

Distributed model predictive control of compressor systems

Katie Jones

Supervisors: Alireza Karimi (EPFL)

Andrea Cortinovis (ABB)

Mehmet Mercangöz (ABB)

10 August 2016

Introduction: Outline

Introduction

Compressor Systems Conventional Control MPC Approaches

Modelling

Compressor Systems

MPC

Overview
Formulation
Implementation

Results

Control Performance
Computational Performance

Introduction: Compressor Systems

Industrial Applications

- · Used often in natural gas installations
- Very energy-intensive process
 - Small improvements in efficiency ⇒ large energy/capital savings
- · Complex system from control perspective
 - · Highly non-linear
 - · Multivariable, highly coupled
 - Hard input constraints and rate constraints
 - Unstable regimes (surge, stall)
- Highest efficiencies often near surge line

Introduction: Compressor Systems

Industrial Applications

- · Used often in natural gas installations
- Very energy-intensive process
 - Small improvements in efficiency ⇒ large energy/capital savings
- · Complex system from control perspective
 - · Highly non-linear
 - · Multivariable, highly coupled
 - Hard input constraints and rate constraints
 - Unstable regimes (surge, stall)
- · Highest efficiencies often near surge line

Increasing control performance can significantly reduce costs

Introduction: Compressor Systems

Compressor Dynamics

- Atmospheric pressure at boundary
- Controlled inputs: u_r and T_d
- Outputs: SD and p_d
- Disturbances: u_s and u_d

Introduction: Compressor Systems Surge Distance

Introduction: Conventional Control

- Separate process and anti-surge controllers (ASC)
- Loop decoupling and anti-windup terms
- Potential of electric drivers not fully utilized
 Potential for increased performance with multivariable control

Introduction: MPC Approaches

Advantages:

- Combine process control and ASC
- Use fast response of electric drivers to improve ASC performance
- Treat constraints explicitly

Disadvantages:

- Increased computation time especially for large systems
- ullet Centralized control \Longrightarrow difficult to implement in industrial setting

Introduction: MPC Approaches

Advantages:

- Combine process control and ASC
- Use fast response of electric drivers to improve ASC performance
- Treat constraints explicitly

Disadvantages:

- Increased computation time especially for large systems
- Centralized control ⇒ difficult to implement in industrial setting

Use distributed MPC to decrease computation time

Modelling: Outline

Introduction

Compressor Systems Conventional Control MPC Approaches

Modelling

Compressor Systems

MPC

Overview Formulation Implementation

Results

Control Performance
Computational Performance

Conclusion

Modelling: Compressor Systems

Parallel System

Modelling: Compressor Systems

Serial System

MPC: Outline

Introduction

Compressor Systems Conventional Control MPC Approaches

Modelling

Compressor Systems

MPC

Overview
Formulation
Implementation

Results

Control Performance
Computational Performance

MPC: Overview Control Approaches

3 control approaches used:

- Centralized control: used as benchmark
- Distributed control: split controller into two subcontrollers
 - Cooperative control: single cost function
 - Non-cooperative control: individual cost functions

Outputs controlled: (all 3, centralized/cooperative)

- Parallel system: p_t, SD₁, SD₂
- Serial system: p_{d,1}, SD₁, p_{d,2}, SD₂

MPC: Overview

Algorithm

MPC: Formulation

Quadratic cost function

$$J = \sum_{i=1}^{p} \left(\Delta y_i - \Delta y_i^{\text{ref}} \right)^{\mathsf{T}} W_y \left(\Delta y_i - \Delta y_i^{\text{ref}} \right) + \sum_{i=1}^{m} \left(\Delta u_i \right)^{\mathsf{T}} W_u (\Delta u_i)$$

Linearized, discretized, augmented formulation

s.t.
$$\Delta \hat{\boldsymbol{x}}_{k+i+1}^a = A_k^a \Delta \hat{\boldsymbol{x}}_{k+i}^a + B_k^a \Delta \boldsymbol{u}_{k+i}^a + \boldsymbol{f}_{d,k}$$

 $\Delta \boldsymbol{y}_k = C_k^a \Delta \hat{\boldsymbol{x}}_k^a$

Input constraints (absolute value and rate)

s.t.
$$\Delta U_{\min} \leq \Delta U \leq \Delta U_{\max}$$

 $\Delta U_{r,\min} \leq A_{\text{rate}} \Delta U \leq \Delta U_{r,\max}$

MPC: Formulation

Quadratic Program

$$\begin{aligned} & \underset{U}{\text{arg\,min}} \ \frac{1}{2} \Delta U^\mathsf{T} \ H \ \Delta U + g^\mathsf{T} \Delta U \\ \text{s.t.} \ \Delta U_{\min} & \leq \Delta U \leq \Delta U_{\max}, \end{aligned}$$

• Dense formulation \implies replace ΔY terms using model

$$egin{aligned} \Delta Y_k &= \mathcal{S}_{\mathcal{U}_k} \Delta \mathcal{U}_k + \mathcal{S}_{\mathcal{X}_k} \Delta \hat{oldsymbol{x}}_k^a + \mathcal{S}_{f_k} oldsymbol{f}_{d,k} \ & & & \downarrow \downarrow \ H &= 2 \left(W_u + \mathcal{S}_{\mathcal{U}_k}^\mathsf{T} \ W_y \ \mathcal{S}_{\mathcal{U}_k}
ight) \ g &= 2 \left(\Delta \hat{oldsymbol{x}}_k^a \mathcal{S}_{\mathcal{X}_k}^\mathsf{T} + oldsymbol{f}_{d,k} \mathcal{S}_{f_k}^\mathsf{T} - \Delta Y_k^\mathsf{ref}
ight) \ W_y \mathcal{S}_{\mathcal{U}_k}. \end{aligned}$$

Solve using qpOASES active-set solver

MPC: Formulation

Distributed MPC

One sub-controller for each compressor

$$egin{aligned} \Delta Y_k &= \mathcal{S}_{\mathcal{U}_k} \Delta \mathcal{U}_k + \mathcal{S}_{\mathcal{X}_k} \Delta \hat{oldsymbol{x}}^a_k + \mathcal{S}_{f_k} oldsymbol{f}_{\mathsf{d},k} + oldsymbol{S}_{\mathcal{U}_k^{\mathsf{ot}}} \Delta \mathcal{U}_k^{\mathsf{ot}} \ & & & \downarrow \\ H_{\mathsf{dist.}} &= H_{\mathsf{cent.}} \ & & & & & & & \\ g_{\mathsf{dist.}} &= g_{\mathsf{cent.}} + \Delta \mathcal{U}_k^{\mathsf{ot}} \ \mathcal{S}_{\mathcal{U}_{\mathsf{pt}}}^{\mathsf{T}} \mathcal{W}_{\mathcal{Y}} \ \mathcal{S}_{\mathcal{U}_k} \end{aligned}$$

- Iterate, exchanging solution info between sub-controllers, to converge to optimal solution
- Two types of DMPC controller
 - Cooperative controller: common cost function (weight outputs from both compressors)
 - Non-cooperative controller: individual cost functions (weight outputs from single compressor)

MPC: Implementation

General

- Use Dormand-Prince (ode45) algorithm for simulation
- · Perform state estimation using static observer

Simulink

- Use Embedded MATLAB to implement MPC controllers
- Set up for C code generation, for deployment on embedded hardware

C++

- Linear algebra performed with Eigen library
- Use knowledge of augmented matrices to speed up QP generation (store dense and sparse sections of matrix separately)

Results: Outline

Introduction

Compressor Systems Conventional Control MPC Approaches

Modelling

Compressor Systems

MPC

Overview Formulation Implementation

Results

Control Performance Computational Performance

Conclusion

Results: Control Performance

Parallel System

Control performance identical for DMPC

Results: Control Performance

Serial System

- Cooperative performance similar to centralized
- Non-cooperative has poorer anti-surge control

Results: Computational Performance

Most time used for QP generation (< 10% for QP solving)

Non-cooperative approach better to reduce computation time

Conclusion: Outline

Introduction

Compressor Systems Conventional Control MPC Approaches

Modelling

Compressor Systems

MPC

Overview
Formulation
Implementation

Results

Control Performance
Computational Performance

Conclusion

Conclusion: Outline

Distributed MPC can reduce computational cost

- Cooperative control: minimal reduction
- QP generation has larger effect than QP solver
- ... but performance is decreased in some cases
 - · Cooperative control very similar to centralized
 - Non-cooperative control shows reduced ASC performance in serial case

Conclusion: Outline

Future Work

- Improve computational efficiency
 - Reduce number of states for prediction matrix generation
 - Use more efficient linear algebra implementation
- Investigate convergence of non-cooperative controller
 - Effect of noise/model mismatch
 - Effect of model parameters (tank sizes etc.)
- Experimental tests

Questions?