▼ 语法分析器

- 一、实验内容
- ▼ 二、程序输入输出展示
 - 2.1 输入展示
 - 2.2 输出展示
 - 2.3 报错提示
- 三、重要的数据结构和变量
- ▼ 四、算法思想
 - (一) 求First集的函数实现
 - (二) 如何获得GOTO图初始状态
 - (三) 如何生成完整的GOTO图
 - (四) 如何用GOTO图构造语法分析表
 - (五) 用语法分析表分析语句
 - (六) 报错处理
- 五、遇到的问题
- 六、实验心得

语法分析器

一、实验内容

自实现语法分析器:

- 1. 程序输入: 终结符集合, 非终结符集合, 文法, 待分析的语句
- 2. 语法分析算法: LR(1)
- 3. 程序实现:
 - 根据输入的终结符集合、非终结符集合和文法构造LR(1)的GOTO图
 - 根据LR(1)GOTO图自动化的构造LR(1)语法分析表
 - 根据语法分析表分析输入的语句,得出语法分析动作表
- 4. 输出
 - LR(1)文法GOTO图
 - LR(1)语法分析表
 - 语法分析动作表
 - 错误报错

二、程序输入输出展示

2.1 输入展示

以下输入均以.txt文件的格式读入程序

1. 语法非终结符

2. 语法终结符

3. 文法

```
    語法文法.txt
    文件 编辑 查看
    E->S
        S->i=S
        S->s+T
        S->S-T
        T->T*F
        T->T\F
        T->f
        F->(S)
        F->i
        包括对加减乘除、等号、括号、变量的分析
```

4. 语句输入

2.2 输出展示

GOTO图:以下展示每个状态,状态之间的转换关系和读入字符后续说明

```
II
F)(s*), # + - * \
F)(s*), # + - * \
S>5* - 1, | + - |

12
12
13
S>7: | + - |
F>1: | + - * \
T>7: | + F, | + - * \
T>7: | + F, | + - * \
T=7: | + F, | + - * \
T>7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + F, | + - * \
T=7: | + T, | + T,
```

```
S)[=-S, ) +-
S)[=-S, ) +-
S)[=-S, ] +-
S)[=-
```

LR(1)语法分析表

LR (1)	 分析表: (S5)	*	+	i S2	=	\		#	Е	S 1	T 3	F 4
0 1 2 3	29		r9 S9 r7	S6 r9 r4	52	S8	r9 S10	S7 r9 r4	acc r9 r4 r7		1	3	4
4 5 6 7	S15 S5 S5		r7	r7	S12 S17 S17		r7	r7	r7		11	13 16 18	14 4 4 4
8 9	S5 S5 S5 S5 S5	COO		COO	S2 S17 S17			C0.4			19	3	4 20 21
11 12 13 14		S22 r9 r4 r7	r9 S26 r7	S23 r9 r4 r7		S25	r9 S27 r7	S24 r9 r4 r7					
15 16 17 18	S15		S9 r9 S9	r2 r9	S12		S10 r9 S10	r2 r9 r3	r2 r9 r3		28	13	14
19 20 21			r5 r6 r8	r3 S6 r5 r6 r8			r5 r6 r8	S7 r5 r6 r8	acc r5 r6 r8				
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35	S15 S15 S15 S15		10	10	S30 S30 S12 S30		10	10	10		32	29 31 13	14 14 14 33
27 28 29 30	S15	S35 r2 r9	S26 r9	S23 r2 r9	S30		S27 r9	S24 r2 r9					34
31 32 33		r3 r5	S26 r5 r6	r9 r3 S23 r5 r6 r8			r9 S27 r5	r3 S24 r5	acc				
35 		r6 r8	r6 r8	r8			r6 r8	r6 r8					

动作分析表:

73117317	1794			
分析过程	呈为:			
步骤	状态栈	符号栈	输入符	动作
1	0	# :	$i=i+i*i+(i*i+i)+(i\setminus i-i)$ #	S2
2	0 2	#i	$=i+i*i+(i*i+i)+(i\setminus i-i)#$	S8
1 2 3	0 2 8	#i=	i+i*i+(i*i+i)+(i(i-i))#	S2
4	0 2 8 2	#i=i	$+i*i+(i*i+i)+(i\setminus i-i)#$	r9
4 5	0 2 8 4	#i=F	+i*i+(i*i+i)+(i(i-i))#	r9 r7
6	0 2 8 3	#i=T	+i*i+(i*i+i)+(i(i-i))#	r4
6 7	0 2 8 19	#i=S	$+i*i+(i*i+i)+(i\setminus i-i)#$	S6
8 9	0 2 8 19 6	#i=S+	$i*i+(i*i+i)+(i\setminus i-i)\#$	S17
9	0 2 8 19 6 17	#i=S+i	$*i+(i*i+i)+(i\setminus i-i)\#$	r9
10	0 2 8 19 6 4	#i=S+F	$*i+(i*i+i)+(i\setminus i-i)\#$	r7
11	0 2 8 19 6 16	#i=S+T	$*i+(i*i+i)+(i\setminus i-i)\#$	S9
12	0 2 8 19 6 16 9	#i=S+T*	$i+(i*i+i)+(i\setminus i-i)\#$	S17
13	0 2 8 19 6 16 9 17	#i=S+T*i	$+(i*i+i)+(i\setminus i-i)\#$	r9
14	0 2 8 19 6 16 9 20	#i=S+T*F	$+(i*i+i)+(i\setminus i-i)\#$	r9 r5
15	0 2 8 19 6 16	#i=S+T	$+(i*i+i)+(i\setminus i-i)\#$	r2
16	0 2 8 19	#i=S	$+(i*i+i)+(i\setminus i-i)\#$	S6
17	0 2 8 19 6	#i=S+	$(i*i+i)+(i\setminus i-i)#$	S5
18	0 2 8 19 6 5	#i=S+($i*i+i)+(i\setminus i-i)\#$	S12

```
r9
20
              0 2 8 19 6 5 14
                                               \#i=S+(F)
                                                                        *i+i)+(i\setminus i-i)\#
                                                                                                r7
21
22
              0 2 8 19 6 5 13
                                               \#i=S+(T)
                                                                        *i+i)+(i\setminus i-i)#
                                                                                                S26
                                              \#i=S+(T*
           0 2 8 19 6 5 13 26
                                                                         i+i)+(i\setminus i-i)#
                                                                                                S30
23
       0 2 8 19 6 5 13 26 30
                                             \#i=S+(T*i)
                                                                          +i)+(i\setminus i-i)\#
                                                                                                r9
24
25
       0 2 8 19 6 5 13 26 33
                                             \#i=S+(T*F)
                                                                          +i)+(i\setminus i-i)#
                                                                                                r5
              0 2 8 19 6 5 13
                                               \#i=S+(T)
                                                                          +i)+(i\setminus i-i)#
                                                                                                r4
              0 2 8 19 6 5 11
                                                                          +i)+(i i-i)#
26
                                               \#i=S+(S)
                                                                                                S23
                                              \#i=S+(S+
27
           0 2 8 19 6 5 11 23
                                                                            i)+(i\setminus i-i)#
                                                                                                S30
                                                                             )+(i/i-i)#
28
                                             \#i=S+(S+i)
       0 2 8 19 6 5 11 23 30
                                                                                                r9
       0 2 8 19 6 5 11 23 14
29
                                             \#i=S+(S+F)
                                                                             )+(i \setminus i-i) #
                                                                                                r7
30
       0 2 8 19 6 5 11 23 29
                                             \#i=S+(S+T)
                                                                             )+(i \setminus i-i) \#
                                                                                                r2
31
                                               #i=S+(S
                                                                             )+(i\setminus i-i)\#
                                                                                                S22
              0 2 8 19 6 5 11
           0 2 8 19 6 5 11 22
32
                                                                              +(i \setminus i-i)#
                                              \#i=S+(S)
                                                                                                r8
33
                  0 2 8 19 6 4
                                                 \#i=S+F
                                                                              +(i \setminus i-i) #
                                                                                                r7
34
                 0 2 8 19 6 16
                                                 \#i=S+T
                                                                              +(i \setminus i-i) #
                                                                                                r2
                                                                              +(i i - i) #
35
                       0 2 8 19
                                                   #i=S
                     0 2 8 19 6
                                                  #i=S+
                                                                                (i \setminus i - i) #
36
                                                                                                S5
                  0 2 8 19 6 5
37
                                                 \#i = S + (
                                                                                 i∖i−i)#
                                                                                                S12
38
              0 2 8 19 6 5 12
                                               \#i=S+(i)
                                                                                   \i-i)#
                                                                                                r9
              0 2 8 19 6 5 14
39
                                               \#i=S+(F)
                                                                                   i-i)#
                                                                                                r7
              0 2 8 19 6 5 13
40
                                                                                                S27
                                               \#i=S+(T)
           0 2 8 19 6 5 13 27
                                              \#i=S+(T)
                                                                                                S30
41
                                             \#i=S+(T\setminus i)
       0 2 8 19 6 5 13 27 30
                                                                                                r9
       0 2 8 19 6 5 13 27 34
43
                                             \#i=S+(T\setminus F)
                                                                                     -i)#
                                                                                                r6
44
              0 2 8 19 6 5 13
                                               \#i=S+(T)
                                                                                      i)#
                                                                                                r4
45
              0 2 8 19 6 5 11
                                               \#i=S+(S)
                                                                                      i)#
                                                                                                S24
           0 2 8 19 6 5 11 24
                                                                                                S30
                                                                                      i)#
46
                                             \#i = S + (S - i)
47
       0 2 8 19 6 5 11 24 30
                                                                                       )#
                                                                                                r9
       0 2 8 19 6 5 11 24 14
48
                                             \#i=S+(S-F)
                                                                                       )#
                                                                                                r7
       0 2 8 19 6 5 11 24 31
49
                                             \#i=S+(S-T)
                                                                                       )#
50
                                               \#i=S+(S
                                                                                       )#
                                                                                                S22
              0 2 8 19 6 5 11
                                                                                        ##
51
           0 2 8 19 6 5 11 22
                                              \#i=S+(S)
                                                                                                r8
52
                  0 2 8 19 6 4
                                                 #i=S+F
                                                                                                r7
                 0 2 8 19 6 16
53
                                                 \#i=S+T
                                                                                                r2
54
                       0 2 8 19
                                                   \#i=S
语法识别成功
```

2.3 报错提示

当语法分析出错时, 会有相应的报错

1. 输入句子如下时:

报错:

2. 输入句子如下时:

报错:

```
分析过程为:

步骤 状态栈 符号栈 输入符 动作

1 0 # i=+i*i+(i*i+i)+(i\i-i)# S2
2 0 2 #i =+i*i+(i*i+i)+(i\i-i)# S8
3 0 2 8 #i= +i*i+(i*i+i)+(i\i-i)#error,意外的+
请按任意键继续...■
```

三、重要的数据结构和变量

文法结构体

GOTO图中一条推导式的结构体

```
      struct pro
      //一条文法式子+圆点后会跟的终结符

      {
      //e.g. I0包括E->·S,# || num = 0 || position = 0 || sea

      int num;
      //第几条文法

      int position;
      //圆点位置

      vector<char>
      search;
      //原点后会跟的终结符

      };
```

GOTO图中一个状态的结构体

```
struct itemset//pro的集合, 一个状态(里面有很多个pro, GOTO图中框起来的东西){string name; //状态名称vector<pro> t; //定义状态中的项目t};
```

语法分析表

语法分析表结构 map<string, string> m

- m的key是初始状态数+读入字符, value是对应的操作。
- 比如('0S','1')表示 S_0 状态读入字符S后跳转到 S_1 状态,('A+','r9')表示状态 S_{17} 读入字符+对应的 动作是r9

(这里A表示17, 我是使用字符对应ASCII相对于'0'的偏移量来表示数字的, 'A'-'0'=17, 这样可以保证我每个状态的序号都是一位字符, 便于后续操作)

四、算法思想

(一) 求First集的函数实现

- 函数输入: 文法, 终结符集, 被求First集的字符串X
- 算法思想:
 - 。 如果X的第一个字符为终结符,则FIRST(X)={X[0]}。
 - 。 如果X的第一个字符是非终结符,且X形如a...,则FIRST(X)={a}。
 - 。 如果X的第一个字符是非终结符,且X形如ABCdEF...(A、B、C均属于非终结符且包含空串, d 为终结符)需要把FIRST(A)、FIRST(B)、FIRST(C)、FIRST(d)加入到FIRST(X)中。
 - 。 如果X经过一步或多步推导出空字符,将空串加入FIRST(X)。

中 vector<char> getFirst(vector<wf> phaser, string s, vector<string> Vt)//得到First集 函数

(二) 如何获得GOTO图初始状态

算法思想:

- 1. 从前到后遍历文法中的每一个产生式A
- 2. 初始圆点都在产生式右部最前面,记圆点后的符号为x
 - 若x为终结符,返回第1步
 - 若x为非终结符 A_1 , 且产生式A中 A_1 后面的符号的First集为P, 跳到第3步
- 3. 遍历文法,找出产生式左部为 A_1 的产生式S,S的search集为P
- 4. 将S和对应的P加入状态,如果有相同的S(圆点位置也相同),合并search集即可,返回第1步

针对这里的文法,分析过程如下:

代码实现了上述思想,生成了GOTO图的初始状态

源码如下:

```
for (int i = 0; i < clo.t.size(); i++) //已有核·,求出closure
{
       if (clo.t[i].position < phaser[clo.t[i].num].right.size()) //圆点位置不在最后
               string first;
               first = phaser[clo.t[i].num].right[clo.t[i].position]; //圆点后面的字符
               if (find(Vn.begin(), Vn.end(), first) != Vn.end()) //如果圆点后面的字符为非终结符
               {
                       string s;
                       vector<char> search;
                       for (int j = clo.t[i].position + 1; j < phaser[clo.t[i].num].\</pre>
           right.length(); j++)
                               s += phaser[clo.t[i].num].right[j];
                       for (int j = 0; j < clo.t[i].search.size(); j++)</pre>
                       {
                               string t = s;
                               t += clo.t[i].search[j];
                               vector<char> search1 = getFirst(phaser, t, Vt);
                               for (int k = 0; k < search1.size(); k++)
                               {
                                       if (find(search.begin(), search.end(), \
                   search1[k]) == search.end())
                                              search.push_back(search1[k]); \
                        //得到向前搜索符search集合
                               }
                       }
                       temp.search = search; //得到项目temp的向前搜索符search集合
                       for (int j = 0; j < phaser.size(); j++)</pre>
                       {
                               if (phaser[clo.t[i].num].right[clo.t[i].position] == phaser[j]\
               .left[∅]) //如果圆点后的字符等于语法左边的字符
                               {
                                       temp.num = phaser[j].num;
                                       temp.position = 0;
                                       if (find(clo.t.begin(), clo.t.end(), temp)\
               == clo.t.end()) //如果新加的项目是不重复的
                                       {
                                              int flag = 1;
                                              for (int k = 0; k < clo.t.size(); k++)</pre>
                                              {
```

```
if (clo.t[k].num == temp.num \
                          &&
                           clo.t[k].position\ == temp.position) //如果是同心集
                                                     {
                                                            flag = 0;
                                                            for (int n = 0; n < temp\</pre>
                              .search.size(); n++)
                                                            {
                                                                    if (find(clo.t[k].\
                                  search.begin(), clo.t[k].\
                                  search.end(), temp.search[n]) == clo.t[k].\
                                  search.end())//如果同心集的search中不含当前temp的字符
                                                                    {
                                                                           clo.t[k].search
                                      (temp.search[n]);//就将temp的search加入同心集中
                                                            }
                                                     }
                                             }
                                             if (flag) //如果新加的项目不重复且不是同心集
                                                     clo.t.push_back(temp); //就将项目加入clo
                                     }
                              }
                      }
               }
       }
C.push_back(clo);//GOTO图初态
clo.t.clear();
```

(三) 如何生成完整的GOTO图

得到GOTO图的初始状态 S_0 之后,需构造出完整的GOTO图,这是一个不断产生新状态的迭代过程算法思想如下:

算法实现了上述思想,最终得出完成的GOTO图,GOTO图截图见 二、程序输入输出展示部分。

(四) 如何用GOTO图构造语法分析表

数据结构

语法分析表结构 map<string, string> m

- m的key是初始状态数+读入字符, value是对应的操作。
- 比如('0S','1')表示 S_0 状态读入字符S后跳转到 S_1 状态,('A+','r9')表示状态 S_{17} 读入字符+对应的 动作是r9

(这里A表示17, 我是使用字符对应ASCII相对于'0'的偏移量来表示数字的, 'A'-'0'=17, 这样可以保证我每个状态的序号都是一位字符, 便于后续操作)

算法思想

在构造GOTO图时,涉及到新状态产生时,将对应的初始状态、读入字符作为key,对应的动作作为 value添加到变量m中

- 当读入字符为终结符时,对应的动作即为产生的新状态的序号
- 当读入字符为非终结符时,令新状态为 S_new
 - 。 若产生的新状态的圆点均在产生式末尾,表示需要规约,规约对应的产生式需要为num
 - ullet 当num!=0,对应动作为 r_{num} ,表示用第num个产生式规约
 - 当num==0,对应动作为acc,表示语句分析成功
 - 。 否则,表示推导,对应动作为 S_{new} ,表示跳转到状态 S_new

(五) 用语法分析表分析语句

算法思想:

- 1. 已构建的语法分析表结构 map<string, string> m , m的key是初始状态数+读入字符,value是对应的操作。比如('0S','1')表示 S_0 状态读入字符S后跳转到 S_1 状态,('A+','r9')表示状态 S_1 7读入字符+对应的动作是r9
- 2. 起始状态下, 状态栈中放入0, 符号栈中放入#
- 3. 从状态栈中pop出当前状态n,从输入的语句中读入一个字符m,则key为'nm',用key去语法分析表中找相应的value,即对应动作
 - 如果对应动作是s开头,表示推导,若表示跳转到状态 S_i ,将m读入符号栈,i读入状态栈
 - 如果对应动作是r开头,表示规约,若对应的产生式序号为num,根据第num号产生式右部的长度,从状态和符号集合中弹出相应数量的元素,并将产生式左部left加入符号栈。现在状态栈顶部为状态n',n'和left在分析表中对应的数字为num',将num'加入状态栈
 - 如果对应动作是acc,则分析成功
 - 如果没找到对应动作,报错

伪代码如下:

```
for each character c in input string in:
    key = current state + c
    action = lookup action in parsing table using key
    if action is not found:
        report error and exit
    if action is "acc":
        report successful parsing and exit
    if action starts with "S":
        state = second character of action
        push state onto state stack
        push c onto symbol stack
    else (action is a reduction):
        production = get production rule from action
        pop symbols and states from stacks based on length of production's right-hand side
        push production's left-hand side symbol onto symbol stack
        state = get state from parsing table using current state and production's left-hand side
        push state onto state stack
```

report parsing failure

(六) 报错处理

报错时查找当前符号栈的顶层元素,报出相关错误即可。

五、遇到的问题

- 1. GOTO图中的符号太多,用十进制数字来表示的话,转成字符后位数不定,不利于检索答:使用ASCII值,使用字符对应ASCII相对于'0'的偏移量来表示数字,譬如:17用A表示,因为'A'-'0'=17
- 2. LR(1)分析法实现较为繁琐,生成GOTO图,生成语法分析表的时候细节非常多,需要耐心debug
- 3. 生成的语法分析表等输出太大,在输出框里用对齐('\t')输出也无法解决字符输出很乱的问题答: 将输出框的字号调的很小就OK了! 不会乱换行
- 4. 写报告时不知道怎么清晰的用文字来表达自己的逻辑,已经用伪代码等工具尽力表达了。

六、实验心得

通过这次手敲LR(1)文法的实验,感觉对LR(1)文法的步骤已经烂熟于心。LR(1)分析法在编程上面的实现非常繁琐,而且构造了文法之后,我不是手算的语法分析表,而是完成了一个自动化较高的语法分析器:自动构造GOTO图和语法分析表,再利用语法分析表来分析语句。这次实验极大的锻炼了我的编程和debug能力,也加固了编译原理的理论课只是,收获颇丰!