

Aristotle University of Thessaloniki Polytechnic School Department of Electrical and Computer Engineering Intelligent Systems and Software Engineering Labgroup

Continuous implicit authentication of smartphone users by navigational and behavioral data

Christos Emmanouil

Professor Supervisor: Andreas Symeonidis

PhD Supervisor: Thomas Karanikiotis

Contents

Introduction

Motivation

Constantly increasing number of smartphone users

Storage of personal and business data

Need to seccure the data stored on these devices.

Concerns about the adequacy of existing authentication methods.

Need to implement new authentication methodologies.

Introduction

Continuous - Implicit Authentication

Advantages:

- Enhanced security system
- Better user experience
- Ability to use behavioral characteristics
 - Easy adjustment
 - Low implementation cost
 - Development prospects

Problems:

- High sampling rates
- High power consumption
- Secondary devices (wearables)
- Insufficient evaluation
 - Small amount of data
 - 'lab' data
 - 'Wrong ' metrics
- o Insufficient data during execution

Introduction

Main idea

Objective:

- Satisfactory levels of security and transparency
- Use of data generated by the smartphone
- Tolerant of errors and/or missing data

Questions:

- Data set
- Feature extraction and preprocessing
- Structure of classifiers
- Trust subsystem structure
- Objective evaluation

Dataset

BrainRun:

- Set of behavioral data
- Motion and gesture sensor data
- Data collection application (android & iOS)
- 5 different games, with different levels of difficulty

Characteristics:

- 2218 users
- o 60% male, 26% female, 14% unknown
- 90% Android , 10% iOS

Games & Final Sets (after applying selection criteria):

Games	Data type	Number of Training Users	Number of Evaluation Users	
Mathis	Acc, Gyr, Swp	15	24	
Focus	Acc, Gyr, Swp	15	30	
Reacton	Acc, Gyr, Swp, Tap	15	45	
Memory	Acc, Gyr, Tap	15	44	
Speedy	Acc, Gyr, Tap	15	45	

Acc: Accelerometer, Gyr: Gyroscope, Swp: Swipe

Extract Features

Accelerometer, Gyroscope (1)

Selected: x, y and magnitude

Extract Features

Accelerometer, Gyroscope (2)

Extract Features

Accelerometer, Gyroscope (3)

Sensos	Features L0	Features L1				
	х	Mean, STD, Max, Min, Percentile25, Percentile50, Percentile75, Kurtosis, Skewness,				
		Amplitude1, Amplitude2, Frequency2, Mean Frequency				
Accelerometer	Accelerometer y Mean, STD, Max, Min, Percentile25, Percentile50, Percentile75, Kurtosis,					
		Amplitude1, Frequency2				
	magnitude	Mean, STD, Max, Min, Percentile25, Percentile50, Percentile75, Kurtosis, Skewness,				
	Amplitude, Frequency2					
	х	Mean, Max, Min, Percentile75, Kurtosis, Skewness, Amplitude1, Frequency2, Mean				
_		Frequency				
Gyroscope	У	Mean, Min, Kurtosis, Skewness, Frequency2				
	magnitude	Mean, Min, Kurtosis, Skewness, Frequency2				

Methodology Extract Features

Gestures

Gesture	Features Final
Тар	Duration
	Duration, Mean X, Mean Y, Trace Length, Trace Projection, Start Velocity,
Swipe	Stop Velocity, Horizontal Acceleration, Vertical Acceleration, Slope, Mean
	Square Error, Coefficient of Determination

Classifiers

What do we know?

- Single class classification problem
- Solving with RBF-OCSVM
- Impossible to use one model per classifier
- The parameters (nu, gamma) affect the RBF-OCSVMs

What do we recommend?

- Using multiple RBF-OCSVMs , per classifier
- Use a range of values for the parameters
- Collective final decision

Questions:

- Range of parameters
- Number of deciding models

Classifier for a Single Data Type

Methodology

Classifiers

Parameters Range

Туре	Nu			Gamma		
	Start Value	End Value	Step	Start Value	End Value	Step
Accelerometer	0.001	0.06	0.003	0.0001	0.004	0.0002
Gyroscope	0.11	0.31	0.01	0.001	0.04	0.002
Swipes	0.01	0.21	0.01	0.001	0.06	0.003
Taps	0.02	0.6	0.03	0.7	0.795	0.005

Methodology

Classifiers

Number of Models

Data Type	Optimal Number				
Accelerometer	30				
Gyroscope	60				
Swipes	60				
Taps	60				

Confidence Subsystem

$$CL_n = \begin{cases} CL_{n-1} + PositiveStep(Game) * Weights(DataType) * abs(p), & p > 0 \\ CL_{n-1} + NegativeStep(Game) * Weights(DataType) * abs(p), & p \leq 0 \end{cases}$$

Initial Con	60				
Threshold			35		
	Mathisis	Focus	Reacton	Speedy	Memoria
Negative Step	-15	-15	-15	-15	-15
Positive Step	+10	+10	+10	+10	+10

System Summary - Structure of Final Experiments

Trust System - Multiple RBF-OCSVMs

LOF - Nu-Gamma

Per Game

Comparisons (1)

Results Comparisons (2)

	Mathisis	Focus	Reacton	Memoria	Speedy
Σύστημα Αισθητήρων	5.20	6,00	4.30	5,70	5,70
(FRR %)	0,20	0,00	4,00	0,70	0,70
Σύστημα Χειρονομειών	1.92	1,06	2,32 3,58	3.44	0,065
(FRR με Σύστημα Εμπιστοσύνης %)	1,02	1,00	(Swipes Taps)	σ,	0,000
Τρέχουσα Εργασία	1.79	1.84	4,56	6.45	6,68
(FRR με Σύστημα Εμπιστοσύνης %)	1,70	1,01	1,00	0, 10	0,00

	Mathisis	Focus	Reacton	Memoria	Speedy
Σύστημα Αισθητήρων (FAR %)	4,08	3,50	6,90	1,10	5,40
Σύστημα Χειρονομειών (Αριθμός Αποδεκτών Χειρονομειών)	1,70	3,92	8,08 11,37 (Swipes Taps)	21,83	277,47
Προκέιμενο Σύστημα (Αριθμός Αποδεκτών Δειγμάτων Αισθητήρων & Χειρονομειών)	5,84 & 12,11	11,53 & 16,27	2,98 & 13,54	2,23 & 10,40	1,67 & 17,39

Sensor Pack Size: 500 counts

Sensor Packet Size: ~50 counts

Conclusions

Methodology & Techniques

- Using multiple RBF- OCSVMs serves system security.
- The trust system helps form an easy-to-use system.
- Denoising the training data with LOF improves security.
- The nu and gamma parameters of RBF- OCSVMs play a decisive role in ensuring a balance between security and usability.

System

- Robust to measurement errors.
- Satisfactory security and transparency metrics.
- Quick check
- Objective evaluation

Future Work

Ideas

- Dynamic weights in classifiers
- Option to select nu-gamma ranges
- Combination with context-aware techniques
- Ability to adapt to changes in owner behavior

Thanks!

Anomaly Detection - One Class Classification

Detection of Extreme Samples (Outlier Detection):

- Unsupervised
- Detection of Areas of High Sample Density
- Data Denoising
- Isolation Forest, Elliptic Envelope, Local Outlier Factor

Detection of Unusual Samples (Novelty Detection):

- Semi-Supervised
- Delimitation of the Total Education Area
- Denoised Training Sets
- One Class Support Vector Machine

Local Outlier Factor (LOF)

$$RD(Xi, Xj) = max(kDistance(Xj), Distance(Xi, Xj))$$

$$LDR_k(A) = \frac{1}{\sum_{Xj \in N_k(A)} \frac{RD(A, Xj)}{||N_k(A)||}}$$

$$LOF_k(A) = \frac{\sum_{Xj \in N_k(A)} LRD_k(Xj)}{||N_k(A)||} \times \frac{1}{LRD_k(A)}$$

One Class Support Vector Machine (OCSVM)

Evaluation Metrics

False Rejection Rate =
$$\frac{FN}{TP + FN}$$

False Acceptance Rate =
$$\frac{FP}{TN+FP}$$

