Exercice sur les codes de Reed-Muller

Cas
$$r = 3, 2^r = 8$$

Ensemble des chaînes de bits : $\Omega^{4=r+1} = \{x = x_0 x_1 x_2 x_3 \text{ avec } x_i \in \{0,1\}\}$

Base de Ω^4

$$\bar{e}_0 = (1000)$$

$$\bar{e}_1 = (0\,1\,0\,0)$$

$$\bar{e}_2 = (0\,0\,1\,0)$$

$$\bar{e}_3 = (0\,0\,0\,1)$$

Encodage des éléments de la base

$$\bar{b}_0 = rm(1\,0\,0\,0) = (0\,1\,0\,1\,0\,1\,0\,1)$$

$$\bar{b}_1 = rm(0\,1\,0\,0) = (0\,0\,1\,1\,0\,0\,1\,1)$$

$$\bar{b}_2 = rm(0\,0\,1\,0) = (0\,0\,0\,0\,1\,1\,1\,1)$$

$$\bar{b}_3 = rm(0\,0\,0\,1) = (1\,1\,1\,1\,1\,1\,1\,1)$$

$$\bar{y} = (y_0 y_1 y_2 y_3 y_4 y_5 y_6 y_7) = rm(\bar{x}) = rm(x_0 x_1 x_2 x_3) = \sum_{i=0}^{r} x_i \bar{b}_i$$

Eléments du code

Quels sont les éléments du code?

Décodage

Considérons un exemple avec $\bar{y} = (1\,0\,0\,1\,1\,0\,0\,1)$

On cherche \bar{x} tel que $\bar{y} = rm(\bar{x})$.

On veut donc résoudre l'équation

$$\bar{y} = (1\ 0\ 1\ 0\ 0\ 1\ 0\ 1)$$

$$= x_0(0\ 1\ 0\ 1\ 0\ 1\ 0\ 1)$$

$$+ x_1(0\ 0\ 1\ 1\ 0\ 0\ 1\ 1)$$

$$+ x_2(0\ 0\ 0\ 0\ 1\ 1\ 1\ 1)$$

$$+ x_3(1\ 1\ 1\ 1\ 1\ 1\ 1)$$

Sachant que $y_0 = 1$, que vaut x_3 ?

On pose $\bar{w} = \bar{y} + x_3 \bar{b}_3$.

Que vaut \bar{w} ?

Comment \bar{w} s'exprime-t-il en fonction de x_0, x_1 et x_2 ?

Quels bits de \bar{w} faut-il examiner pour trouver x_0 , x_1 et x_2 ?