Nombre y Apellido:

Legajo:

Examen Parcial

1. Sin usar soundness/corrección, demostrar:

(a)
$$p \leftrightarrow (p \land q) \models p \rightarrow q$$

(b)
$$\models (p \rightarrow q) \lor (q \rightarrow r)$$

2. Para cada uno de los siguientes secuentes encontrar una prueba en deducción natural. Realice una en forma lineal y otra en forma de árbol.

i.
$$\neg p \lor s$$
, $s \to q \vdash (r \to p) \to (r \to q)$

ii.
$$\neg p \rightarrow \neg q, \ q, \ \neg q \lor r \vdash p \land r$$

3. ¿Verdadero o falso? Justifique en cada caso.

Sea Γ un conjunto consistente de fórmulas, y ϕ una fórmula. El conjunto $\Gamma \cup \{\phi\}$ es consistente si ϕ es una:

- (a) fórmula satisfactible.
- (b) tautología.
- 4. Se quiere, en cada caso, encontrar un conjunto de fórmulas Γ que satisfaga las condiciones requeridas. Si esto es posible, dar un conjunto Γ y probar que la elección es válida. En caso contrario, justificar por qué no es posible encontrarlo.

i.
$$\phi \notin \Gamma \text{ y } \Gamma \vdash \phi$$
, donde $\phi \equiv (p_0 \to \neg p_0) \land (\neg p_0 \to p_0)$

ii.
$$\Gamma$$
 consistente, $\Gamma \nvdash p_0 \to p_1$ y $\Gamma \vdash \neg p_0 \lor p_1$

iii.
$$\Gamma$$
 inconsistente y $\Gamma \nvdash p_0 \to p_1$

iv. Γ sólo contiene tautologías y $\Gamma \vdash p_0$