129/03

Clarifications from the model portition function discussion ...

De we note on page (2) how the symmetry Pactor rules are changed when the propagator lines have "arrows" on them. This is misleading because of the convention of using arrows to indicate momentum. Flow in momentum-space Feynman diagrams.

The change in rules occurs when the arrow means that one end of the propagator is different from the other end (so it is not a symmetry operation to exchange the ends).

· In general, fermion propagators have a direction (and Perefore follow the modified rules for factors) while some bosonic propagators do not (so they follow the rules as originally given). We'll see examples of both.

D Here's a norm-up diagram for the problem in the problem set. What is the symmetry factor.

Sto clarify the replica method proofs, consider some special cases and orgue by contradiction.

Eg., could be exer get (300)

where the 1 and 2 label the remains?

· Well, the 1 rector comes from (3), I and each \$1, is nonzero only when acting on \$1,0,1, so each of the lines connecting "1" and "2" must be "1" lines.

· But by the same argument, They must be "3" lives, so this diagram cannot occur.

Now suppose we have <>> and we start to build a diagram
knowing the external lines are 15 - By the same
argument, the 1 propagators here an only connect to 1 vertices,
which connect to 1 propagators > the entire diagram must be 1's

Hado3
As an intermediate, between our model partition.
Function and the case of fermions interacting with a short-range force, let's consider a path integral over a fuld o:

Zx = S80 e Sax [\$0 cm2 + \$100)]4]

"A path integral over such a field ox) will arise roturally when he consider the "large N" exponsion of the fermionic path integral we're northing up to However, will see poblins. The Sd'x is shouthand for an integral over space Jobx with throme! and over Euclidean time dt. The 'x" stands for (7, x).

The real time version replaces—Jobx — iJobx with an integral over dt.

- · At finite temperative, the r integration will only run over a finite interval of size 13th (with B= 1/KT).
- · In the zero temperature (\$ >00) limit, which we'll assume here the integration over 1 is from -00 to +00, just like the dx; integrations,
- The path integral measure & will, as usual, hide an awkness constant, which we won't need to write explicitly.

 More generally, we expect to have time and space durivatives action on the oax (in the quadratic term, for example).

 But in the example we're minimisking here, they don't appear.

 However, the "interaction" term is also different from O".
- · The path integral is defined as the limit of a discretized version in a finite time interval and a finite box at which we have lattice points: a mesh in both 7 and the x-directions.

 ⇒ label them Xi → (r; X; y; Z;), for example.

	1/29/03
	· Previously, when considering a path integral for single-particle about mechanics, a "path" or "trajectory" was specified by the value of x at each discrete time to
	The pain integral summed over all pains or to
	(with a specified weighting factor for a given path) by integrating one the value of x at each ti. The measure is
	to the take value of x at each ti. The measure is
	To the present case we sure one "configurations" A given
	In the present case, we sum over "configurations," A given configuration is specified by the value of o at each discrete
	Time Ti and each discrete spalial lattice point X = (xi, yi, ti).
	The configurations are "summed" our by integrating over to lattice point, > 20 00 The lattice point, are the lattice
	· In the "continuum limit" where the discretization specing is
	taken to 2000, we are supposed to get the partition function
-	la other function) we seek.
	11
	Let's mimic the model partition function exercise: We seek expressions for
	We see expressions for
	1 [ln(Z/20)], wher 20= (80 e /d/x saloin)] and
	$D_{6}(y,z) = S_{6}(x) = S_{6}(x) = S_{7}(x) = S_{7}(x$
_	120 E 29x (\$003+70H)
_	720 6

· We introduce a "source term" i(r, x) = j(x), which we will use to divelop a perturbative expansion for i) and ii).

· To do so, we need to review (or introduce, if you haven't see them'

He idea and proporties of functional derivatives:

=> pause to consider flem...

129/03 Asile: Functionals and Functional Derivatives Rot. : Appendix B in the text by N. Nagaosa is the source for much of this presentation, most field though books have an introduction to functionals in their discussions of path integrals. First let's contrast functions and functionals; i) function f: you give me a real number XER and Ill gir you another real number: F: XER = FXXER · generalizations include different domains and ranges (eg. complex numbers) ii) Functional F: rather Itan a single x, give me an entire function Fox) in an interval & = x < p and I'll give you a single real number back! F: fx) ex = F(ffx)] = F[f] = F[fx) ER · we'x indicated a variety of notations you might find in the literature · It signifies a Hilbert space · Note that when we use the notation F[F, \alpha)], there is no particular value of x involved the entire function (in a relevant interval) is he input, . It is useful (as usual) to imagine putting a functional on a computer. · We can represent a function fix) as breaking up the interval < << \begin{aligned} \text{into a discrete mesh (set) of} \end{aligned}

points (X) with [X=X1 X2 X3 X XN-1 XN=B

1/29/03

· These numbers might be stored in an array, x[i], for example, with i=1 to N.

The function f(x) is the set of N numbers $F:=f(x_i)$, (which we can also store as f[i].

=> A Functional F is a function of Re N numbers (fi) (not of Re N numbers (x; ? !)

A functional derivative tells us about what happens to the value of a functional when he let fix) become fix) + S fix) => a slightly different function.

To the discrete version, he take fi= fi+ Sfi

(just like one take x; > X; + AX; in an ordinary derivate).

Suppose $F[Rx] = \int_{A}^{b} F(x) g(x) dx$

where g(x) is some ofter fixed function of x.

Noke that we integrate over x, so there is no free

x >> F is not a function of x!

Let's make the simplest discrete version;

F[F(x)] -> \(\xi \) \(\x

Now let Fi > Fi+8Fi:

$$SF = F(f_1 + Sf_2, \dots, f_n + Sf_n) - F(f_2, \dots, f_n)$$

$$= \sum_{i=1}^{n} \frac{3F(f_2, \dots, f_n)}{3F_i} Sf_i + O(SF_i^2)$$

· Notice the 8's instead of d's.

	; }
	V29/03 We define the functional derivative \$500, as
	We define the three total activative stay as
	$ \begin{array}{c c} \hline SF(f) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{JF(f_2,,f_N)}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \\ \hline SF(X) &= \lim_{X \to \infty} \underbrace{J}_{X(S)} \underbrace{J}_{X(S)} \\ \hline SF(X) &= $
	this x matters.
	The x on the left corresponds to xi on the right; in
	the limit that we make the mesh very fire.
 <u>-</u>	The limit that we make the mesh very fire. The look how much the functional changes when we
	change the Function at the it mesh points
	Apply this definition to the example:
	$\frac{SF[f(x)]}{SF(x)} = \lim_{\Delta X_i \to 0} \frac{1}{\Delta X_i} \left(\sum_{i=1}^{n} f(x_i) \sum_{i=1}^{n} f(x_i) \right)$
	= 11m = 5x. \(\gamma \lambda_1, \gamma \lambda_
	$=\lim_{x\to\infty}\frac{1}{2}(9)$
	Remoting this?
	$\frac{g(x)}{g(x')}\frac{g(x')}{g(x')}\frac{dx'}{dx'} = \frac{g(x)}{g(x)}$
	· note again that the 'x" argument on the left is not
	a dummy argument.
	· Special case: F[FX)] = (f(x)dx (or gx)=1)
	$\Rightarrow \left \frac{g_{(N)}}{g_{(N)}} \right f(N) dN = 1$

enter de la caracter de

150 62
For completeness, we present an alternative definition
of the functional derivative that is more common in the
literature.
1 xm/s) Lefus As in the picture at the left we add a "bump"
at y, which he take to be a delta function with strength 1, and see how much the
x Functional changes!
SFIF] = I'M F[fx)+X8(xy)]-F[fx)]
8Ay) = 1m 12.00 x
·Try it out on the example:
Try it out on the example: Styr) Star out on the example:
String June 1
= $\lim_{x \to 0} \pm \lambda \int s_{x-y} g(x) dx = g(y)$ as before,
Another special case, which can be used as the definition of the functional derivative as well; g(x) = S(x-2)
of the functional derivative as well; g(x) = &(x = 2)
$\Rightarrow \left \frac{S}{Sf(x)} \int f(x') S(x'-2) dx' = \frac{Sf(x)}{Sf(x)} = S(x-2) \right $
where the last equality is what we haint.
Nr At thus I made of 21=1 which we had
reneatedly in the model northern.
Note that this is the analog of $\tilde{s}, \tilde{i} = 1$, which we used repeatedly in the model problem. • Here, if we let $f(x) \Rightarrow f_i \Rightarrow \tilde{j}_i$, then the equivalent
formula u
$\frac{\partial i}{\partial j_k} = S_{ik} \implies \frac{S_{j(x)}}{S_{j(y)}} = S(x-y)$
djk

- "

	€
The state of the state of	1/29/13
· · · · · · · · · · · · · · · · · · ·	Let's try another example we'll come across
Annual Control of the	Stx) \ \(\((x_2) \c(x_2) \text{\$\frac{1}{2}\$} \) \ \ \(\((x_2) \text{\$\frac{1}{2}\$} \) \ \ \(\((x_2) \text{\$\frac{1}{2}\$} \) \ \ \(\((x_2) \text{\$\frac{1}{2}\$} \) \ \\ \((x_2) \text{\$\frac{1}{2}\$} \) \\((x_2) \text{\$\frac{1}{2}\$} \) \\ \((x_2) \text{\$\frac{1}{2}\$}
The state of the state of	= lim List; SF, Cikt, DX, DXk
The state of the s	= 1,00 to 5/8 (8,00) KFK + fi Cjk 8ix) OX, DXK
C.B.	$=\lim_{\Delta x_{i} \to 0} \frac{2}{\Delta x_{i}} \sum_{k} C_{ik} f_{k} \Delta x_{i} \Delta x_{k} = 2 \int C(x_{i} X_{a}) f(x_{a}) dx_{a}$
	· More generally, if $C_n(x_1, x_2, \dots, x_n)$ is totally symmetric under interchange of any two x; then
1	$\frac{S^nF[F]}{Sf\alpha,\ldots Sf(x_n)} = n! C_n(x_1,\ldots,x_n)$
Contract of the second second	· We get the special case of n=2 by taking another functional derivative of the example up top.
	-Exercise for the diligent reader: rederive these results using the alternative definition of a functional
-	Complete Continue of a militarion

The familiar properties of ordinary (portial) derivatives, such as the product and chain rules, carry over to functional derivatives in a natural way.

1/2/03 So wasider Sax) (Rus) 3 grys dy = tim tx; 34; 5(F;) 3 g, 0x; = 1, m = = 3(F,) 3(F,) 3(F,) 3(F,) $= \lim_{\Delta x \to 0} 3 \left(\frac{1}{3} \right)^3 g_i = 3 \left(\frac{1}{3} \right)^2 g(x)$ and so he have the chain rule: Star (9 [fw] dy = 9' [fx)] where of means to take the derivative of g with respect to f as if it were a partial derivative. Another form of the chain rule we'll use a lot is:

Sign = Sociation + joint(x)) = -4140 = Sociation + joint(x)) · What if we have a function of \tilde{x} or \tilde{x} and \tilde{t} for \tilde{t} ?

· We can combine \tilde{x} and \tilde{t} into a "four-vector" x^{μ} , so it is sufficient to consider an n-vector $\tilde{x}=(x_1,...,x_n)$ · Consider $F[f(\vec{x})] = \int f(\vec{x}) g(\vec{x}) dx_1 \cdot \cdot \cdot dx_n$ SF[fix] -> 5 fy, in ghand DX4 Win

where we now have in-dimensional arrays $X[i_2,...,i_n]$ and $f[i_1,...,i_n]$, where i_1 runs over the much for x_1 , i_2 runs over the mesh for i_2 , and so on.

1/2/103
Let's take n=2 for clarity. Then our nesh is a
Let's take n=2 for clarity. Then our mesh is a two-dimensional opid and the function value is defined at each opid point (i,j) to be fij.
$\Rightarrow F(E(\overline{x})) = \{f_{ij} g_{ij} \boxtimes (Ly); with \overline{x} = (X,Y)\}$
and the Functional derivative
SF(Z) = lim xinj; 3Fi; Zy Firj Grij XX, Xyj, 3Fi; Zy Firj Grij XX, Xyj, 3Fi; Zy Firj Grij XX, Xyj,
= 1m = 5x; 5y; 2; Siv Siv giv Dx; Dy; oy, >0
$= \lim_{x \to 0} g(x) = g(x)$ $= \lim_{x \to 0} g(x) = g(x)$
Similarly)
(\x_x) = (\xi\frac{\x}{272}) (\xi\frac{\x}{273})
and so og,
<u> </u>

1/29/03
. What if flere is a derivative in the functional?

Star) GRAN G(XI) d(X)?

We can do this several ways. Here are two!

i) partially integrate

Stx [
$$\frac{g}{dx}$$
] $\frac{g}{dx}$]

8

ii) discrete version:

$$\frac{S}{SRNI} \frac{df(x)}{dx'} g(x') dx' = \lim_{x \to \infty} \frac{1}{dx} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{dx} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{dx} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{dx} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{dx} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{S}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

$$= \lim_{x \to \infty} \frac{1}{S} \frac{f_{in} - f_{i}}{dx'} g_{i} dx'$$

· note that the possible surface terms in this case are left over from taking 2 fix 9; - 2 fig; and changing dummy indices in the first.

·OK, Plat's it for now > more later!

:	
1)	29/03
	Dk, let's derive porturbative exponsions. Introduce
	$Z[Jw] = \int \mathcal{B} \circ e^{-\int dx} \left[\frac{1}{2} a(\sigma x)^2 + \frac{1}{4}(\sigma x) \right]^4 - J\alpha (\sigma x)^2 \right]$
· L_	
.)	functional derivatives bring down oux) at the x-point of the derivative. I.e., we can write Do as
	Do(y, 2) = (Ste) Ste) J(x)=0
	De(1)(2) = 2000 JE) (200=0

We set the some Jixi identically to zero after taking any functional derivatives.

· Now pull e Solx integral by replacing O(x) by som:

$$Z[J(x)] = e^{\int d^3x' \frac{1}{4}(\frac{2}{8\pi}x')} \int 800 e^{\int d^3x' \left[\frac{1}{2}a(\sigma(x))^2 - J(x)\sigma(x)\right]}$$

remember that the own's and Jal's are just functions, there are no operators (in the occupation number space) in these expressions.

- · As always, the exponential out front is defined by its Taylor sories.

 · Note that we've used x' in the integral in the exponent out

 Front to emphasize that it is a different label thin the

 x in the integral in the exponent inside the integral.
- · Next we complete the square" in the exponent in the path integral (it's convenient to drop the x's while doing this):

$$\frac{1}{5}a(6^2 - \frac{2}{0}50 + \frac{5^2}{0^2}) - \frac{1}{5}56^{1}5 = \frac{1}{5}a(6x) - \frac{1}{6}5x)^2 - \frac{1}{5}5x)6^{1}5x)$$

we'll see below that "a" is usually a differential operator, not just a number.

Same of	1139/03
	Now we can change the path integral "voriable" from
	$\sigma(x) \rightarrow \sigma(x) = \sigma(x) - \tau(J(x)),$
	· Recall Plant x is just a label for a lattice point. 50 for each x; when m integrate over $\sigma_i = \sigma(x_i)$,
	we can change variables to 0 = 0; - to i and do = do;
	(and the integration limits are -00 to 00, so no problem live).
	> 80 = 801
·	= [2 [5] = [5] + (5] + (5] + (5] + (5] + (5] = [6] 5] = [6] 5] = [6] 5]
	Žo.
	Z[J(x)] = - JO'X' X(STX)) (JX 5 JX) Q (J(X))
	(E130) = e 300 (1800) (2)
Stager -	$D_{6}(y, \overline{z}) = \frac{\int_{0}^{1} dx}{\int_{0}^{1} dx} \frac{\int_{0}^{1} dx}{\int$
	() = Sty St2) C
	$D_{6}(y, \overline{z}) = \frac{S(y)}{\varepsilon} \frac{S(y)}{ y } \frac{S(y)}{ y } \frac{S(y)}{ y } \frac{1}{ y$
	> we see a very close analogy to the model partition torration.
	The diagramatic expansion follows as in Plat case: by expanding expanentials to a desired order in I and so Plat the J's are exactly wiped out by the same number of fis. Things are a bit more involved because the J's naw carry labels > J(X) > J(X;) = J;
	expanding exponentials to a desired order in I and so that
· · · · · · · · · · · · · · · · · · ·	the J's are exactly wiped out by the same number of 55.
	corry labels > J(x) > J(x) = J;
-h·	· First do Dolyst) to zoroth order > call it Dolyst):
	$\left \mathcal{D}_{\sigma}^{\circ}(y, \overline{z}) = \frac{\mathcal{L}}{\sigma(y)} \frac{\mathcal{L}}{\sigma(z)} \int_{\overline{z}} d^{4}x \frac{1}{2} J(x) \sigma^{\dagger} J(x) \right = \frac{\mathcal{L}}{\sigma(y)} \frac{\sigma^{4} J(z)}{\sigma^{2} J(z)} = \frac{\sigma^{4} \mathcal{L}}{\sigma^{4} J(z)} $ $= \frac{\mathcal{L}}{\sigma(y)} \frac{\sigma^{4} J(z)}{\sigma^{4} J(z)} = \frac{\sigma^{4} \mathcal{L}}{\sigma^{4} J(z)} \frac{\sigma^{4} J(z)}{\sigma^{4} J(z)} \frac{\sigma^{4} J(z)}{\sigma^{4} J(z)} = \frac{\sigma^{4} \mathcal{L}}{\sigma^{4} J(z)} \frac{\sigma^{4} J(z)}{\sigma^{4} J(z)} = \frac{\sigma^{4} \mathcal{L}}{\sigma^{4} J(z)} \frac{\sigma^{4} J(z)}{\sigma^{4} J(z)} \frac{\sigma^{4} J(z)}$
	(Sly z) = S(1,-1,) (3-2)

Contraction - The Contraction of the Contraction of

.--Same of the Same

e Lande	1/29/63
	So now we can use the endpoints of — to mente The points y and Z (Ruse are "spocetime points")
	$\Rightarrow \int_{y}^{2} \Rightarrow \sigma' S(y-z) = D_{\sigma}^{\circ}(y,z)$
	15 our Fuynman ruk for e.
	Now we can rewrite \$250'T in terms of Do as:
	$\int \partial^4 x \pm J(x) \overline{\alpha}' J(x) = \pm \int \partial^4 x \partial^4 x' J(x) D_G^G(x, x') J(x')$
	which is the form we'll see more often. Note that Do(x,x) = Do(x,x).
	·Ok, now expand Exte to leading order in):
	$\frac{2[5w]}{70} = 1 - \left[\frac{3!x_1 + (5x_2)}{4(5x_2)} \right] \frac{3!x_1 + 25(x_3)}{5(x_3)} \frac{3}{5(x_3)} $
	· We see that the Ethin can wipe out any of J(x), Ixe), J(xe), J(xe), J(xe). Then is a 4! factor, just as in the model.
	(x,x)od (x), x+0 (x) = (exx(ex,x)od(x)) = (x,x) (xx) (xx) (xx) (xx) (xx)
	$= \mathcal{V}_{\sigma}(\mathbf{x}_{J}'\mathbf{x}')$
	· So if he mark the vertex position x' with a , then this is . The other term is similar so me out OO
and the second s	· The offer term is similar so me get (3) · We'll get the same symmetry factor as in the model by applying our rules (1): 1/2 1/2 (2) 1/2 (3) 1 => 1/8.
	· We still have an overall integral over x'
	$\Rightarrow \overline{z_{\lambda/z_0}} = 1 - 6\lambda \int d^4x' Q_0^{\circ}(x', X') Q_0^{\circ}(x', X')$

.

1/29/03

If he substitute $Po(x,y) = \overline{o}(S(x-y))$, this expression looks very badly behaved!

There is a factor of the space-time volume, which is ok, because this is $Sox \rightarrow \beta \Omega$ (where Ω is the volume) at temperature β . When he take follows again and $\Omega = \Omega$, which should be extensive β proportional to Ω .

- We get a hint by thinking about the delta function in momentum stace $D(x,y) = \frac{d}{d}S(x-y) = \left(\frac{d^4k}{(2\pi)^4}e^{ik\cdot(x-y)}\right) = \left(\frac{d^4k}{($

The "momentum-space propagator" $S_0(k) = \frac{1}{\alpha}$, which is a constant here, independent of momentum $k = (k_0, \overline{k})$ \Rightarrow the high-energy, high-momentum modes are completely undamped.

· This is an extreme type of divergence (d. PS#1).

— we'll return to such divergences soon.

• If we reglect all of the infinities for the moment...

The diagrammatic exponsion of In 2/20 and Doly, 2)

popular the model problem exactly.

• The replical method proofs go through as well.

· Feynman rules for X contribution to Doly, z):

O Draw all connected diagrams with n vertices at X;,

i=1, n, and two external points yard z, connected

by propagator lines.

DEach vertex gets a factor of -6).

@ Each line between X; and X; gets a factor Do(X; X;).

(F) Multiply by a symmetry factor (as described elsewhere for lines without arrows)

(5) Integrate Solx, ... d4xn.

Try some! eg.

	1129/03
	Now let's return to the case of greater immediate
	Now let's return to the case of greater immediate interest: Fermions with a short-range interaction.
- 1	
	In second-quantized form, written in terms of Field operators [AR) = \$24,12)Cx an [21,2)=\$4,10,000;
	for either bosons or fermions (recall that "k" stands
-	for either bosons or fermions (recall that "k" stands for a complete set of quantum numbers specifying a single-particle state, such as $k = \{R, S_{\overline{z}}\}$ for spin-1's fermions),
	日=(3x年1次)(学)(3)+ま(8x8x)年の年以以及外(2)年)(2)年)
	-> (8x 年文/-学)年以+ 去x (8x 年文)年文)年文 年(京)
-	
	$f_{\infty}\left[V(\vec{x},\vec{x}')=\lambda S(\vec{x}-\vec{x}')\right]$
	· In the boson case,
	· In the boson case, [YIX), YIX)] = S(XX)
	のd [[年記, 年記] = [中記, 年記] = 0
-	
_	· In the firmion case, we add a spin index 4181 > 4a18) where a runs from 1 to 9 and ne have anti-commutation
_	where a rung from 1 to 9 and he have anti-commutation
_	relations (1/2) = S(x-x') Sorp
	$\{\widehat{\gamma}_{\alpha}(\widehat{\mathbf{x}}), \widehat{\gamma}_{\beta}(\widehat{\mathbf{x}})\} = \{\widehat{\gamma}_{\alpha}^{\dagger}(\widehat{\mathbf{x}}), \widehat{\gamma}_{\beta}^{\dagger}(\widehat{\mathbf{x}}')\} = 0$

The second secon

.9

1/29/03

In deriving path integral expressions for matrix elemnts of the Euclidean evolution operator, we inserted complete sets of position and momentum states at the discretized times (see pg B) and Therenbouts)

For bosons, we have the correspondence

文一节(文) 户一出中(文)

which leads to (details elsewhere) the partition function expression

 $\frac{1}{2}G = Tr(e^{-\beta(f_{1}-\mu N)})$ $= \int \mathcal{D}[r^{\dagger}(x,r),4[x,r)] e^{-\frac{1}{2}\int_{0}^{\mu r} (\partial_{x}^{2}x^{2})^{2}(x^{2}r^{2})^{2}(x$

where we've used the short hand $x = \{\hat{x}, 1\}$ (or $\{1, \hat{x}\}$) and the + sign on the first poth integral indicates the boson boundary conditions.