Modular form 1. origin of definition of modular form

- 1. EC
- 2 moduli space (from cplx points of view)
- 3. modular form

https://www.mathi.uni-heidelberg.de/~otmar/diplom/williams.pdf

1.EC

- Ex. 1. Discuss O. Discuss addition structure and their compatabilities.
 - 2. Some computations of 8,8'
 - 3. Describe rational fct field on EC.

2 moduli space (from cplx points of view)

Origin of H/SL2(Z)

Lemma. C/A = C/A' ⇔ A' = Zo A ∃ Zo ∈ C* Proof. [WWL, 命题 3.8·3, 练习 3.8·4]

Reduced to: Classify lattices (up to oplx scalar)

图 2.1 构造模空间/模形式的过程

 $f(\gamma \tau) = (c\tau + d)^k f(\tau)$ $\forall \gamma = (ab) \in \Gamma$ e.p. $f(\tau + 1) = f(\tau)$ 2) Write $f(\tau) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n \tau}$, then $a_n = 0$ for n < 0By $cp \mid x$ analysis, this condition is equivalent to $\exists C > 0$ s.t $\{|f(\tau)| \mid I_{m\tau} > C\}$ is bounded.

Mr(r) = Spitzenform = Spitzenform

Ex. 1. View modular form as fcts on the space of lattices 2. Eisenstein fct. Space $G_k(r) := \int_{\mathbb{R}^2} \frac{1}{(m_k + 2)^k} \frac{1}{(m_k + 2)^k}$ We use

We use $G_k(\Delta) := \sum_{\substack{k \in \Lambda \\ 2 \in K}} \frac{1}{2^k}$ instead

(In [Za] $G_k(\Delta) := \frac{1}{2} \sum_{\substack{k \in \Lambda \\ 2 \in K}} \frac{1}{2^k}$)

—— Next time

为方便起晃, 取 $E_k:=G_k/(2\zeta(k))$ 使得 Fourier 常数项化为 1. 可以证明, $M_*(SL_2(\mathbb{Z}))\cong \mathbb{C}[E_4,E_6]$, 且 E_4,E_6 代数无关.

3.
$$\triangle$$
 and j
4. $M_*(SL_*(Z)) = \mathbb{C}[E_*, E_6]$