⑩ 日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

 $\Psi 3 - 8448$

@Int. Cl. *

識別記号

庁内整理番号

2949公告 平成3年(1991)3月1日

B 41 J 19/18 29/46

8907-2C 8804-2C В Α

(全5頁)

❷考案の名称

シリアルプリンタ

②実 願 昭60-45222

克

63公 開 昭61-162461

223出 願 昭60(1985)3月29日 @昭61(1986)10月8日

⑫考 案 者 向 井 俊 -

神奈川県藤沢市湘南台7丁目3番地の21

勿出 顧 人 インターナショナル

アメリカ合衆国 10504 ニューヨーク州 アーモンク

(番地なし)

ビジネス マシーンズ コーポレーション

個代 理 人

弁理士 岡田 次生 外1名

審査官

砂 Ш

66多考文献 特開 昭57-22059 (JP, A)

特開 昭58-62068 (JP, A)

1

切実用新案登録請求の範囲

印字ヘッドを搭載したキャリアとブラテンとの 相対的変位動作を伴なつて印字を行なうシリアル プリンタにおいて、各方向の印字動作の印字遅延 を設けたことを特徴とする前記シリアルプリン 9.

考案の詳細な説明

A 産業上の利用分野

ラテンとの相対的変位動作を伴なつて印字を行な うシリアルプリンタに関し、特に、各印字動作の 印字遅延を動的に設定できるシリアルブリンタに 関する。

B 開示の概要

本考案は、前記のようなシリアルプリンタにお いて、新規に、各印字動作の印字遅延を動的に設 定できるような手段、例えばマイクロプロセッサ からの命令によつて遅延時間が設定されるような プログラマブルタイマを設けることにより、印字 20 D 考案が解決しようとする問題点 位置の食い違い、例えば左右両方向における印字 位置の食い違いを、短時間で簡単かつ正確に調整 できるようにしたものである。

C 従来の技術

まず、第5図を用いて、従来の両方向印字シリ 25

2

アルプリンタについて述べる。

従来のそのようなシリアルプリンタでは、キャ リア走行用のDCサーポモータのエミッタ信号を エミツタ感知手段 10で感知し、エミツタ検出論 を印字駆動毎に動的に可変設定できるような手段 5 理手段 1 2 及びキャリア走行方向検出手段 1 4 を 経て、印字位置及びキャリアの左右の移動を検出 している。

キャリアの動きが右方向のときは、割込制御手 段16を介して、マイクロプロセツサ18に割込 本考案は、印字ヘッドを搭載したキャリアとプ 10 を起こし、マイクロプロセッサ 18は、印字駆動 (以下、発火とする。) 論理手段20を使用して印 字ヘッド22を発火する。

> キャリアの動きが左方向のときは、予め調整さ れた可変抵抗遅延タイマ24による回路定数から 15 決まる遅延時間を経てから、割込が起動され、マ イクロプロセツサ18は、先に述べたような発火 を行なう。その回路定数は、静的設定によつて一 義的に決まるので、次の項で述べるような調整の 困難をもたらしている。

第5図に示されたような従来の両方向印字シリ アルプリンタでは、左右両方向の印字位置に食い 違いが生じ、特にイメージ・パターンや罫線の印 刷において、問題となつている。

印字位置食い違いの原因となる要素は、プリン

3

タの印字方式によつても異なるが、例えばワイヤ ドツトマトリツクスプリンタにおいては、以下の ことが主として考えられる。即ち、

- (1) 発火からワイヤが動くまでの時間差
- (2) ワイヤがヘッド表面から紙表面に達するまで 5 サからの命令によつて遅延時間が設定されるよう の時間差
- (3) ヘッドの移動速度差
- (4) 駆動モータ以降キャリア移動機構までの機械 的あそび

(5) ベルト、ギア等の弾性変形

上記(1), (2)及び(3)については、設計時に設計値 として考慮することにより、比較的容易に対処で きる。上記(4)及び(5)については、食い違いの量に 占める割合も大きく、かつ製造上のバラツキ等が る。この結果、製造の最終行程で、個々の製品に ついて個有の微調整が、しばしば必要とされる。

この微調整として、次のやり方がとられてい る。即ち、一定のパターンを左右両方向に定速度 の量を電気回路上の可変抵抗等の可変量又はファ ームウエハ上のタイマ設定値に反映させた後(第 5 図の調整手段 2 6 参照)、再度印字を行ない再 び食い違い量を目視で判断するということを繰返 の例を示す。第6 A図は、左右両方向に一定のパ ターンを定速度で印刷した段階を示している。矢 印は、印字の方向である。この段階で、食い違い 量を目視で判断し、判断した食い違い量を調整手 なつた段階を示している。この図は、調整量が多 すぎたことを示している。それで、反対方向に再 度調整する。第6C図は、左右両方向の印字位置 が大たいに一致したことを示している。より正確 に印字位置を合せるために、再度調整を行なう。

このように、従来の両方向印字シリアルプリン タでは、食い違いの絶対量が0.2㎜以下となるよ うな場合には、食い違いの量の把握に熟練を要 し、かつ試行錯誤の回数が多くなり、左右両方向 の印字位置を合せるのに困難が伴なう。

E 問題点を解決するための手段

本考案の目的は、印字位置合せが簡単に行なえ るような、各印字動作の印字遅延を動的に設定で きるシリアルプリンタを提供することである。

4

従つて、本考案のシリアルブリンタは、各印字 動作の印字遅延を動的に設定できるような手段を 有する新規な構成をなす。

そのような手段は、例えば、マイクロプロセツ なプログラマブルタイマで達成できる。

F 実施例

第1図を用いて、本考案の実施例を説明する。 この実施例でも、キャリア走行用の駆動モータ 10 のエミツタ信号をエミツタ感知手段 10 で感知 し、エミツタ検出論理手段12及びキャリア走行 方向検出手段14を用いて、印字位置及びキャリ アの左右の移動を検出している。また、割込制御 手段16でマイクロプロセッサ18に割込を起こ 関連しているので、その対処が困難となつてい 15 し、マイクロプロセッサ18が、発火論理手段2 0を介して印字ヘッド22を発火している。しか しながら、従来のような可変抵抗により印字遅延 時間を静的に設定するのではなくて、プログラマ ブルタイマによつて、マイクロコードで印字遅延 で印刷し、その食い違い量を目視で判断して、そ 20 時間を動的に設定できるようになつている。これ によつて、発火毎に異なる印字遅延時間を設定す ることが可能である。

マイクロプロセツサ18に接続されたメモリ3 0 には、左方向乃至は右方向の印字における遅延 し行なうのである。第6A図乃至第6C図に、そ 25 時間の初期設計値等が記憶されている。オペレー タは、オペレータスイツチ手段32により調整値 を入力し、マイクロプロセツサ18は、その調整 値を印字遅延時間に反映させる。また、マイクロ プロセツサ18は、その調整値に基づいてメモリ 段で調整する。第6B図は、調整後再度印字を行 30 30に記憶されている初期設計値を更新すること も行なう。

G 考案の効果

今、右方向の印字についてエミツタ検出から発 火までの遅延時間設計値をarとし、左方向の印字 35 についてのその設計値をaとする。右方向への印 字行を主尺(基準尺)として、 1 定数毎のエミツ タ検出後arの一定遅延時間で右方向の印字を行な う。その行と隣接する行に、今度は左方向の印字 を行なうのであるが、この印字は、本考案による 40 各方向の印字動作の印字遅延を印字駆動毎に動的 に可変設定できるような手段を用いて行なわれ、 一定数毎のエミツタ検出後遅延時間をai-nd. ai -(n-1) d, $a_1-(n-2)$ d,, a_1-d , a_1 , $a_1 + d$, $a_1 + 2d$,, $a_1 + (n' - 2) d$, a_1

+(n'-1) d, $a_1+n'd$ と、 a_1 の設計値をはさん で、一定間隔dずつ変化させた値とする。

n, n'及びdは、調整の範囲、調整の精度(単 位) 等を考慮して決められるが、第2図に、dを 1調整単位としn=n'=4とした簡単な例を示 5す。

両方向印字のシリアルブリンタが設計公称値ど おりに出来上つていれば、第2図のように主尺と 副尺は、、0のところで一致し、調整の必要はな い。しかし、一般的には、第3A図のように主尺 10 と副尺の印字位置は食い違つている。第3A図の ような場合、+2のところで印字位置が一致して いることが判断できる。これは、左方向の印字の 場合、遅延時間をai+2dにすると印字位置の食い は、この「+2」を読取り、オペレータスイツチ 手段32からこの調整値を入力し、「+2」相当 の遅延時間変更を設定する。左方向の印字におけ る遅延時間は、ai+2dに更新され、以降、ai+2d の値が、新しい基準遅延時間ai'となる。確認の 20 ために主尺及び副尺の印字を行なうと、新しい ai が設定されているので、第3B図のように主 尺と副尺は0のところで一致し、調整の完了が簡 単に確認できる。この確認の結果、更に調整が必 返す。

以上示したように、本考案により各方向の印字 動作の印字遅延を印字駆動毎に動的に可変設定で きるような手段を設けたので、調整の範囲、調整 の精度等によつて適当に調整単位を決めた主尺及 30 本考案を実施したシリアルブリンタによる主尺及 び副尺を印字することにより、オペレータ特に調 整者は、微小な印字位置の食い違いを定量的にし かも正確に把握することができ、かつ簡単にしか も短時間にそれをシリアルブリンタに反映させる ことができる。それ故に、本考案のシリアルプリ 35 説明図である。 ンタでは、簡単かつ正確な調整を効率的に行なう ことができる。

第3図 A

6

例として、両方向印字のシリアルブリンタにお ける調整をあげたが、他の印字条件での印字位置 調整も可能である。例えば、通常速印字と倍速印 字の右方向印刷における印字遅延時間を調整する こともできる。その例を第4図に示す。この図で は、「+1」のところ即ちar2+dのところで印字 位置の食い違いが最小となつているので、調整値 として「+1」が設定され、以降倍速での印刷に はarz+dの遅延時間が適用される。

主尺と副尺に印字するパターンは、わかりやす くするために"I"を示したが、そのパターンは 何であつても良く、例えば"H"であつても良

また、各印字動作の遅延を時間としてとらえた 違いが最小になることを示している。オペレータ 15 が、位置としてとらえても良い。これは、位置検 出の精度が高い場合(例えば、エミツタ間隔が小 さい。) に、適用される。例えば、一定間隔 dを 1エミツタ間隔として、調整単位を1エミツタ間 隔とすることもできる。

更に、駆動モータにエミツタのある場合につい て説明したが、印字位置の検出は、リニア・エン コーダのように他の手段で行なつても良い。そし て、本考案は、ワイヤドツトマトリツクスプリン 夕に限らず、他の熱転写プリンタ、キャリアタイ 要なら、al'を基準にして先に行なつたことを繰 25 プのタイプライタ等原理の異なる種々のシリアル プリンタで実施できる。

図面の簡単な説明

第1図は、本考案の1実施例を示すプロツク 図、第2図、第3A図、第3B図及び第4図は、 び副尺の印字を説明する説明図、第5図は、従来 の両方向印字シリアルプリンタのプロック図及び 第6 A図乃至第6 C図は、従来のシリアルプリン 夕における左右両方向の印字位置合せを説明する

28……プログラマブルタイマ、30……メモ リ、32……オペレータスイツチ手段。

第3図 B

第4図

