XI. Confidence Intervals

Instructor: Yanlin Qi

Institute of Transportation Studies

Department of Statistics

University of California, Davis

Sec 7.1: Basic properties of confidence intervals

Sec 7.3: Intervals based on a normal population distribution

Sec 7.4 Confidence intervals for the variance of a normal population

Introduction

- Last time we started considering the new setting in which we only know the distribution type, but not the values of its parameters.
- The new goal is to use a random sample to infer about the unknown population parameter. This is called statistical inference.

- We also mentioned three different kinds of inference tasks
 - **✓ Point estimation**: What is a single (best) guess of the value of θ ?

- **Interval estimation**: Can you find an interval to capture the value of θ ?
- **Hypothesis testing**: It is claimed that $\theta = \theta_0$ (θ_0 represents a specific number). How do you test the hypothesis based on a random sample from the population?

*Recall that mathematically, a **point estimator** θ of θ is a (reasonable) <u>statistic</u> used to estimate θ .

 \Leftrightarrow For any specific realization of the random sample, the corresponding value of $\hat{\theta}$ is called a <u>point estimate</u> of θ .

Limitations with point estimation:

- Point estimates are rarely exactly correct (even when point estimators that are unbiased and have least variance are used).
- * For example, for a random sample from the $N(\mu, \sigma^2)$ population, the point estimator \bar{X} of μ is a MVUE. For any small c > 0, the probability that \bar{X} is within a distance of c from μ is

$$P(\mu - c < \overline{X} < \mu + c) \approx 2cf(\mu).$$

Point estimates provide no error information.

$$P(\mu - c < \overline{X} < \mu + c) \approx 2cf(\mu).$$

- Question: Can we make the "coverage probability" much higher than 0?
 - The answer is yes (by using an interval around X). One extreme case is

$$P(\mu \in (\bar{X} - \infty, \bar{X} + \infty) = 1)$$

but it is useless.

A more favorable solution is to find a "short" interval with "high" coverage probability:

$$P(\mu \in (\bar{X} - m, \bar{X} + m)) = 1 - \alpha$$
 (for some small α).

Rewrite as

$$P(\mu \in (\bar{X} - m, \bar{X} + m) = 1 - \alpha$$

- In the equation,
 - μ: population mean (unknown parameter to be estimated)
 - \bar{X} : sample mean (statistic)
 - *m*: half width (fixed scalar, to be found)
 - 1 α : coverage probability (specified by user)
 - $(\bar{X} m, \bar{X} + m)$: interval estimator (random)
- **Task**: Given α , find m.

* Theorem 0.1. Assume $X_1, \ldots, X_n \stackrel{iid}{\sim} N (\mu, \sigma^2)$ where μ is unknown, but σ^2 is known. For any given $0 < \alpha < 1$, we have

$$m = z\alpha_{/2} \frac{\sigma}{\sqrt{n}}$$

Proof.

$$P(\mu \in (\bar{X} - m, \bar{X} + m) = 1 - \alpha$$

is equivalent to

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha$$

standardize $(\bar{X} - \mu)$ to a standard NRV Z:

$$P\left(-\frac{m}{\sigma/\sqrt{n}} < Z < \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha.$$

This implies that

$$\frac{m}{\sigma/\sqrt{n}} = z_{\alpha/2},$$

Proof.

This implies that

$$\frac{m}{\sigma/\sqrt{n}} = z_{\alpha/2},$$

and accordingly,

$$m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

Interval estimator

We have just obtained that

$$P\left(\mu \in \left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)\right) = 1 - \alpha.$$

Def 0.1. We call the interval estimator

$$\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \equiv \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 \Rightarrow a $1-\alpha$ random interval for μ . The quantity $m=z\alpha_{/2}\frac{\sigma}{\sqrt{n}}$ is called the margin of error of the point estimator \bar{X}

Remark. If
$$\alpha = 0.05$$
 (i.e., $1 - \alpha = 0.95$), then m = 1.96 $\frac{\sigma}{\sqrt{n}}$

Confidence interval

Def 0.2. For any specific sample $X_1 = x_1, ..., X_n = x_n$ (along with the observed value \bar{x} of \bar{X}), the <u>interval</u> estimate

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

is called a $1-\alpha$ confidence interval for μ . In this setting, $1-\alpha$ is called the confidence level.

- **Example 0.1.** Recall the brown egg example where n = 12, $\bar{x} = 65.5$ and $\sigma = 2$.
- A 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1 = (64.4, 66.6).$$

- Interpretations of confidence intervals
- We can say that
 - (64.4, 66.6) is a 95% confidence interval for μ , or
 - We are 95% confident that the true μ is contained by this interval (i.e., between 64.4 and 66.6 grams).
- We <u>cannot</u> say that
 - The probability that μ is contained by this interval is 0.95,
- \diamond as both μ and this interval are fixed and there is only one truth: "contain" or "not contain". We just do not know which one is true (when μ is un-known).

Confidence is not probability!

- Probability describes, the chance of selecting a blue ball <u>before</u> you actually do it (or if you do it many times)
- Confidence is, <u>after</u> you selected one ball, how certain you believe the ball you got is blue (without looking at it).

*Relationship between m and n, α (m: margin of error, n: sample size, $1 - \alpha$: confidence level)

$$m = z\alpha_{/2} \frac{\sigma}{\sqrt{n}}$$

- The larger the sample size n, the smaller the margin of error m (the shorter the confidence interval);
- * The larger the confidence level $1-\alpha$, the bigger the margin of error m (the wider the confidence interval).

Confidence intervals (Previous example)

- **Example 0.1.** Recall the brown egg example where n = 12, $\bar{X} = 65.5$ and $\sigma = 2$.
- ❖ A 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1 = (64.4, 66.6).$$

- **Example 0.2** (Continuation of the brown egg example).
- Another sample from the same population
 - ❖ Same mean $\bar{x} = 65.5$ but <u>a larger size</u> n = 48
 - ❖ A 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{48}} = 65.5 \pm 0.55.$$

* How large should the sample size be in order for the margin of error to be 0.2 (at level 95%)?

$$n = \left(z_{\alpha/2} \frac{\sigma}{m}\right)^2 = \left(1.96 \cdot \frac{2}{0.2}\right)^2 = 384.2.$$

The smallest sample size thus is 385.

Example 0.3 (Continuation of the brown egg example). Using the same sample, a 99% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 2.576 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.5 = (64.0, 67.0),$$

and a 90% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.645 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 0.95$$

Remark. 99% CI > (longer than) 95% CI > 90% CI

What if we also do not know σ ?

- ❖ If the PDF and the standard deviation σ are unknown and the sample size is not large (n < 30)
 - Then a different distribution from the normal must be employed to construct the CI
 - However, we have to assume the PDF as normal

Assuming a normal population $N(\mu, \sigma^2)$, with both μ , σ^2 unknown, we can still construct a $1 - \alpha$ confidence intervals for

 $(1) \mu$

(2) σ^2

• We present the details next.

Confidence interval for μ (when σ is unknown)

* Recall when σ was assumed to be known, to derive a $1 - \alpha$ confidence interval for μ , we started with

$$P(\bar{X} - m < \mu < \bar{X} + m) = 1 - \alpha$$

and got (after rearranging terms)

❖
$$P(-m < X^{-} - \mu < m) = 1 - \alpha$$
.

• In order to solve for m, we then standardized $X \sim N (\mu, \sigma^2/n)$:

$$P\left(-\frac{m}{\sigma/\sqrt{n}} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha.$$

***When** σ is unknown, we can use its estimator S in place of σ : Dividing all sides of the inequalities in the equation

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha.$$

• by $\frac{S}{\sqrt{n}}$ gives that

$$P\left(-\frac{m}{S/\sqrt{n}} < \frac{\bar{X} - \mu}{S/\sqrt{n}} < \frac{m}{S/\sqrt{n}}\right) = 1 - \alpha$$

❖ To determine m, we need to know the distribution of the middle quantity. It turns out that it follows a t distribution with n-1 degrees of freedom:

$$T = \frac{X - \mu}{S / \sqrt{n}} \sim t(n - 1) = t_{n-1}.$$

Student's t distributions

Def 0.3. The t distribution with ν degrees of freedom is a continuous distribution whose pdf has the following form

$$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty < x < \infty.$$

Properties:

- (1) The graphs are also symmetric, unimodal and bell-shaped.
- (2) E(X) = 0.
- (3) $Var(X) = \frac{v}{v-2}$ (when v > 2).
- (4) $t(v) \rightarrow N(0,1)$ as $v \rightarrow +\infty$.

The t-distribution, particularly when degrees of freedom are high, closely **resembles** the <u>normal</u> <u>distribution</u> but has heavier tails.

\bullet Confidence interval for μ (when σ unknown)

Theorem 0.2. A $1-\alpha$ confidence interval for μ in the case of a normal population

$$iid X_1, \ldots, X_n \sim N(\mu, \sigma^2),$$

where σ is unknown, is

$$\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}.$$

Remark. Compare with:

$$ar{x}\pm z_{lpha/2}rac{\sigma}{\sqrt{n}}$$
 (when σ known).

(Use the t table to find the t critical Value $t\alpha_{/2} \frac{\sigma}{\sqrt{n}}$

Example 0.4. In the brown egg example, we selected a sample of 12 eggs (in a carton) and obtained that $x^- = 65.5$ and $s^2 = 4.69$. Assuming normal population (with unknown variance), we obtain a 95% confidence interval

$$\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}} = 65.5 \pm t_{0.025,11} \frac{\sqrt{4.69}}{\sqrt{12}} = 65.5 \pm 2.201 \sqrt{\frac{4.69}{12}} = 65.5 \pm 1.4.$$

Remark. Previously, when σ = 2 was used, we obtained the following 95% confidence interval

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1,$$

which is shorter. Why?

Confidence interval on Variance

Confidence Interval on Variance of NPDF

- Assume the same setting of a random sample from a normal population:
 - Let $X_1, X_2, X_3, ..., X_n$ $\stackrel{iid}{\sim} N(\mu, \sigma^2)$ (both are unknown), and let S^2 be the sample variance
 - We already know that S^2 is an unbiased estimator of σ^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

•• We can further use S^2 to construct a $1 - \alpha$ confidence interval for σ^2 .

Confidence Interval on Variance of NPDF

• Theorem 0.3. A $1-\alpha$ confidence interval for σ^2 in the case of a normal population $x_1, x_2, x_3, ..., x_n^{iid} \sim N(\mu, \sigma^2)$ is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2, n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2, n-1}}\right) \qquad \frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2}, n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2}, n-1}}$$

Where $\chi^2_{\alpha/2,\,n-1}$ and $\chi^2_{1-\alpha/2,\,n-1}$ denote the critical values associated to the chi-square (χ^2) distribution with n-1 degrees of freedom

For any
$$X \sim \chi^2(n-1)$$
,

$$P(X > \chi^{2}_{\alpha/2, n-1}) = \alpha/2$$

$$P(X > \chi^{2}_{1-\alpha/2, n-1}) = 1 - \alpha/2.$$

Confidence Interval on Variance of NPDF

In the brown egg example, suppose we did not know the true value of σ^2 . Let us find a 95% confidence interval for σ^2 based on the specific sample we have been using: $n = 12, s^2 = 4.69$.

We need to find the two χ^2 critical values (by <u>using table</u>):

•
$$\chi^2_{\alpha/2, n-1} = \chi^2_{.025, 11} = 21.92;$$

•
$$\chi^2_{1-\alpha/2, n-1} = \chi^2_{.975, 11} = 3.82.$$

Therefore, a 95% confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2,\,n-1}^2}, \frac{(n-1)s^2}{\chi_{1-\alpha/2,\,n-1}^2}\right) = \left(\frac{11\cdot 4.69}{21.92}, \frac{11\cdot 4.69}{3.82}\right) = (2.35, 13.51).$$

One-sided confidence intervals

Sometimes there is a need for only one-sided confidence intervals:

Lower confidence bound

$$1 - \alpha = P(\mu > \bar{X} - m)$$

$$\bar{X} - m \qquad \bar{X}$$

Upper confidence bound

$$1 - \alpha = P(\mu < \bar{X} + m)$$

$$\bar{X} \qquad \bar{X} + m$$

- •• It is possible to obtain one-sided confidence bounds for μ by setting either $l=-\infty$ or $u=\infty$ and replacing $z_{\alpha/2}$ by z_{α}
- $A 100(1 \alpha)\%$ upper-confidence bound for μ is

$$\mu \leq u = \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

 $A 100(1 - \alpha)$ % lower-confidence bound for μ is

$$\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = l \leq \mu$$

- *Theorem 0.4. Assuming a random sample $X_1, X_2, X_3, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with unknown μ but known σ^2 . Then
- $A 1 \alpha$ lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

 $A 1 - \alpha$ upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Remark. For each confidence bound $m=z_{\alpha}\frac{\sigma}{\sqrt{n}}$

- **Example 0.5.** In the brown egg example (where $\bar{x} = 65.5$, $\sigma = 2$).
- \clubsuit A 95% upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}} = 65.5 + z_{.05} \frac{2}{\sqrt{12}} = 65.5 + 1.645 \frac{2}{\sqrt{12}} = 66.45.$$

 \diamond Similarly, a 95% lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 65.5 - 1.645 \frac{2}{\sqrt{12}} = 64.55.$$

- Remark. When σ is unknown, the one-sided confidence intervals for μ can be obtained by using the t distribution instead:
- $A 1 \alpha$ lower confidence bound for μ is

$$\mu < \bar{x} + t_{\alpha, n-1} \frac{s}{\sqrt{n}}$$

 $A 1 - \alpha$ upper confidence bound for μ is

$$\mu > \bar{x} - t_{\alpha, n-1} \frac{s}{\sqrt{n}}$$

Similarly, the one-sided confidence intervals for σ^2 are

A $1-\alpha$ lower confidence bound for σ^2 is

$$\sigma^2 > \frac{(n-1)s^2}{\chi^2_{\alpha, n-1}}$$

A 1 – α upper confidence bound for σ^2 is

$$0 < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha, n-1}}$$

- Assume a random sample from a distribution, $X_1, X_2, X_3, ..., X_n^{iid} f(x)$ with unknown parameter θ .
 - Basic concepts
 - Interval estimator: a random interval of the form $\hat{\theta} \pm m = (\hat{\theta} m, \hat{\theta} + m)$, where m is called the margin of error.
 - A desired property of an interval estimator is the high coverage probability:

$$P(\theta - m < \theta < \theta + m) = 1 - \alpha$$

- Assume a random sample from a distribution, $X_1, X_2, X_3, ..., X_n^{iid} f(x)$ with unknown parameter θ .
 - Basic concepts
 - Interval estimator: a random interval of the form $\hat{\theta} \pm m = (\hat{\theta} m, \hat{\theta} + m)$, where m is called the margin of error.
 - A desired property of an interval estimator is the high coverage probability:

$$P(\hat{\theta} - m < \theta < \hat{\theta} + m) = 1 - \alpha$$

– For any specific sample, the corresponding specific interval is called a **confidence interval** for θ (at level $1 - \alpha$)

Important results

❖ For a normal population $N(μ, σ^2)$ with unknown μ but *known* $σ^2$, a 1 - α confidence interval for μ is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Pay attention to how the margin of error $m=z\alpha_{/2}\frac{\sigma}{\sqrt{n}}$ depends on the sample size n and confidence level $1-\alpha$.

For a normal population N (μ , σ^2) with both μ , σ^2 unknown, a $1-\alpha$ confidence interval for μ is

$$\bar{x} \pm t_{\alpha/2, \, n-1} \frac{s}{\sqrt{n}}$$

In this case, a $1-\alpha$ confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2, n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2, n-1}}\right)$$

