Mhat Ho 105 355311

EE3 Fall 2018 Practice Problems 2

- 1. Watch and study the KVL-KCL video as posted under Week 1.
 - a. Assuming that all of the currents at Node 1 (where V_1 is) are *leaving* the node, write an Ohm's Law expression for the current going through the 4 Ω resistor.
 - b. Under the same assumption, write an Ohm's Law expression for the current through the 5 $\!\Omega$ resistor.
 - c. Continuing, write an expression for the current through the 2Ω resistor.
 - d. Now, combine the answers to 1a,b,c into a KCL equation.
 - e. Now, following the procedures in a, b, and c, write Ohm's Law expressions for the three currents leaving Node 2.
 - f. Combine the three answers to 1e into a second KCL equation.
- 2. You now have 2 equations in 2 unknowns. Solve them for V_1 and V_2 .
- 3. Now that you know V_1 , you can compute I.

a)
$$\frac{V_1 - 12V}{4\Omega} = I_1$$
 b) $I_3 = \frac{V_1}{5\Omega}$

$$C) \quad T_2 = \frac{V_1 - V_2}{2 \Omega}$$

d) We have:
$$I_1 + I_2 + I_3 = 0$$

$$= \frac{V_1 - 12}{4} + \frac{V_1}{5} + \frac{V_1 - V_2}{2} = 0$$

$$= \frac{5(V_1 - 12) + 4V_1 + 10(V_1 - V_2)}{20} = 0$$

$$69 5 \frac{1}{2} - 60 + 4 \frac{1}{2} + \frac{10}{2} - 10 \frac{1}{2} = 0$$

$$(=)$$
 $19V_1 - 10V_2 = 60$

e)
$$T_4 = \frac{V_2 - V_1}{9.\Omega}$$
; $T_5 = \frac{V_2}{3.00 + 6.00} = \frac{V_2}{9.00}$

$$\Rightarrow \frac{V_2 - V_1}{2} + \frac{V_2}{9} + \frac{V_2}{1} = 0$$

$$9(V_2-V_1)+2V_2+18V_2=0$$

$$(=) 9V_2 - 9V_1 + 2V_2 + 18V_2 = 0$$

$$(=)$$
 -9 V_1 + 29 V_2 = 0 (=) $9V_1$ - 29 V_2 = 0 (2)

$$\begin{cases} |9V_1 - |0V_2| = 60 & 0 \\ 29V_1 - 29V_2 = 0 & 2 \end{cases}$$

$$29V_1 - 29V_2 = 0$$
 (2)

From (2),
$$V_1 = \frac{29V_2}{9}$$
, plug it into (1), we have

$$19 \times \frac{29V_2}{9} - 10V_2 = 60$$

$$(=)$$
 $\frac{461}{9}\sqrt{2} = 60 \Rightarrow \sqrt{2} = 1.17(V)$

$$=) V_1 = \frac{29V_2}{9} = 3.774(V)$$

$$\frac{V_{1}-12V}{4\Omega}=I_{1}=J_{1}=\frac{3.774-12}{4\Omega}$$

$$=> 1 = 2.06(A)$$