แบบฝึกหัดที่ 2 DG - GNSS/INS - GNSS Interpolation 2108421 Mod. Integrated. Surveying Technology วันที่ 15 ก.พ. 2566 ภาคการศึกษาปลาย 2565 รศ.ดร.ไพศาล สันติธรรมนนท์ และ นายถิรวัฒน์ บรรณกลพิพัฒน์ ภาควิชาวิศวกรรมสำรวจ จหาลงกรณ์มหาวิทยาลัย

การกำหนดตำแหน่งบนโลกด้วยวิธีตรง(Direct Georeferencing : DG)

การอ้างอิงตำแหน่งบนโลกโดยตรงเป็นวิธีการกำหนดตำแหน่งและการวางตัวของยานพาหนะ โดย จะให้ผลลัพธ์การนำหนที่เป็นข้อมูลแสดงวิถีของพาหนะอย่างต่อเนื่อง ณ เวลาต่าง ๆ โดยจะต้องมีการหา ความสัมพันธ์ระหว่างอุปกรณ์ช่วยในการนำหนต่าง ๆ กับตัวเซนเซอร์ที่เป็นค่าระยะห่างระหว่างคู่เซนเซอร์ (Offset) โดยที่เซนเซอร์เป็นได้ทั้ง กล้องถ่ายภาพจากดาวเทียม กล้องถ่ายภาพทางอากาศ ระบบเลเซอร์ สแกน หรือระบบเรดาห์สำรวจภูมิประเทศเป็นต้น อุปกรณ์เหล่านี้จะให้ข้อมูลในรูปค่าพิกัดสัมพัทธ์จาก เซนเซอร์ไปยังจุดหรือพื้นผิวบนพื้นผิวโลก ซึ่งจุดหรือพื้นผิวดังกล่าวจะเป็นตัวแทนที่ต้องการในงานรังวัดทำ แผนที่หรือต้องการข้อมูลภูมิสารสนเทศ โดยจุดเด่นของการกำหนดตำแหน่งบนโลกด้วยวิธีตรงคือ ช่วยให้ การทำแผนที่จากอากาศและการทำแผนที่ด้วยระบบทำแผนที่เคลื่อนที่มีความสะดวก รวดเร็ว อีกทั้งให้ ความละเอียดความถูกต้องทางตำแหน่งสูง

จงแสดงวิธีทำ

1. ในการรังวัดปริมาณระยะทางใด ๆ บนพิ้นผิวโลกรัศมีเท่ากับ 6,371 กิโลเมตร หากนิสิตต้องการ บรรยายความละเอียดความถูกต้องของค่าระยะเชิงเส้น (Linear distance) ในระดับความแม่นยำ 1 มิลลิเมตร นิสิตจะต้องแสดงจำนวนทศนิยมของค่าระยะทางเชิงมุม (Angular distance) อย่าง น้อยกี่ตำแหน่ง โดยให้แสดงวิธีทำอย่างละเอียด (สูตรที่ใช้/หน่วยที่ชัดเจน) พร้อมสเก็ตซ์รูป ประกอบแสดงความเข้าใจ

<u>วิธีทำ</u>

2. หากนิสิตได้รับมอบหมายให้ทำการสำรวจข้อมูลโดยใช้รถสำรวจที่ติดตั้งเลเซอร์สแกนเนอร์ รุ่น LiMobile ยี่ห้อ Green Valley โดยที่เครื่องมือมีลักษณะ (Specification) ดังข้อมูลที่แสดง ด้านล่าง เทคโนโลยีนี้เรียกว่า Mobile Mapping System (MMS) โดยประกอบด้วยเซนเซอร์หลัก ที่กำหนดวิถีของยานพาหนะ (Trajectory) เซนเซอร์ดังกล่าวคือ ระบบ GNSS/IMU ที่มีคุณภาพ และเสถียรภาพที่สูง โดยมักจะถูกนำมาประยุกต์ใช้ในการกำหนดตำแหน่งบนโลกด้วยวิธีตรง (Direct georeferencing) เพื่อให้ได้ข้อมูลค่าพิกัดและการวางตัว (Position and Orientation: POS) ที่มีความถูกต้องและความแม่นยำที่สูง โดยมักจะถูกนำไปติดตั้งกับพาหนะ เช่น รถยนต์ อากาศยาน เรือ เป็นต้น

System Specifications				
Dimensions [1] (mm)	265*270*230 mm	Battery	5700mAh*6	
Weight ^[1] (Excl. Battery)	4.7 kg	Battery Life	~6 h / Battery	
Storage Capacity	512 GB SSD	Ports	HDMI, USB, Network	
System Control and Data Display	Wireless Mode	Smartphone/Tablet Connect via WIFI, Simultaneous Control and Display		
	Wired Mode	Wire Connection between System and Tablet, Control and Data Transmission		
Processor	4 Cores and 8 Threads			
Sensor Specifications		GNSS Specifications [1]		
Laser Sensor	XT32		GPS: L1 C/A, L1C, L2C, L2P, L5 GLONASS: L1 C/A, L2C, L2P, L3,L5	
Range Accuracy	±3 cm	Satellite Tracking		
Verticle FOV	-16°~ 15°	Satellite Tracking	BeiDou: B1.B2	
Horizontal FOV	0°~360°			
Maximum Range	120 m	Positioning Accuracy	1 cm + 1 ppm	
Camera Specification		Data Output		
Camera	Panoramic Camera	Relative Accuracy	≤3cm ^[2]	
Resolution	8.9 MP	Absolute Accuracy	≤15cm ^[2]	
Frame Rate	6	Point Cloud Data Format	las, laz, ply, LiData	

OEM-IMU-HG4930

Performance During GNSS Outages7

Outage Duration	Positioning Mode	Position Accuracy (M) RMS		Velocity Accuracy (M/S) RMS		Attitude Accuracy (Degrees) RMS		
		Horizontal	Vertical	Horizontal	Vertical	Roll	Pitch	Heading
0 s	RTK ⁸	0.02	0.03		0.010	0.010	0.010	0.030
	PPP	0.06	0.15					
	SP	1.00	0.60					
	Post-Processed ⁹	0.01	0.02		0.010	0.003	0.003	0.010
10 s	RTK8	0.12	0.08	0.035 0.020 0.015 0.010	0.020	0.018	0.018	0.040
	PPP	0.16	0.20					
	SP	1.10	0.65					
	Post-Processed ⁹	0.01	0.02		0.003	0.003	0.010	
60 s	RTK ⁸	3.82	0.73	0.165	0.030	0.030	0.030	0.055
	PPP	3.86	0.85					
	SP	4.80	1.30					
	Post-Processed ⁹	0.11	0.05	0.017	0.010	0.004	0.004	0.014

จงตอบคำถาม

2.1 หากกำหนดให้รถสำรวจ MMS มีความเร็วเฉลี่ย 50 กิโลเมตร/ชั่วโมง แล้วระบบ GNSS-IMU ที่ใช้ คือ รุ่น OEM-IMU-HG4930 หากต้องการรักษาคุณภาพของข้อมูลวิถียานพาหนะให้มีความละเอียด ถูกต้องอยู่ในเกณฑ์โดยที่ทางราบ 15 เซนติเมตร และทางดิ่ง 10 เซนติเมตร หากรถวิ่งผ่านอุโมงค์ จะเกิดสภาวะ GNSS Outage (สัญญาณขาดหายไป) ดังนั้นเพื่อรักษาคุณภาพดังกล่าว รถสำรวจ สามารถสำรวจวิ่งผ่านอุโมงค์โดยที่สัญญาณขาดหายได้เป็นเวลาเท่าไหร่ และอุโมงค์ควรมีความยาว ไม่เกินเท่าใด โดยให้แสดงวิธีทำอย่างละเอียด (สูตรที่ใช้/หน่วยที่ชัดเจน) พร้อมสเก็ตซ์รูปประกอบ แสดงความเข้าใจ

<u>วิธีทำ</u>

2.2 หากกำหนดให้รถสำรวจ MMS มีความเร็วเฉลี่ย 50 กิโลเมตร/ชั่วโมง แล้วระบบ GNSS-IMU ที่ใช้ คือ รุ่น OEM-IMU-HG4930 อยากทราบว่าที่ระยะทางของวัตถุที่เลเซอร์ไปตกกระทบที่ระยะ 60 เมตร และ 120 เมตร เพื่อรังวัดตำแหน่งของวัตถุที่ห่างจากรถสำรวจ ในกรณีที่รถสำรวจสามารถ รับสัญญาณ GNSS ได้ปกติความถูกต้องของการรังวัดมุมทางราบและมุมทางดิ่งของเลเซอร์สแกน ชุดนี้มีค่าเป็นเท่าใด โดยให้แสดงวิธีทำอย่างละเอียด (สูตรที่ใช้/หน่วยที่ชัดเจน) พร้อมสเก็ตซ์รูป ประกอบแสดงความเข้าใจ

GNSS PPK Interpolation

หลักการในการประมาณค่าช่วง (Interpolation) จากข้อมูลสัญญาณดาวเทียมด้วยเทคนิคการรังวัด แบบจลน์และประมวลผลในภายหลัง (Post-Processed Kinematic; PPK)

- 1. คำนวณเส้นวิถีการบิน (Trajectory) ของยานพาหนะจากข้อมูลสถานีฐาน (Base station) และ ข้อมูลสถานีจลน์ (Rover) ในที่นี้คือ ข้อมูลสัญญาณดาวเทียมจากอากาศยานไร้คนขับ
- 2. เตรียมข้อมูลเวลาที่ใช้ในการบันทึกภาพถ่ายขณะบินปฏิบัติภารกิจ (Timestamp/Event Mark)
- 3. นำข้อมูลเส้นวิถีโคจรและเวลาที่ใช้ในการบันทึกภาพมาทำการประมวลผลด้วยหลักการประมาณค่า ช่วง โดยจะใช้หลักการประมาณจากข้อมูลเส้นวิถีโคจรที่ทราบทั้งเวลาและค่าพิกัด ณ ขณะนั้น เพื่อ ประมาณค่าพิกัดจากการที่ทราบข้อมูลเวลาที่ใช้ในการบันทึกภาพ
- 4. เนื่องจากค่าพิกัดที่ประมาณได้เป็นค่า ณ ตำแหน่งของ เสารับสัญญาณดาวเทียมที่ติดตั้งบน ยานพาหนะ ซึ่งยานพาหนะส่วนใหญ่ตำแหน่งของเสารับสัญญาณและตำแหน่งของกล้องมีตำแหน่ง ที่ไม่ตรงกัน ดังนั้นเพื่อให้ได้ค่าพิกัด ณ ตำแหน่งบันทึกภาพ (Camera Exterior Orientation Parameter) จึงมีการคำนึงถึงระยะห่างจากเสารับสัญญาณไปจนถึงตำแหน่งที่กล้องใช้เปิดถ่าย

กำหนดให้ข้อมูลที่รังวัดสัญญาณดาวเทียมบนอากาศยานมีค่าดังตารางด้านล่าง

Time (second)	Latitude	Longitude	Ell. Height
22652.6	14.5210869351	101.0185992492	205.148
22652.8	14.5211041621	101.0185894299	205.144
22653.0	14.5211214000	101.0185796425	205.151
22653.2	14.5211386964	101.0185698774	205.150
22653.4	14.5211559494	101.0185600934	205.147
22653.6	14.5211732029	101.0185503133	205.149
22653.8	14.5211904444	101.0185405310	205.143
22654.0	14.5212077074	101.0185307195	205.134
22654.2	14.5212249856	101.0185209141	205.130
22654.4	14.5212423056	101.0185111208	205.136
22654.6	14.5212596891	101.0185014026	205.151

<u>จงตอบคำถาม</u>

3.1 จากตารางให้นิสิตอธิบายว่าข้อมูลการรังวัดสัญญาณดาวเทียมบนอากาศยานที่รับสัญญาณข้อมูล มา รับสัญญาณมาทุก ๆ กี่เฮิรตซ์ (Hz) โดยให้แสดงวิธีทำอย่างละเอียด (สูตรที่ใช้/หน่วยที่ชัดเจน) วิธีทำ

3.2 ให้นิสิตฝึกคำนวณการประมาณค่าช่วง (Interpolation) หาตำแหน่งของค่าพิกัด (Latitude, Longitude, Ellipsoidal Height) ที่ห้วงเวลา 22653.652967 วินาที จากข้อมูลที่กำหนดให้ ผ่านการเขียนโปรแกรมด้วยภาษาไพธอนในการประมาณค่า โดยให้ใช้วิธีในการประมาณค่า 5 วิธี ได้แก่ 1) nearest 2) slinear 3) quadratic 4) cubic 5)spline และแสดงโค้ดที่ใช้ รวมถึง ผลลัพธ์ที่ประมวลผลได้ พร้อมอธิบายว่าการประมาณค่าในแต่ละรูปแบบมีวิธีการการประมวลผล อย่างไร

<u>วิธีทำ</u>

CODE Python	