

Vektorräume

Fragen?

* Vektoren. Skizzieren und berechnen Sie folgende Vektoren:

a)
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$

c)
$$3 \cdot y \left(\begin{array}{c} 1 \\ -6 \end{array} \right)$$

Vektoren. Skizzieren und berechnen Sie folgende Vektoren:

a)
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$

c) $3 \cdot y \begin{pmatrix} 1 \\ -6 \end{pmatrix}$

e) $x + y \begin{pmatrix} 1 \\ -A \end{pmatrix}$

b)
$$y = \begin{pmatrix} 0, 5 \\ -2 \end{pmatrix} \in \mathbb{R}^2$$

$$\mathrm{d}) \ -\frac{1}{2} \cdot \widehat{\mathcal{A}} \left(\begin{array}{c} -g \\ -g \\ \end{array} \right)$$

b)
$$y = \begin{pmatrix} 0, 5 \\ -2 \end{pmatrix} \in \mathbb{R}^2$$
 d) $-\frac{1}{2} \cdot x \begin{pmatrix} -\theta \\ 0 \\ 0 \end{pmatrix}$ f) $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Lösung.

Formul:
$$\begin{pmatrix} x_n \\ x_2 \end{pmatrix}$$
 $\begin{pmatrix} x_n \\ \vdots \\ x_n \end{pmatrix}$

$$= \sqrt{(x_n)^2 + (x_n)^2}$$

$$= \sqrt{(x_n)^2 + \dots + (x_n)^2}$$

* Länge. Berechnen Sie die Länge von folgenden Vektoren:

a)
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 b) $y = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ c) $z = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Lösung.

a) Pytagoras:
$$|x| = \sqrt{\lambda^2 + \lambda^2} = \sqrt{2}$$

b)
$$|y| = \sqrt{-1^2 + 2^2} = \sqrt{5^2}$$

c) $(2 = \sqrt{1^2 + 1^2} = \sqrt{3})$

Algebraische Struktur.

- ullet Welche algebraische Struktur weist $(\mathbb{R}^n,+)$ auf? (kommutativ) Gruppe (kalbyruppe?
- Welche Regel
n gelten für die Skalarmultiplikation in (\mathbb{R}^n,\cdot) ?
 $\mathbb{R}^n \longrightarrow \mathbb{R}^n$
- Wie ist die algebraische Struktur eines Vektorraums definiert?

Lösung.

Flussüberquerung. Sie wollen einen 50 m breiten Fluss mit einem Boot überqueren, wobei eine starke Strömung herrscht. Dabei sei in folgendem Bild v_B der Bootsgeschwindigkeitsvektor mit Bootsgeschwindigkeit $|v_B|=10$ km/h und v_S der Strömungsgeschwindigkeitsvektor mit Strömungsgeschwindigkeit $|v_S|=30$ km/h

Wie viele Meter kommen Sie versetzt an? Berechnen Sie (?).

Lösung.

10.000 m /h =
$$1663$$
 m/m = $2\frac{7}{3}$ m/s
 $50n : 2\frac{1}{3}$ m/s = $18s$
 30.000 m /h = 500 m /m = $8\frac{1}{3}$ m/s
 $18s \cdot 8\frac{1}{3}$ m/s = 150 m

Gewichtskraft.

Ein Gewicht mit Masse $m=100~{\rm kg}$ hängt an einer Seilkonstruktion. Berechnen Sie die Kräfte die auf die Seile a und b wirken.

Lösung.

- * Vektoren als Java-Objekte. Implementieren Sie eine Java-Klasse namens Vector, die einen Vektor aus \mathbb{R}^2 modelliert. Gehen Sie wie folgt vor:
 - 1. Die Klasse soll zwei Variablen besitzen, die die beiden Koordinaten beschreiben. Implementieren Sie einen geeigneten Konstruktor und eine toString()-Methode.
 - 2. Zusätzlich soll die Klasse über folgende Methoden verfügen (sind die angegebenen Signaturen sinnvoll?):
 - Vektoraddition: public Vector add(Vector v)
 - Skalarmultiplikation: public Vector scalarMult(double lambda)
 - Länge des Vektors: public double length()
 - Skalarprodukt: public double scalarProd(Vector v)
 - Winkel zu einem anderen Vektor: public double angle(Vector v)

(Skalarprodukt und Winkel wird später behandelt, Technikzweige/Gymnasium kennt das schon!)

3. Schreiben Sie eine Main-Methode, die ihre Methoden testet.

Lösung. siehe Java-Klasse bzw. Blog auf bigdev.de!