Комплексная геометрия, листочек 1

1 Линейная алгебра

1. Пусть M – комплексная матрица, а $M_{\mathbb{R}}$ – её овеществление. Докажите, что $\det M_{\mathbb{R}} = |\det M|^2$.

Пусть M раскладывается на вещественную и мнимую часть M = A + iB. Тогда мы можем написать овеществленную матрицу:

$$M_{\mathbb{R}} = \left(\begin{array}{cc} A & B \\ -B & A \end{array} \right)$$

Суть решения заключается в том, что мы пытаемся блочно триангонализировать матрицу, что равносильно домножению на обратимые матрицы с двух сторон. Задав коэффициенты боковых матриц и решив систему уравнений, я нашел следующее соотношение:

$$\begin{pmatrix} 0 & -i \\ 1 & i \end{pmatrix} \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \begin{pmatrix} 1 & 0 \\ i & -i \end{pmatrix} = \begin{pmatrix} A+iB & -A \\ 0 & A-iB \end{pmatrix}$$

Дальше мы воспользуемся блочно-диагональным свойством детерминанта, чем мы не могли воспользоваться изначально, потому что вообще говоря такая формула совсем может быть не верна. А также мы воспользуемся мультиплетностью, но для этого нужно иметь матрицы одного размера:

$$\left|\begin{array}{cc|c} 0 & -iI_n \\ I_n & iI_n \end{array}\right| \left|\begin{array}{cc|c} A & B \\ -B & A \end{array}\right| \left|\begin{array}{cc|c} I_n & 0 \\ iI_n & -iI_n \end{array}\right| = \left|\begin{array}{cc|c} A+iB & -A \\ 0 & A-iB \end{array}\right|$$

Теперь нам нужно триангонализировать левую матрицу, переставляя местами соответствующие строки верхней и нижней матрицы. Каждая такая перестановка изменит знак детерминанта и в итоге мы получим

$$(-1)^n \left| \begin{array}{cc} I_n & iI_n \\ 0 & -iI_n \end{array} \right| \left| \begin{array}{cc} A & B \\ -B & A \end{array} \right| \left| \begin{array}{cc} I_n & 0 \\ iI_n & -iI_n \end{array} \right| = \left| \begin{array}{cc} A+iB & -A \\ 0 & A-iB \end{array} \right|$$

Теперь мы можем сосчитать все детерминанты:

$$(-1)^n (-i)^n \det(M_{\mathbb{R}})(-i)^n = \det(A+iB) \det(A-iB)$$
$$\det(M_{\mathbb{R}}) = |\det(A+iB)|^2$$

2. Докажите соотношение между вещественным и комплексным следами косоэрмитова оператора $A:V \to V$

Пусть у нас есть \mathbb{C} -базис (e_i) . В нём мы можем найти коэффициенты оператора

$$A=(\alpha^i_j+\sqrt{-1}b^i_j)e_i\otimes e^{j*}$$

Так как $A^*=-A$, то на диагонали мы имеем $a_i^i-\sqrt{-1}b_i^i=-(a_j^i+\sqrt{-1}b_j^i)$, а значит $a_i^i=0$. Запишем теперь разложение на коэффициенты овеществления

$$A_{\mathbb{R}}=a^i_je_i\otimes e^{j*}-b^i_je_i\otimes (\sqrt{-1}e^{j*})+b^i_j(\sqrt{-1}e_i)\otimes e^{j*}+a^i_j(\sqrt{-1}e_i)\otimes (\sqrt{-1}e^{j*})$$

Теперь давайте запишим разоложение оператора i в овеществленном базисе.

$$J = -e_i \otimes (\sqrt{-1}e^{j*}) + (\sqrt{-1}e_i) \otimes e^{j*}$$

Теперь давайте посчитаем произведение операторов

$$\begin{split} A_{\mathbb{R}}J = & (a_{j}^{i}e_{i} \otimes e^{j*} - b_{j}^{i}e_{i} \otimes (\sqrt{-1}e^{j*}) + b_{j}^{i}(\sqrt{-1}e_{i}) \otimes e^{j*} + a_{j}^{i}(\sqrt{-1}e_{i}) \otimes (\sqrt{-1}e^{j*})) \\ & (-e_{i} \otimes (\sqrt{-1}e^{j*}) + (\sqrt{-1}e_{i}) \otimes e^{j*}) = \\ & (a_{j}^{i}e_{i} \otimes (\sqrt{-1}e^{j*}) - b_{j}^{i}e_{i} \otimes e^{i*} - b_{j}^{i}(\sqrt{-1}e_{i} \otimes (\sqrt{-1}e^{j*}) + a_{j}^{i}(\sqrt{-1}e_{i}) \otimes e^{j*} \end{split}$$

Теперь мы сосчитаем следы:

$$\operatorname{Tr}_{\mathbb{C}}A = \sqrt{-1}b_i^i = -\sqrt{-1}/2\operatorname{Tr}_{\mathbb{R}}(A_{\mathbb{R}}J)$$

3. а) Докажите, что пространство эндоморфизмов $I:V_{\mathbb{R}}\to V_{\mathbb{R}}$, удовлетворяющих IJ+JI=0 может быть отождествлено с $V^{1,0}\otimes (V^*)^{0,1}$

Выберем комплексный базис $e=(e_i)$, его можно дополнить до действительного базиса (e,ie). Разложим на блоки I и I в этом базисе.

$$I = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \qquad J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Посчитаем теперь произведения

$$IJ = \left(\begin{array}{cc} B & -A \\ D & -C \end{array}\right) \qquad JI = \left(\begin{array}{cc} -C & -D \\ A & B \end{array}\right)$$

Теперь их сумму

$$IJ + JI = \begin{pmatrix} B - C & -A - D \\ A + D & B - C \end{pmatrix} = 0$$

Отсюда мы делаем вывод, что $B=\mathcal{C}$ и D=-A, то есть I имеет следующий вид

$$I = \left(\begin{array}{cc} A & B \\ B & -A \end{array}\right)$$

Теперь если считать, что (e, ie) строка векторов, и если в матричном умножении договориться, что умножение векторов – это тензорное умножение, то I можно переписать как элемент тензорного простриства следующим образом

$$I = (e, ie) \begin{pmatrix} A & B \\ B & -A \end{pmatrix} \begin{pmatrix} e^* \\ (ie)^* \end{pmatrix}$$

Где правый столбец - это дуальный базис. Так как $V^{0,1}=\overline{V}$, где единственное отличие в том что умножение на i - это умножение на -i, то мы можем выразить дуальный базис нового пространства следующим образом

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} \overline{e}^* \\ i \overline{e}^* \end{array} \right) = \left(\begin{array}{c} e^* \\ i e^* \end{array} \right)$$

А тогда осуществив подстановку мы получим

$$I = (e, ie) \begin{pmatrix} A & B \\ B & -A \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \overline{e}^* \\ i\overline{e}^* \end{pmatrix} = (e, ie) \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \begin{pmatrix} \overline{e}^* \\ i\overline{e}^* \end{pmatrix}$$

И мы видем, что овеществленная матрица J как отображения из V в \overline{V} является голоморфной, а значит $J \in V^{1,0} \otimes_{\mathbb{C}} (V^*)^{0,1}$. Более того все переходы выше были эквивалентны, а поэтому пространство таких I и $V^{1,0} \otimes_{\mathbb{C}} (V^*)^{0,1}$ тождествены.

b) Докажите, что если J(t) – гладкая кривая в пространстве комплексных структур, такая что J(0)=J, то J(0)J'(0)+J'(0)J(0)=0. Выведите отсюда, что $V^{1,0}\otimes (V^*)^{0,1}$ являются инфинитезимальными деформациями комплексных структур.

Про J мы знаем, что $J^2=-\mathrm{Id}$. Давайте теперь возьмём производную, тогда мы в точности получим JJ'+J'J=0. Тогда мы поймём, что касательное пространство векторов J', и есть пространство инфинитеземальных деформаций комплексных струкстур. К сожалению из этого следует только вложеность касательного пространства в пространство $V^{1,0}\otimes_{\mathbb{C}}(V^*)^{0,1}$. Для равенства достаточно показать, что в окрестности J комплексные структуры образуют гладкое многообразие размерности как минимум $2n^2$.

4. Пусть α – вещественная форма типа (1,1) на V. Докажите, что $n(n-1)\alpha \wedge \alpha \wedge \omega^{n-2} = ((\mathrm{Tr}_{\omega}\alpha)^2 - |\alpha|_{\omega}^2)\omega^n$.

Тогда для некого базиса (e_i) над \mathbb{C} α имеет вид

$$\alpha = \frac{i}{2} A_{i\bar{j}} e^{i*} \wedge \overline{e^{j*}}$$

где A – эрмитова матрица, а симплектическая структура имеет вид

$$\omega = \frac{i}{2}e^{i*} \wedge \overline{e^{i*}}$$

Тогда нетрудно сосчитать степень симплектической структуры, так как нужно сделать комбинаторные выборы из каждого множителя, из первого -n, из второго n-1 и так далее, все перестановки четные, а тогда мы получим

$$\omega^n=(rac{i}{2})n! au$$
, для $au=e^{1*}\wedge\overline{e^{1*}}\dots e^{n*}\wedge\overline{e^{n*}}$

Теперь давайте сосчитаем другую сторону и получим

$$\alpha \wedge \alpha \wedge \omega^{n-2} = (\frac{i}{2})^2 (A_{ii}e^{i*} \wedge \overline{e^{i*}} \wedge A_{jj}e^{j*} \wedge \overline{e^{j*}} + A_{ij}e^{i*} \wedge \overline{e^{j*}} \wedge A_{ji}e^{j*} \wedge \overline{e^{i*}}) \wedge (\frac{i}{2})^{n-2} (n-2)! \sum_{i \neq j} \bigwedge_{k \neq i,j} e^{k*} \overline{e^{k*}} - \overline{e^{i*}} \wedge \overline{e^{j*}} \wedge \overline{e^$$

В первой скобке я оставил только те слогаемые, у которых есть две пары вектор и его сопряженное, потому что только они в произведении с ω^{n-2} дадут ненулевой вклад, причем первое слогаемое без коэффициента даст вклад τ , а второе — $-\tau$, так как нужно будет осущесвить одну транспозицию. Тогда можем это дело упростить, а затем воспользоваться эрмитовостью матрицы.

$$\alpha \wedge \alpha \wedge \omega^{n-2} = (\frac{i}{2})^n (n-2)! (A_{ii}A_{jj} - A_{ij}A_{ji})\tau$$

$$= (\frac{i}{2})^n (n-2)! (\operatorname{Tr}(\alpha)^2 - A_{ij}\overline{A_{ij}})\tau$$

$$= (\frac{i}{2})^n (n-2)! (\operatorname{Tr}(\alpha)^2 - \|\alpha\|_{\omega}^2)\tau$$

В итоге нетрудно отсюда видеть, что искомое соотношение верно. Я правда не уверен, что ${\rm Tr} \equiv {\rm Tr}_{\omega}$, но формула сошлась с искомой.

5. Пусть (V,g) – вещественное векторное пространство размерности 2, на котором задана евклидова метрика g. Постройте на (V,g) оператор комплексной структуры. Выведите отсюда, что на любом ориентируемом римановом многообразии (M^2,g) существует поле тензорное поле операторов J, таких, что $J^2 = -Id$.

Собственно на V задание структуры просто, мы выбираем ортонормированный базис (e_1,e_2) и говорим, что $Je_1=e_2$, а $Je_2=-e_1$. Из курса геометрии известно, что для ортонормированных базисов одной ориентации такое задание оператора J совпадает по базисам, а именно это поворот на 90 градусов по заданному направлению.

Для многообразия мы хотим проверить, что заданное поле таких структур будет гладким. Так как многообразие ориентируемое, то мы имеем ориентированный атлас (U_α, f_α) . Тогда в рамках одной карты $(U, f = (x^1, x^2))$, мы можем образовать гладкий базиз (∂_1, ∂_2) касательных векторов к линиям координат. Затем, так как вектора не занулятся, то при процедуре ортогонализации Грамм-Шмидта базис останется гладким, и если мы выберем ориентацию в codom f, то мы получим ориентированый ортонормированный гладкий базис (e_1, e_2) на U. Соответственно зададим f в базисе (e_1, e_2) следующей матрицей:

$$J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Так как матрица постоянна, а базис гладок, то полученное поле J само гладко.

Осталось проверить, что поле правильно склеивается между картами. Пусть у нас есть две пересекающиеся карты U и V. Тогда на их пересечении в каждой точке есть соответствующие картам ортонормированные базисы, но так как ориентация совпадает, то J одинаково определен в разных картах на пересечении, как это было в (V,g). Тогда поле J существует и согласуется с метрикой, так как в каждом касательном прострастве J – движение.

6. Пусть (V, g) – вещественное векторное пространство вещественной размерности 4, а g – лоренцева метрика сигнатуры (1,3). Покажите, что на $\bigwedge^2(V)$ существует оператор комплексной структуры.

Пусть (e_i) – ортонормированный базис в котором матрица g равна diag(1, -1, -1, -1), также мы имеем форму объема τ ассоциированную с базисом e.

Тогда пространство $\bigwedge^2(V)$ имеет базис $(e_1 \land e_2, e_1 \land e_3, e_1 \land e_4, e_2 \land e_3, e_2 \land e_4, e_3 \land e_4)$ и имеет следующее скалярное произведение:

$$\langle a_1 \wedge a_2, b_1 \wedge b_2 \rangle = \det \left(\begin{array}{cc} \langle v_1, w_1 \rangle & \langle v_1, w_2 \rangle \\ \langle v_2, w_1 \rangle & \langle v_2, w_2 \rangle \end{array} \right)$$

Заметим, что наш выбранный базис на $\Lambda^2(V)$ ортонормирован.

Теперь нам нужно выбрать кандидата на роль оператора J, и им будет звезда ходжа. По определению мы должны иметь

$$\phi \wedge (\star \psi) = \langle \phi, \psi \rangle \tau$$

 \star очевидно должен быть линеен, так как скалярное произведение линейно, и более того, так как 4-2=2, то codom $\star=\bigwedge^2(V)$.

Так как выбранный базис ортонормален, то $\star(e_i \wedge e_j)$ должен содержать только противоположные индексы, так как иначе, мы бы нашили другой базисный вектор f, чья координата ненулевая в $\star(e_i \wedge e_j)$, Взять дополняющий его элемент базиса g, такой, чтобы $f \wedge g \neq 0$. Заметим, что $g \neq e_i \wedge e_j$, тогда если за ϕ взять g, а за $\psi - e_i \wedge e_j$, то в определяющем звезду ходжа равенстве мы бы получили слева неноль, а справа ноль из-за ортонормированности базиса.

Теперь мы можем окуратно посчитать образы дуальных элементов.

$$\begin{split} e_1 \wedge e_2 \wedge (\star(e_1 \wedge e_2)) &= -\tau \\ & \star(e_1 \wedge e_2) = -e_3 \wedge e_4 \\ \\ e_1 \wedge e_3 \wedge (\star(e_1 \wedge e_3)) &= -\tau \\ & \star(e_1 \wedge e_3) = e_2 \wedge e_4 \\ \\ e_1 \wedge e_4 \wedge (\star(e_1 \wedge e_4)) &= -\tau \\ & \star(e_1 \wedge e_4) = -e_2 \wedge e_3 \\ \\ e_2 \wedge e_3 \wedge (\star(e_2 \wedge e_3)) &= -\tau \\ & \star(e_2 \wedge e_3) = e_1 \wedge e_2 \\ \\ e_2 \wedge e_4 \wedge (\star(e_2 \wedge e_4)) &= -\tau \\ & \star(e_2 \wedge e_4) &= -e_1 \wedge e_3 \\ \\ e_3 \wedge e_4 \wedge (\star(e_3 \wedge e_4)) &= -\tau \\ & \star(e_3 \wedge e_4) &= e_1 \wedge e_2 \\ \end{split}$$

Тогда в выбраном ортонормированном базисе мы можем записать матрицу *.

$$\operatorname{Mat}(\star) = \left(\begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

Из матрици видно, что на $\Lambda^2(V)$ мы имеем $\star^2 = -\mathrm{Id}$.

7. Докажите неравенство Виртингера: если $W \subset V$ – векторное подпространство вещественной размерности 2k. Пусть Vol_W – форма объема на W, индуцированная метрикой g. Тогда выполнено следующее неравенство:

$$\omega^k|_W \leq k! \mathbf{Vol}_W$$

и равенство достигается тогда и только тогда, когда W – комплексное подпространство.