SDS 383D: Exercises 4 – Hierarchical Models

April 26, 2017

Professor Scott

Spencer Woody

Math Tests

We have a model where y_{ij} is the test score of the jth student in school i, with indices $i=1,2,\ldots,I$ and $j=1,2,\ldots,N_i$, so N_i is the sample size for school i and there are $N=\sum_{i=1}^I$ total test scores. Let $\lambda=1/\sigma^2$ and $\gamma=1/\tau^2$ be the precision parameters. Further, let $y_i=[y_{i1},y_{i2},\ldots,y_{iN_i}]^T$ and $y=[y_1^T,y_2^T,\ldots,y_I^T]^T$ and $\theta=[\theta_1,\theta_2,\ldots,\theta_I]^T$. As we can see in Figure 1, schools with smaller sample sizes tend to have more extreme average test scores.

Figure 1: Scatter plot of sample size and average test scores

The hierarchical model for these data is

$$(y_{ij}|\theta_i,\lambda) \sim \mathcal{N}\left(\theta_i,\lambda^{-1}\right)$$
$$(\theta_i|\mu,\lambda,\gamma) \sim \mathcal{N}\left(\mu,(\lambda\gamma)^{-1}\right).$$

We set the priors

$$\pi(\mu) \propto 1, -\infty < \mu < \infty$$
 $\pi(\lambda) \propto \lambda^{-1}, \ \lambda > 0$
 $\pi(\gamma) \propto 1, \ \gamma > 0,$

that is to say, In order to implement the Gibbs sampler, we need the posterior full conditionals for each θ_i , μ , λ , and γ .

• For each θ_i ,

$$f(\theta_i|y_i,\mu,\lambda,\gamma) \propto f(y_i|\theta_i,\lambda) \cdot f(\theta_i|\mu,\lambda,\gamma)$$
$$\sim \mathcal{N}\left((N_i\lambda + \lambda\gamma)^{-1} \cdot (N_i\lambda\bar{y}_i + \lambda\gamma\mu), (N_i\lambda + \lambda\gamma)^{-1} \right),$$

which we know from the normal-normal conjugacy derived in Exercises 1.

• For *μ*,

$$\begin{split} \pi(\mu|y,\theta,\lambda,\gamma) &\propto f(\theta|\lambda,\gamma,\mu) \cdot \pi(\mu) \\ &\propto \left(\prod_{i=1}^{I} \exp\left[-\frac{1}{2} \lambda \gamma (\theta_i - \mu)^2 \right] \right) \cdot 1 \\ &= \exp\left[-\frac{1}{2} \lambda \gamma \sum_{i=1}^{I} (\theta_i - \mu)^2 \right] \\ &= \exp\left[-\frac{1}{2} \lambda \gamma \sum_{i=1}^{I} \left(\theta_i^2 - 2\theta_i \mu + \mu^2 \right) \right] \\ &\propto \exp\left[-\frac{1}{2} \lambda \gamma \left(I \mu^2 - 2I\bar{\theta}\mu \right) \right] \\ &\sim \mathcal{N}\left(\bar{\theta}, (I\lambda\gamma)^{-1}\right). \end{split}$$

• For λ ,

$$\pi(\lambda|y,\mu,\gamma,\theta) \propto f(y|\lambda,\theta) \cdot f(\theta|\lambda,\gamma,\mu) \cdot \pi(\lambda)$$

$$\propto \left(\prod_{i=1}^{I} \prod_{j=1}^{N_i} \lambda^{1/2} \exp\left[-\frac{1}{2} (y_{ij} - \theta_i)^2 \right] \right) \cdot \left(\prod_{i=1}^{I} \lambda^{1/2} \exp\left[-\frac{1}{2} \lambda \gamma (\theta_i - \mu)^2 \right] \right) \cdot \lambda^{-1}$$

$$= \lambda^{(N+I)/2-1} \exp\left[-\frac{1}{2} \left(\sum_{i=1}^{I} \sum_{j=1}^{N_i} (y_{ij} - \theta_i)^2 + \gamma \sum_{i=1}^{I} (\theta_i - \mu)^2 \right) \lambda \right]$$

$$\sim \operatorname{Gamma}\left(\frac{N+I}{2}, \frac{1}{2} \left[\sum_{i=1}^{I} \sum_{j=1}^{N_i} (y_{ij} - \theta_i)^2 + \gamma \sum_{i=1}^{I} (\theta_i - \mu)^2 \right] \right).$$

• For γ ,

$$\begin{split} \pi(\gamma|y,\mu,\lambda,\theta) &\propto f(\theta|\lambda,\gamma,\mu) \cdot \pi(\gamma) \\ &\propto \left(\prod_{i=1}^{I} \gamma^{1/2} \exp\left[-\frac{1}{2} \lambda \gamma (\theta_i - \mu)^2 \right] \right) \cdot 1 \\ &= \gamma^{I/2} \exp\left[-\frac{1}{2} \lambda \sum_{i=1}^{I} (\theta_i - \mu)^2 \cdot \gamma \right] \\ &\sim \operatorname{Gamma}\left(\frac{I}{2} + 1, \frac{1}{2} \lambda \sum_{i=1}^{I} (\theta_i - \mu)^2 \right). \end{split}$$

Table 1: 95% posterior credible intervals

	2.5%	50%	97.5%
μ	47.03	48.10	49.18
λ	0.0111	0.0118	0.0126
γ	2.43	3.49	5.03

Given the posterior mean $\hat{\theta}_i$ as an estimate of θ_i , define the shrinkage coefficient

$$\kappa_i = \frac{\bar{y}_i - \hat{\theta}_i}{\bar{y}_i},$$

which is a measure incomplete pooling. Figure 2 shows the absolute shrinkage coefficient for each school as a function of sample size. As sample size increases, the shrinkage decreases because we are gaining precision in estimating the school-level mean θ_i .

Figure 2: Absolute shrinkage coefficient as a function of sample size

Price elasticity of demand

Here we model the demand curve for cheese, which is given by

$$Q = \alpha P^{\beta}$$
,

where Q is the quantity of cheese demanded, P is price, β is a parameter for the *price elasticity of demand* and α is a (rather unremarkable) scaling parameter. Note that if we take a logarithmic transform of the equation in our demand model, we obtain the linear replationship

$$\log Q = \log \alpha + \beta \log P.$$

Figure 3 shows all the data with a fitted OLS line, and Figure 4 shows the data on a store-by-store level with the same OLS line from all data on each panel. The fact that the OLS line performs poorly on any given individual store's data suggests that a hierarchical approach would be beneficial. The hierarchical linear model for the quantity of cheese sold for the *t*th observation at store *i* is

$$y_{it} = \alpha_i + \beta_i x_{it} + \gamma_i z_{it} + \theta_i z_{it} x_{it} + \epsilon_{it},$$

where x_{it} is the log-price of cheese and z_{it} is an indicator variable taking on a value of 1 when the display is shown, and 0 otherwise.

Figure 3: Scatterplot for data from all stores with OLS line

Using frequentist REML to build this model we obtain these results,

Figure 4: Scatterplot for data from all stores with OLS line

Figure 5: Residual plot using HLM and REML method

Full Bayesian

Model specification

Here we specify a general Bayesian hierarchical linear model. Let y_i be a n_i -length vector representing the the responses of group i. There are $N = \sum_i^I n_i$ total responses. X_i is the $n_i \times p$ design matrix for the observations in group i, and Z_i is a $n_i \times q$, $q \le p$ matrix whose columns are a subset of the columns of X_i , and this represents the subject-level effects, sometimes called "random effects.". Then the responses y_i are distributed as:

$$y_i|\beta, b_i, \lambda \sim \mathcal{N}_{n_i}(X_i\beta + Z_ib_i, \lambda^{-1}\mathcal{I}_{n_i})$$

 $b_i|D \stackrel{\text{iid}}{\sim} \mathcal{N}_q(0, D)$

Note that the responses y_{it} for subject i are therefore assumed to iid, and also note two results of this model,

$$E(y_i|b_i) = X_i\beta + Z_ib_i$$

$$E(y_i) = E(E(y_i|b_i)) = X_i\beta,$$

or in other words, The priors are

$$\pi(\lambda) \propto \lambda^{-1}$$

 $\pi(\beta) \propto 1$
 $\pi(D) \sim \text{IW}(\nu, \Psi).$

To implement a Gibbs sampler, we need the full conditional posterior distributions for b_i , λ , β , and D.

• For each b_i , first define $v_i := y_i - X_i \beta$,

$$\begin{split} p(b_{i}|y_{i},\lambda,\beta,D) &\propto p(y_{i}|\beta,b_{i},\lambda)p(b_{i}|D) \\ &\propto \exp\left[-\frac{1}{2}\lambda\left(y_{i}-X_{i}\beta-Z_{i}b_{i}\right)^{T}\left(y_{i}-X_{i}\beta-Z_{i}b_{i}\right)\right] \cdot \exp\left[-\frac{1}{2}b_{i}^{T}D^{-1}b_{i}\right] \\ &= \exp\left[-\frac{1}{2}\lambda\left(Z_{i}b_{i}-v_{i}\right)^{T}\left(Z_{i}b_{i}-v_{i}\right)\right] \cdot \exp\left[-\frac{1}{2}b_{i}^{T}D^{-1}b_{i}\right] \\ &\propto \exp\left[-\frac{1}{2}b_{i}^{T}\left(\lambda Z_{i}^{T}Z_{i}+D^{-1}\right)b_{i}-2b_{i}^{T}\lambda Z_{i}^{T}v_{i}\right] \\ &\propto \exp\left[-\frac{1}{2}\left(b_{i}-\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}v_{i}\right)^{T}\left(\lambda Z_{i}^{T}Z_{i}+D^{-1}\right)\left(b_{i}-\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}v_{i}\right)\right] \\ &\sim \mathcal{N}\left(\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}v_{i},\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\right). \\ &\sim \mathcal{N}\left(\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\lambda Z_{i}^{T}(y_{i}-X_{i}\beta),\left[\lambda Z_{i}^{T}Z_{i}+D^{-1}\right]^{-1}\right). \end{split}$$

• For λ ,

$$\pi(\lambda|y,\beta,b) \propto p(y|\lambda,\beta,\underline{)} \cdot \pi(\lambda)$$

$$= \left(\prod_{i=1}^{I} \lambda^{n_i/2} \exp\left[-\frac{1}{2}\lambda(y_i - X_i\beta - Z_ib_i)^T(y_i - X_i\beta - Z_ib_i)\right]\right) \cdot \lambda^{-1}$$

$$\sim \operatorname{Gamma}\left(\frac{N}{2}, \frac{1}{2} \sum_{i=1}^{I} \|y_i - X_i\beta - Z_ib_i\|_2^2\right)$$

• For β , define $w_i := y_i - Z_i b_i$.

$$\pi(\beta|y,\lambda,b) \propto p(y|\lambda,\beta,\underline{)} \cdot \pi(\beta)$$

$$\propto \left(\prod_{i=1}^{I} \exp\left[-\frac{1}{2}\lambda(y_i - X_i\beta - Z_ib_i)^T(y_i - X_i\beta - Z_ib_i) \right] \right) \cdot 1$$

$$= \prod_{i=1}^{I} \exp\left[-\frac{1}{2}\lambda(X_i\beta - w_i)^T(X_i\beta - w_i) \right]$$

$$\propto \prod_{i=1}^{I} \exp\left[-\frac{1}{2}\lambda\left(\beta^T X_i^T X_i\beta - 2\beta^T X_i^T w_i\right) \right]$$

$$= \exp\left(-\frac{1}{2}\lambda\left[\beta^T \left(\sum_{i=1}^{I} X_i^T X_i\right)\beta - 2\beta^T \sum_{i=1}^{I} X_i^T w_i \right] \right)$$

$$= \exp\left(-\frac{1}{2}\lambda\left[\beta^T \left(\sum_{i=1}^{I} X_i^T X_i\right)\beta - 2\beta^T \sum_{i=1}^{I} X_i^T (y_i - Z_ib_i) \right] \right)$$

$$\sim \mathcal{N}\left(\left[\sum_{i=1}^{I} X_i^T X_i\right]^{-1} \sum_{i=1}^{I} X_i^T (y_i - Z_ib_i), \left[\lambda \sum_{i=1}^{I} X_i^T X_i\right]^{-1} \right).$$

• For *D*,

$$\begin{split} \pi(D|b) &\propto p(b|D) \cdot \pi(D) \\ &\propto \left(\prod_{i=1}^{I} [\det(D)]^{-1/2} \exp\left[-\frac{1}{2}b_i^T D^{-1}b_i\right] \right) \cdot [\det(D)]^{-\frac{\nu+q+1}{2}} \exp\left[-\frac{1}{2} \mathrm{tr}(\Psi D^{-1})\right] \\ &\sim \mathrm{IW}\left(I + \nu, \Psi + \sum_{i=1}^{I} b_i b_i^T\right) \end{split}$$

The most computationally intensive part of this Gibbs sampler scheme is sampling each b_i , and I chose to do this by exploiting a block-diagonal matrix of each Z_i and drawing each b_i simultaneously as a long vector called b. For this application specifically, the X_i and Z_i are identical, with a column of 1's for the intercept, a column of log-prices, a column of indicator variables for display, and a column of interaction terms for log-price and display. We run 6000 iterations of the Gibbs sampler with the first 1000 draws discared as burn-in. The mix folder within the img folder shows traceplots of λ , each component in β , and four randomly selected columns of posterior draws of b, which all show a good degree of mixing. Histograms for lambda and each component of β are shown below. Figure 8 shows a grid of plots, each of which has 95% credible intervals of all the subject-level effects on a given covariate terms, arranged in increasing order by posterior median. Note that on the x-axis is different for each plot in order to have each one ordered by posterior median.

Figure 6: Histogram of posterior draws of λ

Figure 7: Histogram of posterior draws of each term in β

Figure 8: Ordered 95% credible intervals of store-level each store

Figure 9: Each store's demand curves with fitted line from Bayesian hierarchical model

A hierarchical probit model via data augmentation

For this model we model y_{ij} , the jth binary 0-1 response, $j \in \{1, 2, ..., n_i\}$, within group $i \in \{1, 2, ..., I\}$ through the utilization of data augmentation whereby we introduce a latent variable z_{ij} ,

$$(z_{ij}|\beta,\gamma_i) \sim N(x_{ij}^T\beta + w_{ij}^T\gamma_i, 1)$$
$$y_{ij} = \mathbf{1}(z_{ij} > 0) = \begin{cases} 1 & \text{if } z_{ij} > 0 \\ 0 & \text{if } z_{ij} \le 0 \end{cases}$$

where x_{ij} is a vector of covariate features and w_{ij} is a subset of these features whose effects vary at the subject level, captured through γ_i . We can see that this implies a probit link function so that

$$p_{ij} = P(y_{ij} = 1) = \Phi(x_{ij}^T \beta + w_{ij}^T \gamma_i),$$

where $\Phi(\cdot)$ is the CDF of the standard normal distribution. Let z_i be the n_i -length vector of responses from subject i, and similarly, X_i is a $n_i \times p$ design matrix of subject i and W_i is a $n_i \times q$ design matrix with $q \leq p$ whose columns are a a subset of the columns of X_i . We then see that

$$(z_i|\beta,\gamma_i) \sim \mathcal{N}_{n_i}(X_i\beta + W_i\gamma_i,\mathcal{I}_{n_i})$$
,

and furthermore we model the subject-level responses as coming from a multivatiate normal distribution

$$\gamma_i \stackrel{\text{iid}}{\sim} \mathcal{N}_q(0, D)$$
,

where *D* is some $q \times q$ covariance matrix. We set the priors for our parameters,

$$\pi(\beta) \propto 1$$

 $\pi(D) \sim \text{IW}(\nu, \Psi)$

and now we can show the full conditionals for the Gibbs sampler. At each iteraton we also need to generate values for the latent variables z_i .

$$\pi(\Sigma|\gamma_i) \sim \text{IW}\left(\nu + I, \Psi + \sum_{i=1}^{I} \gamma_i \gamma_i^T\right)$$

$$\begin{split} \pi\left(\gamma_{i}|z_{i},\beta,D\right) &\propto \pi\left(\gamma_{i}|D\right)p\left(z_{i}\right) \\ &\sim \mathcal{N}\left(\left[W_{i}^{T}W_{i}+D^{-1}\right]^{-1}W_{i}^{T}(z_{i}-X_{i}\beta),\left[W_{i}^{T}W_{i}+D^{-1}\right]^{-1}\right) \end{split}$$

$$\pi(\beta|z,\gamma) \propto \pi(\beta) \prod_{i=1}^{I} p(z_i|\beta,\gamma_i)$$

$$\propto \prod_{i=1}^{I} \exp\left[-\frac{1}{2}(z_i - X_i\beta - W_i\gamma_i)^T(z_i - X_i\beta - W_i\gamma_i)\right]$$

$$\sim \mathcal{N}\left(\left[\sum_{i=1}^{I} X_i^T X_i\right]^{-1} \sum_{i=1}^{I} X_i^T(z_i - W_i\gamma_i), \left[\sum_{i=1}^{I} X_i^T X_i\right]^{-1}\right)$$

Finally, the latent variables are generated as follows:

(1)

$$\tilde{z}_i \sim \mathcal{N}_{n_i}(X_i\beta + W_ib_i, I_{n_i})$$

(2) For each z_{ij} ,

$$z_{ij}|y_{ij} = \begin{cases} \min\{0, z_{ij}\} & \text{if } y_{ij} = 1\\ \max\{0, z_{ij}\} & \text{if } y_{ij} = 0 \end{cases}$$

Gene expression over time

For this problem, we have measurements of the gene-expression profiles of 14 genes in the *Drosophila* genome tracked over time during embryogenesis. Figure 10 shows the data, faceted by each gene. There are two levels of hierarchy in the data, as demonstrated. Each gene belongs to a cluster, or "group" as it is called in this specific context, and each gene has three biological replicates. Figure 11 demonstrates this two-level hierarchical structure; the left column shows the expression profiles for all the genes in each group, and the right column shows the replicates of each gene for a given group. To accomodate the hierarchical and nonlinear time series nature of the data, we introduce a Bayesian hierarchical non-parametric model.

Let i be the subscript for clusters of genes, n in the subscript genes, r is the subscript for replicates. If gene n belongs to cluster i we denote this as $n \in c_i$, and $N_i = \#\{n \in c_i\}$. Each gene n has N_n replicates, and each replicate r of gene n has N_{nr} measuremeants across time. Note that because every array of genes is measured all at once, so each gene has the same $D = \sum_{r=1}^{N_n} N_{nr}$ total measurements across time for all replicates.

We can say, for every replicate r of gene n, the data we observe take the form of \mathbf{y}_{nr} , a $N_{nr} \times 1$ vector observed at times \mathbf{t}_{nr} . Define the following Gaussian processes,

$$h_i(t) \sim \text{GP}(\mathbf{0}, k_h(t, t'))$$

$$g_n(t) \sim \text{GP}(h_i(t), k_g(t, t')) \text{ for } n \in c_i$$

$$f_{nr}(t) \sim \text{GP}(g_n(t), k_f(t, t'))$$

for some covariance functions $k_h(t,t')$, $k_g(t,t')$, and $k_f(t,t')$. Suppose we have \mathbf{h}_i , \mathbf{g}_n , and \mathbf{f}_{nr} which is draws from $h_i(t)$, $g_n(t)$, and $f_{nr}(t)$, respectively, at times \mathbf{t}_{nr} . Define $\mathbf{K}_f(\mathbf{t}_{nr},\mathbf{t}_{nr'})$ to be the $N_{nr}\times N_{nr'}$ matrix such that its (i,j) element is $k_g(\mathbf{t}_{nr}[i],\mathbf{t}_{nr'}[j])$, and define the matrices $\mathbf{K}_g(\mathbf{t}_{nr},\mathbf{t}_{nr'})$ and $\mathbf{K}_h(\mathbf{t}_{nr},\mathbf{t}_{nr'})$ likewise. Then we model the data \mathbf{y}_{nr} as

$$\label{eq:ynr} \mathbf{y}_{\textit{nr}} = \mathbf{f}_{\textit{nr}} + \mathbf{e}, \ \mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathcal{I}).$$

We can see the following conditional distributions,

$$\begin{split} &(\mathbf{y}_{nr}|\mathbf{f}_{nr},\sigma^2) \sim \mathcal{N}\left(\mathbf{f}_{nr},\sigma^2\mathcal{I}\right) \\ &(\mathbf{f}_{nr}|\mathbf{g}_n,\mathbf{\theta}_f) \sim \mathcal{N}\left(\mathbf{g}_n,\mathbf{K}_f(\mathbf{t}_{nr},\mathbf{t}_{nr})\right) \\ &(\mathbf{g}_n|\mathbf{h}_i,\mathbf{\theta}_g) \sim \mathcal{N}\left(\mathbf{h}_i,\mathbf{K}_g(\mathbf{t}_{nr},\mathbf{t}_{nr})\right) \\ &(\mathbf{h}_i|\mathbf{t}_{nr},\mathbf{\theta}_h) \sim \mathcal{N}\left(\mathbf{0},\mathbf{K}_h(\mathbf{t}_{nr},\mathbf{t}_{nr})\right), \end{split}$$

where θ_f , θ_g , and θ_h are vectors containing the respective parameters for the covariance functions k_f , k_g , and k_h . Let $\theta = (\theta_f, \theta_g, \theta_h, \sigma^2)^T$. It is straightforward to find the marginal likelihood of the data \mathbf{y}_{nr} ,

$$(\mathbf{y}_{nr}|\mathbf{t}_{nr},\mathbf{\theta}) \sim \mathcal{N}\left(\mathbf{0},\mathbf{K}_h(\mathbf{t}_{nr},\mathbf{t}_{nr}) + \mathbf{K}_g(\mathbf{t}_{nr},\mathbf{t}_{nr}) + \mathbf{K}_f(\mathbf{t}_{nr},\mathbf{t}_{nr}) + \sigma^2 \mathcal{I}\right).$$

Now we consider the full data vector for all genes in cluster i, $\mathbf{Y}_i = \{\mathbf{y}_n\}_{n \in c_i}$ where each \mathbf{y}_n is a concatenation of the replicates in gene n, $\mathbf{y}_n = \{\mathbf{y}_{nr}\}_{r=1}^{N_n}$. We can also write $\mathbf{Y}_i = \{\{\mathbf{y}_{nr}\}_{r=1}^{N_n}\}_{n \in c_i}$. Note that $\mathbf{t}_n = \{\mathbf{t}_{nr}\}_{r=1}^{N_n} =: \mathbf{t}$ is the same for each n as explained above, and has length n. Finally, define $\mathbf{T}_i = \{\mathbf{t}_n\}_{n \in c_i}$. This will have a marginal full likelihood,

$$(\mathbf{Y}_i|\mathbf{T}_i,\mathbf{\theta}) \sim \mathcal{N}(\mathbf{0},\Sigma_i)$$

where Σ_i has a matrix which is $N_i \times N_i$ arrangement of block matrices, each of which is of dimension $D \times D$,

$$\Sigma_i[n, n'] = \operatorname{cov}(\mathbf{y}_n, \mathbf{y}_{n'}) = \begin{cases} \mathbf{K}_h(\mathbf{t}, \mathbf{t}) + \Sigma_n & \text{if } n = n' \\ \mathbf{K}_h(\mathbf{t}, \mathbf{t}) & \text{otherwise} \end{cases}$$

where each Σ_n is a covariance matrix representing the with-in gene variance for gene n, i.e. the marginal covariance matrix of \mathbf{y}_n ,

$$\Sigma_n[r,r'] = \text{cov}(\mathbf{y}_{nr},\mathbf{y}_{nr'}) = \begin{cases} \mathbf{K}_g(\mathbf{t}_{nr},\mathbf{t}_{nr}) + \mathbf{K}_f(\mathbf{t}_{nr},\mathbf{t}_{nr}) + \sigma^2 \mathcal{I} & \text{if } r = r' \\ \mathbf{K}_g(\mathbf{t}_{nr},\mathbf{t}_{nr'}) & \text{otherwise} \end{cases}$$

and also notice that each block $\Sigma_n[r,r']$ is of dimension $N_{nr} \times N_{nr'}$.

Now suppose we want to find the conditional distribution of "new" draws from the Gaussian grocesses given the data we observe. Specifically we want to find the distribution of \mathbf{h}_i^{\star} drawn at \mathbf{t}_i^{\star} , \mathbf{g}_n^{\star} at \mathbf{t}_n^{\star} , and \mathbf{f}_{nr}^{\star} conditional on the data. First, it is easy to find the respective marginal distributions of each of these,

$$\begin{split} &(\mathbf{h}_{i}^{\star}|\mathbf{t}_{i}^{\star}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{h}(\mathbf{t}_{i}^{\star}, \mathbf{t}_{i}^{\star})\right) \\ &(\mathbf{g}_{n}^{\star}|\mathbf{t}_{n}^{\star}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{h}(\mathbf{t}_{n}^{\star}, \mathbf{t}_{n}^{\star}) + \mathbf{K}_{g}(\mathbf{t}_{n}^{\star}, \mathbf{t}_{n}^{\star})\right) \\ &(\mathbf{f}_{nr}^{\star}|\mathbf{t}_{nr}^{\star}\rangle \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{h}(\mathbf{t}_{nr}^{\star}, \mathbf{t}_{nr}^{\star}) + \mathbf{K}_{g}(\mathbf{t}_{nr}^{\star}, \mathbf{t}_{nr}^{\star}) + \mathbf{K}_{f}(\mathbf{t}_{nr}^{\star}, \mathbf{t}_{nr}^{\star})\right). \end{split}$$

Conditioned on y_i , the distribution of each becomes

$$\begin{bmatrix} \mathbf{Y}_{i} \\ \mathbf{h}_{i}^{\star} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \Sigma_{i} & \mathbf{K}_{i\star}^{T} \\ \mathbf{K}_{i\star} & \mathbf{K}_{i\star\star} \end{bmatrix} \right)$$

$$\begin{bmatrix} \mathbf{Y}_{i} \\ \mathbf{g}_{n}^{\star} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \Sigma_{i} & \mathbf{K}_{n\star}^{T} \\ \mathbf{K}_{n\star} & \mathbf{K}_{n\star\star} \end{bmatrix} \right)$$

$$\begin{bmatrix} \mathbf{Y}_{i} \\ \mathbf{f}_{nr}^{\star} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \Sigma_{i} & \mathbf{K}_{nr\star}^{T} \\ \mathbf{K}_{nr\star} & \mathbf{K}_{nr\star\star} \end{bmatrix} \right),$$

where

$$\begin{split} \mathbf{K}_{i\star\star} &= \mathbf{K}_h(\mathbf{t}_i^{\star}, \mathbf{t}_i^{\star}) \\ \mathbf{K}_{n\star\star} &= \mathbf{K}_h(\mathbf{t}_n^{\star}, \mathbf{t}_n^{\star}) + \mathbf{K}_g(\mathbf{t}_n^{\star}, \mathbf{t}_n^{\star}) \\ \mathbf{K}_{nr\star\star} &= \mathbf{K}_h(\mathbf{t}_{nr}^{\star}, \mathbf{t}_{nr}^{\star}) + \mathbf{K}_g(\mathbf{t}_{nr}^{\star}, \mathbf{t}_{nr}^{\star}) + \mathbf{K}_f(\mathbf{t}_{nr}^{\star}, \mathbf{t}_{nr}^{\star}) \end{split}$$

and the elements of the off-diagonal matrices are given as

$$\mathbf{K}_{i\star}[t,t'] = \operatorname{cov}\left(\mathbf{h}_{i}^{\star}[t],\mathbf{Y}_{i}[t']\right) = k_{h}(t,t')$$

$$\mathbf{K}_{n\star}[t,t'] = \operatorname{cov}\left(\mathbf{g}_{n}^{\star}[t],\mathbf{Y}_{i}[t'] \in \mathbf{y}_{n}\right) = \begin{cases} k_{h}(t,t') + k_{g}(t,t') & \text{if } n = n' \\ k_{h}(t,t') & \text{otherwise} \end{cases}$$

$$\mathbf{K}_{nr\star}[t,t'] = \operatorname{cov}\left(\mathbf{f}_{nr}^{\star}[t],\mathbf{Y}_{i}[t'] \in \mathbf{y}_{n'r'}\right) = \begin{cases} k_{h}(t,t') + k_{g}(t,t') + k_{f}(t,t') & \text{if } n = n' \text{ and } r = r' \\ k_{h}(t,t') + k_{g}(t,t') & \text{if } n = n' \text{ and } r \neq r' \\ k_{h}(t,t') & \text{otherwise.} \end{cases}$$

With all this in hand, the conditional distributions may be written explicitly, e.g.

$$(\mathbf{h}_i^{\star}|\mathbf{Y}_i) \sim \mathcal{N}\left(\mathbf{K}_{i\star}\Sigma_i^{-1}\mathbf{Y}_i, \mathbf{K}_{i\star\star} - \mathbf{K}_{i\star}\Sigma_i^{-1}\mathbf{K}_{i\star}^T\right).$$

Now the concern is choice of hyperparameters, θ . We have two options here.

- (1) **Fully Bayesian:** Place a hyperprior on θ (perhaps a joint independent half-Cauchy priors for each component) and then find the posterior using Bayes' Rule.
- (2) **Marginal Likelihood Maximization:** Maximize $\log p(\mathbf{Y}_i|\boldsymbol{\theta},\mathbf{T}_i)$ w.r.t. $\boldsymbol{\theta}$.

For the sake of simplicity in implementation, I chose the latter approach. The downside is that the likelihood is not convex, so we are not guaranteed to find a global minimum. One approach to this problem is using gradient based methods, using the partial derivatives,

$$\begin{split} \frac{\partial}{\partial \theta_j} \log p(\mathbf{Y}_i|\mathbf{\theta}, \mathbf{T}_i) &= \frac{\partial}{\partial \theta_j} \left[-\frac{1}{2} \mathbf{Y}_i^T \boldsymbol{\Sigma}_i^{-1} \mathbf{Y}_i - \frac{1}{2} \log |\boldsymbol{\Sigma}_i| - \frac{N_i D}{2} \log 2\pi \right] \\ &= -\frac{1}{2} \mathbf{Y}_i \boldsymbol{\Sigma}_i^{-1} \frac{\partial \boldsymbol{\Sigma}_i}{\partial \theta_j} \boldsymbol{\Sigma}_i^{-1} \mathbf{Y}_i - \frac{1}{2} \mathrm{tr} \left(\boldsymbol{\Sigma}_i^{-1} \frac{\partial \boldsymbol{\Sigma}_i}{\partial \theta_j} \right) \\ &= -\frac{1}{2} \mathrm{tr} \left(\left[\boldsymbol{\eta} \boldsymbol{\eta}^T - \boldsymbol{\Sigma}_i^{-1} \right] \frac{\partial \boldsymbol{\Sigma}_i}{\partial \theta_j} \right) \text{, where } \boldsymbol{\eta} = \boldsymbol{\Sigma}_i^{-1} \mathbf{Y}_i \end{split}$$

for each component θ_j in θ (notice that $\frac{\partial \Sigma_i}{\partial \theta_j}$ is a matrix derivative). In my R script, however, I used the optim command to do this, which by default uses the Nelder-Mead method of optimization. For this application, we use the squared-exponential covariance function with zero "nugget" parameter, i.e.,

$$k_h(t,t') = \alpha_h \cdot \exp\left[-\left(\frac{t-t'}{\gamma_h}\right)^2\right]$$

$$k_g(t,t') = \alpha_g \cdot \exp\left[-\left(\frac{t-t'}{\gamma_g}\right)^2\right]$$

$$k_f(t,t') = \alpha_f \cdot \exp\left[-\left(\frac{t-t'}{\gamma_f}\right)^2\right],$$

where each α_{\bullet} is called the *amplitude* parameter, and each γ_{\bullet} is called the *relative length* parameter.

Results of the HGP regression are shown below, at the group, gene, and replicate level for all three groups. The estimated time series functions are shown, along with a 95% confidence band. Not that we have strange results for Group 1. The estimated optimal γ_h parameter obtained by optim for Group 1 is very high, around e^{13} This is likely due to a very flat likelihood function, due to the fact that the data all look very similar to each other. The high value of γ_h gives a matrix $\mathbf{K}_h(\mathbf{t},\mathbf{t})$ which has very large numbers in most of its elements, which may have been a source of numerical instability in R.

Parameter	MLE (group 1)	MLE (group 2)	MLE (group 3)
γ_f	$1.96 \times 10^{+2}$	1.53×10^{-2}	2.26×10^{-1}
α_f	1.44×10^{-4}	2.24×10^{-2}	1.01×10^{-2}
γ_g	$3.48 \times 10^{+0}$	$2.10 \times 10^{+0}$	$1.38 \times 10^{+0}$
α_g	3.68×10^{-2}	$1.26 \times 10^{+0}$	$1.42 \times 10^{+0}$
γ_h	$7.85 \times 10^{+1}$	$2.96 \times 10^{+1}$	$1.13 \times 10^{+1}$
α_h	$2.20 \times 10^{+4}$	$1.48 \times 10^{+2}$	$1.41 \times 10^{+2}$
σ^2	1.99×10^{-3}	1.91×10^{-1}	3.72×10^{-2}

Table 2: Results of Nelder-Mead method for finding MLEs of hyperparameters

Figure 10: Expression profiles for each gene across all replicates

Figure 11: Expression profiles of all genes, accounting for clusters (or "groups") and replicates

Figure 12: Estimation of group- and gene-level gene expression time series functions for Group 1

Figure 13: Estimation of gene, replicate-level gene expression time series functions for genes in Group 1

Figure 14: Estimation of group- and gene-level gene expression time series functions for Group 2

Figure 15: Estimation of gene, replicate-level gene expression time series functions for genes in Group 2

Figure 16: Estimation of group- and gene-level gene expression time series functions for Group 3

Figure 17: Estimation of gene, replicate-level gene expression time series functions for genes in Group 3