Übung Künstliche Neuronale Netzwerke Wintersemester 2015/2016

- ① Abgabe am 25. 11. 2015 bis Ende der Übung handschriftlich auf Papier (1x pro Person)
- ② Abgabe bis 02. 12. 2015, 23:55 Uhr im Moodle-Kurs (1x pro Gruppe)

2. Übungsblatt vom 18. 11. 2015

2.1 Regression

Eine Messreihe ist gegeben durch eine Folge von Eingabewerten x_1, \ldots, x_P und Sollwerten t_1, \ldots, t_P (Trainingsbeispiele). Aus dem Versuchsaufbau vermuten Sie, dass es sich um eine lineare Überlagerung einer Sinus- und einer Kosinusfunktion handelt:

$$y(w, x) = w_1 \cos(x) + w_2 \sin(x)$$

a) Definieren Sie eine quadratische Fehlerfunktion $E(\underline{w})$. Geben Sie Formeln an, mit denen aus den gegebenen Trainingsbeispielen (x_p,t_p) die optimalen Gewichte w_1 und w_2 berechnet werden können. Lösen Sie dazu das durch die Minimierung der Fehlerfunktion entstehende Gleichungssystem.

Hinweis: Um die Formeln übersichtlich zu halten, können Sie an geeigneter Stelle folgende Substitutionen verwenden:

$$a_{11} = \sum_{p=1}^{P} \cos^{2}(x_{p})$$

$$a_{22} = \sum_{p=1}^{P} \sin^{2}(x_{p})$$

$$a_{12} = a_{21} = \sum_{p=1}^{P} \sin(x_{p}) \cos(x_{p})$$

$$b_{1} = \sum_{p=1}^{P} t_{p} \cos(x_{p})$$

$$b_{2} = \sum_{p=1}^{P} t_{p} \sin(x_{p})$$

- b) Nach der Berechnung des minimalen Fehlers auf der Trainingsmenge stellen Sie fest, dass die Modellkomplexität zu klein war.
 - (i) Wie kann die Modellkomplexität mit trigonometrischen Funktionen erhöht werden? Mit welchem Lösungsansatz werden dann die optimalen Gewichte berechnet?
 - (ii) Kann eine höhere Modellkomplexität den Fehler auf der Trainingsmenge vergrößern (theoretisch/praktisch)? Kann er theoretisch zu 0 gemacht werden?
 - (iii) Was passiert mit dem Fehler auf der Testmenge, wenn die Modellkomplexität immer weiter erhöht wird (theoretisch und praktisch)?

Begründen Sie Ihre Antworten.

2.2 Normalverteilung

Gegeben sei eine zweidimensionale Zufallsvariable $X = (X_1, X_2)^T$ mit $x_1 \in [-1, 1]$ und $x_2 \in [-3, 1]$, wobei alle Werte innerhalb dieses Rechtecks gleich wahrscheinlich sind.

- a) Geben Sie die Wahrscheinlichkeitsdichten von X_1 , X_2 und X an. Berechnen Sie Erwartungswerte und Standardabweichungen in X_1 und X_2 , sowie den Erwartungswert von $X_1 \cdot X_2$. 4P ①
- b) Schreiben Sie eine Funktion, die zufällige Vektoren \underline{x} aus $[-1,1] \times [-3,1]$ erzeugt. Schreiben Sie eine weitere Funktion, die als neue Zufallsvariable den Durchschnitt $Y = \frac{1}{N} \sum_{n=1}^{N} \underline{x}_n$ aus einer Stichprobe mit N Werten der Zufallsvariablen X berechnet.
- c) Erzeugen Sie eine große Zahl $\underline{y}_1,\dots,\underline{y}_S$ von Werten dieser Zufallsvariablen Y mit Stichprobengröße N=10. Schreiben Sie eine Funktion, die aus diesen Werten den Mittelwert $\underline{\hat{\mu}}=(\hat{\mu}_1,\hat{\mu}_2)^{\mathrm{T}}$ und die Standardabweichungen $\hat{\sigma}_1$ und $\hat{\sigma}_2$ in x_1 bzw. x_2 der Zufallsvariablen Y schätzt. 4P $^{\textcircled{2}}$
- d) Erzeugen Sie ein zweidimensionales Histogramm mit Schrittweite $\Delta=0.1$ und tragen Sie die Vektoren $\underline{y}_1,\ldots,\underline{y}_S$ ein. Dividieren Sie die Histogrammwerte durch $S\cdot\Delta^2$.

Dieses Histogramm ist eine Annäherung an die Normalverteilung

$$\mathcal{N}(\underline{z};\underline{\mu},\sigma_1,\sigma_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left[-\frac{1}{2}\left(\frac{(z_1-\mu_1)^2}{\sigma_1^2} + \frac{(z_2-\mu_2)^2}{\sigma_2^2}\right)\right]$$

e) Schreiben Sie eine Funktion, die die Normalverteilung mit den Parametern $\underline{\hat{\mu}}$ sowie $\hat{\sigma}_1$ und $\hat{\sigma}_2$ berechnet. Dabei bezeichnen $\underline{\hat{\mu}}, \hat{\sigma}_1, \hat{\sigma}_2$ die Schätzungen aus Aufgabe c). Bestimmen Sie die Abweichung des Histogramms von der Normalverteilung durch Berechnung des quadratischen Fehlers E^{SSE} . Vergleichen Sie dazu den Wert jedes Histogrammbins mit dem Wert der Normalverteilung im Zentrum \underline{z} des entsprechenden Histogrammbins.