

QUALITÉ DE DÉVELOPPEMENT DIAGRAMME UML DE PAQUETAGE

PLAN

- Les éléments de base
- Les relations entre paquetages
- Les principes de cohérence et d'indépendance
- Réduction de couplage entre paquetages

Retour à l'accueil - Retour au plan

Analyse

IUT D'ORS

LES ACTIVITÉS DE CONCEPTION

PLAN

- Les éléments de base
- Les relations entre paquetages
- Les principes de cohérence et d'indépendance
- Réduction de couplage entre paquetages

Retour à l'accueil - Retour au plan

EXEMPLE D'INTRODUCTION

université

• Un paquetage regroupe des éléments de la modélisation appelés membres, portant sur un sous-ensemble du système.

- Un paquetage regroupe des éléments de la modélisation appelés membres, portant sur un sous-ensemble du système.
- Le découpage en paquetage doit traduire un découpage logique du système correspondant à des espaces de nommage homogènes.

- Un paquetage regroupe des éléments de la modélisation appelés membres, portant sur un sous-ensemble du système.
- Le découpage en paquetage doit traduire un découpage logique du système correspondant à des espaces de nommage homogènes.
- Un paquetage permet de grouper n'importe quelle éléments d'UML dans des unités de plus haut niveau.
 - classes, composants, cas d'utilisation, ..., et d'autres paquetages

PRÉSENTATION D'UN PAQUETAGE

Représentation globale Représentation détaillée Représentation éclatée paquetage-name-2 paquetage-name-1 paquetage-name-3 class-name-1 class-name-2 class-name-1 class-name-2

• Chaque paquetage doit avoir un nom différent (espace de nommage).

- Chaque paquetage doit avoir un nom différent (espace de nommage).
- Les éléments contenus dans un paquetage se distinguent par leur appartenance au paquetage englobant.

- Chaque paquetage doit avoir un nom différent (espace de nommage).
- Les éléments contenus dans un paquetage se distinguent par leur appartenance au paquetage englobant.
 - deux éléments dans deux paquetages peuvent porter le même nom.

- Chaque paquetage doit avoir un nom différent (espace de nommage).
- Les éléments contenus dans un paquetage se distinguent par leur appartenance au paquetage englobant.
 - deux éléments dans deux paquetages peuvent porter le même nom.
 - deux éléments dans le même paquetage doivent porter des noms différents.

EXEMPLE

banque::Client

agence-immobiliere::Client

NOM D'UN ÉLÉMENT

NOM D'UN ÉLÉMENT

- Le nom d'un élément est dit simple s'il est utilisé seul.
 - la classe Roue

NOM D'UN ÉLÉMENT

- Le nom d'un élément est dit simple s'il est utilisé seul.
 - la classe Roue
- Le nom d'un élément est dit complet s'il est précédé par les noms des paquetages englobants (name space).

la classe voiture::systeme-acceleration::Roue

LA VISIBILITÉ

- Les éléments d'un paquetage peuvent avoir une visibilité déclarée :
 - de type public (par défaut) : visible dans tout le modèle.
 - de type privé (private) : non visible à l'extérieur du paquetage.

PLAN

- Les éléments de base
- Les relations entre paquetages
- Les principes de cohérence et d'indépendance
- Réduction de couplage entre paquetages

Retour à l'accueil - Retour au plan

- Une relation de dépendance doit exister dès que deux éléments issus de deux paquetages différents sont associés.
 - hormis les cas de dépendances implicites : emboîtement de paquetages.

- Une relation de dépendance doit exister dès que deux éléments issus de deux paquetages différents sont associés.
 - hormis les cas de dépendances implicites : emboîtement de paquetages.
- C'est une relation unidirectionnelle entre paquetages.
 - une modification de la cible peut impliquer une modification de la source.

- Une relation de dépendance doit exister dès que deux éléments issus de deux paquetages différents sont associés.
 - hormis les cas de dépendances implicites : emboîtement de paquetages.
- C'est une relation unidirectionnelle entre paquetages.
 - une modification de la cible peut impliquer une modification de la source.
- Une relation de dépendance se représente par une flèche en pointillé.

UNIVERSITE PARIS-SACLAY

IMPORTATION DE PAQUETAGE

IMPORTATION DE PAQUETAGE

- Pour simplifier l'utilisation des éléments contenus dans un autre paquetage, on peut utiliser l'importation.
 - permet d'importer l'espace de nommage d'un autre paquetage.

IMPORTATION DE PAQUETAGE

- Pour simplifier l'utilisation des éléments contenus dans un autre paquetage, on peut utiliser l'importation.
 - permet d'importer l'espace de nommage d'un autre paquetage.
- Tous les membres d'un paquetage ont accès à tous les membres du paquetage importé.
 - sans utiliser explicitement le nom du paquetage importé.

Le paquetage p_1 a accès aux classes C1,C2 et C4.

ACCÈS À UN PAQUETAGE

ACCÈS À UN PAQUETAGE

- Pour accéder aux éléments d'un paquetage à partir d'un autre paquetage, il faut utiliser le nom complet.
 - permet pour un paquetage d'avoir accès à l'espace de nommage d'un autre paquetage.

ACCÈS À UN PAQUETAGE

- Pour accéder aux éléments d'un paquetage à partir d'un autre paquetage, il faut utiliser le nom complet.
 - permet pour un paquetage d'avoir accès à l'espace de nommage d'un autre paquetage.
- L'espace de nommage n'est pas importé et ne peut être transmis à d'autres paquetages par transitivité.

Le paquetage p₁ a accès à la classe C4 seulement.

PLAN

- Les éléments de base
- Les relations entre paquetages
- Les principes de cohérence et d'indépendance
- Réduction de couplage entre paquetages

Retour à l'accueil - Retour au plan

- Le découpage en paquetages doit traduire un découpage logique du système à construire.
 - des espaces de nommage homogènes.

- Le découpage en paquetages doit traduire un découpage logique du système à construire.
 - des espaces de nommage homogènes.
- La structuration d'un modèle dans un diagramme de paquetages s'appuie sur deux principes fondamentaux :

- Le découpage en paquetages doit traduire un découpage logique du système à construire.
 - des espaces de nommage homogènes.
- La structuration d'un modèle dans un diagramme de paquetages s'appuie sur deux principes fondamentaux :
 - 1. La cohérence : regrouper les éléments proches sémantiquements.

- Le découpage en paquetages doit traduire un découpage logique du système à construire.
 - des espaces de nommage homogènes.
- La structuration d'un modèle dans un diagramme de paquetages s'appuie sur deux principes fondamentaux :
 - 1. La cohérence : regrouper les éléments proches sémantiquements.
 - 2. L'indépendance: minimiser les dépendances entre les paquetages.

UNIVERSITE PARIS-SACLAY

• La cohérence consiste à regrouper les éléments de modélisation proches d'un point de vue sémantique en suivant les critères suivants :

- La cohérence consiste à regrouper les éléments de modélisation proches d'un point de vue sémantique en suivant les critères suivants :
 - Finalité: les classes doivent rendre des services de même nature.

- La cohérence consiste à regrouper les éléments de modélisation proches d'un point de vue sémantique en suivant les critères suivants :
 - Finalité : les classes doivent rendre des services de même nature.
 - Evolution : les classes stables doivent être isolées de celles qui vont évoluer (les classes métiers et les classes applicatives).

- La cohérence consiste à regrouper les éléments de modélisation proches d'un point de vue sémantique en suivant les critères suivants :
 - Finalité: les classes doivent rendre des services de même nature.
 - Evolution : les classes stables doivent être isolées de celles qui vont évoluer (les classes métiers et les classes applicatives).
 - Cycle de vie des objets : les classes doivent être distinguées selon que leurs objets ont une durée de vie identique ou pas.

QUEL DÉCOUPAGE?

AVANTAGER LA FINALITÉ

AVANTAGER L'ÉVOLUTION

UN DÉCOUPAGE QUI AVANTAGE L'INDÉPENDANCE

Est ce qu'on peut faire mieux que le résultat obtenu à partir des découpages précédents?

PLAN

- Les éléments de base
- Les relations entre paquetages
- Les principes de cohérence et d'indépendance
- Réduction de couplage entre paquetages

Retour à l'accueil - Retour au plan

RÉDUCTION DE COUPLAGE

RÉDUCTION DE COUPLAGE

• Les associations qui traversent deux paquetages peuvent induire des dépendances mutuelles, si elles sont bidirectionnelles.

UNIVERSITE PARIS-SACLAY

RÉDUCTION DE COUPLAGE

- Les associations qui traversent deux paquetages peuvent induire des dépendances mutuelles, si elles sont bidirectionnelles.
- Le concepteur doit réduire les dépendances mutuelles ou cycliques, afin d'augmenter la modularité et l'évolutivité de son application.

UNIVERSITE PARIS-SACLAY

PRIVILÉGIER UN SENS DE NAVIGATION

PRIVILÉGIER UN SENS DE NAVIGATION

• On fait un choix en privilégiant un sens de navigation afin d'éliminer une des deux dépendances :

PRIVILÉGIER UN SENS DE NAVIGATION

- On fait un choix en privilégiant un sens de navigation afin d'éliminer une des deux dépendances :
 - il est certain qu'une réservation est en relation forte avec le vol concerné, alors que le vol existe par lui-même, indépendamment de toute réservation.

INVERSER UNE DÉPENDANCE

• L'inversion d'une dépendance s'effectue, en introduisant une classe abstraite (ou une interface), de la façon suivante :

INVERSER UNE DÉPENDANCE

• L'inversion d'une dépendance s'effectue, en introduisant une classe abstraite (ou une interface), de la façon suivante :

INVERSER UNE DÉPENDANCE

• L'inversion d'une dépendance s'effectue, en introduisant une classe abstraite (ou une interface), de la façon suivante :

UNIVERSITE PARIS-SACLAY

UNIVERSITE PARIS-SACLAY

THE END

Retour à l'accueil - Retour au plan

universite PARIS-SACLAY