

Laboratorio con R - 4

Metodi e Modelli per l'Inferenza Statistica - Ing. Matematica - a.a. 2018-19 05/06/2019

0. Librerie

```
library( rms )
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
##
    method
                    from
##
     [.quosures
                    rlang
##
     c.quosures
                    rlang
##
    print.quosures rlang
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
       format.pval, units
## Loading required package: SparseM
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
##
##
       backsolve
library(ResourceSelection)
## ResourceSelection 0.3-4
                             2019-01-08
```

Reference:

Agresti, A. (2003). Categorical data analysis (Vol. 482). John Wiley & Sons.

1. Regressione logistica semplice

Prendiamo in esame il dataset relativo ad uno studio clinico su pazienti affetti da disturbi coronarici. In particolare, l'obiettivo dello studio consiste nello spiegare la presenza o l'assenza di significativi disturbi

coronarici (CHD) in funzione dell'et \tilde{A} (variabile AGE) dei pazienti. I dati si riferiscono a 100 pazienti. Le variabili del database sono descritte nel file $CHDAGE_data_description.txt$:

- CHD variabile dipendente binaria: 1 se il disturbo \tilde{A} " presente, 0 se il disturbo \tilde{A} " assente;
- AGE variabile indipendente (continua).

Sito da cui trarre dati e dataset http://www.umass.edu/statdata/statdata/

Soluzione

Importiamo i dati.

```
chd = read.table( "CHDAGE_data.txt", head = TRUE )
str( chd )
## 'data.frame':
                   100 obs. of 3 variables:
## $ ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ AGE: int 20 23 24 25 25 26 26 28 28 29 ...
## $ CHD: int 0 0 0 0 1 0 0 0 0 0 ...
head( chd )
    ID AGE CHD
## 1 1 20
## 2 2
        23
             0
## 3 3 24
             0
## 4 4 25
             0
## 5 5 25
             1
## 6 6 26
             0
attach( chd )
```

Visualizziamo i dati.

CHD vs. Age

Eseguiamo quindi un'analisi descrittiva del dataset.

Per meglio comprendere la natura della relazione \tilde{A} " opportuno suddividere i pazienti in classi d'et \tilde{A} e calcolare la media della variabile dipendente in ciascuna classe.

Inseriamo nel vettore x i limiti delle classi d'et \tilde{A} che si vogliono creare (questo passaggio \tilde{A} " arbitrario, e va esguito con buon senso).

```
min( AGE )
## [1] 20
max( AGE )
## [1] 69
  = c(20, 29, 34, 39, 44, 49, 54, 59, 70)
# Calcoliamo i punti medi degli intervalli che abbiamo creato
mid = c((x [2:9] + x [1:8])/2)
\# Suddividiamo i dati nelle classi che abbiamo creato
GRAGE = cut( AGE, breaks = x, include.lowest = TRUE, right = FALSE )
GRAGE
##
    [1] [20,29) [20,29) [20,29) [20,29) [20,29) [20,29) [20,29)
    [9] [20,29) [29,34) [29,34) [29,34) [29,34) [29,34) [29,34)
##
##
   [17] [29,34) [29,34) [29,34) [34,39) [34,39) [34,39) [34,39)
   [25] [34,39) [34,39) [34,39) [34,39) [34,39) [34,39)
   [33] [34,39) [34,39) [34,39) [39,44) [39,44) [39,44) [39,44)
##
   [41] [39,44) [39,44) [39,44) [39,44) [39,44) [39,44) [39,44)
##
  [49] [44,49) [44,49) [44,49) [44,49) [44,49) [44,49) [44,49)
```

```
## [57] [44,49) [44,49) [44,49) [44,49) [44,49) [44,49] [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [49,54) [54,59) [54,59) [54,59) [54,59) [54,59) [54,59) [54,59) [54,59) [54,59) [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70] [59,70
```

Calcoliamo quindi la media della variabile AGE stratificata e sovrapponiamo i valori di y al grafico precedente.

```
y = tapply( CHD, GRAGE, mean )
##
      [20,29)
                 [29,34)
                             [34,39)
                                        [39,44)
                                                    [44,49)
                                                               [49,54)
## 0.11111111 0.09090909 0.20000000 0.30769231 0.50000000 0.50000000
      [54,59)
                 [59,70]
## 0.75000000 0.83333333
plot( AGE, CHD, pch = ifelse( CHD == 1, 3, 4 ),
      col = ifelse( CHD == 1, 'forestgreen', 'red' ),
      xlab = 'Age', ylab = 'CHD', main = 'CHD vs. Age', lwd = 2, cex = 1.5 )
points( mid, y, col = "blue", pch = 16 )
```

CHD vs. Age

Dal grafico si intuisce la natura della relazione fra AGE e CHD.

Identifichiamo un modello che descriva adeguatamente i nostri dati. Il modello pi \tilde{A}^1 opportuno \tilde{A} " un modello lineare generalizzato con link function di tipo logit.

```
help(glm)
## starting httpd help server ... done
mod = glm( CHD ~ AGE, family = binomial( link = logit ) )
summary( mod )
##
## Call:
## glm(formula = CHD ~ AGE, family = binomial(link = logit))
##
## Deviance Residuals:
##
      Min
                 1Q
                      Median
                                   3Q
                                           Max
## -1.9718 -0.8456 -0.4576
                               0.8253
                                        2.2859
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
  (Intercept) -5.30945
                           1.13365 -4.683 2.82e-06 ***
## AGE
                0.11092
                           0.02406
                                     4.610 4.02e-06 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 136.66 on 99
                                    degrees of freedom
## Residual deviance: 107.35 on 98 degrees of freedom
## AIC: 111.35
##
## Number of Fisher Scoring iterations: 4
```

Il modello stimato Ã" quindi:

$$logit(\pi) = -5.30945 + 0.11092 \cdot AGE$$

in cui π \tilde{A} " la probabilit \tilde{A} che CHD sia pari ad 1.

Calcoliamo i valori stimati per il logit della probabilit \tilde{A} di avere disturbi coronarici (sono i logit di π_i , che giustamente hanno un range tipico di una variabile continua).

```
mod$linear.predictors
             1
                          2
                                       3
##
  -3.09103053 -2.75826710 -2.64734596 -2.53642482 -2.53642482 -2.42550368
##
             7
                          8
                                       9
                                                  10
                                                               11
                                                                            12
## -2.42550368 -2.20366139 -2.20366139 -2.09274025 -1.98181911 -1.98181911
##
            13
                         14
                                      15
                                                  16
                                                               17
                                                                            18
## -1.98181911 -1.98181911 -1.98181911 -1.98181911 -1.75997682 -1.75997682
##
            19
                         20
                                      21
                                                  22
                                                               23
                                                                            24
  -1.64905568 -1.64905568 -1.53813454 -1.53813454 -1.53813454 -1.53813454
##
                         26
                                                               29
            25
                                     27
                                                  28
                                                                            30
##
  -1.53813454 -1.42721340 -1.42721340 -1.31629225 -1.31629225 -1.31629225
##
            31
                         32
                                     33
                                                  34
                                                               35
                                                                            36
  -1.20537111 -1.20537111 -1.20537111 -1.09444997 -1.09444997 -0.98352883
##
            37
                         38
                                     39
                                                  40
                                                               41
                                                                            42
## -0.98352883 -0.87260769 -0.87260769 -0.76168654 -0.76168654 -0.65076540
##
            43
                         44
                                     45
                                                  46
                                                               47
                                                                            48
   -0.65076540 -0.65076540 -0.65076540 -0.53984426 -0.53984426 -0.53984426
            49
##
                         50
                                     51
                                                  52
                                                               53
                                                                            54
## -0.42892312 -0.42892312 -0.42892312 -0.42892312 -0.31800197 -0.31800197
```

```
56
                                        57
##
   -0.20708083
                -0.20708083 -0.09615969
                                           -0.09615969
                                                         -0.09615969
                                                                       0.01476145
##
             61
                          62
                                        63
                                                     64
                                                                  65
                                                                                66
    0.01476145
##
                 0.01476145
                               0.12568259
                                            0.12568259
                                                         0.12568259
                                                                       0.23660374
##
             67
                          68
                                        69
                                                     70
                                                                  71
                                                                                72
##
    0.23660374
                 0.34752488
                               0.45844602
                                            0.45844602
                                                         0.56936716
                                                                       0.56936716
##
             73
                          74
                                        75
                                                                  77
                                                                                78
                                                     76
##
    0.68028831
                 0.79120945
                               0.79120945
                                            0.79120945
                                                         0.90213059
                                                                       0.90213059
##
             79
                          80
                                       81
                                                     82
                                                                  83
                                                                                84
##
    0.90213059
                 1.01305173
                               1.01305173
                                            1.01305173
                                                          1.01305173
                                                                       1.01305173
##
             85
                          86
                                        87
                                                     88
                                                                  89
                                                                                90
##
    1.01305173
                 1.12397287
                               1.12397287
                                            1.12397287
                                                          1.23489402
                                                                       1.23489402
                          92
##
             91
                                        93
                                                     94
                                                                  95
                                                                                96
##
    1.34581516
                 1.34581516
                               1.45673630
                                            1.56765744
                                                         1.56765744
                                                                       1.67857859
##
             97
                          98
                                        99
                                                    100
    1.78949973
                1.78949973
                              1.90042087
                                            2.34410544
```

Caliamo i valori stimati per la probabilit \tilde{A} di avere disturbi coronarici (che coincidono con gli esponenziali dei valori ottenuti al punto prima). Sono le π_i predette, pertanto comprese in [0, 1].

```
mod$fitted.values
##
                                     3
                                                             5
                                                                         6
## 0.04347876 0.05962145 0.06615278 0.07334379 0.07334379 0.08124847
                                     9
                                                10
                         8
                                                            11
   0.08124847 \ 0.09942218 \ 0.09942218 \ 0.10980444 \ 0.12112505 \ 0.12112505
##
            13
                        14
                                    15
                                                16
                                                            17
                                                                        18
   0.12112505 \ 0.12112505 \ 0.12112505 \ 0.12112505 \ 0.14679324 \ 0.14679324
            19
                        20
                                    21
                                                22
                                                            23
                                                                        24
## 0.16123662 0.16123662 0.17680662 0.17680662 0.17680662 0.17680662
##
            25
                        26
                                    27
                                                28
                                                            29
                                                                        30
   0.17680662\ 0.19353324\ 0.19353324\ 0.21143583\ 0.21143583\ 0.21143583
           31
                        32
                                    33
                                                34
                                                            35
                                                                        36
   0.23052110 \ 0.23052110 \ 0.23052110 \ 0.25078125 \ 0.25078125 \ 0.27219215
##
           37
                        38
                                    39
                                                40
                                                            41
                                                                        42
##
   0.27219215 0.29471199 0.29471199 0.31828021 0.31828021 0.34281708
                                    45
                        44
                                                46
                                                            47
##
            43
                                                                        48
   0.34281708 0.34281708 0.34281708 0.36822381 0.36822381 0.36822381
##
            49
                        50
                                    51
                                                52
                                                            53
                                                                        54
   0.39438351 0.39438351 0.39438351 0.39438351 0.42116276 0.42116276
##
           55
                        56
                                    57
                                                58
                                                            59
                                                                        60
   0.44841400 0.44841400
                           0.47597858 0.47597858
                                                   0.47597858 0.50369030
##
            61
                        62
                                    63
                                                            65
##
                                                64
                                                                        66
   0.50369030 0.50369030 0.53137935 0.53137935 0.53137935 0.55887652
            67
                        68
                                    69
                                                70
                                                            71
                                                                        72
##
   0.55887652\ 0.58601724\ 0.61264546\ 0.61264546\ 0.63861714\ 0.63861714
##
##
            73
                        74
                                    75
                                                76
                                                            77
                                                                        78
   0.66380304 0.68809096 0.68809096 0.68809096 0.71138714 0.71138714
##
           79
                        80
                                    81
                                                82
                                                            83
                                                                        84
##
   0.71138714 0.73361695 0.73361695 0.73361695 0.73361695 0.73361695
           85
                        86
                                    87
                                                88
                                                            89
                                                                        90
  0.73361695 0.75472490 0.75472490 0.75472490 0.77467399 0.77467399
##
                        92
                                    93
                                                94
                                                            95
                                                                        96
## 0.79344462 0.79344462 0.81103299 0.82744940 0.82744940 0.84271622
                        98
                                    99
                                               100
```

Facciamo un grafico della predizione del modello.

CHD vs. Age

Interpretazione dei coefficienti

Uno dei motivi per cui la tecnica di regressione logistica \tilde{A} " largamente diffusa, specialmente in ambito clinico, \tilde{A} " che i coefficienti del modello hanno una naturale interpretazione in termini di **odds ratio** (nel seguito \mathbf{OR}).

Si consideri un predittore x dicotomico a livelli 0 e 1. Si definisce odds che y=1 fra gli individui con x=0 la quantit \tilde{A} :

$$\frac{\mathbb{P}(y=1|x=0)}{1-\mathbb{P}(y=1|x=0)}.$$

Analogamente per i soggetti con x=1, l'odds che y=1 \tilde{A} ":

$$\frac{\mathbb{P}(y=1|x=1)}{1-\mathbb{P}(y=1|x=1)}.$$

L'OR \tilde{A} " definito come il rapporto degli odds per x=1 e x=0.

Dato che:

$$\mathbb{P}(y=1|x=1) = \frac{\exp(\beta_0 + \beta_1 \cdot x)}{1 + \exp(\beta_0 + \beta_1 \cdot x)}$$
$$\mathbb{P}(y=1|x=0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

Il che implica:

$$\mathrm{OR} = \exp(\beta_1)$$

Si possono costruire intervalli di confidenza e generalizzazioni al caso di variabile x con pi \tilde{A}^1 categorie in modo immediato.

Calcoliamo quindi l'OR relativo a AGE.

```
summary( mod )
##
## Call:
## glm(formula = CHD ~ AGE, family = binomial(link = logit))
##
## Deviance Residuals:
                1Q
                     Median
      Min
                                   3Q
                                          Max
## -1.9718 -0.8456 -0.4576
                               0.8253
                                        2.2859
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -5.30945
                          1.13365 -4.683 2.82e-06 ***
                                    4.610 4.02e-06 ***
               0.11092
                           0.02406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 136.66 on 99 degrees of freedom
## Residual deviance: 107.35 on 98 degrees of freedom
## AIC: 111.35
## Number of Fisher Scoring iterations: 4
```

Il coefficiente della variabile AGE vale 0.111. Quindi l'OR per un incremento di 10 anni d'et \tilde{A} \tilde{A} ":

```
exp( 10 * coef( mod ) [ 2 ] )
## AGE
## 3.031967
```

per ogni incremento di 10 anni d'et \tilde{A} , il rischio di disturbo coronarico aumenta di 3 volte circa.

 $\mathbf{N.B.}$: il modello sottointende che il logit sia lineare nella variabile et $\tilde{\mathbf{A}}$, ossia che l'OR fra persone di 20 contro 30 anni sia lo stesso che fra individui di 40 contro 50 anni.

IC per la regressione logistica

Calcoliamo un intervallo di confidenza al 95% per l'OR per un incremento di 10 anni d'etÃ.

```
alpha = 0.05
qalpha = qnorm( 1 - alpha/2 )
qalpha
## [1] 1.959964

IC.sup = exp( 10 * coef( mod ) [ 2 ] + qalpha * 10 * summary( mod )$coefficients[ 2, 2 ] )
IC.inf = exp( 10 * coef( mod ) [ 2 ] - qalpha * 10 * summary( mod )$coefficients[ 2, 2 ] )
c( IC.inf, IC.sup )
## AGE AGE
## 1.892025 4.858721
```

Per costruire in R l'intervallo di confidenza del logit si pu \tilde{A}^2 partire dal calcolo della matrice di covarianza dei parametri β stimati:

```
V = vcov( mod )
V
## (Intercept) AGE
## (Intercept) 1.28517059 -0.0266769747
## AGE -0.02667697 0.0005788748
```

Intervallo di confidenza in corrispondenza di un valore di x (ad esempio x=50 anni).

```
x = 50
# errore standard
predict( mod, data.frame( AGE = 50 ), se = TRUE )
## $fit
##
## 0.2366037
##
## $se.fit
## [1] 0.2542835
## $residual.scale
## [1] 1
# oppure
sqrt(V[1, 1] + x^2 * V[2, 2] + 2 * x * V[1, 2])
## [1] 0.2542835
# Rappresentazione grafica dell'intervallo di confidenza ( al 95% ) della regressione
# griglia di valori di x in cui valutare la regressione
grid = (20:69)
se = predict( mod, data.frame( AGE = grid ), se = TRUE )
# errori standard corrispondenti ai valori della griglia
help( binomial )
gl = binomial( link = logit ) # funzione di link utilizzata
# Family objects provide a convenient way to specify the details of the models
# used by functions such as glm.
plot( mid, y, col = "red", pch = 3, ylim = c( 0, 1 ), ylab = "Probability of CHD",
```

```
xlab = "AGE", main = "IC per la Regressione Logistica" )
lines( grid, gl$linkinv( se$fit ) )
lines( grid, gl$linkinv( se$fit - qnorm( 1-0.025 ) * se$se ), col = "red", lty = 2 )
lines( grid, gl$linkinv( se$fit + qnorm( 1-0.025 ) * se$se ), col = "red", lty = 2 )
```

IC per la Regressione Logistica

N.B. la funzione gl\$linkinv permette di ottenere il valore delle probabilità a partire dalla link function (logit).

Goodness of fit

Varie tecniche sono state sviluppate e confrontate per stabilire la bont $\tilde{\mathbf{A}}$ del fit di una regressione logistica. Problema: tali tecniche soffrono di una limitata potenza (tipicamente non superiore al 50%) per campioni di dimensione n < 400.

Se la variabile indipendente \tilde{A} " categorica si possono paragonare i valore di Devianza del modello fittato con il valore critico di una distribuzione $\chi^2(n-p)$, dove p \tilde{A} " il numero di parametri del modello. Se D \tilde{A} " maggiore del valore critico si rifiuta l'ipotesi nulla che il modello sia un buon fit.

Se la variabile indipendente \tilde{A} " continua (es in questione), la procedura precedente perde di validit \tilde{A} e i valori P che si ottengono non sono corretti. L'alternativa che R fornisce richiede l' installazione di due librerie supplementari (<code>Design e Hmisc</code>), che contengono le funzioni lrm e residuals per calcolare tale statistica.

```
#library( rms )
#help( lrm )

mod2 = lrm( CHD ~ AGE, x = TRUE, y = TRUE )
mod2
## Logistic Regression Model
```

```
##
    lrm(formula = CHD ~ AGE, x = TRUE, y = TRUE)
##
##
                                                   Discrimination
##
                            Model Likelihood
                                                                       Rank Discrim.
##
                               Ratio Test
                                                       Indexes
                                                                          Indexes
##
    Obs
                    100
                           LR chi2
                                         29.31
                                                   R2
                                                             0.341
                                                                       С
                                                                                0.800
##
     0
                    57
                           d.f.
                                                             1.504
                                                                                0.600
                                                                       Dxy
                                                   g
                           Pr(> chi2) <0.0001
##
     1
                    43
                                                             4.497
                                                                                0.612
                                                   gr
                                                                       gamma
##
                                                             0.297
                                                                                0.297
    max |deriv| 7e-06
                                                   gp
                                                                       tau-a
##
                                                   Brier
                                                             0.178
##
##
               Coef
                        S.E.
                                Wald Z Pr(>|Z|)
    Intercept -5.3095 1.1337 -4.68
##
                                       <0.0001
##
                0.1109 0.0241 4.61
##
anova( mod2 )
                    Wald Statistics
                                                Response: CHD
##
##
                Chi-Square d.f. P
##
    Factor
                21.25
                            1
##
    AGE
                                  <.0001
    TOTAL
                21.25
                            1
                                  <.0001
```

La funzione $1 \text{rm } \tilde{A}$ " una procedura alternativa per fittare una regressione logistica. I risultati coincidono con quelli ottenuti in precedenza. Il test di goodness-of-fit si esegue con la chiamata:

dal valore di Z (e del valore P associato) si conclude che l'ipotesi H_0 che il modello sia un buon fit non pu \tilde{A}^2 essere rifiutata.

Alternativamente possiamo usare come GOF test, il test di Hosmer-Lemeshow.

```
hoslem.test( mod$y, fitted( mod ), g = 10 )
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: mod$y, fitted(mod)
## X-squared = 2.2243, df = 8, p-value = 0.9734
```

In questo test dobbiamo scegliere g, numero di gruppi. Nel paper originale \tilde{A} " suggerito di scegliere g>p, in questo caso quindi g>2. Si vede che, anche cambiando g, giungiamo alla stessa conlusione, ovvero il modello fitta bene i dati. In generale la scelta del numero di gruppi a priori \tilde{A} " un limite di questo test.

2. Regressione logistica multipla

In questo esercizio analizzeremo un dataset clinico inerente al peso di neonati. Lo scopo dello studio consiste nell'identificare i fattori di rischio associati con il partorire bambini di peso inferiore ai 2500 grammi (low birth weight). I dati si riferiscono a n=189 donne.

Le variabili del database sono descritte nel file "LOWBWT_data_description.txt":

- LOW: variabile dipendente binaria (1 se il neonato pesa meno di 2500 grammi, 0 viceversa);
- AGE, LWT, FTV variabili indipendenti continue;
- RACE variabile indipendente discreta a 3 livelli.

Soluzione

Importiamo i dati.

```
lw = read.table( "LOWBWTdata.txt", head = TRUE )
attach( lw )
## The following objects are masked from chd:
##
##
       AGE, ID
       = factor( RACE ) # tratto la variabile RACE come categorica
RACE
mod.low = glm( LOW ~ LWT + RACE + AGE + FTV, family = binomial( link = logit ) )
summary( mod.low )
##
## Call:
## glm(formula = LOW ~ LWT + RACE + AGE + FTV, family = binomial(link = logit))
##
## Deviance Residuals:
##
       Min
                      Median
                                   3Q
                 1Q
                                           Max
## -1.4163 -0.8931 -0.7113
                               1.2454
                                        2.0755
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.295366
                           1.071443
                                      1.209
                                              0.2267
                                     -2.178
## LWT
               -0.014245
                           0.006541
                                              0.0294 *
## RACE2
                1.003898
                           0.497859
                                      2.016
                                              0.0438 *
## RACE3
                0.433108
                           0.362240
                                      1.196
                                              0.2318
## AGE
               -0.023823
                           0.033730
                                     -0.706
                                              0.4800
## FTV
               -0.049308
                           0.167239
                                     -0.295
                                              0.7681
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 222.57 on 183
                                      degrees of freedom
## AIC: 234.57
```

```
## Number of Fisher Scoring iterations: 4
```

Se ci si attiene alla sola significativit \tilde{A} statistica si conclude che \tilde{A} " possibile fittare un modello 'parsimonioso', contenente la sola variabile indipendente LWT. Tuttavia, come nel caso di regressione lineare multipla, l'inclusione di una variabile nel modello pu \tilde{A}^2 avvenire per motivi differenti. Ad esempio, in questo caso, la variabile RACE \tilde{A} " considerata in letteratura come importante nel predire l'effetto in questione, quindi la si include nel modello ristretto.

```
mod.low2 = glm( LOW ~ LWT + RACE, family = binomial( link = logit ) )
summary( mod.low2 )
##
## Call:
  glm(formula = LOW ~ LWT + RACE, family = binomial(link = logit))
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -1.3491 -0.8919 -0.7196
                               1.2526
                                         2.0993
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                                       0.953
                                               0.3404
## (Intercept) 0.805753
                           0.845167
## LWT
               -0.015223
                           0.006439
                                      -2.364
                                               0.0181
## RACE2
                1.081066
                           0.488052
                                       2.215
                                               0.0268 *
## RACE3
                0.480603
                           0.356674
                                       1.347
                                               0.1778
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 234.67
                              on 188
                                      degrees of freedom
## Residual deviance: 223.26
                              on 185
                                      degrees of freedom
## AIC: 231.26
##
## Number of Fisher Scoring iterations: 4
```

Notiamo che AIC diminuisce e anche RACE acquista significativit $\tilde{\mathbf{A}}$.

Non c'Ã" motivo di ritenere che il modello contenente solamente LWT e RACE sia meno informativo del modello completo.

Odds ratio

Il predittore RACE \tilde{A} " discreto a 3 livelli. In questo caso il livello 1 (RACE = White) viene assunto come categoria di riferimento.

```
model.matrix( mod.low2 ) [ 1:15, ]
##
       (Intercept) LWT RACE2 RACE3
## 1
                  1 182
                                    0
                             1
## 2
                  1 155
                             0
                                    1
## 3
                  1 105
                             0
                                    0
## 4
                  1 108
                             0
                                    0
                  1 107
                             0
                                    0
## 5
                             0
## 6
                  1 124
                                    1
## 7
                  1 118
                             0
                                    0
## 8
                  1 103
                             0
                                    1
## 9
                             0
                  1 123
                                    0
## 10
                  1 113
                             0
                                    0
## 11
                     95
                             0
                                    1
## 12
                  1 150
                             0
                                    1
## 13
                     95
                             0
                                    1
## 14
                  1 107
                             0
                                    1
## 15
                  1 100
                             0
                                    0
# OR 2 vs 1 ( Black vs White )
exp( coef( mod.low2 ) [ 3 ] )
##
      RACE2
## 2.947821
```

Le donne nere sono una categoria con rischio di parto prematuro quasi 3 volte superiore alle donne bianche.

```
# OR 3 vs 1 (Other vs White)
exp(coef(mod.low2)[4])
## RACE3
## 1.61705
```

Le donne di altre etnie sono una categoria con rischio di parto prematuro circa 1.5 volte superiore alle donne bianche.

Facciamo un check sul GOF del modello.

```
mod.low2lrm = lrm( LOW ~ LWT + RACE, x = TRUE, y = TRUE )
residuals( mod.low2lrm, "gof" )
## Sum of squared errors
                                                                    SD
                             Expected value | HO
##
              38.2268160
                                     38.2138614
                                                             0.1733477
##
                       Z
##
               0.0747321
                                      0.9404279
hoslem.test( mod.low2$y, fitted( mod.low2 ), g = 6 )
##
##
    Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: mod.low2$y, fitted(mod.low2)
## X-squared = 3.1072, df = 4, p-value = 0.5401
#g > 3
```

Anche in questo caso, possiamo concludere che il modello d\tilda un buon fit dei dati.

Tabelle di classificazione

Un modo spesso utilizzato per presentare i risultati di un fit tramite regressione logistica sono le tabelle di classificazione. In queste tabelle i dati vengono classificati secondo due chiavi:

- 1. il valore della variabile dipendente dicotoma y;
- 2. il valore di una variabile dicotoma y_{mod} , che si deriva dalla stima della probabilit \tilde{A} ottenuta dal modello. I valori di questa variabile si ottengono confrontando il valore della probabilit \tilde{A} con un cut-off (valore usuale 0.5)

```
soglia = 0.5
valori.reali = lw$LOW
valori.predetti = as.numeric( mod.low2$fitted.values > soglia )
# 1 se > soglia, 0 se < = soglia
valori.predetti
   ## [141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
## [176] 0 0 0 0 1 0 0 0 0 0 0 0 0
tab = table( valori.reali, valori.predetti )
tab
##
           valori.predetti
## valori.reali
             0
                1
##
          0 124
                6
                6
##
          1
            53
# % di casi classificati correttamente:
round( sum( diag( tab ) ) / sum( tab ), 2 )
## [1] 0.69
# % di casi misclassificati:
round( (tab [1, 2] + tab [2, 1]) / sum(tab), 2)
## [1] 0.31
SENSITIVITA':
                         \mathbb{P}(predetto = 1 | reale = 1)
sensitivita = tab [ 2, 2 ] /( tab [ 2, 1 ] + tab [ 2, 2 ] )
sensitivita
## [1] 0.1016949
SPECIFICITA':
                         \mathbb{P}(predetto = 0 | reale = 0)
specificita = tab [ 1, 1 ] /( tab [ 1, 2 ] + tab [ 1, 1 ] )
specificita
## [1] 0.9538462
```

3. Curva ROC

Costruire la Curva ROC a partire dai valori predetti per la risposta dal modello mod.low2 dell'analisi della variabile LOWBT.

Soluzione

```
fit2 = mod.low2\fitted
#media campionaria della prob di sopravvivenza nel campione
soglia_roc = seq( 0, 1, length.out = 2e2 )
lens = length( soglia_roc )-1
ascissa_roc = rep( NA, lens )
ordinata_roc = rep( NA, lens )
for ( k in 1 : lens )
 soglia = soglia_roc [ k ]
 classification = as.numeric( sapply( fit2, function( x ) ifelse( x < soglia, 0, 1 ) ) )
 # ATTENZIONE, voqlio sulle righe il vero e sulle colonne il predetto
 # t.misc = table( lw$LOW, classification )
 ordinata_roc[ k ] = sum( classification[ which( lw$LOW == 1 ) ] == 1 ) /
   length( which( lw$LOW == 1 ) )
 ascissa_roc[ k ] = sum( classification[ which( lw$LOW == 0 ) ] == 1 ) /
   length( which( lw$LOW == 0 ) )
 # ordinata_roc [ k ] = t.misc [ 1, 1 ] /( t.misc [ 1, 1 ] + t.misc [ 1, 2 ] )
  # ascissa\_roc[k] = t.misc[2, 1]/(t.misc[2, 1] + t.misc[2, 2])
```

Visualizziamo la curva ROC.

