nes .	Final Sınav Soru ve Cevap Kağıdı			1. S	2. S	3. S	4. S	Toplam	
Adı Soyadı									
Numarası			Grup no						
Bölümü		•				Tarih	Tarih 22.05.2019		
Dersin Adı		MAT1320 LİNEER CEBİR		Süre	80 dk		Sınıf		
Öğretim Üyesi					İmz				
YÖK'ün 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya									

YÖK'ün 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.

S1)
$$x + y - 3z = 1$$

 $2x - y + z = -2$ lineer denklem sistemini katsayılar matrisinin tersi yardımıyla $3x - 2y + z = 3$

çözünüz. [25 p]

$$|A| = \begin{vmatrix} 1 & 1 & -3 \\ 2 & -1 & 1 \\ 3 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -3 \\ 3 & 0 & -2 \\ 5 & 0 & -5 \end{vmatrix} = -(-15+10) = 5 \neq 0$$

$$Adj A = \begin{bmatrix} 1 & 1 & -1 \\ 5 & 10 & 5 \\ -2 & -7 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 5 & -2 \\ 1 & 10 & -7 \\ -1 & 5 & -3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 1/5 & 1 & -2/5 \\ 1/5 & 2 & -7/5 \\ -1/5 & 1 & -3/5 \end{bmatrix}$$

$$X = \begin{bmatrix} 3/5 & 1 & -2/5 \\ 1/5 & 2 & -7/5 \\ -1/5 & 1 & -3/5 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} - 2 - \frac{6}{5} \\ \frac{1}{5} - 4 - \frac{2}{5} \end{bmatrix} = \begin{bmatrix} -3 \\ -8 \\ -4 \end{bmatrix}$$

S2)
$$S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$$
 ve $T = \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ R^3 'ün sıralı tabanları olmak üzere

T tabanından S tabanına geçiş matrisini bulunuz. [25 p]

$$\begin{bmatrix} 1 & -1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 1 \\ 1 & 0 & 2 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & -1 & 1 & 0 \\ 1 & 0 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 2 & 1 \end{bmatrix}$$

$$H_{23}$$

$$\begin{bmatrix} M \end{bmatrix}_{T}^{5} = \begin{bmatrix} -2 & -5 & -2 \\ -1 & -6 & -2 \\ 1 & 2 & 1 \end{bmatrix}$$

S3)
$$A = \begin{bmatrix} 1 & -2 & 0 \\ -3 & 2 & 0 \\ -1 & 1 & -1 \end{bmatrix}$$
 matrisi veriliyor.

a) A matrisinin öz değerlerini bulunuz.
b) En küçük öz değerlerini bulunuz.

a)
$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 2 - \lambda & 0 \\ -1 & 1 & -1 - \lambda \end{vmatrix}$$

$$= -(1 + \lambda) \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$= -(1 + \lambda) \begin{bmatrix} (1 - \lambda)(2 - \lambda) - 6 \end{bmatrix}$$

$$= (1 + \lambda)^2 (4 - \lambda) = 0$$

$$= (1 + \lambda)^2 (4 - \lambda) = 0$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$= -(1 + \lambda) \begin{bmatrix} (1 - \lambda)(2 - \lambda) - 6 \end{bmatrix}$$

$$= (1 + \lambda)^2 (4 - \lambda) = 0$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 2 - \lambda \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -2 & 0 \\ -3 & 3 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$|A - \lambda \Gamma| = \begin{vmatrix} 1 - \lambda & -$$

$$X = \begin{bmatrix} \Gamma \\ S \end{bmatrix} = \Gamma \begin{bmatrix} \frac{1}{4} \\ \frac{1}{0} \end{bmatrix} + S \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}$$

S4)
$$A = \begin{bmatrix} 1 & -2 & -2 \\ 2 & -1 & -1 \\ -3 & 2 & 0 \end{bmatrix}$$
 matrisinin tersini Cayley-Hamilton Teoremi'nden yararlanarak bulunuz.

$$\begin{aligned} \left| \widehat{H} - \lambda \widehat{L} \right| &= \begin{vmatrix} \lambda - \lambda & -2 & -2 \\ 2 & -1 - \lambda & -1 \\ -3 & 2 & -\lambda \end{vmatrix} = \begin{vmatrix} -3 - \lambda & 2\lambda & 0 \\ 2 & -1 - \lambda & -1 \\ -3 - 2\lambda & 2 + \lambda + \lambda^2 \end{vmatrix} = -(3 + \lambda)(2 + \lambda + \lambda^2) + 2\lambda(3 + 2\lambda) \end{aligned}$$

$$b(y) = -y_3 + y - 6$$

$$P(A)=0$$
 => $-A^{3}+A-6I_{3}=0$
 $A^{-1}=-\frac{1}{6}(A^{2}-I_{3})$

$$A^{2} = \begin{bmatrix} 1 & -2 & -2 \\ 2 & -1 & -1 \\ -3 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & -2 \\ 2 & -1 & -1 \\ -3 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -4 & 0 \\ 3 & -5 & -3 \\ 1 & 4 & 4 \end{bmatrix}$$

$$A^{-1} = -\frac{1}{6} \left\{ \begin{bmatrix} 3 & -4 & 0 \\ 3 & -5 & -3 \\ 4 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$