

Open-Minded

Winter Term 2019/2020

Dr. Yannick Hoga Thilo Reinschlüssel

Multivariate Time Series Analysis Solution Exercise Sheet 4

1 Exercise 1: Information Criteria

Prove Corollary 4.5 from Slide 4-7.

Solution:

From Theorem 4.4:

$$C(l) = \log(\hat{\Sigma}_a(l)) + \frac{l}{T} \cdot c_T$$

i)
$$\lim_{T\to\infty} c_T \longrightarrow \infty$$

ii)
$$\lim_{T\to\infty} \frac{c_T}{T} \longrightarrow 0$$

If i) and ii) hold, C(l) chooses the optimal/correct model.

• AIC: $c_T = 2K^2$

$$\lim_{T \to \infty} c_T = 2 K^2 \implies \infty$$

 \Rightarrow not consistent

• BIC: $c_T = \log(T) \cdot K^2$

$$\lim_{T \to \infty} c_T = \log(T) \cdot K^2 \implies \infty \lim_{T \to \infty} \frac{c_T}{T} \frac{\log(T)}{T} K^2 \implies 0$$

 \Rightarrow consistent

• HQ: $c_T = 2 \log(\log(T)) K^2$

$$\lim_{T \to \infty} c_T = 2 \log(\log(T)) K^2 \implies \infty \lim_{T \to \infty} \frac{c_T}{T} \frac{2 \log(\log(T)) K^2}{T} \implies 0$$

 \Rightarrow consistent

Exercise 2: VAR(p): Data application $\mathbf{2}$

This exercise is concerned with finding an appropriate VAR(p) model for US macroeconomic data. You can find the dataset us_macrodata.Rda attached to this exercise sheet in the Moodle folder for this tutorial. Please use the load command to import the dataset from your directory into R. There are 5 variables – CPI, Real GDP, the unemployment rate, general private investment and the debt-to-GDP ratio. All series have been sampled quarterly and were seasonally adjusted before downloaded from FRED.

```
# loading data
load(file = here::here("exercise_MTSA/00_data/us_macrodata.Rda"))
# loading the MTS package
library(MTS)
```

a Plot all time series and judge which time series seem non-stationary. Proceed to compute growth rates of the non-stationary variables.

Solution:

```
macmat <- data.matrix(us.macro series)</pre>
plot.ts(macmat)
```

macmat

12000 0009 debt_gdp gp_investment 3000 1000 100 80 9

40

0

50

100

Time

150

200

Every series except unemployment looks non-stationary. Regarding the debt-to-gdp ratio, this is surprising, but we better difference it as well.

Series 1 0.01 10 -0.02 Series 2 ω 9 4 0.03 Series 3 0.01 -0.02 50 100 150 200 Time

macdata

Note that the last observation of "unemp" was dropped for conformable length. Its last and not first due to the date information: measurements are always from the first day of a quarter.

b Perform a Ljung-Box test on the dataset. Does it look worthwhile to estimate a VAR(p)

Solution:

```
mq(x = macdata, lag = 20)
```

Ljung-Box Statistics:

##		m	Q(m)	df	p-value
##	[1,]	1	369	25	0
##	[2,]	2	658	50	0
##	[3,]	3	932	75	0
##	[4,]	4	1211	100	0
##	[5,]	5	1430	125	0
##	[6,]	6	1624	150	0
##	[7,]	7	1796	175	0
##	[8,]	8	1953	200	0
##	[9,]	9	2083	225	0
##	[10,]	10	2205	250	0
##	[11,]	11	2313	275	0
##	[12,]	12	2418	300	0
##	[13,]	13	2513	325	0
##	[14,]	14	2619	350	0
##	[15,]	15	2702	375	0
##	[16,]	16	2793	400	0
##	[17,]	17	2881	425	0
##	[18,]	18	2965	450	0
##	[19,]	19	3031	475	0
##	[20,]	20	3112	500	0

p-values of Ljung-Box statistics

There is some correlation in the dataset.

$$mq(x = macdata[,-3], lag = 20)$$

##	Ljung-H	Box Stat	istics:		
##		m	Q(m)	df	p-value
##	[1,]	1	337	16	0
##	[2,]	2	607	32	0
##	[3,]	3	866	48	0
##	[4,]	4	1121	64	0
##	[5,]	5	1325	80	0
##	[6,]	6	1502	96	0
##	[7,]	7	1650	112	0
##	[8,]	8	1781	128	0
##	[9,]	9	1894	144	0
##	[10,]	10	2003	160	0
##	[11,]	11	2101	176	0
##	[12,]	12	2197	192	0
##	[13,]	13	2278	208	0
##	[14,]	14	2372	224	0
##	[15,]	15	2444	240	0
##	[16,]	16	2518	256	0
##	[17,]	17	2589	272	0
##	[18,]	18	2651	288	0
##	[19,]	19	2702	304	0
##	[20,]	20	2761	320	0

p-values of Ljung-Box statistics

Even without unemployment, there is some correlation in the dataset.

c Determine the length of the time series. How many coefficients can be estimated and what does it mean for K and p?

```
data_dim <- dim(macdata)

Tmax <- data_dim[1] # observations

K <- data_dim[2] # variables

(max.p <- (Tmax * K - K) / K^2)</pre>
```

[1] 39.2

39 lags can be estimated in addition to the intercept.