Devoir à la maison n^o 12

EXERCICE 1.

L'objet de cet exercice est de prouver les solutions entières de l'équation :

$$x^2 + y^2 = z^2 \tag{E}$$

sont (à une permutation près de x et y) les triplets (x, y, z) de la forme :

$$x = d(u^2 - v^2)$$
 $y = 2duv$ $z = d(u^2 + v^2)$

où d, u, v sont des entiers.

- 1. S'assurer que les solutions avancées vérifient bien l'équation (??).
- 2. Soit (x, y, z) un triplet d'entiers solution de l'équation (??). On suppose x, y et z premiers entre eux dans leur ensemble et strictement positifs.
 - a. Montrer que x, y et z sont premiers entre eux deux à deux.
 - b. Montrer que x et y sont de parités distinctes. En déduire la parité de z.
- 3. On reprend les hypothèses de la question précédente et on suppose de plus x impair et y pair.
 - a. Montrer que le pgcd de z + x et z x est 2.
 - **b.** Il existe donc $(a,b,c) \in (\mathbb{N}^*)^3$ tel que

$$y = 2a z + x = 2b z - x = 2c$$

Montrer que b et c sont des carrés d'entiers naturels non nuls.

4. Conclure.

Problème 1 —

Pour $n \in \mathbb{N}$, on note f_n et g_n les fonctions telles que pour tout $x \in \mathbb{R}$

$$f_n(x) = \cos(nx)$$
 et $g_n(x) = \cos^n(x)$

En particulier, f_0 et g_0 sont la fonction constante égale à 1.

Pour tout $n \in \mathbb{N}$, on pose

$$F_n = \text{vect}(f_0, f_1, \dots, f_n)$$
 et $G_n = \text{vect}(g_0, g_1, \dots, g_n)$

 F_n et G_n sont donc des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$.

Partie I – Cas particulier

- 1. Montrer que pour tout $k \in \{0, 1, 2\}$, $f_k \in G_2$. En déduire que $F_2 \subset G_2$.
- **2.** Montrer que la famille (f_0, f_1, f_2) est libre. Quelle est la dimension de F_2 ?
- 3. Montrer que la famille (g_0, g_1, g_2) est libre. Quelle est la dimension de G_2 ?
- 4. En déduire que $F_2 = G_2$.

Partie II - Une inclusion

- 1. Montrer que pour tout $n \in \mathbb{N}$, $f_{n+2} = 2f_{n+1}f_1 f_n$.
- 2. Montrer par récurrence double que pour tout $n \in \mathbb{N}, f_n \in G_n$.
- 3. En déduire que pour tout $n\in\mathbb{N},\,F_n\subset G_n.$

Partie III - Utilisation de la dimension

- 1. Calculer $I_{k,l}=\int_0^{2\pi}f_k(t)f_l(t)\,dt$ pour $(k,l)\in\mathbb{N}^2.$ On distinguera plusieurs cas.
- 2. Montrer que pour tout $n \in \mathbb{N}$, la famille (f_0, \ldots, f_n) est libre.
- 3. En déduire la dimension de F_n pour tout $n \in \mathbb{N}$.
- 4. Justifier que dim $G_n \le n + 1$.
- 5. Prouver que $F_n=G_n$ pour tout $n\in\mathbb{N}.$