6. การออกแบบวงจร Arithmetic and Logical Unit (ALU)

<u>วัตถุประสงค์</u>

1. เพื่อให้นิสิตประมวลความรู้ทั้งหมดเกี่ยวกับการออกแบบวงจรตรรกะที่ผ่านมา แล้วมาใช้ใน การออกแบบวงจรตรรกะที่ซับซ้อนขึ้น

การใช้ PLA

PLA เป็นอุปกรณ์ที่สามารถนำมาใช้แทนส่วนของ combination logic ได้อย่างมีประสิทธิภาพ การสร้าง PLA นั้นทำได้โดย เลือก PROM/RAM/PLA Wizard โดย click ที่ icon รูป 🕕 บนแถบ

toolbar เลือกวิธีใส่ข้อมูลแบบ "Enter Product Term Data Manually" และกำหนดจำนวนเส้น input, output เราสามารถเลือกให้ output เป็น Active High หรือ Active Low ได้

จากรูปเราใส่ product term บริเวณที่ว่างตรงกลางได้แก่ 1101 , 100x , 00x1 จะได้ว่าที่ output บิตที่ 0 จะมีค่าเป็น 1 เมื่อ input เป็น 1101 , 1001 , 1000 , 0001 , 0011 เมื่อใส่ทุก output จนครบแล้ว เราต้องตั้งชื่อให้กับอุปกรณ์และ save ลง library เราจะได้อุปกรณ์ที่มีความสามารถดังรูปด้านล่าง ข้อแนะนำ ไม่ควรพิมพ์ product term ลงโดยตรง ควร copy จากโปรแกรม text editor เพื่อไม่ต้องพิมพ์ ใหม่ทั้งหมดถ้าใส่ข้อมูลผิด

การทดลอง

1. ออกแบบและสร้าง ALU ที่มีอินพุทเป็นเลข Binary แบบ 2's complement 4 bit 2 จำนวน คือ A และ B (ใช้ Hex keyboard w/o STB) มีเอาท์พุทคือ F (4 bit แสดงโดย Hex display) กับ Cout (1 bit แสดงโดย Binary Probe) มี Function Selector ในการเลือกฟังก์ชันการทำงาน 3 bit คือ S2S1S0 (ใช้ Binary Switch) มี Mode Selector คือ M 1 bit (ใช้ Binary Switch) และ มี Carry In คือ C 1 bit (ใช้ Binary Switch) ALU มีการทำงานดังนี้

$S_2S_1S_0$	M=0 (Logical Functions)	M=1 (Arithmetic Functions)		
	(==8)	C =0	C=1	
000	Not A	A	A+1	
001	A nand B	A-1	A	
010	A nor B	A+B	A+B+1	
011	A xnor B	A-B-1	A-B	
100	A and B	-A-1	-A	
101	A or B	В	B+1	
110	A and (Not B)	Shift A left one bit	Not used	
111	A	Shift A right one bit	Not used	

ในการ Shift A left one bit ให้ทิ้ง bit ซ้ายสุดของ A ไปและให้ bit ขวาสุดของ A เป็น 0 ในการ Shift A right one bit ให้ทิ้ง bit ขวาสุดของ A ไปและให้ bit ซ้ายสุดของ A เป็น 0 ห้ามใช้ Subtractor และ Shifter

<u>ข้อแนะนำ</u>ควรทำ ALU 1 bit ก่อน แล้วค่อยสร้าง ALU 4 bit จาก ALU 1 bit และควรใช้ Full Adder แค่ หนึ่งตัวสำหรับ ALU แต่ละบิต

<u>ตัวอย่างคำตอบ C_{out} ,F ที่ควรได้ เมื่อ M=1 (C_{out} ไม่ตรงไม่เป็นไรแต่จะลำบากเวลาต่อ ALU16bit)</u>

$S_2S_1S_0$	A=0000	A=0000	A=0101	A=0101
	B=1111	B=1111	B=0111	B=0111
	C=0	C=1	C=0	C=1
000	0,0000	0,0001	0,0101	0,0110
001	0,1111	1,0000	1,0100	1,0101
010	0,1111	1,0000	0,1100	0,1101
011	0,0000	0,0001	0,1101	0,1110
100	0,1111	1,0000	0,1010	0,1011
101	0,1111	1,0000	0,0111	0,1000
110	0,0000	-	0,1010	-
111	0,0000	-	0,0010	-

- 2. (ไม่ต้องส่ง) ใช้ PLA ช่วยในการออกแบบและสร้าง ALU ที่มีการทำงานแบบข้อ 1. (ข้อแนะนำ: ควรใช้ PLA เพียงตัวเดียวแทนการทำงานของ logic gates และอุปกรณ์อื่น ๆ ให้มากที่สุด)
- 3. (ไม่ต้องส่ง) ลองนำโมดูล ALU 4-bit จากข้อ 1 มาต่อเป็น ALU 16-bit
- 4. (ไม่ต้องส่ง) สร้าง 8x8 bit Multiplier จาก 74284,74285, 74181, 74182, 74183 (เหมือน ในเลคเชอร์)