Introduction to mathematical induction

A sample problem

Proposition: The sum of the first n odd natural numbers is n^2 .

The first n odd numbers are $1,3,\ldots,2n-1$. So in summation notation this is the claim that, for all $n\in\mathbb{N}$,

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

.

Sample problem continued.

The proposition above is infinitely many statements.

n	sum of the first n odd natural numbers	n^2
1	1 =	1
2	1+3=	4
3	$1+3+5 = \dots $	9
4	$1+3+5+7 = \dots $	16
5	$1+3+5+7+9 = \dots$	25
:	:	i l
$\mid n \mid$	$1+3+5+7+9+11+\cdots+(2n-1)=\ldots$	n^2
:	:	:

Figure 1: From pg. 180 of the text

Sample continued

We can prove any *one* of these statements.

How do we prove all of them?

Mathematical induction

Mathematical induction *extends* our system of logic by adding an axiom.

Axiom of Induction: Let P(n) be a collection of statements, one for each natural number. Suppose that P(1) is true and, for all n, the implication $P(n) \implies P(n+1)$ is true. Then P(n) is true for all n.

The book calls this a *method of proof* but it is really an axiom.

A prototype

Proposition: Suppose that S is a set such that $1 \in S$ and, for all n, if $n \in S$, then also $n + 1 \in S$. Then $\mathbb{N} \subseteq S$.

Proof: Let P(n) be the statement $n \in S$. The hypotheses say that P(1) is true, and that $P(n) \Longrightarrow P(n+1)$. Therefore P(n) is true for all n, and so every natural number is in S, so $\mathbb{N} \subset S$.

Proof of the result on sum of odd numbers

Proposition: For all n, we have

$$\sum_{i=1}^{n} (2n-1) = n^2.$$

Proof: We apply mathematical induction. The statement P(n) is

$$\sum_{i=1}^{n} (2n-1) = n^2.$$

So P(1) is the claim that $1=1^2$, which is true. To prove that $P(n) \implies P(n+1)$, we assume P(n) true:

$$1+3+5+\cdots+(2n-1)=n^2$$
.

Proof, continued

$$1+3+5+\cdots+(2n-1)+(2(n+1)-1) = 1+3+5+\cdots+(2n-1)+2n+1 = n^2+2n+1=(n+1)^2.$$

Therefore, if P(n) is true then P(n+1) is also true. By mathematical induction P(n) is true for all n.