Tema 4. Introducció a la química orgànica

- 4.1. Introducció a la Química Orgànica
- 4.2. Propietats generals dels diferents tipus de compostos orgànics
 - 4.2.1. Alcans i cicloalcans
 - 4.2.2. Alquens i cicloalquens
 - 4.2.3. Alquins i cicloalquins
 - 4.2.4. Compostos aromàtics
 - 4.2.5. Haloalcans o halurs d'alquil
 - 4.2.6. Alcohols
 - 4.2.7. Èters
 - 4.2.8. Aldehids i cetones
 - 4.2.9. Àcids carboxílics
 - 4.2.10. **Esters**
 - 4.2.11. Amines
 - 4.2.12. Amides
- 4.3. Nucleòfil/electròfil i moviment d'electrons
- 4.4. Isòmers
- 4.5. Introducció a les biomolècules

Alcans i cicloalcans

Exercici 4.7. Anomena els compostos mostrats a continuació, classifica'ls segons siguin lineals, ramificats o cíclics i identifica els carbonis primaris, secundaris, terciaris i quaternaris.

Alcans i cicloalcans

Exercici 4.8. Relaciona cada un dels punts d'ebullició amb el compost apropiat: 98.4°C, 92.0°C, 79.2°C i 36.1°C.

Els alcans són **compostos apolars** i com a tals només poden interaccionar entre ells mitjançant **forces de London**.

Augmenten amb el nombre d'electrons (PM)

Metà	Età	Propà	n-Butà
16 g/mol	30 g/mol	44 g/mol	58 g/mol
-161.5 °C	-88.6 °C	-42.1 °C	-0.5 °C

Figura 4.1. Comparació dels punts d'ebullició d'alguns alcans de diferent pes molecular.

Són sensibles a la geometria molecular

2,2-dimetilpropà	n-Pentà
72 a/mol	72 g/mo

9.5 °C 36.1 °C

Figura 4.2. Comparació dels punts d'ebullició d'alcans d'idèntic pes molecular però diferent estructura.

Alquens i cicloalquens

Figura 4.5. Estereoisomeria en els alquens.

Figura 4.6. Nomenclatura cis/trans en els alquens.

Figura 4.7. Nomenclatura Z/E en els alquens.

Alquens i cicloalquens

Exercici 4.9. Representa en línies i angles els isòmers Z i E (si les estructures poden presentarlos) dels alquens mostrats a continuació. Anomena els estereoisòmers dels dos primers alquens.

CH₃CH₂CH=CHCH₃

CH₃CH₂C(CH₃)=CHCH₃

ciclohexè

Els isòmers geomètrics dels alquens no es poden interconvertir, ja que la interconversió requeriria trencar la component π del doble enllaç

Alquens i cicloalquens

Exercici 4.10. Anomena els alquens que es mostren a continuació i ordena'ls en funció del seu punt d'ebullició (de menor a major).

Alquins i cicloalquins

Exercici 4.11. Representa en línies i angles i anomena els compostos següents. Indica quins d'ells són alquins terminals i quins d'ells alquins interns.

 $(CH_3)_2C(CH_2CH_3)C \equiv CCH(CH_3)_2$ $HC \equiv CCH_2CH_2CH_3$

CH₃CH=CHCH=CHC≡CCH₃

Nota: En el darrer compost considera que la configuració dels dos alquens és trans.

Exercici 4.12. El ciclohexè reacciona espontàniament amb brom per donar un producte d'addició, en canvi el benzè no dóna aquest tipus de reacció d'addició però si que en presència d'un catalitzador pateix una reacció de substitutció. Raona la diferent reactivitat del ciclohexè i el benzè davant del brom.

Figura 4.4. Representacions de la molècula de benzè

Hidrocarburs aromàtics

Exercici 4.13. Dibuixa el toluè, l'o-xilè i el fenol. Els seus punts d'ebullició són 110°C, 144°C, 182°C, respectivament. Justifica els valors dels seus punts d'ebullició en base a la seva estructura.

Els halurs d'alquil són compostos polars, però insolubles en aigua perquè no poden formar-hi ponts d'hidrogen. Són molts bons dissolvents per les grasses.

Figura 4.5. Tipus d'halurs d'alquil

Són molt bons dissolvents per substàncies molt diverses. Tenen ús com a anestèsics (cloroform), refrigerants (freons) i pesticides (DDT).

Taula 4.6. Comparació dels punts d'ebullició de diferents halurs d'alquil

Halur d'alquil	Fórmula	Peb (°C)
Clorometà (clorur de metil)	CH₃CI	-24
Bromometà (bromur de metil)	CH₃Br	5
lodometà (iodur de metil)	CH₃I	42
Cloroetà (clorur d'etil)	CH₃CH₂CI	13
Bromoetà (bromur d'etil)	CH₃CH₂Br	38
lodoetà (iodur d'etil)	CH₃CH₂I	72

Exercici 4.14. Dibuixa en línies i angles els següents halurs d'alquil. Indica per a cadascun d'ells si és primari, secundari o terciari.

- a) 2-cloro-3,3-dimetilhexà
- b) 3-bromo-3-etilpentà
- c) 1-bromo-5-cloro-3-metilhexà

Figura 4.10. Tipus d'halurs d'alquil.

Exercici 4.16. Dibuixa l'estructura dels següents halurs d'alquil: tetraclorur de carboni, l'1,1,1-tricloroetà, el cloroform, el diclorometà i l'1,1,1-tricloro-2,2-bis(p-clorofenil)età.

Alcohols

Classificació dels alcohols

H |-|-|-|-|-|-

Alcohol primari

Alcohol secundari

Alcohol terciari

Paràmetres estructurals

Propietats físiques

Els alcohols són compostos polars. La solubilitat en aigua depèn del balanç entre la part hidrofòbica i la hidrofílica

Alcohols

Exercici 4.17. Anomena els alcohols que es mostren a continuació i indica per a cadascun d'ells si és primari, secundari o terciari. Quin és el grau d'oxidació dels carbonis directament units a l'oxígen?

Alcohols

Exercici 4.18. Les vitamines es poden classificar segons siguin hidrosolubles (solubles en aigua) o liposolubles (solubles en greix). Si considerem els greixos com un dissolvent apolar hidrofòbic, classifica cada una de les vitamines que es mostren a continuació com a hidrosoluble o liposoluble.

Figura 4.8. Parts hidrofílica i hidrofòbica dels alcohols.

Exercici 4.15. Indiqueu per a les mescles de dissolvents llistades a continuació, si seran o no miscibles i en el cas que siguin immiscibles com s'ordenaran les diferents fases en un recipient que les contingui.

- a) Hexà i aigua
- b) Diclorometà i aigua
- c) Etanol i aigua

Èters

Exercici 4.19. Dibuixa en fórmula estructural i línies i angles els compostos següents:

- a) tert-butil etil èter
- b) èter diisopropílic
- c) 1-etoxi-2-metilpropà

Quin és el grau d'oxidació dels carbonis directament units a l'oxigen en aquests compostos?

Èters

Exercici 4.20. A continuació es mostren les principals propietats físiques de l'èter dietílic, l' *n*-pentà i l'1-butanol. Raona les diferències en els punts d'ebullició i la solubilitat en aigua d'aquestes molècules en funció de les forces intermoleculars que estableixen.

Compost	Èter dietílic	<i>n</i> -Pentà	1-Butanol
PM (g mol ⁻¹)	74	72	74
Peb (°C)	35	36	118
Solubilitat en H ₂ O	7.5 g / 100 mL	Insoluble	9 g / 100 mL

Estructura general dels aldehids i les cetones

Polarització del grup carbonil

Exercici 4.21. A continuació es mostren una sèrie de reaccions d'oxidació o reducció. Anomena els reactius i productes per a cada una d'elles i en base al grau d'oxidació de cada compost indica si es tracta d'una oxidació o una reducció.

Les cetones són més difícils d'oxidar que els aldehids. Quina característica estructural d'aquests compostos permet explicar aquest fet?

Exercici 4.22. La major part d'aigua que resta en el material de vidre del laboratori es pot eliminar esbandint el material amb acetona. Explica com funciona aquest procés.

Exercici 4.23. Explica perquè el formaldehid es pot preparar com a un solució al 37% en aigua (formalina) i en canvi no es poden preparar solucions similars amb el decanal.

Exercici 4.24. La mentona i el mentol són substàncies fragants presents en els olis essencials que s'obtenen de la menta. En forma pura, una d'aquestes substàncies d'olor agradable és un líquid a temperatura ambient, mentre que l'altra és sòlida. Identifica el sòlid i el líquid tot raonant la teva resposta.

Quin és el grau d'oxidació del carboni directament unit a l'oxigen en cada un dels compostos?

Àcids carboxílics

Estructura i propietats generals

Figura 4.15. Equilibri de transferència de protons entre un àcid carboxílic i l'aigua

Àcids carboxílics

Exercici 4.25. Anomena els àcids carboxílics que es mostren a continuació. Per al primer d'ells escriu la reacció que té lloc quan es tracta amb hidròxid sòdic i dóna el nom del producte que es forma.

a) CH₃CH₂CF₂COOH

b) OH CH₃-CH₂-CH—COOH

с) но соон

d) NH₂
CH₃-CH—COOH

Èsters

Estructura i propietats generals

en forma lineal R-COOR' o bé R-CO₂R'

Formació per condensació d'un àcid carboxílic i un alcohol

Èsters

Exercici 4.26. Els èsters estan entre els components més importants per determinar el gust de la cervesa. Els èsters més abundants en la cervesa són l'acetat d'etil, l'acetat d'isoamil (també anomenat acetat d'isopentil), l'acetat d'isobutil, el caproat d'etil (també anomenat hexanoat d'etil) i l'acetat de 2-feniletil. Dibuixeu l'estructura d'aquests èsters en línies i angles.

Èsters

Exercici 4.27. (a) Escriu la fórmula estructural condensada de l'èster format com a resultat de la reacció entre l'àcid fòrmic i l'etanol. (b) Escriu les fórmules estructurals condensades de l'àcid i l'alcohol que reaccionen per formar el butanoat de metil, que contribueix al gust de les pomes.

Amines

Amoníac	Amina primària	Amina secundària	Amina terciària
H—N—H 	R—N—H H	R—N—H R	R—N—R R
	H ₃ C—N—H	H ₃ C—N—H CH ₃	H ₃ C—N—CH ₃
	Metilamina	Dimetilamina	Trimetilamina

Taula 4.11. Punts d'ebullició de les amines primàries, secundàries i terciàries.

	CH ₃ CH ₂ CH ₂ NH ₂	CH ₃ CH ₂ NHCH ₃	(CH ₃) ₃ N
	Propilamina	N-Metiletilamina	Trimetilamina
Peb (°C)	50	34	3

Amines

Les amines són bàsiques

Figura 4.25. Equilibri de transferència de protons entre una amina i l'aigua.

Amines

Exercici 4.28. Anomeneu cadascuna de les següents amines o derivats i ordeneu-les segons el seu punt d'ebullició:

(CH₃CH₂)₃N

(CH₃CH₂)₄N⁺Cl⁻

(CH₃CH₂CH₂)₂NH

Escriu la reacció que es donarà quan cadascun dels compostos anteriors es tracti amb àcid clorhídric.

Amides

Exercici 4.29. Quin compost té el punt d'ebullició més elevat, la pentanamida o l'acetat de propil? Escriu en forma estructural condensada i dóna el nom dels dos compostos a partir dels quals es pot formar la pentanamida.

Problemes globals

Exercici 4.30. Tenint en compte que un compost alifàtic és un compost orgànic cíclic o acíclic, saturat o insaturat i que, per tant, el terme s'oposa a compost aromàtic, doneu un exemple de cada un dels següents tipus de compostos:

- amina alifàtica
- clorofenol
- diol alifàtic
- cetona cíclica
- compost carbonílic alifàtic
- compost carboxílic aromàtic

Problemes globals

- **Exercici 4.31.** Dibuixa un exemple (hi ha múltiples resultats correctes) d'un compost que respongui a la descripció donada, utilitzant la representació amb línies i angles:
- a) una molècula de 8 àtoms de carboni amb un alcohol secundari, una amina primària, una amida i un alquè amb configuració *cis*.
- b) una molècula amb 9 àtoms de carboni amb un ciclopentà, un alquè trans, un grup èter i un grup aldehid.

Problemes globals

Exercici 4.32. Dels quatre compostos representats a continuació

Quins compleixen les condicions que es llisten tot seguit? Escriviu les reaccions que siguin possibles.

- a) neutralitza l'àcid clorhídric
- b) neutralitza l'hidròxid sòdic
- c) forma una amida amb l'àcid etanoic