G3 Problema 1

Problema 1

Determine los vértices de un cuadrado sabiendo que:

- a) Su centro está en el punto (2,3).
- b) Si se traslada dicho centro al origen de coordenadas, se gira un ángulo de 60° en sentido positivo y se reducen sus lados a la mitad, los vértices del nuevo cuadrado son los afijos de las raíces de un polinomio de grado 4 con coeficientes reales, siendo una de ellas $x_1 = 1$.

Solución:

El resultado de aplicar al cuadrado original las transformaciones geométricas indicadas en b) es otro cuadrado con centro en el origen de coordenadas y uno de cuyos vértices es el punto $A_1 = (1,0)$.

El vértice opuesto a A_1 es su simétrico respecto del origen, esto es, $A_3 = (-1,0)$, y los dos vértices restantes son los puntos del eje OY situados a distancia 1 del origen, es decir, $A_2 = (0,1)$ y $A_4 = (0,-1)$.

Los vértices del cuadrado original pueden determinarse ahora aplicando a los vértices anteriores la transformación inversa de la descrita en el apartado b), a saber, la composición de una homotecia de centro el origen y razón 2, seguida de un giro de ángulo $\frac{\pi}{3}$ en sentido negativo y de una traslación de vector (2,3).

G3 Problema 1

Las ecuaciones de dicha transformación son:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = 2 \begin{pmatrix} \cos \frac{\pi}{3} & \sin \frac{\pi}{3} \\ -\sin \frac{\pi}{3} & \cos \frac{\pi}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

o bien,

es decir,

G3 Problema 1

Sustituyendo (x,y) por las coordenadas de A_1 , A_2 , A_3 y A_4 se obtienen las coordenadas (x',y') de los vértices del cuadrado original, que resultan ser:

$$A_1' = (3, 3 - \sqrt{3}),$$
 $A_2' = (2 + \sqrt{3}, 4),$ $A_2' = (1, 3 + \sqrt{3}),$ $A_2' = (2 - \sqrt{3}, 2)$

