Bordin groups & Categories Motivation

- M- manifold $\times_{M} = \sum_{i=1}^{n} (-1)^{i} \beta_{i}(M)$ (mod 2) Euler Chore mod 2 - $\int_{-\infty}^{\infty} (M) \int_{-\infty}^{\infty} (M) \int_{-\infty}^{\infty$

If M has a boundary, $\times_{SM}=0$ Jook at $2M=M\sqcup M$ We Mayor Vietoris on this to get $\times_{2M}=2\times_{M}-\times_{2M}$.

Signature: M^{4n} has an orientation $B_{H}: H^{2n}(M;\mathbb{R}) \otimes H^{2n}(M;\mathbb{R}) \longrightarrow H^{4n}(M;\mathbb{R})$ Signature of $B_{H} = S_{M}$ again if M^{4n+1} has a boundary, $S_{2M} = 0$

Mn = n-manifolds/bordism

Atigah's definition of TOFT.