2022 年 12 月 5 日 泛函分析 强基数学 002 吴天阳 2204210460

第十一次作业

题目 1. (2.6.2) 设 A 是闭线性算子, $\lambda_1, \lambda_2, \dots, \lambda_n \in \sigma_p(A)$ 两两互异,又设 x_i 是对应于 λ_i 的特征元 $(i = 1, 2, \dots, n)$. 证明: $\{x_1, \dots, x_n\}$ 是线性无关的.

证明. 反设 $\{x_1, \dots, x_n\}$ 线性相关,不妨令 $x_n = \sum_{k=1}^{n-1} \alpha_k x_k$ 且 $\{x_1, \dots, x_{n-1}\}$ 线性无关,则

$$(\lambda_n I - A)x_n = 0 = \sum_{k=1}^{n-1} \alpha_k (\lambda_n I - A)x_k = \sum_{k=1}^{n-1} \alpha_k (\lambda_n x_k - \lambda_k x_k) = \sum_{k=1}^{n-1} \alpha_k (\lambda_n I - A)x_k = \sum_{k=1}^{n-1} \alpha_k (\lambda_n$$

由于 $\{x_1, \dots, x_{n-1}\}$ 线性无关,则 $\alpha_k(\lambda_n - \lambda_k) = 0$, $(k = 1, 2, \dots, n-1)$,又由于 $\lambda_1, \dots, \lambda_n$ 两 两 互 异,则 $\alpha_k = 0$, $(k = 1, 2, \dots, n-1)$,于是 $x_n = 0$ 与 x_n 为特征向量矛盾,故 $\{x_1, \dots, x_n\}$ 线性无关.

题目 2. (2.6.3) 在双边 l² 空间上, 考虑右推移算子

$$A: x = (\cdots, \xi_{-n}, \xi_{-n+1}, \cdots, \xi_{-1}, \xi_0, \xi_1, \cdots, \xi_{n-1}, \xi_n, \cdots) \in l^2$$

$$\mapsto Ax = (\cdots, \eta_{-n}, \eta_{-n+1}, \cdots, \eta_{-1}, \eta_0, \eta_1, \cdots, \eta_{n-1}, \eta_n, \cdots),$$

其中 $\eta_m = \xi_{m-1} (m \in \mathbb{Z})$. 求证: $\sigma_c(A) = \sigma(A) =$ 单位圆周.

证明. 设 $x = \{\xi_n\} \in l^2$, 满足 $(\lambda I - A)x = 0 \Rightarrow \lambda x = Ax \Rightarrow \lambda \xi_k = \xi_{k-1}, (k \in \mathbb{Z})$, 则

$$x = \left(\cdots, \lambda^n \xi_0, \cdots, \lambda \xi_0, \xi_0, \frac{\xi_0}{\lambda}, \cdots, \frac{\xi_0}{\lambda^n}, \cdots\right)$$

由于
$$x \in l^2$$
,则 $\sum_{n \in \mathbb{Z}} |\xi_n|^2 = |\xi_0|^2 + \sum_{n \geq 1} \left| \frac{\xi_0}{\lambda^n} \right|^2 + \sum_{n \leq 1} |\lambda^{-n} \xi_0|^2 < \infty$,则

 $|\xi_0|^2 \left(1 + \sum_{n \ge 1} \frac{1}{|\lambda|^{2n}} + |\lambda|^{2n}\right) < \infty$,若第二项为 0,则 $\frac{1}{\lambda} \to 0$, $\lambda \to 0$ 矛盾,于是 $\xi_0 = 0$,则 x = 0.

综上, $(\lambda I - A)x = 0$ 只有零解, 故 $\sigma_p(A) = \emptyset$.

下证 $\sigma_r(A) = \emptyset$,只需证 $\overline{R(\lambda I - A)} = l^2$,只需证 $R(\lambda I - A)^{\perp} = \{0\}$,设 $y = \{\eta_n\} \in R(\lambda I - A)^{\perp}$,则 $((\lambda I - A)x, y) = \sum_{k \in \mathbb{Z}} (\lambda \xi_k - \xi_{k-1})\eta_k = 0$,取 $x = e_n = (\underbrace{0, \cdots, 0, 1}_{p \uparrow}, 0, \cdots)$ 则

$$((\lambda I - A)e_n, y) = \lambda \eta_n - \eta_{n+1} = 0$$

类似上述证明可知 y = 0,故 $\sigma_r(A) = \emptyset$.

所以
$$\sigma(A) = \sigma_p(A) + \sigma_c(A) + \sigma_r(A) = \sigma_c(A)$$
.

题目 3. (2.6.4) 在 l^2 空间上,考虑左推移算子 $A: (\xi_1, \xi_2, \cdots) \mapsto (\xi_2, \xi_3, \cdots)$.

证明:
$$\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}, \sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}, \$$
且.

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A).$$

证明. 由于 $||Ax|| \le ||x||$,则 $||A|| \le 1$,则 $|\lambda| > 1$ 时, $\lambda \in \rho(A)$. 下面讨论 $|\lambda| \le 1$ 的情况. 当 $|\lambda| < 1$ 时, $\sum_{n \geqslant 1} |\lambda|^{2n} < \infty$,于是 $(1, \lambda, \lambda^2, \cdots) \in l^2$,则

$$A_n(1,\lambda,\lambda^2) = (\lambda,\lambda^2,\lambda^3,\cdots) = \lambda(1,\lambda,\lambda^2,\cdots)$$

则 λ 为特征值, $(1, \lambda, \lambda^2, \dots) \in l^2$ 是对应的特征向量, 故 $\lambda \in \sigma_p(A)$.

当 $|\lambda|=1$ 时, $\forall x=\{\xi_n\}\in l^2$,

$$(I-A)x = 0 \Rightarrow (\lambda \xi_1, \lambda \xi_2, \cdots) = (\xi_2, \xi_3, \cdots)$$

于是 $\xi_k = \lambda^{k-1} \xi_1$,由于 $x \in l^2$,则 $\sum_{n \geq 1} |\xi_1|^2 < \infty \Rightarrow \xi_1 = 0$,故 x = 0. 令 $G = \{\{\xi_n\} \in l^2 : \{\xi_n\}$ 中非零项有限},则 $\forall y = \{\eta_k\} \in G$,不妨令 $\eta_k = 0 (k > n)$,于是

$$(\lambda I - A)x = y \Rightarrow (\lambda \xi_1 - \xi_2, \lambda \xi_2 - \xi_3, \cdots) = (\eta_1, \eta_2, \cdots, \eta_n, 0, \cdots)$$

于是

$$\begin{cases} \lambda \xi_1 - \xi_2 = \eta_1 \\ \lambda \xi_2 - \xi_3 = \eta_2 \\ \vdots \\ \lambda \xi_n - \xi_{n+1} = \eta_n \\ \lambda \xi_{n+1} - \xi_{n+2} = 0 \\ \vdots \end{cases} \Rightarrow \begin{cases} \xi_1 = \sum_{k=1}^n \eta_k / \lambda^k \\ \vdots \\ \xi_{n-1} = \eta_{n-1} / \lambda + \eta_n / \lambda \\ \xi_n = \eta_n / \lambda \\ \xi_{k+1} = 0, \quad (k \geqslant n) \end{cases}$$

由 y 的任意性可知,对于 $(\lambda I-A)$ 存在逆元,则 $G\subset R(\lambda I-A)$,又由于 $\bar{G}=l^2$,故 $\overline{R(\lambda I-A)}=l^2$, 所以 $\lambda \in \sigma_c(A)$.

综上,
$$\sigma_r(A)=\varnothing$$
,故 $\sigma(A)=\sigma_p(A)\cup\sigma_c(A)$.