Ans 2. (a) Two layer perceptorn can solve the XOR problem as follows >

 $\oint 0 \quad \chi_1 = 0, \quad \chi_2 = 0$

we know that >

$$Z_{j} = \begin{cases} 1, & \text{if } \sum_{i=1}^{n} x_{i} \omega_{i} > 0 \\ 0, & \text{if } \sum_{i=1}^{n} x_{i} \omega_{i} \leq 0 \end{cases}$$

here $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$

So 2=0, 2=0

here
$$y = o(2) + o(+2)$$

= $o = o$
So $y = o$

$$f_{n_{2}} = 0$$
, $\gamma_{2} = 1$

$$f_{n_{1}} = 0$$

$$f_{n_{1}} = 0$$

$$f_{n_{2}} = 0$$

$$f_{n_{3}} = 0$$

$$f_{n_{4}} = 0$$

$$Mso fro n_1 = r & n_2 = 0 \rightarrow$$

Finishedy we can bay. $\frac{y=1}{\sqrt{2}}$ For $y_1=1$ & $y_2=1$ \rightarrow $\sum_{i=1}^{\infty} y_i w_i = 1=1$ $= 1 2_1 = 0 , 7_2 = 0$ $\lambda y = 0$ $\lambda y = 0$

Ans 1 (b) See Most 9 = x-y · · 9 = 71 - 4 = and similarly f = 9072also $\rightarrow \frac{\partial g}{\partial x} = 1$, $\frac{\partial g}{\partial y} = -1$, $\frac{\partial f}{\partial g} = Z$ $\frac{\partial f}{\partial x} = \frac{\partial \rho}{\partial q}, \frac{\partial q}{\partial x} = Z = -4$ and $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y}$. $\frac{\partial g}{\partial y} = -z = 4$ 2 by chain rule

And
$$\frac{1}{E(w)} = -\frac{1}{E(w)} \frac{1}{E(w)} \frac{$$

$$\frac{\partial \mathcal{E}}{\partial a_{\mathcal{K}}} = -\mathcal{A}_{\mathcal{K}} + \mathcal{Y}_{\mathcal{K}} \left(\Sigma - 1 \right)$$

=) Hence,
$$\int \frac{\partial E}{\partial x} = -i_k + j_k = j_k - i_k$$

Ans 3. By substituting the values of the and Exercise and by expanding the squares we get - $E_{\chi} \left[\frac{1}{M^{2}} \left(\sum_{m=1}^{M} y_{m}(\chi)^{2} + f^{2}(\chi) - \frac{2}{M} f(\chi) \sum_{m=1}^{M} y_{m}(\chi) \right] \right]$ $\leq \frac{1}{N} \sum_{m=1}^{N} \left[y_m(n) + \int_{-\infty}^{\infty} (n) d(n) d(n) \right]$ Now using linearity of enpombion: LHS < PHS (from egn (i)) LHS: $\rightarrow \frac{1}{M^2} En \left[\left(\sum_{m=1}^{M} y_m(n) \right)^2 \right] + En \left[f^2(n) \right]$ $-\frac{2}{M}E_{x}\left[\left\{ \left(n\right) \right\} \right] m_{z_{1}}m\left(n\right) \right]$

o : En [f? (m)] is independent of m 6. $\frac{1}{M} \sum_{m=1}^{M} E_{n}[q^{2}m]$ com be written as $\frac{1}{M} \sum_{m=1}^{M} E_{n}[q^{2}m] = \frac{1}{M} \sum_{m=1}^{M} E_{n}[q^{2}m] \sum_{m=1}^{M} 2$ $= E_{\chi} \left[r^2 (\chi) \right]$ So the above then comeels the term on the 2HG of inequality and we get -> $\frac{1}{N^2} \quad \text{Ex} \left[\left(\sum_{m=1}^{N} y_m(x) \right)^2 \right] - \frac{2}{N} \left[f(x) \sum_{m=1}^{N} E_n(y_m^2 y_m^2) \right]$ $\frac{1}{N} \sum_{m=1}^{N} E_{n} \left[y_{m}(n) \right] - \frac{2}{N} \sum_{m=1}^{N} E_{x} \left[y_{m}(n) f(n) \right] - 2$ Again wing the linearity of expedation in $\frac{2}{M} E_{N} \left[J(n) \sum_{m=1}^{M} J_{m}(n) \right] = \frac{2}{M} \sum_{m=1}^{M} E_{N} \left[J(m) J_{m}(n) \right]$ So concelling above towns both fide -

We finally get -> $\frac{1}{M} \operatorname{En} \left[\left(\sum_{m=1}^{M} \mathcal{J}_{m}(n) \right)^{2} \right] \leq \frac{1}{M} \sum_{m=1}^{M} \operatorname{En} \left[\mathcal{J}_{m}(n) \right]$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \leq \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2}$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2}$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2}$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2}$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M}{2} \right)^{2}$ $= \frac{M}{2} \left(\frac{M}{2} \right)^{2} \left(\frac{M$ Now we can use Couchy-Schwarz inequality.
Lo probbe eq (3)'s inequality. i.e. $(y_1 + y_2 + \dots + y_m)^2 \leq (y_1^2 + y_2^2 + \dots + y_m)^2$. Substituting $x_1 = x_2 = x_3 = x_3 = x_1$ $=) \left(y_1 + y_2 + y_3 - y_m^2 \right) \leq M \left(y_1^2 + y_2^2 + \dots y_m^2 \right)$ $= \left(\sum_{m=1}^{M} y_m(x) \right) \leq \sum_{m=1}^{M} \left(y_m(x) \right)$ Hence Poved.