	/ Utech \
Name :	
Roll No. :	
Invigilator's Signature:	• • • • • • • • • • • • • • • • • • • •

CS/B.TECH/ICE(N)/SEM-5/IC-502/2012-13 2012 CONTROL SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) A set of variables for a system is
 - a) Not unique in general
 - b) Always unique
 - c) Never unique
 - d) May be unique.
 - ii) State variable approach converts an nth order system into
 - a) n-number second order differential equation
 - b) two differential equations
 - c) two *n*-order differential equations
 - d) n-number of 1st order differential equations.

5142(N) [Turn over

- The transfer function of a linear system represented by iii) the vector-matrix differential equations X = Ax + Bu and Y = Cx + Du is given by
 - $C(sI A)^{-1}B$
 - b) $C(sI A)^{-1}B + D$
 - c) $B(sI A)^{-1}C + D$
 - d) $B(sI A)^{-1}D + C$.
- A system is said to be completely observable if iv)
 - any of the state variables affects some output a)
 - b) any of the state variables affects all the outputs
 - all the state variables affects all the outputs. c)
 - d) all the state variables affects some output.
- The second order system x = Ax has $A = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$. The v) value of its damping and natural frequency are
 - a) 1 and 1
- 0.5 and 1 b)
- c) 0.707 and 2
- d) 1.41 and 1.
- vi) The properties of the state transition matrix Φ (t) is
 - $\Phi (0) = 1$ a)
- b) $\Phi(t)^{-1} = \Phi(t)$
- c) $\left[\Phi(t)\right]^k = \Phi(-kt)$ d) $\left[\Phi(-t)\right]^k = \Phi(kt)$.

b)
$$\frac{1+e^{-Ts}}{s}$$

c)
$$\frac{1+e^{+Ts}}{s}$$

d)
$$\frac{s}{1-e^{-Ts}}$$
.

viii) The system matrix A for the system described by the differential equation $\ddot{y} + 2\dot{y} + 3y = 0$ is

a)
$$\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$
 b) $\begin{bmatrix} 0 & 1 \\ -3 & 2 \end{bmatrix}$

b)
$$\begin{bmatrix} 0 & 1 \\ -3 & 2 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
.

d)
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

ix)
$$x = f(x)$$
 is called

- a) an autonomous system
- an overdamped system b)
- c) an underdamped system
- d) a critically damped system.

If the z-transform of a function is $\frac{z \sin \omega T}{z^2 - 2z \cos \omega T + 1}$. Its X) Laplace transform will be

a)
$$\frac{s}{s^2 + \omega^2}$$

b)
$$\frac{\omega}{s^2 + \omega^2}$$

 $\sin \omega t$ c)

d) tan ωt .

- xi) The eigenvalues of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$
 - a) 1, 2, 3

- b) -1, 2, -3
- c) -1, -2, -3
- d) 1,-2, 3.
- xii) The variable z in z-transform theory is equal to (s is the Laplace operator and T is the sampling period)
 - a) z = Ts

- b) $z = e^{Ts}$
- c) $z = e^{-Ts}$
- d) $z = T^2 s$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. A linear time-invariant system is described by the state model $x = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$

obtain the state transition matrix.

- 3. State and explain the theorems of controllability and observability in control systems.
- 4. Determine x (k) of the system given below.

$$\stackrel{\bullet}{x} (k+1) = \begin{bmatrix} 0 & 2 \\ -3 & -5 \end{bmatrix} x (k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

where $x_1(0) = 1$, $x_2(0) = 1$ and u(k) = 2.

- 5. Determine the expression for the describing function of a hysteresis type non-linearity.
- 6. Determine whether or not the following quadratic form is positive definite:

$$Q(x_1, x_2) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) For an electrical R-L-C series circuit as shown in the Fig.-1, find out the state space model in the physical form. Also draw the relative state diagram.

Figure-1

- b) Find the state transition matrix Φ (t) from the homogeneous state equation of a linear control system.
- c) Obtain a state space representation of the system whose transfer function is given by

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 1}{S^3 + 5s^2 + 7s + 2}$$

where Y is the output and U is the input of the system.

6 + 3 + 6

CS/B.TECH/ICE(N)/SEM-5/IC-502/2012-13

$$Y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

Determine the controllability and observability of the system.

b) Consider the system, x = Ax + Bu

Where,
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Design a linear state variable feedback gain matrix such that the close-loop poles are located at (-2+j4), (-2-j4) and -10.

9. a) Draw the phase trajectory of the system shown in Fig.-2 when it is subjected to a step input r(t) = R.

Figure-2

5142(N)

- b) State Lyapunov's second method for investigating the stability of a nonlinear system.
- c) Consider the following system:

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

The only equilibrium state is the origin, x = 0, Determine the stability of this system. 7 + 3 + 5

- 10. a) A nonlinear element N has an input x and an output y. Determine the describing function N(x) for the nonlinear element.
 - b) Explain how Nyquist stability criterion can be extended to determine possibility of limit cycle in nonlinear control system analysis.
 - c) For the system shown in Fig-3, determine the amplitude and frequency of the limit cycle using describing function analysis.

4 + 6 + 5

Figure-3

CS/B.TECH/ICE(N)/SEM-5/IC-502/2012-13

$$x(t) = 0$$
 for $t < 0$
= $\sin \omega t$ for $t \ge 0$.

b) Solve the difference equation

$$x(k + 2) + 3x(k + 1) + 2x(k) = u(k)$$

The initial condition are x(0) = 0, x(1) = 1

c) In continuous time, a system is given by the transfer function $G(s) = \frac{K}{s+a}$

Find the z-transform G(z).

4 + 6 + 5

 3×5

- 12. Write short notes on any *three* of the following :
 - (i) Nonlinear relay
 - (ii) Asymptotic stability
 - (iii) Zero order hold
 - (iv) Stability analysis by phase plane method
 - (v) Limit cycle.