Chapter 3.1: Kahler Identities

Huybrechts, Complex Geometry

3.1.1 This is a reflection of the fact that Hermitian metrics are not required to be holomorphic. For let M be a complex manifold and take any coordinate chart $U \subset \mathbb{C}^n$. On U, the complex structure of M is as described in Section 1.3. The flat metric g_U is compatible with this complex structure.

Now cover M be charts U_{α} and let ρ_{α} be a partition of unity subordinate to this cover. Then $g = \sum_{\alpha} \rho_{\alpha} g_{U_{\alpha}}$ is the desired metric:

$$g(I\cdot,I\cdot) = \sum_{\alpha} \rho_{\alpha} g_{U_{\alpha}}(I\cdot,I\cdot) = \sum_{\alpha} \rho_{\alpha} g_{U_{\alpha}}(\cdot,\cdot) = g(\cdot,\cdot).$$

3.1.2 Because g is Kahler, dg = 0. But say

$$dg' = d(e^f)g + e^f dg = d(e^f)g = 0.$$

Because X is connected, this implies that f is constant.

3.1.3 Say a function f is d-harmonic. By degree, $d^*f = 0$, so

$$\langle \Delta_d f, f \rangle = \langle d^* df, f \rangle = ||df||^2 = 0.$$

Therefore df = 0, which implies that $\partial f = \bar{\partial} f = 0$. The same trick shows that if $\Delta_{\partial} f = \partial^* \partial f = 0$, then $\partial f = 0$, and if $\Delta_{\bar{\partial}} f = \bar{\partial}^* \partial f = 0$, then $\bar{\partial} f = 0$, so df = 0, and therefore $\Delta f = 0$.

Similar arguments work for top forms, since in this case $d^*df = 0$ and similar.

- **3.1.4** Computation omitted (should be in my papers from class).
- **3.1.5** This is easily seen using the coordinate representation on page 117 and the observation that, e.g. in U_0 , $i^*dz_i = dz_i$ for 0 < i < n and $i^*dz_n = 0$.
- **3.1.6** Let $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$. Then $F_A^* \omega_{FS} = \omega_{FS}$ if and only if $A^* \pi^* \omega_{FS} = \pi^* \omega_{FS}$, where A is the ordinary linear action of A on \mathbb{C}^{n+1} . This is because $\pi \circ A = F_A \circ \pi$, so $A^* \pi^* \omega_{FS} = \pi^* F_A^* \omega_{FS}$. Also, π is a subjective submersion, so π^* is injective on forms on \mathbb{P}^n : if $\omega \neq 0 \in \Omega_{\mathbb{P}^n}$, then $\omega_{F(p)}(DF_p -, DF_p -)$ must be nonzero for some $p \in \mathbb{C}^{n+1} \setminus \{0\}$ because there is some F(p) where ω does not vanish, and then vectors on which it does not vanish can be "reached" by DF_p .

Now we calculated on pg. 118 that $\pi^*\omega_{FS} = \frac{i}{2\pi}\partial\bar{\partial}\log||z||^2$. Since A is a holomorphic function, it commutes with ∂ and $\bar{\partial}$. Therefore

$$A^*\pi^*\omega_{FS} = \frac{i}{2\pi}\partial\bar{\partial}\log||Az||^2.$$

When does $\partial \bar{\partial} \log ||Az||^2 = \partial \bar{\partial} \log ||z||^2$? We compute that

$$\partial \bar{\partial} \log ||Az||^2 = \sum_{i,j} \frac{A_{ik} \bar{A}_{jk} dz_i \wedge d\bar{z}_j}{||Az||^2} + \mathcal{O}(||Az||^{-2}).$$

But scaling A does change $\partial \bar{\partial} \log ||Az||^2$, so we can ignore the $\mathcal{O}(||Az||^{-2})$ term. Then comparing terms with the case A = I, we see that we must have $A^H A = \lambda \delta_{ij}$. This A must be a multiple of a unitary matrix.

I believe that it is an error for the book to say that A must be unitary. For A and λA define the same map on \mathbb{P}^{n+1} for $\lambda \neq 0$.

3.1.7 First, I claim that L, d and d^* determine d^c . For

$$[d^*, L] = [\bar{\partial}^* + \partial^*, L] = i(\partial - \bar{\partial}) = -d^c.$$

Now I claim that d^c determines the bidegree decomposition of $\mathcal{A}^*(X)$, and therefore the complex structure, since the eigendecomposition of a diagonalizable operator determines the operator. For let ω be any form of pure type (p,q). Then

$$d^c\omega = I^{-1} \circ d \circ I(\omega) = I^{-1}(-i)^{p-q}(\partial \omega + \bar{\partial} \omega) = (-i)^{p-q-(p+1-q)}\partial \omega + (-i)^{p-q-(p-q-1)}\bar{\partial} \omega.$$

Therefore

$$\partial \omega = (2i)^{-1} (d^c \omega - i d\omega).$$

A similar computation allows us to compute $\bar{\partial}\omega$.

Since all degree-1 covectors are realized as linear combinations of ∂ and $\bar{\partial}$ of coordinate functions, this proves that we have determined the way I acts on $\mathcal{A}^1(X)$, which determines how it acts on the tangent bundle.

- **3.1.8** Also in my class papers.
- **3.1.9** Let α and β be two forms. We compute

$$\begin{split} \langle \alpha, i \partial \beta \rangle &= \langle -i \partial^* \alpha, \beta \rangle \\ &= \langle [\Lambda, \bar{\partial}] \alpha, \beta \rangle \\ &= \langle \Lambda \bar{\partial} \alpha - \bar{\partial} \Lambda \alpha, \beta \rangle \\ &= \langle \alpha, \bar{\partial}^* L \beta - L \bar{\partial}^* \beta \rangle \\ &= \langle \alpha, [\bar{\partial}^*, L] \beta \rangle. \end{split}$$

The other computation is similar.

3.1.10 The Kahler form on $X \times Y$ is $\pi_X^* \omega_X + \pi_Y^* \omega_Y$. The compatibility, closedness, etc. are easily verified.

3.1.13 The Kahler form is also sympectic. It can be seen that ω^n is nondegenerate for example by Proposition 1.3.12, since there is a coordinate representation around any point at which

$$\omega^n = C \cdot dz_1 \wedge d\bar{z}_1 \wedge \dots \wedge dz_n \wedge d\bar{z}_n.$$

However, the space of symplectic forms is not a cone. For if n is odd, both ω and $-\omega$ are symplectic forms, but $\omega^n + -\omega^n = 0$. This cannot happen with Kahler forms because the negative of a Kahler form is not a Kahler form, since the corresponding bilinear form would be negative definite.