	a + 1	Solution		Marks	Remarks
	$\frac{a+4}{3} = \frac{b+1}{2}$ $2(a+4) = 3(b+1)$ $2a+8 = 3b+3$ $3b = 2a+5$				
	2(a+4)=3(b+1)				
	2a+8=3b+3			1M	
	3b = 2a + 5			1101	
	$b = \frac{2a+5}{3}$			1M	for putting b on one side
	3			1A	or equivalent
	$\frac{a+4}{3} = \frac{b+1}{2}$			"	or equivalent
	3 2				
	$\left 2\left \frac{a+4}{3}\right \equiv b+1$				
	2a+8			1M	
	$\frac{2a+8}{3} = b+1$			1	
	$b = \frac{2a + 8}{3} - 1$				
		*		1M	
	$b = \frac{2a+5}{3}$			1101	for putting b on one side
-				1A	or equivalent
				(3)	-
	7				
	$\frac{xy'}{(-2, 3)4}$				
	$(x^{-2}y^3)^4$				
	$= \frac{xy^{7}}{x^{-3}y^{12}}$ $= \frac{x^{1+8}}{y^{12-7}}$ $= \frac{x^{9}}{y^{5}}$			l	
	x y _			1M	for $(a^h)^k = a^{hk}$ or $(ab)^l = a^l b^{-1}$
	$=\frac{x^{17-7}}{17-7}$				for $(a^h)^k = a^{hk}$ or $(ab)^l = a^l b$ for $\frac{c^p}{c^q} = c^{p-q}$ or $d^{-r} = \frac{1}{d^r}$
	y			1M	for $\frac{c^r}{c^q} = c^{p-q}$ or $d^{-r} = \frac{1}{c^{p-q}}$
	$=\frac{x^9}{x^9}$			1	d^r
	y ⁵			1A	
				(3)	
((a) 266				
				1A	
(b) 265.4			1A	
(c) 270				
				1A (3)	
			44		

Solution	Marks	Remarks
0		- KS
4. Note that the probability of drawing a red ball is $\frac{8}{n+5+8}$.	1M	for den
	1	for denominator
$\frac{8}{n+5+8} = \frac{2}{5}$	1A	
n+5+8 3 $2n+26=40$		
n=7	1A	
	(3)	
		• •
5. (a) $9r^3 - 18r^2s$		
$=9r^2(r-2s)$	1A	or equivalent
7		1 41011
(b) $9r^3 - 18r^2s - rs^2 + 2s^3$		
$=9r^2(r-2s)-rs^2+2s^3$	1M	for using the res
$=9r^2(r-2s)-s^2(r-2s)$		
$= (r - 2s)(9r^2 - s^2)$	1M	
=(r-2s)(3r+s)(3r-s)	iΑ	or equivalent
	(4)	
	-	
6. (a) $\frac{3-x}{2} > 2x+7$		
3-x>4x+14 $-5x>11$		
	1M	for putting x or
$x < \frac{-11}{5}$	1A	x < -2.2
$x+8 \ge 0$		
$x+8\geq 0$ $x\geq -8$		
Thus, the required range is $-8 \le x < \frac{-11}{5}$.	1A	$-8 \le x < -2.2$
(b) -3		
	1A	
	(4)	
45	1	

Solution	
1. Let x be the marked price of the vase. $= \frac{x}{1+30\%}$ (10x)	1M
$=\$\left(\frac{10x}{13}\right)$	
The selling price of the vase $(1-40\%)x$	1M
$=\$\left(\frac{3x}{5}\right)$	
$\frac{10x}{13} - \frac{3x}{5} = 88$	1M+1A
$\frac{11x}{65} = 88$	
x = 520 Thus, the marked price of the vase is \$520.	1A
Let \$c be the cost of the vase.	
The marked price of the vase	
=(1+30%)c	1M
=\$ 1.3c	
The selling price of the vase	
=(1-40%)(1.3c)	1M
=\$ 0.78 <i>c</i>	
c - 0.78c = 88	1M+1A
0.22c = 88	
c = 400	
The marked price of the vase =1.3(400)	
=\$520	1A
	(5)
8. $ x = 180^{\circ} - \theta $	1A
∠ADE	100
$= x$ $= 180^{\circ} - \theta$	1M
∠BED	
=x	1M
$=180^{\circ}-\theta$	
$y = 180^{\circ} - \angle ADE - \angle BED$	1M
$=180^{\circ} - (180^{\circ} - \theta) - (180^{\circ} - \theta)$	
$=2\theta-180^{\circ}$	1A
	(5)
	1 1

Solution	Mark	s Remarks
Let x minutes be the time required for the car to travel from city P to city Q. then, the time required for the car to travel from city Q to city R is $61-x$) minutes.	1A	
$2\left(\frac{x}{60}\right) + 90\left(\frac{161-x}{60}\right) = 210$	1M+1A+1	M { 1M for changing unit 1M for getting a linear equation in
x = 1890 = 105 us, the car takes 105 minutes to travel from city P to city Q.	1A	й попряв.
72 km/h 72 km/min .2 km/min	1M	
90 km/h		either one
00 km/min 5 km/min		
x minutes and y minutes be the time required for the car to travel from P to city Q and from city Q to city R respectively. we have $x + y = 161$ and $1.2x + 1.5y = 210$. refore, we have $1.2x + 1.5(161 - x) = 210$. ring, we have $x = 105$ and $y = 56$. s, the car takes 105 minutes to travel from city P to city Q.	1A+1A 1M 1A	for getting a linear equation in $_{\it x}$
x hours be the time required for the car to travel from city P to city Q . a, the car takes $\left(\frac{161}{60} - x\right)$ hours to travel from city Q to city R .	1M+1A	1M for changing unit
$+90\left(\frac{161}{60} - x\right) = 210$ 1.75	1A+1M 1A	$1M$ for getting a linear equation in one η
s, the car takes 1.75 hours to travel from city P to city Q . The time required for the car to travel from city P to city Q .		
(00)	K	1M for fraction + 1A for numerator + 1M for changing unit + 1A for denomin
km be the distance between city P and city Q . the distance between city Q and city R is $(210 - y)$ km. $\frac{210 - y}{90} = \frac{161}{60}$ 1M- 26	1A +1A+1M { 1	M for changing unit M for getting a linear equation in one ம்
e time required for the car to travel from city P to city Q 5 hours	1A	
26 e time required for the car to travel from city P to city Q	1A (5)	

	Solution	T v. :	
		Marks	Remarks
$ \begin{array}{c} $		1M 1A	either one
b = 62		1A (3)	
Note that $38-20 =$ (b) Note that $38-20 =$ Therefore, the least price greatest possible $= 62-18$ $= 44$	18 . possible age of the clerks in team Y is 18 . range of the distribution of the ages of the clerks in the section	1M	
# 43 Thus, the claim is di	sagreed.	1A	f.t.
Note that the range of the	es of the clerks in team Y are 18, 19, 38, 38 and 38 of the ages of the clerks in team Y is 20. ages of the clerks in the section	. 1M	
= 62 - 18 = 44 ≠ 43			<u>.</u>
Thus, the claim is d	isagreed.	1A	f.t.
1. (a) (i) 1		1A	
(ii) 8		1A (2)	
(b) (i) 3		1A 1A	
(ii) 19		(2)	
(c) $\frac{0(k) + 1(2) + 2(9)}{k + 2 + 9 + 4}$ $\frac{66}{k + 24} = 2$	$\frac{+3(6)+4(7)}{6+7}=2$	1M	
2k + 48 = 66 $k = 9$		1A (2)	
	48		

	Solution	Marks	Remarks
	Solution	1M	
12 (a)	f(3) = 0	2007-42408-640	
12. (4)	$4(3)(3+1)^2 + a(3) + b = 0$		
	3a+b=-192		
		1M	
	f(-2) = 2b + 165		
	$4(-2)(-2+1)^2 + a(-2) + b = 2b + 165$		
	2a+b=-173		
	Solving, we have $a = -19$ and $b = -135$.	1A (3)	for both corre
(b)	f(x) = 0		
	$4x(x+1)^2 - 19x - 135 = 0$		
	$4x^3 + 8x^2 - 15x - 135 = 0$	1M	for (x 2)(-
	$(x-3)(4x^2+20x+45)=0$	111/1	for $(x-3)(p)$
	$x = 3$ or $4x^2 + 20x + 45 = 0$		
		1M	
	$20^2 - 4(4)(45)$	1	
	= -320		
	< 0 So, the equation $4x^2 + 20x + 45 = 0$ has no real roots.	1M	
	Note that 3 is not an irrational number.	١	C.
	Thus, the claim is disagreed.	1A (4)	f.t.
			8
6.			
	1		
		,	
		1 1	

	Solution			
	ABE = 90°	(give)	Marks	D
1	$DCE = 180^{\circ} - \angle ABE$	(given)	1	Remarks
7	DCE = 90°	(int. $\angle s$, $AB \parallel DC$)		
4	$ABE = \angle DCE$	7		
7	ADE - 1909 - / ARE / ARR		1 1	
1	$BAE = 180^{\circ} - \angle ABE - \angle AEB$	$(\angle sum of \Delta)$		
1	$BAE = 90^{\circ} - \angle AEB$)		
1	$AED = 90^{\circ}$	(given)		
	$CED = 180^{\circ} - \angle AED - \angle AEB$			
	$CED = 90^{\circ} - \angle AEB$	(adj. \angle s on st. line)	1 1	
4	$BAE = \angle CED$			
17	$AEB = \angle CDE$			
A A	ABE ~ ΔECD	$(\angle \operatorname{sum} \operatorname{of} \Delta)$		
Δ	ADE 2202	(AAA)		
M	arking Scheme:			(AA) (equiangular)
	ase 1 Any correct proof with			. 3
	ase 2 Any correct proof with	correct reasons.		
	and a server proof with	out reasons.	2	
(i)	BE		(2)	
, (-)	$=\sqrt{AE^2-AB^2}$			
	$=\sqrt{25^2-15^2}$			
	= 20 cm			
	$\frac{CD}{BE} = \frac{CE}{AB} \qquad \text{(by (a))}$		1	
			1M	for using (a)
	$\frac{CD}{20} = \frac{36}{15}$			using (a)
	CD = 48 cm		1A	
(ii)	The area of $\triangle ADE$		l IA	
(,				
	$= \frac{1}{2}(AB + CD)(BC) - \frac{1}{2}(AB)$	$O(BE) = \frac{1}{C}(CD)(CE)$		
			1M	
	$= \frac{1}{2}(15+48)(20+36) - \frac{1}{2}(15$	$(20) - \frac{1}{2}(48)(36)$		
		2 (15)(25)		
	$= 750 \text{ cm}^2$		1A	
(ii	i) 10			
(11				
	$= \sqrt{BC^2 + (CD - AB)^2}$			
	$=\sqrt{(20+36)^2+(48-15)^2}$			
	=65 cm			
	The shortest distance from	E to AD		
	_ 2(750)	L W AD		
	$=\frac{2(750)}{65}$		1M	
	$=\frac{300}{13}$,
	≈ 23.07692308 cm			
	> 23 cm			
		ng on AD such that the distance		
	between E and F is less that	an 23 cm.	1A	f.t.
	- 10 1000 1111		(6)	
		50	1	I .

W

	Solution	Marks	Remarks
4. (a)	The volume of water in the vessel $= \pi (8^2)(64)$ $= 4.096\pi \text{ cm}^3$	1M 1A (2)	
(b)	Let $h \text{ cm}$ be the depth of water in the vessel. Then, the radius of the water surface is $\frac{h}{3} \text{ cm}$.	1M	
	$\frac{1}{3}\pi \left(\frac{h}{3}\right)^2 h = 4096\pi$ $h^3 = 110592$ $h = 48$ Thus, the depth of water in the vessel is 48 cm %	1M+1A 1A	
	Let $h \text{ cm}$ be the depth of water in the vessel. The capacity of the vessel is $\frac{1}{3}\pi(20)^2(60) \text{ cm}^3$.	1M	(b) ³
	$\frac{1}{3}\pi (20)^2 (60) \left(\frac{h}{60}\right)^3 = 4096\pi$ $h^3 = 110592$ $h = 48$ Thus, the depth of water in the vessel is 48 cm.	1M+1A	1M for $\left(\frac{h}{60}\right)^3$
(c)		(4)	
	The volume of the metal sphere $= \frac{4}{3}\pi (14^{3})$ $= \frac{10976}{3}\pi \text{ cm}^{3}$	1M	
	$< 3.904 \pi \text{ cm}^3$ Thus, the water will not overflow.	1A (3)	f.t.

Solution	Marks	Remarks
The required number		
$= P_8^S$		
= rs = 40 320	1.4	
#40 v= -	1A	
	(1)	
The required number		
$=(P_2^4)(P_6^6)$	1M	
= 8 640	1A	
	(2)	
Let a and r be the 1st term and the common ratio of the sequence		
		Considerana
$ar^2 = 720$ and $ar^3 = 864$.	1M	for either one
Solving we have $a = 500$.	1A	
Thus, the 1st term is 500.	(2)	
	(2)	
Note that $r = 1.2$. $500(1.2^n) + 500(1.2^{2n}) < 5 \times 10^{14}$		
500 (1.2") + 500 (1.2") < 5×10	1M	
$(1.2^n)^2 + (1.2^n) - 10^{12} < 0$		
$\frac{-1 - \sqrt{1^2 - 4(1)(-10^{12})}}{2(1)} < 1.2^n < \frac{-1 + \sqrt{1^2 - 4(1)(-10^{12})}}{2(1)}$		
$\frac{-1}{1-\sqrt{1-\sqrt{1-\sqrt{1-\sqrt{1-\sqrt{1-\sqrt{1-\sqrt{1-\sqrt{1-\sqrt{1$		
((, , , , ,)	1M	
$\log 1.2^n < \log \left \frac{-1 + \sqrt{4 \times 10^{-1} + 1}}{2} \right $	111/1	
2		
$\left(1 + \sqrt{4 \times 10^{12} + 1}\right)$		
$n\log 1.2 < \log \left \frac{-1 + \sqrt{4 \times 10}}{2} \right $		
$\log 1.2^{n} < \log \left(\frac{-1 + \sqrt{4 \times 10^{12} + 1}}{2} \right)$ $n \log 1.2 < \log \left(\frac{-1 + \sqrt{4 \times 10^{12} + 1}}{2} \right)$		
n < 75.77551608	14	
Note that n is an integer.	1A (3)	
Thus, the greatest value of n is 75.		
52	1 1	

		Solution	Marks	Remarks
7. (a)	Ву	sine formula, we have		- William KS
		$\frac{AD}{\Delta ABD} = \frac{AB}{\sin \angle ADB}$		
			1M	
		$\frac{4D}{120^{\circ}} = \frac{60}{\sin(180^{\circ} - 120^{\circ} - 20^{\circ})}$		
	San	2 ≈ 31.92533317 cm		
	AL	2 ≈ 31.9 cm	1A	r.t. 31.9 cm
	2.00		(2)	31.9 cm
(b)	(i)	By cosine formula, we have	` `	
		$\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2(AB)(BC)}$		W.
		2(AB)(BC)	1M	
		$\cos \angle ABC \approx \frac{60^2 + (31.92533317)^2 - 40^2}{2(60)(31.92533317)}$		
		2(60)(31.92533317)		
		∠ABC ≈ 37.99207534°		
		∠ABC ≈ 38.0°	١	
	(ii)	In Figure 2()	1A	r.t. 38.0°
	(11)	Divolet interest (1) at (1) whore D is the		
		foot of the perpendicular from A to BD . Note that the required angle is $\angle APQ$ in Figure 3(b).		
		AP	1M	for identifying the require
		-		1410
		$= AD \sin \angle ADP$	1M	
		≈ 31.92533317 sin(180° –120° – 20°)		
		≈ 20.5212086 cm		į
		$DP^2 = AD^2 - AP^2$		į
		$DP^2 \approx (31.92533317)^2 - (20.5212086)^2$		
		<i>DP</i> ≈ 24.45622407 cm		į
		PQ		į
		$= DP \tan \angle PDQ$		
		≈ (24.45622407) tan 20°		either one
		≈ 8.901337605 cm		į
		$DQ^2 = DP^2 + PQ^2$		i
		$DQ^2 \approx (24.45622407)^2 + (8.901337605)^2$		
		$DQ \approx 26.02577006 \text{ cm}$		
		Note that $\angle ADC = \angle ABC \approx 37.99207534^{\circ}$.		
		By cosine formula, we have		
		$AQ^2 = AD^2 + DQ^2 - 2(AD)(DQ)\cos \angle ADC$		
		$AQ^2 \approx (31.92533317)^2 + (26.02577006)^2 - 2(31.92533317)(26.02577006)\cos 37.99207534^\circ$		
		$AQ \approx 19.67076991 \text{ cm}$		
]	By cosine formula, we have		
		$AP^2 + PQ^2 - AQ^2$		
		$\cos \angle APQ = \frac{AP^2 + PQ^2 - AQ^2}{2(AP)(PQ)}$		
	($\cos \angle APQ \approx \frac{(20.5212086)^2 + (8.901337605)^2 - (19.67076991)^2}{2(20.5212086)(8.901337605)}$		
	100	$\angle APQ \approx 71.91411397^{\circ}$		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	∠APQ ≈ 71.9°		
			1A	r.t. 71.9°
	Т	hus, the required angle is 71.9°.		
			(5)	
		53	I	

	Solution	Moules	P
/		Marks	Remarks
/	Let $f(x) = ax^2 + bx$, where a and b are non-zero constants.	1A	
(8)	Let $f(x) = ax^2 + bx$, where a and b are non-zero constants. So, we have $4a + 2b = 60$ and $9a + 3b = 99$. So, we have $a = 3$ and $b = 24$.	1M	for either substitution
	So, we have $4a + 2b = 60$ and $9a + 3b = 99$. Solving, we have $a = 3$ and $b = 24$. Solving, we have $a = 3x^2 + 24x$.	1A	for both correct
	Solving, we have $u = 3$ and $u = 2 + 3$. Thus, we have $f(x) = 3x^2 + 24x$.	(2)	
		(3)	
	f(x)		
(b)	(i) $\frac{f(x)}{=3x^2 + 24x}$		
	$=3(x^2+8x)$		
	$=3(x^2+8x+16-16)$	1M	
	$-3(x+4)^2-48$		
	Thus, the coordinates of Q are $(-4, -48)$.	1A	
	(ii) (-4, 75)	1M	
	(iii) The slope of QS		
	(iii) The slope of 25 = $\frac{-48 - 0}{-4 - 56}$		
	$=\frac{1}{-4-56}$		
	$=\frac{4}{5}$		
	5		
	The slope of RS		
	$=\frac{75-0}{-4-56}$		
	$=\frac{-5}{4}$		
	7	1M	
	Hence, the product of the slope of QS and the slope of RS is -1	I IVI	
	So, $\angle QSR$ is a right angle. Therefore, QR is a diameter of the circumcircle of $\triangle QRS$.		
	P is the aircumcentre of $\Lambda(R)$.		
	Note that P is the circumcentee of A A . Thus, P is the mid-point of the line segment joining Q and R .	1A	f.t.
	$QS^2 + RS^2$		
	$= ((-4-56)^2 + (-48-0)^2) + ((-4-56)^2 + (75-0)^2)$		
	=15129		
	QR^2		
	$=(-48-75)^2$		
	= 15 129		
		1M	
	Hence, we have $QS^2 + RS^2 = QR^2$.		
	So (OSB is a right angle		
	Therefore, QR is a diameter of the circumcircle of ΔQRS .		
	Note that P is the circumcentre of $\triangle QRS$. Thus, P is the mid-point of the line segment joining Q and R .	1A (5)	f.t.
	Thus, P is the inite-point of the thirty	(3)	
	54		

Solution	Marks	Remarks
	1A	$x^2 + y^2 - 16x - 4y + 68 - 10$
19. (a) The equation of C is $(x-8)^2 + (y-2)^2 = r^2$.		10x-4y+68-12
Putting $y = \frac{kx - 21}{5}$ in $(x - 8)^2 + (y - 2)^2 = r^2$, we have		
$(x-8)^2 + \left(\frac{kx-21}{5} - 2\right)^2 = r^2$	1M	
$(x-8) + (\frac{1}{5})$		
$(k^2 + 25)x^2 + (-62k - 400)x + 2561 - 25r^2 = 0$ Note that L is a tangent to C.		
Note that L is a tangent to L . So, we have $(-62k - 400)^2 - 4(k^2 + 25)(2561 - 25r^2) = 0$.	1M	
So, we have $(-62h^2 - 496k + 961)$	1A	$r^2 = \frac{(8k-31)^2}{k^2+25}$
Thus, we have $r^2 = \frac{64k^2 - 496k + 961}{k^2 + 25}$.	(4)	$k^2 + 25$
(b) (i) Since L passes through D, we have $18k - 5(39) - 21 = 0$.	1M	
Solving, we have $k = 12$.		
By (a), we have $r^2 = \frac{64(12)^2 - 496(12) + 961}{12^2 + 25}$.	1M	for using the result of (a)
Thus, we have $r=5$.	1A	,,
0.0		
(ii) Let G be the centre of C. $\begin{pmatrix} -21 \end{pmatrix}$	1M	
Note that the coordinates of E are $\left(0, \frac{-21}{5}\right)$.		
Also note that G is the in-centre of ΔDEF .	1M	
$DG^2 = (18 - 8)^2 + (39 - 2)^2$	1M	
$DG = \sqrt{1469}$		
$\sin \angle EDG = \frac{r}{DG}$	1M	
		either one
$\sin \angle EDG = \frac{5}{\sqrt{1469}}$		Citilei one
∠ <i>EDG</i> ≈ 7.49585764°		
		eith
$EG^2 = (8-0)^2 + \left(2 + \frac{21}{5}\right)^2$		i
$EG = \frac{\sqrt{2561}}{5}$		
$\sin \angle DEG = \frac{r}{EG}$		
$\sin \angle DEG = \frac{25}{\sqrt{2561}}$		
$\angle DEG \approx 29.60445074^{\circ}$ Note that $\angle EDG = \angle FDG$ and $\angle DEG = \angle FEG$.	1M	for either one
Note that $\angle EDG = \angle FDG$ and $\angle DEG = \angle DFE$		
$=180^{\circ} - (\angle EDG + \angle FDG) - (\angle DEG + \angle FEG)$		
≈ 180° − 2(7.49585764°) − 2(29.60445074°)		
≈ 105.7993832°		
$> 90^{\circ}$ Thus, $\triangle DEF$ is an obtuse-angled triangle.	1A	f.t.
Inus, ADEF is all obtuse-aligned transfer.	(8)	
55	1 1	

Question No.	Key	Question No.	Key
1	D (71)	26	C (40)
1.	B (71)	26.	C (43)
2.	D (80)	27.	A (50)
3.	C (80)	28.	
4.	A (74)	29.	C (78)
5.	A (61)	30.	A (43)
			- (CC)
6.	D (22)	31.	C (66)
7.	D (73)	32.	C (34)
8.	C (51)	33.	D (30)
9.	D (72)	34.	C (35)
10.	B (72)	35.	B (40)
11.	D (67)	36.	A (49)
12.	A (62)	37.	D (44)
13.	C (69)	38.	B (41)
14.	B (42)	39.	B (28)
15.	D (83)	40.	A (20)
	,		
16.	A (39)	41.	D (35)
17.	B (28)	42.	A(51)
18.	B (78)	43.	C (26)
19.	D (24)	44.	B (78)
20.	B (48)	45.	A (51)
	,	,	
21.	C (45)		
22.	B (45)		
23.	B (75)		
24.	A (56)		
25.	D (41)		
	. ,		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.