Batch No: Enrollment No.
COURSE NAME: LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATIONS
B.TECH TUTORIAL QUIZ-3 FALL SEMESTER 2018-19 COURSE CODE: EMAT102L MAX. TIME: 30 min COURSE CREDIT: 3-1-0 MAX. MARKS: 10
1. Let A be 3×3 matrix with real entries such that $det(A)$ is 6 and trace of A is 0. If $det(A+I)=0$. Find all the eigenvalues of A . [1] Solution: Since $det(A+I)=0 \implies A_1=-1$
trace (A)=0 \Rightarrow $\lambda_1 + \lambda_2 + \lambda_3 = 0$ \Rightarrow $\lambda_2 + \lambda_3 = 1$ — (1) $\det A = 6 \Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 6 \Rightarrow \lambda_2 + \lambda_3 = -6 - 2$
Solving (1 & 2), we obtain 12=-2, 13=3.
2. Every invertible matrix is diagonalizable. Justify your answer. [1] Solution: In general it is not true. $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}. \text{eigenvalues of } A = 1, 1 \implies A \cdot M \text{ of } 1 = 0$ $\det A \neq 0 \implies A \text{ is invertible.}$ $(A - \lambda I) \times =0 \Rightarrow (A - I) \times =0 \Rightarrow \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$
A= [0]. eigenvalues of A=1, 1
But $a \cdot M = 1 = 1$ as, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = t \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
3. Find the eigenvalues and eigenvectors of matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$. Also calculate the
eigenvalues of $(A - I)^2$. [3] Solution:
Eigenvalues of A = 2,2
eigenvalues of $A - I = 2-1, 2-1 = 1, 1$
eigenvalues of $(A-I)^2 = I^2$, $I^2 = 1$, $I^2 = 1$
Eigenvectors of A corresponding to $2 = \begin{cases} X : (A-2I)X = 0 \end{cases}$ = $\begin{cases} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{cases}$
$= \left\{ \begin{bmatrix} t \\ 0 \end{bmatrix} & \chi_{2} = 0 \\ \chi_{1} = t \\ 0 \end{bmatrix} \right\}$

Name of student:

4. Consider
$$\mathbb{R}^3$$
 with standard inner product. Let $u=(1,0,1),\ v=(2,-1,0).$ Then calculate $\cos\theta.$

Solution:

$$\cos\theta = \frac{\langle u, v \rangle}{\|u\|\| \|v\|} = \frac{u \cdot v}{\int \langle u, u \rangle \int \langle v, v \rangle}$$

$$u \cdot v = 2$$
Thus $\cos\theta = \frac{2}{\int 2 \int 5} = \int \frac{2}{\sqrt{5}}$

5. Let
$$V$$
 be an inner product space. Let W be a non-empty set. Then

[2]

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W \}.$$

(a) If $W = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}$. Then find W^{\perp} with respect to the standard inner product. Also find basis and dimension of W, W^{\perp} .

Solution:
$$W = \begin{cases} (x, y, 3) \in \mathbb{R}^3 : x + y = 0 \end{cases}$$

 $= \begin{cases} (x, y, 3) \in \mathbb{R}^3 \end{cases}$
 $= \begin{cases} x(1,-1,0) + 3(0,0,1) \end{cases} = span \begin{cases} (1,-1,0), (0,0,1) \end{cases}$
dun $W = 2$, S as S as S as S and S as S

$$W^{\perp} = \begin{cases} (x, 4, 3) \in \mathbb{R}^{3} : \langle (x, 4, 3), (1, -1, 0) \rangle = 0 \\ \langle (x, 4, 3), (0, 0, 1) \rangle = 0 \end{cases}$$

$$= \begin{cases} (x, 4, 3) \in \mathbb{R}^{3} : x - 4 = 0 \quad 3 = 0 \end{cases}$$

$$= \begin{cases} (x, x, 0) \end{cases} = \begin{cases} x = 4 \end{cases}$$

$$= \begin{cases} (x, x, 0) \end{cases} = \begin{cases} x = 4 \end{cases}$$
6. If $\langle u, v \rangle = 4 - i$. Then calculate $\langle (2 + i)u, (2 + i)v \rangle$.
Solution:

$$\langle (2+i) | u, (2+i) | v \rangle = (2+i)(2+i) \langle u, v \rangle$$

= $(2+i)(2-i)(4-i)$
= $5(4-i) = 20-5i$