Билеты к коллоквиуму по математическому анализу

VG6

11 неделя 2025

Содержание

1	Вве	едение
1	1.1	Комплексные числа. Действия над ними. Геометрическое представлние. Алгебраическая и триганометрическая форма записи комплексных чисел. Формула Эйлера, определение e^z через действительную экспоненту и действительные триганометрические функции
	1.2	Муавра.
	1.3	Неравенство треугольника для действительных и комплексных чисел, геометрическое и алгебраическое доказательства
	1.4 1.5	Метод математической индукции (ММИ). Прямая индукция. Формула Бинома Ньютона 1.4.1 Метод математической индукции (ММИ) 1.4.2 Бином Ньютона ММИ. Обратная индукция. Неравенство между средним арифметическим и средним геометрическим.
_		
2	Деі 2.1	йствительные чсла. Числовые множества. Дедекиндовы сечения. Определение действительных чисел по Дедекинду. Полнота $\mathbb R$ по Дедекинду
	2.2	Лемма об отделимости
	2.3	Точная верхняя и нижняя грани ограниченных множеств из В. Теорема Вейерштрасса о существовании точной верхней грани ограниченного сверху множества как следствие леммы об отде- лимости (принцип полноты В по
	2.4	Вейерштрассу)
		(принцип полноты (R) по Кантору)
	2.5	Полнота К по Дедекинду как следствие принципа стягивающихся отрезков.
	2.6	Счётность множества, рациональных чисел и несчётность множества дей-
		ствительных чисел.

3	Последовательность и ряды.		
	3.1	Свойства сходящихся последовательностей (сходимость постоянной последовательности, единственность предела, ограниченность сходящейся последовательности)	,
	3.2	Предельный переход в неравенствах для последовательностей	7
	3.3	Теорема о зажатой последовательности (о трёх последовательностях)	7
	3.4	Теоремы о сохранении знака сходящейся последовательностью и о сходимости модулей.	-
	3.5	Бесконечно малые последовательности, их свойства	-
	3.6	Бесконечно большие последовательности. Связь бесконечно малых и бесконечно больших последовательностей	,
	3.7	Арифметические свойства сходящихся последовательностей	7
	3.8	Монотонные последовательности. Критерий сходимо	7
	3.9	Число е как предел последовательности	8
	3.10	Теорема Больцано-Вейерштрасса	8
	3.11	Частичные пределы. Критерий частичного предела.	8
	3.12	Критерий Коши существования предела последовательности	8
	3.13	Существование верхнего и нижнего пределов у любой последовательности	8
	3.14	Числовые ряды. Абсолютная и условная сходимость числовых рялов. Критерий Коши сходимости ряда. Необходимое условие сходимости ряда. Признак сравнения.	8
	3.15	Признаки абсолютной сходимости рядов Даламбера и Коши	8
		Критерий Коши сходимости ряда с монотонными членами. Исследование сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p > 0.$	8

1 Введение

- 1.1 Комплексные числа. Действия над ними. Геометрическое представлние. Алгебраическая и триганометрическая форма записи комплексных чисел. Формула Эйлера, определение e^z через действительную экспоненту и действительные триганометрические функции.
- 1.1.1 Определение и свойства

Определение. Комплексными числами называются числа вида z=x+iy, где $x,y\in\mathbb{R},$ а i — мнимая единица, обладающая свойством $i^2=-1$.

- \bullet $x=\mathrm{Re}\,z-$ действительная часть числа z.
- $y = \operatorname{Im} z$ мнимая часть числа z.
- Если y = 0, то z = x действительное число.
- Число $\overline{z} = x iy$ называется комплексно-сопряжённым к z.

Свойство:
$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 - i^2y^2 = x^2 + y^2$$
.

Важное примечание

Нельзя сравнивать комплексные числа операциями $<,>,\leq,\geq!$

1.1.2 Арифметические операции

Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

- 1. Сложение/Вычитание: $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$
- 2. Умножение:

$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

3. Деление:

$$\frac{z_1}{z_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

3

1.1.3 Геометрическое представление

1.1.4 Тригонометрическая форма

$$z = r(\cos\phi + i \sin\phi), \ r = |z|$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + i \sin(\phi_1 - \phi_2))$$

1.1.5 Формула Эйлера

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x \cdot (\cos y + i \cdot \sin y)$$

Действительная часть: $Re~e^z=e^x\cos y$

Мнимая часть: $Im e^z = e^x \sin y$

1.2 Возведение в степень и извлечение корня из комплексных чисел. Форула Муавра.

1.2.1 Формула Де-Муавра

$$(\cos\phi+i\,\sin\phi)^k=\cos\,k\phi+i\,\sin\,k\phi$$

1.2.2 Комплексные корни

$$\begin{split} \sqrt[n]{z} &= \omega \\ \omega^n &= z, z \neq 0 \\ z &= r e^{i\phi}, \omega = \rho e^{i\Psi} \\ \omega^n &= \rho^n e^{in\Psi} = z = r e^{i\phi} = r e^{i(\phi + 2\pi k)} \end{split}$$

$$\rho^n = r \Rightarrow \rho = \sqrt[n]{r}$$

$$n\Psi = \phi + 2\pi k \Rightarrow \Psi = \frac{\phi}{n} + \frac{2\pi}{n}k$$

Корни будут образовывать правильный многоугольник.

1.3 Неравенство треугольника для действительных и комплексных чисел, геометрическое и алгебраическое доказательства.

1.3.1 Неравенство треугольника

Рис. 1: Геометрический смысл неравенства треугольника: длина стороны $|\vec{a} + \vec{b}|$ не превосходит суммы длин сторон $|\vec{a}| + |\vec{b}|$.

Теорема (Неравенство треугольника): Для любых комплексных чисел z_1, z_2 справедливо:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Доказательство

$$|a+b| \leq |a| + |b|$$

1.
$$a \ge 0 \ (|a| \ge |b|)$$
 $a+b \ge 0$, to $|a+b| = a+b$. $a+b \le 0$, to $|a+b| = -(a+b) = -a-b \le |a|+|b|$

2.
$$|a-b| \ge ||a|-|b||$$
 $a=(a-b)+b$ по н.т.: $|a+0| \le |a-b|+|b| \Rightarrow |a-b| \ge |a|-|b|$

Аналогично
$$|b| \le |b-a| + |a| \Rightarrow |a-b| \ge |b| - |a|$$
 Получим, что
$$\begin{cases} |a-b| \ge |a| - |b| \\ |a-b| \ge |-(|a|-|b|) \end{cases} \Rightarrow |a-b| \ge ||a| - |b||$$

Следствие

$$||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

1.4 Метод математической индукции (ММИ). Прямая индукция. Формула Бинома Ньютона

1.4.1 Метод математической индукции (ММИ)

Алгоритм доказательства по индукции:

- 1. **База индукции:** Проверить утверждение для n=1.
- 2. **Индукционное предположение:** Предположить, что утверждение верно для n=k.
- 3. **Индукционный переход:** Доказать, что из этого следует верность утверждения для n = k + 1 (Прямая индукция).

1.4.2 Бином Ньютона

Определение.

Биномиальный коэффициент:
$$C_n^k = \frac{n!}{k!(n-k)!}$$
, где $n, k \in \mathbb{N}_0$

Формула бинома Ньютона:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Доказательство по ММИ

База индукции: Для n=1:

$$(a+b)^1 = a+b$$

$$\sum_{k=0}^{1} C_1^k a^{1-k} b^k = C_1^0 a^1 b^0 + C_1^1 a^0 b^1 = 1 \cdot a \cdot 1 + 1 \cdot 1 \cdot b = a + b$$

База индукции доказана.

Индукционное предположение: Предположим, формула верна для n=m:

$$(a+b)^m = \sum_{k=0}^m C_m^k a^{m-k} b^k$$

Индукционный переход: Докажем для n=m+1. Рассмотрим левую часть:

$$(a+b)^{m+1} = (a+b) \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k$$

Раскроем скобки:

$$= \sum_{k=0}^{m} C_{m}^{k} a^{m+1-k} b^{k} + \sum_{k=0}^{m} C_{m}^{k} a^{m-k} b^{k+1}$$

Во второй сумме сделаем замену индекса j = k + 1:

$$= \sum_{k=0}^{m} C_m^k a^{m+1-k} b^k + \sum_{j=1}^{m+1} C_m^{j-1} a^{m+1-j} b^j$$

Теперь объединим суммы, выделяя крайние слагаемые:

$$= C_m^0 a^{m+1} + \sum_{k=1}^m \left[C_m^k + C_m^{k-1} \right] a^{(m+1)-k} b^k + C_m^m b^{m+1}$$

Используем свойство биномиальных коэффициентов:

$$C_m^k + C_m^{k-1} = C_{m+1}^k$$

Учитывая, что $C_m^0=C_{m+1}^0=1$ и $C_m^m=C_{m+1}^{m+1}=1$, получаем:

$$(a+b)^{m+1} = \sum_{k=0}^{m+1} C_{m+1}^k a^{(m+1)-k} b^k$$

Индукционный переход завершён.

1.5 ММИ. Обратная индукция. Неравенство между средним арифметическим и средним геометрическим.

Неравенство о средних

Теорема (Неравенство между средним арифметическим и средним геометрическим): Для любых $a_1, a_2, \ldots, a_n \ge 0$ справедливо:

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

Равенство достигается тогда и только тогда, когда $a_1 = a_2 = \cdots = a_n$.

Доказательство по ММИ (метод Коши / метод обратой индукции)

Докажем теорему в три этапа.

1. База индукции для степеней двойки $(n=2^m)$.

• Для
$$n=2$$
: Докажем $\frac{a_1+a_2}{2} \ge \sqrt{a_1a_2}$.

$$(a_1 - a_2)^2 \ge 0 \Rightarrow a_1^2 - 2a_1a_2 + a_2^2 \ge 0 \Rightarrow a_1^2 + 2a_1a_2 + a_2^2 \ge 4a_1a_2 \Rightarrow$$
$$\Rightarrow (a_1 + a_2)^2 \ge 4a_1a_2 \Rightarrow \frac{a_1 + a_2}{2} \ge \sqrt{a_1a_2}$$

- Предположим, неравенство верно для n = k.
- Докажем для n = 2k:

$$\frac{a_1 + \dots + a_{2k}}{2k} = \frac{\frac{a_1 + \dots + a_k}{k} + \frac{a_{k+1} + \dots + a_{2k}}{k}}{2} \ge$$

$$\ge \frac{\sqrt[k]{a_1 \dots a_k} + \sqrt[k]{a_{k+1} \dots a_{2k}}}{2} \ge \sqrt{\sqrt[k]{a_1 \dots a_k} \cdot \sqrt[k]{a_{k+1} \dots a_{2k}}} = \sqrt[2k]{a_1 \dots a_{2k}}$$

2. Докажем, что если неравенство верно для n, то оно верно и для n-1. Рассмотрим $a_1, a_2, \ldots, a_{n-1} \geq 0$. Пусть

$$a_n = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}$$

Для набора из n чисел неравенство верно:

$$\frac{a_1 + \dots + a_{n-1} + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n}$$

Подставим a_n :

$$\frac{(a_1 + \dots + a_{n-1}) + \frac{a_1 + \dots + a_{n-1}}{n-1}}{n} = \frac{a_1 + \dots + a_{n-1}}{n-1} = a_n$$

Таким образом:

$$a_n \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n}$$

Возведём в степень n:

$$a_n^n \ge a_1 a_2 \dots a_{n-1} a_n \Rightarrow a_n^{n-1} \ge a_1 a_2 \dots a_{n-1}$$

Извлекая корень (n-1)-й степени:

$$a_n \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}} \Rightarrow \frac{a_1 + \dots + a_{n-1}}{n-1} \ge \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

- 3. Завершение доказательства. Мы доказали, что:
 - 1. Неравенство верно для n=2 (а значит, для n=4,8,16,...)
 - 2. Из верности для n следует верность для n-1

Следовательно, неравенство верно для любого натурального n.

- 2 Действительные чсла. Числовые множества.
- 2.1 Дедекиндовы сечения. Определение действительных чисел по Дедекинду. Полнота $\mathbb R$ по Дедекинду.
- 2.2 Лемма об отделимости.
- 2.3 Точная верхняя и нижняя грани ограниченных множеств из В. Теорема Вейерштрасса о существовании точной верхней грани ограниченного сверху множества как следствие леммы об отде- лимости (принцип полноты В по Вейерштрассу).
- 2.4 Последовательности стягивающихся отрезков с действительными концами. Теорема Кантора о стягивающихся отрезках с дей- ствительными концами (принцип полноты ® по Кантору).
- 2.5 Полнота К по Дедекинду как следствие принципа стягивающихся отрезков.
- 2.6 Счётность множества, рациональных чисел и несчётность множества действительных чисел.
- 3 Последовательность и ряды.
- 3.1 Свойства сходящихся последовательностей (сходимость постоянной последовательности, единственность предела, ограниченность сходящейся последовательности).
- 3.2 Предельный переход в неравенствах для последовательностей.
- 3.3 Теорема о зажатой последовательности (о трёх последовательностях).
- 3.4 Теоремы о сохранении знака сходящейся последовательностью и о сходимости модулей.
- 3.5 Бесконечно малые последовательности, их свойства.
- 3.6 Бесконечно большие последовательности. Связь бесконечно малых и бесконечно больших последовательностей.
- 3.7 Арифметические свойства сходящихся последовательностей.
- 3.8 Монотонные последовательности. Критерий сходимо сти монотонной последовательности.

- 3.9 Число е как предел последовательности.
- 3.10 Теорема Больцано-Вейерштрасса.
- 3.11 Частичные пределы. Критерий частичного предела.
- 3.12 Критерий Коши существования предела последовательности.
- 3.13 Существование верхнего и нижнего пределов у любой последовательности.
- 3.14 Числовые ряды. Абсолютная и условная сходимость числовых рялов. Критерий Коши сходимости ряда. Необходимое условие сходимости ряда. Признак сравнения.
- 3.15 Признаки абсолютной сходимости рядов Даламбера и Коши.
- 3.16 Критерий Коши сходимости ряда с монотонными членами. Исследование сходимости ряда $\sum_{n=1}^{\infty} \frac{1}{n^p}, \ p>0$.