A Quick Guide to LATEX

What is LaTeX?

IATeX(usually pronounced "LAY teck," sometimes "LAH teck," and never "LAY tex") is a mathematics typesetting program that is the standard for most professional mathematics writing. It is based on the typesetting program TeX created by Donald Knuth (his first version appeared in 1978). Leslie Lamport created IATeX, a more user-friendly version of TeX. A team of IATeX programmers created the current version, IATeX 2ε .

Text vs. Math vs. Functions

In properly typeset mathematics, variables appear in italics (e.g., $f(x) = x^2 + 2x - 3$). The exception to this rule is predefined functions (like $\sin(x)$). Thus, it is important to always treat text, variables, and functions correctly. See the difference between x and x, x, x, and x, and x, x,

Text Decorations

Your text can be *italics* (\textit{italics}), boldface (\textbf{boldface}), or <u>underlined</u> (\underline{underlined}). Your math can contain boldface, \mathbf{R} (\mathbf{R}), or blackboard bold, \mathbb{R} (\mathbf{R}). You may want to use these to express the sets of real numbers (\mathbb{R} or \mathbf{R}), integers (\mathbb{Z} or \mathbf{Z}), rational numbers (\mathbb{Q} or \mathbf{Q}), and natural numbers (\mathbb{N} or \mathbf{N}). To have text appear in a math expression, use \text. (0,1]=\{x\in\mathbf{R}\}:x>0\text{and }x\le 1\} yields (0,1]=\{x \in \mathbf{R}:x>0\ and x \le 1\}. (Without the \text command it treats "and" as three variables: (0,1]=\{x \in \mathbf{R}:x>0\ andx \le 1\}.)

Inline Mathematical Expressions

Place a math expression between dollar signs (\$) to produce an inline expression. For example, typing \$90^{\circ}\$ is the same as \$\frac{\pi}{2} radians yields 90° is the same as $\frac{\pi}{2}$ radians.

Display Equations

Display equations are mathematical expressions given their own line and centered on the page. They are usually important equations that deserve to be showcased on their own line, or for tall or long equations that don't fit inline. To produce a display equation, surround the mathematical expression with \[and \]. Typing \[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \] yields

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Displaystyle

To get full-sized inline mathematical expressions, use \displaystyle. Use this sparingly. Typing I want this \$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n}\$, not this \$\sum_{n=1}^{\infty} \frac{1}{n}\$. yields

I want this
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, not this $\sum_{n=1}^{\infty} \frac{1}{n}$.

Spaces and New Lines

LATEX ignores extra spaces and new lines. For example,

This sentence will look fine after it is compiled.

This sentence will look fine after it is compiled.

Leave one empty line between two paragraphs. Place \\ at the end of a line to create a new line (but not a new paragraph). Use \noindent to prevent a paragraph from indenting.

This

compiles

like\\

this.

This compiles

like this.

Comments

Use % to create a comment. Nothing after % will be typeset. $f(x) = \sin(x)$ % sine function yields $f(x) = \sin(x)$

Images

You can put images (pdf, png, jpg, or gif) in your document. To do so, you need \usepackage{graphicx} at the start of your document, and the images need to be in the same directory as your .tex file. Omit [width=5in] if you want the image to be full-sized.

\begin{figure}[ht]

\includegraphics[width=5in]{imagename.pdf}
\caption{The (optional) caption goes here.}
\end{figure}

Delimiters

description	command	output
parentheses	(x)	(x)
brackets	[x]	[x]
curly braces	\{x\}	{x}

Curly braces are non-printing characters used to gather text with more than one character. Observe the differences between the four expressions x^2, x^{2}, x^2t, x^2t, x^2t.

Lists

You can produce ordered and unordered lists. descriptioncommand output\begin{itemize} \item Thing 1 • Thing 1 unordered list \item Thing 2 • Thing 2 \end{itemize} \begin{enumerate} \item Thing 1 1. Thing 1 ordered list \item Thing 2 2. Thing 2 \end{enumerate}

Aligned Equations

description	command	output
aligned	\begin{align*}	
equations	$f(0) \&= 10 \cos(0) \$	$f(0) = 10\cos(0)$
	%= 10	= 10
	\end{align*}	

Symbols in Math Mode

The basics

THE Dasies		
description	command	output
addition	+	+
subtraction	-	_
plus or minus	\pm	±
multiplication (times)	\times	×
multiplication (dot)	\cdot	
division symbol	\div	÷
division (slash)	/	/
circle plus	\oplus	\oplus
circle times	\otimes	\otimes
equal	=	=
not equal	\ne	<i>≠</i> < > ! ≈
less than	<	<
greater than	>	>
less than or equal to	\le	\leq
greater than or equal to	\ge	\geq
approximately equal to	\approx	\approx
infinity	∞	∞
dots	$1,2,3,\ldots$	$1, 2, 3, \dots$
dots	1+2+3+\cdots	$1+2+3+\cdots$
fraction	$frac{a}{b}$	$\frac{a}{b}$
square root	\sqrt{x}	\sqrt{x}
nth root	$\sqrt[n]{x}$	$\sqrt[n]{x}$
exponentiation	a^b	a^b
subscript	a_b	a_b
absolute value	x	x
natural log	$\ln(x)$	ln(x)
logarithms	$\log_{a}b$	$\log_a b$
exponential function	$e^x=\exp(x)$	$e^x = \exp(x)$
degree	\deg(f)	$\deg(f)$

Functions

description	command	output
maps to	\to	\rightarrow
composition	\circ	0
piecewise	x =	
function	\begin{cases} x & x\ge 0\\ -x & x<0 \end{cases}	$ x = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$

Greek and Hebrew letters

•	JICCK and	TICDICW	icuters	
	command	output	command	output
	\alpha	α	\tau	au
	\beta	β	\theta	θ
	\chi	χ	υ	v
	\delta	δ	\xi	ξ
	\epsilon	ϵ	\zeta	ξ ζ
	\varepsilon	ε	\Delta	Δ
	\eta	η	\Gamma	Γ
	\gamma	γ	\Lambda	Λ
	\iota	ι	\Omega	Ω
	\kappa	κ	\Phi	Φ
	\lambda	λ	\Pi	Π
	\mu	μ	\Psi	Ψ
	\nu	ν	\Sigma	Σ
	\omega	ω	\Theta	Θ
	\phi	ϕ	Υ	Υ
	\varphi	φ	\Xi	Ξ
	\pi	π	\aleph	×
	\psi	ψ	\beth	コ
	\rho	ρ	\gimel	J
	\sigma	σ	\d	٦

Set Theory

description	command	output
set brackets	\{1,2,3\}	$\{1, 2, 3\}$
element of	\in	\in
not an element of	\not\in	∉
subset of	\subset	\subset
subset of	\subseteq	\subseteq
not a subset of	\not\subset	♥ C C ⊄ ⊃ ⊃ U
contains	\supset	\supset
contains	\supseteq	\supseteq
union	\cup	\cup
intersection	\cap	\cap
big union	\bigcup_{n=1}^{10}A_n	$\bigcup_{n=1}^{10} A_n$
big intersection	\bigcap_{n=1}^{10}A_n	$\bigcap_{n=1}^{n=1} A_n$
empty set	\emptyset	Ø
power set	\mathcal{P}	${\mathcal P}$
minimum	\min	min
maximum	\max	max
supremum	\sup	\sup
infimum	\inf	\inf
limit superior	\limsup	\limsup
limit inferior	\liminf	lim inf
closure	\overline{A}	\overline{A}

Calculus

$description \qquad command$	output
derivative \frac{df}{dx}	$\frac{df}{dx}$
derivative \f'	dx f'
partial derivative \frac{\part}{\partial x	
integral \int	\int
double integral \iint	\iint
triple integral \iiint	
limits \lim_{x\to \times	$x \rightarrow \infty$
summation \sum_{n=1}^{\sum_{n=	$\displaystyle \sum_{n=1}^{\infty} a_n$
product \prod_{n=1}^-	~

Logic

description	command	output
not	\sim	\sim
and	\land	\wedge
or	\lor	\vee
ifthen	\to	\rightarrow
if and only if	\leftrightarrow	\leftrightarrow
logical equivalence	\equiv	=
therefore	\therefore	<i>:</i> .
there exists	\exists	3
for all	\forall	\forall
implies	\Rightarrow	\Rightarrow
equivalent	\Leftrightarrow	\Leftrightarrow

Linear Algebra

description vector vector norm	<pre>command \vec{v} \mathbf{v} \vec{v} \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array} \right]</pre>	output \vec{v} v $ \vec{v} $ $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$
determinant trace dimension	\left \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{array} \right \det(A) \operatorname{tr}(A) \dim(V)	$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{vmatrix}$ $\det(A)$ $\operatorname{tr}(A)$ $\dim(V)$

Number Theory

description	command	output
divides	1	
does not divide	\not	X
div	\operatorname{div}	div
mod	\mod	mod
greatest common divisor	\gcd	gcd
ceiling	\lceil x \rceil	$\lceil x \rceil$
floor	\lfloor x \rfloor	$\lfloor x floor$

Geometry and Trigonometry

description	command	output
angle	\angle ABC	$\angle ABC$
degree	90^{\circ}	90°
triangle	\triangle ABC	$\triangle ABC$
segment	\overline{AB}	\overline{AB}
sine	\sin	\sin
cosine	\cos	cos
tangent	\tan	tan
cotangent	\cot	\cot
secant	\sec	sec
cosecant	\csc	csc
inverse sine	\arcsin	arcsin
inverse cosine	\arccos	arccos
inverse tangent	\arctan	arctan

Symbols in Text Mode

The following symbols do ${f not}$ have to be surrounded by dollar signs.

description	command	output
dollar sign	\\$	\$
percent	\%	%
ampersand	\&	&
pound	\#	#
backslash	\textbackslash	\ \
left quote marks	• •	û
right quote marks	1.1	"
single left quote	•	4
single right quote	ī	,
hyphen	X-ray	X-ray
en-dash	pp. 515	pp. 5–15
em-dash	Yesor no?	Yes—or no?

Resources

CTAN: ctan.org

Detexify: detexify.kirelabs.org

Mathpix: mathpix.com

The Not So Short Introduction to LaTeX2 ϵ :

ctan.org/pkg/lshort
Mac: MacTeX tug.org/mactex,

LaTeXiT www.chachatelier.fr/latexit Windows: TeXnicCenter www.texniccenter.org,

MiKTeX (miktex.org)

Online: Overleaf www.overleaf.com, SageMath www.sagemath.org