

Number factors

We'll cover the following

- Problem Statement
- Basic Solution
- Top-down Dynamic Programming with Memoization
- Bottom-up Dynamic Programming
 - Code
- Fibonacci number pattern

Problem Statement

Given a number 'n', implement a method to count how many possible ways there are to express 'n' as the sum of 1, 3, or 4.

Example 1:

```
n : 4 Number of ways = 4 Explanation: Following are the four ways we can express 'n' : \{1,1,1,1\}, \{1,3\}, \{3,1\}, \{4\}
```

Example 2:

Let's first start with a recursive brute-force solution.

Basic Solution #

For every number 'i', we have three option: subtract either 1, 3, or 4 from 'i' and recursively process the remaining number. So our algorithm will look like:


```
6
        return 1 # we take subtract 1 to be left with zero, and that is the only way
 7
 8
      if n == 2:
 9
        return 1 # we can subtract 1 twice to get zero and that is the only way
10
11
      if n == 3:
12
        return 2 # '3' can be expressed as {1, 1, 1}, {3}
13
14
      # if we subtract 1, we are left with 'n-1'
15
      subtract1 = count_ways(n - 1)
16
      # if we subtract 3, we are left with 'n-3'
      subtract3 = count_ways(n - 3)
17
18
      # if we subtract 4, we are left with 'n-4'
19
      subtract4 = count_ways(n - 4)
20
      return subtract1 + subtract3 + subtract4
21
22
23
24 def main():
25
26
      print(count ways(4))
      print(count_ways(5))
27
28
      print(count_ways(6))
29
30
31
   main()
32
\triangleright
                                                                                          \leftarrow
```

The time complexity of the above algorithm is exponential $O(3^n)$. The space complexity is O(n) which is used to store the recursion stack.

Let's visually draw the recursion for CountWays (5) to see the overlapping subproblems:

Recursion tree for calculating Fibonacci numbers

We can clearly see the overlapping subproblem pattern: CountWays(3), CountWays(2) and CountWays(1) have been called twice. We can optimize this using memoization to store the results for subproblems.

Top-down Dynamic Programming with Memoization

We can use an array to store the already solved subproblems. Here is the code:

```
G C++
            (§) JS
                         🤁 Python3
🁙 Java
    def count_ways(n):
 1
 2
       dp = [0 \text{ for } x \text{ in } range(n+1)]
       return count_ways_recursive(dp, n)
 3
 4
 5
    def count_ways_recursive(dp, n):
 6
 7
       if n == 0:
 8
         return 1 # base case, we don't need to subtract any thing, so there is only one way
 9
10
         return 1 # we can take subtract 1 to be left with zero, and that is the only way
11
12
       if n == 2:
13
14
         return 1 # we can subtract 1 twice to get zero and that is the only way
15
       if n == 3:
16
         return 2 # '3' can be expressed as {1, 1, 1}, {3}
17
18
19
       if dp[n] == 0:
20
         # if we subtract 1, we are left with 'n-1'
21
         subtract1 = count_ways_recursive(dp, n - 1)
22
         # if we subtract 3, we are left with 'n-3'
         subtract3 = count_ways_recursive(dp, n - 3)
23
24
         # if we subtract 4, we are left with 'n-4'
25
         subtract4 = count_ways_recursive(dp, n - 4)
26
27
         dp[n] = subtract1 + subtract3 + subtract4
28
29
       return dp[n]
30
31
    def main():
32
33
34
       print(count_ways(4))
       print(count_ways(5))
35
36
       print(count_ways(6))
37
38
    main()
39
40
\triangleright
                                                                                     \leftarrow
                                                                                                 []
```

Bottom-up Dynamic Programming

Let's try to populate our dp[] array from the above solution, working in a bottom-up fashion. As we saw in the above code, every CountWaysRecursive(n) is the sum of the three counts. We can use this fact to populate our array.

Code

Here is the code for our bottom-up dynamic programming approach:


```
3
       dp[0] = 1
 4
       dp[1] = 1
       dp[2] = 1
 5
       dp[3] = 2
 6
 7
 8
       for i in range(4, n+1):
         dp[i] = dp[i - 1] + dp[i - 3] + dp[i - 4]
 9
10
       return dp[n]
11
12
13
    def main():
14
15
       print(count_ways(4))
16
       print(count_ways(5))
17
18
       print(count_ways(6))
19
20
    main()
21
22
\triangleright
                                                                                        []
```

The above solution has time and space complexity of O(n).

Fibonacci number pattern

We can clearly see that this problem follows the Fibonacci number pattern. However, every number in a Fibonacci series is the sum of the previous two numbers, whereas in this problem every count is a sum of previous three numbers: previous-1, previous-3, and previous-4. Here is the recursive formula for this problem:

