1

GATE-2023, EC-35

EE23BTECH11033- JASWANTH KILLANA

Question:

In the circuit shown below, switch S was closed for a long time. If the switch is opened at t=0, the maximum magnitude of the voltage V_R in volts is. (round off to nearest integer).

solution:

Fig. 0.

parameter	description	value
i (0 ⁻)	current at $t < 0$	2 <i>A</i>
$V_{R}\left(t\right)$	voltage across 2Ω	-2i(t)u(t)
L	inductance	1 <i>H</i>
i(t)	current in small loop after $t = 0$	$\frac{V_R(t)}{2}$
I(s)	<i>i</i> (<i>t</i>) in laplace	_
TABLE 0		

INPUT PARAMETERS

Fig. 0. steady state circuit

$$At, t = 0^- \tag{1}$$

inductor acts as wire apply KVL

$$-2 + 1i(0^{-}) = 0 (2)$$

$$i(0^-) = 2A$$

As,

Fig. 0. s domain circuit fot t > 0

$$2I(s) - 2V + LsI(s) = 0$$
 (4)

$$\implies I(s) = \frac{2}{s+2}A\tag{5}$$

applying inverse laplace transform

$$i(t) = 2e^{-2t}u(t)A$$
 (6)

$$V_R(t) = -2i(t) \tag{7}$$

$$\implies V_R(t) = -4e^{-2t}u(t)V \tag{8}$$

$$t \to 0$$
 (9)

$$\implies e^{-2t} \to 1$$
 (10)

$$|V_R(max)| = 4V \tag{11}$$