

USAFOEHL REPORT = 88-146EQ00:1LEF

WASTEWATER CHARACTERIZATION SURVEY, BARKSDALE AFB, LA

ANTHONY T. ZIMMER, 1Lt, USAF, BSC

November 1988

Final Report

 ϕ_{E}

Distribution is unlimited; approved for public release

USAF Occupational and Environmental Health Laboratory
Human Systems Division (AFSC)
Brooks Air Force Base, Texas 78235-5501

Comment to the second

UNCLASSIFIED SETTING CLASSIFICATION OF THIS PAGE

REPOR		Form Approved OMB No 0704-0188					
Inclassified		16 RESTRICTIVE MARKINGS					
Re. SECURITY CLASSIFICATION AUTHORITY N/A	3 OSTRIBUTION/AVAILABILITY OF REPORT Approved for public release. Distribution is unlimited.						
2b. DECLASSIFICATION/DOWNGRADING SCHE N/A	Distribu	ition is un	limitea.				
4. PERFORMING ORGANIZATION REPORT NUM	,	5 MONITORING	ORGANIZATION	REPORT NU	MBER(S)		
USAFCEHL Report 88-146E00011	LEF 66 OFFICE SYMBOL	74. NAME OF M	ONITORING OR	GANIZATION			
USAF Occupational and Enviro							
mental Health Laboratory.	ECQ	-					
6c ADDRESS (City, State, and ZIP Code) Brooks AFB TX 78235-5501 8a. NAME OF FUNDING/SPONSORING	la-arres evenas	76 ADDRESS (C			0) 40 402 5		
ORGANIZATION Same as 6a	8b OFFICE SYMBOL (If applicable)	9 PROCUREMEN	IT INSTRUMENT	IDENTIFICATI	ON MAIMBEK		
SC ADDRESS (City, State, and ZIP Code)		10 SOURCE OF	FUNDING NUMB	ERS			
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO		
Same as 6c		ECEMIENT NO	"	100	ACCESSION NO		
11. TITLE (Include Security Classification)		 _	٠				
WASTEWATER CHARACTERIZATION	ON SURVEY, BARKSDA	ALE AFB LA					
12. PERSONAL AUTHOR(S)							
Lt Col Robert D. Binovi, 1L1	: Anthony T. Zimme	er					
	COVERED TO	14. DATE OF REPO		h, Day) 15.	PAGE COUNT 38		
16. SUPPLEMENTARY NOTATION							
17. COSATI CODES	18. SUBJECT TERMS (Continue on revers	se if necessary a	na identify b	y block number)		
FIELD GROUP SUB-GROUP							
	_						
19. ABSTRACT (Continue on reverse if necessa	ny and identify by block o	wmber)					
The USAFOEHL conducted an or			ev at Bark	sdale AFI	B LA from 14 to		
28 March 1988 at the request	t of the 2nd Strat	tegic Hospita	ıl/SGPB. T	he survey	y was requested		
to resolve a 1 October 1987	FPA Region VI 30-	-dav administ	crative ord	ier. All	samples were		
analyzed for pH, chemical of	kygen demand (COD)), conductivi	ty, total	suspended	d solids (TSS)		
and oil and grease. Sample	s taken from indu	strial areas	were selec	tively a	nalyzed for		
purgeable halocarbons, purge phenols (EPA Method 604), f	eable aromatics, i	total recover	chamactori	otic bar	rethou 420/,		
and metals by the ICP metal:	ruorides, surracio	ants (MDMS), tations (bui)	Idinas 4725	and 345!	5) and NPDES		
site 003 were also analyzed	for biochemical (oxygen demand	(BOD). S	ampling	results were		
evaluated against the follow	ving criteria: (1)) Bossier Ci	ity. Louisi	ana Waste	ewater Permit		
Standard BC0022: (2) Pretro	eatment Standards	for E isting	Sources,	40 CFR Pa	art 433 - Metal 🚪		
finishing point source cate	gory; (3) NPDES (Permit LAUUU/	293 for Ma	ICKS Bayor	llems at /ours		
Recommendations include the					(over)		
20 DISTRIBUTION / AVAILABILITY OF ABSTRAC		21 ABSTRACT SE UNCTASS	CURITY CLASSIF	CATION			
22. NAME OF RESPONSIBLE INDIVIDUAL Lt Col Robert D. Binovi		226 TELEPT ONE (512) 5	136-3305° AV	Pel 22c Off	USAFOEHL/ECQ		
DD Form 1473, JUN 86	Previous editions are	obsolete	SECURIT	Y CLASSIFICA	TION OF THIS PAGE		

Block 19 (Con't)

L.S. 3455 and L.S. 4725 can be reduced by improving maintenance or installing more effective grease traps at food serving facilities, and maintenance at the lift stations. Other facilities disposing organic compounds (solvents, soaps, ect.) to the sanitary sewer should take positive steps to minimize the amount of waste entering the sanitary sewer system. A wet garbage contract for the dining facilities will reduce BOD loading to the sewers. (2) The COD and oils and grease concentrations at NPDES site 003 can be reduced by redirecting the north and south aircraft washracks wastewater to the sanitary sewer The lift station at the north washrack should have the water level adjusted so that all wastewater enters the sanitary sewer. The same type of collection and diversion system should be installed at the south ramp. (3) Operations at the 917th Engine Shop that results in solvents being rinsed into the sanitary sewer should be minimized until the rinsate can either be containerized or sent to a pretreatment system. (4) Phenoxy soaps used by POL for cleaning contribute to exceeding the sanitary sewer discharge limit for phenols. Switching to a detergent which does not contain phenol derivatives should alleviate the problem. (5) The dumping of battery acid into the sanitary sewer may be responsible for a pH of 4.3 in the separators. Proper neutralization or drumming of waste acids should remedy the pretreatment violation. (6) The Corrosion Control Shop is exceeding the pretreatment limits for TTO, chromium and zinc. The 917th Engine Shop is exceeding the pretreatment limits for TTO. A pretreatment system should be installed servicing both shops to remove the contaminants prior to the waste entering the sanitary sewer. (7) Dragout from a 300 gallon stripping vat located outside the Corrosion Control Shop should be controlled. The tank should be moved inside where spills can be prevented from entering the environment. (8) All industrial wastewater discharges should be connected to the sanitary sewer system in order to meet NPDES standards. Barksdale AFB should only be discharging stormwater to Macks Bayou.

ACKNOWLEDGEMENTS

The authors sincerely appreciate the hard work and technical expertise provided by other members of the survey team including 1Lt Francis Slavich, TSgt Benjamin Hernandez, SSgt Mary Fields and Sgt Harold Casey.

We would also like to extend a wholehearted thanks to Capt Maria LaMagna-Reiter and the entire staff of the Bioenvironmental Engineering Section for the southern hospitality provided us during the visit.

Contents

		Page
	DD Form 1473 Acknowledgements Illustrations	i iii V
۱.	INTRODUCTION	1
	A. Purpose and ScopeB. BackgroundC. Wastewater SystemD. Discharge Limitations	1 1 2 2
11.	DISCUSSION	3
	A. Survey Procedures B. Results	3 8
111.	CONCLUSIONS	19
IV.	. RECOMMENDATIONS	20
	References	22
	Appendix	23
	Distribution List	33

Illustrations

Table	Title	Page
1	Sewer Discharge Permit	2
2	Pretreatment Standards	3
3	NPDES Stormwater Limitations	3
4	Flow Measurements	5
5	Wastewater Sample Site Locations	5
6	Site/Analyses	6
7	Analysis and Sample Preservation Methods	7
Figure		
1	Outfalls Into Macks Bayou	4
2	Hazardous Waste Form	9
3	NPDES Site 003, Oil/Water Skimmer	11
4	South Aircraft Washrack Outfall	14
5	NPDES Site 002, West of Storage Tank 5934	15
6	Parts Cleaning Room, 917th Engine Shop	16

I. INTRODUCTION

A. Purpose and Scope

The 2nd Strategic Hospital SGPB requested the USAF Occupational and Environmental Health Laboratory assist in resolving a 1 Oct 87 EPA Region VI 30-day Administrative Order. A meeting between base, AFRCE, and USAFOEHL personnel took place on 26 Oct 87. A response was submitted which included a proposed wastewater characterization survey by USAFOEHL in 1988.

This wastewater and hazardous waste characterization survey was conducted from 14 to 28 March by Lt Col Robert D. Binovi, 1Lt Francis E. Slavich, 1Lt Anthony T. Zimmer, TSgt Benjamin Hernandez, SSgt Mary M. Fields and Sgt Harold D. Casey. Capt Maria La Magna-Reiter, a Bioenvironmental Engineer, and Donna Kelly, the Environmental Coordinator were contacted.

The scope of the survey included the characterization of the industrial sanitary and stormwater discharges. Sites selected included National Pollution Discharge Elimination System (NPDES) site 002 and site 003 into Macks Bayou, the two sanitary sewage lift stations discharging off base (buildings 4725 and 3455) and oil/water separators discharging into the sanitary and storm systems. Also, flow measurements were taken in Macks Bayou near site 003, discharge from site 002, and at the north aircraft washrack.

A hazardous waste survey was also performed at ten selected shops on the base. The survey was accomplished to coincide with the wastewater survey and determine the facilities contributing industrial wastewater to the sanitary and stormwater systems.

B. Background

Barksdale AFB is located on the edge of Boosier City, about two miles east of and across the Red River from Shreveport. Base working population is about 8000. Base resident population is 5773.

The base is located in the flood plain of Red Chute Bayou. The low lying portions of the reservation are subject to partial inundation during headwater floods. The land is relatively flat and there are no natural formations other than the drainage courses. The soils are composed of horizontal lenses of silt, sandy silt, silty sand, and clay.

The annual precipitation has averaged about 49 inches. Precipitation in the peak rain months, December through May, averages about five inches per month. A total of 2.16 inches of rain fell between the 14th and 28th of March. The average high and low temperatures were 67 and 44 degrees Fahrenheit, respectively.

The base supports the 2nd Bomb Wing, Headquarters 8th Air Force, and a host of tenant organizations, including the 917th National Reserve Unit. Aircraft serviced are B-52s, KC-135s, KC-10s, and A-10s. Other industrial operations stem from facility and vehicle maintenance.

C. Wastewater System

The base has separate sanitary and storm drainage systems. Industrial effluent is discharged into both systems. In general, most industrial shops discharge into the sanitary system.

The storm system consists of various conveyances discharging ultimately into two bayous, Macks and Coopers. Macks Bayou originates on base near the base north gate, flowing slowly eastward to the Red River. Coopers Bayou also originates on base near the north gate, flowing westerly, then southerly, joining Macks Bayou and the Red River. Coopers Bayou receives stormwater from the runway and runoff from private residences and industrial establishments along Industry Ave. Since no wastewater is routinely discharged into Coopers Bayou from industrial operations on base, sampling of water quality in Coopers Bayou was beyond the scope of this survey.

The sanitary sewer system is a gravity and pressure system that is connected to the City of Boosier's sanitary sewer system via lift stations (L.S.) 4725 and 3455.

D. Discharge Limitations

Sanitary Sewer Discharge Limitations. Discharge limitations for Barksdale AFB are contained in the Bossier City Code, part 28, section 28-69.2. These restrictions apply to the two lift stations, building 3455 and 4725, responsible for pumping sewage waste to the Bossier City treatment plant. The daily flows from the two lift stations should not exceed 1,170,000 gallons. The discharge limitations applicable to L.S. 3455 and 4725 are found in Table 1.

Table 1. Sewer Discharge Permit

Parameter	Limitation
рН	5.5-9.5 Std Units
TSS	250 mg/l
BOD ₅	250 mg/l
Oil & Grease	100 mg/l
PhenoIs	0.1 mg/l at head of POTW

Federal Pretreatment Standards may apply to point source discharges of industrial wastewaters into the sanitary sewer in lieu of local pretreatment ordinances. Point source discharges from industrial facilities (except for the NDI, Hospital and Photo Shops) on Barksdale AFB are regulated by 40 CFR, Part 433, Metal Finishing Point Source Category. Discharge limitations for the facilities are found in Table 2. NDI and photo shops are regulated by 40 CFR 459. Hospital discharges are regulated by 40 CFR 460.

Table 2. 40 CFR 433 Metal Finishing Pretreatment Standards

	Limitation (mg/l)				
Parameter	Daily Max.	Monthy Avg			
Cadmium	0.60	0.00			
Chromium	0.69 2.77	0.26 1.71			
Copper	3.38				
Lead	0.69	2.07 0.43			
Nickel	3.98	2.38			
Silver	0.43	0.24			
Zinc	2.61	1.48			
Cyanide	1.20	0.65			
Total Toxic Organics (TTO)	2.13				
pH	<5.00 units				

Stormwater System NPDES Permit. The following stormwater limitations are applicable to the outfalls 002, 003 and 004, located on Macks Bayou. Site 002 is located west of storage tank, building 5934, across Davis Avenue. Site 003 is located on Macks Bayou, south of building 6830, on a platform above the skimmer/oil separator. Site 004 is located at the outlet of the treatment system located between the south taxiway and taxiway E. The actual discharge limitations are found in Table 3.

Table 3. NPDES Stormwater Limitations

	Limitation (mg/l)				
Parameter	Daily Ave	Daily Max	_		
Flow	N/A	N/A			
TTS	20	30			
Oil and Grease	10	15			
COD	60	90			

II. DISCUSSION

- A. Survey Procedures
 - 1. Wastewater Characterization Survey
- a. Macks Bayou Reconnaissance Macks Bayou was walked from its origin near the North Gate to a point past the skimmer/oil separator designated by proposed discharge permit LA0007293 as site 003 to determine the various outfalls into the bayou. A sketch of the discharges into the bayou is included as Figure 1.

4

Figure 1. Various Outfalls Into Macks Bayou

b. Flow - Daily flow readings were calculated at lift stations 4725 and 3455, using time meter readings and pump capacities. Flow readings from site 003 at Macks Bayou were calculated using a Gurly meter to determine velocity and the cross sectional area of the bayou. Flow readings from site 002 were calculated using a Vee notch weir. Rainwater is periodically discharged to Macks Bayou from the POL emergency containment basin (Site 002) through release valves. Daily flow readings were calculated at the North Washrack using a Manning flowmeter. Due to instrument failure the actual flowrates could not be determined. Daily flows for these sites are shown in Table 4.

Table 4. Flow Measurements

		Daily Flowrate	011	<u> </u>	Daily Flowrate
Site	Date	(X1000 Gallons)	Site	Date	(X1000 Gallons)
L.S.	16 March	84.0	Outfall	16 March	98.0
472	17 March	120.0	003	17 March	138.0
	18 March	190.5		19 March	568.0
	19 March	70.0		21 March	239.0
	20 March	70.0		22 March	220.0
	21 March	120.0		23 March	1955.0
	22 March	111.0			
L.S.	16 March	21.0	Outfall	21 March	220.0
3455	17 March	118.5	002		
	18 March	40.5			
	19 March	66.0			
	20 March	66.0			
	21 March	67.5			
	22 March	75.0			

c. Sampling

(1) Sampling Site Numbers, Locations and type of wastewater system are included in Table 5.

Table 5. Wastewater Sampling Site Locations

Site	Location '	Type
1	L.S. Building 4725, Influent channel	sanitary
2	L.S. Building 3455, Wet well	sanitary
3	Building 6824, 917th Conventional Fuels separator	sanitary
4	Building 6825, 917th Vehicle Washrack separator	sanitary
5	Building 6827, 917th Engine Shop separator	sanitary
6	Building 6638, POL Vehicle Fuel separator	sanitary
7	Building 5766/78, FMS washrack separator	sanitary
8	Building 4186, North Transportation separator	sanitary
9	Building 4186, South Transportation separator	sanitary
10	Building 6426, Fire Department washrack separator	sanitary
11	Building 4412, CE Transportation washrack	sanitary
12	Building 6213/4, Fuel Cell Repair separator	sanitary
13	Building 6215, Fuel Cell Repair separator	sanitary
14	Building 6447, FMS AGE washrack	sanitary
15	Fire Training Pit	to grade
16	Building 6437, Demineralized Water Plant separator	sanitary
17	Building 6626, FMS Corrosion Control separator	sanitary
18	Building 4565, Photo Lab	sanitary
19	Building 5755, NDI Shop lateral connection	sanitary
20	North Aircraft washrack separator	sanitary-storm
21	South Aircraft washrack outfall	storm
22	Site 003, Macks Bayou skimmer	storm
23	Site 002, POL storage area dike drain	storm

- (2) Sampling Frequency. Five days of 24-hour equiproportional samples composited hourly were taken at Sites 1, 2 and 22, except for a 1-day grab sample taken on 21 March. The majority of the other sites were 1-day equiproportional samples composited hourly except for 1-day grab samples taken at sites 5, 11, 12, 13, 14, 15, 18 and 19. Isco 2700 Automatic Wastewater Composite Samplers were used at all sites. All volatile organic and oils and grease samples were grab samples.
- (3) Sampling Strategy. The strategy for determining how many samples to analyze from any given site was based on the available resources, the changing nature of the wastewater, the probability of finding a particular parameter in the time frame, and the type of analysis required. A summary of the sites and the analyses performed is included in Table 6.

Table 6. Site/Analyses

Parameters	Site Number	1	2	3	4	5	6	7	8	9	10	11	12	13
рН		Х	X	X	X	X	Х	X	Х	X	Х	X	X	X
Temperature		Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ
Conductivity		X	Χ	Χ	Χ	Χ	X	X	Χ	Χ	Χ	X	Χ	Χ
Total Suspended	l Solids	X	Χ	Χ	X	Χ	Χ	X	Χ		Χ	X	X	Χ
Biochemical Oxy		Х	Χ											
Chemical Oxyger	n Demand	X	Χ	X	X	Χ	Χ	X	Χ	Χ	Χ	X	Χ	X
Oils and Grease		X	Χ	Χ	X	Χ	X	X	Χ	Χ	Χ	X	Χ	Х
Total Phenols		Х	Χ				X					X		
Phenois (EPA Me	ethod 604)	Х	X											
Volatile Hydrocar	rbons	X	X			Χ								
Metals		X	X					X	Χ	Χ		X		
Fluorides											Χ			
Surfactants (MB/	AS)	X	X				X	X	X	X	X	X	Χ	Χ
Char. Haz. Wast	е.			Χ	Χ									
Parameters	Site Number	14	15	16	-	17	18	19	20	21	22	2:	3	
	Site Number		· -											
рН	Site Number	x	×	×		X	×	X	×	X	×	×		
pH Temperature	Site Number	X X	×	X		X X	×	×	X	×	×	×		
pH Temperature Conductivity		X X X	X X X	X X X		X X X	X X X	X X X	X X X	X X X	×××	×		
pH Temperature Conductivity Total Suspended	d Solid	X X	×	X		X X	×	×	X	×	× × ×	×		
pH Temperature Conductivity Total Suspended Biochemical Oxy	d Solid vgen Demand	X X X	X X X	× × ×		X X X X	X X X	× × ×	X X X	× × ×	X X X X	X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge	d Solid vgen Demand	X X X X	X X X X	X X X		X X X X	X X X X	X X X X	X X X X	X X X X	X X X X X	X X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge Oils and Grease	d Solid vgen Demand	X X X	X X X	× × ×		X X X X	X X X	× × ×	X X X X	X X X X	X X X X X	X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge Oils and Grease Total Phenols	d Solid rgen Demand n Demand	X X X X	X X X X	X X X		X X X X X	X X X X	X X X X	X X X X	X X X X	X X X X X	X X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge Oils and Grease Total Phenols Phenols (EPA M	d Solid vgen Demand n Demand lethod 604)	X X X X	X X X X	X X X		X X X X X X	X X X X	× × × × ×	X X X X	X X X X	× × × × × × ×	X X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge Oils and Grease Total Phenols Phenols (EPA M Volatile Hydroca	d Solid vgen Demand n Demand lethod 604)	X X X X	X X X X	X X X		× × × × × ×	X X X X	× × × × × ×	× × × × × ×	× × × × × ×	× × × × × × ×	X X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge Oils and Grease Total Phenols Phenols (EPA M Volatile Hydrocal Metals	d Solid vgen Demand n Demand lethod 604)	X X X X	× × × × × ×	X X X		X X X X X X	X X X X	× × × × ×	X X X X	X X X X	× × × × × × ×	X X X X		
pH Temperature Conductivity Total Suspended Biochemical Oxy Chemical Oxyge Oils and Grease Total Phenols Phenols (EPA M Volatile Hydroca	d Solid rgen Demand n Demand lethod 604) rbons	X X X X	X X X X	X X X		× × × × × ×	X X X X	× × × × × ×	× × × × × ×	× × × × × ×	× × × × × × ×	X X X X		

(4) Sampling Analyses. The method of analysis and sample preservation prescribed for each parameter are listed in Table 7.

Table 7. Analyses and Sample Preservation Methods

Parameter	Preserva	ation	Method	Where	Who
Biochemical Oxyge	en Demand	none	E405.1	on-site	USAFOEHL
Characteristic Haz	ardous Waste	none	E625	Brooks AFB	USAFOEHL
Chemical Oxygen	Demand	H ₂ SO ₄	E410.4	Brooks AFB	USAFOEHL
Conductivity		none	A205	on-site	USAFOEHL
Fluoride		none	E340	Brooks AFB	USAFOEHL
ICP Metals Screen Ag, Al, As, Be, Cd, Cu, Fe, Hg, Pb, Mg Ni, Ti, V	Cd, Co, Cr,	HNO ₃	E200.7	Brooks AFB	USAFOEHL
Oils and Grease (Total Recoverable	e)	H ₂ SO ₄	E418.1	Brooks AFB	USAFOEHL
Phenols		none	E604	contract-lab	UBTL
Phenois (Total Red	coverable)	H ₂ SO ₄	E420	Brooks AFB	USAFOEHL
рН		none	A423	on-site	USAFOEHL
Purgeable Halocar	bons	none	S8010	contract-lab	UBTL
Purgeable Aromati	ics	none	S8020	contract-lab	UBTL
Surfactants (MBAS	S)	none	E425.1	Brooks AFB	USAFOEHL
Temperature		none	E170.1	on-site	USAFOEHL
Total Suspended S	Solids	none	A209	on-site	USAFOEHL

Notes: A indicates Standard Methods for the Evaluation of Water and Wastewater¹

E indicates EPA Methods for Chemical Analysis of Water and Wastes⁴

S indicates SW-846 Hazardous Waste Analysis Method

UBTL is Utah Biomedical Test Laboratories, Salt Lake City UT

d. Hazardous Waste Survey. The hazardous waste survey was performed to assist in characterizing the wastewater being discharged to the sanitary and stormwater systems. Ten shops were visited to determine the shop duties, chemicals used in the facility and methods of waste disposal. Survey members toured the shops and distributed hazardous waste forms (see Figure 2) for supervisors to record chemical usage and disposal practices.

B. Results:

The following is a discussion by sites of the wastewater characterization survey. Only results that are pertinent in characterizing the wastewater from the sanitary and stormwater systems will be discussed. The Bossier City, Louisiana Wastewater Discharge Permit standards (permit no. BC0022) are applicable to the two lift stations, 4725 and 3455, leaving the base to the treatment plant. Pretreatment standards (40 CFR, PART 433- Metal Finishing Point Source Category) are applicable to industrial facilities discharging to the sanitary sewer except at NDI, Hospital and Photo Shops. NPDES permit standards (permit no. LA0007293) are applicable to sites on Macks Bayou.

- 1. Wastewater Site Descriptions and Results
- a. Five Day Sites. Due to quality control problems, three out of five days of sampling for BOD₅ can be reported confidently.

Site 1. Lift Station, building 4725 receives sewage from the 917th National Reserve Unit, Hospital, Civil Engineering complex, housing areas and dormitories. Samples were taken at the influent channel of the lift station. A BOD/COD ratio of 0.56 suggests that the waste is mostly domestic in nature. Wastewater is generally considered to be more industrial in nature when the ratio falls below 0.30. Results for total suspended solids (TSS), pH, oils and grease, and phenols were well below city discharge limitations (see Table 1 for discharge limitations). One BOD $_5$ result of 360 mg/l exceeded the BOD $_5$ discharge permit limit of 250 mg/l. A large amount of floating scum was observed in the influent channel throughout the entire sample period. Scum adds greatly to the BOD concentration when included in a sample. Volatile halocarbons (SW-846 Method 8010), volatile aromatics (SW-846 Method 8020) and ICP metals, although detected, are not regulated under the current discharge permit. EPA Method 8010 compounds found were chlorobenzene (88 μ g/l) and o-xylene (38 μ g/l). The highest metal concentrations detected from five days of samples were 0.027 mg/l, 0.195 mg/l and 0.193 mg/l for lead, nickel and zinc, respectively.

Site 2. Lift Station, building 3455, receives sewage from the base housing complex, base transportation and 2 FMS facilities. Samples were taken from the pump station wet well. BOD/COD ratios over a three day period suggest that the waste is domestic in nature. The average BOD/COD ratio was 0.60. TSS, pH and oil and grease five day averages were well below city discharge limits, although an oils and grease concentration of 126 mg/l on 22 March exceeded the discharge limit of 100 mg/l. Three days of BOD₅ averaged results were 407 mg/l, exceeding the discharge limit of 250 mg/l. The limit was exceeded on all three days of confirmed BOD₅ samples. The 5-day average for total extractable phenols (EPA Method 420.2) was .186 mg/l, exceeding the discharge limit of 0.10 mg/l. Large amounts of floating scum were

lugorvisor: lutica:		Autoven: 1-		Openific Maste	ille und established Boate Stapesol	Amount of Mosto
					Bothed	Senerated mer month
CATAGOPIE	OF WALTE	ARE BISPOSAL B	STRODS COMMENTS	Points		
ELJY1	BISPOSAL	* GENERATED) COMMENTS	Letes		
		tmat menth)	 	Polyural hane		
AIRT WASTE		i	í			
TAINTAI			/			
TRIPPING MALTE	Marian Principal	į	<u> </u>	Thinners (list)		
] 	1	1	· ;		·
ASTE ACIDS	REAL PROPERTY.		\	!		
OAPS/CLEASTERS	 	 		- (ARR \ NO) CINCE NORY AND RECT	ANY BAPETY ELECT MAIN E COME	PE TO CLEAN PAINTING BOULPRENT
	į	į	İ	IF SO BOW BARY UNI CAPACITY OF BACE U	T\$?	
MATE OIL						
ARTE PLUIDS	1	 		i	STRIFFERS	
	j	j			Betis	Ast used/month or
MATE FUELS	¦	i	i	Bane of Stripper	Manufacturer Stock I	
*************	[1			
SE AFFIFRESE	į	j	i			
				<u> </u>		
	mmm	u k	!	1		
D-680	 	<u> </u>	<u> </u>	- <u> </u>	ACIDS	
MORALLY DEURAED)	j •	1	1	Bane of Acid	Menufactures	at mard/mo bisposal fir
	·	j		Battery Acid	Differentia	
MEET POP MASKING MARALLY BINSET BO)	8200	ļ	i			
BOTC MASTES	SHILLIAN					
		1	1	į	BOAPS/CLEAMERS	i .
			1	! Hape of Soap	Manufacturer	mt Marg/mo Matienal Stock
pecify the types us			•			
Examples of dispos	a) Practi	•••				
	Chenical	listing (cont.			Chemical list	ine (cost.)
611	A/710104		•		MDI CHEMICALE	
					MD1 CREVICATE	
of oil/fluid	AST 1004/E	meth Dispose? b Tank giv	Rethod (if wests goes to a Capacity and location)		Betions	Abt/month or Table Change out DIE
Pluid				Many of Chemical Bu	nulecturer Stock Du	<u>her icas. Preg. i Art</u>
mission Vivid				bye Penetrant		
mission Piets wite Piets or				evelope:		
						
					Other Chemicals No	Listof
	BOLVERTS/	DEGREASANTS				Ant/Bonth or
			sed/month or	Some of Chemical Re	nufacture: BSP	Tent Change BUT DISPOSAL
of Chemical Ranufa		Tank	Change out Disposal			
	. votet	102	Preg BETBOD			
heed in a tank/vat	-					
used in a tank/vat	1					
THE SHOP DEE AND BAFE	ITTY BLEEDING	MEGREASING CON191	(T/B)7 17 80 80W	gicha ture ou	PERSON FILLING OUT 1	Mt 9099-
TO OF BACE UNIT:				SIGNOITURE OF		
patro	CREMICAL					
pago:						
	(T	ant month or	T:			
of Chem:col Marufa	cturer j'	Car Freq	Disposal Method			

Figure 2. Hazardous Waste Form

observed in the lift station wet well, contributing to BOD and oils and grease problems. Volatile halocarbons, volatile aromatics and ICP metals, although detected, were not regulated by the current discharge permit. A 1-day grab sample for volatile halocarbons yielded a 10 μ g/l concentration of tetrachloroethylene. A 1-day composite sample for phenols (EPA Method 604) yielded an 18 μ g/l concentration of pentachlorophenol. The highest 1-day metal concentrations were 0.194 mg/l for nickel and 0.205 mg/l for zinc.

Site 22. The oil skimmer on Macks Bayou is a NPDES permitted site identified by the permit as site 003 (see Table 3 for discharge limitations). Samples were taken midstream on the discharge side of the skimmer. A major portion of the stormwater runoff from the west side of the base flows through this site (see Figure 3). The 5-day average for COD (81 mg/l) exceeded the NPDES discharge limit. This limit of 60 mg/l was exceeded on three out of the five days of samples. The 5-day average for oils and grease and TSS did not exceed the NPDES discharge limits. However, a 1-day oils and grease concentration of 18 mg/l on March 21 did exceed the NPDES discharge limitation of 10 mg/l. A 1-day grab sample for volatile halocarbons and aromatics found none of these compounds. A 1-day composite sample for metals found no significant concentrations.

Figure 3. NPDES Site 003, Oil/Water Skimmer

b. One Day Sites.

- Site 3. Samples were collected at the separator located adjacent to the 917th Fuel Systems and Corrosion Control facility, building 6824. Parameter analyses indicate no significant concentrations. Characteristic hazardous waste results indicate the sample was not hazardous and essentially water.
- Site 4. Samples collected at the 917 vehicle washrack separator located adjacent to building 6825 showed no significant results. Characteristic hazardous waste results indicate that the sample was essentially water.
- Site 5. Samples were collected at the 917th Engine Shop separator, located adjacent to building 6827. A COD concentration of 2860 mg/l suggested an industrial discharge. A low pH of 5.0, combined with a conductivity of 4000 µmhos, suggest possible discharge of an acidic waste. The summation of two priority pollutants (2.7 mg/l of 1,1,1-trichloroethane and 8.5 mg/l of 1,3-dichlorobenzene) exceeded the Total Toxic Organic (TTO) pretreatment limit (40 CFR, Part 433) of 2.13 mg/l (see Table 2 for discharge limitations). Concentrations of other parameters analyzed were not significant.
- Site 6. Samples were collected at the Petroleum, Oils, and Lubricants Branch (POL) fuel separator, building 6638. A pH result of 5.5 indicated a slightly acidic wastewater. The total extractable phenols concentration of 0.175 mg/l exceeded the sanitary sewer discharge limit of 0.10 mg/l. Additional analyses indicate no significant concentrations.
- Site 7. Samples were obtained from a Field Maintenance Squadron (FMS) separator servicing the Machine Shop and Propulsion Shop, buildings 5766 and 5778, respectively. Metal concentrations of 0.436 mg/l for nickel and 0.137 mg/l for zinc were below the pretreatment standards of 3.98 mg/l and 2.61 mg/l. Additional parameter analyses indicated no significant concentrations.
- Site 8. Samples were obtained from an oil/water separator north of building 4186, Base Transportation. COD results of 3540 mg/l indicated the industrial wastewater contained organic compounds. Metal concentrations of 0.083 mg/l, 0.410 mg/l and 0.497 mg/l were detected for lead, nickel and zinc, respectively. The metal concentrations were well below pretreatment limits for lead (0.69 mg/l), nickel (3.98 mg/l) and zinc (2.61 mg/l). Concentrations were not significant for other parameters analyzed.
- Site 9. Samples were obtained from an oil/water separator south of building 4186. An oils and grease result of 96 mg/l combined with a COD concentration of 2150 mg/l indicates the presence of organic compounds in the wastewater. A pH result of 4.3 was below the pretreatment limit of 5.0 and suggests that the shop may be disposing battery acid down the drain. Metal concentrations of 0.444 mg/l for nickel and 2.266 mg/l for zinc were below the pretreatment standards of 3.98 mg/l and 2.61 mg/l for both respective metals. An iron concentration of 49.5 mg/l (not regulated by pretreatment standards) probably indicates iron oxide dissolving into solution under acidic conditions. Additional parameter analyses indicated no significant concentrations.

- Site 10. Samples were obtained from the Fire Department separator, building 6426. Parameter results indicated an effluent of domestic nature.
- Site 11. Samples were obtained from the Civil Engineering washrack, building 4412. The total extractable phenols concentration of .015 mg/l was well below the sewer discharge limit for phenols of 0.10 mg/l. A metal concentration of 0.166 mg/l for nickel was well below the pretreatment limit of 3.98 mg/l. Analyses of additional parameters indicate no significant concentrations.
- Site 12. Samples were obtained from the Fuel Cell Repair separator located between buildings 6213 and 6214. Parameter analyses indicate no significant concentrations.
- Site 13. Samples were obtained from the Fuel Cell Repair separator, building 6215. Parameter results indicated no significant elevations in levels of pollutants.
- Site 14. Samples were obtained from the FMS Aerospace Ground Equipment washrack near building 6447. Parameter results indicated an effluent with no specific problems.
- Site 15. Samples were obtained from the Fire Training Pit. Volatile halocarbon and aromatic compounds were not detected. Additional parameter analyses indicate no other significant concentrations.
- Site 16. Samples were obtained from the Demineralized Water Plant separator, building 6437. The wastewater had a suspended solids content of 158 mg/l, below the sewer ordinance limit of 250 mg/l. Concentrations were not significant for other parameters analyzed.
- Site 17. Samples were collected at the 2nd FMS Corrosion Control separator, building 6626. High COD results of 13600 mg/l indicated an industrial wastewater with a high pH (10.3). Four priority pollutants found (11 mg/l of methlene chloride, 26 mg/l of 1,4-dichlorobenzene, 16 mg/l of toluene and 4.68 mg/l of total extractable phenols) greatly exceeded the Total Toxic Organic (TTO) pretreatment limit of 2.13 mg/l (40 CFR, Part 433, Table 3). The pretreatment standards for chromium of 2.77 mg/l and zinc of 2.61 mg/l were also exceeded by results of 4.29 mg/l and 3.09 mg/l, respectively. The sanitary sewer discharge limitation (see Table 1) of 100 mg/l for oils and grease was also exceeded (127.2 mg/l).
- Site 18. Samples were collected at the Photo Lab sanitary sewer connection near building 4565. The wastewater had a fairly high suspended solids content of 132 mg/l. Metals analysis detected a silver concentration of 0.11 mg/l. Concentrations were not significant for other parameters analyzed.
- Site 19. Samples were obtained from the Non-Destructive Inspection (NDI) lateral connection located adjacent to building 5755. Volatile halocarbon and aromatic results yielded no significant findings. Metals analyses detected a silver concentration of 0.05 mg/l. Additional parameter analyses indicate no significant concentrations.

Site 20. Samples were obtained from the north aircraft washrack separator located adjacent to building 6208. Dye testing demonstrated that although the separator is connected to the sanitary sewer directly, during high flow, a portion of the wastewater from the separator enters Macks Bayou. No total extractable phenols were detected. Concentrations were not significant for other parameters analyzed.

Site 21. Samples were obtained from the south aircraft washrack outfall located in the 917th Reserve complex (see Figure 4). Rinsewater from the cleaning operations on the ramps drains to Macks Bayou. No total extractable phenols were detected. A nickel concentration (0.120 mg/l) was well below the pretreatment standard of 3.98 mg/l. Concentrations were not significant for other parameters analyzed.

Figure 4. South Aircraft Washrack Outfall

Site 23. Samples were taken at a NPDES permitted Site 002, located on Macks Bayou west of storage tank 5934 (see Figure 5). Concentrations for COD (15 mg/l), TSS (15 mg/l) and oils and grease (none detected) were well within the NPDES discharge limitations of 60 mg/l, 20 mg/l and 10 mg/l, respectively.

Figure 5. NPDES Site 002, West of Storage Tank 5934

2. Shop-by-Shop Description of Industrial Practices

a. 917th Corrosion Control Shop Supervisor: Mr Williams Building: 6824

AUTOVON: 781-6824

Corrosion Control Shop personnel spot strip, corrosion treat and paint small sections of A-10 aircraft. About 1/2 gallon/month of waste alodine is drained to the sanitary sewer via an oil/water separator. All paint waste and thinners (4 gallons/month) and stripping waste (methylene chloride base, 4 gallons/month) are drummed separately as hazardous waste and placed at a secured hazardous waste accumulation site located adjacent to the building. All

drummed waste is sent to the Defense Reutilization Management Office (DRMO) for eventual disposal. The shop also has an indoor washrack facility for cleaning A-10 aircraft. Aircraft soap (380 gallon/month, diluted 10:1) is used for cleaning aircraft. Cleaning wastes drain to the sanitary sewer via an oil/water separator.

b. 917th Engine Shop
Shop Supervisor: Mr Neely
Building: 6827
AUTOVON: 781-2379

Engine Shop personnel are responsible for the buildup and repair of TF-34 engines and auxiliary power plants. Waste aircraft soap (50 gallons/month, diluted 10:1) and PD-680 (25 gallons/month) are used for cleaning equipment and floors. Cleaning wastes are drained directly to the sanitary sewer via an oil/water separator. Waste 7808 and 1010 engine oils (30 gallons/month), fuels (5 gallons/month) and wastes from the parts cleaning room (see Figure 6) are drummed separately. These wastes are placed at a secured accumulation site, located in front of the facility, for eventual disposal by DRMO. Waste hydraulic fluid (1 gallon/month) is sent to the Aerospace Ground Equipment (AGE) accumulation site, building 6447. The shop also has a 30 gallon Safety Kleen degreasing unit that is changed out by contractor every 3 months.

Figure 6. Parts Cleaning Room, 917th Engine Shop

c. 917th Fuel Cell Repair Shop Supervisor: MSgt Steward

Building: 6824 AUTOVON: 781-4455

Fuel Cell Repair personnel are responsible for the repair of internal and external fuel systems on A-10 aircraft. About 110 gallons/month of JP-4 jet fuel are generated from the repair of fuel systems. About 100 gallons of fuel are vacuumed into bowsers for reuse by POL. Approximately 10 gallons of fuel cannot be recaptured and is drained to a fuel/water separator that drains directly to the sanitary sewer. The separator is cleaned out when needed.

d. 2nd FMS AGE Shop Shop Supervisor: SSgt Hickman

Building: 6447 AUTOVON: 781-3569

Aerospace Ground Equipment (AGE) personnel are responsible for the inspection and maintenance of approximately 250 pieces of AGE equipment. All unserviceable batteries are sent to the 2nd FMS Battery Shop. Waste oils (72 gallons/month), hydraulic fluid (25 gallons/month) and fuels (95 gallons/ month) are all placed into separate 55 gallon drums. These wastes are placed at a secured accumulation site located adjacent to the facility for eventual disposal by DRMO. The shop also has two 25 gallon Safety Kleen degreasing units that are changed out by contractor every 3 months. Aircraft soap (25 gallons/month, diluted 10:1) used at the washrack for cleaning equipment is rinsed down the drain to the sanitary sewer via an oil/water separator.

e. 2nd FMS Corrosion Control Shop Shop Supervisor: SSgt Clayton

Building: 6626

AUTOVON: 781-4405

Corrosion Control Shop personnel are responsible for stripping, corrosion treatment and painting small sections of B-52, KC-135 and KC-10 aircraft. Paint waste and thinners (55 gallons/month) are drummed separately and placed at a secured waste accumulation site located adjacent to the building. Waste acids (1 gallon/month, neutralized with sodium bicarbonate) and waste strippers (20 gallons/month, NS 8010-00-348-7716) are drained to the sanitary sewer via an oil/water separator. The facility also has a 300 gallon vat of hot wheel stripper (NS 8010-01-048-1059) that is changed out every 6 months. The vat is currently located outside. The dragout from the hot stripper appears to have killed all surrounding vegetation in about a 10 foot radius. The shop has a large washrack for cleaning aircraft. About 600 gallons/month of aircraft soap and 300 gallons/month of PD-680 are used for cleaning and degreasing the aircraft. The cleaning wastes pass through an oil/water separator before entering the sanitary sewer.

 f. 2nd FMS Propulsion Shop Shop Supervisor: SSgt Walter Building: 5778

AUTOVON: 781-3740

Shop personnel are responsible for the tear-down and build-up of J-57 jet engines. Waste oils (100 gallons/month of 7808,1010 oils), waste fuel (55 gallons/month of JP-4), carbon remover (3 gallons/month) and waste hydraulic fluids (30 gallons/month) are drummed separately and placed at a secured waste accumulation site located adjacent to the facility.

The wastes are sent to DRMO for eventual disposal. Aircraft soap (55 gallon/month) used for cleaning floors is rinsed to the sanitary sewer via an oil/water separator. The shop also has a 40 gallon Safety Kleen degreasing unit that is changed out by contractor every 3 months.

g. 2nd FMS NDI

Shop Supervisor: SSgt Martin

Building: 5755

AUTOVON: 781-3146

Personnel of the NDI shop perform six nondestructive tests to inspect B-52, KC-135 and K-10 aircraft components. NDI personnel are responsible for x-ray inspection, engine oil analysis, magnetic particle inspection, dye penetrant inspection, ultrasonic and eddy current inspections. Chemicals used for the x-ray inspection (60 gallons/year of developer and fixer) are sent to the Photo Lab for silver recovery before entering the sanitary sewer system. Engine oil (5 gallons/month) used for the oil analysis is sent to the Jet Shop accumulation site (building 5778) for disposal through DRMO. Developers (220 gallons/year) used in the dye penetrant inspection are drained to the sanitary sewer. Magnetic particle inspection fluid (15 gallons/month), 1,1,1-trichlorethane (5 gallons/month), dye penetrants (220 gallons/year) and emulsifiers (220 gallons/year) are drummed as hazardous waste and sent to DRMO for eventual disposal.

h. 2nd BMW Vehicle Maintenance Shop Supervisor: MSqt Richard Building: 4186

AUTOVON: 781-3947

Personnel at the Vehicle Maintenance Shop are responsible for inspecting, servicing, and maintaining about 800 base vehicles. The shop has two 20 gallon Safety Kleen degreasing units that are changed out by contractor about every 3 months. Clean-Crete (100 gallons/month, diluted 10:1) used for cleaning floors and equipment is drained to the sanitary sewer through an oil/water separator. Stripping waste that cannot be collected and drummed (3 gallons/month) is also washed down the drain to the sanitary sewer. Paint waste and thinners (18 gallons/months) are drummed as a hazardous waste and is placed in a secured hazardous waste accumulation site for eventual disposal through DRMO. Battery acid (20 gallon/month) is placed into 15 gallon plastic drums and disposed of through DRMO as a hazardous waste. Waste brake fluid (3 gallons/month), transmission fluid (15 gallons/month), hydraulic fluid (15 gallons/month) and motor oil (300 gallons/month) are stored in a 500 gallon above ground tank. When full, the wastes are taken to DRMO for eventual disposal. All fuels (100 gallon/month) are stored in a fuel bowser and taken to POL for reclamation. Waste antifreeze (100 gallons/month) is given to Civil Engineering and applied on the roads in the winter.

i. 2nd BMW Fire Department Shop Supervisor: MSgt Peacock Building: 6426

AUTOVON: 781-2642

Fire Department personnel are responsible for fire control throughout the base. Maintenance duties include cleaning and performing light maintenance of fire department vehicles. Waste oils (8 gallon/month), PD-680 (10 gallons/month) and hydraulic fluid (4 gallons/month) are drummed separately and sent to building 4186, Vehicle Maintenance Shop. About 20 gallons/month of aircraft soap from cleaning operations is drained to the sanitary sewer via an oil/water separator.

Photo Lab

Building: 4565 Shop Supervisor: SSgt Palmer AUTOVON: 781-2521

Photo Lab personnel are responsible for black and white and color photo processing throughout the base. All waste fixers (33 gallons/month) are passed through silver recovery units then drained to the sanitary sewer. All other photographic chemicals are drained directly to the sanitary sewer. The Base Hospital, Dental Clinic and NDI shop also use the Photo Lab's silver recovery unit.

III. CONCLUSIONS

Sites 1 and 2. The BOD discharge limit of 250 mg/l was exceeded for 1 out of 2 days of confirmed samples for L.S. 4725 and for 3 out of 3 days of confirmed samples for L.S. 3455. High BOD concentrations indicate the presence of organic compounds in the sanitary sewer wastewater. An oils and grease result of 126 mg/l exceeded the discharge limit of 100 mg/l for L.S. 3455 on 1 out of 5 days of samples. The concentration for total extractable phenols exceeded the discharge permit standard of 0.10 mg/l on 2 out of 5 days of samples for L.S. 3455. The phenois exceedance may be to a great extent phenoxy soaps used in cleaning operations at the washracks. Large amounts of floating scum were also observed in the lift station wet well which contributed to high BOD and oil and grease concentrations. A possible source of that grease is from food serving facilities.

- Site 22. The average COD concentration was 81 mg/l. COD concentrations exceeded the NPDES discharge limitation of 60 mg/l on 3 out of the 5 days of samples for site 003. An oils and grease concentration of 18 mg/l exceeded the NPDES discharge limitation of 10 mg/l on 1 out of 5 days of samples. Both the COD and oils and grease violation are probably due to effluent from the 917th washrack.
- Site 5. A TTO concentration of 11.2 mg/l (2.7 mg/l of 1,1,1-trichloroethane and 8.5 mg/l of 1,3-dichlorobenzene) exceeded the pretreatment standard of 2.13 mg/l in the 917th Engine Shop separator. The TTO results indicate the release of degreasing solvents to the sanitary sewer. This shop needs a pretreatment process if the rinsewater cannot be collected as a hazardous waste. Pretreatment, in the form of air stripping or powdered activated charcoal (PAC) adsorption could be performed at a central location on wastes from this shop and Corrosion Control Shop. A low pH of 5.0 combined with a conductivity of 4000 µmhos suggests the discharge of an acidic waste to the sanitary sewer.
- Site 6. A total extractable phenol concentration of 0.175 mg/l for the POL separator exceeded the sanitary sewer discharge limitation of 0.10 mg/l. Phenoxy soaps from cleaning operations are probably responsible for the phenois in the wastewater.

Sites 8 and 9. A COD concentration of 3540 mg/l from the North and South Transportation separators indicate the presence of organic compounds in the form of solvents, oils or fuels. A pH of 4.3 exceeds the pretreatment limit of 5.0 and suggests the disposal of insufficiently neutralized battery acid down the drain. Sources of the significant iron concentration of 49 mg/l could include corroding plumbing from acid discharge, or vehicle rust removal.

Site 17. A high COD concentration of 13,600 mg/l from the Corrosion Control separators indicate the presence of an industrial wastewater containing organic compounds. A high pH of 10.3 indicates an alkaline wastewater. The TTO concentration of 57.68 mg/l greatly exceeded the pretreatment standard of 2.13 mg/l. The high concentrations of TTO demonstrate that significant amounts of strippers, thinners and solvents are entering the sanitary system. Concentrations of 4.29 mg/l for chromium and 3.09 mg/l for zinc exceeded pretreatment limits of 2.77 mg/l and 2.61 mg/l for both respective metals. The high metal concentrations could have possibly resulted from zinc chromate found in primers and chromic acid found in the alodine treatment. A 1-day oils and grease sample concentration of 127.2 mg/l exceeded sanitary sewer discharge limitations of 100 mg/l. The high oils and grease concentration probably resulted from parts cleaning prior to stripping and painting operations.

There are two basic alternatives available to reduce the concentrations of TTO and metals to below the pretreatment limits. One alternative is to drum the stripping and paint waste and rinsewater as hazardous waste for disposal. This would essentially remove the hazardous waste from the sanitary sewer.

The other alternative is to install a pretreatment system at the point of generation before it enters into the sanitary sewer system. A principal method used for metals removal is pH adjustment, precipitation and filtration. Two methods available to reduce the concentrations of TTO in the effluent are air stripping (to volatilize the TTO compounds to the ambient air) or PAC adsorption (to adhere TTO compounds to the activated charcoal).

It was also observed during the hazardous waste survey that a 300 gallon hot stripper vat was being used outside the facility. A large amount of vegetation surrounding the vat had been killed off. The stripping vat should be moved inside the facility where dragout can be collected and disposed of in an environmentally acceptable manner.

Macks Bayou Reconnaissance. During the Macks Bayou Reconaissance a new oil/water separator was being constructed to service a washrack in the vehicle maintenance complex and the effluent would be discharged to the bayou. This discharge would amount to an unpermitted discharge adding to the oils and grease and COD problem. This separator should be connected to the sanitary sewer system.

IV. RECOMMENDATIONS

Sites 1 and 2. The oils and grease and BOD problem at L.S. 3455 and L.S. 4725 can be reduced by improving maintenance or installing more effective grease traps at food serving facilities, and maintenance at the lift stations. Other facilities disposing organic compounds (solvents, soaps, etc.) to the sanitary sewer should take positive steps to minimize the amount of waste entering the sanitary sewer system. A wet garbage contract for the dining facilities will reduce BOD loading in the sewers.

Site 22. The COD and oils and grease concentrations at NPDES site 003 can be reduced by redirecting the north and south aircraft washracks wastewater to the sanitary sewer system. The lift station at the north washrack should have the water level adjusted so that all wastewater enters the sanitary sewer. The same type of collection and diversion system should be installed at the south ramp.

- Site 5. Operations at the 917th Engine Shop that result in solvents being rinsed into the sanitary sewer should be minimized until the rinsate can either be containerized or sent to a pretreatment system.
- Site 6. Phenoxy soaps used by POL for cleaning operations contribute to exceeding the sanitary sewer discharge limit for phenols. Switching to a detergent which does not contain phenol derivatives should alleviate the problem.

Sites 8 and 9. The dumping of battery acid to the sanitary sewer may be responsible for a pH of 4.3 in the separators. Proper neutralization or drumming of waste acids should remedy the pretreatment violation.

- Site 17. The Corrosion Control Shop is exceeding the pretreatment limits for TTO, chromium and zinc. The 917th Engine Shop is exceeding the pretreat- ment limits for TTO. A pretreatment system should be installed servicing both shops to remove the waste prior to entering the sanitary sewer.
- Site 17. Dragout from a 300 gallon stripping vat located outside the Corrosion Control Shop should be controlled. The tank should be moved inside where spills can be prevented from entering the environment.

Macks Bayou Reconnaissance. All industrial wastewater discharges should be connected to the sanitary sewer system in order to meet NPDES standards. Stormwater should be the only wastewater entering Macks Bayou from Barksdale AFB.

REFERENCES

- 1. APHA. Standard Methods for the Evaluation of Water and Wastewater. 16th ed., Washington DC: American Public Health Association, (1985).
- 2. Bossier City, Louisiana, "Wastewater Discharge Permit," (permit number BC0022), 1983.
- 3. Code of Federal Regulations, Title 40, Part 433, Office of the Federal Register, Washington DC, (1987).
- 4. USEPA, "Methods for Chemical Analysis of Water and Wastewater," EPA-600/4-79-020; March 1983
- 5. USEPA, Treatability Manual. Technologies for Control/Removal of Pollutants, Vol. III, (1980).
- 6. USEPA, Region VI, National Pollution Discharge Elimination System, (permit no. LA0007293).

APPENDIX

Wastewater Sampling Site Locations

Site	Location	Туре
1	L.S. Building 4725, Influent channel	sanitary
2	L.S. Building 3455, Wet well	sanitary
3	Building 6824, 917th Conventional Fuels separator	sanitary
4	Building 6825, 917th Vehicle Washrack separator	sanitary
5	Building 6827, 917th Engine Shop separator	sanitary
6	Building 6638, POL Vehicle Fuel separator	sanitary
7	Building 5766/78, FMS washrack separator	sanitary
8	Building 4186, North Transportation separator	sanitary
9	Building 4186, South Transportation separator	sanitary
10	Building 6426, Fire Department Washrack separator	sanitary
11	Building 4412, CE Transportation washrack	sanitary
12	Building 6213/4, Fuel Cell Repair separator	sanitary
13	Building 6215, Fuel Cell Repair separator	sanitary
14	Building 6447, FMS AGE washrack	sanitary
15	Fire Training Pit	sanitary
16	Building 6437, Demineralized Water Plant separator	sanitary
17	Building 6626, FMS Corrosion Control separator	sanitary
18	Building 4565, Photo Lab	sanitary
19	Building 5755, NDI Shop lateral connection	sanitary
20	North Aircraft washrack outfall	sanitary-storm
21	South Aircraft washrack outfall	storm
22	Site 003, Macks Bayou skimmer	storm
23	Site 002, Macks Bayou fuel release	storm

Temperature, pH, Conductivity and Total Suspended Solids Results (TSS)

		Temperature		Conductivity	TSS
Site	Date	°C	pH	(µmhos)	(mg/l)
	.= =				
1	17 MAR	19	6.9	450	92
1	18 MAR	16	7.4	428	48
1	19 MAR	19	6.9	450	169
1	21 MAR	19	6.9	490	191
1	22 MAR	12	6.7	455	47
1	23 MAR	11	7.3	440	106
2	18 MAR	17	7.1	470	105
2	19 MAR	21	7.0	430	100
2	21 MAR	23	6.9	600	195
2 2 2	22 MAR	16	6.1	600	155
2	23 MAR	12	6.1	500	134
3	18 MAR	19	7.8	465	37
4	18 MAR	21	6.8	72	11
5	18 MAR	19	5.0	4000	34
6	18 MAR	14	5.5	162	12
7	18 MAR	13	7.4	195	10
8	19 MAR	18	8.2	265	19
9	19 MAR	17	4.3	600	NR
10	19 MAR	14	6.3	140	58
11	21 MAR	26	6.6	300	24
12	21 MAR	23	6.4	200	50
13	21 MAR	19	6.6	210	6
14	22 MAR	21	7.5	150	56
15	22 MAR	24	8.7	110	13
16	22 MAR	16	6.1	70	158
17	22 MAR	20	10.3	650	77
18	23 MAR	15	8.4	410	132
19	23 MAR	12	7.3	180	6
20	18 MAR	15	6.9	88	5
21	18 MAR	16	7.4	205	16
22	18 MAR	27	7.1	92	8
22	19 MAR	19	6.5	60	6
22	21 MAR	18	6.8	110	13
22	22 MAR	10	6.6	95	5
22	23 MAR	12	6.6	110	12
23	22 MAR	9	8.0	50	15

NR = Not Reported

BOD, COD, Surfactant and Oils and Grease Results (mg/l)

				BOD/	Surfactants	Oils and
Site	Date	BOD	COD	COD	(MBAS)	Grease
	.=					27.0
1	17 MAR	NR	335	NR	NR	67.6
1	18 MAR	NR	268	NR	NR	22.8
1	19 MAR	NR	232	NR	NR	13.2
1	21 MAR	360	320*	1.13*	NR	40.4
1	22 MAR	223	400	0.56	NR	30.4
2	18 MAR	NR	335	NR	NR	18.0
2	19 MAR	NR	350	NR	NR	16.8
2	21 MAR	300	425	0.71	NR	48.0
2 2 2	22 MAR	490	1200	0.41	NR	126.0
2	23 MAR	430	626	0.69	NR	26.8
3	18 MAR	NR	285	NR	NR	12.1
4	18 MAR	NR	37	NR	NR	ND
5	18 MAR	NR	2860	NR	NR	17.4
6	18 MAR	NR	330	NR	1.48	28.0
7	18 MAR	NR	257	NR	0.3	13.5
8	19 MAR	NR	3540	NR	1.2	73.2
9	19 MAR	NR	2150	NR	1.42	96.0
10	19 MAR	NR	57	NR	0.68	21.0
11	21 MAR	NR	37	NR	0.12	ND
12	21 MAR	NR	65	NR	0.24	8.24
13	21 MAR	NR	25	NR	ND	2.52
14	22 MAR	NR	63	NR	0.58	3.48
15	22 MAR	NR	82	NR	1.0	ND
16	22 MAR	NR	360	NR	NR	12.72
17	22 MAR	NR	13600	NR	28.0	127.2
18	23 MAR	NR	775	NR	NR	NR
19	23 MAR	NR	45	NR	NR	NR
20	18 MAR	NR	35	NR	0.1	ND
21	18 MAR	NR	35	NR	0.11	ND
22	18 MAR	NR	ND	NR	NR	ND
22	19 MAR	NR	187	NR	NR	2.68
22	21 MAR	52	90	0.58	NR	18.0
22	22 MAR	32	63	0.51	0.95	ND
22	23 MAR	22	55	0.40	0.58	ND
23	22 MAR	NR	15	NR	NR	ND

NR Indicates No Results

ND Indicates None Detected
* Probably Indicates an Analytical Error

Volatile Halocarbons, SW-846 Method 8010 Detectable Analytical Results (μg/i)*

Parameter Site	1	2	5	15	17	19	22
Benzyl Chloride	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND
2-Chloroethylvinyl Ether	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND
Chlorohexane	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	ND	ND	ND
Chlorotoluene	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	ND	ND	ND	ND	ND	ND	ND
1,1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND
(trans) 1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND
Dichloromethane	ND	ND	ND	ND	1000	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND
(cis) 1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
(trans) 1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	ND	10	ND	ND	ND	ND	ND
1,1.1-Trichloroethane	ND	ND	2700	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND
Trichloropropane	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND

^{*} ND indicates none detected (e.g., less than the detection limit)

Volitile Aromatics, SW-846 Method 8020 Detectable Analytical Results (μg/l)*

Parameter Site	11	2	5	15	17	19	22
Benzene	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	88	120	ND	ND	ND	1.7	ND
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	8500	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	280	ND	ND	26000	ND	ND
Ethylbenzene	ND	24	ND	ND	ND	ND	ND
Toluene	ND	83	ND	ND	16000	1.4	ND
P-Xylene	ND	20	ND	ND	ND	ND	ND
M-Xylene	ND	ND	ND	ND	ND	ND	ND
O-Xylene	38	62	ND	ND	ND	ND	ND

^{*} ND indicates none detected (e.g., less than the detection limit).

Phenois, EPA Method 604 (µg/l)*

	Site	1	1	1	2	2	2	17
Parameter	Date **	17	18	21	17	18	21	22
2,4,6-Trichlorophenol		ND						
2,4-Dichlorophenol		ND						
2,4-Dimethylphenol		ND						
2,4-Dinitrophenol		ND						
2-Chlorophenol		ND						
2-Methl-4,6-dinitrophenol		ND						
2-Nitrophenol		ND						
4-Chloro-3-methylphenol		ND						
4-Nitrophenol		ND						
Pentachlorophenol		ND	ND	ND	ND	ND	18	ND
Phenol		ND						

Total Extractable Phenois, EPA Method 420.2 (μg/l)*

		Total Extractable
Site	<u> Date</u>	Phenois
1	17	52
1	18	52
1	19	50
1	21	46
1	22	66
2	18	70
2	19	70
2	21	75
2	22	340
2	23	375
6	18	175
11	21	15
17	21	4675
20	18	ND
21	18	ND

^{*} ND indicates none detected (e.g., less than the detection limit).
** Samples were taken in March 1988

ICP Metals Screen, EPA Method 200.7 $(\mu g/l)^{\star}$

	Site	1	1	1		2	2	2
Parameter	Detection	Average	High	Lov	N	Average	High	Low
	limit	(μg/l)						
A	(μg/l)		1101					
Aluminum	100	800	1101	577		824	1328	518
Arsenic	100	ND	ND	NE		ND	ND	ND
Barium	100	128	210	NE		101	104	ND
Beryllium	100	ND	ND	NE		ND	ND	ND
Cadmium	100	ND	ND	NE		ND	ND	ND
Chromium	100	ND	ND	NE		ND	ND	ND
Cobalt	100	ND	ND	NE		ND	ND	ND
Copper	100	ND	ND	NE		ND	ND	ND
Iron	100	1545	2295	706		869	1649	451
Lead	20	21	27	NE		ND	ND	ND
Manganese	100	152	205	111		ND	ND	ND
Mercury	1	ND	ND	NE		ND	ND	ND
Molybdenum	100	ND	ND	N[ND	ND	ND
Nickel	100	170	195	154		169	194	143
Titanium	100	ND	ND	N		ND	ND	ND
Vanadium	100	ND	ND	NE		109	147	ND
Zinc	100	129	193	103	3	121	205	ND
	Site	7	8	9	11	17	18	19
Parameter	Detection	·	Ū	Ü	• •	• •	,0	,,,
	limit							
Aluminum	100	444	609	712	984	6280	779	407
Arsenic	100	ND	ND	ND	ND	ND	ND	ND
Barium	100	ND	ND	ND	ND	ND	ND	ND
Beryllium	100	ND	ND	ND	ND	ND	ND	ND
Cadmium	100	ND	ND	ND	ND	ND	ND	ND
Chromium	100	ND	ND	ND	ND	4286	ND	ND
Cobalt	100	ND	ND	ND	ND	ND	ND	ND
Copper	100	ND	ND	ND	ND	228	ND	ND
Iron	100	514	2229	49530	1954	2821	730	129
Lead	20	ND	83	ND	ND	ND	ND	ND
Manganese	100	ND	ND	459	523	ND	ND	ND
Mercury		ND	ND	ND	ND	ND	ND	ND
•	1							
Molybdenum	100	ND	339	ND	ND	ND	ND	ND
Molybdenum Nickel	100 100	ND 436	339 410	ND 444	ND 166	197	ND ND	ND
Molybdenum Nickel Titanium	100 100 100	ND 436 ND	339 410 ND	ND 444 ND	ND 166 ND	197 ND	ND ND ND	ND ND
Molybdenum Nickel Titanium Vanadium	100 100 100 100	ND 436 ND ND	339 410 ND ND	ND 444 ND ND	ND 166 ND ND	197 ND ND	ND ND ND ND	ND ND ND
Molybdenum Nickel Titanium	100 100 100	ND 436 ND	339 410 ND	ND 444 ND	ND 166 ND	197 ND	ND ND ND	ND ND

^{*} ND indicates none detected (e.g., less than the detection limit).

ICP Metals Screen, EPA Method 200.7 $\mu g/l)^{\star}$

	 	Site	20	21	22
Parameter	Detection				
	limit				
	μg/l)		· · · · · · · · · · · · · · · · · · ·		
Aluminum	100		210	800	318
Arsenic	100		ND	ND	ND
Barium	100		ND	ND	ND
Beryllium	100		ND	ND	ND
Cadmium	100		ND	ND	ND
Chromium	100		ND	ND	ND
Cobalt	100		ND	ND	ND
Copper	100		ND	ND	ND
Iron	100		216	396	219
Lead	20		ND	ND	ND
Manganese	100		119	ND	ND
Mercury	1		ND	ND	ND
Molybdenum	100		ND	ND	ND
Nickel	100		ND	120	ND
Titanium	100		ND	ND	ND
Vanadium	100		ND	ND	ND
Zinc	100		ND	ND	ND

^{*} ND indicates none detected (e.g., less than the detection limit).

Distribution List

	Copies
HQ USAF/SGPA Bolling AFB DC 20332-6188	2
HQ AFSC/SGPB Andrews AFB DC 20334-5000	2
HQ SAC/DEEV Offutt AFB NE 68113-5001	2
HQ SAC/SGPB Offutt AFB NE 68113-5001	2
AAMRL/TH Wright-Patterson AFB OH 45433-6573	2
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	2
OL AD, USAFOEHL APO San Francisco 96274-5000	2
USAFSAM/TSK Brooks AFB TX 78235-5301	2
USAFSAM/EDH Brooks AFB TX 78235-5301	1
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22319	2
HQ USAF/LEEV Bolling AFB DC 20330-5000	2
HQ AFESC/RDV Tyndall AFB FL 32403-6001	2
USAF Hosp/SGPB Barksdale AFB LA 71110-5300	2
2 CES/DEEV Barksdale AFB LA 71110-5000	2
HSD/EV Brooks AFB TX 78235-5000	2