

Arrangements

O'Rourke, Chapter 6

Outline

- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts

Definition:

Given a point $p = (\alpha, \beta)$ in the plane, define the dual line to be the (non-vertical) line with equation: $D(p) = \{(x, y) | y = 2\alpha x - \beta\}$

Note:

- The slope depends on the x-coordinate of p.
- The height depends on the y-coordinate of p.
 (Height decreases as the y-coordinate increases.)

Definition:

Given a point $p = (\alpha, \beta)$ in the plane, define the dual line to be the (non-vertical) line with equation: $D(p) = \{(x, y) | y = 2\alpha x - \beta\}$

Given a (non-vertical) line $L = \{(x, y) | y = mx + b\}$, define the *dual point* to be the point with coordinates:

$$D(L) = \left(\frac{m}{2}, -b\right)$$

Claim (Inverse):

The dual of the dual is the identity.

Proof (Points):

$$p = (\alpha, \beta)$$

$$\Rightarrow D(p) = \{(x, y) | y = 2\alpha x - \beta\}$$

$$\Rightarrow D(D(p)) = \left(\left(\frac{2\alpha}{2}\right), \beta\right) = p$$

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Inverse):

The dual of the dual is the identity:

Alternate Proof (Lines):

$$L = \{(x,y)|y = mx + b\}$$

$$\Rightarrow D(L) = \left(\frac{m}{2}, -b\right)$$

$$\Rightarrow D(D(L)) = \left\{(x,y)|y = \left(2\left(\frac{m}{2}\right)\right)x + b\right\} = L$$

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Incidence):

Given
$$p = (\alpha, \beta)$$
 and $L = \{(x, y) | y = mx + b\}$:
 $p \in L \iff D(L) \in D(p)$.

Proof:

$$\overline{p \in L}$$

$$\Leftrightarrow \beta = m\alpha + b$$

$$\Leftrightarrow -b = 2\alpha \left(\frac{m}{2}\right) - \beta$$

$$\Leftrightarrow D(L) \in D(p)$$

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Incidence):

Given
$$p = (\alpha, \beta)$$
 and $L = \{(x, y) | y = mx + b\}$:
 $p \in L \iff D(L) \in D(p)$.

Corollary:

 $p \in L_1 \cap L_2$ if and only if $D(L_1), D(L_2) \in D(p)$.

$$D((\alpha, \beta)) = \{(x, y) | y = 2\alpha x - \beta\} \qquad D(\{(x, y) | y = mx + b\}) = \left(\frac{m}{2}, -b\right)$$

Claim (Ordering):

If line $L = \{(x,y)|y = mx + b\}$ is below/above point $p = (\alpha,\beta)$ then line D(L) is above/below D(p).

Proof:

L is below p

$$\Leftrightarrow \beta > m\alpha + b$$

$$\Leftrightarrow -b > 2\alpha \left(\frac{m}{2}\right) - \beta$$

$$\Leftrightarrow \left(\frac{m}{2}, -b\right)$$
 is above $\{(x, y)|y = 2\alpha x - \beta\}$

$$\Leftrightarrow D(L)$$
 is above $D(p)$

Claim (Parabola):

p is on the parabola if and only if D(p) is the tangent to the parabola at p.

Proof:

For a point $p = (\alpha, \beta)$:

- $\beta = \alpha^2$: If p is on the parabola, D(p) is the tangent to the parabola at (α, α^2) .
- \circ $\beta < \alpha^2$: If p is below the parabola, D(p) is parallel and above the tangent to the parabola at (α, α^2) .
- \circ $\beta > \alpha^2$: If p is above the parabola, D(p) is parallel and below the tangent to the parabola at (α, α^2) .

Outline

- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts

Recall:

• Given a point $P(p) = (p, ||p||^2)$ on the paraboloid, the tangent plane is given by:

$$z_p(r) = 2\langle p, r \rangle - \|p\|^2$$

 For any point q the (vertical) distance between the points on the parabola and the tangent plane are:

$$P(q) - z_p(q) = ||p - q||^2$$

 The points in a Voronoi face are closer to the site associated to the face than to any other site.

Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points

 $\{(p_i, ||p_i||^2)\}$ and view from above, we "see" the Voronoi diagram.

Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points $\{(p_i, ||p_i||^2)\}$ and view from above, we "see" the Voronoi diagram.

Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points

 $\{(p_i, ||p_i||^2)\}$ and view from below, we "see" the furthest-point Voronoi diagram.

Given a set of points in the plane $P = \{p_1, ..., p_n\}$ if we draw the tangents to the paraboloid at the points $\{(p_i, \|p_i\|^2)\}$ and view from below, we "see" the furthest-point Voronoi diagram.

From Above: (Nearest-Point) Voronoi Diagram

From Below: Furthest-Point Voronoi Diagram

The points here are further from this site than from any other site.

Definition:

The k-th order Voronoi Diagram is a partition of space into convex cells, indexed by k-tuples of points $(p_{i_1}, ..., p_{i_k})$, with $i_j < i_{j+1}$, such that a point q is in cell $(p_{i_1}, ..., p_{i_k})$ iff. the k nearest neighbors of q are $\{p_{i_1}, ..., p_{i_k}\}$.

The set of tangent planes to the paraboloid form an arrangement.

Definition:

The k-th level of the arrangement is the set of faces in the arrangement which have exactly k-1 faces above them.

Note:

- ⇒ The projection of the duals of those lines are the sites closest to the projection of the point.
- ⇒ The projection of the line segment is a connected component of the k-th level Voronoi diagram.

Note:

- ⇒ The projection of the duals of those lines are the sites closest to the projection of the point.
- ⇒ The projection of the line segment is a connected component of the k-th level Voronoi diagram.

Note:

- ⇒ The projection of the duals of those lines are the sites closest to the projection of the point.
- ⇒ The projection of the line segment is a connected component of the k-th level Voronoi diagram.

Note:

- ⇒ The projection of the duals of those lines are the sites closest to the projection of the point.
- ⇒ The projection of the line segment is a connected component of the k-th level Voronoi diagram.

[Edelsbrunner 1987]

Theorem:

The points of intersection of the k-th and (k + 1)-th levels in the arrangement project to the k-th order Voronoi diagram.

Outline

- Duality
- Generalizing Voronoi Diagrams
- Ham-Sandwich Cuts
 - Red-Blue Matching

Claim:

Given two sets of points, P_1 and P_2 , in the plane, there is a line that simultaneously bisects both sets.

Proof:

Assume general position and, with some loss of generality, that the two point-sets each have an odd number of points.

Note:

A line splits the points in two if it passes through one of the points and has the same number of points above and below.

- ⇔ The dual point is on a dual line and has the same number of dual lines above and below.
- ⇔ The dual point is on the median level of the dual arrangement.

Note:

A line splits the points in two if it passes through one of the points and has the same number of points above and below.

- ⇔ The dual point is on a dual line and has the same number of dual lines above and below.
- ⇔ The dual point is on the median level of the dual arrangement.

Note:

A line splits the points in two if it passes through one of the points and has the same number of points above and below.

⇒ To find the cut, we need to find the intersection of the median levels of the two arrangements.

Claim:

The median levels of two arrangements must intersect (an odd number of times).

Sub-Claim:

The two infinite edges of the median level are defined by the same line.

Proof (Sub-Claim):

Let L be the line giving the left median edge.

- \Rightarrow As $x \to -\infty$ half the lines are above/below.
- \Rightarrow Assuming general position, at $x = \infty$ the "above" lines are "below" and the "below" lines are "above".
- \Rightarrow L also defines the right median edge.

Proof (Claim):

Since the left/right-most edges lie on the same line, if the median level of P_1 is above (resp. below) the median level of P_2 as $x \to -\infty$ then the median level of P_1 is below (resp. above) the median level of P_2 as $x \to \infty$.

⇒ The median levels cross (an odd number of times).

[Lo, Maoutsek, and Steiger, 1994]:

The intersection can be found in $O(|P_1| + |P_2|)$ time.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Since the line-segments for each sub-problem are on one side of the cut, the segments from the two sub-problems do not intersect.

Claim:

Given n red and n blue points in the plan, we can pair them up using non-intersecting line segments.

Proof (by Algorithm):

- Compute a ham-sandwich cut
- (Recursively) compute a matching.

Since the line-segments for each sub-problem are on one side of the

Cut [Lo, Maoutsek, and Steiger, 1994]:

Sub The matching can be found in $O(n \log n)$ time.