Logarithmic Functions

Properties:

• $y = f(x) = \ln(x)$; The domain of definition of f is $]0; +\infty[$.

• $\ln (0^+) = -\infty$.

• $\ln(+\infty) = +\infty$.

• x attends ln (x) when x is large.

• $\ln(1) = 0$.

• $\ln (e \approx 2.718) = 1.$

• $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ and $\lim_{x \to 0^+} x \ln(x) = 0$.

• If f (x) = ln (x) then, f'(x) = $\frac{1}{x}$.

• If f (x) = ln (u (x)) then, f'(x) = $\frac{u'(x)}{u(x)}$.

• If 0 < x < 1 then, $\ln(x) < 0$.

• If x > 1 then, $\ln(x) > 0$.

• $\ln(x) = a \text{ then, } x = e^{a}$.

• a > 0 and b > 0 then, $\ln (a \times b) = \ln (a) + \ln (b)$.

• a > 0 and b > 0 then, $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$.

• $\ln (a^n) = n \ln (a)$ for all n.

• $\ln\left(\frac{1}{a}\right) = -\ln(a)$.

• $\ln (\frac{1}{e}) = -1.$

• $\int \frac{1}{x} dx = \ln(x) + C$; where x > 0.

• $\int \frac{1}{x} dx = \ln(-x) + C \text{ where } x < 0.$

 $\bullet \int \frac{1}{x} dx = \ln|x| + C.$

• $\int \frac{u'(x)}{u(x)} dx = \ln(u(x)) + C \text{ where } u(x) > 0.$

Exercise 1

Part A:

Consider the function g that is defined over $[1; +\infty[$ $as: g(x) = \ln(x) - \frac{1}{2}$.

1) Study the variations de g over $[1; +\infty[$.

2) Solve the equation g(x) = 0 in the interval $[1; +\infty[$.

3) Deduce that g (x) > 0 if and only if $x > \sqrt{e}$.

Part B:

Consider the function f that is defined over $[1; +\infty[$ as: $f(x) = 2x^2 \lceil \ln(x) - 1 \rceil + 2$.

- 1) Calculate $\lim_{x \to \infty} f(x)$ and f(1).
- 2) a- Prove that for all real number x of the interval $[1; +\infty[$, f'(x) = 4xg(x). b- Study the sign of f'(x) over $[1; +\infty[$ and then deduce the table of variations of f over $[1; +\infty[$.
- 3) a- Prove that the equation f(x) = 0 has a unique solution α so that: 2.2 < α < 2.4. b- Draw (C) the representative curve of f in an orthonormal system $(O; \vec{i}, \vec{j})$.

Solution of Exercise 1

Part A:

- 1. $g'(x) = \frac{1}{x} > 0$ for all $\mathbf{x} \in [1; +\infty[$, So g is strictly increasing over $[1; +\infty[$.

According to the tableau of variations of g we have: g(x) > 0 for all $x > \sqrt{e}$. And we have g(x) = 0 for $x = \sqrt{e}$, g(x) < 0 for all: $1 < x < \sqrt{e}$.

Part B:

1.
$$\lim_{x \to +\infty} f(x) = 2(+\infty) \left[\ln(+\infty) - 1 \right] + 2 = (+\infty)(+\infty) + 2 = +\infty + 2 = +\infty.$$

 $f(1) = 2(1) \left[\ln(1) - 1 \right] + 2 = 2(-1) + 2 = -2 + 2 = 0.$

2. a)
$$f'(x) = 4x \Big[\ln(x) - 1 \Big] + \Big(\frac{1}{x} \Big) (2x^2) = 4x \Big[\ln(x) - \frac{1}{2} \Big] = 4xg(x).$$

3. a) We have: f is continuous over] 2.2; 2.4 [, f is strictly increasing over]2.2; 2. 4[, f (2.2) x f (2.4) = $(4.0328) \times (-0.4192) = -1.69 < 0$, So the equation f (x) = 0 has a unique solution α so that: 2.2 < α < 2.4. b)

Exercise 2

Part A:

Consider the function g that is defined over $]0; +\infty[$ as: $g(x) = x^2 + 3 - 2\ln(x)$.

- 1) Study the variations of g and prove that g admits a minimum to be determined.
- 2) Deduce the sign of g(x) for all real x > 0.

Part B:

Consider the function defined over $]0; +\infty[$ by: $f(x) = \frac{\ln(x)}{x} + \frac{x^2 - 1}{2x}$. (C) is the representative curve of the function f in an orthonormal system graphic unit 2 cm.

- 1) Calculate $\lim_{x\to 0} f(x)$ and $\lim_{x\to +\infty} f(x)$. Deduce an asymptote to (C).
- 2) Prove that for all x in $]0;+\infty[f'(x)=\frac{g(x)}{2x^2}]$. Deduce the sense of variations of f.
- 3) Consider the straight line (D) of equation: $y = \frac{1}{2}x$.

 Calculate $\lim_{x \to +\infty} \left[f(x) \frac{1}{2}x \right]$. Deduce an asymptote to the curve (C).
- 4) Study the relative position of (C) and (D).
- 5) Determine the coordinates of A point of intersection of (C) and (D).
- 6) Draw (D) and (C).
- 7) Calculate f (1) and then deduce the sign of f (x) over $]0; +\infty[$.
- 8) Deduce that for all real x > 1: $\frac{\ln(x)}{x} > \frac{1-x^2}{2x}$.

Solution of Exercise 2

Part A:

1.
$$g'(x) = 2x - \frac{2}{x} = \frac{2(x^2 - 1)}{x} = \frac{2(x - 1)(x + 1)}{x}$$
.
 $g'(x) = 0$ for $x = 1$, $g'(x) > 0$ for $x > 1$ and $g'(x) < 0$ for $x < 1$.

Thus g has a local minimum that is equal 4 for x = 1.

2.

X	0	1		+∞
g '(x)		0	+	
g (x)	+∞	4 —		+∞

According to the table of variations of g we have the local minimum of g is equal to 4 > 0 So g (x) > 0 for all x > 0

Part B:

1.
$$\lim_{x \to 0} f(x) = \frac{\ln(0)}{0} + \frac{0-1}{0} = -\infty - \infty = -\infty \Rightarrow x = 0 \text{ is a V.A to (C)}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{f(x)}{x} + \lim_{x \to +\infty} \frac{x^2 - 1}{2x} = 0 + \infty = +\infty.$$

2.
$$f'(x) = \frac{1 - \ln(x)}{x^2} + \frac{2x(2x) - 2(x^2 - 1)}{4x^2} = \frac{1 - \ln(x)}{x^2} + \frac{x^2 + 1}{2x^2} = \frac{g(x)}{2x^2}$$
.
 $f'(x) > 0$ for all $x > 0$, So f is strictly increasing for all $x > 0$.

x	0	1 +∞
f '(x)		+
f(x)	0	+∞

$$\lim_{x \to +\infty} \left[f(x) - \frac{1}{2}x \right] = \lim_{x \to +\infty} \left[\frac{\ln(x)}{x} + \frac{x}{2} - \frac{1}{2x} - \frac{1}{2}x \right] = 0 - 0 = 0.$$

So the straight line (D) of equation $y = \frac{1}{2}x$ is an oblique asymptote to (C).

- 3. $f(x) \frac{1}{2}x = \frac{\ln(x)}{x} \frac{1}{2x} = \frac{2\ln(x) 1}{2x}$. (C) is below (D) for $0 < x < \sqrt{e}$. (C) is above (D) for $x > \sqrt{e}$.
- 4. (C) cuts the line (D) at the point $A\left(\sqrt{e}; f\left(\sqrt{e}\right) = \frac{\sqrt{e}}{2}\right)$.

5.

6.
$$f(1) = \frac{\ln 1}{1} + \frac{1-1}{2} = 0 + 0 = 0$$
, $f(x) < 0$ for $0 < x < 1$ and $f(x) > 0$ for $x > 1$.

7.
$$f(x) > 0$$
 for $x > 1$, $\frac{\ln(x)}{x} + \frac{x^2 - 1}{2x} > 0 \Rightarrow \frac{\ln(x)}{x} > \frac{1 - x^2}{2x}$.

Exercise 3

Consider the function f that is defined over $]0;+\infty[$ as: $f(x) = x + 3 \frac{\ln x}{x}$ and let (C) be the

representative curve of the function f in an orthonormal system $(O; \vec{i}, \vec{j})$; unit: 2 cm.

- 1) a- Calculate $\lim_{x\to a} f(x)$ and give a geometric interpretation.
 - b- Determine $\lim_{x\to +\infty} f(x)$ and then verify that the straight line (d) of equation

y = x is an asymptote to the curve (C).

- c- Study according to the values of x the relative positions of (C) and (d).
- 2) The table below is the table of variations of the function f' the derivative of f.

- a- Prove that f is strictly increasing over its domain of definition and set up its table of variations.
- b-Write an equation of the tangent (D) to (C) at a point G of abscissa e.

- c- Prove that the curve (C) has an inflection point L.
- d- Prove that the equation f(x)=0 has a unique root α and verify that: $0.8<\alpha<0.9$
- 3) Draw (D), (d) and (C).
- 4) Calculate in cm^2 the area of the region bounded by (C) the straight line (d) and the two straight lines of equations x = 1 and x = e.

Solution of Exercise 3

1. a)
$$\lim_{x\to 0} f(x) = 0 + 3\frac{\ln(0)}{0} = 0 - \infty = -\infty$$
. So $x = 0$ is V.A to (C).

b)
$$\lim_{x \to +\infty} f(x) = +\infty + 3 \lim_{x \to +\infty} \frac{\ln(x)}{x} = +\infty + 3 \times 0 = +\infty.$$

$$\lim_{x \to +\infty} \left[f(x) - x \right] = 3 \lim_{x \to +\infty} \frac{\ln(x)}{x} = 3 \times 0 = 0.$$

Thus the line (d) of equation y = x is an 0.A to (C).

a-
$$f(x) - x = 3 \frac{\ln(x)}{x}$$
.

$$f(x)-x=0 \Leftrightarrow x=1$$
, Thus (C) cuts (d) at the point (1; 1).

$$f(x)-x>0 \Leftrightarrow x>1$$
, Thus (C) is above (d).

$$f(x)-x<0 \Leftrightarrow 0 < x < 1$$
, Thus (C) is below (d).

2. a) According to the table of variations of f' the local minimum of

$$f'(x) = 1 - 1.5e^{-3} > 0$$
, Thus $f'(x) > 0$ for all $x > 0$

implies f is strictly increasing

for all x > 0.

b) (D):

$$\begin{array}{c|cccc} x & 0 & +\infty \\ \hline f'(x) & + & \\ \hline f(x) & -\infty & \longrightarrow +\infty \end{array}$$

$$y - y_G = f'(x_G)(x - x_G) \Leftrightarrow y - e - \frac{3}{e} = 1(x - e) \Leftrightarrow y = x + \frac{3}{e}$$

c)
$$f''(x) = 0 \Leftrightarrow x = e\sqrt{e}, f''(x) < 0 \Leftrightarrow x < e\sqrt{e}, f''(x) > 0 \Leftrightarrow x > e\sqrt{e}.$$

f''(x) changes its sign,

Thus (C) has an inflection point L
$$\left(e\sqrt{e}; e\sqrt{e} + 3\frac{\ln\left(e\sqrt{e}\right)}{e\sqrt{e}}\right)$$
.

b- f is continuous over]0.8; 0.9[, f is strictly increasing over]0.8; 0.9[, f (0.8) x f (0.9) = (-0.017) x (0.037) = -0.00064 < 0. So the equation f (x) = 0 has a unique solution α so that: 0.8 < α < 0.9.

3.

4.
$$A = \int_{1}^{e} \left[f(x) - x \right] dx = 3 \int_{1}^{e} \frac{\ln(x)}{x} dx = \frac{3}{2} \left[\ln^{2}(x) \right]_{1}^{e} = \frac{3}{2} \ln^{2}(e) - \ln^{2}(1) = \frac{3}{2} - 0 = \frac{3}{2} \times 4cm^{2}.$$

Exercise 4

PART A: Consider the function g that is defined over $]0;+\infty[$ as: $g(x)=1-\frac{1}{x}+\ln(x)$.

Let (C) be its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$. G.U = 2 cm.

- 1. Calculate $\lim_{x\to 0^+} [g(x)]$ and $\lim_{x\to +\infty} [g(x)]$. Deduce an asymptote to the curve (C).
- 2. Calculate g (1), g (2) and g (e).
- 3. Calculate g'(x), then study the sense of variations of function g.
- 4. Set up the table of variations of the function g.
- 5. Write an equation of the tangent line (T) to (C) at a point A of abscissa 1.
- 6. Draw (T) and (C).

PART B: Consider the function f that is defined over $]0; +\infty[$ as: $f(x) = -1 + (x-1)\ln(x)$.

The below table is the table of variations of the function f over $]0;+\infty[$:

- 1. Prove that the equation f(x) = 0 has exactly two roots α and β such that: $0.2 < \alpha < 0.3$ and 2.2 < B < 2.3.
- 2. Designate by (E) the region bounded by the curve (C) of the function g, the x-axis and the two straight lines $x = \alpha$ and $x = \beta$. Let A be the area of the region (E).
 - a- Prove that for all $x \in]0; +\infty[$ we have: f'(x) = g(x).
 - **b- Prove that:** $A = \int_{1}^{\alpha} g(x) dx + \int_{1}^{\beta} g(x) dx$.
 - c- Deduce the value of A in terms of α and β .

Solution of Exercise 4

$$g(x) = 1 - \frac{1}{x} + \ln(x)$$

1.
$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \left(1 - \frac{1}{x} + \ln(x)\right) = 1 - \frac{1}{0^+} + \ln(0^+) = 1 - \infty + (-\infty) = -\infty - \infty = -\infty$$

So x = 0 is Vertical asymptote to the curve (C) of the function g.

$$\lim_{x \to +\infty} g\left(x\right) = \lim_{x \to +\infty} \left(1 - \frac{1}{x} + \ln x\right) = 1 - \frac{1}{+\infty} + \ln\left(+\infty\right) = 1 - 0 + \infty = +\infty.$$

2.
$$g(1) = 1 - 1 + \ln(1) = 0 - 0 = 0$$
; $g(2) = 1 - 0.5 + \ln(2) = 0.5 + \ln(2)$; $g(e) = 1 - 1/e + \ln(e) = 1 - 1/e + 1 = 2 - 1/e$

3.
$$g'(x) = 0 + \frac{1}{x^2} + \frac{1}{x} > 0$$
 for all $x > 0$

So g is strictly increasing for all x > 0

4.

5.

<u>X</u>	0	+∞
g'(x)	+	
g (x)	-8	8+

6. (T):
$$y = f(1) + f'(1)(x-1) = 0 + 2(x-1) = 2x-2$$

Part B:

$$f(x) = -1 + (x-1)\ln(x)$$

1. Since f is continous over the interval <code>]0.2;0.3[</code> included in <code>]0;1[</code>

Since f is strictly decreasing form $+ \infty$ to -1.

Since $f(0.2) = \dots < 0$ and $f(0.3) = \dots < 0$ then the equation f(x) = 0 has a unique root α Such that $0.2 < \alpha < 0.3$.

Since f is continuous over]2.2;2.3[included in]1;+ ∞ [

Since f is strictly increasing from -1 to $+\infty$

Since f(2.2) = < 0 and f(2.3) = > 0 then the equation f(x) = 0 has a unique root β such that: $2.2 < \beta < 2.3$.

Exercise 5

Part A:

Consider the function g that is defined over] 0; $+\infty$ [as: $g(x) = x^2 - 1 + \ln x$.

- 1. Calculate $\lim_{x\to 0^+} g(x)$ and $\lim_{x\to +\infty} g(x)$.
- 2. Calculate g '(x) and set up the table of variations of g.
- 3. Calculate g (1) then determine the sign of g(x) over $]0;+\infty[$.

Part B:

Consider the function f that is defined over $]0;+\infty[$ by:

 $f(x) = f(x) = -\frac{1}{2}x + 1 + \frac{\ln x}{2x}$, and designate by (C) its representative curve in an orthonormal system $(0, \vec{i}, \vec{j})$.

- 1. Calculate $\lim_{x\to 0^+} f(x)$, $\lim_{x\to +\infty} f(x)$. Deduce an asymptote to (C).
- 2. Prove that the straight line (d) of equation $y = -\frac{1}{2}x + 1$ is an asymptote to (C).
- 3. Study the relative position between (C) and (d).
- 4. Prove that: $f'(x) = \frac{-2g(x)}{4x^2}$.
- 5. Deduce the sign of f'(x) and set up the table of variations of f.

6. Prove that the equation f(x) = 0 admits two solutions α and β such that:

$$\frac{1}{3} < \alpha < \frac{1}{2} \quad and \quad 2 < \beta < \frac{5}{2}.$$

- 7. Draw (C) and (d). (graphic unit: 2cm).
- 8. Calculate, in cm 2 , the area of the region bounded by (C), (d) and the two straight lines of equations x = 1 and x = e.

Exercise 6

Part A:

Let g be a function defined over]0; + ∞ [by: $g(x) = 3 - \frac{2}{x} + \ln(\frac{x}{2})$.

Designate by (γ) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1. Calculate $\lim_{x\to 0+}g(x)$, $\lim_{x\to +\infty}g(x)$, g (2) and g (4). Deduce an asymptote to (γ).
- 2. Calculate g'(x) and set up the table of variations of g.
- 3. Prove that the equation g (x) = 0 admits over]0; $+\infty$ [a unique root α . Verify that $0.9 < \alpha < 0.91$.
- 4. Write an equation of the tangent (T) to (γ) at the point A of abscissa 2.
- 5. Draw (T) and (γ) .
- 6. Deduce the sign of g (x) for all real x > 0.
- 7. a Let H be a function defined over]0; $+\infty$ [by H (x) = x ln $\left(\frac{x}{2}\right)$ x.

Prove that H is a primitive of the function h (x) = $\ln\left(\frac{x}{2}\right)$.

b- Calculate the area A (α) of the region bounded by (γ), the x – axis and the

straight line of equation x = 2. Prove that: $A(\alpha) = \frac{(\alpha - 2)^2}{\alpha}$.

Part B:

Let f be a function defined over]0; $+\infty$ [by f (x) = $(x-2)\left(2+\ln\left(\frac{x}{2}\right)\right)$. Designate by (C) its

representative curve in a new system.

- 1. Calculate $\lim_{x\to o+} f(x)$, $\lim_{x\to +\infty} f(x)$. Deduce an asymptote to (C).
- 2. Determine the points of intersection of (C) and the x axis.

3. Prove that :
$$f(\alpha) = -\frac{(2-\alpha)^2}{\alpha}$$
.

- 4. Prove that: f'(x) = g(x) and set up the table of variations of f.
- 5. Draw (C). (Assume that: $\alpha = 0.91$).

INTEGRALS CHAPTER REVIEW

Definition and notations:

1. Let f be a continuous function over an interval I, F is a primitive of f over I, a and b two points of I. We say that the integral of f from a to b, the real number F (b)-F (a). This number is denoted by:

1.
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
.
2. $\int_{a}^{a} f(x) dx = 0$.
3. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.
4. $\int_{a}^{b} 1 dx = [x]_{a}^{b} = b - a$.

$$2. \int_{a}^{a} f(x) dx = 0.$$

$$3. \int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

4.
$$\int_{a}^{b} 1 dx = [x]_{a}^{b} = b - a$$
.

5.
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$
.

6. Let f be a continuous function and positive over [a; b], $a \le b$. The area of the region bounded by the representative curve of f, (orthonormal system), the x – axis and the two straight lines of equations: x = a and x = b, expressed in unit square of areas is calculated by: $A = \int f(x) dx$.

When the function f is negative then we consider – f, and in this case, $\int_{-f}^{b} -f(x) dx$ is the given Area.

- 7. Let f and g be two continuous functions over an interval I. a and b two real's of I. for all real's α and β we have: $\int_{a}^{b} \left[\alpha f(x) + \beta g(x) \right] dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$
- 8. Let f be a continuous function over an interval I and a is a real of I. The defined function over I by: $x \to \int_{a}^{b} f(t) dt$ is a primitive of f over I, that vanishes
- 9. Let f be a continuous function over an interval I and let a and b two real's of I. If $a \le b$ and if $f \ge 0$ over [a,b] then: $\int_{a}^{b} f(x) dx \ge 0$.
- 10. Let f and g be two continuous functions over an interval I and let a < b be two real's of I.

If
$$f(x) \le g(x)$$
 over $[a,b]$, then $\int_a^b f(t) dt \le \int_a^b g(t) dt$.

- 11. If f is a continuous function over an interval I of center O, and a is any real of I.
 - a) If f is an even function then: $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt.$
 - b) If f is an odd function then: $\int_{0}^{\tau_{u}} f(t) dt = 0$.
- 12. Let f be a differentiable function over IR and a is a any real number. if f is periodic function of period T, then : $\int_{0}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt.$
- 13. Integration by change of variable:

Let f be a continuous function on an interval I, and ϕ a function whose derivative is continuous on an interval: $J = [\alpha, \beta]$ such that: $\phi(J) \subset I$.

We have:
$$\int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt = \int_{a}^{b} f(x)dx \text{ where } a = \phi(\alpha) \text{ et } b = \phi(\beta).$$

Example: $I = \int_0^\infty t \, e^{t^2} dt$, suppose that: $u = \phi(t) = t^2 \Rightarrow u' = 2t \, dt = \phi'(t)$. thus

$$I = \frac{1}{2} \int_{0}^{4} e^{u} du = \frac{1}{2} \left[e^{u} \right]_{0}^{4} = \frac{1}{2} \left(e^{4} - 1 \right).$$

14. Primitives:

$$\bullet \int u^{\alpha}(x) u'(x) dx = \frac{1}{\alpha + 1} u^{\alpha + 1}(x) + c. \quad \alpha \neq -1.$$

$$\bullet \int e^{u(x)}u'(x)dx = e^{u(x)} + c.$$

15. Integration by parts:

Let u and v be two differentiable functions on an interval I such that u' and v' are Continuous functions on I. We have, for all real numbers a and b in I:

$$\int_{a}^{b} u'(x) v(x) dx = \left[u(x) v(x) \right]_{a}^{b} - \int_{a}^{b} u(x) v'(x) dx.$$

Example:

To calculate
$$I = \int_0^1 xe^x dx = \left[xe^x - e^x\right]_0^1 =$$

Derivative Primitive

=
$$(1 e^{1} - e^{1}) - (0 \times e^{0} - e^{0}) = 1$$
.

=
$$(1 e^{1} - e^{1}) - (0 \times e^{0} - e^{0}) = 1$$
.
Example: $\int_{0}^{1} (x^{2} + 1)e^{2x} dx$

Derivative

Primitive

$$= \left[(x^2 + 1) \left(\frac{1}{2} e^{2x} \right) - \frac{1}{2} x e^{2x} + \frac{1}{4} e^{2x} \right]_0^1 = (e^2 - \frac{1}{2} e^2 + \frac{1}{4} e^2) - (\frac{1}{2} + \frac{1}{4} e^2) - (\frac{$$

Example: Calculate $\int (x+1) \ln x dx$.

Let $u = \ln(x)$ implies u' = 1/x and let V' = x + 1 implies $V = \frac{1}{2}x^2 + x$.

$$\int_{a}^{b} u \times v' dx = \left[u \times v \right]_{a}^{b} - \int_{a}^{b} v \times u' dx = \left[\ln x \times \left(\frac{1}{2} x^{2} + x \right) \right]_{1}^{e} - \int_{1}^{e} \left[\frac{1}{2} x + 1 \right] dx$$

=
$$(\ln(e) \times (1/2 e^2 + e) - (\ln(1) \times (3/2)) - \left[\frac{1}{4}x^2 + x\right]^e =$$

$$= \frac{1}{2} e^{2} + e^{-} ((\frac{1}{4} e^{2} + e) - (\frac{5}{4})) = \frac{1}{2} e^{2} + e^{-} = \frac{1}{4} e^{2} - e^{-} = \frac{5}{4} = \frac{1}{4} e^{2} + \frac{5}{4}$$

16. Linearization of trigonometric polynomials:

a) To calculate integrals such as:

 $\int_{a}^{b} \sin(px)\sin(qx)dx, \int_{a}^{b} \sin(px)\cos(qx)dx \text{ and } \int_{a}^{b} \cos(px)\cos(qx)dx \text{ where p and q}$ are positive integers, we use the following identities:

$$\sin(px)\sin(qx) = \frac{1}{2}\left[\cos(p-q)x - \cos(p+q)x\right];$$

$$\sin(px)\cos(qx) = \frac{1}{2}\left[\sin(p-q)x + \sin(p+q)x\right];$$

$$\cos(px)\cos(qx) = \frac{1}{2}\left[\cos(p-q)x + \cos(p+q)x\right].$$

b) To calculate integrals of the form $\int_{a}^{b} \sin^{p}(x) \cos^{q}(x) dx$.

We distinguish two cases:

If at least one of the two numbers p and q is an odd positive integer: If, in the integral $I = \int_a^b \sin^p x \cos^q x dx$, p = 2k + 1, where k is positive integer, we write é $\sin^p x = \sin^{2k} x \sin x = \left(1 - \cos^2 x\right)^k$. $\sin x$ and then we perform the change of variable t $= \cos(x)$.

If q is an odd positive integer, we interchange the roles of sin(x) and cos(x).

ii) If, in the integral $\int_{a}^{b} \sin^{p} x \cos^{q} x dx$, p and q are even positive integers, we use the following identities:

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$
 and $\cos^2(x) = \frac{1 + \cos(2x)}{2}$.

Example:

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^4(x) dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (1 - \cos(2x))^2 dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} [1 + \cos^2(2x) - 2\cos(2x)] dx$$

$$= \frac{\pi}{8} - \frac{1}{2} + \frac{1}{4} \int_{0}^{\frac{\pi}{4}} (1 + \cos(4x)) dx = \frac{3\pi}{16} - \frac{1}{2}.$$

17. Area between two curves:

If f and g are two continuous functions on an interval [a, b], If $f \le g$ over [a,b], the Area A of the region, bounded by the graphs of f and g and the two vertical line

$$x = a$$
 and $x = b$, is given by: $A = \int_{a}^{b} \left[g(x) - f(x) \right] dx$.

18. Volume of a solid of revolution:

$$V = \int_{a}^{b} \pi \left[f(x) \right]^{2} dx.$$

<u>CHAPTER 7</u>

INTERGRAL SOLVED EXERCISES

EXERCISE 1

Calculate the following integrals:

1.
$$\int_{-3}^{2} \left(x^4 - 5x^2 + 3\right) dx \; ; \; 2. \; \int_{0}^{1} \left(x + 3\right) \left(x^2 + 6x + 4\right)^2 dx \; ; \; 3. \; \int_{1}^{2} \frac{4x^3 - 3x^2 + 1}{5x^2} dx \; ;$$

1.
$$\int_{-3}^{2} (x^4 - 5x^2 + 3) dx = \left[\frac{x^5}{5} - \frac{5}{3}x^3 + 3x\right]_{-3}^{2} = (32/5 - 40/3 + 6) - (-253/5 + 45 - 9) =$$

2.
$$\int_{0}^{1} (x+3)(x^{2}+6x+4)^{2} dx = \frac{1}{2} \int_{0}^{1} (2x+6)(x^{2}+6x+4)^{2} dx = \left[\frac{1}{2}(x^{2}+6x+4)^{3} \times \frac{1}{3}\right]_{0}^{1}$$
$$= (1/6(1+6+4)) - (1/2(4)) = 11/6 - 2 = -1/6.$$

$$\int u' \times u^n dx = \frac{u^{n+1}}{n+1} + C \cdot \int \frac{1}{x^2} dx = -\frac{1}{x} + C$$

$$3. \int_{1}^{2} \frac{4x^{3} - 3x^{2} + 1}{5x^{2}} dx = \int_{1}^{2} \frac{4}{5}x - \frac{3}{5} + \frac{1}{5x^{2}} dx = \left[\frac{4}{5} \frac{x^{2}}{2} - \frac{3}{5}x - \frac{1}{5x} \right]_{1}^{2} = (8/5 - 6/5 - 1/10) - (2/5 - 3/5 - 1/5)$$

4.
$$\int_{0}^{2} (2x+1)^{3} dx$$
; 5. $\int_{1}^{2} \frac{3x+6}{(x^{2}+4x+3)^{4}} dx$; 6. $\int_{0}^{1} \frac{3}{(3-2x)^{4}} dx$;

4.
$$\int_{0}^{2} (2x+1)^{3} dx = \frac{1}{2} \int_{0}^{2} 2(2x+1)^{3} dx = \frac{1}{2} \left[\frac{(2x+1)^{4}}{4} \right]_{0}^{2} = \frac{1}{8} (625-1).$$

7.
$$\int_{2}^{3} \left(3x^{2} - \frac{4}{x^{2}} + \sqrt{x} \right) dx$$
; 8. $\int_{\pi/6}^{\pi/4}$; 9. $\int_{1}^{e} \frac{\ln^{3} x}{x} dx$; 10. $\int_{0}^{\pi/4} \tan x dx$;

11.
$$\int_{0}^{1} (x+1)^{n} dx$$
; 12. $\int_{0}^{1} (3x+1)^{5} dx$; 13. $\int_{0}^{1} \frac{x}{\sqrt{(x^{2}+1)^{3}}} dx$; 14. $\int \sin x \cos^{3} x dx$;

15.
$$\int_{0}^{1} x(x^{2}+1)^{5} dx$$
; 16. $\int_{-2}^{1} \sqrt{x+3} dx$; 17. $\int_{-\pi/4}^{\pi/4} \tan^{2} x dx$; 18. $\int_{1}^{e} \frac{1+\ln x}{x} dx$;

19.
$$\int_{0}^{\pi/3} \cos(2x + \pi/3) dx \; ; \; 20. \int_{0}^{1} (x + e^{x}) dx \; ; \; 21. \int_{-1}^{0} (2x + 1) e^{x^{2} + x + 1} dx \; ;$$

22.
$$\int_{0}^{1} \frac{3x}{x^2 + 4} dx$$
; 23. $\int_{1}^{2} \frac{10x + 1}{\sqrt{5x^2 + x + 3}} dx$; 24. $\int_{0}^{\pi} \cos x (1 - 3\sin^2 x) dx$;

25.
$$\int_{1}^{2} \sqrt{3x-2} dx$$
; 26. $\int_{1}^{2} x(x^2-3) dx$; 27. $\int_{3}^{5} \left(2x-1+\frac{1}{(x-1)^2}\right) dx$;

EXERCISE 2

Calculate the following integrals by using integration by parts:

1.
$$\int_{0}^{\pi/2} x \sin x dx \; ; \; 2. \int_{0}^{1} x^{2} e^{x} dx \; ; \; 3. \int_{0}^{1} \left(-2x^{2} + x + 1\right) e^{x} dx \; ; \; 4. \int_{1}^{2} x \sqrt{2x + 1} dx ;$$
$$\int_{-1}^{0} \left(2x + 1\right) e^{x^{2} + x + 1} dx = \left[e^{x^{2} + x + 1}\right]_{-1}^{0} = (e^{1} - e) = 0.$$

Exercise 1

Part A:

Consider the function g that is defined over \mathbb{R} by: $g(x) = (2x-1)e^x + 1$.

1. Calculate
$$\lim_{x \to -\infty} g(x)$$
 and $\lim_{x \to +\infty} g(x)$.

Solution of part 1:
$$\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} \frac{(2x-1)'}{(e^{-x})'} + 1 = \lim_{x \to -\infty} \frac{2}{-e^{-x}} + 1 = \frac{2}{-\infty} + 1 = 0 + 1 = 1.$$

$$\lim_{x \to +\infty} g(x) = (+\infty)e^{+\infty} + 1 = +\infty + 1 = +\infty.$$

2. Calculate the exact value of g(0).

Solution part 2:
$$g(0) = (0-1) e^{0} + 1 = -1 + 1 = 0$$
.

3. Calculate g'(x) and set up the table of g(x).

Solution of part 3:

$$g'(x) = (2) \times e^{x} + e^{x}(2x-1) = e^{x}(2+2x-1) = e^{x}(2x+1).$$

X	-∞	α	-1/2	0		+∞
g '(x)			0	+		
g (x)	1	0	-0.21	0	—	+∞

4. Show that the equation g (x) = 0 has a unique root α such that $-2 < \alpha < -0.5$

Since g is continuous over]-2;-0.5[included in \mathbb{R} .

Since g is strictly decreasing from 1 > 0 to -0.21 < 0

Since g
$$(-2) = 0.3233 > 0$$
 and g $(-0.5) = -0.21 < 0$

Then the equation g (x) = 0 has a unique root α such that: -2 < α < -0.5.

5. Deduce the sign of g(x) according to the values of x.

Solution of part 5:

$$g(x) > 0$$
 for all $x < \alpha$ or $x > 0$ and $g(x) < 0$ for all $\alpha < x < 0$.

Part B:

Consider the function f that is defined over R by: $f(x) = (x-1)e^{2x} + e^{x}$.

Let (C) be the representative curve of the function f in the system $\left(O;\vec{i},\vec{j}\right)$

1. Calculate $\lim_{x \to +\infty} f(x)$.

Solution of part 1:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[(x-1)e^{2x} + e^x \right] = +\infty + \infty = +\infty$$

2. Calculate $\lim_{x \to -\infty} f(x)$. Deduce an asymptote to the curve (C).

Solution of part 2:
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{(x-1)'}{(e^{-2x})'} + e^{-\infty} = \lim_{x \to \infty} \frac{1}{-2e^{-2x}} + 0 = 0 + 0 = 0.$$

So y = is H.A to (C).

- 3. Calculate f'(x) and prove that, for all real number x, $f'(x) = g(x) \times e^x$.
- 4. a) By using the result of the question 4 of the part A, determine according to the values of x the sign of f'(x).
 - b) Set up the table of variations of the function \boldsymbol{f} over \boldsymbol{R} .
 - c) Take $\alpha \approx -1.3$, determine an approximate value of $f(\alpha)$.
- 5. a) Consider the function F that is defined over R by: $F(x) = \left(\frac{x}{2} \frac{3}{4}\right)e^{2x} + e^{x}$

Prove that the function F is a primitive of the function f over R .

b) Calculate the area of the domain bounded by (C), the x – axis and the two straight lines x=0 and x=1.

Figure 1

x	$-\infty$	-1/2	0 +∞	
g'(x)	_	0	+	
g(x)		/	*	

Figure 2

Exponential Functions

- 1. $y = f(x) = e^x$ is called exponential function
- 2. $y = e^x > 0$ for all real number x.
- 3. $e^0 = 1$; $e^1 = e$; $e^{-\infty} = 0$ and $e^{+\infty} = +\infty$.
- **4.** $(e^x)' = e^x$; $(e^{ax})' = ae^{ax}$; $(e^{ax+b})' = ae^{ax+b}$; $(e^u)' = u'e^u$.
- 5. $e^x = a > 0$ then $x = \ln a$.
- **6.** $e^{\ln a} = a$ for all a > 0.
- 7. $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty; \lim_{x \to +\infty} \frac{x}{e^x} = 0.$
- **8.** $\int e^x dx = e^x + C$; $\int e^{ax} dx = \frac{1}{a} e^{ax} + C$; $\int u' e^u dx = e^u + C$.

Exercise 1

Part A:

The plane is referred to a direct orthonormal system $(O; \vec{i}, \vec{j})$.

Consider the function g defined over]0; + ∞ [by : $g(x) = -3 - \ln x + \frac{1}{x}$ and designate by

- (C_g) its representative curve.
 - 1) Study the variations of g and set up its table of variations.
 - 2) Prove that the equation g (x) = 0 has a unique solution α and verify that: 0.45 < α < 0.46.
 - 3) Deduce the sign of g (x) over $]0; +\infty[$.

Part B: Consider the function f defined over]0; $+\infty$ [by: $f(x) = e^{-x}(3 + \ln x)$ and designate by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) Calculate the limits of f at the boundaries of its domain of definition and deduce the equations of the asymptotes to (C).
- 2) a Prove that for all x of]0; + ∞ [, $f'(x) = e^{-x} \cdot g(x)$.
 - b- Study, according to the values of x, the sign of f'(x) and set up the tableau of variations of f.
- 3) Prove that $f(\alpha) = \frac{e^{-\alpha}}{\alpha}$. Suppose that $\alpha = 0.455$.
- 4) Calculate $f(e^{-3})$ and draw (C).

Solution of Exercise 1

Part A:

1. $g'(x) = -\frac{1}{x} - \frac{1}{x^2} < 0$ for all x belongs to the interval $]0;+\infty[$ So g is strictly decreasing for all x > 0.

X	0	$\alpha = 0.455$	+8
g '(x)			
g (x)	+8	0	

2. Since g is continuous over the interval]0.45; 0.46[included in $]0; +\infty[$.

Since g is strictly decreasing from $+\infty$ to $-\infty$ for all x in]0; $+\infty$ [. Since g (0.45) = 0.02 > 0 and g (0.46) = -0.049 < 0.

Then the equation g (x) = 0 has a unique root α such that: 0.45 < α < 0.46.

3. We have: g(x) > 0 for all $0 < x < \alpha$ and g(x) < 0 for all $x > \alpha$.

Part B:

1.
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[e^{-x} \left(3 + \ln(x) \right) \right] = e^0 \left(3 + \ln(0^+) \right) = 1 \times (-\infty) = -\infty$$
. So $x = 0$ is V.A to (C).
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(3 + \ln(x))'}{\left(e^x \right)'} = \lim_{x \to +\infty} \frac{1/x}{e^x} = \lim_{x \to +\infty} \frac{1}{xe^x} = \frac{1}{+\infty} = 0$$
 So $y = 0$ is H.A to (C).

2.
$$\mathbf{a} - f'(x) = (-e^{-x})(3 + \ln(x)) + (\frac{1}{x})e^{-x} = e^{-x} \left[-3 - \ln(x) + \frac{1}{x} \right] = \mathbf{e}^{-x} \times \mathbf{g}(\mathbf{x}).$$

b- If $0 < x < \alpha$ then g (x) > 0 So f '(x) > 0 thus f is strictly increasing.

If $x = \alpha$ then g(x) = 0 So f'(x) = 0 thus f is constant.

If $x > \alpha$ then g (x) < 0 So f '(x) < 0 thus f is strictly decreasing.

X	0	α	= 0.455	+∞
f'(x)		+	0	
f (x)	-∞ _		1.403	→ 0

3. $f(\alpha) = e^{-\alpha} (3 + \ln(\alpha)) =$

But we have $g(\alpha) = 0$ then $-3 - \ln(\alpha) + 1/\alpha = 0$ So $\ln(\alpha) = -3 + 1/\alpha$.

Thus
$$f(\alpha) = e^{-\alpha}(3-3+1/\alpha) = \frac{e^{-\alpha}}{\alpha}$$
.

4.
$$f(e^{-3}) = (e^{e^{-3}})(3 + \ln(e^{-3})) = (e^{e^{-3}})(3 - 3) = 0.$$

Exercise 2

Part A: Consider the function g that is defined over IR by: $g(x) = (4-x)e^{-\frac{x}{2}} - 1$.

- 1. Calculate $\lim_{x \to -\infty} g(x)$ and $\lim_{x \to +\infty} g(x)$.
- 2. Calculate g'(x), and then set up the table of variations of g.
- 3. Prove that the equation g(x) = 0 admits a unique solution α , and verify that: $1.6 < \alpha < 1.8$.
- 4. Deduce the sign of g(x) for all real x.

Part B:

Consider the function f that is defined on IR by: $f(x) = (2x-4)e^{-\frac{x}{2}} + 2 - x$. Designate by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$. Graphic unit = 2 cm.

- 1. Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$.
- 2. Prove that the straight line (d) of equation y = 2 x is an asymptote to (C) at $+ \infty$.
- 3. Prove that: f'(x) = g(x). study the sense of variations of f.
- 4. Prove that: $f(\alpha) = \frac{\alpha^2 4\alpha + 4}{4 \alpha}$. Set up the tableau of variations of f.
- 5. a- Calculate the coordinates of the points of intersection of (C) and the axis of abscissas. b- Calculate the coordinates of E the intersection point of (C) and the axis of ordinates a- Write an equation of the tangent (T) to (C) at the point E.
- 6. Suppose that $\alpha = 1.7$. Draw (d), (T) and (C).
- 7. Calculate, in cm^2 , the area of the region bounded by the curve (C), (d) and the straight lines of equations: x = 0 and x = 2.