Combinatorics

Thomas Fleming

May 7, 2018

Contents

Lecture 32

Mon 15 Nov 2021 10:24

Definition 0.1 (Cut Norm of Matrices). Let A, be an $m \times n$ (possibly complex) matrix and define the **cut norm** of A to be

$$||A||_{\square} = \sup \left\{ \left| \sum_{i \in S, j \in T} a_{ij} \right| : S \subseteq [m], T \subseteq [n] \right\}.$$

Remark. If $A \ge 0$ is a nonnegative real matrix, we find

$$||A||_{\square} = |A|_1 = \sum_{i \in [m], j \in [n]} a_{ij}.$$

Similairly, for a nonpositive real matrix we find the cut norm to again be the modulus of the sum of entries.

Moreover, the cut norm is in fact a norm, as it is always nonnegative, it is only zero in the case of a zero matrix, it behaves linearly with real multiplication, and with a bit of derivation we find it obeys the triangle inequality.

Example. $\|\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}\|_{\square} = 1$ as any rectangle yields a sum 0 and the square consisting of just a_{11} yields a sum 1.

 $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \parallel_{\square} = 2$ taking either a_{11}, a_{12} , or a_{11}, a_{21} , or simply summing over the whole matrix

$$||J_n - 2I_n||_{\square} = ||\begin{bmatrix} -1 & 1 & \dots & 1\\ 1 & -1 & \dots & 1\\ \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & \dots & -1 \end{bmatrix}||_{\square} = n(n-2)$$

by taking the whole matrix. It is simple to show that if |S| or $|T| \le n-2$, then the sum over their entries must be strictly less than n(n-2). Then, this leaves only four possibilities, the possible permutations of sets of size n-1 and n. If |S| = n-1 and |T| = n (WLOG) we see the sum of entries is at most

 \Diamond

(n-1)(n-2) < n(n-2). Lastly, if |T| = |S| = n-1, then we have exactly one row and one column missing, so the sum of their entries will be

$$n(n-2) - r_i - c_j + 1 \le n(n-2)$$
.

Hence, we have the claim is shown.

Proposition 0.1. The $2n \times 2n$ matrix $J_n \otimes (J_2 - 2I_2) = A$ has

$$||A||_{\square} = ||J_n \otimes (J_2 - 2I_2)||_{\square} = ||\begin{bmatrix} -J_n & J_n \\ J_n & -J_n \end{bmatrix}||_{\square} = n^2.$$

Proof. Note that for any individual row of length ℓ , we find the row sum $r_i \leq \left\{ \begin{array}{ccc} \ell, & \ell \leq n \\ \ell-2\,(\ell-n)\,, & \ell > n \end{array} \right.$ and similarly for the column sums. Denoting |S|=a, |T|=b for sets S,T which maximize the element sums, we first,note one of a,b>n else the sum would be less than n^2 . Hence, we find $\|A\|_{\square} \leq \inf\{a\,(n-2\,(b-n))\,,b\,(n-2\,(b-n))\}$. Moreover, we find both a and b>n, hence we can assume WLOG $a\geq b>n$ and the solution follows by minimizing the two quadratic upper bounds.

Remark. We wish to examine the cut norm of a hadamard matrix. We will show a hadamard matrix H has $||H||_{\square} \le n^{\frac{3}{2}} = n\sqrt{n}$.

The key to this proof is to let x,y be the indicator vectors for the sets S,T on which the maximum is obtained respectively. Then we find $||H||_{\square} = |\langle Hy,x\rangle| \le \sigma_1(H) ||x||_2 ||y||_2$ (this is true for any value). Applying the fact that $\sigma_1(H) = \sqrt{n}$ and $||x||, ||y|| \le \sqrt{n}$ as H is hadamard and x,y are indicator vectors of length n and from this we obtain the earlier upper bound.

We can generalize the first steps of this argument to any matrix A in the following way:

Proposition 0.2. For an arbitrary $m \times n$ matrix A, we find

$$||A||_{\square} \leq \sigma_1(A)\sqrt{mn}$$
.

Lecture 33

Mon 07 May 2018 03:04

Let A be a $m \times n$ matrix with $\vec{x} \in \mathbb{R}^n$, $\vec{y} \in \mathbb{R}^m$ and $|\vec{x}|_{\infty} \leq 1$ and $|\vec{y}|_{\infty} \leq 1$. Then, we consider $\max |\langle A\vec{x}, \vec{y} \rangle| = ||A||_{\pi}$.

Proposition 0.3. We claim

$$||A||_{\square} \leq ||A||_{\pi}.$$

Proof. If S, T are submatrices inducing $||A||_{\square}$. That is

$$\left| \sum_{i \in T, j \in S} a_{i,j} \right| = ||A||_{\square}.$$

Letting \vec{x}, \vec{y} be indicator vectors for S, T respectively, we see this sum is simply

$$\left| \sum_{i \in T, j \in S} a_{ij} \right| = \left| \langle Ax, y \rangle \right| \le \max \left| \langle Ax, y \rangle \right|.$$

It is also possible to set an upper bound, $||A||_{\pi} \le 4||A||_{\square}$.