

The purpose of the Bond Analytics guide is to provide an understanding of the analytics that underlie the pricing of bond and repo trades.

Revision Date	Comments
February 2022	First edition for version 17.0.

Contents

Section 1.	Market Data Generation	5
1.1 Rep	oo Curves	5
1.2 Dis	count Curves	5
Section 2.	Bond and Repo Pricing	6
2.1 Prio	cerBond - PricerBondGeneric	7
2.1.1	Pricer Measures	8
2.1.2	Yield Calculations	9
2.1.3	Risky Bond Pricing	16
2.1.4	Pricing Parameters	17
2.2 Prid	cerBondBankofThailand	17
2.3 Prid	cerBondBrady	18
2.4 Prid	cerBondBund	19
2.5 Prid	cerBondCanadas	19
2.6 Prio	cerBondCGS	19
2.7 Prid	cerBondColombian	20
2.7.1	DTF-linked Bonds	20
2.7.2	IBR-linked Bonds	20
2.7.3	IPC-linked Bonds	21
2.8 Prid	cerBondFRN	21
2.9 Prid	cerBondGilt	21
2.10 P	PricerBondJGB	21
2.11 P	PricerBondMMInterest	21
2.12 P	PricerBondRussian	22
2.13 P	PricerBondUSTFRN	22
2.14 P	Pricerlssuance	22
2.15 P	PricerRepo	23
2.15.1	Pricing Parameters	23
2.15.2	Repo NPV	23
2.15.3	Repo PV_COLLAT	24
2.15.4	Repo NPV_COLLAT	24
2.15.5	Repo DIRTY_PRICE	24
2.15.6	Repo NPV_NET	24
Section 3.	Bond Options Pricing	25

Calypso Bond Analytics

3.1	Eur	opean Bond Options	25
3.1	.1	Call Options	26
3.1	.2	Put Options	30
3.2	Am	erican Style Bond Options	31
Section	4.	Complex Pricers	. 32
4.1	Sing	gle Index TARN - PricerBondTarnLGMM	32
4.1	.1	Valuation Methodology	33
4.1	.2	Pricing Parameters	33
4.1	.3	Pricer Measures	35
4.2	Mul	ti-Index TARN - PricerBondLGMM2F	39
4.2	.1	Valuation Methodology	41
4.2	.2	Pricing Parameters	41
4.2	.3	Pricer Measures	42
4.2	.4	Sample Coupon Structures	46

Section 1. Market Data Generation

Repo Curves 1.1

Simple Curve Definition – Repo curves are entered as basis point spreads over the discount curve.

Repo curves are associated with a pricer configuration in the Repo panel. Note that you can also choose to associate a discount curve for the Repo usage.

1.2 **Discount Curves**

Refer to the Calypso Interest Rate Derivatives Analytics Guide and Yield Curves Generation Guide for details.

Section 2. Bond and Repo Pricing

Product	Calypso Product	Description	Pricer
Fixed Coupon Bond	Bond	All major currencies supported (UST, JGB, OAT, GILT, CANADAS, BUND, etc.).	PricerBondBrazilian PricerBondBTAN PricerBondBTPS PricerBondCCT PricerBondCGS PricerBondCMT PricerBondCanadas PricerBondGeneric PricerBondJGB PricerBondMarkkas PricerBondOAT PricerBondPOT PricerBondSTRIPS PricerBondUST
	BondAssetBacked		PricerBondAssetBacked
	BondBrady		PricerBondBrady
	BondConvertible		PricerBondConvertible
	BondHolding		PricerHolding
	BondMMDiscount		PricerBondMMDiscount
	BondMMDiscountAUD		PricerBondMMDiscountA UD
	BondMMInterest		PricerBondMMInterest
Issue	Issuance		Pricerlssuance
Floating Rate Notes	BondFRN		PricerBondFRN
	Bond	UST floating rate note	PricerBondUSTFRN
Bond Option	BondOption		PricerBondOption

Product	Calypso Product	Description	Pricer
Repo	JGBRepo		PricerJGBRepo
	Repo		PricerRepo
Security Lending	SecLending		PricerSecurityLending
Treasury Lock	TreasuryLock	User locks in current bond yield until lockout date.	PricerTreasuryLock
Credit Linked Bond (*)	BondCLN	Standard	PricerBondCLN
		Basket	PricerBondCLNBasket

(*) For Credit Linked Bonds, please refer to the Calypso Credit Derivatives Analytics Guide for details.

2.1 PricerBond - PricerBondGeneric

This pricer covers general bond pricing functionality. Certain pricer measures are custom defined for particular currencies as outlined below.

Following is a simple diagram of the bond pricer structure. Arrows denote inheritance.

2.1.1 Pricer Measures

Dirty Price - The computation of Dirty Price depends on the parameter settings. If BOND FROM QUOTE=true, then the Dirty Price is just obtained from the price in the guote set, plus the accrued interest (the latter is calculated by the pricer using the Accrual Daycount of the bond). This would require a computation of price from yield if the quote type is YIELD (see Yield To Maturity), or a price from spread and a benchmark for quote type SPREAD. If BOND FROM QUOTE=false, the Dirty Price is equal to the Net Present Value (NPV) of the bond. The NPV is the sum of the present values of each of the cashflows, including coupon and principal:

$$Dirty_Price = \sum_{i=n}^{N-1} C_i df_i + F df_N$$

- N = Total number of cashflows generated
- $0 \le n \le N-1$ n = Index of last coupon payment time
- C_i = Coupon payment for time index i
- F = Face value (redemption principal)
- df_i = Discount factor for time index i, which discounts a cashflow from time index i to the given settle date

The coupon payments C_i are computed as defined on the bond product, which can have been customized by the user. Coupon payments are computed using the bond's Coupon Daycount, in contrast to the Accrual Daycount used to compute accrued interest for pricing trades. To employ a standard bond with coupon payments that are all equal, the Coupon Daycount should be set to ACTB/ACTB on the bond. Using this method, a semiannual bond will have payments exactly equal to the coupon rate divided by 2, times the principal. For other coupon daycounts, the pricer uses that daycount convention to compute the amount of the payment for each period, which will vary according to the length of the period.

Clean Price - Clean Price = Dirty Price - Accrual

NPV – NPV = Dirty Price - Trade Dirty Price

calcNPV is called within the process function to calculate NPV. In a standard case, NPV is the sum of clean price and accrual. calcNPV uses method cleanPrice to calculate clean price and uses accrualInBondCurrency or getFinalCouponValueInBondCurrency to calculate accrual. The latter method is called if the maturity date falls between the valDate and the settle date; therefore the accrual should be the entire final coupon. The cleanPrice method can choose either implementing the algorithm presented in this document using repo curve / discount curve or using the market quote price. There is a variation in NPV calculation when ZeroDayPricing flag is set to true, which is not covered in this document.

NPV_NET - NPV NET = Clean Price - Trade Clean Price

Yield to Maturity - Yield is the rate of discount at which the present value of the promised future cashflow equals the dirty price of the bond. When the Coupon Daycount is ACTB/ACTB, the standard

yield-to-maturity is employed using equal-length discounting periods; for any other Coupon Daycount, actual time to each payment date is used in discounting (sometimes called "Actual Yield"). To calculate standard yield-to-maturity from a dirty bond price Pt, Calypso iteratively solves the following equation for y:

$$P_{t} = \sum_{i=n}^{N-1} \frac{C_{i}}{(1 + \frac{y}{m})^{i+w}} + \frac{F}{(1 + \frac{y}{m})^{N-1+w}}$$

If the evaluation date falls in the last cashflow period or the bond is a zero coupon bond, with CF the total last cashflow:

For USSTREET yield method:

$$P_{t} = \frac{CF}{1 + \frac{y}{m}w}$$

For ISMA yield method:

$$P_{t} = \frac{CF}{\left(1 + \frac{y}{m}\right)^{w}}$$

In these formulas, w is the fractional period remaining from the settle date to the end of the current accrual period, using the Coupon Daycount (actual days if ACTB/ACTB).

Yield calculations are detailed below.

DURATION – Macaulay Duration, implemented based on the following relationship:

Macaulay Duration = (1 + y/n) * MODIFIED DURATION, where y is the yield to maturity, n is the number of periods per year, and MODIFIED_DURATION is the percentage change to price with respect to change in yield.

We approximate MODIFIED_DURATION by using 1 basis point change to the yield.

MODIFIED_DURATION = - (dP_up - dP_down) / (2 * d) / price where d = 0.0001, and dP_up and dP_down are the price changes from modifying yield up and down by d, respectively.

CONVEXITY – The convexity of a bond is the change in the slope of the price-yield curve, for a small change in the yield. Following is the formula in PricerBondGeneric:

$$Convexity = \frac{P(y+h) - 2P(y) + P(y-h)}{P(y)h^2}$$

- P(y) is the price of bond as a function of yield y
- h represents a small movement of yield

2.1.2 Yield Calculations

Odd First and Last Coupons in Yield Calculations

The specifications in *Standards Securities Calculation Methods* (SIA, 1993) are applied to the handling of odd first and last coupons in the price-given-yield formulas for bonds.

In all yield formulas, discounting of each cashflow is done using a factor of the form

$$\frac{1}{(1+y/n)^{w+i}}$$

where *i* is the number of whole payment periods in the time interval between the valuation date to the cashflow payment date, and *w* is the remaining fractional period not covered by the whole periods. The odd coupon formulas serve to define *w*.

Discounting when Value Date Falls Before First Coupon

Starting at the first coupon payment date and working backwards, one first defines regular bond periods by subtracting the regular bond payment frequency repeatedly to generate hypothetical regular period end dates. These periods are termed "quasi-coupon periods".

The fractional period w is defined with respect to these quasi-coupon dates as follows:

$$w = q + \frac{d(t, Q_{end})}{d(Q_{start}, Q_{end})}$$

- t = value date
- Qstart = start of quasi-coupon period in which t falls
- Qend = end of quasi-coupon period in which t falls
- q = number of whole quasi-coupon periods falling between t and the first coupon payment
- d(x, y) = days between any given dates x and y, using the bond's day count convention

This formula covers both long and short first coupons. For a short first coupon, Q_{end} is always the coupon payment date, while for a long first coupon Q_{end} can be one of the earlier quasi-coupon dates. For the case where the first coupon is not odd, Q_{start} and Q_{end} are the normal start and end dates of the first coupon period, q=0, and the formula reduces to the usual case.

In the yield formula, this w is added to each i to define the discount factor for each cashflow, as given previously. For the first coupon i is 0, and so w itself gives the time for discounting the first payment. To discount an odd last coupon, an addition is made to w, as described in the following.

Discounting Last Coupon and Principal Payment

For either a normal, long, or short last coupon period, discount factor for the interest and the redemption payment at maturity is, for US Street yield

$$\frac{1}{1+\frac{y}{n}(w+N-1+v)}$$

or, if ISMA yield

$$\frac{1}{(1+y/n)^{w+N-1+v}}$$

The quantities in this formula are found as follows. First define T_M = Date of the maturity payment of the last coupon and the redemption principal.

Then in the formula we have

- N = number of coupon payment dates falling strictly after the value date t and strictly before T_M ; if N = 0, set N = 1 equal to 1 in the formula
- w =the fractional period to the next coupon, if N > 1; 0 if N <= 1

Note that w is computed as in the preceding section if the value date falls before the first coupon date; else it is the ordinary fractional period remaining for a regular coupon.

Note also w is not included in the formula (it is zero) if the value date is in the last coupon period.

In the formula, the contribution from the last coupon period is

$$v = q + \frac{d(T_1, T_2)}{d(Q_{start}, Q_{end})} + X \frac{d(Q_{M, start}, T_M)}{d(Q_{M, start}, Q_{M, end})}$$

Quasi-coupon periods are computed starting from the bond coupon date prior to the maturity date T_M , and adding regular bond payment periods successively until reaching or passing T_M . Then

- t = value date
- $q = number of whole quasi-coupon periods falling between the value date t and <math>T_M$
- T_1 = the later of t or the start date of the last coupon period
- Q_{start} = start of quasi-coupon period in which T_1 falls
- Q_{end} = end of quasi-coupon period in which T_1 falls
- $T2 = Min(T_M, Q_{end})$
- $Q_{M,start}$ = start of quasi-coupon period in which the maturity date falls
- ullet Q_{M,end}= end of quasi-coupon period in which the maturity date falls
- X = 0 if $Q_{M,start} = Q_{start}$, and 1 otherwise

Note how the last term of v is only included if the maturity date and the value date do *not* fall in the same quasi-coupon period.

This formula covers normal, short, and long last coupons. If the last coupon period is of regular length, the above formula reduces to 1 if the value date falls before the start of the period, or reduces to the ordinary formula for fractional coupon periods otherwise.

Money Market Yield Methods

For MM_ACT360 or MM_ACT365 yield methods, different formulas are used.

If the time to maturity is less than or equal to one year:

$$P_{t} = \sum_{i=n}^{N-1} \frac{C_{i}}{(1+y\frac{w+i}{m})} + \frac{F}{(1+y\frac{w+N-1}{m})}$$

Otherwise:

$$P_{t} = \sum_{i=n}^{N-1} \frac{C_{i}}{(1+y)^{\frac{w+i}{m}}} + \frac{F}{(1+y)^{\frac{w+N-1}{m}}}$$

Calypso uses a solver to solve the nonlinear equation of price and yield. The solver is a slightly modified version of the Brent Method from pp. 268-269.

"Numerical Recipes in C" by Press, Flannery, Teukolsky, Vetterling. (In the 2nd edition this is p. 361, the Van Wijngaarden-Dekker-Brent Method.)

Money Market Yield Method for Monthly Yield Quoted Bonds

MM ACT30 Yield Method

This yield method is currently only supported for zero coupon bonds.

Several money market securities use a monthly yield quote instead of an annual yield quote. These monthly quotes use an ACT/30 daycount.

$$PV = \frac{1}{1 + Yield_M \cdot dcf} * FV$$

- PV = present value
- FV = face value at maturity
- $Yield_M = monthly yield quoted$
- dcf = d / 30 = daycount fraction using 30 days as base (ACT/30)
- d = number of calendar days between the date of valuation and the date of maturity

Exponential Yield Method

Yield Method = Exp_ACT360 or Exp_ACT365

These yield methods use the ACT/360 or ACT/365 daycount conventions for computing the year fraction, irrespective of the bond's daycount.

The following formulas are used for discounting:

Exp_ACT360: Exp_ACT365
$$\frac{1}{(1 + IRR)^{\frac{ACT}{360}}} \qquad \frac{1}{(1 + IRR)^{\frac{ACT}{365}}}$$

- IRR = annual rate
- ACT = actual number of days in the year

Some uses are Peruvian inflation linked bonds (Exp. ACT360), and Chilean bonds (both).

Yield Method = Exponential

Same as above with the bond daycount instead of a hard-coded daycount.

$$\frac{1}{(1+IRR)^{Bond\ Daycount}}$$

Yield Method = Exp NL365

Same as Exp_ACT365 except leap year is not considered.

Thai Bond Market Yield Method

Yield Method = ThaiBMA

PricerBondGeneric is used to price fixed rate Thai bonds, as well as "Non-Bank of Thailand FRN" Thai bonds, bond type = Generic.

For "Bank of Thailand FRN" Thai bonds, see PricerBondBankofThailand.

Fixed Rate Thai Bonds

In the event of the last period being irregular and settlement not falling into the last period, the following formula is used:

$$Dirty \, Price = \sum_{t=0}^{n-2} \frac{CF_t}{\left(1 + \frac{\gamma}{100 * h}\right)^{\left(t + \frac{DSC * h}{365}\right)}} + \frac{CF_{last}}{\left(1 + \frac{\gamma}{100 * h}\right)^{\left((n-2) + \frac{(DSC + DCD) * h}{365}\right)}}$$

DSC: Number of actual days from settlement date to next coupon date

DCD: Number of actual days in last coupon period

Otherwise the following formula should be used:

$$Dirty Price = \sum_{t=0}^{n-1} \frac{CF_t}{\left(1 + \frac{\gamma}{100 * h}\right)^{\left(t + \frac{DSC * h}{365}\right)}}$$

"Non-Bank of Thailand FRN" Thai Bonds

$$price * \left[\left(1 + \frac{(i_{trade} + dm)}{h} \right)^{f1} \right] = k + \sum_{t=1}^{n-1} \frac{i_{trade} + qm}{h} * V^t + 100 * V^{n-1}$$
$$V = \frac{1}{1 + \frac{(i_{trade} + dm)}{h}}$$

 i_{trade} : fixed to the index rate on the trade date. Note: If the time is before the publish time specified in the index rate definition (Time Zone, Hour fields), then (date - 1) is used instead.

Note that no other terms in the formula should have their values changed. For example, k should remain the same value, which is based on the value of the index rate on the last reset. In addition, the accrued interest calculation should not be changed.

In the event that the trade date is on the issue date of the bond, the pricing formula changes to:

$$price * \left[\left(1 + \frac{(i_{trade-2} + dm)}{h} \right)^{f1} \right] = k + \sum_{t=1}^{n-1} \frac{i_{trade-2} + qm}{h} * V^{t} + 100 * V^{n-1}$$

$$V = \frac{1}{1 + \frac{(i_{trade-2} + dm)}{h}}$$

 $i_{trade-2}$: fixed to the index rate on (trade date – 2). Note: If the time is before the publish time specified in the index rate definition (Time Zone, Hour fields), then (date – 1) is used instead.

In addition, the accrued interest and k should be based on $i_{trade-2}$.

Daycount

Bonds with the ThaiBMA yield method use the hard-coded daycount 30Thai/360 to price.

30Thai/360 does special handling for the last day of February. For all other months, it is the same as daycount 30E/360.

- If D2 falls on the last day of February and D1 falls on the 29th, then change D2 to the 29th
- If D1 falls on the last day of February and D2 falls on the 29th, then change D1 to the 29th

If the bond has an irregular period, it uses the daycount defined in the bond setup for that period. If the daycount is customized in the cashflows, it uses the custom daycount for the irregular period.

In the case that the bond is amortizing, it is priced using the daycount ACT/365. Note that this is for pricing only, and not payment generation.

This does not apply to the accrual daycount. The accrual daycount is the acc daycount defined in the bond setup.

MODIFIED DURATION

Thai FRNs using the yield method ThaiBMA and either PricerBondGeneric or PricerBondBankofThailand approximate <u>MODIFIED_DURATION</u> by bumping both the yield and the future cashflows, rather than just the yield.

Mexican Yield Method

Yield Method = MXN

Discounting Daycount

For the MXN yield method, if the frequency is QTR or SA, then the discounting daycount is 91 or 182, respectively. This does not apply to the coupon daycount. However, if "Use Date Rule" is selected on the Coupon panel, and the date rule specified is of type ADD_PERIOD, then the number of days will be taken from the date rule instead of from the frequency.

Fixed Rate Mexican Bonds (MBONO, UDI)

Yield Method = MXN

Coupon Type = Fixed

The formula to calculate the dirty price is as below:

$$price = \left(\frac{\left[c + c * \left[\frac{1}{R} - \frac{1}{R * (1+R)^{K-1}}\right] + \frac{VN}{(1+R)^{K-1}}\right]}{\left[(1+R)^{1-\frac{d}{m}}\right]}\right) - c * \frac{d}{m}$$

- VN = face value of the security in MXN
- d = number of days between the issue date or the last interest payment date, whichever is applicable and the valuation date
- m = number of days in a coupon period
- c = coupon payment = VN * [(m*annual coupon)/360]
- R = YTM * (m/360)
- K = number of coupon payments remaining after valuation date

Floating Rate Mexican Bonds (BPA)

Yield Method = MXN

Coupon Type = Floating

Coupon Frequency ≠ DLY

BPA bonds are Mexican floating rate bonds with the following calculations:

Future Coupons are set to the reference rate based on the Valuation Date, not the Reset Date.

$$Discount \ Factor = \frac{1}{\left(1 + Yield * \frac{Days_{Cpn}}{360}\right)^{\frac{Days_{Val \ to \ Coupon \ End}{Days_{Cpn}}}}$$

- Days $_{Cpn}$ = number of days in the coupon
- Days_{Valuation to Coupon End} = number of days from valuation date to coupon end date

Most Mexican floating bonds have 28D, 91D, or 182D frequencies, so the number of days would be the same for all coupons.

Floating Rate Mexican Bonds with Daily Compounding (BONDE, BREM)

Yield Method = MXN

Coupon Type = Floating

Coupon Frequency = DLY

BONDESD and BREMS bonds are Mexican floating rate bonds with the following calculations:

$$Discount\ Factor = \left[\frac{1}{\left(1 + \frac{Yield}{360}\right)^{Days_{Cpn}}}\right]^{\frac{Days_{Valuation\ to\ Coupon\ End}}{Days_{Cpn}}}$$

- DaysCpn = number of days in the coupon
- Days_{Valuation to Coupon End} = number of days from valuation date to coupon end date

BONDESD and BREMS have 28D, 91D, or 182D frequencies, so the number of days would be the same for all coupons.

Note: BONDEST and BONDES182 do not use these calculations; instead, their calculations are similar to BPA.

Zero Coupon Mexican Bonds (CETE, PAGARE, Interest and Principal Strips)

Bond Class = BondMMDiscount

Yield Method = MXN

Some zero coupon Mexican bonds such as Strips require the following calculation:

Discount Factor =
$$1 + Yield * \frac{Days}{360}$$

Days = number of days from valuation date to coupon end date

Note: This yield method is similar to MM_ACT360, except that it uses simple compounding regardless of the time to maturity.

Norwegian Yield Method

This yield method is used for Norwegian bonds. It uses a yield discounting daycount similar to ACTB/ACTB, except that the first fractional period is calculated on an ACT/365 basis rather than ACT/ACT.

Argentine Yield Method

Yield Method = ARS

This yield method is used for Argentine dual-currency bonds. It uses the following discount formula:

$$Discount \ Factor = \frac{1}{\left(1 + Yield * \frac{PeriodDays}{YearDays}\right)^{\frac{Days}{PeriodDays}}}$$

- Days = actual (ACT) number of days
- YearDays = uses the base of the coupon daycount
- PeriodDays = uses the following values:

Coupon Frequency	PeriodDays
MTH	30
QTR	90
SA	180

2.1.3 Risky Bond Pricing

For a risky bond, Calypso applies both a credit curve and interest rate curve to price it. When the issuer defaults, no accrual coupon payment is received, only the principal recovery amount is received.

i) If pricing parameter ZD_PRICING is true, the formula to price a risky bond is

$$NPV = \sum_{i=1}^{n} Coupon_i * DF_i * q_i + N * DF_i * (q_{i-1} - q_i) * R + N * DF_n * q_n$$

Where

Coupon, is the i-th coupon payment.

DF_i is the end date discount factor in the i-th coupon period,

 q_i is the end date survival probability in the *i-th* coupon period, and $q_0 = 1$,

N is the nominal value of the risky bond,

n is the number of remaining coupon payments,

R is the recovery rate of the risky bond.

ii) If pricing parameter ZD_PRICING is false, the valuation formula of the risky bond becomes

$$NPV = \frac{1}{q_{se} * DF_{se}} \sum_{i=1}^{n} Coupon_{i} * DF_{i} * q_{i} + N * DF_{i} * (q_{i-1} - q_{i}) * R + N * DF_{n} * q_{n}$$

Where

 DF_{se} is the discount factor on the settlement date,

 $q_{se}^{}$ is the survival probability on settlement date.

2.1.4 Pricing Parameters

Calypso uses Pricer Parameters to customize trades. Pricer Parameters can either be set in the pricing environment or be set in the trade window. When set in the trade window, PricerParameters are "transient or local", which means they would not be known by other similar trades or even the clients of the trades. For example, risk analyses which are invoked outside the trade window would use the "static or global" parameter setting in pricing environment.

Following are the descriptions of some parameters related to bond pricers.

- BOND_FROM_QUOTE
 - Values True or False.
 - Usage When set to true, the bond will be priced from quote, such as clean price, quote, discount, etc.
- REPO RATE
 - Values Double.
 - Usage If the valuation date is before the settle date of the bond, Calypso is going to get a repo rate for forward pricing. The repo rate can come from the pricing parameters. If it is not set there, then Calypso will need to find the discount and repo curves in order to produce the repo rate.
- INCLUDE_FEES
 - Values True or False.
 - Usage If set to true, the pricer measures such as NPV and FEES_NPV will reflect the actual fees involved in the trade.
- ZD PRICING
 - Values True or False.
 - Usage If set to true, the bond price will be discounted to the valuation date from settle date.
- CHECK FUNDING RATES
 - Values True or False.
 - Usage If set to true, the pricer will check if funding rates are set or implemented.
- NPV INCLUDE CASH
 - Values True or False.
 - Usage If set to true, and if there is cashflow on valuation date, the pricer will add/subtract the cash.
- NPV INCLUDE COST
 - Values True or False.
 - Usage If set to true, the NPV will reflect settlement cost.

PricerBondBankofThailand

PricerBondBankofThailand is used to price "Bank of Thailand FRN" Thai bonds.

Yield Method = ThaiBMA

Bond Type = BankofThailand

$$price * \left[\frac{1 + \left(i_{settle_to_coupon} + dm \right) * \frac{f1}{h} \right] = k + \sum_{t=1}^{n-1} \frac{i_{trade} + qm}{h} * V^t + 100 * V^{n-1} \right]$$

$$V = \frac{1}{1 + \frac{\left(i_{trade} + dm \right)}{h}}$$

 i_{trade} : Fixed to the index rate on the trade date. Note: If the time is before the publish time specified in the index rate definition (Time Zone, Hour fields), then (date - 1) is used instead.

In the case of being in the XI Period,

$$i_{settle \ to \ coupon} = i_{trade}$$

Otherwise

$$i_{settle_to_coupon} = i_{interpolated}$$

Interpolation Interest

In the event that interpolated in needs to be calculated:

$$i_{interpolated} = i_{shorter} + (i_{longer} - i_{shorter}) * \frac{days_{tocoupon}}{days_{tenordiff}}$$

 $i_{shorter}$: Interest for the index using the nearest tenor shorter than (trade date + 2) to the next coupon date

 i_{longer} : Interest for the index using the nearest tenor longer than (trade date + 2) to the next coupon date

daystocoupon: Number of days from (trade date + 2 + shorter tenor) to the next coupon date

days_{tenordiff}: Number of days from (trade date + 2 + shorter tenor) to (trade date + 2 + longer tenor)

Note: When adding tenors to a date, they are done in weekly, monthly, etc. increments. For example, if the valuation date is 8/14/2013 and the tenor is 3M, then (valuation date + 2 + tenor) = (8/16/2013 + tenor) = 11/16/2013.

The interest rates are valued as of (trade date + 2).

FRN Rate Fixing - Auction Period

In the event that the trade date is on or before the issue date of the bond, or the trade attribute ReOpen is set to true, the pricing formula changes to:

$$price * \left[\frac{1 + (i_{trade-2} + dm) * \frac{f1}{h}}{h} \right] = k + \sum_{t=1}^{n-1} \frac{i_{trade-2} + qm}{h} * V^t + 100 * V^{n-1}$$

$$V = \frac{1}{1 + \frac{(i_{trade-2} + dm)}{h}}$$

 $i_{trade-2}$: Fixed to the index rate on (trade date - 2). Note: If the time is before the publish time specified in the index rate definition (Time Zone, Hour fields), then (date - 1) is used instead.

In addition, the accrued interest and k should be based on $i_{trade-2}$.

2.3 PricerBondBrady

Brady bonds are obligations of the governments of developing countries with partial guarantees. Therefore they bear more default risk than US treasuries. This is reflected in PricerBondBrady class' yield function, which is the only function implemented for this class. The only difference between this

function and the one in its grandparent PricerBond is that it checks whether or not the bond defaults before evaluation date and returns zero if it did default.

2.4 PricerBondBund

Pricer for German government bonds.

The dirty price method uses the Yield Method ISMA or MOSS according to the setup of the bond. If the Yield Method is set to ISMA, we use the formulae defined in PricerBondGeneric.

2.5 PricerBondCanadas

Pricer for Canadian government bonds.

Yield method = BankOfCanada

When only one coupon remains: P = (100 + C/2)/[1 + Y*T/(day type)] - A

Otherwise

$$P = \left(\sum_{i=n}^{N-1} \frac{CF_i}{\left(1 + \frac{Y}{m}\right)^i}\right) \times \left(1 + Y \times \frac{x - z}{Year}\right)$$

- P_{t} is the bond quote/dirty/invoice price at settlement time t
- N is the total number of cashflows generated by bond
- $-0 \le n \le N-1$ n is the index of last coupon payment time relative to t
- C_i is the coupon for time index i
- F is the notional principal
- m is the coupon frequency
- z is the number of days between the settlement date and the next cashflow date
- x is the number of days between the two cashflows

2.6 PricerBondCGS

Pricer for Australian government bonds.

Calculates the dirty price using the RBA bond formula:

$$P = v^{f/d} (g(c+a) + v^n)$$

- v = 1/(1+i) where i is the annual yield / coupons per year
- f = days from settlement to the next interest payment date
- d = days in the current coupon period
- c = 1 if the bond is cum interest, 0 otherwise
- g = annual coupon rate / coupons per year
- n = the number of full coupon periods between the next interest payment date and the date of maturity (i.e. number of coupons - 1)
- $a = (1-v)^n / i$

Bonds with only their final coupon payment remaining are priced using a simple discount formula:

$$Price = \frac{1+g}{1+\left(\frac{f}{365}*i\right)}$$

On the last coupon date, the rounding of clean/dirty can be controlled by configuring the pricing parameter CGS_LAST_CPN_ROUNDING. It is the number of decimal places. It defaults to 10.

2.7 PricerBondColombian

Pricer for Colombian non-government floating rate securities linked to the DTF, IBR, or IPC indices.

2.7.1 DTF-linked Bonds

To calculate the coupon, the DTF rates are converted to nominal rates, NATA. This is required to add the spread. Once the spread is added, the rates are converted back to effective annual (EA) rates. The effective annual rate is then used for computing the cashflows.

The rate conversions are defined by the following formulas:

$$NATA \ Rate = ROUNDING \left(\left(\frac{\left(1 + DTF_{EA} \right)^{1/4} - 1}{1 + \left(\left(1 + DTF_{EA} \right)^{1/4} - 1 \right)} \right) * 4 , 4 \right)$$

$$EA \ Rate = \left(1 - \frac{NATA \ Rate + Spread}{4} \right)^{-4} - 1$$

The TV Rate (quarterly in arrears) is then used for calculating the projected cashflows:

TV Rate =
$$(1 + EA Rate)^{No.of days between flows/Base} - 1$$

2.7.2 IBR-linked Bonds

For IBR-linked bonds, the rate and spread are both in nominal terms, so no rate conversion is required.

The nominal rate is used for cashflow calculations:

$$Coupon Rate_{Term} = \frac{IBR_{Valuation Date} + Spread}{12}$$

For calculating projected cashflows:

$$C$$
ashflow = Coupon Rate_{Term} * Nominal amount

$$Cashflow_{Final} = Coupon Rate_{Term} * Nominal Amount + Nominal Amount$$

For NPV calculation:

$$PRICE = PV \left(IBR_{Valuation DAte}, \frac{DV}{Basis}, -(Coupon Rate_{Term} + Nominal \%) \right)$$

$$NPV = PRICE * Nominal Amount$$

2.7.3 IPC-linked Bonds

 $Periodic\ coupon = [[((1 + EA\ inflation\ rate) * (1 + Spread))^(base\ days/365)] - 1]$

PricerBondFRN 2.8

Floating Rate Note is a fixed principal instrument, often utilized as the basis for a swap which has a long or even indefinite life and whose yield is reset periodically relative to a reference index rate to reflect changes in short- or intermediate-term interest rates.

PricerBondFRN extends PricerBondGeneric and the only difference is a custom algorithm in PricerBondFRN to solve for the dirty price from yield to maturity. We assume that the bond matures on the next coupon date when computing the dirty price from the yield.

PricerBondGilt

PricerBondGilt implements the simplified formulae published by the UK Debt Management Office to compute the dirty price and yield of perpetual Gilt bonds.

2.10 PricerBondJGB

Pricer for Japanese government bonds.

For this pricer, there are BOJ conventions that we want to follow when the user indicates that the conventions are desired by setting the BOJ flag in the pricing environment for the duration of pricing. After pricing, unset the flag if it wasn't set before.

A numeric duration method overrides the analytic formula in PricerBond. The denominator in the formula is the clean price instead of the dirty price.

The accrual method for a BondJGB is redefined due to the fact that these bonds have a different daycount convention for Coupon and Accrual. When defining a BondJGB, the user should set up the daycount to ACTB/ACTB. In this function, the Accrual is computed by the following formula: Coupon Rate * Number of days between Start Date and accrual using ACT_365 basis.

The Yield of a BondJGB is computed based on the Simple Yield Formula.

2.11 PricerBondMMInterest

PricerBondMMInterest implements the simple money market yield formula for coupon bearing money market notes represented by the BondMMInterest product in Calypso.

$$P = \left(\sum_{i=1}^{n} \frac{c/h}{DF_i} + \frac{100}{DF_n}\right).$$

$$DF_i = DF_{i-1} \cdot (1 + y_m \cdot d / a)$$
 for $i = 2$ to n

$$DF_1 = 1$$

P = dirty price (clean price plus accrued interest) of the bond per 100 units face value

 y_m = annual money market yield (simple interest)

c = annual percentage coupon rate

n = number of coupon periods to maturity

h = number of coupon periods in a year

d = number of days in the coupon period using the bond coupon day count convention

a = number of days in a year using the bond coupon day count convention

2.12 PricerBondRussian

Pricer for Russian inflation bonds. It uses the following accrual calculations.

$$AI_{im} = N_i * CPN * (i - t_m) / 365$$
 (it is rounded to 2 decimals)

where

 $t_{\rm m}$ = start date of current coupon period

$$N_i = N_{base} * I_i$$
 (it is rounded to 2 decimals)

where

 N_{base} = issue nominal of bond

 $I_i = INDEX_i / INDEX_{base}$

$$INDEX_{I} = Ref_CPI_{M(i)-4} + (Ref_CPI_{M(i)-3} - Ref_CPI_{M(i)-4}) * (n - 1) / d(i)$$

where

i = calendar date

 $INDEX_{base}$ = inflation index on Issue Date

n = order number of i (calendar date) in the settle month

d(i) = number of days in settle month

2.13 PricerBondUSTFRN

2.14 PricerIssuance

Issuance is used to model the issuance of a bond or any security papers by a processing organization. Keep in mind that the pricer measures are evaluated from the issuer's perspective, not the investor.

Pricerlssuance extends Pricer class. However, unlike other pricer classes such as PricerBond, its price method does not call a process method to calculate the measures. Instead it delegates the task to the product/trade's price method. Pricerlssuance itself doesn't have a process method. Therefore you would not see some market data information such as discount curve in the pricing window as in other pricer windows since everything happens in the background.

Pricerlssuance may produce a different value from that produced by the product/trade's pricer class for the same pricer measure. The difference comes from the fact that the cashflow patterns for issuance organization and investor are opposite or at least different. For example, the bond issuer has positive cashflow at first, then negative cashflows in rest of the bond lifecycle, while the bond investor has negative cashflow at first, then positive cashflows in rest of the time. That explains that for the same bond, issuance pricer and bond pricer agree on dirty price and accrual but not on duration, convexity and NPV, etc.

2.15 PricerRepo

PricerRepo delegates the pricing to the pricer of the underlying instrument. The NPV is the value of collateral minus the cost of funding (cash leg of repo).

PricerRepo requires a discount curve and if the trade is floating, it needs a forecast curve.

The following pricers extend PricerRepo for the corresponding types of repos: PricerJGBRepo and PricerPledge.

2.15.1 Pricing Parameters

The following pricing parameters apply to repo pricing:

- BOND_FROM_QUOTE
 - Values True or False.
 - Usage Should be True for bond and repo. It means that pricing of underlying product (bond) will be done from the closing price instead of using a curve.
- NPV INCLUDE COST
 - Values True or False.
 - Usage Should be set to True for bond pricing where settlement amount is included in the bond NPV pricer measure. If it is True for repo as well, the cash side of the repo is included in the repo NPV.
- NPV INCLUDE COST AFTER SETTLE DATE
 - Values True or False.
 - Usage Should be set to False for bond pricing. It means that once the bond trade is settled, the settlement amount is no longer included in the NPV.
- ZD_PRICING
 - Values True or False.
 - Usage If True for bond, the price is discounted until today instead of settlement date. If True for repo, the cash side of the repo is discounted the maturity date and today instead of settlement date.

2.15.2Repo NPV

Value of collateral minus the cost of funding (cash leg of repo). The following cases are supported:

If INCLUDE_NPV_COLLAT=False

NPV = Sum of all discounted future flows + cost

where cost:

If NPV_INCLUDE_COST=False:

cost = 0

If NPV_INCLUDE_COST=True:

cost = sum of all PRINCIPAL flows in the past

If INCLUDE_NPV_COLLAT=True

NPV = (Bond trade DIRTY_PRICE at repo end date x nominal) - cost

where cost:

If NPV_INCLUDE_COST=False

cost = 0

If NPV_INCLUDE_COST=True

cost = (sum of all repo flows excluding initial principal)

The calculation of UNDERLYING FWD PRICE depends on BOND FROM QUOTE and the bond's DIRTY_PRICE computed by the bond pricer. The bond's DIRTY_PRICE is calculated using collateral clean price and accrual traded with a settlement date equal to end date of repo trade.

For the cash side of the repo, the system sums all pure cashflows (not collateral flows) where the settlement date is not equal to the repo start date.

Those cashflows are discounted as of Today if ZD_PRICING for repo is set to True.

Also, the funding side is used in the calculation of repo NPV only if NPV_INCLUDE_COST for repo is set to true.

2.15.3Repo PV_COLLAT

PV of the trade's collaterals. Same as PV pricer measure for the same bond/equity trade as the collateral with settle date = repo start date.

2.15.4Repo NPV_COLLAT

NPV of the trade's collaterals.

2.15.5Repo DIRTY_PRICE

Sum of PRICE and ACCRUAL_BO coming from bond pricer. In other words, it corresponds to the clean price on valuation date plus accrual gained from start date of the repo.

2.15.6Repo NPV_NET

This pricer measure is not implemented on the PricerRepo; it returns the generic NPV_NET pricer measure: NPV - ACCRUAL_BO where ACCRUAL_BO is interest accrued on the cash side of the repo.

Section 3. Bond Options Pricing

3.1 European Bond Options

PricerBondOption is based on Black's model for European style bond options.

The assumption made here is that the forward bond price has a constant volatility.

$$C = e^{-r_p t_p} (FN(d_1) - KN(d_2))$$

$$P = e^{-r_p t_p} (KN(-d_2) - FN(-d_1))'$$

where

$$F = \frac{Se^{-q^{t_e}}}{e^{-r_g t_e}} = Se^{(r_g - q)t_e}$$

and

$$d_1 = \frac{ln\left[\frac{F}{K}\right]}{\sigma\sqrt{t_e}} + \frac{\sigma\sqrt{t_e}}{2}$$

and

$$d_2 = d_1 - \sigma \sqrt{t_e}$$

This particular variation on the Black-Sholes model accounts for the timing of cashflows encountered in real work transactions. The model does this by using different time periods for each type of cashflow. The variables are described as follows:

- S = the spot price of the underlying security
- K = the strike price
- r_p = the continuously compounded risk-free rate with base ACT/365
- q = the continuously compounded dividend yield with base ACT/365
- r_g = the continuously compounded growth rate with base ACT/365

Typically, periodically compounded rates which can be changed to continuous rates using the following equation:

$$e^r = \left(1 + \frac{r}{n}\right)^{\frac{1}{n}}$$

with n being the periodicity

- $-\sigma$ = the volatility of returns of the underlying security
- t_e = the time period from the valuation date to the option's expiration date, i.e. the time for which the option is traded
- t_p = the time to payment, i.e. from the valuation date to the settlement date (usually two days after expiration)
- N(x) = the cumulative standard normal distributive function
- r_p = the risk free rate
- $r_{q} = 0$

$$-q=0$$

3.1.1 Call Options

NPV

NPV Bare =
$$e^{-rT_p}$$
{ $FN(d_1) - KN(d_2)$ }

NPV = NPV Bare * Notional - Premium

$$C = e^{-r_p t_p} \left(FN(d_1) - KN(d_2) \right)$$

where

$$F = Se^{(r_g - q)t_e}$$

$$d_1 = \frac{\ln\left[\frac{F}{K}\right]}{\sigma\sqrt{t_e}} + \frac{\sigma\sqrt{t_e}}{2}$$

$$d_2 = d_1 - \sigma \sqrt{t_e} \tag{1}$$

$$d_2^2 = d_1^2 - 2\sigma d_1 \sqrt{t_e} + \sigma^2 t_e$$

$$d_2^2 = d_1^2 - 2\sigma \frac{\ln\left[\frac{F}{K}\right] + \sigma^2 t_e}{\sigma \sqrt{t_e}}$$

$$d_2^2 = d_1^2 - 2\ln(\frac{F}{K}) \tag{2}$$

$$n(d_2) = \frac{e^{\frac{-d_2^2}{2}}}{\sqrt{2\pi}}$$

$$= \frac{e^{\frac{-d_1^2}{2} + \ln(\frac{F}{K})}}{\sqrt{2\pi}}$$

$$= \frac{Fe^{\frac{-d_1^2}{2}}}{K\sqrt{2\pi}}$$

$$= n(d_1)\frac{F}{K}$$
 (3)

Delta

Delta Bare = $e^{-rT_p} N(d_1)$

Delta = Delta Bare * Notional * F * 0.01

Derivation

$$\Delta_{c} = \frac{\partial C}{\partial S} = e^{-r_{p}t_{p}} \left(e^{(r_{g}-q)t_{e}} \left(Sn(d_{1}) \frac{\partial d_{1}}{\partial S} + N(d_{1}) \right) - Kn(d_{2}) \frac{\partial d_{2}}{\partial S} \right)$$

Substituting equation (3) gives:

$$\begin{split} &\Delta_c = e^{-r_p t_p + (r_g - q)t_e} N(d_1) + e^{-r_p t_p + (r_g - q)t_e} Sn(d_1) \frac{\partial d_1}{\partial S} - e^{-r_p t_p} Kn(d_1) \frac{\partial d_1}{\partial S} \frac{F}{K} \\ &\Delta_c = e^{-r_p t_p + (r_g - q)t_e} N(d_1) + e^{-r_p t_p + (r_g - q)t_e} Sn(d_1) \frac{\partial d_1}{\partial S} - Se^{-r_p t_p + (r_g - q)t_e} n(d_1) \frac{\partial d_1}{\partial S} \\ &\frac{\partial d_1}{\partial S} = \frac{\partial}{\partial S} \frac{(\ln Se^{-qt_e} - \ln Ke^{-rt_e})}{\sigma \sqrt{t_e}} = \frac{1}{S\sigma \sqrt{t_e}} \\ &\Delta_c = e^{-r_p t_p + (r_g - q)t_e} N(d_1) \end{split}$$

Gamma

Gamma Bare =
$$e^{-rT_p} * \frac{n(d_1)}{F*\sigma\sqrt{T_e}}$$

Gamma = Gamma Bare * Notional * $(F * .01)^2$

Derivation

$$\begin{split} &\Gamma_c = \frac{\partial^2 C}{\partial S^2} = \frac{\partial}{\partial S} \Delta_c \\ &\Gamma_c = e^{-r_p t_p + (r_g - q) t_e} n(d_1) \frac{\partial d_1}{\partial S} \\ &\frac{\partial d_1}{\partial S} = \frac{1}{S \sigma \sqrt{t_e}} \end{split}$$

Combining the above equations gives :

$$\Gamma_c = \frac{1}{S\sigma\sqrt{t_e}} \left(e^{-r_p t_p + (r_g - q)t_e} n(d_1) \right)$$

Vega

Vega Bare = $e^{-rT_p} * F * n(d_1) * \sqrt{T_e}$

Vega = Vega Bare * Notional * 0.01

Derivation

$$v_{c} = \frac{\partial C}{\partial \sigma} = e^{-r_{p}t_{p} + (r_{g} - q)t_{e}} Sn(d_{1}) \frac{\partial d_{1}}{\partial \sigma} - e^{-r_{p}t_{p}} Kn(d_{2}) \frac{\partial d_{2}}{\partial \sigma}$$

$$\begin{split} & v_c = e^{-r_p t_p + (r_g - q)t_e} Sn(d_1) \frac{\partial d_1}{\partial \sigma} - K e^{-r_p t_p} n(d_1) \frac{\partial d_2}{\partial \sigma} \frac{S}{K} e^{r_g t_e - q t_e} \\ & v_c = S e^{-r_p t_p + (r_g - q)t_e} n(d_1) (\frac{\partial d_1}{\partial \sigma} - \frac{\partial d_2}{\partial \sigma}) \end{split}$$

where

$$\frac{\partial d_1}{\partial \sigma} = -\frac{\ln \left[\frac{F}{K}\right]}{\sigma^2 \sqrt{t_e}} + \frac{\sqrt{t_e}}{2}$$

$$\frac{\partial d_2}{\partial \sigma} = -\frac{\ln\left[\frac{F}{K}\right]}{\sigma^2 \sqrt{t_e}} - \frac{\sqrt{t_e}}{2}$$

$$v_c = e^{-r_p t_p + (r_g - q)t_e} S \sqrt{t_e} n(d_1)$$

Rho

Rho Bare = $T_p * e^{-rT_p} \{K * N(d_2) - F * N(d_1)\}$

$\mathsf{rho}_{\mathsf{r}_{\mathsf{p}}}$

$$\rho_{c,p} = \frac{\partial C}{\partial r_p} = e^{-r_p t_p} K t_p N(d_2) - t_p e^{-r_p t_p + (r_g - q)t_e} SN(d_1)$$

Rho3 Bare = $T_e * e^{-rT_p} * F * N(d_1)$

$\mathsf{rho}_{\mathsf{r}_{\mathsf{g}}}$

$$\begin{split} \rho_{c,g} &= \frac{\partial C}{\partial r_g} = e^{-r_p t_p + (r_g - q) t_e} Sn(d_1) \frac{\partial d_1}{\partial r_g} + St_e e^{-r_p t_p + (r_g - q) t_e} N(d_1) - Ke^{-r_p t_p} n(d_2) \frac{\partial d_2}{\partial r_g} \\ d_1 &= \frac{\ln Se^{-qt_e} - \ln Ke^{-r_g t_e}}{\sigma \sqrt{t_e}} + \frac{\sigma \sqrt{t_e}}{2} \\ \frac{\partial d_1}{\partial r_g} &= \frac{\partial d_2}{\partial r_g} = \frac{t_e}{\sigma \sqrt{t_e}} \end{split}$$

Substituting equation (3) gives:

$$\begin{split} &\rho_{c,g} = \frac{t_e e^{-r_p t_p + (r_g - q)t_e} Sn(d_1)}{\sigma \sqrt{t_e}} + St_e e^{-r_p t_p + (r_g - q)t_e} N(d_1) - Ke^{-r_p t_p} n(d_2) \frac{\partial d_2}{\partial r} \\ &\rho_{c,g} = e^{-r_p t_p + (r_g - q)t_e} S(\frac{t_e n(d_1)}{\sigma \sqrt{t_1}} + t_e N(d_1)) - Ke^{-r_p t_p} n(d_2) \frac{\partial d_2}{\partial r} \\ &\rho_{c,g} = e^{-r_p t_p + (r_g - q)t_e} S(\frac{t_e n(d_1)}{\sigma \sqrt{t_1}} + t_e N(d_1)) - e^{-r_p t_p} Kn(d_1) \frac{\partial d_1}{\partial r} \frac{S}{K} e^{(r_g - q)t_e}) \end{split}$$

$$\rho_{c,g} = e^{-r_p t_p + (r_g - q)t_e} S(\frac{t_e n(d_1)}{\sigma \sqrt{t_e}} + t_e N(d_1)) - Se^{-r_p t_p + (r_g - q)t_e} n(d_1) \frac{\partial d_1}{\partial r}$$

$$\rho_{c,g} = e^{-r_p t_p + (r_g - q)t_e} St_e N(d_1)$$

Rho = (Rho Bare + Rho3 Bare) * Notional * 0.01

Theta

Theta Bare =
$$-\sigma * F * e^{-rT_p} * \frac{n(d_1)}{2*\sqrt{T_e}} + r * e^{-rT_p} * [FN(d_1) - KN(d_2)]$$

Theta = Theta Bare * Notional / nDays

where nDays = number of days in a year

3.1.2 Put Options

NPV

NPV Bare =
$$e^{-rT_p} \{ KN(-d_2) - FN(-d_1) \}$$

NPV = NPV Bare * Notional - Premium

Delta

Delta Bare = $e^{-rT_p} N(-d_1)$

Delta = Delta Bare * Notional * F * 0.01

Gamma

Gamma Bare =
$$e^{-rT_p} * \frac{n(d_1)}{F*\sigma\sqrt{T_e}}$$

Gamma = Gamma Bare * Notional * $(F * .01)^2$

Vega

Vega Bare =
$$e^{-rT_p} * F * n(d_1) * \sqrt{T_e}$$

Vega = Vega Bare * Notional * 0.01

Rho

Rho Bare =
$$-T_p * e^{-rT_p} \{K * N(-d_2) + F * N(-d_1)\}$$

Rhog Bare =
$$-T_e * e^{-rT_p} * F * N(-d_1)$$

Rho = (Rho Bare + Rhoq Bare) * Notional * 0.01

Theta

Theta Bare =
$$-\sigma * F * e^{-rT_p} * \frac{n(-d_1)}{2*\sqrt{T_e}} + r * e^{-rT_p} * [KN(-d_2) - FN(-d_1)]$$

Theta = Theta Bare * Notional / nDays

where nDays = number of days in a year

Variables Definition

K (Dirty Strike Price) = $Strike_{cleanprice} + Accrual_{expiry}$

$$F = \left[Cleanprice_{value} + Accrual_{value} - \sum_{i=first\ future\ coupon}^{i=last\ future\ coupon\ on/before\ expiry} C_i * df_{t_i} \right] / df_{t_e}$$

 $Accrual_{value} = Accrual from last cupon date to value date$ $Cleanprice_{value} = Clean price as of value date$

 $C_i = i^{th}$ Future Coupons

 $df_{t_i} = \textit{Discount Factor on the } i^{th} \textit{ coupon payment date}$ $df_{t_e} = Discount \ factor \ as \ of \ expiry \ date$

American Style Bond Options 3.2

PricerBondOption uses the binomial model for American style options, which is a numerical method based on discrete time steps, configurable through the pricing parameter NUMBER_OF_TIME_STEPS. The input volatility is assumed to be the volatility of the underlying spot price, which is the bond price for bond options.

As a result, the risk measures, DELTA, GAMMA, etc. are based on price change instead of yield change. PricerBondOption does not compute an Option Adjusted Spread.

Section 4. Complex Pricers

4.1 Single Index TARN - PricerBondTarnLGMM

A target redemption note (TARN) is one in which the bond is automatically redeemed early if the sum of the coupons is above a certain target level. When the sum of the coupons is greater than the target level, the last coupon is usually reduced so that he coupon total is precisely the target.

EXSP Terms and Conditions Example Setup

Summary

Coupons:

07/11/2005 aTeaserRate

15/11/2009 max(aCap-qEURCMS10Y, 0.00)

Capital: 07/11/2005 sIN

Redemptions:

07/11/2005

sAC)):(0.00))

((sACI > aTargetLevel*sIN)?(xprincipal(sIN) + xcoupon((aTargetLevel*sIN) - xcoupon((aTargetLevel*sIN)

15/05/2017

((sACI>aTargetLevel*sIN)?(xcoupon((aTargetLevel*sIN)-sAC)):(0.00))

Notes

The Xprincipal() function is not needed in the redemption formula on the last period, the principal will be retuned automatically.

Solver

Typically, characteristics of the TARN note such as target level, initial teaser rate and constants within the coupon formula are setup as array variables. This enables them to be identified by the solver.

4.1.1 Valuation Methodology

The LGM model is used. It is the one-factor Hull-White model, expressed in HJM terms. The valuation routine is using a Monte Carlo valuation scheme. The model is calibrated to ATM caplets/swaptions corresponding to the index on the coupon.

4.1.2 Pricing Parameters

Pricing Parameter	Туре	Description	Typical Value
LGMM_MEAN_REV	Rate	A transient override for the mean reversion parameter.	-1% to 5%
LGMM_MODEL_VOL	Rate	A transient override for the model's volatility parameter.	1%

Pricing Parameter	Туре	Description	Typical Value
LGMM_IR_RATE	Rate	A transient override for the yield curve.	1%-6%
LGMM_CALIBRATION_SCHEME	Choice	EXACT_STEP_SIGMA - the model volatility function is a step function, chosen so as to match the calibration instruments exactly.	EXACT_STEP_SIGMA
		BEST_FIT_LM - the model mean reversion and volatility are constant and chosen by a Levenberg-Marquardt best fit routine applied to the calibration instruments.	
		APPROX_STEP_SIGMA - same as EXACT_STEP_SIGMA except and using a faster but approximate method.	
NUMBER_SIMULATIONS	Integer	The number of simulations to use in the valuation routine.	33000
BROWNIAN_BRIDGE	Boolean	Controls if the path generator uses a Brownian bridge construction. Implicitly the generator will use a sobol sequence random number generator when Brownian bridge is set to TRUE. In the case of FALSE, the pseudorandom number generator is used and the path generation is classic Euler incremental generation.	TRUE
ANTITHETIC_VARIATE	Boolean	When constructs path should the antithetic path also be generated, to help reduce variance.	FALSE
LGMM_CONTROL_VARIATE	Boolean	When pricing the Bermudan, also price the first European numerically and use it as a control variates.	FALSE

Pricing Parameter	Туре	Description	Typical Value
RISK_OPTIMISE	Boolean	Relates to optimization available in scenario risk report. This flag controls whether or not the optimization is used. See Pricer.getRiskExposure().	TRUE

4.1.3 Pricer Measures

CALIBRATION_RESULTS

Shows the interim results from the calibration of the LGM model.

CALIBRATION TIME MS

The time taken, in milliseconds, by the analytics routine to calibrate the model.

EXPECTED_TIME_TO_REDEMPTION

The expected time until redemption of the note, given the assumptions of the model, and the current pricing parameters.

LGM_MODEL

The calibrated model used to value the trade.

MC_GRAPH

Records and displays the convergence of the Monte Carlo valuation scheme. Specifically records the NPV at discrete snapshots in the total number of simulations.

PROB_OF_REDEMPTION

Displays the probability of redemption of the bond at each coupon payment date, given that the bond has not been redeemed already.

VALUATION_TIME_MS

The time taken by the core valuation routine to compute the requested measures. It explicitly does not include the model calibration time.

VEGA_POINTS

Records which points on the volatility surface have been used in valuation. These are typically used in optimization of vega reports.

4.2 Multi-Index TARN - PricerBondLGMM2F

In the case of a multi-index TARN, the coupon is a function of more than one index, typically, a leveraged CMS spread index.

EXSP Terms and Conditions Example Setup

Summary

Coupons:

31/01/2008 aTeaserRate

15/01/2009 aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))

Capital: 31/01/2008 sIN

Redemptions:

31/01/2008

((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-

sAC)):(0.00))

15/01/2038 ((sACI>sIN*aTriggerLevel)?(xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))

Generate				
Cash Flow Date	Coupon Formula	Exotic Capital	Redemption Formula	Interest Amt
31/01/2008				(1,000,000.00)
± 15/07/2008	aTeaserRate	sIN	((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	32,277.78
15/01/2009	aTeaserRate	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC)):(0.00))	35,777.78
15/07/2009	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC)):(0.00))	0.00
15/01/2010	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC));(0.00))	0.00
15/07/2010	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC));(0.00))	0.00
18/01/2011	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC));(0.00))	0.00
15/07/2011	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC));(0.00))	0.00
17/01/2012	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) - sAC)):(0.00))	0.00
16/07/2012	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) + sAC)):(0.00))	0.00
15/01/2013	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) + sAC)):(0.00))	0.00
15/07/2013	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI > sIN*aTriggerLevel)?(xprincipal(sIN) + xcoupon((aTriggerLevel*sIN) + sAC)):(0.00))	0.00
± 15/01/2014	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	sIN	((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	0.00
	-CF	-TA1	//-ACTS_TANK_Tolland == 02/,deltale_l/_TA()	0.00
	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC));(0.00))	
	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC));(0.00))	
	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
□ 15/01/2036 □ 45/07/2036 □ 45/07/2036 □ 45/07/2036	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
□ 15/07/2036 □ 45/04/2037	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
□ 15/07/2037 □ 45/04/2039	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC));(0.00))	
□ 15/01/2038 □ 15/01/2038	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))		((sACI>sIN*aTriggerLevel)?(xprincipal(sIN)+xcoupon((aTriggerLevel*sIN)-sAC)):(0.00))	
⊕ 01/02/2038 □ 04/02/2038	aCouponFactor*(max(qUSDCMS30Y-qUSDLIBOR6M, 0.00))	SIIV	((sACI>sIN*aTriggerLevel)?(xcoupon((aTriggerLevel*sIN)-sAC));(0.00))	(4,173,202.53)
⊕ 01/02/2038				1,000,000.00
<				

Solver

Typically, one sets up the teaser rate, the coupon constants and the trigger level, as an array variable, in which case one can solve for it given one of the target pricer measures.

4.2.1 Valuation Methodology

The LGM2F model is used. It is the two-factor Hull-White model, expressed in HJM terms. The valuation routine is using a Monte Carlo valuation scheme. The model is calibrated to ATM caplets/swaptions corresponding to the indexes on the coupon.

4.2.2 Pricing Parameters

Pricing Parameter	Туре	Description	Typical Value
LGMM2F_KAPPA1	Rate	A transient override for the first mean reversion parameter.	-1% to 5%
LGMM2F_KAPPA2	Rate	A transient override for the second mean reversion parameter.	20%-120%
LGMM2F_SIGMA1	Rate	A transient override for the first volatility parameter.	0.5%-2%

Pricing Parameter	Туре	Description	Typical Value
LGMM2F_SIGMA2	Rate	A transient override for the second volatility parameter.	0.5%-2%
LGMM2F_RHO	Rate	A transient override for the correlation parameter.	-100%-100%
IGNORE_TARN	Boolean	The convenient transient flag to allow the valuation scheme to ignore the TARN feature, and so compare pricing with and without TARN.	FALSE
NUMBER_SIMULATIONS	Integer	The number of simulations to use in the valuation routine.	33000
BROWNIAN_BRIDGE	Boolean	Controls if the path generator uses a Brownian bridge construction. Implicitly the generator will use a sobol sequence random number generator when Brownian bridge is set to TRUE. In the case of FALSE, the pseudo-random number generator is used and the path generation is classic Euler incremental generation.	TRUE
RISK_OPTIMISE	Boolean	Relates to optimization available in scenario risk report. This flag controls whether or not the optimization is used. See Pricer.getRiskExposure().	TRUE

4.2.3 Pricer Measures

CALIBRATION_RESULTS

Shows the interim results from the calibration of the LGM2F model.

CALIBRATION TIME MS

The time taken by the analytics to calibrate the model

EXPECTED TIME TO REDEMPTION

The expected time until redemption of the note, given the assumptions of the model, and the current pricing parameters.

LGM2F_MODEL

Sows the calibrated model used to value the trade.

MC_GRAPH

The convergence graph of the Monte Carlo valuation routine.

Market Data Configuration

GLOBAL LGMM2F Usage

The valuation routine requires LGMM2F model parameters setup in a market data item. The assignment within the pricing config is via Product Specific panel, see below.

The global LGMM2F market data surface requires the generator LGMM2FMultiStartBestFit. This generator calibrates in a best fit sense ATM swaptions. Typically, one calibrates to the entire ATM vol surface. This can take several minutes, depending on the number of quotes in the surface. The solution is a set of model parameters, kappa1, kappa2, sigma1, sigma2, rho. These are then refined slightly with the trade valuation to provide a sharper fit to a subset of the ATM vols relevant to the trade.

4.2.4 Sample Coupon Structures

Dynamic Floater Coupon Structure

100% * 10Y EUR CMS capped at 10 * (10Y EUR CMS - 2Y EUR CMS), floored at 0

CMS Spread Coupon Structure

10% * (10Y EUR CMS - 2Y EUR CMS), floored at 0

