

planetmath.org

Math for the people, by the people.

Proof of Baroni's theorem

Canonical name ProofOfBaronisTheorem

Date of creation 2013-03-22 13:32:33

Last modified on 2013-03-22 13:32:33

Owner mathwizard (128)

Last modified by $\,$ mathwizard (128)

Numerical id 5

Author mathwizard (128)

Entry type Proof

Classification msc 40A05

Let $m=\inf A'$ and $M=\sup A'$. If m=M we are done since the sequence is convergent and A' is the degenerate interval composed of the point $l\in \overline{\mathbb{R}}$, where $l=\lim_{n\to\infty}x_n$.

Now , assume that m < M . For every $\lambda \in (m,M)$, we will construct inductively two subsequences x_{k_n} and x_{l_n} such that $\lim_{n \to \infty} x_{k_n} = \lim_{n \to \infty} x_{l_n} = \lambda$ and $x_{k_n} < \lambda < x_{l_n}$

From the definition of M there is an $N_1 \in \mathbb{N}$ such that :

$$\lambda < x_{N_1} < M$$

Consider the set of all such values N_1 . It is bounded from below (because it consists only of natural numbers and has at least one element) and thus it has a smallest element . Let n_1 be the smallest such element and from its definition we have $x_{n_1-1} \leq \lambda < x_{n_1}$. So, choose $k_1 = n_1 - 1$, $l_1 = n_1$. Now, there is an $N_2 > k_1$ such that:

$$\lambda < x_{N_2} < M$$

Consider the set of all such values N_2 . It is bounded from below and it has a smallest element n_2 . Choose $k_2=n_2-1$ and $l_2=n_2$. Now, proceed by induction to construct the sequences k_n and l_n in the same fashion. Since $l_n-k_n=1$ we have:

$$\lim_{n \to \infty} x_{k_n} = \lim_{n \to \infty} x_{l_n}$$

and thus they are both equal to λ .