

ABS0114

Issue 4 Page 1 of 9 Date September 2004

Bolt – Hexagon Head, Close Tolerance 6AL-4V Titanium Alloy

Published and distributed by:

Airbus S.A.S Business Processes 31707 Blagnac Cedex France

1 Scope

This standard specifies the dimensions, required characteristics and mass of a hex, bolt head for use in aerospace applications.

2 Normative References

AMS 4928 Titanium Alloy Bars, Wire, forgings, and Rings 6AI – 4V Annealed (UNS R56400)

AMS 4967 Titanium Alloy Bars, Wire, forgings, and Rings 6.0Al – 4.0V Annealed, Heat Treatable (UNS

R56400)

MIL-DTL-83488 Coating, Aluminium, Ion Vapour Deposition

AS8879 Screw threads, controlled radius root with increased minor diameter.

NAS 4004 Fasteners, 6AL-4V Titanium alloy, externally threaded, 160 KSI Ftu, 95 KSI Ftu, 450

degrees F.

ASME B46.1 Surface texture (surface roughness, waviness, and lay.)

EN6118 Process specification – Aluminium base protection for fasteners

EN6117 Specification for lubrication of bolts with cetyl alcohol

ISO 8080 Aerospace – Anodic treatment of titanium and titanium alloys - Sulfuric acid process.

3 Required Characteristics

3.1 Configuration - Dimensions - Tolerances

- 3.1.1 Configuration, dimensions, tolerances shall be in accordance with the figure and table 1.
- 3.1.2 Roll formed thread as per AS8879
- 3.1.3 Unassigned Intermediate or longer grip lengths not included in table 2 may be specified by the use of whole dash numbers only
- 3.1.4 Grip dimensions equals grip dash number times 0.0625" (1,588mm). Length dimensions equals grip plus thread.
- 3.1.5 Grip length of bolts shall be measured from the underside of head to the end of the full cylindrical portion of the shank
- 3.1.6 Oversize dimensions shall be in accordance with table 4
- 3.1.7 Reference dimensions are for design purposes only, not an inspection requirement.
- 3.1.8 Concentricity: "D" diameter to thread pitch diameter within "AA" values. Concentricity between "D" and "E" diameters within "CC" values TIR
- 3.1.9 Cotter pin hole centre line: within 0.010" (0,25mm) and normal within 2° of bolt centre line
- 3.1.10 Surface texture: on shank, under surface of head, radius R thread flanks and thread root (0.8 microns); other surfaces 125 microinch (3.2 microns).
- 3.1.11 Shank straightness: within "BB" values TIR per inch of length.
- 3.1.12 Bearing surface squareness: within 0.003" (0,08mm) TIR of shank diameter.
- 3.1.13 Washer face diameter: Max. not to exceed actual width across flats, Min as tabulated
- 3.1.14 Head marking: Basic number plus grip dash number plus "D", "H", or "DH" when applicable, plus manufacturers symbol raised or depressed 0.010" (0,25mm) max. Arrangement optional.

3.2 Material

Shall be in accordance with table 2

3.3 Surface treatment

Shall be in accordance with table 2

3.4 Tensile, Shear and Fatigue values

Shall be in accordance with table 3

Table 1	Table 1 Dimensions Dimensions inch(mi							
Dia Dash	Thread Size UNJF – 3A	С		Ø	ÍD	E Dia Min		
No		Max	Min	Max	Min			
3	0.1900 – 32	0.376 (9,550)	0.367 (9,322)	0.1895 (4,813)	0.1885 (4,788)	0.335 (8,509)		
4	0.2500 - 28	0.439 (11,151)	0.429 (10,897)	0.2495 (6,337)	0.2485 (6,312)	0.398 (10,109)		
5	0.3125 - 24	0.502 (12,751)	0.492 (12,497)	0.3120 (7,925)	0.3110 (7,899)	0.460 (11,684)		
6	0.3750 - 24	0.564 (14,326)	0.554 (14,072)	0.3745 (9,512)	0.3735 (9,487)	0.523 (13,284)		
7	0.4375 - 20	0.690 (17,526)	0.678 (17,221)	0.4370 (11,100)	0.4360 (11,074)	0.648 (16,459)		
8	0.5000 - 20	0.752 (19,101)	0.741 (18,821)	0.4995 (12,687)	0.4985 (12,662)	0.710 (18,034)		
9	0.5625 - 18	0.877 (22,276)	0.865 (21,971)	0.5615 (14,262)	0.5605 (14,237)	0.835 (21,209)		
10	0.6250 - 18	0.940 (23,876)	0.928 (23,571)	0.6240 (15,850)	0.6230 (15,824)	0.898 (22,809)		
12	0.7500 - 16	1.065 (27,051)	1.052 (26,721)	0.7490 (19,025)	0.7480 (18,999)	1.023 (25,984)		

Table 1 Continued

Dimensions inch (mm)

							- (/
Dia Dash	Thread Size UNJF – 3A	ŀ	4		J		₹ ia
No	ONOT - SA	Max	Min	Max	Min	Max	Min
3	0.1900 – 32	0.125	0.110	0.088	0.073	0.056	0.046
J	0.1900 – 32	(3,175)	(2,794)	(2,235)	(1,854)	(1,422)	(1,168)
4	0.2500 - 28	0.140	0.125	0.098	0.083	0.056	0.046
7	0.2000 - 20	(3,556)	(3,175)	(2,489)	(2,108)	(1,422)	(1,168)
	0.2125 24	0.171	0.156	0.119	0.104	0.080	0.070
5	0.3125 - 24	(4,343)	(3,962)	(3,023)	(2,642)	(2,032)	(1,778)
6	0.2750 24	0.203	0.188	0.140	0.125	0.080	0.070
6	0.3750 - 24	(5,156)	(4,775)	(3,556)	(3,175)	(2,032)	(1,778)
7	0.4375 - 20	0.234	0.219	0.161	0.146	0.080	0.070
		(5,944)	(5,563)	(4,089)	(3,708)	(2,032)	(1,778)
8	0.5000 - 20	0.265	0.250	0.182	0.167	0.080	0.070
	0.0000 - 20	(6,731)	(6,350)	(4,623)	(4,242)	(2,032)	(1,778)
9	0.5625 - 18	0.296	0.281	0.203	0.188	0.080	0.070
	0.0020 - 10	(7,518)	(7,137)	(5,156)	(4,775)	(2,032)	(1,778)
10	10 0.6250 - 18	0.327	0.312	0.223	0.208	0.080	0.070
10	0.0230 - 10	(8,306)	(7,925)	(5,664)	(5,283)	(2,032)	(1,778)
12	0.7500 - 16	0.390	0.375	0.265	0.250	0.080	0.070
12	0.7300 - 10	(9,906)	(9,525)	(6,731)	(6,350)	(2,032)	(1,778)

Table 1 Continued Dimensions inch (mm)

Dia	Thread Size	N	Л	ı	N	F	•	F	₹
Dash No.	UNJF – 3A	Max	Min	Max	Min	Max	MIn	Max	Mln
3	0.1900 - 32	0.174 (4,420)	0.154 (3,912)	0.20 (5,00)	0.18 (4,57)	0.080 (2,032)	0.070 (1,778)	0.020 (0,508)	0.010 (0,254)
4	0.2500 - 28	0.180 (4,572)	0.160 (4,064)	0.26 (6,60)	0.24 (6,10)	0.086 (2,184)	0.076 (1,930)	0.020 (0,508)	0.010 (0,254)
5	0.3125-24	0.192 (4,877)	0.172 (4,369)	0.32 (8,13)	0.30 (7,62)	0.086 (2,184)	0.076 (1,930)	0.020 (0,508)	0.010 (0,254)
6	0.3750-24	0.193 (4,902)	0.173 (4,394)	0.39 (9,91)	0.37 (9,40)	0.116 (2,946)	0.106 (2,692)	0.025 (0,635)	0.015 (0,381)
7	0.4375 - 20	0.209 (5,309)	0.189 (4,801)	0.45 (11,43)	0.43 (10,92)	0.116 (2,946)	0.106 (2,692)	0.025 (0,635)	0.015 (0,381)
8	0.5000 - 20	0.208 (5,283)	0.188 (4,775)	0.51 (12,95)	0.49 (12,45)	0.116 (2,946)	0.106 (2,692)	0.030 (0,762)	0.020 (0,508)
9	0.5625 - 18	0.217 (5,512)	0.197 (5,004)	0.57 (14,48)	0.55 (13,97)	0.151 (3,835)	0.141 (3,581)	0.035 (0,889)	0.020 (0,508)
10	0.6250 - 18	0.217 (5,512)	0.197 (5,004)	0.63 (16,00)	0.61 (15,49)	0.151 (3,835)	0.141 (3,581)	0.040 (1,016)	0.025 (0,635)
12	0.7500 - 16	0.232 (5,893)	(0.212 (5,385)	0.76 (19,30)	0.74 (18,80)	0.151 (3,835)	0.141 (3,581)	0.045 (1,143)	0.030 (0,762)

Table 1 Concluded

Dimensions inch (mm)

Dia –	Т	Т	D	U	W	AA	ВВ	CC
Dash No.	Ref	Max	Min	Max	Min	(3.1.8)	(3.1.11)	(3.1.8)
3	0.323	0.1840	0.1810	0.039	0.410	0.0045	0.0040	0.005
3	(8,204)	(4,674)	(4,597)	(0,991)	(10,414)	(0,114)	(0,1016)	(0,127)
4	0.370	0.2440	0.2410	0.045	0.480	0.0045	0.0030	0.006
4	(9,398)	(6,198)	(6,121)	(1,143)	(12,192)	(0,114)	(0,0762)	(0,152)
5	0.438	0.3060	0.3020	0.052	0.552	0.0045	0.0030	0.008
5	(11,125)	(7,772)	(7,671)	(1,321)	(14,021)	(0,114)	(0,0762)	(0,203)
6	0.454	0.3680	0.3640	0.052	0.623	0.0045	0.0025	0.009
O	(11,532)	(9,347)	(9,246)	(1,321)	(15,824)	(0,114)	(0,0635)	(0,229)
7	0.528	0.4310	0.4260	0.062	0.764	0.0060	0.0025	0.010
7	(13,411)	(10,947)	(10,820)	(1,575)	(19,406)	(0,152)	(0,0635)	(0,254)
8	0.528	0.4930	0.4880	0.062	0.836	0.0060	0.0020	0.011
0	(13,411)	(12,522)	(12,395)	(1,575)	(21,234)	(0,152)	(0,0508)	(0,279)
9	0.594	0.5550	0.5500	0.068	0.978	0.0060	0.0020	0.012
9	(15,088)	(14,097)	(13,970)	(1,727)	(24,841)	(0,152)	(0,0508)	(0,305)
10	0.626	0.6180	0.6120	0.068	1.050	0.0060	0.0020	0.015
10	(15,900)	(15,697)	(15,545)	(1,727)	(26,670)	(0,152)	(0,0508)	(0,381)
12	0.666	0.7430	0.7370	0.078	1.191	0.0060	0.0020	0.018
12	(16,916)	(18,873)	(18,720)	(1,981)	(30,251)	(0,152)	(0,0508)	(0,457)

Table 2 Material / Finish

	atoriai / i iiiioii			
Call up Code	Material	Protection	Lubrication	Colour Identification
-	Titanium 6AL-4V Alloy	Aluminium coating To MIL-DTL-83488 Type II Class 3	None	Blue Dye on Bolt end and Chamfer
V	per AMS4928 or	Aluminium coating as per EN6118	As per EN6117	Yellow All Over
Т	AMS4967	Sulfuric-acid anodizing as per ISO 8080	As per EN6117	Blue All Over

Heat treat to 160 to 180 K.S.I (1100 to 1240 N/mm²)

Ultimate Tensile Strength 95 K.S.I (655 N/mm²) min shear.

Table 3 Mechanical Characteristics

Dia	Lilitimata Tanaila Min lisa	Shear	Min Ibs	Tension Fatigue Load lbs		
Dash No	Ultimate Tensile Min lbs	Double Shear	Single Shear	High Load	Low Load	
3	3180	5380	2690	1060	106	
4	5820	9300	4650	1940	194	
5	9260	14600	7300	3080	308	
6	14000	21000	10500	4660	466	
7	19000	28600	14300	6330	633	
8	25600	37300	18650	8530	853	
9	32400	47200	23600	10800	1080	
10	40900	58300	29150	13620	1362	
12	56900	83900	41950	18950	1985	

4 Designation

Each bolt shall be designated as in the following example:-

5 Technical specification

NAS 4004 Except for protective treatment and lubrication

RESTRICTED USAGE FOR REPAIR WORK ONLY

0.0156"(0,396mm) and 0.0312" (0,792mm) oversize shank for replacement of bolts shown on Page 3.

Head Marking: Same as given on page 3

Plus identification for oversize, as applicable, to be included in the second sector.

Identify 0.0156" (0,396mm) oversize by "X".

Identify 0.0312" (0,792mm) oversize by "Y"

See pages 3 to 5 for dimensions not shown.

Major diameter of threads may conform to "TD" on page 5 or to AS 8879.

* Grip Dash Number in 0.0625" (1,588mm) increments.

For material, finish and procurement information, see table 2 page 5

Examples of part number:

```
0.0156" (0,396mm) oversize = ABS0114 - 10 - **X
0.0312" (0,792mm) oversize = ABS0114 - 10 - **Y
Grip Length
```

For table of dimensions see pages 3 to 5

Table 4 Oversize Dimensions

Dimensions inch (mm)

	0.0450(0.000) 0 :	Ob and	Dimensions in	` ′
	0.0156(0,396) Oversize	Shank	0.0312(0,792) Oversize	Shank
Thread Size UNJF – 3A	Part Number	ØD After Coating	Part Number	ØD After Coating
0.1900-32	ABS 0114 – 3 - **X	0.2026 (5,146) 0.2016 (5,121)	ABS 0114 – 3 - **Y	0.2182 (5,542) 0.2172 (5,517)
0.2500-28	ABS 0114 – 4 - **X	0.2651 (6,734) 0.2641 (6,708)	ABS 0114 – 4 - **Y	0.2807 (7,130) 0.2797 (7,104)
0.3125-24	ABS 0114 – 5 - **X	0.3276 (8,321) 0.3266 (8,296)	ABS 0114 – 5 - **Y	0.3432 (8,717) 0.3422 (8,692)
0.3750-24	ABS 0114 – 6 - **X	0.3901 (9,909) 0.3891 (9,883)	ABS 0114 – 6 - **Y	0.4057 (10,305) 0.4047 (10,279)
0.4375-20	ABS 0114 – 7 - **X	0.4526 (11,496) 0.4516 (11,471)	ABS 0114 – 7 - **Y	0.4682 (11,892) 0.4672 (11,867)
0.5000-20	ABS 0114 – 8 - **X	0.5151 (13,084) 0.5141 (13,058)	ABS 0114 – 8 - **Y	0.5307 (13,480) 0.5297 (13,454)
0.5625-18	ABS 0114 – 9 - **X	0.5771 (14,658) 0.5761 (14,633)	ABS 0114 – 9 - **Y	0.5927 (15,055) 0.5917 (15,029)
0.6250-18	ABS 0114 – 10 - **X	0.6396 (16,246) 0.6386 (16,220)	ABS 0114 – 10 -**Y	0.6552 (16,642) 0.6542 (16,617)
0.7500-16	ABS 0114 – 12 - **X	0.7646 (19,421) 0.7636 (19,396)	ABS 0114 – 12 - **Y	0.7802 (19,817) 0.7792 (19,792)

RECORD OF REVISIONS

Issue	Clause modified	Description of modification
3		Tensile and shear values added
03/03		
4		Column "ØD without coating" deleted.
09/04		Tensile & fatigue strength modified.