Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to isotropic

R = distance to the center of radiation of the antenna

23.48	(dBm)
222.8	(mW)
7.77	(dBi)
5.984	(numeric)
20	(cm)
100	(%)
5745	(MHz)
1.000	(mW/cm^2)
0.26530	(mW/cm^2)
2.6530	(W/m^2)
5.76	(dB)
	7.77 5.984 20 100 5745 1.000 0.26530 2.6530

Sum power density of 2.4 GHz and 5.8 GHz : $0.40154+0.26530 = 0.66684 < 1 \text{ mW/cm}^2$