

Near-Optimal Network Design with Selfish Agents

Elliot Anshelevich Anirban Dasgupta Éva Tardos Tom Wexler

Presented by Federico Peconi during

Scolarship Erasmus+ at Technische Universität München

Seminar: Selected Topics in Efficient Algorithms

Informatik Department

Motivations

- Networks are usually administrated by many agents that acts in a non-cooperative way
 - Internet
 - Transportation Networks
 - Social Networks
 - *
 - Often these agents express a limited number of requirements to fulfill

Thus to study the phenomenon of **network creation**:

Selfish Approach > Centralized Approach

Algorithmic Game Theory

- The problem is modelled with a game
 - Each player has a set of rules that he has to follow
 - Let p_i to be the **strategy** adopted by the player i during the game: we define the **cost function** $c: \mathcal{P} \to \mathcal{R}_+$ to be the function that assign a value to each valid strategy

 Set of valid strategies
 - \bullet Each player seek to $\min c(p_i)$

Nash Equilibrium

We say that the system (game) is in the state $p = (p_1, p_2, \dots, p_N)$ called Nash Equilibrium when **no one** of the players involved has an **incentive to deviate** from his payments.

I.E.: If $\forall j: j \neq i \ p_j$ is fixed, then p_i is the best possible strategy for player i

The Connection Game

- We can then adapt the previously introduced concepts to our scenario and define the following connection game:
 - **Let** N be the numbers of players and G=(V,E) an undirected graph w/ nonnegative weighted edges $\forall e \in E, c(e) > 0$
 - \clubsuit Each player i has a set of **terminals** nodes S_i that he **needs to connect** $(S_i \cap S_j \neq 0)$
 - ***** The strategy of player i is a payment function $p_i: E \to R_+$, such that $p_i(e)$ is how much he contributes to edge e
 - * Edge e is considered **bought** if $\sum_{i=1}^{N} p_i(e) \ge c(e)$ and call G_p the graph composed by all the bought edges (hence the cost of an edge can be **shared** between agents!)
 - A player that does not connect all of his terminals occurs in an infinite penality, otherwise it simply pays the sum of his contributions:

$$\sum_{e \in F} p_i(e)$$
 which seeks to **minimize**

An Example

An Example

Some Properties of the Connection Game

- Finding the centralized optimum of the connection game corresponds to the classical network problem of finding the minimum generalized Steiner Tree
 - Note: It is not always the case that the optimum is reached by the game (later)
- Let $p = (p_1, p_2, \dots, p_n)$ be a **NE** over an instance of our defined game, then we have:
 - 1. That G_p is a forest (If not then \exists a cycle)
 - 2. That, let T_i be the minimum spanning Tree over his terminals then i contributes to and only to the edges of T_i (If i stops paying for edges outside T_i , S_i still connected)
 - 3. Each edge is either fully paid or not at all (Trivial)
- What else can we say about Nash Equilibria? For instance, can there be more than one equilibrium for a given graph?

Another Example

Two Nash Equilibria:

$$\forall i: \sum_{e \in E} p_i(e) = 1$$

Social cost = N

$$\forall i: \sum_{e \in E} p_i(e) = \frac{1}{N}$$

Social cost = 1 = **Cent. Optimum**

Price of Anarchy & Price of Stability

To underline the gap which can arise between the best centralized solution and the worst NE, researchers introduced the term Price of Anarchy which is defined

$$POA := \frac{Worst \ NE}{Central \ Optimum}$$

In their work, instead, the authors focus on the complementary concept, which they call Price of Stability defined as

$$POS := \frac{Best \ NE}{Central \ Optimum}$$

Lemma: For the Connection Game: $POA \leq N$

Pf: Assume POA > N, then by the pigeon hole principle there is a player i that pays more than the cost of the optimal solution G_{opt} . But then i could deviate by purchasing the whole G_{opt} , which surely satisfies the connection requirement and, as assumed, would reduce his total payments $\Rightarrow \Leftarrow$

NE may not Exist!

- * Assume that a NE exists. Then w.l.o.g., by previous forest property let $G_p = \{(s_1, t_2), (t_2, t_1), (t_1, s_2)\}$
 - (s_1,t_2) can be paid only by agent 1, likewise (t_2,t_1) can only be paid by agent 2. What about edge (t_2,t_1) ?
 - No one would ever paid for it: by the sake of cont. let agent one start contributing to it, but then..
 - Arr He would prefer to **deviate to** (s_1, s_2) since it allows him to connect his terminals paying 1. Hence no equilibria at all in this graph.

SSG

A **Single Source Game** is a game (network) in which all players share a **common terminal** S, and in addition, each player has exactly **one other terminal** t_i

- We show that every SSG has a NE of POS=1
 - I.e. we need to find a strategy $p=(p_1,p_2,\ldots,p_N)$ s.t. p is a NE and $G_p=T^*$. Where T^* is the minimum cost Steiner tree for the network

Minimum Spanning Tree

Special Case: every node is a terminal

- $T^* = MST$
- Each player pays only for the edge upon him that lies in T^* , then $G_p = T^*$
- G_p is a Nash Equilibrium: since if agent i wants to deviate then it means that there exist an alternative path from t_i to s cheaper than the one in T^* , cont.

Does this work for any SSG?

A Procedure for p (notation & idea)

- Assume T^* given rooted at s
- Let T_e be the subtree of T^* disconnected from s when edge e is removed

- **❖** We present a **procedure to determine payment strategies** *p* by considering edges in reverse BFS and by paying for the whole T_e before paying for e
- $p_i(e)$ is **upper bounded** by the cost that i would face if deviates in the final solution:
 - $c'(e) = p_i(e) \ \forall e \in T^*$
 - $c'(e) = c(e) \ \forall e \in G \setminus T^*$

A Procedure for *p*

- Initialize $p_i(e) = 0$ for all players and edges
- Loop through all edges e in T* in reverse BFS order
 - ❖ Loop through all players i with $t_i ∈ T_e$ until e paid for
 - If e is a cut in G set $p_i(e) = c(e)$
 - Else let χ_i be the cost of the cheapest path A from s to t_i in G \ {e} under the modified costs,
 - Set $p_i(e) = \min\{\chi_i p_i(T^*), c(e) p(e)\}$
- ightharpoonup Remark1: we never allow player i to contribute so much to e that his total payments exceed the cost of connecting s to i
- ightharpoonup Remark2: the algorithm constructs payments only to edges in T^*

Example

Consider the previously example with weighted edges:

Rev BFS: $e=(t_3,a)$, only t_3 contributes to the edge, not a cut hence compute cheapest alternative path in $G\setminus e$ of cost χ_i under modified cost function c'

- $c'(t_3,c) = 3 \; ; \; c'(c,s) = 0$ then $p_3(a,t_3) = \min\{3-0,1\} = 1$
- Hence player 3 fully pays for e
- lacktriangledown The same applies to each edge on top of t_i

Example (2)

Now e=(a,s) not a cut set, $T_e=(t_3,a)$ still only player 3 contributes to the edge, the shortest path remains equal in $G\setminus\{(a,s)\}$, thus $p_3(a,S)=\min\{3-1,2\}=2$. Again, player 3 does buy the edge. The same argument is extended to the other players

- * Therefore $G_p = T^*$. Is p a NE? Yes, since a player deviates if and only if there is a shorter path from the terminal to s. Which does not exist by minimality of T^*
- Indeed, this is true for any SSG

- Claim: The set of payments p produced by the algorithm is a Nash Equilibrium.
- Consider the payment of a player i to edge e. The cost function c'(e) reflects how much would pay if he deviates in the final solution on e: χ_i
- * However, it is the case that $p_i(e) \leq \chi_i p_i(T_e)$. This is true for any $e \in T^*$, thus $p_i(T^*) \leq \chi_i$: i.e. we never allow e to pay more than χ_i
- \diamond Therefore It is never in player i's interest to deviate, this is true for all players and edges

NO! We need to ensure that $\,G_p=T^*\,$ To guarantee connection requirements

Theorem: the algorithm fully pays for T^*

Idea: Assume by cont. that an edge $e \in T^*$ not completely paid. Than each of the contributors of e has an alt. path which explains why he didn't pay c(e) - p(e)

We can use a carefully selected subset of these paths to construct a tree which spans all the terminals and the origin and which is cheaper than T^*

Proof: Let A_i be the alternative path for player i of cost χ_i . If more of such paths exist, choose the one that has **more ancestors of** t_i **in** T_e .

We need the following result on the structure of A_i

The Structure of A_i

Lemma: Let A_i be one of such paths. Then there are $v, w \in V$ s.t.:

- $t_i A_i v \in T_e$
- $vA_iw \in G \setminus T^*$
- $wA_is \in T^* \setminus T_e$

Proof: Assume not, then it has to come back into T_e : call the node on the intersection x. Let $y = lca(t_i, x)$ and define: P_1 the first part of A_i in T_e and P_2 the part in G that lands into x. Moreover define $P_3 := t_i T_e y$ and $P_4 := y T_e x$.

W.m.a that P_3 lies over P_1 (othw trivial proof) as showed in the figure:

To prove the lemma we need to show that $c'(P_3 \cup P_4) \le c'(P_1 \cup P_2)$:

- By definition of c': $c'(P_4) = 0$
- * Consider i payments along P_3 : every time $p_i(e) \leq \chi_i p_i(T_e)$ hence, as shown $c'(P_3) = p_i(P_3) \leq p_i(T_e) \leq \chi_i \leq c'(P_1 \cup P_2 \cup yT^*)$ since it cant cost less than the shortest path

 \clubsuit Since $P_1 \cup P_2$ has less ancestors in T_e than $P_3 \cup P_4$ it cant be part of A_i . QED

The algorithm fully pays for T^*

- ***** We had supposed that p(e) < c(e)
- * We show how to rewire T_e to $T^*\setminus T_e$ w/o decreasing agents payments, contradicting minimality of T^*
- * For each player i in T_e we call the **deviation point** d_i the highest ancestor of t_i in A_i .
- Let *D* be the set of deviation points that do not have any other deviation point as their ancestors.
- \diamond All players associated w/ a deviation point in D, **deviates** to A_i while the others keep paying the same edges.

- No players increases his payments
- lacktriangle Define T_{d_i} the tree rooted at d_i if $d_i \in D$

The algorithm fully pays for T^*

- lacktriangle Consider the Tree composed by every T_{d_i} and T^* , connected by the respective alternative paths. Clearly this tree spans through all terminals
- It remains to show that this tree is fully bought:
 - \clubsuit By previous lemma, alternative paths do not re-enter T_e so their cost is fully bought by their respective deviating players
 - lacktriangledown Consider any edge $f \in T_{d_i}$. By definition of D, and of how we designed our tree, no terminal of T_{d_i} deviates inside, hence every edge is fully bought.

We have then found a cheaper tree than T^* that connects all terminals \implies

Approximation

- lacktriangle Finding the minimum cost Steiner Tree T^* is an NP problem
- Our construction, even if mathematically ensure us the existence of NE with POS=1 is infeasible in practice

Thm: Given an α -approximated min Steiner Tree T for any $\varepsilon>0$ there is a polynomial time algorithm which computes a $(1+\varepsilon)$ -approximated NE over T' s.t. c(T')< c(T)

Proof idea: use the same argument introduced in the last theorem to find an approx. NE over a cheaper tree than T

Summary & Extensions

- We have shown how some of the real world networks are, due to their nature, preferably modeled using a selfish approach instead of a classical one
 - Focusing on a specific model: The **Connection Game**, we proved that for some specific instances, namely, the **Single Source Games**, we can always expect the existence of an equilibrium whose cost is **equal to optimal centralized solution**
 - * Moreover there exists a computationally tractable procedure that outputs a $(1+\varepsilon)$ -approximated NE on a **near optimal centralized solution**
- ightharpoonup All these results can be proven to be true for the **directed version** of the SSG and also when each player **would rather stay disconnected** from the source if his payments exceed a given $\max(i)$

Other Extensions? Multi-Source Games

Authors gives also results for the general case of many sources and more than one terminals

- Since as shown, in this scenario NE existence is not guaranteed, we need again to look for approximations, in particular:
 - There exists a 3-approximate NE which costs is equal to OPT
 - * There exists a poly time algorithm that finds a $(4.65 + \varepsilon)$ -approx. NE that costs at most 2-OTP

Questions?

Thank for your attention!