МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студент гр. 7383	Сычевский Р. А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается не страничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Необходимые сведения для составления программы.

Учет занятой и свободной памяти ведется при помощи списка блоков управления памятью МСВ (Memory Control Block). МСВ занимает 16 байт (параграф) и располагается всегда с адреса кратного 16 (адрес сегмента ОП) и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещение	Длина поля (байт)	Содержимое поля			
00h	1	тип МСВ:			
		5Ah, если последний в списке,			
		4Dh, если не последний			
01h	2	Сегментный адрес PSP владельца участка			
		памяти, либо			
		0000h - свободный участок,			
		0006h - участок принадлежит драйверу			
		OS XMS UMB			
		0007h - участок является исключенной			
		верхней памятью драйверов			

		0008h - участок принадлежит MS DOS					
		FFFAh - участок занят управляющим					
		блоком 386MAX UMB					
		FFFDh - участок заблокирован 386MAX					
		FFFEh - участок принадлежит 386MAX					
		UMB					
03h	2	Размер участка в параграфах					
05h	3	Зарезервирован					
08h	8	"SC" - если участок принадлежит MS DOS,					
		то в нем системный код					
		"SD" - если участок принадлежит MS					
		DOS, то в нем системные данные					

По сегментному адресу и размеру участка памяти, контролируемого этим МСВ можно определить местоположение следующего МСВ в списке.

Адрес первого МСВ хранится во внутренней структуре MS DOS, называемой "List of Lists" (список списков). Доступ к указателю на эту структуру можно получить, используя функцию f52h "Get List of Lists" int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого МСВ.

Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конфигурации ПЭВМ. Объем памяти составляет 64 байта. Размер расширенной памяти в Кбайтах можно определить обращаясь к ячейкам CMOS следующим образом:

mov AL,30h; запись адреса ячейки CMOS

out 70h,AL

in AL,71h; чтение младшего байта

mov BL,AL ; размера расширенной памяти

mov AL,31h; запись адреса ячейки CMOS

out 70h,AL

in AL,71h ; чтение старшего байта

; размера расширенной памяти

Ход работы.

Результат работы показан на рисунке ниже.

1. LAB3.COM

Extended	memory: 6489 memory: 153		l Size	:	SD/SC
0171	4 D	0000	64		
0176	4D	0040	256		
0187	4D	0192	144		
0191	5A	0192	648912		LAB3_1
C:\>					

Программа занимает всю доступную память.

2. LAB3_2.COM

```
C:\>lab3_2.com
Availible memory: 648912 B
Extended memory : 15360 KB
Address | MCB Type | PSP Address | 016F 4D 0008
                                         Size
                                                      SD/SC
 0171
              4D
                           0000
                                            64
 0176
              4D
                           0040
                                           256
 0187
              4D
                           0192
                                           144
 0191
              4D
                           0192
                                         13424
                                                        LAB3 2
                                                        Pìåx P⊽s
 04D9
              5A
                           0000
                                        635472
```

Программа освобождает не занимаемую ею память. Создается блок свободной памяти, который мы можем использовать, если потребуется еще память.

3. LAB3_3.COM

Extended m	memory: 6489 emory: 153		l Size	l SD/SC	
0171	4D	0000	64		
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	13536	LAB3_3	
04E0	4D	0192	65536	LAB3_3	
14E1	5A	0000	569808		
C:\>					

Вначале программа производит те же действия, что в пункте 2, затем программа запрашивает 64кб, в результате создается новый блок размером 65536 байт.

4. LAB3_4.COM

ERROR Extended	memory: 6489 memory: 153		-	Size 16	:	SD/SC
0171	4 D	0000		64		
0176	4D	0040		256		
0187	4D	0192		144		
0191	4D	0192		13840		LAB3_4
04F3	5A	0000		635056		P ∑ ‡¢â− + ₁
C: \ >_						

Программа запрашивает 64 кб до освобождения памяти — возникает ошибка, потому что до этого момента уже была выделена вся доступная память, поэтому больше выделить нельзя.

Контрольные вопросы:

а) Что означает «доступный объём памяти»?

Это максимальный объём памяти, который может использовать программа.

б) Где МСВ блок Вашей программы в списке?

У программы есть два блока МСВ во всех случаях. По адресу 187h находится МСВ для блока памяти переменных среды, по адресу 191h МСВ для программного блока памяти и в третьем случае появляется ещё один блок по адресу 04E0h для управления выделенной областью памяти размером в 65536 байт.

- в) Какой размер памяти занимает программа в каждом случае?
- 1) 648912 байт.
- 2) 13424 байт.
- 3) 13536 байт.
- 4) 13840 байт.