0. Introducción

IA 3.2 - Programación III

2° C - 2025

Dr. Mauro Lucci

Motivación

Transporte de última milla (last mile)

- Última etapa en la logística del transporte.
- Desde un centro de distribución hasta el cliente final.
- **Objetivo.** Construir la ruta del camión (o los camiones).
 - 1. Comienza en el centro de distribución.
 - 2. Visita una vez a cada cliente, el algún orden.
 - Regresa al centro de distribución.

Algoritmo de fuerza bruta

- Iterar sobre todas las rutas posibles e ir manteniendo en memoria la más corta.
- Para 4 clientes, las posibles combinaciones son:

1.	1, 2, 3, 4.	13.	3, 1, 2, 4.
2.	1, 2, 4, 3.	14.	3, 1, 4, 2.
3.	1, 3, 2, 4.	15.	3, 2, 1, 4.
4.	1, 3, 4, 2.	16.	3, 2, 4, 1.
5.	1, 4, 2, 3.	17.	3, 4, 1, 2.
6.	1, 4, 3, 2.	18.	3, 4, 2, 1.
7.	2, 1, 3, 4.	19.	4, 1, 2, 3.
8.	2, 1, 4, 3.	20.	4, 1, 3, 2.
9.	2, 3, 1, 4.	21.	4, 2, 1, 3.
10.	2, 3, 4, 1.	22.	4, 2, 3, 1.
11.	2, 4, 1, 3.	23.	4, 3, 1, 2.
12.	2. 4. 3. 1.	24.	4. 3. 2. 1.

Factorial

Para n clientes, el número de posibles rutas es:

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$$

Este número es conocido como **factorial** de *n*.

Ejemplo.

$$4! = 4 . 3 . 2 . 1 = 24$$

Performance del algoritmo de fuerza bruta

- Consumo de tiempo: n! iteraciones
- Consumo de memoria: 2 rutas (la actual y la mejor).

¿Habrá un algoritmo mejor que el de fuerza bruta? 😕

Algoritmo de Held-Karp

- Desarrollado por Held y Karp en 1962.
- Está basado en programación dinámica.

- Consumo de tiempo: $n^2.2^n$
- Consumo de memoria: $n.2^n$

Crecimiento exponencial

Explosión combinatoria

Disponiendo de una computadora capaz de evaluar 1M de rutas por segundo:

n	Fuerza bruta	Held-Karp
10	3,6 segundos	0,1 segundos
15	363 horas	7,4 segundos
20	77146 años	7 minutos
25	4,9 x 10 ¹¹ años	5,8 horas
30	8,4 x 10 ¹⁸ años	11 días

Edad del universo: 13.7×10^9 años.

(*) Soluciones en tiempo real

- En Amazon, cada camión visita típicamente entre 32 y 237 clientes por día, con un promedio de 148 clientes.
 - https://www.math.uwaterloo.ca/tsp/amz/index.html
- En estos casos, encontrar la ruta más corta con el algoritmo de fuerza bruta o el de Held-Karp tomaría un tiempo impráctico.
- Además, la ruta más corta no siempre es la preferida.
 - √ Estacionamiento. ✓ Facilidad de navegación.
 - Congestión de tráfico. ✓ Zonas peligrosas.
- El desafío es encontrar en pocos minutos rutas relativamente cortas que se desempeñen bien según ciertas métricas.

¿Cómo hacen las empresas de entrega de paquetería para resolver este tipo de problemas?

Organización

Cátedra

• Mauro Lucci

mlucci@fceia.unr.edu.ar

• Gonzalo Longo

gonzalolongo.fceia@gmail.com

• Salvador Sanchez

salvadorsanchez1832005@gmail.com

Calendario académico

	AGOSTO			SEPTIEMBRE				OCTUBRE			NOVIEMBRE			DICIEMBRE							
	4	11	18	25	1	8	15	22	29	6	13	20	28	3	10	17	24	1	8	15	22
Nº de semana clases			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Clases																					
Cierre de promoción (*)																					
Consultas																					
Exámenes																					- 3
Flotantes																					

- https://web.fceia.unr.edu.ar/images/PDF/Calendario_Acadmico/2025/resultaneon-pdf
 s 910 24 calendario academico.pdf
- **Clases.** 25/8 al 5/12 (1615 semanas)
- Cierre. 8/12 al 19/12 (2 semanas)

Horarios

• Miércoles de 18 a 20.

Teoría virtual: meet.google.com/msv-ubac-wth

• Viernes de 18 a 20.

Lab. de básica en sede Pellegrini (a mitad de pasillo en el 1^{er} piso).

• Horarios semanales de consultas.

Confirmar asistencia por correo hasta el día anterior.

Comunicación

Campus virtual de FCEIA.

https://campusv.fceia.unr.edu.ar/course/view.php?id=473

Actividades con evaluación

- Actividades de laboratorio.
 - o 1 TP grupal con entrega y defensa.
- Actividades prácticas/teóricas.
 - o 2 parciales.
- Recuperatorios.
 - Se puede recuperar el TP y hasta 1 parcial.

Contribución a la **nota final**

33.3 %

66.6 %

Condiciones

- Alcanzarán la condición de **promoción directa** quienes hayan aprobado todas las instancias evaluativas (de forma directa o por medio de recuperatorios).
- De lo contrario, la condición será de libre.

¿De qué trata el curso?

- Herramientas para resolver problemas que no tienen una solución analítica directa, sino que su resolución involucra buscar una solución aceptable entre muchas o incluso infinitas alternativas.
- Aprender a formular un problema de búsqueda.
- Conocer diferentes **algoritmos de búsqueda**, que toman como entrada un problema y retornan una solución.
- Compararlos según ciertos criterios de evaluación.
- Implementarlos en Python.

Contenidos sintéticos

- Unidad 1. Resolución de problemas mediante búsqueda.
- Unidad 2. Estrategias de búsqueda no informadas.
- Unidad 3. Estrategias de búsqueda informadas.
- Unidad 4. Búsqueda entre adversarios.
- Unidad 5. Búsqueda local.
- Unidad 6. Problemas de satisfacción de restricciones.
- Unidad 7. Búsqueda inspirada en la naturaleza.
- Unidad 8. Búsqueda en la actualidad.

Bibliografía

(2009) (2003)

Aplicaciones

Problemas de factibilidad y optimización

- Problema de factibilidad. El objetivo es hallar cualquier solución factible, es decir, una que cumpla con todos los requerimientos del problema.
- Problema de optimización. Las soluciones tienen costos (o ganancias) y el objetivo es hallar una solución óptima, es decir, una que cumpla con todos los requerimientos y cuyo costo sea mínimo (o su ganancia sea máxima).

Variaciones

- En el curso trabajaremos con problemas de factibilidad y optimización muy variados, provenientes de la **industria**, **academia**, **juegos**, etc.
- En la práctica, suelen aparecer nuevos requerimientos, que derivan en variaciones de los problemas originales.
- Las variaciones pueden hacer más **fácil/difícil** un problema.
- A continuación, se mencionan algunos ejemplos 📚.

1. Problemas de asignación

Es una amplia familia de problemas que involucran asignar los recursos disponibles de la mejor forma posible para cumplir ciertas tareas.

1.1 Problema de asignación de aulas

Classroom assignment problem

Entrada. Clases con horarios y cantidades de inscriptos, y aulas con capacidades.

Objetivo. Asignar un aula a cada clase, de forma tal que ningún aula tenga más de una clase en simultáneo y sin exceder las capacidades de las aulas.

1.2 Problema de programación de trabajos

Job scheduling problem

Entrada. Trabajos con distinta duración y máquinas.

Objetivo. Asignar a cada trabajo una hora de inicio y una máquina, de forma tal que cada máquina realice un único trabajo a la vez.

Variaciones. Cada trabajo puede constar de una o múltiples fases que pueden requerir ser ejecutadas en paralelo o en secuencia.

1.3 Problema de empaquetado en contenedores Bin packing problem

Entrada. Conjunto de objetos con diferentes dimensiones.

Objetivo. Asignar cada objeto a un contenedor, sin exceder la capacidad del contenedor, y minimizando el número de contenedores utilizados.

1.3 Problema de empaquetado en contenedores

Bin packing problem

Variaciones.

2D 3D

2. Problemas de ruteo de vehículos

Es una amplia familia de problemas que involucran diseñar rutas óptimas para que una flota de vehículos pueda cumplir con pedidos de clientes.

2.1 Problema de primera/última milla

First/Last mile problem

- Primera milla: desde los productores al centro de distribución.
- **Última milla:** desde el centro de distribución a los clientes.

2.2 Problema del viajante

Travelling Salesman Problem (TSP)

SCIENCE-Drummer's Delight: & The Shortest Way Around TUNDING the shortest route for a visits 50 cities, for example, he has

traveling salesman-starting from a given city, visiting each of a series of other cities, and then returning to his original point of departure-is more than an after-dinner teaser. For years it has baffled not only goods- and salesmen-routing businessmen but mathematicians as well. If a drummer

1062 (62 zeros) possible itineraries. No electronic computer in existence could sort out such a large number of routes and find the shortest.

using Rand McNally road-map distances between the District of Columbia and major cities in each of the to cover the 49 cities: 12,345 miles.

48 states, have finally produced a solution (see above). By an ingenious application of linear programminga mathematical tool recently used to solve production-scheduling prob-Three Rand Corp. mathematicians, lems-it took only a few weeks for the California experts to calculate "by hand" the shortest route

Entrada. Conjunto de ciudades.

Objetivo. Hallar un tour de distancia mínima que recorra exactamente una vez cada ciudad y regrese al origen.

2.2 Problema del viajante

Travelling Salesman Problem (TSP)

¿Si en vez de ciudades queremos visitar estrellas? **TSP en 3D.**

Tour mínimo para 2.079.471 estrellas.

https://www.math.uwaterloo.ca/ts
p/star/gaia1.html

Desafíos abiertos. 10M y 100M de estrellas.

3. Clustering

Problemas asociados a particionar un conjunto de objetos en clusters (grupos) de formal tal que los objetos dentro de un mismo cluster tengan más **similitud** entre ellos que con los de los otros clusters.

4. Juegos/acertijos

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
	,			8			7	9

SEND

+ MORE
Criptoaritmo

4.1 Sudoku

4.3 Cruce de río

5. Problemas fundamentales de las ciencias exactas

5.1 Problema de satisfacibilidad booleana Boolean Satisfiability Problem (SAT)

Entrada. Fórmula booleana.

Objetivo. Encontrar, si existe, una asignación de valores de verdad a literales, de forma tal que la fórmula evalúe a TRUE (se satisfaga).

Problemas difíciles

- Estos problemas tienen en común que la cantidad de asignaciones posibles (combinaciones) crece muy rápidamente (en general exponencialmente) con pequeños incrementos en el tamaño de la entrada.
- La mayoría pertenece a la clase de problemas NP-difícil (el SAT fue el primero en ser clasificado en esta clase).
- Es decir, **no se conocen** algoritmos que resuelvan **cualquier** entrada en tiempo razonable, y hay consenso de que no existen, aunque no fue probado.
- Conjetura P vs NP. Demostrar la existencia o no de algoritmos eficientes para resolver este tipo de problemas difíciles. Es uno de los <u>7 problemas</u> del milenio, cuya resolución vale US\$1M (hasta ahora, el único resuelto es la Conjetura de Poincaré).