Alphabet Reduction for Reconfiguration Problems

Naoto Ohsaka

(Cyber Agent, Inc., Japan)

What is Combinatorial Reconfiguration...?

Imagine connecting a pair of feasible solutions (of NP problem)

under a particular adjacency relation

Q. Is a pair of solutions reachable to each other?

Q. If so, what is the shortest transformation?

Q. If not, how can the feasibility be relaxed?

Many reconfiguration problems have been derived from

Satisfiability, Coloring, Vertex Cover, Clique, Dominating Set, Feedback Vertex Set, Steiner Tree, Matching, Spanning Tree, Shortest Path, Set Cover, Subset Sum, ...

See [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] [Nishimura. Algorithms 2018] [van den Heuvel. Surv. Comb. 2013] [Hoang. https://reconf.wikidot.com/]

Example 1

q-CSP Reconfiguration

```
•Input: q-ary CSP G = (V, E, \Sigma, (\pi_e)_{e \in E}) where \pi_e: \Sigma^e \to \{0,1\} satisfying \psi_{\text{ini}}, \psi_{\text{tar}}: V \to \Sigma

•Output: \psi = (\psi^{(1)} := \psi_{\text{ini}}, ..., \psi^{(T)} := \psi_{\text{tar}}) (reconf. sequence) S.t. every \psi^{(t)} satisfies all edges of G (feasibility) Ham(\psi^{(t)}, \psi^{(t+1)}) \le 1 (adjacency)
```

YES case $(q = 2, \Sigma = \{R,G,B\}, \pi_e := "\neq")$

Example 2

q-CSP Reconfiguration

- •Input: q-ary CSP $G = (V, E, \Sigma, (\pi_e)_{e \in E})$ where $\pi_e \colon \Sigma^e \to \{0,1\}$ satisfying $\psi_{ini}, \psi_{tar} \colon V \to \Sigma$
- Output: $\psi = (\psi^{(1)} := \psi_{ini}, ..., \psi^{(T)} := \psi_{tar})$ (reconf. sequence) S.t. every $\psi^{(t)}$ satisfies all edges of G (feasibility)
 - $\operatorname{Ham}(\psi^{(t)}, \psi^{(t+1)}) \leq 1$ (adjacency)

NO case $(q = 2, \Sigma = \{R,G,B\}, \pi_e := "\neq")$

Complexity of reconfiguration problems

Source problem	Existence	Reconfiguration
Satisfiability	NP-complete	PSPACE-complete [Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]
Independent Set	NP-complete	PSPACE-complete [Hearn-Demaine. Theor. Comput. Sci. 2005]
Matching	Р	P [Ito-Demaine-Harvey-Papadimitriou-Sideri- Uehara-Uno. Theor. Comput. Sci. 2011]
3-Coloring	NP-complete	P [Cereceda-van den Heuvel-Johnson. J. Graph Theory 2011]
Shortest Path	P	PSPACE-complete [Bonsma. Theor. Comput. Sci. 2013]
Independent Set on bipartite graphs	Р	NP-complete [Lokshtanov-Mouawad. ACM Trans. Algorithms 2019; SODA 2018]

Optimization versions of reconfiguration problems

Even if...

- NOT reconfigurable! and/or
- many problems are PSPACE-complete!

Still want an "approximate" reconf. sequence (e.g.) made up of almost-satisfying assignments

e.g. Set Cover Reconf. [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014] Submodular Reconf. [O.-Matsuoka. WSDM 2022]

Example 2+

Maxmin q-CSP Reconfiguration

[IDHPSUU. Theor. Comput. Sci. 2011] [O. STACS 2023]

• Input: q-ary CSP $G = (V, E, \Sigma, (\pi_e)_{e \in E})$ & satisfying $\psi_{ini}, \psi_{tar}: V \rightarrow \Sigma$

• Output: $\psi = (\psi^{(1)} := \psi_{ini}, ..., \psi^{(T)} := \psi_{tar})$ (reconf. sequence) S.t.

every w (t) satisfies all edges of 6 (feasibility)

 $\operatorname{Ham}(\Psi^{(t)}, \Psi^{(t+1)}) \leq 1$

(adjacency)

• Goal: $\max_{\psi} \operatorname{val}_{G}(\psi) := \min_{t} (\operatorname{frac. of edges satisfied by } \psi^{(t)})$

 Ψ_{ini}

$$\operatorname{val}_{G}(\mathbf{\psi}) = \frac{6}{7}$$

 Ψ_{tar}

Gap_{1,1-ε} q-CSP Reconfiguration [IDHPSUÚ. Theor. Comput. Sci. 2011] [O. STACS 2023]

q-ary CSP $G = (V, E, \Sigma, (\pi_e)_{e \in E})$ & satisfying $\psi_{ini}, \psi_{tar}: V \rightarrow \Sigma$ • Input:

• Goal: distinguish btw.

 $\exists \psi \ \mathsf{val}_{\mathcal{G}}(\psi) = 1$ (Completeness) (every $\psi^{(t)}$ satisfies all edges) (Soundness) $\forall \psi \ val_G(\psi) < 1-\epsilon$ (some $\psi^{(t)}$ violates > ϵ -frac. of edges)

 $\forall \text{val}_{G}(\psi) := \min_{t} (\text{frac. of edges satisfied by } \psi^{(t)})$

"Reconf. analogue" of PCP theorem

```
• Input: q-ary CSP G = (V, E, \Sigma, (\pi_e)_{e \in E}) & satisfying \psi_{ini}, \psi_{tar}: V \rightarrow \Sigma
```

• Goal: distinguish btw.

```
(Completeness) \exists \psi \ val_G(\psi) = 1 (every \psi^{(t)} satisfies all edges) (Soundness) \forall \psi \ val_G(\psi) < 1-\epsilon (some \psi^{(t)} violates >\epsilon-frac. of edges)
```

- Reconfiguration Inapproximability Hypothesis
 [O. STACS 2023]
 - " $\exists \epsilon, q, W: Gap_{1,1-\epsilon} q$ -CSP Reconf. with alphabet W is **PSPACE**-hard"
 - → Many reconf. problems are PSAPCE-hard to approx. conditionally

"Reconf. analogue" of PCP theorem

- q-ary CSP $G = (V, E, \Sigma, (\pi_e)_{e \in F})$ & satisfying $\psi_{ini}, \psi_{tar}: V \rightarrow \Sigma$ • Input:
- Goal: distinguish btw.

```
\exists \psi \ val_{G}(\psi) = 1
(Completeness)
                                                                    (every \psi^{(t)} satisfies all edges)
```

 $\forall \psi \text{ val}_{G}(\psi) < 1-\epsilon$ (Soundness) (some $\psi^{(t)}$ violates > ϵ -frac. of edges)

- Probabilistically Checkable Reconfiguration Proof (PCRP) theorem
 [Hirahara-O. STOC 2024] [Karthik C. S.-Manurangsi. 2023]
 - $\exists \epsilon, q, W: Gap_{1,1-\epsilon} q$ -CSP Reconf. with alphabet W is **PSPACE**-hard
 - → © Many reconf. problems are PSAPCE-hard to approx. unconditionally

Toward a better trade-off btw. ϵ , q, W...?

 \bowtie = "any large or small" const. $\varepsilon := gap$; q := query complexity; W := alphabet sizeGap reduction [O. STACS 2023] Serial repetition PCRP theorem [Hirahara-O. STOC 2024] [Karthik C. S.-Manurangsi. 2023] 0.001 Alphabet reduction 2 2.106 10-18 (this paper) Gap amplification

[O. SODA 2024]

Our contribution

Alphabet reduction à la [Dinur. J. ACM 2007]

PCRP · Gap 2-CSP Reconf.

soundness error $: 1 - \epsilon$

query complexity: 2

alphabet size : W

PCRP · Gap 2-CSP Reconf.

soundness error $: 1 - \kappa \cdot \epsilon$

query complexity: 2

alphabet size : $W_0 := 2.10^6$

- Reduce ANY BIG W to UNIVERSAL W_0 preserving ε by κ -factor
- ε can be o(1)
 unlike degree reduction [O. STACS 2023] & gap amplification [O. SODA 2024]

Our contribution

Consequences

• "Weak" PCRP for PSPACE with any small ε & large q, W

```
[O. STACS 2023]
[O. SODA 2024]
(this paper)

[O. STACS 2023]
[O. Horizontal States and States are already as a second state are already as a second states are already as a second states
```

• PCRP for **PSPACE** with $\epsilon_0 = 10^{-18}$, $q_0 = 2$, $W_0 = 2 \cdot 10^6$

[O. STACS 2023] [O. SODA 2024] (this paper)

2-CSP Reconf, 3-SAT Reconf, Independent Set Reconf, Vertex Cover Reconf, Clique Reconf, Dominating Set Reconf, Nondeterministic Constraint Logic

are PSPACE-hard to approximate within a factor of $1-\delta_0$

Robustization - Main challenge

Maxmin 2-CSP Reconf.

$$G = (V, E, \Sigma, (\pi_e)_{e \in E})$$

$$\psi_{ini} \& \psi_{tar} : V \to \Sigma$$

(Perfect completeness)

$$\exists \psi \ \mathsf{val}_{G}(\psi) = 1 \implies$$

(Robust soundness)

$$\forall \psi \ \text{val}_{G}(\psi) < 1-\varepsilon \implies$$

Circuit SAT Reconf.

$$\mathcal{C} = (C_e)_{e \in E}$$
 where $C_e \colon \mathbb{F}_2^{\ell \times 2} \to \mathbb{F}_2$ $\sigma_{\mathsf{ini}} \& \sigma_{\mathsf{tar}} \colon \mathsf{V} \to \mathbb{F}_2^{\ell}$

 $\forall \sigma \exists \sigma^{(t)}$ s.t. asgmt. for ϵ -frac of C_e is .01%-far from satisfying asgmt₂

Robustization - Main challenge

Maxmin 2-CEPT Peconf.
$$G = (V, E, \mathbf{Q}. \text{ How to design } C_e's?_{\mathbb{F}_2^\ell} \to \mathbb{F}_2$$

$$\psi_{\text{ini}} \& \psi_{\text{tar}}: V$$

- (Perfect completeness)
 - $\exists \psi \ \mathsf{val}_{G}(\psi) = 1 \Longrightarrow$
- (Robust soundness)

 $\forall \psi \ \text{val}_{G}(\psi) < 1-\varepsilon \implies$

 $\forall \sigma \exists \sigma^{(t)}$ s.t. asgmt. for ϵ -frac of C_e is .01%-far from satisfying asgmt,

Failed attempt 1: Perfect completeness fails (1)

- G is edge e = (v,w)
- $\bullet \Sigma \coloneqq \{R, G\}$
- $\bullet \pi_e \coloneqq \Sigma \times \Sigma$ (always satisfied)

$$\psi_{\mathsf{ini}} \coloneqq (\mathsf{R}, \mathsf{G})$$

Trivially...

$$G \longrightarrow G$$
 $V \longrightarrow W$

- $C_e(f \circ g) = 1 \Leftrightarrow \exists \alpha, \beta \in \Sigma \text{ s.t.}$ $\bullet f \circ g = \text{Had}(\alpha) \circ \text{Had}(\beta)$

 - $(\alpha, \beta) \in \pi_e$

$$\sigma_{ini} := Had(\mathbf{R}) \circ Had(\mathbf{G})$$

$$\sigma_{tar} := Had(G) \circ Had(G)$$

Failed attempt 1: Perfect completeness fails (1) $C_e(f \circ g) = 1 \Leftrightarrow \exists \alpha, \beta \in \Sigma s.t.$

Had(G)

- G is edge e = (v,w)
- $\bullet \Sigma := \{R, G\}$

 $ullet \pi_e\coloneqq \Sigma imes \Sigma$ (always satisfied)

$$\psi_{\text{ini}} \coloneqq (\mathbf{R}, \mathbf{G})$$

ACTUALLY...

 $\psi_{\text{ini}} := (\mathbf{R}, \mathbf{G}) \quad \forall \boldsymbol{\sigma} = (f^{(1)} \circ g^{(1)}, ..., f^{(T)} \circ g^{(T)}) \text{ from } \sigma_{\text{ini}} \text{ to } \sigma_{\text{tar}}$ $\exists f^{(t)} \circ g^{(t)} \text{ is } \frac{1}{8} \text{-far from Had}(\cdot) \circ \text{Had}(\cdot)$

 $\Psi_{tor} := (G, G)$

Trivially...

• $f \circ g = Had(a) \circ Had(\beta)$

 \bullet (a B) $\in \pi$

Failed attempt 2: Robust soundness fails

- G is edge e = (v, w)
- $\bullet \Sigma \coloneqq \{R, G\}$
- $\pi_e \coloneqq \{(R, G), (G, R)\}$ (bichromatic)

$$\psi_{ini} := (R, G)$$

$$\psi_{tar} := (G, R)$$
 v
 v
 v

$$C_e(f \circ g) = 1 \Leftrightarrow$$

- f & g are $\frac{1}{4}$ -close to $Had(\cdot)$
- $\Delta(f, \text{Had}(\mathbf{a})) \leq \frac{1}{4} \& \Delta(g, \text{Had}(\mathbf{\beta})) \leq \frac{1}{4}$ $\Rightarrow (\mathbf{a}, \mathbf{\beta}) \in \pi_e$

$$\sigma_{ini} := Had(\mathbf{R}) \circ Had(\mathbf{G})$$

$$\sigma_{tar} := Had(G) \circ Had(R)$$

Failed attempt 2: Robust soundness fails (1)

ad(G)

- G is edge e = (v, w)
- $\bullet \Sigma := \{R, G\}$
- $ullet \pi_e \coloneqq \{(R, G) \mid (G_R)\}$ (bichromatic)
 - ACTUALLY...

$$\psi_{\text{ini}} \coloneqq (\mathbf{R})$$

 $\psi_{\text{ini}} := (\mathbf{R}, \boldsymbol{\xi}) = (f^{(1)} \circ g^{(1)}, ..., f^{(T)} \circ g^{(T)}) \text{ from } \sigma_{\text{ini}} \text{ to } \sigma_{\text{tar}}$ $\forall f^{(t)} \circ g^{(t)} \text{ is o(1)-close to satisfying asgmt. of } C_e$

 $C_e(f \circ g) = 1 \Leftrightarrow$

 $\Psi_{tor} \coloneqq (G, R)$

• f & g are $\frac{1}{4}$ -close to Had(·)

• $\Delta(f, \text{Had}(\mathbf{a})) \leq \frac{1}{4} \& \Delta(g, \text{Had}(\mathbf{\beta})) \leq \frac{1}{4}$

Our solution

Reconfigurability of Hadamard codes

```
\forall \alpha \neq \beta \in \mathbb{F}_2^n \quad \exists \mathbf{f} = (\mathbf{f}^{(1)}, ..., \mathbf{f}^{(T)}) \text{ from Had}(\alpha) \text{ to Had}(\beta) \text{ s.t.}
```

- min $\{ \Delta(f^{(t)}, \text{Had}(\mathbf{a})), \Delta(f^{(t)}, \text{Had}(\mathbf{\beta})) \} \leq \frac{1}{4}$
- $\forall \mathbf{y} \neq \mathbf{\alpha}, \mathbf{\beta}$ $\Delta(\mathbf{f}^{(t)}, \mathsf{Had}(\mathbf{y})) > \frac{1}{4} + \delta_0 \quad (\delta_0 = 0.01)$

Can reconfigure btw. Hadamard codewords without getting too close to the other codewords

Conclusions

- Alphabet reduction for 2-CSP Reconf. à la [Dinur. J. ACM 2007]
- Make gap ε & alphabet size W oblivious to parameters of PCRPs [Hirahara-Ohsaka. STOC 2024] [Karthik C. S.-Manurangsi. 2023]
- Optimal trade-off btw. ε, q, W?
- Other applications of Reconfigurability of Hadamard codes?

