Relationship Modeling: Graph Neural Networks (GNNs)

Ju Sun Computer Science & Engineering

Nov 29, 2023

Outline

- Why graphs?
- Graphs: basic notions
- Graph neural networks
- Scaling up training

Why graphs?

Graphs are everywhere!

Image credit: Stanford CS224W

Graphs model relationships/interactions

Different tasks on graphs

Graph-level 4

prediction,

generation

Graph

The whole graph is part of all available data, i.e., a data point The whole graph is all available data

Graph prediction (classification/regression), graph generation

A graph is a data point

Link prediction

Predict links should exists or not

Image credit: Stanford CS224W

Example task 1: Protein folding

Every protein is made up of a sequence of amino acids bonded together These amino acids interact locally to form shapes like helices and sheets

These shapes fold up on larger scales to form the full three-dimensional protein structure Proteins can interact with other proteins, performing functions such as signalling and transcribing DNA

Protein folding: predict a protein's 3D structure based on its amino acid sequence

Image credit: Deep Mind

Experimental resultComputational prediction

Example task 1: Protein folding

Example task 1: Protein folding

AlphaFold

Key concept: Spatial graph

Pair representation

(r,r,c)

ij ik

Corresponding edges

in a graph

Complete story: https://www.deepmind.com/research/highlighted-research/alphafold

Paper: https://www.nature.com/articles/s41586-021-03819-2

Example task 2: Recommendation systems

online shopping, music/movie recommendation

Nodes:

Users, items

Edges:

User-item interactions

Image credit: Stanford CS224W

Example task 3: Drug adverse effect discovery

- Nodes: Drugs & Proteins
- Edges: Interactions

Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

Image credit: Stanford CS224W

Example task 4: Traffic prediction

Example task 4: Traffic prediction

Nodes: Road segments

Edges: Connectivity between road segments

Prediction: Time of Arrival (ETA)

Image credit: Stanford CS224W

Image credit: Stanford CS224W

Subgraph discovery

Example task 5: Drug discovery

Image credit: https://distill.pub/2021/qnn-intro/

Molecules as graphs:

Nodes: atoms **Edges**: chemical bounds

full-graph prediction

Image credit:

https://pubmed.ncbi.nlm.nih.gov/32084340/

Graphs: basic notions

Basic objects

- ullet N : Nodes (also vertices)
- ullet E : Edges (also links)
- G(N, E): Graph

Undirected

Links: undirected (symmetrical, reciprocal)

- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

Links: directed (arcs)

- Examples:
 - Phone calls
 - Following on Twitter

Image credit: Stanford CS224W

Heterogeneous graphs

Nodes/Edges are multi-typed

T: types of nodes

R: types of relationships

Biomedical Knowledge Graphs

Example node: Migraine

Example edge: (fulvestrant, Treats, Breast Neoplasms)

Example node type: Protein

Example edge type (relation): Causes

Academic Graphs

Example node: ICML

Example edge: (GraphSAGE, NeurIPS)

Example node type: Author

Example edge type (relation): pubYear

Image credit: Stanford CS224W

Graph representation

Undirected graphs

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
 (1, 4), (1, 2)
(2, 1), (2, 4)
(3, 4)
(4, 1), (4, 2), (4, 3)

Adjacency matrix

Edge list

Adjacency list

Graph representation

Directed graphs

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Adjacency matrix

Edge list

Adjacency list

Adjacency matrix is often inefficient

NETWORK	NODES	LINKS	DIRECTED/ UNDIRECTED	N	Е
Internet	Routers	Internet connections	Undirected	192,244	609,066
www	Webpages	Links	Directed	325,729	1,497,134
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594
Phone Calls	Subscribers	Calls	Directed	36,595	91,826
Email	Email Addresses	Emails	Directed	57,194	103,731
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908
Citation Network	Paper	Citations	Directed	449,673	4,689,479
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930

Density = $|E|/|N|^2$

Real-world graphs are often very sparse

Weighted graphs

Unweighted

Weighted

Graph isomorphism/equivalence

Image credit: https://en.wikipedia.org/wiki/Graph_isomorphism

Image credit:

https://tonicanada.medium.com/brute-force-code-for-isomorphisms-1241ef180570

Isomorphism: there exists a bijective mapping, i.e., **permutation**, results in the same neighborhood structure

Permutation invariance

Image credit: https://distill.pub/2021/understanding-gnns/

Permutation invariance: permuting the names of the nodes doesn't change the graph, as graph nodes are intrinsically orderless

Mathematically: if A is (the adjacency matrix of) a graph, $\Pi A \Pi^{\intercal}$ is (the adjacency matrix of) an equivalent graph for **any permutation matrix** Π

Graph neural networks (GNNs)

Representation learning for graphs

Where to put the features?

Node embedding

Image credit: Stanford CS224W

N : set of nodes

A: adjacency matrix

 $oldsymbol{X} \in \mathbb{R}^{|N| imes d}$: node (raw) features

[u,v : nodes in N

 $\mathcal{N}(u)$: neighbors of $oldsymbol{\mathcal{U}}$

Node raw features: e.g.,

- Biomedical graphs: patient's EHR
- Social network graphs: user profile and images
- When no features: node indicator vector, constant vector

How to define the f?

We'll bypass fully connected networks directly

Convolution as performing local info aggregation (or message passing):

- Each time, the conv window focus on a local neighborhood of the current pixel
- Conv effectively aggregates the local info by weighted summation

How to define the f?

Convolution as performing local info aggregation (or message passing):

- **Neighborhood**: Each time, the conv window focus on a **local neighborhood** of the current pixel
- Aggregation: Conv effectively aggregates the local info by weighted summation

Graph in, graph out

An end-to-end prediction task with a GNN model.

Image credit: https://distill.pub/2021/gnn-intro/

How to make supervised predictions?

Image credit: https://distill.pub/2021/gnn-intro/

Node Embeddings $V_n = \sum_{P_{V_n} \to E_n} C_{E_n}$

Predictor on the node directly

Predictor on pairs of nodes pooling function ρ , ...

Final Layer

Predictor on pooled feature on whole graph final classification $c = \frac{1}{c}$

Edge Predictions

How to perform unsupervised learning?

Look into GNN layers

These **aggregators** sum up neighboring info, and can be represented by **DNNs**

Permutation invariance

Feature vector for the whole graph

Image credit: Image credit: https://distill.pub/2021/understanding-gnns/

Permutation invariance: permuting the names of the nodes doesn't change the graph, as graph nodes are intrinsically orderless

For
$$f:G({m A},{m X})\mapsto {m h}$$
 , $f({m A}_1,{m X}_2)=f({m A}_2,{m X}_2)$

Order plan 1: A_1, X_1

Order plan 2: A_2, X_2

For two order plans, output of *f* should be the same!

Image credit: Stanford CS224W

Permutation equivariance

For
$$f:G(\pmb{A},\pmb{X})\mapsto \pmb{H}\in\mathbb{R}^{|N|\times d}$$
 $f(\pmb{\Pi}\pmb{A}\pmb{\Pi}^\intercal,\pmb{\Pi}\pmb{X})=\pmb{N}f(\pmb{A},\pmb{X})$ for any permutation

Collection of feature vectors on all nodes

In other words, if the nodes are re-ordered, the learned features are re-ordered accordingly, so features are attached to nodes not their names

A typical GNN consists of multiple permutation equivariant/invariant layers

Graph convolutional networks (GCNs)

Node v's ... is just node v's initial original features.

embedding.

and for $k = 1, 2, \dots$ upto K:

$$m{h}_v^{(k)} = f^{(k)} \left(W^{(k)} \cdot rac{\sum\limits_{u \in \mathcal{N}(v)} h_u^{(k-1)}}{|\mathcal{N}(v)|} + B^{(k)} \cdot m{h}_v^{(k-1)}
ight)$$
 for all $v \in$

Node v's embedding at step k.

Mean of v's neighbour's embeddings at step k-1.

Node v's

Color Codes:

- \blacksquare Embedding of node v.
- Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.

embedding at step k-1.

Graph attention networks (GATs)

```
for all v \in V.
Node v's
                                ... is just node v's
 initial
                                original features.
embedding.
and for k=1,2,\ldots upto K:
m{h_v^{(k)}} = f^{(k)} \left( W^{(k)} \cdot \left| \sum_{u \in \mathcal{N}(v)} lpha_{vu}^{(k-1)} h_u^{(k-1)} + lpha_{vv}^{(k-1)} m{h_v^{(k-1)}} \right| 
ight)
                                                           Weighted mean of v
Node v's
                                                                                                  Node v's
                                                           's neighbour's
embedding at
                                                                                                  embedding at
                                                           embeddings at step
                                                                                                  step k-1
step k.
                                                           k-1.
where the attention weights \alpha^{(k)} are generated by an attention mechanism A^{(k)}, normalized such that the sum over all neighbours of each node v is 1
egin{array}{ccc} oldsymbol{lpha}_{vu}^{(k)} &=& rac{A^{(k)}ig(h_v^{(k)},h_u^{(k)}ig)}{\sum A^{(k)}ig(h_v^{(k)},h_w^{(k)}ig)} & 	ext{for all }(v,u)\in E. \end{array}
Color Codes:
     \blacksquare Embedding of node v.
      \blacksquare Embedding of a neighbour of node v.
      (Potentially) Learnable parameters.
```

Graph sample and aggregate (GraphSAGE)

```
h_v^{(0)}
                                       for all v \in V.
                             x_n
Node v's
                             ... is just node v's
initial
                             original features.
embedding.
and for k=1,2,\ldots upto K:
h_v^{(k)} = f^{(k)} \left( W^{(k)} \cdot \left[ \underset{u \in \mathcal{N}(v)}{\text{AGG}} (\{h_u^{(k-1)}\}), h_v^{(k-1)} \right] \right)
                                                                                                      for all v \in V.
Node v's
                                             Aggregation of v
                                                                          ... Node v's
embedding at
                                             's neighbour's
                                                                          embedding at
                                                                          step k-1.
step k.
                                             embeddings at
                                             step k-1 ...
                                                           ... concatenated
                                                           with ...
Color Codes:
       Embedding of node v.
     Embedding of a neighbour of node v.

    (Potentially) Learnable parameters.
```

Graph isomorphism networks (GINs)

```
h_v^{(0)} = x_v for all v \in V.
```

Node v's ... is just node v's initial original features.

embedding.

and for $k=1,2,\ldots$ upto K:

$$egin{array}{lll} oldsymbol{h_v^{(k)}} & & = & f^{(k)} \left(\sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} + \left(1 + \epsilon^{(k)}\right) \cdot oldsymbol{h_v^{(k-1)}}
ight) \end{array}$$

Node v's Sum of v's Node v's embedding at neighbour's embedding at step k. embeddings at step k-1.

Color Codes:

- \blacksquare Embedding of node v.
- \blacksquare Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.

Image credit: https://distill.pub/2021/understanding-gnns/

for all $v \in V$.

Connection to CNNs and Transformers

filter:

- CNN is GNN that keeps local ordering
- CNN not permutation-invariant

GNN formulation:
$$\mathbf{h}_v^{(l+1)} = \sigma(\mathbf{W}_l \sum_{u \in \mathbf{N}(v)} \frac{\mathbf{h}_u^{(l)}}{|\mathbf{N}(v)|} + \mathbf{B}_l \mathbf{h}_v^{(l)}), \forall l \in \{0, \dots, L-1\}$$

CNN formulation:
$$\mathbf{h}_v^{(l+1)} = \sigma(\sum_{u \in \mathbf{N}(v)} \mathbf{W}_l^u \mathbf{h}_u^{(l)} + \mathbf{B}_l \mathbf{h}_v^{(l)}), \forall l \in \{0, \dots, L-1\}$$

Image credit: Stanford CS224W

Connection to CNNs and Transformers

Figure 1: The Transformer - model architecture.

Self-attention (plus feed forward) is a layer of GAT on a complete graph!

Scaling up training

Practical graphs are large yet sparse

How to perform mini-batch training?

- Mini-batch subsampling induces isolated nodes
- No info to aggregate inside the mini-batch for most nodes

Solution: structured subsampling

Two structured sub-sampling strategies—I

i.e., neighborhood sampling, instead of iid uniform sampling Image credit: Stanford CS224W

Two structured sub-sampling strategies—II

Cluster-GCN consists of two steps:

- Pre-processing: Given a large graph, partition it into groups of nodes (i.e., subgraphs).
- Mini-batch training: Sample one node group at a time. Apply GNN's message passing over the induced subgraph.

Mini-batch training
Message-passing
over induced subgraph
to compute the loss

Rationale: important to keep the community structures, i.e., keep the "backbone" nodes

Software

PyTorch Geometric (PyG)

Deep Graph Library (DGL)

https://pytorch-geometric.readthedocs.io/en/latest/

https://www.dql.ai/

Further reading

- What are graph neural networks?
 https://blogs.nvidia.com/blog/2022/10/24/what-are-graph-neural-networks/
- A Gentle Introduction to Graph Neural Networks https://distill.pub/2021/gnn-intro/
- Understanding Convolutions on Graphs
 https://distill.pub/2021/understanding-gnns/
- Graph Neural Networks: A Review of Methods and Applications https://arxiv.org/abs/1812.08434
- Stanford CS224W: Machine Learning with Graphs <u>https://web.stanford.edu/class/cs224w/index.html</u>
- Graph Representation Learning https://www.cs.mcgill.ca/~wlh/grl_book/