Εισαγωγικές Έννοιες

Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστικό Πρόβλημα

- Μετασχηματισμός δεδομένων εισόδου σε δεδομένα εξόδου.
 - Δομή δεδομένων εισόδου (έγκυρο στιγμιότυπο).
 - Δομή και ιδιότητες δεδομένων εξόδου (απάντηση ή λύση).
 - Τυπικά: διμελής σχέση στις συμβ/ρές εισόδου, εξόδου.
 - Διαισθητικά: ερώτηση που αφορά στιγμιότυπα.
- Στιγμιότυπο: μαθηματικό αντικείμενο που ορίζεται από δεδομένα εισόδου.
 - Διατυπώνουμε ερώτηση και περιμένουμε απάντηση.
 - Άπειρο σύνολο στιγμιοτύπων.
- Κατηγορίες Προβλημάτων:
 - Βελτιστοποίησης: λύση με βέλτιστη αντικειμενική τιμή.
 - Απόφασης: απάντηση ΝΑΙ ή ΌΧΙ.

Προβλήματα Βελτιστοποίησης

- Πρόβλημα βελτιστοποίησης Π:
 - lacksquare Σύνολο στιγμιότυπων $oldsymbol{\mathcal{\Sigma}}_{ec{ert}}$
 - lacksquare Σύνολο αποδεκτών λύσεων: $orall \sigma \in \varSigma_{\varPi}\,,\; arLambda_{\varPi}(\sigma)$
 - Αντικειμενική συνάρτηση: $orall \sigma \in \Sigma_H\,,\; f_\sigma: \varLambda_H(\sigma) \mapsto {
 m I\!R}$
- Δεδομένου στιγμιότυπου σ, ζητείται $\lambda_{\sigma}^* \in \Lambda_{\Pi}(\sigma)$:

```
\forall \lambda \in \Lambda_{\Pi}(\sigma), \quad f_{\sigma}(\lambda_{\sigma}^{*}) \geq f_{\sigma}(\lambda) πρόβλημα μεγιστοποίησης \forall \lambda \in \Lambda_{\Pi}(\sigma), \quad f_{\sigma}(\lambda_{\sigma}^{*}) \leq f_{\sigma}(\lambda) πρόβλημα ελαχιστοποίησης
```

 λ_{σ}^* βέλτιστη λύση και $f_{\sigma}(\lambda_{\sigma}^*)$ βέλτιστη αντικειμενική τιμή

Συνδυαστικής βελτιστοποίησης: πεπερασμένο σύνολο αποδεκτών λύσεων που περιλαμβάνει βέλτιστη.

Προβλήματα Απόφασης

- Πρόβλημα απόφασης Π:
 - lacksquare Σύνολο στιγμιότυπων $oldsymbol{\mathcal{\Sigma}}_{\Pi}$
 - lacksquare Σύνολο (αποδεκτών) λύσεων: $orall \sigma \in \varSigma_{II}\,,\; \varLambda_{II}(\sigma)$
 - lacksquare Δεδομένου $\sigma \in \Sigma_{\Pi}\,,\; \Lambda_{\Pi}(\sigma)
 eq \emptyset\,;$
- Επιδέχεται μόνο δύο απαντήσεων: NAI ή 'ΟΧΙ.

Παραδείγματα Προβλημάτων

- Πρόβλημα Προσπελασιμότητας:
 - **Στιγμιότυπο**: Κατευθυνόμενο γράφημα G(V, E), κορυφές $s, t \in V$.
 - Ερώτηση: Υπάρχει s t μονοπάτι;
- Πρόβλημα Συντομότερου Μονοπατιού:
 - **Στιγμιότυπο**: Κατευθυνόμενο γράφημα G(V, E), μήκη στις ακμές $w: E \rightarrow R$, κορυφές $s, t \in V$.
 - Ερώτηση: Ποιο είναι το συντομότερο s t μονοπάτι;

Παραδείγματα Προβλημάτων

- □ Πρόβλημα κὑκλου Hamilton:
 - Στιγμιότυπο: Γράφημα G(V, E).
 - **Ερώτηση**: Υπάρχει κύκλος Hamilton στο G;
- Πρόβλημα Πλανόδιου Πωλητή (TSP):
 - **Στιγμιότυπο**: Σύνολο N = $\{1, ..., n\}$ σημείων, αποστάσεις d : N × N \rightarrow R₊ .
 - **Ερώτηση**: Ποια περιοδεία ελαχιστοποιεί συνολικό μήκος ή ισοδύναμα, ποια μετάθεση π του Ν ελαχιστοποιεί το:

$$\sum_{i=1}^{n-1} d(\pi(i), \pi(i+1)) + d(\pi(n), \pi(1))$$

Αλγόριθμος

- □ **Σαφώς** ορισμένη διαδικασία για την **επίλυση** προβλήματος σε **πεπερασμένο** χρόνο από υπολογιστική **μηχανή**.
 - «Συνταγή» για την επίλυση υπολογιστικού προβλήματος.
 - Σαφήνεια: κάθε ενέργεια ορίζεται επακριβώς.
 - Είναι μηχανιστικά αποτελεσματικός.
 - Δέχεται ως εἰσοδο στιγμιότυπο προβλήματος και παράγει ως έξοδο πάντα την σωστή λύση.
 - Η λύση υπολογίζεται έπειτα από πεπερασμένο #ενεργειών.
- Ορθότητα αλγόριθμου: απαντάει πάντα σωστά.
 - Λάθος: αντιπαράδειγμα. Ορθότητα: μαθηματική απόδειξη.
- Προβλήματα λύνονται από πολλούς σωστούς αλγόριθμους:
 - Ποιος είναι ο καλύτερος (για συγκεκριμένη εφαρμογή);

Υπολογιστική Πολυπλοκότητα

- Υπολογιστική πολυπλοκότητα αλγόριθμου Α:
 - Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση μεγέθους στιγμιότυπου εισόδου.
 - Χρόνος, μνήμη, επεξεργαστές, επικοινωνία, τυχαιότητα.
 - Χειρότερης, μέσης, καλύτερης περίπτωσης.
- □ Μέγεθος στιγμιότυπου εισόδου n :
 - #bits για αναπαράσταση δεδομένων εισόδου στη μνήμη.
 - Πλήθος βασικών συνιστωσών που αποτελούν μέτρο μεγέθους και δυσκολίας στιγμιότυπου (π.χ. κορυφές & ακμές).
- Υπολογιστική πολυπλοκότητα προβλήματος Π:
 - Πολυπλοκότητα (χειρότερης περίπτωσης) καλύτερου αλγόριθμου που λύνει πρόβλημα Π.

Ανάλυση Αλγορίθμου

- Απόδειξη ορθότητας
 - Μερικές φορές για ένα καλώς ορισμένο υποσύνολο των στιγμιοτύπων εισόδου.
- Εκτίμηση υπολογιστικής πολυπλοκότητας.
 - Χειρότερης, μέσης, και καλύτερης περίπτωσης.
- Καταλληλότερη λύση ανάλογα με απαιτήσεις εφαρμογής.

Πειραματική Μελέτη

- Υλοποίηση αλγόριθμου σε πρόγραμμα.
 - Δημιουργία στιγμιοτύπων διαφορετικού μεγέθους και σύνθεσης.
 - Επιβεβαίωση ορθότητας και καταγραφή πόρων για κάθε εκτέλεση.
 - Απεικόνιση αποτελεσμάτων σε γραφική παράσταση και εξαγωγή συμπερασμάτων.
- Περιορισμοί Δυσκολίες:
 - Υλοποίηση χρονοβόρα και ενδεχομένως δύσκολη.
 - Αποτελέσματα όχι κατ' ανάγκη αντιπροσωπευτικά.
 - Συμπεράσματα δεν γενικεύονται κατ' ανάγκη.

Θεωρητική Ανάλυση

- Δεν απαιτεί υλοποίηση αλλά σαφή περιγραφή αλγόριθμου.
- Καταλήγει σε γενικά συμπεράσματα:
 - Λαμβάνει υπόψη όλα τα στιγμιότυπα.
 - Προσδιορίζει υπολογιστική πολυπλοκότητα ως συνάρτηση μεγέθους εισόδου, ...
 - αλλά ανεξάρτητα από υπολογιστικό περιβάλλον.
 - Εστιάζει στις εγγενείς ιδιότητες του αλγόριθμου.
- Συμπεράσματα επιβεβαιώνονται εύκολα.
- Μαθηματικό υπόβαθρο: Διακριτά Μαθηματικά.
 - Γραφήματα, μαθηματική λογική, επαγωγή, αναδρομικές σχέσεις, συνδυαστική, πιθανότητες, ...

Υπολογιστικό Μοντέλο

- Μηχανή Άμεσης Προσπέλασης Μνήμης (Random Access Machine, RAM).
 - Ιδεατό μονο-επεξεργαστικό σύστημα που ακολουθεί αρχιτεκτονική von Neumann.
 - Ένας επεξεργαστής, ακολουθιακή εκτέλεση εντολών
 - Απεριόριστες θέσεις μνήμης προσπελάσιμες με διεύθυνση.
 - Στοιχειώδη υπολογιστικά βήματα εκτελούνται σε μοναδιαίο χρόνο:
 - Ανάγνωση από / εγγραφή σε θέση μνήμης, αριθμητικές και λογικές πράξεις, συγκρίσεις, εντολές ελέγχου ροής, ...

Ασυμπτωτική Εκτίμηση

- Χρόνος εκτέλεσης αλγόριθμου Α:
 - Αύξουσα συνάρτηση του Τ(n) που εκφράζει σε πόσο χρόνο ολοκληρώνεται ο Α όταν εφαρμόζεται σε στιγμ. μεγέθους n.
- Ενδιαφέρει η τάξη μεγέθους *Τ(n)* και όχι ακριβής εκτίμηση T(n).
 - Ακριβής εκτίμηση είναι συχνά δύσκολη και εξαρτάται από υπολογιστικό περιβάλλον, υλοποίηση, ...
 - Τάξη μεγέθους είναι εγγενής ιδιότητα του αλγόριθμου.
 - Δυαδική αναζήτηση έχει λογαριθμικό χρόνο.
 - Γραμμική αναζήτηση έχει γραμμικό χρόνο.
- Ασυμπτωτική εκτίμηση αγνοεί σταθερές και εστιάζει σε τάξη μεγέθους χρόνου εκτέλεσης.