mice_M_post.csv_run_2_20250525_201441

May 25, 2025

/Users/navehr/Dropbox/naveh/weizmann/uri alon/aging/code_3
Loading file from: /Users/navehr/Dropbox/naveh/weizmann/uri
alon/aging/code_3/baysian02/posterior_csvs_baysian01/mice_M_post.csv
Reading Mice_M

1 # 1. Density coner plot

A sample is 1 parameter set scanned. For the corner plot below, the quantiles (represented by the solid lines) are 0.16,0.5,0.84 of the samples. Dots represent individual samples (outside the line surrounding 0.84 of the samples) The parameter search is performed in the transformed space of x_c/η , β/η , x_c^2/ϵ , x_c but we also show the regular parameters (16,)

2 2. Heat map corner plot of raw samples

This plot shows all the raw sample points and their lnprobability

3 3. Posterior distributions of parameters

1d marginalizations of posterior distributions. we use a grid of size nbins=100-150

2D marginalizations of posterior distributions

2D Marginalized Posterior

4 4. Table of results

mode is the marginalized mode, max_likwlihood is the sample with highest likelihood mode_overall is the 4D posterior mode

mean std mode \
xc/eta 134740.077 [47277.235, 34997.431] 130528.905

beta/eta	505.796	[114.24, 93.192]	441.384
xc^2/epsilon	1505.683	[690.187, 473.254]	1440.765
xc	97.991	[140.227, 57.683]	140.572
eta	0.000747	[0.000829, 0.000393]	0.000982
beta	0.363	[0.375, 0.184]	0.379
epsilon	7.372	[26.705, 5.777]	10.988
sqrt(xc/eta)	377.721	[55.849, 48.655]	369.566
s= eta^0.5*xc^1.5/epsilon	4.219	[0.954, 0.778]	4.391
beta*xc/epsilon	5.373	[0.724, 0.638]	6.073
eta*xc/epsilon	0.011	[0.000895, 0.000827]	0.0114
Fx=beta^2/eta*xc	1.828	[2.019, 0.959]	2.458
<pre>Dx =beta*epsilon/eta*xc^2</pre>	0.334	[0.277, 0.151]	0.265
Pk=beta*k/epsilon	0.0233	[0.0285, 0.0128]	0.0171
Fk=beta^2/eta*k	343.813	[303.589, 161.226]	328.745
Dk =beta*epsilon/eta*k^2	12626.476	[52622.696, 10183.106]	19877.958
Fk^2/Dk=beta^3/eta*epsilon	11.554	[15.589, 6.636]	15.649
beta^2/epsilon	0.0192	[0.0139, 0.00806]	0.0253
k/beta	1.375	[1.537, 0.726]	1.319
k/epsilon	0.0733	[0.285, 0.0583]	0.0455
best fit_MedianLifetime	749.25	0.51	749.25
best fit_MaxLifetime	1500.0	0	1500.0
data_MedianLifetime	770.0	0.52	770.0
data_MaxLifetime	1338.0	0	1338.0

percentile_16 \

xc/eta	[127605.117, 139708.395]
beta/eta	[429.59, 453.502]
xc^2/epsilon	[1346.039, 1542.157]
xc	[130.912, 158.28]
eta	[0.000882, 0.00102]
beta	[0.338, 0.424]
epsilon	[9.225, 13.089]
sqrt(xc/eta)	[365.403, 382.34]
s= eta^0.5*xc^1.5/epsilon	[4.234, 4.554]
beta*xc/epsilon	[5.845, 6.214]
eta*xc/epsilon	[0.0113, 0.0116]
Fx=beta^2/eta*xc	[2.04, 2.75]
<pre>Dx =beta*epsilon/eta*xc^2</pre>	[0.257, 0.309]
Pk=beta*k/epsilon	[0.0157, 0.0198]
Fk=beta^2/eta*k	[290.107, 342.736]
<pre>Dk =beta*epsilon/eta*k^2</pre>	[16718.563, 23634.401]
Fk^2/Dk=beta^3/eta*epsilon	[13.702, 17.874]
beta^2/epsilon	[0.0227, 0.0282]
k/beta	[1.178, 1.477]
k/epsilon	[0.0429, 0.0542]
best fit_MedianLifetime	[748.76, 749.76]
best fit_MaxLifetime	[1500.0, 1500.0]

data_MedianLifetime	[769.52, 770.52]	
data_MaxLifetime	[1338.0, 1338.0]	
	percentile_50	percentile_95 \
xc/eta beta/eta	[111387.504, 152959.662] [414.353, 573.487]	[49277.283, 167467.805] [414.353, 917.089]
xc^2/epsilon	[1229.354, 1688.532]	[453.408, 1934.552]
xc 2/epsiion	[85.404, 165.973]	[14.068, 338.229]
eta	[0.000764, 0.00136]	[0.000225, 0.00399]
beta	[0.291, 0.718]	[0.127, 3.232]
epsilon	[7.305, 20.87]	[0.352, 151.587]
sqrt(xc/eta)	[333.748, 391.101]	[217.013, 409.228]
s= eta^0.5*xc^1.5/epsilon	[3.75, 4.78]	[1.995, 5.268]
beta*xc/epsilon	[5.668, 6.917]	[5.015, 8.061]
eta*xc/epsilon	[0.0107, 0.0117]	[0.00847, 0.0118]
Fx=beta^2/eta*xc	[1.209, 2.963]	[1.122, 20.673]
Dx =beta*epsilon/eta*xc^2	[0.242, 0.473]	[0.214, 2.442]
Pk=beta*k/epsilon	[0.0148, 0.0315]	[0.00783, 0.403]
Fk=beta^2/eta*k	[225.921, 478.367]	[191.23, 3253.644]
Dk =beta*epsilon/eta*k^2	[13272.982, 42084.356]	[1320.274, 376972.625]
Fk^2/Dk=beta^3/eta*epsilon	[9.613, 25.476]	[5.17, 137.168]
beta^2/epsilon	[0.017, 0.0327]	[0.0127, 0.112]
k/beta	[0.872, 1.851]	[0.18, 2.696]
k/epsilon	[0.0302, 0.0769]	[0.0033, 0.792]
best fit_MedianLifetime	[748.76, 749.76]	[748.76, 749.76]
best fit_MaxLifetime	[1500.0, 1500.0]	[1500.0, 1500.0]
${\tt data_MedianLifetime}$	[769.52, 770.52]	[769.52, 770.52]
data_MaxLifetime	[1338.0, 1338.0]	[1338.0, 1338.0]
	max_likelihood mode_overal	1
xc/eta	166402.798 166402.79	
beta/eta	428.49 428.4	
xc^2/epsilon	1941.984 1941.98	
XC XC	143.817 143.81	
eta	0.000864 0.00086	
beta	0.37 0.3	
epsilon	10.651 10.65	51
sqrt(xc/eta)	407.925 407.92	25
$s = eta^0.5*xc^1.5/epsilon$	4.761 4.76	31
beta*xc/epsilon	5.001 5.00)1
eta*xc/epsilon	0.0117 0.011	.7
Fx=beta^2/eta*xc	1.103 1.10	93
<pre>Dx =beta*epsilon/eta*xc^2</pre>	0.221 0.22	
Pk=beta*k/epsilon	0.0174 0.017	
Fk=beta^2/eta*k	317.365 317.36	
Dk =beta*epsilon/eta*k^2	18254.642 18254.64	
Fk^2/Dk=beta^3/eta*epsilon	5.518 5.51	8

beta^2/epsilon	0.0129	0.0129
k/beta	1.35	1.35
k/epsilon	0.0469	0.0469
best fit_MedianLifetime	749.25	NaN
best fit_MaxLifetime	1500.0	NaN
data_MedianLifetime	770.0	NaN
data_MaxLifetime	1338.0	NaN

5 5. Fits of simulations to data

best params is the sample with highest likelihood. mode trans is the 4D posterior mode in the transformed space of $x_c/\eta,\,\beta/\eta,\,x_c^2/\epsilon,\,x_c$

Text(0, 0.5, 'Hazard')

Text(0, 0.5, 'Prob density')

