פתרון תרגיל מספר 4 - חישוביות וסיבוכיות

שם: מיכאל גרינבאום, ת.ז: 211747639

1 במאי 2020

שאלה 2

אם"ם מספר השקילות השקילות סופי רגולרית אם"ם מספר רגולרית ב"ל: L

הוכחה:

 $L\left(\mathcal{A}
ight)=L$ פניח ש־ \mathcal{A} כד שי קיים אוטומט אזי קיים בניח בניח כניח אוטומט ביים אוטומט או $,x,y\in\Sigma^*$ יהיו יהי $,Q=\left\{q_0,q_1,\ldots,q_{|Q|-1}\right\}$ נסמן

$$x \sim_{\mathcal{A}} y \Leftrightarrow (\forall q \in Q) (\delta^* (q, x) = \delta^* (q, y))$$

נוכיח של השקילות שקילות כדי לדבר על אחלקות שקילות שלו: \sim_A

- $x\sim_{\mathcal{A}}x$ ולכן $(orall q\in Q)$ $(\delta^*\left(q,x
 ight)=\delta^*\left(q,x
 ight))$ נשים לב כי $x\in\Sigma^*$ ולכן .1
- 2. $\forall q \in Q$ (ל $q \in Q$) ($\delta^*(q,x) = \delta^*(q,y)$) נעים לב כי $x \sim_{\mathcal{A}} y$ נעיח ש־ $x \sim_{\mathcal{A}} y$, נעיח ש־ $x \sim_{\mathcal{A}} y \in \mathcal{A}$ ולכן מסימטריות השוויון מתקיים ($\forall q \in Q$) ($\delta^*(q,y) = \delta^*(q,x)$)
- 3. <u>טרנזטיביות:</u> לכל Σ^* לכל Σ^* , גניח ש־ ג $x,y,z\in\Sigma^*$, גניח ש־ געים לב כי $(\forall q\in Q)\,(\delta^*(q,x)=\delta^*(q,z))$ וגם $(\forall q\in Q)\,(\delta^*(q,x)=\delta^*(q,z))$ וגם $(\forall q\in Q)\,(\delta^*(q,x)=\delta^*(q,z))$ בלומר $x\sim_{\mathcal{A}}z$ ולכן $x\sim_{\mathcal{A}}z$

. כלומר $\sim_{\mathcal{A}}$ הוא יחס שקילות

יהיו $\delta^*\left(q_0,z
ight)=q$ נסמן, $x\sim_{\mathcal{A}}y$ כאשר, $x,y,z,w\in\Sigma^*$ יהיו

$$\delta^{*} (q_{0}, z \cdot x \cdot w) = \delta^{*} (\delta^{*} (\delta^{*} (q_{0}, z), x), w) = \delta^{*} (\delta^{*} (q, x), w)$$
$$= \delta^{*} (\delta^{*} (q, y), w) = \delta^{*} (\delta^{*} (q_{0}, z), y), w) = \delta^{*} (q_{0}, z \cdot y \cdot w)$$

 $x\sim_L y$ כלומר $\delta^*\left(q_0,z\cdot x\cdot w
ight)\in F\Leftrightarrow \delta^*\left(q_0,z\cdot y\cdot w
ight)\in F$ כלומר מתקיים

כלומר מספר המחלקות של L הוא קטן שווה מספר המחלקות של $\sim_{\mathcal{A}}$. כלומר מספר המחלקות של L הוא קטן שווה מספר המחלקות של $(\delta^*\left(q_0,w\right),\ldots,\delta^*\left(q_{|Q|-1},w\right))$ ונשים לב שב $\sim_{\mathcal{A}}$ יש לכל היותר $|Q|^{|Q|}$ מחלקות (נסתכל לכל מילה $w\in\Sigma^*$ ממהגדרה, ולכן יש לכל היותר שוות, נקבל שהמילים שקולות לפי יחס ω ממהגדרה, ולכן יש לכל היותר $|Q|^{|Q|}$ רשימות כאלה ועבור רשימות שוות, נקבל שהמילים שקולות לפי יחס ω

ולכן יש מספר סופי של מחלקות ל \sim_L , כנדרש.

⇒: נניח שמספר מחלקות השקילות סופי.

יהיו אחס שזה יחס שזה יחס $x\sim_{L_1}y\Leftrightarrow (\forall z\in\Sigma^*)\,(x\cdot z\in L\Leftrightarrow y\cdot z\in L)$ יהיו הוכחנו בהרצאה אזה יחס שקילות), גאריר יחס $x\sim_{L_1}y\Leftrightarrow (\forall z\in\Sigma^*)\,(x\cdot z\in L\Leftrightarrow y\cdot z\in L)$ נשים לב כי $x\sim_{L_1}y\in\Sigma^*$ נשים לב כי

$$x \sim_{L} y \Rightarrow (\forall z, w \in \Sigma^{*}) (w \cdot x \cdot z \in L \Leftrightarrow w \cdot y \cdot z \in L)$$

$$\stackrel{w=\varepsilon}{\Rightarrow} (\forall z \in \Sigma^{*}) (x \cdot z \in L \Leftrightarrow y \cdot z \in L)$$

$$\Rightarrow x \sim_{L_{1}} y$$

 ${,}\sim_{L_1}$ מתקיים שמספר המחלקות של אבר גדולה מחלקות של המחלקות של המחלקות מספר המחלקות של ביע סופית נסיק כי \sim_L והוא סופית נשים לב כי הוא בדיוק היחס במשפט Myhill-Norde והוא סופי, ולכן פי המשפט אMyhill-Norde מתקיים שהשפה רגולרית, כנדרש.

מ.ש.ל.☺