Income Qualification Project

DESCRIPTION Identify the level of income qualification needed for the families in Latin America.

Problem Statement Scenario: Many social programs have a hard time ensuring that the right people are given enough aid. It's tricky when a program focuses on the poorest segment of the population. This segment of the population can't provide the necessary income and expense records to prove that they qualify.

In Latin America, a popular method called Proxy Means Test (PMT) uses an algorithm to verify income qualification. With PMT, agencies use a model that considers a family's observable household attributes like the material of their walls and ceiling or the assets found in their homes to classify them and predict their level of need.

While this is an improvement, accuracy remains a problem as the region's population grows and poverty declines.

The Inter-American Development Bank (IDB) believes that new methods beyond traditional econometrics, based on a dataset of Costa Rican household characteristics, might help improve PMT's performance.

```
In [1]: # Importing required Libraries
   import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split, cross_val_score
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

In [2]: # Loading test and train data
   train = pd.read_csv('income_qualification_data/train.csv')
   test = pd.read_csv('income_qualification_data/test.csv')
   print(train.shape, test.shape)
   (9557, 143) (23856, 142)
```

Identifying the output variable

```
In [3]: print("Output variable is:")
for col in train.columns:
    if col not in test.columns:
        print(col)

Output variable is:
Target
```

Understanding the type of data

```
In [4]: train.dtypes.unique()
Out[4]: array([dtype('0'), dtype('float64'), dtype('int64')], dtype=object)
```

```
In [5]:
         obj_cols = []
         for col in train.columns:
             if train[col].dtype == '0':
                 obj_cols.append(col)
         obj_cols
        ['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa']
Out[5]:
In [6]: train[obj_cols]
                              idhogar dependency edjefe edjefa
Out[6]:
                        ld
            0 ID_279628684
                            21eb7fcc1
                                                      10
                                              no
                                                            no
            1 ID_f29eb3ddd 0e5d7a658
                                                      12
                                                            no
            2 ID_68de51c94 2c7317ea8
                                                8
                                                            11
                                                     no
            3 ID_d671db89c 2b58d945f
                                              yes
                                                            no
            4 ID_d56d6f5f5 2b58d945f
                                                      11
                                              yes
                                                            no
         9552 ID_d45ae367d d6c086aa3
                                              .25
                                                       9
                                                            no
         9553 ID_c94744e07
                            d6c086aa3
                                              .25
                                                            no
         9554 ID_85fc658f8
                            d6c086aa3
                                              .25
                                                       9
                                                            no
         9555 ID_ced540c61
                            d6c086aa3
                                              .25
         9556 ID_a38c64491 d6c086aa3
                                              .25
                                                       9
                                                            no
```

9557 rows × 5 columns

Checking if there are any biases in the dataset

```
In [7]: plt.title("Distribution of target variables")
    train['Target'].hist()
# Viewing the value counts in the target data
    train['Target'].value_counts()
Out[7]: 4 5996
2 1597
3 1209
1 755
Name: Target, dtype: int64
```


Check whether all members of the house have the same poverty level.

	Id	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	•••	SQ
283	ID_17d9dcd44	60000.0	0	3	0	1	0	0	NaN	0		
290	ID_606ed140f	NaN	0	3	0	1	1	0	NaN	0		
322	ID_dab0d86a2	160000.0	0	6	0	1	1	0	NaN	0		
323	ID_6e8c57bc1	160000.0	0	6	0	1	1	0	NaN	0		
410	ID_0f28c8bfa	180000.0	0	7	0	1	1	0	NaN	0		
•••									•••			
9371	ID_938d043f0	NaN	0	4	0	1	1	0	NaN	1		
9372	ID_3f735f7fe	NaN	0	4	0	1	1	0	NaN	1		
9475	ID_d4f56f88a	0.0	0	4	0	1	1	0	NaN	1		
9476	ID_2aa25ef1f	0.0	0	4	0	1	1	0	NaN	1		
9536	ID_d20bd7576	NaN	0	4	0	1	0	0	NaN	1		

Checking if there is a house without a family head

```
In [9]: train['parentesco1'].value_counts()
Out[9]: 0 6584
1 2973
Name: parentesco1, dtype: int64

In [10]: with_family_head = train['idhogar'][train['parentesco1']==1]
    without_family_head = train['idhogar'][train['parentesco1']!=1]
    hhold_nohead = train['idhogar'][train['idhogar'].isin(without_family_head) & ~train hhold_nohead
```

```
4935
                 09b195e7a
Out[10]:
         4975
                 896fe6d3e
         5391
                 61c10e099
         5396
                 374ca5a19
         6443
                 bfd5067c2
         6444
                 bfd5067c2
         7086
                 1367ab31d
         7438
                 6b1b2405f
         7439
                 6b1b2405f
         7440
                 6b1b2405f
         7461
                 f2bfa75c4
         7462
                f2bfa75c4
         7463
                f2bfa75c4
         7705
                 03c6bdf85
         7706
                 03c6bdf85
         7756
                 ad687ad89
         7757
                 b1f4d89d7
         8431
                 c0c8a5013
         8432
                 c0c8a5013
         8433
                 c0c8a5013
         8636
                 a0812ef17
         9489
                 d363d9183
         9497
                 1bc617b23
         Name: idhogar, dtype: object
```

Set poverty level of the members and head of the house within a family

```
In [11]: poverty_lvl_head = poverty_lvl[['idhogar', 'Target']][poverty_lvl['parentesco1']==:
    poverty_lvl_head
```

	idhogar	Target	
412	5c3f7725d	3	
604	daafc1281	3	
1374	bcaa2e2f5	4	
1599	efd3aec61	2	
1692	3c6973219	4	
3250	a20ff33ba	2	
3498	6bcf799cf	1	
3989	d9b1558b5	1	
4510	8bb6da3c1	3	
4813	2cb443214	3	
5068	694a0cbf4	2	
5511	15a891635	1	
5538	6a389f3de	1	
6067	bd82509d1	2	
6332	46af47063	1	
6427	6c543442a	2	
6549	17fb04a62	2	
6592	513adb616	3	
6635	dfb966eec	1	
6693	30a70901d	2	
6825	7c57f8237	1	
7314	54118d5d9	3	
7346	0f3e65c83	1	
7481	03f4e5f4d	1	
7523	309fb7246	3	
7612	564eab113	1	
7627	8242a51ec	2	
7670	a94a45642	2	
8260	55a662731	2	
8322	e17b252ed	3	
8551	d64524b6b	4	
8634	2c9872b82	1	
8795	f94589d38	1	
9026	654ef7612	2	
9104	cc971b690	2	

```
In [12]: for i in poverty_lvl_head.index:
              for ix in train.index:
                   if train.at[ix, 'idhogar'] == poverty_lvl_head.at[i, 'idhogar']:
                       train.at[ix,'Target'] = poverty_lvl_head.at[i, 'Target']
          train
                          ld
                                                      hacapo v14a refrig v18q v18q1 r4h1
                                                                                                 SQI
Out[12]:
                                 v2a1 hacdor
                                              rooms
             0 ID_279628684
                             190000.0
                                            0
                                                                        1
                                                                                   NaN
                                                   3
                                                           0
                                                                 1
                                                                              0
                                                                                           0
             1 ID_f29eb3ddd 135000.0
                                            0
                                                           0
                                                                        1
                                                                              1
                                                                                    1.0
                                                                                           0
             2 ID_68de51c94
                                            0
                                                   8
                                                           0
                                                                        1
                                                                              0
                                 NaN
                                                                 1
                                                                                   NaN
                                                                                           0
                                                   5
             3 ID_d671db89c 180000.0
                                            0
                                                           0
                                                                                    1.0
                                                                                           0
                 ID_d56d6f5f5 180000.0
                                            0
                                                   5
                                                           0
                                                                 1
                                                                        1
                                                                              1
                                                                                    1.0
                                                                                           0
          9552 ID d45ae367d
                               0.00008
                                            0
                                                   6
                                                           0
                                                                        1
                                                                              0
                                                                                   NaN
                                                                                           0
```

9557 rows × 143 columns

9556 ID_a38c64491

ID_c94744e07

ID_85fc658f8

ID_ced540c61

9553

9554

9555

Count how many null values are existing in columns

0

0

0

0

6

6

6

6

0

0

0

0

1

1

0.00008

0.00008

0.00008

0.00008

1

1

1

1

0

NaN

NaN

NaN

NaN

0

0

0

```
train.isnull().sum().sort_values(ascending=False)[:10]
In [13]:
                          7928
         rez_esc
Out[13]:
                          7342
         v18q1
         v2a1
                          6860
         SQBmeaned
                             5
                             5
         meaneduc
                             0
         hogar_adul
                             0
         parentesco10
                             0
         parentesco11
                             0
                             0
         parentesco12
         dtype: int64
         # Dropping columns with more null values
In [14]:
         train_new = train.drop(['rez_esc', 'v18q1', 'v2a1'], axis=1)
         train_new.dropna(inplace=True)
         train_new.isnull().sum().sort_values(ascending=False)[:10]
```

```
0
         Ιd
Out[14]:
         hogar_total
                          0
         parentesco11
                          0
         parentesco12
                          0
          idhogar
         hogar_nin
                          0
         hogar_adul
         hogar mayor
                          0
         dependency
          parentesco9
                          0
         dtype: int64
In [15]: train_new['Target'].isna().sum().any()
         False
Out[15]:
In [16]:
          # Drop unnecessary columns
          train_new = train_new.drop(columns=['Id', 'idhogar', 'dependency', 'edjefe', 'edjefe')
          train new.shape
         (9552, 135)
Out[16]:
```

There are no null values in the dataset

Predict the accuracy using random forest classifier

```
In [17]: X = train_new.drop('Target', axis=1)
         y = train_new['Target']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st
         print(f'Train X {X_train.shape}, Train y {y_train.shape}')
         print(f'Test X {X_test.shape}, Test y {y_test.shape}')
         Train X (7641, 134), Train y (7641,)
         Test X (1911, 134), Test y (1911,)
         rfc_model = RandomForestClassifier(n_estimators=15, criterion='entropy', max_depth
In [18]:
         rfc_model.fit(X_train, y_train)
Out[18]:
                                     RandomForestClassifier
         RandomForestClassifier(criterion='entropy', max_depth=9, n_estimators=15,
                                 random_state=10)
         print("Training results:\n")
In [19]:
         y_pred = rfc_model.predict(X_train)
         accuracy = accuracy_score(y_train, y_pred)
         print("Model accuracy", accuracy)
         print(classification report(y train, y pred))
```

Training results:

```
Model accuracy 0.806831566548881
            precision recall f1-score
                                      support
              0.990.520.900.55
                                 0.68
                                          624
         1
         2
                               0.69
                                        1250
                       0.37
1.00
         3
              0.99
                                 0.54
                                         958
              0.77
                                 0.87
                                         4809
   accuracy
                                 0.81
                                          7641
             0.91 0.61
0.84 0.81
  macro avg
                                 0.69
                                          7641
weighted avg
                                 0.78
                                         7641
```

```
In [20]: print("Testing results:\n")
y_pred = rfc_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Model accuracy", accuracy)
print(classification_report(y_test, y_pred))
```

Testing results:

Model accuracy 0.7514390371533228

	precision	recall	f1-score	support
1	0.97	0.39	0.55	150
2	0.82	0.42	0.55	327
3	0.97	0.25	0.40	248
4	0.73	0.99	0.84	1186
accuracy			0.75	1911
macro avg	0.87	0.51	0.59	1911
weighted avg	0.79	0.75	0.71	1911

Check the accuracy using random forest with cross-validation

```
In [21]: cv_score = cross_val_score(rfc_model, X, y,scoring='accuracy', cv=5)
    print(cv_score)
    print("Scores mean", cv_score.mean())

[0.66248038     0.64050235     0.64450262     0.58376963     0.60052356]
```

Scores mean 0.6263557086144969