Theorem 6.20. Suppose G_1 and G_2 are groups such that $H_1 \leq G_1$ and $H_2 \leq G_2$. Then $H_1 \times H_2 \leq G_1 \times G_2$.

Pf: Suppose $H_1 \subseteq G_1$, $H_2 \subseteq G_2$. We will utilize the d-step subgrap test.

- (0) Since e, EH, and eaeHa (where e, and e, are the respective identifies),

 (e,,e,) EH, xHa, and hence H, xHa 7 d.
 - (1) let (x,,y,), (x,,y,) EH, xH,. Then

 x,,x,EH, and y,y,EH,. Since H, and

 H, are closed, x,x,EH, and y,y,EH,.

 This implies that

 $(x_1,y_2)(x_1,y_2) = (x_1x_2,y_1y_2) \in H_1 \times H_2$. Thus, $H_1 \times H_2$ is closed.

(2) Now, let (x,y) \in H, xHa. Then

X\in H, and y\in H_2. Since H, and H_2 are

Srps, x⁻¹ \in H, and y⁻¹ \in H_2. This shows

that

$$(x,y)^{-1} = (x^{-1},y^{-1}) \in H_1 \times H_2$$
.