Développement. L'équation de Bessel

On considère l'équation de Bessel

$$xy'' + y' + xy = 0. (1)$$

Proposition 1. La fonction

$$g: \begin{vmatrix} \mathbf{R} \longrightarrow \mathbf{R}, \\ x \longmapsto \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta \end{vmatrix}$$

est une solution de l'équation (1).

Preuve Le théorème de convergence dominée assure que la fonction g est de classe \mathscr{C}^{∞} et que, pour tout réel $x \in \mathbb{R}$, ses dérivées vérifient

$$g'(x) = -\frac{1}{\pi} \int_0^{\pi} \sin \theta \sin(x \sin \theta) d\theta \qquad \text{et} \qquad g'''(x) = -\frac{1}{\pi} \int_0^{\pi} \sin^2 \theta \cos(x \sin \theta) d\theta.$$

Pour tout réel $x \in \mathbf{R}$, on obtient alors

$$xg''(x) + g'(x) + xg(x) = \frac{1}{\pi} \int_0^{\pi} x(1 - \sin^2 \theta) \cos(x \sin \theta) - \sin \theta \sin(x \sin \theta) d\theta$$
$$= \frac{1}{\pi} \int_0^{\pi} x \cos^2 \theta \cos(x \sin \theta) - \sin \theta \sin(x \sin \theta) d\theta$$
$$= \frac{1}{\pi} [\cos \theta \sin(x \cos \theta)]_0^{\pi} = 0.$$

Proposition 2. Il existe une unique solution f_0 de l'équation (1) qui est développable en série entière telle que $f_0(0) = 1$. De plus, elle est définit sur toute la droite \mathbf{R} .

Preuve Soit $f: I \longrightarrow \mathbf{R}$ une solution développable en série entière telle que f(0) = 1. Il existe alors un réel R > 0 avec $]-R, R[\subset I$ et une suite réelle $(a_n)_{n \in \mathbf{N}}$ tels que

$$\forall x \in]-R, R[, \qquad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

En dérivant, pour tout réel $x \in \mathbf{R}$, on obtient

$$xf(x) = \sum_{n=1}^{+\infty} a_{n-1}x^n$$
$$f'(x) = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n,$$
$$xf''(x) = \sum_{n=1}^{+\infty} n(n+1)a_{n+1}x^n.$$

Comme la fonction f vérifie l'équation (1), en identifiant les termes dans la série entière, on peut écrire les relations

$$a_1 = 0a_{n-1} + (n+1)^2 a_{n+1} = 0, \quad n \geqslant 1.$$

Une récurrent immédiate conclut que

$$a_{2n+1} = 0$$
 et $a_{2n} = \frac{(-1)^n}{4^n (n!)^2} a_0, \quad n \geqslant 0.$

Comme f(0) = 1, on en déduit $a_0 = 1$. D'où

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^n (n!)^2} x^n, \qquad x \in]-R, R[.$$
 (2)

Ceci donne l'unicité. Réciproquement, cette fonction avec $R = +\infty$ est une solution de l'équation (1) ce qui conclut l'existence.

Proposition 3. Soit $f:]0, a[\longrightarrow \mathbf{R}$ une solution de l'équation (1). La famille (f, f_0) est libre si et seulement si la fonction f n'est pas bornée au voisinage de l'origine.

Preuve La fonction f_0 étant continue, elle est bornée au voisinage de l'origine et le sens réciproque s'en déduit. Réciproquement, on suppose que la famille (f, f_0) est libre. Sur l'intervalle]0, a[, l'équation (1) se réécrit sous la forme

$$\begin{pmatrix} y' \\ y'' \end{pmatrix} = A(x) \begin{pmatrix} y \\ y' \end{pmatrix} \quad \text{avec} \quad A(x) \coloneqq \begin{pmatrix} 0 & 1 \\ -1 & -1/x \end{pmatrix}.$$

Comme $\operatorname{Tr} A(x) = -1/x$, le wronskien $w \colon [0, a] \longrightarrow \mathbf{R}$ de la famille (f, f_0) vérifie w' = -w/x sur [0, a[.

Il existe donc une une constante C > 0 telle que

$$w(x) = f(x)f'_0(x) - f'(x)f_0(x) = C/x, \qquad x \in]0, a[.$$
(3)

Comme la famille (f, f_0) est libre, c'est une base de l'ensemble des solutions. On en déduit que $C \neq 0$.

Raisonnons par l'absurde et supposons que la fonction f est bornée au voisinage de l'origine. Lorsque $x \longrightarrow 0^+$, l'expression (2) permet d'écrire

$$f_0(x) \longrightarrow 1$$
 et $f'_0(x) \longrightarrow \ell \in \mathbf{R}$.

Avec l'égalité (3), on en déduit $f'(x) \sim -C/x$. Maintenant, soit $b \in [0, a]$. Comme la fonction $x \longmapsto -C/x$ est de signe constant sur l'intervalle]0, b] et n'y étant pas intégrable, on peut écrire

$$f(x) - f(b) = \int_{b}^{x} f'(t) dt \sim \int_{b}^{x} -\frac{C}{t} dt = -C(\ln x - \ln b).$$

D'où $f(x) \longrightarrow +\infty$ ce qui contredit notre hypothèse absurde.

Corollaire 4. Pour tout réel $x \in \mathbf{R}$, on a

$$\frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta = \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^n (n!)^2} x^n.$$

◁

Serge Francinou, Hervé Gianella et Serge Nicolas. Exercices de mathématiques. Oraux X-ENS. Analyse 4. Cassini, 2012.