Lecture: Dynamic programming-

Analogy

Marks:

Total marks = 28

New student:

Total marks

DP: Use the previous results to calculate current results

Example:

TC:
$$2^n \longrightarrow n = 10$$
 $2^{10} = 1024$ unit

 $n = 20$ $2^{20} = 10^6$ unit

 $n = 50$ --- Tee. $> 10^8$ unit

Conditions for DP

Overlapping subproblems

Optimal substructure [Later in DP]

Dynamic programming

Ralculate The unique results only once.

```
DP code for fibonacii : Memoised
   int fib(n, dp()) {
        if (n == 0 | 1 n = = 1) {
             d p (n) = n;
           return n',
        it ( ap (n) ! = -1) {
            return dp[n];
        int fix = fib(n-1);
       int sec = fib (n-2);
       dp[n] = fir + sec;
       return fis + sec; (or) return ap[n];
               fib(5)
   dp[6]
                    fib(4)
                                                          fib(3)
                                               T(: 0(n)
                          fib(1)
                                                SC: O(n) + O(height)
                                                             stack size,
                                                  apl)
```

fi'b(0)

fib(1)


```
Tabulative approach of DP fibonacci:
fib(s):
                                     ap(2) = dp(0) + ap(1)
                                    dp(3) = dp(1) + dp(2)
                                    d\rho(4) = d\rho(2) + d\rho(3)
                                    dp(S) = dp(3) + dp(4)
                                    return dp[5];
       int fib(n) {
            int () db = new int [n+1];
            dp(o) = 0;
            dþ[1] =1;
            for(i=2; i<=n; i+1) {
                 d\rho(i^{\circ}) = d\rho(i^{\circ}-1) + d\rho(i^{\circ}-2);
          return ap[n];
               T(: 0(n)
               SC: 0(n)
                    db[]
```

```
<u>Qu'</u> Solve it using 0(1) space
   j ib (3)
                          1 2 2
                               3 3
                          2
       int fib (n) {
           Q = 0
           b = l',
                                          i = 2
           for ( i = 2; i <=n; i+1) {
                                          i=3
             c= a+b;
                                      3 :=4
              a = b;
                                  5
                                          i=5
              b=ci
          return c'.
               TC: 0(n)
```

SC: O(1)

```
<u>Ou</u> Given n stairs, how many ways can we go from
    Oth step \longrightarrow nth step. [ can take only 1 [2 oteps]
                        { | } | Nay
  n = 1
                          1 1 1 2 ways.
 n = 2
                          n = 3
   n = 4
                                                   5 ways
                                   1 2 1
                                                int stairs (n) {
                                    2 2
                                                    a = 0
                                                    b = 1',
                                                    for (i=2; i(=n; i+1) (
                                                     c = .a + b;
                                                      a = b'.
                                                      b=ci
                                                   return c'
```

Idea foundation.

$$n=4$$
 vane = $n = 4$ ays (3) + $n = 2$ | 1 2
1 2 1 2 2
2 1 1

Dry run:

Recursive code

```
int ways(n) {

if (n==0 || n==1) (

return n:

}

int w = ways(n-1);

int w2 = ways(n-2);

return w1 + w2;
```

Memoised code

Same as fibonacui

Tabulation code same as fibonació

Break: 8: 14 - 8: 27 AM

<u>Qu</u> fond min count of perfect squares to add to get sum = n

		count
n = 2	12 + 12	2
n = 3	² + ² + ²	3
n = 4	2 2	I
n = 5 ⁻	22 + 12	2
n = 6	22 + 12 + 12	3
n = 7	$2^{2} + 1^{2} + 1^{2} + 1^{2}$	4
n = 50	7 ² + 1 ² (08) 5 ² + 5 ²	2_

Greedy idea: Subtract greate at perfect square <= n. from n.

$$n = 50 \implies 50 - 7^2 = 1 - 1^2 = 0$$
 2.

$$n = 70 \Rightarrow 70 - 8^2 = 6 - 2^2 = 2 - 1^2 = 1 - 1^2 = 6$$

$$n = 12$$
 \Rightarrow $12 - 3^2 = 3 - 1^2 = 2 - 1^2 = 1 - 1^2 = 0$ 4

Greedy idea wont work.

Code:

Brute force:

```
int count(n) {

if (n = = 0 || n = = 1) {

return n;

}

if (n < 0) {

return o;

}

an = a;

for (i=1; i*i(=n; i++) {

an = min(an, count(n-i²));

}

return out+1;
```

DP code:

n =12


```
int count(n){
   ap[] = new int [n+1];
   dp[0] = 0;
   dp(1) = 1
   for (1°=2; 1°<=n; 1+1/1
        for (x=1; x*x <=i; x++) <
             dp(i) = min(dp(i), dp(i-x*x)) + 1;
  return afinj;
```

TC: 0(n * Tn)

sc: o(n)

thanks (i)