1. Problem Statement:

*Since it is number format, so this is Machine Learning

2. Basic info about dataset

There are six columns have in the dataset

3. Pre-processing Method:

In this dataset the smoker was given as categorical data (yes or no). I converted it to numerical data using the get dummies function.

4. Find the good model using below machine learning algorithm

- 1. Multiple Linear Regression (R² value)=0.7894
- 2. Support Vector Machine Regression (R² Value):

S.NO	HYPER	LINEAR	RBF(NON	POLY	SIGMOID
	PARAMETER	(R VALUE)	LINEAR)	(R VALUE)	(R VALUE)
			(R VALUE)	NON LINEAR	NON LINEAR
1	C10	-0.0016	-0.08196	-0.09311	-0.0907
2	C100	0.5432	-0.1248	-0.09976	-0.1181
3	C500	0.6270	-0.1246	-0.08202	-0.4562
4	C1000	0.6340	-0.1174	-0.0555	-1.6659
5	C2000	0.6893	-0.1077	-0.0027	-5.6164
6	C3000	0.7590	-0.0962	0.04892	-12.01904

The Linear Regression use R^2 value linear and hyper parameter (C3000) = 0.7590

3. Decision Tree Regressor(R² Value):

S.NO	CRITERION	MAX FEATURES	SPLITTER	R ² VALUE
1	Squared_error	5	Best	0.6984
2	friedman_mse	1000	Best	0.7012

^{*}Input and output are clear, so this is Supervised Learning

^{*}Since the output is numerical data so this falls under regression

3	absolute_error	10	Best	0.6789
4	poisson	5	Besst	0.6872
5	Squared_error	5	Random	0.6882
6	friedman_mse	1000	Random	0.7095
7	absolute_error	5	Random	0.6886
8	poisson	10	Random	0.7590
9	friedman_mse	5	Random	0.7031
10	poisson	5	Random	0.7188

Decision Tree Regression using Poisson criterion. The Best R2 value = 0.7590

4. Random Forest Regression

S.NO	CRITERION	n_estimators	random_state	R ² VALUE
1	Squared_error	50	0	0.9446
2	friedman_mse	10	100	0.9433
3	absolute_error	5	50	0.8825
4	poisson	20	25	0.8947

Random Forest Regression using $Squared_error$, $friedman_mse$, $absolute_error$ criterion. The Best R 2 value = $\frac{0.9446}{0.9446}$

5. Adaboost Regression:

An AdaBoost regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.

S.NO	n_estimators	random_state	R ² VALUE
1	100	0	0.8447
2	50	100	0.8662

3	20	20	0.8612
4	100	100	0.8490

Adaboost Regression using n-estimator and random_state. The Best R2 value = 0.8662

XG Boosting:

Overall, XGBoost is a powerful and widely-used tool for regression tasks, and it has been applied successfully to a variety of real-world problems such as predictive modeling, time series forecasting, and customer churn prediction. Advantages: Effective with large data sets.

S.NO	Objective	R ² VALUE
1	Reg:	0.8213
	squarederror	

XG Boost Regression using Objective. The Best R2 value = $\frac{0.8213}{1}$

LG Boosting

The light gradient boosting machine regressor (LightGBM) is a breakthrough treebased ensemble learning approach developed by researchers at Microsoft and Peking University to overcome the efficiency and scalability difficulties of XGBoost in highdimensional input feature and massive dataset contexts.

S.NO	n_estimators	R ² VALUE
1	100	0.8660

LG Boost Regression using Objective. The Best R2 value = 0.8660