ugr Universidad de Granada	Fundamentos Físicos y Tecnológicos	Prác	tica de Laboratorio 1
Apellidos: Gomes Goo	-		Firma:
Nombre: Javier	DNI:	Grupo:	F
		1=ETI	

- 1. Simula un circuito divisor de tensión con una fuente de tensión de valor V en serie con dos resistencias de R_1 y R_2 . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos V_1 y V_2 respectivamente) así como la corriente que atraviesa cada una (que llamaremos I_1 e I_2 respectivamente).
 - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V, R_1 y R_2 que se muestran en ella:

V	R_1	R_2	V_1	V_2
10 V	$1 \text{ k}\Omega$	1 kΩ	5 V	5 V
10 V	$1 \text{ k}\Omega$	$2 k\Omega$	3,330	6 67 V
10 V	1 kΩ	4 kΩ	SA	8 V

b) ¿En qué resistencia se observa una mayor diferencia de potencial entre sus extremos? Justifica tu res-

En la fe, cuando esto toma el valor 4 t. Esto se debe a que al oficier major resistencia, la diferencia que & crea entre sus extremos de potencial en margos. Matematicanese, le observames on la ley de drom. DV = I.K. Al acmatan R, oumerta DV.

c) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para V, R_1 y R_2 que se muestran en ella:

V	R_1	R_2	V_1	V_2	$\frac{V_2}{V_1}$	I_1	I_2
1 V	2.2 kΩ	4.7 kΩ	013197	0,9810	2413	duint	o'llesm
5 V	2.2 kΩ	4.7 kΩ	11501	3'41 V	2114	01775mt	01775m
10 V	2.2 kΩ	4.7 kΩ	31192	6811	2113	145mm	1145m

d) Calcula el cociente de las resistencias $\frac{R_2}{R_1}$ y compáralo con los resultados de la columna $\frac{V_2}{V_1}$ ¿Existe alguna relación entre los mismos? ¿Cuál es la justificación teórica de este hecho?

$$\frac{R_2}{R_1} = \frac{2^{\prime}}{13}$$
 Si comparamos ambas mediolas usanos la
Ley de dom, obstenemos que:
$$\frac{DV_2}{PV_1} = \frac{F \cdot R_2}{F \cdot R_1} : \frac{DV_2}{DV_1} = \frac{R_2}{R_1}$$

Hay uno relación director entre ambos cociertes, aplicanto lo Les de ohm, you que al ser en olivison de tensión y la corriente que atraviera la resistercia es la misma, la tensión el reporte proporcionalmente entre ambas.

- 2. Simula un circuito divisor de corriente con una fuente de corriente de valor I en serie con dos resistencias en paralelo de valores R_1 y R_2 . Coloca sondas que permitan medir la tensión entre los extremos de cada resistencias (que llamaremos V_1 y V_2 respectivamente) así como la corriente que atraviesa cada una (que llamaremos I_1 e I_2 respectivamente).
 - a) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para I, R_1 y R_2 que se muestran en ella:

I	R_1	R_2	I_1	I_2
1 mA	1 kΩ	1 kΩ	oismt	orsma
1 m X	1 kΩ	$2 k\Omega$	01667mm	0,333 m
1 mA	1 kΩ	4 kΩ	O'You A	012m#

b) ¿Por qué resistencia circula una mayor intensidad de corriente? Justifica tu respuesta.

Circula mayor intensions por la veristrencia mais olibil. Observand la ley de ohm; DV = IR y desperands le t obtenens que $J = \frac{DV}{R}$. Puerte que DV es enstante, al aumenton la resistencia el valor de la intervidad que la atraviera es meros

c) Completa la siguiente tabla realizando distintas simulaciones DC con los valores para I, R_1 y R_2 que se muestran en ella:

I	R_1	R_2	V_1	V_2	I_1	I_2	$\frac{I_2}{I_1}$
			1 '5 V		0'681 mt		
5 mA	2.2 kΩ	4.7 kΩ	7.49 V	7'49V	034104	0 159m/	214
10 mA	2.2 kΩ	4.7 kΩ	120	15 V	661 mt	3 1901	9.4

d) Calcula el cociente de las resistencias $\frac{R_2}{R_1}$ y compáralo con los resultados de la columna $\frac{I_2}{I_1}$ ¿Existe alguna relación entre los mismos? ¿Cuál es la justificación teórica de este hecho?

 $R_2 = 2113$. Si Comparamos ambas mediolas cisanol la ley de dem, obtenens que : $\frac{I_2}{I_1} = \frac{D^V}{R^2}$ i $\frac{I_2}{I_1} = \frac{R_1}{R_2}$ Son mediola inversamente proportionales. Por la bato a memo residentia mayo puriodos de para las cargos y mais intervibal atrabação de residentia

atraviera la resistencia

3. Simula el siguiente circuito teniendo en cuenta que I=1 mA, V=5 V, R_1 =1 k Ω , R_2 =2 k Ω , R_3 =3 k Ω , R_4 =4 k Ω y R_5 =5 k Ω . Calcula para cada elemento (fuente o resistencia) la diferencia de potencial entre sus extremos así como la intensidad que lo atraviesa.

number	Corrientel.I	TensionI.V	CorrienteV.I	TensionV.V	11.1	V1.V	12.1	V2.V	13.1	V3.V	14.1	V4.V	I5.I	V5.V
1	0.001	3.37	0.0011	5	0.0011	1.1	1.61e-05	0.0323	0.00111	3.34	0.000984	3.94	0.000113	0.565