MAT-236 - Lista 1 - Sobre transformações lineares

Definições:

(1) Sejam V e W espaços vetoriais. Dizemos que $T:V\longrightarrow W,\,v\to T(v)$, é uma transformação linear (ou uma aplicação linear) se verifica as seguintes condições:

(T1)
$$\forall u, v \in V \quad (T(u+v) = T(u) + T(v))$$

(T2)
$$\forall \lambda \in \mathbb{R}, \forall v \in V \quad (T(\lambda v) = \lambda T(v)).$$

- (2) A imagem da transformação linear é o conjunto $imT = T(V) = \{T(v) : v \in V\}.$
- (3) O núcleo de T ou kernel de T (kerT) é o conjunto $kerT = \{v \in V : T(v) = 0\}.$

Exercício 1: Verifique se as seguintes aplicações são lineares, justificando:

- (a) $T: \mathbb{R} \longrightarrow \mathbb{R}$, definida por T(x) = ax, $\forall x \in \mathbb{R}$, sendo a um número real fixado. (Observe que \mathbb{R} , com as operações usuais de adição e multiplicação, é um espaço vetorial de dimensão 1.)
- (b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, com $T(x, y) = (2x, x + 3y, -y), \forall (x, y) \in \mathbb{R}^2$.
- (c) $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $L(x,y) = (x^2, 4y + 1)$
- (d) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}, L(x, y, z) = x 2y + 5z$

Exercício 2: Seja $T:V\longrightarrow W$ uma transformação linear. Verifique que

- (i) imT é um subespaço vetorial de W.
- (ii) kerT é um subespaço vetorial de V.

Exercício 3: Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por T(x,y) = (3y+2, -2x+4). Verifique que T não é linear, mas pode ser escrita como soma de uma transformação linear com uma constante de \mathbb{R}^2 .

Exercício 4: Seja $T: V \longrightarrow W$ uma aplicação linear. Prove que T é injetora se, e somente se, $kerT = \{0\}$.

Exercício 5: Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$, definida por $T(x_1, x_2, x_3) = (x_3, 2x_1 + x_2 - 3x_3, x_2, 5x_3)$.

(i) Calcule $T(e_1)$, $T(e_2)$, $T(e_3)$, sendo $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$.

(ii) Considere a matriz
$$4 \times 3$$
, $A = \begin{bmatrix} \dots & \dots & \dots \\ T(e_1) & T(e_2) & T(e_3) \\ \dots & \dots & \dots \end{bmatrix}$ que possui, em cada coluna j , as coordenadas de $T(e_j)$, $1 \le j \le 3$. Dado $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, verifique que $T(X) = AX$.

A matriz A denomina-se matriz da transformação T (em relação às bases canônicas e \mathbb{R}^3 e \mathbb{R}^4).

Exercício 6: Seja $T: \mathbb{R}^2 \longrightarrow M_2(\mathbb{R})$ uma transformação linear tal que $T(1,0) = \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$ e $T(0,1) = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$.

Determine T(x, y), com $(x, y) \in \mathbb{R}^2$.

Exercício 7: Seja V um espaço vetorial de dimensão finita $n, B = \{e_1, \ldots, e_n\}$ uma base de V e $T: V \longrightarrow W$ uma aplicação linear. Mostre que o conjunto $\{T(e_1, \ldots, T(e_n))\}$ é LI (linearmente independente) se, e somente se, T é injetora.

Exercício 8: Seja $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^5$ a aplicação linear cuja matriz $A \in M_{5\times 3}(\mathbb{R})$ é dada por

$$A = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 1 & -1 \\ 2 & 4 & 5 \\ 1 & 0 & 3 \\ 1 & 4 & 4 \end{bmatrix} \quad \text{Determine a expressão de } L(x,y,z).$$

Exercício 9: Considere as aplicações lineares $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ e $T: \mathbb{R}^3 \longrightarrow \mathbb{R}$ cujas matrizes são dadas, respectivamente, por $[L]=\begin{bmatrix}1&3\\2&-1\\4&0\end{bmatrix}$ e $[T]=\begin{bmatrix}2&1&-2\end{bmatrix}$

- (i) Determine as expressões de L(x, y) e de T(u, v, w).
- (ii) Determine a expressão de $T \circ L : \mathbb{R}^2 \longrightarrow \mathbb{R}$.
- (iii) Verifique que $[T \circ L] = [T].[L].$