

Description

Image

Caption

Styrene Butadiene Rubber is the most popular synthetic rubber in tyres.

The material

Styrene Butadiene Copolymer Rubber (SBR) is the synthetic rubber that is most widely used and has the highest production volume. It is nearly always compounded with reinforcing fillers such as carbon black. Strengths: When filled, its strength approaches natural rubber (NR) and polychloroprene. Similar chemical and physical properties to NR and somewhat better abrasion resistance.

Limitations: Weaker and lower fatigue resistance than natural rubber (it does not undergo strain-induced crystallation) especially when unfilled. Like NR: prone to oxidation, degrades in ozone, swells readily in hydrocarbon fluids with loss of properties.

Compositional summary

Copolymer of 23% styrene (CH2CH(C6H5))n and 77% butadiene (CH2CH=CHCH2)m reinforced with typically 30% Carbon Black

General properties

Density	1.13e3	-	1.15e3	kg/m^3
Price	* 3.94	-	4.55	USD/kg
Date first used	1932			

Mechanical properties

Young's modulus	0.0038	-	0.006	GPa
Shear modulus	* 0.0012	-	0.002	GPa
Bulk modulus	* 1.5	-	2	GPa
Poisson's ratio	0.48	-	0.496	
Yield strength (elastic limit)	16	-	26	MPa
Tensile strength	16	-	26	MPa
Compressive strength	* 19.2	-	31.2	MPa

Elongation	320	-	550	% strain
Fatigue strength at 10^7 cycles	* 6.4	-	10.4	MPa
Fracture toughness	* 0.98	-	1.08	MPa.m^0.5
Mechanical loss coefficient (tan delta)	* 0.08	-	0.14	

Thermal properties

Glass temperature	-64	-	-52	°C
Maximum service temperature	70	-	110	°C
Minimum service temperature	-50	-	-40	°C
Thermal conductor or insulator?	Poor ins	ulat	or	
Thermal conductivity	0.4	-	0.9	W/m.°C
Specific heat capacity	1.45e3	-	1.6e3	J/kg.°C
Thermal expansion coefficient	160	-	180	μstrain/°C

Electrical properties

Electrical conductor or insulator?	Poor insulator
Electrical resistivity	1e10 - 1e16 µohm.cm

Optical properties

Transparency	Opaque
--------------	--------

Processability

Moldability	3 - 4
-------------	-------

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

Acetic acid (10%)	Excellent
Acetic acid (glacial)	Limited use
Citric acid (10%)	Excellent
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Limited use
Hydrofluoric acid (40%)	Acceptable
Nitric acid (10%)	Limited use
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Excellent
Phosphoric acid (85%)	

	Excellent
Sulfuric acid (10%)	Excellent
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Excellent

Durability: fuels, oils and solvents

Unacceptable
Unacceptable
Excellent
Unacceptable
Unacceptable
Unacceptable
Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Unacceptable
Acetone	Limited use
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Limited use
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Unacceptable
Fluorine (gas)	Unacceptable
O2 (oxygen gas)	Unacceptable
Sulfur dioxide (gas)	Unacceptable

Durability: built environments

Industrial atmosphere	Excellent
-----------------------	-----------

Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Fair

Durability: flammability

Flammability	Highly flammable
--------------	------------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Unacceptable
Tolerance up to 150 C (302 F)	Acceptable
Tolerance up to 250 C (482 F)	Unacceptable
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Geo-economic data for principal component

Annual world production, principal component	1.03e7	-	1.06e7	tonne/yr
Reserves, principal component	* 2.9e8	-	2.95e8	tonne

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 112	-	124	MJ/kg
CO2 footprint, primary production	* 6.29	-	6.95	kg/kg
Water usage	* 63.7	-	191	l/kg
Eco-indicator 99	342			millipoints/kg

Material processing: energy

Polymer molding energy	* 15.4	-	17	MJ/kg
Grinding energy (per unit wt removed)	* 1.68	-	1.85	MJ/kg

Material processing: CO2 footprint

Polymer molding CO2	* 1.23	-	1.36	kg/kg
Grinding CO2 (per unit wt removed)	* 0.126	-	0.139	kg/kg

Material recycling: energy, CO2 and recycle fraction

Recycle	×
Recycle fraction in current supply	0.1 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net) * 4	43.2 - 45.3 MJ/kg
Combustion CO2 * 3	3.11 - 3.27 kg/kg
Landfill	✓
Biodegrade	×

Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Styrene Butadiene elastomers are thermosets, and thus cannot be recycled. Their disposal creates an environmental problem.

Supporting information

Design guidelines

SBR is much weaker than NR if unfilled, but gains similar strength by compounding with 30-50 wt% carbon

Typical uses

Car and truck tires, belt, hose,

Links

LIIIKS			
Reference			
ProcessUniverse			
Producers			