Геометрия по Клейну

Рябичев

Пусть X — множество и $\sigma(X)$ — множество его биекций. Назовём множество $G \in \sigma$ группой, если $f,g \in G \implies f \circ g \in G$ и $f \in G \implies f^{-1} \in G$.

Теорема 1. Любая группа представляется в таком виде.

Пример. Пусть $G = \mathbb{Z}/5\mathbb{Z}$ с операцией сложения. Рассмотрим $X = \mathbb{Z}/5\mathbb{Z}$ и число k переходит в биекцию $r \mapsto r + k$. Очевидно, оно подходит.

№1. Найти $|\sigma(\mathbb{R}^2)|$.

Список интересных подгрупп $X = \mathbb{R}^2$

- Параллельные переносы; повороты вокруг нуля.
- Собственные движения (сохраняющие ориентацию).
- $\forall x,y \in \mathbb{R} \ |x,y| = |f(x),f(y)|$ движения.
- Сохраняются прямые и углы композиция движения и гомотетии.
- $\forall x,y,z\in\mathbb{R}\ xyz$ прямая $\implies f(x)f(y)f(z)$ прямая аффинные преобразования.
- Непрерывные отображения.
- Все биекции $\sigma(X)$.

В списке выше каждая следующая группа — строгое надмножество предыдущей.

Определение 1. Аффинное преобразование — преобразование, которое переводит фиксированную точку O и два неколлинеарных вектора $\overline{u}, \overline{v}$ в точку f(O) и неколлинеарные вектора $f(\overline{u}), f(\overline{v})$, а затем любую точку $A = O + k\overline{u} + l\overline{v}$ переводит в точку $f(O) + k\overline{f(u)} + l\overline{f(v)}$.

Лемма 2. При аффинном преобразовании образ прямой — прямая.

Доказательство. Представим прямую $l = O + \overline{u} + t\overline{w}$. Тогда её образ $f(l) = f(O) + \overline{f(u)} + t\overline{f(w)}$ — тоже прямая.

Теорема 3. Любое преобразование, сохраняющее прямые, аффинно.

Теорема 4. Любое преобразование, сохраняющее прямые и углы, является поворотной гомотетией (возможно, композицией с осевой симметрией).

Доказательство. Это аффинное преобразование с такими свойствами: $\angle(\overline{f(u)}, \overline{f(v)}) = \angle(\overline{u}, \overline{v})$ и |f(u)|/|f(v)| = |u|/|v|. Рассмотрим такую композицию: сначала параллельным переносом переведём O в f(O), затем поворотом \overline{u} в $\overline{f(u)}$, затем, если надо, отразим относительно $\overline{f(u)}$, затем сделаем гомотетию с центром в f(O).

Теорема 5. Любое преобразование, увеличивающее все расстояния в c раз, является поворотной гомотетией (возможно, композицией с осевой симметрией).

Доказательство. Сделаем гомотетию в c^{-1} раз. Тогда получится преобразование, не изменяющее расстояние, т.е. движение.

Теорема 6. $\forall f$ – движение $\exists ! (t \in T, r \in R) : r \circ t = f$. (T — параллельные переносы, R — повороты вокруг O)