Data Loading

```
1!pip install 'pycaret[full]'
1 from google.colab import drive
2 import pandas as pd
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import mean_squared_error, mean_absolute_error,accuracy_score, r2_score
5 from pycaret.regression import*
6 from google.colab import files
7
8 drive.mount('/content/drive')
10 dfVanco = pd.read_excel('/content/drive/MyDrive/data/original_dataset.xlsx')
   Mounted at /content/drive
1!pip install shap
1 import warnings
2 import numba
4 warnings.filterwarnings("ignore", category=numba.NumbaDeprecationWarning)
6 import pandas as pd
7 import numpy as np
8 import shap
9 import math
10 from pycaret.regression import*
11 from math import isnan
12 from IPython.display import display
13
14 pd.set_option('display.max_columns', None)
15 pd.set_option('display.max_rows', None)
1 print(dfVanco)
```

```
23. 7. 10. 오전 1:32
```

```
42.00 0.100879
19
      0
              116.239316
                           5.027179
                                                       6.869641
           0
20
      Ω
           0
               71.759259
                           3.142361
                                     35.00
                                           0.100879
                                                       6.869641
21
      0
          0
               78.282828
                           3.414394
                                     35.00
                                           0.063960
                                                      10.834865
22
      0
               55.645161
                           2.482403
                                     37.80
                                            0.050585
                                                      13.699582
23
      0
          0
               52.888889
                           2.358467
                                     35.70
                                            0.048298
                                                      14.348486
24
      0
               60.763889
                           2.743854
                                     49.00
                                            0.054834
                                                      12.638138
               96.848291
                           4.185574
                                     34.30
                                            0.084784
                                                       8.173704
               36.612166
                           1.676727
                                     35.00
                                            0.034788
                                                      19.920606
               84.785354
                           3.685549
                                     35.00
                                            0.074772
28
      0
          0
               93.423423
                           4.039757
                                     33.60
                                            0.081941
                                                       8.457259
29
                           2.544886
                                            0.081941
      0
          0
               56.496063
                                     44.10
                                                       8.457259
30
      0
          0
              133.807588
                           5 729776
                                            0 115460
                                     35 00
                                                       6 002063
31
      0
          0
               72.629630
                           3.187656
                                     37.10
                                            0.064683
                                                      10.713856
32
      0
          0
               36.213992
                           1.675123
                                     38.50
                                            0.034458
                                                      20.111666
33
      0
          0
               69.917081
                           3.101542
                                     43.40
                                            0.062431
                                                      11.100223
      0
          0
               74.275114
                           3.249372
                                     35.49
                                            0.066048
                                                      10.492314
      0
               55.851064
                           2.508989
                                     42.00
                                            0.050756
      0
               66.872428
                           2.968580
                                     42.00
                                           0.050756
                                                      13.653455
      0
          0
               94.387755
                           4.070969
                                            0.082742
                                     31.50
                                                       8.375449
               70.386905
                           3.064134
                                     30.10
                                            0.062821
                                                      11.031320
      0
               67.777778
                           3.006333
                                     42.00
                                            0.060656
                                                      11.425169
40
          0
      0
               94 256757
                           4 116507
                                     43 40
                                            0.082633
                                                       8 386469
41
                                            0.073324
      0
          0
               83.040936
                           3.654807
                                     44.80
                                                       9.451206
42
           0
               69.439891
                           3.051643
                                     36.40
                                            0.062035
                                                      11.171093
               92.953216
                           4.074149
                                    46.20 0.081551
                                                       8.497732
```

▼ Pre-processing

```
1 # This code is rounding certain columns to a specified decimal place using the round() function in pane
2
3 dfVanco['BMI'] = round(dfVanco['BMI'], 1)
4 dfVanco['WBC'] = round(dfVanco['WBC'], 1)
5 dfVanco['CrcI'] = round(dfVanco['CrcI'], 1)
6 dfVanco['Clvanco'] = round(dfVanco['Clvanco'], 1)
7 dfVanco['HaIf_life'] = round(dfVanco['HaIf_life'], 1)
8 dfVanco['Ke'] = round(dfVanco['Ke'], 3)
```

1 dfVanco[:3]

	Case_no	Gender	Age	Weight	Height	BMI	Initial VCM_daily_dose	ICU	WBC	Hb	PLT	CRP	eGFR	BUN	SCr	Albumin	TP	UA	NSAIDs
0	43	0	79	69.0	158.0	27.6	1000	0	5.9	7.3	134	43.23	90	35.6	0.45	2.5	5.6	4.5	0
1	89	0	74	72.0	163.0	27.1	1000	0	9.5	11.4	286	72.22	58	11.4	0.95	3.5	6.4	3.5	0
4																			>

1 dfVanco=dfVanco.drop(columns='Case_no')
2 dfVanco[:3]

		Gender	Age	Weight	Height	BMI	Initial VCM_daily_dose	ICU	WBC	Hb	PLT	CRP	eGFR	BUN	SCr	Albumin	TP	UA	NSAIDs	ARB	ACE
	0	0	79	69.0	158.0	27.6	1000	0	5.9	7.3	134	43.23	90	35.6	0.45	2.5	5.6	4.5	0	0	
	1	0	74	72.0	163.0	27.1	1000	0	9.5	11.4	286	72.22	58	11.4	0.95	3.5	6.4	3.5	0	0	
4																					>

```
1 dfVanco['Initial VCM_daily_dose'].plot.hist() 2 dfVanco['Initial VCM_daily_dose'].describe()
```

```
count
          166.000000
         1963.765060
mean
std
          500.652737
         1000.000000
min
25%
         1940.000000
50%
         2000.000000
75%
         2000.000000
         5700.000000
max
Name: Initial VCM_daily_dose, dtype: float64
```


Outlier Removal

```
1# To remove outliers, remove the top and bottom 5% of the dataset
2
3 q1 = dfVanco['Initial VCM_daily_dose'].quantile(0.05)
4 q2 = dfVanco['Initial VCM_daily_dose'].quantile(0.5)
5 q3 = dfVanco['Initial VCM_daily_dose'].quantile(0.95)
6 igr = g3 - g1
8 print(f'iqr: {iqr}')
9 print(f'low threshold: {q1-1.5*iqr}')
10 print(f'high theshold: {q3+1.5*iqr}')
   igr: 1300.0
   low threshold: -750.0
   high the shold: 4450.0
1 outlier1 = dfVanco['Initial VCM_daily_dose']>(q3+1.5*iqr)
2 outlier2 = dfVanco['Initial VCM_daily_dose']<(q1-1.5*iqr)
1 a = list(dfVanco[outlier2].index)
2 b = list(dfVanco[outlier1].index)
3 a.extend(b)
4 df1 = dfVanco.drop(a)
6 # df1 is the dataset after removing the top and bottom 5% of the dataset to remove outliers
7 print(f'# data: {len(df1)}')
8 df1['Initial VCM_daily_dose'].plot.hist(bins=10)
```

```
# data: 164
<Axes: ylabel='Frequency'>
1 df1.describe()
```

	Gender	Age	Weight	Height	BMI	Initial VCM_daily_dose	ICU	WBC	Hb	PLT	
count	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000000	164.000
mean	0.573171	69.701220	60.856707	161.765854	23.247561	1925.152439	0.158537	10.019512	10.276220	246.323171	79.428
std	0.496132	13.215152	11.752599	9.032419	4.047698	353.886148	0.366362	8.898955	1.895615	118.723163	75.809
min	0.000000	22.000000	33.000000	135.000000	14.300000	1000.000000	0.000000	0.100000	5.500000	14.000000	1.000
25%	0.000000	63.000000	53.000000	155.000000	20.600000	1890.000000	0.000000	6.325000	9.000000	167.000000	14.92
50%	1.000000	73.000000	60.000000	163.000000	23.300000	2000.000000	0.000000	8.900000	10.100000	238.000000	54.790
75%	1.000000	79.000000	69.000000	169.250000	25.700000	2000.000000	0.000000	11.350000	11.525000	320.500000	130.00!
max	1.000000	91.000000	100.000000	180.000000	33.300000	3000.000000	1.000000	97.100000	14.700000	646.000000	300.000
%											
4	1000	1250 1	500 1/5	0 2000	2250	2500 2/50	3000				+

Modeling training using pycaret, an auto machine library

```
1 reg1 = setup(data=df1, target='Initial VCM_daily_dose',
                 train_size = 0.8,
3
                 fold = 5, fold_shuffle = True,
4
                use_gpu=True,
5
                session_id = 42
6
                 Description
                                         Value
    0
                    Session id
                                           42
    1
                       Target Initial VCM_daily_dose
    2
                   Target type
                                     Regression
```

•	0	(154.22)
3	Original data shape	(164, 33)
4	Transformed data shape	(164, 33)
5	Transformed train set shape	(131, 33)
6	Transformed test set shape	(33, 33)
7	Numeric features	32
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	KFold
13	Fold Number	5
14	CPU Jobs	-1
15	Use GPU	True
16	Log Experiment	False
17	Experiment Name	reg-default-name
18	USI	0ec9

▼ Evaluation

```
1 best = compare_models(sort='mse')
```

	Model	MAE	MSE	RMSE	R2	RMSLE	MA
et	Extra Trees Regressor	213.1982	107018.1676	324.7718	0.1405	0.1880	0.1
lightgbm	Light Gradient Boosting Machine	241.5854	112739.0369	332.2827	0.0909	0.1914	0.1
rf	Random Forest Regressor	223.7567	113796.5242	334.8708	0.0850	0.1950	0.1
catboost	CatBoost Regressor	230.4799	113844.6089	334.3818	0.0889	0.1954	0.1
ada	AdaBoost Regressor	229.7622	114563.9985	335.1575	0.0863	0.1936	0.1
br	Bayesian Ridge	234.2260	115319.1758	337.3491	0.0674	0.1980	0.1
huber	Huber Regressor	220.7969	125404.9419	352.7258	-0.0170	0.2087	0.1
omp	Orthogonal Matching Pursuit	241.0297	125413.9385	352.9780	-0.0328	0.2063	0.1
dummy	Dummy Regressor	235.6235	125955.9228	353.1710	-0.0168	0.2089	0.1
en	Elastic Net	253.7400	129943.5931	357.2337	-0.0450	0.2070	0.1
knn	K Neighbors Regressor	248.6442	130333.1501	359.8911	-0.0662	0.2095	0.1

1 best_tune = tune_model(best)

	MAE	MSE	RMSE	R2	RMSLE	MAPE
Fold						
0	172.0221	89976.3895	299.9606	0.2912	0.1843	0.1139
1	183.6236	69715.2506	264.0365	0.2208	0.1524	0.1087
2	270.5127	142981.3852	378.1288	0.0380	0.2094	0.1472
3	221.9522	128962.3257	359.1132	0.1109	0.2063	0.1413
4	181.3184	83082.0580	288.2396	0.2298	0.1798	0.1156
Mean	205.8858	102943.4818	317.8957	0.1781	0.1864	0.1254
Std	36.5532	28095.3766	43.4255	0.0910	0.0207	0.0157
Fitting	5 folds fo	or each of 10	candidates	, totall	ing 50 f	its

1 evaluate_model(best_tune)

1 predictions = predict_model(best_tune)
2 predictions[:5]

MAE

MSE

RMSE

Model

0 E	xtra Trees	Regre	ssor 241	.1974 10)5707.4193	325.1	268 ().1315	0.17	71 0.1380							
	Gender	Age	Weight	Height	BMI	ICU	WBC	Hb	PLT	CRP	 TZP	FLC	FQ	Crcl	Clvanco	Vd	Ke
135	1	84	85.0	170.0	29.400000	0	10.4	10.3	192	129.479996	 0	0	0	83.699997	3.7	59.500000	0.074
115	1	84	68.0	170.0	23.500000	0	6.7	12.5	259	47.610001	 0	0	0	67.800003	3.0	47.599998	0.061
131	1	76	68.0	175.0	22.200001	0	9.2	11.5	230	39.410000	 0	0	0	94.400002	4.1	47.599998	0.083
55	0	58	60.0	160.0	23.400000	1	19.9	11.0	393	90.570000	 0	0	0	98.400002	4.3	42.000000	0.086
95	1	40	69.0	166.0	25.000000	0	18.1	13.0	280	163.240005	 0	0	0	121.300003	5.3	48.299999	0.105
4	п	ر د	_														+
_	esult[•			ione['Ir	itic	.1 \/('M da	i Iv	doso'l							

R2 RMSLE

MAPE

```
1 df_result = pd.DataFrame()
2 df_result['true'] = predictions['Initial VCM_daily_dose']
3 df_result['prediction'] = predictions['prediction_label']
4
5 # Since vancomycin is prescribed in units of 100 anyway, the numerical value is rounded up to 100.
6 def round_to_nearest_fifty(number):
7     return round(number / 50.0) * 50
8
9 rounded_values = [round_to_nearest_fifty(num) for num in predictions['prediction_label']]
10 predictions["prediction_label"] = rounded_values
11 predictions
```

	Gender	Age	Weight	Height	BMI	ICU	WBC	Hb	PLT	CRP	 TZP	FLC	FQ	Crcl	Clvanco	Vd	ŀ
135	1	84	85.0	170.0	29.400000	0	10.4	10.3	192	129.479996	 0	0	0	83.699997	3.7	59.500000	0.0
115	1	84	68.0	170.0	23.500000	0	6.7	12.5	259	47.610001	 0	0	0	67.800003	3.0	47.599998	0.0
131	1	76	68.0	175.0	22.200001	0	9.2	11.5	230	39.410000	 0	0	0	94.400002	4.1	47.599998	0.0
55	0	58	60.0	160.0	23.400000	1	19.9	11.0	393	90.570000	 0	0	0	98.400002	4.3	42.000000	0.0
95	1	40	69.0	166.0	25.000000	0	18.1	13.0	280	163.240005	 0	0	0	121.300003	5.3	48.299999	0.1
29	1	58	63.0	168.0	22.299999	0	7.3	11.1	223	24.450001	 0	0	0	56.500000	2.5	44.099998	0.0
157	1	71	70.0	170.0	24.200001	0	9.4	10.6	177	179.339996	 1	0	0	82.800003	3.7	49.000000	0.0
51	0	75	55.0	154.0	23.200001	0	10.9	10.1	383	5.340000	 0	0	0	69.199997	3.1	38.500000	0.0
101	1	65	67.0	167.0	24.000000	0	8.0	13.5	285	7.550000	 0	0	0	90.599998	4.0	46.900002	0.0
145	1	48	80.0	171.0	27.400000	0	8.7	10.1	396	113.989998	 0	0	0	152.600006	6.6	56.000000	0.1
19	0	76	60.0	153.0	25.600000	1	6.4	10.9	279	24.340000	 0	0	0	116.199997	5.0	42.000000	0.1
85	0	76	43.0	159.0	17.000000	0	7.7	9.7	295	99.320000	 0	0	0	58.000000	2.5	30.100000	0.0
15	1	59	68.0	165.0	25.000000	0	5.1	10.8	198	7.600000	 0	0	0	70.800003	3.2	47.599998	0.0
66	0	76	60.0	145.0	28.500000	0	6.6	10.8	227	161.970001	 0	0	0	65.699997	2.9	42.000000	0.0
24	1	85	70.0	165.0	25.700001	0	12.2	8.3	221	185.979996	 0	0	0	60.799999	2.7	49.000000	0.0
30	1	61	50.0	160.0	19.500000	1	13.0	8.3	176	78.860001	 0	0	0	133.800003	5.7	35.000000	0.1
132	1	71	50.0	172.0	16.900000	0	3.4	8.2	90	3.930000	 1	0	0	90.400002	3.9	35.000000	0.0
105	1	78	64.0	180.0	19.799999	0	18.6	9.2	217	157.429993	 0	0	0	122.500000	5.3	44.799999	0.1
152	1	37	58.0	173.0	19.400000	0	10.0	5.5	202	142.759995	 0	0	0	150.899994	6.5	40.599998	0.1
16	1	81	43.0	150.0	19.100000	0	2.5	8.8	300	131.580002	 0	0	0	34.900002	1.6	30.100000	0.0
75	0	69	54.0	159.0	21.400000	1	0.8	9.4	155	300.000000	 0	0	0	54.500000	2.4	37.799999	0.0
18	0	82	51.0	135.0	28.000000	0	6.9	14.2	186	1.000000	 0	0	0	57.200001	2.5	35.700001	0.0
12	0	81	75.0	150.0	33.299999	0	10.5	10.1	352	103.440002	 0	0	0	66.099998	3.0	52.500000	0.0
9	0	71	70.0	168.0	24.799999	1	13.1	7.5	202	252.940002	 0	0	0	54.299999	2.5	49.000000	0.0
31	1	66	53.0	156.0	21.799999	0	9.2	8.2	301	133.399994	 0	0	0	72.599998	3.2	37.099998	0.0
155	1	67	65.0	163.0	24.500000	0	9.3	9.7	607	41.669998	 1	0	0	92.800003	4.1	45.500000	0.0
98	1	83	60.0	165.0	22.000000	0	7.3	13.6	187	3.860000	 0	0	0	64.199997	2.9	42.000000	0.0
56	0	72	44.0	155.0	18.299999	0	10.0	10.9	444	79.419998	 1	0	0	70.599998	3.1	30.799999	0.0
134	1	65	58.0	160.0	22.700001	0	5.1	9.9	191	1.000000	 0	0	0	80.599998	3.5	40.599998	0.0
160	1	59	53.0	165.0	19.500000	0	10.8	10.7	271	94.449997	 0	0	0	91.699997	4.0	37.099998	0.0
139	1	79	68.0	165.0	25.000000	0	7.1	14.5	245	128.649994	 0	0	0	50.099998	2.3	47.599998	0.0
78	0	81	60.0	152.0	26.000000	0	7.8	11.9	186	5.470000	 0	0	0	68.500000	3.0	42.000000	0.0
60	Λ	72	50.0	151 ∩	21 000000	Λ	5.6	ΩΩ	1/12	63 880001	Λ	Λ	Λ	02 000000	40	35 000000	0.0

1 df_result['prediction']

```
2007.555487
135
       2023.853162
2071.346032
115
131
55
       1998.173686
95
       2036.220125
       1975.344562
157
       2051.056657
51
       1976.986221
101
       2039.870315
       2024.522200
145
19
85
        1980.268815
       1638.200696
15
       2019.613864
66
       1960.596171
24
       2000.841945
30
        1831.280865
       1883.687596
105
       2096.465141
152
       2031.064895
16
        1535.573482
75
18
12
        1864.311616
        1821.083830
        1918.628636
9
31
        1836.806006
```

```
23. 7. 10. 오전 1:32
```

```
155
          2012.708891
   98
          1999.624005
   56
          1821.995045
          1986.274837
   160
          1972.078726
          1881.710616
   139
   78
          1963.245349
   60
          1883.324713
   Name: prediction, dtype: float64
1 df_result['prediction']=predictions["prediction_label"]
2 df_result['prediction']
   135
115
131
55
95
          2000
          2000
2050
          2000
          2050
   29
157
          2000
          2050
   51
          2000
   101
          2050
   145
          2000
   19
85
          2000
          1650
   15
66
          2000
          1950
   24
          2000
   30
          1850
          2100
   152
          2050
   16
75
          1550
          1850
   18
12
          1800
          1900
   9
31
          1850
          1950
   155
          2000
          2000
   56
134
          1800
          2000
   160
          1950
   139
          1900
   78
          1950
   60
          1900
```

▼ Results

1 df_result

Name: prediction, dtype: int64

```
1
        true prediction
   135 2000
                   2000
   115 2000
                   2000
        2000
                   2050
   131
        2000
                   2000
        2000
                   2050
    95
    29
        1600
                   2000
   157
        2500
                   2050
                   2000
        2000
    51
        2000
                   2050
        2300
                   2000
   145
        1500
                   2000
    19
        2000
    85
                   1650
        1400
                   2000
    15
        2000
                   1950
        1500
    24
                   2000
1 df_result['accuracy'] = np.where(abs(df_result['true'] - df_result['prediction']) <=50, 1, 0)
2 accuracy = round((len(df_result.loc[df_result['accuracy'] == 1])/ len(df_result)) * 100, 1)
3 print('Accuracy: ', accuracy, '%')
4
  Accuracy: 33.3 %
```

Accuracy: 33.3 %

1 plot_model(best_tune, plot = 'error')

Log Transformation of 'Initial VCM_daily_dose'

```
1# Applying a log transformation to the 'Initial VCM_daily_dose' column in the df_D2 dataframe.
2# This process is often used in data science to manage skewed data or to linearize relationships that
1 df1['Initial VCM_daily_dose_log'] = df1['Initial VCM_daily_dose'].apply(lambda x: math.log(x))
1 df2=df1.drop(columns='Initial VCM_daily_dose')
```

	Gender	Age	Weight	Height	BMI	ICU	WBC	Hb	PLT	CRP	 AG	TZP	FLC	FQ	Crcl	Clvanco	Vd	Ke	Half_life	VCN
0	0	79	69.0	158.0	27.6	0	5.9	7.3	134	43.23	 0	1	0	0	110.4	4.8	48.3	0.096	7.2	
1	0	74	72.0	163.0	27.1	0	9.5	11.4	286	72.22	 0	1	0	0	59.1	2.7	50.4	0.053	13.0	
2	0	74	52.0	146.0	24.4	0	97.1	7.2	14	55.73	 0	0	0	0	51.3	2.3	36.4	0.047	14.8	
3	0	83	48.0	153.0	20.5	0	6.1	8.4	285	39.53	 0	0	0	0	32.0	1.5	33.6	0.031	22.4	
4	0	88	40.0	148.0	18.3	0	7.4	9.4	221	56.37	 1	0	0	0	35.6	1.6	28.0	0.034	20.4	
•••											 									
159	0	73	54.0	150.0	24.0	0	12.1	5.5	41	144.89	 0	0	0	0	59.3	2.6	37.8	0.054	12.9	
160	1	59	53.0	165.0	19.5	0	10.8	10.7	271	94.45	 0	0	0	0	91.7	4.0	37.1	0.081	8.6	
161	1	63	74.0	168.0	26.2	0	11.2	9.5	130	52.92	 0	1	0	0	88.9	3.9	51.8	0.078	8.9	
162	0	64	63.0	155.0	26.2	0	6.9	7.5	179	260.20	 0	0	0	0	113.0	4.9	44.1	0.098	7.1	
163	1	74	77.0	176.0	24.9	0	11.2	12.3	358	26.25	 0	0	0	0	72.8	3.3	53.9	0.065	10.7	
4																				-

	Description	Value
0	Session id	42
1	Target	Initial VCM_daily_dose_log
2	Target type	Regression
3	Original data shape	(164, 33)
4	Transformed data shape	(164, 33)
5	Transformed train set shape	(131, 33)
6	Transformed test set shape	(33, 33)
7	Numeric features	32
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	KFold
13	Fold Number	5
14	CPU Jobs	-1
15	Use GPU	True
16	Log Experiment	False
17	Experiment Name	reg-default-name
18	USI	c7da

1 best = compare_models(sort='mse')

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
et	Extra Trees Regressor	0.1214	0.0359	0.1880	0.1741	0.0224	0.0164
xgboost	Extreme Gradient Boosting	0.1307	0.0371	0.1915	0.1390	0.0228	0.0175
lightgbm	Light Gradient Boosting Machine	0.1349	0.0376	0.1924	0.1135	0.0229	0.0181
ada	AdaBoost Regressor	0.1371	0.0389	0.1959	0.0978	0.0233	0.0185
catboost	CatBoost Regressor	0.1279	0.0391	0.1962	0.0966	0.0234	0.0172
rf	Random Forest Regressor	0.1264	0.0394	0.1973	0.0882	0.0235	0.0170
br	Bayesian Ridge	0.1357	0.0394	0.1975	0.0790	0.0235	0.0183

1 best_tune = tune_model(best)

	MAE	MSE	RMSE	R2	RMSLE	MAPE
Fold						
0	0.1069	0.0341	0.1846	0.2784	0.0222	0.0146
1	0.1020	0.0215	0.1466	0.2744	0.0174	0.0137
2	0.1515	0.0474	0.2176	0.0766	0.0259	0.0203
3	0.1302	0.0418	0.2045	0.1002	0.0243	0.0177
4	0.1143	0.0340	0.1844	0.1657	0.0221	0.0155
Mean	0.1210	0.0357	0.1875	0.1790	0.0224	0.0164
Std	0.0180	0.0087	0.0240	0.0847	0.0029	0.0024
Fitting	5 folds	for eac	h of 10	candidat	es tota	Ilina 50 f

1 evaluate_model(best_tune)

1 predictions = predict_model(best_tune)

1 predictions

	Gender	Age	Weight	Height	BMI	ICU	WBC	Hb	PLT	CRP	 TZP	FLC	FQ	Crcl	Clvanco	Vd	
135	1	84	85.0	170.0	29.400000	0	10.4	10.3	192	129.479996	 0	0	0	83.699997	3.7	59.500000	0.0
115	1	84	68.0	170.0	23.500000	0	6.7	12.5	259	47.610001	 0	0	0	67.800003	3.0	47.599998	0.0
131	1	76	68.0	175.0	22.200001	0	9.2	11.5	230	39.410000	 0	0	0	94.400002	4.1	47.599998	0.0
55	0	58	60.0	160.0	23.400000	1	19.9	11.0	393	90.570000	 0	0	0	98.400002	4.3	42.000000	0.0
95	1	40	69.0	166.0	25.000000	0	18.1	13.0	280	163.240005	 0	0	0	121.300003	5.3	48.299999	0.1
29	1	58	63.0	168.0	22.299999	0	7.3	11.1	223	24.450001	 0	0	0	56.500000	2.5	44.099998	0.0
157	1	71	70.0	170.0	24.200001	0	9.4	10.6	177	179.339996	 1	0	0	82.800003	3.7	49.000000	0.0
51	0	75	55.0	154.0	23.200001	0	10.9	10.1	383	5.340000	 0	0	0	69.199997	3.1	38.500000	0.0
101	1	65	67.0	167.0	24.000000	0	8.0	13.5	285	7.550000	 0	0	0	90.599998	4.0	46.900002	0.0
145	1	48	80.0	171.0	27.400000	0	8.7	10.1	396	113.989998	 0	0	0	152.600006	6.6	56.000000	0.1
19	0	76	60.0	153.0	25.600000	1	6.4	10.9	279	24.340000	 0	0	0	116.199997	5.0	42.000000	0.1
85	0	76	43.0	159.0	17.000000	0	7.7	9.7	295	99.320000	 0	0	0	58.000000	2.5	30.100000	0.0
15	1	59	68.0	165.0	25.000000	0	5.1	10.8	198	7.600000	 0	0	0	70.800003	3.2	47.599998	0.0
66	0	76	60.0	145.0	28.500000	0	6.6	10.8	227	161.970001	 0	0	0	65.699997	2.9	42.000000	0.0
24	1	85	70.0	165.0	25.700001	0	12.2	8.3	221	185.979996	 0	0	0	60.799999	2.7	49.000000	0.0
30	1	61	50.0	160.0	19.500000	1	13.0	8.3	176	78.860001	 0	0	0	133.800003	5.7	35.000000	0.1
132	1	71	50.0	172.0	16.900000	0	3.4	8.2	90	3.930000	 1	0	0	90.400002	3.9	35.000000	0.0
105	1	78	64.0	180.0	19.799999	0	18.6	9.2	217	157.429993	 0	0	0	122.500000	5.3	44.799999	0.1
152	1	37	58.0	173.0	19.400000	0	10.0	5.5	202	142.759995	 0	0	0	150.899994	6.5	40.599998	0.1
16	1	81	43.0	150.0	19.100000	0	2.5	8.8	300	131.580002	 0	0	0	34.900002	1.6	30.100000	0.0
75	0	69	54.0	159.0	21.400000	1	8.0	9.4	155	300.000000	 0	0	0	54.500000	2.4	37.799999	0.0
18	0	82	51.0	135.0	28.000000	0	6.9	14.2	186	1.000000	 0	0	0	57.200001	2.5	35.700001	0.0
12	0	81	75.0	150.0	33.299999	0	10.5	10.1	352	103.440002	 0	0	0	66.099998	3.0	52.500000	0.0
9	0	71	70.0	168.0	24.799999	1	13.1	7.5	202	252.940002	 0	0	0	54.299999	2.5	49.000000	0.0
31	1	66	53.0	156.0	21.799999	0	9.2	8.2	301	133.399994	 0	0	0	72.599998	3.2	37.099998	0.0
155	1	67	65.0	163.0	24.500000	0	9.3	9.7	607	41.669998	 1	0	0	92.800003	4.1	45.500000	0.0
98	1	83	60.0	165.0	22.000000	0	7.3	13.6	187	3.860000	 0	0	0	64.199997	2.9	42.000000	0.0
56	0	72	44.0	155.0	18.299999	0	10.0	10.9	444	79.419998	 1	0	0	70.599998	3.1	30.799999	0.0
134	1	65	58.0	160.0	22.700001	0	5.1	9.9	191	1.000000	 0	0	0	80.599998	3.5	40.599998	0.0
160	1	59	53.0	165.0	19.500000	0	10.8	10.7	271	94.449997	 0	0	0	91.699997	4.0	37.099998	0.0
139	1	79	68.0	165.0	25.000000	0	7.1	14.5	245	128.649994	 0	0	0	50.099998	2.3	47.599998	0.0
78	0	81	60.0	152.0	26.000000	0	7.8	11.9	186	5.470000	 0	0	0	68.500000	3.0	42.000000	0.0
60	0	73	50.0	151.0	21.900000	0	5.6	8.8	142	63.880001	 0	0	0	92.000000	4.0	35.000000	0.0

¹ df_result = pd.DataFrame()
2 df_result['Initial VCM_daily_dose_log'] = predictions['Initial VCM_daily_dose_log']

³ df_result['prediction_label_log']=predictions['prediction_label']

⁴ df_result

```
Initial VCM_daily_dose_log prediction_label_log
    135
                           7.600903
                                                 7.591751
    115
                           7.600903
                                                 7.599697
                           7.600903
                                                 7.609170
    131
    55
                           7.600903
                                                 7.561296
                           7.600903
                                                 7.613971
    95
                           7.377759
                                                 7.547644
    29
    157
                           7.824046
                                                 7.600560
    51
                           7.600903
                                                 7.556880
    101
                           7.600903
                                                 7.606026
                           7.740664
                                                 7.593808
    145
    19
                           7.313221
                                                 7.572926
    85
                           7.600903
                                                 7.443332
                           7.244227
                                                 7.590630
    15
    66
                           7.600903
                                                 7.558088
    24
                           7.313221
                                                 7.592218
    30
                           7.377759
                                                 7.529913
    132
                           7.600903
                                                 7.556802
    105
                           7.600903
                                                 7.597727
    152
                           7.783224
                                                 7.581211
                           7.244227
                                                 7.375715
    16
    75
                           7.600903
                                                 7.469156
    18
                           7.313221
                                                 7.499468
    12
                           7.244227
                                                 7.564832
    9
                           7.090077
                                                 7.462667
                           7.377759
                                                 7.556428
    31
                           - -- -- --
1 index_list = [135, 115, 131, 55, 95, 29, 157, 51, 101, 145, 19, 85, 15, 66, 24, 30, 132, 105, 152, 16,
2 index_series = pd.Series(index_list) # Convert the list to a pandas Series
4# List comprehension to store values
5 value_list = [df1.loc[index, 'Initial VCM_daily_dose'] for index in index_series]
7 print(value_list)
8
```

[2000, 2000, 2000, 2000, 2000, 1600, 2500, 2000, 2000, 2300, 1500, 2000, 1400, 2000, 1500, 1600, 2000, 2000, 2400, 1400, 2000, 1500, 1400, 1200,

```
1 df_result['Initial VCM_daily_dose']=value_list 2 df_result
```

	Initial VCM_daily_dose_log	prediction_label_log	Initial VCM_daily_dose	1
135	7.600903	7.591751	2000	
115	7.600903	7.599697	2000	
131	7.600903	7.609170	2000	
55	7.600903	7.561296	2000	
95	7.600903	7.613971	2000	
29	7.377759	7.547644	1600	
157	7.824046	7.600560	2500	
51	7.600903	7.556880	2000	
101	7.600903	7.606026	2000	
145	7.740664	7.593808	2300	
19	7.313221	7.572926	1500	
85	7.600903	7.443332	2000	
15	7.244227	7.590630	1400	
66	7.600903	7.558088	2000	
24	7.313221	7.592218	1500	
30	7.377759	7.529913	1600	
132	7.600903	7.556802	2000	
105	7.600903	7.597727	2000	
152	7.783224	7.581211	2400	
16	7.244227	7.375715	1400	
75	7.600903	7.469156	2000	
18	7 313221	7 499468	1500	
df_re	esult['prediction'] = n	p.exp(df_result[';	orediction_label_log	g'])
^	7 000077	7 402007	1200	

1 df_result

	Initial VCM_daily_dose_log	prediction_label_log	Initial VCM_daily_dose	prediction	1
135	7.600903	7.591751	2000	1981.780232	
115	7.600903	7.599697	2000	1997.589857	
131	7.600903	7.609170	2000	2016.602619	
55	7.600903	7.561296	2000	1922.335154	
95	7.600903	7.613971	2000	2026.309476	
29	7.377759	7.547644	1600	1896.270271	
157	7.824046	7.600560	2500	1999.315232	
51	7.600903	7.556880	2000	1913.865346	
101	7.600903	7.606026	2000	2010.273127	
145	7.740664	7.593808	2300	1985.861322	

^{1 #} round off the prediction values to the nearest fifty
2 rounded_values = [round_to_nearest_fifty(num) for num in df_result['prediction']]

1 df_result

³ df_result['prediction']= rounded_values
4

```
Initial VCM_daily_dose_log prediction_label_log Initial VCM_daily_dose prediction
                                         7 501751
   125
                       7 600002
1 df_result['accuracy'] = np.where(abs(df_result['Initial VCM_daily_dose'] - df_result['prediction']) <=:
2 accuracy = round((len(df_result.loc[df_result['accuracy'] == 1])/ len(df_result)) * 100, 1)
3 print('Accuracy: ', accuracy, '%')
  Accuracy: 24.2 %
```

Dataset augmentation

```
7.600903
                                         7.556880
                                                                2000
                                                                          1900
1 df1 = df1.drop(columns=['Initial VCM_daily_dose_log'])
                       7710661
                                         7 502000
                                                                                                           1 # Dataset imbalance check
3 percentage = (df1['Initial VCM_daily_dose'].value_counts(normalize=True).loc[2000] * 100)
4 print(f"The percentage of data with 'Initial VCM_daily_dose' = 2000 is {percentage.round(1)} %")
  The percentage of data with 'Initial VCM_daily_dose' = 2000 is 60.4 %
                                                                 1300
                                                                          ∠UUU
                                                                                                           1# Check the dataset except for the value of ['Initial VCM_daily_dose'] = 2000
2 df_temp = df1[df1['Initial VCM_daily_dose'] != 2000]
3
4
5# the number of remaining data after erasing
6 print(f'# data: {len(df_temp)}')
7
8# check with histogram
9 df_temp['Initial VCM_daily_dose'].plot.hist(bins=10)
```

data: 65 <Axes: ylabel='Frequency'>


```
1# Amplify other datasets to match data imbalance
2 # n times data amplification: Amplify the original data using the data 'without' the initial dose value
3 # After many attempts, it is reasonable to amplify it by about 4 times.
4
5 n = 4
6 df_{list} = [df_{temp}] * n
7 df_iter = pd.concat(df_list)
8 df_D = pd.concat([df1, df_iter])
9
10
```

```
11 # the number of data after amplification
12 print(f'# data: {len(df_D)}')
13
14 # check with histogram
15 df_D['Initial VCM_daily_dose'].plot.hist(bins=10)
```


1 df_D

	Gender	Age	Weight	Height	BMI	Initial VCM_daily_dose	ICU	WBC	Hb	PLT	 LAB	AG	TZP	FLC	FQ	Crcl	Clvanco	Vd	Ke
0	0	79	69.0	158.0	27.6	1000	0	5.9	7.3	134	 0	0	1	0	0	110.4	4.8	48.3	0.096
1	0	74	72.0	163.0	27.1	1000	0	9.5	11.4	286	 0	0	1	0	0	59.1	2.7	50.4	0.053
2	0	74	52.0	146.0	24.4	1000	0	97.1	7.2	14	 0	0	0	0	0	51.3	2.3	36.4	0.047
3	0	83	48.0	153.0	20.5	1000	0	6.1	8.4	285	 0	0	0	0	0	32.0	1.5	33.6	0.031
4	0	88	40.0	148.0	18.3	1000	0	7.4	9.4	221	 0	1	0	0	0	35.6	1.6	28.0	0.034
159	0	73	54.0	150.0	24.0	2600	0	12.1	5.5	41	 0	0	0	0	0	59.3	2.6	37.8	0.054
160	1	59	53.0	165.0	19.5	2750	0	10.8	10.7	271	 0	0	0	0	0	91.7	4.0	37.1	0.081
161	1	63	74.0	168.0	26.2	2760	0	11.2	9.5	130	 0	0	1	0	0	88.9	3.9	51.8	0.078
162	0	64	63.0	155.0	26.2	2840	0	6.9	7.5	179	 0	0	0	0	0	113.0	4.9	44.1	0.098
163	1	74	77.0	176.0	24.9	3000	0	11.2	12.3	358	 0	0	0	0	0	72.8	3.3	53.9	0.065
4																			+

1 augmented_dataset = pd.ExcelWriter('augmented_dataset.xlsx')

1 df_D.to_excel(augmented_dataset, index=False)

1 augmented_dataset.save()

1 files.download('augmented_dataset.xlsx')

Model training with amplified data

1 # The amplified data is randomly corrupted and stored 2 df_D = df_D.sample(frac=1).reset_index(drop=True)

	Description	Value
0	Session id	42
1	Target	Initial VCM_daily_dose
2	Target type	Regression
3	Original data shape	(424, 33)
4	Transformed data shape	(424, 33)
5	Transformed train set shape	(339, 33)
6	Transformed test set shape	(85, 33)
7	Numeric features	32
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	KFold
13	Fold Number	5
14	CPU Jobs	-1
15	Use GPU	True
16	Log Experiment	False
17	Experiment Name	reg-default-name
18	USI	de06

▼ Evaluation

```
1 # find and tune the best model
2 best = compare_models(sort='mse')
```

1

	Mode	I MAE		MS	E		RMSE	R2	F	RMSLE	M
et	Extra Regre	Trees 29.07	96	68	98.4477		81.6594	0.9697	(0.0433	0.
catbo	oost CatBo	62/3	50	11-	455.7905		106.0780	0.9492	(0.0575	0.
xabo 1 best_				16	759.8443		127.3179	0.9266	(0.0734	0.0
	MAE	MSE	RMSE	R2	RMSLE	MAPE					
Fold											
0	162.4343	40883.6865	202.1971	0.8099	0.1147	0.0931					
1	189.7252	63270.3435	251.5360	0.7449	0.1409	0.1108					
2	159.4690	39133.5211	197.8219	0.8177	0.1256	0.1000					
3	167.5104	44081.7959	209.9567	0.7878	0.1223	0.0966					
4	146.8399	33261.2860	182.3768	0.8639	0.0959	0.0789					
Mear	165.1958	44126.1266	208.7777	0.8048	0.1199	0.0959					
Std	14.0315	10197.9144	23.1948	0.0389	0.0147	0.0104					

Original model was better than the tuned model hence it will be returned NOTE: The display metrics are for the tuned model (not the original of

1# evaluate and make predictions with the best model 2 evaluate_model(best_tune)

Fitting 5 folds for each of 10 candidates, totalling 50 fits

Regression

110050.2007

1# assuming the data is already preprocessed and the setup is complete 2 ensemble = ensemble_model(best_tune, method = 'Bagging')

MAE MSE RMSE R2 RMSLE MAPE

1 # evaluate and make predictions with the bagging model 2 evaluate_model(ensemble)

1 predictions = predict_model(best_tune)
2 predictions2 = predict_model(ensemble)

		Model	I MAE	MSE	RMSE	R2	RMSLE	MAPE
()	Extra Trees Regresso	r 32.9447	8351.0648	91.3842	0.9653	0.0492	0.0165
		Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
-)	Bagging Regressor	48 1688	9855 8595	99 2767	0 9591	0.0544	0.0250

1 predictions

	Gender	Age	Weight	Height	BMI	ICU	WBC	Hb	PLT	CRP	 TZP	FLC	FQ	Crcl	Clvanco	Vd	Ke
145	0	75	70.0	150.0	31.100000	0	3.9	11.3	115	2.470000	 0	0	0	79.000000	3.5	49.000000	0.070
280	0	79	48.0	157.0	19.500000	1	7.3	9.0	370	41.070000	 0	0	0	93.400002	4.0	33.599998	0.082
175	1	57	43.0	172.0	14.500000	0	9.5	8.7	141	101.720001	 0	0	0	190.699997	8.1	30.100000	0.163
373	1	65	70.0	170.0	24.200001	1	8.3	9.1	339	7.140000	 0	0	0	98.500000	4.3	49.000000	0.086
420	1	87	55.0	170.0	19.000000	1	10.7	10.1	236	78.449997	 0	0	0	63.299999	2.8	38.500000	0.057
•••											 						
57	0	75	60.0	162.0	22.900000	0	11.5	10.0	218	198.199997	 0	0	0	86.900002	3.8	42.000000	0.077
415	1	66	75.0	178.0	23.700001	0	0.1	6.6	16	33.709999	 0	0	0	89.599998	4.0	52.500000	0.079
24	0	58	60.0	160.0	23.400000	1	19.9	11.0	393	90.570000	 0	0	0	98.400002	4.3	42.000000	0.086
17	0	82	51.0	135.0	28.000000	0	6.9	14.2	186	1.000000	 0	0	0	57.200001	2.5	35.700001	0.052
66	0	82	51.0	135.0	28.000000	0	6.9	14.2	186	1.000000	 0	0	0	57.200001	2.5	35.700001	0.052
4																	-

```
2 rounded_values = [round_to_nearest_fifty(num) for num in predictions['prediction_label']]
3
4 predictions["prediction_label"]= rounded_values
```

6 # create a dataframe to hold the true and predicted values

1# round off the prediction values to the nearest fifty

7 df_result = pd.DataFrame()

8 df_result['true'] = predictions['Initial VCM_daily_dose']

9 df_result['prediction'] = predictions['prediction_label']

1 predictions

	Gender	Age	Weight	Height	BMI	ICU	WBC	Hb	PLT	CRP	 TZP	FLC	FQ	Crcl	Clvanco	Vd	Ke
145	0	75	70.0	150.0	31.100000	0	3.9	11.3	115	2.470000	 0	0	0	79.000000	3.5	49.000000	0.070
280	0	79	48.0	157.0	19.500000	1	7.3	9.0	370	41.070000	 0	0	0	93.400002	4.0	33.599998	0.082
175	1	57	43.0	172.0	14.500000	0	9.5	8.7	141	101.720001	 0	0	0	190.699997	8.1	30.100000	0.163
373	1	65	70.0	170 0	24 200001	1	83	91	339	7 140000	0	0	0	98 500000	43	49 000000	0.086

1 df_result['prediction']

```
1950
280
       1600
175
       1200
373
       2000
       1900
420
       2400
57
415
       2100
24
       1950
17
       1500
Name: prediction, Length: 85, dtype: int64
```

▼ Results

```
1 df_result['accuracy'] = np.where(abs(df_result['true'] - df_result['prediction']) <= 50, 1, 0)
2 accuracy = round((len(df_result.loc[df_result['accuracy'] == 1])/ len(df_result)) * 100, 1)
3 print('Accuracy: ', accuracy, '%')
4
Accuracy: 85.9 %</pre>
```

1 plot_model(best_tune, plot = 'error')

▼ Feature engineering using SHAP

```
1 # create a shap explainer object
2 explainer = shap.Explainer(best_tune)

1 # calculate shap values on your data
2 shap_values = explainer.shap_values(df_D)
```

1 # plot the shap values
2 shap.summary_plot(shap_values, df_D, plot_type="bar")


```
1 # get feature importance
2 feature_importance = np.abs(shap_values).mean(axis=0)
3 feature_importance = pd.Series(feature_importance, index=df_D.columns)
4
5 # get top 10 important features
6 top_10_features = feature_importance.sort_values(ascending=False)[:10].index
7
8 # create a new dataframe with only the top 10 important features
9 df_D_important = df_D[top_10_features]

1 # get indices of the selected features
2 selected_features_indices = [df_D.columns.tolist().index(feature) for feature in top_10_features]
3
4 # plot SHAP values of the selected features
5 shap.summary_plot(shap_values[:, selected_features_indices], df_D[top_10_features], plot_type="bar" )
```


▼ Feature selection based on pycaret & SHAP feature importance

```
10
                                                  30
1 Pycaret_Feature_importance = ['Weight', 'Vd', 'Age', 'BUN', 'Half_life', 'eGFR', 'Height', 'Clvanco', 'I
2 SHAP_Feature_importance = ['Clvanco', 'CRP', 'eGFR', 'ARB', 'Age', 'PLT', 'SCr', 'Weight', 'Hb', 'Gender
3
4 # Convert the lists to sets and union them
5 union_set = set(Pycaret_Feature_importance) | set(SHAP_Feature_importance)
7 # Convert the result back to a list
8 union_list = list(union_set)
9 union_list
  ['Gender',
    'Clvanco',
   'Half_life',
   'eGFR',
   'ACEi',
   'Hb',
   'Vd'
   'CRP'
   'PLT'
   'Height',
   'Ke',
   'Weight',
   'ARB',
   'Age'
   'SCr'1
1 df_D2 = df_D[union_list].copy()
2 df_D2 = df_D2[['Gender', 'Age', 'Weight', 'Height', 'Hb', 'PLT', 'CRP', 'eGFR', 'BUN', 'SCr', 'ACEi', ',
3 df_D2['Initial VCM_daily_dose'] = df_D['Initial VCM_daily_dose']
4 df_D2
```

3

4

5

6

7

8 9

```
Initial
      Gender Age Weight Height Hb PLT CRP eGFR BUN SCr ACEi ARB Clvanco Vd Ke Half_life
                                                                                              VCM_daily_dose
1 reg3 = setup(data=df_D2,
              target='Initial VCM_daily_dose',
               train_size=0.8,
               fold=5,
               fold_shuffle=True,
              use_gpu=True,
              session_id=42
```

	Description	Value
0	Session id	42
1	Target	Initial VCM_daily_dose
2	Target type	Regression
3	Original data shape	(424, 17)
4	Transformed data shape	(424, 17)
5	Transformed train set shape	(339, 17)
6	Transformed test set shape	(85, 17)
7	Numeric features	16
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	KFold
13	Fold Number	5
14	CPU Jobs	-1
15	Use GPU	True
16	Log Experiment	False
17	Experiment Name	reg-default-name
18	USI	889d

1 best = compare_models(sort='mse')

	Mod	e I	MAE		MSE			RM	MSE	R2		RMSLE	MAPE	TT (Sec
et		a Trees ressor	32.733	0	8448.4	357		90).6314	0.9624		0.0487	0.0164	0.360
1 best_	tune =	tune_	_model	(best)										
	MA	Е	MSE	RMSE	R2	RMSLE	MAPE							
Fol	d													
0	138.474	4 323	43.0653	179.8418	0.8496	0.1018	0.0784							
1	184.288	8 619	69.6985	248.9371	0.7501	0.1434	0.1076							
2	153.436	6 3649	94.7437	191.0360	0.8300	0.1198	0.0953							
3	158.357	6 370	17.0786	192.3982	0.8218	0.1135	0.0925							
4	140.504	8 3328	88.2305	182.4506	0.8638	0.1026	0.0773							
Mea	n 155.012	5 402	22.5633	198.9327	0.8231	0.1162	0.0902							
Std	16.460	6 110	20.7179	25.4622	0.0393	0.0152	0.0113							
	-			candidate		-		returned	NOTE: The displ	av metrics a	re for the tun	ed model	(not t	ne original o

1 # evaluate and make predictions with the best model 2 evaluate_model(best_tune)

1 predictions = predict_model(best_tune)

```
        ModeI
        MAE
        MSE
        RMSE
        R2
        RMSLE
        MAPE

        D
        Extra Trees Regressor
        28.5347
        7675.5623
        87.6103
        0.9681
        0.0476
        0.0143
```

```
1# round off the prediction values to the nearest fifty
2 rounded_values = [round_to_nearest_fifty(num) for num in df_result['prediction']]
3
4 predictions["prediction_label"]= rounded_values
5
6 # create a dataframe to hold the true and predicted values
7 df_result = pd.DataFrame()
8 df_result['true'] = predictions['Initial VCM_daily_dose']
9 df_result['prediction'] = predictions['prediction_label']
```

23. 7. 10. 오전 1:32 1 predictions

	Gender	Age	Weight	Height	Hb	PLT	CRP	eGFR	BUN	SCr	ACEi	ARB	Clvanco	Vd	Ke	Half_life	VCM_d:
145	0	75	70.0	150.0	11.3	115	2.470000	84	14.800000	0.68	0	0	3.5	49.000000	0.070	9.9	
280	0	79	48.0	157.0	9.0	370	41.070000	90	11.700000	0.37	0	1	4.0	33.599998	0.082	8.5	
175	1	57	43.0	172.0	8.7	141	101.720001	90	3.900000	0.26	0	0	8.1	30.100000	0.163	4.3	
373	1	65	70.0	170.0	9.1	339	7.140000	90	10.200000	0.74	0	0	4.3	49.000000	0.086	8.0	
420	1	87	55.0	170.0	10.1	236	78.449997	90	19.799999	0.64	0	0	2.8	38.500000	0.057	12.2	
•••	•••		•••														
57	0	75	60.0	162.0	10.0	218	198.199997	90	7.900000	0.53	0	0	3.8	42.000000	0.077	9.1	
415	1	66	75.0	178.0	6.6	16	33.709999	89	27.700001	0.86	0	0	4.0	52.500000	0.079	8.8	
24	0	58	60.0	160.0	11.0	393	90.570000	90	20.700001	0.59	0	1	4.3	42.000000	0.086	8.0	
17	0	82	51.0	135.0	14.2	186	1.000000	90	12.300000	0.61	0	0	2.5	35.700001	0.052	13.3	
66	0	82	51.0	135.0	14.2	186	1.000000	90	12.300000	0.61	0	0	2.5	35.700001	0.052	13.3	
4																	>

```
1 df_result['accuracy'] = np.where(abs(df_result['true'] - df_result['prediction']) <= 50, 1, 0)
2 accuracy = round((len(df_result.loc[df_result['accuracy'] == 1])/ len(df_result)) * 100, 1)
3 print('Accuracy: ', accuracy, '%')
4</pre>
```

Accuracy: 85.9 %

1 plot_model(best_tune, plot = 'error')


```
1 explainer = shap.Explainer(best_tune)
2 shap_values = explainer.shap_values(df_D2)
3 shap.summary_plot(shap_values, df_D2, plot_type="bar")
```


▼ Log Transformation of augmented dataset of 'Initial VCM_daily_dose'

1 df_D2['Initial VCM_daily_dose']

```
2300
       2400
2
       1380
       1400
       2750
419
       2000
420
       2000
421
       1920
422
       2400
       2000
Name: Initial VCM_daily_dose, Length: 424, dtype: int64
```

1 df_D2['Initial VCM_daily_dose_log'] = df_D2['Initial VCM_daily_dose'].apply(lambda x: math.log(x))
2 df_D2

	Gender	Age	Weight	Height	Hb	PLT	CRP	eGFR	BUN	SCr	ACEi	ARB	Clvanco	Vd	Ke	Half_life	Initial VCM_daily_dose	VCM
0	1	48	80.0	171.0	10.1	396	113.99	90	6.7	0.67	0	0	6.6	56.0	0.131	5.3	2300	
1	1	55	85.0	180.0	8.5	501	84.08	82	10.4	0.95	0	0	4.7	59.5	0.092	7.5	2400	
2	0	91	41.0	148.0	7.4	159	34.18	52	32.3	1.00	0	0	1.1	28.7	0.024	28.8	1380	
3	0	82	50.0	150.0	10.4	228	159.65	90	10.3	0.40	0	1	3.7	35.0	0.075	9.2	1400	
4	1	59	53.0	165.0	10.7	271	94.45	90	7.7	0.65	0	0	4.0	37.1	0.081	8.6	2750	
•••																		
419	0	79	65.0	160.0	10.4	646	23.85	90	21.6	0.55	0	1	3.7	45.5	0.075	9.2	2000	
420	1	87	55.0	170.0	10.1	236	78.45	90	19.8	0.64	0	0	2.8	38.5	0.057	12.2	2000	
421	1	69	64.0	164.0	12.8	196	1.62	90	13.0	0.76	0	0	3.7	44.8	0.073	9.5	1920	
422	1	68	56.0	165.0	9.1	97	241.25	90	36.1	0.67	0	0	3.7	39.2	0.074	9.4	2400	
423	1	66	75.0	167.0	13.4	246	5.27	82	19.9	0.92	0	0	3.7	52.5	0.074	9.4	2000	
4																		-

1 df_D2['Initial VCM_daily_dose_log'].plot.hist(bins=10)

1 df_D3=df_D2.drop(columns='Initial VCM_daily_dose')

	Description	Value
0	Session id	42
1	Target	Initial VCM_daily_dose_log
2	Target type	Regression
3	Original data shape	(424, 17)
4	Transformed data shape	(424, 17)
5	Transformed train set shape	(339, 17)
6	Transformed test set shape	(85, 17)
7	Numeric features	16
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	KFold
13	Fold Number	5
14	CPU Jobs	-1
15	Use GPU	True
16	Log Experiment	False
17	Experiment Name	reg-default-name
18	USI	f142

1 best = compare_models(sort='mse')

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	0.0183	0.0032	0.0552	0.9572	0.0065	0.0024	0.3560
xgboost	Extreme Gradient Boosting	0.0232	0.0042	0.0631	0.9433	0.0074	0.0031	0.2180
catboost	CatBoost Regressor	0.0388	0.0043	0.0646	0.9422	0.0076	0.0051	15.5700
lightgbm	Light Gradient Boosting Machine	0.0475	0.0063	0.0783	0.9155	0.0092	0.0063	0.0840
rf	Random Forest Regressor	0.0474	0.0072	0.0821	0.9048	0.0097	0.0063	0.4780
gbr	Gradient Boosting Regressor	0.0538	0.0072	0.0840	0.9036	0.0099	0.0071	0.2040
dt	Decision Tree Regressor	0.0301	0.0098	0.0977	0.8651	0.0115	0.0040	0.0960
ada	AdaBoost Regressor	0.1153	0.0174	0.1319	0.7637	0.0155	0.0154	0.1640
lr	Linear Regression	0.1719	0.0433	0.2073	0.4174	0.0245	0.0230	0.1060
ridge	Ridge Regression	0.1737	0.0439	0.2088	0.4099	0.0248	0.0233	0.0920
knn	K Neighbors	N 1657	∩ ∩477	N 2175	N 3479	N N259	U U553	ი 1720
1 best_tun	e = tune_mode	el(best)						
	MAE MSE RMS	SE R2 RMS	LE MAPE					
Fold								
	0000 00100 011	24 2222 224	24 0.0440					

	W/ (C	MIOL	TIMOL	1112	THIOCE	MI7 (1 C
Fold						
0	0.0888	0.0129	0.1134	0.8039	0.0134	0.0118
1	0.1278	0.0263	0.1621	0.6808	0.0193	0.0172
2	0.1034	0.0167	0.1292	0.7658	0.0155	0.0140
3	0.0970	0.0142	0.1191	0.8096	0.0142	0.0130
4	0.0941	0.0153	0.1236	0.8003	0.0146	0.0125
Mean	0.1022	0.0171	0.1295	0.7721	0.0154	0.0137
Std	0.0136	0.0048	0.0171	0.0482	0.0021	0.0019
Eittina	E foldo	for one	h of 10	oondidat	oo toto	Ilina 50

1# evaluate and make predictions with the best model 2 evaluate_model(best_tune)

C→

Fitting 5 folds for each of 10 candidates, totalling 50 fits

Original model was better than the tuned model bence it will be returned NOTE: The display metrics are for the tuned model (not the original of the original of

Plot Type:

1 predictions = predict_model(best_tune)

```
Ke Half_life VCM_da
      Gender Age Weight Height
                                      Hb PLT
                                                      CRP
                                                          eGFR
                                                                       BUN SCr ACEi ARB Clvanco
                                                                                                             ۷d
 145
            0
               75
                       70.0
                              150.0 11.3 115
                                                 2.470000
                                                             84 14.800000 0.68
                                                                                     0
                                                                                          0
                                                                                                  3.5 49.000000 0.070
                                                                                                                               9.9
 280
            0
                79
                       48.0
                              157.0
                                      9.0
                                          370
                                                41.070000
                                                             90
                                                                 11.700000 0.37
                                                                                     0
                                                                                                  4.0 33.599998
                                                                                                                0.082
                                                                                                                               8.5
 175
            1
                57
                       43.0
                              172.0
                                      8.7
                                          141 101.720001
                                                             90
                                                                  3.900000 0.26
                                                                                     0
                                                                                          0
                                                                                                      30.100000
                                                                                                                0.163
                                                                                                                               4.3
                                                                                                      49.000000 0.086
                65
                       70.0
                              170.0
                                     9.1 339
                                                 7.140000
                                                             90
                                                                 10.200000 0.74
                                                                                     0
                                                                                          0
                                                                                                  4.3
                                                                                                                               8.0
 373
            1
            1
                87
                       55.0
                              170.0 10.1 236
                                                78.449997
                                                             90
                                                                 19.799999 0.64
                                                                                     0
                                                                                          0
                                                                                                  2.8
                                                                                                      38.500000 0.057
                                                                                                                              12.2
 420
 57
           0
                75
                       60.0
                              162.0 10.0 218 198.199997
                                                             90
                                                                  7.900000 0.53
                                                                                     0
                                                                                                  3.8 42.000000 0.077
                                                                                                                               9.1
 415
            1
                66
                       75.0
                              178.0
                                      6.6
                                           16
                                                33.709999
                                                             89 27.700001 0.86
                                                                                     0
                                                                                          0
                                                                                                  4.0 52.500000 0.079
                                                                                                                               8.8
                                                                                                  4.3 42.000000 0.086
            0
                58
                       60.0
                              160 0 11 0 393
                                                90 570000
                                                             90
                                                                 20 700001
                                                                            0.59
                                                                                     0
                                                                                                                               8.0
 24
  17
            0
                82
                              135.0 14.2
                                                 1.000000
                                                                 12.300000 0.61
                                                                                     0
                                                                                          0
                                                                                                  2.5 35.700001
                                                                                                                 0.052
                                                                                                                              13.3
                       51.0
                                          186
            0
                82
                              135.0 14.2 186
                                                 1.000000
                                                             90 12.300000 0.61
                                                                                     0
                                                                                          0
                                                                                                  2.5 35.700001 0.052
 66
                       51.0
                                                                                                                              13.3
4
```

```
1 df_result['Initial VCM_daily_dose']=value_list
2 df_result
```

1 df_result['prediction'] = np.exp(df_result['prediction_label_log'])

1 df_result

	Initial VCM_daily_dose_log	prediction_label_log	Initial VCM_daily_dose	prediction	1
145	7.600903	7.594826	2000	1987.884370	
280	7.377759	7.377759	1600	1600.000115	
175	7.090077	7.090077	1200	1200.000105	
373	7.600903	7.630908	2000	2060.920649	
420	7.600903	7.539718	2000	1881.298901	
57	7.783224	7.783224	2400	2400.000215	
415	7.600903	7.673586	2000	2150.780775	
24	7.600903	7.616061	2000	2030.548697	
17	7.313221	7.313221	1500	1500.000171	
66	7.313221	7.313221	1500	1500.000171	

85 rows × 4 columns

1# round off the prediction values to the nearest fifty

2 rounded_values = [round_to_nearest_fifty(num) for num in df_result['prediction']]

3 df_result['prediction'] = rounded_values

4 df_result

	Initial VCM_daily_dose_log	prediction_label_log	Initial VCM_daily_dose	prediction	1
145	7.600903	7.594826	2000	2000	
280	7.377759	7.377759	1600	1600	
175	7.090077	7.090077	1200	1200	
373	7.600903	7.630908	2000	2050	
420	7.600903	7.539718	2000	1900	
57	7.783224	7.783224	2400	2400	
415	7.600903	7.673586	2000	2150	
24	7.600903	7.616061	2000	2050	
17	7.313221	7.313221	1500	1500	
66	7.313221	7.313221	1500	1500	

85 rows \times 4 columns

1 df_result['accuracy'] = np.where(abs(df_result['Initial VCM_daily_dose'] - df_result['prediction']) <
2 accuracy = round((len(df_result.loc[df_result['accuracy'] == 1])/ len(df_result)) * 100, 1)
3 print('Accuracy: ', accuracy, '%')</pre>

Accuracy: 87.1 %

1 plot_model(best_tune, plot = 'error')

```
Prediction Error for ExtraTreesRegressor
         8.0
                     R^2 = 0.968
                     best fit
                     identity
         7.8
         7.6
1 final_VancoAl = finalize_model(estimator=best_tune)
1 save_model(model=final_VancoAl,
                   model_name='final_VancoAl',
2
3
                   verbose=False)
   (Pipeline(memory=FastMemory(location=/tmp/joblib),
              steps=[('numerical_imputer
                      TransformerWrapper(include=['Gender', 'Age', 'Weight', 'Height', 'Hb', 'PLT', 'CRP', 'eGFR', 'BUN', 'SCr', 'ACEi', 'ARB', 'Clvanco', 'Vd', 'Ke', 'Half_life'],
                                           transformer=SimpleImputer())),
                      ('categorical_imputer'
                       TransformerWrapper(include=[],
                                           transformer=SimpleImputer(strategy='most_frequent'))),
                      ('clean_column_names'
                       TransformerWrapper(transformer=CleanColumnNames())),
                      ('actual_estimator'
                       ExtraTreesRegressor(n_jobs=-1, random_state=42))]),
     'final_VancoAl.pkl')
```

1 from pycaret.regression import load_model

✓ 0초 오전 1:16에 완료됨