STEG TA Session: Migration and Risk

Nate Barker

Yale University

April 13, 2021

Modeling Migration and Risk

Today's Agenda:

- Go through key pieces of model in Bryan, Chowdhury, Mobarak (2014)
- Discuss Empirical Basis for Model
- Discuss quantitative assessment of Model

Part 1: Modeling Migration and Risk

One way that I like to think about classifying models (in reality, most fall somewhere between these extremes):

- Models to introduce a key insight (e.g. Banerjee and Newman 1993: inherited wealth affects occupation)
- Structural Models: we know several things matter, let's highlight them and quantify their interplay, conduct counterfactual analysis (Meghir et al 2020, Lagakos, Mobarak, Waugh 2020)
- Models to develop a basic intuition for empirical results ("here is a basic sketch that might explain what we're seeing")

Model in Bryan et al (2014)

- Goal: build a model to explain how risk aversion, credit constraints, might preclude people from migrating, even if profitable on net
- Core intuition: positive expected value lotteries might not be expected utility positive for individuals living near subsistence
- Two forces driving this in the model
 - (1) If I pay to migrate and don't find work, I have low income (and therefore consumption) today
 - (2) If I pay to migrate, I have less income against self-insurance tomorrow
- Core building blocks of model: two value functions, one higher than the other, I have to pay to learn if I get to switch to the better value function

Migration and Risk Model: Basic Set-up

- Agents get utility from: consuming c in every period u(c), u'(c) < 0
- Agents vary in: (a) how good they are at migrating, (b) their current cash on hand, x
- Agents decide: (a) whether or not to migrate (and learn if they're good at migrating), (b) how much of their cash to consume
- Agent face uncertainty over: whether they are good at migrating (with probability π_G), what state of the world s they will face (which determines their home income, y_s)

Structure of each period

- Start with cash on hand, x (and possibly the knowledge of whether they're good at migrating)
- Decide whether or not to migrate
 - If good at migrating, earn net income m > 0
 - If bad at migrating, earn net income F < 0
- Decide how much to consume, c, subject to cash on hand ($c \le x$ if not migrating)
- Whatever not consumed converted to next period's cash on hand, x', at rate R
- \bullet Earn income y_s , which depends on state s, common for everyone

Dynamic Program: Bad Migrants

Someone who is bad at migrating (and knows they're bad at it) solves:

$$B(x) = \max_{c \le x} u(c) + \delta \int_{s} B(x') d\mu_{s}$$

s.t $x' = R(x - c) + y_{s}$

- Since they're bad at migrating, it's never worth it for them to do so
- Classic Deaton (1991): "Buffer Stock" model
- Only decision: given current cash, x, and uncertainty over income, what's the right amount to save?

Dynamic Program: Good Migrants

Someone who is good at migrating (and knows they're good at it) solves:

$$G(x) = \max_{c \le x+m} u(c) + \delta \int_{s} G(x') d\mu_{s}$$

s.t $x' = R(x+m-c) + y_{s}$

- Again here, no need to make decision about migration: always a good option
- Once again, decision is simply how much to save, against risk of low-income realization

Dynamic Program: Someone who has never migrated

- Someone who has never migrated needs to decide both (a) should I migrate, (b) given my choice, what's my optimal consumption?
- First, if they choose not to migrate this period, their value function is:

$$V(x) = \max_{c \le x} u(c) + \delta \int_{s} V(y_s + R(x - c)) d\mu_s$$

Given this, their full optimization problem is:

$$V(x) = \max \left\{ \max_{c \le x} \left[u(c) + \delta \int_{s} V(y_s + R(x - c)) d\mu_s \right], \pi_G G(x) + (1 - \pi_G) B(x - F) \right\}$$

Basic Shape of Value Function

Part 2: Do Empirical Facts Support Model?

Key ideas present in model:

- Households face income risk (and thus need buffer stock)
- Households are near subsistence (and thus close to point where migrating isn't optimal)
- Migration is risky; learning/experience is idiosyncratic (I can't simply learn from others whether migration will go well for me)

Risky income: autocorrelation of consumption is low

 $\label{eq:table a.VII} TABLE~A.VII$ Covariance of Income per capita Across Rounds a

	Consumption in R2	Consumption in R3	Consumption in R3
Consumption per capita in R1	0.102***		0.067***
	(0.014)		(0.012)
Consumption per capita in R2	,	0.445***	, ,
1 1 1		(0.027)	
Constant	881.546***	765.099***	1094.635***
	(18.215)	(25.513)	(15.676)
Sub-district FE?	No	No	No
Observations	1855	1782	1798
R-squared	0.027	0.131	0.017

^aStandard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Risky income: autocorrelation of consumption is low

Subsistence matters

Needed expenditure to meet ultra-poor (subsistence) threshold: 660 taka

Subsistence and Migration

Panel A: Migration Rates and Baseline Subsistence Level (by Treatment Status)

Subsistence is defined as percentage of food expenditures on total expenditures

Is Learning Idiosyncratic?

 $TABLE\ VI$ Learning From Own Experience and Others' Experiences in 2009 Re-Migration Decision*

Dep. Var.: Migration in 2009	OLS	IV	OLS	IV	OLS	IV	OLS	IV
Did any member of the household migrate in 2008?	0.392*** (0.02)	0.410*** (0.145)	0.392*** (0.02)	0.486*** (0.136)	0.393*** (0.021)	0.436*** (0.132)	0.392*** (0.02)	0.476*** (0.13)
Number of friends and relatives who migrated			0.007 (0.01)	-0.001 (0.025)				
Number of friends who migrated					-0.012 (0.025)	-0.048 (0.049)		
Number of relatives who migrated							0.01 (0.011)	0.007 (0.027)
Constant	0.097*** (0.037)	0.088 (0.083)	0.095** (0.038)	0.050 (0.080)	0.098*** (0.037)	0.078 (0.076)	0.095** (0.038)	0.052 (0.077)
Observations	1818	1818	1818	1818	1797	1797	1797	1797
R-squared	0.207	0.206	0.207	0.198	0.208	0.206	0.209	0.202

a *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors in parentheses.

Who chooses to migrate?

 $TABLE\ VII$ DIFFERENCES IN CHARACTERISTICS BETWEEN MIGRANTS IN TREATMENT AND IN CONTROL GROUP a

	Incentive	Non-Incentive	Diff.
Panel A: Percen	tage of Migrants Th	at Know Someone at D	estination
First episode	47%	64%	17***
	(1.84)	(3.30)	(3.8)
Any episode	57%	66%	8.3**
	(1.83)	(3.63)	(3.82)
Panel B: Percent	tage of Migrants Th	at Had a Job Lead at D	estination
First episode	27%	44%	17***
-	(1.64)	(3.41)	(3.55)
Any episode	32%	46%	14.5***
, ,	(1.72)	(3.43)	(3.69)
Panel	C: Percentage of M	igrants Traveling Alone	
First episode	30%	32%	1.6
	(1.70)	(3.20)	(3.6)
Any episode	38%	39%	0.65
	(1.79)	(3.35)	(3.79)

a **** p < 0.01, *** p < 0.05, * p < 0.1. Standard errors are in parentheses.

Quantitatively Assessing Model

- One possible approach: build big structural model, estimate parameters
- Not done here, primary contribution is empirics
 - Big question in economics: does encouraging more migration increase income (Harris and Todaro 1970)
- Instead: how quantitatively plausible is model?
 - Impose parameters, simulate, compare to data

Imposed Parameters

TABLE VIII
PARAMETERS USED FOR CALIBRATION

Parameter	Calibration	Notes
u(c)	$\frac{(c-s)^{1-\sigma}}{1-\sigma}$	HARA utility function
s	250 Taka per hh member per month	Enough for about 600 calories per hh member per month
π_G	0.5	The portion of induced migrants that re-migrate
F	250 Taka per hh member per month	600 Taka for bus fare, plus 6 days of foregone labor at 60 Taka per day. Spread over 4 hh members
m	550 per household member per month	Solution to: $\pi_G(m+I) = 350$ where 350 is our LATE estimate and I is the size of our incentive
$\mu(y)$	N(700, 70) per household member per month	Designed to look like the distribution of the bottom half of the population
Time period	6 months	We assume the choice to migrate can be made after planting for either of the agricultural seasons
δ	0.99	
I (incentive size)	200 Taka per household member	Assumes a households size of 4

Able to Match Characteristics of 1-period Model...

...but not when saving is allowed

Why might this be?

- Saving constraints preclude saving up?
- Non-monetary dis-utility of migration
 - Seems to also require mis-perception of dis-utility
- Depreciation of migration ability
- Behavioral Bias?
- Motivates fuller treatment in Lagakos, Mobarak, Waugh (2020)