2023-2024

Chapitre 33 Groupe Symétrique

Exercice 1: $\Diamond \Diamond \Diamond$ Ecrire explicitement s_1 , s_2 et s_3 .

Solution:

$$s_{1} = \{id_{1}\}, s_{2} = \{id_{\llbracket 1,2 \rrbracket}; \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}\}$$

$$s_{3} = \{id_{\llbracket 1,3 \rrbracket}; \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}\}$$

Exercice 2: $\Diamond \Diamond \Diamond$

Solution: Choisir un p-cycles, c'est choisir un p-uplet d'éléments distinct deux à deux, on a donc une bijection

Soit n et p deux entiers naturels supérieurs à 2 tels que $p \leq n$

entre l'ensemble des p-cycles et $A_p(\llbracket 1, n \rrbracket)$ Or $|A_p(\llbracket 1, n \rrbracket)| = \frac{n!}{(n-p)!}$

Combien S_n contient-il de p-cycles ?

Ainsi on a exactement $\frac{n!}{(n-p)!}$, p-cycles distincts.

Exercice 3: ♦♦♦

1. Que vaut $Z(S_2)$?

Centre de S_n On note $Z(S_n)$ le centre de S_n , c'est-à-dire l'ensemble des permutations qui commutent avec toutes les autres.

2. Montrer que $Z(S_n)$ est trivial dès que $n \geq 3$.

- $\[2\]$ Soit $n \in \mathbb{N}_{\geq 3}$, $id_{\llbracket 1,n \rrbracket} \in Z(S_n)$ étant donné que $id_{\llbracket 1,n \rrbracket}$ est le neutre du groupe S_n
- Supposons qu'il en existe au moins un autre, on le notera γ $\begin{array}{l} \gamma \neq id_{\llbracket 1,n\rrbracket} \text{ donc } \exists k \in \llbracket 1,n\rrbracket \mid \gamma(k) \neq k \\ \text{Notons } z \in (\llbracket 1,n\rrbracket - \{\gamma^2(k)\}) \text{ (possible } n \geq 3) \end{array}$

1 S_2 est un groupe abélien donc on a $Z(S_2) = S_2$

 $\gamma = \begin{pmatrix} k & \gamma(k) & \dots & \dots \\ \gamma(k) & \gamma^2(k) & \dots & \dots \end{pmatrix}$ Posons $\beta = \begin{pmatrix} k & \gamma(k) & \dots & \dots \\ \gamma(k) & z & \dots & \dots \end{pmatrix}$

$$\beta \circ \gamma(k) = z$$
 et $\gamma \circ \beta(k) = \gamma \circ \gamma(k) = \gamma^2(k)$
Donc $\beta \circ \gamma(k) \neq \gamma \circ \beta(k)$ (voir ensemble de définition de z)

On en deduis que $\forall n \in \mathbb{N}_{\geq 3}, \, Z(S_n) = \{id_{[\![1,n]\!]}\}$

Ainsi on a $\beta \circ \gamma \neq \gamma \circ \beta$