A. Kapanowski

Fizyka - ćwiczenia nr 2

10 marca 2025

Rzędy wielkości

Zadanie 1.

Dla podanych poniżej wielkości znaleźć rząd wielkości i zaokrąglić wynik do wskazanej liczby cyfr znaczących.

- a) $h = 6.62606896(33) \cdot 10^{-34} Js$ (stała Plancka) [3 cyfry],
- b) $G=6.67428(67)\cdot 10^{-11}m^3/(s^2kg)$ (stała grawitacyjna) [4 cyfry], c) $N_A=6.02214179(30)\cdot 10^{23}mol^{-1}$ (liczba Avogadro) [1 cyfra],
- d) $k_B = 1.3806504(24) \cdot 10^{-23} J/K$ (stała Boltzmanna) [3 cyfry],
- e) $\sigma = 5.670400(40) \cdot 10^{-8} W/(m^2 K^4)$ (stała Stefana-Boltzmanna) [2 cyfry].

Zamiana jednostek

Zadanie 2.

 $\overline{\text{Samoch\'od}}$ osobowy porusza się z prędkością 90km/h. Wyrazić tę prędkość w metrach na sekundę.

Zadanie 3.

Jeden elektronowolt (eV) to energia, jaka uzyskuje badź traci elektron, który przemieścił się w próżni w polu elektrycznym o różnicy potencjałów równej 1 woltowi. Elektronowolty używa się czasem jako jednostki masy $(1eV/c^2)$ lub temperatury $(1eV/k_B)$.

Podać w kilogramach masę elektronu równą $0.511 MeV/c^2$.

Szacowanie rzędu wielkości

Zadanie 4.

Mamy kłębek sznurka o średnicy 1 m. Średnica d sznurka wynosi 1 mm. Oszacuj rząd wielkości długości L sznurka w kłębku.

Zadanie 5.

Ziemia jest w przybliżeniu kulą o promieniu $6.37 \cdot 10^6 m$. Ile wynosi:

- a) obwód Ziemi w kilometrach,
- b) pole powierzchni Ziemi w kilometrach kwadratowych,
- c) objętość Ziemi wyrażona w kilometrach sześciennych?

Zadanie 6.

Jednostka astronomiczna (AU, j.a.) jest to średnia odległość Ziemi od Słońca, równa w przybliżeniu $1.5 \cdot 10^8 km$. Predkość światła wynosi około $3 \cdot 10^8 m/s$. Wyraź prędkość światła w jednostkach astronomicznych na minutę.

Skalowanie

Zadanie 7.

 Masa Ziemi wynosi $5.98 \cdot 10^{24} kg$. Średnia masa atomów, z których składa się Ziemia, jest równa 40u. Z ilu atomów składa się Ziemia?

Zadanie 8.

Mamy dwie kule o promieniach związanych relacją $R_2 = kR_1$. Znaleźć relacje pomiędzy polami powierzchni i objętościami kul.

Analiza wymiarowa

Zadanie 9.

Rozważmy ruch ciała, o którym jedynie wiemy (albo przypuszczamy), że droga x w tym ruchu jest proporcjonalna do iloczynu $a^n t^m$, gdzie a jest przyspieszeniem, t - czasem, natomiast n i m są nieznanymi wykładnikami wymiarowymi. Wyznacz te wykładniki.

Rachunek niepewności pomiarowej

Definicja 1.

Jeżeli zmienna x obarczona jest niepewnością S_x , a zmienna y niepewnością S_y , to zmienna z=f(x,y) obarczona jest niepewnością S_z , którą obliczamy ze

$$S_z = \sqrt{\left(\frac{\partial f}{\partial x}S_x\right)^2 + \left(\frac{\partial f}{\partial y}S_y\right)^2}.$$
 (1)

Zadanie 10.

Zmienna x obarczona jest niepewnością S_x , a zmienna y niepewnością S_y . Jaką niepewnością obarczona jest zmienna z = f(x, y), jeżeli

a)
$$f(x,y) = x + y$$
,

c)
$$f(x,y) = x^2 y^3$$
,
d) $f(x,y) = \frac{x}{y}$.

b)
$$f(x,y) = xy$$
,

d)
$$f(x,y) = \frac{x}{y}$$
.