

Ensemble

Ensemble methods

- Idea is to use multiple learners and combine their predictions.
 - E.g. in ensemble of classifiers, predictions from a set of classifiers are combined
- Consider a committee of M models with uncorrelated errors, then by simply averaging the outputs of the M models the average error can be reduced by a factor of M.
 - Although in practice the errors are typically correlated and so the reduction is smaller.
- Ensemble methods can transform a "weak" learner into a strong model by taking combinations of the former.
- Ensemble methods combine models such that the ensemble achieves better performance than an individual model on average.

Ensemble Methods

Base Models – examples

Decision Tree

Neural Network

Can we reduce variance?

Original decomposition:

$$\mathbb{E}_{\mathbf{x},y,\mathcal{D}}\Big[(g_{\mathcal{D}}(\mathbf{x}) - y)^2\Big] = \mathbb{E}_{\mathbf{x},\mathcal{D}}\Big[\Big(g_{\mathcal{D}}(\mathbf{x}) - \overline{g}(\mathbf{x})\Big)^2\Big] + \mathbb{E}_{\mathbf{x}}\Big[\Big(\overline{g}(\mathbf{x}) - \overline{y}(\mathbf{x})\Big)^2\Big] + \mathbb{E}_{\mathbf{x},y}\Big[\Big(\overline{y}(\mathbf{x}) - y\Big)^2\Big]$$
Variance
Bias²
Noise

- Suppose we have M different training datasets: $\mathcal{D}_1, \mathcal{D}_2,, \mathcal{D}_M$
- Can train a separate model on each of them: $g_{\mathcal{D}_1}, g_{\mathcal{D}_2},, g_{\mathcal{D}_M}$
- Predictions can be obtained as the average of the trained models

$$\widehat{g}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} g_{\mathcal{D}_m}(\mathbf{x}) \to \overline{g}(\mathbf{x})$$
 as $M \to \infty$

- As $\widehat{g}(\mathbf{x}) \to \overline{g}(\mathbf{x})$, the variance term $\mathbb{E}[(\widehat{g}(\mathbf{x}) \overline{g}(\mathbf{x}))^2] \to 0$
- Issue: Don't have M different training datasets.

Bootstrap Aggregating

- Bagging: Bootstrap Aggregating
- Bootstrap: Replicate given dataset by sampling with replacement.
- Example:

Original data:
$$\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}\$$

Bootstrap 1: $\{\mathbf{x}^{(4)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(2)}\}$
Bootstrap 2: $\{\mathbf{x}^{(5)}, \mathbf{x}^{(5)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(2)}\}$
Bootstrap 3: $\{\mathbf{x}^{(2)}, \mathbf{x}^{(1)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(1)}\}$

• Bootstrap samples are independent realizations of the original data.

Algorithm

for m = 1 to M do

- Draw a bootstrap sample dataset \mathcal{D}_m from the training dataset \mathcal{D} .
 - The size of \mathcal{D}_m should be same as \mathcal{D} .
- Train a base model T_m on the dataset \mathcal{D}_m .

end for

- Output ensemble models: $\{T_1, T_2, ..., T_M\}$
- Prediction for a new example \mathbf{x}^* :
 - Regression:

$$\overline{y}_M(\mathbf{x}^*) = \frac{1}{M} \sum_{m=1}^M T_m(\mathbf{x}^*)$$

– Classification:

$$\overline{y}_M(\mathbf{x}^*) = \text{majority vote}\{C_1(\mathbf{x}^*), C_2(\mathbf{x}^*),, C_M(\mathbf{x}^*)\}$$

where $C_m(\mathbf{x}^*)$ is the class prediction of the mth model.

Bagging – Random Forests

- Bagging gives the average of predictions of a model fit to many Bootstrap samples.
- Bagging reduces the variance as it averages the fits from many independent datasets (bootstrap samples).
- Issue with Bagging:
 - Similar decision trees can be formed by different Bootstrap samples.
- Random Forests address the issue.
- In Random Forests, each Bootstrap sample produces a different decision tree.
- The final output is the average of the predictions from all the trees.

Bootstrap samples

Original Dataset

Instance	Weather	Health	Teaching	Topic Importance	Going to class?
1	Hot	Good	Interesting	Medium	Yes
2	Cold	Average	Boring	High	Yes
3	Cold	Sick	Mediocre	Medium	No
4	Mild	Average	Interesting	High	Yes
5	Rainy	Sick	Mediocre	Low	No
6	Hot	Good	Boring	High	Yes
7	Rainy	Good	Mediocre	Medium	No
8	Mild	Good	Mediocre	Medium	Yes

- k variables are selected at random, where k < D.
 - Here k=2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.

- k variables are selected at random, where k < D.
 - Here k=2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.
- At the next node, k features are again selected at random and splitting is done using the best feature.

- k variables are selected at random, where k < D.
 - Here k=2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.
- At the next node, k features are again selected at random and splitting is done using the best feature.

- k variables are selected at random, where k < D.
 - Here k=2.
- Of the k selected features, the best feature (according to some criteria) is used for splitting.
- At the next node, k features are again selected at random and splitting is done using the best feature.
- The process is repeated till the end.

Tree ensembles

	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	7	Rainy	Good	Mediocre	Medium	No
	2	Cold	Average	Boring	High	Yes
BOOTSTRAP-1	6	Hot	Good	Boring	High	Yes
	2	Cold	Average	Boring	High	Yes
	5	Rainy	Sick	Mediocre	Low	No
	6	Hot	Good	Boring	High	Yes
	8	Mild	Good	Mediocre	Medium	Yes
	7	Rainy	Good	Mediocre	Medium	No
	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	6	Hot	Good	Boring	High	Yes
	6	Hot	Good	Boring	High	Yes
BOOTSTRAP-2	1	Hot	Good	Interesting	Medium	Yes
BOOTSTRAP-2	4	Mild	Average	Interesting	High	Yes
	5	Rainy	Sick	Mediocre	Low	No
	1	Hot	Good	Interesting	Medium	Yes
	7	Rainy	Good	Mediocre	Medium	No
	5	Rainy	Sick	Mediocre	Low	No
	Instance	Weather	Health	Teaching	Topic Importance	Going to class?
	6	Hot	Good	Boring	High	Yes
BOOTSTRAP-3	2	Cold	Average	Boring	High	Yes
	4	Mild	Average	Interesting	High	Yes
	4	Mild	Average	Interesting	High	Yes
	1	Hot	Good	Interesting	Medium	Yes
	5	Rainy	Sick	Mediocre	Low	No
	2	Cold	Average	Boring	High	Yes
(4	Mild	Average	Interesting	High	Yes

Algorithm – regression

for m = 1 to M do

- Draw a bootstrap sample dataset \mathcal{D}_m from the training dataset \mathcal{D} . The size of \mathcal{D}_m should be same as \mathcal{D} .
- Construct a decision tree T_m using the bootstraped dataset \mathcal{D}_m based on the following rules:
 - Select k features randomly from the D features.
 - From the k features, select the best feature (based on some criteria) for splitting
 - Split the node using the best feature.
 - Repeat the process till the stopping criteria is attained.

end for

- Output tree ensembles: $\{T_1, T_2, \dots, T_M\}$
- Prediction at a new point \mathbf{x}^* :
 - Regression:

$$\overline{y}_M(\mathbf{x}^*) = \frac{1}{M} \sum_{m=1}^M T_m(\mathbf{x}^*)$$

Algorithm – classification

for m = 1 to M do

- Draw a bootstrap sample dataset \mathcal{D}_m from the training dataset \mathcal{D} . The size of \mathcal{D}_m should be same as \mathcal{D} .
- Construct a decision tree T_m using the bootstraped dataset \mathcal{D}_m based on the following rules:
 - Select k features randomly from the D features.
 - From the k features, select the best feature (based on some criteria) for splitting
 - Split the node using the best feature.
 - Repeat the process till the stopping criteria is attained.

end for

- Output tree ensembles: $\{T_1, T_2, \dots, T_M\}$
- Prediction at a new point \mathbf{x}^* :
 - Classification:

$$\overline{y}_M(\mathbf{x}^*) = \text{majority vote}\{C_1(\mathbf{x}^*), C_2(\mathbf{x}^*),, C_M(\mathbf{x}^*)\}$$

where $C_m(\mathbf{x}^*)$ is the class prediction of the mth random forest.

Out-of-bag error

- Test error can be assessed without cross-validation or validation set
- On an average, each bagged tree uses around two-third of the original training dataset.
 - The left-out examples are known as "out-of-bag" (OOB) examples.
- Example:

Original data: $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}\$

Bootstraps

Bootstrap 1: $\{\mathbf{x}^{(4)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(2)}\}$ $\{\mathbf{x}^{(5)}\}$

Bootstrap 2: $\{\mathbf{x}^{(5)}, \mathbf{x}^{(5)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(2)}\}$ $\{\mathbf{x}^{(1)}, \mathbf{x}^{(4)}\}$

Bootstrap 3: $\{\mathbf{x}^{(2)}, \mathbf{x}^{(1)}, \mathbf{x}^{(1)}, \mathbf{x}^{(3)}, \mathbf{x}^{(1)}\}$ $\{\mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}$

OOB examples

$$\{ \mathbf{x}^{(5)} \}$$

$$\{{f x}^{(1)},{f x}^{(4)}\}$$

$$\{\mathbf{x}^{(4)}, \mathbf{x}^{(5)}\}$$

Out-of-bag error

- Test error can be assessed without cross-validation or validation set
- On an average, each bagged tree uses around two-third of the original training dataset.
 - The left-out examples are known as "out-of-bag" (OOB) examples.
- The prediction for the *n*th example $\mathbf{x}^{(n)}$ can be made using the bagging trees where $\mathbf{x}^{(n)}$ was an OOB example.
- Final OOB prediction:
 - Regression: Average of the predicted outputs.
 - Classification: Majority vote.
- In this way OOB predictions can obtained for all the N examples in the training dataset.
- \bullet OOB error: Error can be computed from the OOB predictions of the N examples.

Ensemble Methods

BOOSTING

Intuition

- Outputs: $\mathbf{y} = [y^{(1)}, y^{(2)}, y^{(3)}]^{\mathrm{T}}$
- Predictions of 1st weak learner: $\mathbf{h}_1 = \left[h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)})\right]^{\mathrm{T}}$

Figures for illustration only.

Weak learner

• Transforms a weak learning algorithm into a strong one.

- A weak learner performs just better than random guessing.

Additive ensemble

• At each stage, a weak learner is introduced to compensate for the shortcomings of existing weak learners.

Figures for illustration only.

Additive ensemble

• Define an additive ensemble model at the end of the Tth iteration as

$$H_T(\mathbf{x}) = \sum_{t=1}^T \lambda h_t(\mathbf{x})$$

where λ is the step-size and h_t is the classifier that is added to the ensemble at the tth iteration.

Figures for illustration only.

Loss function

- Let $\widehat{\mathcal{L}}(H_T(\mathbf{x}^{(n)}), y^{(n)})$ be a convex, differentiable loss function where $H_T(\mathbf{x}^{(n)})$ is the ensemble prediction and $y^{(n)}$ is the observed output for a input $\mathbf{x}^{(n)}$.
- The overall loss can then written as

$$\mathcal{L}(H_T) = \frac{1}{N} \sum_{n=1}^{N} \widehat{\mathcal{L}}(H_T(\mathbf{x}^{(n)}), y^{(n)})$$

• At the (t+1)th iteration, a new weak learner is added to the ensemble such that

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \mathcal{L}(H_t + \lambda h)$$

where λ is the step size.

• Employing Taylor approximation on $\mathcal{L}(H_t + \lambda h)$ gives

$$\mathcal{L}(H_t + \lambda h) \approx \mathcal{L}(H_t) + \lambda < \nabla \mathcal{L}(H_t), h >$$

$$\approx \mathcal{L}(H_t) + \lambda \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial (H_t(\mathbf{x}^{(n)}))} h(\mathbf{x}^{(n)})$$

Ensemble Methods

Loss function

• Therefore

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \mathcal{L}(H_t + \lambda h)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial (H_t(\mathbf{x}^{(n)}))} h(\mathbf{x}^{(n)})$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})$$

where
$$r_{t,n} = \frac{\partial \mathcal{L}}{\partial (H_t(\mathbf{x}^{(n)}))}$$

• The loss function \mathcal{L} is reduced as long as $\sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)}) < 0$.

General boosting algorithm

```
Intialize H_0 = \mathbf{0}
for t = 0 to T - 1 do
     h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{t=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})
      if \sum_{t=0}^{\infty} r_{t,n} h(\mathbf{x}^{(n)}) < 0 then
              H_{t+1} = H_t + \lambda h_{t+1}
       else
              return H_t
       end if
end for
return H_T
```

AdaBoost

- Binary classification problem $-y^{(n)} \in \{-1,1\}.$
- Weak learners $h \in \mathcal{H}$ also have outputs $h(\mathbf{x}^{(n)}) \in \{-1, 1\}$.
- Loss function:

$$\mathcal{L}(H) = \sum_{n=1}^{N} \exp\left[-y^{(n)}H(\mathbf{x}^{(n)})\right]$$

• Gradient of loss function:

$$r_{t,n} = \frac{\partial \mathcal{L}}{\partial \left[H(\mathbf{x}^{(n)}) \right]} = -y^{(n)} \exp \left[-y^{(n)} H(\mathbf{x}^{(n)}) \right]$$

• Method enables computation of best step-size λ .

Weights

• Define $w^{(n)}$ as

$$w^{(n)} = \frac{\exp\left[-y^{(n)}H(\mathbf{x}^{(n)})\right]}{\sum_{j=1}^{N} \exp\left[-y^{(j)}H(\mathbf{x}^{(j)})\right]}$$

- The denominator acts as a normalizing factor to give $\sum_{n=1}^{N} w^{(n)} = 1$.
- Each weight $w^{(n)}$ is the relative contribution of the data point $(\mathbf{x}^{(n)}, y^{(n)})$ to the overall loss.

Figures for illustration only.

Adaboost training

• Optimal "weak-learner" at the (t+1)th iteration:

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})$$

$$= \arg\min_{h \in \mathcal{H}} \epsilon \qquad \text{where} \qquad \epsilon = \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} weighted classification error}$$

• Optimal step-size λ at the (t+1)th iteration:

$$\lambda_{t+1} = \arg\min_{\lambda} \mathcal{L}(H_t + \lambda h_{t+1})$$

• Differentiating the objective function w.r.t. λ and equating to 0:

$$\frac{\partial \sum_{n=1}^{N} \exp\left[-y^{(n)} \left(H_t + \lambda h_{t+1}\right)\right]}{\partial \lambda} = 0 \quad \Rightarrow \lambda_{t+1} = \frac{1}{2} \log\left(\frac{1-\epsilon}{\epsilon}\right)$$

• The optimal step-size leads to fast convergence of the AdaBoost algorithm.

Ensemble Methods

Adaboost algorithm

```
Initialize H_0 = \mathbf{0} and w^{(n)} = 1/N, n = 1, 2, ...N
for t = 0 to T - 1 do
      h_{t+1} = \arg\min_{h \in \mathcal{H}} \epsilon
      if \epsilon < 1/2 then
                 \lambda_{t+1} = \frac{1}{2} \log \left( \frac{1 - \epsilon}{\epsilon} \right)
                 H_{t+1} = H_t + \lambda_{t+1} h_{t+1}
                 w^{(n)} \leftarrow \frac{w^{(n)} \exp(-\lambda_{t+1} h(\mathbf{x}^{(n)}) y^{(n)})}{2\sqrt{\epsilon(1-\epsilon)}} \qquad n = 1, 2, ...N
       else
                  return H_t
       end if
end for
return H_T
```

AdaBoost (with decision stumps)

Original Dataset

Instance	Weather	Health	Teaching	Topic Importance	Going to class?	w ₁ ⁽ⁿ⁾
1	Hot	Good	Interesting	Medium	Yes	1/8
2	Cold	Average	Boring	High	Yes	1/8
3	Cold	Sick	Mediocre	Medium	No	1/8
4	Mild	Average	Interesting	High	Yes	1/8
5	Rainy	Sick	Mediocre	Low	No	1/8
6	Hot	Good	Boring	High	Yes	1/8
7	Rainy	Good	Mediocre	Medium	No	1/8
8	Mild	Good	Mediocre	Medium	Yes	1/8

- One example of weak classifier Decision stumps.
 - A decision stump is a one-level decision tree comprising one root and terminal nodes.
- Can use a separate stump for splitting w.r.t. a particular feature.
- Select the stump giving the least weighted error
 - Suppose the feature Health gives the best result.

Figures for illustration only.

AdaBoost (with decision stumps)

Original Dataset							
Instance	Weather	Health	Teaching	Topic Importance	Going to class?	w ₁ ⁽ⁿ⁾	w ₂ ⁽ⁿ⁾
1	Hot	Good	Interesting	Medium	Yes	1/8	0.07
2	Cold	Average	Boring	High	Yes	1/8	0.07
3	Cold	Sick	Mediocre	Medium	No	1/8	0.07
4	Mild	Average	Interesting	High	Yes	1/8	0.07
5	Rainy	Sick	Mediocre	Low	No	1/8	0.07
6	Hot	Good	Boring	High	Yes	1/8	0.07
7	Rainy	Good	Mediocre	Medium	No	1/8	0.50
8	Mild	Good	Mediocre	Medium	Yes	1/8	0.07

- Compute λ .
- Update the weights.
- For determining the next weak classifier, algorithms use one of the following two ways:
 - same data with updated weights.
 - samples from the training dataset according to the distribution $p_{\mathbf{w}}(\mathbf{x})$.

Figures for illustration only.