Exemplo 1: Seja C o menor subconjunto Y de \mathbb{N}_0 que satisfaz as seguintes condições:

- 1. $0 \in Y$;
- 2. para todo $n \in \mathbb{N}_0$, se $n \in Y$, então $n + 2 \in Y$.
- O, 2, 4 são exemplos de elementos de C. De facto:
 - O é um elemento de C, por C satisfazer 1.;
 - ▶ sabendo que $0 \in C$, por C satisfazer 2., segue $0 + 2 = 2 \in C$;
 - ▶ sabendo que $2 \in C$, por C satisfazer 2., segue $2 + 2 = 4 \in C$.

Veremos mais tarde que C é o conjunto dos números pares.

Esta forma de definir o conjunto *C* é um caso particular das chamadas *definicões indutivas de conjuntos*, um mecanismo muito útil para definir conjuntos.

Dado um conjunto X, um seu subconjunto B não vazio e um conjunto de operações O em X, podem ser vários os subconjuntos de X que contêm B e que são fechados para as operações de O.

O mais pequeno desses tais subconjuntos é chamado o *conjunto* definido indutivamente (ou *conjunto gerado*) por O em B.

Dizemos que (B, O) é uma definição indutiva sobre o conjunto suporte X.

Observação 2: O conjunto G gerado por O em B é a interseção de todos os subconjuntos de X que contêm B e são fechados para as operações de O.

Os elementos de G são exatamente os objetos que podem ser obtidos a partir de B, aplicando um número finito de operações de O.

Observação 3: O conjunto dos números naturais admite a seguinte caracterização indutiva: \mathbb{N} é o menor subconjunto Y de \mathbb{N} que satisfaz as seguintes condições:

- 1. 1 ∈ *Y*;
- 2. para todo $n \in \mathbb{N}$, se $n \in Y$, então $n + 1 \in Y$.

Definição 4:

- 1. Chamaremos *alfabeto* a um conjunto de símbolos e chamaremos *letras* aos elementos de um alfabeto.
- 2. Dado um alfabeto A, chamaremos palavra sobre o alfabeto A a uma sequência finita de letras de A. A notação A* representará o conjunto de todas as palavras sobre A.
- 3. À sequência vazia de letras de A chamaremos palavra vazia, notando-a por ϵ .

4. Dado $n \in \mathbb{N}$ e dadas n letras a_1 , a_2 , ..., a_n de um alfabeto A (possivelmente com repetições), utilizamos a notação $a_1a_2...a_n$ para representar a palavra sobre A cuja i-ésima letra (para $1 \le i \le n$) é a_i .

- 5. O comprimento de uma palavra é o comprimento da respetiva sequência de letras. (Em particular, a única palavra de comprimento 0 é ε .)
- Duas palavras sobre um alfabeto dizem-se iguais quando têm o mesmo comprimento e coincidem letra a letra.
- 7. Dadas duas palavras u, v sobre um alfabeto, utilizamos a notação uv para representar a concatenação de u com v (i. e., a concatenação das respetivas sequências de letras, colocando primeiro a sequência de letras relativa a u).
- 8. Uma *linguagem* sobre um alfabeto *A* é um conjunto de palavras sobre *A* (i.e. um subconjunto de *A**).

Exemplo 5: Seja A o alfabeto $\{0, s, +, \times, (,)\}$. Consideremos a linguagem E sobre A (E para expressões), definida indutivamente pelas seguintes regras:

- 1. O ∈ *E*;
- 2. $e \in E \Rightarrow s(e) \in E$, para todo $e \in A^*$;
- 3. $e_1, e_2 \in E \Rightarrow (e_1 + e_2) \in E$, para todos $e_1, e_2 \in A^*$;
- 4. $e_1, e_2 \in E \Rightarrow (e_1 \times e_2) \in E$, para todos $e_1, e_2 \in A^*$.

Por exemplo, as palavras 0, s(0), (0×0) , $(s(0) + (0 \times 0))$ pertencem a E. De facto:

- $ightharpoonup 0 \in E$, pela regra 1.;
- ▶ de $0 \in E$, pela regra 2., segue $s(0) \in E$;
- ▶ de $0 \in E$, pela regra 4., segue $(0 \times 0) \in E$;
- ▶ de $s(0) \in E$ e $(0 \times 0) \in E$, pela regra 3., segue $(s(0) + (0 \times 0)) \in E$.

Já as palavras +(00) e s0, que são palavras sobre A, não pertencem a E: note-se que nenhuma palavra de E tem a letra + como primeira letra e nenhuma palavra de E, com exceção da palavra O, tem O como última letra.

Teorema 6 (Princípio de indução para \mathbb{N}): Seja P(n) uma propriedade relativa a números $n \in \mathbb{N}$. Se:

- 1. P(1) é verdadeira;
- 2. para todo $n \in \mathbb{N}$, se P(n) é verdadeira, então P(n+1) é verdadeira; então para todo $n \in \mathbb{N}$, P(n) é verdadeira.

П

Dem.: consultar bibliografia.

Teorema 7 (Princípio de indução estrutural associado a uma definição indutiva): Considere-se uma definição indutiva (B, O) de um conjunto I sobre X e seja P(e) uma propriedade relativa a elementos $e \in I$. Se:

- 1. para todo $b \in B$, P(b) é verdadeira;
- 2. para cada operação $f: X^n \to X$ de O e para todos $e_1, ..., e_n \in I$, se $P(e_1), ..., P(e_n)$ são verdadeiras, então $P(f(e_1, ..., e_n))$ é verdadeira;

então para todo $e \in I$, P(e) é verdadeira.

Dem.: consultar bibliografia.

Observação 8:

1. A cada definição indutiva de um conjunto *I* está associado um princípio de indução estrutural.

 O Princípio de indução sobre os naturais é o princípio de indução estrutural associado à caracterização indutiva de N referida na observação 3.

Exemplo 9: O Princípio de indução estrutural associado à definição indutiva do conjunto *C* do Exemplo 1 é o seguinte:

Seja P(n) uma propriedade relativa a $n \in C$. Se:

- 1. *P*(0);
- 2. se P(k), então P(k+2), para todo o $k \in C$; então P(n) é verdadeira, para todo o $n \in C$.

Consideremos a propriedade P(n), relativa a $n \in C$, dada por " $n \in P$ ". Provemos que P(n) é verdadeira para todo $n \in C$. Pelo Princípio de indução estrutural para C, basta mostrarmos as duas condições acima descritas.

- 1. O é par. Logo, P(O) é verdadeira.
- Seja k ∈ C. Suponhamos que P(k) é verdadeira. Então, k é par. Logo, k+2 é também par e, portanto, P(k+2) é verdadeira. Provámos, assim, a condição 2 do Princípio de indução estrutural para C.

Para mostar que C é efetivamente o conjunto dos números pares, falta ainda demonstrar que C contém o conjunto dos números pares. Para tal, pode provar-se, por indução em \mathbb{N}_0 , que, para todo $n \in \mathbb{N}_0$, $2n \in C$. (Exercício.)

Exemplo 10: O Princípio de indução estrutural associado à linguagem de expressões *E* do Exemplo 5 é o seguinte:

Seja P(e) uma propriedade sobre $e \in E$. Se:

- 1. *P*(0);
- 2. se P(e), então P(s(e)), para todo $e \in E$;
- 3. se $P(e_1)$ e $P(e_2)$, então $P((e_1 + e_2))$, para todo $e_1, e_2 \in E$;
- 4. se $P(e_1)$ e $P(e_2)$, então $P((e_1 \times e_2))$, para todo $e_1, e_2 \in E$; então P(e), para todo $e \in E$.

Exemplo 11: Consideremos de novo a linguagem de expressões E do Exemplo 5 e consideremos a função $np:E\longrightarrow \mathbb{N}_0$ que a cada expressão de E faz corresponder o número de ocorrências de parênteses nessa expressão.

Esta função pode ser definida por *recursão estrutural em E* do seguinte modo:

- 1. np(0) = 0;
- 2. para todo $e \in E$, np(s(e)) = 2 + np(e);
- 3. para todos $e_1, e_2 \in E$, $np((e_1 + e_2)) = 2 + np(e_1) + np(e_2)$;
- 4. para todos $e_1, e_2 \in E$, $np((e_1 \times e_2)) = 2 + np(e_1) + np(e_2)$.

Mostremos, agora, uma das propriedades das expressões de E relativa à função np. Designadamente, mostremos que, para todo $e \in E$, np(e) é par. A prova será feita com recurso ao Princípio de indução estrutural para E, descrito no exemplo 10.

Para cada $e \in E$, seja P(e) a afirmação "np(e) é par".

- 1. P(O) é a afirmação "np(O) é par". Ora, np(O) = O, que, evidentemente, é par. Logo, P(O) é verdadeira.
- Seja e ∈ E e suponhamos que P(e) é válida (esta é a hipótese de indução (H. I.)). Ou seja, suponhamos que np(e) é par.

Queremos provar que P(s(e)) é válida, i. e., que np(s(e)) é par. Ora, np(s(e)) = 2 + np(e). Sendo np(e) par, por H. I., e sendo a soma de dois pares um par, é óbvio que também np(s(e)) é par. Logo, podemos deduzir que P(s(e)) é válida.

3. Sejam $e_1, e_2 \in E$ e suponhamos que $P(e_1)$ e $P(e_2)$ são válidas (estas são as hipóteses de indução (H. l.)). Ou seja, suponhamos que $np(e_1)$ é par, assim como $np(e_2)$.

Queremos provar que $P((e_1+e_2))$ é válida, i. e., que $np(e_1+e_2)$ é par. Note-se que $np((e_1+e_2))=2+np(e_1)+np(e_2)$. Por H. I., temos que $np(e_1)$ e $np(e_2)$ são pares. Como a soma de pares é também par, é claro que $np((e_1+e_2))$ é par. Assim, pode-se concluir que $P((e_1+e_2))$ é válida.

4. Sejam $e_1, e_2 \in E$ e suponhamos que $P(e_1)$ e $P(e_2)$ são válidas (H. l.). Logo, $np(e_1)$ e $np(e_2)$ são pares.

Queremos mostrar que $P((e_1 \times e_2))$ é válida, ou seja, que $np(e_1 \times e_2)$ é par. Temos que $np((e_1 \times e_2)) = 2 + np(e_1) + np(e_2)$. Ora, temos, por H. I., que $np(e_1)$ e $np(e_2)$ são pares. Consequentemente, $np((e_1 \times e_2))$ é par. Assim, podemos afirmar que $P((e_1 \times e_2))$ é válida.

Mostrámos assim que as condições 1, 2, 3 e 4 do Princípio de indução estrutural para E são válidas. Logo, por esse Princípio, conclui-se que P(e) é verdadeira para todo o $e \in E$, ou seja, que np(e) é par para todo o $e \in E$.

Exemplo 12: A definição indutiva do conjunto C do Exemplo 1 também permite a definição de funções por recursão estrutural. Por exemplo, existe uma e uma só função $f:C\longrightarrow \mathbb{N}_0$ que satisfaz as seguintes condições:

- 1. f(0) = 0;
- 2. para todo $n \in C$, f(n+2) = 1 + f(n).

Acerca desta função, pode provar-se, com recurso ao Princípio de indução para C (ver Exemplo 1), que, para todo $n \in C$, $f(n) = \frac{n}{2}$. (Exercício.)

Observação 13: Ao contrário do que sucede em relação ao *Princípio de indução estrutural*, nem todas as definições indutivas têm um *Princípio de recursão estrutural* associado. Este princípio é válido apenas para as chamadas *definições indutivas deterministas*, classe na qual se inserem as definições indutivas de *C* e *E*, que vimos nos Exemplos 1 e 5, e que se caracterizam por permitirem *decomposições únicas* dos seus elementos.

[Mais precisamente: uma definição indutiva (B,O) dum conjunto G é determinista se e só se, sempre que $f_1(x_1,\ldots,x_m)=f_2(y_1,\ldots,y_n)$ $(f_1,f_2\in O,x_1,\ldots,x_m,y_1,\ldots,y_n\in G)$, temos $f_1=f_2,m=n$ e, para todo $i\in\{1,\ldots,m\},x_i=y_i.$]