2NHCN -SO2NHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCN -CH=CHCN -CH=CHCONH2 -CH=CHCN -CH=CHC		-OH	-ососн ₃
-SCH2CH2OH -SOCH2CH2OH -SO2NH2 -SO2N(CH3)2 -NHCHO -NHCOCH3 -NHCO2CH3 -NHSO2CH3 -CN -CHO -COCH3 -CH=NOCH3 -CH=NOCH2CO2CH3 -CH=NOCH2CONH2 -CH=NOCH2CO2CH3 -CH=NOCH2CO1 -CONH2 -CONHCH2CONH2 -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHOH -CONHOCH3 -CONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2CH3 -CH=CHCN -CH=CHCONH2 -CH=CHCN -CH=C		-oconh ₂	-SCH ₃
-SO2NH2 -SO2N(CH3)2 -NHCHO -NHCOCH3 -NHCO2CH3 -NHSO2CH3 -CN -CHO -COCH3 -COCH2OH -CH=NOCH2CO2CH3 -CH=NOCH2CONH2 -CH=NOCM2CO2CH3 -CH=NOCM2CONH2 -CH=NOCM2CO2ME -CO2CH2CH2OH -CONHCH2CONH2 -CONHCH3 -CON(CH3)2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2CH3 -SO2NHCN -CH=CHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCO2CH3 -CC=C-CONH2 -CH=CHCO2CH3 -SO2CH2CH2OH -CCH=CHCO2CH3 -SO2CH2CH3 -SO2CH2CH2OH -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.	15	-SOCH ₃	-S0 ₂ CH ₃
-SO ₂ NH ₂ -SO ₂ N(CH ₃) ₂ -NHCHO -NHCOCH ₃ -NHCO ₂ CH ₃ -NHSO ₂ CH ₃ -CN -CHO -COCH ₃ -COCH ₂ OH -CH=NOCH -CH=NOCH ₂ CO ₂ CH ₃ -CH=NOCMe ₂ CONH ₂ -CH=NOCMe ₂ CO ₂ Me -CO ₂ CH ₂ CH ₂ OH -CONHC ₂ -CONHCH ₃ -CON(CH ₃) ₂ -CONHCH ₂ CO -CONHCH ₂ CONH ₂ -CONHCH ₂ CO ₂ CH ₃ -CONHOH -CONHOCH ₃ -CONHOH -CONHOCH ₃ -SCF ₃ -PO ₂ NH ₂ -CONHSO ₂ Ph -CONHSO ₂ NH ₂ -SO ₂ CH ₃ -SO ₂ NHCN -SO ₂ CHCONH ₂ -CH=CHCN -CH=CHCONH ₂ -CH=CHCO -CH=CHCONH ₂ -CE=C-CN -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CC=C-CONH ₂ -CE=C-CN -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CONH ₂ .		-SCH ₂ CH ₂ OH	-SOCH ₂ CH ₂ OH
-NHCHO -NHCOCH3 -NHCO2CH3 -NHSO2CH3 -CN -CHO -COCH3 -COCH2OH 25 -CH=NOH -CH=NOCH2CO2CH3 -CH=NOCMe2CONH2 -CH=NOCMe2CO2Me -CO2CH2CH2OH -CONHC2 -CONHCH3 -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCCH3 -CONHOH -CONHOCH3 35 -tetrazolyl -CO2CH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2CH3 -SO2NHCN -CH=CHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCO2CH3 -CC=C-CONH2 -CE=C-CN -CH2OH -CH2N3 -CH2CO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.		$-S0_2NH_2$	
-NHCO2CH3 -NHSO2CH3 -CN -CHO -COCH3 -COCH2OH -COCH3 -CH=NOCH3 -CH=NOCH2CO2CH3 -CH=NOCMe2CONH2 -CH=NOCMe2CO2Me -CO2CH2CH2OH -CONHC2 -CONHCH3 -CON(CH3)2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHOH -CONHOCH3 -CONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2NHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCO2CH3 -C=C-CONH2 -CH=CHCO2CH3 -C=C-CONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCO2CH3 -CH=CH2OH -CH2N3 -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.	20	-NHCHO	
-CN -CHO -COCH3 -COCH2OH -CH=NOCH -CH=NOCH3 -CH=NOCH2CO2CH3 -CH=NOCMe2CONH2 -CH=NOCMe2CO2Me -CO2CH2CH2OH -CONHC -CONH2 -CONHCH3 -CON(CH3)2 -CONHCH2CO2CH3 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2CH3 -SO2NHCN -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCO2CH3 -CH=CHCONH2 -CH=CHCO2CH3 -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.	20	-NHCO ₂ CH ₃	•
-CH=NOH -CH=NOCH3 -CH=NOCH2CO2CH3 -CH=NOCMe2CONH2 -CH=NOCMe2CO2Me -CO2CH2CH2OH -CONHC2 -CONHCH3 -CONHCH2CONH2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHOH -CONHOCH3 -CONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2CH3 -CH=CHCON -CH=CHCONH2 -CH=CHCON -CH=CHCONH2 -CH=CHCON -CH=CHCONH2 -CH=CHCO2CH3 -CC=C-CONH2 -CE=C-CN -CH2OH -CH2CO2CH3 -CH2CO2CH3 -SO2CH2CH2OH -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.		-CN	
-CH=NOCH -CH=NOCH2CO2CH3 -CH=NOCMe2CO2Me -CH=NOCMe2CO2Me -CO2CH2CH2OH -CONHCH3 -CONHCH3 -CONHCH2CO -CONHCH2CONH2 -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHOCH3 -CON		-coch3	-COCH ₂ OH
-CH=NOCH ₂ CO ₂ CH ₃ -CH=NOCMe ₂ CONH ₂ -CH=NOCMe ₂ CO ₂ Me -CO ₂ CH ₂ CH ₂ OH -CONH ₂ -CONHCH ₃ -CON(CH ₃) ₂ -CONHCH ₂ CN -CONHCH ₂ CONH ₂ -CONHCH ₂ CO ₂ CH ₃ -CONHOH -CONHOCH ₃ -CONHOH -CONHOCH ₃ -SCF ₃ -PO ₂ NH ₂ -CONHSO ₂ Ph -CONHSO ₂ NH ₂ -CONHSO ₂ Ph -SO ₂ NHCN -SO ₂ NHCONH ₂ -CH=CHCN -CH=CHCONH ₂ -CH=CHCO -CH=CHCONH ₂ -CE=C-CN -CH ₂ OH -CH ₂ N ₃ -CH ₂ CO ₂ CH ₃ -SO ₂ CH ₂ CH ₂ OH -CH ₂ I and -SCH ₂ CONH ₂ .	25	-CH=NOH	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-CH=NOCH2CO2CH3	-
-CONHCH2 -CONHCH3 -CON(CH3)2 -CONHCH2CN -CONHCH2CONH2 -CONHCH2CO2CH3 -CONHOH -CONHOCH3 -CONHOH -CONHOCH3 -SCF3 -PO2NH2 -CONHSO2Ph -CONHSO2NH2 -SO2CF3 -SO2NHCN -SO2NHCONH2 -CH=CHCN -CH=CHCONH2 -CH=CHCO2CH3 -CEC-CONH2 -CEC-CN -CH2OH -CH2N3 -CH2CO2CH3 -SO2CH2CH2OH -CH2I and -SCH2CONH2.			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-CON(CH ₃) ₂	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-CONHOH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	-tetrazolyl	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-SCF ₃	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-CONHSO ₂ Ph	- -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	-SO ₂ CF ₃	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-SO ₂ NHCONH ₂	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-CH=CHCONH ₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-C≘C-CONH ₂	
$-CH_2CO_2CH_3$ $-SO_2CH_2CH_2OH$ $-CH_2I$ and $-SCH_2CONH_2$.	45	-CH ₂ OH	-CH ₂ N ₂
$-CH_2I$ and $-SCH_2CONH_2$.		_	
2			— — —
	50	_	2 2 -

 A compound according to Claim 2 wherein R^b other than hydrogen is selected from the group consisting of:

	CH-OCH-	
	-CH ₂ OCH ₃	-CH ₂ OCH ₂ CO ₂ CH ₃
	-CH ₂ OCH ₂ CH ₂ OH	-CH ₂ CF ₃
5	-CH ₂ CH ₂ F	-CH ₂ CH ₂ C1
	-CH ₂ CH ₂ Br	-CH ₂ CH ₂ I
	-CH ₂ OH	-CH ₂ OCOCH ₃
10	-CH ₂ OCONH ₂	-CH ₂ SCH ₃
10	-CH ₂ SOCH ₃	-CH ₂ SO ₂ CH ₃
	-CH ₂ SCH ₂ CH ₂ OH	-CH ₂ SOCH ₂ CH ₂ OH
	-CH ₂ SO ₂ NH ₂	-SO ₂ N(CH ₃) ₂
15	-CH ₂ CH ₂ NHCHO	-CH ₂ CH ₂ NHCOCH ₃
	-CH ₂ CH ₂ NHCO ₂ CH ₃	-CH ₂ CH ₂ NHSO ₂ CH ₃
	-CH ₂ CN	-CH ₂ CHO
20	-CH ₂ COCH ₃	-CH ₂ COCH ₂ OH
	-CH ₂ CH=NOH	-CH ₂ CH=NOCH ₃
	-CH ₂ CH=NOCH ₂ CO ₂ CH ₃	-CH ₂ CH=NOCMe ₂ CONH ₂
	-CH ₂ CH=NOCMe ₂ CO ₂ Me	-CH ₂ CO ₂ CH ₂ CH ₂ OH
25	-CH ₂ CONH ₂	-CH ₂ CONHCH ₃
	-CH ₂ CON(CH ₃) ₂	-CH ₂ CONHCH ₂ CN
	-CH ₂ CONHCH ₂ CONH ₂	-CH ₂ CONHCH ₂ CO ₂ CH ₃
30	-CH ₂ CONHOH	-ch ₂ conhoch ₃
	-CH ₂ tetrazoly1	-CH ₂ CO ₂ CH ₃
	-CH ₂ SO ₂ CF ₃	$-CH_2PO_2NH_2$
	-CH ₂ CONHSO ₂ Ph	-CH ₂ CONHSO ₂ NH ₂
35	-CH ₂ SO ₂ CF ₃	-ch ₂ so ₂ nhcn
	-CH ₂ SO ₂ NHCONH ₂	-CH ₂ CH=CHCN
	-CH ₂ CH=CHCONH ₂	-CH ₂ CH=CHCO ₂ CH ₃
40	-CH ₂ C≡C-CONH ₂	-ch ₂ c=c-cn
	-сн ₂ сн ₂ он	$-CH_2CH_2N_3$
	$-CH_2CH_2CO_2CH_3$	-CH2SO2CH2CH2OH
45	CH CCH CONH	-0H
	-CH ₂ SCH ₂ CONH ₂	-CF ₃
	-0CH ₃	-SO ₂ NH ₂ and
50	-SO ₂ CH ₃	-soznaz and
	-NH ₂ .	

5. A compound of the formula:

F or OH, R is H or Me and A is:

wherein Ra and Rb are selected from the group consisting of

25	#	<u>R</u> b	Ra	<u>R</u> a
			•	position
	1	-H	-осн ₃	7
30	2	-H	-och ₂ co ₂ ch ₃	7
	3	-H	-och ₂ ch ₂ oh	4
	4	-H	-CF ₃	7
	5	-H	-F	7,3,4
35	6	-H	-C1	7,4
	7	H	-Br	7,4

	<u>#</u> .	$\mathbf{R}^{\mathbf{b}}$	<u>R</u> a	Ra
				position
5	8	-H	-I	7
	9	-H	-ОН	7,4
	10	-H	-ососн ₃	7
10	11	-H	-OCONH ₂	7
10	12	-H	-SCH ₃	7
	13	-H	-soch ₃	7
	14	-H	-so ₂ ch ₃	7
15	15	-H	-SCH ₂ CH ₂ OH	7
	16	-H	-soch ₂ ch ₂ oh	4
	17	-H	-SCH ₂ CONH ₂	7
20	18	-H	$-so_2nh_2$	7
	19	-H	$-so_2N(CH_3)_2$	3,4
	20	-H	-NHCHO	7,4
	21	–H	-NHCOCH ₃	7
25	22	-H	-NHCO ₂ CH ₃	7
	23	-H	-NHSO ₂ CH ₃	7
	24	-H	-CN	7,3
30	25	-H	-CHO	7,4
	26	-H	-coch ₃	7
	27	-H	-сосн ₂ он	4
35	28	-H	-CH=NOH	4
35	29	-H	-CH=NOCH ₃	7
	30	-H	-CH=NOCH ₂ CO ₂ CH ₃	4
	31	-H	$-CH=NOCMe_2CO_2CH_3$	3
40	32	-H	-CH=NOCMe2CONH2	7
	33	-H	-со ₂ сн ₂ сн ₂ он	7
	34	-H	-conh ₂	7,4
45	35	-H	-conhch ₃	4
	36	-H	-CON(CH ₃) ₂	7
	37	-H	-conhch ₂ cn	7

	#_	<u>R</u> b	Ra	Ra
				position
5	38	-H	-conhch ₂ conh ₂	7
	39	-H	-conech ₂ co ₂ ch ₃	7
	40	-H	-CONHOH	7
10	41	-H	-conhoch ₃	4
10	42	- H	-tetrazolyl	7
	43	-H	-CO ₂ CH ₃	4
	44	-H	-SCF ₃	7
15	45	-H	$-P0_2NH_2$	7
	46	-H	-CONHSO2Ph	7
	47	-H	-coneso2ne5	7
20	48	-H	-SO ₂ CF ₃	7
	49	-H	-so ₂ nhcn	7
	50	-H	-so ₂ nhconh ₂	7
	51	-H	-CH=CHCN	7
25	52	-H	-CH=CHCONH ₂	7
	53	-H	-CH=CHCO ₂ CH ₃	4
	54	-H	-C=C-CONH2	7
30	55	-H	-C≡C-CN	4
	56	-H	-CH ₂ OH	2
	57	-H	$-CH_2N_3$	4
35	58	-H	-CH ₂ CO ₂ CH ₃	4
30	59	-H	-SO ₂ CH ₂ CH ₂ OH	7
	60	-H	-CH ₂ I	7
	61	-СH ₂ ОСН ₃	-0CH ₃	7
40	62	$-CH_2OCH_2CO_2CH_3$	-осн ₂ со ₂ сн ₃	7
	63	-CH ₂ OCH ₂ CH ₂ OH	-0СH ₂ СH ₂ ОН	7
	64	-CH ₂ CF ₃	-CF ₃	7
45	65	-CH ₂ CH ₂ F	-F	7
	66	-CH ₂ CH ₂ C1	-C1	7
	67	-CH ₂ CH ₂ Br	-Br	7

	<u>#</u>	<u>R</u> b	<u>R</u> a	<u>R</u> a
				position
5	68	-CH ₂ CH ₂ I	-I	7
	69	-CH ₂ OH	-OH .	7
	70	-CH ₂ OCOCH ₃	-OCOCH3	7
	71	-CH ₂ OCONH ₂	-OCONH ₂	7
10	72	-CH ₂ SCH ₃	-SCH3	7
	73	-CH ₂ SOCH ₃	-SOCH ₃	7
	74	-CH ₂ SO ₂ CH ₃	-SO ₂ CH ₃	7
15	75	-CH ₂ SCH ₂ CH ₂ OH	-SCH ₂ CH ₂ OH	7
	76	-CH ₂ SOCH ₂ CH ₂ OH	-SOCH ₂ CH ₂ OH	7
	77	-CH ₂ SCH ₂ CONH ₂	-SCH ₂ CONH ₂	7
20	78	-CH ₂ SO ₂ NH ₂	-SO ₂ NH ₂	7
20	79	$-SO_2N(CH_3)_2$	$-SO_2N(CH_3)_2$	7
	80	-CH ₂ NHCHO	-NHCHO	7
	81	-CH ₂ NHCOCH ₃	-NHCOCH ₃	7
25	82	-CH ₂ NHCO ₂ CH ₃	-NHCO ₂ CH ₃	7
	83	-CH ₂ NHSO ₂ CH ₃	-NHSO ₂ CH ₃	7
	84	-CH ₂ CN	-CN	1
30	85	-CH ₂ CHO	-CHO	7
	86	-CH ₂ COCH ₃	-COCH ₃	7
	87	-CH ₂ COCH ₂ OH	-COCH ₂ OH	7
	88	-CH ₂ CH=NOH	-CH=NOH	7
35	89	-CH ₂ CH=NOCH ₃	-CH=NOCH3	7
	90	-CH ₂ CH=NOCH ₂ CO ₂ CH ₃	-CH=NOCH ₂ CO ₂ CH ₃	7
	91	-CH ₂ CH=NOCMe ₂ CO ₂ Me		7
40	92	-CH ₂ CH=NOCMe ₂ CONH ₂	-CH=NOCMe2CONH2	7
	93	-CH ₂ CO ₂ CH ₂ CH ₂ OH	-CO ₂ CH ₂ CH ₂ OH	7
	94	-CH ₂ CONH ₂	-H	×
45	95	-CH ₂ CONHCH ₃	-н	*
~	96	-CH ₂ CON(CH ₃) ₂	-н	*
	97	-CH ₂ CONHCH ₂ CN	-н	*
		-		

	#	<u>R</u> b	Ra	Ra
				position
5	98	-CH2CONHCH2CONH2	-H	*
	99	-CH2CONHCH2CO2CH3	-H	*
	100	-CH ₂ CONHOH	-H	*
40	101	-CH ₂ CONHOCH ₃	-H	*
10	102	-CH2tetrazolyl	-H	*
	103	-CH ₂ CO ₂ CH ₃	-H	*
	104	-CH ₂ SCF ₃	-H	*
15	105	-CH ₂ PO ₂ NH ₂	-H	*
	106	-CH2CONHSO2Ph	-H	*
	107	-CH2CONHSO2NH2	-H	*
20	108	-CH ₂ SO ₂ CF ₃	-H	*
	109	-ch ₂ so ₂ nhcn	-H	*
	110	-CH ₂ SO ₂ NHCONH ₂	-H	*
	111	-CH ₂ CH=CHCN	-H	*
25	112	-CH ₂ CH=CHCONH ₂	-H	*
	113	-CH ₂ CH=CHCO ₂ CH ₃	-H	* .
	114	$-CH_2C = C - CONH_2$	-H	*
30	115	-ch ₂ c≡c-cn	-H	*
	116	-CH ₂ CH ₂ OH	-H	*
	117	-CH ₂ CH ₂ N ₃	-H	*
35	118	$-CH_2CH_2CO_2CH_3$	- H	*
30	119	-CH ₂ SO ₂ CH ₂ CH ₂ OH	-H	*
	120	-CH ₂ CH ₂ I	-H	*
	121	-OH	-H	*
40	122	-0CH ₃	-H	*
	123	-CF ₃	-H	*
	124	-so ₂ ch ₃	-H	*
45	125	$-so_2NH_2$	-H	*
	126	-NH ₂	-H	*
	127	-H	-conh ₂	7

	#	<u>R</u> b	<u>R</u> ā	Rª
				position
5	128	- H	-conh ₂	4
	129	-H	-CONH ₂	3
	130	- H	-CN	7
	131	-H	-CN	4
10	132	-H	-CN	3
	133	-H	-CHO	7
	134	-H	-CHO	4
15	135	-H	-CHO	3
	136	-H	-сн ₂ он	7
	137	-H	-сн ₂ он	4
20	138	-H	-сн ₂ он	3
	139	-CH ₂ CN	-conh ₂	7
	140	-CH ₂ CN	-CHO	7
	141	-CH ₂ CN	-сн ₂ он	7
25	142	-CH ₂ CN	-н	*
	143	-CH ₂ CN	-CN	7
	144	-CH ₂ CN	-conh ₂	3
30	145	-CH ₂ CN	-CN	3
	146	-CH ₂ CN	-сн ₂ он	3
	147	-CH ₂ CN	-CHO	3
	148	-CH ₂ CN	-conh ₂	4
35	149	-CH ₂ CN	-CN	4
	150	-CH ₂ CN	-сн ₂ он	4
	151	-CH ₂ CN	-CHO	4
40	152	-H	-SCH ₃	4
	153	-H	-s(o)ch ₃	4
	154	– H	−SO ₂ CH ₃	4
45	155	-H	-SCH ₃	3
	156	-H	-s(o)ch ₃	3
	157	-H	-so ₂ ch ₃	3

	#	R ^b	Ra	Ra
				position
5	158	-H	-Br	3
	159	-H	-I	3
	160	-H	-Br	4
10	161	-H	-I	4

6. A compound of the formula:

P' H H R

N A where R' is

COO Na*

F or OH, R is H or Me and A is:

wherein Ra and Rb are selected from the group consisting of:

	#	Rb	<u>R</u> a	
40	1	-H	4-CHO	7-CONH ₂
	2	-H	4-CN	7-CONH ₂
	3	-H	4-CH ₂ OH	7-CONH ₂
45	4	-H	3-CHO	7-CONH ₂

50

35

	#	R ^b	R ^a	
5	5	-H	3-CN	7-CONH ₂
	6	-H	3-CH ₂ OH	7-CONH ₂
	7	-H	3-CH ₂ OH	7-CN
	8	-H	4-CH ₂ OH	7-CN
10	9	-H	4-CH ₂ OH	7-CN
	10	-H	3-CONH ₂	7-CN

15 7. A compound selected from a group consisting of:

35

HD H H H COOK NH COOK Me

and HO H H CO₂Na .

8. A compound of the formula:

5

10

15

20

35

40

45

50

55

wherein

R is H or CH₃;

P' is a removable protecting group for hydroxy;

M is a removable protecting group for carboxy;

Ra is selected from the group consisting of H, OP',

CI, Br, I, SCH₃, CN, CHO, SOCH₃, SO₂CH₃, CO₂M, CH₂OP' or CONH₂;

 R^{\flat} is H, OP', CH2SCH3, CH2CN, CH2CHO, CH2SOCH3, CH2SO2CH3, CH2CO2M , CH2OP', CH2CH2OP' or CH2CONH2; and

with the proviso that the -CH₂-OH substituent is in the 3- or 4-position of the phenanthridone.

- 9. The compound of claim 8 wherein M is selected from the group consisting of benzhydryl, p-nitrobenzyl, 2-naphthylmethyl, allyl, 2-chloroallyl, benzyl, 2,2,2-trichloroethyl, trimethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, 2-(trimethylsilyl)ethyl, phenacyl, p-methoxybenzyl, acetonyl, o-nitrobenzyl 4-pyridylmethyl and t-butyl.

zyloxycarbonyl, benzyloxycarbonyl, t-butyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl and allyloxycar-

	20,		
5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

EUROPEAN SEARCH REPORT

Application Number

EP 92 30 3376

DOCUMENTS CONSIDERED TO BE RELEVANT					
Category	Citation of document with in of relevant pas		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)	
A	US-A-5 004 739 (DININNO * claims *	ET AL.)	-10	C07D477/00 A61K31/4D	
D,A	EP-A-0 010 316 (MERCK &	CO., INC.)	-10		
P . A	US-A-5 025 007 (GREENLE) * claims *	E ET AL.)	-10		
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)	
				C07D A61K	
The present search report has been drawn up for all claims					
Place of search Date of completion of the nearch		T	Reminer		
THE HAGUE		04 JUNE 1992	CHOULY J.		
X : par Y : par doc A : tec O : nor	CATEGORY OF CITED DOCUMER ticularly relevant if taken alone ticularly relevant if condition with and unent of the same category hnological background owntime disclosure truedliste document	E : earlier gainst docum after the filing date D : document cited in t L : document cited for c A : member of the same	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons A: nember of the same patent family, corresponding document		

CHOOM 1900 CO.