Reverzibilis Reaction System

2019. november 19.

Előzetes ismeretek

Definíció. Legyen $\mathscr{A} = (S, A)$ egy reaction system. Egy \mathscr{A} -beli interactive process véges sorozatok olyan $\pi = (\gamma, \delta)$ párja, amelyben $\gamma = C_0, C_1, \ldots C_n$, $\delta = D_1, \ldots D_n, \ n \geq 1$, ahol $C_0, \ldots C_n, \ D_1, \ldots D_n \subseteq S, \ D_1 = res_{\mathscr{A}}(C_0)$ és $D_i = res_{\mathscr{A}}(D_{i-1} \cup C_{i-1})$, ha $2 \leq i \leq n$.

Definíció. Legyen $a=(R_a,\,I_a,\,P_a)$ egy reakció, T pedig egy véges halmaz. Azt mondjuk, hogy a alkalmazható T-re, ha $R_a\subseteq T$ és $I_a\cap T=\varnothing$. Erre a továbbiakban az $en_a(T)$ jelölést használjuk. Az a reakció által a T halmazból képzett eredményhalmazt $res_a(T)$ módon jelöljük, és a következőképpen definiáljuk: $res_a(T)=P_a$, ha $en_a(T)$, egyébként pedig $res_a(T)=\varnothing$.

Definíció. Legyen A reakciók egy véges halmaza és T egy véges halmaz. Ekkor az A reakcióhalmaz T-re való alkalmazásának eredménye $res_A(T) = \bigcup_{a \in A} res_a(T)$.

Definíció. Legyen A reakciók egy véges halmaza és T egy véges halmaz. A azon részhalmazát, mely csak olyan reakciókat tartalmaz, melyek alkalmazhatók T-re, $en_A(T)$ módon jelöljük.

Megjegyzés. A következőkben, az egyszerűbb olvashatóság érdekében, feltesszük, hogy ha adott egy $a \in A$ reakció, akkor annak komponenseit a alsó indexbe helyezésével helyezésével jelöljük, az $a = (R_a, I_a, P_a) \in A$ kifejezés kiírása nélkül.

Reverzibilis Reaction System

Megjegyzés. A továbbiakban, az általánosság elvesztése nélkül, kizárólag olyan $\mathscr{A}=(S,A)$ reaction systemeket fogunk tekinteni, melyek nem tartalmaznak azonos feltételek mellett alkalmazható reakciókat. Ez azt jelenti, hogy nincs két olyan $a,b\in A$ ($a\neq b$) reakció, melyekre teljesülne, hogy $R_a=R_b$ és $I_a=I_b$. Az ilyen a,b reakciókat ugyanis egyszerűen összevonhatjuk egy c reakcióvá, ahol $c=(R_a,I_a,P_a\cup P_b)$.

Definíció. Legyen $\mathscr{A} = (S, A)$ egy reaction system, $\pi = (\gamma, \delta)$ pedig egy interactive process \mathscr{A} -ban a $\gamma = C_0, C_1, \ldots C_n$, bemeneti halmazokkal és $sts(\pi) = W_0, W_1, \ldots W_n$ állapothalmazokkal. π reverzibilis, amennyiben minden W_i $(1 \le i \le n)$ állapotára teljesül, hogy ha $W \subseteq S$ olyan, hogy $res_{\mathscr{A}}(W) \cup C_i = W_i$, akkor $W = W_{i-1}$.

Lemma. Legyen $\mathscr{A}=(S,A)$ egy reaction system, π pedig egy interactive process \mathscr{A} -ban az $sts(\pi)=W_0,W_1,\ldots W_n$ állapothalmazokkal. π csak akkor lehet reverzibilis, ha az állapothalmazainak minden eleme részt vesz valamilyen reakcióban, azaz $\bigcup_{a\in en(W_i)} R_a = W_i$, $i \leq n$.

Bizonyítás. Legyen $\mathscr{A}=(S,A)$ egy reaction system és $\pi=(\gamma,\delta)$ egy interactive process \mathscr{A} -ban a $\gamma=C_0,C_1,\ldots C_n$, bemeneti halmazokkal és az $sts(\pi)=W_0,W_1,\ldots W_n$ állapothalmazokkal. Legyen $W_{i-1}\subseteq S$ és $W_i\subseteq S$ π két egymást követő állapothalmaza, azaz $res_A(W_{i-1})\cup C_i=W_i$.

Tegyük fel, hogy van olyan elem a W_{i-1} halmazban, mely nem vesz részt egy reakcióban sem:

$$\bigcup_{a \in en(W_{i-i})} R_a \subset W_{i-1}.$$

Ez pontosan azt jelenti, hogy létezik egy olyan $W \subset S$ halmaz, mely

$$W = \bigcup_{a \in en(W_{i-i})} R_a$$

módon adott, és melyre teljesül, hogy

$$res_A(W) \cup C_i = W_i$$
.

Ekkor π biztosan nem lehet reverzibilis, hiszen $W \neq W_{i-1}$, viszont $res_A(W) = res_A(W_{i-1})$.

Definíció. Egy \mathscr{A} reaction system reverzibilis, amennyiben minden \mathscr{A} -beli π interactive process reverzibilis.

Lemma. Legyen $\mathscr{A} = (S, A)$ egy reaction system. \mathscr{A} csak akkor lehet reverzibilis, ha minden $\pi = (\gamma, \delta)$ \mathscr{A} -beli interactive process olyan, hogy π $\gamma = C_0, C_1, \ldots, C_n$ bemeneti halmazainak elemei nem állíthatók elő semmilyen reakcióval, azaz $\forall i: \bigcup_{a \in A} P_a \cap C_i = \varnothing$.

Bizonyítás. A következőkben megmutatjuk, hogy ha egy $\mathscr A$ reaction system nem teljesíti a fenti lemmát (azaz reakciói tetszőlegesek), akkor biztosan nem lehet reverzibilis.

Legyen $\mathscr{A} = (S, A)$ egy reaction system, $\pi = (\gamma, \delta)$ pedig egy interactive process \mathscr{A} -ban, ahol $\gamma = C_0, C_1, \ldots, C_n, \ \delta = D_1, D_2, \ldots, D_n$ és $sts(\pi) = W_0, W_1, \ldots W_n$.

Vegyük $sts(\pi)$ egy tetszőleges W_{i-1} állapothalmazát $(i \leq n)$, valamint válasszuk meg a C_i bemeneti halmazt oly módon, hogy

$$C_i = res_A(W_{i-1}).$$

Ezt megtehetjük, hiszen nincs a bemeneti halmazok elemeire vonatkozó megszorítás.

Tudjuk, hogy

$$W_i = C_i \cup D_i = C_i \cup res_A(W_{i-1}),$$

azaz

$$W_i = C_i$$
.

Ez azonban azt jelenti, hogy tetszőleges $W \subseteq S$ halmazra, ha

$$res_A(W) \subseteq C_i$$
,

akkor

$$res_A(W) \cup C_i = W_i$$
.

Ilyen tulajdonságú halmazból mindig létezik legalább kettő: W_{i-1} és az üres halmaz. Ha viszont már két ilyen halmaz létezik, akkor π nem reverzibilis, amiből következik, hogy $\mathscr A$ sem reverzibilis.

Tétel. $Az \mathscr{A} = (S, A)$ reaction system reverzibilis, amennyiben a következő feltételek mindegyikének eleget tesz:

- (1) Az A reakcióhalmaz elemei olyanok, hogy bármely π interactive process teljesíti az elemek eltűnésére vonatkozó lemmát.
- (2) Az S halmaz két diszjunkt részhalmazból tevődik össze:

$$S = S_c \cup S_d$$
 $S_c \cap S_d = \emptyset$,

mely halmazokra teljesül, hogy $S_c \cap \bigcup_{a \in A} P_a = \emptyset$ és $S_d \cap \bigcup_{0 \le i \le n} C_i = \emptyset$ bármely \mathscr{A} -beli π interactive processre (azaz \mathscr{A} teljesíti a bemeneti halmazokra vonatkozó lemmát).

(3) Egyértelmű, hogy egy állapot mely reakciók alkalmazásával állt elő: Ha vesszük a reakciók A halmazának összes olyan különböző A_i részhalmazát, hogy

$$\exists T \subseteq S : en_{A_i}(T) = A_i \quad \forall i$$

akkor

$$\bigcup_{a \in A_i} P_a \neq \bigcup_{b \in A_j} P_b \qquad i \neq j.$$

Bizonyítás. Indirekt módon tegyük fel, hogy adott egy olyan $\mathscr{A} = (S, A)$ $(S = S_c \cup S_d)$ reaction system, mely teljesíti a fenti tételt, azonban nem reverzibilis. Ekkor létezik olyan π interactive process \mathscr{A} -ban, mely nem reverzibilis. Ez azt jelenti, hogy a folyamat tartalmaz olyan $W \subseteq S$ állapotot, melyhez léteznek olyan $W_i \subseteq S$ és $W_j \subseteq S$ $(W_i \neq W_j)$ halmazok, hogy

$$res_A(W_i) \cup C = W$$

 $res_A(W_i) \cup C = W$,

ahol $C \subseteq S_c$ a W állapothoz tartozó bemeneti halmaz. Mivel mind $res_A(W_i) \subseteq S_d$, mind $res_A(W_j) \subseteq S_d$, ezért

$$res_A(W_i) = W \setminus C$$

$$res_A(W_j) = W \setminus C,$$

azaz

$$res_A(W_i) = res_A(W_i).$$

Ez azt jelenti, hogy

$$\bigcup_{a \,\in\, en_A(W_i)} P_a = \bigcup_{b \,\in\, en_A(W_b)} P_b.$$

A teljesíti a fenti tételt, ezért ilyen esetben

$$en_A(W_i) = en_A(W_i).$$

Egy számítási lépésben egy adott állapothalmaz minden elemének részt kell vennie legalább egy reakcióban, azaz

$$\bigcup_{a \in en_A(W_i)} R_a = W_i$$

és

$$\bigcup_{b \in en_A(W_j)} R_b = W_j.$$

A bizonyítás elején feltettük, hogy $W_i \neq W_j$, amiből következően

$$\bigcup_{a \in en_A(W_i)} R_a \neq \bigcup_{b \in en_A(W_j)} R_b.$$

Tudjuk, hogy $en_A(W_i) = en_A(W_j)$, mely halmazt jelöljük E-vel. Ezt a megelőző kifejezésbe beírva kapjuk, hogy

$$\bigcup_{a \in E} R_a \neq \bigcup_{b \in E} R_b.$$

Ez azonban ellentmondás, azaz \mathscr{A} reverzibilis lesz.

Példák

Reverzibilis bináris számláló

Reverzibilis reaction system felhasználásával megvalósítható egy olyan ciklikus bináris számláló, melynek értéke az előrefelé számítás során növekszik, míg a hátrafelé számítás során csökken. A ciklikusság azt jelenti, hogy a legnagyobb ábrázolható érték további növelése a 0 értéket, míg a 0 érték további csökkentése a legnagyobb ábrázolható értéket eredményezi.

Először is tegyük fel, hogy adott egy n>0 egész. n jelenti a számláló bithosszát. Ekkor a reaction system alaphalmaza a következő lesz:

$$S_n = \{p_0, p_1, \dots, p_{n-1}\} \cup \{inc, z\}.$$

A fenti halmaz p_i elemei reprezentálják az egyes bitek beállított (azaz 1 értékű) állapotát, míg az inc elemmel a számláló értékének növelését válthatjuk ki. A z elem jelenti a számláló 0 értékét.

A számábrázolás tehát a következőképpen alakul. Tegyük fel, hogy a reaction system egy $M \subseteq S$ állapotban van. Ekkor, ha $p_i \in M$, akkor az iedik pozíción levő bit 1 értékkel, amennyiben pedig $p_i \notin M$, akkor 0 értékkel rendelkezik. Például, ha n=4 és $M=\{p_2,p_0\}$, akkor a reaction system állapota a 0101 bináris számot írja le.

Előrefelé számítás során az inc elemet használhatjuk a számláló értékének eggyel történő növelésére. Egyszerű példát tekintve, ez azt jelenti, hogy amennyiben a $reaction\ system\ egy\ \{p_1,p_0,inc\}$ állapotban van, akkor valamely reakciók végrehajtása után a $\{p_2\}$ állapotba kell kerülnie.

Folytassuk tehát az említett működéshez szükséges reakciók megadásával! Legyen n>0 adott, ekkor a reakciók A_n halmaza a következő elemekből áll:

$$a_0 = (\{inc, z\}, O_{2^n - 1}, O_1)$$

$$a_i = (\{inc\} \cup O_i, Z_i, O_{i+1}), \qquad 1 \le i < 2^n - 2,$$

$$a_{2^n - 1} = (\{inc\} \cup O_{2^n - 1}, \{z\}, \{z\})$$

ahol

$$O_i = \{ p_j : \text{a } j\text{-edik bit értéke } 1 \text{ } i \text{ bináris felbontásában } \},$$

$$Z_i = S \setminus \{inc\} \setminus O_i.$$

Az egyes reakciók megfelelnek a számláló értékének i-ről i+1-re történő növelésének (kivétel az utolsó reakció, mely a számláló átfordulását eredményezi).

Az n-bites számlálónak megfelelő reaction system ekkor $\mathcal{B}_n = (S_n, A_n)$.

Tekintsünk most egy példát! Tegyük fel, hogy egy kétbites számlálót szeretnénk készíteni, azaz n=2. Az S_2 alaphalmaz ekkor a $\{p_1,p_0,inc,z\}$ elemekből áll, a reakciók A_2 halmazát pedig az

$$\begin{split} a_0 &= (\{inc,z\},\,\{p_0,p_1\},\,\{p_0\}),\\ a_1 &= (\{inc,p_0\},\,\{z,p_1\},\,\{p_1\}),\\ a_2 &= (\{inc,p_1\},\,\{z,p_0\},\,\{p_1,p_0\}),\\ a_3 &= (\{inc,p_0,p_1\},\,\{z\},\,\{z\}) \end{split}$$

elemek alkotják.

Ha az egymást követő kontextushalmazok sorra az incnövelő elemből állnak, akkor a $\mathcal{B}_2 = (S_2, A_2)$ reaction system a következő állapotokat fogja kiszámolni:

$$\{z\} \to \{p_0\} \to \{p_1\} \to \{p_1, p_0\} \to \{z\} \to \cdots$$