Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: М32131	К работе допущен
Студентка: Зыонг Тхи Хуэ Линь	Работа выполнена
Преподаватель: Александр Адольфович Зинчик	Отчет принят

Рабочий протокол и отчёт по квантовой лабораторной работе №1

- 1. Цель работы: Изучить функционал квантового компьютера IBM.
- 2. Задачи, решаемые при выполнении работы:
- Построить однокубитные квантовые цепи;
- Зарегистрировать результаты моделирования цепочек;
- Сравнить данные моделирований с теоретическими распределениями.
- 3. Объект исследования:

Квантовый компьютер, распределение вероятности однокубитных и многокубитных цепей.

4. Метод экспериментального исследования: Внедрение вентилей в построение схем, проведение моделирований.

Задания для упражнения 1:

1. В «IBM Quantum Composer» создали схему из двух кубитов: один кубит должен иметь состояние |0>, а второй кубит состояние |1>. Состояние |1> можно получить с использованием гейта X.

Кубит является физическим носителем квантовой информации. Это квантовая версия бита, и его квантовое состояние может быть записано в терминах двух уровней, помеченных $|0\rangle$ и $|1\rangle$, которые могут быть представлены в "вычислительном базисе" двумерными векторами:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

2. В «IBM Quantum Composer» создали схему из одного кубита находящегося в состоянии $1/\sqrt{2}$ (|0>+|1>). Применили операцию измерения к данному кубиту. Выполнили симуляцию с различным количеством измерений: 1, 2, 8, 32, 64, 128, 512, 1024, 8192.

До этого момента кубит вел себя как классический бит. Чтобы выйти за рамки классического поведения, нужно понять, что значит сделать суперпозицию.

Суперпозиция — это взвешенная сумма или разность двух или более состояний; другими словами, это линейная комбинация.

Одной из распространённых операций, генерирующих суперпозицию, является вентиль Адамара, Н. Матрица:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Схема суперпозиции:

Результаты дают 0 почти половину времени, а в остальное время 1 Поскольку исходное квантовое состояние кубита было $1/\sqrt{2}$ ($|0\rangle + |1\rangle$), вероятности измерения состояний $|0\rangle$ и $|1\rangle$ будут равны 1/2. Таким образом, при каждом измерении мы можем ожидать получить результаты $|0\rangle$ или $|1\rangle$ с вероятностью 1/2.

Количество измерений влияет на то, как быстро мы сможем получить достаточно точную оценку вероятности состояний. С увеличением числа измерений мы получаем более точные результаты.

Например, при одном измерении вероятность получения каждого состояния будет 1/2. Если мы проведем 1024 измерения, то ожидаемое количество полученных состояний |0⟩ будет примерно равно 512, а состояний |1⟩ также примерно 512. С увеличением числа измерений разброс вероятностей уменьшается, и мы получаем более точную оценку.

3. В «IBM Quantum Composer» соберите квантовые схемы, показанные на рис. 17.

q[0]

q[0]

Результаты моделирования ожидаемы, потому что глобально схемы отличаются лишь в выбранных управляющих кубитах вентиля **CNOT**. Первый кубит q[0] может равновероятно находиться в состояниях |0> и |1>, и при выборе q[0] в качестве управляющего, состояние управляемого кубита q[1] тоже равновероятно |0> и |1> соответственно.

Если же выбрать управляющим q[1], то влияния на q[0] вентиля инвертирования связки не будет. Естественно заметить, что измерения для q[0] уже проводились, а в этом задании нас

интересует состояние второго кубита q[1]. Как уже было сказано, состояние q[1] может принимать равновероятный характер (выбор q[1] в качестве управляемого) и постоянный

характер (выбор q[1] в качестве управляющего).

4. В «Quantum Composer» создайте схемы, представленные на рис. 18

Для 1: Поскольку начальное состояние кубитов было $|00\rangle$, операция H на первом кубите приводит его в состояние $(|0\rangle+|1\rangle)/\sqrt{2}$, а операция X переводит состояние кубита q[0] в $|1\rangle$. Затем второй H возвращает кубит q[0] в состояние $(|0\rangle+|1\rangle)/\sqrt{2}$.

Далее, контролируемый NOT (CX) применяет операцию X на кубите q[1], только если кубит q[0] находится в состоянии $|1\rangle$. Таким образом, если начальное состояние было $|00\rangle$, то после выполнения CX состояние кубитов будет $|00\rangle$.

Наконец, измерения кубитов приводят к коллапсу состояния и получению классических результатов. В данном случае, два измерения записываются в один классический бит c[0]. Поскольку начальное состояние кубитов было |00⟩, мы можем ожидать, что при измерениях будут получены результаты 00 с вероятностью 1.

Для 1024 испытаний, мы можем ожидать, что в примерно 1024/4 = 256 случаях мы получим результаты "00" в классических битах с[0], а в остальных случаях мы можем получить результаты "01", "10" или "11". Однако, из-за случайной природы квантовой системы, конкретные результаты будут различаться в каждом испытании.

Для 2: Поскольку начальное состояние кубитов было $|00\rangle$, операция H на первом кубите приводит его в состояние $(|0\rangle+|1\rangle)/\sqrt{2}$, а операция X переводит состояние кубита q[0] в $|1\rangle$. Затем второй H возвращает кубит q[0] в состояние $(|0\rangle+|1\rangle)/\sqrt{2}$.

Далее, контролируемый NOT (CX) применяет операцию X на кубите q[1], только если кубит q[0] находится в состоянии |1 \rangle . Таким образом, если начальное состояние было |00 \rangle , то после выполнения CX состояние кубитов будет |00 \rangle .

Наконец, измерение первого кубита q[0] приводит к коллапсу состояния и получению одного классического результата. В данном случае мы можем ожидать, что при измерении будет получен результат 0 с вероятностью близкой к 1.

Для 1024 испытаний, мы можем ожидать, что в примерно 1024 случаях мы получим результат 0 в классическом бите c[0], а в оставшихся случаях мы можем получить результат 1.

5. В «Quantum Composer» создайте схемы, представленные на рис. 19.

1) Ky6ut RESET + MEASUREMENT:

Ничего необычного не регистрируем, кубит имеет лишь одно состояние |0>.

2) Ky6ut RESET + NOT + MEASUREMENT:

Ничего необычного не регистрируем, кубит имеет лишь одно состояние |1>, ввиду X gate.

3) **Кубит + оператор Адамара + MEASUREMENT**

Регистрируем почти равномерное распределение вероятности приобретения одного из состояний |0> и |1>. Заметим, что на Q-сфере отображается лишь одно состояние: это

можно объяснить наличием

детерминированного наблюдения

MEASUREMENT.

4) Кубит + NOT + оператор Адамара + MEASUREMENT

Регистрируем почти равномерное распределение вероятности приобретения одного из состояний |0> и |1>. На Q-сфере отображается лишь одно состояние (с обратной фазой): это можно объяснить наличием детерминированного наблюдения MEASUREMENT.

5) Кубит + RX(60) + MEASUREMENT Вентиль RX отвечает за вращение относительно оси X на Q-сфере

6) Kyбит + RX(60) + NOT + MEASUREMENT

Для 1: Данный код описывает квантовую схему, которая состоит из единственного кубита q[0], который сбрасывается в состояние $|0\rangle$ с помощью операции reset, а затем выполняется измерение кубита q[0] и результат записывается в классический бит c[0].

Таким образом, мы можем ожидать, что при каждом испытании кубит q[0] будет находиться в состоянии $|0\rangle$ и, следовательно, результат измерения будет всегда равен 0. Для 1024 испытаний мы можем ожидать получения результата 0 в классическом бите c[0] во всех 1024 случаях.

Для 2: Данный код описывает квантовую схему, которая состоит из единственного кубита q[0], который сбрасывается в состояние $|0\rangle$ с помощью операции reset, затем к нему применяется операция X, которая изменяет состояние кубита на $|1\rangle$, и в конце выполняется измерение кубита q[0] и результат записывается в классический бит c[0].

Таким образом, мы можем ожидать, что при каждом испытании кубит q[0] будет находиться в состоянии $|1\rangle$ и, следовательно, результат измерения будет всегда равен 1. Для 1024 испытаний мы можем ожидать получения результата 1 в классическом бите c[0] во всех 1024 случаях.

Для 3: Данный код описывает квантовую схему, которая состоит из единственного кубита q[0], к которому применяется операция Адамара (Hadamard gate), которая создает равную вероятность нахождения кубита в состояниях $|0\rangle$ и $|1\rangle$, затем выполняется измерение кубита q[0] и результат записывается в классический бит c[0].

Таким образом, мы можем ожидать, что в каждом испытании кубит q[0] будет находиться в состоянии $|0\rangle$ с вероятностью 1/2 и в состоянии $|1\rangle$ с вероятностью 1/2.

Аналогично можно расписать и для 4-5.

Для 6: Данный код описывает квантовую схему, которая состоит из единственного кубита q[0], к которому сначала применяется операция rx(pi/2), которая поворачивает состояние кубита на угол pi/2 вокруг оси X на сфере Блоха, затем к нему применяется операция X, которая изменяет состояние кубита на $|1\rangle$, и в конце выполняется измерение кубита q[0] и результат записывается в классический бит c[0].

Таким образом, мы можем ожидать, что при каждом испытании кубит q[0]

будет находиться в состоянии, которое является суперпозицией состояний $|0\rangle$ и $|1\rangle$. Это состояние можно записать как $1/\sqrt{2}$ ($|0\rangle$ + i $|1\rangle$) (где i - мнимая единица). После применения операции X кубит перейдет в состояние $1/\sqrt{2}$ ($|1\rangle$ + i $|0\rangle$). Поскольку результат измерения определяет состояние кубита, то мы можем ожидать получения результата 0 или 1 в классическом бите c[0] с вероятностями, соответствующими амплитудам состояний $|0\rangle$ и $|1\rangle$ на момент измерения.

Для данной схемы, мы можем использовать формулу для вероятности получения результата 0: $P(0) = |1/\sqrt{2} (\langle 0| + i\langle 1|) X |0\rangle|^2 = |1/\sqrt{2} (\langle 0|0\rangle + i\langle 1|0\rangle)|^2 = 1/2$

Аналогично, вероятность получения результата 1 будет также равна 1/2. Для 1024 испытаний мы можем ожидать получения примерно равного числа результатов 0 и 1 в классическом бите c[0].

Из этого следуют следующие выводы:

- 1. Физическая система в определенном состоянии все еще может вести себя случайным образом.
- 2. Кубиты могут находиться в квантовых суперпозициях, эти суперпозиции могут иметь знак, который приводит к интерференции, заставляя квантовую случайность исчезать.

Задания для 2 упражнения:

1. Получите кубит в состоянии суперпозиции $1/\sqrt{2}$ (|0>+|1>).

Frequency	
0>	1>
0.5049	0.4951

2. Двумя способами получите кубит в состоянии суперпозиции $1/\sqrt{2}$ (|0>-|1>).

1. Первый способ:

Мы можем начать с кубита в состоянии |0> и применить последовательно операции X и H, чтобы получить состояние $1/\sqrt{2}$ (|0>-|1>):

Здесь мы создали регистр кубитов **q** из одного кубита, применили операцию X к первому кубиту **q[0]** (это приведет его из состояния |0> в состояние |1>), а затем применили операцию Адамара (H), чтобы получить кубит в состоянии $1/\sqrt{2}$ (|0>-|1>).

2. Второй способ:

Frequency	
0>	1>
0.5068	0.4932

3. Получите кубит в состоянии суперпозиции $1/\sqrt{2}$ (-|0> +|1>).

Чтобы получить кубит в состоянии суперпозиции $1/\sqrt{2}$ (-|0>+|1>), можно использовать один из следующих способов:

1. Применить гейт X к кубиту в состоянии |0>:

$$X | 0 > = | 1 >$$

Затем применить гейт Адамара к кубиту в состоянии |1>:

$$H | 1 > = 1/\sqrt{2} (|0 > +|1 >)$$

Сложить оба кубита вместе с помощью гейта CNOT, где кубит в состоянии |1> является управляющим кубитом:

CNOT
$$|1> \bigotimes |0> = |1> \bigotimes |1>$$

Таким образом, мы получаем кубит в состоянии $1/\sqrt{2}$ (-|0>+|1>).

4. С помощью однокубитного гейта Rx получите кубит в состоянии суперпозиции a|0>+b|1> в соответствии с вариантом, представленном в таблице 4.1

Для начала необходимо найти параметр угла для гейта Rx, который будет соответствовать данным вероятностям. Для этого мы можем использовать следующие формулы:

- Вероятность $|0> = \cos^2(\theta/2)$
- Вероятность $|1> = \sin^2(\theta/2)$

Подставим значения вероятностей и решим уравнения относительно θ :

- $\cos^2(\theta/2) = 0.2$
- $\sin^2(\theta/2) = 0.8$

Решив уравнения, получим $\theta = 2.2143$ радиан.

Необходимо также применить квантиль $P\left(\frac{pi}{2}\right) \equiv S$ для компенсации по фазе Q.

Теперь можем написать квантовую схему:

Frequency	
0>	1>
0.2002	0.7998

5. С помощью однокубитного вентиля RY получите кубит в состоянии суперпозиции ($a \mid 0$) + $b \mid 1$)). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

Вентиль RY отвечает за вращение на угол θ относительно состояния оси чтообщем случае Y.

Необходимо рассмотреть оператор матрицы поворота и заметить, что в общем случае

$$\hat{RY} = exp(-i\frac{\theta}{2}\hat{Y}) = cos\frac{\theta}{2}\hat{I} - isin\frac{\theta}{2}\hat{Y}$$

$$\hat{RY} = ((cos\frac{\theta}{2}; sin\frac{\theta}{2})^T; (-sin\frac{\theta}{2}; cos\frac{\theta}{2})^T)$$

$$\theta = 2arcos(\sqrt{0.2})$$

$$= 2.214$$

Frequency	
0>	1>
0.2001	0.7984

6. С помощью однокубитного вентиля U получите кубит в состоянии суперпозиции ($a \mid 0$) + $b \mid 1$)). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

Вентиль U отвечает за вращение на углы (θ, ϕ, λ) относительно любого состояния.

Необходимо рассмотреть оператор матрицы поворота и заметить, что в общем случае

$$\hat{U}(\theta, -\frac{\pi}{2}, \frac{\pi}{2}) = \hat{RX}(\theta)$$

$$\hat{U}(\theta, 0, 0) = \hat{RY}(\theta)$$

$$\hat{U} = ((\cos\frac{\theta}{2}; e^{i\phi}\sin\frac{\theta}{2})^T; (-e^{i\lambda}\sin\frac{\theta}{2}; e^{i(\phi+\lambda)}\cos\frac{\theta}{2})^T)$$

$$\theta = 2\arccos(\sqrt{0.2}) = 2.214$$

Frequency	
0>	1>
0.2246	0.7754

7. С помощью однокубитного вентиля RX получите кубит в состоянии суперпозиции ($a \mid 0 \rangle - b \mid 1 \rangle$).

Для получения состояния относительно данных в варианте значений необходимо применить оператор Паули (отображающий $|0> \to |0> and |1> \to -|1>)$

$$Z = ((1;0)^T; (0;-1)^T)$$

P-gate для компенсации фазы состояния ($cos \frac{2.214}{2} | 0 > + sin \frac{2.214}{2} | 1 >$)

Frequency	
0>	1>
0.2143	0.7763

8. С помощью однокубитного гейта RY получите кубит в состоянии суперпозиции a|0> - b|1> в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию.

Frequency	
0>	1>
0.2245	0.7754

9. С помощью однокубитного гейта U получите кубит в состоянии суперпозиции -a|0>+b|1> в соответствии с вариантомВыполните симуляцию.

В этот раз подробнее распишем принцип построения с математической точки зрения. Ранее мы получали состояние a|0>+b|1> а в этом задании необходимо найти такую цепочку гейтов, которые бы преобразовали в состояние суперпозиции -a|0>+b|1>

Очень жаль, что нет обратного гейта $Z^{-1} = ((-1; 0)^T; (0; 1)^T)$

Составим такой вентиль самостоятельно, ведь это ни что иное, как XZX:

$$\hat{X}\hat{Z} = ((0;1)^T;(1;0)^T) \cdot ((1;0)^T;(0;-1)^T) = ((0;1)^T;(-1;0)^T)$$
 $\hat{X}\hat{Z}\hat{X} = ((0;1)^T;(-1;0)^T) \cdot ((0;1)^T;(1;0)^T) = ((-1;0)^T;(0;1)^T) = Z^{-1}$
Посмотрим, как такой вентиль будет действовать на состояния $|0>$ и $|1>$:

$$Z^{-1}|\emptyset\rangle = Z^{-1} \cdot (1; \ 0)^T = (-1; \ 0)^T \equiv -|\emptyset\rangle$$

 $Z^{-1}|1\rangle = Z^{-1} \cdot (0; \ 1)^T = (0; \ 1)^T \equiv |1\rangle$

Frequency	
0>	1>
0.2246	0.7754

10.С помощью RX получить кубит (a|0>+ b|1>) и составить схему

Результаты напоминают распределение вероятности при суперпозиции для оператора Адамара с равновероятными состояниями |0> и |1>, однако стоит учесть, что от поворота $\widehat{RX}(2.214)$ останется фазовый сдвиг по

Frequency	
0>	1>
0.2246	0.7754

11. Соберите квантовые схемы показанные на рис. 22. Выполните симуляцию. Получите математическое обоснование результата.

Первая схема представляет собой измерение двух кубитов, каждый из которых был подвергнут операции Адамара. Результаты измерений записываются в один классический бит. В этом случае возможны два результата: |00> и |11>, и оба имеют равные вероятности, равные 0,5 каждый. Математическое обоснование: изначально состояние кубитов было |00>, где |0> и |1> обозначают базисные состояния кубита. После применения гейта Адамара к каждому кубиту, первый кубит принимает состояние (|0>+ |1>)/sqrt(2), а второй кубит также принимает состояние (|0>+|1>)/sqrt(2). Их произведение дает состояние (|0>+|1>)/sqrt(2) \otimes (|0>+|1>)/sqrt(2) = (|00>+|1>) |01>+|10>+|11>)/2. При измерении мы получаем одно из двух возможных состояний: |00> или |11>, каждое из которых имеет вероятность 0,5. Вторая схема представляет собой измерение двух кубитов, первый из которых был подвергнут операции Адамара, а второй - операции X и затем Адамара. Результаты измерений записываются в один классический бит. В этом случае возможны два результата: |00> и |10>, и оба имеют равные вероятности, равные 0,5 каждый.

Математическое обоснование: изначально состояние кубитов было |00>. После применения гейта Адамара к первому кубиту он принимает состояние (|0>+|1>)/sqrt(2). Затем операция X переводит второй кубит в состояние |1>.

После этого гейт Адамара применяется ко второму кубиту, который переходит в состояние (|0>-|1>)/sqrt(2). Их произведение дает состояние (|00>-|10>)/sqrt(2). При измерении мы получаем одно из двух возможных состояний: |00> или |10>, каждое из которых имеет вероятность 0,5. Различие между этими двумя схемами заключается в том, что во второй схеме один кубит был подвергнут операции X перед применением гейта Адам.

Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы был изучен функционал квантового компьютера IBM, освоены однокубитные (H, U, Rx, Ry, Not) и некоторые двухкубитные вентели (CNOT). Были построены простые квантовые цепочки и изучено поведение кубита при действии на него последовательностью вентелей