1) Find all incongruent isolutions.
a) $\chi^2 = 230 \mod 77$
12 = 11 mad 29
6) T/E The linear congruence 124 x 210 (mod 1040) has a secretary
3) Determine if the system has a solution.
λ = 1 (Mode 3)
n = 3 (mod 6)
42 = 2 (mod 14)
(h) Find gcd (587, 345) using Euclidean algorithm.
(3) T/F If a = b (mod m) & c = o, then ac = bc (mod mc)
ac = 60 (mas de)
Prove iy p'i poine le pla3, then pla. 1 2 a = 12 mod m) le d = gcd (a, b), then / Prove)
a - b mod m.
Then d= ged (art by, y) to all integers
(8) T/F of d= gcd(x,y), Then d= gcd(an+by,y) fe all integers a, 6>0.
(9) 7/4 The dinear congruence
10 / mod 1040) 102
(10) T/F II p1, p2, p3 are consecutivo prime nos.
2 p1 p2 p3 + 1 vio a prime no.
(1) let & be an old prime. Find a famula for the legendre
(1) let p se an oad para
(-2)
12) Find the deast non-negative residue of
3 ²⁰¹¹ modulo 22.
3 ²⁰¹¹ modulo 22. (13) let n.2.1. find gcd (n, 2n ² +i)
(Ty) let p=1 mod y be a prime & a is a quadratic residue mod p-
Decide with justification in then automatically
p-a vis a quadratic residue mod p.

(15) Calculate $\phi(7!)$ (16) Let $f(x) = 2x^4 + 3x^2 + \pi$ and $f(x) = 2x^4 + 3x^2 + \pi$ and $f(x) = 2x^4 + 2x^2 + \pi$ and $f(x) = 2\pi f(x)$. Determine polynomials $g(x)$, $g(x) \in \mathbb{Z}_{H}[x]$ with deg $f(x) \in \mathbb{Z}_{H}[x]$ with deg $f(x) \in \mathbb{Z}_{H}[x]$. Such that $f = gg + gf(x)$. Determine all solutions of the congruence $f(x) = x^2 + 3 = 0 \pmod{7^2}$ for $f(x) \in \mathbb{Z}_{H}[x]$. Determine all solutions of the congruence $f(x) = x^2 + 3 = 0 \pmod{7^2}$ for $f(x) \in \mathbb{Z}_{H}[x]$.
$\chi^2 + 2\chi \chi^2 = 0$
(19) Determine all solutions of the conquence
$2x^2+3x+2 = 0 \pmod{7^2}$.
Determine an inlegar x with $O(2(88 \text{ s.t}))$ $\chi \equiv 9^{1283} \pmod{88}$
Delamine all solutions of $n^2 - 4n + 9 \equiv 0 \pmod{25}$
(22) Compute the legendre symbols $\frac{21}{122} \left(\frac{143}{122}\right) \cdot \left(\frac{46}{93}\right) \cdot \left(\frac{2}{122}\right) \left(\frac{11}{122}\right)$
23) State the law of quadratic reciprocity. (24) "Euler's thm.
(15) 4 femal's min
Rome n's = N mod 2186 pt ay 119
127 Prove that if m is an odd fositive inleger, then the sum of any complete set of residue modulo
28) If m is any integer & m>2, then prove the analogous result

as (2) for any residue modulo m.

(29) Solve 112 = 21 (mod 105)

30 Solve the simultaneous system $n = 3 \pmod{6}$ $n = 5 \pmod{35}$ $n = 7 \pmod{143}$ $n = 11 \pmod{323}$ Show that $61 \mid +1 = 63 \mid +1 = 0 \pmod{71}$.

let p be an odd prine no. The numbers $1, 2, 3^2, \dots, (\frac{b-1}{2})^2$ are distinct modulo p.

Prove this.

The above set of nos. in (32) are distinct modulo p

le give a complete set of (non zeo) quadratie

residues mod p.

Les this to finel a complete net

of quadratic residues or modulo 19.

34) Prove that the no. 9 wolutions of the conquence $n^2 \equiv c \pmod{p}$ is

 $l+\left(\frac{c}{p}\right)$.

Find all primes p such -lhat $x^{\frac{1}{2}} \equiv 13 \pmod{p}$ has a solⁿ.