Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNN)

- Used for handling sequences of data.
 - o Time series.
 - o Text.
 - o Speech.

Feed-Forward NN

(b) Feed-Forward Neural Network

(a) Recurrent Neural Network

(b) Feed-Forward Neural Network

Sequence size = 4

	Today's temperature	Tomorrow's temperature
25/11/22	6	9
26/11/22	9	7
27/11/22	7	8
28/11/22	8	NaN

Recurrent NN – One output every t timesteps

Output **Recurrent NN – Weights** w_h w_{rec} w_{rec} w_{rec} w_{rec} w_{rec} s_4 s_5 s_0 w_h w_x w_x w_x w_x w_x w_{rec} x_1 x_2 x_3 x_4 x_5 w_x

Recurrent NN – One output per timestep

Use Backpropagation Through Time (BPTT).

- Use Backpropagation Through Time (BPTT).
- Pros:
 - It can model non-linear sequential relationships.

- Use Backpropagation Through Time (BPTT).
- Pros:
 - It can model non-linear sequential relationships.
- Cons:
 - Exploding gradients (when w > 1).
 Vanishing gradients (when w < 1).

 - Not well suited for long temporal data.

- It is a RNN.
- Introduced in 1997.
- Deals with vanishing gradients.
- Can "store" information for long periods.

- 3 gates regulate the flow of information through time:
 - Forget gate: Decides what information to discard or to keep in "long-term memory".

- 3 gates regulate the flow of information through time:
 - Forget gate: Decides what information to discard or to keep in "long-term memory".
 - Input gate: Decides what new information to store.

- 3 gates regulate the flow of information through time:
 - Forget gate: Decides what information to discard or to keep in "long-term memory".
 - o **Input gate**: Decides what new information to store.
 - Output gate: Decides what information to discard or to keep in "short-term memory".

LSTM Cell

- Cell state (C) and hidden state (h) are vectors of N units (hyperparam.).
- These vectors are an abstraction of the "memory".
- The sigmoid and tanh are applied element-wise to each vector element.
- Gates' internal structure:
 - 1 NN for the Forget Gate.
 - 2 NN for the Input Gate (Input + Candidate).
 - 1 NN for the Output Gate.

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Gated Recurrent Unit (GRU)

- It is an RNN.
- Introduced in 2014.
- It is a "simplified LSTM".
- Composed of 2 gates:
 - Reset gate: Decides what information to discard or to keep.
 - Update gate: Decides what new information to store.

GRU Cell

Gated Recurrent Unit (GRU)

- RNN
 - Generally not recommended for long sequences.
 - Vanishing/Exploding gradients.

- LSTM
 - Usually performs better than simple RNN.
 - Good for long sequences.
 - Solves vanishing gradient problem.
 - Keeps exploding gradient problem.

- GRU
 - Similar performance as LSTM.
 - Less parameters to train (i.e., easier and faster).
 - Less memory.
 - LSTMs may work better in very long sequences.

RNNs in Keras

- From tensorflow.keras.layers
 - SimpleRNN
 - o LSTM
 - o GRU

Typical Sklearn Input

	Temperature (X1)	Humidity (X2)
25/11/22	6	92
26/11/22	9	85
27/11/22	7	88
28/11/22	8	91
29/11/22	6	89

Typical Sklearn Input

	Temperature (X1)	Humidity (X2)
25/11/22	6	92
26/11/22	9	85
27/11/22	7	88
28/11/22	8	91

6

89

29/11/22

Not working for keras RNNs

	Temperature (X1)	Humidity (X2)
25/11/22	6	92
26/11/22	9	85
27/11/22	7	88
28/11/22	8	91
29/11/22	6	89

Decide: Sequence length. E.g., 3

Seq. 1

	Temperature (X1)	Humidity (X2)
25/11/22	6	92
26/11/22	9	85
27/11/22	7	88
28/11/22	8	91
29/11/22	6	89

Decide: Sequence length. E.g., 3

Seq. 2

	Temperature (X1)	Humidity (X2)
25/11/22	6	92
26/11/22	9	85
27/11/22	7	88
28/11/22	8	91
29/11/22	6	89

Decide: Sequence length. E.g., 3

Seq. 3

	Temperature (X1)	Humidity (X2)
25/11/22	6	92
26/11/22	9	85
27/11/22	7	88
28/11/22	8	91
29/11/22	6	89

Resources

- https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- https://www.kaggle.com/code/kmkarakaya/lstm-understanding-the-number-of-parameters
- https://www.youtube.com/watch?v=YCzL96nL7j0
- https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be