

Giuseppe Raffa, J. Blasco, D. O'Keeffe, S. K. Dash MISCS Doctoral Conference, 23rd April 2024 Contact email: giuseppe.raffa.2018@live.rhul.ac.uk

SANER 2024 Paper

Towards Inter-service Data Flow Analysis of Serverless Applications

Giuseppe Raffa Royal Holloway University London, UK giuseppe.raffa.2018@live.rhul.ac.uk jorge.blasco.alis@upm.es

Jorge Blasco Universidad Politécnica Madrid, Spain

Dan O'Keeffe Royal Holloway University London, UK daniel.okeeffe@rhul.ac.uk

Santanu Kumar Dash Royal Holloway University London, UK santanu.dash@rhul.ac.uk

SANER 2024 Early Research Achievement (ERA) Track

https://github.com/giusepperaffa/serverless-security-microbenchmarks

Serverless Computing Model

Advantages

- Cost-effectiveness
- No infrastructure management

Disadvantages

- Debugging
- Execution-related limits

Motivation & Challenges

Why static data flow analysis?

- Most of serverless security tools rely on dynamic analysis
- Static analysis is an effective supplement

What are the challenges?

- Information from infrastructure and application code
- Variety of sources and events
- Black-box nature of platform services

Our work

Suite of security-oriented microbenchmarks

Approach to detecting security-sensitive data flows

Microbenchmarks Suite

Design approach

- Code injection and information leakage vulnerabilities
- AWSomePy dataset characterization

1/....

Comisso

Summary

	FIOW		Services		vuin.		
Microbenchmark	INTER	INTRA S3	DynamoDB	SQS	SNS	CI	IL
api-publish-wrong-bucket-key	V	X V	Х	×	~	X	~
api-put-item-boto3-client	~	X	✓	X	X	~	×
api-put-item-via-file	~	X V	✓	X	X	~	X
api-put-item-wrong-table	✓	X V	✓	X	X	~	×
api-put-object-boto3-client	~	X V	X	X	X	~	×
api-put-object-bucket-assign	~	X V	X	X	X	~	×
api-scan-boto3-client	×	✓ X	✓	X	X	X	~
api-scan-table-assign	X	✓ X	✓	X	X	X	~
api-send-message-boto3-client	~	X	✓	✓	X	~	X
owasp-serverless-injection	X	· ·	X	×	×	~	X

Information Leakage Example

Prototype Analysis Framework

Analysis approach

- Infrastructure and application code processed
- Code instrumented to obtain synchronous equivalent

Implementation

- Code modified semi-automatically
- Data flow analysis with Pysa

Evaluation

7 true positives

2 false positives

1 false negative

Related Work

Obetz et al. [1], [2]

- Main objective:
 - Call graph generation

Our work

- Main objective:
 - Security-sensitive data flows identification

```
# -----
# Handler
# -----
def onHTTPPostEvent(event, context):

print('--- Handler of the DynamoDB stream authorsInfo = event['Records'][0]['dynamo titleInfo = event['Records'][0]['dynamodb eventData = authorsInfo + titleInfo os.system('echo %s' % eventData)
```

[1] M. Obetz et al. 2019. Static Call Graph Construction in AWS Lambda Serverless Applications. In 11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).

[2] M. Obetz et al. 2020. Formalizing Event-Driven Behavior of Serverless Applications. In European Conference on Service-Oriented and Cloud Computing (ESOCC 2020).

Conclusion & Future Work

Key takeaways

Security-sensitive data flows

New suite of microbenchmarks

Studied approach is feasible

- Future work
 - Fully automated analysis pipeline
 - Improvement of infrastructure code processing
 - Support for higher number of cloud services and APIs

https://github.com/giusepperaffa/serverless-security-microbenchmarks

