

<u>Help</u>





<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Course Notes</u>

☆ Course / 1. Basics of Information / Tutorial Problems

()

Next >

**Tutorial: Quantifying Information** 

□ Bookmark this page

< Previous</pre>

**⊞** Calculator

## **Quantifying Information**

1/1 point (ungraded)

I make up a random 4-bit two's complement number by flipping a fair coin to determine each bit. You're trying to guess the number. If I tell you that the number is positive (> 0), how many bits of information have I given you? Provide the answer in the form log2(X/Y).

Information in my message:  $\log_2(16/7)$  bits  $\log_2\left(\frac{16}{7}\right)$ 

Submit

✓ Correct (1/1 point)

## **Quantifying Information**

1/1 point (ungraded)

X is an unknown 8-bit binary number. You are given another 8-bit binary number, Y, and told that the Hamming distance between X and Y is 7. How many bits of information about X have you been given?



#### Explanation

There are 8 numbers with Hamming distance of 7 from Y. Information is given by:  $log_2\left(\frac{1}{P(E)}\right)$  where P(E) is the probability of the event. There are  $2^8$  total 8-bit numbers so  $P\left(E\right)=\frac{8}{256}$  and therefore info =  $log_2\left(\frac{256}{8}\right)$  = 5.00 bits.

Submit

Answers are displayed within the problem

### Quantifying Information and Error Correction

2/3 points (ungraded)

We wish to transmit messages comprised of the four letters shown below with their associated probabilities and 5-bit fixed length encoding.



**⊞** Calculator

| รฐานบบเ | $mbo \ l)$ | сисошну |
|---------|------------|---------|
| А       | 0.25       | 00000   |
| В       | 0.5        | 11100   |
| С       | 0.125      | 11011   |
| D       | 0.125      | 10111   |

An unknown letter is received and you are told it's not D. How much information have you received?

 $log_2 \left(1-0.125
ight)$  bits

 $log_2 \ (0.125)$  bits

 $-log_2\left(1-0.125
ight)$  bits

 $-log_2 \ (0.125)$  bits

None of the above

### ×

#### Explanation

The information received is given by the log base 2 of 1 over the probability of the message:  $log_2(\frac{1}{P_{message}})$ . The probability of the message in this case is 1 - p(D) = 1 - 0.125. So the answer is  $log_2\left(rac{1}{1-0.125}
ight) = -log_2\left(1-0.125
ight)$ 

When transmitting a message comprised of these four symbols with the probabilities as given above, the expected amount of information received when learning of a symbol is

1.75 bits

1.25 bits

2 bits

1.5 bits

None of the above



#### Explanation

The expected amount of information received is given by the probability-weighted sum of the information received from learning each symbol:  $\sum p_i * log_2(\frac{1}{p_i})$ . The expected information in this case is then  $0.25*log_{2}\left(4.0
ight)+0.5*log_{2}\left(2.0
ight)+0.125*log_{2}\left(8.0
ight)+0.125*log_{2}\left(8.0
ight)=1.75$  bits.

If we transmit messages using the 5-bit fixed-length encoding shown above, will it be possible to perform singlebit error detection and correction at the receiver?



yes

not enough information to tell



■ Calculator

#### Explanation

Comparing each of the encodings to all others, we find that the minimum number of bits that change from one encoding to another is 2 bits. This means that the Hamming distance for this encoding is 2. In order to detect a single-bit (E = 1) error, one needs a Hamming distance greater than or equal to E + 1 = 2. To correct a single-bit (E = 1) error, one needs a Hamming distance greater than or equal to E + 1 = 3, so single-bit errors can be detected but not corrected using this encoding.

**Submit** 

**1** Answers are displayed within the problem

#### Discussion

**Hide Discussion** 

Topic: 1. Basics of Information / Tutorial: Quantifying Information

#### Add a Post



© All Rights Reserved



## edX

About
Affiliates
edX for Business
Open edX

■ Calculator

<u>Careers</u>

<u>News</u>

# Legal

Terms of Service & Honor Code

**Privacy Policy** 

**Accessibility Policy** 

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

**Your Privacy Choices** 

## **Connect**

<u>Idea Hub</u>

**Contact Us** 

Help Center

<u>Security</u>

Media Kit















© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>