STATS 769 Large Data Problems

Paul Murrell

The University of Auckland

September 16, 2019

Problem 1

• Our standard tool (R) cannot hold all of the data.

Calculating memory requirements

On Linux, we can use shell commands to ask the operating system how big the data are and how much memory is available.

- Use 1s -1 to determine the file size.
- Use du -s to determine directory size.
- \bullet Use $\ensuremath{\textit{wc}}$ to count the number of lines in a (text) file.
- Use head to view the first few lines of a (text) file.
- Use free or top to show how much RAM is available (and use top to monitor memory usage).
- Use df to show how much hard drive is available (different mount points can have very different limits).

On Windows we might use "Task Manager".

Calculating memory requirements

We can ask R how much memory it is using.

- Use object.size() to determine the RAM used by an object.
- Use gc() to show maximum RAM used by R (and to release memory).
- Use read.table(nrows=) to see the first few rows (and the number of columns).
- Use rm() to remove objects (and release memory).
- Use profmem::profmem() to monitor memory allocations (to look for specific large allocations).

Overview

- This topic explores how to determine the size of problems (in terms of computer memory) in relation to the size of our computational resources.
- "Large" means that a software tool or a computer that we know how to use cannot cope with the data set.

Problem 0

- How do we know that we have a problem?
 - How do we know that the data are too large?
 - How do we know how much RAM we have available?
 - How do we know how much RAM we have used?
 - How do we know how much RAM we need to use?
- Just try-it-and-see is not necessarily a good idea (R will expand into shared memory and "thrash" your machine)
- Thrashing your machine is even worse when it is not just your machine (in a multi-user, shared-resource environment)

Calculating memory requirements

We need to know how R uses memory.

- Data must fit in RAM.
- R automatically allocates new memory as required.
- R reclaims memory through a "garbage collector."
- R has a limited set of data types (numeric, character, logical, and complex).
- R implements by-value semantics via copy-on-modify.

Calculating memory requirements

- We need to know what statistical computations will require.
- Model matrices are $n \times p$.
- Large can mean large n or large p or large $n \times p$.
- Categorical predictors contribute length(levels) 1 to p.

Measuring memory usage in the shell	Resources
 The time command -format="%M" Maximum "resident set size" (a rough measure) in kilobytes. 	 "Advanced R" chapter on "Memory" //adv-r.had.co.nz/memory.html "Writing R Extensions" section on "Tidying and profiling R code" http://cran.stat.auckland.ac.nz/doc/manuals/ r-devel/R-exts.html#Tidying-and-profiling-R-code