Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k_{5}+2k^{3}r_{5}}$ $\frac{i(6k^{2}r_{5}+t_{1})}{\sqrt{2}k(1+2k^{2})^{2}r_{5}t_{1}}$		0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0		0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6k^2 r_5 + t_1}{2(k+2k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2}\;(k^2r_5+2k^4r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_1^{\#1}_{+}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$_{1}^{#1}+^{\alpha\beta}$	$_{1}^{\#2}+^{\alpha\beta}$	$_{L}^{\sharp 1}+^{\alpha eta}$	$\sigma_{1}^{\#1} + \alpha$	$\sigma_{1}^{\#2} + \alpha$	$t_1^{\#1} + \alpha$	$\tau_1^{\#2} + \alpha$

		$\sigma_{2}^{\#1}$	αβ	$ au_2^{\#1}$	αβ	$\sigma_{2}^{\#1}$	αβχ		μ	$y_{2}^{\#1}$	$_{\rm B}f_{\rm 2}^{\rm \#}$	1 + αβ	$\omega_{2}^{\#1}$ α_{2}	ßv	-			
$\sigma_{2}^{\#1}$	$\dagger^{\alpha\beta}$	2 (1+2 k ²	$\frac{1}{(t_1)^2 t_1}$	$-\frac{2i \sqrt{1+2k}}{(1+2k)}$	$\frac{\sqrt{2} k}{(2)^2 t_1}$	0		$\omega_{2}^{#1} + \alpha_{2}^{\alpha_{1}}$		$\frac{t_1}{2}$		$\frac{kt_1}{\sqrt{2}}$	0		$\sigma_{0}^{\#1}$	0	0	0
$ au_{2}^{\#1}$	$\dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}}{(1+2k^2)^2}$	$\frac{\overline{2} k}{(2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2}$	$\frac{2}{(2)^2}$	0		$f_{2}^{#1} \dagger^{\alpha_{i}}$	β	$\frac{i k t_1}{\sqrt{2}}$		t_1	0	(τ [#] ²	0	0	0
$\sigma_2^{\#1}$.	_	0	, ,	0		$\frac{2}{t_1}$		$\omega_{2}^{\sharp_{1}}\dagger^{lphaeta_{2}}$		0		0	<u>t</u> 1 2		τ ₀ +	0	0	0
2	. F					t ₁		2 1					2		σ_{0}^{\sharp}	0	0	0
$f_{1^-}^{\#2}{}_{lpha}$	0	0	0	<u>ikt1</u> 3	$\sqrt{2} kt_1$	0	$\frac{2k^2t_1}{3}$		ω) ^{#1}	c#1	$f_{0+}^{#2}$	$\omega_0^{\#1}$	L		$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_{0}^{#2} +$
ā					1 <u>i</u> i			$\omega_{0^+}^{\sharp 1}$		0	0	0	0					
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0	$f_{0}^{#1}$		0	0	0	0					
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	$f_{0}^{#2}$ † $\omega_{0}^{#1}$ †	t	0	0	0	0 k ² r ₂ -	t_1				
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$	nts/gauge generators	icities									
$\omega_{1}^{\#2}_{\alpha\beta} \ f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	nge ge	Multiplicities	1	1	1	3	3	<u>س</u>	L	, ,) T
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	nts/gaı					۷ == ۲		0 ::	0 -		
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	Source constrair	rreps				$2ik \ \sigma_{1}^{\#2}\alpha$ =	0	$+ik\sigma_1^{\#2}\alpha\beta$			ı Otal COMStraimts:
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#_1} +^\alpha$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{#2} + \alpha$	Source	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	+	$t_1^{\#1}\alpha$ ==		$_{\tau^{\#1}\alpha\beta}$,2+ Total C	ı oral c

Massive and massless spectra

?		
?	Quadratic pole	2
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{r_5 t_1^2} > 0$
?	Polarisations:	2
?		

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$