The Knapsack Problem

Knapsack Problem

Given an integer K, n items of different size (the i-th item has an integer size k_i)

Find a subset of the items
Such that sizes sum to exactly *K*

e.g. Given K = 7, and 4 items of size {2, 3, 5, 6}
Find a subset of the items
Such that sizes sum to exactly 7

Given K=13, & 5 items of size {2, 3, 5, 7, 8, 9} Find a subset of the items Such that sizes sum to exactly 13

Brute Force

- Generate all combination of subset of the item set
- For each subset, test if feasible solution.
- **Complexity O(2ⁿ)**, n: #(items)

Thinking

- For simplicity, we first concentrate on decision problem
- \blacksquare P(n, K): n items packing in size K
- \blacksquare P(*i*, *k*): first *i* items packing in size *k*
- Hypothesis: we know how to solve P(n-1, K)
- Induction
 - \square if \exists solution for P(n-1, K), we have done the n-th item must be excluded
 - \square if not \exists solution for P(n-1, K),
 - can we use the negative result?
 - the *n*-th item must be included
 - Reduce P(n, K) problem to P(n-1, K) & $P(n-1, K-k_n)$

Induction

- **Hypothesis:** we know how to solve P(n-1, k) for all $0 \le k \le K$
- ■Induction:
 - \square reduce p(n, K) problem to P(n-1, K) & P(n-1, K-k_n)

$$P(n,K) = \begin{cases} P(n-1,K) & \text{if n-th item is excluded} \\ P(n-1,K-k_n) & \text{if n-th item is included} \end{cases}$$

Problem of Recursion

$$P(n,K) = \begin{cases} P(n-1,K) \\ P(n-1,K-k_n) \end{cases}$$

- Problem:
 - \square inefficient, reduce problem of size n to two subproblems of size (n-1)
 - \square time complexity: exponential $O(2^n)$

Improvement

- **■** Observation:
 - \square P(i, k), i: n possibilities, k: K possibilities
 - \square n*K different combinations
- **■** Solutions (Dynamic Programming)
 - □ Remember all solutions and never solve the same problem twice
- **■** Comment
 - ☐ dynamic programming can work only if total no. of possible subproblems is not too large.

Knapsack Problem (cont.)

Solution: dynamic programming

$$P(n,K) = \begin{cases} P(n-1,K) & \text{if n-th item is excluded O} \\ P(n-1,K-k_n) & \text{if n-th item is included I} \end{cases}$$

		0	1	2	3	4	5	6	7
	0	Ι	-	-	_	-	-	-	-
1	2	O	-		_	_	_	_	_
2	3	O	_	(O)	Ι	_	I	_	_
3	5	O	-	O	O	_	O	_	
4	6	O	_	O	O	_	O	Ι	(O)

- I included
- O exclude
- no solution

Knapsack Problem (cont.)

$$P(n,K) = \begin{cases} P(n-1,K) & \text{if n-th item is excluded} \\ P(n-1,K-k_n) & \text{if n-th item is included} \end{cases}$$

I: included, O: exclude, -: no solution

		0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0		-	-	-	-	-	-	-	-	-	-	-	-	-
1	2	O	_		_	_	_	_	_	_	_	_	_	_	_
2	3	O	_	O	Ι	_	I	_	_	_	_	_	_	_	_
3	5	O	_	O	O	_	O	_	$\overline{(1)}$	Ι	_	Ι	_	_	_
4	6	O	_	O	O	_	O	I	O	O	I	O	Ι	_	

```
Algorithm Knapsack(S, K)
Input: S(array of size n storing the sizes of items)
       K(size of knapsack)
Output: P ( P[i, k].exist=true if there exists a solution to knapsack problem with
                                        the first i elements and a knapsack of size k
             P[i, k].belong=true if the ith element belongs to the solution
Begin
   p[0,0].exist:=true;
   for k:=1 to K do
                                                        P(n,K) = \begin{cases} P(n-1,K) \\ P(n-1,K-k_n) \end{cases}
       p[0, k].exist:=false;
   for i:=1 to n do
       for k:=0 to K do
          P[i, k].exist:=false;
          if P|i-1, k|.exist:=true;
                                                /* P(i, k)=P(i-1, k), item i不選
            P[i, k].exist:=true;
                                                /* P(i,k)有解
            P[i, k].belong:=false
                                                /* O (exclusive)
          else if k-S[i] \ge 0 then
                 if P[i-1,k-S[i]].exist then
                                               /* P(i, k)=P(i-1, k-si), item i必選
                   P[i, k].exist:=true;
                                         /* P(i,k)有解
                    P[i, k].belong:=true;
                                               /* I (inclusive)
```

End

Knapsack Problem: Backtracking

$$P(n,K) = \begin{cases} P(n-1,K) & \text{if n-th item is excluded} \\ P(n-1,K-k_n) & \text{if n-th item is included} \end{cases}$$

I: included, O: exclude, -: no solution

		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	0	Ι	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
1	2	O	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
2	3	O	_	O	I	_		_	_	_	_	_	_	_	_	_	_	_
3	5	O	_	O	O	_	O	_	I	I	_		_	_	_	_	_	_
4	6	O	_	O	O	_	O	Ι	O	O	I	O	Ι	_	Ι	I	_	

Dynamic Programming

- developed by Richard Bellman in the 1950s
- typically applied to optimization problems
- simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner.
- Using a table, instead of recursion
- solving every sub-problem just once & then saves its answer in a table
- avoiding the work of re-computing the answer every time the sub-problem is encountered.

A Simple Example of Dynamic Programming

- Fibonacci Number F(n) = ?
- $\overline{F(n)} = \overline{F(n-1)} + \overline{F(n-2)}$
- Two approaches
 - ☐ Recursive program

```
int fib(int n)
{
    if ( n <= 1)
        return (n);
    else
        return( fib(n-1) + fib(n-2) );
}</pre>
```

□ Dynamic Programming

1	1	2	3	5	8	13	21	34	•••
1	2	3	4	5	6	7	8	9	•••

Maximal Value Knapsack Problem

Given an integer K, n items of different size & value v_i (the i-th item has an integer size k_i)

Find a subset of the items

Such that total size is not larger than K, & total value is as large as possible.

■ e.g. <u>Given</u> K=13, &

5 items of size {1, 1, 2, 4, 12} & value {1, 2, 2, 10, 4}

Find a subset of the items

Such that total size is not larger than 13 & total value is as large as possible.

Given K=13, &
6 items of size {1, 2, 3, 5, 5, 8} &
value {2, 3, 1, 5, 6, 7}
Find a subset of the items
such that total size is not larger than 13 &
total value is as large as possible.

設計Dynamic Programming演算法解 Maximal Value Knapsack Problem?

Summary of Design Algorithm by Induction

Evaluating Polynomials

Given a sequence of real no. a_n , a_{n-1} , ... a_1 , a_0 and a real number x

Compute value of polynomial

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

Given 10, 5, 8, 2, 6, (i.e., $P_4(x) = 10x^4 + 5x^3 + 8x^2 + 2x + 6$) and 2, (i.e., x=2)

Compute $P_4(2) = 10*2^4 + 5*2^3 + 8*2^2 + 2*2 + 6$

Evaluating Polynomials (cont.)

Approach 3

 \square Hypothesis: we know how to compute $P'_{n-1}(x)$

$$P'_{n-1}(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + ... + a_1$$

$$a_n x^{n+} + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 =$$

$$((...(a_nx+a_{n-1})x+a_{n-2})...)x+a_1)x+a_0$$

☐ Complexity: n multiplication & n addition

Finding One to One Mapping

- **Given** a finite set A & a function f from A to itself

 Find a subset S of A with maximum number of elements

 Such that
 - (1) f maps S to itself
 - (2) f is one to one when restricted to S

Induction of One to One Mapping

- Hypothesis: solve problem for set of (n-1) elements
- Base:
- Induction:
 - \square any element i that has no other element mapped to it cannot belong to S
 - \square remove i, $A'=A-\{i\}$, A' has (n-1) elements
 - * condition in A (n element) is the same as that in A'=A-{i} (n-1 element), except size
- \blacksquare Complexity: O(n)

The Celebrity Problem

- Celebrity: someone who is known by everyone but does not know anyone
- Celebrity problem
 Identify the celebrity by asking questions
 "Do you know the person over there?"
 - Goal: minimize the number of questions
- In graph theory: celebrity = sink sink: vertex with indegree (n-1) & outdegree 0

Induction

- Hypothesis: we know how to find celebrity among n-1 persons (if there exists, celebrity is among the (n-1) person)
- Induction:
 - \Box eliminate someone who is non-celebrity (n -> (n-1))
 - ask someone X whether he/she knows Y
 - if X knows Y, X is not celebrity, eliminate X
 - if X does not know Y, Y is not celebrity, eliminate Y
 - □ three possibilities
 - Case 3: no celebrity among (n-1) persons no celebrity among n persons
 - Case 2: not exist (since celebrity is not the n-th person)
 - Case 1: two more questions to verify the celebrity among (n-1)

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29,0)

Induction

- Hypothesis: we know how to solve for n/2 buildings
- Induction: from n/2 to n
 - \square merge two n/2 skylines: similar to add one building
 - \square merge: O(n)
- **Algorithm**
 - □ similar to merge sort
 - \square complexity: $T(n)=2*T(n/2)+O(n)=O(n\log n)$

Computing Balance Factors in Binary Tree

- \blacksquare Height: H(v)
- Balance factor: B(v)=|H(vl)-H(vr)|,
 - * vl, vr: left, right children of v
 - * AVL tree: balance factors of -1, 0, 1
- Problem

Given a binary tree T with n nodes

Compute the balance factors of all the nodes

Induction

- Hypothesis: we know how to compute <u>balance factors</u> & <u>heights</u> of all nodes in trees that have < n nodes
- ■Induction: from < n nodes to n nodes
 - □ Base
 - □ root:
 - calculate difference between heights of children
 - height: maximal height of two children + 1

Finding Maximum Consecutive Subsequence

- Subsequence (of consecutive elements)
 e.g. (3, -2, -3) is a subsequence of (2, -3, 1.5, -1, 3, -2, -3, 3)
- Maximum subsequence: maximum sum of subsequence e.g. maximum subsequence of (2, -3, 1.5, -1, 3, -2, -3, 3)=(1.5, -1, 3)
- Problem

Given a sequence $x_1, x_2, ..., x_n$ of real numbers find a subsequence $x_i, x_{i+1}, ..., x_j$ such that sum of the numbers in it is maximum over all subsequence of consecutive elements

Induction

- ■Hypothesis: we know how to find, in sequence of size < n
 - (1) maximum subsequence overall (global maximum)
 - (2) maximum subsequence that is a suffix (maximum suffix)
- **■**Induction
 - \square If $(x_n + maximum suffix) > global maximum,$

new global

Else retain previous global

□ maintain maximum suffix

If maximum suffix $+ x_n \le 0$,

maximum suffix is empty

Else (maximum suffix $+ x_n > 0$)

 $maximum suffix = maximum suffix + x_n$

maximum

Knapsack Problem

Given an integer K, n items of different size (the i-th item has an integer size k_i)

Find a subset of the items

Such that sizes sum to exactly K

e.g. Given K=7, & 4 items of size {2, 3, 5, 6}
Find a subset of the items
Such that sizes sum to exactly 7

Induction

- **■**Hypothesis: we know how to solve P(n-1, k) for all $0 \le k \le K$
- ■Induction:
 - \square reduce p(n, K) problem to P(n-1, K) & P(n-1, K-k_n)

$$P(n,K) = \begin{cases} P(n-1,K) & \text{if n-th item is excluded} \\ P(n-1,K-k_n) & \text{if n-th item is included} \end{cases}$$