行测公式汇编

一、数字特性

- 1. 奇偶运算基本法则
 - ①基础:

奇数 \pm 奇数 = 偶数 \pm 偶数 \pm 偶数 \pm 偶数 \pm 高数 \pm 偶数 \pm 奇数 \pm 奇数 \pm 奇数 \pm

- ②推论:
 - a.任意两个数的和,如果是奇数,那么差也是奇数;如果是偶数,那么差也是偶数。
 - b.任意两个数的和或差,如果是奇数,则两数奇偶相反;如果是偶数,则两数奇偶相同。
- 2.整除判定基本法则
 - ①能被 2, 4, 8, 5, 25, 125 整除的数的数字特性:
 - a.能被2或5整除的数,末一位数字能被2或5整除;

能被4或25整除的数, 末两位数字能被4或25整除;

能被8或125整除的数,末三位数字能被8或125整除。

- b.一个数被2或5除得的余数,就是其末一位数字被2或5除得的余数;
 - 一个数被 4 或 25 除得的余数, 就是其末两位数字被 4 或 25 除得的余数;
 - 一个数被8或125除得的余数,就是其末三位数字被8或125除得的余数。
- ②能被 3.9 整除的数的数字特性:
 - a.能被3或9整除的数,各位数字之和能被3或9整除;
 - b.一个数被3或9除得的余数,就是其各位相加后被3或9除得的余数。
- ③能被11整除的数的数字特性:
 - a.能被 11 整除的数, 奇数位的和与偶数位的和之差, 能被 11 整除。
- 3.倍数关系核心判定特征
 - ①如果 a: b = m: n (m, n 互质), 则 a 是 m 的倍数, b 是 n 的倍数;
 - ②如果 a: b = m: n (m, n 互质),则 a ± b 应该是 m ± n 的倍数;
 - ③如果 $n \times x = m \times y$ (m, n 互质),则 x 是 m 的倍数,y 是 n 的倍数。

二、乘法与因式分解公式

1.正向乘法分配律: $(a+b) \times c = ac + bc$

逆向乘法分配律: $ac + bc = (a + b) \times c$ (又叫"提取公因式法")

2.平方差: $a^2 - b^2 = (a + b) \times (a - b)$

完全平方和/差: $(a \pm b)^2 = a^2 \pm 2ab + b^2$

3.立方和/差: $a^3 \pm b^3 = (a \pm b) (a^2 \mp b + b^2)$

完全立方和/差: $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$

4.阶乘: $n!=n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$

5. $\frac{d}{n(n+d)} = \frac{1}{n} - \frac{1}{n+d}$

三、等差、等比数列

<u> </u>	生、 1,70%// 1		
	等差数列	等比数列	
定义	{an}为等差数列 ⇔ a _{n+1} -a _n = d(常数)	$\{a_n\}$ 为等比数列 $\Leftrightarrow \frac{a_{n+1}}{a_n} = q(常数)$	

通项公式		$a_n = a_1 + (n-1)d = a_k + (n-k)d$	$a_n = a_1 q^{n-1} = a_k q^{n-k}$	
	求和 公式 $S_n = \frac{n \times (a_1 + a_n)}{2} = a_1 n + \frac{n(n-1)}{2} d$		$S_n = \frac{a_1 \cdot (1 - q^n)}{1 - q} = \frac{a_1 - q \times a_n}{1 - q} (q \neq 1)$	
中項	中项 2A = a + b (若 a、A、b 成等差数列)		G ² = ab (若 a、G、b 成等比数列)	
公式	1	推广: 2a _n = a _{n-m} +a _{n+m}	推广: $a_n^2 = a_{n-m} \times a_{n+m}$	
	1	若 m+n = k+i,则: a _m +a _n = a _k +a _i	若m+n=p+q, 则: $a_m \times a_n = a_p \times a_q$	
性	2	S _n , S _{2n} -S _n , S _{3n} -S _{2n} 成等差数列	S _n , S _{2n} -S _n , S _{3n} -S _{2n} 成等比数列	
质	3	$d = \frac{a_n - a_1}{n-1} = \frac{a_m - a_n}{m-n} (m \neq n)$	$q^{n-1} = \frac{a_n}{a_1}$, $q^{n-m} = \frac{a_n}{a_m}$ $(m \neq n)$	

四、余数问题 (余同取余,和同加和,差同减差,最小公倍做周期)

		通项公式
一个被除	余数相同	几个除数的公倍数加上除数共同的余数
数的除数	除数与余数的和相等	几个除数的公倍数加上除数与余数的和
不同	除数与余数的差相等	几个除数的公倍数减去除数与余数的差

五、溶液问题

1.基本公式:溶液质量=溶质质量+溶剂质量溶液浓度=溶质质量÷溶液质量溶液浓度。溶液质量=溶液质量×溶液浓度

2.浓度分别为 a%、b%的溶液,质量分别为 M、N,交换质量 L 后浓度都变成 c%,则:

$$c\% = \frac{a\% \times M + b\% \times N}{M + N}$$

$$L = \frac{MN}{M + N}$$

- 3.混合稀释型:

 - ①溶液倒出比例为a的溶液,再加入相同的溶剂,则浓度为 $(1-a)^{xy}$ × 原浓度 ②溶液加入比例为a的溶剂,再倒出相同的溶液,则浓度为 $(\frac{1}{1+a})^{xy}$ × 原浓度

六、利润问题

1.利润=销售价(卖出价)-成本

利润=销售价 (卖出价) - 成本

利润率=
$$\frac{$$
 利润}{ 成本} = $\frac{$ 销售价 - 成本}{ 成本} = $\frac{$ 销售价}{ 成本} - 1 销售价=成本× (1+利润率) 成本= $\frac{$ 销售价}{ 1+利润率} 和息=本金×利率×时期

2.利息 = 本金×利率×时期

本金 = 本利和÷ (1+利率×时期)

本利和 = 本金 + 利息 = 本金× (1 + 利率×时期)

月利率 = 年利率÷12 月利率×12=年利率

例: 某人存款 2400 元, 存期 3 年, 月利率为 10.2‰ (即月利 1 分零 2 毫), 三年到期后,

本利和共是多少元? $\therefore 2400 \times (1 + 10.2\% \times 36) = 2400 \times 1.3672 = 3281.28$ (元)

七、工程问题

1.基本公式: 工作量 = 工作效率 × 工作时间 工作效率 = 工作量÷工作时间 工作时间 = 工作量÷工作效率 总工作量 = 各分工作量之和

心竺提醒: 在解决实际问题时, 常设最小公倍数

- 2.多人合作问题:设工作总量为特值(完成工作所需时间或工作效率的最小公倍数),求各 自的效率或者时间, 求题目所问。
- 3.轮流工作问题: 计算每人的工作效率, 得到一个周期的工作量。做除法, 看工作总量包含 几个周期的工作量、还剩余多少工作量分析剩余工作量、得出最终答案。

八、行程问题

- $\frac{2v_1v_2}{v_1+v_2}$ (**心竺提醒**: 等距离平均速度,常用于上下坡题型) ; 1.平均速度型: 平均速度 = 路程 = 速度×时间; 平均速度 = 总路程÷总时间
- 2.相遇追及型: 相遇问题: 相遇距离 = (大速度 + 小速度) × 相遇时间 追及问题: 追及距离 = (大速度-小速度) ×追及时间 背离问题: 背离距离 = (大速度 + 小速度) × 背离时间
- 3.环形运动型: 同点出发 反向运动: 环形周长 = (大速度 + 小速度) × 相遇时间

同向运动: 环形周长 = (大速度-小速度) ×追及时间

4.流水行船型:

顺水速度=船速+水速 逆水速度 = 船速-水速 顺流行程 = 顺流速度×顺流时间 = (船速+水速)×顺流时间

逆流行程 = 逆流速度×逆流时间 = (船速-水速) ×逆流时间

船速= (顺水速度+逆水速度) ÷2 水速= (顺水速度-逆水速度) ÷2

5.火车过桥型:

列车在桥上的时间 = (桥长-车长) ÷列车速度 列车从开始上桥到完全下桥所用的时间 = (桥长 + 车长) ÷列车速度 列车速度= (桥长+车长) ÷过桥时间

6.扶梯上下型: 扶梯总长 = 人走的阶数× $(1 \pm \frac{\mathbf{v}_{\#}}{\mathbf{v}})$. (顺行用加、逆行用减) 7.电梯问题:

> 同向运动: $S = (V_A + V_{HH}) \times T$ 反向运动: S = (V_人-V_{电梯}) × T

8.队伍行进型:

队头 \rightarrow 队尾: 队伍长度 = $(V_{\Lambda} + V_{N}) \times$ 时间 队尾 \rightarrow 队头: 队伍长度 = $(V_{A-}V_{N})$ ×时间

9.典型行程模型:

等距离平均速度: $\overset{-}{\mathbf{v}} = \frac{2\mathbf{v}_1\mathbf{v}_2}{\mathbf{v}_1 + \mathbf{v}_2} (\mathbf{v}_1, \mathbf{v}_2 \mathbf{\mathcal{D}})$ ($\mathbf{v}_1, \mathbf{v}_2 \mathbf{\mathcal{D}}$) 代表往、返速度) 等发车前后过车: 核心公式: $T = \frac{2t_1t_2}{t_1 + t_2}$; $\frac{\mathbf{v}_4}{\mathbf{v}_4} = \frac{t_2 + t_1}{t_2 - t_1}$

无动力顺水漂流:漂流所需时间 = $\frac{1}{t_{\dot{u}}-t_{m}}$

(其中t_顺和t_逆分别代表船顺流所需时间和逆流所需时间)

10.多次相遇型:

相遇次数	相遇总路程	相遇时间	甲时间	甲路程	乙时间	乙路程
出发到第1 次相遇	Se	T _遇	$T_{\mathcal{F}}$	$S_{\#}$	T_{Z}	S_Z
出发到第2 次相遇	3 <i>S</i> ⊭	3 <i>T遇</i>	3 <i>T</i> #	3 <i>S</i> ₩	$3T_Z$	$_3S_Z$
出发到第3 次相遇	5 <i>S</i> 点	5 <i>T遇</i>	5 <i>T</i> #	5 S #	$5T_{\!Z}$	5 S_Z
出发到第4 次相遇	7 <i>S</i> 点	7 <i>T遇</i>	7 <i>T</i> #	7 <i>S</i> ₩	$7T_Z$	$7S_Z$
出发到第5 次相遇	9 <i>S</i> 点	9 <i>T遇</i>	9 <i>T</i> #	9 <i>S</i> #	9 <i>T</i> Z	9 S_Z
•••••	•••••	•••••	•••••	•••••	•••••	•••••
出发到第n	(2n-1) S	(2n-1) T	(2n-1) T	(2n-1) S	(2n-1) T	(2n-1) S
次相遇	Æ	週	甲	#	Z	Z

九、容斥原理

- 1.两集合标准型: AUB=A+B-A∩B
- 2.三集合标准: AUBUC=A+B+C-A∩B-A∩C-B∩C+A∩B∩C
- 3.三集合整体重复型: 假设满足三个条件的元素分别为ABC, 而至少满足三个条件之一的元 素的总量为W, 其中: 满足一个条件的元素数量为x, 满足两个条件的元素数量为y, 满足 三个条件的元素数量为z, 可以得以下等式:

(1)W = x + y + z

С

(2)A + B + C = x + 2y + 3z

 $A \cap B \cap$

С

十、排列组合、概率问题

1.排列、组合:

	定义 (m≤n)	顺序 影响	列式	计算		
排列	从n个元素中取出 m个元素进行排	有	A m	$A_n^m = \frac{n!}{(n-m)!} = n(n-1)(n-2)(n-m+1)$		
组合	从n个元素中取出 m个元素进行组	无	C m	$C_n^m = \frac{n!}{(n-m)!m!} = \frac{n(n-1)(n-2)(n-m+1)}{m(m-1)(m-2)2 \times 1}$		

另外:
$$\mathbf{C}_n^m = \mathbf{C}_n^{n-m}$$
 $\mathbf{C}_n^m = \mathbf{A}_n^m \div \mathbf{A}_n^m = (規定_n^0 = 1)$

2.错位重排问题: $D_1=0$, $D_2=1$, $D_3=2$, $D_4=9$, $D_5=44$, $D_6=265$ … 3.环形模型:

模型	定义	方法数
环球 模型	N个不同元素排成一圈	$\mathbf{A}_{ ext{N-l}}^{ ext{N-l}}$

6.隔板模型:

题干特征: (1)n个相同的元素;

②分给m个不同对象;

③每个对象至少一个。

	特点	解题方法
原型	每个对象至少1个	C_{n-1}^{m-1}
变形1	每个对象至少a个 (a≥2)	先给每个对象 $(a-1)$ 个: $C_{n-(a-1)m-1}^{m-1}$
变形2	任意分	先向每个对象借 1 个: C_{n+m-l}^{m-l}

5.概率问题:

分类	题干特征	解题方法
古典概率	①基本事件的概率相等; ②基本事件有限性。	P _A = 事件A的方法数 总的方法数
多次 独立 重复 事件	①基本事件只有两种结果: 发生或不发生, 发生的概率为p, 不发生的概率为 (1-P); ②求某次实验独立重复n次, 则事件A发生m次概率P。	$P_A = C_n^m p^m (1-p)^{n-m}$

单独概率 = 满足条件的情况数/总的情况数

总体概率 = 满足条件的各种情况概率之和

分步概率 = 满足条件的每步不同概率之积

十一、统筹问题

1.空瓶换酒:

N个空瓶可以换1瓶饮料,总共有A个空瓶,能换到的饮料瓶数为: A/(N-1) N个空瓶可以换 1 瓶饮料,要喝 M 瓶饮料,至少要买的饮料瓶数为 A,有 $A + \frac{A}{N-1} = M$

(A 如果出现小数就进1; M 如果出现小数就舍去)

2.货物装卸:

如果有 M 辆车和 N 个工厂,

若 N > M, 所需装卸工的总数就是需要装卸工人数最多的 M 个工厂所需的装卸工人数之 和;

若 M≥N,则把各个点上需要的人加起来即答案。

3.拆数求积:

将一个正整数 (≥2) 拆成若干自然数之和, 要使这些自然数的乘积尽可能的大, 那么我 们应该这样来拆数:全部拆成若干个3和少量2(1个2或者2个2)之和即可。

4.过河问题:

M个人过河,船上能载 N个人,由于需要一人划船,故共需过河(M-1)/(N-1)次。(分子、分母分别减"1"是因为需要 1个人划船,如果需要 n个人划船就要同时减去 n)

十二、几何问题

1.平面图形的周长与面积公式:

	长方形	正方形	平行 四边形	三角形	梯形	圆	扇形
图例			$\begin{array}{ c c c c }\hline a \\ \hline & h & b \\ \hline \end{array}$	c h b	$\frac{a}{h}$	r/d	r
周长	2(a+b)	4 <i>a</i>	2(a+b)	a+b+c	/	2πr或πd	$rac{n}{180}\pi r$ (弧长)
面积	ab	a^2	ah	$\frac{ah}{2}$	$\frac{a+b}{2} \times h$	$\pi r^2 \mathbf{E} \frac{1}{4} \pi d^2$	$\frac{n}{360}\pi r^2$

2.立体图形的表面积与体积公式:

	长方体	正方体	球体	圆柱体	圆锥体
图例	b a c	a	F	h	h
表面积	2(ab+bc+ac)	$6a^2$	$4\pi r^2$	$2\pi r^2 + 2\pi rh$	$\pi r l + \pi r^2$
体积	abc	a^{3}	$\frac{4}{3}\pi r^3$	$\pi r^{^2}\!h$	$\frac{1}{3}\pi r^2h$

3.图形等比缩放型:

- 一个几何图形, 若其尺度变为原来的m倍, 则:
- ①所有对应角度不发生变化;
- ②所有对应**长度**变为**原来的 m 倍**;
- ③所有对应**面积**变为**原来的 m²倍**;
- ④所有对应**体积**变为**原来的m³倍**。

4.一些特殊性质:

①三角形三边关系

在一个三角形中, 任意两边之和大于第三边; 任意两边之差小于第三边。

②多边形内角和

多边形内角和公式: n边形内角和等于 $(n-2) \times 180^\circ$ 。

十三、植树问题

1.单边线形植树: 棵数 = 总长 \div 间隔 + 1 总长 = (棵数 -1) × 间隔

环形植树: 棵数 = 总长 ÷ 间隔 总长 = 棵数 × 间隔

楼间植树: 棵数 = 总长 \div 间隔 -1 总长 = (棵数 +1) × 间隔

2.双边植树:相应单边植树问题所需棵数的2倍。

3.剪绳问题: 对折 N 次, 从中剪 M 刀, 则被剪成了 $(2^N \times M + 1)$ 段

十四、鸡兔同笼

兔数=(实际脚数 - 每只鸡脚数 × 鸡兔总数)÷(每只兔子脚数 - 每只鸡脚数) 鸡数=(每只兔脚数 × 鸡兔总数 - 实际脚数)÷(每只兔子脚数 - 每只鸡脚数)

十五、周期问题

一周7天,5个工作日。一年平年365天(52周+1天),闰年366天(52周+2天)。

平年与闰年						
	判断方法 年共有天数 2月天数					
平年	不能被4整除	365天	28天			
闰年	闰年 可以被4整除 366天 29天					

心竺提醒: 闰年: 四年一闰,百年不闰,四百年再闰。平年365天,365÷7 = 52···1 大月31天,小月30天,平月(2月)28或29天。

	大月与小月					
	包含的月份 月共有天数					
大月	1, 3, 5, 7, 8, 10, 12	31天				
小月	4、6、9、11	30天				

心竺提醒: 星期每7天一循环; "隔N天"指的是"每 (N+1)天"。

循环周期问题: 若一串实物以T为周期, 且A÷T=N···a, 那么第A项等同于第a项。

十六、牛吃草问题

核心公式: y=(N-x)T

原有草量= (牛数-每天长草量) ×天数, 其中: 一般设每天长草量为x

心竺提醒: 如果草场面积有区别,如"M头牛吃W亩草时",N用W 代入,此时N代表单位面积上的牛数。

十七、几何边端问题

1.方阵问题

①实心方阵: 方阵总人数 = $(最外层每边人数)^2 = (外圈人数÷4+1)^2 = N^2$

最外层人数 = (最外层每边人数 - 1) × 4

②空心方阵: 方阵总人数 = (最外层每边人数)² - (最外层每边人数 - 2×层数)²

= (最外层每边人数-层数) ×层数×4

心竺提醒: 无论是方阵还是长方阵, 相邻两层的人数都满足: 外层比内层多8人。

例:有一个3层的空心方阵,最外层有10人,问全阵有多少人?

∴ (10 – 3) × 3 × 4 = 84 (人)

③N 边形每边有 a 人. 则一共有 N(a-1)人。

④实心长方阵: 总人数 $= M \times N$ 外圈人数 = 2M + 2N - 4

2.排队型: 假设队伍有 N 人,A 排在第 M 位;则其前面有(M – 1)人,后面有(N – M)人。3.爬楼型: 从地面爬到第N层楼要爬(N – 1)楼,从第N层爬到第M层要爬M-N 层。

十八、资料分析计算公式整理

考点	已知条件	计算公式	方法与技巧
基期量计算	1.已知现期量,增长率r	基期量 = <u>现期量</u> 1+r	截位直除法,特殊分数法
	2.已知现期量,相对基期量增加M倍	基期量 = $\frac{现期量}{1+M}$	截位直除法
	3.已知现期量,相对基期量的增长量N	基期量=现期量-N	尾数法,估算法
基期量比较	4.已知现期量,增长率r	基期量 = <u>现期量</u> 1+r	①截位直除法;②如果现期量差距比较大,增长率相差不大,可直接比较现期量;③化同法。 分数大小比较: ①直除法(首位判断或差量比较); ②化同法,差分法或其他。
现期量计算	5.已知基期量,增长率r	现期量 = 基期量+基期量×r = 基期量×(1+r)	特殊分数法,估算法
	6.已知基期量,相对基期量增加M倍	现期量 = 基期量+基期量×M = 基期量×(1+M)	估算法
	7.已知基期量,增长量N	现期量 = 基期量+N	尾数法,估算法
增长量计算	8.已知基期量与现期量	增长量=现期量-基期量	尾数法
	9.已知基期量与增长率r	增长量=基期量×r	特殊分数法
	10.已知现期量与增长率r	增长量 = ^{<u>现期量</u> × r 1+r}	①特殊分数法, 当r可以被视为 <u>1</u> 时, 公式可被化简为:

	11.如果基期量为A, 经N期变为B, 年均增长量为x	$x = \frac{B - A}{N}$	直除法
增长量比较	12.已知现期量与增长率r	增长量 = <mark>现期量</mark> × r	①特殊分数法,当r可以被视为 $\frac{1}{1}$ 时,公式可被化简为: 增长量 = $\frac{39}{1+n}$ ②公式可变换为增长量 = 现期量 $\times \frac{r}{1+r}$ 其中 $\frac{r}{1+r}$ 为增函数,所以现期量大,增 长率大的情况下,增长量一定大。 $\frac{1}{n}$
增长率计算	13.已知基期量与增长量	増长率 = 増长量基期量	1+n n d d d d d d d d d d d d d d d d d d
	14.已知基期量与现期量	增长率 = ^{现期量 - 基期量} 基期量	截位直除法
	15.如果基期量为A, 经N期变为B, 年均增长率为x	$x = \sqrt[N]{\frac{B}{A}} - 1$	代人法或公式法
	16 .隔年增长率: 如果第二期与第三期增长率分别为 r_1 与 r_2 ,那么第三期相对第一期增长率 r_3	$r_3 = r_1 + r_2 + r_1 r_2$	简单记忆口诀:连续增长,最终增长大 于增长率之和;连续下降,最终下降小 于增长率之和
	17.混合增长率:整体分为A、B两个部分,分别增长a与b,整体增长率r	$r = \frac{A \times a + B \times b}{A + B}$	$r = a + \frac{B(b-a)}{A+B}$ (严格来说A、B是基期量)
	18.混合增长率:整体为A,增长率为r _A , 分为两个部分B和C,增长率为r _B 和r _C	则r _A 介于r _B 和r _C 之间	混合增长率居中但不正中,偏向基数大
增长率 比较	19.已知现期量与增长量	用 <mark>现期量</mark> 代替增长率进行大 基期量 小比较	相当于分数大小比较,同上述做法
发展速度	20.已知基期量与现期量	发展速度 = ^{现期量} = 1+增长 率	截位直除法、插值法
增长贡 献率	21.已知部分增长量与整体增长量	增长贡献率 = 部分增长量整体增长量	截位直除法、插值法
拉动增长	22.如果B是A的一部分,B拉动A增长了x	x = B的增长量 A的基期量	截位直除法、插值法
	23.某部分现期量为A,整体现期量为B	现期比重 = $\frac{A}{B}$	截位直除法、插值法
比重计算	24.某部分基期量为A,增长率a,整体 基期量为B,增长率b	现期比重 = $\frac{A \times (1+a)}{B \times (1+b)}$	一般先计算 A 然后根据a和b的大小判

	25.某部分现期量为A,增长率a,整体 现期量为B,增长率b	基期比重 = $\frac{A}{B} \times \frac{1+b}{1+a}$	
	26.现期比重-基期比重: 某部分现期量为A, 增长率a, 整体现期量为B, 增长率b	两者比重差值计算: 现期比重-基期比重 $= \frac{A}{B} - \frac{A}{B} \times \frac{1+b}{1+a}$ $= \frac{A}{B} \times (1 - \frac{1+b}{1+a})$ $= \frac{A}{B} \times \frac{a-b}{1+a}$	①先根据a与b的大小判断差值计算结果是正数还是负数; ②答案一般小于la-bl; ③估算法(近似取整估算)
比重比较	27.某部分现期量为A,整体现期量为B	现期比重 = $\frac{A}{B}$	相当于分数大小比较,同上述做法
	28.基期比重与现期比重比较: 某部分现期量为A, 增长率a, 整体现期量为B, 增长率b	现期比重-基期比重 $= \frac{A}{B} \times \frac{a-b}{1+a}$	当部分增长率大于整体增长率,则现期 比重大于基期比重(方法为"看"增长 率)
平均数计算	29.已知N个量,求平均数	平均数 = $\frac{n_1 + n_2 + \dots + n_N}{N}$	凑整法
直接读数类	30.方法: 读题做标记, 辅助工具 (直尺)		
综合 分析题	31.四项基本原则:题干短原则,不计算原则 (时间与材料时间一致),信息易得原则,简单计算原则		

客服热线: 4001677668 **10**官网地址: www.sinture.com