# ENHANCEMENT BY HISTOGRAM MANIPULATION

**ACTIVITY 5** 

Krishna Lyn Delima 2014-64503

#### Original Image



#### Done using:

- Jupyter Notebook (Python)
  - Packages:matplotlib.pyplotnumpycv2skimage
- Photos taken from Google Images

#### Convert to Grayscale



```
M = cv2.cvtColor(cv2.imread('tree.jpg'), cv2.COLOR_BGR2RGB)
M_gray = cv2.cvtColor(M, cv2.COLOR_RGB2GRAY)
```

#### Step 2 Contrast Stretching

```
# from skimage : img_as_float , Normalizing float points
M grayf = img as float(M gray)
M contra = M grayf*255
Imin:
         0 Imax:
                     253
```

- Using img\_as\_float from skimage, the image's pixel values were NORMALIZED and converted to FLOAT.
- 255 was multiplied since the image was 8-bit

#### Step 2 Contrast Stretching

```
# from skimage : img_as_float , Normalizing float points
M grayf = img_as_float(M_gray)
M contra = M grayf*255
Imin:
         0 Imax:
                     253
```

- Contrast stretching is used for low contrast photos
  - original maximum and minimum values were set to 0 and 1 after normalizing
  - results to a higher contrast image (darker on dark areas and brighter on bright areas)

#### Contrast Stretching



Resulted to an image with slightly higher contrast (considering the original Imax (max pixel value)

Imin: 0 Imax: 253

#### **Contrast Stretching**



Contrast change isn't that obvious

#### Grayscale Histogram (PDF)



#### Original CDF (from PDF)



#### Desired CDF (Linear)



## Step 6 Backprojection

```
lin = np.floor(np.copy(M_gray))
flo = np.floor(M_gray)
for i in range(len(flo)):
    for j in range(len(flo[i])):
        z = int(flo[i][j])
        if z >= Imax:
            continue
        p= cdf[z]
        des = p*255
        lin[i][j] = des
```

 Uses for loop for backprojection between
 Original CDF and Desired CDF

## Step 7 Results



- Brighter: sky, terrain, horizon
- Clearer: tree outlines
- Limited: tree branches

## Step 7 Results



- More discrete pixel values
- More varied

## Step 7 Results





#### Nonlinear CDF (Sigmoid)

# # Sigmoid def sig(x): a = np.median(x) b = 30 return (1)/(1 + np.exp((-x+a)/b))\*255

#### Cumulative Distribution Function (sigmoid)





### Nonlinear CDF (Sigmoid) Results



- Brighter: sky, terrain, horizon
- Clearer: tree outlines
- Limited: tree branches
- \*Splotches near the tree

#### Step \*

#### Nonlinear CDF (Sigmoid) ) Results



- More discrete pixel values
- More varied

#### \*

#### Nonlinear CDF (Sigmoid) ) Results





#### Nonlinear CDF (Quadratic)

#### Cumulative Distribution Function (quadratic)

```
#Quadratic
def quad(x):
    x = x**2+2.8*x+0.5
    x_norm = ((x-np.min(x))/(np.max(x)-np.min(x)))*255
    return x_norm
```



#### Step \*

#### Nonlinear CDF (Quadratic) Results



- Brighter: sky, terrain, horizon
- Clearer: tree outlines
- Limited: tree branches

\*

#### Nonlinear CDF (Quadratic) Results



- More discrete pixel values
- More varied

#### \*

#### Nonlinear CDF (Quadratic) Results





#### Comparison

- Brightest terrain: Sigmoid
- Brightest horizon: Sigmoid
- Brightest sky: Linear and Quadratic
- Clearest tree outlines: Sigmoid



Original Image in Grayscale





200



50



#### Comparison

 Sigmoid CDF-treated image showed more details that are perceptible to my human eyes





### \*

#### Comparison

- Highest contrast (biggest max-min value):
   Linear
- Lowest contrast: Quadratic
- Most varied: Linear
- Most amount of midtones: Sigmoid









## Bonus Step \* BIGFOOT

Does **BIGFOOT** actually exist? Let's see....





#### Comparison

- Quadratic and Linear CDF-treated images showed more details of the so-called BIGFOOT.
- It looks more like a guy in a gorilla suit!!

FAKE.....





## Bonus Step \* BIGFOOT

How about the Loch Ness Monster?





#### Comparison

- Not a lot of details came about.
- Beautiful murky waters but what's in it is really just a silhouette of an inflated balloon..

FAKE.....





## \* Pointssss

• TC:10

• QP:10

• IN: 2....??

• This was so much fun @! Thank you!