- **1.** Canoe Rental Problem (10 pts total): There are n trading posts numbered 1 to n as you travel downstream. At any trading post i you can rent a canoe to be returned at any of the downstream trading posts j, where $j \ge i$. You are given an array R[i, j] defining the costs of a canoe which is picked up at post i and dropped off at post j, for $1 \le i \le j \le n$. Assume that R[i, i] = 0 and that you can't take a canoe upriver. Your problem is to determine a sequence of rentals which start at post 1 and end at post n, and that has the minimum total cost.
- a) Describe verbally and give pseudo code for a DP algorithm to compute the cost of the cheapest sequence of canoe rentals from trading post 1 to n. Give the recursive formula you used to fill in the table or array. (5 pts)

Define a 1 dimensional table C[1...n] where C[i] is the cost of an optimal sequence of canoe rentals that starts at post 1 and ends at post i, for $1 \le i \le n$. When this table is filled, we simply return the value C[n]. Note could use a different variable name for C[n].

Clearly C[1] = 0.

Define C[i] in terms of earlier table entries. Indeed its clear that C[i] = C[k] + R[k,i]. Since we do not know the post k beforehand, we take the minimum of this expression over all k in the range $1 \le k < i$. Define

$$C[i] = \begin{cases} 0 & i = 1\\ \min_{1 \le k < i} (C[k] + R[k, i]) & 1 < i \le n \end{cases}$$
 (2 pts)

With this formula, the algorithm for filling in the table is straightforward.

Below is a strictly bottom-up approach. Give full credit for memorized DP.

CanoeCost(R)

Algorithm (3 pts)

- 1. $n \leftarrow \# \text{rows}[R]$
- 2. $C[1] \leftarrow 0$
- 3. for $i \leftarrow 2$ to n
- 4. $\min \leftarrow R[1,i]$
- 5. for $k \leftarrow 2$ to i-1
- 6. if $C[k] + R[k,i] < \min$
- 7. $\min \leftarrow C[k] + R[k,i]$
- 8. $C[i] \leftarrow \min$
- 9. return C[n]
- b) Print Sequence (3pts)

Explanation (1 pt)

To determining the actual sequence of canoe rentals which minimizes cost alter the CanoeCost() algorithm so as to construct the optimal sequence while the table C[1...n] is being filled. In the following algorithm we maintain an array P[1...n] where P[i] is defined to be the post k at which

the last canoe is rented in an optimal sequence from 1 to i. Note that the definition of P[1] can be arbitrary since it is never used. Array P is then used to recursively print out the sequence.

CanoeSequence(R) Modifications of original algorithm (1 pt)

```
1. n \leftarrow \# rows[R]
2. C[1] \leftarrow 0, P[1] \leftarrow 0
3. for i \leftarrow 2 to n
4.
          \min \leftarrow R[1,i]
5.
          P[i] \leftarrow 1
         for k \leftarrow 2 to i-1
6.
7.
              if C[k] + R[k,i] < \min
                   \min \leftarrow C[k] + R[k,i]
8.
9.
                   P[i] \leftarrow k
          C[i] \leftarrow \min
10.
11. return P
```

<u>**PrintSequence(P, i)**</u> (Pre: $1 \le i \le \text{length}[P]$) (1 pt) Note can use an iterative method

- 1. if i > 1
- 2. PrintSequence(P, P[i])
- 3. print "Rent a canoe at post " P[i] " and drop it off at post " i

c) What is the running time of your algorithm to find the minimum cost and to find the sequence?

(2 pts)

CanoeCost() runs in time $\Theta(n^2)$, since the inner for loop performs i-2 comparisons in order to determine C[i], and $\sum_{i=2}^n (i-2) = \frac{(n-1)(n-2)}{2} = \Theta(n^2)$.

The top level call to PrintSequence(P, n) has a cost that is the depth of the recursion, which is in turn, the number of canoes rented in the optimal sequence from post 1 to post n. Thus in worst case, PrintSequence() runs in time $\Theta(n)$.