Solutions to Linear Representations of Finite Groups

Bryn Elesedy* Department of Computer Science University of Oxford

 $July\ 3,\ 2020$

Contents

	Cha	aracter Theory																															
	2.1																				 												
	2.2																				 												
	2.3																				 												
	2.4																				 												
	2.5																				 												
	2.6																				 												
	2.7																																
	2.8																				 												
	2.9																				 												
	2.10																				 												

^{*}bryn@robots.ox.ac.uk

2 Character Theory

2.1

Let V and V' be the corresponding representations. Then $\chi + \chi'$ is the character of the direct sum $V \oplus V'$. The character of the alternating square is then, for any s in the group,

$$(\chi + \chi')_{\sigma}^{2} = \frac{1}{2}((\chi(s) + \chi'(s))^{2} + \chi(s^{2}) + \chi'(s^{2}))$$

$$= \frac{1}{2}(\chi(s)^{2} + \chi(s^{2})) + \frac{1}{2}(\chi'(s)^{2} + \chi'(s^{2})) + \chi(s)\chi'(s)$$

$$= \chi_{\sigma}^{2}(s) + \chi_{\sigma}^{\prime 2}(s) + \chi(s)\chi'(s).$$

We can do the same thing for the symmetric square

$$(\chi + \chi')_{\alpha}^{2} = \frac{1}{2}((\chi(s) + \chi'(s))^{2} - \chi(s^{2}) + \chi'(s^{2}))$$

$$= \frac{1}{2}(\chi(s)^{2} - \chi(s^{2})) + \frac{1}{2}(\chi'(s)^{2} - \chi'(s^{2})) + \chi(s)\chi'(s)$$

$$= \chi_{\alpha}^{2}(s) + \chi_{\alpha}^{\prime 2}(s) + \chi(s)\chi'(s).$$

2.2

In the permutation representation, the matrix ρ_s will be a permutation matrix, with 1 at position (i, i) if i is fixed by s and 0 on the diagonal otherwise. The character $\chi(s)$ is the trace of this matrix, so is the number of elements fixed by s.

2.3

We may choose bases $\{e_i\}$ for V and $\{e'_j\}$ V' such that $\langle e_i, e'_j \rangle = \delta_{ij}$. Then for any matrix A we have, in the given bases,

$$\langle \rho_s x, Ax' \rangle = \sum_{ij} x_i x'_j (\rho_s)_{ki} A_{kj}.$$

So the map is invariant if and only if $A = (\rho_s^{-1})^{\top}$. We can then define a representation by $\rho_s' = (\rho_s^{-1})^{\top}$, which is clearly a representation. Existence and uniqueness have therefore been established.

2.4

The map ρ_s is clearly linear and invertible, since the $\rho_{i,s}$ are linear and invertible. Further, for any f in W

$$\rho_{st}f = \rho_{2,st}f\rho_{1,st}^{-1} = \rho_{2,s}\rho_{2,t}f\rho_{1,t}^{-1}\rho_{1,s}^{-1} = \rho_{s}\rho_{t}f.$$

We can then calculate the character by expanding in a basis. Let f have components f_{ab} in a basis for W. Then (using Einstein notation)

$$(\rho_s f)_{ij} = (\rho_{2,s})_{i\alpha} (\rho_{1s}^{-1})_{\beta j} f_{\alpha\beta}.$$

We calculate the trace of ρ_s by contraction of $\rho_s e_{ij}$ with elements e'_{kl} of the dual basis, which are such that $\langle e_{ij}, e'_{kl} \rangle = \delta_{ij} \delta_{kl}$. The conclusion then follows from $\chi(s^{-1}) = \chi(s)^*$ and that $\rho_{1,s}$ is a homomorphism.

2.5

The character of the unit representation is 1, so the number of times this representation occurs in ρ is therefore $(\chi|1) = \frac{1}{|G|} \sum_{g \in G} \chi(g)$.

2.6

a) Let e_x be the basis for the permutation representation V. From each of the c orbits, take a representative arbitrarily and denote them y_i $i=1,\ldots,c$. For each orbit, we can construct an invariant in V

$$\nu_i = \sum_{g \in G} \rho_g \boldsymbol{e}_{y_i}.$$

Denote by W_i the space spanned by ν_i , which is clearly invariant under G and irreducible, W_i is fixed by G and is hence the unit representation. We can therefore decompose V into the direct sum

$$U \oplus W_1 \oplus \cdots \oplus W_c$$
.

We can notice that U cannot contain the unit representation. If it did, then there would have to be an element of U that is fixed by G, but this element would form n orbit, which contradicts the hypothesis.

- b) In the permutation representation ρ_s is a permutation matrix, so the character of the representation $\chi(s)$ is the number of elements of X that are fixed by s. Clearly, there must be $\chi(s)^2$ elements fixed by ρ_s in $X \times X$.
- c) i) \iff ii) G is doubly transitive on $X \times X$, so is transitive on X, so the diagonal Δ is an orbit. Since G is doubly transitive, Δ^c is also an orbit. So these are the only two orbits. These statements also work the other way around.
 - ii) \iff iii) is just part a)
 - iii) \iff iv) is given in the hint. $\chi = 1 + \psi$ where ψ is the character of θ . Then since $(\chi^2|1) = 2$ (two orbits) expanding the square tells us that $(\psi^2|1) = 1$. However, because ψ is real valued (all of the matrices will be real in the permutation representation) we see that $(\psi^2|1) = \frac{1}{|G|} \sum_{g \in G} \psi(s) \psi(s)^* = (\psi|\psi)$. We know that if a character η has $(\eta|\eta) = 1$ then it is the character of an irreducible representation, so θ is irreducible.

2.7

Let χ be a character of G. We know that the regular representation has character $r_G(s) = |G| \mathbb{1} \{s = e\}$. If χ vanishes on all elements apart from the identity then we have that $\chi(s) = \chi(e) \mathbb{1} \{s = e\}$. The number of times that χ contains the unit representation is the number of distinct orbits in G, which is clearly an integer. Thus, with 1 denoting the character of the unit representation,

$$(\chi|1) = \frac{1}{|G|} \sum_{g \in G} \chi(g) = \frac{\chi(e)}{|G|} \in \mathbb{Z}$$

so $\chi(e)$ is an integral multiple of |G|.

2.8

- a) We can write $V_i = \bigoplus_{j=1}^{m_i} W_i$ where the W_i are irreducible representations. The map $h_i: W_i \to V_i$ can be used to define a linear map $h_i^j: W_i \to W_i$ with image the j^{th} copy of W_i by composing with a linear projection. This will of course still be linear and still commute with ρ_s because of the direct sum. By Schur's lemma we get that each h_j is a scalar multiple of the identity. For any h_i we therefore have dim $V/\dim W_i$ choices of these scalars, so this is the dimension of H.
- b) $a(h \cdot w) = (ah) \cdot w = h \cdot (aw)$ by the definition of tensor product multiplication. Hence F is linear by linearity of a and the sum given. Recall that ρ acts trivially on h so we have

$$F(\rho_s(h\cdot w)) = (\rho_s h)(\rho_s w) = \rho_s h(w) = \rho_s F(h\cdot w)$$

because h commutes with ρ_s . Clearly F is non-zero, otherwise H would be trivial. By Schur's lemma we therefore know that $H \otimes W_i \cong V_i$ and that F is a scalar multiple of the identity, hence provides us with such an isomorphism.

c) I'm not totally clear on what this question means. I think 'in the obvious way' means $h(\mathbf{w}) = \sum_{\alpha} h_{\alpha} w_{\alpha}$, in which case we can just apply part b) and we are done. Another possible interpretation is that $h(\mathbf{w}) = \sum_{\alpha} a_{\alpha} h_{\alpha}(w_{\alpha})$ for some scalars a_{α} , but in this case some of the scalars could be 0 and I think that this would mean that h is not invertible and hence couldn't be an isomorphism.

2.9

 $V_i = \bigoplus_{j=1}^m W_i$ and $V_{i,\alpha}$ is the image projection of the projection $p_{\alpha\alpha}$. We know from the proof of proposition 8 that the action of $p_{\alpha\alpha}$ on the basis of W_k $\{e_{\alpha}^k\}$ is $p_{\alpha\alpha}e_{\beta}^k = \mathbb{1}\{\beta = \alpha\}e_{\alpha}^k$, so $V_{i,\alpha}$ is the direct sum

$$V_{i,\alpha} = \bigoplus_{j=1}^{m} \operatorname{Span} \{e_{\alpha}^{j}\}.$$

We also know from 2.8 that h can be written in terms of a basis h_i where each of the $h_i = \lambda_i I$ is a scalar multiple of the identity. This means that h is surjective, since each summand of the direct sum is spanned by one element. It also means that h is injective because the sum is direct, so the elements of each of the summand are linearly independent. By linearity each h is clearly a homomorphism. The proof is complete.

2.10

Don't understand this exercise and can't finish it...

• V(x) is the smallest sub rep of V that contains x. This means that V(x) is the subspace generated by the orbit of x under G

$$V(x) = \operatorname{Span} \{ \rho_s x : s \in G \}.$$

• We can write $V_i = \bigoplus_{j=1}^m W_i$ where the j^{th} W_i has basis $\{e_{\alpha}^j\}$. So $x_{\alpha}^1 = \sum_{j=1}^m x_{j,\alpha} e_1^j$ where $x_{j,\alpha}$ are the components of the j^{th} term in the direct summand that forms $x \in V$ in the appropriate basis.

References

[Serre, 1977] Serre, J.-P. (1977). Linear representations of finite groups. Graduate texts in mathematics; 42. Springer-Verlag, New York.