Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound of [[the]] formula [[I]] <u>I'</u>:

$$\begin{array}{c|c} R8 \\ W \\ \hline \\ R16 \\ \hline \\ O \\ Ru \\ \hline \\ R11 \\ \end{array}$$

$$\begin{array}{c|c} R8 \\ W \\ \hline \\ R16 \\ \hline \\ O \\ Ru \\ \hline \\ R11 \\ \hline \end{array} \begin{array}{c} (CH_2)_q & (CH_2)_k \\ H \\ O \\ M \\ M \\ \end{array}$$

wherein

A is $C(=OO)R^1$ $C(=O)OR^1$, or $C(=O)NHSO_2R^2$, $C(=O)NHR^3$, or CR^4R^4 wherein;

 R^1 is hydrogen, C_1 - C_6 alkyl, C_0 - C_3 alkylcarbocyclyl, C_0 - C_3 alkylheterocyclyl;

R² is C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl;

 R^3 is C_1 - C_6 alkyl, C_0 - C_3 alkylcarbocyclyl, C_0 - C_3 alkylheterocyclyl, $-OC_1$ - C_6 alkyl, -

 $OC_0\text{-}C_3 alkyl carbocyclyl, -OC_0\text{-}C_3 alkyl heterocyclyl;}\\$

R⁴ is =O, halo, amino, or OH; or R⁴ and R⁴, together are =O;

Y is independently a bond or C₁-C₃alkyl;

Ra is independently H or C₁-C₃alkyl;

Rb is independently H, C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl or C₀-C₃alkylheterocyclyl;

p is independenly 1 or 2;

M is CR⁷R⁷ or NRu;

R⁷-is C₁-C₆alkyl, C₀-C₃alkylC₃-C₇cycloalkyl, or C₂-C₆alkenyl, any of which is optionally substituted with 1-3 halo atoms, or an amino, -SH, or C₀-C₃alkylcycloalkyl group; or R⁷-is J;

 R^7 is H-or taken together with R^7 $R^{7'}$ forms a C_3 - C_6 cycloalkyl ring optionally substituted with $R^{7'a}$ -wherein;

 R^{7^2a} -is- C_1 - C_6 alkyl, C_2 - C_6 eycloalkyl, C_2 - C_6 alkenyl any of which may be optionally substituted with halo; or R^{7^2a} -can be J;

q is 0 to 3 $\underline{1}$ and k is 0 to 3 $\underline{1}$; where $q+k \ge 1$;

 $\label{eq:wis-ch2-} W_0 is -CH_2-, -O-, -OC(=O)NH, -OC(=O), -S-, -NH-, -NRa, -NHSO_2-, -NHC(=O)NH- or -NHC(=O)-, -NHC(=S)NH- or a bond;$

 R^8 is a ring system containing 1 or 2 saturated, partially saturated or unsaturated rings each of which has 4-7 ring atoms and each of which has 0 to 4 hereto atoms independently selected from S, O and N, the ring system being optionally spaced from W by a C_1 - C_3 alkylene group; or R^8 is C_1 - C_6 alkyl; any of which R^8 groups can be optionally mono-, di-, or tri- substituted with R^9 , wherein

R⁹ is independently selected from the group consisting of halo, oxo, nitrile, azido, nitro, C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl, NH₂C(=O)-, Y-NRaRb, Y-O-Rb, Y-C(=O)Rb, Y-(C=O)NRaRb, Y-NRaC(=O)Rb, Y-NHSO_pRb, Y-NH

 $S(=O)_pRb$, Y-S(=O)_pNRaRb, Y-C(=O)ORb, Y-NRaC(=O)ORb; wherein said carbocyclyl or heterocyclyl is optionally substituted with R^{10} ; wherein

R¹⁰ is C₁-C₆alkyl, C₃-C₇cycloalkyl, C₁-C₆alkoxy, amino, amido, sulfonyl, (C₁-C₃alkyl)sulfonyl, NO₂, OH, SH, halo, haloalkyl, carboxyl;

E is -C(=O)-, -C(=S)-, $-S(=O)_2$ -, -S(=O)-, -C(=N-Rf)-;

Rf is H, -CN, -C(=O)NRaRb; -C(=O)C₁-C₃alkyl;

X is NRx- where Rx is H, C_1 - C_5 alkyl or J; or in the case where E is -C(=O), X can also be -O- or NRjNRj-;

wherein one of Rj is H and the other is H, C1-C5 alkyl or J;

 $R^{11}\text{-is H, C}_1\text{-C}_6\text{alkyl, C}_0\text{-C}_3\text{alkylearbocyclyl, C}_0\text{-C}_3\text{alkylheterocyclyl, any of which can be substituted with halo, oxo, nitrile, azido, nitro, C}_1\text{-C}_6\text{alkyl, C}_0\text{-}\\ C_3\text{alkylearbocyclyl, C}_0\text{-C}_3\text{alkylheterocyclyl, NH}_2\text{C}(=O)\text{-, Y-NRaRb, Y-O-Rb, Y-C}(=O)\text{Rb, Y-(C=O)NRaRb, Y-NRaC}(=O)\text{Rb, Y-NHSO}_p\text{Rb, Y-S}(=O)_p\text{Rb, Y-S}(=O)_p\text{Rb, Y-NRaC}(=O)\text{ORb; or R}^{11}\text{-is J;}$

J, if present, is a single 3 to 10-membered saturated or partially unsaturated alkylene chain extending that extends from the R^7/R^7 cycloalkyl or from the carbon atom to which R^7 is attached to one of Rj, Rx, Ry or R^{11} G to form and forms a macrocycle, which chain is optionally interrupted by one to three heteroatoms independently selected from: -O-, -S- or -NR¹²-, and wherein 0 to 3 carbon atoms in the chain are optionally substituted with R^{14} ; wherein;

R¹² is H, C₁-C₆alkyl, C₃-C₆cycloalkyl, or C(=O)R¹³;

R¹³ is C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl;

R¹⁴ is independently selected from the group consisting of H, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, hydroxyl, halo, amino, oxo, thio and C₁-C₆thioalkyl;

Ru is independently H or C₁-C₃alkyl;

m is 0 or 1; n is 0 or 1;

U is =O or is absent;

 R^{15} -is H, C_1 - C_6 alkyl, C_0 - C_3 alkylearbocyclyl, C_0 - C_3 alkylheterocyclyl, any of which can be substituted with halo, oxo, nitrile, azido, nitro, C_1 - C_6 -alkyl, C_0 - C_3 alkylearbocyclyl, NH_2CO , Y-NRaRB, Y-O-Rb, Y-C(=O)Rb,

Y-(C=O)NRaRb, Y-NRaC(=O)Rb, $Y-NHSO_pRb$, $Y-S(=O)_pRb$, $Y-S(=O)_pNRaRb$, Y-S

G is -O, -NRy-, -NRjNRj-; where one Rj is H and the other Rj is H, C_1 - C_5 alkyl or J; Ry is H, C_1 - C_3 alkyl; or Ry is J;

 R^{16} is H; or C_1 - C_6 alkyl, C_0 - C_3 alkylcarbocyclyl, C_0 - C_3 alkylheterocyclyl, any of which can be substituted with halo, oxo, nitrile, azido, nitro, C_1 - C_6 alkyl, C_0 - C_3 alkylcarbocyclyl, C_0 - C_3 alkylheterocyclyl, NH_2CO -, Y-NRaRb, Y-O-Rb, Y-C(=O)Rb, Y-C(=O)NRaRb, Y-C(=O)Rb, Y-C(=O)Rb

2. (Canceled)

3. (Currently amended) A compound according to claim 1, with the partial structure [[Ia, Ib or Iaa]] Ia', Ib' or Iaa':

where e is 1 or 2.

- 4. (Currently amended) A compound according to Claim 1, wherein E is -C(=O)-.
- 5-7. (Canceled) A compound according to Claim-1, wherein m is 0 and n is 0.
- 8. (Currently Amended) A compound according to Claim [[7]] $\underline{1}$, wherein R^{16} is H, C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl.
- 9-21 (Canceled).
- 22. (Withdrawn-currently amended) A compound according to Claim 1, wherein W is -OC(=O)-, -NRa-, [[-NHS(O)₂-or]] NHS(O)₂-; -NHC(=O)- [[or-]] or -OC(=O)NH-.
- 23. (Previously presented) A compound according to Claim 1, wherein W is S-, a bond or –O-.
- 24. (Currently amended) A compound according to Claim 22 or 23 wherein R^8 is optionally substituted C_0 - C_3 -alkylcarbocyclyl or optionally substituted C_0 - C_3 -alkylheterocyclyl.

- 25. (Withdrawn / currently amended) A compound according to Claim 24, wherein the C_0 - C_3 alkyl moiety is methylene or preferably a bond.
- 26. (Withdrawn-currently amended) A compound according to claim 25 of formula I':

R16 G
$$R_{\text{Nu}}$$
 R_{Nu} R_{Nu}

wherein

A is $C(=O)OR^1$, or $C(=O)NHSO_2R^2$, wherein;

R¹ is hydrogen, C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl;

 $\underline{R^2 \text{ is } C_1\text{-}C_6 \text{alkyl}, C_0\text{-}C_3 \text{alkylcarbocyclyl}, C_0\text{-}C_3 \text{alkylheterocyclyl}; wherein}$

R² is optionally substituted with 1 to 3 substituents independently selected from the group consisting of halo, oxo, nitrile, azido, nitro, C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl, NH₂CO-, Y-NRaRb, Y-O-R_b, Y-C(=O)Rb, Y-(C=O)NRaRb, Y-NRaC(=O)Rb, Y-NHSO_pRb, Y-S(=O)_pRb, Y-S(=O)_pNRaRb, Y-C(=O)ORb, Y-NRaC(=O)ORb;

Y is independently a bond or C₁-C₃alkyl;

Ra is independently H or C₁-C₃alkyl;

Rb is independently H, C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl or C₀-

C₃alkylheterocyclyl;

p is independenly 1 or 2;

M is CR^7R^7 ;

 R^7 taken together with R^7 forms a C_3 - C_6 cycloalkyl ring substituted with J; q is 1 and k is 1;

W is -O-, -OC(=O)NH, -OC(=O), -S-, -NRa, -NHSO2-, -NHC(=O)-, or a bond;

 R^8 is C_0 - C_3 alkylaryl, or C_0 - C_3 alkylheteroaryl, either of which is optionally mono, di, or tri substituted with R^9 , wherein;

 R^9 is C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , OH, halo, trifluoromethyl, amino, amido optionally mono- or di- substituted with C_1 - C_6 alkyl, C_0 - C_3 alkylaryl, C_0 - C_3 alkylheteroaryl, carboxyl, aryl or heteroaryl being optionally substituted with R^{10} ; wherein

R¹⁰ is C₁-C₆alkyl, C₃-C₇cycloalkyl, C₁-C₆alkoxy, amino optionally mono- or disubstituted with C₁-C₆alkyl, amido, sulfonylC₁-C₆alkyl, NO₂, OH, halo, trifluoromethyl, carboxyl, or heteroaryl;

E is -C(=O)-, -C(=S)-, -S(=O)₂-, -S(=O)-, -C(=N-Rf)-;
Rf is H, -CN, -C(=O)NRaRb; -C(=O)C₁-C₃alkyl;

J is a single 3 to 10-membered saturated or partially unsaturated alkylene chain that extends from the R⁷/R⁷ cycloalkyl to G and forms a macrocycle, which chain is optionally interrupted by one to three heteroatoms independently selected from: -O-, -S-or -NR¹²-, and wherein 0 to 3 carbon atoms in the chain are optionally substituted with R¹⁴; wherein;

R¹² is H, C₁-C₆alkyl, C₃-C₆cycloalkyl, or C(=O)R¹³;
R¹³ is C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl;
R¹⁴ is independently selected from the group consisting of H, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, hydroxyl, halo, amino, oxo, thio and C₁-C₆thioalkyl;
m is 0; n is 0;
G is -NRy-;

Ry is J;

Ky 15 J,

R¹⁶ is H; or C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl, any of which can be substituted with halo, oxo, nitrile, azido, nitro, C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl, NH₂CO-, Y-NRaRb, Y-O-Rb, Y-C(=O)Rb, Y-(C=O)NRaRb, Y-NRaC(=O)Rb, Y-NHSO_pRb, Y-S(=O)_pRb, Y-S(=O)_pNRaRb, Y-C(=O)ORb, Y-NRac(=O)ORb;

or a pharmaceutically acceptable salt thereof.

27. (Withdrawn) A compound according to Claim 26 wherein R^9 is C_1 - C_6 alkyl, C_1 - C_6 alkoxy, amino, di- $(C_1$ - C_3 alkyl)amino, C_1 - C_3 alkylamide, aryl or heteroaryl, the aryl or heteroaryl being optionally substituted with R^{10} ; wherein

R¹⁰ is C₁-C₆alkyl, C₃-C₇cycloalkyl, C₁-C₆alkoxy, amino, mono- or di-C₁-C₃alkylamino, amido, halo, trifluoromethyl, or heteroaryl.

- 28. (Withdrawn) A compound according to Claim 27, wherein R^{10} is C_1 - C_6 alkyl, C_1 - C_6 alkoxy, amino optionally mono- or di substituted with C_1 - C_3 alkyl, amido, C_1 - C_3 -alkylamide, halo, or heteroaryl.
- 29. (Withdrawn) A compound according to Claim 28 wherein R^{10} is methyl, ethyl, isopropyl, tert-butyl, methoxy, chloro, amino optionally mono- or di substituted with C_1 - C_3 alkyl, amido, or C_1 - C_3 alkyl thiazolyl.
- 30. (Withdrawn) A compound according to Claim 25, wherein R⁸ is 1-naphthylmethyl, 2-naphthylmethyl, benzyl, 1-naphthyl, 2-naphthyl, or quinolinyl any of which is unsubstituted, mono, or distributed with R⁹.
- 31. (Withdrawn) A compound according to Claim 30, wherein R^8 is 1-naphthylmethyl, or quinolinyl any of which is unsubstituted, mono, or distributed with R^9 .
- 32. (Withdrawn) A compound according to Claim 31 wherein R⁸ is

wherein R^{9a} is C_1 - C_6 alkyl; C_1 - C_6 alkoxy; thio C_1 - C_3 alkyl; amino optionally substituted with C_1 - C_6 alkyl; C_0 - C_3 alkylaryl; or C_0 - C_3 alkylheteroaryl, C_0 - C_3 alkylheterocyclyl, said aryl, heteroaryl or heterocycle being optionally substituted with R^{10} wherein

R¹⁰ is C₁-C₆alkyl, C₀-C₃alkylC₃-C₇cycloalkyl, C₁-C₆alkoxy, amino optionally mono- or di-substituted with C1-C6alkyl, amido, C1-C3 amide; and

 R^{9b} is C_1 - C_6 alkyl, C_1 - C_6 -alkoxy, amino, di(C_1 - C_3 alkyl)amino, (C_1 - C_3 alkyl) amide, NO_2 , OH, halo, trifluoromethyl, carboxyl.

- 33. (Withdrawn) A compound according to Claim 32, wherein R^{9a} is aryl or heteroaryl, either of which is optionally substituted with R^{10} .
- 34. (Withdrawn) A compound according to Claim 33, wherein R^{9a} is selected from the group consisted of:

wherein R^{10} is H, C_1 - C_6 alkyl, or C_0 - C_3 alkylcycloalkyl, amino optionally mono- or disubstituted with C_1 - C_6 alkyl, amido, (C_1 - C_3 alkyl)amide.

- 35. (Withdrawn) A compound according to Claim 33, wherein R^{9a} is phenyl, optionally substituted with C₁-C₆alkyl; C₁-C₆alkoxy; or halo.
- 36. (Withdrawn) A compound according to Claim 32, wherein R⁸ is:

wherein R^{10a} is H, C_1 - C_6 alkyl, or C_0 - C_3 alkylcarbocyclyl, amino optinally mono- or disubstituted with C_1 - C_6 alkyl, amido, heteroaryl or heterocyclyl; and R^{9b} is C_1 - C_6 alkyl, C_1 - C_6 -alkoxy, amino, di(C_1 - C_3 alkyl)amino, amide, NO₂, OH, halo, trifluoromethyl, or carboxyl.

- 37. (Withdrawn) A compound according to Claim 32, wherein R^{9b} is C_1 - C_6 -alkoxy.
- 38. (Withdrawn) A compound according to Claim 1, wherein A is C(=O)NHSO₂R².

- 39. (Withdrawn) A compound according to Claim 38, wherein R^2 is optionally substituted C_1 - C_6 alkyl.
- 40. (Withdrawn) A compound according to Claim 38, wherein R² is optionally substituted C₃-C₇cycloalkyl.
- 41. (Withdrawn) A compound according to Claim 38, wherein R^2 is optionally substituted C_0 - C_6 alkylary.
- 42. (Original) A compound according to Claim 1, wherein A is C(=O)OR¹.
- 43. (Previously presented) A compound according to Claim 42, wherein R^1 is H or C_1 - C_6 alkyl.
- 44. (Cancelled)
- 45. (Currently amended) A compound according to Claim [[2]], $\underline{1}$ wherein R^7 and [[R^7 ,]] $\underline{R7}$, together define a spiro-cyclopropyl or spiro-cyclobutyl ring, both optionally mono or di-substituted with $\underline{R7}$, wherein;
- $R^{7^{2}a}$ is C_1 - C_6 alkyl, C_3 - C_5 eycloalkyl, or C_2 - C_6 alkenyl, any of which is optionally substituted with halo; or R^{7a} is J.

46-47. (Canceled)

- 48. (Currently amended) A compound according to Claim 1, wherein J is a 3 to 8-membered saturated or unsaturated alkylene chain optionally containing one to two heteroatoms independently selected from: -O-, -S- or -NR¹²-, wherein R¹² is H, C₁-C₆ alkyl, or -C(=O)C₁-C₆ alkyl.
- 49. (original) A compound according to Claim 48, wherein J is a 4 to 7-membered saturated or unsaturated, all carbon alkylene chain.

- 50. (original) A compound according to Claim 48, wherein J is saturated or mono-unsaturated.
- 51. (original) A compound according to Claim 48, wherein J is dimensioned to provide a macrocycle of 14 or 15 ring atoms.
- 52. (original) A pharmaceutical composition comprising a compound as defined in claim 1, and a pharmaceutically acceptable carrier therefor.
- 53. (original) A pharmaceutical composition according to Claim 52, further comprising an additional HCV antiviral, selected from nucleoside analogue polymerase inhibitors, protease inhibitors, ribavirin and interferon.

54-59. (Canceled)

60. (Currently amended) A compound according to Claim 1 with [[the]] formula [[lhe]] <u>Ihe'</u>:

Ihe'

or pharmaceutically acceptable salt thereof wherein

R¹⁶ is H, or C₁-C₆alkyl;

J is a single 3 to 10-membered saturated or partially unsaturated alkylene chain; q is 1 and k is 1;

A is C(=O)OR¹, or C(=O)NHSO₂R², wherein

R¹ is hydrogen or C₁-C₆alkyl;

R² is C₁-C₆alkyl, C₀-C₃alkylcarbocyclyl, C₀-C₃alkylheterocyclyl;

W is -O- or -OC(=O)NH-;

 R^8 is C_0 - C_3 alkylaryl or C_0 - C_3 alkylheteroaryl, either of which is optionally mono, di, or tri substituted with R^9 , wherein;

 R^9 is C_1 - C_6 alkyl, C_1 - C_6 alkoxy, NO_2 , OH, halo, trifluoromethyl, amino or amido optionally mono- or di-substituted with C_1 - C_6 alkyl, C_0 - C_3 alkylaryl, C_0 - C_3 alkylheteroaryl, carboxyl, <u>said</u> aryl or heteroaryl being optionally substituted with R^{10} ; wherein R^{10} is C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_1 - C_6 alkoxy, amino optionally mono- or disubstituted with C_1 - C_6 alkyl, C_1 - C_3 alkyl amide, sulfonyl C_1 - C_3 alkyl, NO_2 , OH, halo, trifluoromethyl, carboxyl or heteroaryl.

- 61. (previously presented) A compound according to Claim 60, wherein J is a single 5-8 membered saturated or partially unsaturated alkylene chain.
- 62. (previously presented) A compound according to Claims 60, wherein J is monounsaturated.
- 63. (Currently amended) A compound according to Claim 62, wherein J has one double bond spaced one carbon atom from the cyclopropyl group depicted in the formula [[Ihe]] Ihe'.
- 64. (previously presented) A compound according to Claim 60, wherein R⁸ is the group

wherein R^{9a} is C_0 - C_3 alkylaryl, C_0 - C_3 alkylheteroaryl, or C_0 - C_3 alkylheterocyclyl; said aryl, heteroaryl or heterocyclyl being optionally substituted with R^{10} wherein R^{10} is C_1 - C_6 alkyl, amino, amino mono- or disubstituted with C_1 - C_6 alkyl or NHC(=O) C_1 - C_6 alkyl; and

R^{9b} is C₁-C₆alkoxy; or

 R^8 is C_0 - C_3 alkylaryl wherein the aryl group is optionally substituted with 1-2 substituents selected from C_0 - C_3 alkylheterocyclyl and trifluo C_1 - C_6 alkyl; and wherein the C_0 - C_3 alkylheterocyclyl is optionally substituted with R^{10} .

65. (Previously presented) A compound according to Claim 64, wherein R^{9a} is phenyl,

wherein R¹⁰ is H, C₁-C₆alkyl, amino, amino mono or disubstituted with C₁-C₃alkyl.

- 66. (Withdrawn-currently Amended) A compound according to any of Claims Claim 60, wherein A is C(=O)NHS(=O)₂R².
- 67. (Withdrawn-currently Amended) A compound according to Claim 66, wherein R² is optionally substituted cycloalkyl.
- 68. (Withdrawn-currently Amended) The compound according to Claim 67 wherein R² is optionally substituted cyclopropyl.
- 69. (New) A compound according to Claim 8, wherein R¹⁶ is methyl.
- 70. (New) A compound according to Claim 26, wherein W is -O-.
- 71. (New) A compound selected from the group consisting of:

19-(7-Methoxy-2-phenyl-quinolin-4-yloxy)-2,16-dioxo-3,15,17-triazatricyclo[15.3.0.0*4,6*]icos-7-ene-4,14-dicarboxylic acid 4-ethyl ester 14-methyl ester;

19-(7-Methoxy-2-phenyl-quinolin-4-yloxy)-2,16-dioxo-3,15,17-triaza-tricyclo[15.3.0.0*4,6*]icos-7-ene-3,14-dicarboxylic acid 3-ethyl ester;

14-[(Cyclohexyl-methylcarbamoyl-methyl)-19-(7-methoxy-2-phenyl-quinolin-4-yloxy)-2,16-dioxo-3,15,17-triaza-tricyclo[15.3.0.0*4,6*]icos-7-ene-4-carboxylic acid 3-ethyl ester;

14-[(Cyclohexyl-methylcarbamoyl-methyl)-19-(7-methoxy-2-phenyl-quinolin-4-yloxy)-2,16-dioxo-3,15,17-triaza-tricyclo[15.3.0.0*4,6*]icos-7-ene-4-carboxylic acid;

[14-Cyclopropanesulfonylaminocarbonyl-17(7-methoxy-2-phenyl-quinolin-4-yloxy)-2,14-dioxo-3,13,15-triaza-tricyclo[13.3.0.0*4,6*]octadec-7-en-13-yl]-carbamic acid ter.butyl ester;

17-(7-Methoxy-2-phenyl-quinolin-4-yloxy)-2,14-dioxo-3,13,15-triaza-tricyclo[13.3.0.0*4,6*]octadec-7-ene-4-carboxylic acid ethyl ester;

17-(7-Methoxy-2-phenyl-quinolin-4-yloxy)-2,14-dioxo-3,13,15-triaza-tricyclo[13.3.0.0*4,6*]octadec-7-ene-4-carboxylic acid; or a pharmaceutically acceptable salt thereof.

- 72. (New) A pharmaceutical composition comprising a compound as defined in claim 71, and a pharmaceutically acceptable carrier therefor.
- 73. (New) A pharmaceutical composition comprising a compound as defined in claim 27, and a pharmaceutically acceptable carrier therefor.