Assignment Probability

P PAVAN KUMAR

padmanabhunipavan0@gmail.com
IITH Future Wireless Communication (FWC)

probability

January 5, 2023

1 Problems

FWC22088

- 1. Q:11,16.4,4
 - (a) one ticket
 - (b) two tickets
 - (c) 10 tickets

1.1 Problem

Q1: In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy (a) one ticket (b) two tickets (c) 10 tickets? Solution:

Variable	Value	Description
N	10000	Total number of tickets sold
k	10	Total number of prizes awarded
n	{0,1,2,,N}	Number of tickets purchased
$\Pr\left(n\right)$		probability of not wining a prize
q	N-k	number of tickets with no prize

Table 2: variable description

Total number of possible outcomes = ${}^{N}C_{n}$ Total number of favourable outcomes = ${}^{q}C_{n}$ Probability $\Pr\left(n\right) = {}^{q}C_{n} \over {}^{N}C_{n}}$

1.1.1 a: one ticket

$$(n_1 = 1) \implies \Pr(n_1) = \frac{{}^qC_{n1}}{{}^NC_{n_1}} = \frac{9990}{10000} \frac{C_1}{C_1} = 0.9990$$
 (1)

1.1.2 b: two ticket

$$(n_2 = 2) \implies \Pr(n_2) = \frac{{}^qC_{n_2}}{{}^nC_{n_2}} = \frac{9990}{10000} \frac{C_2}{C_2} = 0.9980$$
 (2)

$1.1.3 \quad c: \, 10 \,\, ticket$

$$(n_3 = 10) \implies \Pr(n_3) = \frac{{}^{q}C_{n_3}}{{}^{N}C_{n_3}} = \frac{{}^{9990}C_{10}}{{}^{10000}C_{10}} = 0.9901$$
 (3)