

An Instituiton of National Importance Jais, Amethi, Uttar Pradesh

Tutorial -1

1.	Which statement	about resonance	structures	for H ₂	is correct?
----	-----------------	-----------------	------------	--------------------	-------------

- (a) Two non-equivalent ionic structures can be drawn.
- (b) Resonance structures include covalent and ionic forms.
- (c) All resonance structures are equally likely.
- (d) Each resonance form exists separately, and the forms are in equilibrium.

2. As one goes along the series of diatomics Li₂, B₂, C₂, N₂, O₂ and F₂, the bond dissociation enthalpy:

- (a) increases then decreases.
- (b) increases.
- (c) decreases then increases.
- (d) decreases

3. Match the hybridization scheme to the carbon atom in each molecule. Which pair is incorrect?

- (a) sp^3 ; CH_2CI_2

- (b) sp^3 ; CH₄ (c) sp^2 ; CO₂ (d) sp^2 ; H₂CO

4. Which of the following compositions corresponds to an sp³ hybrid orbital?

- (a) 33% s and 67% p character.
- (b) 75% s and 25% p character.
- (c) 25% s and 75% p character
- (d) 50% s and 50% p character

5. Match the shape to an appropriate hybridization scheme for the central atom. Which pair is incorrect?

- (a) AlF₃; sp^2
- (b) PF_3 ; sp^3 (c) CIF_3 ; sp^2 (d) NH_3 ; sp^3

6. For which one of the following molecules or ions would and sp³ hybridization scheme not be appropriate for the central atom?

- (a) SiF4
- (b) SF₄
- (c) [AICI₄]⁻
- (d) GeCl₄

7. Match the shapes to the stated molecule or ion. Which pair is incorrect?

- (a) H₂S; non-linear.
- (b) NH₃; trigonal pyramidal. (c)BH₃; trigonal pyramidal.
- (d) H₂O; non-linear

An Instituiton of National Importance
Jais, Amethi, Uttar Pradesh

- 8. All but one of the following descriptions could apply to a triatomic molecule. Which is the odd one out?
 - (a) Linear.
- (b) Bent
- (c) Non-linear.
- (d) Trigonal planar.
- 9. Apply the VSEPR model to AsF₃ and to AsF₅. Which shapes are consistent with the model?
 - (a) AsF₃, trigonal pyramidal; AsF₅, trigonal bipyramidal.
 - (b) AsF₃, trigonal pyramidal; AsF₅, square-based pyramidal.
 - (c) AsF₃, trigonal planar; AsF₅, trigonal bipyramidal.
 - (d) AsF₃, trigonal planar; AsF₅, trigonal pyramidal.
- 10. Which of the following combinations of molecular formula and shape is inconsistent with the VSEPR model?
 - (a) SO₃; trigonal planar.
 - (b) SOCl₂; trigonal pyramidal.
 - (c) SOF₄; see-saw.
 - (d) SO₂; linear.
- 11. Consider the molecules CH₄, NH₃ and H₂O. Which statement below is incorrect?
 - (a) The H–O–H bond angle in H₂O is smaller than the H–N–H bond angle in NH₃.
 - (b) The H−C−H bond angle in CH₄ is larger than the H−N−H bond angle in NH₃.
 - (c) The H–O–H bond angle in H₂O is larger than the H–C–H bond angle in CH₄.
 - (d) The H−C−H bond angle in CH₄, the H−N−H bond angle in NH₃, and the H−O−H bond angle.
- 12. H₂O are all greater than 90°. To which of the following species could the VSEPR model not be applied?
 - (a) $[PdCl_4]^{2-}$
 - (b) SeCl₄
 - (c) XeCl₄
 - (d) $[ICl_4]^-$

An Instituiton of National Importance
Jais, Amethi, Uttar Pradesh

- 13. For which molecule below is the molecular shape different from the arrangement of the electron-pair domains?
 - (a) CF₄
 - (b) NH₃
 - (c) SO_3
 - (d) PCI₅
- 14. Which hybridization scheme is most appropriate for the central atom in SO₃?
 - (a) sp^2
 - (b) sp^3
 - (c) sp^3d
 - (d) spd
- 15. Apply the VSEPR model to predict a structure for OF₂, and then suggest a suitable hybridization scheme for the O atom. Which pair below is the correct combination?
 - (a) Non-linear; sp²
 - (b) Linear; sp²
 - (c) Non-linear; sp³
 - (d) Linear; sp
- 16. What is orbital? How is it different from orbit?
- 17. Write down a set of quantum numbers that describes an electron in a 6p atomic orbital. How does this set of quantum numbers differ if you are describing the second electron in the same orbital?
- **18.** The dipole moment of a gas phase HBr molecule is 0.827 D. Determine the charge distribution in this diatomic if the bond distance is 141.5 pm. (1D= 3:336×10-30 Cm)
- 19. State the demerits of Octet rules?
- **20.** Do BeF₂, and PF₅ follow octet rules?
- 21. Is it true that any molecule with more than 4 covalent bonds break the Octet rule?
- **22.** Can you explain using Octet rule the paramagnetism of O_2 ?

An Instituiton of National Importance
Jais, Amethi, Uttar Pradesh

- **23.** What are the structure of i) gas PCl₅ and ii) solid PCl₅ ? which one is more reactive and why ?
- 24. There are three possible structures of CIF₃. Which one is correct and why?

- 25. Why does PCl₅ molecule exist but PH₅ does not?
- 26. Draw the Lewis structure of POF₃ and NO³⁻
- **27.** What are the structure/geometry of [BrF₆]⁻ and [TeF₆]⁻?
- **28.** Predict the hybridization and geometry with atomic orbital diagram: ICl_4^- , TeF_5 , POF_3 and XeF_6
- 29. State the electron pair and molecular geometries for: SO₂, SF₄, XeF₄
- **30.** Predict the Electron-pair geometries and Molecular shapes for the molecules: I^{3-} , CIF_3 , BrF_5
- **31.** Draw the possible geometries for the molecule, H_2O_2 . Explain their stability using VESPR theory.
- 32. Predict the basic nature of NO²⁺, NO₂ and NO²⁻
- 33. Predict order of bond angle among SF₄, SOF₄, CH₂=SF₄
- 34. Predict the bond angle,

An Instituiton of National Importance
Jais, Amethi, Uttar Pradesh

- 35. In BF₃, B–F bond is shorter than expected. Please explain.
- **36.** Why is NH₃ pyramidal while N(SiMe₃)₃ is planar?
- 37. Why doesn't He2 exist?
- **38.** Calculate the bond order of CO⁺, CO²⁺. Write down the resonating structures of CO.
- **39.** Write the MO electron configuration for NO⁻ ion.
 - i) What is the bond order
 - ii) Will the bond length be shorter or longer than in NO?
 - iii) How many unpaired electrons will be present?
 - iv) Will the bonding orbitals be centered more on O or N? please explain
- 40. H2O has two lone pairs but it is monodentate. Explain with MO diagram of H2O
- 41. Draw MO diagram for the valence electrons of BC. (B- Boron and C- Carbon)
 - i) Write the molecular orbital configuration for the valence electrons BC and in BC⁻¹
 - ii) Which of the molecular orbitals in BC do not have planar mode along internuclear axis?
 - iii) Which one has the stronger B-C bond, BC or BC⁻?
- 42. What are the differences between hybrid orbital and molecular orbital?
- **43.** Why does sp mixing happen in MO theory?