Table of Contents

Functions	
Conclusion	
Sampling	
First Group	
Second group	6
Third group	10

Functions

 Table 17

 Mathematical formulation and properties of unimodal, multimodal and composition functions.

Functions	Dim	Domain	Global opt
$TF_1(x) = \sum_{i=1}^d x_i^2$	50	[-100,100]	0
$\Gamma F_2(\mathbf{x}) = \sum_{i=1}^{d-1} \mathbf{x}_i + \prod_{i=1}^{d} \mathbf{x}_i $	50	[-100,100]	0
$\Gamma F_3(x) = \sum_{i=1}^{d} (\sum_{i=1}^{d} x_i)^2$	50	[-100,100]	0
$TF_4(x) = Max\{ x_i , 1 \le i \le d\}$	50	[-100,100]	0
$\Gamma F_5(x) = \sum_{i=1}^{d-1} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$	50	[-30,30]	0
$\Gamma F_{5}(x) = \sum_{i=1}^{d-1} ([x_{i}+0.5])^{2}$	50	[-100,100]	0
$\Gamma F_{7}(x) = \int_{i=1}^{d} i x_{i}^{4} + random[0, 1]$	50	[-1.28, 1.28]	0
$\Gamma F_{\mathbf{g}}(\mathbf{x}) = \sum_{i=1}^{d} -x_i \sin(\sqrt{ x_i })$	50	[-500,500]	$-418.98 \times d$
$TF_9(x) = \sum_{i=1}^{d} [x_i^2 - 10\cos(2\pi x_i) + 10]$	50	[-5.12,5.12]	0
$TF_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{d}\sum_{i=1}^{d}x_{i}^{2}}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^{d}\cos(2\pi x_{i})\right) + 20 + e$	50	[-32,32]	0
$TF_{11}(x) = \frac{1}{4000} \sum_{i=1}^{d} x_i^2 - \prod_{i=1}^{d} \cos(\frac{x_i}{\lambda_i}) + 1$	50	[-600,600]	0
$TF_{12}(x) = \frac{\pi}{d} \{ 10 \sin(\pi y_1) + \sum_{i=1}^{d-1} (y_i - 1)^2 [1 + 10 \sin^2(\pi y_{i+1})] + (y_d - 1)^2 \} + \sum_{i=1}^{d} u(x_i, 10, 100, 4)$	50	[-50,50]	0
$TF_{13}(x) = 0.1\{\sin^2(3\pi x_1) + \sum_{i=1}^{d-1} (x_i - 1)^2[1 + \sin^2(3\pi x_i + 1)] + (x_d - 1)^2[1 + \sin^2(2\pi x_d)]\} + \sum_{i=1}^{d} u(x_i, 5, 100, 4)$	50	[-50,50]	0
$TF_{14}(x) = \left(\frac{1}{500} + \sum_{j=1}^{25} \frac{1}{j + \sum_{l=1}^{2} \frac{(x_l - a_{jl})^6}{2}}\right)^{-1}$	2	[-65,65]	1
$TF_{15}(x) = \sum_{l=1}^{11} \left[a_l - \frac{x_1(b_l^2 + b_l x_2)}{b_l^2 + b_l x_3 + x_4} \right]^2$	4	[-5,5]	0.00030
$TF_{16}(x) = 4x_1^2 - 2.1x_1^4 + \frac{1}{2}x_1^6 + x_1x_2 - 4x_2^2 + 4x_2^4$	2	[-5,5]	-1.0316
$\Gamma F_{17}(x) = (x_2 - \frac{5}{14\pi^2}x_1^2 + \frac{5}{9}x_1 - 6)^2 + 10(1 - \frac{1}{8\pi})\cos x_1 + 10$	2	[-5,5]	0.398
$TF_{18}(x) = [1 + (x_1 + x_2 + 1)^2(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)] \times$	2	[-2,2]	3
$(30 + (2x_1 - 3x_2)^2 \times (18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2))$			
$TF_{19}(x) = -\sum_{i=1}^{4} c_i \exp(-\sum_{i=1}^{3} a_{ij}(x_i - p_{ij})^2)$	3	[0,1]	-3.86
$TF_{20}(x) = -\sum_{i=1}^{4} c_i \exp(-\sum_{i=1}^{6} a_{ii}(x_i - p_{ii})^2)$	6	[0,1]	-3.32
$TF_{21}(x) = -\sum_{i=1}^{5} [(X - a_i)(X - a_i)^T + c_i]^{-1}$	4	[0,10]	-10.1532
$TF_{22}(X) = -\sum_{i=1}^{T-1} [(X - a_i)(X - a_i)^T + c_i]^{-1}$	4	[0,10]	-10.4028
$TF_{23}(x) = -\sum_{i=1}^{10} [(X - a_i)(X - a_i)^T + c_i]^{-1}$	4	[0,10]	-10.5363

Results for unimodal, multimodal and composition functions

	Function		MPA	PSO	GA	GSA	CS	SSA	CMA-ES	SHADE	LSHADE-cnEpSi
Unimodal	TF1	Ave	3.27E-21	0.0409	1.095	0.0034	210.64	0.0037	8.27E-15	1.08E-08	2.19E-04
		Std	4.61E-21	0.0416	0.4896	0.0189	81.505	0.00974	5.76E-15	1.17E-08	1.21E-04
First group except F	2 TF2	Ave	1.57E-12	0.0659	0.106	0.0806	15.98	5.0487	1.28E-06	0.1226	0.04134
		Std	1.42E-12	0.0864	0.0498	0.3802	4.788	2.013	2.92E-06	0.1854	0.02237
	TF3	Ave	0.0864	4236.3	25,187.3	1313.88	10,412.38	4343.27	9.170	265.12	70.118
		Std	0.1444	1217.9	5243.43	343.116	2456.305	2136.39	6.533	127.43	34.618
	TF4	Ave	2.6E-08	9.335	35.619	6.410	18.507	15.055	1.44E-04	1.644	3.1933
		Std	9.25E-09	1.0119	9.4072	1.535	2.463	3.195	7.00E-05	0.535	0.9194
	TF5	Ave	46.049	310.39	715.98	76.561	27,288.5	434.43	52.11	60.96	59.253
		Std	0.4219	430.60	634.71	41.64	15,589.9	457.70	23.15	35.535	29.012
	TF6	Ave	0.398	0.0589	0.925	2.21E-12	218.17	0.0021	5.98E-15	8.32E-09	2.94E-04
		Std	0.1914	0.1217	0.5063	5.91E-13	53.864	0.0030	5.36E-15	1.00E-08	2.71E-04
	TF7	Ave	0.0018	0.0665	0.1130	0.0926	0.4055	0.2807	0.0320	0.0294	0.00993
		Std	0.0010	0.0123	0.0355	0.0322	0.1313	0.0911	0.0077	0.0100	0.00306
Multimodal (High dimensional)	TF8	Ave	-13,594.1	-10,815.3	-17,911.6	-3570.52	-11,942.8	-12,232.6	-11,670.6	-14,832.5	-15,928.4
,		Std	811.3	992.1	343.1	592.0	343.1	1063.0	884.3	418.8	516.8
	TF9	Ave	0.000	78.42	35.61	32.36	220.86	78.79	30.91	101.54	76.052
		Std	0.000	16.44	8.971	7.055	22.055	25.18	5.383	14.874	9.15
	TF10	Ave	9.69E-12	1.204	0.1844	8.94E-07	9.493	3.479	11.019	0.190	0.00363
		Std	6.13E-12	0.729	0.1487	1.54E-07	2.0936	0.8281	9.795	0.448	0.00192
	TF11	Ave	0.000	0.0128	0.6561	26.479	3.067	0.0905	2.08E-10	0.0027	0.00424
		Std	0.000	0.0130	0.1881	5.7472	0.782	0.0407	1.51E-10	0.0051	0.00638
	TF12	Ave	0.0085	0.0319	0.0344	1.0151	11.209	8.541	2.99E-13	0.0187	0.00208
	1112	Std	0.0052	0.0560	0.0776	0.5386	7.5438	2.556	1.97E-13	0.0635	0.01135
	TF13	Ave	0.4901	0.419	0.189	10.25	1306.48	59.895	4.31E-12	0.0033	0.00711
	1113	Std	0.1932	0.5814	0.0972	6.335	3931.79	16.745	3.44E-12	0.0041	0.00797
Multimodal (Fixed-dimensional)	TF14	A√} Sta	0.9980	2.1825	0.9980	3.7182	0.9980	1.0311	8.1094	0.9980	0.9980
	- 1		2.47E-16	2.0085	8.84E-12	2.678	5.46E-16	0.1815	5.9456	3.38E-16	0.0000
	TF15	Ave	3.07E-04	5.61E-04	2.69E-03	2.05E-03	3.97E-04	8.40E-04	1.09E-02	1.76E-03	3.07E-04
	- 1	Std	4.09E-15	4.38E-04	4.84E-03	6.64E-04	1.05E-04	2.81E-04	1.87E-02	5.06E-03	1.34E-19
	TF16	Ave	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316
second group and		Std	4.46E-16	6.64E-16	2.39E-08	2.10E-15	4.79E-16	1.48E-14	6.77E-16	0.0000	6.51E-16
	TF17	Ave	0.3979	0.3979	0.3979	0.3979	0.3979	0.3979	0.3979	0.3979	0.3979
third group plus F2		Std	9.12E-15	0.000	1.90E-06	6.14E-16	7.23E-14	5.62E-14	0.0000	1.12E-16	0.0000
	TF18	Ave	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	5.7000	3.0000	3.0000
	- 1	Std	1.95E-15	1.38E-15	2.45E-07	7.00E-14	1.85E-15	2.46E-13	1.48E+01	4.52E-16	1.92E-15
	TF19	Ave	-3.8628	-3.8628	-3.8628	-3.8628	-3.8628	-3.8628	-3.8628	-3.8628	-3.8628
	- 1	Std	2.42E-15	2.68E-15	2.85E-08	9.33E-15	2.48E-15	3.96E-14	2.71E-15	2.71E-15	2.71E-15
	TF20	Ave	-3.3220	-3.2625	-3.2705	-3.3220	-3.3220	-3.2344	-3.2903	-3.2824	-3.3220
		Std	1.14E-11	6.05E-02	5.99E-02	1.56E-13	1.01E-07	5.87E-02	5.35E-02	5.70E-02	1.36E-15
	TF21	Ave	-10.1532	-5.3010	-6.1531	-6.5834	-10.1532	-9.9837	-6.7946	-9.7358	-10.1532
		Std	2.53E-11	2.9288	3.6282	3.6765	7.06E-07	1.3240	3.6860	1.6200	6.39E-15
	TF22	Ave	-10.4029	-7.0716	-7.9827	-10.4029	-10.4029	-9.3507	-9.2089	-10.1484	-10.1532
		Std	2.81E-11	3.6840	3.4924	3.18E-13	1.07E-04	2.569	2.7439	1.3943	6.39E-15
	TF23	Ave	-10.5364	-7.2467	-7.7652	-10.5364	-10.5364	-9.8704	-9.2797	-10.5364	-10.5364
		Std	3.89E-11	3.6582	3.7265	3.07E-13	9.60E-05	2.2936	2.8975	9.03E-15	2.47E-15

(continued on next page

The 23 functions are divided into 3 groups. First group contains 12 functions, which are F1, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, and F13. (First group mainly contains unimodal and multimodal high-dimensional functions) The second group consists of 7 functions, named F2, F14, F16, F17, F18, F19, and F20. The last group consists of 4 functions, i.e., F15, F21, F22, and F23. (Second group and third group mainly contain multimodal fixed dimensional functions)

Conclusion

- SSGA converges quickly on the first group of functions, followed by Lamarck, then Baldwin, but the quality of the final results produced by all three is comparable in the long run, i.e., if SSGA produces results with an accuracy of 0.01, then so do Lamarck and Baldwin. (First group mainly contains unimodal and multimodal high-dimensional functions)
- In the second group, Lamarck and Baldwin initially performed significantly better than SSGA, but their subsequent performance was similar to that of the first group, with SSGA converging fastest, followed by Lamarck and Baldwin, producing results of comparable quality in the long run.
- In the third group, the SSGA converged quickly, but Lamarck and Baldwin are able to find smaller solutions in the long run. (Second group and third group mainly contain multimodal fixed dimensional functions)

In terms of convergence speed, SSGA converges fast, Lamarck is second and Baldwin is third. In terms of the quality of the results produced, Lamarck and Baldwin perform better on multimodal fixed dimensional functions. Either they find significantly better results initially (second group), or the quality of the final results found is better, i.e., they find smaller results (third group).

Sampling

Baldwin and Lamarck need to compute f.() twice during each iteration(one individual has a genotype and a phenotype), but SSGA only needs to compute f.() once (one individual only has one genotype). So, for a given budget, say budget=10,000, this means that SSGA can perform 10,000 iterations, but Baldwin and Lamarck can only perform 5000 iterations. SSGA takes the best solution every 50 iterations, but Baldwin and Lamarck take the best solution

every 25 iterations.1 In this case, the final number of data points sampled is the same. We gave all 20 parameter combinations 20 runs. (Note: for the first generation, the use of f.() for initialization is not counted. Because the parameter: number of individuals is not fixed in 20 parameter combinations.)

First Group

Figure 1 shows the Budget-Best solution curve for F8, F9 in first group. Figure 2 shows the Budget-Best solution curve for F4, F10in first group. Figure 3 shows the Budget-Best solution curve for F1, F3, F5, F6, F7, F11, F12 and F13 in first group.

Figure 1 Budget convergence for part of functions of first group, budget = 10,000

Second group

Figure 4 shows Budget-Best solution curve for the second group.

Figure 5 shows Budget-Best solution curve for the second group with less budgets.

Figure 6 shows the first 50 budgets for the second group.

Figure 4 Budget convergence for second group, budget = 10,000

Figure 5 Budget convergence for second group, budget = 1,000

Figure 6 first 50 budgets for second group

Third group

Figure 7 shows Budget-Best solution curve for the third group.

Figure 7 Budget convergence for the third group