

Spring 2023 Syllabus

Agent-Based Modelling of Social Systems

Dr. Giacomo Vaccario, Dr. Christian Zingg, Georges Andres Chair of Systems Design, ETH Zurich

Lecture: Thursday, 14 - 16, HG E 33.3 Exercise: Thursday, 18 - 19, HG E 33.3

Moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=19565

Exercises will be completed by using the programming language Python. During the exercise classes, assistants will help the students with implementation issues and answer their questions, to help them reach the solution by themselves. Towards the end of the semester the students will work in groups on a project: formulating, implementing and analyzing an Agent Based Model. The project will be graded and will make up 30% of the final grade.

1 Introduction

.....

Lecture 1 – Systems and Models

23.02.2023

- What are systems and how can we model them?
- ABM implementation: modelling techniques and tools Python

Exercise: Learning about Python, installation (due: 02.03.2023)

Lecture 2 – ABM across Disciplines

02.03.2023

- Modelling agents and multi-agent systems
- Capturing social systems

Exercise: ABM in Python (due: 09.03.2023)

2 Models with Boolean Agents	
Lecture 3 – Cellular Automata	09.03.2023
 1-D and 2-D cellular automata Game of Life 	
Exercise: Implementation of Game-of-Life (due: 16.03.2023)	
Lecture 4 – Systemic Risk and Cascading Processes	16.03.2023
 Models of fragility Models of cascading failure	
Exercise: Implementation of ABM for cascading failures (due: 23.03.2023)	
Lecture 5 – Voter Models	23.03.2023
Linear and non-linear voter modelsSocial impact theory	
Exercise: Implementation of linear and non-linear voter models (due: 30.03.2023)	
Lecture 6 – Polya Urn Models	30.03.2023
 Path dependence and lock-in effects Majority and minority games 	
Exercise: Implementation of linear and non-linear Polya models (due: 20.04.2023)	

Lecture 7 – Game Theoretical Interactions	20.04.2023
• Game theory and prisoner's dilemma	
• Social herding and cooperation	
Exercise: Implementation of prisoner's dilemma game (due: 27.04.2023)	
3 Models with Brownian Agents	
Lecture 8 – Opinion Dynamics	27.04.2023
• Bounded confidence models	
• How groups can foster consensus	
Exercise: Implementation of bounded confidence model (due: 04.05.2023)	
Lecture 9 – Reputation and Competition	04.05.2023
• Reputation in social network	
• Reputation model with emergent hierarchy	
Exercise: Implementation of reputation ABM (due: $11.05.2023$)	
Lecture 10 – Emotion Dynamics	11.05.2023
• Emotions and opinions	
• Emotional influence: communication as non-linear interaction	

Exercise: ABM for collective emotions (due: $25.05.2023)\,$

4	\mathbf{Models}	with	Spatial	Interactions

Lecture 11 - Spatial Models with Boolean Agents

25.05.2023

- Schelling's segregation model
- Prisoner's dilemma with migration

Exercise: Implementation of Schelling's segregation model (due: 01.06.2023)

Lecture 12 - Spatial Models with Brownian Agents

01.06.2023

- Animal swarming
- Pedestrian dynamics
- Conclusions and wrap-up of the course

Exercise: Course project deadline (due: 30.06.2023)