Sharing-Bicycle System Prediction

Horace Wang

Mar.26 2019

Introduction & Problem

- Bicycle sharing service
- Customer rent and return bicycle at designed locations
- Availability at each station is not equal
- Shortage becomes a big issue for the company
- Need a method to predict the demand for each station

Data

- Citibike official website provides JSON file
 - https://feeds.citibikenyc.com/stations/stations.json
- Including following characteristics:

executionTime stationBeanList

stationName availableDocks

• totalDocks latitude

longitude statusValue

• statusKey availableBikes

• stAddress1 stAddress2

• city postalCode

• location altitude

landmark

Methodology

- Different Analyzing Method:
 - Linear Regression
 - SVR
 - Decision Tree
 - Natural Network
- Evaluation Standards:
 - R-square
 - Means Squared Error

Discussion (1/5)

• Linear Regression

Discussion (2/5)

Discussion (3/5)

• Decision Tree

Discussion (4/5)

Natural Network

Discussion (5/5)

	Linear Regression	SVR	Decision Tree	Neural
				Network
R-square	0.547	0.556	0.485	0.622
MSR	18.453	18.063	20.960	15.387

 Neural Network has the highest R-square value and lowest Means Square Error. Thus, Neural Network is the best estimation model for Citibike's business for each station.

Conclusion

- Neural Network is the best model to estimate the demand of each station currently
- Future Improvement:
 - More data needed to have more accurate result:
 - Customer's behavior
 - The relation between different stations
 - The differences between each week, seasons or years need to be considered

Thanks