COMPUTACIÓN NUMÉRICA

Boletín I. Introducción al Análisis Numérico. Errores

- 1. Para aproximar la solución exacta de cierto problema se plantea un método numérico, que proporciona la sucesión: $x_k = \left(1 + \frac{1}{k}\right)^k$, $k = 1, 2, \dots$
 - (a) Obtén el valor de la solución exacta del problema.
 - (b) Utilizando notación científica normalizada, y redondeando el resultado de cada operación con 8 cifras, calcula aproximaciones \hat{x}_{10} y \hat{x}_{20} a los correspondientes términos de la sucesión.
 - (c) Calcula los errores de truncamiento en los pasos 10 y 20.
- 2. Representa en notación científica normalizada los números: $a=1/128,\ b=11111111,\ c=-1024,\ d=0.000000000123$ y $x=-100\times10^{-3}$, indicando el valor del signo, la mantisa y el exponente.
- 3. Se considera la representación en coma flotante de números decimales con precisión de 7 cifras en la mantisa y exponente en el intervalo [-9,9]. Escribe la expresión de los números del ejercicio 2 en este sistema de representación, indicando el valor del signo, la mantisa y el exponente.
- 4. Obtén la expresión decimal de los siguientes números binarios: a=10101.11001, b=1111.111111, c=0.00011001100110011 y d=1010.1010101010101. Escribe la representación de los mismos según el estándar IEEE 754 en simple y doble precisión, indicando el valor del signo, la mantisa y el exponente.
- 5. Utilizando una calculadora que redondea a 8 dígitos en notación científica normalizada, calcula los errores relativos y absolutos entre x y \hat{x} para los siguientes valores:
 - (a) x = 1400, $\hat{x} = 10^{\pi}$
 - (b) $x = 7!, \hat{x} = \sqrt{14\pi} \left(\frac{7}{e}\right)^7$.

Repite el ejercicio suponiendo que la calculadora redondea a 4 dígitos.

- 6. Escribe los siguientes números en notación científica normalizada y luego redondea, y redondea a cero, a cinco cifras decimales:
 - (a) 0.12359947
 - (b) -12.45073
 - (c) 0.011245073
- 7. Aproxima los siguientes números binarios usando redondeo y redondeo a cero con p dígitos para los valores de p indicados. Determina en cada caso cuáles son los valores correspondientes en el sistema decimal y calcula el error absoluto y el error relativo.
 - (a) $x = (1.010100100101)_2$, p = 7
 - (b) $x = (1.0101011110101)_2, \quad p = 8$
 - (c) $x = (1.1111011)_2$, p = 6
 - (d) $x = (1.101011)_2, \quad p = 5$
 - (e) $x = (1.011010)_2$, p = 4

- 8. Realiza las siguientes operaciones (i) exactamente, (ii) utilizando aritmética de tres cifras y redondeo a cero en cada operación, (iii) utilizando aritmética de tres cifras y redondeo en cada operación:
 - (a) $x = \left(\frac{1}{3} \frac{3}{11}\right) + \frac{3}{20}$
 - (b) $x = \left(\frac{1}{3} + \frac{3}{11}\right) \frac{3}{20}$

Calcula, en cada caso, los errores absolutos y relativos entre la aproximación y el resultado exacto. Determina con cuántas cifras significativas aproximan tus resultados en cada caso al valor exacto.

- 9. Las medidas, aproximadas al centímetro más cercano, de los lados de un paralelepípedo rectangular son 3 cm, 4 cm y 5 cm.
 - (a) ¿Cuáles son las mejores cotas superior e inferior del volumen del paralelepípedo?
 - (b) ¿Cuáles son las mejores cotas superior e inferior del área de su superficie?
- 10. Sean P(x) = ((x-3)x+3)x-1 y $Q(x) = x^3-6.1x^2+3.2x+1.5$.
 - (a) Calcula P(2.72) usando aritmética en coma flotante con cuatro dígitos y redondeo a cero.
 - (b) Sabiendo que P(2.72) = 5.088 calcula el error absoluto y el error relativo de la aproximación obtenida en el apartado anterior.
 - (c) Calcula Q(4.71), de forma directa y mediante el método de Hörner, con aritmética de coma flotante de tres dígitos y redondeo.
- 11. Determina el mayor intervalo en el que debe estar \hat{x} para aproximar a x con un error relativo de, a lo sumo, 10^{-4} para:
 - (a) $x = \sqrt{2}$
 - (b) x = 1500
 - (c) x = 1.5
 - (d) x = -4.2
- 12. (**JUN06**) Se considera notación científica normalizada.
 - (a) Dado el número binario $a = (100101.111)_2$, obtén su expresión decimal. Obtén la representación de a según el estándar IEEE 754 en simple precisión, indicando el valor del signo, la mantisa y el exponente.
 - (b) Para calcular el valor de $\sqrt{5}$ con 4 dígitos de precisión, se plantea el método iterativo

$$x_{k+1} = x_k - \frac{x_k^2 - 5}{2x_k}, \quad k \ge 0$$

 $con x_0 = 1.$

- i. Utilizando redondeo a 4 dígitos, calcula la aproximación \hat{x}_2 de x_2 .
- ii. Calcula el error de truncamiento en la segunda iteración.
- iii. Calcula el error relativo que se comete al tomar \hat{x}_2 como aproximación de $\sqrt{5}$.

Nota: Utiliza, si lo necesitas, la aproximación $\sqrt{5} \approx 2.236$.

13. Para aproximar la solución de cierto problema se construye la sucesión $\{x_k\}$ dada por:

$$\begin{cases} x_0 = 10 \\ x_{k+1} = \frac{1}{2} \left(10 - \frac{x_k}{2} \right), & k = 0, 1, \dots \end{cases}$$

- (a) Suponiendo que la sucesión es convergente, calcula su límite.
- (b) Al utilizar una máquina que redondea a dos cifras decimales se han obtenido las siguientes aproximaciones:

$$x_0 = \hat{x}_0 = 10$$
, $\hat{x}_1 = 2.50$, $\hat{x}_2 = 4.38$, $\hat{x}_3 = 3.97$

Calcula los errores de truncamiento y de redondeo en la segunda iteración, redondeando a dos decimales.

- 14. (**DIC06**) Calcula $x = \left(\frac{1}{6} \frac{3}{5}\right) + \frac{2}{3}$ usando aritmética de 3 dígitos y
 - (a) redondeo a cero
 - (b) redondeo.