

## **Computer Vision**

Exercise Session 7 – Structure from Motion



#### Structure from Motion

- Arc3D www.arc3d.be
  - http://www.youtube.com/watch?v=otzW8dm71ec
- Acute3D (123D Catch www.123dapp.com/catch)
  - http://www.youtube.com/watch?v=UwBd1RbKljk
- 2D3 boujou
  - http://www.youtube.com/watch?v=qrszsSbStoQ
- etc...



### Exercise 7

- 5 Images of a house on a turn table
- Background is static = at infinity





## Exercise 7

- 4 Tasks:
  - Initialization with epipolar geometry
    - Do 8-point RANSAC and triangulate
  - Add more views
    - Do 6-point RANSAC and triangulate
  - Plot everything
  - Dense Reconstruction (Bonus)
    - Stereo matching and depth map plot



### Initialization

Compute essential matrix, decompose into R and t, compute projection matrices



## Adding more views

Feature matches define 3D-2D point correspondences



## 6-Point Algorithm

The 6-point algorithm that was used for the camera calibration can be used to compute the projection matrix relative to the scene

Do RANSAC to filter out wrong matches

■ It does not work well on planar scenes — make sure you have 3D points distributed all around



# Plotting





#### Hand-in

- Report should include:
  - Images with visualized inlier and outlier matches
  - Epipolar geometry of the initialization images
  - Sparse reconstruction with inlier 3D-points and cameras
- Source code
- Submission to Moodle



### **Bonus: Dense Reconstruction**



### Hand-in

Follow instructions on moodle

