03 CLASSIFICATION

THÉO GACHET

UNE SÉRIE DE FORMATIONS

PARTIE 1: SUPERVISED MACHINE LEARNING: REGRESSION AND CLASSIFICATION

Introduction to Machine Learning Regression with multiple input Classification

PARTIE 2 : ADVANCED LEARNING ALGORITHMS

Neural Networks
Neural Networks training
Advice for applying Machine Learning
Decision Trees

PARTIE 3: UNSUPERVISED LEARNING, RECOMMENDERS, REINFORCEMENT LEARNING

Unsupervised Learning Recommander Systems Reinforcement Learning

REGRESSION WITH MULTIPLE INPUT VARIABLES

INTRODUCTION TO MULTIPLE LINEAR REGRESSION

Multiple features

Vectorization

Lab: Python, NumPy and vectorization

Gradient descent for multiple linear regression

Lab: Multiple linear regression

GRADIENT DESCENT

Feature scaling

Checking gradient descent for convergence

Choosing the learning rate

Feature engineering

Polynomial regression

Lab: Feature scaling and learning rate

Lab: Feature engineering and polynomial regression

Lab: Linear regression with scikit-learn

Lab: Linear regression

03 CLASSIFICATION

CLASSIFICATION WITH LOGISTIC REGRESSION

Motivations

Lab: Classification Logistic regression

Lab: Sigmoid function and logistics

Decision boundary

Lab: Decision boundary

COST FUNCTION

Cost function for logistic regression

Lab: Logistic loss

Simplified cost function for logistic

regression

Lab: cost function

GRADIENT DESCENT

Gradient Descent implementation

Lab: Gradient descent

Lab: Logistic regression with scikit-learn

THE PROBLEM OF OVERFITTING

The problem of overfitting Addressing overfitting

Lab: Overfitting

Cost function with regularization

Regularized linear regression Regularized logistic regression

Lab: Regularization

1 / CLASSIFICATION WITH LOGISTIC REGRESSION

Signoid Function

binary destification

logistic function with outputs in [0,1]

$$f(\vec{x}) = \frac{1}{1+e^{-z}}$$

$$f(\vec{x},b(\vec{x})) = g(\vec{w}.\vec{x}+b) = \frac{1}{1+e^{-(\vec{w}.\vec{x}+b)}} = P(\gamma = 1 | \vec{x}; \vec{w},b)$$

Decision Boundary

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$$

Non-linear decision boundaries

Non-linear decision boundaries

QUESTIONS? SUR UN CONCEPT ? UNE IDÉE ? SUR UN DÉTAIL DU CODE ? (ENVIE D'UNE PAUSE?)

loss Function

loss = measure of the difference of a single example to its target value (ost = measure of the losses over the training set

Squared Error Cost $J(\vec{w}_1b) = \frac{1}{lm} \sum_{i=1}^{m} (f_{\vec{w}_ib}(n^{(i)}) - y^{(i)})^2$

Problem: $J(\vec{w}, b)$ is convex for linear regression but non-convex for logistic regression

Logistic Loss Function

$$L(f\vec{w},b(n^{(i)}),y^{(i)}) = \begin{cases} -\log(f\vec{w},b(n^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1-f\vec{w},b(n^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f\vec{w},b(n^{(i)}),y^{(i)}) = -y^{(i)}\log(f\vec{w},b(n^{(i)})) - (1-y^{(i)})\log(1-f\vec{w},b(n^{(i)}))$$

2 / LOSS AND COST FUNCTION FOR LOGISTIC REGRESSION

2 / LOSS AND COST FUNCTION FOR LOGISTIC REGRESSION

Logistic Loss Function

$$L(f\vec{w},b(n^{(i)}),y^{(i)}) = \begin{cases} -\log(f\vec{w},b(n^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1-f\vec{w},b(n^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f\vec{w},b(n^{(i)}),y^{(i)}) = -y^{(i)}\log(f\vec{w},b(n^{(i)})) - (1-y^{(i)})\log(1-f\vec{w},b(n^{(i)}))$$

Cost Function

$$J(\vec{w}, k) = \frac{1}{m} \sum_{i=1}^{m} L(f\vec{w}, b(n^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log (f\vec{w}, b(n^{(i)})) + (1 - y^{(i)}) \log (1 - f\vec{w}, b(n^{(i)})) \right]$$

В-05

COST FUNCTION FOR LOGISTIC REGRESSION

QUESTIONS? SUR UN CONCEPT ? UNE IDÉE ? SUR UN DÉTAIL DU CODE ? (ENVIE D'UNE PAUSE?)

Gradient Descent Implementation

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

3 / GRADIENT DESCENT FOR LOGISTIC REGRESSION

repeat {
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} \right]$$
(but $f_{\vec{w},b}$ is different due to the sigmoid)

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) \right]$$
 Same concepts:
• Monitor gradient descent

} simultaneous updates

Linear regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Logistic regression
$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + \rho(-\vec{w} \cdot \vec{x} + b)}$$

- (learning curve)
- Vectorized implementation
- Feature scaling

В-0

GRADIENT DESCENT FOR LOGISTIC REGRESSION

QUESTIONS? SUR UN CONCEPT ? UNE IDÉE ? SUR UN DÉTAIL DU CODE ? (ENVIE D'UNE PAUSE?)

4 / THE PROBLEM OF OVERFITTING

Overfitting
Regussion

4 / THE PROBLEM OF OVERFITTING

Classification

Addressing Overfitting

- ellect more training examples select features to include/exclude
- regularization: reduce the weights wj of some features

Cost Function with Regularization

min
$$J(\vec{w},b) = \min_{\vec{w},b} \left[\frac{1}{2m} \sum_{i=1}^{\infty} (f\vec{w},b(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{\infty} w_j^2 \right]$$

Fit data keep w_j small

4 / THE PROBLEM OF OVERFITTING

Regularized Linear Regionion

$$\min_{\overrightarrow{w},b} J(\overrightarrow{w},b) = \min_{\overrightarrow{w},b} \left(\frac{1}{2m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$
Gradient descent repeat $\{ w_j = w_j - \alpha \left(\frac{\partial}{\partial w_j} J(\overrightarrow{w},b)\right) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} w_j^2 \right)$

$$b = b - \alpha \left(\frac{\partial}{\partial b} J(\overrightarrow{w},b)\right)$$

$$b = b - \alpha \left(\frac{\partial}{\partial b} J(\overrightarrow{w},b)\right)$$

$$b = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

$$b = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

$$don't have to regularize b$$

$$w_{j} = 1 w_{j} - \alpha \frac{\lambda}{m} w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w_{i}b}(\vec{x}^{(i)}) - y^{(i)}) \chi_{j}^{(i)}$$

$$w_{j} \left(1 - \alpha \frac{\lambda}{m}\right) \quad \text{usual update}$$

$$\text{shrink } w_{j} \longrightarrow \left(1 - \frac{\lambda}{m} < 1\right)$$

Regularized Logistic Regression

$$J(\vec{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\vec{w},b}(\vec{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{w},b}(\vec{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$j = 1...n$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$
}

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)} \right)$$

QUESTIONS? SUR UN CONCEPT ? UNE IDÉE ? SUR UN DÉTAIL DU CODE ? (ENVIE D'UNE PAUSE?)

LДВ-09

REGULARIZATION

03 CLASSIFICATION

CLASSIFICATION WITH LOGISTIC REGRESSION

Motivations

Lab: Classification Logistic regression

Lab: Sigmoid function and logistics

Decision boundary

Lab: Decision boundary

COST FUNCTION

Cost function for logistic regression

Lab: Logistic loss

Simplified cost function for logistic

regression

Lab: cost function

GRADIENT DESCENT

Gradient Descent implementation

Lab: Gradient descent

Lab: Logistic regression with scikit-learn

THE PROBLEM OF OVERFITTING

The problem of overfitting Addressing overfitting

Lab: Overfitting

Cost function with regularization

Regularized linear regression Regularized logistic regression

Lab: Regularization

03 CLASSIFICATION

THÉO GACHET