LOFO 2020

Adrien Pommellet

November 9, 2020

1A. Prove that $(\neg P \lor Q) \Leftrightarrow (P \Rightarrow Q)$ is a tautology.

p	9	74	7h V 9	p => 9	(
0	0	1	1	4	-
0	1	1	1	4	1
1	0	0	0	0	1
4	1	0	1	1	1

1B. Prove that $\neg(P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$ is a tautology.

ト	9	った	79	hvg	7(pvg)	74179	4
0	0	-1	1	0	4	4	9
0	1	1	0	1	0	0	-1
1	0	0	1	1	0	O	님
1	1	0	O	1.	0	0	4

2A. Is the following Hilbert system complete with regards to $\mathcal{F}_{\{\perp,\neg,\vee,\Rightarrow\}}$?

No, because no rule can handle the \vee symbol.

2B. Is the following Hilbert system complete with regards to $\mathcal{F}_{\{\perp,\wedge,\vee,\Rightarrow\}}$?

$$\frac{A \Rightarrow B \qquad A \qquad [Modus \ Ponens]}{B \qquad [V_1]}$$

$$\frac{A \Rightarrow A \lor B \qquad [V_1]}{A \land B \Rightarrow A \qquad [\land_1]}$$

$$\frac{B \Rightarrow A \lor B \qquad [\lor_2]}{A \land B \Rightarrow B \qquad [\land_2]}$$

$$\frac{A \lor B \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C \qquad [\lor_3]}{A \Rightarrow B \Rightarrow A \land B \qquad [\land_3]}$$

$$\frac{A \lor B \Rightarrow A \land B \qquad [\land_3]}{A \Rightarrow B \Rightarrow A \land B \qquad [\land_3]}$$

$$\frac{A \Rightarrow B \Rightarrow A \qquad [\Rightarrow_1]}{A \Rightarrow B \Rightarrow A \land B \qquad [\Rightarrow_2]}$$

No, because no rule can handle the \perp symbol.

3A. Prove that $\{Q \wedge P, R\} \vdash_{\mathcal{N}} P \wedge (R \wedge Q)$. This can be done using a proof of depth 4.

$$\frac{Q \land P}{P} \underset{\wedge \text{Elim2}}{\land \text{Elim2}} \frac{R}{R} \frac{Q \land P}{Q} \underset{\wedge \text{Intro}}{\land \text{Intro}}$$

$$P \land (R \land Q)$$

3B. Prove that $\{P \lor Q\} \vdash_{\mathcal{N}} P \lor (Q \lor R)$. This can be done using a proof of depth 4.

$$\frac{P \vee Q \quad \frac{[P]}{P \vee (Q \vee R)} \vee \text{Intro1}}{P \vee (Q \vee R)} \frac{\frac{[Q]}{Q \vee R} \vee \text{Intro1}}{P \vee (Q \vee R)} \vee \text{Intro2}}_{\text{VElim}}$$

4A. Prove that $\{\neg P \Rightarrow Q\} \vdash_{\mathcal{N}} P \lor Q$ by filling the blanks of the following tree:

$$\begin{array}{c|c} & \frac{\overline{P}^{\ 1}}{P \vee Q} \left[\vee_I^l \right] & \frac{}{\neg (P \vee Q)} \left[\neg_E \right] \\ \\ & \frac{\bot}{\neg P \Rightarrow Q} \left[\neg_I \right]^1 \\ & \vdots \\ & \frac{Q}{P \vee Q} \left[\vee_I^r \right] & \frac{}{\neg (P \vee Q)} \left[\neg_E \right] \\ \\ & \frac{\bot}{\neg \neg (P \vee Q)} \left[\neg_I \right]^2 \\ & \frac{}{P \vee Q} \left[\neg \neg \right] \end{array}$$

4B. Prove that $\vdash_{\mathcal{N}} ((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$ by filling the blanks of the following tree:

$$\frac{P^{1} \frac{1}{\neg P}^{2}}{\frac{\bot}{Q} [\bot_{E}]} \frac{\frac{\bot}{\bot} [\bot_{E}]}{\frac{\bot}{P} \Rightarrow Q} [\Rightarrow_{I}]^{1}$$

$$\frac{P}{P} \xrightarrow{P} [\neg_{I}]^{2} \frac{\bot}{\neg P} [\neg_{I}]^{2}$$

$$\frac{\bot}{P} [\neg_{I}]^{2}$$

$$\frac{\bot}{P}$$

5A. Define a term Square $\in \Lambda$ such that for any natural integer n:

Square
$$\underline{n} \to_{\beta}^* \underline{n^2}$$

Then guess its type.

Square = $\lambda u \cdot \text{Mult } uu \text{ is of type } ((\sigma \to \sigma) \to (\sigma \to \sigma)) \to ((\sigma \to \sigma) \to (\sigma \to \sigma)).$

5B. Define a term Double $\in \Lambda$ such that for any natural integer n:

Double
$$\underline{n} \to_{\beta}^* \underline{2 \times n}$$

Then guess its type.

Double = $\lambda u \cdot \text{Plus } uu \text{ is of type } ((\sigma \to \sigma) \to (\sigma \to \sigma)) \to ((\sigma \to \sigma) \to (\sigma \to \sigma)).$

6. Prove that $\Theta = (\lambda xy \cdot y(xxy))(\lambda uv \cdot v(uuv))$ is a fixed-point combinator.

$$\Theta A = \theta \theta A
= ((\lambda xy \cdot y(xxy)\theta)A
\rightarrow_{\beta} (\lambda y \cdot y(\theta \theta y))A
\rightarrow_{\beta} A(\theta \theta A)
= A\Theta A$$

Thus $\Theta A \leftrightarrow_{\beta}^* A(\Theta A)$.

7. Prove that $\vdash KI : \tau \to \sigma \to \sigma$.

K is of primary type $\sigma \to \tau \to \sigma$, thus also of type $(\sigma \to \sigma) \to \tau \to (\sigma \to \sigma)$. I is of type $\sigma \to \sigma$. KI is therefore of type $\tau \to \sigma \to \sigma$ by the application rule.

8A. Prove that $\vdash_{\mathcal{NI}} (P \land Q) \Rightarrow (Q \land P)$.

Then find a term in Λ_{ext} of type $\sigma \times \tau \to \tau \times \sigma$.

$$\frac{P \wedge Q}{Q} [\wedge_{E}^{r}] \frac{P \wedge Q}{P} [\wedge_{E}^{l}] \\
\frac{Q \wedge P}{(P \wedge Q) \Rightarrow (Q \wedge P)} [\Rightarrow_{I}]^{1}$$

$$\frac{x : \sigma \times \tau}{\Pi_{2}(x) : \tau} \frac{x : \sigma \times \tau}{\Pi_{1}(x) : \sigma} \\
\frac{(\Pi_{2}(x), \Pi_{1}(x)) : \tau \times \sigma}{\lambda x \cdot \langle \Pi_{2}(x), \Pi_{1}(x) \rangle : \sigma \times \tau \to \tau \times \sigma}$$

8B. Prove that $\vdash_{\mathcal{NI}} (P \lor Q) \Rightarrow (Q \lor P)$.

Then find a term in Λ_{ext} of type $\sigma \cup \tau \to \tau \cup \sigma$.

$$\frac{\overline{P} \vee Q}{P} \stackrel{1}{=} \frac{\overline{P}^{2}}{Q \vee P} [\vee_{I}^{r}] \stackrel{\overline{Q}^{2}}{=} [\vee_{I}^{l}]}{Q \vee P} [\vee_{I}^{l}]^{2}$$

$$\frac{Q \vee P}{(P \vee Q) \Rightarrow (Q \vee P)} [\Rightarrow_{I}]^{1}$$

$$\frac{\overline{y : \sigma}^{2}}{K_{2}(y) : \tau \cup \sigma} \frac{\overline{z : \tau}^{2}}{K_{1}(z) : \tau \cup \sigma}^{2}$$

$$\frac{\varphi(K_{2}(y), K_{1}(z), x) : \tau \cup \sigma}{\lambda x \cdot \varphi(K_{2}(y), K_{1}(z), x) : (\sigma \cup \tau) \rightarrow (\tau \cup \sigma)}^{1}$$