```
# Import the necessary packages
# Importing necessary Libraries
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random
from sklearn.metrics import accuracy score
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.utils import to categorical
from tensorflow.keras.datasets import mnist
tf.keras.layers.serialize
tf.keras.utils.CustomObjectScope
tf.keras.utils.register_keras_serializable
     <function keras.utils.generic utils.register keras serializable(package='Custom',</pre>
     name=None)>
                                     + Code
                                                  + Text
# Load the training and testing data MNIST
# Import dataset & split into train and test data
mnist=tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test)=mnist.load_data()
# Length of the training dataset
len(x_train)
len(y train)
     60000
# Length of the testing dataset
len(x test)
len(y_test)
     10000
# Shape of the training dataset
x train.shape
     (60000, 28, 28)
```

Shape of the testing dataset
x_test.shape

(10000, 28, 28)

See first Image Matrix
x_train[0]

	0,	0],											
[0,	0,		0,	0,	0,	0,	0,	80,	156,	107,	253,	253,
_	205,	11,			154,					0,			
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	14,	1,	154,	253,
	90,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	139,	253,
1	L90,	2,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	11,	190,
2	253,	70,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	35,
2	241,	225,	160,	108,	1,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	81,	240,	253,	253,	119,	25,	0,	0,	0,	0,	0,	0,	0,
	0,	0],											
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0	45	106	252	252	150	27	0	0	0	0	0	0
	0,	45, 0],	-	255,	200,	150,	۷/,	0,	0,	0,	0,	0,	0,
г	0,	_		0	0	0	0	0	0	0	0	0	0
[0,				0,					-	-		-
	0, a	0, 0],		93,	252,	233,	10/,	0,	0,	0,	0,	0,	0,
[0, 0,	0],	0,	a	0,	a	a	0,	0,	0,	0,	0,	0,
L	0,	0,	-					64,		-			0,
	0,	0, 0],		0,	247,	233,	247,	ر +0	0,	0,	0,	0,	0,
[0,	0 _] ,		а	0,	а	0,	0,	0,	0,	0,	0,	0,
L	0,	-		_	253,	-	-	-	0,	0,	-		0,
	0,	0],	-	105,	200,	200,	207,	۷,	0,	0,	٠,	٠,	0,
Γ	0,	0,		а	0,	а	а	0,	0,	0,	0,	0,	39,
_		229,								-			0,
		0],		233,	233,	230,	102,	٠,	٠,	٠,	٠,	٠,	٠,
		0,		٥.	٥.	٥.	0.	۵.	0.	0.	24.	114.	221.
	253.	253,	253.	253.	201.	78.	0.	0.	0.	0.	0.	0.	0.
		- 0],		,	,	. • ,	•,	•,	•,	•,	•,	•,	•,
Γ		0,		0.	0.	0.	0.	0.	23.	66.	213.	253.	253.
		253,											
	-	0],	-	,	,	,	,	,	,	,	,	,	,
		0,		0,	0,	0,	18,	171,	219,	253,	253,	253,	253,
1	L95.	80,	9,	0.	0.	0.	0.	0,	0.	0.	0.	0.	0.
		0],		-,	-,	-,	-,	-,	-,	-,	-,	-,	-,
		0,		0.	55,	172,	226.	253,	253.	253.	253.	244,	133,
-		0,											
		0],		- ,	- ,	- ,	- ,	- ,	- ,	- ,	- ,	- ,	- ,
	Ω	/drive/10	Ω					_n_n					. ^

```
0,
         0,
                      0, 130, 253, 253, 253, 212, 135, 132,
                                         0,
   0,
         0,
                0,
                            0,
                                  0,
                                               0,
                                                     0,
                                                                               0,
   0,
         0],
                                                     0,
   0,
                0,
                                         0,
                                                                  0,
                                                                        0,
                                                                              0,
         0,
                      0,
                            0,
                                  0,
                                               0,
                                                            0,
   0,
                0,
                      0,
                            0,
                                  0,
                                         0,
                                               0,
                                                     0,
                                                            0,
                                                                  0,
                                                                        0,
                                                                               0,
         0,
   0,
         0],
   0,
         0,
                0,
                      0,
                            0,
                                  0,
                                         0,
                                               0,
                                                     0,
                                                            0,
                                                                  0,
                                                                        0,
                                                                              0,
         0,
                                         0,
   0,
                                  0,
                                                                              0,
   0,
         0],
         0,
   0,
0,
                      0,
                            0,
                                  0,
                                         0,
                                               0,
                                                     0,
                                                            0,
                                                                  0,
                                                                        0,
                                                                              0,
   0,
         0,
                0,
                      0,
                            0,
                                   0,
                                         0,
                                               0,
                                                     0,
                                                            0,
                                                                              0,
         0]], dtype=uint8)
```

See first image plt.matshow(x_train[0])

Normalize the iamges by scaling pixel intensities to the range 0,1 x_train=x_train/255 x_test=x_test/255

See first Naormalize Image Matrix x_train[0]

```
, 0.
0.
            0.
                                                 , 0.
                        , 0.
                                    , 0.
                                                 , 0.18039216,
0.50980392, 0.71764706, 0.99215686, 0.99215686, 0.81176471,
0.00784314, 0.
                                      0.
0.
[0.
             0.
0.
                                      0.
                        , 0.15294118, 0.58039216, 0.89803922,
0.99215686, 0.99215686, 0.99215686, 0.98039216, 0.71372549,
0.
             0.
                                     , 0.
                                                 , 0.
0.
             0.
[0.
            0.
                        , 0.
                                    , 0.
                                                 , 0.
                        , 0.
            0.
                                    , 0.
0.09411765, 0.44705882, 0.86666667, 0.99215686, 0.99215686,
0.99215686, 0.99215686, 0.78823529, 0.30588235, 0.
```

```
0.
                                    , 0.
0.
                                    ],
                                   , 0.
[0.
                                   , 0.09019608, 0.25882353,
                       , 0.
0.83529412, 0.99215686, 0.99215686, 0.99215686, 0.99215686,
0.77647059, 0.31764706, 0.00784314, 0.
           , 0.
                       , 0.
                                    , 0.
0.
                                    1,
[0.
                       , 0.
                                    , 0.
           , 0.07058824, 0.67058824, 0.85882353, 0.99215686,
0.99215686, 0.99215686, 0.99215686, 0.76470588, 0.31372549,
                       , 0.
0.03529412, 0.
                                    , 0.
                                                 , 0.
                       , 0.
0.
        , 0.
                                    , 0.
                                                 , 0.
                       , 0.
           , 0.
0.
                                   ],
                                    , 0.
                       , 0.
                                                 , 0.21568627,
[0.
0.6745098, 0.88627451, 0.99215686, 0.99215686, 0.99215686,
0.99215686, 0.95686275, 0.52156863, 0.04313725, 0.
                       , 0.
                                 , 0.
0.
                                    , 0.
0.
                        , 0.
                                    ],
                                                 , 0.53333333,
[0.
                       , 0.
                                    , 0.
0.99215686, 0.99215686, 0.99215686, 0.83137255, 0.52941176,
                                 , 0.
0.51764706, 0.0627451, 0.
           , 0.
                       , 0.
                                    , 0.
0.
           , 0.
                       , 0.
                                    , 0.
0.
0.
           , 0.
                       , 0.
                        , 0.
[0.
            0.
                                    , 0.
                                    , 0.
           , 0.
                        , 0.
0.
                                                   0.
                       , 0.
            0.
                                    , 0.
0.
           , 0.
                        , 0.
                                                   0.
                                    , 0.
0.
            0.
0.
                                    ],
[0.
0.
0.
0.
                                      0.
                                    , 0.
0.
             0.
                         0.
0.
[0.
             0.
                        , 0.
                                    , 0.
0.
            0.
                                                  0.
                                    , 0.
0.
             0.
                        , 0.
                                                   0.
                        , 0.
                                    , 0.
0.
             0.
                                                   0.
                        , 0.
                                    , 0.
                                                   0.
```

Define the network architecture using Keras

```
model=keras.Sequential([
    # Input Layer
    keras.layers.Flatten(input_shape = (28,28)),
    # Hidden Layer
    keras.layers.Dense(128,activation = 'relu'),
    # Output Layer
    keras.layers.Dense(10,activation = 'softmax')
])
```

model.summary()

Model: "sequential 5"

Layer (type)	Output Shape	Param #
flatten_5 (Flatten)	(None, 784)	0
dense_10 (Dense)	(None, 128)	100480
dense_11 (Dense)	(None, 10)	1290

Total params: 101,770 Trainable params: 101,770 Non-trainable params: 0

```
# Compile the Model
```

model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

#Train the model using SGD

history=model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=10)

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

#Evaluate the network

Making Prediction on New Data

```
n=random.randint(0,9999)
plt.imshow(x_test[n])
plt.show()
```


plt.legend(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
plt.show()

Colab paid products - Cancel contracts here

Os completed at 12:32 PM

×