⑲ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭63-9807

@Int_Cl_4

識別記号

庁内整理番号

43公開 昭和63年(1988) 1月16日

G 01 B 15/02 G 01 N 23/22 B-8304-2F 2122-2G

審査請求 未請求 発明の数 2 (全5頁)

図発明の名称

膜厚測定方法およびその装置

②特 願 昭61-154392

20出 願 昭61(1986)6月30日

⑩発 明 者 本 田

俊 之

東京都港区芝5丁目33番1号 日本電気株式会社内

東京都港区芝5丁目33番1号

⑪出 願 人 日本電気株式会社

20代 理 人 弁理士 内 原 晋

明知祭

1.発明の名称

膜厚測定方法およびその装置

2.特許請求の範囲

(1) 基板上の薄膜に電子ビームを照射して基板内および薄膜内から放出される二次電子を捕集し、捕集された二次電子量と薄膜の厚さとの相関関係から基板上の薄膜の厚さを測定する膜厚測定方法。

(2) 基板上の薄膜に電子ビームを照射する電子ビーム照射装置と、基板内および薄膜内から放出される二次電子を捕集する二次電子検出器と、前記検出器からの信号を処理して薄膜の厚さを求める信号処理装置とを有することを特徴とする薄膜の膜厚測定装置。

3.発明の詳細な説明

[産業上の利用分野]

本発明は接板上に形成された微細な確膜領域の 厚さを測定する方法およびその装置に関するもの である。

〔従来の技術〕

世来、基板上に形成された禅膜の厚さを測定する場合、多重反射干渉法や偏光分光法が一般に広く用いられている。多重反射干渉法は単色光を薄膜に当て、単色光の繰返し反射干渉を利用して干渉稿を作り、干渉稿のずれから厚さを決定する方法である。また、偏光分光法では偏光を薄膜に当て、反射光の偏光の状態を観測することにより厚さを決定する方法である。

(発明が解決しようとする問題点)

しかしながら、薄膜の光学的性質を利用する従来の膜厚測定装置では薄膜に照射する光線の径が数十㎞から数百㎞と大きいため、被測定薄膜の領域が入射光線の径より小さい場合には、膜厚測定が不可能であった。

本類明の目的は従来の光学的手法では測定できなかった機翻な存版領域の厚さを測定しうる方法およびその装置を提供することにある。

(問題点を解決するための手段)

本発明は基板上の確談に電子ピームを照射して 基板内および確談内から放出される二次電子を捕 集し、捕集された二次電子量と離膜の厚さとの相 関関係から装板上の薄膜の厚さを測定することを 特徴とする、

また本発明の膜厚測定装置は、基板上の離胶に電子ビームを照射する電子ビーム照射装置と、基板内および薄膜内から放出される二次電子を捕集する二次電子検出器と、前記検出器からの信号を処理して薄膜の厚さを求める信号処理装置とを有することを特徴とする。

(作用)

. ...

第2図(a)~(c) および第3図は本発明による腹厚 測定の原理を示すものである。第2図(a),(b),(c)では基板60上に形成された厚さの異なる薄膜50に電子ピーム70を限射した場合に、外部へ放出される 二次電子の発生領域をそれぞれ示す。図中t,,t,, t,は薄膜の厚さを示し、t,(t,(t,である。第2図 (a)では基板60上に薄膜50が存在しないので(薄膜 の厚さt,=0)、電子ピーム70が照射されると、基 板60内の領域61で発生した二次電子が外部へ放出 されて、二次電子量I,として捕集される。第2図

第3回は捕集された二次電子量と離膜の厚さとの 相関関係を示したものであり、上述の説明に対応 した関係になっている。第3回から薄膜の厚さが 二次電子の最大脱出深さR。よりも薄いものに対し ては、捕集された二次電子量から逆に薄膜の厚さ を求めることが可能である。

本発明による電子ビームを用いた薄膜測定装置において、測定可能な薄膜領域の幅は、入射する電子ビームの径と外部へ放出される二次電子の薄膜内における横方向への広がりによって制限される数十人から数百人程度までを含む。

(実施例)

(b)では、基板60上に薄膜50が存在するが、その厚 さたが十分大きくないので、電子ピーム70が照射 されると、離脱50内の領域51および拡板60内の領 城61の両方で発生した二次電子が外部へ放出され て二次似子母 I.として捕災される。第3回(c)では 基板60上の薄膜50の厚さt,が十分大きいので、電 子ピーム70が照射されると、基板60内で発生した 二次電子は碲膜50内で消滅して外部へは放出され ずに、殊膜内の領域51で発生した二次電子のみが 外部へ放出されて二次電子量」、として捕獲される。 ここで、薄膜材料の二次電子発生効率が基板材料 の二次電子発生効率よりも大きい場合について考 える。外部へ放出される二次電子の発生領域のう ち、帝既材料の占める領域51が基板材料の占める 領域61に比べて大きくなる程、捕集される二次電 子量は大きくなる。したがって、 蒋 膜の厚さ t_xく t, (t, に対して二次電子量は I, (I, (I, となる。一 方、薄膜の厚さが外部へ放出される二次電子の最 大の深さ(これをRoとおく)よりも厚くすると、捕 集される二次電子量はある一定の値で飽和する。

向器30への駆動信号と、A/D変換器110への信号取込み制御信号とを同期させてそれぞれへ送る。A/D変換器110では増幅器100 からの二次電子信号を走査回路90からの信号取込み制御信号に基づきA/D変換を行う。A/D 変換した信号をメモリー120内に設積した後、CPU130からアクセスして、膜厚測定用ルーチンにより解析する。

特開昭63-9807 (3)

選び、電流を5pAに抑えた。これにより、シリコ ン酸化膜52への電子の蓄積を防げた。第4回(a)は 第4回(b)の各照射位置において捕集された二次電 子の量を示す。シリコン酸化膜52の二次電子発生 効率はシリコン基板62の二次電子発生効率よりも 大きいので、シリコン酸化膜52上を照射したとき の二次電子量が大きくなっている。この二次電子 信号波形から、実際のシリコン酸化膜52の厚さH を求めるために、シリコン酸化膜52の膜厚に対す る二次電子量の較正曲線があらかじめ準備されて いる。この較正曲線は以下のようにして求められ る。まずシリコン基板上に比較的広い面積でしか も膜厚の異なるシリコン酸化膜を形成する。各群 膜の膜厚は従来の多重反射干渉計あるいは偏光分 光計を用いて測定しておく。次に各薄膜に本発明 による膜厚測定装置内で電子ビームを照射して、 各膜厚に対して捕集される二次電子量を較正表と して計算機内に記憶しておく。第5図はこのよう にして求めたシリコン基板上のシリコン酸化膜厚 に対する二次電子量を示したものである。図中の

41.1

本発明による膜厚測定の原理図、第3回は基板上の薄膜の膜厚に対する二次電子量を示した機略図、第4回は本発明による膜厚測定装置を用いてシリコン基板上のシリコン酸化膜厚を求めた実施例を示す概略図、第5回はシリコン基板、70は電子に対する二次電子、90は電子・90は基をである。10は走査電子頭微鏡の鏡体、20は電子・90は基板、70は電子ビーム、80は二次電子、90は走査回路、100は、70は電子によりは大きに対するには、70は電子が出場、110はA/D変換器、120はメモリー、130はCPU、51は薄膜内の二次電子放出領域、61は基板内の二次電子放出領域、52はシリコン酸化膜、62はシリコン基板、71は走査線をそれぞれ示す。

特許出願人 日本電気株式会社

代理人弁理士内原

本調定方法および装置はシリコン基板上のシリコン酸化膜厚の測定に限られず、二次電子発生効率が互いに異なる基板材料および薄膜材料の組み合わせであれば、指板上の薄膜に関して膜厚測定が可能である。

(発明の効果)

以上のように本発明によれば横方向で少なくとも0.1 mm 以下の微細領域の薄膜の膜厚測定を行うことができる効果を有するものである。

4. 図面の簡単な説明

第1回は本発明の全体構成図、第2図(a)~(c)は

t1, t2, t3; 薄膜の厚さ I1, L2, L3; 二次電子量

第2図

第1図

Ro:二次電子の最大脱出深さ

第3図

第4図

第5図