Searching and Sorting

- Searching
 - · Linear search
 - Binary search
- Sorting
 - Insertion sort
 - Merge sort

Philip Bille

Searching and Sorting

- Searching
 - · Linear search
 - Binary search
- Sorting
 - Insertion sort
 - Merge sort

Searching

· Searching. Given a sorted array A and number x, determine if x appears in the array.

Linear Search

- Linear search. Check if each entry matches x.
- Time?
- · Challenge. Can we take advantage of the sorted order of the array?

			3											
1	4	7	12	16	18	25	28	31	33	36	42	45	47	50

Binary Search

- Binary search. Compare x to middle entry m in A.
 - if A[m] = x return true and stop.
 - if A[m] < x continue recursively on the right half.
 - if A[m] > x continue recursively on the left half.
- If array size ≤ 0 return false and stop.

			3											
1	4	7	12	16	18	25	28	31	33	36	42	45	47	50

Binary Search

```
\begin{split} &\text{BINARYSEARCH}(A,i,j,x)\\ &\text{if } j < i \text{ return false}\\ &\text{m} = \left\lfloor (i+j)/2 \right\rfloor\\ &\text{if } A[m] = x \text{ return true}\\ &\text{elseif } A[m] < x \text{ return BINARYSEARCH}(A,m+1,j,x)\\ &\text{else return BINARYSEARCH}(A,i,m-1,x) & // A[m] > x \end{split}
```

	1													
1	4	7	12	16	18	25	28	31	33	36	42	45	47	50

- Time?
- Analysis 1. Analogue of recursive peak algorithm.
 - A recursive call takes constant time.
 - Each recursive call halves the size of the array. We stop when the size is ≤ 0 .
 - $\cdot \Rightarrow$ Running time is O(log n)

Binary Search

- · Analysis 2. Let T(n) be the running time for binary search.
 - Solve the recurrence relation for T(n).

$$T(n) = \begin{cases} T(n/2) + c & \text{if } n > 1\\ d & \text{otherwise} \end{cases}$$

$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$= T\left(\frac{n}{4}\right) + c + c$$

$$= T\left(\frac{n}{8}\right) + c + c + c$$

$$\vdots$$

$$= T\left(\frac{n}{2^k}\right) + ck$$

$$\vdots$$

$$= T\left(\frac{n}{2^{\log_2 n}}\right) + c\log_2 n$$

$$= T(1) + c\log_2 n$$

$$= d + c\log_2 n$$

$$= O(\log n)$$

Searching

- · We can search in
 - O(n) time with linear search.
 - O(log n) time with binary search.

Searching and Sorting

- Searching
 - · Linear search
 - Binary search
- Sorting
 - Insertion sort
 - Merge sort

Sorting

· Sorting. Given array A[0..n-1] return array B[0..n-1] with same values as A but in sorted order.

Applications

- · Obvious.
 - Sort list of names, show Google PageRank results, show social media feed in chronological order.
- Non obvious.
 - · Data compression, computer graphics, bioinformatics, recommendations systems.
- Easy problem for sorted data.
 - · Search, find median, find duplicates, find closest pair, find outliers.

Insertion Sort

- Insertion sort. Start with unsorted array A.
- Proceed left-to-right in n rounds.
- · Round i:
 - Subarray A[0..i-1] is sorted.
 - · Insert A[i] into A[0..i-1] to make A[0..i] sorted.

Insertion Sort

- Time?
 - To insert A[i] we use c·i time for constant c.
 - \Rightarrow total time T(n):

$$T(n) = \sum_{i=1}^{n-1} ci = c \sum_{i=1}^{n-1} i = \frac{cn(n-1)}{2} = O(n^2)$$

· Challenge. Can we sort faster?

Merge sort

- Merge sort.
 - · Idea. Recursive sorting via merging sorted subarrays.

Merge

- Goal. Combine two sorted arrays into a single sorted array.
- · Idea.
 - · Scan both arrays left-to-right. In each step:
 - Insert smallest of the two entries in new array.
 - Move forward in array with smallest entry.
 - · Repeat until input arrays are exhausted.

Merge

- Time. Merging two arrays A₁ og A₂?
 - Each step take O(1) time.
 - Each step we move forward in one array.
 - $\cdot \Rightarrow O(|A_1| + |A_2|)$ time.

Merge Sort

- Merge sort.
- If $|A| \le 1$, return A.
- · Otherwise:
 - · Split A into halves.
 - · Sort each half recursively.
 - Merge the two halves.

16	31	1	36	47	50	42	12
1	12	16	31	36	42	47	50

7	4	51	28	45	25	18	33
4	7	18	25	28	33	45	51

	16	31	1	36	47	50	42	12	7	4	51	28	45	25	18	33	
	1	4	7	12	16	18	25	28	31	33	36	42	45	47	50	51	
16	31	1	36	47	50	42	12			7	4	51	28	45	25	18	33
1	12	16	31	36	42	47	50			4	7	18	25	28	33	45	51
	31		36 36	47 12		42	12			7	7	51	28	4			
16 3	1	1	36	47	50	42	12			7	4	51	28	45	5 25	5 1	8 33
16 3	1	1	36	47	50	12	42			4	7	28	51	25	5 45	1	8 33
16 3	1	1	36	47	50	42	12	2		7	4	51	28	45	2	5 1	8 33

Merge Sort

```
MERGESORT(A,i,j)
    if i < j
        m = \lfloor (i+j)/2 \rfloor
        MERGESORT(A, i, m)
        MERGESORT(A,m+1,j)
        Merge(A, i, m, j)
```


- Time?
- Construct recursion tree.

Merge Sort

$$T(n) = cn \log_2 n + dn = O(n \log n)$$

Sorting

- · We can sort in
 - O(n²) time with insertion sort.
 - O(nlog n) time with merge sort.

Divide and Conquer

- Merge sort is example of a divide and conquer algorithm.
- Algorithmic design paradigm.
 - Divide. Split problem into subproblems.
 - Conquer. Solve subproblems recursively.
 - · Combine. Combine solution for subproblem to a solution for problem.
- Merge sort.
 - Divide. Split array into halves.
 - · Conquer. Sort each half.
 - · Combine. Merge halves.

Searching and Sorting

- Searching
 - · Linear search
 - Binary search
- Sorting
 - Insertion sort
 - Merge sort