Лабораторная работа №4

Постановка задачи.

Разработать программу для приближенного нахождения корня уравнения f(x) = 0 на отрезке [a, b] с заданной точностью е. Корень уравнения находится двумя методами – методом деления отрезка пополам и методом простых итераций.

Таблица данных

Класс	Имя	Смысл	Тип	Структура
Входные данные	е	точность	вещ.	прост. перем
Промежуточные данные	m	координата середины отрезка	вещ.	прост. перем
Промежуточные данные	a,b	координаты краев отрезка	вещ.	прост. перем
Промежуточные данные	x0	значение функции	вещ.	прост. перем
Выходные данные	x1	значение функции	вещ.	прост. перем

Входная форма

Введите точность { е }

Выходная форма

Решение методом бисекций = { a } Решение методом простых итераций = { x1 }

Аномалии

e <= 0

Тестовые примеры

№ Теста	Входные данные	Ожидаемые результаты
1	e = 0.00001	1.50039
2	e = 0.000001	1.500397

Метод

Объявляем начало и конец отрезка, на котором ищем корни \
В цикле с предусловием вычисляем значение методом ледения пополам \
В цикле с постусловием вычисляем значение методом простых итераций \
Выводим значения и сравниваем их

Алгоритм

Программа

```
program lab4;
var e,a,b,m,x1,x0:real;
function bis(x:real):real;
begin
bis := sqrt(1.96 - (power(x,3)/9) + 1/x) - x;
end;
function iter(x:real):real;
 iter := sqrt(1.96 - (power(x,3)/9) + 1/x)
end;
begin
 a := 0;
 b := 3;
  writeln('Введите точность');
  readln(e);
  while (abs(a-b)>e) and (bis(a)>e) do
  begin
   m := (a+b)/2;
   if bis(a) * bis(m)<0 then b := m
   else a := m;
  end;
  writeln('Решение методом бисекций = ',a);
  x1 := (a + b) / 2;
  repeat
   x0 := x1;
   x1 := iter(x0);
  until abs(x0-x1)<e;
  writeln('Решение методом итераций = ',x1);
  writeln('Значение функции в точке x1 = ', bis(x1));
```