import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the csv data to a Pandas DataFrame
heart_data = pd.read_csv('/content/heart_.csv')

print first 5 rows of the dataset
heart_data.head()

_ _ *		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

print last 5 rows of the dataset
heart_data.tail()

→ *		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

number of rows and columns in the dataset heart_data.shape

→ (303, 14)

getting some info about the data
heart_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
Column Non-Null Count Dtype

Data	columns (total 14 columns):									
#	Column	Non-	-Null Count	Dtype						
0	age	303	non-null	int64						
1	sex	303	non-null	int64						
2	ср	303	non-null	int64						
3	trestbps	303	non-null	int64						
4	chol	303	non-null	int64						
5	fbs	303	non-null	int64						
6	restecg	303	non-null	int64						
7	thalach	303	non-null	int64						
8	exang	303	non-null	int64						
9	oldpeak	303	non-null	float64						
10	slope	303	non-null	int64						
11	ca	303	non-null	int64						
12	thal	303	non-null	int64						
13	target	303	non-null	int64						
dtyne	dtynes: float64(1) int64(13)									

dtypes: float64(1), int64(13)
memory usage: 33.3 KB

illelilory usage. 33.3 kB

checking for missing values
heart_data.isnull().sum()

```
₹
               0
               0
        age
               0
        sex
               0
        ср
               0
      trestbps
               0
       chol
        fbs
               0
               0
      restecg
      thalach
               0
       exang
      oldpeak 0
       slope
               0
               0
        ca
       thal
               0
               0
       target
```

dtype: int64

statistical measures about the data
heart_data.describe()

checking the distribution of Target Variable
heart_data['target'].value_counts()

dtype: int64

```
X = heart_data.drop(columns='target', axis=1)
```

Y = heart_data['target']

print(X)

⋺₹		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	\
_	0	63	1	3	145	233	1	0	150	0	2.3	
	1	37	1	2	130	250	0	1	187	0	3.5	
	2	41	0	1	130	204	0	0	172	0	1.4	
	3	56	1	1	120	236	0	1	178	0	0.8	
	4	57	0	0	120	354	0	1	163	1	0.6	
	298	57	0	0	140	241	0	1	123	1	0.2	
	299	45	1	3	110	264	0	1	132	0	1.2	
	300	68	1	0	144	193	1	1	141	0	3.4	
	301	57	1	0	130	131	0	1	115	1	1.2	
	302	57	0	1	130	236	0	0	174	0	0.0	
		slope	e ca	tha	al							
	Ω	-			1							

0 0 1 0 0 2

```
2
                 0
                       2
     3
             2
                 0
                       2
     4
             2
                 0
                       2
     298
                 0
             1
     300
                 2
     301
             1
                 1
                       3
     302
             1
                 1
                       2
     [303 rows x 13 columns]
print(Y)
    0
           1
→
           1
           1
     3
           1
           1
     298
           0
     299
           a
     300
     301
           a
     302
     Name: target, Length: 303, dtype: int64
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
→ (303, 13) (242, 13) (61, 13)
model = LogisticRegression()
# training the LogisticRegression model with Training data
model.fit(X_train, Y_train)
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status-
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       n_iter_i = _check_optimize_result(
     ▼ LogisticRegression
     LogisticRegression()
# accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on Training data : ', training_data_accuracy)
Accuracy on Training data: 0.8512396694214877
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy on Test data : ', test_data_accuracy)
Accuracy on Test data: 0.819672131147541
input_data = (62,0,0,140,268,0,0,160,0,3.6,0,2,2)
# change the input data to a numpy array
input_data_as_numpy_array= np.asarray(input_data)
# reshape the numpy array as we are predicting for only on instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = model.predict(input_data_reshaped)
print(prediction)
```

```
if (prediction[0]== 0):
 print('The Person does not have a Heart Disease')
else:
  print('The Person has Heart Disease')
[0]
The Person does not have a Heart Disease
     /usr/local/lib/python3.10/dist-packages/sklearn/base.py:465: UserWarning: X does not have valid feature names, but LogisticRegressic
       warnings.warn(
    4
                                                                                                                                       •
import pickle
filename = 'heart_disease_model.sav'
pickle.dump(model, open(filename, 'wb'))
# loading the saved model
loaded_model = pickle.load(open('heart_disease_model.sav', 'rb'))
for column in X.columns:
 print(column)
→ age
     sex
     ср
     trestbps
     chol
     fbs
     restecg
     thalach
     exang
     oldpeak
     slope
     thal
```