Database Systems, Even 2020-21

Storage and File Structure

Classification of Physical Storage Media

- Speed with which data can be accessed
- Cost per unit of data
- Reliability
 - Data loss on power failure or system crash
 - Physical failure of the storage device
- Can differentiate storage into:
 - Volatile storage: Loses contents when power is switched off
 - Non-volatile storage:
 - Contents persist even when power is switched off
 - Includes secondary and tertiary storage, as well as batter-backed up main-memory

Cache

- Fastest and most costly form of storage
- Volatile
- Managed by the computer system hardware

Main memory

- Fast access (10s to 100s of nanoseconds; 1 nanosecond = 10^{-9} seconds)
- Generally too small (or too expensive) to store the entire database
 - Capacities of up to a few gigabytes widely used currently
 - Capacities have gone up and per-byte costs have decreased steadily and rapidly (roughly factor of 2 every 2 to 3 years)

Volatile

Contents of main memory are usually lost if a power failure or system crash occurs

Flash memory

- Data survives power failure
- Data can be written at a location only once, but location can be erased and written to again
 - Can support only a limited number (10K 1M) of write/erase cycles
 - Erasing of memory has to be done to an entire bank of memory
- Reads are roughly as fast as main memory
- But writes are slow (few microseconds), erase is slower
- Widely used in embedded devices such as digital cameras, phones, and USB keys

Magnetic-disk

- Data is stored on spinning disk, and read/written magnetically
- Primary medium for the long-term storage of data
 - Typically stores entire database
- Data must be moved from disk to main memory for access, and written back for storage
 - Much slower access than main memory

Direct-access

- Possible to read data on disk in any order, unlike magnetic tape
- Capacities range up to roughly 16~32 TB
 - Much larger capacity and cost/byte than main memory/flash memory
 - Growing constantly and rapidly with technology improvements (factor of 2 to 3 every 2 years)
- Survives power failures and system crashes
 - Disk failure can destroy data, but is rare

Optical storage

- Non-volatile, data is read optically from a spinning disk using a laser
- CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms
- Blu-ray disks: 27 GB to 54 GB
- Write-one, read-many (WORM) optical disks used for archival storage (CD-R, DVD-R, DVD+R)
- Multiple write versions also available (CD-RW, DVD-RW, DVD+RW, and DVD-RAM)
- Reads and writes are slower than with magnetic disk
- Juke-box systems, with large numbers of removable disks, a few drives, and a mechanism for automatic loading/unloading of disks available for storing large volumes of data

Tape storage

- Non-volatile, used primarily for backup (to recover from disk failure), and for archival data
- Sequential-access
 - Much slower than disk
- Very high capacity (40 to 300 TB tapes available)
- Tape can be removed from drive ⇒ storage costs much cheaper than disk, but drives are expensive
- Tape jukeboxes available for storing massive amounts of data
 - O Hundreds of terabytes (1 terabyte = 10^{12} bytes) to even multiple **petabytes** (1 petabyte = 10^{15} bytes)

Storage Hierarchy

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Magnetic Disks

Read-write head

- Positioned very close to the platter surface (almost touching it)
- Reads or writes magnetically encoded information
- Surface of platter divided into circular tracks
 - Over 50K-100K tracks per platter on typical hard disks
- Each track is divided into sectors
 - A sector is the smallest unit of data that can be read or written
 - Sector size typically 512 bytes
 - Typical sectors per track: 500 to 1000 (on inner tracks) to 1000 to 2000 (on outer tracks)
- To read/write a sector
 - Disk arm swings to position head on right track
 - Platter spins continually; data is read/written as sector passes under head
- Head-disk assemblies
 - Multiple disk platters on a single spindle (1 to 5 usually)
 - One head per platter, mounted on a common arm
- Cylinder *i* consists of *i*th track of all the platters

Magnetic Disks

- Earlier generation disks were susceptible to head-crashes
 - Surface of earlier generation disks had metal-oxide coatings which would disintegrate on head crash and damage all data on disk
 - Current generation disks are less susceptible to such disastrous failures, although individual sectors may get corrupted
- Disk controller interfaces between the computer system and the disk drive hardware
 - Accepts high-level commands to read or write a sector
 - Initiates actions such as moving the disk arm to the right track and actually reading or writing the data
 - Computes and attaches checksums to each sector to verify that data is read back correctly
 - o If data is corrupted, with very high probability stored checksum won't match recomputed checksum
 - Ensures successful writing by reading back sector after writing it
 - Performs remapping of bad sectors

Disk Subsystem

- Multiple disks connected to a computer system through a controller
 - Controllers functionality (checksum, bad sector remapping) often carried out by individual disks; reduces load on controller
- Disk interface standards families
 - ATA (AT adaptor) range of standards
 - SATA (Serial ATA)
 - SCSI (Small Computer System Interconnect) range of standards
 - SAS (Serial Attached SCSI)
 - Several variants of each standard (different speeds and capabilities)

Disk Subsystem

- Disks usually connected directly to computer system
- In Storage Area Networks (SAN), a large number of disks are connected by a high-speed network to a number of servers
- In Network Attached Storage (NAS) networked storage provides a file system interface using networked file system protocol, instead of providing a disk system interface

Performance Measures of Disks

- Access time: The time it takes from when a read or write request is issued to when data transfer begins and it consists of:
 - Seek time: Time it takes to reposition the arm over the correct track
 - Average seek time is 1/2 the worst case seek time
 - Would be 1/3 if all tracks had the same number of sectors, and we ignore the time to start and stop arm movement
 - 4 to 10 milliseconds on typical disks
 - Rotational latency: Time it takes for the sector to be accessed to appear under the head
 - Average latency is 1/2 of the above latency
 - 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)
- Data-transfer rate: The rate at which data can be retrieved from or stored to the disk
 - 25 to 200 MB per second max rate, lower for inner tracks
 - Multiple disks may share a controller, so rate that controller can handle is also important
 - E.g. SATA: 150 MB/sec, SATA-II 3Gb (300 MB/sec)
 - Ultra 320 SCSI: 320 MB/s, SAS (3 to 6 Gb/sec)
 - o Fiber Channel (FC2Gb or 4Gb): 256 to 512 MB/s

Performance Measures of Disks

- Mean time to failure (MTTF): The average time the disk is expected to run continuously without any failure
 - Typically 3 to 5 years
 - Probability of failure of new disks is quite low, corresponding to a "theoretical MTTF" of 500,000 to 1,200,000 hours for a new disk
 - E.g., an MTTF of 1,200,000 hours for a new disk means that given 1000 relatively new disks, on an average one will fail every 1200 hours
 - MTTF decreases as disk ages

- Block: A contiguous sequence of sectors from a single track
 - Data is transferred between disk and main memory in blocks
 - Sizes range from 512 bytes to several kilobytes
 - Smaller blocks: More transfers from disk
 - Larger blocks: More space wasted due to partially filled blocks
 - Typical block sizes today range from 4 to 16 kilobytes

- Disk-arm-scheduling algorithms order pending accesses to tracks so that disk arm movement is minimized
- Example: Queue 95, 180, 34, 119, 11, 123, 62, 64 with the Read-write head initially at the track 50 and the tail track being at 199

- File organization: Optimize block access time by organizing the blocks to correspond to how data will be accessed
 - E.g. Store related information on the same or nearby cylinders
 - Files may get fragmented over time
 - o E.g., if data is inserted to/deleted from the file
 - o Or free blocks on disk are scattered, and newly created file has its blocks scattered over the disk
 - o Sequential access to a fragmented file results in increased disk arm movement
 - Some systems have utilities to defragment the file system, in order to speed up file access

- Nonvolatile write buffers speed up disk writes by writing blocks to a non-volatile RAM buffer immediately
 - Non-volatile RAM: Battery backed up RAM or flash memory
 - Even if power fails, the data is safe and will be written to disk when power returns
 - Controller then writes to disk whenever the disk has no other requests or request has been pending for some time
 - Database operations that require data to be safely stored before continuing can continue without waiting for data to be written to disk
 - Writes can be reordered to minimize disk arm movement
- Log disk: A disk devoted to writing a sequential log of block updates
 - Used exactly like nonvolatile RAM
 - Write to log disk is very fast since no seeks are required
 - No need for special hardware (NV-RAM)
- File systems typically reorder writes to disk to improve performance
 - Journaling file systems write data in safe order to NV-RAM or log disk
 - Reordering without journaling: Risk of corruption of file system data

Flash Storage

- NOR flash vs NAND flash
- NAND flash
 - Used widely for storage, since it is much cheaper than NOR flash
 - Requires page-at-a-time read (page: 512 bytes to 4 KB)
 - Transfer rate around 20 MB/sec
 - Solid state disks: use multiple flash storage devices to provide higher transfer rate of 100 to 200
 MB/sec
 - Erase is very slow (1 to 2 millisecs)
 - Erase block contains multiple pages
 - Remapping of logical page addresses to physical page addresses avoids waiting for erase
 - > Translation table tracks mapping
 - ✓ Also stored in a label field of flash page
 - Remapping carried out by flash translation layer
 - After 100,000 to 1,000,000 erases, erase block becomes unreliable and cannot be used
 - > Wear leveling

RAID

- RAID: Redundant Arrays of Independent Disks
 - Disk organization techniques that manage a large numbers of disks, providing a view of a single disk of:
 - High capacity and high speed by using multiple disks in parallel
 - High reliability by storing data redundantly, so that data can be recovered even if a disk fails
- The chance that some disk out of a set of N disks will fail is much higher than the chance that a specific single disk will fail
 - E.g., a system with 100 disks, each with MTTF of 100,000 hours (approx. 11 years), will have a system
 MTTF of 1000 hours (approx. 41 days)
 - Techniques for using redundancy to avoid data loss are critical with large numbers of disks
- Originally a cost-effective alternative to large, expensive disks
 - I in RAID originally stood for "inexpensive"
 - Today RAIDs are used for their higher reliability and bandwidth
 - The "I" is interpreted as independent

Improvement of Reliability via Redundancy

- Redundancy: Store extra information that can be used to rebuild information lost in a disk failure
- Mean time to data loss depends on mean time to failure, and mean time to repair
 - E.g., MTTF of 100,000 hours, mean time to repair of 10 hours gives mean time to data loss of 500*10⁶ hours (or 57,000 years) for a mirrored pair of disks (ignoring dependent failure modes)
- Mirroring (or shadowing)
 - Duplicate every disk
 - Logical disk consists of two physical disks
 - Every write is carried out on both disks
 - Reads can take place from either disk
 - If one disk in a pair fails, data still available in the other
 - o Data loss would occur only if a disk fails, and its mirror disk also fails before the system is repaired
 - Probability of combined event is very small
 - ✓ Except for dependent failure modes such as fire or building collapse or electrical power surges

Improvement of Reliability via Redundancy

- **Bit-level striping:** Split the bits of each byte across multiple disks
 - In an array of eight disks, write bit i of each byte to disk i
 - Each access can read data at eight times the rate of a single disk
 - But seek/access time worse than for a single disk
 - Bit level striping is not used much any more
- Block-level striping: With n disks, block i of a file goes to disk (i mod n) + 1
 - Requests for different blocks can run in parallel if the blocks reside on different disks
 - A request for a long sequence of blocks can utilize all disks in parallel

Improvement of Reliability via Redundancy

- Bit-Interleaved Parity: A single parity bit is enough for error correction, not just detection, since
- We know which disk has failed
 - When writing data, corresponding parity bits must also be computed and written to a parity bit disk
 - To recover data in a damaged disk, compute XOR of bits from other disks (including parity bit disk)
- Block-Interleaved Parity: Uses block-level striping, and keeps a parity block on a separate disk for corresponding blocks from N other disks
 - When writing data block, corresponding block of parity bits must also be computed and written to parity disk
 - To find value of a damaged block, compute XOR of bits from corresponding blocks (including parity block) from other disks

Choice of RAID Level

- Factors in choosing RAID level
 - Monetary cost
 - Performance: Number of I/O operations per second, and bandwidth during normal operation
 - Performance during failure
 - Performance during rebuild of failed disk
 - Including time taken to rebuild failed disk
- RAID 0 is used only when data safety is not important
 - E.g. data can be recovered quickly from other sources
- Level 2 and 4 never used since they are subsumed by 3 and 5
- Level 3 is not used anymore since bit-striping forces single block reads to access all disks, wasting disk arm movement, which block striping (level 5) avoids
- Level 6 is rarely used since levels 1 and 5 offer adequate safety for most applications

Choice of RAID Level

- Level 1 provides much better write performance than level 5
 - Level 5 requires at least 2 block reads and 2 block writes to write a single block, whereas Level 1 only requires 2 block writes
 - Level 1 preferred for high update environments such as log disks
- Level 1 had higher storage cost than level 5
 - Disk drive capacities increasing rapidly (50%/year) whereas disk access times have decreased much less (x 3 in 10 years)
 - I/O requirements have increased greatly, e.g. for Web servers
 - When enough disks have been bought to satisfy required rate of I/O, they often have spare storage capacity
 - So there is often no extra monetary cost for Level 1!
- Level 5 is preferred for applications with low update rate, and large amounts of data
- Level 1 is preferred for all other applications

Tertiary Storage: Optical Disks

- Compact disk-read only memory (CD-ROM)
 - Removable disks, 640 MB per disk
 - Seek time about 100 msec (optical read head is heavier and slower)
 - Higher latency (3000 RPM) and lower data-transfer rates (3-6 MB/s) compared to magnetic disks
- Digital Video Disk (DVD)
 - DVD-5 holds 4.7 GB, and DVD-9 holds 8.5 GB
 - DVD-10 and DVD-18 are double sided formats with capacities of 9.4 GB and 17 GB
 - Blu-ray DVD: 27 GB (54 GB for double sided disk)
 - Slow seek time, for same reasons as CD-ROM
- Record once versions (CD-R and DVD-R) are popular
 - Data can only be written once, and cannot be erased.
 - High capacity and long lifetime; used for archival storage
 - Multi-write versions (CD-RW, DVD-RW, DVD+RW and DVD-RAM) also available

Tertiary Storage: Magnetic Tapes

- Hold large volumes of data and provide high transfer rates
- Few GB for DAT (Digital Audio Tape) format, 10-40 GB with DLT (Digital Linear Tape) format, 100 GB+ with Ultrium format, and 330 GB with Ampex helical scan format
- Transfer rates from few to 10s of MB/s
- Tapes are cheap, but cost of drives is very high
- Very slow access time in comparison to magnetic and optical disks
 - Limited to sequential access
 - Some formats (Accelis) provide faster seek (10s of seconds) at cost of lower capacity
- Used mainly for backup, for storage of infrequently used information, and as an off-line medium for
- transferring information from one system to another
- Tape jukeboxes used for very large capacity storage
 - Multiple petabyes (10¹⁵ bytes)

Storage and File Structure

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in