10

15

WHAT IS CLAIMED IS:

1. A dielectric ceramic comprising $(\text{Ba}_{1\text{-x}}\text{Ca}_{\text{x}}\text{O})_{\text{m}}\text{TiO}_{2} + \alpha\text{Re}_{2}\text{O}_{3} + \beta\text{MgO} + \gamma\text{MnO}$ in which Re is at least one member selected from the group consisting of Y, Gd, Tb, Dy, Ho, Er and Yb; α , β γ , m and x are molar ratios; 0.001 \leq α \leq 0.10; 0.001 \leq β \leq 0.12; 0.001 < γ \leq 0.12; 1.000 < m \leq 1.035; and 0.005 < x \leq 0.22, and

about 0.2 to 5.0 parts by weight of either a first sub-component or a second sub-component or a third sub-component relative to 100 parts by weight of $(Ba_{1-x}Ca_xO)_mTiO_2$, wherein

the $(Ba_{1-x}Ca_xO)_mTiO_2$ contains about 0.02% by weight or less of alkali metal oxides,

the first sub-component is a $\text{Li}_2\text{O-}(\text{Si},\text{Ti})\text{O}_2\text{-MO}$ oxide in which M is at least one of Al and Zr,

the second sub-component is a SiO_2-TiO_2-XO oxide in which X is at least one selected from the group consisting of Ba, Ca, Sr, Mg, Zn and Mn, and the third sub-component is SiO_2 .

- 2. A dielectric ceramic according to Claim 1, wherein the $(\mathrm{Ba_{1-x}Ca_xO)_mTiO_2}$ has a mean particle size of about 0.1 to 0.7 $\mu\mathrm{m}$.
- 3. A dielectric ceramic according to Claim 1, wherein the first sub-component is present and comprises $xLiO_2-y(Si_wTi_{1-w})O_2-zMO$, x, y and z are molar percentages and $30 \le w \le 1.0$, and is within the area surrounded by the straight lines connecting between the succeeding two points represented by A (x = 20, y = 80, z = 0), B (x = 20, y = 80, z = 0)

a

63

5

5

5

2

10, y = 80, z = 10), C (x = 10, y = 70, z = 20), D (x = 35, y = 45, z = 20), E (x = 45, y = 45, z = 10) and F (x = 45, y = 55, z = 0) or on said lines in a ternary composition diagram having apexes represented by the components LiO_2 , ($\text{Si}_w \text{Ti}_{1-w}$)O₂ and MO, provided that when first Sub-the component is on the line A-F, 0.3 \leq w < 1.0.

- 4. A dielectric ceramic according to Claim 3, wherein comprising at least one of Al_2O_3 and ZrO_2 in a combined amount of about 20 parts by weight or less and in which the ZrO_2 is 10 parts by weight or less relative to 100 parts by weight of the Li_2O -(Si,Ti)O₂-MO oxide.
- 5. A dielectric ceramic according to Claim 3, wherein said points are A (x = 0, y = 20, z = 80), B (x = 19, y = 1, z = 80), C (x = 49, y = 1, z = 50), D (x = 45, y = 50, z = 5), E (x = 20, y = 75, z = 5) and F (x = 0, y = 80, z = 20) and wherein the $(Ba_{1-x}Ca_xO)_mTiO_2$ has a mean particle size of about 0.1 to 0.7 μ m.
- 6. A dielectric ceramic according to Claim 1, wherein the second sub-component is present and comprises $xSiO_2-yTiO_2-zXO$, x, y and z are molar percentages, and is within the area surrounded by the straight lines connecting between the succeeding two points represented by A (x = 85, y = 1, z = 14), B (x = 35, y = 51, z = 14), C (x = 30, y = 20, z = 50) and D (x = 39, y = 1, z = 60) or on said lines in a ternary composition diagram having apexes represented by the components SiO₂, TiO₂ and XO.
- 7. A dielectric ceramic according to Claim 6, comprising at least one of Al_2O_3 and ZrO_2 in a combined

5

amount of about 15 parts by weight or less and the ZrO_2 is 5 parts by weight or less relative to 100 parts by weight of the SiO_2 - TiO_2 -XO oxide.

- 8. A dielectric ceramic according to Claim 6, wherein said points are A (x = 1, y = 14, z = 85), B (x = 20, y = 10, z = 70), C (x = 30, y = 20, z = 50), D (x = 40, y = 50, z = 10), E (x = 20, y = 70, z = 10) and F (x = 1, y = 39, z = 60) and wherein the $(Ba_{1-x}Ca_xO)_mTiO_2$ has a mean particle size of about 0.1 to 0.7 μ m.
- 9. A dielectric ceramic according to Claim 1 in which the third sub-component is present.
- 10. A dielectric ceramic according to Claim 2, wherein the molar ratio of (Ba + Ca)/Ti is about 0.99 to 1.035.
- 11. A laminated ceramic capacitor having: a plurality of dielectric layers containing the dielectric ceramic according to Claim 1;

a plurality of inner dielectric layers comprising Ni or a Ni alloy and existing among a plurality of said dielectric layers; and

external electrodes in electrical continuity to a plurality of said inner dielectric layers and being on the surface of said ceramic capacitor.

12. A laminated ceramic capacitor according to Claim 11, wherein said external electrodes comprise a sintered layer of conductive metal powder or conductive metal powder and glass frit.

65

5

13. A laminated ceramic capacitor having: a plurality of dielectric layers containing the dielectric ceramic according to Claim 2;

a plurality of inner dielectric layers comprising Ni or a Ni alloy and existing among a plurality of said dielectric layers; and

external electrodes in electrical continuity to a plurality of said inner dielectric layers and being on the surface of said ceramic capacitor.

- 14. A laminated ceramic capacitor according to Claim 13, wherein said external electrodes comprise a sintered layer of conductive metal powder or conductive metal powder and glass frit.
- 15. A laminated ceramic capacitor having:
 a plurality of dielectric layers containing the
 dielectric ceramic according to Claim 3;

a plurality of inner dielectric layers comprising Ni or a Ni alloy and existing among a plurality of said dielectric layers; and

external electrodes in electrical continuity to a plurality of said inner dielectric layers and being on the surface of said ceramic capacitor.

- 16. A laminated ceramic capacitor according to Claim 15, wherein said external electrodes comprise a sintered layer of conductive metal powder or conductive metal powder and glass frit.
- 17. A laminated ceramic capacitor having:

 a plurality of dielectric layers

 containing the dielectric ceramic according to Claim 6;

a plurality of inner dielectric layers

comprising Ni or a Ni alloy and existing among a

plurality of said dielectric layers; and

external electrodes in electrical

continuity to a plurality of said inner dielectric layers
and being on the surface of said ceramic capacitor.

- 18. A laminated ceramic capacitor according to Claim 17, wherein said external electrodes comprise a sintered layer of conductive metal powder or conductive metal powder and glass frit.
- 19. A laminated ceramic capacitor having:

 a plurality of dielectric layers

 containing the dielectric ceramic according to Claim 9;

 a plurality of inner dielectric layers

 comprising Ni or a Ni alloy and existing among a

 plurality of said dielectric layers; and

 external electrodes in electrical

 continuity to a plurality of said inner dielectric layers

 and being on the surface of said ceramic capacitor.
- 20. A laminated ceramic capacitor according to Claim 19, wherein said external electrodes comprise a sintered layer of conductive metal powder or conductive metal powder and glass frit.