MATH 5591H HOMEWORK 7

BRENDAN WHITAKER

12.1 Exercises

2. $B = \{x_1, ..., x_n\}$ be a maximal linearly independent set in M if and only if RB is free and M/RB is torsion module.

Proof. (a) $\{x_1,...,x_n\}$ is linearly independent if and only if $R\{x_1,...,x_n\}$ is a free module with basis $\{x_1,...,x_n\}$.

Proof. Professor Leibman completed this proof in class.

(b) Let $\{x_1,...,x_n\}$ be a maximal linearly independent set. Let $y \in M$. Then $\exists a_1,...,a_n,b$ s.t. $a_1x_1+\cdots+a_nx_n+by=0$ and not all of $a_1,...,a_n,b$ are zero. If b=0, then $a_1x_1+\cdots+a_nx_n=0$, this is impossible, since $x_1,...,x_n$ are linearly independent. So $b\neq 0$, and by=0 mod $R\{x_1,...,x_n\}$. So $b\overline{y}=0\in M/R\{x_1,...,x_n\}$. So $\forall \overline{y}\in M/R\{...\}, \exists b\neq 0$ s.t. $b\overline{y}=0$. Now we prove in the other direction. Assume that $M/R\{x_1,...,x_n\}$ is a torsion module. Take $\forall y\in M$. Find $b\neq 0$ s.t. $b\overline{y}=0$, that is, $by\in R\{x_1,...,x_n\}$. So $by=a_1x_1+\cdots+a_nx_n$ for some a_i , so $y,x_1,...,x_n$ are linearly dependent, so $\{x_1,...,x_n\}$ is a maximal linearly independent set. We know this since we proved we could not add any other linearly independent element without making the whole set dependent. So it's maximal.

4. Let R be an integral domain, let M be an R-module and let N be a submodule of M. Suppose M has rank n, N has rank r and the quotient M/N has rank s. Prove that n = r + s. Use:

$$0 \to N \to M \to M/N \to 0$$
.

Multiply tensor by field of fractions. Use rank(M) = rank(N) + rank(M/N).

Proof. Let $A = \{x_1, ..., x_s\}$, a set of elements in M whose images are a maximal independent set in M/N. And let $B = \{x_{s+1}, ..., x_{s+r}\}$ be a maximal independent set in N. We prove A is independent in M. Suppose it weren't. Then there is $l \neq 0$ in R and $x_i \in A$ s.t. $lx_i = \sum_{j \neq i, \leq s} r_j x_j$. But then under the natural projection we would have a similar equality for $\overline{x_i}$ which would contradict the independence of \overline{A} .

We wish to show that $A \cup B$ is a maximal linearly independent set. We first show it is independent. Let $x_i \in A$. Suppose there exists a nonzero $l \in R$ s.t. $lx_i = r_{s+1}x_{s+1} + \dots + r_{s+r}x_{s+r}$ for $r_i \in R$. Then under the natural projection $\pi: M \to M/N$, we have $\pi(lx_i) = l\pi(x_i) = 0 \in M/N$. But note $\pi(x_i)$ is in \overline{A} which is an independent set in M/N so we must have $\pi(x_i) \neq 0$ and that $\nexists l \in R$ s.t. $l\pi(x_i) = 0$. This is a contradiction, so we must have that there exists no such l, so every element in A is independent of B. Now let $x_j \in B$ and suppose there exists a nonzero $l \in R$ s.t. $lx_j = r_1x_1 + \dots + r_sx_s$. Then π maps this to $0 \in M/N$ since $lx_j \in N$, but then since \overline{A} is independent in M/N, we must have $r_1 = \dots = r_s = 0$. Then we have $lx_j = 0$ which is a contradiction since B cannot contain any torsion elements or it would not be independent. Then we have proved $A \cup B$ is independent.

Now we show $A \cup B$ is maximal. Let $y \in M$. Then since \overline{A} is a maximal linearly independent set in M/N, we know there exist $c, c_1, ..., c_s$ not all zero such that:

$$c\overline{y} + c_1\overline{x_1} + \dots + c_s\overline{x_s} = 0,$$

which implies:

$$cy + c_1x_1 + \dots + c_sx_s = n \in N.$$

 $Date \colon \mathrm{SP18}.$

Now since B is a maximal linearly independent set in N, we know that since $n \in N$, there exists $k, c_{s+1}, ..., c_{s+r} \in R$ not all zero s.t.

$$kn = k(cy + c_1x_1 + \dots + c_sx_s) = c_{s+1}x_{s+1} + \dots + c_{s+r}x_{s+r}.$$

But if k = 0, then we must have $c_{s+1}, ..., c_{s+r} = 0$ since B is independent. So we must have $k \neq 0$, thus we can write:

$$kcy = \sum_{i=1}^{s} -kc_i x_i + \sum_{i=s+1}^{s+r} c_i x_i.$$

And since we know $c, c_1, ..., c_s$ are not all zero, we have found a nonzero $kc \in R$ (since we are in an ID) s.t. kcy is a linear combination of $x_1, ..., x_{s+r}$. So we have shown that $A \cup B$ is a maximal independent set in M, since for any $y \in M$ there is kc s.t. kcy is a combination of elements in $A \cup B$.

Now we wish to show that rank(M) = n = r + s. So we use part (b) of Exercise 2 above. Note that R^{r+s} is a submodule of M, since $x_1, ..., x_{s+r} = A \cup B$ is a maximal linearly independent set in M, and $R(A \cup B) = R^{r+s}$, and we have closure by ring action since M is an R-module.

Lemma 1. If $\{u_1, ..., u_n\}$ is a maximal linearly independent set, it doesn't have to generate M, but $M/R\{u_1, ..., u_n\}$ is a torsion module, because otherwise we could add one more element to this set and it would still be linearly independent.

Proof. Suppose $M/R\{u_1,...,u_n\}$ is not torsion. Then $\exists u' \in M/R\{u_1,...,u_n\}$ s.t. $ru' \neq 0 \in M/R\{u_1,...,u_n\}$ (i.e. $ru' \notin R\{u_1,...,u_n\}$) for all $r \in R$. But this is exactly the definition of linear independence, so then $\{u_1,...,u_n,u'\}$ is independent, which is a contradiction since we said $\{u_1,...,u_n\}$ was maximal.

So by the above Lemma, we know M/R^{r+s} is torsion. Then by Exercise 2 part (b), we know rank(M) = n = r + s.

- 5. Consider $\mathbb{Z}[x] \sim F[x,y]$. Note (2,x) is not principal. Note M has rank 1, is torsion free, but not free. It has rank 1 because if you take one of these elements, something linearly dependent maybe, idk. Consider M/(2) then x is a torsion element here since 2x = 0. So it's a torsion module or something. And actually, it's true for any module over PID.
- 9. Give an example of an integral domain R and a nonzero torsion R-module M such that Ann(M) = 0. Prove that if N is a finitely generated torsion R-module, then $Ann(N) \neq 0$.

Let $R = \mathbb{Z}$, an integral domain. Define:

$$M = \bigoplus_{i=1}^{\infty} \mathbb{Z}/2^i \mathbb{Z}.$$

Then $\forall a \in M, \exists k \in \mathbb{Z} \text{ such that:}$

$$a = (a_1 + \mathbb{Z}/2\mathbb{Z}, ..., a_k + \mathbb{Z}/2^k\mathbb{Z}, 0, ...)$$

for some $a_1, ..., a_k \in \mathbb{Z}$. Thus $2^k a = 0 \in M$, so M is a torsion module. We claim that Ann(M) = 0. Suppose there exists a nonzero $r \in \mathbb{Z}$ s.t. $r \in Ann(M)$. Then choose $k \in \mathbb{Z}$ s.t. $r < 2^k$. Then define:

$$a = (0, ..., 0, 1 + \mathbb{Z}/2^k \mathbb{Z}, 0, ...)$$

where the nonzero entry is in the k-th position. Then since ra=0, we must have r=0 since r will not annihilate the nonzero entry of a since $r<2^k$. This is a contradiction since we said $r\neq 0$. So we must have $\mathrm{Ann}(M)=0$.

Proof. Let R be a integral domain. Let N be finitely generated torsion R-module. Then $N \subseteq R \{x_1,...,x_n\}$. And since it is torsion, there exist $\{r_1,...,r_n\}$ s.t. $r_ix_i=0$, where $r_i\neq 0 \ \forall i$. Then since we have no zero divisors, $lcm(r_1,...,r_n)\neq 0$, and this is in the annihilator by commutativity in R.

11. Let R be a PID, let a be a nonzero element of R and let M = R/(a). For any prime p of R, prove that:

$$p^{k-1}M/p^kM\cong \begin{cases} R/(p) & \text{if } k\leq n\\ 0 & \text{if } k>n \end{cases},$$

where n is the power of p dividing a in R.

Proof. We first treat the case where $p \nmid a$. Then since p is a prime in R, we know gcd(a, p) = 1. So then we have $(p) \cap (a) = 0$. let $\pi : R \to R/(a) = M$. Then observe:

$$\pi((p)) = (p)/(a) \cong [(p) + (a)]/(a) \cong (p)/((p) \cap (a)) \cong (p)/(0) \cong (p).$$

But note that (p)+(a)=(1)=R, so we have shown $(p)=pM\cong R/(a)=M$, so $p^{k-1}M=p^kM=M$ for all k, and thus since $M/M\cong 0$, we have the desired result.

Now let $p \mid a$, and assume $k \leq n$. Then we have $a = p^n p_1^{c_1} \cdots p_l^{c_l}$, for some distinct primes p_i . Using the result of Exercise 12.1.7 and the Chinese remainder theorem, we have:

$$\begin{split} \frac{p^{k-1}M}{p^kM} &= \frac{p^{k-1}R/(a)}{p^kR/(a)} \\ &\cong \frac{p^{k-1}R/(p^n)(p_1^{c_1})\cdots(p_l^{c_l})}{p^kR/(p^n)(p_1^{c_1})\cdots(p_l^{c_l})} \\ &\cong \frac{R/(p^{n-k+1})(p_1^{c_1})\cdots(p_l^{c_l})}{R/(p^{n-k})(p_1^{c_1})\cdots(p_l^{c_l})} \\ &\cong \frac{R/(p^{n-k+1})\oplus R/(p_1^{c_1})\oplus\cdots\oplus R/(p_l^{c_l})}{R/(p^{n-k})\oplus R/(p_1^{c_1})\oplus\cdots\oplus R/(p_l^{c_l})} \\ &\cong \frac{R/(p^{n-k+1})\oplus R/(p_1^{c_1})\oplus\cdots\oplus R/(p_l^{c_l})}{R/(p^{n-k})\oplus R/(p_1^{c_1})\oplus\cdots\oplus R/(p_l^{c_l})} \\ &\cong (R/(p^{n-k+1}))/(R/(p^{n-k}))\oplus (R/(p_1^{c_1}))/(R/(p_1^{c_1})) \\ &\oplus \cdots\oplus (R/(p_l^{c_l}))/(R/(p^{n-k}))\oplus 0\oplus\cdots\oplus 0 \\ &\cong (R/(p^{n-k+1}))/(R/(p^{n-k})) \\ &\cong R/(p). \end{split}$$

Now suppose k > n. Then $a|p^{k-1} \Rightarrow p^{k-1}M \cong raR/(a) \cong 0$.

- 12. Let R be a PID and let p be a prime in R.
 - (a) Let M be a finitely generated torsion R-module. Use the previous exercise to prove that $p^{k-1}M/P^kM \cong F^{n_k}$ where F is the field R/(p) and n_k is the number of elementary divisors of M which are powers p^{α} with $\alpha > k$.

Proof. Recall that a module over a PID is free if and only if it is torsion free, so since M is not torsion free, it is not free, and by Theorem 6, we have:

$$M \cong R^r \oplus R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_l^{\alpha_l}),$$

where the primes are not necessarily distinct, and all the α 's are positive. But then by Theorem 5, since M is torsion, we know r = 0. So we have:

$$M \cong R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_l^{\alpha_l}).$$

Define $a=p_1^{\alpha_1}\cdots p_l^{\alpha_l}$. Now we apply the result of the previous exercise to each of these summands. Let s be the power of p dividing $p_i^{\alpha_i}$. We set $M'=R/(p_i^{\alpha_i})$. So we know:

$$p^{k-1}M'/P^kM' \cong \begin{cases} R/(p) & \text{if } k \le s \\ 0 & \text{if } k > s \end{cases},$$

So we have that $k \leq s$ for exactly n_k of the elementary divisors $p_i^{\alpha_i}$, and so each of these summands is isomorphic to F, and the rest are zero. So we have:

$$M \cong F \oplus \cdots \oplus F \cong F^{n_k}$$

(b) Suppose M_1 and M_2 are isomorphic finitely generated torsion R-modules. Use (a) to prove that, for every $k \geq 0$, M_1 and M_2 have the same number of elementary divisors p^{α} with $\alpha \geq k$. Prove that this implies M_1 and M_2 have the same set of elementary divisors. Proof. Applying part (a), we have:

$$F^{n_{k_1}} \cong F^{n_{k_2}}$$

which tells us $n_{k_1} = n_{k_2}$ since they are isomorphic vector spaces of those dimensions. And we are done, since we iterate over the list of primes p_i in the list of elementary divisors $\{p_i^{\alpha_i}\}$, and also iterate over k from zero to α_i for each p_i , and observe that we have exactly the same elementary divisors for M_1 and M_2 by induction.