- DEFINICIÓN DE PROPORCIONALIDAD DE SEGMENTOS.
- TEOREMA DE THALES.
- TEOREMA DE LA BISECTRIZ.
- TEOREMA DE MENELAO

THALES DE MILETO

Tales de Mileto fue un filósofo, matemático, geómetra, físico y legislador griego. Vivió y murió en Mileto, polis griega de la costa jonia. Aristóteles lo consideró como el iniciador de la escuela de Mileto

SEGMENTOS PROPORCIONALES:

$$A - B$$
 Si $AB=4$ y $CD=6$

Entonces:
$$\frac{AB}{CD} = \frac{4}{6} = \frac{2}{3}$$

Los \overline{AB} y \overline{CD} están en una razón de 2 a 3

$$P \bullet G$$
Si PQ=6 y MN=9
Entonces: $\frac{PQ}{MN} = \frac{6}{9} = \frac{2}{9}$

Los \overline{PQ} y \overline{MN} están en una razón de 2 a 3

Finalmente se dice que, como las razones son iguales. Los \overline{AB} y \overline{DC} son proporcionales a \overline{PQ} y \overline{MN} en una razón de 2 a 3.

$$\frac{AB}{CD} = \frac{PQ}{MN} = \frac{2}{3}$$

PROPORCIONALIDAD

TEOREMA DE THALES:

Forma práctica de aprovechar el teorema de Thales.

COROLARIOS DE THALES:

PROPORCIONALIDAD

Del gráfico ABCD es un paralelogramo, si AE=4 y EQ=1. Calcule QP.

Del paralelogramo ABCD: $\overline{BQ}//\overline{AC}$

Por Corolario de Thales:

$$\frac{BE}{ED} = \frac{1}{4}$$

Además $\overline{AB}//\overline{DP}$, por Corolario de Thales:

$$\frac{4}{1+X} = \frac{m}{4m}$$

$$16 = 1+X$$

TEOREMA DE LA BISECTRIZ

En todo triángulo los lados adyacentes de una bisectriz son proporcionales a las segmentos determinados en su lado relativo.

Si \overline{BP} es bisectriz:

$$\frac{a}{b} = \frac{m}{n}$$

AB, BC: Lados
adyacentes
AP, PC:Segmentos
determinados por la
bisectriz interior

• Externa:

 $\frac{a}{b} = \frac{x}{y}$

 \overline{AB} , \overline{BC} : Lados adyacentes \overline{AQ} , \overline{CQ} : Segmentos determinados por la \bigcirc bisectriz exterior

Forma práctica de aprovechar el teorema de la bisectriz.

DEMOSTRACIÓN:

Para demostrar el teorema de la bisectriz trazaremos un \overline{AQ} paralela \overline{BP} .

En el $\triangle AQC$, como \overline{AQ} // \overline{BP} , por corolario de Thales:

$$\therefore \frac{a}{b} = \frac{m}{n}$$

Del gráfico ABCD es un cuadrado, si QP=PD. Calcule $\frac{BQ}{QP}$

El ΔQPD es isósceles, por ≼ exterior:
 m≼APB=2α

En el $\triangle BAP$: $\alpha = 30^{\circ}$

RESOLUCIÓN

Nos piden $\frac{BQ}{QP} = \frac{X}{Y}$

El ⊿BAP es notable de 30° y 60°:

$$AP=a y AB=a\sqrt{3}$$

Por teorema de la bisectriz:

$$\frac{X}{Y} = \frac{a\sqrt{3}}{a}$$

$$\therefore \frac{X}{Y} = \sqrt{3}$$

TEOREMA DE MENELAO:

TEOREMA DE CEVA:

<u>DEMOSTRACIÓN:</u>

• En el $\triangle ABE$, como \overline{PR} // \overline{BE} , por corolario de Thales:

$$\frac{a}{m} = \frac{l}{d} \qquad \dots (1)$$

• En el $\triangle BCE$, como \overline{QR} // \overline{BE} , por corolario de Thales:

$$\frac{b}{n} = \frac{d}{c} \qquad \dots (2)$$

Si multiplicamos (1) y (2):

$$\frac{ab}{mn} = \frac{dl}{dc}$$

$$\cdot \cdot (a)(b)(c)=(m)(n)(r)$$

Del gráfico G es baricentro del $\triangle ABC$, si BP=4, BQ=8 y QC=2. Calcule AP.

RESOLUCIÓN:

Nos piden AP = X

Dato: BP=4

BQ=8

QC=2

• Como G es baricentro del $\triangle ABC$, trazamos la mediana \overline{AP} :

$$AG=2(GP)$$

GP=m

$$AG=2m$$

• En el ΔABP por teorema de Menelao:

$$(4)(2nh)(3)=(X)(nh)(8)$$

TEOREMA ADICIONALES:

NOTA:

A, B, C y D son puntos armónicos

Si tenemos cevianas concurrentes y $\overrightarrow{L}//\overline{AC}$

4.

Si ABCD es paralelogramo

$$X = \frac{a^2}{b}$$

Si G es baricentro

$$\frac{a}{b} + \frac{m}{n} = 1$$