

Sirius

SEQUENZIATORE

Piano Di Qualifica

Versione 2.0.0

Ingegneria Del Software AA 2013-2014

Informazioni documento

Titolo documento: Piano Di Qualifica Data creazione: 21 Gennaio 2014

Versione attuale: 2.0.0 Utilizzo: Interno

Nome file: $PianoDiQualifica_v2.0.0.pdf$

Redazione: Seresin Davide Verifica: Botter Marco

Quaglio Davide

Approvazione: Quaglio Davide

Distribuito da: Sirius

Destinato a: Prof. Vardanega Tullio

Prof. Cardin Riccardo

Zucchetti S.p.A.

Sommario

Il documento spiega in dettaglio la strategia di verifica adottata dal gruppo Sirius per lo sviluppo del progetto Sequenziatore.

Diario delle modifiche

Versione	Data	Autore	Ruolo	Descrizione
3.0.0	2014-06-20	Seresin Davide	Responsabile	Approvazione del do- cumento
2.1.0	2014-04-24	Quaglio Davide	Responsabile	Verifica delle correzioni
2.0.2	2014-04-24	Quaglio Davide	Responsabile	Aggiornamenti pa- ragrafi per evitare discorsività
2.0.1	2014-04-20	Quaglio Davide	Amministratore	Aggiornamento titoli con contenuti
2.0.0	2014-03-23	Quaglio Davide	Responsabile	Approvazione del do- cumento
1.2.0	2014-03-23	Botter Marco	Verificatore	Verifica della nuova de- finizione test e resocon- to attività di verifica
1.1.2	2014-03-23	Quaglio Davide	Amministratore	Aggiunta del resoconto attività di verifica
1.1.1	2014-03-10	Seresin Davide	Amministratore	Modifica della sezione definizione obiettivi
1.1.0	2014-03-11	Quaglio Davide	Verificatore	Verifica delle modifiche
1.0.1	2014-03-10	Seresin Davide	Amministratore	Modifica dello scopo del documento e piani- ficazione dei test
1.0.0	2014-03-05	Quaglio Davide	Amministratore	Approvazione del do- cumento
0.2.0	2014-03-05	Botter Marco	Verificatore	Verifica delle aggiunte su resoconto dell'atti- vità di verifica
0.1.1	2014-03-01	Seresin Davide	Amministratore	Aggiunta resoconto attività di verifica
0.1.0	2014-02-20	Botter Marco	Verificatore	Verifica del documento e appendice
0.0.3	2014-02-18	Seresin Davide	Amministratore	Aggiunta di informa- zioni dettagliate e ap- pendice
0.0.2	2014-02-15	Quaglio Davide	Verificatore	Verificato scheletro e bozza documento
0.0.1	2014-02-12	Seresin Davide	Amministratore	Creato lo scheletro del documento

Indice

1	Intr	roduzione	1
	1.1	Scopo del Prodotto	1
	1.2	Glossario	1
	1.3	Riferimenti	1
		1.3.1 Normativi	1
		1.3.2 Informativi	1
	1.4	Scopo del documento	2
2	Visi	ione generale della strategia di verifica	3
	2.1	Organizzazione	3
	2.2	Pianificazione strategica temporale	4
	2.3	Obiettivi	5
		2.3.1 Qualità di processo	5
		2.3.2 Qualità di prodotto	5
	2.4	Procedure di controllo	8
		2.4.1 Qualità di processo	8
		2.4.2 Qualità di prodotto	8
	2.5	Risorse umane e responsabilità	9
	2.6	Risorse software	9
	2.7	Tecniche di analisi statica	9
	2.8	Tecniche di analisi dinamica	0
		2.8.1 Test di unità	0
		2.8.2 Test di integrazione	0
		2.8.3 Test di sistema	0
		2.8.4 Test di regressione	0
		2.8.5 Test di accettazione	1
3	Ges	stione amministrativa della revisione	${f 2}$
	3.1	Comunicazione e risoluzione anomalie	2
	3.2	Trattamento delle discrepanze	2
	3.3	Procedure di controllo di qualità di processo	2
4	Pia	nificazione dei test 1	4
	4.1	Test di sistema	
	_	4.1.1 Descrizione dei test di sistema	
		4.1.2 Ambito utente	
		4.1.3 Ambito process owner	
	4.2	Requisiti di vincolo	
	4.3	Test di integrazione	
			-

	4.4	Test di validazione	20
A	App	pendice	21
	A.1	Ciclo di Deming	21
	A.2	ISO/IEC 9126	21
	A.3	Capability Maturity Model Integration (CMMI)	25
В	Res	oconto attività di verifica	27
	B.1	Riassunto dell'attività di verifica su RR	27
	B.2	Dettaglio dell'attività di verifica su RR	28
		B.2.1 Documenti	28
		B.2.2 Processi	28
	B.3	Riassunto dell'attività di verifica su RP	30
	B.4	Dettaglio dell'attività di verifica su RP	31
		B.4.1 Documenti	31
		B.4.2 Processi	31

1 Introduzione

1.1 Scopo del Prodotto

Lo scopo del progetto *Sequenziatore*, è di fornire un servizio di gestione di processi definiti da una serie di passi da eseguirsi in sequenza o senza un ordine predefinito, utilizzabile da dispositivi mobili di tipo smaptphone o tablet.

1.2 Glossario

Al fine di rendere più leggibile e comprensibile i documenti, i termini tecnici, di dominio, gli acronimi e le parole che necessitano di essere chiarite, sono riportate nel documento Glossario_v2.0.0.pdf.

Ogni occorrenza di vocaboli presenti nel *Glossario* deve essere seguita da una "G" maiuscola in pedice.

1.3 Riferimenti

1.3.1 Normativi

- ISO/IEC Standard 12207:1995;
- ISO/IEC 9126;
- IEEE Std 730TM-2002 (revision of IEEE Std 730-1998) Standard for Software Quality Assurance Plans;
- Norme di progetto: Norme di progetto v2.0.0;
- Capitolato d'appalto C4: sequenziatore.

1.3.2 Informativi

- Informazioni sul sito del docente;
- Software Engineering (9th edition) Ian Sommerville Pearson Education Addison-Wesley;
- Ciclo di Deming Estratto da Software Engineering (9th edition) Ian Sommerville Pearson Education Addison-Wesley;
- Capability Maturity Model Integration (CMMI) Estratto da Software Engineering (9th edition) Ian Sommerville Pearson Education Addison-Wesley;
- SWEBOK cap.11 Software Quality;
- Piano di progetto: Piano Di Progetto v2.0.0;

• Indice di Gulpease.

1.4 Scopo del documento

Il documento si prefigge di illustrare la strategia complessiva di verifica e validazione proposta dal team *Sirius* per pervenire al collaudo del sistema con la massima efficacia_G. In questo documento, inoltre, definiamo gli obiettivi di qualità intesa come il rispetto dei requisiti e prestazioni enunciati esplicitamente, la conformità agli standard di sviluppo esplicitamente documentati e le caratteristiche implicite che si aspetta da un prodotto software. Garantendo in particolar modo ed in modo macroscopico:

- La correttezza del prodotto;
- La verifica continua sulle attività svolte;
- Il soddisfacimento del cliente.

2 Visione generale della strategia di verifica

2.1 Organizzazione

Il team *Sirius* ha deciso di porre al centro di ogni periodo l'attività di verifica in quanto essa certifica la qualità del prodotto. L'attività di verifica sarà continua in tutte le fasi del progetto.

Il processo di qualifica accompagnerà tutte le fasi di ciclo di vita del software. Ogni procedura di verifica sarà schedulata attraverso appositi strumenti e i risultati saranno analizzati in questo documento. Tramite il diario delle modifiche è possibile tenere traccia dell'attività di verifica effettuata ed operare delle verifiche circoscritte ai soli cambiamenti. In particolare le operazioni di controllo verranno istanziate quando il prodotto da analizzare avrà raggiunto uno stato in cui presenti differenze sostanziali rispetto allo stato precedente. Lo schema che rappresenta l'organizzazione e la pianificazione delle attività di verifica è il $\mathbf{modello}$ a $\mathbf{V}(V\text{-model})$. Il modello dimostra la relazione tra ogni periodo del ciclo di vita dello sviluppo del software e il suo periodo di testing.

Figura 1: Modello a V

L'organizzazione della strategia di verifica prevede l'attività di verifica in tutti i periodi di avanzamento del prodotto, che sono paralleli alle scadenze definite in Piano Di Progetto v2.0.0.

• Analisi: in questa prima fase il compito del *Verificatore* è innanzitutto relativo alla documentazione e alla correttezza del tracciamento dei requisiti. Ogni documento che servirà per la consegna della RR, una volta ultimata la fase di redazione, verrà verificato in modo definitivo seguendo la procedura così definita:

- 1. Verrà controllata la correttezza dei contenuti rispetto alle aspettative del documento tramite una rilettura accurata;
- 2. Verrà controllata la correttezza grammaticale;
- 3. Verrà controllato che il documento rispetti le norme definite in Norme di progetto v2.0.0 tramite la lista di controllo presente in tale documento.
- 4. Verrà verificato che ogni requisito funzionale rilevato abbia una corrispondenza in almeno un caso d'uso e che questo sia tracciato tramite il software di tracciamento che *Sirius* ha deciso di utilizzare;
- 5. Verrà verificato che ogni requisito di vincolo e di qualità sia tracciato tramite il software di tracciamento che *Sirius* ha deciso di utilizzare.
- **Progettazione**: il *Verificatore* ha l'importante compito di controllare il soddisfacimento dei requisiti indicati in fase di analisi. Inoltre, si devono verificare che i processi che portano all'incremento dei documenti redatti nel precedente periodo siano conformi alle procedure e regole descritte in Norme di progetto v2.0.0;
- **Programmazione**: il *Verificatore* provvederà a controlli periodici e pianificati di porzioni di codice, inizialmente di tipo statico per poi passare a dei controlli di tipo dinamico per valutare la correttezza del software;
- Collaudo: in questa fase le verifiche saranno esclusivamente di tipo dinamico per garantire che il prodotto risponda a tutti i requisiti indicati e a tutte le richieste del committente: sia implicite che esplicite. Per le indicazioni precise circa la procedura di verifica adottata dal gruppo si fa riferimento a Norme di progetto v2.0.0.

Il processo di verifica verterà sulla parte di redazione di documenti, essendo questa un'attività predominante e costante durante tutto il progredire del progetto. Garantendo, altresì che il risultato software sia efficace_G rispetto alla procedura analizzata, non perdendo di efficienza_G contrattuale.

2.2 Pianificazione strategica temporale

Al fine di rispettare in modo ristretto le scadenze citate di seguito e spiegate in modo approfondito in Piano Di Progetto v2.0.0, *Sirius* ha deciso di pianificare in modo approfondito e sistematico l'attività di verifica. Facendo in modo di rilevare e risolvere nel più breve tempo possibile gli errori che vengono rilevati per evitare che questi possano creare maggiori problematiche nell' avanzamento del prodotto software.

Per questo si adottano delle specifiche tecniche in base all'avanzamento del progetto. Ogni attività di redazione dei documenti e di codifica saranno precedute da uno studio

preliminare sulla struttura e sui contenuti degli stessi. Sirius, conscio della poca esperienza nella pianificazione e gestione di progetti di questo tipo, ha deciso di inserire degli $slack_G$ temporale durante la pianificazione delle attività. Tale scelta è approfondita in Norme di progetto v2.0.0 che ne definisce la quantità e in Piano Di Progetto v2.0.0 che ne analizza le motivazioni. L'aggiunta di slack temporali, oltre a portare al progetto una pianificazione più precisa, comporta un aumento dei costi che è però commisurato all'aumento della qualità finale.

2.3 Obiettivi

2.3.1 Qualità di processo

Al fine di garantire la qualità di prodotto è necessario ricercare la qualità dei processi che lo definiscono. Per questo *Sirius* ha deciso di adottare lo standard ISO/IEC 15504 denominato SPICE il quale fornisce le indicazioni necessarie a valutare l'idoneità dei processi attualmente in uso. Per applicare correttamente questo modello, ed adattarlo alla gestione attuata dal gruppo di lavoro, si è deciso di utilizzare il ciclo di Deming o PDCA: il quale definisce una metodologia di controllo dei processi durante il loro ciclo di vita permettendo, inoltre, di migliorare in modo continuo la qualità.

2.3.2 Qualità di prodotto

Al fine di aumentare il valore del prodotto e di garantire il corretto funzionamento dello stesso, è necessario fissare degli obiettivi e garantire che questi vengano effettivamente rispettati. Lo standard ISO/IEC 9126, descritto in appendice A.2, è stato redatto con lo scopo di definire obiettivi e di delineare metriche capaci di misurare il raggiungimento degli stesso.

Di seguito elenchiamo le caratteristiche che *Sirius* si impegna a garantire per il prodotto che andrà a realizzare. Oltre alla descrizione della caratteristica qui vengono definite le metriche, i parametri di accettazione.

- Funzionalità L'applicazione prodotta deve soddisfare tutti i requisiti obbligatori individuati in Analisi dei requisiti v2.0.0 nel modo più completo ed economico possibile, garantendo la sicurezza del prodotto e dei suoi componenti, e adeguandosi alle norme e alle prescrizioni imposte. Inoltre, data la natura del prodotto Sequenziatore, Sirius ha deciso di prestare particolare attenzione al'interoperabilità del codice: intesa come la capacità di agire con altri sistemi.
 - misura: percentuale di requisiti soddisfatti;
 - metrica: la soglia di sufficienza sia il soddisfacimento di tutti i requisiti obbligatori;

- Affidabilità L'applicazione deve dimostrarsi robusta, di facile ripristino e recupero in caso di errori, e aderire alle norme e alle prescrizioni stabilite.
 - **misura:** numero di esecuzioni dell'applicazione andate a buon fine;
 - metrica: le esecuzioni dovranno spaziare su tutta la gamma delle possibili casistiche. Il numero di esecuzioni andate a buon fine dovrà essere rapportato al numero totale delle casistiche considerate;
- Usabilità L'applicazione deve risultare comprensibile, facilmente apprendibile e soprattutto aderire a norme e prescrizioni per garantire facilità d'uso e soddisfacimento delle necessità dell'utente.
 - misura: data l'aleatorietà della qualità richiesta, non si riesce a definire un'unità di misura obiettiva;
 - metrica: non è stata definita una metrica di usabilità; ma Sirius cercherà di offrire la miglior esperienza di utilizzo per tutti coloro che usano il prodotto;
- Efficienza L'applicazione deve fornire tutte le funzionalità nel minor tempo possibile e con il minimo utilizzo di risorse.
 - misura: il tempo di latenza per ottenere una risposta dal programma; il tempo di latenza per ottenere una risposta simulando un sovraccarico della rete;
 - metrica: i tempi di latenza dovranno essere in linea con le tempistiche rilevate con l'utilizzo di architetture dello stesso tipo di quelle definite nel prodotto;
- Manutenibilità L'applicazione deve essere analizzabile, facilmente modificabile e verificabile; inoltre dovrà ridurre il rischio di comportamenti inaspettati al seguito dell'effettuazione di modifiche. Inoltre la documentazione prodotta deve essere chiara e comprensibile.
 - misura: le misurazioni per garantire questa caratteristica sono diverse e non esclusive e sono descritte in seguito;
 - metrica: le metriche da utilizzare sono descritte in seguito;
- Portabilità L'applicazione deve essere adattabile e compatibile con ambienti d'uso diversi, e con i quali dovrà coesistere condividendo risorse e anche per questo sarà validata da strumenti forniti dal W3C.
 - misura: L'applicazione dovrà essere eseguibile con i browser indicati in Analisi dei requisiti v2.0.0;

 metrica: soddisfacimento dei requisiti di compatibilità e validazione tramite strumenti W3C;

Inoltre, Sirius ha definito delle altre caratteristi che andranno ricercate per il prodotto:

- Semplicità: realizzazione del prodotto nella maniera più semplice possibile, ma non semplicistica;
- Incapsulamento: il codice deve avere visibilità minima e permettere un utilizzo dall'esterno solamente mediante interfacce; ciò aumenta la manutenibilità e la possibilità di riuso del codice;
- Coesione: le funzionalità che concorrono allo stesso fine devono risiedere nello stesso componente; favorisce semplicità, manutenibilità, riusabilità e riduce l'indice di dipendenza.

La definizione delle metriche e gli strumenti utilizzati per la rilevazione delle stesse sono specificate in Norme di progetto v2.0.0. Di seguito per ogni metrica indichiamo le misure desiderabili: divise in range ottimale e range di accettazione. D.S indica che sarà definito in seguito.

Metrica	Accettazione	Ottimale
SV^1	>-(ore prev x5%)	>0
BV^2	>-(costo prev x10%)	>0
$Gulpease^3$	40-100	50-100
Complessità ciclomatica ⁴	1-15	1-10
Livelli di annidamento ⁵	1-6	1-3
Attributi per classe ⁶	0-16	3-8
Parametri per metodo ⁷	0-8	0-4
Linee di codice per		
linee di commento ⁸	>0,25	>0,30
Accoppiamento	D.S.	D.S.
Copertura	80%-100%	85%-100%

Tabella 1: parametri delle metriche adottate.

I parametri ottimali e di accettazione sono riferiti a:

- 1. Parametro calcolato da Sirius valutando l'inesperienza del gruppo;
- 2. Parametro calcolato da Sirius valutando l'inesperienza del gruppo;
- 3. Parametro calcolato in base all'utenza della documentazione;
- 4. Il valore 10 come massimo fu raccomandato da T.J.McCabe, l'inventore di tale metrica;

- 5. Valore ideale valutando la chiarezza di codifica;
- 6. Valore ideale valutando la chiarezza di codifica;
- 7. Valore ideale valutando la chiarezza di codifica;
- 8. Il valore 0,30 è ricavato dal rapporto 22/78. Valori ricavati dalle medie dichiarate da Ohlo(Open source network).

2.4 Procedure di controllo

2.4.1 Qualità di processo

Al fine di garantire la qualità di processo, *Sirius* adotterà il principio PDCA, descritto nella sezione A.1. Tramite tale tecnica, sarà garantito un miglioramento continuo dei processi e quindi della qualità degli stessi. Come diretta conseguenza si otterrà il miglioramento qualitativo del prodotto risultante. Per ottenere questo è necessario che il processo sia in controllo e quindi:

- Effettuare una dettagliata pianificazione dei processi;
- Pianificare il numero di risorse da utilizzare, e ripartire le stesse in modo chiaro;

Verranno utilizzate due metriche per monitorare la qualità di processo e per mantenere il processo in controllo, queste sono: BV che monitora il il consumo del budget nel tempo e SV che valuta lo stato di avanzamento temporale attuale rispetto a quello pianificato. Le specifiche di queste due metriche sono indicate in Norme di progetto v2.0.0.

Valori ottimali di BV ed SV indicano un elevato grado di conoscenza ed integrazione del processo come indicato nel CMMI nella sezione A.3.

La qualità dei processi viene monitorata inoltre tramite la qualità del prodotto: infatti un prodotto di bassa qualità indica un processo da migliorare.

Se su un processo non vengono rilevati problemi, è possibile apportare dei miglioramenti: riducendo il numero di cicli iterattivi, il tempo o le risorse ma garantendo che l'esecuzione del processo sia fedele al piano e soddisfi i requisiti. In questo modo si aumenta l'efficenza del processo e se ne determina un'adattamento positivo alla realtà del team di lavoro valutabile in efficacia.

2.4.2 Qualità di prodotto

Il controllo di qualità di prodotto verrà garantito da:

Quality Assurance: insieme delle attività atte a garantire il raggiungimento degli
obiettivi di qualità. Prevede tecniche di analisi statica e dinamica descritte in
2.8;

- Verifica: processo che determina se l'output è consistente, corretto e completo. Il processo di verifica sarà eseguito durante l'intera durata del progetto. I risultati delle attività di verifica saranno riportate in appendice B;
- Validazione: certificazione che attesta la conformità del sistema ai requisiti.

2.5 Risorse umane e responsabilità

Al fine di garantire l'efficacia e la sistematicità del processo di verifica vengono attribuite delle responsabilità a degli specifici ruoli di progetto. Per il processo di verifica le responsabilità sono attribuite a Responsabile di Progetto ed ai Verificatori. Mentre compito dell' Amministratore è quello di supporto a tutte le attività fornendo una solida infrastruttura software anche per il processo di verifica in ogni fase lavorativa. Per una descrizione più approfondita di ruoli e responsabilità si rimanda a Norme di progetto v2.0.0.

2.6 Risorse software

Al fine di effettuare la fase di verifica e validazione nel modo più sistematico possibile sono stati messi a disposizione di tutti i Verificatori dall' Amministratore un pacchetto di prodotti software il più specifico possibile rispetto alle esigenze del team. Inoltre, è sempre compito dell' Amministratore formare ogni verificatore all'utilizzo dei prodotti che permettano la verifica, evidenziando, se richiesto le funzionalità non utilizzate per ogni prodotto. Sirius ha deciso di adottare questo tipo di formazione per valorizzare il lavoro di chi effettivamente utilizza i prodotti di verifica, dando la possibilità che proprio da queste figure nascano idee e proposte di miglioramento che saranno poi valutate dal Responsabile di progetto congiuntamente all'Amministratore. Gli strumenti necessari al raggiungimento degli obiettivi definiti è indicato in Norme di progetto v2.0.0, che ne definiscono anche le specifiche tecniche e l'utilizzo.

2.7 Tecniche di analisi statica

Questa tecnica di analisi applicabile sia alla documentazione che al codice e permette di effettuare la verifica di quanto prodotto individuando errori ed anomalie. Le tecniche di analisi statica utilizzate sono di tipo **inspection** per la documentazione, solo a seguito di una prima analisi di tipo **walkthrough**. Per il codice verrà adottata principalmente una tipologia di analisi **inspection** per gli errori che sono più ricorrenti o che sono stati rilevati nelle verifiche precedenti. Per la descrizione si faccia riferimento a Norme di progetto v2.0.0.

2.8 Tecniche di analisi dinamica

L'analisi dinamica si applica solamente al prodotto software e ciò consiste nell'esecuzione del codice mediante l'uso di test predisposti per verificarne il funzionamento o rilevare possibili difetti di implementazione eseguendo tutto o solo una parte del codice. Al fine di garantire l'utilità del test è necessario che il test sia *ripetibile*. Per *ripetibile* si intende che dato un certo input per la stessa porzione di codice, questo produca sempre lo stesso output sulla stesso ambiente. Per questo motivi saranno definiti a priori:

- Ambiente: si tratta sia del sistema hardware che di quello software sui quali è stato pianificato l'utilizzo del prodotto; di essi deve essere specificato lo stato iniziale dal quale poter far partire il test;
- Specifica: definire quali sono gli input e quali dovranno essere gli output attesi;
- **Procedure**: definire come sono svolti i test, l'ordine e come devono essere analizzati i risultati;

I test verteranno su test di unità per le porzioni di codice prodotte, test di integrazione per le componenti aggiunte in modo incrementale; test di sistema per verificare la corretta esecuzione del sistema; eventuali test di regressione per le modifiche apportate a componenti già testati; e infine test di accettazione per validare il prodotto finale.

2.8.1 Test di unità

Verifica di ogni singola unità del prodotto tramite l'utilizzo di stub, driver e logger.

2.8.2 Test di integrazione

Verifica dei componenti di sistema che andranno ad incrementare la parte già testata del prodotto; con l'obiettivo di testare la combinazione di più unità garantendone le funzionalità del risultato. Per l'esecuzione di tali test dovranno essere aggiunte delle componenti fittizie a sostituzione di quelle che non sono ancora state sviluppate, facendo in modo di non influenzare l'esito dell'analisi.

2.8.3 Test di sistema

Consiste nella validazione del prodotto software dal momento che lo si ritiene giunto ad una versione definitiva. Tale test ha lo scopo di verificare che la il prodotto copra tutti i requisiti stabiliti in fase di analisi.

2.8.4 Test di regressione

Si intende la nuova esecuzione di test a fronte di una modifica di alcune componenti software, per garantire la conformità del sistema post modifica.

2.8.5 Test di accettazione

Definito come il collaudo del prodotto. Questo test viene eseguito in presenza del proponente ed in caso di esito positivo si può procedere al rilascio ufficiale del prodotto sviluppato.

3 Gestione amministrativa della revisione

3.1 Comunicazione e risoluzione anomalie

Un'anomalia consiste in una deviazione del prodotto dalle aspettative prefissate. Per la gestione e risoluzione di anomalie ci si affida allo strumento di ticketing adottato da Sirius, e normato in Norme di progetto v2.0.0. Il Verificatore, per ogni anomalia riscontrata, dovrà aprire un nuovo ticket indirizzato al Responsabile di Progetto, il quale, dopo aver valutato l'impatto costi/benefici lo approverà e aprirà in ticket per il Programmatore che ha sviluppato quella parte di software o redatto il documento. Per la procedura di creazione del ticket si rimanda a Norme di progetto v2.0.0.

3.2 Trattamento delle discrepanze

Una discrepanza è un errore di coerenza tra il prodotto realizzato e quello atteso. Sirius interpreta la discrepanza come una forma di anomalia non grave, e per questo verrà trattata come tale.

3.3 Procedure di controllo di qualità di processo

Le procedure di controllo qualità di processo si basano sul ciclo di Deming, che lo arricchisce. Fissare gli obiettivi, è la prima attività del ciclo di Deming di processo; tutte le successive attività devono mutare nel tempo per fare in modo che possano essere migliorate in modo continuativo. I processi saranno pianificati dettagliatamente e ogni pianificazione prevederà dei valori attesi dallo stesso, questi saranno confrontati con i risultati ottenuti alla terminazione del processo e analizzati. Se l'analisi di tali misure evidenzia valori che si discostano, in modo negativo, dal valore atteso, questo sarà indice di un'opportunità di miglioramento. Per ognuno di questi valori si ricercheranno le cause e si definiranno specifiche soluzioni intervenendo sul processo stesso ed eventualmente anche sul valore definito nella pianificazione iniziale. Sirius ha definito le principali misurazioni di processo:

- Lead time preventivato e lead time a consuntivo;
- Risorse utilizzate durante il processo;
- Cicli di processo;
- Attinenza alla pianificazione iniziale;
- Soddisfacimento dei requisiti richiesti.

Se non vengono rilevati problemi relativi ad un processo, è possibile aumentare l'efficenza del processo studiando tecniche migliorative che permettano di abbassare il *lead time* o il numero di risorse impiegate, garantendo sempre che il prodotto finale abbia

un elevato grado di soddisfacimento dei requisiti richiesti. Ad ogni modo, ogni singola misurazione può essere utilizzata per una più specifica pianificazione nelle successive esecuzioni di processo.

4 Pianificazione dei test

Di seguito elenchiamo tutti i test di validazione, sistema ed integrazione previsti, prevedendo però ad un successivo aggiornamento ed integrazione degli stessi e dei test di unità nella prossima revisione. Per quanto riguarda le tempistiche di esecuzione dei test si faccia riferimento a Piano Di Progetto v2.0.0. Il valore **N.A** è da intendersi come non applicato, in quanto tali test saranno eseguiti successivamente nello svolgimento del progetto.

4.1 Test di sistema

In questa sezione vengono descritti i test di sistema che consentiranno a *Sirius* di verificare il comportamento dinamico del sistema rispetto ai requisiti descritti in Analisi dei requisiti v2.0.0. I test sotto riportati sono relativi ai requisiti software individuati e meritevoli di test.

4.1.1 Descrizione dei test di sistema

4.1.2 Ambito utente

Test	Requisito	Descrizione	Stato
TU1	FOBU 1	Verificare che il sistema permetta all'utente di registrarsi	N.A.
TU1.1	FOBU 1.1	Verificare che lo <i>username</i> utente lo identifichi univocamente all'interno del sistema	N.A.
TU1.1.1	FOBU 1.1.1	Verificare che lo <i>username</i> inserito dall'utente sia composto da almeno 6 caratteri	N.A.
TU1.2	FOBU 1.2	Verificare che l'utente debba inserire una password d'accesso	N.A.
TU1.2.1	FOBU 1.2.1	Verificare che la <i>password</i> sia composta almeno da 8 caratteri alfanumerici	N.A.
TU1.5	FOBU 1.5	Verificare che il campo data di nascita sia un campo obbligatorio	N.A.
TU1.5	FOBU 1.5.1	Verificare che la data di nascita inseri- ta dall'utente sia antecedente alla data di iscrizione	N.A.
TU1.6	FOBU 1.6	Verificare che la $email$ utente sia un campo obbligatorio	N.A.

TU1.6.1	FDEU 1.6.1	Verificare che la <i>email</i> inserita corrisponda ad un indirizzo di posta elettronica esistente	N.A.
TU2	FOBU 2	Verificare che il sistema permetta all'utente di autenticarsi	N.A.
TU2.1	FOBU 2.1	Verificare che il sistema non permetta il login con dati non presenti sul $server_G$	N.A.
TU3.1	FOPL 3.1	Verificare che l'utente autenticato possa visualizzare le proprie credenziali	N.A.
TU3.2	FOPL 3.2	Verificare che l'utente autenticato possa modificare i propri dati	N.A.
TU4.1	FOBL 4.1	Verificare che l'utente autenticato possa sce- gliere un processo da una lista selezionata o da risultati di una ricerca	N.A.
TU4.2	FOBL 4.2	Verificare che l'utente autenticato possa visualizzare la descrizione di un processo selezionato	N.A.
TU4.3	FOBL 4.3	Verificare che un utente autenticato pos- sa iscriversi a un processo precedentemente selezionato	N.A.
TU4.4	FOBL 4.4	Verificare che un utente autenticato possa eseguire il processo scelto a cui è iscritto	N.A.
TU4.4.1	FOBL 4.4.1	Verificare che all'utente autenticato sia con- cesso di visualizzare i criteri di terminazione di un processo	N.A.
TU4.4.2	FOBL 4.4.2	Verificare che l'utente autenticato pos- sa visualizzare le informazioni sullo sta- to corrente di avanzamento del processo selezionato	N.A.
TU4.4.4	FOBL 4.4.4	Verificare che il sistema permetta all'u- tente autenticato di eseguire un passo del processo scelto	N.A.
TU4.4.4.1	FOBL 4.4.4.1	Verificare che l'utente autenticato possa visualizzare le informazioni del passo in esecuzione	N.A.

TU4.4.4.2	FOBL 4.4.4.2	Verificare che all'utente autenticato sia con- cesso visualizzare i vincoli da rispettare per superare il passo in esecuzione	N.A.
TU4.4.4.3	FOBL 4.4.4.3	Verificare che il sistema permetta all'uten- te autenticato di inserire i dati richiesti per l'esecuzione del passo in corso	N.A.
TU4.4.4.4	FOBL 4.4.4.4	Verificare che l'utente autenticato pos- sa inviare al sistema i dati richiesti per l'esecuzione del passo in corso	N.A.
TU4.4.4.6	FOPL 4.4.4.4.6	Verificare che il sistema permetta all'utente autenticato di raccogliere i dati in assenza di connessione e di inviarli a collegamento ripristinato	N.A.
TU4.4.4.5	FOBL 4.4.4.5	Verificare che il sistema notifichi all'uten- te autenticato se i dati che ha inviato sono corretti, se non soddisfano i vincoli di su- peramento del passo o se sono in attesa di approvazione	N.A.
TU4.4.4.6	FOBL 4.4.4.6	Verifica se il sistema permetta all'utente au- tenticato di concludere un passo del quale ha ricevuto l'approvazione sui dati da parte del sistema o dall'process owner	N.A.
TU4.4.4.7	FOPL 4.4.4.7	Verifica che il sistema permetta all'utente autenticato di saltare il passo in esecuzione se facoltativo	N.A.
TU4.4.5.1	FOPL 4.4.5.1	Verifica che all'utente autenticato sia con- cessa la creazione di un report finale su un processo terminato o del quale ha eseguito tutti i passi	N.A.
TU4.4.5.2	FOBL 4.4.5.2	Verifica che all'utente autenticato sia permesso di eliminare un processo, un processo terminato o del quale ha eseguito tutti i passi, dalla lista dei processi gestiti	N.A.
TU4.5	FOBL 4.5	Verificare che il sistema permetta all'utente autenticato di disiscriversi da un processo a cui è iscritto	N.A.

TU5	FOBL 5	Verifica che l'utente possa terminare la N.A	4.
		propria sessione, diventando utente generico	

Tabella 1: Tabella dei requisiti utente

4.1.3 Ambito process owner

Test	Requisito	Descrizione	Stato
TA1	FOBA 1	Verificare che al process owner sia consentita la creazione di processi	N.A.
TA1.1	FOBA 1.1	Verificare che il process owner deb- ba inserire un nome che identifichi univocamente il processo che vuole creare	N.A.
TA1.2	FOBA 1.2	Verificare che il process owner debba inserire la descrizione del processo che vuole creare	N.A.
T2.4.1	FOBA 2.4.1	Verificare che il sistema permetta al process owner di visualizzare i dati in- viati dagli utenti che richiedono la sua approvazione	N.A
T1.3	FOBA 1.3	Verificare che il process owner debba definire i criteri di terminazione di un processo durante la sua creazione	N.A.
T1.4	FOBA 1.4	Verificare che il sistema permetta al process owner di gestire i passi del processo in creazione	N.A.
T1.4.1	FOBA 1.4.1	Verificare che il sistema permetta al process owner di creare un passo del processo in creazione	N.A.
T1.4.2	FOBA 1.4.2	Verificare che il process owner pos- sa visualizzare la lista dei passi crea- ti durante la creazione di un nuovo processo	N.A.
T1.4.3	FDEA 1.4.3	Verificare che il process owner, durante la creazione di un nuovo processo, potrà modificare un passo esistente	N.A.

T1.4.4	FDEA 1.4.4	Verificare che il sistema permetta al process owner di eliminare un passo del processo in creazione	N.A.
T1.5	FOBA 1.5	Verificare che il sistema permetta al process owner di avviare un processo in creazione che contiene almeno un passo	N.A.
T2	FDEA 2	Verificare che il sistema permetta al process owner la gestione dei processi creati	N.A.
T2.1	FDEA 2.1	Verificare che il process owner possa scegliere e gestire un processo avviato	N.A.
T2.1.2	FOPA 2.1.2	Verificare che al process owner sia concesso di ricercare un processo inserendone il nome	N.A.
T2.1.3	FDEA 2.1.3	Verificare che il sistema permetta al process owner di selezionare un processo da gestire	N.A.
T2.2	FOPA 2.2	Verificare che il sistema permetta al process owner di selezionare gli utenti a cui permettere l'iscrizione al processo gestito	N.A.
T2.4	FDEA 2.4 e FOBA 2.4.1	Verificare che al process owner sia con- cesso di controllare e visualizzare i dati inviati dagli utenti che richiedono la sua approvazione	N.A.
T2.4.2	FDEA 2.4.2	Verificare che il process owner possa approvare i dati controllati	N.A.
T2.4.3	FDEA 2.4.3	Verificare che il sistema permetta al- l'process owner di respingere i dati controllati	N.A.
T2.4.4	FDEA 2.4.4	Verificare che il sistema invii l'esito del controllo agli utenti che hanno inviato dei dati di richiesta di approvazione	N.A.

T2.5	FDEA 2.5	Verificare che il sistema permetta all'process owner di terminare un processo avviato	N.A.
T2.6	FDEA 2.6	Verificare che al process owner sia con- cesso di eliminare un processo termina- to dall'insieme dei processi creati	N.A.

Tabella 2: Tabella dei requisiti process owner

4.2 Requisiti di vincolo

Test	Requisito	Descrizione	Stato
TV1	VOB1	Verificare che il sistema sia compatibile con il $browser_G$ $Google\ Chrome_G$ versione 27 e successive	N.A.
TV5	VOB5	Verificare che il sistema sia compatibile con il $browser_G$ $mobile\ Android_G$ versione 2.3 e successive	N.A.
TV6	VOB6	Verificare che il sistema sia compatibile con il $browser_G$ Google Chrome per $Android_G$ a partire dalla versione 18 inclusa	N.A.
TV7	VOB7	Verificare che il sistema sia compatibile con il $browser_G$ $mobile\ Internet\ Explorer_G\ per\ Windows\ Phone\ 8_G$ a partire dalla versione 10 inclusa	N.A.

Tabella 3: Tabella dei requisiti di vincolo di compatibilità

4.3 Test di integrazione

In questa sezione verranno descritti i test di integrazione, da utilizzare per i vari componenti descritti nella progettazione ad alto livello, che permettono di verificare la corretta integrazione ed il corretto flusso dei dati all'interno del sistema. Si è deciso di utilizzare una strategia di integrazione incrementale bottom-up che permette di sviluppare e verificare le componenti in parallelo.

Assemblando le componenti in modo incrementale i difetti rilevati da un test sono da attribuirsi, con maggior probabilità, all'ultima parte aggiunta e si rende ogni passo di integrazione reversibile consentendo di retrocedere verso uno stato noto e sicuro. In questo modo i componenti base vengono testati più volte riducendo la possibile presenza di errori. I test di integrazione saranno definiti durante la progettazione di dettaglio in modo che possano essere il più completi possibile, e che siano nella sequenza corretta rispetto allo sviluppo temporale dei componenti.

4.4 Test di validazione

I test di validazione saranno definiti durante la progettazione di dettaglio in modo che possano essere il più completi possibile.

A Appendice

A.1 Ciclo di Deming

Alla luce delle informazioni sopra citate il team ha deciso di adottare la politica del ciclo PDCA per le attività da svolgere. Lo stesso, oltre a fornire supporto nella pianificazione garantisce un elevato standard qualitativo tramite il *Miglioramento continuo*, che è alla base del ciclo di Deming.

Figura 2: Ciclo di Deming

- *Plan*: pianificazione che prevede la definizione di procedure, risorse, scadenze e responsabilità ;
- ullet $oldsymbol{Do}$: esecuzione delle attività pianificate;
- Check: controllo dei risultati ottenuti e confronto con quelli pianificati;
- Act: Analisi dei risultati ottenuti e modifica o definizione di nuove procedure che permettano di evitare gli aspetti critici dei processi in esame.

L'adozione del PDCA garantisce un continuo arricchimento dei processi tramite dei cambiamenti e delle riorganizzazioni. Alla base di questo, ci deve essere una conoscenza specifica delle Norme di progetto v2.0.0 da parte di tutti i componenti del team. Inoltre, queste migliorie aumentano i costi di gestione e per questo devono essere valutati dal Responsabile di progetto.

A.2 ISO/IEC 9126

Lo standard ISO/IEC 9126 descrive gli obiettivi qualitativi di prodotto e delinea in generale le metriche per misurare il raggiungimento di tale obiettivo (figura 3). In questo standard i criteri sono divisi in 3 aree diverse:

Figura 3: Caratteristiche qualitative definite dal modello ISO/IEC 9126

- Qualità in uso: è la qualità del software dal punto di vista dell'utilizzatore;
- Qualità esterna: è la qualità del software dal punto di vista esterno nel momento in cui esso viene eseguito e testato in ambiente di prova;
- Qualità interna: è la qualità del software vista dall'interno e quindi sono le caratteristiche implementative del software quali architettura e codice che ne deriva.

Non avendo modo di verificare la qualità in uso, *Sirius*ha deciso di lavorare su qualità interna ed esterna definendo apposite metriche.

- Funzionalità è la capacità di un prodotto software di fornire funzioni che soddisfano esigenze stabilite, necessarie per operare sotto condizioni specifiche.
 - Appropriatezza: rappresenta la capacità del prodotto software di fornire un appropriato insieme di funzioni per gli specificati compiti ed obiettivi prefissati all'utente.
 - Accuratezza: la capacità del prodotto software di fornire i risultati concordati o i precisi effetti richiesti;
 - Interoperabilità: è la capacità del prodotto software di interagire ed operare con uno o più sistemi specificati;
 - Conformità: la capacità del prodotto software di aderire a standard, convenzioni e regolamentazioni rilevanti al settore operativo a cui vengono applicate;

- Sicurezza: la capacità del prodotto software di proteggere informazioni e dati negando in ogni modo che persone o sistemi non autorizzati possano accedervi o modificarli, e che a persone o sistemi effettivamente autorizzati non sia negato l'accesso ad essi.
- Affidabilità: è la capacità del prodotto software di mantenere uno specificato livello di prestazioni quando usato in date condizioni per un dato periodo.
 - Maturità: è la capacità di un prodotto software di evitare che si verificano errori, malfunzionamenti o siano prodotti risultati non corretti;
 - Tolleranza agli errori: è la capacità di mantenere livelli predeterminati di prestazioni anche in presenza di malfunzionamenti o usi scorretti del prodotto;
 - Recuperabilità: è la capacità di un prodotto di ripristinare il livello appropriato di prestazioni e di recupero delle informazioni rilevanti, in seguito a un malfunzionamento. A seguito di un errore, il software può risultare non accessibile per un determinato periodo di tempo, questo arco di tempo è valutato proprio dalla caratteristica di recuperabilità;
 - Aderenza: è la capacità di aderire a standard, regole e convenzioni inerenti all'affidabilità.
- Usabilità: è la capacità del prodotto software di essere capito, appreso, usato e benaccetto dall'utente, quando usato sotto condizioni specificate.
 - Comprensibilità: esprime la facilità di comprensione dei concetti del prodotto, mettendo in grado l'utente di comprendere se il software è appropriato.
 - Apprendibilità: è la capacità di ridurre l'impegno richiesto agli utenti per imparare ad usare la sua applicazione;
 - Operabilità: è la capacità di mettere in condizione gli utenti di farne uso per i propri scopi e controllarne l'uso;
 - Attrattiva: è la capacità del software di essere piacevole per l'utente che ne fa uso;
 - Conformità: è la capacità del software di aderire a standard o convenzioni relativi all'usabilità.
- Efficienza: è la capacità di fornire appropriate prestazioni relativamente alla quantità di risorse usate.
 - Comportamento rispetto al tempo: è la capacità di fornire adeguati tempi di risposta, elaborazione e velocità di attraversamento, sotto condizioni determinate;

- Utilizzo delle risorse: è la capacità di utilizzo di quantità e tipo di risorse in maniera adeguata.
- Conformità: è la capacità di aderire a standard e specifiche sull'efficienza_G.
- Manutenibilità: è la capacità del software di essere modificato, includendo correzioni, miglioramenti o adattamenti.
 - Analizzabilità: rappresenta la facilità con la quale è possibile analizzare il codice per localizzare un errore nello stesso;
 - Modificabilità: la capacità del prodotto software di permettere l'implementazione di una specificata modifica (sostituzioni componenti);
 - Stabilità: la capacità del software di evitare effetti inaspettati derivanti da modifiche errate;
 - Testabilità: la capacità di essere facilmente testato per validare le modifiche apportate al software.
- Portabilità: è la capacità del software di essere trasportato da un ambiente di lavoro ad un altro.
 - Adattabilità: la capacità del software di essere adattato per differenti ambienti operativi senza dover applicare modifiche diverse da quelle fornite per il software considerato;
 - Installabilità: la capacità del software di essere installato in uno specificato ambiente;
 - Conformità: la capacità del prodotto software di aderire a standard e convenzioni relative alla portabilità;
 - Sostituibilità: è la capacità di essere utilizzato al posto di un altro software per svolgere gli stessi compiti nello stesso.

A.3 Capability Maturity Model Integration (CMMI)

Figura 4: Livello di maturità delle procedure

Il modello identifica cinque livelli di maturità dei processi all'interno di un'organizzazione: dal Livello 1, il processo_G più immaturo, o caotico, al Livello 5, il processo_G più maturo, o di qualità

• Livello di maturità 1

Partendo dall'assunzione che una pratica non può essere migliorata se non è ripetibile, il livello di maturità iniziale vede l'organizzazione effettuare la gestione delle persone tramite procedure ad hoc, spesso informali e non ripetibili se non sporadicamente. Un esempio tipico è data dall'impossibilità, da parte delle persone, di assicurare la data di rilascio del software, indipendentemente dalle tecnologie utilizzate o dalla preparazione delle persone. Un'altra conseguenza tipica è la gestione incontrollata delle modifiche ai requisiti con conseguenze negative sui piani di lavoro. L'attività principale da compiere in questo periodo è quella di aiutare l'organizzazione a rimuovere ogni impedimento alla ripetibilità delle pratiche;

• Livello di maturità 2

Al livello di maturità 2, l'organizzazione stabilisce una politica per divulgare presso tutti i gruppi di lavoro i processi stabiliti. Prima di pensare ad ogni miglioramento, l'organizzazione deve assicurare un ambiente di lavoro stabile in cui eseguire in maniera ripetibile i propri processi. Finché si opera in una modalità non strutturata, il management è troppo occupato nel controllo quotidiano

delle operazione per poter pensare a qualsivoglia cambiamento in ottica di miglioramento. L'obiettivo principale del livello 2 è quindi quello di permettere alle persone di svolgere il proprio lavoro in maniera ripetibile, in base a quanto già fatto in passato ed in base all'esperienza maturata. A questo livello il management lascia ai responsabili dei singoli gruppi il compito di controllare il lavoro quotidiano, dedicandosi a sua volta al controllo dei risultati finali e della baseline (ed alle rispettive modifiche). Solo quando le pratiche stabilite saranno eseguite con naturalezza dall'intero gruppo, questo potrà iniziare il periodo successivo di utilizzo di processi comuni a tutto il team;

• Livello di maturità 3

Al livello di maturità 3, l'organizzazione seleziona le migliori pratiche e le include in un processo comune. Operando tutti con le stesse pratiche definite, l'organizzazione sarà in grado di valutare le pratiche con migliori performance nell'ambiente comune. Documentate nell'ambito del processo comune le pratiche, queste diventano anche lo strumento di apprendimento per le nuove persone. Le misure effettuate sulle pratiche di maggiore criticità sono registrate in un archivio ed utilizzare per effettuarne l'analisi. In tale modo si è creato il fondamento per una cultura di base comune all'organizzazione: un processo comune conosciuto ed applicato da tutti. E' il fondamento della cultura professionale di base dell'organizzazione;

• Livello di maturità 4

Al livello di maturità 4, l'organizzazione inizia a gestire i processi in base ai risultati utilizzando l'analisi delle misure effettuate. Le attività sono svolte secondo i processi comuni definiti ed i risultati sono quindi più controllabili in base all'esperienza storica. Le deviazioni dai risultati attesi sono analizzate, le cause delle deviazioni individuate e le azioni correttive prese di conseguenza. I processi sono quindi gestiti quantitativamente ed i risultati sono prevedibili con maggiore cura. I risultati del business sono controllati da valori e non più dalle $milestone_G$ come prima. Si crea quindi la cultura per un vero miglioramento dei processi e quindi delle performance reali;

• Livello di maturità 5

Al livello di maturità 5, l'organizzazione opera utilizzando in maniera ripetitiva i propri processi, ne valuta le performance quantitativamente ed opera per migliorarli di continuo. Gli eventuali difetti sono analizzati e le cause che li generano sono rimosse per evitare il loro ripetersi. Le persone sono culturalmente abituate ad eseguire i processi conosciuti ed il management a gestirli quantitativamente ed a migliorarli. Si crea anche la cultura dell'accettazione del cambiamento. L'organizzazione entra in un circolo virtuoso di miglioramento continuo;

B Resoconto attività di verifica

B.1 Riassunto dell'attività di verifica su RR

Sirius, ha deciso di valorizzare sopratutto i requisiti desiderabili per fare in modo di tenere alto l'indice di efficienza_G. Valutando, durante lo stato di avanzamento, quali di questi requisiti saranno successivamente sviluppati nella realizzazione del prodotto software. Questo tipo di scelte risultano infatti difficoltose allo stato attuale in quanto una pianificazione approfondita necessiterebbe di lead time _G precisi che non sono al momento tra le conoscenze dei componenti del gruppo. Nel periodo di tempo che ha portato Sirius alla consegna di questa revisione sono stati verificati i documenti ed i processi.

I documenti sono stati verificati anche durante le operazioni di redazione per portare a conoscenza dei contenuti tutti i componenti del gruppo di lavoro. L'analisi statica, in primo luogo utilizzando la tecnica del walkthrough, ha portato alla redazione di una lista di controllo che verrà poi incrementata ed utilizzata nell'analisi finale del documento prima di procedere alla consegna. Una volta rilevati gli errori questi sono stati notificati al redattore che ha proceduto alla correzione, evidenziando gli errori frequenti che sono stati utilizzati per migliorare il processo di verifica. Sirius adotta il ciclo PDCA per rendere più efficiente_G ed efficace_G nel tempo il processo di verifica.

L'attività di verifica, inoltre, utilizzando la tecnica inspection è stata utilizzata principalmente per la verifica dei grafici dei casi d'uso. Per verificare la correttezza dei requisiti richiesti e la successiva completezza ci si è affidati ad un particolare strumento di tracciamento definito in Norme di progetto v2.0.0. L'avanzamento dei processi, dettato dal Piano Di Progetto v2.0.0, è stato mantenuto in controllo tramite una costante verifica delle metriche definite in questo documento e di cui troviamo una rappresentazione grafica in seguito.

B.2 Dettaglio dell'attività di verifica su RR

B.2.1 Documenti

Indice di Gulpease per i documenti redatti:

Documento	Valore di accettazione	Esito	
Piano Di			
Progetto	>40	Positivo	
v2.0.0			
Norme di	> 40	Positivo	
progetto v2.0.0	>40	F OSITIVO	
Analisi dei	> 40	Positivo	
requisiti v2.0.0	>40	Postitivo	
Piano Di			
Qualifica	>40	Positivo	
v2.0.0			
Studio Di			
Fattibilità	>40	Positivo	
v2.0.0			

Tabella 2: esito del calcolo indice di Gulpease per ogni documento.

B.2.2 Processi

Sirius ha condotto l'attività di verifica per i processi. In questo primo periodo il processo di documentazione è predominante nella pianificazione delle risorse. Di seguito viene riportato l'indice **SV** (schedule variance) per le attività eseguite e i risultati sono i seguenti:

Attività	Ore pianificate	Ore rilevate	SV rilevato	SV accettazione
Norme di	17 H	17 H	0 H	> -1 H
Progetto	11 H	17 11	0 11	> -1 II
Studio di	8 H	14 H	-6 H	> -1 H
Fattibilità		14 11	-0 11	/ -1 11
Analisi dei	70 H	68 H	2 H	> -4 H
Requisiti		00 11	2 11	→ -4 11
Piano di	37 H	35 H	2 H	> -2 H
Progetto		39 11	2 11	> -2 H
Piano di	26 H	22 H	4 H	> -2 H
Qualifica		ΔΔ Π	4 Π	> -2 Π

Tabella 3 : Indice SV per le attività.

Da una prima analisi, si denota che *Sirius* ha pianificato in modo preciso le attività. L'attività di Studio di Fattibilità, essendo stato uno dei primi documenti che *Sirius* ha redatto, la pianificazione non è stata precisa questo ha portato ad un SV dell'attività fuori dal range di accettazione. Le cause di questo problema sono da ricercare anche nella poca confidenza con gli strumenti di *editor* testi e con gli strumenti di condivisione. La singola occorrenza del problema, non è quindi indice di allarme per gli altri processi che saranno pianificati nell'avanzamento del prodotto.

• SV-totale = 2 H;

SV-totale maggiore di zero denota che *Sirius* stà producendo più velocemente rispetto a quanto pianificato. Questo può essere una diretta conseguenza dell'aggiunta di uno *slack* temporale nella pianificazione delle attività. Il team ha valutato la possibilità di ridurre il tempo di *slack*, per fare in modo che la pianificazione corrisponda alla realtà; ma data la variabilità delle attività che *Sirius* intende svolgere nel *Sirius*ha effettuato l'analisi dei documenti e ha rilevato la conformità controllando l'indice di Gulpease di tutti i documenti prodotti o modificati in questo periodo di tempo.proseguo del progetto e la poca esperienza, è stato deciso di non modificare tale valore.

Di seguito viene riportato l'indice **BV** (*budget variance*) per le attività eseguite e i risultati sono i seguenti:

Attività	Costo pianificato	Costo consuntivo	BV rilevato	BV limite
Norme di	225 00 €	325.00 €	0.00 €	> -32.50 €
Progetto	325.00 €	525.00 €	0.00 €	> -32.30 €
Studio di	180.00 €	310.00 €	-130.00 €	> -18.00 €
Fattibilità	180.00 €	510.00 €	-130.00 €	> -10.00 €
Analisi dei	1620 00 €	1600.00 €	20.00 €	> 16 20 €
Requisiti	1630.00 €	1000.00 €	30.00 €	> -16.30 €
Piano di	1005 00 €	0.45.00.6	60.00.6	> 10.05.6
Progetto	1005.00 €	945.00 €	60.00 €	> -10.05 €
Piano di	400.00 €	420.00 €	70.00 €	> 40.00 €
Qualifica	490.00 €	420.00 €	70.00 €	> -49.00 €

Tabella 4: Indice BV per le attività.

Come descritto sopra per SV, anche BV denota che il preventivo di costo previsto per le attività svolte è stato corretto. In particolare nell'attività di Studio di Fattibilità il costo a consuntivo è stato maggiore rispetto a quello preventivato. Questo è da collegare al costo orario dell'amministratore e non meno alle cause elencate sopra per l'indice SV che ne è strettamente collegato. Complessivamente Sirius ha ottenuto:

• BV-totale = $30.00 \in$.

il risultato ottenuto è una diretta conseguenza di un preventivo appropriato, e quindi ad un piccolo margine di guadagno nel budget di spesa dell'intero progetto.

B.3 Riassunto dell'attività di verifica su RP

Il processo di progettazione è per *Sirius* un importante strumento per giungere ai periodi successivi con maggiore sicurezza del lavoro da fare e con una stima precisa delle risorse e degli obiettivi che si è deciso di perseguire. Nonostante le tempistiche ridotte, l'organizzazione del lavoro ha voluto che prima di procedere alla progettazione vera e propria si correggessero le opportunità di miglioramento riscontrate in RR, con l'obiettivo di consolidare il grado di maturità dei processi esistenti prima di aggiungerne di nuovi. Nella progettazione, descritta nella Specifica Tecnica v1.0.0, si è provveduto a delineare la struttura del software provando a pianificare la tipologia di test che *Sirius* andrà ad eseguire nei periodi a seguire.

B.4 Dettaglio dell'attività di verifica su RP

B.4.1 Documenti

Indice di Gulpease per i documenti redatti:

Documento	Valore di accettazione	Esito	
Piano Di			
Progetto	>40	Positivo	
v2.0.0			
Norme di	>40	Donition	
progetto v2.0.0	>40	Positivo	
Analisi dei	>40	Donition	
requisiti v2.0.0	>40	Positivo	
Piano Di			
Qualifica	>40	Positivo	
v2.0.0			
Studio Di			
Fattibilità	>40	Positivo	
v2.0.0			
Specifica	>40	Positivo	
Tecnica v1.0.0	≥40	1 OSTITUO	

Tabella 5: esito del calcolo indice di Gulpease per ogni documento.

B.4.2 Processi

Sirius ha condotto l'attività di verifica per i processi. In questo primo periodo il processo di documentazione è predominante nella pianificazione delle risorse. Di seguito viene riportato l'indice **SV** (schedule variance) per le attività eseguite e i risultati sono i seguenti:

Attività	Ore pianificate	Ore rilevate	SV rilevato	SV accettazione
Norme di	5 H	9 H	-4 H	> -1 H
Progetto	0 11	0 11		, 111
Analisi dei	53 H	25 H	27 H	> -3 H
Requisiti	99 11	20 11	21 11	<i>></i> −9 11
Piano di	42 H	25 H	17 H	> -2 H
Progetto		20 11	1,7 11	> -Z 11
Piano di	7 H	23 H	-16 H	> -1 H
Qualifica	/ 11	23 11	-10 11	/ -1 II
Specifica	74 H	90 H	-32 H	> -4 H
Tecnica		90 11	-52 11	/ -4 II

Tabella 6 : Indice SV per le attività.

Da una prima analisi, si denota che *Sirius* ha pianificato in modo preciso le attività. Questo ha fatto in modo che la progettazione architetturale sia stata svolta più velocemente rispetto a quanto pianificato. La causa principale può essere ricercata nella velocità di accordo tra i progettisti di *Sirius*, che hanno definito in modo rapido la progettazione del prodotto. Questo ha portato al risultato positivo.

• SV-totale = 2 H;

SV-totale maggiore di zero denota che *Sirius* stà producendo più velocemente rispetto a quanto pianificato. Questo può essere una diretta conseguenza dell'aggiunta di uno *slack* temporale nella pianificazione delle attività. Il team ha valutato la possibilità di ridurre il tempo di *slack*, per fare in modo che la pianificazione corrisponda alla realtà; ma data la variabilità delle attività che *Sirius* intende svolgere nel proseguo del progetto e la poca esperienza, è stato deciso di non modificare tale valore.

Di seguito viene riportato l'indice **BV** (*budget variance*) per le attività eseguite e i risultati sono i seguenti:

Attività	Costo pianificato	Costo consuntivo	BV rilevato	BV limite
Norme di	61.00 €	105.00 €	-44.00 €	> 610 €
Progetto	61.00 €	105.00 €	-44.00 €	> -6.10 €
Analisi dei	1253.00 €	578.00 €	675.00 €	> -125.30 €
Requisiti	1255.00 €	576.00 €	075.00 €	> -120.50 €
Piano di	1182.00 €	705.00 €	477.00 €	> -118.20 €
Progetto	1102.00 €	705.00 €	477.00 €	> -110.20 €
Piano di	71.00 €	582.00 €	-511.00 €	> -7.10 €
Qualifica	71.00 €	562.00 €	-911.00 €	>-7.10 €
Specifica	1584.00 €	2132.00 €	-548.00 €	> -158.40 €
Tecnica	1004.00 €	2132.00 €	-940.00 €	> -100.40 €

Tabella 7: Indice BV per le attività.

Come descritto sopra per SV, anche BV denota che il preventivo di costo previsto per le attività svolte è stato corretto. In particolare la stesura della specifica tecnica ha richiesto più budget di quello preventivato, le altre attività non hanno però consumato del tutto il proprio budget. Questo nonostante le correzioni da effettuare sulla documentazione prodotta in RR. Complessivamente Sirius ha ottenuto:

• BV-totale = $49.00 \in$.

il risultato ottenuto è una diretta conseguenza di un preventivo appropriato, e quindi ad un piccolo margine di guadagno nel budget di spesa dell'intero progetto.