4 exercices corrigés d'Electronique de puissance sur le hacheur

Exercice Hach01: hacheur série

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur.

L'interrupteur électronique K et la diode sont supposés parfaits.

La période de hachage est T, le rapport cyclique α .

L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue.

Le hacheur est alimenté par une tension continue E = 220 V.

La f.e.m. E' du moteur est liée à sa vitesse de rotation n par la relation :

E' = 0.20 n avec E' en V et n en tr/min

L'induit a pour résistance $R = 2.0 \Omega$.

- 1- Etude de la tension u pour $\alpha = 0.80$.
- 1-1- Représenter, en la justifiant, l'allure de la tension u.

On prendra comme instant origine celui où l'interrupteur K se ferme.

1-2- Déterminer l'expression littérale de la valeur moyenne < u > de la tension u, en fonction de E et du rapport cyclique α .

Calculer sa valeur numérique.

2- Fonctionnement du moteur pour $\alpha = 0.80$.

Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est < I > = 10 A. Déterminer E' et en déduire n.

3- Le dispositif de commande du hacheur est tel que le rapport cyclique α est proportionnel à une tension de commande u_C : $\alpha = 100$ % pour $u_C = 5$ V.

Tracer la caractéristique < u > en fonction de u_C .

Exercice Hach02: hacheur série

Un moteur à courant continu travaillant à couple constant est inclus dans le montage cidessous :

Le hacheur fonctionne à une fréquence f = 500 Hz.

L'interrupteur K est fermé lorsque $0 < t < \alpha T$ et ouvert entre αT et T.

La diode est supposée parfaite.

L'inductance de la bobine de lissage L est de valeur suffisante pour que le courant dans le moteur soit considéré comme constant : i = I = cte.

La résistance de l'induit du moteur est : $R = 1 \Omega$.

- 1- Représenter les allures de u et u_K en fonction du temps.
- 2- Exprimer la valeur moyenne de u en fonction de V et α .
- 3- Représenter les allures de i_K et i_D en fonction du temps.
- 4- Exprimer les valeurs moyennes des courants i_K et i_D en fonction de I et α .
- 5- Déterminer l'intensité I du courant dans le moteur en fonction de V, E, R et α.
- 6- Application numérique :

Calculer $\langle u \rangle$, I et $\langle i_D \rangle$ pour V = 220 V, E = 145 V et α = 0,7.

7- Établir la relation liant la vitesse n du moteur (en tr/min) à α pour E=0,153 n, sachant que R=1 Ω , V=220 V et I=9 A.

8- Tracer n en fonction de α .

Exercice Hach03: hacheur parallèle

Les deux interrupteurs électroniques sont supposés parfaits.

1- On donne les séquences de conduction de K_1 et K_2 . Compléter les chronogrammes :

2- Donner la relation entre < u >, α et E.

Exercice Hach04: module convertisseur DC/DC

Un convertisseur DC/DC possède les caractéristiques suivantes :

Puissance utile (max.) : 2 watts
Tension d'entrée (continue) : 4,5 à 9 V
Tension de sortie (continue) : 12 V
Rendement : 75 %

- 1- Calculer le courant de sortie maximal.
- 2- A puissance utile maximale, calculer la puissance thermique dissipée par le convertisseur.
- 3- On applique 5 V en entrée.

Calculer le courant d'entrée maximal.

Corrigés

Exercice Hach01: hacheur série

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur.

L'interrupteur électronique K et la diode sont supposés parfaits.

La période de hachage est T, le rapport cyclique α.

L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue.

Le hacheur est alimenté par une tension continue E = 220 V.

La f.e.m. E' du moteur est liée à sa vitesse de rotation n par la relation :

E'=0.20 n avec E' en V et n en tr/min

L'induit a pour résistance $R = 2.0 \Omega$.

- 1- Etude de la tension u pour $\alpha = 0.80$.
- 1-1- Représenter, en la justifiant, l'allure de la tension u.

On prendra comme instant origine celui où l'interrupteur K se ferme.

 $0 < t < \alpha T$ K fermé : u = E

 $\alpha T < t < T$ K ouvert : phase de roue libre : D conduit et u = 0 V

1-2- Déterminer l'expression littérale de la valeur moyenne < u > de la tension u, en fonction de E et du rapport cyclique α . Calculer sa valeur numérique.

$$< u > = \alpha E$$

A.N. 0.8×220 = 176 V

2- Fonctionnement du moteur pour $\alpha = 0.80$.

Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est < I > = 10 A. Déterminer E' et en déduire n.

E' =
$$<$$
 u $>$ - R $<$ I $>$ = 176 - 2,0 \times 10 = 156 V n = E' / 0,20 = 156 / 0,20 = 780 tr/min

3- Le dispositif de commande du hacheur est tel que le rapport cyclique α est proportionnel à une tension de commande u_C : $\alpha = 100$ % pour $u_C = 5$ V.

Tracer la caractéristique < u > en fonction de u_C .

$$\alpha = 0.2 u_{C}$$
 $< u > = \alpha E = (0.2 \times 220)u_{C}$
 $< u > = 44 u_{C}$

Exercice Hach02: hacheur série

Un moteur à courant continu travaillant à couple constant est inclus dans le montage cidessous :

Le hacheur fonctionne à une fréquence f = 500 Hz.

L'interrupteur K est fermé lorsque $0 < t < \alpha T$ et ouvert entre αT et T.

La diode est supposée parfaite.

L'inductance de la bobine de lissage L est de valeur suffisante pour que le courant dans le moteur soit considéré comme constant : i = I = cte.

La résistance de l'induit du moteur est : $R = 1 \Omega$.

1- Représenter les allures de u et u_K en fonction du temps.

2- Exprimer la valeur moyenne de u en fonction de V et α .

$$< u > = \alpha V$$

3- Représenter les allures de i_K et i_D en fonction du temps.

4- Exprimer les valeurs moyennes des courants i_K et i_D en fonction de I et α .

$$\langle i_K \rangle = \alpha I$$

 $\langle i_D \rangle = (1 - \alpha)I$

5- Déterminer l'intensité I du courant dans le moteur en fonction de V, E, R et α.

$$< u > = E + RI = \alpha V$$

$$I = \frac{\alpha V - E}{R}$$

6- Application numérique :

Calculer < u >, I et < i_D> pour V = 220 V, E = 145 V et α = 0,7.

$$< u > = 154 \text{ V}$$

I = 9 A
 $< i_D > = 2,7 \text{ A}$

7- Établir la relation liant la vitesse n du moteur (en tr/min) à α pour E=0,153 n, sachant que R=1 Ω , V=220 V et I=9 A.

$$I = \frac{\alpha V - 0.153n}{R}$$
$$n = \frac{\alpha V - RI}{0.153}$$

I = 9 A = constante car le moteur travaille à couple constant. D'où :

$$n = 1438\alpha - 59$$

8- Tracer n en fonction de α .

Exercice Hach03: hacheur parallèle

Les deux interrupteurs électroniques sont supposés parfaits.

1- On donne les séquences de conduction de K_1 et K_2 . Compléter les chronogrammes :

2- Donner la relation entre $\langle u \rangle$, α et E.

 $< u > = (1 - \alpha)E$ Remarque:

 $E=\,<\,\!u\,\!>\,/\,(1$ - $\alpha)$

Le hacheur parallèle est un élévateur de tension.

Exercice Hach04: module convertisseur DC/DC

Un convertisseur DC/DC possède les caractéristiques suivantes :

Puissance utile (max.) : 2 watts
Tension d'entrée (continue) : 4,5 à 9 V
Tension de sortie (continue) : 12 V
Rendement : 75 %

1- Calculer le courant de sortie maximal.

$$2/12 = 167 \text{ mA}$$

2- A puissance utile maximale, calculer la puissance thermique dissipée par le convertisseur.

3- On applique 5 V en entrée.

Calculer le courant d'entrée maximal.

$$2,67 / 5 = 533 \text{ mA}$$