# **CSE-170 Computer Graphics**

# Lecture 24 Representations and Manifolds

Dr. Renato Farias rfarias2@ucmerced.edu

# **Representation Schemes**

# Representations of Solids

- Stages for defining a representation:
  - Physical UniverseReal solid object
  - Mathematical Universe
     Surface equations, geometric primitives, etc.
  - Representation Universe
    - Boundary elements, surface control points, primitive parameters, etc.
  - Implementation Universe
    - Data structures, number representation format, algorithms, etc.

# Representations

- Typical properties to consider:
  - Unambiguous
  - Unique
  - Expressive Power
  - Validity
  - Compact
  - Efficient for algorithms
  - Closure under operations
  - Should make it impossible to be invalid
  - etc.

# **Taxonomy**

- Special purpose schemes
  - Primitive instancing
    - Including operations, for ex.: sweeps
- Generic
  - Decomposition Models
  - Constructive Models
  - Boundary Models
- Hybrid Schemes
  - More than one representation used
  - Scene graphs

We have already seen most of these approaches (more about primitive instancing in next slide)

# **Taxonomy**

- Primitive instancing
  - Parameterized primitives and operations (like sweeps) are perfect for some specific applications

» Ex: defining t-bricks and gears, or generic sweeps



# **Definition of Solid Models**

What does "solidity" mean?
 "three-dimensional solidity" with point-set topology:

- ⇒possible description of a solid model:
- a subset of E<sup>3</sup> (3D Euclidian space)
- and the subset has to be "limited"

- Definition 1
  - A solid is a bounded, closed subset of E<sup>3</sup>

Is this enough?

- Definition 1
  - A solid is a bounded, closed subset of E<sup>3</sup>

Is this enough?



- Definition 1
  - A solid is a bounded, closed subset of E<sup>3</sup>

- Is this enough?
  - What about isolated points, lines or faces?
  - Need notion of regularity

- Definition 2
  - A solid is a bounded <u>regular</u> set of E<sup>3</sup>

Regularization

```
r(A) = c(i(A)) (c is closure, i is interior)
```

Sets that satisfy r(A)≡A are regular

Is this enough?

- Mostly yes, definition 2 is a well adopted point-set definition for a solid
  - A solid is a bounded regular set of E<sup>3</sup>



$$r(A) = c(i(A))$$



#### **Manifolds**

- A 2-manifold M is a topological space where every point has a neighborhood topologically equivalent to an open disk of E<sup>2</sup>
  - topologically equivalent:
    - when you can "elastically deform" one space to the other, both spaces share several properties
  - 2-manifolds can be used to define the boundary of solid models!

## **Manifolds**

 A 2-manifold M is a topological space where every point has a neighborhood topologically equivalent to a 2D open disk

— Ex: the third case below is not a 2-manifold:



## **Manifolds**

- There is a theoretical mismatch in our solidity notion between
  - r-sets and
  - 2-manifold of the boundary of an r-set







- Examples above do not represent solid objects!
  - They are r-sets but boundaries are not 2-manifolds!
- This mismatch remains and is handled for each modeling situation when/if needed

# **Boundary-Based Models**

# **Solid Modeling**

 Are simple line connections between points enough to precisely define a model?





# **Solid Modeling**

• Edges are not enough:



# **Boundary-Based (B-Rep) Models**

- In B-Rep we model the boundary of a solid object
  - Consistent collection of "faces" which are connected together
  - How to ensure the final boundary "skin" satisfies our notion of "solidity"?

 Since our 2-manifold boundaries are locally planar, it is possible to convert them to planar representations

- A planar way of specifying topological properties of a 2-manifold
  - By the identification of edges
  - Cylinder



## • Torus:





$$x(u, v) = (R + r \cos v) \cos u$$
  
$$y(u, v) = (R + r \cos v) \sin u$$
  
$$z(u, v) = r \sin v$$

# Möbius strip:







$$x(u,v) = \left(1 + \frac{v}{2}\cos\frac{u}{2}\right)\cos(u)$$
$$y(u,v) = \left(1 + \frac{v}{2}\cos\frac{u}{2}\right)\sin(u)$$
$$z(u,v) = \frac{v}{2}\sin\frac{u}{2}$$

## Klein bottle:





$$\begin{pmatrix} \mathbf{x}[\mathbf{u},\,\mathbf{v}] \\ \mathbf{y}[\mathbf{u},\,\mathbf{v}] \\ \mathbf{z}[\mathbf{u},\,\mathbf{v}] \end{pmatrix} = \begin{pmatrix} \mathsf{Cos}[\mathbf{u}] \; (\mathbf{a} + \mathsf{Cos}[\frac{\mathbf{u}}{2}] \; \mathsf{Sin}[\mathbf{v}] - \mathsf{Sin}[\frac{\mathbf{u}}{2}] \; \mathsf{Sin}[2\,\mathbf{v}]) \\ \mathsf{Sin}[\mathbf{u}] \; (\mathbf{a} + \mathsf{Cos}[\frac{\mathbf{u}}{2}] \; \mathsf{Sin}[\mathbf{v}] - \mathsf{Sin}[\frac{\mathbf{u}}{2}] \; \mathsf{Sin}[2\,\mathbf{v}]) \\ \mathsf{Sin}[\frac{\mathbf{u}}{2}] \; \mathsf{Sin}[\mathbf{v}] + \mathsf{Cos}[\frac{\mathbf{u}}{2}] \; \mathsf{Sin}[2\,\mathbf{v}] \end{pmatrix}$$

# **Topological Classes**

- If one model can be transformed into another one by only "elastic deformations", then they are equivalent
  - i.e., in the same "topological class"

 Ex. of classes: sphere, torus, klein bottles, double-torus, etc.

Klein Bottles: zero volume, one-sided surface

examples:





# **Designing B-Rep Data Structures**

- Graph:
  - Connecting vertices, edges, and polygons
  - Polygons have an orientation
- 2-Manifold Restrictions:
  - Every edge is adjacent to 2 polygons/faces
  - Single consistent cycle around each vertex
    - Polygons sharing a vertex define a cycle where each consecutive pair of polygons are adjacent to one edge

# **Designing B-Rep Data Structures**

- We will use these characteristics to design consistent graph-based data structures
  - Example:

