PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-173471

(43) Date of publication of application: 26.07.1991

(51)Int.CI.

H01L 27/118 H05K 3/00

(21)Application number: 01-312541

(71)Applicant: NEC CORP

HOKURIKU NIPPON DENKI

SOFTWARE KK

(22) Date of filing:

01.12.1989

(72)Inventor: TAWADA SHIGEYOSHI

MIZUMAKI TOSHIHIRO

(54) WIRING STRUCTURE OF MASTER SLICE SYSTEM LSI

(57) Abstract:

PURPOSE: To comparatively easily adjust wiring length by arranging a first and a second wiring layer wherein a vertical and a horizontal wiring lattice are defined and a third wiring layer wherein a wiring lattice connecting diagonal lines of both lattices is defined.

CONSTITUTION: When both of the lattice intervals in the vertical and the horizontal directions are (d), the wiring length between the terminals t1 and t2 of a wiring network is shorter than or equal to 8d, in order to satisfy restrictions like the delay time of an LSI required for high speed operation. When wiring process is performed by using a first and a second wiring layer 2 in accordance with the order that the angle of the line connecting the terminals t1 and t2 is approximate to 0° or 90°. the wiring between the terminal t1 and t2 is detoured by wiring

routes 101 and 102, and a wiring route 201 of α length 12d is obtained. On the other hand, by constituting an oblique wiring between the terminals t1 and t2 by using the layer 3, a wiring route 221 of a length I=4.22/1d can be obtained as follows, the wiring routes 101 and 102 are not corrected, and through holes 231 and 232 between the first and the this wiring 1, 3 are arranged at the positions of the terminals t1 and t2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平3-173471

@int.Cl. 5

識別記号

庁内整理番号

❷公開 平成3年(1991)7月26

H 01 L 27/118 H 05 K 3/00

6921-5E 8225-5F D

H 01 L 21/82

M

審査請求 未請求 請求項の数 1 (金4頁

の発明の名称

マスタスライス方式LSIの配線構造

類 平1-312541 创持

題 平1(1989)12月1日 ②出

②発

願

②出

多和日 茂芳 東京都港区芝 5 丁 633番 1 号 日本電気株式会社内

俊 25 牧 **②発** 水

石川県石川郡鶴来町安隆寺 1 番地 : 北陸日本電気ソフト

エア株式会社内

砂出 類 人 日本電気保式会社

東京都港区芝5丁目7番1号

北陸日本電気ソフトウ

エア株式会社

純一 四代 理 弁理士 河原 人

石川県石川郡鶴来町安養寺 1 番地

1. 発明の名称

マスタスライス方式しらしの配線構造

2. 特殊地域の範囲

丞直方向および水平方向の配線格子が定義され た第1の配線階および第2の配線層と、

これら第1の配線感および第2の配線層に定義 された聖武方向および水平方向の配線格子の条格 予点の対角を能が解めの配譲指子が定義された節 3 の記録図と

を有することを特徴とするマスタスライス方式 しち!の配線探強.

3. 発明の詳細な説明

(磁業上の利用分野)

本発明はマスクスライス方式しらしの配納構造 に関し、外に配線工程以前のマスクを共通とし配 採に関するマスクのみを品級ごとに設計製作して 1. S1を作成するマスタスライス方式LSIの駅

性楽、この猫のマスタスライス方式しSIの妃 線構造では、すべての心線層の配線器子が飛艇方 顔および水平方向に定義されていた(参考文献: 『論理波瀾のCAD』,情報処理学会,昭和56 年3月20日発行)。

いに、無2図に示すように、重直方向批子間隔 および水平方向格子開闢をともにせむしたときに 鼠駅ネットの猫子し1および硝チェ2両の配線長 が高速動作を必要とするしち1の混延時間等の制 物を満足するために 8 は以内であるという期限が ある場合を例にとって説明すると、幾子し1およ び箱子し2間を結ぶ直線の角度が0度をたは30 皮に近いものから版に第1の配線暦 1 および第2 の配線際2を用いて配線する配線処理を行った精 泉、第3図に示すように、配線技器10lと配線 話録102とによって站子t1および第子L2間 の記録が運回させられ、配線長!2 dの配線経路 201が得られたときに、従来のマスタスライス

特周平3-173471(2)

競経路(118よび11?を得ることにより、勧 限を調えす配線長84の配線経路211を得ていた。

(急弱が解決しようとする課題)

上述した従来のマスタスライス方式しら1の配線保護では、高速動作を必要とするしら1の選延時間等の制約を確定するために設定された配線是に制限がある配雑ネットの配線において配線処理後にその制限が満たされなかった場合に、制限を結たすようにするために他の起娘を移動させて配級の修正を行う必要があったので、配絵の修正に多大な工数を要するという欠点がある。

また、配縁の修正を行っても配線長の関限を輸 たすことができなかった場合には、ブロックの配 関係正等を行って記録処理を中り直す必要があり、 さらに処理時間が増火するという欠点がある。

本発明の目的は、上述の点に指み、第1の配線 個および第2の配線層に定義された垂直方向および水平方向の配線格子の各場子点の対角を結ぶ額 めの配線格子が定義された第3個の配線層を利用

次に、本党領について図園を参照して発籍に及 明する。

第1回は、本規例の一実施例に依るマスタスライス方式も51の配線構造を示す図である。 太実技術のマスクスライス方式し51の配線構造は、 虚直方向および水平方向の配線格子が定義された 禁1の配線層1および第2の配線層 2と、第1の 配線圏1および第2の配線層 2と、第1の 配線圏1および第2の配線層 2に定義された設置 方向および水平方向の配線格子の各格子点の対角 を結めめの配線格子が定義された到3の配線層 3とから構成されている。

状に、このように縁成された本実施例のマスタスライス方式し5 | の配領構造における配額過程について、第2個~第4回を参照しながら異体的に説明する。

第2回に共すように、投資方向格子関係および 水平方向格子関係をともにはとしたときに配線ネットの徳子に1および倫子に2隣の配線長が高速 動作を必要とする151の辺延時間等の制約を構 足するために84以内であるという判別がある場 して、他の記載を移動したりプロックの配置位置 を変更したりすることなしに、比較的容易に配線 長の調整を行うことができるマスタスライス方式 しますの配線構造を提供することにある。

(課題を超決するための手段)

本発明のマスクスライス方式し51の配線接近は、 重直方向および水平方向の配線格子が定義された第1の配線器および第2の配線器に定義された第 直方向および水平方向の配線器に定義された重 直方向および水平方向の配線格子の多様子点の対 角を結ぶ終めの配線格子が定義された第3の配線 層とを存する。

【作用】

本発明のマスタスライス方式しちょの配線構造では、第1の配線層をよび第2の配線層に進度方向および水平方向の配線格子が定義され、第3の配線層に第1の配線層に対2の配線層に第2の配線層に対2の配線循子の各格された至直方向および水平方向の配線格子の各格子点の対角を指水料めの配線格子が定義される。

(実施例)

自を例にとって説明すると、以子(」および端子:2間を時本直接の角度が0度または30度に記録である。2時本直接の角度が0度または30度に認識である。2年用いて記録する配験処理を行った結果、第102とによって、配設試験(9)と記録器は102とによって、配設試験(9)と記録器は102とによって、配設試験(20にように、配設では、20に表すと、の記録を20に表すの記録を20に表すの記録を3個のスルーケール23」および23を算数し、端子に「および端子・2間を第2の記録を3を用いて斜めの記録を行うことにより、削限を増たす配録を

= 4 \v2 d

の配据経路221を得ることができる。

(髪明の効果)

以上契明したように太発明は、高速動作を必要 とするしSIの遅延時間等の抑約を論足するため

持開平3-173471 (3)

に設定された記憶長の戦限に対して第1の配線層および第2の配線層を吊いて配線処理を行った後に制限を流たしていない配線を制度を満たすようにするために第3層の起線層を利用することにより、他の配路を移動したりブロックの配置位置を変更したりすることなしに、比較的容易に配線長の問題を行うことができる頻果がある。

4. 図園の簡単な説明

第1回は本発明の一変遊倒に係るマスタスライス方式しSIの配線構造を示す図、

第2回は配線ネットの端子ペアの一例を示す図、 第3回は第1の配線層および第2の配線層を用 いた配線処理後の配線例を示す図、

第6回は第3回配線器を用いて大平修正を行った後の配線筋を示す値、

第5回は第1の配線をおよび第2の配線を用いて人手継近を行った後の配線例を示す図である。 図において、

1・・・野1の配線質、

2・・・第2の転線層、

3・・・第3の配納際、

101,102.221: 競科経路、

231, 232・スルーホール、

しし、して・椅子である。

特許出職人 日 木 電 気 株 武 会 社 北限日本電気ソフトウェア株式会社 代 理 人 弁 窓 士 柯 願 統 一

第 1 図

- - : 第1の従籍屋かよび第2の配線層的 定義された配線格子

※ 第3の配線版と記載された配線格子

第 2 図

特閒平3-173471 (4)

: 第1の配線圏の双子 : 第1の配線圏がよび第2の配線層間のスルーホール

・ 第2の促動機の配象パターン

🖨 🗧 第3の記載等の配換パターン

(19) Japanese Patent Office (JP)

(12) UNEXAMINED PATENT APPLICATION GAZETTE (A)

(11) Unexamined Patent Application Publication [KOKAI] No. H3-173471 [1991]

(43) KOKAI Date: July 26, 1991

(51) Int. Cl.⁵

I.D. Symbol

Intern. Ref. No.

H 01 L 27/118

D

6921-5E

H 05 K 3/00

8225-5F

H 01 L 21/82

M

Examination Request Status: Not yet requested

Number of Claims: 1

(Total 4 pages [in orig.])

(54) Title of Invention

Master Slice LSI Wiring Structure

(21) Patent Application No.

H1-312541 [1989]

(22) Filing Date:

December 1, 1989

(72) Inventor

Shigeyoshi Tawada

c/o NEC Corporation

5-33-1 Shiba, Minato-ku, Tokyo

(72) Inventor

Toshihiro Mizumaki

c/o Hokuriku NEC Software, Ltd.

1 Anyoji, Tsurugi-cho, Ishikawa-gun, Ishikawa

(71) Applicant

NEC Corporation

5-7-1 Shiba, Minato-ku, Tokyo

(71) Applicant

Hokuriku NEC Software, Ltd.

1 Anyoji, Tsurugi-cho, Ishikawa-gun, Ishikawa

(74) Agent Junichi Kawahara, patent attorney

Specification

1. Title of Invention

Master Slice LSI Wiring Structure

2. Claims

A master slice LSI wiring structure comprising:

a first wiring layer and a second wiring layer for which vertical-direction and horizontal-direction wiring lattice members are defined; and

a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in said first wiring layer and second wiring layer.

3. Detailed Description of Invention

[Field of the Invention]

This invention concerns a master slice LSI wiring structure, and more particularly concerns a master slice LSI wiring structure for producing LSIs, wherewith, using common masks prior to the wiring step, only masks pertaining to the wiring are designed and fabricated individually for each product type.

[Prior Art]

Conventionally, in this type of master slice LSI wiring structure, all of the wiring lattice members in the wiring layers are defined in the vertical direction and horizontal direction (cf. "Ronri Sochi no CAD [Logic Device CADs]", Joho Shori Gakkai (Japan Society for Information Processing), March 20, 1981).

A case is now described wherein, as diagrammed in Fig. 2, when both the vertical direction lattice member interval and the horizontal direction lattice member interval are made d, and the wiring length between the terminals t1 and t2 in the wiring network is limited to 8d or less in order to satisfy restrictions such as the LSI delay time required for high-speed operation, as a result of implementing a wiring process that does the wiring using the first wiring layer 1 and the second wiring layer 2 sequentially from an angle of the straight line connecting the terminals t1 and t2 that is near either 0 or 90 degrees, the wiring between the terminals t1 and t2 is made circuitous by wiring paths 101 and 102, as diagrammed in Fig. 3, yielding the wiring path 201 having a wiring length of 12d, whereupon, with the conventional master slice LSI wiring structure, as diagrammed in Fig. 5, the wiring paths 101 and 102 are altered manually to yield wiring paths 111 and 112, whereby the wiring path 211 having a wiring length of 8d which

satisfies the restriction is obtained.

[Problems Which the Present Invention Attempts to Solve]

With the conventional master slice LSI wiring structure described in the foregoing, if, after the wiring process in wiring a wiring net wherein a limitation is placed on the wiring length in order to satisfy a restriction such as the LSI delay time required for high-speed operation, that limitation has not been met, it is necessary to alter the wiring, moving other wiring, in order to satisfy the limitation. Many steps are required for such alteration, which constitutes a shortcoming.

Furthermore, in cases where the wiring length limitation cannot be met even after the wiring has been altered, it is necessary to redo the wiring process, performing block placement alterations, etc., resulting in a further increase in processing time, which is a shortcoming.

In view of these shortcomings, an object of the present invention is to provide a master slice LSI wiring structure wherewith, using a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined by the first wiring layer and the second wiring layer, wiring lengths can be adjusted with comparative ease, without moving the other wiring or changing block placement positions.

[Means Used to Solve the Abovementioned Problems]

The master slice LSI wiring structure of the present invention comprises: a first wiring layer and a second wiring layer for which vertical-direction and horizontal-direction wiring lattice members are defined; and a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in the first wiring layer and second wiring layer.

[Operation]

In the master slice LSI wiring structure of the present invention, vertical direction and horizontal direction wiring lattice members are defined in the first wiring layer and the second wiring layer, and diagonal wiring lattice members are defined in the third wiring layer, which diagonal wiring lattice members join the diagonals of the lattice points of the horizontal direction and vertical direction wiring lattice members defined in the first wiring layer and the second wiring layer.

[Embodiments]

The present invention is now described in detail, making reference to the drawings.

Fig. 1 is a diagram of a master slice LSI wiring structure in one embodiment of the present invention. The master slice LSI wiring structure in this embodiment comprises: a first wiring layer and a second wiring layer 2 for which vertical-direction and horizontal-direction

wiring lattice members are defined; and a third wiring layer 3 for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in the first wiring layer 1 and second wiring layer 2.

The process of implementing the wiring in the master slice LSI wiring structure in this embodiment, configured as stated, is now described specifically, with reference to Fig. 2 to 4.

The case is [again] described wherein, as diagrammed in Fig. 2, when both the vertical direction lattice member interval and the horizontal direction lattice member interval are made d, and the wiring length between the terminals t1 and t2 in the wiring network is limited to 8d or less in order to satisfy restrictions such as the LSI delay time required for high-speed operation, as a result of implementing a wiring process that does the wiring using the first wiring layer 1 and the second wiring layer 2 sequentially from an angle of the straight line connecting the terminals t1 and t2 that is near either 0 or 90 degrees, the wiring between the terminals t1 and t2 is made circuitous by wiring paths 101 and 102, as diagrammed in Fig. 3, yielding the wiring path 201 having a wiring length of 12d, whereupon, as diagrammed in Fig. 4, without altering the wiring paths 101 and 102, through holes 231 and 232 are opened between the first wiring layer 1 and the third wiring layer 3 at the positions of the terminals t1 and t2, [respectively,] and diagonal wiring is implemented between terminal t1 and terminal t2 using the third wiring layer 3, thereby obtaining a wiring path 221 having a wiring length equal to

$$a = \sqrt{(44)^2 + (44)^2}$$
 $= 4\sqrt{2}$

which meets the limitation.

[Benefits of Invention]

After wiring processing has been performed using a first wiring layer and a second wiring layer, and there exists wiring that does not meet a wiring length limitation established to satisfy a restriction such as an LSI delay time required for high-speed operation, the present invention, as described in the foregoing, employs a third wiring layer to make that wiring meet that limitation, thereby making it possible to adjust wiring lengths with comparative ease without moving the other wiring or altering block placement positions.

4. Brief Description of Drawings

Fig. 1 is a diagram of a master slice LSI wiring structure in one embodiment of the present invention;

Fig. 2 is a diagram of one example of a pair of terminals in a wiring network;

Fig. 3 is a diagram of an example of wiring after the implementation of a wiring process using a first wiring layer and a second wiring layer;

Fig. 4 is a diagram of an example of wiring after a manual alteration using a third wiring

layer; and

Fig. 5 is a diagram of an example of wiring after performing a manual alteration using a first wiring layer and a second wiring layer.

The following reference characters are used in the drawings.

- 1 First wiring layer
- 2 Second wiring layer
- 3 Third wiring layer

101, 102, 221

Wiring paths

231, 232

Through holes

tl, t2 Terminals

Patent Applicants

NEC Corporation

Hokuriku NEC Software, Ltd.

Agent

Junichi Kawahara, patent attorney

Figure 1

Wiring lattice defined in first wiring layer and second wiring layer

Wiring lattice defined in third wiring layer

Figure 2

Terminal

Terminal

Terminal

Terminal

Figure 5

[Translator's Notes]

- 1. The original term koushi, usually translated "lattice" (and sometimes "grating" or "grid") is herein translated "lattice member" because the English word "lattice" refers to the entire lattice and never to its constituent elements or "members" as is apparently intended here.
- 2. The term haisen, as used in microchip technology, may also be translated "interconnect," but is translated by the more common "wiring" herein to avoid confusion.
- 3. The original language [A] ni teigi sareta [B], which occurs frequently in the text, is ambiguous. I have translated it "B defined in A," but it could also mean "B defined by A.