Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №8 Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров

Вариант - 9

Выполнила	Сорокина Т	Сорокина Т. В.					
		(фамилия, и.о.)					
Проверил		(подпис					
""	20г.	Санкт-Петербург,	20г.				
Работа выполнен	а с оценкой						
Дата защиты "		20г.					

Цель работы: ознакомление с экпериментальными методами посторения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные

$$T_1 = 2.5 \text{ c}, T_2 = 0.1 \text{ c}, g(t) = 0, y(0) = 1.$$

Виды устойчивости системы

На рисунке 1 представлена схема моделируемой системы.

Рис. 1 – Схема моделируемой системы.

Система находится на границе устойчивости при K=10,4 и $T_2=0.1$.

На рисунке 2 показан график переходного процесса для системы, находящейся на границе устойчивости колебательного типа.

Рис. 2 – График переходного процесса для системы, находящейся на границе устойчивости колебательного типа.

Система устойчива при K=5 и $T_2=0.1$.

На рисунке 3 представлен график переходного процесса для устойчивой системы.

Рис. 3 – График переходного процесса для устойчивой системы.

Система неустойчива при $K{=}12$ и $T_2=0.1$. На рисунке 4 представлен график переходного процесса для неустойчивой системы.

Рис. 4 – График переходного процесса для неустойчивой системы.

Система находится на границе устойчивости нейтрального типа при K=0 и $T_2=0.1$. На рисунке 5 показан график переходного процесса для системы, находящейся на границе устойчивости нейтрального типа.

Рис. 5 — График переходного процесса для системы, находящейся на границе устойчивости нейтрального типа.

Изменили значение постоянной времени T_2 и получили следующую точку границы устойчивости. При $T_2=0,49$ и K=2.4 система находится на границе устойчивости колебательного типа. На рисунке 6 представлен график переходного процесса для системы, находящейся на границе устойчивости колебательного типа.

Рис. 6 – График переходного процесса для системы, находящейся на границе устойчивости колебательного типа.

Таким образом, экспериментально было найдено 10 точек, для построения границы устойчи-

вости.

Кэ	2.4	1.5	1.1	0.9	0.8	0.74	0.69	0.65	0.62	0.6
T_2	0.49	0.9	1.4	2	2.4	2.9	3.5	4	4.5	5

Теоретический расчет границы устойчивости

Требуется произвести расчет границы устойчивости с использованием критерия Гурвица. Передаточная функция:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Матрица Гурвица:

$$G = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & 1 \end{bmatrix}$$
 (2)

$$K = \frac{T_1 + T_2}{T_1 * T_2} \tag{3}$$

Рассчитаем теоретические значения К по формуле (3). В итоге получим:

T_2	0.49	0.9	1.4	2	2.4	2.9	3.5	4	4.5	5
Кэ	2.4	1.5	1.1	0.9	0.8	0.74	0.69	0.65	0.62	0.6
Kp	2.44	1.51	1.11	0.9	0.82	0.74	0.68	0.65	0.62	0.6

На рисунках 7 и 8 представлены графики зависимостей $T_2(\mathrm{Kp})$ и $T_2(\mathrm{Kp})$.

Рис. 7 – Графическое изображение расчетной границы устойчивости.

Рис. 8 – Графическое изображение границы устойчивости, найденной экспериментально.

Вывод

В ходе проведения данной лабораторной работы, была получена экпериментальная граница устойчивости и теоретическая граница устойчивости на плоскости. Графическое изображение теоретической границы устойчивости почти совпадает с графическим изображением экспериментальной границей устойчивости. Более точную оценку дают рассчитанные значения, по сравнению с экспериментальными.