CS 228 : Logic in Computer Science

Krishna. S

▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?

- ▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?
- ▶ $Tr(TS) \subseteq L(\varphi)$ iff $Tr(TS) \cap \overline{L(\varphi)} = \emptyset$

- ▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?
- ▶ $Tr(TS) \subseteq L(\varphi)$ iff $Tr(TS) \cap \overline{L(\varphi)} = \emptyset$
- First construct NBA $A_{\neg \varphi}$ for $\neg \varphi$ (this is a blackbox now)

- ▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?
- ▶ $Tr(TS) \subseteq L(\varphi)$ iff $Tr(TS) \cap \overline{L(\varphi)} = \emptyset$
- First construct NBA $A_{\neg \varphi}$ for $\neg \varphi$ (this is a blackbox now)
- ▶ Construct product of TS and $A_{\neg \omega}$, obtaining a new TS, say TS'

- ▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?
- ▶ $Tr(TS) \subseteq L(\varphi)$ iff $Tr(TS) \cap \overline{L(\varphi)} = \emptyset$
- First construct NBA $A_{\neg \varphi}$ for $\neg \varphi$ (this is a blackbox now)
- ▶ Construct product of TS and $A_{\neg \varphi}$, obtaining a new TS, say TS'
- ▶ Check some very simple property on TS', to check $TS \models \varphi$.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

Product of TS and NBA

Given TS = (S, Act, I, AP, L) and $A = (Q, 2^{AP}, \delta, Q_0, G)$ NBA. Define $TS \otimes A = (S \times Q, Act, I', AP', L')$ such that

- ▶ $I' = \{(s_0, q) \mid s_0 \in I \text{ and } \exists q_0 \in Q_0, q_0 \stackrel{L(s_0)}{\to} q\}$
- ▶ $AP' = Q, L' : S \times Q \rightarrow 2^Q$ such that $L'((s, q)) = \{q\}$
- ▶ If $s \stackrel{\alpha}{\to} t$ and $q \stackrel{L(t)}{\to} p$, then $(s, q) \stackrel{\alpha}{\to} (t, p)$

Persistence Properties

Let η be a propositional logic formula over AP. A persistence property P_{pers} has the form $\Diamond \Box \eta$. How will you check a persistence property on a TS?

- ▶ For example, $TS \nvDash \Diamond \Box (a \lor b)$
- ▶ For example, $TS \models \Diamond \Box (a \lor (a \to b))$

Persistence Properties

Let η be a propositional logic formula over AP. A persistence property P_{pers} has the form $\Diamond \Box \eta$. How will you check a persistence property on a TS?

- ▶ For example, $TS \nvDash \Diamond \Box (a \lor b)$
- ▶ For example, $TS \models \Diamond \Box (a \lor (a \to b))$
- ► $TS \nvDash P_{pers}$ iff there is a reachable cycle in the TS containing a state with a label which satisfies $\neg \eta$.

- ▶ Given *TS* and LTL formula φ . Does *TS* $\models \varphi$?
- ▶ Construct $A_{\neg \varphi}$, and let g_1, \ldots, g_n be the good states in $A_{\neg \varphi}$.
- ▶ Build $TS' = TS \otimes A_{\neg \varphi}$.
- ▶ The labels of TS' are the state names of $A_{\neg \varphi}$.
- ▶ Check if $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n)$.

- ▶ Given *TS* and LTL formula φ . Does *TS* $\models \varphi$?
- ▶ Construct $A_{\neg \varphi}$, and let g_1, \ldots, g_n be the good states in $A_{\neg \varphi}$.
- ▶ Build $TS' = TS \otimes A_{\neg \varphi}$.
- ▶ The labels of TS' are the state names of $A_{\neg \varphi}$.
- ▶ Check if $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n)$.

ModelChecking LTL in TS = Check Persistence in TS'

The following are equivalent.

- $ightharpoonup TS \models \varphi$
- ▶ $Tr(TS) \cap L(A_{\neg \varphi}) = \emptyset$
- ▶ $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n).$