Database Management Systems L8

Umass Boston Summer 2023 Cristina Maier

Topics

- Introduction to DBMS
- Relational Data Model
- Relational Algebra
- Conceptual Design: the Entity-Relationship Model
- Structured Query Language (SQL)
- Database Security and Authorization
- Schema Refinement and Normal Forms
- Application Development (Java, Python)
- Some NoSQL topics (If time permitted)

Schema Refinment and Normal Forms

- We have learnt the advantages of relational tables
- how to decide on the relational schema?
- * At one extreme, store everything in single table
 - Huge redundancy
 - Leads to anomalies!
- We need to break the information into several tables
- How many tables, and with what structures?
- Having too many tables can also cause problems
 - * E.g., performance, difficulty in checking constraints

Schema Relation

```
Hourly_Emps (<u>ssn</u>, name, lot, rating, wage, 
hrs_worked)
```

- Denote relation schema by attribute initial:
 SNLRWH
- Constraints (dependencies)
 - * ssn is the key: $S \rightarrow SNLRWH$
 - * rating determines wage: $R \rightarrow W$
 - ❖ E.g., worker with rating A receives 20\$/hr

Anomalies

- \Rightarrow Problems due to R \rightarrow W:
 - ❖ <u>Update anomaly</u>: Change value of W only in a tuple dependency violation
 - * <u>Insertion anomaly</u>: How to insert employee if we don't know hourly wage for that rating?
 - * <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Removing Anomalies

- Creating two smaller tables
- Updating rating of employee will result in the wage "changing" accordingly
 - Note that there is no physical change of W, just a "pointer change"
- Deleting employee does not affect rating-wages data

Hourly_Emps2

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

Wages

R	W
8	10
5	7

Dealing with Redundancy

- Redundancy is at the root of redundant storage, insert/ delete/update anomalies
- Integrity constraints, in particular functional
 dependencies, can be used to identify redundancy
- Main refinement technique: <u>decomposition</u> (replacing ABCD with, say, AB and BCD, or ACD and ABD)
- Decomposition should be used judiciously:
 - Decomposition may sometimes affect performance. Why?
 - What problems (if any) does decomposition cause?
 - Incorrect data
 - Loss of dependencies

Functional Dependencies

- * A <u>functional dependency</u> X Y holds over relation R if for every instance r of R
- * $t1,t2 \in r, \pi_X(t1) = \pi_X(t2) \text{ implies } \pi_{Y(t1)} = \pi_{Y(t2)}$
- Given two tables in r, if the X value agree, Y values must also agree
- * FD is a statement about *all* allowable relations.
 - Identified based on semantics of application (business logic)
 - * Given an instance r of R, we can check if it violates some FD f, but we cannot tell if f holds over R!

FDs and Keys

- FDs are a generalization of keys
 - A key uniquely identifies all attribute values in a tuple
 - That is a particular case of FD ...
 - ... but not all FDs must determine ALL attributes
- * K is a key for R means that K \rightarrow R
 - * However, $K \to R$ does not require K to be *minimal*!
 - K can be a superkey as well

O

Reasoning about FDs

* Given FD set F, we can usually infer additional FDs:

 $F^+ = closure \ of \ F$ is the set of all FDs that are implied by F

- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - * *Reflexivity*: If $Y \subseteq X$, then $X \to Y$
 - * <u>Augmentation</u>: If $X \to Y$, then $XZ \to YZ$ for any Z
 - * <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These are *sound* and *complete* inference rules for FDs!

*

Reasoning about FDs (cont.)

- Additional rules
 - Not necessary, but helpful
- Union and decomposition (splitting)

$$*X \rightarrow Y \text{ and } X \rightarrow Z => X \rightarrow YZ$$

$$*X \rightarrow YZ \Rightarrow X \rightarrow Y \text{ and } X \rightarrow Z$$

An Example of FD inference

- Contracts(cid, sid, jid, did, pid, qty, value), and:
 - Contract id, supplier, project, department, part
 - * C is the key: C \rightarrow CSJDPQV
 - Project purchases each part using single contract:
 - * JP \rightarrow C
 - Dept purchases at most one part from a supplier:
 - * SD \rightarrow P
- $*JP \rightarrow C, C \rightarrow CSJDPQV imply JP \rightarrow CSJDPQV$
- $*SD \rightarrow P$ implies $SDJ \rightarrow JP$
- * SDJ \rightarrow JP, JP \rightarrow CSJDPQV imply SDJ \rightarrow CSJDPQV

Attribute Closure

- * Attribute closure of X (denoted X^+) wrt FD set F:
 - * Set of all attributes A such that $X \to A$ is in F^+
 - Set of all attributes that can be determined starting from attributes in X and using FDs in F

*

Verifying if given FD is in given FD-closure

- Computing the closure of a set of FDs can be expensive
 - Size of closure is exponential in number of attributes!
- * But if we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F:
 - Can be done efficiently without need to know F+
 - * Compute X^+ wrt F
 - * Check if Y is in X^+

Verifying if attribute set is a key

- Key verification can also be done with attribute closure
- To verify if X is a key, two conditions needed:
 - $X^+ = R$
 - * X is minimal
- How to test minimality
 - Removing an attribute from X results in X' such that
 X'+ <> R

Reasoning about FDs (recap.)

* Given FD set F, we can usually infer additional FDs:

```
F^+ = closure \ of \ F is the set of all FDs that are implied by F
```

- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - * *Reflexivity*: If $Y \subseteq X$, then $X \to Y$
 - * <u>Augmentation</u>: If $X \to Y$, then $XZ \to YZ$ for any Z
 - * <u>Transitivity</u>: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- * These are *sound* and *complete* inference rules for FDs!

*

Reasoning about FDs (recap.)

- Additional rules
 - Not necessary, but helpful
- Union and decomposition (splitting)

$$*X \rightarrow Y \text{ and } X \rightarrow Z => X \rightarrow YZ$$

$$*X \rightarrow YZ \Rightarrow X \rightarrow Y \text{ and } X \rightarrow Z$$

Normal Forms

- Decompositions:
 - * BCNF
 - * 3NF

Decomposition of a Relational Schema

- A <u>decomposition</u> of R replaces it by two or more relations
 - Each new relation schema contains a subset of the attributes of R
 - Every attribute of R appears in one of the new relations
 - ❖ E.g., SNLRWH decomposed into SNLRH and RW
- Decompositions should be used only when needed
 - Cost of join will be incurred at query time
- Problems may arise with (improper) decompositions
 - * Reconstruction of initial relation may not be possible
 - Dependencies cannot be checked on smaller tables

Lossless Join Decompositions

- Decomposition of R into X and Y is <u>lossless-join</u> if: $\pi_X(r) \bowtie \pi_Y(r) = r$
- It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$
- In general, the other direction does not hold!
- If it does, the decomposition is lossless-join.

It is essential that all decompositions used to deal with redundancy be lossless!

Incorrect Decomposition

A	В	C
1	2	3
4	5	6
7	2	8

A	B
1	2
4	5
7	2

В	C
2	3
5	6
2	8

Condition for Lossless Join

* The decomposition of R into X and Y is lossless-join wrt F if and only if the closure of F contains:

* In particular, the decomposition of R into UV and R - V is lossless-join if $U \rightarrow V$ holds over R.

Dependency Preserving Decomposition

- * Consider CSJDPQV, C is key, $JP \rightarrow C$ and $SD \rightarrow P$.
 - Consider decomposition: CSJDQV and SDP
 - * Problem: Checking JP \rightarrow C requires a join!
- Dependency preserving decomposition (Intuitive):
 - If R is decomposed into X and Y, and we enforce the FDs that hold on X, Y then all FDs that were given to hold on R must also hold
- * Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X (denoted F_X) is the set of FDs U \rightarrow V in F+ (closure of F) such that U, V are in X.

*

Dependency Preserving Decomposition

- * Decomposition of R into X and Y is <u>dependency</u> $\underline{preserving} \text{ if } (F_X \cup F_Y) + = F +$
 - Dependencies that can be checked in X without considering Y, and in Y without considering X, together represent all dependencies in F+

- Dependency preserving does not imply lossless join:
- * ABC, $A \rightarrow B$, decomposed into AB and BC.

Two kind of possible problems with Decomposition

- Not being Lossless join
- Not Preserving Dependency

Normal Forms

- If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized.
- Role of FDs in detecting redundancy:
 - Consider a relation R with attributes AB
 - No FDs hold: There is no redundancy
 - * Given A \rightarrow B:
 - Several tuples could have the same A value
 - If so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- ❖ Relation R with FDs F is in BCNF if, for all X → A in F^+
 - $A \subseteq X$ (called a *trivial* FD), or
 - X contains a key for R
- The only non-trivial FDs allowed are key constraints
- BCNF guarantees no anomalies occur

Decomposition into BCNF

* Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into R - Y and XY.

Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.

- * e.g., CSJDPQV, key C, SD \rightarrow P, J \rightarrow S
- * To deal with SD \rightarrow P, decompose into SDP, CSJDQV.
- * To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV

**

Decomposition into BCNF

In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

BCNF Decomposition

- Guarantees lossless join
- Does not always guarantee dependency preservation

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF
 - \bullet e.g., <u>AB</u>C, AB \rightarrow C, C \rightarrow A
 - Can't decompose while preserving first FD; in this case it cannot preserve dependency!
 - * CA, AB

Third Normal form (3NF)

- * Relation R with FDs F is in 3NF if, for all X \rightarrow A in F^+
 - $A \subseteq X$ (called a *trivial* FD), or
 - X contains a key for R, or
 - A is part of some key for R (A here is a single attribute)
- Minimality of a key is crucial in third condition above!
- ❖ If R is in BCNF, it is also in 3NF.
- ❖ If R is in 3NF, some redundancy is possible
 - compromise used when BCNF not achievable
 - e.g., no ``good'' decomposition, or performance considerations
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

Decomposition into 3NF

- Lossless join decomposition algorithm also applies to 3NF
- To ensure dependency preservation, one idea:
- If $X\rightarrow Y$ is not preserved, add relation XY
- Refinement: Instead of the given set of FDs F, use a *minimal cover for F*
- Example: CSJDPQV, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- ▶ Choose SD \rightarrow P, result is SDP and CSJDQV
- ▶ Choose $J \rightarrow S$, result is JS and CJDQV, all 3NF
- Add CJP relation

.

Summary of Schema Refinement

- **BCNF:** relation is free of FD redundancies
 - Having only BCNF relations is desirable
 - If relation is not in BCNF, it can be decomposed to BCNF
 - Lossless join property guaranteed
 - But some FD may be lost
- 3NF is a relaxation of BCNF
 - Guarantees both lossless join and FD preservation
- Decompositions may lead to performance loss
 - performance requirements must be considered when using decomposition

Two kind of possible problems with Decomposition (recap.)

- Not being Lossless join
- Not Preserving Dependency

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF
 - * e.g., CSZ, CS \rightarrow Z, Z \rightarrow C
 - Can't decompose while preserving first FD;
- * Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP \rightarrow C, SD \rightarrow P and J \rightarrow S).
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! (*Redundancy!*)

Schema Relation

```
Hourly_Emps (<u>ssn</u>, name, lot, rating, wage, 
hrs_worked)
```

- Denote relation schema by attribute initial:
 SNLRWH
- Constraints (dependencies)
 - * ssn is the key: S -> SNLRWH
 - * rating determines wage: R → W
 - ♣ E.g., worker with rating A receives 20\$/hr

Decomposing

- * S is key; R \longrightarrow W
- * SNLRWH into RW, SNLRH. This is in BCNF

Questions?