APPENDICES

Urban Heat, Health, and Vulnerability in South African Cities: A Mixed-Methods Approach to Predictive Modeling

Craig Parker
Wits School of Public Health
April 2025

Appendix A: Supplementary Figures

A.1 Temperature Trends in Johannesburg

A.2 Seasonal Heat Patterns

Figure 2: Seasonal heat patterns in the Johannesburg region from 1980-2024, highlighting increasing summer temperature extremes.

A.3 Global Temperature Comparison

Figure 3: Comparison of global temperature anomalies versus Johannesburg-specific trends, showing amplified urban warming.

A.4 Urban Heat Island Analysis

Figure 4: Urban heat island analysis using land surface temperature (LST), vegetation index (NDVI), built-up index (NDBI), and urban thermal field variance index (UTFVI) for Johannesburg.

A.5 Preliminary Heat Vulnerability Index

Figure 5: Preliminary heat vulnerability index (HVI) map for Johannesburg, integrating socioeconomic, demographic, and environmental factors.

A.6 Analytical Framework

Figure 6: Detailed analytical framework showing the integration of vulnerability mapping, heat-health dynamics, and predictive modeling components.

F.9 Project Timeline (GANTT Chart)

Page 8

Figure 7: Detailed project timeline showing research phases, milestones, and deliverables across the PhD duration.

APPENDIX DOCUMENT

The following tables and appendices are separated from the main document to support word count requirements.

Data Management and Methodological Tables for HE²AT Center Research

Table 1: Key Data Sources for Heat-Health Research

Data Category	Data Source	Description	Key Variables	Relevance
Biomedical Data	Individual Participant Data Platform	Collation of prospectively collected high-quality data from pregnant women &		Study population with high rates of co- morbidities and adverse
		neonates		health outcomes
Climate/Weather Data	ECMWF Forecasts	Outputs from numerical weather prediction system	Temperature, solar irradiance, wind speed,	Determination of heat hazard and thermal
			precipitation, pressure	comfort metrics

Data Category	Data Source	Description	Key Variables	Relevance
	ERA5 Reanalysis	Global reanalysis dataset combining observed data with meteorological models	Temperature, wind speed, precipitation, atmospheric water content	Historical climate exposures assessment
	ERA5-Land	High-resolution land component of the ERA5 climate reanalysis	Surface tempera- ture, precipitation, near-surface winds	Detailed land surface parameter analysis
Remote Sensing Data	SRTM Elevation	Global elevation data (30m resolution)	Elevation	Urban heat island effect assessment
	Sentinel-2 Imagery	High-resolution multispectral satellite imagery	Vegetation coverage, land use classification, NDVI	Land cover and urban morphology analysis
	MODIS Land Surface Temperature	Daily global land surface temperature	Day/night land surface temperature	Heat exposure assess- ment
Socio-Economic Data	Gauteng City-Region Observatory	GIS data for Gauteng City-Region	Demographics, eco- nomics, environmental factors	Socio-economic context for urban areas

Data Category	Data Source	Description	Key Variables	Relevance
	South African Census	National population and hous-	Population density,	Demographic vulnera-
		ing census	housing quality, service	bility factors
			access	
	GCRO Quality of Life	Biennial survey of Gauteng	Socioeconomic status,	Subjective vulnerability
	Survey	residents	health status, service	factors
			satisfaction	

Table 1: Key Data Sources for Heat-Health Research

Table 2: Data Processing and Integration Workflow

Processing Stage	Key Activities	Responsible Team	Outputs
Pre-processing	Data reformatting, extraction of key variables, alignment with ontologies	Core Data Team	Standardized data formats ready for harmonization
Variable Mapping	Mapping variables to standardized ontologies, using AI tools for suggestions	Harmonization Team	Consistent variable naming and definitions across datasets
Mapping Validation	Cross-checking with original data, expert health review	Core Data Team, Health Experts	Validated variable map- pings
Database Population	Application of mappings, transformation of data, de-identification	Core Data Team	Integrated consortium- shared dataset
Climate Data Integration	Automated retrieval of climate variables, spatial and temporal alignment	CSAG/UCT Team	Climate-integrated health dataset
De-identification	Safe Harbor method application, expert determination, geographic aggregation	Core Data Team	RP2 De-identified datasets
Data Analysis	Statistical analysis, machine learning applications	HE ² AT Consortium	Research outputs and inferential data

Processing Stage	Key Activities	Responsible Team	Outputs
	<u> </u>		

Table 2: Data Processing and Integration Workflow

Table 3: Data Access Levels and Security Measures

Data Level	Description	Access Permissions	Security Measures	Retention Period
Original Study Data	Raw, unprocessed health data collected directly from studies	Core Data Team only	Encryption (AES-256), secure UCT servers, re- stricted access	·
Consortium Shared Data	Processed, harmonized data with limited indirect identifiers		TLS protocols, access controls, authentication protocols	`
RP2 De-identified Data	Further de-identified data with aggregated geographic information	External Bone Fide Researchers (DAC-approved)	Data Transfer Agree- ments, ethical approval requirements	`
Inferential Data	Aggregated and anonymized data derived from analyses	Open access	NA - No identifying information	Indefinite

Table 3: Data Access Levels and Security Measures

Table 4: Geographic De-identification Techniques

Technique	Description	Application Scenario	Privacy Protection Level
Geographic Aggregation	Aggregating addresses into larger regions	Areas with adequate population density	Medium - Depends on aggregation level
Random Direction and Fixed Radius	Points displaced randomly within fixed radius	High spatial granularity needs	Medium - Predictable displacement bounds
Gaussian Displace- ment	Random direction with distances following Gaussian distribution	Detailed spatial analysis requirements	High - Variable displacement with population density
Donut Masking	Setting minimum and maximum displacement levels	Preventing both near and far relocations	High - Controls mini- mum displacement
K-anonymity Assess- ment	Ensuring each location is indistinguishable from k-1 others	Validation of masking effectiveness	Verification mechanism

Table 4: Geographic De-identification Techniques

Table 5: Data Request and Approval Process

Stage	Description	Responsible Party	Key Considerations
Data Request Sub- mission	Completion of standardized form with research details	External Researcher	Research purposes, required datasets, ethics approval
Preliminary Screening	Confirmation of form completeness and basic compliance	HE ² AT Center SteerCo	Resource availability, completeness of application
DAC Review	Evaluation based on scientific, ethical, and feasibility criteria	Data Access Committee	Scientific merit, potential privacy risks, overlap with ongoing research
Decision Communication	Documentation and notification of approval or rejection	DAC	Transparent reasoning, conditions for approval
Data Transfer	Execution of DTA and data provision	Core Data Team	Secure transfer protocols, encryption
Ongoing Monitoring	Regular reviews of compliance with agreement terms	DAC	Audits if necessary

Table 5: Data Request and Approval Process

Table 6: Methodological Approaches for Research Objectives

Table 6: Methodological Approaches for Research Objectives

Objective	Methodological Approaches	
Vulnerability Mapping		
	Principal Component Analysis	
	Geospatial analysis using GIS	
	Satellite imagery integration	
	• Local Indicators of Spatial Association (LISA)	
Heat-Health Dynamics		
	Random Forests for feature importance	
	XGBoost with SHAP value interpretation	
	Multi-scale time-series analysis	
	Physiological pathway investigation	
Predictive Modeling		
	• Ensemble machine learning approaches	
	Demographic stratification	
	Advanced feature selection Page 17	
	Time-series cross-validation	

Table 7: Time-Lag Analysis of Heat-Health Effects

Table 7: Time-Lag Analysis of Heat-Health Effects

Temporal Scale	Health Outcomes	Analytical Approach
Immediate		
(0-24 hours)	 Cardiovascular responses 	 High-resolution temporal analysis
	Renal function markers	• Threshold identification
	Cognitive performance	Diurnal pattern examination
Short-term		
(1-7 days)	 Inflammatory markers 	 Moving average analysis
	• Metabolic changes	• Cumulative exposure modeling
	Sleep quality metrics	Change-point detection
Medium-term		
(7-30 days)	 Chronic condition exacerbation 	 Distributed lag models
	Adaptation responses	• Trend analysis
	• Cumulative health impacts	 Physiological pathway assessment

Appendix A: Roles and Responsibilities in Data Management

Role	Responsibilities	Current Personnel	Contact
DMAC PIs	Oversight of data management, plan assessment and updates	Christopher Jack (UCT), Sibusisiwe Makhanya (IBM)	cjack@csag.uct.ac.za, sibusisiwe.makhanya@ibm.com
Health Data Acquisition	Identification of health datasets, DTA development	Craig Parker (RP2)	Craig.parker@witsphr.org
Core Data Team	Data processing, de-identification, quality control	Lisa van Aardenne, Pierre Klop- pers, Piotr Wolski, Peter Marsh, Nicholas Brink, Craig Parker	Contact DMAC PIs
Data Access Committee	Review of data access requests, oversight of data sharing	Caradee Wright (SAMRC), Sibusisiwe Makhanya (IBM), Christopher Jack (UCT)	caradee.wright@mrc.ac.za
Information Of- ficer	POPIA compliance, data protection oversight	Sibusisiwe Makhanya (IBM)	sibusisiwe.makhanya@ibm.com

Table 8: Roles and Responsibilities in Data Management

Appendix B: POPIA Compliance Framework

- 1. Lawful Processing: All data processing is conducted exclusively for legitimate research purposes under POPIA Section 27.
- 2. **Purpose Limitation**: Data is collected and processed solely for examining heat-health relationships and vulnerability patterns.
- 3. **Data Minimization**: Only essential data elements required for valid scientific analysis are retained.
- 4. **Information Officer Designation**: A designated Information Officer oversees POPIA compliance with quarterly audits.
- 5. **Security Safeguards**: Technical and organizational measures including encryption, access controls, and secure transfer protocols are implemented.
- 6. **Data Subject Participation**: Where applicable, research participants are informed of data usage through ethics committee-approved processes.
- 7. **Processing Records**: Comprehensive documentation of all data processing activities is maintained.
- 8. Impact Assessments: Regular privacy impact assessments are conducted for high-risk processing activities.

Appendix C: Risk Assessment and Contingency Planning

Risk Category	Potential Issues	Mitigation Strategies
Data Access		
	• Delays in data acquisition	• Early engagement with data
	• Restricted access to key datasets	providers
	• Changes in data provider policies	• Development of alternative data sources
		• Flexible research design to accommodate data limitations
Data Quality		
	• Missing values in critical vari-	• Robust imputation methods
	ables	• Quality assessment protocols
	• Inconsistent data collection methods	• Integration of multiple data
	Temporal or spatial gaps	sources

Risk Category	Potential Issues	Mitigation Strategies
Computational		
	• Processing limitations for large	• Cloud computing resources
	datasets	Regular code testing and valida-
	• Software compatibility issues	tion
	Model convergence failures	Modular analytical approach
Ethical/Legal		
	• Changes in data protection regulations	• Regular compliance reviews
		Conservative de-identification ap-
	• Challenges in maintaining	proaches
	anonymization	Stakeholder engagement through-
	• Stakeholder concerns about find-	out research
	ings	

Table 9: Risk Assessment and Mitigation Strategies