

FIG 2A

FIG 2A(I) FIG 2A(II)

HIS GQWPWQVSITYEGVHVCGGSLVSEQWVLSAAHCFPSEHHK-EAYEVKLG----AHQLDSYSEDA TVTGWGHVAPSVSLLTPKPLQQLEVPLISRETCNCLYNIDAKPEEPHFVQEDMVCAGYVEGGKD WVTGWGYIKEDEALPSPHTLQEVQVAIINNSMCNHLFLKYSFRKD--IFG-DMVCAGNAQGGKD GRWPWQGSLRLWDSHVCGVSLLSHRWALTAAHCFETDLSDPSGWMVQFGQLTSMPSFWSLQAYY (Long Isoform) Sequence comparison of HELA2(Testisin) and prostasin · | N-gly Heavy Chain prostasin prostasin HELA2 HELA2

4/62

SEH PILFLPLGLALGLLSPWL PLLFFPLLWALPLLGPV Putative Transmembrane Domain QPRVVPQTQESQPDSNLCGSHLAFSSAPAGGLLR ---BS---W --KLMAQSGMSQPD-

prostasin

HELA2

S-S

FIG 2B

In vitro transcription / translation of HELA2 (Testisin)

FIG 3

FIG 3(i)

FIG 3(ii)

FIG 3(iii)

HELA2 (Testisin) Short Isoform

HELA2 (Testisin) Long Isoform

HELA2 (Testisin) Restriction Enzyme Map

F1G 3(iii

FIG 4

<u>FIG 4(i)</u>

FIG 4(ii)

FIG 4(iii)

FIG 4(i)

FIG 4(ii

F1G 4(ii

 FIG 5 14/62

A. Expression of recombinant Testisin in E. coli.

B. Western blot of recombinant Testisin

15/62

FIG 6(II)

FIG 6(III)

FIG 6

09

召

വ

ro l

Ø

M

Д

M

ద

ر ا

اړ

Ы

A

Д

口

ල •

139

40

Н

凶

凶

Ċ

ر ا

വ

Ċ

Ŋ

ı

Д

Ø

Ø

团

Ŏ

വ

口

79

20

80

Ц

Ø

Z

Ω.

工

വ

S L

C

>

H

ഗ

199

259

CTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGGCACTCACGGCG

CGCATCGTGGGTGGAGGACGCCGAACTCGGGCGTTGGCCGTGGCAGGGGAGCCTGCGC

100 GCGCACTGCTTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGGTGGATGGTCCAGTTT ഥ Ø Σ Z ტ ഗ വ О ഗ П О ഗ × H 团 ഥ ပ 田

120 GGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTACTTC × × Ø Ø ᆸ ഗ Z Щ Ŋ Д Σ ഗ Н 319

140 GTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCCTTG Д Д ഗ Z ტ ᆸ \succ 召 Д ഗ Ц × Н Z ഗ 379

FIGURE

'AGGAGGCC	AGGAAG	×
		껖
4GAG	ACTC.	니
GG7	GG	ග
GCG	GCT	Ø
CCCC	CGG	ĸ
	GCT	Ø
	CTG	Ц
	CTGCTGGCTCGG	ᆸ
	CTG(니
	TGCTGGCGCTG	Ø
	CTG	J
	\circ	Н
	ATGGGCGCGCGCGGGCCTG	口
		Ø
		ה
		ద
		Ø
		ט
		\boxtimes
↤	19	

CCGGAGTCGCAGGAGGCGCCGCTTATCAGGACCATGCGGCCGACGGGTCATCACGTCG

FIGURE 6 (II)

- 160 GTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCTGCAGGCC Ø ر ا Н Д Ø Н 口 又 ⊣ × Н > വ Ø ഗ Ц X 439
- 180 ტ 3 ტ 드 > Z ט Ω Н 凶 Z 口 ſΞι 团 ഗ 499
- 200 GAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATAAAC Z Н Ø > Ŏ \gt ப O| ᆈ ⊣ 田 Д ഗ Д Ц Ø 口 臼 559
- 220 AACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGAGAC Ö Д X 出 ഥ ഗ × × 口 ഥ Ы H z ပ ഗ Z 619

17/62

- 240 ATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGTGGA G Ċ ഗ Д Ŋ C) FH Ø Ω × ဗ ტ Ø Ø z ധ Ø ပ > 619
- 260 CCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTG ტ 3 ഗ \gt > G Н Ø × ⋈ 口 Ċ Z 区 Z ט 口 739
- GGCTGTGGTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAGTGG 闰 二 口 ഗ Н Z 드 \succ \gt U Д 凶 Z Д ĸ O Ö Ċ 799

FIGURE 6 (III)

- 300 ATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCCAGACCCCTCCTGGCCGCTACTC ß ഗ വ Д Д Q ഗ × Ŋ ഗ Ø Ø I. Q K 859
- TITITCCCTCTTCTGGGCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGCCCA 314 ט Ц ᆸ Д Ц Ø Ŋ 口 Ц 919
- 1039 979
- 1099 AAAAAAAAAAAAAAAAA

Western blot of GST-Testisin using anti-Testisin peptide T175 antibody

FIG 7

FIG 8

FIG 8(i)

FIG 8(ii)

FIG 8(iii)

FIG 8(i)

FIG 8(ii)

FIG 9

FIG 9(i)	FIG 9(ii)
FIG 9(iii)	FIG 9(iv)

26/62

29/62

FIG 12

Testisin (HELA2) is located on human chromosome 16p13.3

4

A. Northern Blot

438 623 655 798

N T N T N T N T

HELA2
(Testisin) -

B. Immunohistochemistry

36/62

FIG 16

FIG 16(i)

FIG 16(ii)

FIG 16(iii)

FIG 16(iv)

FIG 16(v)

FIG 16(vi)

All grade grade that the form that were grade and grade and grade the form that were considered to the form that were considered to the form that the form the for

50	100	150	200	250	300		350	400	450	500	550		009	650
caggtgtgtg	agaaggagtc	ccaggcccca	actcctggct	gggcaggggg	aaaggactgt		AAGACCCGCC	CCCCAAACAG	ACCCGCCCTG	GAGGGGCGT	TGCTGCTGGC	/INTRON A	ctcggggcgc	gggaggtgga
ctgcctcagc ctcccaagta gctgggactt	ttttttttg	gcgcgatctt	tgcctacctg ctttaagggg	ggtgggtgga	ccccgggct gcagacaaga	7 7	CACATCAAGG AATGTGGTTG	GCCAGG GCGCTACCAG GCCTGAGAGG CCCCAAACAG	GGAGCTCCCA	GCCCGGCGCG AGAGGAGGCA GAGGGGGCGT	CGCGGGCGC TGCTGCTGGC	LNI/	GCCGGgtgag	tggggaggac
ctcccaagta	tttttttt	gagtgcagtg	tgcctacctg	tggaggaggt	cccccgggct	/+1EXON 1	CACATCAAGG	GCGCTACCAG	GGATTAAGCT	ರಾವಾತ್ರವಾದಿ	CATGGGCGCG		GGGCTG GACTCAGGAA GCCGGGtgag	ggggagcgg
	cagctaattt	gcccaggctg	aggaaggcct	cccctggtgc	gcagccagga		gggtctgggc	GAAAGCCAGG	TGGTTTGGGA	GCGACCCCGG	GAGAGGAGGC		GCTCGGGCTG	atggggaggc
agtgagtctc	ccaccatcct	ttgctctgtc	ccgggccctc	cagggccagg	caccaagcgg		ggggtccacc	CTTAGGAGCT GAAA	CCCTTGGGCC	CCCCCAGGGG GCGA	CAGGCCGCGG		GCTGCTGCTG GCTC	tgctggcggg

37/62

FIG 16(i

/EXON 2...

ggccgcgggg agtcacttct tgtctcccgc	caga	agagreeag gaggegeege	GAGGGGGGC	700
/INTRON B				
CGTTATCAGg tagggcgccc aggacgcgcg	lagad	attcctgcca	gggccgttgg	750
gccgaggtgg acggggggcg gtgagggggt	gggt	agagggggc	ctttactgct	800
ctctcgcccc cgccccgggg atcgagaact	laact	ctgttggcgt	ggaaagtaac	850
taacggacgc tggaggggga tgggcggggcc	Iggaca	ctgcagagca	cgtgggagga	006
tctccagtgt cacctacttc ctgctgcaca	caca	cacgcgaggg	gaccctgggt	950
gggcaaaaac gtgctttccc ggacggggtt	ggtt	gaaggggaga	aagggagagg	1000
tegggettgg ggggetgeet eeegeggete	gctc	agcagttcct	ctgaccatcc	1050
/EXON 3			·	
gaggaccatg cgcccacgg grcatcacgt	ACGT	CGCGCATCGT	GGGTGGAGAG	1100
GACGCCGAAC TCGGCCGTTG GCCGTGGCAG	GCAG	GGGAGCCTGC	GCCTGTGGGA	1150
TICCCACGIA IGCGGAGIGA GCCIGCICAG	TCAG	CCACCGCTGG	GCACTCACGG	1200

38/62

/INTRON C..

CGGCGCACTG	CTTTGAAACg	tgagtggggg	tgcgaacgga	ggggtgcggg	125
gacgggcagg	aacagggctg	gagggagtgc	caccgaactt	tacctctggt	130
ctgatgccag	acttgggcgt	gaaagttgtg	cgtggatgcg	gcctggtgtt	135
ctcctgagcc	ccaggctgtg	ctgcagccgg	ttacacccac	tccagttccc	140
tttgggtctc	ctggagggaa	ccctgttcag	gttattccag	aatgttcttc	145
cagaacattt	ccacacactt	ttgggtattc	tctccctttt	tctttcaacc	150
caaagttcac	cactgaccat	cccaccctca	teceeectee	tggtggacgg	155
tgcggtacag	tgtggggcac	tgagccaagg	ccagcacccc	cgggccgctg	160
tgtggactcc	atcctgccaa	tcccacattg	gcgtggtgca	tctccccatt	165
cctccttggg	ctgcatgggg	gtgcccctgg	aggccttggc	tcaatgcaag	170
gctccttggg	acagctctgg	gaggtgacaa	gaccccaccc	ttctgctgca	175
ggagcaggtc	ctaggacttt	ggttgtggtc	tgtctgggct	ccttcatttc	180
tgcaggggac	cctgggtgtt	agcaagtagc	agcaacacca	cagtttcccc	185
tcctgcactg	gaccccagtt	gtgctcaggt	agccagccct	ccatccaggg	190

39/62

F1G 16(iii

/EXON 4...

ccctgactg ctctctctc ttctgccagc tatagTGACC TTAGTGATCC	ttctgcc <u>ag</u> c	tat <u>ag</u> TGACC	TTAGTGATCC	1950
CTCCGGGTGG ATGGTCCAGT TTGGCCAGCT GACTTCCATG CCATCCTTCT	TTGGCCAGCT	GACTTCCATG	CCATCCTTCT	2000
GGAGCCTGCA GGCCTACTAC ACCCGTTACT TCGTATCGAA TATCTATCTG	ACCCGTTACT	TCGTATCGAA	TATCTATCTG	2050
AGCCCTCGCT ACCTGGGGAA TTCACCCTAT GACATTGCCT TGGTGAAGCT	TTCACCCTAT	GACATTGCCT	TGGTGAAGCT	2100
GTCTGCACCT GTCACCTACA CTAAACACAT CCAGCCCATC TGTCTCCAGG	CTAAACACAT	CCAGCCCATC	TGTCTCCAGG	2150
TGAGTTTGAG	AACCGGACAG	CCTCCACATT TGAGTTTGAG AACCGGACAG ACTGCTGGGT GACTGGCTGG	GACTGGCTGG	2200
	/INTRON	D		

40/62

2250	2300	2350	2400	2450	2500	2550
gggtcaggga	tagccccctg	tctctcctca	caggggctgt	gcaagcctgt	cataaacctc	gctcaccaat
GGGTACATCA AAGAGGATGA GGgtgaggct ggggacaggc gggtcaggga	ttgttcacct gttcccctgc ataggcacaa tagcccctg	gggtgcaggc tatgcccctc ttgcttgcag tctctcctca	ctctcccttc caggggctgt	ccagtttggc gcaagcctgt	gggtggtgcg gtggtggagg ggttctggag ggcttggcga cataaacctc	atacttggat ttattcctgc atctttccac ctcccccagt gctcaccaat
GGgtgaggct	gttcccctgc	tatgcccctc	acacccagtt	gagagggagg	ggttctggag	atctttccac
AAGAGGATGA	ttgttcacct	gggtgcaggc	cagggaccaa acacccagtt	aggagagtgt gagagggagg	gtggtggagg	ttattcctgc
GGGTACATCA	ggaactgtct	cttggtctgg	cctgccaggg	ggggccaga	gggtggtgcg	atacttggat

FIG 16 (iv

gccccaggca	tca	appro	approx 1000 bp	:	3563
ccaggttgcc	ccttccccca	aggtctggct	ttggatgctt	atgtgaacac	≈3613
cgttttaagt	tgccttggcc	ccttcctcgg	ttcctttttg	gctgaggaat	×3663
ctctccatgg	ctgcaggcag	ggccattgtt	gccattctac	agatagggaa	≈3713
agtgcggctg	ggggagctct	gacagctgtc	cctccccggg	gccttctgtg	≈3763
atgctgctga	gggcctctgt	tgtgctgggg	tctgggttgg	agctgggggt	≈3813
aatggagatg	aacctgccag	gcacagtggg	tgccccaggg	ccccacccc	≈3863
cgcagcctat	gccatccctc	catagagggg	cctcaggttg	ctgtctctct	≈3913
		/EXON 5			
ccttcccact	atcgtccgca	cagCACTGCC	CAGCACTGCC ATCTCCCCAC	ACCCTCCAGG	×3 <u>9</u> 63
AAGTTCAGGT	CGCCATCATA	AACAACTCTA	TGTGCAACCA	CCICITCCIC	≈4013
AAGTACAGTT	TCCGCAAGGA	CATCTTTGGA	CATCTTTGGA GACATGGTTT	GTGCTGGCAA	≈ 4 063
		[/	INTRON E		
TGCCCAAGGC	TGCCCAAGGC GGGAAGGATG	CCTGCTTCgt	CCTGCTTCgt gagtgtcctt	gccaccactc	≈4113
ccagcccagg	aaagcatcct	gtgtccctgt	gccttatttg	accctcatgc	≈4163
caaccccggg	aggtggagac	tgttgcccca	ctctgcagat	gcagaaacgg	≈ 4 213

41/62

FIG 16(v

aggettgget	gctgccaggg	ggaggaggag	gatgtgcacc cagtctaccc	cagtctaccc	≈4263 ≈4313
agccccarag	cccrrccac))))	/ EXON	. de	∩ ⊣ ∩ #
gccccaggct	gacctcagcc	ccgctgctcc	ccagGGTGAC	TCAGGTGGAC	≈ 4 363
CCTTGGCCTG		TAACAAGAAT GGACTGTGGT	ATCAGATTGG	AGTCGTGAGC	≈4413
TGGGGAGTGG	GCTGTGGTCG	GCCCAATCGG	CCCGGTGTCT	ACACCAATAT	≈4463
CAGCCACCAC	CAGCCACCAC TTTGAGTGGA	TCCAGAAGCT	GATGGCCCAG	AGTGGCATGT	≈ 4513
CCCAGCCAGA	CCCCTCCTGG	CCGCTACTCT	TTTTCCCTCT	TCTCTGGGCT	≈ 4 563
CTCCCACTCC	TGGGGCCGGT	CTGAGCCTAC	CTGAGCCCAT	GCAGCCTGGG	≈4613
GCCACTGCCA	AGTCAGGCCC	TGGTTCTCTT	CTGTCTTGTT	TGGTAATAAA	≈4663
CACATTCCAG	TTGATGCCTT	GCAGGGCATT	CTTCAaaagc	agtggcttca	≈4713
tggacagctc	attctctctt	gtgcagacag	cctgtctgtg	cccctggctc	≈4763
acacccacat	ctgttctgca	ccatagaacc	atctggttat	ttcqatcaga	≈ 4 813
aagagaattg	tgtgttgccc	aggctggtct	tgaacgccta	gggtgtctcg	×4863
atc					×4866

42/62

-1G 16(vi

FIGURE 17

FIG 18 (AI)

FIG 18 (AII)

FIG 18(A)

FIGURE 18 (AI)

- 20 О ტ Н ĸ ഗ Д Н ЕН 出 H Ċ ပ വ ധ ഗ ᄓ
- 40 TGATGCTGAGCTTGGCCGCTGGCCGTGGCAAGGGAGCCTGCGTGTATGGGGCAACCACTT 3 ద Ц ഗ ტ Q Z Д ⋈ 出 ტ Ц 闰 Ø 61
- 09 ATGTGGCGCAACCTTGCTCAACCGCCGCTGGGTGCTTACAGCTGCCCACTGCTTCCAAAA 田 ď Ø E Ц > ß 足 ĸ L N ᄓ Е Ø ල ල 121
- 80 口 GGATAACGATCCTTTTGACTGGACAGTCCAGTTTGGTGAGCTGACTTCCAGGCCATCTCT വ Ц 闰 ෆ ഥ Q > H ⋈ О ſΞι Д О Z 181
- 100 CTGGAACCTACAGGCCTATTCCAACCGTTACCAAATAGAAGATATTTTCCTGAGCCCCAA Ц Д ப н ŏ × 民 z ഗ × Ø Q ц Z 241
- GTACTCGGAGCAGTATCCCAATGACATAGCCCTGCTGAAGCTGTCATCTCCAGTCACCTA ß ഗ Ц X Ц Ц ď Н Д Р × Ø 臼 Ŋ 301
- 140 CAATAACTTCATCCAGCCCATCTGCCTCCTGAACTCCACGTACAAGTTTGAGAACCGAAC Гщ 터 ഗ Z L ပ Ъ Ø Н ഥ Z 361
- 160 TGACTGCTGGGTGACCGGCTGGGGGGCTATTGGAGAGATGAGAGTCTGCCATCTCCCAA Ы Ŋ 臼 口 Ç Н ď Ċ ζ G Н \gt 3 421

FIGURE 18 (AII)

- K 180 481 CACTCTCCAGGAAGTGCAGGTAGCTATTATCAACAACAGCATGTGAACCATATGTACAA Z H N N S M E V Q V A I I N N T L
- E G 200 AAAGCCAGACTTCCGCACGAACATCTGGGGAGACATGGTTTGCGCTGGCACTCCTGAAGG PDFRTNIWGDMVCAGTP 541
- KDACFGDSGGPLACDQDTV220 TGGCAAGGATGCCTGCTTTGGTGACTCGGGAGGACCCTTGGCCTGCGACCAGGATACGGT 601
- GTGGTATCAGGTTGGAGTTGTGAGCTGGGGAATAGGCTGTGGTCGCCCCAATCGCCCTGG W Y Q V G V V S W G I G C G R P N R P G 240 661

46/62

- AGTCTATACCAACATCAGTCACTACAACTGGATCCAGTCAACGTCATGATCGCAATGG V Y T N I S H H Y N W I Q S T M I R N G 260 721
- S 280 GCTGCTCAGGCCTGACCCAGTCCCCTTGCTACTGTTTCTTACTCTGGCCTGGGCTTCCTC 781
 - 285 TTTGCTGAGGCCTGCCTCACCACACGTGTACGTCACCACCTGTGAGGTCAGGGTGTGTC 841

901

47/62

FIG 20A(AI)

FIG 20A(AII)

FIG 20A(AIII)

FIG 20A(A)

The Healt State B D space open D B trials II. It is not been been been trials. If there is not trials in the state of the

FIGURE 20A (AI)

- 09 CTGAACCGGGTTGTGGGCGGCGAGGACAGCACTGACGGGGTGGCCCTGGATCGTGAGCL N R ∇V V G G E D S T D S E W P W I V S
- 120 ATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAGCCGCTGGGTGATC Z Ŋ Н 口 니 ഗ ტ Ø \Box 出 工 ⊱ ტ Z × Ø 21
- 180 **ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAAACCATACCTGTTCTCTGTGCTGCTG**
- ы ഗ ഥ 口 \succ Д X Z Ц z О ĸ ഥ \Box \equiv Ø 41
- 240 3 Ø > Ŋ > × Ø ഗ 召 വ ෆ Д Z L G Q Μ Ø 61
- 300 GAGCCCCACCCTGTGTATTCCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGT 召 ᄓ ø C D Ø ტ 团 × ß ഗ × > പ 田 口 81
- 360. CTCGAGCGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCT Ŋ ď 口 \Box Н Д L V 召 띠 ഗ ഥ Ŏ Н വ വ് 闰 101
- ATCCACCTCCCTCCAAACACCCCACTGCTGGATCTCAGGCTGGGGGGAGCATCCAAGATGGA Ö Ø Ŋ r \geq Ċ Ŋ Н Z ر ا 口 z Д Д 工

then the first that the test to the test that the test the test the test that the test the te

FIGURE 20A (AII)

GTTCCCTTGCCCCACCCTCAGACCCTGCAGAAGCTGAAGGTTCCTATCATCGACTCGGGAA 480 ഗ VPLPHPQTLQKLKVPI 141

540 GTCTGCAGCCATCTGTACTGGCGGGGAGCAGGACAGGGACCCCATCACTGAGGACATGCTG 闰 R G A G Q G P I T SHLYW Ü 161

IGTGCCGGCTAACTTGGAGGGGGGGCGGATGCTTGTCTGGGCGACTCCGGGGGCCCCCTC 600 \square A G Y L E G E R D A \square L G D \square G G G P L 181

099 ATGTGCCAGGTGGACGGCGCCTGGCTGGCCGGCATCATCAGCTGGGGCGAGGGCTGT S W C O V D G A W L L A G I I 201

720 GCCGAGCGCAACAGGCCCGGGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAG A ${f E}$ N R P G V Y I S L S A ${f ar H}$ R S W V ${f E}$ 221 780 AAGATCGTGCAAGGGGTGCAGCTCCGCGGGCGCGCTCAGGGGGGTGGGGCCCTCAGGGCA R A Q G G G A L R IVQGVQLRG 241

CCGAGCCAGGGCTCTGGGGCCCGCGCGCGCTCCTAGGGGCCCCAGCGGGACGCGGGGCTCGG 840 Ŋ S G A A A R ෆ დ დ 261

900 ATCTGAAAGGCGGCCAGATCCACATCTGGATCTGGATCTGCGGCGGCCTCGGGCGGTTTC CCCCGCCGTAAATAGGCTCATCTACCTCTACCTCTGGGGGCCCCGGACGGCTGCTGCGGAA

FIGURE 20A (AIII)

1020 1080 1140 CCGCCCAACGGCCTCATGTCCCCGCCCCCACGACTTCCGGCCCCCGGCCCCGGGCCCCAGCG AGGAAACCCCCCCCGACCCGCCCGACGGCCTCAGGCCCCCGCCTCCAAGGCATCAGGCC CTTTTGTGTATATAAATGTTAATGATTTTTTATAGGTATTTGTAACCCTGCCACATATCT TATTTATTCCTCCAATTTCAATAAA

FIG 20B(AI)

FIG 20B(AII)

FIG 20 B (A)

(AI) FIGURE 20B

9 口 Н Ω Q ტ Ċ > $R \nabla I$ Ċ Ø 臼 X ഗ 工

21

Ċ Ü > 田 U > ഗ ⊱ ᄓ S П ტ > Ŏ 3 ≥

180 TCATCCACCCACGCTGGGTGCTCACAGCCGCCCACTGCTTCCTGAGGTCTGAGGATCCCG 口 ഗ 召 ı ᄄ Ŋ \boxplus Ø T Γ Λ ⋈ 召 41

240 GGCTCTAUCATGTTAAAGTCGGAGGGCTGACACCCTCACTTTCAGAGCCCCACTCGGCCT ഗ Д 口 ഗ Н ഗ Д ⊣ G L ഗ > ĸ Н 口 61

300 TGGTGGCTGTGAGGAGGCTCCTGGTCCACTCCTCATACCATGGGACCACCACCAGCGGGG G ß Н G Η ഗ വ H L L V 召 ĸ 81

360 ACATTGCCCTGATGGAGCTGGACTCCCCTTGCAGGCCTCCCAGTTCAGCCCCATCTGCC ഗ ഥ Ø ഗ Ø Ø Ц Д ഗ Д 口 团 Z Г æ 101

TCCCAGGACCCCAGACCCCCTCGCCATTGGGACCGTGTGCTGGGTAAACGGGCTGGGGG G Z ß U G Н Ø П Д Ø U Д 121

TCCACTCAGGAGGGCCCTGGCGAGTGTCCTTCAGGAGGTGGCTGTGCCCCTCCTGGACT Ø \gt 口 Ø 口 Ŋ Þ 口 闰 C ഗ 田 141

all the trade is a substitute in the control of the

FIGURE 20B (AII

540 Ö ᆸ. W വ 口 ტ 口 H × Σ П 口 Ü Σ Z Ŋ 161

TCCAGGACGACATGCTCTGTGCTGGCTCTGTCCAGGGCAAGAAGACTCCTGCCAGGGTG Ŏ Ü ഗ Д × × ტ Ŏ > ഗ ტ Ø Ü Ц Z Д Ø 181

099 ACTCCGGGGGGCCGCTGGTCTGCCCCATCAATGATACGTGGATCCAGGCCGGCATTGTGA 201

Ŋ Ø Ŏ Н 3 [-Д Z Н Д Ü > П Д, r ෆ (V)

GCTGGGGATTCGGCTGTGCCCGGCCTTTCCGGCCTGGTGTCTACACCCCAGGTGCTAAGCT 720 Ц Ø × \gt ტ Д 召 Ľι Д ద Ø Ü Ç ტ 3

ď G Ŋ \succeq ტ ഗ Ή ഗ 口 ø 口 ĘΗ ĸ Q Н \geq 241

闰 Н 니 Ц > Д 出 ഗ œ ഗ E ഗ Ŋ 耳 Ŋ Ŋ щ ď Ċ Д 261

TGTTGACCGTATGCTTGCGTCCCTGTGAACCATGAGCCATGGAGTCCGGGATCCCC S U 口 Ы ر ک \gt 281

TTTCTGGTAGGATTGATGGAATCTAATAAAA

FIG 20C(AI)

FIG 20C(AII)

FIG 20C(A)

FIGURE 20C (AI)

9 闰 Ø E٦ Ω Ø ෆ ტ > N RVM 긔 Z 召 Д 出 ტ

AGTGGCCCTGGCAAGTCAGCATCCAGCGCAACGGAAGCCACTTCTGCGGGGGGCAGCCTCA ഗ r ტ Ü H ഗ Ö Z Q R Н Ŋ \gt Q S Z 回 21

180 TCGCGGAGCAGTCCTGACGCTGCTGCTTCCGCAACACCTCTGAGACGTCCC I A E Q W V L T A A H $\boxed{\mathbb{C}}$ F R N T S E T S 41

Ø

240 H വ Б Q L V R Q V L L G A Q Γ 61

300 CCCGGGTGAGGCAGGTGGAGAGCAACCCCCTGTACCAGGGCACGGCCTCCAGCGCTGACG ഗ Ø D G LY Д Z ഗ Ы Ы Ø പ്പ 24 81

360 TGGCCCTGGTGGAGCTGGAGCACCAGTGCCCTTCACCAATTACATCCTCCCCGTGTGCC ᄓ Z E Р V Ø 团 ᆸ 闰 > A L 101

420 Ç ⊠ [] Z Z ტ ᆮ 口 ſΞι > ഗ Д О Д 口 121

480 GCCCCAGTGAGGAAGACCTCCTGCCGGAACCGCGGATCCTGCAGAAACTCGCTGTGCCCA Ы Ö 凶 口 Ы Н Д 口 口 ഗ ഗ 141

FIGURE 20C (AII

540 TCATCGACACCCCAAGTGCAACCTGCTCTACAGCAAAGACACCGAGTTTGGCTACCAAC IDTPKCNLLY 161

009 CCAAAACCATCAAGAATGACATGCTGTGCGCCGGCTTCGAGGAGGGCAAGAAGGATGCCT X × ტ 团 口 ᄄ ტ K N D M L C A X 181

GCAAGGGCGACTCGGGCCGCCCCCTGGTGTGCCTCGTGGGTCAGTCGTGGCTGCAGGCGG 660 Q A M L ഗ Ø ტ C C S G G P L V K G D 201

GGGTGATCAGCTGGGGTGAGGGCTGTGCCCCGCCAGAACCGCCCAGGTGTCTACATCCGTG 720 ტ ტ പ C A R Q N R 田 다 ტ დ ഗ ෆ 221

Ø K L Q F IIP ĸ н Н MN н ď 241

840 GGTTGGGCCGCCAGAAGTGAGACCCCCGGGGCCAGGAGCCCCTTGAGCAGAGCTCTGCAC ഗ Ø 口 Ъ ы О ж G Д Q * D ტ Ċ ᆸ 261

CCAGCCTGCCCGCCCACACCATCCTGCTGGTCCTCCCAGCGCTGCTGTTGCACCTGTGAG 900 田 Ц л П Ą LLVLP Η H Ø വ S L 281

CCCCACCAGACTCATTTGTAAATAGCGCTCCTTCCTCCCCTCTCAAATACCCTTATTTA 960 TTTATGTTTCTCCCAATAAA

FIG 20C(B)

FIG 21