Heat Transfer Modes

Heat Conduction

Fourier Law

$$\dot{Q} = -kA \frac{dT}{dx}$$
 [W]

Cross-
Thermal Sectional Conductivity Area
[W/m-K]
Materials Property

Heat Flux

$$\dot{q} = -k \frac{dT}{dx} (= -k\nabla T) \left[W/m^2 \right]$$

Convection

Newton's law of cooling

$$\dot{Q} = hA(T_w - T_a)$$

Convective Heat Transfer Coefficient [W/m²K] Flow dependent

- Natural Convection
- Forced Convection

Thermal Radiation

Stefan-Boltzmann Law for Blackbody

$$\dot{Q} = A \sigma T^4$$

Stefan-Boltzmann Constant $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$

Heat transfer

$$\dot{Q} = AF \, \varepsilon \sigma \left(T_{hot}^{4} - T_{cold}^{4} \right)$$

View factor F=1 for two

Emissivity of two surfaces

parallel plates

Thermal Radiation: Planck's Law

 Intensity: power per unit solid angle in the direction of propagation

$$I_{\lambda} = \frac{Power}{dA_{\perp}d\Omega d\lambda}$$

Solid Angle

$$d\Omega = \frac{dA_p}{R^2} = \sin\theta d\theta d\varphi$$

 Emissive power: power per unit surface area

$$e_{\lambda} = \int_{2\pi} I_{\lambda} \cos \theta d\Omega$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} I_{\lambda} \cos \theta \sin \theta d\theta = \pi I_{\lambda}$$

Planck's law

$$I(\lambda) = \frac{4\pi c^2 \hbar}{\lambda^5} \frac{1}{\exp\left(\frac{2\pi \hbar c}{k_B T \lambda}\right) - 1}$$

$$e(\lambda) = \frac{4\pi^2 c^2 \hbar}{\lambda^5} \frac{1}{\exp\left(\frac{2\pi \hbar c}{k_B T \lambda}\right) - 1}$$

Thermal Radiation: Planck's Law

Total

$$\dot{Q} = \int_{0}^{\infty} \dot{Q}(\lambda) d\lambda = A \sigma T^{4}$$

$$e_{b} = \sigma T^{4}$$

Stefan-Boltzmann constant

$$\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 K^4$$

Wien's displacement law

$$\lambda_{\text{max}}T = 2898 \text{ K}\mu\text{m}$$

Universal Blackbody Curve

Function of λT only

$$\frac{e_{b\lambda}}{T^5} = \frac{4\pi^2 c^2 \hbar}{(\lambda T)^5} \frac{1}{\exp\left(\frac{2\pi \hbar c}{k_B \lambda T}\right) - 1}$$
$$= \frac{C_1}{(\lambda T)^5} \frac{1}{\exp\left(\frac{2\pi \hbar c}{k_B \lambda T}\right) - 1}$$

Fraction of Energy between $[0,\lambda]$ Relative to Total Blackbody

$$F = \frac{\int_{0}^{\lambda} e_{b\lambda} d\lambda}{\sigma T^{4}} = \int_{0}^{\lambda} \frac{C_{1}}{(\lambda T)^{5}} \frac{d\lambda}{\exp\left(\frac{2\pi\hbar c}{k_{B}\lambda T}\right) - 1}$$

$$= \frac{1}{\sigma} \int_{0}^{\lambda T} \frac{C_{1}}{(\lambda T)^{5}} \frac{d(\lambda T)}{\exp\left(\frac{2\pi\hbar c}{k_{B}\lambda T}\right) - 1}$$

$$= \frac{C_{1}}{\sigma} \int_{0}^{\lambda T} \frac{1}{x^{5}} \frac{dx}{\exp\left(\frac{C_{2}}{x}\right) - 1} = \int_{0}^{x} f(x) dx$$

$$= F(0 - \lambda T)$$

Universal Function

Earth Orbital

Image by Robert Simmon (NASA).

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Earth Tilt

Solar Spectral Outside Atmosphere

Image by Robert A. Rohde/Global Warming Art.

Solar Going Through Atmosphere

Source: http://marine.rutgers.edu/mrs/education/class/yuri/erb.html

Solar spectra

Solar spectra are named by their air mass (AM), which is the ratio of the path length of air the rays travel through to the shortest possible pathlength (i.e. directly overhead). Thus the AM0 solar spectrum is measured above the earth's atmosphere, AM1 occurs when the sun is directly overhead, and AM1.5 occurs when the sun's rays travel through 50% more of the atmosphere than when the sun is directly overhead. Note 1/cos(48.2°) = 1.5, so AM1.5 occurs when the solar zenith angle is 48.2°.

- AM0 is an average of measured data from many satellites, the space shuttle, high-altitude aircraft, sounding rockets, etc.
- AM1.5G and AM1.5 Direct + Circumsolar are calculated values based on atmospheric constituent and particle concentrations, humidity, ground surface albedo, the U.S. Standard Atmosphere, and various other parameters. They are defined as follows:
 - AM1.5 Direct + Circumsolar is only the solar radiation that comes from the sun and the cone of sky of half-angle 2.5 degrees surrounding the sun. The reference surface is normal to the sun, with an air mass of 1.5 (solar zenith 48.2°). (Defined in ASTM G173-03)
 - AM1.5G accounts for radiation from the sun, the entire sky, and reflections off the ground. The solar zenith is 48.2°, but the panel is tilted at an angle of 37°.
 This results in an angle of incidence of the sun of 11.2°. (ASTM G173-03)
 - AM1.5G is the spectrum used to calibrate solar cells. This spectrum gives higher solar cell efficiency than AM0, and higher power per square meter than AM1.5 Direct + Circumsolar. (ASTM E490-00a)

Air mass standards

Air mass standards

AM1.5 Direct + Circumsolar

48.1°
Earth

AM1.5 Global

Image by Robert A. Rohde/Global Warming Art.

Various Solar Spectra

Surface Properties: Emissivity

Directional-spectral
$$\mathcal{E}_{\lambda}^{'}(T) = \frac{I_{\lambda}(\Omega)}{I_{b\lambda}}$$

Hemispherical-spectral $\varepsilon_{\lambda}(T) = \frac{e_{\lambda}}{2}$

$$\varepsilon_{\lambda}(T) = \frac{e_{\lambda}}{e_{h\lambda}}$$

Diffuse Emitter

$$\varepsilon_{\lambda}^{'}=\varepsilon_{\lambda}$$

Directional-total

$$\varepsilon'(T) = \frac{I(\Omega)}{I_b}$$

Gray Emitter

$$\varepsilon_{\lambda}^{'}=\varepsilon_{\lambda}^{'}$$

Hemispherical-total

$$\varepsilon(T) = \frac{e}{e_b}$$

Diffuse-Gray Emitter

Surface Properties: Absorptivity

Directional-spectral

$$\alpha_{\lambda}'(T) = \frac{power \text{ absorbed}}{I_{\lambda}(\Omega)d\Omega}$$

Hemispherical-spectral

 $\alpha_{\lambda}(T)$

Kirchoff's Law

Directional-total

 $\alpha'(T)$

$$\varepsilon_{\lambda}^{'}=\alpha_{\lambda}^{'}$$

Hemispherical-total

 $\alpha(T)$

Surface Properties: Reflectivity&Transmissivity

Diffuse Reflector

Gray Reflector

Diffuse Gray Reflector

Reflectivity:

Bi-directional Reflectivity
$$\rho_{\lambda}^{"} = \frac{I_{\lambda,r}(\Omega')}{I_{\lambda,i}(\Omega)}$$

Directional-spectral: ρ_{λ}

Hemispherical-spectral: ρ_{λ}

Directional-total: ρ

Hemispherical-total: ρ

Transmissivity: $\tau_{\lambda}, \tau_{\lambda}, \tau_{\lambda}, \tau_{\lambda}, \tau_{\lambda}, \tau$

Energy Conservation $\rho_{\lambda} + \alpha_{\lambda} + \tau_{\lambda} = 1$

View Factor

$$F_{dA_{i}-dA_{j}} = \frac{\text{power reaching dA}_{j}}{\text{power leaving dA}_{i}}$$

$$= \frac{I_{i}dA_{i}\cos\theta_{i} \frac{\cos\theta_{j}dA_{j}}{R_{ij}^{2}}}{\pi I_{i}dA_{i}}$$

$$= \frac{\cos\theta_{i}\cos\theta_{j}dA_{j}}{\pi R_{ij}^{2}}$$

$$F_{A_i - A_j} = \frac{1}{A_i} \int_{A_i} \int_{A_i} \frac{\cos \theta_i \cos \theta_j}{\pi R_{ij}^2} dA_i dA_j$$

Assumptions:

Diffuse surface Radiation leaving A_i is uniform

View Factor Relations

Reciprocity

$$F_{dA_i-dA_j}dA_i = F_{dA_j-dA_i}dA_j$$

$$F_{A_i - A_j} A_i = F_{A_j - A_i} A_j$$

Summation

$$F_{A_i-(A_j+A_k)} = F_{A_i-A_j} + F_{A_i-A_k}$$

Figure by MIT OpenCourseWare.

$$A_s = \frac{\pi D_s^2}{4} \qquad A_e = \frac{\pi D_e^2}{4}.$$

$$F_{s-e} = \frac{\pi D_e^2 / 4}{R_{se}^2} = 5.67 \times 10^{-9}$$

$$F_{e-s} = \frac{\pi D_s^2 / 4}{R_{se}^2} = 6.79 \times 10^{-5}$$

$$A_s F_{s-e} = A_e F_{e-s}$$

Earth-Sun Radiation

Radiation Reaching Earth

$$e_s A_s F_{s-e}$$

Solar Radiation Per Unit Area Normal to Sun on Earth Outside Atmosphere

$$J_{s} = \frac{e_{s} A_{s} F_{s-e}}{A_{e}} = e_{s} F_{e-s}$$

$$= 5.67 \times 10^{8} \times (5777)^{4} \times 6.79 \times 10^{-5}$$

$$= 1365 \frac{W}{m^{2}}$$

Solar Constant: 1366 W/m²

Blackbody At Sun's Temperature T_s

Maximum Efficiency of a Solar Thermal Engine

Heat Transferred to Absorber

$$Q_h = \sigma \left(T_s^4 - T^4\right)$$

Thermal Efficiency

$$\eta_{th} = \frac{\sigma(T_s^4 - T^4)}{\sigma T_s^4} = 1 - \frac{T^4}{T_s^4}$$

Carnot Efficiency

$$\eta = 1 - \frac{T_a}{T}$$

Blackbody Absorber at T

 T_a

Maximum Efficiency of a Solar Thermal Engine

$$\eta = \eta_{th} \eta_C = \left(1 - \frac{T^4}{T_s^4}\right) \left(1 - \frac{T_a}{T}\right)$$

Maximum: 85% @ T=2450K

For $T_a=300 \text{ K}$

Temperature (K)

How Hot a Surface Can Get By Solar Radiation?

Solar Radiation In Thermal Emission Out

Zero Emissivity on This Side

$$C\int_{0}^{\infty}\alpha_{\lambda}J_{\lambda}d\lambda=\int_{0}^{\infty}\varepsilon_{\lambda}\big[e_{b\lambda}\big(T\big)-e_{b\lambda}\big(T_{o}\big)\big]d\lambda$$
 Concentration

Selective surface

- Black body: emissivity = 1 for all wavelengths
- Selective surface: emissivity is high in the solar spectrum and low in the infrared. Ideally the transition would occur abruptly at the cutoff wavelength λ_c .

Approximate the Sun as A Blackbody

One Sun C=1

$$\int_{0}^{\lambda} A_{sun} F_{sun-surface} e_{b\lambda}(T_{sun}) d\lambda = \int_{0}^{\lambda} A[e_{b\lambda}(T) - e_{b\lambda}(T_{o})] d\lambda$$

$$\int_{0}^{\lambda} AF_{e-s}e_{b\lambda}(T_{sun})d\lambda = \int_{0}^{\lambda} A[e_{b\lambda}(T) - e_{b\lambda}(T_{o})]d\lambda$$

$$F_{e-s} \frac{F(0-\lambda T_s)}{\sigma T_{sun}^4} = \frac{F(0-\lambda T)}{\sigma T^4} - \frac{F(0-\lambda T_a)}{\sigma T_a^4}$$

Maximum Temperature AM0

Selective surface

Fix Temperature, choosing a cut-off wavelength

Efficiency of a Solar Thermal Engine: 1 Sun

Fix Temperature, choosing a cut-off wavelength

 $\eta_{\it th}$ Thermal Efficiency

Thermal Efficiency for AM1.5G with No Concentration

System (Surface x Carnot) Efficiency for AM1.5G with No Concentration

Sunselect absorber

- This same analysis can be performed to find the ideal absorber for various concentrations and operating temperatures. This is the absolute upper limit on system efficiency.
- We can compare a blackbody, the Sunselect absorber, and an ideal absorber

Blackbody absorber

Sunselect absorber

Ideal absorber

Heat Transfer on A Suspended Surface

$$\int_{0}^{\infty} \alpha_{\lambda} J_{\lambda} d\lambda = \int_{0}^{\infty} \varepsilon_{\lambda} \left[e_{b\lambda}(T) - e_{b\lambda}(T_{o}) \right] d\lambda + \frac{T - T_{a}}{R_{th}}$$

Thermal Resistance by Conduction

Heat Conduction

Heat Conduction

1D, no heat generation

$$\dot{Q} = kA \frac{T_{hot} - T_{cold}}{L} = \frac{T_{hot} - T_{cold}}{R_{th}}$$

Thermal Resistance

$$R_{th} = \frac{L}{kA}$$

Heat Current Q

Convection
$$R_{th} = \frac{1}{hA}$$

MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.