3.0

MA378 Chapter 4: Finite Element Methods

§4.3 Analysis: Cea's Lemma

Dr Niall Madden (Niall.Madden@UniversityOfGalway.ie)

March 2023

1 Error analysis

3 An example

5 Exercises

These slides are written by Niall Madden, and licensed under CC BY-SA 4.0

3.1 Error analysis

Recall that we wrote the differential equation

$$-u''(x) + r(x)u(x) = f(x)$$
 on (a,b) , $u(a) = u(b) = 0$,

in a variational form:

Define
$$A(u,v):=(u',v')+(ru,v)$$
. Find $u\in H^1_0(a,b)$ such that
$$A(u,v)=(f,v) \quad \text{for all} \quad v\in H^1_0(a,b). \tag{1}$$

$$(u,v) = \int_a^b u(x)v(x) dx$$
.

3.1 Error analysis

We then defined the **FEM**:

Definition 3.1 (The Finite Element Method)

Let S be a finite dimensional subspace of $H^1_0(a,b)$. The Galerkin Finite Element method is: find $u_h \in S$ such that

$$\mathcal{A}(u_h, v_h) = (f, v_h)$$
 for all $v_h(x) \in S$. (2)

We now show that the member of S found by the FEM is the "closest" to the true solution.

Lemma 3.2 (Cea's Lemma; Thm 14.6 of Süli and Mayers)

Let u be the solution to (1), i.e., the true solution, and let u_h be the solution to (2), i.e, the FE approximation.

(i) The difference between the true and approximate solutions is orthogonal to S, i.e.,

$$A(u-u_h,v_h)=0$$
 for all $v_h \in S$,

and

(ii) There is no element of S that is closer to u than u_h :

$$\mathcal{A}(u - u_h, u - u_h) = \min_{v_h \in S} \mathcal{A}(u - v_h, u - v_h),$$

First we will prove that

$$\mathcal{A}(u-u_h,v_h)=0$$
 for all $v_h\in S$,

(which is a property known as Galerkin Orthogonality).

We know that
$$u$$
 solves
$$A(u,v) = (f,v) \qquad \text{for all } v \in H_0^1(a,b).$$
Since $S \in H_0^1(a,b)$, we also get that
$$A(u,v_h) = (f,v_h) \qquad \text{for all } v_h \in S.$$
Also $A(u_h,v_h) = (f,v_h) \qquad \text{for all } v_h \in S.$
Subtracting, we get $A(u,v_h) - A(u_h,v_h) = 0$

$$\Rightarrow A(u-u_h,v_h) = 0.$$

Next we will prove that

$$A(u-u_h,u-u_h) \leq A(u-v_h,u-v_h) \text{ for any } v_h \in S.$$

$$Proof: \text{ For any } v_h \in S$$

$$A(u-v_h,u-v_h) = A(u-u_h+u_h-v_h,u-u_h+u_h-v_h)$$

$$= A(u-u_h,u-u_h) + A(u-u_h,u_h-v_h)$$

$$+ A(u_h-v_h,u-u_h) + A(u_h-v_h,u_h-v_h)$$

$$Since both $u_h \in S$ and $v_h \in S$, so $(u_h-v_h) \in S$.$$

Then $A(u-u_h, u_h-v_h)=0$ by Port (i).

Next we will prove that

$$A(u-u_h,u-u_h) \leq A(u-v_h,u-v_h)$$
 for any $v_h \in S$.

Similarly A(un-vn, u-un) =0 since A(·,·) is symmetric.

Finally, necall that A(u,v) = (u',v') + (ru,v). And (u,u) > 0 for any u.

Similarly (u', u') >0 for any u.

Then $A(u_h-v_h,u_h-v_h) >0$. Therefore

$$A(u - v_h, u - v_h) = A(u - u_h, u - u_h) + A(u_h - v_h, u_h - v_h) > A(u - u_h, u - u_h)$$

Since $\mathcal{A}(\cdot,\cdot)$ is an inner product (see Definition 3.6.1) it induces a **norm:**

$$|||u||| := \sqrt{\mathcal{A}(u,u)}.$$

So we can write (ii) of Cea's Lemma as

$$|||u - u_h||| \le |||u - v_h|||$$
 for all $v_h \in S$.

This is as far as we will take the analysis. With a bit more work (and a little Fourier analysis) we could show that

$$||u - u_h||_2 \le Ch^2 ||u''||_2.$$

That is, the error is proportional to h^2 . We can then further deduce that the method converges:

$$\lim_{h \to 0} ||u - u_h||_2 = 0.$$

In place of a rigorous analysis, let us reason as follows. Let l be the piecewise linear interpolant to u as described in Section 2.1. Note that l belongs to S. So, u_h as at least as good an approximation to u as l. That is

$$||u - u_h||_2 \le ||u - l||_2$$

And Theorem 2.1.3 told us that

$$||u - l||_{\infty} \le \frac{h^2}{8} ||u''||_{\infty}.$$

So, if you believe that

$$||u-l||_2 \approx ||u-l||_{\infty},$$

Then it will follow that

$$||u - u_h||_2 \lesssim Ch^2$$
,

for some constant C. One can also show that

$$|||u - u_h||| \lesssim Ch.$$

Note, however that we have used three different norms here. Therefore much more work would be required to prove a rigorous result. However, we can **demonstrate numerically** that the method converges...

The table opposite shows the maximum error, over all mesh points, in the finite element solution to

$$-u'' + 3u = x \text{ on } (0,3),$$
$$u(0) = u(3) = 0.$$

One can see that the error is proportional to n^{-2} (and thus to h^2).

n	$ u-u_h _{\infty}$
8	6.446e-03
16	1.629e-03
32	4.043e-04
64	1.009e-04
128	2.522e-05
256	6.304e-06
512	1.576e-06
1024	3.940e-07

These results were generated by a Jupyter Notebook (using the Octave kernel), that can be downloaded from https://www.niallmadden.ie/2324-MA378

3.4 FE Wrap-Up

There are many aspects of finite element methods that we did not cover, including

- There are many **other** choices of basis functions given here. One could used cubic splines, or, indeed, higher-order polynomials.
- When we try to improve the accuracy of the method by reducing h where the error seems large. This is called a h-FEM (and is the most common type of adaptive method).
- 3. We can also try to improve the accuracy of the method by increasing the order of the polynomials. This is called a p-FEM.
- 4. The ideas presented here extend to far more general problems. In particular, they work very well for problems in higher dimensions, and on weird-shaped domains.

3.5 Exercises

Exercise 3.1

Suppose that we want to solve

$$-u''(x) + u'(x) = 1$$
 on (a, b) ,

- (a) Write down the system of linear equations that we would have to solve in terms of h
- (b) Explain why the analysis of Lemma 3.2 does not apply directly to this problem.

Exercise 3.2

Show that, for any function $f \in C^2[a,b]$,

$$||f||_2 \le \sqrt{b-a} ||f||_{\infty},$$

where
$$\|f\|_2 := \left(\int_a^b (f(x))^2 dx\right)^{1/2} = \sqrt{(f,f)}$$
, and $\|f\|_\infty := \max_{a \le x \le b} |f(x)|$.

3.5 Exercises

Exercise 3.2 shows that if we have a bound for $||f||_{\infty}$, we can get one for $||f||_{2}$. However, as the next exercise shows, the converse is not true.

Exercise 3.3

Show that, given any $\epsilon>0$, no matter how small, it is possible to construct a function $f\in C^2[a,b]$, for which

$$||f||_2 \le \epsilon$$

but

$$||f||_{\infty} = 1.$$