	Туре			Author	History	Citation	Literature Cutoff Date			
	Full Evalua	tion C. M.	Baglin ¹ ,	E. A. Mccutcha	n ² , S. Basunia ¹	NDS 153, 1 (2018)	1-Oct-2018			
$\Delta Q(\beta^-) = \Delta S(n)$) SY; S(n)=1 =200 (2017)	1860 <i>SY</i> ; S(p) Wa10).)=1494 30	$Q(\alpha) = 6707 \ 3$ st) 31 (2017Wa	2017Wa10					
				Cross Re	ference (XREF)	Flags				
				Closs Re	Terence (AREI)	Tiags				
				B 171 C 174	Au p decay (17) Au p decay (1.02) Hg α decay (0,x)					
E(level)‡	$\mathrm{J}^{\pi^{\frac{+}{4}}}$	$T_{1/2}$	XREF			Comments				
0.0#	0+ @	13.8 ms 5	ABCD	$%\alpha$ =98 2; $%\epsilon$ + $%\beta$ ⁺ =2 calc $T_{1/2}$: weighted average of 14.7 ms 5 (1996Bi07) and 13.5 ms 3 (1998Ki20). Other $T_{1/2}$: 6 ms +5−2 from α (t) measurement (1981Ho10); 15 ms +16−6 (1997Uu01). $%\alpha$: Gross $β$ decay theory calculations predict partial $β$ half-life to be≈2 s (1973Ta30) and 1997Mo25 predict 0.38 s, implying $%\epsilon$ + $%\beta$ ⁺ ≈0.7 or 3.6, respectively; based on this, the evaluator adopts $%\alpha$ =98 2. $α$ decay of 170 Pt has been observed (1981Ho10,1982En03,1996Bi07), but $%\alpha$ has not been measured. $ε$ + $β$ ⁺ decay has not been observed.						
509.20 [#] 20	2+@		D							
1171.90# 23	4+@		D							
1514.3 8	(3-)		D							
1898.3 ^{&} 4 1912.30 [#] 25 1972.5? 7	(5 ⁻) 6 ⁺ @		D D D	J^{π} : D 726 γ to	4+.					
2111.5 <mark>&</mark> 4	(7-)		D	J^{π} : intraband	stretched Q 2137	$to (5^{-}).$				
2436.8 [#] 4 2443.7? 5	8+@		D D	J^{π} : intraband	stretched Q 5247	v to 6 ⁺ .				
2495.5 ^{&} 11 2501.3? 11 2509.6? 7 2629.0? 5	(9-)		D D D							
3025.2 [#] 4	(10 ⁺) [@]		D	2006Jo04 a assign 10 ⁺ band memb	ssign 10 ⁺ to 302 to 3038 in table er.	I. 2005Jo18 assigned the	25 or the 3038 level; gure 1 and in the text, but he 3038 level as the J=10			
3038.2 5	(10^{+})		D	J^{π} : see comm	ent on 3025 leve	1.				
3067.3? ^{&} 11 3121.5? 12			D D							
3708.2? ^{&} 11			D							

 $^{^{\}dagger}$ Based on data from (HI,xn γ). The three strongest γ -rays form a cascade of stretched Q transitions, and the energy of the

3708.2?

Adopted Levels, Gammas (continued)

¹⁷⁰Pt Levels (continued)

strongest agrees closely with that expected for the first 2+ state (based on energy systematics for the first excited states of even-A Pt isotopes from 172 Pt to 190 Pt (see, e.g., fig. 4 of 1998Se20)). 1998Ki20, therefore, assign the three strongest γ -rays from (HI,xn γ) to the 0⁺ g.s. band of ¹⁷⁰Pt. Values given without further comment are based on band structure from (HI,xn γ).

 $_{2}(170p_{t})$

[&]amp; Band(B): sequence on (3⁻) 1514 (2006Jo04).

						γ (170	Pt)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α#	Comments
509.20	2+	509.2 2	100	0.0	0+	(E2)	0.0237	
1171.90	4+	662.7 <i>1</i>	100	509.20	2+	(E2)	0.01288	
1514.3	(3^{-})	1005.0 10	100	509.20				
1898.3	(5^{-})	384.0 <i>10</i>	<74	1514.3	(3 ⁻)			(0)
		726.4 3	100 23	1171.90	4+	(E1)		placement from (⁶⁰ Ni,2nγ), where γγ coin rules out alternative placement within g.s. band tentatively suggested In (HI,xnγ) for a 725.9γ. Mult.: Δπ=yes from level scheme for D transition.
1912.30	6+	740.4 <i>1</i>	100	1171.90	4+	(E2)	0.01013	
1972.5?		800.6 [@] 6	100	1171.90	4+			
2111.5	(7^{-})	213.2 <i>I</i>	100	1898.3	(5^{-})	(E2)	0.290	
2436.8	8+	524.5 2	100	1912.30	6+	(E2)	0.0220	
2443.7?		545.4 [@] 2	100	1898.3	(5^{-})			
2495.5	(9^{-})	384.0 10	100	2111.5	(7^{-})			
2501.3?		603.0 [@] 10	100	1898.3	(5^{-})			
2509.6?		537.1 [@] 1	100	1972.5?				
2629.0?		185.3 [@] 1	100	2443.7?				
3025.2	(10^+)	588.4 2	100	2436.8	8+			
3038.2	(10^{+})	601.4 3	100	2436.8	8+			
3067.3?		571.8 [@] 2	100	2495.5	(9-)			
3121.5?		620.2 [@] 4	100	2501.3?				

[†] From 112 Sn(60 Ni,2n γ), E=266 MeV reaction In (HI,xn γ).

640.9[@] 2

100

3067.3?

[‡] From least-squares fit to Eγ.

[#] Band(A): K^{π} =0⁺ g.s. band (2006Jo04). Weakly-deformed; possibly crossed by a deformed intruder configuration At J≈8ħ (2006Jo04).

[@] Definite J^{π} assigned to members of g.s. band up to possible band crossing based on independently-established $J^{\pi}=0^+$ for g.s. and stretched O multipolarities for J=2 to 0 and J=8 to 6 509 γ and 524 γ .

[‡] Based on angular distribution ratio R (2006Jo04 In (HI,xny)) where $R=I\gamma(158^{\circ})/[I\gamma(86^{\circ})+I\gamma(94^{\circ})]$. R=1.32.5 and 0.86.2 for known $\Delta J=2~443\gamma$ and $\Delta J=1~947\gamma$ In 170 Os, respectively. Supported by $I\gamma(157.6^{\circ})/I\gamma(79^{\circ})$ and IOI°) values (from 1998Ki20 In (HI,xn γ)) which are consistent with value expected for stretched Q transition for several transitions. $\Delta \pi$ =(No) has been assigned to intraband transitions.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[®] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

→ γ Decay (Uncertain)

 $^{170}_{78}\mathrm{Pt}_{92}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

$$^{170}_{\,78}\mathrm{Pt}_{92}$$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Tibor Kibedi and Coral M. Baglin	ENSDF	15-Mar-2010

 $Q(\beta^{-})=-1.173\times10^{4} \text{ 8; } S(n)=1.170\times10^{4} \text{ 8; } S(p)=1.97\times10^{3} \text{ 4; } Q(\alpha)=6464 \text{ 4}$ 2012Wa38

Note: Current evaluation has used the following Q record -11820 syst 11705 89 1960 40 6464 4 2003Au03,2009AuZZ.

 $Q(\beta^{-})$: Uncertainties: 160 $(Q(\beta^{-}))$ (2003Au03, 2009AuZZ)).

 $S(n),Q(\alpha)$: From 2009AuZZ; 11700 90 and 6465 4, respectively, from 2003Au03.

 $Q(\varepsilon p) = 5900 \ 22 \ (2009AuZZ) \ cf. \ 5903 \ 23 \ (2003Au03).$

For details about the production and identification of 172 Pt see 172 Pt α decay (1981De22,1982En03,1993ToZY).

Theory references: 1984Sa16, 1984Al36, 2005Mc09, 2007Pe30, 2009Ga15, 2010Ro06.

¹⁷²Pt Levels

Cross Reference (XREF) Flags

- $^{176}{
 m Hg}~\alpha~{
 m decay}$
- В
- ¹¹⁶Sn(⁵⁸Ni,2nγ), ⁹²Mo(⁸⁴Sr,2p2nγ), S(n)(⁶⁰Ni,xnγ) C

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0#	0+	97.6 ms <i>13</i>	ABCD	%α=94 6 (2004GoZZ); %ε+%β ⁺ =6 6 %α: From 2004GoZZ. Other: 94 +6-32 (1984ScZQ). %ε+%β ⁺ : From 100-%α. J ^π : g.s. of even-even nucleus. $T_{1/2}$: 97.6 ms $I3$ (2003Da06) from 6316α(t). Other data: 104 ms 7 (2002Ro17), 96 ms 3 (1996Pa01), 0.110 s 20 (1993ToZY), 0.09 s I (1982En03), 0.12 s I (1981De22), 0.10 s I (1975Ga25), 0.12 s I (1984ScZQ). The weighted average of all data is 97.8 ms $I2$.
457.60 [#] 10	$2^{(+)}$		BCD	J^{π} : stretched Q 458 γ to 0 ⁺ g.s
1069.98 [#] 23	(4 ⁺)		BCD	
1464.7 [@] 8	$(3^{-})^{&}$		D	
1753.2 [#] 4	(6^{+})		BCD	
1839.2 [@] <i>3</i>	$(5^{-})^{\&}$		BCD	
1931.8 <i>4</i>			CD	
2081.0 [@] 4	$(7^{-})^{\&}$		CD	
2164.0? 5			D	J^{π} : possible Q (D $\Delta J=0$) 411 γ to 6 ⁺ 1752, so $J=(4^{+},6,8^{+})$.
2405.8 [#] 4	(8^{+})		BCD	
2406.3 4			D	
2728.1? <i>5</i> 2742.6 <i>4</i>			D D	
2993.8 [#] 6	(10^+)		CD	
3580.5 [#] 12				
	(12^+)		D	
4218.0 [#] <i>12</i>	(14^{+})		D	

 $^{^{\}dagger}$ From least-squares fit to Ey.

[‡] From $Sn(^{60}Ni,xn\gamma)$, except as noted. Values for the g.s. band follow from the assumption of a stretched Q γ cascade. Those for the π =(-) band are based on the observation that the lowest excited bands in light neighboring Os and Pt isotopes have π =- and odd J, and this band connects to the g.s. band at its 2^+ state.

¹⁷²Pt Levels (continued)

 $\gamma(^{172}\text{Pt})$

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α &	Comments
457.60	2(+)	457.6 <i>1</i>	100	0.0	0+	(E2)	0.0309	
1069.98	(4 ⁺)	612.4 [@] 2	100	457.60	2 ⁽⁺⁾			Other Ey: 611.5 6 in (58 Ni,2ny); 612.5 1 for doublet in (60 Ni,xny).
1464.7	(3^{-})	1006.7 10	100	457.60				
1753.2	(6 ⁺)	683.2 3	100	1069.98	(4 ⁺)	(E2)	0.01205	E _γ : unweighted average of 682.6 <i>3</i> from (⁵⁸ Ni,2nγ), 683.2 2 from (⁸⁴ Sr,2p2nγ) and 683.7 <i>1</i> from (⁶⁰ Ni,xnγ).
1839.2	(5 ⁻)	374.0 10	12 <i>3</i>	1464.7	(3-)			Placement of 374.1 3 γ feeding 2181 level in (84Sr,2p2n γ) is not adopted. That γ probably belongs here, consistent with implied branching of 15 4.
		769.2 2	100 9	1069.98	(4+)			Other E γ : 768.9 3 in (⁵⁸ Ni,2n γ), 768.5 2 in (⁸⁴ Sr,2p2n γ).
1931.8		861.8 [@] 3	100	1069.98	(4+)			E_{γ} : weighted average of 861.7 4 from (58 Ni,2n γ), 861.9 5 from (84 Sr,2p2n γ) and 862.1 10 from (60 Ni,xn γ).
2081.0	(7-)	241.80 <i>21</i>	100	1839.2	(5 ⁻)	(E2)	0.192	E _{γ} : unweighted average of 241.5 2 from (58 Ni,2n γ), 241.7 2 from (84 Sr,2p2n γ) and 242.2 2 from (60 Ni,xn γ).
2164.0?		410.8 ^a 2	100	1753.2	(6 ⁺)	Q		Other Ey: 411.4 3 in (⁸⁴ Sr,2p2ny), 410.1 3 in (⁵⁸ Ni,2ny).
2405.8	(8+)	652.6 1	100	1753.2	(6 ⁺)			Other Ey: 651.6 3 in (⁵⁸ Ni,2ny), 652.3 2 in (⁸⁴ Sr,2p2ny).
2406.3		567.1 2	100	1839.2	(5^{-})			Other Ey: $568.4 \ 5$ in $(^{58}\text{Ni}, 2\text{ny})$.
2728.1?		564.1 ^a 2	100	2164.0?				Other Ey: 563.1 5 in (58 Ni,2ny).
2742.6		336.4 2	100 6	2406.3				E_{γ} , I_{γ} : doublet in $Sn(^{60}Ni,xn\gamma)$; E_{γ} is from $(^{84}Sr,2p2n\gamma)$, I_{γ} is weighted average from $(^{58}Ni,2n\gamma)$ and $(^{84}Sr,2p2n\gamma)$.
		661.6 4	60 7	2081.0	(7-)			I _{γ} : weighted average of 53 9 from (84 Sr,2p2n γ) and 66 9 from (58 Ni,2n γ).
2993.8	(10^{+})	588.0 [@] 4	100	2405.8	(8^{+})			
3580.5	(12^{+})	586.7 10	100	2993.8	(10^{+})			E_{γ} : from (58Ni,2n γ). E_{γ} =586.7 10 for doublet in (60Ni,xn γ).
4218.0	(14^{+})	637.5 <i>3</i>	100	3580.5	(12^{+})			· · · · · · · · · · · · · · · · · · ·

[†] From $Sn(^{60}Ni,xn\gamma)$, except as noted. Note, however, that although these data are in satisfactory agreement with those from $^{92}Mo(^{84}Sr,2p2n\gamma)$, they are usually higher than data from $^{116}Sn(^{58}Ni,2n\gamma)$. Major discrepancies are noted.

[#] Band(A): $K^{\pi}=0^{+}$ g.s. band (2006Jo04).

[®] Band(B): π =(-), α =1 band (2006Jo04). Possibly has strong octupole component, but a two-quasiparticle structure such as (ν i_{13/2})(ν h9/2) cannot Be ruled out (2003Da06). Possibly analogous to first-excited sidebands in neighboring nuclides. The tentative J^{π} values have been adopted from Sn(60 Ni,xn γ); note, however, that 2003Da06, in 92 Mo(84 Sr,2p2n γ), suggest values $2\hbar$ lower than those shown here.

[&]amp; See comment on π =(-) band.

[‡] From $Sn(^{60}Ni,xn\gamma)$.

[#] From asymmetry ratio in $S(n)(^{60}Ni,xn\gamma)$, assigning $\Delta\pi$ =(no) to intraband transitions.

[@] From ⁹²Mo(⁸⁴Sr,2p2nγ).

 $\gamma(^{172}\text{Pt})$ (continued)

 $^{^{\&}amp;}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{172}_{78}\mathrm{Pt}_{94}$

¹⁷²₇₈Pt₉₄

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. C. Batchelder and A. M. Hurst, M. S. Basunia	NDS 183, 1 (2022)	1-Mar-2022

 $Q(\beta^-)=-6.15\times 10^3\ 3;\ S(n)=9.25\times 10^3\ 3;\ S(p)=4.82\times 10^3\ 4;\ Q(\alpha)=4320\ 18$ 2021Wa16 Isotope shift and/or hfs data: 1988Le22, 1992Hi07, 1999Le52.

¹⁸⁶Pt Levels

Cross Reference (XREF) Flags

- $^{186} \text{Au } \varepsilon \text{ decay (10.7 min)} \\ ^{154} \text{Sm}(^{36} \text{S}, 4 \text{n} \gamma) \\ ^{186} \text{Os}(\alpha, 4 \text{n} \gamma), ^{174} \text{Yb}(^{16} \text{O}, 4 \text{n} \gamma) \\ ^{188} \text{Os}(\alpha, 6 \text{n} \gamma)$ В

E(level) [†]	Jπ‡	$T_{1/2}$	XREF	Comments
0.0@	0+	2.10 h 5	ABCD	%ε+%β ⁺ =100; %α≈0.00014 Δ <r<sup>2>(¹⁹⁴Pt, ¹⁸⁶Pt)=-0.200 fm² 6 (1999Le52). %α: From 1963Gr08; observed α peak tentatively assigned to the decay of ¹⁸⁶Pt based on T_{1/2}. Authors state that ¹⁸⁷Pt is another possibility for the origin of this peak. Intensity was estimated to be accurate within a factor of 2. T_{1/2}: From 1991Be25. Weighted average of data 2.10 h 5 (1991Be25), 2.0 h <i>I</i> (1972Fi12), 2.2 h 2 (1963Gr08), and 2.5 h 5 (1955Sm42 -labeled ¹⁸⁷Pt) yields 2.09 h 4. Other values: 2.9 h (1960Al20), 2.8 h (1965Qa01), 3.03 h (1963Gr22).</r<sup>
191.54 [@] 4	2+	240 ps 20	ABCD	μ =+0.54 <i>6</i> μ : From g-factor=0.27 <i>3</i> (2020StZV, 1996St12, transient field), assuming g[¹⁹² Pt, 2 ⁺]=0.30 <i>1</i> (1995An15). J ^π : E2 γ to 0 ⁺ . T _{1/2} : Unweighted average of 220 ps <i>17</i> (³⁶ S,4n γ) and 260 ps <i>10</i> (¹⁸⁶ Au ε Decay).
471.50 <mark>&</mark> <i>18</i>	0^{+}		A D	J^{π} : E0 472 transition to 0^+ .
490.35 [@] 9	4+	18.9 ps <i>13</i>	ABCD	J^{π} : stretched E2 intraband 298 γ to 2 ⁺ . $T_{1/2}$: from ($^{36}S, 4n\gamma$).
607.17 ^a 11	2+		A D	J^{π} : M1+E2 416 γ to 2 ⁺ ; γ to 0 ⁺ ; M1+E2 349 γ from 3 ⁺ 956.
798.48 <mark>&</mark> 12	2+		A D	J^{π} : E2 327 γ to 0 ⁺ .
877.51 [@] 18	6+	3.54 ps 28	ABCD	J^{π} : stretched E2 intraband 387 γ to 4 ⁺ . $T_{1/2}$: from ¹⁵⁴ Sm(³⁶ S,4n γ).
956.48 ^a 15	3+		A D	J^{π} : M1+E2 765 γ to 2 ⁺ ; E1+M2 677 γ from (4 ⁻) 1633.
991.44 ^a 15	4+		A D	J^{π} : M1+E2 501 γ to 4 ⁺ ; E2 (not $\Delta J=1$) 384 γ to 2 ⁺ 607.
1175.95 20	2+		A	J^{π} : 704 γ to 0 ⁺ ; J=2 from 985 $\gamma(\theta, H, T)$.
1222.46 ^{&} <i>14</i>	4+		A D	J^{π} : E0+M1+E2 732 γ to 4 ⁺ ; 1031 $\gamma(\theta,H,T)$.
1342.9 [@] 3	8+	1.39 ps <i>14</i>	BCD	J^{π} : stretched Q 465 γ to 6 ⁺ ; member of g.s. band. $T_{1/2}$: from 154 Sm(36 S,4n γ).
1363.09 ^a 24	(5^{+})		A D	J^{π} : Band assignment; 872 γ to 4 ⁺ 490; 406 γ to 3 ⁺ 956.
1407.60 ^d 14	3-		A D	J^{π} : E1 1216 γ to 2 ⁺ ; M1+E2 225 γ from 4 ⁻ 1633.
1417.89 <i>18</i>	(3) ⁺		A	J^{π} : M1(+E2+E0) 462γ to 3 ⁺ 956; J=2 ⁺ ,3 ⁺ proposed in 1985Va07 (¹⁸⁶ Au ε decay).
1470.21 ^a 19	(6^{+})		D	
1600.26 ^{&} 22	(6^{+})		D	J^{π} : gammas to 4 ⁺ and 6 ⁺ ; band assignment.
1612.3 4			A	
1632.78 ^e 17	(4^{-})		A D	J^{π} : E1 1143 γ to 4 ⁺ 490.

186Pt Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
1671.9 5	3+,4	-/-	A	J^{π} : 1182 $\gamma(\theta, H, T)$ to 4 ⁺ 490.
1692.68 ^d 16	(5-)		CD	J^{π} : $\Delta J \le 1$ 1203 γ to 4 ⁺ 490; band assignment.
1801.4 ^a 3	(7+)		D	J^{π} : based on γ decay pattern in $(\alpha,6n\gamma)$ (however, 6^- is not excluded); band assignment.
1814.1 <i>4</i>	(4)=		A	J^{π} : M1+E2 430 γ to 3 ⁻ 1408; 882 $\gamma(\theta, H, T)$ allows J=2 or 4, and J=4 requires
1837.96 18	(4)		A	the smaller M2 admixture.
1858.0 [@] 4	10 ⁺	0.83 ps 7	BCD	J^{π} : stretched Q 515 γ to 8 ⁺ 1343; g.s. band assignment. $T_{1/2}$: from (^{36}S ,4n γ).
1896.5 <i>3</i>	$2^{+},3^{+}$		A	J^{π} : from 1289 $\gamma(\theta,H,T)$ in ¹⁸⁶ Au ε decay (1985Va07).
1952.33 ^d 19	(7-)	85 ps <i>10</i>	CD	J^{π} : E2 260 γ to (5 ⁻); D 1075 γ to 6 ⁺ ; band assignment. $T_{1/2}$: from ce(t) in ($^{16}O,4n\gamma$).
1969.63 ^e 19	(6-)		D	J^{π} : 1092 keV γ transition to 6 ⁺ level in ground state band, no decay to 4 ⁺ and 3 ⁻ states, rules out 4, 5, 6 ⁺ .
2004.33 ^a 24	(8+)		D	
2051.4 ⁱ 3	(7^{-})		D	J^{π} : $\Delta J=0,1\ 1174\gamma$ to 6^{+} ; 323γ from $(9^{-})\ 2374$.
2108.5 ^j 4	(10 ⁺)		D	J^{π} : $\Delta J=0,1$ 251 γ to 10 ⁺ ; 766 γ to 8 ⁺ ; based on similar DCO ratios for all transitions connecting this level's band to other bands, $(\alpha,6n\gamma)$ favor J=10 over J=9.
2123.05 25	$(7^-, 8^+)$		D	J^{π} : 252 γ from (9 ⁻) 2375; γ to 6 ⁺ .
2159.5 <i>3</i>	4 ⁺		Α	J^{π} : from 1203 $\gamma(\theta,H,T)$ in ¹⁸⁶ Au ε decay; 796 γ to (5 ⁺) 1363.
2195.0 <i>3</i>	(8 ⁻)#	8.0 ns <i>13</i>	CD	J^{π} : M1+E2 γ to (7 ⁻) 1952; systematics of even-even Pt isotopes. $T_{1/2}$: from 243 γ -1074.8 γ (t) in (α ,6n γ). Other: 4.6 ns in (16 O,4n γ).
2216.2 4	$3^{+},4^{+}$		A	J^{π} : gammas to 2 ⁺ and 4 ⁺ ; 1726 $\gamma(\theta,H,T)$ in (¹⁸⁶ Au ε decay).
2227.6 3	$3^{+},4^{+}$		Α	J^{π} : gammas to 2 ⁺ and 4 ⁺ ; 1738 $\gamma(\theta,H,T)$ in (¹⁸⁶ Au ε decay).
2253.95 ^e 24	(8 ⁻)		D	J^{π} : Q 284 γ to (6 ⁻) 1969 level.
2280.1 ^a 4	(9 ⁺)		D	J^{π} : based on γ decay pattern in $(\alpha,6n\gamma)$ (however, J=8 is not excluded); band assignment.
2317.0 ^h 3	(8-)		D	J^{π} : stretched Q 347 γ to (6 ⁻) 1970; 316 γ from (10 ⁻) 2633.
2336.2 [@] 4	12+	1.39 ps <i>14</i>	BCD	J^{π} : stretched E2 478 γ to 10 ⁺ 1858. $T_{1/2}$: from (36 S,4 η γ). Other: <50 ps (1979Ri08 – (16 O,4 η γ)).
2356.1 4	(9-)		D	J^{π} : $\Delta J = 0,1 \ 161 \gamma \text{ to } (8^{-}); 432 \gamma \text{ from } (11^{-}) 2788.$
2374.92 ^d 23	(9-)		D	J^{π} : Q 422 γ to 7 ⁻ 2123 level. Band structure.
2430.5^{i} 3	(9-)		D	
2544.5 ^a 4	(10^{+})		D	<u>-</u>
2559.4 ^f 3	(10^{-})		D	J^{π} : $\Delta J=1\ 204\gamma$ to (9 ⁻) 2356; $\Delta J=1\ 233\gamma$ from (11 ⁻) 2792.
2611.7 ^j 4 2632.90 ^e 25	(12^+)	≤0.5 ns	D D	$T_{1/2}$: from centroid shift in (α,6ηγ). J^{π} : Q 379 keV γ to 2254 (8 ⁻) level.
2696.4 ^h 4	(10^{-}) (10^{-})		D D	J. Q 379 KeV y to 2234 (8) level.
$2090.4^{\circ}4$ $2788.0^{\circ}3$			_	J^{π} : Q 413 keV γ to (9 ⁻) 2375 level.
2792.1 ⁸ 3	(11 ⁻) (11 ⁻)		D D	J^{π} : (E2) γ to (9 ⁻) 2375 level.
2825.0 [@] 4	(14^{+})	1.46 ps <i>14</i>	BCD	$T_{1/2}$: from (36 S,4n γ).
2864.4 ^c 4	(12+)	≤0.5 ns	D	J ^{\pi} : gammas to 10 ⁺ and 12 ⁺ but not to 8 ⁺ ; based on similar DCO ratios for all transitions connecting this level's band to other bands, 1987He29 favor J=12 over J=11.
2				$T_{1/2}$: from centroid shift in $(\alpha,6n\gamma)$.
2887.2^{i} 4	(11^{-})		D	
3043.0 ^f 4	(12^{-})		D	
3073.4 ^e 4 3171.7 ^h 5	(12-)		D	
3171.7 th 3 3192.1 ^b 4	(12^{-})		D	IT. AL 0.1.05(
3192.1° 4	(13 ⁻)		D	J^{π} : ΔJ =0,1 856 γ to 12 ⁺ 2336; 367 γ to 14 ⁺ 2825; absence of γ to any 10 ⁺

¹⁸⁶Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				levels; 1990He19 $(\alpha,6n\gamma)$ favor $\pi=-$ due to D transitions from the next two members of this band (3531, 3984) to the g.s. band.
3192.4 ^c 4	(14^{+})	≤0.5 ns	D	$T_{1/2}$: from centroid shift in $(\alpha,6n\gamma)$.
3269.6 ^j 4	(14^{+})		D	1/2
3299.8 d 4	(13^{-})		D	
3310.7 ⁸ 4	(13^{-})		D	
3394.8 [@] 5	(16^{+})	0.76 ps 14	B D	$T_{1/2}$: from (36 S, 4 n γ).
3421.4 ⁱ 5	(13^{-})		D	
3530.8 ^b 5	(15^{-})		D	
3566.9 ^e 5	(14^{-})		D	
3599.8 ^f 4	(14^{-})		D	
3664.6° 5	(16^{+})		D	
3701.0 ^h 6	(14^{-})		D	
3873.8 ^d 5	(15^{-})		D	
3893.08 4	(15^{-})		D	
3963.3 ^j 5	(16^{+})		D	
3983.9 ^b 5	(17^{-})		D	26
4051.3 [@] 6	(18^+)	<1.25 ps	B D	$T_{1/2}$: from (36 S, 4 n γ).
4110.6 ^e 6 4172.6 ^h 7	(16 ⁻)		D	
$41/2.6^{t}$ / 4208.5^{f} 5	(16 ⁻)		D	
4208.5 ⁷ 5 4258.5 ⁶ 6	(16 ⁻) (18 ⁺)		D D	
4393.2 6	(10)		D	
4483.0 ^d 6	(17^{-})		D	
4518.0 <mark>8</mark> 5	(17^{-})		D	
4539.9 ^b 6	(19^{-})		D	
4661.1? ^j 6	(18^+)		D	
4699.0 <mark>e</mark> 7	(18^{-})		D	
4788.3 [@] 7	(20^{+})		D	
4836.0 ^f 6	(18^{-})		D	
4938.4 <i>7</i> 4956.2 ^{<i>c</i>} <i>7</i>	(20±)		D	
5188.6 ^b 7	(20^{+})		D	
5188.6° / 5321.2° 8	(21 ⁻) (20 ⁻)		D D	
5597.1 [@] 7	(20^{+})		D	
5738.1° 7	(22^{+})		D D	
5921.8 ^b 7	(23^{-})		D	
6463.8 [@] 8	(24^{+})		D	
6582.5° 8	(24^{+})		D	
6729.8 <mark>b</mark> 13	(25^{-})		D	
7407.8? [@] <i>13</i>	(26^{+})		D	

[†] From least-squares adjustment of E γ .

 $^{^{\}ddagger}$ Based on DCO ratios and band structure in $(\alpha,6n\gamma)$, unless noted otherwise. $^{\sharp}$ By analogy to 184 Pt (1840 keV level) and 182 Os (1831 keV level) high-K isomers with probable prolate configuration= $(\nu$ $9/2[624](\nu 7/2[514])$. However, deexcitation of states differs, possibly due to availability in ¹⁸⁶Pt of decay path to 7⁻

¹⁸⁶Pt Levels (continued)

- (1952 keV) level with similar configuration.
- [@] Band(A): Prolate g.s. band.
- & Band(B): β band.
- ^a Band(C): γ band.
- ^b Band(D): π =(-), α =1 prolate band. π assignment tentative; supported by absence of interaction with g.s. band which it intersects near J^{π} =21⁽⁻⁾. Possible configuration=((π h_{9/2})(π i_{13/2})).
- ^c Band(E): π =+, α =0 oblate band. Probable configuration=(ν i_{13/2})(ν i_{13/2}). Decay to γ band from 12⁺ member suggests some similarity between these two bands.
- ^d Band(F): π =-, α =1 band. Signature partner of band that includes the 4⁻ 1633 level. Possible configuration=(high j)(low j), one quasiparticle being (π h_{11/2}) or (ν i_{13/2}), the other an N=4 shell quasiproton or an N=5 shell quasineutron (analogous to configuration for bands starting at J^{π} =5⁻ in many even nuclei in the Pt-Hg transitional region).
- ^e Band(G): $\pi = -$, $\alpha = 0$ band. Signature partner of band including 3⁻ 1408 level.
- f Band(H): $\pi = -, \alpha = 0$ band. Possible configuration= $(v \ 11/2[615])(v \ 9/2[505])10^-$.
- g Band(I): $K^{\pi}=(10^{-}),\alpha=1$ band. Possible configuration= $(v \ 11/2[615])(v \ 9/2[505])10^{-}$.
- ^h Band(J): $\pi = -, \alpha = 0$ band.
- ⁱ Band(K): $\pi = -, \alpha = 1$ band.
- ^j Band(L): $\pi=+,\alpha=0$ band.

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_f \underline{J_f^{\pi}}$	Mult.&	δ&c	α^{b}	Comments
191.54	2+	191.53‡ 4	100‡	0.0 0+	E2		0.417	$\alpha(K)$ =0.189 3; $\alpha(L)$ =0.1713 24; $\alpha(M)$ =0.0438 7 $\alpha(N)$ =0.01070 15; $\alpha(O)$ =0.001699 24; $\alpha(P)$ =1.80×10 ⁻⁵ 3 B(E2)(W.u.)=102 9 Mult.: from α_K in ¹⁸⁶ Au ε decay.
471.50	0+	279.7 [‡] 3	100‡ 5	191.54 2+	E2		0.1216	Mult.: from α_{K} in 100 Au ε decay. $\alpha(K)=0.0728$ 11; $\alpha(L)=0.0369$ 6; $\alpha(M)=0.00928$ 14 $\alpha(N)=0.00227$ 4; $\alpha(O)=0.000369$ 6; $\alpha(P)=7.26\times10^{-6}$ 11
		471.6 5	4	$0.0 0^{+}$	E0			
490.35	4+	298.84 [‡] <i>10</i>	100 [‡]	191.54 2+	E2		0.0998	$\alpha(K)$ =0.0618 9; $\alpha(L)$ =0.0288 4; $\alpha(M)$ =0.00721 11 $\alpha(N)$ =0.00177 3; $\alpha(O)$ =0.000288 4; $\alpha(P)$ =6.22×10 ⁻⁶ 9 B(E2)(W.u.)=181 13
607.17	2+	415.56 [‡] <i>16</i>	100‡ 8	191.54 2 ⁺	M1+E2	-0.38 4	0.116 <i>3</i>	$\alpha(K)$ =0.0954 23; $\alpha(L)$ =0.0160 3; $\alpha(M)$ =0.00370 7 $\alpha(N)$ =0.000916 17; $\alpha(O)$ =0.000164 3; $\alpha(P)$ =1.07×10 ⁻⁵ 3
		607.2 [‡] 2	62 [‡] 15	0.0 0+	[E2]		0.01567	$\alpha(K)$ =0.01200 17; $\alpha(L)$ =0.00280 4; $\alpha(M)$ =0.000671 10 $\alpha(N)$ =0.0001652 24; $\alpha(O)$ =2.83×10 ⁻⁵ 4; $\alpha(P)$ =1.270×10 ⁻⁶ 18
798.48	2+	307.9 [‡] 3	7.7 [‡] 6	490.35 4+	E2		0.0912	$\alpha(K)$ =0.0573 9; $\alpha(L)$ =0.0257 4; $\alpha(M)$ =0.00642 10 $\alpha(N)$ =0.001573 23; $\alpha(O)$ =0.000257 4; $\alpha(P)$ =5.78×10 ⁻⁶ 9
		326.8 [‡] 3	15.1 [‡] <i>1</i> 2	471.50 0 ⁺	E2		0.0766	$\alpha(K)$ =0.0494 7; $\alpha(L)$ =0.0206 3; $\alpha(M)$ =0.00513 8 $\alpha(N)$ =0.001258 18; $\alpha(O)$ =0.000206 3; $\alpha(P)$ =5.03×10 ⁻⁶ 7
		607.05 15		191.54 2+	(E0+M1+E2)			$\alpha(K)$ =0.025 14; $\alpha(L)$ =0.0045 17; $\alpha(M)$ =0.0011 4 $\alpha(N)$ =0.00026 10; $\alpha(O)$ =4.6×10 ⁻⁵ 18; $\alpha(P)$ =2.8×10 ⁻⁶ 16 E_{γ} : Weighted ave. of data from $(\alpha,6n\gamma)$ and 186 Au ε decay. I(ce)/I $\gamma(799)$ =0.099 20 (1970Jo02 - 186 Au ε decay).
		798.7 [‡] 4	100 [‡] 12	0.0 0+	(E2)		0.00864	$\alpha(K)$ =0.00687 10; $\alpha(L)$ =0.001362 19; $\alpha(M)$ =0.000322 5 $\alpha(N)$ =7.93×10 ⁻⁵ 12; $\alpha(O)$ =1.380×10 ⁻⁵ 20; $\alpha(P)$ =7.26×10 ⁻⁷ 11
877.51	6+	387.0 [‡] 3	100‡	490.35 4+	E2		0.0478	$\alpha(K)$ =0.0329 5; $\alpha(L)$ =0.01133 16; $\alpha(M)$ =0.00280 4 $\alpha(N)$ =0.000686 10; $\alpha(O)$ =0.0001138 16; $\alpha(P)$ =3.40×10 ⁻⁶ 5 B(E2)(W.u.)=279 22 Mult.: strength Q from DCO ratio in ¹⁸⁸ Os(α ,6n γ); M2 excluded by correction to PUII. as a hand introduct
956.48	3 ⁺	349.4 [‡] 3	12.4 [‡] 10	607.17 2+	M1+E2	+2.7 3	0.080 4	by comparison to RUL. g.s. band intraband γ . $\alpha(K)=0.057$ 4; $\alpha(L)=0.0175$ 4; $\alpha(M)=0.00429$ 9
		466.3 [‡] 3	12.4 [‡] 9	490.35 4+	(M1+E2)			$\alpha(N)=0.001054$ 22; $\alpha(O)=0.000176$ 4; $\alpha(P)=6.1\times10^{-6}$ 4 δ : $+0.42$ 7 or $+3.8$ 9 from $\gamma(\theta,H,T)$ (1985Va07 $-$ ¹⁸⁶ Au ε decay) $\Delta\pi=$ no from level scheme.
		765.1 [#] 3	100 5	191.54 2 ⁺	M1+E2	+16 +4-3	0.00951	α (K)=0.00753 11; α (L)=0.001522 22; α (M)=0.000360 6 α (N)=8.87×10 ⁻⁵ 13; α (O)=1.542×10 ⁻⁵ 22; α (P)=7.97×10 ⁻⁷ 12
991.44	4+	384.2 [#] 3	63 11	607.17 2+	E2		0.0488	$\alpha(K)=8.87 \times 10^{-2} I3$, $\alpha(O)=1.342 \times 10^{-2} 22$, $\alpha(F)=7.97 \times 10^{-1} I2$ $\alpha(K)=0.0335 5$; $\alpha(L)=0.01162 17$; $\alpha(M)=0.00287 4$ $\alpha(N)=0.000704 10$; $\alpha(O)=0.0001167 17$; $\alpha(P)=3.46 \times 10^{-6} 5$ Mult.: from DCO in $(\alpha,6n\gamma)$ and $\alpha(K)$ exp in ε decay.

 \mathcal{S}

γ (186Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_j^{r}	Mult.&	δ&c	α^{b}	Comments
991.44	4+	501.1# 3	100 16	490.35 4	M1+E2	-0.85 9	0.055 3	$\alpha(K)$ =0.045 3; $\alpha(L)$ =0.0080 3; $\alpha(M)$ =0.00188 7 $\alpha(N)$ =0.000464 17; $\alpha(O)$ =8.2×10 ⁻⁵ 4; $\alpha(P)$ =5.0×10 ⁻⁶ 3
		799.6 <i>3</i>	79 16	191.54 2	+			
1175.95	2+	704.4 [‡] <i>3</i>	43 [‡] 6	471.50 0	+			
		984.5 [‡] 4	100 [‡] <i>10</i>	191.54 2	M1+E2			Mult.,δ: from $\gamma(\theta, H, t)$ (1985Va07 – ¹⁸⁶ Au ε decay); δ =-0.12 6 or +3.2 8.
		1176.1 [‡] <i>5</i>	48 [‡] 7	$0.0 0^{-}$	+			
1222.46	4+	266.5 [‡] <i>d</i> 4	19 [‡] 2	956.48 3	+			Assignment to $^{186}\mathrm{Au}\ \varepsilon$ decay is not certain.
		423.9 [‡] 3	45 [‡] 5	798.48 2	E2		0.0375	$\alpha(K)$ =0.0266 4; $\alpha(L)$ =0.00835 12; $\alpha(M)$ =0.00205 3 $\alpha(N)$ =0.000503 7; $\alpha(O)$ =8.40×10 ⁻⁵ 12; $\alpha(P)$ =2.77×10 ⁻⁶ 4 Mult.: from DCO in $(\alpha,6n\gamma)$ and $\alpha(K)$ exp in ε decay.
		615.6 [‡] 4	23 [‡] 3	607.17 2	+			
		732.1# 2	82 6	490.35 4	E0+M1+E2		0.07 3	$\alpha(K)$ =0.016 8; $\alpha(L)$ =0.0028 11; $\alpha(M)$ =0.00064 24 $\alpha(N)$ =0.00016 6; $\alpha(O)$ =2.8×10 ⁻⁵ 11; $\alpha(P)$ =1.8×10 ⁻⁶ 9
		1030.8 [#] 3	100 5	191.54 2	E2		0.00516	$\alpha(K)$ =0.00419 6; $\alpha(L)$ =0.000746 11; $\alpha(M)$ =0.0001742 25 $\alpha(N)$ =4.29×10 ⁻⁵ 6; $\alpha(O)$ =7.57×10 ⁻⁶ 11; $\alpha(P)$ =4.41×10 ⁻⁷ 7
								Mult.: Q from $\gamma(\theta, H, T)$.
1342.9	8+	464.8 [@] 4	100	877.51 6 ⁻¹	(E2) ^a		0.0297 6	$\alpha(K)$ =0.0215 4; $\alpha(L)$ =0.00620 14; $\alpha(M)$ =0.00151 4 $\alpha(N)$ =0.000372 9; $\alpha(O)$ =6.25×10 ⁻⁵ 14; $\alpha(P)$ =2.26×10 ⁻⁶ 4 B(E2)(W.u.)=2.9×10 ² 3
1363.09	(5^{+})	406 <i>1</i>	22 8	956.48 3	-			B(B2)(11.d.) 2.5/10 5
		872.9 <mark>#</mark> <i>4</i>	100 7	490.35 4	-			
1407.60	3-	231.7 [‡] 3	15.5 [‡] 14	1175.95 2	(E1)		0.0487	α (K)=0.0401 6 ; α (L)=0.00662 10 ; α (M)=0.001527 22 α (N)=0.000374 6 ; α (O)=6.49×10 ⁻⁵ 10 ; α (P)=3.56×10 ⁻⁶ 5 Mult.: E1, E2 from α (K)exp from ε decay; $\Delta \pi$ =yes from level scheme.
		609.4 [‡] 3	40 [‡] 10	798.48 2 ⁻²	+			
		800.1‡ 3	<35 [‡]	607.17 2				E_{γ} , I_{γ} : Unweighted average of data from ¹⁸⁶ Au ε decay and $(\alpha, 6n\gamma)$.
		916.7 [‡] <i>3</i>	11.2‡ 2	490.35 4	+			$E_{\gamma}I_{\gamma}$: Weighted average of data from ¹⁸⁶ Au ε decay and $(\alpha,6n\gamma)$. Iy Other: 29 9 in $(\alpha,6n\gamma)$.
		1216.2 [‡] 3	100‡ 5	191.54 2	E1		1.52×10 ⁻³	$\alpha(K)=0.001256 \ 18; \ \alpha(L)=0.000183 \ 3; \ \alpha(M)=4.15\times10^{-5} \ 6$ $\alpha(N)=1.024\times10^{-5} \ 15; \ \alpha(O)=1.84\times10^{-6} \ 3;$ $\alpha(P)=1.239\times10^{-7} \ 18; \ \alpha(IPF)=2.28\times10^{-5} \ 9$

6

γ (186Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&	δ&c	α^{b}	Comments
1417.89	(3)+	461.8 [‡] 3	<10 [‡]	956.48	3+	M1(+E2+E0)			$\alpha(K)$ =0.05 3; $\alpha(L)$ =0.010 4; $\alpha(M)$ =0.0022 7 $\alpha(N)$ =0.00056 18; $\alpha(O)$ =0.00010 4; $\alpha(P)$ =6.E-6 4 Mult.: α_k = 0.5 from ε decay.
		810.7 [‡] <i>3</i>	38 [‡] 4	607.17	2+				
		927.3 [‡] 4	25 [‡] 6	490.35	4+				
		1226.1 [‡] 3	100‡ 6	191.54	2+				
1470.21	(6 ⁺)	478.7 3	<200	991.44	4+	(E2) ^a		0.0276	$\alpha(K)$ =0.0201 3; $\alpha(L)$ =0.00565 8; $\alpha(M)$ =0.001377 20 $\alpha(N)$ =0.000338 5; $\alpha(O)$ =5.70×10 ⁻⁵ 8; $\alpha(P)$ =2.12×10 ⁻⁶ 3
		592.3 <i>3</i>	100 47	877.51					
4 600 06	L	979.7 <i>3</i>	87 35	490.35					
1600.26	(6^+)	722.6 <i>3</i> 1110.0 <i>3</i>	100 <i>11</i> ≈34	877.51 490.35					
1612.3		1110.0 3 1121.9 [‡] 3	100 [‡]	490.35					
1632.78	(4-)	$225.1^{\ddagger} 3$	13.2 [‡] 11	1407.60		M1+E2	1.3 +14-5	0.40 11	$\alpha(K)=0.29 \ 11; \ \alpha(L)=0.0887 \ 16; \ \alpha(M)=0.0218 \ 5$
1032.70	(+)		13.2 11	1407.00	3	WITTE	1.5 114 5	0.40 11	$\alpha(N)=0.00534 \ 10; \ \alpha(O)=0.000894 \ 22;$ $\alpha(P)=3.1\times10^{-5} \ 13$
		676.2 [#] 4	100 4	956.48	3+	E1+M2	-0.014 10	0.00445	$\alpha(K)$ =0.00372 6; $\alpha(L)$ =0.000561 8; $\alpha(M)$ =0.0001282
		#						2	$\alpha(N)=3.15\times10^{-5} 5$; $\alpha(O)=5.62\times10^{-6} 8$; $\alpha(P)=3.61\times10^{-7} 5$
		1142.4 [#] 4	12.6 <i>14</i>	490.35	4+	(E1)		1.67×10^{-3}	$\alpha(K)$ =0.001403 20; $\alpha(L)$ =0.000205 3; $\alpha(M)$ =4.65×10 ⁻⁵ 7
									$\alpha(N)=1.147\times10^{-5}\ 16$; $\alpha(O)=2.06\times10^{-6}\ 3$; $\alpha(P)=1.382\times10^{-7}\ 20$; $\alpha(IPF)=4.17\times10^{-6}\ 7$ $E\gamma=1142.0\ 3$, $I\gamma=54\ 20$ in $(\alpha,6n\gamma)$.
		1441.3 [‡] 4	14.3 [‡] <i>14</i>	191.54	2+				Mult.: see comment in 186 Au ε decay.
1671.9	3 ⁺ ,4	1181.5 [‡] 5	100‡	490.35					Frait see comment in Tra 6 decay.
1692.68	(5^{-})	285.3 3	9.2 24	1407.60					
		470.1 3	27.1 22	1222.46					
		700.9 3	16.4 20	991.44					
		1202.8 <i>3</i>	100 5	490.35	4+	(E1)		1.54×10^{-3}	$\alpha(K)=0.001281 \ 18; \ \alpha(L)=0.000186 \ 3;$ $\alpha(M)=4.24\times10^{-5} \ 6$
									$\alpha(N)=1.045\times 10^{-5}\ 15;\ \alpha(O)=1.87\times 10^{-6}\ 3;$ $\alpha(P)=1.263\times 10^{-7}\ 18;\ \alpha(IPF)=1.81\times 10^{-5}\ 3$ Mult.: DCO consistent with pure stretched D or with D+Q (δ ≥1.4) Δ J=0 transition. Δ J=1, Δ π =yes
1801.4	(7^{+})	438 <i>1</i>	100 6	1363.09	(5 ⁺)				from level scheme.
		+ 10 /	10070		. , ,				

$\gamma(^{186}\text{Pt})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	δ & c	α^{b}	Comments
1814.1		1323.7‡ 4	100	490.35	4+				
1837.96	(4)	205.0 [‡] 3	97 [‡] 8	1632.78	(4-)	M1+E2	-0.309 23	0.824 14	$\alpha(K)$ =0.669 12; $\alpha(L)$ =0.1190 18; $\alpha(M)$ =0.0278 5 $\alpha(N)$ =0.00686 11; $\alpha(O)$ =0.001220 18; $\alpha(P)$ =7.62×10 ⁻⁵ 14
		430.3 [‡] <i>3</i>	85 [‡] 8	1407.60	3-	M1+E2	+6.6 9	0.0379 8	$\alpha(K)=0.0272\ 7;\ \alpha(L)=0.00812\ 13;\ \alpha(M)=0.00198\ 3$ $\alpha(N)=0.000488\ 8;\ \alpha(O)=8.17\times10^{-5}\ 13;\ \alpha(P)=2.86\times10^{-6}\ 8$
		615.6 [‡] <i>3</i>	<2.9 [‡]	1222.46	4+				
		881.6 [‡] 3	100 [‡] 6	956.48	3 ⁺	E1+M2	-0.04 +2-13	0.0027 12	$\alpha(K)=0.0023 \ 10; \ \alpha(L)=0.00034 \ 17; \ \alpha(M)=8.E-5 \ 4$ $\alpha(N)=1.9\times10^{-5} \ 10; \ \alpha(O)=3.4\times10^{-6} \ 18; \ \alpha(P)=2.3\times10^{-7} \ 12$
1858.0	10+	515.1 <i>3</i>	100	1342.9	8+	(E2) ^a		0.0230	$\alpha(K)$ =0.01711 24; $\alpha(L)$ =0.00452 7; $\alpha(M)$ =0.001095 16 $\alpha(N)$ =0.000269 4; $\alpha(O)$ =4.56×10 ⁻⁵ 7; $\alpha(P)$ =1.80×10 ⁻⁶ 3 B(E2)(W.u.)=291 25
1896.5	$2^{+},3^{+}$	905.1 [‡] <i>3</i>	18 [‡] <i>3</i>	991.44	4+				
		1098.0 ^{‡d} 3	20.6 [‡] 25	798.48	2+				Assignment to $^{186}\mathrm{Au}\ \varepsilon$ decay is not certain.
		1289.2 [‡] 5	100 [‡] 6	607.17	2+				
1952.33	(7-)	259.8 3	74 5	1692.68	(5 ⁻)	E2		0.1528	B(E2)(W.u.)=29 4 α (K)=0.0876 13; α (L)=0.0492 8; α (M)=0.01241 19 α (N)=0.00304 5; α (O)=0.000490 8; α (P)=8.66×10 ⁻⁶ 13 Mult.: Q from DCO ratio in (α ,6n γ) and γ (θ) in (α ,4n γ), ; not M2 from RUL.
		352.0 <i>3</i>	17.3 15	1600.26	(6^+)	(E1) ^a			B(E1)(W.u.)=4.2×10 ⁻⁶ 7
		481.7 <i>3</i>	27.2 28	1470.21		$(E1)^a$			$B(E1)(W.u.)=2.6\times10^{-6}$ 5
		1074.8 <i>3</i>	100 5	877.51	6+	(E1) ^a			$B(E1)(W.u.)=8.6\times10^{-7}$ 12
1969.63	(6^{-})	277.0 <i>3</i>	30 4	1692.68	(5^{-})				
		336.9 <i>3</i>	38 6	1632.78		Q^a			
		606.6 3	100 10	1363.09					Mult.: not stretched Q from $(\alpha,6n\gamma)$.
2004.33	(8 ⁺)	1092.0 <i>3</i> 533.9 <i>3</i>	14 <i>5</i> 100 <i>10</i>	877.51 1470.21		$(Q)^a$			
2004.33	(0)	661.2 <i>3</i>	45 11	1342.9	(O) Q+	(Q)"			
		1127.4 3	52 8	877.51					
2051.4	(7^{-})	1173.8 <i>3</i>	100	877.51					Mult.: DCO excludes stretched Q in $(\alpha,6n\gamma)$.
2108.5	(10^{+})	250.5 3	43 4	1858.0	10+				Mult.: not $\Delta J=2$ from DCO in $(\alpha,6n\gamma)$.
		765.6 <i>3</i>	100 4		8+				•
2123.05	$(7^-,8^+)$	170.6 <i>3</i>	91 14	1952.33	(7^{-})				
		1246.0 3	100 13	877.51					
2159.5	4 ⁺	796.4 [‡] 4	36 [‡] 8	1363.09	. ,				
		1203.0 [‡] 3	100 [‡] 7	956.48					
2195.0	(8-)	242.6 3	100	1952.33	(7-)	M1+E2			Mult.: from DCO ratio in $(\alpha,6n\gamma)$; M1(+E2) from K/L and α (K)exp in $(\alpha,4n\gamma)$. δ : \leq 0.46 from K/L in $(\alpha,4n\gamma)$.

 ∞

γ (186Pt) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^π	Mult.&	α^{b}	Comments
2216.2	3+,4+	2024.6 [‡] 5	100‡ 9	191.54	2+			
2227.6	3 ⁺ ,4 ⁺	1271.1 [‡] 5	17.4 [‡] 25	956.48	3 ⁺			
	- /	1737.6 [‡] 4	65 [‡] 8	490.35				
		2035.6 [‡] 5	100 [‡] 7	191.54				
2253.95	(8-)	284.4 3	20.7 29	191.54		(E2) ^a	0.1156	o/V)-0.0609 10. o/I)-0.0246 5. o/M)-0.00970 12
2233.93	(0)						0.1130	$\alpha(K)$ =0.0698 10; $\alpha(L)$ =0.0346 5; $\alpha(M)$ =0.00870 13 $\alpha(N)$ =0.00213 4; $\alpha(O)$ =0.000346 5; $\alpha(P)$ =6.98×10 ⁻⁶ 10
		301.7 <i>3</i>	100 11	1952.33		$(M1+E2)^{a}$		
2280.1	(9^{+})	479 <i>1</i>	<200	1801.4				
		937.2 3	100 17	1342.9				
2317.0	(8-)	347.3 3	100 9	1969.63	(6-)	(E2)	0.0644	$\alpha(K)$ =0.0426 6; $\alpha(L)$ =0.01654 24; $\alpha(M)$ =0.00411 6 $\alpha(N)$ =0.001008 15; $\alpha(O)$ =0.0001658 24; $\alpha(P)$ =4.37×10 ⁻⁶ 7 Mult.: DCO consistent with stretched E2.
		515.4 <i>3</i>	< 50	1801.4	(7^+)			
2336.2	12+	478.2 3	100	1858.0	10+	E2	0.0276	$\alpha(K)$ =0.0202 3; $\alpha(L)$ =0.00567 8; $\alpha(M)$ =0.001381 20 $\alpha(N)$ =0.000339 5; $\alpha(O)$ =5.72×10 ⁻⁵ 8; $\alpha(P)$ =2.12×10 ⁻⁶ 3 B(E2)(W.u.)=2.5×10 ² 3 Mult.: stretched Q from (α ,6n γ); not M2 from RUL.
2356.1	(9^{-})	161.1 <i>3</i>	100	2195.0	(8-)	$D(+Q)^a$		viait Successed & from (a,on/), not the from Role.
2374.92	(9-)	252.2 3	17.8 35	2123.05		2(10)		
2371.72	()	323.4 <i>3</i>	20.6 25	2051.4				
		422.4 3	100 6	1952.33		(E2) ^a	0.0379	$\alpha(K)=0.0268 \ 4; \ \alpha(L)=0.00845 \ 12; \ \alpha(M)=0.00207 \ 3$
					()	` /		$\alpha(N)=0.000509 \ 8; \ \alpha(O)=8.50\times10^{-5} \ 12; \ \alpha(P)=2.79\times10^{-6} \ 4$
2430.5	(9^{-})	379.2 <i>3</i>		2051.4	(7^{-})	(E2) ^a	0.0505	$\alpha(K) = 0.0345 \ 5; \ \alpha(L) = 0.01215 \ 18; \ \alpha(M) = 0.00300 \ 5$
	(-)				(,)	()		$\alpha(N)=0.000737 \ 11; \ \alpha(O)=0.0001220 \ 18; \ \alpha(P)=3.57\times10^{-6} \ 5$
								I_{γ} : I(379 γ triplet):I(1088 γ)=100 5:21.1 13 in (α ,6n γ).
		1087.7 <i>3</i>		1342.9	8+			I_{γ} : see comment on 579.2 γ .
2544.5	(10^+)	540.3 <i>3</i>	100	2004.33		(E2) ^a	0.0205	$\alpha(K)$ =0.01541 22; $\alpha(L)$ =0.00391 6; $\alpha(M)$ =0.000946 14
	()				(0)	()		$\alpha(N)=0.000233$ 4; $\alpha(O)=3.95\times10^{-5}$ 6; $\alpha(P)=1.627\times10^{-6}$ 23
2559.4	(10^{-})	203.5 <i>3</i>	100 9	2356.1	(9^{-})	a		Mult.: DCO indicates $\Delta J=1$ transition.
	()	364.3 <i>3</i>	23 9		(8-)			
2611.7	(12^+)	275.6 <i>3</i>	15.6 <i>16</i>	2336.2	12+			
	()	503.2 3	27 3	2108.5		E2	0.0244	$\alpha(K)=0.0180$ 3; $\alpha(L)=0.00485$ 7; $\alpha(M)=0.001176$ 17
			_, _		()			α (N)=0.000289 4; α (O)=4.89×10 ⁻⁵ 7; α (P)=1.90×10 ⁻⁶ 3 B(E2)(W.u.)>0.10
		753.6 <i>3</i>	100 6	1858.0	10 ⁺	[E2]	0.00976	Mult.: stretched Q from DCO in $(\alpha,6n\gamma)$; not M2 from RUL. $\alpha(K)=0.00770\ 11$; $\alpha(L)=0.001574\ 22$; $\alpha(M)=0.000373\ 6$ $\alpha(N)=9.18\times10^{-5}\ 13$; $\alpha(O)=1.594\times10^{-5}\ 23$; $\alpha(P)=8.15\times10^{-7}\ 12$ B(E2)(W.u.)>0.051
								Mult.: DCO in $(\alpha,6n\gamma)$ consistent with stretched Q; not M2 from RUL.
2632.90	(10^{-})	202.6 3	40 13	2430.5	(9-)			
		257.9 <i>3</i>	100 17	2374.92	(9-)	$M1(+E2)^{a}$		Mult.: DCO in $(\alpha,6n\gamma)$ implies $\Delta J=1$.
		315.7 <i>3</i>	40 7	2317.0		. ,		* * * * * * * * * * * * * * * * * * * *

9

γ (186Pt) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$\alpha^{m{b}}$	Comments
2632.90	(10-)	379.1 <i>3</i>	<667	2253.95	(8-)	(E2) ^a	0.0506	$\alpha(K)$ =0.0345 5; $\alpha(L)$ =0.01216 18; $\alpha(M)$ =0.00301 5 $\alpha(N)$ =0.000738 11; $\alpha(O)$ =0.0001221 18; $\alpha(P)$ =3.57×10 ⁻⁶ 5 I_{γ} : 633 33 for 379 γ triplet in (α ,6n γ).
2696.4	(10-)	379.4 <i>3</i>	100	2317.0	(8-)	(E2) ^a	0.0505	$\alpha(K)=0.0345$ 5; $\alpha(L)=0.01213$ 18; $\alpha(M)=0.00300$ 5 $\alpha(N)=0.00735$ 11; $\alpha(O)=0.0001218$ 18; $\alpha(P)=3.56\times10^{-6}$ 5
2788.0	(11^{-})	228.7 3	63 8	2559.4	(10^{-})	D+Q		DCO implies $\Delta J=1$.
	,	413.2 3	100 8	2374.92		$(E2)^{a}$	0.0401	$\alpha(K)=0.0282 \ 4; \ \alpha(L)=0.00908 \ 13; \ \alpha(M)=0.00223 \ 4$ $\alpha(N)=0.000548 \ 8; \ \alpha(O)=9.13\times10^{-5} \ 13; \ \alpha(P)=2.93\times10^{-6} \ 5$
		431.9 <i>3</i>	46 <i>4</i>	2356.1	(9^{-})			
2792.1	(11^{-})	232.7 <i>3</i>	31 3	2559.4	(10^{-})	$(M1+E2)^{a}$		DCO implies $\Delta J=1$.
		417.2 3	100 6	2374.92	(9-)	(E2)	0.0391	$\alpha(K)=0.0276 \ 4; \ \alpha(L)=0.00880 \ 13; \ \alpha(M)=0.00216 \ 3$ $\alpha(N)=0.000531 \ 8; \ \alpha(O)=8.85\times10^{-5} \ 13; \ \alpha(P)=2.87\times10^{-6} \ 4$
2825.0	(14+)	488.9 <i>3</i>	100	2336.2	12+	(E2) ^a	0.0262	$\alpha(K)=0.0192\ 3;\ \alpha(L)=0.00529\ 8;\ \alpha(M)=0.001288\ 19$ $\alpha(N)=0.000316\ 5;\ \alpha(O)=5.34\times10^{-5}\ 8;\ \alpha(P)=2.02\times10^{-6}\ 3$ $\alpha(E)=0.000316\ 214\ 21$
2864.4	(12^+)	253.1 <i>3</i>	49 8	2611.7	(12^+)			D(L2)(W.u.)-217 21
200	(12)	319.9 <i>3</i>	35 7	2544.5	(10^{+})			
		527.8 <i>3</i>	25 8	2336.2	12+			
		1006.3 <i>3</i>	100 8	1858.0	10 ⁺			
2887.2	(11-)	456.7 <i>3</i>	100	2430.5	(9-)	(E2) ^a	0.0310	$\alpha(K)$ =0.0224 4; $\alpha(L)$ =0.00656 10; $\alpha(M)$ =0.001602 23 $\alpha(N)$ =0.000393 6; $\alpha(O)$ =6.60×10 ⁻⁵ 10; $\alpha(P)$ =2.35×10 ⁻⁶ 4
3043.0	(12-)	251.0 <i>3</i>	24 6	2792.1	(11-)	$D(+Q)^a$	0.498	$\alpha(K)$ =0.410 6; $\alpha(L)$ =0.0672 10; $\alpha(M)$ =0.01552 23 $\alpha(N)$ =0.00384 6; $\alpha(O)$ =0.000691 10; $\alpha(P)$ =4.67×10 ⁻⁵ 7
		255.1 <i>3</i>	39 <i>3</i>	2788.0	(11^{-})			Mult.: DCO in $(\alpha,6n\gamma)$ excludes stretched Q.
		483.4 <i>3</i>	100 9	2559.4	(10^{-})			
3073.4	(12^{-})	377.0 ^d 3	15.3 26	2696.4	(10^{-})			
3073.1	(12)	440.5 3	100 5	2632.90		(E2) ^a	0.0340	$\alpha(K)$ =0.0243 4; $\alpha(L)$ =0.00737 11; $\alpha(M)$ =0.00180 3 $\alpha(N)$ =0.000443 7; $\alpha(O)$ =7.42×10 ⁻⁵ 11; $\alpha(P)$ =2.54×10 ⁻⁶ 4
3171.7	(12 ⁻)	475.3 <i>3</i>	100	2696.4	(10-)	(E2) ^a	0.0281	$\alpha(K)=0.000445$ 7, $\alpha(O)=7.42\times10^{-1}$ 17, $\alpha(E)=2.54\times10^{-4}$ 20 $\alpha(K)=0.000346$ 5; $\alpha(O)=5.82\times10^{-5}$ 9; $\alpha(P)=2.15\times10^{-6}$ 3
3192.1	(13-)	366.9 <i>3</i>	21 7	2825.0	(14 ⁺)	D		
3192.4	(14 ⁺)	855.9 <i>3</i> 328.2 <i>3</i>	100 <i>14</i> 52 <i>6</i>	2336.2 2864.4	12 ⁺ (12 ⁺)	D (E2) ^a	0.0757	DCO in $(\alpha,6n\gamma)$ excludes stretched Q. B(E2)(W.u.)>1.2
								$\alpha(K)$ =0.0489 7; $\alpha(L)$ =0.0203 3; $\alpha(M)$ =0.00506 8 $\alpha(N)$ =0.001239 18; $\alpha(O)$ =0.000203 3; $\alpha(P)$ =4.98×10 ⁻⁶ 7
		367.3 <i>3</i>	8 3	2825.0	(14^{+})			
		580.4 <i>3</i>	100 9	2611.7	(12^{+})	(E2)	0.01737	$\alpha(K)=0.01321$ 19; $\alpha(L)=0.00318$ 5; $\alpha(M)=0.000765$ 11 $\alpha(N)=0.000188$ 3; $\alpha(O)=3.21\times10^{-5}$ 5; $\alpha(P)=1.397\times10^{-6}$ 20
								B(E2)(W.u.)>0.13 Mult.: DCO in $(\alpha,6\pi\gamma)$ consistent with stretched Q; not M2 from RUL.
		856.4 <i>3</i>	38 4	2336.2	12+	(E2)	0.00747	$\alpha(K)=0.00598 \ 9; \ \alpha(L)=0.001147 \ 16; \ \alpha(M)=0.000270 \ 4$ $\alpha(N)=6.66\times10^{-5} \ 10; \ \alpha(O)=1.163\times10^{-5} \ 17; \ \alpha(P)=6.32\times10^{-7} \ 9$

γ (186Pt) (continued)

E_i (level)	\mathbf{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&	α^{b}	Comments
3269.6	(14+)	444.7 <i>3</i> 657.8 <i>3</i>	42 <i>6</i> 100 <i>9</i>	2825.0 (14 ⁺) 2611.7 (12 ⁺)	(E2) ^a	0.01309	$\alpha(K)$ =0.01016 15; $\alpha(L)$ =0.00225 4; $\alpha(M)$ =0.000536 8
		933.3 <i>3</i>	55 <i>7</i>	2336.2 12+			$\alpha(N)=0.0001320 \ 19; \ \alpha(O)=2.27\times10^{-5} \ 4; \ \alpha(P)=1.075\times10^{-6} \ 15$
3299.8	(13-)	507.7 3	27 7	2792.1 (11 ⁻)	(E2) ^a	0.0239	$\alpha(K)=0.01766\ 25;\ \alpha(L)=0.00472\ 7;\ \alpha(M)=0.001144\ 17$
		511.8 <i>3</i>	100 20	2788.0 (11-)	(E2) ^a	0.0234	$\alpha(N)=0.000281$ 4; $\alpha(O)=4.76\times10^{-5}$ 7; $\alpha(P)=1.86\times10^{-6}$ 3 $\alpha(K)=0.01735$ 25; $\alpha(L)=0.00460$ 7; $\alpha(M)=0.001116$ 16
3310.7	(13-)	268.0 <i>3</i>	43 11	3043.0 (12 ⁻)	(M1+E2) ^a		$\alpha(N)=0.000274$ 4; $\alpha(O)=4.64\times10^{-5}$ 7; $\alpha(P)=1.83\times10^{-6}$ 3 Mult.: $\Delta J=1$ transition from DCO in $(\alpha,6n\gamma)$.
3310.7	(15)	518.5 3	100 21	2792.1 (11 ⁻)	$(E2)^a$	0.0227	$\alpha(K)=0.01686\ 24;\ \alpha(L)=0.00442\ 7;\ \alpha(M)=0.001072\ 16$
3394.8	(16 ⁺)	569.8 <i>3</i>	100	2825.0 (14 ⁺)	(E2) ^a	0.0181	$\alpha(N)=0.000264$ 4; $\alpha(O)=4.47\times10^{-5}$ 7; $\alpha(P)=1.778\times10^{-6}$ 25 $\alpha(K)=0.01374$ 20; $\alpha(L)=0.00335$ 5; $\alpha(M)=0.000807$ 12
							$\alpha(N)=0.000199 \ 3; \ \alpha(O)=3.39\times10^{-5} \ 5; \ \alpha(P)=1.452\times10^{-6} \ 21$ B(E2)(W.u.)=1.9×10 ² 4
3421.4	(13 ⁻)	534.2 3	100	2887.2 (11-)	(E2) ^a	0.0211	$\alpha(K)=0.01580\ 23;\ \alpha(L)=0.00405\ 6;\ \alpha(M)=0.000979\ 14$
3530.8	(15 ⁻)	338.6 <i>3</i>	39 7	3192.1 (13-)	(E2) ^a	0.0692	$\alpha(N)=0.000241$ 4; $\alpha(O)=4.09\times10^{-5}$ 6; $\alpha(P)=1.667\times10^{-6}$ 24 $\alpha(K)=0.0453$ 7; $\alpha(L)=0.0181$ 3; $\alpha(M)=0.00451$ 7
		705.8 <i>3</i>	100 6	2825.0 (14+)	(E1)	0.00409	$\alpha(N)=0.001105 \ 16; \ \alpha(O)=0.000182 \ 3; \ \alpha(P)=4.63\times10^{-6} \ 7$ $\alpha(K)=0.00342 \ 5; \ \alpha(L)=0.000514 \ 8; \ \alpha(M)=0.0001174 \ 17$
							$\alpha(N)=2.89\times10^{-5}$ 4; $\alpha(O)=5.15\times10^{-6}$ 8; $\alpha(P)=3.32\times10^{-7}$ 5 DCO in $(\alpha,6n\gamma)$ excludes stretched Q.
3566.9	(14-)	493.5 <i>3</i>	100	3073.4 (12-)	(E2) ^a	0.0256	$\alpha(K)=0.0188 \ 3; \ \alpha(L)=0.00514 \ 8; \ \alpha(M)=0.001250 \ 18$ $\alpha(N)=0.000307 \ 5; \ \alpha(O)=5.19\times10^{-5} \ 8; \ \alpha(P)=1.98\times10^{-6} \ 3$
3599.8	(14-)	289.2 <i>3</i>	45 8	3310.7 (13-)	(M1+E2) ^a		Mult.: $\Delta J=1$ transition from DCO in $(\alpha,6n\gamma)$.
		556.6 <i>3</i>	100 11	3043.0 (12 ⁻)	$(E2)^a$	0.0192	$\alpha(K)=0.01445 \ 2I; \ \alpha(L)=0.00359 \ 5; \ \alpha(M)=0.000865 \ I3$ $\alpha(N)=0.000213 \ 3; \ \alpha(O)=3.62\times10^{-5} \ 6; \ \alpha(P)=1.527\times10^{-6} \ 22$
3664.6	(16^{+})	472.2 <i>3</i>	100	3192.4 (14+)	(E2) ^a	0.0285	$\alpha(K)=0.0208 \ 3; \ \alpha(L)=0.00590 \ 9; \ \alpha(M)=0.001438 \ 21$
3701.0	(14-)	529.3 <i>3</i>	100	3171.7 (12-)	(E2) ^a	0.0216	$\alpha(N)=0.000353\ 5;\ \alpha(O)=5.95\times10^{-5}\ 9;\ \alpha(P)=2.18\times10^{-6}\ 3$ $\alpha(K)=0.01612\ 23;\ \alpha(L)=0.00416\ 6;\ \alpha(M)=0.001007\ 15$
3/01.0	(14)	329.3 3	100	31/1./ (12)	(E2)**	0.0216	$\alpha(K) = 0.01612 \ 25; \ \alpha(L) = 0.00416 \ 6; \ \alpha(M) = 0.001007 \ 15$ $\alpha(N) = 0.000247 \ 4; \ \alpha(O) = 4.20 \times 10^{-5} \ 6; \ \alpha(P) = 1.700 \times 10^{-6} \ 24$
3873.8	(15 ⁻)	574.0 <i>3</i>	100	3299.8 (13 ⁻)	(E2) ^a	0.0178	$\alpha(K)=0.01352$ 19; $\alpha(L)=0.00328$ 5; $\alpha(M)=0.000790$ 12 $\alpha(N)=0.000194$ 3; $\alpha(O)=3.32\times10^{-5}$ 5; $\alpha(P)=1.430\times10^{-6}$ 20
3893.0	(15^{-})	293.4 <i>3</i>	42 15	3599.8 (14 ⁻)	(M1+E2) ^a		$u(N)=0.000194$ 3, $u(O)=3.32\times10$ 3, $u(F)=1.430\times10$ 20
		582.3 <i>3</i>	100 23	3310.7 (13 ⁻)	$(E2)^a$	0.01724	$\alpha(K)$ =0.01312 19; $\alpha(L)$ =0.00315 5; $\alpha(M)$ =0.000758 11 $\alpha(N)$ =0.000186 3; $\alpha(O)$ =3.18×10 ⁻⁵ 5; $\alpha(P)$ =1.387×10 ⁻⁶ 20
3963.3	(16^+)	568 ^d 1		3394.8 (16 ⁺)			$u(n) = 0.000100 \ S$, $u(0) = 3.16 \times 10^{-6} \ S$; $u(r) = 1.56 / \times 10^{-6} \ Z0$
	()	693.7 3	100 8	3269.6 (14+)	(E2) ^a	0.01165	$\alpha(K)$ =0.00910 13; $\alpha(L)$ =0.00195 3; $\alpha(M)$ =0.000464 7 $\alpha(N)$ =0.0001142 16; $\alpha(O)$ =1.97×10 ⁻⁵ 3; $\alpha(P)$ =9.64×10 ⁻⁷ 14
2002.0	(177-)	1138 <i>I</i>	25 17	2825.0 (14 ⁺)	(E2) <i>(</i>	0.0216	
3983.9	(17 ⁻)	453.1 <i>3</i>	100 8	3530.8 (15 ⁻)	(E2) ^a	0.0316	$\alpha(K)$ =0.0228 4; $\alpha(L)$ =0.00672 10; $\alpha(M)$ =0.001643 24 $\alpha(N)$ =0.000404 6; $\alpha(O)$ =6.77×10 ⁻⁵ 10; $\alpha(P)$ =2.39×10 ⁻⁶ 4
		589.1 <i>3</i>	62 9	3394.8 (16 ⁺)	(D)		DCO in $(\alpha,6n\gamma)$ excludes stretched Q.

$\gamma(^{186}\text{Pt})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	α^{b}	Comments
4051.3	(18+)	656.5 3	100	3394.8	(16 ⁺)	(E2) ^a	0.01315	$\alpha(K)$ =0.01020 15; $\alpha(L)$ =0.00226 4; $\alpha(M)$ =0.000539 8 $\alpha(N)$ =0.0001327 19; $\alpha(O)$ =2.28×10 ⁻⁵ 4; $\alpha(P)$ =1.080×10 ⁻⁶ 16
4110.6	(16 ⁻)	543.7 3	100	3566.9	(14-)	(E2) ^a	0.0202	B(E2)(W.u.)>58 α (K)=0.01520 22; α (L)=0.00384 6; α (M)=0.000928 13 α (N)=0.000228 4; α (O)=3.88×10 ⁻⁵ 6; α (P)=1.605×10 ⁻⁶ 23
4172.6	(16 ⁻)	471.6 <i>3</i>	100	3701.0	(14-)	(E2) ^a	0.0286	$\alpha(K)$ =0.0208 3; $\alpha(L)$ =0.00592 9; $\alpha(M)$ =0.001444 21 $\alpha(N)$ =0.000355 5; $\alpha(O)$ =5.97×10 ⁻⁵ 9; $\alpha(P)$ =2.19×10 ⁻⁶ 3
4208.5	(16 ⁻)	315.5 <i>3</i> 608.6 <i>3</i>	25 <i>10</i> 100 <i>25</i>	3893.0 3599.8		(E2) ^a	0.01558	$\alpha(K)=0.01194$ 17; $\alpha(L)=0.00278$ 4; $\alpha(M)=0.000667$ 10
4258.5	(18 ⁺)	593.9 <i>3</i>	100	3664.6	(16 ⁺)	(E2) ^a	0.01648	$\alpha(N)=0.0001641\ 23;\ \alpha(O)=2.81\times10^{-5}\ 4;\ \alpha(P)=1.264\times10^{-6}\ 18$ $\alpha(K)=0.01258\ 18;\ \alpha(L)=0.00298\ 5;\ \alpha(M)=0.000715\ 10$ $\alpha(N)=0.0001760\ 25;\ \alpha(O)=3.01\times10^{-5}\ 5;\ \alpha(P)=1.331\times10^{-6}\ 19$
4393.2 4483.0	(17-)	519.4 <i>3</i> 609.2 <i>3</i>	100 100	3873.8 3873.8	(15^{-})			a(1) 0.0001700 25, a(0) 5.01×10 5, a(1) 1.551×10 15
4518.0 4539.9	(17 ⁻) (19 ⁻)	625.0 <i>3</i> 556.0 <i>3</i>	100 100	3893.0 3983.9		(E2) ^a	0.0192	$\alpha(K)=0.01448\ 2I;\ \alpha(L)=0.00360\ 5;\ \alpha(M)=0.000868\ I3$ $\alpha(N)=0.000213\ 3;\ \alpha(O)=3.63\times10^{-5}\ 6;\ \alpha(P)=1.530\times10^{-6}\ 22$
4661.1? 4699.0	(18 ⁺) (18 ⁻)	697.8 ^d 3 588.4 3	100 100	3963.3 4110.6		(E2) ^a	0.01683	$\alpha(K)$ =0.01283 18; $\alpha(L)$ =0.00306 5; $\alpha(M)$ =0.000735 11
4788.3	(20^{+})	737.0 <i>3</i>	100	4051.3	(18 ⁺)	(E2) ^a	0.01023	$\alpha(N)=0.000181\ 3;\ \alpha(O)=3.09\times10^{-5}\ 5;\ \alpha(P)=1.357\times10^{-6}\ 19$ $\alpha(K)=0.00805\ 12;\ \alpha(L)=0.001666\ 24;\ \alpha(M)=0.000395\ 6$
4836.0	(18-)	627.5 3	100	4208.5	(16-)	(E2) ^a	0.01454	$\alpha(N)=9.73\times10^{-5}$ 14; $\alpha(O)=1.687\times10^{-5}$ 24; $\alpha(P)=8.53\times10^{-7}$ 12 $\alpha(K)=0.01120$ 16; $\alpha(L)=0.00255$ 4; $\alpha(M)=0.000611$ 9 $\alpha(N)=0.0001505$ 22; $\alpha(O)=2.58\times10^{-5}$ 4; $\alpha(P)=1.186\times10^{-6}$ 17
4938.4		545.2 3	100	4393.2				$u(N)=0.0001303 22; u(O)=2.38\times10^{-4}4; u(P)=1.180\times10^{-17}$
4956.2	(20^{+})	697.7 3	100	4258.5	(18+)	(E2) ^a	0.01151	$\alpha(K)=0.00900 \ 13; \ \alpha(L)=0.00192 \ 3; \ \alpha(M)=0.000457 \ 7$ $\alpha(N)=0.0001125 \ 16; \ \alpha(O)=1.94\times10^{-5} \ 3; \ \alpha(P)=9.53\times10^{-7} \ 14$
5188.6	(21-)	648.7 <i>3</i>	100	4539.9	(19-)	(E2) ^a	0.01350	$\alpha(K)$ =0.01045 15; $\alpha(L)$ =0.00233 4; $\alpha(M)$ =0.000557 8 $\alpha(N)$ =0.0001372 20; $\alpha(O)$ =2.36×10 ⁻⁵ 4; $\alpha(P)$ =1.107×10 ⁻⁶ 16
5321.2	(20^{-})	622.2 <i>3</i>	100	4699.0				
5597.1	(22+)	808.8 <i>3</i>	100	4788.3		(E2) ^a	0.00841	$\alpha(K)$ =0.00669 10; $\alpha(L)$ =0.001319 19; $\alpha(M)$ =0.000311 5 $\alpha(N)$ =7.67×10 ⁻⁵ 11; $\alpha(O)$ =1.336×10 ⁻⁵ 19; $\alpha(P)$ =7.08×10 ⁻⁷ 10
5738.1	(22^{+})	781.9 <i>3</i>	100	4956.2				
5921.8	(23-)	733.2 3	100	5188.6		(E2) ^a	0.01034	$\alpha(K)=0.00814$ 12; $\alpha(L)=0.001688$ 24; $\alpha(M)=0.000401$ 6 $\alpha(N)=9.86\times10^{-5}$ 14; $\alpha(O)=1.709\times10^{-5}$ 24; $\alpha(P)=8.62\times10^{-7}$ 12
6463.8	(24+)	866.7 <i>3</i>	100	5597.1		(E2) ^a	0.00729	$\alpha(K)$ =0.00584 9; $\alpha(L)$ =0.001115 16; $\alpha(M)$ =0.000262 4 $\alpha(N)$ =6.46×10 ⁻⁵ 9; $\alpha(O)$ =1.130×10 ⁻⁵ 16; $\alpha(P)$ =6.17×10 ⁻⁷ 9
6582.5	(24^{+})	844.4 3	100	5738.1	. ,			
6729.8	(25^{-})	808 1	100	5921.8				
7407.8?	(26^+)	944 ^d 1	100	6463.8	(24^{+})			

12

γ (186Pt) (continued)

- [†] From $(\alpha,6n\gamma)$, unless noted otherwise.
- [‡] From 186 Au ε decay.
- # Weighted average of data from 186 Au ε decay and $(\alpha,6n\gamma)$.
- [@] Weighted average of 1990He19 (α ,6n γ), 1975De21 (16 O,4n γ).
- & From measured $\alpha(K)$ exp and/or $\gamma(\theta,H,T)$ in ¹⁸⁶Au ε decay, unless noted otherwise.
- ^a From DCO ratio in $(\alpha,6n\gamma)$ and band structure. Stretched Q intraband transitions are assigned as (E2), and D+Q intraband transitions or transitions between members of bands which are signature partners are assigned as (M1+E2).
- ^b Additional information 1.
- ^c If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^d Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

→ γ Decay (Uncertain)

 $^{186}_{78}\mathrm{Pt}_{108}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

$$^{186}_{78}\mathrm{Pt}_{108}$$

0.0

192

	History				
Type	Author	Citation	Literature Cutoff Date		
Full Evaluation	F. G. Kondev, S. Juutinen, D. J. Hartley	NDS 150, 1 (2018)	1-Feb-2018		

 $Q(\beta^-)=-5450 \ 6$; $S(n)=9207 \ 25$; $S(p)=5561 \ 28$; $Q(\alpha)=4007 \ 5$ 2017Wa10 Additional information 1.

¹⁸⁸Pt Levels

Cross Reference (XREF) Flags

- A 188 Au ε decay (8.84 min)
 B 190 Pt(p,t)
 C (HI,xn γ)
- **XREF** Comments $\%\varepsilon + \%\beta^{+} = 99.999974$ 3; $\%\alpha = 2.6 \times 10^{-5}$ 3 ABC $\%\alpha$: Weighted average of 2.2×10^{-5} 5 (1979Ha10), 2.8×10^{-5} 5 (1978E111) and 3.0×10^{-5} 6 (1963Gr08). Other: $5.0 \times 10^{-5} + 50 - 25$ (1963Ka17). $T_{1/2}$: Weighted average of 10.5 d 10 (1963Ka17), 10.2 d 3 (1963Gr08), 10.0 d 3 (1955Sm42), and 10.3 d 4 (1954Na25). $E\alpha$ =3870 keV 50 (1963Ka17), 3930 keV 10 (1963Gr08), 3915 keV 10 (1978E111) and 3905 keV 15 (1979Ha10). $\Delta < r^2 > (^{190}\text{Pt} - ^{188}\text{Pt}) = -0.040 \text{ fm}^2 8 (1988\text{Le}22). \quad \Delta < r^2 > (^{194}\text{Pt} - ^{188}\text{Pt}) = -0.188$ fm² 7 (1992Hi07,1990Hi08). 265.61[@] 5 66 ps 3 A C μ =+0.58 8 J^{π} : 265.63 γ E2 to 0⁺. $T_{1/2}$: Weighted average of 65 ps 5 (1995AnZQ) and 67 ps +4-3 (2017Ro07), both using the Dopler-shift recoil distance method. Other: 72 ps 13 using 265.63 $\beta \gamma$ (t) in 1972Fi12. μ : From g=+0.29 4 using the transient-field integral PAC technique (1996St12). $\omega \tau(2^+)=160 \text{ mrad } 10 \text{ and } \tau(2^+)=93 \text{ ps } 7 \text{ were used.}$ 605.69^b 6 J^{π} : 605.3 γ E2 to 0⁺. A C 670.97[@] 6 A C J^{π} : 405.49 γ E2 to 2⁺; band assignment. 4+ 5.1 ps + 15 - 11798.75 8 XREF: B(800). AB J^{π} : L(p,t)=0; 533.4 γ E2 to 2⁺ and 799.2 γ E0 to 0⁺. 936.41 6 3+ A C J^{π} : 330.76 γ E2(+M1) to 2⁺; 689.1 γ E2 from 1⁺. 1085.38^b 8 4+ A C J^{π} : 479.40 γ E2 to 2⁺, 414.79 γ M1(+E2) to 4⁺. 1115.22 5 A C XREF: C(1116.4). J^{π} : 316.53 γ to 0⁺, 414.18 γ E2 to 4⁺. 1184.43[@] 13 6^+ J^{π} : 513.4 γ E2 to 4⁺; band assignment. 1.53 ps 14 C 1214.69 9 J^{π} : 949.09 γ E2(+M1) to 2⁺, 1214.2 γ to 0⁺. $(2)^{+}$ A J^{π} : 1312.62 γ E2 to 0⁺, 641.82 γ (E2) to 4⁺. 1312.73 6 2^{+} Α 1349.99 6 A C J^{π} : 679.13 γ E1 to 4⁺, 1084.33 γ E1 to 2⁺. 1443.7? *3* J^{π} : 857.0 γ to 4⁺, 1528.3 γ to 0⁺, 1262.46 γ E0+M1+E2 to 2⁺. 1528.04 *13* A 1565.60^d 13 J^{π} : 215.9 γ E2 to 3⁻, 381.1 γ to 6⁺. C 1625.71 8 J^{π} : 1626.2 γ M1 to 0⁺, 689.1 E2 to 3⁺. Α 1636.31^b 13 J^{π} : 550.9 γ E2 to 4⁺, 451.9 γ to 6⁺; band assignment. C J^{π} : 1408.92 γ to 2⁺; probable direct population in ¹⁸⁸Au ε decay (J^{π} =(1⁻)). 1674.53 22 $(0^+,1,2)$ Α J^{π} : 1079.7 γ to 2⁺; probable direct population in ¹⁸⁸Au ε decay ($J^{\pi}=(1^{-})$). 1685.6 4 $(0^+,1,2)$ Α J^{π} : 202.6 γ E2 to 5⁻; 583.7 γ (E1) to 6⁺; band assignment. 1768.15^d 16 0.20 ns 2 C $T_{1/2}$: From 203ce(K)(t) in 1979Ri08. Other: 0.621 ns 38 from 203ce(K)(t)

188 Pt Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
1776.08 <i>7</i>	(1-)		A	in 1978Ti02, but the line is weak and contaminations cannot be excluded (see 1978Ti02 for details). A long-lived component of 14 ns 2 was also reported to the 203ce(K) line in 1978Ti02, but not in 1979Ri08. J ^π : 426.5γ (E2) to 3 ⁻ ; 977.27γ (E1) to 0 ⁺ .
1770.08 7 1782.23 [@] 19	(1 ⁻) 8 ⁺	0.97 ps <i>14</i>	C	J^{π} : 597.8 γ E2 to 6 ⁺ ; band assignment.
1810.57 9	$(2)^{+}$	0.57 ps 14	A	J^{π} : 499.58 γ (E0+M1+E2) to 2 ⁺ ; 1139.7 γ to 4 ⁺ .
1954.26 <i>14</i>	$(1^+,2)$		A	J^{π} : 1017.91 γ to 3 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2171.4 4	$(0^+,1,2)$		A	J^{π} : 1905.9 γ to 2 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2179.75 ^c 23 2210.2? 3	8-		C A	J^{π} : 411.6 γ M1+E2 to 7 ⁻ ; band assignment.
2246.52 ^b 17 2295.61 12	8 ⁺ (1,2 ⁺)		C A	J^{π} : 610.2γ E2 to 6 ⁺ ; band assignment. J^{π} : 2295.48γ to 0 ⁺ , 2030.02γ to 2 ⁺ .
2312.45 ^d 21	9-		С	J^{π} : 544.3 γ E2 to 7 ⁻ ; band assignment.
2437.13 [@] 23	10 ⁺	0.49 ps +28-21	C	J^{π} : 654.9 γ to 8 ⁺ ; band assignment.
2446.89 22	$(1,2^+)$		A	J^{π} : 2446.87 γ to 0 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay ($J^{\pi}=(1^{-})$).
2458.05 ^e 22	9-	≈0.66 ns	С	J^{π} : 689.3 γ E2 to 7 ⁻ ; band assignment. $T_{1/2}$: From 1979Ri08, where a delayed component is observed for the electron line associated with the 689-keV γ ray.
2468.4? 5	$(1,2^+)$		A	J^{π} : 1669.6γ to 0 ⁺ ; probable direct population in ¹⁸⁸ Au ε decay $(J^{\pi}=(1^{-}))$.
2497.50 <i>13</i> 2524.65? <i>19</i> 2588.6? <i>3</i>			A A A	
2620.2 3	(8+)		С	J^{π} : 838.0 γ (E2) to 8 ⁺ . Assigned J^{π} =(9 ⁺) in 1988KaZW, but no value was given in 1979DaZN. The relatively lower population of this level, compared to the 10 ⁺ level at 2664 keV, would be consistent with J^{π} =8 ⁺ . The alternative J^{π} =6 ⁺ assignment can be excluded since such a level won't be populated in (HI,xn γ).
2651.25 ^c 24	10-		C	J^{π} : 338.8 γ M1+E2 to 9 ⁻ , 471.5 γ E2 to 8 ⁻ ; band assignment.
2663.63 ^b 21	10+		C	J^{π} : 417.1 γ E2 to 8 ⁺ , 226.5 γ to 10 ⁺ ; band assignment.
2701.35 ^e 25	10 ⁻ 10 ⁺		C	J^{π} : 243.3 γ (M1+E2) to 9 ⁻ ; band assignment.
2702.03 <i>24</i> 2772.6 ^{<i>d</i>} <i>3</i>	10 11 ⁻		C C	J^{π} : 919.8 γ E2 to 8 ⁺ . J^{π} : 460.2 γ E2 to 9 ⁻ ; band assignment.
2798.1? 5	11		A	J. 400.2y E2 to 9, band assignment.
2810.13 ^{&} 23	12 ⁺	0.66 ns 4	С	J^{π} : 108.1 γ E2 to 10 ⁺ .
				$T_{1/2}$: From 108-, 147- and 373ce(K)(t) in 1979Ri08.
				configuration: $v(i_{13/2}^{-2})$ rotational-aligned state. The proposed shape isomer interpretation in 2014Mu12 seems to be incorrect. It is based on the observed reduced B(E2) values from 2002Si10 and comparison with Cranked-model calculations, but the values quoted in 2002Si10 are incorrect. See 2015Ko14 for detailed interpretation.
2875.1 ^a 3	(11^{+})		C	J^{π} : 173.1 γ (M1) to 10 ⁺ .
2909.6? 3	(2+)		A	J ^{π} : probable E0 admixture in 1596.9 γ to 2 ⁺ ; direct population in ¹⁸⁸ Au ε decay (J ^{π} =(1 ⁻)).
2960.3 ^e 3 3046.73 <i>14</i>	11-		C A	J^{π} : 502.3 γ E2 to 9^{-} ; band assignment.
3102.4 ^c 3	12-		C	J^{π} : 329.8 γ to 11 ⁻ , 451.2 γ E2 to 10 ⁻ ; band assignment.
3103.6 [@] 3	12+	<0.42 ps	C	J^{π} : 666.5 γ E2 to 10 ⁺ ; band assignment.
3139.0 & 3	14+		C	J^{π} : 328.9 γ E2 to 12 ⁺ ; band assignment.
3182.0 <i>3</i>	12+		С	J^{π} : 744.9 γ E2 to 10 ⁺ .

¹⁸⁸Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3226.6 ^e 3	12-	С	J^{π} : 525.3 γ E2 to 10 ⁻ ; band assignment.
3232.49 17		A	
3260.66 <i>18</i>		A	
3261.3 ^a 4	(13^{+})	C	J^{π} : 386.2 γ (E2) to (11 ⁺); band assignment.
3325.1 ^d 4	13-	C	J^{π} : 552.5 γ E2 to 11 ⁻ ; band assignment.
3565.0 ^e 4	13-	C	J^{π} : 604.6 γ E2 to 11 ⁻ ; band assignment.
3580.5 [@] 3	14 ⁺	C	J^{π} : 476.9 γ E2 to 12 ⁺ ; band assignment.
3625.8 ^c 4	14-	C	J^{π} : 523.3 γ E2 to 12 ⁻ ; band assignment.
3627.0 ^{&} 4	16+	C	J^{π} : 488.0 γ E2 to 14 ⁺ ; band assignment.
3749.6 ^a 4	(15^+)	C	J^{π} : 488.3 γ to (13 ⁺); band assignment.
3867.2 ^e 4	14-	С	J^{π} : 640.5 γ E2 to 12 ⁻ ; band assignment.
3946.6 ^d 4	15-	C	J^{π} : 621.4 γ E2 to 13 ⁻ ; band assignment.
4007.6 [@] 4	16 ⁺	C	J^{π} : 427.1 γ E2 to 14 ⁺ ; band assignment.
4174.5° 4	16-	C	J^{π} : 548.7 γ to 14 ⁻ ; band assignment.
4237.8 ^e 4	15-	С	J^{π} : 672.8 γ E2 to 13 ⁻ ; band assignment.
4243.8 ^{&} 4	18+	C	J^{π} : 616.8 γ E2 to 16 ⁺ ; band assignment.
4280.5^{f} 4	(17^{-})	C	J^{π} : 333.9 γ (E2) to 15 ⁻ ; band assignment.
4353.2 ^a 4	(17^{+})	C	J^{π} : 603.6 γ to (15 ⁺); band assignment.
4478.8 [@] 6	(18^{+})	C	J^{π} : 471.2 γ to 16 ⁺ ; band assignment.
4549.7 ^e 7	(16^{-})	C	J^{π} : 682.5 γ (E2) to 14 ⁻ ; band assignment.
4593.4 ^f 4	(18^{-})	C	J^{π} : 312.9 γ to (17 ⁻); band assignment.
4665.4 ^d 4	(17^{-})	C	J^{π} : 718.8 γ to 15 ⁻ ; band assignment.
4765.4 ^c 7	(18^{-})	C	J^{π} : 590.9 γ to 16 ⁻ ; band assignment.
4947.6^{f} 5	(19^{-})	C	J^{π} : 354.2 γ to (18 ⁻); band assignment.
4960.7 <mark>&</mark> <i>5</i>	20^{+}	C	J^{π} : 716.9 γ E2 to 18 ⁺ ; band assignment.
5201.3 ^g 6		C	
5505.2 ^g 6		C	
5744.9 <mark>&</mark> 7	(22^{+})	C	J^{π} : 784.2 γ to 20 ⁺ ; band assignment.
6549.9 & 9	(24^{+})	C	J^{π} : 805.0 γ to (22 ⁺); band assignment.
7367.9 ^{&} 10	(26^{+})	С	J^{π} : 818.0 γ to (24 ⁺); band assignment.

 $^{^{\}dagger}$ From least-squares fit to Ey's.

[‡] From deduced transition multipolarities and band structures.

[#] From 2017Ro07 in (HI,xny), using the recoil distance doppler shift method, unless otherwise stated.

[@] Band(A): $K^{\pi}=0^{+}$, ground-state band.

[&]amp; Band(B): Band based on the 2810.13-keV level, associated with a pair of $i_{13/2}$ neutrons (α =0).

^a Band(C): Band based on the 2875.1-keV level, associated with a pair of $i_{13/2}$ neutrons (α =1).

^b Band(D): $K^{\pi}=2^{+}$, gamma-vibrational band.

^c Band(E): Band based on the 2179.75-keV level (α =0). Probably a mixture of several bands within the ν^2 (9/2[624],1/2[510]) and ν^2 (9/2[624],3/2[512]) configurations (by the evaluators).

^d Band(F): Band based on the 1768.15-keV level (α =1). Probably a mixture of several bands within the $v^2(9/2[624],1/2[510])$ and $v^2(9/2[624],3/2[512])$ configurations (by the evaluators).

^e Band(G): $K^{\pi}=9^{-}$, $v^{2}(9/2[624],9/2[505]) band.$

f Band(H): Band based on the 4280.5-keV level.

 $^{^{}g}$ Band(I): Band based on the 5201.3-keV level.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{@}$	Comments
265.61	2+	265.63 [‡] 6	100‡	0.0	0+	E2	0.1425	$\alpha(K)=0.0829\ 12;\ \alpha(L)=0.0451\ 7;\ \alpha(M)=0.01137\ 16$ $\alpha(N)=0.00278\ 4;\ \alpha(O)=0.000450\ 7;\ \alpha(P)=8.21\times10^{-6}\ 12$ $B(E2)(W.u.)=89\ 4$ $Mult.:\ From\ K/L1=7.4\ 14,\ L1/L2=0.44\ 9,\ L1/L3=0.77\ 17\ (1970Jo02),\ K/L3=5.8\ 7$ and $\alpha(L3)\exp[-0.0143\ 7\ (1972Fi12);\ K/L=2.4,\ \alpha(L)\exp[-0.032\ (1971Hu02);\ DCO=1.13\ 3$ and $POL=0.11\ 3\ (2017Mu12);\ K/L\approx 2\ (1979Ri08);\ A_2=0.216\ 9,\ A_4=-0.030\ 11\ (1967Ne02);\ A_2=0.16\ 4,\ A_4=-0.08\ 5\ (1988KaZW);\ A_2=0.21\ 2,\ A_4=-0.05\ 3\ (1979DaZN).$
605.69	2+	340.04 [‡] 5	100‡ 4	265.61	2+	E2(+M1)	0.218	$\alpha(K)$ =0.180 3; $\alpha(L)$ =0.0292 4; $\alpha(M)$ =0.00674 10 $\alpha(N)$ =0.001668 24; $\alpha(O)$ =0.000300 5; $\alpha(P)$ =2.03×10 ⁻⁵ 3 Mult.: From $\alpha(L3)$ exp=0.0060 4 (1972Fi12). Others: $\alpha(K)$ exp=0.055 5 (1970Jo02) and K/M=13.9, $\alpha(K)$ exp=0.055, $\alpha(L)$ exp=0.004 (1971Hu02). However, 1972Fi12 pointed out that ce(K)(340 γ) is complex. DCO=1.02 10 and POL=-0.05 9 (2017Mu12).
		605.3 [‡] 2	68.2 [‡] 25	0.0	0+	E2	0.01578	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.01208 \ 17; \ \alpha(\mathrm{L}) \! = \! 0.00282 \ 4; \ \alpha(\mathrm{M}) \! = \! 0.000677 \ 10 \\ \alpha(\mathrm{N}) \! = \! 0.0001667 \ 24; \ \alpha(\mathrm{O}) \! = \! 2.85 \! \times \! 10^{-5} \ 4; \ \alpha(\mathrm{P}) \! = \! 1.279 \! \times \! 10^{-6} \ 18 \\ \mathrm{Mult.: From} \ \alpha(\mathrm{K}) \mathrm{exp} \! = \! 0.0114 \ 4 \ (1972 \mathrm{Fi} 12); \ \alpha(\mathrm{K}) \mathrm{exp} \! = \! 0.009 \ (1971 \mathrm{Hu} 02). \\ \mathrm{DCO} \! = \! 1.10 \ 3 \ \mathrm{and} \ \mathrm{POL} \! = \! 0.11 \ 5 \ (2017 \mathrm{Mu} 12); \ \mathrm{A}_2 \! = \! 0.24 \ 5, \ \mathrm{A}_4 \! = \! -0.08 \ 5 \\ (1988 \mathrm{KaZW}); \ \mathrm{A}_2 \! = \! 0.23 \ 6, \ \mathrm{A}_4 \! = \! -0.03 \ 8 \ (1979 \mathrm{DaZN}). \end{array}$
670.97	4+	405.49 [‡] 5	100 [‡]	265.61	2+	E2	0.0422	$\alpha(K)$ =0.0295 5; $\alpha(L)$ =0.00967 14; $\alpha(M)$ =0.00238 4 $\alpha(N)$ =0.000584 9; $\alpha(O)$ =9.73×10 ⁻⁵ 14; $\alpha(P)$ =3.06×10 ⁻⁶ 5 B(E2)(W.u.)=1.5×10 ² +4-5 Mult.: From $\alpha(L3)$ exp=0.0023 3 (1972Fi12). Also $\alpha(M)$ exp=0.0027 5 (1972Fi12), but the authors pointed out that this line is complex in ce data. DCO=1.02 2 and POL=0.12 2 (2017Mu12); A ₂ =0.270 13, A ₄ =-0.044 14 (1967Ne02); A ₂ =0.23 4, A ₄ =-0.07 5 (1988KaZW); A ₂ =0.26 2, A ₄ =-0.07 3 (1979DaZN).
798.75	0_{+}	192.89 [‡] <i>19</i>	2.9 [‡] 7	605.69	2+			
		533.4‡ 3	100‡ 4	265.61		E2	0.0212	$\alpha(K)$ =0.01585 23; $\alpha(L)$ =0.00407 6; $\alpha(M)$ =0.000983 14 $\alpha(N)$ =0.000242 4; $\alpha(O)$ =4.10×10 ⁻⁵ 6; $\alpha(P)$ =1.672×10 ⁻⁶ 24 Mult.: From $\alpha(L)$ exp=0.0039 4 (1972Fi12); $\alpha(K)$ exp=0.014 (1971Hu02).
		799.2 5		0.0	0_{+}	E0		E _γ : From ¹⁸⁸ Au ε decay. Mult.: From α (K)exp \geq 1.3 (1972Fi12); α (K)exp \geq 2 (1971Hu02).
936.41	3+	330.76 [‡] 5	62.3 [‡] 24	605.69	2+	E2(+M1)	0.234	$\alpha(K)$ =0.193 3; $\alpha(L)$ =0.0315 5; $\alpha(M)$ =0.00727 11 $\alpha(N)$ =0.00180 3; $\alpha(O)$ =0.000324 5; $\alpha(P)$ =2.19×10 ⁻⁵ 3 $\alpha(E)$ 1/2: Other: 95 10 in (HI,xn $\alpha(E)$). Mult.: From $\alpha(E)$ 20x=0.0055 7 (1972Fi12). A ₂ =-0.08 5, A ₄ =0.08 5 (1988KaZW).
		670.83 [‡] 5	100‡ 4	265.61	2+	M1(+E2)	0.0363	$\alpha(K)$ =0.0301 5; $\alpha(L)$ =0.00479 7; $\alpha(M)$ =0.001102 16 $\alpha(N)$ =0.000273 4; $\alpha(O)$ =4.91×10 ⁻⁵ 7; $\alpha(P)$ =3.35×10 ⁻⁶ 5 Mult.: From A ₂ =0.02 5, A ₄ =-0.06 6 (1988KaZW).
1085.38	4+	414.79 [‡] <i>10</i>	70 [‡] 8	670.97	4+	M1(+E2)	0.1277	$\alpha(K)$ =0.1056 15; $\alpha(L)$ =0.01708 24; $\alpha(M)$ =0.00394 6

$\gamma(^{188}\text{Pt})$ (continued)

$\frac{\mathrm{E}_{i}(\mathrm{level})}{}$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	$\alpha^{@}$	
			,	J f	with.	α	Comments
		4	<u>.</u>				$\alpha(N)$ =0.000974 14; $\alpha(O)$ =0.0001755 25; $\alpha(P)$ =1.190×10 ⁻⁵ 17 I _{γ} : Other: 40.2 16 in (HI,xn γ). Mult.: From $\alpha(K)$ exp=0.078 11 (1972Fi12) for 413.3 γ +414.79 γ . A ₂ =-0.06 5, A ₄ =-0.07 5 (1988KaZW); A ₂ =-0.22 12, A ₄ =-0.03 16 (1979DaZN).
1085.38	4+	479.40 [‡] 9	100 [‡] 10	605.69 2+	E2	0.0275	$\alpha(K)$ =0.0201 3; $\alpha(L)$ =0.00563 8; $\alpha(M)$ =0.001370 20 $\alpha(N)$ =0.000337 5; $\alpha(O)$ =5.67×10 ⁻⁵ 8; $\alpha(P)$ =2.11×10 ⁻⁶ 3 Mult.: From $\alpha(L)$ exp=0.0057 10 (1972Fi12). DCO=1.17 7 and POL=0.09 5 (2017Mu12); A ₂ =0.26 5, A ₄ =-0.07 5 (1988KaZW); A ₂ =0.43 14, A ₄ =0.08 17 (1979DaZN).
		819.4 [‡] <i>4</i>	27 [‡] 9	265.61 2+	E2	0.00819	$\alpha(K)$ =0.00652 10; $\alpha(L)$ =0.001277 18; $\alpha(M)$ =0.000301 5 $\alpha(N)$ =7.42×10 ⁻⁵ 11; $\alpha(O)$ =1.295×10 ⁻⁵ 19; $\alpha(P)$ =6.90×10 ⁻⁷ 10 Mult.: From A ₂ =0.20 5, A ₄ =0.09 6 (1988KaZW).
1115.22	2+	316.53 [‡] 9	19 [‡] 2	798.75 0 ⁺	[E2]	0.0841	$\alpha(K)=0.0535 \ 8; \ \alpha(L)=0.0232 \ 4; \ \alpha(M)=0.00579 \ 9$ $\alpha(N)=0.001418 \ 20; \ \alpha(O)=0.000232 \ 4; \ \alpha(P)=5.42\times10^{-6} \ 8$
		444.18 [‡] 8	21.7 [‡] 18	670.97 4+	E2	0.0333	$\alpha(K)=0.0239\ 4;\ \alpha(L)=0.00717\ 10;\ \alpha(M)=0.001754\ 25$ $\alpha(N)=0.000431\ 6;\ \alpha(O)=7.22\times10^{-5}\ 1I;\ \alpha(P)=2.50\times10^{-6}\ 4$ Mult.: From $\alpha(K)$ exp=0.023\ 2,\ $\alpha(L3)$ exp=0.0066\ 25,\ $\alpha(M)$ exp=0.0050\ 18 (1972Fi12). Authors'\ $\alpha(L3)$ exp agrees with $\alpha(L)$ rather than with $\alpha(L3)$. Ice(L3) given by 1972Fi12 should possibly be interpreted as Ice(L).
		849.3 [‡] 6	14‡ 5	265.61 2+	E0+M1+E2	0.27 1	$\alpha(K)$ =0.01644 24; $\alpha(L)$ =0.00260 4; $\alpha(M)$ =0.000598 9 $\alpha(N)$ =0.0001479 21; $\alpha(O)$ =2.67×10 ⁻⁵ 4; $\alpha(P)$ =1.83×10 ⁻⁶ 3 E_{γ} : 850.9 3 in (HI,xn γ). Mult.: From $\alpha(K)$ exp=0.22 1, $\alpha(L)$ exp=0.038 2, and $\alpha(M)$ exp=0.0098 20 (1972Fi12). A ₂ =-0.63 5, A ₄ =0.19 5 (1988KaZW). δ : -1.1 +20-2 from $\gamma(\theta)$ (1988KaZW). α : 0.27 1, deduced from $\alpha(K)$ exp + $\alpha(L)$ exp + $\alpha(M)$ exp in 1972Fi12.
		1115.25 [‡] 5	100‡ 4	0.0 0+	(E2)	0.00442	$\alpha(K)$ =0.00361 5; $\alpha(L)$ =0.000627 9; $\alpha(M)$ =0.0001458 21 $\alpha(N)$ =3.60×10 ⁻⁵ 5; $\alpha(O)$ =6.36×10 ⁻⁶ 9; $\alpha(P)$ =3.79×10 ⁻⁷ 6; $\alpha(IPF)$ =3.24×10 ⁻⁷ 5
1184.43	6+	513.4 2	100	670.97 4+	E2	0.0232	Mult.: From $\alpha(K)\exp\approx0.002$ (1972Fi12). $\alpha(K)=0.01723$ 25; $\alpha(L)=0.00456$ 7; $\alpha(M)=0.001105$ 16 $\alpha(N)=0.000272$ 4; $\alpha(O)=4.60\times10^{-5}$ 7; $\alpha(P)=1.82\times10^{-6}$ 3 B(E2)(W.u.)=158 15 Mult.: DCO=0.95 5 and POL=0.10 4 (2017Mu12); A ₂ =0.187 22, A ₄ =-0.078 25 (1967Ne02); A ₂ =0.23 4, A ₄ =-0.07 5 (1988KaZW); A ₂ =0.24 3, A ₄ =-0.08 4 (1979DaZN).
1214.69 ((2)+	949.09‡ 8	100‡ 7	265.61 2+	E2(+M1)	0.01494	$\alpha(K)$ =0.01240 18; $\alpha(L)$ =0.00195 3; $\alpha(M)$ =0.000449 7 $\alpha(N)$ =0.0001111 16; $\alpha(O)$ =2.00×10 ⁻⁵ 3; $\alpha(P)$ =1.375×10 ⁻⁶ 20 Mult.: From $\alpha(K)$ exp=0.0046 5 (1972Fi12).
		1214.2 ^{‡&} 5	19.7 [‡] <i>12</i>	0.0 0+			Mult.: $\alpha(K)\exp\approx0.085$ (1972Fi12) indicates E0 mixture, implying a probable doublet in ce data.

S

γ (188 Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α @	Comments
1312.73	2+	198.1 [‡] <i>3</i>	7.1 [‡] 24	1115.22 2+			
		376.70 [‡] <i>15</i>	17 [‡] 3	936.41 3+	E2+M1	0.1652	$\alpha(K)$ =0.1364 20; $\alpha(L)$ =0.0221 4; $\alpha(M)$ =0.00511 8 $\alpha(N)$ =0.001263 18; $\alpha(O)$ =0.000227 4; $\alpha(P)$ =1.542×10 ⁻⁵ 22 Mult.: From $\alpha(K)$ exp=0.074 7, $\alpha(L)$ exp≈0.040 (1972Fi12).
		641.82 [‡] <i>18</i>	22 [‡] 4	670.97 4 ⁺	(E2)	0.01383	$\alpha(K)$ =0.01069 15; $\alpha(L)$ =0.00240 4; $\alpha(M)$ =0.000574 8 $\alpha(N)$ =0.0001413 20; $\alpha(O)$ =2.43×10 ⁻⁵ 4; $\alpha(P)$ =1.132×10 ⁻⁶ 16 Mult.: From $\alpha(K)$ exp=0.0071 26 (1972Fi12).
		707.08 [‡] 14	31 [‡] 4	605.69 2+	E0+M1+E2	0.076 5	$\alpha(K)$ =0.0263 4; $\alpha(L)$ =0.00418 6; $\alpha(M)$ =0.000961 14 $\alpha(N)$ =0.000238 4; $\alpha(O)$ =4.29×10 ⁻⁵ 6; $\alpha(P)$ =2.93×10 ⁻⁶ 5 Mult.: From $\alpha(K)$ exp=0.061 3 and $\alpha(L)$ exp=0.011 2 (1972Fi12) indicate E0 admixtures. α : 0.076 5 deduced from $\alpha(K)$ exp + $\alpha(L)$ exp × (1 + M/L + N/L).
		1046.99 [‡] 11	65 [‡] 7	265.61 2+	E0+M1+E2	0.076 3	$\alpha(K) = 0.00968 \ 14; \ \alpha(L) = 0.001521 \ 22; \ \alpha(M) = 0.000349 \ 5$ $\alpha(N) = 8.64 \times 10^{-5} \ 13; \ \alpha(O) = 1.559 \times 10^{-5} \ 22; \ \alpha(P) = 1.072 \times 10^{-6} \ 15$ Mult.: From $\alpha(K) \exp = 0.065 \ 2$, $\alpha(L) \exp = 0.0075 \ 8$ (1972Fi12) indicate E0 admixtures.
		1312.62‡ 9	100‡ 7	0.0 0+	E2	0.00326	α : 0.076 3 deduced from α (K)exp + α (L)exp × (1 + M/L + N/L). α (K)=0.00266 4; α (L)=0.000442 7; α (M)=0.0001024 15 α (N)=2.53×10 ⁻⁵ 4; α (O)=4.49×10 ⁻⁶ 7; α (P)=2.79×10 ⁻⁷ 4; α (IPF)=1.87×10 ⁻⁵ 3 Mult.: α (K)exp=0.0029 4 (1972Fi12).
1349.99	3-	234.8‡ 3	3.6 [‡] 11	1115.22 2+			Mult.: $a(\mathbf{K}) \exp[-0.0029] + (1972 \text{FHZ})$.
1349.99	3	413.3‡& 5	7.7 [‡] 5	936.41 3+			
		679.13 [‡] 6	30.5 [‡] 18	670.97 4 ⁺	E1	0.00441	$\alpha(K)=0.00369\ 6$; $\alpha(L)=0.000556\ 8$; $\alpha(M)=0.0001270\ 18$ $\alpha(N)=3.13\times10^{-5}\ 5$; $\alpha(O)=5.56\times10^{-6}\ 8$; $\alpha(P)=3.57\times10^{-7}\ 5$ Mult.: from $\alpha(K)\exp\leq0.0036\ (1972Fi12)$.
		1084.33 [‡] 5	100‡ 5	265.61 2+	E1	0.00183	$\alpha(K)=0.001539\ 22;\ \alpha(L)=0.000225\ 4;\ \alpha(M)=5.12\times10^{-5}\ 8$ $\alpha(N)=1.262\times10^{-5}\ 18;\ \alpha(O)=2.26\times10^{-6}\ 4;\ \alpha(P)=1.514\times10^{-7}\ 22$ Mult.: from $\alpha(K)\exp\leq0.0015\ (1972Fi12)$.
1443.7?		507.3 <i>3</i>	100	936.41 3+			E_{γ} , I_{γ} : from (p,4n γ) data (1977Nu03). I_{γ} (507 γ)/ I_{γ} (266 γ)=0.102 5.
1528.04	2+	591.4 ^{‡&} 5	11.9 [‡] <i>16</i>	936.41 3+	(M1)	0.0503	$\alpha(K)$ =0.0416 6; $\alpha(L)$ =0.00666 10; $\alpha(M)$ =0.001534 22 $\alpha(N)$ =0.000379 6; $\alpha(O)$ =6.84×10 ⁻⁵ 10; $\alpha(P)$ =4.66×10 ⁻⁶ 7 Mult.: from $\alpha(K)$ exp≈0.056 (1972Fi12).
		857.0 [‡] 5	8.7 [‡] 16	670.97 4+			
		922.23 [‡] 18	69 [‡] 10	605.69 2+	E0+M1+E2	0.029 3	$\alpha(K)$ =0.01334 <i>19</i> ; $\alpha(L)$ =0.00210 <i>3</i> ; $\alpha(M)$ =0.000484 7 $\alpha(N)$ =0.0001196 <i>17</i> ; $\alpha(O)$ =2.16×10 ⁻⁵ <i>3</i> ; $\alpha(P)$ =1.480×10 ⁻⁶ <i>21</i> Mult.: from $\alpha(K)$ exp=0.024 <i>2</i> (1972Fi12). α : 0.029 <i>3</i> from K/T and $\alpha(K)$ exp.
		1262.46 [‡] 19	100‡ 14	265.61 2+	E0+M1+E2	0.037 4	$\alpha(K)$ =0.00605 9; $\alpha(L)$ =0.000945 14; $\alpha(M)$ =0.000217 3 $\alpha(N)$ =5.37×10 ⁻⁵ 8; $\alpha(O)$ =9.69×10 ⁻⁶ 14; $\alpha(P)$ =6.68×10 ⁻⁷ 10;

6

γ (188 Pt) (continued)

							
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	$\alpha^{@}$	Comments
							$\alpha(IPF)=1.746\times10^{-5} \ 25$
							Mult.: from $\alpha(K)$ exp=0.031 3 (1972Fi12).
			4				α : 0.037 4 from K/T and α (K)exp.
1528.04	2+	1528.3 [‡] 3	57 [‡] 12	$0.0 0^{+}$	F-0	0.250	(T) 0.1401.20 (T) 0.1025.15 (A.D. 0.0264.4
1565.60	5-	215.9 2	9.6 9	1349.99 3-	E2	0.278	$\alpha(K)=0.1401 \ 20; \ \alpha(L)=0.1037 \ 15; \ \alpha(M)=0.0264 \ 4$
							$\alpha(N)=0.00645 \ 10; \ \alpha(O)=0.001031 \ 15; \ \alpha(P)=1.350\times10^{-5} \ 20$ Mult.: DCO=1.14 9 (2017Mul2); A ₂ =0.32 11, A ₄ =0.01 14 (1979DaZN).
		381.1 2	9.1 <i>14</i>	1184.43 6+			Multi. $DCO=1.14.9$ (2017/Mult2), $A_2=0.32.11$, $A_4=0.01.14$ (1979DaZN). $A_2=0.29.5$, $A_4=0.38.6$ (1988KaZW).
		480.1 5	20.9 9	1085.38 4+	(E1)	0.00901	$\alpha(K)=0.00751 \ 11; \ \alpha(L)=0.001161 \ 17; \ \alpha(M)=0.000266 \ 4$
					()		$\alpha(N)=6.54\times10^{-5}\ 10;\ \alpha(O)=1.157\times10^{-5}\ 17;\ \alpha(P)=7.14\times10^{-7}\ 11$
							Mult.: From A ₂ =-0.36 5, A ₄ =0.12 5 (1988KaZW); A ₂ =-0.22 18, A ₄ =0.05 24 (1979DaZN).
		894.5 2	100 5	670.97 4+	(E1)	0.00260	$\alpha(K)=0.00218$ 3; $\alpha(L)=0.000323$ 5; $\alpha(M)=7.36\times10^{-5}$ 11
							$\alpha(N)=1.81\times10^{-5}$ 3; $\alpha(O)=3.24\times10^{-6}$ 5; $\alpha(P)=2.14\times10^{-7}$ 3
							Mult.: DCO=0.49 2 and POL=0.12 3 (2017Mul2); A ₂ =-0.30 5, A ₄ =0.06 5 (1988KaZW); A ₂ =-0.20 2, A ₄ =0.07 3 (1979DaZN).
1625.71	1+	313.0 [‡] 5	3.9 [‡] 5	1312.73 2+			
		689.1 [‡] <i>3</i>	9‡ <i>3</i>	936.41 3+	E2	0.01182	$\alpha(K)=0.00923 \ 13; \ \alpha(L)=0.00198 \ 3; \ \alpha(M)=0.000472 \ 7$
							$\alpha(N)=0.0001163\ 17;\ \alpha(O)=2.01\times10^{-5}\ 3;\ \alpha(P)=9.77\times10^{-7}\ 14$
							Mult.: from $\alpha(K)$ exp=0.010 3 (1972Fi12).
		1020.1 [‡] 4	19 [‡] 5	605.69 2+			
		1360.10 [‡] 7	100‡ 5	265.61 2+			
		1626.2 [‡] 8	22 [‡] 14	$0.0 0^{+}$	M1	0.00404	$\alpha(K)=0.00322$ 5; $\alpha(L)=0.000500$ 7; $\alpha(M)=0.0001146$ 17
							$\alpha(N)=2.84\times10^{-5}$ 4; $\alpha(O)=5.12\times10^{-6}$ 8; $\alpha(P)=3.54\times10^{-7}$ 5;
							$\alpha(IPF)=0.0001678\ 24$
	- 1						Mult.: from $\alpha(K)$ exp=0.0054 18 (1972Fi12).
1636.31	6+	451.9 2	42 4	1184.43 6+	EO	0.0106	(IV) 0.01477.21 (IV) 0.00270 ((AV) 0.000002.12
		550.9 2	100 8	1085.38 4+	E2	0.0196	$\alpha(K)=0.01477 \ 2I; \ \alpha(L)=0.00370 \ 6; \ \alpha(M)=0.000892 \ I3$ $\alpha(N)=0.000219 \ 3; \ \alpha(O)=3.73\times10^{-5} \ 6; \ \alpha(P)=1.561\times10^{-6} \ 22$
							$\alpha(N)=0.000219$ 3; $\alpha(O)=3.73\times10^{-6}$ 6; $\alpha(P)=1.501\times10^{-6}$ 22 Mult.: A ₂ =0.27 5, A ₄ =-0.08 5 (1988KaZW); A ₂ =0.26 4, A ₄ =-0.12 5
							Multi. $A_2=0.27$ 3, $A_4=-0.06$ 3 (1908 KdZ W), $A_2=0.20$ 4, $A_4=-0.12$ 3 (1979 DaZN).
		965.3 2	24 5	670.97 4+			(17/754211).
1674.53	$(0^+,1,2)$	1408.92 [‡] 21	100‡	265.61 2+			
1685.6	$(0^+,1,2)$	471.1‡ 5	61 [‡] 33	1214.69 (2) ⁺			
1005.0	(0 ,1,2)	1079.7 [‡] 5	$100^{\ddagger} 42$	605.69 2+			
1768.15	7-	131.8 2	6.1 10	1636.31 6 ⁺	(E1)	0.202	$\alpha(K)=0.1639\ 24;\ \alpha(L)=0.0291\ 5;\ \alpha(M)=0.00673\ 10$
1700.13	,	151.0 2	0.1 10	1020.21 0	(21)	0.202	$\alpha(N)=0.001641$ 24; $\alpha(O)=0.000279$ 4; $\alpha(P)=1.348\times10^{-5}$ 20
							B(E1)(W.u.)= 1.21×10^{-5} 24
							Mult.: From $A_2 = -0.16 5$, $A_4 = -0.10 5$ (1988KaZW); $A_2 = -0.15 12$, $A_4 = 0.02$
							16 (1979DaZN).
		202.6 2	88 <i>5</i>	1565.60 5	E2	0.344	$\alpha(K)$ =0.1645 24; $\alpha(L)$ =0.1351 20; $\alpha(M)$ =0.0345 5

Adopted Levels, Gar	mmas (continued)

$\gamma(^{188}\text{Pt})$ (continued)

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	α [@]	Comments
1768.15	7-	583.7 2	100 5	1184.43 6+	(E1)	0.00598	$\begin{array}{c} \alpha(\mathrm{N}) = 0.00842 \ 13; \ \alpha(\mathrm{O}) = 0.001342 \ 20; \ \alpha(\mathrm{P}) = 1.573 \times 10^{-5} \ 23 \\ \mathrm{B(E2)(W.u.)} = 50 \ 7 \\ \mathrm{Mult.: \ DCO} = 1.20 \ 2 \ \mathrm{and \ POL} = 0.28 \ 5 \ (2017\mathrm{Mul2}); \ A_2 = 0.28 \ 5, \\ \mathrm{A_4} = -0.11 \ 6 \ (1988\mathrm{KaZW}); \ A_2 = 0.22 \ 3, \ \mathrm{A_4} = -0.12 \ 4 \ (1979\mathrm{DaZN}). \\ \alpha(\mathrm{N}) = 4.28 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 7.60 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 4.80 \times 10^{-7} \ 7 \\ \alpha(\mathrm{K}) = 0.00500 \ 7; \ \alpha(\mathrm{L}) = 0.000761 \ 11; \ \alpha(\mathrm{M}) = 0.0001741 \ 25 \\ \mathrm{B(E1)(W.u.)} = 2.3 \times 10^{-6} \ 3 \\ \mathrm{Mult.: \ DCO} = 0.53 \ 2 \ \mathrm{and \ POL} = 0.11 \ 3 \ (2017\mathrm{Mul2}); \ A_2 = -0.19 \ 5, \\ \mathrm{A_4} = 0.03 \ 5 \ (1988\mathrm{KaZW}); \ \mathrm{A_2} = -0.15 \ 3, \ \mathrm{A_4} = 0.02 \ 3 \ (1979\mathrm{DaZN}). \end{array}$
1776.08	(1-)	426.5‡ 3	12 [‡] 3	1349.99 3-	(E2)	0.0370	$\alpha(K)$ =0.0262 4; $\alpha(L)$ =0.00818 12; $\alpha(M)$ =0.00201 3 $\alpha(N)$ =0.000493 7; $\alpha(O)$ =8.23×10 ⁻⁵ 12; $\alpha(P)$ =2.73×10 ⁻⁶ 4 Mult.: From $\alpha(K)$ exp≈0.018 (1972Fi12).
		977.27‡ 10	75 [‡] 6	798.75 0+	(E1)	0.00221	$\alpha(K)$ =0.00186 3; $\alpha(L)$ =0.000273 4; $\alpha(M)$ =6.22×10 ⁻⁵ 9 $\alpha(N)$ =1.532×10 ⁻⁵ 22; $\alpha(O)$ =2.74×10 ⁻⁶ 4; $\alpha(P)$ =1.82×10 ⁻⁷ 3 Mult.: From $\alpha(K)$ exp=0.0032 9 (1972Fi12).
		1170.49 [‡] 9	96 [‡] 7	605.69 2+	(E1)	1.61×10^{-3}	$\alpha(K)=0.001344$ 19; $\alpha(L)=0.000196$ 3; $\alpha(M)=4.45\times10^{-5}$ 7 $\alpha(N)=1.098\times10^{-5}$ 16; $\alpha(O)=1.97\times10^{-6}$ 3; $\alpha(P)=1.325\times10^{-7}$ 19; $\alpha(P)=9.10\times10^{-6}$ 13 Mult.: From $\alpha(K)\exp=0.0023$ 4 (1972Fi12).
		1510.38 [‡] 9	100 [‡] 7	265.61 2+	(E1)	1.21×10 ⁻³	$\alpha(K)$ =0.000867 13; $\alpha(L)$ =0.0001248 18; $\alpha(M)$ =2.83×10 ⁻⁵ 4 $\alpha(N)$ =6.99×10 ⁻⁶ 10; $\alpha(O)$ =1.256×10 ⁻⁶ 18; $\alpha(P)$ =8.58×10 ⁻⁸ 12; $\alpha(P)$ =0.000185 3 Mult.: From $\alpha(K)$ exp≤0.00077 (1972Fi12).
1782.23	8+	597.8 2	100	1184.43 6+	E2	0.01623	Mult.: DCO=0.95 5 and POL=0.12 6 (2017Mu12); A ₂ =0.26 5, A ₄ =-0.06 5 (1988KaZW); A ₂ =0.27 3, A ₄ =-0.09 3 (1979DaZN).
1810.57	(2)+	498.6 [‡] 5	23 [‡] 6	1312.73 2+	(E0+M1+E2)	0.225 14	$\alpha(K)$ =0.0650 10; $\alpha(L)$ =0.01045 15; $\alpha(M)$ =0.00241 4 $\alpha(N)$ =0.000596 9; $\alpha(O)$ =0.0001073 16; $\alpha(P)$ =7.30×10 ⁻⁶ 11 Mult.: From $\alpha(K)$ exp=0.11 1 and $\alpha(L)$ exp=0.089 8 (1972Fi12). α : 0.225 14 deduced from $\alpha(K)$ exp + $\alpha(L)$ exp × (1 + M/L + N/L).
		695.4 [‡] 5	8.2 [‡] 9	1115.22 2+	M1(+E2)	0.0331	$\alpha(K)$ =0.0274 4; $\alpha(L)$ =0.00436 7; $\alpha(M)$ =0.001004 15 $\alpha(N)$ =0.000248 4; $\alpha(O)$ =4.48×10 ⁻⁵ 7; $\alpha(P)$ =3.06×10 ⁻⁶ 5 Mult.: From $\alpha(K)$ exp=0.031 11 (1972Fi12).
		874.66 [‡] 24	25 [‡] 6	936.41 3+			
		1139.7 [‡] 4	16 [‡] 5	670.97 4+			
		1204.60 [‡] <i>13</i>	70 [‡] 7	605.69 2+			
		1545.00 [‡] <i>10</i>	100 [‡] 8	265.61 2 ⁺			

 ∞

γ (188Pt) (continued)

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \ \mathrm{J}_f^\pi$	Mult.#	α @	Comments
1954.26	$(1^+,2)$	1017.91 [‡] 18	100‡ 14	936.41 3+			
1934.20	(1 ,2)	1017.91* 18 1348.50 [‡] 19	69 [‡] 10	930.41 3 605.69 2 ⁺			
2171.4	$(0^+,1,2)$	1548.50° 19 1565.6 [‡] 5	63 [‡] 23	605.69 2 ⁺			
21/1.4	(0 ,1,2)	1905.9 [‡] 4	$100^{\ddagger} 26$	265.61 2 ⁺			
2179.75	8-	411.6 2	100 20	1768.15 7	M1+E2	0.1304	$\alpha(K)$ =0.1077 16; $\alpha(L)$ =0.01744 25; $\alpha(M)$ =0.00402 6 $\alpha(N)$ =0.000995 14; $\alpha(O)$ =0.000179 3; $\alpha(P)$ =1.215×10 ⁻⁵ 17 Mult.: DCO=0.77 3 and POL=-0.17 11 (2017Mul2); A ₂ =0.51 5, A ₄ =0.03 6 (1988KaZW); A ₂ =0.50 7, A ₄ =0.11 8 (1979DaZN).
		544 <mark>&</mark> 1		1636.31 6 ⁺			E_{γ} : From 1988KaZW.
2210.2?		1944.6 [‡] <i>3</i>	100‡	265.61 2+			
2246.52	8+	464.3 2	26 6	1782.23 8+	(M1+E2)	0.0947	$\alpha(K)$ =0.0783 11; $\alpha(L)$ =0.01263 18; $\alpha(M)$ =0.00291 4 $\alpha(N)$ =0.000720 11; $\alpha(O)$ =0.0001297 19; $\alpha(P)$ =8.81×10 ⁻⁶ 13 Mult.: From A ₂ =-0.12 5, A ₄ =-0.02 5 (1988KaZW) and the adopted level scheme.
		610.2 2	100 9	1636.31 6+	E2	0.01549	$\alpha(K)$ =0.01188 17; $\alpha(L)$ =0.00276 4; $\alpha(M)$ =0.000662 10 $\alpha(N)$ =0.0001629 23; $\alpha(O)$ =2.79×10 ⁻⁵ 4; $\alpha(P)$ =1.257×10 ⁻⁶ 18 Mult.: DCO=1.06 3 and POL=0.10 4 (2017Mul2); A ₂ =0.28 5, A ₄ =-0.05 6 (1988KaZW); A ₂ =0.27 5, A ₄ =-0.09 6 (1979DaZN).
		1062.1 2	21 4	1184.43 6+			
2295.61	$(1,2^+)$	2030.02‡ 12	100 [‡] 9	265.61 2+			
		2295.48 [‡] 23	50 [‡] 7	$0.0 0^{+}$			
2312.45	9-	544.3 2	100	1768.15 7	E2	0.0202	$\alpha(N)=0.000227 \ 4; \ \alpha(O)=3.87\times10^{-5} \ 6; \ \alpha(P)=1.601\times10^{-6} \ 23$ $\alpha(K)=0.01516 \ 22; \ \alpha(L)=0.00383 \ 6; \ \alpha(M)=0.000925 \ 13$ Mult.: DCO=1.01 5 and POL=0.10 5 (2017Mul2); A ₂ =0.24 5, A ₄ =-0.07 5 (1988KaZW); A ₂ =0.37 5, A ₄ =0.03 6 (1979DaZN).
2437.13	10 ⁺	654.9 2	100	1782.23 8+	E2	0.01322	$\alpha(K)$ =0.01025 15; $\alpha(L)$ =0.00227 4; $\alpha(M)$ =0.000543 8 $\alpha(N)$ =0.0001336 19; $\alpha(O)$ =2.30×10 ⁻⁵ 4; $\alpha(P)$ =1.085×10 ⁻⁶ 16 B(E2)(W.u.)=1.5×10 ² +7-9 Mult.: DCO=1.11 4 and POL=0.13 3 (2017Mu12); A ₂ =0.31 3, A ₄ =-0.06 4 (1979DaZN); A ₂ =0.20 5, A ₄ =-0.05 6 (1988KaZW).
2446.89	$(1,2^+)$	2446.87 [‡] 22	100‡	$0.0 0^{+}$			
2458.05	9-	145.6 2	37 7	2312.45 9	[M1]	2.28	$\alpha(K)$ =1.88 3; $\alpha(L)$ =0.310 5; $\alpha(M)$ =0.0718 11 $\alpha(N)$ =0.0178 3; $\alpha(O)$ =0.00319 5; $\alpha(P)$ =0.000215 4 B(M1)(W.u.)≈0.0018
		689.9 2	100 10	1768.15 7	E2	0.01179	$\alpha(K)=0.00921\ 13;\ \alpha(L)=0.00198\ 3;\ \alpha(M)=0.000471\ 7$ $\alpha(N)=0.0001159\ 17;\ \alpha(O)=2.00\times10^{-5}\ 3;\ \alpha(P)=9.75\times10^{-7}\ 14$ $B(E2)(W.u.)\approx0.039$ Mult.: DCO=1.07 5 and POL=0.24 7 (2017Mu12); A ₂ =0.25 10, A ₄ =-0.18 13 (1979DaZN); A ₂ =0.23 4, A ₄ =-0.06 6 (1988KaZW).
2468.4?	$(1,2^+)$	1669.6 [‡] 5	100‡	798.75 0 ⁺			7 2 11 1 7 4 1111 1 X 1 11 11 11 11 11 11 11 11 11 1

9

γ (188 Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	α [@]	Comments
2497.50		2231.88‡ 12	100‡	265.61 2+			
2524.65?		2259.07 [‡] 19	100 [‡]	265.61 2+			
2588.6?		1917.6 [‡] <i>3</i>	100 [‡]	670.97 4+			
2620.2	(8^{+})	838.0 2	100	1782.23 8 ⁺	(E2)	0.00782	$\alpha(K)=0.00624$ 9; $\alpha(L)=0.001209$ 17; $\alpha(M)=0.000285$ 4
							$\alpha(N) = 7.02 \times 10^{-5} \ I0; \ \alpha(O) = 1.226 \times 10^{-5} \ I8; \ \alpha(P) = 6.60 \times 10^{-7} \ I0$
							Mult.: From A ₂ =0.35 10, A ₄ =0.05 12 (1979DaZN); A ₂ =0.17 5, A ₄ =0.05 6
2651.25	10-	338.8 2	32 4	2312.45 9-	M1+E2	0.220	(1988KaZW). $\alpha(K)=0.181 \ 3; \ \alpha(L)=0.0295 \ 5; \ \alpha(M)=0.00681 \ 10$
2031.23	10	336.6 2	32 4	2312.43	WIITEZ	0.220	$\alpha(N)=0.001685 \ 24; \ \alpha(O)=0.000303 \ 5; \ \alpha(P)=2.05\times10^{-5} \ 3$
							Mult.: DCO=0.78 9 and POL= -0.16 14 (2017Mu12).
		471.5 2	100 9	2179.75 8-	E2	0.0286	$\alpha(K)$ =0.0208 3; $\alpha(L)$ =0.00593 9; $\alpha(M)$ =0.001445 21
							$\alpha(N)=0.000355\ 5;\ \alpha(O)=5.97\times10^{-5}\ 9;\ \alpha(P)=2.19\times10^{-6}\ 3$
							Mult.: DCO=1.08 5 and POL=0.11 9 (2017Mu12).
2663.63	10 ⁺	226.5 2	35 5	2437.13 10 ⁺			
		417.1 2	100 6	2246.52 8+	E2	0.0392	$\alpha(K)=0.0276 \ 4; \ \alpha(L)=0.00881 \ 13; \ \alpha(M)=0.00216 \ 3$
							$\alpha(N)=0.000531 \text{ 8; } \alpha(O)=8.86\times10^{-5} \text{ 13; } \alpha(P)=2.87\times10^{-6} \text{ 4}$
							Mult.: DCO=1.14 4 and POL=0.10 4 (2017Mul2); A ₂ =0.32 4, A ₄ =-0.09 6 (1988KaZW); A ₂ =0.38 7, A ₄ =0.06 9 (1979DaZN).
		881.4 2	38.1 24	1782.23 8+	(E2)	0.00705	$\alpha(K)=0.00565 \ 8; \ \alpha(L)=0.001071 \ 15; \ \alpha(M)=0.000252 \ 4$
		001.4 2	30.1 27	1702.23 0	(L2)	0.00703	$\alpha(N)=6.20\times10^{-5} 9$; $\alpha(O)=1.086\times10^{-5} 16$; $\alpha(P)=5.97\times10^{-7} 9$
							Mult.: $A_2=0.34$ 20, $A_4=-0.18$ 24 (1979DaZN).
2701.35	10-	243.3 2	96 <i>14</i>	2458.05 9-	(M1+E2)	0.542	$\alpha(K)=0.447\ 7;\ \alpha(L)=0.0733\ 11;\ \alpha(M)=0.01692\ 24$
							$\alpha(N)=0.00419 \ 6; \ \alpha(O)=0.000754 \ 11; \ \alpha(P)=5.09\times10^{-5} \ 8$
							Mult.: DCO=0.71 5 (2017Mu12); A ₂ =0.13 5, A ₄ =0.15 6 (1988KaZW).
							δ: 6 +8-3 (1988KaZW).
2702.02	10 ⁺	388.9 2	100 24	2312.45 9	E2	0.00647	- (II) 0.00520 0 (I.) 0.000000 14 (M) 0.000227 4
2702.03	10	919.8 2	100 6	1782.23 8+	E2	0.00647	$\alpha(K)=0.00520 \ 8; \ \alpha(L)=0.000969 \ 14; \ \alpha(M)=0.000227 \ 4$ $\alpha(N)=5.60\times10^{-5} \ 8; \ \alpha(O)=9.82\times10^{-6} \ 14; \ \alpha(P)=5.49\times10^{-7} \ 8$
							$\alpha(N)=5.00\times10^{-4}$ 8; $\alpha(O)=9.82\times10^{-14}$ 14; $\alpha(P)=5.49\times10^{-18}$ 8 Mult.: DCO=1.08 2 and POL=0.11 9; $A_2=0.28$ 4, $A_4=-0.15$ 6 (1988KaZW).
2772.6	11-	460.2 2	100	2312.45 9-	E2	0.0304	$\alpha(K)$ =0.0220 3; $\alpha(L)$ =0.00640 9; $\alpha(M)$ =0.001562 22
2772.0	11	100.2 2	100	2312.13	22	0.0501	$\alpha(N) = 0.000384 \ 6; \ \alpha(O) = 6.45 \times 10^{-5} \ 9; \ \alpha(P) = 2.31 \times 10^{-6} \ 4$
							Mult.: DCO=0.96 7 and POL=0.12 3 (2017Mul2); A_2 =0.27 4, A_4 =-0.12 6
							(1988KaZW); A ₂ =0.16 7, A ₄ =-0.21 9 $(1979DaZN)$.
2798.1?		2532.5 5	100	265.61 2+			
2810.13	12+	108.1 2	41 9	2702.03 10+	E2	3.56 <i>6</i>	$\alpha(K) = 0.645 \ 10; \ \alpha(L) = 2.19 \ 4; \ \alpha(M) = 0.566 \ 10$
							$\alpha(N)=0.1380 \ 23; \ \alpha(O)=0.0215 \ 4; \ \alpha(P)=7.17\times10^{-5} \ 11$
							B(E2)(W.u.)=78 21 E _{γ} : Other: 107.8 2 from ce data in 1979Ri08.
							E_{γ} : Other: 107.8 2 from ce data in 1979Rio8. Mult.: from K/L \approx 0.4 (1979Rio8).
Ì		146.5 2	100 19	2663.63 10 ⁺	E2	1.091	$\alpha(K)=0.360 \ 6; \ \alpha(L)=0.550 \ 9; \ \alpha(M)=0.1415 \ 22$
			/			/-	$\alpha(N) = 0.0345 \ 6; \ \alpha(O) = 0.00543 \ 9; \ \alpha(P) = 3.44 \times 10^{-5} \ 5$
İ							

10

γ (188 Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	α@	Comments
2810.13	12 ⁺	373.0 2	78 9	2437.13 10 ⁺	[E2]	0.0529	B(E2)(W.u.)=42 10 Mult.: DCO=1.15 4 (2017Mu12); K/L≈0.7 (1979Ri08); A ₂ =0.22 8, A ₄ =-0.23 10 (1979DaZN); A ₂ =0.10 5, A ₄ =-0.01 6 (1988KaZW). α(K)=0.0359 5; α(L)=0.01286 19; α(M)=0.00318 5 α(N)=0.000781 11; α(O)=0.0001291 19; α(P)=3.70×10 ⁻⁶ 6 B(E2)(W.u.)=0.30 6
2875.1	(11 ⁺)	173.1 2	100	2702.03 10 ⁺	(M1)	1.399	$\alpha(K)=1.152 \ 17; \ \alpha(L)=0.190 \ 3; \ \alpha(M)=0.0439 \ 7$ $\alpha(N)=0.01087 \ 16; \ \alpha(O)=0.00196 \ 3; \ \alpha(P)=0.0001318 \ 19$ Mult.: DCO=0.66 \ 19 \ (2017Mul2).
2909.6?	(2+)	1596.9 [‡] 3	100‡	1312.73 2 ⁺	(E0+M1+E2)	0.0200 25	$\alpha(K)$ =0.00337 5; $\alpha(L)$ =0.000523 8; $\alpha(M)$ =0.0001200 17 $\alpha(N)$ =2.97×10 ⁻⁵ 5; $\alpha(O)$ =5.36×10 ⁻⁶ 8; $\alpha(P)$ =3.71×10 ⁻⁷ 6; $\alpha(PF)$ =0.0001516 22 Mult.: from $\alpha(K)$ exp=0.016 2 (1972Fi12), which suggests E0 admixtures. α : 0.0200 25 deduced from K/T and $\alpha(K)$ exp.
2960.3	11-	259.0 <i>5</i> 502.3 2	29 <i>6</i> 100 <i>15</i>	2701.35 10 ⁻ 2458.05 9 ⁻	(E2)	0.0245	$\alpha(K)$ =0.0181 3; $\alpha(L)$ =0.00487 7; $\alpha(M)$ =0.001183 17 $\alpha(N)$ =0.000291 4; $\alpha(O)$ =4.91×10 ⁻⁵ 7; $\alpha(P)$ =1.90×10 ⁻⁶ 3 Mult.: DCO=1.22 3 (2017Mu12); A ₂ =0.39 5, A ₄ =-0.08 6 (1988KaZW).
3046.73		1697.2 [‡] 4 2441.3 [‡] 3 2780.97 [‡] 15	25 [‡] 7 48 [‡] 9 100 [‡] 9	1349.99 3 ⁻ 605.69 2 ⁺ 265.61 2 ⁺			
3102.4	12-	329.8 <i>5</i> 451.2 2	13 <i>4</i> 100 <i>7</i>	2772.6 11 ⁻ 2651.25 10 ⁻	E2	0.0320	$\alpha(K)$ =0.0230 4; $\alpha(L)$ =0.00682 10; $\alpha(M)$ =0.001666 24 $\alpha(N)$ =0.000409 6; $\alpha(O)$ =6.86×10 ⁻⁵ 10; $\alpha(P)$ =2.41×10 ⁻⁶ 4
3103.6	12+	666.5 2	100	2437.13 10+	E2	0.01272	Mult.: DCO=0.99 4 and POL=0.13 8 (2017Mu12). $\alpha(K)$ =0.00988 14; $\alpha(L)$ =0.00217 3; $\alpha(M)$ =0.000517 8 $\alpha(N)$ =0.0001273 18; $\alpha(O)$ =2.19×10 ⁻⁵ 3; $\alpha(P)$ =1.047×10 ⁻⁶ 15 B(E2)(W.u.)>1.6×10 ² Mult.: DCO=0.99 6 and POL=0.12 10 (2017Mu12); A ₂ =0.29 5, A ₄ =-0.11
3139.0	14+	328.9 2	100	2810.13 12+	E2	0.0752	6 (1988KaZW). $\alpha(K)=0.0487$ 7; $\alpha(L)=0.0201$ 3; $\alpha(M)=0.00502$ 8 $\alpha(N)=0.001230$ 18; $\alpha(O)=0.000202$ 3; $\alpha(P)=4.96\times10^{-6}$ 7 Mult.: DCO=1.17 5 and POL=0.22 4 (2017Mul2); $A_2=0.23$ 6, $A_4=-0.12$
3182.0	12+	744.9 2	100	2437.13 10+	E2	0.01000	7 (1979DaZN); A_2 =0.25 5, A_4 =-0.09 6 (1988KaZW). $\alpha(K)$ =0.00788 11; $\alpha(L)$ =0.001621 23; $\alpha(M)$ =0.000384 6 $\alpha(N)$ =9.46×10 ⁻⁵ 14; $\alpha(O)$ =1.642×10 ⁻⁵ 23; $\alpha(P)$ =8.34×10 ⁻⁷ 12 Mult.: DCO=1.21 20 and POL=0.15 10 (2017Mul2); A_2 =0.38 8, A_4 =-0.17 10 (1979DaZN); A_2 =0.18 5, A_4 =-0.06 6 (1988KaZW).
3226.6	12-	266.3 <i>5</i> 525.3 2	100	2960.3 11 ⁻ 2701.35 10 ⁻	E2	0.0220	$\alpha(K)=0.01639\ 23;\ \alpha(L)=0.00426\ 6;\ \alpha(M)=0.001030\ 15$ $\alpha(N)=0.000253\ 4;\ \alpha(O)=4.29\times10^{-5}\ 6;\ \alpha(P)=1.728\times10^{-6}\ 25$

γ (188 Pt) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\alpha^{\textcircled{@}}$	Comments
								Mult.: DCO=1.27 6 (2017Mu12); A ₂ =0.28 4, A ₄ =-0.09 5 (1988KaZW); A ₂ =0.44 11, A ₄ =0.05 13 (1979DaZN).
3232.49		1882.45 [‡] <i>18</i>	82 [‡] 11	1349.99	3-			
		2626.9 [‡] 3	100 [‡] 22	605.69				
3260.66		736.4 [‡] 6	49 [‡] 22	2524.65?				
		1306.4‡ 3	92 [‡] 19	1954.26				
		1484.55 [‡] 23	100‡ 18	1776.08	. , ,			
		2994.9 [‡] 4	91 [‡] <i>18</i>	265.61				
3261.3	(13^{+})	386.2 2	100	2875.1	(11^+)	(E2)	0.0481	$\alpha(K)=0.0330\ 5;\ \alpha(L)=0.01141\ 17;\ \alpha(M)=0.00282\ 4$
								α (N)=0.000691 10; α (O)=0.0001146 17; α (P)=3.42×10 ⁻⁶ 5
								Mult.: DCO=1.28 7 (2017Mu12).
2225 1	12-	451.2 <i>5</i> 552.5 <i>2</i>	100	2810.13 2772.6	12 ⁺ 11 ⁻	E2	0.0105	-/IZ\ 0.01469.21, -/I\) 0.00267.6, -/M\ 0.000995.12
3325.1	13-	332.3 2	100	2112.0	11	EZ	0.0195	$\alpha(K)=0.01468 \ 2I; \ \alpha(L)=0.00367 \ 6; \ \alpha(M)=0.000885 \ I3$ $\alpha(N)=0.000218 \ 3; \ \alpha(O)=3.70\times10^{-5} \ 6; \ \alpha(P)=1.551\times10^{-6} \ 22$
								Mult.: DCO=1.20 6 and POL=0.07 5 (2017Mul2); A_2 =0.28 4, A_4 =-0.09 6
								(1988KaZW); $A_2=0.31$ 10, $A_4=-0.06$ 13 (1979DaZN).
3565.0	13-	338.3 5	38 10	3226.6	12-			
		604.6 2	100 24	2960.3	11-	E2	0.01582	$\alpha(K) = 0.01211 \ 17; \ \alpha(L) = 0.00283 \ 4; \ \alpha(M) = 0.000680 \ 10$
								α (N)=0.0001672 24; α (O)=2.86×10 ⁻⁵ 4; α (P)=1.282×10 ⁻⁶ 18 Mult.: DCO=1.14 6 (2017Mu12); A ₂ =0.23 6, A ₄ =-0.03 8 (1979DaZN).
3580.5	14 ⁺	398.5 2	48 13	3182.0	12 ⁺			Mult.: $DCO=1.14 \text{ 0 (2017Mul12)}, A_2=0.23 \text{ 0}, A_4=-0.03 \text{ 8 (1979DdZIN)}.$
2300.3	11	441.5 5	20 8	3139.0	14 ⁺			
		476.9 2	100 15	3103.6	12 ⁺	E2	0.0278	$\alpha(K)=0.0203\ 3;\ \alpha(L)=0.00572\ 8;\ \alpha(M)=0.001393\ 20$
								$\alpha(N)=0.000342\ 5;\ \alpha(O)=5.76\times10^{-5}\ 9;\ \alpha(P)=2.13\times10^{-6}\ 3$
								Mult.: DCO=1.05 4 and POL=0.15 10 (2017Mul2); A ₂ =0.32 4, A ₄ =-0.14 6 (1988KaZW).
		770.4 2	38 10	2810.13	12 ⁺			(1700KdZW).
3625.8	14^{-}	300.6 5	20 10	3325.1	13-			
		523.3 2	100	3102.4	12-	E2	0.0222	$\alpha(K)$ =0.01652 24; $\alpha(L)$ =0.00430 6; $\alpha(M)$ =0.001042 15
								α (N)=0.000256 4; α (O)=4.34×10 ⁻⁵ 7; α (P)=1.743×10 ⁻⁶ 25
2627.0	16 ⁺	400.0.2	100	2120.0	14 ⁺	F2	0.0262	Mult.: DCO=0.98 3 and POL=0.18 5 (2017Mul2).
3627.0	10.	488.0 2	100	3139.0	14	E2	0.0263	$\alpha(K)=0.0193 \ 3; \ \alpha(L)=0.00532 \ 8; \ \alpha(M)=0.001295 \ 19$ $\alpha(N)=0.000318 \ 5; \ \alpha(O)=5.37\times10^{-5} \ 8; \ \alpha(P)=2.03\times10^{-6} \ 3$
								Mult.: DCO=1.11 4 and POL=0.11 5 (2017Mul2); A_2 =0.31 4, A_4 =-0.13 6
								(1988KaZW); $A_2=0.28$ 7, $A_4=-0.14$ 9 (1979DaZN).
3749.6	(15^{+})	488.3 2	100	3261.3	(13^{+})	E2	0.0262	$\alpha(K)=0.0193 \ 3; \ \alpha(L)=0.00531 \ 8; \ \alpha(M)=0.001293 \ 19$
								$\alpha(N)=0.000318\ 5;\ \alpha(O)=5.36\times10^{-5}\ 8;\ \alpha(P)=2.03\times10^{-6}\ 3$
								Mult.: DCO=1.05 4 (2017Mu12); A ₂ =0.31 4, A ₄ =-0.13 6 (1988KaZW); A ₂ =0.28 7, A ₄ =-0.14 9 (1979DaZN).
		610.6.5		3139.0	14 ⁺			$A_2=0.20$ /, $A_4=-0.14$ 9 (19/9DaLIV).
3867.2	14-	302.2 ^{&} 5		3565.0	13-			
3007.2	17	302.2 3		5505.0	13			

12

γ (188 Pt) (continued)

	E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\alpha^{@}$	Comments
	3867.2	14-	640.5 2	100	3226.6 12-	E2	0.01389	$\alpha(K)$ =0.01073 15; $\alpha(L)$ =0.00241 4; $\alpha(M)$ =0.000577 8 $\alpha(N)$ =0.0001421 20; $\alpha(O)$ =2.44×10 ⁻⁵ 4; $\alpha(P)$ =1.136×10 ⁻⁶ 16 Mult.: DCO=1.06 6 (2017Mu12); A ₂ =0.29 4, A ₄ =-0.11 6 (1988KaZW).
	3946.6	15-	621.4 2	100	3325.1 13	E2	0.01487	$\alpha(K)$ =0.01143 16; $\alpha(L)$ =0.00262 4; $\alpha(M)$ =0.000629 9 $\alpha(N)$ =0.0001547 22; $\alpha(O)$ =2.65×10 ⁻⁵ 4; $\alpha(P)$ =1.210×10 ⁻⁶ 17 Mult.: DCO=1.01 7 and POL=0.18 8 (2017Mu12); A ₂ =0.25 5, A ₄ =-0.03 6 (1988KaZW).
	4007.6	16 ⁺	380.6 <i>5</i> 427.1 2	9 <i>4</i> 100 <i>11</i>	3627.0 16 ⁺ 3580.5 14 ⁺	E2	0.0368	$\alpha(K)$ =0.0261 4; $\alpha(L)$ =0.00814 12; $\alpha(M)$ =0.00200 3 $\alpha(N)$ =0.000491 7; $\alpha(O)$ =8.19×10 ⁻⁵ 12; $\alpha(P)$ =2.72×10 ⁻⁶ 4 Mult.: DCO=0.98 4 and POL=0.09 5 (2017Mu12); A ₂ =0.34 5, A ₄ =-0.11 6 (1988KaZW).
	4174.5	16-	548.7 2	100	3625.8 14-	E2	0.0198	$\alpha(K)$ =0.01490 21; $\alpha(L)$ =0.00374 6; $\alpha(M)$ =0.000903 13 $\alpha(N)$ =0.000222 4; $\alpha(O)$ =3.78×10 ⁻⁵ 6; $\alpha(P)$ =1.574×10 ⁻⁶ 22 Mult.: DCO=1.12 4 and POL=0.14 4 (2017Mu12).
	4237.8	15-	672.8 2	100	3565.0 13-	E2	0.01246	$\alpha(K)$ =0.00969 14; $\alpha(L)$ =0.00211 3; $\alpha(M)$ =0.000504 7 $\alpha(N)$ =0.0001241 18; $\alpha(O)$ =2.14×10 ⁻⁵ 3; $\alpha(P)$ =1.027×10 ⁻⁶ 15 Mult.: A ₂ =0.24 4, A ₄ =-0.11 6 (1988KaZW).
)	4243.8	18+	616.8 2	100	3627.0 16 ⁺	E2	0.01512	$\alpha(K)$ =0.01161 17 ; $\alpha(L)$ =0.00268 4 ; $\alpha(M)$ =0.000642 9 $\alpha(N)$ =0.0001580 23 ; $\alpha(O)$ =2.71×10 ⁻⁵ 4 ; $\alpha(P)$ =1.229×10 ⁻⁶ 18 Mult.: DCO=1.13 3 and POL=0.16 6 (2017Mu12); A ₂ =0.35 4 , A ₄ =-0.29 6 (1988KaZW).
	4280.5	(17-)	106.0 <i>5</i> 333.9 2	100	4174.5 16 ⁻ 3946.6 15 ⁻	(E2)	0.0721	$\alpha(K)$ =0.0469 7; $\alpha(L)$ =0.0191 3; $\alpha(M)$ =0.00474 7 $\alpha(N)$ =0.001163 17; $\alpha(O)$ =0.000191 3; $\alpha(P)$ =4.78×10 ⁻⁶ 7 Mult.: DCO=1.26 9 (2017Mul2).
	4353.2 4478.8	(17 ⁺)	603.6 2 726.2 5 471.2 5	100	3749.6 (15 ⁺ 3627.0 16 ⁺ 4007.6 16 ⁺)		
	4478.8 4549.7	(16 ⁻)	682.5 5	100 100	3867.2 14	(E2)	0.01207	$\alpha(K)$ =0.00941 14; $\alpha(L)$ =0.00203 3; $\alpha(M)$ =0.000485 7 $\alpha(N)$ =0.0001194 17; $\alpha(O)$ =2.06×10 ⁻⁵ 3; $\alpha(P)$ =9.97×10 ⁻⁷ 14 Mult.: A ₂ =0.24 5, A ₄ =0.07 6 (1988KaZW).
	4593.4	(18 ⁻)	312.9 2	100	4280.5 (17	(M1)	0.272	$\alpha(K)$ =0.225 4; $\alpha(L)$ =0.0366 6; $\alpha(M)$ =0.00846 12 $\alpha(N)$ =0.00209 3; $\alpha(O)$ =0.000377 6; $\alpha(P)$ =2.55×10 ⁻⁵ 4 Mult.: DCO=0.67 8 (2017Mul2).
	4665.4 4765.4 4947.6	(17 ⁻) (18 ⁻) (19 ⁻)	418.9 5 718.8 2 590.9 5 354.2 2	100 100 100	4174.5 16 ⁻ 3946.6 15 ⁻ 4174.5 16 ⁻ 4593.4 (18 ⁻)		
	4960.7	20+	716.9 2	100	4243.8 18+	E2	0.01085	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.00852 \ 12; \ \alpha(\mathrm{L}) \! = \! 0.00179 \ 3; \ \alpha(\mathrm{M}) \! = \! 0.000425 \ 6 \\ \alpha(\mathrm{N}) \! = \! 0.0001047 \ 15; \ \alpha(\mathrm{O}) \! = \! 1.81 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) \! = \! 9.02 \times 10^{-7} \ 13 \\ \mathrm{Mult.: \ DCO} \! = \! 1.20 \ 10 \ \mathrm{and \ POL} \! = \! 0.16 \ 13 \ (2017\mathrm{Mul2}); \ \mathrm{A}_2 \! = \! 0.12 \ 5, \ \mathrm{A}_4 \! = \! 0.07 \ 6 \\ (1988\mathrm{KaZW}). \end{array}$

13

γ (188Pt) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
5201.3		607.9 5	100	4593.4 (18-)	
5505.2		303.9 5		5201.3	
		557.6 <i>5</i>		4947.6 (19 ⁻)	
5744.9	(22^{+})	784.2 <i>5</i>	100	4960.7 20 ⁺	$A_2 = 0.09 5, A_4 = -0.04 6 (1988 \text{KaZW}).$
6549.9	(24^{+})	805.0 5	100	5744.9 (22 ⁺)	
7367.9	(26^{+})	818.0 5	100	6549.9 (24+)	

[†] From (HI,xn γ), unless otherwise stated. [‡] From ¹⁸⁸ Au ε decay. [#] From ce data in ¹⁸⁸ Ae ε decay, $\gamma\gamma(\theta)$ (DCO), $\gamma(\theta)$, ce ratios, γ -ray polarization and the apparent band structure. [@] Additional information 2. [&] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{188}_{78}\mathrm{Pt}_{110}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

----- γ Decay (Uncertain)

$$^{188}_{78}\mathrm{Pt}_{110}$$

	Histor	ry	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, ¹ and Jun Chen ²	NDS 169, 1 (2020)	15-Oct-2020

 $Q(\beta^{-})=-4473 \ 4; \ S(n)=8908 \ 10; \ S(p)=6146 \ 13; \ Q(\alpha)=3268.6 \ 6$ 2017Wa10

S(2n)=15628 5, S(2p)=10747.2 6 (2017Wa10).

Hyperfine structure and isotope-shift measurements: 1992Ki30, 1992Hi07 (also 1990Hi08), 1988Bo31, 1987Ne09, 1988Le22.

Mass measurement: 2016Ei01: using LEBIT Penning trap mass spectrometer at NSCL-MSU.

Mass excess from ¹⁹⁰Pt(p,d) reaction: 1980Ka19.

Additional information 1.

1202.62 10

1287.69[&] 7

1353.33 7

1385.88 14

1395.09 10

2+

6+

3-

 $(2^+,3,4^+)$

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for about 150 primary references dealing with nuclear structure and other calculations.

¹⁹⁰Pt Levels

Band assignments and configurations are from 2014Li21 (also 2008Ma58) in 176 Yb(18 O,4n γ). Additional information 2.

Cross Reference (XREF) Flags

```
A ^{190} Au \varepsilon decay (42.8 min) E Coulomb excitation
B ^{176} Yb(^{18}O,4n\gamma) F ^{191} Ir(p,2n\gamma)
C ^{188} Os(\alpha,2n\gamma) G ^{192} Pt(p,t)

Evel) ^{\dagger} J^{\pi \ddagger} T<sub>1/2</sub> XREF Comments

^{4.97} ^{11\#@} y 16 ABCDEFG ^{8} ^{4} Coulomb excitation
Evel) ^{3} Comments

^{8} ^{176} Yb(^{18}O,4n\gamma)

^{8} Coulomb excitation
F ^{191} Ir(p,2n\gamma)
G ^{192} Pt(p,t)

^{99} Os(\alpha,4n\gamma)
```

A C F

BCD F

A CD FG

C F

F

 $\%\varepsilon\beta^{+}$ =?. Double-beta decay mode is allowed, but only the lower limits of the half-life of this decay mode have been measured. Evaluated rms charge radius=5.4108 fm 30 (2013An02). Evaluated $\delta < r^2 > (^{194}Pt,^{190}Pt) = -0.137 \text{ fm}^2 2 (2013\text{An02}).$ $\Delta < r^2 > (^{194}\text{Pt} - ^{190}\text{Pt}) = -0.132 \text{ fm}^2 \ 8 \ (1992\text{Hi}07)$. See also 1992Ki30 for $\Delta < r^2 >$ measurement. 295.78[&] 3 62.3 ps 31 μ =+0.57 3 (1995An15,2014StZZ) ABCDEFG J^{π} : E2 γ to 0^+ . $T_{1/2}$: from B(E2)=1.82 9, weighted average of 1.82 9 (1995An15, Coul. ex.); 2.5 +13-6 (1972Fi12, from (ce) γ (t) in ε decay); 1.75 22 (1966Gr20, Coul. ex., uncertainty from 2001Ra27 evaluation). 2016Pr01 evaluation gives B(E2)=1.854 90, and corresponding $T_{1/2}=61.1$ ps +31-28. μ ,B(E2) \uparrow : transient-field method in Coul. ex. (1995An15,1995AnZQ). 597.61^a 4 A CD FG J^{π} : E2 γ s to 0^+ and 2^+ . 737.02[&] 5 4+ ABCD F J^{π} : E2, $\Delta J=2 \gamma$ to 2^{+} ; not 0^{+} from $\gamma(\theta)$. 916.57^a 5 3+ A CD F J^{π} : E2+M1 γ s to 4⁺ and 2⁺. 0+920.83 7 G J^{π} : E0 transition to 0^+ . 1128.16^a 6 XREF: A(?). (4^{+}) A CD FG J^{π} : L(p,t)=(4).

 J^{π} : E2 γ to 0^+ .

 J^{π} : E2 γ to 0^+ .

 J^{π} : E1 γ s to 2⁺ and 4⁺.

 J^{π} : γ s to 2^+ and (4^+) .

 J^{π} : $\Delta J=2$, E2 γ to 4⁺; band member.

190 Pt Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
1449.80 ^a 11	(5 ⁺)		CD F	J^{π} : probable band member; γ s to 3 ⁺ and (4 ⁺).
1464.51 6	5-		BCD F	J^{π} : E1, $\Delta J=1$ γ to 4^+ ; γ to 6^+ .
1543 5	(2^+)		G	J^{π} : L(p,t)=(2).
1600.67 <i>21</i>	(2^{+})		C F	XREF: C(?). J^{π} : γ s to 0^+ and 4^+ .
1601.99 20	$(2,1)^+$		A	J^{π} : γ to 0^+ ; M1+E2 γ to 2^+ . Possible 864.5 γ to 4^+ disfavors 1^+ .
1624.85 <i>17</i>	(2,1) $(2^+,3,4)$		C F	XREF: C(?).
	(= ,=,.)			J^{π} : γ s to 4^{+} , 3^{+} , and 3^{-} .
1628.04 <i>13</i>	$(2^+,3,4)$		C F	J^{π} : γ s to 4 ⁺ , 3 ⁺ , and 3 ⁻ .
1631.09 ^c 8	7-	0.79 ns 5	BCD F	μ=+4.3 6 (2006Le06,2014StZZ)
				J^{π} : E2, $\Delta J=2 \gamma$ to 5 ⁻ ; $\Delta J=1 \gamma$ to 6 ⁺ .
				Possible configuration= $v3/2[512] \otimes v11/2[615]$. $T_{1/2}$: ce(t) for 167 γ in (α ,4n γ). Weighted average of 0.77 ns 14
				(1979Ri08) and 0.80 ns 5 (1978Ti02). Others: $\gamma(t)$: <1 ns (1976Hj01),
				$\approx 1.2 \text{ ns } (1976\text{Cu}02).$
				μ : integral perturbed angular correlation (IPAC) method (2006Le06).
1670 5	0+		G	J^{π} : L(p,t)=0.
1732.64 ^a 18	(6 ⁺)		. C	J^{π} : probable band member.
1736.92 16	1-		A F	J^{π} : E1 γ to 0^+ .
1833.83 <i>9</i> 1842 <i>5</i>	(6 ⁻)		CD F G	J^{π} : $\Delta J=1 \ \gamma \text{ to } 5^-$.
1876.77 <i>13</i>	1-,2-,3-		A	J^{π} : E1 γ to 2 ⁺ . 3 ⁻ less likely if ε feeding from 1 ⁻ is correct.
1915.34 <mark>&</mark> <i>10</i>	8+		BCD F	J^{π} : E2, $\Delta J=2 \gamma$ to 6^{+} ; band member.
2043.81 13	$(7,8,9^{-})$		CD F	J^{π} : γ to 7^{-} .
2078.30 ^d 12	8-		BCD F	J^{π} : M1+E2, $\Delta J=1 \gamma$ to 7^{-} .
2212.8? <i>4</i>	(1-)		Α	J^{π} : E1 γ to 0^+ .
2216.0? 3	$(2^+,3,4^+)$		A	J^{π} : M1 γ to 2^+ .
2222.62 ^c 12	9-		BCD	J^{π} : E2, $\Delta J=2 \gamma$ to 7^{-} .
2297.45 ^d 17	(10^{-})	48 ns 5	BCD	$\mu = -0.02 \ 4 \ (2006 \text{Le}06, 2014 \text{StZZ})$
				J^{π} : (E2), ΔJ=(2) γ to 8 ⁻ ; γ to 9 ⁻ . μ : integral perturbed angular correlation (IPAC) method. Measured value is
				from 2006Le06. Other measurement: $+0.09 \ 8$ in $(\alpha, 2n\gamma)$ (2001Ko41).
				Configuration= $v9/2[505]v11/2[615]$ (2001Ko41) from consistency measured
				and calculated g factor.
				$T_{1/2}$: 219 γ (t) in $(\alpha,2n\gamma)$ and $(\alpha,4n\gamma)$. Weighted average of 48 ns 5
2250.2.2	(2)±			(1976Hj01) and 47 ns 6 (1976Cu02).
2358.2 <i>3</i> 2382.58 <i>14</i>	$(2)^+$ $(1)^+$		A A	J^{π} : M1 γ to 2 ⁺ ; (E0+E2+M1) γ to 2 ⁺ . J^{π} : M1 γ to 0 ⁺ .
2408.09? 19	$(1^{-},2^{-},3^{-})$		A	J^{π} : (M1,E2) 1054.7 γ to 3 ⁻ ; 1205.5 γ to 2 ⁺ .
2497.69? 25	(2+)		Α	J^{π} : (E2) γ to 0^{+} .
2535.28 ^b 12	10+		BCD	J^{π} : $\Delta J=2$, E2 γ to 8^+ .
2570.71 ^d 23	(11^{-})		BCD	J^{π} : $\Delta J=1 \gamma$ to (10^{-}) .
2603.08 16	10+		BCD	J^{π} : $\Delta J=2 \gamma$ to 8^+ ; γ from 12^+ .
2679.7? <i>4</i>	(1-)		Α	J^{π} : (E1) γ to 0^+ .
2683.4 5	(10)+		D	J^{π} : $\Delta J = (2) \gamma$ to 8^- .
2701.94 22 2723.35? 23	(10) ⁺ (1 ⁻)		BCD A	J^{π} : E2, ΔJ =(2) γ to 8^+ . J^{π} : (1 ⁻) from E1 γ to 0^+ , but γ to 4^+ requires E3.
2725.53? 23 2726.62 ^b 14	12+	1.39 ns <i>12</i>	BCD	μ =-2.0 14 (2006Le06,2014StZZ)
2120.02 14	12	1.39 118 12	עטע	μ =-2.0 14 (2000Le00,20143(2Z)) J^{π} : E2, ΔJ =2 γ to 10 ⁺ .
				$T_{1/2}$: weighted average of 1.27 ns 9 (1978TiO2, ce(t) for 191 γ) and 1.52 ns
				9 (1979Ri08, ce(t) for 123 γ and 191 γ) in (α ,4n γ). Others: γ (t): <1 ns
				$(1976\text{Hj}01), \approx 1.5 \text{ ns } (1976\text{Cu}02).$
2760.06.3	(11=)		DCD	μ : integral perturbed angular correlation (IPAC) method (2006Le06).
2760.9 ^c 3	(11 ⁻)		BCD	J^{π} : $\Delta J=2 \ \gamma$ to 9^{-} .

¹⁹⁰Pt Levels (continued)

E(level) [†]	J^{π} ‡	XREF	Comments
2796.89? 25		A	J^{π} : (3 ⁻) from E1 γ to 2 ⁺ and γ to 4 ⁺ , but (M1) γ to 0 ⁺ suggests (1 ⁺). Note that all the gamma-ray placements are questionable, thus no J^{π} is assigned for the 2797 level.
2820.3? <i>3</i>	(11^+)	CD	J^{π} : $\Delta J=1$ γ to 10^+ .
2821.8 4	(12^{-})	D	J^{π} : $\Delta J=(2) \gamma$ to (10^{-}) .
2875.14? 24	(0- 1- 2-)	A	
2942.7? <i>5</i> 2980.9 <i>4</i>	$(0^-,1^-,2^-)$ 1-	A A	J^{π} : M1 γ to (1 ⁻). J^{π} : E1 γ to 0 ⁺ .
3013.88 20	(2)-	A	J^{π} : E1 γ to 0 . J^{π} : E1 γ s to 2 ⁺ and 3 ⁺ ; probable ε feeding from 1 ⁻ .
3024.6 6	(12^{-})	D	J^{π} : $\Delta J = 1 \gamma$ to (11^{-}) .
3049.19 22	(2)-	A	J^{π} : E1 γ s to 2 ⁺ and 3 ⁺ ; probable ε feeding from 1 ⁻ .
3067.26 20	$(1,2)^{-}$	A	J^{π} : E1 γ to 2^+ ; probable ε feeding from 1^- .
3069.19 ^b 20	14 ⁺	BCD	J^{π} : $\Delta J=2$, E2 γ to 12 ⁺ ; band member.
3111.7 ^d 3	(13-)	B D	J^{π} : $\Delta J = 2 \gamma$ to (11 ⁻).
3233.4? <i>4</i> 3344.6 ^{<i>c</i>} <i>3</i>	$(2^-,3^-)$ (13^-)	A B D	J^{π} : (M1(+E2)) γ to 3 ⁻ ; γ to 2 ⁺ . J^{π} : ΔJ =2, E2 γ to (11 ⁻); band member.
344.86^{f} 24	(13^{+})	В D	J^{π} : γ s to 12^+ and (14^+) .
3414.80^{5} 24 3576.5^{b} 4	(14°) (16^{+})		J^{π} : $\Delta J=2 \gamma$ to (14^{+}) ; probable band member.
3666.1 ^f 3	(16) (16 ⁺)	B D B D	J^{π} : $\Delta J=2$, Δ
3807.9^{f} 4	(18 ⁺)	B D	J^{π} : $\Delta J = 2$, $E2 \gamma$ to (14^{+}) . J^{π} : $\Delta J = 2$, $(E2) \gamma$ to (16^{+}) .
3856.0 ^c 4	(15^{-})	В	J^{π} : $\Delta J = 2$, (E2) γ to (10°). J^{π} : $\Delta J = 2$ γ to (13°); $\Delta J = 1$ γ to 14 ⁺ ; band member.
4055.5? 6	(13)	В	J^{π} : (16) from $\Delta J=1$ γ to (15 ⁻).
4083.2 ^e 4	(17^{-})	B D	J^{π} : $\Delta J=2$, (E2) γ to (15 ⁻); $\Delta J=1$ γ to (16 ⁺); band member.
4133.8 ^f 5	(20^+)	В	J^{π} : $\Delta J=2$, (E2) γ to (18 ⁺); band member.
4214.6 ^b 6	(18^+)	B D	J^{π} : $\Delta J=2 \gamma$ to (16 ⁺); band member.
4266.6 ^e 5	(19-)	В	The same of the sa
4612.3 <i>7</i> 4653.5 ^e 6	(21^{+})	В	J^{π} : $\Delta J=1 \ \gamma \text{ to } (20^+)$.
4929.7^{f} 7	(21^{-})	В	IT. AI 2 (20†), band manilan
4929.75 / 4958.2 ^b 8	(22 ⁺)	В	J^{π} : $\Delta J = 2 \gamma$ to (20^+) ; band member.
4958.2° 8 5330.1 7	(20^+) (23^+)	B B	J^{π} : $\Delta J=2 \ \gamma$ to (18^+) ; band member. J^{π} : $\Delta J=1 \ \gamma$ to (22^+) .
5391.4? ^f 8	(24^{+})	В	J^{π} : $\Delta J = 2 \gamma$ to (22^+) ; band member.
5448.0 ^e 7	(23^{-})	В	J^{π} : $\Delta J = 2 \gamma$ to (21 ⁻); band member.
5720.4 8	(25 ⁺)	В	J^{π} : $\Delta J = 2$, (E2) γ to (23 ⁺).
6006.7? ^e 8	(24^{-})	В	J^{π} : $\Delta J=1 \gamma$ to (23 ⁻); band member.
6282.2? ^f 8	(26^+)	В	J^{π} : $\Delta J=2 \gamma$ to (24^{+}) ; band member.
6739.6? ^e 10	(26 ⁻)	В	J^{π} : $\Delta J=2 \gamma$ to (24^{-}) ; band member.
6790.5? ^f 10	(28^+)	В	J^{π} : $\Delta J = 2 \gamma$ to (26^+) ; band member.
7227.3? ^e 11 7469.1? ^f 11	(28 ⁻)	В	J^{π} : $\Delta J = 2 \gamma$ to (26 ⁻); band member.
7469.1? ³ 11 7534.2? ^e 12	(30 ⁺) (30 ⁻)	B B	J^{π} : $\Delta J=2 \ \gamma$ to (28^+) ; band member. J^{π} : $\Delta J=2 \ \gamma$ to (28^-) ; band member.
7957.1? ^e 13	(30°) (32^{-})	В	J^{π} : $\Delta J = 2 \gamma$ to (28°); band member. J^{π} : $\Delta J = 2 \gamma$ to (30°); band member.
7992.0? ^f 12	(32^{+})	В	J^{π} : $\Delta J = 2 \gamma$ to (30 ⁺); band member.
8130.9? ^e 14	(33^{-})	В	J^{π} : $\Delta J = 1$ γ to (32 ⁻); band member.
8772.3? e 15	(35-)	В	J^{π} : $\Delta J=2 \gamma$ to (33 ⁻); band member.

 $^{^{\}dagger}$ From least-squares fit to E γ values.

 $^{^{\}ddagger}$ When deduced from in-beam γ -ray datasets, it is assumed that levels with ascending spins are populated as the excitation energy increases. This is generally supported by systematics of such reactions and by decay modes. It is also assumed that transitions

¹⁹⁰Pt Levels (continued)

- with quoted mult=D+Q and Q are M1+E2 and E2, respectively. The quoted ΔJ values are interpreted from $\gamma(\theta)$ data. # Measured by 2017Br04 through the detection of the 3183-keV α emitted by ¹⁹⁰Pt with a total of 10103 *101* events, after subtraction of 77 background events, resulting in decay rate of 133.1 *13* counts per day from the decay of ¹⁹⁰Pt. The quoted uncertainty in half-life includes statistical as well as systematic, the two combined in quadrature. Authors compared their result with previous 13 measurements (eight from direct counting and five from geological methods), compiled and evaluated by 2006Ta01, and concluded that their measured value was in good agreement with an average value of 4.78×10¹¹ y 5 from geological methods, but not with averaged 3.9×10¹¹ y 2 from direct counting methods, which among themselves suffer from inconsistency. Others: 3.2×10¹¹ y 1 (1997Ta33); 6.65×10¹¹ y 28 (1987Al28,1986AlZT); 1966Ka23; 5.4×10¹¹ y 6 (1963Gr08, 6.8×10¹¹ y in 1961Gr37); 6.9×10¹¹ y 5 (1961Ma05); 4.7×10¹¹ y 17 (1961Pe23); 10×10¹¹ y (1954Po24, also 1956Po16,1953Po01); ≈5×10¹¹ y (1921Ho01). Geological measurements of half-life of ¹⁹⁰Pt: 8.8×10¹¹ y 7 (1991Wa32); 4.49×10¹¹ y 4 (1997Wa40; this value revised to 4.69×10¹¹ y 4 by 2001Be81); 4.7×10¹¹ y 3 (2002Mo47); 4.9×10¹¹ y 1 and 4.90×10¹¹ y 4 (2004Co30); revised to 5.1×10¹¹ y 1 and 5.08×10¹¹ y 5, respectively by 2006Ta01, considering the revised half-life of ¹⁸⁷Re. Evaluators obtain a weighted averaged (NRM approach) value of 4.93×10¹¹ y 10 from above 11 values listed with uncertainties, but using a minimum uncertainty of 0.1×10¹¹, with reduced χ^2 =3.8, somewhat larger than the critical χ^2 =1.8, implying that measured half-lives represent a discrepant dataset. See 2006Ta01 (also 2011Ta23) for compilation of experimental and theoretical α -decay half-lives of ¹⁹⁰Pt, statistical analysis and theoretical calculations. Partial measured half-lives to excited states of ¹⁸⁶Os: 2.6×10¹⁴ y +4-3(stat) 6(syst)
- [@] Half-life measurements for double-beta decay: ≥9.2×10¹⁵ y (2011Be32) for two-neutrino $\varepsilon\beta^+$ decay mode to the g.s. of ¹⁹⁰Os. Also deduced in this work was the lower limit for 0-neutrino $\varepsilon\beta^+$ decay to the ground state of ¹⁹⁰Os: $T_{1/2}$ ≥9.0×10¹⁵ y, and the lower limit for two-neutrino + 0-neutrino $\varepsilon\beta^+$ decay to the first excited state of ¹⁹⁰Os: $T_{1/2}$ ≥8.4×10¹⁵ y. A lower limit for the resonant 2 ε capture to the 1382.4 keV level of ¹⁹⁰Os was also set: $T_{1/2}$ ≥2.9×10¹⁶ y, along with limits for double electron capture from various combinations of the K and L shells (see 2011Be32 for details). Others: $T_{1/2}$ (0νβ ε)>3.1x10¹¹ (1952Fr23,2002Tr04).
- & Band(A): g.s. band.
- ^a Band(B): Possible γ band.
- ^b Band(C): 2-qusiparticle band based on 10^+ . Configuration= $vi_{13/2}^{-2}$.
- ^c Seq.(E): γ cascade based on 7⁻. Possible configuration= $\nu i_{13/2}^{-1} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2014Li21). Possible Nilsson configuration= $\nu 3/2$ [512] $\otimes \nu 11/2$ [615].
- ^d Seq.(F): γ cascade based on 8⁻.
- ^e Seq.(G): γ cascade based on 17⁻. Possible configuration= $\nu i_{13/2}^{-3} \otimes \nu (p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2014Li21, assignment based on total Routhian surface calculations).
- ^f Band(D): Band based on 14⁺. Possible configuration= $vi_{13/2}^{-2} \otimes vh_{9/2}^{-1} \otimes v(p_{3/2}^{-1} \text{ or } f_{5/2}^{-1})$ (2008Ma58, 2014Li21, assignment based on total Routhian surface calculations).

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ	$\alpha^{\#}$	$I_{(\gamma+ce)}$	Comments
295.78 597.61	2 ⁺ 2 ⁺	295.76 <i>3</i> 301.82 <i>3</i>	100 100.0 <i>23</i>	0.0 0 ⁺ 295.78 2 ⁺	E2 E2		0.1027 0.0967		B(E2)(W.u.)=56.1 28 δ (E2/M1)=+6.8 +30-12 from $\gamma(\theta)$ in (p,2n γ) (1972YoZZ).
737.02	4+	597.66 <i>7</i> 441.22 <i>4</i>	40 <i>3</i> 100	0.0 0 ⁺ 295.78 2 ⁺	E2 E2		0.01624 0.0339		
916.57	3 ⁺	179.6 <i>3</i> 318.93 <i>5</i>	2.8 <i>3</i> 100 <i>4</i>	737.02 4 ⁺ 597.61 2 ⁺	E2+M1 E2+M1	3 +2-1 3.1 +18-7	0.60 8 0.099 10		δ : from $\alpha(K)$ exp in ε decay.
920.83	0+	620.77 7 323.17 7 625.1 2	56 <i>4</i> 34.5 2 <i>1</i> 100 <i>5</i>	295.78 2 ⁺ 597.61 2 ⁺ 295.78 2 ⁺	E2+M1 E2 E2	2.0 +20-6	0.030 <i>12</i> 0.0792 0.01467		δ : from $\alpha(K)$ exp in ε decay.
		921.05 <i>14</i>		0.0 0+	E0			2.1 1	E_{γ} : from ce data in ε decay. $q_{K}^{2}(E0/E2)=1.45$ 17, $X(E0/E2)=0.0143$ 17 (2005Ki02).
1128.16	(4+)	391.02 <i>9</i> 530.62 <i>12</i> 832.40 <i>21</i>	27.9 22 100 5 7.1 20	737.02 4 ⁺ 597.61 2 ⁺ 295.78 2 ⁺	[M1,E2] (E2)		0.098 <i>52</i> 0.0214		
1202.62	2+	282.3 8	51 4	920.83 0 ⁺	E2		0.1182 20		E γ and branching ratio data of γ rays from 1203 level are from the ε decay dataset.
		286.2 3	18 8	916.57 3+	E2(+M1)	>5	0.118 5		Additional information 3. δ : from $\alpha(K)$ exp in ε decay.
		466.0 <i>3</i> 604.56 <i>17</i>	32 2 100 2	737.02 4 ⁺ 597.61 2 ⁺	E2 M1(+E2)	<0.4	0.0295 0.0452 <i>23</i>		E _{γ} : NRM weighted average of 605.21 <i>12</i> (ε decay), 604.48 <i>17</i> (α ,2n γ) and 604.46 <i>17</i> (p,2n γ). Weighted average is 604.84 <i>26</i> with normalized χ^2 =9.5. δ : from α (K)exp and K/(L1+L2) ratio in ε
		906.61 20	96 4	295.78 2+	E0+(E2,M1)		0.049 6		decay. E_{γ} : NRM weighted average of 907.30 9 (ε decay), 906.5 2 (α ,2n γ) and 906.5 2 (p,2n γ). Weighted average is 907.07 26 with normalized χ^2 =11.4. I_{γ} : NRM weighted average of 97.2 24 (ε decay), 46 12 (α ,2n γ) and 89 11 (p,2n γ). Weighted average is 95 7 with normalized χ^2 =8.9.
1287.69	6 ⁺	1203.4 <i>4</i> 550.66 <i>5</i>	14.2 <i>14</i> 100	0.0 0 ⁺ 737.02 4 ⁺	(E2) E2		0.0196		χ -0.9.
1353.33	3-	224.9 <i>3</i> 616.20 <i>9</i> 756.4 <i>2</i>	8.2 9 43 <i>3</i> 4.1 <i>10</i>	1128.16 (4 ⁺) 737.02 4 ⁺ 597.61 2 ⁺	E1 E1				
1385.88	$(2^+,3,4^+)$	1057.42 <i>10</i> 257.6 <i>4</i>	100 <i>6</i> 6 <i>3</i>	295.78 2 ⁺ 1128.16 (4 ⁺)	E1				

 \mathcal{S}

γ (190 Pt) (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ	α#	Comments
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1385.88	$(2^+,3,4^+)$	469.0 5	100 18	916.57 3+				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			788.30 <i>14</i>	53 12	597.61 2 ⁺				
657.9 3 5.3 6 737.02 4" (E2) 0.01309 0.28 4" (1995.2 43 6 295.78 2" E0+(E2,M1) 0.28 4" 0.28 4" 0.041 6 1395.2 100 17 0.00 0" E2 1395.2 100 17 0.00 0" E2 128.16 (4") MI,E2] 0.166 87 I _γ : from (p,2nγ), I _γ =89 20 in (α,2nγ). 449.80 (5*) 321.76 13 22 7 128.16 (4*) MI,E2] 0.0956 336.32 5 100 7 916.57 3" 18.0 12 1128.16 (4*) D 0.0956 0.095	1395.09	2+	192.2 <i>3</i>	3.8 4	1202.62 2+	[M1,E2]		0.73 32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			478.2 2	16 <i>3</i>	916.57 3 ⁺	M1(+E2)	< 0.8	0.076 12	δ : from $\alpha(K)$ exp in ε decay.
1099.5 2			657.9 <i>3</i>	5.3 6	737.02 4+	(E2)			
449.80 (5^+) 321.76 13 2.7 1(28.16 (4^+) [M1.E2] 0.166 87 I_y : from (p,2ny). I_y =89 20 in (α ,2ny). 4464.51 5^- 176.83 2.4 10 287.69 (4^+) 100. 4 737.02 4^+ E1 600.67 (2^+) 863.84 16 4^+ 737.02 4^+ E1 1003.4 5 16 8^- 597.61 2 1304.8 3 100 16^- 295.78 2 4^+ 1003.4 5 16 8^- 597.61 2 1304.8 3 100 16^- 295.78 2 4^+ 1005.4 4 100 19^- 597.61 2 1306.5 5 1^- 777.52 100 10^- 787.02 4^+ 112.1 1395.09 2 10^- [M1.E2] 0.59 27 864.8 3 20 2 737.02 4^+ 112.1 1395.09 2 10^- [M1.E2] 0.59 27 1005.4 4 100 19^- 597.61 2 10^- M1+E2 0.7 5 0.0104 22 10^- Mult.: (E0+E2+M1) from ce data is inconsistent with ΔI 100.65 6 10^- 295.78 2 10^- M1.52 1005.4 4 100 19^- 597.61 2 10^- M1+E2 0.7 5 0.0104 22 10^- From α (K)exp in α decay. 1005.4 4 100 19^- 597.61 2 10^- M1+E2 0.7 5 0.0104 22 10^- From α (K)exp in α decay. 1005.4 4 100 19^- 597.61 2 10^- M1+E2 0.7 5 0.0104 2 10^- From α (K)exp in α decay. 1005.4 4 100 19^- 597.61 2 10^- M1+E2 0.7 5 0.0104 2 10^- From α (K)exp in α decay. 1005.4 87 6 10^- 7 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 128.16 (4^+) 139.2 3 166.12 10.0 4 1464.51 5 E2 0.681 B(E2)(Wu,)=36.7 24 19.10 19			797.5 <i>3</i>	5.0 6	597.61 2+	E0+(E2,M1)			
449.80 (5*) 321.76 13 22 7 1128.16 (4*) [M1,E2] 0.166 87 I_y : from (p,2ny). I_y =89 20 in (α ,2ny). I_y =89 20 in (α ,2ny). I_y =89 20 in (α ,2ny). I_y =80 464.51 5 176.83 2.4 10 128.16 (4*) D 336.32 5 18.0 12 1128.16 (4*) D 336.32 5 18.0 12 1128.16 (4*) D 336.32 5 18.0 12 128.16 (4*) D 336.32 5 18.0 16 295.78 2* I_y 1003.4 5 168 597.61 2* I_y 1003.4 5 168 597.61 2* I_y 1004.8 3 100 16 295.78 2* I_y 1005.4 4 100 19 597.61 2* I_y 1005.4 4 100 19 597.61 2* I_y 1015.4 8 10 10 19 597.61 2* I_y 1015.4 1015.4 30 4 0.0 0* I_y 1015.4 1015.4 1017.4 1018.16 (4*) I_y 1017.5 1				43 6		E0+(E2,M1)		0.041 6	
464.51 5 176.8 3 2.4 10 1287.69 6			1395.2 <i>3</i>	100 11					
464.51 5	1449.80	(5^{+})				[M1,E2]		0.166 87	I_{γ} : from (p,2n γ). I_{γ} =89 20 in (α ,2n γ).
336.32 5 18.0 12 1128.16 (4+) D 727.53 6 100 4 737.02 4+ E1 600.67 (2+) 863.8 4 16 4 737.02 4+ E1 600.67 (2+) 863.8 4 16 4 737.02 4+ E1 601.99 (2,1)+ 2061.3 12 1 1395.09 2+ [M1,E2] 0.59 27 601.99 (2,1)+ 2061.3 12 1 1395.09 2+ [M1,E2] 0.59 27 604.85 (2+3.4) 100 19 597.61 2+ M1+E2 0.7 5 0.0104 22 δ: from α(K)exp in ε decay. 604.85 (2+3.4) 271.5 2 100 17 1353.33 3- 422.5π 3 1202.62 2+ 4068.8 4 67 17 1128.16 (4+) 708.8 4 83.3 916.57 3+ 709.019. 628.04 (2+3.4) 274.73 14 50 9 1353.33 3- 422.5π 3 1202.62 2+ 4068.8 4 67 17 1128.16 (4+) 708.4 4 83.3 916.57 3+ 709.019. 715.5 3 100 14 916.57 3+ 709.019. 715.5 3 100 14 916.57 3+ 709.019. 715.5 3 100 14 916.57 3+ 709.019. 715.5 3 100 14 916.57 3+ 709.019. 715.5 3 100 14 916.57 3+ 709.019. 715.3 100 10 92.578 2+ E1 732.64 (6+) 604.48 17 100 1128.16 (4+) 100.0190 B(E1)(W.u.)=1.78×10-6 14 1.9 100.0190 B(E1)				100 7					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1464.51	5-				[E1]		0.0956	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				18.0 <i>12</i>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						E1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1600.67	(2^{+})							
601.99 (2,1) ⁺ 206.1 3 12 1 1395.09 2 ⁺ [M1,E2] 0.59 27 864.5 ⁰ 3 20 2 737.02 4 ⁺ Mult.: (E0+E2+M1) from ce data is inconsistent with ΔJ 1005.4 4 100 19 597.61 2 ⁺ M1 + E2 0.7 5 0.0104 22 δ : from α (K)exp in ε decay. 1307.6 5 67 7 295.78 2 ⁺ M1 1601.5 4 30 4 0.0 0 ⁺ (M1,E2) 624.85 (2 ⁺ ,3,4) 271.5 2 100 17 1353.33 3 ⁻ 422.5 ⁰ 3 120.62 2 ⁺ γ reported in $(\alpha,2n\gamma)$ only. γ reported in $(\alpha,$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1601.99	$(2,1)^{+}$				[M1,E2]		0.59 27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
624.85 (2 ⁺ ,3,4) 271.5 2 100 17 1353.33 3 - 422.5 ^a 3 1202.62 2 ⁺							0.7 5	0.0104 22	δ : from $\alpha(K)$ exp in ε decay.
624.85 (2+3,4) 271.5 2 100 17 1353.33 3 - 422.5 a 3 1202.62 2+ γ reported in $(\alpha, 2n\gamma)$ only.									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160405	(2± 2 t)				(M1,E2)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1624.85	$(2^+,3,4)$		100 17					
708.4 4 83 33 916.57 3^{+} 7 reported in (p,2ny) only. 887.5 6 67 33 737.02 4^{+} 7 reported in (p,2ny) only. 9 reported in (p,2ny) only.									
887.5 6 67 33 737.02 4+ γ reported in (p,2n γ) only. 628.04 (2+,3,4) 274.73 14 50 9 1353.33 3- 711.5 3 100 14 916.57 3+ 890.9 3 23 5 737.02 4+ (631.09 7- 166.6 1 100 4 1464.51 5- E2 0.681 B(E2)(W.u.)=36.7 24 128.16 (4+) 816.1 2 10.4 9 920.83 0+ E1 1139.2 3 36.5 13 597.61 2+ E1 1139.2 3 169.32 6 100 1464.51 5- (M1+E2) +0.3 1 0.164 7 δ : from γ f									
628.04 (2 ⁺ ,3,4) 274.73 14 50 9 1353.33 3 ⁻ 711.5 3 100 14 916.57 3 ⁺ 890.9 3 23 5 737.02 4 ⁺ 631.09 7 ⁻ 166.6 1 100 4 1464.51 5 ⁻ E2 0.681 B(E2)(W.u.)=36.7 24 343.35 6 65 3 1287.69 6 ⁺ (E1) 0.0190 B(E1)(W.u.)=1.78×10 ⁻⁶ 14 I _y : from $(\alpha,4$ ny). Iy=130 13 in (p,2ny). 732.64 (6 ⁺) 604.48 17 100 1128.16 (4 ⁺) 736.92 1 ⁻ 816.1 2 10.4 9 920.83 0 ⁺ E1 1139.2 3 36.5 13 597.61 2 ⁺ E1 1141.2 3 100 10 295.78 2 ⁺ E1 833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 1 0.164 7 δ : from $\gamma(\theta)$ data in α 4ny). 876.77 1 ⁻ ,2 ⁻ ,3 ⁻ 523.28 13 18.8 16 1353.33 3 ⁻ E2(+M1) >1 0.034 12 δ : from α (K)exp in ε decay. 1279.5 3 100 18 597.61 2 ⁺ E1 1581.5 3 78 6 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454									
711.5 $\frac{3}{890.9}$ $\frac{3}{3}$ $\frac{23}{5}$ $\frac{5}{737.02}$ $\frac{3}{4^+}$ 631.09 $\frac{7}{7}$ 166.6 $\frac{1}{1}$ 100 $\frac{4}{1}$ 1464.51 $\frac{5}{7}$ E2 0.681 B(E2)(W.u.)=36.7 $\frac{24}{1}$ 17.7 $\frac{3}{3}$ 343.35 $\frac{6}{1}$ 65 $\frac{3}{3}$ 1287.69 $\frac{6}{1}$ (E1) 0.0190 B(E1)(W.u.)=1.78×10 ⁻⁶ $\frac{14}{1}$ 17.7 $\frac{1}{3}$ 18.6 ($\frac{4}{7}$) 19.1 128.16 ($\frac{4}{7}$) 19.1 139.2 $\frac{3}{3}$ 36.5 $\frac{1}{3}$ 36.5 $\frac{1}{3}$ 37.6 1 $\frac{2}{7}$ E1 1441.2 $\frac{3}{7}$ 100 10 295.78 $\frac{2}{7}$ E1 1441.2 $\frac{3}{7}$ 100 10 295.78 2 $\frac{1}{7}$ E1 17.2 19.3 1 0.164 $\frac{7}{7}$ $\frac{\delta}{5}$: from $\frac{\gamma}{9}$ data in ($\frac{\alpha}{7}$,4n γ). 19.1 18.8 16 1353.33 $\frac{3}{7}$ E2(+M1) 19.1 0.034 $\frac{1}{7}$ $\frac{\delta}{7}$: from $\frac{\alpha}{7}$ (K) exp in $\frac{\alpha}{7}$ decay. 1279.5 $\frac{3}{7}$ 100 18 597.61 2 $\frac{1}{7}$ E1 1581.5 $\frac{3}{7}$ 78 6 295.78 2 $\frac{1}{7}$ E1 1581.5 $\frac{3}{7}$ 78 6 295.78 2 $\frac{1}{7}$ E1 1581.5 3 78 6 295.78 2 $\frac{1}{7}$ E1 1581.5 3 78 6 295.78 2 $\frac{1}{7}$ E1 1581.5 3 78 6 295.78 2 $\frac{1}{7}$ E1 2 0.01454	1.600.04	(2± 2 t)							γ reported in (p,2n γ) only.
890.9 3 23 5 737.02 4^+ 631.09 7^- 166.6 l 100 l 1464.51 l 5 E2 0.681 B(E2)(W.u.)=36.7 l 24 343.35 l 65 l 1287.69 l (E1) 0.0190 B(E1)(W.u.)=1.78×10 ⁻⁶ l 1 l 1 l 100 1128.16 (l 1 l 139.2 l 3 36.5 l 3 597.61 l 2 E1 1139.2 l 3 36.5 l 3 597.61 l 2 E1 1139.2 l 3 100 l 0 295.78 l E1 1441.2 l 100 1464.51 l E1 158.5 l 78 l 6 295.78 l E1 1581.5 l 78 l 8 l 6 295.78 l E1 1581.5 l 8 l 6 295.78 l E1 1581.5 l 78 l 8 l 8 l 6 295.78 l 8 l 8 l 8 l 6 295.78 l 8 l 9	1628.04	$(2^+,3,4)$							
631.09 7^- 166.6 I 100 I 1464.51 I 5 I E2 0.681 B(E2)(W.u.)=36.7 I 24 I 343.35 I 6 65 I 1287.69 I (E1) 0.0190 B(E1)(W.u.)=1.78×10 ⁻⁶ I 128.16 (I 100 1128.16 (I 139.2 I 3 36.5 I 3 597.61 I E1 1139.2 I 3 100 I 295.78 I E1 1441.2 I 100 1464.51 I E1 139.3 I 369.32 I 100 10 295.78 I E1 17.2 I 369.32 I 100 10 1464.51 I 6 (M1+E2) I 6 (M1+E2) I 6 (M1+E2) I 6 (From I 6) data in I 6 (I 6) from I 6 (I 6) I 6 (I 7) I 7) I 7) I 7) I 7) I 7) I 8 (I 7) I 7) I 8 (I 8) I 9 (I 9 (I 8) I 9 (I									
343.35 6 65 3 1287.69 6 ⁺ (E1) 0.0190 B(E1)(W.u.)=1.78×10 ⁻⁶ 14 I _y : from $(\alpha,4n\gamma)$. Iy=130 13 in (p,2ny). 732.64 (6 ⁺) 604.48 17 100 1128.16 (4 ⁺) 736.92 1 ⁻ 816.1 2 10.4 9 920.83 0 ⁺ E1 1139.2 3 36.5 13 597.61 2 ⁺ E1 1441.2 3 100 10 295.78 2 ⁺ E1 833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 1 0.164 7 δ : from $\gamma(\theta)$ data in $(\alpha,4n\gamma)$. 876.77 1 ⁻ ,2 ⁻ ,3 ⁻ 523.28 13 18.8 16 1353.33 3 ⁻ E2(+M1) >1 0.034 12 δ : from α (K)exp in ε decay. 1279.5 3 100 18 597.61 2 ⁺ (E1) 1581.5 3 78 6 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454	1621.00	7-				E2		0.691	D(E2)(W ₁₁) 26.7.24
T _{32.64} (6 ⁺) 604.48 17 100 1128.16 (4 ⁺) 736.92 1 ⁻ 816.1 2 10.4 9 920.83 0 ⁺ E1 1139.2 3 36.5 13 597.61 2 ⁺ E1 1441.2 3 100 10 295.78 2 ⁺ E1 833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 1 0.164 7 δ: from $\gamma(\theta)$ data in $(\alpha, 4n\gamma)$. 876.77 1 ⁻ ,2 ⁻ ,3 ⁻ 523.28 13 18.8 16 1353.33 3 ⁻ E2(+M1) >1 0.034 12 δ: from $\alpha(K)$ exp in ε decay. 1279.5 3 100 18 597.61 2 ⁺ (E1) 1581.5 3 78 6 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454	1031.09	/							
732.64 (6 ⁺) 604.48 17 100 1128.16 (4 ⁺) 736.92 1 ⁻ 816.1 2 10.4 9 920.83 0 ⁺ E1 1139.2 3 36.5 13 597.61 2 ⁺ E1 1441.2 3 100 10 295.78 2 ⁺ E1 833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 1 0.164 7 δ : from $\gamma(\theta)$ data in $(\alpha, 4n\gamma)$. 876.77 1 ⁻ ,2 ⁻ ,3 ⁻ 523.28 13 18.8 16 1353.33 3 ⁻ E2(+M1) >1 0.034 12 δ : from $\alpha(K)$ exp in ε decay. 1279.5 3 100 18 597.61 2 ⁺ (E1) 1581.5 3 78 6 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454			343.35 6	63 <i>3</i>	1287.69 6	(EI)		0.0190	
736.92 1^{-} 816.1 2 10.4 9 920.83 0^{+} E1 1139.2 3 36.5 13 597.61 2^{+} E1 1441.2 3 100 10 295.78 2^{+} E1 833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 1 0.164 7 δ : from $\gamma(\theta)$ data in $(\alpha, 4n\gamma)$. 876.77 $1^{-}, 2^{-}, 3^{-}$ 523.28 13 18.8 16 1353.33 3 ⁻ E2(+M1) >1 0.034 12 δ : from $\alpha(K)$ exp in ε decay. 1279.5 3 100 18 597.61 2^{+} (E1) 1581.5 3 78 6 295.78 2^{+} E1 915.34 8^{+} 627.70 7 100 1287.69 6^{+} E2 0.01454	1722 64	(6 ±)	604 40 17	100	1120 16 (4+)				1_{γ} : from $(\alpha,4n\gamma)$. $1\gamma=130$ 13 in $(p,2n\gamma)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						E1			
1441.2 3 100 10 295.78 2 ⁺ E1 833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 1 0.164 7 δ : from $\gamma(\theta)$ data in $(\alpha,4n\gamma)$. 876.77 1 ⁻ ,2 ⁻ ,3 ⁻ 523.28 13 18.8 16 1353.33 3 ⁻ E2(+M1) >1 0.034 12 δ : from $\alpha(K)$ exp in ε decay. 1279.5 3 100 18 597.61 2 ⁺ (E1) 1581.5 3 78 6 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454	1/30.92	1							
833.83 (6 ⁻) 369.32 6 100 1464.51 5 ⁻ (M1+E2) +0.3 I 0.164 7 δ : from $\gamma(\theta)$ data in $(\alpha, 4n\gamma)$. 876.77 1 ⁻ ,2 ⁻ ,3 ⁻ 523.28 I 3 18.8 I 6 1353.33 3 ⁻ E2(+M1) >1 0.034 I 2 δ : from $\alpha(K)$ exp in ε decay. 1279.5 3 100 I 8 597.61 2 ⁺ (E1) 1581.5 3 78 δ 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454									
876.77 $1^-,2^-,3^-$ 523.28 13 18.8 16 1353.33 3^- E2(+M1) >1 0.034 12 δ : from α (K)exp in ε decay. 1279.5 3 100 18 597.61 2^+ (E1) 1581.5 3 78 δ 295.78 2^+ E1 915.34 8^+ 627.70 7 100 1287.69 δ E2 0.01454	1022 02	(6-)					1021	0.164.7	S. from a (0) data in (a. Ana)
1279.5 3 100 18 597.61 2 ⁺ (E1) 1581.5 3 78 6 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454									
1581.5 <i>3</i> 78 <i>6</i> 295.78 2 ⁺ E1 915.34 8 ⁺ 627.70 <i>7</i> 100 1287.69 6 ⁺ E2 0.01454	10/0.//	1 ,2 ,3					>1	0.034 12	o. Hom $\alpha(\mathbf{K})$ exp in ε decay.
915.34 8 ⁺ 627.70 7 100 1287.69 6 ⁺ E2 0.01454									
	1015 34	Q+						0.01454	
073.01 (7,0,7) 712.72 TO 100 1031.07 /						EZ		0.01434	
	2043.81	$(7,8,9^{-})$	412.72 10	100	1631.09 7				

6

γ (190 Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ	$\alpha^{\#}$	Comments
2078.30	8-	447.21 9	100	1631.09 7-	M1+E2	+0.56 16	0.087 8	δ : from $\gamma(\theta)$ data in $(\alpha,4n\gamma)$.
2212.8?	(1-)	2212.8 <mark>a</mark> 4	100	$0.0 0^{+}$	E1			
2216.0?	$(2^+,3,4^+)$	1013.1 [@] a 4	<8.0 <mark>@</mark>	1202.62 2+				
	(= ,=,:)	1920.4 ^a 4	100 20	295.78 2 ⁺	M1			
2222.62	9-	591.43 10	100	1631.09 7-	E2		0.01663	
2297.45	(10^{-})	75.0 <i>5</i>	43 13	2222.62 9-	[M1]		2.73 7	$B(M1)(W.u.)=1.6\times10^{-4} 6$
	(-)	219.14 <i>14</i>	100 6	2078.30 8-	(E2)		0.264	B(E2)(W.u.)=0.125 +50-34
2358.2	$(2)^{+}$	1760.7 <i>3</i>	100 6	597.61 2+	M1(+E2)	< 0.8		δ : from $\alpha(K)$ exp in ε decay.
		2061.1 [@] 13	<30 [@]	295.78 2 ⁺	(E0+E2+M1)		0.0094 18	•
2382.58	$(1)^{+}$	987.4 2	13.1 7	1395.09 2+	M1(+E2)	<1	0.0115 20	δ : from $\alpha(K)$ exp in ε decay.
	(-)	1461.6 <i>4</i>	11.5 11	920.83 0 ⁺	M1			δ : <1.1 from ce data, but ΔJ^{π} requires δ =0.
		1784.9 <i>3</i>	40.4 21	597.61 2 ⁺	M1			1
		2087.3 4	22 4	295.78 2+	M1,E2			
		2382.6 3	100 8	0.0 0+	(M1)			Mult.: ce data give (M1,E2); but ΔJ^{π} requires M1.
2408.09?	$(1^-, 2^-, 3^-)$	1013.1 [@] a 4	<24 [@]	1395.09 2+	(E1)		0.008 5	Mult.: (D,E2) from ce data in 190 Au ε decay, but ΔJ^{π} requires E1.
		1054.7 ^a 3	100 10	1353.33 3-	(M1,E2)		0.0082 33	1
		1205.5 ^a 4	82 8	1202.62 2 ⁺	, ,			
		1810.7 [@] a 5	<42 <mark>@</mark>	597.61 2+				
		2111.9 ^a 6	46 6	295.78 2 ⁺				
2497.69?	(2^{+})	1760.7 ^a 3	10 0	737.02 4+				
,,,,,,,	(-)	2497.6 ^a 4	100 13	0.0 0+	(E2)		1.49×10^{-3}	
2535.28	10 ⁺	620.00 8	100	1915.34 8 ⁺	E2		0.01494	
2570.71	(11^{-})	273.27 16	100	2297.45 (10 ⁻)	(M1+E2)	-0.2 I	0.384 13	δ : from $\gamma(\theta)$ data in $(\alpha,4n\gamma)$.
2603.08	10+	380.0 ^a 2	56 8	2222.62 9-	,			γ not reported in ($^{18}O,4n\gamma$).
		687.90 24	100 32	1915.34 8 ⁺	Q			,
2679.7?	(1^{-})	2081.6 ^a 5	76 8	597.61 2+				
		2680.2 ^a 5	100 16	$0.0 0^{+}$	(E1)			
2683.4	(10^{-})	605.1 4	100	2078.30 8-	(Q)			
2701.94	$(10)^{+}$	786.6 2	100	1915.34 8+	E2			
2723.35?	(1^{-})	1802.8 ^a 3	100 12	920.83 0+	E1			
		1985.8 ^a 5	49 6	737.02 4+	[E3]			
		2125.0 ^a 6	21.2 15	597.61 2+				
		2428.0 ^a 7	91 <i>11</i>	295.78 2+				
2726.62	12 ⁺	123.2 2	5.8 13	2603.08 10 ⁺	[E2]		2.11 4	B(E2)(W.u.)=8.0 +32-25
		191.40 9	100 6	2535.28 10 ⁺	E2		0.418	B(E2)(W.u.)=15.3 14
2760.9	(11^{-})	538.3 3	100	2222.62 9-	Q			
2796.89?		1401.9 ^a 3	100 5	1395.09 2+	E1			
		1880.0 [@] a 4	<120 [@]	916.57 3 ⁺	(M1)			$\delta(E2/M1)<1$ from $\alpha(K)$ exp in ε decay.
		2061.1 [@] a 13	<47 [@]					

							-		-
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	J_f^π	Mult.‡	$\alpha^{\#}$	Comments
	2820.3?	(11^+)	217.2 2	100	2603.08		(M1+E2)	0.51 24	
	2821.8 2875.14?	(12^{-})	524.3 <i>3</i> 1672.4 ^{<i>a</i>} <i>3</i>	100	2297.45 1202.62				
ı	2075.14:		1958.8 ^a 5	100 11	916.57				
ı			2277.6 [@] a 7	<285 [@]	597.61				
ı			2579.4 <mark>a</mark> 8	33 7	295.78	2+			
ı	2942.7?	$(0^-,1^-,2^-)$	729.88 ^a 17	100	2212.8?		M1	0.0292	
ı	2980.9	1-	2685.1 5	100 11	295.78		E1		
ı	2012.00	(2)-	2980.9 6	83 16	0.0		E1		
ı	3013.88	$(2)^{-}$	1810.7 [@] 5 2097.2 3	<3.1 [@] 46 <i>6</i>	1202.62		E1		
l			2097.2 3 2277.6 [@] 7	<11 [@]	916.57 737.02		EI		
ı			2416.4 3	100 9	597.61		E1		
ı	3024.6	(12^{-})	453.9 5	100	2570.71		D+Q		
ı	3049.19	$(2)^{-}$	2132.5 <i>3</i>	23 4	916.57	3+	E1		
ı			2452.0 5	30 5	597.61		E1		
l	2067.26	(1.0)=	2753.3 4	100 10	295.78		E1		
ı	3067.26	$(1,2)^{-}$	1672.4 <i>3</i> 1864.5 <i>4</i>	49 <i>7</i> 82 <i>18</i>	1395.09 1202.62		E1 (E1)		
l			2469.5 <i>4</i>	100 18	597.61		E1		
ı			2771.2 5	61 11	295.78		E1		
ı	3069.19	14+	342.57 17	100	2726.62	12 ⁺	E2	0.0670	
ı	3111.7	(13^{-})	541.0 3	100	2570.71		Q		
ı	3233.4?	$(2^-,3^-)$	$1880.0^{@a}$ 4	<92 [@]	1353.33		(M1)	0.0027 3	$\delta(E2/M1)<1$ from $\alpha(K)$ exp in ε decay.
	2244.6	(12=)	2636.2 ^a 8	100 11	597.61		EO	0.01715	
	3344.6	(13 ⁻)	583.7 <i>3</i> 618.1 <i>5</i>	100 8	2760.9 2726.62		E2	0.01713	γ only from (¹⁸ O,4n γ).
ı	3414.86	(14^{+})	303.2 4	38 7	3111.7		D		I_{γ} : from ($^{18}O,4n\gamma$). I _{\gamma} : from 3415 level.
	3414.00	(14)	345.7 <i>3</i>	93 11	3069.19		(M1,E2)	0.137 72	17. Holli (0,4117) for all y rays from 5413 level.
l			688.2 & 4	100 <mark>&</mark> 8	2726.62		Q		
l	3576.5	(16^+)	507.3 <i>3</i>	100	3069.19	14+	Q		
ı	3666.1	(16^+)	251.2 2	100 9	3414.86		E2	0.1698	10
l	2007.0	(10+)	596.8 <i>5</i>	100	3069.19		(E2)		γ only from (¹⁸ O,4n γ).
ı	3807.9 3856.0	(18 ⁺) (15 ⁻)	141.8 2 441.2 5	100	3666.1 3414.86		(E2)		
ı	3630.0	(13)	511.4 5	100 10	3344.6	(13^{-})	Q		
			786.8 5	50 9	3069.19		D		
	4055.5?		199.5 5	100	3856.0	(15^{-})	D		
	4083.2	(17^{-})	(27.7)	24.2	4055.5?	/1 F-1	(E3)		
			227.2 5	34 3	3856.0	(15^{-})	(E2)		
			417.1 <i>3</i> 506.6 <i>5</i>	100 8	3666.1 3576.5	(16^+) (16^+)	D		
ı			200.0 2		3310.3	(10)			

 ∞

γ (190Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡
4133.8	(20^+)	325.9 <i>3</i>	100	3807.9 (18+)	(E2)	6006.7?	(24^{-})	558.7 <i>5</i>	100	5448.0 (23-)	D
4214.6	(18^{+})	638.1 <i>4</i>	100	3576.5 (16 ⁺)	Q	6282.2?	(26^+)	561.8 5		5720.4 (25 ⁺)	
4266.6	(19^{-})	183.4 <i>3</i>	100	4083.2 (17 ⁻)	(E2)			890.8 5	100 9	5391.4? (24 ⁺)	Q
4612.3	(21^{+})	478.5 5	100	$4133.8 (20^{+})$	D	6739.6?	(26^{-})	732.9 5	100	6006.7? (24 ⁻)	Q
4653.5	(21^{-})	386.9 <i>3</i>	100	4266.6 (19 ⁻)	(E2)	6790.5?	(28^{+})	508.3 <i>5</i>	≤100	$6282.2? (26^+)$	Q
4929.7	(22^{+})	795.9 <i>5</i>	100	4133.8 (20+)	Q	7227.3?	(28^{-})	487.7 5	100	6739.6? (26 ⁻)	Q
4958.2	(20^{+})	743.6 <i>5</i>	100	4214.6 (18 ⁺)	Q	7469.1?	(30^+)	678.6 <i>5</i>	100	6790.5? (28 ⁺)	Q
5330.1	(23^{+})	400.4 5	100 11	4929.7 (22+)	D	7534.2?	(30^{-})	306.9 5	100	7227.3? (28-)	Q
		717.8 <i>5</i>	≤66	4612.3 (21 ⁺)		7957.1?	(32^{-})	422.9 5	100	7534.2? (30 ⁻)	Q
5391.4?	(24^{+})	461.7 5	100	4929.7 (22+)	Q	7992.0?	(32^+)	522.9 5	100	$7469.1? (30^+)$	Q
5448.0	(23^{-})	794.5 <i>3</i>	100	4653.5 (21 ⁻)	Q	8130.9?	(33^{-})	173.8 <i>5</i>	100	7957.1? (32 ⁻)	D
5720.4	(25^{+})	390.3 <i>5</i>	100	5330.1 (23+)	(E2)	8772.3?	(35^{-})	641.4 5	100	8130.9? (33 ⁻)	Q

 $^{^{\}dagger}$ Weighted averages of values from γ -ray datasets, when data are available from more than one dataset. Above 2850 keV, data are mainly available from $(^{18}O,4n\gamma).$

From ce data in ¹⁹⁰Au ε decay and $(\alpha,4n\gamma)$; $\gamma(\theta)$ data in $(\alpha,4n\gamma)$, and $\gamma\gamma(\theta)$ (ADO) data in (¹⁸O,4n γ). Below 400 keV, $\Delta J=2$ (stretched) quadrupole transitions are assigned mult=(E2) in preference to M2, as no level lifetimes >10 ns or so are indicated in $\gamma\gamma$ -coin data in in-beam γ -ray data.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed with undivided intensity.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{190}_{78}\mathrm{Pt}_{112}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{190}_{78}\mathrm{Pt}_{112}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

$$^{190}_{\,78}\mathrm{Pt}_{112}$$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 113,1871 (2012)	15-Jun-2012

 $Q(\beta^{-})=-3516 \ 16$; $S(n)=8662 \ 4$; $S(p)=6870.3 \ 24$; $Q(\alpha)=2422 \ 3$ 2012Wa38

Note: Current evaluation has used the following Q record -3516 16 8662 3 6870.3 24 2422.2 26 2003Au03,2011AuZZ. S(n), S(p), Q(α) from 2011AuZZ (cf. 8666 3, 6875.4 19, 2418.6 22 from 2003Au03). Other Reactions:

 $See,\,e.g.,\,1987 Ne 09,\,1988 Bo 31,\,1988 Le 22,\,and\,\,1990 Hi 08\,\,for\,\,hfs\,\,and\,\,isotope\,\,shift\,\,data.$

Theory (partial list only):

Interacting boson model calculation of ¹⁹²Pt level scheme: 2011No01, 2009Ga15.

Calculation of β and γ band energies using Bohr Hamiltonian with Morse potential: 2010Bo25.

Relativistic energy density functional calculation of low-lying level energies and B(E2) values (2011Ni07).

Density-dependent cluster model calculation of α decay $T_{1/2}$ (9x10²² y; 2011Qi12).

Interacting-boson-model calculation of collective structural evolution: 2011No15.

¹⁹²Pt Levels

Cross Reference (XREF) Flags

		B 192 In C 192 A	r β^- decay (73.82 r β^- decay (1.45 1) Au ε decay $Os(\alpha, 2n\gamma)$, $Os(\alpha, 2n\gamma)$	min) F Coulomb excitation J 198 Pt(136 Xe,X γ) G 193 Ir(p,2n γ) K 192 Os(82 Se,X γ)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0&	0+#	stable	ABCDEFGHIJK	$\begin{split} &T_{1/2}(\alpha){>}6x10^{16} \text{ y (specific activity measurements, } 1966\text{Ka23}). \\ &T_{1/2}(\alpha){>}1.3x10^{17} \text{ to } ^{188}\text{Os}(2^+, 155) \text{ and } T_{1/2}(\alpha){>}2.6x10^{17} \text{ to } ^{188}\text{Os}(4^+, 478) \text{ (2011Be08)}. \text{ Others: } 1956\text{Po16, } 1961\text{Pe23, } 1963\text{Gr08}. \\ &\text{Calculated value: } 9.05x10^{22} \text{ y (2011Qi12; density-dependent cluster model).} \\ &<\text{r}^2>^{1/2}(\text{charge})=5.418 \text{ 9 (2004An14)}. \end{split}$
316.50645 ^{&} 15	2+#	43.7 ps 9	ABCDEFGHIJK	μ =+0.590 18 ; Q=+0.55 21 μ : Weighted average of following data after adjustment for consistency with adopted T _{1/2} : +0.559 45 if T _{1/2} =43.0 ps (IPAC; 1989Ra17, from 1975Ka42), +0.574 34 if T _{1/2} =44.4 ps (IPAC, 1992Al21 and 1992Bo20), +0.636 34 if T _{1/2} =43.0 ps (transient field IPAC, 1992Br03), +0.594 34 if T _{1/2} =43.0 ps (transient field IPAC, 1995An15). Additional information 1. Q: Coulomb excitation reorientation (1989Ra17, from 1987Gy01). Other value: +0.62 6 (Coulomb excitation reorientation, 1989Ra17 from unpublished report referenced in 1987Gy01). J ^π : E2 γ to 0 ⁺ . T _{1/2} : deduced from B(E2) in Coulomb excitation and adopted γ -ray properties. Other value (Coulomb excitation): 48.5 ps 5 (Doppler-shift recoil-distance measurements, 1977Jo05). Other values (192 Ir β ⁻ decay (73.829 d)): 27 ps 4 ($\gamma\gamma$ (t), 1962De14), 35 ps 3 ($\gamma\gamma$ (t), 1966Sc06), 34 ps 5 (γ (cec(t), 1970Be08), 42.8 ps 15 (γ (t), 1973Sm01), 33 ps γ 4 (cece(t), 1976Bu20). Other: 1965Bu06 (<29 ps).

 $^{^{196}}$ Pt(n,5nγ) (2001Ta31): E(n)=1-250 MeV from spallation n source; observed known 317γ, 468γ, 581γ and 589γ; measured prompt γ production cross sections.

¹⁸⁰Hf(¹²C,X), E=65 MeV (2009Ma24, 2011Ma12): sum spin spectrometer in 4π configuration; measured high-energy GDR γ spectrum (4-6 fold gated using spin spectrometer) and γ anisotropy (θ (lab)=135°, 90°); searched for shape-phase transition; data analysis is ongoing.

192 Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
612.46318 ^a 18	2+@	26.5 ps 15	ABCDEFGH	μ =+0.61 8 μ : weighted average of +0.72 <i>14</i> (IPAC, 1989Ra17 from 1975Ka42) and +0.56 9 (transient field IPAC, 1992Br03). J ^π : E2 γ to 0 ⁺ .
	,,			$T_{1/2}$: $\beta\gamma\gamma$ (t) in 192 Ir β^- decay (73.829 d) (1973Sm01). Other values (192 Ir β^- decay (73.829 d)): 24 ps <i>13</i> (cece(t), 1965Bu06), 20.1 ps <i>21</i> (yce(t), 1970Be08), 26.0 ps <i>26</i> (cece(t), 1976Bu20). Other value (Coulomb excitation): 31 ps <i>6</i> (deduced from B(E2)).
784.5759 ^{&} 4	4+#	4.2 ps 2	A CDEFGHIJK	μ =+1.12 <i>12</i> μ : From transient field IPAC (1992Br03; relative to ¹⁹⁴ Pt(328) or ¹⁹⁶ Pt(356)). Other: +1.6 <i>11</i> (IPAC, 1989Ra17; datum of 1969Ke11 recalculated for consistency with adopted T _{1/2}). B(E4)=0.041 from (α , α'). J ^π : E2 468γ to 2 ⁺ ; g.s. band member. T _{1/2} : Doppler-shift recoil-distance measurements in Coulomb excitation (1977Jo05). Other values (¹⁹² Ir β ⁻ decay (73.829 d)): 11.8 ps 21 (β γ(t) and β γγ(t), 1966Sc06), 5 ps 4 (cece(t), 1975Aw01), 13 ps <i>10</i> (cece(t) and β ce(t), 1976Bu20), 6.0 ps <i>17</i> (β ce(t), 1978Bu02).
920.91852 ^a 22 1195.169 <i>18</i>	3+@ 0+	21.3 ps <i>21</i>	A CD FG	J^{π} : M1+E2 136γ to 4 ⁺ 785; M1+E2 208γ to 2 ⁺ 612. $T_{1/2}$: βce(t) in ¹⁹² Ir β ⁻ decay (73.829 d) (1978Bu02) (if $T_{1/2}$ (612.5 level)=26.5 ps 15). Other values (¹⁹² Ir β ⁻ decay (73.829 d)): 26 ps 4 (cece(t) and βce(t), 1976Bu20), <24 ps (cece(t), 1965Bu06). J^{π} : E0 transition to 0 ⁺ .
1201.0452 ^a 5	4+@		A CDEFGH	B(E4)≈0.1 from (α , α'). J ^{π} : M1+E2 416 γ to 4 ⁺ 785; E2 intraband 589 γ to 2 ⁺ 612.
1365.40 ^{&} 6	6+#	1.8 ps 7	D FGHIJK	J ^π : E2 581γ to 4 ⁺ 785; g.s. band member. T _{1/2} : Doppler-shift recoil-distance measurements in Coulomb excitation (1977Jo05).
1378.046 <i>18</i>	3-	41 ps 9	A CDEFGH	XREF: E(1390). J^{π} : E1+M2 593 γ to 4 ⁺ 785; E1(+M2) 1062 γ to 2 ⁺ 316. $T_{1/2}$: deduced from B(E3) in Coulomb excitation and adopted γ -ray properties.
1383.95 ^d 7 1406.35 4 1439.263 20 1481.78 ^a 8	(5) ⁻ 3 ⁺ 2 ⁺ 5 ⁺ @		A CD GH J C GH D FG	J^{π} : E1 599 γ to 4 ⁺ 785; J=5 from band assignment. J^{π} : M1+E2 1090 γ to 2 ⁺ 317; 485 γ to 3 ⁺ 921; log ft =8.8 from 4 ⁺ . J^{π} : M1+E2+E0 827 γ to 2 ⁺ 612; 1439 γ to 0 ⁺ g.s.; 655 γ to 4 ⁺ 785. J^{π} : E2 561 γ to 3 ⁺ 921; band assignment.
1518.35 ^d 8	(7)-	1.85 ns <i>17</i>	D GH J	μ =+3.4 8 (2006Le06) J ^π : E2 134γ to (5) ⁻ 1384; band assignment. T _{1/2} : γγ(t) in ¹⁹⁰ Os(α,2nγ), ¹⁹² Os(α,4nγ) (average value). μ : Based on g-factor=+0.48 12 in (α,2nγ) from IPAD.
1546.93 <i>4</i> 1576.368 <i>17</i> 1629.30 <i>6</i>	(0 ⁺) 2 ⁺ 0 ⁺		C H C GH C H	J^{π} : L(p,t)=(0); J^{π} : E2 1576 γ to 0 ⁺ g.s.; M1+E2+E0 1260 γ to 2 ⁺ 317. J^{π} : L(p,t)=0. Consistent with E2 1313 γ to 2 ⁺ 317; however α (K)exp for 1017 γ to 2 ⁺ 612 exceeds α (K)(M1).
1666.63 <i>5</i> 1739.431 <i>15</i> 1746.41 ^c <i>11</i> 1766.09 <i>4</i>	(2,3,4) (1) ⁻ (6) ⁻ (2,3) ⁺		CD G C G D G C	J^{π} : 746 γ to 3 ⁺ 921; 289 γ to 3 ⁻ 1378; log ft =9.4 from 1 ⁻ . J^{π} : E1 1423 γ to 2 ⁺ 317; 1739 γ to 0 ⁺ g.s. J^{π} : M1+E2 γ to (5) ⁻ 1384; band assignment. J^{π} : E2(+M1) 1450 γ to 2 ⁺ 317; 565 γ to 4 ⁺ 1201; log ft =9.0 from
1793.503 24	(2) ⁺		С Н	1 ⁻ . XREF: H(1792.3).
1800.3 <i>1</i>			Н	J^{π} : M1+E2+E0 1477 γ to 2 ⁺ 317.

192 Pt Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
1857.4 <i>1</i>			Н	
1869 ^a	6 ⁺ @		F	J^{π} : assignment to γ band.
1880.02 4	3+		СН	XREF: H(1878.6).
				J^{π} : M1 1564 γ to 2 ⁺ 317; M1+E2 1095 γ to 4 ⁺ 785.
1881.5 <i>3</i>	0_{+}		H	J^{π} : $L(p,t)=0$.
1894.478 20	$(2,3)^{-}$		C	J^{π} : E1 1282 γ to 2 ⁺ 612; 974 γ to 3 ⁺ 921; log ft =8.4 from 1 ⁻ .
1897.7 <i>1</i>			H	
1934.7 <i>1</i>	(4^{+})		H	J^{π} : L(p,t)=3,4; analogy with ¹⁹⁴ Pt and ¹⁹⁶ Pt.
1964.51 ^c 13	$(8)^{-}$		D G J	J^{π} : M1+E2 446 γ to (7) ⁻ 1518; band assignment.
1972.5 <i>1</i>			Н	
1976.25 4	$(2)^{+}$		C	J^{π} : M1 1660 γ to 2 ⁺ 317; L(p,t)=(2).
1981.5 <i>I</i>			H H	
2017.0 2	8+#			TT F2 (52 , (+ 12(5 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
2018.37 8 13	-		DFGIK	J^{π} : E2 653 γ to 6 ⁺ 1365; g.s. band member.
2041.81 <i>3</i>	$(2^-,3^-)$		С Н	J^{π} : 1429 γ to 2 ⁺ 612; 1257 γ to 4 ⁺ 785; log f t=9.1 from 1 ⁻ . M1 1114 γ
				from π =- 3155; M1 917 γ from π =- 2958. However, α (K)exp favors E2 for 1257 γ to π =+ 612.
2047.89 <i>4</i>	$(2)^{+}$		С	J^{π} : M1 1731 γ to 2 ⁺ 317; 2048 γ to 0 ⁺ g.s.; 1263 γ to 4 ⁺ .
2068.4 3	(2)		Н	3 . HII 17317 to 2 - 317, 20107 to 0 - g.s., 12007 to 1 .
2073.95 4	2+		СН	J^{π} : E2 2074 γ to 0^{+} g.s.
2096.9 <i>3</i>			H	, .
2103.22 ^d 11	$(9)^{-}$		D G	J^{π} : E2 585 γ to (7) ⁻ 1518; band assignment.
2110.9 <i>1</i>	0+		Н	J^{π} : $L(p,t)=0$.
2113.20 ^a 20	7 ⁺ @		D FG	
2120.21 5	(2^{+})		C	J^{π} : 2120 γ to 0 ⁺ g.s.; 1199 γ to 3 ⁺ 921; 742 γ to 3 ⁻ 1378.
2129.52 3	(1-)		С Н	XREF: H(2128.9).
				J^{π} : E1 2130 γ to 0 ⁺ g.s.; 752 γ to 3 ⁻ 1378. However, multipolarities of
2424.2.1				1517γ and 1813γ may not be consistent with that of 2130γ .
2136.2 <i>I</i>	(2)-		Н	IT. M1 765. 4- 2- 1279. 1520. 4- 2+ 612. 1250. 4- 4+ 705. 16. 0.1
2142.96 <i>4</i>	(3)-		С	J^{π} : M1 765 γ to 3 ⁻ 1378; 1530 γ to 2 ⁺ 612; 1358 γ to 4 ⁺ 785. log ft =9.1 from 1 ⁻ .
2149.385 23	1+		С Н	XREF: H(2149.7).
2117.303 23	1		C 11	J^{π} : M1 2149 γ to 0 ⁺ g.s.; M1 1833 γ to 2 ⁺ 317.
2161.64 4			С	J^{π} : 1549 γ to 2 ⁺ 612, 2141 γ to 3 ⁺ 921 so J^{π} =(1 ⁺ ,2,3,4 ⁺).
2162.7 <i>1</i>			Н	
2171.36 4	2+		C	J^{π} : M1+E2+E0 1855 γ to 2 ⁺ 317; E2 1388 γ to 4 ⁺ 785; M1(+E2) 1250 γ
				to 3 ⁺ 921.
2172.37 ^f 13	$(10)^{-}$	272 ns 23	D J	μ =-0.012 <i>10</i> (2006Le06)
				J^{π} : M1 γ to (9) ⁻ 2103; bandhead assignment, with probable configuration
				ν 9/2[505]+ ν 11/2[615], consistent with measured g-factor and
				analogous structure in ¹⁹⁰ Os (2006Le06).
				$T_{1/2}$: weighted average of 250 ns 30 (1976Cu02) and 310 ns 30
				(1976Hj01) from $\gamma \gamma(t)$ in 190 Os(α ,2n γ), 192 Os(α ,4n γ) and 235 ns 47
				from fragment- $\gamma\gamma$ (t) in ¹⁹⁸ Pt(¹³⁶ Xe,X γ) using 317 γ -468 γ pair as
				double γ -ray gate (2004Va03, 2004Re11).
				μ : Based on g-factor= $-0.0012~10$ in $(\alpha,2n\gamma)$ from IPAD. Other: 0.10 6 from a factor= $0.010.6$ from $2001 \text{ K}_2/41$
2183.2 2			Н	from g-factor=0.010 6 from 2001Ko41.
2191.30 <i>4</i>	$(2^+,3^-)$		C	J^{π} : 1406 γ to 4 ⁺ 785; 452 γ to (1) ⁻ 1739.
2199.3 <i>I</i>	(- ,-)		Н	
2208.7 3			Н	
2217.12 6	$(2)^{+}$		C	J^{π} : M1 1605 γ to 2 ⁺ 612; 1433 γ to 4 ⁺ 785; 478 γ to (1) ⁻ 1739.
2236.82 <i>3</i>	$(1,2)^+$		C	J^{π} : M1 1624 γ to 2 ⁺ 612; 1296 γ to (0 ⁺) 1547.
2237.52 4	$(2)^{+}$		С	J^{π} : M1 1921 γ to 2 ⁺ 317; M1+E2 1317 γ to 3 ⁺ 921; 2237 γ to 0 ⁺ g.s.;

192 Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2257.26 3	(2)	С	1037 γ to 4 ⁺ 1201. J ^{π} : E1 1941 γ to 2 ⁺ 317; E1 1336 γ to 3 ⁺ 921; log ft =7.4 from 1 ⁻ . However, adopted J^{π} implies M2 multipolarity for 2257 γ .
2264.9 <i>I</i> 2287.3 2		H H	o implies in 2 manipolarity for 22577.
2296.06 4	$(1,2)^{+}$	С	J ^{π} : M1 1980 γ to 2 ⁺ 317; 1101 γ to 0 ⁺ 1195; log f t=7.8 (log f ¹ u t≤8.5) from 1 [−] .
2300.9 <i>1</i> 2313.5 <i>6</i>	(8,9,10)	H D	J^{π} : D 210 γ to (9) ⁻ 2103.
2319.11 <i>3</i> 2321.1 <i>2</i>	1+	C H	J^{π} : M1 2336 γ to 0 ⁺ g.s.; M1 1707 γ to 2 ⁺ 612.
2335.464 <i>19</i> 2343.1 <i>3</i> 2349.5 <i>1</i> 2366.4 <i>3</i>	1+	С Н Н Н	J^{π} : M1 2335.5 γ to 0 ⁺ g.s.
2375.392 25 2378.0 2 2385.6 3 2394.3 2	(1,2)+	C H H H	J^{π} : M1 2059 γ to 2 ⁺ 317; M1 225 γ to 1 ⁺ 2149.
2399.270 24 2402.6 2	$(1,2)^+$	C H	J^{π} : M1 2083 γ to 2 ⁺ 317; M1 250 γ to 1 ⁺ 2149.
2408.34 <i>3</i> 2415.4 2 2420.3 2	(2)+	C H H	J^{π} : M1 2092 γ to 2 ⁺ 317; M1 1487 γ to 3 ⁺ 921; (E2) 2408 γ to 0 ⁺ g.s.
2422.78 <i>4</i>	$(1,2)^{+}$	C	J^{π} : M1 2106 γ to 2 ⁺ 317; M1,E2 2423 γ to 0 ⁺ g.s.
2435.37 <i>6</i> 2453.43 <i>8</i>	3 ⁺ 2 ⁺	C H C	J^{π} : M1 1823 γ to 2 ⁺ 612; M1+E2+E0 1514 γ to 3 ⁺ 921. log $f^{1}ut>8.5$. J^{π} : M1+E2+E0 1840 γ to 2 ⁺ 612; M1 2137 γ to 2 ⁺ 317.
2456.1 <i>1</i> 2469.5 2		H H	
2472.27 <i>5</i> 2477.9 <i>1</i>	2+	C H	J^{π} : M1 2156 γ to 2 ⁺ 317; M1+E2+E0 1860 γ to 2 ⁺ 612.
2483.64 <i>5</i> 2486.29 <i>4</i> 2491.4 <i>2</i>	≤3 (2) ⁻ 0 ⁺	C C H	J^{π} : log ft =8.4 from 1 ⁻ . 2167 γ to 2 ⁺ 317 makes J^{π} =0 ⁺ unlikely; log ft rules out 3 ⁻ . J^{π} : M1 747 γ to (1) ⁻ 1739; M1 1108 γ to 3 ⁻ 1378. J^{π} : L(p,t)=0.
2500.2 <i>3</i> 2508.84 <i>6</i>	0^+ $(2,3)^+$	H C	J^{π} : L(p,t)=0. J^{π} : M1 1588 γ to 3 ⁺ 921; log ft =8.2 (log $f^{1u}t$ =8.7) from 1 ⁻ .
2511.75 ⁸ 23 2512.3 2	(11)	D H	J^{π} : M1+E2 339 γ to (10) ⁻ 2172; band assignment.
2518.99 ^b 16 2523.37 16	$(10)^+$ (10^+)	DF IK	J^{π} : E2 501 γ to 8 ⁺ 2018; band assignment.
2530.3° 6 2532.46 5 2537.5 1 2546.5 2	(10 ⁻) 1 ⁺	D C H H H	J^{π} : M1 2533 γ to 0 ⁺ g.s.; M1 2216 γ to 2 ⁺ 317.
2549.42 <i>7</i> 2557.5 2	(2) ⁺	С Н	J^{π} : M1,E2 1937 γ to 2 ⁺ 612; 1171 γ to 3 ⁻ 1378; 810 γ to (1) ⁻ 1739.
2560.15 <i>5</i> 2562.96 <i>5</i> 2565.0 <i>3</i> 2573.5 <i>2</i>	(1 ⁺ ,2) (2) ⁺	C C H H	J^{π} : 1639 γ to 3 ⁺ 921; 821 γ to (1) ⁻ 1739; log ft =8.2 from 1 ⁻ . J^{π} : M1 1950 γ to 2 ⁺ 612; 1778 γ to 4 ⁺ 785; log ft =7.6 log $f^{1u}t$ <8.5) from 1 ⁻ .
2583.37 ^e 21 2585.23 5 2591 ^a	(10 ⁺) (2) ⁺ 8 ⁺ @	D F C F H	J^{π} : M1 1664 γ to 3 ⁺ 921; 2585 γ to 0 ⁺ g.s.; 1800 γ to 4 ⁺ 785. XREF: H(2590.8).
2602.97 <i>4</i> 2604.76 <i>4</i>	(2) ⁺ (1,2) ⁻	C C	J^{π} : band assignment in Coulomb excitation. J^{π} : M1 2286 γ to 2 ⁺ 317; 2603 γ to 0 ⁺ g.s.; 1225 γ to 3 ⁻ 1378. J^{π} : M1 865 γ to (1) ⁻ 1739; 1227 γ to 3 ⁻ 1378.

192 Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
2607.1 <i>I</i>			Н	
2614.29 9	(2^{+})		C	J^{π} : E2 2614 γ to 0 ⁺ g.s.; M1 1693 γ to 3 ⁺ 921.
2623.72 ^b 18	$(12)^{+}$	2.62 ns 18	D F I K	μ =-2.2 11 (2006Le06)
				J^{π} : E2 105 γ to (10) ⁺ 2519; band structure.
				$T_{1/2}$: in-beam direct timing of conversion electrons in 190 Os(α ,2n γ),
				¹⁹² Os(α ,4n γ) (1978Ti02). Other values from (α ,xn γ): 3.5 ns 5
				(1976Cu02), 2.6 ns 5 (1976Hj01).
2626.5 1			Н	μ : From g-factor= -0.18 9 (2006Le06) in (α ,2n γ) from IPAD.
2626.64^{f} 24	$(12)^{-}$		D	J^{π} : E2 454 γ to (10) ⁻ 2172; band assignment.
2629.24 <i>4</i>	2+		C	J^{π} : M1+E2+E0 2017 γ to 2 ⁺ 612; 2629 γ to 0 ⁺ g.s.
2635.23 6	1+		C	J^{π} : M1 2635 γ to 0^{+} g.s.
2641.1 <i>3</i>	(12^{+})		I	
2645.4 2	(2) =		Н	IT E1 2025 . 2+ (12 1526 . 2+ 021 1 . 6 7 (6 . 1-
2647.32 <i>6</i> 2653.2 <i>2</i>	$(2)^{-}$		C H	J^{π} : E1 2035 γ to 2 ⁺ 612; 1726 γ to 3 ⁺ 921; log ft =7.6 from 1 ⁻ .
2658.46 9	$(1,2)^+$		C	J^{π} : Δπ=no 2658γ to 0 ⁺ g.s.; 2342γ to 2 ⁺ 317.
2674.2 2	(-,-)		Н	5 · _ · 3 · 3 · 5 · 6 · 6 · 8 · 6 · 6 · 6 · 6 · 6 · 6 · 6
2683.9 <i>1</i>			H	
2703.3 2			Н	
2709.1 ^d 3	$(11)^{-}$		D	J^{π} : E2 606 γ to (9) ⁻ 2103; band assignment.
2709.3 <i>1</i> 2721.4 2			H H	
2729.4 <mark>&</mark>	10 ⁺ #		F	
2730.73 6	(2)-		C	J^{π} : M1 1352 γ to 3 ⁻ 1378; M1 991 γ to (1) ⁻ 1739.
2732.2 2	. ,		Н	
2743.0 <i>1</i>	(0^+)		H	J^{π} : L(p,t)=(0).
2757.4 2 2764.0 2			H H	
2704.0 2 2770.7 ⁱ 7	(13^+)		I	
2775.21 6	(13)		СН	J^{π} : 2459 γ to 2 ⁺ 317; 1036 γ to (1) ⁻ 1739; log ft =8.3 from 1 ⁻ .
2784.1 2			Н	
2793.4 2			Н	
2794.25 <i>7</i> 2800.5 <i>2</i>	(≤2)		C	J^{π} : 1054 γ to (1) ⁻ 1739; 2182 γ to 2 ⁺ 612; log ft =8.5 from 1 ⁻ .
2812.2 <i>I</i>			H H	
2832.89 7	$(1,2,3)^+$		C	J^{π} : M1 2220 γ to 2 ⁺ 612; log ft =7.7 from 1 ⁻ .
2834.60 <i>6</i>	(2^{+})		C	J^{π} : 1639 γ to 0 ⁺ 1195; 1913 γ to 3 ⁺ 921; 1634 γ to 4 ⁺ 1201.
2841.7 2	(2) =		Н	TT NA 1117 (1) - 1700 2044 (2) - 0+ (10 1 6 7.7 5 1 -
2856.13 <i>5</i> 2857.07 <i>5</i>	$(2)^{-}$ (2^{-})		C C	J^{π} : M1 1117 γ to (1) ⁻ 1739; 2244 γ to 2 ⁺ 612; log ft =7.7 from 1 ⁻ . J^{π} : E1 2541 γ to 2 ⁺ 317; 1936 γ to 3 ⁺ 921; log ft =7.6 from 1 ⁻ .
2890.93 <i>4</i>	$(2)^{-}$		C	J^{π} : E1 2575 to 2 ⁺ 317; 1152 γ to (1) ⁻ 1739; 1970 γ to 3 ⁺ 921;
20,000	(=)		_	$\log ft=7.4$ from 1 ⁻ .
2933.03? 23	$(12)^{+}$		D	J^{π} : E2 414 γ to (10) ⁺ 2519.
2936.37 ^e 25	(12^{+})		D F	III M1. F2 427 ((10)+ 2510
2945.90 <i>24</i> 2947.00 <i>5</i>	$(11)^+$ (2^-)		D C	J^{π} : M1+E2 427 γ to (10) ⁺ 2519. J^{π} : M1 1053 γ to (1 ⁻) 1894; 2026 γ to 3 ⁺ 921.
2947.00 <i>3</i> 2950.2? <i>4</i>	(2)		D	σ . 1411 1035 γ to (1) 1074, 2020 γ to 3 721.
2950.43 9	$(1,2^+)$		C	J^{π} : E2 1511 γ to (2 ⁺) 1439; 1755 γ to 0 ⁺ 1195.
2958.75 4	$(2,3)^{-}$		С	J^{π} : M1 1580 γ to 3 ⁻ 1378; 1219 γ to (1) ⁻ 1739; 2038 γ to 3 ⁺ 921.
2998.24 ^b 21	$(14)^{+}$		D F I K	J^{π} : E2 375 γ to (12) ⁺ 2624; band assignment.
3022.26 ⁸ 25	(13^{-})		D	I_{1}^{T} . M1 12884 to (1)= 1720, 21064 to 2+ 021, 1640 to 2= 1270
3027.38 <i>5</i> 3031.00 <i>7</i>	$(2,3)^-$ (≤ 3)		C C	J^{π} : M1 1288 γ to (1) ⁻ 1739; 2106 γ to 3 ⁺ 921; 1649 γ to 3 ⁻ 1378. J^{π} : 1291 γ to (1) ⁻ 1739.
5021.00 /	(==)		_	

¹⁹²Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3068.4 <i>3</i>	(14^{+})	I	
3080.1? <i>3</i>	(14^{+})	D	
3082.4 ^c 6	(12^{-})	D	J^{π} : Q intraband 552 γ to (10 ⁻) 2530.
3127.19 <i>4</i>	$(1^-,2^-)$	C	J^{π} : M1 998 γ to (1 ⁻) 2130; 674 γ to 2 ⁺ 2453.
3137.4 <i>4</i>	(12^{+})	I	
3155.74 <i>4</i>	$(2,3)^{-}$	С	J^{π} : M1,E2 1416 γ to (1) ⁻ 1739; E1 2543 γ to 2 ⁺ 612; 2235 γ to 3 ⁺ 921.
3184.7 ⁱ 9	(15^{+})	I	
3189.52 7	$(2,3^{-})$	C	J^{π} : 2269 γ to 3 ⁺ 921; 1450 γ to (1) ⁻ 1739; 1811 γ to 3 ⁻ 1378.
3225.5 3	(13^{+})	D	
3357.5 ^d 6	(13^{-})	D	
3400.0? 5		D	J^{π} : possible 320 γ to (14 ⁺) 3080 suggests J=(12 to 16).
3504.7 ^h 7	(16^{+})	I	
3542.1 ^b 3	$(16)^{+}$	D F I K	J^{π} : E2 543 γ to (14) ⁺ 2998; band assignment.
3569.3? <i>4</i>		D	
3673.8? 5		D	J^{π} : D+Q 274 γ to 3400.
3674.1 ⁱ 10	(17^+)	I	
3695.3 ⁸ 3	$(15)^{-}$	D	J^{π} : E1 697 γ to (14) ⁺ 2998; band assignment.
3778.7 ^h 7	(18^{+})	I	
3883.3 <i>4</i>	()	D	J^{π} : D+Q 188 γ to (15) ⁻ 3695 so J=(14,15,16).
3923.6 ⁸ 3	(17^{-})	D	
4160.4 ^f 4		D	J ^π : intraband 237γ to (17 ⁻) 3923 is probably ΔJ=1. If so, J^{π} =(18 ⁻).
4199.7 <mark>h</mark> 8	(20^{+})	I	
4204.2 ^b 4	$(18)^{+}$	D F I K	J^{π} : E2 662 γ to (16) ⁺ 3542; band assignment.
4320.5? 4	•	D	
4950.7 ^b 6	(20^{+})	D F I K	

[†] From least-squares fit to adopted E γ for levels with known γ deexcitation; from cross referenced datasets otherwise.

[‡] From γ -ray multipolarities, coincidence data, and band structure in 190 Os $(\alpha,2n\gamma)$, 192 Os $(\alpha,4n\gamma)$ and Coulomb excitation, except where noted; continuing J^{π} patterns established.

[#] Based on smooth progression of level energies and independently established $J^{\pi}(g.s.)$ and mult(317 γ), definite J^{π} has been assigned to all members of the g.s. band.

[@] Based on smooth progression of level energies and independently established $J^{\pi}(612)$ and mult(308 γ), definite J^{π} has been assigned to all members of the γ vibration band.

[&]amp; Band(A): $K^{\pi}=0^{+}$ g.s. band.

^a Band(B): $K^{\pi}=2^{+}$ quasi- γ vibration band.

^b Band(C): neutron superband (1976Hj01,1976Cu02).

^c Band(D): K^{π} =(5)⁻, α =1 band (1976Hj01,1976Cu02). Semidecoupled band; primarily a two-proton excitation including π h_{11/2} coupled with π d_{3/2} or π s_{1/2} (2006Le06).

^d Band(d): $K^{\pi}=(5)^{-}$, $\alpha=0$ band (1976Hj01,1976Cu02). See comment on signature partner band.

^e Band(E): Aligned proton band (1976Hj01,1976Cu02). Proton superband (1981HuZV).

^f Band(F): K^{π} =(10)⁻, α =0 band (1976Hj01,1976Cu02). Built on 2172-keV 10⁻ isomer; probable configuration=((ν 9/2[505])+(ν 11/2[615]) (2006Le06).

^g Band(f): $K^{\pi}=(10)^{-}$, $\alpha=1$ band (1976Hj01,1976Cu02). See comment on signature partner band.

^h Band(G): π =+, α =0 band fragment. Built on (16⁺) 3505 level.

ⁱ Band(H): π =+, α =1 band fragment. Built on (13⁺) 2271 level.

$\gamma(^{192}\text{Pt})$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^d	${\rm I}_{(\gamma+ce)}$	Comments
316.50645	2+	316.50618 [#] <i>17</i>	100 [#]	0.0	0+	E2#		0.0841		B(E2)(W.u.)=57.2 12
612.46318	2+	295.95650 <i>15</i>	100.00 23	316.50645	2+	M1+E2	+10.0 4	0.1047		B(M1)(W.u.)=2.45×10 ⁻⁴ 24; B(E2)(W.u.)=109 7
		612.4621 3	19.0 3	0.0	0+	E2		0.01536		I _γ : from β^- decay (73.829 d). Other δ : +6 2 in (α ,xn γ). B(E2)(W.u.)=0.55 4 I _γ : unweighted average of 19.30 13 from ε decay and 18.61 26 from β^- decay (73.829 d). Others: 14 3 from (α ,xn γ), 17.4 15 from (p,2n γ).
784.5759	4+	468.0688 [#] 3	100 [#]	316.50645	2+	E2#		0.0291		B(E2)(W.u.)=89 5
920.91852	3+	136.3# 1	0.67# 8	784.5759		M1+E2#	+3.5# +39-16	1.53 19		B(M1)(W.u.)=0.00015 +31-15; B(E2)(W.u.)=38 10 Other Iy: 0.52 13 from ε decay.
		308.45507# 17	100.00# 22	612.46318	2+	M1+E2#	+7.20 [#] 3	0.0943		B(M1)(W.u.)= $4.8 \times 10^{-4} 5$; B(E2)(W.u.)= $102 \ lo$ δ: other δ: ≥4.5 from α(K)exp in 192 Au ε decay; 6.5 + lo -7 from α(K)exp (1974Vo13) in β ⁻ decay; +7 2 in (α ,xn γ).
		604.41105 [#] 25	27.66 [#] 6	316.50645	2+	M1+E2 [#]	-1.48 [#] 2	0.0258		B(M1)(W.u.)= $2.9 \times 10^{-4} \ 3$; B(E2)(W.u.)= $0.68 \ 7$ Other Iy: 30.7 5 from ε decay.
1195.169	0_{+}	582.70 <i>3</i>	100.0 15	612.46318	2+	E2		0.01722		Other 17. 30.7 3 from a decay.
		878.70 <i>4</i>	30.5 7	316.50645		E2			0.74.0	
1201.0452		1195.26 <i>13</i> 280.27 [#] <i>24</i>	0.10#.0	0.0	0+	E0	.~ .#	0.25.12	0.51 9	
1201.0452	4+	280.27" 24 416.4688 [#] 7	0.18 [#] 9 14.8 [#] 5	920.91852		M1(+E2) [#] M1+E2 [#]	≤5.4 [#] +2.9 [#] 10	0.25 12		04 1 140 12: 1 20 14:
				784.5759	4.		+2.9" 10	0.049 10		Other Iy: 14.0 13 in ε decay, 39 14 in $(\alpha, xn\gamma)$, 8.0 15 in Coulomb excitation, 28 3 in $(p,2n\gamma)$. Other δ : +6 2 in $(\alpha, xn\gamma)$, 3.9 +7-14 in β ⁻ decay.
		588.5810 [#] 7	100.00 [#] 22	612.46318		E2#		0.01682		
		884.5365 [#] 7	6.45 [#] 15	316.50645	2+	E2#				Other Iy: 7.9 7 from ε decay, 6.6 16 from (p,2ny), 8 3 from (α ,xny).
1365.40	6+	580.83 6	100	784.5759	4+	E2		0.01734		From (p,2ny), 8 3 from (α ,xny). B(E2)(W.u.)=70 30 E _{γ} : weighted average of 580.80 8 from (p,2n γ), 580.88 12 from (α ,2n γ) and 580.9 2 from (α ,2n γ). Other E γ : 585 in α 198 Pt(α ,36 Xe,X γ).

$\gamma(^{192}\text{Pt})$ (continued)

						$\underline{\gamma}$	(192Pt) (continued)	<u>)</u>	
E_i (level)	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ \sharp}$	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{d}	Comments
1378.046	3-	176.95 4	10.4 9	1201.0452	4+	[E1]		0.0954	B(E1)(W.u.)= 4.8×10^{-5} 12 E _γ : weighted average of 176.98 4 from β ⁻ decay (73.829 d), 176.84 8 from ε decay and 176.8 3 from (p,2nγ). I _γ : weighted average of 8.1 19 from β ⁻ decay (73.829 d), 11.3 11 from ε decay and 10 2 from (p,2nγ).
		593.55 12	79.7 15	784.5759	4+	E1+M2	-0.07 2		B(E1)(W.u.)= 9.6×10^{-6} 22; B(M2)(W.u.)= $0.6 4$ E _{γ} : unweighted average of 593.38 5, 594.0 3 and 593.5 3 from β^- decay (73.829 d), 593.46 4 from ε decay and 593.39 12 from (p,2n γ) (weighted average is 593.43 5). I _{γ} : weighted average of 79.1 19 from β^- decay (73.829 d), 81.7 27 from ε decay and 72 8 from (p,2n γ). Mult., δ : from $\gamma\gamma(\theta)$ and γ -ray linear polarization (oriented nuclei) in β^- decay (73.829 d) and α (K)exp in Au ε decay. Other: 0.11 +5-11 from α (K)exp in ε decay.
		765.67 15	2.26 27	612.46318	2+	E1+M2	0.20 +10-12		B(E1)(W.u.)=1.2×10 ⁻⁷ 4; B(M2)(W.u.)=0.04 4 E _{\gamma} : weighted average of 765.8 3 from β^- decay (73.829 d), 765.6 2 from ε decay and 765.7 3 from (p,2n\gamma). I _{\gamma} : from ε decay. Others: 2.5 11 from β^- decay (73.829 d) and 18 4 from (p,2n\gamma). Mult.,\delta: from β^- decay (73.829 d).
		1061.55 ^c 5	100.0 ^b 22	316.50645	2+	E1(+M2)#	+0.04# +5-3		B(E1)(W.u.)= 2.1×10^{-6} 5; B(M2)(W.u.)= $0.014 + 35 - 14$ E _y : weighted average of 1061.49 4 from β^- decay (73.829 d), 1061.62 4 from ε decay and 1061.46 15 from (p,2ny).
		1378.40 <i>21</i>	1.51 27	0.0	0+	(E3)		0.00613	(p,211y). B(E3)(W.u.)=11.1 20 B(E3)(W.u.): from measured B(E3) \uparrow =0.17 3 in Coulomb excitation. Other B(E3) \uparrow : 0.19 from (α , α'). E _y : unweighted average of 1378.0 2, 1378.2 3, 1378.8 10, 1378.0 5, 1379.0 5 from β^- decay (73.829 d) and 1378.0 2 from ε decay (weighted average is 1378.16 15). Other Iy: 2.3 6 from β^- decay (73.829 d). Mult.: K/L consistent with E3, but α (K)exp favors E2 in 192 Ir β^- decay (73.829 d).
1383.95	(5)-	182.92 <i>14</i>	3.0 [@] 4	1201.0452	4+	D+Q			E_{γ} : weighted average from $(\alpha, xn\gamma)$ and $(p, 2n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
		599.37 8	100 [@] 6	784.5759	4+	E1			E_{γ} : weighted average from β^- decay (73.829 d), (α ,xn γ), (p,2n γ). Mult.: from (α ,xn γ).
1406.35	3 ⁺	485.45 6	100 8	920.91852		. #	#		
		1089.82 ^c 8	24.6 ^b 23	316.50645	2+	M1+E2#	1.8 [#] +14-6		

 ∞

$\gamma(^{192}\text{Pt})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{d}	${\rm I}_{(\gamma+ce)}$	Comments
1439.263	2+	244.05 8	2.9 3	1195.169	0+					
		518.28 10	28 4	920.91852	3 ⁺					
		654.68 9	3.4 4	784.5759	4 ⁺					
		826.79 8	3.6 <i>3</i>	612.46318	2+	M1+E2+E0		0.046 11		α : based on $\alpha(K)$ exp.
		1122.80 5	100.0 <i>16</i>	316.50645	2+	M1(+E2+E0)		0.0155 25		α : based on $\alpha(K)$ exp.
		1439.22 12	4.8 5	0.0	0^{+}					• • •
1481.78	5+	560.86 [@] 8	100	920.91852	3 ⁺	E2 ^a		0.0188		
1518.35	$(7)^{-}$	134.39 [@] 8	100 6	1383.95	$(5)^{-}$	E2 ^a		1.511		B(E2)(W.u.)=39 5
	(.)				(-)					I_{γ} : from $(\alpha, xn\gamma)$.
		152.96 [@] 10	16.5 15	1365.40	6 ⁺	(E1) ^a		0.1380		$B(E1)(W.u.)=1.9\times10^{-6}$ 3
		132.90 10	10.5 15	1303.40	U	(E1)		0.1360		I_{γ} : from $(\alpha, xn\gamma)$; $I(153\gamma):I(134\gamma)=26.5$
1546.93	(0^+)	934.41 8	100 3	612.46318	2+	[E2]				in $(p,2n\gamma)$.
1.5 TU.7.5	(0)	1230.45 6	8.3 8	316.50645		[112]				
		1546.96 <i>15</i>	0.5 0		0^{+}	(E0)			1.00 11	$I_{(\gamma+ce)}$: deduced from $Ice(K)$ in ε decay
		1540.70 15		0.0	U	(L0)			1.00 11	and theoretical K/L ratios for E0
										transitions (1969Ha61).
1576.368	2+	375.26 8	0.34 7	1201.0452	4 ⁺					(1/0/11001).
10,000	-	381.25 8	0.76 7		0+					
		655.44 <i>3</i>	6.83 24	920.91852		M1(+E2)	0.5 + 5 - 6	0.033 8		
		791.6 2	0.24 3		4 ⁺	(-22)	0.0 .0 0	2.000		
		963.93 5	20.0 10	612.46318		M1(+E2+E0)		0.020 4		α : estimated from $\alpha(K)$ exp.
		1260.0 2	0.56 12	316.50645		M1+E2+E0		0.31 10		α : estimated from $\alpha(K)$ exp.
		1576.38 4	100.0 24		0 ⁺	E2				
1629.30	0^{+}	1016.81 7	8.9 11	612.46318						
	~	1312.85 10	100 11	316.50645		E2				
1666.63	(2,3,4)	288.59 5	100 9		3-	•				
	(-,~,·)	745.67 10	23 5	920.91852						Other Iy: 72 11 from $(p,2n\gamma)$.
1739.431	$(1)^{-}$	192.50 9	0.52 17		(0^+)					, · · · · · · · · · · · · · · · · ·
	(-)	361.33 5	6.0 7		3-					
		544.19 8	1.47 14		0+					
		819 ^e	< 0.03	920.91852						
		1126.97 <i>3</i>	48.6 16	612.46318		E1				
		1422.91 3	100.0 17	316.50645		E1				
		1739.49 10	6.7 5		0+	(E1)				
1746.41	(6)-	362.45 [@] 8	100		(5) ⁻	$M1+E2^a$	+0.4 1	0.166 9		δ : from $(\alpha, xn\gamma)$.
1766.09	$(2,3)^+$	565.13 10	6.0 8		(3) 4 ⁺	1711 1.2	10.71	0.100 /		υ. ποιπ (α,λπγ).
1700.09	(4,3)	1449.68 8	100 8	316.50645		E2(+M1)				
1793.503	$(2)^{+}$	872.59 5	67 3	920.91852		E2(+W11)				
175.505	(2)	1181.05 7	36 <i>3</i>	612.46318		M1,E2				

9

$\gamma(^{192}\text{Pt})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{d}	Comments
1869	6+	668	100		4+				E_{γ} : From Coulomb excitation.
1880.02	3 ⁺	959.1 2	6.3 10	920.91852					
		1095.42 6	40.0 25		4 ⁺	M1+E2			
		1267.52 <i>10</i> 1563.74 <i>19</i>	48 <i>5</i> 100 <i>30</i>	612.46318 316.50645		M1 M1			
1894.478	$(2,3)^{-}$	516.43 8	61 3		2 3-	IVII			
1074.470	(2,3)	973.57 <i>7</i>	47 3	920.91852					
		1281.99 4	100 4	612.46318		E1			
		1577.95 <i>5</i>	61 4	316.50645					
1964.51	$(8)^{-}$	446.20 [@] 11	100	1518.35	$(7)^{-}$	M1+E2 ^a	+0.5 1	0.091 5	δ : from $(\alpha, xn\gamma)$.
1976.25	$(2)^{+}$	1055.3 2	12.5 21	920.91852					
		1363.79 9	100 7	612.46318		M1			
		1659.78 7	93 7	316.50645	2+	M1			
2018.37	8+	652.95 [@] 12	100		6+	E2 ^a		0.01331	
2041.81	$(2^-,3^-)$	663.73 19	5.3 16		3-				
		1121.00 9	58 <i>5</i>	920.91852					
		1257.22 6	74 5		4+				Mult.: $\alpha(K)$ exp in ε decay suggests E2, contrary to adopted $J^{\pi}(2041)$.
		1429.34 7	100 5	612.46318					
		1724.95 <i>21</i>	6.3 16	316.50645					
2047.89	$(2)^{+}$	669.77 10	2.64 25		3-				
		1127.02 8	9.9 8	920.91852					M I (II)
		1263.31 6	6.3 7		4+				Mult.: $\alpha(K)$ exp in ε decay suggests M1 but ce line may be contaminated. Level scheme requires E2.
		1435.39 6	36.4 17	612.46318		M1			
		1731.4 <i>I</i>	100 4	316.50645		M1			
2073.95	2+	2047.8 3	1.2 <i>3</i> 38 <i>5</i>		0 ⁺ 2 ⁺				
2073.93	2.	634.69 8 695.8 <i>3</i>	38 3 15 <i>4</i>		3-				
		1153.02 7	21 4	920.91852					
		1757.7 4	13 5	316.50645					
		2073.7 3	100 10		0 ⁺	E2			
2103.22	(9)-	584.85 [@] 9	100		(7)	E2 ^a		0.01707	
2113.20	7 ⁺	631.42 [@] 18	100		5 ⁺	- -		2.01.01	
2113.20	(2 ⁺)	742.15 <i>13</i>	15 5		3-				
	(-)	1199.29 8	71 10	920.91852					
		1507.75 9	41 10	612.46318					
		2120.1 2	100 10	0.0	0^{+}				
2129.52	(1^{-})	235.09 10	4.6 11		$(2,3)^{-}$				
		335.97 9	4.9 11		$(2)^{+}$				
		690.20 8	9.3 11	1439.263	2+				

10

$\gamma(\frac{192}{\text{Pt}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{d}	Comments
2129.52	(1-)	751.50 9	9.9 11	1378.046	3-				
		934.35 7	58 6	1195.169	0_{+}				
		1517.05 9	46 4	612.46318	2+				Mult.: $\alpha(K)(E1) < \alpha(K)\exp(\alpha(K)(E2))$ in ε decay. E2 inconsistent with mult(2130 γ) from same level.
		1813.00 7	100 4	316.50645	2+				Mult.: $\alpha(K)$ exp in ε decay favors E2 (inconsistent with mult(2130 γ)).
		2129.57 10	63 6	0.0	0_{+}	E1			
2142.96	$(3)^{-}$	736.61 8	36 <i>5</i>	1406.35	3+				
		764.91 5	100 10	1378.046	3-	M1		0.0259	
		1222.10 7	45 6	920.91852					
		1358.33 10	27 3	784.5759	4+				
		1530.4 <i>I</i>	49 6	612.46318	2+				
2149.385	1+	355.93 10	0.26 11	1793.503	$(2)^{+}$				
		573.05 10	1.26 11	1576.368	2+				
		1536.91 <i>4</i>	17.7 6	612.46318	2+	M1			
		1832.83 <i>4</i>	100 6	316.50645	2+	M1			
		2149.4 2	1.53 17	0.0	0_{+}	M1			
2161.64		1240.67 8	44 <i>4</i>	920.91852	3 ⁺				
		1549.24 8	100 12	612.46318	2+				
2171.36	2+	1250.47 6	20.6 13	920.91852	3 ⁺	M1(+E2)	0.6 + 5 - 6		
		1386.75 <i>5</i>	44.4 19	784.5759	4+	E2			
		1559.0 2	100 6	612.46318	2+	E2(+M1)	≤1.6		
		1855.0 <i>3</i>	12.5 <i>13</i>	316.50645	2+	M1+E2+E0		0.039 8	α : estimated from $\alpha(K)$ exp.
		2171.5 3	75 <i>13</i>	0.0	0_{+}	[E2]			• • •
2172.37	$(10)^{-}$	69.12 ^a 10	80 7	2103.22	$(9)^{-}$	$M1^{a}$		3.47	$B(M1)(W.u.)=4.0\times10^{-5}$ 6
	()				(-)				I_{γ} : from $(\alpha, xn\gamma)$.
		207.93 ^a 15	100 9	1964.51	$(8)^{-}$	(E2) ^a		0.315	B(E2)(W.u.)=0.0166 24
		207.70 10	100 /	1,0.101	(0)	(22)		0.010	I_{γ} : from $(\alpha, xn\gamma)$.
2191.30	$(2^+,3^-)$	451.89 <i>12</i>	6.5 22	1739.431	$(1)^{-}$				<i>y</i>
	(- ,-)	813.2 2	17.4 26	1378.046	3-				
		1270.33 6	100 9	920.91852					
		1406.75 5	23.5 26	784.5759	4+				
2217.12	$(2)^{+}$	477.69 10	17 4	1739.431	$(1)^{-}$				
	(-)	1296.0 <i>3</i>	51 8	920.91852					
		1432.55 8	66 7	784.5759	4+				
		1604.67 13	100 10	612.46318		M1			
2236.82	$(1,2)^+$	356.77 15	0.39 12	1880.02	3 ⁺				
	(-,-)	443.33 8	0.61 9	1793.503	$(2)^{+}$				
		689.88 6	10.3 3	1546.93	(0^+)				
		1624.35 3	100 3	612.46318		M1			
2227 52	(2)+								
2237.52	$(2)^{+}$	661.0 <i>3</i>	0.61 [@] 11	1576.368	2+				

12

γ (192Pt) (continued)

-										
	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^d	Comments
	2375.392	$(1,2)^+$	2058.9 1	29 6	316.50645	2+	M1	<u> </u>	<u> </u>	
			2375.71 25		0.0	0_{+}				Observed only in ce spectrum in ε decay.
	2399.270	$(1,2)^+$	249.83 7	27.6 14	2149.385	1+	M1		0.504	
			519.25 9	8.3 7	1880.02	3+				
			822.90 5	55 <i>3</i>	1576.368	2+	E2			
			960.02 6	24.8 21	1439.263	2+	E2(+M1)	≥1.8		
			1204.8 ^e 5		1195.169	0+				E_{γ} : reported in ce spectrum only in ε decay.
			1786.79 <i>4</i>	100 8	612.46318		(E2)			
			2082.79 6	83 7	316.50645		M1			
			2399.74 ^e 25		0.0	0_{+}				E_{γ} : reported in ce spectrum only in ε decay.
	2408.34	$(2)^{+}$	668.91 5	100 11	1739.431	(1)-				
			968.93 <i>15</i>	32 5	1439.263	2+	M1		0.01418	
			1001.96 8	16 4	1406.35	3+				
			1207.28 9	100 11	1201.0452	4 ⁺	3.61			
			1487.38 8	72 11	920.91852		M1			
			1795.75 20	33 5	612.46318		M1(+E2)			
			2091.90 7	100 11	316.50645		M1			
١.	2422.78	(1.2)+	2408.4 <i>2</i> 683.32 <i>8</i>	100 17	0.0	0 ⁺ (1) ⁻	(E2)			
, I	2422.76	$(1,2)^+$	1227.6 <i>1</i>	6.1 <i>6</i> 1.7 <i>4</i>	1739.431 1195.169	0+				
			1810.39 9	4.2 4	612.46318	-				
			2106.25 5	72 11	316.50645		M1			
			2422.9 3	100 11	0.0	0^{+}	M1,E2			
	2435.37	3 ⁺	1057.3 2	10.9 19	1378.046	3-	1411,122			
	2133.37	5	1514.44 11	9.1 25	920.91852		M1+E2+E0			
			1822.90 8	100 6	612.46318		M1			
			2118.9 2	26 3	316.50645					
	2453.43	2+	1840.94 <i>10</i>	37 7	612.46318		M1+E2+E0			
			2137.0 3	100 10	316.50645		M1			
	2472.27	2+	1551.39 8	9 3	920.91852					
- [1687.61 9	9.6 22	784.5759	4+				
			1859.82 9	37 4	612.46318		M1+E2+E0			
			2155.74 10	100 <i>13</i>	316.50645		M1			
	2483.64	≤3	1871.10 <i>10</i>	61 9	612.46318	2+				
- [2167.15 <i>11</i>	100 9	316.50645					
- [2486.29	$(2)^{-}$	591.75 9	52 4	1894.478	$(2,3)^{-}$				
- [692.84 9	4.4 6	1793.503	$(2)^{+}$				
			746.85 6	100 4	1739.431	$(1)^{-}$	M1		0.0275	
- [1108.26 8	14.6 15	1378.046	3-	M1		0.01010	
- [1565.39 7	94 4	920.91852					
- [2169.6 2	42 6	316.50645	2+				
- 1										

13

γ (192Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^d	Comments
2486.29	(2)-	2486.4 3	18.3 21	0.0	0+				
2508.84	$(2,3)^{+}$	1307.8 2	7.4 11	1201.0452	4+				
		1587.86 9	100 6	920.91852	3 ⁺	M1			
		1896.40 8	34 <i>3</i>	612.46318	2+				
2511.75	$(11)^{-}$	339.37 ^a 20	100	2172.37	$(10)^{-}$	M1+E2 ^a	-0.4 I	0.198 10	δ : from $(\alpha, xn\gamma)$.
2518.99	$(10)^{+}$	500.62 ^a 10	100	2018.37	8+	E2 ^a		0.0247	
2523.37	(10^+)	505.0 <mark>&</mark> 1	100	2018.37	8+				
2530.3	(10-)	565.8 ^a 5	100	1964.51	(8)-	[E2]		0.0184	Mult.: E2 for doublet of comparable strength gammas in $(\alpha, xn\gamma)$.
2532.46	1+	382.9 <i>3</i>	2.3 10	2149.385	1+				
		1093.1 <i>1</i>	11.1 <i>13</i>	1439.263	2+				
		1337.35 8	7.1 <i>7</i>	1195.169	0_{+}				
		1919.95 8	24 3	612.46318					
		2216.05 <i>15</i>	100 6	316.50645		M1			
		2532.8 <i>5</i>	26 <i>4</i>	0.0	0_{+}	M1			
2549.42	$(2)^{+}$	809.99 11	15.8 26	1739.431	$(1)^{-}$				
		1171.44 <i>12</i>	12.6 <i>26</i>	1378.046	3-				
		1936.9 <i>1</i>	100 5	612.46318		M1,E2			
2560.15	$(1^+,2)$	665.73 8	24 3	1894.478	$(2,3)^{-}$				
		680.06 <i>13</i>	4.4 22	1880.02	3+				
		820.71 6	18.7 26	1739.431	(1)				
		1639.2 2	25 3	920.91852	3 ⁺				
2562.06	(a) +	2243.5 2	100 17	316.50645		M1 - F2 - F0			
2562.96	$(2)^{+}$	769.45 8	6.1 8	1793.503	$(2)^{+}$	M1+E2+E0			
		1184.9 <i>3</i> 1641.91 <i>16</i>	6.6 <i>9</i> 11.4 <i>12</i>	1378.046 920.91852	3 ⁻				
		1778.39 <i>6</i>	18.6 12	784.5759	3 4 ⁺				
		1950.46 <i>13</i>	100.0 23	612.46318		M1			
		2246.55 <i>15</i>	28 5	316.50645		1111			
2583.37	(10^+)	411.03 ^a 20	73 8	2172.37	$(10)^{-}$	[E1]			I_{γ} : from $(\alpha, xn\gamma)$.
2303.37	(10)	564.9 ^a 4	100 30	2018.37	8 ⁺	[E2]		0.0185	I_{γ} : from $(\alpha, x_{1} \gamma)$.
		301.5	100 30	2010.57	O	[22]		0.0103	Mult.: E2 for doublet of comparable strength gammas in $(\alpha, xn\gamma)$.
2585.23	$(2)^{+}$	1008.85 <i>15</i>	6.3 11	1576.368	2+	E2			
	` /	1207.22 10	2.1 7	1378.046	3-				
		1384.00 <i>15</i>	8.3 12	1201.0452	4+				
		1664.2 <i>1</i>	15.4 <i>16</i>	920.91852	3+	M1			
		1800.68 7	6.1 9	784.5759	4+				
		1972.85 <i>15</i>	100 12	612.46318		M1			
		2268.8 <i>3</i>	10.0 16	316.50645					
		2585.3 2	11.4 <i>16</i>	0.0	0^{+}				

$\gamma(\frac{192}{\text{Pt}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^d	Comments
2591	8+	722	100	1869	6+			E_{γ} : From Coulomb excitation.
2602.97	$(2)^{+}$	809.46 7	16 <i>3</i>	1793.503	$(2)^{+}$,
		836.88 10	28 4	1766.09	$(2,3)^+$			
		1224.9 2	27 6	1378.046	3-			
		1682.09 9	64 7	920.91852				
		2286.43 7	100 14	316.50645		M1		
		2602.8 <i>3</i>	61 7	0.0	0_{+}			
2604.76	$(1,2)^{-}$	347.45 <i>15</i>	38 13	2257.26	$(2)^{-}$			
		443.19 10	14.4 25	2161.64				
		484.53 9	23 3	2120.21	(2^{+})			
		710.27 6	88 6	1894.478	$(2,3)^{-}$	M1	0.0313	
		865.33 6	100 6	1739.431	(1)	M1	0.0189	
		1226.8 2	15.6 25	1378.046	3-			
2614.20	(2±)	1992.25 9	100 6	612.46318	0+			
2614.29	(2^{+})	1419.2 2	7.6 11	1195.169 920.91852		M1		
		1693.29 <i>24</i> 2001.75 <i>15</i>	25.3 27 25.3 27	612.46318		M1		
		2297.8 2	44.0 13	316.50645		M1		
		2614.3 2	100 13	0.0	0+	E2		
2623.72	$(12)^{+}$	(40.4)	< 0.0020	2583.37	(10^+)	[E2]	329	$B(E2)(W.u.) \le 0.13$
2023.72	(12)	(40.4)	<0.0020	2363.37	(10)		329	I_{γ} : from $(\alpha, 2n\gamma)$, $(\alpha, 4n\gamma)$.
								E_{γ} : 40.4 3 from level energy difference.
		104.73 ^a 10	100 8	2518.99	$(10)^{+}$	E2 ^a	4.05	B(E2)(W.u.)=52 7
		10.170 10	100 0	2010.	(10)			I_{γ} : from $(\alpha, xn\gamma)$.
2626.64	$(12)^{-}$	454.32 ^a 25	100	2172.37	$(10)^{-}$	E2 ^a	0.0314	-y (y ₁ /).
2629.24	2+	479.84 8	3.0 8	2149.385	1+			
		653.02 8	3.8 6	1976.25	$(2)^{+}$			
		734.67 15	4.1 6	1894.478	$(2,3)^{-}$			
		749.24 <i>7</i>	8.8 8	1880.02	3 ⁺			
		889.77 9	21.9 <i>16</i>	1739.431	$(1)^{-}$			
		2016.81 <i>15</i>	17.2 <i>16</i>	612.46318		M1+E2+E0		
		2312.8 <i>3</i>	100 5	316.50645		M1,E2		
		2629.4 <i>4</i>	63 16	0.0	0_{+}			
2635.23	1+	841.70 <i>10</i>	2.1 6	1793.503	$(2)^{+}$			
		1088.35 9	10.6 14	1546.93	(0^{+})			
		1440.03 17	3.9 6	1195.169	0+			
		2318.67 11	23 3	316.50645		3.64		
		2635.1 3	100 17	0.0	0_{+}	M1		
2641.1	(12^{+})	122.1 <mark>&</mark> 2	100	2518.99	$(10)^{+}$			
2647.32	$(2)^{-}$	1726.35 10	21.7 25	920.91852				
2017.32	. ,	2034.87 7	100 <i>17</i>	612.46318		E1		

15

γ (192Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^d	Comments
2658.46	$(1,2)^+$	2341.94 9	100 7	316.50645	2+			
		2658.4 <i>3</i>	55 6	0.0	0^{+}	M1,E2		
2709.1	$(11)^{-}$	605.92 ^a 25	100	2103.22	$(9)^{-}$	E2 a	0.01574	
2729.4	10+	711	100	2018.37	8+			E_{γ} : from Coulomb excitation.
2730.73	$(2)^{-}$	688.88 10	13 <i>3</i>	2041.81	$(2^-,3^-)$,
		991.35 8	80 <i>7</i>	1739.431	$(1)^{-}$	M1	0.01338	
		1352.60 9	65 6	1378.046	3-	M1		
		2414.4 2	100 <i>13</i>	316.50645	2+			
2770.7	(13^{+})	147.0 <mark>&</mark> 5	100	2623.72	$(12)^{+}$			
2775.21	()	880.73 12	15 <i>4</i>	1894.478	$(2,3)^{-}$			
		895.19 <i>10</i>	19 <i>4</i>	1880.02	3+			
		1035.75 10	33 5	1739.431	$(1)^{-}$			
		2458.75 <i>15</i>	100 9	316.50645				
2794.25	(≤2)	899.70 <i>13</i>	24 6	1894.478	$(2,3)^{-}$			
		1054.84 7	100 12	1739.431	$(1)^{-}$			
		2181.8 <i>3</i>	53 7	612.46318	2+			
2832.89	$(1,2,3)^+$	671.15 <i>15</i>	4.7 12	2161.64				
		1256.7 <i>3</i>	31 6	1576.368	2+			
		1393.67 <i>14</i>	10.6 <i>19</i>	1439.263	2+			
		2220.41 10	38 <i>3</i>	612.46318		M1		
		2516.4 <i>3</i>	100 6	316.50645				
2834.60	(2^{+})	1068.4 2	8.2 14	1766.09	$(2,3)^+$			
		1428.32 <i>14</i>	3.6 7	1406.35	3+			
		1633.56 8	13.6 <i>21</i>	1201.0452	4+			
		1639.43 9	9.6 14	1195.169	0+			
		1913.6 2	19.3 25	920.91852				
		2518.0 <i>3</i>	100 18	316.50645				
2856.13	$(2)^{-}$	961.65 <i>10</i>	28.2 26	1894.478	$(2,3)^{-}$	M1	0.01445	
		1090.54 <i>15</i>	4.4 10	1766.09	$(2,3)^+$	3.61		
		1116.60 6	100 5	1739.431	(1)	M1		
2057.07	(2=)	2243.74 20	19.5 21	612.46318) / 1	0.0204	
2857.07	(2^{-})	727.60 <i>13</i>	4.6 13	2129.52 1378.046	(1-)	M1	0.0294	
		1479.03 <i>5</i> 1936.07 <i>8</i>	62 <i>5</i> 8.0 <i>10</i>	920.91852	3 ⁻			
			100 5	316.50645		E1		
2890.93	$(2)^{-}$	2541.0 <i>10</i> 761.35 <i>13</i>	5.8 13	2129.52		EI		
2090.93	(2)	849.12 <i>9</i>	11.8 21	2041.81	(1^{-}) $(2^{-},3^{-})$			
		996.6 2	31.6 26	1894.478	$(2,3)^{-}$	M1	0.01320	
		1097.6 2	6.1 16	1793.503	(2,3) $(2)^+$	141 1	0.01320	
		1151.51 8	21.1 24	1739.431	(2) $(1)^{-}$			
		1512.75 <i>13</i>	24 4	1378.046	3-			

16

$\gamma(^{192}\text{Pt})$ (continued)

								-	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\ddagger}	E_f	${\rm J}^\pi_f$	Mult. [†]	δ^{\dagger}	α^{d}	Comments
2890.93	(2)-	1969.99 8	29.0 26	920.91852	3+				
20/0./2	(-)	2278.4 2	17.4 2 <i>1</i>	612.46318					
		2574.8 <i>4</i>	100 16	316.50645		E1			
2933.03?	$(12)^{+}$	414.04 ^{ae} 16	100	2518.99	$(10)^{+}$	E2 ^a		0.0399	
2936.37	(12^{+})	353.00 ^a 12	100	2583.37	(10^{+})	E2 ^a		0.0616	
2945.90	$(11)^{+}$	426.91 ^a 18	100	2518.99	$(10)^{+}$	M1+E2 ^a	+0.5 1	0.102 6	δ : from $(\alpha, xn\gamma)$.
2947.00	(2^{-})	905.2 2	14.2 23	2041.81	$(2^{-},3^{-})$				
		1052.55 9	77 8	1894.478	$(2,3)^{-}$	M1		0.01150	
		1153.42 <i>16</i>	5.8 15	1793.503	$(2)^{+}$				
		1180.96 <i>10</i>	10.0 <i>15</i>	1766.09	$(2,3)^+$				
		1207.50 <i>10</i>	6.9 15	1739.431	$(1)^{-}$				
		2026.2 2	11.2 23	920.91852					
		2630.4 2	100 15	316.50645					
2950.2?		438.5 <i>ae</i> 3	100	2511.75	$(11)^{-}$				
2950.43	$(1,2^+)$	902.52 11	7.9 17	2047.89	(2)+				
		1511.11 20	23 4	1439.263	2+	E2			
		1755.4 <i>3</i>	8.0 13	1195.169	0+				
2050 75	(2.2)=	2634.0 <i>3</i>	100 25	316.50645					
2958.75	$(2,3)^{-}$	701.47 9	3.1 6	2257.26	$(2)^{-}$				
		797.09 11	2.0 6	2161.64	(2)-	M1		0.0220	
		815.79 8 917.01 9	22 <i>3</i> 12.5 <i>16</i>	2142.96 2041.81	$(3)^{-}$ $(2^{-},3^{-})$	M1 M1		0.0220 0.01630	
		982.49 <i>11</i>	12.3 10	1976.25	(2,3) (2) ⁺	IVI I		0.01030	
		1192.49 <i>11</i>	2.8 6	1766.09	$(2,3)^+$				
		1219.4 <i>I</i>	8.0 13	1739.431	$(2,3)$ $(1)^{-}$				
		1519.43 12	6.7 11	1439.263	2+				
		1580.64 8	100 5	1378.046	3-	M1			
		2037.86 12	4.4 8	920.91852					
		2346.4 2	28 3	612.46318					
2998.24	$(14)^{+}$	227.5 <mark>&</mark> 3	29 4	2770.7	(13^{+})				I_{γ} : from (¹¹ B,p4n γ).
2,,0.2	(11)	374.51 ^a 12	100 8	2623.72	$(12)^{+}$	E2 <mark>a</mark>		0.0523	I_{γ} : from (^{11}B ,p4n γ).
3022.26	(13^{-})	395.64 ^a 20	27 4	2626.64	$(12)^{-}$	$(M1+E2)^{a}$		0.09 5	I_{γ} : from $(\alpha, xn\gamma)$.
3022.20	(13)	510.4 ^a 5	100 26	2511.75	$(11)^{-}$	(1111 122)		0.07 5	I_{γ} : from $(\alpha, xn\gamma)$.
3027.38	$(2,3)^{-}$	985.65 15	16 3	2041.81	$(2^-,3^-)$				2y. 110111 (w,/).
	(-,-)	1132.93 10	19 3	1894.478	$(2,3)^{-}$				
		1233.95 <i>15</i>	12.0 24	1793.503	$(2)^{+}$				
		1261.3 2	6.0 16	1766.09	$(2,3)^+$				
		1287.7 2	60 4	1739.431	$(1)^{-}$	M1			
		1649.32 8	100 12	1378.046	3-				
		2106.42 9	52 4	920.91852					
		2415.1 3	56 <i>4</i>	612.46318	2+				

γ (192Pt) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^π	Mult. [†]	α^d	Comments
3031.00	(≤3)	547.32 8 901.5 2 1291.60 9	25 <i>4</i> 31 <i>4</i> 100 <i>7</i>	2483.64 2129.52 1739.431	≤3 (1 ⁻) (1) ⁻			
3068.4 3080.1? 3082.4	(14^{+}) (14^{+}) (12^{-})	427.3 ^{&} 1 147.07 ^{ae} 12 552.1 ^a 3	100 100 100	2641.1 2933.03? 2530.3	(12 ⁺) (12) ⁺ (10 ⁻)	(E2) ^a Q	1.075	Mult.: from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
3127.19	(1-,2-)	643.56 8 673.76 11 704.4 1 791.65 8 831.18 9	14.0 20 9.5 20 10.5 25 17.0 25 14.0 25	2483.64 2453.43 2422.78 2335.464 2296.06				
		997.68 <i>5</i> 1387.78 <i>9</i>	100 <i>10</i> 39 <i>5</i>	2129.52 1739.431	(1 ⁻) (1) ⁻	M1	0.01317	
3137.4 3155.74	(12 ⁺) (2,3) ⁻	614.0 3 994.10 10 1113.93 8 1261.1 2 1362.22 10	100 4.7 9 18.1 19 4.0 8 6.6 9	2523.37 2161.64 2041.81 1894.478 1793.503	(10 ⁺) (2 ⁻ ,3 ⁻) (2,3) ⁻ (2) ⁺	M1		
		1389.68 9 1416.29 8 1579.2 3 1777.8 2 2234.84 7	8.3 9 36 4 47 4 3.6 8 100 6	1766.09 1739.431 1576.368 1378.046 920.91852	(2,3) ⁺ (1) ⁻ 2 ⁺ 3 ⁻ 3 ⁺	M1,E2		
3184.7	(15^+)	2543.1 2 414.0 ^{&} 5	57 <i>15</i> 100	612.46318 2770.7		E1		
3189.52	(2,3 ⁻)	1147.65 <i>17</i> 1295.00 <i>10</i> 1450.0 2 1811.57 <i>15</i> 2268.7 2	24 6 49 9 100 13 55 7 64 7	2041.81 1894.478 1739.431 1378.046 920.91852	(2 ⁻ ,3 ⁻) (2,3) ⁻ (1) ⁻ 3 ⁻			
3225.5 3357.5 3400.0?	(13 ⁺) (13 ⁻)	279.57 ^a 18 648.4 ^a 5 319.9 ^{ae} 4	100 100 100	2945.90 2709.1 3080.1?	(11) ⁺ (11) ⁻ (14 ⁺)	(E2) ^a	0.1218	
3504.7 3542.1 3569.3?	(16 ⁺) (16) ⁺	320.0 ^{&} 2 543.85 ^a 20 489.2 ^{ae} 3	100 100 100	3184.7 2998.24 3080.1?	(15 ⁺) (14) ⁺ (14 ⁺)	$E2^a$ D+Q ^a	0.0202	
3673.8? 3674.1	(17+)	273.83 ^{ae} 18 489.4 ^{&} 8	100 100	3400.0? 3184.7	(15 ⁺)	D+Q		Mult.: from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
3695.3	(15)-	673.01 ^a 25	100 10	3022.26	(13-)	E2 ^a	0.01245	I_{γ} : from $(\alpha, xn\gamma)$.

From 190 Os(α ,2n γ), 192 Os(α ,4n γ). b Weighted average from 192 Ir β^{-} decay (73.829 d), 192 Au ε decay, and 193 Ir(p,2n γ). c Weighted average from 192 Ir β^{-} decay (73.829 d), 192 Au Au ε decay, (α ,xn γ), 193 Ir(p,2n γ).

$\gamma(^{192}\text{Pt})$ (continued)

Adopted Levels, Gammas (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^d	Comments
3695.3	(15)	697.0 ^a 3	57 <i>7</i>	2998.24	$\overline{(14)^{+}}$	E1 ^a		I_{γ} : from $(\alpha, xn\gamma)$.
3778.7	(18^{+})	274.0 ^{&} 3	100	3504.7	(16^{+})			
3883.3		188.03 ^a 20	100	3695.3	$(15)^{-}$	D+Q		Mult.: from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
3923.6	(17^{-})	228.34 ^a 15	100 9	3695.3	$(15)^{-}$	$(E2)^{a}$	0.231	I_{γ} : from $(\alpha, xn\gamma)$.
		381.5 <i>a</i> 3	24 9	3542.1	$(16)^{+}$			I_{γ} : from $(\alpha, xn\gamma)$.
4160.4		236.84 ^a 16	100	3923.6	(17^{-})	D+Q		Mult.: from $\gamma(\theta)$ in $(\alpha, xn\gamma)$.
4199.7	(20^+)	421.0 <mark>&</mark> <i>3</i>	100	3778.7	(18^{+})			
4204.2	$(18)^{+}$	662.1 ^a 3	100	3542.1	$(16)^{+}$	E2 ^a	0.01291	
4320.5?		160.10 ^{ae} 20	100	4160.4				
4950.7	(20^{+})	746.5 ^a 4	100	4204.2	$(18)^{+}$			

[†] From 192 Au ε decay, except where noted.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned

^e Placement of transition in the level scheme is uncertain.

 $^{^{\}ddagger}$ Relative photon branching from each level; values are from 192 Au ε decay, except where noted.

[#] From 192 Ir β^- decay (73.829 d).

[@] Weighted average from 190 Os(α ,2n γ), 192 Os(α ,4n γ) and 193 Ir(p,2n γ).

[&]amp; From (¹¹B,p4nγ).

multipolarities, and mixing ratios, unless otherwise specified.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{192}_{78}\mathrm{Pt}_{114}\text{-}20$

Legend

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

→ γ Decay (Uncertain)

Legend

0.0

stable

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain) 10 / 2/1 / 2 15, 28 15, 38 15, 38 16, 38 16, 38 17, 38 29<u>3</u>3<u>.03</u> 2890.93 $\frac{(12)^{+}}{(2)^{-}}$ $\frac{(2)^{-}}{(2^{-})}$ 2857.07 $\frac{(2)^{-}}{(2^{+})}$ 2856.13 2834.60 $(10)^{+}$ 2518.99 (1-) 2129.52 $(2^-,3^-)$ 2041.81 $(2,3)^{-}$ 1894.478 1793.503 1766.09 1739.431 $\frac{(2)^{+}}{(2,3)^{+}}$ $\frac{(1)^{-}}{(1)}$ 1406.35 1378.046 41 ps 9 1201.0452 1195.169 920.91852 21.3 ps 21 612.46318 26.5 ps 15 316.50645 43.7 ps 9

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

36

Level Scheme (continued)

 $^{192}_{78}\mathrm{Pt}_{114}\text{-}39$

Adopted Levels, Gammas

	Hist	tory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 177, 1 (2021)	3-Sep-2021

 $Q(\beta^{-}) = -2548.2 \ 21$; $S(n) = 8351.7 \ 13$; $S(p) = 7512.8 \ 13$; $Q(\alpha) = 1522.8 \ 5$ S(2n)=14614.2 25, S(2p)=13455.7 23 (2021Wa16).

Other reactions:

¹⁹⁴Pt(n,n'): 1989Cl08. ¹⁹⁴Pt(⁷Li, ⁷Li'): 1984Da12.

 195 Pt(γ ,n): 2004Be49: measured isomer yields.

Additional information 1.

¹⁹⁵Pt(p,pn): 1970Co18. ¹⁹⁴Pt(⁷⁶Se, ⁷⁶Se); ¹⁹⁴Pt(⁸²Se, ⁸²Se): 1992Wo04.

¹⁹⁴Pt(γ, γ'): 1972Sh38.

Photonuclear reactions: 1974Da08.

 196 Pt(n,xnyp) E=1-250 MeV: 2001Ta31: measured prompt γ , excitation functions. Mass measurements: 2016Ei01, 2013Sh30, 2005Sh52, 1985De40, 1960Bh02.

Isotope shift: 1995Kr05.

1984Bu19: measured hyperfine structure (hfs), magnetic dipole hfs constants, electronic g(J) factors using ABMR technique.

Theoretical references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 208 primary references dealing with nuclear structure calculations.

¹⁹⁴Pt Levels

Band assignments are from 197 Au(209 Bi,X γ) (2015Ta25) and 192 Os(82 Se,X γ) (2005Jo11).

Cross Reference (XREF) Flags

		B 194I C 1947 D 192C E 192C F 192I	r β^- decay (19.18 h) r β^- decay (171 d) Au ε decay (38.02 h) $Os(\alpha, 2n\gamma)$ $Os(^{82}Se, X\gamma)$ Ot(t,p) $(^{3}He,d)$	H I J K L M	$^{194}\text{Pt}(\gamma,\gamma') \\ ^{194}\text{Pt}(e,e') \\ ^{194}\text{Pt}(n,n'\gamma),(n,n') \\ ^{194}\text{Pt}(\text{pol p,p'}) \\ ^{194}\text{Pt}(\text{p,p'}),(d,d'),(\alpha,\alpha') \\ ^{194}\text{Pt}(^{12}\text{C},^{12}\text{C}') \\ ^{195}\text{Pt}(\text{p,d}) \\$	O P Q R S T	¹⁹⁵ Pt(d,t) ¹⁹⁶ Pt(p,t) ¹⁹⁷ Au(p,α) ¹⁹⁷ Au(²⁰⁹ Bi,Xγ) Coulomb excitation Muonic atom		
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF				Comments		
0.0@	0+	stable	ABCDEFGHIJKLMNOF	PQRST	J ^π : absence of hyperfine splitting (1935Fu06) consistent with J=0. $< r^2 > ^{1/2} = 5.4236$ fm 25 (2013An02 evaluation). $\Delta < r^2 > (^{192}\text{Pt}, ^{194}\text{Pt}) = 0.052$ fm ² 5, average of 0.051 fm ² 5 (1988Le22) and 0.053 fm ² 5 (1987Ne09). $\Delta < r^2 > (^{194}\text{Pt}, ^{196}\text{Pt}) = 0.054$ fm ² 5, from 0.054 fm ² 5 (1988Le22) and 0.055 fm ² 5 (1987Ne09). Others: 1992Hi07, 1988Bo31.				
328.473 [@] 4	2+	41.7 ps <i>17</i>	ABCDE GHIJKLMNOPQRST		and 0.055 fm ² 5 (1987Ne09). Others: 1992Hi07, 1988Bo31. μ =+0.59 2 (1992Br03,2020StZV) Q=+0.48 14 (1986Gy04,2016St14) J ^{π} : 328.5 γ E2 to 0 ⁺ . Also L(p,p')=L(p,t)=2 from 0 ⁺ . T _{1/2} : from B(E2)=1.649 15 in Coulomb excitation. Uncertainty of 1% seems to be statistical only. Evaluators have assumed an uncertainty of 4% in deducing level half-life and B(E2)(W.u.). Others: 45.0 ps 24 from recoil-distance method (RDM) in Coulomb excitation , 51 ps 7 from Γ_{γ} in (γ, γ') (1972Sh38), 35.0 ps 35 from $\gamma\gamma$ (t) in ¹⁹⁴ Ir β ⁻ decay (1972Be53); 50.5 ps 22				

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		XREF	Comments
					from RDM in Coulomb excitation (1971NoZV). μ : transient field integral perturbed angular correlations in Coulomb excitation (1992Br03). Others: +0.60 <i>3</i> (1995An15), +0.592 <i>44</i> (1991St04), 0.406 <i>12</i> (1982Le02, 1987Be08), 0.600 <i>23</i> (1975Ka42), +0.70 <i>6</i> (1974Ga31), 0.64 <i>6</i> (1972Do18), 0.49 <i>3</i> (1970Ke14), +0.54 <i>8</i> (1969Ku06), 0.64 <i>8</i> (1967Ka16), 0.52 <i>5</i> (1966Ag02), 0.45 <i>4</i> (1965Ke11), 0.66 <i>30</i> (1965Sp03), Values from 1975Ka42, 1970Ke14, 1966Ag02, 1965Ke11 are from IPAC technique in ¹⁹⁴ Ir β ⁻ decay and have been adjusted for adopted T _{1/2} of 328.5 level based on their measured precession angles (see ¹⁹⁴ Ir β ⁻ decay dataset for original values of g-factors). Other values are from different techniques in Coulomb excitation. Additional information 2. Q: from Coulomb excitation reorientation (1986Gy04). Others: +0.63 <i>6</i> (1978Ba38), 0.125 <i>17</i> (1983Ch35), +0.77 <i>50</i> (1973Gr06), 0.64 <i>16</i> or 0.87 <i>18</i> (1969Gl08, 1968Gl01), 0.25 <i>17</i> (quoted by 1983Ch35 from muonic data of 1979HoZX). 1987Hi04 deduced Q=0.18 from a fit to (n,n') scattering data. β_2 =-0.154 <i>2</i> from 1981De12 in (p,p'), -0.170 <i>5</i> from 1987Hi04 in (n,n'), -0.15 from 1980Se05 in (p,t).
622.024 & 4	2+	35 ps 4	A CD G	H JKLMNOPQ ST	$μ$ =+0.56 II (1992Br03,2020StZV) Q=-0.5 f (1978Ba38,2014StZZ) f ^{π} : 622.0 f E2 to 0 ^{$+$} ; E0 component in 293.5 f to 2 $^+$; L(p,t)=2 from 0 $^+$. f (1972Be53). Other: 42 ps f from B(E2)(from g.s.)=0.0080 f in Coulomb excitation and adopted f (f
811.288 [@] 7	4+	3.7 ps 2	ABCDE	IJKLMN PQRST	μ =+1.12 12 (1992Br03,2020StZV) Q=+0.5 10 (1978Ba38,2014StZZ) J ^π : 482.8γ E2 to 2+; L(p,p')=L(p,t)=4 from 0+. T _{1/2} : from Doppler-shift recoil-distance method in Coulomb excitation (1977Jo05). Others: 4.8 ps 14 from DSAM in 1977St26 in Coulomb excitation; 4.7 ps 2 from B(E2)(from 328.5, 2+)=0.78 3 in Coulomb excitation. μ : from g(811)/g(328)=0.95 10, transient field integral perturbed angular correlations in Coulomb excitation (1992Br03), and μ (328)=+0.60 3. Q: from Coulomb excitation reorientation (1978Ba38). Value is not listed in 2020StZV evaluation. β ₄ =-0.0455 10 ((p,p'), 1981De12), -0.040 5 ((n,n'), 1987Hi04). Others: (12C, 12C') (1979Ba19); (α,α') (1976Ba35).
922.772 <mark>&</mark> 6	3 ⁺		A CD	J L N Q S	J^{π} : spin=3 from $\gamma\gamma(\theta)$ in ¹⁹⁴ Ir β^- decay (1973Si22); 300.8 γ and 594.3 γ E2(+M1) to 2 ⁺ .
1229.520 ^{&} 10	4+	3.8 ps 6	A CD	IJKL NOPQ S	J^{π} : L(p,p')=L(p,t)=4 from 0 ⁺ ; 607.5 γ E2 to 2 ⁺ .

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
		-,-		$T_{1/2}$: from Doppler-shift attenuation method in Coulomb excitation (1977St26). Other: 1.53 ps +7-9 from B(E2)(from 622.0, 2 ⁺)=0.64 +3-2 in Coulomb excitation (1996Wu07) and adopted %I(γ +ce)=81.0 <i>12</i> for 607.5 γ .
1267.200 6	0+	6.1 ps <i>14</i>	ACGJNPQS	J^{π} : spin=0 from $\gamma\gamma(\theta)$ in ¹⁹⁴ Ir β^{-} ; 645.2 γ and 938.7 γ E2 to 2 ⁺ . T _{1/2} : from B(E2)(from 622 level)=0.011 +3-2 (1996Wu07) in Coulomb excitation and adopted
1373.772 ^a 17	(5 ⁻)		BCDE J L N PQRST	branching ratio %I(γ +ce)=66.9 4 for 645.2 γ . J ^{π} : 562.5 γ (E1) to 4 ⁺ ; γ (θ) in (n,n' γ) consistent with J=5 not J=4 or 3; L(p,p')=(5) from 0 ⁺ .
1411.83 [@] 8	6+	1.6 ps 5	B DE J L P RST	J ^{π} : L(p,t)=6 from 0 ⁺ ; 600.5 γ E2 to 4 ⁺ . T _{1/2} : from Doppler-shift attenuation method in Coulomb excitation (1977St26). Other: 1.11 ps +3-8 from B(E2)(from 811.0, 4 ⁺)=0.93 +7-2 (1996Wu07) in Coulomb excitation.
1422.21 <i>11</i>	$(3,4)^{+}$		D J N PQ S	J^{π} : L(p,d)=3 gives J^{π} =2 ⁺ ,3 ⁺ ,4 ⁺ . Absence of g.s. transition disfavors 2 ⁺ .
1432.551 6	3-	110 ps +10-9	A CD IJ L P S	Talisation distavols 2. J ^π : L(p,p')=L(p,t)=3 from 0 ⁺ ; 1104.0γ E1 to 2 ⁺ , 621.3γ E1 to 4 ⁺ . T _{1/2} : from B(E3)=0.120 8 in Coulomb excitation and adopted %I(γ+ce)=1.93 4 for 1432.5γ. Other: B(E3)=0.157 13 from (e,e') (1988Bo08)
1479.272 <i>6</i> 1485.04 ^{<i>a</i>} <i>16</i>	0 ⁺ (7 ⁻)	3.45 ns <i>12</i>	AC gJnPq BDEgLnPqR	gives $T_{1/2}$ =84 ps +10-8. J^{π} : L(p,t)=0 from 0 ⁺ ; also E0 transition to 0 ⁺ . μ =+1.8 δ (2006Le06,2020StZV) J^{π} : L(p,p')=(7) from 0 ⁺ ; 111.4 γ (E2) to (5 ⁻). $T_{1/2}$: from $\gamma\gamma$ (t) in ¹⁹⁴ Ir β ⁻ decay (171 d) (1970To14). μ : from g=+0.26 δ (IPAD method in
1498.77 <mark>&</mark> 20	(5 ⁺)		D J	$(\alpha,2n\gamma),2006Le06).$ J^{π} : 576 $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(n,n'\gamma)$ consistent
1512.004 6	2+		AC GJLNPQ	with stretched E2 to 3 ⁺ . Also absence of transitions to levels with J \leq 2. J ^{π} : 700.7 γ E2 to 4 ⁺ , 244.8 γ and 1512.1 γ (E2) to
1529 2 1547.281 8	0+	0.175 ps +14-11	A C J L N PQ S	0^+ . E(level): from (p,p') only. J^{π} : spin=0 from $\gamma\gamma(\theta)$ in 194 Ir β^- (19.18 h); E0 transition to 0^+ . $T_{1/2}$: from B(E2)(from 328.5, 2^+)=0.0191 +11-13 (1996Wu07) and adopted %I(γ +ce)=79.5 4 for
1584 <i>3</i>	$(0^+,1^+,2^+)$		N	1218.8 <i>y</i> . E(level): from (p,d) only.
1592.8 <i>3</i>	(5 ⁺)		D	J^{π} : L(p,d)=(1) from 1/2 ⁻ . J^{π} : $\gamma(\theta)$ of 670 γ to 3 ⁺ consistent with mult=Q.
1622.197 7	2+		A C G J NO Q	The $\Delta J=2$ transition is E2 rather than M2. XREF: O(1640).
1670.667 7	2+		A C G J L N PQ	J ^π : 1622.2 γ E2 to 0 ⁺ . J ^π : spin=2 from $\gamma\gamma(\theta)$ in ¹⁹⁴ Ir β^- (19.15 h); 1048.6 γ M1 to 2 ⁺ .
1737.427 <i>14</i> 1778.578 <i>10</i>	(3 ⁻) 2 ⁺		C L A C G J N PQ	J^{π} : 223.9γ (M1+E2) from 2 ⁻ ; 363.1γ to (5 ⁻). XREF: G(1780). J^{π} : γγ(θ) in ¹⁹⁴ Au ε decay gives J=1 or 2; 855.8γ to 3 ⁺ is not E2 or M2 based on ce data

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
				in 194 Au ε decay; 1156.5 γ M1(+E2) to 2 ⁺ . L(3 He,d)=0+2 from 3/2 ⁺ also gives 1 ⁺ or 2 ⁺ . A possible 345.98 γ to 3 ⁻ supports 2 ⁺ but not 1 ⁺ .
1783.52 ^b 11 1797.390 5 1802.646? 14	(6 ⁻) 1 ⁻ 1 ⁺ ,2 ⁺		D J A C J L N P C	J ^π : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; 409.75 γ M1+E2 to (5 ⁻). J ^π : 318.1 γ , 530.2 γ , 1797.4 γ E1 to 0 ⁺ ; 364.8 γ E2 to 3 ⁻ . J ^π : 1802.6 γ M1,E2 γ to 0 ⁺ .
1816.591 <i>8</i> 1871.6 <i>1</i>	$(2)^+$ $2^+,3^+,4^+$		C J L N PQ g L N PQ	J^{π} : L(p,d)=1+3 from 1/2 ⁻ ; possible 1816.3 γ to 0 ⁺ . XREF: g(1880). E(level): from (p,t). Others: 1870 <i>I</i> in (p,p'), 1869 <i>3</i> in (p,d),
4000 07 0	(2.2.1)			1873 5 in (p,α) . J^{π} : $L(p,d)=3$ from $1/2^{-}$.
1888.35 9	(2,3,4)		g J q	XREF: g(1880)q(1890). J^{π} : 455.8γ(θ) to 3 ⁻ does not allow ΔJ=2.
1893.588 <i>12</i>	0^{+}		A C L N Pq	XREF: q(1890).
1912.9 <i>I</i>	(4+)		KL PQ	J^{π} : L(p,t)=0 from 0 ⁺ ; (E0) transition to 0 ⁺ ; L(p,d)=1 from 1/2 ⁻ . E(level): from (p,t). Others: 1911 5 in (p, α). J^{π} : L(p,p')=L(p,t)=(4) from 0 ⁺ .
1924.285 8	1+		A C G J	$XREF: G(1920).$ $J^{\pi}: 1924.3\gamma \text{ M1 } \gamma \text{ to } 0^{+}.$
1925.85 7	(6 ⁺)	1.3 ps 2	S	J^{π} : 696.4 γ to 4 ⁺ , 514.0 γ to 6 ⁺ ; absence of γ rays to levels with J<4.
1930.368 9	2+		AC JlnP	T _{1/2} : from Doppler-shift attenuation method in Coulomb excitation (1977St26). XREF: l(1932)n(1932).
1730.300 7	2		n c 31 n 1	J^{π} : L(p,d)=1+3 from 1/2 ⁻ ; 1601.9 γ M1(+E2) to 2 ⁺ , 1930.4 γ to 0 ⁺ , 1119.1 γ to 4 ⁺ .
1934.7 <i>1</i>			1 n P	XREF: 1(1932)n(1932).
1948.9 <i>1</i>			L P	E(level): from (p,t). E(level): from (p,t). Other: 1948 <i>3</i> from (p,p').
1961.332 7	2-		С Ј	J^{π} : 163.95 γ M1+E2 to 1 ⁻ , 528.77 γ M1+E2 to 3 ⁻ ; also E1 γ s to 2 ⁺ .
1974 2			L q	XREF: q(1979). E(level): from (p,p').
1981.3 <i>1</i>			L Pq	XREF: q(1979).
1984.4 3	$(6,7,8^+)$		D	E(level): from (p,t). Other: 1981 2 from (p,p'). J^{π} : 572.6 γ to 6 ⁺ ; absence of γ to J<6.
1991.69 20	$(0,7,8)$ (7^{-})		D N Pq	XREF: D(?)q(1996).
	,		•	J^{π} : L(p,d)=6 from 1/2 ⁻ for a group at 1993; M1,E2 γ to (7 ⁻); L(p,t)=(6,7) from 0 ⁺ .
1999.8 ^b 3	(8-)		D q	XREF: q(1996). J^{π} : 514.8 γ M1+E2 to (7 ⁻) and 514.8 $\gamma(\theta)$.
2003.659 13	(2+)		ACGJP	XREF: G(2000).
				J^{π} : L(³ He,d)=0+2 for a group at 2000 20; 1675.2 γ (M1) to 2 ⁺ , 1080.9 γ (M1(+E2)) to 3 ⁺ ; 2003.65 γ to 0 ⁺ .
2032.8 1			L NoPQ	XREF: N(2025)o(2030). E(level): from (p,t). Others: 2030 2 from (p,p'), 2025 10 from
2043.718 6	1+		A C J no	(p,d), 2028 5 from (p, α). XREF: n(2049)o(2030).
2046.2 3			P	J^{π} : 2043.7 γ M1 γ to 0 ⁺ ; L(p,d)=1 from 1/2 ⁻ . E(level): level seen in (p,t) only; it is different from the 2047.5,
2047.52 ^a 17	(9-)		B DE R	(9 ⁻) level populated in (HI,xn γ). J^{π} : 562.5 γ (E2) to (7 ⁻); possible band assignment.
2053.018 17	$(2)^{+}$		A C J n P	XREF: n(2049). J^{π} : weak β^{-} feeding from 1 ⁻ (log ft =9.0) and weak ε feeding

E(level) [†]	Jπ‡	T _{1/2}		XREF	Comments
					from 1 ⁻ (log f t=9.0); possible 1241.9 γ to 4 ⁺ , 162.6 γ M1(+E2) from 1 ⁺ .
2063.746 9	2+		A C	J NoPQ	J ^{π} : 1140.99 γ M1 to 3 ⁺ ; spin=1 or 2 from $\gamma\gamma(\theta)$ in ¹⁹⁴ Au ε
2073.6 2				L oP	decay; $L(p,d)=1$ from $1/2^-$. E(level): from (p,t). Other: 2072 3 from (p,p').
2085.475 11	0+		A C	NoP	XREF: N(2090)o(2080). E(level): the observed group at E=2090 5 in (p,d) with L=1+3 is
					either a doublet or a different level. J^{π} : E0 transition to 0^+ .
2099.55 [@] 12	(8) ⁺	1.1 ps <i>3</i>	B DE	RS	J^{π} : 687.7 γ (E2), ΔJ =(2) to 6 ⁺ ; absence of transitions to levels
					with J <6; E2 excitation in Coulomb excitation. $T_{1/2}$: from Doppler-shift attenuation method in Coulomb
					excitation (1977St26). Other: $0.65 \text{ ps } +7-4 \text{ from B(E2)(from B)}$
2109.068 <i>13</i>	$(2)^{+}$		A C	L noP	1411.9, 6 ⁺)=0.73 +5-7 in Coulomb excitation. XREF: L(2104)n(2115)o(2130).
					J^{π} : ce data from ¹⁹⁴ Au ε decay (38.02 h) give Mult=D+Q for 1186.37 γ to 3 ⁺ and 1487.08 γ to 2 ⁺ ; L(p,d)=1+3 from 1/2 ⁻ for
2114 107 0	1+				a group at E=2115 5, a possible 2109+2114 doublet, favors 2 ⁺ .
2114.106 8	1+		A C	no	XREF: n(2115)o(2130). J^{π} : 846.96 γ and 2114.1 γ M1 γ to 0 ⁺ . Other: J=2 from
					$(1786\gamma)(328\gamma)(\theta)$ in ¹⁹⁴ Ir β^- decay (19.18 h) (1965Ma10) is inconsistent.
2117.7 <i>I</i> 2126.5 <i>I</i>	(4 ⁺)			P	
2120.3 1	(4)			L oPq	XREF: o(2130)q(2129). E(level): from (p,t). Other: 2126 2 from (p,p').
2131.126 <i>11</i>	(2 ⁺)		C g	noPq	J^{π} : L(p,p')=L(p,t)=(4) from 0 ⁺ . XREF: g(2150)n(2138)o(2130)q(2129).
	. ,		_	•	J ^{π} : possible 1802.6 γ (doublet) M1,E2 to 2 ⁺ , possible 1319.7 γ to 4 ⁺ and possible 2131.08 γ to 0 ⁺ .
2134.123 <i>14</i>	1+,2+		A C g	J no q	XREF: g(2150)n(2138)o(2130)q(2129).
					J ^π : 1805.7 γ M1(+E2) to 2 ⁺ ; spin=1 or 2 from $\gamma\gamma(\theta)$ in ¹⁹⁴ Au ε decay (38.02 h).
2140.696 <i>12</i>	$(1^+, 2^+)$		A C g	J noP	XREF: $g(2150)n(2138)o(2130)$. J^{π} : 1812.2γ (M1) to 2^{+} , 2140.7γ to 0^{+} .
2154 2	3-		A C -	L	J^{π} : L(p,p')=3 from 0 ⁺ .
2157.995 <i>14</i>	$(2)^{+}$		A C g	J n Pq	XREF: $g(2150)n(2161)q(2163)$. J^{π} : 1829.5 γ M1(+E2) to 2 ⁺ , 1346.7 γ to 4 ⁺ ; spin=1 or 2 from
2163.747 10	0+		С	n Pq	$\gamma\gamma(\theta)$ in ¹⁹⁴ Au ε decay (38.02 h). XREF: n(2161)q(2163).
				•	XREF: S(2163). J^{π} : E0 transition to 0+; 1835.3 γ E2 to 2+.
2165 2	(5 ⁻)			L q	XREF: q(2163).
2175.4 <i>1</i>				PQ	J^{π} : L(p,p')=(5) form 0^+ . E(level): from (p,t). Other: 2171 5 from (p, α).
2184.910 <i>12</i>	1+,2+		С	P	J ^π : 1562.89 γ M1(+E2) to 2 ⁺ ; spin=1 or 2 from $\gamma\gamma(\theta)$ in ¹⁹⁴ Au ε decay (38.02 h).
2192.9 <i>1</i>	$(6^-,7^-)$			L N P	E(level): from (p,t). Others: 2192 4 from (p,p') and 2191 10 from
					(p,d). J^{π} : L(p,d)=6 from 1/2 ⁻ for an unresolved doublet at E=2191 20,
2214.525 9	(2 ⁺)		С	J N Pq	assuming $i_{13/2}$ shell. XREF: $q(2210)$.
	` /			•	J^{π} : 1291.8 γ (M1(+E2)) to 3 ⁺ , 702.5 γ (M1) to 2 ⁺ , 2214.47 γ to 0 ⁺ ; L(p,d)=1+3 from 1/2 ⁻ suggesting 2 ⁺ for a group at 2214 5.
2215.534 6	1+		С	J q	XREF: q(2210).
2219.0 <i>3</i>				L P	J^{π} : 668.2 γ , 736.2 γ , 948.3 γ M1 to 0 ⁺ . E(level): from (p,t). Other: 2222 2 from (p,p').

E(level) [†]	J^{π}		XREF	Comments
2228.3 1			P	
2239.636 8	(2)-	C	n	XREF: n(2240). J ^{π} : 1617.6γ E1 to 2 ⁺ , 1316.9γ to 3 ⁺ ; ε feeding from 1 ⁻ (log ft =7.7).
2246 2	3-		L n	XREF: n(2240). E(level): from (p,p'). J^{π} : L(p,p')=3 from 0 ⁺ .
2248.2 <i>1</i> 2250.665? 2 <i>1</i> 2275.6 <i>1</i>	(4^+) $(1,2^+)$ $(2^+,3^+,4^+)$	С	P N PQ	J^{π} : L(p,t)=(4) from 0 ⁺ . J^{π} : possible 1922.2 γ to 2 ⁺ and 2250.7 γ to 0 ⁺ . E(level): from (p,t). Others: 2270 5 from (p,d), 2269 5 from (p, α).
			•	J^{π} : L(p,d)=(3) from 1/2 ⁻ .
2287.376 10	$(1^+,2^+)$	С	L P	XREF: L(2285). J^{π} : 1958.9 γ (M1(+E2)) to 2 ⁺ , 2287.3 γ to 0 ⁺ ; ε feeding from 1 ⁻ (log <i>ft</i> =7.8).
2297.2 <i>I</i> 2298.157 8	(7 ⁻ ,8 ⁺) 1 ⁺	С	J n	J^{π} : $L(p,t)=(7,8)$ from 0^+ . XREF: n(2302). E(level): the 2302 group in (p,d) with $L(p,d)=1+3$ (implying $J^{\pi}=2^+$) may be a doublet or a different level.
				J^{π} : 818.9 γ , 1031.0 γ , 2298.2 γ M1 to 0 ⁺ .
2309.0 1	(1.1-)	_	P	IT 2(2.1 (0) ((2-) 1 (1 AL 2
2309.6 <i>3</i> 2311.875 <i>8</i>	(11 ⁻) 2 ⁺	C C	L n	J ^{π} : 262.1 $\gamma(\theta)$ to (9 ⁻) is consistent with ΔJ=2. XREF: L(2309)n(2302). J ^{π} : strong E0 component in 1983.4 γ to 2 ⁺ , 1500.7 γ (E2) to 4 ⁺ , 2311.9 γ
2324.1 <i>I</i>	(6-,7-)		L N P	(E2) to 0 ⁺ ; 197.8γ M1 to 1 ⁺ . XREF: N(2332).
2356.059 14	0+	С	1	E(level): from (p,t). Others: 2323 4 from (p,p'), 2332 5 from (p,d). J^{π} : L(p,d)=6 from 1/2 ⁻ assuming $i_{13/2}$ orbit for a group at E=2332 5. J^{π} : E0 transition to 0 ⁺ .
				E(level): 2356.3 <i>1</i> (2010II03) and 2353 2 (1979De25) in (p,t) with L=(4) (1979De25) suggesting (4 ⁺) and non-zero L(p,t) in 2010II03 has been listed as a separate level, assuming that angular distributions in (p,t) are correct.
2356.3 1	(4+)		1 P	E(level): 2356.3 <i>I</i> from 2010II03 and 2353 2 from 1979De25 in (p,t), with L(p,t)=(4) in 1979De25 and non-zero L(p,t) in 2010II03 is probably a different level from 2356.059, 0 ⁺ level, assuming that angular distributions in (p,t) are correct.
2365.932 21	1+	С	1 n	XREF: $1(2370)$ n(2363). J ^{π} : 2365.9 γ M1 to 0 ⁺ . The group at 2363 5 in (p,d) with L=(1+3) suggesting (2 ⁺) could be a doublet; the $\sigma(\theta)$ data in (p,d) also consistent
2369.9 1			1 n P	with L=(1+4). XREF: l(2370)n(2363). E(level): from (p,t).
				J^{π} : see comment for 2365 level.
2385.2 <i>I</i> 2397.321 <i>I4</i>	2+	С	J L NoP	XREF: L(2395)N(2394)o(2410)P(2395.3). E(level): other: 2395.3 <i>5</i> from (p,t) may be a different level.
2407.8 <i>1</i>			L noP	J^{π} : L(p,d)=1+3 from 1/2 ⁻ for a group at 2394 5. XREF: L(2404)n(2411)o(2410). E(level): from (p,t). Other: 2404 2 from (p,p').
2412.744 13	1+	С	l no	E(level): from (p,t). Other: 2404 2 from (p,p). XREF: $1(2418)n(2411)o(2410)$. J^{π} : 2412.7 γ M1 to 0 ⁺ . $L(p,d)=(0)$ from $1/2^{-}$ suggesting (0 ⁻ ,1 ⁻) for a group at 2411 10 is inconsistent.
2423.6 4	$(6^+, 7, 8^+)$	В	l no	XREF: B(?)l(2418)n(2427)o(2410).
2429.5 <i>1</i>			n P	J^{π} : 1011.8 γ to 6 ⁺ , possible 324.0 γ to (8) ⁺ . XREF: n(2427).
2438.44 19	(10^+)	B DE	R	E(level): from (p,t). J^{π} : 338.8 γ (E2), ΔJ =2 to (8) ⁺ , 391.0 γ (E1) to (9 ⁻); possible

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XI	REF	Comments
2444.5 <i>1</i>	$(0^+,1^+,2^+)$			N P	configuration= $\pi h_{11/2}^{-2}$ (2006Le06) from (82Se,X γ) . XREF: N(2450). E(level): from (p,t).
2451.1 ^c 13	(12+)	5.9 ns 8	D	R	J^{π} : L(p,d)=(1) for a group at 2450 5. μ =-2.0 8 (2006Le06,2014StZZ) XREF: D(?).
					$T_{1/2}$: weighted average of 6.4 ns 8 from ¹⁹⁴ Ir β^- decay (171 d) and 5 ns I from $(\alpha, 2n\gamma)$.
					J^{π} : possible band member of $i_{13/2}^{-2}$ configuration from systematics and g factor measurements.
					$T_{1/2}$: $\beta \gamma(t)$ in ¹⁹⁴ Ir β^- decay (1970To14). Other 5 ns <i>I</i> in $(\alpha, 2n\gamma)$. Other: 6.6 ns 6 only listed in Fig. 1 of 2015Ta25, with no data shown.
					μ : from g=-0.17 7 (IPAD method in $(\alpha,2n\gamma)$,2006Le06). Value is not listed in 2020StZV evaluation.
2457.3 1	(0± 1± 2±)			P	FG D C () Od () 450 5 6 ()
2473.3 3	$(0^+,1^+,2^+)$			N P	E(level): from (p,t). Other: 2472 5 from (p,d). J^{π} : L(p,d)=1(+3) from 1/2 ⁻ .
2481.9 <i>I</i>				P	VDEE (2520) (2500)
2500.9 2			g	n P	XREF: g(2520)n(2500). E(level): from (p,t). Other: 2500 <i>10</i> from (p,d) for a triplet.
					J^{π} : L(p,d)=(1+3) from 1/2 ⁻ suggesting (2 ⁺) for a triplet of unresolved levels at 2500, 2515 and 2530; L(3 He,d)=0+2 from 3/2 ⁺ suggesting 1 ⁺ ,2 ⁺ for a group at 2520 25 also for a
2511.0 <i>I</i>	0+			n P	composite peak. XREF: n(2515).
					J^{π} : L(p,t)=0 from 0 ⁺ .
2517.20 <i>24</i>	1#		gH	n P	XREF: g(2520)n(2515). E(level): other: 2517.6 2 from (p,t).
2528.1 <i>I</i>	(2+)		g	n P	XREF: $g(2520)n(2530)$. J^{π} : $L(p,t)=(2)$ from 0^{+} .
2536 <i>3</i>			g	L n	XREF: g(2520)n(2530). E(level): from (p,p').
2544.3 <i>1</i>	3-			L noP	XREF: n(2530)o(2560). E(level): from (p,t). Other: 2543 3 from (p,p').
2554.1 <i>I</i>				noP	J^{π} : L(p,p')=3 from 0 ⁺ . XREF: n(2557)o(2560).
233 1.1 1				HOI	E(level): from (p,t). J^{π} : L(p,d)=(1+3) suggesting (2 ⁺) for a group at 2557 10.
2557.8 2				noP	XREF: n(2557)o(2560). E(level): from (p,t).
2569.9 <i>1</i>	(6 ⁺)			1 oP	J^{π} : L(p,d)=(1+3) suggesting (2 ⁺) for a group at 2557 10. XREF: 1(2575)o(2560).
	()				E(level): from (p,t). J^{π} : L(p,t)=(6) from 0 ⁺ .
2577.30 24	1#		Н	1 oP	XREF: 1(2575)o(2560).
2586.6 <i>1</i>				L P	E(level): other: 2576.7 <i>1</i> from (p,t). E(level): from (p,t). Other: 2586 <i>5</i> from (p,p').
2599.5 <i>1</i>				P	(kit)
2607.9 3				n P	XREF: n(2615). E(level): from (p,t).
					$J^{\hat{\pi}}$: L(p,d)=(1) giving $(0^+,1^+,2^+)$ for a group at 2615 10, probably a doublet.
2616.4 <i>I</i>				n P	XREF: n(2615). E(level): from (p,t).
					7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
2630.6 1			n P	J ^π : L(p,d)=(1) giving (0 ⁺ ,1 ⁺ ,2 ⁺) for a group at 2615 10, probably a doublet. XREF: n(2640). E(level): from (p,t). J ^π : L(p,d)=(3) giving (2 ⁺ ,3 ⁺ ,4 ⁺) for a group at 2640
2640.0 <i>I</i>	(4 ⁺)		n P	10, probably a doublet. XREF: n(2640). E(level): from (p,t).
2660.5 2			n P	J^{π} : L(p,t)=(4) from 0 ⁺ . XREF: n(2667). J^{π} : L(p,d)=(1) giving (0 ⁺ ,1 ⁺ ,2 ⁺) for a group at 2667
2663.4 <i>4</i> 2676.4 <i>1</i>	$(10,11,12^+)$ $(0^+,1^+,2^+)$		E L n P	 10, probably a doublet. J^π: 225.0γ to (10⁺). XREF: n(2667). E(level): from (p,t). Other: 2677 3 from (p,p'). J^π: L(p,d)=(1) giving (0⁺,1⁺,2⁺) for a group at 2667 10, probably a doublet.
2685.7 1	$(2^+,3^+,4^+)$		L n P	XREF: n(2690). E(level): from (p,t). Other: 2688 5 from (p,p'). $J^{\pi}: L(p,d)=(3)$ from $1/2^{-}$ for a group at 2690 10.
2689.25 12	(8+)	0.61 ps +9-11	S	J^{π} : 763.4 γ to (6 ⁺); absence of transitions to levels with J<6. $T_{1/2}$: from B(E2)(from 1925.9, 6 ⁺)=0.46 +10-6
2695.3 1			L n P	(1996Wu07) in Coulomb excitation. XREF: L(2698)n(2690). E(level): from (p,t). Other: 2698 3 from (p,p').
2700.1 ^a 3 2703.1 2	(11 ⁻) (6 ⁺)		DE R noP	J^{π} : 652.6 γ ΔJ =(2) to (9 ⁻); possible band assignment. XREF: n(2710)o(2720).
2710.5 2 2717.9 2			noP noP	J ^π : L(p,t)=(6) from 0 ⁺ . XREF: n(2710)o(2720). XREF: n(2710)o(2720).
2720.2 <i>3</i> 2739.7 <i>1</i>	1#		H noP	XREF: n(2710)o(2720). E(level): other: 2721.7 <i>I</i> from (p,t). XREF: n(2743)o(2720).
				J^{π} : L(p,d)=(1+3) suggesting (2 ⁺) for an unresolved doublet at 2743 10.
2747.0 <i>1</i>			n P	XREF: $n(2743)$. J^{π} : $L(p,d)=(1+3)$ suggesting (2^+) for an unresolved doublet at 2743 10 .
2755.4 <i>1</i> 2769.9 2 2771.9 <i>4</i>	(0 ⁺)		P P P	J^{π} : $L(p,t)=(0)$ from 0^+ .
2783 10	(2 ⁺)		N	E(level): probably a doublet. J^{π} : L(p,d)=(1+3) from 1/2 ⁻ .
2795.1 2 2799.6 <i>I</i> 2805.3 2			P P P	
2817.3 2	(2+)		N P	XREF: N(2826). J ^{\pi} : L(p,d)=(1+3) suggesting (2 ⁺) for a group at 2826 10.
2842.1° 13	(14+)		DE R	XREF: E(2829). J^{π} : 391.0γ to (12 ⁺); band member.
2842.2 <i>1</i> 2848.6 [@] 10	(10 ⁺)	1.05 ps +30-22	E S	J^{π} : 749 γ to (8) ⁺ ; band assignment. $T_{1/2}$: from B(E2)(from 2099,8 ⁺)=0.28 +7-6 (1996Wu07) in Coulomb excitation.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments
2850.2 1				P	
2855.8 <i>1</i>			g	P	XREF: g(2880).
2862.7 1			g	n P	XREF: g(2880)n(2870).
2878.7 2			g	n P	XREF: g(2880)n(2870).
					J^{π} : L(³ ,d)=0+2 suggesting 1 ⁺ ,2 ⁺ for a group at 2880
					29, probably a multiplet of
				_	2856+2863+2879+2895+2908 levels.
2882.4 1	(2+)		g	P	XREF: g(2880).
2895 3	(2^{+})		g	ΝP	XREF: g(2880). J^{π} : L(p,d)=(1+3) suggesting (2 ⁺) for a doublet of
					unresolved levels at 2895 10 and 2908 10 .
2908 10			g	N	XREF: g(2880).
2,000 10			9		J^{π} : see comments for 2895 level.
2916.6 <i>10</i>	(10^+)	0.54 ps +26-12	E		J^{π} : 817 γ to (8) ⁺ ; no γ to levels with J<8.
	(-)	1			$T_{1/2}$: from B(E2)(from 2099,8 ⁺)=0.35 +9-11
					(1996Wu07) in Coulomb excitation.
2956 10	(2^{+})			N	J^{π} : L(p,d)=(1+3) from 1/2 ⁻ .
2980 <i>10</i>			g	No	XREF: g(3010)o(2990).
					J^{π} : see comments for 3000 level.
2990.1? ^a 11	(13 ⁻)		E		J^{π} : 290 γ to (11 ⁻); band member.
3000 10	(2^{+})		g	No	XREF: g(3010)o(2990).
					E(level): from (p,d). J^{π} : L(p,d)=(1+3) from 1/2 ⁻ . L(³ He,d)=(0) suggesting
					$(1^+, 2^+)$ for a group at 3010 30, probably a multiplet
					of 2980+3000+3015+3033 levels.
3000.11 22	1#		erII		
	1 1 [#]		gH 	0	XREF: g(3010)o(2990).
3014.81 22 3033 <i>10</i>			gH	M	XREF: g(3010).
3033 10	(2^{+})		g	N	XREF: g(3010). J^{π} : L(p,d)=(1+3) from 1/2 ⁻ .
3057.8? 4	$(10,11,12^+)$		E		J^{π} : possible 619.4 γ to (10 ⁺).
3065 10	$(0^+,1^+,2^+)$		_	N	J^{π} : L(p,d)=(1) from 1/2 ⁻ .
3078 10	(2 ⁺)			N	J^{π} : L(p,d)=(1+3) from 1/2 ⁻ .
3078.81 22	1#		Н		
3100 <i>10</i>	(2^{+})			N	J^{π} : L(p,d)=(1+3) from 1/2 ⁻ for an unresolved doublet.
3132 10	$(0^+,1^+,2^+)$			N	J^{π} : L(p,d)=(1) from 1/2 ⁻ .
3141.11 24	1#		Н		
3170 <i>10</i>	(2^{+})			N	J^{π} : L(p,d)=(1+3) from 1/2 ⁻ .
3198 <i>10</i>	(2+)			N	J^{π} : L(p,d)=(1+3) from 1/2 ⁻ .
3225 10	$(0^+,1^+,2^+)$			N	J^{π} : L(p,d)=(1) from 1/2 ⁻ .
3351.31 22	1#		H		
3375.24 22	1#		H		
3383.01 24	1#		Н		
3417.12 22	1#		Н		
3421.4 <i>3</i>	1#		Н		
3427.71 24	1#		Н		
3459.31 24	1#		Н		
3465.2 <i>3</i>	1#				
	1 [#]		Н		
3477.01 24			Н		
3497.9 3	1#		Н	_	VDEE: E/2497\
3499.7 ^c 13	(16^+)		E	R	XREF: E(3487). J^{π} : 657.6 γ to (14 ⁺); possible band member.
2545 2 2	1#		***		J. OJ 1.07 to (14), possible balla member.
3545.3 <i>3</i>	1		Н		

¹⁹⁴Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3697.5 3	1#	Н	
3703.3 4	1#	H	
3717.02 <i>24</i>	1#	H	
3726.8 <i>4</i>	1#	H	
3747.1 <i>3</i>	1 [#]	Н	
3754.7 ^c 13	(18^{+})	E R	XREF: E(3670).
			E(level): 3683 from reverse ordering of 183-255 cascade in (82 Se,X γ). J^{π} : 255.0 γ to (16 ⁺); possible band member.
3813.62 <i>24</i>	1#	Н	
3890.22 24	1#	H	
3937.7° 14	(20^{+})	E R	
4500 0 14	(22±)		J^{π} : 183.0 γ to (18 ⁺); possible band member.
4529.8 <i>14</i>	(22^{+})	E R	XREF: E(4517).
4541.7° 17	(22^{+})	R	J^{π} : 592.1 γ to (20 ⁺); possible band member. J^{π} : 604 γ to (20 ⁺); possible band member.
4896.7° 20	(24^{+})	R	J^{π} : 355 γ to (22 ⁺); possible band member.
5336.7 ^c 22	(26^{+})	R	J^{π} : 440 γ to (24 ⁺); possible band member.

[†] From a least-squares fit to γ -ray energies for levels populated in γ -ray studies. For levels reported in particle transfer reactions only, weighted averages of available values have been taken.

[‡] For levels populated in $(\alpha,2n\gamma)$ reaction, it is assumed that spin values are generally in ascending order as the excitation energy increases. Above ≈ 2 MeV excitation energy, the J^{π} values based only on L-transfers are given in parentheses, since the level density is high and identification of individual levels is difficult. The exception to this is $J^{\pi}=3^{-}$ well defined L=3 transitions (at 2154, 2246, 2543) in (pol p,p').

[#] From (γ, γ') .

[@] Band(A): g.s. band.

[&]amp; Band(B): γ -vibrational band.

^a Band(C): Negative parity band, odd spin.

^b Band(D): Negative parity band, even spin.

^c Band(E): Yrast oblate structure based on $i_{13/2}^{-2}$.

$\gamma(^{194}\text{Pt})$

							,	γ(** 'Pt)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{ \dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	δ&	α^{a}	Comments
328.473	2+	328.469 6	100	0.0	0+	E2		0.0755	B(E2)(W.u.)=49.5 20 α(K)=0.0488 7; α(L)=0.0202 3; α(M)=0.00504 7 α(N)=0.001236 18; α(O)=0.000202 3; α(P)=4.97×10 ⁻⁶ 7 E _γ : weighted average of 328.467 10 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 328.470 6 from ¹⁹⁴ Au ε decay (38.02 h), and 328.45 3 from (n,n'γ). Others: 328.5 5 from ¹⁹⁴ Ir β ⁻ decay (171 d), 328.5 1 from (α,2nγ), and 328.5 1 from Coulomb excitation.
622.024	2+	293.547 7	100.0 10	328.473	2+	E2+M1+E0	+15 2	0.1060 <i>16</i>	B(M1)(W.u.)=8.8×10 ⁻⁵ +45-27; B(E2)(W.u.)=89 +12-10 α (K)=0.0654 10; α (L)=0.0308 5; α (M)=0.00771 11 α (N)=0.00189 3; α (O)=0.000307 5; α (P)=6.58×10 ⁻⁶ 10 E _y : weighted average of 293.544 10 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 293.549 7 from ¹⁹⁴ Au ε decay (38.02 h). Others: 293.55 7 from (α ,2n γ), 293.50 5 from (n,n' γ), and 293.5 1 from Coulomb excitation. I _y : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0 11 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 100 6 from (α ,2n γ), 100 5 from (n,n' γ), and 1.0E2 5 from muonic atom. δ: for δ(E2/M1), from $\gamma \gamma$ (θ) in ¹⁹⁴ Au ε decay. ρ ² (E0)=0.00046 16 (1999Wo07 evaluation). E0/E2 mixing ratio(q)=-0.17 to +0.24 with penetration parameter (λ)=-170 to +270 (1971Do12). α: for E2.
		622.007 10	13.68 15	0.0	0+	E2		0.01483	B(E2)(W.u.)=0.286 +44–35 E _γ : weighted average of 622.003 20 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 622.010 10 from ¹⁹⁴ Au ε decay (38.02 h), 621.8 1 from (α ,2n γ), 622.0 2 from (n,n' γ), and 622.0 1 from Coulomb excitation. I _γ : weighted average of 13.40 16 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 13.85 12 from ¹⁹⁴ Au ε decay (38.02 h), 19 6 from (α ,2n γ), and 12.2 14 from (n,n' γ).
811.288	4+	482.806 8	100	328.473	2+	E2		0.0270	B(E2)(W.u.)=85.1 +48-44 E _γ : weighted average of 482.823 13 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 482.6 5 from ¹⁹⁴ Ir β ⁻ decay (171 d), 482.800 8 from ¹⁹⁴ Au ε decay (38.02 h), 482.75 12 from (α ,2nγ), 482.80 6 from (n,n'γ), and 482.9 1 from Coulomb excitation.
922.772	3 ⁺	111.4 4	0.49 15	811.288	4+	[M1,E2]		4.0 9	$\alpha(K)=2.3$ 17; $\alpha(L)=1.3$ 7; $\alpha(M)=0.32$ 17 $\alpha(N)=0.08$ 4; $\alpha(O)=0.013$ 6; $\alpha(P)=0.00026$ 20 γ seen in ¹⁹⁴ Ir β^- only (1976Cl03).
		300.750 7	100.0 10	622.024	2+	E2(+M1)	>5	0.102 5	$\alpha(K)$ =0.064 4; $\alpha(L)$ =0.0283 5; $\alpha(M)$ =0.00706 11 $\alpha(N)$ =0.00173 3; $\alpha(O)$ =0.000283 5; $\alpha(P)$ =6.5×10 ⁻⁶ 5 E _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 300.751 10 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 300.74 8 from (α ,2n γ), 300.74 7 from (n,n $'\gamma$),

Adonted	Levels.	Gammas ((continued)
Auopicu	LC (CIS,	Gaiiiiias (commucu)

γ ⁽¹⁹⁴Pt) (continued)

						У	rt) (continue	<u> </u>
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	δ&	α^{a}	Comments
922.772	3+	594.292 10	18.63 14	328.473 2+	E2(+M1)	>10	0.0166 3	and 300.6 <i>I</i> from Coulomb excitation. I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0 <i>II</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 100 7 from (α ,2n _γ), and 100 5 from (n,n' _γ). E _γ : weighted average of 594.288 <i>I0</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 594.299 <i>I4</i> from ¹⁹⁴ Au ε decay (38.02 h). Others: 594.3 3 from (α ,2n _γ) and 594.3 2 from (n,n' _γ).
								I _γ : weighted average of 18.87 30 from 194 Ir β^- decay (19.18 h) and 18.58 14 from 194 Au ε decay (38.02 h). Others: 14 5 from (α ,2n γ) and 11.3 10 from (n,n' γ). I _γ : 11.3 9 from (n,n' γ) not used in averaging. δ : >+50 or <-10 ($\gamma\gamma(\theta)$ in 194 Ir β^-). ce data in 194 Au ε decay give 0.8 +6-4.
1229.520	4+	418.19 3	14.6 <i>14</i>	811.288 4+	(E2(+M1))	>3	0.043 5	B(M1)(W.u.)=9.2×10 ⁻⁴ +29–92; B(E2)(W.u.)=18 +8–4 α (K)=0.031 4; α (L)=0.0091 5; α (M)=0.00223 9 α (N)=0.000548 23; α (O)=9.2×10 ⁻⁵ 5; α (P)=3.3×10 ⁻⁶ 5 E _γ : weighted average of 418.27 7 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 418.195 23 from ¹⁹⁴ Au ε decay (38.02 h), 418.2 3 from (α ,2nγ), 417.96 11 from (n,n' γ), and 418.1 1 from Coulomb excitation.
		607.498 10	100.0 11	622.024 2+	E2		0.01565	I _γ : weighted average of 16.2 22 from ¹⁹⁴ Ir β^- decay (19.18 h), 14.3 15 from ¹⁹⁴ Au ε decay (38.02 h), 14 4 from (α ,2nγ), and 14.4 14 from (n,n'γ). B(E2)(W.u.)=21.5 +46-34 E _γ : weighted average of 607.502 24 from ¹⁹⁴ Ir β^- decay (19.18 h), 607.496 10 from ¹⁹⁴ Au ε decay (38.02 h), 607.5 2 from (α ,2nγ), 607.63 9 from (n,n'γ), and 607.5 1 from Coulomb excitation.
		901.073 25	8.6 11	328.473 2+	[E2]		0.00674	I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100 19 from ¹⁹⁴ Ir β^- decay (19.18 h), 100 20 from (α ,2nγ), and 100 9 from (n,n'γ). B(E2)(W.u.)=0.26 +9-7 E _γ : weighted average of 901.077 25 from ¹⁹⁴ Au ε decay (38.02 h) and 901.0 I from Coulomb excitation. Others: 900.9 6 from (α ,2nγ) and 901.05 17 from (n,n'γ).
1267.200	0+	645.166 9	100.0 10	622.024 2+	E2		0.01367	I _γ : unweighted average of 10.7 4 from ¹⁹⁴ Au ε decay (38.02 h), 8 4 from $(\alpha, 2n\gamma)$, and 7.2 7 from $(n, n'\gamma)$. B(E2)(W.u.)=8.2 +25–16 E _γ : weighted average of 645.169 10 from ¹⁹⁴ Ir β^- decay (19.18 h) and 645.164 9 from ¹⁹⁴ Au ε decay (38.02 h). Others: 645.16 10 from $(n, n'\gamma)$ and 645.2 1 from Coulomb excitation.
		938.719 9	49.9 7	328.473 2+	E2		0.00621	(n,n γ) and 645.2 I from Coulomb excitation. I_{γ} : from ¹⁹⁴ Ir β^- decay (19.18 h). Others: 100.0 22 from ¹⁹⁴ Au ε decay (38.02 h) and 100 II from (n,n' γ). B(E2)(W.u.)=0.63 +20-13 E_{γ} : weighted average of 938.719 $I0$ from ¹⁹⁴ Ir β^- decay (19.18 h),

$\gamma(^{194}\text{Pt})$ (continued)

						<u>-</u>		/	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathtt{J}_f^{π}	Mult.&	α^a	$I_{(\gamma+ce)}$	Comments
									938.720 <i>9</i> from ¹⁹⁴ Au ε decay (38.02 h), and 938.6 <i>2</i> from (n,n' γ). I _{γ} : weighted average of 50.7 <i>15</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 49.7 <i>5</i> from ¹⁹⁴ Au ε decay (38.02 h), and 61 <i>6</i> from (n,n' γ).
1267.200	0+	1267.36 <i>16</i>		0.0	0+	E0		0.11 <i>I</i>	$q_K^2(E0/E2)=0.337\ 23,\ X(E0/E2)=0.0082\ 5,\ \rho^2(E0)=0.00019\ 10$ (2005Ki02, evaluation). Other: $\rho^2(E0)=0.00016\ 8$ (1999Wo07, evaluation).
1373.772	(5^{-})	144.5 2	1.21 35	1229.520	4+				E_{γ}, I_{γ} : γ seen in $(\alpha, 2n\gamma)$ only.
		562.482 15	100 33	811.288	4+	(E1)	0.00646		E _γ : weighted average of 562.4 5 from 194 Ir $β^-$ decay (171 d), 562.478 14 from 194 Au $ε$ decay (38.02 h), 562.5 1 from ($α$,2n $γ$), 562.64 8 from (n,n $^{\prime}γ$), and 562.4 1 from Coulomb excitation.
1411.83	6+	600.5 1	100	811.288	4+	E2	0.01607		I_{γ} : from (α,2nγ). B(E2)(W.u.)=67 +30–16
									E _{γ} : from $(\alpha,2n\gamma)$. Others: 600.5 5 from ¹⁹⁴ Ir β ⁻ decay (171 d), 600.3 2 from $(n,n'\gamma)$, and 600.6 <i>I</i> from Coulomb excitation. Mult.: from ce data in ¹⁹⁴ Ir β ⁻ decay (171 d).
1422.21	(3,4)+	499.48 12	100 10	922.772	3+				E _{γ} : weighted average of 499.4 2 from (α ,2n γ), 499.65 9 from (n,n' γ), and 499.3 1 from Coulomb excitation.
		1093.6 2	23.4 24	328.473	2+				I_{γ} : from $(n,n'\gamma)$. E_{γ} : weighted average of 1093.9 2 from $(n,n'\gamma)$ and 1093.5 <i>I</i> from Coulomb excitation.
1432.551	3-	59.2 4	0.023 6	1373.772	(5 ⁻)	(E2)	50.9 19		I_{γ} : from $(n,n'\gamma)$. B(E2)(W.u.)=14 +7-5 $\alpha(L)$ =38.2 14; $\alpha(M)$ =9.9 4
									$\alpha(N)=2.40 \ 9; \ \alpha(O)=0.372 \ 14; \ \alpha(P)=0.000406 \ 12$ E_{γ},I_{γ} : from ¹⁹⁴ Ir β^- decay (19.18 h) only.
		203.04 3	16.3 15	1229.520	4+	E1	0.0675		B(E1)(W.u.)= $2.09\times10^{-5} +42-37$ $\alpha(K)=0.0555 \ 8; \ \alpha(L)=0.00929 \ 13; \ \alpha(M)=0.00214 \ 3$
		621.256 <i>15</i>	38.89 29	811.288	4+	El	0.00527		$\alpha(N)$ =0.000525 8; $\alpha(O)$ =9.07×10 ⁻⁵ 13; $\alpha(P)$ =4.85×10 ⁻⁶ 7 E _γ : weighted average of 203.056 21 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 202.96 5 from ¹⁹⁴ Au ε decay (38.02 h), and 202.8 2 from (n,n'γ). I _γ : unweighted average of 18.7 9 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 16.61 32 from ¹⁹⁴ Au ε decay (38.02 h), and 13.6 17 from (n,n'γ). B(E1)(W.u.)=1.74×10 ⁻⁶ +21–19 E _γ : weighted average of 621.295 36 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 621.250 14 from ¹⁹⁴ Au ε decay (38.02 h). Others: 621.8 1 from (α ,2nγ) and 621.4 2 from (n,n'γ). I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 39 4 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 63 31 from (α ,2nγ), and 37.3 34 from (n,n'γ).

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	α^a	$I_{(\gamma+ce)}$	Comments
1432.551	3-	810.547 14	9.7 12	622.024 2+	E1	0.00313		B(E1)(W.u.)= $1.96 \times 10^{-7} + 47 - 40$ E _γ : weighted average of 810.569 <i>18</i> from ¹⁹⁴ Ir β^- decay (19.18 h), 810.533 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h), 811.0 <i>5</i> from (α ,2n γ), 810.5 <i>2</i> from (n,n' γ), and 811 <i>I</i> from Coulomb excitation.
		1104.064 10	100.0 9	328.473 2+	E1	1.77×10 ⁻³		I _γ : unweighted average of 9.67 19 from ¹⁹⁴ Ir β^- decay (19.18 h), 8.27 9 from ¹⁹⁴ Au ε decay (38.02 h), 13 6 from (α ,2n γ), and 7.8 9 from (n,n' γ). B(E1)(W.u.)=8.0×10 ⁻⁷ 9 E _γ : weighted average of 1104.073 10 from ¹⁹⁴ Ir β^- decay (19.18 h), 1104.056 10 from ¹⁹⁴ Au ε decay (38.02 h), 1104.0 3 from (α ,2n γ), 1104.01 8 from (n,n' γ), and 1104
								I from Coulomb excitation. I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0 I4 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 100 I6 from (α ,2n γ), and 100 5 from (n,n' γ).
		1432.542 <i>14</i>	3.28 6	0.0 0+	[E3]	0.00566		B(E3)(W.u.)=7.7 +11-9 E _γ : from ¹⁹⁴ Au ε decay (38.02 h). Other: 1432.56 8 from ¹⁹⁴ Ir β^- decay (19.18 h). I _γ : weighted average of 3.33 14 from ¹⁹⁴ Ir β^- decay (19.18 h) and 3.27 6 from ¹⁹⁴ Au ε decay (38.02 h).
1479.272	0+	857.234 18	0.974 22	622.024 2+	[E2]	0.00746		E_{γ} : weighted average of 857.224 <i>14</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 857.265 <i>24</i> from ¹⁹⁴ Au ε decay (38.02 h). I _γ : weighted average of 0.976 <i>13</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 0.69 <i>17</i> from ¹⁹⁴ Au ε decay (38.02 h).
		1150.788 <i>10</i>	100.0 10	328.473 2+	E2	0.00416		E _γ : weighted average of 1150.799 <i>12</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 1150.780 <i>10</i> from ¹⁹⁴ Au ε decay (38.02 h). Other: 1150.8 2 from (n,n' γ). I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Other: 100.0 <i>11</i> from ¹⁹⁴ Ir β^- decay (19.18 h).
		1479.33 <i>11</i>		0.0 0+	E0		5.5 4	$q_K^2(E0/E2)=10.4 \text{ 4, } X(E0/E2)=0.410 \text{ 16 } (2005\text{Ki}02)$ evaluation).
1485.04	(7-)	111.4 2	100	1373.772 (5 ⁻)	(E2)	3.15		evaluation). B(E2)(W.u.)=34.5 13 α (K)=0.617 9; α (L)=1.90 4; α (M)=0.492 8 α (N)=0.1201 20; α (O)=0.0187 3; α (P)=6.66×10 ⁻⁵ 10 E $_{\gamma}$: from (α ,2n γ). Other: 111.7 5 from ¹⁹⁴ Ir β ⁻ decay (171 d). Mult.: deduced from intensity balance in ¹⁹⁴ Ir β ⁻ decay (171
1498.77 1512.004	(5 ⁺) 2 ⁺	576.0 <i>2</i> 244.781 <i>19</i>	100 3.06 7	922.772 3 ⁺ 1267.200 0 ⁺	(E2)	0.184		d). E _{γ} : from $(\alpha, 2n\gamma)$. $\alpha(K)=0.1019$ 15; $\alpha(L)=0.0623$ 9; $\alpha(M)=0.01576$ 22

$\gamma(^{194}\text{Pt})$	(continued)
---------------------------	-------------

l							γ ⁽¹⁹⁴ Pt) (cont	inued)	
	$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	δ&	α^a	Comments
	1512.004	2+	589.207 10	44.3 8	922.772 3+	E2+M1	2.2 +6-4	0.0226 23	α (N)=0.00386 6; α (O)=0.000620 9; α (P)=9.98×10 ⁻⁶ 14 E _γ : weighted average of 244.769 19 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 244.798 22 from ¹⁹⁴ Au ε decay (38.02 h). I _γ : weighted average of 2.91 16 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 3.09 7 from ¹⁹⁴ Au ε decay (38.02 h). E _γ : weighted average of 589.202 19 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 589.208 10 from ¹⁹⁴ Au ε decay (38.02 h). Other: 589.18 11 from (n,n' γ).
			700.680 <i>16</i>	8.93 <i>16</i>	811.288 4+	E2		0.01140	I _γ : unweighted average of 45.1 5 from ¹⁹⁴ Ir β^- decay (19.18 h) and 43.5 4 from ¹⁹⁴ Au ε decay (38.02 h). Other: 34 4 from (n,n' γ) is discrepant. E _γ : weighted average of 700.687 20 from ¹⁹⁴ Ir β^- decay
									(19.18 h) and 700.675 <i>16</i> from ¹⁹⁴ Au ε decay (38.02 h). Other: 700.5 2 from (n,n' γ). I _{γ} : unweighted average of 8.77 9 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 9.08 9 from ¹⁹⁴ Au ε decay (38.02 h). Other: 44 4 from (n,n' γ) is discrepant.
			889.980 <i>10</i>	17.78 <i>18</i>	622.024 2+	E2+M1	+0.50 16	0.0155 12	E _γ : weighted average of 889.986 <i>10</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 889.969 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h). Other: 889.90 <i>15</i> from (n,n' γ). I _γ : weighted average of 17.67 <i>18</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 18.08 <i>30</i> from ¹⁹⁴ Au ε decay (38.02 h). Other: 29.3 <i>29</i> from (n,n' γ) is discrepant.
			1183.537 10	100.0 9	328.473 2+	M1+E2	+1.09 +18-16	0.0061 4	δ: from ce and $\gamma\gamma(\theta)$ in 194 Au ε decay (38.02 h). Other: +1.51 40 from $\gamma(\theta)$ in 194 Ir β^- decay (19.18 h). E _{γ} : weighted average of 1183.539 10 from 194 Ir β^- decay (19.18 h) and 1183.535 10 from 194 Au ε decay (38.02 h). Other: 1183.60 12 from (n,n' γ). I _{γ} : from 194 Ir β^- decay (19.18 h). Others: 100.0 10 from 194 Au ε decay (38.02 h) and 100 7 from (n,n' γ). δ: unweighted average of +1.32 9 (1983Ri14) and +0.9 10 (1973Si22) from $\gamma(\theta)$ in 194 Ir β^- decay (19.18 h) and
			1512.071 [#] <i>14</i>	7.5 10	0.0 0+	(E2)		0.00255	+1.09 +18-16 from ce and $\gamma\gamma(\theta)$ in ¹⁹⁴ Au ε decay (38.02 h). E _{γ} : weighted average of 1511.98 10 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 1512.073 14 from ¹⁹⁴ Au ε decay (38.02 h). I _{γ} : weighted average of 7.9 10 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 6.7 15 from ¹⁹⁴ Au ε decay (38.02 h).
	1547.281	0+	925.260 14	25.5 6	622.024 2+	E2		0.00639	Level-energy difference=1512.998. B(E2)(W.u.)=14.4 +10-12 E _{γ} : weighted average of 925.269 14 from ¹⁹⁴ Ir β ⁻ decay

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.&	δ&	α^{a}	Comments
1670.667	2+	747.88 ^c 4 859.382 24	0.321 <i>19</i> 4.44 <i>6</i>	922.772 811.288		[M1,E2] (E2)		0.019 9 0.00742	I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0 <i>11</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 100 <i>10</i> from (n,n' γ). E _γ ,I _γ : from ¹⁹⁴ Au ε decay (38.02 h) only. E _γ : weighted average of 859.396 <i>25</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 859.370 <i>24</i> from ¹⁹⁴ Au ε decay (38.02 h).
		1048.640 <i>10</i>	66.4 7	622.024	2+	M1		0.01161	I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Other: 4.38 20 from ¹⁹⁴ Ir β ⁻ decay (19.18 h). E _γ : weighted average of 1048.655 14 from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 1048.633 10 from ¹⁹⁴ Au ε decay (38.02 h), and 1048.55 13 from (n,n'γ). I _γ : weighted average of 66.4 7 from ¹⁹⁴ Ir β ⁻ decay
		1342.187 <i>12</i>	100.0 10	328.473	2+	M1+E2	-0.23 9	0.00612 16	(19.18 h) and 66.4 7 from ¹⁹⁴ Au ε decay (38.02 h). Other: 93 9 from (n,n' γ). E _{γ} : weighted average of 1342.204 <i>10</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 1342.170 <i>10</i> from ¹⁹⁴ Au ε decay (38.02 h), and 1342.12 <i>14</i> from (n,n' γ).
		1670.672 <i>14</i>	14.4 4	0.0	0+	(E2)		0.00219	I _γ : from ¹⁹⁴ Ir $β$ ⁻ decay (19.18 h). Others: 100.0 <i>19</i> from ¹⁹⁴ Au $ε$ decay (38.02 h) and 100 <i>10</i> from (n,n' $γ$). E _γ : weighted average of 1670.680 <i>16</i> from ¹⁹⁴ Ir $β$ ⁻ decay (19.18 h) and 1670.665 <i>14</i> from ¹⁹⁴ Au $ε$ decay (38.02 h).
1737.427	(3-)	304.886 <i>17</i>	100.0 <i>21</i>	1432.551	3-	[M1,E2]		0.19 10	I _γ : unweighted average of 14.87 <i>13</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 14.00 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h). α (K)=0.15 <i>10</i> ; α (L)=0.033 <i>7</i> ; α (M)=0.0079 <i>13</i> α (N)=0.0019 <i>3</i> ; α (O)=0.00034 <i>7</i> ; α (P)=1.7×10 ⁻⁵ <i>11</i>
		363.10 [@] 18	34 8	1373.772	(5 ⁻)	[E2]		0.0569	α (K)=0.0383 6; α (L)=0.01413 20; α (M)=0.00350 5 α (N)=0.000859 13; α (O)=0.0001418 20;
1778.578	2+	814.59 <i>6</i> 345.984 ^c 20 855.823 <i>17</i>	34.8 <i>21</i> 1.03 <i>5</i> 14.09 <i>14</i>	922.772 1432.551 922.772	3-	[E1] [E1] (M1+E2)	0.53 +22-24	0.00310 0.0187 0.0168 <i>17</i>	$\alpha(P)=3.94\times10^{-6}$ 6 $\alpha(K)=0.0139$ 15; $\alpha(L)=0.00224$ 20; $\alpha(M)=0.00052$ 5 $\alpha(N)=0.000128$ 12; $\alpha(O)=2.30\times10^{-5}$ 21; $\alpha(P)=1.54\times10^{-6}$ 17
		1156.542 16	100.0 10	622.024	2+	M1(+E2)	<0.2	0.00898 16	$\alpha(P)=1.54\times10^{-6} I/$ E _{γ} : weighted average of 1156.48 4 from ¹⁹⁴ Ir β^-

							-	y(¹⁹⁴ Pt) (con	tinued)	
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.&	δ&	α^{a}	Comments
	1778.578	2+	1450.25 13	71 7	328.473	2+	M1+E2	-0.27 10	0.00506 15	decay (19.18 h), 1156.550 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h), and 1156.5 2 from (n,n' γ). I $_{\gamma}$: from ¹⁹⁴ Au ε decay (38.02 h). Others: 100 4 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 100 <i>10</i> from (n,n' γ). α (K)=0.00414 <i>13</i> ; α (L)=0.000645 <i>19</i> ; α (M)=0.000148 5 α (N)=3.66×10 ⁻⁵ <i>11</i> ; α (O)=6.61×10 ⁻⁶ <i>19</i> ; α (P)=4.55×10 ⁻⁷ <i>14</i> ; α (IPF)=7.69×10 ⁻⁵ <i>18</i>
										E _γ : unweighted average of 1450.137 <i>14</i> from ¹⁹⁴ Ir β^- decay (19.18 h), 1450.098 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h), and 1450.5 2 from (n,n' γ). I _γ : unweighted average of 61.6 <i>24</i> from ¹⁹⁴ Ir β^- decay (19.18 h), 68.6 7 from ¹⁹⁴ Au ε decay (38.02 h), and 84 9 from (n,n' γ).
			1778.39 <i>14</i>	8.3 3	0.0	0+	(E2)		0.00201	E _γ : unweighted average of 1778.25 <i>14</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 1778.532 <i>20</i> from ¹⁹⁴ Au ε decay (38.02 h).
,	1783.52	(6-)	409.75 10	100	1373.772	(5 ⁻)	M1+E2	+0.4 1	0.119 6	I _γ : weighted average of 9.2 8 from ¹⁹⁴ Ir β^- decay (19.18 h) and 8.19 27 from ¹⁹⁴ Au ε decay (38.02 h). α (K)=0.098 6; α (L)=0.0165 6; α (M)=0.00383 13 α (N)=0.00095 3; α (O)=0.000169 6; α (P)=1.10×10 ⁻⁵ 6 E _γ : weighted average of 409.8 1 from (α ,2nγ) and 409.69 10 from (n,n'γ).
	1797.390	1-	250.102 <i>17</i>	0.549 7	1547.281	0+	E1		0.0404	Mult., δ : from $\gamma(\theta)$ and ce data in $(\alpha,2n\gamma)$. $\alpha(K)=0.0333\ 5;\ \alpha(L)=0.00546\ 8;\ \alpha(M)=0.001258\ 18$ $\alpha(N)=0.000308\ 5;\ \alpha(O)=5.36\times10^{-5}\ 8;\ \alpha(P)=2.98\times10^{-6}$
			318.122 10	3.189 28	1479.272	0^{+}	E1		0.0227	5
			364.840 <i>6</i>	23.51 23	1479.272		E2		0.0562	α (K)=0.0378 6; α (L)=0.01390 20; α (M)=0.00344 5 α (N)=0.000844 12; α (O)=0.0001394 20; α (P)=3.90×10 ⁻⁶ 6
										E _γ : weighted average of 364.852 <i>10</i> from ¹⁹⁴ Ir $β$ ⁻ decay (19.18 h), 364.836 <i>6</i> from ¹⁹⁴ Au $ε$ decay (38.02 h), and 364.8 2 from (n,n' $γ$). I _γ : weighted average of 23.45 28 from ¹⁹⁴ Ir $β$ ⁻ decay
										(19.18 h) and 23.55 23 from 194 Au ε decay (38.02
			530.177 10	9.10 7	1267.200	0+	E1		0.00730	h). Other: 69 7 from $(n,n'\gamma)$ is discrepant. E_{γ} : weighted average of 530.184 <i>14</i> from ¹⁹⁴ Ir β^- decay (19.18 h) and 530.173 <i>10</i> from ¹⁹⁴ Au ε decay (38.02 h).
										I_{γ} : weighted average of 9.16 7 from ¹⁹⁴ Ir β^- decay
			1175.369 10	31.6 3	622.024	2+	E1		1.60×10^{-3}	(19.18 h) and 9.03 δ from ¹⁹⁴ Au ε decay (38.02 h). E _{γ} : weighted average of 1175.377 10 from ¹⁹⁴ Ir β ⁻

$\gamma(^{194}\text{Pt})$ (continued)

	$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.&	δ&	α^{a}	$\mathrm{I}_{(\gamma+ce)}$	Comments
						_					decay (19.18 h), 1175.360 <i>10</i> from 194 Au ε decay (38.02 h), and 1175.4 2 from (n,n' γ). I _{γ} : weighted average of 31.69 28 from 194 Ir β^- decay (19.18 h), 31.52 28 from 194 Au ε decay (38.02 h), and 25.9 24 from (n,n' γ).
1	797.390	1-	1468.907 <i>10</i>	100.0 7	328.473	2+	E1		1.23×10 ⁻³		E _γ : weighted average of 1468.910 <i>10</i> from 194 Ir β^- decay (19.18 h) and 1468.904 <i>10</i> from 194 Au ε decay (38.02 h). Other: 1468.99 <i>12</i> from (n,n' γ). I _γ : from 194 Ir β^- decay (19.18 h). Others: 100.0 <i>10</i> from 194 Au ε decay (38.02 h)
											and 100 II from $(n,n'\gamma)$.
			1797.406 <i>14</i>	8.93 24	0.0	0+	E1		1.16×10^{-3}		E _γ : weighted average of 1797.408 <i>14</i> from 194 Ir β^- decay (19.18 h) and 1797.404 <i>14</i> from 194 Au ε decay (38.02 h).
											I _γ : unweighted average of 9.16 7 from 194 Ir β^- decay (19.18 h) and 8.69 8 from 194 Au ε decay (38.02 h).
	802.646?	$1^+, 2^+$	1802.637 ^b 14	100 ^b	0.0	0+	M1,E2		0.0026 7		
1	816.591	(2)+	304.8 ^c 3 894.29 22	159 <i>15</i> 85 <i>17</i>	1512.004 922.772		(M1+E2)	1.1 +8-4	0.0116 25		E _{γ} ,I _{γ} : reported in (n,n' γ) only. E _{γ} : unweighted average of 894.07 <i>18</i> from ¹⁹⁴ Au ε decay (38.02 h) and 894.51 <i>13</i> from (n,n' γ). I _{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Other:
											113 II from $(n,n'\gamma)$.
			1005.292 ^c 13	46.1 7	811.288		(E2)		0.00200		E : 14 1
			1194.530 <i>19</i>	100 15	622.024	2'	(E2)		0.00388		E _{γ} : weighted average of 1194.529 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h) and 1194.8 2 from (n,n' γ). I _{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Other:
			1488.94 [#] <i>15</i>	31.9 19	328.473	2+					100 11 from $(n,n'\gamma)$. E_{γ} : weighted average of 1489.01 9 from 194 Au ε decay (38.02 h) and 1488.6 2 from $(n,n'\gamma)$.
											I _{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Other: 217 28 from (n,n' γ). Level-energy difference=1488.112.
			1816.33 17	<3.4	0.0	0+					
	888.35	(2,3,4)	455.80 9	100	1432.551	3-					E_{γ} : from $(n,n'\gamma)$.

					<u>)</u>	(It) (continued	<u>.,,</u>		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}^{r}	Mult.	δ&	α^{a}	$I_{(\gamma+ce)}$	Comments
1893.588	0+	1565.118 14	100 4	328.473 2	-				E _γ : weighted average of 1565.116 <i>14</i> from 194 Ir β^- decay (19.18 h) and 1565.20 8 from 194 Au ε decay (38.02 h).
1924.285	1+	1893.1 ^c 4 126.82 ^c 4	0.281 25	0.0 0° 1797.390 1°			0.222	1.2 3	E _{γ} ,Mult.: from ce data only in ¹⁹⁴ Au ε decay. α (K)=0.181 3; α (L)=0.0322 5; α (M)=0.00747
		253.61 7	0.159 18	1670.667 2	M1(+E2)	<1.4	0.38 11		α (N)=0.00182 3; α (O)=0.000309 5; α (P)=1.478×10 ⁻⁵ 21 α (K)=0.30 11; α (L)=0.062 4; α (M)=0.0146 6
			0.139 16						$\alpha(N)=0.00360 \ 14; \ \alpha(O)=0.00063 \ 5;$ $\alpha(P)=3.3\times10^{-5} \ 12$
		412.288 <i>17</i>	0.893 12	1512.004 2	(M1+E2)	0.9 +8-5	0.09 3		$\alpha(K)$ =0.072 25; $\alpha(L)$ =0.014 3; $\alpha(M)$ =0.0032 ($\alpha(N)$ =0.00079 14; $\alpha(O)$ =0.00014 3; $\alpha(P)$ =8.E-6 3
		1001.481 ^c 28	0.590 22	922.772 3		0.54	0.00546		
		1302.255 <i>14</i> 1595.806 <i>14</i>	13.30 <i>12</i> 90 <i>3</i>	622.024 2° 328.473 2°		0.56 +22-23 -0.071 21	0.0059 <i>5</i> 0.00420		E_{γ} : weighted average of 1595.802 23 from
		1595.000 11	<i>y</i> 0 <i>y</i>	320.173 2	MI I B2	0.071 21	0.00120		¹⁹⁴ Ir $β$ ⁻ decay (19.18 h) and 1595.807 <i>14</i> from ¹⁹⁴ Au $ε$ decay (38.02 h). Other: 1595.6 2 from (n,n' $γ$).
									I_{γ} : unweighted average of 84.5 13 from ¹⁹⁴ Ir β^- decay (19.18 h), 91.7 9 from ¹⁹⁴ Au ε decay (38.02 h), and 93 10 from (n,n' γ).
		1924.289 25	100.0 15	0.0 0	M1		0.00290		E _γ : weighted average of 1924.327 28 from 194 Ir $β^-$ decay (19.18 h), 1924.273 20 from 194 Au $ε$ decay (38.02 h), and 1924.0 2 from (n,n' $γ$).
									I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0 19 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 100 10 from (n,n' γ).
1925.85	(6 ⁺)	514.0 <i>I</i>	6 4	1411.83 6	-				Branching ratio for 514γ , 696γ and 1114γ deduced from $T_{1/2}(1926 \text{ level})$ and $B(E2)$ values from $1996\text{Wu}07$ in Coulomb excitation.
		696.4 <i>1</i>	100 20	1229.520 4					CACITATION.
1020 266	2+	1114.5 <i>I</i>	12 4	811.288 4					
1930.368	2+	308.17 ^c 4 1007.582 14	1.59 <i>13</i> 25.9 <i>4</i>	1622.197 2° 922.772 3°		1.1 +5-3	0.0088 13		E_{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Others:
		1007.302 14	23.7 4	922.112 3	(19117122)	1.1 TJ-J	0.0000 13		1007.55 7 from ¹⁹⁴ Ir $β$ ⁻ decay (19.18 h) and 1007.57 9 from (n,n' $γ$). $I_γ$: weighted average of 27.7 32 from ¹⁹⁴ Ir $β$ ⁻ decay (19.18 h) and 25.89 34 from ¹⁹⁴ Au $ε$ decay (38.02 h). Other: 149 15 from (n,n' $γ$)

$\gamma(^{194}\text{Pt})$ (continued)

						/(rt) (commucu)	<u>'</u>	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f .	\mathbf{J}_f^{π}	Mult.&	δ ^{&}	α^a	Comments
1930.368	2+	1119.117 22	27.7 5	811.288 4	ļ+	[E2]		0.00439	E _γ : weighted average of 1119.118 <i>16</i> from ¹⁹⁴ Au ε decay (38.02 h) and 1118.7 <i>3</i> from (n,n'γ). I _γ : weighted average of 27.6 <i>5</i> from ¹⁹⁴ Au ε decay (38.02 h) and 30.1 <i>32</i> from (n,n'γ).
		1308.328 14	62.2 5	622.024 2	2+	(M1+E2)	1.7 +11-5	0.0042 6	Mult.: D+Q suggested in ce data (194 Au ε decay) is inconsistent with $\Delta J=2$ from level scheme. E _y : weighted average of 1308.304 <i>40</i> from 194 Ir β^- decay (19.18 h) and 1308.331 <i>14</i> from 194 Au ε decay (38.02 h). Other: 1308.3 2 from (n,n' γ).
									I _γ : weighted average of 62.9 19 from ¹⁹⁴ Ir β^- decay (19.18 h), and 62.2 5 from ¹⁹⁴ Au ε decay (38.02 h). Other: 122 14 in (n,n' γ).
		1601.913 20	100.0 11	328.473 2	2+	M1(+E2)	<-0.2	0.00414 7	E _γ : weighted average of 1601.947 <i>17</i> from ¹⁹⁴ Ir β^- decay (19.18 h), 1601.891 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h), and 1601.8 2 from (n,n' γ). I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0
									19 from ¹⁹⁴ Ir β^- decay (19.18 h), 100 11 from (n,n' γ).
		1930.35 9	0.70 18)+	[E2]		0.00182	
1961.332	2-	144.742 ^c 15	0.60 4	1816.591 (2	2)+	[E1]		0.1589	$\alpha(K)$ =0.1295 19; $\alpha(L)$ =0.0226 4; $\alpha(M)$ =0.00524 8 $\alpha(N)$ =0.001277 18; $\alpha(O)$ =0.000218 3; $\alpha(P)$ =1.079×10 ⁻⁵ 16
		163.951 24	7.22 18	1797.390 1	-	M1+E2	0.50 +7-8	1.45 5	$\alpha(K)$ =1.13 6; $\alpha(L)$ =0.244 7; $\alpha(M)$ =0.0582 20 $\alpha(N)$ =0.0143 5; $\alpha(O)$ =0.00249 7; $\alpha(P)$ =0.000128 7
		223.911 <i>21</i>	1.92 4	1737.427 (3	3-)	(M1+E2)	1.7 +14-5	0.36 8	$\alpha(N)=0.0143$ 5; $\alpha(O)=0.00249$ 7; $\alpha(P)=0.000128$ 7 $\alpha(K)=0.24$ 7; $\alpha(L)=0.0901$ 14; $\alpha(M)=0.0223$ 4 $\alpha(N)=0.00548$ 9; $\alpha(O)=0.000904$ 17; $\alpha(P)=2.6\times10^{-5}$ 9
		290.688 14	11.48 18	1670.667 2	2+	E1		0.0281	$\alpha(K)=0.0232$ 4; $\alpha(L)=0.00375$ 6; $\alpha(M)=0.000864$
									12 $\alpha(N)=0.000212 \ 3; \ \alpha(O)=3.70\times10^{-5} \ 6;$ $\alpha(P)=2.12\times10^{-6} \ 3$
		339.01 <i>13</i>	0.592 21	1622.197 2		[E1]		0.0196	
		449.317 <i>12</i> 528.773 <i>9</i>	8.56 <i>7</i> 100.0 <i>11</i>	1512.004 2 1432.551 3		(E1)	160 . 0 7	0.01040	a(W)=0.0265 0; a(L)=0.00542 12; a(M)=0.00128 2
		328.773 9	100.0 11	1432.331 3)	M1+E2	-1.68 +8-7	0.0336 10	$\alpha(K)$ =0.0265 9; $\alpha(L)$ =0.00542 12; $\alpha(M)$ =0.00128 3 $\alpha(N)$ =0.000317 7; $\alpha(O)$ =5.51×10 ⁻⁵ 13; $\alpha(P)$ =2.89×10 ⁻⁶ 10
									E_{γ} : weighted average of 528.773 8 from ¹⁹⁴ Au ε decay (38.02 h) and 529.0 2 from (n,n' γ).
		1038.567 14	17.57 18	922.772 3		E1		0.00198	·
		1339.251 [@] 14	12.68 14	622.024 2		E1		1.34×10^{-3}	
		1632.847 <i>16</i>	15.07 <i>18</i>	328.473 2	: '	E1		1.17×10^{-3}	

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	$\delta^{\&}$	α^{a}	Comments
1984.4 1991.69	(6,7,8 ⁺) (7 ⁻)	572.6 <i>3</i> 506.7 2	100 100 <i>14</i>	1411.83 6 ⁺ 1485.04 (7 ⁻) M1,E2		0.05 3	E _γ : from $(\alpha, 2n\gamma)$ only. $\alpha(K)=0.040\ 23$; $\alpha(L)=0.007\ 3$; $\alpha(M)=0.0017\ 6$ $\alpha(N)=0.00043\ 15$; $\alpha(O)=8.E-5\ 3$; $\alpha(P)=4.E-6\ 3$ Mult.: from ce and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
1999.8	(8-)	617.8 <i>3</i> 514.8 2	17 <i>6</i> 100	1373.772 (5 ⁻ 1485.04 (7 ⁻	/	+0.5 1	0.062 4	$\alpha(K)$ =0.051 3; $\alpha(L)$ =0.0086 4; $\alpha(M)$ =0.00199 8 $\alpha(N)$ =0.000492 20; $\alpha(O)$ =8.8×10 ⁻⁵ 4;
2003.659	(2+)	1080.90 <i>11</i> 1675.174 <i>18</i>	16.5 <i>14</i> 100.0 <i>7</i>	922.772 3 ⁺ 328.473 2 ⁺	(M1(+E2)) (M1)	<0.4	0.0103 <i>5</i> 0.00379	$\alpha(P)=5.7\times10^{-6} \ 4$ Mult., δ : from ce and $\gamma(\theta)$ data in $(\alpha,2n\gamma)$. E_{γ} : weighted average of 1675.147 24 from ¹⁹⁴ Ir β^- decay (19.18 h), 1675.188 18 from ¹⁹⁴ Au ε decay (38.02 h), and 1675.27 15 from
2043.718	1+	2003.651 <i>19</i> 227.05 ^c <i>11</i>	8.6 <i>4</i> 0.094 <i>10</i>	0.0 0 ⁺ 1816.591 (2)	[E2] + [M1,E2]		1.75×10 ⁻³ 0.45 21	$(n,n'\gamma)$. $\alpha(K)=0.33\ 2I;\ \alpha(L)=0.087\ 3;\ \alpha(M)=0.0210\ 6$ $\alpha(N)=0.00516\ II;\ \alpha(O)=0.00088\ 4;$
		265.091 ^c 27	0.140 7	1778.578 2+	[M1,E2]		0.29 15	$\alpha(P)=3.7\times10^{-5} 25$ $\alpha(K)=0.22 14; \ \alpha(L)=0.052 \ 7; \ \alpha(M)=0.0124 \ 10$ $\alpha(N)=0.0031 \ 3; \ \alpha(O)=0.00052 \ 7;$
		373.11 4	0.175 9	1670.667 2+	[M1,E2]		0.11 6	$\alpha(P)=2.4\times10^{-5}$ 16 $\alpha(K)=0.09$ 6; $\alpha(L)=0.018$ 5; $\alpha(M)=0.0042$ 11 $\alpha(N)=0.0010$ 3; $\alpha(O)=0.00018$ 6; $\alpha(P)=1.0\times10^{-5}$ 6
		421.59 6	0.740 14	1622.197 2+	[M1,E2]		0.08 5	$\alpha(R)=1.0\times10^{-6}$ $\alpha(K)=0.064$; $\alpha(L)=0.0124$; $\alpha(M)=0.00299$ $\alpha(N)=0.0007221$; $\alpha(O)=0.000135$; $\alpha(P)=7.E-6$
		531.702 ^c 15	0.645 14	1512.004 2+	[M1,E2]		0.044 23	$\alpha(K)$ =0.035 20; $\alpha(L)$ =0.0065 24; $\alpha(M)$ =0.0015 6 $\alpha(N)$ =0.00037 13; $\alpha(O)$ =6.6×10 ⁻⁵ 25; $\alpha(P)$ =3.9×10 ⁻⁶ 23
		564.444 ^c 7	0.492 5	1479.272 0+	[M1]		0.0568	$\alpha(K) = 0.0470 \ 7; \ \alpha(L) = 0.00753 \ 11;$ $\alpha(M) = 0.001734 \ 25$ $\alpha(N) = 0.000429 \ 6; \ \alpha(O) = 7.73 \times 10^{-5} \ 11;$ $\alpha(P) = 5.26 \times 10^{-6} \ 8$
		776.70 [@] 6	0.069 7	1267.200 0+	[M1]		0.0249	$\alpha(K)=0.0206$ 3; $\alpha(L)=0.00327$ 5; $\alpha(M)=0.000753$ 11 $\alpha(N)=0.000186$ 3; $\alpha(O)=3.36\times10^{-5}$ 5; $\alpha(P)=2.30\times10^{-6}$ 4
		1120.961 <i>17</i>	0.950 17	922.772 3+	[E2]		0.00438	$\alpha(\mathbf{r})=2.50\times10^{-5}$ 4
		1421.683 14	9.0 7	622.024 2+	M1(+E2)	< 0.2	0.00542 10	E_{γ} : weighted average of 1421.72 4 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1421.679 <i>14</i> from

$\gamma(^{194}\text{Pt})$ (continued)

						-	y(It) (con	tillueu)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	δ&	α^{a}	$\mathrm{I}_{(\gamma+ce)}$	Comments
										194 Au ε decay (38.02 h). I_{γ} : unweighted average of 8.3 4 from 194 Ir β^- decay (19.18 h) and 9.75 9 from 194 Au ε decay (38.02 h).
2043.718	1+	1715.237 16	19.82 24	328.473	2+	E2+M1	-1.10 <i>12</i>	0.00279 10		E _γ : weighted average of 1715.243 25 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 1715.235 16 from ¹⁹⁴ Au ε decay (38.02 h). Other: 1715.2 2 from (n,n' γ). I _γ : weighted average of 20.0 4 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 19.75 24 from ¹⁹⁴ Au ε decay
		2043.723 15	100.0 7	0.0	0+	M1		0.00263		(38.02 h). Other: 49 5 from $(n,n'\gamma)$ is discrepant. E_{γ} : weighted average of 2043.727 17 from ¹⁹⁴ Ir β^- decay (19.18 h) and 2043.719 15 from ¹⁹⁴ Au ε decay (38.02 h). Other: 2043.5 2 from $(n,n'\gamma)$.
										I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Others: 100.0 9 from ¹⁹⁴ Ir β^- decay (19.18 h) and 100 <i>10</i> from (n,n'γ).
2047.52	(9-)	562.5 1	100	1485.04	(7-)	(E2)		0.0187		E _{γ} : from $(\alpha,2n\gamma)$. Other: 562.4 5 from ¹⁹⁴ Ir β^- decay (171 d).
2052 019	(2)+	1241.93 ^c 7	10.0.0	011 200	4+	[120]		0.00261		Mult.: from ce data in 194 Ir β^- decay (171 d).
2053.018	(2)+	1430.992 22	10.8 <i>9</i> 100.0 <i>9</i>	811.288 622.024		[E2] [M1,E2]		0.00361 0.0041 <i>13</i>		E _γ : weighted average of 1430.95 4 from ¹⁹⁴ Ir $β$ ⁻ decay (19.18 h), 1430.996 <i>14</i> from ¹⁹⁴ Au $ε$ decay (38.02 h), and 1431.6 3 from (n,n' $γ$). I _γ : from ¹⁹⁴ Au $ε$ decay (38.02 h). Other: 100 <i>11</i>
										from 194 Ir β^{-} decay (19.18 h).
		1724.53 3	77.7 8	328.473	2+	[M1,E2]		0.0028 8		E_{γ} : weighted average of 1724.535 27 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1724.40 14 from ¹⁹⁴ Au ε decay (38.02 h).
										I_{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Other: 79 5 from ¹⁹⁴ Ir β ⁻ decay (19.18 h).
2063.746	2+	1140.990 20	6.51 11	922.772		M1		0.00939		104
		1441.714 <i>14</i>	54.0 7	622.024	2+	M1(+E2)	<0.6	0.0050 4		E _γ : weighted average of 1441.733 <i>19</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 1441.703 <i>14</i> from ¹⁹⁴ Au ε decay (38.02 h). Other: 1441.6 <i>3</i> from (n,n'γ). I _γ : weighted average of 55.2 <i>14</i> from ¹⁹⁴ Ir β ⁻ decay (19.18 h), 53.7 6 from ¹⁹⁴ Au ε decay (38.02 h), and 62 6 from (n,n'γ).
		1735.253 14	100.0 11	328.473	2+	M1+E2	+0.12 6	0.00351 6		E _γ : weighted average of 1735.272 21 from 194 Ir β^- decay (19.18 h) and 1735.245 14 from 194 Au ε decay (38.02 h). Other: 1735.2 2 from (n,n' γ). I _γ : from 194 Au ε decay (38.02 h). Others: 100.0 18

2(194Pt) (continued)

						γ ⁽¹⁹⁴ Pt) (contin	nued)		
$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}_j^{r}	Mult.&	δ&	α^{a}	$I_{(\gamma+ce)}$	Comments
2063.746 2085.475	2 ⁺ 0 ⁺	2063.764 21 288.13 ^c 4	1.92 <i>9</i> 2.31 <i>7</i>	0.0 0 ⁻ 1797.390 1 ⁻			1.70×10 ⁻³ 0.0287		from ¹⁹⁴ Ir β^- decay (19.18 h) and 100 11 from (n,n' γ). $\alpha(K)=0.0237$ 4; $\alpha(L)=0.00384$ 6;
2003.473	O	200.13 4	2.31 /	1797.390 1	[13]		0.0287		α (M)=0.000883 13 α (N)=0.000217 3; α (O)=3.78×10 ⁻⁵ 6; α (P)=2.16×10 ⁻⁶ 3
		1463.439 <i>14</i>	100.0 10	622.024 2	(E2)		0.00270		E _γ : weighted average of 1463.445 <i>14</i> from 194 Ir β^- decay (19.18 h) and 1463.434 <i>14</i> from 194 Au ε decay (38.02 h). I _γ : from 194 Au ε decay (38.02 h). Other:
		1756.995 14	8.65 11	328.473 2	(E2)		0.00204		100.0 <i>II</i> from ¹⁹⁴ Ir β^- decay (19.18 h). E _{\gamma} : weighted average of 1756.93 7 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1756.998 <i>I4</i> from ¹⁹⁴ Au ε decay (38.02 h). I _{\gamma} : weighted average of 8.1 4 from ¹⁹⁴ Ir β^- decay (19.18 h) and 8.67 8 from ¹⁹⁴ Au ε decay (38.02 h).
		2085.8 4		0.0	E0			0.57 4	E _γ ,Mult.: seen only in ce data in ¹⁹⁴ Au ε decay (38.02 h). q_V^2 (E0/E2)=61 21, X(E0/E2)=6.1 21
2099.55	(8)+	687.7 1	100	1411.83 6	(E2)		0.01188		(2005Ki02, evaluation). B(E2)(W.u.)=50 +18-11 E _y : from $(\alpha,2ny)$ and Coulomb excitation. Others: 687.8 5 from ¹⁹⁴ Ir β^- decay (171 d). Mult.: from ce data in ¹⁹⁴ Ir β^- decay
									(171 d) and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ with $\Delta J=(2)$.
2109.068	(2)+	1186.37 4	55.7 9	922.772 3	(E2+M1)	1.1 +6-4	0.0060 10		E _{γ} : unweighted average of 1186.408 26 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 1186.325 19 from ¹⁹⁴ Au ε decay (38.02 h). I _{γ} : weighted average of 56.4 9 from ¹⁹⁴ Ir
		1487.080 22	100.0 8	622.024 2 ⁻	(M1(+E2))	<0.3	0.00483 12		$β^-$ decay (19.18 h) and 54.8 10 from 194 Au $ε$ decay (38.02 h). E _γ : unweighted average of 1487.058 14 from 194 Ir $β^-$ decay (19.18 h) and 1487.102 16 from 194 Au $ε$ decay (38.02 h).
		1780.560 <i>18</i>	25.1 10	328.473 2	-				I _γ : from ¹⁹⁴ Ir β^- decay (19.18 h). Other: 100.0 10 from ¹⁹⁴ Au ε decay (38.02 h). E _γ : weighted average of 1780.571 18 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1780.543

 $\gamma(^{194}\text{Pt})$ (continued)

 $E_i(level)$

 \mathbf{E}_f

Mult. &

 $\mathrm{I}_{(\gamma+ce)}$

Comments

22 from 194 Au ε decay (38.02 h).

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$\delta^{\&}$	α^a	Comments
									I_{γ} : unweighted average of 26.1 4 from ¹⁹⁴ Ir β^- decay (19.18 h) and 24.1 4 from ¹⁹⁴ Au ε decay (38.02 h).
2114.106	1+	190.05 ^c 8	0.82 15	1924.285	1+	M1		1.077	$\alpha(K)$ =0.887 13; $\alpha(L)$ =0.1461 21; $\alpha(M)$ =0.0338 5 $\alpha(N)$ =0.00835 12; $\alpha(O)$ =0.001503 22; $\alpha(P)$ =0.0001014 15
		491.967 ^c 25	1.25 6	1622.197	2+				
		566.91 ^c 4	0.82 5	1547.281	0+	[M1]		0.0561	$\alpha(K)$ =0.0465 7; $\alpha(L)$ =0.00744 11; $\alpha(M)$ =0.001715 24
									α (N)=0.000424 6; α (O)=7.64×10 ⁻⁵ 11; α (P)=5.20×10 ⁻⁶ 8
		602.053 18	2.10 9	1512.004					
		846.96 12	9.78 9	1267.200	0+	M1		0.0200	Mult.: ce data give $\delta(\text{E2/M1}) < 0.4$, ΔJ^{π} requires M1.
		1492.055 <i>18</i>	42.1 6	622.024	2+	M1(+E2)	<0.5	0.00466 24	E_{γ} : weighted average of 1492.020 27 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1492.065 14 from ¹⁹⁴ Au ε decay (38.02 h).
									I_{γ} : weighted average of 41.1 9 from ¹⁹⁴ Ir β^- decay (19.18 h) and 42.4 5 from ¹⁹⁴ Au ε decay (38.02 h).
		1785.634 <i>17</i>	100.0 9	328.473	2+	M1(+E2)	-0.04 3	0.00333	E_{γ} : weighted average of 1785.631 21 from ¹⁹⁴ Ir β ⁻ decay (19.18 h) and 1785.636 17 from ¹⁹⁴ Au ε decay (38.02 h).
		2114.100 <i>14</i>	60.9 <i>17</i>	0.0	0+	M1		0.00250	I _γ : from ¹⁹⁴ Ir β^- decay (19.18 h). E _γ : from ¹⁹⁴ Au ε decay (38.02 h). Other: 2114.099
									26 from 194 Ir β^- decay (19.18 h). I _{γ} : unweighted average of 59.2 6 from 194 Ir β^-
									decay (19.18 h) and 62.6 ϵ from ¹⁹⁴ Au ϵ decay (38.02 h).
									Mult.: ce data gives $\delta(\text{E2/M1}) < 0.5$, ΔJ^{π} requires M1.
2131.126	(2^+)	1208.372 18	100.0 29	922.772	3+				1411.
3101.120	(-)	1319.70° 4	39.4 25	811.288		[E2]		0.00322	
		1509.08° 3	49 4	622.024		L J			
		1802.637 ^b 14	<817 ^b	328.473		M1,E2		0.0026 7	
		2131.08° 7	6.5 8	0.0	0+	[E2]		1.65×10^{-3}	
2134.123	1+,2+	1512.073 14	37 4	622.024		M1,E2		0.0037 11	E_{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Others: 1512.15 21 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1511.6 4 from (n,n' γ).

$\gamma(^{194}\text{Pt})$ (continued)

						<i>y</i> (1	t) (cont	iliucu)		
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	$\delta^{\&}$	α^{a}	$I_{(\gamma+ce)}$	Comments
	2134.123	1+,2+	1805.727 [@] 14	100.0 8	328.473 2+	M1(+E2)	<0.5	0.00313 14		I _γ : weighted average of 41 6 from ¹⁹⁴ Ir β^- decay (19.18 h), 43 4 from ¹⁹⁴ Au ε decay (38.02 h), and 32.2 34 from (n,n' γ). E _γ : from ¹⁹⁴ Ir β^- decay (19.18 h). Others: 1805.729 14 from ¹⁹⁴ Au ε decay (38.02 h) and 1805.7 2 from (n,n' γ).
	2140.696	(1+,2+)	1518.657 <i>14</i>	100.0 9	622.024 2+	(M1(+E2))	<0.7	0.0043 4		I _γ : from ¹⁹⁴ Ir β^- decay (19.18 h). Others: 100.0 14 from ¹⁹⁴ Au ε decay (38.02 h) and 100 10 from (n,n'γ). E _γ : weighted average of 1518.652 22 from ¹⁹⁴ Ir β^- decay (19.18 h) and 1518.659 14 from ¹⁹⁴ Au ε decay (38.02 h). Other: 1518.7 2 from (n,n'γ). I _γ : from ¹⁹⁴ Au ε decay (38.02 h). Other: 100.0 22
			1812.225 <i>17</i>	44.8 9	328.473 2+	(M1)		0.00324		from 194 Ir $β^-$ decay (19.18 h). $E_γ$: weighted average of 1812.18 7 from 194 Ir $β^-$ decay (19.18 h) and 1812.228 <i>17</i> from 194 Au $ε$ decay (38.02 h).
										I_{γ} : weighted average of 33 9 from ¹⁹⁴ Ir β^- decay (19.18 h) and 44.9 7 from ¹⁹⁴ Au ε decay (38.02 h).
	2157.995	$(2)^{+}$	2140.71 8 1346.68 <i>4</i>	0.45 <i>18</i> 6.40 <i>10</i>	$0.0 0^{+} $ 811.288 4^{+}					
		()	1535.781 [#] 21 1829.519 14	6.1 <i>23</i> 100.0 <i>10</i>	622.024 2 ⁺ 328.473 2 ⁺	M1(+E2)	<0.3	0.00313 7		E_{γ} : level-energy difference=1535.965. E_{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Others: 1829.524 33 from ¹⁹⁴ Ir β^- decay (19.18 h) and
	2163.747	0+	49.7 3	6.2 17	2114.106 1+	M1		9.12 <i>21</i>		1829.4 2 from $(n,n'\gamma)$. $\alpha(L)=7.02$ 16; $\alpha(M)=1.62$ 4
			239.443 17	12.5 5	1924.285 1+	M1		0.567		$\alpha(N)$ =0.402 10; $\alpha(O)$ =0.0722 17; $\alpha(P)$ =0.00486 11 $\alpha(K)$ =0.467 7; $\alpha(L)$ =0.0766 11; $\alpha(M)$ =0.01769 25 $\alpha(N)$ =0.00438 7; $\alpha(O)$ =0.000788 11; $\alpha(P)$ =5.32×10 ⁻⁵ 8
			366.365 22 1541.715 <i>18</i> 1835.274 <i>14</i>	7.43 <i>23</i> 6.14 <i>9</i> 100.0 <i>9</i>	1797.390 1 ⁻ 622.024 2 ⁺ 328.473 2 ⁺	[E1] [E2] E2		0.01639 0.00248 0.00193		· ·
			2164.1 <i>4</i>		0.0 0+	E0			3.1 2	E_{γ} ,Mult.: seen in ce data only. $q_{K}^{2}(E0/E2)=15.8 \ 10$, $X(E0/E2)=1.73 \ 11$ (2005Ki02,evaluation).
	2184.910	1+,2+	752.47 ^c 7 1262.27 <i>15</i> 1562.891 <i>14</i> 1856.403 <i>17</i>	1.00 <i>11</i> 8.78 <i>15</i> 100.0 <i>11</i> 13.19 <i>18</i>	1432.551 3 ⁻ 922.772 3 ⁺ 622.024 2 ⁺ 328.473 2 ⁺	M1(+E2)	<0.3	0.00432 11		(2003Ki02,evaluation).
1										

$E_i(level)$	J_i^π	$\mathbb{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	E_f J_f^{π}	Mult. &	δ&	α^a	Comments
2214.525	(2+)	397.84 ^c 5 702.54 4	0.208 <i>19</i> 1.47 <i>4</i>	1816.591 (2) ⁺ 1512.004 2 ⁺	(M1)		0.0322	$\alpha(K)$ =0.0267 4; $\alpha(L)$ =0.00425 6; $\alpha(M)$ =0.000977 14
								α (N)=0.000242 4; α (O)=4.36×10 ⁻⁵ 7; α (P)=2.98×10 ⁻⁶ 5
		781.974 <i>17</i>	2.140 27	1432.551 3-	[E1]		0.00335	$\alpha(P) = 2.98 \times 10^{-5} \text{ S}$
		1291.765 <i>14</i>	4.81 8	922.772 3 ⁺	(M1(+E2))	< 0.3	0.00675 18	
		1592.489 <i>14</i>	64.0 11	622.024 2+	M1(+E2)	< 0.3	0.00415 10	
		1885.95 7	100.0 23	$328.473 \ 2^{+}$	M1(+E2)	< 0.3	0.00296 7	
		2214.47 5	0.57 15	$0.0 0^{+}$	[E2]		1.60×10^{-3}	
2215.534	1+	101.46 <i>4</i>	0.269 17	2114.106 1+	M1		6.39	$\alpha(K)=5.26 8$; $\alpha(L)=0.875 13$; $\alpha(M)=0.202 3$
								$\alpha(N)=0.0501\ 7;\ \alpha(O)=0.00901\ 13;$
		106.51.4	0.400.17	2100.060 (2)+	3.61		5.57	$\alpha(P)=0.000606 9$
		106.51 4	0.400 17	$2109.068 (2)^{+}$	M1		5.56	$\alpha(K)=4.58$ 7; $\alpha(L)=0.761$ 11; $\alpha(M)=0.1759$ 25
								α (N)=0.0435 7; α (O)=0.00783 11; α (P)=0.000527 8
		151.83 <i>3</i>	3.18 8	2063.746 2+	M1		2.03	$\alpha(K)=0.0003278$ $\alpha(K)=1.667\ 24;\ \alpha(L)=0.276\ 4;\ \alpha(M)=0.0637\ 9$
		131.03 3	3.10 0	2003.740 2	1411		2.03	$\alpha(N)=0.01577 \ 22; \ \alpha(O)=0.00284 \ 4;$
								$\alpha(P)=0.001917322$, $\alpha(P)=0.002017$,
		162.58 <i>4</i>	1.12 4	$2053.018 (2)^{+}$	M1(+E2)	< 0.7	1.52 16	$\alpha(K)=1.20 \ 18; \ \alpha(L)=0.247 \ 20; \ \alpha(M)=0.058 \ 6$
				,	,			$\alpha(N)=0.0144 \ 15; \ \alpha(O)=0.00252 \ 19;$
								$\alpha(P)=0.000136\ 22$
		171.837 23	3.07 6	2043.718 1+	M1		1.428	$\alpha(K)=1.176\ 17;\ \alpha(L)=0.194\ 3;\ \alpha(M)=0.0448\ 7$
								$\alpha(N)=0.01110 \ 16; \ \alpha(O)=0.00200 \ 3;$
								$\alpha(P) = 0.0001346 \ 19$
		211.87 3	0.225 17	2003.659 (2+)				
		285.315 [#] <i>14</i>	2.197 25	1930.368 2+	(M1+E2)	1.5 +3-2	0.187 18	$\alpha(K)$ =0.137 <i>16</i> ; $\alpha(L)$ =0.0382 <i>11</i> ; $\alpha(M)$ =0.00930 <i>21</i>
								$\alpha(N)=0.00229 \ 6; \ \alpha(O)=0.000386 \ 12;$
								$\alpha(P)=1.49\times10^{-5}\ 19$
								E_{γ} : level-energy difference=285.166.
		291.52 [@] 7	1.04 14	1924.285 1 ⁺	E2(+M1)	>2.0	0.130 23	$\alpha(K)=0.086\ 21;\ \alpha(L)=0.0328\ 14;\ \alpha(M)=0.0081\ 3$
								$\alpha(N)=0.00200\ 7;\ \alpha(O)=0.000329\ 15;$
								$\alpha(P) = 9.0 \times 10^{-6} \ 25$
		321.960 ^c 18	0.381 14	1893.588 0 ⁺				
		398.937 8	0.526 19	1816.591 (2) ⁺				
		418.200 25	2.14 17	1797.390 1	[E1]		0.01218	
		436.90 9	0.537 17	1778.578 2 ⁺	(MIC EQ.)	.0.7	0.055.7	(II) 0.04((
		544.826 17	1.096 25	1670.667 2+	(M1(+E2))	< 0.7	0.055 7	$\alpha(K)=0.046 \ 6; \ \alpha(L)=0.0075 \ 8; \ \alpha(M)=0.00174 \ 17$
								$\alpha(N)=0.00043 \ 4; \ \alpha(O)=7.7\times10^{-5} \ 8;$
		502.27.2	10.74.11	1622 107 2+	M1 - E2	0.25.10	0.049.4	$\alpha(P)=5.1\times10^{-6}$ 7
		593.37 3	12.74 11	1622.197 2+	M1+E2	-0.25 18	0.048 4	$\alpha(K)$ =0.040 3; $\alpha(L)$ =0.0064 4; $\alpha(M)$ =0.00147 8

$\gamma(^{194}\text{Pt})$ (continued)

					<u>y(11</u>) (continued)	•	
$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	δ ^{&}	α^a	Comments
2215.534	1+	668.247 17	4.79 6	1547.281 0+	M1		0.0366	$\alpha(N)=0.000364 \ 20; \ \alpha(O)=6.6\times10^{-5} \ 4;$ $\alpha(P)=4.4\times10^{-6} \ 4$ $\alpha(K)=0.0304 \ 5; \ \alpha(L)=0.00484 \ 7;$ $\alpha(M)=0.001114 \ 16$ $\alpha(N)=0.000276 \ 4; \ \alpha(O)=4.96\times10^{-5} \ 7;$
		703.525 14	17.92 <i>17</i>	1512.004 2+	M1+E2	+0.24 6	0.0310 8	$\alpha(P)=3.39\times10^{-6} 5$ $\alpha(K)=0.0256 7$; $\alpha(L)=0.00410 9$; $\alpha(M)=0.000945 20$ $\alpha(N)=0.000234 5$; $\alpha(O)=4.21\times10^{-5} 9$;
		736.249 <i>14</i>	5.51 33	1479.272 0 ⁺	M1		0.0285	$\alpha(P)=2.86\times10^{-6}$ 7 $\alpha(K)=0.0237$ 4; $\alpha(L)=0.00376$ 6; $\alpha(M)=0.000865$ 13 $\alpha(N)=0.000214$ 3; $\alpha(O)=3.86\times10^{-5}$ 6;
		948.323 9	100.0 8	1267.200 0+	M1		0.01497	$\alpha(P)=2.64\times10^{-6} 4$ E_{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Other: 948.3 2 from (n,n' γ). I_{γ} : from ¹⁹⁴ Au ε decay (38.02 h). Other: 100
		1593.530 20	33.4 6	622.024 2 ⁺	(M1+E2)	0.74 8	0.00356 11	10 from $(n,n'\gamma)$.
		1887.030 23	90 11	328.473 2 ⁺	(M1+E2)	+0.75 24	0.00260 18	E _y : other: 1886.6 2 from $(n,n'y)$.
2239.636	(2)-	2215.509 <i>16</i> 442.225 ^c <i>19</i> 807.119 <i>21</i> 1316.857 <i>14</i>	7.32 <i>14</i> 3.42 <i>11</i> 6.9 22 32.05 28	0.0 0 ⁺ 1797.390 1 ⁻ 1432.551 3 ⁻ 922.772 3 ⁺	M1		0.00235	I_{γ} : other: 141 14 from $(n,n'\gamma)$.
		1617.604 14	100.0 11	622.024 2 ⁺	E1		1.18×10^{-3}	
2250.665?	$(1,2^+)$	1911.154 <i>14</i> 1922.171 ^c 22 2250.73 ^c 6	55.1 <i>6</i> 100.0 <i>19</i> 0.77 <i>7</i>	328.473 2 ⁺ 328.473 2 ⁺ 0.0 0 ⁺	E1		1.17×10^{-3}	
2287.376	(1+,2+)	173.3 <i>3</i> 243.65 <i>3</i> 490.030 ^c 22 1665.321 <i>18</i>	2.9 <i>11</i> 4.52 26 4.15 <i>15</i> 17.06 22	2114.106 1 ⁺ 2043.718 1 ⁺ 1797.390 1 ⁻ 622.024 2 ⁺				
		1958.898 <i>14</i>	100.0 11	328.473 2+	(M1(+E2))	< 0.6	0.00268 14	
2298.157	1+	2287.28 <i>5</i> 189.17 <i>6</i>	0.37 <i>7</i> 0.88 <i>13</i>	$0.0 0^{+}$ $2109.068 (2)^{+}$	M1		1.091	$\alpha(K)$ =0.899 13; $\alpha(L)$ =0.1480 21; $\alpha(M)$ =0.0342
				()				5 $\alpha(N)=0.00846$ 12; $\alpha(O)=0.001523$ 22; $\alpha(P)=0.0001027$ 15
		500.737 24	1.37 7	1797.390 1	[E1]		0.00824	
		627.59 [@] 3	1.00 7	1670.667 2 ⁺	[M1,E2]		0.029 15	$\alpha(K)$ =0.023 <i>13</i> ; $\alpha(L)$ =0.0041 <i>16</i> ; $\alpha(M)$ =0.0010

$\gamma(^{194}\text{Pt})$ (continued)

						/(11)	(continued)		
E_i (level)	J_i^π	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	J^π_f	Mult.&	δ&	α^a	Comments
2298.157	1+	675.943 16	9.43 9	1622.197 2 ⁴	+	M1(+E2)	<0.4	0.0340 <i>17</i>	4 $\alpha(N)=0.00024 \ 9; \ \alpha(O)=4.2\times10^{-5} \ 17;$ $\alpha(P)=2.6\times10^{-6} \ 14$ $\alpha(K)=0.0281 \ 15; \ \alpha(L)=0.00452 \ 19;$ $\alpha(M)=0.00104 \ 5$ $\alpha(N)=0.000257 \ 11; \ \alpha(O)=4.63\times10^{-5} \ 20;$ $\alpha(P)=3.13\times10^{-6} \ 17$
		786.07 ^c 5 818.856 18 1030.997 23 1676.111 21	0.83 <i>5</i> 7.24 <i>9</i> 2.31 <i>7</i> 16.13 <i>13</i>	1512.004 2 ⁺ 1479.272 0 ⁺ 1267.200 0 ⁺ 622.024 2 ⁺	+ + + +	[M1,E2] M1 M1 (M1)		0.017 8 0.0217 0.01212 0.00379	
		1969.680 <i>14</i>	100.0 9	328.473 2		M1+E2	-0.35 4	0.00268 5	E _γ : from ¹⁹⁴ Au ε decay (38.02 h). Other: 1969.6 3 from $(n,n'\gamma)$.
2309.6	(11-)	2298.171 <i>17</i> 262.1 2	5.68 8 100	$0.0 0^4$ $2047.52 (9)$	+ 9 ⁻)	M1		0.00224	
2311.875	2+	197.82 7	2.5 6	2114.106 1		M1		0.963	$\alpha(K)$ =0.793 <i>12</i> ; $\alpha(L)$ =0.1305 <i>19</i> ; $\alpha(M)$ =0.0302
									α (N)=0.00746 11; α (O)=0.001343 19; α (P)=9.06×10 ⁻⁵ 13
		387.65 ^c 5	1.78 <i>18</i>	1924.285 1 ⁴	+	[M1,E2]		0.10 6	$\alpha(K)$ =0.08 5; $\alpha(L)$ =0.016 5; $\alpha(M)$ =0.0038 10 $\alpha(N)$ =0.00093 25; $\alpha(O)$ =0.00016 5; $\alpha(P)$ =9.E-6 6
		689.61 ^c 3 799.857 ^c 26 1081.8 19 1388.93 19 1500.66 ^c 13 1689.845 14	2.86 <i>11</i> 3.14 <i>14</i> <5.2 9.30 <i>21</i> 16.7 <i>21</i> 73.9 <i>11</i>	1622.197 2 ⁺ 1512.004 2 ⁺ 1229.520 4 ⁺ 922.772 3 ⁺ 811.288 4 ⁺ 622.024 2 ⁺	+ + + +	[M1,E2] [M1,E2] [E2] [M1,E2] (E2) (M1(+E2))	<0.4	0.023 11 0.016 8 0.00469 0.0044 15 0.00259 0.00362 12	
		1983.411 <i>17</i> 2311.856 <i>14</i>	20.66 <i>21</i> 100.0 <i>14</i>	328.473 2 ⁺ 0.0 0 ⁺	+	M1+E2+E0 (E2)		$0.026 \ 4$ 1.56×10^{-3}	α : from $\alpha(K)$ exp in ¹⁹⁴ Au ε decay.
2356.059	0+	69.6 [@] 3	4.5 15	2287.376 (1		[M1]		3.40 7	$\alpha(L)$ =2.61 5; $\alpha(M)$ =0.605 12 $\alpha(N)$ =0.150 3; $\alpha(O)$ =0.0269 5; $\alpha(P)$ =0.00181 4 E_{γ} , I_{γ} : seen in ce data, with intensity deduced from measured I(ceL) and theoretical $\alpha(L1)$ =2.35 assuming Mult=M1.
		140.514 18	100.0 22	2215.534 1	+	M1		2.52	$\alpha(K)$ =2.08 3; $\alpha(L)$ =0.344 5; $\alpha(M)$ =0.0794 12 $\alpha(N)$ =0.0197 3; $\alpha(O)$ =0.00354 5; $\alpha(P)$ =0.000238 4
		431.61 ^c 6	4.7 5	1924.285 1	+	[M1]		0.1149	$\alpha(K)=0.000238 \ 4$ $\alpha(K)=0.0950 \ 14; \ \alpha(L)=0.01535 \ 22;$ $\alpha(M)=0.00354 \ 5$ $\alpha(N)=0.000876 \ 13; \ \alpha(O)=0.0001577 \ 22;$ $\alpha(P)=1.070\times10^{-5} \ 15$
		843.89 ^c 20	<2.33	1512.004 2	+	[E2]		0.00770	a(1)-1.070/10 13

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\rm I_{\gamma}}^{\dagger}$	\mathbb{E}_f	\mathtt{J}_f^{π}	Mult.&	α^a	$I_{(\gamma+ce)}$	Comments
2356.059	0+	2027.608 ^c 20 2357.0 8	8.95 23	328.473 0.0	2 ⁺ 0 ⁺	[E2] E0	1.73×10^{-3}	0.20 2	E_{γ} ,Mult.: seen in ce data only.
2365.932	1+	1743.77 15	47.5 6	622.024			0.00210		
2397.321	2+	2365.919 <i>21</i> 435.935 ^c 28 1474.37 <i>7</i>	100.0 <i>14</i> 35.1 <i>18</i> 81 <i>4</i>	0.0 1961.332 922.772		M1 [E1] [M1,E2]	0.00218 0.01111 0.0038 <i>12</i>		
		1775.795 [#] 27 2068.869 <i>17</i> 2397.25 <i>4</i>	100.0 <i>18</i> 88 <i>6</i> 15.9 <i>9</i>	622.024 328.473 0.0		[M1,E2] [M1,E2] [E2]	0.0027 7 0.0021 5 1.52×10 ⁻³		E_{γ} : level-energy difference=1775.289. E_{γ} : other: 2068.8 5 from (n,n' γ). Mult.: ce data in ¹⁹⁴ Au ε decay (30.02 h) suggests M3, which disagrees with E2 expected from J^{π} =2 ⁺ for 2397 level.
2412.744	1+	1790.6 <i>I</i> 2084.290 <i>17</i> 2412.693 <i>19</i>	10.2 <i>17</i> 100 <i>7</i> 40.0 <i>7</i>	622.024 328.473 0.0		M1	0.00213		•
2423.6	$(6^+,7,8^+)$	324.0° 5 1011.8 5	≈56 100 6		(8) ⁺ 6 ⁺	IVII	0.00213		
2438.44	(10^+)	338.8 2	100 6		(8) ⁺	(E2)	0.0691		$\alpha(K)$ =0.0453 7; $\alpha(L)$ =0.0181 3; $\alpha(M)$ =0.00450
									α (N)=0.001103 <i>16</i> ; α (O)=0.000181 <i>3</i> ; α (P)=4.63×10 ⁻⁶ <i>7</i>
									E _γ : from $(\alpha,2n\gamma)$. Other: 338.8 5 from ¹⁹⁴ Ir β^- decay (171 d). I _γ : from ¹⁹⁴ Ir β^- decay (171 d). Others: 100 16 from $(\alpha,2n\gamma)$ and 100 11 from (⁸² Se,Xγ). Mult.: from ce data in ¹⁹⁴ Ir β^- decay (171 d); $\gamma(\theta)$ in $(\alpha,2n\gamma)$ consistent with $\Delta J=2$.
		391.0 2	64 4	2047.52	(9-)	(E1)	0.01415		E _{γ} : from $(\alpha,2n\gamma)$. Other: 390.8 5 from ¹⁹⁴ Ir β^- decay (171 d). I _{γ} : from ¹⁹⁴ Ir β^- decay (171 d). Other: 63 19 from $(\alpha,2n\gamma)$. Mult.: from ce data in ¹⁹⁴ Ir β^- decay (171 d).
2451.1	(12^{+})	(12.7 12)			(10^{+})				E_{γ} : from ¹⁹⁴ Ir β^- decay (171 d).
2517.20	1	2188.7 [‡] <i>c</i> 2517.2 [‡] <i>4</i>	<35 [‡] 100 [‡]	328.473 0.0	2 ⁺ 0 ⁺				
2577.30	1	2517.2 [‡] 4 2248.8 [‡] <i>c</i> 2577.3 [‡] 4	<28 [‡] 100 [‡]	328.473					
2663.4 2689.25	(10,11,12 ⁺) (8 ⁺)	225.0 763.4 <i>1</i>	100** 100 100	2438.44	(10 ⁺) (6 ⁺)	[E2]	0.00949		E_{γ} : from (82 Se, X_{γ}) only. B(E2)(W.u.)=53 +12-7 E_{γ} : from Coulomb excitation only.
2700.1	(11-)	652.6 2	100	2047.52	(9-)				E _{γ} : from (α ,2n γ). γ also reported in (82 Se,X γ) and (209 Bi,X γ). Mult.: $\gamma(\theta)$ in (α ,2n γ) consistent with ΔJ =2.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&	α^a	Comments
2720.2	1	2391.7 ^{‡c}	<52 [‡]	328.473	2+			
		2720.2 [‡] 5	100 [‡]	0.0	0^{+}			
2842.1	(14^{+})	391.0 2	100	2451.1	(12^{+})			E_{γ} : from $(\alpha, 2n\gamma)$.
2848.6	(10^{+})	749 <i>1</i>	100	2099.55	$(8)^{+}$	[E2]	0.00988	B(E2)(W.u.)=34 +9-8
2916.6	(10^+)	817 <i>I</i>	100	2099.55	(8) ⁺	[E2]	0.00824	E_{γ} : from Coulomb excitation. B(E2)(W.u.)=43 +12-14
2710.0	(10)	0171	100	2077.55	(0)	[12]	0.00021	E_{y} : from Coulomb excitation.
2990.1?	(13^{-})	290	100	2700.1	(11^{-})			,
3000.11	1	2671.6 [‡] <i>c</i>	<10.0	328.473				
		3000.1 [‡] <i>3</i>	100‡	0.0	0_{+}			
3014.81	1	2686.3 [‡]	55 [‡] 8	328.473				
		3014.8 [‡] <i>3</i>	100‡	0.0	0+			
3057.8?	$(10,11,12^+)$	619.4 ^c	100	2438.44	(10^+)			
3078.81	1	2750.3 ^{‡c}	<15.0‡	328.473				
		3078.8 [‡] 3	100‡	0.0	0_{+}			
3141.11	1	2812.6 ^{‡c}	<26 [‡]	328.473				
		3141.1‡ 4	100‡	0.0	0_{+}			
3351.31	1	3022.8 [‡]	27 [‡] 17	328.473				
		3351.3 [‡] <i>3</i>	100‡	0.0	0_{+}			
3375.24	1	2753.2 [‡]	100‡ 13	622.024				
		3375.2 [‡] 3	78 [‡]	0.0	0_{+}			
3383.01	1	3054.5 ^{‡c}	<23.0‡	328.473				
		3383.0 4	100‡	0.0	0_{+}			
3417.12	1	3088.6 ^{‡c}	<6.0 [‡]	328.473				
		3417.1 [‡] <i>3</i>	100‡	0.0	0_{+}			
3421.4	1	3092.9 [‡] <i>c</i>	<18.0‡	328.473				
		3421.4 [‡] 5	100‡	0.0	0_{+}			
3427.71	1	3099.2 ^{‡c}	<25.0 [‡]	328.473				
		3427.7 [‡] <i>4</i>	100‡	0.0	0_{+}			
3459.31	1	3130.8 [‡] <i>c</i>	<16.0‡	328.473				
		3459.3 [‡] 4	100‡	0.0	0_{+}			
3465.2	1	3136.7 ^{‡c}	<72 [‡]	328.473				
		3465.2 [‡] 7	100‡	0.0	0_{+}			
3477.01	1	3148.5 [‡] <i>c</i>	<36 [‡]	328.473				
		3477.0 [‡] 4	100‡	0.0	0_{+}			
3497.9	1	3169.4 [‡] <i>c</i>	<64 [‡]	328.473	2+			

[†] Unless otherwise noted, values are from ¹⁹⁴Au ε decay (38.02 h) for transitions from levels up to 2413. Above 2413 level, values are from various reactions, as specifically noted. All E0 transitions are from 194 Au ε decay.

[‡] From (γ, γ') only.

[#] Very poor fit; uncertainty has been increased by a factor of 5 in the fitting procedure by evaluators.

[®] Poor fit; uncertainty has been increase by a factor of 2 in the fitting procedure by evaluators.

[&]amp; From ce and $\gamma\gamma(\theta)$ data in ¹⁹⁴Au ε decay, unless otherwise noted.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong	NDS 108, 1093 (2007)	1-Jan-2006

 $Q(\beta^{-})=-1507 \ 3$; $S(n)=7921.93 \ 13$; $S(p)=8241.5 \ 21$; $Q(\alpha)=812 \ 3$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=-1507 \ 3$; $S(n)=7921.92 \ 13$; $S(p)=8246.6 \ 17$; $Q(\alpha)=808.1 \ 26 \ 2003Au03$

Other reactions: ¹⁹⁷Au(p,2p): 1990Co31.

¹⁹⁶Pt(n,xnyp γ) (2001Ta31): E(n)=1-250 MeV. White spectrum spallation neutron source; prompt γ -rays measured with Compton-suppressed HPGe detectors.

Photonuclear reactions: 1987Da29.

Hyperfine structure and isotope-shift measurements: 1992Hi07, 1990Hi08, 1988Bo31, 1988Le22, 1987Ne09.

Cross section and yield measurements: 1991Se04, 1990HoZV, 1988Bo08, 1988Co16, 1988Co19.

Nuclear structure calculations: 1993Fe07, 1993Wo06, 1993Za05, 1992Da02, 1992Ba59, 1992La05, 1992Sh18, 1991Ku17, 1991Li08, 1991Na14, 1990Ha27, 1990Lo06, 1990Ma47, 1990Mu18, 1990Na19, 1990Su08, 1989Bo24, 1989Gu01, 1989Ia01, 1988Ba47, 1988Bh04, 1988Bh07, 1988Ca15, 1988Ga23, 1988Hi07, 1988Sa37, 1988Va19, 1988Zg01, 1997De21, 1997De28, 1997Ha33.

¹⁹⁶Pt Levels

There are additional tentative higher-energy levels reported in (n,γ) E=thermal.

Cross Reference (XREF) Flags

		B 196 Ir , C 196 Au D 194 Pt(E 195 Pt(F 195 Pt($β^-$ decay (52 s) $β^-$ decay (1.40 h) α $ε$ decay (6.1669 d) α $ε$ (t,p) α $α$ $β$	H I J K L M	195 Pt(n, γ) E=2 keV: av res 195 Pt(d,p) 196 Pt(e,e') 196 Pt(n,n' γ) 196 Pt(d,pn γ) 196 Pt(p,p'),(pol p,p'),(d,d') Coulomb excitation	O P Q R S	197 Au(μ^- ,n γ) 197 Au(d, 3 He) 198 Pt(p,t) 196 Pt(γ,γ') 196 Pt(p,p' γ)		
E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF			Con	nments		
0.0‡	0+	stable	ABCDEFGHIJKLMNOF	PQ S	J^{π} : absence of hyperfine splitting (1935Fu06) consistent with J=0. $\Delta < r^2 > (^{194}\text{Pt}, ^{196}\text{Pt}) = 0.926 \text{ fm}^2 4 (1987Ne09).$				
355.6841 [‡] 20	2+	34.15 ps <i>15</i>	ABCDEFGHIJKLMNOF		J ^π : from E2 γ to 0 ⁺ level. T _{1/2} : from B(E2)=1.372 6. 30.2 ps 21 (delayed coin, (1981Bo32) (value recom RDM, composite RDM, ε (1985Fe03, 1986Gy04). 6 μ: +0.588 46 (1991St04), +2005St24. μ: Others: +0.534 14 from measurements, see Coulo Q: +0.62 8 (1992Li14). Con MOME2 Others: +0.63 7 (to 0.58 18 (1969Gl08) de interference; +0.56 18 (19181Bo32); 0.82 6 (quote +0.78 6 (1981Bo32); +0.	Other 1972 mend and Dof 1.30 Others 0.604 weigh mb ex passed pende 978Le	s: 35.4 ps 35 (RDM,1971NoZT), Be53), and 32.2 ps 15 ed by 1981Bo32 based on their SA measurements). 58 4 (1992Li14) and 1.382 6 : see Coulomb excitation. 48 (1993Ta07). Compilation: ted average of g-factor citation. ion: 2005St24. on Coulomb excitation), 0.51 18 ent upon the + or - sign of ZA); +0.84 6 (quoted by 1985Fe03 from 1978SpZW);		
688.693 [#] 5	2+	33.8 ps 7	A CDEFGHI KLMNOF	PQ S	J ^{π} : L=2 in ¹⁹⁸ Pt(p,t). T _{1/2} : weighted average of 3	5.1 ps	s 29 (value recommended by		

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF	Comments
				1981Bo32 based on their RDM, composite RDM, and DSA measurements), 36 ps 3 (ce-γ(t),1972Be53), and 33.6 ps 8 from B(E2)=0.368 9 (see Coulomb excitation, assuming E0 fraction of 333γ is negligible). μ=+0.54 9 (1992Br03). Compilation: 2005St24. μ: Others: 0.49 10 from g/g(356 level)=0.92 19 (1981St24), see Coulomb excitation. Q=-0.39 16 (1992Li14). Compilation: 2005St24.
876.865 [‡] 5	4+	3.55 ps 5	BCDEF IJKLMNOPQ S	B(E4)↑=0.0186 21 J ^π : L=4 in (p,t). T _{1/2} : weighted average of 3.5 ps 3 (value recommended by 1981Bo32 based on their RDM, composite RDM, and DSA measurements), and 3.55 ps 5 from B(E2) (weighted average of 1971Mi08, 1990Ma37, and 1992Li14. See Coulomb excitation). B(E4)↑: From ¹⁹⁶ Pt(e,e'). Other: B(E4)=0.0308 23 from (pol
				p,p'). B(E4)=0.012 8 (1992Li14) from Coulomb excitation. μ =+1.38 16 (1992Br03). Compilation: 2005St24. μ : Others: 1.11 10 from g=0.277 26, see Coulomb excitation. Q=1.03 12 (1992Li14). Compilation: 2005St24.
1015.044 [#] 5	3+		C EF I KLMN P S	J ^{π} : E2 γ to 2 ⁺ , γ -band member, nonpopulation of this level in ¹⁹⁶ Pt(n, γ) E=2 keV.
1135.312 [@] 5	0+	4.2 ps +17-6	A DEFGHI N PQ	J^{π} : L=0 in (p,t). $T_{1/2}$: from B(E2) and branching of 779 γ . Others: 6 ps 3 (composite RDM, 1981Bo32), >2.6 ps or >3.1 ps (depending on the extreme feeding assumptions) (1990Bo29).
1270.214 ^{&} 7	5-	1.1 ns 2	BCDEF J LMNO Q	B(E5)↑=0.00204 20 (1992Po09) J ^π : E1 γ to 4 ⁺ , L=5 in (p,p'). T _{1/2} : from delayed coincidence (1970To14) in ¹⁹⁶ Ir β ⁻ decay (1.40 h).
1293.308# 7	4+	2.6 ps +7-4	DEF IJ LMN PQ	B(E4) \uparrow =0.0224 24 J ^{π} : L=4 in (p,p'). T _{1/2} : weighted average of 2.9 ps 6 (RDM 1981Bo32) and 2.4 ps +11-3 from B(E2). See Coulomb excitation. B(E4) \uparrow : Weighted average of 0.0201 28 from (e,e') and 0.025 3 from (pol p,p').
1361.585 [@] 5	2+		CDEF HI K MN Q	XREF: M(1350). J^{π} : E2 γ to 2 ⁺ , γ' s to 0 ⁺ and 4 ⁺ . $T_{1/2}$: $T_{1/2}$ =50 ps +44–19 computed from B(E2)=0.0008 +7–3 in Coulomb excitation and adopted γ -ray properties.
1373.60 ^{&} 19	7-	5.2 ns 2	B J LMN PQ	μ=-0.21 14 XREF: P(1380). J ^π : E2 γ to 5 ⁻ , L=7 in (p,p'). T _{1/2} : from γ(θ,H,t) (1983GoZP). Others: 4.01 ns 16 from delayed coin (1970ToZZ), 4.0 ns (1984Sc19). μ: From g=-0.03 2 (1983GoZP). Compilation: 2005St24.
1402.727 10	0+	1.6 ps <i>3</i>	A DEFGHI Q S	J^{π} : L=0 in (p,t). $T_{1/2}$: from >1.29 ps for lower limit; <1.9 ps for upper limit (1990Bo29).
1429.74? 25	$(5^-,6^+)$		В	J^{π} : γ' s from 2455 to 7 ⁻ and 9 ⁻ , from 1430 to 4 ⁺ , and a connecting 2455 to 1430 γ give $J^{\pi}(2455)=7^{-}$ or 8, and
1447.043 7	3-	0.62 ns <i>17</i>	CDEF J MNO Q S	$J^{\pi}(1430)=5 \text{ or } 6^+.$ $\beta_3=0.050 \ 5 \ (1988\text{Co}19)$ $B(\text{E}3)\uparrow=0.103 \ 4$ J^{π} : E1 γ to 2 ⁺ , L=3 in (p,t).
			Continued on next ==	ga (footnotes at and of table)

E(level) [†]	$J^{\pi a}$	T _{1/2}	XRE	F	Comments
					$T_{1/2}$: deduced from B(E3) and adopted γ -ray properties. See Coulomb excitation. B(E3) \uparrow : See Coulomb excitation.
1525.8 [‡] 5	6 ⁺	0.98 ps +11-5		LMN pQ	XREF: p(1530). J^{π} : g.s. band member. $T_{1/2}$: weighted average of 1.0 ps 3 (RDM, 1981Bo32) and 0.98 ps +12-5 from B(E2). See Coulomb excitation. $Q=-0.18\ 26\ (1992Li14)$. Compilation: 2005St24.
1535.8 6	4+		D	LMN pQ S	B(E4) \uparrow =0.0045 8 (1991Se04) XREF: p(1530). Related to the K=4 two-phonon γ -vibration. J π : γ 's to 2 ⁺ and 3 ⁺ , L=4 in (p,p').
1604.494 10	2+		DEF H	M PQ	J^{π} : V \$ to 2 and 3 , L=4 in (p,p). XREF: Q(1606),p(1600). J^{π} : L=2 in (p,p') and (p,t).
1609.74 [#] 20	(5 ⁺)		K	L N	J^{π} : from boson expansion theory (1980We08) and γ -band systematics (1983Ra24), γ 's to 3 ⁺ .
1677.256 12	2+		DEFGHI	M PQ S	XREF: P(1670). XREF: Q(1675),p(1670). J ^π : E0 component in 989γ to 2 ⁺ .
1679.81 <mark>&</mark> 20	(6-)			LM	J^{π} : from level energy systematics in ¹⁹⁶ Pt(d,pn γ), γ 's to 5 ⁻ .
1754.655 9	3-,4+		EF	M	J^{π} : γ' s from 2469 to 0 ⁺ and 2 ⁺ , from 1755 to 3 ⁻ and 5 ⁻ , and a connecting 2469 to 1755 γ give $J^{\pi}(2469)=1^{-}$ or 2 ⁺ , and $J^{\pi}(1755)=3^{-}$ or 4 ⁺ .
1795.09 6	2+,(1-)		dEFGH	Q	XREF: d(1798). J^{π} : γ' s to 2 ⁺ and 0 ⁺ gives 1, 2 ⁺ . ARC suggests 0 ⁺ , 2 ⁺ , $(0^{-}, 1^{-}, 2^{-})$.
1802.302 <i>10</i>	1+,2+		dEFGH		XREF: d(1798). J^{π} : γ' s to 0 ⁺ and 2 ⁺ . ARC suggests 0 ⁺ , 1 ⁺ , 2 ⁺ .
1804.80 10	$(3^+),4^+$		K		J^{π} : E2 γ to 2 ⁺ .
1820.69 ^{&} 24	9-	<1 ns	В	L N	J^{π} : E2 γ to 7 ⁻ , negative-parity band member. T _{1/2} : from $\gamma\gamma$ (t) (1968Ja06) in ¹⁹⁶ Ir β ⁻ decay (1.40 h).
1823.23 6	0+		A DEF H	M Q	$XREF: d(1819), M(1826), Q(1824).$ $J^{\pi}: L=0 \text{ in } ^{198}Pt(p,t) \text{ and } ^{194}Pt(t,p).$
1825.715 8	2+		EF		J^{π} : γ' s to 0 ⁺ and 3 ⁻ allows 1 ⁻ or 2 ⁺ . ARC gives 0 ⁺ ,1 ⁺ ,2 ⁺ , so perhaps 1 ⁻ is ruled out.
1831.99 <i>13</i> 1847.348 <i>18</i>	3 ⁺ 2 ⁺		DEF H	Q S	J^{π} : M1+E2 γ to 2 ⁺ ,3 ⁺ ,4 ⁺ . XREF: d(1846),Q(1848).
1853.659 <i>12</i>	2+		EF H		J^{π} : L=2 in ¹⁹⁸ Pt(p,t) and ¹⁹⁴ Pt(t,p). J^{π} : γ' s to 0 ⁺ and 4 ⁺ .
1883.34 9	3+,4+		D J	M PQ S	B(E4)↑=0.0400 <i>19</i> XREF: M(1887),p(1880),Q(1884).
					J^{π} : M1+E2 γ to 2 ⁺ ,4 ⁺ , L=4 in ¹⁹⁶ Pt(p,p'). B(E4)†: Weighted average of 0.044 <i>13</i> (1985Bo14),
1888.139 <i>13</i>	1+,2+	1.3 ps +8-6	EFGH		0.0398 19 (1991Se04), and 0.044 13 (1992Po09). J^{π} : γ 's to 0 ⁺ and 2 ⁺ , ARC gives 1 ⁺ ,(0 ⁺ , 2 ⁺). $T_{1/2}$: from Doppler broadening (1990Bo29) in ¹⁹⁵ Pt(n, γ) E=thermal.
1901.7 ^{&} 3	(8-)			L	J^{π} : from level energy systematics in $^{196}Pt(d,pn\gamma)$, $\gamma's$ to
1901.89 <i>10</i> 1918.54 <i>4</i>	5,6,7 0 ⁺		A DEF H		7^{-} . J ^{π} : From excitation functions in 2002Ta14. XREF: d(1916).
1932.01 <i>11</i>	0+,1+,2+		DEF H	Q	J^{π} : E0 to 0^{+} , γ' s to 2^{+} . XREF: d(1935). J^{π} : γ' s to 2^{+} , ARC gives 0^{+} , 1^{+} , 2^{+} .

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF	Comments
1957.25 20	$(4),5^+,6^+$		K	J^{π} : From excitation functions in 2002Ta14.
1968.906 <i>12</i>	$1^+,(2^+)$		DEFGH M P	XREF: d(1971),M(1964),p(1960).
				J^{π} : γ' s to 0 ⁺ and 2 ⁺ , L=2+4 in ¹⁹⁷ Au(d, ³ He).
1984.93 5	$1^+, 2^+$		EF H K q	XREF: Q(1987).
1000.010.0	1 + 2 +			J^{π} : γ' s to 0 ⁺ and 3 ⁺ .
1988.218 9	1+,2+		EF q	XREF: Q(1987).
				J^{π} : J^{π} =0 ⁺ , 1 ⁺ and 2 ⁺ from E1 deexcitation from capture level 0 ⁻ , and 1 ⁻ , 0 ⁺ is ruled out from γ 's to 3 ⁻ .
1991.7 <i>4</i>	3,4+		K	J^{π} : γ to 2^+ , ARC in 1979CiO4, large uncertainties of A_2 and
1,,,1.,	3,1			A ₄ in 2002Ta14. 3 in figure 2 of 2002Ta14.
1998.96 <i>4</i>	2+		EFGHi	XREF: I(2010).
				J^{π} : γ' s to 0^+ and 4^+ .
2002.36 20	$(3^+),4^+$		K	J^{π} : M1+E2 γ to 4 ⁺ .
2006 4	4 ⁺		D iJK M q	XREF: I(2010),Q(2006).
				J^{π} : L=4 in (p,p') and (t,p). A ₂ >0 inconsistent with the known spin assignment in 2002Ta14.
2007.4 [#] 5	6+	0.77 ps 19	i K N q	XREF: I(2010),Q(2006).
				J^{π} : E2 γ to 4 ⁺ , γ 's to 6 ⁺ , γ -band member.
				$T_{1/2}$: deduced from B(E2) and adopted γ -ray properties, see
2012.00.2	2+		PPOT!	Coulomb excitation.
2013.88 3	2+		EFGHi	XREF: $I(2010)$.
				J^{π} : γ' s to 4 ⁺ and 3 ⁻ , E1 γ from 0 ⁻ , 1 ⁻ capture level in (n,γ) E=thermal.
2029.8 3	3 ⁺		K	J^{π} : M1+E2 γ to 2 ⁺ .
2046.99 6	2 ⁺		DEF H pq S	XREF: p(2050),Q(2052).
				J^{π} : γ' s to 3 ⁺ , L=(2) natural parity in ¹⁹⁴ Pt(t,p). E1 γ from
				0^- , 1^- capture level in (n,γ) E=thermal.
2055 3	$1^+, 2^+$		M pq	XREF: p(2050),Q(2052).
				J^{π} : L=0+2 in ¹⁹⁷ Au(d, ³ He).
2067.06 11	5-,6		K	J^{π} : From $\gamma(\theta)$ and excitation functions in 2002Ta14. 5,6,7 in
	01.41.61			figure 2 of 2002Ta14.
2069.29 20	$0^+,1^+,2^+$		EF H	J^{π} : γ' s to 2^+ .
2072 2084.30 <i>11</i>	6 ⁺		Q K	J^{π} : from $\gamma(\theta)$ and DWBA in ¹⁹⁸ Pt(p,t). J^{π} : From $\gamma(\theta)$ and excitation functions in 2002Ta14. (5) in
2004.30 11	4-,5,6-		K	figure 2 of 2002Ta14.
2087.327 21	3-,4+		EF	J^{π} : γ' s to 2^+ and 5^- .
2093.0 3	(2^+)		DEFGH Q S	XREF: Q(2095).
	,		·	J^{π} : L=(2) in ¹⁹⁴ Pt(t,p), γ' s to 2 ⁺ and 3 ⁻ .
2116 2			d M Q	XREF: d(2120).
2124.389 22	$3^{-},4^{+}$		dEF pq	XREF: d(2120),p(2120),Q(2128).
				J^{π} : γ' s to 2^+ and 5^- .
2126.935 <i>15</i>	2+		dEF H M pq	XREF: d(2120),p(2120),Q(2128).
				J^{π} : γ' s to 2^+ and 3^- , 4^+ , L=2 in 197 Au(d, 3 He). E1 γ from
2161.5? 4	$(9^-,10,11^-)$		В	0^- , 1^- capture level in (n,γ) E=thermal. J^{π} : γ' s to 9^- , γ' s from $(9^-,10,11^-)$.
2162.70 8	2+		EFGH Q	XREF: Q(2164).
2102170 0	-		22 0	J^{π} : γ' s to 2^+ and 3^- .
2170.73 19	$(5),6^{(-)}$		K	J^{π} : From $\gamma(\theta)$ and excitation functions in 2002Ta14. 6 ⁻ ,7 ⁻ in
				figure 2 of 2002Ta14.
2174.43 12	$0^+, 2^+$		DEF H m Q	XREF: M(2179).
				J^{π} : E1 γ from 0 ⁻ , 1 ⁻ capture level in (n,γ) E=thermal.
2183.6 <i>3</i>	$1^+, 2^+$		EF H m	XREF: M(2179).
2100 45 5	0+		DEE II O	J^{π} : γ' s to 0^+ .
2199.45 5	U.		DEF H Q	XREF: $d(2196)$, $Q(2193)$. J^{π} : L=0 in ¹⁹⁴ Pt(t,p).
				J^{-} . L=0 III \mathcal{L}^{-} Pt(t,p).

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF		Comments
2204.431 12	1+,2+		EFGH	Q	J^{π} : γ' s to 0^+ , E1 γ from 0^- , 1^- capture level in (n,γ)
2229.6 <i>3</i>	2+		EFGH		E=thermal. J^{π} : γ' s to 2^+ and 4^+ .
2236.32 21	$(5),6^-,7^-$		K		J^{π} : From excitation functions. (5),6,7 in figure 2 of
2244.57 20	3+,4,5+		K		2002Ta14. J^{π} : γ to 4^{+} , $\gamma(\theta)$ and excitation functions in 2004Ta14.
2245.559 14	1+,2+	0.13 ps 4	EFGH M	RS	3 ⁺ ,4 ⁺ ,5 ⁺ ,(6 ⁺) in figure 2 of 2002Ta14. XREF: M(2243).
2243.33) 14	1 ,2	0.13 ps 4	LI GII	KJ	$T_{1/2}$: from $\Gamma_0/\Gamma = 0.77$ 3, $\Gamma_0 = 2.7$ meV 9 in 196 Pt (γ, γ') .
					J^{π} : γ' s to 0^+ , E1 γ from 0^- , 1^- capture level in (n,γ) E=thermal.
2252.7‡ 6	8+	0.42 ps +4-5	N		J^{π} : E2 γ to 6 ⁺ , γ' s to 7 ⁻ and 9 ⁻ , ground-state band
					member.
					$T_{1/2}$: deduced from B(E2) and adopted γ -ray properties, see Coulomb excitation.
2262.428 <i>16</i>	2+		dEF H	QS	XREF: d(2267).
2271.2 4	2+		d H K		J^{π} : γ' s to 1 ⁺ and 3 ⁺ , L=(2) in ¹⁹⁴ Pt(t,p) for E=2267 6.
22/1.2 4	2		ипк		XREF: d(2267). J^{π} : M1+E2 γ to 2 ⁺ .
2277 4	9-			Q	J^{π} : from $\gamma(\theta)$ and DWBA (1981HyZY) in ¹⁹⁸ Pt(p,t).
2280 2	4+		J M		J^{π} : L=4 in ¹⁹⁶ Pt(p,p').
2296 4	$(7^-,8^+)$			Q	J^{π} : from L=7; J^{π} =8 ⁺ , E=2293 keV from $\gamma(\theta)$ and DWBA (1981HyZY).
2309.23 4	$(2)^{+}$		DEF H M		XREF: d(2305),K(2305).
	,				J^{π} : L=(2) in ¹⁹⁴ Pt(t,p), γ' s to 0 ⁺ and 2 ⁺ .
2324.224 22	1+,2+		DEF H M		XREF: $d(2326)$, $M(2331)$. J^{π} : γ 's to 2^{+} and 0^{+} .
2345.3 3	1+,2+		EF H M		XREF: M(2349).
2365.976 19	2+		EF H M	q	J^{π} : γ 's to 0^+ . XREF: Q(2370).
2275 11 10	1+ 2+				J^{π} : γ' s to 2 ⁺ and 3 ⁻ .
2375.11 19	1+,2+		EF H	q	XREF: Q(2370). J^{π} : γ' s to 0^+ and 2^+ .
2383.33 6	$0^+, 1^+, 2^+$		EF H	Q	XREF: Q(2386).
2393 2			М		J^{π} : γ' s to 2^+ .
2403.66 6	2+		EFGH		J^{π} : γ' s to 2^+ and 4^+ .
2420.4 <i>1</i>	$(2,3,4^+)$	68 fs	K		J^{π} : from data on $\gamma(\theta)$, excitation functions, decay
					patterns and $T_{1/2}$. See $(n,n'\gamma)$. $T_{1/2}$: from DSA in $(n,n'\gamma)$, $\Delta T_{1/2}$ =+400-37 (1993Di05).
2422.51 4	$0^+, 1^+, 2^+$		DEF H		XREF: d(2419).
2423.42 7	$(1^+, 2^+, 3)$	67 fs +58-24	K		J^{π} : γ' s to 2^+ . J^{π} : from data on $\gamma(\theta)$, excitation functions, decay
	(, ,-,-				patterns and $T_{1/2}$. See $(n,n'\gamma)$.
2423.7 <i>3</i>	3-			Q S	$T_{1/2}$: from DSA in $(n,n'\gamma)$ (1993Di05). J^{π} : γ to $2^+,3^-$. $\gamma(\theta)$ and DWBA from 1981HyZY
2.20.7					suggests 7 ⁻ .
2429.7 <i>4</i>	3-	>166 fs	JK M		$\beta_3 = 0.042 \ 4 \ (1988\text{Co}19)$
					B(E3)↑=0.079 <i>10</i> J ^π : L=3 in ¹⁹⁶ Pt(p,p').
					$T_{1/2}$: from DSA in $(n,n'\gamma)$ (1993Di05).
					B(E3)↑: Weighted average of 0.070 <i>14</i> (1988Co19) and
2422 5 2	(0.1.2.2.4)	17.6 . 12. 7			0.087 <i>14</i> (1992Po09).
2433.7 2	(0,1,2,3,4)	17 fs +12-7	K		J^{π} : from data on $\gamma(\theta)$, excitation functions, decay patterns and $T_{1/2}$.

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF		Comments
2438.0 <i>I</i>	(1+,2,3,4+)	53 fs + <i>37</i> – <i>17</i>	K		$T_{1/2}$: from DSA (1993Di05). J^{π} : from data on $\gamma(\theta)$, excitation functions, decay patterns and $T_{1/2}$.
2443.93 22	2+		DEFGH	Q	$T_{1/2}$: from DSA (1993Di05). XREF: d(2449),Q(2440). J^{π} : γ' s to 2 ⁺ and 4 ⁺ .
2454.2 <i>3</i> 2460.1 <i>3</i>	$(7^-,8^+)$ $0^+,1^+,2^+$		B EF H	Q	J^{π} : see 1430 level. XREF: Q(2462). J^{π} : γ' s to 2^{+} .
2468.0 <i>3</i>	10-,11-	<1 ns	В		J ^{π} : E2 γ to 9 ^{$-$} , no γ to J ^{π} <9. T _{1/2} : from $\beta\gamma$ (t) measurements (1968Ja06) in ¹⁹⁶ Ir β ^{$-$}
2469.85 <i>17</i> 2488.238 <i>24</i>	1 ⁻ ,2 ⁺ 1 ⁺ ,2 ⁺		EF H M dEF H		decay (1.40 h). J^{π} : see 1755 level. XREF: d(2489).
2493.5 <i>11</i> 2505.12 <i>5</i>	0 ⁺ ,1 ⁺ ,2 ⁺ 2 ⁺		d GH EF H M		J^{π} : γ' s to 0^+ and 2^+ . XREF: d(2489). XREF: M(2505). J^{π} : γ' s to 0^+ , E1 γ from 0^- , 1^- capture level in (n,γ)
2527.84 <i>4</i>	1+,2+		dEF H	Q	E=thermal. XREF: d(2529). $J^{\pi}: \gamma's \text{ to } 0^+ \text{ and } 3^-, E1 \gamma \text{ from capture level in } (n,\gamma)$
2529.3 3	2+		dEFGH	Q	E=thermal. XREF: d(2529). J^{π} : γ' s to 4^{+} , E1 γ from 0^{-} , 1^{-} capture level in (n,γ)
2545 <i>5</i> 2553.8 <i>8</i>	0+,2+		m E H m	Q Q	E=thermal. XREF: M(2550). XREF: M(2550).
					J^{π} : E1 γ from 0 ⁻ , 1 ⁻ capture level in (n,γ) E=thermal. J^{π} : from the average capture results in 195 Pt (n,γ) E=2 keV.
2570.8 7	1+	0.021 ps 4	F H M	R	J ^π : from M1 excitation in ¹⁹⁶ Pt(γ , γ'). T _{1/2} : from Γ_0/Γ =0.63 6, Γ_0 =13.6 meV 22 in ¹⁹⁶ Pt(γ , γ').
2586.9 7	$0^+, 2^+$		d Hi M		XREF: $d(2591)$, $I(2600)$. J^{π} : L=(2) in 194 Pt(t,p).
2599.1 9	$(0,1^-,2)$		d F Hi		XREF: d(2591),I(2600). J^{π} : from the average capture results in ¹⁹⁵ Pt(n, γ) E=2
2603.2 2	(1,2,3,4,5)	>66 fs	i K		keV. XREF: I(2600). J^{π} : from data on $\gamma(\theta)$, excitation functions, decay
2606.0 1	(2,3,4,5)	>111 fs	i K		patterns and $T_{1/2}$. $T_{1/2}$: from DSA (1993Di05). XREF: I(2600). J^{π} : from data on $\gamma(\theta)$, excitation functions, decay patterns and $T_{1/2}$.
2606.8 8	0+,2+,(1+)		Hi	q	$T_{1/2}$: from DSA (1993Di05). XREF: I(2600),Q(2609). J^{π} : from the average capture results in ¹⁹⁵ Pt(n, γ) E=2
2608.0 2	3-	31 fs +12-8	i K M	q	keV. B(E3) \uparrow =0.034 7 (1988Co19); β_3 =0.029 3 (1988Co19) XREF: I(2600),Q(2609). J ^{π} : L=3 in ¹⁹⁶ Pt(p,p').
2614.5 7	0+,1+,2+		E Hi	q	T _{1/2} : from DSA (1993Di05). XREF: I(2600),Q(2609). J ^π : from the average capture results in ¹⁹⁵ Pt(n,γ) E=2 keV.

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF		Comments
2626.4 <i>1</i>	(1,2,3)	83 fs	K		J^{π} : from data on $\gamma(\theta)$, excitation functions, decay
2629.9 8	2+		D H	Q	patterns and $T_{1/2}$. $T_{1/2}$: from DSA, $\Delta T_{1/2}$ =+527-42 (1993Di05). XREF: d(2626),Q(2627). J^{π} : 0 ⁺ ,2 ⁺ ,(0 ⁻ ,1 ⁻ ,2 ⁻) from the average capture results.
2631.1 <i>I</i>	(2+,3,4+)	24 fs +14-8	K		J ^π : L=(2) in ¹⁹⁴ Pt(t,p). J ^π : from data on $\gamma(\theta)$, excitation functions, decay patterns and T _{1/2} .
2638 3	3-		ј М	Q	$T_{1/2}$: from DSA (1993Di05). B(E3)↑=0.071 10; β ₃ =0.042 4 (1988Co19) XREF: Q(2635). J ^π : L=3 in ¹⁹⁶ Pt(p,p'). B(E3)↑: Weighted average of 0.070 14 (1988Co19) and
2659.8 8	0+,1+,2+		E GHi	Q	0.072 <i>13</i> (1992Po09). XREF: I(2670),Q(2655). J ^{π} : from the average capture results in ¹⁹⁵ Pt(n, γ) E=2 keV.
2667.246 23	1+,2+	0.14 ps +2- <i>I</i>	DEF Hi	Q	XREF: $I(2670)$. J^{π} : γ' s to 0^{+} .
2676 <i>3</i> 2692.2 8			i D K	Q	$T_{1/2}$: from Doppler broadening (1990Bo29). XREF: I(2670).
2711.0 <i>I</i>	3-	>55 fs	K M		B(E3)↑=0.051 <i>10</i> (1988Co19); $β_3$ =0.036 <i>4</i> (1988Co19) J^{π} : L=3 in ¹⁹⁶ Pt(p,p'). $T_{1/2}$: from DSA (1993Di05).
2723 5			D		,
2729 2736.1	11 ⁻ (1 ⁺)	0.13 ps 5		Q R	J ^π : from $\gamma(\theta)$ and DWBA in ¹⁹⁸ Pt(p,t) (1981HyZY). J ^π : from M1 excitation in ¹⁹⁶ Pt(γ,γ'). T _{1/2} : from $\Gamma_0/\Gamma=1$, $\Gamma_0=3.6$ meV 13 in ¹⁹⁶ Pt(γ,γ').
2749.6 [#] 6	$(7^-,8^+)$	0.46 ps +8-6	N		J^{π} : γ' s to 6^+ and 9^- . $T_{1/2}$: deduced from B(E2) and adopted γ -ray properties.
2757 <i>4</i> 2766 <i>3</i> 2774 <i>4</i>			D M	Q Q	XREF: d(2756). XREF: d(2774).
2779 <i>3</i> 2797 <i>3</i>			M M	Q	AREA: 0(2771).
2817 6			D		406
2824.0	1+	7.1 fs <i>13</i>		R	J ^π : from M1 excitation in ¹⁹⁶ Pt(γ , γ'). T _{1/2} : from Γ ₀ /Γ=0.41 4, Γ ₀ =27.5 meV 42 in ¹⁹⁶ Pt(γ , γ').
2834 5			D		
2875.4	1+,(2)+	0.088 ps <i>15</i>	D	R	J ^{π} : J^{π} =1 ⁺ from M1 excitation in ¹⁹⁶ Pt(γ,γ'), L=(2) in ¹⁹⁴ Pt(t,p).
2888.8? <i>4</i> 2974	(9 ⁻ ,10,11 ⁻) 9 ⁻		В	Q	$T_{1/2}$: from $\Gamma_0/\Gamma = 1$, $\Gamma_0 = 5.2$ meV 9 in 196 Pt(γ, γ'). J^{π} : γ' s to 11 ⁻ and 9 ⁻ , log $ft = 6.5$ from (10,11 ⁻). J^{π} : from $\gamma(\theta)$ and DWBA (1981HyZY) in 198 Pt(p,t).
3044.0 [‡] 9	(10^+)		N		J^{π} : γ' s to 8^+ , ground-state band member.
3124.2	1,2	0.13 ps 4		R	J ^π : γ excitation in ¹⁹⁶ Pt(γ , γ'). T _{1/2} : from Γ_0/Γ =1, Γ_0 =3.5 meV 10 in ¹⁹⁶ Pt(γ , γ').
3131.8	1,2	0.13 ps 4		R	J^{π} : γ excitation in $^{196}\text{Pt}(\gamma, \gamma')$. $T_{1/2}$: from $\Gamma_0/\Gamma=1$, $\Gamma_0=3.4$ meV 10 in $^{196}\text{Pt}(\gamma, \gamma')$.
3161.9 <i>4</i> 3176.3? <i>4</i>	(9 ⁻ ,10,11 ⁻) (9 ⁻)		B B		J^{π} : γ' s to 11 ⁻ and 9 ⁻ , log ft =5.9 from (10,11 ⁻). J^{π} : γ' s to 7 ⁻ and 9 ⁻ , log ft =6.7 from (10,11 ⁻).
3214.8? <i>4</i>	(9-)		В		J^{π} : γ' s to 7 ⁻ and 9 ⁻ , $\log f = 6.5$ from (10,11 ⁻).
3298.0	2+	0.029 ps 4		R	J^{π} : γ excitation in ¹⁹⁶ Pt(γ, γ').

¹⁹⁶Pt Levels (continued)

E(level) [†]	$J^{\pi a}$	T _{1/2}	XREF		Comments
3303.5 3	$(10,11^{-})$		В		$T_{1/2}$: from $\Gamma_0/\Gamma=1$, $\Gamma_0=15.7$ meV 21 in 196 Pt(γ,γ'). J^{π} : γ' s to 11 ⁻ and 9 ⁻ , log $ft=5.1$ from (10,11 ⁻).
3366.8	1,2	0.13 ps 3		R	J^{π} : γ excitation in 196 Pt(γ, γ').
					$T_{1/2}$: from $\Gamma_0/\Gamma=1$, $\Gamma_0=3.5$ meV 7 in 196 Pt(γ,γ').
3424.3	1,2	0.064 ps 12		R	J^{π} : γ excitation in 196 Pt(γ, γ').
					$T_{1/2}$: from $\Gamma_0/\Gamma = 1$, $\Gamma_0 = 7.1$ meV 13 in 196 Pt (γ, γ') .

[†] From least-squares fit to E γ 's. In addition to the (d,p) levels shown, broad peaks at 2010 20, 2600 20, and 2670 20 are reported. Each of these could correspond to one or more Adopted Levels.

[‡] Band(A): ground-state rotational band.

[#] Band(B): γ vibrational band.

[@] Band(C): Band based on the 0+(2) state Related either to the β -vibration or to the K=0 two-phonon γ -vibration.

[&]amp; Band(D): semi-decoupled negative-parity band. a From the average capture results in 195 Pt(n, γ) E=2 keV, and other arguments as noted.

$\gamma(^{196}\text{Pt})$

							, ,	-	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}^{\ \ \sharp}$	E_f	\mathbf{J}_f^{π}	Mult. ^d	δ^f	α^{g}	Comments
355.6841	2+	355.684 2	100.0	0.0	0+	E2		0.0603	α (K)=0.0402 6 ; α (L)=0.01520 22 ; α (M)=0.00377 6 ; α (N+)=0.001081 16 B(E2)(W.u.)=40.60 20 Mult.: based on α (K)exp=0.0395 22 (1962Ja10),0.041 3 and 0.042 3 (1962Ge07), 0.0367 24 (1960De17), 0.042 3 (1956Th10). Supported by K/L=2.1 I , L/M+=2.9 I ; see also I 40 I 6 decay and I 196 Pt Coulomb excitation.
688.693	2+	332.983 24	100.0 23	355.6841	2+	E0+M1+E2	-5.2 5	0.0782 17	Measured prompt yrast γ production cross sections in ¹⁹⁶ Pt reaction with 1-250 MeV spallation neutrons (2001Ta31). B(E2)(W.u.)=54 +11-12; B(M1)(W.u.)=0.00058 +13-9 α (K)=0.0523 14; α (L)=0.0197 3; α (M)=0.00488 7;
1									α (N+)=0.001399 21
									δ : from ¹⁹⁶ Au ε decay (6.1669 d).
									Mult.: $ce(E0)/I\gamma \approx 0.003$ or 0.009 from $Q^2 = ce(E0)/ce(E2) \approx 0.05$ or
									0.17 with $\alpha(K)=0.0529$ from ¹⁹⁶ Au ε decay.
									B(M1)(W.u.) and B(E2)(W.u.) values corrected, B. Singh, Aug 13, 2021. Previous value of B(M1)(W.u.)=0.0158 7 in this dataset
									was incorrect since it corresponded to pure M1 for 332.98 γ , not
									M1+E2, δ =-5.2 5. Note that E0 admixture is considered insignificant, as indicated by measured ce(E0)/I γ ≈0.003 or 0.009 in ¹⁹⁶ Au ε decay.
									In SAu ε decay. Measured prompt nonyrast γ production cross sections in ¹⁹⁶ Pt
		688.76 10	< 0.0005	0.0	0+	(E2)		0.01184	reaction with 1-250 MeV spallation neutrons (2001Ta31). $\alpha(K)$ =0.00924 13; $\alpha(L)$ =0.00199 3; $\alpha(M)$ =0.000473 7; $\alpha(N+)$ =0.0001375 20
									$B(E2)(W.u.) < 7.8 \times 10^{-6}$
									B(E2)(W.u.) value edited, B. Singh, Aug 13, 2021. Previous value
									was 4×10^{-6} 4 in this dataset.
876.865	4+	521.175 5	100	355.6841	2+	E2		0.0224	$\alpha(K)$ =0.01667 24; $\alpha(L)$ =0.00436 6; $\alpha(M)$ =0.001055 15; $\alpha(N+)$ =0.000305 5 B(E2)(W.u.)=60.0 9
									Measured prompt yrast γ production cross sections in ¹⁹⁶ Pt
									reaction with 1-250 MeV spallation neutrons (2001Ta31).
1015.044	3+	138.178 4	1.3 4		4 ⁺	[M1]		2.65	$\alpha(K)=2.18 \ 3; \ \alpha(L)=0.360 \ 5; \ \alpha(M)=0.0833 \ 12; \ \alpha(N+)=0.0246 \ 4$
		326.349 <i>4</i>	100 8	688.693	2+	E2		0.0769	$\alpha(K)$ =0.0496 7; $\alpha(L)$ =0.0207 3; $\alpha(M)$ =0.00516 8; $\alpha(N+)$ =0.001478 21
									Mult.: from K/L=2.7 8 in 195 Pt(n, γ) E=thermal.
									Measured prompt nonyrast γ production cross sections in ^{196}Pt
		(50.200.32	4.4.6	255 (0/1	2+	0.41)		0.0270	reaction with 1-250 MeV spallation neutrons (2001Ta31).
		659.389 12	4.4 9	355.6841	2	(M1)		0.0379	$\alpha(K)$ =0.0314 5; $\alpha(L)$ =0.00501 7; $\alpha(M)$ =0.001153 17; $\alpha(N+)$ =0.000340 5
1135.312	0_{+}	446.613 <i>3</i>	39 <i>3</i>	688.693	2+	E2		0.0328	B(E2)(W.u.)=18 10

γ (196Pt) (continued)

							7(Tt) (contin	- Control of the Cont
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^{π}	Mult.d	α^{g}	$I_{(\gamma+ce)}$	Comments
									$\alpha(K)$ =0.0236 4; $\alpha(L)$ =0.00704 10; $\alpha(M)$ =0.001723 25; $\alpha(N+)$ =0.000496
									7 Mult.: from K/L=2.4 9 in 195 Pt(n, γ) E=thermal.
1135.312	0_{+}	779.630 7	100 8	355.6841	2+	E2	0.00908		B(E2)(W.u.)=2.8 15 α (K)=0.00720 10; α (L)=0.001445 21; α (M)=0.000342 5;
									$\alpha(N)=0.00720 \text{ 10, } \alpha(L)=0.001443 \text{ 21, } \alpha(M)=0.000342 \text{ 3,}$ $\alpha(N+)=9.96\times10^{-5} \text{ 14}$
		1125.2.7		0.0	0+	Eo		0.024	Mult.: from $\alpha(K)$ exp=0.017 7 in ¹⁹⁵ Pt(n, γ) E=thermal.
		1135.3 7		0.0	0+	E0		< 0.024	$I_{(\gamma+ce)}$: Iε: Ice(K)/Σ Iγ <0.01 (1982Ka28), Σ Iγ/Iγ(779γ)=1.39. ce(K)<0.6 (1982Ka28).
									ce(K): ce(K) is given for per 1000 capture events where it is assumed
									that 80% percent of capture events populate the $2(1)^+$ state $ce(K)<0.01\%$ for E0 branch, relative to the total depopulating intensity
									from 1135-keV level (1982Ka28). X(E0)=B(E0)[0+ to 0+(0)]/B(E2)[0+ to 2+(356)]<0.005 (1982Ka28) in
									195 Pt(n, γ) E=thermal.
1270.214	5-	393.346 7	100	876.865	4+	E1	0.01396		B(E1)(W.u.)= $2.9 \times 10^{-6} 6$
									$\alpha(K)$ =0.01159 17; $\alpha(L)$ =0.00182 3; $\alpha(M)$ =0.000419 6; $\alpha(N+)$ =0.0001220 17
									Measured prompt yrast γ production cross sections in ¹⁹⁶ Pt reaction with
		914.6 <i>3</i>	0.30 5	355.6841	2+	[E3]	0.01533		1-250 MeV spallation neutrons (2001Ta31). B(E3)(W.u.)=2.7 7
		714.0 3	0.30 3	333.0041	2	[L3]	0.01555		$\alpha(K)=0.01145 \ 16; \ \alpha(L)=0.00295 \ 5; \ \alpha(M)=0.000716 \ 10;$
									$\alpha(N+)=0.000209 \ 3$ α : E3 α (theory)'s mult. By 0.975 10 (Cf. 1990Ne01).
									I_{γ} , E_{γ} : from ¹⁹⁶ Ir β ⁻ decay (1.40 h).
									Mult.: γ' s to 2 ⁺ , and from recommended upper limits for γ -ray strengths.
1293.308	4+	416.443 <i>6</i>	17 5	876.865	4+				$\alpha(K)$ = 0.0346; $\alpha(L)$ =0.00968; $\alpha(M)$ =0.00235; $\alpha(N+)$ =0.00072 B(M1)(W.u.)=0.0076 25; B(E2)(W.u.)=17 6
									Mult.: from recommended upper limits for γ -ray strengths.
									δ: extrapolated using a theoretical model of Greiner (1966Gr32), see Coulomb excitation (1990Ma37).
									1966GrZX reference corrected to 1966Gr32, B. Singh, Aug 13, 2021.
		604.616 7	100 8	688.693	2+	[E2]	0.01582		$\alpha(K)=0.01211 \ 17; \ \alpha(L)=0.00283 \ 4; \ \alpha(M)=0.000680 \ 10;$
									α(N+)=0.000197 3 B(E2)(W.u.)=29 +6-29
									Mult.: from γ' s to 2^+ and Coulomb excitation.
		937.62 7	17 2	355.6841	2+	[E2]	0.00622		$\alpha(K)$ =0.00502 7; $\alpha(L)$ =0.000926 13; $\alpha(M)$ =0.000217 3; $\alpha(N+)$ =6.34×10 ⁻⁵ 9
									B(E2)(W.u.)=0.56 +12-17
1261 505	2+	226.270.3	42.10	1125 212	0+	EEQ1	0.220		Mult.: from γ' s to 2 ⁺ and Coulomb excitation.
1361.585	2+	226.270 3	4.3 10	1135.312	0+	[E2]	0.238		B(E2)(W.u.)=5 5 α (K)=0.1244 18; α (L)=0.0855 12; α (M)=0.0217 3; α (N+)=0.00618 9
		346.541 <i>3</i>	22 4	1015.044	3 ⁺	[M1]	0.207		B(M1)(W.u.)=0.0010 9
									$\alpha(K)$ =0.1707 24; $\alpha(L)$ =0.0277 4; $\alpha(M)$ =0.00640 9; $\alpha(N+)$ =0.00189 3

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.d	$\alpha^{\mathbf{g}}$	$\mathrm{I}_{(\gamma+ce)}$	Comments
1361.585	2+	484.707 25	4.7 13	876.865	4+	[E2]	0.0267		B(E2)(W.u.)=0.13 12 α (K)=0.0196 3; α (L)=0.00544 8; α (M)=0.001323 19; α (N+)=0.000382 6
		672.900 7	100 7	688.693	2+	(M1+E2)	0.024 12		B(M1)(W.u.)=0.0003 3; B(E2)(W.u.)=0.26 23 α (K)=0.020 10; α (L)=0.0034 14; α (M)=0.0008 3; α (N+)=0.00023 9
		1005.894 20	80 <i>7</i>	355.6841	2+				Mult.: from $\alpha(K)$ exp and K/L in 195 Pt (n,γ) E=thermal.
		1361.0 <i>10</i>	18 3	0.0	0+	[E2]	0.00305		B(E2)(W.u.)=0.0025 24 α (K)=0.00249 4; α (L)=0.000410 6; α (M)=9.48×10 ⁻⁵ 14; α (N+)=5.61×10 ⁻⁵ 8
	_		@		_				E_{γ} : from ¹⁹⁶ Au ε decay.
1373.60	7-	103.3 2	100 [@]		5-	E2	4.28 7		α (K)=0.685 <i>10</i> ; α (L)=2.70 <i>5</i> ; α (M)=0.699 <i>12</i> ; α (N+)=0.197 <i>4</i> B(E2)(W.u.)=25.9 <i>13</i>
1402.727	0+	714.041 20	<2.4 ^a	688.693	2+	[E2]	0.01095		B(E2)(W.u.)<0.41 α (K)=0.00858 <i>12</i> ; α (L)=0.00181 <i>3</i> ; α (M)=0.000430 <i>6</i> ; α (N+)=0.0001250 <i>18</i>
		1047.044 20	100 7	355.6841	2+	(E2)	0.00500		B(E2)(W.u.)<5.0 α (K)=0.00406 6; α (L)=0.000720 10; α (M)=0.0001681 24; α (N+)=4.92×10 ⁻⁵ 7
		1402.7 7		0.0	0+	E0		1.36 16	ce(K)=26.9 11 (1982Ka28). ce(K): Is is given for per 1000 capture events where it is assumed that 80% of capture events populate the 2(1) ⁺ state. ce(K)=0.90% for E0 branch, relative to the total depopulating intensity from 1403-keV level (1982Ka28). I _(γ+ce) : Is: From Ice(K)/ Σ I γ =0.90 (1982Ka28), Σ I γ /I γ (1047 γ)=1.024. X(E0)=B(E0)[O+ to 0+(0)]/B(E2)[0 ⁺ to 2+(356)]=0.092 (1982Ka28).
1429.74?	$(5^-,6^+)$	553.0 <i>3</i>	100	876.865	4+	[E2]	0.0194		$\alpha(K)=0.01465 \ 21; \ \alpha(L)=0.00366 \ 6; \ \alpha(M)=0.000882 \ 13; \ \alpha(N+)=0.000255 \ 4$
1447.043	3-	176.830 <i>3</i>	8.7 23	1270.214	5-	[E2]	0.551		α (N+)=0.00223 4 B(E2)(W.u.)=4.1 16 α (K)=0.231 4; α (L)=0.241 4; α (M)=0.0617 9; α (N+)=0.01749 25
		431.982 <i>24</i>	8.7 13	1015.044	3+	[E1,M2]	0.19 18		$B(E1)(W.u.)=1.1\times10^{-7} 4$; $B(M2)(W.u.)=2.6 9$
		570.203 18	4.7 13	876.865	4+	(E1+M2)	0.08 8		$\alpha(K)$ =0.15 14; $\alpha(L)$ =0.03 3; $\alpha(M)$ =0.007 7; $\alpha(N+)$ =0.0021 21 $\alpha(K)$ =0.07 7; $\alpha(L)$ =0.013 13 B(E1)(W.u.)=(2.5×10 ⁻⁸ 10); B(M2)(W.u.)=(0.36 14) Mult.: $\alpha(K)$ exp=0.016 6 consistent with E1+M2 or M1+E2. The
		758.358 10	20 7	688.693	2+	E1	0.00356		decay scheme requires $\Delta\pi$ =yes. α (K)exp gives δ =0.31 +9-11. B(E1)(W.u.)=9.E-8 4 α (K)=0.00298 5; α (L)=0.000445 7; α (M)=0.0001016 15; α (N+)=2.98×10 ⁻⁵ 5

γ (196Pt) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult.d	α^{g}	Comments
1447.043	3-	1091.331 17	100 7	355.6841	2+	E1	0.00181	Measured prompt nonyrast γ production cross sections in ¹⁹⁶ Pt reaction with 1-250 MeV spallation neutrons (2001Ta31). B(E1)(W.u.)=1.5×10 ⁻⁷ 5 α(K)=0.001521 22; α(L)=0.000222 4; α(M)=5.06×10 ⁻⁵ 7; α(N+)=1.486×10 ⁻⁵ 21
		1446.84 ⁱ 12	15 ⁱ 3	0.0	0+	[E3]	0.00554	Measured prompt nonyrast <i>γ</i> production cross sections in ¹⁹⁶ Pt reaction with 1-250 MeV spallation neutrons (2001Ta31). B(E3)(W.u.)=5.9 21 α (K)=0.00441 7; α (L)=0.000849 12; α (M)=0.000200 3; α (N+)=7.99×10 ⁻⁵ 12
1525.8	6 ⁺	649.3 7	100 ^b	876.865	4+	[E2]	0.01348	α : E3 α (theory)'s mult. By 0.975 10 (Cf. 1990Ne01). α (K)=0.01043 15; α (L)=0.00233 4; α (M)=0.000556 8; α (N+)=0.0001614 24 B(E2)(W.u.)=73 +4-73
1535.8	4+	521 <i>I</i>	100 <mark>b</mark> 7	1015.044	3 ⁺	[M1,E2]	0.046 24	Mult.: from Coulomb excitation. $\alpha(K)=0.037\ 21;\ \alpha(L)=0.0068\ 25;\ \alpha(M)=0.0016\ 6;\ \alpha(N+)=0.00047\ 17$
1333.6	7	847 1	0.18^{b} 7	688.693	2+	[E2]	0.00765	$\alpha(K)$ =0.0057 21, $\alpha(L)$ =0.0008 25, $\alpha(M)$ =0.0010 6, $\alpha(M+1)$ =0.00047 17 $\alpha(K)$ =0.00611 9; $\alpha(L)$ =0.001178 17; $\alpha(M)$ =0.000278 4; $\alpha(M+1)$ =8.10×10 ⁻⁵ 12
		1180 <i>I</i>	0.22 ^b 9	355.6841	2+	[E2]	0.00397	$\alpha(K)$ =0.00325 5; $\alpha(L)$ =0.000554 8; $\alpha(M)$ =0.0001288 19; $\alpha(N+)$ =4.04×10 ⁻⁵ 6
1604.494	2+	201.769 6	4 1	1402.727	0^+	(E2)	0.349	$\alpha(K)=0.1662\ 24;\ \alpha(L)=0.1375\ 20;\ \alpha(M)=0.0351\ 5;\ \alpha(N+)=0.00995\ 14$
		589.434 20	4 2	1015.044	3 ⁺	[M1,E2]	0.034 17	Mult.: from K/L in ¹⁹⁵ Pt(n, γ) E=thermal. α (K)=0.027 15; α (L)=0.0049 19; α (M)=0.0011 4; α (N+)=0.00033 13
		727.581 23	44 9	876.865	4+	(E2)	0.01051	$\alpha(K)$ =0.00826 12; $\alpha(L)$ =0.001722 25; $\alpha(M)$ =0.000409 6; $\alpha(N+)$ =0.0001190 17
		915.80 <i>6</i>	40 4	688.693	2+	[M1,E2]	0.011 5	Mult.: from ce(K) in 195 Pt(n, γ) E=thermal. α (K)=0.009 5; α (L)=0.0016 6; α (M)=0.00036 14; α (N+)=0.00011 4
		1248.84 3	100 9	355.6841		E0+M1+E2	0.0055 20	$\alpha(K)$ exp=0.058 5 (1982Ka28) $\alpha(K)$ =0.0046 17; $\alpha(L)$ =0.00073 24; $\alpha(M)$ =0.00017 6; $\alpha(N+)$ =6.2×10 ⁻⁵ 19
								ce(K): Relative to 1249 γ intensity as 100 from 1982Ka28. Mult.: from $\alpha(K)$ exp in 195 Pt(n, γ) E=thermal.
		1604.3 <i>3</i>	20 4	0.0	0+	[E2]	0.00233	Mult.: from $\alpha(K)$ exp in FF(n, γ) E=thermal. $\alpha(K)$ =0.00185 3; $\alpha(L)$ =0.000294 5; $\alpha(M)$ =6.76×10 ⁻⁵ 10; $\alpha(N+)$ =0.0001218 17
1609.74	(5 ⁺)	594.7 2	100 &	1015.044	3+	[E2]	0.01643	$\alpha(K)=0.01254 \ 18; \ \alpha(L)=0.00297 \ 5; \ \alpha(M)=0.000713 \ 10; \ \alpha(N+)=0.000207 \ 3$
1677.256	2+	315.58 <i>8</i> 541.942 <i>20</i>	3 <i>1</i> 5 <i>1</i>	1361.585 1135.312	2 ⁺ 0 ⁺	[M1,E2] [E2]	0.18 <i>9</i> 0.0204	$\alpha(N+)=0.0002073$ $\alpha(K)=0.14$ 9; $\alpha(L)=0.030$ 7; $\alpha(M)=0.0071$ 12; $\alpha(N+)=0.0021$ 4 $\alpha(K)=0.01531$ 22; $\alpha(L)=0.00388$ 6; $\alpha(M)=0.000937$ 14; $\alpha(N+)=0.000271$ 4
		662.188 <i>16</i> 800.38 <i>5</i>	13 <i>3</i> 5 <i>1</i>	1015.044 876.865	3 ⁺ 4 ⁺	[M1,E2] [E2]	0.025 <i>13</i> 0.00860	$\alpha(N+)=0.0002714$ $\alpha(K)=0.021\ II;\ \alpha(L)=0.0036\ I4;\ \alpha(M)=0.0008\ 3;\ \alpha(N+)=0.00024\ I0$ $\alpha(K)=0.00683\ I0;\ \alpha(L)=0.001353\ I9;\ \alpha(M)=0.000320\ 5;$ $\alpha(N+)=9.32\times10^{-5}\ I3$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\sharp}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.d	α^g	$I_{(\gamma+ce)}$	Comments
1677.256	2+	988.54 7	21 3	688.693	2+	E0+M1+E2	0.010 4		$\alpha(K)\exp{=0.089}\ 11\ (1982Ka28);\ ce(K)=1.6\ 3$ $\alpha(K)=0.008\ 4;\ \alpha(L)=0.0013\ 5;\ \alpha(M)=0.00030\ 11;$ $\alpha(N+)=9.E-5\ 4$ $ce(K):\ Relative to 1678\gamma\ intensity\ as 100\ from\ 1982Ka28.$ $\alpha(K)(E2)=0.0046;\ \alpha(K)(M1)=0.015.$
		1321.74 4	60 20	355.6841	2+	[M1,E2]	0.0049 17		Mult.: from $\alpha(K)$ exp in 195 Pt(n, γ) E=thermal. E0 violates the O(6) selection rules for both σ and τ (1982Ka28). $\alpha(K)$ =0.0040 14; $\alpha(L)$ =0.00064 21; $\alpha(M)$ =0.00015 5; $\alpha(N+)$ =6.9×10 ⁻⁵ 20
		1677.5 2	100 13	0.0	0+	[E2]	0.00218		$\alpha(K)=0.001702\ 24;\ \alpha(L)=0.000269\ 4;\ \alpha(M)=6.18\times10^{-5}\ 9;$ $\alpha(N+)=0.0001481\ 21$
1679.81	(6-)	409.6 2	100 &	1270.214	5-	[M1,E2]	0.09 5		$\alpha(K)$ =0.07 5; $\alpha(L)$ =0.014 5; $\alpha(M)$ =0.0033 10; $\alpha(N+)$ =0.0010 3
1754.655	3-,4+	307.616 9	73 14	1447.043	3-	[M1,E2]	0.19 10		$\alpha(K)$ =0.15 9; $\alpha(L)$ =0.032 7; $\alpha(M)$ =0.0077 13; $\alpha(N+)$ =0.0022 4
		484.438 11	100 32	1270.214	5-	[M1,E2]	0.06 3		$\alpha(K)$ =0.05 3; $\alpha(L)$ =0.009 4; $\alpha(M)$ =0.0020 7; $\alpha(N+)$ =0.00063 22
		877.77 3	86 <i>14</i>	876.865	4+	[E1,M2]	0.024 22		$\alpha(K)$ =0.020 18; $\alpha(L)$ =0.003 4; $\alpha(M)$ =0.0008 8; $\alpha(N+)$ =0.00024 22
1795.09	2+,(1-)	1106.6 2 1439.38 6 1795.0 3	40 7 100 8 25 6	688.693 355.6841 0.0	2 ⁺ 2 ⁺ 0 ⁺				
1802.302	1+,2+	440.709 9	3 2	1361.585	2+	[M1,E2]	0.07 4		$\alpha(K)$ =0.06 4; $\alpha(L)$ =0.011 4; $\alpha(M)$ =0.0026 9; $\alpha(N+)$ =0.0008
		666.99 <i>3</i> 1113.72 <i>4</i>	2 <i>1</i> 19 <i>3</i>	1135.312 688.693	0 ⁺ 2 ⁺	[M1,E2]	0.007 3		$\alpha(K)$ =0.006 3; $\alpha(L)$ =0.0010 4
		1446.84 ⁱ 12	12 ⁱ 3	355.6841		[M1,E2]	0.0040 13		$\alpha(K) = 0.0033 \ 11; \ \alpha(L) = 0.00052 \ 16; \ \alpha(M) = 0.00012 \ 4;$ $\alpha(N+) = 9.9 \times 10^{-5} \ 24$
1804.80	(3+),4+	1802.3 <i>2</i> 443.21 <i>10</i>	100 8 100	0.0 1361.585	0 ⁺ 2 ⁺	E2	0.0335		$\alpha(K)$ =0.0240 4; $\alpha(L)$ =0.00722 11; $\alpha(M)$ =0.001767 25; $\alpha(N+)$ =0.000509 8
1820.69	9-	447.1 2	100 [@]	1373.60	7-	E2	0.0327		B(E2)(W.u.)>0.45 α (K)=0.0235 4; α (L)=0.00702 10; α (M)=0.001717 25;
1823.23	0+	1134.55 8	<0.8 ^a	688.693	2+	[E2]	0.00428		α (N+)=0.000495 7 α (K)=0.00349 5; α (L)=0.000604 9; α (M)=0.0001404 20; α (N+)=4.18×10 ⁻⁵ 6
		1467.53 8	100 10	355.6841	2+	[E2]	0.00268		$\alpha(K)=0.00217 \ 3; \ \alpha(L)=0.000351 \ 5; \ \alpha(M)=8.11\times10^{-5} \ 12;$
		1823.2 4		0.0	0+	E0		<0.11	 α(N+)=8.01×10⁻⁵ 12 ce(K)<0.6 (1982Ka28). ce(K): Iε is given for 1000 capture events where it is assumed that 80% of capture events populate the 2(1)⁺ state. ce(K)<0.08% for E0 branch, relative to the total depopulating intensity from 1823-keV level (1982Ka28).

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.d	α^g	Comments
1825.715	2+	378.675 14	22 3	1447.043	3-	[E1]	0.01520	X(E0)=B(E0)(0 ⁺ to 0+(0))/B(E2)(0 ⁺ to 2+(356))<0.03 (1982Ka28). α (K)=0.01262 $I8$; α (L)=0.00199 3 ; α (M)=0.000458 7 ;
								$\alpha(N+)=0.0001333 \ 19$
		423.00 <i>3</i>	9 1	1402.727	0+	[E2]	0.0378	$\alpha(K)$ =0.0267 4; $\alpha(L)$ =0.00841 12; $\alpha(M)$ =0.00206 3; $\alpha(N+)$ =0.000594 9
		464.126 9	4.2 9	1361.585	2+			
		690.403 12	17 3	1135.312	0+	[E2]	0.01177	$\alpha(K)$ =0.00919 13; $\alpha(L)$ =0.00197 3; $\alpha(M)$ =0.000470 7; $\alpha(N+)$ =0.0001367 20
		1137.01 <i>3</i>	32 10	688.693	2+			
		1826.0 2	100 8	0.0	0+	[E2]	0.00195	$\alpha(K)$ =0.001459 21; $\alpha(L)$ =0.000227 4; $\alpha(M)$ =5.22×10 ⁻⁵ 8; $\alpha(N+)$ =0.000207 3
1831.99	3 ⁺	816.94 <i>14</i>	100 <i>3</i>	1015.044	3+	M1+E2 ^e	0.015 7	$\alpha(K)$ =0.012 6; $\alpha(L)$ =0.0021 8; $\alpha(M)$ =0.00048 18; $\alpha(N+)$ =0.00014 6
		955.5 <i>5</i>	7 2	876.865	4+	M1+E2 ^e	0.010 5	$\alpha(K)$ =0.009 4; $\alpha(L)$ =0.0014 6; $\alpha(M)$ =0.00032 12; $\alpha(N+)$ =0.00010 4
		1143.2 <i>3</i>	32 <i>3</i>	688.693	2+	M1+E2 ^e	0.007 3	$\alpha(K)=0.0056\ 22;\ \alpha(L)=0.0009\ 4;\ \alpha(M)=0.00021\ 7;\ \alpha(N+)=6.3\times10^{-5}\ 22$
		1476.01		355.6841	2+	M1+E2€	0.0038 12	$\alpha(K)$ =0.0031 10; $\alpha(L)$ =0.00049 15; $\alpha(M)$ =0.00011 4; $\alpha(N+)$ =0.00011 3
1847.348	2+	242.858 17	1.1 5		2+	[M1,E2]	0.37 18	$\alpha(K)$ =0.28 18; $\alpha(L)$ =0.069 5; $\alpha(M)$ =0.0166 5; $\alpha(N+)$ =0.00482 21
		1158.82 <i>13</i>	5 <i>1</i>	688.693	2+	E0+M1+E2	0.0066 25	$\alpha(K)\exp<0.02 \ (1982Ka28); \ ce(K)\leq0.06$
								$\alpha(K)$ =0.0054 21; $\alpha(L)$ =0.0009 3; $\alpha(M)$ =0.00020 7; $\alpha(N+)$ =6.1×10 ⁻⁵ 21 ce(K): Relative to 1492 γ intensity as 100 from 1982Ka28. Mult.: from ¹⁹⁵ Pt(n, γ) E=thermal.
		1491.60 <i>4</i>	100 9	355.6841	2+	[M1,E2]	0.0038 12	Mult.: from α Pt(n, γ) E=thermal. α (K)=0.0030 10; α (L)=0.00048 14; α (M)=0.00011 4; α (N+)=0.00011 3
1853.659	2+	560.354 10	9.6 24	1293.308		[E2]	0.0038 12	$\alpha(K)$ =0.0030 10, $\alpha(L)$ =0.00048 14, $\alpha(M)$ =0.00011 4, $\alpha(M+)$ =0.00011 3 $\alpha(K)$ =0.01424 20; $\alpha(L)$ =0.00352 5; $\alpha(M)$ =0.000848 12; $\alpha(M+)$ =0.000246 4
		1497.85 6	100 9	355.6841	2+	[M1,E2]	0.0037 12	$\alpha(K)=0.0030 \ 10; \ \alpha(L)=0.00048 \ 14; \ \alpha(M)=0.00011 \ 4; \ \alpha(N+)=0.00012 \ 3$
		1853.6 <i>3</i>	20 3	0.0	0+	[E2]	0.00191	$\alpha(K)=0.001420\ 20;\ \alpha(L)=0.000221\ 3;\ \alpha(M)=5.07\times10^{-5}\ 8;$ $\alpha(N+)=0.000219\ 3$
1883.34	3+,4+	589.99 11		1293.308	4+	M1+E2 ^e	0.034 17	$\alpha(K)=0.027$ 15; $\alpha(L)=0.0049$ 19; $\alpha(M)=0.0011$ 4; $\alpha(N+)=0.00033$ 13
	- ,.	868.22 19	100 2	1015.044	3+			<u> </u>
		1195.0 2	47 2	688.693	2+	M1+E2 ^e	0.0061 23	$\alpha(K)=0.0051$ 19; $\alpha(L)=0.0008$ 3; $\alpha(M)=0.00019$ 7; $\alpha(N+)=6.0\times10^{-5}$ 20
		1527.56		355.6841	2+			., ., ., ., ., ., ., ., ., ., ., ., ., .
1888.139	1+,2+	526.58 <i>3</i>	2.6 7	1361.585	2+	[M1,E2]	0.045 24	B(M1)(W.u.)=0.0006 4; B(E2)(W.u.)=0.8 6 α (K)=0.036 20; α (L)=0.0066 25; α (M)=0.0016 6; α (N+)=0.00046 16
		752.823 <i>14</i>	13 2	1135.312	0^{+}			(ii) 0.000 20, a(2) 0.0000 25, a(ii) 0.0010 0, a(iv) 0.000 10 10
		1199.50 4	66 13	688.693	2+	[M1,E2]	0.0061 23	B(M1)(W.u.)=0.0013 9; B(E2)(W.u.)=0.34 22
						. , ,		$\alpha(K)=0.0050 \ 19; \ \alpha(L)=0.0008 \ 3; \ \alpha(M)=0.00019 \ 7; \ \alpha(N+)=6.0\times 10^{-5} \ 20$
		1532.30 ⁱ 5	72 ⁱ 20	355.6841	2+	[M1,E2]	0.0036 11	B(M1)(W.u.)=0.0007 5; B(E2)(W.u.)=0.11 8 α (K)=0.0029 9; α (L)=0.00045 13; α (M)=0.00010 3; α (N+)=0.00013 3
		1888.4 2	100.9	0.0	0+			$\alpha(K) = 0.0029 \text{ 9}; \ \alpha(L) = 0.00043 \text{ 15}; \ \alpha(M) = 0.00010 \text{ 5}; \ \alpha(M+) = 0.00013 \text{ 5}$
1001 7	(0-)		100 8 100 &			DAI ES	0.045.22	(IV) 0.026.20 (IV) 0.0066.24 (AB) 0.0015.6 (AT) 0.00045.16
1901.7	(8-)	528.1 2		1373.60	7- 5-	[M1,E2]	0.045 23	$\alpha(K)$ =0.036 20; $\alpha(L)$ =0.0066 24; $\alpha(M)$ =0.0015 6; $\alpha(N+)$ =0.00045 16
1901.89 1918.54	5,6,7 0 ⁺	631.68 <i>10</i> 1229.65 <i>13</i>	100 18 <i>4</i>	1270.214 688.693	5 ⁻ 2 ⁺	[E2]	0.00367	$\alpha(K)$ =0.00301 5; $\alpha(L)$ =0.000508 8; $\alpha(M)$ =0.0001177 17;
		1562.85 5	100 70	355.6841	2+	(E2)	0.00242	$\alpha(N+)=4.17\times10^{-5} 6$ $\alpha(K)=0.00194 3$; $\alpha(L)=0.000310 5$; $\alpha(M)=7.13\times10^{-5} 10$;
		1302.83 3	100 10	333.0841	۷.	[E2]	0.00242	$\alpha(N)=0.00194$ 3; $\alpha(L)=0.000310$ 3; $\alpha(M)=7.13\times10^{-6}$ 10; $\alpha(N+)=0.0001080$ 16

$\gamma(^{196}\text{Pt})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{\ \sharp}$	E_f	\mathbf{J}_f^{π}	Mult.d	α^{g}	${\rm I}_{(\gamma+ce)}$	Comments
1918.54	0+	1918.5 8		0.0	0+	E0		0.16 3	ce(K)=1.4 2 (1982Ka28). ce(K): Le is given for 1000 capture events where it is assumed that 80% of capture events populate the 2(1) ⁺ state. ce(K)=0.088% for E0 branch, relative to the total depopulating intensity from 1919-keV level (1982Ka28). X(E0)=B(E0)[0 ⁺ to 0+(0)]/B(E2)[0 ⁺ to 2+(356)]=0.060 (1982Ka28).
1932.01	$0^+, 1^+, 2^+$	1576.32 11	100	355.6841	2+				, ,,
1957.25	$(4),5^+,6^+$	1080.39 20	100	876.865	4+				$B(E2)\downarrow = 0.49 \ 6 \ (2002Ta14)$
1968.906	$1^+,(2^+)$	566.174 8	23 6	1402.727	0_{+}				
		833.58 <i>5</i>	31 <i>3</i>	1135.312	0_{+}				
		1613.1 <i>3</i>	14 3	355.6841	2+				
		1969.1 2	100 <i>13</i>	0.0	0_{+}				
1984.93	1+,2+	623.34 5	100 17	1361.585	2+	[M1,E2]	0.029 15		$\alpha(K)$ =0.024 13; $\alpha(L)$ =0.0042 16; $\alpha(M)$ =0.0010 4; $\alpha(N+)$ =0.00029 11
		849.74 <i>j</i> 9	58 17	1135.312	0^{+}				
		969.94 12	67 <i>17</i>	1015.044	3 ⁺				
		1296.6 <i>3</i>	100 15	688.693	2+				
1988.218	$1^+, 2^+$	541.174 7	35 8	1447.043	3-				
	,	626.636 18	14 2	1361.585	2+				
		1632.4 2	100 8	355.6841	_				
1991.7	3,4+	1303.0 4	100	688.693	2+				
1998.96	2+	705.65 4	13 3	1293.308	4 ⁺	[E2]	0.01123		$\alpha(K)$ =0.00879 13; $\alpha(L)$ =0.00186 3; $\alpha(M)$ =0.000443 7; $\alpha(N+)$ =0.0001289 18
		1643.4 2	100 8	355.6841	2+	[M1,E2]	0.0031 9		$\alpha(K)$ =0.0025 7; $\alpha(L)$ =0.00038 11; $\alpha(M)$ =8.8×10 ⁻⁵ 24; $\alpha(N+)$ =0.00017 4
		1999.3 4	42 13	0.0	0+	[E2]	1.76×10^{-3}		$\alpha(K)=0.001238 \ 18; \ \alpha(L)=0.000191 \ 3;$ $\alpha(M)=4.37\times10^{-5} \ 7; \ \alpha(N+)=0.000282 \ 4$
2002.36	(3+),4+	1125.5 2	100	876.865	4+	M1+E2 ^e	0.007 3		$\alpha(K)=0.0058\ 23;\ \alpha(L)=0.0009\ 4;\ \alpha(M)=0.00022\ 8;$ $\alpha(N+)=6.4\times10^{-5}\ 23$
2006	4+	735.67 9	100	1270.214	5-				` '
2007.4	6 ⁺	481.4 7	9.2 ^b 18	1525.8	6 ⁺	[E2,M1]	0.06 3		$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 4; \ \alpha(M)=0.0021 \ 7;$
									 α(N+)=0.00064 22 B(M1)(W.u.)=0.010 3; B(E2)(W.u.)=16 5 Mult.: γ's to 6⁺. δ: extrapolated using a theoretical model of Greiner (1966GrZX) see Coulomb excitation (1990Ma37). 1966GrZX: w.greiner nucl.phys. 80 417 (1966).
		714.0 7	100 ^b 3	1293.308	4+	E2	0.01095		B(E2)(W.u.)=49 <i>13</i> α (K)=0.00859 <i>13</i> ; α (L)=0.00181 <i>3</i> ; α (M)=0.000430 7; α (N+)=0.0001250 <i>18</i> Mult.: from Coulomb excitation.

γ (196Pt) (continued)

E_i (level)	\mathtt{J}^π_i	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.d	α^g	Comments
2007.4	6+	1130.7 7	9.8 ^b 12	876.865	4+	E2	0.00431	B(E2)(W.u.)=0.48 14 α (K)=0.00352 5; α (L)=0.000608 9; α (M)=0.0001414 20; α (N+)=4.20×10 ⁻⁵ 6 Mult.: from Coulomb excitation.
2013.88	2+	566.55 ^{<i>j</i>} 4	57 14	1447.043	3-	[E1]	0.00636	$\alpha(K)$ =0.00531 8; $\alpha(L)$ =0.000811 12; $\alpha(M)$ =0.000186 3; $\alpha(N+)$ =5.42×10 ⁻⁵ 8
		1137.01 3	$1.0 \times 10^2 \ 5$	876.865	4+	[E2]	0.00426	$\alpha(K)$ =0.00348 5; $\alpha(L)$ =0.000601 9; $\alpha(M)$ =0.0001397 20; $\alpha(N+)$ =4.17×10 ⁻⁵ 6
2029.8	3 ⁺	1014.25 ^{<i>j</i>}		1015.044	3 ⁺			
		1341.4 3	82 7		2+	M1+E2 ^e	0.0047 16	$\alpha(K)$ =0.0039 14; $\alpha(L)$ =0.00062 20; $\alpha(M)$ =0.00014 5; $\alpha(N+)$ =7.3×10 ⁻⁵ 20
		1672.7 7	100 7	355.6841	2+	M1+E2 e	0.0030 8	$\alpha(K)$ =0.0024 7; $\alpha(L)$ =0.00037 10; $\alpha(M)$ =8.4×10 ⁻⁵ 23; $\alpha(N+)$ =0.00019 4
2046.99	2+	1031.93 8	17 3	1015.044		[M1]	0.01209	$\alpha(K)$ =0.01004 <i>14</i> ; $\alpha(L)$ =0.001578 <i>22</i> ; $\alpha(M)$ =0.000363 <i>5</i> ; $\alpha(N+)$ =0.0001070 <i>15</i>
		1358.30 8	100 9	688.693		[M1,E2]	0.0046 16	$\alpha(K)$ =0.0038 13; $\alpha(L)$ =0.00060 19; $\alpha(M)$ =0.00014 5; $\alpha(N+)$ =7.6×10 ⁻⁵ 21
		1691.7 ^j 2	33 6	355.6841	2+	[M1,E2]	0.0029 8	$\alpha(K)$ =0.0023 7; $\alpha(L)$ =0.00036 10; $\alpha(M)$ =8.2×10 ⁻⁵ 22; $\alpha(N+)$ =0.00019 5
2067.06	5-,6	796.85 11	100	1270.214				
2069.29	$0^+, 1^+, 2^+$	1713.6 2	100	355.6841				
2084.30	4-,5,6-	814.09 <i>11</i> 726.0 ^h 7	100 46 ^{h} 10	1270.214				
2087.327	3-,4+	726.0" / 817.112 20	46" 10 85 8	1361.585 1270.214	2 ⁺ 5 ⁻			
		1210.2 4	65 6 44 <i>10</i>	876.865	3 4 ⁺			
		1397.9 ^j 4	38 13	688.693	2+			
		1731.9 3	100 18	355.6841	_			
2093.0	(2^{+})	245.655 ^j 5	3.4 14	1847.348	2+			
		645.95 ^j 3	11 <i>3</i>	1447.043	3-			
		1404.6 ^j 2	29 3	688.693	2+			
		1736.9 ^{<i>j</i>} 2	100 8	355.6841				
2124.389	3-,4+	677.34 3	38 14	1447.043	3-			
		854.18 <i>3</i> 1768.9 <i>5</i>	55 <i>10</i> 100 <i>24</i>	1270.214 355.6841				
2126.935	2+	372.292^{j} 22	2.2 10	1754.655	3 ⁻ .4 ⁺			$\alpha(K) = 0.471$; $\alpha(L) = 0.1008$; $\alpha(M) = 0.02407$; $\alpha(N+) = 0.00753$
2120.733	_	522.440 11	40 11	1604.494	2+			$u(\mathbf{x}_j) = 0.171, u(\mathbf{x}_j) = 0.1000, u(\mathbf{x}_j) = 0.02707, u(\mathbf{x}_j) = 0.00733$
		1771.5 3	100 11	355.6841				
2161.5?	(9-,10,11-)	340.7 4	100	1820.69	9-			
2162.70	2+	715.3 ^h 4	8 ^h 2	1447.043	3-			
		1473.97 8 1807.3 2	100 <i>17</i> 92 9	688.693 355.6841	2 ⁺			
2170.73	$(5),6^{(-)}$	900.52 19	100	1270.214				

$\gamma(^{196}\text{Pt})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.d	$\alpha^{\mathbf{g}}$	$I_{(\gamma+ce)}$	Comments
2174.43 2183.6	0 ⁺ ,2 ⁺ 1 ⁺ ,2 ⁺	1485.81 <i>15</i> 1818.6 2 1048.3 <i>7</i>	100 22 78 17 48 14	688.693 355.6841 1135.312	2 ⁺ 2 ⁺ 0 ⁺				
2105.0	•	2183.6 3	100 13	0.0	0+				
2199.45	0_{+}	1510.75 <i>5</i> 2199.4 <i>8</i>	100	688.693 0.0	2 ⁺ 0 ⁺	E0		0.128 15	/W) 1.1.2 (1002W-20)
		2199.4 8		0.0	0	ЕО		0.128 13	ce(K)=1.1 2 (1982Ka28). ce(K): Iɛ is given for 1000 capture events where it is assumed that 80% of capture events populate the 2(1) ⁺ state. ce(K)=0.085% for E0 branch, relative to the total depopulating intensity from 2199-keV level (1982Ka28).
2204.431	1+,2+	316.27 ^j 3	47 26	1888.139	1+,2+				
		402.130 7	68 11	1802.302	1+,2+	FF-01	0.00.400		(H) 0.00200 ((I) 0.000(07.10
		1069.4 2	79 21	1135.312	0+	[E2]	0.00480		$\alpha(K)$ =0.00390 6; $\alpha(L)$ =0.000687 10; $\alpha(M)$ =0.0001602 23; $\alpha(N+)$ =4.69×10 ⁻⁵ 7
		1515.5 <i>3</i> 1848.7 <i>4</i>	100 <i>32</i> 95 <i>21</i>	688.693 355.6841	2 ⁺				
2229.6	2+	$1353.0^{hj} 4$	93 21 17 <mark>h</mark> 7	876.865	4 ⁺	[E2]	0.00308		$\alpha(K)=0.00252$ 4; $\alpha(L)=0.000415$ 6; $\alpha(M)=9.60\times10^{-5}$
2229.6	2		-, ,			[E2]	0.00308		$\alpha(K)=0.002524$; $\alpha(L)=0.0004156$; $\alpha(M)=9.60\times10^{-5}$ 14; $\alpha(N+)=5.47\times10^{-5}8$
2236.32	(5),6 ⁻ ,7 ⁻	1873.9 <i>3</i> 966.11 <i>21</i>	100 <i>11</i> 100	355.6841 1270.214	5 ⁻				
2244.57	3 ⁺ ,4,5 ⁺	1367.7 2	100	876.865	4 ⁺				
2245.559	1+,2+	443.258 9	14 3	1802.302	$1^+, 2^+$				
		641.12 ^j 4	16 3	1604.494	2+				
		2245.8 <i>3</i>	100.7	0.0	0_{+}				
2252.7	8+	432 1	19 ^b 3	1820.69	9-	[E1]	0.01133 17		$\alpha(K)$ =0.00943 14; $\alpha(L)$ =0.001471 22; $\alpha(M)$ =0.000337 5; $\alpha(N+)$ =9.85×10 ⁻⁵ 15 B(E1)(W.u.)=0.00089 +18-17
		727.4 7	100 ^b 3	1525.8	6+	[E2]	0.01052		$\alpha(K)$ =0.00827 <i>12</i> ; $\alpha(L)$ =0.001723 <i>25</i> ; $\alpha(M)$ =0.000409 <i>6</i> ; $\alpha(N+)$ =0.0001190 <i>17</i> B(E2)(W.u.)=78 + <i>10</i> -78 Mult.: from Coulomb excitation.
		878 1	5.7 ^b 11	1373.60	7-	[E1]	0.00269		$\alpha(K)$ =0.00226 4; $\alpha(L)$ =0.000335 5; $\alpha(M)$ =7.63×10 ⁻⁵ 11; $\alpha(N+)$ =2.24×10 ⁻⁵ 4
2262.428	2+	293.522 10	26 ^a 5	1968.906	1+,(2+)	[M1,E2]	0.21 11		B(E1)(W.u.)=3.2×10 ⁻⁵ +8-7 α (K)=0.17 11; α (L)=0.037 7; α (M)=0.0089 12; α (N+)=0.0026 4
		1246.8 <i>6</i>	33 ^a 10	1015.044	3+	[M1]	0.00752		$\alpha(N+)=0.0026$ 4 $\alpha(K)=0.00624$ 9; $\alpha(L)=0.000976$ 14; $\alpha(M)=0.000224$ 4; $\alpha(N+)=8.05\times10^{-5}$ 12
		1573.5 <i>3</i>	100 ^a 25	688.693	2+				1, u(111.)-0.03/10 12
		1907.0 6	21 ^a 5	355.6841	2+				

$\gamma(^{196}\text{Pt})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.d	$\alpha^{\mathbf{g}}$	Comments
2271.2	2+	1582.5 4	100	688.693	2+	M1+E2 ^e	0.0033 10	$\alpha(K)$ =0.0027 8; $\alpha(L)$ =0.00042 12; $\alpha(M)$ =0.00010 3; $\alpha(N+)$ =0.00015 4
2309.23	(2)+	461.86 <i>3</i>	2.5 5	1847.348	2+	[M1,E2]	0.06 4	$\alpha(K)$ =0.05 3; $\alpha(L)$ =0.010 4; $\alpha(M)$ =0.0022 7; $\alpha(N+)$ =0.00066 22
		947.4 6	11 5	1361.585	2+	[M1,E2]	0.011 5	$\alpha(K)=0.009 \ 4; \ \alpha(L)=0.0015 \ 6$
		1620.7 <i>3</i>	52 9	688.693	2+	. , ,		
		1953.1 6	14 ^a 5	355.6841	2+			
		2310.9 ⁱ 3	100 ⁱ 18	0.0	0+	[E2]	1.56×10^{-3}	$\alpha(K)$ =0.000954 14; $\alpha(L)$ =0.0001446 21; $\alpha(M)$ =3.31×10 ⁻⁵ 5 $\alpha(N+)$ =0.000425 6
2324.224	1+,2+	470.567 19	4.4 15	1853.659	2+	[M1,E2]	0.06 4	$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 4; \ \alpha(M)=0.0022 \ 8; \ \alpha(N+)=0.00068 \ 23$
		1188.9 2	29 6	1135.312	0^{+}			
		1635.2 2	100 15	688.693	2+			
2345.3	$1^+, 2^+$	1330.6 5	52 16	1015.044	3 ⁺			
	,	1656.5 3	100 <i>13</i>	688.693	2+			
		2344.1 10	0.10 ^c	0.0	0+			
2365.976	2+	761.482 <i>16</i>	100 13	1604.494	2+	[M1,E2]	0.018 9	$\alpha(K)=0.015 8$; $\alpha(L)=0.0026 11$
		918.81 <i>14</i>	78 9	1447.043	3-	[E1]	0.00247	$\alpha(K)=0.00208 \ 3; \ \alpha(L)=0.000307 \ 5; \ \alpha(M)=6.99\times10^{-5} \ 10; \ \alpha(N+)=2.05\times10^{-5} \ 3$
2375.11	1+,2+	770.8 <i>4</i>	7 <mark>a</mark> 4	1604.494	2+			a(111)=2.03×10 3
2373.11	1 ,2	1686.6 <i>3</i>	39 10	688.693	2 ⁺			
		2374.8 3	100 10	0.0	0+			
2383.33	$0^+, 1^+, 2^+$	369.46 5	15 8	2013.88	2+			
2303.33	0 ,1 ,2	1694.3 <i>4</i>	100 23	688.693	2+			
2403.66	2+	418.73 3	24 ^a 6	1984.93	1+,2+	[M1,E2]	0.08 5	$\alpha(K)=0.07$ 4; $\alpha(L)=0.013$ 5; $\alpha(M)=0.0031$ 9; $\alpha(N+)=0.0010$ 3
		726.0 ^h 7	39 ^{ha} 6	1677.256	2+	[M1,E2]	0.020 10	$\alpha(K)$ =0.016 9; $\alpha(L)$ =0.0028 11; $\alpha(M)$ =0.00065 25; $\alpha(N+)$ =0.00019 8
		956.4 5	65 22	1447.043	3-	[E1]	0.00230	$\alpha(K)=0.00193$ 3; $\alpha(L)=0.000284$ 4; $\alpha(M)=6.48\times10^{-5}$ 9; $\alpha(N+)=1.90\times10^{-5}$ 3
		1042.4 6	14 ^a 6	1361.585	2+	[M1,E2]	0.008 4	$\alpha(K)=0.007$ 3; $\alpha(L)=0.0011$ 4; $\alpha(M)=0.00026$ 10; $\alpha(N+)=8.E-5$ 3
		1526.7 2	100 ^a 16	876.865	4+	[E2]	0.00252	$\alpha(K)=0.00202$ 3; $\alpha(L)=0.000325$ 5; $\alpha(M)=7.48\times10^{-5}$ 11; $\alpha(N+)=9.67\times10^{-5}$ 14
2420.4	$(2,3,4^+)$	1731.7 <i>1</i>	100	688.693	2+			
2422.51	$0^+, 1^+, 2^+$	423.7 3	6.5 22	1998.96	2 ⁺			
	- ,- ,-	568.85 3	4.3 14	1853.659	2 ⁺			
		2066.5 3	100 14	355.6841				
2423.42	$(1^+, 2^+, 3)$	1408.4 <i>I</i>	18 5	1015.044	3 ⁺			
	(- ,- ,-)	2067.7 1	100 5	355.6841				
2423.7	3-	976.7 3	100 25	1447.043	3-			
		2067.6 7	92 42	355.6841				

$\gamma(^{196}\text{Pt})$ (continued)

$E_i(level)$	$\mathbf{J}_i^{\boldsymbol{\pi}}$	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	$\mathbf{J}_f^{m{\pi}}$	Mult.d	α^{g}	Comments
2429.7	3-	1552.9 <i>3</i>	100	876.865	4+			
2433.7	(0,1,2,3,4)	2078.0 2	100	355.6841	2+			
2438.0	$(1^+,2,3,4^+)$	1076.4 <i>1</i>	56 8	1361.585	2+			
		1422.9 <i>1</i>	100 <i>10</i>	1015.044	3+			
		1749.0 2	37 12	688.693	2+			
2443.93	2+	430.2 ^j 3	40 9	2013.88	2+	[M1,E2]	0.08 4	$\alpha(K)=0.06$ 4; $\alpha(L)=0.012$ 4; $\alpha(M)=0.0028$ 9; $\alpha(N+)=0.00081$ 25
		1150.8 3	100 20	1293.308	4+	[E2]	0.00416	$\alpha(K)$ =0.00340 5; $\alpha(L)$ =0.000585 9; $\alpha(M)$ =0.0001360 19; $\alpha(N+)$ =4.10×10 ⁻⁵ 6
		1428.7 3	87 20	1015.044	3+	[M1]	0.00541	$\alpha(K)$ =0.00444 7; $\alpha(L)$ =0.000692 10; $\alpha(M)$ =0.0001587 23; $\alpha(N+)$ =0.0001165 17
2454.2	$(7^-,8^+)$	633.5 <i>3</i>	100 [@] 4	1820.69	9-			
	, ,	1024.6 <i>3</i>	23 [@] 3	1429.74?	$(5^-,6^+)$			
		1080.5 5	10 [@] 2	1373.60	7-			
2460.1	$0^+, 1^+, 2^+$	2104.4 3	100	355.6841				
2468.0	10-,11-	647.3 2	100@	1820.69	9-	E2	0.01357	B(E2)(W.u.)>0.073 α (K)=0.01050 15; α (L)=0.00235 4; α (M)=0.000561 8; α (N+)=0.0001628 23
		1.	L					Mult.: from 196 Ir β^- decay (1.40 h).
2469.85	1-,2+	715.3 ^h 4	10 ^h 3	1754.655	3-,4+			$\alpha(K)$ = 0.0676; $\alpha(L)$ =0.01250 E _{γ} : questionable energy value.
		1334.3 <i>3</i>	33 7	1135.312				$\alpha(K)=0.00260; \alpha(L)=0.00043$
		2114.4 3	56 7	355.6841	2+			
		2469.7 ⁱ 4	100 ⁱ 3	0.0	0^{+}			
2488.238	$1^+, 2^+$	225.810 <i>18</i>	16 7	2262.428	2+			
		1353.0 ^h j 4	30 ^h 11	1135.312	0^{+}			
		1799.5 <i>4</i>	100 23	688.693	2+			
		2132.9 7	45 16	355.6841				
		2488.1 6	59 9	0.0	0+			
2505.12	2+	1143.53 5	40 8	1361.585	2+			
		2149.1 7	26 10	355.6841				
2525.04	1+ 2+	2505.2 4	100 10	0.0	0+			
2527.84	1+,2+	639.701 <i>32</i>	13 3	1888.139	1+,2+			
		$1080.5^{j} 4$	18 8	1447.043	3-			$\alpha(K)=0.00155; \ \alpha(L)=0.00023$
		1839.4 3	100 13	688.693	2+			
2520.2	2+	2526.9 10	0.53 ^c	0.0	0+			(IZ) 0.0541 (I) 0.00004
2529.3	2+	775.1 5	$15^a 6$ $100^a 24$	1754.655				$\alpha(K) = 0.0541; \ \alpha(L) = 0.00984$
2570.8	1+	2173.5 <i>3</i> 1883	<100° 24° <100°	355.6841 688.693		(M1)	0.00301	$\alpha(K)=0.00224$ 4; $\alpha(L)=0.000346$ 5; $\alpha(M)=7.93\times10^{-5}$ 12;
								$\alpha(N+)=0.0003495$
								B(M1)(W.u.)=0.06 +7-6
								$E_{\gamma}, I_{\gamma}, Mult.$: from ¹⁹⁶ Pt(γ, γ').

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.d	α^{g}	Comments
2570.8	1+	2216	33 8	355.6841	2+	(E2)	1.60×10 ⁻³	B(E2)(W.u.)=1.8 9 α (K)=0.001029 15; α (L)=0.0001566 22; α (M)=3.58×10 ⁻⁵ 5; α (N+)=0.000381 6
		2571	56 9	0.0	0+	M1	0.00202	E _γ ,I _γ ,Mult.: from ¹⁹⁶ Pt(γ,γ'). B(M1)(W.u.)=0.025 11 α (K)=0.001041 15; α (L)=0.0001594 23; α (M)=3.65×10 ⁻⁵ 6; α (N+)=0.000788 11
2603.2	(1,2,3,4,5)	1588.1 <i>I</i>	100	1015.044	3+			$E_{\gamma}I_{\gamma}$,Mult.: from ¹⁹⁶ Pt(γ,γ'). E_{γ} : from level scheme deduced by evaluators, E_{γ} =1558.1 keV from fig. 2 and table 1 of 1993Di05 may misprint.
2606.0	(2,3,4,5)	1729.2 <i>I</i>	100	876.865	4+			from fig. 2 and table 1 of 1993D103 may misprint.
2608.0	3-	2252.3 <i>I</i>	100	355.6841				
2626.4	(1,2,3)	1264.8 <i>I</i>	100 5	1361.585	2 ⁺			
		1938.3 <i>3</i>	37 5	688.693	2+			
2631.1	$(2^+,3,4^+)$	2275.4 2	100	355.6841				
2667.246	1+,2+	698.23 4	6.5 12		$1^+,(2^+)$			
		748.66 <i>6</i>	3.8 15	1918.54	0_{+}			
		864.72 ^j 8	2.8 6	1802.302	$1^+, 2^+$			
		1062.66 6	9 2	1604.494	2+			
		1264.6 2	13 2	1402.727	0+	[E2]	0.00349	$\alpha(K)$ =0.00285 4; $\alpha(L)$ =0.000478 7; $\alpha(M)$ =0.0001108 16; $\alpha(N+)$ =4.39×10 ⁻⁵ 7 B(E2)(W.u.)=0.97 +18-22
		1305.59 4	40 3	1361.585	2+			2(22)(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		1532.30 ⁱ 5	35 ⁱ 12	1135.312	0+	[E2]	0.00250	α (K)=0.00201 3; α (L)=0.000322 5; α (M)=7.42×10 ⁻⁵ 11; α (N+)=9.84×10 ⁻⁵ 14 B(E2)(W.u.)=1.0 1
		1978.6 2	100 8	688.693	2+			()(,
		2310.9 ⁱ 3	38 ⁱ 8	355.6841	2+			
2692.2		2336.5 6	100	355.6841				
2711.0	3-	2022.2 1	100 8	688.693	2+			
		2355.3 1	59 8	355.6841				
2736.1	(1^+)	2736.1	100	0.0	0_{+}			
2749.6	$(7^-,8^+)$	497 <i>1</i>	26 <mark>b</mark> 9	2252.7	8+			
		742 <i>1</i>	100 <mark>b</mark> 11	2007.4	6+			
		930 <i>1</i>	20 ^b 5	1820.69	9-			
		1375 <i>I</i>	11^{b} 5	1373.60	7-			
2824.0	1+	2135	38 13	688.693	2+	(M1)	0.00246	$\alpha(K)$ =0.001643 23; $\alpha(L)$ =0.000253 4; $\alpha(M)$ =5.80×10 ⁻⁵ 9; $\alpha(N+)$ =0.000509 8 B(M1)(W.u.)=0.050 20 E _{γ} ,I _{γ} ,Mult.: from ¹⁹⁶ Pt(γ , γ').
		2468	105 18	355.6841	2+	(E2)	1.50×10^{-3}	B(E2)(W.u.)=5.6 16 α (K)=0.000848 12; α (L)=0.0001276 18; α (M)=2.92×10 ⁻⁵ 4;

E_i (level)	\mathbf{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.d	α^{g}	Comments
2824.0	1+	2824	100 15	0.0	0+	M1	0.00193	α (N+)=0.000497 7 E_{γ} , I_{γ} ,Mult.: from ¹⁹⁶ Pt(γ , γ'). B(M1)(W.u.)=0.057 <i>15</i> α (K)=0.000827 <i>12</i> ; α (L)=0.0001264 <i>18</i> ; α (M)=2.89×10 ⁻⁵ <i>4</i> ; α (N+)=0.000943 <i>14</i> E_{γ} , I_{γ} ,Mult.: from ¹⁹⁶ Pt(γ , γ').
2875.4 2888.8?	1 ⁺ ,(2) ⁺ (9 ⁻ ,10,11 ⁻)	2875.4 420.9 <i>3</i> 727.3 2 1068 2	100 96 37 100 37 2.7 7	0.0 2468.0 2161.5? 1820.69	10 ⁻ ,11 ⁻ (9 ⁻ ,10,11 ⁻)			$E_{\gamma},I_{\gamma},Mull.$: from $F((\gamma,\gamma))$.
3044.0	(10^+)	791.3 7	100^{b}	2252.7		[E2]	0.00880	$\alpha(K)$ =0.00699 10; $\alpha(L)$ =0.001392 20; $\alpha(M)$ =0.000329 5; $\alpha(N+)$ =9.59×10 ⁻⁵ 14
3124.2 3131.8	1,2 1,2	3124.2 3131.8	100 100	0.0	0 ⁺			
3161.9	(9-,10,11-)	693.9 2 1341.5 <i>5</i>	100 [@] 7 6.6 [@] 7	2468.0 1820.69	10-,11-			
3176.3?	(9-)	722.0 [#] 4 1355.8 [#] 5	100 <i>10</i> 9.0 <i>15</i>		$(7^-, 8^+)$			
3214.8?	(9-)	760.6 [#] 3 1394.0 [#] 5	100 <i>6</i> 9.5 <i>19</i>		$(7^-,8^+)$			
3298.0	2+	3298.0	100	0.0	0+			
3303.5	$(10,11^{-})$	835.6 2	100 [@] 3	2468.0	10-,11-			
		849.4 3	8.0 8	2454.2	$(7^-,8^+)$			
2266.0	1.2	1482.5 4	36 [@] 3	1820.69				
3366.8 3424.3	1,2 1,2	3366.8 3424.3	100 100	0.0	0^{+}			

[†] From ¹⁹⁵Pt(n, γ) E=thermal, except where noted. For primary γ observed following neutron capture see ¹⁹⁵Pt(n, γ). For unplaced γ 's (not listed here) see ¹⁹⁶Ir β^- decay (1.40 h), ¹⁹⁵Pt(n, γ) E=thermal and E=11.9 eV, and Coulomb excitation.

[‡] Relative photon branching ratios from each level, obtained mainly from 195 Pt(n, γ) E=thermal, except where noted.

[#] Placement based primarily on decay scheme.

[@] From ¹⁹⁶Ir β^- decay (1.40 h).

[&]amp; From ¹⁹⁶Pt(d,pnγ).

^a From ¹⁹⁵Pt(n, γ) E=11.9 eV.

^b From Coulomb excitation.

^c Photons per 100 n-captures in natural Pt (1970Ro05).

- ^d From α(K)exp, K/L, L/M+ in ¹⁹⁶Au ε decay (6.1669 d) and ¹⁹⁶Ir β ⁻ decay (1.40 h), except where noted.
- ^e From $\gamma(\theta)$ in 2002Ta14.
- ^f From $\gamma\gamma(\theta)$ in ¹⁹⁶Au ε decay (6.1669 d) when sign is given; otherwise, the value is given in Coulomb excitation.
- ^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^h Multiply placed with undivided intensity.
- ⁱ Multiply placed with intensity suitably divided.
- ^j Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

@ Multiply placed: intensity suitably divided

γ Decay (Uncertain) 1 10604 1 10604 1 12179 2204.431 2199.45 2183.6 2174.43 1+,2+ 1888.139 1.3 ps +8-6 1+,2+ 1802.302 1135.312 4.2 ps +17-6 876.865 3.55 ps 5 688.693 33.8 ps 7 355.6841 34.15 ps 15 0.0 stable $^{196}_{78}\mathrm{Pt}_{118}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

36

Level Scheme (continued)

Band(A): Ground-state rotational band

 $^{196}_{78}\mathrm{Pt}_{118}$

	History			
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015	

 $Q(\beta^-)=-323.7\ 21;\ S(n)=7555.1\ 21;\ S(p)=8929\ 20;\ Q(\alpha)=107\ 4$ 2012Wa38 For interacting boson model theory, see 1985Su05, 1985Zi03, 1985Sc07, and 1983Ve02.

¹⁹⁸Pt <u>Levels</u>

Cross Reference (XREF) Flags

		A B C D	¹⁹⁸ Ir β ⁻ decay ¹⁹⁶ Pt(t,p) ¹⁹⁸ Pt(n,n'),(n,n') ¹⁹⁸ Pt(p,p'),(p,p')						
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments					
0.0@	0+	stable	ABCDEFGHIJ	%2β ⁻ =? β ₂ =-0.103; β ₄ =-0.039 T _{1/2} : Double β ⁻ decay to ¹⁹⁸ Hg. From measurements of double β ⁻ decay, half-life limits for decay to ¹⁹⁸ Hg g.s. have been determined: T _{1/2} (2β ⁻)≥3.5×10 ¹⁸ y (2011Be32, value given for double β ⁻ decay to the 411.8 keV state of ¹⁹⁸ Hg including both two-neutrino and neutrinoless processes based on a fitted peak of 13 counts 10, which excludes 29 counts at 90% confidence level). β ₂ , β ₄ : From (α,α') and (p,p'), unweighted average. <r<sup>2>^{1/2}=5.440 fm 6 (2004An14). Δ<r<sup>2>=0.151 fm² 6 (1992Hi07), relative to ¹⁹⁴Pt; other Δ<r<sup>2>=0.209 fm² 11, Δ<β²>=-0.0181 10 (1988Le22), relative to ¹⁹⁰Pt; <β²>^{1/2}=0.11 (1981Mo24). J^π: From L=0 in ¹⁹⁶Pt(t,p).</r<sup></r<sup></r<sup>					
407.22 [@] 5	2+	22.25 ps <i>15</i>	ABCDEFGHIJ	 μ=+0.63 2 (1995An15,2011StZZ) T_{1/2}: From B(E2)=1.090 7 (Coulomb excitation). Others: 24.0 ps 8 (B(E2)=1.01 3), 24.3 ps 21 (1981Bo32), 23.3 ps 11 (1980Ke04), 23.2 ps 8 (1983St18) in Coulomb excitation. μ: Transient field integral perturbed angular correlation (TF); and ¹⁹⁴Pt standard (1995An15). Others: +0.70 6 (1993Ta07, TF; ¹⁹⁴Pt standard), +0.59 7 (1991St04, TF), +0.69 6 (1981St13, TF; ¹⁹⁶Pt standard), +0.62 10 (1979Ha06, TF; ¹⁹⁴Pt standard). Q=+0.42 12 or +0.54 12 (1989Ra17,1986Gy04,2011StZZ). Q: Coulomb Excitation Reorientation(CER). Other: +1.2 5 (1969Gl08). 					
774.72 ^b 7	2+	27 ps 4	BCDEFGHIJ μ =+0.61 11 (1992Br03,2011StZZ) β_2 =-0.109 5 μ : Re-evaluated data. Other: +0.72 13 (1981St13, TF; ¹⁹⁶ Pt standard). β_2 : From (p,p'), (p,p' γ). J ^{π} : From $\gamma(\theta)$ in ¹⁹⁸ Pt(n,n'),(n,n' γ).						
914.52 21	0+		A CD	J^{π} : From $n'(\theta)$ in ¹⁹⁸ Pt(n,n'),(n,n' γ).					
985.07 [@] 8	4+	3.3 ps <i>3</i>	BCDEFGHIJ E	$β_4$ =-0.030 <i>I</i> XREF: B(990)E(960)F(991). μ=+1.2 2 (1992Br03,2011StZZ, Re-evaluated). Other: +1.4 <i>3</i> (1981St13. TF; ¹⁹⁶ Pt standard). $β_4$: From (p,p'), (p,p'γ). $J^π$: From $γ(θ)$ in ¹⁹⁸ Pt(n,n'),(n,n'γ).					
1248.01 10	(3 ⁺)		CD G I	J^{π} : From $n'(\theta)$ in ¹⁹⁸ Pt(n,n'),(n,n' γ).					
1279.44 9	2+	9.7 ps 5	CDE GH	XREF: E(1240-1280).					

198 Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				J^{π} : From $\gamma(\theta)$ in Coulomb excitation.
1286.14 ^b 16	(4^{+})	9.3 ps 22	BCD FGHI	$\beta_4 = -0.026 I$
				β_4 : From (p,p') , $(p,p'\gamma)$.
				J^{π} : From L=(4) in ¹⁹⁶ Pt(t,p).
1367.03 <i>10</i>	(5^{-})		BCD G IJ	J^{π} : From $\gamma(\theta)$ in ¹⁹⁸ Pt(n,n'),(n,n' γ).
1445.32 22			CD	107
1481.23 <i>21</i>	0_{+}		BCD	J^{π} : From L=0 in ¹⁹⁶ Pt(t,p).
1501.93 & <i>14</i>	(7^{-})	3.4 ns 2	D G IJ	$T_{1/2}$: From ce(t) in ¹⁹⁸ Pt(d,pn γ).
1517 0				Configuration= $(((\pi h_{11/2})^{-1} d_{3/2}) + ((\nu i_{13/2})^{-1} p_{1/2}))$ (1987CoZY).
1517 8	(O+)		B E	XREF: E(1530).
1550.39 18	(2^+)		BCD	J^{π} : From L=(2) in 196 Pt(t,p).
1636.93 <i>21</i>	(2^{+})		BCD BCD	J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
1656.68 <i>19</i> 1672.13 <i>12</i>	(1.2)		С	J^{π} : From ¹⁹⁸ Pt(n,n' γ).
1680.33 15	(1,2) 3 ⁻		BCD G	$\beta_3 = 0.050 \ 5$
1000.55 15	3		БСБ С	β_3 : From (p,p') , $(p,p'\gamma)$.
1714.17 [@] 22	(6^+)	<0.7 ps	C GHI	J^{π} : From interacting boson approximation calculations and systematics of even
1/14.1/ 22	(0)	<0.7 ps	C GIII	Pt isotopes (1981Bo32).
1718 5	(2^{+})		В	J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
1722 3	(2)		D F	L=3 suggested by 1976Ba35 in (α, α') for E=1722 probably corresponds to the
				1680 level. L(1722)=3 is not confirmed by 1981De12.
1741.13 <i>14</i>			ΕGΙ	XREF: E(1750).
1784.52 22	(4^{+})		BCD	$\beta_4 = -0.019 \ 2$
				β_4 : From (p,p') , $(p,p'\gamma)$.
1815 6			В	
1827 4			D	
1849.21? 22	0+		G	J^{π} : From L=0 in ¹⁹⁶ Pt(t,p).
1869 <i>5</i> 1892 <i>5</i>	(4^+)		B B D	XREF: D(1900).
1092 3	(4)		вυ	J^{π} : From L=(4) in 196 Pt(t,p).
1943.9 ^b 3	6+		B GI	XREF: B(1938).
1943.9 3	U		в Ст	J^{π} : From band structure.
1949 2	(2^{+})		B D	XREF: B(1956).
	()			J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
1979.43 25			B D G	XREF: D(1971).
1995.83 25			D G I	XREF: D(2000).
2059 6			В	
2070 2			D	- 100
2083 7	(4^{+})		В	J^{π} : From L=(4) in ¹⁹⁶ Pt(t,p).
2089.0 & 9	(9-)		I	J^{π} : From band analysis.
2120 2	(2^{+})		B D	XREF: D(2100).
2155.2	(4±)			J^{π} : From L=(2) in 196 Pt(t,p).
2155 2	(4^{+})		B D	XREF: B(2149).
2160.00	(0=)		-	J^{π} : From L=(4) in 196 Pt(t,p).
2160.0 ^a 9 2178 2	(8^{-}) (2^{+})		I B D	J^{π} : Band head. XREF: B(2170).
2170 2	(2)		υ	J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
2229 6	(2^{+})		ВЕ	XREF: E(2210).
	(-)			J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
2252 7			В	(-) (\(\frac{1}{2}\).
2289 6	(4^{+})		В	J^{π} : From L=(4) in ¹⁹⁶ Pt(t,p).
2319 2	(2^{+})		B DE	XREF: B(2325)E(2330).
				J^{π} : From L=(2) in 196 Pt(t,p).
2339? 2			D	
2356 2	(2^{+})		B D	XREF: B(2352).
			Conti	nued on next page (footnotes at end of table)

¹⁹⁸Pt Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREI	7	Comments
					J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
2387 2			B D		XREF: B(2373).
2411 6	(2^{+})		В		J^{π} : From L=(2) in ¹⁹⁶ Pt(t,p).
2441 2	(3^{-})		B D		$\beta_3 = 0.037 \ 4$
	(-)				β_3 : From (p,p'), (p,p' γ).
2469 2			B D		
2514 3	(3^{-})		B DE		$\beta_3 = 0.020 \ 2$
	. ,				XREF: B(2530).
					β_3 : From (p,p'), (p,p' γ).
2527.1 [@] 9	(8^{+})			I	
2573 3	(-)		B D	_	
2603.5 5	(3^{-})		D		$\beta_3 = 0.052 \ 5$
	, ,				β_3 : From (p,p') , $(p,p'\gamma)$.
2633 <i>3</i>			B D		XREF: B(2628).
2666 <i>3</i>			B D		XREF: B(2683).
2680.0 ^a 13	(10^{-})			I	
2726 3			DE		XREF: E(2730).
2747 <mark>b</mark> 2	8+		В	I	XREF: B(2740).
					J^{π} : From band structure.
2782 <i>3</i>			B D		
2796 <i>3</i>	(3^{-})		D		$\beta_3 = 0.037 \ 4$
					β_3 : From (p,p') , $(p,p'\gamma)$.
2802 7	0_{+}		В		J^{π} : From L=0 in 196 Pt(t,p).
2826 <i>3</i>	(3^{-})		D		$\beta_3 = 0.041 \ 4$
					β_3 : From (p,p'), (p,p' γ).
2884 <i>3</i>			D		
2912.0 <mark>&</mark> 9	(11^{-})		D	I	XREF: D(2910).
3005 4			D		
3017.0 ^a 17	(12^{-})	36 ns 2	D	I	XREF: D(3018).
					E(level): It is assumed that the isomer decays directly by 337γ , but possibility of
					a low-energy γ transition preceding 337 γ is not ruled out.
					$T_{1/2}$: (Target like recoil fragments) γ (t) (2004Va03,2004Re11); 407 γ and 658 γ
					double γ -ray gates.
3170 5			D		
3197 5			D		

 $^{^{\}dagger}$ For the states connected by γ' s, E(level)'s are from Adopted Gamma radiations by using least-squares fit to data, others are from (p,p'), except as noted.

[‡] From L value measured in 198 Pt(p,p'),(p,p' γ), except as noted. # From recoil distance measurements in Coulomb excitation (1981Bo32), except as noted.

[@] Band(A): g.s. band.

[&]amp; Band(B): Band based on (7^-) , $\alpha=1$.

^a Band(b): Band based on (8^-) , $\alpha=0$.

^b Band(C): 2^+ band.

γ (198Pt)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ	α &	Comments
407.22 774.72	$\frac{1}{2^{+}}$ 2+	407.21 <i>5</i> 367.48 <i>6</i>	100 100 7	$ \begin{array}{c cccc} \hline 0.0 & 0^{+} \\ 407.22 & 2^{+} \end{array} $	[E2] M1+E2	-2.9 +4-6	0.0417 0.068 <i>4</i>	B(E2)(W.u.)=31.81 22 B(M1)(W.u.)=0.0016 5; B(E2)(W.u.)=37 7
								Mult.: From mult=D+Q (Coulomb excitation), and RUL. δ: From Coulomb excitation (1981St13,1981Bo32).
		774.8 2	3.8 10	$0.0 0^{+}$	[E2]		0.00920	B(E2)(W.u.)=0.038 12
914.52	0_{+}	507.3 2	100	407.22 2+	[E2]		0.0239	B(E2)(W.u.)=26 7
985.07	4+	577.82 6	100	407.22 2+	[E2]		0.01755	B(E2)(W.u.)=38 4
1248.01	(3^+)	473.27 7	100	774.72 2 ⁺	D. 61 E01		0.05.3	D(M1)/W1 > 0.0015 10
1279.44	2+	504.7 3	23 7	774.72 2+	[M1,E2]		0.05 3	B(M1)(W.u.)=0.0015 <i>10</i> ; B(E2)(W.u.)=2.2 <i>15</i>
		872.18 8	100 10	407.22 2+	[M1,E2]		0.013 6	B(M1)(W.u.)=0.0013 8; B(E2)(W.u.)=0.6 4
		1279.7 <i>3</i>	27 7	$0.0 0^{+}$	[E2]		0.00341	B(E2)(W.u.)=0.05 3
1286.14	(4^{+})	300.9 [‡] 2	11‡	985.07 4+				
		511.6 [‡] 2	100 [‡]	$774.72 \ 2^{+}$				
1367.03	(5^{-})	381.96 <i>6</i>	100	985.07 4+				
1445.32	- 1	670.6 2	100	774.72 2+				
1481.23	0_{+}	1074.0 2	100	$407.22 \ 2^{+}$				
1501.93	(7^{-})	134.9 [‡] <i>1</i>	100‡	1367.03 (5-)	[E2]		1.489	B(E2)(W.u.)=21.8 13
1550.39	(2^{+})	775.8 3	60 16	774.72 2 ⁺				
1636.93	(2 ⁺)	1143.1 2 1229.7 2	100 8 100	407.22 2 ⁺ 407.22 2 ⁺				
1656.68	(2)	671.0 [#] 4	#	985.07 4 ⁺				
1030.08		1249.6 2	100	407.22 2 ⁺				
1672.13	(1,2)	424.1 <i>I</i>	37 11	1248.01 (3+)				
		897.2 2	100 16	$774.72 \ 2^{+}$				
		1265.2 2	53 11	$407.22 \ 2^{+}$				
1680.33	3-	313.3# 2	22 # 7	1367.03 (5-)				
		400.7 [#] 3	33 # 9	1279.44 2+				
		432.2 [#] 4	11 # 7	1248.01 (3 ⁺)				
		695.4 [#] 3	100 [#] <i>15</i>	985.07 4+				
		1273.4 [#] 5	52 [#] 15	407.22 2 ⁺				
1714.17	(6^+)	729.1 [‡] 2	100 [‡]	985.07 4 ⁺	[E2]		0.01047	B(E2)(W.u.)>57
1741.13		374.1 [‡] <i>1</i>	100 [‡]	1367.03 (5-)				
1784.52	(4^{+})	1009.8 2	100	$774.72 \ 2^{+}$				
1849.21?		601.2 2	100‡	1248.01 (3 ⁺)				
1943.9	6+	657.8 [‡] 2	100 [‡]	1286.14 (4+)				
1979.43		477.5 [‡] 2	100 [‡]	1501.93 (7-)				
1995.83		493.9 [‡] 2	100 [‡]	1501.93 (7-)				
2089.0	(9-)	587 [@]	100 [@]	1501.93 (7-)				
2160.0	(8-)	658 [@]	100 [@]	1501.93 (7-)				
2527.1	(8 ⁺)	813 [@]	100 [@]	1714.17 (6 ⁺)				
2603.5	(3^{-})	923.2 [#] 4	100 [#]	1680.33 3				
2680.0	(10^{-})	520 [@]	100 [@]	2160.0 (8 ⁻)				
2747	8+	802 [@]	100 [@]	1943.9 6+				
2912.0	(11^{-})	385 [@]	100 [@]	2527.1 (8 ⁺)				
2712.0	(11)	752 [@]	100	2160.0 (8 ⁻)				
		134	100	2100.0 (0)				

γ (198Pt) (continued)

[†] From ¹⁹⁸Pt(n,n'),(n,n' γ), except as noted.

[‡] From ¹⁹⁸Pt(d,pnγ). [#] From ¹⁹⁸Pt(p,p'),(p,p'γ). [@] From ¹⁹⁸Pt(¹³⁶Xe,Xγ).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^{}a}$ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{198}_{78}\mathrm{Pt}_{120}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

