1. ICT+UD Sensor 융합작품 요약표

Sensor 작품명(주제)	적외선	적외선센서를 이용한 엘리베이터			
참조 작품 (URL, 작품명 등 기술)	I	적외선 센서 - http://m.blog.naver.com/poikll/220065337781 엘리베이터 - http://forum.arduino.cc/index.php?topic=151317.0			
	구분	학번	이름	나의 각오	
참여 인원	조장	1260053	정회현	이번 프로젝트를 통해 팀원 들을 통솔하는 리더십과 이 론적 회로 지식을 실제적으 로 구현하는 능력을 기를 것 이다.	
	조원	1260030	오연중	이번 작품을 통해 회로도 구성 능력 향상과 하드웨어 부분을 더 집중적으로 파고 들겠다.	
	조원	1260014	김철언	이전의 학술제 출품경험을 살려서 이번 작품구현에서는 단계적 절차와 체계적인 구 현과정을 통해 복습을 하겠 다.	
작품 설명 (5줄 이상 작성)	기존의 엘리베이터는 버튼을 눌러서 승강기를 호출하게 된다. 우리는 접근 시 센서의 반응으로 개폐되는 자동문에서 아이디어를 착안하여 적외선 센서를 통해 엘리베이터를 자동적으로 불러오는 기능을 구현하여편의성을 개선하고자 한다. 이를 통해 엘리베이터를 불러오는 버튼을 누르는데 제한이 생기는 상황(ex.양손에 짐을 든 경우)을 해소할 수 있으리라 기대한다.				

2. ICT+UD Sensor 융합작품 요약도

※ 작품의 최종 결과물을 가장 잘 표현할 수 있는 하나의 그림으로 된 요약도를 넣으세요.

3. 융합작품 필요 사항과 요구 규격

(Requirements & Specifications)

※ HRS(Hardware Requirements Specifications)를 적으세요.

순번	RS	구체적 설명
1	R(필요 사항)	복도 쪽에서 사람의 접근을 미리 감지하여 해당 층으로 엘리베 이터를 호출할 수 있어야 한다.
'	S(요구 규격)	아두이노를 통해 5V 전압을 인가받아 발광 다이오드에서 송출한 신호를 수광 다이오드로 받아서 물체의 존재를 감지한다.
2	R(필요 사항)	발광부에서의 적외선을 수광부로 전송할 때, 거리와 강도를 고려하여 신호를 증폭시킨다.
2	S(요구 규격)	OP AMP를 사용하여 해당신호를 거리에 따라 수광부가 감지할 만큼 감도를 증폭한다.
3	R(필요 사항)	엘리베이터의 해당 층을 알려주는 표시 장치가 있어 사용자들이 엘리베이터가 현재 몇 층에 있는지 알 수 있어야 한다.
3	S(요구 규격)	7-Segment를 이용하여 엘리베이터의 해당 층을 출력시키도록 해야 한다.
4	R(필요 사항)	엘리베이터의 층간 이동 및 정지를 위해 위치를 제어할 모터가 필요하다.
4	S(요구 규격)	아두이노에서 전압을 인가받아 서보모터를 이용하여 회전수를 제어, 위치를 조작하여 해당 층으로 이동한다.
5	R(필요 사항)	적외선 센서의 신호처리와 서보모터를 제어할 중앙처리장치 및 전원을 인가할 장치가 필요하다.
5	S(요구 규격)	아두이노를 이용하여 부품들에 전원을 인가하고, 적외선 센서의 신호를 입력받아 서보모터의 회전을 제어한다.
6	R(필요 사항)	작품의 모형을 제작할 소재가 필요하다
0	S(요구 규격)	아크릴판, 아크릴커터, 글루건을 이용하여 3층 정도의 규모를 고 려하여 엘리베이터 모형 및 복도식 건물을 구현한다.

4. Hardware 설계서

※ "3. 필요 사항과 요구 규격"을 바탕으로 HW를 전체적으로 볼 수 있는 개념도를 넣으세요. 손으로 그려 사진 찍어 첨부하는 것도 가능합니다. Sensor가 반드시 포함되어야 합니다.

※ HW의 세부 구성품을 볼 수 있는 계층도/분해도를 넣으세요. 손으로 그려 사진 찍어 첨부하는 것도 가능합니다. Sensor가 반드시 포함되어야 합니다.

- 이때 제작에 필요한 구체적인 부품을 명시해야 합니다.

5. 부품 목록(BOM: Bill of Materials)

순	부품명	단가	수량	금액	구입처
번	구품경	(원)	Тб	(원)	(자세히 기술: 인터넷 링크 등)
1	[HA-BK-01] 초보자용 아두이노 우노 보드 키트 (I/O쉴드 통합)	55000	1	55000	http://www.devicemart.co.kr/1 327246
2	EL-23G (적외선발광부)	250	6	1500	http://www.devicemart.co.kr/3 174
3	ST-23G (적외선수광부)	200	6	1200	http://www.devicemart.co.kr/3 175
4	MG996R (서보모터)	6500	2	13000	http://www.devicemart.co.kr/1 313388
5	MF 0.01uf/100VDC (커패시터)	15	10	150	http://www.devicemart.co.kr/3 0262
6	LM2904N(DIP) (dual op amp)	220	3	660	http://www.devicemart.co.kr/1 056786
7	50x80사각 만능기판-단면	1300	3	3900	http://www.devicemart.co.kr/2 4895
8	Hongxing H3386P Series-5KΩ (가변저항)	320	6	1920	http://www.devicemart.co.kr/2 1512
9	Axial Resistor 3330F (333Ω) (저항)	20	10	200	http://www.devicemart.co.kr/1 165596
10	MFR0623BACV 4701(4.7KΩ) (저항)	340	10	3400	http://www.devicemart.co.kr/3 9003
	부가세 (디바이스마트)	8093	-	8093	

순	부품명	단가	수량	금액	구입처
번		(원)		(원)	(자세히 기술: 인터넷 링크 등)
					http://akobigs.com/shop/goo
11	<아크릴 재단>				ds/goods_view.php?goodsno
	FyFam /67t				=24381&category=034001
	5x5cm/6장 /2T/투명	1000	6	6000	20x10cm/1장 5T/투명 2,000원☑
	10x5cm/8장	1000	8	8000	15x5cm / 4장 5T / 투명 4,000원집
	/5T/투명 				10x5cm / 8장 5T / 투명 8,000원図
	15x5cm/4장 /5T/투명	1000	4	4000	5x5cm/6장 6 6 6000위터
	20x10cm/1장 /5T/투명	2000	1	2000	2T / 투명 • 총 금액 : 20,000원
	배송비 (아크릴 /아코빅스)	3000	-	3000	
12	글루건(소) 세트	5400	1	5400	http://item2.gmarket.co.kr/lte m/detailview/ltem.aspx?goods code=423048277&keyword_o rder=%b1%db%b7%e7%b0%c 7&keyword_seqno=11694642 628&search_keyword=%b1%d b%b7%e7%b0%c7
	배송비 (글루건/G마켓)	2500	-	2500	
총 합계					119,923 원

6. 역할 분담

	조장						
		이름	정회현	학번	1260053		
	역할	전체 회로 설계 및 코딩					
_	느낀점	정의 연속이었 이 과정에서	었고, 이를 거치면서 좀 다양한 교수님들의 조연	다른 어려움과 만나고 여 더 회로나 센서에 대 언을 수용하거나 동기들 통을 통해 작품을 보는	해 이해할 수 있었다. 간의 정보 교류 등을		

		조	원			
	이름	김철언	학번	1260014		
역할	회로 설계 및 납땜, 코드 검수					
느낀점	는 친구들과 굉장히 조그 [©] 한의 집적을 제공해주신 [©] 가서 질문을	지속적인 피드백으로 7 마한 작품이 되어서 당위해 많은 고민과 선 정기현태 교수님께 감사를 하게 된 조용희 교수님 한다. 나중에 이 친구들	간동안 빡빡한 일정 속 배선할 수 있어서 좋았고 황스러웠다. 그에 따라 성리가 필요했는데 그때 는 드린다. 또한 잘못된 에 죄송하고 제작과정이 과 함께 졸업작품까지	1, 처음 예상한 것보다 PCB판 설계에도 최대 도움과 편리한 부품을 회로를 설계하고 찾아 에 조언을 주셔서 감사		

ſ	조원						
		이름	오연중	학번	1260030		
	역할	회로 설계 및 납땜, 외형 제작					
	느낀점	어 매우 유익 다. 앞으로의	한 시간이였고 회로를	는 센서가 어떤 원리로 설계하는 것에 좀더 ⁹ ᅨ기를 통해 더 꼼꼼히	익숙해 져서 보람 있었		

※ ICT+UD 융합작품 개발연구조의 단체 사진을 찍어 넣으세요.

7. Hardware 구현서

※ "Hardware 계층도/분해도"를 바탕으로 HW 회로도를 그려 넣으세요. Sensor가 반드시 포함되어야 합니다.

- Fritzing, Schematics.com, QUCS 등을 이용해 그릴 수 있습니다.

※ 종합적 관점에서 HW(전자 회로)가 동작하는 원리를 상세히 설명하세요. Sensor 기능 설명이 반드 시 포함되어야 합니다.

HW 동작 원리

- 적외선 발광부와 수광부에서 상시 적외선을 송수신하고 있다가 사람이 지나감으로써 신호가 끊기게 되면 이를 감지하여 OP-Amp에서 증폭된 신호를 아두이노가 입력받아 해당 층으로 엘리베이터를 이동시킨다.
- 아두이노에 내장된 서보모터 라이브러리와 서보모터의 회전을 제어하여 엘리베이터 의 이동을 구현한다.
- 스위치는 아두이노 내부에 내장된 풀업 스위치 기능을 이용하여 플로팅 상태를 방지 하도록 한다. 스위치 미입력 시 해당 단자에 HIGH(5V)의 전압이 걸려있는 상태에서, 스위치 입력 시 전류가 흐르지 않는 LOW(0V)값이 되는 변화를 입력받아 엘리베이터 를 해당 층으로 이동시킨다.

• 적은 수의 입력으로 1~3층을 표시하고자 하기 위해 IC 7447(디코더)을 이용하여 두 개의 출력신호에 해당 층에 맞는 신호를 이진수로 주면 이 신호가 IC 회로를 거쳐 7-segment의 해당 핀에 전압을 인가하여 7-segment에서 해당 신호에 맞는 층수를 표시하였다.

신호	입력	표시 7-segment
Arduino Input1	Arduino Input2	並入 /-segment
0	1	
1	0	
1	1	

※ HW 회로도에 제시한 세부 부품을 상세히 설명하세요.

순번	부품 이름	구체적 설명(존재의 이유, 목적, 응용 분야 등)
		적외선 센서를 통해 사람의 이동을 감지한다. 사람의 이동을 감
1	적외선	지하여 엘리베이터를 해당 층으로 이동시킨다. 적외선 센서는 적
'	발광/수광부	외선을 통해 사람의 통행을 감지하기 때문에 별도의 과정 없이
		통과를 감지할 수 있는 유용한 센서이다.
		미약한 신호를 프로세서가 인지할 수 있는 수준까지 증폭시키는
2	OP-Amp	역할을 한다. OP-Amp는 특히 저주파 신호의 증폭에 쓰이기 때
		문에 음성 등의 신호를 증폭하는데 쓰일 수 있다.
		│입력 신호 4개를 이용하여 0~9까지의 수를 출력시키는 IC이다.│
		BCD 신호를 입력받아 7-segment의 해당 BCD 신호에 대응하는
		숫자가 나오는 단자에 전압을 인가시키는 특성을 가지는 IC칩이
3	IC 7447	다. 적은 입력을 통해 0~9까지의 수를 모두 출력할 수 있기 때
		문에 입력이 제한된 상황에서 유용하게 쓰일 수 있다.
		본 작품에서는 3층까지의 구현에 적용하고자 2개의 출력신호를
		IC에 인가하였다.
		각 핀에 신호가 입력되면 해당 핀의 LED가 켜지게 된다. 이 LED
4	7-segment	가 적절하게 켜지게 되면 숫자나 간단한 알파벳 등을 표현할 수
		있는 간단하면서도 유용한 디스플레이 장치이다.
		기존의 서보모터는 좌우로 움직임의 제한이 있어 좌우로 일정부
		분 이상 움직일 수 없게 되어 있지만 작품에 쓰인 것을 이러한
5	Servo Motor	제한이 없이 360도로 회전하는 서보 모터이다. 이 서보 모터를
		통해 엘리베이터의 층수를 원활하게 조정할 수 있었고, 이외에도
		간단한 회전이 필요할 때 요긴하게 사용할 수 있다.

※ 제작한 전체 Hardware를 잘 표현하는 사진을 넣으세요.

Hardware 제작 사진

※ "3. 융합작품 필요 사항과 요구 규격"에 제시한 Hardware 요구 규격의 구현 결과를 쓰세요. "구현결과"는 최종적으로 완성한 HW 결과를 글, 사진, 그림 등으로 표현한다. "시험 평가"는 구현 결과가 잘 동작한다는 것을 평가한 방법과 중요한 결과를 쓴다.

요구 규격	사람의 통과를 감지해야 한다.
구현 결과	물체가 통과하였을 때, 감지되는 변화를 아두이노가 올바르게 입력받는다.
시험 평가	적외선 센서가 장소나 상황에 따라 빛의 노출도나 센서의 출력이 변하기때문에 주기적으로 적외선 센서를 테스트하고 센서의 감도를 가변 저항을통해 수정하며, 변화량을 알기 위해 LED를 설치하여 제어에 용이토록 함.

요구 규격	서보모터가 원활하게 해당 층까지 움직이도록 한다.
구현 결과	아두이노에서 입력된 신호에 따라 서보모터가 엘리베이터를 해당 층까지 올바르게 이동한다.
시험 평가	아두이노가 제공하는 3V, 5V로 인가하여 테스트 한 결과 전압에 따라서보모터의 동작 강도가 변화하여, 아두이노의 전원을 서보모터가 사용하게 되면 불안정한 전원공급을 초래할 수도 있어 별도의 전원(6V)를 공급하여 서보 모터가 안정적인 전원을 공급도록 하였다. 서보모터의 경우 층의 이동 시 정확하지 않게 움직이는 경우가 간혹 발생하게 되므로 이후정확한 모터의 제어를 위해서는 스텝 모터를 이용하는 것이 바람직하다.

요구 규격	현재의 층수를 표시한다
구현 결과	7-segment를 이용하여 1~3층을 표시하였다.
시험 평가	아두이노의 신호제어 핀수가 부족해 감에 따라 7-segment에 인가할 신호를 줄이기 위해 디코더 IC(7447)를 이용하여 2개의 출력신호로 1~3층을 표시 할 수 있도록 동작을 구현하였으며, 더 많은 층수를 표시하려면 최대 4개의 출력 신호(0~9)를 사용하면 된다.

8. 기대 효과 및 발전 가능성

※ 이 제품이 사용될 경우의 기대 효과와 향후 발전 가능성을 간략히 기술하세요.

실제 버튼을 이용하는 방법 이외에도 엘리베이터가 작동되게 된다면, 신체가 불편한 사람이나 신 체 사용에 제약이 되는 상황(ex. 짐을 옮기는 경우)에서 유용하게 쓰일 수 있다.

나아가서 외부의 신호에 간섭을 많이받는 적외선 센서 이외에 다른 안정적인 센서를 이용할 수도 있고, 블루투스의 BLE를 이용한 Beacon 기술을 통해 사람의 접근을 확인하는 방법 등 다양한 방 법을 통해 사람의 접근을 감지하여 엘리베이터를 해당 층까지 이동시키게 된다면 엘리베이터 또한 IoT 기술을 접목할 수 있는 하나의 도구가 될 수 있으며, 변화 및 제어에 사용된 데이터를 저장하 거나 원격으로도 제어할 수 있는 가능성을 제시할 수 있다.

필수 부록. 제품 소개 Panel

※ PPT 등으로 만든 1장 분량의 소개 자료를 그림으로 만들어 넣으세요.

