这个ppt对应的论文: http://dspace.mit.edu/bitstream/handle/1721. 1/35276/MIT-CSAIL-TR-2007-002.pdf

Tutorial on Conditional Random Fields for Sequence Prediction

Ariadna Quattoni

RoadMap

- Sequence Prediction Problem
- CRFs for Sequence Prediction
- Generalizations of CRFs
- Hidden Conditional Random Fields (HCRFs)
- HCRFs for Object Recognition

RoadMap

- Sequence Prediction Problem
- CRFs for Sequence Prediction
- Generalizations of CRFs
- Hidden Conditional Random Fields (HCRFs)
- HCRFs for Object Recognition

Sequence Prediction Problem

Example: Part-of-Speech Tagging

Gesture Recognition

RoadMap

- Sequence Prediction Problem
- CRFs for Sequence Prediction
- Generalizations of CRFs
- Hidden Conditional Random Fields (HCRFs)
- HCRFs for Object Recognition

Conditional Random Fields: Modelling the Conditional Distribution

Model the Conditional Distribution:

$$P(\mathbf{y} \mid \mathbf{x})$$

To predict a sequence compute:

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})$$

Must be able to compute it efficiently.

Conditional Random Fields: Feature Functions

Feature Functions

Express some characteristic of the empirical distribution that we wish to hold in the model distribution

$$1 \quad if \quad y_{i-1} = IN \quad and$$

$$y_i = NNP \quad and$$

$$x_i = September$$

0 otherwise

Conditional Random Fields:: Distribution

Label sequence modelled as a normalized product of feature functions:

$$P(\mathbf{y} \mid \mathbf{x}, \lambda) = \frac{1}{Z(\mathbf{x})} \exp \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}, y_{i}, \mathbf{x}, i)$$

$$Z(\mathbf{x}) = \sum_{\mathbf{y} \in Y} \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1, j}, \mathbf{x}, i)$$

The model is log-linear on the Feature Functions

Parameter Estimation: Maximum Likelihood

IID training samples:

$$D = [(\mathbf{x}^1, \mathbf{y}^1), (\mathbf{x}^2, \mathbf{y}^2), ..., (\mathbf{x}^m, \mathbf{y}^m)]$$

(negative) Conditional Log-Likelihood:

$$L(\lambda, D) = -\log \left(\prod_{k=1}^{m} P(\mathbf{y}^{k} | \mathbf{x}^{k}, \lambda) \right)$$
$$= -\sum_{k=1}^{m} \log \left[\frac{1}{Z(\mathbf{x}_{m})} \exp \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}^{k}, y_{i}^{k}, \mathbf{x}^{m}, i) \right]$$

Parameter Estimation: Maximum Likelihood

Maximum Likelihood Estimation

Set optimal parameters to be:

$$\lambda^* = \underset{\lambda}{\arg \min} L(\lambda, D) + C \frac{1}{2} \|\lambda\|^2$$

This function is convex, i.e. no local minimums

Parameter Estimation:Optimization

Let:
$$F_j(\mathbf{y}, \mathbf{x}) = \sum_{i=1}^n f_j(y_{i-1}, y_{i,} \mathbf{x}, i)$$

Differentiating the log-likelihood with respect to parameter λ_j

$$\frac{\partial L(\lambda, D)}{\partial \lambda_{j}} = \frac{-1}{m} \sum_{k=1}^{m} F_{j}(\mathbf{y}^{k}, \mathbf{x}^{k}) + \sum_{k=1}^{m} E_{P(\mathbf{y}|\mathbf{x}^{k}, \lambda)} \left[F_{j}(\mathbf{y}, \mathbf{x}^{k}) \right]$$
Observed Mean
Feature Value

Value Under
The Model

Parameter Estimation: Optimization

Generally, it is not possible to find and analytic solution to the previous objective.

Iterative techniques, i.e. gradient based methods.

Maximum Entropy Interpretation

Notice that at the optimal solution of:

$$\lambda^* = \underset{\lambda}{\operatorname{arg min}} L(\lambda, D) + C \frac{1}{2} \|\lambda\|^2$$

We must have that:

$$\frac{1}{m}\sum_{k=1}^{m}F_{j}(\mathbf{y}^{k},\mathbf{x}^{k})=\sum_{k=1}^{m}E_{P(\mathbf{y}|\mathbf{x}^{k},\lambda)}\left[F_{j}(\mathbf{y},\mathbf{x}^{k})\right]$$

Maximizing log-likelihood

≈

Finding max-entropy distribution that satisfies the set of constraints defined by the feature functions

CRF's Inference

Given a model, i.e. parameter values

Can we compute the following efficiently?

Best Label Sequence

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\lambda}^*)$$

Expected Values

$$\sum_{k=1}^{m} E_{P(\mathbf{y}|\mathbf{x}^{k},\boldsymbol{\lambda})} \left[F_{j}(\mathbf{y},\mathbf{x}^{k}) \right] = \sum_{k=1}^{m} \sum_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}^{k},\boldsymbol{\lambda}) F_{j}(\mathbf{y},\mathbf{x}^{k})$$

$$= \sum_{k=1}^{m} \sum_{i=1}^{n} \sum_{\mathbf{y}: [y_{i-1}=a,y_{i}=b]} p(y_{i-1}=a,y_{i}=b \mid \mathbf{x}^{k},\boldsymbol{\lambda}) f_{j}(a,b,\mathbf{x}^{k},i)$$

Both can be computed using dynamic programming.

RoadMap

- Sequence Prediction Problem
- CRFs for Sequence Prediction
- Generalizations of CRFs
- Hidden Conditional Random Fields (HCRFs)
- HCRFs for Object Recognition

Generalization I: CRFs Beyond Sequences

Predicting Trees: Application Constituent Parsing

Generalization II: Factorized Linear Models

To predict a sequence compute:

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \frac{1}{Z(\mathbf{x})} \exp\sum_{i=1}^n \sum_{j} \lambda_j f_j(y_{i-1,j}, y_i, \mathbf{x}, i)$$

$$= \arg\max_{\mathbf{y}} \sum_{i=1}^n \sum_{j} \lambda_j f_j(y_{i-1,j}, y_i, \mathbf{x}, i)$$
Linear Model

Objective: making accurate predictions on unseen data

The parameters of the linear model can be optimized using other loss functions

Generalization II: Factorized Linear Models

Structured Hinge Loss

Let **Z** be the correct label sequence:

$$l(\mathbf{x}, \mathbf{z}, \boldsymbol{\lambda}) = \longrightarrow 0 \quad if \qquad \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(z_{i-1}, z_{i}, \mathbf{x}, i) > \arg\max_{\mathbf{y} \neq \mathbf{z}} \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}, y_{i}, \mathbf{x}, i) + 1$$

$$\longrightarrow \text{otherwise} \qquad \arg\max_{\mathbf{y} \neq \mathbf{z}} \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}, y_{i}, \mathbf{x}, i) - \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(z_{i-1}, z_{i}, \mathbf{x}, i) - 1$$

Structured SVM

$$\lambda^* = \underset{\lambda}{\operatorname{arg min}} \sum_{k=1}^{m} l(\mathbf{x}^k, \mathbf{y}^k, \lambda) + C \frac{1}{2} \|\lambda\|^2$$

RoadMap

- Sequence Prediction Problem
- CRFs for Sequence Prediction
- Generalizations of CRFs
- Hidden Conditional Random Fields (HCRFs)
- HCRFs for Object Recognition

Hidden Conditional Random Fields

Sentiment Detection

Hidden Conditional Random Fields

Hidden Conditional Random Fields

Model the conditional probability: $P(y | \mathbf{x}, G)$

We introduce hidden variables: $\mathbf{h} = \{h_1, h_2, ..., h_m\}$ $h \in \mathbf{H}$

Analogus to the standard CRF we define:

$$P(y, \mathbf{h} \mid \mathbf{x}, G, \lambda) = \frac{\exp^{\psi(y, \mathbf{h}, \mathbf{x}, G, \lambda)}}{\sum_{y', \mathbf{h}} \exp^{\psi(y', \mathbf{h}, \mathbf{x}, G, \lambda)}}$$

$$P(y \mid \mathbf{x}, G, \lambda) = \sum_{\mathbf{h}} P(y, \mathbf{h} \mid \mathbf{x}, G, \lambda) = \frac{\sum_{\mathbf{h}} \exp^{\psi(y, \mathbf{h}, \mathbf{x}, \lambda)}}{\sum_{\mathbf{h}, y'} \exp^{\psi(y', \mathbf{h}, \mathbf{x}, \lambda)}}$$

 $\psi(y, \mathbf{h}, \mathbf{x}, G, \lambda)$ Maps a configuration to the reals.

Hidden Conditional Random Fields Feature Functions

$$\psi(y, \mathbf{h}, \mathbf{x}, G, \lambda) = \sum_{k \in V} \sum_{j} \lambda_{j}^{1} f_{j}^{1}(k, y, h_{k}, \mathbf{x}) + \sum_{(k,l) \in E} \sum_{j} \lambda_{j}^{2} f_{j}^{2}(k, l, y, h_{k}, h_{l}, \mathbf{x})$$

Parameter Estimation

Maximum Likelihood:

Find optimal parameters:

$$\lambda^* = \underset{\lambda}{\operatorname{arg min}} L(\lambda, D) + C \frac{1}{2} \|\lambda\|^2$$

Iterative techniques, i.e. gradient based methods. But now the function is not convex!!!

At test time make prediction:

$$y^* = \underset{y}{\operatorname{arg\,max}} P(y \mid \mathbf{x}, G, \boldsymbol{\lambda}^*)$$

Parameter Estimation

The derivative of the loss function

is given by:
$$\frac{\partial L_i(\mathbf{x}^i, G^i, y)}{\partial \lambda_j^1}$$

$$-\sum_{\boldsymbol{y}\in\boldsymbol{Y},\boldsymbol{k}\in\boldsymbol{V}^{i},\boldsymbol{a}\in\boldsymbol{H}}P(h_{\boldsymbol{k}}=\boldsymbol{a},\boldsymbol{y}\,|\,\mathbf{x}^{i},\boldsymbol{G}^{i},\boldsymbol{\lambda})f_{j}^{1}(\boldsymbol{k},\boldsymbol{y},\boldsymbol{a},\mathbf{x}^{i})+\sum_{\boldsymbol{k}\in\boldsymbol{V}^{i},\boldsymbol{a}\in\boldsymbol{H}}P(h_{\boldsymbol{k}}=\boldsymbol{a}\,|\,\boldsymbol{y}^{i},\mathbf{x}^{i},\boldsymbol{G}^{i},\boldsymbol{\lambda})f_{j}^{1}(\boldsymbol{k},\boldsymbol{y}^{i},\boldsymbol{a},\mathbf{x}^{i})$$

The derivative can be expressed in terms of components:

$$P(h_i = a \mid \mathbf{x}, G, \lambda)$$
 $P(h_k = a, h_l = b \mid \mathbf{x}, G, \lambda)$ $P(y \mid \mathbf{x}, G, \lambda)$

that can be calculated using dynamic programming. Similarly the argmax can also be computed efficiently.

RoadMap

- Sequence Prediction Problem
- CRFs for Sequence Prediction
- Generalizations of CRFs
- Hidden Conditional Random Fields (HCRFs)
- HCRFs for Object Recognition

Application :: Object Recognition

SemiSupervised Part-based Models

$$\mathbf{x} = \{x_1, ... x_m\}$$
$$\phi(x_i) \in \mathbb{R}^d$$

Motivation

- Use a discriminative model.
- Spatial dependencies between parts.
- It is convenient to use an intermediate discrete hidden variable.
- Potential of learning semantically-meaningful parts.
- Framework for investigating which part structures emerge.

Graph Structure

Feature Functions

Viterbi Configuration

Learning Shape

Conclusions

- ☐ Factorized Linear Models generalize linear prediction models to the setting of structure prediction.
- ☐ In standard linear prediction, finding the argmax and computing gradients is trivial. In structure prediction it involves inference.
- ☐ Factored representations allow for efficient inference algorithms (most times based on dynamic programming)
- Conditional Random Fields are an instance of this framework

Future Work

☐ Better Algorithms for training HCRFs