ULB Liste 01 2016/2017

MATHF411-Analyse Fonctionnelle

Assistant : Robson Nascimento Titulaire : Paul Godin

Dualité des Espaces de Hilbert

Exercice 1 (Lemme de Riesz) Étant donné un espace de Hilbert H et L une forme linéaire continue sur H, il existe un unique représentant $u_L \in H$ tel que

$$L(h) = \langle u_L | h \rangle \quad \forall h \in H.$$

De plus,

- (i) l'application $H' \to H : L \mapsto u_L$ est une isométrie;
- (ii) l'élément u_L est l'unique élément de H qui minimise la fonctionelle

$$\psi: H \to \mathbb{R}: x \mapsto \frac{1}{2} ||x||^2 - L(x).$$

Exercice 2 Soient $H = L^2(0,1)$ et $F: H \to \mathbb{R}$ la fonctionelle linéaire

$$F(u) = \int_0^{1/2} u(t) dt.$$

Montrer que F est bien défini et que $F \in H'$. Alors, utiliser le lemme de Riesz pour calculer $||F||_{H'}$.

Exercice 3 Soit Ω un ouvert borné de \mathbb{R}^N et $(u_n)_n \subset L^2(\Omega)$. Supposons que $\sup_n ||u_n|| < +\infty$ et que $u_n(x) \to u(x)$ presque partout dans Ω .

- (i) Montrer que $u \in L^2(\Omega)$ à l'aide du lemme de Fatou.
- (ii) Prouver que $u_n \rightharpoonup u$ dans $L^2(\Omega)$.

Indice : Séparer les intégrales sur Ω en une intégrale sur l'ensemble

$$\omega_k := \bigcap_{n=k}^{\infty} \{ x \in \Omega : |u_n(x) - u(x)| \le 1 \}$$

et son complémentaire, et utiliser le théorème de la convergence dominée de Lebesgue.

Exercice 4 Soient X et Y des espaces vectoriels normés. Montrer que l'application bilinéaire $\mathcal{L}(X,Y) \times X \to Y : (A,u) \mapsto Au$ est continue.

Exercice 5 (Théorème de Banach-Steinhaus) Montrer le théorème : Soit X un espace de Banach, Y un espace vectoriel normé, et $(A_n)_n \subset \mathcal{L}(X,Y)$. On suppose que cette famille est ponctuellement bornée, c'est-à-dire

$$\forall x \in X, \quad \sup_{x} ||A_n(x)|| < +\infty ;$$

alors cette famille est uniformément bornée :

$$\sup_{n} \|A_n\| < \infty.$$

Indice: En supposant par l'absurde que $\sup_n ||A_n|| = \infty$, montrer que

$$U_k := \bigcup_{n=0}^{\infty} \{ u \in X : ||A_n u|| > k \}$$

est un ouvert dense, puis utiliser le théorème de Baire.

Exercice 6 Soient X et Y des espaces vectoriels normés. Montrer que si Y est complet, alors $\mathcal{L}(X,Y)$ est complet.

Remarque : En particulier, l'ensemble $\mathcal{L}(H_1, H_2)$ est complet dès que H_2 est complet, et le dual d'un espace vectoriel normé est complet.

Exercice 7 Soient H un espace de Hilbert et $(u_n)_n \subset H$.

- (i) Prouver que $u_n \rightharpoonup u$ dans H et $||u_n|| \rightarrow ||u||$ si et seulement si $||u_n u|| \rightarrow 0$.
- (ii) Si $u_n \to u$ dans H et $v_n \to v$ dans H, alors $\langle u_n | v_n \rangle \to \langle u | v \rangle$.
- (iii) Si $L: H_1 \to H_2$ est linéaire et continue et $h_n \rightharpoonup h$ alors $L(h_n) \rightharpoonup L(h)$.

Exercice 8 (Lemme de Brézis-Lieb) Soient Ω un ouvert de \mathbb{R}^N et $(u_n)_n \subset L^p(\Omega)$ avec $1 \leq p < \infty$. On suppose que $(u_n)_n$ soit bornée dans $L^p(\Omega)$ et $u_n(x) \to u(x)$ presque partout dans Ω . On se propose de montrer que $u \in L^p(\Omega)$ et que

$$\lim_{n \to \infty} (\|u_n\|_p^p - \|u_n - u\|_p^p) = \|u\|_p^p.$$

(i) Pour tout $\varepsilon > 0$ il existe $C_{\varepsilon} = C(\varepsilon, p) > 0$ tel que, pour tout $a, b \in \mathbb{R}$ on a

$$\left| |a+b|^p - |a|^p - |b|^p \right| \le \varepsilon |a|^p + C_{\varepsilon} |b|^p.$$

(ii) Pour un $\varepsilon > 0$ fixé, on pose

$$f_n^{\varepsilon} = \left(\left| |u_n|^p - |u_n - u|^p - |u|^p \right| - \varepsilon |u_n - u|^p \right)^+.$$

Calculer

$$\lim_{n\to\infty} \int_{\Omega} f_n^{\varepsilon}(x) dx.$$

(iii) Conclure.

Remarque : Comme une conséquence directe de cet exercice on a que si $1 \leq p < \infty$, $u \in L^p(\Omega)$ et $(u_n)_n \subset L^p(\Omega)$ avec

$$u_n(x) \to u(x)$$
 p.p. dans Ω et $\lim_{n \to \infty} ||u_n||_p = ||u||_p$,

alors $\lim_{n\to\infty} ||u_n - u||_p = 0$.

Exercice 9 Prouver que les suites ci-dessous convergent faiblement vers 0 dans $L^2(\Omega)$, mais ne sont pas fortement convergente à cause d'un problème :

(i) d'oscillations (la suite oscille de plus en plus), où la suite définie sur $\Omega =]-\pi,\pi[$ est

$$u_n(x) = \frac{1}{\sqrt{\pi}} \cos nx;$$

(ii) d'évanescence (la suite s'évanouit, elle se translate de plus en plus loin), où la suite est définie sur $\Omega=\mathbb{R}$ par

$$u_n(x) = u(x - n)$$

où u est la fonction caractéristique de l'intervalle [0,1];

(iii) de concentration (la suite se concentre en un point), où la suite définie sur $\Omega =]-1, 1[$ par

$$u_n(x) = \sqrt{n} \, u(nx)$$

où u est la fonction caractéristique de Ω .

Exercice 10 Soient H un espace de Hilbert et $A: H \to H$ une application linéaire symétrique sur H (i.e. $\langle Au|v\rangle = \langle u|Av\rangle$, $\forall u,v \in H$).

- (i) Montrer que A est continue pour la convergence faible, et
- (ii) à l'aide du théorème de Banach-Steinhaus, montrer que A est (fortement) continue.

Indice: Pour la continuité forte, on pourra montrer par l'absurde que $\sup_{\|u\|=1} \|Au\| < +\infty$ en considérant les applications A_n définies par $A_n: v \mapsto \langle Au_n|v\rangle$, où $(u_n)_n$ est une suite telle que $\|Au_n\| \to +\infty$ et $\|u_n\| = 1$.

Exercice 11 Donner un exemple d'ensemble (fortement) fermé qui n'est pas faiblement fermé.