Лабораторная работа номер 10

Сафин Андрей Алексеевич

Содержание

1	Цель работы	5
2	Задание	6
3	Ход лабораторной работы	7
4	Самостоятельная работа	22
5	Выводы	28
Список литературы		29

Список иллюстраций

3.1	Tekct lab10-1.asm	8
3.2	Работа lab10-1.asm	8
3.3	Новый текст lab10-1.asm	9
3.4	Текст lab10-2.asm	10
3.5	Использование gdb к lab10-2	10
3.6	Использование run	11
3.7	Создание брейкпоинта	11
3.8	Дизассемблированный код ATT	12
3.9	Дизассемблированный код intel	12
3.10	Рассмотрение и создание брейкпоинтов в режиме всевдографики	13
3.11	Рассмотрение инструкций с помощью stepi (1)	14
3.12	Рассмотрение инструкций с помощью stepi (2)	15
3.13	Рассмотрение инструкций с помощью stepi (3)	16
	Рассмотрение инструкций с помощью stepi (4)	17
3.15	Рассмотрение инструкций с помощью stepi (5)	18
3.16	Значение msg1	19
3.17	Новое значение msg1	19
3.18	Изменение значение msg2	19
3.19	Значение edx в разных форматах	20
3.20	Установка и выведение зачений ebx	20
3.21	Использование gdb к lab10-3.asm	20
	Установление точки останова на _start	20
	Выведение значения esp	21
3.24	Выведение значений стека	21
		0.5
4.1	Текст новой программы sr.asm	23
4.2	Выполнение sr	23
4.3	Текст новой программы sr2.asm	24
4.4	Выполнение sr2	24
4.5	Рассмотрение работы регистров в GDB (1)	25
4.6	Рассмотрение работы регистров в GDB (2)	25
4.7	Рассмотрение работы регистров в GDB (3)	26
4.8	Рассмотрение работы регистров в GDB (4)	26
4.9	Текст измененной программы sr2.asm	27
4.10	Работа sr2	27

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием подпрограмм. Знакомство с методами отладки при помощи GDB и его основными возможностями.

2 Задание

Написать и отладить ряд программ с использованием подпрограмм.

3 Ход лабораторной работы

1. Создан файл \sim /work/arch-pc/lab10/lab10-1.asm с программой, вычисляющей f(x)=2x+7 с использованием подпрограммы (рис. 3.1). Ее работа проверена (рис. 3.2). В текст добавлена подпрограмма (рис. 3.3), вычисляющая g(x)=3x-1, и ссылка на неё вставлена в lab10-1.asm так, что вычисляется f(g(x)) (рис. ??).

```
*lab10-1.asm
  Открыть ▼
                                                               \equiv
                \oplus
                                                 Сохранить
                             ~/work/arch-pc/lab10
 1 %include 'in_out.asm'
 2 SECTION .data
 3 msg: DB 'Введите х: ',0
 4 result: DB '2x+7=',0
 5 SECTION .bss
 6 x: RESB 80
 7 rez: RESB 80
 8 SECTION .text
9 GLOBAL _start
10 _start:
11 ;-----
12; Основная программа
13 ;---
14 mov eax, msg
15 call sprint
16 mov ecx, x
17 mov edx, 80
18 call sread
19 mov eax,x
20 call atoi
21 call _calcul ; Вызов подпрограммы _calcul
22 mov eax,result
23 call sprint
24 mov eax,[rez]
25 call iprintLF
26 call quit
27 ;-----
28 ; Подпрограмма вычисления
29; выражения "2х+7"
30 _calcul:
31 mov ebx,2
32 mul ebx
33 add eax,7
34 mov [rez],eax
35 ret ; выход из подпрограммы
       Текст ▼ Ширина табуляции: 8 ▼
                                            Стр 21, Стл6 16
                                                                   BCT
```

Рис. 3.1: Текст lab10-1.asm

```
aasafin@fedora:~/work/arch-pc/lab10 Q = ×

[aasafin@fedora ~]$ mkdir ~/work/arch-pc/lab10
[aasafin@fedora ~]$ cd ~/work/arch-pc/lab10
[aasafin@fedora lab10]$ touch lab10-1.asm
[aasafin@fedora lab10]$ gedit lab10-1.asm
[aasafin@fedora lab10]$ nasm -f elf lab10-1.asm
[aasafin@fedora lab10]$ ld -m elf_i386 -o lab10-1 lab10-1.o
[aasafin@fedora lab10]$ ./lab10-1

Введите х: 3

2х+7=13
[aasafin@fedora lab10]$
```

Рис. 3.2: Работа lab10-1.asm

```
*lab10-1.asm
  Открыть ▼
                \oplus
                                                   Сохранить
                              ~/work/arch-pc/lab10
28; Подпрограмма вычисления
29; выражения "2х+7"
30 _calcul:
31 call _subcalcul
32 mov ebx,2
33 mul ebx
34 add eax,7
35 mov [rez],eax
36 ret ; выход из подпрограммы
38 _subcalcul:
39 mov ebx,3
40 mul ebx
41 sub eax,1
42 ret
43
      Matlab ▼ Ширина табуляции: 8 ▼
                                              Стр 4, Стл6 20
                                                                     BCT
```

Рис. 3.3: Новый текст lab10-1.asm

Повторное выполнение lab10-1.asm

2. Создан файл lab10-2.asm с текстом программы из листинга 10.2 (рис. 3.4), печатающей Hello world. Файл оттранслирован, скомпанован и загружен в отладчик gdb (рис. 3.5). Проверена её работа с помощью run (рис. 3.6). Установлен брейкпоинт на _start (рис. 3.7). С этой же метки программа дизассемблирована сначала в синтаксисе АТТ (рис. 3.8), а затем в intel (рис. 3.9). Из наблюдаемых отличий, в АТТ ставится \$ перед численными операндами и адресам, и % перед регитсрами.

```
*lab10-2.asm
                                                             \equiv
  Открыть ▼
                \oplus
                                               Сохранить
                            ~/work/arch-pc/lab10
1 SECTION .data
2 msg1: db "Hello, ",0x0
3 msglLen: equ $ - msgl
4 msg2: db "world!",0xa
5 msg2Len: equ $ - msg2
6 SECTION .text
7 global _start
8 _start:
9 mov eax, 4
10 mov ebx, 1
11 mov ecx, msg1
12 mov edx, msglLen
13 int 0x80
14 mov eax, 4
15 mov ebx, 1
16 mov ecx, msg2
17 mov edx, msg2Len
18 int 0x80
19 mov eax, 1
20 mov ebx, 0
21 int 0x80
      Текст ▼ Ширина табуляции: 8 ▼
                                           Стр 9, Стл6 11 ▼
                                                                 BCT
```

Рис. 3.4: Текст lab10-2.asm

```
aasafin@fedora:~/work/arch-pc/lab10 — gdb la... Q ≡ ×

aasafin@fed... × aasafin@fedo... × aasafin@fedo... ×

[aasafin@fedora lab10]$ touch lab10-2.asm
[aasafin@fedora lab10]$ gedit lab10-2.asm
[aasafin@fedora lab10]$ nasm -f elf -g -l lab10-2.lst lab10-2.asm
[aasafin@fedora lab10]$ ld -m elf_i386 -o lab10-2 lab10-2.o
[aasafin@fedora lab10]$ gdb lab10-2

GNU gdb (GDB) Fedora 12.1-2.fc36
```

Рис. 3.5: Использование gdb к lab10-2

```
⊕
       aasafin@fedora:~/work/arch-pc/lab10 — gdb lab...
                                              aasafin@fedo... ×
  aasafin@fedo... ×
                        aasafin@fedo... ×
Reading symbols from lab10-2
(gdb) run
Starting program: /home/aasafin/work/arch-pc/lab10/lab10-2
This GDB supports auto-downloading debuginfo from the following URLs
https://debuginfod.fedoraproject.org/
Enable debuginfod for this session? (y or [n]) n
Debuginfod has been disabled.
To make this setting permanent, add 'set debuginfod enabled off' to
.gdbinit.
Hello, world!
[Inferior 1 (process 4985) exited normally] (gdb) break _start
```

Рис. 3.6: Использование run

```
aasafin@fedora:~/work/arch-pc/lab10 — gdb la... Q ≡ ×

aasafin@fed... × aasafin@fedo... × aasafin@fedo... ×

(gdb) break _start

Breakpoint 1 at 0x8049000: file lab10-2.asm, line 9.
(gdb) run

Starting program: /home/aasafin/work/arch-pc/lab10/lab10-2

Breakpoint 1, _start () at lab10-2.asm:9

9 mov eax, 4
```

Рис. 3.7: Создание брейкпоинта

```
(gdb) disassemble _start
Dump of assembler code for function _start:
   0x08049000 <+0>:
                        mov
                                $0x4,%eax
   0x08049005 <+5>:
                        mov
                                $0x1,%ebx
                                $0x804a000,%ecx
   0x0804900a <+10>:
                        mov
   0x0804900f <+15>:
                               $0x8,%edx
                        mov
   0x08049014 <+20>:
                        int
                                $0x80
   0x08049016 <+22>:
                        mov
                               $0x4,%eax
   0x0804901b <+27>:
                               $0x1,%ebx
                        mov
   0x08049020 <+32>:
                               $0x804a008,%ecx
                        moν
   0x08049025 <+37>:
                               $0x7,%edx
                        mov
   0x0804902a <+42>:
                        int
                               $0x80
   0x0804902c <+44>:
                        mov
                               $0x1,%eax
   0x08049031 <+49>:
                               $0x0,%ebx
                        mov
   0x08049036 <+54>:
                        int
                               $0x80
End of assembler dump.
(gdb)
```

Рис. 3.8: Дизассемблированный код АТТ

Рис. 3.9: Дизассемблированный код intel

Включен режим псевдографики, просмотрена информация по точкам останова, создана ещё одна. (рис. 3.10). С помощью stepi выполнено пять инструкций (рис. 3.11-3.15). Изменялись значения регистров eax, ebx, ecx и edx.

Рис. 3.10: Рассмотрение и создание брейкпоинтов в режиме всевдографики

Рис. 3.11: Рассмотрение инструкций с помощью stepi (1)

Рис. 3.12: Рассмотрение инструкций с помощью stepi (2)

Рис. 3.13: Рассмотрение инструкций с помощью stepi (3)

Рис. 3.14: Рассмотрение инструкций с помощью stepi (4)

Рис. 3.15: Рассмотрение инструкций с помощью stepi (5)

Значениу msg1 просмотрено (рис. 3.16), изменено (рис. 3.17), а затем просмотрено и изменено значени msg2 ((рис. 3.18). Выведены в различных форматах значение edx (рис. 3.19). С помощью команды set изменено значение ebx сначала на строчную двойку, а затем на численную. Поскольку в обоих случаях выводится численное значение двойки, вывод отличется (рис. 3.20). После выполнение программы было заверешер с помощью quit.

Рис. 3.16: Значение msg1

```
(gdb) set {char}&msgl='h'
(gdb) x/lsb &msgl
0x804a000 <msgl>: "hello, "
(gdb)
```

Рис. 3.17: Новое значение msg1

```
(gdb) x/1sb &msg2

0x804a008 <msg2>: "world!\n\034"

(gdb) set {char}0x804a00c=' '

(gdb) x/1sb &msg2

0x804a008 <msg2>: "worl !\n\034"

(gdb)
```

Рис. 3.18: Изменение значение msg2

```
(gdb) p/s $edx

$5 = 8

(gdb) p/t $edx

$6 = 1000

(gdb) p/x $edx

$7 = 0x8

(gdb)
```

Рис. 3.19: Значение edx в разных форматах

```
(gdb) set $ebx='2'
(gdb) p/s $ebx
$8 = 50
(gdb) set $ebx=2
(gdb) p/s $ebx
$9 = 2
(gdb)
```

Рис. 3.20: Установка и выведение зачений еbx

3. Скопирован lab9-2.asm в lab10-3.asm, а затем к итоговой программе применен gdb при введении многих аргументов с помощью ключа –args (рис. 3.21). Установлена точка останова на _start (рис. 3.22). Выведено число аргументов, хранящееся в esp (рис. 3.23). Выведены значения в остальных позициях стека (рис. 3.24). Адресация сдвигается на четыре, так как на элемент стека выведено по 4 байта.

```
[aasafin@fedora lab10]$ cp ~/work/arch-pc/lab09/lab9-2.asm ~/work/arch-pc/lab10/lab10-3.asm [aasafin@fedora lab10]$ nasm -f elf -g -l lab10-3.lst lab10-3.asm [aasafin@fedora lab10]$ ld -m elf_i386 -o lab10-3 lab10-3.o [aasafin@fedora lab10]$ gdb --args lab10-3 aprумент1 aprумент 2 'aprумент 3' GNU gdb (GDB) Fedora 12.1-2.fc36
```

Рис. 3.21: Использование gdb к lab10-3.asm

```
Reading symbols from lab10-3...
(gdb) b _start
Breakpoint 1 at 0x80490e8: file lab10-3.asm, line 5.
(gdb) run
Starting program: /home/aasafin/work/arch-pc/lab10/lab10-3 аргумент1 аргумент 2 аргумент\ 3
```

Рис. 3.22: Установление точки останова на start

```
Breakpoint 1, _start () at lab10-3.asm:5
5 pop ecx; Извлекаем из стека в `ecx` количество
(gdb) x/x $esp
0xffffdlf0: 0x00000005
```

Рис. 3.23: Выведение значения еsp

Рис. 3.24: Выведение значений стека

4 Самостоятельная работа

1. Изменена программа из лабораторной работы 9 так, что f(x) вычисляется в подпрограмме (рис. 4.1, 4.2). Результат полностью соответствует таковому из лабораторной работы 9.

```
*sr.asm
                 \oplus
                                                         Сохранить
                                                                        \equiv
   Открыть ▼
                                 ~/work/arch-pc/lab10
 1 %include 'in_out.asm'
 3 SECTION .data
 4 msg db "Результат: ",⊖
 6 SECTION .text
 7 global _start
 8 _start:
10 pop ecx
11 pop edx
12 sub ecx, 1
13
14 mov ebx,0
15
16 cmp ecx,0
17 jz _end
18
19 next:
20 pop eax
21 call atoi
22 call _calc
23 loop next
24
25 _end:
26 mov eax, msg
27 call sprint
28 mov eax, ebx
29 call iprintLF
30 call quit
31
32
33 mov edx, 12
34 mul edx
35 sub eax, 7
36 add ebx, eax
37
38 ret
           Matlab ▼ Ширина табуляции: 8 ▼
                                                    Стр 38, Стлб 4
                                                                            ВСТ
```

Рис. 4.1: Текст новой программы sr.asm

Рис. 4.2: Выполнение sr

2. Создан файл sr2.asm (рис. 4.3), в который введена программа из листинга

10.3, вычисляющая 4(3+2)+5 с ошибкой (рис. 4.4). С помощью отладчика рассмотрены изменения в регистрах (рис. 4.5-4.8). По ним видно, что ошибка возникает из-за сохранения результата суммы в еbx и продолжения работы с этим регистром несмотря на то, что умножение выполняется с еах. Ошибка исправлена (рис. 4.9). Программа выполняется верно (рис. 4.10).

Рис. 4.3: Текст новой программы sr2.asm

```
[aasafin@fedora lab10]$ touch sr2.asm
[aasafin@fedora lab10]$ gedit sr2.asm
[aasafin@fedora lab10]$ nasm -f elf sr2.asm
[aasafin@fedora lab10]$ ld -m elf_i386 -o sr2 sr2.o
[aasafin@fedora lab10]$ ./sr2
Результат: 10
[aasafin@fedora lab10]$ nasm -f elf -g -l sr2.lst sr2.asm
[aasafin@fedora lab10]$ ld -m elf_i386 -o sr2 sr2.o
[aasafin@fedora lab10]$ gdb sr2
[aasafin@fedora lab10]$ gdb sr2
```

Рис. 4.4: Выполнение sr2

Рис. 4.5: Рассмотрение работы регистров в GDB (1)

Рис. 4.6: Рассмотрение работы регистров в GDB (2)

Рис. 4.7: Рассмотрение работы регистров в GDB (3)

Рис. 4.8: Рассмотрение работы регистров в GDB (4)

```
*sr2.asm
  Открыть ▼
              (<del>+</del>)
                                           Сохранить
                       ~/work/arch-pc/lab10
 1 %include 'in_out.asm'
 2 SECTION .data
 3 div: DB 'Результат: ',0
4 SECTION .text
5 GLOBAL _start
6 _start:
7; ---- Вычисление выражения (3+2)*4+5
8 mov ebx,3
 9 mov eax,2
10 add eax,ebx
11 mov ecx,4
12 mul ecx
13 add eax,5
14 mov edi,eax
15; ---- Вывод результата на экран
16 mov eax,div
17 call sprint
18 mov eax,edi
19 call iprintLF
20 call quit
Matlab ▼ Ширина табуляции: 8 ▼
                                     Стр 14, Стл6 11
                                                    ▼ BCT
```

Рис. 4.9: Текст измененной программы sr2.asm

```
aasafin@fedora:~/work/arch-pc/lab10 Q ≡ x

aasafin... × aasafin... × aasafin... ×

[aasafin@fedora lab10]$ gedit sr2.asm
[aasafin@fedora lab10]$ nasm -f elf sr2.asm
[aasafin@fedora lab10]$ ld -m elf_i386 -o sr2 sr2.o
[aasafin@fedora lab10]$ ./sr2
Peзультат: 25
[aasafin@fedora lab10]$
```

Рис. 4.10: Работа sr2

5 Выводы

Все программы с подпрограммами составлены. Задания по работе с отладчиком выполнены. Навык работы приобретен.

Список литературы