Advanced Algorithms - Notes

Dom Hutchinson

February 11, 2020

Contents

1	Hashing				
	1.1 Perfect Hashing				
	1.2 Cuckoo Hashing	7			
2	Bloom Filters	g			
0	Reference	12			
	0.1 Definitions	12			
	0.2 Probability	12			

1 Hashing

Definition 1.1 - Dictionary

A *Dictionary* is an abstract data structure which stores (*key*, *value*) pairs, with *key* being unique. A *Dynamic Dictionary* can perform the following operations

Operation	Description
add(k,v)	Add the pair (k,v).
lookup(k)	Return v if (k,v) is in dictionary, NULL otherwise.
delete(k)	Remove pair (k,v), assuming (k,v) is in dictionary.

A Static Dictionary can only perform lookups, after it has been built.

Operation	Description
lookup(k)	Return v if (k,v) is in dictionary, NULL otherwise.

Proposition 1.1 - Implementing a Dictionary

Many data structures can be used to implement a Dictionary.

These include, but not limited to:

- i) Linked lists.
- ii) Binary Search, (2,3,4) & Red-Black Trees.
- iii) Skip lists
- iv) van Emde Boas Trees.

Remark 1.1 - Motivation for Hashing

None of the implementations of a *Dictionary* suggested in **Proposition 1.1** achieves a O(1) run-time complexity in the worst case for <u>all</u> operations. To achieve this we introduce *Hashing*.

Definition 1.2 - Hash Function

A *Hash Function* takes in object's key and returns a value which is used to index the object in a *Hash Table*.

Let S be the set of all possible keys a hash function can recieve & m be the number of indexes in its $Associated\ Hash\ Table$. Then

$$h: S \to [m]$$

N.B. We want to avoid cases where h(x) = h(y) for $x \neq y$ (collisions).

Remark 1.2 - Hashing functions assign items to indices with a geometric distribution

Remark 1.3 - Avoiding Collisions in Hashing

When indexing n items to m indicies using a Hash Function we only avoid Collisions if $m \gg n$.

Definition 1.3 - Hash Table

A *Hash Table* is an abstract data structre which extends the *Dictionary* in such a way that time complexity is reduced.

A Hash Table is comprise of an array & a Hash Function. The Hash Function maps an object's key to an index in the array. If multiple objects have the same Hash Value then a Linked List is used in that index, with new objects added to the end of the Linked List (Called Chaining).

Proposition 1.2 - Time Complexity for Dictionary Operations in a Hash Table

By building a *Hash Table* with *Chaining* we achieve the following time complexities for *Dictionary* operations

Operation	Worst Case Time Complexity	Comments
add(k,v)	O(1)	Add item to the end of <i>Linked List</i> if necessary.
lookup(k)	$O(\text{length of chain containing } \mathbf{k})$	We might have to search through the whole
		Linked List containing k.
delete(k)	$O(\text{length of chain containing } \mathbf{k})$	Only $O(1)$ to perform the actual deletion,
	,	but need to find k first.

Theorem 1.1 - True Randomness

Consider n fixed inputs for a $Hash\ Table$ with m indices. (i.e. any sequence of n add/lookup/delete operations).

Pick a Hash Function, h, at random from a set of all Hash Functions, $H := \{h : S \to [m]\}$. Then

$$\mathbb{E}(\text{Run-Time per Operation}) = O\left(1 + \frac{n}{m}\right)$$

N.B. The expected run-time per operation is O(1) if $m \gg n$.

Proof 1.1 - *Theorem 1.1*

Let $x \& y \in S$ be two distincy keys & T be a Hash Table with m indexes.

Define
$$I_{x,y}$$

$$\begin{cases} 1 & h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$
.

We have $\mathbb{P}(h(x) = h(y)) = \frac{1}{m}$

Therefore

$$\mathbb{E}(I_{x,y}) = \mathbb{P}(I_{x,y} = 1)$$

$$= \mathbb{P}(h(x) = h(y))$$

$$= \frac{1}{m}$$

Let N_x be the number of keys stored in H that are hashed to h(x).

Note that
$$N_x = \sum_{k \in T} I_{x,k}$$
.

Now we have that

$$\mathbb{E}(N_x) = \mathbb{E}\left(\sum_{k \in T} I_{x,k}\right) = \sum_{k \in H} \mathbb{E}(I_{x,k}) = n\frac{1}{m} = \frac{n}{m}$$

Remark 1.4 - Why not hash to unique values

Suppose we want to define a $Hash\ Function$ which maps each key in S to a unique position in the $Hash\ Table,\ T$. This requires m unique positions, which in turn require $\log_2 m$ bits for each key. This is an unreasonably large amount of space.

Proposition 1.3 - Specifying the Hash Function

Consider a set of Hash Functions, $H := \{h_1, h_2, \dots\}$.

When we initialise a $Hash\ Table$ we choose a hash function $h \in H$ at random and then proceed only to use h when dealing with this specific $Hash\ Table$.

Remark 1.5 - Randomness in Hashing

All the randomness in *Hashing* comes from how we choose the *Hash Function* & not from how the *Hash Function* itself runs.

Definition 1.4 - Weakly Universal Set of Hashing Functions

Let $H := \{h|h: S \to [m]\}$ be a set of Hashing Functions.

H is Weakly Universal if for any chosen $x, y \in S$ with $x \neq y$

$$\mathbb{P}(h(x) = h(y)) \le \frac{1}{m}$$
 when varying $h(\cdot)$

when h is chosen uniformly at random from H.

Theorem 1.2 - Expected Run time for Weakly Universal Set

Consider n fixeds to a Hash Table, T, with m indexes.

Pick a Hash Function, H, from a Weakly Universal Set of Hash Functions, H.

$$\mathbb{E}(\text{Run-Time per Operation}) = O(1) \text{ for } m \geq n$$

N.B. Proof is same as for True Randomness.

Proposition 1.4 - Constructing a Weakly Universal Set of Hash Functions Let S := [s] be the set of possible keys & p be some prime greater than s^1 . Choose some $a, b \in [0, p-1]$ & define

$$\begin{array}{lcl} h_{a,b}(x) & = & \underbrace{\left[\; (ax+b) \bmod p \; \right]}_{\text{spread values over } [0,p-1]} \underbrace{\bmod m}_{\text{causes collisions}} \\ H_{p,m} & = & \{ h_{a,b}(\cdot) : a \in [1,p-1], \; b \in [0,p-1] \end{array}$$

N.B. $H_{p,m}$ is a Weakly Universal Set of Hashing Functions.

N.B. Different values of a & b perform differently for different data sets.

Remark 1.6 - True Randomness vs Weakly Universal Hashing

- For both True Randomness & Weakly Universal Hashing we have that when $m \geq n$ the expected lookup time in the Hash Table is O(1).
- Constructing a Weakly Universal Set of Hash Functions is generally easier.

Theorem 1.3 - Longest Chain - True Randomness

If $Hashing\ Function\ h$ is selected uniformly at random from all $Hashing\ Functions$ to m indicies. Then, over m inputs we have

$$\mathbb{P}(\exists \text{ a chain length} \geq 3\log_2 m) \leq \frac{1}{m}$$

Proof 1.2 - *Theorem 1.3*

This problem is equivalent to showing that if we randomly throw m balls into m bins the probabiltiy of having a bin with at least $3\log_2 m$ balls is at most $\frac{1}{m}$.

Let X_1 be the number of valls in the first bin.

Choose any k of the M balls, the probabiltiy that all of these K balls go into the first bin is $\frac{1}{m^k}$. By the *Union Bound Theorem* we have

$$\mathbb{P}(X_1 \ge k) \le \binom{m}{k} \frac{1}{m^k} \le 1k!$$

Applying the *Union Bound Theorem* again we have

$$\mathbb{P}(\text{at least 1 bin recieves at least } k \text{ balls}) \leq m \mathbb{P}(X_1 \geq k) \leq \frac{m}{k!}$$

¹There is a theorem that $\forall n \exists p \in [n, 2n]$ st p is prime.

Observe that

$$k! > 2^{k-1}$$
Let $k = 3 \log_2 m$

$$\Rightarrow k! > 2^{(3 \log_2 m - 1)}$$

$$\geq 2^{2 \log_2 m}$$

$$\geq (2^{\log_2 m})^2$$

$$= m^2$$

Thus, setting $k = 3 \log_2 m$ means

$$\frac{m}{k!} \le \frac{1}{m} \text{ for } m \ge 2$$

Theorem 1.4 - Longest Chain - Weakly Universal Hashing

Let $Hashing\ Function\ h$ be picked uniformly at random from a $Weakly\ Universal\ Set$ of $Hashing\ Functions$.

Then, over m inputs

$$\mathbb{P}(\exists \text{ a chain length} \geq 1 + \sqrt{2m}) \leq \frac{1}{2}$$

N.B. This is a poor bound.

Proof 1.3 - *Theorem 1.4*

Let $x, y \in S$ be two keys and define $I_{x,y} \begin{cases} 1 & h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$.

Let C be a random variable for the total number of collision (i.e. $C = \sum_{x,y \in H, \mathbf{x} < y} I_{x,y}$). Using Linearity of Expectation and that $\mathbb{E}(I_{x,y}) = \frac{1}{m}$ when h is Weakly Universal

$$\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in H, \ x < y} I_{x,y}\right) = \sum_{x,y \in H, \ x < y} \mathbb{E}(I_{x,y}) = \binom{m}{2} \frac{1}{m} \le \frac{m}{2}$$

By Markov's Inequality

$$\mathbb{P}(C \ge m) \le \frac{\mathbb{E}(C)}{m} \le \frac{1}{2}$$

Let L be a random variable for the length of the longest chain in H. Then, $C \leq {L \choose 2}$. Now

$$\mathbb{P}\left(\frac{(L-1)^2}{2} \geq m\right) \leq \mathbb{P}\left(\binom{L}{2} \geq m\right) \leq \mathbb{P}(C \geq m) \leq \frac{1}{2}$$

By rearranging, we have that

$$\mathbb{P}(L \ge 1 + \sqrt{2m}) \le \frac{1}{2}$$

1.1 Perfect Hashing

Remark 1.7 - Motivation

The *Hashing Schemes* discussed in the previous part perform well in the best & average cases but not necessarily in the worst cases (as they can have really long longest chains).

Definition 1.5 - Static Perfect Hashing

A Perfect Static Hashing Scheme is a scheme that produces a Hash Table where lookup has time complexity $\in O(1)$, even in the worst case. However this Hash Table is static so we cannot perform insert or delete after the table has been produced.

N.B. FKS Hashing Scheme is a Perfect Static Hashing Scheme.

Definition 1.6 - FKS Hashing Scheme

Below is an algorithm for the FKS Hashing Scheme

Algorithm 1: FKS Hashing Scheme

require: $n\{\# \text{ insertions}\}, T\{\text{Table with } n \text{ entries}\}$

- 1 Insert all n into T using h
- 2 while Collisions in $T \geq n$ do
- **3** Rebuild T using a new h.
- 4 Let $n_i = |T[i]|$.
- 5 for $i \in [1, n]$ do
- 6 | Insert items of T[i] into new table T_i of size n_i^2 using h_i .
- 7 | while Collisions in $T_i \geq 1$ do
- 8 Rebuild T_i using a new h_i .
- 9 return T

N.B. $\mathbb{P}(\text{Collisions in } T_i \geq 1) \leq \frac{1}{2}$ and N.B. $\mathbb{P}(\text{Collisions in } T \geq n) \leq \frac{1}{2}$ so we expect to have to build each table twice.

Remark 1.8 - If n items are mapped to the same index this counts as $\binom{n}{2}$ collision.

Proposition 1.5 - FKS Hashing Scheme - lookup

Below is an algorithm for lookup(x) in the Hash Tables produced by the FKS Hashing Scheme

Algorithm 2: FKS - lookup(x)

require: T {main table}, $\{T_1, \dots, T_m\}$ {sub-tables}, x {key}

- 1 Compute i = h(x).
- **2** Compute $j = h_i(x)$.
- з return $T_i[j]$

N.B. This runs in O(1) time.

Proof 1.4 - FKS Hashing Scheme - Space Requirements

In the FKS Hashing Scheme the main table T requires space O(n) and each sub-table T_i requires space $O(n_i^2)$, where $n_i = |T[i]|$.

Storing each task function, h_i requires space O(1).

Thus the total space used is1

$$O(n) + \sum_{i} O(n_i^2) = O(n) + O\left(\sum_{i} n_i^2\right)$$

We know there are $\binom{n_i}{2}$ collisions in T[i] so there are $\sum_i \binom{n_i}{2}$ collisions in T.

We know there are at most n collisions in T so

$$\sum_{i} \frac{n_i^2}{4} \le \sum_{i} \binom{n_i}{2} < n \implies \sum_{i} n_i^2 < 4n$$

Thus

$$O(n) + O\left(\sum_{i} n_i^2\right) = O(n)$$

Proof 1.5 - FKS Hashing Scheme - Expected Construction Time

The expected construction time for the main table, T, is O(n).

The expected construction time for reach sub-table, T_i , is $O(n_i^2)$ where $n_i := |T[i]|$. Thus

$$\begin{array}{ll} expect (\text{construction time}) & = & \mathbb{E}\left(\text{construction time of } T + \sum_{i} \text{construction time of } T_{i}\right) \\ & = & \mathbb{E}\text{construction time of } T) + \mathbb{E}\left(\sum_{i} \text{construction time of } T_{i}\right) \\ & = & O(n) + \sum_{i} O(n_{i}^{2}) \\ & = & O(n) + O\left(\sum_{i} n_{i}^{2}\right) \text{ see Proof 1.4} \\ & = & O(n) \end{array}$$

Proposition 1.6 - FKS Hashing Scheme - Properties

- Has no collisions.
- lookup takes O(1) time in worst-case.
- Uses O(n) space.
- Can be build in O(n) expected time.

1.2 Cuckoo Hashing

Remark 1.9 -

If our consruction has the property that $\forall x, y \in S$ with $x \neq y$ the probabiltiy that x and y are in the same bucket is $O\left(\frac{1}{m}\right)$, then for any n operations the expected run-time is O(1) per operation.

Definition 1.7 - Cuckoo Hashing

In Cuckoo Hasing we use two hash functions, $h_1 \& h_2$, to produce a single hash table.

When we add a value x to the hash table we place it in position $h_1(x)$. If there is already a value, y, already in this position then we move that value, y, to its alternative positione. We keep moving values until each value is in its position. If it is not possible (*i.e.* we have found a cycle) then we change h_1 & h_2 for new hash functions and rehash all the values.

This is formally descibed in the algorithm below

Algorithm 3: Cuckoo Hashing - Insert

```
require: \{x_1, \ldots, x_n\} {stream of keys}, T {Table with m entries}
1 choose h_1, h_2 for i \in [1, n] do
      pos = h_1(x).
 2
3
      checked = [].
      while T[pos] not empty do
 4
          if x \in checked then rehash;
          checked append x. y = T[pos].
 6
          T[pos] = x.
 7
          pos =alternative position for y.
 8
          x = y.
      T[pos] = x.
10
```

11 return T

N.B. Rehash involves chooseing two new hash functions h_1 & h_2 are reinserting all keys, $\{x_1, \ldots, x_n\}$ into the table.

Proposition 1.7 - Cuckoo Hashing Scheme - Properties

- i) An add takes amortised exercted time O(1).
- ii) Every lookup and every delete has time complexity O(1) in the worst-case.
- iii) The space requirement is O(n) where n is the number of keys stored.

Remark 1.10 - Assumptions in Cuckoo Hashing

In Cuckoo Hashing we make the following assumptions

- i) h_1 and h_2 are indepenent. i.e. $h_1(x)$ says nothing about $h_2(x)$, and visa-versa.
- ii) h_1 and h_2 are truly random. i.e. They map to each entry in the hash table with uniform probability.
- iii) Computing the value of $h_1(x)$ and $h_2(x)$ takes O(1) time in the worst-case.

Definition 1.8 - Cuckoo Graph

A Cuckoo Graph is an interpretation of a Hash Table using Graph Theory.

Each vertex of the graph is an entry in the hash table and for each x_i we add an undirected-edge between $h_1(x_i)$ and $h_2(x_i)$.

If any cycles occur in a *Cucko Graph* then we know construction will fail for that pair of hash functions as no stable scenario can occur.

The length of the longest path tells us the time for the longest insert.

Theorem 1.5 - Probability of Long Paths in Cuckoo Graphs

Let m be the size of a hash table & n the number of entries we wish to insert Fr any pair of positions i and j, and any constant c > 1, if $m \ge 2cn$ then the probability that there exists a shortest path in the cuckoo graph from i to j with length $l \ge 1$ is at most $\frac{1}{clm}$.

Proof 1.6 - Theorem 1.5 TODO

Proof 1.7 - Probability of a path between two positions in a Cuckoo Graph

If a path exists from i to j, ther emust be a shortest path from i to j.

Therefore we can use **Theorem 1.5** and the *Union Bound* over all possible paths to show the probability of a path from i to j existing is at most

$$\sum_{l=1}^{\infty} \frac{1}{c^l m} = \frac{1}{m} \sum_{l=1}^{\infty} \frac{1}{c^l} = \frac{1}{m} \frac{1}{c-1} = O\left(\frac{1}{m}\right)$$

Definition 1.9 - Buckets

We say that two keys x & y are in the same *bucket* iff there exists a path from $h_1(x)$ to $h_1(y)$ in a *Cuckoo Graph*.

Note that this implies there is a path from $h_1(x), h_2(y); h_2(x), h_1(y)$ and $h_2(x), h_2(y)$ as there are edges $(h_1(x), h_2(x))$ & $(h_1(y), h_2(y))$.

Remark 1.11 - The time for an operation on x is bounded by the number of items in its bucket.

Proposition 1.8 - Probabiltiy of being in the same Bucket

For $x, y \in S$ with $x \neq y$ the probability that they are in the same bucket is at most

$$\sum_{l=1}^{\infty} \frac{1}{c^l m} = \frac{1}{m} \sum_{l=1}^{\infty} \frac{1}{c^l} = \frac{1}{m} \frac{1}{c - 1} = O\left(\frac{1}{m}\right)$$

If the size of a hash table is $m \ge 2cn$ then the expected time per operation is O(1). Further, lookups take O(1) time in the worst case.

Proposition 1.9 - Probability of Rehashing

The probability that a rehashing occurs in *Cuckoo Hashing* is equal to the probability of the *Cuckoo Graph* having a cycle.

A cycle is a path from x to x, via some intermidiary vertices.

Thus the probability that x is involved in a cycle is

$$\sum_{l=1}^{\infty} \frac{1}{c^l m} = \frac{1}{m(c-1)}$$

by Proof 1.7.

Thus the probabiltiy that there is at least one cycle in the whole hash table is

$$m\frac{1}{m(c-1)} = \frac{1}{c-1}$$

Proposition 1.10 - Construction Time - Cuckoo Hashing

Consider the result in **Proposition 1.9** when c = 3.

The probability of a rehashing occurring is $\frac{1}{2}$.

Thus we expected only one rehash to be necessary. The the expected time for a rehash is O(n) then the expected construction time for the table is O(n).

Therefore the amortised expeced time for rehashes over n insertions is O(1) per insertion.

N.B. Checking for a cycle in a graph takes O(n) time.

2 Bloom Filters

Definition 2.1 - Bloom Filter

A Bloom Filter is a data structure which is designed to be a space efficient way of storing a set S.

Bloom Filters support only the following operations

Operation	Description	
insert(k)	Insert the key (k).	
member(k)	Returns true if $(k) \in S$, no otherwise.	

Note that there is no way to remove objects from a *Bloom Filter* & you cannot ask which keys are in the *Bloom Filter*, only whether a particular key is.

N.B. Bloom Filters are meant to be used in cases where the size of the sample space is much larger than the number of keys being stored.

Remark 2.1 - Motivation

Bloom Filters can be used to build a blacklist of unsafe URLS. Whenever a new unsafe URL, k, is discovered we add it to the filter, insert(k).

Whenever we want to visit to a new URL, k, we can query whether it is in the bloom filter, member(k), and if we are returned yes then it is blocked.

Remark 2.2 - Randomness in Bloom Filter

A Bloom Filter is randomised in such a way that member(k) will sometimes return yes when in fact $k \notin S$. However it will never return no if $k \in S$.

N.B. The amount of space used by a Bloom Filter depends on the failure rate we allow it.

Proposition 2.1 - Usefullness of Bloom Filter

For a Bloom Filter insert(k) & member(k) both run in O(1) and it requires O(n) bits of space to store up to n keys.

Proposition 2.2 - Building a Bloom Filter - Array

A naïve approach to building a *Bloom Filter* is to use an array.

Suppose we have sample space $1, 2, \ldots, |U|$ for key values.

We can store a set by mainting a bit string B where B[k] = 1 if $k \in S$ and B[k] = 0 otherwise.

The Bloom Filter operations take O(1) time but the array is |U| long.

Proposition 2.3 - Building a Bloom Filter - Hash Table

Let $h: U \to [1, m]$ be a hash function.

We can implement a *Bloom Filter* using a *Hash Table* is we define that performing insert(k) sets B[h(k)] = 1 and member(k) returns true if B[h(k)] == 1, and false otherwise.

Using a hash function means the bit string B being maintained is much shorter than if we used the Array approach in **Proposition 2.2**, however we now have to deal with collisions & thus false-positive results from member(k).

N.B. false-positives occur member(k) if $\exists k' \in S \text{ st } h(k') = h(k)$.

Remark 2.3 - Reducing Collisions - Bloom Filter as Hash Table

To ensure a low probability of collisions each operation, we pick the hash function h at random (Note that we don't change h after it is set).

Proposition 2.4 - Probability of False Positive - Bloom Filter as Hash Table

Suppose we have inserted n keys into the Bloom Filter and now we perform member(k) for $k \notin S$.

The bit string B contains at most n 1s among its m positions.

By definition the hash function assigns values uniformly $\mathbb{P}(h(i) = j) = \frac{1}{m}$ for $k \in [1, m]$.

Thus the probability of a false-positive is $\mathbb{P}(B[h(k)] = 1) \leq \frac{n}{m}$.

If we choose m to be 100n then $\mathbb{P}(B[h(k)] = 1) \leq .01$.

Proposition 2.5 - Bloom Filter Complexities

Both insert(k) and member(k) run in O(1) and the structure uses m bits.

If we want a .01 false positive rate then 100n bits are required.

Proposition 2.6 - Building a Bloom Filter - Proper

Again we are maintaining a bit string B of length m < |U|.

Let h_1, \ldots, h_r be r hash functions which map $U \to [1, m]$ uniformly at random.

- insert(k) sets $B[h_i(k)] = 1$ for all $i \in [1, r]$.
- member(k) returns true iff $B[h_i(k)] = 1 \ \forall \ i \in [1, r].$

Proposition 2.7 - Probability of False Positive for Proposition 2.6

Assume that we have inserted n keys into the *Bloom Filter* and that we are performing member (k) for $k \notin S$.

This checks whether $B[h_i(k)] = 1 \ \forall i \in [1, r].$

This is question whether r randomly chosen bits of B all equal 1 due to hash functions being uniformly random.

As there are n keys in the Bloom Filter at most nr bits of B are set to 1.

So $\frac{nr}{m}$ is the proportion of bits set to 1 in B.

So the probability that a ranomly chosen bit is 1 is $\leq \frac{nr}{m}$.

Thus the probability that r randomly chosen bits are all equal to 1 is $\leq \left(\frac{nr}{m}\right)^r$.

Proposition 2.8 - Minimising False Positive Rate By differentiating $\leq \left(\frac{nr}{m}\right)^r$ we find it is minimised for $r = \frac{m}{ne}$.

If we substitute this back in we get a false positive rate of at most $\left(\frac{1}{e}\right)^{\frac{m}{ne}} \approx (0.69)^{\frac{m}{n}}$. So for a failure rate of 1% we set $m \approx 12.52n$.

This is much better than m = 100n required for **Proposition 2.4**.

0 Reference

0.1 Definitions

Definition 0.1 - Amortised Expected

Amortised Expected is a term for the complexity of something. It describes the total complexity to execute a sequence of instructions, divided by the number of instructions.

e.g. If n instructions take O(n) time to execute completely, then the amortised expected time is O(1).

0.2 Probability

Definition 0.2 - Sample Space, Ω

A Sample Space is the set of possible outcomes of a scenario. A Sample Space is not necessarily finite.

e.g. Rolling a dice $\Omega := \{1, 2, 3, 4, 5, 6\}.$

Definition 0.3 - Event

An *Event* is a subset of the *Sample Space*.

The probability of an Event, A, happening is

$$\mathbb{P}(A) = \sum_{x \in A} \mathbb{P}(x)$$

Definition 0.4 - Disjoint Events

Let $A_1 \& A_2$ be events.

 $A_1 \& A_2$ are said to be *Disjoint* if $A_1 \cap A_2 = \emptyset$.

Definition 0.5 - σ -Field, \mathcal{F}

A Sigma Field is the set of possible events in a given scenario.

A Sigma Field must fulfil the following criteria

- i) $\emptyset, \Omega \in \mathcal{F}$.
- ii) $\forall A \in \mathcal{F} \implies A^c \in \mathcal{F}$.

iii)
$$\forall \{A_1, \ldots, A_n\} \subseteq \mathcal{F} \implies \bigcup_{i=1}^n A_i \in \mathcal{F}.$$

Definition 0.6 - Probability Measure, \mathbb{P}

A Probability Measure maps a σ -Field to [0,1] which satisfies

- i) $\mathbb{P}(\emptyset) = 0 \& \mathbb{P}(S) = 1$; and,
- ii) If $\{A_1, \ldots, A_n\} \subseteq \mathcal{F}$ are pair-wise disjoint then $\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$. [σ -Additivity]

Definition 0.7 - Random Variable

A Random Variable is a function from the sample space, S, to the real numbers, \mathbb{R} .

$$X:S\to\mathbb{R}$$

The probability of a Random Variable, X, taking a specific value x is found by

$$\mathbb{P}(X = x) = \sum_{\{a \in \Omega: X(a) = x\}} \mathbb{P}(a)$$

Definition 0.8 - Indicator Random Variable

An *Indicator Random Variable* is a *Random Variable* which only ever takes 0 or 1 and is used to indicate whether a particular event has happened (1), or not (0).

$$\mathbb{E}(I) = \mathbb{P}(I=1)$$

Definition 0.9 - Expected Value, \mathbb{E}

The Expected Value of a Random Variable is the mean value of said Random Variable

$$\mathbb{E}(X) := \sum_{x} x \mathbb{P}(X = x)$$

Theorem 0.1 - Linearity of Expected Value

Let X_1, \ldots, X_n be random variables. Then

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i)$$

Theorem 0.2 - Markov's Inequality

Let X be a non-negative random variable. Then

$$\mathbb{P}(X \ge a) \le \frac{1}{a} \mathbb{E}(X) \quad \forall \ a > 0$$

Theorem 0.3 - Union Bound

Let A_1, \ldots, A_n be *Events*. Then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mathbb{P}(A_i)$$

N.B. This in an equality if the events are disjoint.

Proof 0.1 - Union Bound

Define Indicator RV I_i st

$$I_i := \begin{cases} 1 & A_i \text{ happened} \\ 0 & \text{otherwise} \end{cases}$$

Define Random Variable $X := \sum_{i=1}^{n} I_i$ (the number of events that happened).

Then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}(X > 0)$$

$$\leq \mathbb{E}(X) \text{ by Markov's Inequality}$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} I_{i}\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}[I_{i}]$$

$$= \sum_{i=1}^{n} \mathbb{P}(I_{i} = 1)$$

$$= \sum_{i=1}^{n} \mathbb{P}(A_{i}1)$$