

**ABERDEEN 2040** 

### **Revision – Week 2**

Data Mining & Visualisation Lecture 16

# Today...

• Exam-style questions that cover the past week's lectures

We will walk through each one



### Regression Vs Classification Problems

- Note that when we discuss supervised learning, there are two broad types of problems that tend to come up:
- Regression problems, where our DV is quantitative
- Classification problems, where our DV is categorical
- Note that for both regression and classification problems,
   our IV(s) can be quantitative and/or categorical!

## **Regression Analysis**

- Example: Do larger bills result in larger tips?
- A regression model
   estimates the function that
   most closely fits the data
- Note that today, we're just going to focus on linear models with 1 predictor



# **Regression Model**

Recall the equation of a line:

$$y = mx + c$$

# **Regression Model**

Example: Do larger bills result in larger tips?

Intercept: \$0.92

Gradient: 0.105



Recall the SSE calculation

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$



Recall the SSE calculation

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 Let's say we calculate the Sum of Squares Total (SST), using the mean instead of ŷ

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$



 One way to think of this is we're differentiating between:

explained variance (---),
unexplained variance (----), and
total variance (----)



• R<sup>2</sup> tells us what proportion of the total variance is explained by our regression model

$$R^{2} = 1 - \frac{SSE}{SST}$$

$$= 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$





# **Logistic Regression**

• More specifically, we're looking to estimate:

$$Pr(y=1|x_1,...x_n)$$

• In other words, the probability that y is 1, given our IV(s)

• We typically estimate y = 1 whenever this probability > 0.5 (though we could technically choose a lower threshold)

### **Logistic Function**

 To ensure that our probability is (0 ≤ Pr ≤ 1), we use the 'logistic function'

$$f(x)=rac{1}{1+e^{-x}}$$
 (Note, you don't need to know this)

### **Logistic Function**

 To ensure that our probability is (0 ≤ Pr ≤ 1), we use the 'logistic function'

$$f(x)=rac{1}{1+e^{-x}}$$
 (Note, you don't need to know this)

 This is what gives us a sigmoid (or S-shaped) curve (and logistic regression its name)



# What Can We Do With Logistic Regression

 Similar to linear regression, with our logistic regression model:

 We can use X values to predict the probability of Y being 1 (prediction)

We can also use X values to understand how they influence the Y value (interpretation)

# **Evaluating a Classification Model for Fit**

- Variations of (pseudo) R<sup>2</sup> calculations exist for logistic regression, serving a similar function to that of R<sup>2</sup>
  - i.e. quantify the variance explained by the model

 However, quite often what you'll see (especially in prediction contexts) is a confusion matrix

### **Confusion Matrix**

• A confusion matrix is a table which reports these instances.

• It can also be used to calculate a number of different metrics.

• These include...

|           |   | Predicted |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|---|-----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |   | 1         | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A atura l | 1 | TP        | FN | The state of the s |
| Actual    | 0 | FP        | TN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **Confusion Matrix - Accuracy**

### **Accuracy**

$$= (TP + TN) / (TP + FP + FN + TN)$$

The proportion of all outcomes that were predicted correctly

|        |   | Predicted |    |      |
|--------|---|-----------|----|------|
|        |   | 1         | 0  |      |
| A      | 1 | TP        | FN | mum. |
| Actual | 0 | FP        | TN |      |

### **Confusion Matrix - True Positive Rate**

### **True Positive Rate**

$$= TP / (TP + FN)$$

The proportion of {1} outcomes that were predicted correctly

Also known as Sensitivity, Recall

|          |   | Predicted |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|---|-----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |   | 1         | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A atrial | 1 | TP        | FN | The state of the s |
| Actual   | 0 | FP        | TN | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# **Confusion Matrix - True Negative Rate**

### **True Negative Rate**

$$= TN / (TN + FP)$$

The proportion of {0} outcomes that were predicted correctly

Also known as **Specificity** 

|           |   | Predicted |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|---|-----------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |   | 1         | 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A atu a l | 1 | TP        | FN | The state of the s |
| Actual    | 0 | FP        | TN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### **Confusion Matrix - Positive Predictive Value**

### **Positive Predictive Value**

$$= TP / (TP + FP)$$

The proportion of outcomes that were predicted as {1} that were predicted correctly

|        |   | Pred | icted |       |
|--------|---|------|-------|-------|
|        |   | 1    | 0     |       |
| A ata1 | 1 | TP   | FN    | THUM. |
| Actual | 0 | FP   | TN    |       |

Also known as **Precision** 

### **ROC Curve**

 A ROC (Receiver operating characteristic) curve is a visual way to show the predictive performance of binary classifiers

• It plots the True Positive Rate against the False Positive Rate at different classification thresholds

### **ROC Curve**

 A ROC (Receive way to show th

 It plots the True at different class



rve is a visual binary classifiers

Ise Positive Rate

**ABERDEEN 2040** 



### What is a good attribute?

| Does it fly? | Color | Class  |
|--------------|-------|--------|
| No           | Brown | Mammal |
| No           | White | Mammal |
| Yes          | Brown | Bird   |
| Yes          | White | Bird   |
| No           | White | Mammal |
| No           | Brown | Bird   |
| Yes          | White | Bird   |





- Which attribute provides better splitting?
- Why?
  - Because the resulting subsets are more pure
  - Knowing the value of this attribute gives us more information about the label

(the entropy of the subsets is lower)

## **Entropy**

Entropy measures the degree of randomness in data



• For a set of samples X with k classes:

$$entropy(X) = -\sum_{i=1}^{k} p_i \log_2(p_i)$$

where  $p_i$  is the proportion of elements of class i



ABER POWER4 entropy implies greater predictability!

### How to calculate Entropy?

$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

 Example: If we had a total 10 data points in our dataset with 3 belonging to positive class and 7 belonging to negative class:

$$-3/10 * \log 2 (3/10) - 7/10 * \log 2 (7/10) \approx 0.876$$

The Entropy is approximately 0.88.

High entropy means low level of purity.

### **Information Gain**

 The information gain of an attribute a is the expected reduction in entropy due to splitting on values of a:

$$gain(X, a) = entropy(X) - \sum_{v \in Values(a)} \frac{|X_v|}{|X|} entropy(X_v)$$

where  $X_v$  is the subset of X for which a = v



## **Best attribute = highest information gain**

In practice, we compute entropy(X) only once!

| Does it fly? | Color | Class  |
|--------------|-------|--------|
| No           | Brown | Mammal |
| No           | White | Mammal |
| Yes          | Brown | Bird   |
| Yes          | White | Bird   |
| No           | White | Mammal |
| No           | Brown | Bird   |
| Yes          | White | Bird   |





$$entropy(X) = -p_{\text{mammal}} \log_2 p_{\text{mammal}} - p_{\text{bird}} \log_2 p_{\text{bird}} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} \approx 0.985$$

$$entropy\left(X_{color=brown}\right) = -\frac{1}{3}\log_2\frac{1}{3} - \frac{2}{3}\log_2\frac{2}{3} \approx 0.918 \qquad entropy\left(X_{color=white}\right) = 1$$

$$entropy(X_{color=white}) = 1$$

$$gain(X, color) = 0.985 - \frac{3}{7} \cdot 0.918 - \frac{4}{7} \cdot 1 \approx 0.020$$

$$entropy(X_{fly=yes}) = 0$$

entropy 
$$(X_{fly=no}) = -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \approx 0.811$$

 $gain(X, fly) = 0.985 - \frac{3}{7} \cdot 0 - \frac{4}{7} \cdot 0.811 \approx 0.521$ ABERDEEN 2040



## Why is it called Naïve Bayes

- The Naïve Bayes algorithm is comprised of two words Naïve and Bayes, Which can be described as:
- Naïve: It is called Naïve because it assumes that the occurrence of a certain feature is independent of the occurrence of other features.
  - Such as if the fruit is identified on the bases of color, shape, and taste, then red, spherical, and sweet fruit is recognized as an apple. Hence each feature individually contributes to identify that it is an apple without depending on each other.
- **Bayes**: It is called Bayes because it depends on the principle of <u>Bayes' Theorem</u>.

### **Bayes' Theorem**

- Bayes' theorem is also known as Bayes' Rule or Bayes' law, which is used to determine the probability of a hypothesis with prior knowledge. It depends on the conditional probability.
- The formula for Bayes' theorem is given as:



#### Where:

- **P(A|B)** is **Posterior probability**: Probability of hypothesis A on the observed event B.
- **P(B|A)** is Likelihood probability: Probability of the data B given that the hypothesis A is true.
- **P(A) is Prior Probability**: Probability of hypothesis before observing the evidence. (regardless of the data)
- **P(B)** is Marginal Probability: Probability of Evidence. (regardless of the hypothesis)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

# Example 2

• Example: Play Tennis

PlayTennis: training examples

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

# Example 2

### Learning Phase

| Outlook  | Play=Yes | Play=No |
|----------|----------|---------|
| Sunny    | 2/9      | 3/5     |
| Overcast | 4/9      | 0/5     |
| Rain     | 3/9      | 2/5     |

| Temperature | Play=Yes | Play=No |
|-------------|----------|---------|
|             |          |         |
| Hot         | 2/9      | 2/5     |
| Mild        | 4/9      | 2/5     |
| Cool        | 3/9      | 1/5     |

| Humidity | Play=Yes | Play=No |
|----------|----------|---------|
|          |          |         |
| High     | 3/9      | 4/5     |
| Normal   | 6/9      | 1/5     |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

$$P(\text{Play=}Yes) = 9/14$$
  $P(\text{Play=}No) = 5/14$ 

## Example 2

#### Test Phase

Given a new instance,

**x**'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up tables

P(Outlook=Sunny | Play=Yes) = 2/9P(Temperature=Cool | Play=Yes) = 3/9

P(Huminity=High | Play=Yes) = 3/9P(Wind=Strong | Play=Yes) = 3/9

P(Play=Yes) = 9/14

P(Outlook=Sunny | Play=No) = 3/5

P(Temperature=Cool | Play==No) = 1/5

P(Huminity=High | Play=No) = 4/5

P(Wind=Strong | Play=No) = 3/5

P(Play=No) = 5/14

MAP rule

 $P(Yes \mid \mathbf{x}')$ :  $[P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) =$ 

0.0053

 $P(No|\mathbf{x}')$ : [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

0.0206

Given the fact  $P(Yes \mid \mathbf{X}') < P(No \mid \mathbf{X}')$ , we label  $\mathbf{X}'$  to be "No"