# 『IMU 센서 데이터를 이용한 동작분류 모델 만들기』

# CNN 분류모델 만들기

충북대학교 산업인공지능학과 2023254015 장욱진



# 1. 주제선정 이유



IMU 센서 - 자이로(3축), 가속도(3축), 지자기(3축)





### 2. 프로젝트 목표



### 3. 데이터셋

#### PAMAP2 Physical Activity Monitoring Data Set

Download: Data Folder, Data Set Description

Abstract: The PAMAP2 Physical Activity Monitoring dataset contains data of 18 different physical activities, performed by 9 subjects wear

| Data Set Characteristics:  | Multivariate, Time-Series | Number of Instances:  | 3850505 | Area:               | Computer   |
|----------------------------|---------------------------|-----------------------|---------|---------------------|------------|
| Attribute Characteristics: | Real                      | Number of Attributes: | 52      | Date Donated        | 2012-08-06 |
| Associated Tasks:          | Classification            | Missing Values?       | Yes     | Number of Web Hits: | 95176      |

<u>archive.ics.uci.edu/ml/datasets/</u> <u>PAMAP2+Physical+Activity+Monitorin</u>

#### **Attribute**

- 1. Timestamp
- 2. Activity ID
- 3. 심박수(bpm)

4~20. IMU 손

21~37. IMU 가슴

38~54. IMU 발목

### **Activity ID**

lying

|                | -    | 1,6                          |
|----------------|------|------------------------------|
| 34             | - 2  | sitting                      |
| 12             | - 3  | standing                     |
| -              | - 4  | walking                      |
| -              | - 5  | running                      |
| 92             | - 6  | cycling                      |
| -              | - 7  | Nordic walking               |
| 3.00           | 9    | watching TV                  |
| 12             | - 10 | computer work                |
| - 2            | - 11 | car driving                  |
| 17             | - 12 | ascending stairs             |
| ( <del>-</del> | - 13 | descending stairs            |
| 1/2            | - 16 | vacuum cleaning              |
| 2              | - 17 | ironing                      |
| -              | - 18 | folding laundry              |
| 9              | - 19 | house cleaning               |
| 12             | - 20 | playing soccer               |
| 17             | - 24 | rope jumping                 |
| 2              | - 0  | other (transient activities) |



 $\mathbf{g}$ 

| 1                       | 2                       | 3                       | 4                       | 5                                                 | 6                       | 7                              | 8                       | 9                       | 10                      |  |  |  |
|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|--|--|--|
| Time st amp             | Activity<br>ID          | Heart R<br>ate          | tempera<br>ture         | 3D accel eration                                  | 3D accel eration        | 3D accel eration               | 3D accel eration        | 3D accel eration        | 3D accel eration        |  |  |  |
| 11                      | 12                      | 13                      | 14                      | 15                                                | 16                      | 17                             | 18                      | 19                      | 20                      |  |  |  |
| 3D gyro<br>scope        | 3D gyro<br>scope        | 3D gyro<br>scope        | 3D mag<br>netome<br>ter | 3D mag<br>netome<br>ter                           | 3D mag<br>netome<br>ter | orientati<br>on                | orientati<br>on         | orientati<br>on         | orientati<br>on         |  |  |  |
| 21                      | 22                      | 23                      | 24                      | 25                                                | 26                      | 27                             | 28                      | 29                      | 30                      |  |  |  |
| tempera<br>ture         | 3D accel eration        | 3D accel eration        | 3D accel eration        | 3D accel eration                                  | 3D accel eration        | 3D accel 3D gyro eration scope |                         | 3D gyro<br>scope        | 3D gyro<br>scope        |  |  |  |
| 31                      | 32                      | 33                      | 34                      | 35                                                | 36                      | 37                             | 38                      | 39                      | 40                      |  |  |  |
| 3D mag<br>netome<br>ter | 3D mag<br>netome<br>ter | 3D mag<br>netome<br>ter | orientati<br>on         | orientati<br>on on                                |                         | orientati<br>on                | tempera<br>ture         | 3D accel eration        | 3D accel eration        |  |  |  |
| 41                      | 42                      | 43                      | 44                      | 45                                                | 46                      | 47                             | 48                      | 49                      | 50                      |  |  |  |
| 3D accel eration        | 3D accel<br>eration     | 3D accel eration        | 3D accel eration        | 3D gyro scope scope                               |                         | 3D gyro<br>scope               | 3D mag<br>netome<br>ter | 3D mag<br>netome<br>ter | 3D mag<br>netome<br>ter |  |  |  |
| 51                      | 52                      | 53                      | 54                      | ייים אינטור <i>י</i> י                            | ÷u ¬ + ı                |                                |                         | Han                     | id IMU                  |  |  |  |
| orientati<br>on         | orientati<br>on         | orientati<br>on         | orientati<br>on         | 파일당 행 구조는 다음과 같고,<br>추출하고자 하는 정보(열)는 5개 Ankle IMU |                         |                                |                         |                         |                         |  |  |  |

### 4-1. 데이터 전처리



#### 문제점

- 1. 사람마다 걷기/뛰기 속도가 다름.
- 2. 24가지 동작을 같은 단위로 잘랐을때 동작마다 다른 특성 때문에 특정 단위가 모든동작에 적절한 동작이 되기 어려움
- Ex) 걷는동작 달리는동작은 10초 단위 구분가능, 하지만 눕는동작 앉는동작엔 부적합할수 있음.

### 4-2. 데이터 전처리



15 - 10 - 5 - - 5 - - 10 - 2000 4000 6000 8000 10000 12000 **2. Sitting** 









5. Rope Jumping

## 4-3. 데이터 전처리

|    |          |          |          |          |          |          |          |          |          |          |          | -        |          |     | 9       |            |
|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----|---------|------------|
| -4 | 13618    | -4.13778 | -4.16675 | -4.2769  | -4.46    | 291 -4   | .83892   | -4.97831 | -5.50789 | -6.06029 | -7.0278  | -8.      | 03934    | 4 w | ralking | subject10  |
| -7 | .23051   |          |          | -9.39931 | -10.2    | 886      | -11.34   | -12.1285 |          | -11.9114 | -11.550  | 3 -11    | 1.4152   | 4 w | ralking | subject10  |
| -1 | 2.0875   | -11.1998 | -10.3716 | -9.7407  | -9.11    | 673 -8   | 36254    | -7.98706 | -7.72976 | -7.42745 | -7.1315  | 55 -7.   | 05784    | 4 w | ralking | subject10  |
| -3 | .64746   | -4.19854 | -5.00238 | -6.17395 | -7.53    | 607 -8   | .85665   | -9.58999 | -10.2445 | -10.8025 | -11.632  | -12      | 2.5701   | 4 w | ralking | subject10  |
|    |          |          |          |          |          |          |          |          |          |          |          |          |          |     |         |            |
|    |          |          |          |          |          |          |          |          |          |          |          |          |          |     |         |            |
| 33 | -14.8085 | -15.0843 | -15.1652 | -15.1692 | -14.9101 | -14.4686 | -14.2536 | -13.872  | -13.4233 | -13.2009 | -12.6474 | -11.8238 | -10.9192 | 4   | walking | subject101 |
| 34 |          |          |          |          |          |          |          |          |          |          |          |          |          | 4   | walking | subject101 |
|    |          |          |          |          |          |          |          |          |          |          |          |          |          |     | _       | -          |



#### 결측값 처리



최솟값을 모든 데이터에 더해주어 최솟값을 0으로 만들기

결측값 -1로 채우기

### 4-4. 데이터 전처리

#### 학습데이터

#### 검증 데이터

### 테스트 데이터



6.5 : 1.5 : 2



```
# unfortunately more number of covnolutional layers, filters and filters lenght
# don't give better accuracy
model = Sequential()
model.add(Convolution1D(nb_filter=512, filter_length=1, input_shape=(nb_features, 3)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dropout(0.4))
model.add(Dense(2048, activation='relu'))
model.add(Dense(1024, activation='relu'))
model.add(Dense(nb_class))
model.add(Activation('softmax'))
y_train = np_utils.to_categorical(y_train, nb_class)
y_valid = np_utils.to_categorical(y_valid, nb_class)
sgd = SGD(lr=0.01, nesteroy=True, decay=1e-6, momentum=0.9)
model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=['accuracy'])
nb = poch = 15
model.fit(X_train_r, y_train, nb_epoch=nb_epoch, validation_data=(X_valid_r, y_valid), batch_size=16)
```



### 5. 변인

- •Convolution1D를 사용할 것인가? 2D를 사용할 것인가?
- •Convolution층은 몇개로 구성할 것인가?
- •각각 층의 필터 사이즈 / 필터 수 / stride 는 어떻게 할 것인가?
- •Activation층의 활성화 함수로는 어떤 것을 사용할 것인가?
- •Dense층은 몇개로 구성할 것인가? 뉴런의 수는?
- •Dropout은 몇으로 설정할 것인가?
- •batch size는 몇으로 지정할 것인가?
- •epoch는 몇으로 지정할 것인가?
- •더 나아가면 model.compile부분에서 loss함수로는 무엇을 사용할 것인지? 모맨텀은?

Conv1d vs Conv2d -> Conv층수 -> 필터수 -> 필터 사이즈 -> 배치사이즈 ...

# 감사합니다

