exection	Qua			
1012 #1	Punto Hotant			
0) -4.59	458739 10	Procession = 16 bits	Exponente : 4	6145
Paso 1 7 : 3 /	- 0	3.59458739 * 2 = 1 0.18917478		
0000 7				
1000 0	21000001 =	1.0010011000001 X ?	72	
P060 3.		9 12		
bias = 2ª	1-1 = 7	1 412		
Paso 4.				
Ex# 2 +	7 = 9 = 10	012		
b) Value =		Z O(11-172-1) XZ E-7		
-1(1	+ 7 + 7 6 +	27) x29-7 = - 4.5939	5	
Kp= 1	P - P1 2	- 4.59 458739 - (A.5937 - 4.59 458739		x10-4

0 COS (X)= 10-X + X + O(X6) a) 1+x + cc5 co = 2 + x + x + x + x + 0 (x5) 1-x + cos (x) = 2 - x 1 x + x + y (x = x) Orden de Apraximagas - 00x47 O(x6) + O(x9) + O(x10) = 1 + x4 - x - 3x3 + O(x9) Ordes de Aproxmación Ocx97 4.0 8 = 1 + X + X + 2 + 2 + C(X 5) · 005.00 1 - X7 + X7 + 0686) a) ex + cosixi = 7 + x + x + x + 0(x5) + 0(x5) ex + cc5x = 2 + x+x3 + x9 + 0(x5) Order de Aproximación OCX7

9(3)= - Cetermner 9(3)= - Cetermner 9(3)= - Cetermner 9(x)= 7 (2) = 1/2 (3) = - (3) = - (3) = - (3) = - (3) = - (3) = - (4) = 9(x) (4) = 9(x) (5) = 9(x) (6) = 1/2 (8) = 9(x) (8) =	$-\frac{x}{2} - \frac{x^{2}}{4}$ $-\frac{x^{2}}{4} - \frac{x^{2}}{4}$ $-\frac{x}{2} - \frac{x^{2}}{4}$ $-\frac{x}{2} - \frac{x^{2}}{4}$ $-\frac{x}{2} - \frac{x^{2}}{4}$ $-\frac{x}{2} - \frac{x^{2}}{4}$ $-\frac{x^{2}}{4} - \frac{x^{2}}{4}$ $-\frac{x}{2} - $	No con There y'cx = = g'cx > <	nple e	Inco pu		
= 9(x ₀) = 9(x ₀)	0.61755 0.65404 0.63550 0.64566 0.64169 0.64178					
	F(PO) = 2.3 F(PO) = 2.3 F(PO) = 2.3	52727	F'CX)= P2		2.30182	

6	1(x)= x3	3-3X-Z	Xo =	2-1	600	3×7-3
	PI= Po	1 (Pa) =	200606			
	Pe = Pi -	ECE17 =	200002			
	P3 = P2	E (Pa) =	7,000			
7.	F 10 = X 2	X-3	X0 = 0	F1(X)=	7× -1	
	P1 = P0 -	F(P0) =	-3			
	P2 = P1 -	F(P) = -	1.97429			
	P3= P2-	5(PZ) = -1	,34101			
	P4 = 83 -	- FOP3) = -1	30317			
8.	+ (x) = (x-	272	X0= Z.1	f'(x) =	a(x-2)	
	Pi = Po -	F(80) = 7	7.05			
	PZ = P1 -	F(e) = Z	2075			
		F(PZ) = Z				
	P1 = P3 =	- F(CO) = 2.	0675			

Quiz No. 1: Punto Flotante

- 1. ¿Cuál es el bias para un computador con 64 bits de precisión?
 - **X** 1023
 - B. 1025
 - C. 2047
 - D. 2049
- 2. Según el formato de punto flotante-IEEE 754 estándar, ¿cómo se representa un valor tipo NaN?
 - A. signo = $0 \circ 1$, exponente = todo 1, mantisa $\neq 1$.
 - signo = $0 \circ 1$, exponente = todo 1, mantisa $\neq 0$.
 - C. signo = $0 \circ 1$, exponente = todo 1, mantisa = 0.
 - D. signo = $0 \circ 1$, exponente = todo 0, mantisa $\neq 0$.
- 3. Según el formato de punto flotante-IEEE 754 estándar para una precisión de 64 bits, ¿cómo se encuentran distribuidos estos bits?
 - A. signo = 1 bit, exponente = 8 bits, mantisa = 55 bits.
 - B. signo = 1 bit, exponente = 40 bits, mantisa = 23 bits.
 - signo = 1 bit, exponente = 11 bits, mantisa = 52 bits.
 - D. signo = 1 bit, exponente = 16 bits, mantisa = 47 bits.
- 4. Según el formato de punto flotante-IEEE 754 estándar, ¿cómo se representa un valor más infinito?
 - A. signo = 0, exponente = todo 1, mantisa \neq 0.
 - signo = 0, exponente = todo 1, mantisa = 0.
 - C. signo = 1, exponente = todo 1, mantisa = 0.
 - D. signo = 1, exponente = todo 0, mantisa \neq 0.
- 5. ¿Cómo se calcula el bias?
 - A. $bias = 2^{exp+1} 1$
 - B. $bias = 2^{exp-1} + 1$
 - \mathbf{X} bias = $2^{exp-1} 1$
 - D. $bias = 2^{exp-1}$
- 6. El valor real asociado a un número binario dado con precisión de 32 bits se calcula a través de la fórmula:
 - A. $value = (-1)^{S} (1 + \sum_{i=1}^{23} d_{(23-i)} 2^{-i}) \times 2^{(127-E)}$
 - B. $value = (-1)^{S} (1 + \sum_{i=1}^{23} d_{(23-i)} 2^{-i}) \times 2^{(E-1024)}$
 - C. value = $(-1)^{-S}(1 + \sum_{i=1}^{23} d_{(23-i)}2^{-i}) \times 2^{(E-127)}$
 - \bigvee value = $(-1)^{S}(1 + \sum_{i=1}^{23} d_{(23-i)} 2^{-i}) \times 2^{(E-127)}$
- 7. Determine el formato de punto flotante para almacenar el número -4.59458739 base 10 en una computadora con 16 bits de precisión y exponente de 4 bits.
 - ¿Cuál es el error relativo entre el número decimal -4.59458739 y el valor que realmente se almacenó en representación punto flotante de 16 bits?
- 8. Determine el formato de punto flotante para almacenar el número 4.29459816 base 10 en una computadora con 16 bits de precisión y exponente de 3 bits.

- ¿Cuál es el error relativo entre el número decimal 4.29459816 y el valor que realmente se almacenó en representación punto flotante de 16 bits?
- 9. Determine el formato de punto flotante para almacenar el número -71.10369740 base 10 en una computadora con 16 bits de precisión y exponente de 4 bits.
 - ¿Cuál es el error relativo entre el número decimal -71.10369740 y el valor que realmente se almacenó en representación punto flotante de 16 bits?
- 10. Determine el formato de punto flotante para almacenar el número 7.98769652 base 10 en una computadora con 16 bits de precisión y exponente de 3 bits.
 - ¿Cuál es el error relativo entre el número decimal 7.98769652 y el valor que realmente se almacenó en representación punto flotante de 16 bits?
- 11. Determine el formato de punto flotante para almacenar el número -9.60458715 base 10 en una computadora con 16 bits de precisión y exponente de 4 bits.
 - ¿Cuál es el error relativo entre el número decimal -9.60458715 y el valor que realmente se almacenó en representación punto flotante de 16 bits?
- 12. Determine el formato de punto flotante para almacenar el número 2891.078125 base 10 en una computadora con 32 bits de precisión.
- 13. Convierta a decimal el siguiente número en punto flotante de 32 bits: 10011010110011000110000100010
- 14. Determine el formato de punto flotante para almacenar el número 7954.09 base 10 en una computadora con 32 bits de precisión.
- 15. Convierta a decimal el siguiente número en punto flotante de 32 bits: 1001101110010001000010000100001
- 16. Determine el formato de punto flotante para almacenar el número 6317.9136 base 10 en una computadora con 32 bits de precisión.

1.

Dados los desarrollos de Taylor (|x| < 1):

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \mathcal{O}(x^4)$$

•
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7)$$

Determinar el orden de aproximación de la suma $\frac{1}{\sqrt{1+x}} + \sin(x)$

Determinar el orden de aproximación del producto $\frac{1}{\sqrt{1+x}}\sin(x)$

2.

Dados los desarrollos de Taylor (|x| < 1):

•
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \mathcal{O}(x^6)$$

•
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7)$$

Determinar el orden de aproximación de la suma cos(x) + sin(x)

Determinar el orden de aproximación del producto $\cos(x)\sin(x)$

Dados los desarrollos de Taylor (|x| < 1):

$$1 \frac{1}{1-x} = 1 - x + x^2 + x^3 + \mathcal{O}(x^4)$$

•
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \mathcal{O}(x^6)$$

Determinar el orden de aproximación de la suma $\frac{1}{1-x} + \cos(x)$

Determinar el orden de aproximación del producto $\frac{1}{1-x}\cos(x)$

4.

Dados los desarrollos de Taylor (|x| < 1):

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \mathcal{O}(x^5)$$

•
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \mathcal{O}(x^6)$$

Determinar el orden de aproximación de la suma $e^x + \cos(x)$

Determinar el orden de aproximación del producto $e^x \cos(x)$

Dados los desarrollos de Taylor (|x| < 1):

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \mathcal{O}(x^5)$$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \mathcal{O}(x^4)$$

Determinar el orden de aproximación de la suma $e^x + \frac{1}{\sqrt{1+x}}$

Determinar el orden de aproximación del producto $e^x \frac{1}{\sqrt{1+x}}$

Dados los desarrollos de Taylor (|x| < 1):

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \mathcal{O}(x^5)$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7)$$

Determinar el orden de aproximación de la suma $\ln(1+x) + \sin(x)$

Determinar el orden de aproximación del producto $\ln(1+x)\sin(x)$

Quiz No. 3: Métodos para resolver ecuaciones no lineales

- 1. Use el método de punto fijo para encontrar la raíz de la función $f(x)=2\sin(\sqrt{x})-x$. Además, use como punto de inicio $x_0=0.5$ con 10 iteraciones.
- 2. Use el método de punto fijo para encontrar una raíz real de la función $f(x)=x^3+2x^2+10x-20=0$. Además, use como punto de inicio $x_0=1$ con 10 iteraciones.
- 3. Determine rigurosamente si la función $f(x) = 2 + \frac{x}{2} \frac{x^2}{4}$ tiene un único punto fijo en el intervalo [1,3]. Si es así, determine el punto fijo usando 10 iteraciones y punto inicial $x_0 = 1$
- 4. Determine rigurosamente si la función $f(x)=2^{-x}$ tiene un único punto fijo en el intervalo [0,1]. Si es así, determine el punto fijo usando 10 iteraciones y punto inicial $x_0=0.5$
- 5. Aplique el método de Newton-Raphson para encontrar una raíz de la función $f(x)=x^2-x-3$. Empiece con $x_0=1.6$ hasta encontrar x_3
- 6. Aplique el método de Newton-Raphson para encontrar una raíz de la función $f(x)=x^3-3x-2$. Empiece con $x_0=2.1$ hasta encontrar x_3
- 7. Aplique el método de Newton-Raphson para encontrar una raíz de la función $f(x)=x^2-x-3$. Empiece con $x_0=0$ hasta encontrar x_4
- 8. Aplique el método de Newton-Raphson para encontrar una raíz de la función $f(x)=(x-2)^2$. Empiece con $x_0=2.1$ hasta encontrar x_4