Hierarchical effects of contrast and motion coherence in early visual cortex

Dan Birman, Justin Gardner

Department of Psychology, Stanford University danbirman@stanford.edu

1. Introduction

An existing model of contrast discrimination suggests early visual cortex may be sufficient to explain behavioral performance¹.

Could that approach also be used to jointly explain motion coherence discrimination?

2. Discrimination task

We measured how large of an increment was necessary in each feature to be discriminable.

Model Output

Base stimulus

strength(%)

fMRI response timeseries

Just noticeable

differences

4. Linking model: overview

5. Fit to data

Non-linear additive model fit to behavior

Behavioral fit model comparison^{3,4}

6. Behavior to fMRI comparison

We fit a neural noise⁵ parameter to scale response functions into the same space. Based on previous work¹ we fit this parameter using the functions constrained on V1 and constrast discrimination.

Model comparison of behavioral contrast and motion coherence responses to V1 and MT, respectively

