Title

D. Zack Garza

Tuesday 15^{th} September, 2020

Contents

1 Tuesday, September 15

1.1 Review	
$1 \mid$ Tuesday, September	r 15
1.1 Review	
Let $k = \bar{k}$, we're setting up correspondences	
Ring Theory	Geometry/Topology of Affine Varieties
Polynomial functions	Affine space
$k[x_1,\cdots,x_n]$	$\mathbb{A}^n/k := \{[a_1, \cdots, a_n] \in k^n\}$
Maximal ideals $\langle x_1 - a_1, \cdots, x_n - a_n \rangle$	Points $[a_1, \cdots, a_n] \in \mathbb{A}^n/k$
Radical ideals $I \leq k[x_1, \cdots, x_n]$	Affine varieties $X \subset \mathbb{A}^n/k$, vanishing locii of polynomials
I	$\mapsto V(I) := \left\{ a \mid f(a) = 0 \forall f \in I \right\}$
$I(X) \coloneqq \left\{ f \mid f _X = 0 \right\}$	$\leftarrow \!$
Radical ideals containing $I(X)$, i.e. ideals in $A(X)$	closed subsets of X , i.e. affine subvarieties
A(X) is a domain	X irreducible
A(X) is not a direct sum	X connected
Prime ideals in $A(X)$	Irreducible closed subsets of X
Krull dimension n (longest chain of prime ideals)	$\dim X = n$, (longest chain of irreducible closed subsets).

1

Recall that we defined the coordinate ring $A(X) := k[x_1, \cdots, x_n]/I(X)$, which contained no nilpotents.

We had some results about dimension

- 1. $\dim X < \infty$ and $\dim \mathbb{A}^n = n$.
- 2. $\dim Y + \operatorname{codim}_X Y = \dim X$ when $Y \subset X$ is irreducible.
- 3. Only over $\bar{k} = k$, $\operatorname{codim}_X V(f) = 1$.

Example 1.1.

Take $V(x^2 + y^2) \subset \mathbb{A}^2/\mathbb{R}$

Definition 1.0.1 (?).

An affine variety Y of

- dim Y = 1 is a curve,
 dim Y = 2 is a surface,
- $\operatorname{codim}_X Y = 1$ is a hypersurface in X

Question: Is every hypersurface the vanishing locus of a *single* polynomials $f \in A(X)$?

Answer: This is true iff A(X) is a UFD.

Definition 1.0.2 (Codimension in a Ring). $\operatorname{codim}_{R}\mathfrak{p}$ is the length of the longest chain

$$P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = \mathfrak{p}.$$

Recall that f is irreducible if $f = f_1 f_2 \implies f_i \in \mathbb{R}^{\times}$ for one i, and f is prime iff $\langle f \rangle$ is a prime ideal, or equivalently $f \mid ab \implies f \mid a$ or $f \mid b$.

Note that prime implies irreducible, since f divides itself.

Proposition 1.1(?).

Let R be a Noetherian domain, then TFAE

- a. All prime ideals of codimension 1 are principal.
- b. R is a UFD.

Proof.

 $a \implies b$:

Let f be a nonzero non-unit, we'll show it admits a prime factorization. If f is not irreducible, then $f = f_1 f'_1$, both non-units. If f'_1 is not irreducible, we can repeat this, to get a chain

$$\langle f \rangle \subsetneq \langle f_1' \rangle \subsetneq \langle f_2' \rangle \subsetneq \cdots$$

which must terminate.

This yields a factorization $f = \prod f_i$ with f_i irreducible. To show that R is a UFD, it thus suffices to show that the f_i are prime. Choose a minimal prime ideal containing f. We'll use Krull's Principal Ideal Theorem: if you have a minimal prime ideal p containing f, its codimension $\operatorname{codim}_{R}\mathfrak{p}$ is one. By assumption, this implies that $\mathfrak{p}=\langle g\rangle$ is principal. But $g \mid f$ with f irreducible, so f, g differ by a unit, forcing $\mathfrak{p} = \langle f \rangle$. So $\langle f \rangle$ is a prime ideal.

 $b \implies a$:

Let \mathfrak{p} be a prime ideal of codimension 1. If $\mathfrak{p} = \langle 0 \rangle$, it is principal, so assume not. Then there exists some nonzero non-unit $f \in \mathfrak{p}$, which by assumption has a prime factorization since R is assumed a UFD. So $f = \prod f_i$.

Since \mathfrak{p} is a prime ideal and $f \in \mathfrak{p}$, some $f_i \in \mathfrak{p}$. Then $\langle f_i \rangle \subset \mathfrak{p}$ and \mathfrak{p} minimal implies $\langle f_i \rangle = \mathfrak{p}$,

so $\mathfrak p$ is principal.

Example 1.2.

Apply this to R = A(X), we find that there is a bijection

codim
1 prime ideals \iff codim
1 closed irreducible subsets $Y\subset X,$ i.e. hypersurfaces.