Σ (2000) 1/2 $^-$

$$I(J^P) = 1(\frac{1}{2})$$
 Status: *

OMITTED FROM SUMMARY TABLE

We list here all reported S_{11} states lying above the $\Sigma(1750)$ S_{11} . ZHANG 13A finds no evidence for those states.

Σ(2000) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
≈ 2000 OUR ESTIMATE				
1944 ± 15	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
1955 ± 15	GOPAL	77	DPWA	$\overline{K}N$ multichannel
1755 or 1834	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel
2004 ± 40	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$

Σ (2000) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN CON	MENT
215±25	GOPAL	80	DPWA \overline{K} Λ	$I \rightarrow \overline{K}N$
170 ± 40	GOPAL	77	DPWA \overline{K} Λ	/ multichannel
413 or 450	$^{ m 1}$ MARTIN	77	DPWA \overline{K} Λ	/ multichannel
116 ± 40	VANHORN	75	DPWA K	$p \rightarrow \Lambda \pi^0$

Σ (2000) DECAY MODES

	Mode
$\overline{\Gamma_1}$	$N\overline{K}$
Γ_2	$\Lambda\pi$
Γ_3	$\Sigma\pi$
Γ_4	$\Lambda(1520)\pi$
	$N\overline{K}^*(892)$, $S=1/2$, S -wave
Γ ₆	$N\overline{K}^*(892)$, $S=3/2$, D -wave

Σ (2000) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
$0.51\!\pm\!0.05$	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.44 ± 0.05	GOPAL	77	DPWA	See GOPAL 80	
0.62 or 0.57	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichanne	el

Created: 5/30/2017 17:19

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma$	$\Sigma(2000) \rightarrow \Lambda \pi$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	= =		TECN	COMMENT
0.08 ± 0.03	GOPAL		DPWA	$\overline{K}N$ multichannel
-0.19 or -0.18	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel
not seen	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$
$^{+0.07}^{+0.02}_{-0.01}$	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to X_{VALUE}$	$\Sigma(2000) \rightarrow \Sigma \pi$ DOCUMENT ID		TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
$+0.20\pm0.04$				•
+0.26 or +0.24	¹ MARTIN	77	DPWA	\overline{K} N multichannel \overline{K} N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Sigma_{VALUE}$	$\Sigma(2000) \rightarrow \Lambda(152)$ DOCUMENT ID	0)π	<u>TECN</u>	$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
$\frac{VALUE}{+0.081\pm0.021}$	2 CAMERON	77	DPWA	P-wave decay
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Sigma_{VALUE}$				
$+0.10\pm0.02$	² CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to X$	$\Sigma(2000) \rightarrow N\overline{K}^*($	892)	, <i>5</i> =3/2	Ω , <i>D</i> -wave $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
-0.07 ± 0.03	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$

Σ (2000) FOOTNOTES

Σ (2000) REFERENCES

Created: 5/30/2017 17:19

 $^{^1\,\}mathrm{The}$ two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. $^2\,\mathrm{The}$ published sign has been changed to be in accord with the baryon-first convention.