Image editor

План

Дадена ни е директория, която съдържа снимки. Тези снимки са с най-различни размери. Дадено ни е някакво съотношение, в което трябва да изрежем всички снимки (за примерите ще използваме съотношение 3:2, но скриптовете, които пишем, трябва да работят коректно с произволно съотношение). Най-простият начин да изрежем снимка е да отрежем прозореца в центъра, но това не винаги дава най-добрия резултат (например, следната снимка на актрисата Thandie Newton е по-красиво да я изрежем с прозорец, който е вляво, отколкото с прозорец, който е в центъра):

фиг. 2. Прозорец в ляво

фиг. 2. Прозорец в средата

Затова, за всяка снимка ще определим "интересна точка", и ще се опитаме да генерираме прозорец, който е максимално голям, центърът му е максимално близо до интересната точка, и съотношението му е правилно.

Помощни материали

На сървъра <u>astero.openfmi.net</u> са предоставени следните инструменти:

скрипт рw

С него може да преглеждаме изображения. Подаваме изображения като аргументи и скриптът връща на *stdout* линк, който можем да използваме, за да ги видим визуално:

\$ pw pika.png

https://astero.openfmi.net/preview/f563c5sbz1

Може да подадем повече от един аргумент. Също, може да *hover*-ваме с мишката над изображението, което ни показва координатите на пиксела под мишката. Тази възможност ще ни е удобна по-нататък.

imagemagick toolkit

Той се състои от следните компоненти (и други, които няма да ползваме):

- командата identify, която връща информация за подадено изображение
- командата convert, която извършва манипулации върху подадено изображение и записва резултата в нов файл

Всъщност, на нас ще ни трябват само две конструкции, които даваме тук, за да си спестим четене на документацията:

- identify foo.png, за да видим размера на изображението foo.png
- convert foo.png -crop 200x300+10+50 +repage bar.png, за да изрежем правоъгълник с размер 200x300 с горен ляв ъгъл на координати (10, 50) от изображението foo.png и да запишем резултата в ново изображение bar.png

Документация: http://www.imagemagick.org/Usage/

команда facedetect

С нея можем да откриваме човешки лица в изображения.

Например:

\$ facedetect thandie.jpg
485 105 95 95
816 138 84 84

facedetect извежда информация за всяко открито лице на отделен ред. Без допълнителни параметри, извежда 4 числа, които са координати на горен – ляв ъгъл и размер на правоъгълника, описващ лицето.

На нас ще ни свърши работа по-простият вариант, facedetect –с, който извежда само координатите на центровете на откритите лица:

\$ facedetect -c thandie.jpg
532 152
858 180

Документация: https://www.thregr.org/~wavexx/software/facedetect/

Процес на работа

На сървъра има директория /tmp/elvises, в която има няколко примерни входни снимки. Може да ги използваме, за да тестваме скриптовете си.

Първа част

Ще напишем скрипт crop.sh, който при подаден първи аргумент ipoint, се извиква по следния начин:

Където:

- <a> и дефинират съотношение на търсения размер
- <x> и <y> дефинират координати на интересна точка
- <input image> и <output image> са съответно входнен и изходен файл

Например:

\$ crop.sh ipoint 3 2 150 321 foo.jpg foo_cropped.jpg
Нашият скрипт трябва да изреже изображението във входния файл и да запише резултата в изходния файл, така че:

- размерът на изходния файл да има съотношение a:b, ако a > b и sx > sy или да има съотношение b:a, ако a > b и sy > sx, където входното изображение има размер sx : sy. С други думи, портретните снимки остават портретни, а пейзажните остават пейзажни. Ако е подадено b > a, може да ги размените или да изведете съобщение за грешка, по ваш избор.
- да няма начин да се изреже изображението, така че да получим резултат с поголям размер, или да получим резултат, в който интересната точка е по-близо до центъра.

Тъй като това описание звучи прекалено сложно, вместо да го четем няколко пъти, за да го разберем, ще е по-лесно да погледнем следните примери:

Примери

Тези примери показват всички възможни случаи, които трябва да бъдат обработени. На всеки от примерите имаме входното изображение, като върху него с зелено кръгче (○) е показана интересната точка, а с червена рамка (☒) е показана областта, която вашият скрипт трябва да изреже.

Във всеки от тези примери a:b = 3:2.

Втора част

Ще допълним скрипта crop.sh, така че при подаден първи аргумент faces, той се извиква по следния начин:

\$ crop.sh faces <a> <input image> <output image>

и работи по същия начин както варианта с ipoint, само че вместо да приема интересната точка като аргумент, избира за интересна точка медианата на всички човешки лица в изображението. Ако няма човешки лица, скриптът избира центъра на изображението за интересна точка.

Bonus: ще използваме друг евристичен метод за избор на интересна точка, различен от този на медианата – центъра на най-малкия правоъгълник, който покрива множеството от всички намерени човешки лица.

В този случай скрипта crop.sh ще се извиква по същия начин както е показано по-горе с тази разлика, че аргумента ще бъде faces_r

Трета част

Ще напишем скрипт скрипт сгор all.sh, който се извиква по следния начин:

\$ crop all.sh <a> <in dir> <out dir>

Където <a> и пак дефинират съотношение, <in_dir> е директория, в която има много на брой изображения, а <out_dir> е директория, в която скриптът трябва да записва резултатните изображения.

Скриптът ще минава през всяко изображение, и да показва на потребителя избор между три евристики, така че той лесно да може да види резултатните изображения и да си избере:

- Център на изображението
- Медианата на човешките лица
- Ръчно въвеждане на координати на интересна точка