F1등수예측 머신러닝프로젝트

서브웨이 (안태건, 이동재, 전유빈, 이영지)

CONTENTS

1 프로젝트 개요

2 데이터 수집

3 데이터 정제

4 모델 구축

5 결론

01 프로젝트 개요

주제명: F1 등수 예측

프로젝트 주제 선정 배경

f1 그랑프리는 1950년부터 진행된 포뮬러 자동차 경기이다. 따라서 풍부한 데이터를 확보할 수 있다.

2024 f1 그랑프리는 2월 29일부터 12월 8일까지 총 24라운드에 걸쳐 진행된다. 따라서 지금까지의 데이터를 기반으로 남은 경기의 순위를 예측하는 프로젝트는 시의적절하다고 볼 수 있다.

02 데이터 수집

Kaggle을 통한 F1 데이터 수집

머신러닝 및 데이터 사이언스 커뮤니티인 Kaggle에 제공되어 있는 데이터 중 'Formula 1 World Championship(1950 - 2024)' 의 데이터를 사용하였다.

해당 데이터에는 어떤 선수가 몇 등을 하였는지, 어떤 서킷에서 언제 하였는지 등이 다양하고 자세하게 수록되어 있다.

변수 설명

starting_grid	각 드라이버가 서게 되는 출발 위치					
laps	특정 레이스에서 차량이 서킷을 도는 수					
total_laptime	드라이버가 레이스 동안 모든 랩을 완주하는 데 소요된 총 시간					
fastestLapTime	한 드라이버가 서킷을 완주하는 데 걸린 시간 중 가장 짧은 시간					
fastestLapSpeed	특정 드라이버가 기록한 가장 빠른 한 바퀴 주행 중의 평균 속도					

변수 설명

pitstop_count	피트스톱 횟수 ** 피트스톱 : 레이스 중 차량이 피트 레인으로 들어와 타이어 교체, 간단한 정비 등을 수행하는 것					
pitstop_duration	차량이 피트 레인에 진입해서 다시 나갈 때까지 걸린 총 시간					
average_quali	3번의 예선 세션 동안 드라이버가 기록한 랩타임의 평균					
lastest_standing	해당 경기 이전까지의 합산 순위					
result_position	최종 순위					

데이터 전처리

시간 데이터 처리	• 시간 단위를 초 단위로 변환					
DataFrame 생성	● 2015년 이전 데이터 제거 ● raceld, driverld를 이용하여 하나의 DataFrame으로 병합					
변수 처리	● 결측치를 0으로 변환 ● q1, q2, q3 변수의 값을 세 변수의 평균값으로 대체 ● result_position 값을 3 이하는 1, 3 초과는 0으로 변환					

데이터 전처리 완료 후

	starting_grid	laps	total_laptime	fastestLapTime	fastestLapSpeed	pitstop_count	pitstop_duration	average_quali	lastest_standing	result_position
0	2	57	2895.600	90.6	210.815	2	18.155000	85.300000	3	1
1	1	57	2903.660	90.6	210.608	2	18.168333	84.600000	4	1
2	3	57	2905.243	90.0	212.235	2	18.155000	85.633333	2	1
3	8	57	2919.930	89.0	214.510	2	18.163333	86.033333	1	0
4	6	57	2954.579	92.3	206.861	2	18.163333	85.666667	9	0
1803	10	52	1410.677	89.7	236.401	1	29.341000	88.300000	7	0
1804	9	52	1415.487	89.7	236.380	2	29.410000	88.200000	8	0
1805	13	52	1426.403	90.2	235.041	2	29.658000	89.150000	14	0
1806	12	52	1436.060	90.0	235.713	2	29.444000	89.400000	12	0
1807	17	52	1437.253	90.1	235.396	2	29.884000	92.900000	13	0

1808 rows × 10 columns

04 모델 구축

모델 구축

Train/Test 데이터 분리

- 1.Train data 70% / Test data 30%로 분리
- 2. 정규화

Test set dimension is (543, 9)

```
# Train set / Test set 나누기

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.3, random_state=0)

# 데이터 컬럼 단위 정규화 하기

normalizer = StandardScaler()

X_train = normalizer.fit_transform(X_train)

X_test = normalizer.transform(X_test)

print(f"Train set dimension is {X_train.shape}")

print(f"Test set dimension is {X_test.shape}")

Train set dimension is (1265, 9)
```

모델 구축

모델 학습

1.Test set에 대한초기 성능 확인(정확도:0.8398)

정확도:0.8398

```
rfc = RandomForestClassifier(n_estimators=50, random_state=0)
rfc.fit(X_train,y_train)
                RandomForestClassifier
RandomForestClassifier(n_estimators=50, random_state=0)
# Train set에 대한 성능
y_pred = rfc.predict(X_train)
acc = accuracy_score(y_true = y_train, y_pred = y_pred)
print("Train set에 대한 성능")
print(f"정확도:{acc:0.4f}")
# Test set에 대한 성능
y_pred = rfc.predict(X_test)
acc = accuracy_score(y_true = y_test, y_pred = y_pred)
print("\n")
print("Test set에 대한 성능")
print(f"정확도:{acc:0.4f}")
Train set에 대한 성능
정확도:1.0000
Test set에 대한 성능
```

모델 구축

하이퍼파라미터 최적화

- 1.파라미터(n_estimators, max_depth, criterion, max_features) 최적화
- 2. GridSearchCV 모듈 사용

```
rfc = RandomForestClassifier(random_state=0)
param_grid = {
    "n_estimators" : [50,60,70],
    "max_depth" : [10,15,20],
    "criterion" : ["gini","entropy"],
    "max_features" : ["auto","sqrt","log2"]
}
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=10, verbose=1, n_jobs=-1)
CV_rfc.fit(X_train,y_train)
```

모델 구축

하이퍼파라미터 최적화

1.최적화 결과 정확도 향상(0.8398 -> 0.8398)

n_estimators: 50 | max_features: sqrt | criterion: entropy

```
# Train set에 대한 성능
y_pred = best_rfc.predict(X_train)
acc = accuracy_score(y_true = y_train, y_pred = y_pred)
print("Train set에 대한 성능")
print(f"정확도:{acc:0.4f}")

# Test set에 대한 성능
y_pred = best_rfc.predict(X_test)
acc = accuracy_score(y_true = y_test, y_pred = y_pred)
print("\n")
print("Test set에 대한 성능")
print(f"정확도:{acc:0.4f}")

Train set에 대한 성능
정확도:1.0000
```

04 모델 구축

타 알고리즘과의 비교

결론

- 1.Random Forest를 이용한 모델의 정확도(0.8398)가 가장 높았다.
- 2.starting_grid 변수와 lastest_standing 변수의 예측 중요도가 가장 높았다.

THANK YOU

서브웨이 (안태건, 이동재, 전유빈, 이영지)