Real Analysis HW #5

Jack Krebsbach Oct 15th

Question 1

1. Let $x_n \ge 0$ for all $n \in \mathbb{N}$.

(a) If $(x_n) \to 0$, show that $\sqrt{x_n} \to 0$.

Proof: For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n > \mathbb{N}$, $|x_n - 0| < \epsilon$. This implies that $|x_n| < \epsilon$. Let $\epsilon_0 = \epsilon^2$. Then

$$|x_n| < \epsilon_0 = \epsilon^2 \implies |\sqrt{x_n}| < \epsilon \implies |\sqrt{x_n} - 0| < \epsilon.$$

Thus, we have shown $\sqrt{x_n} \to 0$.

(b) If $(x_n) \to x$, show that $\sqrt{x_n} \to \sqrt{x}$.

Proof: We consider two cases:

- 1. If x = 0 then see proof of (a).
- 2. If x > 0. Since $(x_n) \to x$ we know that for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $|x_n x| < \epsilon$. Let $\epsilon_0 = \epsilon \sqrt{x}$.

Then

$$|x_n - x| < \epsilon \sqrt{x} \implies \left| \sqrt{x_n^2} - \sqrt{x^2} \right| < \epsilon \sqrt{x}.$$

This a difference of squares so,

$$\left| \sqrt{x_n}^2 - \sqrt{x^2} \right| = \left| (\sqrt{x_n} - \sqrt{x})(\sqrt{x_n} + \sqrt{x}) \right| < \epsilon \sqrt{x}$$

$$\implies \left| (\sqrt{x_n} - \sqrt{x}) \left(\frac{\sqrt{x_n} + \sqrt{x}}{\sqrt{x}} \right) \right| < \epsilon$$

$$\implies \left| (\sqrt{x_n} - \sqrt{x}) \left(\frac{\sqrt{x_n}}{\sqrt{x}} + 1 \right) \right| < \epsilon$$

Since $\left(\frac{\sqrt{x_n}}{\sqrt{x}} + 1\right) > 1$ it must be that $\left|\sqrt{x_n} - \sqrt{x}\right| < \epsilon$. Thus, $\sqrt{x_n} \to \sqrt{x}$.

Question 2

2. Let (a_n) and (b_n) be sequences of real numbers.

(a) Show that if $(a_n) \to 0$ and $(a_n - b_n) \to 0$, then $(b_n) \to 0$.

Proof: If $(a_n) \to 0$ then for all $\epsilon > 0$ there exists N_1 such that for all $n > N_1$, $|a_n - 0| < \frac{\epsilon}{2}$. Similarly, for all $\epsilon > 0$ there exists N_2 such that for all $n > N_2$, $|(a_n - b_n) - 0| < \frac{\epsilon}{2}$. Consider the sum of these two quantities with $n > N^* = \max\{N_1, N_2\}$. Then

$$|a_n - 0| + |(a_n - b_n) - 0| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

and it follows

$$|0-a_n|+|a_n-b_n|<\epsilon.$$

By the Triangle Inequality Theorem,

$$|0 - a_n + a_n - b_n| = |0 - b_n| \le |0 - a_n| + |a_n - b_n| < \epsilon.$$

Thus,
$$|0 - b_n| = |b_n - 0| < \epsilon \implies (b_n) \rightarrow 0$$
.

(2)

(

(b) Show that if $(a_n) \to 0$ and $|b_n - b| \le a_n$, then $(b_n) \to b$

Proof: If $(a_n) \to 0$ then for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $|a_n - 0| < \frac{\epsilon}{2}$. We know that

$$|b_n - b| \le |a_n| \implies |b_n - b| - |a_n| \le 0 < \frac{\epsilon}{2}.$$

After the summing the two quantities,

$$|b_n - b| - |a_n| + |a_n - 0| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$\implies |b_n - b| - |a_n| + |a_n| < \epsilon$$

$$\implies |b_n - b| < \epsilon$$

$$\implies |b_n - b| < \epsilon$$

$$\implies |b_n - b| < \epsilon$$

☺

Question 3

3. Consider $y_1 = 1$, $y_{n+1} = (2y_n + 3)/4$ for all $n \in \mathbb{N}$. Show by direct calculations that $y_1 < y_2 < 2$. Then, show that if $y_{n-1} < y_n < 2$ that $y_n < y_{n+1} < 2$. Use this to show that $\{y_n\}$ converges and find its limit.

Proof: If $y_1 = 1$ then $y_{1+1} = [2(1) + 3]/4 = \frac{5}{4} < 2$. So $y_1 < y_2 < 2$. If $y_{n-1} < y_n < 2$ then

$$y_{n-1} < y_n < 2 \implies 2y_{n-1} < 2y_n < 2(2) \implies 2y_{n-1} + 3 < 2y_n + 3 < 2(2) + 3$$

$$\implies \frac{2y_{n-1} + 3}{4} < \frac{2y_n + 3}{4} < \frac{2(2) + 3}{4}.$$

$$\implies y_n < y_{n+1} < \frac{7}{4} < 2$$

We see that $y_n < y_{n+1}$ so the sequence is monotone. We also see that it is bounded by 2. Therefore, by M.C.T, y_n is convergent.

Let $\lim_{n\to\infty} y_n = L$. Then

$$\lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} (2y_n + 3) / 4$$

$$\implies L = (2L + 3) / 4$$

$$\implies 4L = 2L + 3$$

$$\implies 2L = 3$$

$$\implies L = 3/2.$$

☺

Thus, $y_n \rightarrow 3/2$.

Question 4

4. (Cesaro Means). Show that if (x_n) is a convergent sequence, then the sequence given by the averages:

$$y_n = \frac{x_1 + x_2 + \dots x_n}{n}$$

also converges to the same limit.

Proof: Let (x_n) converge to x. If (x_n) is convergent then for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N, $|x_n - x| < \epsilon$.

Then

$$\left| \frac{x_1 + x_1 + \dots + x_n}{n} - x \right| =$$

$$\left| \frac{x_1 + x_1 + \dots + x_N + \dots + x_n}{n} - x \right| =$$

$$\left| \frac{x_1 + x_1 + \dots + x_N}{n} + \frac{x_{N+1} + \dots + x_n}{n} - x \right| \le \left| \underbrace{\frac{x_1 + x_1 + \dots + x_N}{n}}_{V} + \underbrace{\left| \frac{x_{N+1} + \dots + x_n}{n} - x \right|}_{V} \right|$$

The last step is a result of the Triangle Inequality Theorem. We know that for all the terms where n > N, $|x_n - x| < \epsilon$. Then the average of of all x_n where n > N, $\bar{x}_n = \frac{x_{N+1} + \dots + x_n}{n-N}$, will also be have the property $|\bar{x}_n - x| < \epsilon$. As n tends to infinity the expression $\frac{x_{N+1} + \dots + x_n}{n}$ will tend towards $\bar{x}_n = \frac{x_{N+1} + \dots + x_n}{n-N}$. Then $n \to \infty \implies Z < \epsilon$, and since the numerator of K is fixed, $K \to 0$.

Hence, as $n \to \infty$, $K + Z < \epsilon \implies \left| \frac{x_1 + x_1 + \dots + x_n}{n} - x \right| < \epsilon$. Thus, we can conclude that $(y_n) \to x$ in addition to $(x_n) \to x$.

Question 5

5. ChatGPT Challenge: To prove that if $\lim (a_n - b_n) = 0$, then $\lim a_n = \lim b_n$, you can use the definition of a limit and the properties of limits. Here's a proof:

Proof: Let $\epsilon > 0$ be arbitrary. Since $\lim (a_n - b_n) = 0$, there exists an N_1 such that for all $n \ge N_1$, we have $|a_n - b_n| < \epsilon/2$. Now, consider the inequality $|a_n - b_n| < \epsilon/2$. We can add $|b_n|$ to both sides of this inequality: $|a_n - b_n| + |b_n| < \epsilon/2 + |b_n|$

By the triangle inequality, we know that $|a_n - b_n| + |b_n| \le |a_n - b_n| + |b_n|$, so: $|a_n| < \epsilon/2 + |b_n|$ Now, we have the following inequalities: $|a_n - b_n| < \epsilon/2$ (from our choice of N_1) $|a_n| < \epsilon/2 + |b_n|$

Everything up until this point tracks. You have clearly shown how we got to this point.

Now, choose N_2 such that for all $n \ge N_2$, we have $|b_n| < \epsilon/2$.

Where does this come from? This only works if we know (b_n) converges to 0. You are trying to prove that (b_n) and (a_n) converge to the same value. We do not know if one or both converge to zero.

Let $N=\max(N_1,N_2)$. For $n\geqslant N$, we have: $|a_n-b_n|<\epsilon/2$ (from the choice of N_1) $|b_n|<\epsilon/2$ (from the choice of N_2) Now, let's use these inequalities to bound $|a_n|:|a_n|=|a_n-b_n+b_n|\leqslant |a_n-b_n|+|b_n|<\epsilon/2+\epsilon/2=\epsilon$ This shows that for all $n\geqslant N$, we have $|a_n|<\epsilon$, which means that $\lim a_n=0$. Since ϵ was arbitrary, we have shown that for any $\epsilon>0$, there exists an N such that for all $n\geqslant N$, $|a_n|<\epsilon$, which is the definition of $\lim a_n=0$. Therefore, we have proved that if $\lim (a_n-b_n)=0$, then $\lim a_n=\lim b_n$.

Again we are trying to show that (a_n) and (b_n) converge to the same number. You have not even proved that $\lim b_n = 0$, so this does not show that $\lim (a_n) = \lim (b_n)$. Make sure you have a clear goal of what you are trying to prove and lay clear logical steps to prove that assertion.