Proyecto Algoritmos, Sistema Solar Interactivo Tecnológico para Educación STEM

Objetivo General: Desarrollar un sistema solar interactivo usando tecnologías modernas que combine automatización, visualización de datos y una maqueta interactiva, con fines educativos y de simulación.

Sistema solar en maqueta con:

- 1. Motores que hacen girar los planetas
- 2. Luces LED que indican las características (Luna, Sol, Planetas, Asteroides, etc.)
- 3. Panel de control web para interactuar con los planetas (Encender luces, hacer girar, etc.)
- 4. Arduino UNO o ESP32
- 5. Servomotores
- 6. Node.js + Express
- 7. Html + Css + Js
- 8. Puerto COM para conectar Arduino y node.js

Distribución del trabajo

Miembro	Rol	Actividades principales
Yuam	Backend Developer	Node.js, Express, Comunicación con Arduino. API Rest para manejar
		comandos y sensores
Goob	Frontend Developer	HTML, CSS, JavaScript, diseño de interfaz web con botones, feedback
		visual, conexión a API
Moisés	Electrónico	Cableado, conexión de LEDs y motores, codificación del Arduino,
		pruebas de circuito
Adrián	Diseñador y maquetador	Construcción física, planetas, sistema giratorio, estructura estable,
		organización de componentes físicos
José	Documentador y Analista	Documentación técnica, algoritmos, diagrama de flujo, manual del
		usuario, presentación gráfica, defensa teórica del proyecto

Cronograma del trabajo

Semana	Actividades	Responsable
Semana 1	Investigación, planificación, lista de materiales, diagrama de flujo y	Todos, liderado por documentador(José)
	algoritmo	
	Boceto de maqueta, diseño visual del Frontend, arquitectura del sistema	Yuam, Goob, Adrián
	(Node.js – Arduino)	
Semana 2	Cableado y ensamblado básico: luces, motores	Moisés, Adrián
	Backend: Servidor Node.js + Conexión serial con Arduino	Yuam
	Frontend: Estructura de la página + prueba de botones	Goob
Semana 3	Integración Backend - Arduino	Yuam, Moisés
	Integración Frontend – API Rest	Yuam, Goob
	Finalización de maqueta y ajustes físicos	Maquetador
Semana 4	Pruebas finales, solución de bugs, presentación en PowerPoint	Todos
	Documentación final: algoritmo, diagrama de flujo y manual de usuario	José
	Video demostrativo y grabación de funcionamiento	José, Goob

Funcionalidades del sistema

Función	Tecnología	Descripción
Movimiento de planetas	Arduino + Servomotores	Cada planeta puede girar individualmente
Encendido de LEDs	Arduino + LEDs	Un LED por planeta indica condiciones como
		atmosfera
Control Web	Node.js + HTML/CSS/JS	WebApp con botones por planeta
API Rest	Node.js + Express	Ruta para enviar comandos a Arduino
Comunicación Arduino <-> Web	Comunicación Serial (USB)	Arduino escucha comandos y los ejecuta

OPCIONAL EN DADO CASO FUESE NECESARIO

- Base de datos ligera con la info de cada planeta que se consulta desde la web.
- **Dashboard educativo** con gráficas simples (ej. tamaño relativo de planetas).

Presupuesto:

Opciones de Arduino:

- Página oficial 45.24\$ 352Q aproximadamente; 8 a 14 días de entrega
- La electrónica 299Q; 126 existencias, entrega rápida
- Tettsa 450Q; 6 disponibles

Sensores y componentes:

Componente	Uso	Aprox. Precio
LEDs	Luz por planeta	10-20 Q
Resistencias 220	Limitar la corriente del LED	Q5
Servomotores SG90	Girar planetas	15-25 Q cada uno
Protoboard + Jumpers	Conexión sin soldadura	20Q
Fuente 9V o Powerbank	Alimentación	20-40 Q

Softwares de trabajo:

Documento	Herramienta	Justificación
Informe técnico, manual	Microsoft Word	Más presentable y fácil exportación a PDF
Algoritmo y Diagrama de flujo	Draw.io	Gratis, online, Exportación a PNG/SVG/PDF
Código y control de versiones	Github + Git + Visual Studio Code	Profesional, backups, colaboración
Presentación	PowerPoint, Canva o Google slides	Accesible, buen diseño visual
Notas y tareas del grupo	Notion	Organización de tareas, fechas y pendientes

Herramientas y software:

Área	Herramienta	Listo	Usos
Programación Arduino	Arduino IDE		Subir código al Arduino
Backend/API Rest	Node.js + Express		Crear servidor y comunicar con Arduino
Frontend	HTML/CSS/JS + VsCode		Página de control del sistema solar
IDE principal	Visual Studio Code		Código
Repositorio	Github		Guardar código, documentación e historial
Diagramas	Draw.io		Algoritmo, flujo y arquitectura
Documentos	Word		Informe, documentación y manual de usuario
Presentación	Canva / PowerPoint		Para defender el proyecto
Gestión del proyecto	Notion		Asignar tareas y organización