

Institutt for teknisk kybernetikk

Eksamensoppgave i TTK4205 Mønstergjenkjenning

Eksamensdato: 14.12.2015 Eksamenstid (fra-til): 09:00-13:00	
Hjelpemiddelkode/Tillatte hjelpemidler: D / Ingen trykte eller håndskrevne	
hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.	
Annen informasjon:	
Målform/språk: Bokmål Antall sider (uten forside): 3 Antall sider vedlegg: 0	
Informasjon om trykking av eksamensoppgave Originalen er: Kontrollert av:	
1-sidig □ 2-sidig □	
sort/hvit farger Dato Sig	n

Oppgave 1

Innledning

- a) Beskriv et typisk mønstergjenkjenningssystem, og forklar hva som menes med begrepene egenskapsuttrekking og klassifisering.
- b) Forklar hva som menes med begrepene *ledet læring* og *ikke-ledet læring*, og gjør rede for i hvilke situasjoner man bruker den ene eller andre fremgangsmåten.
- c) Forklar hva som menes med en *beslutningsregel* (desisjonsregel), og gi et eksempel på en slik regel.
- d) Nevn noen hovedprinsipper som kan brukes for å komme frem til en beslutningsregel ved ledet læring.

Oppgave 2

Beslutningsteori

- a) Sett opp *Bayes regel* (Bayes formel) for á posteriori sannsynlighet, og forklar størrelsene som inngår i uttrykket.
- b) Formulér *minimum-feilrate-prinsippet* for klassifisering.
- c) I et éndimensjonalt toklasseproblem er sannsynlighetstetthetsfunksjonene gitt ved de univariate normalfordelingene $N(\mu_1, \sigma_1^2)$ for klasse ω_1 og $N(\mu_2, \sigma_2^2)$ for ω_2 . Videre er klassenes á priori sannsynligheter henholdsvis $P(\omega_1)$ og $P(\omega_2)$. Vis at desisjonsgrensene som minimaliserer feilraten kan finnes som løsninger av annengradslikningen:

$$ax^2 + bx + c = 0,$$

der koeffisientene a, b og c er bestemt av ápriorisannsynlighetene og parametrene til fordelingsfunksjonene.

- d) Anta at $\mu_1 = 1$, $\mu_2 = 2$ og $\sigma_1 = \sigma_2 = 1/2$. Hva blir desisjonsgrensen (terskelen mellom klassene), dersom ápriorisannsynlighetene er like?
- e) Lag en skisse, som illustrerer feilraten i dette tilfellet og viser plasseringen av desisjonsgrensen.

Oppgave 3

Parametriske metoder - diskriminantfunksjoner

a) I et univariat klassifiseringsproblem med tre klasser ω_1 , ω_2 og ω_3 er det tilgjengelige treningssettet:

$$\mathcal{X} = \{-2.2, -0.8, 0.3, -0.3, 0.8, 2.2, 1.4, 2.8, 3.9\}.$$

De tre første samplene skriver seg fra klasse ω_1 , de tre neste fra ω_2 og de tre siste fra ω_3 . Anta at de klassebetingede tetthetsfunksjonene er normalfordelinger, og bruk treningssamplene til å finne maksimum-likelihoodestimatene av forventningsverdiene μ_1 , μ_2 og μ_3 .

- b) Utled et sett av diskriminantfunksjoner for dette problemet. Ta utgangspunkt i minimum-feilrate-prinsippet, og anta like á priori sannsynligheter for de tre klassene. Sett standardavviket til $\sigma = 1$ for alle klasser.
- c) Hvorfor er diskriminantfunksjonene *lineære* i dette tilfellet, og hvor mange desisjonsregioner gir de opphav til?
- d) Bruk diskriminantfunksjonene til å klassifisere et ukjent objekt i punktet $x_0 = 2.0$ på tallinjen.

Oppgave 4

Ikke-parametriske metoder

- a) Beskriv prinsippet for *ikke-parametrisk* tetthetsestimering, og sett opp et estimat for sannsynlighetstettheten i et vilkårlig punkt \vec{x} i egenskapsrommet, basert på et treningssett med n sampler.
- b) Gjør rede for hvordan slike tetthetsestimater kan brukes til klassifisering av ukjente sampler, og nevn to hovedtyper av metoder.
- c) Beskriv *vindumetoden* (Parzen-metoden) for tetthetsestimering, og sett opp tetthetsestimatet uttrykt ved vindufunksjonen. Nevn to eksempler på mulige vindufunksjoner.
- d) For et todimensjonalt klassifiseringsproblem med to klasser ω_1 og ω_2 er treningssettet gitt ved:

$$\mathcal{X}_1 = \left\{ \begin{bmatrix} 4.0 \\ 0.0 \end{bmatrix}, \begin{bmatrix} 3.0 \\ 1.0 \end{bmatrix}, \begin{bmatrix} 3.5 \\ 2.5 \end{bmatrix}, \begin{bmatrix} 4.0 \\ 4.0 \end{bmatrix}, \begin{bmatrix} 5.0 \\ 1.0 \end{bmatrix}, \begin{bmatrix} 5.5 \\ 3.5 \end{bmatrix}, \begin{bmatrix} 6.0 \\ 2.0 \end{bmatrix} \right\} \quad \text{(sampler fra } \omega_1\text{)}$$

og

$$\mathscr{X}_2 = \left\{ \begin{bmatrix} 4.0 \\ 5.0 \end{bmatrix}, \begin{bmatrix} 5.0 \\ 7.0 \end{bmatrix}, \begin{bmatrix} 6.0 \\ 5.0 \end{bmatrix}, \begin{bmatrix} 6.5 \\ 1.0 \end{bmatrix}, \begin{bmatrix} 7.0 \\ 3.0 \end{bmatrix}, \begin{bmatrix} 8.0 \\ 6.0 \end{bmatrix}, \begin{bmatrix} 9.0 \\ 2.0 \end{bmatrix} \right\} \quad \text{(sampler fra } \omega_2\text{)}.$$

e) Beregn Parzen-estimetet i punktet $[6.0, 3.0]^t$ for hver av klassene. Anta en hyperkubisk vindufunksjon (i dette tilfellet et kvadrat) med side h = 3.

f) Klassifisér det ukjente samplet gitt ved egenskapsvektoren $\vec{x}_0 = [6.0, 3.0]^t$. Anta at klassenes á priori sannsynligheter er $P(\omega_1) = 0.2$ og $P(\omega_2) = 0.8$.

Oppgave 5

Klyngeanalyse

- a) Gjør rede for hva som menes med klyngeanalyse, og nevn to hovedtyper av metoder.
- b) Skissér den agglomerative metoden, og forklar hva som menes med et dendrogram.
- c) La datasettet i et klyngeanalyseproblem være mengden av éndimensjonale sampler gitt ved:

$$\mathscr{X} = \{0.70, 0.75, 1.00, 1.10, 1.95, 2.10, 2.80, 3.10\}.$$

Bruk den agglomerative metoden til å dele \mathscr{X} i *tre* klynger. Bruk avstandsmålet $d_{min}(\mathscr{X}_1, \mathscr{X}_2)$, dvs. minste Euclidske avstand mellom to sampler fra hver sin klynge \mathscr{X}_1 og \mathscr{X}_2 . Illustrér løsningen ved hjelp av et dendrogram.