

Elliptic Curve Cryptography

(for mobile)

F. Parisi Presicce

UnitelmaSapienza.it

Digital Signature

- majority of public-key crypto use integer/polynomial
 arithmetic with very large numbers/polynomials, imposing
 a significant load in storing and processing keys and
 messages
- an alternative is to use elliptic curves, which offer same security with smaller key sizes
- an elliptic curve is defined by an equation in two variables x and y, with real coefficients, as the cubic elliptic curve $v^2 = x^3 + ax + b$
 - where x, y, a, b are all real numbers
 - also define a "zero point" O

More info

http://www.ruhr-uni-bochum.de/itsc/tanja/summerschool/slides.html

Example Elliptic Curve

Graph must be nonsingular (no cusps or self-intersections). verified algebraically by calculating the discriminant

$$\Delta = -16(4a^3 + 27b^2)$$

and ensuring that it is nonzero.

Addition algebraically

Adding distinct points $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ not negative of each other,

$$P + Q = R$$

where

$$s = (y_P - y_Q) / (x_P - x_Q)$$
 slope of line through P and Q
$$x_R = s^2 - x_P - x_Q$$

$$y_R = -y_P + s(x_P - x_R)$$

Additive Property

The group operation of addition is defined here geometrically.

Here is the addition of distinct points P, Q and $Q \neq -P$.

$$P + Q = R$$

where $P \neq -P$, the line through P and Q will intersect the curve at exactly one other point (-*R*).

Additive Properties (cont.)

-P

The line through points P, $^{\perp}P$ is a vertical line.

Thus, O is defined as the point at infinity.

$$P + (-P) = O$$

$$P + O = P$$

O is the additive identity of the group.

 $y^2 = x^3 - 6x + 6$

Doubling Algebraically

Doubling the point P (when y_p is not 0), 2P = R

where

$$s = (3x_P^2 + a) / (2y_P)$$

 $x_R = s^2 - 2x_P$
 $y_R = -y_P + s(x_P - x_R)$

Recall that **a** is one of the parameters chosen with the elliptic curve and that **s** is the slope of tangent to the curve at the point P.

Doubling the point P (cont.)

P

$$y^2 = x^3 + 5x - 7$$

If
$$y_P = 0$$
, $P + P = 2P = 0$

Elliptic Curves over Finite Fields

- To provide fast and precise arithmetic for cryptographic applications, finite fields are used in place of the real numbers. Variables and coefficients are finite integers
- For example, $y^2 = x^3 + ax + b$ equality intended mod p with a and b in F_p .
- The algebraic formulas derived from the geometric arithmetic of elliptic curves over real numbers can be adapted for elliptic curves over finite fields.
- Need large number of points on the curve

Finite Elliptic Curves

have two families commonly used:

- 1) prime curves $E_p(a,b)$ defined over Z_p
 - $y^2 \mod p = (x^3 + ax + b) \mod p$ where $4a^3 + 27b^2 \mod p \neq 0$
 - use integers modulo a **prime p** (ranging between 112-521 bits) for both variables and coefficients
 - best in software
 - Example: P=(3,10), Q=(9,7), in $E_{23}(1,1)$
 - P+Q = (17,20)
 - 2P = (7,12)

Elements (points) of the group

Figure 10.10 The Elliptic Curve $E_{23}(1,1)$

UnitelmaSapienza.it 12

Finite Elliptic Curves

- 2) binary curves $E_{2m}(a,b)$ defined over $GF(2^m)$
 - $y^2 + xy = x^3 + ax^2 + b$, where $b \ne 0$
 - elements of the finite field are integers of length at most **m** bits
 - m ranging between 113-571 bits
 - best in hardware
 - Take a slightly different form of the equation
 - Different close forms for addition

Elliptic Curve Cryptography

- ECC addition on the curve is analog of modulo multiplication
- ECC repeated addition is analog of modulo exponentiation

need "hard" problem equivalent to discrete log

- Q=k*P, where Q,P belong to a prime curve
- It is "easy" to compute Q given k, P
- but "hard" to find k given Q, P
- known as the elliptic curve logarithm problem

ECC Diffie-Hellman

There is key agreement analogous to standard D-H

- users select a suitable curve E_p (a,b)
- select base point $G=(x_1,y_1)$ which has large order n s.t. $n \times G=0$
- Users A and B select private keys priv_A<n, priv_B<n
- Each computes corresponding public keys:
 Pub_A=priv_A×G, Pub_B=priv_B×G
- compute shared key: K=priv_A×P_B, K=priv_B×P_A
 - same since K= (priv_A*priv_B) **x**G

ECC Encryption/Decryption

several alternatives, consider simplest (El Gamal)

- select suitable elliptic curve P_m and point G as in D-H
- encode message M as (one coordinate of) a point on the curve $P_{\rm m}$
- each user chooses private key priv_A<n
- compute public key Pub_A=priv_A×G
- encrypt $P_m : C_m = \{ k \times G, P_m + k \times Pub_B \}, k random$
- decrypt C_m by computing:

$$P_{m} + k \times Pub_{B} - priv_{B} \times (k \times G) =$$

$$P_{m} + k \times (priv_{B} \times G) - priv_{B} \times (k \times G) = P_{m}$$

ECC Security

- relies on elliptic curve logarithm problem
 - Best known algorithms for discrete version or for factorization do not work on EC
- compared to factoring, can use much smaller key sizes than with RSA
 - ECC public key between 160 and 571 bit claimed to be as safe as RSA public key in 2048-4096 bit range
- for equivalent key lengths, computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Comparison of Public-key crypto

Time to break (in MIPS- years)	RSA key size (in bits)	ECC key size (in bits)
10**4	512	106
10**8	768	132
10**11	1024	160
10**20	2048	210
10**78	21000	600

UnitelmaSapienza.it 18

ECDSA

A version of the DSA based on the elliptic curve logarithm problem, NIST standard with recommended curves (!)

used by Bitcoin with Parameters

- Private key 256 bits
- Public key uncompressed 512 bit
- Public key compressed 256 bits
- Message to be signed 256 bits (after hash function)
- Signature 256 bits

Needs good source of randomness

ECDSA: generate signature

Given a private key d, a message m to sign, and its hash value z=h(m)

- Select random 0< k < n (n order of G)
- Compute $k \times G = (x1, y1)$
- Compute $r = x1 \mod n$ (if r=0, select different random)
- Compute $s = k^{-1} (z + r^*d) \mod n$ (if s=0 select different k)
- The signature is (r, s)

NOTE: is (r,s) is a valid signature, so is (r, -s mod n)

ECDSA: verify signature

Given message m, public point $Q = d \times_G and signature$ (r, s) for m

- Verity that r and s are in interval (0, n) (if not, reject)
- Compute hash value of message z = h(m)
- Compute the inverse w = s⁻¹ mod n of s
- Compute the values u1 = z*w mod n and u2 = r*w mod n
- Compute the point $X = u1 \times G + u2 \times Q$
 - If X=O reject
 - If X=(x1, y1) and $r = x1 \mod n$, accept