Multiprocessing: scheduling

COSC 208, Introduction to Computer Systems, 2021-11-12

Outline

- · Scheduling processes
- · First In First Out (FIFO) scheduling
- Shortest Job First (SJF) scheduling
- Preemption
- Shortest Time-to-Completion First (STCF) scheduling
- Round Robin (RR) scheduling

Scheduling processes

- OS decides which process to run and for how long
- What factors should the OS consider when making these decisions?
 - Time for process to complete
 - Overhead of context switching
 - Fairness
 - User interaction
- For now, consider one of these metrics: turnaround time
 - \circ T_{turnaround} = T_{complete} T_{arrive}
- For now, assume a process starts and runs to completion—i.e., no I/O and no preemption

First In First Out (FIFO) scheduling

Process	Arrival time	Duration		
Α	0	15		
В	5	15		
С	10	15		

•	What is the average	turnaround	time for the	processes	usina FIFO?

• What happens if A's duration is 60?		
• What happens if C's duration is 60?		

• How can we change the schedule so the average turnaround time when A's duration is 60 is more like the average turnaround time when C's duration is 60?

Shortest Job First (SJF) scheduling

_	Process	Arrival time	Duration		
	Α	0	60		
	В	0	15		
	С	0	15		

• What is the average turnaround time for the above processes using SJF?

Process	Arrival time	Duration		
Α	0	60		
В	5	15		
С	10	15		

• What is the average turnaround time for the above processes using SJF?

• We're back to FIFO—What happened!? How can we fix this?

Preemption

- OS only regains control when a system call occurs—e.g., read/write file, yield
 - o Syscalls may occur infrequently, or never, due to program design, bugs, or malicious behavior
- How does an OS forcibly regain control?—set a timer that raises an interrupt
 - Interrupt causes a trap instruction to be executed
 - Interrupts can also be raised by devices—e.g., Network Interface Card (NIC)
- What must the OS do if it decides to run another process?—perform a context switch
 - Save the machine state associated with the process that was running—in particular, the contents of all registers are saved in the process's control structure
 - Restore the machine state associated with the process that should run—again, the contents of all registers are loaded from the process's control structure

Shortest Time-to-Completion First (STCF) scheduling

- · Allow preemption
- If a process arrives that has less computation remaining than the currently running process, then preempt the current process and run the new process
- Also known as Preemptive Shortest Job First (PSJF)

Process	Arrival time	Duration			
Α	0	60			
В	5	15			
С	10	15			

Now consider re	sponse time: T _{respon}	_{se} = T _{first_run} - T _{arrive}		
What is the ave	age response time fo	r the same processes	s using STCF scheduling	?
Now consider w	ait time: $T_{wait} = \sum (T_s)$	tart_run - T _{become_read}	_{dy})	

What major assumption have we made thus far that is impractical in a real system?

Round Robin (RR)

• Let each process run for a small amount of time, then switch to the next process; when you get to the last process, then start again with the first process and repeat

Process	Arrival time	Duration			
А	Just before 0				
В	Just before 5	15			
С	Just before 10	15			

• What is the average turnaround time and response time for the above processes assuming we let a process run for 5 seconds before switching processes?

- Average Turnaround =
- Average Response =
- Average Wait =
- In practice, there is a queue of processes that are in the ready state, resulting in the following schedule:

	Α	В	A	С	В	A	С	В	A	С			
0)	5	10	15	20	25	30	35	40	45	50		90

• Determine the schedule for the above process with a time quantum of 10.

- Average Turnaround =
- Average Response =
- Average Wait =
- What happens to average response time as we increase the time quantum?