## Analysis I

Thomas Fleming

October 5, 2021

## Contents

Lecture 12 Tue 05 Oct 2021 13:02

## Lecture 13

Tue 05 Oct 2021 13:02

We construct a cantor set.

First, suppose the interval [0,1] and a series of sets  $C_0, C_1, \ldots$  where  $C_i = C_{i-1} \setminus D_i$  where  $D_i$  is just the set consisting of the middle thirds of each interval of  $C_{i-1}$ . Then, we let  $C = \bigcap_{k \in \mathbb{N}} C_k$ . We then define the nth partition of  $[0,1] \setminus C_k$  to be  $J_{k,n}$ . We define  $\mathscr{O} = \bigcup_{k,n \in \mathbb{N}} J_{k,n}$  and  $\xi : \mathscr{O} \to \mathbb{R}$ ,  $x \in J_{k,n} \mapsto \frac{n}{2^k}$ . We see this is well defined by an inductive argument.

**Definition 0.1** (Cantor-Lebesque Function). We define

$$\varphi: [0,1] \longrightarrow \mathbb{R}$$
 
$$x \longmapsto \varphi(x) = \left\{ \begin{array}{cc} 0, & x = 0 \\ \xi(x), & x \in \mathscr{O} \\ \sup\{\xi(y): y \in \mathscr{O} \cap [0,x)\}, & x \in C \setminus \{0\} \end{array} \right.$$

to be the Cantor-Lebesque Function

**Proposition 0.1.**  $\varphi$  is a continuous increasing function such that  $\varphi([0,1]) = [0,1]$ .

*Proof.* It is clear  $\xi$  is and this guarantees  $\varphi$  to be increasing.

Next, note  $\varphi(0) = 0$  and  $\varphi(1) = 1$ . Hence, we have the intermediate value theorem guaranteeing the image is [0,1] if  $\varphi$  is continuous.

We see  $\varphi$  is continuous on  $\mathscr O$  since it is constant on each interval  $J_{k,n}$ . Now, we consider  $x \in C \setminus \{0,1\}$ . For a given  $\varepsilon$ , let  $k \in \mathbb N$  such that  $\frac{1}{2^k} < \varepsilon$ . Then, there is  $n \in \mathbb N$  such that  $1 \le n \le 2^k - 2$  such that for all  $u \in J_{k,n}$ ,  $v \in J_{k,n+1}$  such that for all u, v we find u < x < v. Let  $a_k \in J_{k,n}$   $b_k \in J_{k,n+1}$  then by monotinicity

of  $\varphi$ , for all  $y \in [0,1]$  with  $|x-y| < \delta = \min\{x - a_k, x + b_k\}$  we find

$$\begin{aligned} |\varphi\left(x\right) - \varphi\left(y\right)| &\leq \varphi\left(b_{k}\right) - \varphi\left(a_{k}\right) \\ &= \frac{n+1}{2^{k}} - \frac{n}{2^{k}} \\ &= \frac{1}{2^{k}} \\ &< \varepsilon. \end{aligned}$$

Finally, given  $\varepsilon > 0$ , we take  $k \in \mathbb{N}$  such that  $\frac{1}{2^k} < \varepsilon$  and let  $c_k \in I_{k,1}$ ,  $d_k \in I_{k,2^k-1}$ . Then, for  $o \leq y \leq c_k$ , we find

$$|\varphi(0) - \varphi(y)| = |\varphi(y)|$$

$$\leq \varphi(c_k)$$

$$= \frac{1}{2^k}$$

$$< \varepsilon.$$

Similarly, for  $d_k < y \le 1$ , we find

$$\begin{aligned} \left| \varphi \left( 1 \right) - \varphi \left( y \right) \right| & \leq \left| 1 - \varphi \left( d_k \right) \right| \\ &= 1 - \frac{2^k - 1}{2^k} \\ &= \frac{1}{2^k} \\ &< \varepsilon. \end{aligned}$$

**Definition 0.2** (Modified Cantor-Lebesque Function). Let  $\psi = x + \varphi(x)$  be the **modified Cantor-Lebesque Function**. It is clear  $\psi$  is continuous, strictly increasing and has ,  $\psi([0,2]) = [0,2]$ .

**Proposition 0.2.** The function  $\psi$  has the following properties

- 1.  $\psi(C)$  is measurable with  $\mu(\psi(C)) = 1$ .
- 2. There is a measurable set  $S \subseteq C$  such that  $\psi(S)$  is not measurable.

Proof. • Note that  $[0,1] = C \cup \mathscr{O}$  and  $\psi$  is injective and continuous. Hence, we have  $[0,2] = \psi(C) \cup \psi(\mathscr{O})$  with  $\psi(C) \cap \psi(\mathscr{O}) = \varnothing$ . Since  $\psi$  is strictly increasing, we know  $\psi^{-1}$  is well-defined and continuous. Hence,  $\psi$  is an open map and we see  $\psi(\mathscr{O})$  is open in [0,2], hence  $\psi(C)$  is closed. Hence, both sets are measurable. We see  $\psi(\mathscr{O})$  is the union of a countable collection of open disjoint intervals,  $\{I_i : i \in \mathbb{N}\}$  such that  $\varphi \mid J_i$  is constant by construction. Hence, we hve for each  $i \in \mathbb{N}$  we find  $\psi(I_n) = x_i + I_i$  where  $x_i \in [0,1]$  is a constant. Since  $\psi$  is injective, we find it preserves

disjointness, hence the collection  $\{\psi(I_i): i \in \mathbb{N}\}$  is disjoint. Then, by countable additivity and translation invariance of  $\mu$  we find

$$\mu(\psi(\mathscr{O})) = \mu\left(\bigcup_{i \in \mathbb{N}} I_i\right)$$

$$= \bigcup_{i \in \mathbb{N}} \psi(I_i)$$

$$= \sum_{i=1}^{\infty} \mu(\psi(I_i))$$

$$= \sum_{i=1}^{\infty} \ell(x_i + I_i)$$

$$= \sum_{i=1}^{\infty} \ell(I_i)$$

$$= \mu(\mathscr{O}).$$

Since,  $\mu(C) = 0$ , we find

$$\mu(\mathcal{O}) = \mu([0,1] \setminus C) = \mu([0,1]) = 1.$$

Consequently,  $\mu(\psi(\mathcal{O})) = 1 = \mu(\mathcal{O})$ . Hence, we find  $\mu(\psi(C)) = 1$ .

Since  $\psi\left(C\right)$  has positive measure, it contains a nonmeasurable subset T, however, we see  $S=\psi^{-1}\left(T\right)$  is measurable as  $S\subseteq C$  and  $\mu\left(C\right)=0$ .

Corollary 1. There is a measurable set  $S \subseteq C$  such that S is not borel.

*Proof.* Since  $\psi$  has a continuous inverse, we see it maps borel sets to borel sets. Let S be a subset of C such that  $\psi(S)$  is not measurable. Since  $\psi(S)$  is not measurable, it is not a borel set. Hence S is not borel, but it was measurable with measure 0.