Topology - Summer Session 1 - HW4 - July 23, 2021

(6.1) Write down a homotopy equivalence between (0,1) and [0,1].

Proof. First let's define

$$f: [0,1] \to (0,1)$$
$$x \mapsto \frac{x+1}{3}$$

Then we will define

$$g:(0,1)\hookrightarrow [0,1]$$
 $x\mapsto x.$

It's obvious that both of these are continuous functions, and we see $g \circ f \cong Id_{[0,1]}$ by,

$$H: [0,1] \times [0,1] \rightarrow [0,1]$$
$$(x,t) \mapsto x \cdot t + (1-t) \cdot \left(\frac{x+1}{3}\right)$$

We can see $H(x,0) = g \circ f$ and $H(x,1) = x, \forall x \in [0,1]$.

We can also see $f \circ g \cong Id_{(0,1)}$ by,

$$H: (0,1) \times [0,1] \to (0,1)$$

$$(x,t) \mapsto x \cdot t + (1-t) \cdot \left(\frac{x+1}{3}\right)$$

We can see $H(x,0) = f \circ g$ and $H(x,1) = x, \forall x \in (0,1)$.

Thus f and g is a homotopy equivalence between (0,1) and [0,1]

(6.2) List all homotopy classes of maps $(0,1) \rightarrow (0,1)$

Proof. Since (0,1) is contractible, then there exists a homotopy H between the Id and a constant point $\{0\}$. Now consider $f:(0,1)\to(0,1)$. Then $H\circ f:(0,1)\times I\to(0,1)$ is a homotopy between f and the constant map. Since f is homotopic to the constant map and the constant map is homotopic to the Id, $f\simeq Id$, therefor there is only on homotopy class.

(6.3) Prove that a discrete space consisting of m points in homotopy equivalent to a discrete space consisting of n points if, and only if, m = n.

Proof. If $m \neq n$, denote these points as $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$. Assume then that m > n then at least two points of X maps to one point of Y. Without loss of generality we have,

$$f: X \to Y \qquad g: Y \to X$$

$$x_1 \mapsto y_1 \qquad y_1 \mapsto x_1$$

$$x_m \mapsto y_1 \qquad y_1 \mapsto x_m$$

$$x_i \mapsto y_i \qquad y_j \mapsto x_i$$

Then we have,

$$H: X \times I \to X$$

$$(x,0) \mapsto g \circ f(x)$$

$$(x,1) \mapsto x$$

then we have $g \circ f(x_1) = g \circ f(x_1) \ g(y_1)$.

For a fixed $x \in X$ the path $r: I \to X$, $t \mapsto H(x,t)$ is continuous. Since I is connected and X is discrete then r must be constant.

We have then $x_1 = r(0) = r(1) = x_m$, each point in Y has only one preimage and vice versa, therefore m = n.

On the other hand if m = n then $X = \{x_1, x_2, ... x_n\}$ and $Y = \{y_1, y_2, ... y_n\}$. Let $f: X \to Y$, $x_i \mapsto y_i$ and $g: Y \to X$, $y_i \mapsto x_i$. Then it is obvious that $f \circ g \simeq Id_Y$ and $g \circ f \simeq Id_X$

(6.5) Show that the map $f: S^1 \to S^1$ given by f(x,y) = (-x,-y) is homotopic to the identity map.

Proof. For $f: S^1 \to S^1$, $(x,y) \mapsto (-x,-y)$. We can consider the homotopy H as follows,

$$\begin{split} H:S^1\times[0,1]\to S^1\\ ((\cos(\theta),\sin(\theta)),t)\mapsto(\cos(\theta+(1-t)\pi),\sin(\theta+(1-t)\pi)) \end{split}$$

We can see that $H((cos(\theta), sin(\theta)), 0) = (cos(\theta+\pi), sin(\theta+\pi))$, this is rotating the point around the circle 180 degrees, which means it is sending it to it's antipodal point, therefore it is equal to f. Now for $H((cos(\theta), sin(\theta)), 1) = (cos(\theta+0), sin(\theta+0))$ which is just the identity map. Therefore $f \simeq Id_{S^1}$