04/04/2025 - Matematicas discretas 1 (Ude@(WV 14-16)

1. Proximos eventos:

- _ Martes B de abril: Mentorias.
- Viernes 11 de abii): Parcial 1
- 7 de abril: Moniforia sobre los temas del parcial (5:30 PM por zoom)

2. Sobre el parcial 1: Logica proposicional.

Argumento:

(om demostral

1. Tablas de verdad (Modelos)

2. Uso de inferencias (Axiomatico) (Hoy)

3. Demostración mediante reglas de inferencia

1. Silogismo:

2. Reglas de inferencia: (v)

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{array}{c} p \to q \\ p \\ \therefore q \end{array}$	Simplificación	$p \wedge q$ $\therefore p$
Modus Tollens	$\begin{array}{c} p \rightarrow q \\ \neg q \\ \therefore \neg p \end{array}$	Conjunción	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>
Silogismo hipotético (Transitividad)	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore p \rightarrow r \end{array}$	Prueba de división por casos	$p \lor q$ $p \to r$ $q \to r$
Silogismo disyuntivo (Eliminación)	$\begin{array}{c} p \lor q \\ \neg p \\ \therefore q \end{array}$		r
Adición	$p \\ \therefore p \lor q$	Resolución	

3. Ejemplas

Nombre	Equivalencia lógica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$	
Distributividad	$P \wedge (Q \vee R)$ $\equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R)$ $\equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \lor F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \lor \neg P \equiv V$	
Implicación	$P \to Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$		
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$		

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{array}{c} p \rightarrow q \\ p \\ \therefore q \end{array}$	Simplificación	$\begin{array}{c} p \wedge q \\ \therefore p \end{array}$
Modus Tollens	$\begin{array}{c} p \to q \\ \neg q \\ \therefore \neg p \end{array}$	Conjunción	p q ∴ p ∧ q
Silogismo hipotético (Transitividad)	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore p \rightarrow r \end{array}$	Prueba de división por casos	$p \lor q$ $p \to r$ $q \to r$
Silogismo disyuntivo (Eliminación)	$p \lor q$ $\neg p$ $\therefore q$		∴ <i>r</i>
Adición	$p\\ \therefore p \lor q$	Resolución	$\neg p \lor r$ $p \lor q$ $\therefore q \lor r$

Ejemplo: Demuestre que el siguiente argumento lógico es valido:

$$[p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \neg q)] \rightarrow (s \lor t)$$

Notacion de consecuentes

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$ \begin{bmatrix} p \to q \\ p \\ \vdots q \end{bmatrix} $	Simplificación	$\begin{array}{c} p \wedge q \\ \therefore p \end{array}$
Modus Tollens	$ \begin{pmatrix} p \to q \\ \neg q \\ \therefore \neg p \end{pmatrix} $	Conjunción	p q ∴ p ∧ q
Silogismo hipotético (Transitividad)	$p \to q$ $q \to r$ $\therefore p \to r$	Prueba de división por casos	$p \lor q$ $p \to r$ $q \to r$
Silogismo disyuntivo (Eliminación)	$\begin{pmatrix} p \lor q \\ \neg p \\ \therefore q \end{pmatrix}$		∴ <i>r</i>
Adición	p $\therefore p \lor q$	Resolución	$\neg p \lor r$ $p \lor q$ $\therefore q \lor r$

~ p	(4)
PAG	(م) (م)
$r \rightarrow \neg q$	(9)
SVE	•

 $\begin{array}{ccc}
\Lambda \cdot & P \\
2 & P \rightarrow q \\
3 & q \\
4 & Y \rightarrow 7q
\end{array}$

Pasos

5. ¬Y6. 5 / r

7. 6

8. .. svt

Justificación

Premisa (a)

Premisa (b)

Por modus ponens en 1 72

Premisa (d)

Por Modus Tolkers en 3 y 4

Premisa (c)

Eliminacion en 5 y 6

Adición en 7

Ejemplo: Demuestre que el siguiente argumento lógico es valido:

$$\begin{array}{c} (\neg p \lor q) \to r \\ r \to (s \lor t) \\ \neg s \land \neg u \\ \hline \neg u \to \neg t \\ \hline \vdots p \end{array}$$

Notacion proposicional.

7 p v g → v, r → (s v t), 75 17 u, 7 u → 7 t | p

Nombre	Equivalencia lógica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$ $P \vee Q \equiv Q \vee P$		
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distributividad	$P \wedge (Q \vee R)$ $\equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R)$ $\equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \lor F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \to Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$		
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$		

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{pmatrix} p \to q \\ p \\ \therefore q \end{pmatrix}$	Simplificación	$p \land q$ $\therefore p$
Modus Tollens	$\begin{pmatrix} p \to q \\ \neg q \\ \therefore \neg p \end{pmatrix}$	Conjunción	$p \\ q \\ \therefore p \land q$
Silogismo hipotético (Transitividad)	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore p \rightarrow r \end{array}$	Prueba de división por casos	$p \lor q$ $p \to r$ $q \to r$
Silogismo disyuntivo (Eliminación)	$\begin{array}{c} p \lor q \\ \neg p \\ \therefore q \end{array}$		$\therefore r$
Adición	$ \begin{array}{c} p\\ \therefore p \lor q \end{array} $	Resolución	

7 Prq >r	(a)
r-> svt	(6)
75 A74	(c)
フルーラッt	(9)
:- P	_ = = = = =

1. 75 14

Pasos

2، ۲۸

3. 7~→7t ·

4. 75

5, 75

6. 75 17t

7- 7 (svt)

8. v-> svb

9.

10. Tpvg-r

11. 7(7pvq)

12. p 179

13. : P

Justificación

Premisa (c)

Simplificación 1

Premisor (2)

Madus Porens en 2 m3

Simplificación 1

Conjucion de 4 y 5

Ley de Morgan en 6

Piemisa (b)

Modus Tallens 7 2 8

Premisa (a)

Modus Tollens 9 y 10

Ley de Morgan en M

Simplificación en 12