INTRO TO MACHINE LEARNING (ML) TERMINOLOGY

Matthew Hall

REGRESSION VS CLASSIFICATION

- Predict Continuous Response Variable
 - Sales, Time, Stock Price, Returns, Cost, Default Risk Pct
- Predict Categorical Response Variable
 - Yes/No, A/B/C/D, Buy/Sell, Default Yes/No, Underwrite Loan Yes/No, Fraud Detection

THE GOOD THING

 Regression / Classification is Probably Chosen For You Based Upon Dataset

SUPERVISED VS UNSUPERVISED

 Requires Labeled Training Data Points Does Not Require Labeled Training Data

 Need The Response Variable, Y! Do Not Need To Input Response Variable, Y!

- Regression Falls Under This Category
- Clustering Falls Under This Category

TRAIN - TEST - VALIDATION

How Do We Train & Evaluate Our ML Models?

Need To Provide It Data!

However, We Cannot Train Model On All of Our Data

 Need To Keep Part of Dataset Reserved For Checking If Model is a "Good Fit"

3 SPLITS

 Training Sample: Data Used to "Train" Model and Detect Patterns

 Validation Sample: Data Used to Measure "Accuracy" While Tuning Models for Fit

 Testing Sample: Final, Unbiased Sample to Gauge Performance of Model

CROSS VALIDATION

- Way To Test Question "Are My Results The Way They Are Because I Chose a Lucky Sample?"
- Cross Validation Takes Randomized Splits In Dataset, Trains a New Model For Each Split
- We Can Then Compare Coefficients, "Accuracy," and Model Stability Across Folds
 - Folds Refer to The Splits in the Dataset

UNDERFITTING VS OVERFITTING

- Model Can Sometimes
 Fail To Detect Patterns
 of Dataset
- Model Overanalyzes
 Patterns in Training
 Sample

- Misses General Trend in Population As Well
- Cannot Be Used to Predict Population Characteristics Reliably

ML IN PYTHON

- · Can Use SciKit Learn (SKLearn) Package
- Don't Need to Worry About "Behind The Scenes"
 Mathematics & Statistics

 But You Should Know What Each Algorithm Tries to Do, So You Can Properly "Tune" Models

