A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 8ED

Bookmark

Show all steps: (

ON

Problem

Prove the following for an integers a, b, c and all positive integers m and n:

If $a \equiv b \pmod{n}$, then $a^2 + b^2 \equiv 2ab \pmod{n^2}$, and conversely.

Step-by-step solution

Step 1 of 4

Firstly consider that $a \equiv b \pmod{n}$. Objective is to prove that

$$a^2 + b^2 \equiv 2ab \pmod{n^2}$$

By using the definition of congruence if $a \equiv b \pmod{n}$ then $n \mid (a - b)$. So for some integer k one have,

$$(a-b)=nk$$

Take the square of both the sides and get:

$$(a-b)^2 = (nk)^2$$

 $a^2 - 2ab + b^2 = n^2k^2$.

Comment

Step 2 of 4

Since k is an integer, so k^2 will also be an integer. By the definition of divisibility it implies that $n^2 | (a^2 - 2ab + b^2)$.

And hence in the form of congruence one can write it as

Step 3 of 4

Conversely, let $a^2 + b^2 \equiv 2ab \pmod{n^2}$. Task to show that $a \equiv b \pmod{n}$.

By using the given condition, $(a^2 + b^2 - 2ab)$ is divisible by n^2 , so there exist some integer k such that

$$(a^2+b^2-2ab)=n^2k$$
, or $(a-b)^2=n^2k$

On taking the positive square root both the sides, one get

$$(a-b)=nk'$$

where k' is some integer. This will imply that $n \mid (a-b)$ and hence $a \equiv b \pmod{n}$.

Comment

Step 4 of 4

Hence, $a \equiv b \pmod{n}$ if and only if $a^2 + b^2 \equiv 2ab \pmod{n^2}$.

Comment