# Lecture 9

# Completely Randomized Designs

Reading: Oehlert Chapter 3; Dean-Voss-Draguljić Chapter 3

DSA 8020 Statistical Methods II March 1-5, 2021 Completely
Randomized Designs



Randomized Designs Checking Model Assumptions

Whitney Huang Clemson University

#### Agenda

Completely Randomized Designs



Randomized Designs

Checking Model Assumptions

Completely Randomized Designs

# **Navigational Learning and Memory in Mice**

An experiment was conducted to determine if experience has an effect on the time it takes for mice to run a maze. Four treatment groups, consisting of mice having been trained on the maze one, two, three and four times were run through the maze and their times recorded.



Source: https://www.shutterstock.com/image-vector/find-your-way-cheese-mouse-maze-232569073

Completely Randomized Designs



Completely Randomized Designs

Assumptions

- g different treatment groups
- g known treatment group sizes  $n_1, n_2, \cdots, n_g$  with  $\sum_{i=1}^g n_i = N$
- Completely random assignment of treatments to the experimental units

This is the basic experimental design; everything else is a modification





Completely Randomized Designs

**Randomized Designs** 

- A completely randomized design (CRD) has
  - g different treatment groups
  - g known treatment group sizes  $n_1, n_2, \dots, n_g$  with  $\sum_{i=1}^{g} n_i = N$
  - Completely random assignment of treatments to the experimental units

This is the basic experimental design; everything else is a modification

Easiest to analyze

- A completely randomized design (CRD) has
  - g different treatment groups
  - g known treatment group sizes  $n_1, n_2, \cdots, n_g$  with  $\sum_{i=1}^g n_i = N$
  - Completely random assignment of treatments to the experimental units

This is the basic experimental design; everything else is a modification

- Easiest to analyze
- Most resilient when things go wrong

# A completely randomized design (CRD) has

- g different treatment groups
- g known treatment group sizes  $n_1, n_2, \cdots, n_g$  with  $\sum_{i=1}^g n_i = N$
- Completely random assignment of treatments to the experimental units

This is the basic experimental design; everything else is a modification

- Easiest to analyze
- Most resilient when things go wrong
- Often sufficient

#### Inference

- Any evidence means (i.e.,  $\{\mu_1, \mu_2, \cdots, \mu_g\}$ ) are not all the same?  $\Rightarrow$  ANOVA
- Which ones differ? ⇒ Multiple comparisons
- Estimates/confidence intervals of means and differences

$$Y_{ij} = \mu_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i, \quad \epsilon_{ij} \sim N(0, \sigma^2)$$



Completely Randomized Designs



Completely Randomized Designs

Assumptions

#### **Effects Model**

Alternatively, we could let  $\mu_i = \mu + \alpha_i$ , which leads to

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i, \quad \epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$



Overparameterized. Need to add a constraint so that the parameters are estimable.



Completely Randomized Designs

9.7

### **Effects Model Cont'd**

#### Completely Randomized Designs

# CLEMS N

Completely Randomized Designs

Checking Model
Assumptions

# Suppose we let $\sum_{i=1}^g n_i \alpha_i = 0$



# Suppose we let $\alpha_1 = 0$



# **Data Layout & the Dot Notation**

Completely Randomized Designs

UNIVERSITY

Checking Model

 $y_{ij}$  is the observed response for the  $j^{\rm th}$  experimental unit to treatment i.

| Treatment | (        | Obser    | vatio | ns         | Totals  | <b>Averages</b> |
|-----------|----------|----------|-------|------------|---------|-----------------|
| 1         | $y_{11}$ | $y_{12}$ | •••   | $y_{1n_1}$ | $y_1$ . | $ar{y}_{1}$ .   |
| 2         | $y_{21}$ | $y_{22}$ | •••   | $y_{2n_2}$ | $y_2$ . | $\bar{y}_2$ .   |
| :         | :        | ÷        | •••   | :          | ÷       | :               |
| g         | $y_{g1}$ | $y_{g2}$ | •••   | $y_{gn_g}$ | $y_g$ . | $ar{y}_g$ .     |
|           |          |          |       |            | y       | $ar{y}$         |

$$\Rightarrow \underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} \left(y_{ij} - \bar{y}_{..}\right)^{2}}_{\text{SS}_{T}} = \underbrace{\sum_{i=1}^{g} n_{i} \left(\bar{y}_{i.} - \bar{y}_{..}\right)^{2}}_{\text{SS}_{TRT}} + \underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} \left(y_{ij} - \bar{y}_{i.}\right)^{2}}_{\text{SS}_{E}}$$



#### CLEMS#N UNIVERSITY

Completely Randomized Designs

#### **ANOVA Table**

Total

N-1 SS<sub>T</sub>

| Source    | df  | SS         | MS                                | EMS                                                  |
|-----------|-----|------------|-----------------------------------|------------------------------------------------------|
| Treatment | g-1 | $SS_{TRT}$ | $MS_{TRT} = \frac{SS_{TRT}}{g-1}$ | $\sigma^2 + \frac{\sum_{i=1}^g n_i \alpha_i^2}{g-1}$ |
|           |     |            | $MS_E = \frac{SS_E}{N-q}$         |                                                      |

$$SS_{T} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{..})^{2} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{ij}^{2} - \frac{y_{..}^{2}}{N}$$

$$SS_{TRT} = \sum_{i=1}^{g} n_{i} (\bar{y}_{i} - \bar{y}_{..})^{2} = \sum_{i=1}^{g} \frac{y_{i}^{2}}{n_{i}} - \frac{y_{..}^{2}}{N}$$

$$SS_{E} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i}.)^{2} = \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{ij}^{2} - \sum_{i=1}^{g} \frac{y_{i}^{2}}{n_{i}} = SS_{T} - SS_{TRT}$$



Randomized Designs

sumptions

# Testing for treatment effects

 $H_0: \alpha_i = 0$  for all i

 $H_a: \alpha_i \neq 0$  for some i

**Test statistics**:  $F = \frac{\text{MS}_{TRT}}{\text{MS}_E}$ . Under  $H_0$ , the test statistic follows an F-distribution with g-1 and N-g degrees of freedom Reject  $H_0$  if

$$F_{obs} > F_{g-1,N-g;\alpha}$$

for an  $\alpha$ -level test,  $F_{g-1,N-g;\alpha}$  is the  $100\times(1-\alpha)\%$  percentile of a central F-distribution with g-1 and N-g degrees of freedom.

The P-value of the F-test is the probability of obtaining F at least as extreme as  $F_{obs}$ , that is,  $P(F > F_{obs}) \Rightarrow \text{reject } H_0$  if P-value  $< \alpha$ .



An experiment was conducted to determine if experience has an effect on the time it takes for mice to run a maze. Four treatment groups, consisting of mice having been trained on the maze one, two, three and four times were run through the maze and their times recorded.



Source: https://www.shutterstock.com/image-vector/find-your-way-cheese-mouse-maze-232569073

| Training runs    | 1     | 2     | 3     | 4     |
|------------------|-------|-------|-------|-------|
| $\overline{n_i}$ | 5     | 5     | 5     | 5     |
| $ar{y}_i$ .      | 9.14  | 7.24  | 6.76  | 5.18  |
| $s_i^2$          | 0.308 | 0.418 | 0.313 | 0.262 |

Completely Randomized Designs



Completely Randomized Designs

Assumptions

# **Example Cont'd**

| Training runs                                  | 1     | 2     | 3     | 4     |
|------------------------------------------------|-------|-------|-------|-------|
| $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$ | 5     | 5     | 5     | 5     |
| $ar{y}_i$ .                                    | 9.14  | 7.24  | 6.76  | 5.18  |
| $s_i^2$                                        | 0.308 | 0.418 | 0.313 | 0.262 |



 Fill out the ANOVA table and test whether the time to run the maze is affected by training. Use a significant level of .05.



#### Model:

 $y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i.$ 

We make the following assumptions:

Errors normally distributed

#### Model:

 $y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i.$ 

We make the following assumptions:

- Errors normally distributed
- Errors have constant variance

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i.$$

We make the following assumptions:

- Errors normally distributed
- Errors have constant variance
- Errors are independent

Completely Randomized Designs

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i.$$

We make the following assumptions:

- Errors normally distributed
- Errors have constant variance
- Errors are independent

Completely Randomized Designs

# **Model Assumptions**

# Completely Randomized Designs

#### Model:

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \dots, g, \quad j = 1, \dots, n_i.$$

hecking Model ssumptions

We make the following assumptions:

- Errors normally distributed
- Errors have constant variance
- Errors are independent

$$\Rightarrow \epsilon_{ij} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$



Completely
Randomized Designs

Checking Model
Assumptions





George E.P. Box

## What If Assumptions are Violated?

Randomized Designs

CLEMS

UNIVERSITY

If the assumptions are not true, our statistical inferences might not be valid, for example,

Randomized Designs

 A confidence interval might not cover with the stated coverage rate

oovorage rate

Checking Model Assumptions

 A test with nominal type I error could actually have a larger or smaller type I error rate

## What If Assumptions are Violated?

CLEMS#N

If the assumptions are not true, our statistical inferences might not be valid, for example,

Randomized Designs

Checking Model Assumptions

- A confidence interval might not cover with the stated coverage rate
- A test with nominal type I error could actually have a larger or smaller type I error rate

We need good strategy for checking model assumptions, i.e.,  $\epsilon_{ij} \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ .

# Checking Model Assumptions

We need to check if these assumptions reasonably met

## Model:

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

### Data:

$$\begin{array}{lllll} y_{ij} & = & \left(\bar{y}_{\cdot\cdot} + \left(\bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot}\right)\right) & + & \left(y_{ij} - \bar{y}_{i\cdot}\right) \\ y_{ij} & = & \hat{y}_{ij} & + & \hat{\epsilon}_{ij}\left(r_{ij}\right) \\ \text{observed} & = & \text{predicted} & + & \text{residual} \end{array}$$

Residuals are our "estimates" of unobservable errors  $\epsilon'_{ij}s$ 

We will conduct model diagnostics using **residual** and **predicted** values.

Raw residual:

$$r_{ij}$$
 =  $y_{ij}$  -  $\hat{y}_{ij}$ , where  $\hat{y}_{ij}$  =  $\hat{\mu}$  +  $\hat{\alpha}_i$  =  $\bar{y}_i$ .

Completely Randomized Designs



Completely Randomized Designs

Raw residual:

$$r_{ij} = y_{ij} - \hat{y}_{ij}$$
, where  $\hat{y}_{ij} = \hat{\mu} + \hat{\alpha}_i = \bar{y}_i$ .

ullet Standardized residual (internally Studentized residual) adjusts  $r_{ij}$  for its estimated standard deviation

$$s_{ij} = \frac{r_{ij}}{\sqrt{\mathsf{MS}_E(1 - \frac{1}{n_i})}}$$

Completely
Randomized Designs

Raw residual:

$$r_{ij} = y_{ij} - \hat{y}_{ij}$$
, where  $\hat{y}_{ij} = \hat{\mu} + \hat{\alpha}_i = \bar{y}_i$ .

ullet Standardized residual (internally Studentized residual) adjusts  $r_{ij}$  for its estimated standard deviation

$$s_{ij} = \frac{r_{ij}}{\sqrt{\mathsf{MS}_E(1 - \frac{1}{n_i})}}$$

Studentized residual (externally Studentized residual)

$$t_{ij} = s_{ij} \sqrt{\frac{N - g - 1}{N - g - s_{ij}^2}}$$

 $t_{ij} \sim t_{df=N-g-1}$  if the model is correct  $\Rightarrow$  can be used to identify outliers



Completely Randomized Designs

We DO NOT assume all  $y'_{ij}s$  come from the same normal distribution, instead we assume  $\epsilon'_{ij}s$  come from the same normal distribution  $\Rightarrow$  Not informative to plot a histogram for all the data—treatment effects lead to non-normality

**Example:** Suppose g = 3,  $(\mu_1, \mu_2, \mu_3) = (8, 10, 15)$  and  $\epsilon'_{ij}s \sim N(0, 2^2)$ 



# **Assessing Normality Cont'd**

Randomized Designs

CLEMS

N

Randomized Designs

Checking Model Assumptions

 If sample sizes are large, histograms of residuals can be constructed from each treatment separately



 Also, if sample sizes are large, QQ-plots or normal quantile plots can be generated for each treatment





# **Remarks on Assessing Normality**

- Assessing normality
  - Formal tests (e.g., Shapiro-Wilk test, Anderson-Darling test) are usually not useful:

With small sample sizes, one will never be able to reject  $H_0$ , with large sample sizes, one will constantly detect little deviations that have no practical effect

- Assess normal assumption graphically using QQ-plots or histograms
- Dealing with Non-normality
  - Use non-parametric procedure such as Kruskal–Wallis test (1952)
  - Transformation such as Box-Cox (1964)
- F-test is robust to non-normality





Checking Model

# **Assessing Equal Variance**

 We can test for equal variance, but some tests rely heavily on normality assumption:

- Hartley's test
- Bartlett's test
- Cochran's C test
- F-test is reasonably robust to unequal variance if  $n_i's$  are equal, or nearly so
- "If you have to to test for equality of variances, your best bet is Levene's test." – Gary Oehlert

- Ompute  $r_{ij} = y_{ij} \bar{y}_i$ .
- Treat the  $|r_{ij}|$  as data and use the ANOVA F-test to test  $H_0$  that the groups have the same average value of  $|r_{ij}|$
- Modified Levene's (Brown-Forsythe) test: use  $d_{ij} = |y_{ij} - \tilde{y}_i|$ , the absolute deviations from the group medians instead of  $|r_{ij}|$

Fairly robust to non-normality and unequal sample size

# **Diagnostic Plot for Non-Constant Variance**

Predicted value



Predicted value

Use this residual versus predicted value (treatment) plot to assess equal variance assumption and search for possible outliers





Randomized Designs

# **Remarks on Assessing Constant Variance Assumption**

- Checking constant variance assumption: Assess the assumption qualitatively, don't just rely no tests
- Dealing with unequal variance
  - Variance-stabilizing transformations
  - Account unequal variance in the model
- F-test is reasonably robust to unequal variance if we have (nearly) balanced designs



Durbin–Watson statistic is a simple numerical method for checking serial dependence:

$$DW = \frac{\sum_{k=1}^{n-1} (r_k - r_{k+1})^2}{\sum_{k=1}^{n} r_k^2}$$



Randomized Designs

The experimenter (Meily Lin) had observed that some colors of birthday balloons seem to be harder to inflate than others. She ran this experiment to determine whether balloons of different colors are similar in terms of the time taken for inflation to a diameter of 7 inches. Four colors were selected from a single manufacturer. An assistant blew up the balloons and the experimenter recorded the times with a stop watch. The data, in the order collected, are given in Table 3.13, where the codes 1, 2, 3, 4 denote the colors pink, yellow, orange,

| Table 3.13 | Times | (in secon | de) for the | halloon | evneriment |
|------------|-------|-----------|-------------|---------|------------|

blue, respectively.

| Time order     | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|----------------|------|------|------|------|------|------|------|------|
| Coded color    | 1    | 3    | 1    | 4    | 3    | 2    | 2    | 2    |
| Inflation time | 22.0 | 24.6 | 20.3 | 19.8 | 24.3 | 22.2 | 28.5 | 25.7 |
| Time order     | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   |
| Coded color    | 3    | 1    | 2    | 4    | 4    | 4    | 3    | 1    |
| Inflation time | 20.2 | 19.6 | 28.8 | 24.0 | 17.1 | 19.3 | 24.2 | 15.8 |
| Time order     | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   |
| Coded color    | 2    | 1    | 4    | 3    | 1    | 4    | 4    | 2    |
| Inflation time | 18.3 | 17.5 | 18.7 | 22.9 | 16.3 | 14.0 | 16.6 | 18.1 |
| Time order     | 25   | 26   | 27   | 28   | 29   | 30   | 31   | 32   |
| Coded color    | 2    | 4    | 2    | 3    | 3    | 1    | 1    | 3    |
| Inflation time | 18.9 | 16.0 | 20.1 | 22.5 | 16.0 | 19.3 | 15.9 | 20.3 |





Randomized Designs