Application of Diode: Clippers & Clampers

BPT: 401: Electronics and Modern Physics

Tutorial – 8

Diode Clipper (Limiter):

Clippers or limiters is a type of diode network that has the ability to "clip off" a portion of the input ac signal without distorting the remaining part of the ac waveform.

Diode Clipper (Limiter):

- ❖ In both Positive and Negative Clipping, a part of the output voltage looks like the input voltage.
- \diamond The output voltage is determined by the voltage divider formed by R₁ and the load resistor, R_L, as follows:

$$V_{out} = \frac{R_L}{R_I + R_L} V_{in}$$

• If R_{l} is small compared to R_{L} , then $V_{out} = V_{in}$

Voltage divider or Potential divider Circuit

$$V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$$

Biased Clipper

Biased Positive Clipper

- \clubsuit The level to which an ac voltage is clipped can be adjusted by adding a bias voltage, V_{BIAS} , in series with the diode.
- **The voltage at point A must equal V_{BIAS} + 0.7 V before the diode will become forward-biased and conduct.**
- ❖ Once the diode begins to conduct, the voltage at point A is limited to V_{BIAS} +0.7 V so that all input voltage above this level is clipped off.

Biased Negative Clipper

- To limit a voltage to a specified negative level, the diode and bias voltage must be connected as shown.
- ❖ In this case, the voltage at point A must go below V_{BIAS}
 − 0.7 V to forward-bias the diode and limit the input voltage.

Combination of Positive and Negative Clippers:

- When the voltage at point A reaches + 5.7 V (5 + 0.7), diode D_1 conducts and limits the output waveform to +5.7 V.
- ❖ Diode D₂ does not conduct until the voltage reaches 5.7 V.
- ❖ Therefore, positive voltages above +5.7 V and negative voltages below − 5.7 V are clipped off
- ❖ It can be used for sinusoidal to square-wave conversion.

Diode Clamping Circuits

A clamper is a network constructed of a diode, a resistor and a capacitor that shifts the waveform to a different do level without changing the appearance of the applied signal.

Positive Clamping

A positive clamper adds a positive dc level to an ac voltage.

 $\tau >> T/2$ The capacitor should not discharge during the off state of diode

Time constant of capacitor, $\tau = RC$

 $V_{out} = 0$ during first half time period $V_{out} = V_{P(in)} + V_{C}$ during second half time period

- ❖ During the -Ve half cycle: the diode is forward biased, allowing the capacitor to charge to near the peak of the input
- ❖ During the +Ve half Cycle: the diode is reverse-biased. The capacitor can only discharge through the resistance of R₁.
- ❖ The amount that is discharged capacitor depends on the value of R₁.

Diode Clamping Circuits

Negative Clamping

A negative clamper adds a negative dc level to an ac voltage.

- ❖ During the +Ve half cycle: the diode is forward biased, allowing the capacitor to charge to near the peak of the input
- ❖ During the -Ve half Cycle: the diode is reverse-biased. The capacitor can only discharge through the resistance of R₁.
- ❖ The amount that is discharged capacitor depends on the value of R_L.