```
In [ ]:
```

```
In [47]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_excel(r'C:\Users\ankur\OneDrive\Desktop\Stats\AAPL.xlsx')
#Displaying First 5 rows
data.head()
```

Out[47]:

	Date	Adj Close Price	Daily log returns in %
0	2012-09-06	84.674820	0.897142
1	2012-09-05	83.918564	-0.704742
2	2012-09-04	84.512062	1.452061
3	2012-08-31	83.293762	0.206167
4	2012-08-30	83.122215	-1.435740

Skewness : -1.9749404966385316

Kurtosis : 51.76516488019788

```
In [49]: #Graphs and Charts
sns.set()
data.plot(y='Adj Close Price',x='Date')
data.plot(y='Daily log returns in %',x='Date')
```

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x2799b5a6550>


```
In [67]: mean = data['Daily log returns in %'].mean()
    sigma = data['Daily log returns in %'].std()

# Plot the histogram.
    sns.set()
    plt.hist(data['Daily log returns in %'],bins=50)
    plt.xlabel('Return')
    plt.ylabel('Frequency')
    plt.title('Histogram')
    plt.show()
    normal_data = norm.rvs(mean,sigma,size=300)
    sns.distplot(normal_data)
    plt.title('Histogram with fitted normal curve')
    plt.show()
```



```
In [81]: #Normal Q-Q plot
   import numpy as np
   import pylab
   import scipy.stats as stats

measurements = np.random.normal(loc = 20, scale = 5, size=100)
   stats.probplot(measurements, dist="norm", plot=pylab)
   pylab.title('Normal Q-Q plot')
   pylab.show()
```


In []: