ATOM3D: Tasks on Molecules in Three Dimensions

Raphael J. L. Townshend¹, Martin Vögele¹, Patricia Suriana¹, Alexander Derry², Alexander Powers³, Yianni Laloudakis¹, Sidhika Balachandar¹, Brandon Anderson⁴, Stephan Eismann⁵, Risi Kondor⁴, Russ B. Altman⁶, Ron O. Dror¹

1 Computer Science, Stanford; 2 Biomedical Informatics, Stanford; 3 Chemistry, Stanford; 4 Computer Science, U Chicago; 5 Physics, Stanford; 6 Bioengineering, Stanford; contact: raphael@cs.stanford.edu, rondror@cs.stanford.edu

Datasets

Project goal:

 Make structural biology more accessible for algorithm developers.

Unified framework:

- Standardized formats, splits, and metrics.
- Datasets and data loaders available online.

Check out **atom3d.ai** and *qithub.com/drorlab/atom3d*!

Benchmarking

Prototypical architectures:

- 3D convolutional neural networks.
- Graph neural networks.
- Equivariant neural networks.

Results:

- 3D representations consistently improve upon sequences/graphs.
- No single 3D method dominates all tasks.