

Impact Assessment Report

Subject: ODO & DMI interface

Author M. Schroeder / W. Malfait (EE)

Coordinated with H. Bierlein (ERTMS)

Control Group 04/07/2013

In April 2012, a Memorandum of Understanding was signed between

- the Railway Sector,
- the Commission,
- and the Agency aiming at facilitating the deployment of ERTMS.

(d) ERA, with the support of the signatories, will produce a concept paper setting out the main options, challenges, costs and benefits related to the definition of the DMI interfaces and of odometer interfaces by 1 June 2013. A first draft should be ready by the end of 2012.

Date	Activity/Milestone
April 2012	MoU Baseline 3 signed
September 2012- December 2012	5 Bilateral Meetings with Vehicle Suppliers joined with ERTMS/ETCS On-Board Suppliers (+2 written feedbacks)
January 2013	First Draft of the Feasibility Study Published on Extranet (Economic Survey Group)
February 2013	Presentation of Study in ESG
February – March 2013	Bilateral meeting with selected Railway Undertakings to discuss a) the study b) possible working topics to be included in the final study
March – April 2013	Detailed assessment of the feasibility of such interface taking into account the view of the other vehicle applications
May 2013	Draft Final Study
June – July 2013	Pre-Discussion with UNISIG/UNIFE and CER Presentation of the final study in CG/ESG

Topic 1: Odometry-interface

- **Problem 1**: A number of vehicle applications require the installation of sensors for speed and distance measurement:
 - It is difficult to find "free" space for sensors
 - Increased one-time costs (investment) costs and operational (maintenance) costs due to the number/variety of sensors
- **Problem 2**: Exchange of EVC in a vehicle might require the exchange of all sensors (and other constituents within the vehicle);
- Problem 3: Some RUs report low performance of ETCS odometry;

Topic 1: From Problems towards Objectives

Objective	Priority (low; medium; high)
The standardisation of the <u>odometric</u> interface should facilitate the renewal of the ERTMS/ETCS onboard system;	High
The standardisation of the odometric interface should contribute to an improvement of the performance of the odometry;	High
The standardisation of the <u>odometric</u> interface should reduce the number of <u>odometric</u> sensors within a vehicle;	Low/Medium
The standardisation of the <u>odometric</u> interface should allow interchangeability of <u>odometric</u> sensors;	Low/Medium

Option A: Interface to a Centralised Odometry

This interface is an "application internal" interface where the subsystems of the application are connected to a centralised odometry.

Option B: Interface to Odometry Sensor (sensor sharing)

This interface is at sensor level. In this way, the different vehicle applications could share a sensor. The communication between the sensors and the different odometry applications can be made in 2 ways.

- bus: sensors and application systems connected to a bus (as presented in the picture below); the application might need a specific "driver" software to communicate with the sensor via the bus.
- direct connections from each sensor to each application (each sensor with multiple connections to the applications).

 Option C: Interface between Adhesion Control/ Brake Control and ETCS On-board

This interface is at application level. It is a specific interface between the main performance and safety critical applications (ETCS, brake control and traction control) to exchange:

- Odometric information
- Status of the brake and the traction control
- Commands to ask for a specific status of an axle at the time x (e.g. unbraked/ unpowered)

Topic 1: Analysis of benefits

	Objective	Priority (low; medium; high)	Option A	Option B	Option C
in	he standardisation of the odometric nterface should facilitate the renewal of the ERTMS/ETCS on-board system;	High	Yes	Yes	Yes (in case of providing reference speed with confidence intervals)
in im	he standardisation of the odometric nterface should contribute to an improvement of the performance of the dometry;	High	No	No	Yes (unbraking/unpowering of axle)
in	he standardisation of the odometric nterface should reduce the number of dometric sensors within a vehicle;	Low/Medium	Yes	Yes	Yes (in case of reference speed with confidence intervals)
in	he standardisation of the odometric nterface should allow interchangeability of dometric sensors;	Low/Medium	No	Yes	No
5. Of	ther benefits/opportunities	Low/Medium			Verification of the data entry from the train-driver in ETCS.

- Option A: Total (one-time) cost impact € 14 M € 70 M;
- Option B: Total (one-time) cost impact € 0,7 M and € 7 M;
- Option C: Implementation of the interface, re-certification of current products – similar as for option B;

- All options provide benefits which are higher than the costs.
 Nevertheless option B in combination with option C provide similar benefits (and more opportunities) as option A with less costs and the specification and later implementation of the interface is considered to be feasible;
- The Agency recommends to the railway sector to start with analysing option C in more detail e.g. by specifying a first FIS (functional interface specification)— this requires commitment from suppliers for ETCS on-board units and suppliers for brake and traction control;

34 SIGNAL + DRAHT (104) 3/2012

- **Problem 1**: DMI-display is not interchangeable;
- **Problem 2**: Limited space on train drivers desk to cover all applications (ERTMS, Class B, Train Control Motion System);
- Problem 3: Failure of the DMI-display leads to punctuality problems;
- Problem 4: Upgrade of EVC requires modifications of odometry,
 DMI, Balise reader, Juridical recorder interfaces;

Topic 2: From Problems towards Objectives

Objective	Priority (low; medium; high)	
The standardisation of the interface should facilitate the interchangeability of the EVC (e.g. in case of upgrades/renewals);	High	
2. The standardisation of the interface should allow the interchangeability of the display;	Medium	
3. The standardisation of the interface should facilitate the scaling of different applications into one display;	Medium	
4. The standardisation of the interface should allow the switching of applications between the available displays on the train drivers desk;	Medium	

- Option A: interface at application level;
- Option B: interface at graphics card level;

Topic 2: Assessment of benefits

Objective	Option A Objective fulfilled (yes; partially; no)	Option B Objective fulfilled (yes; partially; no)
The standardisation of the interface should facilitate the interchangeability of the EVC (e.g. in case of upgrades/renewals);	Yes	Partially (DMI-logic inside EVC)
The standardisation of the interface should allow the interchangeability of the display;	Yes, in case of smart DMI- displays (including the train display controller functionality)	Yes
	Partially, in case of use of individual train display controller (depends on the interface between TDC-DMI)	
The standardisation of the interface should facilitate the scaling of different applications into one display;	Yes	No
The standardisation of the interface should allow the switching of applications between the available displays on the train drivers desk;	Yes	Yes

Option A:

- One-time cost impact for ERTMS-suppliers is estimated between 10 to 100 MEUR for redesign and reauthorisation of the interface (high complexity of the interface due to re-allocation of functions);

• Option B:

 One-time cost impact for ERTMS-suppliers is estimated between 1 to 10 MEUR for redesign and reauthorisation of the interface (low complexity of the interface);

Graphics functions allocated to EVC or to TDC:

Allocation of graphics functions to the EVC (instead of to a TDC/DMI)
could increase the cost of the EVC (as being a system with higher
safety level than the TDC/DMI);

- Option A (interface ETCS-TDC/DMI at application layer) and the option B (technical interface between display and TDC) have a positive economic outcome, with option A fulfilling the highest priority (facilitating the inter-changeability of the EVC);
- The ERA supports both the activities of UNISIG (standardisation of the interface EVC-DMI controller) and the activities of the CENELEC WG (standardisation of interface between other applications and DMI controller);

- The ERA has no intention to include further activities in the ERA Work Programme related to the DMI-interface & ODO-interface (priorities on interoperability aspects);
- The feasibility study shall be used by the ERA to support activities in line with the conclusions of the report;
- The railway sector has already taken the actions to standardise the DMI-interface;
- The railway sector should take actions to start with analysing option C in more detail;

