3-3 최단 경로 알고리즘

강의 요약

01

Queue (큐)

FIFO

02

BFS

- Queue
- 시간 복잡도: O(V+E)
- 공간 복잡도: O(V)
- 목표 노드가 시작점 근처에 있을 때
- 가중치가 모두 동일할 경우 최단 경로 탐색 가능

03

Stack (스택)

LIFO

04

DFS

- Stack (LIFO) 사용
- 시간 복잡도: O(V+E
- 공간 복잡도: O(V) 일반적으로 BFS보다 메모리 사용량이 낮음
- 일반적으로 최단 경로를 보장하지 않음

그래프 탐색 알고리즘의 필요성

최단 경로 탐색의 기초 설명

특징

- Priority Queue 사용
- 가중치가 양수인 경우 항상 최단경로를 찾을 수 있음
- 시간 복잡도: O((V+E) log V)
- 공간 복잡도: O(V+E)

Node	Dist.	Pred.
V1	0	
V10	22	V8
V2	1	V1
V3	2	V1
V4	4	V2
V5	5	V2
V6	7	V3
V7	8	V3
V8	11	V4
V9	16	V6

다익스트라 알고리즘 (Dijkstra Algorithm)

수도 코드 (pseudo code)

다익스트라 알고리즘 (Dijkstra Algorithm)

수도 코드 (pseudo code)


```
import heapq
def dijkstra(graph, source):
   dist = {node: float('inf') for node in graph}
   prev = {node: None for node in graph}
   dist[source] = 0
    pq = [(0, source)]
   while pg:
        current dist, u = heapq.heappop(pq)
        if current dist > dist[u]:
            continue
        for v, weight in graph[u].items():
            new dist = current dist + weight
            if new dist < dist[v]:</pre>
                dist[v] = new dist
                prev[v] = u
                heapq.heappush(pq, (new dist, v))
    return dist, prev
```


휴리스틱 (Heuristic)

- 목표 지점까지의 거리를 근사
- Admissible: 실제 최단 경로 비용보다 과대평가(overestimate) 하지 않아야 함.

$$h(n) \leq$$
 실제 최단 거리 $(n o \mathrm{goal})$

● Consistency: 휴리스틱에 의해 선택된 노드는 실제로 목표 지점에 가까워지고 있어야 함.

$$h(n) \leq w(n,m) + h(m)$$

● 예시: Manhattan Distance

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	00	1.0	00	
V3	00	1.0	00	
V4	00	0.8	00	
V5	00	0.5	00	
V6	00	0.5	00	
V7	00	0.8	00	
V8	00	0.4	00	
V9	00	0.4	00	

V1 V10 V2	g-score 0.0 ∞	1.6 0.0	f-score 1.6 ∞	Parent
V10	00	0.0		
\vdash			00	
V2	00	1.0		
			00	
V3	00	1.0	00	
V4	00	0.8	00	
V5	80	0.5	00	
V6	00	0.5	00	
V7	00	0.8	00	
V8	00	0.4	80	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	00	1.0	00	
V4	00	0.8	00	
V5	00	0.5	00	
V6	00	0.5	00	
V7	00	0.8	00	
V8	00	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
Vl	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	00	0.8	00	
V5	00	0.5	00	
V6	00	0.5	00	
V7	00	0.8	00	
V8	00	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	00	0.8	00	
V5	8	0.5	00	
V6	00	0.5	00	
V7	00	0.8	00	
V8	80	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
Vl	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	8	0.5	00	
V6	00	0.5	00	
V7	00	0.8	00	
V8	8	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
Vl	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	00	0.5	00	
V7	00	0.8	00	
V8	80	0.4	00	
V9	80	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	00	0.5	00	
V7	00	0.8	00	
V8	00	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	00	0.8	00	
V8	80	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	80	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	80	0.4	00	
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	00	0.4	00	

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	00	0.4	00	

g-score	h-score	f-score	Parent
0.0	1.6	1.6	
00	0.0	00	
1.0	1.0	2.0	V1
2.0	1.0	3.0	V1
4.0	0.8	4.8	V2
5.0	0.5	5.5	V2
7.0	0.5	7.5	V3
8.0	0.8	8.8	V3
11.0	0.4	11.4	V4
00	0.4	00	
	0.0 1.0 2.0 4.0 5.0 7.0 8.0 11.0	0.0 1.6 ∞ 0.0 1.0 1.0 2.0 1.0 4.0 0.8 5.0 0.5 7.0 0.5 8.0 0.8 11.0 0.4	0.0 1.6 1.6 ∞ 0.0 ∞ 1.0 1.0 2.0 2.0 1.0 3.0 4.0 0.8 4.8 5.0 0.5 5.5 7.0 0.5 7.5 8.0 0.8 8.8 11.0 0.4 11.4

$\overline{}$				
Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

$\overline{}$				
Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	00	0.0	00	
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

$\overline{}$				
Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

특징

- Priority Queue 사용
- 가중치가 양수인 경우 항상 최단경로를 찾을 수 있음
- 시간 복잡도와 공간 복잡도가 휴리스틱의 성능에 따라서 크게 달라짐

Node	g-score	h-score	f-score	Parent
V1	0.0	1.6	1.6	
V10	22.0	0.0	22.0	V8
V2	1.0	1.0	2.0	V1
V3	2.0	1.0	3.0	V1
V4	4.0	0.8	4.8	V2
V5	5.0	0.5	5.5	V2
V6	7.0	0.5	7.5	V3
V7	8.0	0.8	8.8	V3
V8	11.0	0.4	11.4	V4
V9	16.0	0.4	16.4	V6

수도 코드 (pseudo code)

수도 코드 (pseudo code)


```
def astar(G, start, goal, h):
    open set = {start}
    closed set = set()
               = {v: float('inf') for v in G.nodes()}
    g score
               = {v: float('inf') for v in G.nodes()}
    f score
               = {}
    parent
    g score[start] = 0
    f score[start] = h(start)
    while open set:
        current = min(open set, key=lambda v: f score[v])
        if current == goal:
            return reconstruct_path(parent, current)
        open set.remove(current)
        closed set.add(current)
        for neighbor in G.neighbors(current):
            if neighbor in closed set:
                continue
            cost = G[current][neighbor].get('weight', 1)
            tentative g = g score[current] + cost
            if tentative g < g score[neighbor]:</pre>
                parent[neighbor]
                                    = current
                g score[neighbor] = tentative g
                f score[neighbor] = tentative g + h(neighbor)
                if neighbor not in open set:
                    open set.add(neighbor)
    return None
```

```
def reconstruct_path(parent, node):
    path = [node]
    while node in parent:
        node = parent[node]
        path.append(node)
    return path[::-1]
```

Dijkstra vs. A*

Dijkstra Algorithm

- Priority Queue (FIFO) 사용
- 시간 복잡도: O((V+E) log V)
- 공간 복잡도: O(V+E)
- 가중치가 양수인 경우 항상 최단경로를 찾을수 있음

A* Algorithm

- Priority Queue (FIFO) 사용
- 가중치가 양수인 경우 항상 최단경로를 찾을 수 있음
- 시간 복잡도와 공간 복잡도가 휴리스틱의 성능에 따라서 크게 달라짐

강의 요약

01

Priority Queue 02

Dijkstra Algorithm 03

휴리스틱 (Heuristic)

Admissible

Consistency

04

A* Algorithm

