Arithmetic on Picard curves of CM-type

Anna Somoza Universitat Politècnica de Catalunya

25 January 2015

Introduction

- Abelian varieties of CM-type
- 2 Picard fields
- Classification theorem
- 4 Algorithm
- Theta functions and invariants
- 6 Examples

Abelian varieties

An abelian variety over $\mathbb C$ is

• a g-dimensional complex torus:

$$A = \mathbb{C}^g/\Lambda$$
, $\Lambda = w_1\mathbb{Z} + \cdots + w_{2g}\mathbb{Z}$,

the w_i in \mathbb{C}^g being \mathbb{R} -linearly independent,

that can be polarized: admits a Riemann form with respect to Λ

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

- (1) E is an alternating non-degenerate \mathbb{R} -bilinear form.
- (2) It takes integral values on $\Lambda \times \Lambda$.
- (3) the form $(x, y) \mapsto E(ix, y)$ is positive definite.

Abelian varieties

Given $A = (\mathbb{C}^g/\Lambda, E)$ an abelian variety, $\Lambda = w_1 \mathbb{Z} + \cdots + w_{2g} \mathbb{Z}$, the matrix

$$P = (E(w_i, w_j)) \in \mathsf{Mat}_{2g}(\mathbb{Z})$$

is antisymmetric (skew-symmetric) $P^t = -P$. Frobenius shows that there is a canonical basis:

$$\Lambda = e_1 \mathbb{Z} + \cdots + e_{2g} \mathbb{Z}$$

such that

$$Q = (E(e_i, e_j)) = \begin{bmatrix} O_g & D \\ \hline -D & O_g \end{bmatrix}, \quad D = \operatorname{diag}(d_1, d_2, \ldots, d_g),$$

with $d_1 \mid d_2 \mid \cdots \mid d_g$ called the elementary divisors of E. When $d_1 = d_2 = \cdots = d_g = 1$, we call (A, E) principally polarized.

We say that $A = (\mathbb{C}^g/\Lambda, E)$ is of CM-type if

 $\mathsf{End}(A)\otimes \mathbb{Q}$

contains a commutative subring of dimension 2g over \mathbb{Q} .

Note that in this case A is defined over a number field.

Advantages:

- The more endomorphisms A has, the better arithmetic we can do.
- Its Hasse-Weil L-function can be computed as a Hecke L-function.

And it is easy to manufacture A of CM-type!

We ought all this to Shimura-Taniyama (and Deuring for g = 1).

A number field K/\mathbb{Q} is a CM-field if it is a quadratic extension K/K_0 where the base field K_0 is totally real but K is totally imaginary:

- $K_0 \hookrightarrow \mathbb{R}$ (all embeddings are real)
- $[K:K_0]=2$ and $K\hookrightarrow \mathbb{C}$ (no real embedding).

Examples: K = quadratic imaginary, cyclotomic fields, Picard fields, ...

A CM-type (K, Φ) is a CM-field K of degree 2g along with

$$\Phi = \{\sigma_1, \ldots, \sigma_g\}$$

where $\sigma_i \colon K \hookrightarrow \mathbb{C}$ are different embeddings and $\overline{\sigma}_i$ is not in Φ .

An abelian variety $A = (\mathbb{C}^g/\Lambda, E)$ is of CM-type (K, Φ) if there is an isomorphism

$$\mathcal{O}_{\mathcal{K}} \hookrightarrow \operatorname{End}(A), \quad \gamma \mapsto \operatorname{diag}(\sigma_1(\gamma), \dots, \sigma_g(\gamma)).$$

Let (K, Φ) be a CM-type.

Given an ideal \mathfrak{b} of the ring of integers $\mathcal{O}_{\mathcal{K}}$, we consider the lattice

$$\Phi(\mathbf{b}) = \{(\sigma_1(\beta), \ldots, \sigma_g(\beta)) : \beta \in \mathbf{b}\}.$$

The torus $A = \mathbb{C}^g/\Phi(\mathfrak{b})$ can be polarized, giving rise to an abelian variety of CM-type

$$\mathcal{O}_{\mathcal{K}} \hookrightarrow \mathsf{End}(A)$$

 $\gamma \mapsto \mathsf{diag}(\sigma_1(\gamma), \dots, \sigma_g(\gamma))$

Up to isogeny, all abelian varieties of CM-type can be constructed in this way. Moreover, A is simple if and only if the CM-type Φ is primitive.

Picard fields

Here after, a Picard field is a CM-field obtained as a Kummer extension of $\mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$ that is normal over \mathbb{Q} :

$$Gal(K/\mathbb{Q}) = \langle \sigma \rangle \simeq \mathbb{Z}/6\mathbb{Z}.$$

Primitive CM-type: $\Phi = \{1, \sigma, \sigma^2\}.$

Picard fields

As an application of the Louboutin and Yamamura lower bounds for the relative class number $h^-(K)$:

$$h(K) = h^{-}(K) \cdot h(K_0),$$

Park and Kwon (1997) give reasonable upper bounds for the conductors of the abelian sextic CM-fields with small class numbers. In particular, there are only 5 Picard fields with class number h(K) = 1, none with h(K) = 2 and a few dozens with h(K) = 3.

Classification theorem

Let (K, Φ) be a CM-type of degree 2g and let $\delta_{K/\mathbb{Q}}$ be the different of K.

Theorem (Shimura)

Let \mathfrak{b} be an ideal in \mathcal{O}_K such that $\delta_{K/\mathbb{Q}}\mathfrak{b}\mathfrak{b}=(b)$.

Assume there is a unit $\varepsilon \in \mathcal{O}_{K_0}^*$ such that εb is totally imaginary and $\operatorname{Im} \sigma(\varepsilon b) < 0$ for all $\sigma \in \Phi$. Write $\xi = (\varepsilon b)^{-1}$.

Then, the bilinear form

$$E_{\xi}(x,y) = \sum_{i=1}^{g} \sigma_{i}(\xi) \left(\overline{x}_{i} y_{i} - x_{i} \overline{y}_{i} \right)$$

defines a principal polarization on $\Phi(\mathfrak{b})$. Moreover, two such $(\mathbb{C}^g/\Phi(\mathfrak{b}_1), E_{\xi_1})$ and $(\mathbb{C}^g/\Phi(\mathfrak{b}_2), E_{\xi_2})$ are isomorphic if and only if there exists $\gamma \in K$ such that $\gamma \mathfrak{b}_1 = \mathfrak{b}_2$ and $\xi_1 = \gamma \overline{\gamma} \xi_2$.

Algorithm

Input: K a Picard CM-field, $\Phi = \{1, \sigma, \sigma^2\}$ where $Gal(K/\mathbb{Q}) = \langle \sigma \rangle$.

Output: Complete (finite) set of isomorphism classes of principally polarized abelian varieties having complex multiplication by \mathcal{O}_K .

Step 1: Compute:

- the different $\delta_{K/\mathbb{Q}}$ and the class group Cl(K).
- representatives $\{\varepsilon_1, \dots, \varepsilon_d\}$ for the cosets U^+/U_1 .
- representatives $\{u_1, \ldots, u_e\}$ for the cosets $\mathcal{O}_{\kappa}^*/U^+$.

Step 2: For every ideal class represented by \mathfrak{b} such that $\delta_{K/\mathbb{Q}}\mathfrak{b}\overline{\mathfrak{b}}=(b)$, and for every u_i check:

- whether $u_i b$ is totally imaginary and $Im(\sigma(u_i b)) < 0$ for all $\sigma \in \Phi$.
- let $\xi = (u_i b)^{-1}$. List $\{(\mathbb{C}^3/\Phi(\mathfrak{b}), E_{\xi \varepsilon_i}) : i = 1, \dots, d\}$.

Algorithm

For every isomorphism class represented by $(\mathbb{C}^3/\Phi(\mathfrak{b}), E_{\xi})$, we comupte a Frobenius basis $\mathfrak{b} = \langle \beta_1, \dots, \beta_6 \rangle$:

$$(E_{\xi}(\Phi(\beta_i),\Phi(\beta_j)))_{1\leq i,j\leq 6} = egin{bmatrix} O_3 & \operatorname{Id} \ \hline -\operatorname{Id} & O_3 \end{bmatrix}$$

Finally, arrange by columns

$$\mathcal{A}_1 = (\Phi(\beta_1), \Phi(\beta_2), \Phi(\beta_3)) \text{ and } \mathcal{A}_2 = (\Phi(\beta_4), \Phi(\beta_5), \Phi(\beta_6))$$

and we get the period matrix

$$\mathcal{A}_2^{-1}\mathcal{A}_1\in\mathbb{H}_3=\left\{\Omega\in\mathsf{GL}_3(\mathbb{C})\colon\Omega=\Omega^t\,,\mathsf{Im}(\Omega)\;\mathsf{is\;positive\;definite}
ight\}$$

in the Siegel upper half space.

Torelli's theorem and Picard curves

Given an abelian variety A; does there exist an algebraic curve C such that there is an isogeny between A and the Jacobian of C?

- for dim(A) = 1: this is clear;
- for dim(A) = 2: it has been proved;
- for dim(A) = 3: Principally polarized abelian varieties of dimension two or three are Jacobian varieties.

Therefore,

K Picard CM-field $\leadsto \Omega \in \mathbb{H}_3$ abelian variety $\leadsto C$ Picard curve

Theta functions

The Riemann theta function is the function

$$\theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} \exp\left(\pi i n^t \Omega n + 2\pi i n^t z\right)$$

for $(z,\Omega)\in\mathbb{C}^g imes\mathbb{H}_g$. Quasi-periodicity: for $a,\ b$ in \mathbb{Z}^g one has

$$\theta(z+a+\Omega b) = \exp(-\pi i(2b^t z + b^t \Omega b))\theta(z,\omega).$$

Let δ , $\epsilon \in \mathbb{Q}^g$. The theta function with characteristic (δ, ϵ) is

$$\theta \begin{bmatrix} \delta \\ \epsilon \end{bmatrix} (z, \Omega) = \sum_{n \in \mathbb{Z}^g} \exp \left(\pi i (n + \delta)^t \Omega(n + \delta) + 2 \pi i (n + \delta)^t (z + \epsilon) \right) .$$

The lambda modular function

$$egin{aligned} \Omega = (au) \in \mathbb{H} \ A = \mathbb{C}/\langle 1, au
angle \end{aligned} \qquad q = \exp(\pi i au)$$

The function

$$\lambda(\tau) = \left(\frac{\sqrt{2}\eta(\frac{\tau}{2})\eta^2(2\tau)}{\eta^3(\tau)}\right)^8 = \frac{\theta\begin{bmatrix}1/2\\1/2\end{bmatrix}^4(0,\tau)}{\theta\begin{bmatrix}0\\1/2\end{bmatrix}^4(0,\tau)}$$

$$\lambda(\tau) = 16q - 128q^2 + 704q^3 - 3072q^4 + 11488q^5 - 38400q^6 + \dots$$

is a Hauptmodul for the modular curve X(2).

Legendre's model:

$$y^2 = x(x-1)(x-\lambda)$$

$$j(\tau) = \frac{256(1 - \lambda + \lambda^2)^3}{\lambda^2 (1 - \lambda)^2}$$

Picard curves of CM-type

$$\Omega \in \mathbb{H}_3$$
$$A = \mathbb{C}^3 / \langle 1_3, \Omega \rangle$$

C:
$$y^3 = x(x-1)(x-\lambda)(x-\mu)$$

$$D_i = \begin{vmatrix} a \\ b \end{vmatrix} \in (\frac{1}{3}\mathbb{Z}/\mathbb{Z})^6 \text{ with } \{a+b\Omega\}_{i=1,27} = J(C)[1-\zeta_3] \subseteq J(C)[3].$$

$$\lambda = \left(\frac{\theta[D_2 + 2D_3 - D_1 - \Delta](0, \Omega)}{\theta[2D_2 + D_3 - D_1 - \Delta](0, \Omega)}\right)^3; \quad \mu = \left(\frac{\theta[D_2 + 2D_4 - D_1 - \Delta](0, \Omega)}{\theta[2D_2 + D_3 - D_1 - \Delta](0, \Omega)}\right)^3$$

where $D_1 + D_2 + D_3 + D_4 = 0$ but each three are linearly independent, and Δ is the Riemann constant.

Picard curves of CM-type

Shimura: If J(C) is defined over \mathbb{Q} then K/\mathbb{Q} is normal.

From a Picard CM-field K we obtain:

$$y^3 = x(x-1)(x-\lambda)(x-\mu)$$
 with $\lambda, \mu \in \overline{\mathbb{Q}}$

Then invariant theory gives us:

$$y^3 = x^4 + g_2 x^2 + g_3 x + g_4$$
 with $g_i \in \overline{\mathbb{Q}}$ $j_1 = \frac{g_3^2}{g_2^3}$, $j_2 = \frac{g_4}{g_2^2}$ $C: y^3 = x^4 + j_1 x^2 + j_1^2 x + j_1^2 j_2$.

Sage implementation. Example

$$h=1$$

$$h = 3$$
 $y^3 = x(x-1)(x-\lambda)(x-\mu)$

$$\frac{K_0}{x^3 - 21x - 28} \frac{\lambda}{-8.19 \cdot 10^{-22} + 1.49 \cdot 10^{-21}i} \frac{\mu}{-0.0148 + 0.00057i}$$

Sage implementation. Example

$$h = 1$$

$$h = 3$$

$$\frac{K_0}{x^3 - 21x - 28} \quad \frac{j_1}{-0.29595 - 0.0000264i} \quad \frac{j_2}{-0.083206 - 9.71 \cdot 10^{-6}i}$$

Arithmetic on Picard curves of CM-type

Anna Somoza Universitat Politècnica de Catalunya

25 January 2015