§B.3 FICK'S (FIRST) LAW OF BINARY DIFFUSION^a

$[j_A$	=	$-\rho \mathfrak{D}_A$	$\nabla \omega_A$
--------	---	------------------------	-------------------

Cartesian coordinates (x, y, z):

$$j_{Ax} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial x} \tag{B.3-1}$$

$$j_{Ay} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial y} \tag{B.3-2}$$

$$j_{Az} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial z} \tag{B.3-3}$$

Cylindrical coordinates (r, θ, z) :

$$j_{Ar} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial r} \tag{B.3-4}$$

$$j_{A\theta} = -\rho \mathfrak{D}_{AB} \frac{1}{r} \frac{\partial \omega_A}{\partial \theta} \tag{B.3-5}$$

$$j_{Az} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial z} \tag{B.3-6}$$

Spherical coordinates (r, θ, ϕ) :

$$j_{Ar} = -\rho \mathfrak{D}_{AB} \frac{\partial \omega_A}{\partial r} \tag{B.3-7}$$

$$j_{A\theta} = -\rho \mathfrak{D}_{AB} \frac{1}{r} \frac{\partial \omega_A}{\partial \theta} \tag{B.3-8}$$

$$j_{A\phi} = -\rho \mathfrak{D}_{AB} \frac{1}{r \sin \theta} \frac{\partial \omega_A}{\partial \phi}$$
 (B.3-9)

§B.4 THE EQUATION OF CONTINUITY^a

$$[\partial \rho / \partial t + (\nabla \cdot \rho \mathbf{v}) = 0]$$

Cartesian coordinates (x, y, z):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} (\rho v_y) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
(B.4-1)

Cylindrical coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$
 (B.4-2)

Spherical coordinates (r, θ, ϕ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (\rho r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\rho v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\rho v_\phi) = 0$$
 (B.4-3)

Scanned by CamScanner

^a To get the molar fluxes with respect to the molar average velocity, replace j_A , ρ , and ω_A by J_A^* , c, and x_A

^a When the fluid is assumed to have constant mass density ρ , the equation simplifies to $(\nabla \cdot \mathbf{v}) = 0$.

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ

$$[\rho D\mathbf{v}/Dt = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}]$$

Cartesian coordinates (x, y, z):

$$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right] + \rho g_x \qquad (B.6-1)$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right] + \rho g_y \qquad (B.6-2)$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z \qquad (B.6-3)$$

Cylindrical coordinates (r, θ, z) :

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r v_r \right) \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \right] + \rho g_r$$
(B.6-4)

$$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + v_{z}\frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(rv_{\theta}\right)\right) + \frac{1}{r^{2}}\frac{\partial^{2}v_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2}v_{\theta}}{\partial z^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \theta}\right] + \rho g_{\theta}$$
(B.6-5)

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z$$
(B.6-6)

Spherical coordinates (r, θ, ϕ)

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{1}{r^2} \frac{\partial^2}{\partial r^2} (r^2 v_r) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_r}{\partial \phi^2} \right] + \rho g_r$$
(B.6-7)^a

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{r}v_{\theta} - v_{\phi}^{2} \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$+ \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\theta}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v_{\theta} \sin \theta \right) \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\theta}}{\partial \phi^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} - \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} \right] + \rho g_{\theta}$$
(B.6-8)

$$\rho \left(\frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi}v_{r} + v_{\theta}v_{\phi} \cot \theta}{r} \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}$$

$$+ \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\phi}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v_{\phi} \sin \theta \right) \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\phi}}{\partial \phi^{2}} + \frac{2}{r^{2} \sin \theta} \frac{\partial v_{r}}{\partial \phi} + \frac{2 \cot \theta}{r^{2} \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} \right] + \rho g_{\phi} \quad (B.6-9)$$

The quantity in the brackets in Eq. B.6-7 is *not* what one would expect from Eq. (M) for $[\nabla \cdot \nabla v]$ in Table A.7-3, because we have added to Eq. (M) the expression for $(2/r)(\nabla \cdot v)$, which is zero for fluids with constant ρ . This gives a much simpler equation.