

# Landsat 위성영상으로부터 지표면 온도(LST)를 산출하기 위한 RS&GIS 플러그인 소개

2021. 10. 29.

㈜지오씨엔아이 . 연구소장 . 정윤재 choung12osu@gmail.com/chyj@geocni. com

# 진행 순서

- 1. 지표면 온도(LST)
  - LST 소개 및 중요성
  - LST을 산출할 수 있는 위성영상 리스트
- 2. Landsat 위성영상
  - · Landsat 위성영상 소개
  - · Landsat 위성영상을 활용한 LST 산출 과정
- 3. RS&GIS 플러그인
  - RS&GIS 플러그인 소개
  - RS&GIS 플러그인을 활용한 LST 산출

## 지표면 온도(LST) 소개 및 중요성

- Land Surface Temperature
- O 지표면이 뜨거운(hot) 정도를 측정한 온도 값
- 대기온도(Air Temperature)와는 분명히 다르지만 패턴은 거의 같음
- 당연히 해수면 온도(SST: Sea Surface Temperature)와도 다름
- 2000년대 중반만 하더라도 LST는 주로 도심 열섬현상 측정 연구에 주로 활용되었으나 최근에는 기후변화로 인한 농작물 주산지 변화 탐지, 가뭄취약지역 탐지 등 다양한 분야에 활용되고 있음
- ⑤ 특히, 대기온도를 측정할 수 있는 기상 관측소는 AWS, ASOS를 포함하여 전국에 수 십대만 설치되어 정밀한 지표면 온도 측정에 한계가 있으나 위성영상의 경우 픽셀 단위로 측정할 수 있어 정밀한 지표면 온도 측정에 폭넓게 활용될 수 있음

# LST를 산출할 수 있는 위성영상 리스트

| 센서       | 위성         | 운영국가  | 운영기간    | 공간해상도/<br>Scale                           | 시간해상도      |
|----------|------------|-------|---------|-------------------------------------------|------------|
| OLI/TIRS | Landsat-8  | 미국    | 2013~현재 | 30m/<br>Local                             | 16일        |
| MODIS    | AQUA/TERRA | 미국    | 1999~현재 | 1km, 6km,<br>5.6km/<br>Local or<br>Global | 5분, 매일, 8일 |
| ASTER    | TERRA      | 미국/일본 | 1999~현재 | 90m/<br>Local                             | 16일        |
| SLSTR    | Sentinel-3 | 유럽    | 2016~현재 | 1km/<br>Global                            | 1.8일       |
| AHI      | Himawari-8 | 일본    | 2014~현재 | 1~2km/<br>Local                           | 정지궤도       |
| AVHRR    | NOAA-6~19  | 미국    | 1979~현재 | 1.1km/<br>Global                          | 매일         |
|          |            |       |         |                                           |            |

# Landsat 위성영상

- 미국 NASA와 USGS에 의해 개발되었으며 전세계 최초의 민간 활용 위성인 Landsat 인공위성에 의해 획득한 위성영상
- O 1972년 Landsat-1호 위성부터 현재 Landsat-8호 위성까지 16일 간격으로 185km\*185km 면적을 포함하는 공간해상도 30m(Pansharpening 하면 15m)의 위성영상을 제공하고 있음
- O 현존하는 위성영상 중에서 30m 급의 LST를 산출할 수 있는 유일한 위성영상이며 무료임
- O 유일한 약점은 16일 간격의 시간해상도이나 2021년 9월 27일에 발사된 Landsat-9호 위성에 의해 LST의 획득 주기가 지금의 절반 이하로 짧아질 것으로 예상됨

# Landsat 위성영상을 활용한 LST 산출 과정

# Landsat-8 band designations (Activated in 2013, Still activated)

| Landsat-5 band designations              |
|------------------------------------------|
| (Activated in 1984, Deactivated in 2013) |

| Band                                   | Wavelength<br>(micrometers) | Spatial resolution<br>(meters) |  |
|----------------------------------------|-----------------------------|--------------------------------|--|
| Band 1-Blue                            | 0.45-0.52                   |                                |  |
| Band 2-Green                           | 0.52-0.60                   | 30                             |  |
| Band 3-Red                             | 0.63-0.69                   | 30                             |  |
| Band 4-Near Infrared(NIR)              | 0.76-0.90                   | 30                             |  |
| Band 5-Short Wave Infrared<br>(SWIR 1) | 1.55-1.75                   | 30                             |  |
| Band 6-Thermal Infrared<br>(TIR)       | 10.40-12.50                 | 120(30)                        |  |
| Band 7-Short Wave Infrared             | 2.08-2.35                   | 30                             |  |

| Band                             | Wavelength<br>(micrometers) | Spatial resolution<br>(meters) |  |
|----------------------------------|-----------------------------|--------------------------------|--|
| Band 1-Coastal aerosol           | 0.43-0.45                   |                                |  |
| Band 2-Blue                      | 0.45-0.51                   | 30                             |  |
| Band 3-Green                     | 0.53-0.59                   | 30                             |  |
| Band 4-Red                       | 0.64-0.67                   | 30                             |  |
| Band 5-Near Infrared(NIR)        | 0.85-0.88                   | 30                             |  |
| Band 6-SWIR 1                    | 1.57-1.65                   | 30                             |  |
| Band 7-SWIR 2                    | 2.11-2.29                   | 30                             |  |
| Band 8-Panchromatic              | 0.50-0.68                   | 15                             |  |
| Band 9-Cirrus                    | 1.36-1.38                   | 30                             |  |
| Band 10-Thermal Infrared(TIRS) 1 | 10.60-11.19                 | 100(30)                        |  |
| Band 11-Thermal Infrared(TIRS) 2 | 11.50-12.51                 | 100(30)                        |  |

- 열적외 밴드(Landsat-5 영상의 Band 6, Landsat-8 영상의 Band 10 또는 11)와 NDVI 영상이 필요함
- 아래의 식을 이용하여 분광복사휘도(Spectral Radiation: 광원의 세기/출력) 제작

$$L_{\lambda} = M_L \times Q_{cal} + A_L$$

• Radiance multiplicative scaling factor for the band \* DN value of the pixel + Radiance additive scaling factor for the band (메타데이터에서 획득 가능: RADIANCE MULT BAND x, RADIANCE ADD BAND x)

# Landsat 위성영상을 활용한 LST 산출 과정

#### O 아래의 식을 이용하여 복사 온도(Brightness Temperature) 제작

$$T = \frac{K_2}{\ln\left(\frac{K_1}{L_\lambda} + 1\right)}, \qquad K_1, K_2 = correction \ factors \ provided \ by \ USGS$$
 
$$L_\lambda = spectral \ radiation$$

|                      | $K_1$  | $K_2$   |
|----------------------|--------|---------|
| Band 6 in Landsat 5  | 607.76 | 1260.56 |
| Band 10 in Landsat 8 | 774.89 | 1321.08 |
| Band 11 in Landsat 8 | 480.89 | 1201.14 |

#### O 아래의 식과 조건을 이용하여 LST를 계산

$$LST = \varepsilon^{\frac{1}{4}}T - 273.15$$
,  $\varepsilon = emission \ rate$ (방출율)

| Emissivity (ε)           |  |  |
|--------------------------|--|--|
| 0.995                    |  |  |
| 0.970                    |  |  |
| 1.0994 + 0.047 ln (NDVI) |  |  |
| 0.990                    |  |  |
|                          |  |  |

## RS&GIS 플러그인 소개



# RS&GIS 플러그인을 활용한 LST 산출



# RS&GIS 플러그인을 활용한 LST 산출



# 결과 및 장점

O 복잡한 계산식을 사용하지 않고 LST를 산출할 수 있어 다양한 분야에서 활용될 수 있음



# 감사합니다.