Models for clustered data

Jon Zelner

February 18, 2020

EPID 684

University of Michigan School of Public Health

jzelner@umich.edu
www.jonzelner.net

· Re-intro to GLMs

- · Re-intro to GLMs
- · Why?

- · Re-intro to GLMs
- · Why?
- · Radon!

- · Re-intro to GLMs
- · Why?
- · Radon!
- · Self-assessments.

What is a GLM?

 GLMs are essentially a framework for mapping linear predictions to outcomes with any kind of distributions.

What is a GLM?

- GLMs are essentially a framework for mapping linear predictions to outcomes with any kind of distributions.
- Gives flexibility in the types of outcomes and inputs we can model.

What is a GLM?

- GLMs are essentially a framework for mapping linear predictions to outcomes with any kind of distributions.
- Gives flexibility in the types of outcomes and inputs we can model.
- Model non-linear response using linear predictors

Advanced GLM tricks

· Represent hierarchical/multi-level structure

Advanced GLM tricks

- · Represent hierarchical/multi-level structure
- Model spatial autocorrelation

Advanced GLM tricks

- Represent hierarchical/multi-level structure
- Model spatial autocorrelation
- Allow variance parameters to change with individual-level covariates to acommodate heteroskedasticity

 \cdot Model variation in outcome, Y, as a function of covariates X

- \cdot Model variation in outcome, Y, as a function of covariates X
- Linear relationship between X and Y quantified by regression coefficients $\boldsymbol{\beta}$

- \cdot Model variation in outcome, Y, as a function of covariates X
- Linear relationship between X and Y quantified by regression coefficients $\boldsymbol{\beta}$
- Outcome assumed to have distribution with mean determined by regression coefficients.

- \cdot Model variation in outcome, Y, as a function of covariates X
- Linear relationship between X and Y quantified by regression coefficients $\boldsymbol{\beta}$
- Outcome assumed to have distribution with mean determined by regression coefficients.
- Link function, g(), translates between linear predictor and the mean of the distribution function.

 \cdot Individuals are indexed by i.

- Individuals are indexed by i.
- · Y is a vector of measured outcomes, composed of individual outcomes, so, $Y=\{y_1,y_2,y_3,\ldots,y_N\}$, where N is the total number of observations

- Individuals are indexed by i.
- · Y is a vector of measured outcomes, composed of individual outcomes, so, $Y=\{y_1,y_2,y_3,\ldots,y_N\}$, where N is the total number of observations
- Linear predictor $(\alpha + \beta x_i)$ for individual i denoted by y_i^*

- Individuals are indexed by i.
- · Y is a vector of measured outcomes, composed of individual outcomes, so, $Y=\{y_1,y_2,y_3,\ldots,y_N\}$, where N is the total number of observations
- Linear predictor ($\alpha + \beta x_i$) for individual i denoted by y_i^*
- \cdot Conditional mean for individual i denoted by $\hat{y}_i = g(y_i^*)$

6

- Gaussian for real-valued outcomes, $\mathbb{R} = \{-\infty, \infty\}$

- Gaussian for real-valued outcomes, $\mathbb{R} = \{-\infty, \infty\}$
- Bernoulli for binary outcomes (0,1)

- Gaussian for real-valued outcomes, $\mathbb{R} = \{-\infty, \infty\}$
- Bernoulli for binary outcomes (0,1)
- Binomial for repeated bernoulli trials ($\{0,1,\dots,n\}$, where n is number of trials)

- Gaussian for real-valued outcomes, $\mathbb{R} = \{-\infty, \infty\}$
- Bernoulli for binary outcomes (0,1)
- Binomial for repeated bernoulli trials ($\{0,1,\dots,n\}$, where n is number of trials)
- Poisson for count data (The Natural numbers, $\mathbb{N} = \{0,1,2,\ldots\})$

- Gaussian for real-valued outcomes, $\mathbb{R} = \{-\infty, \infty\}$
- Bernoulli for binary outcomes (0,1)
- Binomial for repeated bernoulli trials ($\{0,1,\ldots,n\}$, where n is number of trials)
- Poisson for count data (The Natural numbers, $\mathbb{N}=\{0,1,2,\ldots\}$)

And others:

· Gamma, Exponential, Negative Binomial...

GLM with Normally-distributed errors

GLM with normally distributed errors pprox OLS regression

What are assumptions of ordinary least squares regression?

Linear predictor for individual i is a function of her covariates:

$$\cdot \ y_i^* = \alpha + \beta x_i$$

Linear predictor for individual i is a function of her covariates:

$$y_i^* = \alpha + \beta x_i$$

Outcomes assumed to be on the real line from $-\infty$ to ∞ , so:

 $\cdot \ g()$ is the identity link function

Linear predictor for individual i is a function of her covariates:

$$y_i^* = \alpha + \beta x_i$$

Outcomes assumed to be on the real line from $-\infty$ to ∞ , so:

- $\cdot \ g()$ is the identity link function
- $\cdot \ \hat{y_i} = y_i^*$

Linear predictor for individual i is a function of her covariates:

$$y_i^* = \alpha + \beta x_i$$

Outcomes assumed to be on the real line from $-\infty$ to ∞ , so:

- $\cdot g()$ is the identity link function
- $\cdot \ \hat{y_i} = y_i^*$
- $\cdot \ y_i = \hat{y_i} + \epsilon_i$

Linear predictor for individual i is a function of her covariates:

$$y_i^* = \alpha + \beta x_i$$

Outcomes assumed to be on the real line from $-\infty$ to ∞ , so:

- $\cdot g()$ is the identity link function
- $\cdot \ \hat{y_i} = y_i^*$
- $\cdot \ y_i = \hat{y_i} + \epsilon_i$
- $\cdot \epsilon_i \sim Normal(0, \sigma^2)$

Identity link function maps real numbers to real numbers

 $\cdot \alpha$ mean of y_i when $x_i = 0$

- · α mean of y_i when $x_i = 0$
- \cdot β is change in mean of y_i for each one-unit change in x_i

- · α mean of y_i when $x_i = 0$
- \cdot β is change in mean of y_i for each one-unit change in x_i
- Just like in Merlo example, we also estimate the value of σ^2 that measures the amount of individual-level variability in outcomes

Generate some fake data in R

```
## Predictors
x \leftarrow seq(from = 0.0, to = 10.0, by = 0.1)
## Regression coefficient
b < -2.1
## Intercept
a < -0.4
## Variance
sd < -1.0
## The Data
y \leftarrow a + b * x + rnorm(length(x), 0, sd)
```

The Data

Recover the parameters

$$m \leftarrow glm(y \sim x, data = df)$$

Parameter estimates

Table 1: Fitting generalized (gaussian/identity) linear model: $y \sim x$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.55	0.2	2.7	0.0071
Х	2.1	0.035	60	1.6e-79

Model Residuals

Residual variance

Table 2: Analysis of Variance Model

		Sum	Mean		
	Df	Sq	Sq	F value	Pr(>F)
Х	1	3721	3721	3579	1.6e-79
Residuals	99	103	1	NA	NA

Maximum likelihood estimation

- Maximum likelihood estimation
- · Bayesian estimation, e.g. MCMC methods

- Maximum likelihood estimation
- · Bayesian estimation, e.g. MCMC methods
- · We'll talk about these soon enough, but first...

- Maximum likelihood estimation
- Bayesian estimation, e.g. MCMC methods
- · We'll talk about these soon enough, but first...
- Both of these necessitate calculating the likelihood of the data.

Probability of observing:

Probability of observing:

· data y,

Probability of observing:

- · data y,
- given model f()

Probability of observing:

- · data y,
- given model f()
- and parameters, e.g. $\theta = \{\alpha, \beta\}$

Probability of observing:

- · data y,
- given model f()
- · and parameters, e.g. $\theta = \{\alpha, \beta\}$

For Gaussian GLM, f = Normal distribution, $\theta = \{\alpha, \beta, \sigma^2\}$

Motivations for Multilevel

Modeling

 What is the distinction Gelman and Hill make between hierarchical and multilevel models?

- What is the distinction Gelman and Hill make between hierarchical and multilevel models?
- Did any of their motivations for multilevel modeling surprise you? What questions did it bring up?

- What is the distinction Gelman and Hill make between hierarchical and multilevel models?
- Did any of their motivations for multilevel modeling surprise you? What questions did it bring up?
- When might you want model slopes to vary and intercepts to be fixed?

- What is the distinction Gelman and Hill make between hierarchical and multilevel models?
- Did any of their motivations for multilevel modeling surprise you? What questions did it bring up?
- When might you want model slopes to vary and intercepts to be fixed?
- When might you want them to both vary?

Linear Models (GLMs) for clustered data

A re-introduction to Generalized

Going to be seeing a lot of this:

$$\cdot \ y_i = \alpha + \beta x_i + \epsilon_i$$

Going to be seeing a lot of this:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Where:

 $\cdot \ y_i$ is continuous outcome measure: height, BMI, etc.

Going to be seeing a lot of this:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

- y_i is continuous outcome measure: height, BMI, etc.
- \cdot $\,eta$ is risk associated with some kind of exposure

Going to be seeing a lot of this:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

- $\cdot \ y_i$ is continuous outcome measure: height, BMI, etc.
- $\cdot \beta$ is risk associated with some kind of exposure
- $\cdot \ x_i \in [0,1]$ is an indicator of exposure.

Going to be seeing a lot of this:

$$\cdot \ y_i = \alpha + \beta x_i + \epsilon_i$$

- y_i is continuous outcome measure: height, BMI, etc.
- $\cdot \beta$ is risk associated with some kind of exposure
- $\cdot x_i \in [0,1]$ is an indicator of exposure.
- \cdot $\, lpha \,$ is expected outcome when x_i = 0

Going to be seeing a lot of this:

$$\cdot \ y_i = \alpha + \beta x_i + \epsilon_i$$

- y_i is continuous outcome measure: height, BMI, etc.
- \cdot β is risk associated with some kind of exposure
- $\cdot x_i \in [0,1]$ is an indicator of exposure.
- · α is expected outcome when x_i = 0
- \cdot ϵ_i are independently and identically distributed (i.i.d.) errors

Independent errors

Classic assumption is that:

$$\cdot \ \epsilon_i \sim N(0,\sigma^2)$$

Independent errors

Classic assumption is that:

$$\cdot \ \epsilon_i \sim N(0,\sigma^2)$$

In plain-ish English:

· Observation y_{ij} of individual i is a function of $\alpha+\beta x_i$ and normally distributed errors (ϵ_i) with mean zero and variance σ^2 .

Independent errors

Classic assumption is that:

$$\cdot \ \epsilon_i \sim N(0,\sigma^2)$$

In plain-ish English:

· Observation y_{ij} of individual i is a function of $\alpha+\beta x_i$ and normally distributed errors (ϵ_i) with mean zero and variance σ^2 .

Another way of writing it:

$$y_i \sim N(\alpha + \beta x_i, \sigma^2)$$

Three Approaches to Modeling Clustered Data

Which door will you choose?

Door #1: Ignore clustering and fit a normal GLM

- · Pool data across all units, i.e. ignore clustering.
- · i.e. fit model $y_{ij} = \alpha + \beta x_i + \epsilon_i$

Is this a good idea? Why or why not?

NO!

Complete pooling ignores potential sources of *observed* and *unobserved*. unit-level confounding.

Pooling clustered data violates assumption of independent errors

A pooled model:

$$y_i = \alpha + \beta x + \epsilon_i \tag{1}$$

Pooling clustered data violates assumption of independent errors

A pooled model:

$$y_i = \alpha + \beta x + \epsilon_i \tag{1}$$

• y_i is a combination of systematic variation $(\alpha + \beta x)$ and uncorrelated random noise (ϵ_i) where:

$$i.i.d. \ \epsilon \sim Normal(0, \sigma^2)$$
 (2)

Clustering may result in correlation between average differences from mean

Your residuals should look like this

When you ignore clustering you may see something like:

Door #2: Fit a different model to each cluster

Fit $unpooled \mod 1$ to each unit (j), assuming outcomes in each unit are independent:

$$\cdot \ y_{ij} = \alpha_j + \beta_j x_i + \epsilon_{ij}$$

$$\cdot \ \epsilon_{ij} \sim N(0,\sigma_j^2)$$

More danger!

Totally unpooled models run the risk of overfitting the data, particularly in small samples.

Specific dangers of unpooled models

What else could go wrong here?

Specific dangers of unpooled models

What else could go wrong here?

 Some units (e.g. counties) may have few observations, making unpooled models impractical

Specific dangers of unpooled models

What else could go wrong here?

- Some units (e.g. counties) may have few observations, making unpooled models impractical
- We may want to allow some effect of exposure (e.g. having a basement) to be consistent across counties.

Door #3: Partial Pooling!

 Allow effects to vary across clusters, but constrain them with a prior distribution.

Door #3: Partial Pooling!

- Allow effects to vary across clusters, but constrain them with a prior distribution.
- This approach accommodates variation across units without assuming they have no similarity.

Door #3: Partial Pooling!

- Allow effects to vary across clusters, but constrain them with a prior distribution.
- This approach accommodates variation across units without assuming they have no similarity.
- More likely to make accurate out-of-sample predictions than the fully-pooled or unpooled examples.

Partial pooling = Regularization

Both functions fit the data perfectly...which one should you prefer?

Radon Example

Radon is a carcinogenic gas

Radon is a byproduct of decaying soil uranium.

Radon enters a house more easily when it is built into the ground

Ann Arbor is a radon hotspot!

Considerable geographic variation in radon potential

Ann Arbor is a radon hotspot!

Trust me on this one...

My very own radon mitigation system.

What should a model that accounts for important sources of variation in household radon potential include?

What should a model that accounts for important sources of variation in household radon potential include?

- · County-level variation in soil uranium.
- Whether or not the radon measurement was taken in a basement.

Random intercepts account for county-level variation

Gelman [@Gelman2006] proposes a multi-level model to measure household radon in household i in county j, y_{ij} :

$$\cdot \ y_{ij} \sim N(\alpha_j + \beta x_{ij}, \sigma_y^2)$$
 , for $i=1,\dots,n_j, j=1,\dots,J$

Random intercepts account for county-level variation

Gelman [@Gelman2006] proposes a multi-level model to measure household radon in household i in county j, y_{ij} :

$$\cdot \ y_{ij} \sim N(\alpha_j + \beta x_{ij}, \sigma_y^2)$$
 , for $i=1,\dots,n_j, j=1,\dots,J$

Where:

- $\cdot \ \alpha_j$ is average, non-basement radon measure at county level
- β is fixed effect measuring average change in radon level in houses with a basement.
- \cdot σ_y^2 represents within-county variation in risk

Include predictors of county-level variation in second level

County-level random intercept is a function of county soil uranium measure, u_i :

$$\cdot \ \alpha_j \sim N(\gamma_0 + \gamma_1 u_j, \sigma_\alpha^2)$$
 , for $j = 1, \dots, J$

Include predictors of county-level variation in second level

County-level random intercept is a function of county soil uranium measure, u_i :

$$\cdot \ \alpha_j \sim N(\gamma_0 + \gamma_1 u_j, \sigma_\alpha^2)$$
 , for $j=1,\dots,J$

Where:

- $\cdot \ \gamma_0$ is expected household radon measure when $u_i=0$
- · γ_1 scales expected county-level uranium with u_i
- σ_{α}^2 is between-county variation in radon risk not measured by u_{j} .

Putting it all together

County-level intercept is a function of county soil uranium measure, \boldsymbol{u}_{i} :

$$\cdot \ \alpha_j \sim N(\gamma_0 + \gamma_1 u_j, \sigma_\alpha^2)$$

Putting it all together

County-level intercept is a function of county soil uranium measure, u_i :

$$\cdot \ \alpha_j \sim N(\gamma_0 + \gamma_1 u_j, \sigma_\alpha^2)$$

Household-level radon measure is a function of having a basement and county-level intercept:

$$\cdot y_{ij} \sim N(\alpha_j + \beta x_{ij}, \sigma_y^2)$$

County-level radon levels vary with soil uranium measures

County-level intercept, α_j , (± 1 standard error) as a function of county-level uranium.

Model predictions vs. radon measures by county

Multi-level regression line, $y=\alpha_j+\beta x$, from 8 Minnesota counties. Unpooled estimates = light grey line; Totally pooled estimates = dashed grey line.

Next Time

 \cdot Hands-on with the Radon example

References

References i