

Base-extension Semantics for Intuitionistic Linear Logic

Yll Buzoku

Department of Computer Science University College London

August 2, 2024

2|56

Goals for this talk

- To introduce Intuitionistic Linear Logic and a natural deduction system for it.
- Present a Base-extension Semantics for Intuitionistic Linear Logic.
- Talk about some of the difficulties involved the process of developing such a semantics.

Presentation root directory

1 Overview of Intuitionistic Linear Logic

2 Base-extension Semantics for ILL

3 Including the exponential

4|56

Presentation root directory

1 Overview of Intuitionistic Linear Logic

2 Base-extension Semantics for ILL

3 Including the exponential

Notation

- A represents a fixed, countably infinite set of propositional atoms.
- Lower case latin letters represent propositional atoms.
- Upper case latin letters represent finite multisets of propositional atoms.
- Atomic multiset is taken to mean multiset of propositional atoms.
- The sum of two multisets P and Q is denoted P, Q.
- Lower case greek letters represent ILL formulas.
- Upper case greek letters represent ILL finite multisets thereof.

Formulas of Intuitionistic Linear Logic

Definition

Formulas of ILL are defined inductively as follows:

 $\mathsf{Form}\ni\phi,\psi::=p\in\mathbb{A}\mid\top\mid0\mid1\mid\phi\multimap\psi\mid\phi\otimes\psi\mid\phi\&\psi\mid\phi\oplus\psi\mid!\,\phi$

Formulas of Intuitionistic Linear Logic

Definition

Formulas of ILL are defined inductively as follows:

$$\mathsf{Form}\ni\phi,\psi::=p\in\mathbb{A}\mid\top\mid0\mid1\mid\phi\multimap\psi\mid\phi\otimes\psi\mid\phi\&\psi\mid\phi\oplus\psi\mid!\,\phi$$

Definition (Sequent)

A sequent is a pair (Γ, φ) .

Formulas of Intuitionistic Linear Logic

Definition

Formulas of ILL are defined inductively as follows:

$$\mathsf{Form}\ni\phi,\psi::=\rho\in\mathbb{A}\mid\top\mid0\mid1\mid\phi\multimap\psi\mid\phi\otimes\psi\mid\phi\&\psi\mid\phi\oplus\psi\mid!\,\phi$$

Definition (Sequent)

A sequent is a pair (Γ, φ) .

An example ILL sequent is $(\{\phi, \phi \multimap \psi\}, \psi \otimes \chi)$

A natural deduction system for ILL

A natural deduction system for ILL (cont.)

$$\frac{\Gamma \vdash \phi_1 \quad \Delta \vdash \phi_2}{\Gamma, \Delta \vdash \phi_1 \otimes \phi_2} \otimes \text{-I}$$

$$\frac{\Gamma \vdash \varphi_1 \quad \Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \& \varphi_2} \& -1$$

$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\Gamma_1, \dots, \Gamma_n \vdash \psi} \qquad \qquad \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \psi} - \frac{\Gamma \vdash \varphi_n}{\Gamma \vdash \psi}$$

$$\frac{\Gamma_1 \vdash \varphi_1 \quad \dots \quad \Gamma_n \vdash \varphi_n}{\Gamma_1, \dots, \Gamma_n \vdash \psi} \qquad \qquad \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \psi} - \frac{\Gamma \vdash \varphi_n}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \psi} - \frac{\Gamma \vdash \varphi_n}{\Gamma \vdash \psi}$$

$$\frac{\Gamma \vdash \varphi_1 \oplus \varphi_2 \quad \Delta, \varphi_1 \vdash \chi \quad \Delta, \varphi_2 \vdash \chi}{\Gamma, \Delta \vdash \chi} \oplus -\mathsf{E}$$

$$\frac{\Gamma \vdash \phi_1 \oplus \phi_2 \quad \Delta\,,\, \phi_1 \vdash \chi \quad \Delta\,,\, \phi_2 \vdash \chi}{\Gamma\,,\, \Delta \vdash \chi} \oplus \text{-E}$$

$$\frac{\Gamma \vdash \varphi_1 \oplus \varphi_2 \quad \Delta\{\varphi_1 \vdash \chi \quad \varphi_2 \vdash \chi\}}{\Gamma, \Delta \vdash \chi} \oplus -\mathsf{E}$$

$$\frac{\Gamma\{\varnothing \vdash \phi_1 \oplus \phi_2\} \quad \Delta\{\phi_1 \vdash \chi \quad \phi_2 \vdash \chi\}}{\Gamma\,,\, \Delta \vdash \chi} \oplus \text{-E}$$

$$\frac{\Gamma\{\varnothing \vdash \phi_1 \oplus \phi_2\} \quad \Delta\{\phi_1 \vdash \chi \quad \phi_2 \vdash \chi\}}{\Gamma\,,\, \Delta \vdash \chi} \oplus \text{-E}$$

$$\frac{\Gamma\{\varnothing\vdash\phi_1\}\quad\Delta\{\varnothing\vdash\phi_2\}}{\Gamma\,,\Delta\vdash\phi_1\otimes\phi_2}\otimes\text{-I}$$

$$\frac{\Gamma\{\varnothing\vdash\varphi_1\quad\varnothing\vdash\varphi_2\}}{\Gamma\vdash\varphi_1\&\varphi_2}\&-\mathsf{I}$$

$$\frac{ \Gamma_i \left\{ \Delta_{i_1} \vdash \varphi_{i_1} \quad \dots \quad \Delta_{i_{l_i}} \vdash \varphi_{i_{l_i}} \right\} \quad \dots}{\Gamma_1 \circ \cdots \circ \Gamma_n \vdash \psi}$$

Almost! What about:

$$\frac{\Gamma_1 \vdash ! \psi_1 \quad \dots \quad \Gamma_n \vdash ! \psi_n \quad ! \psi_1 , \dots, ! \psi_n \vdash \phi}{\Gamma_1 , \dots, \Gamma_n \vdash ! \phi} \text{!-Promotion}$$

$$\frac{\Gamma_{1}\left\{\varnothing\vdash !\,\psi_{1}\right\}\quad \dots\quad \Gamma_{n}\left\{\varnothing\vdash !\,\psi_{n}\right\}\quad !\,\psi_{1}\;,\dots\;, \; !\,\psi_{n}\vdash\phi}{\Gamma_{1}\;,\dots\;,\;\Gamma_{n}\vdash !\,\phi}\; !\text{-Promotion}$$

Presentation root directory

- 1 Overview of Intuitionistic Linear Logic
- 2 Base-extension Semantics for ILL
- 3 Including the exponential

Substructural atomic derivability

Definition (Basic rule)

Basic rules take the following form:

$$\{(P_{1_i} \Rightarrow q_{1_i})\}_{i=1}^{l_1}, \dots, \{(P_{n_i} \Rightarrow q_{n_i})\}_{i=1}^{l_n} \Rightarrow r$$

- Each $(P_i \Rightarrow q_i)$ is a pair (P_i, q_i) called an atomic sequent.
- Each collection $\{(P_{i_1} \Rightarrow q_{i_1}), \ldots, (P_{i_{l_i}} \Rightarrow q_{i_{l_i}})\}$ is called an atomic box.

Substructural atomic derivability

Definition (Basic rule)

Basic rules take the following form:

$$\{(P_{1_i} \Rightarrow q_{1_i})\}_{i=1}^{l_1}, \dots, \{(P_{n_i} \Rightarrow q_{n_i})\}_{i=1}^{l_n} \Rightarrow r$$

- Each $(P_i \Rightarrow q_i)$ is a pair (P_i, q_i) called an atomic sequent.
- Each collection $\{(P_{i_1} \Rightarrow q_{i_1}), \ldots, (P_{i_{l_i}} \Rightarrow q_{i_{l_i}})\}$ is called an atomic box.

Definition (Base)

A base \mathcal{B} is a **SET** of basic rules.

Substructural atomic derivability

Definition (Basic derivability relation)

The relation of derivability in a base \mathcal{B} , is defined inductively as so:

Ref
$$p \vdash_{\mathscr{B}} p$$

App Given that $(\{(P_{1_i} \Rightarrow q_{1_i})\}_{i=1}^{l_1}, \dots, \{(P_{n_i} \Rightarrow q_{n_i})\}_{i=1}^{l_n} \Rightarrow r) \in \mathcal{B}$ and atomic multisets C_i such that the following hold:

$$C_{i}$$
, $P_{i_{i}} \vdash_{\mathscr{B}} q_{i_{i}}$ for all $i = 1, ..., n$ and $j = 1, ..., l_{i}$

Then C_1 , ..., $C_n \vdash_{\mathscr{B}} r$.

Example (Derivation terminations)

Let
$$\mathscr{B} = \{(\Rightarrow a), (\{\Rightarrow a\}, \{\Rightarrow b\} \Rightarrow c)\}$$

$$\frac{b \vdash_{\mathscr{B}} b}{b \vdash_{\mathscr{B}} c} \text{Ref} \frac{}{\vdash_{\mathscr{B}} a} \Rightarrow a \\ \{\Rightarrow a\}, \{\Rightarrow b\} \Rightarrow c$$

Therefore, in \mathcal{B} , the atom c is derivable from b.

Example (Invalid derivation)

By the definition of $\vdash_{\mathscr{B}}$, deriving a from a, a in the empty base is not possible, i.e. a, $a \vdash_{\varnothing} a$ is not possible.

24 | 56

Example derivations

Example (Invalid derivation)

By the definition of $\vdash_{\mathscr{B}}$, deriving a from a, a in the empty base is not possible, i.e. a, $a \vdash_{\varnothing} a$ is not possible.

Example (Invalid derivation 2)

Let
$$\mathscr{B} = \{(\{\Rightarrow a\} \Rightarrow c), (\{a \Rightarrow c\} \Rightarrow b)\}$$

$$\frac{\frac{\times}{a, a \vdash_{\mathscr{B}} a}}{\frac{a, a \vdash_{\mathscr{B}} c}{a \vdash_{\mathscr{B}} b}} \{ \Rightarrow a \} \Rightarrow c$$

We see that in this base, a is not derivable from a , a.

Example (A possible fix for invalid derivation 2)

$$\begin{split} \text{Let } \mathscr{C} = & \{ (\{\Rightarrow a\} \Rightarrow c), \, (\{a \Rightarrow c\} \Rightarrow b), \, (\{\Rightarrow a\}, \{\Rightarrow a\} \Rightarrow a) \} \\ & \frac{ \overline{a \vdash_{\mathscr{C}} a} \, \operatorname{Ref} }{ \overline{a \vdash_{\mathscr{C}} a} \, } \operatorname{Ref} \\ & \frac{ \overline{a \vdash_{\mathscr{C}} a} \, \operatorname{Ref} }{ \overline{a \vdash_{\mathscr{C}} a} \, } \{ \Rightarrow a \}, \{ \Rightarrow a \} \Rightarrow a \\ & \frac{ \overline{a \cdot_{\mathscr{C}} a} \, \overline{a \vdash_{\mathscr{C}} c} \, }{ \overline{a \vdash_{\mathscr{C}} b} \, } \{ a \Rightarrow c \} \Rightarrow b \end{split}$$

Note that $\mathscr{C}\supset\mathscr{B}$!!

Example (Another possible fix for invalid derivation 2)

$$\mathscr{D} = \{(\{\Rightarrow a\} \Rightarrow c), (\{a \Rightarrow c\} \Rightarrow b), (\{\Rightarrow d\}, \{\Rightarrow d\} \Rightarrow a), (\{\Rightarrow a\} \Rightarrow d)\}$$

$$\frac{ \overline{a \vdash_{\mathscr{D}} a}}{\overline{a \vdash_{\mathscr{D}} d}} \xrightarrow{\{\Rightarrow a\} \Rightarrow d} \frac{ \overline{a \vdash_{\mathscr{D}} a}}{\overline{a \vdash_{\mathscr{D}} d}} \xrightarrow{\{\Rightarrow a\} \Rightarrow d}
\frac{ \overline{a \lor_{\mathscr{D}} a}}{\{\Rightarrow a\} \Rightarrow c}
\frac{ \overline{a \circ_{\mathscr{D}} a}}{\overline{a \circ_{\mathscr{D}} a \vdash_{\mathscr{D}} c}} \xrightarrow{\{\Rightarrow a\} \Rightarrow c}
\frac{ \overline{a \circ_{\mathscr{D}} a}}{\overline{a \circ_{\mathscr{D}} b}} \xrightarrow{\{a \Rightarrow c\} \Rightarrow b}$$

Example (A live complicated derivation!)

Consider a base \mathcal{B} with only the following rules:

- $\blacksquare \{\Rightarrow c\}, \{\Rightarrow y\} \Rightarrow f$
- $\blacksquare \Rightarrow Z$
- $\blacksquare \{\Rightarrow a\}, \{\Rightarrow b\}, \{\Rightarrow z\} \Rightarrow h$
- $\blacksquare \{\Rightarrow h\} \Rightarrow g$
- $\blacksquare \{\Rightarrow x\}, \{\Rightarrow g\} \Rightarrow e$

is there a derivation of d from the multiset $a_{9}b_{9}c$ in \mathcal{B} ?

Example (A live complicated derivation!)

Consider a base \mathcal{B} with only the following rules:

- $\blacksquare \{\Rightarrow c\}, \{\Rightarrow y\} \Rightarrow f$
- $\blacksquare \Rightarrow Z$
- $\blacksquare \{\Rightarrow a\}, \{\Rightarrow b\}, \{\Rightarrow z\} \Rightarrow h$
- $\blacksquare \{\Rightarrow h\} \Rightarrow g$
- $\blacksquare \{\Rightarrow x\}, \{\Rightarrow g\} \Rightarrow e$
- $\blacksquare \{x \Rightarrow e\}, \{y \Rightarrow f\} \Rightarrow d$

is there a derivation of d from the multiset a, b, c in \mathcal{B} ?

Disclaimer: The fact I couldn't fit this derivation on the slide has nothing to do with why we are doing this derivation live :-)

Example derivations

Example (A very interesting derivation)

Let
$$\mathscr{B}=\{(\{\Rightarrow b\}\Rightarrow c), (\{\Rightarrow a\}, \{b\Rightarrow c\}\Rightarrow d), (\{\Rightarrow d, \Rightarrow a\}\Rightarrow e), (\{a\Rightarrow e\}\Rightarrow f)\}$$

$$\frac{\overline{a \vdash_{\mathscr{B}} a} \operatorname{Ref} \quad \frac{\overline{b \vdash_{\mathscr{B}} b}}{b \vdash_{\mathscr{B}} c} \operatorname{Ref}}{\frac{a \vdash_{\mathscr{B}} a}{b \vdash_{\mathscr{B}} c} \left\{ \Rightarrow b \right\} \Rightarrow c}{\left\{ \Rightarrow a \right\}, \left\{ b \Rightarrow c \right\} \Rightarrow d} \quad \overline{a \vdash_{\mathscr{B}} a} \operatorname{Ref}}{\frac{a \vdash_{\mathscr{B}} e}{\vdash_{\mathscr{B}} f} \left\{ a \Rightarrow e \right\} \Rightarrow f}$$

An interesting property of $\vdash_{\mathscr{B}}$

Lemma (Substitution lemma)

The following are equivalent for arbitrary atomic multisets P, S, atom q, and base \mathcal{B} , where we assume $P = \{p_1, \ldots, p_n\}$:

- $\blacksquare P, S \vdash_{\mathscr{B}} q$
- For every $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets T_1, \ldots, T_m where $T_1 \vdash_{\mathscr{C}} p_1, \ldots, T_n \vdash_{\mathscr{C}} p_m$, then $T_1, \cdots, T_m, S \vdash_{\mathscr{C}} q$

(At)
$$\Vdash^{\perp}_{\mathscr{B}} p$$
 iff $L \vdash_{\mathscr{B}} p$

$$\begin{array}{ll} \text{(1)} & \ \ \Vdash^{L}_{\mathscr{B}} \text{1} & \text{iff} & \text{for any } \mathscr{C} \text{ such that } \mathscr{B} \subseteq \mathscr{C}, \text{ atomic multisets } K \\ & \text{and any } p \in \mathbb{A}, \text{ if } \ \Vdash^{K}_{\mathscr{B}} p \text{ then } \ \Vdash^{L,K}_{\mathscr{C}} p \end{array}$$

$$(\top)$$
 $\Vdash^{\perp}_{\mathscr{B}} \top$ iff always

$$(0) \qquad \qquad \text{iff} \quad \Vdash^{\perp}_{\mathscr{B}} p \text{ for any } p \in \mathbb{A}$$

$$(,) \qquad \Vdash^L_{\mathscr{B}} \Gamma \ , \ \Delta \qquad \text{iff} \qquad \text{there exists multisets K and M such that $L=K$, M and
$$\Vdash^K_{\mathscr{B}} \Gamma \text{ and } \Vdash^M_{\mathscr{B}} \Delta$$$$

Base-extension Semantics for ILL

Note the clause for (!) could be written as:

■ $\Vdash^{\mathcal{L}}_{\mathscr{B}}$! φ iff for any \mathscr{C} such that $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K and any $p \in \mathbb{A}$, if ! $\varphi \Vdash^{K}_{\mathscr{C}} p$ then $\Vdash^{L,K}_{\mathscr{C}} p$.

Notes on $\mathbb{H}_{\mathscr{B}}^{\perp}$

■ The sequent (Γ, φ) is said to be valid if and only if $\Gamma \Vdash_{\varnothing}^{\varnothing} \varphi$ holds.

Notes on $\mathbb{H}_{\mathscr{B}}$

- The sequent (Γ, φ) is said to be valid if and only if $\Gamma \Vdash_{\varnothing}^{\varnothing} \varphi$ holds.
- We frequently write this as $\Gamma \Vdash \varphi$.

Notes on $\mathbb{F}_{\mathscr{B}}$

- Given $\Gamma \Vdash^{\mathcal{L}}_{\mathscr{B}} \varphi$ and $\Vdash^{\mathcal{K}}_{\mathscr{B}} \Gamma$, then it holds that $\Vdash^{\mathcal{L},\mathcal{K}}_{\mathscr{B}} \varphi$.

Soundness

Theorem (Soundness)

If
$$\Gamma \vdash \varphi$$
 then $\Gamma \Vdash \varphi$

Soundness

Theorem (Soundness)

If
$$\Gamma \vdash \varphi$$
 then $\Gamma \Vdash \varphi$

- The strategy is to show every rule of the natural deduction system presented previously is semantically expressible.
- This suffices by induction to prove this theorem as now we can encode any deduction into a series of semantic proofs.

35 | 56

A reminder of the rules of natural deduction for ILL

Reminder (cont.)

Completeness

Theorem (Completeness)

If
$$\Gamma \Vdash \varphi$$
 then $\Gamma \vdash \varphi$.

Completeness

Theorem (Completeness)

If
$$\Gamma \Vdash \varphi$$
 then $\Gamma \vdash \varphi$.

- Define two functions $(\cdot)^{\flat}$: Form $\to \mathbb{A}$ and $(\cdot)^{\natural}$: $\mathbb{A} \to \mathsf{Form}$.
- Show that any valid sequent remains valid when "atomised".
- Construct a base \(\N \) whose rules simulate the natural deduction rules of ILL.
- Show that every derivation in this simulation base is equivalent to a corresponding derivation in ILL.
- Show we can go from a valid derivation to a derivation in ILL.

The Simulation Base

Consider the valid sequent $\Gamma \Vdash \varphi$. Let α , β range over all subformulas of this sequent.

- \blacksquare To construct $\mathscr N$ we simulate all possible ND-rules of our system.
- This means \mathcal{N} contains the introduction and elimination rules governing $\alpha \circ \beta$, where $\circ \in \{\otimes, \&, \oplus, \multimap\}$, governing α where $\alpha \in \{1, 0, \top\}$ and all rules governing α where $\alpha = ! \beta$.
- Thus, rules include but, of course, are not limited to:
 - $\blacksquare \{\alpha^{\flat} \Rightarrow \beta^{\flat}\} \Rightarrow (\alpha \multimap \beta)^{\flat}$
 - $\blacksquare \{ \Rightarrow (\alpha \multimap \beta)^{\flat} \}, \{ \Rightarrow \alpha^{\flat} \} \Rightarrow \beta^{\flat}$
 - $\blacksquare \{\Rightarrow \alpha^{\flat}\}, \{\Rightarrow \beta^{\flat}\} \Rightarrow (\alpha \otimes \beta)^{\flat}$
 - $\blacksquare \{ \Rightarrow (\alpha \otimes \beta)^{\flat} \}, \{ \alpha^{\flat} , \beta^{\flat} \Rightarrow p \} \Rightarrow p$

The Simulation Base: An explaination

Recall the *flattened* form of the introduction and elimination rules for the tensor:

$$\blacksquare \{\Rightarrow \alpha^{\flat}\}, \{\Rightarrow \beta^{\flat}\} \Rightarrow (\alpha \otimes \beta)^{\flat}$$

$$\blacksquare \{ \Rightarrow (\alpha \otimes \beta)^{\flat} \}, \{ \alpha^{\flat} , \beta^{\flat} \Rightarrow p \} \Rightarrow p$$

The Simulation Base: An explaination

Recall the *flattened* form of the introduction and elimination rules for the tensor:

$$\blacksquare \{\Rightarrow \alpha^{\flat}\}, \{\Rightarrow \beta^{\flat}\} \Rightarrow (\alpha \otimes \beta)^{\flat}$$

$$\blacksquare \{ \Rightarrow (\alpha \otimes \beta)^{\flat} \}, \{ \alpha^{\flat}, \beta^{\flat} \Rightarrow p \} \Rightarrow p$$

Another way of writing these rules would be as follows:

Let $\alpha^{\flat} = x$, $\beta^{\flat} = y$ and $(\alpha \otimes \beta)^{\flat} = z$. Then:

$$\blacksquare \{\Rightarrow x\}, \{\Rightarrow y\} \Rightarrow z$$

$$\blacksquare \{\Rightarrow z\}, \{x_9 y \Rightarrow p\} \Rightarrow p$$

The Simulation Base: A quiz

Example

Given that $a = \alpha^{\flat}$ and $b = \beta^{\flat}$, which ILL formula is being simulated by the atom x in the following rules?

- $\blacksquare \{ \Rightarrow a, \Rightarrow b \} \Rightarrow x$
- $\blacksquare \{ \Rightarrow x \} \Rightarrow a$
- $\blacksquare \{\Rightarrow x\} \Rightarrow b$

The Simulation Base: A quiz

Example

Given that $a = \alpha^{\flat}$ and $b = \beta^{\flat}$, which ILL formula is being simulated by the atom x in the following rules?

- $\blacksquare \{ \Rightarrow a, \Rightarrow b \} \Rightarrow x$
- $\blacksquare \{\Rightarrow x\} \Rightarrow a$
- $\blacksquare \{\Rightarrow x\} \Rightarrow b$

Thats right! It's $\alpha \& \beta$

Presentation root directory

- 1 Overview of Intuitionistic Linear Logic
- 2 Base-extension Semantics for ILL
- 3 Including the exponential

What of the exponential?

The exponential is hard...

What of the exponential?

The exponential is hard...

But we finally understand it!

Why was it so hard?

Why was it so hard?

$$\frac{\,!\,\psi\vdash!\,\psi\quad \ \, !\,\psi\vdash\phi}{\,!\,\psi\vdash!\,\phi}$$

What do we have now?

(!) $\Vdash^{\mathcal{L}}_{\mathscr{B}} ! \varphi$ iff for any \mathscr{C} such that $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K and any $p \in \mathbb{A}$, if $! \varphi \Vdash^{K}_{\mathscr{C}} p$ then $\Vdash^{\mathcal{L}, K}_{\mathscr{C}} p$.

(Inf) $!\Delta,\Theta \Vdash_{\mathscr{C}}^{L} \varphi$ iff for all $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K, if $\Vdash_{\mathscr{C}}^{K} \Theta$ and $\Vdash_{\mathscr{C}}^{\mathcal{D}} \Delta$ then $\Vdash_{\mathscr{C}}^{L,K} \varphi$.

What we had last year

(Inf) $\Gamma \Vdash^{L}_{\mathscr{B}} \varphi$ iff for all $\mathscr{C} \supseteq \mathscr{B}$, atomic multisets K, if $\Vdash^{K}_{\mathscr{C}} \Gamma$ then $\Vdash^{L,K}_{\mathscr{C}} \varphi$.

What do we know?

Two important identities from Intuitionistic Linear Logic:

$$\blacksquare \ ! \ \phi \Vdash \phi \otimes \ldots \otimes \phi$$

$$\blacksquare \ !(\phi \And \psi) \equiv ! \, \phi \otimes ! \, \psi$$

$$!\,\phi \Vdash \phi \otimes \ldots \otimes \phi \text{ iff }$$

for all bases ${\mathscr B}$ and atomic multisets L, such that $\Vdash^L_{{\mathscr B}} ! \ \phi$ then

$$\Vdash_{\mathscr{B}}^{\underline{L}} \phi \otimes \ldots \otimes \phi$$

Considering the case when $\varphi = p$ for simplicity we get the following:

Considering the case when $\varphi = p$ for simplicity we get the following:

■ Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.

Considering the case when $\varphi = p$ for simplicity we get the following:

- Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.
- Then we have that $\Vdash^{\mathcal{L}}_{\mathscr{B}} p \otimes \ldots \otimes p$.

Considering the case when $\varphi = p$ for simplicity we get the following:

- Given a base \mathscr{B} such that $\vdash_{\mathscr{B}} p$ and $L = \varnothing$.
- Then we have that $\Vdash^{\perp}_{\mathscr{B}} p \otimes \ldots \otimes p$.
- Examples of such bases:
 - $\blacksquare \mathscr{B} = \{ \Rightarrow p \}$
 - $\blacksquare \mathscr{B} = \{ \Rightarrow q, \{ \Rightarrow q \} \Rightarrow p \}$

Inferring from ! φ should imply that $\mathbb{P}_{\mathscr{B}}^{\varnothing} \varphi$.

A proof-theoretic flavour of the!

We now consider the second identity: $\Vdash_{\mathscr{B}}^{\mathcal{L}}!(\phi \& \psi)$ iff $\Vdash_{\mathscr{B}}^{\mathcal{L}}!\phi \otimes !\psi$ with $\psi = \top$. Furthermore since $\phi \& \top \equiv \phi$ we go as follows:

```
\begin{split} & \Vdash_{\mathscr{B}}^{L} ! \ \varphi \ \text{iff} \ \Vdash_{\mathscr{B}}^{L} ! \ \varphi \otimes ! \ \top \\ & \text{iff for all } \mathscr{C} \supseteq \mathscr{B}, K \ \text{and} \ p \in \mathbb{A}, ! \ \varphi \ , ! \ \top \Vdash_{\mathscr{C}}^{K} p \ \text{implies} \ \Vdash_{\mathscr{C}}^{L,K} p \\ & \text{iff for all } \mathscr{C} \supseteq \mathscr{B}, K \ \text{and} \ p \in \mathbb{A}, \\ & \text{if ( for all } \mathscr{D} \supseteq \mathscr{C}, \ \text{if} \ \Vdash_{\mathscr{D}}^{\mathscr{D}} \varphi \ \text{and} \ \Vdash_{\mathscr{D}}^{\mathscr{D}} \top \ \text{then} \ \Vdash_{\mathscr{D}}^{K} p) \ \text{then} \ \Vdash_{\mathscr{C}}^{L,K} p \\ & \text{iff ( for all } \mathscr{D} \supseteq \mathscr{C}, \ \text{if} \ \Vdash_{\mathscr{D}}^{\mathscr{D}} \varphi \ \text{then} \ \Vdash_{\mathscr{C}}^{K} p) \ \text{then} \ \Vdash_{\mathscr{C}}^{L,K} p \end{split}
```


Gracias!

References I

- G.M. Bierman, *On intuitionistic linear logic*, Tech. Report UCAM-CL-TR-346, University of Cambridge, Computer Laboratory, August 1994.
- Il Buzoku, A proof-theoretic semantics for intuitionistic linear logic, 2024.
- Alexander V. Gheorghiu, Tao Gu, and David J. Pym, *Proof-theoretic semantics for intuitionistic multiplicative linear logic*, Automated Reasoning with Analytic Tableaux and Related Methods (Cham) (Revantha Ramanayake and Josef Urban, eds.), Springer Nature Switzerland, 2023, pp. 367–385.

References II

- J.-Y. Girard, Linear logic: its syntax and semantics, London Mathematical Society Lecture Note Series, p. 1–42, Cambridge University Press, 1995.
- Alexander V. Gheorghiu and David J. Pym, From proof-theoretic validity to base-extension semantics for intuitionistic propositional logic, 2022.
- Sara Negri, A normalizing system of natural deduction for intuitionistic linear logic, Archive for Mathematical Logic **41** (2002), no. 8, 789–810.
- Tor Sandqvist, *An inferentialist interpretation of classical logic*, Ph.D. thesis, Uppsala universitet, 2005.

References III

_____, Base-extension semantics for intuitionistic sentential logic, Log. J. IGPL **23** (2015), 719–731.