Assignment 6: The Fourier Transform

D. Zack Garza

October 31, 2019

Contents

1	Problem 1	1
2	Problem 2 2.1 Part (a) 2.2 Part (b) 2.2.1 (i) 2.2.2 (ii)	$\frac{2}{2}$
3	Problem 3	3
4	Problem 4	3
5	Problem 5	3
6	Problem 6	3

1 Problem 1

Assuming the hint, we have

$$\lim_{|\xi| \to \infty} \hat{f}(\xi) = \lim_{\xi' \to 0} \frac{1}{2} \int_{\mathbb{R}^n} (f()) - f(x - \xi')) \exp(-2\pi i x \cdot \xi) \ dx$$

But as an immediate consequence, this yields

$$\begin{aligned} \left| \hat{f}(\xi) \right| &= \left| \int_{\mathbb{R}^n} (f(x) - f(x - \xi')) \exp(-2\pi i x \cdot \xi) \, dx \right| \\ &\leq \int_{\mathbb{R}^n} \left| f(x) - f(x - \xi') \right| \left| \exp(-2\pi i x \cdot \xi) \right| \, dx \\ &\leq \int_{\mathbb{R}^n} \left| f(x) - f(x - \xi') \right| \, dx \\ &\to 0, \end{aligned}$$

which follows from continuity in L^1 since $f(x - \xi') \to f(x)$ as $\xi' \to 0$. It thus only remains to show that the hint holds, and that $\xi' \to 0$ as $\xi \to \infty$.

2 Problem 2

2.1 Part (a)

Assuming an interchange of integrals is justified, we have

$$\widehat{(}f * g)(\xi) = \int \int f(x - y)g(y) \exp(-2\pi x \cdot \xi) \ dy \ dx$$

$$= ? \int \int f(x - y)g(y) \exp(-2\pi x \cdot \xi) \ dx \ dy$$

$$= \int \int f(t) \exp(-2\pi i(x - y) \cdot \xi)g(y) \exp(-2\pi iy \cdot \xi) \ dx \ dy$$

$$(t = x - y, \ dt = \ dx)$$

$$= \int \int f(t) \exp(-2\pi it \cdot \xi)g(y) \exp(-2\pi iy \cdot \xi) \ dt \ dy$$

$$= \int f(t) \exp(-2\pi it \cdot \xi) \left(\int g(y) \exp(-2\pi iy \cdot \xi) \ dy \right) \ dt$$

$$= \int f(t) \exp(-2\pi it \cdot \xi) \widehat{g}(\xi) \ dt$$

$$= \widehat{g}(\xi) \int f(t) \exp(-2\pi it \cdot \xi) \ dt$$

$$= \widehat{g}(\xi) \widehat{f}(\xi).$$

2.2 Part (b)

We'll use the following lemma: if $\hat{f} = \hat{g}$, then f = g almost everywhere.

2.2.1 (i)

By part 1, we have

$$\widehat{f * g} = \widehat{f}\widehat{g} = \widehat{g}\widehat{f} = \widehat{g * f},$$

and so by the lemma, f * g = g * f.

2.2.2 (ii)

Similarly, we have

$$\widehat{(f * g) * h} = \widehat{f * g}\widehat{h} = \widehat{f}\widehat{g}\widehat{h} = \widehat{f}\widehat{g * h} = f * (g * h).$$

- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6