In [19]:

import pandas as pd import matplotlib.pyplot as plt # plots are displayed inline

%matplotlib inline

recent_grads = pd.read_csv("recent-grads.csv")

In [20]: # Default: first 5 rows recent_grads.head(5)

Out[20]:

	Rank	Major_code	Major	Total	Men	Women	Major_category	ShareWomen
0	1	2419	PETROLEUM ENGINEERING	2339.0	2057.0	282.0	Engineering	0.120564
1	2	2416	MINING AND MINERAL ENGINEERING	756.0	679.0	77.0	Engineering	0.101852
2	3	2415	METALLURGICAL ENGINEERING	856.0	725.0	131.0	Engineering	0.153037
3	4	2417	NAVAL ARCHITECTURE AND MARINE ENGINEERING	1258.0	1123.0	135.0	Engineering	0.107313
4	5	2405	CHEMICAL ENGINEERING	32260.0	21239.0	11021.0	Engineering	0.341631

5 rows × 21 columns

> In [21]: # First row recent_grads.iloc[0]

Out[21]: Rank 1 2419 Major_code Major PETROLEUM ENGINEERING Total 2339 Men 2057 Women 282 Major_category Engineering ShareWomen 0.120564 Sample size 36 **Employed** 1976 Full_time 1849 Part_time 270 Full_time_year_round 1207 Unemployed 37 Unemployment_rate 0.0183805 Median 110000 P25th 95000 P75th 125000 College jobs 1534

> Low_wage_jobs Name: 0, dtype: object

Non_college_jobs

In [22]: # last five rows recent_grads.tail()

Out[22]:

	Rank	Major_code	Major	Total	Men	Women	Major_category	ShareWomen	S
168	169	3609	ZOOLOGY	8409.0	3050.0	5359.0	Biology & Life Science	0.637293	
169	170	5201	EDUCATIONAL PSYCHOLOGY	2854.0	522.0	2332.0	Psychology & Social Work	0.817099	
170	171	5202	CLINICAL PSYCHOLOGY	2838.0	568.0	2270.0	Psychology & Social Work	0.799859	
171	172	5203	COUNSELING PSYCHOLOGY	4626.0	931.0	3695.0	Psychology & Social Work	0.798746	
172	173	3501	LIBRARY SCIENCE	1098.0	134.0	964.0	Education	0.877960	

364

193

5 rows × 21 columns

> In [23]: # Estimate calculations for each columns recent_grads.describe()

Out[23]:

	Rank	Major_code	Total	Men	Women	ShareWomen	Sam
count	173.000000	173.000000	172.000000	172.000000	172.000000	172.000000	17
mean	87.000000	3879.815029	39370.081395	16723.406977	22646.674419	0.522223	35
std	50.084928	1687.753140	63483.491009	28122.433474	41057.330740	0.231205	61
min	1.000000	1100.000000	124.000000	119.000000	0.000000	0.000000	
25%	44.000000	2403.000000	4549.750000	2177.500000	1778.250000	0.336026	3
50%	87.000000	3608.000000	15104.000000	5434.000000	8386.500000	0.534024	13
75%	130.000000	5503.000000	38909.750000	14631.000000	22553.750000	0.703299	33
max	173.000000	6403.000000	393735.000000	173809.000000	307087.000000	0.968954	421

Counts the number of rows In [24]: raw_data_count = len(recent_grads) raw_data_count

Out[24]: 173

In [25]: # Dropping missing rows recent_grads = recent_grads.dropna() cleaned data count = len(recent grads) cleaned_data_count

Out[25]: 172

In [26]: recent_grads.plot(x='Sample_size', y='Employed', kind='scatter')

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0096a59f98>

In [27]: recent_grads.plot(x='Sample_size', y='Employed', kind='scatter', title='

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7f00969f9780>

In [28]: ax = recent_grads.plot(x='Sample_size', y='Employed', kind='scatter')
 ax.set_title('Employed vs. Sample_size')

Out[28]: <matplotlib.text.Text at 0x7f00968e27b8>

In [29]: recent_grads.plot(x='Sample_size', y='Median', kind='scatter')

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0096a08320>

In [30]: recent_grads.plot(x='Sample_size', y='Unemployment_rate', kind='scatter'

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x7f00968b6518>

In [31]: recent_grads.plot(x='Full_time', y='Median', kind='scatter')

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x7f009682b9b0>

In [32]: recent_grads.plot(x='ShareWomen', y='Unemployment_rate', kind='scatter')

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0096d8d7b8>

recent_grads.plot(x='Men', y='Median', kind='scatter') In [33]:

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7f00966de3c8>

In [34]: recent_grads.plot(x='Women', y='Median', kind='scatter')

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7f00967e3b00>

In [37]: # Histograms recent_grads['Sample_size'].plot(kind='hist')

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0096507be0>

In [38]: recent_grads['Sample_size'].hist(bins=25, range=(0,5000))

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x7f00963464e0>


```
In [43]: cols = ["Sample_size", "Median", "Employed", "Full_time", "ShareWomen",
         fig = plt.figure(figsize=(5,12))
         for r in range(1,5):
             ax = fig.add_subplot(4,1,r)
             ax = recent_grads[cols[r]].plot(kind='hist', rot=25)
```



```
fig2 = plt.figure(figsize=(5,12))
In [46]:
         for r in range(4,8):
             ax20 = fig2.add\_subplot(4,1,r-3)
             ax20 = recent_grads[cols[r]].plot(kind='hist', rot=40)
```


In [49]: # Scatter Matrix Plot from pandas.tools.plotting import scatter_matrix scatter matrix(recent grads[['Women', 'Men']], figsize=(10,10))

/home/ernhung92/anaconda3/lib/python3.6/site-packages/ipykernel launche r.py:3: FutureWarning: 'pandas.tools.plotting.scatter matrix' is deprec ated, import 'pandas.plotting.scatter matrix' instead.

This is separate from the ipykernel package so we can avoid doing imp orts until

Out[49]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f0095f55080 <matplotlib.axes. subplots.AxesSubplot object at 0x7f0095e7b400</pre> >], [<matplotlib.axes. subplots.AxesSubplot object at 0x7f0095a5bd30 >, <matplotlib.axes._subplots.AxesSubplot object at 0x7f0095b2ca90</pre> >]], dtype=object)

> scatter_matrix(recent_grads[['Sample_size', 'Median']], figsize=(10,10)) In [51]:

> > /home/ernhung92/anaconda3/lib/python3.6/site-packages/ipykernel launche r.py:1: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprec ated, import 'pandas.plotting.scatter matrix' instead. """Entry point for launching an IPython kernel.

Out[51]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f009544c9e8 <matplotlib.axes. subplots.AxesSubplot object at 0x7f00953f9d68</pre> >], [<matplotlib.axes. subplots.AxesSubplot object at 0x7f00954248d0 >, <matplotlib.axes._subplots.AxesSubplot object at 0x7f0095190630</pre> >]], dtype=object)


```
In [52]: scatter matrix(recent grads[['Sample size', 'Median', 'Unemployment rate
         /home/ernhung92/anaconda3/lib/python3.6/site-packages/ipykernel_launche
          r.py:1: FutureWarning: 'pandas.tools.plotting.scatter_matrix' is deprec
          ated, import 'pandas.plotting.scatter matrix' instead.
            """Entry point for launching an IPython kernel.
Out[52]:
         array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7f0094fd63c8
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0094f6f2b0</pre>
         >,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0094f81470</pre>
         >1,
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x7f0094ebe3c8</pre>
         >,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0094e8da90</pre>
         >,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0094e8dac8</pre>
         >],
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x7f0094d6b4a8</pre>
         >,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0094ce9160</pre>
         >,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x7f0094c9a588</pre>
         >ll, dtvpe=object)
```


> In [55]: # Bar plots recent_grads[:10].plot.bar(x='Major', y='ShareWomen', legend=True) recent_grads[163:].plot.bar(x='Major', y='ShareWomen', legend=True)

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x7f008ef1e4a8>

> recent_grads[:10].plot.bar(x='Major', y='Unemployment_rate', legend=True In [56]: recent_grads[163:].plot.bar(x='Major', y='Unemployment_rate', legend=True

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x7f008ed3c860>

In [58]: **import** numpy **as** np

EachGenderMajorCat = recent_grads.pivot_table(index='Major_category', va EachGenderMajorCat

Out[58]:

	Men	Women
Major_category		
Agriculture & Natural Resources	40357.0	35263.0
Arts	134390.0	222740.0
Biology & Life Science	184919.0	268943.0
Business	667852.0	634524.0
Communications & Journalism	131921.0	260680.0
Computers & Mathematics	208725.0	90283.0
Education	103526.0	455603.0
Engineering	408307.0	129276.0
Health	75517.0	387713.0
Humanities & Liberal Arts	272846.0	440622.0
Industrial Arts & Consumer Services	103781.0	126011.0
Interdisciplinary	2817.0	9479.0
Law & Public Policy	91129.0	87978.0
Physical Sciences	95390.0	90089.0
Psychology & Social Work	98115.0	382892.0
Social Science	256834.0	273132.0

EachGenderMajorCat.plot.bar(x=EachGenderMajorCat.index, y=['Men','Women'

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0x7f008e998e80>

