

Trabajo Práctico II

Métodos Numéricos Segundo Cuatrimestre de 2015

Integrante	LU	Correo electrónico
Iván Arcuschin	678/13	iarcuschin@gmail.com
Martín Jedwabny	885/13	martiniedva@gmail.com
José Massigoge	954/12	jmmassigoge@gmail.com
Iván Pondal	078/14	ivan.pondal@gmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

Índice

1.	Introducción	3
2.	Modelo	4
	2.1. Rankings de Páginas Web	4
	2.1.1. PageRank	4
	2.1.2. PageRank con matriz Esparsa	5
	2.2. Rankings en competencias deportivas	10
	2.2.1. Generalized Markov chains Method (GeM)	10
	2.2.2. Puntaje AFA	12
	2.3. Método de la potencia	13
3.	Implementación	15
	3.1. Page Rank	15
	3.1.1. Page Rank sin matriz esparsa	15
	3.1.2. Page Rank con matriz esparsa	16
	3.2. Scripts Rankings Deportivos	18
	3.2.1. GeM	18
	3.2.2. Puntaje AFA	20
4.	Experimentación	21
	4.1. Page Rank	21
	4.1.1. Instancias de prueba	21
	4.1.2. Convergencia del algoritmo	21
	4.1.3. Tiempo de ejecución	22
	4.1.4. Calidad de los resultados	24
	4.2. GeM	28
	4.2.1. Variando el parámetro c	28
	4.2.2. Evolución del ranking	29
5.	Conclusión	32
6.	Referencias	33

1. Introducción

El objetivo principal de este Trabajo Práctico es estudiar, implementar y analizar algoritmos de Rankeo en dos escenarios distintos: tanto para páginas Web como para competencias deportivas.

Comenzaremos haciendo una breve introducción al algoritmo *PageRank*, el cual es muy conocido por ser utilizado por el buscador Google, para luego pasar a describir el Modelo que lo sostiene, donde explicaremos como resuelve este algoritmo el problema de rankear páginas web.

Luego, veremos una posible optimización de *PageRank* al modelar el problema de una manera equivalente utilizando matrices esparsas. Para esto, presentaremos y analizaremos 3 estructuras de datos distintas que nos permitirán mejorar la complejidad espacial y temporal de dicho algoritmo. Además, demostraremos que el Algortimo 1 propuesto en Kamvar et al.[4] para trabajar con matrices esparsas es correcto.

A continuación, presentaremos el Modelo del algoritmo *GeM* (Generalized Markov chains Method) basado en *PageRank*. *GeM*, a diferencia de su padre, no se orienta a páginas web, sino a competencias deportivas, por lo que mostraremos los aspectos en los cuales difieren. En particular, mostraremos el problema de considerar deportes con empates al utilizar *GeM* y dos formas alternativas de modelar dicho escenario.

Una vez finalizada la parte del Modelo, pasaremos a describir la Implementación de los diferentes algoritmos presentados. Dichas implementaciones fueron relalizadas algunas en C++ y otras en MATLAB/Octave.

Ya llegando al final, pasaremos a presentar la Experimentación realizada, a la vez que iremos analizando y discutiendo los resultados obtenidos.

Los experimentos realizados para PageRank fueron:

- Comparación Page Rank normal vs Optimización matriz esparsa.
- Convergencia del algoritmo.
- Tiempos de ejecución.
- Calidad de los resultados.

Y para GeM:

- Variación del parámetro *c*.
- Evolución del ranking por cada iteración.

Para finalizar, cerraremos el presente informe con una conclusión, en la cual discutiremos acerca de los algoritmos vistos, así como de la experimentación realizada. También, contaremos las dificultades encontradas al realizar el Trabajo Práctico, las posibles continuaciones que se podrían realizar, y si los objetivos planteados fueron alcanzados.

2. Modelo

2.1. Rankings de Páginas Web

Hoy en día la cantidad de páginas web en todo el mundo asciende a una cantidad de 4.79 billones (sólo las indexadas). Es por esta razón que los buscadores (Search Engines) cumplen un rol tan importante en el uso diario de internet desde hace muchos años.

Dichos buscadores nos permiten realizar busquedas de páginas web mediante distintos criterios, facilitando el acceso a la información.

Un posible criterio (bastante utilizado) es considerar que las páginas web populares son las más buscadas. De esta forma, el buscador puede ofrecernos en orden descendiente de popularidad los resultados obtenidos, esperando que encontremos más rápido lo que buscamos.

Siguiendo esta intuición, se han elaborado diferentes algoritmos para "rankear" las páginas web. A continuación presentaremos el famoso método PageRank, utilizado por Google en sus comienzos.

2.1.1. PageRank

El algoritmo de PageRank[2] se define para un conjunto de páginas Web = $\{1, \dots, n\}$ de forma tal de asignar a cada una de ellas un puntaje que determine la importancia relativa de la página respecto de las demás.

Llamemos x_i al puntaje asignado a la página $j \in Web$, que es lo que buscamos calcular.

Ahora, un link saliente de la página j a la página i puede significar que i es una página importante. Pero bien podría ser que j sea una página muy poco importante, por lo que deberíamos ponderar sus links salientes para decidir la importancia de las páginas a las que apunta.

Luego, vamos a considerar que la importancia de la página i obtenida mediante el link de j es proporcional a la importancia de j e inversamente proporcional al grado de j. Entonces, si $L_k \in Web$ es el conjunto de páginas web que apuntan a la página k:

$$x_k = \sum_{j \in L_k} \frac{x_j}{n_j}, \quad k = 1, \dots, n$$
 (1)

En este algoritmo, hallaramos los x_k modelando el problema como una cadena de Markov, a la cual llamaremos Matriz de Transición, y que construiremos de la siguiente forma:

- 1. Sea G el grafo de la Web, dónde cada vértice es una página web y un eje de v a u significa que la página v tiene link saliente hacia u.
- 2. Luego, sea $W \in \{0,1\}^{n \times n}$ la matriz de conectividad de G, tal que la celda $\{i,j\}$ tiene un 1 si hay un link saliente de la j-ésima página a la i-ésima página (los autolinks son ignorados, o lo que es lo mismo, $\forall \ 1 \le i \le n \ W_{i,i}$).
- 3. Si definimos $n_j = \sum\limits_{i=1}^n W_{i,j}$ como el grado de j (la cantida de links salientes), entonces podemos definir la matriz $P \in \mathbb{R}^{n \times n}$, tal que la $P_{i,j} = 1/n_j * W_{i,j}$, y P es estocástica por columnas. Además, notese que resolver el sistema dado por 1 es equivalente a encontrar un $x \in \mathbb{R}^n$ tal que Px = x. Es decir, encontrar el autovector asociado al autovalor 1 de P tal que $x_i > 0$ y $\sum\limits_{i=1}^n x_i = 1$.
- 4. Ahora, puede pasar que para algún j, $n_j = 0$ lo que indicaría que la página j no tiene ningún link saliente. Para remediar estos casos, vamos a modificar P utilizando la idea del *navegante aleatorio*, de forma tal que para un j sin links salientes, la probabilidad de que el navegante salte a cualquier otra página i es 1/n.
 - Entonces, $P_1 = P + D$, dónde $D = vd^t$, $d \in \{0,1\}^n$ tal que $d_j = 1$ si $n_j = 0$, y $d_j = 0$ en caso contrario, y $v \in \mathbb{R}^n$ tal que $v_j = 1/n$.
- 5. Entonces, P_1 es estocástica por columnas, pero puede que no sea regular. Para que sí lo sea, extendemos el concepto anterior a todas las páginas (fenómeno de *teletransportación*).

Luego, $P_2 = c * P_1 + (1 - c) * E$, donde $\forall \ 1 \le i, j \le n, \ E_{i,j} = 1/n$, y $c \in (0,1)$. Llamamos a c coeficiente de teletransportación.

Lo que nos queda es un matriz P_2 estocástica por columnas y $\forall 1 \le i, j \le n, (P_2)_{i,j} > 0$.

Una vez que tenemos la Matriz de Transición, generaremos el puntaje para cada página buscando el autovector w del autovalor 1 de P_2 , tal que $P_2w=w$ y w sea un vector de probabilidades (normalizado con norma 1).

Es decir, generar el ranking de páginas equivale a aplicar el Método de la Potencia a la matriz P_2 y una vez hallado el w mencionado, ordenar los puntajes de mayor a menor:

$$ranking = \{p_1, \dots, p_n\}, \text{donde } \forall i = 1, \dots, n-1, \ w_{p_i} \ge w_{p_{i+1}}$$
 (2)

Explicaremos en detalle el Método de la Potencia en la sección 2.3.

FALTA DECIR PORQUE SE PUEDE USAR EL MÉTODO DE LA POTENCIA.

2.1.2. PageRank con matriz Esparsa

Partiendo del hecho de que, aproximadamente, cada pagina Web tiene 7 links salientes[4] surge la posibilidad de optimizar la estructura que representa el Grafo dirigido de la Web, debido a la baja densidad de la matriz de conectividad, W, asociada a dicho Grafo. Esta optimizacion no es solo una posibilidad, sino una necesidad dado que la cantidad de Webs indexadas tiene un requerimiento prohibitivo en terminos de memoria si la representamos, ingenuamente, como un vector de vectores. Nuestra hipotesis es que, utilizando una estructura de datos optimizada, no solo obtendremos mejoras en terminos de complejidad espacial, sino tambien en terminos de complejidad temporal.

A partir de este analisis, nos propusimo analizar tres estructuras de datos que representan matrices esparsas:

- 1. Dictionary of Keys (dok)
- 2. Compressed Sparse Row (CSR)
- 3. Compressed Sparse Column (CSC)

Sea $A \in \mathbb{R}^{n \times n}$ una matriz esparsa, y sea m es la cantidad de valores distintos de 0 de A.

1. Dictionary of Keys (dok): Esta estructura esta representada como un vector de diccionarios, en donde cada posicion, i, del vector puede considerarse como una fila, y la key del diccionario contenido dentro de esa posicion representa una columna, j, siendo el valor asociado a esa key, en el diccionario, el valor en la matriz contenido en esa fila y columna (A_{ij}). Solo aquellas A_{ij} que tienen valores distintos de 0 tienen una key en los diccionarios.

Veamos un ejemplo. Sea $B \in \mathbb{R}^{4 \times 4}$ la siguiente matriz:

$$B = \left(\begin{array}{cccc} 10 & 0 & 0 & -2\\ 3 & 9 & 0 & 0\\ 0 & 7 & 8 & 0\\ 3 & 0 & 4 & 5 \end{array}\right)$$

El dictionary of keys que representa a *B* es:

	[1;10]	[5];;3] [2	2;9] 1	8	5
--	--------	-------------------	----------------	---	---

Esta claro que intercambiando columnas por filas, como posiciones del vector contenedor, y filas por columnas como keys, representamos la misma matriz.

Las ventajas de usar esta estructura de datos son las siguientes:

- 1. Facilidad para crearse de forma dinamicamente, es decir, si a priori no conocemos la forma de la matriz a representar.
- 2. La operacion matriz esparsa por vector es sencilla.

Por otro lado, sus desventajas son:

- 1. Los accesos a los valores no tienen complejidad temporal constante.
- 2. Las operaciones entre matrices esparsas, sea la suma o la multiplicacion, son engorrosas.
- **2.** Compressed Sparse Row (CSR): Esta estructura utiliza tres vectores, dos de tamano m, llamemosles $val\ y\ col_ind$ respectivamente, y uno de tamano n+1, llamemosle row_ptr .
 - En *val* guardamos los valores de *A* distintos de 0, recorriendo *A* por filas, es decir fijando las filas y avanzado por las columnas.
 - En la posicion k de col_ind guardamos el indice j del valor A_{ij} contenido en la posicion k del vector val.
 - Por ultimo en row_ptr guardamos indices del vector val en los cuales se encuentran el primera valor de cada fila, de tal forma que para la fila i, el valor k contenido en row_ptr[i], nos dice que val[k] corresponde al primer valor de la fila i y el valor k' contenido en row_ptr[i+1], nos dice que val[k'-1] corresponde al ultimo valor de la fila i. Vale la pena aclarar que si k = k' entonces la fila no tiene valores distintos de 0.

Utilizemos B como la matriz del punto anterior:

$$B = \left(\begin{array}{cccc} 10 & 0 & 0 & -2\\ 3 & 9 & 0 & 0\\ 0 & 7 & 8 & 0\\ 3 & 0 & 4 & 5 \end{array}\right)$$

La misma seria representado de la siguiente manera:

val:

10	-2	3	9	7	8	3	4	5
----	----	---	---	---	---	---	---	---

col_ind:

1	5	1 2	2	3	1	3	5	
---	---	-----	---	---	---	---	---	--

■ row_ptr:

1	3	5	7	10
---	---	---	---	----

Las ventajas de usar esta estructura de datos son las siguientes:

- 1. Eficiente a la hora de realizar operaciones aritmeticas entre matrices esparsas (suma, multiplicacion).
- 2. La operacion matriz esparsa por vector es sencilla.

Por otro lado, sus desventajas son:

- 1. Dificultad a la hora de crearse de forma dinamica, ya que debemos recalcular/redimensionar los tamanos de los vectores.
- 2. Cambios en la esparcidad son costosos, misma razon que el punto anterior.
- **3. Compressed Sparse Column (CSC):** Muy parecidad a la *Compressed Sparse Row (CSR)*. Tambien utiliza tres vectores, dos de tamano m, llamemosles val y row_ind respectivamente, y uno de tamano n+1, llamemosle col_ptr .
 - En *val* guardamos los valores de *A* distintos de 0, recorriendo *A* por columnas, es decir fijando las columnas y avanzado por las filas.
 - En la posicion k de row_ind guardamos el indice i del valor A_{ij} contenido en la posicion k del vector val.
 - Por ultimo en col_ptr guardamos indices del vector val en los cuales se encuentran el primera valor de cada columna, de tal forma que para la columna j, el valor k contenido en col_ptr[j], nos dice que val[k] corresponde al primer valor de la fila j y el valor k' contenido en col_ptr[j+1], nos dice que val[k'-1] corresponde al ultimo valor de la col j. Vale la pena aclarar que si k = k' entonces la columna no tiene valores distintos de 0.

Nuevamente utilizemos B como ejemplo:

$$B = \left(\begin{array}{cccc} 10 & 0 & 0 & -2\\ 3 & 9 & 0 & 0\\ 0 & 7 & 8 & 0\\ 3 & 0 & 4 & 5 \end{array}\right)$$

La misma seria representado de la siguiente manera:

val:

10 3 3 9	7 8	4 -2	5
----------	-----	------	---

■ row_ind:

col_ptr:

Las ventajas de usar esta estructura de datos son las siguientes:

- 1. Eficiente a la hora de realizar operaciones aritmeticas entre matrices esparsas (suma, multiplicacion).
- 2. La operacion matriz esparsa por vector es sencilla.

Por otro lado, sus desventajas son:

- 1. Dificultad a la hora de crearse de forma dinamica, ya que debemos recalcular/redimensionar los tamanos de los vectores.
- 2. Cambios en la esparcidad son costosos, misma razon que el punto anterior.

Contexto de Uso Antes de definir que estructura de datos vamos a utilizar para representar matrices esparsas, debemos definir el contexto de uso de la misma. Sabemos que el algoritmo de PageRank utiliza el Método de la Potencia, usando la matriz P_2 definida previamente. Sin embargo la P_2 no es esparsa, inclusive todos sus valores son distintos de 0, por lo cual utilizar la implementacion del Page Rank descripta en la Seccion 2.1.1 no es posible .

Para poder hacer frente a esta dificultad, utilizamos el Aglrotimo 1 propuesto por Kamvar et al.[4] para calcular $x^{(k+1)} = P_2 x^k$, cuyos pasos son los siguientes:

- 1. y = cPx
- 2. $w = ||x||_1 ||y||_1$
- 3. y = y + wv

donde c, P y v corresponden al escalar, la matriz y el vector descriptos en la Seccion 2.1.1. Tenemos que ver que el algortimo descripto calcula efectivamente $x^{(k+1)} = P_2 x^k$:

Proposición 1. El Algoritmo 1 calcula $x^{(k+1)} = P_2 x^{(k)}$

Demostración. Por definicion sabemos que

$$x^{(k+1)} = P_2 x^{(k)}$$

$$= (cP_1 + (1-c)E)x^{(k)}$$

$$= (cP + cD + (1-c)E)x^{(k)}$$

$$= (cP + cD + (1-c)E)x^{(k)}$$

$$= (cP + cvd^t + (1-c)v1^t)x^{(k)}$$

$$= cPx^{(k)} + cvd^t x^{(k)} + (1-c)v1^t x^{(k)}$$

Por otro lado, el Algoritmo 1 nos dice que:

$$x^{(k+1)} = cPx^{(k)} + (||x^{(k)}||_1 - ||cPx^{(k)}||_1)v$$

Luego basta ver que:

$$cPx^{(k)} + (||x^{(k)}||_1 + ||cPx^{(k)}||_1)v = cPx^{(k)} + cvd^tx^{(k)} + (1-c)v1^tx^{(k)}$$
$$(||x^{(k)}||_1 - ||cPx^{(k)}||_1)v = cvd^tx^{(k)} + (1-c)v1^tx^{(k)}$$
$$||x^{(k)}||_1v - ||cPx^{(k)}||_1v = cvd^tx^{(k)} + v1^tx^{(k)} - cv1^tx^{(k)}$$

Sabemos que $\forall \ 1 \le i \le n \ x_i^{(k)} \ge 0$, ya que x es un vector de probabilidades. Entonces $||x^{(k)}||_1 = \sum_{i=1}^n x_i^{(k)}$.

Tambien sabemos que $1^t x^{(k)} = \sum_{i=1}^n 1x_i^{(k)}$, por lo tanto $||x^{(k)}||_1 = 1^t x^{(k)}$.

Por otro lado sabemos que $0 \le c \le 1$, lo que implica que |c| = c.

Teniendo en cuenta esta informacion, la igualdad nos queda de la siguiente forma:

$$v1^{t}x^{(k)} - c||Px^{(k)}||_{1}v = cvd^{t}x^{(k)} + v1^{t}x^{(k)} - cv1^{t}x^{(k)}$$
$$-c||Px^{(k)}||_{1}v = cvd^{t}x^{(k)} - cv1^{t}x^{(k)}$$

Tomando como factor comun v y c:

$$-c||Px^{(k)}||_{1}v = cv(d^{t}x^{(k)} - 1^{t}x^{(k)})$$
$$-||Px^{(k)}||_{1} = d^{t}x^{(k)} - 1^{t}x^{(k)}$$
$$-||Px^{(k)}||_{1} = (d^{t} - 1^{t})x^{(k)}$$

Sabemos, por definicion de d, que d^t solo tiene 1 y 0 como valores, por lo tanto al realizar (d^t-1^t) obtendremos un vector fila, llamemosle z, cuyos valores seran 0 o -1. Lo que implica que $z_j=0$ cuando $d^t_j=1$, situacion que se da cuando, para ese j, $\sum_{i=1}^n P_{ij}=0$. Caso contrario $z_j=-1$ cuando $d^t_j=0$,

situacion que se da cuando, para ese j, $\sum_{i=1}^{n} P_{ij} = 1$. Por lo tanto al mutiplicar $zx^{(k)}$ obtendremos un escalar que sera la suma de los opuestos de los $x_{j}^{(k)}$ que cumplan que, para ese j, $\sum_{i=1}^{n} P_{ij} = 1$, ya que los otros seran mutiplicados por 0.

Por otro lado, partiendo del hecho de que P es estocastica por columnas, sabemos que al realizar $Px^{(k)}$, aquellas columnas, j, que cumplan que $\sum_{i=1}^n P_{ij} = 0$, forzaran a que los $x_j^{(k)}$ no sean parte de ninguna componente del vector resultante, ya que en todas las multiplicaciones de filas de P por el vector $x^{(k)}$, estos $x_j^{(k)}$ seran multiplicados por 0. Caso contrario cuando las columnas, j, cumplan que $\sum_{i=1}^n P_{ij} = 1$, estas forzaran a que la suma de todos los $x_j^{(k)}$ presentes en las distintas componentes del vector resultante sea igual a $x_j^{(k)}$. Precisamente al aplicar $||.||_1$ al vector $Px^{(k)}$, el resultado sera un escalar que sera la suma de todas los $x_j^{(k)}$ que cumplan la condicion antes descripta. Por ultimo si al resultado de aplicar $||.||_1$ lo multiplicamos por -1 obtenemos un escalar que sera la suma de los opuestos de los $x_j^{(k)}$ que cumplan que, para ese j, $\sum_{i=1}^n P_{ij} = 1$.

Por todo lo expuesto anteriormente, podemos concluir que $-||Px^{(k)}||_1 = (d^t - 1^t)x^{(k)}$, lo que implica que El Algoritmo 1 calcula $x^{(k+1)} = P_2x^{(k)}$.

Luego, sabemos que la unica operacion que vamos a realizar con la matriz esparsa es multiplicarla por un vector. Tambien sabemos que la construccion de la matriz es de forma dinamica, ya que vamos leyendo los links salientes de cada pagina de forma secuencial.

A partir de esta informacion concluimos que la estructura de datos que mas se adecua a nuestras necesidades es el *Dictionary of Keys (dok)*, en donde las posiciones del vector representan las filas y las keys de los diccionarios las columnas.

Esta eleccion se debe al hecho de que podemos actualizar la matriz de forma sencilla a medida de que vamos leyendo los datos de entrada, y a su vez la multiplicación por un vector se realiza de forma sencilla, vease Seccion 3.1.2.

2.2. Rankings en competencias deportivas

Elegir un sistema de puntos que sea justo para todos los participantes en un deporte no es una tarea sencilla. Existen muchos factores que afectan el resultado de una competencia como lo pueden ser el orden en el que deben competir entre si los equipos, generando desbalances respecto las capacidades de cada uno. Es por esto que a continuación presentaremos el modelo GeM[3] que busca modelar los resultados de forma tal que estos factores impacten lo menos posible en el posicionamiento final de la tabla de puntajes.

Con el fin de experimentar con distintos modelos, a lo largo del informe trabajaremos sobre los resultados del Torneo de Primera División 2015¹, donde utilizaremos el sistema de ranking estándar de la AFA como punto de comparación.

2.2.1. Generalized Markov chains Method (GeM)

Definición del método

El método GeM es el resultado de tomar el algoritmo PageRank y mediante pequeñas modificaciones utilizar su potencial para establecer un ranking de equipos. Análogo a PageRank, los equipos pasan a formar parte de un grafo dirigido con pesos, donde cada nodo representa un equipo y los pesos de cada arista reflejan el resultado de los partidos jugados entre los vértices conectados.

Formalmente, el modelado se realiza de la siguiente manera:

- 1. Representamos el torneo como un grafo con pesos dirigidos de n nodos, donde n es igual a la cantidad de equipos que participan. Cada equipo tiene su respectivo nodo y las aristas contienen como peso la diferencia positiva entre los nodos conectados.
- 2. Definimos la matriz de adyacencia $A \in \mathbb{R}^{n \times n}$.

$$A_{ij} = \begin{cases} w_{ij} & \text{si el equipo } i \text{ perdió contra } j \\ 0 & \text{caso contrario} \end{cases}$$

Donde w_{ij} es la suma total de diferencia positiva de puntaje sobre todos los partidos en los que i perdió contra j.

3. Definimos la matriz $H \in \mathbb{R}^{n \times n}$.

$$H_{ij} = egin{cases} A_{ij}/\sum_{k=1}^n A_{ik} & ext{si hay un link de } i ext{ a } j \ 0 & ext{caso contrario} \end{cases}$$

4. Definimos la matriz GeM, $G \in \mathbb{R}^{n \times n}$ con $u, v, a, e \in \mathbb{R}^n$ y $c \in \mathbb{R}$.

$$G = c(H + au^t) + (1 - c)ev^t$$

$$\sum_{k=1}^n v_k = 1 \qquad \sum_{k=1}^n u_k = 1 \qquad \forall_{i=1..n}e_i = 1$$

$$0 \le c \le 1 \qquad a_i = \begin{cases} 1 & \text{si la fila } i \text{ de } H \text{ es un vector nulo} \\ 0 & \text{caso contrario} \end{cases}$$

5. Por último tenemos que el ranking de los equipos estará definido por el vector $\pi \in \mathbb{R}^n$ tal que

$$\pi^t = \pi^t G$$

o si tomamos la transpuesta en ambos lados

$$G^t \pi = \pi$$

¹Campeonato de Primera División 2015, *Julio H. Grondona* http://www.afa.org.ar/html/9/estadisticas-de-primera-division

De esta forma al igual que con PageRank, calculando el autovector π obtenemos nuestro ranking. Este modelo permite cierta flexibidad a partir del u, v y c que tomemos.

El vector de probabilidad u se aplicará en el caso de que un equipo se encuentre invicto, esto es el equivalente a que en PageRank un sitio no tenga ningún link entrante, por lo tanto su tratamiento es el mismo, se le asigna a la fila correspondiente el vector con las probabilidades de saltar a otro nodo. Por lo tanto, el vector u nos permite definir con qué probabilidades un equipo invicto perdería contra el resto de los participantes. En el caso de PageRank, este es un vector de distribución uniforme, donde es igual la posibilidad de saltar a cualquiera de los otros nodos, una posible alternativa sería definirlo como un vector cuyas probabilidades se basen en algún ranking anterior.

El vector de probabilidad v, nos da otro tipo de personalización que es la del *navegante aleatorio*. Esta es la probabilidad de que un equipo cualquiera independientemente de los resultados registrados, pierda contra el resto de los equipos. En PageRank, esto lo veíamos como la posibilidad de que estando navegando el grafo, uno se *teletransportará* a otro nodo independientemente de las conexiones de los mismos. Este vector por defecto también suele tomar el valor de la distribución uniforme.

Por último tenemos nuestro valor c que actua como un factor de amortiguación donde lo que se modifica es cuánto afecta el *navegante aleatorio* al resultado final, donde con c=0, únicamente influye el *navegante aleatorio* y con c=1 se elimina el efecto del mismo.

Modelado del empate

Una particularidad de este sistema que se puede observar en la definición del mismo es que no contempla los partidos donde hubo empate. Un empate equivale a que no exista un perdedor y por ende no se modifica el peso de ningún nodo. Para deportes donde el empate no es algo frecuente esto no sería un problema, pero si tomamos como ejemplo el fútbol, donde los empates son algo mucho más común, el ignorar estos partidos afecta notablemente el ranking.

Podemos tomar como ejemplo los Torneos Argentinos de Primera División y observar el porcentaje de partidos empatados sobre el total que se jugaron.

Campeonato de Primera División	Partidos	Empates	Empates/Partidos
2015	390	126	0.32
2014	190	45	0.23
2013/14	380	117	0.31

Relación entre partidos jugados y empates totales

Como podemos ver, la proporción de partidos empatados no es menor, con lo cual analizaremos cómo impactaría esto en el método GeM. Como mencionamos en la definición del modelo, los pesos de las aristas en el grafo dependen en parte de la diferencia de puntaje con la que gana un equipo sobre otro.

Al encontrarnos con un empate no existe diferencia alguna, por lo tanto no implica ningún cambio en el sistema. Esto podría defavorecer a los equipos que más empates tuvieran en la temporada, ya que sólo los partidos donde hubieran ganado o perdido afectarían su lugar en la tabla de puntajes. Además podría suceder que un equipo perdiese contra un contrincante que no tuviera mucho peso pero empatara contra un puntero, y esto debería verse reflejado ya que de otra manera, sólo quedaría registrado su partido perdido.

En base a esto, proponemos dos formas alternativas de modelar el empate:

- Una posible forma de representar los empates aprovechando la estructura del modelo actual sería que cuando se produce uno, reflejar en el grafo el equivalente a que ambos equipos hubieran perdido entre si, asignando como diferencia de puntaje el valor con el que empataron. De esta forma no solo incluiríamos este escenario al cálculo del ranking final, si no que además el puntaje con el que empataron tendría peso.
- Otra posibilidad sería que en caso de empate, se utilizaran otras métricas del deporte para definir el ganador, al cual luego se le podría asignar el puntaje mínimo para ganar el partido. Por ejemplo, si tomamos el caso del futbol, en caso de empate podríamos definir el ganador como el equipo que

tuvo mayor posesión del balon durante el partido, o el equipo que tuvo menor cantidad de tarjetas, o una combinación de varios factores. Una vez determinado el ganador, el score asignado sería 1-0. De esta forma, rompemos el empate refinando el criterio de ganador, y como asignamos el mínimo puntaje para ganar, el puntaje en el ranking que obtiene el ganador no es altamente influenciado por el partido en cuestion.

2.2.2. Puntaje AFA

A modo de comparación con el método GeM, siendo que trabajaremos sobre los resultados del Torneo de Primera División, utilizaremos también el sistema de puntajes que propone la AFA². El mismo es bastante sencillo, donde lo que establece es que todos los equipos comienzan con puntaje **0** y se les suma **1** punto en caso de empate, **3** por victoria y **0** por derrota.

A primera vista, dada que la modalidad de este torneo es de todos contra todos, donde cada equipo juega una vez contra el resto, el resultado debería reflejar de forma justa el desempeño de cada participante. Sin embargo, para este torneo en particular se aplicó una fecha adicional de *clásicos*, donde cada equipo vuelve a jugar contra su respectivo clásico. Este es un punto donde se desequilibran un tanto las cosas ya que un participante podría tener asignado como clásico un puntero, mientras que otro al último en la tabla de posiciones. Para este sistema de puntuación ambos partidos serían tratados al igual quel resto del torneo.

http://www.afa.org.ar/upload/reglamento/Reglamento_PrimeraDivision_2015.pdf

2.3. Método de la potencia

El Método de la Potencia es un método iterativo que calcula sucesivas aproximaciones a los autovectores y autovalores de una matriz.

Sea $A \in \mathbb{R}^{n \times n}$ una matriz cuadradad y sean $\lambda_1, \lambda_2, ..., \lambda_n$ sus autovalores, con $v_1, v_2, ..., v_n$ los autovalores asociados. Para poder aplicar el método a la matriz A, debe valer que:

$$|\lambda_1|>|\lambda_2|\geq\cdots\geq |\lambda_n|$$
 v_1,v_2,\ldots,v_n son autovectores l.i.

A continuación demostraremos como funciona el método.

Proposición 2. Sea
$$x_0 \in \mathbb{R}^n$$
. Luego, $x_{(k+1)} = \frac{Ax_k}{||Ax_k||} \xrightarrow{k \to \infty} v_1$.

Demostración. Como $\{v_1,\ldots,v_n\}$ es una base de autovectores l.i., podemos escribir $x_0=\sum_{j=1}^n\beta_jv_j$.

Entonces,
$$Ax = \sum_{j=1}^{n} \beta_j Av_j = \sum_{j=1}^{n} \beta_j \lambda_j v_j$$
.

Si multiplicamos una vez más por A tenemos que: $A^2x = \sum_{j=1}^n \beta_j \lambda_j A v_j = \sum_{j=1}^n \beta_j \lambda_j^2 v_j$.

Y generalizando:

$$A^k x = \sum_{j=1}^n \beta_j \lambda_j^k v_j$$

Reescribiendo, tenemos que:

$$A^k x = \sum_{j=1}^n \beta_j \lambda_j^k v_j$$

$$= \beta_1 \lambda_1^k v_1 + \sum_{j=2}^n \beta_j \lambda_j^k v_j$$

$$= \lambda_1^k \left(\beta_1 v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^k}{\lambda_1^k} v_j \right)$$

Y es facil ver que $\lim_{k\to\infty}\sum_{j=2}^n \beta_j \frac{\lambda_j^k}{\lambda_1^k} v_j = 0$, ya que $\forall\ 2\leq j\leq n,\ |\lambda_1|>|\lambda_i|$.

Luego, consideremos una función $\phi: \mathbb{R}^n \to \mathbb{R}$ tal que:

- $\phi(\alpha x) = \alpha \phi(x)$
- $\phi(0) = 0$
- ϕ continua

Entonces, podemos escribir:

$$\frac{\phi(A^{k+1}x)}{\phi(A^{k}x)} = \frac{\lambda_1^{k+1}\phi\left(\beta_1v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^{k+1}}{\lambda_1^{k+1}}v_j\right)}{\lambda_1^{k}\phi\left(\beta_1v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^{k}}{\lambda_1^{k}}v_j\right)} = \lambda_1 \frac{\phi\left(\beta_1v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^{k+1}}{\lambda_1^{k+1}}v_j\right)}{\phi\left(\beta_1v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^{k}}{\lambda_1^{k}}v_j\right)}$$

Y tomando el límite con k tendiendo a infinito:

$$\lim_{k \to \infty} \frac{\phi(A^{k+1}x)}{\phi(A^kx)} = \lambda_1 \lim_{k \to \infty} \frac{\phi\left(\beta_1 v_1 + \sum\limits_{j=2}^n \beta_j \frac{\lambda_j^{k+1}}{\lambda_1^{k+1}} v_j\right)}{\phi\left(\beta_1 v_1 + \sum\limits_{j=2}^n \beta_j \frac{\lambda_j^{k}}{\lambda_1^{k}} v_j\right)} \quad = \lambda_1 \frac{\phi\left(\beta_1 v_1\right)}{\phi\left(\beta_1 v_1\right)} = \lambda_1$$

Finalmente,

$$x_{(k+1)} = \frac{Ax_k}{||Ax_k||} = \frac{A^k x}{||A^k x||} = \frac{\lambda_1^k \left(\beta_1 v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^k}{\lambda_1^k} v_j\right)}{||\lambda_1^k \left(\beta_1 v_1 + \sum_{j=2}^n \beta_j \frac{\lambda_j^k}{\lambda_1^k} v_j\right)||}$$

Ahora, tomando límites:

$$\lim_{k\to\infty}\frac{\lambda_1^k\left(\beta_1v_1+\sum\limits_{j=2}^n\beta_j\frac{\lambda_j^k}{\lambda_1^k}v_j\right)}{||\lambda_1^k\left(\beta_1v_1+\sum\limits_{j=2}^n\beta_j\frac{\lambda_j^k}{\lambda_1^k}v_j\right)||}=\lim_{k\to\infty}\frac{\lambda_1^k\beta_1v_1}{||\lambda_1^k\beta_1v_1||}=\pm\frac{v_1}{||v_1||}$$

Lo cual tiende a un autovector asociado al autovalor principal λ_1 . Si podemos garantizar que $\lambda_1^k\beta_1>0$, entonces podríamos decir que $x_{(k+1)}$ tiende a $\frac{v_1}{||v_1||}$ cuando k tiende al infinito. Además, si el vector v_1 se encuentra normalizado, concluimos que $x_{(k+1)} \xrightarrow{k \to \infty} v_1$.

En la práctica se utiliza $\phi(x)=x_p$, dónde $|x_p|=||x||_\infty$, que cumple las condiciones pedidas. \Box

3. Implementación

3.1. Page Rank

A la hora de implementar Page Rank, en ambas versiones, utilizamos C++, lenguaje que nos permite realizar mediciones temporales precisas, como asi tambien utilizar nuestras propias estructuras de datos. A su vez es necesario tener en cuenta que los datos de entrada nos son provistos de la siguiente forma:

- Cantidad de nodos (n) y cantidad de links salientes (m).
- m lineas con pares i, j, donde i tiene un link hacia j.

3.1.1. Page Rank sin matriz esparsa

En esta version del Page Rank utilizamos un vector de vector para representar la matriz P_2 , la cual es necesaria para utilizar el metodo de la potencia en su formulacion clasica. Los paso para realizar Page Rank sin matriz esparsa son los siguientes:

1. Leemos los datos de entrada y luego generamos P

```
Leer n, m del input
Crear un vector de vectores, P, de tamanio n*n
Para k=0 hasta m-1 hacer:
  Leer i, j del input
  P[j-1][i-1] = 1
Fin Para
Crear un vector, links_salientes, de tamano n
Para j=0 hasta n-1 hacer:
  Para i=0 hasta n-1 hacer:
    links_salientes[j] = links_salientes[j] + P[i][j]
  Fin Para
  Para i=0 hasta n-1 hacer:
    Si links_salientes[j] > 0 entonces:
      P[i][j] = P[i][j] / links_salientes[j]
    Fin Si
  Fin Para
Fin Para
```

Vale la pena aclarar que utilizamos $links_salientes$ para calcular los n_j necesarios para luego calcular los valores de P.

2. A partir de P y links_salientes generamos P_2

```
Definir c como el factor de teletransportacion
Crear un vector, v, de tamanio n iniciliazado en 1/n
Crear un vector, d, de tamanio 0 inicializado en 0
Para j=0 hasta n-1 hacer:
   Si links_salientes[j] = 0 hacer:
   d[j] = 1
   Fin Si
Fin Para
Crear vector de vectores, D = multiplicarVectores(v, d)
Crear vector de vectores, P1 = sumaMatrices(P, D)
Crear vector, uno, inicializado en 1
Crear vector de vectores, E = multiplicarVectores(v, uno)
Crear vector de vectores, P2 = sumaMatrices(escalarPorMatriz(P1, c
   ), escalarPorMatriz(E, 1-c)
```

Los procedimientos auxiliares multiplicarVectores, sumaMatrices y escalarPorMatriz son procedimientos estandar, por lo cual no los detallamos.

3. Calculamos el autovector asociado a 1 con el metodo de la Potencia con P_2 , normalizando el autovector obtenido.

```
Definir una precision
Crear un vector, x, con valores aleatorios de 1 a 50 de tamanio n
Crear vector de vectores, B = multiplicarMatrices(P2, P2)
Crear vector de vectores, C = P2
delta = phi(multiplicarMatrizPorVector(B, x)) / phi(
    multiplicarMatrizPorVector(C, x))
ultimo_delta = INFINITY
Mientras (delta - ultimo_delta) > precision hacer:
    C = B
    B = multiplicarMatrices(B, P2)
    ultimo_delta = delta
    delta = phi(multiplicarMatrizPorVector(B, x)) / phi(
        multiplicarMatrizPorVector(C, x))
Fin Mientras
y = multiplicarMatrizPorVector(B, x)
Normalizar y
```

El procedimiento phi consiste en calcular la norma infinito del vector pasado por parametro, con la variacion de no tomar el modulo de las componentes del vector.

Los procedimientos auxiliares multiplicarMatrices, multiplicarMatrizPorVector y phi son procedimientos estandar, por lo cual no los detallamos.

Normalizar un vector, en nuestra implementacion, implica dividir cada componente del vector por la norma 1 del mismo.

4. Una vez obtenido el autovector estacionario, *y*, generamos el ranking de las paginas y lo imprimimos:

```
Crear un vector de pares posicion-valor, llamado ranking, de
   tamanio n inicializado en 0
Para i=0 hasta n-1 hacer:
   ranking[i] = par(i, y[i])
Fin Para
Ordener ranking segun la segundo componente de los pares, valor
imprimir(ranking)
```

Para ordenar el vector ranking utilizamos el procedimiento que nos provee C++, sort³.

El procedimiento consiste, simplemente, en recorrer el vector ranking e ir imprimiendo sus pares.

3.1.2. Page Rank con matriz esparsa

Recordemos que elegimos el *Dictionary of Keys (dok)* para representar las matrices esparsas. El mismo consiste en un vector de diccionarios, en donde las posiciones del vector representan filas y las keys de los diccionarios las columnas. Los paso para realizar Page Rank con matriz esparsa son los siguientes:

1. Leemos los datos de entrada y luego generamos P.

```
Leer n, m del input
Crear un vector de diccionarios vacios, P, de tamano n
Crear un vector tamano n, links_salientes, inicializado en O
```

³http://en.cppreference.com/w/cpp/algorithm/sort

```
Para k=0 hasta m-1 hacer:
   Leer i,j del input
   Crear la key i-1 con 1 como valor asociado en el diccionario de
        P[j-1]
   Sumar 1 al contenido de links_salientes[i-1]
Fin Para
Para i=0 hasta n-1 hacer:
   Iterar en el diccionario de P[i]:
        Actualizar los valores asociados a las keys con el valor 1 /
        links_salientes[key]
   Fin Iteracion
Fin Para
```

Al igual que en la version sin matriz esparsa utilizamos links_salientes para calcular los n_j necesarios para luego calcular los valores de P.

2. Calculamos el autovector asociado a 1 con el metodo de la Potencia con P, normalizando el autovector obtenido.

```
Definir una precision
Definir c como el factor de teletransportacion
Crear un vector, x, con valores aleatorios de 1 a 50 de tamanio n
Crear un vector, v, con 1/n como valores de tamanio n
Crear un vector, y, igual a x
delta = INFINITY
ultimo_delta = 0.
Hacer:
 x = y
 y = esparsaPorVector(P, x)
  y = escalarPorVector(y, c)
  w = normaUno(x) - normaUno(y)
  y = sumaVectores(y + escalarPorVector(w, v))
  ultimo_delta = delta
  delta = phi(x) / phi(y)
Mientras (delta - utimo_delta) > precision
Normalizar y
```

A continuacion describimos el procedimiento auxiliar esparsaPorVector:

```
esparsaPorVector(matriz esparsa P, vector x):
   Crear vector, y, de tamano n
   Para i = 0 hasta n-1 hacer:
        suma = 0
        Itero sobre las keys del diccionario en P[i]:
        entero j = key
        suma = (valor de la key)*x[j]
        Fin de la Iteracion
        y[i] = suma
   Fin del Para
   Devolver y
```

El procedimiento phi es igual de la version sin matriz esparsa.

Los procedimientos auxiliares escalarPorVector, sumaVectores y normaUno son procedimientos estandar, por lo cual no los detallamos.

Por ultimo Normalizar un vector consiste el realizar el mismo procedimiento descripto en la version sin matriz esparsa.

3. A partir de este punto, los pasos son identicos a los que realizamos en la version sin matriz esparsa.

3.2. Scripts Rankings Deportivos

Para los dos modelos siendo estudiados, GeM y el sistema de puntaje de la AFA, decidimos implementarlos com scripts para MATLAB/OCTAVE, dado que lo que nos interesaba era analizar los resultados de los mismos y no analizar su tiempo de cómputo u otro atributo relacionado a su implementación.

3.2.1. GeM

El script posee varios parámetros de entrada que pasamos a describir a continuación:

- in_filename: Dirección de archivo con datos de entrada.
- out filename: Dirección de archivo donde escribir el resultado final.
- **team_codes_filename:** Archivo opcional con el número de equipo asociado a su nombre correspondiente.
- c: Parámetro de amortiguación descrito en la sección 2.2.1 (Por defecto 0.85).
- date_limit: Campo opcional con la cantidad de fechas a tomar en cuenta (Por defecto toma todas las fechas disponibles).

Ahora explicaremos el código desarrollado:

1. Leemos la cantidad de equipos y partidos para después cargar todos los partidos disponibles y generar nuestra matriz *A*.

```
Cargar numero de partidos y equipos
Crear matriz A de tamanio equipos*equipos llena de Os
Mientras partidos > 0
  Cargo numero de fecha del partido junto a los equipos y el
     resultado
  Si habia limite de fecha y ya se cumplio
    partidos = 0
  Si no
    Si el primer equipo perdio
      A[numero primer equipo][numero segundo equipo] += diferencia
          de puntos
    Si el segundo equipo perdio
      A[numero segundo equipo][numero primer equipo] += diferencia
          de puntos
    Fin si
  Fin si
  Decremento partidos en uno
Fin mientras
```

2. Generamos la matriz H.

```
Crear matriz H de tamanio equipos*equipos llena de Os
Crear vector a de tamanio equipos lleno de Os
Para i de 1 a equipos
sumaFila = suma total de elementos en fila i de A
Si la suma > O
La fila i de H seran todos los elementos de la fila i de A
cada uno dividido por sumaFila
Si no
```

```
Pongo un 1 en la posicion i del vector a  \label{eq:fin} \mbox{Fin si}  Fin para
```

3. Generamos la matriz G.

```
Crear vector e de tamanio equipos lleno de 1s
Crear vector u para equipos invictos con todos elementos 1/equipos
Crear vector v para teletransportacion con todos elementos 1/
        equipos
Crear matriz G como resultado de hacer
G = c*[H + a*transponer(u)] + (1 - c)*e*transponer(v)
```

4. Busco el autovector asociado al autovalor $\lambda = 1$.

```
Generar matrices V y l de autovectores y autovalores de mi matriz
   G transpuesta
V es una matriz con autovectores como columnas
l es una matriz con autovalores en su diagonal
i = 1
Mientras valorAbsoluto(l[i][i] - 1) > 0.0001
   Incremento i en una unidad
Fin mientras
Crear vector x correspondiente a la columna i de la matriz V
```

5. Normalizo el vector solución.

```
x = valorAbsolutoACadaElemento(x)/sumaElementos(
   valorAbsolutoACadaElemento(x))
```

6. Genero matriz de solución.

```
Crear matriz S de tamanio equipos*2 y llena de Os
Para i de 1 a equipos
   S[i][1] = i
   S[i][2] = x[i]
Fin para
```

7. Ordeno y escribo la matriz solución.

```
Ordenar crecientemente por segundo elemento de filas la matriz S (
    ranking)

Si tengo archivo con nombres de equipos
    Creo mapa teamcodes con cada numero de equipo asociado a su
        nombre

Fin si

Si tengo nombres de equipos cargados
    Para i de O a equipos - 1
        Escribo numero, nombre y ranking del equipo numero equipos - i
    Fin para

Si no
    Para i de O a equipos - 1
        Escribo numero y ranking del equipo numero equipos - i
    Fin para

Fin para
```

3.2.2. Puntaje AFA

Para el script utilizado para calcular el puntaje según el criterio de la AFA los parámetros son los siguientes:

- in_filename: Dirección de archivo con datos de entrada.
- out_filename: Dirección de archivo donde escribir el resultado final.
- team_codes_filename: Archivo opcional con el número de equipo asociado a su nombre correspondiente.
- date_limit: Campo opcional con la cantidad de fechas a tomar en cuenta (Por defecto toma todas las fechas disponibles).

Pasamos a describir el código:

1. Leemos la cantidad de equipos y partidos para después cargar todos los partidos disponibles y generar nuestra matriz *S*.

```
Cargar numero de partidos y equipos
Crear matriz S de tamanio equipos*2 llena de Os
Mientras partidos > 0
  Cargo numero de fecha del partido junto a los equipos y el
     resultado
  Si habia limite de fecha y ya se cumplio
    partidos = 0
  Si no
    Si hubo empate
      S[numero primer equipo] += 1
      S[numero segundo equipo] += 1
    Si gano el primer equipo
      S[numero primer equipo] += 3
    Si gano el segundo equipo
      S[numero segundo equipo] += 3
    Fin si
  Fin si
  Decremento partidos en uno
Fin mientras
```

2. Ordeno y escribo la matriz solución.

```
Ordenar crecientemente por segundo elemento de filas la matriz S (
ranking)

Si tengo archivo con nombres de equipos
Creo mapa teamcodes con cada numero de equipo asociado a su
nombre

Fin si

Si tengo nombres de equipos cargados
Para i de O a equipos - 1
Escribo numero, nombre y ranking del equipo numero equipos - i
Fin para

Si no
Para i de O a equipos - 1
Escribo numero y ranking del equipo numero equipos - i
Fin para

Fin para
```

4. Experimentación

En esta sección, se detallan los diferentes experimentos que realizamos para medir la eficiencia y calidad de resultados de los algoritmos implementados.

4.1. Page Rank

4.1.1. Instancias de prueba

Las instancias de prueba utilizadas para la experimentación pueden dividirse en tres grupos:

■ Instancias medianas-grandes, que fueron utilizadas para medir tiempo y la convergencia del algoritmo Page Rank. Estas instancias se obtuvieron de la base de datos de SNAP[1] y se detallan a continuación:

Nombre	Nodos	Ejes	Descripción
p2p-Gnutella08	6,301	20,777	Gnutella peer to peer network from August 8 2002
p2p-Gnutella04	10,876	39,994	Gnutella peer to peer network from August 4 2002
p2p-Gnutella30	36,682	88,328	Gnutella peer to peer network from August 30 2002
p2p-Gnutella31	62,586	147,892	Gnutella peer to peer network from August 31 2002
web-Stanford	281,903	2,312,497	Web graph of Stanford.edu

Cuadro 1: Recursos utilizados de SNAP

- Instancias chicas, que fueron utilizadas para analizar la calidad de los resultados de PageRank. Estas instancias fueron generedas utilizando las herramientas provistas por la cátedra y otras extra generadas por nosotros. Los detalles particulares se desarrollan en la sección Calidad de los resultados.
- Instancias aleatorias, generadas mediante nuestros propios algoritmos. Estas son detalladas en la sección que analiza los Tiempos de Ejecución.

4.1.2. Convergencia del algoritmo

Realizamos una serie de experimentos con el propósito de analizar la convergencia de la solución provista por el algoritmo a través de las iteraciones que el mismo realiza en su ciclo principal.

Para hacer esto, modificamos el algoritmo (no su procedimiento) con el fin de ir guardando las soluciones temporales en cada paso.

Con estos datos, medimos la Norma Manhattan (L1) entre las soluciones de cada par de iteraciones sucesivas, definida como:

$$L_1(x,y) = \sum_{i=1}^{n} |x[i] - y[i]|$$

Siendo n la cantidad de nodos del grafo siendo estudiado, $x \in \mathbb{R}^n$ la solución del algoritmo en una iteración k e $y \in \mathbb{R}^n$ la de la iteración k+1.

Esta es una forma intuitiva y lógica de estudiar la convergencia, ya que al tomar la suma de los valores absolutos entre los componentes de cada vector, lo que realmente estamos haciendo es calcular cuanto varia la solución que estamos calculando a través de las iteraciones. Además, podemos asegurar que por el procedimiento de nuestro algoritmo esta diferencia va a ir disminuyendo, y cuando sea lo suficientemente chica el algoritmo va a terminar.

Estudiamos la convergencia a través de dos instancias de tamaño mediano-grande obtenidos de SNAP, mas precisamente:

- Instancia 1: 6301 nodos y 20777 ejes.
- Instancia 2: 10876 nodos y 39994 ejes.

Por lo que podemos decir que son considerables y relativamente esparsas (por ejemplo, el primero podría tener cerca de 40 millones de ejes si fuera completo, teniendo en cuenta que es un grafo dirigido).

A su vez, fuimos variando el componente c del algoritmo Page Rank entre 0.3, 0.6 y 0.9, el cual controla la importancia del *navegante aleatorio*, es decir, a menor c aumenta la probabilidad de que el usuario vaya a una página aleatoria desde la actual.

Veamos los resultados:

Siendo $L1(x_k, x_{k+1})$ (el eje y del gráfico) la distancia Manhattan entre los autovectores generados por el algoritmo entre las iteraciones $k \in k+1$.

Como podemos ver el algoritmo converge rápidamente, tomando a lo sumo 9 iteraciones para terminar de procesar instancias de datos relativamente grandes. Los resultados son parecidos para ambas instancias. Adicionalmente, vemos que Page Rank converge de forma más rápida para valores de c más chicos, es decir, casos en los cuales es más probable que el usuario vaya a una página cualquiera desde la actual. Cuando esto sucede, la matriz de transición tiene valores más parejos dentro de cada columna y podemos decir entonces que el algoritmo soluciona el problema más rápido porque el sistema es más estable.

4.1.3. Tiempo de ejecución

En esta sección, analizamos el tiempo de cómputo que emplea Page Rank.

Para tomar los tiempos, utilizamos la librería chronos de C++ y pasamos las mediciones a nanosegundos. Todos las medidas fueron hechas bajo las mismas condiciones (procesos abiertos, computadora, alimentación y nivel de optimizaciones del compilador).

Los experimentos pasan por tres variables: la cantidad de nodos y la cantidad de ejes del grafo siendo analizado, y la precisión utilizada en Page Rank (es decir, la diferencia que tomamos como suficiente entre dos iteraciones para dar un resultado en el método de la potencia).

Además, comparamos la versión 'esparsa' del algoritmo Page Rank (donde la matriz se guarda de forma diferente) con la versión clásica del mismo algoritmo. En este caso, la precisión del algoritmo esta fija y se va variando la cantidad de vértices.

Para los demás experimentos, cabe destacar que utilizamos la versión esparsa del algoritmo ya que por la cantidad de nodos y ejes, la versión normal es muy lenta para evaluar.

Con este fin, generamos instancias de forma dinámica y aleatoria, es decir que dada una cantidad de nodos, asignamos los ejes aleatoriamente hasta llegar a cierta cantidad a través de la libreria Random de C++.

Más precisamente, los experimentos consisten en:

- Una comparación entre el algoritmo para matrices esparsas y Page Rank normal.
- Nodos del grafo: variar la cantidad de nodos entre 1000 y 100,000 con tantos ejes como 2 veces la cantidad de nodos en cuestión.

- Ejes del grafo: dado un grafo con 3000 nodos, vamos variando la cantidad de ejes entre 1000 y 8,000,000 (el grafo completo tendría 8,997,000 ejes).
- Precisión: teniendo un grafo de 3000 nodos y 1,000,000 ejes, variamos la precisión entre 0.1 y 0.00000000000001 (dividiéndola por 10 entre cada iteración).

El factor c de Page Rank fue configurado en 0.85, ya que no afecta el tiempo de cómputo.

Los resultados de los experimentos fueron los siguientes:

Como podemos ver, la versión esparsa del algoritmo optimiza el tiempo de cómputo de forma significativa. Por este motivo, para los demás experimentos vamos a utilizar esta versión del algoritmo.

En el siguiente experimento podemos ver como varían los tiempos según la cantidad de nodos del grafo:

Como vemos, la cantidad de nodos del grafo afecta la rapidez del algoritmo Page Rank. A simple vista, se nota que la curva que sigue el eje 'y' del gráfico tiene pinta de superior a lineal, aun así nos limitamos a decir que es polinomial. Mientras que vamos aumentando la cantidad de nodos, los ejes empleados pasa a ser el doble de la cantidad de nodos en la iteración. Entonces la duda que queda en cuestión es saber si es la cantidad de ejes el factor clave que hace escalar los tiempos o la cantidad de nodos, lo que analizamos a continuación:

En este caso, la curva es más pronunciada. Esto es un fuerte indicador de que la cantidad de ejes afecta la rapidez del algoritmo de manera más critica que la cantidad de nodos empleados. Aun así, la curva que sigue el gráfico parece ser polinomial.

Esto resultados tienen sentido ya que por las operaciones del algoritmo, sabemos que la mayor parte de la complejidad recide en generar la matriz de transición, lo cual toma una complejidad cúbica derivada de multiplicar matrices (además de sumarlas y escalarlas, lo cuál es cuadrático).

Adicionalmente, en los tests de convergencia, el algoritmo no toma muchas iteraciones en determinar el autovector que queremos como respuesta, por lo que restaría ver como afecta al algoritmo el tiempo que se toma en usar el método de la potencia.

A continuación vemos como la precisión empleada afecta los tiempos del algoritmo:

En base a esto, concluimos que la precisión también es un factor considerable al analizar la eficiencia de nuestro algoritmo. Esto era predecible porque cuanta más precisión es requerida en el cálculo del autovector generado por Page Rank, más iteraciones deberá tomar el algoritmo para dar una respuesta.

4.1.4. Calidad de los resultados

Para evaluar la calidad de las soluciones provistas por Page Rank las comparamos contra el algoritmo InDeg, que ordena las páginas según la cantidad de links que van hacia ellas.

Por el lado de Page Rank, no utilizamos la versión Esparsa del algoritmo, ya que el tamaño de la entrada no lo requiere.

Las instancias que usamos para hacer estas comparaciones fueron:

■ Instancia 1: 13 nodos y 18 ejes.

■ Instancia 2: 13 nodos y 31 ejes.

■ Instancia 3: 5 nodos y 20 ejes (grafo completo).

De forma de poder analizar los resultados facilmente, nos limitamos a instancias chicas.

Para la instancia 1, el valor c del algoritmo Page Rank fue configurado en 0.3, 0.6 y luego en 0.9 con el fin de introducir la posibilidad de que el navegante salte a otra página de forma aleatoria y ver cuánto afecta al resultado final. Esto no es así para la instancia 3 ya que al ser un grafo donde la probabilidad

de ir a las demás páginas es igual para todas, el concepto de navegante aleatorio es irrelevante porque es igual de probable que vaya a cualquier página desde el principio.

Los resultados fueron:

Instancia 1

Pag	ge Rank(c	= 0.3)	P	age Rank(c	= 0.6)
Ranking	Página	Importancia	Ranking	g Página	Importancia
0	2	$8,95 \cdot 10^{-2}$	0	2	$0,\!14$
1	4	$8,38 \cdot 10^{-2}$	1	4	0,11
2	8	$8,01 \cdot 10^{-2}$	2	10	$9.8 \cdot 10^{-2}$
3	10	$8,01 \cdot 10^{-2}$	3	8	$9.8 \cdot 10^{-2}$
4	6	$8 \cdot 10^{-2}$	4	6	$9,52 \cdot 10^{-2}$
5	7	$7,62 \cdot 10^{-2}$	5	7	$7,62 \cdot 10^{-2}$
6	9	$7,61 \cdot 10^{-2}$	6	9	$7,\!35\cdot10^{-2}$
7	3	$7,42 \cdot 10^{-2}$	7	3	$6,53 \cdot 10^{-2}$
8	0	$7,2 \cdot 10^{-2}$	8	0	$4,76 \cdot 10^{-2}$
9	1	$7,2 \cdot 10^{-2}$	9	1	$4,76 \cdot 10^{-2}$
10	5	$7,2 \cdot 10^{-2}$	10	5	$4,76 \cdot 10^{-2}$
11	11	$7,2 \cdot 10^{-2}$	11	11	$4,76 \cdot 10^{-2}$
12	12	$7,2\cdot 10^{-2}$	12	12	$4,76 \cdot 10^{-2}$

Page Rank $(c = 0.9)$				InDeg	
Ranking	Página	Importancia	Ranking	Página	In Degree
0	2	0,2	0	2	4
1	4	$0,\!15$	1	8	3
2	8	$0,\!13$	2	10	3
3	10	$0,\!13$	3	4	2
4	6	$0,\!12$	4	6	2
5	7	$8,11\cdot 10^{-2}$	5	9	2
6	9	$7{,}05\cdot10^{-2}$	6	3	1
7	3	$5,76 \cdot 10^{-2}$	7	7	1
8	0	$1{,}18\cdot 10^{-2}$	8	0	0
9	1	$1{,}18\cdot 10^{-2}$	9	1	0
10	5	$1{,}18\cdot10^{-2}$	10	5	0
11	11	$1{,}18\cdot10^{-2}$	11	11	0
12	12	$1{,}18\cdot10^{-2}$	12	12	0

Por un lado, Page Rank obtiene un ranking con valores lógicos en el sentido de que el nodo con mas ejes hacia él es el de mayor importancia y los nodos con cantidad de links parecidos reciben un ranking similar.

Como podemos ver, los resultados de Page Rank no varian mucho, sus valores son afectados pero los rankings varian muy levemente. Esto es debido a que la cantidad de ejes no es de un tamaño tan grande como para que la variación de c afecte el ranking.

A su vez, InDeg da los resultados que esperabamos, ordenando según la cantidad de links entrantes.

En comparación, los algoritmos dan resultados parecidos de a secciones pero sí tiene diferencias en los primeros puestos. Esto se debe a que Page Rank detecta que por las probabilidades del recorrido que un navegante puede hacer, no necesariamente las páginas con mas links entrantes van a ser las más visitadas a futuro.

Aun asi, veamos otro ejemplo donde la cantidad de ejes sea un poco mayor:

Instancia 2

Pag	e Rank(c	= 0.3)	Pa	ge Rank(c	= 0.6)
Ranking	Página	Importancia	Ranking	Página	Importancia
0	1	$9,02 \cdot 10^{-2}$	0	2	0,13
1	2	$8,73 \cdot 10^{-2}$	1	1	$0,\!12$
2	8	$8,12 \cdot 10^{-2}$	2	8	0,11
3	6	$7,86 \cdot 10^{-2}$	3	6	$8,77\cdot10^{-2}$
4	4	$7,79 \cdot 10^{-2}$	4	10	$8,72 \cdot 10^{-2}$
5	10	$7,76 \cdot 10^{-2}$	5	4	$8,46 \cdot 10^{-2}$
6	7	$7,67 \cdot 10^{-2}$	6	7	$7,89 \cdot 10^{-2}$
7	9	$7,55 \cdot 10^{-2}$	7	9	$7{,}18\cdot10^{-2}$
8	5	$7,21 \cdot 10^{-2}$	8	3	$5,53 \cdot 10^{-2}$
9	3	$7,21 \cdot 10^{-2}$	9	5	$5,39 \cdot 10^{-2}$
10	0	$7,03 \cdot 10^{-2}$	10	0	$4,22 \cdot 10^{-2}$
11	11	$7,03 \cdot 10^{-2}$	11	11	$4,22 \cdot 10^{-2}$
12	12	$7,03 \cdot 10^{-2}$	12	12	$4,\!22\cdot10^{-2}$
Pag	e Rank(c	= 0.9)		InDeg	5

Page Rank($c = 0.9$)			InDeg		
Ranking	Página	Importancia	Ranking	Página	In Degree
0	2	0,21	0	1	5
1	8	$0,\!15$	1	8	5
2	10	$0,\!12$	2	2	4
3	1	$9,94 \cdot 10^{-2}$	3	4	3
4	6	$8,73 \cdot 10^{-2}$	4	6	3
5	4	$8,\!22\cdot 10^{-2}$	5	7	3
6	9	$7,\!56\cdot 10^{-2}$	6	9	3
7	7	$7,36 \cdot 10^{-2}$	7	10	3
8	3	$4,71 \cdot 10^{-2}$	8	3	1
9	5	$2,83 \cdot 10^{-2}$	9	5	1
10	0	$1,04 \cdot 10^{-2}$	10	0	0
11	11	$1,04 \cdot 10^{-2}$	11	11	0
12	12	$1,04 \cdot 10^{-2}$	12	12	0

En este caso ya podemos ver que el ranking varía más. Esto se debe a que ahora la cantidad de ejes es mayor con respecto a la cantidad de vértices. Por lo tanto, cuando vamos variando c, el algoritmo devuelve diferentes respuestas porque ahora la distribución de los links cobra más relevancia a comparación del factor "navegante aleatorio".

A diferencia del caso anterior, los resultados ya no son tan parecidos a los del algoritmo InDeg. De hecho, en solo un caso coincide PageRank con InDeg en el primer puesto del ranking. Lo que sugiere que la distribución de los ejes y su cantidad afectan la impredecibilidad del resultado.

Además, los ejes están distribuidos de tal manera que no haya grupos grandes aislados o grafos completos donde un grupo de vértices tenga una distribución de probabilidad muy pareja y nada de relación con otras componentes conexas.

Para ilustrar este caso veamos el siguiente ejemplo de un grafo completo:

Instancia 3

Page Rank				InDeg		
Ranking	Página	Importancia	Ranking	Página	In Degree	
0	0	0,2	0	0	4	
1	1	0,2	1	1	4	
2	2	0,2	2	2	4	
3	3	0,2	3	3	4	
4	4	0.2	4	4	4	

Los resultados indican lo lógico, como es un grafo donde la probabilidad de ir a cualquier lado es igual, tanto Page Rank como InDeg resuelven el problema asignandole igual importancia a cada página. Por lo tanto concluimos que tanto la cantidad de ejes como la distribución son los factores que más contribuyen a los resultados de Page Rank.

4.2. GeM

4.2.1. Variando el parámetro c

Este experimento consiste en variar el parámetro c y analizar como impacta esta variación en los resultados obtenidos al generar el ranking con GeM.

Recordemos que c es el coeficiente de amortiguación, que regula que tanto afecta el *navegante aleato*rio al resultado final.

Como es intuitivo de pensar, nuestra hipotesis en este experimento es que al tender c a cero aumenta la influencia del *navegante aleatorio* en el puntaje de cada página y, por lo tanto, más se parecen los puntajes de todas la páginas. Es decir, menos dejan de importar los links salientes de las distintas páginas del grafo original.

Por otro lado, cuando c tiende a uno se debilita la influencia del *navegante aleatorio*, causando que el puntaje dependa solo de la matriz $H + au^t$, descrita en la sección 2.2.1.

Se muestran a continuación dichos resultados para diferentes valores de c:

Posicion	Equipo	Puntaje	Posicion	Equipo	Puntaje
1	Vélez Sarsfield	0.033333	1	Boca Juniors	0.051301
2	Unión	0.033333	2	San Lorenzo	0.044563
3	Gimnasia y Esgrima (LP)	0.033333	3	River Plate	0.044200
4	Estudiantes (LP)	0.033333	4	Racing Club	0.040067
5	Defensa y Justicia	0.033333	5	Aldosivi	0.039451
6	Crucero del Norte	0.033333	6	Rosario Central	0.039114
7	Colón	0.033333	7	Quilmes	0.036699
:	:	: I	:	:	i i
24	Lanús	0.033333	24	Godoy Cruz	0.028356
25	San Lorenzo	0.033333	25	Argentinos Juniors	0.028208
26	Rosario Central	0.033333	26	Temperley	0.027904
27	River Plate	0.033333	27	Crucero del Norte	0.027353
28	Racing Club	0.033333	28	Nueva Chicago	0.026346
29	Quilmes	0.033333	29	Atlético de Rafaela	0.025776
30	Olimpo	0.033333	30	Colón	0.025577

Cuadro 2: A izquierda: puntajes obtenidos con c=0, a derecha: puntajes obtenidos con c=0.3

Posicion	Equipo	Puntaje	Posicion	Equipo	Puntaje
1	Boca Juniors	0.086019	1	Boca Juniors	0.095290
2	Aldosivi	0.065353	2	Aldosivi	0.075151
3	River Plate	0.063500	3	River Plate	0.068142
4	San Lorenzo	0.062035	4	San Lorenzo	0.065265
5	Rosario Central	0.048473	5	Rosario Central	0.050875
6	Racing Club	0.047878	6	Racing Club	0.048824
7	San Martín (SJ)	0.043956	7	San Martín (SJ)	0.047118
:	:	:	:	:	
24	Godoy Cruz	0.017516	24	Godoy Cruz	0.014148
25	Temperley	0.016045	25	Crucero del Norte	0.013132
26	Crucero del Norte	0.016039	26	Temperley	0.012487
27	Argentinos Juniors	0.015398	27	Argentinos Juniors	0.011286
28	Nueva Chicago	0.014232	28	Nueva Chicago	0.011239
29	Atlético de Rafaela	0.011388	29	Atlético de Rafaela	0.007559
30	Colón	0.010276	30	Colón	0.006003

Cuadro 3: A izquierda: puntajes obtenidos con c = 0.85, a derecha: puntajes obtenidos con c = 1

Analizando los resultados tenemos que:

- Para c=0, la tabla de puntajes se condice con la hipótesis planteada. Los puntajes de los equipos no solo son parecidos, sino que son iguales. Y dicho puntaje es 0.03 = 1/30 = 1/n, dónde n es la cantidad de equipos totales.
- A medida que el c aumenta (desde 0.3 a 1) las posiciones van convergiendo. Ya con c = 0.3, 6 de los 7 primeros equipos aparecen en los primeros 7 puestos con c = 1, y los últimos 7 equipos con c = 0.3 aparecen en los últimos 7 puestos con c = 1.
- A su vez, la diferencia entre los resultados con c=85 y c=1 es muy chica: de los 14 equipos mostrados en el Cuadro 3 solo dos de ellos cambian de posición (Crucero del Norte y Temperley).

En base a lo analizado, podemos concluir que los resultados del experimento corroboran las hipótesis planteadas.

4.2.2. Evolución del ranking

Una de las características que nos interesa estudiar con estos modelos de ranking es ver cómo evolucionan a lo largo del tiempo ya que es importante analizar los casos donde se producen cambios abruptos, para que no exista ninguna anomalía en el resultado final. Es por esto que en el siguiente experimento lo que hicimos es tomar los dos modelos descritos en la sección 2.2 y estudiar en paralelo su evolución a lo largo del tiempo.

Para esto tomamos los equipos que terminaron en los primeros 8 lugares según el modelo GeM utilizando un c=0.85 (Cuadro 4). Los datos utilizados fueron los resultados de las primeras 26 fechas del Torneo de Primera División Argentino.

La idea es no sólo ver cómo fueron modificándose las posiciones de los participantes si no además comparar entre GeM y el sistema establecido por AFA. Nuestra intuición es que probablemente veamos resultados que a primera vista resulten inesperados en el ranking provisto por GeM, ya que el hecho de brindarle pesos a cada equipo produce que no necesariamente el participante con más partidos ganados esté arriba en la tabla.

A continuacion pasamos a mostrar los graficos reflejando el comportamiento de ambos modelos. Cabe destacar que el sistema de puntaje de la AFA no trabaja asignando a cada equipo un peso dónde la suma total da 1. Para subsanar esto, y poder comparar los dos métodos, vamos a definir el puntaje de un equipo en una fecha particular como el porcentaje de sus puntos sobre el total de puntos en dicha fecha.

Ejemplo: Si Boca Juniors acumuló un total de 58 puntos pero el total de puntos para esa fecha es 1044, entonces el puntaje "normalizado" será de 0.0556.

Figura 6: Evolución de los equipos que terminaron en los primeros 8 lugares según GeM.

Figura 7: Evolución de los mismos 8 equipos en el modelo que utiliza la AFA.

Tenemos varios puntos para observar en los gráficos generados. Para empezar se puede ver cómo en el ranking que generó GeM hay mucha más variación que en el provisto por AFA, donde los cambios son mucho más graduales. Esto se debe a que el sistema de la AFA tiene un tope para el puntaje que cada participante puede ganar por fecha que serían los 3 puntos de ganar su partido correspondiente. Sin embargo, con GeM basta que un equipo derrote a otro de mayor peso para catapultarlo en la tabla de posiciones.

Otro detalle que podemos notar, es en el resultado final cómo quedó el orden para la AFA con respecto a GeM (Cuadro 4). Acá tenemos que por un lado 5 de los 8 primeros equipos según GeM figuran dentro de los primeros 8 para el puntaje de AFA. Esto en cierta forma nos indica que el resultado de GeM no es

disparatado, incluso el orden de estos 5 equipos se mantiene bastante parecido. Sin embargo, notamos que existen algunas irregularidades, donde la que nos va interesar es la de Aldosivi.

Posicion	Equipo	Puntaje	Posicion	Equipo	Puntaje
1	Boca Juniors	0.086019	1	Boca Juniors	0.055556
2	Aldosivi	0.065353	2	San Lorenzo	0.051723
3	River Plate	0.063500	3	Rosario Central	0.049808
4	San Lorenzo	0.062035	4	Racing Club	0.046935
5	Rosario Central	0.048473	5	River Plate	0.045977
6	Racing Club	0.047878	11	Quilmes	0.037356
7	San Martín (SJ)	0.043956	16	San Martín (SJ)	0.030651
8	Quilmes	0.042382	18	Aldosivi	0.028736

Cuadro 4: A izquierda, primeros 8 lugares según GeM con c=0.85. A derecha la posición de los mismos equipos según el ranking de AFA.

Aldosivi figura como segundo lugar en la primer tabla, mientras que para el ranking estándar está 18°. Si observamos en la Figura 6, Aldosivi pega un salto en la fecha 13, llegando incluso a estar por encima de Boca Juniors, pero luego se va estabilizando a lo largo de las fechas hasta quedar en su respectiva posición. Esta fecha da la casualidad de que Aldosivi jugó contra Boca Juniors, ganándole 3-0. Si observamos, en la fecha 12, Boca se encontraba primero, llevándole una diferencia apreciable en puntaje al segundo lugar, River Plate, por lo tanto como Aldosivi venció al puntero, sus goles tenían el mayor peso posible para una victoria, explicando su repentina escalada en la tabla.

Por último, podemos analizar también el salto de Boca de la fecha 10 a la 11. Como era de esperarse, en la fecha 11, Boca jugó contra River, ganando 2-0. Nuevamente se ve como en la fecha 10 River se encontraba por encima del resto, por lo cual era el equipo que más puntos generaba al ganarle.

5. Conclusión

En este trabajo pudimos no solo modelar el sistema planteado, sino que apreciar y aprovechar las propiedades del mismo para así resolverlo con los métodos estudiados observando también las características de ellos.

Por un lado mediante la forma en la que construímos nuestro sistema probamos que se podía resolver con Eliminación Gaussiana sin pivoteo. Además produjimos una versión mejorada del algoritmo de eliminación donde aprovechando la propiedad de banda de la matriz del sistema, redujimos drásticamente la cantidad de operaciones necesarias para resolverla.

Así mismo, cabe destacar que al realizar operaciones con aritmética finita, tanto para la solución de los sistemas como para el cálculo de la isoterma donde la reutilización de datos arrastra error, no podemos garantizar que los resultados obtenidos sean exactos, pero dado que realizamos varias instancias de prueba con distintas metodologías y tomando números de condición aceptables, pudimos ver que los valores que obtuvimos eran coherentes a su contexto.

Luego, en lo que respecta el cálculo de la isoterma, al plantear diversas metodologías tuvimos la posiblidad de analizar y discutir los resultados de las mismas, donde en particular pudimos observar cómo al utilizar la búsqueda binaria podíamos llegar al grado de precisión que deseásemos y que para el método por promedio, al aumentar la cantidad de particiones mejoraba la aproximación, mientras que usando la regresión lineal, esta se ajustaba más a una función lineal que no reflejaba el comportamiento de la fórmula de calor, convergiendo así a un valor distinto tanto al del promedio como el de la búsqueda binaria.

Mediante estas aproximaciones, habiendo establecido previamente nuestro criterio para evaluar si una estructura se encontraba en peligro, llegamos a estimar qué sistemas eran seguros dentro de lo estipulado.

Para el análisis del tiempo de ejecución de una así como varias instancias del sistema modelado, vimos cómo se cumplían las complejidades teóricas de la resolución a través de Eliminación Gaussiana y LU. En este análisis corroboramos cómo si se trataba de una sola instancia la Eliminación Gaussiana presentaba una ventaja sobre LU, dado que el último debe calcular su factorización en su primer corrida, mientras que al subir el número de instancias el algoritmo para LU lograba un tiempo sumamente mejor que el de Eliminación Gaussiana, ya que con la factorización LU habiendo pagado un costo cúbico en la primer instancia, luego es del orden cuadrático contra el siempre cúbico de la Eliminación Gaussiana. Además en el análisis para el algoritmo de Eliminación Gaussiana con la optimización de banda llegamos a concluir que su tiempo de ejecución llegaba a reducirse al de orden cuadrático.

Por último, podemos mencionar algunos experimentos que podrían realizarse a futuro, como el aprovechamiento de la matriz banda en lo que es el algoritmo para la factorización LU, ya que esta optimización se realizó sólo para la Eliminación Gaussiana, junto a su correspondiente estudio de tiempo de ejecución. A su vez, quedó pendiente el realizar la mejora no únicamente en lo que son los tiempos de ejecución sino que el espacio que consume nuestro algoritmo dado que en la matriz banda gran parte de la misma permanece inalterada. También se podría haber profundizado en la experimentación del cálculo de la isoterma con sistemas donde la temperatura interna y externa no fueran constantes si no que tuvieran algún tipo de fluctuación donde se pudiera ver con más detalle cómo se comportaba cada método.

6. Referencias

- [1] Stanford large network dataset collection. http://snap.stanford.edu/data.
- [2] Kurt Bryan and Tanya Leise. The linear algebra behind google. SIAM Review, 48(3):569–581, 2006.
- [3] Angela Y. Govan, Carl D. Meyer, and Rusell Albright. Generalizing google's pagerank to rank national football league teams. In *Proceedings of SAS Global Forum 2008*, 2008.
- [4] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub. Extrapolation methods for accelerating pagerank computations. In *Proceedings of the 12th international conference on World Wide Web*, WWW '03, pages 261–270, New York, NY, USA, 2003. ACM.