Санкт-Петербургский государственный университет

Менкеев Александр Саналович

Выпускная квалификационная работа

Применение методов нейроэволюции при разработке мобильной игры с процедурной генерацией контента

Уровень образования: бакалавриат

Направление: 02.03.02 «Фундаментальная информатика и информационные технологии»

Основная образовательная программа CB.5003.2020 «Программирование и информационные технологии»

Научный руководитель:

доцент, кафедра теории систем управления электрофизической аппаратурой, к.ф. - м.н. Головкина Анна Геннадьевна

Рецензент:

доцент, кафедра технологии программирования, к.т.н. Блеканов Иван Станиславович

Санкт-Петербург 2024 г.

Содержание

Введение	3
Постановка задачи	4
Обзор литературы	5
Глава 1. Разработка инструмента	5
1.1. Общая идея	5
1.2. Цвет и траектория снарядов	6
1.3. Параметры оружия	9
1.4. Пользовательский интерфейс	13
1.5. Система эволюции оружия	14
1.6. Сохранение оружия	18
Глава 2. Публикация	19
2.1. Документация	19
2.2. Демонстрационные сцены	19
	21
Заключение	22
Список использованных источников	23
2.4. Полученные результаты	25
Глава 3. Основная часть раз	25
Глава 4. Основная часть два: Теория	26
Глава 5. Основная часть два: Детали реализации	26
	26
Глава 6. Анализ экспериментов	26
	26
	27
Список использованных источников	27

Введение

Для того чтобы вдохнуть жизнь в виртуальные игровые миры, нужно создать уровни, модели, текстуры и прочий игровой контент, что требует слаженных усилий художников и разработчиков. Это особенно важно для массовых многопользовательских ролевых онлайн игр (MMORPG), в которых необходим постоянный приток нового контента, чтобы удерживать интерес игроков. Для решения данной проблемы существуют два основных подхода: 1. Предоставлять игрокам инструменты, с помощью которых они смогут создавать свой контент и делиться им с остальными; 2. Генерировать контент случайным образом. У этих подходов есть недостатки. Для того чтобы игроки могли создавать контент самостоятельно с помощью инструментов, они должны обладать высоким уровнем квалификации и специализированным знанием дизайна. Случайная генерация плоха тем, что она не учитывает предпочтений игроков и должна быть сильно ограничена, чтобы исключить совсем не интересный контент. По этой причине требуются дальнейшие исследования в этой области.

Постановка задачи

Целью научно-исследовательской практики является разработка программного инструмента, интегрированного в игровой движок Unity и предназначенного для процедурной генерации игрового оружия с уникальными траекториями снарядов.

Разрабатываемая система призвана облегчить разработку 2D игр в жанре шутеры и должна удовлетворять следующим требованиям:

- 1. Система должна иметь достаточное количество настраиваемых параметров оружия, чтобы пользователь мог генерировать именно то, что ему нужно.
- 2. Система не должна требовать больших усилий со стороны пользователя для генерации оружия.
- 3. Система должна иметь качественный пользовательский интерфейс, работающий внутри Unity.
- 4. Система должна иметь демострационные игровые сцены, показывающие возможные сценарии использования.

Кроме того, целью практики является дальнейшая публикация разработанного продукта в Unity Asset Store. В связи с чем возникают следующие задачи:

- 1. Необходимо написать документацию программного продукта на английском языке.
- 2. Необходимо подготовить демонстрационные материалы. К примеру, WebGL сборка проекта, которую можно запускать в браузере, скриншоты, видео.

Обзор литературы

В рамках спецификации современных стандартов, базовые сценарии поведения пользователей призваны к ответу. Банальные, но неопровержимые выводы, а также представители современных социальных резервов формируют глобальную экономическую сеть и при этом - представлены в исключительно положительном свете.

Есть над чем задуматься: предприниматели в сети интернет будут описаны максимально подробно. Приятно, граждане, наблюдать, как сторонники тоталитаризма в науке заблокированы в рамках своих собственных рациональных ограничений. Есть над чем задуматься: некоторые особенности внутренней политики объявлены нарушающими общечеловеческие нормы этики и морали. Как принято считать, тщательные исследования конкурентов смешаны с неуникальными данными до степени совершенной неузнаваемости, из-за чего возрастает их статус бесполезности.

Лишь предприниматели в сети интернет, которые представляют собой яркий пример континентально-европейского типа политической культуры, будут преданы социально-демократической анафеме. Есть над чем задуматься: стремящиеся вытеснить традиционное производство, нанотехнологии являются только методом политического участия и ограничены исключительно образом мышления! Разнообразный и богатый опыт говорит нам, что постоянный количественный рост и сфера нашей активности напрямую зависит от новых предложений.

Глава 1. Разработка инструмента

Исходный код доступен в репозитории[7].

1.1 Общая идея

Генерируемое оружие основано на системах частиц из программ NEAT Projectiles и NEAT Particles[2][3]. Каждое оружие содержит в себе нейронную сеть (Рисунок 1). Каждый кадр анимации каждая частица, выпущенная из оружия, подает на вход в нейронную сеть свое текущее положение относитель-

но точки выстрела (**RelativePos.x**, **RelativePos.y**) и расстояние от точки выстрела **DistanceFromOrigin**. После этого нейронная сеть активируется и выводит единичный вектор силы (x, y), которая приложена к частице, её компоненту **hue** цветовой модели HSV, её максимальную скорость **maxSpeed** и длину вектора силы **force** для этого анимационного кадра.

Рис. 1: Как нейронная сеть управляет снарядами.

Поскольку оружие представляется нейронной сетью, можно генерировать новое оружие, изменяя веса и топологию нейронной сети. Для этой цели был выбран алгоритм NEAT[1], который расшифровывается как нейроэволюция расширяющихся топологий (NeuroEvolution of Augmenting Topologies). Это метод, предназначенный для эволюции искусственных нейронных сетей с помощью генетического алгоритма. Главная идея NEAT заключается в том, что эволюцию наиболее эффективно начинать с маленьких, простых сетей, которые постепенно становятся всё более сложными с каждым поколением.

1.2 Цвет и траектория снарядов

В этом параграфе описан упрощенный алгоритм управления снарядами нейронной сетью, который может отличаться от того, что представлено в исходном коде. Этот алгоритм выполняется каждый кадр игры.

```
Листинг 1: Projectile. Part 1
```

```
1 Box.ResetState();
2
3 Vector2 RelativePos = transform.localPosition;
```

Рассмотрим подробнее этот фрагмент кода. _inputArr[] — это массив, через который нейронная сеть получает данные. Все значения, принимаемые нейронной сетью должны лежать в отрезке [-1,1]. Для нормализации входных данных используется встроенный в Unity метод для линейной интерполяции Lerp(), а также параметр NNControlDistance, подбираемый пользователем.

Чтобы у пользователя была возможность менять направление полета снарядов относительно оси у на противоположное, их паттерн должен быть симметричен относительно этой оси. Также для более приятного визуального эффекта было решено сделать паттерн симметричным и относительно оси х. Для этого в сеть подаётся модуль первых двух параметров, отвечающих за координаты.

Если обобщить, то в коде выше берутся актуальные для данного кадра позиция снаряда RelativePos, его расстояние от источника DistanceFromOrigin и подаются на вход в нейронную сеть после нормализации. Затем происходит активация сети Box.Activate().

Листинг 2: Projectile. Part 2

```
13 float x = Mathf.Lerp(-1f, 1f, (float)_outputArr[0]) * SignX;
14 float y = Mathf.Lerp(-1f, 1f, (float)_outputArr[1]) * SignY;
15 Vector2 forceDir = OriginTransform.TransformDirection(x, y, Of).normalized;
16
17 float hue, maxSpeed, force;
18 hue = Mathf.Lerp(HueRange.x, HueRange.y, (float)_outputArr[2]);
   maxSpeed = Mathf.Lerp(SpeedRange.x, SpeedRange.y, (float)_outputArr[3]);
   force = Mathf.Lerp(ForceRange.x, ForceRange.y, (float)_outputArr[4]);
21
22
   SpriteRenderer.color = Color.HSVToRGB(hue, Saturation, Brightness);
   Rigidbody.AddForce(forceDir * force);
24
25 float speed = Rigidbody.velocity.magnitude;
26
   if (speed > maxSpeed)
27
       Rigidbody.velocity = Rigidbody.velocity.normalized * maxSpeed;
28
29 transform.up = Rigidbody.velocity;
```

После активации сети можно считывать выходные данные через массив $_$ outputArr[]. Сеть выдает все значения в отрезке [0,1]. Данные с первых двух выходов $_$ outputArr[0] и $_$ outputArr[1], отвечающих за x и y компоненты скорости, сначала преобразуются в отрезки [-1,1]. Затем на их основе строится нормированный вектор силы forceDir, который потом прилагается к снаряду посредством метода AddForce.

Так было сделано для плавности и реалистичности полета снарядов, если бы нейронная сеть меняла их скорость напрямую, они бы двигались дёрганно и слишком резко. Чтобы под действием силы скорость снаряда не росла до бесконечности, она ограничена параметром maxSpeed.

Изначально планировалось использовать цветовую модель RGB, но возникли проблемы с контролем цветов, которые может выдавать сеть. Например, если у игры темный фон, то снаряды должны быть ярких оттенков, чтобы не сливаться с ним. У пользователя должна быть возможность задать желаемое пространство цветов, внутри которого будут заключены значения нейронной сети. RGB представляет цвета в виде точек в трехмерном пространстве, поэтому выделить такое пространство было бы затруднительно.

Эту проблему решает цветовая модель HSV (Hue, Saturation, Value — тон, насыщенность, значение), в которой цвет представляется более интуитивно понятным образом. Компонента hue задается в виде отрезка, минимальное и максимальное значение которого выбирается пользователем. Saturation и Value задаются как константы и тоже могут быть изменены пользователем.

1.3 Параметры оружия

Для точной настройки оружия было добавлено 29 параметров, которые контролируются пользователем.

Параметры стрельбы. Эти параметры регулируют скорострельность и начальную фазу полета снарядов:

- 1. FireRate Время в секундах между каждой очередью или выстрелом.
- 2. ProjectilesInOneShot Количество снарядов в очереди или выстреле.
- 3. WeaponMode Определяет режим стрельбы. Их два:
 - MultiShot Одиночный выстрел, состоящий из множества снарядов. Снаряды вылетают полукругом, который определяется параметром Angle.
 - Burst Очередь, при которой снаряды вылетают по одному.
- 4. **BurstMode** Определяет подвид стрельбы очередью. Их шесть:
 - Clockwise Снаряды вылетают полукругом. Первый с максимальным углом, последний с минимальным. SignX у первой половины положительный, у второй отрицательный.
 - CounterClockwise Снаряды вылетают полукругом. Первый с минимальным углом, последний с максимальным. SignX у первой половины отрицательный, у второй положительный.
 - Alternate Начальные траектории снарядов чередуются от большего угла к меньшему. SignX чередует знак.
 - Straight Снаряды летят прямо. SignX чередуется знак.
 - MaxMinAngle Одна половина снарядов летит с максимальным уг-

лом, другая – с минимальным.

- Random Угол и знак SignX выбираются случайно.
- 5. **BurstRate** Время в секундах между снарядами при стрельбе очередью.

Параметры систем координат. Системы координат являются родителями снарядов в иерархии сцены, поэтому при их движении движутся и снаряды. Регулируя эти параметры, можно создавать более сложное оружие:

- 6. **RotationSpeed** Вращение систем координат в градусах в секунду при нажатии кнопки запуска. Если значение отрицательное, вращение будет в противоположном направлении.
- 7. MoveSpeed Скорость систем координат при нажатии кнопки запуска.

Параметры снарядов. Эти параметры отвечают за поведение и внешний вид снарядов:

- 8. **NetworkControlMode** Определяет, как сеть управляет снарядом. Есть два режима:
 - ForceSum Сеть выдает вектор силы, который затем суммируется с вектором силы, уже действующим на снаряд.
 - VelocitySum Сеть выдает вектор скорости, который затем суммируется с вектором скорости, которым уже обладает снаряд.
- 9. **ReadMode** Определяет, каким образом из выходных параметров (x, y) формируется вектор \overrightarrow{dir} , определяющий направление скорости или силы. Есть два режима:
 - Default:

$$\overrightarrow{dir} = x\hat{x} + y\hat{y},$$

где \hat{x},\hat{y} – орты локальной системы координат снаряда с началом в точке выстрела.

• Rotator:

$$\overrightarrow{dir} = x\hat{q} + y\hat{r},$$

где \hat{r} – орт радиус-вектора снаряда, и $\hat{q} \perp \hat{r}$.

- 10. Size Размер снаряда. Для рендеринга снарядов используется текстура круга. Изменяя этот параметр, можно получать снаряды в форме эллипсов.
- 11. **Lifespan** Срок жизни снаряда в секундах. По истечению этого срока снаряд уничтожается.
- 12. **HueRange** Диапазон возможных значений для цветовой компоненты hue. Точное значение зависит от вывода нейронной сети.
- 13. Saturation Цветовая компонента Saturation.
- 14. Brightness Цветовая компонента Value.

Параметры паттерна. Эти параметры определяют настройки, связанные входными и выходными значениями нейронной сети:

- 15. **SpeedRange** Диапазон возможных значений для максимальной скорости снаряда. Точное значение зависит от вывода нейронной сети.
- 16. **ForceRange** Диапазон возможных значений силы, приложенной к снаряду. Точное значение зависит от вывода нейронной сети.
- 17. **NNControlDistance** Определяет область, в которой снаряды управляются нейронной сетью.
- 18. **SignX** Множитель вывода х. Если он равен нулю, вывод будет проигнорирован.
- 19. **SignY** Множитель вывода у. Если он равен нулю, вывод будет проигнорирован.
- 20. **ForwardForce** Прилагать ли к снаряду силу, направленную вперед. Эта сила равна выводу force нейронной сети.

Параметры начальной фазы:

- 21. InitialFlightRadius Определяет область, в которой снаряды находятся в состоянии начальной фазы. В этом состоянии снаряды не управляются нейронной сетью, вместо этого они движутся с постоянной начальной скоростью.
- 22. **InitialSpeed** Длина вектора начальной скорости.

23. **Angle** – Максимальный угол между начальной скоростью снаряда и вертикальной осью игрового объекта оружия.

Параметры отражения:

- 24. **FlipXOnReflect** Изменять ли значение **SignX** на противоположное после отражения.
- 25. **FlipYOnReflect** Изменять ли значение **SignY** на противоположное после отражения.
- 26. **Mode** Определяет границы, от которых снаряд отражается. Есть три режима:
 - CircleReflection Границей является окружность.
 - RectangleReflection Границей является прямоугольник.
 - Polar Границей является угол.
- 27. ReflectiveCircleRadius Радиус границы-окружности.
- 28. **RectDimensions** Размеры границы-прямоугольника.
- 29. MaxPolarAngleDeg Максимально возможный полярный угол.

1.4 Пользовательский интерфейс

Для создания кастомных окон инспектора использовалась система IMGUI[10], которая предназначена для расширения функциональности Unity и разработки инструментов для разработчиков.

Рис. 2: Кастомный инспектор параметров оружия.

Особенности инспектора параметров оружия:

- Кнопка Reset to default values, возвращающая параметры к начальным значениям, заданным разработчиком.
- Раздел Load files для загрузки генома и параметров с файлов.
- Кнопка Destroy Projectiles, уничтожающая снаряды.
- Двойные слайдеры, позволяющие задавать два значения: минимальное и максимальное.
- Интерфейс подстраивается под выбранные значения. К примеру, если в

параметре Weapon Mode будет выбран режим Burst, появятся поля Burst Mode и Burst Rate.

- Есть поддержка редактирования нескольких объектов.
- Есть поддержка истории редактирования. То есть Undo/Redo.

Рис. 3: Кастомный инспектор оружия.

Особенности инспектора оружия:

- Кнопка Select as parent for next gen, позволяющая пользователю выбирать понравившиеся геномы.
- Кнопка Save для сохранения генома и параметров оружия.
- Флажок Generate unique hash name. Если отмечен, то при сохранении названия файлов генерируется автоматически.
- Есть поддержка редактирования нескольких объектов.

1.5 Система эволюции оружия

Выбор библиотеки. Для эволюции нейронных сетей была выбрана библиотека SharpNEAT[8] версии 2.4.4, реализующая алгоритм NEAT на языке С#. Выбор этой библиотеки и её версии обусловлен в первую очередь совместимостью с игровым движком Unity.

Существует SharpNEAT версии 4.0.0, в которой значительно улучшена производительность и удобство программного интерфейса, но целевая платформа этой версии – .NET Core, несовместимая с Unity. По этой причине выбор остановился на более ранней версии 2.4.4.

Для использования библиотеки в Unity необходимо создать её DLL в какой-либо среде разработки и поместить эту DLL в специальную папку «Plugins». Плагины в Unity могут быть на трех языках: С, С++, С#. Плагины на С# доступны в бесплатной версии Unity, а вот для использования плагинов

на других двух языках придется покупать профессиональную версию.

Параметры алгоритма NEAT. Обычно NEAT используют для эволюции огромного количества нейронных сетей на протяжении множества поколений с помощью функции приспособленности, заданной математически. В нашем случае функцией приспособленности является человек – игрок или разработчик игры, поскольку задача оценки эстетичности и полезности паттернов не является строго формализируемой. По этой причине оцениваемая популяция и количество поколений не должны быть большими.

Приведенные ниже значения параметров были получены опытным путем, остальные параметры сохранили значение по умолчанию. Параметры подбирались таким образом, чтобы интересные паттерны в среднем выводились за 10-15 поколений.

Листинг 3: Params

```
PopulationSize = 6;
CloneOffspringCount = 2;
SexualOffspringCount = 4;
neatGenomeParams.InitialInterconnectionsProportion = 0.2;
neatGenomeParams.AddConnectionMutationProbability = 0.7;
neatGenomeParams.AddNodeMutationProbability = 0.7;
neatGenomeParams.ConnectionWeightMutationProbability = 0.8;
neatGenomeParams.DisjointExcessGenesRecombinedProbability = 0.5;
neatGenomeParams.NodeAuxStateMutationProbability = 0.2;
```

Краткое описание этих параметров:

- PopulationSize Количество геномов, подвергаемых эволюции.
- CloneOffspringCount Сколько геномов создается путем клонирования.
- SexualOffspringCount Сколько геномов создается путем полового размножения.
- InitialInterconnectionsProportion Плотность нейронных сетей первого поколения.
- AddConnectionMutationProbability Вероятность появления нового ребра.
- AddNodeMutationProbability Вероятность появления нового узла.

- ConnectionWeightMutationProbability Вероятность изменения веса ребра.
- DisjointExcessGenesRecombinedProbability Вероятность копирования всех не совпавших генов в один из потомков при половом размножении.
- NodeAuxStateMutationProbability Вероятность узла приобрести дополнительное состояние (стать неактивным).

Создание нового поколения. Для создания нового поколения оружия необходимо выбрать родителей, на основе которых оно построится. Пользователь может выбрать любое их количество:

- Если пользователь не выбрал ни одного генома, программа случайно выберет два.
- Если пользователь выбрал один геном, то этот геном будет скрещен с не выбранными.
- Если пользователь выбрал два или более геномов, то выбранные геномы будут скрещены между собой.

Рис. 4: Выбор родителей для нового поколения.

Чтобы выбрать геном в качестве родителя, нужно выбрать игровой объект оружия и в его инспекторе нажать кнопку Select as parent for next gen. После того как нужное количество родителей было выбрано, нужно нажать на кнопку New Generation.

Рис. 5: Сцена эволюции оружия.

Если эволюция зашла в тупик, нужно нажать на кнопку **Random Population**, которая создаст случайное поколение.

1.6 Сохранение оружия

Чтобы сохранить понравившееся оружие, нужно выбрать игровой объект оружия и в его инспекторе (Рисунок 4) нажать кнопку **Save.** Будет создано и сохранено два файла:

- Genome_<UniqueHash>.xml содержит в себе информацию об узлах нейронной сети и функциях активации.
- Params_<UniqueHash>.json является представлением параметров оружия в формате json.

Глава 2. Публикация

WebGL сборку проекта можно посмотреть здесь[9].

2.1 Документация

Для публикации Unity требует документацию ассета на английском. Для написания документации использовалась система генерации статических сайтов Jekyll[11] и тема Just the Docs[12]. Документация доступна здесь[13].

2.2 Демонстрационные сцены

Для демонстрационных целей было создано три сцены:

• **Weapon Demo** – сцена, в которой демонстрируется 140 оружий, заранее созданных разработчиком. Кроме того, в этой сцене есть визуализация силовых полей, действующих на снаряды.

Puc. 6: Weapon Demo.

Замечание. Разные группы снарядов могут иметь разные значения параметров SignY и SignX, поэтому визуализация силового поля может быть некорректна для каких-то из них.

• **Shadow Survival** – простая игра в жанре «Shoot 'em up». Во время игры генерируется оружие, которое можно подобрать и настроить некоторые параметры.

Рис. 7: Shadow Survival.

• **Space Shooter** – простая игра тоже в жанре «Shoot 'em up». Здесь оружие генерируется у врагов случайным образом.

Рис. 8: Space Shooter.

Ассеты для создания двух игр были получены с таких сайтов, как:

- 1. Unity Asset Store[4]
- 2. opengameart.org[5]
- 3. itch.io[6]

2.3 Unity Asset Store

Для публикации было написано описание ассета, добавлены видео и скриншоты. На момент написания отчета ассет проходит модерацию.

Рис. 9: Publisher Portal.

Заключение

В результате научно-исследовательской практики был разработан инструмент, полностью удовлетворяющий поставленным требованиям. Были созданы три демонстрационные сцены, написана документация и сделана WebGL сборка проекта. Кроме того, ассет был отправлен на модерацию в Unity Asset Store и вскоре будет опубликован.

В дальнейшем планируется доработать игру «Shadow Survival».

Список использованных источников

- [1] Kenneth O. Stanley, Risto Miikkulainen. «Evolving Neural Networks through Augmenting Topologies». 2002. Available: https://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
- [2] Erin Hastings, Ratan Guha, and Kenneth O. Stanley. «NEAT Particles: Design, Representation, and Animation of Particle System Effects». 2007. Available: http://eplex.cs.ucf.edu/papers/hastings_cig07.pdf
- [3] Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. «Interactive Evolution of Particle Systems for Computer Graphics and Animation». 2009. Available: http://eplex.cs.ucf.edu/papers/hastings_ieeetec09.pdf
- [4] Unity Asset Store. Available: https://assetstore.unity.com/
- [5] OpenGameArt. Available: https://opengameart.org/
- [6] itch.io. Available: https://itch.io/game-assets
- [7] Репозиторий. Available: https://gitfront.io/r/AlexanderMenkeev/pC4QrbyLrhVJ/WeaponAsset/
- [8] SharpNEAT. Available: https://github.com/colgreen/sharpneat
- [9] WebGL Demo. Available: https://tizfold.itch.io/neat-bullets
- [10] IMGUI. Available: https://docs.unity3d.com/Manual/GUIScriptingGuide.html
- [11] Jekyll. Available: https://jekyllrb.com/
- [12] Jekyll theme Just the Docs. Available: https://github.com/just-the-docs/just-the-docs
- [13] NEAT Bullets documentation. Available: https://alexandermenkeev.github.io/NEAT-Projectiles-docs/