

Slide 1 of 27

Example
Next Steps

PhD Committee Meeting #4

Dan Szymczak

Computing and Software Department Faculty of Engineering McMaster University

June 28, 2018

Slide 2 of 27

Progres

Example

Next Ste

Overview

1 Current Progress

2 Example.

3 Next Steps.

Slide 3 of 27

Progress

Example

Next Step:

Research Topic Recap Motivation

Too much duplication!

Slide 4 of 27

Progress

Example

Next Step

Research Topic Recap Motivation

- Too much duplication!
- (Re-)Certification is expensive

Slide 5 of 27

Progress

Example

Next Step

Research Topic Recap

- Too much duplication!
- (Re-)Certification is expensive
- Inter-/intra-artifact consistency issues

Slide 6 of 27

Progress

Example

Next Step

Research Topic Recap Motivation

- Too much duplication!
- (Re-)Certification is expensive
- Inter-/intra-artifact consistency issues
- Promote reusability

Slide 7 of 27

Progress

LXumpic

Next Step

Research Topic Recap Motivation

- Too much duplication!
- (Re-)Certification is expensive
- Inter-/intra-artifact consistency issues
- Promote reusability
- Design for change

Slide 8 of 27

Progress

Example

Next Step

Research Topic Recap

KBSE & The Drasil Framework

- Too much duplication!
- (Re-)Certification is expensive
- Inter-/intra-artifact consistency issues
- Promote reusability
- Design for change

Slide 9 of 27

Progress

Example

Next Step

Research Topic Recap

KBSE & The Drasil Framework

- Single knowledge-base
- (Re-)Certification is expensive
- Inter-/intra-artifact consistency issues
- Promote reusability
- Design for change

Slide 10 of 27

Progress

Next Step

Research Topic Recap

KBSE & The Drasil Framework

- Single knowledge-base
- Generate artifacts
- Inter-/intra-artifact consistency issues
- Promote reusability
- Design for change

Slide 11 of 27

Progress

Znampie

Next Step

Research Topic Recap

KBSE & The Drasil Framework

- Single knowledge-base
- Generate artifacts
- Guaranteed consistency
- Promote reusability
- Design for change

Slide 12 of 27

Progress

Example

Next Step

Research Topic Recap

KBSE & The Drasil Framework

- Single knowledge-base
- Generate artifacts
- Guaranteed consistency
- Reusable across projects
- Design for change

Slide 13 of 27

Progress

LXumpic

Next Step

Research Topic Recap

KBSE & The Drasil Framework

- Single knowledge-base
- Generate artifacts
- Guaranteed consistency
- Reusable across projects
- Easy to mix and match

Slide 14 of 27

Progress

Example

Next Step

Drasil Framework - Generating Software Families

- One "source", multiple views
 - Requirements
 - Design
 - Test Cases
 - Build instructions
 - ...

Slide 15 of 27

Progress

Example

Next Step

Current Program Progress

- Completed all necessary graduate courses.
- Completed comprehensive examinations.
- Drasil framework proof-of-concept completed
 - Scoped-down due to nature of project
 - Generating SRS for six case studies & code for one

Slide 16 of 27

Progress

Example

Next Step

Current Progress Cont'd

Currently Writing:

- Journal paper for ACM TOSEM
- Thesis

Slide 17 of 27

Progress

Example

Next Step

Research Topic

Knowledge Capture!

- Advantages
 - Avoid duplication through chunk reuse.
 - Improve understandability, traceability and reproducibility.
 - Increased flexibility

Slide 18 of 27

Example

NI----

Example: h_g A simple example taken from the SRS for FP

 h_g is a symbol which appears in several locations including:

- The Software Requirements Specification
- The Literate Programmer's Manual
- The Source Code

Let's take a look!

Slide 19 of 27

Programa

Example

Next Step

Example: h_g SRS Definition for h_g (original)

Number	DD1
Label	h_g
Units	$ML^{0}t^{-3}T^{-1}$
SI	$\frac{kW}{m^2(^{\circ}C)}$
Equation	$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p}$
Description	h_g is the gap conductance $ au_c$ is the clad thickness h_p is initial gap film conductance k_c is the clad conductivity NOTE: Equation taken from the code
Sources	source code

Slide 20 of 27

²rogress

Example

Mext Steps

Example:
$$h_g$$
 LPM Definition for h_g (original)

$$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p} \tag{1}$$

The corresponding C code is given by:

```
double calc_hg(double k_c,double h_b,double tau_c) { return (2*(k_c)*(h_p)) / ((2*(k_c)) + (tau_c*(h_p))); }
```


Slide 21 of 27

Progres

Example

Next Ste

Example: h_g A simple example taken from the SRS for FP

Modifying h_g to reflect changes in requirements is not a simple matter. It involves, at the very least, the following steps:

- Update the definition in the SRS, LPM, and all other documents which reference the symbol
- Modify the source code to reflect the new requirements
- Trace all dependencies
- Modify dependents to accommodate the change
- Ensure each of the documents is now up to date and consistent

Slide 22 of 27

Prograce

Example

Next Step

Example: h_g Simplifying the process

Here is an example of a "chunk" for h_g :

```
{-----}
h g :: Chunk
h g = newChunk $
  [(Symbol, S "h" :-: S "g"),
  (Equation, E h g eq),
  (SIU, S "($\\mathrm{\\frac{kW}{m^2C}}$)"),
  (Description, S
   "effective heat transfer coefficient between clad and fuel surface")
h g dep :: Dependency
h g dep = get dep h g eq
h g eq :: Expr
h g eq = ((Int 2):*(C k c):*(C h p)) :/ ((Int 2):*(C k c):+((C tau c):*(C h p)))
```


Slide 23 of 27

Progress

Example

Next Step

Example: h_g How do we generate?

What do we do with the "chunk"? That depends on the "recipe"!

To create our SRS we use the following recipe:

```
createSRS :: Doc
createSRS = spre $$ doctitle $$
author auth $$ srsComms $$
begin $$ srsBody $$ end
```

To create our LPM we use the following recipe:

Slide 24 of 27

Example

Next Step

Example: h_g Generated SRS Output

Number	DD2
Label	h_g
Units	$ML^{0}t^{-3}T^{-1}$
SI	$\frac{kW}{m^2{}^{\circ}C}$
Equation	$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p}$
Description	h_g is the effective heat transfer coefficient between clad and fuel surface k_c is the clad conductivity h_p is the initial gap film conductance τ_c is the clad thickness NOTE: Equation taken from the code
Sources	source code

Slide 25 of 27

Progress

Example

Next Step

Example: h_g Generated LPM Output

$$h_g = \frac{2k_c h_p}{2k_c + \tau_c h_p} \tag{2}$$

The corresponding C code is given by:

Slide 26 of 27

Progres

Example

Next Steps

Next Steps Broad Strokes

What next?

- Comprehensive examination part two.
- Complete final graduate level course.
 - Looking for a category theory course, but open to suggestions.
- Complete thesis.

Slide 27 of 27

rogres

Next Steps

Thank You!