



# Sumário

|     | Conceitos Básicos                                   | 7    |
|-----|-----------------------------------------------------|------|
| 1.1 | Princípio da não contradição e do terceiro excluído | 7    |
| 2   | Noções de Teoria de Conjuntos                       | 9    |
| 2.1 | Conceitos básicos                                   | 9    |
| 2.2 | Descrição de um conjunto                            | 9    |
| 2.3 | Alguns conjuntos importantes                        | 10   |
| 2.4 | Propriedades dos conjuntos                          | 10   |
| 2.5 | Relações entre conjuntos                            | 11   |
| 3   | Relações                                            | . 15 |
| 3.1 | Relações de equivalência                            | 15   |
|     | Bibliografia                                        | . 23 |

## Prefácio

| Essas notas de Aula são referentes à matéria Álgebra 1, ministrada na UnB - Universidade de      |
|--------------------------------------------------------------------------------------------------|
| Brasília - durante o 2º Semestre de 2010 pelo professor José Antônio O. de Freitas, Departamento |
| de Matemática. Tais notas foram transcritas e editadas pelo graduando em Ciências Econômicas     |
| Luiz Eduardo Sol R. da Silva <sup>1</sup> .                                                      |

Revisão e ampliação das notas feita por José Antônio O. de Freitas.

É livre a reprodução, distribuição e edição deste material, desde que citadas as suas fontes e autores. Críticas e sugestões são bem vindas.

<sup>&</sup>lt;sup>1</sup>luizeduardosol@hotmail.com

### 1. Conceitos Básicos

- **Definição 1.0.1** Uma **proposição** é todo conjunto de palavras ou símbolos ao qual podemos atribuir um **valor lógico**.
- **Definição 1.0.2** Diz-se que o **valor lógico** de uma proposição é "verdade" (V) se a proposição é verdadeira ou "falsidade" (F) se a proposição é falsa.
- Exemplos 1.1 Julgue se as seguintes sentenças são ou não proposições:
  - 1. Todo número primo é ímpar. Essa setença é uma proposição de valor lógico "Falsidade."
  - 2.  $x^2 + y^2 \ge 0$  para todos  $x, y \in \mathbb{R}$ . Esse setença é uma proposição de valor lógico "Verdade".
  - 3. Amanhã irá chover. Essa sentença não é uma proposição. Não é possível atribuir um valor lógico a ela.

#### 1.1 Princípio da não contradição e do terceiro excluído

- 1. Uma proposição não pode ser verdadeira e falsa ao mesmo tempo.
- 2. Toda proposição ou é verdadeira ou é falsa, isto é, verifica-se sempre um destes casos e nunca um terceiro.

Assim esses princípios afirmam que:

"Toda proposição tem um, e um só, dos valores lógicos verdade ou falsidade."

De modo geral vamos trabalhar com proposições da forma:

- 1. Se  $\mathcal{H}$ , então  $\mathcal{T}$ .
  - Aqui  $\mathscr{H}$  é chamado de hipótese e  $\mathscr{T}$  de tese. Neste tipo de proposição iremos admitir que  $\mathscr{H}$  é uma verdade e precisaremos provar que  $\mathscr{T}$  é verdade. Ou seja precisamos construir um argumento que justifique  $\mathscr{T}$  ser verdadeira à partir do fato de  $\mathscr{H}$  ser verdadeira.
- 2.  $\mathcal{H}$  se, e somente se,  $\mathcal{T}$  ou  $\mathcal{H}$  se, e só se,  $\mathcal{T}$ .

Esse tipo de proposição será decomposta em duas proposições no formato anterior. Isto é:

- (a) Se  $\mathcal{H}$ , então  $\mathcal{T}$ .
- (b) Se  $\mathcal{T}$ , então  $\mathcal{H}$ .

No primeiro caso admitimos  $\mathscr H$  verdadeira e provamos que  $\mathscr T$  também é verdadeira e no segundo caso admitimos que  $\mathscr T$  é verdadeira e provamos que  $\mathscr H$  é verdadeira.

### 2. Noções de Teoria de Conjuntos

#### 2.1 Conceitos básicos

Um conjunto é uma "coleçã o" ou "família" de elementos.

Usaremos letras maiúsculas do alfabeto para denotar os conjuntos e denotaremos elementos de um dado conjunto por letras minúsculas do alfabeto.

Dado um conjunto A, para indicar o fato de que x é um elemento de A, escrevemos:

$$x \in A$$
.

Para dizer que um elemento *x* não pertence ao conjunto *A*, escrevemos:

$$x \notin A$$
.

Um conjunto sem elementos é chamado de **conjunto vazio**. Tal conjunto é denotado por  $\emptyset$ . Dado um conjunto A e x um elemento, ocorre sempre o uma das seguintes situações:

$$x \in A$$
 ou  $x \notin A$ .

Além disso, para dois elementos  $x, y \in A$ , ocorre exatamente uma das seguinte situações:

$$x = y$$
 ou  $x \neq y$ .

#### 2.2 Descrição de um conjunto

Um conjunto A pode ser dado pela simples listagem dos seus elementos, como por exemplo:

$$A = \{1, 2, 3, 4, 5\}$$
  
$$B = \{verdade, falso\}.$$

Um conjunto também pode ser dado pela descrição das propriedades dos seus elementos, como por exemplo:

$$A = \{n \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}.$$

#### 2.3 Alguns conjuntos importantes

- 1.  $\mathbb{N} = \{0, 1, 2, 3, ...\}$  o conjunto do números naturais.
- 2.  $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$  o conjunto dos números inteiros.
- 3.  $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$  o conjunto dos números inteiros não negativos.
- 4.  $\mathbb{R}$  o conjunto dos números reais.
- 5.  $\mathbb{R}^*$  o conjunto dos números reais não nulos.
- 6.  $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$  o conjunto dos números racionais.

#### 2.4 Propriedades dos conjuntos

**Definição 2.4.1** Dados dois conjuntos A e B, dizemos que A e B são **iguais** se, e somente se, eles têm os mesmos elementos. Ou seja, para todo  $x \in A$  temos que  $x \in B$  e para todo  $y \in B$  temos  $y \in A$ .

Se A e B são iguais, escrevemos A = B

$$\{1,2,3,4\} = \{3,2,1,4\}$$

$$\{1,2,3\} \neq \{2,3\}$$

**Definição 2.4.2** Se A e B são dois conjuntos, dizemos que A é um **subconjunto** de B ou que A **está contido** em B ou que B **contém** A se todo elemento de A for elemento de B. Ou seja, se para todo elemento  $x \in A$ , temos  $x \in B$ . Nesse caso, escrevemos  $A \subseteq B$  ou  $B \supseteq A$ .

Caso A seja um subconjunto de B mas não é igual a B, escrevemos:

$$A \subseteq B$$
.

Nesse caso, dizemos que A é um **subconjunto próprio** de B.

Para dizer que A não está contido em B, escrevemos  $A \nsubseteq B$ 

Usando a definição de continência de conjuntos podemos definir igualdade de conjuntos da seguinte forma:

dois conjuntos A e B são iguais se, e somente se,  $A \subseteq B$  e  $B \subseteq A$ .

Ou seja,

se 
$$A = B$$
 então  $A \subseteq B$  e  $B \subseteq A$ .

Além disso,

se 
$$A \subseteq B$$
 e  $B \subseteq A$ , então  $A = B$ .

Quando A e B não são iguais, escrevemos  $A \neq B$ . Para que  $A \neq B$  devemos ter  $A \nsubseteq B$  ou  $B \nsubseteq A$ . Isto é, precisamos encontrar algum elemento  $x \in A$  tal que  $x \notin B$  ou então encontrar  $y \in B$  tal que  $y \notin A$ .

**Proposição 2.4.1** Dados três conjuntos A, B e C temos:

- 1.  $A \subseteq A$  (Reflexividade)
- 2. Se  $A \subseteq B$  e  $B \subseteq A$ , então A = B. (Antissimetria)
- 3. Se  $A \subseteq B$  e  $B \subseteq C$ , então  $A \subseteq C$ . (Transitividade)

Considere os seguintes conjuntos:

$$A = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 2}\} = \{2, 4, 6, ...\}$$
  
 $B = \{n \in \mathbb{N} \mid n \text{ \'e m\'ultiplo de 3}\} = \{3, 6, 9, ...\}.$ 

Neste caso,  $2 \in A$  e  $2 \notin B$ , logo  $A \nsubseteq B$ . Por outro lado,  $3 \in B$  e  $3 \notin A$  e com isso  $B \nsubseteq A$ . Portanto, dados dois conjuntos A e B, nem sempre temos  $A \subseteq B$  ou  $B \subseteq A$ .

Proposição 2.4.2 Seja A um conjunto. Então  $\emptyset \subseteq A$ .

**Prova:** Suponha que  $\emptyset \nsubseteq A$ . Logo existe  $x \in \emptyset$  tal que  $x \notin A$ . Mas por definição, o conjunto vazio não contém elementos. Logo a existência de  $x \in \emptyset$  é uma contradição. Tal contradição surgiu por termos suposto que  $\emptyset \nsubseteq A$ . Portanto,  $\emptyset \subseteq A$ , como queríamos demonstrar.

#### 2.5 Relações entre conjuntos

**Definição 2.5.1 — Intersecção.** Sejam A e B dois conjuntos. Definimos a **intersecção** de A e B como sendo o conjunto  $A \cap B$  cujos elementos pertencem ao conjunto A e B simultaneamente. Assim,

$$A \cap B = \{x \mid x \in A \text{ e } x \in B\}.$$

■ **Exemplo 2.1** Sejam  $A = \{1,2,3\}, B = \{2,3,4\} \text{ e } C = \{r,s,t\}$ . Então

$$A \cap B = \{2,3\}$$
$$A \cap C = \emptyset.$$

**Definição 2.5.2 — União.** Sejam A e B dois conjuntos. Definimos a **união** de A com B como sendo o conjunto  $A \cup B$ , cujos elementos pertencem ao conjunto A ou ao conjunto B. Assim,

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}.$$

■ **Exemplo 2.2** Sejam  $A = \{1,2,3\}, B = \{2,3,4\} \text{ e } C = \{r,s,t\}$ . Então

$$A \cup B = \{1, 2, 3, 4\}$$
  
 $A \cup C = \{1, 2, 3, r, s, t\}.$ 

Proposição 2.5.1 Sejam *A* e *B* dois conjuntos. Então:

- 1.  $(A \cap B) \subseteq A$ ;
- 2.  $(A \cap B) \subseteq B$ ;
- 3.  $A \subseteq A \cup B$ ;
- 4.  $B \subseteq A \cup B$ .

**Prova:** Para provar a primeira afirmação seja  $x \in A \cap B$  um elemento qualquer. Da definição de interseção de conjuntos, Definição 2.5.1, temos  $x \in A$  e  $x \in B$ . Assim podemos afirmar com certeza que  $x \in A$ . Logo todo elemente de  $A \cap B$  também está em A, ou seja,  $A \cap B \subseteq A$ . De modo análogo prova-se a segunda afirmação sobre interseção.

Para a terceira afirmação, seja  $x \in A$ . Da definição de união de conjuntos, Definição 2.5.2, segue que  $x \in A \cup B$ . Logo todo elemento de A também está em  $A \cup B$ , ou seja,  $A \subseteq (A \cup B)$ . De modo análogo prova-se a quarta afirmação.

O conceito de união (∪) e intersecção (∩) pode ser estendido para mais de dois conjuntos.

**Definição 2.5.3 — União e Intersecção finita de conjuntos.** Sejam  $A_1, \ldots, A_n$  conjuntos. Então

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{k=1}^n A_k$$

é o conjunto dos elementos x tais que x pertence a pelo menos um dos conjuntos  $A_1, \ldots, A_n$ . Agora,

$$A_1 \cap \cdots \cap A_n = \bigcap_{k=1}^n A_k$$

é o conjunto dos elementos x que pertencem a todos os conjuntos  $A_1, \ldots, A_n$  simultaneamente.

**Definição 2.5.4** Sejam A e B conjuntos. Se  $A \cap B = \emptyset$ , dizemos que A e B são **conjuntos disjuntos**.

Sejam A e B conjuntos tais que  $C = A \cup B$  e  $A \cap B = \emptyset$ . Neste caso dizemos que C é uma **união disjunta** de A e B. Denotamos tal fato por

$$C = A \sqcup B$$
.

Proposição 2.5.2 Sejam A, B e C três conjuntos, então:

- 1.  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 2.  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

#### **Prova:**

- 1. Precisamos mostrar que
  - i)  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ ;
  - ii)  $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ .

Para provar i) seja  $x \in A \cap (B \cup C)$ . Logo  $x \in A$  e  $x \in B \cup C$ . Agora, de  $x \in B \cup C$ , segue que  $x \in B$  ou  $x \in C$ . Suponha que  $x \in B$ . Como  $x \in A$  e  $x \in B$ , então  $x \in A \cap B$ . Assim,  $x \in (A \cap B) \cup (A \cap C)$ , ou seja,  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ . Por outro lado, se  $x \in C$ , como  $x \in A$ , então  $x \in A \cap C$  e daí  $x \in (A \cap B) \cup (A \cap C)$ , logo  $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ . Portanto,

$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C).$$

Agora para provar ii), seja  $x \in (A \cap B) \cup (A \cap C)$ . Daí,  $x \in A \cap B$  ou  $x \in A \cap C$ . Suponha que  $x \in A \cap B$ . Assim,  $x \in A$  e  $x \in B$ . Como  $x \in B$ , segue que  $x \in B \cup C$  e então  $x \in A \cap (B \cup C)$ , ou seja,  $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ . Agora, suponha que  $x \in A \cap C$ . Com isso  $x \in A$  e  $x \in C$ . Desse modo,  $x \in B \cup C$  e então  $x \in A \cap (B \cup C)$  e daí

$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C).$$

Portanto

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

como queríamos.

Análoga ao caso anterior.

**Definição 2.5.5 — Diferença de Conjuntos.** Dados dois conjuntos A e B, definimos a **diferença** dos conjuntos A e B, denotada por A - B ou  $A \setminus B$  como sendo o conjunto

$$A - B = \{ x \mid x \in A \text{ e } x \notin B \}.$$

**Exemplos 2.1** 1) Se  $A = \{1, 2, 3, 5, 4\}, B = \{2, 3, 6, 8\}, \text{ então}$ 

$$A - B = \{1, 4, 5\}$$
  
 $B - A = \{6, 8\}.$ 

2) Se 
$$A = \{2,4,6,8,10,...\}, B = \{3,6,9,12,15,...\},$$
 então

$$A - B = \{2,4,8,10,14,16,...\}$$
  
 $B - A = \{3,9,15,21,...\}$ 

Proposição 2.5.3 Sejam A, B e C conjuntos não vazios. Então

$$(A \cup B) - C = (A - C) \cup (B - C).$$

**Prova:** Segue da definição de diferença de conjuntos. ■

**Definição 2.5.6 — Complementar.** Dados dois conjuntos A e E tais que  $A \subseteq E$ , definimos o **complementar** de A em E, denotado  $A^C$  ou  $C_E(A)$ , como

$$C_E(A) = \{ x \in E \mid x \notin A \}.$$

- **Observações 2.1** 1. Se A = E, então  $C_A(A) = \{x \in A \mid x \notin A\} = \emptyset$ . 2.  $(A^C)^C = \{x \in E \mid x \notin A^C\} = \{x \in E \mid x \in A\} = A$
- **Exemplo 2.3** Sejam  $A = \{1, 2, 3, 4\}$  e  $E = \{1, 2, 3, 5, 4, 0, 8, 9\}$ . Primeiro note que  $A \subseteq E$ , daí

$$A^{C} = C_{E}(A) = \{0, 5, 8, 9\}.$$

**Proposição 2.5.4** Sejam  $A, B \in E$  conjuntos. Se  $A \subseteq B \subseteq E$ , então  $C_E(B) \subseteq C_E(A)$ .

**Prova:** Seja  $x \in C_E(B)$ . Assim  $x \notin B$  e como  $A \subseteq B$ , então  $x \notin A$ . Daí por definição  $x \in C_E(A)$ , ou seja,  $C_E(B) \subseteq C_E(A)$ .

**Proposição 2.5.5** Sejam A, B e E três conjunto tais que  $A \subseteq E$  e  $B \subseteq E$ . Então:

- 1.  $(A \cup B)^C = A^C \cap B^C$
- 2.  $(A \cap B)^C = A^C \cup B^C$

#### Prova:

1. Seja  $x \in (A \cup B)^C$ . Logo  $x \notin A \cup B$ , assim  $x \notin A$  e  $x \notin B$ . Daí,  $x \in A^C$  e  $x \in B^C$ , isto é,  $x \in A^C \cap B^C$ . Desse modo,

$$(A \cup B)^C \subseteq A^C \cap B^C. \tag{2.1}$$

Por outro lado, se  $x \in A^C \cap B^C$ , então  $x \in A^C$  e  $x \in B^C$ . Com isso,  $x \notin A$  e  $x \notin B$ , ou seja,  $x \notin A \cup B$ , logo  $x \in (A \cup B)^C$ . Desse modo

$$A^C \cap B^C \subset (A \cup B)^C. \tag{2.2}$$

Portanto, de (2.1) e (2.2) temos

$$(A \cup B)^C = A^C \cap B^C$$
.

2. Seja  $x \in (A \cap B)^C$ . Logo  $x \notin A \cap B$ , assim  $x \notin A$  ou  $x \notin B$ . Então  $x \in A^C$  ou  $x \in B^C$ , isto é,  $x \in A^C \cup B^C$ . Desse modo,

$$(A \cap B)^C \subseteq A^C \cup B^C. \tag{2.3}$$

Por outro lado, se  $x \in A^C \cup B^C$ , então  $x \in A^C$  ou  $x \in B^C$ . Daí,  $x \notin A$  ou  $x \notin B$ , ou seja,  $x \notin A \cap B$ , logo  $x \in (A \cap B)^C$ . Desse modo

$$A^C \cup B^C \subseteq (A \cap B)^C. \tag{2.4}$$

Portanto, de (2.3) e (2.4) temos

$$(A \cap B)^C = A^C \cup B^C$$
.

**Definição 2.5.7 — Produto Cartesiano.** Dados dois conjuntos A e B, definimos o **produto cartesiano** de A por B como sendo o conjunto

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

Dados  $(x, y), (z, t) \in A \times B$ , temos

$$(x, y) = (z, t)$$
 se, e somente se,  $x = z$  e  $y = t$ .

**Exemplo 2.4** Sejam  $A = \{1,2\}$  e  $B = \{3,4\}$ . Então

$$A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$$
$$B \times A = \{(3,1), (3,2), (4,1), (4,2)\}$$

■ Observação 2.1 Do Exemplo (2.4) vemos que em geral  $A \times B \neq B \times A$ .

**Definição 2.5.8 — Conjunto Partes.** Para qualquer conjunto A, indicamos por  $\mathscr{P}(A)$  o conjunto

$$\mathscr{P}(A) = \{ X \mid X \subseteq A \}$$

que é chamado de **conjunto das partes** de A.

Os elementos desse conjunto são todos os subconjuntos de A. Dizer que  $Y \in \mathscr{P}(A)$  significa que  $Y \subseteq A$ . Particularmente, temos  $\emptyset \in \mathscr{P}(A)$  e  $A \in \mathscr{P}(A)$ .

- **Exemplos 2.2** 1.  $A = \emptyset$ ,  $\mathscr{P}(A) = {\emptyset}$ ;
  - 2.  $B = \{x\}, \mathscr{P}(B) = \{\emptyset, \{x\}\};$
  - 3.  $C = \{a,b,c\}, \mathcal{P}(C) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, C\};$
  - 4.  $D = \mathbb{R}$ ,  $\mathscr{P}(D) = \{X \mid X \subseteq \mathbb{R}\}$ , por exemplo  $\mathbb{Q} \in \mathscr{P}(D)$ .

## 3. Relações

#### 3.1 Relações de equivalência

**Definição 3.1.1** Seja A um conjunto não vazio e  $R \subseteq A \times A$ . Dizemos que R é uma **relação de equivalência** se:

- i) Para todo  $x \in A$ ,  $(x,x) \in R$ . (*Propriedade Reflexiva*)
- ii) Se  $(x,y) \in R$ , então  $(y,x) \in R$ . (Propriedade Simétrica)
- iii) Se  $(x,y) \in R$  e  $(y,z) \in R$ , então  $(x,z) \in R$ . (*Propriedade Transitiva*)

Quando  $R \subseteq A \times A$  é uma relação de equivalência, dizemos que R é uma relação de equivalência em A. Quando dois elementos  $x, y \in A$  são tais que  $(x,y) \in R$ , dizemos que x e y **são relacionados** ou que x e y **estão relacionados**.

**Exemplos 3.1** 1) Seja  $A = \{1,2,3,4\}$ . Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

Quais dos seguintes conjuntos são exemplos de relações de equivalência?

- $R_1 = A \times A$
- $R_2 = \{(1,1);(2,2);(3,3)\}$
- $R_3 = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1)\}$
- $R_4 = \{(1,1); (2,2); (3,3); (4,4)\}$
- $R_5 = \{(1,1);(2,2);(3,3);(4,4);(1,2);(2,1);(2,4);(4;2)\}$
- Solução:  $R_2$  não é relação de equivalência pois  $(4,4) \notin R_2$ .  $R_5$  não é relação de equivalência pois, por exemplo,  $(1,4) \notin R_5$ . Os demais são exemplos de relações de equivalência.
- 2) Seja  $A = \mathbb{Z}$  e  $R \subseteq \mathbb{Z} \times \mathbb{Z}$  definida por  $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x = y\}$ . Então R é uma relação de equivalência.
  - Solução: De fato,

- Para todo  $x \in \mathbb{Z}$  temos x = x daí  $(x, x) \in R$ .
- Se  $(x,y) \in R$ , então pela definição de R temos x = y. Logo y = x e então  $(y,x) \in R$ .
- Se  $(x,y) \in R$  e  $(y,z) \in R$ , então x = y e y = z. Logo x = z e assim  $(x,z) \in R$  como queríamos.

Portanto R é uma relação de equivalência sobre  $\mathbb{Z}$ .

- 3) Seja  $A = \mathbb{Z}$  e tome  $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x-y=2k, \text{ para algum } k \in \mathbb{Z}\}$ . Mostre que R é uma relação de equivalência sobre  $\mathbb{Z}$ .
  - Solução: De fato,
    - Para todo  $x \in \mathbb{Z}$  temos  $x x = 2 \cdot 0$  e com isso  $(x, x) \in R$ .
    - Se  $(x,y) \in R$  então existe  $k \in \mathbb{Z}$  tal que x-y=2k. Agora y-x=-(x-y)=-2k=2(-k) e como  $-k \in \mathbb{Z}$  segue que  $(y,x) \in R$ .
    - Se  $(x,y) \in R$  e  $(y,z) \in R$ , então existem k,  $l \in \mathbb{Z}$  tais que x-y=2k e y-z=2l. Somando essas duas equações obtemos

$$(x-y) + (y-z) = 2k + 2l$$
$$x-z = 2(k+l)$$

e como  $k+l \in \mathbb{Z}$  segue que  $(x,z) \in \mathbb{Z}$ .

Assim R é uma relação de equivalência.

■ Observação 3.1 Seja R uma relação de equivalência em A. Para dizermos que  $(x,y) \in R$  usaremos a notação  $x \equiv y$  (R), que se lê "x é equivalente a y módulo R", ou ainda a notação xRy, com o mesmo significado anterior.

Em virtude da observação anterior a definição de relação de equivalência pode ser reescrita como:

**Definição 3.1.2** Seja A um conjunto não vazio e  $R \subseteq A \times A$ . Dizemos que R é uma **relação de equivalência** se:

- i) Para todo  $x \in A$ , xRx. (Propriedade Reflexiva)
- ii) Se *xRy*, então *yRx*. (*Propriedade Simétrica*)
- iii) Se *xRy* e *yRz*, então *xRz*. (*Propriedade Transitiva*)
- **Definição 3.1.3** Seja R uma relação de equivalência sobre um conjunto A. Dado  $b \in A$ , chamamos de **classe de equivalência determinada por** b **módulo** R, denotada por  $\overline{b}$  ou C(b), o subconjunto de A dado por

$$\overline{b} = C(b) = \{x \in A \mid (x,b) \in R\} = \{x \in A \mid xRb\}.$$

- Observação 3.2 Seja  $A \neq \emptyset$  e R uma relação de equivalência sobre A. Segue da definição de relação de equivalência que para todo  $b \in A$ ,  $\overline{b} \neq \emptyset$  pois  $(b,b) \in R$  logo  $b \in \overline{b}$ .
- Exemplos 3.2 Do Exemplo 3.1 temos
  - 1) As classes de equivalência de  $R_1$  são:

$$\overline{1} = \{x \in A \mid (x,1) \in R_1\} = \{1,2,3,4\} 
\overline{2} = \{x \in A \mid (x,2) \in R_1\} = \{1,2,3,4\} 
\overline{3} = \{x \in A \mid (x,3) \in R_1\} = \{1,2,3,4\} 
\overline{4} = \{x \in A \mid (x,4) \in R_1\} = \{1,2,3,4\}$$

Nesse caso temos somente uma classe de equivalência.

2) As classes de equivalência de  $R_3$  são:

$$\overline{1} = \{x \in A \mid (x,1) \in R_3\} = \{1,2\} 
\overline{2} = \{x \in A \mid (x,2) \in R_3\} = \{1,2\} 
\overline{3} = \{x \in A \mid (x,3) \in R_3\} = \{3\} 
\overline{4} = \{x \in A \mid (x,4) \in R_3\} = \{4\}$$

Aqui temos três classes de equivalência diferentes.

3) As classes de equivalência de  $R_4$  são:

$$\overline{1} = \{x \in A \mid (x,1) \in R_4\} = \{1\} 
\overline{2} = \{x \in A \mid (x,2) \in R_4\} = \{2\} 
\overline{3} = \{x \in A \mid (x,3) \in R_4\} = \{3\} 
\overline{4} = \{x \in A \mid (x,4) \in R_4\} = \{4\}$$

Aqui temos quatro classes de equivalência diferentes.

4) Para a relação de equivalência  $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = 2k, \text{ para algum } k \in \mathbb{Z} \}$  temos:

$$\overline{0} = \{x \in \mathbb{Z} \mid xR0\} = \{x \in \mathbb{Z} \mid x - 0 = 2k, \ k \in \mathbb{Z}\} 
\overline{0} = \{x \in \mathbb{Z} \mid x = 2k, \ k \in \mathbb{Z}\} = \{0, \pm 2, \pm 4, \pm 6, \dots\} 
\overline{1} = \{x \in \mathbb{Z} \mid xR1\} = \{x \in \mathbb{Z} \mid x - 1 = 2k, \ k \in \mathbb{Z}\} 
\overline{1} = \{x \in \mathbb{Z} \mid x = 2k + 1, \ k \in \mathbb{Z}\} = \{\pm 1, \pm 3, \pm 4, \pm 7, \dots\}$$

Neste caso existem somente duas classes de equivalência. (Por quê?)

**Proposição 3.1.1** Seja R uma relação de equivalência em um conjunto não vazio A. Dados a,  $b \in A$  temos:

- i) se  $\overline{a} \cap \overline{b} \neq \emptyset$ , então aRb.
- ii) se  $\overline{a} \cap \overline{b} \neq \emptyset$ , então  $\overline{a} = \overline{b}$ .

#### Prova:

- i) Como  $\overline{a} \cap \overline{b} \neq \emptyset$ , existe um  $y \in \overline{a} \cap \overline{b}$ , logo  $y \in \overline{a}$  e  $y \in \overline{b}$ . Da definição de classe de equivalência temos yRa e yRb. Como R é relação de equivalência temos aRy e bRy. Pela propriedade transitiva segue que aRb, como queríamos.
- ii) Precisamos mostrar que  $\overline{a} \subseteq \overline{b}$  e que  $\overline{b} \subseteq \overline{a}$ . Para a primeira inclusão seja  $y \in \overline{a}$ . Daí yRa. Mas, por hipótese,  $\overline{a} \cap \overline{b} \neq \emptyset$ , assim pelo item anterior segue que aRb. Logo, como yRa e aRb, segue que yRb, ou seja,  $y \in \overline{b}$ . Daí  $\overline{a} \subseteq \overline{b}$ . Agora para provar a segunda inclusão seja  $x \in \overline{b}$ . Então xRb. Novamente,  $\overline{a} \cap \overline{b} \neq \emptyset$  e então pelo item anterior segue que aRb. Assim uma vez que R é uma relação de equivalência temos bRa e de xRb obtemos xRa, ou seja,  $x \in \overline{a}$ . Com isso  $\overline{b} \subseteq \overline{a}$ . Portanto  $\overline{a} = \overline{b}$ , como queríamos.

**Corolário 3.1.2** Seja R uma relação de equivalência sobre um conjunto não vazio A. Dados a,  $b \in A$  então  $\overline{a} \cap \overline{b} = \emptyset$  ou  $\overline{a} = \overline{b}$ .

**Definição 3.1.4** Seja R uma relação de equivalência sobre um conjunto não vazio A. O conjunto de todas as classes de equivalência determinadas por R será denotado por A/R e é chamado de **conjunto quociente** de A por R.

- **Exemplos 3.3** Do Exemplo 3.2 temos:
  - 1)  $A/R_1 = \{\overline{1}\}$
  - 2)  $A/R_3 = \{\overline{1}, \overline{3}, \overline{4}\}$
  - 3)  $A/R_4 = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$
  - 4)  $\mathbb{Z}/R = \{\overline{0}, \overline{1}\}$

**Definição 3.1.5** Seja C uma classe de equivalência de uma relação de equivalência R. Qualquer elemento  $y \in C$  é chamado **representante** de C.

**Proposição 3.1.3** Seja A um conjunto não vazio e R uma relação de equivalência em A. Então A é a união disjunta das classes  $\overline{b}$ ,  $b \in A$ , ou seja,

$$X=\bigcup_{b\in A}\overline{b}.$$

**Prova:** Para todo  $b \in A$  temos, pela definição de classe de equivalência, que  $\overline{b} \subseteq A$ . Logo  $\bigcup_{b \in X} \overline{b} \subseteq X$ . Agora seja  $x \in A$ . Logo  $x \in \overline{x}$  e daí  $x \in \bigcup_{b \in A} \overline{b}$ . Assim  $X \subseteq \bigcup_{a \in X} \overline{a}$ . Portanto,  $X = \bigcup_{b \in X} \overline{b}$ .

**Definição 3.1.6** Sejam  $a, b \in \mathbb{Z}, b \neq 0$ . Dizemos que b divide a quando existe um inteiro k tal que a = bk. Nesse caso escrevemos  $b \mid a$ . Quando b não divide a, escrevemos  $b \not\mid a$ .

- Exemplos 3.4 1) Os inteiros 1 e −1 dividem qualquer número inteiro a, pois a = 1a e a = (-1)(-a).
  - 2) O número 0 não divide nenhum inteiro b, pois não existe  $a \in \mathbb{Z}$  tal que b = 0a.
  - 3) Para todo  $b \neq 0$ , b divide  $\pm b$ .
  - 4) Para todo inteiro  $b \neq 0$ , b divide 0, pois 0 = b0.
  - 5) 3 /8.
  - 6) 17 | 51.

**Proposição 3.1.4** i)  $a \mid a$ , para todo  $a \in \mathbb{Z}$ .

- ii) Se  $a \mid b$  e  $b \mid a, a, b > 0$  então a = b.
- iii) Se  $a \mid b \in b \mid c$ , então  $a \mid c$ .
- iv) Se  $a \mid b$  e  $a \mid c$ , então  $a \mid (bx + cy)$ , para todos  $x, y \in \mathbb{Z}$ .

#### **Prova:**

- i) Imediata.
- ii) De fato, existem  $k,\ l\in\mathbb{Z}$  tais que b=ka e a=lb. Assim b=klb, isto é, b(1-kl)=0. Como  $b\neq 0$  então 1-kl=0. Daí kl=1 e então  $k=\pm 1$  e  $l=\pm 1$ . Mas a>0 e b>0, logo k=l=1. Logo a=b.
- iii) De fato, existem  $k, l \in \mathbb{Z}$  tais que b = ka e c = bl. Assim c = kal = (kl)a, ou seja,  $a \mid c$ .
- iv) Temos b = ka e c = al, com k,  $l \in \mathbb{Z}$ . Daí bx + cy = (ka)x + (al)y = a(kx + ly) e como  $kx + ly \in \mathbb{Z}$  segue que  $a \mid (bx + cy)$ .

**Definição 3.1.7** Sejam  $a, b \in \mathbb{Z}$ , dizemos que a **é congruente à** b **módulo** m se  $m \mid (a-b)$ . Neste caso, escrevemos  $a \equiv_m b$  ou  $a \equiv b \pmod{m}$ .

- **Exemplos 3.5** 1)  $5 \equiv 2 \pmod{3}$ , pois  $3 \mid (5-2)$ .
  - 2)  $3 \equiv 1 \pmod{2}$ , pois  $2 \mid (3-1)$ .
  - 3)  $3 \equiv 9 \pmod{2}$ , pois  $2 \mid (3-9)$ .

**Proposição 3.1.5** A congruência módulo m é uma relação de equivalência em  $\mathbb{Z}$ .

#### **Prova:**

- i) Para todo  $a \in \mathbb{Z}$ ,  $a \equiv a \pmod{m}$  pois  $m \mid (a a)$ .
- ii) Se  $a \equiv b \pmod{m}$ , então  $m \mid (a b)$ . Daí existe  $k \in \mathbb{Z}$ , tal que (a b) = km. Agora, (b a) = -(a b) = -(km) = (-k)m, ou seja,  $m \mid (b a)$ . Daí  $b \equiv a \pmod{m}$ .
- iii) Se  $a \equiv b \pmod{m}$  e  $b \equiv c \pmod{m}$ , então  $m \mid (a b)$  e  $m \mid (b c)$ . Assim,  $m \mid [(a b) + (b c)]$ . Logo,  $m \mid (a c)$ , isto é,  $a \equiv c \pmod{m}$ .

Portanto a congruência módulo *m* é uma relação de equivalência. ■

**Teorema 3.1.6** A relação de congruência módulo *m* satisfaz as seguintes propriedades:

- i)  $a_1 \equiv b_1 \pmod{m}$  se, e somente se,  $a_1 b_1 \equiv 0 \pmod{m}$ .
- ii) Se  $a_1 \equiv b_1 \pmod{m}$  e  $a_2 \equiv b_2 \pmod{m}$ , então  $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$ .
- iii) Se  $a_1 \equiv b_2 \pmod{m}$  e  $a_2 \equiv b_2 \pmod{m}$ , então  $a_1 a_2 \equiv b_1 b_2 \pmod{m}$ .
- iv) Se  $a \equiv b \pmod{m}$ , então  $ax \equiv bx \pmod{m}$ , para todo  $x \in \mathbb{Z}$ .
- v) Vale a lei do cancelamento: se  $d \in \mathbb{Z}$  e mdc(d,m) = 1 então  $ad \equiv bd \pmod{m}$  implica  $a \equiv b \pmod{m}$ .

Prova: Provemos o item iii).

Como  $a_1 \equiv b_2 \pmod{m}$  e  $a_2 \equiv b_2 \pmod{m}$ , existem  $k, l \in \mathbb{Z}$  tais que

$$a_1 - b_1 = km$$

$$a_2 - b_2 = lm$$

isto é,

$$a_1 = b_1 + km$$

$$a_2 = b_2 + lm,$$

Assim

$$a_1 a_2 = (b_1 + km)(b_2 + lm)$$

$$= b_1 b_2 + b_1 lm + b_2 km + k lm^2$$

$$= b_1 b_2 + \underbrace{(lb_1 + kb_2 + k lm)}_{\in \mathbb{Z}} m$$

Ou seja,  $a_1a_2 - b_1b_2 = pm$ , onde  $p = lb_1 + kb_2 + klm \in \mathbb{Z}$ . Portanto,  $a_1a_2 \equiv b_1b_2 \pmod{m}$ .

Como a congruência módulo m é uma relação de equivalência, podemos determinar suas classes de equivalência. Assim, dado  $n \in \mathbb{Z}$ , temos

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Denotaremos C(n) por  $R_m(n)$  ou  $\overline{n}$ , quando não houver possibilidade de confusão. Por exemplo, fixando m > 1

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

Proposição 3.1.7 As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras,  $R_m(n)$  é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

**Corolário 3.1.8**  $R_m(k) = R_m(l)$  se, e somente se,  $k \equiv l \pmod{m}$ .

■ Exemplos 3.6 1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{2} \} = \{ x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z} \}$$

$$R_2(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{2} \} = \{ x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z} \}.$$

2) Se m = 3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}$$

Proposição 3.1.9 Na relação de equivalência módulo m existem m classes de equivalência.

**Prova:** Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência

■ Observação 3.3 Fixado *m* inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

$$\vdots$$

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente desta relação será denotado por  $\frac{\mathbb{Z}}{m\mathbb{Z}}$  ou  $\mathbb{Z}_m$ . Assim

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Queremos definir um meio de somar e multiplicar os elementos de  $\mathbb{Z}_m$ . Por exemplo, em  $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$  temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par. Assim podemos escrever

| $\oplus$       | $\overline{0}$ | 1              |
|----------------|----------------|----------------|
| $\overline{0}$ | $\overline{0}$ | 1              |
| 1              | 1              | $\overline{0}$ |

Para multiplicação, temos

$$\begin{array}{c|cccc} \otimes & \overline{0} & \overline{1} \\ \hline \overline{0} & \overline{0} & \overline{0} \\ \hline \overline{1} & \overline{0} & \overline{1} \\ \end{array}$$

**Definição 3.1.8** Dados  $\overline{a}, \overline{b} \in \mathbb{Z}_m$  definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b} \tag{3.1}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}.$$
 (3.2)

**Proposição 3.1.10** As operações de soma e produto definidas em (3.1) e (3.2) são independentes dos representantes das classes.

**Prova:** Dadas duas classes em  $\mathbb{Z}_m$  com representantes diferentes,  $\overline{a}_1 = \overline{a}_2$ ,  $\overline{b}_1 = \overline{b}_2$ , com  $a_1 \neq a_2$  e  $b_1 \neq b_2$ , temos:

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$$
$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1 b_1} = \overline{a_2 b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

■ Exemplo 3.1 A some e a multiplicação em  $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$  são dadas nas tabelas abaixo:

Tabela 3.1: Soma e multiplicação em  $\mathbb{Z}_4$ 

| $\oplus$       | $\overline{0}$ | 1              | $\overline{2}$ | 3              |
|----------------|----------------|----------------|----------------|----------------|
| $\overline{0}$ | $\overline{0}$ | 1              | 2              | 3              |
| 1              | 1              | 2              | 3              | $\overline{0}$ |
| 2              | 2              | 3              | $\overline{0}$ | 1              |
| 3              | 3              | $\overline{0}$ | 1              | 2              |

| $\otimes$      | $\overline{0}$ | 1              | $\overline{2}$ | 3              |
|----------------|----------------|----------------|----------------|----------------|
| $\overline{0}$ | $\overline{0}$ | $\overline{0}$ | $\overline{0}$ | $\overline{0}$ |
| 1              | $\overline{0}$ | 1              | <u>2</u>       | 3              |
| 2              | $\overline{0}$ | 2              | $\overline{0}$ | $\overline{2}$ |
| 3              | $\overline{0}$ | 3              | 2              | 1              |

# **Bibliografia**

- [1] H.H. Domingues, G.Iezzi: Álgebra Moderna, 2ł Ed., Atual, 1982
- [2] S. Shokranian: Álgebra 1, Ciência Moderna, 2010
- [3] Adilson Gonçalves: Introdução à Álgebra, 5ł Ed., IMPA, 2003
- [4] G. Birkhoff, S. MacLane: Álgebra Moderna Básica, 4ł Ed., Guanabara Dois, 1980
- [5] E. A. Filho: *Iniciação à Lógica Matemática*, Nobel, 2002