

NEURAL INVERSE CDF SAMPLING

ANDREW STIRN: andrew.stirn@columbia.edu Tony Jebara: jebara@cs.columbia.edu

PROBLEM

Thompson sampling (TS), a strategy to balance *exploration* and *exploitation* in multi-armed bandit problems, enjoys theoretical guarantees and strong empirical performance in a variety of domains. However, TS assumes causal relationships between selected actions and received rewards.

CONTRIBUTIONS

This article relaxes those assumptions by considering the *noncompliance* setting where a chosen action is not necessarily the implemented action. We formalize TS for both *observed noncompliance* and *latent noncompliance*. Further, we empirically demonstrate the performance benefit of our approach for a variety of environments with differing levels of stochastic noncompliance.

CDF APPROXIMATION FOR GAMMA DISTRIBUTION

RESULTS

Perplexity Scores		
	Softmax	NGS
NVLDA	???	1103.77
ProDLDA	???	???

INVERTIBLE NEURAL NETWORK

Affine coupling layer [1]

input v_1 v_1 v_2 v_1 v_2 v_3 v_4 v_4 v

REFERENCES & CODE

[1] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. *CoRR*, abs/1605.08803, 2016.

Source code available at:

github.com/astirn/

neural-inverse-cdf-sampling