Housing sale price predictor

Nicholas Sanso

Objective

Create a model that will predict the sales price of housing in low and medium density residential areas

Workflow

Categorical Concentration

Perform HHI calculations on the categories in the features.

Exclude highly centralized categories which hinder ability to split observations into training and testing sets.

HEatMap

Heatmap after PCA showing the correlation between different features.

Correlations for variables included in the final model were low.

Model Results

Evaluating the residuals

The residuals and percentage residuals of the model are normally distributed.

Evaluating the residuals

Heteroskedasticity appears in the residuals as the predicted salesprice increases.

The model should only be used for houses whose predicted sales price is less than \$250,000.

Primary Conclusions

- 1. There are probably a limited number of patterns that the model relies heavily on.
- 2. The improvement in performance with the reduction in batch size indicates that the model may have been converging to a local minimum when minimizing the loss function during the (training) gradient descent process.
- 3. Considerations for model performance must be balanced against hardware requirements. MaxPooling2D's contribution to reducing training time is indispensable for all CNN models.
- 4. A model that outperformed the base model was established.

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, infographics & images by <u>Freepik</u>

