

Machine Learning Course

Vahid Reza Khazaie

Linear Algebra, Calculus, Probability

- ► Linear Algebra
 - ▶ Vector, Matrix
 - ► Addition, Multiplication, ...
 - ► Inverse Matrix
- ► Calculus
 - Derivative
 - **▶** Gradient
- Probability
 - **▶** Basic Concepts
 - ► Conditional Probability

Supervised Learning

► Given the "right answer" for each example in the data.

Regression Problem

• Predict real-valued output

Linear Regression:

In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression. Wikipedia

Size of house (x)	House Price (y)
50	200
51	150
52	200
53	205
54	220
55	200

$$x \xrightarrow{h_{(x)}} y h_{(x)} = ?$$

 \triangleright How do we represent h(x)?

$$h_{(x)} = \theta_1 x + \theta_0$$

Linear regression

- with one variable x (Univariate linear regression)
- with multiple variables x₀, x₁, x₂,... (Multivariate linear regression)

 \triangleright How do we represent h(x)?

$$\mathbf{h}_{(\mathbf{x})} = \mathbf{\theta}_1 \mathbf{x} + \mathbf{\theta}_0$$

How do we choose parameters θ_1 and θ_0 ?

How do we choose parameters θ_1 and θ_0 ?

How do we choose parameters θ_1 and θ_0 ?

► Choose θ_1 and θ_0 in way that $h_{(x)}$ is close to y for all training samples.

$$x \longrightarrow h_{(x)}$$

How do we realize that h(x) is close to y for all training samples?

- We a need a cost function:
- For this problem, we use:

Mean square error (MSE): MSE is the average squared loss per example over the whole dataset. To calculate MSE, sum up all the squared losses for individual examples and then divide by the number of examples:

$$MSE = rac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

How do we realize that h(x) is close to y for all training samples?

For this problem, we use:

$$MSE = rac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

How do we realize that h(x) is close to y for all training samples?

For this problem, we use:

$$MSE = rac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

Hypothesis:

$$h_{(x)} = \theta_1 x + \theta_0$$

Parameters:

$$\theta_1$$
 , θ_0

Cost Function:

$$J(\theta_1, \theta_0) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

► Goal:

minimize $J(\theta_1, \theta_0)$

Suppose that we have only θ_1 parameter:

Hypothesis:

$$h_{(x)} = \theta_1 x$$

Parameters:

 θ_1

Cost Function:

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

► Goal:

minimize $J(\theta_1)$

Suppose that we have only θ_1 parameter: $h_{(x)} = \theta_1 X$

$$\theta_1 = 0.5 -> y = 0.5x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$J(1) = \frac{1}{2*3} \sum_{1}^{3} (h(x^{(i)}) - y^{(i)})^2$$

$$J(1) = \frac{1}{2*3} * ((0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2) = \frac{3.5}{6} = 0.58$$

 $J(1) = \frac{1}{2*3} * ((1-1)^2 + (2-2)^2 + (3-3)^2) = 0$

Suppose that we have only θ_1 parameter: $h_{(x)} = \theta_1 x$

Suppose that we have only θ_1 parameter: $h_{(x)} = \theta_1 x$

Now suppose that we have θ_0 and θ_1 parameters: $h_{(x)} = \theta_1 x + \theta_0$

Now suppose that we have θ_0 and θ_1 parameters: $h_{(x)} = \theta_1 x + \theta_0$

Cost Function:

$$J(\theta_1, \theta_0) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

► Goal:

minimize $J(\theta_1, \theta_0)$

Procedure:

choose θ_1 , θ_0 randomly keep changing θ_1 , θ_0 to reduce $J(\theta_1$, $\theta_0)$ until reach a minimum point

Now suppose that we have θ_0 and θ_1 parameters: $h_{(x)} = \theta_1 x + \theta_0$

Gradient Descent algorithm

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

Gradient Descent algorithm

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

Gradient Descent algorithm

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30j} \frac{1}{2m} \sum_{i=1}^{m} (h_{0}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{2}{30j} \frac{1}{2m} \sum_{i=1}^{m} (0.40j x^{(i)} - y^{(i)})^{2}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{P}}{\rightleftharpoons} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{P}}{\rightleftharpoons} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

05 linear regression python

Supervised Learning

► Given the "right answer" for each example in the data.

Classification Problem

- Predict discrete value
 - Email: spam / not spam
 - Image: cat / not cat (dog)
 - Medical data: patient / healthy

Logistic Regression:

In statistics, the **logistic model** (or **logit model**) is used to model the probability of a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick. This can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1 and the sum adding to one. Wikipedia

 \triangleright How do we represent h(x)?

$$\mathbf{h}_{(\mathbf{x})} = \mathbf{\theta}_1 \mathbf{x} + \mathbf{\theta}_0$$

Logistic regression

- $y = \{0, 1\}$
- Threshold: 0.5
- If h_(x) >= 0.5 -> y = 1
 If h_(x) < 0.5 -> y = 0

 \triangleright How do we represent h(x)?

$$h_{(x)} = \theta_1 x + \theta_0$$

How do we apply threshold?

 \triangleright How do we represent h(x)?

$$h_{(x)} = \theta_1 x + \theta_0$$

How do we apply threshold?

- Sigmoid Function
- 0 <= Output <= 1
- Output >= 0.5: 1 else 0

 \triangleright How do we represent h(x)?

$$h_{(x)} = \theta_1 x + \theta_0$$
 $z = h_{(x)} = \theta_1 x + \theta_0$
 $g(z) = \frac{1}{1 + e^{-z}}$

How do we choose parameters θ_1 and θ_0 ?

How do we choose parameters θ_1 and θ_0 ?

Choose θ_1 and θ_0 in way that $h_{(x)}$ is close to y for all training samples.

$$x \longrightarrow y \{0, 1\}$$

$$h_{(x)} \{0, 1\}$$

How do we realize that h(x) is close to y for all training samples?

- ▶ We a need a cost function:
- For this problem, we use:

Binary Cross-Entropy:

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Binary Cross-Entropy / Log Loss

How do we realize that h(x) is close to y for all training samples?

- We a need a cost function:
- For this problem, we use:

Binary Cross Entropy:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x)) \quad \text{if } y = 1$$

$$\operatorname{Cost}(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x)) \quad \text{if } y = 0$$

How do we realize that h(x) is close to y for all training samples?

- ▶ We a need a cost function:
- For this problem, we use:

Binary Cross Entropy:

Hypothesis:

$$h_{(x)} = \theta_1 x + \theta_0$$

Parameters:

$$\theta_1$$
 , θ_0

Cost Function:

$$J(\theta_1, \theta_0)$$

► Goal:

minimize $J(\theta_1, \theta_0)$

Gradient Descent algorithm

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```


06 logistic regression python

Logistic Regression and Linear Regression

07 linear logistic regression sklearn

Good resources!

- ► https://ml-cheatsheet.readthedocs.io/en/latest/linear_algebra.html
- https://ml-cheatsheet.readthedocs.io/en/latest/calculus.html#introduction
- https://ml-cheatsheet.readthedocs.io/en/latest/probability.html
- https://www.youtube.com/watch?v=WnqQrPNYz5Q
- https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visualexplanation-a3ac6025181a

References

https://www.coursera.org/learn/machine-learning