SISTEMAS INFORMÁTICOS

UT6: CONEXIÓN DE SISTEMAS EN RED (PARTE 2)

Índice

- 1. Modelos y protocolos de red
- Comunicaciones a través de la red
- 3. Capa de aplicación
- 4. Capa de transporte
- 5. Capa de red y direccionamiento de red
- 6. Capa de enlace de datos
- 7. Capa física

Introducción y cálculos

- Una dirección IP es un conjunto de 32 bits agrupados en 4 octetos. Se representa por medio de notación decimal separada por puntos.
- Ejecutar: cmd → ipconfig

```
Dirección IPv4. . . . . . . . . . . . : 192.168.0.161
Máscara de subred . . . . . . . . . : 255.255.255.0
```

- Ejemplo de dirección IP: 192.168.0.161
- En binario: $11000000.10101000.00000000.10100001 \rightarrow 32$ bits
- Una dirección IP siempre va asociada a una máscara de subred.
- En binario: 1111111111111111111111111111000000000 \rightarrow 32 bits
- La máscara de subred permite conocer, por un lado, la dirección de la red donde se encuentra el host y, por otro lado, el número máximo de hosts que pueden unirse a esa red. Ejemplo de máscara de subred: 255.255.25.0

Dirección IP: 192.168.0.161 = 11000000.10101000.00000000.10100001

Máscara: 255.255.255.0 = 1111111111111111111111111100000000

• AND (Red): 192.168.0.0 = 11000000.10101000.00000000.00000000

La dirección 192.168.0.161 pertenece a la red: 192.168.0.0

Ejercicio: Calcular la red a la que pertenece vuestro PC

 La máscara de subred es un valor binario que sirve para delimitar la parte destinada a la red (definida por los valores 1) y la parte destinada a los host (definida por los valores 0)

• Ejemplo:	Direccion IP \rightarrow	192.168.1.98
	Máscara >	255.255.255.192
• 192.168.1.98	=	11000000.10101000.00000001.01100010
• 255.255.255.19	92 =	1111111111111111111111111111000000
• Red	=	11000000.10101000.00000001.01000000

11000000.10101000.00000001.01000000

Parte destinada a la red

Destinada a

Hosts

11000000.10101000.00000001.01000000

Parte destinada a la red

Destinada a

Hosts

Direcciones posibles:

11000000.10101000.00000001.01 00000	0 ← NO (Es la de	← NO (Es la de la red)		
11000000.10101000.00000001.01 00000	1 192.168.1.65			
11000000.10101000.00000001.01 00001	0 192.168.1.66			
11000000.10101000.00000001.01 00001	1 192.168.1.67	En total son:		
11000000.10101000.00000001.01 0001 0	0 192.168.1.68	62 host		
11000000.10101000.00000001.01 11111	0 192.168.1.126			
11000000.10101000.00000001.01 11111	1 ← NO (Es la de	l broadcast)		

 Ejercicio: Dada la dirección IP 192.168.1.98 y la máscara de subred siguiente 255.255.255.224, ¿Cuántos host como máximo podemos asociar a la red?

```
    192.168.1.98 = 11000000.10101000.00000001.01100010
    255.255.255.224 = 1111111111111111111111111111111100000
    Red = 11000000.10101000.00000001.01100000
```

```
11000000.10101000.00000001.01100000 ← NO (Es la de la red)

11000000.10101000.00000001.01100001 192.168.1.97

11000000.10101000.00000001.01100010 192.168.1.98 En total son:

... 30 host

11000000.10101000.00000001.01111111 ← NO (Es la del broadcast)
```

Conclusión:

Número de host por red = 2 bits de host - 2

- Ejercicio 1: $11000000.10101000.00000001.010000000 \rightarrow 2^6 2 = 62$
- Ejercicio 2: $11000000.10101000.00000001.011000000 \rightarrow 2^5 2 = 30$
- Ejercicio: Dada la dirección IP 192.168.1.98 y la máscara de subred siguiente 255.255.255.248, ¿Cuántos host como máximo podemos asociar a la red?
- ¿Y si la máscara de subred fuese 255.255.255.252, ¿Cuántos host como máximo podemos asociar a la red?

Clases de redes

- Redes de Clase A: Usan el primer octeto como red. La máscara de subred es del tipo 255.0.0.0
 - 2²⁴ 2 = 16777214 host
 - Direcciones: 0.0.0.0 127.255.255.255
- Redes de Clase B: Usan el primer y segundo octeto como red. La máscara de subred es del tipo 255.255.0.0
 - $2^{16} 2 = 65534$ host
 - Direcciones: 128.0.0.0 191.255.255.255
- Redes de Clase C: Usan el primer, el segundo y el tercer octeto como red.
 La máscara de subred es del tipo 255.255.255.0
 - $2^8 2 = 254$ host
 - Direcciones: 192.0.0.0 223.255.255.255

Clases de redes

 Redes de Clase D: Utilizado para los multicast. La máscara de subred es del tipo 255.255.255.255

Direcciones: 224.0.0.0 – 239.255.255.255

 Redes de Clase E: Utilizado para tema experimental. La máscara de subred es del tipo 255.255.255.255

Direcciones: 240.0.0.0 – 254.255.255.255

 NOTA: Las direcciones clase A desde 127.0.0.0 hasta 127.255.255.255 no pueden ser usadas ya que están reservadas para funciones de loopback y diagnostico

5. Capa de red y direccionamiento de red: Identificación de la Clase de Red

 Dirección 	Clase	• 119.18.45.0	
• 10.250.1.1		• 249.240.80.78	
• 150.10.15.0		• 199.155.77.56	
• 192.14.2.0		• 117.89.56.45	
• 148.17.9.1		• 215.45.45.0	
• 193.42.1.1		• 199.200.15.0	
• 126.8.156.0		• 95.0.21.90	
• 220.200.23.1		• 33.0.0.0	
• 230.230.45.58		• 158.98.80.0	
• 177.100.18.4		• 219.21.56.0	

- El protocolo RIP (Routing Information Protocol): Protocolo basado el algoritmo de vector de distancia o de Bellman-Ford que calcula la ruta más corta posible hasta el destino a partir del número de "saltos" o equipos intermedios que los paquetes IP deben atravesar.
 - RIP no altera los datagramas IP, los encamina basándose únicamente en el campo de dirección destino.
 - El límite máximo de saltos en RIP es de 15, de forma que al llegar a 16 se considera una ruta como inalcanzable o no deseable.
 - A diferencia de otros protocolos, RIP es un protocolo libre es decir que puede ser usado por diferentes routers y no únicamente por un solo propietario con uno como es el caso de EIGRP que es de Cisco Systems.
 - Su principal desventaja consiste en que para determinar la mejor métrica, únicamente toma en cuenta el número de saltos, descartando otros criterios (ancho de banda, congestión, carga, retardo, fiabilidad, etc.).

5. Capa de red: Protocolos (RIP)

Ejemplo de algoritmo de vector de distancia. En esta red existen
 4 nodos:

	А	В	С	D
A		3 (Dir) 25 (Via C)	23 (Dir) 5 (Vía B)	28 (Vía C) 10 (Vía B y C)
В	3 (Dir) 25 (Via C)		2 (Dir) 26 (Vía A)	7 (Vía C) 31 (Vía A y C)
С	23 (Dir) 5 (Vía B)	2 (Dir) 26 (Vía A)		5 (Dir)
D	28 (Vía C) 10 (Vía B y C)	7 (Vía C) 31 (Vía A y C)	5 (Dir)	

5. Capa de red: Protocolos (RIP)

 Realiza los cálculos de vector de distancia para el siguiente esquema de nodos:

- IPv4 (Protocolo de Internet versión 4): El Protocolo de Internet (IP) permite comunicar unas redes con otras. Funciona de manera independiente de la tecnología usada en la capa de Enlace.
 - Cuando un router recibe un paquete, éste la dirección de destino, determinando la interfaz de salida a utilizar.
 - Se trata de un protocolo sin conexión y no confiable (de esto se ocupa capa de transporte)
 - Una dirección IPv4 es un número de 32 bits formado por cuatro octetos (números de 8 bits) en una notación decimal, separados por puntos. Ejemplos de direcciones IPv4: 192.168.0.1, 66.228.118.51, 173.194.33.16
 - A día de hoy y debido al crecimiento exponencial de las redes, se hace necesario aumentar el número de direcciones -> IPv6
 - Las direcciones IPv6 están basadas en 128 bits. IPv6 está compuesto por ocho secciones de 16 bits, separadas por dos puntos (:). Ejemplo de una dirección IPv6: 2607 : f0d0 : 4545 : 3 : 200 : f8ff : fe21 : 67cf

Protocolo de Internet v4 (IPv4)

- Emisor desconoce:
 - Si el receptor está presente...
 - Si llegó la carta...
 - Si el receptor puede leerla...

Receptor desconoce:

· Cuando llegará...

 La unidad máxima de transmisión es conocida como MTU. Por defecto tiene una capacidad de 1500 bytes.

Paquete IPv4: Anatomía

5. Capa de red: Enrutamiento

Enrutamiento

 Un determinado host desea llegar a un destino concreto. Los host finales necesitan conocer su gateway (puerta de enlace predeterminada).

 Para un host en la red, cualquier destino es alcanzable si accede a la interfaz del router al que está conectado

5. Capa de red: Comunicación

Comunicación entre hosts

- Si A comunica con B, no necesita del router por estar en la misma red
- Dirección lógica origen(A)/destino(B) → 192.168.2.30/24, 192.168.3.5/24
- Dirección física origen(A)/destino(B) -> Van cambiando en cada salto

 Los 3 saltos producidos han sido: 	MAC origen	MAC destino	
Salto 1:	Host A	Router 1	
Salto 2:	Router 1	Router 2	

Salto 3: Router 2 Host D

Traslado del paquete a su destino

- El enrutamiento se hace paquete por paquete y salto a salto.
- El router, con un paquete, podrá:
 - A) Enviarlo al host destino: El host pertenece a una de las redes conectadas
 - B) Enviarlo al router del próximo salto: Si la red no está conectada directamente
 - C) Descartarlo: Cuando no haya ruta para la red de destino
- Un router procesa el paquete en la capa de red. Los paquetes que llegan a las interfaces del router están encapsulados como PDU de enlace de datos.
- Concepto métrica/costo = saltos. Por ejemplo, si en una tabla encontramos:

• El router sabe cómo llegar a destino A mediante B a través de RIP (código 120), se encuentra a 2 saltos.

- Traslado de un paquete de PC1 (origen) a PC5 (destino): Paso 1
 - Capa de red de PC1:
 - Dirección lógica origen → IP PC1 (1.0.0.10)
 - Dirección lógica destino → IP PC5 (5.0.0.10)
 - Capa de enlace de PC1:
 - Dirección MAC origen → MAC PC1
 - Dirección MAC destino → MAC Router 1
 - Direccionamiento del paquete:
 - Salida: PC1 / Entrada: Interfaz router 1 gateway (1.0.0.1)
- Traslado de un paquete de PC1 (origen) a PC5 (destino): Paso 2
 - Capa de red de Router 1:
 - Dirección lógica origen → IP PC1 (1.0.0.10)
 - Dirección lógica destino → IP PC5 (5.0.0.10)
 - Capa de enlace de Router 1:
 - Dirección MAC origen → MAC Router 1
 - Dirección MAC destino → MAC Router 2
 - Direccionamiento del paquete:
 - Salida: Interfaz router 1 gateway (2.0.0.1) / Entrada: Interfaz router 2 gateway (2.0.0.2)

- Traslado de un paquete de PC1 (origen) a PC5 (destino): Paso 3
 - Capa de red de Router 2:
 - Dirección lógica origen → IP PC1 (1.0.0.10)
 - Dirección lógica destino → IP PC5 (5.0.0.10)
 - Capa de enlace de PC1:
 - Dirección MAC origen → MAC Router 2
 - Dirección MAC destino → MAC Router 3
 - Direccionamiento del paquete:
 - Salida: Interfaz router 2 gateway (3.0.0.1) / Entrada: Interfaz router 3 gateway (3.0.0.2)
- Traslado de un paquete de PC1 (origen) a PC5 (destino): Paso 4
 - Capa de red de Router 3:
 - Dirección lógica origen → IP PC1 (1.0.0.10)
 - Dirección lógica destino → IP PC5 (5.0.0.10)
 - Capa de enlace de Router 3:
 - Dirección MAC origen → MAC Router 3
 - Dirección MAC destino → MAC PC5
 - Direccionamiento del paquete:
 - Salida: Interfac router 3 gateway (5.0.0.1) / Entrada: PC5

• Ejercicio de traslado al destino:

5. Capa de red: Medios de transmisión

Unicast, Broadcast y Multicast

- Comunicación Unicast: Se envía un paquete de un host a otro host
- Comunicación <u>Multicast</u>: Se envía un paquete de un host a un grupo seleccionado de host.

Comunicación <u>Broadcast</u>: Se envía un paquete de un host a todos los host

de la red

La subdivisión de subredes ayuda a hacer los dominios de broadcast más pequeños

- La capa de enlace de datos proporciona soporte y conexión a la capa de red. A nivel de direccionamiento local, va a tener un alcance mediante direcciones MAC.
- Los protocolos de la capa de enlace realizan 2 funciones:
 - Encapsulación de un paquete en una trama
 - Control de acceso al medio

- La capa de enlace de datos se divide, a su vez, en 2 subcapas:
 - **LLC** (Control de enlace lógico): Forma la trama a partir del paquete de la capa de red e identifica el protocolo de la capa de red.
 - MAC (Control de acceso al medio): Direcciona la trama y marca el comienzo y el final de la trama.
- Ejemplo de trama Ethernet:

Preámbulo	Destino	Origen	Tipo	Datos	FCS
8 Bytes	6 Bytes	6 Bytes	2 B	46 – 1500 Bytes	4 Bytes

Si llegase a un router trama cuya longitud de los datos fuera menor a 46
 Bytes o mayor a 1500 Bytes, se descartaría por no cumplir los requisitos de longitud mínima y máxima de la trama, respectivamente.

Trama Ethernet

Preámbulo	Destino	Origen	Tipo	Datos	FCS
8 Bytes	6 Bytes	6 Bytes	2 B	46 – 1500 Bytes	4 Bytes

- Preámbulo: Sincroniza y delimita el comienzo de la trama
- Destino: MAC de destino (hexadecimal de 48 bits)
- Destino: MAC de origen (hexadecimal de 48 bits)
- Tipo: Qué protocolo de red se va a utilizar
- Datos: Es la PDU, por lo general un paquete IPv4, para transportar por el medio
- FCS: Secuencia de verificación de trama. Es un valor que se utiliza para controlar las tramas dañadas. También es llamado Trailer

© La

- Todo esto se lleva a cabo en la tarjeta de red:
 - Implementando el SW: De aplicación a enlace (LLC)
 - Implementando el HW: De enlace (MAC) a física

Colocación de una trama en el medio físico

 El medio para colocar una trama en el medio físico dependerá de 2 factores: 1) Compartir medios y 2) Topología de la red

Sin control. Se van a producir colisiones. De esta forma aparecen tramas corruptas

Por turnos, alto grado de control impidiendo colisiones, pero habrá mucha sobrecarga

- Acceso controlado por medios compartidos (Más de 2 host compiten para transmitir por el mismo cable)
 - Acceso determinístico o por turnos: Si un dispositivo no necesita acceder, pasa al siguiente. Cuando un dispositivo coloca una trama en los medios, ningún otro puede hacerlo hasta que la trama haya llegado y procesado en el destino. Ineficiente por la espera de turno. Ejemplos: Token Ring, FDDI
 - Acceso no determinístico: Permite que cualquier dispositivo intente acceder al medio siempre que haya datos para enviar. Para evitar que dos host transmitan a la vez existe el CSMA (Acceso Múltiple por detección de portadora). La tarjeta de red se asoma al cable:
 - Si detecta señal portadora en el cable, un dispositivo estará transmitiendo. Esperará y tras un corto periodo de tiempo, volverá a intentarlo.
 - Si no detecta señal portadora, el dispositivo transmite sus datos.
 - Ejemplos de estos accesos: Ethernet y redes inalámbricas

Consideraciones de la capa física

- El 90% de los problemas de la red provienen de la capa física (algo se apaga, se desconecta, etc.). El 10% restante viene por configuraciones, protocolos, etc.
- La capa física proporciona los medios de transmisión de los bits. Los dispositivos intermedios y finales reciben y codifican los bits de una trama.
- El objetivo de la capa física es crear la señal óptica, eléctrica o de microondas representando los bits en cada trama y enviarlos hacia la capa de enlace como una trama completa.
- Es importante destacar que se transmite una trama a la vez, para evitar que la tarjeta de red confunda tramas.
- La capa física debe saber distinguir entre el principio y el final de una trama. Esto lo hace a través de dos instrumentos fundamentales: ranuras temporales o inclusión de bits en forma de "patrones".

- Principios fundamentales de la capa física
 - **Codificación**: Conjunto de bits (0 y 1) reconocible tanto por el emisor y por el receptor, distinguiendo bits de datos y de control. Ejemplo: Ethernet.
 - Señalización: Los 0 y 1 se representan mediante señales eléctricas o impulsos ópticos.

- Los bits se representan en el medio al cambiar una o más de las siguientes características: amplitud, frecuencia y fase.
- El método de señalización debe ser compatible con un estándar para que el receptor detecte las señales y las decodifique.
- Principales métodos de señalización
 - NZR: Para enlaces de datos de velocidad lenta. No usa el ancho de banda de manera eficiente y es susceptible a la interferencia electromagnética.
 - Manchester: Transiciones de voltaje. De voltaje bajo a alto representa un 1 y de alto a bajo representa un 0. Aprovecha mejor todo el espacio.

- Tipos de medios físicos: Cable coaxial
 - Bastante económico
 - Posee una velocidad y tasa de transferencia de 10-100 Mbps.
 - Longitud máxima de 500 m.
 - Partes:

- Tipos de medios físicos: Par trenzado blindado (STP) y par trenzado apantallado (ScTP)
 - Costo moderado
 - Reduce el ruido interno de acoplamiento par a par y diafonía y el ruido externo por interferencias
 - Velocidad de transferencia de 100 Mbps.
 - Longitud máxima de 100 m.

- Tipos de medios físicos: Par trenzado no blindado (UTP)
 - Bastante económico y de fácil instalación
 - Cuatro pares de hilos, cada par de dos hilos trenzados
 - Velocidad de transferencia de hasta 1000 Mbps.
 - Longitud máxima de 100 m.
 - Pierde intensidad de señal a medida que avanza con el tiempo

Medios de fibra óptica

- Un rayo de luz, al incidir sobre una superficie plana brillante, refleja parte de la energía de la luz en el mismo ángulo → Reflexión
- Fibra monomodo: Un solo camino (recorrido directo, mayor distancia). Por lo general el tipo de luz es LED
- Fibra multimodo: Varios haz de luz con diferentes trayectorias. Por lo general el tipo de luz es láser

Media de **300 m** de distancia sin pérdida de datos a una velocidad de **10** Gbps

Media de **80 km** de distancia sin pérdida de datos a una velocidad de **10** Gbps

Medios inalámbricos

 La transmisión se realiza mediante antenas y la información viaja en forma de ondas electromagnéticas. Las tecnologías utilizadas son: radiofrecuencia (redes Wi-Fi y Bluetooth), microondas, por satélite y por infrarrojos.

