计算理论导论 课程笔记

酥雨

zusuyu@stu.pku.edu.cn

April 10, 2022

目录

1	正则语言	2
2	上下文无关文法	5
3	图灵机	8
4	不可判定语言	10
5	时间复杂性,P 与 NP	11
6	空间复杂性	16

1 正则语言

定义 1.1 (Deterministic Finite Automaton, DFA). (确定性) 有限自动机是一个五元组 $(Q, \Sigma, \delta, q_0, F)$, 其中

- *Q* 是称为**状态**的有限集.
- Σ 是称为**字符集**的有限集.
- $\delta: Q \times \Sigma \to Q$ 被称为转移函数.
- q₀ ∈ Q 称为起始态.
- F⊆Q 称为接受态 (终止态) 集合.

称字符串 $w = w_1 w_2 \cdots w_m (w_i \in \Sigma)$ 可以被 DFA $M = (Q, \Sigma, \delta, q_0, F)$ 接受, 如果存在状态序列 $r_0, r_1, \cdots, r_m \in Q$ 满足(i) $r_0 = q_0$, (ii) $r_{i+1} = \delta(r_i, w_{i+1})$ ($\forall i = 0, 1, \cdots, m-1$), (iii) $r_m \in F$.

所有可被 M 识别的字符串 w 构成集合 A, 则称 A 是 DFA M 的语言 (或者说 DFA M 识别/接受 A), 记为 L(M)=A.

定义 1.2 (正则语言). 正则语言就是能够被有限自动机识别的语言.

定义 1.3 (正则操作). 定义如下三种正则操作

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \cdots x_k | k \geqslant 0 \text{ and each } x_i \in A\}.$

 $\angle 1.1.$ 补集 $\overline{A} = \Sigma^* - A$ 操作在正则语言下是封闭的: 只需要把终止态集合 F 改成 Q - F 即可.

定理 1.1. 正则操作 union 在正则语言下是封闭的: 把两个自动机放在一起跑就行了.

由于只利用已有的有限自动机模型证明 concatenation 和 star 的封闭性是困难的, 我们引入"非确定性".

定义 1.4 (Nondeterministic Finite Automaton, NFA). 非确定性有限自动机是一个五元组 $(Q, \Sigma, \delta, q_0, F)$, 其中 δ 不再是 $Q \times \Sigma \to Q$ 的函数, 而是 $Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ 的, 其中 \mathcal{P} 表示幂集, Σ_{ε} 表示 $\Sigma \cup \{\varepsilon\}$.

相应的, 称字符串 $w = w_1 w_2 \cdots w_m (w_i \in \Sigma)$ 可以被 NFA $N = (Q, \Sigma, \delta, q_0, F)$ 接受, 如果 w 可以写成 $w = y_1 y_2 \cdots y_{m'} (y_i \in \Sigma_{\varepsilon})$, 且存在状态序列 $r_0, r_1, \cdots, r_{m'} \in Q$ 满足(**i**) $r_0 = q_0$, (**ii**) $r_{i+1} \in \delta(r_i, y_{i+1})$ ($\forall i = 0, 1, \cdots, m' - 1$), (**iii**) $r_{m'} \in F$.

 $\frac{1}{1.2}$. DFA 的每个状态对每种字符都有恰好一条转移出边, 而相对的, NFA 可能有零条、一条或者多条, 有几条出边就表示会创建出多少个独立的"后继进程". 此外还存在 ε 的出边, 表示可以不输入任何字符创建进程.

定理 1.2 (NFA 与 DFA 的等价性). 任何 NFA 都存在等效的 DFA.

证明. 对 k 个状态的 NFA, 构造一个 2^k 个状态的 DFA, 每个状态表示"可能处在的 NFA 状态"的子集. 形式化的, 对于 NFA $M=(Q,\Sigma,\delta,q_0,F)$, 构造 DFA $M'=(Q',\Sigma,\delta',q'_0,F')$, 其中

- $Q' = \mathcal{P}(Q)$.
- $\forall R \in Q', a \in \Sigma, \delta'(R, a) = \bigcup_{r \in R} \delta(r, a).$
- $q_0' = \{q_0\}.$
- $F' = \{R \in Q' | R \cap F \neq \emptyset\}.$

推论 1.1. 一个语言是正则的当且仅当可以被一台非确定性有限自动机识别.

定理 1.3. union, concatenation 和 star 在正则语言下都是封闭的.

证明. 不多说了看图.

定义 1.5 (正则表达式). 称 R 是正则表达式, 如果 R 为

- $\{a\}$, 其中 a 是字符集 Σ 中的某个元素
- $\{\varepsilon\}$, 其中 ε 表示空串
- Ø
- $(R_1 \cup R_2)$, 其中 R_1, R_2 是某两个正则表达式
- $(R_1 \circ R_2)$, 其中 R_1, R_2 是某两个正则表达式
- (R₁*), 其中 R₁ 是某个正则表达式

例 1.1. 对于任意正则表达式 R, $R \cup \emptyset = R \circ \varepsilon = R$, $R \circ \emptyset = \emptyset$, $\emptyset^* = \{\varepsilon\}$.

定理 1.4 (正则表达式与有限自动机的等价性). 一个语言是正则的当且仅当它可以被一个正则表达式描述.

证明. " \leftarrow " 的证明是简单的, 只需要根据正则表达式 R 构造 NFA, 利用 "union, concatenation, star 的封闭性" 的构造性证明即可.

"⇒"的证明中, 我们引入 GNFA 的定义 (每条转移边上的 label 是一个正则表达式), 然后分别展示如何把 DFA 转化成 GNFA 以及如何根据 GNFA 构造正则表达式.

DFA 转 GNFA 是简单的——只需要额外加入两个状态表示 q_{start} 和 q_{accept} 即可.

观察到一个 GNFA 有 $k \ge 2$ 个状态. 如果 k=2, 那么 q_{start} 到 q_{accept} 的转移边上的正则表达式就是该有限自动机对应的正则表达式. 如果 k>2, 那么考虑选出一个状态 q_{rip} 删除, 此时对于 $q_i,q_j\in Q\setminus\{q_{\text{rip}}\}$, 如果

 $\delta(q_i,q_{\rm rip}) = R_1, \delta(q_{\rm rip},q_{\rm rip}) = R_2, \delta(q_{\rm rip},q_j) = R_3, \delta(q_i,q_j) = R_4$, 则修改 $\delta'(q_i,q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$. 归纳即可.

定义 1.6 (Generalized Nondeterministic Finite Automaton, GNFA). 广义非确定性有限自动机是一个 五元组 $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$, 其中 δ 是 $(Q \setminus \{q_{\text{accept}}\}) \times (Q \setminus \{q_{\text{start}}\}) \to \mathcal{R}$ 的转移函数, \mathcal{R} 表示字符集 Σ 上的所有正则表达式. 注意不失一般性地要求了只有唯一的接受态, 以及 $q_{\text{start}} \neq q_{\text{accept}}$.

定理 1.5 (Pumping Lemma for Regular Language). 如果 A 是正则语言,那么存在一个数 p (称为 pumping length), 使得对于任意 A 中长度至少为 p 的字符串 s, s 都可分成三部分 s = xyz 满足

- for each $i \ge 0$, $xy^iz \in A$,
- |y| > 0,
- $|xy| \leqslant p$.

证明. 取 pumping length p 为识别此正则语言的 DFA M 的状态集大小 |Q|. 对于任意长度至少为 p 的 $s \in A$,其经过的状态序列至少长为 p+1. 根据**绉集原理**,存在一个状态 q 经过了至少两次,于是把从 q_{start} 走到 q 的部分视作 x, q 回到自身的环视作 y, 从 q 走到 q_{accept} 的部分视作 z, 便构造出了划分.

注 1.3. 利用 pumping lemma 可以证明某个语言 B 不是正则语言, 通用的方式是: 先假设 B 是正则的, 导出 pumping length p 的存在性, 然后根据这个 p 构造 $s \in B$, 并验证其<u>不能</u>被划分为 s = xyz. 第三个条件 $|xy| \leq p$ 有时也是有用的.

例 1.2. $B = \{0^n 1^n | n \ge 0\}$ 不是正则语言.

证明. 假设 B 是正则语言, 那么就存在 pumping length p. 考虑串 0^p1^p , 无论 y 取其何种子串, xyyz 都不可能 $\in B$. 因此 B 不是正则语言.

例 1.3. $C = \{w | w \text{ has an equal number of 0s and 1s} \}$ 不是正则语言.

证明. 假设 C 是正则语言, 那么就存在 pumping length p. 考虑串 $0^p 1^p$, 注意到我们要求了 $|xy| \leq p$, 所以 y 只能包含 0, 此时 $xyyz \notin B$. 因此 C 不是正则语言.

另一种证法是: 考虑 $C \cap 0^*1^* = B$, 正则语言在 intersection 下是封闭的, 所以 C 正则会导出 B 正则. \square

例 1.4. $F = \{ww|w \in \{0,1\}^*\}$ 不是正则语言.

证明. 考虑串 0^p10^p1 , 注意到 y 只能包含 0, 从而 $xyyz \notin F$, 因此 F 不是正则语言.

例 1.5. $D = \{1^{n^2} | n \ge 0\}$ 不是正则语言.

证明. 考虑串 1^{p^2} . 由于 $|y| \le p$, 所以 $|xyyz| = p(p+1) < (p+1)^2$ 不可能是完全平方数, $xyyz \notin D$, 说明 D 不是正则语言.

例 1.6. $E = \{0^i 1^j | i > j\}$ 不是正则语言.

证明. 考虑串 $0^{p+1}1^p$, y 只能包含 0, 且 |y| > 0, 因此 xz 中 0 的个数不超过 1 的个数, $xz \notin E$, 说明 E 不是正则语言.

2 上下文无关文法

定义 2.1 (Context-Free Grammar/Language, CFG/CFL). 一个上下文无关文法是一个四元组 (V, Σ, R, S) , 其中

- V 是称为变量的有限集,
- Σ 是称为**终止符**的有限集, 与 V 不交,
- R 是称为规则的有限集, 是从 V 到 $(V \cup \Sigma)^*$ 的映射,
- S∈V 称为起始变量.

上下文无关语言就是上下文无关文法导出/生成的语言, 即 $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$.

定义 2.2 (parse tree). 形如这样子的东西.

命题 2.1. CFG 的描述能力严格强于有限自动机 (或者正则表达式).

证明. 对于任意的 DFA, 都可以构造与其等价的 CFG: 对每个状态 q_i 构造一个变量 R_i , 起始变量 R_0 对应起始态 q_0 , 如果 $\delta(q_i, a) = q_i$, 就添加规则 $R_i \to aR_i$, 而如果 q_i 是接受态, 就添加规则 $R_i \to \varepsilon$.

而显然存在可被 CFG 描述的非正则语言, 比如 $\{0^n1^n|n\in\mathbb{N}\}$.

定义 2.3 (歧义性). 称一个串 w 由 CFG G 歧义生成, 如果存在 G 下 w 的两种 lestmost derivation (每次只替换最左边的变量) 方式, 或者说存在两棵不同的 parse tree 可以生成 w. 称一个 CFG G 是歧义的, 如果它可以歧义生成某些串.

定义 2.4 (固有歧义). 称一个 CFL L 是固有歧义的, 如果 L 只能由歧义的 CFG G 生成.

例 2.1. $\{a^ib^jc^k|i=j \text{ or } j=k\}$ 是固有歧义的.

我们希望能给有限自动机做一些加强, 使其能够达到与 CFG 相同的表达能力. 最终决定了为其添加栈结构, 于是得到了如下定义的"下推自动机":

定义 2.5 (Pushdown Automaton, PDA). 下推自动机是一个六元组 $(Q, \Sigma, \Gamma, \delta, q_0, F)$, 其中

- Q 是状态集,
- Σ 是输入字符集,
- Γ是栈字符集,
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ 是转移函数,

- $q_0 \in Q$ 是起始态,
- F⊆Q 是接受态集合.

其中 Σ_{ε} , Γ_{ε} 分别表示 $\Sigma \cup \{\varepsilon\}$, $\Gamma \cup \{\varepsilon\}$. $(q',b) \in \delta(q,c,a)$ 表示在状态 q 上被输入 c 字符时, 会先从栈顶 pop 出字符 a, 再向栈顶 push 进字符 b, 最后转移到状态 q'. 幂集 \mathcal{P} 暗含了下推自动机是 nondeterministic 的.

称字符串 $w=w_1w_2\cdots w_m(w_i\in\Sigma_{\varepsilon})$ 可以被 PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ 接受, 如果存在状态序列 $r_0,r_1,\cdots,r_m\in Q$ 和字符串 (栈) 序列 $s_0,s_1,\cdots,s_m\in\Gamma^*$, 满足

- $r_0 = q_0, s_0 = \varepsilon,$
- for $i = 0, 1, \dots, m-1$, $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at, s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$,
- $r_m \in F$.

类似的, 可以定义 L(M) 表示 PDA M 接受的所有字符串构成的集合, 即 M 所识别的语言.

定理 2.1 (下推自动机与上下文无关文法的等价性). 一个语言是上下文无关的, 当且仅当存在某个下推自动机可以识别它.

证明. "⇒":需要根据 CFG 来构造 PDA. 一开始把 CFG 的起始变量写在栈上,并保证在替换过程中栈顶始终是一个尚未替换的变量. 利用 nondeterminism 尝试每一种变量的替换方式. 每次只考虑替换栈顶的变量,而如果栈顶是一个终止符,就直接和输入匹配掉. 当输入匹配完且栈为空时,代表输入串可接受.

" \leftarrow ":需要根据 PDA 来构造 CFG. 不妨假设¹该 PDA 有如下特性: (i)只有一个接受态 q_{accept} , (ii)会在接受前清空栈, (iii)每次转移都会要么 push 要么 pop, 没有 both 和 neither 的情况. 构造变量 A_{pq} 表示所有能够使 PDA 从"状态 p 且栈空"转移到"状态 q 且栈空"的串组成的语言, 其中 $A_{q_0q_{\text{accept}}}$ 是该 CFG 的起始变量. 按如下方式构造 CFG 的规则集合:

- 对于任意 $p,q,r,s \in Q, u \in \Gamma, a,b \in \Sigma_{\varepsilon}$, 如果 $(r,u) \in \delta(p,a,\varepsilon), (q,\varepsilon) \in \delta(s,b,u)$, 就添加规则 $A_{pq} \to aA_{rs}b$,
- 对于任意 $p,q,r \in Q$, 添加规则 $A_{pq} \to A_{pr}A_{rq}$,
- 对于任意 $p \in Q$, 添加规则 $A_{pp} \to \varepsilon$.

构造思路来源于考虑压栈弹栈的括号序列,该序列要么被一个大括号包裹 (第一种),要么由两个括号序列组成 (第二种). 可以归纳证明 A_{pq} 的构造方式与其含义的等价性.

定理 2.2 (Pumping Lemma for CFL). 如果 A 是上下文无关语言, 那么存在一个数 p(称为 pumping length), 使得对于任意 A 中长度至少为 p 的字符串 s, s 都可以分成五部分 s = uvxyz 满足

 $^{^1}$ 需要简短地说明转化的可行性. 前两条只需要添加额外的结束状态和转移函数即可, 第三条需要在所有 both 和 neither 的转移中间插入中间状态.

- for each $i \ge 0$, $uv^i x y^i z \in A$,
- |vy| > 0,
- $|vxy| \leqslant p$.

证明. 设 b 为规则中的最大"度数",即替换字符串的最大长度. 如果 parse tree 的树高是 h(根的深度是 0),那 么生成的字符串长度至多为 b^h .

取 pumping length p 为 $b^{|V|+1}$. 长度至少为 p 的串对应的 parse tree 树高至少为 |V|+1, 故存在一条"直链"上有至少 |V|+1 个变量,根据**鸽巢原理**,存在一个变量出现至少两次,记为 R,那么对于 R 就可以无限复制或者把两次出现压缩成一次 (如图).

为了满足第二个条件,我们要求 parse tree 必须是"最简"的,因为只有冗余的替换方式才会导致两次 R 的出现之间没有任何字符实际生成.

为了满足第三个条件, 取 R 为满足条件的"深度最大"的, 即两个 R 都出现在最底下 |V|+1 层. 此时 |vxy| 对应上面的 R 的子树大小,受深度限制不超过 $b^{|V|+1}=p$.

例 2.2. $B = \{a^n b^n c^n | n \ge 0\}$ 不是上下文无关语言.

证明. 假设 B 是正则语言, 那么就存在 pumping length p. 考虑串 $a^pb^pc^p$, 注意到 $|vxy| \leq p$ 故不可能含有超过 两种字符, 那么在重复时就不可能保证三种字符出现次数仍然相同, 从而 B 不是上下文无关语言.

例 2.3. $C = \{a^i b^j c^k | 0 \le i \le j \le k\}$ 不是上下文无关语言.

证明. 考虑串 $a^pb^pb^p$, 注意 v,y 分别只能包含一种字符, 否则就会出现顺序错乱. 无论分别包含什么字符, 考虑 pumping up 或者 pumping down, 总可以使得生成的新字符串不属于 C, 从而 C 不是上下文无关语言.

例 2.4. $D = \{ww | w \in \{0,1\}^*\}$ 不是上下文无关语言.

证明. 考虑 $s = 0^p 1^p 0^p 1^p$.

首先指出 vxy 必须跨域 s 的中点. 假设 vxy 只出现在 s 的左半边, 那么 uv^2xy^2z 中, 中点右侧的字符一定是 1(因为 $|vy| \leq p$, 只会把 $\frac{|vy|}{s} \leq \frac{p}{s}$ 个 1 推到右半边), 而起始字符是 0 说明该串不是 ww 形式的.

但如果 vxy 跨越 s 的中点,那么就一定跟前 p 个 0 与后 p 个 1 无交,因此 uxz 就会形如 $0^p1^i0^j1^p$,其中 i,j < p,这显然不属于 D.

3 图灵机

图灵机是有限自动机的进一步加强 (也严格强于下推自动机), 在状态集的基础上额外添加了外部存储设备——"纸带". 一条纸带是一列无限长的存储单元 (称为"格子"), 其中每个格子上只能存储有限的信息, 在单步计算中也只能读取/写入一个格子, 读取/写入的格子位置 (称为"纸带头") 在相邻两步计算间也至多移动一格.

通俗地来讲,一台拥有k条纸带的图灵机在一步计算中,会首先查询其状态并分别在k个纸带头位置读取k个字符,然后根据这些信息,决定变换到什么状态,将k个纸带头处的字符改写成什么,以及如何移动k个纸带头(向左或右移动一格,或者保持不动).

定义 3.1 (Deterministic Turing Machine, TM). 一台 k 条纸带的 (确定性) 图灵机是一个七元组 $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, 其中

- Q 是状态集.
- Σ 是不包含空格符 □ 的输入字符集, Γ 是纸带字符集. $\Sigma \subseteq \Gamma$.
- $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L(eft), S(tay), R(ight)\}^k$ 是转移函数.
- $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q$ 分别是起始态, 接受态和拒接态.

初始时,第一条纸带的第一个格子上标有 ▷ 字符,表示输入串的开始,随后紧接着是输入串 $w \in \Sigma^*$. 除了这 |w|+1 个格子外,所有纸带的所有格子都被初始化为空格符 \square .

一旦图灵机运行到 q_{accept} 或者 q_{reject} 状态时, 它就会<u>停机</u>. 因此可以把一台图灵机看成一个 $\Sigma^* \to \{0,1\}$ 的函数. 一般地, 对于图灵机 M 和字符串 $x \in \Sigma^*$, 我们有 $M(x) \in \{0,1\}$, 其中 M(x) = 1 当且仅当对于输入 x, M 会运行到 q_{accept} , M(x) = 0 当且仅当对于输入 x, M 会运行到 q_{reject} 或者不停机.

对于图灵机 M, 记 $L(M) = \{x \in \{0,1\}^* | M(x) = 1\}$ 为 M 所识别的语言.

注 3.1. 图灵机还存在另一种设定: 并没有 q_{accept} , q_{reject} 两个特殊状态, 取而代之的是单一的停机状态 q_{halt} , 同时最后一条纸带被用作"输出纸带". 图灵机运行到 q_{halt} 时停机, 此时输出纸带上的内容就是该图灵机的输出. 这种设定下的图灵机可以看作一个 $\Sigma^* \to \Sigma^*$ 的函数, 但不难验证其计算能力与原本设定下的是相同的. 之后为了省事可能会混淆使用两种设定, 不妨碍理解就好.

定义 3.2 (图灵可识别与图灵可判定). 称一个语言是图灵可识别 (Turing-recognizable) 的,如果存在一台图灵机可以识别它 (i.e. 接受其中的每一个字符串). 称一台图灵机是一个 <u>decider</u>,如果它对于任何输入都不会无限循环. 称一个语言是图灵可判定 (Turing-decidable) 的,如果存在一台 decider 可以识别它.

定义 3.3 (函数的计算, 运行时间). 考虑函数 $f: \{0,1\}^* \to \{0,1\}^*$ 以及 $T: \mathbb{N} \to \mathbb{N}$, 令 M 为一图灵机. 我们称 M 计算了函数 f, 如果对于任意 $x \in \{0,1\}^*$, 只要 M 被初始化为输入 x, 它就能在输出纸带上写下 f(x) 并停机. 称 M 在 T(n) 的时间内计算了 f, 如果它计算每个 x 都可以在 T(|x|) 步内停机.

定义 3.4 (Time-constructible functions). 称一个函数 $T: \mathbb{N} \to \mathbb{N}$ 是 time-constructible 的, 如果 $T(n) \ge n$ 且存在运行时间为 T(n) 的计算函数 $x \to LT(|x|)$ 」的图灵机 M, 其中 Lx」表示 x 的 binary representation.

例 3.1. $A = \{w \# w | w \in \{0,1\}^*\}$ 可以被 (单纸带) 图灵机识别.

证明. 给待匹配的两个位置打上标记,每次前后移动找标记,用状态记录已经看过的字符,若比较失败则直接 reject, 否则向后移动标记继续比较直到全部比完. 以上的描述的图灵机的运行时间是 $T(n) = O(n^2)$ 的. \Box

例 3.2. $B = \{ww | w \in \{0,1\}^*\}$ 可以被双纸带图灵机识别.

证明. 没有 # 记号, 无法方便地找到中间位置. 可以在二号纸带上把输入复制一遍, 然后二号纸带头移动到中间 (一号纸带头走一步, 二号纸带头走两步), 顺序比较即可. 运行时间是 O(n).

图灵机由字符集大小, 纸带数量等的不同, 产生了许多不同的变种. 它们在计算能力上会有所不同吗?

命题 3.1 (小字符集模拟大字符集). 对于任意 $f:\{0,1\}^* \to \{0,1\}$ 以及 time-constructible function $T:\mathbb{N}\to\mathbb{N}$, 如果 f 可以被图灵机 M 以 T(n) 时间计算,那么它也可以被一台字符集为 $\{0,1,\square,\triangleright\}$ 的图灵机 \tilde{M} 以 $O(T(n)\log|\Gamma|)$ 的时间计算.

证明. 任意 Γ 中的字符都可以用 $\log |\Gamma|$ 个比特表示. 每步转移时先用 $\log |\Gamma|$ 步读出纸带上一个字符的 encoding 并存入状态, 再根据转移函数进行移动, 最后用 $\log |\Gamma|$ 步写下新字符的 encoding 表示.

命题 3.2 (单纸带模拟多纸带). 对于任意 $f:\{0,1\}^* \to \{0,1\}$ 以及 time-constructible function $T:\mathbb{N}\to\mathbb{N}$, 如果 f 可以被有 k 条纸带的图灵机 M 以 T(n) 时间计算, 那么它也可以被一台单纸带图灵机 \tilde{M} 以 $O(kT^2(n))$ 的时间计算. 单纸带指的是只有一条可读可写的纸带, 它同时扮演了输入、工作和输出纸带的角色.

证明. 把单条纸带上的位置按照模 k 余数分配给 k 条纸带, 对每种字符 a 新建字符 \hat{a} 表示所在纸带的纸带头指向这个字符. 注意到运行时间为 T(n) 的图灵机, 对于长度为 n 的输入, 最多只会用到前 T(n) 个位置, 所以每步转移时花费 O(kT(n)) 的代价搜索每个纸带头的位置即可 2 , 运行时间为 $O(kT^2(n))$.

注 3.2 (健忘的图灵机, oblivious Turing Machine). 纸带头的移动只与输入长度有关, 而与输入的具体内容 无关, 即对于任意 $x \in \{0,1\}^*$ 以及 $i \in \mathbb{N}$, M 在输入 x 并执行到第 i 步时, 所有纸带头的位置是关于 |x| 和 i 的函数. 可以证明健忘的图灵机可以以平方的 overhead 模拟一台标准图灵机.

命题 3.3 (单向图灵机模拟双向图灵机). 对于任意 $f:\{0,1\}^* \to \{0,1\}$ 以及 time-constructible function $T:\mathbb{N}\to\mathbb{N}$, 如果 f 可以被双向图灵机 (纸带的两个方向都有无限长)M 以 T(n) 时间计算, 那么它也可以被一台单向图灵机 \tilde{M} 以 O(T(n)) 的时间计算.

论点 3.1 (Church-Turing Thesis). 任何物理上可实现的计算设备都可以被图灵机实现.

定理 3.1 (通用图灵机存在). 存在图灵机 \mathcal{U} 使得对于任意 $x,\alpha \in \{0,1\}^*$, $\mathcal{U}(\langle x,\alpha \rangle) = M_{\alpha}(x)$, 其中 M_{α} 为被 α 表示的图灵机. 进一步地, 如果 M_{α} 对于 x 在 T 步内停机, 则 $\mathcal{U}(\langle x,\alpha \rangle)$ 可以在 $CT \log T$ 步内停机, 其中 C 是一个仅依赖于 M_{α} 的字符集大小、纸袋条数、状态数的常数.

证明. 构造 U 为一台五纸带图灵机, 五条纸带分别为

- Input, 被模拟图灵机 M 的输入.
- Description of M, 主要为了记录转移函数 δ 以便查询.
- Simulation of M, 记录纸带信息. 这里需要用单纸带来模拟 M, 因而会产生平方的 overhead.
- Current state of M, 这部分不能简单地存在 U 的状态里, 因为对于 U 来说, M 的状态集大小并不是常数.
- Output, M 的输出.

注意每步模拟的过程中, 读取 M 所在状态, 读取转移函数都是关于 n 常数时间的.

可以设计一种类似势能分析的算法,把单纸带模拟多纸带的 overhead 降到 $O(n\log n)$,从而使通用图灵机模拟的复杂度优化到 $O(T\log T)$.

²可以考虑在已使用部分的"最远处"打上标记并维护,这样每次搜索的代价就不超过当前写人过的格子数量

4 不可判定语言

定义 4.1 (可识别/判定语言, recognizable/decidable Language). 可识别语言就是能够被一台图灵机识别的语言. 可判定语言就是能够被一台 decider 识别的语言.

定理 4.1. 存在不可识别语言.

证明. 只需要考虑"语言"与"可识别语言"的基数. 前者的基数是 2^{\aleph_0} , 后者的基数不超过图灵机的基数 (因为存在可识别语言到图灵机的单射), 而图灵机可以被有限长的字符串描述, 因此是可数的.

定义 4.2 (可计算函数 (Computable Function)). 可计算函数就是可以被一台图灵机计算的函数. 特别的, 考虑函数 $f: \{0,1\}^* \to \{0,1\}$, 则 f 是可计算函数当且仅当 $L = \{x \in \{0,1\}^* | f(x) = 1\}$ 是可判定语言.

定理 4.2. 存在不可计算函数/存在不可判定语言.

(证明中的构造是重要的. 这个结论本身相比定理 4.1 是平凡的.)

证明. 我们认为存在一个映射 $\alpha \to M_{\alpha}$ 可以把任意字符串映到一台图灵机 (以某种既定格式编码, 再把非法格式的串映到某台特定的图灵机即可). 考虑函数 $\mathrm{UC}(\alpha) = 1 - M_{\alpha}(\alpha)$, 我们指出 UC 是不可计算函数.

假设 UC 可计算, 考虑计算 UC 的图灵机 M. 考虑 UC($\lfloor M \rfloor$), 由于 M 计算了 UC, 我们知道 UC($\lfloor M \rfloor$) = $M(\lfloor M \rfloor)$, 但根据 UC 的定义, 又有 UC($\lfloor M \rfloor$) = $1-M(\lfloor M \rfloor)$, 产生了矛盾.

例 4.1 (停机问题不可判定). HALT = $\{\langle \bot M \rfloor, \alpha \rangle | M \text{ halts on } \alpha \}$ 是不可判定语言.

证明. 假设存在 M_{HALT} 可以判定 HALT.

利用 M_{HALT} 可以构造判定语言 $L = \{\alpha | \mathrm{UC}(\alpha) = 1\}$ 的 decider: 计算 $M_{\mathsf{HALT}}(\langle \alpha, \alpha \rangle)$, 如果得到 0 (说明 M_{α} 对 α 不停机) 则直接输出 1, 否则输出 $M_{\alpha}(\alpha)$ 的结果. 这与 UC 不可计算相矛盾. 因此 HALT 不可判定.

例 4.2 (接受问题不可判定). $AC = \{\langle LM \rfloor, \alpha \rangle | M \text{ accepts } \alpha \}$ 是不可判定语言.

证明. 利用 M_{AC} 可以直接构造 M_{UC} : 只要把 $M_{AC}(\langle \alpha, \alpha \rangle)$ 的输出取反即可.

定义 4.3 (映射规约, Mapping Reduction). 称语言 A 可映射规约到 (is mapping reducible to) 语言 B, 如果存在可计算函数 $f: \Sigma^* \to \Sigma^*$, 使得 $w \in A$ 当且仅当 $f(w) \in B$, 记作 $A \leq_m B$.

命题 4.1. 如果 $A \leq_m B$, 则

- 如果 *B* 可判定, 则 *A* 也可判定.
- 如果 A 不可判定, 则 B 也不可判定.

例 4.3. NAC = $\{ LM \rfloor M \text{ accept nothing} \}$ 是不可判定语言.

证明. 考虑构造映射 f 满足 $w \in \overline{AC} \Leftrightarrow f(w) \in NAC$. 令 $f(\langle LM \rfloor, \alpha \rangle) = LM' \rfloor$ 其中 M' 不管输入直接运行 $M(\alpha)$. f 显然是可计算的,故 $\overline{AC} \leqslant_m NAC$,而可判定语言关于补集的封闭性导致 \overline{AC} 是不可判定语言,从而 NAC 是不可判定语言.

例 4.4. EQU = $\{\langle LM_1 \rfloor, LM_2 \rfloor \} | L(M_1) = L(M_2) \}$ 是不可判定语言.

证明. 考虑构造映射 g. 取 $g(\lfloor M \rfloor) = \langle \lfloor M \rfloor, \lfloor M' \rfloor \rangle$ 其中 M' 是拒绝一切输入的图灵机. 于是 $\lfloor M \rfloor \in \mathsf{NAC} \Leftrightarrow \langle \lfloor M \rfloor, \lfloor M' \rfloor \rangle \in \mathsf{EQU}, \mathsf{NAC} \leqslant_m \mathsf{EQU}, 从而 \mathsf{EQU}$ 是不可判定语言.

定理 4.3. 语言 A 可判定当且仅当 A 与 \overline{A} 均可识别.

证明. ⇒: 显然. \Leftarrow : 记 A 可被 M_1 识别, \overline{A} 可被 M_2 识别, 考虑**并行**运行 M_1 和 M_2 , 总有一个会给出结果. □

推论 4.1. HALT 和 AC 都是不可判定的可识别语言. 这说明 HALT 和 AC 都是不可识别语言.

5 时间复杂性, P 与 NP

定义 5.1 (DTIME 与 P). 对于函数 $T: \mathbb{N} \to \mathbb{N}$, 称语言 $L \in \mathbf{DTIME}(T(n))$, 如果存在常数 c > 0 和一台运行时间为 $c \cdot T(n)$ 的 decider 可以识别 L.

 $\mathbf{P} = \bigcup_{c \geqslant 0} \mathbf{DTIME}(n^c).$

命题 5.1. P 在多项式次集合操作下是封闭的.

例 5.1. PATH = $\{\langle G, s, t \rangle : G \text{ is a direct graph in which there is a path from } s \text{ to } t\} \in \mathbf{P}$.

定理 5.1 (Time Hierarchy Theorem). f, g 是满足 $f(n) \log f(n) = o(g(n))$ 的 time constructible 的函数, 则

$$\mathbf{DTIME}(f(n)) \subseteq \mathbf{DTIME}(g(n))$$

证明. 考虑这样的图灵机 D: 对于 $x \in \{0,1\}^*$, 用通用图灵机 U 模拟 $M_x(x)$ 运行至多 g(|x|) 步 (是 U 的 g(|x|) 步而不是 M_x 的 g(|x|) 步), 如果 U 在 g(|x|) 步数内输出了 $b \in \{0,1\}$, 则 D 输出 1-b, 否则 D 输出 0.

根据定义, D 对于任何输入 x 都会在 g(|x|) 步内停机, 因此 $L(D) \in \mathbf{DTIME}(g(n))$. 我们通过反证法证明 $L(D) \notin \mathbf{DTIME}(f(n))$. 先叙述否命题: 存在图灵机 M 和常数 c, 使得对于任意输入 $x \in \{0,1\}^*$, M 都能在 cf(|x|) 步内输出与 D 相同的结果.

对于输入 x, 用通用图灵机 \mathcal{U} 模拟 M 只需要 $c'cf(|x|)\log f(|x|)$ 步, 其中 c' 是不依赖于 |x| 的一个常数. 由于 $f(n)\log f(n)=o(g(n))^3$, 故存在充分大的 n_0 使得 $g(n)>c'cf(n)\log f(n)$ 对于任意 $n\geqslant n_0$ 均成立. 令 $x'= \lfloor M\rfloor$ 满足 $|x'|\geqslant n_0$, 那么

- D 会输出与 M 相同的结果, 因为这是 M 的定义;
- D 会输出与 M 不同的结果,因为 $c'cf(n)\log f(n) < g(n)$ 使得 \mathcal{U} 对 M 的模拟已经结束了,根据 D 的定义,D 应该输出相反的结果.

产生了矛盾. 因此 $\mathbf{DTIME}(f(n)) \subseteq \mathbf{DTIME}(g(n))$.

定义 5.2 (NP). 称语言 $L \subseteq \{0,1\}^*$ 属于 **NP**, 如果存在一个多项式 $p: \mathbb{N} \to \mathbb{N}$ 和一个多项式时间图灵机 $M(\mathfrak{m} \to L)$ 的 **verifier**) 使得对于任意的 $x \in \{0,1\}^*$, 都有

$$x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}, M(x,u) = 1$$

如果 $x \in L$ 与 $u \in \{0,1\}^{p(|x|)}$ 满足 M(x,u) = 1, 则称 u 是 x 的一个 **certificate**.

命题 5.2. 定义 $\mathbf{EXP} = \bigcup_{c>0} \mathbf{DTIME}(2^{n^c}), \ \mathbb{M} \ \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{EXP}.$

定义 5.3 (非确定图灵机与 NTIME). 非确定图灵机 (Nondeterministic Turing Machine, NDTM) 是有两个转移函数 δ_0 , δ_1 和一个特定状态 $q_{\rm accept}$ 的图灵机 M, 每步转移时,可以任意选择遵从某一个转移函数. 对于输入 x, 称 M(x)=1 当且仅当存在一个选择序列可以使 M 到达 $q_{\rm accept}$ 状态,否则——任意选择序列都无法在停机前到达 $q_{\rm accept}$ ——就认为 M(x)=0. 称 M 的运行时间为 T(n), 如果对于任意输入 $x\in\{0,1\}^*$ 以及任意的选择序列,M 都会在 T(|x|) 步内到达 $q_{\rm accept}$ 或者 $q_{\rm halt}$.

对于 $T: \mathbb{N} \to \mathbb{N}$ 和语言 $L \subseteq \{0,1\}^*$,称 $L \in \mathbf{NTIME}(T(n))$,如果存在常数 c > 0 和一个运行时间为 $c \cdot T(n)$ 的非确定图灵机 M,满足对于任意的 $x \in \{0,1\}^*$, $x \in L \Leftrightarrow M(x) = 1$.

定理 5.2. NP = $\bigcup_{c>0}$ NTIME (n^c) .

证明. 非确定图灵机的选择序列可以看作 x 的一个 certificate, 反之亦然.

 $^{^3}$ little-o 不能替换成 big-O, 我只能说懂的都懂.

定义 5.4 (多项式时间规约, NP-hard 与 NP-complete). 称语言 $L \subseteq \{0,1\}^*$ 可<u>多项式时间 (Karp) 规约</u>到 语言 $L' \subseteq \{0,1\}^*$ (记作 $L \leq_p L'$),如果存在一个多项式时间可计算函数 $f: \{0,1\}^* \to \{0,1\}^*$ 使得对于任意 $x \in \{0,1\}^*, x \in L \Leftrightarrow f(x) \in L'$.

称 $L' \in \mathbf{NP}$ -hard, 如果对于任意 $L \in \mathbf{NP}$, $L \leq_p L'$. \mathbf{NP} -complete = $\mathbf{NP} \cap \mathbf{NP}$ -hard.

定理 5.3 (\leqslant_p 的传递性).
• 若 $L \leqslant_p L' \perp L' \leqslant_p L''$, 则 $L \leqslant_p L''$.

- 如果 $L \in \mathbf{NP}$ -hard, 则 $L \in \mathbf{P} \Rightarrow \mathbf{P} = \mathbf{NP}$.
- 如果 $L \in \mathbf{NP}$ -complete, 则 $L \in \mathbf{P} \Leftrightarrow \mathbf{P} = \mathbf{NP}$.

定理 5.4 (Cook-Levin Theorem). SAT, 3SAT ∈ NP-complete.

其中 SAT = $\{\varphi \in \text{CNF}|\varphi \text{ is satisfiable}\}$, 3SAT = $\{\varphi \in 3\text{CNF}|\varphi \text{ is satisfiable}\}$. CNF(Conjunctive Normal Form, 合取范式) 是一种形如 $\bigwedge_i \left(\bigvee_j v_{i_j}\right)$ 的特殊的 boolean formula, 其中每个 v_{i_j} 都是某个变量或者其否定. 3CNF 是每个 $\bigvee_j v_{i_j}$ (称为**从句 (clause)**) 中都只含有不超过 3 项的 CNF.

证明. $\mathsf{SAT}, \mathsf{3SAT} \in \mathbf{NP}$ 是平凡的. 先考虑证明 $\mathsf{SAT} \in \mathbf{NP}$ -hard, 即 $\forall L \in \mathbf{NP}, L \leqslant_p \mathsf{SAT}$. 回顾两者定义

$$x \in L \quad \Leftrightarrow \quad \exists \text{ certificate } u \quad \text{ s.t. } M(x,u) = 1$$

$$\varphi_x \in \mathsf{SAT} \quad \Leftrightarrow \quad \exists \text{ assignment } u \quad \text{ s.t. } \varphi_x(u) = \mathsf{True}$$

因此考虑根据 M, x 来构造**多项式规模的** φ_x , 满足 $M(x, u) = 1 \Leftrightarrow \varphi_x(u) = \text{True}$.

不妨假设 M 是 (i) 双纸带且第一条纸带只读 (ii) oblivious 的 (参见注 3.2), 那么在 M 运行到第 i 步时,其两个纸带头所指向的字符,当前状态所组成的三元组 $z_i \in \Gamma \times \Gamma \times Q$ (称为 M 运行到第 i 步时的 **snapshot**) 将由后三者唯一决定: $z_{i-1}, z_{\text{prev}(i)}$ 和 $(x \circ u)_{\text{inputpos}(i)}$,其中 prev(i) 表示上一次工作纸带纸带头位置与第 i 步相同的时刻,inputpos(i) 表示第 i 步时输入纸带的纸带头位置.

根据 M 的转移函数 δ , 可以构造出 $F: \{0,1\}^{2c+1} \to \{0,1\}^c$ 满足 $z_i = F(z_{i-1}, z_{\operatorname{prev}(i)}, (x \circ u)_{\operatorname{inputpos}(i)})$, 其中 c 是表示一个 snapshot 所需的比特数.

可以构造一个有 n + p(n) + cT(n) 个变量的 CNF φ_x , 其中 p,T 是 M 的参数 (分别是 verifier 长度与运行时间关于 n 的函数). 把这些变量分别记为 y 以及 $z_1, \dots, z_{T(n)}$, 它是下述这些条件的 AND:

- 1. y 的前 n 位和 x 相同.
- 2. z_1 表示初始状态 (\triangleright , \square , q_{start}).
- 3. $z_i = F(z_{i-1}, z_{\operatorname{prev}(i)}, y_{\operatorname{inputpos}(i)}) \ (\forall i \in \{2, \dots, T(n)\}).$
- $4. z_{T(n)}$ 表示到达 q_{halt} 的终止状态.

这些条件用 CNF 表示出来, 其长度是 d(n+T(n)), 其中 d 是与 n 无关的常数. 从而我们实现了多项式时间规约, 完成了 $L \leq_p$ SAT 的证明.

然后考虑证明 $SAT \leq_p 3SAT$. 只需要注意到

$$\bigvee_{i=1}^{k} u_i \cong \left(z \vee \bigvee_{i=1}^{k-2} u_i \right) \wedge (\overline{z} \vee u_{k-1} \vee u_k)$$

说明任意 CNF 都可以多项式时间规约到 3CNF. 所以 SAT \leq_p 3SAT.

例 5.2 (独立集). INDSET = $\{\langle G, k \rangle | G \text{ has an independent set of size } k \} \in \mathbf{NP}$ -complete.

证明. 显然 $\mathsf{INDSET} \in \mathbf{NP}$. 考虑通过 $\mathsf{3SAT} \leqslant_p \mathsf{INDSET}$ 来证明 $\mathsf{INDSET} \in \mathbf{NP}$ -hard.

对于一个有 m 个 clause 的 3CNF φ , 对每个有 l 项的 clause 建不超过 2^l 个点, 表示能使这个 clause 为 True 的部分变量赋值 (互不相同). 在所有会产生冲突的点对间连边, 得到一张不超过 7m 个点的图. 不难验证 这张图存在大小为 m 的独立集当且仅当 φ 可满足.

例 5.3 (点覆盖). Vertex-Cover = $\{\langle G, k \rangle | G \text{ has a subset of } k \text{ vertices that covers all edges} \} \in \mathbf{NP}$ -complete.

证明. 独立集很容易规约到点覆盖, 懂的都懂.

例 5.4 (01 整数规划). 给出一列有理系数线性不等式, 判断是否存在一组 $\{0,1\}$ 赋值满足所有不等式. 把可满足的不等式组的集合记作 01IPROG. 01IPROG \in NP-complete.

证明. 考虑证明 SAT \leq_p 01IPROG. 只需要对每个 clause 构造一个不等式即可.

$$u_1 \vee \dots \vee u_n \vee \overline{u_{n+1}} \vee \dots \vee \overline{u_{n+m}} \Rightarrow \sum_{i=1}^n u_i + m - \sum_{i=1}^m u_{n+i} \geqslant 1$$

 $\dot{\mathbf{L}}$ 5.2. 如果把变量取值限制从 $\{0,1\}$ 改为全体有理数, 问题就变成了线性规划, 从而 $\in \mathbf{P}$.

例 5.5. DSAT = $\{\varphi \in DNF | \varphi \text{ is satisfiable}\} \in \mathbf{P}$. 只要线性地检查一下有没有某个 clause 都满足就行了.

例 5.6 (有向图哈密顿路径). dHAMPATH = $\{ LG \mid G \text{ is directed and has a Hamiltonian path } \in \mathbf{NP}\text{-complete.}$

证明. 考虑证明 SAT \leq_p dHAMPATH. 对于一个有 n 个变量和 m 个 clause 的 CNF φ :

- 对每个变量建 2m+1 个点,第 i 个变量对应的点记作 $a_{i,1}, \dots, a_{i,2m+1}$. 对每个 clause 建一个点,第 i 个 clause 对应的点记作 b_i . 再建立额外源汇 $v_{\text{start}}, v_{\text{end}}$, 总共是 (2m+1)n+m+2 个点.
- 对于每个 $i \in [1, n], a_{i,1}, \dots, a_{i,2m+1}$ 首尾相接连成一个 2m+1 大小的**双向**环.
- v_{start} 向 $\{a_{1,1}, a_{1,2m+1}\}$ 连边, $\{a_{i,1}, a_{i,2m+1}\}$ 向 $\{a_{i+1,1}, a_{i+1,2m+1}\}$ 连边, $\{a_{n,1}, a_{n,2m+1}\}$ 向 v_{end} 连边, 均 为单向.
- 如果 u_i 出现在了第 j 个从句中, 连边 $a_{i,j} \to b_j \to a_{i,j+1}$. 如果 $\overline{u_i}$ 出现在了第 j 个从句中, 连边 $a_{i,j+1} \to b_j \to a_{i,j}$.

对于每个双向环,它可以也应该被顺时针或者逆时针地单向遍历,即要么首先访问 $a_{i,1}$ 然后从小到大走到 $a_{i,2m+1}$,要么首先访问 $a_{i,2m+1}$ 然后从大到小走到 $a_{i,1}$.顺/逆时针的遍历方向对应着相应变量的 0/1 取值,当取值符合期望时,遍历该变量对应的环时可以顺带覆盖掉一些 b_i .

可以证明 $\varphi \in \mathsf{SAT}$ 当且仅当上述构造出的图存在 v_{start} 到 v_{end} 的哈密顿路径.

例 5.7 (有向图哈密顿回路). dHAMCYCLE = $\{ \lfloor G \rfloor \mid G \text{ is directed and has a Hamiltonian cycle} \} \in \mathbf{NP}$ -complete. 证明. 考虑证明 dHAMPATH \leq_p dHAMCYCLE. 对于图 G, 添加额外源汇 s,t,s 向所有点连边, 所有点向 t 连边, t 向 s 连边, 得到图 G'. G 存在哈密顿路径当且仅当 G' 存在哈密顿回路.

例 5.8 (无向图哈密顿路径). $uHAMPATH = \{ LG \rfloor | G \text{ is undirected and has a Hamiltonian path} \} \in \mathbf{NP}\text{-complete}$. 证明. 考虑证明 $dHAMPATH \leqslant_p uHAMPATH$.

对于有向图 G,添加额外源汇 s,t(要连边)后把每个点拆成三个点: 入点,中间点,出点,适当连边得到无向图 G'. G 存在哈密顿路径 \Rightarrow G' 存在哈密顿路径是显然的,而如果 G' 存在哈密顿路径,则任意一个入点/出点都会与其中间点相邻,因为否则会导致中间点不得不成为路径的起止点,而显然 s 的入点与 t 的出点是必须作为起止点的 (度数是 1).于是 G' 的哈密顿路径不会破坏 G 的有向图结构,从而可以构造出 G 的哈密顿路径.

例 5.9 (无向图哈密顿回路). uHAMCYCLE = $\{ LG \mid G \text{ is undirected and has a Hamiltonian cycle} \} \in \mathbf{NP}$ -complete. 证明. 考虑证明 dHAMCYCLE \leqslant_p uHAMCYCLE.

对于有向图 G, 直接把每个点拆成三个点: 入点, 中间点, 出点, 适当连边得到无向图 G'. G 存在哈密顿回路 \Rightarrow G' 存在哈密顿回路是显然的, 而如果 G' 存在哈密顿回路, 则这条回路必然是"人-中间-出-人-中间-出"循环的, 因此也可以构造出 G 的哈密顿回路.

例 5.10 (旅行商问题). $\mathsf{TSP} = \{ \langle G, d_{ij}, k \rangle | G \text{ has a Hamiltonian cycle with distance measured by } d_{ij} \text{ at most } k \} \in \mathbf{NP}\text{-complete}$.

证明. 考虑证明 dHAMCYCLE \leq_p TSP. 根据 G 到底有没有这条边把边权设为 0 或者 1, k 取 0 就行.

定义 5.5 (coNP). $coNP = \{L | \overline{L} \in NP\}.$

例 5.11. $\overline{SAT} \in \mathbf{coNP}$,但在证明 $\overline{SAT} \in \mathbf{NP}$ 时遇到了困难: 难以高效地验证 φ 对所有的 assignment 都为 False.

定义 5.6 (coNP 的另一种定义). 称语言 $L \subseteq \{0,1\}^*$ 属于 coNP, 如果存在一个多项式 $p: \mathbb{N} \to \mathbb{N}$ 和一个多项式时间图灵机 M 使得对于任意的 $x \in \{0,1\}^*$, 都有

$$x \in L \Leftrightarrow \forall u \in \{0,1\}^{p(|x|)}, M(x,u) = 0$$

定义 5.7 (coNP-hard, coNP-complete). 称 $L' \in \mathbf{coNP}$ -hard, 如果任意 $L \in \mathbf{coNP}, L \leqslant_p L'$. \mathbf{coNP} -complete = $\mathbf{coNP} \cap \mathbf{coNP}$ -hard.

例 5.12. $\overline{\mathsf{SAT}} \in \mathbf{coNP}$ -complete. 这是因为 $\forall L \in \mathbf{coNP}$, 我们有 $\overline{L} \in \mathbf{NP}$. 由 Cook-Levin Thm. 知 $\overline{L} \leqslant_p \mathsf{SAT}$, 于是便有 $L \leqslant_p \overline{\mathsf{SAT}}$. $(A \leqslant_p B \Leftrightarrow \overline{A} \leqslant_p \overline{B}.)$

命题 5.3. 如果 P = NP, 则 NP = coNP = P. 反过来说, 只要证明了 $NP \neq coNP$, 就能说明 $P \neq NP$.

定义 5.8 (NEXP). NEXP = $\bigcup_{c>0}$ NTIME (2^{n^c}) .

定理 5.5. 如果 EXP \neq NEXP, 则 P \neq NP.

证明. 考虑证明逆否命题: 如果 $\mathbf{P} = \mathbf{NP}$, 则 $\mathbf{EXP} = \mathbf{NEXP}$. 使用一种叫做<u>填充 (padding)</u> 的技术: 考虑 $L \in \mathbf{NTIME}(2^{n^c})$, 构造 $L_{\mathrm{pad}} = \{\langle x, 1^{2^{|x|^c}} \rangle | x \in L \}$, 则可验证 $L_{\mathrm{pad}} \in \mathbf{NP}$ (因为问题几乎没变,而输入规模变大了). 而如果 $L_{\mathrm{pad}} \in \mathbf{P}$, 则也可以验证 $L \in \mathbf{EXP}$. $\mathbf{EXP} \subseteq \mathbf{NEXP}$ 是显然的, 故证明了 $\mathbf{EXP} = \mathbf{NEXP}$.

迄今为止,我们研究的所有问题都是 Decision Problems,即输出信息量为一比特的问题. 如果考虑把设定 延伸到 Search Problems,例如对给定的 CNF φ 求出一组 satisfying assignment,这种问题会不会与 Decision Problems 有所不同呢?

定理 5.6. 假如 P = NP, 则对于任意 $L \in NP$ 和它的 verifier M, 都存在多项式时间图灵机 B, 能够对输入 $x \in L$ 输出 x 的一个 certificate.

证明. 首先证明 $L = \mathsf{SAT}$ 时是正确的. 只需要依次对每个变量做 0/1 代入, 并调用 M 判断一下当前已进行的代入下是否仍存在解就行了.

对于任意的 $L \in \mathbf{NP}$,由 Cook-Levin Thm. 我们知道 $L \leq_p \mathsf{SAT}$. 事实上这种规约有一个更好的性质: 不仅 $x \in L \Leftrightarrow f(x) \in \mathsf{SAT}$,而且可以把 f(x) 的一个 satisfying assignment 映射到 x 的一个 certificate. 这样的规约 被称为 Levin 规约 (Levin reduction).

定理 5.7 (Ladners Theorem, "NP-intermediate"). 假设 $P \neq NP$, 则存在既非 P 亦非 NP-complete 的 NP 语言.

证明. 对于函数 $H: \mathbb{N} \to \mathbb{N}$, 定义语言 $\mathsf{SAT}_H = \left\{ \psi 01^{n^{H(n)}} | \psi \in \mathsf{SAT}, |\psi| = n \right\}$.

用如下奇怪的方式构造 H, H(n) 的值为: 最小的 i, 满足对于任意长度不超过 $\log n$ 的输入 x, $M_i(\bigcup i$ 作为 binary representation 得到的图灵机) 都可以在 $i|x|^i$ 步内输出 $\mathsf{SAT}_H(x)$, 然后把这个 i 对 $\log\log n$ 取 min.

可以通过给出一个计算 H 的具体算法来说明 H 是良定的:想要计算 H(n),我们需要 (1) 在不超过 $\log \log n$ 台图灵机上运行 $2^{\log n} = n$ 个输入 x 至多 $\log \log n (\log n)^{\log \log n}$ 步,以得到所有 M_i 的输出,(2) 对每个 $i \leq \log n$ 计算 H(i),以及检查所有长度不超过 $\log n$ 的输入 x 是否 \in SAT,以得到所有 $SAT_H(x)$ 的正确值.因此有 $T(n) \leq \log n T(\log n) + O(n^2)$,得到了一个时间复杂度为 $T(n) = O(n^2)$ 的算法.

从定义不难看出 H(n) 是关于 n 单调的, 即要么 H(n)=O(1), 要么 $\lim_{n\to\infty}H(n)=\infty$. 我们证明如下引理.

引理 5.1. $SAT_H \in \mathbf{P}$ 当且仅当 H(n) = O(1).

证明. ⇒: 假设存在一台图灵机 M 可以在 cn^c 步内对任意长度为 n 的输入 x 计算 $SAT_H(x)$. 由于 M 可以被 无限多个串表示, 故总存在 i > c 使 $M_i = M$, 此时根据定义, 对于任意的 $n > 2^{2^i}$ ($\log \log n > i$) 都有 $H(n) \le i$, 因此 H(n) = O(1).

 \Leftarrow : H(n) = O(1) 说明 H 的取值数量有限, 从而总会存在某个 i 使 H(n) = i 对无限多个 n 成立. 这就说明了 M_i 可以在 in^i 时间内计算 SAT_H (否则如果 M_i 在输入 $x \in \{0,1\}^*$ 上寄了, 那么对于任意 $n > 2^{|x|}$ 都应该有 $H(n) \neq i$) 注意到这里的 i 是常数, 从而说明了 $SAT_H \in \mathbf{P}$.

根据以上引理, 我们利用归谬证明如果 $P \neq NP$, 则 SAT_H 既不属于 P, 也不属于 NP-complete.

- 假如 $\mathsf{SAT}_H \in \mathbf{P}$, 那么根据引理 H(n) = O(1), 这说明 SAT_H 只是 SAT "填充"了多项式个数个 1 得到的, 从而 $\mathsf{SAT} \leqslant_p \mathsf{SAT}_H$, 导致了 $\mathsf{SAT} \in \mathbf{P}$, 与 $\mathsf{P} \neq \mathsf{NP}$ 矛盾.
- 假如 SAT_H \in NP-complete, 则存在一种运行时间为 $O(n^i)$ 的从 SAT 到 SAT_H 的规约 f. 注意到由上一条归谬我们已经知道了 $\lim_{n\to\infty} H(n) = \infty$, 故存在 N 使 H(n) > 3i 对 $\forall n > N$ 成立. 考虑构造一种多项式时间算法来实现 SAT 的判定:
 - 对于输入 φ , 若 $|\varphi| < N$ 则暴力判定, 否则 $O(|\varphi|^i)$ 地计算 $f(\varphi)$ 并检查其是否形如 $\psi 01^{|\psi|^{H(\psi)}}$, 若不 形如则直接返回 False, 否则有 $\varphi \in \mathsf{SAT} \Leftrightarrow f(\varphi) \in \mathsf{SAT}_H \Leftrightarrow \psi \in \mathsf{SAT}$, 可以递归判定 ψ .

考虑限制一下 $|\psi|$. 注意到 $|\psi 01^{|\psi|^{H(\psi)}}| = |\psi| + 1 + |\psi|^{H(\psi)} \le |\varphi| + |\varphi|^i$, 随意缩放一下有 $|\psi|^{3i} < |\psi|^{H(\psi)} \le |\varphi|^{i+1}$, 从而 $|\psi| \le \sqrt{|\varphi|}$. 那么算法的时间复杂度就是 $T(n) \le O(n^i) + T(\sqrt{n}) \Rightarrow T(n) = O(n^i)$. 这也导致 SAT $\in \mathbf{P}$, 与 $\mathbf{P} \ne \mathbf{NP}$ 矛盾.

定理 5.8 (Nondeterministic Time Hierarchy Theorem). f,g 是满足 f(n+1) = o(g(n)) 的 time constructible 的函数, 则

 $\mathbf{NTIME}(f(n)) \subsetneq \mathbf{NTIME}(g(n))$

证明. 摆烂了不证了.

6 空间复杂性

定义 6.1 (运行空间, SPACE 与 NSPACE). 对于 $S: \mathbb{N} \to \mathbb{N}$ 和 $L \subseteq \{0,1\}^*$,称 $L \in \operatorname{SPACE}(S(n))$,如果存在常数 c 以及可以决定 L 的图灵机 M,满足在对任意长度为 n 的输入的计算中,M 只会访问到至多 $c \cdot S(n)$ 个 work tapes 上 (不包含 input) 的位置,称 M 的运行空间为 O(S(n)).

类似地可以定义 NSPACE, 这里要求在任何一种决策下用到的位置数量都不超过 $c \cdot S(n)$.

定义 6.2 (Space constructible functions). 称一个函数 $S: \mathbb{N} \to \mathbb{N}$ 是 space-constructible 的, 如果 $S(n) \geqslant \log n$ 且存在运行空间为 S(n) 的计算函数 $x \to LS(x)$ 」的图灵机.

注 6.1. 相比于 time constructible functions, 我们不要求 space constructible functions 满足 $S(n) \ge n$, 但为了能够"记住在输入纸带上的位置", 我们一般会要求 $S(n) \ge \log n$.

定理 6.1. 对于任何 space-constructible 的函数 $S: \mathbb{N} \to \mathbb{N}$, 有

$$\mathbf{DTIME}(S(n)) \subseteq \mathbf{SPACE}(S(n)) \subseteq \mathbf{NSPACE}(S(n)) \subseteq \mathbf{DTIME}(2^{O(S(n))})$$

证明. 前两个 ⊆ 都是平凡的, 只考虑证明最后一个.

我们称一台 (确定或非确定) 图灵机 M 的一个 <u>configuration</u> 包含 (i) work tape 上的所有非空字符; (ii) 所有纸带的 head 位置; (iii) M 所处的状态,则对于确定的输入 $x \in \{0,1\}^*$,一个 configuration 的后继 configuration 是 (a) 对于图灵机来说, 唯一确定的; (b) 对于非确定图灵机来说,至多唯二确定的. 把 configuration 之间的转移看成一张有向图,记作 $G_{M,x}$. 不失一般性假设 M 只有一种 configuration C_{accept} 满足 "输出 1 后停机" (可以让图灵机在停机前擦除所有中间记录),这样 M(x) = 1 就等价于 $G_{M,x}$ 中存在一条 C_{start} 到 C_{accept} 的路径.

陈述两个事实:

- 给定 $M, x, G_{M,x}$ 中的每个节点用 O(S(n)) 个比特来表示, 也即, $G_{M,x}$ 只有 $2^{O(S(n))}$ 个节点.
- 对于任意两个 configuration C, C', 存在 O(S(n)) 大小的 CNF $\varphi_{M,x}$ 满足 $\varphi_{M,x}(C,C')=1$ 当且仅当 $G_{M,x}$ 中 C 有边连向 C'.

因此用 $2^{O(S(n))}$ 的时间把整张 $G_{M,x}$ 建出来, 再 BFS 一下即可验证 C_{start} 到 C_{accept} 是否连通.

定义 6.3 (PSPACE, NPSPACE, L 与 NL).

$$\begin{aligned} \mathbf{PSPACE} &= \bigcup_{c\geqslant 1} \mathbf{SPACE}(n^c) \\ \mathbf{NPSPACE} &= \bigcup_{c\geqslant 1} \mathbf{NSPACE}(n^c) \\ \mathbf{L} &= \mathbf{SPACE}(\log n) \\ \mathbf{NL} &= \mathbf{NSPACE}(\log n) \end{aligned}$$

推论 6.1. NP ⊆ PSPACE, 因为都可以暴力枚举答案, 用多项式空间存下来然后验证.

推论 6.2. 在定理 6.1 中分别代入 $S(n) = \log n, S(n) = n^c$, 可以得到

$$\mathbf{L} \subseteq \mathbf{NL} \subseteq \mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{NSPACE} \subseteq \mathbf{EXP}$$

例 6.1.

 $\mathsf{PATH} = \{ \langle G, s, t \rangle : G \text{ is a direct graph in which there is a path from } s \text{ to } t \}$

即判断图中两点之间是否存在一条路径. 显然 PATH \in NL, 但其是否属于 L 仍是一个 open problem. 而事实上, PATH \in L 等价于 L = NL, 即 PATH 是 NL-complete.

定理 6.2 (Space Hierarchy Theorem). f, g 是满足 f(n) = o(g(n)) 的 space constructible 的函数, 则

$$\mathbf{SPACE}(f(n)) \subseteq \mathbf{SPACE}(g(n))$$

证明. 技术细节在于通用图灵机 U 模拟图灵机 M 只需要常数倍的空间, 所以相比于 Time Hierarchy Theorem 没有了对数项. 其余部分跟 Time Hierarchy Theorem 的证明类似, 就不再赘述了.

定义 6.4 (PSPACE-hard, PSPACE-complete). 称 L' 是 PSPACE-hard, 如果对于任意 $L \in PSPACE$, $L \leq_p L'$. PSPACE-complete = PSPACE \cap PSPACE-hard. 例 6.2.

SPACE TMSAT =
$$\{\langle M, w, 1^n \rangle : \text{DTM } M \text{ accepts } w \text{ in space } n\}$$

这是一个 **PSPACE**-complete 语言.

定义 6.5 (Quantified Boolean formula, QBF). 一个 QBF 是形如 $Q_1x_1Q_2x_2\cdots Q_nx_n\varphi(x_1,x_2,\cdots,x_n)$ 的 公式, 其中 $Q_i \in \{\forall,\exists\}, x_i$ 的取值是 $\{0,1\}, \varphi$ 是一个 plain(unquantified) boolean formula .

上述定义专注于讨论**前束范式**的 QBF,因为非前束范式都可以转化成等价的前束范式. 一个 QBF 有真值 True 或 False.

用 TQBF 表示所有为真的 QBF 的集合.

定理 6.3. $TQBF \in \mathbf{PSPACE}$ -complete.

证明. 先证明 $TQBF \in PSPACE$. 这个是简单的, 因为判定可以通过 DFS 实现, 而 DFS 只需要 O(n+m) 的空间, 其中 n 是变量数, m 是 QBF 的长度.

再证明任意 $L \in \mathbf{PSPACE}$ 都满足 $L \leq_p \mathbf{TQBF}$. 假设 M 是在 S(n) 空间内计算 L 的图灵机, 对于输入 $x \in \{0,1\}^*$, 考虑 configuration graph $G_{M,x}$, 我们陈述过图中每个点可以用 m = O(S(n)) 个比特来表示, 以及存在一个 CNF $\varphi_{M,x}$ 满足 $\varphi_{M,x}(C,C')$ = True 当且仅当 $G_{M,x}$ 中有 $C \to C'$ 的边.

考虑根据 $\varphi_{M,x}$ 来构造我们想要的 QBF ψ . 用 ψ_i 表示一个 QBF , $\psi_i(C,C')$ = True 当且仅当 $G_{M,x}$ 中存在一条长度不超过 2^i 从 C 到 C' 的路径,那么显然 $\psi = \psi_m(C_{\text{start}}, C_{\text{accept}}), \psi_0(C,C') = \varphi_{M,x}(C,C') \lor (C=C')$. ψ_i 可以递归定义: 对于 $i \ge 1$, $\psi_i(C,C') = \exists C'' \psi_{i-1}(C,C'') \land \psi_{i-1}(C'',C')$.

一个技术细节是需要改进递归定义的具体方式以保证 ψ 的长度是多项式级别的. 可以用一种看上去有点奇怪, 但与前述定义等价的形式:

$$\psi_i(C,C') = \exists C'' \forall D_1 \forall D_2((D_1,D_2) = (C,C'') \land (D_1,D_2) = (C'',C')) \Rightarrow \psi_{i-1}(D_1,D_2)$$

这样构造出的 QBF ψ 的长度是 $O(m^2) = O(S^2(n))$ 的, 从而 \leq_p 成立.

注 6.2. 上述证明只利用了 configuration graph 的性质, 而这个性质是无关 determinism 的. 因此我们可以类似证明 TQBF ∈ NSPACE-complete, 从而说明 PSPACE = NSPACE.