OBJECTIFS 👌

- Modéliser une situation à l'aide d'une suite.
- Calculer un terme de rang donné d'une suite définie par une relation fonctionnelle ou une relation de récurrence.
- Réaliser et exploiter la représentation graphique des termes d'une suite.
- Savoir étudier une suite (mode de génération, sens de variation, représentation graphique).

Définitions

À RETENIR 99

Définition

Une suite est une fonction u définie sur \mathbb{N} (ou sur un sous-ensemble de \mathbb{N}), qui, à tout entier n, associe u(n), que l'on note généralement u_n . La suite est alors notée (u_n) et u_n désigne son n-ième terme.

EXEMPLE 🔋

La suite (u_n) définie pour tout $n \ge 6$ par $u_n = \frac{1}{n-5}$ a pour premier terme $u_6 = \frac{1}{6-5} = 1$.

Modes de génération

1. Expression explicite

À RETENIR 99

Définition

On dit qu'une suite (u_n) est définie **explicitement** si, pour tout entier n, u_n peut être calculé directement en fonction de *n* sans que l'on ait besoin de calculer tous les termes précédents.

EXERCICE 1

Calculer les cinq premiers termes de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 2n$.

1.
$$u_0 = \dots$$
 2. $u_1 = \dots$ **3.** $u_2 = \dots$ **4.** $u_3 = \dots$ **5.** $u_4 = \dots$

2.
$$u_1 = \dots$$

$$3. u_2 = \dots$$

4.
$$u_2 = \dots$$

5.
$$u_4 = \dots$$

√Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/suites/#correction-1

2. Relation de récurrence

À RETENIR 99

Définition

Définir une suite par récurrence revient à donner son premier terme puis une relation permettant de calculer le terme suivant à partir du précédent.

EXERCICE 2

- 1. Calculer les cinq premiers termes de la suite (v_n) définie par $v_0=0$ et tout $n\in\mathbb{N}$ par $v_{n+1}=v_n+2$.

- **b.** $v_1 = \dots$ **c.** $v_2 = \dots$ **d.** $v_3 = \dots$ **e.** $v_4 = \dots$
- **2.** Que pourrait-on conjecturer à propos de la suite (v_n) et de la suite (u_n) de l'exercice précédent? ...

Représentation graphique

À RETENIR 33

Méthode

On peut représenter une suite (u_n) dans un repère en plaçant les points $(n; u_n)$ pour tout entier $n \in \mathbb{N}$. À l'inverse des fonctions, pas besoin de relier les points.

EXERCICE 3

Représenter ci-dessous les premiers termes de la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = 2 + \frac{1}{n}$.

Sens de variation

À RETENIR 99

Définition

Soit (u_n) une suite numérique. (u_n) est dite :

- **croissante** si, pour tout entier n, $u_{n+1} \ge u_n$;
- **décroissante** si, pour tout entier n, $u_{n+1} \le u_n$;
- **constante** si, pour tout entier n, $u_{n+1} = u_n$;
- **monotone** si, (u_n) est croissante ou décroissante.

EXERCICE 4

1. Représenter ci-dessous les premiers termes de la suite (u_n) définie par $u_0 = 2$ et pour tout $n \in \mathbb{N}^*$ par $u_{n+1} = 0, 5u_n$.

 $\ref{thm:correction:https://mes-cours-de-maths.fr/cours/premiere-stmg/suites/\#correction-4.}$

À RETENIR 99

Propriétés

Soit (u_n) une suite numérique. Alors :

- 1. Si pour tout entier n, $u_{n+1} u_n \ge 0$ ou si $\frac{u_{n+1}}{u_n} \ge 1$ (pour $u_n > 0$), alors (u_n) est croissante.
- **2.** Si pour tout entier n, $u_{n+1} u_n \le 0$ ou si $\frac{u_{n+1}}{u_n} \le 1$ (pour $u_n > 0$), alors (u_n) est décroissante.

EXERCICE 5

Étudier les variations de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par :

1.
$$u_n = n^2 + n$$
.

2.
$$u_n = \frac{2^n}{5^{n+1}}$$
.

◆Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/suites/#correction-5.