NAVAL FACILITIES ENGINEERING SERVICE CENTER Port Hueneme, California 93043-4370

Contract Report CR 98.015-ENV

PHOTOLYTIC DESTRUCTION TECHNOLOGY DEMONSTRATION - FINAL REPORT NAS NORTH ISLAND, SITE 9

A Deomonstration Conducted by:

Process Technologies Incorporated Boise, Idaho

August 1998

19980918 016

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-018 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 3. REPORT TYPE AND DATES COVERED 2. REPORT DATE 1. AGENCY USE ONLY (Leave blank) Final; October 1997 - February 1998 August 1998 5. FUNDING NUMBERS PHOTOLYTIC DESTRUCTION 4. TITLE AND SUBTITLE TECHNOLOGY DEMONSTRATION - FINAL REPORT NAS NORTH ISLAND, SITE 9 Contract No. N47408-97-C-0215 6. AUTHOR(S) Process Technologies Incorporated 8. PERFORMING ORGANIZATION REPORT 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSE(S) NUMBER Process Technologies Incorporated CR 98.15-ENV 1160 Exchange Street Boise, Idaho 83716-5762 10. SPONSORING/MONITORING AGENCY REPORT 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES NUMBER Naval Facilities Engineering Service Center 110023rd Avenue Port Hueneme, California 93043 11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT	12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.	

13. ABSTRACT (Maximum 200 words)

The Photolytic Destruction Technology was chosen for demonstration, as part of the Navy Environmental Leadership Program (NELP), at Naval Air Station (NAS) North Island's Site 9 soil vapor extraction (SVE) system. The demonstration was conducted, under contract N47408-97-C-0215 through Naval Facilities Engineering Service Center's Broad Agency Announcement (BAA) program, to Process Technologies Incorporated (PTI), beginning October 7, 1997 and ending February 12, 1998, for 128 days. The literature search, demonstration oversight, and evaluation were funded by the Pollution Abatement Ashore Program managed by Naval Facilities Engineering Command and sponsored by the Environmental Protection, Safety and Occupational Health Division (N45) of the Chief of Naval Operations. The system was installed to treat a slip stream containing volatile organic compounds (VOCs) from the operating SVE system already installed at the site. The goal of this demonstration was to obtain the necessary cost and performance data, including the lessons learned, on the system comprising of a concentrator, condenser, and photolytic destruction unit (PDU), for comparison with other treatment technologies.

The system was demonstrated on air stream contaminated with halogenated and non-halogenated VOCs such as 1,2-dichloroethene, trichloroethene, tetrachloroethene, toluene, and octane. The test results indicated that the system was effective in removing VOCs in the SVE off-gas to below the maximum allowable emissions of 25 parts per million by volume. The average total DRE achieved for VOCs was 95.44% whereas the PDU alone demonstrated an overall DRE of 97%. The estimated unit cost to treat SVE off-gas at NAS North Island's Site 9, for a 3,000 standard cubic feet per minutePTI system, is \$3.77 per pound of VOC treated.

14. SUBJECT TERMS Volatile organic compounds, photolytic destruction, soil vapor extraction, chlorinated solvent, SVE, slip stream, concentrator, PDU, PTI			15. NUMBER OF PAGES 106 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

Executive Summary

The Photolytic Destruction Technology was chosen for demonstration, as part of the Navy Environmental Leadership Program (NELP), at Naval Air Station (NAS) North Island's Site 9 soil vapor extraction (SVE) system. The demonstration at the site was conducted, under contract N47408-97-C-0215 through the Naval Facilities Engineering Service Center's Broad Agency Announcement (BAA) program, to Process Technologies Incorporated (PTI), during 7 October 1997 through 12 February 1998, for a total of 128 days. The literature search, demonstration oversight, and evaluation were funded by the Pollution Abatement Ashore Program managed by the Naval Facilities Engineering Command and sponsored by the Environmental Protection, Safety, and Occupational Health Division (N45) of the Chief of Naval Operations. The system was installed to treat a slip stream containing volatile organic compounds (VOCs) from the operating soil vapor extraction (SVE) system already installed on site. The goal of this demonstration was to obtain the necessary cost and performance data on the PTI system and make a comparison to other treatment technologies demonstrated at the site. The objectives of the PTI demonstration include the following:

- Determine the total average destruction and removal efficiency (DRE) achieved by the PTI system for all VOCs measured in the SVE off-gas, as well as individual DREs for critical VOCs.
- Develop treatment cost data for a 3,000 standard cubic feet per minute (scfm) PTI system, designed to achieve the DREs measured above, for VOC-contaminated soil vapor similar to those at Site 9.
- Characterize and quantify secondary waste streams generated by the PTI system at Site 9 and determine the appropriate disposal option(s) for each. Estimate the costs of disposal of all secondary waste streams generated.
- Characterize and quantify all residuals, including hydrochloric acid, chlorine, phosgene, carbon monoxide and dioxins, exiting the PTI system.
- Document observed operating problems and their solutions.
- Disseminate the results of the demonstration throughout the Department of Defense (DoD), the Department of Energy (DOE), private industry, state regulatory agencies and the NAS North Island Restoration Advisory Board (RAB).

The compounds that were treated in the PTI system include halogenated and non-halogenated VOCs such as 1,2-dichloroethene, trichloroethene, tetrachloroethene, toluene, and octane.

The PTI system was successful in removing VOCs in the SVE off-gas to below the maximum allowable emissions of 25 parts per million by volume (ppmv). The average total destruction and removal efficiency (DRE) for VOCs was 95%. The Photolytic Destruction Unit (PDU) alone achieved an overall DRE of 97%.

The estimated unit cost to treat the SVE off-gas at NAS North Island's Site 9, in a 3,000 standard cubic feet per minute (scfm) system, is \$3.77 per pound (lb.) of VOC treated.

TABLE OF CONTENTS

1	Intro	oduction	page 1
	1.1	Overview of the Navy Demonstration Program	page 1
	1.2	Site Description	page 1
	1.3	Demonstration Objectives	page 3
2	Tech	anology Description	page 4
	2.1	Concentration Unit	page 4
	2.2	Photolytic Destruction Unit	page 6
	2.3	PTI and SVE Systems Interface	page 7
	2.4	Technology Applicability	page 8
	2.5	Commercialization and Intellectual Property	page 9
	2.6	Competing Technologies	page 9
	2.7	Technology Maturity	page 9
3	Expe	erience and Findings of the Demonstration	page 9
	3.1	PTI System Mobilization and Installation	page 9
	3.2	PTI System Start-Up	page 11
	3.3	PTI System Operation	page 11
	3.4	PTI System Demobilization	page 14
	3.5	Evaluation of Demonstration Objectives	page 15
4	Con	clusions and Recommendations	page 21
5	Refe	rences	page 22

Tables

1-1	Chemicals of Concern
3-1	Schedule of Project Activities
3-2	Configuration 1 Parametric Test Results
3-3	Configuration 1A Parametric Test Results
3-4	Configuration 2 Parametric Test Results
3-5	Configuration 3 Parametric Test Results
3-6	Steady-State Test Results - Hot Air Desorption
3-7	Steady-State Test Results - Steam Desorption
3-8	PTI System Average Total VOC Removal Efficiency
3-9	Individual VOC Removal Efficiencies for Critical Compounds
3-10	PDU Average Total and Individual VOC Removal Efficiencies
3-11	3,000 cfm PTI System Cost Summary
3-12	Residuals Data

Figures

- 1 PTI System Locating Plan
- 2 PTI System Block Flow Diagram
- 3 Concentrator Unit General Arrangement
- 4 Photolytic Destruction Unit General Arrangement

Appendices

- A Operations Data
- B Summary of Parametric Tests FID, VOC and NMOC Results
- C Summary of Steady-State Tests FID, VOC and NMOC Results
- **D** Summary of SVOC and PCB Results
- E Gaseous Residue Analysis Results
- F Reagent Panel TCLP Analysis Results
- G Liquid Condensate Analysis Results
- H Scrubber Liquid Analysis Results
- I Data Quality Evaluation

Acronyms and Abbreviations

CARB

below grade surface bgs

Hydrocarbons chemicals containing 3 $C_{3}-C_{12}$

to 12 carbon atoms per molecules California Air Resources Board

Catalytic Oxidizer Catox cubic feet per minute cfm Carbon monoxide CO

Contract Officer's Technical COTR

> Representative Dichloroethylene

DCE Department of Defense DoD Department of Energy DOE

Destruction Removal Efficiency DRE

United States Environmental Protection **EPA**

Agency

Flame Ionization Detector FID

Hydrochloric acid HCl

hour hr

Installation Restoration IR

Industrial Waste Treatment Plant **IWTP**

Kilowatts kWpound lb.

pounds per hour lbs/hr

Lower Explosive Limit LEL

Navy Environmental Leadership NELP

Program

Naval Air Station NAS

Naval Facilities Contracts Office **NAVFACCO** Naval Facilities Engineering Service **NFESC**

Center

nanometers nm

Non-Time Critical Removal Action **NTCRA**

Naval Weapons Center **NWC**

Ozone O_3

OHM Remediation Services **OHM**

Corporation

Polychlorinated biphenyl **PCB** Perchloroethylene or PCE

tetrachloroethylene

Photolytic Destruction Unit PDU Programmable Logic Control **PLC** parts per billion by volume ppby parts per million as carbon

ppmv PRG psia

psig PTI QA/QC QAPP RAB

scfm

SOP SVE SVE&T SVOC SWDIV

TCE TCLP

TDS TNMOC TSS TO-#

UV VOC VPAC Work Plan

\$/lb. °F " parts per million by volume Preliminary Remediation Goals pounds per square inch absolute

pressure
pounds per square inch gauge pressure
Process Technologies Incorporated
Quality Assurance /Quality Control
Quality Assurance Project Plan
Restoration Advisory Board

Standard cubic feet per minute (@60°F

and 14.69 psia)

Standard Operating Procedure

Soil Vapor Extraction

Soil Vapor Extraction & Treatment Semi-volatile organic compound Southwest Division, Naval Facilities

Engineering Command Trichloroethylene

Toxicity Characteristic Leaching

Procedure

Total Dissolved Solids

Total non-methane organic compounds

Total Suspended Solids

EPA Standard Sampling or Analytical

Test Method for gas samples

ultraviolet

volatile organic compound Vapor Phase Activated Carbon

"Process Technologies Incorporated Technology Demonstration Final Work

Plan"

cost per pound degrees Fahrenheit inch or inches

INTRODUCTION

1.1 Demonstration Program Background

In July 1996, the Navy Environmental Leadership Program (NELP) issued a Broad Agency Announcement (BAA), Solicitation N47408-96-R-6342, for demonstrating a remediation technology for environmental cleanup. The Navy's goal in issuing this BAA was to demonstrate innovative technologies that are at the advanced development stage and are ready for field implementation. Process Technologies' Incorporated (PTI) responded to the BAA, which resulted in the selection of their Photolytic Destruction Technology for demonstration at Naval Air Station (NAS) North Island Installation Restoration (IR) Site 9. The goal of the demonstration was to obtain the necessary cost and performance data on the PTI system demonstration at NAS North Island, Site 9, and make a comparison with other commerciallyavailable treatment technologies. This data will be compiled by the Naval Facilities Engineering Service Center (NFESC) and provided in a summary report to be distributed within all of the Department of Defense (DoD). The two potential benefits to PTI are potential immediate full-scale implementation at NAS North Island and potential future use within the federal government at other sites with similar volatile organic compound (VOC) air streams requiring treatment.

1.2 Site Description

Location

NAS North Island is located in southern San Diego County, across San Diego Bay from the downtown area, on the northern end of Coronado. Twelve sites on NAS North Island were identified as IR sites owing to their historical use as hazardous materials generating and/or disposal sites. Site 9 is one of these IR sites.

For this demonstration, the PTI System was installed to interface with an existing Soil Vapor Extraction and Treatment System (SVE&T). The SVE&T was installed at Site 9 in 1997, to remove and treat the contaminated soil vapor from Site 9's Area 1 and 3 SVE wells. PTI treated soil vapor from the Area 3 wells only. Figure 1-1 presents the PTI System Locating Plan indicating the location of the PTI System as it relates to SVE&T the facility.

Geology

The uppermost layer at Site 9 consists of approximately 100 feet of poorly graded fine sand and silty sand with shell beds. Several layers of clay, clayey sand and silt exist from approximately 35 feet below grade surface (bgs) to 150 feet bgs. The character of the vadose zone, which is 8 to 10 feet thick, is suitable for soil vapor

extraction (SVE). The shallow nature of the vadose zone at Site 9 required installation of horizontal SVE wells to effectively capture VOCs in the vadose zone (OHM Remediation Services Corp. (OHM)1996).

Chemicals of Concern

Five VOCs were found in vadose zone soil at Site 9 in concentrations that exceed the United States Environmental Protection Agency (EPA) Region IX Industrial Preliminary Remediation Goals (PRGs). These are cis-1,2-dichloroethylene (DCE), 1,1-DCE, tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride (OHM 1996). For the demonstration, compounds known to exist at concentrations >2ppmv were also added to this list.

Chemical Name	Concentration in SVE Vapor ¹
Octane ²	96.44
Tetrachloroethene	31.40
Trichloroethene	27.60
cis-1,2-Dichloroethene	22.20
Toluene	14.20
1,1-Dichloroethene	N.D.
Vinyl Chloride	N.D.

Table 1-1: Chemicals of Concern

Notes:

- 1. Average SVE vapor concentration, as measured during Steady-State Operations, by EPA Method TO-14.
- 2. The concentration of Octane was calculated using the equation:

 Concentration_{Octane} = [(Total Vapor Concentration by FID) (Total Vapor Concentration by TO-14) (Methane Concentration)] ÷ 8.

Site History

Site 9, the Chemical Waste Disposal Area, includes a low-lying depressed area in the northeastern corner that was used for liquid chemical waste disposal beginning in the 1940s (OHM 1996). Disposal in this area was halted when it became apparent that mixing of wastes was generating chemical reactions that caused fires. Part of the depression was excavated and back-filled with clean, compacted fill for construction of the aircraft run-up pad and taxi-way in 1974. The remainder was filled in with soil and concrete rubble in 1978 (OHM 1996).

Beginning in 1968, wastes were segregated into four parallel trenches near the eastern edge of Site 9. The trenches received solvents, caustics, acids, and Sermetel W (a semi-synthetic high-temperature coating of ceramic and metallic compounds

consisting of metallic carbides). Disposal of wastes in the trenches ended in the mid-1970s when installation of an Industrial Waste Treatment Plant (IWTP) was completed. The southeast corner of Site 9, extending to the fence line which houses the Naval Weapons Center (NWC), was used intermittently for liquid waste disposal from the 1950s to 1978 (OHM 1996).

In general, VOCs, semi-volatile organic compounds (SVOCs), petroleum hydrocarbons, metals, and polychlorinated biphenyls (PCBs) have been detected in soils at the Site 9 disposal areas (OHM 1996).

Non-Time-Critical Removal Action (NTCRA)

Presently, a Non-Time-Critical Removal Action is in place at Site 9 to remove VOCs from vadose zone soil. The NTCRA work at Site 9 consists of the following, and is described in more detail in Section 2.3:

- Extraction of VOCs from soil by SVE. A series of horizontal SVE wells and air injection wells have been installed in Areas 1 and 3.
- Treatment of extracted soil vapor by vapor phase activated carbon adsorption.

1.3 Demonstration Objectives

This demonstration was performed to obtain the relevant data needed for Navy project managers, and other decision makers, to evaluate the PTI system's applicability for a project while reducing cost on the project. The PTI technology will be compared with all other emerging and commercially available technologies so remedial project managers (RPMs) can make the optimum business decisions for the Navy and other DoD.

The objectives of this demonstration were as follows:

- 1. Determine the total average DRE achieved by the PTI system for all VOCs measured in the SVE off-gas, as well as individual DREs for critical VOCs.
- 2. Develop treatment cost data for a 3,000 standard cubic feet per minute (scfm) PTI system, designed to achieve the DREs measured above, for VOC-contaminated soil vapor similar to those at Site 9.
- 3. Characterize and quantify secondary waste streams generated by the PTI system at Site 9 and determine the appropriate disposal option(s) for each. Estimate the costs of disposal of all secondary waste streams generated.

- 4. Characterize and quantify all residuals, including hydrochloric acid, chlorine, phosgene, carbon monoxide and dioxins, exiting the PTI system.
- 5. Document observed operating problems and their solutions.
- 6. Disseminate the results of the demonstration throughout the DoD, DOE, private industry, state regulatory agencies and the NAS North Island RAB.

2.0 Technology Description

PTI's VOC treatment system consists of a fluidized bed concentration unit and a photolytic destruction unit (PDU). The concentration unit produces a low flow, high concentration VOC vapor that is then processed through the PDU. For most treatment or recovery technologies, it is desirable for the unit to receive a low cubic feet per minute (cfm) flow with high levels of VOCs, rather than the high flow and dilute VOCs typically found. The concentration unit can pre-concentrate organics up to 1,000 times while correspondingly decreasing the cfm flow.

The concentration unit includes a chilled-water condenser to preferentially remove non-chlorinated hydrocarbons from the vent gas prior to treatment in the photolytic destruction unit. The PDU is most cost-effective when treating high concentration vapors containing chlorinated hydrocarbons. PTI has combined the two technologies to provide a system that can treat a variety of contaminated VOC vapor streams. Figure 2-1 is a simplified schematic diagram of the PTI System. A detailed description of the technology as it was demonstrated at Site 9 is presented below.

2.1 Concentration Unit

The Concentration Unit consists of three major components: an adsorber, desorber and condenser. A description of each component and its basic unit operations is discussed below:

Adsorber

The adsorber develops a fluidized bed of adsorbent beads to extract organic vapors from the SVE vapor. The adsorbent beads are specifically designed to extract VOCs from high humidity gas streams. The adsorber has multiple stages of adsorption trays to control the flow of adsorbent beads. As the beads flow from one tray to the next, they adsorb the VOCs from the gas stream, in a process referred to as "loading". Fluidization of the adsorbent media bed enhances the kinetics and improves the capture rate. On a static bed, a small break between carbon pieces will allow the gas flow to select the path of least resistance and much of the flow will pass without adsorption. The constant movement of the media allows for all portions of the adsorbent to be utilized.

The adsorber is operated under a slight negative pressure so that SVE vapors can be drawn into the adsorber. A manually operated flow control system is used to bring 250 scfm of SVE vapors into the unit. As noted earlier, the SVE flow rate is adjusted based on the actual VOC concentrations that are experienced during operation. Additional ambient air (trim air) is mixed with the SVE vapor before entering the adsorber. A manually operated flow control system is used to draw a minimum of 400 scfm of combined gas flow into the unit.

The combined gas flow moves upward through multiple stages of trays to contact the adsorbent media used to adsorb VOCs from the gas stream. The adsorbent beads flow downward through the unit (tray-to-tray) while the gas flows upward at sufficient velocity to fluidize each stage of adsorbent media. This allows intimate and thorough contact of the gas with the adsorbent. The treated gas passes through an internal screen prior to its return to the existing SVE piping at a point downstream from the tie-in. The internal screen ensures that the adsorbent beads are retained within the adsorber.

Desorber

The Desorber evaporates the VOCs from the loaded adsorbent beads. High-pressure steam (60 psig) provides energy through a heat exchanger to desorb the organics from the adsorbent beads. A low pressure steam (atmospheric pressure) is used as the carrier vapor to sweep the desorbed organic vapors from the desorber. The desorbed "lean" adsorbent beads are then immediately recycled to the adsorber, to begin another cycle.

The "loaded" adsorbent beads are pneumatically transferred from the bottom of the adsorber to the top of the desorber. The adsorbent beads flow downward in a plug-flow manner. The desorber contains a steam-heated heat exchanger that warms the adsorbent to 300° F. This heat vaporizes the adsorbed VOCs. Low pressure, superheated steam is used to sweep the desorbed VOCs out of the desorber and into the condenser. The "lean" adsorbent is pneumatically recycled to the top of the adsorber for reuse. This provides for the continuous, closed-loop operation of the adsorbent beads through the concentrator system.

A small electrically-heated boiler was used to generate steam for the desorber and provide the low pressure sweep steam. Make-up water for the steam generator was provided from the existing SVE&T Steam Generating Skid, and boiler blowdown was drained to an existing wastewater sump located adjacent to the SVE&T Steam Generating Skid.

Condenser

The condenser is cooled with chilled water to preferentially remove the water vapor and non-halogenated organics in the concentrated sweep vapor. A portion of the

halogenated chemicals is also removed in the condenser. The condenser temperature can be controlled with a thermostat to achieve the desired condensing conditions. During the first few weeks of operation, evaluations were made to determine the preferred operating temperature for the condenser. A chilled water system is used for the condenser. Heat is rejected from the refrigeration unit using an air-cooled heat exchanger. Condensate was collected in a "day" tank and then transferred to the existing gravity separator located on the SVE&T wet-end skid. The day tank was sampled prior to transfer of the SVE&T gravity separator.

2.2 Photolytic Destruction Unit (PDU)

The PDU, located between the condenser and the recycle line to the adsorber, processes the non-condensable vapors from the condenser. The PDU consists of tow major components: the photolytic reactors and a wet scrubber. A description of each component and its basic unit operations is discussed below:

Photolytic Reactors

Two photolytic reactors, each capable of treating up to 5 scfm of concentrated, contaminated vapor were included with the system. Non-condensable vapors from the condenser flow into the PDU. The non-condensable vapors are mixed with ambient air prior to entering the PDU to control the vapors to less than 20% of the lower explosive limit (LEL) for the gas mixture. This adjustment is made manually, based on analytical test results.

The mixture of VOC-laden vapor and ambient air passes through the photolytic reactors, where the vapors are exposed to high levels of photons produced by ultraviolet (UV) lamps. The VOCs break into free radicals which react with the alkaline compounds contained in the reagent panels. This reaction works to prevent the formation of undesirable by-products in the process exhaust stream. The reagent panels are located adjacent to the UV lamps.

When the reagent panels are exhausted (fully utilized), acid gases from the reactors will be predominantly reacted in the Wet Scrubber system. The pH of the scrubber solution is reduced as high loadings of acid gas are processed. A rapid drop in the scrubber solution pH is an indicator that the reagent panels need to be replaced. During the demonstration, two sets of reagent panels were used. At the completion of the technology demonstration, the reagent panels were tested using the EPA Toxicity Characteristic Leaching Procedure (TCLP) to verify that the panels could be disposed as sanitary rather than hazardous waste.

To control the temperature inside the reactors, a closed-loop cooling water system provides cooling water to plate-type heat exchangers that are located between the reagent panels. Heat energy from the lamps, and heat of reaction from the neutralization reactions, are removed via the internal heat exchangers. The closed-

loop cooling system circulates the water from the heat exchangers through a radiator system where air rejects the heat to atmosphere. The cooling system has two pumps, one operating and one backup.

Wet Scrubber

The VOC-free gas from the photolytic reactors flows through a caustic scrubber system to remove any trace amounts of hydrogen chloride, or other acidic byproducts that are not reacted with the reagent panels. The scrubbing system operates with a 5% caustic soda solution as the reagent. Two pumps are provided with the system, one operating and one backup.

The clean, scrubbed gas flows back to the inlet of the Concentration Unit. An emergency by-pass system is included so the cleaned and scrubbed gas can be processed through a canister of activated carbon prior to recycle to the adsorber outlet in the event that the Concentration Unit trips off-line.

Prior to disposal, the spent scrubber solution is pumped out of the scrubber recycle tank, through an activated carbon canister, and into a 55 gallon drum. Samples of the solution in the drum were analyzed for comparison with the site discharge permit requirements. This analysis proved the water could be drained into the site sanitary sewer system.

The PTI System is capable of being operated in three different process configurations. They are:

Configuration-1: Concentration-Condensation-Photolytic Destruction

Configuration-2: Concentration- Condensation

Configuration-3: Concentration- Photolytic Destruction

Each of these process flow configurations was evaluated during this technology demonstration. Refer to "Process Technologies Incorporated Technology Demonstration Final Work Plan" (Work Plan) for additional information regarding the process flow configurations that were evaluated.

2.3 PTI and SVE System Interface

For this demonstration, the PTI System was installed to interface with an existing SVE&T. The SVE&T was installed at Site 9 in 1997, to remove and treat the contaminated soil vapor. Figure 1-1 presents the PTI System Locating Plan indicating the location of the PTI System as it relates to the SVE&T facility.

The SVE vapor is drawn from the wells by SVE blowers located at the treatment facility. The SVE&T System is rated at 3,000 scfm of vapor flow. VOCs are removed from the SVE vapor using a regenerative vapor phase activated carbon

(VPAC) system. The SVE&T System consists of six equipment skids: the SVE System Skid, VPAC System Skid, Wet-End Skid, Steam Generating Skid, Injection Blower Skid, and Cooling Water Skid. The PTI System pulled SVE vapors from, and re-injected treated gas to, the SVE System Skid.

The PTI System used for this demonstration was designed to treat 500 scfm of SVE vapor, and to remove a minimum of 3.6 pounds per hour (lbs/hr) of VOCs. During the operation of the system it was determined that the maximum flow rate that could be treated was actually 440 scfm. As shown in Appendix C, the average composition of the SVE vapor from the Area 3 wells was calculated to be 191.84 ppmv of VOCs. This is equivalent to approximately 1.22 lbs/hr of VOCs at the 500 scfm design rate, which is approximately one-third the projected VOC removal capability of the PTI System used for this demonstration.

The SVE vapor was drawn from the Area 3 SVE piping from a nozzle located on the SVE well manifold piping. OHM installed the manifold system, complete with a diversion valve and isolation block valves. Figure 2-1 identifies the approximate tie-in point, and schematically shows the major process operations associated with the PTI System. PTI installed a booster blower to draw the SVE vapors into the PTI System. The booster blower was equipped with an air/water separator to remove any free moisture from the SVE vapor. Water collected in the separator was drained to the existing OHM Wet End system.

After treatment through the PTI System, the treated gas was returned to the manifold piping for subsequent processing through the existing VPAC System. In addition to the booster blower, PTI also provided an auxiliary blower for the treated gas leaving the PTI system. This blower was used when the SVE&T blower systems were inoperative to allow the PTI technology to continue to operate.

2.4 Technology Applicability

Photolytic destruction has been demonstrated to destroy VOCs in SVE and chemical storage tank vents off-gas. Off-gas streams from air strippers, air spargers and process vent streams are other likely applications for the technology. Pilot and commercial-scale work has shown that photolytic destruction is best suited for destroying low-flow, high concentration gas streams containing halogenated VOCs. For the treatment of high flow, dilute gas streams, a concentrator is used as a pretreatment method, prior to destruction by photolytic destruction. The Concentration Unit has been installed and in use in Europe for the control of VOC emissions from paint spray booth and fiberglass reinforced plastics operations. This demonstration was the first commercial demonstration of the PDU and Concentration Unit in the United States.

2.5 Commercialization and Intellectual Property

The photolytic destruction technology is manufactured and sold as PDUs by PTI. The PDUs are protected by 5 U.S. and 2 international patents. The concentrator technology is manufactured and sold by PTI under license to MIAB, an air pollution control equipment manufacturer located in Mōlnbacka, Sweden.

2.6 Competing Technologies

The PTI system competes with conventional VOC treatment technologies such as activated carbon and flameless thermal oxidation.

2.7 Technology Maturity

Photolytic destruction is an innovative air treatment technology, although variations have been applied for the treatment of contaminated water. The technology, together with the concentrator, is being implemented on a commercial scale for the treatment of air stripper off-gas and other SVE sites. The Concentration Unit has been in use in Europe since 1990.

3.0 Experience And Findings Of The Demonstration

Below is a summary table listing the order and dates of major events completed during the demonstration.

Date(s) Activity July 31, 1997 Contract Award August 15, 1997 Kick-Off Meeting August 16 - October 3, 1997 Work Plan Development October 7-11, 1997 Mobilization October 11, 1997 Installation October 12 - October 18, 1997 Startup October 24, 1997 - January 8, 1998 Parametric Tests January 17 - February 6, 1998 Steady-State Tests February 7 - February 12, 1998 Demobilization

Table 3-1: Schedule of Project Activities

3.1 PTI System Mobilization and Installation

Prior to initiating the on-site work, the PTI system was pre-assembled and tested to verify mechanical, electrical and instrumentation integrity. This testing was performed at PTI's facility in Boise, Idaho. The U.S. Navy's Project Manager and

Contracting Officer's Technical Representative (COTR) were on hand to witness a portion of the pre-mobilization testing.

Prior to mobilizing the PTI system to Site 9, PTI personnel together with assistance from OHM site personnel, performed various on-site mobilization activities. These activities were performed several days in advance of shipping the PTI System. They included:

- Preparation of an area of approximately 20' wide by 50' long to receive the PTI System, the Booster Blower and Auxiliary Blower Modules.
- Installation of tie-in connections for the field-run piping for the boiler feed water, SVE vapor inlet piping, treated vapor outlet piping, potable water, and condensate transfer piping. Since this was a temporary facility, piping runs were all above ground and were anchored onto cribbing supports. Walk-over stiles were placed where appropriate to prevent tripping hazards.
- Installation of conduit and wiring from an existing 480 volt, 200 amp electrical service, adjacent to the Injection Blower Skid, to the PTI System (see Figure 1-1).

The PTI equipment was delivered to the site, on October 11, 1997, in the form of modules that were interconnected with field-run piping, and electrical and instrumentation wiring. The equipment modules consisted of:

- Concentrator Unit Trailer Module (adsorber, desorber, fan, pneumatic transfer system, condenser, refrigeration unit, boiler unit, and all associated electrical equipment and controls see Figure 2-2).
- Solvent Storage Tank Module (skid-mounted condensate storage tank and pump).
- The PDU Container Module (all of the PDU process equipment pre-piped, pre-wired and pre-instrumented. This module also contained the motor control center and the programmable logic control (PLC) system common to all of the modules. A small work office was also included in the PDU Module see Figure 2-3).
- SVE Booster Blower Module (booster blower, water knockout, motor starter, and instrumentation/controls).

• Auxiliary Blower Module (auxiliary blower, pre-filter, motor starter, and instrumentation/controls).

The PTI System was installed adjacent to the southwest section of the security fencing surrounding the SVE&T system. Figure 1-1 identifies the location of the PTI System installation at the SVE&T facility. A crane was used for positioning of the equipment at the proper location. All of the PTI System modules were placed on cribbing as the primary support for the units. Grounding rods were placed at appropriate locations and grounding wires were provided to ensure the safe operation of the System. Installation of the equipment was completed in one day.

3.2 PTI System Start-Up

A mechanical check-out of the PTI system commenced on October 12th, after completion of installation activities. During this phase of the demonstration, the following start-up activities were completed:

- Field-run piping and electrical inter-ties to connect the existing SVE&T modules and SVE manifold piping to the PTI System modules.
- Performed system integrity checks (mechanical, piping, electrical, and instrumentation).
- Verified operation of SVE booster and auxiliary blowers.
- Loaded adsorbent beads into adsorber and desorber.
- Loaded reagent panels in PDU reactors.
- Performed mechanical start-up of the Concentrator Unit.
- Modified PDU inlet gas piping to accept dilution air.

PTI began processing SVE vapors from the Area 3 well piping beginning October 18th.

3.3 PTI System Operation

The PTI technology demonstration was performed in two phases. Phase 1 involved Parametric Testing to establish the optimal process configuration for Site 9 conditions. Once established, this configuration was implemented for Phase 2 of the demonstration, Steady-State Testing.

• Parametric Tests (October 24, 1997 through January 8, 1998)

Phase 1 consisted of Parametric Testing, which involved varying the feed gas flow from the SVE system and the condenser temperature. Three process configurations, discussed in detail below, were evaluated during the Parametric Testing. During this period the PTI System processed SVE off-gas for a total of 378 hours. Between tests, the system was shutdown to make the necessary process changes to perform the next series of tests. Because of this intermittent operation of the system, an on-line

availability rating was not calculated for the Parametric Tests. The results of the Parametric Tests are discussed below:

Configuration 1: Concentration-Condensation-Photolytic Destruction

Process Configuration-1 involved the use of all of the PTI System components. In this mode of operation, low boiling, non-condensable organics that do not condense in the condenser unit, are processed through the PDU.

Table 3-2 presents the operational parameters and performance results achieved during Configuration-1 tests. The VOC concentration data was collected and recorded using an on-line FID. The use of an on-line, continuous monitoring system allowed PTI to readily observe the effect of making system changes on performance. Note that Test 1-1, involving an SVE flow rate of 100 cfm, was not performed per the Work Plan, as it was not possible to operate the SVE Booster Blower at a flow-rate less than 150 cfm. The system was shutdown after completion of Test 1-6 to make the following modifications to the concentrator with the intention of improving system removal efficiencies:

- Replaced the flapper/check valve that controls the flow of adsorbent beads into the top of the desorber. Because the original valve was not sealing well, it was believed that concentrated VOCs could be discharged to the top adsorber tray, and vented to the VPAC System.
- Installed taller weir plates in the adsorber to allow for a thicker layer of beads to form on each adsorption tray.
- Replaced the desorber downcomer tubes with smaller diameter tubes to increase the Adsorbent beads residence time in the desorber.
- Increased desorption temperature by 20 °F, to approximately 285 °F, to increase the removal of solvent from the adsorbent beads.
- Increased vacuum pressure in desorber from -0.3 mm to -0.5mm to increase the solvent desorption rate, and ensure that no solvent vapors could be allowed to vent back to the adsorber.
- Added additional adsorbent beads to the Concentrator Unit.

After making the above modifications, the system was restarted and tests 1-4 through 1-6 were repeated. The results of these tests are presented in Table 3-3.

It was evident, based on the higher DREs achieved during Configuration 1A Tests, that the System mechanical and operational changes were very effective. The lower "Average DRE %" achieved during Test 1-6A is related to the condenser temperature. At high condenser temperatures, less VOCs are condensed, thereby causing a greater recycle load of VOCs to return to the adsorber. A high recycle load of VOCs can "overload" the adsorber, thereby reducing process removal efficiencies.

Configuration 2 Test: Concentration-Condensation (No PDU)

Process Configuration-2 eliminates the use of the PDU to destroy the low boiling organic compounds. Rather, the VOCs are condensed into a liquid for off-site disposal. Any non-condensable vapors are recycled to the inlet of the adsorber. The results achieved during this series of tests, illustrated in Table 3-4, as evidenced by the lower "Average DRE %", show an increase in the recycle load of VOCs into the adsorber, leading to break-through of the chemicals into the adsorber outlet. PTI believes that higher "Average DRE %s" might have been achieved if tests were run at lower condenser temperatures. Operating the condenser at lower temperatures would have decreased the re-circulation load of low boiling point compounds to the adsorber.

Configuration 3 Test: Concentration- PDU (No Condensation)

Process Configuration-3 eliminates the use of the condenser and instead, all of the concentrated organic vapors are processed through the PDU. In this mode of operation, air rather than steam was used to sweep the concentrated vapors from the desorber. In order to operate the unit safely, the concentration of organic vapors was limited to levels that do not exceed 20% of the LEL.

Table 3-5 presents the operational parameters and performance results achieved during Configuration-3 tests. The lower than expected level of VOCs in the SVE off-gas enabled PTI to run Test 3-1 at a much higher SVE flow rate than originally designed. No further Configuration-3 tests were conducted because it was felt that no improvement over Configuration-1 test results would be achieved in this operational mode. Therefore, the System was shut-down to prepare for Steady-State Operation.

Upon review of the Parametric Test data, it was determined that the optimal operation parameters for long-term operation at Site 9 would be those which mimicked Test 1-4a. During this test, the System achieved the highest DRE (91.79%), using a higher condenser temperature (62° F), than other tests run at or near an average SVE flow rate of 265 scfm.

• Steady-State Operation (January 17, 1998, through February 6, 1998)

After completion of the Parametric Tests, the System was shutdown to prepare for Steady-State operation. During this shutdown the following work was performed:

- Installed software in the PLC to record the inlet and outlet FID measurements 24-hours per day.
- Installed a kilowatt meter to monitor system power consumption.

- Installed a water meter to monitor water consumption by the steam boiler (the PDU cooling water and condenser chiller water systems are self-contained and require little make-up water).
- Added adsorbent media to the Concentration Unit to replace any adsorbent beads lost to attrition during the Parametric Tests.
- Replaced the reagent panels with new panels. A sample was taken and sent to an independent laboratory for analysis.
- Repaired a number of small leaks observed in the condenser.
- Installed an eductor system to transport the adsorbent beads from the adsorber to the desorber. A positive pressure transport system, rather than the original negative pressure system, was used to prevent the plugging of adsorbent beads at the desorber inlet flapper valve.

Steady-State Operation began on January 17, 1998, and was completed on February 6, 1998. During this phase of testing, the System was operated 24-hours per day, 7-days per week, except during process shutdowns and holidays. The unit operated unattended during normal off-hours, weekends, and during weapons loading activities. The PTI System operated for a total of 440 hours during this period, and achieved an 89% on-line availability.

During the second week of Steady-State Operation, the decision was made to switch from using hot-air desorption to steam desorption. It was determined from the analytical test results that using steam desorption resulted in a higher removal efficiency. PTI chose to continue the use of steam as a desorption gas for the remainder of the demonstration. A summary of system performance during this period is provided in Tables 3-6 and 3-7.

3.4 Demobilization

After completion of the Phase 2 Steady-State Tests, the System was decontaminated and decommissioned. The decontamination work was performed in two steps. First, the Concentrator Unit was operated, using ambient air only, in a recycle mode to remove organics retained in the adsorbent beads. The organics were treated with the PDUs.

After the adsorbent was regenerated, the system was taken off-line and disassembled. Mechanical equipment that had been exposed to contamination was cleaned in conformance with the procedures defined in the Health and Safety Plan (Work Plan). Decontamination materials were also disposed in conformance with the Health and Safety Plan.

The reagent panels were composite sampled during removal from each of the PDUs. The sample was subjected to TCLP testing. The results of the tests, shown in Appendix F, proved the panels to be safe for landfill disposal. Originally, PTI had

planned to dispose of the panels in the Miramar Landfill, however this landfill's disposal application requirements were such that demobilization would have been delayed. As PTI had committed the use of the equipment for another project, it chose to have the panels shipped to its facility in Boise, Idaho, where the panels were disposed.

The liquid condensate collected during the demonstration was pumped into 55-gallon liquid storage containers and stored on the OHM Hazardous Waste Pad. Each of the containers were labeled as follows: "Solvent Condensate, Analysis Pending, Generated on February 12th, 1998". The condensate was sampled by PTI and analyzed for VOCs as per the Quality Assurance Project Plan (QAPP). The results of the analysis (Appendix G) showed the composition of the condensate to be similar to that collected by the OHM treatment system. The condensate was then combined with the OHM solvent for disposal.

The scrubber liquid was treated with liquid-phase granular activated carbon and analyzed as per the QAPP. The results of the testing, refer to Appendix H, showed the liquid to be safe for disposal in the OHM sump, for discharge to the base sanitary sewer system.

Similarly, the chiller water, cooling water and boiler blowdown were all discharged to the OHM sump, for discharge to the base sanitary sewer system.

3.5 Evaluation of Demonstration Objectives

This section discusses the test results with respect to each objective of the demonstration.

Objective 1. Determine the total average DRE achieved by the PTI System for all VOCs measured in the SVE off-gas, as well as individual DREs for critical VOCs.

The determination of the total VOC removal efficiency for the PTI System was to be calculated by inputting the process inlet and outlet VOC concentrations, as measured with EPA Method TO-12, into the following equation: (TO-12_{inlet}-TO-12_{outlet})/TO-12_{inlet}. However, a review of the analytical results show that the TO-12 analysis does not account for all VOCs in the SVE gas stream. This is manifested by comparing the VOC concentration as measured by the on-line FID, with that measured by EPA Method TO-12. The FID method has the advantage of pulling the gas sample through a heated line directly to the internal GC. The use of a heated line prevents the condensation, or "drop out", of any compounds with high boiling points. EPA Method TO-12, on the other hand, requires the capture of the sample gas in a summa canister. When the summa canister has been received by the analytical lab, it is pressurized to 10 psig to remove the volatile constituents.

Unfortunately, the heavier weight compounds remain in the canister. For this reason, PTI chose to use the on-line FID reading to measure total VOC removal efficiency. The results of the total VOC removal calculations, presented in Table 3-8, shows an average System DRE of 95.44%, during Steady-State Operations, and using steam as the desorption gas in the Concentration Unit.

Individual DREs for the critical VOCs were determined by TO-14 analysis. The critical VOCs were selected from a composite list of chemicals from recent sampling events at Site 9, Area 3 (Appendix 4, OHM, July 30, 1997). Critical VOCs are defined as those which were present in the composite data at levels \geq 2 ppmv. Table 3-9 presents the individual DREs for each of the critical VOCs.

The destruction and removal efficiency of the PDUs was calculated separately by measuring the VOC concentrations at the inlet and outlet to the PDU System. The results of these calculations, presented in Table 3-10, show an average PDU DRE of 97.29%.

Objective 2. Develop treatment cost data for a 3,000 standard cubic feet per minute (scfm) PTI system, designed to achieve the DREs measured above, for VOC-contaminated soil vapor similar to those at Site 9. PTI will operate their system in several configurations and parameters to fully demonstrate the performance of the system under differing conditions while obtaining the supporting cost data. Cost data will be reduced to a \$/lb. of VOC treated at various removal efficiencies. These costs will be compared to the costs to achieve an overall removal efficiency of 99% of VOCs at NAS North Island Site 9 using regenerative carbon adsorption and thermal oxidation.

The cost estimate shown in Table 3-11 was developed using data collected from the demonstration. Standard engineering principles were used to scale-up costs for a 3,000 scfm system. This is the size system presently required to treat 100% of the soil vapor gas being extracted at Site 9. The \$/LB. of VOC treated is estimated to be \$3.77. The assumptions made to derive the 3,000 scfm treatment system cost are in Table 3-11.

Objective 3. Characterize and quantify secondary waste streams generated by the PTI system at Site 9 and determine the appropriate disposal option(s) for each. Estimate the costs of disposal of all secondary waste streams generated.

The secondary waste streams produced from the PTI system included: spent reagent panels from the PDUs, scrubber blowdown, and liquid condensate from the

condenser. Each of these waste sources was monitored throughout the demonstration. A brief discussion of the evaluation methods used for secondary waste streams from each sub-system is given below:

Reagent Panels

The reagent panels are used to capture and transform acidic radicals, formed by photo-dissociation of halogenated compounds, into stable, inert organic salts. One set each of fresh panels were installed in the PDU reactors for Phase 1 and Phase 2 tests. At the completion of the demonstration, samples taken from the spent reagent panels were analyzed according to the TCLP test method. The results of these analyses, presented in Appendix F, demonstrate that the panels were non-hazardous waste. The total weight of reagent used in the demonstration was approximately 960 lbs, over a period of 1,229 hours. The approximate cost of the panels consumed during the demonstration was \$700.00. Due to strict time limitations, PTI chose to landfill the waste in Boise, Idaho, rather than in the Miramar landfill.

Scrubber Blowdown

The PTI system includes a small (25 scfm) acid gas scrubber which operates in a batch mode. The aqueous scrubber discharge was tested to determine whether the waste meets the NAS North Island sanitary sewer acceptance criteria. The scrubber blowdown was analyzed for VOCs by EPA Method 8260A. Total dissolved solids (TDS) and total suspended solids (TSS) were determined by methods 160.1 and 160.2, respectively; and pH was determined with the pH probe in the scrubber unit. The results of these analyses, presented in Appendix H, show that the liquid met the discharge requirements. The total volume of liquid discharged at the completion of the demonstration was 18.5 gallons. The approximate cost of the caustic chemicals used in the scrubber during the demonstration was \$62.00.

Liquid Condensate

The PTI system utilizes a water-cooled condenser to preferentially remove non-chlorinated hydrocarbons from the concentrated gas stream, prior to treatment in the PDUs. This condensate was sampled and analyzed for disposal purposes using EPA Method 8260A. These analyses are attached as Appendix G. As the sample analysis confirmed, the composition of the condensate was found to be typical of the current SVE&T operation. Therefore, the condensate was pumped to the SVE&T wet-end skid. Approximately 255 gallons of condensate were collected during the demonstration. The estimated cost to dispose of the liquid condensate, at \$0.17/lb., was \$347.00.

Objective 4. Characterize and quantify all residuals, including hydrochloric acid (HCl), ozone, chlorine, phosgene, carbon monoxide and dioxins, exiting the PTI system.

The concentrations of HCl, chlorine, phosgene and carbon monoxide were measured at the PDU outlet and the PTI system outlet. Ozone analysis was not performed due to an oversight by PTI. Dioxin analysis was not performed as no PCB-indicating compounds were measured in the SVE off-gas.

HCl and Chlorine

Sampling and analysis for HCl and chlorine was performed using EPA Method 26A. Gas samples were taken at the outlet of the PDU scrubber and at the outlet of the adsorber, the total system outlet. HCl was measured at a concentration of 22.1 ppbv (PDU scrubber outlet) and 0.18 ppbv (System outlet), while chlorine was measured at a concentration of 7.4 ppbv and 0.04 ppbv, respectively.

<u>Phosqene</u>

Phosgene was determined by EPA Method TO-6. Gas samples were taken at the outlet of the PDU scrubber and at the outlet of the adsorber. At these sample locations, phosgene was measured at concentrations of 1,472.7 ppbv and 23.8 ppbv, respectively.

CO

Carbon monoxide was determined by ASTM D-1946. CO was measured in the SVE off-gas and at the PTI System outlet, to determine the amount of CO produced in the System. The concentration of CO was below the detection limit of 0.0025% (v/v) in the SVE off-gas, and an average of 0.0056% (v/v) at the system outlet. Therefore, the amount of CO produced in the PTI System was between 0.0031 and 0.0056%.

Dioxins

Dioxin testing was to be performed, using EPA Method 23.0, only if PCB-indicating compounds were found to be in the SVE off-gas stream. Past demonstrations of the PTI system have shown no dioxin formation when PCBs are not present. Because the potential for PCBs exists in the contaminated soil at Site 9, Area 3, PCBs, pesticides and SVOCs were sampled for during week 1 using California Air Resources Board (CARB) Method 429. This analysis showed no presence of PCB-indicating compounds present in the SVE off-gas, therefore no dioxin tests were performed.

Detailed analyses of the results discussed above are presented in Appendix E. A tabular comparison of the System residuals to allowable levels within the San Diego Air pollution Control District is presented in Table 3-12. This comparison shows that the residual levels were in fact below known maximum allowable levels for CO and HCl. In a conversation with a San Diego Air Pollution Control District manager, PTI learned that emission standards for chlorine and phosgene are not established but reviewed and determined on a case-by-case basis. For the purposes of this report a formal emissions review application was not submitted.

Objective 5. Document observed operating problems and their solutions.

This demonstration of an integrated Concentrator Unit and PDU was the first of its kind for the treatment and destruction of gas-phase VOCs. In fact, this project was the first field implementation of a concentrator system by PTI. This demonstration provided an invaluable learning experience for PTI, and will hopefully provide valuable cost and performance data for the U.S. Navy and other DoD agencies.

Process operating parameters were monitored by PTI personnel throughout the test period on a regular basis. A discussion of problems encountered with each of the PTI System modules follows. PTI is confident that all of the operational problems encountered were resolved satisfactorily, and further plans to incorporate design modifications into the system to prevent these problems on future installations. A discussion of these problems and their solutions for each component of the system is given below.

Concentrator Unit

- The most significant operational problems were encountered during the Parametric Tests as a direct result of very heavy rains. All of these problems were due to rain water or condensate getting sucked into the adsorber or desorber (both units operate under vacuum), and subsequently plugging the flow of adsorbent beads. This plugged flow would result in a system shutdown due to a high pressure alarm. Several measures were taken to prevent this plugging from occurring: insulating the desorber and adsorbent transfer lines to prevent condensate from forming in these areas; extending the PDU return line into the adsorber approximately 12 inches (") to prevent condensate from collecting in the adsorber downcomer sections; sealing all seams in the adsorber and adsorbent transfer containers with silicon; piping the adsorber pressure vents to a manifold header to prevent the transfer of rain water into the adsorber; and placing c-clamps to tighten the seals between adsorber stages.
- A fine mesh screen, installed at the outlet of the adsorber to prevent adsorbent beads from exiting the system, became plugged with a very fine black powder. PTI believes this powder was created from the conditioning of the adsorbent beads. If not monitored, PTI found that this plugging would eventually shutdown the system on a high pressure alarm. To solve this problem, the screen was replaced with a perforated plate having 60% free area and 0.05" diameter holes.
- A high-temperature excursion (650 °F) was noted in the desorber, forcing the shutdown of the system. PTI determined that the temperature excursion was caused by the plugging of adsorbent beads at the bottom of the desorber. Once plugged, the beads were subjected to high temperatures (285 °F) for a prolonged period of time, in excess of 12 hours. PTI believes these high temperature conditions, coupled with high concentrations of solvent, led to an exothermic

reaction. The system was allowed to cool and later inspected. No visible signs of damage were present, and samples of the adsorbent beads were taken for analysis. This problem was not experienced again.

- A couple of leaks were noted at a weld point in the condenser. These were repaired on-line with J-B Weld©.
- Higher than expected attrition of the adsorbent beads was experienced throughout
 the demonstration. PTI is not sure if this is a characteristic of the adsorbent
 material itself or, a result of high shear forces breaking the adsorbent beads
 down. PTI will be making equipment modifications to reduce gas flow velocities
 in the adsorber and the transfer tubes to reduce high shear forces.
- Initially, PTI was unable to operate the desorber using strip steam unattended due to a PLC programming error. This was corrected by making a minor modification in the control program.

PDU

- During continuous operation, the outlet manifold of each PDU reactor would become choked with a very dry, friable, material believed to be caused by the condensation of heavy-chained hydrocarbons leaving the relatively hot reactor internal area and entering the cooler transfer line to the scrubber. A similar material was noted during operations at McClellan Air Force Base (AFB). During the McClellan AFB demonstration this material was tested using EPA Method 8015-M and shown to contain "unidentified extractable hydrocarbons in the C9 to C22 range" (CH₂M Hill). To overcome this problem, PTI would routinely "rod-out" this material, thereby clearing the outlet manifold and capturing the material in the scrubber. PTI plans to incorporate an automatic purge system to keep the outlet manifold clear in future designs.
- PTI discovered that a transformer ballast used to power the UV lamps in the PDU reactors had been damaged during shipping. The damaged ballast was replaced.

Objective 6. Disseminate the results of the demonstration throughout the DoD, DOE, private industry, state regulatory agencies and the NAS RAB.

The results of this technology demonstration will be presented to other Naval Remedial Project Managers, compiled into a database for distribution to interested public and private sector parties, and shown on the NFESC web page. The RAB is a partnership between NAS North Island, local regulatory agencies and the local community. The purpose of the RAB is to review and comment on remedial action methods prior to implementation. Therefore, any innovative technology that is considered for implementation at NAS North Island will be reviewed by the RAB. This Final Report will be submitted to the RAB for their information and review.

4.0 Conclusions and Recommendations

The following conclusions were developed by PTI from the technology demonstration:

- The PTI System is relatively quick to install and ready for operation as demonstrated by the experience at Site 9, where it was installed and commissioned within one week. The equipment operated continuously, 24-hours per day, seven days per week, achieving an on-line availability of 89%.
- For treatment of the SVE off-gas at Site 9, Configuration-1: "Concentration-Condensation-Photolytic Destruction" was the most efficient setup.
- The PTI system was successful in removing VOCs in the SVE off-gas to below the maximum allowable emissions at Site 9 of 25 ppmv. The average total DRE for VOCs was 95%. The PDU alone achieved an overall DRE of 97%. These results were computed from FID data.
- The estimated unit cost of implementing a 3,000 scfm PTI System at Site 9 is \$3.77 per lb. of VOC treated. The commercialization of the technology over the next few years will lower the treatment costs further.

Based upon this demonstration, PTI recommends implementing the following design modifications to enhance system performance and/or reduce treatment costs:

- Redesign the weather seals in the Concentration Unit to prevent ambient rainwater and humidity from entering the adsorber.
- Evaluate the performance of different adsorbent materials to determine which adsorbent would offer the highest removal efficiencies, cost effectively.

5.0 References

"Process Technologies Incorporated, Technology Demonstration Final Work Plan", NAS North Island, Site 9, Contract No. N47408-97-C0125, October 1997.

"Photolytic Destruction Technology Memorandum", McClellan Air Force Base, Site S, Operable Unit D, CH₂M Hill, June 1996.

"Final Project Plan for Non-Time Critical Removal Action for Sites 9 and 11, Naval Air Station North Island, San Diego County, CA", OHM Remediation Services Corporation, April 1996.

Table 3-2
Configuration 1 Parametric Test Results

Process Parameters	Test 1-2	Test 1-3	Test 1-4	Test 1-5	Test 1-6
SVE Flow (scfm)	151	209	245	290	259
Make-up Air (scfm)	306	290	223	160	111
Condenser Temperature (°F)	69	67	59	52	60
Inlet Concentration (ppmc) ¹	279	309	366	1,367	1,453
Outlet Concentration (ppmc)	188	86	127	513	463
Average DRE (%)	32.62	72.17	65.30	62.47	68.13

Table 3-3
Configuration 1A Parametric Test Results

Process Parameters	Test 1-4a	Test 1-5a	Test 1-6a
SVE Flow (scfm)	265	267	266
Make-up Air (scfm)	149	130	133
Condenser Temperature (°F)	62	52	69
Inlet Concentration (ppmc) ¹	928	1,009	1,022
Outlet Concentration (ppmc)	55	112	265
Average DRE (%)	94.07	88.90	74.07

Note:

 VOC concentration as measured by an on-line FID. A compete set of data, recorded on a 24-hour basis during Steady-State operations, is included in Appendix C.

Table 3-4
Configuration 2 Parametric Test Results

Process Parameters	Test 2-2	Test 2-3	Test 2-4	Test 2-5	Test 2-6
SVE Flow (scfm)	148	211	258	262	215
Make-up Air (scfm)	169	210	68	141	124
Condenser Temperature (°F)	80	66	78	50	67
Inlet Concentration (ppmc) ¹	966	337	1,427	1,860	1,110
Outlet Concentration (ppmc)	582	115	414	551	433
Average DRE (%)	39.75	65.88	70.99	70.38	60.99

Table 3-5
Configuration 3 Parametric Test Results

Process Parameters	Test 3-1
SVE Flow (scfm)	215
Make-up Air (scfm)	200
Condenser Temperature (°F)	NA
Inlet Concentration (ppmc) ¹	1,443
Outlet Concentration (ppmc)	480
Average DRE (%)	66.74

Note:

1. VOC concentration as measured by an on-line FID. A compete set of data, recorded on a 24-hour basis during Steady-State operations, is included in Appendix C.

Table 3-6 Steady-State Test Results - Hot Air Desorption

Process Parameters	Low	High	Average
SVE Flow (scfm)	239	267	245
Make-up Air (scfm)	57	157	100
Condenser Temperature (°F)	80	90	83
Inlet Concentration (ppmc) ¹	890	1,175	995
Outlet Concentration (ppmc)	83	170	125
DRE	80.90	92.94	87.37

Table 3-7
Steady-State Test Results - Steam Desorption

Process Parameters	Low	High	Average
SVE Flow (scfm)	243	307	267
Make-up Air (scfm)	51	102	76
Condenser Temperature (°F)	88	110	96
Inlet Concentration (ppmc) ¹	1,010	1,141	1,056
Outlet Concentration (ppmc)	14	93	44
DRE	91.85	96.76	95.93

Note:

^{1.} VOC concentration as measured by an on-line FID. A compete set of data, recorded on a 24-hour basis during Steady-State operations, is included in Appendix C.

APPENDIX A Operations Data Presented by Day

System Conditioning Field Data
Parametric Tests Field Data
Steady-State Tests Field Data

40	121	22	197

	10/21-23/97	
DATA	System Conditioning	
SVE INLET FLOW (SCFM)	250	
SVE INLET TEMP (F)		
DILUTION AIR FLOW (SCFM)	100	
DILUTION AIR TEMP (F)		
DILUTION AIR PRESS (INCH WC)		
COMBINED INLET AIR FLOW (SCFM)	350	
COMBINED INLET AIR TEMP (F)		
COMBINED INLET AIR PRESS (INCH WC)		
OUTLET GAS FLOW (SCFM)	350	
OUTLET GAS TEMP (F)		
OUTLET GAS PRESS (INCH WC)		
ADSORBER PRESS TOP (kPa)		
ADSORBER PRESS MID (kPa)		
ADSORBER PRESS BOTTTOM (kPa)		
DESORBER PRESS MID (kPa)		
DESORBER PRESS BOT (kPa)		
CONDENSER TEMP (F)		
CHILLED WATER TEMP (F)		
DILUTION AIR TO PDUS (SCFM)		
TOTAL FLOW TO PDUS		
FEED GAS TEMP TO PDUs (F)		
FEED GAS PRESS TO PDUs (INCH WC)		
PDU COOLING WATER INLET TEMP (F)		
PDU #1 COOLING WATER OUTLET TEMP (F)		
PDU #2 COOLING WATER OUTLET TEMP (F)		
PDU #1 COOLING WATER FLOW (GPM)		
PDU #2 COOLING WATER FLOW (GPM)		
PDU #1 PRESS DROP MID TO OUT (INCH WC)		
PDU #2 PRESS DROP MID TO OUT (INCH WC)		
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)		
SCRUBBER OUTLET PRESS (INCH WC)		
COOLING WATER TANK TEMP (F)		
SCRUBBER LIQUID FLOW (GPM)		
SCRUBBER pH		
OHM SVE RETURN HEADER PRESS (INCH WC)		
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)		
BOOSTER BLOWER SUCTION PRESS (INCH WC)		
PDU #1 TEMP (F)		
PDU #2 TEMP (F)		
DESORBER TEMP MID (F)		
DESORBER TEMP BOTTOM (F)		
BOILER PRESS (PSIG)		
SOLVENT STORAGE TANK LEVEL (INCH)		
INLET GAS FID READING (PPM)	***	
OUTLET GAS FID READING (PPM)	1274	
LEL METER (%)	206	
WATT METER (kW)		
HOUR METER (KW)		
AMBIENT CONDITIONS (TEMP/HUMIDITY)	47	
OPERATOR COMMENTS:	M Conv	
OF ELECTION CONTINUENTS.	M.Gray	

	Date:10/24/97	Test 1-2	M.Gray
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	152	1 51	144
SVE INLET TEMP (F)	123	152	150
DILUTION AIR FLOW (SCFM)	329	301	289
DILUTION AIR TEMP (F)	88	88	88
DILUTION AIR PRESS (INCH WC)	-2.0	-1.5	-2.0
COMBINED INLET AIR FLOW (SCFM)	452	453	439
COMBINED INLET AIR TEMP (F)	100	107	108
COMBINED INLET AIR PRESS (INCH WC)	-4.0	-4.0	-4.0
OUTLET GAS FLOW (SCFM)	481	452	433
OUTLET GAS TEMP (F)	102	106	105
OUTLET GAS PRESS (INCH WC)	-5.5	-6.5	-2
ADSORBER PRESS TOP (kPa)	-4.4	-4	-3.8
ADSORBER PRESS MID (kPa)	-2.6	-2.3	-2.4
ADSORBER PRESS BOTTTOM (kPa)	-1.0	-0.8	-0.8
DESORBER PRESS MID (kPa)	0.14	0.34	0.32
DESORBER PRESS BOT (kPa)	0.3	0.28	0.4
CONDENSER TEMP (F)	62	74	70
CHILLED WATER TEMP (F)	37	39	36.4
DILUTION AIR TO PDUS (SCFM)	5.25	5.25	5.0
TOTAL FLOW TO PDUS	0,20	0.20	0.0
FEED GAS TEMP TO PDUs (F)	85.2	87	80
FEED GAS PRESS TO PDUS (INCH WC)	00.L	0.	
PDU COOLING WATER INLET TEMP (F)			
PDU #1 COOLING WATER OUTLET TEMP (F)			
PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM)			
PDU #2 COOLING WATER FLOW (GPM) PDU #1 PRESS DROP MID TO OUT (INCH WC)			
PDU #2 PRESS DROP MID TO OUT (INCH WC)			
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)			
SCRUBBER OUTLET PRESS (INCH WC)	112.5	111.1	111.2
COOLING WATER TANK TEMP (F)	112.5	111.1	111.2
SCRUBBER LIQUID FLOW (GPM)			
SCRUBBER pH			
OHM SVE RETURN HEADER PRESS (INCH WC)			
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	40	40	-17
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-18	-18	
PDU#1 TEMP (F)	179	190.6	192
PDU #2 TEMP (F)	152.8	161.8	151
DESORBER TEMP MID (F)	253.5	242.8	259.1
DESORBER TEMP BOTTOM (F)	252.7	265.7	266
BOILER PRESS (PSIG)	70	70	70
SOLVENT STORAGE TANK LEVEL (INCH)		***	607
INLET GAS FID READING (PPM)	427	202	207
OUTLET GAS FID READING (PPM)	348	115	100
LEL METER (%)			
WATT METER (kW)			
HOUR METER			70
AMBIENT CONDITIONS (TEMP/HUMIDITY)			
OPERATOR COMMENTS:	Operating on wells 3 and 5) .	

	Date:10/25/97	Test 1-3	M.Gray
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	206	213	209
SVE INLET TEMP (F)	123	121	120
DILUTION AIR FLOW (SCFM)	300	267	303
DILUTION AIR TEMP (F)	85	90	86
DILUTION AIR PRESS (INCH WC)	-1.0	-1.0	-0.5
COMBINED INLET AIR FLOW (SCFM)	506	480	512
COMBINED INLET AIR TEMP (F)	105	102	100
COMBINED INLET AIR PRESS (INCH WC)	-2.5	-3.0	-2.0
OUTLET GAS FLOW (SCFM)	506	480	512
OUTLET GAS TEMP (F)	104	100	102
OUTLET GAS PRESS (INCH WC)	-4.0	-4.5	
ADSORBER PRESS TOP (kPa)	-4.0	-4.0	-1.0
ADSORBER PRESS MID (kPa)	-2.3		-0.38
ADSORBER PRESS BOTTTOM (kPa)	-0.8	-2.8	-2.4
DESORBER PRESS MID (kPa)	-0.8 -0.22	-0.8	-0.8
DESORBER PRESS BOT (kPa)		-0.2	-0.2
CONDENSER TEMP (F)	-0.32	-0.26	-0.24
CHILLED WATER TEMP (F)	66	70	64
DILUTION AIR TO PDUS (SCFM)	35.8	35.3	35.9
TOTAL FLOW TO PDUS	5.0	4.0	3.5
FEED GAS TEMP TO PDUs (F)	05.0		
FEED GAS PRESS TO PDUs (INCH WC)	85.6	84.6	75.3
PDU COOLING WATER INLET TEMP (F)			
PDU #1 COOLING WATER OUTLET TEMP (F)			
PDU #2 COOLING WATER OUTLET TEMP (F)			
PDU #1 COOLING WATER FLOW (GPM)			
PDU #2 COOLING WATER FLOW (GPM)			
PDU #1 PRESS DROP MID TO OUT (INCH WC)			
PDU #2 PRESS DROP MID TO OUT (INCH WC)			
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)			
SCRUBBER OUTLET PRESS (INCH WC)			
COOLING WATER TANK TEMP (F)	110.6	440.0	047
SCRUBBER LIQUID FLOW (GPM)	110.0	119.8	84.7
SCRUBBER pH			
OHM SVE RETURN HEADER PRESS (INCH WC)			
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)			
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-34	24	0.4
PDU#1 TEMP (F)	158.4	-34	-34
PDU #2 TEMP (F)	145.3	166.2	172.4
DESORBER TEMP MID (F)	267.3	153.4	148.7
DESORBER TEMP BOTTOM (F)	250.1	279.2	274.7
BOILER PRESS (PSIG)	70	250.9	249.3
SOLVENT STORAGE TANK LEVEL (INCH)	10	70	70
INLET GAS FID READING (PPM)	305		
OUTLET GAS FID READING (PPM)	93	296	325
LEL METER (%)	33	79	86
WATT METER (kW)			
HOUR METER			
AMBIENT CONDITIONS (TEMP/HUMIDITY)			90
OPERATOR COMMENTS:			

	Date:10/26/97	Test 1-4	M.Gray
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	244	242	249
SVE INLET TEMP (F)	121	119	117
DILUTION AIR FLOW (SCFM)	236	223	209
DILUTION AIR TEMP (F)	92	92	92
DILUTION AIR PRESS (INCH WC)	-0.5	-0.5	-0.5
COMBINED INLET AIR FLOW (SCFM)	480	465	458
COMBINED INLET AIR TEMP (F)	108	105	104
COMBINED INLET AIR PRESS (INCH WC)	-2.0	-2.0	-2.0
OUTLET GAS FLOW (SCFM)	480	445	438
OUTLET GAS TEMP (F)	102	103	104
OUTLET GAS PRESS (INCH WC)	-2.5	-2.5	-2.5
ADSORBER PRESS TOP (kPa)	-3.8	-3.9	-3.6
ADSORBER PRESS MID (kPa)	-2.2	-2.2	-2.1
ADSORBER PRESS BOTTTOM (kPa)	-0.6	-0.65	-0.6
DESORBER PRESS MID (kPa)	-0.14	-0.18	-0.2
DESORBER PRESS BOT (kPa)	-0.2	-0.28	-0.28
CONDENSER TEMP (F)	72	53	52
CHILLED WATER TEMP (F)	37	38.1	35.7
DILUTION AIR TO PDUS (SCFM)	6	6	5
TOTAL FLOW TO PDUs			
FEED GAS TEMP TO PDUs (F)	87	85.6	81.7
FEED GAS PRESS TO PDUs (INCH WC)	•	-12.5	
PDU COOLING WATER INLET TEMP (F)			
PDU #1 COOLING WATER OUTLET TEMP (F)			
PDU #2 COOLING WATER OUTLET TEMP (F)			
PDU #1 COOLING WATER FLOW (GPM)			
PDU #2 COOLING WATER FLOW (GPM)			
PDU #1 PRESS DROP MID TO OUT (INCH WC)			
PDU #2 PRESS DROP MID TO OUT (INCH WC)			
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)			
SCRUBBER OUTLET PRESS (INCH WC)			
COOLING WATER TANK TEMP (F)	118.2	118	116.3
SCRUBBER LIQUID FLOW (GPM)		12.16	
SCRUBBER pH		10.19	
OHM SVE RETURN HEADER PRESS (INCH WC)			
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)			
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-33	-33	-33
PDU #1 TEMP (F)	168.2	173.6	177.6
PDU #2 TEMP (F)	147.8	159.1	160
DESORBER TEMP MID (F)	281.6	282	278.1
DESORBER TEMP BOTTOM (F)	254.2	253.3	249.7
BOILER PRESS (PSIG)	70	65	0
SOLVENT STORAGE TANK LEVEL (INCH)			
INLET GAS FID READING (PPM)	362	364	371
OUTLET GAS FID READING (PPM)	132	127	123
LEL METER (%)		2	
WATT METER (kW)		_	
HOUR METER			113
AMBIENT CONDITIONS (TEMP/HUMIDITY)			
OPERATOR COMMENTS:			

	Date:10/27/98	Test 1-5	R.Cooper
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	294	288	288
SVE INLET TEMP (F)	110	115	112
DILUTION AIR FLOW (SCFM)	170	164	147
DILUTION AIR TEMP (F)			147
DILUTION AIR PRESS (INCH WC)			
COMBINED INLET AIR FLOW (SCFM)	464	452	435
COMBINED INLET AIR TEMP (F)		102	400
COMBINED INLET AIR PRESS (INCH WC)	-0.5	1.0	-0.5
OUTLET GAS FLOW (SCFM)	464	452	435
OUTLET GAS TEMP (F)	105	107	
OUTLET GAS PRESS (INCH WC)	-3	-4	102
ADSORBER PRESS TOP (kPa)	-3.4	-2.6	-3
ADSORBER PRESS MID (kPa)	-1.8		-3.4
ADSORBER PRESS BOTTTOM (kPa)	-0.5	-1.4	-1.6
DESORBER PRESS MID (kPa)	-0.2	-0.2	-0.5
DESORBER PRESS BOT (kPa)	-0.28	-0.22	-0.2
CONDENSER TEMP (F)		-0.26	-0.26
CHILLED WATER TEMP (F)	52	52	52
DILUTION AIR TO PDUS (SCFM)	39.7	39.2	35.9
TOTAL FLOW TO PDUs	5.5	4.0	5.25
FEED GAS TEMP TO PDUs (F)	20		
FEED GAS PRESS TO PDUs (INCH WC)	83	83	76.6
PDU COOLING WATER INLET TEMP (F)			
PDU #1 COOLING WATER OUTLET TEMP (F)			•
PDU #2 COOLING WATER OUTLET TEMP (F)			
PDU #1 COOLING WATER FLOW (GPM)			
PDU #2 COOLING WATER FLOW (GPM)			
PDU #1 PRESS DROP MID TO OUT (INCH WC)			
PDU #2 PRESS DROP MID TO OUT (INCH WC)			
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)			
SCRUBBER OUTLET PRESS (INCH WC)			
COOLING WATER TANK TEMP (F)	114.3	4447	
SCRUBBER LIQUID FLOW (GPM)	114.3	114.7	117.1
SCRUBBER pH			
OHM SVE RETURN HEADER PRESS (INCH WC)			
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)			
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-16	40	
PDU #1 TEMP (F)	175	-16	-16
PDU #2 TEMP (F)	156.1	184.7	171.3
DESORBER TEMP MID (F)	265.3	164	155.1
DESORBER TEMP BOTTOM (F)		266	272
BOILER PRESS (PSIG)	240.1	240.2	234
SOLVENT STORAGE TANK LEVEL (INCH)	70	70	70
INLET GAS FID READING (PPM)	4000		3
OUTLET GAS FID READING (PPM)	1380	1530	1280
LEL METER (%)	510	540	490
WATT METER (kW)			
HOUR METER			
AMBIENT CONDITIONS (TEMP/HUMIDITY)			136
OPERATOR COMMENTS	anad wall 7		
Op	ened well 7.		

	Date:11/1/97	Test 1-6	R.Cooper
DATA		EST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	259	260	258
SVE INLET TEMP (F)	105	118	118
DILUTION AIR FLOW (SCFM)	121	100	112
DILUTION AIR TEMP (F)	96	90	90
DILUTION AIR PRESS (INCH WC)			
COMBINED INLET AIR FLOW (SCFM)	380	360	370
COMBINED INLET AIR TEMP (F)		•	
COMBINED INLET AIR PRESS (INCH WC)	0	0.5	
OUTLET GAS FLOW (SCFM)	380	360	37
OUTLET GAS TEMP (F)	121	118	11
OUTLET GAS PRESS (INCH WC)	2	0.5	0.
ADSORBER PRESS TOP (kPa)	-3.4	-3.6	-0.3
ADSORBER PRESS MID (kPa)	-1.8	-2.2	-0.2
ADSORBER PRESS BOTTTOM (kPa)	-0.4	-0.4	-0.
DESORBER PRESS MID (kPa)	-0.4	-0.35	-0.3
DESORBER PRESS BOT (kPa)	-0.5	-0.46	-0.4
	70	56	5
CONDENSER TEMP (F) CHILLED WATER TEMP (F)	39.5	37.8	3
	4.5	4.75	4.
DILUTION AIR TO PDUs (SCFM)	4.0		
TOTAL FLOW TO PDUs	131	141	13
FEED GAS TEMP TO PDUS (F)	131	,	
FEED GAS PRESS TO PDUs (INCH WC)			
PDU COOLING WATER INLET TEMP (F)			
PDU #1 COOLING WATER OUTLET TEMP (F)			
PDU #2 COOLING WATER OUTLET TEMP (F)			
PDU #1 COOLING WATER FLOW (GPM)			
PDU #2 COOLING WATER FLOW (GPM)			
PDU #1 PRESS DROP MID TO OUT (INCH WC)			
PDU #2 PRESS DROP MID TO OUT (INCH WC)			
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)			
SCRUBBER OUTLET PRESS (INCH WC)	108	117	11
COOLING WATER TANK TEMP (F)	100	***	•
SCRUBBER LIQUID FLOW (GPM)			
SCRUBBER pH			
OHM SVE RETURN HEADER PRESS (INCH WC)			
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	24	-24	-2
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-24 453	169.3	1
PDU #1 TEMP (F)	153	159.1	1:
PDU #2 TEMP (F)	148	229	2
DESORBER TEMP MID (F)	277	128	1:
DESORBER TEMP BOTTOM (F)	99	70	•
BOILER PRESS (PSIG)	65	70	
SOLVENT STORAGE TANK LEVEL (INCH)	4000	4550	14
INLET GAS FID READING (PPM)	1360	1550	5
OUTLET GAS FID READING (PPM)	370	460	5
LEL METER (%)			
WATT METER (kW)			4
HOUR METER			1
AMBIENT CONDITIONS (TEMP/HUMIDITY)			
OPERATOR COMMENTS:	Heat-taped PDU inlet piping	. Believe bottom desor	per I/C to be

malfunctioning.

	Date:11/6/97	Test 1-4A	R.Cooper
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	255	275	
SVE INLET TEMP (F)	105	92	
DILUTION AIR FLOW (SCFM)	149		
DILUTION AIR TEMP (F)	86	86	
DILUTION AIR PRESS (INCH WC)			
COMBINED INLET AIR FLOW (SCFM)	404		
COMBINED INLET AIR TEMP (F)			
COMBINED INLET AIR PRESS (INCH WC)	0	-1	
OUTLET GAS FLOW (SCFM)	404	•	
OUTLET GAS TEMP (F)			
OUTLET GAS PRESS (INCH WC)	-3	-7	
ADSORBER PRESS TOP (kPa)	-3.8	-3.5	
ADSORBER PRESS MID (kPa)	-1.8	-3.5 -1.8	
ADSORBER PRESS BOTTTOM (kPa)	-0.2	-0.4	
DESORBER PRESS MID (kPa)	-0.2 -4.4		
DESORBER PRESS BOT (kPa)		-0.2	
CONDENSER TEMP (F)	-4.8	-0.4	
	62	62	
CHILLED WATER TEMP (F)	42	39	
DILUTION AIR TO PDUs (SCFM)	4.5	3.55	
TOTAL FLOW TO PDUs			
FEED GAS TEMP TO PDUs (F)	123	123	
FEED GAS PRESS TO PDUs (INCH WC)	-11		
PDU COOLING WATER INLET TEMP (F)			
PDU #1 COOLING WATER OUTLET TEMP (F)			
PDU #2 COOLING WATER OUTLET TEMP (F)			
PDU #1 COOLING WATER FLOW (GPM)	1.5		
PDU #2 COOLING WATER FLOW (GPM)	0.5	•	
PDU #1 PRESS DROP MID TO OUT (INCH WC)	1.9		
PDU #2 PRESS DROP MID TO OUT (INCH WC)	2.5		
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	14.25		
SCRUBBER OUTLET PRESS (INCH WC)	-11		
COOLING WATER TANK TEMP (F)	96	113	
SCRUBBER LIQUID FLOW (GPM)			
SCRUBBER pH			
OHM SVE RETURN HEADER PRESS (INCH WC)			
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)			
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-16	-12	
PDU #1 TEMP (F)	206	208	
PDU #2 TEMP (F)	131	137	
DESORBER TEMP MID (F)	254	235	
DESORBER TEMP BOTTOM (F)	153	185	
BOILER PRESS (PSIG)	87	87	
SOLVENT STORAGE TANK LEVEL (INCH)			
INLET GAS FID READING (PPM)	1003	853	
OUTLET GAS FID READING (PPM)	57	52	
LEL METER (%)			
WATT METER (kW)			
HOUR METER			188.5

188.

Replaced 11/32" desorber downcomer tubes with 9/32". Installed 3-15/16" wier plates in lower 3 stages of adsorber, to replace the 3-3/16" wier plates. Replaced flapper check valve at desorber inlet. Installed tallest wier plates in stages 5 and 6. Insulated top of desorber and heat-traced line from transfer pot to flapper valve. Installed 10" extension on return line from scrubber to adsorber.

AMBIENT CONDITIONS (TEMP/HUMIDITY)

OPERATOR COMMENTS:

	Date:11/17/97	Test 1-5A	R.Cooper
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	266	268	268
SVE INLET TEMP (F)	100	100	96
DILUTION AIR FLOW (SCFM)	130		
DILUTION AIR TEMP (F)	80	78	78
DILUTION AIR PRESS (INCH WC)	0.5	0.5	0.5
COMBINED INLET AIR FLOW (SCFM)	396	398	398
	98	89	90
COMBINED INLET AIR TEMP (F)	1.5	1	1
COMBINED INLET AIR PRESS (INCH WC)	406	392	396
OUTLET GAS FLOW (SCFM)	92	90	89
OUTLET GAS TEMP (F)	-1	1	1
OUTLET GAS PRESS (INCH WC)	3.6	3.8	3.8
ADSORBER PRESS TOP (kPa)	1.6	1.7	1.7
ADSORBER PRESS MID (kPa)		0.3	0.3
ADSORBER PRESS BOTTTOM (kPa)	0.4	0.7	0.7
DESORBER PRESS MID (kPa)	0.8	0.6	0.6
DESORBER PRESS BOT (kPa)	0.5	52	52
CONDENSER TEMP (F)	52	38	38
CHILLED WATER TEMP (F)	39		4.25
DILUTION AIR TO PDUs (SCFM)	5	5	4.23
TOTAL FLOW TO PDUs		40=	127
FEED GAS TEMP TO PDUs (F)	124	127	
FEED GAS PRESS TO PDUs (INCH WC)	-9	-8	-8
PDU COOLING WATER INLET TEMP (F)	110	118	117
PDU #1 COOLING WATER OUTLET TEMP (F)	100	118	117
PDU #2 COOLING WATER OUTLET TEMP (F)	115	120	118
PDU #1 COOLING WATER FLOW (GPM)	1.5	2	2
PDU #2 COOLING WATER FLOW (GPM)	1	1	1
PDU #1 PRESS DROP MID TO OUT (INCH WC)	4	4.5	4.5
PDU #2 PRESS DROP MID TO OUT (INCH WC)	4	4	4
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	11	11	11
SCRUBBER OUTLET PRESS (INCH WC)	10	10	10
COOLING WATER TANK TEMP (F)	103	116	115
SCRUBBER LIQUID FLOW (GPM)	11.3	11	11.2
SCRUBBER pH	9.9	9.9	9.9
OHM SVE RETURN HEADER PRESS (INCH WC)	-18	-18	-18
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-8	-7	-7
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-16	-16	-16
	215	235	232
PDU #1 TEMP (F)	140	145	150
PDU #2 TEMP (F)	218	221	232
DESORBER TEMP MID (F)	191	186	191
DESORBER TEMP BOTTOM (F)	70	70	67
BOILER PRESS (PSIG)			
SOLVENT STORAGE TANK LEVEL (INCH)	1014	994	1020
INLET GAS FID READING (PPM)	95	120	120
OUTLET GAS FID READING (PPM)	55	120	
LEL METER (%)			
WATT METER (kW)			244.
HOUR METER	In 70's sleer 6	0's dear	low 60's
AMBIENT CONDITIONS (TEMP/HUMIDITY)	low 70's clear 66 Increased cooling water flo	0 0 0.00.	000
OPERATOR COMMENTS:	mideased would water in		

DATA	Date:11/18/97	Test 1-6A	R.Cooper
SVE INLET FLOW (SCFM)	TEST START	TEST MIDPOINT	TEST END
SVE INLET TEMP (F)	266	266	26
DILUTION AIR FLOW (SCFM)	102	103	10
DILUTION AIR TEMP (F)	134	131	
DILUTION AIR PRESS (INCH WC)	962	94	9
COMBINED IN ET AIR ELON (COEM)	0	0	
COMBINED INLET AIR FLOW (SCFM)	400	397	39
COMBINED INLET AIR TEMP (F)	100	103	10
COMBINED INLET AIR PRESS (INCH WC)	0.5	0.5	0.
OUTLET GAS FLOW (SCFM)	400	396	39
OUTLET GAS TEMP (F)	106	106	10
OUTLET GAS PRESS (INCH WC)	0.5	0.5	0.5
ADSORBER PRESS TOP (kPa)	3.8	3.6	3.0
ADSORBER PRESS MID (kPa)	1.8	1.8	
ADSORBER PRESS BOTTTOM (kPa)	0.3	0.3	1.8
DESORBER PRESS MID (kPa)	0.8		0.3
DESORBER PRESS BOT (kPa)	0.6	0.8	0.1
CONDENSER TEMP (F)	70	0.7	0.7
CHILLED WATER TEMP (F)	50	68	70
DILUTION AIR TO PDUS (SCFM)	5.5	49	50
OTAL FLOW TO PDUs	5.5	5.5	5.5
EED GAS TEMP TO PDUs (F)	440		
EED GAS PRESS TO PDUs (INCH WC)	142	141	142
DU COOLING WATER INLET TEMP (F)	10	11	10
PDU #1 COOLING WATER OUTLET TEMP (F)	120	120	120
PDU #2 COOLING WATER OUTLET TEMP (F)	120	118	118
DU #1 COOLING WATER FLOW (GPM)	125	122	122
DU #2 COOLING WATER FLOW (GPM)	2	2	2
DU #1 PRESS DROP MID TO OUT (INCH WC)	2	1	1
DU #2 PRESS DROP MID TO OUT (INCH WC)	3	3	2.5
CRUBBER PRESS DROP INLET TO FAN (INCH WC)	2.5	2.5	2.5
CRUBBER OUTLET PRESS (INCH WC)	11	11	10
OOLING WATER TANK TEMP (F)	10	10	10
CRUBBER LIQUID FLOW (GPM)	115	117	116
CRUBBER pH	9.95	10.6	9.95
	9.66	8.72	9.69
HM SVE RETURN HEADER PRESS (INCH WC)	20	20	20
ONCENTRATOR OUTLET FILTER PRESS (INCH WC)	6	7	7
OOSTER BLOWER SUCTION PRESS (INCH WC)	13	16	16
DU#1 TEMP (F)	254	247	248
DU #2 TEMP (F)	157	156	158
ESORBER TEMP MID (F)	243	243	247
ESORBER TEMP BOTTOM (F)	187	191	191
DILER PRESS (PSIG)	67	67	67
OLVENT STORAGE TANK LEVEL (INCH)			07
LET GAS FID READING (PPM)	1032	1011	1022
UTLET GAS FID READING (PPM)	267	262	265
L METER (%)		202	200
ATT METER (kW)			
OUR METER			000 =
MBIENT CONDITIONS (TEMP/HUMIDITY)	high 60's clear mic	70's clear mic	268.5
PERATOR COMMENTS:	- IIII	mic mic	i 70's dear

	Date:11/20/97	Test 2-6		R.Cooper
DATA	TEST START	TEST MIDPOINT		TEST END
SVE INLET FLOW (SCFM)	261		261	263
SVE INLET TEMP (F)	104		104	105
DILUTION AIR FLOW (SCFM)	124		124	123
DILUTION AIR TEMP (F)	90		92	92
DILUTION AIR PRESS (INCH WC)	0		0	0
COMBINED INLET AIR FLOW (SCFM)	385		385	386
COMBINED INLET AIR TEMP (F)	100		104	106
COMBINED INLET AIR PRESS (INCH WC)	0.5		0.5	0.5
OUTLET GAS FLOW (SCFM)	385		385	386
OUTLET GAS TEMP (F)	103		104	104
OUTLET GAS PRESS (INCH WC)	0		0	0
ADSORBER PRESS TOP (kPa)	3.8		3.8	3.8
ADSORBER PRESS MID (kPa)	1.6		1.6	1.6
ADSORBER PRESS BOTTTOM (kPa)	0.25		0.25	0.25
	0.1		0.1	0.1
DESORBER PRESS MID (kPa)	118		0.18	0.18
DESORBER PRESS BOT (kPa)	65		68	68
CONDENSER TEMP (F)	48		50	49
CHILLED WATER TEMP (F)	na	_	na	
DILUTION AIR TO PDUs (SCFM)	110			
TOTAL FLOW TO PDUs	na	_	na	
FEED GAS TEMP TO PDUS (F)	na	_	na	
FEED GAS PRESS TO PDUs (INCH WC)	na		na	
PDU COOLING WATER INLET TEMP (F)	na		na	
PDU #1 COOLING WATER OUTLET TEMP (F)	na	_	па	
PDU #2 COOLING WATER OUTLET TEMP (F)	na	_	na	
PDU #1 COOLING WATER FLOW (GPM)	na	_	na	
PDU #2 COOLING WATER FLOW (GPM)	na	_	na	
PDU #1 PRESS DROP MID TO OUT (INCH WC)	na	_	na	
PDU #2 PRESS DROP MID TO OUT (INCH WC)	na	_	na	
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	na	_	na	
SCRUBBER OUTLET PRESS (INCH WC)	na	_	na	
COOLING WATER TANK TEMP (F)	па	_	па	
SCRUBBER LIQUID FLOW (GPM)	na	_	na	
SCRUBBER PH	20	1	20	20
OHM SVE RETURN HEADER PRESS (INCH WC)	20		8	8
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	16		16	16
BOOSTER BLOWER SUCTION PRESS (INCH WC)	na	па	na	
PDU #1 TEMP (F)	na	na	na	
PDU #2 TEMP (F)	264		222	212
DESORBER TEMP MID (F)	180		200	243
DESORBER TEMP BOTTOM (F)	67		67	67
BOILER PRESS (PSIG)	0,		0,	8.25
SOLVENT STORAGE TANK LEVEL (INCH)	966		968	963
INLET GAS FID READING (PPM)	590		585	572
OUTLET GAS FID READING (PPM)	590	,	303	JIZ
LEL METER (%)				
WATT METER (kW)				316.5
HOUR METER	mid CO's faces	60's 70 sleet	les	v 70's clear
AMBIENT CONDITIONS (TEMP/HUMIDITY) OPERATOR COMMENTS:	mid 60's foggy Concentrate and conde	60's - 70 clear ense only.	101	v 105 Gedi

	Date:12/19/97		Test 2-5		R.Cooper
DATA	TEST START		TEST MIDPOIN	T	TEST END
SVE INLET FLOW (SCFM)		263		262	
SVE INLET TEMP (F)		84.6		85	
DILUTION AIR FLOW (SCFM)		139		142	
DILUTION AIR TEMP (F)		78		78	
DILUTION AIR PRESS (INCH WC)					
COMBINED INLET AIR FLOW (SCFM)	•	402		404	
COMBINED INLET AIR TEMP (F)		92		92	
COMBINED INLET AIR PRESS (INCH WC)				UL.	
OUTLET GAS FLOW (SCFM)					
OUTLET GAS TEMP (F)		80		82	
OUTLET GAS PRESS (INCH WC)		0.5			
ADSORBER PRESS TOP (kPa)		4.4		0.5	
ADSORBER PRESS MID (kPa)				4.4	
ADSORBER PRESS BOTTTOM (kPa)		2.3		2.3	
DESORBER PRESS MID (kPa)		0.6		0.6	
DESORBER PRESS BOT (kPa)	(0.24		0.24	
CONDENSER TEMP (F)		0.2		0.2	
CHILLED WATER TEMP (F)		50		50	
DILUTION AIR TO PDUS (SCFM)		38		0.39	
FOTAL FLOW TO PDUS	na		na		
FEED GAS TEMP TO PDUs (F)					
FEED GAS PRESS TO PDUS (INCH WC)	na		na		
PDU COOLING WATER INLET TEMP (F)	na		na		
PDU #1 COOLING WATER OUTLET TEMP (F)	na		na		
PDU #2 COOLING WATER OUTLET TEMP (F)	na		na		
PDU #1 COOLING WATER COTLET TEMP (F)	na		na		
PDU #2 COOLING WATER FLOW (GPM)	na		na		
	na		na		
PDU #1 PRESS DROP MID TO OUT (INCH WC)	na		na		
PDU #2 PRESS DROP MID TO OUT (INCH WC)	na		па		
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	na		na		
SCRUBBER OUTLET PRESS (INCH WC)	na		na		
COOLING WATER TANK TEMP (F)	na		na		
CRUBBER LIQUID FLOW (GPM)	na		na		
CRUBBER pH	na		na		
OHM SVE RETURN HEADER PRESS (INCH WC)		30		30	
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)		12		12	
OOSTER BLOWER SUCTION PRESS (INCH WC)		18		18	
DU#1 TEMP (F)	· na		na		
DU #2 TEMP (F)	na		na		
ESORBER TEMP MID (F)	2	255		217	
ESORBER TEMP BOTTOM (F)	1	191		173	
OILER PRESS (PSIG)		65		65	
OLVENT STORAGE TANK LEVEL (INCH)					10
NLET GAS FID READING (PPM)	3	353		320	,,
UTLET GAS FID READING (PPM)	1	60		70	
EL METER (%)					
ATT METER (kW)					
OUR METER					733.5
	cool clear	cool	dear		100.0
PERATOR COMMENTS:					

SVE INLET TEMP (F)		Date:1/7/98 13:00	Test 2-3	M.Gray
SVE INLET TEMP (F)	DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET TEMP (F) 1119 112 111 112 112 113 114 114 114 114 114 114 114 114 114 115 114 115 114 115	SVE INLET FLOW (SCFM)	209	208	215
DILUTION AIR FLOW (SCFM) 210 210 22 DILUTION AIR TEMP (F) 84 80 1 DILUTION AIR PRESS (INCH WC) -1 -1 -1 COMBINED INLET AIR FLOW (SCFM) 400 400 44 COMBINED INLET AIR TEMP (F) 100 97 5 COMBINED INLET AIR PRESS (INCH WC) -1.5 -105 -1 OUTLET GAS FLOW (SCFM) 425 424 44 OUTLET GAS TEMP (F) 100 93.3 87 OUTLET GAS TEMP (F) 100 93.3 87 OUTLET GAS PRESS (INCH WC) -505 -5.5 -5.5 ADSORBER PRESS TOP (KPa) 4.4 4.4 4.4 -4.5 -4.5 -6.2 -6.2		119	112	108
DILUTION AIR TEMP (F) 84 80 1 DILUTION AIR PRESS (INCH WC) -1 -1 -1 COMBINED INLET AIR FLOW (SCFM) 400 400 40 COMBINED INLET AIR TEMP (F) 100 97 5 COMBINED INLET AIR PRESS (INCH WC) -1.5 -105 -1 OUTLET GAS FLOW (SCFM) 425 424 4 OUTLET GAS TEMP (F) 100 93.3 87 OUTLET GAS TEMP (F) -505 -5.5 -5.5 ADSORBER PRESS MID (kPa) -2.25 -2.25 -2.25 -2.25 -2.25 -2.25 -2.25 -2.25 -2.25 -2.25 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 -2.2 <t< td=""><td></td><td>210</td><td>210</td><td>210</td></t<>		210	210	210
DILUTION AIR PRESS (INCH WC) COMBINED INLET AIR FLOW (SCFM) COMBINED INLET AIR TEMP (F) COMBINED INLET AIR TEMP (F) COMBINED INLET AIR PRESS (INCH WC) OUTLET GAS FLOW (SCFM) OUTLET GAS FLOW (SCFM) OUTLET GAS TEMP (F) OUTLET GAS TEMP		84	80	78
COMBINED INLET AIR FLOW (SCFM) COMBINED INLET AIR TEMP (F) COMBINED INLET AIR TEMP (F) COMBINED INLET AIR TEMP (F) COMBINED INLET AIR PRESS (INCH WC) COMBINED INLET AIR PRESS (INCH WC) COMBINED INLET AIR PRESS (INCH WC) COUTLET GAS FLOW (SCFM) COUTLET GAS FLOW (SCFM) COUTLET GAS TEMP (F) COUTLET GAS TEMP (F) COUTLET GAS PRESS (INCH WC) COUTLET GAS PRESS MID (kPa) COUTLET COUTLET TEMP (F) COUTLET GAS PRESS TO PDUS (INCH WC) COUTLET COUTLING WATER FLOW (GPM) COUTLET GAS PRESS DROP MID TO OUT (INCH WC) COUTLET GAS PRESS DROP MID TO OUT (INCH WC) COUTLET GAS PRESS DROP MID TO OUT (INCH WC) COUTLET COUTLET TEMP (F) COUTLET CAS COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET TRESS (INCH WC) COUTLET COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET COUTLET TO FAN (INCH WC) COUTLET COUTLET COUTLET TO FAN (INCH WC) CO		-1	-1	-1
COMBINED INLET AIR TEMP (F) COMBINED INLET AIR PRESS (INCH WC) OUTLET GAS FLOW (SCFM) OUTLET GAS TEMP (F) OUTLET GAS PRESS (INCH WC) OUTLET GAS PRESS (INCH WC) ADSORBER PRESS (INCH WC) ADSORBER PRESS MID (kPa) ADSORBER PRESS MID (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS BOTT (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) CHILLED WATER TEMP (F) DILUTION AIR TO PDUS (SCFM) FEED GAS TEMP TO PDUS (INCH WC) FEED GAS PRESS TO POUS (INCH WC) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #1 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #3 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) PDU #4 PRESS DROP MID TO OUT (INCH WC) P		400	400	425
COMBINED INLET AIR PRESS (INCH WC) OUTLET GAS FLOW (SCFM) OUTLET GAS TEMP (F) OUTLET GAS TEMP (F) OUTLET GAS PRESS (INCH WC) ADSORBER PRESS (INCH WC) ADSORBER PRESS TOP (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS MID (kPa) DESORBER PRESS BOTTTOM (kPa) DESORBER PRESS BOTTTOM (kPa) DESORBER PRESS BOT (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) TO CONDENSER TEMP (F) TO TO TO TO TO TO TO TO TO T		100	97	92
OUTLET GAS FLOW (SCFM) OUTLET GAS TEMP (F) OUTLET GAS TEMP (F) OUTLET GAS TEMP (F) OUTLET GAS PRESS (INCH WC) ADSORBER PRESS (INCH WC) ADSORBER PRESS TOP (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS BOTTOM (kPa) ADSORBER PRESS BOTTOM (kPa) DESORBER PRESS BOTTOM (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) TO 66.6 62 CONDENSER TEMP (F) TO		-1.5	-105	-1.2
OUTLET GAS TEMP (F) OUTLET GAS PRESS (INCH WC) OUTLET GAS PRESS (INCH WC) ADSORBER PRESS TOP (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS BOTTTOM (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS BOT (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) TO 66.6 62 CONDENSER TEMP (F) TO 66.6 62 CHILLED WATER TEMP (F) TO 66.6 62 CHILLED WATER TEMP (F) TOTAL FLOW TO PDUS (SCFM) TOTAL FLOW TO PDUS (F) FEED GAS TEMP TO PDUS (F) FEED GAS TEMP TO PDUS (INCH WC) TO TAL FLOW TO PDUS (INCH WC) TO TAL FLOW TO PDUS (F) TO TAL FLOW TO PDUS (F) THE DESORBER TO PDUS (INCH WC) TO TAL FLOW TO PDUS (F) TO TAL FLOW TO TAL FLOW TO PDUS (F) TO TAL FLOW TO TA	·	425	424	433
OUTLET GAS PRESS (INCH WC) ADSORBER PRESS TOP (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS MID (kPa) DESORBER PRESS BOTT (kPa) CONDENSER TEMP (F) TO GEG.6 GEG.7 CONDENSER TEMP (F) TO GEG.6 GEG.7 CHILLED WATER TEMP (F) DILUTION AIR TO PDUS (SCFM) TOTAL FLOW TO PDUS FEED GAS TEMP TO PDUS (F) FEED GAS TEMP TO PDUS (INCH WC) TOTAL FLOW WATER INLET TEMP (F) TO TO TOUTLY COOLING WATER INLET TEMP (F) TO TO TO TO TO TO TO TO TO TO TO TO TO TO T		100	93.3	87.1
ADSORBER PRESS TOP (kPa) ADSORBER PRESS MID (kPa) ADSORBER PRESS MID (kPa) DESORBER PRESS BOTTTOM (kPa) DESORBER PRESS BOTTTOM (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) CONDENSER TEMP (F) TO CONDENSER TEMP (F) TO TO TO TO TO TO TO TO TO T		-505	-5.5	-6
ADSORBER PRESS MID (kPa) ADSORBER PRESS BOTTTOM (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) CHILLED WATER TEMP (F) TO 66.6 CHILLED WATER TEMP (F) TOAL FLOW TO PDUS (SCFM) TOTAL FLOW TO PDUS (F) FEED GAS TEMP TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) DBU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #1 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) RAPU #2 PRESS DROP MID TO OUT (INCH WC) RAPU #3 RAPU #4 RAP		-4.4	-4.4	-4.4
ADSORBER PRESS BOTTTOM (kPa) DESORBER PRESS MID (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) CONDENSER TEMP (F) CHILLED WATER TEMP (F) DILUTION AIR TO PDUS (SCFM) FEED GAS TEMP TO PDUS (F) FEED GAS PRESS TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER FLOW (GPM) PDU #1 COOLING WATER FLOW (GPM) PDU #1 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) Ra PDU #2 PRESS DROP MID TO OUT (INCH WC) Ra Ra PDU #2 PRESS DROP MID TO OUT (INCH WC) Ra Ra Ra Ra RA SCRUBBER PRESS (INCH WC) Ra Ra Ra Ra Ra Ra Ra Ra Ra R		-2.25	-2.25	-2.25
DESORBER PRESS MID (kPa) DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) CONDENSER TEMP (F) TO 66.6 CHILLED WATER TEMP (F) DILUTION AIR TO PDUS (SCFM) TOTAL FLOW TO PDUS FEED GAS TEMP TO PDUS (F) FEED GAS PRESS TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #3 PRESS DROP MID TO OUT (INCH WC) RA R		-0.3	-0.3	-0.3
DESORBER PRESS BOT (kPa) CONDENSER TEMP (F) TO 66.6 CHILLED WATER TEMP (F) DILUTION AIR TO PDUS (SCFM) TOTAL FLOW TO PDUS FEED GAS TEMP TO PDUS (F) FEED GAS PRESS TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 PRESS DROP MID TO OUT (INCH WC) RAPPU #2 PRESS DROP MID TO OUT (INCH WC) RAPPU #2 PRESS DROP INLET TO FAN (INCH WC) RAPPU #2 PRESS DROP INLET TO FAN (INCH WC) RAPPU #3 RAPPU #4 RA		-0.3	-0.3	-0.3
CONDENSER TEMP (F) 70 66.6 62 CHILLED WATER TEMP (F) 38 35.3 DILUTION AIR TO PDUS (SCFM) na		-0.2	-0.2	-0.2
CHILLED WATER TEMP (F) DILUTION AIR TO PDUS (SCFM) TOTAL FLOW TO PDUS FEED GAS TEMP TO PDUS (F) FEED GAS PRESS TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) SCRUBBER PRESS DROP INLET TO FAN (INCH WC) NA RA RA SCRUBBER OUTLET PRESS (INCH WC) NA RA RA RA RA SSRUBBER OUTLET PRESS (INCH WC) NA RA RA RA RA SSRUBBER OUTLET PRESS (INCH WC) NA RA RA RA RA RA RA RA RA RA		70	66.6	62.1
DILUTION AIR TO PDUS (SCFM) TOTAL FLOW TO PDUS FEED GAS TEMP TO PDUS (F) FEED GAS PRESS TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) SCRUBBER PRESS DROP INLET TO FAN (INCH WC) NA NA NA NA NA NA NA NA NA N		38	35.3	
TOTAL FLOW TO PDUS FEED GAS TEMP TO PDUS (F) FEED GAS PRESS TO PDUS (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) SCRUBBER PRESS DROP INLET TO FAN (INCH WC) Ra Ra Ra RA SCRUBBER OUTLET PRESS (INCH WC) RA RA RA RA RA RA RA RA RA R	• • •	na	na	na
FEED GAS TEMP TO PDUs (F) FEED GAS PRESS TO PDUs (INCH WC) PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F) PDU #1 COOLING WATER FLOW (GPM) PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM) PDU #2 PRESS DROP MID TO OUT (INCH WC) PDU #2 PRESS DROP MID TO OUT (INCH WC) SCRUBBER PRESS DROP INLET TO FAN (INCH WC) Ra				
FEED GAS PRESS TO PDUs (INCH WC) na na na PDU COOLING WATER INLET TEMP (F) na na na PDU #1 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	па
PDU COOLING WATER INLET TEMP (F) na na na PDU #1 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	па
PDU #1 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	na
PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		па	na	na
PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	па
PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	na
PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	na
PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na		na	na	na
SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na na na		na	na	na
SCRUBBER OUTLET PRESS (INCH WC) na na na		na	па	na
		na	na	na
COOLING WATER TANK TEMP (F) na na na na	COOLING WATER TANK TEMP (F)	na	na	na
SCRUBBER LIQUID FLOW (GPM) na na na		na	na	na
SCRUBBER pH na na na		na	na	na
OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -	OHM SVE RETURN HEADER PRESS (INCH WC)	-30	-30	-30
CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15		-15	-15	-15
BOOSTER BLOWER SUCTION PRESS (INCH WC) -18 -16 -			-16	-16
PDU #1 TEMP (F) na na na	PDU #1 TEMP (F)	na	na	na
PDU #2 TEMP (F) na na na		na	na	na
DESORBER TEMP MID (F) 262 247.8 2	DESORBER TEMP MID (F)	262	247.8	264
DESORBER TEMP BOTTOM (F) 222 232.6 2	DESORBER TEMP BOTTOM (F)	222	232.6	238
BOILER PRESS (PSIG) 45 45	BOILER PRESS (PSIG)	45	45	45
SOLATIAL OLOLOGO LUMIN CEAST (MAIN)	SOLVENT STORAGE TANK LEVEL (INCH)	11		11.25
MALLI CAOTIDITO (TTM)	INLET GAS FID READING (PPM)	1420		1420
		306	405	530
LEL METER (%)	LEL METER (%)			
WATT METER (kW)	WATT METER (kW)			
HOOK WETER	HOUR METER			757
AMBIENT CONDITIONS (TEMP/HUMIDITY) 70 /clear 70 / clear 60/hi clouds	AMBIENT CONDITIONS (TEMP/HUMIDITY)		• • • • • • • • • • • • • • • • • • • •	
OPERATOR COMMENTS: installed Teflon flapper valve, 1"vent on top of desorber	OPERATOR COMMENTS:	installed Tefion flapper va	live, 1"vent on top of desor	ber

	Date:1/7/98 17:27	Test 3-1	M.Gray
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	215	210	220
SVE INLET TEMP (F)	108	105	106
DILUTION AIR FLOW (SCFM)	210	205	180
DILUTION AIR TEMP (F)	78	78	74
DILUTION AIR PRESS (INCH WC)	-1	-1	-1
COMBINED INLET AIR FLOW (SCFM)	425	415	410
COMBINED INLET AIR TEMP (F)	92	90.4	90
COMBINED INLET AIR PRESS (INCH WC)	-1.5	-1.4	-1.2
OUTLET GAS FLOW (SCFM)	433	422	420
OUTLET GAS TEMP (F)	87.1	92	88.2
OUTLET GAS PRESS (INCH WC)	-6	-6	-5.7
ADSORBER PRESS TOP (kPa)	-4.4	-0 -4.4	-5.7 -4.4
ADSORBER PRESS MID (kPa)	-2.3	-2.3	
ADSORBER PRESS BOTTTOM (kPa)	-2.3 -0.3		-2.3
		-0.3	-0.3
DESORBER PRESS MID (kPa)	-0.4	-0.4	-0.7
DESORBER PRESS BOT (kPa)	-0.28	-0.28	-0.5
CONDENSER TEMP (F)	60.6	134	92
CHILLED WATER TEMP (F)	34.5	no water	38.3
DILUTION AIR TO PDUs (SCFM)	5.1	5	4.5
TOTAL FLOW TO PDUs			
FEED GAS TEMP TO PDUs (F)	127.5	135.8	132.8
FEED GAS PRESS TO PDUs (INCH WC)			
PDU COOLING WATER INLET TEMP (F)	126	116	122
PDU #1 COOLING WATER OUTLET TEMP (F)	116	116	118
PDU #2 COOLING WATER OUTLET TEMP (F)	125	124	126
PDU #1 COOLING WATER FLOW (GPM)	3	3	3
PDU #2 COOLING WATER FLOW (GPM)	2.5	1.5	1.6
PDU #1 PRESS DROP MID TO OUT (INCH WC)	1.5	2	2
PDU #2 PRESS DROP MID TO OUT (INCH WC)	1.5	2	2.25
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	14	14	14
SCRUBBER OUTLET PRESS (INCH WC)	-12	-12	-12
COOLING WATER TANK TEMP (F)	117.1	113.3	114.7
SCRUBBER LIQUID FLOW (GPM)	9.4	12.7	9.5
SCRUBBER pH	9.99	9.94	9.96
OHM SVE RETURN HEADER PRESS (INCH WC)	-30	-30	-30
CONCENTRATOR OUTLET FILTER PRESS (INCH WO	-15	-15	-15
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-16	-16	-16
PDU #1 TEMP (F)	241	255.9	269
PDU #2 TEMP (F)	152	159.5	160.5
DESORBER TEMP MID (F)	262.7	277.3	262
DESORBER TEMP BOTTOM (F)	237.8	238	235
BOILER PRESS (PSIG)	45	45	45
SOLVENT STORAGE TANK LEVEL (INCH)	11.25	11.25	11.25
INLET GAS FID READING (PPM)	1420	1460	1450
OUTLET GAS FID READING (PPM)	532	517	390
LEL METER (%)			
WATT METER (kW)			
HOUR METER			761
AMBIENT CONDITIONS (TEMP/HUMIDITY) OPERATOR COMMENTS:	60 dark 5	9 dark 58	8 dark

DATA TEST START TEST MIDPOINT TEST END SVE INLET FLOW (SCFM) 265 255 256 SVE INLET TEMP (F) 91 97.3 98.7 DILUTION AIR FLOW (SCFM) 65 70 70 DILUTION AIR TEMP (F) 65 70 70 DILUTION AIR TEMP (F) 82 92 9.5 COMBINED INLET AIR TEMP (F) 82 92 91 COMBINED INLET AIR TEMP (F) 82 92 91 COMBINED INLET AIR TEMP (F) 82 92 91 OUTLET GAS TEMP (F) 82 92 91 OUTLET GAS FLOW (SCFM) 421 415 416 OUTLET GAS PRESS (INCH WC) -6 -6 -5.5 ADSORBER PRESS STOP (MPa) -2.2 -2.2 -2.2 -2.2 ADSORBER PRESS STOP (MPa) -0.25 -0.25 -0.2 -0.2 DESORBER PRESS SEDOT (KPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 35.6 34.5 34.6 DILUTION		Date:1/8/98 08:30	Test 2-4	M.Gray
SVE INLET TEMP (F)	DATA	TEST START	TEST MIDPOINT	TEST END
DILLITION AIR FLOW (SCFM)	SVE INLET FLOW (SCFM)	262	255	256
DILUTION AIR TEMP (F)	SVE INLET TEMP (F)	91	97.9	98.7
DILLITION AIR PRESS (INCH WC)	DILUTION AIR FLOW (SCFM)	65	70	70
DILLITION AIR PRESS (INCH WC)	DILUTION AIR TEMP (F)	76	80	80
COMBINED INLET AIR TEMP (F) 325 326 COMBINED INLET AIR TEMP (F) 82 92 91 COMBINED INLET AIR TEMP (F) -0.8 -0.9 -0.9 OUTLET GAS FLOW (SCFM) 421 415 415 OUTLET GAS TEMP (F) 824 96 94 OUTLET GAS PRESS (INCH WC) -6 6 6 -5.5 ADSORBER PRESS SIND (KPa) -2.2 -2.2 -2.25 ADSORBER PRESS BOTTOM (KPa) -0.25 -0.2 -0.2 DESORBER PRESS BOT (KPa) -0.18 -0.17 -0.14 ADSORBER PRESS BOT (KPa) -0.18 -0.17 -0.12 DESORBER PRESS BOT (KPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 75 80 80 CHILLED WATER TEMP (F) 35.6 34.5 34.6 DILUTION AIR TO PDUS (F) na na na FEED GAS TEMP TO POUS (F) na na na FEED GAS TEMP TO POUS (INCH WC) na na na FEED GAS TEMP SESS		-0.5	-0.5	-0.5
COMBINED INLET AIR TEMP (F)	COMBINED INLET AIR FLOW (SCFM)	337	325	326
COMBINED INJET JAIR PRESS (INCH WC) -0.8 -0.9 -0.9 OUTLET GAS FLOW (SCFM) 421 415 415 OUTLET GAS FLOW (SCFM) 82.4 96 94 OUTLET GAS PRESS (INCH WC) -6 -6 -6 -5.5 ADSORBER PRESS SID (PR) -4.4 -4.4 -4.4 ADSORBER PRESS SID (PR) -0.25 -0.25 -0.2 -0.2 DESORBER PRESS BOT (KPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 75 80 80 CHILLED WATER TEMP (F) 35.6 34.5 34.6 DILLITION AIR TO PDIUS (SCFM) na na na TOTAL FLOW TO PDUS (F) na na na na FEED GAS TEMP TO PDUS (F) na na na na FEED GAS TEMP TO PDUS (F) na na na na PDU \$\frac{1}{2}\$ COOLING WATER RUTET TEMP (F) na na na na PDU \$\frac{2}{2}\$ COOLING WATER RUW (GPM) na na na na		82	92	91
OUTLET GAS FLOW (SCFM) 421 415 96 94 OUTLET GAS TEMP (F) 82.4 96 94 OUTLET GAS PRESS (INCH WC) -6 -6 -5.5 ADSORBER PRESS TOP (kPa) -4.4 -4.4 -4.4 ADSORBER PRESS BOTTOM (kPa) -0.25 -0.22 -2.22 ADSORBER PRESS BOTTOM (kPa) -0.18 -0.17 -0.12 DESORBER PRESS BOT (kPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 75 80 80 CHILLED WATER TEMP (F) 35.6 34.5 34.5 CHILLED WATER TEMP (F) 75 80 36.6 DILJTION AIR TO PDUS (SCFM) na na na TEED GAS TEMP TO PDUS (INCH WC) na na na PDU 42 COOLING WATER NILET TEMP (F) na na na PDU 42 COOLING WATER NILET TEMP (F) na na na PDU 42 COOLING WATER RLOW (GPM) na na na PDU 42 COOLING WATER RLOW (GPM) na na na		-0.8	-0.9	-0.9
OUTLET GAS TEMP (F) 82.4 96 94 OUTLET GAS PRESS (INCH WC) -6 -6 -5.5 ADSORBER PRESS (INCH WC) -4.4 -4.4 -4.4 ADSORBER PRESS MID (kPa) -2.2 -2.2 -2.2 -2.25 ADSORBER PRESS MID (kPa) -0.25 -0.2 -0.2 DESORBER PRESS BOT (kPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 75 80 80 80 CHILLED WATER TEMP (F) 35.6 34.5 34.6 DILUTION AIR TO PDUS (SCFM) na na na FEED GAS TEMP TO PDUS (F) na na na FEED GAS TEMP TO PDUS (F) na na na FEED GAS PRESS TO PDUS (INCH WC) na na na FEED GAS PRESS TO PDUS (INCH WC) na na na FEED GAS PRESS TOR PDUS (INCH WC) na na na PDU #1 COOLING WATER RLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na		421	415	415
OUTLET GAS PRESS (INCH WC) -6 -6 -5.5 ADSORBER PRESS TOP (kPa) -4.4 -4.4 -4.4 ADSORBER PRESS MID (kPa) -2.2 -2.2 -2.2 ADSORBER PRESS BOTTTOM (kPa) -0.25 -0.25 -0.2 -0.2 DESORBER PRESS BOT (KPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 75 80 80 CHILLED WATER TEMP (F) 35.6 34.5 34.6 DILUTION AIR TO PDUS (SCFM) na na na FEED GAS PRESS TO PDUS (INCH WC) na na na FEED GAS PRESS TO PDUS (INCH WC) na na na PDU #2 COOLING WATER (INCH WC) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER PLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na </td <td></td> <td>82.4</td> <td>96</td> <td>94</td>		82.4	96	94
ADSORBER PRESS TOP (kPa) ADSORBER PRESS MID (kPa) ADSORBER MID (kPa)	The state of the s	-6	-6	-5.5
ADSORBER PRESS MID (kPa) -2.2 -2.25	,		-4.4	
ADSORBER PRESS BOTTTOM (kPa) -0.25 -0.25 -0.2 -0.2 DESORBER PRESS MID (kPa) -0.25 -0.25 -0.2 -0.2 -0.2 -0.2 DESORBER PRESS MID (kPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) .75 80 80 80 CHILLED WATTER TEMP (F) .35.6 34.5 34.6 DILLUTION AIR TO PDUS (SCFM) na na na na na TOTAL FLOW TO PDUS (SCFM) na na na na na na TOTAL FLOW TO PDUS (SCFM) na			-2.2	-2.25
DESORBER PRESS MID (KPa) -0.25 -0.25 -0.2 DESORBER PRESS BOT (KPa) -0.18 -0.17 -0.14 CONDENSER TEMP (F) 75 80 80 RESURTED RESERVER (F) 35.6 34.5 34.6 DILUTION AIR TO PDUS (SCFM) na na na na DILUTION AIR TO PDUS (SCFM) na na na na FEED GAS TEMP TO PDUS (F) na na na na na PEED GAS TEMP TO PDUS (INCH WC) na na na na PDU #1 COOLING WATER INLET TEMP (F) na na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na na PDU #2 COOLING WATER FLOW (GPM) na na na na PDU #2 COOLING WATER FLOW (GPM) na na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na na PDU #3 PRESS PRESS (INCH WC) na na na na PDU #4 PRESS (INCH WC) na na na na PDU #4 PRESS (INCH WC) na na na na PDU #4 PRESS (INCH WC) na na na na PDU #4 PRESS (INCH WC) na na na na PDU #4 TEMP (F) na na na na na PDU #4 TEMP (F) na na na na na na na PDU #4 TEMP (F) na na na na na na na n	· · ·			
DESORBER PRESS BOT (kPa) -0.18 -0.17 -0.14	• •			-0.2
CONDENSER TEMP (F) 75 80 80 CHILLED WATER TEMP (F) 35.6 34.5 34.6 DILUTION AIR TO PDUS (SCFM) na na na TOTAL FLOW TO PDUS (F) na na na FEED GAS TEMP TO PDUS (INCH WC) na na na FEED GAS PRESS TO PDUS (INCH WC) na na na PDU COOLING WATER FLOW (FPM) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER LIQUID FLOW (GPM) na na na		-0.18	-0.17	-0.14
CHILLED WATER TEMP (F) 35.6 34.5 34.6 DILUTION AIR TO PDUS (SCFM) na na na TOTAL FLOW TO PDUS (F) na na na FEED GAS TEMP TO PDUS (F) na na na FEED GAS PRESS TO PDUS (INCH WC) na na na PDU COOLING WATER INLET TEMP (F) na na na PDU #1 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER DOLLET TERESS (INCH WC) -30 -30		75	80	80
DILUTION AIR TO PDUS (SCFM) na na na na na FEED GAS TEMP TO PDUS (F) na na na na na FEED GAS TEMP TO PDUS (F) na na na na na na na n		35.6	34.5	34.6
TOTAL FLOW TO PDUS (F) FEED GAS TEMP TO PPUS (F) FEED GAS TRESS TO PDUS (INCH WC) RED GAS PRESS TO PDUS (INCH WC) RED GAS REST TO PDUS (INCH WC) RED GAS REST TO PDUS (INCH WC) RED GAS REST TO REST REST REST REST REST REST REST REST		na	na	na
FEED GAS TEMP TO PDUS (F)				
FEED GAS PRESS TO PDUs (INCH WC) na na na na na na na n		na	na	na
PDU COOLING WATER INLET TEMP (F) na na na PDU #1 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na SCRUBBER PH na na na OOLING WATER TANK TEMP (F) na na na SCRUBBER PH na na na OUTLET PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -20 -20 -20 D	* *			na
PDU #1 COOLING WATER OUTLET TEMP (F) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #2 TEMP (F) na na na na DESORBER TEMP BOTTOM (F) 268 26		na	na	na
PDU #2 COOLING WATER OUTLET TEMP (F) na na na PDU #1 COOLING WATER FLOW (GPM) na na na PDU #2 COOLING WATER FLOW (GPM) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243		na	na	na
PDU #2 COOLING WATER FLOW (GPM) na na na PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na DESORBER TEMP (F) na na na DESORBER TEMP BID (F) 268 262 263 DESORBER TEMP BID (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SO		na	na	na
PDU #1 PRESS DROP MID TO OUT (INCH WC) na na na PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na DESORBER TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.5		na	na	na
PDU #2 PRESS DROP MID TO OUT (INCH WC) na na na SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (KW) 45 45 45	PDU #2 COOLING WATER FLOW (GPM)	na	na	na
SCRUBBER PRESS DROP INLET TO FAN (INCH WC) na na na SCRUBBER OUTLET PRESS (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -20 -20 -20 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 </td <td>PDU #1 PRESS DROP MID TO OUT (INCH WC)</td> <td>na</td> <td>na</td> <td>na</td>	PDU #1 PRESS DROP MID TO OUT (INCH WC)	na	na	na
SCRUBBER OUTLET PRESS (INCH WC) na na na COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER PH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 45 45 45 HOUR METER 771 71 71 71 71 71	PDU #2 PRESS DROP MID TO OUT (INCH WC)	na	na	na
COOLING WATER TANK TEMP (F) na na na SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER pH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (KW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	na	na	na
SCRUBBER LIQUID FLOW (GPM) na na na SCRUBBER pH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	SCRUBBER OUTLET PRESS (INCH WC)	na	na	na
SCRUBBER pH na na na OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	COOLING WATER TANK TEMP (F)	na	na	na
OHM SVE RETURN HEADER PRESS (INCH WC) -30 -30 -30 CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	SCRUBBER LIQUID FLOW (GPM)	na	na	na
CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	SCRUBBER pH	na	na	na
CONCENTRATOR OUTLET FILTER PRESS (INCH WC) -15 -15 -15 BOOSTER BLOWER SUCTION PRESS (INCH WC) -20 -20 -20 PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	OHM SVE RETURN HEADER PRESS (INCH WC)	-30	-30	-30
PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy		-15	-15	-15
PDU #1 TEMP (F) na na na PDU #2 TEMP (F) na na na DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	BOOSTER BLOWER SUCTION PRESS (INCH WC)	-20	-20	-20
DESORBER TEMP MID (F) 268 262 263 DESORBER TEMP BOTTOM (F) 235 241 243 BOILER PRESS (PSIG) 45 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) HOUR METER 771 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy		na	na	na
DESORBER TEMP BOTTOM (F) BOILER PRESS (PSIG) SOLVENT STORAGE TANK LEVEL (INCH) INLET GAS FID READING (PPM) OUTLET GAS FID READING (PPM) WATT METER (kW) HOUR METER AMBIENT CONDITIONS (TEMP/HUMIDITY) 1235 45 45 45 45 45 11.5 11.5 11.5 11.75 11.5 11.5 11.6 1820 1860 639 LEL METER (%) WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	PDU #2 TEMP (F)	na	na	na
BOILER PRESS (PSIG) 45 45 SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	DESORBER TEMP MID (F)	268	262	263
SOLVENT STORAGE TANK LEVEL (INCH) 11.5 11.5 11.75 INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	DESORBER TEMP BOTTOM (F)	235	241	243
INLET GAS FID READING (PPM) 1900 1820 1860 OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	BOILER PRESS (PSIG)	45	45	45
OUTLET GAS FID READING (PPM) 375 638 639 LEL METER (%) WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	SOLVENT STORAGE TANK LEVEL (INCH)	11.5	11.5	11.75
LEL METER (%) WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	INLET GAS FID READING (PPM)	1900	1820	1860
WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy		375	638	639
WATT METER (kW) HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy	LEL METER (%)			
HOUR METER 771 AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy				
AMBIENT CONDITIONS (TEMP/HUMIDITY) 55 scattered clouds 61 75.2 cloudy		771		
	AMBIENT CONDITIONS (TEMP/HUMIDITY)	55 scattered clouds	61 7	5.2 cloudy
	OPERATOR COMMENTS:			

DATA	Date:1/8/98 13:00	Test 2-2	M.Gray
DATA	TEST START	TEST MIDPOINT	TEST END
SVE INLET FLOW (SCFM)	147	149	149
SVE INLET TEMP (F)	93.1	94	90.1
DILUTION AIR FLOW (SCFM)	174	168	165
DILUTION AIR TEMP (F)	83	84	80
DILUTION AIR PRESS (INCH WC)	-1	-1	-1
COMBINED INLET AIR FLOW (SCFM)	321	317	314
COMBINED INLET AIR TEMP (F)	86	86	84
COMBINED INLET AIR PRESS (INCH WC)	-2	-2	-1.8
OUTLET GAS FLOW (SCFM)	395	391	388
OUTLET GAS TEMP (F)	92.3	94.2	88.1
OUTLET GAS PRESS (INCH WC)	-4.5	-4.5	-4.5
ADSORBER PRESS TOP (kPa)	-4.4	-4.4	-4 .5
ADSORBER PRESS MID (kPa)	-2.3	-2.3	
ADSORBER PRESS BOTTTOM (kPa)	-0.4	-0.4	-2.3
DESORBER PRESS MID (kPa)	-0.38	-0.38	-0.4
DESORBER PRESS BOT (kPa)	-0.26	-0.36 -0.26	-0.35
CONDENSER TEMP (F)	80	-0.26 82	-0.26
CHILLED WATER TEMP (F)	38		78
DILUTION AIR TO PDUs (SCFM)	na	34.3	35.1
TOTAL FLOW TO PDUs	,,,	na	na
FEED GAS TEMP TO PDUs (F)	na		
FEED GAS PRESS TO PDUs (INCH WC)	na	na	na
PDU COOLING WATER INLET TEMP (F)	па	na	na
PDU #1 COOLING WATER OUTLET TEMP (F)	na	na	na
PDU #2 COOLING WATER OUTLET TEMP (F)	na	na	na
PDU #1 COOLING WATER FLOW (GPM)	na	na na	na
PDU #2 COOLING WATER FLOW (GPM)	na	na	na
PDU #1 PRESS DROP MID TO OUT (INCH WC)	na	na	na
PDU #2 PRESS DROP MID TO OUT (INCH WC)	na	na	па
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	па	na	na
SCRUBBER OUTLET PRESS (INCH WC)	na	na	na
COOLING WATER TANK TEMP (F)	na	na	na
SCRUBBER LIQUID FLOW (GPM)	na	na	na
SCRUBBER pH	na		na
OHM SVE RETURN HEADER PRESS (INCH WC)	-28	na -28	na
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-14	-20 -14	-28
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-20		-14
PDU #1 TEMP (F)	na	-20	-20
PDU #2 TEMP (F)	na	na na	na
DESORBER TEMP MID (F)	261		na
DESORBER TEMP BOTTOM (F)	241	261.8	258.6
BOILER PRESS (PSIG)	45	240.7	239.6
SOLVENT STORAGE TANK LEVEL (INCH)	11.75	45	45
NLET GAS FID READING (PPM)	11.75	11.875	12
OUTLET GAS FID READING (PPM)	450	1060	1170
EL METER (%)	450	460	388
VATT METER (kW)			
HOUR METER	770		
AMBIENT CONDITIONS (TEMP/HUMIDITY) 7:	778		
	5 cloudy 8°	7 cloudy 80) pc

	Date:1/17/98	Date: 1/18/98	Date: 1/19/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	267	241	239
SVE INLET TEMP (F)	95.8	101	93
DILUTION AIR FLOW (SCFM)	157	118	105
DILUTION AIR TEMP (F)	65	88	80
DILUTION AIR PRESS (INCH WC)			
COMBINED INLET AIR FLOW (SCFM)	410	359	332
COMBINED INLET AIR TEMP (F)	88.5	90	
COMBINED INLET AIR PRESS (INCH WC)	-2	-2	
	410	426	
OUTLET GAS FLOW (SCFM)	88.5	90	
OUTLET GAS TEMP (F)	-5	-7	
OUTLET GAS PRESS (INCH WC)	-4.5	-4.6	
ADSORBER PRESS TOP (kPa)	-2.25	-2.4	
ADSORBER PRESS MID (kPa)	-0.5	-0.53	
ADSORBER PRESS BOTTTOM (kPa)	-0.5 -0.5	-0.56	
DESORBER PRESS MID (kPa)	-0.34	-0.45	
DESORBER PRESS BOT (kPa)	-0.34	82	
CONDENSER TEMP (F)		36.8	
CHILLED WATER TEMP (F)	38.6		
DILUTION AIR TO PDUs (SCFM)	4	4.75	
TOTAL FLOW TO PDUs	6	6.25	
FEED GAS TEMP TO PDUs (F)	110.1	127.7	
FEED GAS PRESS TO PDUs (INCH WC)	-14	-12.3	
PDU COOLING WATER INLET TEMP (F)	123	123	
PDU #1 COOLING WATER OUTLET TEMP (F)	110	114	
PDU #2 COOLING WATER OUTLET TEMP (F)	120	122	
PDU #1 COOLING WATER FLOW (GPM)	3	3.5	
PDU #2 COOLING WATER FLOW (GPM)	1.5	2	
PDU #1 PRESS DROP MID TO OUT (INCH WC)	1	2.8	
PDU #2 PRESS DROP MID TO OUT (INCH WC)	2	2.8	
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	3	14	
SCRUBBER OUTLET PRESS (INCH WC)	-12	-12	
COOLING WATER TANK TEMP (F)	119.1	116.1	
SCRUBBER LIQUID FLOW (GPM)	3	196.8	
SCRUBBER pH	10.02	9.94	
OHM SVE RETURN HEADER PRESS (INCH WC)	-30	-30	
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-15	-17	
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-35	-34	
PDU #1 TEMP (F)	182.5	204.8	
PDU #2 TEMP (F)	141.5	150.2	
DESORBER TEMP MID (F)	260.5	274.8	
DESORBER TEMP BOTTOM (F)	237.8	224.6	
BOILER PRESS (PSIG)	49	48	
SOLVENT STORAGE TANK LEVEL (INCH)	13	14.25	
INLET GAS FID READING (PPM)	bad order	719	
OUTLET GAS FID READING (PPM)	bad order	240	
LEL METER (%)	<1	•	8
WATT METER (kW)	266	300	
HOUR METER	795	819	9 837
AMBIENT CONDITIONS (TEMP/HUMIDITY)	65	70	0 63 cloudy light rain
OPERATOR COMMENTS:	Begin Steady-State Tests. J.Ferrell	M.Gray	M.Gray

Install watt meter. Wells 2,3,6,7

	Date:1/20/98	Date:1/21/98	Date:1/22/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	244	243	240
SVE INLET TEMP (F)	106	104	100
DILUTION AIR FLOW (SCFM)	105	105	57
DILUTION AIR TEMP (F)	80	80	80
DILUTION AIR PRESS (INCH WC)	•		•
COMBINED INLET AIR FLOW (SCFM)	349	348	297
COMBINED INLET AIR TEMP (F)	96	93	92
COMBINED INLET AIR PRESS (INCH WC)	-1.6	-1.6	-1
OUTLET GAS FLOW (SCFM)	414	434	410
OUTLET GAS TEMP (F)	99.1	91.9	95.8
OUTLET GAS PRESS (INCH WC)	-6	-5.5	-2
ADSORBER PRESS TOP (kPa)	-4.4	-4.4	-4
ADSORBER PRESS MID (kPa)	-2.2	-2.25	-1.9
ADSORBER PRESS BOTTTOM (kPa)	-0.4	-0.4	-0.2
DESORBER PRESS MID (kPa)	-0.56	-0.4	-0.46
DESORBER PRESS BOT (kPa)	-0.41	0.36	-0.32
CONDENSER TEMP (F)	84	84	
CHILLED WATER TEMP (F)	38.6	36.4	82 32.7
DILUTION AIR TO PDUs (SCFM)	30.0	4.5	
TOTAL FLOW TO PDUs	6	4.5	4.5
FEED GAS TEMP TO PDUs (F)	132.4		6
FEED GAS PRESS TO PDUs (INCH WC)	-8	133.2	128.2
PDU COOLING WATER INLET TEMP (F)	120	-10.5 116	-11
PDU #1 COOLING WATER OUTLET TEMP (F)	110	105	126
PDU #2 COOLING WATER OUTLET TEMP (F)	118		106
PDU #1 COOLING WATER FLOW (GPM)	3.5	116	116
PDU #2 COOLING WATER FLOW (GPM)	1.5	3	3
PDU #1 PRESS DROP MID TO OUT (INCH WC)	4	1.5	1.5
PDU #2 PRESS DROP MID TO OUT (INCH WC)	4	3.5	3
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	14.1	2.5	2.4
SCRUBBER OUTLET PRESS (INCH WC)		13.2	12.6
COOLING WATER TANK TEMP (F)	-12	-12	-10.5
SCRUBBER LIQUID FLOW (GPM)	111.8	110.4	115.1
SCRUBBER pH	16.6	9.4	2.5
OHM SVE RETURN HEADER PRESS (INCH WC)	9.8	10.33	9.38
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-34	-34	-35
BOOSTER BLOWER SUCTION PRESS (INCH WC)	• •	-15	-10
PDU #1 TEMP (F)	-35 404.2	-35	-36
PDU #2 TEMP (F)	194.2	193.4	194.7
DESORBER TEMP MID (F)	149.3	152.4	148.8
DESORBER TEMP BOTTOM (F)	265.4 223	264.7	265.4
BOILER PRESS (PSIG)		241.7	239.4
SOLVENT STORAGE TANK LEVEL (INCH)	49 15.75	49	49
INLET GAS FID READING (PPM)		16.125	16.75
OUTLET GAS FID READING (PPM)	980	930	900
LEL METER (%)	216	187	147
WATT METER (kW)	6	2	2
HOUR METER	381	423	464
AMBIENT CONDITIONS (TEMP/HUMIDITY)	853	871.5	891.6
OPERATOR COMMENTS:			60 clean
OF ELOCION COMMISSION,	M.Gray	-	Start sampling
			M.Gray

	Date:1/22/98	Date:1/23/98	Date:1/24/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	243	2	41 247
SVE INLET TEMP (F)	106	1	08 113
DILUTION AIR FLOW (SCFM)	75		75 75
DILUTION AIR TEMP (F)	80		80 85
DILUTION AIR PRESS (INCH WC)			-
COMBINED INLET AIR FLOW (SCFM)	318	3	16 322
COMBINED INLET AIR TEMP (F)	96		98 102
COMBINED INLET AIR PRESS (INCH WC)	-1		-1 -1.1
OUTLET GAS FLOW (SCFM)	416	4	12 388
OUTLET GAS TEMP (F)	94.1	96	99.5
OUTLET GAS PRESS (INCH WC)	-3.5		-3 -3.6
ADSORBER PRESS TOP (kPa)	-4.2	-4.	15 -4.25
ADSORBER PRESS MID (kPa)	-2.1	-2.	05 -2.1
ADSORBER PRESS BOTTTOM (kPa)	-0.3	-0.	29 -0.3
DESORBER PRESS MID (kPa)	-0.48		0.5 -0.5
DESORBER PRESS BOT (kPa)	-0.34	-(.4 -0.32
CONDENSER TEMP (F)	82		90 89
CHILLED WATER TEMP (F)	36		37 34.6
DILUTION AIR TO PDUs (SCFM)	4.5		4.5
TOTAL FLOW TO PDUS	6		6 6
	134	1	33 137.8
FEED GAS TEMP TO PDUs (F) FEED GAS PRESS TO PDUs (INCH WC)	-10.75		9.4 -8.5
	116		18 121
PDU COOLING WATER INLET TEMP (F) PDU #1 COOLING WATER OUTLET TEMP (F)	110		05 104
PDU #2 COOLING WATER OUTLET TEMP (F)	116		10 110
PDU #1 COOLING WATER COTEL! TEMP (1)	3	·	3 3
PDU #2 COOLING WATER FLOW (GPM)	1.5		1.5 1.5
PDU #1 PRESS DROP MID TO OUT (INCH WC)	2.8		2.5 4.7
PDU #2 PRESS DROP MID TO OUT (INCH WC)	2.8		2.3 4
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	13		2.7 12.9
SCRUBBER PRESS DROP INCEL TO PAIN (INCH WC)	-11		-11 -11
SCRUBBER OUTLET PRESS (INCH WC)	110.5	11:	
COOLING WATER TANK TEMP (F)	2.5		.67 0.85
SCRUBBER LIQUID FLOW (GPM)	9.16		.33 10.82
SCRUBBER PH OHM SVE RETURN HEADER PRESS (INCH WC)	-35		-34 -15
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)			-12 -13
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-38		-35 -20
	197.4		5.5 206.2
PDU #1 TEMP (F)	152.8		1.5 156.4
PDU #2 TEMP (F)	265.5		0.8 277.6
DESORBER TEMP MID (F)	242.3		1.2 249.2
DESORBER TEMP BOTTOM (F)	49		55 55
BOILER PRESS (PSIG)	17	17	.75 18.125
SOLVENT STORAGE TANK LEVEL (INCH)	940		940 950
INLET GAS FID READING (PPM)	100		130 90
OUTLET GAS FID READING (PPM)	3		2 3
LEL METER (%)	472		516 573
WATT METER (kW)	895.8		8.4 942.3
HOUR METER	70 clear	70 clear	75 clear
AMBIENT CONDITIONS (TEMP/HUMIDITY)	Finish sampling.	M.Gray	Began using strip steam.
OPERATOR COMMENTS:	M.Gray	Shut-off well 6.	0.2 gph water usage.
	W.Olay	Shot on Hell o.	M.Gray

	Date:1/25/98	Date:1/26/98	Date:1/26/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	288	295	
SVE INLET TEMP (F)	97.2	112	100
DILUTION AIR FLOW (SCFM)	71	66	
DILUTION AIR TEMP (F)	84	89	
DILUTION AIR PRESS (INCH WC)	0	0	
COMBINED INLET AIR FLOW (SCFM)	359	361	351
COMBINED INLET AIR TEMP (F)	93	103	
COMBINED INLET AIR PRESS (INCH WC)	-1.2	-1.2	
OUTLET GAS FLOW (SCFM)	436	435	
OUTLET GAS TEMP (F)	98	103	
OUTLET GAS PRESS (INCH WC)	-3.5	-3.5	
ADSORBER PRESS TOP (kPa)	-4.2	-4.2	
ADSORBER PRESS MID (kPa)	-2.1	-2.1	-2.1
ADSORBER PRESS BOTTTOM (kPa)	-0.3	-0.25	
DESORBER PRESS MID (kPa)	-0.58	-0.25	
DESORBER PRESS BOT (kPa)	-0.22	-0.45	-0.26
CONDENSER TEMP (F)	88	90	
CHILLED WATER TEMP (F)	37.7	35.6	36.4
DILUTION AIR TO PDUs (SCFM)	3.5	4	2.5
TOTAL FLOW TO PDUs	5.5	6	4.5
FEED GAS TEMP TO PDUs (F)	139.9	139.7	65.3
FEED GAS PRESS TO PDUs (INCH WC)	-6.5	-8.5	-7
PDU COOLING WATER INLET TEMP (F)	116	124	111
PDU #1 COOLING WATER OUTLET TEMP (F)	106	109	105
PDU #2 COOLING WATER OUTLET TEMP (F)	110	110	110
PDU #1 COOLING WATER FLOW (GPM)	3	3	3
PDU #2 COOLING WATER FLOW (GPM)	0.75	0.75	
PDU #1 PRESS DROP MID TO OUT (INCH WC)	5.6	0.75	0.75
PDU #2 PRESS DROP MID TO OUT (INCH WC)	3.0		2.5
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	12.8	0.2 12.6	6
SCRUBBER OUTLET PRESS (INCH WC)	-11		13.8
COOLING WATER TANK TEMP (F)	111.7	-11 447.5	-11
SCRUBBER LIQUID FLOW (GPM)	0.92	117.5	110.7
SCRUBBER pH	11.87	1.06	1.01
OHM SVE RETURN HEADER PRESS (INCH WC)	-15	8.62	11.92
CONCENTRATOR OUTLET FILTER PRESS (INCH WC		-32	-32
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-13 -22	-13	
PDU #1 TEMP (F)	210.7	-32	-32
PDU #2 TEMP (F)	158.4	207.8	208
DESORBER TEMP MID (F)	290.8	157.5	148.7
DESORBER TEMP BOTTOM (F)	251.1	295	295.7
BOILER PRESS (PSIG)	55	240.8	238.1
SOLVENT STORAGE TANK LEVEL (INCH)		50	50
INLET GAS FID READING (PPM)	19.25 840	20.125	20.5
OUTLET GAS FID READING (PPM)		1150	
LEL METER (%)	46	100	
WATT METER (kW)	8 626	4	3
HOUR METER		688	
AMBIENT CONDITIONS (TEMP/HUMIDITY)	964.2	990.5	
OPERATOR COMMENTS:		70 hazy	60 hazy
OF LIVETOR CONNINERITS.	-	Start sampling.	Finish sampling.
		0.15 gph water use.	
	•	M.Gray	

	Date:1/27/98	Date:1/28/98	Date:1/29/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	307	294	250
SVE INLET TEMP (F)	105	91.4	93.7
DILUTION AIR FLOW (SCFM)	100	102	90
DILUTION AIR TEMP (F)	82	73	68
DILUTION AIR PRESS (INCH WC)	0	0	0
COMBINED INLET AIR FLOW (SCFM)	407	396	340
COMBINED INLET AIR TEMP (F)	95	84	84
COMBINED INLET AIR PRESS (INCH WC)	-1	-1	-1
OUTLET GAS FLOW (SCFM)	455	466	472
OUTLET GAS TEMP (F)	90	87	80
OUTLET GAS PRESS (INCH WC)	-3	-3.5	-3.5
ADSORBER PRESS TOP (kPa)	-4.2	-4.25	-4.3
ADSORBER PRESS MID (kPa)	-2.1	-2.2	-2.1
ADSORBER PRESS BOTTTOM (kPa)	-0.3	-0.25	-0.5
DESORBER PRESS MID (kPa)	-0.44	-0.52	-0.5
DESORBER PRESS BOT (kPa)	-0.26	-0.23	-0.36
CONDENSER TEMP (F)	92	92	96
CHILLED WATER TEMP (F)	37	37.6	39.3
DILUTION AIR TO PDUS (SCFM)	5	4.8	5.2
TOTAL FLOW TO PDUS	6	6	7
FEED GAS TEMP TO PDUs (F)	123.9	131.8	124.8
FEED GAS PRESS TO PDUS (INCH WC)	-12	-10	
PDU COOLING WATER INLET TEMP (F)	118	120	124
PDU #1 COOLING WATER NULET TEMP (F)	108	108	108
PDU #2 COOLING WATER OUTLET TEMP (F)	116	104	
	2.4	2.4	
PDU #1 COOLING WATER FLOW (GPM) PDU #2 COOLING WATER FLOW (GPM)	375	0.75	
PDU #1 PRESS DROP MID TO OUT (INCH WC)	2	6	
	4	5.5	
PDU #2 PRESS DROP MID TO OUT (INCH WC) SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	4	-12.8	
	-12.9	-10	
SCRUBBER OUTLET PRESS (INCH WC)	114.5	111.6	
COOLING WATER TANK TEMP (F)	0.68	1.24	
SCRUBBER LIQUID FLOW (GPM)	13.28	12.57	
SCRUBBER pH	-34	-34	
OHM SVE RETURN HEADER PRESS (INCH WC)		-13.5	
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-13 -32		
BOOSTER BLOWER SUCTION PRESS (INCH WC)	198.1	208.5	
PDU #1 TEMP (F)			
PDU #2 TEMP (F)	152		
DESORBER TEMP MID (F)	299.5		
DESORBER TEMP BOTTOM (F)	234.7		
BOILER PRESS (PSIG)	50		33
SOLVENT STORAGE TANK LEVEL (INCH)	20		4000
INLET GAS FID READING (PPM)	1100		
OUTLET GAS FID READING (PPM)	122		
LEL METER (%)	4		
WATT METER (kW)	751		
HOUR METER	1015.7		
AMBIENT CONDITIONS (TEMP/HUMIDITY)	65 pc		60 raining
OPERATOR COMMENTS:	0.23 gph water usage.	J.Ferrell	J.Ferrell
	M.Gray Transferred 2" solvent to storage drum.	0.46 gph water usage.	.36 gph water usage.

	Date:1/30/98	Date:1/30/98	Date:1/30/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	24	16 25	0 250
SVE INLET TEMP (F)	10	96	
DILUTION AIR FLOW (SCFM)	8		9 89
DILUTION AIR TEMP (F)	8		5 74
DILUTION AIR PRESS (INCH WC)			0 0
COMBINED INLET AIR FLOW (SCFM)	33		*
COMBINED INLET AIR TEMP (F)	9	-	8 84
COMBINED INLET AIR PRESS (INCH WC)			1 -1
OUTLET GAS FLOW (SCFM)	44		· ·
OUTLET GAS TEMP (F)	10		8 87
OUTLET GAS PRESS (INCH WC)	-3.	_	
ADSORBER PRESS TOP (kPa)	-4.		_
ADSORBER PRESS MID (kPa)	-2	•	
ADSORBER PRESS BOTTTOM (kPa)	-0.	_	
DESORBER PRESS MID (kPa)	-0. -0.	_	_
DESORBER PRESS BOT (kPa)		***	_
CONDENSER TEMP (F)	-0.2		-
CHILLED WATER TEMP (F)		4 9	_
DILUTION AIR TO PDUs (SCFM)	34.		_
TOTAL FLOW TO PDUS			5 4.7
		_	6 6
FEED GAS TEMP TO PDUs (F) FEED GAS PRESS TO PDUs (INCH WC)	137.		
PDU COOLING WATER INLET TEMP (F)	-1		
	12	_	
PDU #1 COOLING WATER OUTLET TEMP (F) PDU #2 COOLING WATER OUTLET TEMP (F)	10	_	_
PDU #1 COOLING WATER FLOW (GPM)		8 9	
PDU #2 COOLING WATER FLOW (GPM)	2.		
PDU #1 PRESS DROP MID TO OUT (INCH WC)	0.7		
PDU #2 PRESS DROP MID TO OUT (INCH WC)	0.	_	
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	0.		
SCRUBBER OUTLET PRESS (INCH WC)	0.		
	-1		
COOLING WATER TANK TEMP (F) SCRUBBER LIQUID FLOW (GPM)	112.	_	
SCRUBBER pH	1.0		
OHM SVE RETURN HEADER PRESS (INCH WC)	12.6	_	_
	-3		
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)		•	
BOOSTER BLOWER SUCTION PRESS (INCH WC) PDU #1 TEMP (F)	-3	_	
PDU #2 TEMP (F)	196.	_	
	156.		
DESORBER TEMP MID (F)	292.		
DESORBER TEMP BOTTOM (F)	236.		1 234.3
BOILER PRESS (PSIG)	5		
SOLVENT STORAGE TANK LEVEL (INCH)	2		5 24
INLET GAS FID READING (PPM)	110		3 1140
OUTLET GAS FID READING (PPM)	17	_	7 43
LEL METER (%)		6	
WATT METER (kW)	91		949
HOUR METER	1081.		3 1095.2
AMBIENT CONDITIONS (TEMP/HUMIDITY)	55 sunny	60 dusk	52 clear night
OPERATOR COMMENTS:	Start sampling.		Finish sampling.
	J.Ferrell		0.3 gph water usage.

	Date:1/31/98	Date:2/1/98	Date:2/2/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	245	290	243
SVE INLET TEMP (F)	98.1	102	107
DILUTION AIR FLOW (SCFM)	95	77	75
DILUTION AIR TEMP (F)	78	90	82
DILUTION AIR PRESS (INCH WC)	0	0	0
COMBINED INLET AIR FLOW (SCFM)	340	367	318
COMBINED INLET AIR TEMP (F)	88	95	-1.5
COMBINED INLET AIR PRESS (INCH WC)	-1	-1.2	96
OUTLET GAS FLOW (SCFM)	447	461	441
OUTLET GAS TEMP (F)	88	93	95
OUTLET GAS PRESS (INCH WC)	-3.5	-3.2	-4
ADSORBER PRESS TOP (kPa)	-4.3	-4.25	-4.3
ADSORBER PRESS MID (kPa)	-2.1	-2.1	-2.2
ADSORBER PRESS BOTTTOM (kPa)	-0.25	-0.26	-0.35
DESORBER PRESS MID (kPa)	-0.5	-0.52	-0.54
DESORBER PRESS BOT (kPa)	-0.25	-0.25	-0.3
CONDENSER TEMP (F)	94	94	96
CHILLED WATER TEMP (F)	41.5	37.6	36.3
DILUTION AIR TO PDUS (SCFM)	4.75	5.25	5.25
	6	7	6.5
TOTAL FLOW TO PDUs FEED GAS TEMP TO PDUs (F)	126	129.3	132.4
FEED GAS PRESS TO PDUs (INCH WC)	-92	-10.6	-120
PDU COOLING WATER INLET TEMP (F)	120	120	123
PDU #1 COOLING WATER OUTLET TEMP (F)	106	110	110
PDU #2 COOLING WATER OUTLET TEMP (F)	108	106	120
PDU#1 COOLING WATER FLOW (GPM)	3.5	4	4.5
PDU #2 COOLING WATER FLOW (GPM)	0.5	1.5	3.75
PDU #1 PRESS DROP MID TO OUT (INCH WC)	6.5	4.5	1
PDU #2 PRESS DROP MID TO OUT (INCH WC)	6.6	4.3	1.8
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	0.9	3.1	1.2
SCRUBBER OUTLET PRESS (INCH WC)	-11	-11	-11
COOLING WATER TANK TEMP (F)	115.9	117.2	117.3
SCRUBBER LIQUID FLOW (GPM)	0.91	0.97	0.75
SCRUBBER pH	10.3	9.7	12.95
OHM SVE RETURN HEADER PRESS (INCH WC)	na	na	-30
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-13	-12.5	-13
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-35	-33	-35
PDU #1 TEMP (F)	206.8	205.1	196.9
PDU #2 TEMP (F)	147.9	150	150.6
DESORBER TEMP MID (F)	282	285.6	284.8
DESORBER TEMP BOTTOM (F)	231.8	238.7	
BOILER PRESS (PSIG)	52	50	
SOLVENT STORAGE TANK LEVEL (INCH)	25.5	27	28
INLET GAS FID READING (PPM)	1300	1220	1100
OUTLET GAS FID READING (PPM)	58	62	69
LEL METER (%)	4	4	
WATT METER (kW)	992	1051	110
HOUR METER	1112.1	1135	1157.4
AMBIENT CONDITIONS (TEMP/HUMIDITY)	55 finished raining	65 sunny	68.7-74.3 sunny
OPERATOR COMMENTS:	0.31 gph water usage.	0.47 gph water usage.	0.58 gph water usage.
	J.Ferrell	J.Ferrell	J.Ferrell

	Date: 2/4/98	Date: 2/4/98	Date: 2/4/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	280	281	283
SVE INLET TEMP (F)	96.8	95.6	92.5
DILUTION AIR FLOW (SCFM)	55	59.5	60
DILUTION AIR TEMP (F)	74	74	70
DILUTION AIR PRESS (INCH WC)		•	-
COMBINED INLET AIR FLOW (SCFM)	326	317	319
COMBINED INLET AIR TEMP (F)	87	87	83
COMBINED INLET AIR PRESS (INCH WC)	-1	-1	-1
OUTLET GAS FLOW (SCFM)	438	430	439
OUTLET GAS TEMP (F)	87	86	86
OUTLET GAS PRESS (INCH WC)	-3	-3	-3
ADSORBER PRESS TOP (kPa)	-4.2	-4.3	
ADSORBER PRESS MID (kPa)	-2	-2	
ADSORBER PRESS BOTTTOM (kPa)	-0.2	-0.25	
DESORBER PRESS MID (kPa)	-0.6	-0.54	
DESORBER PRESS BOT (kPa)	-0.37	-0.28	
CONDENSER TEMP (F)	101	101	
CHILLED WATER TEMP (F)	35.2	35.1	
DILUTION AIR TO PDUs (SCFM)	4.5	4.75	
TOTAL FLOW TO PDUs	6	6	
FEED GAS TEMP TO PDUs (F)	127.5	126.4	
FEED GAS PRESS TO PDUs (INCH WC)	-10.2	-8.8	
PDU COOLING WATER INLET TEMP (F)	126	126	
PDU #1 COOLING WATER OUTLET TEMP (F)	107	106	
PDU #2 COOLING WATER OUTLET TEMP (F)	124	123	
PDU #1 COOLING WATER FLOW (GPM)	3	3	
PDU #2 COOLING WATER FLOW (GPM)	2.2	2.2	
PDU #1 PRESS DROP MID TO OUT (INCH WC)	4.6	3.4	
PDU #2 PRESS DROP MID TO OUT (INCH WC)	2.3	1.8	
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	13.3	12.5	
SCRUBBER OUTLET PRESS (INCH WC)	-10.5	-10.5	
COOLING WATER TANK TEMP (F)	110.5	119.8	
SCRUBBER LIQUID FLOW (GPM)	0.73	0.78	
SCRUBBER pH	10.78	10.49	
OHM SVE RETURN HEADER PRESS (INCH WC)	-32	-32	-32
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-13	-13	
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-40	-40	
PDU #1 TEMP (F)	206	202.5	205.2
PDU #2 TEMP (F)	149	147.3	
DESORBER TEMP MID (F)	288.7	293.5	293
DESORBER TEMP BOTTOM (F)	229.7	238.8	241.4
BOILER PRESS (PSIG)	60	60	
SOLVENT STORAGE TANK LEVEL (INCH)	29.75	28	28.25
INLET GAS FID READING (PPM)	1100	1150	
OUTLET GAS FID READING (PPM)	84	36	
LEL METER (%)	6	30	5
WATT METER (kW)	1201	1208	
HOUR METER	1191.7	1194.9	
AMBIENT CONDITIONS (TEMP/HUMIDITY)	63.7 pc 6	52.6 pc	54.7 pc
OPERATOR COMMENTS:	Start sampling. M.Gray		Finish sampling. 0.65 gph water usage. M.Gray Transferred 2" of solvent to storage drum.

	Date: 2/5/98	Date: 2/5/98	Date: 2/5/98
DATA	Steady-State Tests	Steady-State Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	247	289	250
SVE INLET TEMP (F)	97.1	96.5	90.9
DILUTION AIR FLOW (SCFM)	64	51	83
DILUTION AIR TEMP (F)	74	76	70
DILUTION AIR PRESS (INCH WC)	0 -		-
COMBINED INLET AIR FLOW (SCFM)	311	325	333
COMBINED INLET AIR TEMP (F)	88	89	83
COMBINED INLET AIR PRESS (INCH WC)	-10	-1	-1
OUTLET GAS FLOW (SCFM)	425	422	431
OUTLET GAS TEMP (F)	92	94	85
OUTLET GAS PRESS (INCH WC)	-4.5	-3	-2.5
ADSORBER PRESS TOP (kPa)	-4.2	-4.2	-4.2
ADSORBER PRESS MID (kPa)	-2.2	-2.1	-2.05
ADSORBER PRESS BOTTTOM (kPa)	-0.4	-0.15	-0.15
DESORBER PRESS MID (kPa)	-0.5	-0.52	-0.54
DESORBER PRESS BOT (kPa)	-0.25	-0.3	-0.32
CONDENSER TEMP (F)	100.2	110	103
CHILLED WATER TEMP (F)	41.5	41.5	39
DILUTION AIR TO PDUs (SCFM)	5.5	4.75	4.25
TOTAL FLOW TO PDUs	7.5	6	6
FEED GAS TEMP TO PDUs (F)	67.2	74.3	60.3
FEED GAS PRESS TO PDUs (INCH WC)	-12.2	-11.3	-9.9
PDU COOLING WATER INLET TEMP (F)	118	125	123
PDU #1 COOLING WATER OUTLET TEMP (F)	104	104	1023
PDU #2 COOLING WATER OUTLET TEMP (F)	116	118	118
PDU #1 COOLING WATER FLOW (GPM)	3	3	3
PDU #2 COOLING WATER FLOW (GPM)	2.2	2.2	2.2
PDU #1 PRESS DROP MID TO OUT (INCH WC)	-13.3	1.8	2
PDU #2 PRESS DROP MID TO OUT (INCH WC)	-14.1	1	3.6
SCRUBBER PRESS DROP INLET TO FAN (INCH WC)	1.8	2.5	2.5
SCRUBBER OUTLET PRESS (INCH WC)	-9.5	-10	-10
COOLING WATER TANK TEMP (F)	115.3	114.7	117.3
SCRUBBER LIQUID FLOW (GPM)	0.73	1.18	3.8 9.57
SCRUBBER pH	9.97	9.65	-30
OHM SVE RETURN HEADER PRESS (INCH WC)		-	-13
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)	-13	-13	-13
BOOSTER BLOWER SUCTION PRESS (INCH WC)	-39	-36	204
PDU #1 TEMP (F)	206.3	194.1	143
PDU #2 TEMP (F)	148.2	146.4 292	288
DESORBER TEMP MID (F)	293.1		241
DESORBER TEMP BOTTOM (F)	241.1	240.7	58
BOILER PRESS (PSIG)	58	60 28	28.125
SOLVENT STORAGE TANK LEVEL (INCH)	29		200
INLET GAS FID READING (PPM)	1050	1050 31	14
OUTLET GAS FID READING (PPM)	33 5	31	17
LEL METER (%)	1234	1262	1272
WATT METER (kW)	1207.2	1218	
HOUR METER		59.2 pc	55.4 dear
AMBIENT CONDITIONS (TEMP/HUMIDITY) OPERATOR COMMENTS:	56.8 pc Start sampling J.Ferrell	03. <u>z</u> po	Finish Sampling M.Gray Transferred 2" of solvent to storage drum. 0.48 gph water usage.

	Date: 2/6/9	98	Date: 2/6/98
DATA	Steady-State	Tests	Steady-State Tests
SVE INLET FLOW (SCFM)	· · · · · · · · · · · · · · · · · · ·	251	
SVE INLET TEMP (F)		88.9	
DILUTION AIR FLOW (SCFM)		72	
DILUTION AIR TEMP (F)		69	• •
DILUTION AIR PRESS (INCH WC)		0	
COMBINED INLET AIR FLOW (SCFM)		323	•
COMBINED INLET AIR TEMP (F)		80	
COMBINED INLET AIR PRESS (INCH WC)		-1	• • • • • • • • • • • • • • • • • • • •
OUTLET GAS FLOW (SCFM)		454	•
OUTLET GAS TEMP (F)		80	.02
OUTLET GAS PRESS (INCH WC)		-3	
ADSORBER PRESS TOP (kPa)			0.0
ADSORBER PRESS MID (kPa)		-4.3	
ADSORBER PRESS BOTTTOM (kPa)		-2.05	
DESORBER PRESS MID (kPa)		0.2	V
DESORBER PRESS BOT (kPa)		-0.58	5.02
CONDENSER TEMP (F)		-0.26	00
CHILLED WATER TEMP (F)		101	104
DILUTION AIR TO PDUS (SCFM)		38.5	
TOTAL FLOW TO PDUS		4.7	5
FEED GAS TEMP TO PDUs (F)		6	6
FEED GAS PRESS TO PDUS (INCH WC)		119.4	122.4
PDU COOLING WATER INLET TEMP (F)		-10.6	-11.3
PDU #1 COOLING WATER OUTLET TEMP (F)		116	118
PDU #2 COOLING WATER OUTLET TEMP (F)		102	104
PDU #1 COOLING WATER GOTLET TEMP (F)		1169	114
PDU #2 COOLING WATER FLOW (GPM)		3	3
PDU #1 PRESS DROP MID TO OUT (INCH WC)		2.2	2.2
		0.4	1.3
PDU #2 PRESS DROP MID TO OUT (INCH WC)		1.8	1.5
SCRUBBER PRESS DROP INLET TO FAN (INCH WC) SCRUBBER OUTLET PRESS (INCH WC)		2.8	2.8
		-11	-11
COOLING WATER TANK TEMP (F)		117.7	114.7
SCRUBBER LIQUID FLOW (GPM)		3.5	3.4
SCRUBBER pH		9.53	9.52
OHM SVE RETURN HEADER PRESS (INCH WC)	-		-
CONCENTRATOR OUTLET FILTER PRESS (INCH WC)		-13	-13
BOOSTER BLOWER SUCTION PRESS (INCH WC) PDU #1 TEMP (F)		-35	-34
PDU #2 TEMP (F)		203.9	204.7
		142.5	143.1
DESORBER TEMP MID (F)		286.2	285.7
DESORBER TEMP BOTTOM (F)		238.4	237.1
BOILER PRESS (PSIG)		58	56
SOLVENT STORAGE TANK LEVEL (INCH)		28.5	28.75
OLT ET CAS FID READING (PPM)		919	1100
OUTLET GAS FID READING (PPM)		25	37
LEL METER (%)		5	5
WATT METER (kW)		1282	1291
HOUR METER		1225.5	1229
AMBIENT CONDITIONS (TEMP/HUMIDITY)	54.0 cool damp		57.4 pc
OPERATOR COMMENTS:	J.Ferrell		M.Gray
			0.51 gph water usage.
			Final Readings:
			water meter - 173.6
			hour meter - 1235
			kwh meter - 1309

APPENDIX B SUMMARY OF PARAMETRIC TESTS FID, TO-14 AND NMOC RESULTS

Contents:

PTI System DRE (FID) Results
PTI System DRE (Method TO-14) Results
PTI System DRE (NMOC) Results
PDU System DRE (Method TO-14) Results
PDU System DRE (NMOC) Results

PTI System DRE (FID) Results Presented by Date Parametric Tests

Date	Test Configuration	Inlet Concentration (ppmc)	Outlet Concentration (ppmc)	DRE (%)
10/24/97	1-2	279	188	32.62
10/25/97	1-3	309	86	72.17
10/26/97	1-4	366	127	65.30
10/27/97	1-5	1,367	513	62.47
11/1/97	1-6	1,453	463	68.13
Average		755	275	60.14
11/6/97	1-4a	928	55	94.07
11/17/97	1-5a	1,009	112	88.90
11/18/97	1-6a	1,022	265	74.07
Average		986	144	85.68
11/20/97	2-6	966	582	39.75
12/19/97	2-5	337	115	65.88
1/7/98	2-3	1,427	414	70.99
1/8/98	2-4	1,860	551	70.38
1/8/98	2-2	1,110	433	60.99
Average		1,140	419	61.60
1/7/98	3	1,443	480	66.74
Average	Ü	1,443	471	64.92

Concentration
1
-
1,2-Dichloro-1,1,2,2-tetrafluoroethane
1,1,2-Trichloro-1,2,2-trifluoroethane
1

				Inlet			Outlet		
		a del la seguina del managemento del managemen		Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Clmit (apply)	Rate	DDE (%)
Configuration	10/25/07	Tolliene Tolliene	11000	1100	0.0788	3100	550	0.0222	71.82
2 6	10/25/01		QN	1100		QN	550		
2 6	10/25/97		QN	1100		QN	550		
- F	10/25/97	_	9300		0.1199	3200	550	0.0413	62.29
-	10/25/97	-	QN	16000		Q	8200		
6.	10/25/97	_	QN	1100		Q	550		
6.	10/25/97	_	QN	1100		2	550		
2 6	10/25/97		QN	1100		S	550		
2 6	10/25/97		QN	1100		2	550		
6.	10/25/97		QN	1100		2	550		
1-3	10/25/97		QN	1100		2	550		
6.7	10/25/97		QN	1100		2	550		
5 6	10/25/97		Q			QN			
5	10/25/97	Benzyl chlor	QN	5400		S	2		
6.	10/25/97		QN	1100		2	550		
1-3	10/25/97	1,3,5-Trimet	Q			QN QN			
1-3	10/25/97	1.2.4-Trimet	S	1100		Q			
1.3	10/25/97	1,3-Dichloro	₽ N	1100		Q			
1-3	10/25/97		QN	1100		9			
1-3	10/25/97		ON			2			
1-3	10/25/97	1,2,4-Trichlorobenzene	2	~		2			
1-3	10/25/97	Hexachlorobutadiene	QN	2200			1100		
		Total	113,600		0.9106	46,170		0.3650	59.92
1-4	10/26/97	Dichlorodifluoromethane	2			QN			
1-4	10/26/97	_	Q			2			
1-4	10/26/97	1,2-Dichloro-1,1,2,2-tetrafluoroethane	2						
1-4	10/26/97		2100		0.0096			0.0066	30.61
1-4	10/26/97	Promomethane	Q			2		The second secon	
1-4	10/26/97	Chloroethane	2			2			
1-4	10/26/97		2			2			
1-4	10/26/97	1,1-Dichloroethene	Q			₽ P			
1-4	10/26/97	Carbon disulfide	QN	5500		S.	(,)		
1-4	10/26/97		2			Q			
1-4	10/26/97	Acetone	Q			2	ေ		
1-4	10/26/97	Methylene chloride	Q.	1100		2			
1-4	10/26/97	trans-1,2-Dichloroethene	S			S			
1-4	10/26/97	7 1,1-Dichloroethane	Q			2			
1-4	10/26/97	10/26/97 Vinvi acetate	2	5500		QN	3700		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	10/26/07	Compound Name	(pppv)	(pppv)	(IDS/hr)	(bpbv)	(bpbv)	(lbs/hr)	DRE (%)
1	40,00,01	1010-211-00	00016		0.0420	0000+	00/	0.3234	40.70
4-	10/25/97		ON	0099		QN	3700		
1-4	10/26/97		2	1100		Q	750		
4	10/26/97		QN	1100		QN	750		
1-4	10/26/97	Carbon tetrachloride	QN	1100		QN	750		
1-4	10/26/97	Benzene	QN	1100		Q	750		
1-4	10/26/97	1,2-Dichloroethane	Q	1100		Q	750		
1-4	10/26/97	Trichloroethene	5200	1100	0.0498	2500	750	0.0232	53.29
1-4	10/26/97		QN	1100		S	750		
1-4	10/26/97	Bromodichloromethane	Q	1100		QN	750		
1-4	10/26/97	cis-1,3-Dichloropropene	2	1100		QN	750		
1-4	10/26/97	4-Methyl-2-pentanone	2	5500		QN	3700		
1-4	10/26/97	Toluene	13000	1100	0.0872	4800	750	0.0313	64.13
1-4	10/26/97	trans-1,3-Dichloropropene	9	1100		QN	750		
1-4	10/26/97	1,1,2-Trichloroethane	QN	1100		S	750		
1-4	10/26/97	Tetrachloroethene	11000	1100	0.1328	4500	750	0.0528	60.26
1-4	10/26/97	2-Hexanone	2	16000		QN	11000		
1-4	10/26/97	Dibromochloromethane	QN	1100		Q	750		
1-4	10/26/97	1,2-Dibromoethane (EDB)	QN	1100		QN	750		
1-4	10/26/97	Chlorobenzene	QN	1100		Q	750		
1-4	10/26/97	Ethylbenzene	ON	1100		Q	750		
1-4	10/26/97	Xylenes (total)	QN	1100		QN	750		
1-4	10/26/97	_	QN	1100		Q	750		
1-4	10/26/97	-	ON.	1100		QN	750		
4	10/26/97		Q	1100		QN	750		
4-1	10/26/97		QN	2200		QN	3700		
1-4	10/26/97	4-Ethyltoluer	2	1100		QN	750		
1-4	10/26/97	1,3,5-Trimet	2	1100		QN	150		
1-4	10/26/97	_	Q	1100		QN	750		
1-4	10/26/97	_	Q	1100		QN	750		
1-4	10/26/97	_	Q	1100		QN	750		
1-4	10/26/97		QN	1100		QN	750		
1-4	10/26/97	1,2,4-Trichlorobenzene	QN	11000		Q	7500		
1-4	10/26/97		QN	2200		2	1500		
		Total	122,300		0.9221	61,300		0.4433	51.92
	10,101		1						
1-5	10/27/97	Dichlorodifluoromethane	2	4400		9	1600		
1.5	10/27/97	Chlorometha	Q	8800		Q	3100		
1-5	10/27/97	10/27/97 1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	4400		QN	1600		

				HILL			Janno		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	1
Configuration	Date	_	(vqdd)	(vadd)	(lbs/hr)	(Agdd)	(vadd)	(IDS/INL)	DRE (%)
1-5			QN .	4400		2			
1-5	10/27/97	Bromomethane	Q	4400		ON			
1-5	10/27/97	Chloroethane	2	8800		2	3100		
1-5	10/27/97	Trichlorofluoromethane	QN	4400		QN			
1-5	10/27/97		S	4400		8	1600		
1-5	10/27/97		QN	22000		Q	7800		
1-5	10/27/97	1,1,2-Trichloro-1,2,2-trifluoroethane	S	4400		QN			
1-5	10/27/97		S	22000		2	7800		
1-5	10/27/97	Methylene chloride	QN	4400		<u>N</u>	1600		
1-5	10/27/97		ON	4400		QN	1600		
1-5	10/27/97		S	4400		S	1600		
1-5	10/27/97		QN	22000		2	7800		
1-5	10/27/97		220000	4400	1.4965	110000		0.7482	50.00
1-5	10/27/97	2-Butanone	2	22000		QN	7800		
1-5	10/27/97	Chloroform	Q	4400		ON NO	1600		
1-5	10/27/97	1,1,1-Trichloroethane	QN	4400		Q			
1-5	10/27/97	Carbon tetrachloride	QN	4400		Q			
1-5	10/27/97	Benzene	QN			2			
1-5	10/27/97	1,2-Dichloroethane	QN	4400					
1-5	10/27/97	Trichtoroethene	100000		0.9214	13		0.1198	87.00
1-5	10/27/97	1,2-Dichloropropane	QN	4400		9			
1-5	10/27/97	Bromodichloromethane	QN			Q			
1-5	10/27/97	cis-1,3-Dichloropropene	QN			2			
1-5	10/27/97	4-Methyl-2-pentanone	QN						
1-5	10/27/97	_	6400		0.0413	80		0.0530	-28.13
1-5	10/27/97	_	2			Q.			
1-5	10/27/97	_	2						
1-5	10/27/97	Tetrachloroethene	27000		0.3139	œ		0.0977	68.89
1-5	10/27/97	2-Hexanone	2			2	7		
1-5	10/27/97	Dibromochloromethane	2			2			
1-5	10/27/97	1,2-Dibromoethane (EDB)	QN			2			
1-5	10/27/97	Chlorobenzene	QN			9			
1-5	10/27/97	Ethylbenzene	QN			ON			
1-5	10/27/97	(Xylenes (total)	QN	4400		Q			
1-5	10/27/97	Styrene	Q	4400		2			
1-5	10/27/97	Bromoform	QN			2			
1-5	10/27/97	1,1,2,2-Tetrachloroethane	Q			9			
1-5	10/27/97	Benzyl chloride	S	22000		2			
1-5	10/27/97	10/27/97 4-Ethyltoluene	QN	4400		2	1600		

Test Configuration 1-5 1-5				Donorfing					
Test Configuration 1-5 1-5				Runnday			Reporting	Mass	
Configuration 1-5 1-5 1-5			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
1 1 1 1	Date	Compound Name	(vddd)	(hddd)	(lbs/hr)	(vqdd)	(hddd)	(lbs/hr)	DRE (%)
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	10/27/97	1,3,5-Trimethylbenzene	QN	4400		Q	1600		
1-5	10/27/97	1,2,4-Trimethylbenzene	QN	4400		2	1600		
	10/27/97	1,3-Dichlorobenzene	QN	4400		QV	1600		
<u>م</u>	10/27/97		QN	4400		Q	1600		
1-5	10/27/97	_	Q	4400		2	1600		
1-5	10/27/97		Q	44000		Q	16000		
1-5	10/27/97	Hexachlorobutadiene	QN	9800		Q	3100		
		Total	353,400		2.7732	139,600		1.0186	63.27
1-6	11/1/97	Dichlorodifluoromethane	QN	2100		QN	490		
1-6	11/1/97	Chloromethane	QN	4200		QN	970		
1-6	11/1/97		QN	2100		Q	490		
1-6	11/1/97	Vinyl chloride	QN	2100		Q	490		
1-6	11/1/97	Bromomethane	QN	2100		QN	490		
1-6	11/1/97	Chloroethane	QN	4200		QN	970		
1-6	11/1/97	Trichlorofluoromethane	QN	2100		QN	490		
1-6	11/1/97	1,1-Dichloroethene	QN N	2100		S	490		
1-6	11/1/97	-	Q	11000		Q	2400		
1-6	11/1/97	1,1,2-Trichloro-1,2,2-^trifluoroethane	QN	2100		QN	490		
1-6	11/1/97		QN	11000		Q	2400		
1-6	11/1/97		QN	2100		QN	490		
1-6	11/1/97	trans-1,2-Dichloroethene	QN	2100		QN	490		
1-6	11/1/97	1,1-Dichloroethane	QN	2100	•	QN	490		
1-6	11/1/97	Vinyl acetate	QN	11000		QN	2400		
1-6	11/1/97	cis-1,2-Dichloroethene	120000	2100	0.6706	34000	490	0.1900	71.67
1-6	11/1/97	2-Butanone	QN	11000		QN	2400		
1-6	11/1/97	Chloroform	QN	2100		QN	490		
1-6	11/1/97	1,1,1-Trichloroethane	QN	2100		QN	490		
1-6	11/1/97	Carbon tetrachloride	QN	2100		QN	490		
1-6	11/1/97	Benzene	ON	2100		QN	490		
1-6	11/1/97	1,2-Dichloroethane	QN	2100		QN	490		
1-6	11/1/97	Trichloroethene	00059	2100	0.4921	16000	490	0.1211	75.38
1-6	11/1/97	1,2-Dichloropropane	QN	2100		QN	490		
1-6	11/1/97	Bromodichloromethane	QN	2100		QN	490		
1-6	11/1/97	cis-1,3-Dichloropropene	QN	2100		QN	490		
1-6	11/1/97	4-Methyl-2-pentanone	QN	11000		QN	2400		
1-6	11/1/97	_	9100	2100	0.0483	2700	490	0.0143	70.33
1-6	11/1/97	trans-1,3-Dic	Q	2100		Q.	490		
1-6	11/1/97		QN	2100		QN	490		

				niet			Jauno		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	Date	Compound Name	(nqdd)	(vddd)	(lbs/hr)	Aqdd)	qdd)	(lbs/hr)	DRE (%)
1-6	11/1/97	Tetrachloroethene	25000	2100	0.2388			0.0516	78.40
1-6	11/1/97	2-Hexanone	QN	32000		S	7300		
1-6	11/1/97		Q	2100		QN	490		
1-6	11/1/97	_	QN			Q	490		
1-6	11/1/97	_	QN	2100		S	490		
1-6	11/1/97		QN			QN			
1-6	11/1/97	(Xvlenes (total)	Q	2100		QN			
1-6	11/1/97	Styrene	QN			2	490		
1-6	11/1/97		QN	2100		S	490		
1-6	11/1/97		QN	2100		2			
-9	11/1/97		QN	11000		S	2400		
1-6	11/1/97	4-Ethyltoluer	QN			2	490		
1-6	11/1/97	1.3.5-Trimeth	QN	2100		2			
1-6	11/1/97		QN	2100		S	490		
1-6	11/1/97	1.3-Dichlorol	QN			2	490		
1-6	11/1/97		S	2100		QN	490		
1-6	11/1/97		Q	2100		QN.			
1-6	11/1/97		QN.	21000		QN	4		
1-6	11/1/97		S	4200		QN	970		
		Total	219,100		1.4498	58,100		0.3771	73.99
1-4A	11/6/97	Dichlorodifluoromethane	DN			2			
1-4A	11/6/97	Chloromethane	ON			2			
1-4A	11/6/97	1,2-Dichloro-1,1,2,2-^tetrafluoroethan	QN			2			
1-4A	11/6/97	Vinyl chloride	ND			300		0.0012	
1-4A	11/6/97		ON			Q			
1-4A	11/6/97	Chloroethane	QN			S			
1-4A	11/6/97	Trichlorofluoromethane	Q	1100		QN			
1-4A	11/6/97	1,1-Dichloroethene	Q			2			
1-4A	11/6/97	<u> </u>	QN			2			
1-4A	11/6/97	1,1,2-Trichloro-1,2,2-Atrifluoroethane	Q			Q			
1-4A	11/6/97	1	Q.			Q			
1-4A	11/6/97	Methylene chloride	Q			120		0.000	
1-4A	11/6/97	trans-1,2-Dichloroethene	ON			2			
1-4A	11/6/97	7,1-Dichloroethane	QN			2			
1-4A	11/6/97		ON						
1-4A	11/6/97	cis-1,2-Dichloroethene	00099		0.4028	7		0.0458	88.64
1-4A	11/6/97	2-Butanone	Q			2			
4 4 4	11000	40	S	1100		270	700	0000	

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Lmit	Rate	
Configuration	Date	Compound Name	(vddd)	(Agdd)	(lbs/hr)	(nqdd)	(hddd)	(lbs/hr)	DRE (%)
1-4A	11/6/97	1,1,1-Trichloroethane	ND	1100		QN	100		
1-4A	11/6/97	Carbon tetrachloride	QN	1100		QN	100		
1-4A	11/6/97	Benzene	QN	1100		QN	100		:
1-4A	11/6/97	1,2-Dichloroethane	Q	1100		QN	100		
1-4A	11/6/97		45000	1100	0.3720	4500		0.0372	90.00
1-4A	11/6/97	<u> </u>	QN	1100		2	100		
1-4A	11/6/97	Bromodichtoromethane	Q	1100		QN	100		
1-4A	11/6/97	cis-1,3-Dichloropropene	QN	1100		ON.	100		
1-4A	11/6/97		2	2200		QN	510		
1-4A	11/6/97	Toluene	2000		0.0290	720	100	0.0042	85.60
1-4A	11/6/97	trans-1,3-Dichloropropene	QN	1100		Q	100		
1-4A	11/6/97		2	1100		Q.	100		
1-4A	11/6/97	Tetrachloroethene	16000	1100	0.1669	1700		0.0177	89.38
1-4A	11/6/97	2-Hexanone	QN	17000		QN	1500		
1-4A	11/6/97	Dibromochloromethane	QN	1100		QN	100		
1-4A	11/6/97	-	QN	1100		QN			
1-4A	11/6/97	Chlorobenzene	ND ND	1100		2	100		
1-4A	11/6/97	Ethylbenzene	QN	1100		Q			
1-4A	11/6/97	Xylenes (total)	ON	1100		QN	100		
1-4A	11/6/97	Styrene	Q	1100		2	100		
1-4A	11/6/97	Bromoform	QN	1100		Q	100		
1-4A	11/6/97	1,1,2,2-Tetrachloroethane	QN	1100		Q	100		
1-4A	11/6/97	Benzyl chloride	QN	2200		2	510		
1-4A	11/6/97	4-Ethyltoluene	QN	1100		Q	100		
1-4A	11/6/97	1,3,5-Trimethylbenzene	QN	1100		QN	100		
1-4A	11/6/97	1,2,4-Trimeth	QN.	1100		ON	100		
1-4A	11/6/97	•	QN	1100		ON	100		
1-4A	11/6/97	1,4-Dichlorobenzene	QN	1100		2	100		
1-4A	11/6/97	-	QN	1100		2	100		
1-4A	11/6/97	1,2,4-Trichlorobenzene	QN	11000		Q	1000		
1-4A	11/6/97	Hexachlorobutadiene	ON	2300		Q	200		
		Total	132,000		0.9706	15,110		0.1087	88.80
7 8 7	11/17/07	Dichlorodiffuoromethana	CN	2800		CN	130		
1-5A	11/17/97		QN	5600		QN	260		
1-5A	11/17/97		QN	2800		QN	130		
1-5A	11/17/97	_	QN	2800		260	130	0.0022	
1-5A	11/17/97	_	QN	2800		QN	130		
1-5A	11/17/97		QN	5600		QN	260		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	Date	Compound Name	(vqdd)	(hddd)	(lbs/hr)	(hddd)	(vddd)	(lbs/hr)	DRE (%)
1-5A	11/17/97	Trichlorofluoromethane	QN	2800		QN	130		
1-5A	11/17/97		Q	2800		2	130		
1-5A	11/17/97		Q	14000		ON	650		
1-5A	11/17/97	1.1.2-Trichle	QN	2800		ON N	130		
1-5A	11/17/97	_	QN	14000		SN.	650		
1-5A	11/17/97		QN	2800		QN.	130		
1-5A	11/17/97	trans-1,2-Dichloroethene	QN	2800		170	130	0.0010	
1-5A	11/17/97	1.1-Dichloroethane	QN	2800		S	130		
1-5A	11/17/97		QN	14000					
1-5A	11/17/97		190000	2800	1.1403	14		0.0842	92.62
1-5A	11/17/97	_	QN	14000		DN			
1-5A	11/17/97	_	QN	2800		200		0.0015	
1-5A	11/17/97	1.1.1-Trichloroethane	Q	2800		S			
1-5A	11/17/97	Carbon tetrachloride	S	2800		QN			
1-5A	11/17/97	11/17/97 Benzene	S	2800		Q			
1-5A	11/17/97	1,2-Dichloroethane	QN						
1-5A	11/17/97	Trichloroethene	74000		0.6016	Z.		0.0472	92.15
1-5A	11/17/97	1,2-Dichloropropane	QN	2800		2			
1-5A	11/17/97		QN			2			
1-5A	11/17/97	cis-1,3-Dichloropropene	QN			2			
1-5A	11/17/97		Q	-					
1-5A	11/17/97	Toluene	9400		0.0536			0.0036	93.29
1-5A	11/17/97		QN			2			
1-5A	11/17/97		S						
1-5A	11/17/97	Tetrachloroethene	35000		0.3590	-		0.0185	94.85
1-5A	11/17/97	2-Hexanone	Q	7		S			
1-5A	11/17/97		QN			2			
1-5A	11/17/97	1,2-Dibromoethane (EDB)	QN			Q			
1-5A	11/17/97	Chlorobenzene	2			2			
1-5A	11/17/97	Ethylbenzene	Q			2			
1-5A	11/17/97	(Xylenes (total)	2			2			
1-5A	11/17/97	Styrene	QN			2			
1-5A	11/17/97	Bromoform	2			2			
1-5A	11/17/97	1,1,2,2-Tetrachloroethane	QN			Q			
1-5A	11/17/97	Benzyl chloride	2	14000		2			
1-5A	11/17/97		QN			2			
1-5A	11/17/97		2			2			
1-5A	11/17/97	1,2,4-Trimethylbenzene	2			2			
1-5A	11/17/97	11/17/97 1,3-Dichlorobenzene	2	2800		QN	130		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test	,		Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	Date		(hgdd)	(vddd)	(lbs/hr)	(pddd)	(vadd)	(lbs/hr)	DRE (%)
1-5A	11/17/97		2	2800		QN	130		
1-5A	11/17/97	1,2-Dichlorobenzene	2	2800		QN	130		
1-5A	11/17/97		QN	28000		QN	1300		
1-5A	11/17/97	Hexachlorobutadiene	QN	2600		QN	260		
		Total	308,400		2.1545	23,160		0.1582	92.66
	-0.07.77		4						
1-6A	11/18/97		Q.	1500		QN	730		
1-6A	11/18/97		QN	3100		2	1500		
1-6A	11/18/97	-	Q	1500		Q	730		
1-6A	11/18/97	Vinyl chloride	N	1500		QN	730		
1-6A	11/18/97	Bromomethane	ND ND	1500		QN	730		
1-6A	11/18/97	Chloroethane	ND	3100		S	1500		
1-6A	11/18/97	Trichlorofluoromethane	QN	1500		Q	730		
1-6A	11/18/97	1,1-Dichloroethene	Q.	1500		QN	730		
1-6A	11/18/97	Carbon disulfide	N	7700		QN	3700		
1-6A	11/18/97	1,1,2-Trichloro-1,2,2-trifluoroethane	Q	1500		Q	730		
1-6A	11/18/97	Acetone	P	7700		Q	3700		
1-6A	11/18/97	Methylene chloride	QN	1500		S	730		
1-6A	11/18/97	trans-1,2-Dichloroethene	Q	1500		QN	730		
1-6A	11/18/97	1,1-Dichloroethane	ND	1500		QN	730		
1-6A		Vinyl acetate	ND	1700	,	QN	3700		
1-6A	11/18/97	cis-1,2-Dichloroethene	170000	1500	1.0228	26000	730	0.3361	67.14
1-6A	_	2-Butanone	ND	1700		QN	3700		
1-6A	11/18/97	Chloroform	ND	1500		QN N	730		
1-6A	11/18/97	1,1,1-Trichloroethane	QN	1500		QN	730		
1-6A	11/18/97	strachforide	ND	1500		QN	730		
1-6A	11/18/97	Benzene	ND	1500		QN	730		
1-6A	11/18/97	1,2-Dichloroethane	ND	1500		QN	730		
1-6A	11/18/97	Trichloroethene	75000	1500	0.6113	20000	730	0.1626	73.40
1-6A	11/18/97	1,2-Dichloropropane	Q	1500		QN	730		
1-6A	_		Q	1500		QN	730		
1-6A	11/18/97	e	ND	1500		QN	730		
1-6A	_	4-Methyl-2-pentanone	ND	7700		QN	3700		
1-6A			10000	1500	0.0571	1400	730	0.0080	86.04
1-6A		oene	QN Q	1500		QN	730		
1-6A	11/18/97	oethane	ND	1500		QN	730		
1-6A	11/18/97	Tetrachloroethene	38000	1500	0.3908	2000	730	0.0513	86.88
1-6A	_	2-Hexanone	QN	23000		QN	11000		
1-6A	11/18/97	Dibromochloromethane	2	1500		QN	730		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	Date	Compound Name	(vqdd)	(vqdd)	(lbs/hr)	(ppbv)	(bbbv)	(lbs/hr)	DRE (%)
1-6A	11/18/97	1,2-Dibromoethane (EDB)	ND	1500		ND	730		
1-6A	11/18/97	Chlorobenzene	S	1500		QN	730		
1-6A	11/18/97		ND	1500		QN	730		
1-6A	11/18/97		ND	1500		QN	730		
1-6A	11/18/97	Styrene	S	1500		2	730		
1-6A	11/18/97		ND	1500		QN	730		
1-6A	11/18/97		QN	1500		ON	730		
1-6A	11/18/97		QN	7700		QN	3700		
1-6A	11/18/97	_	QN.	1500		ON	130		
1-6A	11/18/97		ND	1500		DN	730		
1-6A	11/18/97	_	Q	1500		QN	062		
1-6A	11/18/97		ND	1500		QN	730		
1-6A	11/18/97		Q	1500		QN	130		
1-6A	11/18/97	_	ND	1500		S	730		
1-6A	11/18/97		P	15000		Q	7300		
1-6A	11/18/97			3100			1500		
		Total	293,000		2.0821	82,400		0.5580	73.20
			-	0000		2	0017		
2-2	1/8/98	Dichlorodifluoromethane	QN			ON I	1500		
2-2	1/8/98	Chloromethane	Q			Q	2900		
2-2	1/8/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	Q			2	1500		
2-2	1/8/98	Vinyl chloride	Q			2	1500		
2-2	1/8/98	Bromomethane	Q			2			
2-2	1/8/98	Chloroethane	QN			Q			
2-2	1/8/98	Trichlorofluoromethane	ON			2			
2-2	1/8/98	1,1-Dichloroethene	Q			2			
2-2	1/8/98		Q			2			
2-2	1/8/98	1,1,2-Trichloro-1,2,2-trifluoroethane	2			9			
2-2	1/8/98	Acetone	Q			Q			
2-2	1/8/98	Methylene chloride	2			2			
2-2	1/8/98	trans-1,2-Dichloroethene	QN			2			
2-2	1/8/98	1,1-Dichloroethane	DN			S			
2-2	1/8/98		Q	1					
2-2	1/8/98	cis-1,2-Dichloroethene	200000		0.9586	140		0.8275	13.68
2-2	1/8/98	2-Butanone	QN	_		S			
2-2	1/8/98	1/8/98 Chloroform	2			2			
2-2	1/8/98	1,1,1-Trichloroethane	Q			2			
2-2	1/8/98	Carbon tetrachloride	ON			2			
2-2	1/8/98	Benzene	Q	2800		S S	1500		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration 2-2	1/8/08	1 2-Dichloroethans	(vadd)	(hddd)	(lbs/hr)	(vddd)	(vddd)	(lbs/hr)	DRE (%)
22	4/0/00	Tichlorothon	17000	0007			0061		
7-7	06/0/1	I IICIIIOIOEEIIE	nnne/	7800	0.4870	35	1500	0.2803	42.45
2-2	1/8/98	1,2-Dichloropropane	QN	2800		2	1500		
2-2	1/8/98	Bromodichloromethane	QN	2800		Q	1500		
2-2	1/8/98	cis-1,3-Dichloropropene	2	2800		QN	1500		
2-2	1/8/98	4-Methyl-2-pentanone	QN	14000		2	7300		
2-2	1/8/98	Toluene	16000	2800	0.0728	2200	1500	0.0123	83.04
2-2	1/8/98	1/8/98 trans-1,3-Dichloropropene	QN	2800		CN	1500		200
2-2	1/8/98	1,1,2-Trichloroethane	S	2800		2	1500		
2-2	1/8/98	Tetrachloroethene	42000	2800	0.3441	10000	1500	0 1010	70.64
2-2	1/8/98	2-Hexanone	2	42000		QN	22000	2	5
2-2	1/8/98		QN	2800		QN	1500		
2-2	1/8/98	1,2-Dibromoethane (EDB)	9	2800		QN	1500		
2-2	1/8/98		9	2800		Q	1500		
2-2	1/8/98	Ethylbenzene	Q	2800		QN	1500		
2-2	1/8/98	Xylenes (total)	2	2800		Q	1500		
2-2	1/8/98	Styrene	9	2800		Q	1500		
2-2	1/8/98	Bromoform	Q	2800		QN	1500		
2-2	1/8/98	1,1,2,2-Tetrachloroethane	QN	2800	Action in the last of the last	QN	1500		
2-2	1/8/98	Benzyl chloride	QN	14000		QN	7300		
2-2	1/8/98	4-Ethyltoluene	QN	2800		QN	1500		
2-2	1/8/98	1,3,5-Trimethylbenzene	QN	2800		Q	1500		
2-2		1,2,4-Trimethylbenzene	Q	2800		Q	1500		
2-2	1/8/98	1,3-Dichlorobenzene	Q	2800		2	1500		
2-2	1/8/98	1,4-Dichlorobenzene	S	2800		2	1500		
2-2	1/8/98	1,2-Dichlorobenzene	QN	2800		2	1500		
2-2	1/8/98	1,2,4-Trichlorobenzene	QN	28000		Q	15000		
2-2	1/8/98	1/8/98 Hexachlorobutadiene	QN	2600		Q	2900		
		Total	333,000		1.8625	187,200		1.2212	34.44
2-3	1/7/98	Dichlorodifluoromethane	2	2000		QN	750		
2-3	1/7/98	Chloromethar	Q	4000		QN	1500		
2-3	1/2/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	Q	2000		QV	750		
2-3	1/7/98	Vinyl chloride	Q	2000		Q	750		
2-3	1/7/98	Bromomethane	2	2000		S	750		
2-3	1/7/98	Chloroethane	2	4000		S	1500		
2-3	1/7/98	Trichlorofluor	2	2000		2	750		
2-3	1/2/98	1,1-Dichloroe	2	2000		Q	750		
2-3	1/7/98	Carbon disulfide	2	10000		CN	3700		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	Date	Compound Name	(hddd)	(vddd)	(lbs/hr)	(vqdd)	(hddd)	(lbs/hr)	DRE (%)
2-3	1/7/98	1,1,2-Trichloro-1,2,2-trifluoroethane	<u>.</u>	2000		Q	750		
2-3	1/7/98	Acetone	QN	10000		QN	3700		
2-3	1/7/98	Methylene chloride	Q	2000		Q N	750		
2-3	1/7/98	trans-1.2-Die	Q	2000		QN	750		
2-3	1/7/98	1,1-Dichloroethane	S	2000		ON	750		
2-3	1/7/98	1/7/98 Vinvi acetate	2	10000			3700		
2-3	1/7/98	1/7/98 cis-1.2-Dichloroethene	240000	2000	1.4803	22000	750	0.3550	76.02
2-3	1/7/98	2-Butanone	Q	10000		QN	3700		
2-3	1/7/98	Chloroform	2	2000		QN	150		
2-3	1/7/98	1.1.1-Trichloroethane	S	2000		ON	750		
2-3	1/7/98	Carbon tetrachloride	S	2000		QN	092		
2-3	1/7/98	Benzene	2			ON	150		
2-3	1/7/98	1.2-Dichloroethane	QN	2000					
2-3	1/7/98	Trichtoroethene	88000		0.7352	16		0.1399	80.97
2-3	1/7/98	1.2-Dichloropropane	Q			QN	750		
2-3	1/7/98	Bromodichloromethane	DN			Q	750		
2-3	1/7/98	cis-1,3-Dichloropropene	ON			Q	750		
2-3	1/7/98	4-Methyl-2-pentanone	QN	1			3700		
2-3	1/7/98	Toluene	15000		0.0878		750	0.0049	94.42
2-3	1/7/98	trans-1,3-Dichloropropene	QN			Q	750		
2-3	1/7/98		Q						
2-3	1/7/98	Tetrachloroethene	40000		0.4217	4		0.0519	87.70
2-3	1/7/98		Q	6,		ON .	-		
2-3	1/7/98	Dibromochloromethane	Q	2000		QN			
2-3	1/7/98	1,2-Dibromoethane (EDB)	2			Q			
2-3	1/7/98	Chlorobenzene	QN			2			
2-3	1/7/98	Ethylbenzene	QN			2			
2-3	1/7/98	(Xylenes (total)	2			2			
2-3	1/7/98	Styrene	2			2			
2-3	1/7/98	Bromoform	2			2			
2-3	1/7/98	11,1,2,2-Tetrachloroethane	QN			Q			
2-3	1/7/98	Benzyl chloride	2	•		2	(,)		
2-3	1/7/98	4-Ethyltoluene	Q			QN			
2-3	1/7/98	11,3,5-Trimethylbenzene	2			2			
2-3	1/7/98	1,2,4-Trime	Q			Q			
2-3	1/7/98	1,3-Dichlord	QN			QN			
2-3	1/7/98		Q			2			
2-3	1/7/98	1,2-Dichlorobenzene	QN			Q			
2.3	1/7/98	1/7/98 1.2.4-Trichlorobenzene	2	20000		Q	7500	0	

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test	1		Concentration	Limit	Mass Rate	Concentration	Cimit	Rate	
Configuration	Date		(vqdd)	(Addd)	(lbs/hr)	(vqdd)	(bpbv)	(lbs/hr)	DRE (%)
2-3	1/7/98		QN	4000		QN	1500		
		Total	383,000		2.7250	76,500		0.5517	79.76
7.0	1/8/08		Q.	7000		2	0007		
1.7	06/0/1	Dictionalitation	2	4200		Q	1300		
2-4	1/8/98	Chloromethane	Q	8400		QN	2600		
2-4	1/8/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	4200		2	1300		
2-4	1/8/98	Vinyl chloride	QN	4200		QN	1300		
2-4	1/8/98	Bromomethane	S	4200		QN.	1300		
2-4	1/8/98	Chloroethane	S	8400		QN	2600		
2-4	1/8/98	Trichlorofluoromethane	9	4200		QN	1300		
2-4	1/8/98	1,1-Dichloroethene	2	4200		QN	1300		
2-4	1/8/98	Carbon disulfide	2	21000		QN	0099		
2-4	1/8/98	1,1,2-Trichloro-1,2,2-trifluoroethane	Q	4200		Q	1300		
2-4	1/8/98	Acetone	9	21000		2	0099		
2-4	1/8/98	Methylene chloride	2	4200		QN	1300		
2-4	1/8/98	trans-1,2-Dichloroethene	Q	4200		Q	1300		
2-4	1/8/98	1,1-Dichloroethane	QN	4200		9	1300		
2-4	1/8/98	Vinyl acetate	Q	21000		Q	0099		
2-4	1/8/98	cis-1,2-Dichloroethene	310000	4200	1.5421	130000	1300	0.8188	46.90
2-4	1/8/98	2-Butanone	QN	21000		2	0099		
2-4		Chloroform	QN	4200		2	1300		
2-4	1/8/98	1,1,1-Trichloroethane	Q	4200		Q	1300		
2-4	1/8/98	Carbon tetrachloride	Q	4200		QN	1300		
2-4		Benzene	QN	4200		QN	1300		
2-4	1/8/98	1,2-Dichloroethane	QN	4200		QN	1300		
2-4	1/8/98	Trichloroethene	110000	4200	0.7412	29000	1300	0.2474	66.62
2-4	1/8/98	1,2-Dichloropropane	Q	4200		QN	1300		
2-4	1/8/98	1/8/98 Bromodichloromethane	2	4200		QN	1300		
2-4	1/8/98	cls-1,3-Dichloropropene	2	4200		QN	1300		
2-4	1/8/98	4-Methyl-2-pentanone	QN	21000		Q	0099		
2-4	1/8/98	Toluene	20000	4200	0.0945	1700	1300	0.0102	89.24
2-4	1/8/98		QN	4200		QN	1300		
2-4		1,1,2-Trichlor	QN	4200		2	1300		
2-4		Tetrachloroethene	51000	4200	0.4336	8200	1300	0.0915	78.90
2-4		2-Hexanone	2	63000		QN	20000		
2-4			Q	4200		QN	1300		
2-4		1,2-Dibromoe	2	4200		QN	1300		
2-4		Chlorobenzene	Q	4200		QN	1300		
2-4	1/8/98	Ethylbenzene	QN	4200		ON	1300		

				net			Ourrer		
				Reporting		and discounting the special section of the section	Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	1,67
Configuration	Date	Compound Name	(Agdd)	(Agdd)	(IDS/UL)	(vadd)	(vadd)	(Ju/sai)	UKE (%)
2-4	1/8/98	Xylenes (total)	ND	4200		2			
2-4	1/8/98	Styrene	QN	4200		QN			
2-4	1/8/98	Bromoform	Q	4200		QN			
2-4	1/8/98	1.1.2.2-Tetrachioroethane	Q	4200		QN	1300		
2-4	1/8/98	Benzyl chloride	2	21000		2			
2-4	1/8/98	4-Ethyltoluer	Q	4200		Q			
2-4	1/8/98	1.3.5-Trimeth	QN	4200		QN			
2-4	1/8/98	1,2,4-Trimet	QN	4200		2			
2-4	1/8/98	1,3-Dichlorol	Q	4200		Q			
2-4	1/8/98	1,4-Dichlorobenzene	QN	4200		QN			
2.4	1/8/98	1.2-Dichlorobenzene	Q	4200		2			
2-4	1/8/98	1.2.4-Trichlorobenzene	NDN	42000		2	13000		
2-4	1/8/98	Hexachlorobutadiene	QN	8400		2	2600		
		Total	491,000		2.8114	169,200		1.1679	58.46
					3.0				
2-5	12/21/97	Dichlorodifluoromethane	ON.	360		2			
2-5	12/21/97		ND	720		2			
2-5	12/21/97	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ON	360		2			
2-5	12/21/97	1.	QN			2			
2-5	12/21/97	1.	ON			Q			
2-5	12/21/97		QN			9			
2-5	12/21/97	Trichlorofluoromethane	QN			2			
2-5	12/21/97		QN			9			
2-5	12/21/97	Carbon disulfide	QN	1800		QN			
2-5	12/21/97	1,1,2-Trichloro-1,2,2-trifluoroethane	QN			2			
2-5	12/21/97	-	QN.	1		2			
2-5	12/21/97	Methylene chloride	QN			2			
2-5	12/21/97	trans-1,2-Dichloroethene	QN			2			
2-5	12/21/97	1,1-Dichloroethane	QN			2			
2-5	12/21/97	Vinyl acetate	2						
2-5	12/21/97	cis-1,2-Dichloroethene	21000		0.1278	13		0.0791	38.10
2-5	12/21/97	2-Butanone	Q	-		2			
2-5	12/21/97	_	QN			2			
2-5	12/21/97	1,1,1-Trichtoroethane	Q			2			
2-5	12/21/97		Q			2			
2-5	12/21/97	Benzene	Q			2			
2-5	12/21/97	7 1,2-Dichloroethane	Q						
2-5	12/21/97	7 Trichloroethene	39000		0.3216	18(0.1484	53.85
2.6	12/21/97	1 2. Dichinonronane	2	360		2	170		

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	!
Configuration	Date	Compound Name	(vadd)	(vddd)	(lbs/hr)	(vqdd)	(vddd)	(lbs/hr)	DRE (%)
2-5	12/21/97	Bromodichloromethane	2			QN	170		
2-5	12/21/97	cis-1,3-Dichloropropene	QN	360		QN	170		
2-5	12/21/97	4-Methyl-2-pentanone	Q	1800		QN	840		
2-5	12/21/97	Toluene	1000	360	0.0058	530	170	0.0031	47.00
2-5	12/21/97	trans-1,3-Dichloropropene	S			QN	170		
2-5	12/21/97	_	Q			QN	170		
2-5	12/21/97	1.	11000	360	0.1145	4000	170	0.0416	63.64
2-5	12/21/97	1.	Q	LC)		S	2500		
2-5	12/21/97	Dibromochloromethane	S			QN	170		
2-5	12/21/97	1,2-Dibromoethane (EDB)	QN			QN	170		
2-5	12/21/97	Chlorobenzene	QN			QN	170		
2-5	12/21/97	Ethylbenzene	Q			QN	170		
2-5	12/21/97		2			DN	170		
2-5	12/21/97		QN			DN	170		
2-5	12/21/97	Bromoform	2			QN	170		
2-5	12/21/97	1,1,2,2-Tetrachloroethane	S	360		QN	170		
2-5	12/21/97	Benzyl chlor	S			QN	840		
2-5	12/21/97		2			QN	170		
2-5	12/21/97	_	S			Q	170		
2-5	12/21/97	1,2,4-Trimet	Q			QN	170		
2-5	12/21/97	1,3-Dichlorobenzene	QN			ON	170		
2-5	12/21/97	1,4-Dichlorobenzene	ON			ON	170		
2-5	12/21/97	1,2-Dichlorobenzene	QN			ON	170		
2-5	12/21/97	1,2,4-Trichlorobenzene	2	3600		QN	1700		
2-5	12/21/97	Hexachlorobutadiene	Q	720		ON	340		
		Total	72,000		0.5697	35,530		0.2722	52.21
90	19/90/07	Dichlorodiffuoromethane	CX	2200		CN	1500		
2-6	12/20/97		Q			Q			
2-6	12/20/97	1,2-Dichloro				QN			
2-6	12/20/97	_				Q	1500		
2-6	12/20/97		2	2200		QN	1500		
2-6	12/20/97	Chloroethane	2			QN	3000		
2-6	12/20/97	Trichlorofluoromethane	QN			QN	1500		
2-6	12/20/97	1,1-Dichloroethene	S			QN	1500		
2-6	12/20/97	Carbon disulfide	QN	,		QN	7500		
2-6	12/20/97	1,1,2-Trichloro-1,2,2-trifluoroethane	QN	2200		Q	1500		
2-6	12/20/97	Acetone	2	11000		QN	7500		
2-6	12/20/97	12/20/97 Methylene chloride	QN	2200		Q	1500		

Treat Compound Name Concentration					iniet			ontier		
Date Compound Name Concentration Limit Rate (pabby) (pabby) <th></th> <th></th> <th></th> <th></th> <th>Reporting</th> <th></th> <th></th> <th>Reporting</th> <th>Mass</th> <th></th>					Reporting			Reporting	Mass	
Date Compound Name (ppbv) (p	Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	1
12/20/99 Listoplane there ND 2200 ND 1500 12/20/99 Listoplane there 1000 1000 1500 1500 12/20/99 Listoplane there 1500 0.8731 11000 1500 12/20/99 Listoplane there 1500 0.8731 11000 1500 12/20/99 Listoplane there there 1500 0.8731 11000 1500 12/20/99 Calvon teleschoride ND 2200 ND 1500 12/20/99 Calvon teleschoride ND 2200 ND 1500 12/20/99 Listoplane there ND <	Configuration		Compound Name		(vqdd)	(lbs/hr)	- 1	(vadd)		DRE (%)
1220997 11-20chloroethane	2-6	上	trans-1,2-Dichloroethene	ON .	2200		Q.	1500		
1220997 1220	2-6	12/20/97	_	QN	2200		Q	1500		
122099 Carbon celebrate 150000 1500	2-6	12/20/97	_	S	11000		QN	7500		
1220997 Carbon letrachloride ND 1500 ND 1500 1500 1520997 Carbon letrachloride ND 2200 ND 1500 15	2-6	12/20/97	cis-1.2-Dich	150000		0.8731	110000			26.67
12/20/97 Calcor fetachloroethane	2-6	12/20/97	2-Butanone	Q	11000		QN	7500		
12/2009/10 (2016) 1,1,17ichloroethane ND 2200 ND 1500 12/2009/20 (2016) 1,1,17ichloroethane ND 2200 ND 1500 12/2009/20 (2016) 1,27/2009/20 (2016) ND 2200 0,4987 42000 1500 12/2009/20 (2016) 1,20/2019/20 (2016) 1,20/2019/20 (2016) ND 1500 1500 1500 12/2009/20 (2016) 1,20/2019/20 (2016) 1,20/2019/20 (2016) ND 2200 0,4987 4200 1500	2-6	12/20/97		QN			S	1500		
12/20/97 Carbon tetrachloride ND 2200 ND 1500 12/20/97 Carbon tetrachloride ND 2200 ND 1500 12/20/97 Trichloroethane ND 2200 0.4967 42000 1500 12/20/97 Trichloroethane ND 2200 0.4967 42000 1500 12/20/97 Trichloroethane ND 2200 ND 1500 1500 12/20/97 Ge-1,3-Dichloropropene ND 2200 ND 1500 1500 12/20/97 Ge-1,3-Dichloropropene ND 2200 0.0553 3300 1500 0.0182 12/20/97 Trichloroethane ND 2200 0.0553 3300 1500 0.0182 12/20/97 Trichloroethane ND 2200 0.0553 3300 1500 0.182 12/20/97 Trichloroethane ND 2200 0.0553 300 0.182 1500 0.182 12/20/97 Trichloroethane ND 2200 0.0553 300 1500 0.182 12/20/97 Trichloroethane	2-6	12/20/97		QN			2			
12/20/97 Penzene ND 1500 1500 120/997 120/1097 120/997 120/1097 120/	2-6	12/20/97	_	Q			QN			
12/20/97 12-Dichlorocethane	2-6	12/20/97	Benzene	ON.			QN			
12/20/97 Trichloroethene R3000 2200 0.4967 42000 1500 0.3311 12/20/97 Trichloroethene ND 2200 ND 1500 1	2-6	12/20/97	1,2-Dichlord	Q						
12/20/97 (1,2-Dichloroperate) ND 2200 ND 1500 12/20/97 (1,2-Dichloroperate) ND 2200 ND 1500 12/20/97 (24-13-Dichloroperate) ND 11000 ND 1500 12/20/97 (24-13-Dichloroperate) ND 11000 2200 0.0553 3300 1500 12/20/97 (24-13-Dichloroperate) ND 2200 ND 1500 1500 12/20/97 (1,2-7)-Inchloroperate) ND 2200 0.3482 1400 1500 12/20/97 (1,2-7)-Inchloroperate) ND 2200 0.3482 1400 1500 12/20/97 (24-brazonoe) ND 2200 ND 1500 1500 12/20/97 (24-brazonoe) ND 2200 ND 1500 1500 12/20/97 (24-brazone) ND 2200 ND 1500 1500 12/20/97 (24-brazone) ND 2200 ND 1500 1500 12/20/97 (24-brazone) ND 2200 ND 1500 1500 12/20/97 (24-br	2-6	12/20/97	Trichloroeth	63000		0.4967				33.33
12/20/97 Bloomodichloromethane ND 2200 ND 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1520097 12/20/97 Citerachioropepene ND 10000 2200 0.0553 3300 1500 0.0182 12/20/97 Tollene ND 2200 0.0553 3300 1500 0.0182 12/20/97 Tollene ND 2200 0.0553 3300 1500 0.0182 12/20/97 Tollene ND 2200 0.03482 14000 1500 0.1393 12/20/97 Tetrachioroethane ND 2200 ND 1500 1500 12/20/97 Tetrachioroethane EDB) ND 2200 ND 1500 12/20/97 Tetrachioroethane ND 2200 ND 1500 12/20/97 Tetrachiorobenzene ND 2200 ND 2200	2-6	12/20/97	-	QN			Q			
12/20/97 class of class o	2-6	12/20/97	-	QN			S			
12/20/97 4-Mettryl-2-pentanone ND 11000 2200 0.0553 3300 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 0.0182 1500 1500 0.0182 1500 </td <td>2-6</td> <td>12/20/97</td> <td>cls-1,3-Dich</td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td>	2-6	12/20/97	cls-1,3-Dich	2			2			
12/20/97 Toluene 10000 2200 0.0553 3300 1500 0.0182 12/20/97 Tense-1.3-Dichloropropene ND 2200 0.3482 14000 1500 0.1393 12/20/97 Tense-1.3-Dichloropropene ND 32000 2200 0.3482 14000 1500 0.1393 12/20/97 Tense-1.20/97 Tense	2-6	12/20/97	4-Methyl-2-	S						
12/20/97 trans-1,3-Dichloropropene ND 2200 ND 1500 12/20/97 trans-1,3-Dichloroptopene ND 2200 0.3482 14000 1500 12/20/97 Tatrachloroethane 35000 2200 0.3482 14000 1500 12/20/97 Tatrachloroethane ND 2200 ND 1500 0.1383 12/20/97 Lexanochloromethane ND 2200 ND 1500 0.1383 12/20/97 Lexanochloromethane ND 2200 ND 1500 1500 12/20/97 Lexanochloromethane ND 2200 ND 1500 1500 12/20/97 Chlorobenzene ND 2200 ND 1500 1500 12/20/97 Sylene Lazone ND 2200 ND 1500	2-6	12/20/97	Toluene	10000		0.0553				92.00
12/20/97 1,1,2-Trichloroethane ND 2200 0.3482 14000 1500 0.1393 12/20/97 Tetrachloroethene 12/20/97 Tetrachloroethene ND 2200 0.3482 14000 1500 0.1393 12/20/97 Tetrachloroethene ND 2200 ND 1500 1500 12/20/97 Lizzoly L	2-6	12/20/97	trans-1,3-D	QN			2			
12/20/97 Tetrachloroethene 35000 2200 0.3482 14000 1500 0.1383 12/20/97 2-Hexanone ND 2200 ND 22000 ND 1500 12/20/97 12-Dibromochloromethane (EDB) ND 2200 ND 1500 1500 12/20/97 12-Dibromochloromethane (EDB) ND 2200 ND 1500 1500 12/20/97 12-Dibromochloromethane (EDB) ND 2200 ND 1500 1500 12/20/97 12/20/97 Ethylbenzene ND 2200 ND 1500 1500 12/20/97 Siyrene ND 2200 ND 1500 1500 12/20/97 Siyrene ND 2200 ND 1500 1500 12/20/97 Siyrene ND 2200 ND 1500 1500 12/20/97 12/20/97 Siyrene ND 2200 ND 1500 1500 12/20/97 12/20/97 13/2-Inmethylbenzene ND 2200 ND 1500 1500 12/20/97 12/20/97 12/20/97 12/20/10/20/20/20 1	2-6	12/20/97	1,1,2-Trich	QN						
12/20/97 2-Hexanone ND 32000 ND 22000 12/20/97 Obsomochloromethane (EDB) ND 2200 ND 1500 12/20/97 Chloromechloromethane (EDB) ND 2200 ND 1500 12/20/97 Chlorobenzene ND 2200 ND 1500 12/20/97 Ethylbenzene ND 2200 ND 1500 12/20/97 Syrene ND 2200 ND 1500 12/20/97 Syrene ND 2200 ND 1500 12/20/97 Brownform ND 2200 ND 1500 12/20/97 Benzyl chloride ND 2200 ND 1500 12/20/97 Benzyl chloride ND 2200 ND 1500 12/20/97 1.2.4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1.2.4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1.2.20/97 1.2.4-Trimethylbenzene	2-6	12/20/97		32000		0.3482				90.00
12/20/97 Dibromochlotomethane ND 1200 ND 1500 12/20/97 1,2-Dibromochlane (EDB) ND 2200 ND 1500 12/20/97 1,2-Dibromochlane ND 2200 ND 1500 12/20/97 Ethylbenzene ND 2200 ND 1500 12/20/97 Ethylbenzene ND 2200 ND 1500 12/20/97 Styrene ND 2200 ND 1500 12/20/97 Aprichiorobenzene	2-6	12/20/97		2	6,					
12/20/97 (1.2-Dibromoethane (EDB) ND 2200 ND 1500 12/20/97 (1.2-Dibromoethane (EDB) ND 2200 ND 1500 12/20/97 (20/97 (20/97) (20/97) (20/97) Ethylbanizene ND 2200 ND 1500 12/20/97 (20/97) (20/97) (20/97) Sivene ND 2200 ND 1500 12/20/97 (20/97) (20/97) (20/97) (20/97) Hearthlorene ND 2200 ND 1500 12/20/97 (20/97) (20	2-6	12/20/97	Dibromochi	2						
12/20/97 Chlorobenzene ND 2200 ND 1500 12/20/97 Ethylbenzene ND 2200 ND 1500 12/20/97 Xylenes (total) ND 1200 ND 1500 12/20/97 Xylenes (total) ND 1200 ND 1500 12/20/97 Xylenes (total) ND 1200 ND 1500 12/20/97 Xylenes (total) ND 2200 ND 1500	2-6	12/20/97	-	2						
12/20/97 Ethylbenzene ND 2200 ND 1500 12/20/97 Xylenes (total) ND 2200 ND 1500 12/20/97 Xylenes (total) ND 2200 ND 1500 12/20/97 Styrene ND 2200 ND 1500 12/20/97 Activationeme ND 4300 ND 2500 12/20/97 Activationeme </td <td>2-6</td> <td>12/20/97</td> <td></td> <td>QN</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-6	12/20/97		QN						
12/20/97 Xylenes (total) ND 2200 ND 1500 12/20/97 Styrene ND 2200 ND 1500 12/20/97 Styrene ND 2200 ND 1500 12/20/97 1,1,2,2-Tetrachloroethane ND 2200 ND 7500 12/20/97 4-Ethyltoltuene ND 2200 ND 7500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 3000 12/20/97 1,2-A-Trichlorob	2-6	12/20/97	_				S			
12/20/97 Styrene ND 2200 ND 1500 12/20/97 Bromoform 12/20/97 Bromoform ND 2200 ND 1500 12/20/97 1,1,2,2-Tetrachloroethane ND 2200 ND 7500 12/20/97 2,20/97 1,2,2-Tetrachloroethane ND 2200 ND 7500 12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,2-Irimethylbenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 1,7732 169,300 1,11289	2-6	12/20/97		QN						
12/20/97 Bromoform ND 2200 ND 1500 12/20/97 1,1,2,2-Tetrachloroethane ND 2200 ND 7500 12/20/97 1,2,2-Tetrachloroethane ND 1000 ND 7500 12/20/97 2/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Lichlorobenzene ND 2200 ND 3000 12/20/97 1,2-Lichlorobenzene ND 4300 ND 3000 12/20/97 1,2-Lichlorobutadiene ND 4300 1,7732 169,300 1,1289	2-6	12/20/97	-	2						
12/20/97 1,1,2,2-Tetrachloroethane ND 2200 ND 1500 12/20/97 22/20/97 22/20/97 12/20/97 13,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 2200 ND 3000 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 3000 12/20/97 1,2-A-Trichlorobenzene ND 4300 1,7732 169,300 1,1289	2-6	12/20/97	1	S			2			
12/20/97 Benzyl chloride ND 11000 ND 7500 12/20/97 4-Ethyltoluene ND 2200 ND 1500 12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 3000 12/20/97 1,2-A-Trichlorobutadiene ND 258,000 1,7732 169,300 1,1289	2-6	12/20/97	1,1,2,2-Tet	S						
12/20/97 4-Ethyltoluene ND 2200 ND 1500 12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,0-Ichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 3000 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 1500 12/20/97 1,2-A-Trichlorobutadiene ND 4300 1,7732 169,300 1,1289	2-6	12/20/97	_	S			Z			
12/20/97 1,3,5-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,3-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2,4-Trichlorobenzene ND 4300 ND 1500 12/20/97 1,2,4-Trichlorobutadiene ND 4300 ND 3000 12/20/97 1,2,4-Trichlorobutadiene ND 258,000 4,7732 169,300 1,1289	2-6	12/20/97	4-Ethyltolu	2			2			
12/20/97 1,2,4-Trimethylbenzene ND 2200 ND 1500 12/20/97 1,3-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2,4-Trichlorobenzene ND 4300 ND 1500 12/20/97 Hexachlorobutadiene ND 4300 ND 3000 12/20/97 Fotal Total 1,7732 169,300 1,1289	2-6	12/20/97	-	QN			Z			
12/20/97 1,3-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-A-Trichlorobenzene ND 4300 ND 15000 12/20/97 Hexachlorobutadiene ND 4300 ND 3000 12/20/97 Fotal Total 1.7732 169,300 1.1289	2-6	12/20/97	-	QN			Z			
12/20/97 1,4-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2,4-Trichlorobenzene ND 4300 ND 15000 12/20/97 Hexachlorobutadiene ND 4300 ND 3000 12/20/97 Fotal Total 1,7732 169,300 1,1289	2-6	12/20/97	1	QN			2			
12/20/97 1,2-Dichlorobenzene ND 2200 ND 1500 12/20/97 1,2,4-Trichlorobenzene ND 4300 ND 3000 12/20/97 Hexachlorobutadiene ND 4300 ND 3000 12/20/97 Fotal Total 1,1289	2-6	12/20/97	1.	Q			2			
12/20/97 1,2,4-Trichlorobenzene ND 22000 ND 15000 12/20/97 Hexachlorobutadiene ND 4300 ND 3000 12/20/97 Fotal Total 1.7732 169,300 1.1289	2-6	12/20/97	1,2-Dichlor	2			Z			
12/20/97 Hexachlorobutadiene ND 4300 A300 A300 Total 258,000 4.7732 169,300 1.1289	2-6	12/20/97	1,2,4-Trich	ON.			Z			
Total 1.1289 1.1289	2-6	12/20/97		Q						
			Total	258,000		1.773			1.1289	

				Inlet			Outlet		
				Reporting			Reporting	Mass	
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Configuration	Date		(Addd)	(hddd)	(lbs/hr)	(Addd)	(Addd)	(lbs/hr)	DRE (%)
3-1	1/7/98	Dichlorodifluoromethane	QN	2000		QN	1100		
3-1	1/7/98	Chloromethane	QN	4000		QN	2200		
3-1	1/7/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	2000		QN	1100		
3-1	1/7/98	Vinyl chloride	2	2000		Q	1100		
3-1	1/7/98	Bromomethane	QN	2000		Q	1100		
3-1	1/7/98	Chloroethane	2	4000		QN	2200		
9-1	1/7/98	Trichlorofluoromethane	S	2000		QN	1100		
3-1	1/7/98	1,1-Dichloroethene	QN	2000		Q	1100		
3-1	1/7/98	Carbon disu	QN	0066		Q	5400		
3-1	1/7/98	1,1,2-Trichloro-1,2,2-trifluoroethane	QN	2000		QN	1100		
3-1	1/7/98	Acetone	QN	0066		QN	5400		
3-1	1/7/98	Methylene chloride	QN	2000		QN	1100		
3-1	1/7/98	trans-1,2-Dichloroethene	S	2000		2	1100		
3-1	1/7/98	1,1-Dichloro	Q	2000		2	1100		
3-1	1/7/98	Vinyl acetate	2	0066		2	. 5400		
3-1	1/7/98	cis-1,2-Dichloroethene	240000	2000	1.5105	00006	1100	0.5778	61.75
3-1	1/7/98	2-Butanone	QN	0066		QN	2400		
3-1	1/7/98	Chloroform	QN	2000		QN	1100		
3-1	1/7/98	1,1,1-Trichloroethane	QN	2000		QN	1100		
3-1	1/7/98	Carbon tetrachloride	QN	2000		QN	1100		
3-1	1/7/98	Benzene	2	2000		QN	1100		
3-1	1/7/98	1,2-Dichloroethane	QN	2000		QN	1100		
3-1	1/7/98		82000	2000	0.7247	18000	1100	0.1565	78.40
3-1	1/7/98	1,2-Dichloropropane	QN	2000		2	1100		
3-1	1/7/98	Bromodichloromethane	QN	2000		QN	1100		
3-1	1/7/98	cis-1,3-Dichloropropene	Q	2000		QN	1100		
3-1	1/7/98	4-Methyl-2-pentanone	QN	0066		QN	5400		
3-1	1/7/98	Toluene	16000	2000	0.0956	QN	1100		>92.99
3-1	1/7/98		2	2000		Q	1100		
3-1	1/7/98	1,1,2-Trichloroethane	QN	2000		QN	1100		
3-1	1/7/98	Tetrachloroethene	42000	2000	0.4841	2200	1100	0.0571	88.21
3-1	1/7/98	2-Hexanone	QN	30000		Q	16000		
3-1	1/7/98	Dibromochloromethane	QN	2000		QN	1100		
3-1	1/7/98	1,2-Dibromoethane (EDB)	QN	2000		QN	1100		
3-1	1/7/98	Chlorobenzene	Q	2000		QN	1100		
3-1	1/7/98	Ethylbenzene	Q	2000		ON	1100		
3-1	1/7/98	(Xylenes (total)	QN	2000		QN	1100		
3-1	1/7/98	Styrene	Q	2000		Q	1100		
3-1	1/7/98	1/7/98 Bromoform	Q	2000		QN	1100		

			Inlet			Outlet		
			Reporting			Reporting	Mass	
		Concentration	Limit	Mass Rate	Concentration	Limit	Rate	
Date	Compound Name	(ppbv)	(hddd)	(lbs/hr)	(hddd)	(hddd)	(lbs/hr)	DRE (%)
1/7/98	1/7/98 1,1,2,2-Tetrachloroethane	S	2000		QN	1100		
1/7/98	/7/98 Benzyl chloride	2	0066		ON	5400		
1/7/98	17/98 4-Ethyltoluene	QN	2000		QN	1100		
1/7/98	17/98 1,3,5-Trimethylbenzene	QN	2000		QN	1100		
1/7/98	/7/98 1,2,4-Trimethylbenzene	QN	2000		QN	1100		
1/7/98	1/7/98 1,3-Dichlorobenzene	Q	2000		QN	1100		
1/7/98	17/98 1,4-Dichlorobenzene	Q	2000		ON	1100		
1/7/98	1/7/98 1,2-Dichlorobenzene	Q	2000		Q	1100		
1/7/98	1/7/98 1.2.4-Trichlorobenzene	2	20000		QN QN	11000		
1/7/98	1/7/98 Hexachlorobutadiene	2	4000		QN.	2200		
	Total	386,000		2.8148	113,200		0.7913	>71.89

PTI System DRE (NMOC) Results Presented by Date Parametric Tests

Date	Test Configuration	Inlet Concentration (ppmc)	Outlet Concentration (ppmc)	DRE (%)
10/24/97	1-2	NA	NA	NA
10/25/97	1-3	NA	NA	NA
10/26/97	1-4	NA	NA	NA
10/27/97	1-5	NA	NA	NA
11/1/97	1-6	790	190	75.95
Average		790	190	75.95
11/6/97	1-4a	450	41	90.89
11/17/97	1-5a	698	64	90.83
11/18/97	1-6a	705	212	69.93
Average		618	106	83.88
11/20/97	2-6	620	392	36.77
12/19/97	2-5	161	83	48.45
1/7/98	2-3	961	217	77.42
1/8/98	2-4	1,311	455	65.29
1/8/98	2-2	875	453	48.23
Average		786	320	55.23
			65.4	70.05
1/7/98	3-1	1,075	294	72.65
Average		1,075	294	72.65

Note:

"NA" denotes no sample collected on this date.

				Inlet			Outlet		
				Reporting			Reporting		
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Configuration	Date	Compound Name	(vqdd)	(vddd)	(lbs/hr)	(Addd)	(bbbv)	(lbs/hr)	DRE (%)
1-5A	11/17/97	Dichlorodifluoromethane	QN	11000		ON ND	32		
1-5A	11/17/97		Q	22000		260	63	9.712E-06	
1-5A	11/17/97	1,2-Dichloro-1,1,2,2-tetrafluoroethane	2	11000		QN	32		
1-5A	11/17/97		S	11000		QN	32		
1-5A	11/17/97	11/17/97 Bromomethane	2	11000		QN	32		
1-5A	11/17/97	11/17/97 Chloroethane	9	22000		QN	63		
1-5A	11/17/97	Trichlorofluoromethane	2	11000		QN	32		
1-5A	11/17/97	11/17/97 1,1-Dichloroethene	2	11000		ON	32		
1-5A	11/17/97	11/17/97 Carbon disulfide	2	55000		QN	160		
1-5A	11/17/97	7 1,1,2-Trichloro-1,2,2-trifluoroethane	2	11000		ON	32		
1-5A	11/17/97	Acetone	2	55000		310	160		
1-5A	11/17/97	Methylene chloride	Q	11000		620	32	3.893E-05	
1-5A	11/17/97		Q	11000		QN	32		
1-5A	11/17/97	_	Q	11000		QN	32		
1-5A	11/17/97	_	Q	55000		ON	160		
1-5A	11/17/97	7 cis-1,2-Dichloroethene	940000	11000	0.0674	ON	32		>99.99
1-5A	11/17/97	7 2-Butanone	QN	55000		QN	160		
1-5A	11/17/97		QN	11000		2900	32	0.0002561	
1-5A	11/17/97	7 1,1,1-Trichloroethane	ON	11000		QN	32		
1-5A	11/17/97	7 Carbon tetrachloride	QN N	11000		88	32	1.001E-05	
1-5A	11/17/97	7 Benzene	QN	11000		QN	32		
1-5A	11/17/97	7 1,2-Dichloroethane	ON	11000		71	32	5.199E-06	
1-5A	11/17/97	7 Trichloroethene	420000	11000	0.0408	Q	32		>99.99
1-5A	11/17/97	7 1,2-Dichloropropane	QN	11000		QN	32		
1-5A	11/17/97	7 Bromodichloromethane	QN	11000		QN	32		
1-5A	11/17/9	11/17/97 cis-1,3-Dichloropropene	QN	11000		QN	32		
1-5A	11/17/9	11/17/97 4-Methyl-2-pentanone	QN	22000		QN	160		
1-5A	11/17/9	11/17/97 Toluene	QV	11000		QN	32		
1-5A	11/17/9	11/17/97 trans-1,3-Dichloropropene	QN	11000		QN	32		
1-5A	11/17/9	11/17/97 1,1,2-Trichloroethane	QN	11000		ON	32		
1-5A	11/17/9	11/17/97 Tetrachloroethene	160000	11000	0.0196	QN	32		>99.98
1-5A	11/17/9	11/17/97 2-Hexanone	QN	160000		QN	470		
1-5A	11/17/9	11/17/97 Dibromochloromethane	Q.	11000		QN	32		

			DRE (%)																	>99.74													>99.34		
		Mass Rate	(lps/hr)																	0.0003		2.249E-05									8.957E-05	0.0002909			
Outlet	Reporting	Limit	(vadd)	32	32	32	32	32	32	32	160	32	32	32	32	32	32	320	63		170	350	170	170	170	350	170	170	860	170	860	170	170	170	860
		Concentration	(vadd)	QN	QN	QN	Q	QN	QN	QN	Q	QN	QN	Q	QN	QN	QN	QN	S	4,249	Q	520	QN	QN	QN	QN	QN	Q	QN	Q	1800	4000	QN	Q	QN
		Mass Rate	(IDS/UL)																	0.1279													0.0022		
Inlet	Reporting	Limit	(vada)	11000	11000	11000	11000	11000	11000	11000	55000	11000	11000	11000	11000	11000	11000	110000	22000		19000	39000	19000	19000	19000	39000	19000	19000	97000	19000	97000	19000	19000	19000	97000
		Concentration	(vadd)	QN	QN	Q	QN	Q	Q	2	S	S	Q	Q	2	2	2	Q	2	1,520,000	QN	QN	QN	QN	Q	QN	QN	QN	QN	QN	DN	QN	26000	QN	QN
			Compound Name	1,2-Dibromoethane (EDB)	Chlorobenzene	Ethylbenzene	Xylenes (total)	Styrene	Bromoform	1,1,2,2-Tetrachloroethane		4-Ethyltoluene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	Hexachlorobutadiene	Total		Chloromethane	1,2-Dichloro-1,1,2,2-tetrafluoroethane	Vinyl chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Carbon disulfide	1,1,2-Trichloro-1,2,2-trifluoroethane	Acetone	Methylene chloride	trans-1,2-Dichloroethene	1,1-Dichloroethane	11/18/97 Vinyl acetate
		4	Date	11/11/197	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97	11/17/97		11/18/97	11/18/97	11/18/97	11/18/97	11/18/97	11/18/97	11/18/97	11/18/97	11/18/97	11/18/97				11/18/97	11/18/97
		Test	Comiguration	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A	1-5A		1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A	1-6A

				Inlet			Outlet		
				Reporting			Reporting		
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Configuration	Date	Compound Name	(vadd)	(vadd)	(lps/hr)	(\add)	(nadd)	(IDS/UL)	UKE (%)
1-6A	11/18/97	cis-1,2-Dichloroethene	420000	19000	0.3489	Q	170		>99.99
1-6A	11/18/97	2-Butanone	QN	97000		Q	860		
1-6A	11/18/97	Chloroform	QN	19000		19000	170	0.0019429	
1-6A	11/18/97	1,1,1-Trichloroethane	QN	19000		Q.	170		
1-6A	11/18/97		QN	19000		009	170		
1-6A	11/18/97		QN	19000		1300	170		
1-6A	11/18/97	-	Q	19000		1000	170	8.479E-05	
1-6A	11/18/97		1600000	19000	0.1801	QN	170		>99.98
1-6A	11/18/97		Q	19000		QN	170		
1-6A	11/18/97		Q	19000		ON	170		
1-6A	11/18/97		QN	19000		ON	170		
1-6A	11/18/97		Q	97000		QN	860		
1-6A	11/18/97		140000	19000	0.0110	QN	170	2.475E-05	99.78
1-6A	11/18/97		2	19000		QN	170		
1-6A	11/18/97		QN	19000		QN	170		
1-6A	11/18/97		400000	19000	0.0568	QN	170	2.475E-05	96.96
1-6A	11/18/97	2-Hexanone	QN	290000		QN N	2600		
1-6A	11/18/97		QN	19000		QN	170		
1-6A	11/18/97		QN	19000		Q	170		
1-6A	11/18/97	Chlorobenzene	ON	19000		Q	170		
1-6A	11/18/97	7 Ethylbenzene	QN	19000		Q	170		
1-6A	11/18/97	11/18/97 Xylenes (total)	QN	19000		Q	170		
1-6A	11/18/97	Styrene	ON .	19000		Q	170		
1-6A	11/18/97	11/18/97 Bromoform	QN	19000		ON N	170		
1-6A	11/18/97	1,1,2,2-Tetrachloroethane	Q	19000		QN	170		
1-6A	11/18/97	7 Benzyl chloride	QN	97000		Q	860		
1-6A	11/18/97	11/18/97 4-Ethyltoluene	QN	19000		Q	170		
1-6A	11/18/97	11/18/97 1,3,5-Trimethylbenzene	QN			QN	170		
1-6A	11/18/97	11/18/97 1,2,4-Trimethylbenzene	QN			QN	170		
1-6A	11/18/97	11/18/97 1,3-Dichlorobenzene	QN			QN	170		
1-6A	11/18/97	11/18/97 1,4-Dichlorobenzene	QV			QN	170		
1-6A	11/18/9/	11/18/97 1,2-Dichlorobenzene	S.			QN N	170		
1-6A	11/18/9	11/18/97 1,2,4-Trichlorobenzene	QN	190000		QN	1700		

				Inlet			Outlet		
				Reporting			Reporting		
Test			Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Configuration	Date	Compound Name	(vadd)	(vddd)	(lbs/hr)	(vddd)	(Addd)	(lbs/hr)	DRE (%)
1-6A	11/18/97	Hexachlorobutadiene	QN	39000		QN	350		
		Total	6,366,000		0.5990	28,220		0.0026	>99.56
3-1	1/7/98		Q	86000		QN	390		
3-1	1/7/98	Chloromethan	QN	170000		QN	780		
3-1	1/7/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	86000		QN	390		
3-1	1/7/98	Vinyl chloride	QN	86000		QN	390		
3-1	1/7/98	Bromomethane	QN	86000		QN	390		
3-1	1/7/98	Chloroethane	QN	170000		QN	780		
3-1	1/7/98	Trichlorofluoromethane	QN	86000		QN	390		
3-1	1/7/98	1,1-Dichloroethene	QN	86000		QN	390		
3-1	1/7/98	1/7/98 Carbon disulfide	QN	430000		QN	2000		
3-1	1/7/98	1,1,2-Trichloro-1,2,2-trifluoroethane	QN	86000		QN	390		
3-1	1/7/98	1/7/98 Acetone	S	430000		0099	2000	0.0003	
3-1	1/7/98	1/7/98 Methylene chloride	Q	86000		7400	390	0.0005	
3-1	1/7/98	1/7/98 trans-1,2-Dichloroethene	QN	86000		10000	390	0.0007	
3-1	1/7/98	1,1-Dichloroethane	QN	86000		Q	390		
3-1	1/7/98	1/7/98 Vinyl acetate	QN	430000		S	2000		
3-1	1/7/98	1/7/98 cis-1,2-Dichloroethene	0000089	86000	0.4999	27000	390	0.0020	99.60
3-1	1/7/98	2-Butanone	QN	430000		QN	2000		
3-1	1/7/98	1/7/98 Chloroform	QN	86000		49000	390	0.0044	
3-1	1/7/98	1,1,1-Trichloroethane	QN	86000		QN	390		
3-1	1/7/98	Carbon tetrachloride	Q	86000		510	390	5.944E-05	
3-1	1/7/98		QN	86000		4400	390	0.0003	
3-1	1/7/98	1,2-Dichloroethane	QN	86000		3200	390	0.0003	
3-1	1/7/98		2400000	86000	0.2390	18000	390	0.0018	99.25
3-1	1/7/98	1,2-Dichloropropane	QN	86000		740	390	6.337E-05	
3-1		Bromodichloromethane	QN	86000		Q	390		
3-1	1/7/98	cis-1,3-Dichloropropene	9	86000		QN	390		
3-1	1/7/98	4-Methyl-2-pentanone	QN	430000		QN	2000		
3-1	1/7/98	Toluene	280000	86000	0.0195	2500	390	0.0002	99.11
3-1	1/7/98		Q	86000		QN	390		
3-1	1/7/98	1,1,2-Trichloroethane	QN	86000		QN	390		

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Configuration Date	Compound Name	(Addd)	(ppbv)	(lbs/hr)	(vddd)	(bpbv)	(lps/hr)	DRE (%)
	1/7/98 Tetrachloroethene	840000	86000	0.1055	8800	390	0.0011	98.95
1/7/9	1/7/98 2-Hexanone	QN	130000		ON	2900		
1/7/6	1/7/98 Dibromochloromethane	QN	86000		QN	390		
1/7/6	1/7/98 (1.2-Dibromoethane (EDB)	QN	86000		QN	390		
1/7/6	1/7/98 Chlorobenzene	QN	86000		QN	390		
1/7/6	1/7/98 Ethylbenzene	QN	86000		QN	390		
1/7/5	1/7/98 Xvienes (total)	ON	86000		QN	390		
1/7/5	1/7/98 Styrene	QN	86000		QN	390		
1/7/6	1/7/98 Bromoform	Q	86000		ON	390		
1/7/6	1/7/98 1,1,2,2-Tetrachloroethane	QN	86000		ON	390		
1/7/6	1/7/98 Benzyl chloride	QN	430000		ON	2000		
1/7/6	1/7/98 4-Ethyltoluene	QN	86000		ON	390		
1/7/1	1/7/98 1,3,5-Trimethylbenzene	QN	86000		ON	390		
1/7/6	1/7/98 1,2,4-Trimethylbenzene	DN			QN	390		
1/7/6	1/7/98 1,3-Dichlorobenzene	QN	86000		ON	390		
1/7/8	1/7/98 1,4-Dichlorobenzene	QN	86000		QN	390		
1/7/6	1/7/98 1,2-Dichlorobenzene	QN	86000		ON	390		
1/7/1	1/7/98 1,2,4-Trichlorobenzene	QN	000098		QN	3900		
1/7/8	1/7/98 Hexachlorobutadiene	Q	170000		QN	780		
	Total	10 320 000		0.8639	138.450		0.0116	98.65

PDU DRE (NMOC) Results Presented by Date Parametric Tests

Date	Test Configuration	Inlet Concentration (ppmc)	Outlet Concentration (ppmc)	DRE (%)
10/24/97	1-2	NA	NA	NA
10/25/97	1-3	NA	NA	NA
10/26/97	1-4	NA	NA	NA
10/27/97	1-5	NA	NA	NA
11/1/97	1-6	NA	NA	NA
Average		NA	NA	NA
11/6/97	1-4a	NA	NA	NA
11/17/97	1-5a	5,025	5	99.91
11/18/97	1-6a	14,899	32	99.78
Average		9,962	19	99.84
11/20/97	2-6	NA	NA	NA
12/19/97	2-5	NA	NA	NA
1/7/98	2-3	NA	NA	NA
1/8/98	2-4	NA	NA	NA
1/8/98	2-2	NA	NA	NA
Average		NA	NA	NA
1/7/98	3-1	24,922	351	98.59
Average		24,922	351	98.59

Note:

"NA" denotes no sample collected on this date.

APPENDIX C SUMMARY OF STEADY-STATE TESTS FID, TO-14 AND NMOC RESULTS

Contents:

PTI System DRE (FID) Results
PTI System DRE (Method TO-14) Results
PTI System DRE (NMOC) Results
PDU System DRE (Method TO-14) Results
PDU System DRE (NMOC) Results

PTI System DRE (FID) Results Presented by Date Steady-State Tests

	Inlet Concentration	Outlet Concentration	
Date	(ppmc)	(ppmc)	DRE (%)
1/19/98	890	170	80.90
1/22/98	920	124	86.52
1/26/98	1,175	83	92.94
1/30/98	1,141	93	91.85
2/4/98	1,090	49	95.50
2/5/98	1,020	33	96.76
2/5/98	1,020	14	98.63
2/6/98	1,010	31	96.93
Average	1,033	75	92.50

PTI System Inlet and Outlet VOC (FID) Concentrations Data Logger Recording Steady-State Tests

Summary Data					
	Inlet		Outlet	tlet	Average
	Concentration	Mass Rate	Mass Rate Concentration	Mass Rate	
Compound Name	(bbmv)	(lbs/hr)	(bpmv)	(lbs/hr)	DRE %
Tetrachloroethene	31.40	0.2703	2.44	0.0278	89.72%
Trichloroethene	27.60	0.1895	4.02	0.0363	80.83%
cis-1,2-Dichloroethene	22.20	0.1129	4.40	0.0294	73.98%
Toluene	14.20	0.0679	0.74	0.0047	93.13%
Totals	191.84	1.2238	11.65	0.0986	91.94%

			Inlet			Outlet		
		Concentration	Renorting	Macs Rate	Concentration	Reporting I mit	Mace Rate	
Date	Compound Name	(vqdd)	Limit (ppbv)	(lbs/hr)	(vddd)	(nqdd)	(lbs/hr)	DRE (%)
1/19/98	Dichlorodifluoromethane	QN	520		QN	220		
1/19/98	1/19/98 Chloromethane	QN	1000		QN	430		
1/19/98	1/19/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	520		QN	220		
1/19/98	Vinyl chloride	QN	520		QN	220		
1/19/98	Bromomethane	QN	520		QN	220		
1/19/98	Chloroethane	QN	1000		QN	430		
1/19/98	Trichlorofluoromethane	QN	520		QN	220		
1/19/98	1,1-Dichloroethene	QN	520		QN	220		
1/19/98	1/19/98 Carbon disulfide	QN	2600		QN	1100		
1/19/98	1/19/98 1,1,2-Trichloro-1,2,2-trifluoroethane	QN	520		Q	220		
1/19/98	Acetone	QN	2600		2	1100		
1/19/98	1/19/98 Methylene chloride	QN	520		230	220	0.0012	
1/19/98	1/19/98 trans-1,2-Dichloroethene	QN	520		2	220		
1/19/98	1,1-Dichloroethane	QN	520		Q	220		
1/19/98	1/19/98 Vinyl acetate	QN	2600		QN	1100		
1/19/98	cis-1,2-Dichloroethene	43000		0.2156	24000	220	0.1439	33.26
1/19/98	2-Butanone	QN	2600		Q	1100		
1/19/98	Chloroform	QN	520		QN	220		
1/19/98	1,1,1-Trichloroethane	QN	520		QN	220		
1/19/98	1/19/98 Carbon tetrachloride	QN	520		QN	220		
1/19/98	1/19/98 Benzene	QN	520		QN	220		
1/19/98	1/19/98 1,2-Dichloroethane	QN	520		QN	220		
1/19/98	Trichloroethene	32000	520	0.2174	10000	220	0.0812	62.63
1/19/98	1,2-Dichloropropane	QN	520		QN	220		
1/19/98	Bromodichloromethane	QN	520		QN	220		
1/19/98	1/19/98 cis-1,3-Dichloropropene	QN	520		QN	220		
1/19/98	1/19/98 4-Methyl-2-pentanone	QN	2600		QN	1100		
1/19/98	1/19/98 Toluene	11000	520	0.0524	880	220	0.0050	90.43
1/19/98	1/19/98 trans-1,3-Dichloropropene	QN	520		QN	220		
1/19/98	1 1 2-Trichloroethane	QN	520		S	220		

		Inlet			Outlet		
					Reporting		
	Concentration	Reporting	Mass Rate	Concentration	Limit	Mass Rate	
Date Compound Name	(vddd)	Limit (ppbv)	(lbs/hr)	(hddd)	(bpbv)	(lbs/hr)	DRE (%)
1/19/98 Tetrachloroethene	23000	520	0.1971	3800	220	0.0389	80.24
1/19/98 2-Hexanone	ON	7800		QN	3200		
1/19/98 Dibromochloromethane	QN	520		Q	220		
1/19/98 1,2-Dibromoethane (EDB)	QN	520		Q	220		
1/19/98 Chlorobenzene	QN	520		QN	220		
1/19/98 Ethylbenzene	QN	520		Q	220		
1/19/98 Xylenes (total)	770	520	0.0042	Q	220		>65.83
1/19/98 Styrene	QN	520		QN	220		
1/19/98 Bromoform	QN	520		Q	220		
1/19/98 1,1,2,2-Tetrachloroethane	DN	520		QN	220		
1/19/98 Benzyl chloride	QN	2600		Q	1100		
1/19/98 4-Ethyltoluene	QN	520		QN	220		
	ON	520		2	220		
1/19/98 1,2,4-Trimethylbenzene	QN	520		QN	220		
	QN	520		QN	220		
1/19/98 1,4-Dichlorobenzene	ON	520		Q	220		
1/19/98 1,2-Dichlorobenzene	ON	520		QN	220		
1/19/98 1,2,4-Trichlorobenzene	ON	5200		QV	2200		
1/19/98 Hexachlorobutadiene	QN	1000		QN	430		
Total	109,770		0.6868	38,910		0.2703	60.64
1/22/98 Dichlorodifluoromethane	QN	530		QN	220		
1/22/98 Chloromethane	ON	1100		Q	450		
1/22/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	530		QN	220		
1/22/98 Vinyl chloride	QN	530		QN	220		
1/22/98 Bromomethane	QN	530		QN	220		
1/22/98 Chloroethane	DN	1100		QN	450		
	ON	530		Q	220		
1/22/98 1,1-Dichloroethene	ON	530		QN	220		
1/22/98 Carbon disulfide	ND	2700		QN	1100		

Compound Nar 1/22/98 1,1,2-Trichloro-1,2,2-trifluc 1/22/98 Acetone 1/22/98 Methylene chloride 1/22/98 trans-1,2-Dichloroethene 1/22/98 trans-1,2-Dichloroethene 1/22/98 trans-1,2-Dichloroethene 1/22/98 chloroform 1/22/98 chloroform 1/22/98 chloroform 1/22/98 chloroform 1/22/98 chloroform 1/22/98 trans-1,3-Dichloropropene 1/22/98 trans-1,3-Dichloropropene 1/22/98 trans-1,3-Dichloropropene 1/22/98 trans-1,3-Dichloroethene 1/22/	Compound Name 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	Concentration (ppbv) ND	Reporting Limit (ppbv) 530 2700 530	Mass Rate		Reporting		
888888888888888888888888888888888888888	npound Name -1,2,2-trifluoroethane oride loroethene hane oethene	(ppbv) ND	Limit (ppbv) 530 2700 530		Concentration	Limit	Mass Kate	
1/22/98 1,1,2-Trichloro-1,2 1/22/98 Acetone 1/22/98 Irans-1,2-Dichloro 1/22/98 (inyl acetate 1/22/98 (inyl acetate 1/22/98 (is-1,2-Dichloroeth 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Gis-1,3-Dichloropr 1/22/98 Gis-1,3-Dichloroethan 1/22/98 Toluene 1/22/98 Toluene	oride loroethane loroethene loroethene loroethene loethene leethane	32000 N D O O O O O O O O O O O O O O O O O O	530 2700 530	(lbs/hr)	(Addd)	(ppbv)	(lbs/hr)	DRE (%)
1/22/98 Methylene chlorid 1/22/98 Itans-1,2-Dichloroethan 1/22/98 I,1-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Carbon tetrachlor 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Gis-1,3-Dichlorop 1/22/98 I,1,2-Trichloroethan 1/22/98 Tolluene 1/22/98 Tolluene 1/22/98 Tolluene 1/22/98 Tolloene 1/22/98 Tolloene 1/22/98 Tolloene 1/22/98 Tolloene 1/22/98 Tolloene 1/22/98 Tolloene	oride foroethene hane oethene ethane	32000 N N N N N N N N N N N N N N N N N N	2700		2	220		
1/22/98 Interhylene chlorid 1/22/98 trans-1,2-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,3-Dichloroethan 1/22/9	toroethene hane oethene oethene	ND ND S2000 ND	530		2	1100		
1/22/98 trans-1,2-Dichloroethan 1/22/98 (i.1-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,2-Dichloroethan 1/22/98 (is-1,3-Dichloroethan 1/22/98	loroethene hane oethene ethane	32000 ND			310	220	0.0017	
1/22/98 Vinyl acetate 1/22/98 Vinyl acetate 1/22/98 cis-1,2-Dichloroeth 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Chloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Grs-1,3-Dichloropr 1/22/98 Grs-1,3-Dichloroethan 1/22/98 Tolluene 1/22/98 Trichloroethan 1/22/98 Tolluene 1/22/98 Tollueneehere 1/22/98 Tollueneehere	hane oethene ethane	32000 ND	530		2	220		
1/22/98 Cinyl acetate 1/22/98 cis-1,2-Dichloroet 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Carbon tetrachlor 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Gis-1,3-Dichloroethan 1/22/98 Tetrachloroethan 1/22/98 Chlorobenzene	oethene	32000 ND ND N	530		QN	220		
1/22/98 cis-1,2-Dichloroet 1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Carbon tetrachlor 1/22/98 Garbon tetrachlor 1/22/98 Tichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Tolloene	oethene	32000 ND ND ND	2700		Q	1100		-
1/22/98 Chloroform 1/22/98 Chloroform 1/22/98 Carbon tetrachlor 1/22/98 Benzene 1/22/98 H,2-Dichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Trichloroethan 1/22/98 Tolloene 1/22/98 Gis-1,3-Dichloropr 1/22/98 Tolloene	ethane		530	0.1486	17000	220	0.1060	28.65
1/22/98 Chloroform 1/22/98 1,1,1-Trichloroeth 1/22/98 Garbon tetrachlor 1/22/98 Benzene 1/22/98 1,2-Dichloroethane 1/22/98 Trichloroethane 1/22/98 Great 1,2-Dichloropropa 1/22/98 Gis-1,3-Dichloropr 1/22/98 Gis-1,3-Dichloroethane 1/22/98 Tolluene 1/22/98 Tollueneethane 1/22/98 Tollueneethane 1/22/98 Gibromochlorome	ethane	Q Q	2700		2	1100		
1/22/98	ethane	QV QV	530		270	220	0.0021	
1/22/98 Garbon tetrachlori 1/22/98 Benzene 1/22/98 1,2-Dichloroethan 1/22/98 Trichloroethene 1/22/98 Bromodichlorome 1/22/98 Gis-1,3-Dichloropr 1/22/98 Toluene 1/22/98 Toluene 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Dibromochlorome 1/22/98 Dibromochlorome 1/22/98 Gistoria (1/22/98 Collorobenzene	1.13.	9	530		QN	220		
1/22/98 Benzene 1/22/98 1,2-Dichloroethan 1/22/98 1,2-Dichloropropa 1/22/98 1,2-Dichloropropa 1/22/98 Bromodichlorome 1/22/98 Gis-1,3-Dichloropr 1/22/98 Toluene 1/22/98 Tolueneethene 1/22/98 Chloropethene	loride		530	Transfer and the state of the s	Q	220		
1/22/98 1,2-Dichloroethan 1/22/98 Trichloroethene 1/22/98 1,2-Dichloropropa 1/22/98 Gis-1,3-Dichloropr 1/22/98 4-Methyl-2-pentar 1/22/98 Toluene 1/22/98 Trichloroethene 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Gibromochlorome 1/22/98 Chlorobenzene Chlorobenzene		QN	530		QN	220		
1/22/98 Trichloroethene 1/22/98 1,2-Dichloropropa 1/22/98 Gis-1,3-Dichloropr 1/22/98 4-Methyl-2-pentar 1/22/98 Toluene 1/22/98 trans-1,3-Dichloro 1/22/98 trans-1,3-Dichloro 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Gibromochlorome 1/22/98 Gibromochlorome	hane	QN	530		QN	220		
1/22/98 1,2-Dichloropropa 1/22/98 Bromodichlorome 1/22/98 cis-1,3-Dichloropr 1/22/98 Toluene 1/22/98 trans-1,3-Dichloro 1/22/98 Tetrachloroethene 1/22/98 Tetrachloroethene 1/22/98 Dibromochlorome 1/22/98 Dibromochlorome 1/22/98 Chlorobenzene	е	37000	530	0.2328	10000	220	0.0845	63.70
1/22/98 Grs-1,3-Dichlorope 1/22/98 Grs-1,3-Dichlorope 1/22/98 Toluene 1/22/98 Trans-1,3-Dichloro 1/22/98 1,1,2-Trichloroethene 1/22/98 Tetrachloroethene 1/22/98 Dibromochlorome 1/22/98 Dibromochlorome 1/22/98 Grannochlorome 1/22/98 Grannochlorome 1/22/98 Grannochlorome	opane	ON	230		QN	220		
1/22/98 cis-1,3-Dichloropr 1/22/98 4-Methyl-2-pentar 1/22/98 Toluene 1/22/98 1,1,2-Trichloroeth 1/22/98 Tetrachloroethene 1/22/98 2-Hexanone 1/22/98 Dibromochlorome 1/22/98 Dibromochlorome 1/22/98 Chlorobenzene	methane	QN	530		QN	220		
1/22/98 4-Methyl-2-pentar 1/22/98 Toluene 1/22/98 trans-1,3-Dichloro 1/22/98 Tetrachloroethene 1/22/98 2-Hexanone 1/22/98 Dibromochlorome 1/22/98 Dibromochlorome 1/22/98 Chlorobenzene	opropene	QN	230		ND	220		
1/22/98 Toluene 1/22/98 trans-1,3-Dichloro 1/22/98 1,1,2-Trichloroethene 1/22/98 Tetrachloroethene 1/22/98 Dibromochlorome 1/22/98 Dibromochlorome 1/22/98 Chlorobenzene	ntanone	QN	2700		QN	1100		
1/22/98 trans-1,3-Dichloro 1/22/98 1,1,2-Trichloroeth 1/22/98 Tetrachloroethene 1/22/98 2-Hexanone 1/22/98 Dibromochlorome 1/22/98 (1,2-Dibromoethar		13000	530	0.0573	1500	220	0.0089	84.50
1/22/98 1,1,2-Trichloroeth 1/22/98 Tetrachloroethene 1/22/98 2-Hexanone 1/22/98 Dibromochlorome 1/22/98 1,2-Dibromoethar	loropropene	QN	530		QN	220		
1/22/98 Tetrachloroethene 1/22/98 2-Hexanone 1/22/98 Dibromochlorome 1/22/98 1,2-Dibromoethar 1/22/98 Chlorobenzene	ethane	QN	230		QN	220		
1/22/98 2-Hexanone 1/22/98 Dibromochlorome 1/22/98 1,2-Dibromoethar	ene	26000	530	0.2064	3900	220	0.0416	79.85
1/22/98 Dibromochlorome 1/22/98 1,2-Dibromoethar 1/22/98 Chlorobenzene		QN	8000		QN	3400		
1/22/98 1,2-Dibromoethan	methane	QN	530		QN	220		
1/22/98 Chlorobenzene	hane (EDB)	QN	530		QN	220		
	To O	QN	530		QN	220		
1/22/98 Ethylbenzene		QN	530		QN	220		
1/22/98 Xylenes (total)		1000	530	0.0051	QN	220		>70.45
1/22/98 Styrene		QN	530		QN	220		
1/22/98 Bromoform		QN	230		QN	220		

		Inlet			Outlet		
					Reporting		
	Concentration	Reporting	Mass Rate	Concentration	Limit	Mass Rate	
Date Compound Name	(hppv)	Limit (ppbv)	(lbs/hr)	(vqdd)	(vqdd)	(lbs/hr)	DRE (%)
1/22/98 1,1,2,2-Tetrachloroethane	QN	530		QN	220		
1/22/98 Benzyl chloride	QN	2700		QN	1100		
1/22/98 4-Ethyltoluene	QN	530		QN	220		
1/22/98 1,3,5-Trimethylbenzene	QN	530		QN	220		
1/22/98 1,2,4-Trimethylbenzene	870	530	0.0050	QN	220		>66.03
1/22/98 1,3-Dichtorobenzene	Q.	530		QN	220		
1/22/98 1,4-Dichlorobenzene	QN	530		QN	220		
1/22/98 1,2-Dichlorobenzene	S	530		QN	220		
1/22/98 1,2,4-Trichlorobenzene	QN	5300		ON	2200		
1/22/98 Hexachlorobutadiene	QN	1100		ON	450		
Total	109,870		0.6553	32,980		0.2448	62.64
1/26/98 Dichlorodifluoromethane	QN	550		ON	220		
1/26/98 Chloromethane	QN	1100		ND	450		
1/26/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	550		QN	220		
1/26/98 Vinyl chloride	QN	550		ON	220		
1/26/98 Bromomethane	QN	550		ND	220		
1/26/98 Chloroethane	QN	1100		ON	450		
1/26/98 Trichlorofluoromethane	QN	550		QN	220		
1/26/98 1,1-Dichloroethene	QN	220		ON	220		
1/26/98 Carbon disulfide	QN	2700		QN	1100		
1/26/98 1,1,2-Trichloro-1,2,2-trifluoroethane	QN	550		QN	220		
1/26/98 Acetone	QN.	2700		QN	1100		
1/26/98 Methylene chloride	QN	550		310	220	0.0018	
1/26/98 trans-1,2-Dichloroethene	QN	550		QN	220		
1/26/98 1,1-Dichloroethane	QN	920		QN	220		
1/26/98 Vinyl acetate	QN	2700		QN	1100		
1/26/98 cis-1,2-Dichloroethene	38000		0.2043	14000		0.0930	54.46
1/26/98 2-Butanone	QN	2700		Q	1100		
1/26/98 Chloroform	QN	550		270	220	0.0022	

			Inlet			Outlet		
		Concentration	Reporting	Mass Rate	Concentration	Reporting Limit	Mass Rate	
Date	Compound Name	(vddd)	Limit (ppbv)	(lbs/hr)	(\nqdd)	(hddd)	(lbs/hr)	DRE (%)
1/26/98	8 1,1,1-Trichloroethane	QN	220		360			,
1/26/98	8 Carbon tetrachloride	QN	220		QN	220		
1/26/98	8 Benzene	QN	250		QN	220		
1/26/98	1,2-Dichloroethane	QN	220		QN	220		
1/26/98	8 Trichloroethene	41000	250	0.2987	0066		0.0891	70.16
1/26/98	1,2-Dichloropropane	Q.	220		QN	220		
1/26/98	8 Bromodichloromethane	QN	220		QN	220		
1/26/98	8 cis-1,3-Dichloropropene	Q	220		QN	220		
1/26/98	8 4-Methyl-2-pentanone	QN	2700		QN	1100		
1/26/98	8 Toluene	17000	920	0.0868	1400	220	0.0088	89.82
1/26/98	1/26/98 trans-1,3-Dichloropropene	QN	220		QN			
1/26/98	1/26/98 1,1,2-Trichloroethane	QN	550		ON	220		
1/26/98	7 Tetrachloroethene	38000	550	0.3493	2000		0.0568	83.74
1/26/98	8 2-Hexanone	ON	8200		ON	3400		
1/26/98	8 Dibromochloromethane	QN	920		QN	220		
1/26/98	1,2-Dibromoethane (EDB)	ON	920		QN	220		
1/26/98	8 Chlorobenzene	ON	099		QN	220		
1/26/98	1/26/98 Ethylbenzene	ON	099		QN	220		
1/26/98	1/26/98 Xylenes (total)	2500	250	0.0147	QN	220		>89.12
1/26/98	1/26/98 Styrene	QN	099		QN	220		
1/26/98	1/26/98 Bromoform	ON	099		QN	220		
1/26/98	1/26/98 1,1,2,2-Tetrachloroethane	ON	250		QN	220		
1/26/98	8 Benzyl chloride	ON	2700		QN	1100		
1/26/98	1/26/98 4-Ethyltoluene	006	220	0.0056	QN	220		>69.78
1/26/98	1,3,5-Trimethylbenzene	570	250	0.0038	QN	220		>52.29
1/26/98	8 1,2,4-Trimethylbenzene	1700	220	0.0113	QN	220		>84.00
1/26/98	8 1,3-Dichlorobenzene	QN	250		QN	220		
1/26/98	8 1,4-Dichlorobenzene	ON	220		QN	220		
1/26/98		620	220	0.0051	QN	220		>56.14
1/26/98	8 1,2,4-Trichlorobenzene	ND	2200		ON	2200		

			Inlet			Outlet		
						Reporting		
		Concentration	Reporting	Mass Rate	Concentration	Limit	Mass Rate	
Date	Compound Name	(bpbv)	Limit (ppbv)	(lbs/hr)	(vddd)	(hddd)	(lbs/hr)	DRE (%)
1/26/98	Hexachlorobutadiene	QN	1100		QN	450		
	Total	140,290		0.9796	31,240		0.2551	73.96
1/30/98	Dichlorodifluoromethane	QN	340		QN	81		
1/30/98	1/30/98 Chloromethane	QN	670		QN	160		
1/30/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	340		QN	81		
1/30/98		QN	340	And the control of th	QN	81		
1/30/98	Bromomethane	QN	340		QN	81		
1/30/98	Chloroethane	QN	670		QN	160		
1/30/98	Trichlorofluoromethane	QN	340		DN	81		
1/30/98	1,1-Dichloroethene	Q	340		QN	81		
1/30/98	1/30/98 Carbon disulfide	S	1700		Q	400		
1/30/98	1/30/98 1,1,2-Trichloro-1,2,2-trifluoroethane	Q	340		Q	81		
1/30/98	1/30/98 Acetone	N N	1700		ON	400		
1/30/98	1/30/98 Methylene chloride	ON	340		120	81	0.0007	
1/30/98	1/30/98 trans-1,2-Dichloroethene	QN	340		QN	81		
1/30/98	1,1-Dichloroethane	QN	340		ON	81		
1/30/98	1/30/98 Vinyl acetate	QN	1700		QN	400		
1/30/98	1/30/98 cis-1,2-Dichloroethene	22000	340	0.1121	4100	18	0.0281	74.98
1/30/98	2-Butanone	QN	1700		QN	400		
1/30/98	1/30/98 Chloroform	Q	340		120	18	0.0010	
1/30/98	1,1,1-Trichloroethane	QN	340		ON	81		
1/30/98	8 Carbon tetrachloride	QN	340		ON	81		
1/30/98	8 Benzene	QN	340		ON	81		
1/30/98	1,2-Dichloroethane	S	340		QN	81		
1/30/98	1/30/98 Trichloroethene	32000	340	0.2209	4200	81	0.0389	82.38
1/30/98	8 1,2-Dichloropropane	QN	340		ON	81		
1/30/98	1/30/98 Bromodichloromethane	QN			ON	81		
1/30/98	8 cis-1,3-Dichloropropene	2	340		Q	81		
1/30/98	1/30/98 4-Methyl-2-pentanone	QN	1700		QN	400		

		Inlet			Outlet		
					Reporting		
Date Compound Name	Concentration (ppbv)	Reporting Limit (ppbv)	Mass Rate (Ibs/hr)	Concentration (ppbv)	(bpbv)	(lbs/hr)	DRE (%)
1/30/98 Toluene	15000	340	0.0726		81	0.0040	94.54
1/30/98 trans-1,3-Dichloropropene	QN	340		QN	81		
1/30/98 1,1,2-Trichloroethane	QN	340		QN	81		
1/30/98 Tetrachloroethene	33000	340	0.2875	2200	81	0.0257	91.05
1/30/98 2-Hexanone	QN	5100		Q	1200		
1/30/98 Dibromochloromethane	QN	340		QN	81		
1/30/98 1,2-Dibromoethane (EDB)	QN	340		QN	81		
	QN	340		QN	81		
1/30/98 Ethylbenzene	QN	340	المدامة والإساق الإساق الإساق المدامة	QN	81		
1/30/98 Xylenes (total)	1900	340	0.0106	QN	81		>94.27
1/30/98 Styrene	QN	340		QN	81		
1/30/98 Bromoform	Q	340		QN	81		
1/30/98 1,1,2,2-Tetrachloroethane	QN	340		QN	81		
1/30/98 Benzyl chloride	QN	1700		ON	400		
1/30/98 4-Ethyltoluene	750	340	0.0045	ON	81		>85.50
1/30/98 1,3,5-Trimethylbenzene	500	340	0.0032	ND	81		>78.25
1/30/98 1,2,4-Trimethylbenzene	1500	340	0.0095	QN	81		>92.75
1/30/98 1,3-Dichlorobenzene	ND	340		QN	81		
1/30/98 1,4-Dichlorobenzene	QN	340		QN	81		
1/30/98 1,2-Dichlorobenzene	520	340	0.0040	ON	81		>79.08
1/30/98 1,2,4-Trichlorobenzene	ON	3400		QN	810		
1/30/98 Hexachlorobutadiene	QN	029		N	160		
Total	107,170		0.7249	11,350		0.0984	86.42
2/4/98 Dichlorodifluoromethane	QN	270		QN	40	dispersion and the second seco	
2/4/98 Chloromethane	QN	530		Q	81		
2/4/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	270		ON	40		
2/4/98 Vinyl chloride	QN	270		ON	40		
2/4/98 Bromomethane	ON	270		ND	40		
2/4/98 Chloroethane	QN	530		QN	81		

		Inlet			Outlet		
	Concentration	Reporting	Mass Rate	Concentration	Reporting	Mass Rate	
Date Compound Name	(hddd)	Limit (ppbv)	(lbs/hr)	(vqdd)	(Aqdd)	(lbs/hr)	DRE (%)
2/4/98 Trichlorofluoromethane	QN	270		Q	40		
2/4/98 1,1-Dichloroethene	QN	270		QN	40	The state of the s	
2/4/98 Carbon disulfide	Q	1300		Q	200		
2/4/98 1,1,2-Trichloro-1,2,2-trifluoroethane	Q	270		QN	40		
2/4/98 Acetone	QN	1300		2	200		
2/4/98 Methylene chloride	QN	270		100	40	0.0006	
2/4/98 trans-1,2-Dichloroethene	QN	270		QN	40		
2/4/98 1,1-Dichloroethane	QN	270		QN	40		
2/4/98 Vinyl acetate	Q	1300		QN	200		
2/4/98 cis-1,2-Dichloroethene	16000		0.0775	1600	40	0.0105	86.41
2/4/98 2-Butanone	QN	1300		Q	200		
2/4/98 Chloroform	QN	270		180	40	0.0015	
2/4/98 1,1,1-Trichloroethane	QN	270		2	40		
2/4/98 Carbon tetrachloride	QN	270		QN	40		
2/4/98 Benzene	ON	270		58	40	0.0003	
2/4/98 1,2-Dichloroethane	QN	270		QN	40		
2/4/98 Trichloroethene	23000	270	0.1509	3000	40	0.0267	82.28
2/4/98 1,2-Dichloropropane	QN	270		QN	40		
2/4/98 Bromodichloromethane	QN	270		S	40		
2/4/98 cis-1,3-Dichloropropene	ON			QN	40		
2/4/98 4-Methyl-2-pentanone	QN	1		2	200		
2/4/98 Toluene	13000	270	0.0598	069	40	0.0043	92.79
2/4/98 trans-1,3-Dichloropropene	ON	270		QN	40		
2/4/98 1,1,2-Trichloroethane	QN	270		QN .	40		
2/4/98 Tetrachloroethene	28000	270	0.2318	2200	40	0.0247	89.33
2/4/98 2-Hexanone	Q	4000		QN	610		
2/4/98 Dibromochloromethane	ON			ON	40		
2/4/98 1,2-Dibromoethane (EDB)	QN			ON	40		
2/4/98 Chlorobenzene	QN	270		QN	40		
2/4/98 Ethylbenzene	2			QN	40		

		Inlet			Outlet		
	Concentration	Reporting	Mass Rate	Concentration	Reporting Limit	Mass Rate	
Date Compound Name	(hppv)	Limit (ppbv)	(lbs/hr)	(Addd)	(ppbv)	(lbs/hr)	DRE (%)
2/4/98 Xylenes (total)	1700	270	0.0090	QN	40		>96.80
2/4/98 Styrene	Q	270		QN	40		
2/4/98 Bromoform	QN	270		QN	40		
2/4/98 1,1,2,2-Tetrachloroethane	QN	270		QN	40		
2/4/98 Benzyl chloride	S	1300		QN	200		
2/4/98 4-Ethyltoluene	650	270	0.0037	Q	40		>91.63
2/4/98 1,3,5-Trimethylbenzene	440		0.0026	QN	40		>87.64
2/4/98 1,2,4-Trimethylbenzene	1300	270	0.0078	QN	40		>95.81
2/4/98 1,3-Dichlorobenzene	QN	270		QN	40		
2/4/98 1,4-Dichlorobenzene	ND	270		QN	40		
2/4/98 1,2-Dichlorobenzene	440	270	0.0032	QN	40		>87.64
2/4/98 1,2,4-Trichlorobenzene	QN	2700	American American (American American Am	Q	400		
2/4/98 Hexachlorobutadiene	QN	530		9	81		
Total	84,530		0.5464	7,828		0.0687	87.43
2/E/00 Dishlamalifithmotham	2	Coc		2	2		
	2 3	2007		ב ב	17		
2/5/98 Chloromethane		520		Q	42		
2/5/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane		260		QN	21		
2/5/98 Vinyl chloride	ND	260		QN	21		
2/5/98 Bromomethane	ON	260		QN	21		
2/5/98 Chloroethane	ON	520		QN	42		
2/5/98 Trichlorofluoromethane	ON	260		Q	21		
2/5/98 1,1-Dichloroethene	QN	260		QN	21		
2/5/98 Carbon disulfide	QN	1300		QN	110		
2/5/98 1,1,2-Trichloro-1,2,2-trifluoroethane	QN	260		S	21		
2/5/98 Acetone	QN	1300		290	110	0.0011	
2/5/98 Methylene chloride	QN	260		91	21	0.0005	
2/5/98 trans-1,2-Dichloroethene	ND	260		46	21	0.0003	
2/5/98 1,1-Dichloroethane	N	260		QN	21		
2/5/98 Vinvl acetate	QN	1300		CN	110		

		Inlet			Outlet		
	Concentration	Renorting	Mace Rate	Concentration	Reporting	Mace Data	
Date Compound Name	(vdqd)	Limit (ppbv)	(lbs/hr)	(vddd)	(hddd)	(lbs/hr)	DRE (%)
2/5/98 cis-1,2-Dichloroethene	18000	260	0.0878		21	0.0077	91.21
2/5/98 2-Butanone	ON	1300		QN	110		
2/5/98 Chloroform	Q	260		260	21	0.0021	
2/5/98 1,1,1-Trichtoroethane	QN	260		QN	21		
2/5/98 Carbon tetrachloride	Q	260	4.0	QN	21		
2/5/98 Benzene	QN	260	The second secon	78	21	0.0004	
2/5/98 1,2-Dichloroethane	QN	260	manamanna kangalan galaman da gaga kandadan kangalan da malan da kandan galaman garan manamanna manaman kangan	QN	21		
2/5/98 Trichloroethene	22000	260	0.1454	1600	21	0.0139	90.41
2/5/98 1,2-Dichloropropane	QN	260		N	21		
2/5/98 Bromodichloromethane	S	260		QN	21		
2/5/98 cis-1,3-Dichloropropene	QN	260		QN	21		
2/5/98 4-Methyl-2-pentanone	QN	1300		QN	110		
2/5/98 Toluene	13000	260	0.0602	530	21	0.0032	94.62
2/5/98 trans-1,3-Dichloropropene	QN	260		QN	21		
2/5/98 1,1,2-Trichloroethane	QN	260		QN	21		
2/5/98 Tetrachloroethene	29000	260	0.2419	1500	21	0.0165	93.18
2/5/98 2-Hexanone	QN	3900		QN.	320		
2/5/98 Dibromochloromethane	QN	260		Q	21		
2/5/98 1,2-Dibromoethane (EDB)	ON	260		QN	21		
2/5/98 Chlorobenzene	QN			ON	21		
2/5/98 Ethylbenzene	290	260	0.0015	QN	21		>90.45
2/5/98 Xylenes (total)	1600	260	0.0085	QN	21		>98.26
2/5/98 Styrene	ND	260		2	21		
2/5/98 Bromoform	ON	260		QN	21		
2/5/98 1,1,2,2-Tetrachloroethane	ON	260		ON	21		
2/5/98 Benzyl chloride	ON	L .		QN	110		amende and the state of the sta
2/5/98 4-Ethyltoluene	089		0.0039		21		>95.92
2/5/98 1,3,5-Trimethylbenzene	430		0.0026		21		>93.56
2/5/98 1,2,4-Trimethylbenzene	1400	260	0.0085	QN	21		>98.02
2/5/98 1,3-Dichlorobenzene	Q.	260		QN	21		

		Inlet			Outlet		
	Concentration	Reporting	Mass Rate	Concentration	Reporting Limit	Mass Rate	
Compound Name	(hddd)	Limit (ppbv)	(lbs/hr)	(vqdd)	(ngdd)	(lbs/hr)	DRE (%)
1,4-Dichlorobenzene	Q	260		QN	21		
2/5/98 1,2-Dichlorobenzene	390	260	0.0029	QN	21		>92.89
2/5/98 1,2,4-Trichlorobenzene	Q	2600		Q	210		
2/5/98 Hexachlorobutadiene	Q	520		QN	42		
Total	86,790		0.5632	5,595		0.0458	91.87
Dichlorodifluoromethane	QN	250		QN	14		
Chloromethane	QN	510		Q	28		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	250		QN	14		
2/6/98 Vinyl chloride	QN	250		23	14	0.0001	
2/6/98 Bromomethane	QN	250		QN	14		
2/6/98 Chloroethane	QN	510		QN	28		
2/6/98 Trichlorofluoromethane	Q	250		Q	14		
2/6/98 1,1-Dichloroethene	QN	250		QN	14		
Carbon disulfide	QN	1300		QN	69		
1,1,2-Trichloro-1,2,2-trifluoroethane	ON	250		QN	14		
Acetone	QN	1300		240	69	0.0010	
Methylene chloride	QN	250		84	14	0.0005	
2/6/98 trans-1,2-Dichloroethene	QN	250		38	14	0.0003	
1,1-Dichloroethane	QN	250		QN	14		
2/6/98 Vinyl acetate	QN	1300		QN	69		
2/6/98 cis-1,2-Dichloroethene	17000	250	0.0827	1100	14	0.0075	90.91
2/6/98 2-Butanone	QN	1300		2	69		
Chloroform	QN	250		210	14	0.0018	
1,1,1-Trichloroethane	QN	250		QN	14		
Carbon tetrachloride	QN	250	The state of the s	QN	14		
2/6/98 Benzene	ON	250		70	14	0.0004	
2/6/98 1,2-Dichtoroethane	QN	250		19	14	0.0001	
2/6/98 Trichloroethene	20000		0.1318	1400	14	0.0130	90.16
1,2-Dichloropropane	Q	250		2	14		

			Inlet			Outlet		
						Reporting		
		Concentration	Reporting	Mass Rate	Concentration	Limit	Mass Rate	
Date	Compound Name	(vddd)	Limit (ppbv)	(lbs/hr)	(hddd)	(bbbv)	(lbs/hr)	DRE (%)
2/6/98	2/6/98 Bromodichloromethane	Q	250	-	QN	14		
2/6/98	2/6/98 cis-1,3-Dichloropropene	ND	250		ON.	14		
2/6/98	2/6/98 4-Methyl-2-pentanone	Q	1300		QN	69		
2/6/98	2/6/98 Toluene	13000	250	0.0601	460	14	0.0030	95.03
2/6/98	2/6/98 trans-1,3-Dichloropropene	QN	250		QN	14		
2/6/98	2/6/98 1,1,2-Trichloroethane	Q	250		QN	14		
2/6/98	2/6/98 Tetrachloroethene	29000	250	0.2412	1300	14	0.0152	93.70
2/6/98	2/6/98 2-Hexanone	QN	3800		QN	210		
2/6/98	2/6/98 Dibromochloromethane	ON	250		QN	14		
2/6/98	2/6/98 1,2-Dibromoethane (EDB)	ON	250		QN	14		
2/6/98	2/6/98 Chlorobenzene	QN	250		QN	14		
2/6/98	2/6/98 Ethylbenzene	290	250	0.0015	QN	14		>93.21
2/6/98	2/6/98 Xylenes (total)	1800	250	0.0096	QN	14		>98.90
2/6/98	2/6/98 Styrene	QN	250		QN	14		
2/6/98	2/6/98 Bromoform	QN	250		QN	14		
2/6/98	2/6/98 1,1,2,2-Tetrachloroethane	QN	250		QN	14		
2/6/98	2/6/98 Benzyl chloride	ON	1300		QN	69		
2/6/98	2/6/98 4-Ethyltoluene	650	250	0.0037	QN	14		>96.97
2/6/98	2/6/98 1,3,5-Trimethylbenzene	450	250	0.0027	QN	14		>95.62
2/6/98	2/6/98 1,2,4-Trimethylbenzene	1400	250	0.0084	QN	14		>98.59
2/6/98	2/6/98 1,3-Dichlorobenzene	ON	250		QN	14		
2/6/98	2/6/98 1,4-Dichlorobenzene	Q	250		QN	14		
2/6/98	2/6/98 1,2-Dichlorobenzene	350	250	0.0026	QN	14		>94.37
2/6/98	2/6/98 1,2,4-Trichlorobenzene	QN	2500		Q	140		
2/6/98	2/6/98 Hexachlorobutadiene	QN	510		QN	28		
	Total	83,940		0.5443	4,944		0.0428	92.14

PTI System DRE (NMOC) Results Presented by Date Steady-State Tests

Date	Inlet Concentration (ppmc)	Outlet Concentration (ppmc)	DRE (%)
1/19/98	448	121	72.99
1/22/98	395	117	70.38
1/26/98	536	121	77.43
1/30/98	394	60	84.77
2/4/98	348	38	89.14
2/5/98	333	34	89.67
2/5/98	284	24	91.65
2/6/98	284	30	89.44
Average	378	68	83.18

Summary Data					
	Inlet		nO	Outlet	Average
	Concentration	Mass Rate	Concentration Mass Rate Concentration	Mass Rate	
Compound Name	(hudd)	(lbs/hr)	(bbmv)	(lbs/hr)	DRE %
cis-1,2-Dichloroethene	742.86	0.0623	8.11	0.0007	98.85%
1,1,1-Trichloroethane	12.00	0.0013	0.08	0.000	99.27%
Trichloroethene	688.57	0.0799	17.70	0.0022	97.29%
Toluene	205.86	0.0172	11.62	0.0010	94.18%
Tetrachloroethene	334.29	0.0501	11.79	0.0018	96.36%
Ethylbenzene	2.80	0.0003	0.10	0.0000	96.21%
Xylenes (total)	11.60	0.0012	0.44	0.0000	95.89%
1,2,4-Trimethylbenzene	4.50	0.0005	QN	0.0000	>92.22%
Totals	2,002.47	0.2128	49.82	0.0058	>97.27%

· 安全的記憶化 / 各部の対象を対象を行るのでは、多ないになる。

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
	Compound Name	(hddd)	٥	(lbs/hr)	(vqdd)	(Agdd)	(lbs/hr)	DRE (%)
	Dichlorodifluoromethane	QN			QN	250		
	Chloromethane	Q	21000		1100	510	0.000	
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	11000		QN	250		
	Vinyl chloride	QN	11000		QN	250		
	Bromomethane	QN	11000		QN	250		
	Chloroethane	Q	21000		QN	510		
1/19/98	Trichlorofluoromethane	QN	11000		QN	250		
1/19/98	1,1-Dichloroethene	Q			QN	250		
1/19/98	Carbon disulfide	QN	23000		QN	1300		
1/19/98	1,1,2-Trichloro-1,2,2-trifluoroethane	QN	11000		QN	250		
1/19/98 Acetone	Acetone	QN	23000		6200	1300	0.0002	
1/19/98	1/19/98 Methylene chloride	QN	11000		7000	250	0.0004	
1/19/98 t	trans-1,2-Dichloroethene	QN	11000		QN	250		
	1,1-Dichloroethane	QN			Q	250		
	Vinyl acetate	QN	53000		QN	1300		
	cis-1,2-Dichloroethene	000022	11000	0.0465	3800	250	0.0002	99.51
1/19/98	2-Butanone	ON			QV	1300		
1/19/98 (1/19/98 Chloroform	ON			25000	250	0.0019	
1/19/98	1/19/98 1,1,1-Trichloroethane	ON			QN	250		
1/19/98 (1/19/98 Carbon tetrachloride	QN			800	250	0.0001	
1/19/98 Benzene	Benzene	DN	11000		3300	250	0.0002	
1/19/98	1/19/98 1,2-Dichloroethane	QN			3900	250	0.0002	
	Trichloroethene	480000	11000	0.0393	1800	250	0.0001	99.63
	1,2-Dichloropropane	2			QN	250		
	Bromodichloromethane	Q			QN	250		
	cis-1,3-Dichloropropene	QN			QN	250		
	4-Methyl-2-pentanone	Q	53000		QN	1300		
1/19/98 1	Toluene	91000		0.0052	250	250	0.0000	99.73
1/19/98 t	1/19/98 trans-1,3-Dichloropropene	ON			QN	250		
1/19/98	1/19/98 1,1,2-Trichloroethane	QN			Q	250		
1/19/98	Tetrachloroethene	170000	11000	0.0176	710	250	0.0001	99.58
1/19/98	1/19/98 2-Hexanone	ND	160000		Q	3800		
1/19/98 [1/19/98 Dibromochloromethane	QN	11000		QN	250		
1/19/98 1	1,2-Dibromoethane (EDB)	ND	11000		9	250		

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
	Compound Name	(hddd)	(vddd)	(lbs/hr)	(hddd)	(hddd)	(lbs/hr)	DRE (%)
1/19/98 C	Chlorobenzene	ND	11000		ON	250		
1/19/98 E	Ethylbenzene	ON	11000		QN	250		
1/19/98 >	1/19/98 Xylenes (total)	QN	11000		QN	250		
1/19/98 Styrene	Styrene	QN	11000		Q	250		
1/19/98 E	1/19/98 Bromoform	QN	11000		QN	250		
1/19/98	1,1,2,2-Tetrachloroethane	QN	11000		QN	250		
1/19/98 E	Benzyl chloride	QN			ON	1300		
1/19/98	4-Ethyltoluene	QN	11000		QN	250		
1/19/98 1	1,3,5-Trimethylbenzene	QN	11000	About Appropriate to gall of the control of the con	ON	250		
1/19/98	1,2,4-Trimethylbenzene	QN	11000		QN	250		
1/19/98 1	1,3-Dichlorobenzene	QN	11000		QN	250		
1/19/98 1	1,4-Dichlorobenzene	QN	11000		QN	250		
1/19/98 1	1,2-Dichlorobenzene	QN	11000		QN	250		
1/19/98	1/19/98 1,2,4-Trichlorobenzene	QN	110000		QN	2500		
1/19/98	1/19/98 Hexachlorobutadiene	QN	21000		ON	510		
	Total	1,511,000		0.1086	53,860		0.0034	96.84
1/22/98	Dichlorodifluoromethane	QN	4700		QN	420		
1/22/98	Chloromethane	QN	9400		2000	840	0.0001	
1/22/98 1	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	4700		QN	420		
1/22/98 \	Vinyl chloride	QN			QN	420		
1/22/98	Bromomethane	QN	4700		QN	420		
1/22/98	Chloroethane	QN			QN			
1/22/98	1/22/98 Trichlorofluoromethane	QN			DN			
1/22/98	1/22/98 1,1-Dichloroethene	ON			QN			
1/22/98 (1/22/98 Carbon disulfide	ON	24000		QN	2100		
1/22/98	1/22/98 1,1,2-Trichloro-1,2,2-trifluoroethane	ON			QN			
1/22/98 Acetone	Acetone	ON	24000		15000	2100	8000'0	
1/22/98	1/22/98 Methylene chloride	5200	4100	0.0004	9500	420	0.0008	-82.69
1/22/98 1	1/22/98 trans-1,2-Dichloroethene	2800	4700	0.0005	460	420	0.0000	92.07
1/22/98	1/22/98 1,1-Dichloroethane	QN	4700		QN	420		
1/22/98	1/22/98 Vinyl acetate	Q.	2			2100		
1/22/98	1/22/98 cis-1,2-Dichloroethene	860000	4700	0.0779	2000	420	0.0005	99.42
1/22/98	1/22/98 2-Butanone	QN .	24000		Q	2100		

		Inlet			Outlet		
		Reporting		- Programme and the second sec	Reporting		
	Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Date Compound Name	(vddd)	(bpbv)	(lbs/hr)	qdd)	(bpbv)	(lbs/hr)	DRE (%)
1/22/98 Chloroform	10000	4700	0.0011	33000		0.0037	-230.00
1/22/98 1,1,1-Trichloroethane	QN	4700		ND	420		
1/22/98 Carbon tetrachloride	QN	4700		930	420	0.0001	
1/22/98 Benzene	Q	4700		7100	420	0.0005	
1/22/98 1,2-Dichloroethane	QN	4700		4400	420	0.0004	
1/22/98 Trichloroethene	770000	4700	0.0945	4800	420	0.0006	99.38
1/22/98 1,2-Dichloropropane	QN	4700		200	420	0.0001	
1/22/98 Bromodichloromethane	QN	4700		QN	420		
1/22/98 cis-1,3-Dichloropropene	QN	4700		QN	420		
1/22/98 4-Methyl-2-pentanone	Q	24000		QN	2100		
1/22/98 Toluene	200000	4700	0.0172	1500	420	0.0001	99.25
1/22/98 trans-1,3-Dichloropropene	QN	4700		QN	420		
1/22/98 1,1,2-Trichloroethane	QN	4700		QN	420		
1/22/98 Tetrachloroethene	330000	4700	0.0511	3800	420	0.0006	98.85
1/22/98 2-Hexanone	QN	71000		QN	6300		
1/22/98 Dibromochloromethane	QN	4700		QN	420		
1/22/98 1,2-Dibromoethane (EDB)	DN	4700		QN	420		
1/22/98 Chlorobenzene	QN	4700		QN	420		
1/22/98 Ethylbenzene	QN	4700		ND	420		
1/22/98 Xylenes (total)	7200	4700	0.0007	QN	420		>94.16
1/22/98 Styrene	QN	4700		DN	420		
1/22/98 Bromoform	QN	4700		QN	420		
1/22/98 1,1,2,2-Tetrachloroethane	ON	4700		QN	420		
1/22/98 Benzyl chloride	ON	24000		ON	2100		
1/22/98 4-Ethyltoluene	DN	4700		QN	420		
1/22/98 1,3,5-Trimethylbenzene	QN	4700		QN	420		
1/22/98 1,2,4-Trimethylbenzene	Q	4700		QN	420		
1/22/98 1,3-Dichlorobenzene	QN	4700		QN	420		
1/22/98 1,4-Dichlorobenzene	QN	4700		QN	420		
	QN	4700		ON	420		
1/22/98 1,2,4-Trichlorobenzene	QN	47000		QN	4200		
1/22/98 Hexachlorobutadiene	Q	9400		QN	840		
Total	2,188,200		0.2436	87,990		0.0083	>96.61

		Inlet			Outlet		
		Reporting			Reporting		
	Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Date Compound Name	(hddd)	(vddd)	(lbs/hr)	(hddd)	(hddd)	(lbs/hr)	DRE (%)
1/26/98 Dichlorodifluoromethane	QN	12000		No sample - bad pressure regulator on summa canist	i pressure re	gulator on sur	nma canist
1/26/98 Chloromethane	QN	24000					
1/26/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	12000					
1/26/98 Vinyl chloride	₽ Q	12000					
1/26/98 Bromomethane	QN	12000					
1/26/98 Chloroethane	QN	24000					
1/26/98 Trichlorofluoromethane	QN						
1/26/98 1,1-Dichloroethene	QN	12000					
1/26/98 Carbon disulfide	QN	29000					
1/26/98 1,1,2-Trichloro-1,2,2-trifluoroethane	QN	12000					
1/26/98 Acetone	QN	29000					
1/26/98 Methylene chloride	14000	12000	0.0010				
1/26/98 trans-1,2-Dichloroethene	Q	12000					
1/26/98 1,1-Dichloroethane	ON	12000					
1/26/98 Vinyl acetate	QN	29000					
1/26/98 cis-1,2-Dichloroethene	1300000	12000	0.1031				
1/26/98 2-Butanone	ON						
1/26/98 Chloroform	QN						
1/26/98 1,1,1-Trichloroethane	12000		0.0013				
1/26/98 Carbon tetrachloride	Q						
1/26/98 Benzene	QN						
1/26/98 1,2-Dichloroethane	QN						
1/26/98 Trichloroethene	1100000		0.1182	01			
1/26/98 1,2-Dichloropropane	QN						
1/26/98 Bromodichloromethane	QN						
1/26/98 cis-1,3-Dichloropropene	QN						
1/26/98 4-Methyl-2-pentanone	QN						
1/26/98 Toluene	210000		0.0158	3			
1/26/98 trans-1,3-Dichloropropene	Q						
1/26/98 1,1,2-Trichloroethane	QN	12000					
1/26/98 Tetrachloroethene	370000		0.0502	2			
1/26/98 2-Hexanone	Q						
1/26/98 Dibromochloromethane	QN						
1/26/98 1,2-Dibromoethane (EDB)	ND	12000					

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Date		(hddd)	(nddd)	(lbs/hr)	(vddd)	(vdad)	(lbs/hr)	DRE (%)
1/26/98		QN	12000					(24)
1/26/98	8 Ethylbenzene	Q	12000					
1/26/98	1/26/98 Xylenes (total)	QN	12000					
1/26/98	8 Styrene	QN	12000					
1/26/98	1/26/98 Bromoform	QN	12000					
1/26/98	8 1,1,2,2-Tetrachloroethane	Q	12000					
1/26/98	8 Benzyl chloride	QN	29000					
1/26/98	8 4-Ethyltoluene	QN	12000					
1/26/98	8 1,3,5-Trimethylbenzene	QN	12000					
1/26/98	8 1,2,4-Trimethylbenzene	QN	12000					
1/26/98	8 1,3-Dichlorobenzene	QN	12000					
1/26/98	1/26/98 1,4-Dichlorobenzene	QN	12000					
1/26/98	1/26/98 1,2-Dichlorobenzene	QN	12000					
1/26/98	1/26/98 1,2,4-Trichlorobenzene	QN	120000					
1/26/98	1/26/98 Hexachlorobutadiene	QN	24000					
	Total	3,006,000		0.2895				
1/30/98		QN	9700		QN	58		
1/30/98	Chloromethane	QN	19000		1000	120	0.0000	
1/30/98	1,2-Dichloro-1,1,2,2-tetrafluoroethane	DN	9700		QN	58		
1/30/98	1/30/98 Vinyl chloride	QN	9700		QN	58		
1/30/98	Bromomethane	QN	9700		QN	58		
1/30/98	1/30/98 Chloroethane	QN	19000		170	120	0.0000	
1/30/98	1/30/98 Trichlorofluoromethane	2	9700		QN	58		
1/30/98	1/30/98 1, 1-Dichloroethene	Q	9700		QN	58		
1/30/98	1/30/98 Carbon disulfide	2	49000		QN	290		
1/30/98	1/30/98 1, 1, 2-1 richloro-1, 2, 2-trifluoroethane	Q	9700		QN	58		
1/30/98	Acetone	Q	49000		12000	290	0.0007	
1/30/98		12000	9700	0.0010	7200	58	0.0006	40.00
1/30/98	trans-1,2-Dichloroethene	QN	9700		190	58	0.0000	
1/30/98	1,1-Dichloroethane	Q	9700		77	58	0.0000	
1/30/98		2	49000		QN	290		
1/30/98	1/30/98 cis-1,2-Dichloroethene	000069	9700	0.0625	240	28	0.0000	99.97
1/30/98	1/30/98 2-Butanone	QN	49000		ON	290		

		Inlet			Outlet		
		Reporting			Reporting		
	Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
	(vddd)	(vddd)	(lbs/hr)	(vddd)	qdd)	(lbs/hr)	DRE (%)
1/30/98 Chloroform	ND	9200		280000	380	0.0312	
1/30/98 1,1,1-Trichloroethane	QN	9200		77	58	0.0000	
1/30/98 Carbon tetrachloride	QN	9700		1300	58	0.0002	
1/30/98 Benzene	QN	9700		0009	58	0.0004	
1/30/98 1,2-Dichloroethane	Q	9700		2700	58	0.0002	
1/30/98 Trichloroethene	720000	9700	0.0884	1100	58	0.0001	99.85
1/30/98 1,2-Dichloropropane	Q	9700		280	58	0.0000	
1/30/98 Bromodichloromethane	Q	9700		QN	58		
1/30/98 cis-1,3-Dichloropropene	Q	9700		QN	58		
1/30/98 4-Methyl-2-pentanone	Q	49000		Q	290		
1/30/98 Toluene	200000	9700	0.0172	920	58	0.0001	99.68
1/30/98 trans-1,3-Dichloropropene	QN	9700		S	58		
1/30/98 1, 1, 2-Trichloroethane	QN			QN	58		
1/30/98 Tetrachloroethene	310000	9700	0.0480	2300	58	0.0004	99.26
1/30/98 2-Hexanone	QN	150000		QN	870		
1/30/98 Dibromochloromethane	Q			QN	58		
1/30/98 1,2-Dibromoethane (EDB)	ON			DN			
1/30/98 Chlorobenzene	QN			QN			
1/30/98 Ethylbenzene	QN			QN			
1/30/98 Xylenes (total)	DN			QN			
1/30/98 Styrene	QN			9	58		
1/30/98 Bromoform	QN			QN	58		
1/30/98 1,1,2,2-Tetrachioroethane	DN			Q	58		
1/30/98 Benzyl chloride	DN	7		QN	290		
1/30/98 4-Ethyltoluene	DN			QN			
1/30/98 1,3,5-Trimethylbenzene	ON			Q	58		
1/30/98 1,2,4-Trimethylbenzene	ON			ΔN	28		
1/30/98 1,3-Dichlorobenzene	ON			QN	58		
1/30/98 1,4-Dichlorobenzene	QN	9700		QN	58		
1/30/98 1,2-Dichlorobenzene	QN			QN	58		
1/30/98 1,2,4-Trichlorobenzene	QN			QN	580		
1/30/98 Hexachlorobutadiene	ON	19000		QN	120		
Total	1,932,000		0.2171	315,284		0.0340	84.33

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
	ound Name	(Addd)	(vqdd)	(lbs/hr)	(nqdd)	(ppbv)	(lbs/hr)	DRE (%)
2/4/98 Dichlorodifluoromethane	methane	QN	13000		QN	530		
2/4/98 Chloromethane		QN	27000		ON	1100		
2/4/98 1,2-Dichloro-1,1,2,2-t	,2,2-tetrafluoroethane	QN	13000		QN	530		
2/4/98 Vinyl chloride		QN	13000		ON	530		
2/4/98 Bromomethane		QN	13000		QN	530		
2/4/98 Chloroethane		QN	27000		QN	1100		
2/4/98 Trichlorofluoromethar	ethane	QN	13000		QN	530		
2/4/98 1,1-Dichloroethene	ane	ND	13000		QN	530		
2/4/98 Carbon disulfide		QN	00029		Q	2700		
2/4/98 1,1,2-Trichloro-1,2,2-t	,2,2-trifluoroethane	QN	13000		QN	530		
2/4/98 Acetone		QN	67000		28000	2700	0.0015	
2/4/98 Methylene chloride	ide	ON	13000		8300	530	0.0007	
	roethene	QN	13000		6200	530	0.0006	
2/4/98 1,1-Dichloroethane	ine	ON	13000		QN	530		
2/4/98 Vinyl acetate		QN	00029		QN	2700		
2/4/98 cis-1,2-Dichloroethene	sthene	580000	13000	0.0522	15000	530	0.0013	97.41
2/4/98 2-Butanone		ON	67000		QN	2700		
2/4/98 Chloroform		ON	13000		28000	530	0.0031	
2/4/98 1,1,1-Trichloroethane	hane	DN	13000		QN	530		
2/4/98 Carbon tetrachloride	ride	ND	13000		QN	530		
2/4/98 Benzene		ND	13000		12000	530	0.000	
2/4/98 1,2-Dichloroethane	ne	ON	13000		3500	530	0.0003	
2/4/98 Trichloroethene		200000	13000	0.0853	43000	530	0.0052	93.86
2/4/98 1,2-Dichloropropane	ane	QN	13000		640	530	0.0001	
2/4/98 Bromodichloromethane	ethane	QN	13000		QN	530		
2/4/98 cis-1,3-Dichloroproper	ropene	QN	13000		QN	530		
	none	QN	67000		QN	2700		
2/4/98 Toluene		250000	13000	0.0214	26000	530	0.0022	89.60
	opropene	QN	13000		QN	530		
	hane	QN	13000		QN	530		
	9	390000	13000	0.0600	31000	530	0.0048	92.05
2/4/98 2-Hexanone		QN	200000		QN	8000		
2/4/98 Dibromochloromethane	ethane	QN	13000		Q	530		
2/4/98 1,2-Dibromoetha	ne (EDB)	QN	13000		Q	530		

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Date	Compound Name	(hddd)	(hpphv)	(lbs/hr)	(Addd)	(Addd)	(lbs/hr)	DRE (%)
2/4/98 C	Chlorobenzene	QN	13000		QN	530		
2/4/98 E	Ethylbenzene	QN	13000		QN	530		
2/4/98 X	Xylenes (total)	QN	13000		QN	530		
2/4/98	Styrene	QN	13000		QN	530		
2/4/98 B	Bromoform	ON	13000		QN	530		
2/4/98 1,	1,1,2,2-Tetrachloroethane	QN	13000		ON	530		
2/4/98 B	Benzyl chloride	ON	67000		QN	2700		
2/4/98 4	4-Ethyltoluene	QN	13000		Q	530		
2/4/98 1,	1,3,5-Trimethylbenzene	QN	13000		9	530		
2/4/98 1,	1,2,4-Trimethylbenzene	QN	13000		QN	530		
2/4/98 1,	1,3-Dichlorobenzene	S	13000		QN	530		
2/4/98 1,	1,4-Dichlorobenzene	QN	13000		QV	530		
2/4/98 1,	1,2-Dichlorobenzene	QN	13000		QN	530		
2/4/98 1,	2/4/98 1,2,4-Trichlorobenzene	ON	130000		Q	5300		
2/4/98 H	2/4/98 Hexachlorobutadiene	Q	27000		QN	1100		
7	Total	1,920,000		0.2189	201,640		0.0207	90.56
2/5/98 D	Dichlorodifluoromethane	QN	10000		QN	46		
2/5/98 C	Chloromethane	QN	21000		380	92	0.0000	
2/5/98 1,	1,2-Dichloro-1,1,2,2-tetrafluoroethane	QN	10000		QN	46		
2/5/98 V	Vinyl chloride	ND	10000		QN	46		
2/5/98 B	Bromomethane	ON	10000		QN	46		
2/5/98 C	Chloroethane	ON	21000		150	92	0.0000	
2/5/98 Ti	Trichlorofluoromethane	ON	10000		QN	46		
2/5/98 1,	1,1-Dichloroethene	Q	10000		QN	46		
2/5/98 C	Carbon disulfide	ND	52000		QN	230		
2/5/98 1,	1,1,2-Trichloro-1,2,2-trifluoroethane	QN	10000		ON	46		
2/5/98 Acetone	cetone	QN	52000		33000	2300	0.0019	
2/5/98 N	2/5/98 Methylene chloride	11000	10000	0.0009	1200	46	0.0001	89.09
2/5/98 tr	2/5/98 trans-1,2-Dichloroethene	ND	10000		930	46	0.0001	
2/5/98 1.	2/5/98 1,1-Dichloroethane	ND	10000		QN	46		
2/5/98 V	2/5/98 Vinyl acetate	QN	52000			230		
2/5/98 ci	2/5/98 cis-1,2-Dichloroethene	410000	10000	0.0403	2600	46	0.0003	99.37
2/5/98 2	2/5/98 2-Butanone	QN	22000		1800	230	0.0001	

不是不知的,不知的最后,我们就被通过的,我们就是不是一个人,我们也不是一个人,也是不是一个人,也是一

			Inlet			Outlet		
	AND THE RESERVE THE PROPERTY OF THE PROPERTY O		Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
	me	(Addd)	(Addd)	(lbs/hr)	(vddd)	(vddd)	(lps/hr)	DRE (%)
2/5/98 Chloroform		13000	10000	0.0016	5100	46	0.0006	60.77
2/5/98 1,1,1-Trichloroethane		QN	10000		QN	46		
2/5/98 Carbon tetrachloride		QN	10000		QN	46		
2/5/98 Benzene		QN	10000		2100	46	0.0002	
2/5/98 1,2-Dichloroethane		QN	10000		460	46	0.0000	
2/5/98 Trichloroethene		460000	10000	0.0612	6500	46	0.0009	98.59
2/5/98 1,2-Dichloropropane		QN	10000		94	46	0.000	
2/5/98 Bromodichloromethane		QN	10000		QN	46		
2/5/98 cis-1,3-Dichloropropene		Q	10000		QN	46		
2/5/98 4-Methyl-2-pentanone		QN	52000		QN	230		
2/5/98 Toluene		210000	10000	0.0196	5300	46	0.0005	97.48
2/5/98 trans-1,3-Dichloropropene	0	QN	10000		ON	46		
2/5/98 1,1,2-Trichloroethane		QN	10000		QN	46		
2/5/98 Tetrachloroethene		360000	10000	0.0604	3900	46	0.0007	98.92
2/5/98 2-Hexanone		ON	150000		QN	069		
Dibromochlorometha		ON	10000		ON	46		
2/5/98 1,2-Dibromoethane (EDB)		QN	10000		QN	46		
2/5/98 Chlorobenzene		Q	10000		QN	46		
2/5/98 Ethylbenzene		QN	10000		86	46	0.0000	
2/5/98 Xylenes (total)		Q	10000		440	46	0.0000	
2/5/98 Styrene		QN	10000		100	46	0.0000	
2/5/98 Bromoform		QN	10000		QN	46		
2/5/98 1,1,2,2-Tetrachloroethane	6	QN	10000		QN	46		
2/5/98 Benzyl chloride		QN	52000		QN	230		
2/5/98 4-Ethyltoluene		QN	10000		75	46	0.0000	
		QN	10000		QN	46		
~		QN	10000		ON	46		
-		ON	10000		QN	46		
		Q	10000		270	46	0.0000	
2/5/98 1,2-Dichlorobenzene		Q	10000		230	46	0.0000	
2/5/98 1,2,4-Trichlorobenzene		QN	100000		QN	460		
2/5/98 Hexachlorobutadiene		QN	21000		QN	92		
Total		1,464,000		0.1839	64,727		0.0056	96.98

		Inlet			Outlet		
		Reporting	CONTROL OF THE STATE OF THE STA		Reporting		
	Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Date Compound Name	(hpbv)	(hddd)	(lbs/hr)	(Addd)	(hddd)	(lbs/hr)	DRE (%)
2/6/98 Dichlorodifluoromethane	QN			QN	350		
2/6/98 Chloromethane	QN	4100		1100		0.0001	
2/6/98 1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	2100		QN	350		
2/6/98 Vinyl chloride	QN	2100		QN	350		
2/6/98 Bromomethane	Q.	2100		QN	350		
2/6/98 Chloroethane	QN	4100		QN	069		
2/6/98 Trichlorofluoromethane	Q	2100		QN	350		
2/6/98 1,1-Dichloroethene	Q	2100		QN	350		
2/6/98 Carbon disulfide	Q	10000		QN	1700		
2/6/98 1,1,2-Trichloro-1,2,2-trifluoroethane	ne ND	2100		QN	350		
2/6/98 Acetone	23000	10000	0.0012	45000	1700	0.0024	-95.65
2/6/98 Methylene chloride	0099		0.0005	9200		0.0007	-39.39
2/6/98 trans-1,2-Dichloroethene	9300		0.0008	8000		0.0007	13.98
2/6/98 1,1-Dichloroethane	ON			ND			
2/6/98 Vinyl acetate	QN	10000		QN	1700		
2/6/98 cis-1,2-Dichloroethene	290000		0.0535	22000	,	0.0020	96.27
2/6/98 2-Butanone	QN				1	0.0002	
2/6/98 Chloroform	18000		0.0020	31000	350	0.0035	-72.22
2/6/98 1,1,1-Trichloroethane	QN			QN	350		
2/6/98 Carbon tetrachloride	ON			QN			
2/6/98 Benzene	8900		0.0006	13000		0.0009	-46.07
2/6/98 1,2-Dichloroethane	4500		0.0004	3000		0.0003	33.33
2/6/98 Trichloroethene	290000		0.0724	49000		0.0060	91.69
2/6/98 1,2-Dichloropropane	ON	2100		220	350	0.0001	
2/6/98 Bromodichloromethane	QN			QN	350		
2/6/98 cis-1,3-Dichloropropene	ON			QN			
2/6/98 4-Methyl-2-pentanone	QN			QN	1700		
2/6/98 Toluene	280000	2100	0.0241	36000	320	0.0031	87.14
2/6/98 trans-1,3-Dichloropropene	QN			Q			
2/6/98 1,1,2-Trichloroethane	ON			QN	350		
2/6/98 Tetrachloroethene	410000		0.0635	29000	320	0.0045	92.93
2/6/98 2-Hexanone	QN	ന		QN	5200		
2/6/98 Dibromochloromethane	QN	2100		QN			
2/6/98 1,2-Dibromoethane (EDB)	QN .	2100		QN	350		

			Inlet			Outlet		
			Reporting			Reporting		
		Concentration	Limit	Mass Rate	Concentration	Limit	Mass Rate	
Date	Compound Name	(Addd)	(ngdd)	(lbs/hr)	(hpbpv)	(hddd)	(lbs/hr)	DRE (%)
3/6/98	2/6/98 Chlorobenzene	Q	2100		S	350		
3/6/98	2/6/98 Ethylbenzene	2800	2100	0.0003	QN	350		>87.50
3/6/98	2/6/98 Xylenes (total)	16000	2100	0.0016	QN	350		>97.81
3/6/98	2/6/98 Styrene	QN	2100		S	350		
2/6/98	2/6/98 Bromoform	Q	2100		QN	350		
2/6/98	2/6/98 1,1,2,2-Tetrachloroethane	2	2100		QN	350		
3/6/98	2/6/98 Benzyl chloride	S	10000		QN	1700		
3/6/98	2/6/98 4-Ethyltoluene	QN	2100		Q	350		
3/9/2	2/6/98 1,3,5-Trimethylbenzene	QV	2100		QN	350		
3/6/98	2/6/98 1,2,4-Trimethylbenzene	4500	2100	0.0005	QN	350		>92.22
3/6/98	2/6/98 1,3-Dichlorobenzene	2	2100		QN	350		
3/6/98	2/6/98 1,4-Dichlorobenzene	2	2100		QN	350		
3/6/98	2/6/98 1,2-Dichlorobenzene	QN	2100		QN	350		
3/6/98	2/6/98 1,2,4-Trichlorobenzene	QN.	21000		Q	3500		
2/6/98	2/6/98 Hexachlorobutadiene	QN	4100		QN	069		
	Total	1,963,600		0.2216	250,350		0.0245	>88.93

PDU DRE (NMOC) Results Presented by Date Steady-State Tests

Date	Inlet Concentration (ppmc)	Outlet Concentration (ppmc)	DRE (%)
1/19/98	8,989	69	99.23
1/22/98	7,361	145	98.03
1/26/98	10,995	NA	NA
1/30/98	6,084	110	98.19
2/4/98	10,204	679	93.35
2/5/98	10,623	108	98.98
2/6/98	9,941	830	91.65
Average	9,171	324	96.57

APPENDIX D SUMMARY OF SVOC AND PCB RESULTS

Contents: Engineering Source Test Report Summary

ENGINEERING SOURCE TEST REPORT

PROCESS TECHNOLOGIES, INC. 1160 Exchange Street Boise, Idaho 83716-5762

EQUIPMENT LOCATION:

Naval Air Station, North Island San Diego, California

TEST DATE:

October 27, 1997

ISSUE DATE:

January 13, 1998

PARAMETERS MEASURED:

Emissions of PCB/Pesticides and PAHs

TESTED BY:

S C E C 1582-1 N. Batavia Orange, CA 92867

Report No:

29822.0001

Tested By: <u>/</u>

Reviewed By:

1.0 - Executive Summary

Process Technology, Inc. (PTI) retained SCEC to measure PCB/Pesticides/PAH emissions at the inlet and outlet of the PTI scrubber located at the NAS North Island, San Diego, CA. The scrubber was operated at normal conditions during the test. Only three of the ninety-two compounds tested showed results above the laboratory detection limit; one semivolatile organic compound in the inlet sample and two semivolatile organic compounds in the outlet sample.

The source test was performed on October 27, 1997. The concentration results for the detectable semivolatile organics are listed below in Table 1.0 and were collected in a 2-hour sample time. All other compounds tested were reported as non-detect (ND). For these compounds, the concentration values listed in Table 3.0 through 3.2 are based on one-half the laboratory detection limit.

TABLE 1.0
Detectable Semivolatile Organics

Semivolatile Organic Compound	Sample Description	Concentration (ppbv)
bis (2-Ethylhexyl) phthalate	Inlet	7.8
2-Methylnaphthalene	Outlet	24.8
Acenaphthene	Outlet	1.9

2.0 - Introduction

The following test methods were used:

TABLE 2.0 Sampling Methodology

Parameter	Sampling Method
PCBs/Pesticides/PAHs	CARB Method 429
Moisture	CARB Method 4.1
Volume Flow Rate	CARB Method 1.1 to 2.1

Each extract developed at the laboratory was split in half. One half was tested for PCB/Pesticides by EPA Method 8080 and the other for semivolatile organics by EPA Method 8270.

All raw data was reduced and used to calculate the final results listed in Section 4. The calculations were performed using computer programs that have undergone quality control inspections before usage. The detailed results (computer generated spreadsheet data) are provided in Appendix A. Laboratory results and quality assurance documentation are provided in Appendix B and C, respectively.

The test methodology is discussed in Section 6.0.

The testing was performed by Mr. Neal P. Conroy - Project Scientist from SCEC and Mr. Robert Leyva - Technician from SCEC.

3.0 - Summary of Results

The test results are summarized in Table 3.0 through 3.2.

3.0 Summary of Results (Continued)

TABLE 3.0 PCB/Pesticides Test Results Summary

PTI Scrubber

Naval Air Station, North Island, San Deigo, CA

10/27/97 SCEC Project No.: 29822

CON	IPOUND	INLET	OUTLET
		Concentration (ppbv)	Concentration (ppbv)
1)	alpha - BHC	1.05E-03	7.40E-04
2)	beta - BHC	4.19E-03	2.96E-03
3)	delta- BHC	4.19E-03	2.96E-03
4)	gamma - BHC (Lindane)	4.19E-03	2.96E-03
5)	Heptachloro	3.27E-03	2.31E-03
6)	Aldrin	3.34E-03	2.36E-03
7)	Heptachlor epoxide	3.05E-03	2.16E-03
8)	gamma - Chlordane	2.98E-03	2.10E-03
9)	alpha - Chlordane	2.98E-03	2.10E-03
10)	Endosulfan I	3.00E-03	2.12E-03
11)	Dieldrin	6.40E-03	4.52E-03
12)	4,4' - DDE	7.67E-03	5.41E-03
13)	Endrin	6.40E-03	4.52E-03
14)	Endosulfan II	5.99E-03	4.23E-03
15)	4,4' - DDD	7.62E-03	5.38E-03
16)	4,4' - DDT	6.88E-03	4.86E-03
17)	Endosulfan sulfate	5.77E-03	4.07E-03
18)	Endrin ketone	6.40E-03	4.52E-03
19)	Methoxychloro	3.53E-02	2.49E-02
20)	Toxaphene	2.95E-02	2.08E-02
21)	Aroclor 1016	8.41E-02	5.94E-02
22)	Aroclor 1221	4.20E-02	2.97E-02
23)	Aroclor 1232	4.20E-02	2.97E-02
24)	Aroclor 1242	4.20E-02	2.97E-02
25)	Aroclor 1248	4.20E-02	2.97E-02
26)	Aroclor 1254	8.41E-02	5.94E-02
27)	Aroclor 1260	8.41E-02	5.94E-02

NOTE: All lab result were ND and reported ppbv values are based on half of the detection limit.

TABLE 3.1 Semivolatile Organics Test Results Summary

PTI Scrubber

Naval Air Station, North Island, San Deigo, CA

10/27/97 SCEC Project No.: 29822

CON	/POUND	INLET	OUTLET
CON		Concentration (ppbv)	Concentration (ppbv)
1)	Phenol	1.94	1.37
2)	bis (2 - Chloroethyl) ether	1.28	0.90
3)	2 - Chlorophenol	1.42	1.00
4)	1.3 - Dichlorobenzene	1.24	88.0
5)	1,4 - Dichlorobenzene	1.24	88.0
6)		1.69	1:19
7)	1,2 - Dichlorobenzene	1.24	0.88
8)	2 - Methylphenol	1.69	1.19
9)	bis (2 - Chloroisopropyl) ether	1.07	0.75
10)		1.69	1.19
11)	***	1.40	0.99
12)	Hexachloroethane	0.77	0.55
13)	Nitrobenzene	1.49	1.05
14)		1.32	0.93
15)	•	1.31	0.93
16)		1.50	1.06
17)	Benzoic acid	7.49	5.29
18)	bis (2 - Chloroethoxy) methane	1.06	0.75
19)	2,4 - Dichlorophenol	1.12	0.79
20)	1,2,4 - Trichlorobenzene	1.01	0.71
21)	Naphthalene	1.43	1.01
22)	4 -Chloroaniline	1.43	1.01
23)	Hexachlorobutadiene	0.70	0.50
24)	4 - Chloro - 3 - methylphenol	1.28	0.91
25)		1.29	24.82 *
26)	Hexachlorocyclopentadiene	0.67	0.47
27)	A 4 5 mm 1 1 1 1	0.93	0.65
28)		4.63	3.27
29)		1.12	0.79
30)	2 - Nitroaniline	1.32	0.93
31)	Dimethyl phthalate	0.94	0.66
32)	Acenaphthylene	1.20	0.85
33)	3 - Nitroaniline	6.62	4.67

^{*} Lab result above detection limit (DL); all other results were ND and reported ppbv values are based on half of the DL.

TABLE 3.2 Semivolatile Organics (Continued) Test Results Summary

PTI Scrubber

Naval Air Station, North Island, San Deigo, CA

10/27/97 SCEC Project No.: 29822

CON	MPOUND	INLET	OUTLET
		Concentration (ppbv)	Concentration (ppbv)
34)	Acenaphthene	1.19	1.90 *
35)	2,4 - Dinitrophenol	4.97	3.51
36)	4 - Nitrophenol	6.57	4.64
37)	Dibenzofuran	1.09	0.77
38)	2,4 - Dinitrotoluene	1.00	0.71
39)	2,6 - Dinitrotoluene	1.00	0.71
40)	Diethyl phthalate	0.82	0.58
41)	4 - Chlorophenyl phenyl ether	0.89	0.63
42)	Fluorene	1.10	0.78
43)	4 - Nitroaniline	6.62	4.67
44)	4,6 - Dinitro - 2 - methylphenol	4.62	3.26
45)	N - Nitrosodiphenylamine	0.92	0.65
46)	4 - Bromophenyl phenyl ether	0.73	0.52
47)	Hexachlorobenzene	0.64	0.45
48)	Pentachlorophenol	3.43	2.42
49)	Phenanthrene	1.03	0.72
50)	Anthracene	1.03	0.72
51)	Di - n - butyl phthalate	0.66	0.46
52)	Fluoranthene	0.90	0.64
53)	Pyrene	0.90	0.64
54)	Butyl benzyl phthalate	0.59	.0.41
5 5)	3,3' - Dichlorobenzidine	1.44	1.02
56)	Benzo(a)anthracene	0.80	0.57
57)	bis (2 - Ethylhexyl) phthalate	7.80 *	0.33
58)	Chrysene	0.80	0.57
59)	Di - n - octyl phthalate	0.47	0.33
60)	Benzo(b)fluoranthene	0.72	0.51
61)	Benzo(k)fluoranthene	0.72	0.51
62)	Benzo(a)pyrene	0.72	0.51
63)	Indeno (1,2,3 - c,d) pyrene	0.66	0.47
64)	Dibenzo (a,h) anthracene	0.66	0.46
65)	Benzo(g,h,i) perylene	0.66	0.47

^{*} Lab result above detection limit (DL); all other results were ND and reported ppbv values are based on half of the DL.

4.0 - Discussion of Results

Due to the small diameter (6 inches) of the sampling ducts the samples were collected at a fixed-point halfway into the sampling duct.

5.0 - Sampling and Analytical Procedures

5.1 - CARB Method 429 - Sampling Method for PCB/Pesticides and PAHs

INTRODUCTION

The Method 429 sampling train was used to sample gaseous and particulate phase pollutants. The laboratory extract was split to analyze for PCB/Pesticides by EPA Method 8080 and for PAHs by EPA Method 8270.

SAMPLE PREPARATION

Nozzle, probe, filter holder, and impingers were rinsed with Distilled/Deionized water and hexane. 100ml of Distilled/Deionized water was placed in the first impinger, the second impinger was left empty, and the third impinger was filled with approximately 400 grams of Silica gel. The filter holder was charged with a teflon fiber filter.

SAMPLING PROCEDURE

The apparatus consisted of a teflon nozzle, teflon probe, filter holder, condenser, and XAD-2 resin trap, followed by the impingers connected in tandem and immersed in an ice bath. In addition, both the condenser and the XAD-2 resin trap were enclosed within a circulating cold water blanket. The absorption train was followed by a vacuum pump, dry gas meter, and a calibrated restriction orifice fitted with a manometer and a sample gas bladder.

Due to the small diameter (6 inches) of the sampling ducts the samples were collected at a fixed-point halfway into the sampling duct. The apparatus was leak tested and the nozzle was positioned prior to sampling.

Duct conditions were monitored at the sampling point with a type "S" pitot tube and a type "K" thermocouple. Conditions at the sampling apparatus and metering device were constantly monitored and regularly recorded on the data sheet.

On completion of the sampling, the apparatus was removed from the stack, leak checked, and transported to the mobile laboratory.

5.0 - Sampling and Analytical Procedures

5.1 - CARB Method 429 - Sampling Method for PCB/Pesticides and PAHs (Continued)

SAMPLE RECOVERY

Container No.	Item	Rinsing Solution	Quantity
Container 140.	Sample Resin Trap	N/A	N/A
1	Sample Filter	N/A	N/A
2	Sample Front Half	Hexane	100 ml
3		N/A	N/A
4	Field Blank Resin Trap	N/A	N/A
5	Field Blank Filter		. 100 ml
6	Field Blank Reagent	Hexane	. 100 III

SAMPLE ANALYSIS

The filter was removed and recovered. The front half sample was recovered from the nozzle, probe, and filter housing with hexane. The XAD-2 resin trap was sealed from contamination and forwarded to the appropriate analytical Laboratory for analysis. During sample holding time all samples were maintained between 0-4°C.

EOUATIONS

Sample Gas Flow

Vmstd =
$$V_m Y (T_{std}) (P_{bur} + dH/13.6)$$

 $T_m P_{std}$

Pollutant Concentrations

 $ppmv = \underbrace{[ug/sample][g/10^6 \ ug][0.849 \ cf/gmole][1/MW(g/gmole)]}_{Exh. \ Gas \ Volume \ (cf)}. \ 10^6$

5.0 - Sampling and Analytical Procedures

5.1 - CARB Method 429 - Sampling Method for PCB/Pesticides and PAHs (Continued)

NO GNOT ATTIPE		
NOMENCLATURE		SYMBOL IDENTIFICATION
An	=	Cross-sectional area of nozzle (ft²)
Delta H	=	Average pressure differential across the orifice meter, (in H ₂ O)
Gs	= .	Total mass of PAH's in stack gas sample, (ng)
% I	=	Isokinetic Rate
K5	=	Applicable conversion factor
Mn	=	Total weight of pollutant collected, mg
Pbar	=	Barometric pressure at measurement site, (in Hg)
Ps	=	Absolute stack gas pressure, (in Hg)
Theta	=	Total sampling time (min)
Tm	=	Absolute temperature at meter, (°R)
Tstd	= .	Standard absolute temperature, (528°R)
Vlc	=	Volume of water condensed in impingers and silica gel, (ml)
Vm.	=	Dry gas volume measured by dry gas meter, (dcf)
Vmstd	=	Dry gas volume measured by dry gas meter, corrected to standard conditions, (dscf)
Vs	=	Average stack gas velocity, (ft/sec)
Y	=	Dry gas meter calibration factor
29822b.rpt		

APPENDIX E GASEOUS RESIDUE ANALYSIS RESULTS

Contents: Test Results Summary for HCl, Chlorine & Phosgene

ENGINEERING SOURCE TEST REPORT

PROCESS TECHNOLOGIES, INC. 1160 Exchange Street Boise, Idaho 83716-5762

EQUIPMENT LOCATION:

Naval Air Station, North Island San Diego, California

TEST DATE:

February 2, 1998

ISSUE DATE:

March 24, 1998

PARAMETERS MEASURED:

Emissions of Phosgene, Chlorine, and Hydrochloric Acid

TESTED BY:

S C E C 1582-1 N. Batavia Orange, CA 92867

Report No:

29822.0002

Tested By: \

Reviewed By: 🔊

1.0 Executive Summary

Process Technology, Inc. (PTI) retained SCEC to measure Phosgene, Chlorine (Cl₂) and Hydrochloric Acid (HCl) emissions at the scrubber outlet and system outlet of the PTI scrubber located at the NAS North Island, San Diego, CA. Phosgene emissions were determined by EPA Method TO-6 while Cl₂ and HCl emission were determined by EPA Method 26A. The scrubber was operated at normal conditions during the test. The source test was performed on February 2, 1998, and the results are listed in Table 3.0.

2.0 Introduction

The following test methods were used:

TABLE 2.0 Sampling Methodology

Parameter	Sampling Method	
Phosgene	EPA Method TO-6	
Cl₂ and HCl	EPA Method 26A	
Moisture	CARB Method 4.1	
Volume Flow Rate	CARB Method 2.1 and 3.1	

All raw data was reduced and used to calculate the final results listed in Section 3. The calculations were performed using computer programs that have undergone quality control inspections before usage. The detailed results (computer generated spreadsheet data) are provided in Appendix A. Laboratory results and quality assurance documentation are provided in Appendix B and C, respectively.

The test methodologies are discussed in Section 5.0.

The testing was performed by Mr. Neal P. Conroy - Project Scientist from SCEC and Mr. Robert Leyva - Technician from SCEC.

3.0 Summary of Results

The test results are summarized in Table 3.0.

3.0 Summary of Results (Continued)

TABLE 3.0 Test Results Summary

PTI Scrubber

Naval Air Station, North Island, San Diego, CA

02/02/98

SCEC Project No.: 29822

Parameter ⁻	3 ° 7 '	Scrubber Outlet	System Outlet
TEST CONDITIONS:		Normal Conditions	Normal Conditions
PHOSGENE: EPA Method TO-6	ı	1	I
	ppbv ·	1472.7	23.8
CHLORINE:			
EPA Method 26A	ppbv	7.4	0.04
			·
HYDROCHLORIC AC	CID:		
	ppbv	22.1	0.18
VOLUME FLOW: EPA Method 26A	DSCFM		310
% ISOKINETIC:	DSCIM	'	1
EPA Method 26A	% Isokinetic		105

4.0 Discussion of Results

The system outlet samples were collected at a fixed-point halfway into the 6-inch sampling duct. The scrubber outlet samples were collected by attaching Teflon probes to 1/4-inch taps in the duct.

5.0 Sampling and Analytical Procedures

5.1 EPA Method TO-6 - Phosgene Emissions

Introduction

The source air was drawn through a micro-impinger sampling train charged with a solution of aniline in toluene to determine phosgene emissions. After sampling, the aniline solution was then analyzed for phosgene by High Performance Liquid Chromatograph (HPLC).

Sample Preparation

Prior to sampling all glassware was rinsed with methanol. 5ml of the aniline solution were placed in the first and second impinger, the third impinger was left empty, and the fourth impinger was filled with approximately 25 grams of silica gel.

Sampling Procedure

The apparatus consisted of a open-end Teflon probe followed by a series of micro impingers connected in tandem and immersed in an ice bath. The absorption train was followed by a vacuum pump, dry gas meter, and a calibrated restriction orifice fitted with a manometer.

The sampling rate was set between 500-1000 ml/minute. On completion of the sampling, the apparatus was removed from the stack, leak checked, and transported to the laboratory.

A reagent blank was prepared and analyzed for phosgene.

The source emissions in ppmv were calculated using the following equation:

ppbv = $(ug/sample)(g/10^6 ug)(0.849 cf/gmole)(1/MW[g/gmole]) \cdot 10^9$ Sample Volume

- 5.0 Sampling and Analytical Procedures (Continued)
- 5.2 CARB Methods 2.1 to 4.1 Exhaust Flow and Moisture

CARB Method 2.1 - Velocity and Volumetric Flow Rate

The velocity of the gas stream was determined by using an "S" type pitot tube, an inclined manometer and type "K" thermocouple with a digital temperature measuring device. The calibrated pitot tube was connected to the manometer and leak checked. A temperature and velocity pressure (delta P) was obtained at each traverse point, and a duct static pressure was measured and recorded. The dry volumetric flow rate was determined from the gas velocity data, stack pressure, stack gas moisture content, stack gas molecular weight, and cross-sectional area of duct.

CARB Method 3.1 - Gas Analysis for Dry Molecular Weight and Excess Air

The scrubber system was at ambient conditions. Therefore, values of 20.9% and 0.0% for oxygen and carbon dioxide were utilized to determine molecular weight.

CARB Method 4.1 - Determination of Moisture Content in Stack Gases

Moisture content was determined concurrently with the EPA Method 26A sampling run. After sampling, the final weights of each impinger were determined and recorded. Percent moisture content was calculated from the weight of water collected and the dry gas volume sampled.

Calculations

Moisture (B_w) =
$$\frac{Vwstd}{Vmstd} \times 100$$

Where:
$$Vwstd = 0.0000894 * Tstd * Vol H2O Collected (ml)$$

- 5.0 Sampling and Analytical Procedures (Continued)
- 5.3 EPA Method 26A Cl₂ and HCl Emissions

Introduction

The Method 26A sampling train was used to extract gas phase Hydrochloric Acid, and Chlorine emissions. The extract was analyzed for chloride ions by ion chromatography and quantified by reference to external standards or other suitable analytical method.

Sample Preparation

Nozzle, probe, filter holder, and impingers were rinsed with deionized water. 100ml of impinger solution (0.1 N H₂SO₄) was placed in the first and the second impinger, the third and fourth impinger were each charged with 100 ml 0.1 N NaOH. The fifth impinger was filled with approximately 400g of silica gel.

Sampling Procedure

The apparatus consisted of a nozzle, quartz probe and heated filter holder followed by a series of impinger/absorbers connected in tandem and immersed in an ice bath. The absorption train was followed by a vacuum pump, dry gas meter, and a calibrated restriction orifice fitted with a manometer.

The apparatus was leak tested, the filter temperature brought to temperature, and the nozzle was positioned at the first sampling point. The pump was immediately started and adjusted to obtain the isokinetic sampling rate.

Duct conditions were monitored throughout the sampling period with a type "S" pitot tube and a type "K" thermocouple simultaneously positioned at each traverse point. Conditions at the sampling apparatus and metering device were constantly monitored and regularly recorded on the data sheet.

On completion of the sampling, the apparatus was removed from the stack, leak checked, and transported to the laboratory.

The impinger contents were recovered into separate containers and transported to the laboratory for subsequent analysis.

APPENDIX F REAGENT PANEL TCLP ANALYSIS RESULTS

Contents:
Reagent Panel Analysis Summary Results
Analytical Data Sheets

Reagent Panel Analysis Summary Results Toxicity Characteristic Leaching Procedure (TCLP) for Volatile Organic Compounds (VOCs)

Compound	Regulatory Limit	Maximum Level Found in
	(ppm)	Reagent Panels (ppm)
Benzene	0.50	n.d.
2-Butanone (MEK)	200	0.460
Carbon tetrachloride	0.50	0.260
Chlorobenzene	100	n.d.
Chloroform	6.0	1.100
1,2-Dichloroethane	0.50	0.022
1,1-Dichloroethylene	0.70	0.054
Tetrachloroethylene	0.70	0.100
Trichloroethylene	0.50	0.083
Vinyl chloride	0.20	n.d.

n.d. = not detected

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

130679MSD05

Lab Name: QUANTERRA MO

Contract: 248.56

Lab Code: ITMO

Case No.:

SAS No .:

SDG No.: 16949

Matrix: (soil/water) WATER

Lab Sample ID: 16949-004

2314 298 8757

Sample wt/vol:

5.000 (g/ml) ML

ESMP0943 Lab File ID:

Level:

(low/med)

Date Received: 02/14/98

% Moisture: not dec.

LOW

Date Analyzed: 02/17/98

Column: (pack/cap) CAP

Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/L

Q

75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 67-66-3Chloroform 107-06-21,2-Dichloroethane	140 250 920 220 720	
78-93-32-Butanone 56-23-5Carbon Tetrachloride 79-01-6Trichloroethene 71-43-2Benzene 127-18-4Tetrachloroethene 108-90-7Chlorobenzene	420 240 210 200 210	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

13067906 RE

Lab Name: QUANTERRA MO

Contract: 248.56

Lab Code: ITMO Case No.:

SAS No.:

SDG No.: 16949

Matrix: (soil/water) WATER

Lab Sample ID: 16949-005

Sample wt/vol: 5.000 (g/ml) ML

Lab File ID: ESMP0944

Level: (low/med) LOW

Date Received: 02/14/98

% Moisture: not dec.

Date Analyzed: 02/17/98

Column: (pack/cap) CAP

Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

75-01-4	100 51 1100 50 480 290 77 50 93 50	יט ד
---------	---	---------

LA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: QUANTERRA MO

Contract: 248.56

13067906

Lab Code: ITMO Case No.:

SAS No.:

SDG No.: 16949

Matrix: (soil/water) WATER

Lab Sample ID: 16949-005

Sample wt/vol:

5.000 $(g/\pi l)$ ML

Lab File ID: BSMP1443

Level: (low/med) LOW

Date Received: 02/14/98

% Moisture: not dec. ___

Date Analyzed: 02/17/98

Column: (pack/cap) CAP

Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/L

Q

75-01-4	12 54 1100 22 460 260 83 50 100 50	J
---------	---	-------

1A VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

13067905

Contract: 248.56 Lab Name: QUANTERRA MO

SDG No.: 16949

Lab Code: ITMO Case No.:

SAS No.:

Matrix: (soil/water) WATER

Lab Sample ID: 16949-002

Sample wt/vol:

5.000 (g/ml) ML

Lab File ID: ESMP0941

Date Received: 02/14/98

Level: (low/med) LOW

% Moisture: not dec. ____

Date Analyzed: 02/17/98

Column: (pack/cap) CAP

Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/L

75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 67-66-3Chloroform 107-06-21,2-Dichloroethane 78-93-32-Butanone 56-23-5Carbon Tetrachloride 79-01-6Trichloroethene 71-43-2Benzene 127-18-4Tetrachloroethene 108-90-7Chlorobenzene	100 29 700 50 280 230 57 50 60	- U

QUANTERRA

Ø 007/011 EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

130679MS05

Lab Name: QUANTERRA MO Contract: 248.56

ab Name: Quantimeer no

Lab Code: ITMO Case No.: SAS No.: SDG No.: 16949

Matrix: (soil/water) WATER Lab Sample ID: 16949-003

Sample wt/vol: 5.000 (g/ml) ML Lab File ID: ESMP0942

Level: (low/med) LOW Date Received: 02/14/98

% Moisture: not dec. _____ Date Analyzed: 02/17/98

Column: (pack/cap) CAP Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

67-66-3Chloroform 107-06-21,2-Dichloroethane 78-93-32-Butanone 56-23-5Carbon Tetrachloride 79-01-6Trichloroethene 71-43-2Benzene 127-18-4Tetrachloroethene 108-90-7Chlorobenzene

1A VOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

0212982

Lab Name: QUANTERRA MO

Contract: 248.56

Lab Code: ITMO

Case No.: SAS No.:

SDG No.: 16949

Matrix: (soil/water) WATER

Lab Sample ID: 16949-001

Sample wt/vol:

5.000 (g/ml) ML

Lab File ID: BSMP1439

Level: (low/med)

LOW

Date Received: 02/14/98

% Moisture: not dec. ___

Date Analyzed: 02/16/98

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) ug/L

Q

75-01-4Vinyl Chloride 75-35-41,1-Dichloroethene 67-66-3Chloroform 107-06-21,2-Dichloroethane 78-93-3Carbon Tetrachloride 79-01-6Trichloroethene 71-43-2Benzene 127-18-4Tetrachloroethene 108-90-7Chlorobenzene	10 55 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	טמטטנטטט
--	---	----------

APPENDIX G LIQUID CONDENSATE ANALYSIS RESULTS

<u>Contents:</u>
Analytical Data Sheets

STD-Volatile Organics, EPA 8260

Method 8260

PRELIMINARY PESULTS

Client Name: Process Technologies Client ID: PT-I-020598-R-235 Lab ID: 097433-0006-SA Matrix: AQUEOUS

Matrix: AQUEOUS Sampled: 05 FEB 98 Received: 09 FEB 98
Authorized: 09 FEB 98 Prepared: NA Analyzed: 19 FEB 98

		40.4.	Reporting	
Parameter	Result	Units	Limit	
Dichlorodifluoromethane (Freon 12)	ND	ug/L	25000	0
Chloromethane	ND	ug/L	25000	
Vinyl chloride	ND	ug/L	25000	
Bromomethane	ND	ug/L	25000	
Chloroethane	ND	ug/L	25000	
Trichlorofluoromethane (Freon 11)	ND	ug/L	25000	
1,1-Dichloroethene	ND	ug/L	25000	
Methylene chloride	ND	ug/L	25000	
trans-1,2-Dichloroethene	ND	ug/L	25000	
1,1-Dichloroethane	ND	ug/L	25000	
2,2-Dichloropropane	ND	ug/L	25000	
cis-1,2-Dichloroethene	300000	ug/L	25000	
Chloroform	ND	ug/L	25000	
Bromochloromethane	ND	ug/L	25000	
1,1,1-Trichloroethane	ND	ug/L	25000	
1,1-Dichloropropene	ND	ug/L	25000	
Carbon tetrachloride	ND	ug/L	25000	
1,2-Dichloroethane	ND	ug/L	25000	
Benzene	ND	ug/L	25000	
Trichloroethene	110000	ug/L	25000	
1,2-Dichloropropane	ND	ug/L	25000	
Bromodichloromethane	ND	ug/L	25000	
Dibromomethane	ND	ug/L	25000	
Toluene	32000	ug/L	25000	
1,1,2-Trichloroethane	ND	ug/L	25000	
1,2-Dibromoethane (EDB)	ND	ug/L	25000	
1,3-Dichloropropane	ND	ug/L	25000	
Tetrachloroethene	52000	ug/L	25000	
Dibromochloromethane	ND	ug/L	25000	
Chlorobenzene	ND	ug/L	25000	
1,1,1,2-Tetrachloroethane	ND	ug/L	25000	
Ethylbenzene	ND	ug/L	25000	
Xylenes (total)	ND	ug/L	25000	
Styrene	ND	ug/L	25000	
Bromoform	ND	ug/L	25000	
Isopropylbenzene	MA	- 41	35000	
(1-Methylethylbenzene)	ND	ug/L	25000	
1,1,2,2-Tetrachloroethane	ND	ug/L	25000	
1,2,3-Trichloropropane	ND	ug/L	25000	
n-Propyl benzene	ND	ug/L	25000	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Michael Lucchesi

Approved By: Karin Yee

STD-Volatile Organics, EPA 8260

Method 8260

PRELIMINARY PESULTS

Client Name: Process Technologies Client ID: PT-I-020598-R-235 Lab ID: 097433-0006-SA

Matrix: AQUEOUS Sampled: 05 FEB 98 Received: 09 FEB 98 Authorized: 09 FEB 98 Prepared: NA Analyzed: 19 FEB 98

Parameter	Result	Units	Reporting Limit
Bromobenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Cymene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro-	ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	25000 25000 25000 25000 25000 25000 25000 25000 25000 25000
propane (DBCP) 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L	25000 25000 25000 25000 25000
Surrogate	Recovery		
1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	94 95 82	% % %	

Note o: Reporting limit(s) raised due to high level of analyte present in sample.

ND = Not detected NA = Not applicable

Reported By: Michael Lucchesi Approved By: Karin Yee

APPENDIX H SCRUBBER LIQUID ANALYSIS RESULTS

Contents: Analytical Data Sheets

GENERAL INORGANICS

(Water)

PRELIMINARY PTOULTS

Client Name: Process Technologies Client ID: PT-C1-020598-R-233C

Lab ID:

097433-0003-SA AQUEOUS Received: 09 FEB 98 Sampled: 05 FEB 98 Matrix: Analyzed: See Below Prepared: See Below Authorized: 09 FEB 98

Parameter		Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
		9.2	pH units	NA	150.1	NA	09 FEB 98
pH Solids, Total !	Dissolved	196000	mg/L	500	160.1	NÁ	12 FEB 98 o
Solids, Total			mg/L	5.0	160.2	NA	12 FEB 98

Note o: Reporting limit(s) raised due to high level of analyte present in sample.

ND = Not detected NA = Not applicable

Reported By: Barry Marcks

Approved By: Josefina Jones

METALS

(Water - Total)

PRELIMINARY RECULTS

Client Name: Process Technologies Client ID: PT-C1-020598-R-233B

Lab ID: 097433-0002-SA

Matrix: AQUEOUS Sampled: 05 FEB 98 Received: 09 FEB 98
Authorized: 09 FEB 98 Prepared: See Below Analyzed: See Below

Reporting Analytical Prepared Analyzed
Parameter Result Units Limit Method Date Date

Sodium 6720 mg/L 100 200.7 Modified 12 FEB 98 13 FEB 98 0

Note o : Reporting limit(s) raised due to high level of analyte present in sample.

ND = Not detected NA = Not applicable

Reported By: Wennilyn Fua Approved By: Barry Votaw

APPENDIX I DATA QUALITY EVALUATION

Contents: Review of Quality Assurance/Quality Control Data

Review of Quality Assurance/Quality Control (QA/QC) Data from the Demonstration of the PTI VOC Treatment Technology at NAS North Island Site 9

Overview

A review has been conducted on data collected for the PTI Technology Demonstration at NAS North Island Site 9, based in San Diego, CA. This report summarizes the results of the QA/QC data associated with analyses of VOCs, SVOCs, TNMOC, fixed gases, HCl, Chlorine, Phosgene, the TCLP, Total Suspended Solids and Total Dissolved Solids.

All samples were collected between October 24, 1997 and February 6, 1998. All samples were analyzed in accordance with U.S. EPA Test Methods, with the exception of carbon monoxide and methane which were analyzed using an ASTM Method (see Table 1).

Table 1 - Summary of Analyses

Matrix	Parameter	Analytical Method	Number of Samples
Gas	VOCs in Air	TO-14	67, 1 field duplicate, 1
			field blank
	TNMOC	TO-12	67, 1 field duplicate, 1
			field blank
	Carbon monoxide,	ASTM-D1946	67, 1 field duplicate, 1
	Methane		field blank
	PCBs/Pesticides/PAHs*	8080/ 8270	2
	HCl, Chlorine*	26A	2
	Phosgene*	TO-6	2
Liquid	VOCs - Scrubber Liquor,	8260A	1
	Condensate		
	TSS,TDS	160.1, 160.2	1
Solid	TCLP	8260A	1

^{*} Sampling and analysis by SCEC, see Appendix D.

All SUMMA canister samples (TO-14, TO-12, ASTM-D1946) were analyzed at Quanterra's City of Industry Laboratory. All other samples collected by PTI were

analyzed at various other Quanterra locations. Each laboratory provided analytical results and QA/QC information for all samples analyzed.

Data Usability Review

The intent of this review is to assess the appropriate use or "usability" of the analytical data collected during the technology demonstration based upon the QA/QC data provided by the laboratory. This review will focus on the following QA/QC parameters and the overall effect upon the data:

- Sample custody
- Holding times
- Calibration (initial and continuing)
- Method Blanks
- Laboratory control samples (LCS/LCSD)
- Field QA/QC
- Field FID Operation

1.0 Sample Custody

All samples were properly recorded and transfer of custody was documented on each chain-of-custody (COC) form.

2.0 Holding Times

Holding time criteria insure sample integrity is not compromised over time. The following indicates the number of days that passed between date of collection and analysis date. Holding times for individual analyses are listed in Table 2.

Table 2 - Sample Holding Times

Analysis Parameter	Sample	Maximum Holding	Actual Holding
	Type	Time	Time
VOCs	Canister	30 days	4 to 12 days
TNMOC	Canister	30 days	12 to 25 ¹ days
CO, Methane	Canister	30 days	4 to 12 days
PCBs, Pesticides,	XAD-2	30 days to extraction;	4 days/ 5 days
PAHs ²	Cartridge	45 days from	
		extraction to analysis	
HCl, Chlorine ²	Impingers	28 days	7 days
Phosgene ²	Impingers	30 days	7 days
VOCs - Scrubber	Liquid	14 days	14 days
Liquor, Condensate			
TSS, TDS	Liquid	7 days	4 days
TCLP	Leachate/	14 days to extraction;	7 days/ 3 days
	Extract	14 days from	
		extraction to analysis	

Notes:

- 1. Eight samples collected November 17th and 18th were analyzed 25 days after collection due to instrument breakdown. All others were analyzed within 12 days.
- 2. Sampled by SCEC see Appendix D for further details.

3.0 Calibration, Method Blanks, and Laboratory Control Samples

The following section summarizes these requirements for TO-14, TO-12, and ASTM-D1946, only. The calibration and QA/QC for all other methods will not be discussed due to the small number of samples collected. However, all analyses met the laboratories internal QA/QC requirements.

3.1 VOCs by Method TO-14 - SCAN

A) Calibration - Initial and Continuing

Canister samples were analyzed by Quanterra's Air Toxics Laboratory located in City of Industry, California. The samples will be analyzed using gas chromatography equipped with a Mass Selective Detector. An initial multipoint calibration was performed consisting of a system blank and a minimum a five point calibration. The lowest calibration point is at or near the reporting limit. A single point check standard was analyzed (every 12 hours), with 90% of the target compound response factors within 30%

of the five point calibration curve average response factors. Failure to meet these criteria results in a new 5 point calibration being run.

Deviations from the source method include:

1. Use of a 0.53 mm column instead of a 0.32 mm column, and a jet separator to reduce the flow into the HP MSD form 3 mL/min to 1 mL/min, which is the maximum flow that the HP system can handle. Quanterra uses the pressure of the sample canister to drive the sample through the trap, instead of the sample being pulled through the trap using a vacuum pump.

B) Method Blank

A method blank was analyzed every 12 hours before samples were run, the results of which must indicate no target compounds at levels above the reporting limits (RL). The method blank is prepared by adding humidified nitrogen to a canister, and analyzing it in the same manner as a sample. If any of the above criteria are not met, corrective actions must be taken before analyses can proceed.

C) Laboratory Control Samples (LCS/LCSD)

Laboratory Control Samples (LCS) are samples with known amounts of analyte which are carried through the entire analysis procedure. Since this sample should yield consistent results, anomalous results indicate a laboratory analytical problem, not a matrix problem. In addition, this sample will provide a limiting measure of accuracy. A laboratory control sample (LCS) will be analyzed every 20 samples or daily, which ever is more frequent and consists of methylene chloride, 1,1-dichloroethylene, trichloroethylene, toluene, and 1,1,2,2-tetrachloroethane, all at a nominal spike concentration of 50 ppb. The percent recovery for the compounds in the LCS must be within the window 60-130%. For each lot of 20 samples, a laboratory control sample duplicate (LCSD) must be analyzed. The LCSD is identical to the LCS and must meet the same recovery criteria. In addition the relative percent difference (RPD) between the LCS and the LCSD must be ≤ 20 %. If either control samples fail, the LCS which failed will be reanalyzed. Samples will not be considered reportable until the LCSD criteria are met. This LCS will be prepared in a canister using UHP nitrogen. Internal standards are monitored each 12 hour shift by comparing areas of the internal standards in each sample with the areas of the internal standards in the daily continuing calibration standard. Sample areas are considered acceptable if they fall between 50 and 150% of the daily standard areas.

3.2 Total Non-Methane Organic Carbon (TNMOC) by Method TO-12

A) Calibration - Initial and Continuing

The initial calibration consists of a five point calibration curve, each point being analyzed three times, with the relative standard deviation (RSD) \leq 3% required for acceptance. Continuing calibration consists of two points analyzed once each with a required RPD \leq 15% between the continuing and the initial calibration. Failure to meet these criteria will result in recalibration and reanalysis of the samples in that batch, prior to analysis of any additional samples. Each sample is analyzed twice with the relative percent difference (RPD) required to be \pm 5%, the average of the two analyses is reported. A RPD >5% will result in the sample being reanalyzed.

B) Method Blank

A method blank was run on a daily basis and was considered acceptable if less than the base reporting limit of 0.5 ppm-C.

C) Laboratory Control Samples (LCS/LCSD)

There are no LCS/LCSD for TO-12, however the samples are analyzed twice and the average value reported.

3.3 Carbon Monoxide and Methane by ASTM - D1946

A) Calibration - Initial and Continuing

Carbon monoxide and methane were determined using a multiple column GC method, with flame ionization detection (FID). An initial multipoint point calibration, after which a daily single point calibration check standard is analyzed. The check standard must was required to be within 15% of the most recent instrument calibration. If the check standard fails to meet this criterion, a second check standard is run. To be accepted this second check standard must be within 10 % of the first check standard. Failure to meet this criteria will result in recalibration prior to analysis of additional samples. The accepted check standard is used to calculate the concentration in the samples.

B) Method Blank

A method blank of hydrocarbon free air must be analyzed after the daily check standard. This results of this blank must indicate that there is no carbon monoxide or methane above the MDL (10 ppmv and 2 ppmv, respectively).

C) Laboratory Control Samples (LCS/LCSD)

For each lot of 20 samples analyzed, a laboratory control sample and control sample duplicate were run, which consists of a subset of the target compounds injected at a concentration that differs from that of the daily check standard. The acceptance criteria

for the LCS/LCSD pair is an RPD < 10%. The percent recovery for the target compounds must be within a window of 80-120%.

4.0 Field QA/QC

4.1 Field Duplicates

One field duplicate and field blank were collected for methods TO-14, TO-12 and ASTM-D1946. The frequency of field duplicate and field blank sampling events was set at 10% (approximately 6 sets). However due to an oversight by PTI only one set of field duplicate and blanks were collected, a frequency of only 1.5%. The results from the duplicate are summarized in Table 3. The field duplicate was a four hour composite collected simultaneously with the sample. This necessitated the use of an different vacuum flow regulator and introduced an additional variable. The RPD was within the guideline of \pm 20%, with the exception of two compounds; toluene and *trans*-DCE, which were 28.4% and 23.1%, respectively. The TNMOC was also outside of the guideline of \pm 20%.

4.2 Field Blanks

The field blank for the TO-14 analysis indicated that four compounds were detected; cis-DCE at 3 ppbv, TCE at 3 ppbv, Methylene chloride at 2 ppbv, and PCE at 2 ppbv. The base reporting limit for these compounds by TO-14 is 2 ppbv. The TO-12 analysis indicated not detected, as did the analysis for carbon monoxide and methane (ASTM-D1946). These results seem to indicate that carry-over from sampling equipment was not a significant problem.

Since only one set of duplicate and blank samples were collected it is not possible to evaluate field sampling technique.

Table 3 - Field Duplicate

Compound	Sample Result (ppmv) PT-B-020598-R-227	Duplicate Result (ppmv) PT-B-020698-D-232	Relative Percent Difference (RPD)
cis-DCE	1.20	1.18	1.7
TCE	1.63	1.51	7.6
Toluene	0.53	0.71	28.4
PCE	1.50	1.82	19.3
Xylenes	< 0.021	0.031	NC*
Methylene chloride	0.091	0.095	4.3
Chloroform	0.259	0.289	10.9
trans-DCE	0.046	0.058	23.1
Benzene	0.078	0.093	17.5
Acetone	0.291	0.327	11.6
TNMOC	34	24	34.4
Carbon monoxide	52	52	0
Methane	4.5	<4.4	NC*

^{*} NC: not calculable

Completeness

Completeness criteria monitor the percentage of measurements judged to be valid compared to the expected total number of measurements. The overall completeness objective for acceptable analytical data for this project was set at 90 percent. The completeness objective of 90 percent based on precision and accuracy was met for all analyses.

5.0 Field FID Operation

During this project PTI operated two flame ionization detectors (FID) used to record the total hydrocarbons removed by the PTI system. The following is the procedure followed by PTI personnel to operate the FID units. The data from the FIDs was recorded using a data logger.

Initial Startup

- 1) Connect power cord
 - a) Press buttons for Heater, Amplifier, and Temperature Display will show oven temperature Let system heat up for 12 hours, **3-4 hours minimum**.

- 2) Connect gases at rear of FID
 - a) Hydrogen (Fuel) 21 psi max.
 - b) Purge and Zero Air (both supplied from the air compressor) 15 psi max.
 - c) Span (calibration) gas 15 psi max. make sure that valve on flow regulator is closed when not calibrating. Since we have a flow regulator there is no pressure adjustment necessary.
- 3) Turn on pump, set Mode to zero gas (front panel).
- 4) Ignite flame press ignite button for no more than 2 seconds, repeat until FID is lit as indicated by red light next to ignite button changing to green. <u>FID should be allowed to stabilize for 3-4 hours prior to attempting to calibrate.</u>

Calibration /Zeroing Instrument

With the FID lit, and instrument display set to read output - Temperature button off (no green light next Temp button). *Calibration and Zeroing should be done daily*, with zero and span pot settings recorded in logbook.

- 1) Switch to Zero gas mode
 - a) Adjust zero pot so that display reads zero. This should be done on the <u>lowest</u> range to be used for sample measurements. See instrument manual for range values.
- 1) Switch to span gas mode
 - a) Adjust span using span pot. Example: If range is set to 0-1000, and a 1000 ppm span (calibration) gas is being used, display should read 10.00. NOTE: Any reading greater than 10.00 on the display indicates an out of range condition.
 - b) Switch back to Zero gas mode, close span gas valve.

The instrument is now ready to take data. Connect heated sample line to back panel of instrument, open valve at sample source. Switch mode to sample position.

If the FID must be shut down, close sample valve and disconnect sample line. Under no circumstances should the FID be left connected to the heated sample line without having the flame lit and the oven heater on.

6.0 References

Table 4 - Preparation And Analytical Methods For The PTI Demonstration

Parameter	Preparation Method	Analytical Method	Reference(s)
TINIOC		TO-12 ¹	2
TMNOC	NA		1 -
VOCs	NA	TO-14 - SCAN ¹	2
HCl, chlorine	NA	EPA 26	3
co	NA	ASTM-D1946 ¹	5
Phosgene	NA	TO-6	2
PCBs/Pesticides/	CARB 429	EPA 8080, 8270	1
PAHs			
VOCs	NA	8260A	1
TDS	NA	160.1	4
TSS	NA	160.2	4
TCLP	1311	8240	1
VOCs	NA	8260A	1

Note:

1 The Quanterra Standard Operating Procedures (SOPs) for Methods TO-14 and TO-12 are confidential and cannot be included in this document. Sufficient detail has been presented to allow an appropriate review.

References Cited

- (1) Test Methods for Evaluating Solid Waste, Volumes 1A-1C: Laboratory Manual, Physical/Chemical Methods; and Volume II: Field Manual, Physical/Chemical Methods, SW-846, Third Edition. Update IIB. Office of Solid Waste, U.S. Environmental Protection Agency, Document Control No. 955-001-00000-1, January, 1995.
- (2) Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, EPA 600 / 4-84 / 041, April 1984.
- (3) Code of Federal Regulations (CFR) 1997, Title 40, Part 60.
- (4) U.S. Environmental Protection Agency (EPA). Methods for Chemical Analysis of Water and Wastes. Environmental Monitoring and Support Laboratory. Cincinnati, Ohio. EPA-600/4-79-020. March 1983.

PTI Demonstration Final Report NAS North Island, Site 9 Contract N47408-97-C-0215

(5) Standard Test Method for Total Hydrocarbons, Methane, and Carbon Monoxide in the Atmosphere (Gas Chromatographic Method), ASTM D3416-88, ASTM 1991 Vol. 11.03.