EE2001: Tutorial 2 Solution

TA: Durgesh Singh (Q1-Q5) Amal Das (Q6-Q10)

1. (a)
$$F(x, y, z) = \Sigma(2, 3, 6, 7)$$

x	z 00	01	11	10
0	0	0	1	1
1	0	0	1	1

$$F(x, y, z) = y$$

(b)
$$F(A, B, C, D) = \Sigma(4, 6, 7, 15)$$

$$F(A, B, C, D) = A'BD' + BCD = B(A'D' + CD)$$

(c)
$$F(A, B, C, D) = \Sigma(3, 7, 11, 13, 14, 15)$$

$$F(A, B, C, D) = CD + ABD + ABC = CD + AB(C + D)$$

(d)
$$F(w, x, y, z) = \Sigma(2, 3, 12, 13, 14, 15)$$

$$F(w, x, y, z) = wx + w'x'y$$

(e)
$$F(w, x, y, z) = \Sigma(11, 12, 13, 14, 15)$$

wx	z 00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	0

$$F(w, x, y, z) = wx + wyz = w(x + yz)$$

(f)
$$F(w, x, y, z) = \Sigma(8, 10, 12, 13, 14)$$

$$F(w,x,y,z) = wz' + wxy' = w(z' + xy')$$

2. (a)
$$F(w, x, y, z) = w'z + xz + x'y + wx'z$$

$$F(w, x, y, z) = z + x'y$$

(b)
$$F(A, B, C, D) = AD' + B'C'D + BCD' + BC'D$$

$$F(A, B, C, D) = C'D + AD' + BCD'$$

(c)
$$F(A, B, C, D) = AB'C + B'C'D + BCD + ACD' + A'B'C + A'BC'D$$

$$F(A, B, C, D) = A'D + AC + B'C + B'D$$

(d)
$$F(w, x, y, z) = wxy + xz + wx'z + w'x$$

$$F(w, x, y, z) = w'x + wz + xy$$

3. (a) F(x, y, z) = xy + yz + xy'z

x	Z 00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$F(x, y, z) = \Sigma(3, 5, 6, 7)$$

(b)
$$F(A, B, C, D) = C'D + ABC' + ABD' + A'B'D$$

$$F(A, B, C, D) = \Sigma(1, 3, 5, 9, 12, 13, 14)$$

(c)
$$F(w, x, y, z) = wxy + w'x' + wxz'$$

wx	z 00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	1	0	1	1
10	0	0	0	0

$$F(w, x, y, z) = \Sigma(0, 1, 2, 3, 12, 14, 15)$$

(d)
$$F(A, B, C, D) = A'B + A'CD + B'CD + BC'D'$$

AB	D ₀₀	01	11	10
00	0	0	1	0
01	1	1	1	1
11	1	0	0	0
10	0	0	1	0

$$F(A, B, C, D) = \Sigma(3, 4, 5, 6, 7, 11, 12)$$

4. (a)
$$F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$$

wx	Z 00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	0	1*	1	0
10	1*	0	0	1/

Prime Implicants : w'z', x'z', w'x, xzEssential Implicants : x'z', xz

(b)
$$F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$$

AB	D ₀₀	01	11	10
00	1*	0	1	1
01	0	1*	1	0
11	0	0	1	1*
10	1	0	1	

Prime Implicants :B'D', B'C, CD, AC, A'BDEssential Implicants :B'D', A'BD, AC

(c)
$$F(A, B, C, D) = \Sigma(2, 3, 4, 5, 6, 7, 9, 11, 12, 13)$$

AB	D ₀₀	01	11	10
00	0	0	1	1*
01	1	1	1	1
11	1*	1	0	0
10	0	1	1	0

Prime Implicants :A'C, A'B, BC', B'CD, AB'D, AC'D Essential Implicants :A'C, BC'

(d)
$$F(w, x, y, z) = \Sigma(1, 3, 6, 7, 8, 9, 12, 13, 14, 15)$$

wx	z 00	01	11	10
00	0	1	1	0
01	0	0	1	1*
11	1	1	1	1
10	1*	1	0	0

Prime Implicants : wx, wy', xy, x'y'z, w'yz, w'x'zEssential Implicants :wy', xy

(e)
$$F(A, B, C, D) = \Sigma(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$$

AB	D ₀₀	01	11	10
00	1	1	0	1*
01	0	1	1*	0
11	0	1	1	0
10	1	1	0	1/

Prime Implicants : B'D', C'D, BD, B'C'Essential Implicants : BD, B'D'

(f)
$$F(w, x, y, z) = \Sigma(0, 1, 2, 5, 7, 8, 10, 15)$$

wx	Z 00	01	11	10
00	1	1	0	1*
01	0	1	1	0
11	0	0	1*	0
10	1	0	0	1/

Prime Implicants : x'z', w'x'y', w'y'z, w'xz, xyzEssential Implicants :x'z', xyz

5. (i)
$$F(w, x, y, z) = \Sigma(0, 1, 2, 5, 8, 10, 13) \implies \overline{F} = \Sigma(3, 4, 6, 7, 9, 11, 12, 14, 15)$$

wx	z 00	01	11	10
00	1	1	0	1
01	0	1	0	0
11	0	1	0	0
10	1	0	0	1

$$\overline{F} = yz + xz' + wx'z \implies \overline{\overline{F}} = \overline{yz + xz' + wx'z} \implies F = (y'+z')(x'+z)(w'+x+z')$$
 (ii) (a) $x'z' + y'z' + yz' + xy$

$$SOP = z' + xy \quad POS = (x'z + y'z)' = (x + z')(y + z')$$
 (b) $ACD' + C'D + AB' + ABCD$

$$SOP = AB' + C'D + AC$$

 $POS = (A'C + A'D' + BC'D')' = (A + C')(A + D)(B' + C + D)$

(c)
$$(A + B + D')(A' + B' + C')(A' + B' + C)(B' + C + D')$$

$$SOP = AB' + A'D' + A'BC$$

$$POS = (AB + A'B'D + BC'D)' = (A' + B')(A + B + D')(B' + C + D')$$
 (d) $BCD' + ABC' + ACD$

$$SOP = AB + ACD + BCD'$$

 $POS = (B'D' + A'C' + A'D + B'C')' = (B + D)(A + C)(A + D')(B + C)$

6. (a)
$$F(x, y, z) = \Sigma(0, 1, 4, 5, 6), d(x, y, z) = \Sigma(2, 3, 7)$$

F = 1

(b)
$$F(A, B, C, D) = \Sigma(0, 6, 8, 13, 14), d(A, B, C, D) = \Sigma(2, 4, 10)$$

AB	D 00	01	11	10
00	/ 1	0	0	X
01	X	0	0	1
11	0	1	0	1
10	1	0	0	X

$$F = CD' + B'D' + ABC'D$$

(c)
$$F(A, B, C, D) = \Sigma(5, 6, 7, 12, 14, 15), d(A, B, C, D) = \Sigma(3, 9, 11)$$

$$F = BC + ABD' + A'BD$$

(d)
$$F(A, B, C, D) = \Sigma(4, 12, 7, 2, 10), d(A, B, C, D) = \Sigma(0, 6, 8)$$

AB	D 00	01	11	10
00	X	0	0	1
01	1	0	1	X
11	1	0	0	0
10	X	0	0	1/

$$F = C'D' + B'D' + A'BC$$

7. (i) f = abc' + c'd + a'cd' + b'cd'

$$g = (a + b + c' + d')(b' + c' + d)(a' + c + d')$$

f.g = (abc' + c'd + a'cd' + b'cd').(a + b + c' + d')(b' + c' + d)(a' + c + d')

AB	D 00	01	11	10
00	0	1	0	1
01	0	1	0	0
11	1	0	0	0
10	0	0	0	1

$$f.g = b'cd' + a'c'd + abc'd'$$

(ii)
$$F(A, B, C, D) = \Sigma(0, 4, 8, 9, 10, 11, 12, 14)$$

$$F = C'D' + AB' + AD'$$

$$F'(A, B, C, D) = \Sigma(1, 2, 3, 5, 6, 7, 13, 15)$$

$$F' = A'D + BD + A'C$$

$$F = (F')' = (A'D + BD + A'C)' = (A'D)'(BD)'(A'C)'$$

Figure 1: NAND-AND

Figure 2: AND-NOR

Figure 3: OR-NAND

Figure 4: NOR-OR

8. (i) (a) Output is 1 when the binary value of the inputs is less than 3.

A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$F = A'C' + A'B'$$

(b) Output is 1 when the binary value of the inputs is an even number.

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F = C'$$

(ii) output is equal to 1 if the input variables have more 1s than 0s.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$F = AB + AC + BC$$

9. (i) 4 bit gray code to binary code

$$B_4 = A$$

AB	D 00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1

	Table 1: Truth Table						
G	Gray Code			Binary Code			
A	В	С	D	B_4	B_3	B_2	B_1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

$$B_3 = A'B + AB' = A \oplus B$$

$$B_2 = A'BC' + AB'C' + A'B'C + ABC = A(B'C' + BC) + A'(BC' + B'C)$$

 $= A(B \oplus C)' + A'(B \oplus C) = A \oplus B \oplus C$

AB	D ₀₀	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	1	1
10	1	1	0	0

 $B_1 = AB'C'D' + AB'CD + ABCD' + ABC'D + A'BC'D' + A'BCD + A'B'C'D + A'B'C'D'$

- = A(BC + B'C')D' + A(BC' + B'C)D + A'(BC + B'C')D + A'(BC' + B'C)D'
- = (BC + B'C')(AD' + A'D) + (BC' + B'C)(AD + A'D')
- $= (B \oplus C)'(A \oplus D) + (B \oplus C)(A \oplus D)'$
- $=A\oplus B\oplus C\oplus D$

AB	D 00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	0	1	0	1
10	1	0	1	0

(ii) Four-bit combinational circuit 2s complementer

Table 2: Truth Table							
Binary Code			2's Complement				
A	В	С	D	C_4	C_3	C_2	C_1
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	0	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

$$C_4 = A'D + A'C + A'B + AB'C'D' = A'(B + C + D) + A(B + C + D)' = A \oplus (B + C + D)$$

CD	B 00	01	11	10
00	0	1	0	1
01	1	1	0	0
11	1	1	0	0
10	1	1	0	0

$$C_3 = B'D + B'C + BC'D' = B'(C+D) + B(C+D)' = B \oplus (C+D)$$

CD A	B 00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

$$C_2 = C'D + CD' = C \oplus D$$

$$C_1 = D$$

For 5 bit conversion, ABCDE $\rightarrow C_5C_4C_3C_2C_1$

$$C_5 = A \oplus (B + C + D + E)$$

$$C_4 = B \oplus (C + D + E)$$

$$C_3 = C \oplus (D + E)$$

$$C_2 = D \oplus E$$

$$C_1 = E$$

$$C_2 = D \oplus E$$

$$C_1 = E$$

10. (i) Half subtractor Input= X, Y Output= D_{iff}, B_{out}

X	Y	D_{iff}	B_{out}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$D_{iff} = X \oplus Y, \qquad B_{out} = X'Y$$

(ii) Full Subtractor $\text{Input} = X, Y, B_{in} \text{ Output} = D_{iff}, B_{out}$

X	Y	B_{in}	D_{iff}	B_{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D_{iff} = X \oplus Y \oplus B_{in}$$

$$B_{out} = X'Y + YB_{in} + X'B_{in}$$

