Resumo de aula 10 - 2/2

1 Derivada de função inversa

Se y=f(x) é uma função bijedora (inversíel) e derivável e sua função inversa, representada por $x=f^{-1}(y)$ é contínua, então $Df^{-1}(y)=\frac{1}{f'(x)}$ se $f'(x)\neq 0$ para todo y de seu domínio, pois usando a regra de cadeia para $y=f(x)=f(f^{-1}(y))$, temos $1=\frac{dy}{dy}=\frac{dy}{dx}\cdot\frac{dx}{dy}$, isto é, $1=f'(x)\cdot Df^{-1}(y)$, ou seja

$$Df^{-1}(y) = \frac{1}{f'(x)}$$

Exemplo 1.1. Seja $y=f(x)=\cos x$, com $0\leq x\leq \pi$. Determine a derivada de sua função inversa.

Solução: Seja $x = f^{-1}(y) = arc \cos y$ a função inversa de y = f(x) = cos x. temos que

$$Df^{-1}(y) = \frac{1}{f'(x)} = \frac{1}{-senx} = \frac{1}{-\sqrt{1-y^2}} = -\frac{1}{\sqrt{1-y^2}}$$

pois usando $sen^2x + cos^2x = 1$ e cosx = y, implica que $senx = \sqrt{1 - y^2}$.

2 Regra de L'Hôpital

Suponha que f e g são diferenciáveis e $g'(x) \neq 0$ próximo a a(execto possívelmente em a). Suponha que

$$\lim_{x \longrightarrow a} f(x) = 0$$
 e $\lim_{x \longrightarrow a} g(x) = 0$, ou que

$$\lim_{x \to a} f(x) = \pm \infty \text{ e } \lim_{x \to a} g(x) = \pm \infty$$

(Em outras palavras, temos uma forma indeterminada do tipo $\frac{0}{0}$ ou $\pm \frac{\infty}{\infty}$). Então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

A regra de L'Hôpital é válida também para limites laterais e para limites no infinito: Isto é " $x \longrightarrow a$ " pode ser substituído por qualquer dos símbolos a seguir: $x \longrightarrow a^+, x \longrightarrow a^-, x \longrightarrow \infty, x \longrightarrow -\infty$.

Exemplo 2.1. Encontre $\lim_{x\longrightarrow 1} \frac{\ln x}{x-1}$ Solução: 1

Exemplo 2.2. Calcule
$$\lim_{x\longrightarrow 0} \frac{e^x-1}{sen x}$$

Solução: 1

Exemplo 2.3. Calcule
$$\lim_{x\longrightarrow 1} \frac{x^9-1}{x^5-1}$$

Solução: $\frac{9}{5}$

Exemplo 2.4. Calcule
$$\lim_{x\longrightarrow 0} \frac{e^x-1-x}{x^2}$$

Solução: $\frac{1}{2}$