(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. September 2004 (23.09.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/082001 A1

(51) Internationale Patentklassifikation7: 21/265

PCT/DE2004/000200 (21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum:

6. Februar 2004 (06.02.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

10. März 2003 (10.03.2003) 103 10 740.1

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): FORSCHUNGSZENTRUM JÜLICH GMBH [DE/DE]; Wilhelm-Johnen-Strasse, 52425 Jülich (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MANTL, Siegfried [AT/DE]; Tilgenkampstrasse 17, 52428 Jülich (DE).

- H01L 21/20, (74) Gemeinsamer Vertreter: FORSCHUNGSZENTRUM JÜLICH GMBH; Fachbereich Patente, 52425 Jülich (DE).
 - (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
 - (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR THE PRODUCTION OF STRESS-RELAXED LAYER STRUCTURE ON A NON-LATTICE ADAPTED SUBSTRATE AND UTILIZATION OF SAID LAYER SYSTEM IN ELECTRONIC AND/OR OPTOELECTRONIC **COMPONENTS**
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG EINER SPANNUNGSRELAXIERTEN SCHICHTSTRUKTUR AUF EINEM NICHT GITTERANGEPASSTEN SUBSTRAT SOWIE VERWENDUNG EINES SOLCHEN SCHICHTSYSTEMS IN ELEKTRONISCHEN UND/ODER OPTOELEKTRONISCHEN BAUELEMENTEN

- (57) Abstract: The invention relates to a method for the production of a monocrystalline, stressrelaxed layer structure having one or several layers on a substrate with different grid structure. In a special embodiment, the method can be advantageously used for the production of relaxed silicon on a stress-relaxed Si-Ge layer structure. The invention also refers to the utilization of said layer system in components such as MOSFETs, MODFETs, resonant tunnel diodes, photodetectors or quantum cascade lasers.
- (57) Zusammenfassung: Erfindung Die betrifft ein Verfahren Herstellung zur einer einkristallinen, spannungsrelaxierten Schichtstruktur mit einer oder mehrere Schichten auf einem Substrat mit jeweils unterschiedlicher Gitterstruktur. In einer speziellen Ausgestaltung dient das Verfahren vorteilhaft zur Herstellung von verspanntem Silizium auf einer spannungsrelaxierten Si-Ge-Schichtstruktur. Ferner betrifft die Erfindung die Verwendung eines solchen Schichtsystems in Bauelemente, wie

beispielsweise MOSFETs, MODFETs, resonanten Tunneldioden, Photodetektoren oder Quantenkaskadenlasern.

WO 2004/082001 A1

EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM. GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben. Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Verfahren zur Herstellung einer spannungsrelaxierten Schichtstruktur auf einem nicht gitterangepassten Substrat sowie Verwendung eines solchen Schichtsystems in elektronischen und/oder optoelektronischen Bauelementen

Die Erfindung betrifft ein Verfahren zur Herstellung eines Schichtsystems, umfassend eine spannnungsrelaxierte, einkristalline Schichtstruktur auf einem Substrat, mit jeweils unterschiedlicher Gitterstruktur.
Ferner betrifft die Erfindung die Verwendung eines solchen Schichtsystems in elektronischen und/oder optoelektronischen Bauelementen. Im Speziellen dient das
Verfahren zur Herstellung einer verspannten Schicht,
wie z. B. von verspanntem Silizium, auf einem dünnen
spannungsrelaxierten Schichtsystem z. B. bestehend aus
Silizium-Germanium.

Stand der Technik

Die rasch fortschreitende Nanoelektronik erfordert stetig schnellere Transistoren, insbesondere metal oxide field effect transistors (MOSFETs). Eine Leistungssteigerung wird in der Regel durch Verkleinerung der Transistordimensionen erzielt. Dies ist aber sehr aufwendig und teuer, da die Schlüsseltechnologien der Chip-Herstellung, wie die Lithographieverfahren und die Ätzverfahren durch leistungsfähigere Systeme ersetzt werden müssen. Ein alternativer Weg, ist die Verwendung von leistungsfähigeren Materialien. Hier bietet sich insbesondere der Einsatz von verspanntem Silizium, verspann-

5

10

15

10

15

20

25

30

tem Silizium-Germanium (Si-Ge) bzw. Silizum-Kohlenstoff (Si-C) und Silizium-Germanium-Kohlenstoff (Si-Ge-C) an. Solch elastisch verspannte Schichtsysteme setzen allerdings epitaktisches Wachstum auf speziellen Substraten, bzw. auf spannungsrelaxierten Schichten, sogenannten "virtuellen Substraten" voraus, deren Herstellung mit geringer Defektdichte sehr aufwendig und schwierig ist. (F. Schaeffler, Semiconductor Sci. Techn. 12 (1997) p. 1515-1549).

Häufig wird nämlich die Herstellung einkristalliner Schichten durch das zur Verfügung stehende Substratmaterial stark begrenzt, bzw. die Qualität der Schichten vermindert. Unterschiedliche Kristallstrukturen, sowie unterschiedliche Gitterparameter zwischen Substrat und Schichtmaterial (Gitterfehlanpassung) verhindern in der Regel ein einkristallines Wachstum von Schichten hoher Qualität. Werden bei nicht angepassten Gitterparametern einkristalline Schichten abgeschieden, so hat dies zur Folge, dass diese anfangs mechanisch verspannt aufwachen, d. h. deren Gitterstruktur unterscheidet sich in diesem Zustand von der eigenen. Überschreitet die abgeschiedene Schicht einen bestimmten Verspannungsgrad, so wird die mechanische Spannung durch Versetzungsbildung abgebaut und die Gitterstruktur kommt der eigenen näher. Diesen Prozess nennt man Spannungsrelaxation, im Folgenden "Relaxation" genannt.

Bei Schichtdicken, die für Bauelemente häufig erforderlich sind, werden durch diese Relaxation Versetzungen an der Grenzfläche zwischen der gebildeten Schicht und dem Substrat eingebaut, wobei aber auch nachteilig viele Versetzungen, von der Grenzfläche bis zur SchichtWO 2004/082

5

10

15

20

25

30

oberfläche verlaufen (sog. Threading-Versetzungen). Da sich die meisten dieser Versetzungen weiter durch neu aufgewachsene Schichten hindurch fortsetzen, verschlechtern sie die elektrischen und optischen Eigenschaften des Schichtmaterials erheblich.

Die Verwendung von Silizium bzw. Siliziumgermanium (Si-Ge), Silizum-Kohlenstoff (Si-C), oder Silizium-Germanium-Kohlenstoff (Si-Ge-C) in einem bestimmten elastischen Verzerrungszustand verbessert die Materialeigenschaften, insbesondere die für Bauelemente eminent wichtige Ladungsträgerbeweglichkeit der Elektronen und Löcher. Der Einsatz dieser und anderer höherwertigen Materialien erlaubt eine erhebliche Performancesteigerung von Si basierenden Hochleistungsbauelementen, wie MOSFET und MODFETs, ohne die kritischen Strukturgrößen der Bauelemente verändern zu müssen. Um allerdings mit dem gleichen Schichtsystem neben einer erhöhten Elektronenbeweglichkeit auch eine wesentliche Verbesserung der Löcherbeweglichkeit zu erzielen, muss nach Oberhuber et al., Physical Review B 58(15) (1998) p. 9941-9948 die tetragonale Verzerrung in verspanntem Silizium größer als etwa 1,3 % sein. Dies lässt sich demnach dadurch realisieren, dass verspanntes Silizium auf einem "virtuellen Substrat", z. B. bestehend aus einer zu 100 % relaxierten Si-Ge-Schicht mit mindestens 30 Atom-% Ge, epitaktisch aufgebracht wird.

Da das Siliziumgermanium- (SiGe)-Materialsystem thermodynamisch ein völlig mischbares System ist, kann die Verbindung in beliebiger Konzentration hergestellt werden. Silizium und Germanium zeichnen sich zwar durch gleiche Kristallstrukturen aus, unterscheiden sich aber

10

15

20

25

30

\$ -- }

4

im Gitterparameter um 4,2 %, d. h. dass eine SiGe-Schicht oder eine reine Ge-Schicht auf Silizium verspannt aufwächst. Kohlenstoff kann in Silizium nur bis zu ca. 2 Atom-% substitutionell eingebaut werden, um den Gitterparameter zu verkleinern.

Stand der Technik zur Herstellung von beispielsweise verspannungsfreien, qualitativ hochwertigen Siliziumgermanium- (SiGe)-Legierungsschichten auf Silizium-Substrat ist der Einsatz sog. "graded layer". Hierbei handelt es sich um SiGe-Schichten, deren Ge-Konzentration zur Oberfläche hin bis zur Erreichung des gewünschten Ge-Gehalts kontinuierlich oder stufenweise zunimmt. Da zur Einhaltung der Schichtqualität nur ein Anstieg des Ge-Gehalts von ca. 10 Atom-% pro µm eingesetzt werden kann, sind solche Schichten, je nach ertreichter Ge-Konzentration bis zu 10 Mikrometer dick. Für das Schichtwachstum ist dies aus wirtschaftlicher und technologischer Sicht nicht befriedigend.

Das Schichtwachstum dieser "graded layer" wird in E. A. Fitzgerald et al., Thin Solid Films, 294 (1997) 3-10, beschrieben. Zudem führt dieses Verfahren zu hohen Schichtrauhigkeiten, zu Versetzungsmultiplikation und so zu kristallographischen Verkippungen von Bereichen, so dass ein aufwendiges Polieren der Schichten erforderlich wird.

Aus Leitz et al., Applied Physics Letters, Vol. 79(25) (2001), p. 4246-4248 sowie aus Cheng et al., Mat. Res. Soc. Symp., Vol. 686 (2002) Al.5.1- Al.5.6 sind Verfahren zur Herstellung von Strukturen mit Waferbonden und Ätzen vorgestellt. Nachteilig sind diese Verfahren teu-

BNSDOCID: <WO____2004082001A1_I_>

10

15

20

25

30

er und technologisch sehr aufwendig, da viele sehr anspruchsvolle Prozessschritte umfasst sind.

In WO 99/38201 wurde bereits ein Verfahren vorgestellt, das die Herstellung von dunnen spannungsrelaxierten Si-Ge-Pufferschichten erlaubt. Nachteilig an diesem Verfahren ist allerdings, dass der erzielbare Relaxationsgrad relativ klein ist (typischerweise 50 - 70 %), dieser mit zunehmendem Ge-Gehalt stark abnimmt und die Versetzungsdichte in der relaxierten Si-Ge Schicht relativ hoch ist. Beispielsweise wurde für eine 28 Atom-% germaniumhaltige, 100 nm dicke Si-Ge-Schicht eine Versetzungsdichte im Bereich von 107 cm-2 bestimmt (Luysberg et al.; Journal of Applied Physics 92 (2002) p. 4290). Besonders eingeschränkt wird das Verfahren bei noch höheren Ge-Konzentrationen, da die Schichtdicke der zu relaxierenden Si-Ge-Schicht dann noch kleiner (< 100 nm) gehalten werden muss. Dies ist erforderlich, da sich ansonsten bereits während des Wachstums Versetzungen bilden.

Der erreichbare Relaxationsgrad und somit auch die minimale Versetzungsdichte hängen in homogenen Si-Ge-Schichten stark von der Schichtdicke ab, da die Kraft, die auf eine Fadenversetzung wirkt, proportional zur Schichtdicke ist.

Aufgabe und Lösung

Aufgabe der Erfindung ist es ein Verfahren zur Herstellung einer spannungsrelaxierten Schichtstruktur auf ei-

10

15

20

6 4

nem nicht gitterangepassten Substrat, wie z. B einem Si-Ge Schichtpaket auf einem Silizium-Substrat oder einem Silicon on Insulator (SOI) Substrat, bereit zu stellen, das die im Stand der Technik aufgezeigten Mängel nicht aufweist.

Insbesondere soll in einer vorteilhaften Ausgestaltung verspanntes Si auf unverspanntes Siliziumgermanium (Si-Ge) oder anderen geeigneten Materialien mit jeweils unterschiedlicher Gitterstruktur hergestellt werden, die vorteilhaft unter Gewährleistung der Planarität für die weitere Prozessierung von Bauteilen erforderlich benötigt werden.

Ferner ist es Aufgabe der Erfindung elektronische und/oder optoelektronische Bauteile zur Verfügung zu stellen, die die obengenannte vorteilhafte Schichtstruktur aufweisen.

Die Aufgabe der Erfindung wird durch ein Herstellungsverfahren gemäß Hauptanspruch gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen
Patentansprüchen. Ferner wird die Aufgabe durch die
Verwendung der hergestellten Schichtstruktur in Bauteilen gemäß der Nebenansprüche gelöst.

25 Gegenstand der Erfindung

Im Rahmen der Erfindung wurde überraschend gefunden, dass eine sehr gut relaxierende Schichtstruktur auf einem nicht gitterangepassten Substrat, anders als bislang üblich, durch Aufbringen einer Schichtstruktur ausgebildet werden kann, die eine relativ hohe Gitter-

WO 2004/082001

5

10

15

20

25

30

parameterfehlanpassung Δf_1 an der Grenze zum Substrat aufweist. Diese Gitterparameterfehlanpassung an der Grenze zum Substrat sollte mindestens 1,5 %, vorteilhaft sogar mehr als 2 %, insbesondere sogar ca. 4 % betragen. Beispiele einer solchen Schichtenfolge mit einer entsprechend hohen Gitterparameterfehlanpassung sind u. a. ein Si-Substrat mit einer aufgebrachten Geschicht oder ein Si-Substrat mit einer aufgebrachten Si-Ge-Schicht mit mindestens 30 Atom.-% Ge-Gehalt.

Neben der hohen Gitterparameterfehlanpassung Δf_1 an der Grenze zum Substrat weist die Schichtstruktur in dem mittleren Bereich der Schichtstruktur eine Zusammensetzung mit einer weiteren Gitterparameterfehlanpassung Δf_2 auf, die gegenüber dem Substrat kleiner ist als Δf_1 , vorteilhaft sogar nur halb so hoch. Eine solche Schichtstruktur weist daher entweder wenigstens zwei konkrete Schichten mit unterschiedlichen Zusammensetzungen und unterschiedlichen Gitterparameterfehlanpassungen (Δf_1 und Δf_2) gegenüber dem Substrat auf, oder aber wenigstens eine gradiert aufgebaute Schicht, bei der die Germaniumkonzentration senkrecht zur Substrat- oberfläche variiert.

Beispiele für eine geeignete zweischichtige Schichtstruktur (Abfolge: erste Schicht, die an das Substrat angrenzt, zweite Schicht) sind u. a. Germanium – Si-Ge, oder $Si_{1-x}Ge_x$ – $Si_{1-y}Ge_y$ mit x > y, oder auch GeC – SiGe. Im allgemeinen können diese Schichten auch noch zusätzlich 1-2 Atom-% Kohlenstoff aufweisen.

Eine erste vorteilhafte Variation der Germaniumkonzentration in einer gradierten Schicht der Schichtstruktur

10

15

20

25

30

ist eine kontinuierlich abfallende Konzentration von der Grenzfläche Substrat/Schichtstruktur zur Oberfläche der Schichtstruktur hin. In diesem Fall bedeutet Δf_2 die Gitterparameterfehlanpassung der Oberflächenzusammensetzung der Schichtstruktur gegenüber dem Substrat. Eine weitere vorteilhafte Variation ist die Ausbildung eines U-Profils, bei dem die Germaniumkonzentration an der Grenzfläche Substrat/Schichtstruktur und an der Oberfläche der Schichtstruktur höher ist, als in dem mittleren Bereich der Schichtstruktur. In diesem Fall

mittleren Bereich der Schichtstruktur. In diesem Fall bedeutet Δf_2 die Gitterparameterfehlanpassung der Zusammensetzung in dem mittleren Bereich der Schichtstruktur, bzw. die der Zusammensetzung mit dem geringsten Ge-Gehalt in der Schichtstruktur gegenüber dem Substrat.

Als besonders geeignete Materialien für eine gradierte Schichtstruktur sind insbesondere Si-Ge, Si-C und Si-Ge-C zu nennen.

Die Gesamtschichtdicke der epitaktischen Schichtstruktur ist so zu wählen, dass eine bestimmte Dicke, bei der die Versetzungen eine Dichte von mehr als 10³/cm² (Defektdichte) aufweisen, unterschritten wird. Bei einer mehrschichtigen Schichtstruktur muss zudem sichergestellt sein, dass die erste, an das Substrat angrenzende Schicht eine Schichtdicke aufweist, die kleiner ist als die sogenannte kritische Schichtdicke für diese Schicht. Die kritische Schichtdicke definiert die maximale Schichtdicke für diese Schicht, bei der noch ein defektfreies Wachstum auf dem nicht gitterangepassten Substrat möglich ist. Bei einer Schichtdicke unterhalb dieser kritischen Schichtdicke kann daher in der Regel

10

15

20

25

30

streng pseudomorphes, d. h. völlig defektfreies Wachstum erzielt werden.

Die Schichtdicke der abzuscheidenden, ersten Schicht wird ein Fachmann danach auslegen, wie groß die kritische Schichtdicke, bzw. wie groß die Gitterparameterfehlanpassung ist. Im Allgemeinen gilt, je höher die Gitterparameterfehlanpassung, desto geringer die kritische Schichtdicke. Bei den hier aufgeführten Materialien liegt die Schichtdicke einer ersten Schicht in der Regel zwischen 1 und 20 nm, vorteilhaft zwischen 1 und 15 nm. Bei der Kombination Si-Substrat und eine darauf aufgebrachte reine Germaniumschicht beträgt die geeignete Schichtdicke der Germaniumschicht sogar nur 3 bis 4 nm. Bei einem dreischichtigen Aufbau der Schichtstruktur gilt dies entsprechend sowohl für die erste, als auch für die dritte Schicht.

Die Schichtdicke der zweiten Schicht wird in der Regel deutlich höher gewählt (50 bis 400 nm). Wichtig ist nur, dass die Gesamtschichtdicke der Schichtstruktur derart klein gehalten wird, dass die Versetzungsdichte regelmäßig kleiner als 10³/cm² ist.

Im Rahmen dieser Erfindung hat sich herausgestellt, dass eine solche, vorgenannte epitaktisch aufgebrachte, einkristalline Schichtstruktur oberhalb eines vergrabenen, durch Ionenimplantation in der Substratschicht erzeugten Defektbereichs, bei einer thermischen und/oder oxidativen Behandlung sehr gut spannungsrelaxiert. Dies gilt insbesondere bei dem Einsatz von Materialien für die Schichtstruktur, die gegenüber den im Stand der Technik eingesetzten Materialien eine relativ hohe Gitterfehlanpassung im Bezug auf das Substrat aufweisen.

10

15

20

25

30

Der Anteil der erfindungsgemäßen spannungsrelaxierten Schichtstruktur liegt nach einer thermischen und/oder oxidativen Behandlung in der Regel höher als 60 %, insbesondere höher als 70 %. Eine solche Schichtstruktur mit einem hohen Grad an Relaxation und einer sehr kleinen Versetzungsdichte wird auch "virtuelles Substrat" genannt.

In einer ersten Ausgestaltung des Verfahrens geht man von einer Schichtenfolge auf einem Substrat aus, auf dem mindestens zwei epitaktische Schichten mit unterschiedlicher chemischer Zusammensetzung und unterschiedlicher Schichtdicke epitaktisch abgeschieden werden, wobei die erste Schicht mit einer Schichtdicke d1 eine große Änderung des Gitterparameters und somit eine große elastische Verzerrung zum Substrat aufweist. Die erste Schicht kann beispielsweise eine nur wenige Monolagen dicke reine Germaniumschicht auf Silizium oder eine Si-Ge-Schicht mit hohem Ge-Gehalt auf Silizium sein. Die Schichtdicke der ersten Schicht d_1 (z. B. d_1 = 1 - 20 nm) muss kleiner als die sogenannte kritische Schichtdicke sein, damit defektfreies Wachstum möglich ist. Darauf wird dann beispielsweise eine zweite, wesentlich dickere Si-Ge-Schicht mit einer bestimmten Konzentration z. B. 30 Atom. - & Ge und einer Schichtdicke d_2 ($d_2 >> d_1$; z. B. 50 nm < d_2 < 400 nm) abgeschieden. Die Gesamtschichtdicke d1 und d2 darf dabei jene kritische Dicke nicht überschreiten, bei der Versetzungen mit einer Dichte > 103 cm-2 während des Wachstums entstehen. Dies impliziert, dass die Gesamtschichtdicke auch über der sogenannten "kritischen Schichtdicke",

10

15

20

25

30

die streng pseudomorphes, d. h. völlig defektfreies Wachstum garantiert, liegen darf.

Bei einer alternativen Ausführungsform des Verfahrens zu dem vormals erwähnten Zweischicht-System, wird eine epitaktische Schicht mit einem kontinuierlich verlaufenden Konzentrationsgradienten auf dem Substrat abgeschieden. Das Konzentrationsgefälle kann dabei sowohl stetig, als auch beispielsweise U-förmig verlaufen.

Alternativ kann bei dem Verfahren auch ein Dreischichtsystem in Anlehnung an das 2-Schichtsystem erzeugt werden. Dabei wird auf die erste Schicht und die zweite Schicht eine weitere dritte Schicht aufgebracht. Diese weist ähnlich wie die erste Schicht eine hohe Konzentration und eine kleine Schichtdicke auf. Dadurch kann, ähnlich wie in der Ausführungsform mit dem U-förmigen Konzentrationsprofil, eine symmetrische Spannungsverteilung in der Schichtstruktur erzeugt werden.

Die Verwendung dieser speziellen Schichtsysteme hat zum Ziel, die für die Relaxation bestimmenden Schichtparamter so zu optimieren, dass ein wesentlich höherer Relaxationsgrad und somit eine kleinere Versetzungsdichte in dem so erzeugten virtuellen Substrat auch bei größerer Gitterfehlanpassung (z. B. bei höherer Ge-Konzentration) nach geeigneter Ionenimplantation und thermischer Behandlung erreicht werden kann. Die plastische Relaxation durch Versetzungen hängt von der Schichtdichte und der jeweiligen Verspannung ab.

Anders als beim Stand der Technik, wo Pufferschichten mit gradiertem Ge-Gehalt eingesetzt werden, wobei das Wachstum an der Grenzfläche zum Substrat in der Regel mit einem kleinen Ge-Gehalt begonnen wird und nur

10

15

20

25

schrittweise erhöht wird, um die Gitterparameteränderungen bewusst klein zu halten, wird im Rahmen der Erfindung ein ganz neuer Ansatz zur Herstellung solcher vorteilhaften Schichtstrukturen gewählt.

Innerhalb eines sehr dünnen Schichtbereiches (entweder erste Schicht in einer zwei oder dreischichtigen Schichtstruktur oder Anfangsbereich einer gradierten Schichtstruktur) wird die elastische Gitterverzerrung an der Substratgrenzfläche durch geeignete Wahl der Schichtkomposition hoch angesetzt. In einem sich daran anschließenden Bereich (zweite Schicht in einer zwei oder dreischichtigen Schichtstruktur oder Mittel- bzw. Oberflächenbereich einer gradierten Schichtstruktur) wird die Komposition entweder sofort oder graduell auf den Ge-Gehalt abgesenkt für den die erwünschte Relaxation erzielt werden soll. Dieser Effekt kann durch einen dritten Bereich (dritte Schicht einer dreischichtigen Schichtstruktur mit hoher Ge-Konzentration oder Oberflächenbereich einer gradierten (Schichtstruktur mit U-Profil) verstärkt werden.

Der zu erzielende Effekt, dass im Anfangsbereich zwischen Substrat und Schichtstruktur eine relativ hohe Gitterverzerrung auftritt, kann im Rahmen der Erfindung nicht nur durch das Aufbringen einer ersten Schicht mit hoher Gitterparameterfehlanpassung bezüglich des Substrates realisiert werden, sondern auch dadurch, dass das Substrat selbst durch Einbringen von Kohlenstoff eine gegenüber der Schichtstruktur erhöhte Gitterparameterfehlanpassung, aufweist.

Mit dem erfindungsgemäßen Verfahren kann eine überwiegend relaxierte Schichtstruktur erzeugt werden, die zu-

10

15

20

25

30

dem vorteilhaft eine geringe Oberflächenrauhigkeit von regelmäßig weniger als 1 mm und nach dem Wachstum nur eine geringe Defektdichte von weniger als 10⁵ cm⁻², insbesondere von weniger als 10⁵ cm⁻² aufweist. Dies ist besonderes vorteilhaft für das Aufbringen weiterer verspannter Schichten auf diese Schichtstruktur.

Um in einer vorteilhaften Ausgestaltung des Verfahrens verspanntes Silizium zu erzeugen oder auch einen Schutz des Schichtsystems zu erreichen, kann zusätzlich eine weitere, dünne Schicht epitaktisch auf der Schichtstruktur abgeschieden werden. Dazu ist insbesondere epitaktisches Silizium geeignet. Diese Abscheidung kann, wenn die Schichtdicke ausreichend klein ist, vor oder nach oder zwischen den folgenden Prozessschritten der Ionenimplantation und der thermischen Behandlung erfolgen.

Gemäß dem Hauptanspruch des erfindungsgemäßen Verfahrens wird anschließend primär unterhalb dieser epitaktischen Schichtstruktur durch eine Ionenimplantation ein Defektbereich erzeugt. Je nach Schichtdicke, Ionensorte, -energie und -dosis wird auch die epitaktische Schichtstruktur dabei geschädigt. Die Implantationsbedingungen werden derart gewählt, dass in der Regel keine vollständige Amorphisierung der epitaktischen Schichtstruktur erfolgt und die Defekte in der epitaktischen Schichtstruktur weitestgehend ausgeheilt werden können.

Diese Schichtenfolge aus Substrat mit Defektbereich und aufgebrachter Schichtstruktur und gegebenenfalls einer weiteren epitaktisch aufgebrachten Schicht wird dann thermisch so behandelt, so dass die Schichtstruktur,

10

15

20

25

30

die das virtuelle Substrat darstellt, oberhalb des Defektbereichs spannungsrelaxiert. Dadurch erhält man unmittelbar mindestens eine epitaktische Schichtstruktur mit geändertem Verspannungszustand auf einem Substrat.

Die Implantation kann optional auch unter Verwendung einer Implantationsmaske nur in Teilbereichen des Substrates, insbesondere eines Wafers erfolgen. In einem solchen Fall wird der Verspannungszustand der epitaktischen Schichtstruktur im wesentlichen nur oberhalb der implantierten Defektbereiche relaxieren.

Mit unterschiedlicher Gitterstruktur werden im Rahmen dieser Erfindung Materialien mit verschiedenen Gitterparametern oder verschiedenen Kristallstrukturen verstanden.

Die vorgenannte Schichtenfolge aus Substrat/Defektbereich und epitaktischer Schichtstruktur kann auf verschiedene Wege hergestellt werden. Es kann beispielsweise auf einem Substrat epitaktisch eine Schichtstruktur abgeschieden werden und anschließend (partiell) ein Defektbereich primär unterhalb der Grenzfläche der abgeschiedenen Schicht erzeugt werden. An diese Reihenfolge der Verfahrensschritte ist man allerdings nicht gebunden. Die Herstellung der Schichtenfolge kann vorteilhaft variiert werden, beispielsweise indem man den Defektbereich vor oder nach Abscheidung einer ersten epitaktischen Schicht auf dem Substrat herstellt.

Es sei erwähnt, dass im Sinne dieser Erfindung auch weitere Schichten in Ergänzung vorgesehen sein können, beispielsweise eine in der Praxis vorliegende dünne Übergangsschicht zwischen Substrat und erster epitakti-

10

15

20

25

30

scher Schicht, die aus dem gleichen Material wie das Substrat besteht.

Die Defektbereiche können durch Ionenimplantation vorzugsweise mit leichten Ionen (Wasserstoff, Helium, Fluor, Bor, Kohlenstoff, Stickstoff, Schwefel etc.) oder Ionen des Schicht- bzw. Substratmaterials selbst, also z. B. Si oder Ge bei einer Si/SiGe Heterostruktur in der Art erfolgen, dass die Ionen primär unterhalb der ersten epitaktisch abgeschiedenen oder noch abzuscheidenden Schicht vorliegen. Die Implantation von leichten Ionen vermeidet eine zu starke Schädigung des epitaktischen Schichtsystems. Es ist vorteilhaft Ionen zu verwenden, die ungewollte Kontamination bzw. Dotierung der Struktur vermeiden. In diesem Sinne sind auch Edelgasionen (Ne, Ar, Kr etc.) einsetzbar. Die Implantationsdosis und die -tiefe werden an die Schichtdicke epitaktischen Schichtstruktur und der Masse und Energie des gewählten Ions angepasst werden. Es ist vorteilhaft, die maximale Schädigung unterhalb der ersten auf dem Substrat aufgebrachten Schicht zu erzeugen. Dies gilt insbesondere für Ionen, die zu einer Bläschen- oder Rissbildung führen (Wasserstoff, Helium, Fluor, Neon, Argon, usw.). Die Bildung von Bläschen, bzw. Hohlräumen an der Grenzfläche Substrat/epitaktische Schichtstruktur und in der epitaktischen Schichtstruktur selbst sind zu vermeiden. Ein Vorteil einer Si-Implantation im Vergleich zur Implantation mit sehr leichten Ionen (Wasserstoff oder Helium) ist es, dass die Dosis erheblich (um Faktor 100) reduziert werden kann. Dies verkürzt die Implantationszeiten und erhöht dadurch den Waferdurchsatz als eingesetztes Substrat erheblich.

10

15

20

25

30

Die Schichtenfolge wird thermisch so behandelt, bzw. das thermische Budget so klein gehalten, dass die implantierten Bereiche des "virtuellen Substrates" spannungsrelaxieren. Aus den Defekten, die durch die Implantation, z. B. mit Helium oder Si erzeugt wurden, entstehen beim anschließenden Tempern, Defektcluster und Versetzungen, die zum Teil vom Substrat zur epitaktischen Schichtstruktur laufen. Diese Defekte und die in der epitaktischen Schichtstruktur erzeugten bewirken eine Relaxation der Gitterverspannungen. Es entsteht in der Regel eine dünne, teilweise oder ganz spannungsrelaxierte, epitaktische Schichtstruktur mit geringen Kristallbaufehlern, die vorteilhaft als "virtuelles Substrat" eingesetzt werden kann.

Die Relaxation kann alternativ auch durch eine Oxidation mit O2 oder Wasser ausgelöst werden. Anstelle einer rein thermischen Behandlung zur Bildung relaxierter Bereiche kann demnach eine Oxidation als Behandlung, oder auch eine Kombination von Oxidation und thermischer Behandlung eingesetzt werden. Hierdurch lässt sich auch die Konzentration von Elementen, die für die Funktionsweise des Bauelements wichtig sind, innerhalb der Schichtstruktur (z. B. Ge Anreicherung in SiGe) erhöhen.

Das Verfahren nutzt Prozessschritte, die in der Silizium-Technologie etabliert sind, so dass die Technologie auch auf sehr große Wafer (z. B. 300 mm Si-Wafer) übertragen werden kann.

Im Anschluss hieran kann erfindungsgemäß mindestens eine weitere epitaktische Schicht auf dieser Schichtenfolge abgeschieden werden. Das Substrat unterhalb der

10

15

20

25

30

ersten epitaktischen Schichtstruktur liegt in relaxiertem Zustand vor. Das Material der weiteren epitaktisch aufgebrachten Schicht auf der epitaktischen Schichtstruktur liegt wiederum in verspanntem Zustand vor. Die weitere abgeschiedene Schicht kann aus dem gleichen Material sein wie das Substrat. Da die epitaktische Schichtstruktur regelmäßig dünn gehalten wird, z. B. kleiner als ca. 300 Nanometer, insbesondere kleiner als 200 nm, ist gewährleistet, dass eine ausgezeichnete thermische Leitfähigkeit innerhalb der gesamten Schichtenfolge erhalten wird. Die epitaktische Schichtstruktur und die darauf abgeschiedene weitere Schicht stellt auf Grund der Dünne der Schichten eine einzige Schicht in nahezu einer Ebene mit dem Substrat dar. Mit dem Begriff "in einer Ebene" ist demgemäß gemeint, dass die Höhe der durch Abscheidung entstehenden Stufen bis zur Oberfläche des Substrats nicht größer sind als der Bereich der Tiefenschärfe der Abbildungsoptik der Lithographie. Dann ist gewährleistet, dass im Zuge weiterer Verfahrensschritte die Planarität zwischen "virtuellem Substrat" und Substrat ausreichend ist. Die Schichtenfolge des virtuellen Substrates und gegebenenfalls der weiteren abgeschiedenen Schicht weist z. B. eine Dicke von ca. 100 bis 400, insbesondere 100 bis 200 Nanometer auf oder ist sogar noch dünner. Die Herstellung eines "system on a chip" (verschiedene Bauelemente mit verschiedenen Funktionen in einer Ebene) ist somit vorteilhaft im Rahmen der Erfindung möglich. Hierzu können für die Herstellung z. B. von MOSFETs zunächst das Gate-Dielektrikum (z. B. SiO₂), Source und Drain-Kontakt, der Gate-Kontakt, und gegebenenfalls Spacer sowie darunter liegende anders dotierte Kanal-, Source- und

10

15

20

25

Drain-Bereiche gefertigt und in einer Passivierungsschicht bzw. Isolatorschicht eingebettet werden. Dabei ist man nicht an bestimmte Transistortypen oder Bauteile gebunden.

Anstelle eines Silizium-Substrates kann auch ein SOI Substrat (Si auf SiO₂) für die Deposition der Schichtstruktur eingesetzt werden. Die Verwendung von schwereren Ionen ist auch dann besonderes vorteilhaft, wenn die Silizium Schichtdicke auf dem Oxid so dünn wird, dass z. B. keine Wasserstoff- oder keine Heliumbläschen mehr erzeugt werden können. Dies ermöglicht eine recht kleine Gesamtschichtdicke auf dem Oxid, was z. B. für die Herstellung spezieller Bauelemente auf SOI von besonderem Vorteil ist.

Das erfindungsgemäß hergestellte Schichtsystem kann auf einen Trägerwafer durch Waferbonden übertragen werden, ohne dass ein Polieren der Oberfläche erforderlich ist. Das Abspalten des Schichtsystems kann dabei durch eine zusätzliche Wasserstoff- und/oder Heliumimplantation, sogenannter SMART-Cut Prozess erfolgen. Alternativ kann auch Abätzen eingesetzt werden. Die Abtrennung kann dann so erfolgen, dass entweder nur die weitere epitaktische Schicht oder auch die Schichtstruktur auf dem neuen Wafer, in der Regel auf SiO₂, übertragen wird. Insbesondere im Fall von Si-Ge-Schichten als Schichtstruktur können diese vorteilhaft selektiv abgeätzt werden. Dadurch kann z. B. verspanntes Silizium direkt auf SiO₂ hergestellt werden.

Spezieller Beschreibungsteil

Nachfolgend wird der Gegenstand der Erfindung anhand von vier Figuren und Ausführungsbeispielen näher erläutert, ohne dass der Gegenstand der Erfindung dadurch beschränkt werden soll. Dabei zeigen

- Figur 1: Schematisches Schichtsystem, umfassend ein Substrat und eine 2-lagige, epitaktisch aufgebrachte Schichtstruktur.
- Figur 2: Schematisches Schichtsystem, umfassend ein Substrat und eine epitaktisch aufgebrachte Schichtstruktur mit einem graduellen, stetigen Konzentrationsverlauf senkrecht zur Schichtebene.
- Figur 3: Schematisches Schichtsystem, umfassend eine Substrat und eine epitaktisch aufgebrachte Schichtstruktur mit einem graduellen, U-förmigen Konzentrationsverlauf senkrecht zur Schichtebene, sowie eine weitere verspannte Schicht.
 - Figur 4: Schematisches Schichtsystem, umfassend ein Substrat mit vergrabener Defektstruktur, eine 2-lagige, epitaktisch aufgebrachte Schichtstruktur, eine Implantationsmaske sowie eine weitere verspannte Schicht.

Ausführungsbeispiele:

Figur 1 zeigt die Herstellung eines virtuellen Substrates mit zwei einkristallinen Schichten mit jeweils unterschiedlicher Gitterstruktur. Das Schichtwachstum er-

5

15

20

25

્રાધિવાન જાલાસ folgt vorzugsweise mit Gasphasenepitaxie oder mit Molekularstrahlepitaxie. Auf einem Silizium-Substrat wird
epitaktisch Schicht 1, beispielsweise eine reine Germaniumschicht mit wenigen Nanometern Dicke epitaktisch
abgeschieden. Alternativ kann auch eine dünne Si-GeSchicht mit hohem Ge-Gehalt oder eine Si-C-Schicht mit
1 - 2 Atom-% Kohlenstoff verwendet werden. Anschließend
wird eine Siliziumgermanium-(SiGe)-Schicht 2 mit einer
Ge-Konzentration mit einer bestimmten Konzentration
z. B. 30 Atom-% Ge und einer Schichtdicke d2 von 50-250
nm abgeschieden. Es ist zu beachten, dass eine höhere
Gesamtschichtdicke von Vorteil ist, da in der Regel
dies zu kleineren Versetzungsdichten in dem spannungsrelaxierten virtuellen Substrat führen wird.

15

20

25

30

10

5

Alternativ dazu kann wie in Figur 2 und Figur 3 dargestellt eine Si-Ge-Schicht mit einem stark inhomogenen Konzentrationsverlauf in der Schicht aufgebracht werden. Wesentlich dabei ist, dass das Wachstum mit höherer Ge-Konzentration, evtl. sogar mit reinem Germanium, begonnen wird und dann die Konzentration (z. B. auf 30 Atom-%) abgesenkt wird. Für einen symmetrischen Spannungsaufbau kann wie in Figur 4 gezeigt in der Schicht 4 ein U-förmiger Konzentrationsverlauf verwendet werden. Ein symmetrischer Spannungsaufbau in dem Schichtsystem kann auch durch Abscheidung einer weiteren Schicht auf die Schicht 2 erreicht werden, wenn diese weitere Schicht ähnliche oder gleiche Eigenschaften der Schicht 1 aufweist. Die Gesamtschichtdicke muss in allen Fällen unterhalb der Schichtdicke liegen, bei der

bereits während des Wachstums Versetzungen mit störender Konzentration (maximal 10³ cm-²) entstehen.

Wahlweise kann auch zusätzlich eine dünne Schicht z. B. aus Silizium (Schicht 5 in Figur 4) deponiert werden. 5 Unterhalb dieser deponierten Schichten kann ein Defektbereich z. B. durch Ionenimplantation erzeugt werden. Hierfür kann vorteilhaft eine He-Implantation mit einer Dosis von ca. 1 x 10¹⁶ cm⁻² durchgeführt werden. Die Energie der Ionen wird an die Schichtdicke so ange-10 passt, dass die mittlere Reichweite der Ionen ca. 100-200 nm unterhalb der ersten Grenzfläche, also im Substrat liegt. Alternativ zur He-Implantation kann auch eine Si-Implantation beispielsweise mit einer Energie von ca. 150 keV und einer Dosis von etwa 15 1 x 10¹⁴ cm⁻² bei 100 nm Schichtdicke der Siliziumgermanium-(SiGe)-Schicht 1 und 2. Die implantierten Ionen erzeugen Kristalldefekte in und unterhalb der SiGe-Schicht.

Anschließend erfolgt für einige Minuten als thermische Behandlung eine Temperung bei 900 °C in einer inerten N2-Atmosphäre. Es kann auch ein anderes inertes Gas (z.B. Argon) oder ein Gas, das für die Zwecke der Erfindung geeignet ist, verwendet werden (z.B. O2 oder Formiergas). Über dem Defektbereich entsteht bei diesem Temperaturregime, das nicht zu hoch gewählt sein darf, eine spannungsrelaxierte Siliziumgermanium (SiGe)-Schichtstruktur. Diese Temper- oder Oxidationstemperatur kann an das gesamte Schichtsystem und an den Bauelementeprozess angepasst und so auf wesentlich tiefere Temperaturen abgesenkt werden. Beispielsweise kann eine

20

25

10

15

20

25

30

(Calife

Schichtrelaxation nach geeigneter Ionenimplantation bereits bei Temperaturen um 600 °C erreicht werden.

Erfindungsgemäße Schichtenfolgen auf dem Substrat können wie im ersten Ausführungsbeispiel eine Dicke von ca. 50 bis 500 Nanometer oder weniger aufweisen um diese Anforderungen zu erfüllen.

Es kann eine weitere Schicht 5, epitaktisch auf der relaxierten Siliziumgermanium-(SiGe)-Schicht 2 aufgebracht werden (Figur 4). Diese weitere Schicht 5 ist
dann bei entsprechender Gitterfehlanpassung verspannt.
Sie kann z. B. aus Silizium, oder auch aus Siliziumgermanium (SiGe) mit anderer Germaniumkonzentration als in
der epitaktischen Schicht 2, oder auch aus einer Mehrfachschicht bestehen. Im Falle von Silizium, liegt verspanntes Silizium vor. Durch die Dünne der Schichten 1,
2 und 5 ist jedoch die Planarität im Sinn der obigen
Definition der verschiedenen Bereiche der Schichten 1,
2, und 5 sowie die thermische Leitfähigkeit zum Substrat gewährleistet.

Schicht 5 aus Figur 4 (verspanntes Si) kann auf Grund der höheren Beweglichkeiten der Ladungsträger vorteilhaft zur Herstellung von ultraschnellen MOSFETs, insbesondere n-und p-Kanal MOSFETs verwendet werden.

Auch an nicht verspannten Bereichen der Schichtstruktur können vorteilhaft p-MOSFETs hergestellt werden. Diese Bereiche entstehen beispielsweise, wenn während der Ionenimplantation eine Maske verwendet wurde. Da regelmäßig nur die Bereiche der Schichtstruktur relaxieren, die oberhalb eines vergrabenen Defektbereiches eines Substrates liegen, bleiben die Bereiche der Schichtstruktur, die oberhalb der durch die Maske geschützten

10

15

20

25

Bereiche des Substrates angeordnet sind regelmäßig verspannt.

Man kann darüber hinaus auch von anderen Schichtenfolgen und Prozessierungen ausgehen:

Neben Siliziumgermanium (SiGe) und Si-Ge-C und Si-C als erste epitaktische Schichten 1 und 2, bzw. 3 oder 4 können ferner allgemein III-V-Verbindungen, insbesondere III-V-Nitride (GaN, AlN, InN) sowie auch oxidische Perovskite als erste epitaktische Schichten angeordnet sein. Wichtig ist in jedem Fall nur, dass geeignete Materialien auf einem geeigneten Substrat angeordnet werden, so dass mindestens eine Schicht (5) mit unterschiedlicher Gitterstruktur, auf dem so erzeugten "virtuellen Substrat" hergestellt werden kann. Danach kann eine Herstellung der Bauelemente bis zur Herstellung der Bauelemente, z. B. Transistoren fortgeführt werden.

Die nach einem der erfindungsgemäßen Verfahren herge-

stellten Schichtenfolgen können insbesondere zur Herstellung von metal-oxide-semiconductor FeldeffektTransistoren (MOSFET) und modulated doped FeldeffektTransistor (MODFET) herangezogen werden. Es ist auch möglich resonante Tunneldioden, insbesondere eine resonante Siliziumgermanium-(SiGe)-Tunneldiode oder Quantenkaskadenlaser auf so einem "virtuellen Substrat" herzustellen. Weiterhin ist denkbar einen Photodetektor aus einer der Schichtenfolgen herzustellen. Ferner ist denkbar, ausgehend von einer Schichtenfolge von GaAs als Schicht 5 auf einem "virtuellen Substrat" aus Siliziumgermanium (SiGe) 1, 2 einen Laser herzustellen.

Bezugszeichenliste:

- Epitaktische Schicht 1, (z. B. Siliziumgermanium oder Reinstgermanium oder SiC) mit einer
 Schichtdicke d1.
 Epitaktische Schicht 2 (z. B. Si-Ge oder Si-Ge-
- Epitaktische Schicht 2 (z. B. Si-Ge oder Si-Ge-C) einer bestimmten Ge-Konzentration und einer Schichtdicke d₂.
 - 3 Epitaktische Si-Ge Schicht mit einem stark abfallenden Ge-Konzentrationsprofil
- 10 4 Epitaktische Si-Ge Schicht mit einem U-förmigen Ge-Konzentrationsprofil
 - Abgeschiedene Silizium- oder SiGe- oder Mehrfachschicht, z. B. verspanntes Silizium
- Defektbereich im Substrat, nahe der ersten
 Grenzfläche zur epitaktischen Schicht.
 - 7 Maske für die Ionenimplantation

Patentansprüche

- 1. Verfahren zur Herstellung einer spannungsrelaxierten, einkristallinen Schichtstruktur (1, 2, 3, 4) auf einem nicht gitterangepassten Substrat, mit den Schritten
 - auf einem Substrat wird epitaktisch eine einkristalline Schichtstruktur, umfassend wenigstens
 eine Schicht, aufgebracht, wobei die Schichtstruktur an der Grenzfläche zum Substrat eine größere
 Gitterparameterfehlanpassung zum Substrat aufweist
 als innerhalb der Schichtstruktur,
 - die Gesamtschichtdicke der epitaktischen Schichtstruktur wird so gewählt wird, dass die Versetzungsdichte nach dem Wachstum kleiner als 10³ cm⁻² ist,
 - die Schichtstruktur wird mit Ionen primär durchstrahlt, wobei in der Schichtstruktur vorwiegend Punktdefekte und im Substrat nahe der epitaktischen Schichtstruktur ein ausgedehnter Defektbereich erzeugt wird,
 - die Energie der implantierten Ionen wird derart gewählt, dass die mittlere Reichweite größer als die Gesamtschichtdicke der epitaktischen Schichtstruktur ist,
 - die epitaktische Schichtstruktur wird nach der Implantation im Temperaturbereich von 550 1000°C in einer inerten, reduzierenden oder oxidierenden Atmosphäre derart behandelt, dass die Schichtstruktur oberhalb des Defektbereiches spannungsre-

5

10

15

20

laxiert, eine Defektdichte kleiner als 10⁶ cm⁻², insbesondere kleiner als 10⁵ cm⁻² und eine Oberflächenrauhigkeit von weniger als 1 nm aufweist.

- Verfahren nach Anspruch 1, bei dem eine Schichtstruktur aufgebracht wird, die an der Grenzfläche zum Substrat eine Gitterparameterfehlanpassung von wenigstens 1,5 %, insbesondere von wenigstens 2 % aufweist.
- 3. Verfahren nach Anspruch 1 oder 2, bei dem eine Schichtstruktur aufgebracht wird, die an der Grenzfläche zum Substrat eine wenigstens doppelt so große Gitterparameterfehlanpassung zum Substrat aufweist als innerhalb der Schichtstruktur.
 - 4. Verfahren nach Anspruch 1 bis 3, bei dem die Schichtstruktur oberhalb des Defektbereichs zu mindestens 60 %, vorteilhaft zu wenigstens 70 % spannungsrelaxiert.
 - 5. Verfahren nach Anspruch 1 bis 4, bei dem eine Schichtstruktur, umfassend Silizium-Germanium (Si-Ge) oder Silizium-Gemanium-Kohlenstoff (SiGeC) oder Siliciumcarbid (SiC) auf dem Substrat aufgebracht wird.
 - 6. Verfahren nach Anspruch 5, bei dem eine Schicht mit einem abfallenden Konzentrationsprofil an Ge

10

20

15

als Schichtstruktur auf einem Substrat aufgebracht wird.

- 7. Verfahren nach Anspruch 5, bei dem eine Schicht mit einem U-förmigen Konzentrationsprofil an Ge als Schichtstruktur auf einem Substrat aufgebracht wird.
- 8. Verfahren nach Anspruch 1 bis 4, bei dem eine
 Schichtstruktur, umfassend einen III-V-Verbindungshalbleiter, insbesondere ein III-V-Nitrid,
 einen II-VI-Verbindungshalbleiter oder einen oxidischen Perovskiten auf dem Substrat aufgebracht
 wird.
- Verfahren nach Anspruch 1 bis 5, bei dem eine Schichtstruktur, umfassend wenigstens zwei Schichten, aufgebracht wird.
- 10. Verfahren nach Anspruch 9, bei dem eine erste,
 dünne, pseudomorphe Ge-Schicht mit einer Schichtdicke d₁, die unterhalb der kritischen Schichtdicke
 für pseudomorphes Wachstum von Ge auf Si liegt,
 und eine zweite Si_{1-x}Ge_x Schicht (2) mit einer Dicke
 d₂ >> d₁ als Schichtstruktur auf einem Substrat
 aufgebracht wird.
- 11. Verfahren nach Anspruch 9, bei dem zwei Si-Ge Schichten, als Schichtstruktur auf dem Substrat aufgebracht werden, einer ersten Si_{1-x}Ge_x Schicht

mit einer Dicke d_1 und einer zweiten $Si_{1-y}Ge_y$ Schicht (2) mit einer Dicke d_2 und mit x > y und d_2 >> d_1 .

- 5 12. Verfahren nach Anspruch 9, bei dem eine erste, dünne, pseudomorphe Si-C Schicht (1) mit einem Kohlenstoffgehalt von 1 2 Atom-% und einer Schichtdicke d₁ und eine zweite Si_{1-x}Ge_x Schicht (2) mit einer Schichtdicke d₂ >> d₁ als Schichtstruktur auf einem Substrat aufgebracht wird.
 - 13. Verfahren nach einem der Ansprüche 9 bis 12, bei dem wenigstens eine Schicht mit einem zusätzlichen Kohlenstoffgehalt von 1 2 Atom-% aufgebracht wird.
 - 14. Verfahren nach Anspruch 9 bis 12, bei dem eine Schichtstruktur, umfassend wenigstens drei Schichten, aufgebracht wird.
 - 15. Verfahren nach Anspruch 14, wobei als erste und als dritte Schicht der Schichtstruktur jeweils eine Schicht aufgebracht wird, die hinsichtlich der Zusammensetzung und der Schichtdicke identisch sind.
 - 16. Verfahren nach einem der Ansprüche 1 bis 15, bei dem für die Implantation He Ionen mit einer Dosis von etwa 1 x 10¹⁶ cm⁻² zur Erzeugung des Defektbereichs (6) eingesetzt werden.

15

20

25

15

20

- 17. Verfahren nach einem der Ansprüche 1 bis 15, bei dem für die Implantation Si, mit einer Dosis von etwa 1 x 10¹⁴ cm⁻² zur Erzeugung des Defektbereichs (6) eingesetzt wird.
- 18. Verfahren nach einem der Ansprüche 1 bis 15, bei
 dem für die Implantation Wasserstoff-, Kohlenstoff-, Stickstoff-, Fluor-, Bor-, Phosphor-, Arsen-, Silizium-, Germanium-, Antimon-, Schwefel-,
 Neon-, Argon-, Krypton oder Xenon-Ionen zur Erzeugung des Defektbereichs (6) eingesetzt werden.
 - 19. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 18, bei dem die Ionenimplantation mit Hilfe einer lithographischen Maske (7) durchgeführt wird, so dass die Schichtstruktur nur an den implantierten Bereichen spannungsrelaxiert.
 - 20. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 19, bei dem SOI (silicon on insulator) als Substrat mit einer Si-Schicht, deren Schichtdicke unterhalb von 120 nm liegt, eingesetzt wird.
 - 21. Verfahren nach einem der Ansprüche 1 bis 19, bei dem Silizium, Siliziumgermanium (SiGe), Siliziumcarbid (SiC), Saphir oder ein oxidisches Perovskit als Substrat eingesetzt wird.
- 22. Verfahren nach einem der Ansprüche 1 bis 21, bei

 dem auf die epitaktische Schichtstruktur eine weitere epitaktische Schicht derart vor oder nach der
 Ionenimpementation und der thermischen Behandlung

10

15

25

30

abgeschieden wird, dass eine verspannte Schicht ausgebildet wird.

- 23. Verfahren nach Anspruch 1 bis 21, bei dem die epitaktische Schichtstruktur auf ein zweites Substrat, insbesondere auf ein Substrat mit einer SiO₂-Schicht, gebondet wird, zumindest das erste Substrat abgetrennt wird und anschließend eine weitere epitaktische Schicht derart auf der Schichtstruktur abgeschieden wird, dass eine verspannte Schicht ausgebildet wird.
 - 24. Verfahren nach Anspruch 22, bei dem die weitere epitaktische Schicht auf ein zweites Substrat, insbesondere auf ein Substrat mit einer SiO₂- Schicht gebondet wird, und sodann zumindest das erste Substrat und die Schichtstruktur abgetrennt werden.
- 25. Verfahren nach Anspruch 22 bis 24, bei dem als weitere epitaktische Schicht eine Schicht umfassend Silizium, Siliziumgermanium (SiGe) oder eine Si-Ge-C-Schicht oder eine Germaniumschicht abgeschieden wird.
 - 26. Verfahren nach einem der Ansprüche 22 bis 25, bei dem an einem verspannten Silizium-Bereich als weiterer Schicht n- und oder p-MOSFETs hergestellt werden.
 - 27. Verfahren nach einem der vorhergehenden Ansprüche 22 bis 25, bei dem an verspannten Siliziumgermani-

um- (SiGe)-Bereichen als weitere epitaktische Schicht oder als nicht relaxierte Schichtstruktur p-MOSFETs hergestellt werden.

- 5 28. Verwendung eines Schichtsystems, hergestellt nach einem der vorhergehenden Ansprüche 1 bis 25, in einem Bauelement.
- 29. Verwendung eines Schichtsystems nach Anspruch 28,

 in einem modulated doped Feldeffekt-Transistor

 (MODFET) oder metal-oxide-semiconductor Feldeffekt-Transistor (MOSFET) als Bauelement.
- 30. Verwendung eines Schichtsystems nach Anspruch 28
 in einer Tunneldiode, insbesondere in einer Siliçziumgermanium-(SiGe)-Tunneldiode als Bauelement.
 - 31. Verwendung eines Schichtsystems nach Anspruch 28, in einem Photodetektor als Bauelement.
 - 32. Verwendung eines Schichtsystems nach Anspruch 28 in einem Laser, insbesondere in einem Quantenkaskadenlaser auf Si-Ge-Basis als Bauelement.

Figur 1

Figur 2

Figur 3

Figur 4

INTERNATIONAL SEARCH REPORT

International Application No PCT/DE2004/000200

A. CLASSIF	HO1L21/20 H01L21/265		
	·		ļ
According to	International Patent Classification (IPC) or to both national classification	on and IPC	
B. FIELDS		sumphalis)	
IPC 7	cumentation searched (classification system followed by classification HO1L	Symbols)	
Documentati	ion searched other than minimum documentation to the extent that suc	h documents are included in the fields sea	rched
Electronic da	ata base consulted during the international search (name of data base	and, where practical, search terms used)	
	ternal, INSPEC		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
A	US 6 039 803 A (FITZGERALD EUGENE AL) 21 March 2000 (2000-03-21) claims 1,8,9,11; figures 1,2,6,8	A ET	1-32
A	US 2002/017642 A1 (SHIONO ICHIRO 14 February 2002 (2002-02-14) abstract; figures 2,3,7,12	ET AL)	1-32
A	WO 02/15244 A (CHENG ZHI YUAN) 21 February 2002 (2002-02-21) abstract; claims; figure 1		1-32
P,A	WO 03/092058 A (HOLLAENDER BERNHAMMANTL SIEGFRIED (DE); ZHAO QUING- KERNF) 6 November 2003 (2003-11-0) abstract; claims	TAI (DE);	1-32
		/	
X Fur	ther documents are listed in the continuation of box C.	X Palent family members are listed	n annex.
A, docnu	nent defining the general state of the art which is not	"T" later document published after the into or priority date and not in conflict with cited to understand the principle or th	the application out
'E' earlier	idered to be of particular relevance r document but published on or after the International date	invention "X" document of particular relevance; the cannot be considered novel or cannot	t be considered to
'L' docum	nent which may throw doubts on priority claim(s) or	involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an in-	ocument is taken alone claimed invention eventive step when the
O docum	ment referring to an oral disclosure, use, exhibition or r means nent published prior to the international filling date but	document is combined with one or m ments, such combination being obvious in the art.	ore other such docu- rus to a person skilled
later	than the priority date claimed e actual completion of the international search	*&* document member of the same patent Date of mailing of the international se	
	25 August 2004	01/09/2004	
	d mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Wolff, G	

Form PCT/ISA/210 (second sheet) (January 2004)

Market France

INTERNATIONAL SEARCH REPORT

International Application No PCT/DE2004/000200

		PCT/DE2004/000200
C.(Continua Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
',A	WO 03/069658 A (IBM) 21 August 2003 (2003-08-21) abstract; claims; figure 1	1-32
, А	EP 1 351 284 A (MATSUSHITA ELECTRIC IND CO LTD) 8 October 2003 (2003-10-08) abstract; claims; figures 4,15	1-32
		\$

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/DE2004/000200

	atent document d in search report		Publication date		Patent family member(s)		Publication date
บร	6039803	Α	21-03-2000	WO	9800857	A1	08-01-1998
US	2002017642	A1	14-02-2002	JP CN DE TW	2002118254 1336684 10137369 517284	A A1	19-04-2002 20-02-2002 25-04-2002 11-01-2003
WO	0215244	A	21-02-2002	EP JP WO US US	1309989 2004507084 0215244 2003155568 2003168654 2002072130	T A2 A1 A1	14-05-2003 04-03-2004 21-02-2002 21-08-2003 11-09-2003 13-06-2002
WO	03092058	Α	06-11-2003	DE WO	10218381 03092058		26-02-2004 06-11-2003
WO	03069658	A	21-08-2003	US WO US	2003153161 03069658 2003203600	A2	14-08-2003 21-08-2003 30-10-2003
EP	1351284	A	08-10-2003	JP CN EP US US		A1	17-10-2003 15-10-2003 08-10-2003 02-10-2003 05-08-2004

Form PCT/ISA/210 (patent family annex) (January 2004)

philipsis source

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE2004/000200

		PC1/DE2002	1/000200
A. KLASSIFI	izierung des anmeldungsgegenstandes H01L21/20 H01L21/265		
IPK /	HUIL21/20 HUIL21/203		
	ernationalen Patentklassifikation (IPK) oder nach der nationalen Klassifik	cation und der IPK	
B. RECHER	CHIERTE GEBIETE		
Recherchiert	er Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)		
IPK 7	HOIL		
Dechambion	le aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowei	t diese unter die recherchierten Gebiete	fallen
nea le conor	o abdi mon commercial		
Während de	r internationalen Recherche konsultierte elektronische Datenbank (Nam	e der Datenbank und evtl. verwendete	Suchbegriffe)
	ternal, INSPEC		
210 2111			
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe d	er in Betracht kommenden Teile	Betr. Anspruch Nr.
	A COLOR A CETTZCEPALD ENGENE	A ET	1-32
A	US 6 039 803 A (FITZGERALD EUGENE AL) 21. März 2000 (2000-03-21)		
	Ansprüche 1,8,9,11; Abbildungen 1,	2,6,8	
A	US 2002/017642 A1 (SHIONO ICHIRO	ET AL)	1-32
^	14 Februar 2002 (2002-02-14)		#
	Zusammenfassung; Abbildungen 2,3,7	,12	
A	WO 02/15244 A (CHENG ZHI YUAN)		1-32
	21. Februar 2002 (2002-02-21) Zusammenfassung; Ansprüche; Abbild	lung 1	
			1-32
P,A	WO 03/092058 A (HOLLAENDER BERNHAR MANTL SIEGFRIED (DE); ZHAO QUING-T	Al (DE);	
	KERNF) 6. November 2003 (2003-11-0	06)	
	Zusammenfassung; Ansprüche		
	-/	/	
X we	eitere Veröffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentfamilie	
ent الثا ا	taahman	T Spätere Veröffentlichung, die nach d oder dem Prioritätsdatum veröffentli	em internationalen Anmeldedatum
'A' Veröff	fentlichung, die den allgemeinen Stand der Technik definiert, r nicht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern Erfindung zugrundeliegenden Prinzi	nur zum Varslandnis des dei I
"E" ältere	e Dokument, das jedoch erst am oder nach dem internationalen eldedatum veröffentlicht worden ist	Theorie angegeben ist	leutuno: die beanspruchte Erfindung
'L' Veröff	fentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-	kann allein aufgrund dieser Veroner erfinderischer Tätigkeit beruhend be	etrachtet werden
ands soll	eren im Recherchenbericht genannten Veronentlichting belegt werden i oder die aus einem anderen besonderen Grund angegeben ist (wie	kann nicht als auf erfinderischer Ta	
O' Veröl	geführt) ffentlichung, die sich auf eine mündliche Offenbarung, ffentlichung, die sich auf eine mündliche Offenbarung,	Veröffentlichungen dieser Kategorie diese Verbindung für einen Fachma	in verbinguila debiaciii wiio diio
104 1/0-56	Benutzung, eine Ausstellung der altele inlähalten in der in fentlichung, die vor dem internationalen Anmeldedatum, aber nach n beanspruchten Prioritätsdatum veröffentlicht worden ist	*&* Veröffentlichung, die Mitglied dersel	pen Patentfamilie ist
Datum de	es Abschlusses der internationalen Recherche	Absendedatum des internationalen	Recherchenberichts
	25. August 2004	01/09/2004	
Name un	nd Postanschrift der Internationalen Recherchenbehörde Europäisches Patentarnt, P.B. 5818 Patentlaan 2	Bevollmächligter Bediensteter	
1	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Wolff, G	
1		, ,,,,,	

Formblatt PCT/ISA/210 (Blatt 2) (Januar 2004)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE2004/000200

		101, 5223	147000200
C.(Fortsetz	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN		·
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
P,A	WO 03/069658 A (IBM) 21. August 2003 (2003-08-21) Zusammenfassung; Ansprüche; Abbildung 1		1-32
P,A	EP 1 351 284 A (MATSUSHITA ELECTRIC IND COLTD) 8. Oktober 2003 (2003-10-08) Zusammenfassung; Ansprüche; Abbildungen 4,15		1-32
٠			
			ě.
	, and the second		Ü
	·		
		-	
			Ì
			}
	·		
1			
1			
1			

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Januar 2004)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seiben Patentfamilie gehören

Internationales Aldenzeichen
PCT/DE2004/000200

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröttentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 6039803		21-03-2000	WO	9800857 A1	08-01-1998
US 2002017642	A1	14-02-2002	JP CN DE TW	2002118254 A 1336684 A 10137369 A1 517284 B	19-04-2002 20-02-2002 25-04-2002 11-01-2003
WO 0215244	A	21-02-2002	EP JP WO US US US	1309989 A2 2004507084 T 0215244 A2 2003155568 A1 2003168654 A1 2002072130 A1	14-05-2003 04-03-2004 21-02-2002 21-08-2003 11-09-2003 13-06-2002
WO 03092058	Α	06-11-2003	DE WO	10218381 A1 03092058 A2	26-02-2004 06-11-2003
WO 03069658	A	21-08-2003	US WO US	2003153161 A1 03069658 A2 2003203600 A1	14-08-2003 21-08-2003 30-10-2003
EP 1351284	A	08-10-2003	JP CN EP US US	2003297847 A 1449056 A 1351284 A2 2003183819 A1 2004150004 A1	17-10-2003 15-10-2003 08-10-2003 02-10-2003 05-08-2004

Formblatt PCT/ISA/210 (Anhang Patentiamilia) (Januar 2004)