Substrate	pKa H ₂ O (DMSO)	Substrate pKa	H ₂ O(DMSO)	Substrate	pKa H ₂ O (DMSO)	Substrate	pKa H ₂ O (DMSO)
INORGA	INORGANIC ACIDS CARBOXYI		ACIDS	CIDS ALCOHOLS			ATED SPECIES
H ₂ O H ₃ O ⁺	15.7 (32) -1.7	X OH		HOH MeOH	15.7 (31.2) 15.54 (27.9)	0	40.4
H ₂ S	7.00	$X = CH_3$ CH_2NO_2	4.76 (12.3) 1.68	<i>i-</i> PrOH <i>t-</i> BuOH	16.5 (29.3) 17 (29.4)	Ph ^{✓N⁺} OH [†] OH 	-12.4
HBr HCl	-9.00 (0.9) -8.0 (1.8)	CH ₂ F CH ₂ CI	2.66 2.86	c-hex ₃ COH	24	Ph OH	-7.8
HF HOCI	3.17 (15) 7.5	CH₂Br CH₂I CHCl₂	2.86 3.12 1.29	CF ₃ CH ₂ OH (CF ₃) ₂ CHOH	12.5 (23.5) (17.9)	Ph CH ₃	-6.2
HCIO ₄	-10	CCl ₃ CF ₃	0.65 -0.25	C ₆ H ₅ OH <i>m</i> -O ₂ NC ₆ H ₄ O	9.95 (18.0) 9H 8.35	Ph Me	-6.5
HCN HN ₃	9.4 (12.9) 4.72 (7.9)	H HO	3.77 3.6, 10.3	<i>p</i> -O ₂ NC ₆ H ₄ O <i>p</i> -OMeC ₆ H ₄ C		Me Me	-3.8
HSCN	4.00	C ₆ H ₅ o-O ₂ NC ₆ H ₄	4.2 (11.1) 2.17	2-napthol	(17.1) DROXAMIC ACIDS	O+-H	-2.05
H ₂ SO ₃ H ₂ SO ₄	1.9, 7.21 -3.0, 1.99	<i>m</i> -O ₂ NC ₆ H ₄ <i>p</i> -O ₂ NC ₆ H ₄	2.45 3.44	OAIIVIES & TTT	11.3 (20.1)	Me OH	-2.2 -1.8
H ₃ PO ₄	2.12, 7.21, 12.32 -1.3	o-CIC ₆ H ₄ m-CIC ₆ H ₄	2.94 3.83	Ph Ph	8.88 (13.7)	Me S Me	-1.0
HNO ₃ HNO ₂	3.29	<i>p</i> -CIC ₆ H ₄ o-(CH ₃) ₃ N ⁺ C ₆ F	3.99 ₁₄ 1.37	Ph N OH	(NH)	N+-OH	0.79
H ₂ CrO ₄ CH ₃ SO ₃ H	-0.98, 6.50 -2.6 (1.6)	<i>p</i> -(CH ₃) ₃ N ⁺ C ₆ I <i>p</i> -OMeC ₆ H ₄	4.47	Ph N OH Me	(18.5)	SULFINIC &	SULFONIC ACIDS
CF ₃ SO ₃ H	-14 (0.3)	Run		PER	OXIDES	O O Me S OH	-2.6
NH ₄ CI B(OH) ₃	9.24 9.23	R= H <i>trans</i> -CO ₂ H	4.25 3.02, 4.38	MeOOH CH ₃ CO ₃ H	11.5 8.2	O II S OH	2.1
HOOH	11.6	cis-CO ₂ H	1.92, 6.23		I		

*Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

Substrate pKa	H ₂ O	(DMSO)	Substrate	pKa H ₂ O	(DMSO)	Substrate	pKa I	H ₂ O (DMSO)	Substrate	pKa H ₂ O (DMSO)
PROTONATED N	IITROGE	EN	Д	MINES		-	IMIDES		Д	MIDINES
N ⁺ H ₄ EtN ⁺ H ₃ <i>i</i> -Pr ₂ N ⁺ H ₂	9.2 10.6 11.05	(10.5)	HN ₃ NH ₃ <i>i</i> -Pr ₂ NH TMS ₂ NH	4.7 38 (36 THF) 26(THF)	(30)	NH	8.30	NH (14.7)	NSO ₂ Ph NH ₂ R= Me Ph	(17.3) (15.0)
Et ₃ N ⁺ H PhN ⁺ H ₃	10.75 4.6	(3.6)	PhNH ₂ Ph ₂ NH		(30.6) (25.0)	Ac ₂ NH		(17.9)	PROTONATI	ED HETEROCYCLES
PhN ⁺ (Me) ₂ H Ph ₂ N ⁺ H ₂	5.20 0.78	(2.50)	NCNH ₂	Me /_Me	(16.9) (44)	SUL	FONAMI	DE .	DBU	(12) (estimate)
2-napthal-N ⁺ H ₃ H ₂ NN ⁺ H ₃	4.16 8.12		TMP <	NH NH	(37)	MeSO ₂ NH ₂		(17.5)	DMAP	\
HON ⁺ H ₃ Quinuclidine	5.96	(9.80)	H ₂ N N	Me Me	(26.5)	PhSO ₂ NH ₂ CF ₃ SO ₂ NH ₂ MeSO ₂ NHPh		(16.1) 6.3 (9.7) (12.9)	Me ₂ N— R NH	NH 9.2 NH 6.95
Morpholine O N ⁺ I	H ₂ 8.36		AMIDES 8	CARBAM	ATES	GU/ HYRDAZON	ANIDINIU IES,- IDE	IM, :S, & -INES	R	
N-Me morpholine	7.38		R= H	15.1	(23.5)	Me ₂ N NMe	2	(13.6)	R= H (PPT: t-Bu Me CI, H	S) 5.21 (3.4) 4.95 (0.90) 6.75 (4.46) 0.72
O_2N NH_3	-9.3		CH ₃ Ph	15.1	(25.5) (23.3)	Ph		(21.6)	HETI	EROCYCLES
DABCO N+-H	2.97, 8 (2.97, 8		CF ₃ NH ₂ (ure OEt	ea)	(17.2) (26.9) (24.8)	Ph NHNH ₂	1 ₂	(18.9) (17.2)		H -N (20.95)
H ₃ N ⁺ +NH ₃ +NH ₃ +	6.90, 9	9.95	Et N Ph		(21.6)	PhNHNHPh		(26.1)	NH (23	.0) N (18.6)
Proton Sponge	-9. (,	.0, 12.0 , 7.50)	(24.1)	0 1 0 NF	2 (20.5) I	O ,OH		8.88 (13.7)	(17.	1,2,3 triazole 0) NH (13.9)
PhCN ⁺ H	-10	r ∐ . ∩ ດາ	nd DMSO and	values > 1.4	_{an} I	Ph N H H and >35 for DMS		(NH)	N O H	nothods

*Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

Substrate	pKa H ₂ O	(DMSO)	Substrate	рКа	H ₂ O (DMSO)	Substrate	pKa H ₂	O (DMSO)	Substrate	рКа	H ₂ O	(DMSO)
HYDRO	HYDROCARBONS			ESTERS			KETONES					
(Me) ₃ CH	53		0		24.5 (30.3)	9				Me		
$(Me)_2CH_2$	51		t-BuO Me		- (MeXX		(26.5)	x /			
CH ₂ =CH ₂	50			.Ph	(23.6)	X= H Ph		(19.8)	X= H			(24.7)
CH ₄	48	(56)	t-BuO O			SPh COCH ₃	9	(18.7) (13.3)	OMe NMe ₂			(25.7) (27.5)
\triangle	46		EtO N	l ⁺ Me ₃	(20.0)	SO ₂ Ph	9	(15.1)	Br _			(23.8)
CH ₂ =CHCH ₃	43	(44))	11 (14.2)	l Ľ	19	-20 (27.1)	CN o			(22.0)
PhH	43		EtO O	Me O		Et Et O		(20.2)	Ů			
PhCH ₃	41	(43)	MeO	OMe	13 (15.7)	<i>i</i> -Pr O <i>i</i> -Pr		(28.3)	n			
Ph ₂ CH ₂	33.5	(32.2)	O II	Oivie		t-Bu Me		(27.7)	n= 4			(25.1)
Ph ₃ CH	31.5		MeO	s_	(20.9)	l Ŭ		(26.3)	5			(25.8)
НССН	24	(,	o s			Ph ∕ <i>i-</i> Pr O			6 7			(26.4) (27.7)
PhCCH	23	(28.8)	LiO	h	[30.2 (THF)]	Ph			8			(27.4)
XC ₆ H ₄ CH ₃			-	AMIDE		X= H		(24.7)	1			
X = p-CN		(30.8)		7 (IVIIDE		CH ₃ Ph		(24.4) (17.7)				(28.1)
p-NO ₂		(20.4)	Me ₂ N	.Ph	(26.6)	COCH ₃		(12.7)	/ \ \			
<i>p</i> -COPh		(26.9)	O		(25.9)	COPh		(13.3) (22.7)				(29.0)
MeM	le		Me ₂ N O	.SPh	(==:=)	CO ₂ Et CN		(10.2)	\ \ \			
\ <u>\</u>		(26.1)	ا لِلْ	N ⁺ Me ₃	(24.9)	F		(21.6)				(25.5)
Me Me			Et ₂ N O			OMe OPh		(22.85) (21.1)	V V			
	20	(20.1)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CN	(17.2)	SPh		(16.9)	\			
~ ~				0	(10.0)	SePh NPh ₂		(18.6) (20.3)				(32.4)
	15	(18.0)	Me ₂ N	Щ _{Ме}	(18.2)	N ⁺ Me ₃		(14.6)	Me Me			,
H ₂	~36		ļ		(25.7)	NO ₂		(7.7)				
			Me ₂ N Me			SO ₂ Ph		(11.4)				

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

Substrate	рКа	H ₂ O	(DMSO)	Substrate	рКа	H ₂ O	(DMSO)	Substrate	рКа	H ₂ O	(DMSO)	Substrate	рКа	H ₂ O	(DMSO)
1	NITRILES			SULFIDES			SULFOXIDES				SULFONES				
X= H CH ₃ Ph COPh CONR ₂ CO ₂ Et CN OPh N ⁺ Me ₃ SPh	_	11	(31.3) (32.5) (21.9) (10.2) (17.1) (13.1) (11.1) (28.1) (20.6) (20.8)	PhSCH ₂ X X= Ph CN COCI COPI NO ₂ SPh SO ₂ C POPI MeSCH ₂ SC PhSCHPh ₂ (PhS) ₃ CH	h CF ₃ C ₂ Ph		(30.8) (20.8) (18.7) (16.9) (11.8) (30.8) (20.3) (11.0) (24.9) (23.4) (26.7) (22.8)	Me X X X X X X X X X X X X X X X X X X X	ILFONI	UM	(35.1) (29.0) (29.0) (33) (27.2) (18.2) (24.5)	X= H CH ₃ t-Bu Ph CH=CH CCH CCPh COPh COMe OPh N+Me ₃			(29.0) (31.0) (31.2) (23.4) (22.5) (20.2) (22.1) (17.8) (11.4) (12.5) (27.9) (19.4) (12.0)
SO ₂ Ph			(12.0)	(PrS) ₃ CH			(31.3)	Me ₃ S ⁺ =O			(18.2)	CN NO ₂ SMe			(7.1) (23.5)
HETER	RO-ARC	MATIO	cs	s Me			(20.5)	Me S ⁺			(16.3)	SPh			(20.5)
Ph			(28.2)	SH S (PhS) ₂ CHP	h		(30.5)	SULFIMIDES	S & SU	LFOXI	MINES	SO ₂ Ph PPh ₂ O O N/S CHPh ₂			(12.2) (20.2) (22.3)
Pr	n		(30.1)	$\left\langle \begin{array}{c} S \\ S \end{array} \right\rangle X$				II S∖ R= Me			(27.6)	Ph CHPh ₂ O O S Me Me	2		(31.1)
Pr	n		(26.7)	X= Ph CO ₂ N CN	Ле		(30.7) (20.8) (19.1)	i-Pr O NTs V/ Ph Me			(30.7)	CF ₃ Me			(18.8)
Ph			(25.2)	RSCH ₂ CN R= Me Et			(24.3) (24.0)	O NMe S Me			(33)	CF ₃ /S i-Pr			(21.8)
Ph			(30.2)	<i>i-</i> Pr <i>t</i> -Bu			(23.6) (22.9)	O N ⁺ Me ₂ Ph			(14.4)	CF ₃ /S			(26.6)
SPh			(30.0)	PhSCH=CH BuSH PhSH	ICH ₂ SI		(26.3) 1 (17.0) (10.3)	Ph CH ₂ CI			(20.7)	Et Et (PhSO ₂) ₂ Cl	H ₂ Me		(14.3)

^{*}Values <0 for H_2O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.

Substrate pKa H ₂ O (DMSO)	Substrate pKa H ₂	O (DMSO)	Substrate p	Ka H ₂ O	(DMSO)	REFERENCES
ETHERS	PHOSPHONIL	N	ITRO		ILLI LIKLINOLO	
$\begin{array}{cccc} \text{CH}_{3}\text{OPh} & & \text{(49)} \\ \text{MeOCH}_{2}\text{SO}_{2}\text{Ph} & & \text{(30.7)} \\ \text{PhOCH}_{2}\text{SO}_{2}\text{Ph} & & \text{(27.9)} \\ \text{PhOCH}_{2}\text{CN} & & \text{(28.1)} \\ & & & & & & & \\ \text{MeO} & & & & & & \\ & & & & & & \\ & & & & & $	$P^{+}H_{4}$ $MeP^{+}H_{3}$ $Et_{3}P^{+}H$ $Ph_{3}P^{+}CH_{3}$ $Ph_{3}P^{+}i$ - Pr $Ph_{3}P^{+}CH_{2}COPh$ $Ph_{3}P^{+}CH_{2}CN$	-14 2.7 9.1 (22.4) (21.2) (6.2) (7.0)	RNO ₂ R= CH ₃ CH ₂ Me CHMe ₂ CH ₂ Ph CH ₂ Bn CH ₂ SPh CH ₂ SO ₂ P	≈10 Ph	(17.2) (16.7) (16.9) (12.2) (16.2) (11.8) (7.1)	DMSO: JACS <u>97</u> , 7007 (1975) JACS <u>97</u> , 7160 (1975) JACS <u>97</u> , 442 (1975) JACS <u>105</u> , 6188 (1983) JOC <u>41</u> , 1883 (1976) JOC <u>41</u> , 1885 (1976) JOC <u>41</u> , 2786 (1976) JOC <u>41</u> , 2508 (1976) JOC <u>42</u> , 1817 (1977)
SELENIDES	PHOSPONATE PHOSPHINE OX	CH ₂ COPt	1	(7.7)	JOC <u>42,</u> 321 (1977) JOC <u>42,</u> 326 (1977) JOC <u>43,</u> 3113 (1978)	
PhSe Ph (18.6)	O II (EtO) ₂ P X		n			JOC <u>43,</u> 3095 (1978) JOC <u>43,</u> 1764 (1978) JOC <u>45,</u> 3325 (1980)
PhSeCHPh ₂ (27.5)	X= Ph	(27.6) (16.4)	n= 3		(26.9)	JOC <u>45,</u> 3305 (1980) JOC <u>45,</u> 3884 (1980)
$(PhSe)_2CH_2$ (31.3)	CN CO ₂ Et	(18.6)	4		(17.8)	JOC <u>46,</u> 4327 (1981) JOC <u>46,</u> 632 (1981)
PhSeCH ₂ Ph (31.0)	CI	(26.2)	5 6		(16.0) (17.9)	JOC <u>47</u> , 3224 (1982) JOC <u>47</u> , 2504 (1982)
PhSeCH=CHCH ₂ SePh (27.2)	SiMe ₃ O	(28.8)	7		(17.8)	Acc. Chem. Res. <u>21</u> , 456 (1988) Unpublished results of F. Bordwell
AMMONIUM	$Ph_2\ddot{P} X$		IM	IINES		Water:
$Me_3N^+CH_2X$ $X = CN (20.6)$	X= SPh CN	(24.9) (16.9)	N Ph		(24.3)	Advanced Org. Chem., 3rd Ed. J. March (1985) Unpublished results of W. P. Jencks
SO ₂ Ph (19.4)	PHOSPHINE	S	Oxime ethers a	re ~ 10 pka i	units less	THF:
COPh (14.6) CO_2Et (20.6)	Ph ₂ PCH ₂ PPh ₂	(29.9)	acidic than their Streitwieser, JC			JACS <u>110,</u> 5705 (1988)
CONEt ₂ (24.9)	Ph ₂ PCH ₂ SO ₂ Ph	(20.3)				

^{*}Values <0 for H₂O and DMSO, and values >14 for water and >35 for DMSO were extrapolated using various methods.