第八章 补充作业

习题 8.1. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值, S^2 是样 > 本方差。证明

- (1) $\overline{X} \sim N(\mu, \sigma^2/n)_{\circ}$
- (2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)_{\circ}$
- (3) \overline{X} 与 S^2 相互独立。(选做,后面可以直接使用这个结论)
- (4) $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)_{\circ}$

习题 8.2. 设 X_1, X_2, \dots, X_{n_1} 与 Y_1, Y_2, \dots, Y_{n_2} 分别是来自正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的样本,且这两个样本相互独立。设 \overline{X} 和 \overline{Y} 分别是这两个样本的样本均值, S_1^2 和 S_2^2 分别是这两个样本的样本方差。证明

- (1) $\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$.
- (2) 当 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 时,

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中

$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, \quad S_w = \sqrt{S_w^2}.$$

习题 8.3. 假设 S_x^2 和 S_y^2 分别是来自 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$ 的两个简单随机样本的样本方差。证明 $F=\frac{S_x^2/\sigma_1^2}{S_y^2/\sigma_2^2}\sim F(m-1,n-1)$ 。