Statistical Testing

EES 4891/5891
Probability & Statistics for Geosciences
Jonathan Gilligan

Class #15: Tuesday, March 04 2025

Announcements

Announcements

• Thursday will be review: I will work examples of the tests we're learning about today.

Learning Goals

Learning Goals

- Review the t-test: understand p-values and confidence intervals
- Review the logic of statistical tests
- Understand the kinds of errors you can make in statistics:
- Understand *Test Power* and how we use this to select statistical tests and design experiments
- Learn about common parameteric and non-parametric tests
- Learn about how to test goodness of fit

Student's t-test

Two Tribes:

- Two tribes lived in an area for more than 1000 years
- Some expert archaeologists think
 - Tribe A arrived in 622 CE
 - Tribe B arrived in 615 CE
- Others dispute this.
- Archaeologists ask you to use ¹⁴C dating to estimate ages of wood artifacts from early settlements of both tribes
 - The results of your measurements are:
 - \circ Tribe A: $\overline{t_A}=650~ ext{CE}\pm50 ext{y}~(1\sigma)$
 - \circ Tribe B: $t_B=750~ ext{CE}\pm50 ext{y}~(1\sigma)$

One-Sample t-test

- Null hypothesis H_0 : $\mu_A \leq 622$
- Alternate hypothesis H_a : $\mu_A > 622$
- One-sided, one-sample *t*-test:
 - *T*-statistic

$$\hat{T} = rac{\overline{t_A} - \mu_A}{S_A / \sqrt{n_A}}$$

• Compute $\mathbb{P}(t > \hat{T}) = 1 - F_{t_{\nu}}(\hat{T})$, where $F_{t_{\nu}}$ is the cumulative distribution function of the t-distribution for ν degrees of freedom.

- Suppose $\hat{T} = 1.9$.
 - If $n_A = 4$, $1 F_{t_3}(1.9) = 8\%$, so we can't reject H_0 at the 5% level.
 - If $n_A = 12$, $1 F_{t_{11}}(1.9) = 4\%$, so we reject H_0 at the 5% level.
- 4 measurements aren't enough to tell the difference between tribe A arriving before or after 622 CE.
- 12 measurements are sufficient to tell the difference, and confidently say that the tribe probably arrived after 622.

One-Sample t-Test in R

Sample some data:

```
set.seed(179011)
x_A4 <- rnorm(4, 650, 50)
x_A12 <- rnorm(12, 650, 50)</pre>
```

Run a t-test

```
t.test(x_A4, mu = 622, alternative = "greater")
```

Now try with 12 samples

```
t.test(x_A12, mu = 622, alternative = "greater")
```

- 4 samples: $\hat{T}=-1.9$, p=0.92, so we can't reject H_0 .
 - 4 samples isn't enough to tell whether tribe A arrived before or after 622 CE.
- 12 samples: $\hat{T} = 4.4$, $p = 5 \times 10^{-4}$, so we can confidently reject H_0
 - With 12 samples we can confidently tell that tribe A arrived after 622 CE.

Two-Sample *t*-Test

- Null hypothesis H_0 : $\mu_B \leq \mu_A$
- Alternate hypothesis H_a : $\mu_B > \mu_A$
- One-sided two-sample *t*-test:
 - Compute the two-sample *T*-statistic

$$\hat{T} = rac{\overline{t_B} - \overline{t_A}}{\sqrt{rac{S_B^2}{n_B} + rac{S_A^2}{n_A}}} \sim t_{
u'}$$

where t'_{ν} is the student-t distribution and ν' depends on what we know about whether t_A and t_B have the same variance.

- This equation means that the T statistic T behaves like a random variable drawn from the $t_{\nu'}$ distribution.
- lacktriangleright R will calculate u' so we don't have to worry about the formulas in the textbook

• Try it in R

- The p-value is 7.7×10^{-7} , so we reject the H_0 because there is only a 0.00008% chance that we'd see this data if H_0 were true.
 - We conclude the tribe B arrived *after* tribe A $(\mu_B>\mu_A)$

The Logic of Statistical Tests

The Logic of Statistical Tests

- Five Steps:
 - 1. Identify the appropriate test and test statistic
 - e.g., *t*-test and *T* statistic
 - 2. Define the null hypothesis
 - e.g., H_0 : $\mu_1 = \mu_2$
 - 3. Define an alternate hypothesis:
 - lacktriangledown e.g., H_a : $\mu_1>\mu_2$ (one-sided)
 - H_a : $\mu_1 \neq \mu_2$ (two-sided)
 - 4. Obtain the *null distribution*
 - Distribution of the test statistic if H_0 is true

- 5. Compute *p*-value
 - Probability that you'd see values as extreme as the observed test statistic if H_0 is true
 - Compare to test level lpha
 - e.g., $\alpha = 0.05$
 - $p < \alpha$: Reject H_0 (guilty)
 - $p \ge \alpha$: Insufficient evidence to reject H_0 (not guilty \ne innocent)

Test Errors

Test Errors

- Our statistical tests either reject H_0 or don't reject it.
 - Scenario: You're testing for COVID.
 - \circ H_0 : the patient doesn't have COVID.
 - \circ H_a : the patient has COVID.
 - *Positive test result*: reject H_0 .
 - Diagnosis: The patient has COVID.
 - Negative test result: don't reject H_0 .
 - Diagnosis: The patient doesn't have COVID.
- Four possible outcomes:

Decision	H_0 is true	H ₀ is false	
Positive: Reject H_0	False positive	True positive	
Negative: Don't reject H_0	True negative	False negative	

- Correct results:
 - *true positive*: reject H_0 when it's false.
 - *true negative*: don't reject H_0 when it's true.
- Errors:
 - **Type-I error** (*false positive*, α): H_0 is true but we reject it.
 - **Type-II error** (*false negative*, β): H_0 is false, but we don't reject it.

Test Power

• **Power**: Probability of rejecting H_0 :

$$1-eta=\mathbb{P}(ext{rejecting }H_0|H_a ext{ is true})$$

- β is the probability of a *false negative* (Type II error) if H_a is true.
- \blacksquare Power depends on N, the # of observations
- Measures discrimination:
 - How well can a test discriminate between H_0 and H_a ?
- We often use *power analysis* when designing an experiment to estimate how large a sample we need (how many observations) to detect an effect with confidence.

- When designing a statistical test, there's a tradeoff:
 - Making β smaller makes α larger and viceversa.
 - We can use power analysis to choose which test to use, based on the tradeoff between α and β .

Statistical Tests

Parametric Tests

- If you know your data follow a parametric distribution (typically a normal distribution ${\cal N}$)
 - Z-test: Compares two means when the variance is known
 - *t*-test: Compares two means when the means and variances are unknown
 - *F*-test: Compares variances of two samples from two populations:

$$F_{m,n} = rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim rac{\chi_{n-1}^2}{\chi_{m-1}^2}$$

- σ_1^2 , σ_2^2 are the unknown true variances of the populations from which the samples are drawn.
- \circ S_1^2 , S_2^2 are the observed variances of the samples.

Goodness of Fit

- How well does a theoretical distribution represent the observations?
 - \blacksquare H_0 : the observations match the theoretical distribution
 - Tests determine whether you can reject H_0 .
- χ^2 test
 - Compare histograms of observed and theoretical probability mass
 - If the fit is good, the # of observations O_k in each bin k should be close to the theoretical expectation E_k

$$\Xi^2 = \sum_{k=1}^{N_b} \frac{(E_k - O_k)^2}{E_k} \sim \chi^2_{\nu-1}(O, E),$$

where $\nu = N_b - n_p$, N_b is the number of observations and n_p is the number of parameters you estimate to decribe the theoretical probabilty distribution.

- \circ Ξ behaves like a random variable drawn from a $\chi^2_{\nu-1}$ distribution.
- In R, we use the chisq.test() function.

Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test

$$D = \max_{x} |F_n(x) - F(x)|,$$

where $F_n(x)$ is the empirical cumulative distribution function for your observations and F(x) is the theoretical cumulative probability distribution fucntion.

- Measures the greatest discrepancy between empirical and theoretical cumulative distributions
- Similar to measuring the greatest deviation from a straight line in a Q-Q plot.

• Reject H_0 at level α if

$$D > C_{\alpha} = \frac{k_{\alpha}}{\sqrt{n} + 0.12 + 0.11/\sqrt{n}},$$

where n is the sample size and k_{α} is a function of α .

- The K-S test is universal: You can compare a sample of observations to any theoretical distribution
- Disadvantage: The test doesn't account for reducing the degrees of freedom when you use observations to estimate parameters in F(x).
- In R, use ks.test()

Nonparametric Tests

Nonparametric Tests

- Most parametric tests only work if your data follow a parametric distribution
 - Most work only work for a Normal distribution
 - This is a historical artifact of what math people could do using pencil and paper
- Nonparametric tests substitute computer power for mathematical elegance
 - They work for any distribution
 - You don't need to know a mathematical formula for the distribution
- Basic strategy:
 - Simulate a large sample of surrogate data under the null hypothesis
 - Compare this sample to the observed data

- Four ideas that use Monte Carlo methods:
 - 1. Permutation
 - 2. Reordering
 - 3. Resampling
 - 4. Direct simulation

Sampling

- Important distinction:
 - Sample *m* numbered balls from a jar containing *N* balls.
- Sampling without replacement:
 - Draw balls without putting any back
 - Each ball can only appear once in the final sample
 - \circ $m \leq N$
 - There are

$$\binom{N}{m} = \frac{N!}{m!(N-m)!}$$

different ways to sample *m* balls.

 $\binom{N}{m}$ is called the binomial coefficient

- Sampling with replacement:
 - Draw a ball, put it back, draw another, ...
 - A ball may be drawn more than once
 - No limit to how big *m* can be
 - There are N^m different ways to sample m balls.

Permutation Tests

- Start with a sample of size $n = n_1 + n_2$
 - You want to compare the n_1 sample to the n_2 sample.
 - \circ H_0 : The two are the same
 - Generate *N* surrogate samples by sampling without replacement from the combined sample of size *n*.
 - This mixes up the two parts.
 - The number of possible samples in the surrogate ensemble is

$$N = {n_1 + n_2 \choose n_1} = {n_1 + n_2 \choose n_2} = {n_1 + n_2 \choose n_2} = {(n_1 + n_2)! \choose n_1! n_2!}$$

• Compare a test statistic Z on the original n_1 vs. n_2 parts to the distribution of test statistics from the ensemble of surrogate samples

Example Permutation Test

- Change in rainfall under global warming
 - You have 16 samples from climate model runs each of two scenarios: one with the preindustrial level of CO_2 (1 × CO_2) and the other with double the preindustrial CO_2 (2 × CO_2)
 - Choose a test statistic Z: The difference in maximum winter rainfall between the two groups of simulations
 - This is very far from Normally distributed
 - Parametric tests won't work

- Measure the test statistic comparing the two scenarios: Z_0
- Generate a large surrogate ensemble of random permutations $S_{1,k}$ and $S_{2,k}$ that sample from both scenarios and mix them up.
 - There are 6.0×10⁸ possible permutations.
- Calculate test statistics Z_k from $S_{1,k}$ and $S_{2,k}$ for each surrogate permutation k.
- If Z_0 (the observed test statistic) seems very unlikely under the distribution of surrogate statistics Z_k , then you reject the null hypothesis and conclude that the rainfall is different between the two climate scenarios.

Resampling Tests: Bootstrap

- Bootstrap Sampling
 - Generate a large ensemble from a limited sample
 - Pull yourself up by your bootstraps
 - Start with sample $Z = (z_1, z_2, \ldots, z_N)$.
 - Generate B samples $Z^{*1}, Z^{*2}, \ldots, Z^{*B}$ each containing N values sampled from the original Z, with replacement.
 - \circ There are N^N possible different samples
 - Calculate the test statistic $S(Z^{*i})$ for each Z^{*i} .
 - To get the confidence interval for confidence level α :
 - \circ Sort the $S(Z^{*i})$ and pick the $B \times \alpha/2$ smallest and $B \times (1-\alpha/2)$ largest values.

- How large should B be?
 - B = 200 is generally a good value.
- In R load library(boot) and use the function boot() or load library(bootstrap) and use the function bootstrap()

Resampling Tests: Jackknife

• Instead of drawing samples of N values from the original Z, make N samples of N-1 values, each of which leaves one value out (leave-one-out sampling).

sample_j =
$$(z_1, z_2, ..., z_{j-1}, z_{j+1}, z_{j+2}, ..., z_N)$$

• These days, the bootstrap is much better than the jackknife, but there are other useful applications of leave-one-out sampling.

Direct Simulation Tests

- Sometimes you have a specific model of the process that generated the data.
 - Example: In time-series data, you may have autocorrelations, where the value of the next point depends on the values of one or more previous points.
 - This violates the IID assumption (that each sample is independent of the others, and drawn from an identical probability distribution).
 - We analyze these situations by using the computer to directly simulate the process that generated the data.
- We'll examine simulation methods when we study time-series data.