Kimera Core 使用手册 Ver1.0

Kai1103

码字员: 雷恩

Kimera 玩耍群: 99434356

2015/7/13

1. Kimera Core 简介

1.1. 主控特性

- 1) Kimera Core (以下简称 Core) 大小为 26mm*13mm, 采用了半孔设计。
- 2) 配备了 Atmel mega32u4 芯片, 扩展 IC 为 pca9555。
- 3) 引出了标志 1 到 32, 共 32 个键盘行列引脚, 可任意设置为行信号或列信号。
- 4) 引出了标志 D1 到 D4, 共 4 个指示灯信号引脚, 可以任意设置为常用 指示灯或背光灯信号。
- 5) 引出了USB接口、ISP接口、I2C接口、串行接口、uart接口。

1.2. 硬件介绍

图 1.1 为未焊接任何原件的主控裸板。

图 1.1 未焊接任何元件的主控板

焊接好所有原件可用的主控板:

图 1.2 焊接好的主控板

PCB 采用了更昂贵的半孔设计,方便第三方玩家将 Core 贴焊在自己设计的键盘轴板上。默认设置 1-8 为行, 9-32 为列。D1、D2、D3 分别为 NumLock、CapsLock、ScrollLock 指示灯, D4 为背光灯,以上设置都可以进行自由定义。

下文将对主控板分为两种,直观的讲,焊接需要焊接 Atmel 32u4 芯片(下简称 32u4)的称为第一主控,不焊接 32u4的称为第二主控,两枚主控共同工作时需同时连接 VCC GND SDA SCL 四条信号线。

在 http://gotohell.taobao.com/中可以购买第一主控套件及包含第一主控和第二主控的套件。

如果您购买的是焊接完成的成品,可以跳过 Step1,直接从 Step2 开始阅读。

2. Kimera Core 裸板焊接

拿到焊接套装后,要对裸板进行原件焊接,原件 BOM 如表 1-1 所示。

表 1-1 Kimera Core 焊接 BOM 表

U1	Atmel mega32u4 主控
IC1、IC2	PCA9555 扩展芯片
Y1	16M 晶振
C1	1uf 电容
C2、C3、C4、C5	100nf 电容
R1、R6	10k 电阻
R2、R3	22r 电阻
R4、R5	4.7k 电阻

其中, U1、IC1、IC2 均为 QFN 封装芯片, 焊接时请注意将芯片正面圆形凹点的位置对准 PCB 上有斜角的位置, 如图 1.3 所示。

图 2.1 QFN 芯片和焊盘焊接对应标记

所有电容 Cx 和电阻 Rx 均为 0402 (可兼容 0603 封装),且没有极性,不需要按照某种特定方向焊接。

图 2.2 焊接位置标识

原件位置如下图所示第一主控需要焊接全部元件,第二主控只需焊接 IC1、IC2和 C2-C5 共 6 个元件:

在使用时,**第一主控**的 **A1** 需要连接 GND;**第二主控**的 **A1** 需要连接 VCC。 完成焊接后,我们可以进入下一步操作。

3. Kimera Core 上电测试

将主控和电脑用 USB 线连接(主控上标识了 VCC、D-、D+、GND 四个焊盘的位置)。若焊接无误, 我们在"设备和打印机"可以识别到下图设备:

图 2.3 设备与打印机中 DFU 设备图标

若弹出未识别设备或感觉 Core 上任意元器件无故剧烈发热,则说明焊接过程存在问题,请仔细排查:

- 1) IC 引脚焊锡意外粘连的情况
- 2) 电阻、电容和晶振的引脚虚焊的情况。
- 3) 外侧两条半孔引脚因金属碎屑等杂物产生短路现象的情况。

若显示的 ATm32U4DFU 保持长期稳定(视情况一般为二十至四十分钟) 我们可以确认,焊接过程准确无误,可以进行下一步操作。

4. Kimera Core 裸板焊接

打开*\tkg-toolkit\windows\tool 目录下的 zadig.exe 程序,如图。

图 4.1 zadig 程序界面

点击 Options → List All Devices ,点击 Install WCID Driver 将 ATm32U4DFU 设备的驱动进行更新。至此,我们的 PC 已经做好了对设备进行识别烧录的准备。

5. Kimera Core 固件烧写

打开*\tkg-toolkit\windows 目录下的 setup.bat 程序,进行当前待烧写设

© 2015 Kai1103 All right reserved

备的设定。

当然可以使用**更简单**的直接更改配置文件来完成设备设定,具体方法是:使用系统自带的记事本程序打开\tkg-toolkit\windows\conf 目录下的 default.ini 文件,将以下内容替代原本内容。

```
Name="Kimera"

MCU="atmega32u4"

Firmware="kimera.hex"

Bootloader="atmel_dfu"
```

打开*\tkg-toolkit\windows 目录下的 reflash.bat 程序,对当前待烧写设备进行烧写。

图 5.1 tkg-toolkit 的 reflash 界面

若设备已被电脑识别为 kimera 设备(或其他非 DFU 设备),在烧写前必须将该设备转至 DFU 状态,具体方法为:直接短接 RESET 和 GND 引脚 1 秒左 © 2015 Kai1103 All right reserved

右,等待设备进入 DFU 状态,在设备与打印机中,我们可以看到图 2.3 相同的图标即可。

在 reflash.bat 中输入 Y 表示继续。

图 5.2 烧写成功提示

最后提示 Success!,则说明烧写完成,在设备与打印机中可以看到下图设备:

图 5.3 烧写成功的 Kimera 设备

至此,kimera 的固件烧写完毕,可以使用 AquaKeyTest.exe 等键盘设置软件进行测试,例如短接 1 和 9 引脚,会显示 Esc 键按下;短接 1 和 11 引脚,会显示 F1 键按下,依次类推。

© 2015 Kai1103 All right reserved

版本信息

版本号	说明	变更者	变更日期
v1.0	初稿	雷恩	15/07/13