BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.:

12 p. 6 12 p. 5

30 h, 2/36

⋒	Offenlegungsschrift	1470427
<u></u>	Olieniedandsschrift	14,012.

Aktenzeichen:

P 14 70 427.9 (W 36908)

Anmeldetag:

2. Juni 1964

Offenlegungstag: 18. Dezember 1969

Ausstellungspriorität:

Unionspriorität 8

Datum: •

Land: •

Aktenzeichen:

14. Juni 1963

Schweiz 7413-63

Bezeichnung: ❷

6-Basisch substituierte Morphanthridine

Zusatz zu:

Ausscheidung aus:

Anmelder:

Dr. A. Wander AG, Bern

Vertreter:

Schalk, Dr. Walter; Wirth, Dipl.-Ing. Peter;

Dannenberg, Dipl.-Ing. Gerda E. M.; Schmied-Kowarzik, Dr. Volker; Weinhold, Dipl.-Chem. Dr. Peter; Patentanwälte, 6000 Frankfurt

@

1

Als Erfinder benannt:

Schmutz, Jean, Muri;

Hunziker, Fritz; Künzle, Franz Martin; Bern (Schweiz)

Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960):

P 14 70 427.9

Dr. A. Wander AG

Bern (Schweiz)

6-Basisch substituierte Morphanthridine

Die Erfindung betrifft 6-basisch substituierte Morphanthridine der Formel:

sowie Säure-Additionssalze davon. In Formel I bedeutet R eine gerade oder verzweigte Alkylengruppe mit höchstens 5 C-Atomen. R₁ ist Wasserstoff, niedriges Alkyl, niedriges Hydroxyalkyl, acyliertes niedriges Hydroxyalkyl oder Alkoxyalkyl mit höchstens 5 C-Atomen. R₂ und R₃ sind gleich oder verschieden und stellen Wasserstoff, niedriges Alkyl oder gemeinsam eine

Aethylengruppe dar. R₄ und R₅ sind gleich oder verschieden uni bedeuten Wasserstoff oder Halogen. Unter "niedriger" Alkyl usw. wird solches mit 1 bis 3 C-Atomen verstanden. Vorzugsweise ist der basische Substituent in 6-Stellung eine 4-Methyl-1-miperazinyl-Gruppe. Allfällige Substituenten in den Benzolkernen befinien sich vorzugsweise in 3- oder 8-Stellung.

Die Erfindung betrifft ferner Verfahren zur Herstellung der 6basisch substituierten Morphanthridine gemäss Formel I.

Die genannten Verbindungen (I) werden erhalten, wenn man ein Nitrilium- bzw. Imonium-Kationen der Formeln:

$$R_{5} = R_{4} = R_{5} = R_{4}$$

$$R_{5} = R_{5} = R_{5} = R_{4}$$

$$R_{5} = R_{5} = R_{5} = R_{5} = R_{4}$$

$$R_{5} = R_{5} = R_$$

worin R_4 und R_5 die oben genannte Bedeutung haben, enthaltendes Reaktionsgemisch mit einem Amin der Formel:

$$\begin{array}{c}
R \\
N \longrightarrow R_2 \\
N \longrightarrow R_3
\end{array}$$
(111),

worin R, R, R, und R, die angegebene Bedeutung haben, umsetzt.

Die Nitrilium- bzw. Imonium-Kationen der Formeln II können als Dissoziationsprodukte von Verbindungen der Formel:

$$R_{5} = C$$

$$CH_{2} \qquad (IV)$$

aufgefasst werden, worin R₄ und R₅ die oben angegebene Bedeutung haben und X ein Halogenatom, die Sulfhydrylgruppe oder eine gegebenenfalls aktivierte Alkoxy- oder Alkylthiogruppe, z.B. eine p-Nitrobenzylthiogruppe, darstellt. Derartige Verbindungen (IV) erhält man z.B. durch Veberführung von Lactamen der Pormel:

BAD OFFICINAL

worin R_A und R_5 die oben genannten Bedeutungen haben, in die Thiolactame, gewünschtenfalls unter nachfolgender Alkylierung der letzteren, oder durch Umsetzen der Lactame (V) mit einem Halogenierungsmittel, wie Phosphoroxychlorid oder Phosphorpentachlorid, vorzugsweise in Gegenwart katalytischer Mengen von Dimethylanilin oder Dimethylformamid. Die Lactame (V) sind ihrerseits z.B. durch Ringschluss entsprechender o-Isocyanatodiphenylmethane mit Aluminiumchlorid erhältlich. Je nach der chemischen Natur des Restes X und auch allfälliger Substituenten R_{A} und R_{5} sind die Verbindungen IV in den erhaltenen Reaktionsgemischen mehr oder weniger stark in die Nitrilium- bzw. Imoniumkationen dissoziiert, so dass die Reaktionsgemische direkt für die Umsetzung mit dem Amin der Formel III verwendet werden können. Zum Teil lassen sich die in dieser oder anderer Weise hergestellten Verbindungen der Formel IV in undissoziierter Form isolieren und liefern dann beim Auflösen in einem geeigneten, vorzugsweise polaren Lösungsmittel, gegebenenfalls unter Erwärmen und in Gegenwart des Amins der Formel III, welches auch als Lösungsmittel dienen kann, die gewünschten Nitrilium- bzw. Imonium-Kationen (II). Kationen der Formeln II enthaltende Reaktionsgemische können ferner z.B. durch intramolekulare Ritter-Reaktion (Angriff einer Nitrilgruppe auf ein Phenylkation) bei o-Cyanodiphenylmethanen. durch Beckmann'sche Umlagerung von gegebenenfalls passend substituiertem Anthronoxim oder durch Schmidt-Reaktion von gegebenenfalls passend substituiertem Anthron mit Stickstoffwasserstoffsäure erzeugt werden. Die beiden letztgenannten Reaktionen führen allerdings, falls man von unsymmetrisch substituiertem Anthronoxim bzw. Anthron ausgeht, zu Isomerengemischen, die nötigenfalls nachträglich getrennt werden müssen. Als anionoide Komponenten können in den genannten Reaktionsgemischen ausser denjenigen. welche sich vom Substituenten X der Formel IV herleiten, je nach

der Bildungsweise der Kationen (II) zum Beispiel auch Anionen der Schwefelsäure, Toluolsulfonsäure, Phosphorsäure, Flusssäure, Borfluorwasserstoffsäure usw. auftreten.

Verbindungen der Formel I werden ferner erhalten, wenn man Harnstoffderivate der Formel:

$$R_{5} = R_{1}$$

$$R_{1} - R_{2}$$

$$R_{1} - R_{2}$$

$$R_{2} - R_{3}$$

$$R_{4} = R_{4}$$

$$R_{5} - R_{4}$$

$$R_{5} - R_{4}$$

worin R, R₁, R₂, R₃, R₄ und R₅ die oben angegebene Bedeutung haben, dehydratisiert, beispielsweise durch mehrstündige Einwirkung von Dehydratisierungsmitteln wie Zinkdichlorid, Aluminiumchlorid, Zinntetrachlorid, Phosphorsäure und dergleichen, vorzugsweise aber von Phosphoroxychlorid, gegebenenfalls in Gegenwart eines inerten Lösungsmittels von geeignetem Siedepunkt wie Benzol, Toluol usw.

Weiterhin erhält man Verbindungen gemäss Formel I, wenn man Säureamide oder Thioamide der Formel:

$$R_{5} = R_{1} - R_{2}$$

$$R_{5} = R_{1} - R_{3}$$

$$R_{5} = R_{4}$$

worin R. R₁, R₂, R₃, R₄ sowie R₅ die oben genannte Bedeutung haben und Y ein Sauerstoff- oder Schwefelaton darstellt, durch intramolekulare Kondensation zum Ringschluss bringt. Eine rein thermische Kondensation gelingt bei den Säureamiden, die ihrerseits zum Beispiel durch Reduktion entsprechender Nitroverbindungen zugäng-

lich sind, in der Regel nicht, eher dagegen bei den Thioamiden, die man zum Beispiel durch Behandeln der Säureamide mit Phosphorpentasulfid erhält und vor der nachfolgenden Kondensation nicht zu isolieren braucht. Insbesondere bei den Säureamiden ist es zweckmässig, in Gegenwart von Kondensationsmitteln, wie Phosphorpentachlorid, Phosphoroxychlorid, Phosgen, Polyphosphorsäure und dergleichen, zu arbeiten. Es ist anzunehmen, dass der Ringschluss dabei zum Teil über Zwischenstufen, wie Imidchloride, Amidchloride, Imidophosphate, Amidophosphate oder salzartige Derivate davon, die in der Regel nicht fassbar sind, verläuft. Die Kondensation der Thioamide kann durch Gegenwart von Quecksilbersalzen oder durch intermediäre Bildung von gegebenenfalls aktivierten Imidothioäthern begünstigt werden. Erwärmen und gegetenenfalls Benützung eines inerten Verdünnungsmittels sind angezeigt, beim Arbeiten mit Thosphoroxychlorid und Phosphorpentachlorid auch Zusatz katalytischer Mengen von Dimethylformamid oder Dimethylanilin.

Schliesslich erhält man Verbindungen gemäss Formel I, indem man Amine der Formel:

$$R = C$$

$$CH_2$$

$$R_4$$
(VIII),

worin R_4 und R_5 die angegebene Bedeutung haben, oder in der Aminogruppe niedrig monoalkylierte Derivate davon mit reaktionsfähigen Estern von Alkoholen der Formeln:

worin R. R., R. und R. die oben genannte Bedeutung haben, behandelt, nötigenfalls nach vorausgehender oder unter gleichzeitiger Einwirkung eines basischen Katalysators oder Metallisierungsmit-BAD ORIGINAL

tels wie Natriumamid, Lithiumamid, Natriumhydrid, Butyllithium, Phenylnatrium, Natriumäthylat oder Kalium-t-butylat. Als Ester kommen insbesondere solche von Halogenwasserstoffsäuren, Sulfonsäuren oder Kohlensäure in Betracht. Die benötigten Amine (VIII) und deren niedrig monoalkylierte Derivate erhält man durch Einwirkung von Ammoniak bzw. niedrigem Alkylamin auf Nitrilium- bzw. Imonium-Kationen der Formeln II enthaltende Reaktionsgemische.

Soweit nach einem dieser Verfahren Verbindungen gemäss Formel I erhalten werden, in welchen einer oder mehrere der Reste R_1 , R_2 und R_3 Wasserstoff bedeuten, können nicht Wasserstoff bedeutende Reste R_1 und/oder R_2 und/oder R_3 nachträglich eingeführt werden, indem man die primären oder sekundären Amine in der oben beschriebenen Weise mit reaktionsfähigen Estern von Alkoholen der Formel R_1 -OH bzw. R_2 -OH bzw. R_3 -OH umsetzt.

Die in der beschriebenen Weise erhaltenen Basen sind in den meisten Fällen kristallisierbar, sonst im Hochvakuum unzersetzt destillierbar, und bilden mit anorganischen und organischen Säuren, beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Salpetersäure, Phosphorsäure, Essigsäure, Oxalsäure, Weinsäure, Toluolsulfonsäure und dergleichen, in Wasser beständige Additionssalze, in welcher Form die Produkte ebenfalls verwendet werden können.

Die in der beschriebenen Weise erhaltenen Basen und ihre SäureAdditionssalze sind neue Verbindungen, die als Wirkstoffe in Arzneimitteln oder als Zwischenprodukte zur Herstellung von solchen
Verwendung finden. Insbesondere fallen die Produkte als Neuroplegika, Neuroleptika und Analgetika in Betracht. Die neuroplegische
oder neuroleptische Wirksamkeit äussert sich pharmakologisch in
starker Motilitätsdämpfung bei Häusen, die mit kataleptischer
Wirkung einhergehen kann.

BAD ORIGINAL

Reispiel 1

Ein Gemisch aus 4,9 g 5,6-Dihydro-6-oxo-morphanthridin, 37 ml Fhosphoroxychlorid und 1.5 ml Dimethylanilin wird während 3 Stunden auf Rückfluss erhitzt. Das durch Eindampfen des Reaktionsgemisches im Vakuum bei 60°C erhaltene zähflüssige Cel wird mit 20 ml absolutem Dioxan verdünnt und nach Zugabe von 30 ml N-Methylpiperazin während 4 Stunden auf Rückfluss erhitzt. Die erhaltene klare Lösung wird im Vakuum bei 60°C zur Trockne eingeengt. Der Rückstand wird zwischen Aether und Ammoniakwasser verteilt. Die ätherische Lösung wird abgetrennt, mit wasser gewaschen und dann mit 1-n Essigsaure extrahiert. Der essigsaure Auszug wird mit Ammoniakwasser versetzt und dann mit Aether extrahiert. Die ätherische Lösung wird mit Wasser gewaschen, über Natriumsulfat getrocknet, durch Tonerde filtriert und eingedampft. Der Rückstand wird aus Aether/Petroläther zur Kristallisation gebracht und aus Aceton/Petroläther umkristallisiert. Man erhält 6.0 g (88 % der Theorie) 6-(4-Methyl-l-piperazinyl)-morphanthridin vom Schmelzpunkt 138-138,5°C.

Das als Ausgangsmaterial verwendete 5.6-Dihydro-6-oxo-morphanthridin wird zweckmässig auf folgendem Wege erhalten:

Man löst 30,2 g o-Aminodiphenylmethan in 65 ml absolutem Toluol und lässt bei 0 bis -10°C unter Rühren 140 ml einer 20%igen Phosgenlösung in Toluol zutropfen. Das milchige Gemisch wird unter langsamem Durchleiten von Phosgen innert 30 Minuten auf Rückflusstemperatur erhitzt, die während etwa 20 Minuten beibehalten wird. In das siedende Reaktionsgemisch wird während 10 Minuten unter kräftigem Rühren trockener Stickstoff eingeleitet. Nach Abdampfen des Lösungsmittels erhält man durch Vakuumdestillation 29,7 g (86 % der Theorie) o-Isocyanatodiphenylmethan vom Siedepunkt 169°C/12 Torr.

Man erhitzt 21,1 g Aluminiumchlorid in 110 ml o-Dichlorbenzol auf 80°C und lässt unter Rühren eine Lösung von 29,7 g o-Iso-cyanatodinhenylmethan in 60 ml o-Dichlorbenzol zutropfen, wobei

909851/1753

BAD ORIGINAL

sich das Gemisch auf 120°C erhitzt. Diese Temperatur wird während 1 Stunde unter Rühren beibehalten. Nach dem Abkühlen giesst man das Reaktionsgemisch in 200 ml 2-n Salzsäure, wohei sich ein brauner Niederschlag bildet. Nach Wasserdampfiestillation isoliert man den Rückstand durch Filtrieren und kristallisiert aus Aceton/Wasser. Man erhält 28,6 g (97 % der Theorie) 5,6-Dihydro-6-oxomorphanthridin vom Schmelzpunkt 201-203°C.

Beispiel 2

methylanilin übergossen und nach Zusatz von 300 ml Phosphoroxychlorid 4 Stunden unter Rückfluss erhitzt. Das Reaktionsgemisch
wird am Vakuum eingedampft. Der Rückstand wird in absoluter Kylol
suspendiert. Der durch Eindampfen dieser Suspension am Vakuum erhaltene Rückstand wird in Aether aufgenommen und auf Eis/Wasser
gegossen. Die ätherische Phase wird abgetrennt und dreimal mit
verdünnter Salzsäure gewaschen, wobei die salzsauren Waschwässer
mit Aether zurückgewaschen werden. Die vereinigten Aetherphasen
werden nacheinander mit Wasser, Natriumbicarbonatlösung, Wasser
und gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet, mit Aktivkohle behandelt, durch Tonerde filtriert
und weitgehend eingeengt. Auf Zusatz von Petroläther erhält man
30,2 g (83 % der Theorie) 6-Chlormorphanthridin in Form von
schwach gelblich gefärbten Prismen vom Schmelzpunkt 149-151°C.

7.5 g in dieser Weise erhaltenes 6-Chlormorphanthridin werden in 100 ml absolutem Xylol mit 15 ml N,N-Dimethylaminoäthylamin 4 Stunden unter Rückfluss erhitzt. Das Reaktionsgemisch wird mit Wasser und konzentrierter Natronlauge versetzt. Die wässerige Phase wird abgetrennt und mit Aether gewaschen, und der zum Waschen verwendete Aether wird mit der Xylol-Phase vereinigt. Die organische Phase wird mit verdünnter Salzsäure erschäpfend extrahiert. Die vereinigten sauren Auszüge werden mit Aether gewaschen, mit konzentrierter Natronlauge alkalisch gestellt und dann mit Aether extrahiert. Der ätherische Auszug wird mit Was-

ser und gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet, mit Aktivkohle behandelt und eingedampft. Der Rückstand wird in Petroläther aufgenommen. Die Lösung wird durch Tonerde filtriert und weitgehend eingedampft. Beim Abkühlen der konzentrierten Lösung bilden sich weisse, prismatisch-tafelige Kristalle. Man erhält 7,2 g 6-(β-Dimethylaminoäthylamino)-morphanthridin vom Schmelzpunkt 92-94°C.

Beispiel 3

6,7 g o-[(4-Methyl-1-piperazinyl)carboxamido]diphenylmethan werden mit 75 ml Phosphoroxychlorid 30 Stunden unter Rückfluss erhitzt. Das Reaktionsgemisch wird am Vakuum zur Trockne eingedampft. Der Rückstand wird unter Kühlen mit Wasser versetzt und mit konzentrierter Natronlauge alkalisch gemacht. Der durch zweimaliges Ausschütteln mit Aether erhaltene ätherische Auszug wird zweimal mit Wasser gewaschen, dann mit verdünnter Salzsäure erschöpfend extrahiert. Die vereinigten salzsauren Auszüge werden mit Aether gewaschen, mit konsentrierter Natronlauge alkalisch gestellt und zweimal mit Aether ausgeschüttelt. Der ätherische Auszug wird mit Wasser und gesättigter Hatriumchloridlösung gewaschen, über Natriumsulfat getrocknet, durch Tonerde filtriert und eingedampft. Der Rückstand kristallisiert aus Petroläther. Man erhält 3,0 g 6-(4-Methyl-l-piperazinyl)-morphanthridin vom Schmelzpunkt 138-138,5°C, welches mit dem Produkt von Beispiel 1 identisch ist.

Beispiel 4

16,6 g 2-Amino-diphenylmethan-2'-thiocarbonsäure-(4-methyl)piperazid werden mit 17,0 g fein pulverisiertem Mercuriacetat in 200 ml Xylol 24 Stunden unter Rückfluss gekocht. Nach Piltrieren des Reaktionsgemisches wird die im Filtrat enthaltene starke Base durch Ausschütteln mit verdünnter Essigsäure extrahiert. Die aus den essigsauren Extrakten mit Ammoniak freigelegte Base wird in Aether aufgenommen. Der dreimal mit Wasser gewaschene und über Natriumsulfat getrocknete ätherische Auszug wird eingeengt und über 909851/1753

Aluminiumoxyd filtriert. Das sur Trockne eingeengte Filtrat lässt sich aus Petroläther kristallisieren. Man erhält 8,7 g mit dem Produkt von Beispiel 1 identisches 6-(4-Methyl-1piperazinyl)-morphanthridin vom Schmelzpunkt 138-138,5°C.

In analoger Weise wie in den vorerwähnten Beispielen erhält man aus entsprechenden Ausgangsstoffen die in der nachfolgenden Tabelle II genannten Produkte. Darin haben R, R₁, R₂, R₃, R₄ und R₅ die früher angegebene Bedeutung. In der rechten Kolonne bedeutet Ac Aceton, Ae Aether, Ch Chloroform, Me Methanol und Pe Petroläther.

Tabelle II

Bei-	-N N-R	R ₄ , R ₅	Physikalische Konstanten
spiel	-N N-R ₁ R ₃ : R ₂	4 7	
5	-N N-CH ₃	8-C1	Smp. der Base: 135-137 C (aus Ae/Fe)
6	-N N-CH ₃	3-Cl	Smp. der Base: 202-204 C (aus Ch/Pe)
7	-NN-CH ₃	2-01	Smp. der Base: 163-164,5°C (aus he/Pe)
8	-NH-(CH ₂) ₃ -N(CH ₃) ₂	н	Smp. der Base: 110-111 C (aus Ae/Pe)
9	-N N-(CH ₂) ₂ -OH	н	Smp. der Base: 143-145 C (aus Ac/Fe)
10	-N-(CH ₂) ₂ -0-CO-CH ₃	Н	Smp. der Base: .105-107°C (aus Ac/Pe)
11	-N(CH ₃)-(CH ₂) ₃ -N(CH ₃) ₂	Н	Smp. des Hydrochlorids: 223-225°C (aus Me/Ae)
12	-N NH	н	Smp. der Base: 110-111 C (aus Ac/Ae)
13	-NH-(CH ₂) ₂ -NH ₂	н	Smp. der Base: 122-125°C (aus Essigeste

1. 6-Basisch substituierte Morphanthridine der Formel:

worin R eine gerade oder verzweigte Alkylengruppe mit höchstens 5 C-Atomen bedeutet, R₁ Wasserstoff, niedriges Alkyl, niedriges Hydroxyalkyl, acyliertes niedriges Hydroxyalkyl oder Alkoxyalkyl mit höchstens 5 C-Atomen darstellt, R₂ und R₃ gleich oder verschieden sind und Wasserstoff, niedriges Alkyl oder gemeinsam eine Aethylengruppe darstellen, und R₄ und R₅ gleich oder verschieden sind und Wasserstoff oder Halogen bedeuten, sowie, Säure-Additionssalze davon.

2. Verfahren zur Herstellung 6-basisch substituierter Morphanthridine gemäss Patentanspruch 1, dadurch gekennzeichnet, dass man ein Nitrilium- bzw. Imonium-Kationen der Formeln:

$$\begin{array}{c} (+) \\$$

worin R_4 und R_5 die in Patentanspruch 1 genannte Bedeutung haben, enthaltendes Reaktionsgemisch mit einem Amin der Formel:

2/41.

-25-

worin R, R₁, R₂ und R₃ die in Patentanspruch 1 genannte Bedeutung haben, umsetzt, wobei die Reaktionsprodukte in Form der freien Basen oder geeigneter Säure-Additionssalze gewonnen werden.

3. Verfahren zur Herstellung 6-basisch substituierter Morphanthridine gemäss Patentanspruch 1, dadurch gekennzeichnet, dass man Harnstoffderivate der Formel:

worin R, R₁, R₂, R₃, R₄ und R₅ die in Patentanspruch 1 angegebene Bedeutung haben, dehydratisiert, wobei die Reaktionsprodukte in Form der freien Basen oder geeigneter Säure-Additionssalze gewonnen werden.

4. Verfahren zur Herstellung 6-basisch substituierter Morphanthridine gemäss Patentanspruch 1, dadurch gekennzeichnet, dass zan Säureamide oder Thioamide der Formel:

worin R, R₁, R₂, R₃, R₄ und R₅ die in Patentanspruch 1 erwähnte Bedeutung haben und Y ein Sauerstoff- oder Schwefelatom darstellt, intramolekular kondensiert, wobei die Reaktionsprodukte in Form der freien Basen oder geeigneter Säure-Additionssalze gewonnen werden.

909851/1753

BAD ORIGINAL

5. Verfahren zur Herstellung 6-basisch substituierter Morphanthridine gemäss Patentanspruch 1, dadurch gekennzeichnet, dass man Amine der Formel:

$$R_{5} = C$$

$$CH_{2}$$

$$R_{4}$$

worin R_4 und R_5 die in Patentanspruch 1 genannte Bedeutung haben, oder in der Aminogruppe niedrig monoalkylierte Derivate davon mit reaktionsfähigen Estern von Alkoholen der Formeln:

worin R, R₁, R₂ und R₃ die in Patentanspruch 1 genannte Bedeutung haben, behandelt, wobei die Reaktionsprodukte in Form der freien Basen oder geeigneter Säure-Additionssalze gewonnen werden.

RFB-KRu/RuA 31.3.1969

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.