Project Presentation

Multi Agent Pathfinding through Plan Merging

Ву

Tom Schmidt Hannes Weichelt Julian Bruns

General Setting

- Warehouse logistics
- Simulation using Asprilo
- Automatic planning of robot tasks
- Focus: Robot Movements (M-Domain)
- Problem Setting:
 - Informed Asprilo approach for big instances too time inefficient
 - Calculate a Plan for each single Robot independently
 - Merge them together

Merging via Iterative approach

Core Ideas:

- Detecting vertex and edge collisions
- Changing paths via wait or dodge maneuver before the collision
- "Changing paths" means creating a new set of positions and making older ones invalid
- Positions of the new path have a higher "CONFLICT_DEPTH" variable

Vertex collision

- Detection: Two different robots have same position at same time
- Assign the "wait"-statement to one of the involved robots
- Generate a new path for the robot with the wait statement
- Question: which of the involved robots should be assigned the "wait"-statement?

Vertex collision

Multiple Ideas for the assignment of "wait"-statements:

- First Idea: Robot with the lowest ID waits.
- **Problem:** Collisions with more than 2 robots can cause problems
- This can be seen in the following example:

Example (of a vertex collision problem)

Example (of a vertex collision problem)

Example (of a vertex collision problem)

Vertex collision

Multiple Ideas for the assignment of "wait"-statements:

- First Idea: Robot with the lowest ID waits.
- Problem: Collisions with more than 2 robots can cause problems

Final Idea:

- Differentiating between if 2,3 or 4 robots collide
- depending on that number, let a maximum of 1,2 or 3 robots wait.
- Add constraint that makes vertex collisions impossible

Vertex collision problem solved

Vertex collision problem solved

Vertex collision problem solved

Edge collision

- Detection: check if two robots sit next to each other and switch their positions
- Choose one of the possible dodge-statements for one of the involved robots
- Create constraint that makes dodge statements, that move robots into a wall, invalid

Evaluation

- Can solve many simple benchmarks
- Two major problems:
 - Collision depth can increase computation time dramatically
 - Merger only changes the path of a robot slightly before a collision occurs
- Complex benchmarks can lead to unsatisfiability or a very high computation time
- Conclusion: Try a different approach

Merging as Constraint Satisfaction Problem (CSP)

- Set of variables whose state must satisfy several constraints
- Subproblems:
 - Vertex conflicts
 - Edge conflicts
 - Out of bounds moves
 - Compliance with time horizon

Functionality of the CSP Merger

- 2 possible actions per robot at each time step
 - Wait
 - Dodge
- Generate all possible combinations of waits and dodges using available time
- Constrain new plans:
 - Vertex constraint
 - Edge constraint
 - Out of bounds constraint
 - Time horizon/ goal constraint

Evaluation of CSP Merger

- Can solve almost any benchmark
- Very good scalability
- Still 2 problems:
 - Multi-dodge problems unsatisfiable (e.g., benchmark 20)
 - Performance depends on chosen horizon -> Python script
- Simple code and functionality -> easy modification, additional features:
 - Locking
 - A-Domain

Extension for A-Domain

- New statement adomain/0
- Modify original plan
- Apply CSP merger
- Adjust horizon constraint
- Add new constraints:
 - No dodges into shelves
 - No pickup of carried shelves

Plan modification

Extension for A-Domain

- New statement adomain/0
- Modify original plan
- Apply CSP Merger
- Adjust horizon constraint
- Add new constraints:
 - No dodges into shelves while carrying a shelf
 - No pickup of carried shelves

Example

Benchmark Engine

- script to evaluate benchmarks
- wirtten in python
- features :
 - test for all 4 key consraints
 - solve benchmarks using the clingo python API (tracking time, ...)
 - generate Random Benchmarks
 - still a work in progress

Results

- internal comparison
 - CSP Merger
 - more powerful
 - better scalable
 - Faster

solvable unsolvable

Merger	Benchmark 01	Benchmark 02	Benchmark 03	Benchmark 06	Benchmark 20		
Iterative	0.0468s	0.0468s	3.6939s	0.6623s	0.8285s		
CSP	0.0192s	0.0181s	0.0829s	0.1198s	0.0578s		

Results

- external comparison
 - compare to other groups

Benchmark Name	Instance 1	Instance 5	Insatnce 6	Instance 7	bench_test_2	bench_test_3	bench_test_16_mod_1	benchmark-5	benchmark-6	benchmark-42	benchmark-51	B_03	B_05	B_R1	B_R2	benchmark_1	benchmark_2	benchmark_3	benchmark_4
Gruppe	Adrian				Max + Marcus			Niklas + Marius				TJH				Tarek			
Num. Robots	2	4	2		2	2	!	4		8 5	6	4	3	50	30	3	2	3	2
Map-Dimension X	5	4	7	8	4	4	L	5		4 10	15	5	4	15	40	3	7	6	9
Map-Dimension Y	3	3	2		4	5	5	8		7 10) 15	5	5	15	40	3	5	6	2
Max Horizon	5	3	14	10	7	4		11	1	5 10	21	10	10	40	100	5	19	10	16
c_nr [for Adrian]	1	3	9	3	1	1		14		6 1	l 1	4	1	1	. 1	8	10	2	. 4
rm [for Tarek]	4	10	9	10	2	3	3	7		5 2	2 3	4	3	5	5	4	16	6	8
Merger of Group :																			
Adrian																			
Correct	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	FALSCH	WAHR	WAHR	WAHR	WAHR	WAHR	FALSCH	FALSCH	FALSCH	FALSCH	WAHR	WAHR
Satisfiable	WAHR							FALSCH				WAHR	WAHR	KILLED	KILLED	FALSCH	FALSCH	WAHR	WAHR
Timeout	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	KILLED	KILLED	FALSCH	WAHR	FALSCH	FALSCH
Time (in s)	0,0114	0,0607	123,7117	35,6638	0,0122	0,0067	3,2160	13,4690	358,7314	3,1784	218,2776	5,3833	0,0354	-	-	0,3224	1800,0000+	0,1982	0,5161
Max + Marcus																			
Correct	WAHR	FALSCH	FALSCH	FALSCH	WAHR	FALSCH	FALSE (M)	FALSE (H+)	FALSCH	FALSE (H+)	FALSCH	FALSE (M)	FALSE (M)	FALSCH	FALSCH	FALSCH	FALSCH		FALSE (M)
Satisfiable	WAHR	FALSCH	WAHR	KILLED	WAHR	WAHR	WAHR	WAHR	KILLED	WAHR	KILLED	WAHR	WAHR	KILLED	KILLED	FALSCH	FALSCH	WAHR	WAHR
Timeout	FALSCH	FALSCH	FALSCH	KILLED	FALSCH	FALSCH	FALSCH	FALSCH	KILLED	FALSCH	KILLED	FALSCH	FALSCH	KILLED	KILLED	FALSCH	FALSCH	FALSCH	FALSCH
Time (in s)	0,2238	0,1713	1,4714	-	0,3973	0,0519	3,6219	25,9768	-	540,0421	-	8,3662	1,4516		-	0,1227	3,7384	13,0752	4,0606
Niklas + Marius																			
Correct	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	FALSCH	WAHR	FALSCH	FALSCH	FALSCH	WAHR	WAHR	WAHR
Satisfiable	WAHR		WAHR	WAHR				WAHR				FALSCH	WAHR	KILLED	KILLED	FALSCH	WAHR	WAHR	WAHR
Timeout	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	KILLED	KILLED	FALSCH	FALSCH	FALSCH	FALSCH
Time (in s)	0,0055	0,0070	0,0328	0,1137	0,0142	0,0050	0,0244	0,1260	0,5552	0,1082	0,0938	0,0316	0,0125			0,0049	0,3070	0,0336	0,0528
TJH																			
Correct	WAHR	WAHR	WAHR	WAHR	FALSCH	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	FALSCH	FALSCH	WAHR	WAHR
Satisfiable	WAHR	WAHR	WAHR	WAHR	FALSCH	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	WAHR	FALSCH	FALSCH	WAHR	WAHR
Timeout	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH
Time (in s)	0,0269	0,0171	0,0270	0,2555	0,0399	0,0190	0,1108	0,0888	1,7390	0,1399	2,3586	0,0848	0,0183	87,6203	618,3541	0,0274	1,5511	0,0862	0,3454
Tarek																			
Correct	WAHR	FALSCH	WAHR	FALSCH		WAHR		WAHR	WAHR	WAHR	FALSCH	WAHR	WAHR	FALSCH	FALSCH	WAHR	WAHR	FALSCH	WAHR
Satisfiable	WAHR	FALSCH	WAHR	FALSCH		WAHR			WAHR	WAHR	WAHR	WAHR		FALSCH	KILLED	WAHR		WAHR	WAHR
Timeout	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	FALSCH	KILLED	FALSCH	FALSCH	FALSCH	FALSCH
Time (in s)	0,0186	0,0090	0,0310	1,0490	0,0094	0,0099	0,0173	0,0759	0,1245	0,2054	1,9946	0,0192	0,0099	91.175s	-	0,0143	0,2817	0,0786	0,0281

Results

- external comparison
 - compare to other groups
- very scalable
- only merger that can deal with big benchmarks
- can't solve multi dodge benchmarks but everything else
- not always the fastest merger
 - random generation mergers often faster (on smaller benchmarks)

Further information ...

- GitHub Repository:
 - https://github.com/tzschmidt/PlanMerger/tree/main
- Project Report
- Table Link:
 - https://unipotsdamde-my.sharepoint.com/:x:/g/personal/hweichelt_uni-potsdam_de/EY8Sa-6OsTtLqimDGTLBqyEBfQxNp3pl-HRtOqKi2h_Tnw?e=sxDvkr.