Lista de Exercícios 2a

- 1. Considere a função resposta: $E(Y) = 25 + 3X_1 + 4X_2 + 1,5X_1X_2$
 - a) Faça o gráfico de $E(Y) \times X_1$ quando $X_2 = 3$ e $X_2 = 6$.
 - b) Os efeitos de X_1 e X_2 são aditivos? Como você identificou isto no gráfico obtido no item a.
- 2. Estabeleça a matriz X e os vetores Y e β para os seguintes modelos (assuma que i = 1, 2, 3, 4).
 - a) $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1} X_{i2} + \varepsilon_i$
 - b) $\sqrt{Y_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$
- **3.** Por que não é siginificativo atribuir um sínal ao coeficiente de correlação múltipla, embora façamos isso para o coeficiente de correlação linear simples?
- **4.** Exercícios 6.5 a 6.8 do livro-texto.
 - 6.5. **Brand preference.** In a small-scale experimental study of the relation between degree of brand liking (Y) and moisture content (X_1) and sweetness (X_2) of the product, the following results were obtained from the experiment based on a completely randomized design (data are coded):

i:	1	2	3		14	15	16
X_{i1} :	4	4	4		10	10	10
X_{i2} :	2	4	2		4	2	4
Y_i :	64	73	61	•	95	94	100

- a. Obtain the scatter plot matrix and the correlation matrix. What information do these diagnostic aids provide here?
- b. Fit regression model (6.1) to the data. State the estimated regression function. How is b_1 interpreted here?
- c. Obtain the residuals and prepare a box plot of the residuals. What information does this plot provide?
- d. Plot the residuals against \hat{Y} , X_1 , X_2 , and X_1X_2 on separate graphs. Also prepare a normal probability plot. Interpret the plots and summarize your findings.
- e. Conduct the Breusch-Pagan test for constancy of the error variance, assuming $\log \sigma_i^2 = \gamma_0 + \gamma_1 X_{i1} + \gamma_2 X_{i2}$; use $\alpha = .01$. State the alternatives, decision rule, and conclusion.
- f. Conduct a formal test for lack of fit of the first-order regression function; use $\alpha = .01$. State the alternatives, decision rule, and conclusion.

- 6.6. Refer to **Brand preference** Problem 6.5. Assume that regression model (6.1) with independent normal error terms is appropriate.
 - a. Test whether there is a regression relation, using $\alpha = .01$. State the alternatives, decision rule, and conclusion. What does your test imply about β_1 and β_2 ?
 - b. What is the P-value of the test in part (a)?
 - c. Estimate β_1 and β_2 jointly by the Bonferroni procedure, using a 99 percent family confidence coefficient. Interpret your results.
- 6.7. Refer to Brand preference Problem 6.5.
 - a. Calculate the coefficient of multiple determination \mathbb{R}^2 . How is it interpreted here?
 - b. Calculate the coefficient of simple determination R^2 between Y_i and \hat{Y}_i . Does it equal the coefficient of multiple determination in part (a)?
- 6.8. Refer to **Brand preference** Problem 6.5. Assume that regression model (6.1) with independent normal error terms is appropriate.
 - a. Obtain an interval estimate of $E\{Y_h\}$ when $X_{h1} = 5$ and $X_{h2} = 4$. Use a 99 percent confidence coefficient. Interpret your interval estimate.
 - b. Obtain a prediction interval for a new observation $Y_{h(\text{new})}$ when $X_{h1} = 5$ and $X_{h2} = 4$. Use a 99 percent confidence coefficient.

BOM ESTUDO!!