水平重迭区(带区)

- 垂直约束图是对竖直方向的限制,那么对水平方向的约束就是通道区布线的水平限制条件,可描述为在任何一个可行的布线中,不同线网的水平线段不允许发生重迭。
- 为了描述水平限制条件,将 布线通道化成若干水平重迭 区。
- 重迭区是通道区中一个尽可能大的连续的列的集合,通过重迭区(包括通过重迭区中某些列)的任何二条线网都不允许在同一条水平布线通道上。

水平重迭区 (鼠标滑过播放视频)

水平重迭区(带区)

- 垂直约束图是对竖直方向的限制,那么对水平方向的约束就是通道区布线的水平限制条件,可描述为在任何一个可行的布线中,不同线网的水平线段不允许发生重迭。
- 为了描述水平限制条件,将 布线通道化成若干水平重迭 区。
- 重迭区是通道区中一个尽可能大的连续的列的集合,通过重迭区(包括通过重迭区中某些列)的任何二条线网都不允许在同一条水平布线通道上。

划分的过程

示例

划分的过程

•自左向右扫描,当某列上 有线网结束时,做个记号。 如在后面的第i列上有新的 线网开始时,则新的重迭 区从第j列开始,而前一个 重迭区在i-1列结束。也有 一些特殊情况,若同一列 既有线网结束又有线网开 始,则可以划分为一个独 立的区: 若此时前面的分 区没有划分,则合并为一 个分区。

示例

- ①自左向右扫描,第1区起始有线网4,1,5,3,2,当扫描到第3列、第4列时有线网3,5,1结束;当第5列时有线网6开始,则I区是第1列到第4列。
- ②II区从第5列开始,同时有线网2结束;在第6列上线网开始,故II区为第5列。
- ③第6列开始第III区,有线网7开始,同时线网6结束;到第7列,线网8开始,故III区为第6列。
- ④IV区从第7列开始,到第8列线网9开始,同时线网4结束;第IV区到第8列结束。
- ⑤V区从第9列开始,第9列有线网8结束;到 第10列,线网10开始,第V区到第9列结束。
- ⑥第VI区剩余的第10,11列。

重迭区划分的情况

列:	通过	重	叠区	重叠区		
1	1	2	3)
2	1	2	3	4	5	} I
3	1	2	3	4	5	ſ ¹
4	1	2	4	5		J
5	2	4	6			> п
6	4	6	7			> ш
7	4	7	8			} w
8	4	7	8	9		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
9	7	8	9			> v
10	7	9	$\overline{10}$			\
11	7	9	<u>10</u>			∫ VI

带图

4	4	4	4		10
1	6	6	8	8	
5		7	7	7	7
3			9	9	9
2	2				
I	п	ш	IV	v	VI

注: A表示此区有线网A结束; A表示此区有线网A开始。

面向布线区的布线方法

- 面向布线区的布线是将线网打散,分配在各个布线网打散,分配在各个布线通道内进行布线。这种方法一般还是要分两步进行:第一步进行总体布线,第二步进行通道线。
- •总体布线 总体布线是将布线区划分成 通道及线网区的分配。

①通道划分

如图所示,对于行式结构的芯片形式,如门阵列、标准单元等结构的划分很简单,其单元区间的区域即为水平通道区。同时单元的硅栅或预留的穿线道即为垂直通道。垂直通道一般只是作为两个水平通道区的桥。线网的分配和布线主要在水平通道内进行。

②线网在各通道的分配

•将线网分配到各个通道的算法的主要依据是对两点间路径的分配。最早开始使用的有grid-expansion算法,或者称为迷宫布线算法;然后是一个更有效的线搜索算法。

线网分配方法 (鼠标滑过播放视频)

1. 李氏算法

- 迷宫法就是两点李氏算法。
- 李氏算法有(a)、(b)两种方法,(a)现要连接A→B,通过李氏算法的单源波扩散可以找出一条无任何阻挡的最短路径(阴影部分是布线障碍区),可见从A到B的最短路径为10步,共有有两种走法。
- (b)为双源波扩散的李氏迷宫算法,为源X和目标Y之间寻找一条最短路径。在X源端和Y目标端同时发出一个波,向外扩散,在每个格子上编号,一旦两个扩散波相遇,即可完成连接,如果有两个格子编号一样,优先选择不拐弯的格子,图中实线为优先的选择。李氏算法最初使用单个波的扩散方法。

10	11	12	11	10	11	12	13		5	4	3	2	3	4	5	6	7
9			10	9		11	12		4	3	2	1	2	3	4	5	6
8	7	8	9	8,	9,	В	11		3	2	1	Х	1	2	3	4	5
7	6			7			10		4	3					4	•4	
6	5	4,	. 5,	6	7	8	9		5	4					4	13	
		3	4		6	7			6	5					3	2	
A	1	2	3	4	5	6	7		7	6	6	5	4	3	2	1	Y
1	2	3	4	5	6	7	8		8	7	7	6	5	4	3	2	1
(a)													(b)				

				В	
ì		1		0.	
	Α				

Ⅱ.海塔算法

1. 李氏算法

- 迷宫法就是两点李氏算法。
- 李氏算法有(a)、(b)两种方法,(a)现要连接A→B,通过李氏算法的单源波扩散可以找出一条无任何阻挡的最短路径(阴影部分是布线障碍区),可见从A到B的最短路径为10步,共有有两种走法。
- (b) 为双源波扩散的李氏迷宫算法,为源X和目标Y之间寻找一条最短路径。在X源端和Y目标端同时发出一个波,向外扩散,在每个格子上编号,一旦两个扩散波相遇,即可完成连接,如果有两个格子编号一样,优先选择不拐弯的格子,图中实线为优先的选择。李氏算法最初使用单个波的扩散方法。

10	11	12	11	10	11	12	13			
9			10	9		11	12			
8	7	8	9	8	0	В	11			
7	6			7			10			
6	5	4	5	6	7	8	9			
		3	4		6	7				
A		2.	3	4	5	6	7			
1	2	3	4	5	6	7	8			
(a)										

5	4	3	2	3	4	5	6	7		
4	3	2	1	2	3	4	5	6		
3	2	1	X_	1_	2	_3	4	5		
4	3					4	•4			
5	4					4	13			
6	5					3	2			
7	6	6	5	4	3	2	1	Y		
8	7	7	6	5	4	3	2	1		
(b)										

Ⅱ.海塔算法

•是一种线搜索算法(或线探测算法), 使用线而非波来寻找连接。这种算法称 为海塔算法,比基于李氏算法的方法更 有效率。

Ⅲ. 线网分配

- •面向线网的布线方法就是李氏算法的改进。
- 其第一步就是将线网按李氏算法分配到各个通道。如是多点线网,则进行分解,两两连接,这样产生的线网分配无疑会出现分配不均的问题。有的通道区还要求走的线特别多,其数量超过通道容量,而有的通道则可能线很少,远远达不到其通道容量。那些超过通道容量的通道是无法完成所有线网布线的,这些通道和为关键通道。当用李氏算法分配完成线网到各通道后便可发现所有的关键通道:
- 第二步便是将线网中的一些线网拆除, 一般对溢出最大的线网先拆,对有多种 走线方案的线网也要先拆,拆除的线网 在关键通道之外再找一条路径重新分配 走线通道。这个拆线、重布线的过程一 直进行到所有通道线网密度小于通道容 量为止(有时这个过程进行到所有通道 的线网分布比较均匀时为止)。

通道布线

- 上面所述的只是线网在各通道的 分配,并未涉及线网在通道中的 排列方式和布线顺序。
- •在通道布线中主要是考虑线网的排列顺序和如何走线。有多种算法,这里只考虑二边通道布线的算法,主要介绍左端算法LEA (left-edge Algorithm)。

无约束左端算法

- 各线网间不存在垂直约束关系,每个线 网在通道内只有一条水平线。
- 只要决定这个水平线的位置,便完成了 该线网的安置。因为不存在垂直约束, 两个线网的垂直线不会相交。垂直线可 以从出线端所在列连接所对应的水平线。

有约束的左端算法

- •通道布线在大部分情况下是有垂直约束的布线。
- •可以进行布线的是活动线网,针对有约束的情况,在垂直约束图中处于最下面的线网为活动线网。
- •有约束的左端算法的思想是: 当前能布的线网是活动线网, 如果活动线网中有线网已布线, 就要修改垂直约束图;然后又产 生新的活动线网,布线中新产生 的活动线网与原有的活动线网同 等的参加布线;布线仍按水平布 线线道顺序进行,布线集始终由 活动线网组成。

有约束左端算法 (鼠标滑过播放视频)

有约束的左端算法

- •通道布线在大部分情况下是有垂 直约束的布线。
- •可以进行布线的是活动线网,针 对有约束的情况,在垂直约束图 中处于最下面的线网为活动线网。
- •有约束的左端算法的思想是:

当前能布的线网是活动线网, 如果活动线网中有线网已布线, 就要修改垂直约束图;然后又产 ③ 生新的活动线网,布线中新产生 的活动线网与原有的活动线网同 等的参加布线;布线仍按水平布 线线道顺序进行, 布线集始终由 活动线网组成。

有约束左端算法示例1

• 按要求写出垂直约束图

7

1

• 根据写垂直约束图的原则, 先将通道上下边的出 现端子进行对应的排列,略去0号端子。

0

经过整理的 VCG图

有约束左端算法示例1

- 按要求写出垂直约束图
- •根据写垂直约束图的原则,先将通道上下边的出现端子进行对应的排列,略去0号端子。

VCG 简明规则:

第一层:上有下无第二层:上有下有

第三层开始: 与第二层规则相同

直至上边的端子均写入VCG

最下层:上无下有

进行有约束的左端布线

- 布线是自下而上进行,VCG的最下层是活动线网的集合A。具体步骤如下:
- 活动线网A= {5, 6, 8, 9}, 布⑤, 修 改VCG;
- 活动线网A= {2,3,6,8,9},布⑥, 修改VCG;
- 活动线网A= {2,3,8,9},布③,修 改VCG;
- 活动线网A= {1, 2, 8, 9}, 布⑧, 修 改VCG;
- 活动线网A= {1, 2, 7, 9, 11}, 布①, 修改VCG;
- 活动线网A={2,7,9,11},布⑦,修改VCG;
- 活动线网A={2,9,11},布⑪,修改 VCG;
- 活动线网A={2,9},布②,修改VCG;
- 活动线网A= {9} , 布⑨, 修改VCG;
- 活动线网A= {12} , 布⑫, 修改VCG;
- 活动线网A= {10} , 布⑩, 修改VCG;

有约束左端算法示例2

有约束左端算法示例3

思考题

1. 用左端算法为下面二边通道布线,并说明通道容量是多少? 通道最大密度是多少?

1	4	5	1	6	7	0	4	9	10	10
+	-	-	-	÷	-	-	-	-	-	-
+	-	-	-	•	•	-	-	-	-	-
3	5	3	5	2	6	8	9	8	7	9

- 2. 自动布图包含哪些内容,分别涉及哪些常用的算法?
- 3. 如何处理总体布线和通道布线的关系,李氏算法主要解决什么问题。

