

Wiki on processes and products for Life Cycle Assessment (LCA) Overview

Edited: 08/10/2025

MITSUBISHI ELECTRIC R&D CENTRE EUROPE

MFR2025-ARC-0738

Outline

- 1. Some challenges in LCA Initial motivation
- 2. Overview of the project
- 3. Vision
- 4. Data structure
- 5. Data import example
- 6. Tentative parametric approach

Some challenges in LCA – Initial motivation

LCA results without transparency on the processes used (life cycle inventory - LCI) has **limited scientific value**.

- Impact results give **non explainable information**. Cannot be analyzed by experts.
- Given processes, one can compute and explain impact results.
- Used processes seem to be as important as methodology considered (e.g., PCR/PSR).
 - Using same methodology but different databases, one can observe up to x100 difference.
- No peer review for private databases.

However, there exist several papers in the public domain providing processes used in the scope of LCA.

- <u>Proposal</u>: Centralize processes in a collaborative « wiki of product and processes ».
- Focus on « downstream » processes unlike e.g., ecoinvent which focuses on « upstream » processes.

PCR: Product category rules. PSR: Product specific rules.

Overview of the project (1)

- Project link: https://github.com/merce-fra/Wiki-on-processes-and-products-for-LCA
 - Still at prototype stage. Goal is to illustrate approach.
- Project consists of four main parts:
 - 1. The Wiki: to organize processes and products, that can be found in the public domain, to be used for the Life Cycle Inventory (LCI) part of a Life Cycle Assessment (LCA) study.
 - 2. The import function for Brightway-formatted data.
 - **3. Visualization function**: automatically build a **dependency tree** starting from a chosen product or process node, **with identification of alternative process nodes**.
 - **4. Al-based Wiki Edition**: Al to assist in the management of the Wiki. It automates tasks such as page generation (for not brightway-compliant data), inconsistency detection, and product similarity analysis.

Overview of the project (2)

Wiki home page

GitHub home page

Vision (1)

Currently, performing a LCI includes the following challenges:

- Scientific contributions are often referenced by the end product, but may also include sub-process data valuable for other studies.
- Several processes may exist to produce the same product.
- This open wiki is designed to efficiently list and compare multiple approaches for performing the inventory of a product. It references data at the process level.
- Easy to compare existing options and select the most suitable approach.

Example where LCI 1 and LCI 2 contain mutually benecicial data

Common process in LCI 1 and LCI 2

Vision (2) - Illustrative example

Electrolytic capacitors

- The ecoinvent reference to produce an <u>electrolytic capacitors</u> was originally added when importing the inventory of the <u>Dell computer</u>.
- A second inventory was imported as data from a research paper dedicated to this topic. The import script automatically detected that the process produces a product already present in the wiki.
- Visualization script identifies that two alternative processes now exist for this
 node in the tree starting at the <u>Dell computer</u> node. Red nodes in the graph.
- This enables researchers studying the Dell computer to easily update their LCA with the alternative process for the electrolytic capacitors and compare the results.
- Link to the tree: roducts-for-LCA/out-tree/graph-pd-dell-3620_computer.svg

pd_electrolytic_capacitors

corlay edited this page on Jul 3 · 3 revisions

Product: pd_electrolytic_capacitors

- Ecoinvent: market for capacitor_electrolyte_type_<2cm_height | GLO
- ps_electrolytic_capacitors_aging_and_inspection_zhang

pd_gpu

corlay edited this page on Jul 9 · 3 revision

 ${\mathscr O}$ List of processes

- ps_gpu_loubet
- ps_nvidia_ai_gpu_chip_parameter_appa
- ${\mathscr O}$ May be similar to the following products

Data structure (1) - Overview

Product

- One product is always produced by a process.
- Several processes can be proposed for the same product (technical or geographic difference).

Process

- Process may or may not produce a product.
- It is composed of technosphere flows and biosphere flows.
- Technosphere flow:
 - Consumption of products and processes.
- Biosphere flow:
 - Consumption and emission of biosphere elements.
- · Original root and process node.

Data structure (2)-Product and process Mardown pages

9

- Page of product X:
 - Process A
 - Process B
 - Original process for product as root node.
 - · Original LCI scope
 - Original tree
 - Process C

Blue: clickable

Process E = Ecoinvent process (non clickable)

Page of process A:

- <u>Technosphere flow:</u>
 - Production
 - Product X
 - Product Y
 - Consumption
 - Product A
 - Quantity
 - Product B
 - Product C
 - Process B
- Biosphere Flow:
 - <u>Emission</u>
 - CO2
 - Consumption
 - water
- Original root product and process nodes
 - Product: XXX
 - Process: XXX
- Information:

Publi ref...

Note: does not include parametric approach

Data structure (3)- Original scope and structure of inventory

The **original scope and structure of an inventory** is an important information to keep.

- For instance, the quantity used in a sub-process are often established with respect to the root product LCI scope.
- New processes may be added under an existing product → lose track of original path in tree.

Page structure (see <u>pd smd thin resistor</u>, <u>pd livebox 6</u>, <u>Dell computer for examples</u>):

- When importing an inventory, the LCI scope shoud be specified.
- The root process of a root product is clearly indicated.
- This LCI scope is added under the original process of the root product of the inventory.
- The original tree path is computed and added under the original process of the root product of the inventory (link to rn_ file).
- A link to the original root product and process nodes is added in each child process page.

Original root product and process nodes

- Product: pd_livebox_6
- Process: ps_livebox_6_production

Data import example

GitHub Project

with code to import/edit pages

Wiki Project

Mardown pages located in process & product folders...

New pages created in process_new & product_new folders.

Tentative parametric approach

12

The example of **Appa's parametric GPU model** has been added to the wiki to help identify necessary adaptations.

This process is now listed under the GPU product page of the wiki.

In the <u>Appa GPU process branch</u>, the wiki page structure updated as follow to handle the parametric model.

- New "Parameters" section: List of the input parameter names.
- New "parameters" field: Added to the metadata following a process name in the "Consumption" section.
- **Models** (based on Appa's "Parameter Matching"):
 - If a model is used by a single process, it is added as a local model under that process.
 - If a model is used by multiple processes, consider creating a Global Model section to avoid duplication.
- New "Impact Flow" section: Allows for impact formulas based on parameters (e.g., see logic wafer).

