第五章 同步时序电路的设计

- 5.1 建立原始状态图(表)
- 5.2 状态化简
- 5.3 有限状态机 (FSM)

同步时序电路分析与设计的比较:

设计过程

分析过程

逻辑电路图

逻辑表达式

二进制状态表

状态表/图

功能特性描述

画出逻辑电路图

选择触发器,确定激励/输出函数

状态分配求得二进制状态表

状态化简求得最简状态表

建立原始状态图和状态表

5.1 建立原始状态图(表)

建立原始状态表的关键是确定以下三个问题:

- 1、所描述电路应包括多少状态?
- 2、状态之间的转换关系如何?
- 3、输出情况如何?

设计要求: 只求正确,不求最简。确保逻辑功能的正确性(完整性和无二义性)。

设计方法:直接构图(表)法

- 1、起点—假设一个初态;
- 2、输入信号为 n,则每个状态发出 2ⁿ 条带箭头线;
- 3、直到不再有新的状态出现。

例1、设计一个五进制可逆计数器。输入 x 为 0 时,加 1 计数; x 为 1 时,减 1 计数。

原始状态图

原始状态表

yX	0	1
S_0	S_1	S_4
S_1	S_2	S_0
S_2	S_3	S ₁
S_3	S_4	S ₂
S ₄	S_0	S_3

例 2、设计一个 "1101"序列检测器。当输入 x 连续出现"1101" (或在出现 "1101"后, x 一直保持为1)时,输出 Z=1;否则 Z=0。

原始状态图

原始状态表

yX	0	1	Z	
S_0	$\mathbf{S_0}$	S_1	0	
S_1	$\mathbf{S_0}$	S ₁₁	0	
S ₁₁	S ₁₁₀	S ₁₁	0	
S ₁₁₀	$\mathbf{S_0}$	S ₁₁₀₁	0	
S ₁₁₀₁	S_0	S ₁₁₀₁	1	

原始状态表

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	S ₁₁ /0
S ₁₁	S ₁₁₀ /0	S ₁₁ /0
S ₁₁₀	$S_0/0$	S ₁₁₀₁ /1
S ₁₁₀₁	$S_0/0$	S ₁₁₀₁ /1

由于S₁₁₀和S₁₁₀₁的次态和输出完全一样,可以合并。

原始状态表

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	S ₀ /0	S ₁₁ /0
S ₁₁	S ₁₁₀ /0	S ₁₁ /0
S ₁₁₀	$S_0/0$	S ₁₁₀₁ /1
S ₁₁₀₁	S ₀ /0	S ₁₁₀₁ /1

yX	0	1
S_0	$S_0/0$	S ₁ /0
S_1	$S_0/0$	S ₁₁ /0
S ₁₁	$S_{110}/0$	S ₁₁ /0
S ₁₁₀	$S_0/0$	S ₁₁₀ /1

yX	0	1	Z
S_0	$\mathbf{S_0}$	S_1	0
S_1	S_0	S ₁₁	0
S ₁₁	S ₁₁₀	S ₁₁	0
S ₁₁₀	S_0	S ₁₁₀₁	0
S ₁₁₀₁	S_0	S ₁₁₀₁	1

例3、电路输入x和y,输出z。如果x连续两次输入同样的值,z=1,在此之后如果y输入一直为1,则z为1;否则,z=0。

SXY	00	01	10	11	Z
$\mathbf{S}_{\mathbf{I}}$	S_0	S_0	S_1	S_1	0
S_0	S_{00}	S_{00}	S_1	S_1	0
S_1	S_0	S_0	S ₁₁	S ₁₁	0
S_{00}	S ₀₀	S ₀₀	S_1	S ₁₁	1
S ₁₁	S_0	S ₀₀	S ₁₁	S ₁₁	1

5.2 状态化简

5.2.1 完全给定同步时序电路状态表的化简

1、等效: S_1 和 S_2 是完全给定时序电路 M_1 和 M_2 (M_1 和 M_2 可以是同一个电路)的两个状态,作为初态同时加入任意输入序列,产生的输出完全一致,则 S_1 和 S_2 是等效对。等效状态可以合并为一个状态。

即: $(S_1, S_2) \rightarrow S$

2、等效的传递性: (S_1, S_2) , $(S_2, S_3) \rightarrow (S_1, S_3)$

3、等效类: 所含状态都可以相互构成等效对的等效状态的集合。即:

$$(S_1, S_2, S_3) \rightarrow (S_1, S_2)(S_2, S_3)(S_1, S_3)$$

$$(S_1, S_2)(S_2, S_3)(S_1, S_3) \rightarrow (S_1, S_2, S_3)$$

4、最大等效类:在一个原始状态表中,不能被其他等效类所包含的等效类称为最大等效类。

等效对的判断标准

条件1:它们的输出完全相同。

条件2:它们的次态满足下列条件之一:

- ① 次态相同
- ② 次态交错
- ③次态维持
- ④ 后续状态等效
- ⑤ 次态循环

① 次态相同

② 次态交错

③次态维持

④ 后继状态等效

⑤ 次态循环

图中次态的等效依赖关系

利用隐含表进行状态化简

例、化简下图所示的原始状态表

y x	00	01	10	11
A	D/0	D/0	F/0	A/0
В	C /1	D/0	E/1	F/0
С	C /1	D/0	E/1	A/0
D	D/0	B/0	A/0	F/0
Е	C /1	F/0	E/1	A/0
F	D/0	D/0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D/0	E/1	A/0

(1) 画隐含表(缺头少尾表)

隐含表中有三种状态结果:

×表示状态不等效; √表示状态等效; 其他需要进一步确定状态对是否等效。

						yx	00	01	10	11
_						A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
C	×	AF				C	C/1	D/0	E/1	A/0
					,	D	D/0	B/0	A/0	F/0
D	AF BD	×	×	奔	命出不同	E	C/1	F/0	E/1	A/0
_		AF				\mathbf{F}	D/0	D/0	A/0	F/0
E	×	DF	DF	X		G	G/0	G/0	A/0	A/0
F	$\sqrt{}$	×	×			Н	B/1	D/0	E/1	A/0
G	AF DG	×	×					_		
Н	×	AF BC	ВС							
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_						A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
C	×	AF				C	C/1	D/0	E/1	A/0
						D	D/0	B/0	A/0	F/0
D	AF BD	×	X		输出机	E	C/1	F/0	E/1	A/0
		AF			比较次和	F	D/0	D/0	A/0	F/0
\mathbf{E}	×	DF	DF	×		G	G/0	G/0	A/0	A/0
\mathbf{F}	\checkmark	×	×	BD		Н	B/1	D/0	E/1	A/0
\mathbf{G}	AF DG	×	×					_		
\mathbf{H}	×	AF BC	ВС							
	A	B	C	D	E	F	G			

						yX	00	01	10	11
_ [A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	X	AF				C	C/1	D/0	E/1	A/0
						D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
_		AF				司 F	D/0	D/0	A/0	F/0
\mathbf{E}	×	DF	DF	×	比较次和	G	G/0	G/0	A/0	A/0
\mathbf{F}	$\sqrt{}$	×	×	BD		Н	B/1	D/0	E/1	A/0
G	AF	×	×	AF						
J	DG			BG				1		
Н	×	AF BC	BC							
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_ [A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	×	AF				C	C/1	D/0	E/1	A/0
						D	D/0	B/0	A/0	F/0
D	AF BD	×	×		/	E	C/1	F/0	E/1	A/0
-		AF] /	F	D/0	D/0	A/0	F/0
\mathbf{E}	×	DF	DF	×	输出不同	可 G	G/0	G/0	A/0	A/0
F	$\sqrt{}$	×	×	BD		Н	B/1	D/0	E/1	A/0
	AF			AF						
G	DG	×	X	BG /						
Н	×	AF	ВС	X						
	^	BC	ВС]		
	A	B	C	D	E	\mathbf{F}	G			

						yx	00	01	10	11
_						A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	X	AF				C	C/1	D/0	E/1	A/0
						D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
10		AF	DE			F	D/0	D/0	A/0	F/0
\mathbf{E}	×	DF	DF	×		G	G/0	G/0	A/0	A/0
\mathbf{F}	$\sqrt{}$	×	×	BD	×	Н	B/1	D/0	E/1	A/0
	AF			AF						
G	DG	×	×	BG						
Н	×	AF	ВС	×						
		BC						J		
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_						A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	×	AF				C	C/1	D/0	E/1	A/0
						D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
10		AF	DE			F	D/0	D/0	A/0	F/0
E	×	DF	DF	×		G	G/0	G/0	A/0	A/0
\mathbf{F}	$\sqrt{}$	×	×	BD	\times	Н	B/1	D/0	E/1	A/0
	AF			AF						
G	DG	X	×	BG	×			_		
Н	×	AF BC	BC	×						
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_ [A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	X	AF				C	C/1	D/0	E/1	A/0
	A TE					D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
10		AF	DE			F	D/0	D/0	A/0	F/0
\mathbf{E}	×	DF	DF	×		G	G/0	G/0	A/0	A/0
F	$\sqrt{}$	×	×	BD	×	Н	B/1	D/0	E/1	A/0
	AF			AF						
G	DG	×	×	BG	×					
ш	×	AF	BC	×	BC					
H	^	BC	DC		DF					
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_						A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	X	AF				C	C/1	D/0	E/1	A/0
	A ID					D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
		AF				\mathbf{F}	D/0	D/0	A/0	F/0
E	×	DF	DF	×		ackslash G	G/0	G/0	A/0	A/0
\mathbf{F}	$\sqrt{}$	×	×	BD	×	$\backslash\backslash$ H	B/1	D/0	E/1	A/0
	A T C			A TC		AF				
G	AF DG	X	X	AF BG	X	DG				
		AF			BC	DG]		
H	×	BC	BC	×	DF					
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_						A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	×	AF				C	C/1	D/0	E/1	A/0
	A TE					D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
		AF	DE	\/		F	D/0	D/0	A/0	F/0
E	×	DF	DF	×		G	G/0	G/0	A/0	A/0
F	$\sqrt{}$	×	×	BD	×	Н	B/1	D/0	E/1	A/0
	AF			AF		AF				
G	DG	×	×	BG	×	DG				
TT	×	AF	DC.	×	BC	×]		
H		BC	BC	<u> </u>	DF					
	A	В	C	D	E	F	G			

						yx	00	01	10	11
_ [A	D/0	D/0	F/0	A/0
В	×					В	C/1	D/0	E/1	F/0
\mathbf{C}	×	AF				C	C/1	D/0	E/1	A/0
						D	D/0	B/0	A/0	F/0
D	AF BD	×	×			E	C/1	F/0	E/1	A/0
10		AF	DE			F	D/0	D/0	A/0	F/0
E	×	DF	DF	X		G	G/0	G/0	A/0	A/0
\mathbf{F}	$\sqrt{}$	×	X	BD	×	H	B/1	D/0	E/1	A/0
	AF			AF		AF				
G	DG	X	X	BG	X	DG				
		AF	.		BC]		
H	×	BC	BC	×	DF	×	×			
	A	В	C	D	E	F	G	_		

(3) 关联比较

① 找出待定的等效对

AD 等效取决于AF和BD

AG 等效取决于AF和DG

BC 等效取决于AF

BE 等效取决于AF和DF

②确定不等效状态对

BD,BG不等效

③确定等效状态对

(4) 列出最大等效类

等效对: (A,F), (B,C), (B,H), (C,H)

其中, (B,C), (B,H), $(C,H) \rightarrow (B,C,H)$

因而得到两个最大等效类: (A,F) 和 (B,C,H)

重新命名状态名

(5) 最小化状态表

y	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0

yx	00	01	10	11
A	D/0	D/0	F/0	A/0
В	C/1	D/0	E/1	F/0
C	C/1	D/0	E/1	A/0
D	D/0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
F	D/0	D/0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D/0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0

yx	00	01	10	11
A	D/0	D/0	F/0	A/0
В	C/1	D/0	E/1	F/0
C	C/1	D/0	E/1	A/0
D	D/0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
F	D/0	D/0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D/0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0
C'	C'/0	B'/0	A'/0	A'/0

yx	00	01	10	11
A	D/0	D/0	F/0	A/0
В	C/1	D/0	E/1	F/0
C	C/1	D/0	E/1	A/0
D	D/0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
F	D/0	D/0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D/0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0
C'	C'/0	B'/0	A'/0	A'/0
D'	B'/1	A'/0	D' /1	A'/0

yx	00	01	10	11
A	D/0	D/0	F/0	A/0
В	C/1	D/0	E/1	F/0
C	C/1	D/0	E/1	A/0
D	D/0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
F	D/0	D/0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D/0	E/1	A/0

yX	00	01	10	11
A'	C'/0	C'/0	A'/0	A'/0
B'	B'/1	C'/0	D' /1	A'/0
C'	C'/0	B'/0	A'/0	A'/0
D'	B'/1	A'/0	D' /1	A'/0
E'	E'/0	E'/0	A'/0	A'/0

yx	00	01	10	11
A	D/0	D/0	F/0	A/0
В	C/1	D/0	E/1	F/0
C	C/1	D/0	E/1	A/0
D	D/0	B/0	A/0	F/0
E	C/1	F/0	E/1	A/0
F	D/0	D/0	A/0	F/0
G	G/0	G/0	A/0	A/0
Н	B/1	D/0	E/1	A/0

5.2.2 不完全给定同步时序电路状态表的化简

1、不完全给定:次态或输出中包含有无关项(d)。

yX	0	1
A	A /0	D/d
В	A /0	D /0
C	A /0	D /1
D	A /0	C /1

2、相容

- (1) 状态相容: S1和S2作为初态,同时加入输入序列(除最后一个次态外,其他次态都是确定的),所产生的输出序列一致(认为确定的输出与对应的不确定输出相同),则状态S1和S2是相容对。记为:(S1,S2)。
- (2) 状态相容无传递性, (A, B)、(A, C)相容, 但(B,C)不相容
- (3) 相容类:两两相容的状态的集合。

yX	0	1
A	A/0	D/d
В	A/0	D /0
C	A /0	D /1
D	A/0	C /1

(4) 最大相容类:不能被其他相容类所包含的相容类。

相容对的判别标准:

条件一:它们的输出相同;

条件二:它们的次态必须满足下列情况之一:次态相同、次态交错、

次态维持、后继状态相容、次态循环。

注意:一方给定,一方不给定的次态均当作相同。

例、化简不完全给定状态表。

右表中的相容对为: (A,B), (A,C), (A,D), (C, D)

状态合并图:将所有相容对填入合并图,可以得到两个最大相容类为:(A,B),(A,C,D)

yX	0	1
A	A /0	D/d
В	A /0	D /0
C	A/0	D /1
D	A/0	C /1
$\mathbf{y}^{\mathbf{n+1}}/\mathbf{z}$		

- 3、最小化状态表
- (1)覆盖性:能包含全部的原始状态。
- (2)闭合性: 任一个相容类的次态应属于该集内的一个相容类。
- (3)最小化:选择满足"覆盖"和"闭合"的相容类且数目最少。
- 4. 不完全给定状态表的化简过程
- (1)利用隐含表寻找相容对
- (2)用合并图确定最大相容类
- (3)采用覆盖闭合表进行相容类集的选择,建立最小化状态表

例1、化简如图所示的原始状态表。

yx	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d/1
D	d/d	B/d
E	A/0	C /1

$$y^{n+1}/z$$

yX	0	1	B	AC			
A	A/d	d/d	C				
В	C /1	B /0					1
C	D /0	d/1	D				
D	d/d	B/d	$oldsymbol{\mathbb{E}}$				
E	A /0	C /1			D		
		y^{n+1}/z	_	A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d		A D			
В	C /1	B /0	C	AD			1
C	D /0	d/1	\mathbf{D}	<i>→</i> √			
D	d/d	B/d	E				
E	A /0	C /1					
		y^{n+1}/z	_	A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d		A D			
В	C /1	B /0	C	AD			1
C	D /0	d/1	D	$\sqrt{}$			
D	d/d	B/d	E	1			
E	A /0	C /1		<u> </u>	D		
		y^{n+1}/z	-	A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d	C	A D	×		
В	C /1	B /0		AD			1
C	D /0	d/1	D	$\sqrt{}$			
D	<mark>d</mark> /d	B/d	E				
E	A /0	C /1			D		
		y^{n+1}/z	_	A	В	C	D

yX	0	1	В	AC			
A	A/d	d/d		A D	×		
В	C /1	B /0	C	AD	^		1
C	D /0	<mark>d</mark> /1	D	$\sqrt{}$	* 1		
D	d/d	B/d	E				
E	A /0	C /1			D		
		y^{n+1}/z	_	A	В	C	D

yX	0	1] B	AC			
A	A/d	d/d		A D	×		
В	C /1	B/0	C	AD	^		1
C	D /0	d/1	D				
D	d/d	B/d	$oldsymbol{\mathbf{E}}$	1	×		
E	A /0	C /1					
		11 /	-	A	B	C	D
		y^{n+1}/z					

yX	0	1	В	AC				
A	A/d	d/d		A D	×			
B	C /1	B /0	C	AD	_]	
C	D /0	d/1	D	$\sqrt{}$		√ √		
D	d/d	B/d	E		×			
E	A/0	C /1]
•		y^{n+1}/z	•	A	В	C	D	

yX	0	1	В	AC			
A	A/d	d/d		A D	×		
B	C /1	B /0	\mathbf{C}	AD			1
C	D /0	d/1	D	$\sqrt{}$			
D	d/d	B/d	\mathbf{E}		X	≵AD	
E	A /0	C /1			D		
-			_	A	B	C	D
		$\mathbf{y}^{\mathbf{n+1}}/\mathbf{z}$					

yX	0	1	В	AC	
A	A/d	d/d	C	AD	
В	C /1	B /0		AD	
C	D /0	<mark>d</mark> /1	D	$\sqrt{}$	
D	d/d	B/d	E		
E	A /0	C /1			
		y^{n+1}/z	•	A	

X

B

AD BC

D

 \mathbf{C}

yX	0	1
A	A/d	d/d
В	C /1	B /0
C	D /0	d/1
D	d/d	B/d
E	A /0	C /1

 y^{n+1}/z

- (1) 利用隐含表寻找相容对: (A,B), (A,C), (A,D), (A,E), (B,D), (C,D), (C,E)
- (2) 用合并图确定最大相容类: (A,B,D), (A,C,D), (A,C,E)

3、作出最小化状态表

yX	0	1				
A	A/d	d/d				
В	C /1	B /0				
C	D /0	d/1				
D	d/d	B/d				
E	A/0	C /1				
$\mathbf{y}^{\mathbf{n+1}}/\mathbf{z}$						

选择最小化:

覆盖闭合表

相容		早	夏盖		闭合		
类	A	В	C	D	E	X = 0	X = 1
ABD	A	В		D		AC	В
ACD	A		C	D		AD	В
ACE	A		C		E	AD	C

最小化状态表

yX	0	1
A'	B' /1	A'/0
B'	A' /0	B' /1

例2、化简如图所示的原始状态表。

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	$\mathbf{D}/0$	B /1
D	C/d	C/d
E	C /1	B/d

yX	0	1	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	DE			
A	D/d	A/d	C]	
В	E /0	A/d					1
C	D /0	B /1	D				
D	C/d	C/d	\mathbf{E}				
E	C /1	B/d		<u> </u>	B	C	D
	$\mathbf{y}^{\mathbf{n}+}$	$^{1}/z$	_	A	D	C	D

yX	0	1	В	DE			
A	D/d	A/d	C	AB			
В	E/0	A/d	C				1
C	D /0	B/1	D	AC CD			
D	C/d	C/d	E				
E	C /1	B/d					
	\mathbf{y}^{n+}	¹ /z	-	A	В	C	D

yX	0	1	В	DE			
A	D/d	A/d		A D]	
В	E/0	A/d	C	AB			1
C	D /0	B/1	D	AC CD			
D	C/d	C/d		AB			
E	C /1	B/d	<u> </u>	CD			
	$\mathbf{y}^{\mathbf{n}^+}$	¹ /z	•	A	B	C	D

yX	0	1	В	DE			
A	D/d	A/d		A D	AB		
В	E/0	A/d	C	AB	DE		-
C	D /0	B /1	D	AC CD			
D	C/d	C/d		AB			
E	C /1	B/d	E	CD			
	$\mathbf{y}^{\mathbf{n}^+}$	¹ /z	- '	A	В	C	D

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	C	AB	DE		-
C	D /0	B/1	D	AC	AC		
D	C/d	C/d		CD AB	CE		
E	C /1	B/d	E	CD			
	$\mathbf{y}^{\mathbf{n}+}$	¹ /z	- .	A	В	C	D

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC		
D	C/d	C/d		CD AB	CE		
E	C /1	B/d	E	CD	X		
	$\mathbf{y}^{\mathbf{n}+}$	¹ /Z		A	В	C	D

yX	0	1	В	DE			
A	\mathbf{D}/\mathbf{d}	A/d		4 D	AB		
В	E/0	A/d	C	AB	DE		
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CE		
E	C /1	B/d	E	CD	×		
	$\mathbf{y}^{\mathbf{n}^+}$	¹ /z	- '	A	В	C	D

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	\mathbf{C}	AB	DE		
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CE		
E	C/1	B/d	E	CD	X	×	
	\mathbf{y}^{n+}	¹ / Z		A	В	C	D

yX	0	1	В	DE			
A	D/d	A/d		4 D	AB		
В	E/0	A/d	C	AB	AB DE		_
C	D /0	B/1	D	AC	AC	BC	
D	C/d	C/d		CD AB	CE		
E	C /1	B/d	E	CD	X	X	BC
	$\mathbf{y}^{\mathbf{n}+}$	¹ /z	'	A	В	C	D

- (1) 利用隐含表找出相容对: (A,B), (A,C), (A,D), (A,E), (B,C), (C,D), (D,E)
- (2) 用合并图确定最大相容类: (A,B,C),(A,C,D),(A,D,E)

(3) 作出最小化状态表一

yX	0	1					
A	D/d	A/d					
В	E/0	A/d					
C	D /0	B /1					
D	C/d	C/d					
E	C /1	B/d					
	x ₁ n+1/ ₇						

ا ا <i>ا</i>	L
y^{n+1}	/z

相容	覆盖			闭合			
类	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
ADE	A			D	E	CD	ABC

选择最小化:

(ABC) (ACD) (ADE) B'

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 $\mathbf{y}^{n+1}/\mathbf{z}$

最小化状态表

yX	0	1
A'	C'/0	A'/1
B'	B' /0	A'/1
C'	B'/1	A'/d

选择最小化:

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 y^{n+1}/z

最小化状态表

yX	0	1
A'	C'/0	A'/1
B'	B'/0	A'/1
C'	B'/1	A'/d

选择最小化:

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

 $\mathbf{y}^{n+1}/\mathbf{z}$

最小化状态表

yX	0	1
A'	C'/0	A'/1
B'	B' /0	A'/1
C'	B'/1	A'/d

选择最小化:

(3) 作出最小化状态表二

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

相容		1	夏盖	È		闭合			
类	A	В	C	D	E	X = 0	X = 1		
ABC	A	В	C			DE	AB		
ACD	A		C	D		CD	ABC		
DE				D	E	C	BC		

选择最小化:

最小化状态表

yX	0	1
A'	B'/0	A'/1
B'	A'/1	A'/d

yX	0	1
A	D/d	A/d
В	E/0	A/d
C	D /0	B /1
D	C/d	C/d
E	C /1	B/d

相容		Į.	夏盖		闭合		
类	A	В	C	D	E	X = 0	X = 1
ABC	A	В	C			DE	AB
ACD	A		C	D		CD	ABC
DE				D	E	C	BC

y^{n+1}/z

选择最小化:

y	0	1
A'	B' /0	A'/1
B'	A'/1	A'/d

5.3 有限状态机(FSM)

有限状态机可以实现外部激励和当前状态的响应机制。有限状态机 (Finite State Machine, FSM) 简称状态机,是用来表示系统中的有限 个状态及这些状态之间的转移和动作的模型。分为: Moore型和Mealy 型。

状态转移和动作依赖于当前状态和外部输入

对于有限状态机,通常次态逻辑要遵循状态图的逻辑转移流向状态寄存器代码独立,然后将次态逻辑和输出逻辑结合

状态机的优点

- 高效的顺序控制模型,是高速高效控制的首选;
- 容易利用EDA工具进行优化设计:状态机构建简单,设计方案相对固定,可以发挥HDL综合器的优化功能;
- 性能稳定:状态机容易构成良好的同步时序逻辑模块,可用于解决大规模逻辑电路设计中的竞争和冒险现象。
- 高速性能:在高速通信和高速控制方面,状态机具有其巨大的优势;
- 高可靠性:状态机是由纯硬件电路构成;能使用各种容错技术;如果状态机进入非法状态,其从中跳出进入正常状态的时间短暂,对系统的危害不大。

考虑到简便性和灵活性,用一个符号常量来表示有限状态机的状态:

localparam[1:0] s0=2'b00, s1=2'b01, s2=2'b10;

综合的时候,软件会根据有限状态 机的结构将符号常量映射为对应的 二进制字符(如独热码),这就是 状态分配。


```
// 次态逻辑
always @*
case (state reg)
s0: if(a)
              if (b)
        state next = s2;
              else
        state next = s1;
     else
        state next = s0;
s1: if (a)
      state next = s0;
     else
      state next = s1;
 s2: state next = s0;
 default: state next = s0;
endcase
```


状态的转移要遵循状态图的流程 次态逻辑单元是关键:次态(state_next) 由当前状态(state_reg)和外部输入信号决定 例、序列检测器:检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出1,否则输出0。

关键步骤:正确码的接收必须是连续的,要求检测器必须记住输入脉冲序列,直到连续检测中收到的每一位码都与预置数的对应码相同。

用Moore状态机和Mealy状态机分别实现输入序列"1101"的检测

Moore状态机序列检测器设计

如果现态是s0,输入为0,那么下一状态还是停留在s0;如果输入1,则转移到状态s1。

在状态s1,如果输入为0,则回到状态s0;如果输入为1,那么就转移到s2。

在s2状态,如果输入为1,则停留在状态s2;如果输入为

定义以下状态 s0:未检测到"1" s1:收到"1" s2:收到"11" s3:收到"110"

s4:收到"1101"

状态声明代码

localparam[2:0] s0=3'b000, s1=3'b001, s2=3'b010, s3=3'b011, s4=3'b100;

次级逻辑代码

case(cs)

s0: if(din==1'b1) nst=s1; else nst=s0;

s1: if(din==1'b1) nst=s2; else nst=s0;

s2: if(din==1'b0) nst=s3; else nst=s2;

s4: if(din==1'b1) nst=s1; else nst=s0;

default: nst=s0;
endcase

Mealy状态机序列检测器:

对比Mealy状态机与Moore状态机的状态图可知:

Moore状态机的检测结果输出是与时钟同步的;而Mealy状态机的检测结果输出是异步的,当输入发生变化时,输出就立即变化。因此Mealy状态机的输出比Moore状态机状态的输出提前一个周期。

```
localparam[1:0]

s0=2'b00,

s1=2'b01,

s2=2'b10,

s3=2'b11;
```

```
case(cs)
s0: if(din==1'b1) nst=s1;
   else
                 nst=s0;
s1: if(din==1'b1) nst=s2;
   else
                 nst=s0;
s2: if(din==1'b0) nst=s3;
   else
                 nst=s2;
s3: nst=s0;
default: nst=s0;
endcase
```


例、ADC采样控制电路设计

ADC转换控制状态机共有4个状态:

- 1. 初始化状态s0
- 2. 启动ADC状态s1
- 3. 等待ADC转换结束状态s2
- 4. 转换数据读取状态s3。

ADC0809控制的状态: s0-s1-s2-s3-s0, 在时钟上升沿直接变化,只有在s2状态时,根据输入信号EOC来判断状态转移的下一状态。ADC在状态机控制下,依次在这4个状态切换,完成AD转换功能。

状态声明代码 localparam[1:0] s0=2'b00, s1=2'b01, s2=2'b10 s3=2'b11;

```
状态转移代码
reg[1:0] state_reg, state_next;
always@ (posedgeclk, posdge reset)
if(reset)
   state_reg<=s0;
else
   state_reg<=state_next;
```



```
次级逻辑代码
always@*
begin
  case(state reg)
    s0: next state=s1;
    s1: next state=s2;
    s2: if(eoc=1'b0) next state =s3;
        else
                     next state =s2;
    s3: next state=s0;
  endcase
end
```

例、按键消抖电路设计

设计基于FSM的消抖电路,利用一个10ms的非同步定时器和有限状态机, 计时器每10ms产生一个使能周期信号,有限状态机利用此信号来确定输 入信号是否稳定。

有限状态机将消除时间较短的抖动,当输入信号稳定20ms以后才改变去 抖动以后的输出值。 假定系统起始态是zero(one)态,当sw变为1(0)时,系统转换为wait1_1态。 当处于wait1_1态时,有限状态机处于等待状态并将m_tick置为有效电平 态。若sw变为0则表示1值所持续的时间过短有限状态机返回zero态。 这个动作在wait1 2态和wait1 3态也将再重复2次。

zero: sw稳定在0值

one: sw稳定在1值。


```
begin db=1'b1;
localparam[2:0]
                          case(state reg)
                                                                              if(sw) state next=one;
zero=3'b000,
                          zero:if(sw) state next=wait1 1;
                                                                         else if(m tick)
wait1 1=3'b001,
                          wait1_1: if(~sw) state_next=zero;
                                                                         state next=wait0 2;
                                  else if(m_tick)
wait1 2=3'b010,
                                                                         end
wait1 3=3'b011,
                                     state next=wait1_2;
                                                                         wait0_2: begin db=1'b1;
                          wait1 2: if(~sw) state next=zero;
one=3'b100,
                                                                                    if(sw) state next=one;
wait0 1=3'b101,
                                  else if(m tick)
                                                                                    else if(m tick)
wait0 2=3'b110,
                                     state next=wait1 3;
                                                                                      state next=wait0 3;
wait0 3=3'b111;
                          wait1 3: if(~sw) state next=zero;
                                                                                  end
                                  else if(m_tick)
                                                                         wait0 3: begin db=1'b1;
                                     state next=one:
                                                                                    if(sw) state next=one;
                          one: begin db=1'b1;
                                                                                    else if(m tick)
                                  if(~sw) state next=wait0 1;
                                                                                      state next=zero;
                               end
                                                                                   end
                          wait0 1:
                                                                         default: state next=zero;
                                                                         endcase
```

书中寄存器没有初始化

布朗等,数字逻辑基础与Verilog设计(原书第3版),机械工业出版社

例、当输入w=1时,交换R1和R2内容的控制电路。

计算机系统中寄存器内容互换。Rk_{out}信号使得寄存器Rk的内容传输至互 联网络。Rk_{in}信号使互联网络上的数据传输至寄存器Rk

Present	Next	t state	Outputs						
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	A	В	0	0	0	0	0	0	0
В	С	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

	Present state	Next $w = 0$	state $w=1$		C			Outputs			
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
A	00	00	0 1	0	0	0	0	0	0	0	
В	01	10	10	0	0	1	0	0	1	0	
С	10	11	1 1	1	0	0	1	0	0	0	
D	11	00	0 0	0	1	0	0	1	0	1	

$$Y_1 = w\overline{y}_1 + \overline{y}_1 y_2$$

$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

$$Y_1 = w \bar{y}_1 + \bar{y}_1 y_2$$

 $Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$

Present	Next	state				0 4 4			
state	w = 0	w = 1				Outputs	}		
y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
00	00	0 1	0	0	0	0	0	0	0
01	10	10	0	0	1	0	0	1	0
10	11	1 1	1	0	0	1	0	0	0
11	00	0 0	0	1	0	0	1	0	1

Present	Next	state				Outputs			
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	A	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	Α	A	0	1	0	0	1	0	1

	Present	Nexts	tate							
	state	w = 0	w = 1				Outputs			
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	00	0 0	01	0	0	0	0	0	0	0
В	01	1 1	11	0	0	1	0	0	1	0
C	11	1 0	10	1	0	0	1	0	0	0
D	10	0 0	00	0	1	0	0	1	0	1

	Present state	w = 0					Outputs			
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
1	00	0 0	01	0	0	0	0	0	0	0
3	01	1 1	11	0	0	1	0	0	1	0
	11	1 0	10	1	0	0	1	0	0	0
)	10	0 0	00	0	1	0	0	1	0	1

$$Y_1 = w\bar{y}_2 + y_1\bar{y}_2$$

$$Y_2 = y_1$$

Present	Next	tstate				Outputs			
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	A	В	0	0	0	0	0	0	0
В	С	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

	Present	Next	state				_			
	state	w = 0	w = 1			1	Outputs	3		
	$y_2 y_1$	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

$$Y_1 = w\bar{y}_1 + \bar{y}_1y_2$$

 $Y_2 = y_1\bar{y}_2 + \bar{y}_1y_2$

独热(One-hot)编码

	Present	Next	state
	state	w = 0	w = 1
	$y_4y_3y_2y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$
A	0 001	0001	0010
В	0 010	0100	0100
C	0 100	1000	1000
D	1 000	0001	0001

	Present state	w = 0	tate $w=1$			1	Outputs			
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	00	0.0	01	0	0	0	0	0	0	0
В	01	1 1	11	0	0	1	0	0	1	0
С	11	1 0	10	1	0	0	1	0	0	0
D	10	0 0	00	0	1	0	0	1	0	1

$$Y_1=w'y_1+y_4$$
 $R1_{out}=R2_{in}=y_3$
 $Y_2=wy_1$ $R1_{in}=R3_{out}=Done=y_4$
 $Y_3=y_2$ $R2_{out}=R3_{in}=y_2$

Mealy状态模型

A B

Present	Next	state	Outp	put z
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	A	В	0	1

Present	Next	state	Out	tput
state	w = 0	w = 1	w = 0	w = 1
у	Y	Y	Z	Z
0	0	1	0	0
1	0	1	0	1

Reset
$$w = 1/R2_{out} = 1, R3_{in} = 1$$

$$w = 0 / R1_{out} = 1, R2_{in} = 1$$

$$w = 0 / R3_{out} = 1, R1_{in} = 1, Done = 1$$

Reset

Mealy型状态机异步输入时的潜在问题

状态机的Verilog实现风格


```
module simple (Clock, Resetn, w, z);
    input Clock, Resetn, w;
    output z;
    reg [2:1] y, Y;
    parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10;
    // Define the next state combinational circuit
    always @(w, y)
         case (y)
             A: if (w) Y = B;
               else Y = A;
             B: if (w) Y = C;
              else Y = A;
             C: if(w) Y = C;
               else Y = A;
             default: Y = 2bxx;
         endcase
    // Define the sequential block
    always @(negedge Resetn, posedge Clock)
         if (Resetn = 0)
                                    y \leq A;
         elsey \le Y;
    // Define output
    assign z = (y = = C);
```

endmodule

```
module simple (Clock, Resetn, w, z);
                                                                                                             module simple (Clock, Resetn, w, z);
                                                       module simple (Clock, Resetn, w, z);
    input Clock, Resetn, w;
                                                                                                                 input Clock, Resetn, w;
                                                            input Clock, Resetn, w;
                                                                                                                output z;
    output z;
                                                            output reg z;
                                                                                                                reg [2:1] y;
    reg [2:1] y, Y;
                                                            reg [2:1] y, Y;
                                                                                                                 parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10;
    parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10:
                                                            parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10;
                                                                                                                 // Define the sequential block
                                                            // Define the next state combinational circuit
    // Define the next state combinational circuit
                                                                                                                 always @(negedge Resetn, posedge Clock)
                                                            always @(w, y)
    always @(w, y)
                                                                                                                    if (Resetn = = 0) y \le A;
         case (y)
                                                            begin
                                                                                                                    else
                                                                case (y)
             A: if (w) Y = B;
                                                                                                                       case (y)
                                                                    A: if (w) Y = B;
              else Y = A;
                                                                                                                           A: if (w) y \le B;
                                                                      else Y = A;
             B: if (w) Y = C;
                                                                                                                              else y \le A;
                                                                   B: if (w) Y = C;
              else Y = A;
                                                                                                                           B: if (w) y \le C;
                                                                      else Y = A;
             C: if (w) Y = C;
                                                                                                                              else y \le A;
                                                                   C: if (w) Y = C;
              else Y = A;
                                                                                                                           C: if (w) y \le C;
                                                                      else Y = A:
             default: Y = 2'bxx;
                                                                                                                              else y \le A;
                                                                    default: Y = 2bxx;
                                                                                                                           default: y \le 2bxx;
         endcase
                                                                endcase
                                                                                                                       endcase
                                                                z = (y = C); //Define output
    // Define the sequential block
                                                            end
                                                                                                                 // Define output
    always @(negedge Resetn, posedge Clock)
                                                                                                                 assign z = (y = C);
         if (Resetn = 0)
                                     v \leq A:
                                                            // Define the sequential block
         elsey \le Y;
                                                            always @(negedge Resetn, posedge Clock)
                                                                                                             endmodule
                                                                if (Resetn = = 0) y \le A;
    // Define output
                                                                elsev \le Y;
    assign z = (y = = C);
                                                       endmodule
```

endmodule

状态机用三个不同的过程实现。一般一个always中只对一个信号赋值。如果多个信号的判断条件总是完全相同,也可以在同一个always中对多个信号同时赋值。

```
//第一段, 状态变化赋值, 时序逻辑
reg [3:0]cs,ns;
always @ (posedge clk or negedge rstn)
 if(!rstn)
   cs<=sidle;
 else
   cs \le ns:
//第二段, 状态变化逻辑, 组合逻辑
always @ (cs or ...)
case (cs)
                                     //不允许出现 ns=ns;
                    else ns=sidle:
 sidle :if(...) ns= s1;
      :if(...) ns= sover; else ns= s1;
 sover :if(...) ns= sidle; else ns= sover;
default:ns=sidle;
endcase
```

```
//第三段
//对输出赋值: 组合电路
//一般来说,一个 always 模块,只对一个信号赋值。如果某几个信号的变化条件
//总是一样,也可以在同一个 always 中对这几个信号同时赋值。
always @(敏感信号列表)
begin
if(....)
 output reg=....;
else
 output reg=....;
end
//对输出赋值: 时序电路
//一般来说,一个 always 模块,只对一个信号赋值。如果某几个信号的变化条件
//总是一样,也可以在同一个 always 中对这几个信号同时赋值。
always @ (posedge clk or negedge rstn)
begin
if(!rstn)
 signal a reg \leq 1'b0;
else
if (cs == sover && signal x reg == 1'b1 && ....)
 signal a reg <= 1'b1;
end
```

例、仲裁电路:给: 源的接入控制。在l 用该资源,假设系统 的上升沿之后才发生 一个输入(请求信-应地给每个设备产生 grant)。一个设备: 需要先发送请求信· FSM会考虑所有有? 先级列表,选择一· 信号。当设备完成

假设系统有3个设备 r1、r2、r3, 授权信 先级依次为设备1>2

计算机辅助设计工具 (综合工具)

网表生成:检查语法、生成网表;

门级优化:逻辑优化(成本、速度);

工艺映射: 网表中的元件如何在目标芯片

的可用资源中实现。

综合工具中的3个阶段

物理设计

布局: 为网表中的逻辑模块选择合适的位置;

布线: 把放置在芯片中的模块用线连接起来;

静态时序分析:检测电路延迟信息。

Parameter	Actual	Required	Slack	From	То
f_{max}	261.1 MHz	200 MHz	1.17 ns	AddSub	Overflow
t_{su}	2.356 ns	10.0 ns	$7.644~\mathrm{ns}$	b_0	$breg_0$
t_{co}	6.772 ns	10.0 ns	$3.228~\mathrm{ns}$	$zreg_0$	z_0
t_h	0.240 ns	10.0 ns	$9.76~\mathrm{ns}$	b_1	$breg_1$

Vendor Name	WWW Locator	Product Names
Altera	altera.com	Quartus II
Mentor Graphics	mentorgraphics.com	ModelSim, Precision
Synopsys	synopsys.com	Design Compiler, VC
Xilinx	xilinx.com	ISE, Vivado

第五章作业:

- 1、课后习题: 5.3、5.4、5.5。
- 2、如何用数字电路实现超越函数计算,学习CORDIC算法。