

SOLUTION OF EXERCISESHEET 6

Exercise 6-1

(a)

Figure 1: Decryption for CBC* mode

(b) As shown in the above figure, let us assume

$$d_i = \mathsf{Dec} (c_i)$$

So

$$m_1 = d_1 \oplus IV$$

$$m_2 = d_2 \oplus d_1 \dots$$

To show that this CBC* doesn't have indistinguishable encryptions, let us consider message in the format $m=m_1||m_2||m_3||...||m_n$. Also we know for CPA, adversary A is allowed of multiple encryptions.

Let us consider A choose two messages i.e., m1 and m2

$$m1 = m1_1 || m1_2 || m1_3 || ... || m1_n$$

 $m1 = m2_1 || m2_2 || m2_3 || ... || m2_n$

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba November 29, 2022

SOLUTION OF EXERCISESHEET 6

And m1 is choosen in such a way that $m1_1 == m1_2 == m1_3 == \dots == m1_n$ and m2 is choosen in such a way that $m2_1 \neq m2_2 \neq m2_3 \neq \dots \neq m2_n$

With these kind of messages choosen, A can distingush m1 and m2 by checking

$$c_1 == c_3 == \dots == c_i$$

 $c_2 == c_4 == \dots == c_{i+1}$
where i is an odd number $\leq n$

If the above check is statisfied then the cipher c corresponds to m1. Else it corresponds to m2. With this construction A can distingush between the messages with a probability equal to 1.

Exercise 6-2

Task: Show that Π_{CBC} is not CCA-secure by demonstrating a successful adversary. Assume n = 3

The adversary \mathcal{A} can choose the two messages $m_0=m_0^1||m_0^2=000\ 000$ and $m_1=m_1^1||m_1^2=111\ 111$ which he sends to the challenger. Then he gets the ciphertext $c_b=(c_b^0||c_b^1||c_b^2)=(IV||f_k(IV\oplus m_b^1)||f_k(f_k(IV\oplus m_b^1)\oplus m_b^2))$ back.

Then $\mathcal A$ flipps the last bit from c_b^2 , so $(c_b^2)'=c_b^2\oplus 001$ and asks the decryption oracle for the decryption of $c_b'=c_b^0||c_b^1||(c_b^2)'$. Because $c_b'\neq c_b$ the decryption oracle answers with $m'=f_k^{-1}(c_b^1)\oplus c_b^0||f_k^{-1}(c_b^2)\oplus c_b^1=f_k^{-1}(f_k(IV\oplus m_b^1))\oplus IV||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)=m_b^1||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)$ is now either m_0^1 or m_1^1 because the change in $(c_b^2)'$ doesn't impact m_b^1 . So the adversary can say for sure, if the recieved civertext c_b is the encoding for m_0 or m_1 .

 $\Rightarrow \Pi_{CBC}$ mode is not CCA-secure

Exercise 6-3

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba November 29, 2022

SOLUTION OF EXERCISESHEET 6

a) Let F be a pseudorandom permutation. Then F and F^{-1} are pseudorandom permutations.

 $\Pi_{\rm M} = ({\rm Gen, Mac, Vrfy})$

$$\begin{array}{ccc} \underline{\mathrm{Gen}(1^{\lambda})} & \underline{\mathrm{Mac_k(c)}} & \underline{\mathrm{Vrfy_k(c,t)}} \\ k \leftarrow \mathrm{Gen}(1^{\lambda}) & \overline{t} \leftarrow \mathrm{F}_k^{-1}(c) & \overline{\mathrm{if}} \ t = \mathrm{Mac_k(m)} \\ \mathbf{return} \ t & \mathbf{return} \ 1 \\ & \mathbf{return} \ 0 & \end{array}$$

 $\Pi_{\rm E} = ({\rm Gen, Enc, Dec})$

Because $\operatorname{Enc}_k(m)$, $\operatorname{Mac}_k(\operatorname{Enc}_k(m)) = \operatorname{F}_k(m \parallel r)$, $\operatorname{F}_k^{-1}(\operatorname{F}_k(m \parallel r)) = \operatorname{F}_k(m \parallel r)$, $(m \parallel r)$

TODO Beweise

Proof that Π_M is secure

We reduce the security of the Mac to the pseudorandomness of the function F^{-1} .

Therefore, we first assume that the construction is not secure and therefore there exists an adversary A that wins MacForge with non-negligible probability $\varepsilon(\lambda)$. We use this adversary A to build a distinguisher for the pseudorandomness of F_k .

With the help of the oracle O_D of the pseudorandomness, D answers the oracle requests of A by computing $t:=O_D(m)$. If the oracle answers with a pseudorandom function, the view of A is identical to $MacForge_{A,\Pi'}(\lambda)$. Thus we have

$$Pr\left[D^{F_k^{-1}(\cdot)}(1^\lambda)=1\right]=Pr\left[MacForge_{A,\Pi}(\lambda)=1\right]=\varepsilon$$
 where $k\leftarrow\{0,1\}^\lambda$.

If the oracle answers with a random function, then we simulate the game for a different MAC-scheme Π' . Let $\Pi' = (Gen', Mac', Vrfy')$ be a message authentication code which is the same as Π , except it uses a truly random function f instead of the pseudorandom function F_k . It is easy to see that $Pr\left[MacForge_{A,\Pi'}(\lambda) = 1\right] \leq 2^{-\lambda}$

This is the case because for any message m, the value t is uniformly distributed in $\{0,1\}_*$ from the point of view of A. The view of A is identical to $MacForge_{A,\Pi}(\lambda)$. We have

$$Pr\left[D^{f(\cdot)}(1^{\lambda})=1\right]=Pr\left[MacForge_{A,\Pi'}(\lambda)=1\right]\leq \frac{1}{2^{\lambda}}$$
 where

where $f \leftarrow Func_{\lambda}$.

The distinguisher can now distinguish between pseudorandom and truly random with non-negligible

Introduction to Modern Cryptography Theresa, Celine, Prisca, Saibaba

November 29, 2022

SOLUTION OF EXERCISESHEET 6

probability. As we assumed the function F^{-1} to be pseudorandom, this is a contradiction and thus such an adversary cannot exist. Hence the MAC construction is secure.