

Objective and Data Set

Objective

Predict which transaction is likely to be fraud, based on transaction information and personally identity information.

Data Set

- The datasets from Vesta Corporation have two parts: 'Identity' and 'Transaction'.
- In the joined dataset, there are 600K observations and 433 features (393 features of transaction and 41 features of identity).
- https://www.kaggle.com/c/ieee-fraud-detection/data

Note:

- 1. Most features, including transaction time, are anonymous.
- 2. Not all transactions observations have corresponding identity information;
- 3. The primary key, 'TransactionID', is unique.

Methodology

- **EDA**
 - Missing values
 - Imbalanced data

- **Data Processing**
 - Missing values
 - Imbalanced data

- **Feature Selection** 3
 - Filter Method
 - Fisher Criteria
 - Wrapped Method
 - Forward Stepwise
 - Embedded Method
 - LASSO

Prediction

Test our model on the test data set

- **Evaluation**
 - AUC
 - Precision/Recall
 - F1-score

- Model
- Logistic regression
- SVM
- Random Forest
- XGBoost
- Light GBM

Methodology

- **EDA**
 - Missing values
 - Imbalanced data

- **Data Processing**
 - Missing values
 1. Remove the feature

 - 2. Filled with Mean/Mode/Median
 - 3. Linear Regression
 - 4. Multiple Imputation

- **Feature Selection** 3
 - Filter Method
 - Fisher Criteria
 - Wrapped Method
 - Forward Stepwise
 - Embedded Method
 - LASSO

Prediction

Test our model on the test data set

- **Evaluation**
 - **AUC**
 - Precision/Recall
 - F1-score

- Model
- Logistic regression
- SVM
- Random Forest
- XGBoost
- Light GBM

Methodology

- 1 EDA
 - Missing values
 - Imbalanced data

- **2** Data Processing
 - Imbalanced data
 - 1. Up sampling
 - 2. Down sampling
 - 3. SMOTE

- **3** Feature Selection
 - Filter Method
 - Fisher Criteria
 - Wrapped Method
 - Forward Stepwise
 - Embedded Method
 - LASSO

6 Prediction

Test our model on the test data set

- 5 Evaluation
 - AUC
 - Precision/Recall
 - F1-score

- Model
- Logistic regression
- SVM
- Random Forest
- XGBoost
- Light GBM

Preliminary Results

	Precision	Recall	F-1 Score	AUC
Dummy Classifier (Baseline)	0.0322	0.0325	0.0323	0.49
Logistic	0.0555	0.6594	0.1023	0.58
Random Forest	0.4455	0.4649	0.4556	0.88
SVM	0.2017	0.6148	0.3037	0.76
XGBoost	0.2531	0.8646	0.3916	0.89
LGBM	0.2644	0.6830	0.3813	0.85

Next Steps

Missing Value & Imbalance Data

Feature Selection

Tune Model Parameter: Grid Search

SMOTE

Addressing class imbalance problems of ML via SMOTE: synthesising new dots between existing dots

