Automi e Linguaggi Formali

1. Automi a Stati Finiti

Davide Bresolin a.a. 2018/19

Facile o difficile?

Per ognuno dei seguenti problemi, indicate se è un problema facile o difficile da risolvere per un computer:

- 1 Trovare il percorso più breve per andare da casa all'Università
- 2 Trovare bug in un programma
- 3 "Rompere" un codice crittografico
- 4 Colorare una mappa
- 5 Ottimizzare la consegna della posta
- 6 Ottimizzare la consegna delle pizze

<u>Informatica</u> Teorica

Informatica teorica — disciplina scientifica al confine tra informatica e matematica

- si pone domande generali sugli algoritmi e sugli strumenti di computazione
- studio di diversi tipi di formalismi per la descrizione degli algoritmi
- studio di diversi approcci per la descrizione della sintassi e della semantica dei linguaggi formali (principalmente linguaggi di programmazione)
- usa un approccio matematico all'analisi e alla soluzione dei problemi (prove di proprietà matematiche generali riguardanti algoritmi)

Informatica Teorica

Esempi di domande tipiche studiate nell'informatica teorica:

- È possibile risolvere un certo problema usando un algoritmo?
- Se il problema può essere risolto da un algoritmo, qual è la complessità computazionale di questo algoritmo?
- Esiste un algoritmo efficiente per risolvere il problema?
- Come verificare che un dato algoritmo sia davvero una soluzione corretta del problema dato?
- Quali tipi di istruzioni sono sufficienti affinché una determinata macchina possa eseguire un determinato algoritmo?

Problemi

Problema

Per descrivere un problema dobbiamo specificare:

- l'insieme dei possibili input
- l'insieme dei possibili output
- la relazione tra input e output

Algoritmi e Problemi

- Algoritmo procedura meccanica che esegue delle computazioni (e può essere eseguita da un calcolatore)
- Un algoritmo risolve un dato problema se:
 - Per ogni input, il calcolo dell'algoritmo si interrompe dopo un numero finito di passaggi.
 - Per ogni input, l'algoritmo produce un output corretto.
- Correttezza di un algoritmo verificare che l'algoritmo risolva realmente il problema dato
- Complessità computazionale di un algoritmo:
 - complessità temporale come varia il tempo di esecuzione dell'algoritmo rispetto alla dimensione dei dati di input
 - complessità spaziale come varia la quantità di memoria utilizzata dall'algoritmo rispetto alla dimensione dei dati di input

Linguaggi Formali

- Astrazione della nozione di problema
- I problemi possono sono espressi come linguaggi (= insiemi di stringhe)
 - Le soluzioni determinano se una determinata stringa è nell'insieme o no
 - \blacksquare ad esempio: un certo intero n è un numero primo?
- Oppure, come trasformazioni tra linguaggi
 - Le soluzioni trasformano la stringa di input in una stringa di output
 - ad esempio: quanto fa 3 + 5?

Linguaggi Formali

- Quindi in sostanza tutti i processi computazionali possono essere ridotti ad uno tra:
 - Determinazione dell'appartenenza a un insieme (di stringhe)
 - Mappatura tra insiemi (di stringhe)
- Formalizzeremo il concetto di computazione meccanica:
 - dando una definizione precisa del termine "algoritmo"
 - caratterizzando i problemi che sono o non sono adatti per essere risolti da un calcolatore.

Automi

- Gli automi (singolare automa) sono dispositivi matematici astratti che possono:
 - determinare l'appartenenza di una stringa ad un insieme di stringhe
 - trasformare una stringa in un'altra stringa
- Hanno tutti gli aspetti di un computer:
 - input e output
 - memoria
 - capacità di prendere decisioni
 - trasformare l'input in output

Automi

- Il tipo di memoria è cruciale:
 - memoria finita
 - memoria infinita:
 - con accesso limitato
 - con accesso illimitato
- Abbiamo diversi tipi di automi per diversi classi di linguaggi
- I diversi tipi di automi si differenziano per
 - la quantità di memoria (finita vs infinita)
 - il tipo di accesso alla memoria (limitato vs illimitato)

Organizzazione del corso

Docenti del Corso

Prima parte + Laboratorio + Terza parte

Docente: Davide Bresolin

e-mail: davide.bresolin@unipd.it

ufficio: Stanza 320, III Piano, Scala C della Torre Archimede,

Dipartimento di Matematica, via Trieste

ricevimento: lunedì 16:30-18:30 oppure su appuntamento

Seconda parte + Terza parte

Docente: Gilberto Filè

Programma del Corso

- Parte 1: linguaggi regolari
 - automi a stati finiti
 - espressioni e linguaggi regolari
- Parte 2: linguaggi liberi da contesto
 - grammatiche e linguaggi liberi dal contesto
 - automi a pila
- Laboratorio: due lezioni di esercitazione
 - costruzione di un parser e di un interprete per un linguaggio di programmazione
 - Lunedì 29 Aprile e venerdì 3 Maggio, 12:30-14:30, LabP140
- Parte 3: indecidibilità e intrattabilità
 - macchine di Turing
 - concetto di indecidibilità
 - problemi intrattabili
 - classi P e NP

Calendario delle prime quattro settimane

I Settimana Lun 25/2, 12:30–14:30, Aula LuM250 Mar 26/2, 12:30–14:30, Aula LuM250 Ven 1/3, 12:30–14:30, Aula LuM250

II Settimana Lun 4/3, 12:30-14:30, Aula LuM250 Mar 5/3, 12:30-14:30, Aula LuM250 Ven 8/3, 12:30-14:30, Aula LuM250

III Settimana Lun 11/3, 12:30–14:30, Aula LuM250 Mar 12/3, 12:30–14:30, Aula LuM250 Ven 15/3, 12:30–14:30, Aula LuM250

IV Settimana Lun 18/3, 12:30–14:30, Aula LuM250 Mar 19/3, 12:30–14:30, Aula LuM250 Ven 22/3, 12:30–14:30, Aula LuM250

Libro di testo

J. E. Hopcroft, R. Motwani, J. D. Ullman Automi, linguaggi e calcolabilità

J. E. Hopcroft, R. Motwani, J. D. Ullman Introduction to Automata Theory, Languages, and Computation

Va bene qualsiasi edizione (1a, 2a, 3a)

Moodle del corso

- Vi si accede da https://elearning.unipd.it/math
 - selezionando prima Informatica Triennale
 - e poi Automi E Linguaggi Formali A.A. 2018/2019
- Autenticazione tramite le proprie credenziali UniPD
- Pubblicazione di slide e altro materiale del corso
- Esercizi e soluzioni
- Comunicazioni e aggiornamenti

Tutorato

Tutor: Linpeng Zhang

Contatti: gruppo Facebook del Tutorato di Informatica

Incontri: tutti i mercoledì a partire dal 06/03/19 fino al

05/06/19, dalle ore 10:30 alle ore 12:30 in aula

2BC60 Torre Archimede

Esami, compitini ed esercizi

- Esame: Scritto e, se richiesto dai docenti, colloquio orale. Cinque appelli, tra Luglio, Settembre 2018 e Febbraio 2019.
- Compitini: Due compitini che sostituiscono l'esame (maggiori informazioni nella slide successiva!)
- Esercizi (prima parte del corso): test di autovalutazione sul Moodle + esercizi pubblicati su www.automatatutor.com.

Compitini

- Due compitini:
 - il primo durante la settimana di sospensione delle lezioni
 - 8–12 Aprile
 - il secondo alla fine del corso
 - I compitini sostituiscono l'esame
 - devono essere entrambi sufficienti
- Per gli appelli di Giugno e Luglio e Settembre:
 - i voti dei compitini rimangono validi
 - compito diviso in due parti
 - si può svolgere una sola delle due parti
 - si può recuperare un compitino insufficiente
- Per l'appello di Febbraio 2020:
 - i voti dei compitini e delle singole parti non sono più validi
 - si deve fare l'esame completo

Automi a Stati Finiti Deterministici

Gli Automi a Stati Finiti

- Sono il più semplice modello computazionale
- Dispongono di una quantità di memoria finita
- Gli automi a stati finiti sono usati come modello per:
 - Software per la progettazione di circuiti digitali
 - Analizzatori lessicali di un compilatore
 - Ricerca di parole chiave in un file o sul web
 - Software per verificare sistemi a stati finiti, come protocolli di comunicazione

Esempio: una porta automatica

Costruiamo un esempio di controllore di una porta automatica:

- La porta si apre quando una persona si avvicina
- Un sensore di fronte alla porta rileva la presenza della persona
- Un sensore sul retro della porta rileva quando la persona ha attraversato la porta e se c'è qualcuno dietro la porta

Esempio: una porta automatica

- La porta si può trovare in due stati: Chiusa o Aperta
- Ci sono quattro possibili input dai sensori:
 - Fronte: c'è una persona di fronte alla porta
 - Retro: c'è una persona dietro alla porta
 - Ambo: ci sono persone sia di fronte che dietro alla porta
 - Nessuna: non ci sono persone né davanti né dietro la porta

Esempio: una porta automatica

- La porta si può trovare in due stati: Chiusa o Aperta
- Ci sono quattro possibili input dai sensori:
 - Fronte: c'è una persona di fronte alla porta
 - Retro: c'è una persona dietro alla porta
 - Ambo: ci sono persone sia di fronte che dietro alla porta
 - Nessuna: non ci sono persone né davanti né dietro la porta

Alfabeti, linguaggi e automi a stati finiti

Per rappresentare in maniera precisa l'esempio, dobbiamo definire alcuni concetti di base:

- Che cos'è un alfabeto (di simboli/messaggi/azioni)
- Che cos'è un linguaggio formale
- Che cos'è un Automa a stati finiti deterministico
- Cosa vuol dire che un automa accetta un linguaggio

Alfabeti e stringhe

Alfabeto: Insieme finito e non vuoto di simboli

- **Esempio:** $\Sigma = \{0, 1\}$ alfabeto binario
- **Esempio:** $\Sigma = \{a, b, c, \dots, z\}$ insieme di tutte le lettere minuscole
- Esempio: Insieme di tutti i caratteri ASCII

Stringa: (o parola) Sequenza finita di simboli da un alfabeto Σ , e.g. 0011001

Stringa vuota: La stringa con zero occorrenze di simboli da Σ

lacktriangle La stringa vuota è denotata con arepsilon

Lunghezza di una stringa: Numero di simboli nella stringa.

- |w| denota la lunghezza della stringa w
- |0110| = 4, $|\varepsilon| = 0$

Potenze di un alfabeto

- Potenze di un alfabeto: Σ^k = insieme delle stringhe di lunghezza k con simboli da Σ
 - Esempio: $\Sigma = \{0, 1\}$

$$\begin{split} \Sigma^0 &= \{\varepsilon\} \\ \Sigma^1 &= \{0,1\} \\ \Sigma^2 &= \{00,01,10,11\} \end{split}$$

- Domanda: Quante stringhe ci sono in Σ^3 ?
- L'insieme di tutte le stringhe su Σ è denotato da Σ^*

$$\quad \blacksquare \ \Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$$

Linguaggi

- Linguaggio: dato un alfabeto Σ , chiamiamo linguaggio ogni sottoinsieme $L \subset \Sigma^*$
- Esempi di linguaggi:
 - L'insieme delle parole italiane
 - L'insieme dei programmi C sintatticamente corretti
 - L'insieme delle stringe costituite da n zeri seguiti da n uni: $\{\varepsilon, 01, 0011, 000111, \dots\}$
 - Il **linguaggio vuoto** ∅ non contiene nessuna parola
 - Il linguaggio che contiene solo la parola vuota:

 $\{\varepsilon\}$

. . . .

Automi a Stati Finiti Deterministici

Un Automa a Stati Finiti Deterministico (DFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- lacksquare δ è una funzione di transizione $(q,a)\mapsto q'$
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Possiamo rappresentare gli automi sia come diagramma di transizione che come tabella di transizione.

Diagrammi e tabelle di transizione

Esempio: costruiamo un automa *A* che accetta il linguaggio delle stringhe con 01 come sottostringa

■ L'automa come diagramma di transizione:

■ L'automa come tabella di transizione:

	0	1
$ ightarrow q_0$	q_1	q 0
q_1	q_1	q 2
* q 2	q_2	q_2

Linguaggio accettato da un DFA

■ La funzione di transizione δ può essere estesa a $\hat{\delta}$ che opera su stati e parole (invece che su stati e simboli):

Base:
$$\hat{\delta}(q, \varepsilon) = q$$

Induzione: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
con $w = xa$ (parola x seguita dal simbolo a)

■ Formalmente, il linguaggio accettato da A è

$$L(A) = \{w : \hat{\delta}(q_0, w) \in F\}$$

 I linguaggi accettati da automi a stati finiti sono detti linguaggi regolari

Esempi

DFA per i seguenti linguaggi sull'alfabeto {0, 1}:

- Insieme di tutte e sole le stringhe con un numero pari di zeri e un numero pari di uni
- Insieme di tutte le stringhe che finiscono con 00
- Insieme di tutte le stringhe che contengono esattamente tre zeri (anche non consecutivi)
- Insieme delle stringhe che cominciano o finiscono (o entrambe le cose) con 01

Il distributore di Bibite

Modellare il comportamento di un distributore di bibite con un DFA. Il modello deve rispettare le seguenti specifiche:

- Costo della bibita: 40 centesimi
- Monete utilizzabili: 10 centesimi, 20 centesimi
- Appena le monete inserite raggiungono o superano il costo della bibita, il distributore emette una lattina
- Il distributore dà il resto (se serve) subito dopo aver emesso la lattina

Automi a Stati Finiti Non Deterministici

Automi a stati finiti non deterministici (NFA) UNIVERSITA DEGLI STUDI DE PRIDOZA

■ Cosa fa questo automa?

Automi a stati finiti non deterministici (NFA

■ Cosa fa questo automa?

Riconosce le parole che terminano con 01 "scommettendo" se sta leggendo gli ultimi due simboli oppure no

- È un esempio di automa a stati finiti non deterministico:
 - può trovarsi contemporaneamente in più stati diversi
 - le transizioni non sono necessariamente complete:
 - \blacksquare da q_1 si esce solo leggendo 1
 - q₂ non ha transizioni uscenti

in questi casi il percorso si blocca, ma può proseguire lungo gli altri percorsi

Definizione formale di NFA

Un Automa a Stati Finiti Non Deterministico (NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- δ è una funzione di transizione che prende in input (q, a) e restituisce un sottoinsieme di Q
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Tabella delle transizioni per l'esempio

L'NFA che riconosce le parole che terminano con 01 è

$$A = (Q, \{0, 1\}, \delta, q_0, \{q_2\})$$

dove δ è la funzione di transizione

	0	1
$ ightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
* q 2	Ø	Ø

Linguaggio riconosciuto da un NFA

lacksquare La funzione di transizione estesa $\hat{\delta}$ per gli NFA:

Base:

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Induzione:

$$\hat{\delta}(q, w) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$$

con w = xa (parola x seguita dal simbolo a)

- **Esempio:** calcoliamo $\hat{\delta}(q_0, 00101)$ alla lavagna
- Formalmente, il linguaggio accettato da A è

$$L(A) = \{w : \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

- Lo faremo dimostrando che valgono tre enunciati che danno le proprietà degli stati:
 - **1** per ogni $w \in \Sigma^*$, $q_0 \in \hat{\delta}(q_0, w)$
 - 2 $q_1 \in \hat{\delta}(q_0, w)$ se e solo se w = x0
 - $\mathbf{3} \ \ q_2 \in \hat{\delta}(q_0, w) \text{ se e solo se } w = x01$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

- Lo faremo dimostrando che valgono tre enunciati che danno le proprietà degli stati:
 - **1** per ogni $w \in \Sigma^*$, $q_0 \in \hat{\delta}(q_0, w)$
 - 2 $q_1 \in \hat{\delta}(q_0, w)$ se e solo se $w = x_0$
 - 3 $q_2 \in \hat{\delta}(q_0, w)$ se e solo se w = x01
- La dimostrazione è per induzione sulla lunghezza |w| della parola in ingresso

Definire degli automi a stati finiti non deterministici che accettino i seguenti linguaggi:

- \blacksquare L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale sia comparsa in precedenza
- L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale *non* sia comparsa in precedenza
- L'insieme delle parole di 0 e 1 tali che esistono due 0 separati da un numero di posizioni multiplo di 4 (0 è un multiplo di 4)

Consideriamo l'alfabeto $\Sigma = \{a, b, c, d\}$ e costruiamo un automa non deterministico che riconosce il linguaggio di tutte le parole tali che uno dei simboli dell'alfabeto non compare mai:

- tutte le parole che non contengono a
- \blacksquare + tutte le parole che non contengono b
- + tutte le parole che non contengono c
- \blacksquare + tutte le parole che non contengono d

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa
- L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Equivalenza di DFA e NFA

- Sorprendentemente, NFA e DFA sono in grado di riconoscere gli stessi linugaggi
- Per ogni NFA N c'è un DFA D tale che L(D) = L(N), e viceversa
- L'equivalenza di dimostra mediante una costruzione a sottoinsiemi:

Dato un NFA

$$N = (Q_N, \Sigma, q_0, \delta_N, F_N)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, \{q_0\}, \delta_D, F_D)$$

tale che

$$L(D) = L(N)$$

La costruzione a sottoinsiemi

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

La costruzione a sottoinsiemi

- $Q_D = \{S : S \subseteq Q_N\}$ Ogni stato del DFA corrisponde ad un insieme di stati dell'NFA
- $F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale corrispondente nell'NFA
- lacksquare Per ogni $S\subseteq Q_N$ e per ogni $a\in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

La funzione di transizione "percorre tutte le possibili strade"

Nota: $|Q_D| = 2^{|Q_N|}$, anche se spesso la maggior parte degli stati in Q_D sono "inutili", cioè non raggiungibili dallo stato iniziale.

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

Esempio di costruzione a sottoinsiemi

Costruiamo δ_D per l'NFA qui sopra:

	0	1
Ø	Ø	Ø
$ ightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_1\}$	Ø	$\{q_2\}$
$*\{q_2\}$	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$
$*\{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_0\}$
$*\{q_1,q_2\}$	Ø	$\{q_{2}\}$
$*\{q_0, q_1, q_2\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

Diagramma degli stati

La tabella di transizione per D ci permette di ottenere il diagramma di transizione

Per semplificare il disegno, ho omesso gli stati non raggiungibili

Theorem

Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Dimostrazione:

Theorem

Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$$

Theorem

Sia D il DFA ottenuto da un NFA N con la costruzione a sottoinsiemi. Allora L(D) = L(N).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$$

Base: $w = \varepsilon$. L'enunciato segue dalla definizione.

Induzione:

- Sia |w| = n+1 e supponiamo vero l'enunciato per la lunghezza n. Scomponiamo w in w = xa (con |x| = n e a simbolo finale)
- lacksquare Per ipotesi induttiva $\hat{\delta}_D(\{q_0\},x)=\hat{\delta}_N(q_0,x)=\{p_1,\ldots,p_k\}$
- lacksquare Per la definizione di $\hat{\delta}$ per gli NFA

$$\hat{\delta}_N(q_0, xa) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

■ Per la costruzione a sottoinsiemi

$$\delta_D(\{p_1,\ldots,p_k\},a)=\bigcup_{i=1}^k\delta_N(p_i,a)$$

Induzione (continua):

lacksquare Per la definizione di $\hat{\delta}$ per i DFA

$$\hat{\delta}_D(\lbrace q_0\rbrace, xa) = \delta_D(\lbrace p_1, \ldots, p_k\rbrace, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

lacksquare Quindi abbiamo mostrato che $\hat{\delta}_D(\{q_0\},w)=\hat{\delta}_N(q_0,w)$

Poiché sia D che N accettano se solo se $\hat{\delta}_D(\{q_0\},w)$ e $\hat{\delta}_N(q_0,w)$ contengono almeno un stato in F_N , allora abbiamo dimostrato che L(D)=L(N)

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un NFA.

Dimostrazione:

- La parte "se" è il teorema precedente
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un NFA modificando δ_D in δ_N con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_N(q, a) = \{p\}$

Determinare il DFA equivalente all'NFA con la seguente tabella di transizione:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0\} & \{q_0, q_1\} \\ q_1 & \{q_1\} & \{q_0, q_2\} \\ *q_2 & \{q_1, q_2\} & \{q_0, q_1, q_2\} \end{array}$$

Qual è il linguaggio accettato dall'automa?

Trasformare il seguente NFA in DFA

Dato il seguente NFA

- 1 determinare il linguaggio riconosciuto dall'automa
- 2 costruire un DFA equivalente

Convertire il seguente NFA in DFA:

	0	1
$\rightarrow A$	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }
*B	{ <i>C</i> }	{ <i>B</i> }
C	{ <i>B</i> }	{ <i>D</i> }
D	Ø	Ø

Convertire il seguente NFA in DFA:

NFA con epsilon-transizioni

Esercizio: costruiamo un NFA che accetta numeri decimali:

- 1 Un segno + o -, opzionale
- 2 Una stringa di cifre decimali $\{0,\ldots,9\}$
- 3 un punto decimale .
- 4 un'altra stringa di cifre decimali

Una delle stringhe (2) e (4) può essere vuota, ma non entrambe

NFA con epsilon-transizioni

Esercizio: costruiamo un NFA che accetta numeri decimali:

- 1 Un segno + o -, opzionale
- **2** Una stringa di cifre decimali $\{0,\ldots,9\}$
- 3 un punto decimale .
- 4 un'altra stringa di cifre decimali

Una delle stringhe (2) e (4) può essere vuota, ma non entrambe

ε -NFA: definizione

Un Automa a Stati Finiti Non Deterministico con ε -transizioni (ε -NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

dove:

- \blacksquare Q, Σ, q_0, F sono definiti come al solito
- lacksquare δ è una funzione di transizione che prende in input:
 - uno stato in Q
 - un simbolo nell'alfabeto $\Sigma \cup \{\varepsilon\}$

e restituisce un sottoinsieme di Q

Esempio di ε -NFA

L'automa che riconosce le cifre decimali è definito come

$$A = (\{q_0, q_1, \dots, q_5\}, \{+, -, ., 0, \dots, 9\}, \delta, q_0, \{q_5\})$$

dove δ è definita dalla tabella di transizione

Esempio di ε -NFA

L'automa che riconosce le cifre decimali è definito come

$$A = (\{q_0, q_1, \dots, q_5\}, \{+, -, ., 0, \dots, 9\}, \delta, q_0, \{q_5\})$$

dove δ è definita dalla tabella di transizione

	ε	+,-		0, , 9
$ o q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1,q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q 3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
94	Ø	Ø	$\{q_3\}$	Ø
* 9 5	Ø	Ø	Ø	Ø

Epsilon chiusura: definizione

L'eliminazione delle ε -transizioni procede per ε -chiusura degli stati:

■ tutti gli stati raggiungibili da q con una sequenza $\varepsilon\varepsilon\ldots\varepsilon$

La definizione di ECLOSE(q) è per induzione:

Caso base:

$$q \in \text{ECLOSE}(q)$$

Caso induttivo:

se
$$p \in \text{ECLOSE}(q)$$
 e $r \in \delta(p, \varepsilon)$ allora $r \in \text{ECLOSE}(q)$

$$ECLOSE(q_0) = \{$$

$$\mathrm{ECLOSE}(q_0) = \{q_0\}$$

$$ECLOSE(q_0) = \{q_0, q_1, q_4\}$$

$$\mathrm{ECLOSE}(q_0) = \{q_0, q_1, q_4, \textcolor{red}{q_2}$$

Epsilon chiusura: esempio

$$\mathrm{ECLOSE}(q_0) = \{q_0, q_1, q_4, q_2, \textcolor{red}{q_3}$$

Epsilon chiusura: esempio

$$ECLOSE(q_0) = \{q_0, q_1, q_4, q_2, q_3\}$$

Funzione di transizione estesa per ε -NFA

■ La funzione di transizione estesa $\hat{\delta}$ per gli ε -NFA:

Base:

$$\hat{\delta}(q, \varepsilon) = \text{ECLOSE}(q)$$

Induzione:

$$\hat{\delta}(q, w) = \text{ECLOSE}\left(\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)\right)$$

con w = xa (parola x seguita dal simbolo a)

- **Esempio:** calcoliamo $\hat{\delta}(q_0, 5.6)$ alla lavagna
- Formalmente, il linguaggio accettato da A è

$$L(A) = \{w : \hat{\delta}(q_0, w) \cap F \neq \emptyset\}$$

Equivalenza di DFA e ε -NFA

- Anche in questo caso abbiamo definito una classe di automi che è equivalente ai DFA
- Per ogni ε -NFA E c'è un DFA D tale che L(E) = L(D), e viceversa
- Lo si dimostra modificando la costruzione a sottoinsiemi:

Equivalenza di DFA e ε -NFA

- Anche in questo caso abbiamo definito una classe di automi che è equivalente ai DFA
- Per ogni ε -NFA E c'è un DFA D tale che L(E) = L(D), e viceversa
- $lue{}$ Lo si dimostra modificando la costruzione a sottoinsiemi: Dato un arepsilon-NFA

$$E = (Q_E, \Sigma, q_0, \delta_E, F_E)$$

costruiremo un DFA

$$D = (Q_D, \Sigma, S_0, \delta_D, F_D)$$

tale che

$$L(D) = L(E)$$

La costruzione a sottoinsiemi modificata

- $Q_D = \{S \subseteq Q_E : S = \text{ECLOSE}(S)\}$ Ogni stato è un insieme di stati chiuso per ε -transizioni
- $S_0 = \text{ECLOSE}(q_0)$ Lo stato iniziale è la ε -chiusura dello stato iniziale di E
- $F_D = \{S \in Q_D : S \cap F_E \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale di E
- Per ogni $S \in Q_D$ e per ogni $a \in \Sigma$:

$$\delta_D(S, a) = \text{ECLOSE}\left(\bigcup_{p \in S} \delta_E(p, a)\right)$$

La funzione di transizione "percorre tutte le possibili strade" (comprese quelle con ε -transizioni)

La costruzione a sottoinsiemi modificata

- $Q_D = \{S \subseteq Q_E : S = \text{ECLOSE}(S)\}$ Ogni stato è un insieme di stati chiuso per ε -transizioni
- $S_0 = \text{ECLOSE}(q_0)$ Lo stato iniziale è la ε -chiusura dello stato iniziale di E
- $F_D = \{S \in Q_D : S \cap F_E \neq \emptyset\}$ Uno stato del DFA è finale se c'è almeno uno stato finale di E
- Per ogni $S \in Q_D$ e per ogni $a \in \Sigma$:

$$\delta_D(S, a) = \text{ECLOSE}\left(\bigcup_{p \in S} \delta_E(p, a)\right)$$

La funzione di transizione "percorre tutte le possibili strade" (comprese quelle con ε -transizioni)

Nota: anche in questo caso $|Q_D| = 2^{|Q_E|}$

Esempio di costruzione a sottoinsiemi (1)

Costruiamo un DFA D equivalente all' ε -NFA E che riconosce i numeri decimali:

Esempio di costruzione a sottoinsiemi (2)

■ Come prima cosa costruiamo la ε -chiusura di ogni stato:

ECLOSE
$$(q_0) = \{q_0, q_1\}$$
 ECLOSE $(q_1) = \{q_1\}$
ECLOSE $(q_2) = \{q_2\}$ ECLOSE $(q_3) = \{q_3, q_5\}$
ECLOSE $(q_4) = \{q_4\}$ ECLOSE $(q_5) = \{q_5\}$

■ Lo stato iniziale di D è $\{q_0, q_1\}$

Esempio di costruzione a sottoinsiemi (1)

■ Applicando le regole otteniamo il diagramma di transizione:

Correttezza della costruzione a sottoinsiem UNIVERSITÀ DEGLI STUDI DEI PRIDOVA

Theorem

Sia $D = (Q_D, \Sigma, S_0, F_D)$ il DFA ottenuto da un ε -NFA E con la costruzione a sottoinsiemi modificata. Allora L(D) = L(E).

Dimostrazione:

Theorem

Sia $D = (Q_D, \Sigma, S_0, F_D)$ il DFA ottenuto da un ε -NFA E con la costruzione a sottoinsiemi modificata. Allora L(D) = L(E).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(S_0, w) = \hat{\delta}_E(q_0, w)$$

Theorem

Sia $D = (Q_D, \Sigma, S_0, F_D)$ il DFA ottenuto da un ε -NFA E con la costruzione a sottoinsiemi modificata. Allora L(D) = L(E).

Dimostrazione: Prima mostriamo per induzione su |w| che

$$\hat{\delta}_D(S_0, w) = \hat{\delta}_E(q_0, w)$$

Base: $w = \varepsilon$. L'enunciato segue dalla definizione:

- Lo stato iniziale di D è $S_0 = \text{ECLOSE}(q_0)$;
- $\hat{\delta}_D(S_0, \varepsilon) = S_0 = \text{ECLOSE}(q_0);$
- $\hat{\delta}_E(q_0, \varepsilon) = \text{ECLOSE}(q_0)$.

Induzione:

- Sia |w| = n+1 e supponiamo vero l'enunciato per la lunghezza n. Scomponiamo w in w = xa (con |x| = n e a simbolo finale)
- Per ipotesi induttiva $\hat{\delta}_D(S_0,x) = \hat{\delta}_E(q_0,x) = \{p_1,\ldots,p_k\}$
- \blacksquare Per la definizione di $\hat{\delta}$ per gli ε -NFA

$$\hat{\delta}_{E}(q_0, xa) = \text{ECLOSE}\left(\bigcup_{i=1}^k \delta_{E}(p_i, a)\right)$$

■ Per la costruzione a sottoinsiemi

$$\delta_D(\{p_1,\ldots,p_k\},a) = \text{ECLOSE}\left(\bigcup_{i=1}^k \delta_E(p_i,a)\right)$$

Induzione (continua):

 \blacksquare Per la definizione di $\hat{\delta}$ per i DFA

$$\hat{\delta}_D(S_0, xa) = \delta_D(\{p_1, \dots, p_k\}, a) = \text{ECLOSE}\left(\bigcup_{i=1}^k \delta_E(p_i, a)\right)$$

lacksquare Quindi abbiamo mostrato che $\hat{\delta}_D(S_0,w)=\hat{\delta}_E(q_0,w)$

Poiché sia D che E accettano se solo se $\hat{\delta}_D(S_0, w)$ e $\hat{\delta}_E(q_0, w)$ contengono almeno un stato in F_E , allora abbiamo dimostrato che L(D) = L(N).

Teorema di equivalenza tra DFA e NFA

Theorem

Un linguaggio L è accettato da un DFA se e solo se è accettato da un ε -NFA.

Dimostrazione:

- La parte "se" è il teorema precedente
- La parte "solo se" si dimostra osservando che ogni DFA può essere trasformato in un ε -NFA modificando δ_D in δ_E con la seguente regola:

Se
$$\delta_D(q, a) = p$$
 allora $\delta_E(q, a) = \{p\}$

Esercizio

- **1** Costruiamo un ε -NFA che riconosce le parole costituite da
 - zero o più *a*
 - seguite da zero o più *b*
 - seguite da zero o più *c*
- 2 Calcolare ECLOSE di ogni stato dell'automa
- **3** Convertire I' ε -NFA in DFA