(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-199019

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI	技術表示箇所
G 0 2 B	7/02	Α			
	7/14				
G 0 3 B	17/12	Α			

審査請求 未請求 請求項の数2 FD (全 5 頁)

		番食	木間氷 間氷頃の数2 トロ (全 5 貝)
(21)出願番号	特願平6-12182	(71)出願人	000001007 キヤノン株式会社 ·
(22)出願日	平成6年(1994)1月10日	東京都大田区下丸子3丁目30番2号 (72)発明者 小平 隆紀	東京都大田区下丸子3丁目30番2号
		(74)代理人	ノン株式会社内
		(2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	77 - 1470
			,

(54)【発明の名称】 レンズ鏡筒

(57)【要約】

【目的】 少なくとも1群,2群の2つのレンズ群2,5からなるズーム撮影光学系と、撮影光軸上の位置と該 撮影光軸上を退避した位置とに切替可能なインナーコンパーターレンズ11とを有するレンズ鏡筒において、ズーム光学系のみの場合の鏡筒の大きさからほとんど大きくすることなく、通常のズームによる可変焦点距離領域に加えてワンポイントの焦点距離を設定可能としたこと。

【構成】 前記2群レンズ5の有効径外にDカット5 a を形成し、前記インナーコンパーターレンズを摄影光軸上の位置と、前記Dカット5 a によりできた空間19内の退避位置とに切替可能に、前記インナーコンパーターレンズ11のホルダー12を前記2群レンズ5のホルダー6に撮影光軸と直角方向に回動可能に保持させたこと。

1

【特許請求の範囲】

少なくとも1群、2群の2つのレンズ群 【請求項1】 からなるズーム撮影光学系と、撮影光軸上の位置と該撮 影光軸上を退避した位置とに切替可能なインナーコンバ ーターレンズとを有するレンズ鏡筒において、前記2群 レンズの有効径外にDカットを形成し、前記インナーコ ンパーターレンズを撮影光軸上の位置と、前記Dカット によりできた空間内の退避位置とに切替可能に、前記イ ンナーコンパーターレンズのホルダを前記2群レンズの ホルダに撮影光軸と直角方向に回動可能に保持させたこ 10 とを特徴とするレンズ鏡筒。

【請求項2】 前記インナーコンバーターレンズの使用 時に開放絞りを決定する固定絞りを、前記インナーコン パーターレンズに固着したことを特徴とする請求項1記 載のレンズ鏡筒。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、焦点距離を変化させる ズームレンズ、特に短焦点距離時にインナーコンパータ ーレンズを撮影光軸上に挿入する形式のズームレンズを 20 保持するレンズ鏡筒に関するものである。

[0002]

【従来の技術】従来のこの種のレンズ鏡筒は米国特許明 細書第5166716号に記載されているように、イン ナーコンパーターレンズが通常は鏡筒の外部に退避して おり、鏡筒内のズームレンズが所定の位置にきた時にイ ンナーコンパーターレンズが撮影光軸と直交する方向に スライドして鏡筒内に侵入するように構成されている。

【0003】また、インナーコンパーターレンズが撮影 光軸と平行な軸回りに回動可能に鏡筒内部に支持され、 通常は撮影光路より退避した位置に保持され、広角時に は前記軸回りに回動して撮影光路内に挿入されるように 構成されている。

[0004]

【発明が解決しようとする課題】しかしながら、上記従 来例のうち、米国特許明細書第5166716号におい ては、鏡筒の外部にインナーコンパーターレンズの退避 するためのスペースを必要とし、カメラが大型化する。

【0005】また、インナーコンパーターレンズが撮影 光軸に直角な方向に平行移動して撮影光路より退避する 従来例ではズームレンズを保持する鏡筒枠の径が、イン ナーコンパーターレンズの退避スペースを含んだものを 必要とし、鐵筒枠の径が大きくなるという問題点があっ

【0006】本発明は上記のような問題点を解消したレ ンズ鏡筒を得ることを目的とする。

[0007]

【課題を解決するための手段】請求項1記載の発明によ れば、少なくとも1群、2群の2つのレンズ群からなる ズーム撮影光学系と、撮影光軸上の位置と該撮影光軸上 50 ガイド筒で、その外周にはカム筒8が回動可能に嵌合し

を退避した位置とに切替可能なインナーコンパーターレ ンズとを有するズームレンズ鏡筒において、前記2群レ ンズの有効径外にDカットを形成し、前記インナーコン パーターレンズを撮影光軸上の位置と前記Dカットによ りできた空間内の退避位置とに切替可能に、前記インナ ーコンパーターレンズのホルダを前記2群レンズのホル ダに撮影光軸と直角方向に回動可能に保持させたことに より、鏡筒径を大きくすることなく鏡筒内部にインナー コンバーターレンズを配設することが可能となった。

【0008】請求項2記載の発明によれば、前記インナ ーコンパーターレンズの使用時に開放絞りを決定する固 定校りを該インナーコンパーターレンズに固着したこと により、インナーコンパーターレンズの使用時と非使用 時で開放絞りの径を切替えることが可能となった。

[0009]

【実施例】図1~図4は本発明の実施例を示し、図1は レンズ収納状態の縦断面図、図2は短焦点距離状態の縦 断面図、図3は中焦点距離状態の縦断面図、図4は長焦 点距離状態の縦断面図である。図5は図1のA-A線に 沿う横断面図、図6は図2のB-B線に沿う横断面図、 図7はズームレンズの直進ガイド筒を内側から見た展開 図である。・

【0010】図において、1は1群ホルダー2に保持さ れた1群レンズで、この1群ホルダー2はシャッターユ ニット3に保持されている。シャッターユニット3は開 放絞りを決めるエッジ3aを有し、鏡筒枠4に固着され ている。この鏡筒枠4の外周には3カ所にピン4aが設 けられている。

【0011】5は2群ホルダー6に保持された2群レン 30 ズで、この2群ホルダー6の外周には3カ所ピン6aが 設けられている。また2群ホルダー6には撮影光軸と直 角方向の軸6bが2カ所に設けられている。11はホル ダー12に保持されたインナーコンパーターレンズで、 このホルダー12の腕12aの先端が2群ホルダー6の 軸6 bに嵌合しており、ホルダー12の前面にはエッジ 13 aを有する固定絞り13が固着されている。

【0012】また、ホルダー12は撮影光軸に直角な軸 6 bの回りにほぼ90°回動可能に保持されており、上 記インナーコンバーターレンズ11は、撮影光軸上と撮 影光軸から退避した位置とに移動可能である。

【0013】上記2群レンズ5の撮影光の通過する有効 径外の一部は図5,図6に示すようにDカット5aされ ており、このDカット5aにより形成された空間19に インナーコンパーターレンズ11が退避するようになっ ている。ホルダー12の腕12aの先端にはピン12b が固着されており、その付近にはパネ14がかけられイ ンナーコンパーターレンズ11が撮影光軸上に位置する ように付勢されている。

【0014】7は図示せぬカメラ本体に固着された直進

ている。この直進ガイド筒?には撮影光軸に平行な溝? a、7bがそれぞれ3ヶ、7cが2ヶ設けられており、 溝7aには鏡筒枠4の3ヶのピン4aが嵌合し、溝7b には2群ホルダー6の3ヶのピン6 aが、溝7 c にはイ ンナーコンパーターレンズ11のホルダー12の2ヶの ピン12bが嵌合し、それぞれ撮影光軸方向に直進する ようにガイドされている。

【0015】カム筒8にはカム溝8b、8cがそれぞれ 3ヶ設けられており、カム溝8bには鏡筒枠4のピン4 aが嵌合し、カム滯8cには2群ホルダー6のピン6a 10 が嵌合している。したがって、カム筒8が回動すると、 鏡筒枠4はカム溝8bに駆動され、2群ホルダー6はカ ム溝8cに駆動され、それぞれ撮影光軸方向に所定量直 進することになる。

【0016】上記インナーコンパーターレンズ11のホ ルダー12の腕12aの先端のピン12bはカム筒8に まで達していないため、カム筒8とは干渉しない。この カム筒8の外周にはギア部8aが設けられており、ギア 9と噛み合っている。このギア9はモータ10と減速ギ ア列を介して連結しており、カム筒8はモータ10によ って回動する。モータ10によるズームレンズの制御に ついては公知であるためここでは説明を省略する。

【0017】次に上記実施例の動作について説明をす る。図1は1群レンズ1、及び2群レンズ5が最もフィ ルム面15側に繰り込まれた沈胴状態であり、鏡筒枠4 のピン4 a と 2 群ホルダー6のピン6 a は、図7におい て、それぞれの位置4b、6cに保持されている。

【0018】この沈胴状態においては、2群ホルダー6 が最も繰り込まれるため、2群ホルダー6に保持される インナーコンパーターレンズ11も最も繰り込まれるこ 30 とになり、ホルダー12の腕12aの先端のピン12b は図7において位置12cにきており、溝7cの斜面に よって、バネ13の力に抗して回動させられ、インナー コンパーターレンズ11は2群レンズ5をDカット5a した空間19へ退避している。

【0019】図1の沈胴状態からモータ10によってカ ム筒8が回動させられると、カム溝8b,8cに従って 鏡筒枠4のピン4aと2群ホルダー6のピン6aはそれ ぞれ繰り出され、図7の実線位置4a,6aに停止す る。インナーコンパーターレンズ11のホルダー12の 40 腕12aの先端のピン12bも2群ホルダー6とともに 繰り出されることとなり、滯7cに従って図7の実線位 置12 bにくる。インナーコンパーターレンズ110ホ ルダー12はパネ14によって付勢されており、図示し ないストッパーに当接して位置決めされている。この図 示ないしストッパーは2群ホルダー6に設けてもよい し、シャッターユニット3に設けてもよい。

【0020】この時インナーコンパーターレンズ110 光軸と、1群レンズ1および2群レンズ5によって構成 学系を構成している。

【0021】この広角撮影光学系では、シャッターユニ ット3のシャッターが全開になった時の開放の絞りを決 定するのは、固定絞り13のエッジ13aであり、シャ ッタユニット3のエッジ3aよりも径が小さく、インナ ーコンパーターレンズ11が撮影光路上にあるときと退 避したときとで開放絞り径の切替を可能にしている。

【0022】この広角撮影状態からモータ10によって カム筒8をさらに回動させると、1群レンズ1、2群レ ンズ5はカム溝8b,8cに従って更に繰り出され、鏡 筒枠4のピン4.a、2群ホルダー6のピン6aは図7に おいて位置4 c, 6 dにくる。インナーコンパーターレ ンズ11のホルダー12の腕12aの先端のピン12b は2群レンズ5とともに繰り出されるため、溝7cの斜 面に沿って変位させられ、インナーコンパーターレンズ 11のホルダー12はパネ14に抗して再び退避方向に 回動し、図3の状態になる。この状態では1群レンズ1 と2群レンズ5とによって撮影光学系が構成され、中焦 点距離撮影系となっている。

【0023】モータ10によって、さらにカム筒8を回 動させると、鏡筒枠4のピン4aと2群ホルダー6のピ ン6aはさらに繰り出され、図7において、それぞれ位 置4d,6eにくる。インナーコンパーターレンズ11 のホルダー12の腕12aの先端のピン12bは位置1 2 e となり、図3と同様、インナーコンパーターレンズ 11が撮影光路から退避した位置に保持されて図4の状 態になる。この状態では、最も繰り出された1群レンズ 1と2群レンズ5によって撮影光学系が構成され、長焦 点距離撮影光学系となっている。

【0024】図3の中焦点距離撮影系と図4の長焦点距 離撮影系との間はズーミング動作によって任意の焦点距 離に停止可能であるが、より短焦点側は図2の広角撮影 状態1点のみ停止可能となっている。例えば、焦点距離 35mから70mmの連続ズームに加えて、ワンポイン トの焦点距離28mmの撮影光学系となるわけである が、焦点距離35m~70mmのズーム撮影系からほと んど鏡筒の大きさを変えることなく、焦点距離28mm を加えることが可能となっている。

[0025]

【発明の効果】以上説明したように請求項1記載の発明 によれば、少なくとも1群、2群の2つのレンズ群から なるズーム撮影光学系の該2群レンズの有効径外にDカ ットを形成するとともに、この2群レンズのホルダーに 撮影光軸と直角方向の軸回りに回動可能にインナーコン パーターレンズのホルダーを保持させ、このインナーコ ンパーターを撮影光軸上の位置と上記Dカットでできた 空間の退避位置とに切替可能に構成したので、ズーム光 学系のみの場合の鏡筒の大きさからほとんど大きくする ことなく、通常のズームによる可変焦点距離領域に加え される光学系の撮影光軸とが一致しており、広角撮影光 50 てワンポイントの焦点距離を設定することが可能となっ

【0026】また、請求項2記載の発明によれば、イン ナーコンパーターレンズに固定絞りを固着したので、複 雑な機構を用いることなく、インナーコンパーターレン ズの使用時と非使用時とで開放絞り径を切替えることが 可能であるという効果が得られる。

【図面の簡単な説明】

【図1】 本発明を実施したレンズ鏡筒のレンズ収納状 態を示す簡略断面図

【図2】 そのレンズ鏡筒の広角撮影状態を示す簡略断 面図

[図3] そのレンズ鏡筒の中焦点状態を示す簡略断面

図

た。

【図4】 そのレンズ鏡筒の長焦点状態を示す簡略断面 図

【図5】 図1のA-A線に沿う横断面図

図2のB-B線に沿う横断面図 【図6】

ズームの直進ガイド筒の内面展開図 【図7】

【符号の説明】

1 1群レンズ

1 群ホルダー

2群レンズ

5a Dカット

2 群ホルダー

11 インナーコンパーターレンズ

ホルダー 12

13 固定絞り

19 空間

[図1]

【図4】

Date: April 8, 2005

Declaration

I, Michihiko Matsuba, President of Fukuyama Sangyo Honyaku Center, Ltd., of 16–3, 2–chome, Nogami–cho, Fukuyama, Japan, do solemnly and sincerely declare that I understand well both the Japanese and English languages and that the attached document in English is a full and faithful translation of the copy of Japanese Unexamined Patent Publication No. Hei–7–199019 laid open on August 4, 1995.

Michihiko Matsuba

Fukuyama Sangyo Honyaku Center, Ltd.

LENS BARREL

Japanese Unexamined Patent Publication No. Hei-7-199019

Laid-open on: August 4, 1995

Application No. Hei-6-12182

Filed on: January 10, 1994

Inventor: Takanori KOHIRA

Applicant: Canon Corporation

Patent Attorney: Yukio TAKANASHI

SPECIFICATION

[TITLE OF THE INVENTION] LENS BARREL [ABSTRACT]

[Object] In a lens barrel having a zooming photographic optical system including at least two first and second lens groups 1 and 5 and an inner converter lens 11 which can switch between a position on a photographing optical axis and a position retracted from the photographing optical axis, to make it possible to set the one point focal length as well as the variable focal range of normal zooming without an increase in size of the barrel from the size of the lens barrel that is provided with only the zooming optical system.

[Construction] A D cut 5a is formed out of the effective

diameter of the second group lens 5, and the inner converter lens is held so as to switch between a position on the photographing optical axis and a retracted position inside a space 19 created by the D cut 5a, and the holder 12 of the inner converter lens 11 is held on the holder 6 of the second group lens 5 so as to rotate perpendicularly to the photographing optical axis.

WHAT IS CLAIMED IS;

[Claim 1] A lens barrel having a zooming photographic optical system including at least two lens groups of first and second groups and an inner converter lens that can switch between a position on a photographing optical axis and a position retracted from the photographing optical axis, wherein a D cut is formed out of the effective diameter of the second group lens, and the inner converter lens is held so as to switch between the position on the photographing optical axis and a retracted position inside a space created by the D cut, and the holder of the inner converter lens is held on the holder of the second group lens so as to rotate perpendicularly to the photographing optical axis.

[Claim 2] The lens barrel according to Claim 1, wherein a fixed stop that determines an aperture stop when using the inner

converter lens is fixed to the inner converter lens.

DETAILED DESCRIPTION OF THE INVENTION

[Field of the Invention]

[0001]

[Field of the Invention] The invention relates to a zoom lens that varies its focal length, more specifically, a lens barrel which holds a zoom lens in which an inner converter lens is inserted on the photographing optical axis when the focal length is short.

[0002]

[Prior Art] A conventional lens barrel belonging to this type is constructed as described in the Specification of US Patent No. 5166716 so that an inner converter lens is normally retracted to the outside of the lens barrel, and the inner converter lens slides orthogonally to the photographing optical axis and enters the inside of the lens barrel when the zoom lens inside the lens barrel comes to a predetermined position.

[0003] In addition, the inner converter lens is supported inside the lens barrel so as to rotate around an axis in parallel to the photographing optical axis, and is held at a position retracted from the photographing optical path in a normal condition, and is rotated around the axis and inserted into

the photographing optical path in the case of a wide angle. [0004]

[Problems to be Solved by the Invention] However, among the conventional examples, according to the Specification of US patent No. 5166716, a space for retracting the inner converter lens is required, resulting in an increase in the size of the camera.

[0005] In addition, in the conventional example in which the inner converter lens moves in parallel to the direction orthogonal to the photographing optical axis to retract from the photographing optical path, the diameter of the lens barrel frame holding the zoom lens must include the retracting space of the inner converter lens, resulting in an increase in diameter of the lens barrel frame.

[0006] An object of the invention is to obtain a lens barrel which solves the above-described problems.

[0007]

[Means for Solving Problems] According to Claim 1 of the invention, in a lens barrel having a zooming photographic optical system including at least two lens groups of first and second groups and an inner converter lens that can switch between a position on a photographing optical axis and a position retracted from the photographing optical axis, a D

cut is formed out of the effective diameter of the second group lens, and the inner converter lens is held so as to switch between the position on the photographing optical axis and the retracted position inside a space created by the D cut, and the holder of the inner converter lens is held on the holder of the second group lens so as to rotate perpendicularly to the photographing optical axis, whereby it becomes possible to arrange the inner converter lens inside the lens barrel without increasing the lens barrel diameter.

[0008] According to Claim 2 of the invention, when using the inner converter lens, a fixed stop that determines an aperture stop is fixed to this inner converter lens, whereby the diameter of the aperture stop can be switched between the case of using the inner converter lens and the case where the inner converter lens is not used.

[0009]

[Embodiment] Fig. 1 through Fig. 4 show an embodiment of the invention, wherein Fig. 1 is a longitudinal sectional view of a lens housed state, Fig. 2 is a longitudinal sectional view in the state with a short focal length, Fig. 3 is a longitudinal sectional view in the state with a middle focal length, and Fig. 4 is a longitudinal sectional view in the state with a long focal length. Fig. 5 is a cross sectional view along the

A-A line of Fig. 1, Fig. 6 is a cross sectional view along the B-B line of Fig. 2, and Fig. 7 is a developed view of a rectilinear guide cylinder of a zoom lens viewed from the inside.

[0010] In the figures, the first group lens 1 is held by the holder 2, and this first group holder 2 is held on the shutter unit 3. The shutter unit 3 has an edge 3a that determines the aperture stop, and is fixed to the lens barrel frame 4. On the outer circumference of this lens barrel frame 4, pins are provided on three points.

[0011] The second group lens 5 is held by the second group holder 6, and on the outer circumference of this second group holder 6, pins 6a are provided at three points. The second group holder 6 is provided with shafts 6b orthogonal to the photographing optical axis at two points. The inner converter lens 11 is held by the holder 12, and the front ends of the arms 12a of this holder 12 fit the shafts 6b of the second group holder 6, and to the front face of the holder 12, a fixed stop 13 having an edge 13a is fixed.

[0012] The holder 12 is held so as to rotate almost 90° around the shafts 6b that are perpendicular to the photographing optical axis, and the inner converter lens 11 can move to a position on the photographing optical axis and a position

retracted from the photographing optical axis.

[0013] A part of the second group lens 5 out of the effective diameter that photographic light passes through is cut by the D cut 5a as shown in Fig. 5 and Fig. 6, and the inner converter lens 11 retracts to the space 19 created by this D cut 5a. To the front ends of the arms 12a of the holder 12, pins 12b are fixed, and near the pins, springs 14 are laid and pressed so as to position the inner converter lens 11 on the photographing optical axis.

[0014] The rectilinear guide cylinder 7 is fixed to a camera main body that is not shown, and on the outer circumference thereof, a cam tube 8 fits rotatably. This rectilinear guide cylinder 7 is provided with three each of grooves 7a and 7b by three each and two each of grooves 7c by two each in parallel to the photographing optical axis, and the three pins 4a of the lens barrel frame 4 fit the grooves 7a, the three pins 6a of the second group holder 6 fit the grooves 7b, and the two pins 12b of the holder 12 of the inner converter lens 11 fit the grooves 7c, and these are guided so as to go straight in the photographing optical axis direction.

[0015] The cam tube 8 is provided with three each of cam groves 8b and 8c, and the pins 4a of the lens barrel frame 4 fit the cam grooves 8b, and the pins 6a of the second group holder 6

fit the cam grooves 8c. Therefore, when the cam tube 8 rotates, the lens barrel frame 4 is driven by the cam grooves 8b and the second holder 6 is driven by the cam grooves 8c to go straight by predetermined distances in the photographing optical axis direction, respectively.

[0016] The pins 12b on the front ends of the arms 12a of the holder 12 of the inner converter lens 11 have not yet reached the cam tube 8, so that they do not interfere with the cam tube 8. On the outer circumference of this cam tube 8, a gear part 8a is provided and engaged with a gear 9. This gear 9 is joined to a motor 10 via a reduction gear row, and the cam tube 8 is rotated by the motor 10. Control of the zoom lens by the motor 10 is generally known, so that description thereof is omitted herein.

[0017] Next, operations of the above-described embodiment are explained. Fig. 1 shows a barrel retracted state in that the first group lens 1 and the second group lens 5 are retracted to the side closest to the film surface 15, and the pins 4a of the lens barrel frame 4 and the pins 6a of the second group holder 6 are held at the positions 4b and 6c in Fig. 7, respectively.

[0018] In this barrel retracted state, the second group holder 6 is retracted the most, so that the inner converter lens 11

held by the second group holder 6 is also retracted the most, and the pins 12b on the front ends of the arms 12a of the holder 12 reach the position 12c in Fig. 7 and rotate against the force of the springs 13 by the slope of the grooves 7c, and the inner converter lens 11 is retracted to the space 19 formed by cutting the second group lens 5 by the D cut 5a.

[0019] From this barrel retracted state of Fig. 1, when the cam tube 8 is rotated by the motor 10, the pins 4a of the lens barrel frame 4 and the pins 6a of the second group holder 6 are protruded according to the cam grooves 8b and 8c and stopped at the solid-line positions 4a and 6a of Fig. 7. The pins 12b on the front ends of the arms 12a of the holder 12 of the inner converter lens 11 are also protruded together with the second group holder 6, and reach the solid-line position 12b of Fig. 7 according to the grooves 7c. The holder 12 of the inner converter lens 11 is pressed by the springs 14 and positioned in contact with a stopper that is not shown. This unillustrated stopper may be provided on the second group holder 6 or the shutter unit 3.

[0020] At this point, the optical axis of the inner converter lens 11 and the photographing optical axis of the optical system formed by the first group lens 1 and the second group lens 5 match each other, whereby a wide-angle photographic optical

system is formed.

[0021] In this wide-angle photographic optical system, the aperture stop when the shutter of the shutter unit 3 is fully opened is determined by the edge 13a of the fixed stop 13, and the diameter thereof is smaller than the edge 3a of the shutter unit 3 so that the aperture stop diameter can be switched between in the case where the inner converter lens 11 is on the photographing optical path and the case where the inner converter lens is retracted.

[0022] When the cam tube 8 is further rotated by the motor 10 from this wide-angle photographing state, the first group lens 1 and the second group lens 5 are further protruded according to the cam grooves 8b and 8c, and the pins 4a of the lens barrel frame 4 and the pins 6a of the second group holder 6 come to the positions 4c and 6d of Fig. 7. Since the pins 12b on the front ends of the arms 12a of the holder 12 of the inner converter lens 11 are protruded together with the second group lens 5, so that they are displaced along the slope of the grooves 7c, and the holder 12 of the inner converter lens 11 rotates again to retract against the springs 14 and reaches the state of Fig. 3. In this state, the photographic optical system is formed into a middle focal length photographic system by the first group lens 1 and the second group lens 5.

[0023] When the cam tube 8 is further rotated by the motor 10, the pins 4a of the lens barrel frame 4 and the pins 6a of the second group holder 6 are further protruded and reach the positions 4d and 6e of Fig. 7, respectively. The pins 12b on the front ends of the arms 12a of the holder 12 of the inner converter lens 11 come to the position 12e, and as in Fig. 3, the inner converter lens 11 is held at the position retracted from the photographing optical path and reaches the state of Fig. 4. In this state, the photographic optical system is formed into a long focal length photographic optical system by the first group lens 1 and the second group lens 5 that have been protruded the most.

[0024] Between the middle focal length photographic system of Fig. 3 and the long focal length photographic system of Fig. 4, the lens barrel can stop at an arbitrary position by zooming operation, however, at a shorter focal point side, the lens barrel can stop only at one point of the wide-angle photographing state of Fig. 2. For example, in addition to continuous zooming from the focal length of 35m to 70mm, the photographic optical system with a one-point focal length of 28mm is formed, so that it becomes possible to add the focal length of 28mm without increasing the lens barrel from the size of the zooming photographic system with the focal length of

35m to 70mm.

[0025]

[Effects of the Invention] As described above, according to Claim 1 of the invention, in a zooming photographic optical system including at least two lens groups of first and second groups, a D cut is formed out of the effective diameter of the second group lens, and this second group lens holder is made to hold the holder of the inner converter lens in a rotatable manner around an axis perpendicular to the photographic optical axis, the inner converter lens is held so as to switch between the position on the photographing optical axis and a retracted position inside a space created by the D cut, so that a one-point focal length can be set in addition to the variable focal length region of normal zooming without increasing the size of the lens barrel from the size of the lens barrel provided with only the zooming optical system.

[0026] In addition, according to Claim 2 of the invention, since the fixed stop is fixed to the inner converter lens, the aperture stop diameter can be switched between the case using the inner converter lens and in the case where the inner converter lens is not used without using a complicated mechanism.

[BRIEF DESCRIPTION OF THE DRAWINGS]

[Fig. 1] is a schematic sectional view showing a lens housed state of the lens barrel in which the invention is carried out.

[Fig. 2] is a schematic sectional view showing a wide-angle photographing state of the same lens barrel.

[Fig. 3] is a schematic sectional view showing a middle focal length state of the same lens barrel.

[Fig. 4] is a schematic sectional view showing a long focal length state of the same lens barrel.

[Fig. 5] is a cross sectional view along the A-A line of Fig. 1.

[Fig. 6] is a cross sectional view along the B-B line of Fig. 2.

[Fig. 7] is an inner surface developed view of the rectilinear guide cylinder for zooming.

[Description of symbols]

- 1 first group lens
- 2 first group holder
- 5 second group lens

5a D cut

- 6 second group holder
- 11 inner converter lens
- 12 holder
- 13 fixed stop

19 space

Fig.2

Fig.3

Fig.4

