Juan de Dios Pérez y Alfonso Romero

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Sea V(K) un e.v. de dimensión myor o igual que dos y sea $S = \{u_1, ..., u_n\}$ un subconjunto de vectores e V. Se sabe que S es un sistema de generadores de V y que $V \setminus \{u_i\}$ ya no genera a V, para todo i = 1, ..., n. Prueba que S es una base de V.
 - Sea el vector $(3,2,1) \in \mathbb{R}^3$. ¿Pueden existir tres bases ordenadas distintas de \mathbb{R}^3 en las que dicho vector tenga coordenadas (1,1,1)?
- 2. Considera el espacio $\mathbb{R}_3[x]$.
 - Encuentra un subespacio W de manera que $\mathbb{R}_3[x] = U \oplus W$ siendo $U = \{p \in \mathbb{R}_3[x] : p(1) = p'(1) = 0\}.$
 - Dado $p(x) = (1+x)^3$, calcula $p_1 \in U$ y $p_2 \in W$ tales que $p = p_1 + p_2$.
- 3. Sea f un endomorfismo de \mathbb{R}^3 de manera que existan $x, y \in \mathbb{R}^3$ no nullos tales que f(x) = x y f(y) = -y. ¿Es $\{x, y\}$ linealmente independiente?
 - Encuentre un endomorfismo h de $\mathbb{R}^3(\mathbb{R})$ que cumpla $(1,-1,1) \in Im(h)$, $(1,1,1) \in Ker(h)$ y traza(h) = 1, dando su matriz respecto a la base ordenada usual de \mathbb{R}^3 .
- 4. Considera $\phi_1, \phi_2 \in \mathcal{M}_2(\mathbb{R})^*$ dadas por $\phi_1(A) = a + d$ y $\phi_2(A) = a d$, siendo $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
 - Demuestra que $\{\phi_1, \phi_2\}$ es linealmente independiente.
 - Amplía $\{\phi_1, \phi_2\}$ hasta tener una base $\tilde{\mathcal{B}}$ de $\mathcal{M}_2(\mathbb{R})^*$.
 - \blacksquare Encuentra la base \mathcal{B} que es dual de la anterior.