Part A: Descriptive Statistics & Data Concepts (18 Questions)

1.	In a research study, data is collected from 5000 students across India. If the goal is to make conclusions about "all students in India," then: □ a) 5000 students represent the population □ b) 5000 students represent a sample □ c) All students in India represent a sample □ d) No sampling is done
2.	Which statement correctly differentiates population and sample? ☐ a) Population is always larger than sample ☐ b) Sample contains all possible outcomes ☐ c) Sample is a subset of population used for analysis ☐ d) Population is chosen from a sample
3.	If a dataset has mean = 40, median = 30, and mode = 20, then the distribution is: □ a) Symmetric □ b) Positively skewed □ c) Negatively skewed □ d) Normal
4.	A dataset contains exam marks of students. If one student's mark is wrongly entered as 900 instead of 90, this value is called: a) Noise b) Outlier c) Skewness d) Kurtosis
5.	In data analysis, "noise" refers to: □ a) Extreme values □ b) Random error or irrelevant variations in data □ c) Correlated values □ d) Hidden patterns
6.	Which of the following is most affected by outliers? ☑ a) Mean ☐ b) Median ☐ c) Mode ☐ d) Interquartile Range
7.	The measure that indicates "peakedness" or "flatness" of a distribution is: ☐ a) Skewness ☐ b) Kurtosis ☐ c) Variance ☐ d) Standard Deviation
8.	If a distribution has high kurtosis, it means: ☑ a) Heavy tails and more outliers ☐ b) Flat distribution with fewer outliers

	□ c) Symmetric bell-shape□ d) Zero variance
9.	Which is an example of continuous random variable? □ a) Number of cars in a parking lot □ b) Temperature in a city □ c) Number of emails received □ d) Defective items in a batch
10.	A scalar quantity can be represented as: ☑ a) A single number ☐ b) A column of numbers ☐ c) A 2D array ☐ d) A multidimensional cube
11.	A vector is different from a scalar because: □ a) Vector has only magnitude □ b) Vector has magnitude and direction □ c) Vector is always positive □ d) Vector has no physical meaning
12.	Tensor can be defined as: ☐ a) A single number ☐ b) A 1D vector only ☐ c) A generalization of scalars, vectors, and matrices to higher dimensions ☐ d) Only a 2×2 matrix
13.	Which visualization is best to check skewness and outliers in data? □ a) Pie chart □ b) Histogram □ c) Box plot □ d) Scatter plot
14.	Standardization (z-score scaling) is preferred when: □ a) Features have same units □ b) Data is categorical □ c) Features have very different scales and we want mean = 0, variance = 1 □ d) Data has missing values
15.	Normalization (min-max scaling) transforms data to: □ a) [0, 1] or [-1, 1] range □ b) Mean = 0, SD = 1 □ c) Logarithmic scale □ d) Polynomial form
16.	A dataset follows power-law distribution if: ☑ a) Large values are equally frequent as small values ☐ b) Few large values occur rarely while many small values occur frequently

	□ c) Distribution is symmetric around mean□ d) Variance = 0
17.	Correlation between two variables measures: ☐ a) Difference between them ☐ b) Strength and direction of linear relationship ☐ c) Causation ☐ d) Variance of both variables
18.	Which correlation value indicates the strongest linear relationship? □ a) -0.85 □ b) +0.70 □ c) 0.00 □ d) +0.45
Part B:	Probability & Distributions (12 Questions)
19.	A fair coin is tossed 3 times. The probability of getting exactly 2 heads is: □ a) 1/8 □ b) 3/8 □ c) 1/2 □ d) 5/8
20.	The probability of an impossible event is: □ a) 0 □ b) 1 □ c) -1 □ d) Undefined
21.	In Poisson distribution, mean (λ) = variance. If λ = 4, then standard deviation = ? \boxtimes a) 4 \square b) 2 \square c) 8 \square d) 16
22.	Poisson distribution is suitable for: ☐ a) Continuous measurements ☐ b) Rare discrete events over fixed time/space ☐ c) Correlated variables ☐ d) Normal data only
23.	In exponential distribution with mean = 5, the rate parameter (λ) is: \Box a) 5 \Box b) 1/5 \boxtimes c) 10 \Box d) 0.5

24.	Which of the following is NOT a property of probability distribution? □ a) All probabilities ≥ 0 □ b) Total probability = 1 □ c) Probabilities can be > 1 □ d) Each outcome has defined probability		
25.	If two events A and B are independent, then P(A ∩ B) = ? □ a) P(A) + P(B) □ b) P(A) × P(B) □ c) P(A)/P(B) □ d) None		
26.	Central Limit Theorem is important because: ☐ a) Population is always normal ☐ b) Sample mean distribution tends to normal for large n ☐ c) Standard deviation always decreases with sample size ☐ d) Variance becomes zero		
27.	If a distribution is symmetric and bell-shaped, it is: ☑ a) Normal distribution ☐ b) Poisson distribution ☐ c) Exponential distribution ☐ d) Power-law distribution		
28.	In probability, a random variable is: ☐ a) A fixed number ☐ b) A function assigning numbers to outcomes of an experiment ☐ c) Always continuous ☐ d) Always discrete		
29.	If two dice are rolled, the sample space has: □ a) 6 □ b) 12 □ c) 18 □ d) 36 outcomes		
30.	Which probability distribution is used for modeling "time between arrivals"? ☐ a) Poisson ☐ b) Normal ☐ c) Exponential ☐ d) Uniform		
Part C: Inferential Statistics & Hypothesis Testing (20 Questions)			
31.	The null hypothesis (H₀) generally states that: □ a) A difference exists □ b) No difference exists		

	□ c) Data is always skewed□ d) Sample size is large
32.	Type-I error occurs when:
33.	Type-II error occurs when: ☐ a) Rejecting a true null hypothesis ☐ b) Accepting a false null hypothesis ☐ c) Rejecting a false null hypothesis ☐ d) None
34.	The probability of Type-I error is denoted by: \boxtimes a) β \boxtimes b) α \square c) μ \square d) σ
35.	The power of a statistical test is defined as: \boxtimes a) $1-\alpha$ \square b) $1-\beta$ \square c) $\alpha+\beta$ \square d) β/α
36.	A p-value less than significance level (α = 0.05) means: \square a) Fail to reject H _o \boxtimes b) Reject H _o \square c) Increase sample size \square d) Accept alternative only if α < 0.01
37.	A 95% confidence interval means: □ a) 95% of population lies in interval □ b) 95% probability that parameter lies in interval □ c) 95% of such intervals constructed from samples will contain true parameter □ d) Both b and c
38.	Larger sample size leads to: ☐ a) Larger standard error ☐ b) Smaller standard error ☐ c) No effect ☐ d) More bias
39.	Z-test is generally used when: \square a) Sample size is small and σ unknown \boxtimes b) Sample size is large and σ known

	□ c) Comparing categorical variables□ d) Variance is unequal
40.	T-test is used when: □ a) Population variance is known □ b) Sample size is large □ c) Population variance is unknown and sample is small □ d) Data is categorical
41.	The chi-square test is most appropriate for: ☐ a) Comparing means of two groups ☐ b) Testing independence between categorical variables ☐ c) Testing slope of regression line ☐ d) Analyzing correlation
42.	The F-test is generally used to compare: □ a) Two sample means □ b) More than two means (ANOVA) or variances □ c) Two proportions □ d) Skewness
43.	Correlation ≠ Causation because: □ a) High correlation always means randomness □ b) A third factor may influence both variables □ c) Correlation is always zero □ d) It measures only causality
44.	If correlation coefficient r = 0, it means: □ a) No relationship at all □ b) No linear relationship □ c) Variables are independent □ d) Variables are strongly dependent
45.	The sampling distribution of the mean refers to: □ a) Distribution of population □ b) Distribution of all possible sample means □ c) Normal distribution always □ d) Distribution of sample variance
46.	Which test would you use to compare the average salary of male and female employees? ☐ a) Chi-square test ☐ b) T-test for independent samples ☐ c) Z-test ☐ d) F-test
47.	If standard deviation of population is unknown, which distribution is used for hypothesis test? $\hfill \Box \ a) \ Z\mbox{-distribution}$ $\hfill \ \ \Box \ b) \ T\mbox{-distribution}$

	☐ c) F-distribution
	☐ d) Chi-square distribution
48.	The critical region in hypothesis testing refers to:
	oxtimes a) Values where null hypothesis is rejected
	\square b) Values where null hypothesis is accepted
	\Box c) Always α = 0.05
	\square d) Confidence interval
49.	Which one is TRUE about confidence level and significance level?
	\square a) Confidence level + α = 100%
	\boxtimes b) Confidence level – α = 1
	\square c) Both are equal
	\square d) Both are independent
50.	When the p-value is 0.85, at α = 0.05, the correct decision is:
	☐ a) Reject H _o
	⊠ b) Fail to reject H₀
	\square c) Accept H_0 without doubt
	\square d) Increase sample size