Comparison of Expected and Actual Encoding Generated by the Assembler

Sanjose Mary¹ and Gauri Patrikar¹

¹Project Research Engineer

August 22, 2019

1 Introduction

In this document we discuss the encoding generated by the assembler for each instruction. Only those instructions for which the encoding are mismatched are mentioned. These include the SHIFT and SIMD Instructions I. In each section, we will first mention the errors in the results generated by the assembler, followed by the observations of the expected and actual encoding. The actual encoding has been verified with test programs for each instruction. While the expected encoding has been verified from the isa.pdf and net.lst files.

2 Shift Instructions

The error lies in the i[13] and i[6] bits of encoding. Also the i[7] bit, which is unused, is always 1.

- The i[6] bit is always 0, correct being always 1.
- The i[13] bit signifies whether the instruction has immediate or register input.
 - For immediate input, i[13] should be 1, but is 0 in actual encoding.
 - For register input, i[13] should be 0, but is 1 in actual encoding.

2.1 SLLD

Bits	31-30	29-25	24-19	18-14	13	12-7	6-5	4-0
Fields	10	rd	op3	rs1	i=0	unused(zero)	10	rs2
Expected	10	10010	100101	00010	0	000000	10	00100
Actual	10	10010	100101	00010	1	000001	00	00100

Table 1: (Instruction - slld g2, g4, l2)

Bits	31-30	29-25	24-19	18-14	13	12-7	6-5	4-0
Fields	10	rd	op3	rs1	i=0	unused(zero)	10	$_{ m imm}$
Expected	10	10010	100101	00010	1	000000	10	00010
Actual	10	10010	100101	00010	0	000001	00	00010

Table 2: (Instruction - slld g2, 2, l2)

2.2 SRLD

Bits	31-30	29-25	24-19	18-14	13	12-7	6-5	4-0
Fields	10	rd	op3	rs1	i=0	unused(zero)	10	rs2
Expected	10	00110	100110	00010	0	000000	10	00100
Actual	10	00110	100110	00010	1	000001	00	00100

Table 3: (Instruction - srld g2, g4, g6)

Bits	31-30	29-25	24-19	18-14	13	12-7	6-5	4-0
Fields	10	rd	op3	rs1	i=0	unused(zero)	10	imm
Expected	10	00110	100110	00010	1	000000	10	00010
Actual	10	00110	100110	00010	0	000001	00	00010

Table 4: (Instruction - srld g2, 2, g6)

2.3 SRAD

Bits	31-30	29-25	24-19	18-14	13	12-7	6-5	4-0
Fields	10	rd	op3	rs1	i=0	unused(zero)	10	rs2
Expected	10	10000	100111	00010	0	000000	10	00100
Actual	10	10000	100111	00010	1	000001	00	00100

Table 5: (Instruction - slld g2, g4, l0)

Bits	31-30	29-25	24-19	18-14	13	12-7	6-5	4-0
Fields	10	rd	op3	rs1	i=0	unused(zero)	10	$_{ m imm}$
Expected	10	10000	100111	00010	1	000000	10	00010
Actual	10	10000	100111	00010	0	000001	00	00010

Table 6: (Instruction - slld g2, 2 , l0)

3 SIMD Instructions I

The error lies in the [9:7] bits of the encoding. The error is same for a specified data-type (8,16,32), regardless of the operation (add, sub, umul, smul).

- For 8 bit- The second and third bytes are always 24, correct being 0c.
- For 16 bit- The third byte is always 4, correct being 1.
- For 32 bit- The third byte is always 0, correct being 2

Also, for VSMULD, op3 is being encoded as 1a. It should be 0b.

3.1 VADDD8, VADDD16, VADDD32

VADDD8

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	000000	00010	0	000	00110	00100
Actual	10	00110	000000	00010	0	000	10010	00100

Table 7: vaddd
8 g2, g4, g6

VADDD16

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	000000	00010	0	000	01010	00100
Actual	10	00110	000000	00010	0	001	00010	00100

Table 8: vaddd
16 g2, g4, g6

VADDD32

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	000000	00010	0	000	10010	00100
Actual	10	00110	000000	00010	0	000	00010	00100

Table 9: vaddd
32 g2, g4, g6

$3.2\quad VSUBD8,\, VSUBD16,\, VSUBD32$

VSUBD8

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	000100	00010	0	000	00110	00100
Actual	10	00110	000100	00010	0	000	10010	00100

Table 10: vsubd
8 g2, g4, g6

VSUBD16

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	000100	00010	0	000	01010	00100
Actual	10	00110	000100	00010	0	001	00010	00100

Table 11: vsubd
16 g2, g4, g6

VSUBD32

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	000100	00010	0	000	10010	00100
Actual	10	00110	000100	00010	0	000	00010	00100

Table 12: vsubd32 g2, g4, g6 $\,$

$3.3\quad VUMULD8,\ VUMULD16,\ VUMULD32$

VUMULD8

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	001010	00010	0	000	00110	00100
Actual	10	00110	001010	00010	0	000	10010	00100

Table 13: vumuld
8 g2, g4, g6

VUMULD16

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	001010	00010	0	000	01010	00100
Actual	10	00110	001010	00010	0	001	00010	00100

Table 14: vumuld
16 g2, g4, g6

VUMULD32

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	001010	00010	0	000	10010	00100
Actual	10	00110	001010	00010	0	000	00010	00100

Table 15: vumuld32 g2, g4, g6

3.4 VSMULD8, VSMULD16, VSMULD32

VSMULD8

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	001011	00010	0	000	00110	00100
Actual	10	00110	011010	00010	0	000	10010	00100

Table 16: vsmuld
8 g2, g4, g6

VSMULD16

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	001011	00010	0	000	01010	00100
Actual	10	00110	011010	00010	0	001	00010	00100

Table 17: vsmuld
16 g2, g4, g6 $\,$

VSMULD32

Bits	31-30	29-25	24-19	18-14	13	12-10	9-5	4-0
Fields	Intsn	rd	op3	rs1	Instn	Unused	Instn	rs2
Expected	10	00110	001011	00010	0	000	10010	00100
Actual	10	00110	011010	00010	0	000	00010	00100

Table 18: vsmuld32 g2, g4, g6

4 Conclusion

The instructions for which the actual output generated by the assembler and the expected encoding do not match are mentioned. These are the shift and

SIMD I instructions. Both the expected and actual values for each instruction are compared and the observations noted.