UNIVERSIDADE FEDERAL DE ITAJUBÁ

OTHON AUGUSTO DA SILVA LUCENA

SIMULADOR DE VOO

Relatório

Itajubá

2021

UNIVERSIDADE FEDERAL DE ITAJUBÁ

OTHON AUGUSTO DA SILVA LUCENA

SIMULADOR DE VOO

Relatório

Relatório requisitado pela disciplina de Programação Embarcada como critério de avaliação dos discentes.

Prof. Otávio de Souza Martins Gomes

Itajubá

2021

SUMÁRIO

1 INTRODUÇÃO	4
1.1 Programação Embarcada	4
1.2 Projeto	5
2 OBJETIVOS	5
3 FUNCIONAMENTO	5
3.1 Material Utilizados	5
3.1.1 Componentes	6
3.2 Funcionalidade	7
4 DIFICULDADES	9
4.1 Dificuldades Encontradas	9
4.2 Soluções	9
5 REFERÊNCIAS	10

INTRODUÇÃO

1.1 Programação Embarcadas

A programação embarcada refere-se ao estudo de programação em microcontroladores e microprocessadores para controlar seus periféricos e manipular circuitos externos. Abaixo pode se ver uma placa de Sistema Embarcadas:

Figura 1

O primeiro sistema embarcado que se tem conhecimento é o AGC (Apollo Guidance Computer). Era um computador que operava a 1,024 MHz e era responsável pelo total controle das espaçonaves Apollo, que levaram diversas vezes o homem à Lua nos anos 60 e 70. O AGC, no entanto, não possuía processador, era todo feito com portas NOR.

1.2 Projeto

Através da Programação Embarcada, foi desenvolvido um Simulador de Voo

utilizando uma placa com um microcontrolador. O projeto consiste na simulação de uma

viagem onde é dado algumas opções para usuário, e nela acontecem 3 situações. Na primeira

é uma viagem certa que decola e pousa sem problemas, na segunda opção acontece um

problema na turbina e é necessário um pouso emergencial e na 3 não acontece a viagem.

OBJETIVO

O presente trabalho tem como objetivo principal aplicar os conhecimentos aprendidos

na matéria de Programação Embarcada, utilizando o Simulador da placa PIC Genios com o

microcontrolador PIC18F4520. E tem como finalidade simular um voo, no qual mostra 3

opções, um voo sendo completo sem problemas, um precisando dar um pouso emergencial e

outro que não decola.

FUNCIONAMENTO

3.1 Material Utilizados

Para o projeto ser desenvolvido foi utilizado os seguintes software:

MPLAB X IDE -

https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide

Compilador XC8 -

https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-xc-compilers

PICSimLab - https://sourceforge.net/projects/picsim/files/v0.8.8/

5

3.1.1 Componentes

A placa PicGenios, com o microcontrolador PIC18F4520 possui diversos componentes para utilização, e alguns foram usados no projeto, sendo eles:

➤ Display de 7 segmentos

Foi utilizado como um contador, para indicar o tempo de duração das viagens

> LCD

O LCD mostra ao usuário informações como escolhas de voos para viajar, informações sobre viagem em andamento, pousos de emergências e quando chegou.

➤ LEDs

Os LEDs informam quando o está acontecendo o pouso emergencial.

> Cooler

O cooler é acionado informando onde está o problema, atuando como as turbinas.

> Teclado

O teclado é usado para leitura das escolhas feitas pelo usuário durante a simulação.

3.2 Funcionamento

Mensagem de início e opções dada para o usuário mostradas no LCD.

Informação de viagem mostrada no LCD e Tempo de viagem no Display de 7 segmentos

Informação de viagem cumprida mostrada no LCD.

Informação de Pouso Emergencial mostrada no LCD, Cooler gira informando problema na turbina e os LEDs acendem sincronizadamente informando ao piloto.

Bibliotecas fornecidas pelo professor utilizadas no projeto.

DIFICULDADES

4.1 Dificuldades Encontradas

A principal dificuldade encontrada foi com a leitura do teclado, pois em diversos momentos ele era pressionado e não fazia a leitura e dessa forma não conseguia fazer o avanço do código e saber se as demais coisas estavam funcionando. O cooler foi uma grande dificuldade também, pois de início eu queria fazer ele girar toda vez que a viagem estivesse acontecendo, mas aí dava problema de funcionamento toda vez, principalmente no segundo voo que acontecia o pouso de emergência.

4.2 Soluções

Para os problemas citados acima, tive que fazer algumas alterações no modo como planejei o trabalho em si, por exemplo, de início queria fazer com que o cooler rodar durante a viagem, mas dava interferência então coloquei ele pra rodar como sendo um problema encontrado na turbina do avião, e para as teclas eu coloquei dentro do for infinito ao invés de fazer por funções.

REFERENCIAS

- [1] SERAPHIM, Thaty. ALMEIDA, Maximiliano. MORAES, Carlos. Programação de Sistemas Embarcados. São Paulo: GEN LTC, 2016.
- [2] Embarcado O que é? Qual a sua importância? Embarcados, 2021. Disponível em: https://www.embarcados.com.br/sistema-embarcado/ >. Acesso em: 31 de julho de 2021.