Banco de Dados I

Ronierison Maciel

Agosto 2024

Quem sou eu?

Nome: Ronierison Maciel / Roni

Formação: Mestre em Ciência da Computação

Ocupação: Pesquisador, Professor e Desenvolvedor de

Software

Hobbies: Jogar cartas, ficar com a família no final de

semana conversando sobre diversos temas

Interesses: Carros, aprimoramento na área educacional, desenvolvimento de software, data science e machine

learning

Email: ronierison.maciel@pe.senac.br

GitHub: https://github.com/ronierisonmaciel

Conteúdo

Introdução

2 Modelo de dados relacional e SQL básico

Modelagem de dados

Objetivos da semana

Tópicos:

- Visão geral sobre BD e SGBD, instalação do MySQL
- Modelos de Dados, esquemas e arquiteturas
- Linguagens e interfaces de SGBDs, criação de tabelas

Objetivo:

 Introduzir os conceitos fundamentais de Banco de Dados e realizar a configuração inicial do MySQL

O que são Bancos de Dados (BD)?

Um Banco de Dados é uma coleção organizada de dados, tipicamente armazenados e acessíveis eletronicamente.

 Exemplo: Catálogo de produtos de uma loja, lista de alunos de uma escola.

Figure: Tabelas

O que é um Sistema de Gerenciamento de Banco de Dados (SGBD)?

Conteúdo:

- **Definição**: Um SGBD é um software que permite a criação, gestão, manipulação e controle de acesso a bancos de dados.
- Funções: Controle de concorrência, recuperação de falhas, segurança e integridade de dados.

Exemplos: MySQL, PostgreSQL, Oracle, SQL Server.

Importância dos Bancos de Dados

Por que Bancos de Dados são importantes?

- Centralização e organização dos dados.
- Suporte à tomada de decisão.
- Eficiência e escalabilidade em operações de negócio.

Casos de Uso: Comércio eletrônico, sistemas de gerenciamento de clientes (CRM), sistemas de controle financeiro.

Principais SGBDs no mercado

Visão geral dos SGBDs mais usados

- MySQL: Open source, amplamente usado em aplicações web.
- PostgreSQL: Avançado, com suporte a tipos de dados complexos.
- Oracle: Focado em grandes empresas, oferece alta performance e segurança.
- **SQL Server**: Solução da Microsoft, integrada com outras ferramentas da empresa.

Gráfico Comparativo: Popularidade dos SGBDs (baseado em pesquisas recentes).

Instalação do MySQL

Como instalar o MySQL

Passos:

- Baixar o MySQL Community Server do site oficial.
- Executar o instalador e seguir as instruções.
- Configurar a senha do root e as opções de segurança.
- Verificar a instalação via terminal.

Figure: Instalação do MySQL

Configuração inicial do MySQL Workbench

O que é MySQL Workbench?

Ferramenta GUI para modelagem de dados, desenvolvimento SQL e administração de servidores.

- Conectar ao servidor MySQL.
- Criar um banco de dados.
- Explorar as funcionalidades básicas.

Modelos de dados

Introdução aos Modelos de Dados

- Modelos hierárquicos: Dados organizados em uma estrutura de árvore.
- Modelos em rede: Dados organizados em gráficos, permitindo múltiplas relações.
- Modelos relacionais: Dados organizados em tabelas, a base do MySQL.

Esquemas e arquiteturas de Banco de Dados

Estrutura dos Bancos de Dados

• Esquema: A estrutura lógica de um banco de dados, definindo como os dados são organizados e inter-relacionados.

Arquiteturas:

- Monolítica: Todos os dados e serviços estão centralizados em um único sistema.
- Cliente-Servidor: Dados armazenados em servidores, acessados por clientes.
- Distribuída: Dados espalhados por múltiplos sistemas interconectados.

Linguagens de SGBDs

Linguagens e interfaces de SGBDs Linguagens:

- DDL (Data Definition Language): Criação e modificação de estruturas de dados.
- DML (Data Manipulation Language): Inserção, atualização e exclusão de dados.

Interfaces:

- CLI (Command-Line Interface): Interação via comandos de texto.
- GUI (Graphical User Interface): Interação via interface gráfica, como o MySQL Workbench.

```
ALTER TABLE clientes ADD telefone VARCHAR(15);

/* Comandos DDL *

SELECT nome, email FROM clientes WHERE data_cadastro > '
2023-01-01';

/* Comandos DML *
```

Criação de tabelas em MySQL

Definindo tabelas e tipos de dados Tipos de Dados:

- Numéricos (INT, FLOAT).
- Texto (VARCHAR, TEXT).
- Data/Hora (DATE, TIMESTAMP).

Exemplo de criação de tabela:

```
TABLE alunos (
        INT AUTO_INCREMENT PRIMARY KEY,
2
     nome VARCHAR (100),
     data_nascimento DATE
```


Prática da Semana 1

Descrição:

- Instalar o MySQL e MySQL Workbench em seus computadores.
- ② Criar um banco de dados simples e tabelas com diferentes tipos de dados.
- 3 Inserir alguns registros e praticar comandos básicos de consulta.

Entrega: Enviar um relatório com capturas de tela e código SQL até a próxima aula.

Próximos passos

O que vamos fazer na próxima semana?

- Revisão dos conceitos básicos de SQL.
- Introdução ao modelo de dados relacional.
- Primeiras operações com SQL (SELECT, INSERT, UPDATE, DELETE).

Objetivos da semana

Tópicos:

- Conceitos do modelo de dados relacional e tabelas relacionais
- Operações básicas em SQL (SELECT, INSERT, UPDATE, DELETE)
- Transações e controle de transações em MySQL

Objetivo:

 Entender o modelo de dados relacional e realizar operações básicas utilizando SQL no MySQL.

O que é o modelo de dados relacional?

Conceito:

 Modelo de dados que organiza informações em tabelas (também conhecidas como relações).

Elementos-chave:

- Tabelas: Conjuntos de dados organizados em linhas e colunas.
- Linhas (Tuplas): Cada linha representa um registro único.
- Colunas (Atributos): Cada coluna representa um campo de dado dentro de um registro.

Componentes de uma tabela relacional

Estrutura de uma tabela relacional

- Chave primária: Coluna ou conjunto de colunas que identifica de forma única cada registro em uma tabela.
- Chave estrangeira: Coluna que cria uma ligação entre duas tabelas diferentes, referenciando a chave primária de outra tabela.
- Índices: Estruturas que melhoram a velocidade de operações de consulta nas tabelas.

Figure: Foreign Key (FK) and Primary Key (PK)

Definição de tabelas e relações no MySQL

Criando tabelas e definindo relações Exemplo de SQL:

```
CREATE TABLE departamentos (
      id INT AUTO_INCREMENT PRIMARY KEY,
      nome VARCHAR (100)
5
 CREATE TABLE empregados (
      id INT AUTO_INCREMENT PRIMARY KEY,
     nome VARCHAR (100),
8
      departamento_id INT,
      FOREIGN KEY (departamento_id) REFERENCES departamentos(
     id)
```

Prática: Criar tabelas e estabelecer relações no MySQL Workbench.

Operações básicas em SQL

Introdução às operações básicas em SQL

- INSERT: Inserção de novos registros.
- SELECT: Consulta de dados.
- UPDATE: Atualização de registros existentes.
- DELETE: Exclusão de registros.

Operação INSERT

Inserindo dados em tabelas

```
INSERT INTO <nome_da_tabela > (<nomes_dos_atributos >)
VALUES (<valores >);
```

Inserção de múltiplos registros de uma vez.

Operação SELECT

Consultas básicas com SELECT

```
SELECT <nome_da_coluna_1>, <nome_da_coluna_2>
FROM <nome_da_tabela>
WHERE <condicao>;
```

Cláusulas:

- WHERE: Filtros para as consultas.
- ORDER BY: Ordenação dos resultados.
- GROUP BY: Agrupamento de registros.

Operação UPDATE

Atualizando registros com UPDATE

```
UPDATE <nome_da_tabela>
SET coluna1 = <valor_1>, <coluna_2> = <valor_2>
WHERE <condicao>;
```

Atualização condicional com WHERE.

Operação DELETE

Excluindo registros com DELETE

```
DELETE FROM <nome_da_tabela>
WHERE <condicao>;
```

Cuidado ao usar DELETE sem cláusula WHERE.

Introdução a Transações

O que são transações em bancos de dados?

 Uma transação é um conjunto de operações (inserir, atualizar, excluir dados) que são executadas como uma única unidade de trabalho. Se todas as operações forem bem-sucedidas, as mudanças são confirmadas. Se alguma falhar, todas as mudanças são desfeitas (rollback), garantindo a integridade do banco de dados.

Propriedades ACID:

- Atomicidade: A transação é tudo ou nada; ou todas as operações são concluídas, ou nenhuma é.
- Consistência: A transação mantém o banco de dados em um estado consistente, respeitando todas as regras e restrições definidas.
- Isolamento: Transações são executadas de forma independente, sem interferir umas nas outras, como se fossem únicas no sistema.
- Durabilidade: Após a confirmação, as mudanças realizadas pela transação são permanentes, mesmo que ocorram falhas no sistema posteriormente.

Controle de transações no MySQL

Trabalhando com transações no MySQL Comandos importantes:

- START TRANSACTION: Inicia uma nova transação.
- COMMIT: Confirma as mudanças realizadas pela transação.
- ROLLBACK: Reverte as mudanças realizadas pela transação.

Exemplo:

```
START TRANSACTION;
UPDATE empregados SET salario = salario * 1.1 WHERE
departamento_id = 1;
COMMIT;
```

Essa query usa uma transação para aumentar em 10% os salários dos empregados do departamento departamento_id = 1. A transação começa com START TRANSACTION, a atualização é feita pelo UPDATE, e o comando COMMIT torna as mudanças permanentes.

Prática da semana 2

Descrição:

- Criar tabelas relacionadas no MySQL.
- 2 Inserir, atualizar e excluir registros utilizando SQL básico.
- Realizar consultas complexas com filtros e agrupamentos.
- Implementar transações envolvendo múltiplas operações.

Entrega: Enviar código SQL e capturas de tela com os resultados até a próxima aula.

Objetivos da semana

Tópicos:

- Ampliar o conhecimento em SQL além dos comandos básicos já aprendidos: INSERT, SELECT, UPDATE e DELETE.
- Aprender a filtrar e ordenar dados utilizando as cláusulas WHERE e ORDER BY.
- Introduzir funções agregadas como COUNT, AVG, MIN e MAX para realizar cálculos em conjuntos de dados.
- Compreender o agrupamento de dados com a cláusula GROUP BY.

Filtrando dados com a cláusula WHERE

A cláusula WHERE é utilizada para filtrar registros de uma tabela que atendem a determinadas condições. Ela permite que você selecione apenas os dados que são relevantes para a sua consulta.

• Filtrando por um valor específico:

```
SELECT * FROM empregados WHERE departamento_id = 2;
```

- Este comando seleciona todos os empregados que pertencem ao departamento com id igual a 2.
- Utilizando operadores de comparação:

```
SELECT * FROM empregados WHERE salario > 3000;
```

- Seleciona empregados com salário maior que 3000.
- Filtrando por texto com LIKE:

```
SELECT * FROM empregados WHERE nome LIKE 'A%';
```

• Seleciona empregados cujo nome começa com a letra 'A'.

Exercício

Filtre os empregados que foram admitidos após a data 2022-01-01.

Ordenando resultados com ORDER BY

A cláusula ORDER BY é usada para ordenar os resultados de uma consulta em ordem crescente ou decrescente, de acordo com uma ou mais colunas.

• Ordenação crescente (padrão):

```
SELECT * FROM empregados ORDER BY nome;
```

- Ordena os empregados em ordem alfabética pelo nome.
- Ordenação decrescente:

```
SELECT * FROM empregados ORDER BY salario DESC;
```

- Ordena os empregados do maior para o menor salário.
- Ordenação por múltiplas colunas:

```
1 SELECT * FROM empregados ORDER BY departamento_id, nome;
```

 Ordena primeiro por departamento e, dentro de cada departamento por nome.

Exercício

Liste os departamentos em ordem decrescente de id e, em seguida, liste os empregados ordenados por data de admissão mais recente.

Funções agregadas e agrupamento de dados com GROUP BY

Funções agregadas realizam cálculos em um conjunto de valores e retornam um único valor. As mais comuns são:

- COUNT: Conta o número de registros.
- AVG: Calcula a média de um conjunto de valores.
- MIN e MAX: Encontram o menor e o maior valor, respectivamente.
- SUM: Calcula a soma de um conjunto de valores.

Agrupamento com GROUP BY

A cláusula GROUP BY é usada em conjunto com funções agregadas para agrupar os resultados por uma ou mais colunas.

• Contando o número de empregados em cada departamento:

```
SELECT departamento_id, COUNT(*) AS total_empregados
FROM empregados
GROUP BY departamento_id;
```

• Calculando o salário médio por departamento:

```
SELECT departamento_id, AVG(salario) AS salario_medio
FROM empregados
GROUP BY departamento_id;
```

• Encontrando o maior salário em cada departamento:

```
SELECT departamento_id, MAX(salario) AS maior_salario
FROM empregados
GROUP BY departamento_id;
```

Exercício

- Liste o número total de empregados na empresa.
- 2 Calcule a média salarial geral e identifique o menor e o maior salário entre todos os empregados.
- Se Liste cada departamento com o total de salários pagos.

Conclusão e próximos passos

O que iremos aprender na próxima semana?

- Modelagem de Dados com ER e EER.
- Introdução ao projeto de banco de dados relacional.
- Aplicação de UML na modelagem de banco de dados.

Objetivos da semana

Tópicos:

- Modelo Entidade-Relacionamento (ER)
- Modelo Entidade-Relacionamento Estendido (EER)
- Projeto de Banco de Dados Relacional e UML
- Objetivos:

Aprender a modelar dados utilizando ER e UML, aplicando técnicas avançadas de modelagem.

que é modelagem de dados?

Conceito de modelagem de dados

- **Definição**: A modelagem de dados é o processo de criar um modelo visual das informações que serão armazenadas em um banco de dados.
- Objetivo: Estruturar os dados de forma que possam ser armazenados, acessados e gerenciados de maneira eficiente.

Notações

Existem maneiras diferentes de apresentar um modelo Entidade Relacionamento.

- São notações que variam na utilização de símbolos e convenções.
 - Notação de Peter Chen;
 - Notação de James Martin;
 - Notação de Peter Chen adaptada por Carlos A. Heuser;

Notação de Peter Chen

A notação de Peter Chen é muito difundida e utilizada e é caracterizada por sua simplicidade.

Entidades: Representam objetos ou conceitos do mundo real sobre os quais se deseja guardar informações.

Entidade Fraca: Representa uma entidade que depende de outra entidade (entidade forte) para existir.

Atributos: Representam as características ou propriedades das entidades.

Notação de Peter Chen

Atributos chave: São atributos que identificam unicamente cada entidade dentro de um conjunto, funcionando como chave primária para distinguir instâncias individuais.

Atributos multivalorados: São atributos que podem ter múltiplos valores para uma única entidade, como telefones em um cliente que possui vários números.

Atributos compostos: São atributos que podem ser decompostos em partes menores com significado próprio, como Endereço dividido em rua, número, cidade e CEP.

Atributos derivados: São atributos cujo valor é calculado a partir de outros atributos existentes, como Idade derivada da Data de Nascimento.

Notação de Peter Chen

Relacionamento: É a associação entre duas ou mais entidades que descreve como elas interagem ou se relacionam no modelo de dados, representada por um losango no diagrama ER.

Relacionamento identificador: É um tipo de relacionamento onde uma entidade fraca depende de uma entidade forte para sua identificação; representado por um losango com bordas duplas, indica que a chave primária da entidade fraca inclui

a chave primária da entidade forte.

Notação de Peter Chen adaptada por Carlos a. Heuser

- O professor Dr. Carlos Alberto Heuser, da UFRGS, adaptou a notação original de Peter Chen com o objetivo de simplificar os modelos Entidade-Relacionamento. Sua adaptação tem como objetivo tornar a representação dos dados mais clara e fácil de entender, facilitando tanto o ensino quanto a aplicação prática em projetos de banco de dados.
 - A ferramenta brModelo "spoiler" utiliza essa notação.

Notação de Peter Chen adaptada por Carlos a. Heuser

Conceito	Símbolo
Entidade	
Relacionamento	$\overline{}$
Atributo	9
Atributo identificador	
Relacionamento identificador (Entidade fraca)	(1,1) (0,n)
Generalização/especialização	
Entidade associativa	Relação

Relações entre tabelas no modelo relacional

- Relação 1:1 (um para um):
 - Significa que um registro em uma tabela A está associado a no máximo um registro em uma tabela B, e vice-versa.

• A notação: O "1:1" significa que para cada instância de uma entidade (como uma pessoa), há uma e somente uma instância associada na outra entidade (passaporte).

Relações entre tabelas no modelo relacional

- Relação 1:N (um para muitos):
 - Um registro em uma tabela A pode estar relacionado a vários registros em uma tabela B, mas cada registro em B está relacionado a apenas um registro em A.

• A notação: O "1" (onde N pode ser qualquer número) significa que uma instância da entidade A pode estar relacionada a muitas (ou seja, múltiplas) instâncias da entidade B.

Relações entre tabelas no modelo relacional

- Relação N:N (muitos para muitos):
 - Vários registros em uma tabela A podem estar relacionados a vários registros em uma tabela B. Esse tipo de relação normalmente é implementado usando uma tabela intermediária (tabela de junção) que referencia ambas as tabelas.

• A notação: O "N" (onde N e N podem ser quaisquer números) indica que muitas instâncias de uma entidade A podem estar relacionadas a muitas instâncias de uma entidade B.

Entidade-Relacionamento (ER)

Conceito:

 O Modelo Entidade-Relacionamento é uma representação gráfica que descreve a estrutura lógica de um banco de dados.

Componentes:

- Entidades: Objetos ou conceitos sobre os quais os dados são armazenados (ex.: Cliente, Compra).
- Atributos: Características das entidades (ex.: Nome, Código).
- Relacionamentos: Associações entre entidades (ex.: Um cliente emite uma compra).

Detalhando os componentes do diagrama ER

Entidades:

• Representadas por retângulos. Exemplo: Clientes, Compra.

Atributos:

• Representados por elipses. Exemplo: Nome, Código.

Relacionamentos:

Representados por losangos. Exemplo: Emite, Contém, Faz.

Chave primária:

 Um atributo ou conjunto de atributos que identifica de forma única uma entidade.

Exemplo prático de modelagem ER

Modelagem de um sistema de vendas

- Entidades identificadas:
 - Cliente: Atributos: ClienteID, Nome, Endereço.
 - Produto: Atributos: ProdutoID, NomeProduto, Preço.
 - Pedido: Atributos: PedidolD, DataPedido, ClientelD.
- Relacionamentos:
 - Cliente faz Pedido.
 - Pedido contém Produto.

Modelo Entidade-Relacionamento Estendido (EER)

Introdução ao modelo EER

 Conceito: O Modelo Entidade-Relacionamento Estendido é uma extensão do ER que incorpora conceitos mais complexos, como especialização, generalização e agregação.

Componentes adicionais:

- Generalização/Specialização: Permite que uma entidade seja uma subclasse de outra entidade.
- Agregação: Permite que um relacionamento seja tratado como uma entidade.

