Task Data Scientist

General Instructions

- 1. Create a git code repository on either github/gitlab, and share the instructions to access you solution
- 2. Please do not plagiarize/copy-paste any publicly available solution. You are allowed to use code-assist tools and research if required.
- 3. As a solution, create a Solutions document that explains your approach and steps

Assignment

- 1. Preliminary questions.
 - a. In X city, there is an increasing number of young adults refusing to go to enter the workforce. To solve the problem, the government hosts a program that gives monetary aid for young adults who found work. A control group consisting of young adults who found work without the program is also given. Throughout 10 months, these are the result of unemployed young adults who found work:

Using aids	Not Using aids
31	18
13	20
23	39
46	16
20	18
14	38
17	13
47	20
13	39
45	7

Compute the mean and std of the data.

- a. What is the null hypothesis of the experiment? What would be the alternate hypothesis?
- b. Compute the t-test for this experiment. Interpret your answer elaborately.

- c. Is there a significant difference between the two groups?
- 2. Using the <u>Structural Protein Sequences (kaggle.com)</u> dataset, create a protein classifier. Write the solution into one Jupyter Notebook file, you may use SQL and Python to do this. The solution must include answers to the following questions:
 - 1. Exploratory Data Analysis
 - a. What does each column represent? Explain your answer as detailed as possible
 - b. Create a visualization of each column. State the reason for your choice of visualization method.
 - c. What can you infer about the dataset?

2. Data Preprocessing

- a. What are the types of data preprocessing that you know, and how would they be useful in the given dataset?
- b. Show that the preprocessing method of your choice works on the dataset.
- c. Given a set of columns, we could try to make a prediction on a certain aspect of the dataset. However, there are times when the same column would provide a radically different result from the previous training iteration. What is that phenomenon called, and how can we analyze and mitigate that?

3. Feature Engineering

- a. What are features? How do you make one?
- b. How many features can you think of to classify the proteins?
- c. Based on the previous point, create features based on what you thought of, and explain the logic behind it.

4. Modelling

- a. What kind of model are you planning to use, and why?
- b. Create a model to train the classifier. Can you extract the top important features?

5. Evaluation

- a. What are the metrics typically used in the classifier you have made? And what is the metric of your choice here?
- b. Provide a visualization of the metrics of your choice.
- c. Based on what you have done, what do you think can be improved from your model?