Projet 7 : Développez une preuve de concept

Objectif: Améliorer les performances de MobileNetV3 en traitant les données déséquilibrées

Plan de travail prévisionnel

- 1. Exploration du jeu de données
 - Sélection du jeu de données (CWD30 images et étiquettes de classification)
 - Chargement des données
 - Analyse exploratoire des données (E.D.A.)
 - Visualisation des données déséquilibrées

2. Préparation des données

- Prétraitement des données
- Division des données en ensembles d'apprentissage, de validation et de test

3. Modèle MobileNetV3Small - Baseline

- Chargement du modèle pré-entraîné MobileNetV3
- Fine-tuning du modèle avec l'ensemble d'apprentissage
- Recherche des hyperparamètres les plus performants pour ce modèle
- 🗹 Évaluation des performances sur l'ensemble de validation

4. Pondération des échantillons lors de l'entraînement

- Gestion du déséquilibre des classes par pondération
- Fine-tuning du modèle avec l'ensemble d'apprentissage

5. Sous-échantillonage des classes majoritaires

- Technique de rééquilibrage par sous-échantillonnage
- Fine-tuning du modèle avec l'ensemble d'apprentissage

6. Implémentation de DenseWeight & LMFLoss

- Définition du modèle avec DenseWeight pour la croissance des plantes et LMFLoss pour les espèces
- Fine-tuning du modèle avec l'ensemble d'apprentissage
- Recherche des hyperparamètres les plus performants pour ce modèle
- Évaluation des performances sur l'ensemble de validation

7. Comparaison des performances

- Comparaison des performances entre les différents modèles
- Analyse des résultats obtenus

8. Conclusion

- Rédaction d'un rapport détaillé sur les résultats, les méthodes utilisées et les conclusions tirées
- Documentation du code et des expériences réalisées pour faciliter la réutilisation et la compréhension du projet

Sources bibliographiques:

- CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in Precision Agriculture: https://arxiv.org/pdf/2305.10084.pdf (https://arxiv.org/pdf/2305.10084.pdf)
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications: https://arxiv.org/pdf/1704.04861.pdf
 (https://arxiv.org/pdf/1704.04861.pdf
- Searching for MobileNetV3: https://arxiv.org/pdf/1905.02244.pdf (https://arxiv.org/pdf/1905.pdf (https://arxiv.org/pdf/1905.pdf (https://arxiv.org/pdf/1905.pdf (https://arxiv.org/pdf/1905.pdf (https://arxiv.org/pdf/1905.pdf (https://arxiv.org/pdf (https://arxiv.org/pdf (https://arxiv.org/pdf (https://arxiv.org/pdf (
- LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification: https://arxiv.org/pdf/2212.12741.pdf
 (https://arxiv.org/pdf/2212.12741.pdf
- Focal Loss for Dense Object Detection: https://arxiv.org/pdf/1708.02002.pdf (https://arxiv.org/pdf/1708.02002.pdf
- Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss: https://arxiv.org/pdf/1906.07413.pdf
 (https://arxiv.org/pdf/1906.07413.pdf)
- Density-based weighting for imbalanced regression: https://link.springer.com/article/10.1007/s10994-021-06023-5
 (https://link.springer.com/article/10.1007/s10994-021-06023-5
- Review of Image Classification Algorithms Based on Convolutional Neural Networks: https://www.mdpi.com/2072-4292/13/22/4712
 (https://www.mdpi.com/2072-4292/13/22/4712)
- Label-Imbalanced and Group-Sensitive Classification under Overparameterization: https://arxiv.org/abs/2103.01550
 (https://arxiv.org/abs/2103.01550