Zadanie 3 (2012Z)

Oblicz prawdopodobieństwo, że rzucając n razy dwoma kostkami do gry uzyskamy wszystkie pary (i, i), gdzie $i \in \{1, 2, 3, 4, 5, 6\}$.

Zadanie 2 (2012P)

Niech $m \ge 1$. Zdefiniujmy ciąg:

$$a_0 = 1, \ a_{n+1} = \sum_{i=0}^m \left(\sum_{k_1, \dots, k_m : k_1 + k_2 + \dots + k_m = n} a_{k_1} a_{k_2} \dots a_{k_m} \right)$$

Niech $A_m(x)$ będzie funkcją tworzącą tego ciągu. Znajdź równanie, które spełnia $A_m(x)$.

Zadanie 4 (2011P)

Niech s(n) będzie liczba skończonych ciągów $(x_1, x_2, ...)$ liczb całkowitych dla których $2x_{i+1} \le x_i$ i $1 \le x_i \le n$. Podaj zależność rekurencyjną:

$$s(n) = s(n-1) + s(|n/2|), \ s(1) = 1$$

Pokaż, że funkcja tworząca ciągu s(n) spełnia równanie:

$$(1-t)S(t) = (1+t)S(t^2)$$

Zadanie 1 (2010P)

Niech $T(n) = \lceil \sqrt{n} \rceil T(\lceil \sqrt{n} \rceil) + n$ i T(1) = T(2) = 1. Znajdź funkcję różniczkowalną f(x), taką że $T(n) = \Theta(f(n))$. Odpowiedź uzasadnij.

Zadanie 1 (2009P)

Jak wiele liczb pierwszych z 1000 liczb naturalnych może być przedstawionych w postaci

$$\lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor + \dots$$

Zadanie 5 (2009P)

Dany jest ciąg t_n określony jak następuje

$$t_0 = t_1 = 1, \ t_n = 3t |n/2| + 7n$$

Wylicz funkcję F(x), dla której funkcja tworząca T(x) ciągu t_n spełnia zależność:

$$T(x) = 3(x+1)T(x^2) + F(x)$$

Zadanie 2 (2008P)

Przedstaw następującą sumę jako współczynnik dwumianowy:

$$\sum_{i_1=1}^{m} \sum_{i_2=1}^{i_1} \sum_{i_3=1}^{i_2} \dots \sum_{i_n=1}^{i_{n-1}} 1$$

Zadanie 4 (2008P)

Wylicz funkcję tworzącą ciągu a_n określonego wzorem:

$$a_0 = 0, a_n = \sum_{i=1}^{n} \frac{n-i}{i}$$

Zadanie 4 (2007P)

Niech $H_n = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}$. Oblicz sumę $\sum_{n=1}^{\infty} H_n 2^{-n}$.

Zadanie 3 (2003P)

Niech p_n i d_n będą odpowiednio liczbami wszystkich podziałów n i podziałów n na różne składniki. Niech P(x) i D(x) będą ich funkcjami tworzącymi. Pokaż, że $P(x) = D(x)P(x^2)$.

Zadanie 3 (2002P)

Podaj wzór zwarty na sumę $x + 2x^2 + 3x^3 + \ldots + nx^n$.

Zadanie 1 (2000Z)

Rozwiąż zależność rekurencyjną:

$$a_0 = a_1 = 0, \ a_n = \frac{a_{n-1} + a_{n-2} + 1}{2}$$

Zadanie 2 (2000Z)

Pokaż, że dla liczb Fibonacciego zachodzi

$$F_{n+1} = \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots$$

Zadanie 2 (1997Z)

Rozwiąż zależność rekurencyjną

$$a_0 = a_1 = 1, \ a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$

Zadanie 4 (2011Z)

Niech F(t) będzie funkcją tworzącą ciągu f_n , w którym $f_0 = 1$. Napisz wzór pozwalający wyliczyć wyrazy g_n ciągu, którego funkcją tworzącą jest $G(t) = \frac{1}{F(t)}$. Wzór ten powinien używać do wyliczenia g_n wartości f_i i wyrazów g_i dla i < n. Pokaż, że wyrazy f_n są całkowite, to g_n też są całkowite.

Zadanie 1 (2010Z)

Dla jakich α zadany przez warunek początkowy $a_0 = 1$ oraz równanie rekurencyjne

$$a_n = (\alpha^2 - 2\alpha + 2) a_{n-1} + \alpha^n + \left(\frac{1}{\alpha^2 - 2\alpha + \frac{5}{4}}\right)^n$$

spełnia warunek $a_n = O(2^n)$.

Zadanie 5 (2010Z)

Dla ustalonego m napisz funkcję tworzącą ciągu a_n określającego liczbę podziałów n na dokładnie m składników.

Zadanie 3 (2004Z)

Znajdź funkcję tworzącą ciągu $H_n = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}$.

Zadanie 4 (2004Z)

Podaj wzór zwarty na sumę $\sum_{i=1}^{n} (-1)^{k} k^{2}$.

Zadanie 1 (2004Z)

Pokaż, ze

$$\sum_{k=1}^{n} \frac{1}{k \log_2(k)} = \log 2 \log \log n + O(1)$$

Zadanie 1 (2013P)

Policz sumę

$$\sum_{k} k^2 \binom{n}{k} 3^{2k}$$

Zadanie 1 (2013Z)

Niech a_n oznacza liczbę sposobów na jakie można złożyć odcinek długości n z białych i czarnych odcinków o długości 2 i czerwonych, niebieskich i zielonych odcinków o długości 3. Podaj wzór zwarty na a_n .