

Hao-Ran Liu

2002/9/13



## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 2/50

#### **PPP Overview**

 PPP and SLIP are two commonly used protocols for point-to-point serial link.



#### **SLIP Frame Format**

- SLIP: Serial Line IP
- A simple form of encapsulation for IP datagrams



2002/9/13 4/50

#### **PPP Definition**

#### RFC 1661

- A method for transporting multi-protocol datagrams over point-to-point links
- Three main components
  - A method for encapsulating multi-protocol datagrams.
  - A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link connection.
  - A family of Network Control Protocols (NCP) for establishing and configuring different network-layer protocols.

2002/9/13 5/50

### PPP Link Phase Diagram



2002/9/13 6/50

## PPP Framing

PPP is built on top of HDLC protocol



- Address and control field are fixed
  - Address = FF (all stations)
  - Control = 03 (unnumbered information)

2002/9/13 7/50

#### **PPP Frame Format**

#### PPP HDLC Framing

| flag<br>7E | addr<br>FF | control<br>03 | protocol | information      | CRC | flag<br>7E |
|------------|------------|---------------|----------|------------------|-----|------------|
| 1          | 1          | 1             | 2        | up to 1500 bytes | 2   | 1          |

#### Example

| Protocol<br>0021 | IP datagram          |  |  |
|------------------|----------------------|--|--|
| Protocol<br>C021 | link control data    |  |  |
| Protocol 0021    | network control data |  |  |

2002/9/13 8/50

# PPP Protocol Number Assignment

| 0*** 3*** | Network layer protocol      |
|-----------|-----------------------------|
| 8*** b*** | Network control protocol    |
| C*** f*** | Link layer control protocol |

| 0021 | I Pv4                | 8021 | I PCP          | C021 | Li nk | Control | Protocol |
|------|----------------------|------|----------------|------|-------|---------|----------|
| 002B | IPX                  | 802B | I PXCP         | C023 | PAP   |         |          |
| 002D | VJ Compressed TCP/IP |      |                | C025 | Li nk | Quality | Report   |
| 003D | Multilink PPP (MP)   |      |                | C223 | CHAP  |         |          |
| 0053 | Encrypti on          | 8053 | Encryption CP  |      |       |         |          |
| 00FD | Compressi on         | 80FD | Compression CP |      |       |         |          |

2002/9/13 9/50



# The advantage of PPP over SLIP

- Support multiple network layer protocols.
- A CRC checksum on every frame.
- Includes authentication protocol
- Dynamic negotiation of IP address
- Data-link options can be negotiated via a link control protocol.

2002/9/13 10/50

## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 11/50

### PPP phases as layers

 PPP link phases are run sequentially.

Command Event



2002/9/13 12/50

### Bring a layer "Up"

- Bring a layer up requires:
  - An Open request from a higher layer
  - An Up event from the next lower layer
  - The successful negotiation of parameters at that particular layer.



2002/9/13 13/50

### Negotiation Message Types

| Name              | Direction | Description                           |
|-------------------|-----------|---------------------------------------|
| Configure-Request | I >> R    | List of proposed options and values   |
| Configure-Ack     | I << R    | All options are accepted              |
| Configure-Nak     | I << R    | Some options are not accepted         |
| Configure-Reject  | I << R    | Some options are not negotiable       |
| Terminate-Request | I >> R    | Request to shut the line down         |
| Terminate-Ack     | I << R    | OK, line shut down                    |
| Code-Reject       | I << R    | Unknown request received              |
| Protocol-Reject   | I << R    | Unknown protocol requested            |
| Echo-Request      | I >> R    | Please send this frame back           |
| Echo-Reply        | I << R    | Here is the frame back                |
| Discard-Request   | I >> R    | Just discard this frame (for testing) |

2002/9/13 14/50



### Negotiation Message Format

F A C Protocol Negotiation Message CRC F

PPP Frame

```
Flag : 7E
```

Address: FF (All-stations address)
Control: 03 (Unnumbered Information)

Protocol : C021 (LCP)

C023 (PAP) 8021 (IPCP)

#### **Negotiation Message**

C Id Length Options

#### 

#### **Option Encoding**

Type Len Data

- •Type and Len are a single octet
- •Len field is the length of the whole option block
- Data field is information for the option being negotiated

2002/9/13 15/50



# Negotiation Message in Different Control Protocols

- The packet format described above is used on all PPP control protocols (LCP, NCP, PAP, CHAP, ECP, CCP, etc.)
- The only difference in the packet of these control protocols
  - Protocol field
  - Code field (range of code number used)
  - Options for specific control protocol.

2002/9/13 16/50

## **Example Negotiations**

```
ID: 1 [ 1 4: 01010101 5: 80 9 ]
1. A: Configure-Request
2. B: Configure-Reject
                            ID: 1 [ 1 5: 80 ]
  A: Configure-Request
                            ID: 2 [ 4: 01010101 9 ]
4. B: Configure-Nak
                            ID: 2 [ 4: 01010102 ]
  A: Configure-Request
                            ID: 3 [ 4: 01010102 9 ]
                            ID: 3 [ 4: 01010102 9 ]
   B: Confi gure-Ack
7. B: Configure-Request
                            ID: 1 [ 2 9 ]
                            ID:1 [ 2 9 ]
8. A: Configure-Ack
```

2002/9/13 17/50

### **Example Frame**

| FF 03       | - Standard PPP HDLC address and control fields |
|-------------|------------------------------------------------|
| CO 21       | - Protocol number CO21 (LCP)                   |
| 01          | - Code field; O1 is Configure-Request          |
| 01          | - ID field (number 1)                          |
| 00 OE       | - Length field (14 octets)                     |
| 02          | - Type field; option 02 for protocol CO21      |
| 06          | - Len field (6 octets)                         |
| 00 00 00 00 | - Data for this option                         |
| 07          | - Type field; option 07 for protocol CO21      |
| 02          | - Len field (2 octets)                         |
| 08          | - Type field; option 08 for protocol CO21      |
| 02          | - Len field (2 octets)                         |
| 70 34       | - CRC                                          |

2002/9/13 18/50

# Negotiation State Machine – Simplified layer establishment



Up = lower layer is Up
Open = administrative Open

RCR+ = Recei ve-Confi gure-Request (Good)

RCA = Receive-Configure-Ack

2002/9/13 19/50

# Negotiation State Machine – Simplified layer tear-down



Down = lower layer is Down Close= administrative Close

RTR = Receive-Terminate-Request

RTA = Receive-Terminate-Ack

RXJ- = Receive-Code-Reject (catastrophic)

2002/9/13 20/50

## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 21/50



#### **Link Control Protocol**

- Negotiation of modification to the default characteristics of a point-topoint link.
  - A default value is specified for each option.
  - No need to send the default value for a option in a Configure-Request.

2002/9/13 22/50



### LCP Configuration Options

- Maximum Receive Unit (MRU)
  - RFC 1661
    - At least 1500 octets.



- RFC 2516
  - must NOT larger than 1492 octets for PPPoE.
- Authentication Protocol

PAP: c023

03 Len Authentication Protocol Data

CHAP: c22305

MS-CHAPv2: c22381

2002/9/13 23/50



### LCP Configuration Options

- Quality Protocol
- 04 Len Quality Protocol Data
- Link-Quality-Report
  - RFC 1989
  - Value assigned in PPP: c025
- Magic Number
  - A random number chosen to distinguish loopback or error conditions.

05 06 Magic Number

2002/9/13 24/50



- Protocol Field Compression (PFC) [07 ] 02
  - Reduce PPP protocol field from 2 octets to 1 octet by omit MSB when MSB is zero.
- Address & Control Field Compress
   (ACFC)
  - Sender of the option wants to receive PPP frame without HDLC address and control fields (normally set to FF 03)

2002/9/13 25/50

## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 26/50

#### **Authentication Protocol**

- Authentication protocol is specified at Link Establish stage (LCP)
- PAP
  - RFC 1334
  - 2 way handshake.
  - Plaintext password over the wire.
- CHAP
  - RFC 1994
  - 3 way handshake
  - Password is encrypted.





# PAP – PPP Authentication Protocol

#### PAP Negotiation Message



#### Authenticate-Request

2002/9/13 28/50

# PAP – Protocol Protocol

- Authenticate-Ack & Authenticate-Nak
  - Message can be any ASCII text

2002/9/13 29/50



Periodically verify peer's identity using a 3- way handshake.

#### **CHAP Negotiation Message**

```
C Id Length Data

Code = 1 (Challenge)
2 (Response)
3 (Success)
4 (Failure)
```

2002/9/13 30/50



## Challenge-Handshake Authentication Protocol

- Challenge & Response
  - Challenge value MUST be changed each time a challenge is sent. (security reason)

| Code | ID | Longth | Value-Size | Value | Nama |
|------|----|--------|------------|-------|------|
| Code | וט | Length | value-size | value |      |

Success & Failure



2002/9/13 31/50

## Challenge-Handshake Authentication Protocol

#### Responsing a challenge



2002/9/13 32/50

## Challenge-Handshake Authentication Protocol

Verify a response with saved challenge



2002/9/13 33/50

## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 34/50

#### **Network Control Protocol**

- PPP has a family of network control protocol to establishing and configuring different network-layer protocols.
- \*\* protocol no. + 8000 = \*\* CP
  - Ex: 0021 (IP) + 8000 = 8021 (IPCP)

| PPP Protocol<br>Number | Description                |      |
|------------------------|----------------------------|------|
| 8021                   | IP Control Protocol        | 1332 |
| 8029                   | AppleTalk Control Protocol | 1378 |
| 802B                   | IPX Control Protocol       | 1552 |
| 8057                   | IPV6 Control Protocol      | 2472 |
| 8281                   | MPLS Control Protocol      |      |

2002/9/13 35/50



### Internet Protocol Control Protocol

- Local IP address and TCP/IP header compression protocol are negotiated in IPCP.
- Sending IP datagrams
  - Exactly one IP packet is encapsulated in the information field of PPP frame.
  - IP packet size is limited by receiver's MRU.
  - Avoid IP fragmentation
    - TCP MSS option
    - Path MTU discovery

2002/9/13 36/50

## IPCP Negotiation Message Types

- Only codes 1 7 are used
  - Configure-Request
  - Configure-Ack
  - Configure-Nak
  - Configure-Reject
  - Terminate-Request
  - Terminate-Ack
  - Code-Reject

2002/9/13 37/50



## **IPCP Configuration Options**

- IP Compression Protocol
  - VJ Compression



- Can reduce TCP/IP headers from 40 octets to 3 octets.
- Protocol: 002d
- RFC 1144
- IP Address



- Configuring local IP address
- Local address field:

Subnet mask, IP of DNS **should be** assigned via DHCP protocol

- Can be sender's self assigned address.
- Can be be all zero (remote address assign)
  - peer use Configure-Nak to assign a address for the sender.

2002/9/13 38/50



## **IPCP Configuration Options**

- DNS and NBNS Address
  - Microsoft proposed these options in RFC 1877
  - DNS and NBNS are application level service, they are negotiated at wrong level.
  - These options duplicate services of BOOTP and DHCP.

| Option No. | Description            |
|------------|------------------------|
| 0x81       | Primary DNS Address    |
| 0x82       | Primary NBNS Address   |
| 0x83       | Secondary DNS Address  |
| 0x84       | Secondary NBNS Address |

2002/9/13 39/50

## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 40/50

### **PPP over Ethernet**



2002/9/13 41/50

### **PPP over Ethernet**

- Provide point-to-point connection over Ethernet
- PPPoE stages
  - Discovery stage
    - Discover the Ethernet address of access concentrator (server)
    - Negotiate a PPPoE session number for session stage
  - Session stage
    - PPP packets are transferred in this stage.

2002/9/13 42/50

## **PPPoE Discovery Stage**

#### Client

**Ethernet Address: X** 

#### Server

**Ethernet Address: Y** 



PADI PPPOE Active Discovery Initiation

PADO PPPOE Active Discovery Offer

PADR PPPOE Active Discovery Request

PADS PPPOE Active Discovery Session-confirmation

PADT PPPOE Active Discovery Terminate

The session number, combined with source and destination Ethernet addresses, uniquely identifies a PPPoE session.

2002/9/13 43/50

## **PPPoE Session Stage**

- PPP packet are transmitted in PPPoE session stage.
- PPP Ethernet framing
  - No escape bytes are required because frame boundaries are explicit in Ethernet encapsulation.
  - 6 bytes of overhead are added in addition to the Ethernet header.
  - No PPP FCS is required because Ethernet has its own CRC.

2002/9/13 44/50



| 0xFFFFFFF                   |                          |  |  |
|-----------------------------|--------------------------|--|--|
| 0xFFFF                      | Host MAC Address         |  |  |
| Host MAC Address (Continue) |                          |  |  |
| Ether_Type = $0x8863$       | V= 1   T = 1   code=0x09 |  |  |
| $Session\_ID = 0x0000$      | Length = 0x0004          |  |  |
| $TAG_Type = 0x0101$         | TAG_Length = 0x0000      |  |  |
| Ethernet CRC                |                          |  |  |





PPPoE Header



**PPPoE** Payload

2002/9/13 45/50

## **Example PADO packet**

| 1 Byte 1 | l Byte   1 | Byte 1 | Byte |
|----------|------------|--------|------|
|----------|------------|--------|------|

| Host MAC Address                                |                        |             |           |
|-------------------------------------------------|------------------------|-------------|-----------|
| Host MAC address(Cont)                          | AC MAC Address         |             | Address   |
| AC MAC Address (Continue)                       |                        |             |           |
| Ether_Type = $0x8863$                           | V= 1                   | T = 1       | code=0x07 |
| $Session\_ID = 0x0000$                          | Length = 0x0020        |             |           |
| $TAG\_Type = 0x0101$                            | $TAG\_Length = 0x0000$ |             |           |
| $TAG\_Type = 0x0102 \qquad TAG\_Length = 0x001$ |                        | th = 0x0018 |           |
| a string of 24 bytes for TAG 0x0102 (AC-Name)   |                        |             |           |
| Ethernet CRC                                    |                        |             |           |

Ethernet Frame

PPPoE Header

PPPoE Payload

2002/9/13 46/50

# Example PPPoE Session Packet

| 1 Byte | 1 Byte | 1 Byte | 1 Byte |
|--------|--------|--------|--------|
|--------|--------|--------|--------|

| AC MAC Address              |                    |  |
|-----------------------------|--------------------|--|
| AC MAC Address (Cont.)      | Host MAC Address   |  |
| Host MAC Address (Continue) |                    |  |
| Ether_Type = $0x8864$       | V =  T = 1  Code = |  |
| $Session\_ID = 0x1234$      | Length = $0x$ ???? |  |
| PPP Protocol = 0xc021       | PPP Payload        |  |
| Ethernet CRC                |                    |  |



**Ethernet Frame** 



**PPPoE** Header



**PPPoE** Payload

2002/9/13 47/50

## Agenda

- PPP Overview
- PPP Negotiation Automaton
- Link Control Protocol
- Authentication Protocol
- Network Control Protocol
- PPP over Ethernet
- Packet Analysis of A Real Example

2002/9/13 48/50



# Packet Analysis of A Real Example

- PPPoE link with SEEDNET ADSL on D-Link DI-713P
- Open the following file with Sniffer Pro



2002/9/13 49/50



#### Book

- James Carlson, PPP Design, Implementation and Debugging, 2<sup>nd</sup> Edition
- W. Richard Steven, TCP/IP Illustrated, Volume 1
- Andrew S. Tanenbaum, Computer Networks, 3<sup>rd</sup>
   Edition

#### RFC

PPP: RFC 1661, 1662

■ IPCP: RFC 1332

PAP, CHAP: RFC 1334, 1994

2002/9/13 50/50