Implementing a Neural Network

In this exercise we will develop a neural network with fully-connected layers to perform classification, and test it out on the CIFAR-10 dataset.

→

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt

from cs231n.classifiers.neural_net import TwoLayerNet

%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# for auto-reloading external modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

def rel_error(x, y):
    """ returns relative error """
    return np.max(np.abs(x - y) / (np.maximum(le-8, np.abs(x) + np.abs(y))))
```

We will use the class $\mbox{TwoLayerNet}$ in the file $\mbox{cs}231\mbox{n/classifiers/neural_net.py}$ to represent instances of our network. The network parameters are stored in the instance variable $\mbox{self.params}$ where keys are string parameter names and values are numpy arrays. Below, we initialize toy data and a toy model that we will use to develop your implementation.

```
In [2]:
```

```
# Create a small net and some toy data to check your implementations.
# Note that we set the random seed for repeatable experiments.
input size = 4
hidden size = 10
num classes = 3
num\_inputs = 5
def init_toy_model():
    np. random. seed (0)
    return TwoLayerNet(input_size, hidden_size, num_classes, std=1e-1)
def init_toy_data():
   np. random. seed (1)
    X = 10 * np.random.randn(num_inputs, input_size)
    y = np. array([0, 1, 2, 2, 1])
    return X, y
net = init_toy_model()
X, y = init_toy_data()
```

Forward pass: compute scores

Open the file $cs231n/classifiers/neural_net.py$ and look at the method TwoLayerNet.loss. This function is very similar to the loss functions you have written for the SVM and Softmax exercises: It takes the data and weights and computes the class scores, the loss, and the gradients on the parameters.

Implement the first part of the forward pass which uses the weights and biases to compute the scores for all inputs.

4 **-**

```
In [3]:
scores = net. loss(X)
print('Your scores:')
print(scores)
print()
print('correct scores:')
correct_scores = np. asarray([
  [-0.81233741, -1.27654624, -0.70335995],
  [-0.17129677, -1.18803311, -0.47310444],
  [-0.51590475, -1.01354314, -0.8504215],
  [-0.15419291, -0.48629638, -0.52901952],
  [-0.00618733, -0.12435261, -0.15226949]])
print(correct scores)
print()
# The difference should be very small. We get < 1e^{-7}
print('Difference between your scores and correct scores:')
print(np. sum(np. abs(scores - correct_scores)))
Your scores:
[-0.81233741 -1.27654624 -0.70335995]
 [-0.17129677 -1.18803311 -0.47310444]
 [-0.51590475 -1.01354314 -0.8504215 ]
 [-0.15419291 -0.48629638 -0.52901952]
 [-0.00618733 -0.12435261 -0.15226949]]
correct scores:
[[-0.81233741 -1.27654624 -0.70335995]
 [-0.17129677 -1.18803311 -0.47310444]
 [-0.51590475 -1.01354314 -0.8504215 ]
```

Forward pass: compute loss

Difference between your scores and correct scores:

[-0. 15419291 -0. 48629638 -0. 52901952] [-0. 00618733 -0. 12435261 -0. 15226949]]

3.6802720496109664e-08

In the same function, implement the second part that computes the data and regularization loss.

```
In [4]:

loss, _ = net.loss(X, y, reg=0.05)
correct_loss = 1.30378789133

# should be very small, we get < 1e-12
print('Difference between your loss and correct loss:')
print(np. sum(np. abs(loss - correct_loss)))

Difference between your loss and correct loss:
```

file:///D:/sufe/人工智能/two layer net - Jupyter Notebook.html

0.01896541960606335

Backward pass

```
In [5]:

from cs231n.gradient_check import eval_numerical_gradient

# Use numeric gradient checking to check your implementation of the backward pass.

# If your implementation is correct, the difference between the numeric and

# analytic gradients should be less than le-8 for each of W1, W2, b1, and b2.

loss, grads = net.loss(X, y, reg=0.05)

# these should all be less than le-8 or so
for param_name in grads:
    f = lambda W: net.loss(X, y, reg=0.05)[0]
    param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False)
    print('%s max relative error: %e' % (param_name, rel_error(param_grad_num, grads[param_name])))

W2 max relative error: 3.440708e-09
b2 max relative error: 3.561318e-09
b1 max relative error: 1.555471e-09
```

Train the network

To train the network we will use stochastic gradient descent (SGD), similar to the SVM and Softmax classifiers. Look at the function <code>TwoLayerNet.train</code> and fill in the missing sections to implement the training procedure. This should be very similar to the training procedure you used for the SVM and Softmax classifiers. You will also have to implement <code>TwoLayerNet.predict</code>, as the training process periodically performs prediction to keep track of accuracy over time while the network trains.

Once you have implemented the method, run the code below to train a two-layer network on toy data. You should achieve a training loss less than 0.02.

→

In [6]:

Final training loss: 0.01714364353292376

Load the data

Now that you have implemented a two-layer network that passes gradient checks and works on toy data, it's time to load up our favorite CIFAR-10 data so we can use it to train a classifier on a real dataset.

In [8]:

```
from cs231n. data utils import load CIFAR10
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
    Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
    it for the two-layer neural net classifier. These are the same steps as
    we used for the SVM, but condensed to a single function.
    # Load the raw CIFAR-10 data
    cifar10 dir = 'D:\sufe/人工智能/spring1819 assignment1/assignment1/cs231n/datasets/cifar-10-pyt
    # Cleaning up variables to prevent loading data multiple times (which may cause memory issue)
    try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
    except:
       pass
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
    # Subsample the data
    mask = list(range(num training, num training + num validation))
    X_{val} = X_{train}[mask]
    y val = y train[mask]
    mask = list(range(num_training))
    X_train = X_train[mask]
    y_train = y_train[mask]
    mask = list(range(num test))
    X_{test} = X_{test}[mask]
    y_{test} = y_{test}[mask]
    # Normalize the data: subtract the mean image
    mean image = np. mean (X train, axis=0)
    X_train -= mean_image
    X val -= mean image
    X test -= mean image
    # Reshape data to rows
    X_train = X_train.reshape(num training, -1)
    X \text{ val} = X \text{ val. reshape (num validation, } -1)
    X \text{ test} = X \text{ test. reshape (num test, } -1)
    return X_train, y_train, X_val, y_val, X_test, y_test
# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data()
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
```

file:///D:/sufe/人工智能/two layer net - Jupyter Notebook.html

(49000,)

Train data shape: (49000, 3072)

Train labels shape:

```
Validation data shape: (1000, 3072)
Validation labels shape: (1000,)
Test data shape: (1000, 3072)
Test labels shape: (1000,)
```

Train a network

To train our network we will use SGD. In addition, we will adjust the learning rate with an exponential learning rate schedule as optimization proceeds; after each epoch, we will reduce the learning rate by multiplying it by a decay rate.

```
iteration 0 / 1000: loss 2.302762
iteration 100 / 1000: loss 2.302358
iteration 200 / 1000: loss 2.297404
iteration 300 / 1000: loss 2.258897
iteration 400 / 1000: loss 2.202975
iteration 500 / 1000: loss 2.116816
iteration 600 / 1000: loss 2.049789
iteration 700 / 1000: loss 1.985711
iteration 800 / 1000: loss 2.003726
iteration 900 / 1000: loss 1.948076
Validation accuracy: 0.287
```

Debug the training

With the default parameters we provided above, you should get a validation accuracy of about 0.29 on the validation set. This isn't very good.

One strategy for getting insight into what's wrong is to plot the loss function and the accuracies on the training and validation sets during optimization.

Another strategy is to visualize the weights that were learned in the first layer of the network. In most neural networks trained on visual data, the first layer weights typically show some visible structure when visualized.

In [10]:

```
# Plot the loss function and train / validation accuracies
plt. subplot(2, 1, 1)
plt. plot(stats['loss_history'])
plt. title('Loss history')
plt. xlabel('Iteration')
plt. ylabel('Loss')

plt. subplot(2, 1, 2)
plt. plot(stats['train_acc_history'], label='train')
plt. plot(stats['val_acc_history'], label='val')
plt. title('Classification accuracy history')
plt. xlabel('Epoch')
plt. ylabel('Classification accuracy')
plt. legend()
plt. show()
```


In [11]:

```
from cs231n.vis_utils import visualize_grid

# Visualize the weights of the network

def show_net_weights(net):
    W1 = net.params['W1']
    W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)
    plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))
    plt.gca().axis('off')
    plt.show()

show_net_weights(net)
```


Tune your hyperparameters

What's wrong?. Looking at the visualizations above, we see that the loss is decreasing more or less linearly, which seems to suggest that the learning rate may be too low. Moreover, there is no gap between the training and validation accuracy, suggesting that the model we used has low capacity, and that we should increase its size. On the other hand, with a very large model we would expect to see more overfitting, which would manifest itself as a very large gap between the training and validation accuracy.

Tuning. Tuning the hyperparameters and developing intuition for how they affect the final performance is a large part of using Neural Networks, so we want you to get a lot of practice. Below, you should experiment with different values of the various hyperparameters, including hidden layer size, learning rate, numer of training epochs, and regularization strength. You might also consider tuning the learning rate decay, but you should be able to get good performance using the default value.

Approximate results. You should be aim to achieve a classification accuracy of greater than 48% on the validation set. Our best network gets over 52% on the validation set.

Experiment: You goal in this exercise is to get as good of a result on CIFAR-10 as you can (52% could serve as a reference), with a fully-connected Neural Network. Feel free implement your own techniques (e.g. PCA to reduce dimensionality, or adding dropout, or adding features to the solver, etc.).

4

Explain your hyperparameter tuning process below.

YourAnswer:

- 1. According to the learning curve, the model is in an under-fitting state, so first adjust the size of the hidden layer, write a loop to test the hidden layer.
- 2. According to the image of gradient descent, the learning rate is too low.
- 3. Increase the number of iterations.
- 4. Reduce the regularization parameter.

In [12]:

```
best net = None # store the best model into this
~~~~~~
# TODO: Tune hyperparameters using the validation set. Store your best trained
# model in best net.
                                                                       #
                                                                       #
# To help debug your network, it may help to use visualizations similar to the
                                                                       #
# ones we used above; these visualizations will have significant qualitative
# differences from the ones we saw above for the poorly tuned network.
                                                                       #
                                                                       #
# Tweaking hyperparameters by hand can be fun, but you might find it useful to
                                                                       #
# write code to sweep through possible combinations of hyperparameters
# automatically like we did on the previous exercises.
                                                                       #
# ****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) *****
best acc = 0
learning rate = [1e-4, 5e-4, 1e-3]
regulations = [0.2, 0.25, 0.3, 0.35]
for lr in learning rate:
   for reg in regulations:
       stats = net.train(X_train, y_train, X_val, y_val,
          num iters=1500, batch size=200,
          learning_rate=1r, learning_rate_decay=0.95,
          reg=reg, verbose=True)
       val_acc = (net.predict(X_val) == y_val).mean()
       if val_acc > best_acc:
          best acc = val acc
          best net = net
          print('lr = ', lr ,' reg = ', reg, ' acc = ', best acc)
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) ****
```

```
iteration 0 / 1500: loss 1.941683
iteration 100 / 1500: loss 1.933403
iteration 200 / 1500: loss 1.937526
iteration 300 / 1500: loss 1.951179
iteration 400 / 1500: loss 1.857912
iteration 500 / 1500: loss 1.850910
iteration 600 / 1500: loss 1.852185
iteration 700 / 1500: loss 1.741116
iteration 800 / 1500: loss 1.851472
iteration 900 / 1500: loss 1.889015
iteration 1000 / 1500: loss 1.761919
iteration 1100 / 1500: loss 1.746915
iteration 1200 / 1500: loss 1.811038
iteration 1300 / 1500: loss 1.854898
iteration 1400 / 1500: loss 1.741565
1r = 0.0001 \text{ reg} = 0.2 \text{ acc} = 0.389
iteration 0 / 1500: loss 1.660500
iteration 100 / 1500: loss 1.604356
iteration 200 / 1500: loss 1.732628
         000 / 1500 1
```

In [13]:

```
# visualize the weights of the best network
show_net_weights(best_net)
```


Run on the test set

When you are done experimenting, you should evaluate your final trained network on the test set; you should get above 48%.

```
In [14]:

test_acc = (best_net.predict(X_test) == y_test).mean()
print('Test accuracy: ', test_acc)

Test accuracy: 0.482
```

Inline Question

Now that you have trained a Neural Network classifier, you may find that your testing accuracy is much lower than the training accuracy. In what ways can we decrease this gap? Select all that apply.

- 1. Train on a larger dataset.
- 2. Add more hidden units.
- 3. Increase the regularization strength.
- 4. None of the above.

Your Answer 1.3

Your Explanation increasing the data and increasing the regularization intensity can improve the generalization ability, but increasing the hidden node may make the model more overfitting.