Taller preparatorio matemáticas décimo

Juan Pablo Urrego Gaviria

September 2025

Ejercicios — Ecuaciones Trigonométricas

- 1. Resuelve $\sin(2x) = \frac{\sqrt{3}}{2}$ para $0 \le x < 2\pi$.
- 2. Encuentra todas las soluciones de $2\cos(x) 1 = 0$ cuando x está en R.
- 3. Resuelve $\tan^2(x) 3\tan(x) + 2 = 0$ para $0 \le x < \pi$.
- 4. Calcula $x \operatorname{si} \sin(x) + \sin(2x) = 0 \operatorname{para} 0 \le x < 2\pi$.
- 5. Resuelve cos(2x) + cos(x) = 0 en el intervalo $[0, 2\pi)$.
- 6. Encuentra las soluciones de $\sin^2(x) = \frac{1-\cos(2x)}{2}$ para x en R.
- 7. Resuelve $3\sin(3x) = \sqrt{3}$ para $0 \le x < \frac{2\pi}{3}$.
- 8. Halla x tal que $\sin(x) = \tan(x)$ para $0 \le x < 2\pi$.
- 9. Resuelve $2 \sec(x) 3 = 0$ para $0 \le x < 2\pi$.
- 10. Encuentra todas las soluciones para $\cos(x) = -\frac{1}{2}$ en $[0, 2\pi)$.
- 11. Resuelve $2\sin^2(x) \sin(x) 1 = 0$ para x en $[0, 2\pi)$.
- 12. Calcula las soluciones de $\sin(x) + \cos(x) = 0$ para x en $[0, 2\pi)$.
- 13. Halla $x \text{ si } \cos(3x) = \frac{1}{2} \text{ con } 0 \le x < 2\pi.$
- 14. Resuelve tan(x) + cot(x) = 2 para $0 < x < \pi$.
- 15. Resuelve $\sin(2x) = \sin(3x)$ para $0 \le x < 2\pi$.
- 16. Halla las soluciones de $\cos^2(x) \sin(x) = 0$ en $[0, 2\pi)$.
- 17. Encuentra todas las soluciones reales de $4\sin^3(x) 3\sin(x) = 0$.
- 18. Resuelve $tan(2x) \sqrt{3} = 0$ en intervalos adecuados.
- 19. Calcula $x ext{ si } 2\cos^2(x) 1 = \sin(x)$ para $0 \le x < 2\pi$.
- 20. Resuelve $\sin(x)\cos(x) = \frac{1}{4}$ para x en $[0, 2\pi)$.

- 21. Halla x tal que $\sin(x) \sqrt{3}\cos(x) = 0$ en $[0, 2\pi)$.
- 22. Resuelve $\cos(2x) \sin(x) = 0$ para $0 \le x < 2\pi$.
- 23. Encuentra todas las soluciones de $\sin(x) + \sin(2x) + \sin(3x) = 0$ para $0 \le x < 2\pi$.
- 24. Resuelve la ecuación $3\cos(x) + 4\sin(x) = 1$ para x en R.
- 25. Calcula x si $\tan^3(x) \tan(x) = 0$ para $0 < x < \pi$.
- 26. Resuelve $\sin(4x) = \cos(2x)$ en $[0, 2\pi)$.
- 27. Halla las soluciones de cos(3x) + cos(x) = 0 para $0 \le x < 2\pi$.
- 28. Encuentra $x \operatorname{si} \sin(x) = \cos(3x)$ para $0 \le x < 2\pi$.
- 29. Resuelve $\tan(3x) + \tan(x) = 0$ en $[0, 2\pi)$.
- 30. Calcula las soluciones de $2\sin(2x) \sqrt{3} = 0$ para x en $[0, 2\pi)$.

Ejercicios — Proposición y Lógica

- 1. Sea p: "Hoy es lunes", q: "Está lloviendo". Escribe la proposición que significa: "Hoy no es lunes, y está lloviendo".
- 2. Determina si la proposición "Si apruebas el examen, entonces recibirás una recompensa" es equivalente a "Si no recibes recompensa, entonces no aprobaste".
- 3. Construye la tabla de verdad de $(p \land q) \implies (r \lor \neg p)$.
- 4. Para p,q,r proposiciones, analiza si $(p \implies q) \land (q \implies r)$ es equivalente a $p \implies r$.
- 5. Verifica con tablas de verdad si la fórmula $\neg(p \lor q) \equiv \neg p \land \neg q$ es una tautología según De Morgan.
- 6. Haz la tabla de verdad de $(p \lor (q \land \neg r)) \leftrightarrow ((p \lor q) \land (p \lor \neg r))$ y determina si son equivalentes.
- 7. Sea el universo $U=\{1,2,3,4,5\}$. Considera los predicados P(x): "x es par", Q(x): "x>2". Evalúa si $\forall x\,(P(x)\Longrightarrow Q(x))$ es verdadero en U.
- 8. Con el mismo universo, evalúa $\exists x (P(x) \land Q(x)).$
- 9. Cambia el universo a los naturals N. Evalúa si $\forall x \; \exists y \; (y > x)$.
- 10. Traduce al lenguaje lógico la frase: "Todos los estudiantes aprobaron si y sólo si hicieron tarea".

- 11. Traduce la frase: "Hay alguien que no es amigo de nadie" usando cuantificadores.
- 12. Simplifica el enunciado $\neg(\forall x\, P(x))$ usando cuantificadores negativos apropiados.
- 13. Simplifica $\neg(\exists x (P(x) \land Q(x)))$.
- 14. Demuestra que $\forall x (P(x) \implies Q(x))$ es equivalente a $\neg \exists x (P(x) \land \neg Q(x))$.
- 15. Dado P(x): "x es primo" y universo los naturales, escribe el enunciado "No todos los números primos son impares" con cuantificadores formales.
- 16. Sea la proposición: "Si una figura es un cuadrado, entonces tiene 4 lados", y "No tiene 4 lados". Usa modus ponens / modus tollens para analizar implicaciones contrarias.
- 17. Analiza el valor de verdad de: "Si hoy llueve o hace frío, entonces mañana no va a haber sol", en función de valores de verdad asignados arbitrarios.
- 18. Construye la tabla de verdad de $((p \implies q) \land (q \implies r)) \implies (p \implies r)$.
- 19. Construye la tabla de verdad de $\neg(p \leftrightarrow q) \equiv (p \land \neg q) \lor (q \land \neg p)$.
- 20. Verifica si $(p \lor q) \implies (r \lor s)$ es equivalente a $((p \implies (r \lor s)) \land (q \implies (r \lor s)))$.
- 21. Sea el universo de discurso los enteros, P(x): "x es impar". Evalúa $\exists x \ P(x), \ \forall x \ P(x), \ \forall x \ \neg P(x).$
- 22. Traduce la frase: "Algún número entero mayor que cero tiene cuadrado menor que él".
- 23. Traduce "Para todo número, su cuadrado es no negativo" con cuantificadores y evalúa si es verdadero en los reales.
- 24. Simplifica $\neg(\forall x (P(x) \lor Q(x)))$.
- 25. Simplifica $\neg(\exists x (P(x) \implies Q(x)))$.
- 26. Determina si $((p \implies q) \land (\neg p \implies r))$ es equivalente a $(p \lor r) \implies (q \lor r)$.
- 27. Haz tabla de verdad de $(\neg p \lor (q \land r)) \implies ((\neg p \lor q) \land (\neg p \lor r)).$
- 28. Traduce y evalúa "Si alguien no estudia, entonces todos reprobarán" con cuantificadores. ¿Cuál es su negación?