ST5215 Advanced Statistical Theory, Lecture 19

HUANG Dongming

National University of Singapore

22 Oct 2020

Overview

Last time

- Consistency
- Asymptotic bias, variance, mean squared error

Today

Asymptotic properties of MOM, UMVUE, sample quantiles

H.D. (NUS) ST5215, Lecture 19 22 Oct 2020 2 / 23

Recap: Asymptotic Criteria

Consistency is related to a sequence of $\{T_n; n = n_0, n_0 + 1, \ldots\}$ but say " T_n is consistent" for short

- consistent: $T_n(X) \xrightarrow{P} \theta$ w.r.t. any $P \in \mathcal{P}$.
- ② a_n -consistent: Suppose $\{a_n\} \to \infty$ and $a_n\{T_n(X) \theta\} = O_P(1)$ w.r.t. any $P \in \mathcal{P}$.
- **3** strongly consistent: $T_n(X) \stackrel{a.s.}{\to} \theta$ w.r.t. any $P \in \mathcal{P}$
- **1** L_r-consistent: $T_n(X) \xrightarrow{L^r} \theta$ w.r.t. any $P \in \mathcal{P}$ for some fixed r > 0.

Suppose $a_n \to \infty$ or $a_n \to a > 0$ and $a_n \{ T_n(X) - \theta \} \stackrel{\mathcal{D}}{\to} Y$.

- **1** asymptotic bias: EY/a_n , if $E|Y| < \infty$
- ② asymptotic variance is $Var(Y)/a_n^2$ and asymptotic mse is EY^2/a_n^2 , if $EY^2<\infty$

The asymptotic relative efficiency of T'_n w.r.t. T_n is defined to be

$$e_{T'_n,T_n}(P) = \operatorname{amse}_{T_n}(P) / \operatorname{amse}_{T'_n}(P)$$

Recap: Method of Moments (Lecture 9)

Suppose X_i 's are i.i.d. from P_{θ} and $E_{\theta} \left| X_1 \right|^k < \infty$

- Let $\mu_j = E_\theta X_1^j$ be the *j*th moment of P_θ and suppose $\mu_j = h_j(\theta)$ for some functions h_i on \mathcal{R}^k (j = 1, ..., k)
- $\hat{\mu}_{n,j} = \frac{1}{n} \sum_{i=1}^{n} X_i^j$ is the jth sample moment
- ullet Any $\hat{ heta}$ that solves

$$\hat{\mu}_{n,j} = h_j(\hat{\theta}), \quad j = 1, \dots, k$$

is a moment estimator of θ

Properties of MOM Estimators

Let
$$\mu=(\mu_1,\ldots,\mu_k)$$
, $\hat{\mu}_n=(\hat{\mu}_{n,1},\ldots,\hat{\mu}_{n,k})$, and $h=(h_1,\ldots,h_k)$. Then
$$\mu=h(\theta) \text{ and } \hat{\mu}_n=h(\hat{\theta})$$

- If h^{-1} exists, the unique moment estimator of θ is $\hat{\theta}_n = h^{-1}(\hat{\mu}_n)$
- Furthermore, if h^{-1} continuous, then by SLLN and continuous mapping, $\hat{\theta}_n$ is strongly consistent
- If $g=h^{-1}$ is differentiable and $E|X_1|^{2k}<\infty$, by CLT and δ -method, we have

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{\mathcal{D}}{\to} N\left(0, [\nabla g]^\top V_\mu \nabla g\right) \tag{1}$$

where V_{μ} is a $k \times k$ matrix whose (i,j) th element is $\mu_{i+j} - \mu_i \mu_j$

- ▶ In this case, the MOM estimator is \sqrt{n} -consistent
- ▶ If k=1, amse $_{\hat{\theta}_n}(\theta)=g'(\mu_1)^2\sigma^2/n$ where $\sigma^2=\mu_2-\mu_1^2$

Example 3.24

Let $X_1,...,X_n$ be i.i.d. from P_θ indexed by $\theta=(\mu,\sigma^2)$, where $\mu=EX_1\in\mathcal{R}$ and $\sigma^2=\mathrm{Var}(X_1)\in(0,\infty)$. This includes cases like normal distributions and double exponential distributions with Lebesgue p.d.f.

$$\frac{1}{\sqrt{2}\sigma}e^{-\sqrt{2}|x-\mu|/\sigma}, \qquad \mu \in \mathcal{R}, \sigma > 0$$

• Since $EX_1 = \mu$ and $EX_1^2 = Var(X_1) + (EX_1)^2 = \sigma^2 + \mu^2$, setting $\hat{\mu}_1 = \mu$ and $\hat{\mu}_2 = \sigma^2 + \mu^2$ we obtain the moment estimator

$$\hat{\theta} = \left(\bar{X}, \ \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2\right) = \left(\bar{X}, \ \frac{n-1}{n} S^2\right).$$
 (2)

Note that \bar{X} is unbiased, but $\frac{n-1}{n}S^2$ is not.

- ullet If $P_{ heta}$ is normal, then $\hat{ heta}$ is sufficient and nearly the same as the UMVUE
- If P_{θ} is double exponential, then $\hat{\theta}$ is not sufficient and can often be improved

Consider now the estimation of σ^2 when we know that $\mu = 0$.

- ullet Obviously we cannot use the equation $\hat{\mu}_1 = \mu$ to solve the problem.
- Using $\mu_2 = \sigma^2$, we obtain the moment estimator

$$\hat{\sigma}^2 = \hat{\mu}_2 = n^{-1} \sum_{i=1}^n X_i^2. \tag{3}$$

- If P_{θ} is normal, this is a good estimator
- If P_{θ} is double exponential, Eq (3) is not sufficient for σ .
 - We should first make a transformation $Y_i = |X_i|$ (note that $EY_i = \sigma/\sqrt{2}$),
 - ▶ then obtain the moment estimator based on the transformed data:

$$2\bar{Y}^2 = 2\left(\frac{1}{n}\sum_{i=1}^n |X_i|\right)^2,\tag{4}$$

which is sufficient for σ^2 .

Example 3.25

Let $X_1,...,X_n$ be i.i.d. from the uniform distribution on (θ_1,θ_2) , $-\infty < \theta_1 < \theta_2 < \infty$.

- Note that $EX_1 = (\theta_1 + \theta_2)/2$ and $EX_1^2 = (\theta_1^2 + \theta_2^2 + \theta_1\theta_2)/3$.
- Setting $\hat{\mu}_1 = EX_1$ and $\hat{\mu}_2 = EX_1^2$ and substituting θ_1 in the second equation by $2\hat{\mu}_1 \theta_2$ (the first equation), we obtain that

$$(2\hat{\mu}_1 - \theta_2)^2 + \theta_2^2 + (2\hat{\mu}_1 - \theta_2)\theta_2 = 3\hat{\mu}_2, \tag{5}$$

which is the same as

$$(\theta_2 - \hat{\mu}_1)^2 = 3(\hat{\mu}_2 - \hat{\mu}_1^2). \tag{6}$$

8 / 23

• Since $\theta_2 > EX_1$, we obtain that

$$\hat{\theta}_2 = \hat{\mu}_1 + \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)} = \bar{X} + \sqrt{\frac{3(n-1)}{n}S^2}$$
 (7)

$$\hat{\theta}_1 = \hat{\mu}_1 - \sqrt{3(\hat{\mu}_2 - \hat{\mu}_1^2)} = \bar{X} - \sqrt{\frac{3(n-1)}{n}S^2}.$$
 (8)

• $\hat{\theta}_i$'s are not functions of $(X_{(1)}, X_{(n)})$ (complete and sufficient)

Asymptotic Properties of UMVUE

- UMVUE's are typically consistent (see Exercise 2 in the Tutorial)
- UMVUE's are exactly unbiased so that there is no need to discuss their asymptotic biases
- The amse can be used to assess the performance of a UMVUE if the exact form of mse are difficult to obtain
- In many cases, although the variance does not attain the Cramér-Rao lower bound, the ratio of the mse over the Cramér-Rao lower bound converges to 1

Example: Normal Families in Lecture 14

Model

 $X_1,...,X_n$ be i.i.d. from the $N(\mu,\sigma^2)$ distribution with an unknown $\mu\in\mathcal{R}$ and a known σ^2 . $I(\mu)=n/\sigma^2$. We are interested in estimating μ^2

• Previously, we show that $h(\bar{X}) = \bar{X}^2 - \sigma^2/n$ is the UMVUE of μ^2 and the variance is

$$\operatorname{Var}(h(\bar{X})) = \frac{4\mu^2\sigma^2}{n} + \frac{2\sigma^4}{n^2}$$

while the Cramér-Rao lower bound is $4\mu^2\sigma^2/n$.

- ullet If $\mu=$ 0, the C-R lower bound =0 and is not informative
- If $\mu \neq 0$, the ratio of the two is

$$1 + \frac{2\sigma^4}{n^2} \times \frac{n}{4\mu^2\sigma^2} \to 1$$

Example: Poisson Families

Model

 $X_1,...,X_n$ be i.i.d. from the Poisson(λ) distribution with an unknown $\lambda > 0$. We are interested in estimating $\tau = P(X_1 = 0) = e^{-\lambda}$.

• We have showed that $T_n = \sum_{i=1}^n X_i$ is minimul sufficient and complete. Since $S_0 = I_{\{X_1 = 0\}}$ is unbiased, so by Lehmann-Scheffé Theorem

$$S_n = E(S_0 \mid T_n) = \left(1 - \frac{1}{n}\right)^{T_n}$$

is a UMVUE (Page 22 in Lecture 10)

- Note that $\log(S_n) = T_n/n [n \log(1 1/n)] = T_n/n [-1 + O(1/n)] = -T_n/n + O_p(1/n)$ since $T_n/n = O_p(1)$ by SLLN
- By CLT, $\sqrt{n} (T_n/n \lambda) \stackrel{\mathcal{D}}{\to} N(0, \lambda)$
- By Slutsky's theorem and $O_p(1/\sqrt{n}) = o_p(1)$, we have $\sqrt{n} (\log S_n (-\lambda)) \stackrel{\mathcal{D}}{\to} N(0,\lambda)$
- By δ -method, $\sqrt{n} \left(S_n e^{-\lambda} \right) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0, \lambda e^{-2\lambda})$. So $amse_{S_n}(\lambda) = \lambda e^{-2\lambda}/n$ =C-R lower bound

Asymptotic Property of Sample Quantiles

For any $\gamma \in (0,1)$, the $\lfloor \gamma n \rfloor$ th order statistic is also called the γ -sample quantile. ($\lfloor a \rfloor$ denotes the largest integer that is no greater than a)

Theorem

- **1** Let X_1, X_2, \ldots be i.i.d. r.v.s with CDF F,
- \bullet let $\gamma \in (0,1)$, and
- lacksquare let $ilde{ heta}_n$ be the $\lfloor \gamma n \rfloor$ th order statistic for X_1, \ldots, X_n

Suppose $F(\theta) = \gamma$ and $F'(\theta)$ exists and is positive, then

$$\sqrt{n}\left(\tilde{\theta}_{n}-\theta\right)\Rightarrow N\left(0,\frac{\gamma(1-\gamma)}{\left[F'(\theta)\right]^{2}}\right)$$

• This shows that if the CDF is smooth and strictly increasing around θ , then the $F(\theta)$ -sample quantile is asymptotically unbiased, and its amse is $\gamma(1-\gamma)/(nF'(\theta)^2)$

Proof

• For any fixed $a \in \mathcal{R}$, define

$$S_n(a) = \# \left\{ i \leq n : X_i \leq a \right\}$$

- Then $\tilde{\theta}_n \leq a \Leftrightarrow S_n(a) \geq \lfloor \gamma n \rfloor$
- ullet Therefore for any fixed $t \in \mathcal{R}$

$$P\left(\sqrt{n}(\tilde{\theta}_n - \theta) \le t\right) = P\left(S_n(\theta + t/\sqrt{n}) \ge \lfloor \gamma n \rfloor\right)$$

- $S_n(a) \sim \text{Binom}(n, F(a))$, so it is tempting to use CLT. However, the probability parameter F(a) changes along with n and CLT is not precise enough
- We need a uniform control on the convergence of CDF: Berry-Esseen Theorem

13 / 23

Theorem (Berry–Esseen Theorem)

There exists a positive universal constant C such that the following holds. Suppose Y_1, Y_2, \ldots, Y_n are i.i.d. random variables with $E(Y_1) = 0$, $E(Y_1^2) = \sigma^2 > 0$, and $E(|Y_1|^3) = \rho < \infty$. Let F_n be the CDF of

$$\frac{\sum_{i=1}^{n} Y_i}{\sigma \sqrt{n}}$$

and Φ be the CDF of the standard normal distribution, then

$$\sup_{y \in \mathcal{R}} |F_n(y) - \Phi(y)| \le \frac{C\rho}{\sigma^3 \sqrt{n}}$$

Proof (Cont.)

- Consider $Y_{n,i} = I_{X_i \le \theta + t/\sqrt{n}} F(\theta + t/\sqrt{n})$
- Then $EY_{n,i} = 0$.
- For all n large enough, $EY_{n,i}^2 = F(\theta + t/\sqrt{n})(1 F(\theta + t/\sqrt{n})) \ge \sigma_0^2 > 0, \ EY_{n,i}^3 \le 1.$
- By Berry–Esseen Theorem,

$$\begin{aligned} & \left| P \left(S_n(\theta + t/\sqrt{n}) \ge \lfloor \gamma n \rfloor \right) \\ & - \Phi \left(-\frac{\lfloor \gamma n \rfloor - nF(\theta + t/\sqrt{n})}{\sqrt{nF(\theta + t/\sqrt{n})(1 - F(\theta + t/\sqrt{n}))}} \right) \right| \\ & \le \frac{C}{\sigma_0^3 \sqrt{n}} \end{aligned}$$

Note that

$$\begin{split} &\lim_{n} \frac{\lfloor \gamma n \rfloor - nF(\theta + t/\sqrt{n})}{\sqrt{nF(\theta + t/\sqrt{n})(1 - F(\theta + t/\sqrt{n}))}} \\ &= \frac{1}{\sqrt{F(\theta)(1 - F(\theta)}} \lim_{n} \sqrt{n} \left(\lfloor \gamma n \rfloor / n - \gamma + \gamma - F(\theta + t/\sqrt{n}) \right) \\ &= \frac{1}{\sqrt{\gamma(1 - \gamma)}} \left(-F'(\theta)t \right) \end{split}$$

ullet Since Φ is continuous, we conclude that for any $t\in\mathcal{R}$

$$\lim_{n} \left| P\left(\sqrt{n}(\tilde{\theta}_{n} - \theta) \leq t \right) - \Phi\left(\frac{1}{\sqrt{\gamma(1-\gamma)}} F'(\theta)t \right) \right| = 0$$

Tutorial

- 1 Let $X_1, X_2,...$ be random variables. Show that $\{|X_n|\}$ is uniformly integrable if one of the following condition holds:
 - (i) $\sup_{n} E |X_{n}|^{1+\delta} < \infty$ for a $\delta > 0$
 - (ii) $P(|X_n| \ge c) \le P(|X| \ge c)$ for all n and c > 0, where X is an integrable random variable.
- 2 Let X_1,\ldots,X_n,\ldots be i.i.d. observations. Suppose that $T_n=T(X_{1:n})$ is an unbiased estimator of ϑ based on X_1,\ldots,X_n such that for any n, $\text{Var}(T_n)<\infty$, $\text{Var}(T_n)\leq \text{Var}(U_n)$ for any other unbiased estimator U_n of ϑ based on X_1,\ldots,X_n . Then T_n is consistent in mse.

- 3 Let (X_1, \ldots, X_n) be a random sample of random variables from a population P with $EX_1^2 < \infty$ and \bar{X} be the sample mean. Consider the estimation of $\mu = EX_1$.
 - (i) Let $T_n = \bar{X} + \xi_n$, where ξ_n is a random variable satisfying $\xi_n = 0$ with probability $1 n^{-1}$ and $\xi_n = n$ with probability n^{-1} . Show that the bias of T_n is not the same as the asymptotic bias of T_n for any P.
 - (ii) Let $T_n = \bar{X} + \eta_n$, where η_n is a random variable that is independent of X_1, \ldots, X_n and equals 0 with probability $1 2n^{-1}$ and ± 1 with probability n^{-1} . Show that the asymptotic mean squared error of T_n , the asymptotic mean squared error of \bar{X} , and the mean squared error of \bar{X} are the same, but the mean squared error of T_n is larger than the mean squared error of \bar{X} for any P.

Exercise 1

Let $X_1, X_2, ...$ be random variables. Show that $\{|X_n|\}$ is uniformly integrable if one of the following condition holds:

- (i) $\sup_n E |X_n|^{1+\delta} < \infty$ for a $\delta > 0$
- (ii) $P(|X_n| \ge c) \le P(|X| \ge c)$ for all n and c > 0, where X is an integrable random variable.

Proof: Part (i)

ullet Since $I_{\{|X_n|>t\}}\leq t^{-\delta}|X_n|^\delta$, we have

$$E\left(\left|X_{n}\right|I_{\left\{\left|X_{n}\right|>t\right\}}\right)\leq E\left|X_{n}\right|^{1+\delta}t^{-\delta}$$

Hence

$$\lim_{t\to\infty}\sup_{n}E\left(\left|X_{n}\right|I_{\left\{\left|X_{n}\right|>t\right\}}\right)\leq\sup_{n}E\left|X_{n}\right|^{1+\delta}\lim_{t\to\infty}t^{-\delta}=0$$

19 / 23

Part (ii): Assume $P(|X_n| \ge c) \le P(|X| \ge c)$ for all c

Use the identity that $E|Y| = \int_0^\infty P(|Y| > s) ds$

$$\sup_{n} E(|X_{n}| I_{\{|X_{n}| > t\}}) = \sup_{n} \int_{0}^{\infty} P(|X_{n}| I_{\{|X_{n}| > t\}} > s) ds$$

$$= \sup_{n} \int_{0}^{\infty} P(|X_{n}| > s, |X_{n}| > t) ds$$

$$= \sup_{n} \left(\int_{0}^{t} + \int_{t}^{\infty} P(|X_{n}| > s, |X_{n}| > t) ds \right)$$

$$= \sup_{n} \left(tP(|X_{n}| > t) + \int_{t}^{\infty} P(|X_{n}| > s) ds \right)$$

$$\leq tP(|X| > t) + \int_{t}^{\infty} P(|X| > s) ds$$

$$\leq tE\left(\frac{|X|}{t} I_{\{|X| > t\}} \right) + \int_{t}^{\infty} P(|X| > s) ds$$

$$\Rightarrow 0$$

as $t \to \infty$ when $E|X| < \infty$

Exercise 2

Let X_1, \ldots, X_n, \ldots be i.i.d. observations. Suppose that $T_n = T(X_{1:n})$ is an unbiased estimator of ϑ based on X_1, \ldots, X_n such that for any n, $\text{Var}(T_n) < \infty$, $Var(T_n) \leq Var(U_n)$ for any other unbiased estimator U_n of ϑ based on X_1, \ldots, X_n . Then T_n is consistent in mse.

Proof:

- Note that if n > m, then $Var(T_n) \leq Var(T_m)$ because T_m also depends on X_1, \ldots, X_n and is unbiased
- For 2n, consider an estimator $U_{2n} = \frac{T(X_{1:n}) + T(X_{(n+1):(2n)})}{2}$. It is unbiased and has variance

$$\operatorname{Var}(U_{2n}) = \frac{1}{2} \operatorname{Var}(T_n)$$

since X_i 's are i.i.d.

- So $Var(T_{2n}) < 2^{-1}Var(T_n)$
- Recursively, $Var(T_{n2^k}) \leq 2^{-k}Var(T_n) \to 0$ as $k \to \infty$
- Since $Var(T_n)$ is non-increasing in n, we conclude that $\lim_{n} \operatorname{Var}(T_n) = 0$

21/23

Exercise 3: Part (i)

Let (X_1, \ldots, X_n) be a random sample of random variables from a population P with $EX_1^2 < \infty$ and \bar{X} be the sample mean. Consider the estimation of $\mu = EX_1$.

(i) Let $T_n = \bar{X} + \xi_n$, where ξ_n is a random variable satisfying $\xi_n = 0$ with probability $1 - n^{-1}$ and $\xi_n = n$ with probability n^{-1} . Show that the bias of T_n is not the same as the asymptotic bias of T_n for any P.

Proof:

- Since $E(\xi_n) = 1$, $E(T_n) = E(\bar{X}) + E(\xi_n) = \mu + 1$. This means that the bias of T_n is 1.
- Since $\xi_n \to_p 0$ and $\bar{X} \to_p \mu$ $T_n \to_p \mu$. Thus, the asymptotic bias of T_n is 0.

Exercise 3: Part (ii)

Let (X_1, \ldots, X_n) be a random sample of random variables from a population P with $EX_1^2 < \infty$ and \bar{X} be the sample mean. Consider the estimation of $\mu = EX_1$.

(ii) Let $T_n = \bar{X} + \eta_n$, where η_n is a random variable that is independent of X_1, \ldots, X_n and equals 0 with probability $1 - 2n^{-1}$ and ± 1 with probability n^{-1} . Show that the asymptotic mean squared error of T_n , the asymptotic mean squared error of \bar{X} , and the mean squared error of \bar{X} are the same, but the mean squared error of T_n is larger than the mean squared error of \bar{X} for any P.

Proof:

- $\sqrt{n}(\bar{X} \mu) \rightarrow_d N(0, \sigma^2)$, where $\sigma^2 = \text{Var}(X_1)$.
- Since \sqrt{n} $\eta_n \to_p 0$, by Slutsky's theorem, $\sqrt{n} (T_n \mu) = \sqrt{n} (\bar{X} \mu) + \sqrt{n} \eta_n \to_d N(0, \sigma^2)$.
- Hence, the amse of T_n is the same as that of \bar{X} and is equal to σ^2/n , which is the mse of \bar{X} .
- Since $E(\eta_n) = 0$, $E(T_n) = E(\bar{X}) = \mu$ and the mse of T_n is

$$\operatorname{Var}(T_n) = \operatorname{Var}(\bar{X}) + \operatorname{Var}(\eta_n) = \operatorname{Var}(\bar{X}) + \frac{2}{n} > \text{ mse of } \bar{X}$$