Claims

1. A compound of the formula (I)

$$Z-C(R^1R^2)-C(R^3NH_2)-C(R^4R^5)-X-N(R^6R^7)$$
 (I),

or a pharmaceutically acceptable salt thereof, wherein

Z is selected from the group consisting of phenyl; naphthyl; indenyl; C_{3-7} cycloalkyl; indanyl; tetralinyl; decalinyl; heterocycle; and heterobicycle, wherein Z is optionally substituted with one or more R^8 , wherein R^8 is independently selected from the group consisting of halogen; CN; OH; NH₂; oxo (=O), where the ring is at least partially saturated; R^9 ; and R^{10} ;

 R^9 is selected from the group consisting of C_{1-6} alkyl; O- C_{1-6} alkyl; and S- C_{1-6} alkyl, wherein R^9 is optionally interrupted by oxygen and wherein R^9 is optionally substituted with one or more halogen independently selected from the group consisting of F; and CI;

 R^{10} is selected from the group consisting of phenyl; heterocycle; and C_{3-7} cycloalkyl, wherein R^{10} is optionally substituted with one or more R^{11} , wherein R^{11} is independently selected from the group consisting of halogen; CN; OH; NH₂; oxo (=O), where the ring is at least partially saturated; C_{1-6} alkyl; O- C_{1-6} alkyl; and S- C_{1-6} alkyl;

R¹, R⁴ are independently selected from the group consisting of H; F; OH; and R^{4a};

R², R⁵ are independently selected from the group consisting of H; F; and R^{4b};

 R^{4a} is independently selected from the group consisting of C_{1-6} alkyl; and O- C_{1-6} alkyl, wherein R^{4a} is optionally substituted with one or more halogen independently selected from the group consisting of F; and CI;

 R^{4b} is C_{1-6} alkyl, wherein R^{4b} is optionally substituted with one or more halogen independently selected from the group consisting of F; and CI;

R³ is selected from the group consisting of H; and C₁₋₆ alkyl;

Optionally one or more pairs of R^1 , R^2 , R^3 , R^4 , R^5 independently selected from the group consisting of R^1/R^2 ; R^2/R^3 ; R^3/R^4 ; and R^4/R^5 form a C_{3-7} cycloalkyl ring, which is optionally substituted with one or more of R^{12} , wherein R^{12} is independently selected from the group consisting of F; CI; and OH;

X is selected from the group consisting of S(O); $S(O)_2$; C(O); and $C(R^{13}R^{14})$;

 R^{13} , R^{14} are independently selected from the group consisting of H; F; C_{1-6} alkyl; R^{15} ; and R^{16} ;

Optionally one or both pairs of R^5 , R^{13} , R^{14} selected from the group consisting of R^5/R^{13} ; and R^{13}/R^{14} form a C_{3-7} cycloalkyl ring, which is optionally substituted with one or more R^{17} , wherein R^{17} is independently selected from the group consisting of F; CI; and OH;

 R^{15} is selected from the group consisting of phenyl; naphthyl; and indenyl, wherein R^{15} is optionally substituted with one or more R^{18} , wherein R^{18} is independently selected from the group consisting of R^{19} ; R^{20} ; halogen; CN; COOH; OH; $C(O)NH_2$; $S(O)_2NH_2$; $S(O)NH_2$; C_{1-6} alkyl; C_{1-6} alkyl;

 R^{16} is selected from the group consisting of heterocycle; heterobicycle; C_{3-7} cycloalkyl; indanyl; tertralinyl; and decalinyl, wherein R^{16} is optionally substituted with one or more R^{22} , wherein R^{22} is independently selected from the group consisting of R^{19} ; R^{20} ; halogen; CN; OH; oxo (=O), where the ring is at least partially saturated; NH₂; COOH; C(O)NH₂; S(O)₂NH₂; S(O)NH₂; C₁₋₆ alkyl; O-C₁₋₆ alkyl; S-C₁₋₆ alkyl; N(R^{23})-C₁₋₆ alkyl; COO-C₁₋₆ alkyl; OC(O)-C₁₋₆ alkyl; C(O)N(R^{23})- C₁₋₆ alkyl; N(R^{23})-C(O)-C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl; S(O)-C₁₋₆ alkyl; N(R^{23})-C₁₋₆ alkyl; S(O)-C₁₋₆ alkyl; S(O)-C₁₋₆ alkyl; N(R^{23})-C₁₋₆ alkyl; S(O)-C₁₋₆ alkyl; N(R^{23})-C₁₋₆ alkyl;

substituted with one or more halogen independently selected from the group consisting of F; and Cl;

 R^{19} is selected from the group consisting of phenyl; and naphthyl, wherein R^{19} is optionally substituted with one or more R^{24} , wherein R^{24} is independently selected from the group consisting of halogen; CN; COOH; OH; C(O)NH₂; S(O)₂NH₂; S(O)_NH₂; C₁₋₆ alkyl; O-C₁₋₆ alkyl; S-C₁₋₆ alkyl; COO-C₁₋₆ alkyl; OC(O)-C₁₋₆ alkyl; C(O)N(R^{25})-C₁₋₆ alkyl; S(O)₂N(R^{25})-C₁₋₆ alkyl; S(O)₂C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl; S(O)-C₁₋₆ alkyl; N(R^{25})S(O)₂-C₁₋₆ alkyl; and N(R^{25})S(O) -C₁₋₆ alkyl, wherein each C₁₋₆ alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and Cl;

 R^{20} is selected from the group consisting of heterocycle; heterobicycle; and C_{3-7} cycloalkyl; wherein R^{20} is optionally substituted with one or more R^{26} , wherein R^{26} is independently selected from the group consisting of halogen; CN; OH; oxo (=O), where the ring is at least partially saturated; NH₂; COOH; C(O)NH₂; S(O)₂NH₂; S(O)NH₂; C₁₋₆ alkyl; O-C₁₋₆ alkyl; S-C₁₋₆ alkyl; N(R^{27})-C₁₋₆ alkyl; COO-C₁₋₆ alkyl; OC(O)-C₁₋₆ alkyl; C(O)N(R^{27})- C₁₋₆ alkyl; N(R^{27})-C(O)-C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl; and N(R^{27})S(O)-C₁₋₆ alkyl wherein each C₁₋₆ alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and Cl;

 R^{21} , R^{23} , R^{25} , R^{27} are independently selected from the group consisting of H; and C_{1-6} alkyl, which is optionally substituted with one or more of R^{28} , wherein R^{28} is independently selected from the group consisting of F; Cl and OH;

 R^6 , R^7 are independently selected from the group consisting of H; $(C(R^{29}R^{30}))_m$ - X^1 - Z^1 ; and $(C(R^{31}R^{32}))_n$ - X^2 - X^3 - Z^2 , provided that R^6 , R^7 are selected so that not both of R^6 , R^7 are independently selected from the group consisting of H; CH_3 ; CH_2CH_3 ; CH_2CH_3 ; and $CH(CH_3)_2$;

Optionally R^6 , R^7 are independently C_{1-4} alkyl, which is substituted with one or more R^{29a} , wherein R^{29a} is independently selected from the group consisting of R^{29b} ; and Z^1 , provided that R^6 , R^7 are selected so that not both of R^6 , R^7 are independently selected from the group consisting of CH_3 ; CH_2CH_3 ; CH_2CH_3 ; and $CH(CH_3)_2$;

 R^{29} , R^{30} , R^{31} , R^{32} are independently selected from the group consisting of H; halogen; CN; OH; NH₂; COOH; C(O)NH₂; S(O)₂NH₂; S(O)NH₂; C₁₋₆ alkyl; O-C₁₋₆ alkyl; N(R^{32a})-C₁₋₆ alkyl; COO-C₁₋₆ alkyl; OC(O)-C₁₋₆ alkyl; C(O)N(R^{32a})- C₁₋₆ alkyl; N(R^{32a})-C(O)-C₁₋₆ alkyl; S(O)₂N(R^{32a})-C₁₋₆ alkyl; S(O)N(R^{32a})-C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl; S(O)-C₁₋₆ alkyl; N(R^{32a})S(O)-C₁₋₆ alkyl; and N(R^{32a})S(O)-C₁₋₆ alkyl wherein each C₁₋₆ alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and Cl;

 R^{32a} is selected from the group consisting of H; and C_{1-6} alkyl, which is optionally substituted with one or more halogen independently selected from the group consisting of F; and Cl;

Optionally one or more pairs of R^{29} , R^{30} , R^{31} , R^{32} independently selected from the group consisting of R^{29}/R^{30} ; and R^{31}/R^{32} form a C_{3-7} cycloalkyl ring, which is optionally substituted with one or more R^{32b} , wherein R^{32b} is independently selected from the group consisting of F; CI; and OH;

^{*} m is 0, 1, 2, 3 or 4;

n is 2, 3 or 4;

 X^1 is independently selected from the group consisting of a covalent bond; $-C_{1-6}$ alkyl-; $-C_{1-6}$ alkyl-O-; $-C_{1-6}$ alkyl-N(R³³)-; -C(O)-; -C(O)-C₁₋₆ alkyl-; -C(O)-C₁₋₆ alkyl-O-; -C(O)-C₁₋₆ alkyl-N(R³³)-; -C(O)-C₁₋₆ alkyl-; -C(O)-C₁₋₆ alkyl-O-; -C(O)-C₁₋₆ alkyl-N(R³³)-; -C(O)-C₁₋₆ alkyl-O-; -C(O)-C₁₋₆ alkyl-N(R³³)-; -C(O)-C₁₋₆ alkyl-O-; -C(O)-C₁₋₆ alkyl-N(R³³)-; wherein each C₁₋₆ alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and CI;

 X^2 is selected from the group consisting of -O-; -S-; -S(O)-; S(O)₂-; and -N(R³⁵)-;

 X^3 is selected from the group consisting of a covalent bond; $-C_{1-6}$ alkyl-; $-C_{1-6}$ alkyl-O-; $-C_{1-6}$ alkyl- $N(R^{36})$ -; -C(O)-; -C(O)-; -C(O)-C₁₋₆ alkyl-; -C(O)-C₁₋₆ alkyl-O-; -C(O)-C₁₋₆ alkyl- $N(R^{36})$ -; -C(O)-C₁₋₆ alkyl-; -C(O)-C₁₋₆ alkyl-O-; -C(O)-C₁₋₆ alkyl- $N(R^{36})$ -; -C(O)-C₁₋₆ alkyl- $-C_{1-6}$ alkyl-; -C(O)-C₁₋₆ alkyl-O-; and -C(O)-C₁₋₆ alkyl- $N(R^{36})$ -; wherein each $-C_{1-6}$ alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and Cl;

Optionally X^2-X^3 are independently selected from the group consisting of $-N(R^{35})-S(O)_2$; $-N(R^{35})-S(O)-$; $-N(R^{35})-S(O)_2-C_{1-6}$ alkyl-; $-N(R^{35})-S(O)-C_{1-6}$ alkyl-; $-N(R^{35})-S(O)_2-C_{1-6}$ alkyl-O-; $-N(R^{35})-S(O)_2-C_{1-6}$ alkyl-N(R^{36})-; and $-N(R^{35})-S(O)-C_{1-6}$ alkyl-N(R^{36})-; wherein each C_{1-6} alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and CI;

 R^{33} , R^{34} , R^{35} , R^{36} , R^{37} are independently selected from the group consisting of H; and C_{1-6} alkyl, which is optionally substituted with one or more halogen independently selected from the group consisting of F; and Cl;

 Z^1 , Z^2 are independently selected from the group consisting of Z^3 ; and $-C(R^{37a})Z^{3a}Z^{3b}$;

 R^{37a} is selected from the group consisting of H; and C_{1-6} alkyl, which is optionally substituted with one or more F;

 Z^3 , Z^{3a} , Z^{3b} are independently selected from the group consisting of H; T^1 ; T^2 ; C_{1-6} alkyl; C_{1-6} alkyl- T^1 ; and C_{1-6} alkyl- T^2 ; wherein each C_{1-6} alkyl is optionally substituted with one or more R^{37b} , wherein R^{37b} is independently selected from the group consisting of halogen; CN; OH; NH₂; COOH; C(O)NH₂; S(O)₂NH₂; S(O)NH₂; C_{1-6} alkyl; C_{1-6} alkyl; and C_{1-6} alkyl; wherein each C_{1-6} alkyl is optionally substituted with one or more halogen independently selected from the group consisting of F; and CI;

T¹ is selected from the group consisting of phenyl; naphthyl; and indenyl; wherein T¹ is optionally substituted with one or more R³⁸; wherein R³⁸ is independently selected from the group consisting of halogen; CN; R³⁹; COOH; OH; C(O)NH₂;

 $S(O)_2NH_2$; $S(O)NH_2$; $COOT^3$; ST^3 ; $C(O)N(R^{40})T^3$; $S(O)_2N(R^{40})T^3$; $S(O)N(R^{40})T^3$ and T^3 ;

 T^2 is selected from the group consisting of C_{3-7} cycloalkyl; indanyl; tetralinyl; decalinyl; heterocycle; and heterobicycle; wherein T^2 is optionally substituted with one or more R^{41} , wherein R^{41} is independently selected from the group consisting of halogen; CN; R^{42} ; OH; oxo (=O), where the ring is at least partially saturated; NH₂; COOH; C(O)NH₂; $S(O)_2NH_2$; $S(O)_2NH_2$; $S(O)_2NH_2$; $S(O)_2NH_2$; $S(O)_2N(R^{43})T^3$; $S(O)_2N(R^{43})T^3$; $S(O)_2N(R^{43})T^3$; $S(O)_2N(R^{43})T^3$; and T^3 ;

 R^{39} is selected from the group consisting of C_{1-6} alkyl; $O-C_{1-6}$ alkyl; $S-C_{1-6}$ alkyl; $COO-C_{1-6}$ alkyl; $OC(O)-C_{1-6}$ alkyl; wherein each $OC(O)-C_{1-6}$ alkyl is optionally substituted with one more $OC(O)-C_{1-6}$ is independently selected from the group consisting of $OC(O)-C_{1-6}$ alkyl; $OC(O)-C_{1-6}$ alkyl; O

 R^{42} is selected from the group consisting of C_{1-6} alkyl; $O\text{-}C_{1-6}$ alkyl; $S\text{-}C_{1-6}$ alkyl; $N(R^{48})\text{-}C_{1-6}$ alkyl; OC(O)- C_{1-6} alkyl; and OC(O)- C_{1-6} alkyl; wherein each OC(O)- alkyl is optionally substituted with one or more OC(O)- CC(O)- is independently selected from the group consisting of OC(O)- CC(O)- alkyl; CC(O)-

 R^{40} , R^{43} , R^{44} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} are independently selected from the group consisting of H; and C_{1-6} alkyl;

 T^3 is selected from the group consisting of T^4 ; and T^5 ;

 T^4 is selected from the group consisting of phenyl; naphthyl; and indenyl; wherein T^4 is optionally substituted with one or more R^{51} , wherein R^{51} is independently selected from the group consisting of halogen; CN; COOR⁵²; OR⁵²; C(O)N(R⁵²R⁵³); S(O)₂N(R⁵²R⁵³); C₁₋₆ alkyl; O-C₁₋₆ alkyl; S-C₁₋₆ alkyl; COO-C₁₋₆ alkyl; OC(O)-C₁₋₆ alkyl; C(O)N(R⁵²)-C₁₋₆ alkyl; S(O)₂N(R⁵²)-C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl; S(O)₂-C₁₋₆ alkyl;

S(O) - C_{1-6} alkyl; $N(R^{52})S(O)_2$ - C_{1-6} alkyl; and $N(R^{52})S(O)$ - C_{1-6} alkyl; wherein each C_{1-6} alkyl is optionally substituted with one more halogen selected from the group consisting of F; and Cl;

 \mathbb{R}^{52} , \mathbb{R}^{53} , \mathbb{R}^{55} , \mathbb{R}^{56} , are independently selected from the group consisting of H; and \mathbb{C}_{1-6} alkyl.

²2. A compound according to claim 1 of formula (la)

or a pharmaceutically acceptable salt thereof, wherein Z, R^1 - R^7 and X have the meaning as indicated in claim 1.

- 3. A compound according to claim 1 or 2, wherein Z is phenyl or heterocycle.
- 4. A compound according to any one of the preceding claims, wherein Z is optionally substituted with 1 or 2 R⁸, which are the same or different.
- 5. A compound according to any one of the preceding claims, wherein R⁸ is selected from the group consisting of Cl; F; CN; CH₃; and OCH₃.

- 6. A compound according to any one of the preceding claims, wherein Z is 2-Fluoro-phenyl.
- 7. A compound according to any one of the preceding claims, wherein R¹, R⁴ are independently selected from the group consisting of H; F; OH; CH₃; and OCH₃.
- 8. A compound according to any one of the preceding claims, wherein R², R⁵ are independently selected from the group consisting of H; F; and CH₃.
- 9. A compound according to any one of the preceding claims, wherein R^1 , R^2 , R^4 , R^5 are H.
- 10. A compound according to any one of the preceding claims, wherein R³ is H.
- 11. A compound according to any one of the preceding claims, wherein X is C(O) or S(O)₂.
- 12. A compound according to any one of the preceding claims, wherein R⁶ is selected from the group consisting of H; and CH₃.
- 13. A compound according to any one of the preceding claims, wherein X^1 is a covalent bond.
- 14. A compound according to any one of the preceding claims, wherein m is 0, 1, 2 or 3.
- 15. A compound according to any one of the preceding claims, wherein \mathbb{R}^7 is \mathbb{Z}^1 .
- 16. A compound according to any one of the preceding claims, wherein R^7 is C_{1-4} alkyl, substituted with 1-4 R^{29a} , which are the same or different.
- 17. A compound according to claim 16, wherein R^7 is selected from the group consisting of $CH(R^{29a})_2$; $CHR^{29a}-CH_2R^{29a}$; $CH_2-CH(R^{29a})_2$; $CH_2-CH(R^{29a})_2$; and $CH_2-CH(R^{29a})_2$.

- 18. A compound according to any one of the preceding claims, wherein R^{29a} is selected from the group consisting of R^{29b} ; and Z^1 ; and wherein R^{29b} is selected from the group consisting of H; F; Cl; NH₂; NHCH₃; N(CH₃)₂; CH₃; and C₂H₅.
- 19. A compound according to any one of the preceding claims, wherein R^{29a} is selected from the group consisting of R^{29b} ; and Z^1 ; and wherein Z^1 is selected from the group consisting of T^1 ; and T^2 .
- 20. A compound according to any one of the preceding claims, wherein T^1 is phenyl; and wherein T^1 is optionally substituted with 1-3 R^{38} , which are the same or different.
- 21. A compound according to any one of the preceding claims, wherein R³⁸ is independently selected from the group consisting of F; Cl; CN; CH₃; C₂H₅; CH₂CH₂CH₃; CH(CH₃)₂; CF₃; O-CH₃; O-C₂H₅; S-CH₃; SO₂NH₂; T³; and O-T³.
- 22. A compound according to any one of the preceding claims, wherein T² is selected from the group consisting of

and wherein T² is optionally substituted with 1-2 R⁴¹, which are the same or different.

- 23. A compound according to any one of the preceding claims, wherein R⁴¹ is selected from the group consisting of OH; CH₃; and T³;
- 24. A compound according to any one of the preceding claims, wherein T³ is T⁴.
- 25. A compound according to any one of the preceding claims, wherein T⁴ is phenyl, wherein T⁴ is optionally substituted with 1-3 R⁵¹, which are the same or different.
- 26. A compound according to any one of the preceding claims, wherein R⁵¹ is independently selected from the group consisting of F; Cl; CH₃; C₂H₅; CH₂CH₂CH₃; CH(CH₃)₂; CF₃; O-CH₃; O-C₂H₅; S-CH₃; and SO₂NH₂.
- 27. A compound according to any one of the preceding claims, wherein T³ is T⁵.
- 28. A compound according to any one of the preceding claims, wherein T⁵ is heterocycle, wherein T⁵ is optionally substituted with 1-2 R⁵⁴, which are the same or different.
- 29. A compound according to any one of the preceding claims, wherein R⁵⁴ is selected from the group consisting of OH; and CH₃.
- 30. A compound according to claim 1 selected from the group consisting of

4	F .
	CH ₃
5	CH ₃
	CH ₃
6	ş ^{_CH} ₃
	× _N ·
	CH ₃
7	ÇH₃
	, CH ₃
8	H N N
	()
9	<u> </u>
	, N
10	н
	H,,,,
	ĊН ₃

11			
	НО		
12	HN CI		
13	H		
14	F N N		
15	H		
16	, , , , , , , , , , , , , , , , , , ,		
17	H ₃ C		

18	, N		
19	CI		
20	, H		
21	CH ₃		
22	, K		
23	The state of the s		
24			
25	H O-N CH ₃		
26	H		
27	H CI		

28	F		
	H F F F		
29	, H , O		
30	CH ₃		
31	H. N. N.		
32	, H		
33	F F		
34	H N CH ₃		
35	H		
36	F F F		

37	^			
	H			
	FF			
38	H			
39	CI			
	H			
40				
	н			
· ;	H H			
41	CH ₃			
	CH ₃			
42	H			
43				

53	H ₃ C _N CH ₃			
54	H N O			
55	H			
56	CH ₃			
57	H CH ₃			
58	CI			
59				

60	, H CI
61	H CH ₃
62	CH ₃
63	CI
64 :	CI
65	, N O CH ₃
66	CH ₃
67	CH ₃
68	CH ₃

69				
	H, CH ₃			
	ĊH₃			
70	Н			
	O CH ₃			
	ĊH₃			
71	, N.,,			
72	, N			
	S 11112			
73	CH ₃			
	N			
74				
74	N N			
	CICI			
75	CH ₃			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	CI			
76	CH ₃			
	N			

77	
78	HZ F
79	HZ,
80	CI
81	HX F
82	CI HN F
83	CH ₃
84	HN Z
85	H

86	F Z H	93	CH ₃ F
87	, N.,	94	CH ₃ F
88	H	95	CH ₃ O CH ₃
89	ÇH ₃	96	N CH ₃
90	ÇH ₃	97	
91	CH _®		H
92	CH ₃ CI	98	H
L	•		

- 31. A prodrug compound of a compound according to any one of the claims 1 to 30.
- 32. A pharmaceutical composition comprising a compound or a pharmaceutically acceptable salt thereof according to any one of the claims 1 to 31 together with a pharmaceutically acceptable carrier.
- 33. A pharmaceutical composition according to claim 32, comprising one or more additional compounds or pharmaceutically acceptable salts thereof selected from the group consisting of another compound according to any one of the claims 1 to 27; another DPP-IV inhibitor; insulin sensitizers; PPAR agonists; biguanides;

protein tyrosinephosphatase-IB (PTP-1B) inhibitors; insulin and insulin mimetics; sulfonylureas and other insulin secretagogues; a-glucosidase inhibitors; glucagon receptor antagonists; GLP-1, GLP-1 mimetics, and GLP-1 receptor agonists; GIP, GIP mimetics, and GIP receptor agonists; PACAP, PACAP mimetics, and PACAP receptor 3 agonists; cholesterol lowering agents; HMG-CoA reductase inhibitors; sequestrants; nicotinyl alcohol; nicotinic acid or a salt thereof; PPARa agonists; PPARoly dual agonists; inhibitors of cholesterol absorption; acyl CoA: cholesterol acyltransferase inhibitors; anti-oxidants; PPARo agonists; antiobesity compounds; an ileal bile acid transporter inhibitor; and anti-inflammatory agents.

- 34. A compound or a pharmaceutically acceptable salt thereof of any one of the claims 1 to 31 for use as a medicament.
- 35. Use of a compound or a pharmaceutically acceptable salt thereof of any of the claims 1 to 31 for the manufacture of a medicament for the treatment or prophylaxis of non-insulin dependent (Type II) diabetes mellitus; hyperglycemia; obesity; insulin resistance; lipid disorders; dyslipidemia; hyperlipidemia; hypertriglyceridemia; hypercholestrerolemia; low HDL; high LDL; atherosclerosis; growth hormone deficiency; diseases related to the immune response; HIV infection; neutropenia; neuronal disorders; tumor metastasis; benign prostatic hypertrophy; gingivitis; hypertension; osteoporosis; diseases related to sperm motility; low glucose tolerance; insulin resistance; ist sequelae; vascular restenosis; irritable bowel syndrome; inflammatory bowel disease; including Crohn's disease and ulcerative inflammatory conditions; pancreatitis; colitis: other abdominal obesity: neurodegenerative disease; anxiety; depression; retinopathy; nephropathy; neuropathy; Syndrome X; ovarian hyperandrogenism (polycystic ovarian syndrome; Type n diabetes; or growth hormone deficiency.
- 36. Use of a compound according to any one of the claims 1 to 31 as DPP-IV inhibitor.