Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

РАЗРАБОТКА ИНСТРУМЕНТА ФИЛЬТРАЦИИ ШУМА В ОБЛА-КАХ ТОЧЕК

Выполнил:

Руководитель:

Пэтайчук Никита Геннадьевич, гр. 7304 Заславский Марк Маркович, к.т.н., доцент

Цель и задачи

Актуальность: использование зашумлённых облаков точек может привести к некорректным результатам при решении следующих задач:

- Автопилотирование транспортных средств,
- Реконструкция объектов,
- Распознавание объектов.

Цель: разработка инструмента фильтрации шума в облаках точек с графическим интерфейсом, визуализацией облака точек до и после фильтрации и отображением статистики.

Цель и задачи

Задачи:

- Обзор и сравнение алгоритмов фильтрации облаков точек.
- Разработка архитектуры будущего инструмента.
- Программная реализация инструмента.
- Исследование разработанного инструмента.

Обзор алгоритмов фильтрации

Обозреваемые алгоритмы фильтрации:

- Алгоритм, представленный Иэ и др.
- Алгоритм, представленный Хуангом и др.
- Алгоритм, представленный Льяо и др.
- Алгоритм, представленный Ортс-Эсколано и др.
- Алгоритм, представленный Вангом и др.
- Алгоритм, представленный Заманом и др.
- Алгоритм, представленный Ханом и др.

Сравнение алгоритмов фильтрации

	Время фильтрации, с	Погрешность фильтрации, см	Наличие требований к обучению моделей фильтрации	Наличие ограничений на облако точек
Иэ и др.	391,3	0,103	_	_
Хуанг и др.	425,4	0,096	_	_
Льяо и др.	400,6	0,099	_	+
Ортс- Эсколано и др.	411,4	0,101	+	_
Ванг и др.	398,3	0,100	_	+
Заман и др.	412,1	0,099	_	_
Хан и др.	234,6	0,091	_	_

Таблица сравнения алгоритмов фильтрации облаков точек

Разработка архитектуры инструмента

Программная реализация инструмента

Графический интерфейс приложения

Исследование разработанного инструмента

Облако точек	Число точек	Точность алгоритма Хана и др., м	Точность алгоритма Иэ и др., м
Самолёт	1335	0,40	0,90
Галеон	2510	0,48	0,41
Корабль	4230	0,29	0,98
Облако точек с эмулятора лидара	67895	0,21	0,42

Сравнение точности работы алгоритмов (точность измеряется с среднем расстоянии между точками)

Исследование разработанного инструмента

Облако точек	Число точек	Время работы алгоритма Хана и др., с	Время работы алгоритма Иэ и др., с
Самолёт	1335	0,051	2,080
Галеон	2510	0,114	7,140
Корабль	4230	0,150	19,500
Облако точек с эмулятора лидара	67895	1,720	157,700

Сравнение скорости работы алгоритмов

Заключение

- На основании проведённого обзора алгоритмов фильтрации облаков точек были выбраны алгоритмы Иэ и др. и Хана и др.
- Была разработана архитектура будущего инструмента с использованием шаблонов проектирования «Цепочка обязанностей» и «Стратегия».
- Был реализован инструмент фильтрации с использованием языка программирования C++, фреймворка Qt и библиотек PCL, VTK, FLANN.
- Исследование разработанного инструмента показало, что алгоритм
 Хана и др. работает быстрее и точнее, чем алгоритм Иэ и др.

Дальнейшие направления исследований включают в себя увеличение числа используемых в инструменте алгоритмов, статистических метрик и форматов обрабатываемых файлов с облаками точек

Апробация работы

- Пэтайчук Н.Г. 15. Обзор алгоритмов для решения задачи фильтрации облаков точек, позволяющего избавиться от шумов и выбросов и сохранить форму представляемого объекта //Научно-технический семинар кафедры МОЭВМ. 2021. С. 76-80.
- Репозиторий проекта https://github.com/moevm/bsc_petaichuk.