MIT 18.06 Exam 3, Spring 2023 Gilbert Strang & Andrew Horning

Your name: $(printed)$		
,		
Student ID:		
Recitation:		

Problem 1 (12 + 10 + 12 = 34 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

1(a) Find the eigenvalues λ_1, λ_2 and eigenvectors $\boldsymbol{x}_1, \boldsymbol{x}_2$ of A:

$$A = \left[\begin{array}{cc} 2 & 3 \\ 1 & 4 \end{array} \right]$$

$$\lambda_1 = \qquad \qquad \lambda_2 = \qquad \qquad oldsymbol{x}_1 = \qquad \qquad oldsymbol{x}_2 = \qquad \qquad$$

1(b) Diagonalize $A = X\Lambda X^{-1}$ by finding those three matrices X and Λ and X^{-1}

 $X = \Lambda = X^{-1} =$

1(c) Express the vector $\mathbf{u} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ as a combination of the eigenvectors x_1 and x_2 of A.

Then express the vector A^4u as a combination of those eigenvectors of A

 $oldsymbol{u} = A^4 oldsymbol{u} =$

(blank page for your work if you need it)

Problem 2 (10 + 10 = 20 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

2(a) Find the determinant of this permutation matrix P and explain your reasoning!

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

determinant of $P =$	

2(b) Find the cofactor of A_{11} and the determinant of A

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Cofactor of $A_{11} =$

Determinant of A =

(blank page for your work if you need it)

Problem 3 (12 + 12 = 24 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

An n by n real matrix Q is an orthogonal matrix if $Q^{T}Q = I$.

3(a) Show that the length of x =the length of Qx for every real vector x

3(b) Show that the determinant of Q is 1 or -1

Problem 4 (12 + 10 = 22 points):

Record your final answer in the allotted spaces. You may use the remaining space for your calculations.

 $\mathbf{4(a)}$ What are the possible eigenvalues of a symmetric projection matrix P and why?

4(b) If the vectors $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ are orthonormal and $\mathbf{v} = c_1 \mathbf{q}_1 + c_2 \mathbf{q}_2 + \dots + c_n \mathbf{q}_n$, find a formula for the last coefficient c_n .

 $c_n = {
m equals}$ ______