Scilab Textbook Companion for Mechanics of Structures by S. B. Junnarkar¹

Created by
Varun S S
B.Tech
Others
IIT Bombay
College Teacher
None
Cross-Checked by
K. V. P. Pradeep

July 24, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Mechanics of Structures

Author: S. B. Junnarkar

Publisher: N. Hernandez

Edition: 2

Year: 1957

ISBN: 8185594678

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Simple stresses and strains	8
2	Principal planes and principal stresses	19
3	Impact or shock loading	24
5	Beams and Bending 2	29
6	Beams and bending 3	49
8	Direct and bending stresses	56
9	Columns and struts of uniform section	63
10	Radial pressure cylindrical and spherical shells	71
11	Riveted joints	82
12	Shafts and springs in torsion	91
13	Elements of reinforced concrete	104

List of Scilab Codes

Exa 1.1	Chapter 1 example 1	8
Exa 1.2	Chapter 1 example 2	8
Exa 1.3	Chapter 1 example 3	9
Exa 1.4	Chapter 1 example 4	9
Exa 1.5	Chapter 1 example 5	10
Exa 1.6	Chapter 1 example 6	10
Exa 1.7	Chapter 1 example 7	11
Exa 1.8	Chapter 1 example 8	12
Exa 1.9	Chapter 1 example 9	13
Exa 1.10	Chapter 1 example 10	14
Exa 1.11	Chapter 1 example 11	14
Exa 1.12	Chapter 1 example 12	15
Exa 1.13	Chapter 1 example 13	15
Exa 1.14	Chapter 1 example 14	16
Exa 1.15	Chapter 1 example 15	16
Exa 1.16	Chapter 1 example 16	17
Exa 1.17	Chapter 1 example 17	18
Exa 2.1	Chapter 2 example 1	19
Exa 2.3	Chapter 2 example 3	20
Exa 2.4	Chapter 2 example 4	21
Exa 2.5	Chapter 2 example 5	21
Exa 2.6	Chapter 2 example 6	22
Exa 2.7	Chapter 2 example 7	23
Exa 3.1	Chapter 3 example 1	24
Exa 3.2	Chapter 3 example 2	25
Exa 3.3	Chapter 3 example 3	25
Exa 3.4	Chapter 3 example 4	26
Exa 3.5	Chapter 3 example 5	26

Exa 3.6	Chapter 3 example 6	27
Exa 5.1	Chapter 5 example 1	29
Exa 5.2	Chapter 5 example 2	29
Exa 5.3	Chapter 5 example 3	30
Exa 5.4	Chapter 5 example 4	30
Exa 5.5	Chapter 5 example 5	31
Exa 5.6	Chapter 5 example 6	32
Exa 5.7	Chapter 5 example 7	32
Exa 5.8	Chapter 5 example 8	33
Exa 5.9	Chapter 5 example 9	33
Exa 5.11	Chapter 5 example 11	34
Exa 5.12	Chapter 5 example 12	35
Exa 5.13	Chapter 5 example 13	35
Exa 5.14	Chapter 5 example 14	36
Exa 5.15	Chapter 5 example 15	37
Exa 5.16	Chapter 5 example 16	38
Exa 5.17	Chapter 5 example 17	39
Exa 5.18	Chapter 5 example 18	40
Exa 5.19	Chapter 5 example 19	40
Exa 5.20	Chapter 5 example 20	41
Exa 5.21	Chapter 5 example 21	41
Exa 5.22	Chapter 5 example 22	42
Exa 5.23	Chapter 5 example 23	43
Exa 5.24	Chapter 5 example 24	43
Exa 5.25	Chapter 5 example 25	44
Exa 5.26	Chapter 5 example 26	45
Exa 5.27	Chapter 5 example 27	47
Exa 5.28	Chapter 5 example 28	47
Exa 6.1	Chapter 6 example 1	49
Exa 6.3	Chapter 6 example 3	49
Exa 6.4	Chapter 6 example 4	50
Exa 6.5	Chapter 6 example 5	51
Exa 6.6	Chapter 6 example 6	51
Exa 6.7	Chapter 6 example 7	52
Exa 6.8	Chapter 6 example 8	52
Exa 6.9	Chapter 6 example 9	53
Exa 6.10	Chapter 6 example 10	54
Exa 6 11	Chapter 6 example 11	55

Exa 8.1	Chapter 8 example 1	56
Exa 8.2	Chapter 8 example 2	56
Exa 8.3	Chapter 8 example 3	57
Exa 8.4	Chapter 8 example 4	58
Exa 8.5	Chapter 8 example 5	59
Exa 8.6	Chapter 8 example 6	59
Exa 8.7	Chapter 8 example 7	60
Exa 8.8	Chapter 8 example 8	60
Exa 8.9	Chapter 8 example 9	61
Exa 8.10	Chapter 8 example 10	61
Exa 9.1	Chapter 9 example 1	63
Exa 9.2	Chapter 9 example 2	64
Exa 9.3	Chapter 9 example 3	64
Exa 9.4	Chapter 9 example 4	65
Exa 9.5	Chapter 9 example 5	66
Exa 9.6	Chapter 9 example 6	66
Exa 9.7	Chapter 9 example 7	67
Exa 9.8	Chapter 9 example 8	68
Exa 9.9	Chapter 9 example 9	68
Exa 9.10	Chapter 9 example 10	69
Exa 9.11	Chapter 9 example 11	70
Exa 10.1	Chapter 10 example 1	71
Exa 10.2	Chapter 10 example 2	71
Exa 10.3	Chapter 10 example 3	72
Exa 10.4	Chapter 10 example 4	73
Exa 10.5	Chapter 10 example 5	73
Exa 10.6	Chapter 10 example 6	74
Exa 10.7	Chapter 10 example 7	74
Exa 10.8	Chapter 10 example 8	75
Exa 10.9	Chapter 10 example 9	76
Exa 10.10	Chapter 10 example 10	76
Exa 10.11	Chapter 10 example 11	77
Exa 10.12	Chapter 10 example 12	79
Exa 10.13	Chapter 10 example 13	79
Exa 10.14	Chapter 10 example 14	80
Exa 11.1	Chapter 11 example 1	82
Exa 11.2	Chapter 11 example 2	82
Exa 11.3	Chapter 11 example 3	83

Exa 11.4	Chapter 11 example 4	84
Exa 11.5	Chapter 11 example 5	85
Exa 11.6	Chapter 11 example 6	85
Exa 11.7	Chapter 11 example 7	87
Exa 11.8	Chapter 11 example 8	88
Exa 11.9	Chapter 11 example 9	89
Exa 11.10	Chapter 11 example 10	89
Exa 12.1	Chapter 12 example 1	91
Exa 12.2	Chapter 12 example 2	91
Exa 12.3	Chapter 12 example 3	92
Exa 12.4	Chapter 12 example 4	92
Exa 12.5	Chapter 12 example 5	93
Exa 12.6	Chapter 12 example 6	93
Exa 12.7	Chapter 12 example 7	94
Exa 12.8	Chapter 12 example 8	95
Exa 12.9	Chapter 12 example 9	95
Exa 12.10	Chapter 12 example 10	96
Exa 12.11	Chapter 12 example 11	97
Exa 12.12	Chapter 12 example 12	98
Exa 12.13	Chapter 12 example 13	99
Exa 12.14	Chapter 12 example 14	100
Exa 12.15	Chapter 12 example 15	100
Exa 12.16	Chapter 12 example 16	101
Exa 12.17	Chapter 12 example 17	101
Exa 12.18	Chapter 12 example 18	102
Exa 12.19	Chapter 12 example 19	103
Exa 13.1	Chapter 13 example 1	104
Exa 13.2	Chapter 13 example 2	105
Exa 13.3	Chapter 13 example 3	106
Exa 13.4	Chapter 13 example 4	106
Exa 13.5	Chapter 13 example 5	107
Exa 13.6	Chapter 13 example 6	108
Exa 13.7	Chapter 13 example 7	108

Chapter 1

Simple stresses and strains

Scilab code Exa 1.1 Chapter 1 example 1

```
1 clear all;
2 clc;
3 P = 5.5; // Axial pull in tons
4 E = 13000; // modulus of elasticity tons/in^2
5 l = 120; // length in inches
6 A = %pi/4; // Area of resisting section in^2
7 p = P/A; // Intensity of stress in tons/in^2
8 e = p/E; // strain
9 delta_l = l*e; // elongation of the bar in inches
10 printf('The elongation of the bar is %.4f inch', delta_l);
```

Scilab code Exa 1.2 Chapter 1 example 2

```
1 clear all;
2 clc;
3 s_p = 200; //steam pressure in lb/in^2
4 l = 4; //length in inches
```

Scilab code Exa 1.3 Chapter 1 example 3

```
1 clear all;
2 clc;
3 D = 8; // external diameter in inches
4 d = 6; // internal diameter in inches
5 sigma = 36; // ultimate stress in tons/in^2
6 n = 6; // safety factor
7 A = 0.25*%pi*(D^2 - d^2); // Area of section in in^2
8 P = sigma*A; // crushing load for the column in tons
9 P_safe = P/n ; // safe load in tons
10 printf('Safe load = %d tons', P_safe);
11 // there is an error in the answer given in textbook.
```

Scilab code Exa 1.4 Chapter 1 example 4

```
1 clear all;
2 clc;
3 sigma = 20;//ultimate sheat stress in tons/in^2
4 d = 1/2;//diameter of the hole in inches
5 t = 3/8;//thickness of the plate in inches
6 A = 0.25*%pi*d^2;//area of the cross-section of the punch in^2
7 P = %pi*d*t*sigma;//necessary force in tons
8 sigma_comp = P/A;//compressive stress on the punch
```

```
9 printf('The compressive stress of the punch = %d
     tons/in^2',sigma_comp);
10 //there is an error in the answer given in textbook.
```

Scilab code Exa 1.5 Chapter 1 example 5

```
1 clear all;
2 clc;
3 b = 8; // width in inches
4 t = 3/8; //thickness in inches
5 1 = 20; //length in feets
6 P = 22; //pull in tons
7 E = 13500; //modulus of elasticity in tons/in^2
8 \text{ sigma} = 0.3; // poisson/s ratio}
9 A = b*t;//in in^2
10 V = 1*A*12; //in cub.inch
11 p = P/A; //in tons/in^2
12 e = p/E;
13 delta_1 = e*1*12; //stretch of the bar in inches
14 Lateral_strain = e*sigma ; //lateral strain
15 del_b = b*Lateral_strain; //in inches
16 del_t = t*Lateral_strain; //in inches
17 k = e*(1-2*sigma); //(del_V)/(V)
18 del_V = k*V; //change in volume in cub.inch
19 printf('The change in volume is %.3f cub.inch',del_V
      );
```

Scilab code Exa 1.6 Chapter 1 example 6

```
1 clear all;
2 clc;
3 d = 7/8; // diameter of the bar in inches
4 l = 10; // length in feets
```

```
5 P = 6;; //axial pull in tons
6 E = 13000; //modulus of elsticity in tons/in^2
7 m = 4;
8 A = 0.25*\%pi*d^2; //in in^2
9 \ V = 0.25*\%pi*d^2*l*12; //volume in cub.inches
10 p = P/A; //in tons/in^2
11 e = p/E;
12 del_1 = e*1*12; // stretchof the bar in inches
13 Lateral_strain = e/m ; //lateral strain
14 del_d = Lateral_strain*d;//Contraction in diameter
      in inches
15 printf ('The Contraction in diameter is %f inches',
     del_d);
16 k = e*(1-2/m); //(del_V)/(V)
17 del_V = k*V; //change in volume in cub.inch
18 printf('\n The change in volume is \%.4 \,\mathrm{f} cub. inch',
     del_V);
19 W = 0.5*P*del_l; //work done in stretching the bar
     in in-ton
20 printf('\n The work done in stretching the bar is %
      .4 f in-ton', W);
21 //there is an error in the answer given in textbook.
```

Scilab code Exa 1.7 Chapter 1 example 7

```
1 clear all;
2 clc;
3 L = 24; //length of the bar in ft
4 d1 = 9/8; //diameter of the bar in inches
5 l1 = 6; //in ft
6 d2 = 1; //in inches
7 l2 = 12; //in ft
8 d3 = 5/4; //in inches
9 l3 = L-l1-l2; //in ft
10 P = 10000; //axial compression in lb-wt
```

```
11 E = 28*10^6; //modulus of elasticity in lb/in^2
12 A1 = 0.25*\%pi*d1^2; //in in^2
13 A2 = 0.25*\%pi*d2^2;//in in^2
14 A3 = 0.25*\%pi*d3^2; //in in^2
15 p1 = P/A1; //in lb/in^2
16 \text{ e1} = p1/E;
17 p2 = P/A2; //in lb/in^2
18 \ e2 = p2/E;
19 p3 = P/A3; //in lb/in^2
20 \text{ e3} = p3/E;
21 del_l1 = e1*l1*12; //in inches
22 \text{ del}_12 = e2*12*12; //in inches
23 \text{ del}_13 = e3*13*12; //in inches
24 del_1 = del_11+del_12+del_13; //total change in
      length in ft
25 W = 0.5*P*del_1/12; //energy stored in the bar in ft-
      lbs
26 printf ('Total change in length of the bar is \%.3 f
      inches',del_1);
27 printf('\n The energy stored in the bar is \%.1 f ft-
      lbs',W);
28 //there is an error in the answer given in textbook.
```

Scilab code Exa 1.8 Chapter 1 example 8

```
1 clear all;
2 clc;
3 P = 1200; // axial pull in lb-wt
4 d1 = 1; // diameter of one end in inches
5 d2 = 0.5; // diameter of other end in inches
6 l = 10; // length of the rod in inches
7 E = 14*10^6; // modulus of elsticity in lb/in^2
8 del_l = 4*P*1/(%pi*E*d1*d2); // change in length in inches
9 printf('The change in length of the rod is %.4 f
```

Scilab code Exa 1.9 Chapter 1 example 9

```
1 clear;
2 clc;
3 d = 1; //diameter of the steel bar in inches
4 1 = 12; //length of the steel bar in inches
5 d1 = 3/2; //external diameter in inches
6 d2 = 1; //internal diameter in inches
7 P = 5; //axial pull in tons
8 E_s = 30*10^6; // modulus of elasticity of steel in lb
     /in^2
9 E_b = 14*10^6; //modulus of elasticity of brass in lb
     /in^2
10 A_s = 0.25*\%pi*d^2;//area of the steel section in in
11 A_b = 0.25*\%pi*(d1^2-d2^2); //area of the brass
     section in in 2
12 P_b = (P/((E_s/E_b)*A_s+A_b))*A_b; //load resisted by
      the brass tube in tons
13 P_s = P-P_b; //bal; ance load resisted by the steel
     tube
14 e = (P_b/A_b)*2240/E_b; //strain
15 printf ('The strain e = \%.4 f', e);
16 del_l = e*l ; //extension of the bar in inches
17 printf('\n The extension of the bar = \%.4 f inches',
     del_1);
18 W = 0.5*P*del_l;//work done in stretching in inch-
19 printf('\n The work done in stretching is \%.3 f inch-
     ton', W);
```

Scilab code Exa 1.10 Chapter 1 example 10

```
1 clear;
2 clc;
3 a = 12; //length of each side in inches
4 d = 9/8; // diameter of each reinforced bar in inches
5 r = 3; // distance of centre from the edges in inches
6 \text{ p_c} = 600; //\text{in lb/in}^2
7 n = 18; // modular ration E_s/E_c
8 \text{ A_s} = 4*0.25*\%pi*d^2; //in in^2
9 \text{ A_c} = \text{a^2} - \text{A_s}; // \text{in in^2}
10 p_s = n*p_c; //in lb/in^2
11 P = p_s*A_s+p_c*A_c; //safe central load in lb-wt
12 printf('Safe central load = %d lb-wt',P);
13 printf('\n Of this, the reinforcing bars carry %d lb
      -wt',p_s*A_s);
14
15 //there is an error in the answer given in textbook.
```

Scilab code Exa 1.11 Chapter 1 example 11

```
1 clear;
2 clc;
3 l = 8;//length in feet
4 d = 0.5;//diameter in inches
5 r = 30;//distance between two rods in inches
6 P = 2000;//load in lb-wt
7 E_s = 30*10^6;//modulus of elsticity of steel rod
8 E_b = 16*10^6;//modulus of elsticity of brass rod
9 A_s = 0.25*%pi*d^2;//section area in in^2
10 p_b = P/(A_s*(1+(E_s/E_b)));
11 p_s = (P/A_s) - p_b;
12 P_b = A_s*p_b;
13 P_s = A_s*p_s;
14 printf('P_s = %.1f lb/in^2\n and P_b = %.1f lb/in^2'
```

```
,P_s,P_b);

15 x = r*P_b/P ;//

16 printf('\n x = %.2 f inches',x);
```

Scilab code Exa 1.12 Chapter 1 example 12

Scilab code Exa 1.13 Chapter 1 example 13

```
1 clear;
2 clc;
3 d = 1;//diameter of steel bar in inches
4 d1 = 3/2;//external diameter of brass tube in inches
5 d2 = 1;//internal diameter of brass tube in inches
6 t = 100;//in F
7 alpha_s = 0.0000062;//alpha of steel in "per F"
8 alpha_b = 0.000010;//alpha of brass in "per F"
```

```
9 E_s = 30*10^6; //in lb/in^2
10 E_b = 14*10^6; //in lb/in^2
11 A_s = 0.25*%pi*d^2; //section area of steel bar in in ^2
12 A_b = 0.25*%pi*(d1^2-d2^2); //section area of brass tube in in^2
13 p_b = t*(alpha_b-alpha_s)*E_s/((A_b/A_s)+(E_s/E_b));
14 p_s = (A_b/A_s)*p_b;
15 printf('The stresses induced in each metal are, p_b = %d lb/in^2\n p_s = %d lb/in^2',p_b,p_s);
```

Scilab code Exa 1.14 Chapter 1 example 14

```
1 clear;
2 clc;
3 D = 4; //diameter of the wheel in ft
4 p = 6; //hoop stress in tons/in^2
5 alpha = 0.0000062; //in "per F"
6 E = 13000; //in tons/in^2
7 d = (1/(1+(p/E)))*D*12; //internal diameter in inches
8 t = (D*12-d)/(d*alpha);
9 printf('The least temperature the tube must be heated is, t = %.1 f F',t);
```

Scilab code Exa 1.15 Chapter 1 example 15

```
1 clear;
2 clc;
3 p = 8;//normal stress intensity in tons/in^2
4 theta = 35*%pi/180;//inclination of the section in degrees
5 P = p*cos(theta);//resultant stress intensity in tons/in^2
```

Scilab code Exa 1.16 Chapter 1 example 16

```
1 clear;
2 clc;
3 d = 9/8; //diameter of the steel bar in inches
4 P = 6; // tensile load in tons
5 del_1 = 0.0036 ; //extension of length inches
6 1 = 8; //gauge length in inches
7 del_d = 0.00015; //change in diameter in inches
8 A = 0.25*\%pi*d^2;//section area in in<sup>2</sup>
9 p = P/A; //stress in tons/in<sup>2</sup>
10 e = del_1/1; //strain
11 E = p/e; //modulus of elasticity in tons/in^2
12 LS = del_d/d; //lateral strain
13 PR = LS/e; //poisson's ratio
14 N = E/(2*(1+PR)); // rigidity modulus in tons/in^2
15 K = E/(3*(1-2*PR)); //bulk \mod ulus in tons/in^2
16 printf ('Poisson ratio 1/m = \%.4 \, f', PR);
```

```
17 printf('\n E = %d tons/in^2',E);

18 printf('\n N = %d tons/in^2',N);

19 printf('\n K = %d tons/in^2',K);

20 

21 //there is an error in the answer given in textbook.
```

Scilab code Exa 1.17 Chapter 1 example 17

```
1 clear;
2 clc;
3 N = 2640; // \text{rigidity modulus in tons/in}^2
4 d = 3/8; //diameter of the rod in inches
5 P = 1/2; //axial pull in tons
6 del_d = 0.000078; //change in diameter in inches
7 A = 0.25*\%pi*d^2;//section area in in 2
8 p = P/A ; //stress tons/in^2
9 LS = del_d/d; //lateral strain
10 m = p/(LS*2*N) - 1;
11 E = 2*N*(1 + 1/m); // modulus of elasticity in ton/in
12 PR = 1/m; //poisson's ratio
13 printf ('Poisson ratio 1/m = \%.3 f', PR);
14 printf('\n E = \%d ton/in^2',E);
15
16 //there is an error in the answer given in textbook.
```

Chapter 2

Principal planes and principal stresses

Scilab code Exa 2.1 Chapter 2 example 1

```
1 clear;
2 clc;
3 p_1 = 5;//principal stress in tons/in^2
4 p_2 = 5/2; //principal stress in tons/in<sup>2</sup>
5 theta = 50*\%pi/180; //angle in degrees
6 p_n = p_1*cos(theta)^2+p_2*sin(theta)^2;//normal
      stress intensity
7 p_t = (p_1-p_2)*sin(theta)*cos(theta); //tangential
      stress intensity
8 p = sqrt((p_1*cos(theta))^2+(p_2*sin(theta))^2);//
     resultant intensity of stress
9 alpha = atan((p_2*sin(theta))/(p_1*cos(theta))); //in
      radians
10 alpha = alpha*180/%pi; //in degrees
11 printf('Normal stress intensity p_n = \%.2 f tons/in^2
      ',p_n);
12 printf('\n Tangential stress intensity p_t = \%.2 f
      tons/in^2',p_t);
13 printf('\n Resultant stress intensity p = \%.2 f tons/
```

```
in^2',p);  
14 printf('\n angle alpha p_n = \%.2f degrees',alpha);  
15  
16 //there is an error in the answer given in text book
```

Scilab code Exa 2.3 Chapter 2 example 3

```
1 clear;
2 \text{ clc};
3 d = 3/4 ; //inches
4 P = 2; //tons
5 \ Q = 0.5; //tons
6 m = 4;
7 A = 0.25*\%pi*d^2; //in^2
8 p = P/A; //tons/in^2
9 q = Q/A; //tons/in^2
10 theta = 0.5*atan(2*q/p); //radians
11 theta1 = theta*180/%pi;//degrees
12 theta2 = theta1+90; // degrees
13 printf ('The inclination of principal planes to the
       axis of the bolt will be \%.2f degress and \%.2f
      degrees respectively', theta1,180-theta2);
14 printf('\n The inclination of maximum shear planes
      to the axis of the bolt will be \%.2f degress and
      \%.2 \, f degrees respectively', theta1+45,180-theta2
      -45);
15 p_1 = 0.5*p+sqrt(0.25*p^2+q^2); //tons/in^2
16 p_2 = 0.5*p-sqrt(0.25*p^2+q^2); //tons/in^2
17 p_{max} = 0.5*(p_1-p_2); //tons/in^2
18 p_s = p_1 - (p_2/m); //tons/in^2
19 printf('\n The principal stresse are given by p_1 = 1
      \%.2 \text{ f} \quad \text{tons/in} \quad 2., \text{tensile} \quad \text{p} \quad 2 = \%.2 \text{ f} \quad \text{tons/in} \quad 2 \setminus \text{n}
         p_2 = \%.2 f tons/in^2 ., compressive', p_1, p_2, -
20 printf('\n Maximum shear stress is p_max = \%.2 f tons
```

```
/in^2',p_max);
21 printf('\n The stress which acting alone will produce the same maximum strain is given by, %.2f tons/in^2',p_s);
22  
23 //there is an error in the answer given in text book
```

Scilab code Exa 2.4 Chapter 2 example 4

```
1 clear;
2 clc;
3 q = 2; //tons/in^2
4 p = 5; // tons / in^2
5 \text{ p_dash} = 2; //tons/in^2
6 theta = 0.5*atan(2*q/(p-p_dash)); //radians
7 theta1 = theta*180/%pi;//degrees
8 theta2 = theta1+90; // degrees
9 p_1 = 0.5*(p+p_dash)+sqrt(q^2 + 0.25*(p-p_dash)^2);
     // tons/in^2
10 p_2 = 0.5*(p+p_dash)-sqrt(q^2 + 0.25*(p-p_dash)^2);
      // tons/in^2
11 q_max = 0.5*(p_1-p_2); //tons/in^2
12 printf ('The principal stresses are p_1 = \%d tons/in
      ^2 ., tensile \n p<sub>-2</sub> = \%d tons/in ^2., tensile ',p<sub>-1</sub>
      ,p_2);
13 printf('\n The maximum shear stress is %.1f tons/in
      \hat{\,} 2., the planes offering it being inclined at \%.2
      f degrees and %.2f degrees \n to the plane having
       the normal stress intensity of %d tons/in^2.',
      q_{max}, theta1+45, theta2+45, p);
14 //there is an error in the answer given in text book
```

Scilab code Exa 2.5 Chapter 2 example 5

```
1 clear;
2 clc;
3 \text{ p_res} = 6; // tons/in^2
4 p_dash = 4; //tons/in^2
5 theta = 30*\%pi/180; //degrees
6 p_n = 4; //tons/in^2
7 p = p_res*cos(theta); //tons/in^2
8 q = p_res*sin(theta); //tons/in^2
9 L = 2*q/(p-p_dash);
10 theta = 0.5*atan(2*q/(p-p_dash));
11 theta1 = theta*180/%pi; // degrees
12 theta2 = theta1+90; // degrees
13 p_1 = 0.5*(p+p_dash)+sqrt(q^2 + 0.25*(p-p_dash)^2);
      // tons/in^2
14 p_2 = 0.5*(p+p_dash)-sqrt(q^2 + 0.25*(p-p_dash)^2);
      // tons/in^2
15 p_{max} = 0.5*(p_1-p_2); //tons/in^2
16 printf ('Theta1 = \%.2 \,\mathrm{f} degrees and Theta2 = \%.2 \,\mathrm{f}
      degrees', theta1, theta2);
17 printf('\n p_1 = \%.2 f tons/in^2., tensile\n p_2 = \%.2
      f tons/in^2., tensile',p_1,p_2);
18 printf ('\n The maximum shear intensity will be \%.2 f
      tons/in^2 across the planes of maximum shear.',
      p_max);
```

Scilab code Exa 2.6 Chapter 2 example 6

```
1 clear;
2 clc;
3 p_1 = 7; //tons/in^2
4 p_2 = 4; //tons/in^2
5 p_3 = 3; //tons/in^2
6 m = 4;
7 E = 13000; //tons/in^2
8 e_1 = (p_1/E) + (p_2/(m*E)) - (p_3/(m*E));
```

Scilab code Exa 2.7 Chapter 2 example 7

```
1 clear;
2 clc;
3 a = 2; //inches
4 l = 6; //inches
5 E = 13000; //tons/In^2
6 m = 1/0.3;
7 P = 20; //tons
8 p_1 = P/a^2; //tons/in^2
9 p_2 = p_1/(2*(m-1)); //tons/in^2
10 e_1 = (5-0.6*p_2)/E; //tons/in^2
11 del_l = e_1*l; //inches
12 printf('The contraction in the length del_l = %.5 f inches', del_l);
```

Chapter 3

Impact or shock loading

Scilab code Exa 3.1 Chapter 3 example 1

```
1 clear;
2 clc;
3 d = 3/2; //inches
4 1 = 10;; //feet
5 P = 8; //tons
6 E = 13500; //tons/in^2
7 A = 0.25*\%pi*d^2; //in^2
8 p = 2*P/A; // tons/in^2
9 e = p/E;
10 del_l = e*1*12; //inches
11 W = P*del_1; //inch-ton
12 printf ('The maximum instantaneous stress produced is
      p = \%.2 f tons/in^2', p);
13 printf('\n The corresponding strain is e = \%.6 f \n
      del_l = \%.2 f inches', e, del_l);
14 printf('\n The work done on the rod and stored by it
       is \%.2 f inch-ton.', W);
15
16 //there is an error in the answer given in text book
```

Scilab code Exa 3.2 Chapter 3 example 2

```
1 clear;
2 clc;
3 1 = 6; // feet
4 d = 1; //inches
5 h = 4; //inches
6 E = 30*10^6; //lb/in^2
7 A = 0.25*\%pi*d^2; //in^2
8 P = 50; //lb
9 p = (P/A) + sqrt((P^2/A^2) + (2*E*P*h)/(A*1*12));
10 e = p/E;
11 del_l = e*1*12//inches
12 printf ('Maximum instantaneous stress produced is p =
      %d lb/in^2',p);
13 printf('\n Maximum instantaneous extension produced
      is del_l = \%.3 f lb/in^2', del_l);
14
15 //there is an error in the answer given in text book
```

Scilab code Exa 3.3 Chapter 3 example 3

```
1 clear;
2 clc;
3 l = 10; // feet
4 d = 5/4; // inches
5 p = 8; // tons / in ^2
6 E = 13000; // tons / in ^2
7 A = 0.25*%pi*d^2; // in ^2
8 e = p/E;
9 del_l = e*l*12; // inches
10 W = 0.5*p^2*A*l*12/E; // inch—ton
```

```
11 h = W*10-del_l; //inches
12 printf('Instantaneous elongation is del_l = %.3f
    inches',del_l);
13 printf('\n Height of the drop is h = %.2f inches',h)
   ;
```

Scilab code Exa 3.4 Chapter 3 example 4

```
1 clear;
2 clc;
3 \quad w = 4; //tons
4 v = 2; // miles per hour
5 1 = 150; //feet
6 d = 3/2; //inches
7 E = 13000; // tons/in^2
8 g = 32; // ft/sec^2
9 A = 0.25*\%pi*d^2; // in^2
10 KE = w*(v*17.6)^2/(2*g*12);// inch-tons
11 p = sqrt(KE*(2*E)/(A*1*12)); // tons/in^2
12 del_1 = p*1*12/E; // inches
13 printf ('Maximum instantaneous stress produced is p =
      \%.2 f tons/in^2',p);
14 printf('\n Maximum instantaneous extension produced
      is del_l = \%d inch', del_l;
```

Scilab code Exa 3.5 Chapter 3 example 5

```
1 clear;
2 clc;
3 d = 2; //inches
4 l = 8; //feet
5 U = 50; // ft-lbs
6 E = 28*10^6; // lb/in^2
```

```
7  V = 0.25*%pi*d^2*l*12; // in^3
8  p = sqrt(2*U*12*E/V); // lb/in^2
9  e = p/E;
10  del_l = e*l*12; // inches
11  printf('Maximum instantaneous stress produced is p = %d lb/in^2',p);
12  printf('\n Maximum instantaneous extension produced is del_l = %.4 f inches',del_l);
13  //there is an error in the answer given in text book
```

Scilab code Exa 3.6 Chapter 3 example 6

```
1 clear;
2 clc;
3 \ 1 = 12; // feet
4 d1_A = 1; //inch
5 d2_A = 2; //inches
6 \ 11_A = 4; //inches
7 \ 12_A = 8; //inches
8 d1_B = 1; //inch
9 	ext{ d2_B} = 2; // inches
10 11_B = 8; // inches
11 12_B = 4; // inches
12 p_A = 15/2; // tons/in^2
13 p_B = sqrt((2/3)*p_A^2); // tons/in^2
14 \text{ r1} = (9*\%pi/8)/(3*\%pi/4); // \text{ratio of energies if both}
       bars are allowed to reach the proof stress
15 \ V_A = 0.25*\%pi*d1_A^2*l1_A+ 0.25*\%pi*d2_A^2*l2_A; //
       in^3
16 \text{ V}_B = 0.25 * \text{pi} * d1_B^2 * 11_B + 0.25 * \text{pi} * d2_B^2 * 12_B; //
17 r2 = ((3/16)*p_B^2)/((1/12)*p_B^2);//ratio of
      enrgies
18 printf ('Maximum instantaneous stress produced is p_B
       = \%.2 f tons/in^2', p_B);
```

- 19 printf('\n Ratio of energies stored if both bars are allowed to reach the proof stress is r1 = %.2f', r1);
- 20 printf('\n Ratio of energies stored at the same stress per unit volume, is r2 = %.2 f',r2);

Chapter 5

Beams and Bending 2

Scilab code Exa 5.1 Chapter 5 example 1

```
1 clear;
2 clc;
3 b = 6; // inches
4 t = 1/2; // inch
5 R = 40; // feet
6 E = 13000; // tons/in^2
7 y = t/2; // inch
8 f = (E/(R*12))*(y); // tons/in^2
9 printf('The maximum intensity of stress induced is f = %.2 f tons/in^2', f);
```

Scilab code Exa 5.2 Chapter 5 example 2

```
1 clear;
2 clc;
3 d = 14; // inches
4 I = 442.57; //inch units
5 f = 8; // tons/in^2
```

Scilab code Exa 5.3 Chapter 5 example 3

```
1 clear;
2 clc;
3 d = 16; // inches
4 I = 618; // inch units
5 1 = 24; // feet
6 f = 15/2; // tons/in^2
7 Z = I/(d/2); // inch-units
8 \text{ M_r} = f*Z; // ton-inches
9 // If the load is uniformly spread over its span, BM
     = W*1/8
10 W1 = 8*M_r/(12*1); //tons
11 //If the load is concentrated at the centre, BM = W*
      1/4
12 W2 = 4*M_r/(12*1); //tons
13 printf('If the load is uniformly spread over its
      span, then W is given by \n W = \%.1 f \tons \n = \%
      .3 f ton per foot run', W1, W1/1);
14 printf('\n If the load is concentrated at the centre
      , then W is given by \n W = \%.2 \, f \, \text{tons',W2};
```

Scilab code Exa 5.4 Chapter 5 example 4

```
1 clear;
```

```
2 clc;
3 d = 20; // inches
4 I = 1673; // inch units
5 W = 3/4; // ton per foot run
6 f = 8; // tons/in^2
7 Z = I/(d/2); // inch-units
8 M_r = f*Z; // ton-inches
9 l = sqrt(M_r*32/(3*12)); // feet
10 printf('The maximum permissible span for this beam is l = %.2 f feet', l);
```

Scilab code Exa 5.5 Chapter 5 example 5

```
1 clear;
2 clc;
3 function [M,f]=func(W,1,d,b,Z)
       M = 0.5*W*d - (W/1)*d*b;
       f = M*12/Z;
6 endfunction
7 b = 6;// inches
8 d = 12; // inches
9 1 = 16; // feet
10 W = 6000; // lb-wt
11 Z = (1/6)*b*d^2;
12 d1 = 2; // feet
13 d2 = 4; // feet
14 d3 = 6; // feet
15 \ d4 = 8; // feet
16 \ b1 = 1// feet
17 b2 = 2; // feet
18 b3 = 3;// feet
19 b4 = 4; // feet
20 [M2,f2] = func(W,1,d1,b1,Z);
21 [M4,f4] = func(W,1,d2,b2,Z);
22 [M6, f6] = func(W, 1, d3, b3, Z);
```

```
23 [M8,f8] = func(W,1,d4,b4,Z);
24 printf('At %d feet,M2 = %d lb-feet and f2 = %.1f lb/
    in^2\n At %d feet,M4 = %d lb-feet and f4 = %d lb/
    in^2 \n At %d feet,M4 = %d lb-feet and f6 = %.1f
    lb/in^2\n At %d feet,M4 = %d lb-feet and f8 = %d
    lb/in^2\n',d1,M2,f2,d2,M4,f4,d3,M6,f6,d4,M8,f8);
```

Scilab code Exa 5.6 Chapter 5 example 6

```
1 clear;
2 clc;
3 w = 160; // lb. per sq. foot
4 b = 3; // inches
5 d = 9; // inches
6 l = 15; // feet
7 f = 1200; // lb. per sq. inch
8 Z = (1/6)*b*d^2; // in^3
9 M_r = f*Z; // lb-inches
10 x = M_r/(w*l^2*12/8); // feet
11 printf('x = %.1 f feet',x);
12
13 //The answer is correct only, but it is approximated in the text book
```

Scilab code Exa 5.7 Chapter 5 example 7

```
1 clear;
2 clc;
3 1 = 20; // feet
4 b = 9; // inches
5 h = 10; // feet
6 w = 120; // lb. per cub. foot
7 f = 1100; // lb/in^2
```

```
8 W = w*(3/4)*l*h;// lb-wt
9 BM_max = W*l*12/8;// lb-inches
10 //assumnig d = 2b
11 b = (6*BM_max/(f*4))^(1/3);// inches
12 d = 2*b;// inches
13 printf('b = %.2f inches\n d = %.2f inches',b,d);
14 printf('\n A section %d X %d will therfore do.',b,d);
;
```

Scilab code Exa 5.8 Chapter 5 example 8

```
1 clear;
2 clc;
3 B = 5; // inches
4 D = 12; // inches
5 t1 = 0.55; // inches
6 	 t2 = 0.35; // inches
7 f = 15/2; // tons/in^2
8 \ 1 = 16; // feet
9 b = B-t2; // inches
10 d = D-2*t1; // inches
11 I_xx = (B*D^3 - b*d^3)/12; // in^4
12 \ Z = I_xx/6; // in^3
13 M_r = f*Z; // ton-inches
14 W = M_r/(1*12/8); // tons
15 w = W/l; // ton per foot run
16 printf ('W = \%.2 \, \text{f} \, \text{tons} \, \text{n} \, \text{w} = \%.2 \, \text{f} \, \text{ton per foot run', W}
       , w);
```

Scilab code Exa 5.9 Chapter 5 example 9

```
1 clear;
2 clc;
```

```
3 D = 19.5; // inches
4 d = 18; // inches
5 \ 1 = 30; // feet
6 \text{ t1} = 3/4; // \text{ inch}
7 \text{ rho1} = 450; // \text{ lb. per cub. foot}
8 \text{ rho2} = 62.5; // \text{ lb. per cub. foot}
9 A = 0.25*\%pi*(D^2 - d^2);// sq. in
10 DW = rho1*1*A/144; // lb-wt
11 WW = rho2*0.25*\%pi*(D-d)^2*1; // lb-wt
12 W = DW + WW; // lb - wt
13 BM_max = W*1*0.0004467202*12/8; // ton-inches
14 I_xx = (\%pi/64)*(D^4 - d^4); // in^4
15 Z_x = I_x /(0.5*d+t1); // ton/in^2
16 f = BM_max/Z_xx; // ton/in^2
17 printf ('The maximum stress f = \%.3 f \cdot ton/in^2',f);
18
19 //there is an error in the answer given in text book
```

Scilab code Exa 5.11 Chapter 5 example 11

```
1 clear;
2 clc;
3 b = 6; // inches
4 d = 12; // inches
5 t1 = 7/8; // inch
6 t2 = 1/2; // inch
7 I_xx = (1/12)*(b*d^3 - (b-t2)*(d-2*t1)^3); // in^4
8 Z1 = I_xx/b; // in ^3
9 A = 2*b*t1 + 0.5*(d-2*t1); // in^2
10 b = sqrt(A/2); // inches
11 d = 2*b; // inches
12 Z2 = (1/6)*b*d^2; // in^3
13 k = Z1/Z2;
14 printf('The ratio of strengths Z1/Z2 = %.2f', k);
15
```

Scilab code Exa 5.12 Chapter 5 example 12

```
1 clear;
2 clc;
3 A = 15.625; // in^2
4 Z1 = 61.75; // in^3
5 Z2 = 14.63; // in^3
6 d = sqrt(4*A/%pi); // inches
7 Z3 = (%pi/32)*d^3; // in^3
8 R1 = Z1/Z3;
9 R2 = Z2/Z3;
10 printf('If the strength of the solid circular section is taken as unity,\n that of the rectangular section is %.2 f and of the I-section it is %.2 f.',R2,R1);
```

Scilab code Exa 5.13 Chapter 5 example 13

```
1 clear;
2 clc;
3 D = 8; // inches
4 B = 3; // inches
5 t1 = 1/2; // inch
6 t2 = 3/8; // inch
7 b = B-t2; // inches
8 d = D-2*t1; // inches
9 a1 = t1*B; // in^2
10 x1 = 0.5*B; // inches
11 a2 = t2*(D-2*t1); // in^2
12 x2 = 0.5*t2; // inches
13 a3 = B*t1; // in^2
```

Scilab code Exa 5.14 Chapter 5 example 14

```
1 clear;
2 clc;
3 b = 6; // inches
4 d = 4; // inches
5 t = 5/8; // inch
6 \text{ a1} = d*t; // in^2
7 \text{ y1} = d/2; // inches
8 	 a2 = (b-t)*t; // in^2
9 y2 = t/2; // inch
10 a = a1+a2;// in^2
11 J = (a1*y1+a2*y2)/(a1+a2); // inches
12 I_AB = (1/3)*t*d^3 + (1/3)*(b-t)*t^3; // in^4
13 I_xx = I_AB - a*J^2; // in^4
I_{yy} = (1/12)*t*b^3 + (1/12)*(d-t)*t^3; // in^4
15 printf('The position of the c.g is J = \%.2f inches',
16 printf('\n I_xx = \%.2 f in \(^4\\n I_yy = \%.2 f in \(^4\', I_xx\)
      ,I_yy);
17
18
```

Scilab code Exa 5.15 Chapter 5 example 15

```
1 clear;
2 clc;
3 b = 5; // inches
4 d = 4; // inches
5 t = 1/2; // inches
6 	 a1 = b*t; // in^2
7 \text{ x1} = t/2; // inches
8 y1 = b/2; // inches
9 	 a2 = (d-t)*t; // in^2
10 y2 = t/2; // inch
11 x2 = t + 0.5*(d-t); // inches
12 x_{bar} = (a1*x1+a2*x2)/(a1+a2); // inches
13 y_bar = (a1*y1+a2*y2)/(a1+a2); // inches
14 I_AB = (1/3)*t*b^3 + (1/3)*(d-t)*t^3; // in^4
15 I_xx = I_AB - (a1+a2)*y_bar^2; // in^4
16 I_yy = (1/3)*t*d^3 + (1/3)*(b-t)*t^3 - (a1+a2)*x_bar
      ^2; // in ^4
17 printf('The position of c.g is x_bar = \%.3f inches,
      y_bar = \%.2 f inches', x_bar, y_bar);
```

Scilab code Exa 5.16 Chapter 5 example 16

```
1 clear;
2 clc;
3 b1 = 6; //inches
4 d1 = 1; //inch
5 b2 = 9; //inches
6 d2 = 1; //inch
7 b3 = 10; //inches
8 d3 = 2; //inch
9 a1 = b3*d3;// in^2
10 y1 = d3/2; // inches
11 a2 = b2*d2;// in^2
12 y2 = d3 + b2/2; // inches
13 a3 = b1*d1; // in^2
14 \text{ y3} = b2+d3+d1/2; // inches
15 y_bar = (a1*y1+a2*y2+a3*y3)/(a1+a2+a3); //inches
16 I_AB = (1/3)*b3*d3^3 + (1/12)*d2*b2^3 +b2*(d3+b2/2)
      ^2 + (1/12)*b1*d1^3 + b1*(b2+d3+d1/2)^2; // in^4
```

```
17 I_xx = I_AB - (a1+a2+a3)*y_bar^2; // in^4
18 I_{yy} = (1/12)*(d3*b3^3 + b2*d2^3 + d1*b1^3); // in^4
19 printf ('The c.g of the section is y_bar = \%.3 f
      inches',y_bar);
20 printf('\n I_xx = \%.2 f in ^4\n I_yy = \%.2 f in ^4', I_xx
      , I_yy);
21
22 //Example 16(a)
23 \ 1 = 20; // feet
24 \text{ y_t = y_bar;}// inches
y_c = d1+b2+d3-y_t; // inches
26 	 f_t = 1.5; // tons/in^2
27 f_c = y_c*f_t/y_t; // tons/in^2
28 M_r = f_c*I_xx/y_c; // ton-inches
29 W = M_r*8/(1*12); // tons
30 w = W/1; // ton per foot run
31 printf('\n\n Load required is w = \%.2f ton per foot
       run',w);
```

Scilab code Exa 5.17 Chapter 5 example 17

```
1 clear;
2 clc;
3 b = 12; // inches
4 d = 6; // inches
5 h = 14; // inches
6 t = 1/2; // inch
7 A = 12.94; // in^2
8 //section moment of inertia
9 I_xx_s = 315.3; // in^4
10 I_yy_s = 22.27; // in^4
11
12 I_xx = 2*I_xx_s + 2*((1/12)*h*(2*t)^3 + h*2*t*(d+t)^2); // in^4
13 I_yy = 2*(I_yy_s + A*(d/2)^2) + 2*((1/12)*2*t*h^3);
```

```
// in ^4 14 printf('I_xx = \%.2 f in ^4 n I_yy = \%.2 f in ^4', I_xx, I_yy);
```

Scilab code Exa 5.18 Chapter 5 example 18

```
1 clear;
2 clc;
3 b = 15; // inches
4 d = 15/2; // inches
5 h = 16; // inches
6 t = 1/2; // inch
7 P = 0.935; // inches
8 A = 12.33; // in^2
9 //section moment of inertia
10 I_xx_s = 377; // in^4
11 I_{yy}s = 14.55; // in^4
12
13 I_x = 2*I_x = 2*(1/12)*h*(2*t)^3 + h*2*t*(d+t)
      ^2);// in ^4
14 I_yy = 2*(I_yy_s + A*(d/2 + P)^2) + 2*((1/12)*2*t*h
      ^3);// in ^4
15 printf('I_xx = \%.2 f in^4 n I_yy = \%.2 f in^4', I_xx,
      I_yy);
```

Scilab code Exa 5.19 Chapter 5 example 19

```
1 clear;
2 clc;
3 b1 = 16; // inches
4 d1 = 6; // inches
5 b2 = 9; // inches
6 d2 = 7; // inches
```

```
7 A = 14.71; // in^2
8 I_xx1 = 618.09; // in^4
9 I_yy1 = 22.47; // in^4
10 I_xx2 = 208.13; // in^4
11 I_yy2 = 40.17; // in^4
12 I_xx = I_xx1 + 2*I_yy2; // in^4
13 I_yy = I_yy1 + 2*(I_xx2 + A*(b2/2 + 0.5*0.4)^2); // in^4
14 k_xx = sqrt(I_xx/(3*A)); // inches
15 k_yy = sqrt(I_yy/(3*A)); // inches
16 printf('I_xx = %.2f in^4\n I_yy = %.2f in^4\n k_xx = %.2f inches\n k_yy = %.2f inches', I_xx, I_yy, k_xx, k_yy);
```

Scilab code Exa 5.20 Chapter 5 example 20

```
1 clear;
2 clc;
3 b1 = 7/2; // inches
4 d1 = 7/2; // inches
5 t1 = 3/8; // inches
6 l = 18; // inches
7 I_xx1 = 2.80; // in^4
8 I_yy1 = 2.80; // in^4
9 J = 1; // inch
10 A = 2.49; // in^2
11 I_xx = 4*(I_xx1 + A*(1/2 - J)^2); // in^4
12 k_xx = sqrt(I_xx/(4*A)); // inches
13 printf('I_xx = %.2 f in^4\n k_xx = %.1 f inches', I_xx, k_xx);
```

Scilab code Exa 5.21 Chapter 5 example 21

```
1 clear;
2 clc;
3 b1 = 12; // inches
4 d1 = 4; // inches
5 A = 9.21; // in^2
6 I_xx1 = 200.1; // in^4
7 P = 1.055; // inches
8 I_yy1 = 12.12; // in^4
9 I_xx = 2*I_xx1;
10 // for equal strength I_xx = I_yy
11 x = 2*(sqrt(((I_xx/2)-I_yy1)/A) - P); // in^4
12 printf('x = %.2 f inches',x);
13
14 // answer is corrct only, but it is approximated in the text book.
```

Scilab code Exa 5.22 Chapter 5 example 22

```
1 clear;
2 clc;
3 \ d = 10; // inches
4 b = 8; // inches
5 t1 = 1; // inch
6 	 t2 = 0.6; // inch
7 I = (1/12)*(b*d^3 - (b-t^2)*b^3); // in^4
8 //(i) Resistance to M
9 R1 = integrate('(t2/I)*y^2','y',-4,4);
10 //(ii) Resistance to F
11 R2 = integrate((4/I)*(25-y^2), y', 4,5);
12 printf ('The moment of resistance offered by the
      flanges is %.3fM. The flanges take up %.1f
     percentage of the B.M.,\n the web resisting only
     \%.1f percentage of the B.M', 1-R1, (1-R1)*100, R1
13 printf('\n The shear borne by the web is %.4fF. The
```

```
web thus takes up \%.2\,\mathrm{f} percentage of the shear force.,\n the flanges resisting only \%.2\,\mathrm{f} percentage of the shear force',(1-2*R2),(1-2*R2)*100,2*R2*100);
```

Scilab code Exa 5.23 Chapter 5 example 23

Scilab code Exa 5.24 Chapter 5 example 24

```
1 clear;
2 clc;
3 b = 4; // inches
4 d = 13/2; // inches
5 t = 1/2; // inch
6 a = 4; // inches
7 F = 10; // tons
8 a1 = b*t; // in^2
9 y1 = t/2; // inch
10 a2 = (d-t)*t; // in^2
```

```
11  y2 = t+0.5*(d-t); // inches
12  y_bar = (a1*y1+a2*y2)/(a1+a2); // inches
13  I_AB = (1/3)*b*t^3 + (1/12)*t*(d-t)^3 + (b-2*t)*(b-t)^2; // in^4
14  I_xx = I_AB - (a1+a2)*y_bar^2; // in^4
15  q = (F/(b*I_xx))*b*t*(y_bar-0.5*t); // ton/in^2
16  q_max = (F/(t*I_xx))*(b*t*(y_bar-0.5*t) + 0.5*t*(y_bar-t)*(y_bar-t)); // tons/in^2
17  printf('The maximum intensity of shear stress at the N.A is q_max = %.2 f tons/in^2', q_max);
```

Scilab code Exa 5.25 Chapter 5 example 25

```
1 clear;
2 clc;
3 function [p1, p2,theta] = func(p,q)
       p1 = 0.5*p + sqrt(q^2 + 0.25*p^2);
       p2 = 0.5*p - sqrt(q^2 + 0.25*p^2);
       theta = 0.5*atan(2*q/p) * 180/%pi;
7 endfunction
8 b = 5; // inches
9 d = 12; // inches
10 F = 4800 ; // lb - wt
11 M = 192000; // lb-inches
12 I = (1/12)*b*d^3; // in^4
13
14 //At 6 inches above the N.A.
15 p6 = M*6/I; // lb/in^2
16 \quad q6 = 0;
[p1_6, p2_6, theta6] = func(p6, q6);
18
19 //At 4 inches above the N.A.
20 p4 = M*4/I; // lb/in^2
21 	 q4 = (F/(I*b))*b*(0.5*d-4)*b;
22 [p1_4, p2_4, theta4] = func(p4, q4);
```

```
23
24 //At 2 inches above the N.A
25 p2 = M*2/I; // lb/in^2
26 	 q2 = (F/(I*b))*b*(0.5*d-2)*4;
27 [p1_2, p2_2, theta2] = func(p2, q2);
28
29 //At the N.A
30 p = 0; //
31 q = F*b*0.5^3*d^2/(I*b); // lb/in^2
32 \text{ p1} = q; // lb/in^2
33 p2 = -q; // lb/in^2
34
35 printf ('At 6 inches above the N.A, p1 = \%d lb/in^2.,
       compressive, and p2 = \%d, p1_6, p2_6;
36 printf('\n At 4 inches above the N.A, p1 = \%.1 f lb/
      in ^2., compressive, and p2 = \%.2 f lb/in <math>^2.,
      tensile\n theta1 = \%.2 f degrees \n theta2 = \%.2 f
      degrees',p1_4,-p2_4,theta4,theta4+90);
37 printf('\n At 2 inches above the N.A, p1 = \%.2 f lb/
      in ^2., compressive, and p2 = \%.2 f lb/in <math>^2.,
      tensile\n theta1 = \%.2 f degrees \n theta2 = \%.2 f
      {\tt degrees} ',p1_2,-p2_2,theta2,theta2+90);
38 printf('\n At the N.A, p1 = \%d lb/in^2., compressive
      , and p2 = \%d., tensile ',p1,-p2);
39
40 //there is an error in the answer given in text book
```

Scilab code Exa 5.26 Chapter 5 example 26

```
1 clear;
2 clc;
3 b = 10; // inches
4 d = 8; // inches
5 t1 = 1; // inch
6 t2 = 0.6; // inch
```

```
7 M = 500; // ton-inches
8 F = 25; // tons
9 I = (1/12)*(d*b^3 - (d-t2)*d^3); // in^4
10
11 //At the top
12 p = M*b/(2*I); // tons/in^2
13 q = 0;
14 p1 = p; // tons/in^2
15 p2 = 0;
16 printf ('At the top, principal stresses are n p1 = %
      .2 \text{ f } tons/in^2 n p2 = \%d tons/in^2', p1, p2);
17
18 //In the web, 4 inches from the N.A.
19 p = M*d/(2*I); // tons/in^2
20 q = F*d*t1*0.5*(d+t1)/(I*t2); // tons/in^2
21 theta = 0.5*atan(2*q/p);
22 theta1 = theta*180/\%pi;
23 theta2 = theta1+90;
24 \text{ p1} = 0.5*p + \text{sqrt}(q^2 + 0.25*p^2); // tons/in^2
25 p2 = 0.5*p - sqrt(q^2 + 0.25*p^2); // tons/in^2
26 printf('\n In the web, 4 inches from the N.A.:\n The
       principal stresse are p1 = \%.2 f tons/in^2.
      compressive \ p2 = \%.2 f \ tons/in^2., tensile \ n
      theta1 = \%.1f degrees\n theta2 = \%.1f degrees',p1
      ,-p2,theta1,theta2);
27
28 //At the N.A
29 p = 0;
30 q = (F/(I*t2))*(d*t1*0.5*(d+t1) + t2*0.5*d*2*t1);
31 p1 = q; // tons/in^2
32 p2 = -q; //tons/in^2
33 printf('\n The principal stresse across the diagonal
       are \%.2 f tons/in^2., compressive on one plane
      and \%.2 f tons/in^2., tensile on the other.',q,q);
34
35 //there is an error in the answer given in text book
```

Scilab code Exa 5.27 Chapter 5 example 27

```
1 clear;
2 clc;
3 W = 10; // tons
4 \ 1 = 16; // feet
5 f = 15/2; // tons/in^2
6 // section modulus required
7 \text{ SM} = W*1*12/(8*f); // in^3
8 //for this section modulus
9 \ 11 = 12; // inches
10 b1 = 5; // inches
11 t1 = 0.55; // inches
12 t2 = 0.35; // inches
13 I_xx = 220; // in^4
14 F_{max} = 5; // tons
15 q_{max} = (F_{max}/(I_{xx*t2}))*(F_{max*t1}*(0.5*11-0.5*t1)
      + t2*0.5*(0.5*11-t1)^2);// tons/in^2
16 printf ('The maximum intensity of shear stress is
      q_max = \%.2 f tons/in^2', q_max);
```

Scilab code Exa 5.28 Chapter 5 example 28

```
1 clear;
2 clc;
3 b = 9/2; // inches
4 D = 12; // inches
5 d = 10; // inches
6 t = 1/2; // inches
7 f_w = 1000; // lb/in^2
8 m = 18; //m = E_s/E_w
9 f_t = m*d*f_w/D; // lb/in^2
```

```
10  M_w = f_w*(1/6)*2*b*D^2; // lb-inches
11  M_s = f_t*(1/6)*t*d^2; // lb-inches
12  M = M_w + M_s; // lb-inches
13  printf('Skin stresse in steel plate is, M_s = %d lb-inches\n The total moment of resistance is M = %d lb-inches', M_s, M);
```

Chapter 6

Beams and bending 3

Scilab code Exa 6.1 Chapter 6 example 1

```
1 clear;
2 clc;
3 l = 5; // feet
4 W = 150; // lb
5 w = 120; // lb. per foot run
6 l1 = 3; // feet
7 b = 3; // inches
8 d = 6; // inches
9 E = 1.5*10^6; // lb/in^2
10 I = (1/12)*b*d^3; // in^4
11 y_B1 = (W*l^3)/(3*E*I); // feet
12 y_B2 = (w*l1*l1^3)/(8*E*I) + (1-l1)*(w*l1*l1^2)/(6*E*I); // feet
13 y_B = (12^3)*(y_B1+y_B2); // inches
14 printf('The deflection at the free end = %.4f inches
',y_B);
```

Scilab code Exa 6.3 Chapter 6 example 3

```
1 clear;
2 clc;
3 b = 4; // inches
4 d = 9; // inches
5 l = 12; // feet
6 y_c = 1/4; // inches
7 E = 1.5*10^6; // lb/in^2
8 I = (1/12)*b*d^3; // in^4
9 W = y_c*384*E*I/(5*12^3*1^3); // inches
10 printf('Uniform distributed load, the beam should carry is, W = %d lb-wt', W);
11
12 //there is an error in the answer given in text book
```

Scilab code Exa 6.4 Chapter 6 example 4

```
1 clear;
2 clc;
3 d = 6; // feet
4 1 = 60; // feet
5 f = 15/2; // tons/in^2
6 E = 13000; // tons/in^2
7 \text{ k1} = 2*f/(12*d); // \text{ k1} = M_r/I
8 k2 = k1/(1*12/8); //k2 = W/I
9 \text{ y_c} = (5/384)*k2*l^3 *12^3 /E; // inches
10 //If the giredr is of constant deapth and uniform
      strength, it bends to an arc of a circle of
      radius R
11 R = E*d*12/(2*f); // inches
12 delta = (1*12)^2 / (8*R); // inches
13 printf ('The deflection for a uniformly distributed
      load on it is, delta = \%.2 f inches', delta);
```

Scilab code Exa 6.5 Chapter 6 example 5

```
1 clear;
2 clc;
3 f = 8; //tons/in^2
4 E = 12800; // tons/in^2
5 k1 = 1/480; //central deflection = k = delta/l
6 k2 = (5/24)*(f/E)/k1; //k2 = d/l = deapth to span ratio
7 printf('The ratio of deapth to span, d/l = %f',k2);
```

Scilab code Exa 6.6 Chapter 6 example 6

```
1 clear;
2 clc;
3 w = 550; // lb. per foot run
4 f = 1000; // lb/in^2
5 \ 1 = 20; // feet
6 	ext{ d_limit} = 15; // inches
7 E = 1.5*10^6; // lb/in^2
8 //central ddeflection
9 delta = (1/2); // inches
10 d = (5/24)*(f/E)*20*12/(1/(2*20*12));// inches
11 M = w*l*l*12/8; // lb-inches
12 b = M/(f*(1/6)*d^2); // inches
13 printf ('A section with d = \%d inches, b = \%d inches
      will do.',round(d),round(b));
14 f1 = (1/(2*20*12))*(d_{limit}/(1*12))*E/(5/24); // lb/
      in^2
15 b = M/(f1*(1/6)*d_limit^2); // inches
16 printf('\n If the deapth of section is limited to %d
      inches, then \n f = \%.1 f lb/in^2 n b = \%.1 f
      inches',d_limit,f1,b);
17
18 //tha answer is correct only, but it is approximated
```

Scilab code Exa 6.7 Chapter 6 example 7

```
1 clear;
2 clc;
3 \ 1 = 20; // feet
4 b = 4; // feet
5 W = 5; // tons
6 d = 12;// inches
7 h = 5; // inches
8 I_x = 220; // in^4
9 E = 13000; // tons/in^2
10 a = 1-b; // feet
11 //for maximum deflection
12 x = sqrt((a^2 + 2*a*b)/3); // feet
13 y_{max} = x*12^3 *((a^2 + 2*a*b) - x^2)/(6*E*I_xx); //
      inches
14 //for deflection at the centre
15 \times 1 = 0.5*1; // inches
16 \text{ y_x1} = \text{x1*12^3} *((\text{a^2} + 2*\text{a*b}) - \text{x1^2})/(6*\text{E*I_xx}); //
       inches
17 printf('The position of maximum deflection occurs at
       x = \%.2f feet\n The maximum deflection is, y-max
       = \%.4 f inches',x,y_max);
18 printf ('\n The deflection at the centre, y_{-}\%d = \%.4 f
       inches', x1, y_x1);
```

Scilab code Exa 6.8 Chapter 6 example 8

```
1 clear;
2 clc;
3 d = 12;// inches
```

```
4 h = 5; // inches
5 \ 1 = 20; // feet
6 E = 13000; //tons/in^2
7 I_x = 220; // in^4
8 W = 4; // tons
9 \text{ W1} = 3; // \text{tons}
10 a = 15; // feet
11 b = 1-a; // feet
12 \text{ a1} = 16; // \text{ feet}
13 b1 = 1-a1; // feet
14 \text{ K1} = (-2*\text{W1}*\text{b1}*\text{l})/(\text{W1}*\text{b1}-\text{W}*\text{b});
15 \text{ K2} = (W*b*a^2 + 2*a*W*b^2 + 2*W1*b1*l^2 - W1*b1*a1^2
        -2*W1*a1*b1^2 + W1*b1*l^2)/(3*(W1*b1 - W*b));
16 x = -0.5*K1 + sqrt(-K2 + 0.25*K1^2); // feet
17 	 x1 = 1-x; // feet
18 \text{ y_max} = \text{W*b*x*1728*(a^2 +2*a*b -x^2)/(6*E*I_xx*l)} +
       W1*b1*x1*1728*(a1^2 +2*a1*b1 -x1^2)/(6*E*I_xx*l);
      // inches
19 printf ('The position of the maximum deflection is, x
        = \%.2 f feet.',x);
20 printf('\n And the maximum deflection is, y<sub>max</sub> = \%
       .4 f inches.', y_max);
```

Scilab code Exa 6.9 Chapter 6 example 9

```
1 clear;
2 clc;
3 b = 18; // inches
4 d = 7; // inches
5 w1 = 1; // ton per foot run
6 w2 = 3; // ton per foot run
7 I_xx = 1149; // in^4
8 E = 13000; // tons/in^2
9 R_A = 0.5*b + (b/3); // tons
10 R_B = 0.5*b + (2*b/3); // tons
```

```
//integrating M = E*I*y'', to get E*I*y' and making
    y' = 0;, we get maximu deflection

x = 9.18; // by trial and error method

y_derivative = -R_A*0.5*x^3 + x^4 /6 +0.5*(2/3)*(1/b)
    )*(1/4)*x^5 + 469.8;

y = -R_A*0.5*x^3 /3 + x^4 /24 +0.5*(2/3)*(1/b)
    *(1/(4*5))*x^5 + 469.8*x;

y_max = y; // inches

frintf('The position of maximum deflection from the end A, x = %.2f inches and \n Maximum deflection
, y_max = %.4f inches',x,y_max*12^3 /(E*I_xx));
```

Scilab code Exa 6.10 Chapter 6 example 10

```
1 clear;
2 clc;
3 b = 18; // inches
4 d = 6; // inches
5 \ 1 = 16; // feet
6 W = 2; // tons
7 h = 1/2; // inches
8 I_x = 841.76; // in^4
9 E = 13000; // tons/in^2
10 P = W + \frac{\text{sqrt}}{2*W*h*48*E*I_xx/(1*12)^3} + \frac{2*W}{1}; // tons
11 M_{max} = P*1*12/4; // ton-inches
12 \ Z = 2*I_xx/b ; // in^3
13 f = M_max/Z; // tons/in^2
14 delta = P*(1*12)^3 / (48*E*I_xx); // inches
15 printf ('The maximum instantaneous deflection delta =
       \%.4 f inches\n and stress induced, f = \%.3 f tons
      /in^2, delta, f);
16 //there is an error in the answer given in text book
```

Scilab code Exa 6.11 Chapter 6 example 11

```
1 clear;
2 clc;
3 1 = 3; // feet
4 b = 3; // inches
5 t = 3/8; // inches
6 W = 1500; // lb.
7 f = 12; // tons/in^2
8 E = 30*10^6; // tons/in^2
9 M_{max} = W*1*12/4 ; // lb-inches
10 M_r = f*(1/6)*b*t^2 *2240; // lb-inches
11 n = M_max/M_r; // no. of plates
12 \quad n = round(n+1);
13 f = M_max/(n*(1/6)*b*t^2); // lb/in^2
14 R = E/(2*f/t); // inches
15 delta = (1*12)^2 / (8*R); // inches
16 printf('Number of plates required, n = %d',n);
17 printf('\n The central deflection, delta = \%.4 f inch
      .', delta);
18 printf('\n The initial radius to which the plates
      must be bent, R = \%.3 f inches', R);
```

Chapter 8

Direct and bending stresses

Scilab code Exa 8.1 Chapter 8 example 1

Scilab code Exa 8.2 Chapter 8 example 2

```
1 clear;
2 clc;
3 d1 = 12; //inches
4 t = 1; //inch
5 d2 = d1-2*t; //inches
6 P = 5; //tons
7 = 12; //inch
8 A = 0.25*\%pi*(d1^2-d2^2);//sq.in
9 M = P*e; //ton-in
10 Z = \%pi*(d1^4-d2^4)/(32*d1);//in^3
11 p_0 = P/A; // tons/in^2
12 p_b = M/Z; // ton/in^2
13 p_max = p_0+p_b; // tons/in^2
14 p_min = p_0-p_b; // tons/in^2
15 printf ('p_max = \%.4 \text{ f ton/in}^2., cmopressive\n p_min =
      \%.4 f ton/in^2.,\n i.e., \%.4 f ton/in^2., tensile'
      ,p_max,p_min,-p_min);
```

Scilab code Exa 8.3 Chapter 8 example 3

```
1 clear;
2 clc;
3 l = 6; //inches
4 b = 4; //inches
5 d = 1/2; //inch
6 P = 10; //tons
7 r = 1.5; //inches
8 A = 4.771; // in^2
9 J = 0.968; // inches
10 I_xx = 6.07; // in^4
11 I_yy = 8.64; // in^4
12 e = r-J; // inches
13 M = P*e; // ton-inches
14 y_t = J; //inches
15 y_c = b-y_t; //inches
```

```
16  //compressive
17  p_c = M*y_c/I_xx; // tons/in^2
18  //tensile
19  p_t = M*y_t/I_xx; // tons/in^2
20  //compressive
21  p_0 = P/A ; // tons/in^2
22  p_max = p_0+p_c; // tons/in^2
23  p_min = p_0-p_t; // tons/in^2
24  printf('p_max = %.3 f tons/in^2., compressive\n p_min = %.3 f tons/in^2., compressive\n p_min);
```

Scilab code Exa 8.4 Chapter 8 example 4

```
1 clear;
2 clc;
3 b = 5; //inches
4 t = 1/2; //inch
5 P = 12; //tons
6 d = 1/2; //inch
7 r = 3/2; //inch
8 A = (b-d)*t; // in^2
9 p_0 = P/A; // tons/in^2
10 a1 = b*d; // in^2
11 \times 1 = 0;
12 a2 = d*t; // in^2
13 \times 2 = -3/2;
14 e = (a1*x1-a2*x2)/(a1-a2); //inches
15 M = P*e; // ton-inches
16 \text{ y_c} = a1-e; // inches
17 y_t = a1+e; // inches
18 I_{yy} = (t*b^3)/12 - ((t*d^3)/12 + 0.5*d*r^2); // in^4
19 I_GG = I_{yy} - (a1-a2)*(e^2); // in^4
20 p_c = M*y_c/I_GG; // tons/in^2
21 p_t = M*y_t/I_GG; // tons/in^2
22 p_max = p_0 + p_t; // tons/in^2
```

Scilab code Exa 8.5 Chapter 8 example 5

```
1 clear;
2 clc;
3 h = 20; // feet
4 b = 12; // feet
5 d = 4; // feet
6 p = 30; // lb. per sq. foot
7 rho = 140; // lb. per cubic foot
8 p_0 = rho*h; // lb-ft^2
9 P = p*b*h; // lb-wt
10 M = P*h/2; //lb-ft
11 Z = b*d^2/6; // ft<sup>3</sup>
12 p_b = M/Z; // lb/ft^2
13 p_max = p_0 + p_b; // lb/ft^2
14 p_min = p_0 - p_b; // lb/ft^2
15 printf('p_max = \%d lb/ft^2., compressive\n p_min =
      %d lb/ft^2., compressive',p_max,p_min);
```

Scilab code Exa 8.6 Chapter 8 example 6

```
1 clear;
2 clc;
3 h = 80; // feet
4 p = 28; // lb. per sq.foot
5 rho = 126; // lb. per cubic foot
6 p_0 = rho*h/2240; // tons-ft^2
7 p_max = 7; // tons/ft^2
8 d = 4; // feet
```

```
9  p_b = p_max - p_0; // tons/ft^2
10  D = sqrt(3*p*h^2 /(2*p_b*2240) +sqrt(d^4 + (3*p*h^2 /(2*p_b*2240))^2)); // feet
11  t = 0.5*(D-d); // feet
12  printf('The necessary thickness is, t = %d feet', round(t));
```

Scilab code Exa 8.7 Chapter 8 example 7

```
1 clear;
2 clc;
3 h = 60; // feet
4 rho = 130; // lb. per cubic foot
5 D = 12; // feet
6 d = 5; // feet
7 P_h = 24; // lb. per sq. foot
8 p_0 = rho*h; // lb-ft^2
9 P = P_h*D*h; // lb-wt
10 M = P*h/2; // lb-feet
11 Z = \%pi*(D^4 - d^4)/(32*D);//lb-ft^3
12 p_b = M/Z; // lb/ft^2
13 p_max = p_0 + p_b; // lb/ft^2
14 p_min = p_0 - p_b; // lb/ft^2
15 printf('p_max = \%d lb/ft^2., compressive\n p_min =
     %d lb/ft^2., compressive',p_max,p_min);
16
17 //there is an error in the answer given in text book
```

Scilab code Exa 8.8 Chapter 8 example 8

```
1 clear;
2 clc;
3 h = 120;// feet
```

```
4 d = 5; // feet
5 h1 = 49; // feet
6 p = 42; // lb. per square foot
7 c = 0.6;
8 //p = k*sqrt(x)
9 k = p/sqrt(h1);
10 M = integrate('18*x^(3/2)', 'x', 0, 120);
11 printf('Bending moment at the foot of the chimney is , M = %d lb-ft', M);
12 //there is an error in the answer given in text book
```

Scilab code Exa 8.9 Chapter 8 example 9

```
1 clear;
2 clc;
3 h = 100;// feet
4 d = 4;// feet
5 p = 50;// lb. per square foot
6 c = 2/3;
7 M = integrate('(100*x/3)*(10-(6*x/100))', 'x',0,100);
8 printf('Bending moment at the foot of the chimney is , M = %d lb-feet', M);
```

Scilab code Exa 8.10 Chapter 8 example 10

```
1 clear;
2 clc;
3 h = 20;// feet
4 b = 4;// feet
5 d = 12;// feet
6 h1 = 18;// feet
7 //density of masonary
8 rho_m = 140;// lb-ft^3
```

```
9 //density of water
10 rho_w = 62.5; // lb-ft^3
11 W = rho_m*0.5*(b+d)*h; // lb-wt
12 //to locate its line of action divide the dam
      section into a rectangle and a triangle
13 x1 = b/2; //feet
14 a1 = b*h; // sq. feet
15 a2 = 0.5*(d-b)*h;// sq. feet
16 	ext{ x2 = b+((d-b)/3);// feet}
17 x_bar = (a1*x1+a2*x2)/(a1+a2); // feet
18 P = rho_w*h1^2/2; // lb-wt
19 z = x_bar + (h1/3)*(P/W); // feet
20 e = z - d/2; // feet
21 p_0 = W/d; // lb/ft^2
22 M = W*e; // lb - feet
23 \ Z = 1*d^2*1/6; // ft^3
24 p_b = M/Z; // lb-ft^2
25 p_max = p_0 + p_b; // lb-ft^2
26 p_min = p_0 - p_b; // lb-ft^2
27 printf('p_max = \%.1 \, f \, lb/ft^2., compressive at B.\n
      p_min = \%.1 f lb/ft^2., compressive at A.', p_max,
      p_min);
28
29 //there is an error in the answer given in text book
```

Chapter 9

Columns and struts of uniform section

Scilab code Exa 9.1 Chapter 9 example 1

```
1 clear;
2 clc;
3 // n = 1/k
4 n1 = 40;
5 n2 = 60;
6 n3 = 80;
7 \text{ n4} = 100;
8 n5 = 120;
9 n6 = 140;
10 n7 = 160;
11 n8 = 180;
12 n9 = 200;
13 E = 13000; // tons/in^2
14 / m = P/A
15 m1 = 4*\%pi^2 *E/n1^2; // tons per sq. inch
16 m2 = 4*%pi^2 *E/n2^2;// tons per sq. inch
17 m3 = 4*\%pi^2 *E/n3^2; // tons per sq. inch
18 m4 = 4*\%pi^2 *E/n4^2; // tons per sq. inch
19 m5 = 4*\%pi^2 *E/n5^2; // tons per sq. inch
```

```
20 m6 = 4*\%pi^2 *E/n6^2; // tons per sq. inch
21 m7 = 4*\%pi^2 *E/n7^2; // tons per sq. inch
22 m8 = 4*\%pi^2 *E/n8^2; // tons per sq. inch
23 m9 = 4*\%pi^2 *E/n9^2; // tons per sq. inch
24 printf('l/k : %d
                        \%d
                               \%d
                                     \%d
                                            \%d
                                                   \%d
                                                         \%d
                %d\n P/A: %d %.1 f %.1 f %.2 f %.2 f
          \%d
     \%.1 f \%.2 f \%.2 f \%.2 f, n1, n2, n3, n4, n5, n6, n7, n8,
      n9,m1,m2,m3,m4,m5,m6,m7,m8,m9);
25
26 //there is a minute error in the answer given in
      text book
```

Scilab code Exa 9.2 Chapter 9 example 2

```
1 clear;
2 clc;
3 d = 1;// inches
4 t = 1/8;// inches
5 l = 10;// feet
6 E = 13500;// tons/in^2
7 D = d+2*t;// inches
8 I = (%pi/64)*(D^4 - d^4);// in^4
9 P = 20.25*E*I/(12*1)^2;// tons
10 printf('The collapsing load, P = %.2 f tons',P);
```

Scilab code Exa 9.3 Chapter 9 example 3

```
1 clear;
2 clc;
3 b = 10; // inches
4 d = 6; //inches
5 l = 15; // feet
6 A = 11.77; // in^2
```

```
7  I_xx = 204.80; // in^4
8  I_yy = 21.76; // in^4
9  f_c = 21; // tons/in^2
10  a = 1/7500;
11  n = 3; // factor of safety
12  k = sqrt(I_yy/A); // radius of gyration
13  P = f_c*A/(1+(a/2)*(1*12/k)^2); // tons
14  P_s = P/n; // safe load
15  printf('The safe axial load = %.3 f tons', P_s);
16
17  // there is a minute calculation error in the answer given in text book
```

Scilab code Exa 9.4 Chapter 9 example 4

```
1 clear;
2 clc;
3 \ 1 = 16; // feet
4 F = 30; // tons
5 n = 8; // factor of safety
6 k = 0.8; //k = d/D
7 	 f_c = 36; // tons/in^2
8 a = 1/1600;
9 r = 0.25*\%pi*(1-k^2); //r = A/D^2
10 P = n*F; // tons
11 D1 = sqrt(P/(f_c*r*2) + sqrt((P/(f_c*r))*((a/4)*(1
      *12)^2/((1+k^2)/16) + (P/(f_c*r*2))^2);//
     inches
12 D = round(D1); // inches
13 d = k*D; // inches
14 t = (D-d)/2; // inches
15 printf('The internal diameter d = \%.1 f inches',d);
16 printf('\n The thickness of the metal will be \%.2 f
      inches',t);
17 // the answer is correct only, but it is
```

Scilab code Exa 9.5 Chapter 9 example 5

```
1 clear;
2 clc;
3 l = 5; // feet
4 b = 5/2; // inches
5 d = 5/2; // inches
6 h = 1/4; // inches
7 n = 3; // factor of safety
8 A = 1.19; // in^2
9 k = 0.49; // minimum radius of gyration
10 f_c = 21; // lb/in^2
11 a = 1/7500;
12 P = f_c*A/(1+(a/2)*((1*12)^2)/k^2); // tons
13 P_safe = P/n; // tons
14 printf('The safe axial load = %.2 f tons', P_safe);
```

Scilab code Exa 9.6 Chapter 9 example 6

```
1 clear;
2 clc;
3 b1 = 10; // inches
4 d1 = 7/2; // inches
5 r = 9/2; // inches
6 b2 = 12; // inches
7 d2 = 1/2; // inches
8 l = 20; // feet
9 n = 4; // factor of safety
10 A_s = 7.19; // in^2
11 I_xx1 = 109.42; // in^4
12 I_yy1 = 7.42; // in^4
```

```
13 d = 0.97; // inches
14 f_c = 21; // lb/in^2
15 a = 1/7500;
16 A = 2*A_s + 4*b2*d2; // in^2
17 I_xx = 2*I_xx1 + 2*((1/12)*b2*(2*d2)^3 + b2*(r+2*d2)^2); // in^4
18 I_yy = 2*(1/12)*(2*d2)*b2^3 + 2*(I_yy1 + A_s*(0.5*r+d)^2); // in^4
19 k = sqrt(min(I_xx,I_yy)/A); // minimum radius of gyration
20 P = f_c*A/(1+ a*((1*12)^2/k^2)); // tons
21 P_safe = P/n; // tons
22 printf('The safe axial load = %d tons',round(P_safe));
```

Scilab code Exa 9.7 Chapter 9 example 7

```
1 clear;
2 clc;
3 m = 4; // no. of angles
4 b = 7/2; // inches
5 d = 7/2; // inches
6 h = 3/8; // inches
7 s = 18; // inches
8 \ 1 = 30; // feet
9 n = 3; // factor of safety
10 A = 2.49; // in^2
11 J = 1; // inches
12 I_xxs = 2.80; // in^4
13 I_{yys} = I_{xxs}; // in^4
14 //from the chapter V.
15 I = 648.64; // in ^4
16 k = sqrt(65.2); // in^2
17 f_c = 21; // lb/in^2
18 \ a = 1/7500;
```

```
19 P = m*f_c*A/(1+a*((1*12)^2)/k^2);// tons
20 P_safe = P/n;// tons
21 printf('The safe axial load = %.1 f tons', P_safe);
```

Scilab code Exa 9.8 Chapter 9 example 8

```
1 clear;
2 \text{ clc};
3 D = 7; // inches
4 t = 3/4; // inches
5 \ 1 = 16; // feet
6 P = 12; // tons
7 e = 3/4; // inches
8 E = 6000; // tons/in^2
9 d = D-2*t; // inches
10 A = 0.25*\%pi*(D^2 - d^2); // in^2
11 I = (\%pi/64)*(D^4 - d^4); // in^4
12 p_0 = P/A; // tons/in^2
13 Z = 2*I/D; // in^3
14 M = P*e*sec(0.25*1*12*sqrt(P/(E*I))); // ton-inches
15 p_b = M/Z; // tons/in^2
16 p_max = p_0+p_b; // tons/in^2
17 p_{\min} = p_0 - p_b; // tons / in^2
18 //if tension is just on the point being induced in
      the section, p_b = p_0
19 e = p_0*t*Z/M; // inches
20 printf('Stress intensities, p_max = \%.3 f tons/in^2.,
      compressive\n p_{\min} = \%.3 f tons/in^2.
      compressive ',p_max,p_min);
21 printf('\n Maximum possible eccentricity, e = \%.2 f
      inches',e);
```

Scilab code Exa 9.9 Chapter 9 example 9

```
1 clear;
2 clc;
3 P = 80; // tons
4 p_max = 5; // tons/in^2
5 E = 13000; // tons/in^2
6 A = 38.38; // in^2
7 I_yy = 451.94; // in^4
8 \text{ y_c} = 6; // \text{ inches}
9 1 = 20; // inches
10 k = sqrt(I_yy/A); // inches
11 Z_{yy} = I_{yy}/y_c; // in^3
12 p_0 = P/A; // tons/in^2
13 p_b = p_{max} - p_0; // tons / in^2
14 M_max = p_b*Z_yy; // ton-inches
15 e = M_{max}/(P*sec(0.5*1*12*sqrt(P/(E*I_yy)))); //
16 printf ('The maximum possible eccentricity, e = \%.2 f
      inches',e);
```

Scilab code Exa 9.10 Chapter 9 example 10

```
1 clear;
2 clc;
3 e = 7/4; // inches
4 E = 13000; // tons/in^2
5 p = 5; // tons/in^2
6 y_c = 6; // inches
7 l = 20; // feet
8 A = 38.38; // in^2
9 k = sqrt(11.78); // inches
10 I = 11.78; // in^4
11 p_e = (%pi)^2 *E*k^2 /(1*12)^2; // tons/in^2
12 //from Perry's formula
13 p_0 = 0.5*((p_e*1.2*e*y_c/k^2)+p_e+p)-sqrt((0.5*((p_e*1.2*e*y_c/k^2)+p_e+p); // tons/in
```

```
^2
14 P = p_0*A; // tons
15 printf('The safe load, P = %.2f tons',P);
16
17 //there is a minute calculation error in the answer given in text book
```

Scilab code Exa 9.11 Chapter 9 example 11

```
1 clear;
2 clc;
3 b1 = 10; // inches
4 d1 = 6; // inches
5 b2 = 12; // inches
6 d2 = 1/2; // inches
7 \ 1 = 16; // feet
8 \text{ A_s} = 11.77; // in^2
9 \text{ I_xxs} = 204.80; // in^4
10 I_{yys} = 21.76; // in^4
11 A = A_s + 2*b2*d2; // in ^2
12 I_yy = I_yys + 2*(1/12)*d2*b2^3; // in^4
13 k = sqrt(I_yy/A); // inches
14 //from the Perry-Robertson formula
15 n = 0.003*1*12/k;
16 p_e = 13000*\%pi^2/((1*12)/k)^2; // tons/in^2
17 f = 18; // tons/in^2
18 x = 0.5*(f+p_e*(1+n));
19 p_0 = x - sqrt(x^2 - f*p_e); // tons/in^2
20 P = p_0 *A; // tons
21 P_{safe} = P/2.36; // tons
22 printf('The safe load, P = \%.1 f \text{ tons'}, P_safe);
23
24 //there is a minute calculation error in the answer
      given in text book
```

Chapter 10

Radial pressure cylindrical and spherical shells

Scilab code Exa 10.1 Chapter 10 example 1

```
1 clear;
2 clc;
3 d = 2; // feet
4 p = 250; // lb/in^2
5 f = 12000; // lb/in^2
6 t_limit = p*d*12/(2*f) ; // inches
7 printf('The necessary thickness of metal for seamless pipe is %.2f inches',t_limit);
```

Scilab code Exa 10.2 Chapter 10 example 2

```
1 clear;
2 clc;
3 l = 8;//feet
4 d = 3;// feet
5 t = 1/2;// inches
```

```
6 p = 200; // lb/in^2
7 E = 30*10^6; // lb/in^2
8 \text{ PR} = 0.3; // \text{ poisson 's ratio}
9 f1 = p*d*12/(2*t); // lb/in^2
10 f2 = p*d*12/(4*t); // lb/in^2
11 f_s = 0.5*(f1-f2); // lb/in^2
12 e1 = (f1/E) - (PR*f2/E); // lb/in^2
13 e2 = (f2/E) - (PR*f1/E); // lb/in^2
14 \text{ del_d} = e1*d*12; // inches
15 del_1 = e2*1*12; // inches
16 \text{ del_V} = (e2+2*e1)*0.25*\%pi*(12*d)^2 * 1*12; // cub.
17
  printf('Maximum intensity of shear stress induced =
     \%d lb/in^2',f_s);
18 printf('\n del_d = \%.6 f inches\n del_l = \%.6 f inches
```

Scilab code Exa 10.3 Chapter 10 example 3

```
1 clear;
2 clc;
3 d = 30; // inches
4 H = 300; // feet
5 w = 62.5;
6 f = 2800;
7 //intensity of water pressur
8 p = w*H/144; // lb/in^2
9 t_limit = p*d/(2*f); // inches
10 printf('Thickness of metal required is %.4f inches', t_limit);
11
12 //the answer is correct only, but it is approximated in the text book.
```

Scilab code Exa 10.4 Chapter 10 example 4

```
1 clear;
2 clc;
3 d = 78; // inches
4 t = 3/4; // inches
5 n1 = 70/100; // efficiency of the longitudinal
      riveted joint
6 f = 6; // tons/in^2
7 n2 = 60/100; // efficiency of the circumferential
      riveted joint
8 p = f*2240/(d/(2*t*n1)); //lb/in^2
9 p = round(p-1);
10 f1 = p*d/(2*t); // lb/in^2
11 f2 = p*d/(4*t*n2); // lb/in^2
12 printf ('The permissible steam pressure, p = \%d lb/in
      ^{2},p);
13 printf('\n The circumferential stress, f1 = \%d lb/in
      ^2 = \%.2 \, \text{f} \, \text{tons/in}^2 \, , f1, f1/2240);
14 printf('\n The longitudinal stress, f2 = \%d lb/in^2
      = \%.2 f tons/in^2', f2,f2/2240);
```

Scilab code Exa 10.5 Chapter 10 example 5

```
1 clear;
2 clc;
3 d = 4; // feet
4 p = 200; // lb/in^2
5 f = 15000; // lb/in^2
6 n = 0.7; // efficiency
7 t_limit = p*d*12/(4*f*n); // inches
```

```
8 printf('The thickness of the plate required = %.2f
     inches',t_limit);
9
10 //the answer is correct only, but it is approximated
     in the text book.
```

Scilab code Exa 10.6 Chapter 10 example 6

```
1 clear;
2 clc;
3 d = 3; // feet
4 t = 1/4; // inches
5 \text{ del_V} = 9; // \text{ cub. inches}
6 E = 30*10^6; // lb/in^2
7 \text{ PR} = 0.3; // \text{ poisson 's ratio}
8 V = (\%pi/6)*(12*d)^3; // in^3
9 k = del_V/V;
10 f = k*E/(3*(1-PR)); // lb/in^2
11 p = 4*f*t/(12*d); // lb/in^2
12 printf ('The pressure exerted by fluid on the shell,
      p = \%d lb/in^2', p);
13
14 //there is a minute calculation error in the answer
      given in text book
```

Scilab code Exa 10.7 Chapter 10 example 7

```
1 clear;
2 clc;
3 d = 12; // feet
4 t = 1/2; // inches
5 d1 = 1/4; // inches
6 p = 500; // lb/in^2
```

```
7 E_c = 6000; // tons/in^2
8 \text{ PR} = 0.3; // \text{ Poisson's ratio}
9 E_s = 13000; // tons/in^2
10 f_t = 8000; // lb/in^2
11 \ 1 = 8;
12 P_c = 1*(\%pi/64)*f_t; // lb-wt
13 f_c = P_c/(2*t); // lb/in^2
14 //bursting force per inch unit length
15 f_b = p*d; // lb-wt
16 	ext{ f_p = (f_b + (1*0.049*PR*p*d/(4*t))*(E_s/E_c))/(1 + ext{ f_b})}
      (1*0.049)*E_s/E_c); // lb/in^2
17 f_w = (f_p - PR*p*d/(4*t))*E_s/E_c; // lb/in^2
18 printf('
                               Pipe
                                Steel-wire');
19 printf('\n Initually,
                              %d lb/in^2., compr.
               %d lb/in^2., tensile',f_c,f_t);
20 printf('\n Due to p,
                              %d lb/in^2., tensile.
             %d lb/in^2., tensile',f_p,f_w);
21 printf('\n Finally,
                              %d lb/in^2., tensile.
             %d lb/in^2., tensile',f_p-f_c,f_w+f_t);
22
23
  //there is a calculation error in the answer given
      in text book
```

Scilab code Exa 10.8 Chapter 10 example 8

```
1 clear;
2 clc;
3 d = 12; // inches
4 t = 3; // inches
5 p_x1 = 900; // lb/in^2
6 x1 = 0.5*d; // inches
7 p_x2 = 0;
8 x2 = 0.5*d+t; // inches
9 //from Lame's formulae
```

```
10 b = (p_x1-p_x2)/((1/x1^2)-(1/x2^2));
11 a = (b/x1^2)- p_x1;
12 f_x1 = (b/x1^2)+a;// lb/in^2
13 f_x2 = (b/x2^2)+a;// lb/in^2
14 printf('The maximum and minimum intensities of circumferential stresses are: f_6 = %d lb/in^2., tensile\n f_9 = %d lb/in^2., tensile',f_x1,f_x2);
```

Scilab code Exa 10.9 Chapter 10 example 9

```
1 clear;
2 clc;
3 d = 5; // inches
4 p = 3; // tons/in^2
5 f = 8; // tons/in^2
6 x = 0.5*d; // inches
7 b = (p+f)/(2/x^2);
8 \ a = f - (b/x^2);
9 r = sqrt(b/a);//outer radius
10 t = r-0.5*d; //thickness
11 D = 2*t+d; //outer diameter
12 printf ('The thickness of metal necessary, t = \%.3 f
      inches',t);
13 printf('\n the outer diameter will be, D = \%.1 f
      inches',D);
14
15 //the answer is correct, but it is approximated in
      the text book.
```

Scilab code Exa 10.10 Chapter 10 example 10

```
1 clear;
```

```
2 clc;
3 d = 9; // inches
4 p = 5000/2240; // lb/in^2
5 f = 8; // tons/in^2
6 PR = 0.3; // Poisson's ratio
7 //(i) Maximum principal stress hypothesis:
8 k_limit1 = sqrt((f + p)/(f - p)); //k_limit = r1/r2
9 \text{ r\_limit1} = \text{k\_limit1*0.5*d;} //\text{inches}
10 printf ('The outer radius in case (i), r2 = \%.3 f
      inches',r_limit1);
11 //(ii) Maximum principal strain:
12 k_{limit2} = sqrt(((f/p - PR)+1)/(f/p - PR -1));
13 r_limit2 = k_limit2*0.5*d; // inches
14 printf('\n The outer radius in case(ii), r2 = \%.3 f
      inches',r_limit2);
15 //(iii) Maximum shear stress:
16 k_limit3 = sqrt(f/(2*p) /((f/(2*p)) - 1));
17 r_limit3 = k_limit3*0.5*d; // inches
18 printf('\n The outer radius in case(iii), r2 = \%.3 f
      inches',r_limit3);
19 //(iv) Maximum strain energy
20 K1 = (f^2/p^2)/(2*((f^2/(2*p^2)) - (1+PR)));
21 \text{ K2} = \text{K1}^2;
22 K3 = ((f^2 /(2*p^2)) - (1-PR))/((f^2 /(2*p^2)) - (1+PR))
      PR));
23 k_limit4 = sqrt(K1+sqrt(K2-K3));
24 \text{ r\_limit4} = \text{k\_limit4*0.5*d;} // \text{ inches}
25 printf('\n The outer radius in case(iv), r2 = \%.3 f
      inches',r_limit4);
26
27 //there are calculation errors in the answer given
      in text book
```

Scilab code Exa 10.11 Chapter 10 example 11

```
1 clear;
2 clc;
3 \text{ r1} = 0.5*6; // inches
4 \text{ r2} = 0.5*12; // inches
5 \text{ r3} = 0.5*10; // inches
6 p = 1500; // lb/in^2
7 \text{ p_f} = 12000; // lb/in^2
8 //Initially, for the inner tube
9 b = -p/((1/r1^2) - (1/r3^2));
10 a = b/r1^2;
11 f_3 = (b/r1^2) +a; // lb/in^2
12 f_5 = (b/r3^2) +a; // lb/in^2
13 //for the outer tube
14 b1 = p/((1/r3^2)-(1/r2^2));
15 a1 = b1/r2^2;
16 	ext{ f1_5} = (b1/r3^2) + a1; // lb/in^2
17 f1_6 = (b1/r2^2) + a1; // lb/in^2
18 //When the fluid pressure of 12000 lb/in^2, is
      admitted into the compound tube
19 B = p_f/((1/r1^2) - (1/r2^2));
20 A = B/(r2^2);
21 f_3_ = (B/r1^2) + A; // lb/in^2
22 f_5_ = (B/r3^2) + A; // lb/in^2
23 f_6_ = (B/r2^2) + A; // lb/in^2
24 printf('The hoop stresse are');
25 printf('\n at x = 3 inches, x = 5 inches initially on
       inner tube are %.1f lb/in^2.., compressive, %.1
      f lb/in^2.., compressive respectively',-f_3,-f_5);
  printf('\n at x = 5 inches, x = 6 inches initially on
       outer tube are %.1f lb/in^2.., tensile,
                                                    \%.1 f lb
      /in ^2..., tensile respectively ',f1_5,f1_6);
  printf('\n at x = 3 inches, x = 5 inches and x = 6
      inches due to fluid pressure are %d lb/in^2...
      tensile, %d lb/in^2..., tensile, and %d lb/in^2...
      tensile respectively',f_3_,f_5_,f_6_')
28 printf('\n at x = 3 inches, x = 5 inches finally on
      inner tube are \%.1\,\mathrm{f} lb/in^2..., tensile, \%.1\,\mathrm{f} lb/
      in 2..., tensile respectively ',f_3_+f_3,f_5_+f_5);
```

```
29 printf('\n at x = 5 inches, x = 6 inches finally on outer tube are %d lb/in^2..., tensile, %d lb/in^2..., tensile respectively',f1_5+f_5_,f1_6+f_6_);
```

Scilab code Exa 10.12 Chapter 10 example 12

```
1 clear;
2 clc;
3 p = 1500; // lb/in^2
4 E = 30*10^6; // lb/in^2
5 f1_5 = 8318; // lb/in^2
6 f2_5 = 3187.5; // lb/in^2
7 alpha = 0.0000062; // per F
8 r3 = 6; // inches
9 del_r3 = r3*(f1_5+f2_5)/E; // inches
10 t = ((f1_5+f2_5)/E)/(alpha); // inches
11 printf('The minimum temperature to which outer tube should be heated before it can be slipped on, t = %.2 f F',t);
```

Scilab code Exa 10.13 Chapter 10 example 13

```
1 clear;
2 clc;
3 r1 = 0.5*9; // inches
4 r2 = 0.5*3; // inches
5 r3 = 0.5*6; // inches
6 del_r3 = 0.5*0.003; // inches
7 E = 13000; // tons/in^2
8 k1 = r1/r3;
9 k2 = r2/r3;
10 a1 = (del_r3/r3)*E/((k1^2 +1) - (k2^2 +1)*(k1^2 -1)/(k2^2 -1));
```

```
11 a = a1*(k1^2 -1)/(k2^2 -1);
12 b1 = a1*r1^2;
13 b = a*r2^2;
14 p_{-} = (b/r3^2) -a; // tons/in^2
15 // for the inner tube
16 f_x1 = (b/r2^2) +a; // tons/in^2
17 f_x2 = (b/r3^2) +a; // tons/in^2
18 // for the outer tube
19 f_x3 = (b1/r3^2) +a1; // tons/in^2
20 f_x4 = (b1/r1^2) +a1; // tons/in^2
21 printf('The hoop stresses are as under:');
22 printf('\n For the inner tube, at x = 1/5 inches, f
     = \%.2 \, \text{f tons/in^2}., compressive\n at x = 3
      inches, f = \%.2 f tons/in^2., compressive', -f_x1, -
      f_x2);
23 printf('\n For the outer tube, at x = 3 inches, f =
     \%.2 f tons/in^2., tensile\n at x = 4.5 inches, f
      = \%.2 f tons/in^2., tensile', f_x3, f_x4);
```

Scilab code Exa 10.14 Chapter 10 example 14

```
1 clear;
2 clc;
3 r1 = 0.5*5; // inches
4 p = 5000; // lb/in^2
5 f = 5; // tons/in^2
6 b = (f + p/2240)/((1/r1^3) + (2/r1^3));
7 a = f - (b/r1^3);
8 //external diameter
9 r = (2*b/a)^(1/3); // inches
10 t = r - r1; // inches
11 printf('The thickness of the shell required, t = %.3 f inches',t);
12
13 //the answer is approximated in the text book
```

Chapter 11

Riveted joints

Scilab code Exa 11.1 Chapter 11 example 1

```
1 clear;
2 clc;
3 t = 5/8; // inch
4 d = 1; // inch
5 p = 4; // inches
6 f_t = 28; //tons/in^2
7 f_s = 20; //tons/in^2
8 f_b = 40; //tons/in^2
9 P_t = (p-d)*t*f_t; // tons
10 P_s = 2*2*0.25*%pi*d^2 *f_s; // tons
11 P_b = 2*d*t*f_b; //tons
12 P = p*t*f_t; // tons
13 n = min(P_t,P_s,P_b)/P; // efficiency
14 printf('The efficiency of the joint = %.3 f or %.1 f percentage',n,n*100);
```

Scilab code Exa 11.2 Chapter 11 example 2

```
1 clear;
2 clc;
3 t = 1/2; // inches
4 d1= 7/8; // inches
5 p1 = 5/2; // inches
6 d2 = 9/8; // inches
7 p2 = 7/2; // inches
8 f_t = 8; // tons/in^2
9 	ext{ f_s = 6;// tons/in^2}
10 f_b = 10; // tons/in^2
11
12 P_{t1} = (p1-d1)*t*f_t; // tons
13 P_s1 = 0.25*\%pi*d1^2 *f_s; // tons
14 P_b1 = d1*t*f_b; //tons
15 P1 = p1*t*f_t; // tons
16 n1 = \min(P_{t1}, P_{s1}, P_{b1})/P1; // efficiency
17 printf ('The efficiency of first joint = \%.2 f = \%d
      percentage',n1,n1*100);
18
19 P_{t2} = (p2-d2)*t*f_t; // tons
20 P_s2 = 0.25*\%pi*d2^2 *f_s; // tons
21 P_b2 = d2*t*f_b; //tons
22 P2 = p2*t*f_t; // tons
23 n2 = \min(P_t2, P_s2, P_b2)/P2; // efficiency
24 printf('\n The efficiency of second joint = \%.3 f = \%
      .1 f percentage \ n', n2, n2*100);
25
26 if n2 > n1 then
       printf(' The second joint, with its higher
          efficiency, is stronger');
28 else
29
       printf(' The first joint, with its higher
          efficiency, is stronger');
30 end
```

Scilab code Exa 11.3 Chapter 11 example 3

```
1 clear;
2 clc;
3 t = 3/8; // inches
4 p2 = 7/2; // inches
5 f_t = 11/2; // tons/in^2
6 	ext{ f_s = 5;} / 	ext{tons/in^2}
7 	 f_b = 12; // tons/in^2
8 d = 1.2*sqrt(t); // inches
9 / d = 0.735, say 0.75 inches
10 d = 0.75; // inches
11 P_s = 0.25*\%pi*d^2 *f_s; // tons
12 P_b = d*t*f_b; //tons
13 P_t_limit = P_s; //tons
14 p_limit = P_s/(t*f_t) + d; // inches
15 / p_{limit} = 1.763, take p = 1.75
16 p = 1.75; // inches
17 n = (p-d)/p; // efficiency
18 printf ('The efficiency of the joint = \%.1 f
      percentage',n*100);
```

Scilab code Exa 11.4 Chapter 11 example 4

```
1 clear;
2 clc;
3 d = 7/8; // inches
4 t = 1/2; // inches
5 f_t = 6; // tons/in^2
6 f_s = 5; // tons/in^2
7 f_b = 10; // tons/in^2
8 p_s = 2*0.25*%pi*d^2*f_s; // tons
9 P_b = d*t*f_b; // tons
10 p_t_limit = 2*P_b/3 + d; // inches
11 n = (p_t_limit-d)/p_t_limit; // efficiency
```

```
12 printf('Pitch, p = %.3f inches',p_t_limit);
13 printf('\n Efficiency = %.3f or %d percentage',n,n
         *100);
14
15 //the answer is approximated in the textbook.
```

Scilab code Exa 11.5 Chapter 11 example 5

```
1 clear;
2 clc;
3 d = 6; // feet
4 p = 180; // lb/in^2
5 f = 6; // tons
6 n = 70/100; // efficiency
7 d1 = 1; // inches
8 f_s = 5; // tons/in^2
9 f_b = 10; // tons/in^2
10 t = p*d/(2*f*n);// inches
11 // t = 0.6889 \text{ inches}, \text{ say } 0.75 \text{ inches}
12 t = 0.75; //inches
13 P_s = 2*0.25*\%pi*d1^2*f_s; // tons
14 \text{ P_b} = d1*t*f_b; // tons
15 p_limit = 2*P_b/(t*f) + d1; // inches
16 //p_{limit} = 4.33 inches, make it 4 inches
17 p = round(p_limit); // inches
18 n1 = (p-d1)/p; // efficiency
19 printf ('Pitch = %.2f inches, make it %d inches.',
      p_limit,p);
20 printf('\n The efficiency of the joint will be %d
      percentage aganist the assumed value of %d
      percentage. ', n1*100, n*100);
```

Scilab code Exa 11.6 Chapter 11 example 6

```
1 clear;
2 clc;
3 t = 1/2; // inches
4 \ a = 1/2; // inches
5 P = 42; // tons
6 d = 3/4; // inches
7 	 f_t = 7.5; // tons/in^2
8 f_s = 6; // tons/in^2
9 	 f_b = 12; // tons/in^2
10 P_s = 2*0.25*\%pi*d^2 *f_s; // tons
11 P_b = d*t*f_b; // tons
12 n = P/\min(P_s, P_b);
13 n = round(n+1);
14 b1 = P/(t*f_t) + d; // inches
15 b = round(b1);
16 e = (b-d)/b; // efficiency
17 f_s = (P/n)/(2*0.25*\%pi*d^2); // tons/in^2
18 f_b = (P/n)/(d*t); // tons/in^2
19 f1 = P/(a*(b-d)); // tons/in^2
20 f2 = (P-(P/n))/((b-2*d)*t); // tons/in^2
21 f3 = (P-(3*P/n))/((b-3*d)*t); // tons/in^2
22 f4 = (P-(6*P/n))/((b-4*d)*t);// tons/in^2
23 printf('The number of rivets required, n = %d',n);
24 printf('\n The width of the flat required, b = \%.2 f
      inches, say %d inches', b1, b);
25 printf ('\n The efficiency of the joint = \%.2 \,\mathrm{f}
      percentage',e*100);
26 printf('\n The actual stresses induce in the rivet
      are, f_s = \%.2 f tons/in^2\n
                                                f_b = \%.2 f
       tons/in^2, f_s, f_b);
27 printf('\n The tensile stress at section 11, f1 = \%
      .3 f rons/in^2',f1);
28 printf('\n The tensile stress at section 22, f2 = \%
      .3 f rons/in^2',f2);
  printf ('\n The tensile stress at section 33, f3 = \%
      .3 f rons/in^2',f3);
30 printf ('\n The tensile stress at section 44, f4 = \%
      .3 f rons/in^2', f4);
```

Scilab code Exa 11.7 Chapter 11 example 7

```
1 clear;
2 clc;
3 b = 9; // inches
4 t = 3/4; // inches
5 	ext{ f_t = 8; // tons/in^2}
6 	ext{ f_s = 5;} // 	ext{ tons/in^2}
7 	 f_b = 10; // tons/in^2
8 d = 7/8; // inches
9 P = (b-d)*t*f_t; // tons
10 P_s = 2*0.25*\%pi*d^2 *f_s; // tons
11 P_b = d*t*f_b; // tons
12 n = P/\min(P_s, P_b);
13 e = (b-d)/b; // efficiency
14 \text{ P1} = f_t*(b-d)*t; // tons
15 P2 = f_t*(b-2*d)*t+P_s; // tons
16 P3 = f_t*(b-3*d)*t+3*P_s; // tons
17 P4 = f_t*(b-3*d)*t+6*P_s; // tons
18 printf ('The number of rivets required, n = \%d', round
      (n+1));
19 printf ('\n The efficiency of the joint = \%.1 f
      percentage', e*100);
20 printf('\n The pull at section 11, P1 = \%.2 f \text{ rons/in}
      ^2',P1);
21 printf('\n The pull at section 22, P2 = \%.1 f rons/in
      ^{2}, P2);
  printf('\n The pull at section 33, P3 = \%.2 f rons/in
      ^{2}, P3);
23 printf('\n The pull at section 44, P4 = \%.2 f rons/in
      ^2',P4);
  if P1 == min(P1, P2, P3, P4) then
25
       printf('\n The maximum possible pull which the
          flat will safely transmit is P1 = \%.2 f tons/
```

```
in^2 at section 11',P1);
26 elseif P2 == min(P1, P2, P3, P4) then
       printf('\n The maximum possible pull which the
27
          flat will safely transmit is P2 = \%.1 f tons/
          in^2 at section 22', P2);
  elseif P3 == min(P1, P2, P3, P4) then
28
29
       printf('\n The maximum possible pull which the
          flat will safely transmit is P3 = \%.2 f tons/
          in^2 at section 33',P3);
30
  else
       printf('\n The maximum possible pull which the
31
          flat will safely transmit is P4 = \%.2 f tons/
          in^2 at section 44',P4);
32 end
33
34 //there is a minute error in the answer given
      textbook.
```

Scilab code Exa 11.8 Chapter 11 example 8

```
1 clear;
2 clc;
3 P = 150;; //tons
4 t = 3/4; // inches
5 d = 1; // inches
6 f_s = 6; // tons/in^2
7 f_b = 12; // tons/in^2
8 P_s = 0.25*%pi*d^2 *f_s; // tons
9 P_b = t*d*f_b; // tons
10 n = P/min(P_s, P_b); // no. of rivets required
11 printf('The number of rivets required, n = %.2f, say %d',n,round(n));
```

Scilab code Exa 11.9 Chapter 11 example 9

```
1 clear;
2 clc;
3 1 = 50; // feet
4 b = 4; // feet
5 P = 3; // tons per foot run
6 t = 1/2; // inches
7 b1 = 4;// inches
8 d1 = 4; // inches
9 \text{ h1} = 1/2; // inches
10 d = 7/8; // inches
11 f_s = 6; // tons/in^2
12 	 f_b = 12; // tons/in^2
13 P_s = 2*0.25*\%pi*d^2 *f_s;// tons
14 P_b = t*d*f_b; // tons
15 R = P_b; // tons
16 F = 1*P*2/d1; // tons
17 p_{min} = R*(1-0.5*b1)/F; // inches
18 printf ('The minimum pitch required is p = \%.2 f
      inches, say %d inches',p_min,p_min);
```

Scilab code Exa 11.10 Chapter 11 example 10

```
1 clear;
2 clc;
3 P = 2.4; // tons
4 e = 18; // inches
5 n = 8; //no. of rivets
6 d = 7/8; // inches
7 h = 4; // inches
8 M = P*e; // ton-inches
9 d1 = 2; //
10 d2 = 6; //
11 square_r_sum = h*((0.5*h)^2 + d2^2) + h*((0.5*h)^2 + d2^2)
```

```
d1^2);//
12 r = sqrt(40);
13 F = M*r/square_r_sum;// tons
14 theta = atan(d2/d1)//radians
15 theta1 = theta*180/%pi// degrees
16 V = (P/n) + F*cos(theta);// tons
17 H = F*sin(theta);// tons
18 R = sqrt(V^2 + H^2);// tons
19 f_s = R/(0.25*%pi*d^2);// tons/in^2
20 printf('The maximum shear intensity induced at any rivet is \n f_s = %.2f tons/in^2',f_s);
```

Chapter 12

Shafts and springs in torsion

Scilab code Exa 12.1 Chapter 12 example 1

```
1 clear;
2 clc;
3 d = 3; //inches
4 HP = 120; //horse power
5 \text{ RPM} = 180;
6 \ 1 = 25; // feet
7 N = 12*10^6; // lb/in^2
8 T = 33000*HP/(2*\%pi*RPM); // lb-feet
9 \text{ f_s} = 16*T*12/(\%pi*d^3); // lb/in^2
10 theta = f_s*1*12/(0.5*d*N); // radian
11 printf('The maximum intensity of shear stress
      induced is f_s = \%.d lb/in^2, f_s;
12 printf('\n The angle of twist in degrees is theta =
     \%.2 f',theta*180/%pi);
13
14 //there is a minute error in the answer given in
      textbook.
```

Scilab code Exa 12.2 Chapter 12 example 2

```
1 clear;
2 clc;
3 D = 2; // inches
4 N = 150; // RPM
5 f_s = 9000; // lb/in^2
6 M_r = f_s*(%pi/16)*D^3; // lb-inches
7 HP = M_r*2*%pi*N/(12*33000); //
8 printf('H.P transmitted is %.2f', HP);
```

Scilab code Exa 12.3 Chapter 12 example 3

```
1 clear;
2 clc;
3 HP = 80;
4 N = 200; // RPM
5 m = 30/100;
6 f = 12000; // lb/in^2
7 T = HP*33000/(2*%pi*N); // lb-feet
8 T_max = (1+m)*T; // lb-feet
9 D = (T_max*12*16/(%pi*f))^(1/3); // inches
10 printf('Suitable diameter is D = %.3f inches',D);
11
12 //the answer is approximated in the textbook.
```

Scilab code Exa 12.4 Chapter 12 example 4

```
1 clear;
2 clc;
3 HP = 750;
4 N = 90; // RPM
5 m = 40/100;
6 f = 12000; // lb/in^2
7 t = 1; // inch
```

```
8  T = HP*33000/(2*%pi*N); // lb-inches
9  T_max = (1+m)*T; // lb-inches
10  //On solving (4*t)D^3 - (6*t^2)D^2 +(4*t^3 -(16*M/f* %pi))D -t^4 = 0, we get D
11  D = 7.6; //inches
12  d = D - 2; //inches
13  printf('A shaft % d inches external diameter and %d inches internal diameter will be satisfactory.', round(D), round(d));
```

Scilab code Exa 12.5 Chapter 12 example 5

```
1 clear;
2 clc;
3 \text{ RPM} = 180; // \text{ RPM}
4 \text{ HP} = 130;
5 f = 9000; // lb/in^2
6 \text{ alpha} = 1; // \text{degree}
7 1 = 10; // feet
8 N = 6000; // tons/in^2
9 T = 33000*HP/(2*\%pi*RPM); // lb-feet
10 D1 = (16*T*12/(f*\%pi))^(1/3);// inches
  D2 = (T*12*1*12*32*alpha*180/(%pi*N*%pi*2240))^(1/4)
      ;// inches
12
  if D1 > D2 then
        printf('D = %d inches will be suitable for the
13
           shaft',round(D1));
14 else
        printf('D = %d inches will be suitable for the
15
           shaft',round(D2));
16 \text{ end}
```

Scilab code Exa 12.6 Chapter 12 example 6

```
1 clear;
2 clc;
3 \text{ HP} = 3000;
4 \text{ RPM} = 60;
5 f = 12000; //lb/in^2
6 rho = 480; //lb. per sq. foot
7 k = 3/4; // k = d/D
8 T = HP*33000*12/(2*\%pi*RPM); // lb-inches
9 D1 = (T*16/(f*\%pi))^(1/3); //inches
10 D2 = (T/((1+k^2)*(1-k^2)*\%pi*f/16))^(1/3);//inches
11 d = k*D2; // inches
12 \text{ w1} = 0.25 * \text{pi} * D1^2 * \text{rho} / 144 ; // lb - \text{wt}
13 w2 = 0.25*\%pi*(D2+d)*(D2-d)*rho/144; // lb-wt
14 \text{ w} = \text{w1-w2}; // \text{lb-wt}
15 n = (w/w1)*100;
16 printf ('The saving in weight per foot run is w = %d
      lb-wt', w);
17 printf('\n Percentage saving is \%.2 f',n);
18
19 //there is a minute error in the answer given in
      textbook.
```

Scilab code Exa 12.7 Chapter 12 example 7

```
1 clear;
2 clc;
3 l1 = 3;// feet
4 d1 = 1;// feet
5 l2 = 9;// feet
6 M = 200;// lb-wt
7 l = 9;// inches
8 N = 12*10^6;// lb/in^2
9 k = 12/11;
10 T1 = M/(1+k);// lb-feet
11 T2 = k*T1;// lb-feet
```

Scilab code Exa 12.8 Chapter 12 example 8

```
1 clear;
2 clc;
3 D = 5; // inches
4 \text{ HP} = 120;
5 \text{ RPM} = 150;
6 b = 5; // inches
7 h = 1; //inch
8 n = 6; // no. of bolts
9 d = 3/4; // inches
10 T = HP*33000*12/(2*\%pi*RPM); // lb-inches
11 f_s = T*16/(%pi*27);
12 f_k = T/(b*h*2*d);
13 f_b = T/(n*0.25*\%pi*d^2 * b); // lb-inches
14 printf ('f_s = \%d lb/in^2\n f_k = \%d lb/in^2\n f_b =
      \%d lb/in^2, f_s, f_k, f_b);
15
16 //there are errors given in the answers given in the
       textbook
```

Scilab code Exa 12.9 Chapter 12 example 9

```
1 clear;
```

```
2 clc;
3 d = 4; //inches
4 T = 30; // ton-inches
5 M = 20; //ton-inches
6 m = 1/0.3;
7 	ext{ f_s = } 16*T/(\%pi*d^3); // tons/in^2
8 f_b = 32*M/(\%pi*d^3);// tons/in^2
9 theta = 0.5*atan(T/M); // radians
10 theta1 = theta*180/\%pi;
11 theta2 = theta1+90;
12 f1 = 0.5*f_b + sqrt(f_s^2 + 0.25*f_b^2); // tons/in^2
13 f2 = 0.5*f_b - sqrt(f_s^2 + 0.25*f_b^2); // tons/in^2
14 Ee = f1 - (f2/m); // tons/in^2
15 f = sqrt(f1^2 + f2^2 - 2*f1*f2/m); // tons/in^2
16 printf ('Maximum strain is Ee = \%.3 f tons/in^2', Ee);
17 printf('\n Maximum strain energy is f = \%.3 f tons/in
      ^{2}, f);
```

Scilab code Exa 12.10 Chapter 12 example 10

```
1 clear;
2 clc;
3 HP = 80;
4 RPM = 120;
5 b = 10; // feet
6 h = 3; // feet
7 F = 8000; // lb-wt
8 m = 4;
9 T = HP*33000*12/(2*%pi*RPM*2240); // ton-inches
10 M = F*h*(b-h)*12/(b*2240); // ton-inches
11 //(i) The major principal stress f1 is given by
12 f1 = 6; // tons/in^2
13 d1 = ((M+sqrt(M^2 + T^2))*16/(%pi*f1))^(1/3); // inches
14
```

```
15 //(ii) If f_s_dash is the maximum intensity of shear
       stress
16 f_s_dash = 3; // tons/in^2
17 d2 = (sqrt(M^2 + T^2) * 16/(%pi*f_s_dash))^(1/3);//
      inches
18
19 //(iii) If e is the major principal strain
20 Ee = 6; // tons/in^2
21 d3 = (((1-(1/m))*M + (1+(1/m))*sqrt(M^2 + T^2))*16/(
      %pi*Ee))^(1/3);// inches
22
23 //(iv) If f is the direct stress which, acting alone
       will produce the same maximum strain energy
24 f = 6; // tons/in^2
25 	ext{ d4} = ((sqrt(4*M^2 + 2*(m+1)*(T^2)/m))*16/(%pi*f))
      ^(1/3);// inches
26 printf ('The diameter of the shaft in different cases
       will be, (i) d = \%.3 f inches\n
      (ii) d = \%.3 f inches\n
      (iii) d = \%.3 f inches \n
      (iv) d = \%.3 f inches', d1, d2, d3, d4);
27 //there are round-off errors in the answers given in
       textbook.
```

Scilab code Exa 12.11 Chapter 12 example 11

```
1 clear;
2 clc;
3 D = 12; // inches
4 d = 6; // inches
5 HP = 2400;
6 RPM = 80;
```

```
7 M = 40; // ton-feet
8 P = 25; // tons
9 PR = 0.3; //poisson's ratio
10 A = 0.25*\%pi*(D^2 - d^2); // in^2
11 Z = (\%pi/32)*(D^4 - d^4)/D; // in^3
12 J = (\%pi/16)*(D^4 - d^4)/D;// in^3
13 p_0 = P/A; // ton/in^2
14 \text{ p_b} = M*12/Z ; // tons/in^2
15 f_b = p_0 + p_b; //tons/in^2
16 f_s = HP*33000*12/(2*\%pi*RPM*2240*J); // tons/in^2
17 theta = 0.5*atan(2*f_s/f_b); // radians
18 theta1 = theta*180/%pi;// degrees
19 theta2 = theta1+90; // degrees
20 f_1 = 0.5*f_b + sqrt(f_s^2 + 0.25*f_b^2); //tons/in^2
21 	ext{ } f_2 = 0.5*f_b - \text{sqrt}(f_s^2 + 0.25*f_b^2); //tons/in^2
22 f = sqrt(0.25*f_b^2 + f_s^2); // tons/in^2
23 Ee = f_1 - PR*f_2; // tons/in^2
24 printf ('The maximum principal stresse are f_1 = \%.3 f
       tons/in^2., compressive \n
                                        f_{-2} = \%.3 f tons/
      in ^2., tensile',f_1,-f_2);
25 printf('\n theta1 = \%.1f degrees\n theta2 = \%.1f
      degrees', theta1, theta2);
26 printf ('\n The maximum shear intensity = \%.3 f tons/
      in^2, f);
27 printf('\n Maximum strain is, Ee = \%.3 f tons/in^2',
      Ee);
28
29 //there are minute errors in the answers given in
      textbook.
```

Scilab code Exa 12.12 Chapter 12 example 12

```
1 clear;
2 clc;
3 RPM = 180;
```

```
4 P = 10; // tons
5 v = 25; // feet per minute
6 n = 64/100; // efficiency of the crane
7 f = 5500; // lb/in^2
8 1 = 10; // feet
9 N = 12*10^6; // lb/in^2
10 W = P*v*2240/n; // ft-lbs
11 T = W*12/(2*\%pi*RPM); // lb-inches
12 s = (T/(0.208*f))^(1/3); // inches
13 theta = 7.11*T*1*12*180/(\%pi*N*s^4);// degrees
14 printf ('The size of the shaft is s = \%.3 f inches',s)
15 printf('\n The angle of the twist in the shaft for a
       length of \%d feet, theta = \%.3 f degrees',1,theta
     );
16 //there is a round-off error in the answer given in
      textbook.
```

Scilab code Exa 12.13 Chapter 12 example 13

```
1 clear;
2 clc;
3 d = 3/8; // inches
4 n = 12; //no. of complete turns
5 D = 4; // inches
6 W = 50; // lb-wt
7 N = 12*10^6; // lb/in^2
8 T = W*0.5*D; // lb-inches
9 f_s = T*16/(%pi*d^3); //lb/in^2
10 delta = 64*W*(D^3 /8)*n/(N*d^4); // inches
11 E = 0.5*W*delta; // inch-lbs
12 printf('Shear stress induced is f_s = %d lb/in^2', f_s);
13 printf('\n Deflection under the pull is delta = %.3 f inches', delta);
```

```
14 printf('\n Energy stored = %.3f lb-inches',E);
15
16 //there is a minute error in the answer given in textbook.
```

Scilab code Exa 12.14 Chapter 12 example 14

```
1 clear;
2 clc;
3 W = 2; // tons
4 v = 4; // miles per hour
5 n = 18; // no. of coils
6 delta = 9; // inches
7 N = 6000; // tons/in^2
8 d = 1; // inch
9 D = 8; // inches
10 KE = 12*(W*(v*44/30)^2)/(2*32); // inch-tons
11 P = (delta*N*d^4)/(64*n*(0.5*D)^3); // tons
12 E = 0.5*P*delta; // inch-tons
13 m = KE/E; // no. of springs required
14 printf('The number of springs required m = %d', round (m));
```

Scilab code Exa 12.15 Chapter 12 example 15

```
1 clear;
2 clc;
3 W = 5; // cwt
4 n = 18; // no. of coils
5 delta = 9; // inches
6 d = 1; // inch
7 D = 8; // inches
8 N = 6000; // tons/in^2
```

```
9 P = (delta*N*d^4)/(64*n*(0.5*D)^3);// tons
10 h = (0.5*P*delta*20/W)-delta;// inches
11 printf('The height of drop h = %.3 f inches',h);
```

Scilab code Exa 12.16 Chapter 12 example 16

```
1 clear;
2 clc;
3 s = 1/4; // inch
4 n = 12; // no. of coils
5 D = 3; // inches
6 	 f_s = 45000; // lb/in^2
7 N = 12*10^6; // lb/in^2
8 T = 0.208*f_s*s^3; // lb-inches
9 W = T/(0.5*D); // lb-wt
10 theta = 7.11*T*\%pi*D*12/(N*s^4); //rdaians
11 delta = 0.5*D*theta; // inches
12 printf ('Maximum possible axial load is W = \%.1 f lb -
     wt', W);
13 printf('\n Deflection, delta = \%.3 f inches', delta);
15 //there is a minute error in the answer given in
      textbook.
```

Scilab code Exa 12.17 Chapter 12 example 17

```
1 clear;
2 clc;
3 d = 3/8; // inches
4 n = 12; //no. of complete turns
5 D = 4; // inches
6 W = 50; // lb-wt
7 N = 12*10^6; // lb/in^2
```

Scilab code Exa 12.18 Chapter 12 example 18

```
1 clear;
2 clc;
3 d = 3/8; // inches
4 n = 12; //no. of complete turns
5 D = 4; // inches
6 W = 50; // lb-wt
7 N = 12*10^6; // lb/in^2
8 alpha = 15*\%pi/180; // degrees
9 E = 30*10^6; // lb/in^2
10 T = W*0.5*D*cos(alpha);//lb-inches
11 M = W*0.5*D*sin(alpha); // lb-inches
12 J = \%pi*d^4 / 32; // in^4
13 I = \%pi*d^4 /64; // in^4
14 delta = 64*W*((D/2)^3)*n*sec(alpha)*((cos(alpha)^2)/
      \mathbb{N} + (2*\sin(alpha)^2)/E)/d^4; // inches
15 f = 32*W*0.5*D*sin(alpha)/(%pi*d^3); // lb/in^2
16 f_s = T*16/(\%pi*d^3); // lb/in^2
17 	ext{ f_1 = 0.5*f + sqrt(f_s^2 + 0.25*f^2); // lb/in^2}
18 f_2 = 0.5*f - sqrt(f_s^2 + 0.25*f^2); // lb/in^2
19 f_s_{dash} = sqrt(f_s^2 + 0.25*f^2); // lb/in^2
```

```
20 printf('Deflection, delta = %.3f inches',delta);
21 printf('\n f = %d lb/in^2\n f_s = %d lb/in^2',f,f_s);
22 printf('\n The maximum intensity of shear stress = %d lb/in^2',f_s_dash);
23
24 //there are calculation errors in the answers given in textbook
```

Scilab code Exa 12.19 Chapter 12 example 19

```
1 clear;
   2 clc;
   3 d = 3/8; // inches
   4 n = 12; //no. of complete turns
   5 D = 4; // inches
   6 M = 75; // lb-inches
   7 N = 12*10^6; // lb/in^2
   8 alpha = 15*\%pi/180; // degrees
   9 E = 30*10^6; // lb/in^2
10 phi_dash = (64/d^4)*M*0.5*D*n*sec(alpha)*((2*(cos(alpha))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha)))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*((2*(cos(alpha))))*(
                            alpha))^2)/E + ((sin(alpha))^2)/N);// radians
11 DELTA = 64*M*((0.5*D)^2)*n*sin(alpha)*((1/N) - (2/E)
                           )/d^4;// inches
12 printf ('Angle of rotation phi_dash = \%.4 f radians or
                               %.2f degrees',phi_dash,phi_dash*180/%pi);
13 printf('\n The axial deflection = \%.4 f inches', DELTA
                           );
```

Chapter 13

Elements of reinforced concrete

Scilab code Exa 13.1 Chapter 13 example 1

```
1 clear;
2 clc;
3 b = 10; //inches
4 d = 1; //inches
5 h = 20; //inches
6 r = 2; //inches
7 \text{ M_r} = 500000; //lb-inches
8 m = 15;
9 \text{ A_r} = 4*0.25*\%pi*d^2; //in^2
10 h_{eff} = h_{r}; //inches
11 K = m*A_r/(b*h_eff); //inches
12 n1 = sqrt((K)^2+(2*K))-K;
13 n = n1*h_eff; //inches
14 a = h_{eff}-(n/3); //inches
15 c = 2*M_r/(b*n*a); //lb/in^2
16 t = (h_eff-n)*m*c/n; //lb/in^2
17 printf('The stress induced in the concrete and steel
      t = \%d lb/in^2',t);
18
19 //there is a minute error in the answer given in
      textbook.
```

Scilab code Exa 13.2 Chapter 13 example 2

```
1 clear;
2 clc;
3 b = 8; //inches
4 d = 7/8; //inches
5 h = 18; //inches
6 r = 2; //inches
7 c = 750; //lb/in^2
8 \text{ t_limit} = 18000; //lb/in^2
9 m = 8;
10 h_eff = 16; //inches
11 m = 18;
12 A_t = 3*0.25*\%pi*d^2; //in^2
13 K = m*A_t/(b*h_eff); //inches
14 \text{ n1} = \text{sqrt}((K)^2+(2*K))-K;
15 n = n1*h_eff; //inches
16 a = h_{eff} - (n/3); //inches
17 t = m*c*(h_eff-n)/n; //lb/in^2
18
19 if t<t_limit then
20
       t = t;
21 else
22
       t = t_limit;
23 end
24
25 M_r = t*A_t*a; // lb/inches
26 \text{ W} = \text{M_r*8/(12*h_eff)}; //\text{lb-wt}
27 printf ('The distance of the N.A from the top edge, n
       = \%.3 f inches.',n);
  printf('\n The safe moment of inertia is, t = \%d lb/d
      in^2., t);
29 printf('\n Unifromly distributed load over the beam,
       W = \%d \ lb - wt. or \%d \ lb. per foot run', W, W
```

```
/16.011);
30
31 //there are calculation errors given in the answer in textbook.
```

Scilab code Exa 13.3 Chapter 13 example 3

```
1 clear;
2 clc;
3 function Z = quadratic(d, M_c, c_limit, b)
       n = poly(0, "n");
       p = n^2-(d*3)*n + M_c*3/(0.5*c_limit*b);
       Z = roots(p);
7 endfunction
8 b = 12; //inches
9 h = 22; //inches
10 r = 2; //inches
11 W = 1500; //lb per foot run
12 d = h-r; //feet
13 1 = 20; // inches
14 c_limit = 700; // lb/in^2
15 m = 15;
16 \text{ M_c} = \text{W*20*1*b/8;} // \text{lb-inches}
17 Z = quadratic(d, M_c, c_limit, b);
18 n = round(Z(2));
19 t = m*c_limit*(d-n)/n; // lb/in62
20 \text{ A_t} = 0.5*c_limit*b*n/t; // in^2
21 printf ('Area of steel reinforcement required is, A-t
       = \%d in^2', A_t);
22 printf('\n Corresponding stress in steel is, t = \%d
      lb/in^2',t);
```

Scilab code Exa 13.4 Chapter 13 example 4

```
1 clear;
2 clc;
3 m = 15;
4 t = 18000; // lb/in^2
5 c = 700; // lb/in^2
6 b = 12;; // inches
7 M = 900000; //bending moment lb/inches
8 \text{ k1} = 1/((t/(m*c))+1); //k = n/d
9 k2 = 1-k1/3; //k2 = a/d
10 p = 0.5*c*k1/(t);
11 d = sqrt(M/(0.5*c*b*k1*k2)); //inches
12 A_t = p*b*d; // sq.inches
13 A_t_previous = 0.25*\%pi*(7/8)^2;//section area with
      diameter 7/8 inches
14 n = A_t/A_t_previous;
15 printf ('Effective deapth is d = \%.2 f inches', d);
16 printf('\n A_t = \%.3 f sq.inches', A_t);
```

Scilab code Exa 13.5 Chapter 13 example 5

```
1 clear;
2 clc;
3 l = 20;//feet
4 W = 500;// lb per foot run
5 c = 750;// lb/in^2
6 t = 18000;// lb/in^2
7 m = 15;
8 BM_max = W*l*l*12/8 ;// lb-inches
9 //by making the effective deapth d twice the width b
10 d = (BM_max/(126*0.5))^(1/3);//inches
11 b = 0.5*d;//inches
12 //necessary reinforcement is 0.8% of concrete section
13 A_t = 0.008*b*d;// in^2
14 printf('d = %.2 f inches\n b = %.2 f inches',d,b);
```

```
15 printf('\n A_t = \%.3 \, \text{f in}^2', A_t);
```

Scilab code Exa 13.6 Chapter 13 example 6

```
1 clear;
2 clc;
3 W = 180; // lb per sq. foot
4 1 = 10; // feet
5 b = 12; //inches
6 c = 750; // lb/in^2
7 m = 15;
8 M = W*1*1*12/8; //lb-inches
9 d_new = sqrt(M/(126*b)); //inches
10 A_t = 0.8*b*d_new/100; //in^2
11 //using 3/8 inch rods
12 d1 = 3/8; //inches
13 A1 = 0.25*\%pi*(d1)^2; //in^2
14 \text{ r1} = A1*b/A_t; //inch
15 //using 1/2 inch rods
16 	ext{ d2} = 1/2; //inches
17 A2 = 0.25*\%pi*(d2)^2; //in^2
18 r2 = A2*b/A_t; //inches
19 printf ('d = \%.3 \, \text{f inches}', d_new);
20 printf('\n A_t = \%.3 f in 2', A_t);
21 printf('\n Using \%.3f inch rods, spacing centre to
      centre will be %.2f inches',d1,r1);
22 printf('\n Using \%.2 f inch rods, spacing centre to
      centre will be %.1f inches',d2,r2);
23 //there are round-off errors in the answer given in
      textbook
```

Scilab code Exa 13.7 Chapter 13 example 7

```
1 clear;
2 clc;
3 \ 1 = 12; //feet
4 w = 150; // lb per sq. foot
5 //Live load
6 LL = w*1;//lb-wt
7 //Dead Load assuming the slab thickness to be 6
      inches
8 t = 6; //inches
9 DL = t*1*12; //lb-wt
10 //total load
11 W = LL+DL; //lb-wt
12 M = W*1*12/10; //lb-inches
13 d = sqrt(M/(12*126));
14 printf ('d = \%.3 f inches', d);
15 //With about an inch to cover the slab will be 6
      inch thick
16 \text{ A_t} = 0.8*1*d/100; // in^2
17 //using 1/2 inch rods
18 d1 = 1/2; //inches
19 A1 = 0.25*\%pi*(d1)^2; //in^2
20 \text{ r1} = A1*1/A_t; //inches
21 printf('\n Per foot width of slab, A_t = \%.4 f in^2',
      A_t);
22 printf('\n Using \%.2 f inch rods, spacing centre to
      centre will be %.3f inches',d1,r1);
23 //there are minute calculation errors in the answer
      given in textbook.
```