Sujet TD: Fibonacci, matrice, diagonalisation

Dominique Michelucci, Université de Dijon

La suite de Fibonacci est définie par :

$$F_0 = 0, F_1 = 1, n > 1 \Rightarrow F_n = F_{n-2} + F_{n-1}$$

On en déduit :

$$(F_n, F_{n-1}) = (F_{n-1}, F_{n-2})M \text{ avec} : M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

 $= (F(n-2), F(n-3))M^2$
 $= \dots$
 $= (F_1, F_0)M^{n-1} = (1, 0)M^{n-1}$

La méthode d'exponentiation rapide est utilisée pour calculer M^{n-1} en $O(\log_2 n)$ produits de matrices carrées 2×2 .

On peut remarquer que M est diagonalisable :

Ses valeurs propres sont racines de

$$|M - \lambda I_{2,2}| = \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = (\lambda - \phi)(\lambda - \phi') = 0$$

où:

$$\phi = \frac{1+\sqrt{5}}{2} = 1.618..., \quad \phi' = \frac{1+\sqrt{5}}{2} = -0.618...$$

Ses vecteurs propres sont tels que $(a,b)M=(a+b,a)=\lambda\times(a,b)$. Donc $(\phi,1)$, et $(\phi',1)$ sont deux vecteurs propres de M, associés à ϕ et ϕ' :

$$\begin{pmatrix} \phi & 1 \\ \phi' & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \phi + 1 & \phi \\ \phi' + 1 & \phi' \end{pmatrix}$$
$$= \begin{pmatrix} \phi^2 & \phi \\ \phi'^2 & \phi' \end{pmatrix}$$
$$= \begin{pmatrix} \phi & 0 \\ 0 & \phi' \end{pmatrix} \begin{pmatrix} \phi & 1 \\ \phi' & 1 \end{pmatrix}$$

L'inverse de
$$R=\left(\begin{array}{cc} \phi & 1 \\ \phi' & 1 \end{array}\right)$$
 est $R^{-1}=\frac{1}{\phi-\phi'}\times\left(\begin{array}{cc} 1 & -1 \\ -\phi' & \phi \end{array}\right)$. Or $\phi-\phi'=\sqrt{5}$.

De $RM=\mathrm{diag}(\phi,\phi')R$, on déduit : $M=R^{-1}\mathrm{diag}(\phi,\phi')R$. Notons $D=\mathrm{diag}(\phi,\phi')$.

Donc
$$M^k = (R^{-1}DR)^k = \dots = R^{-1}D^kR$$
. Deux conséquences :

- 1. Ceci justifie que $F_k=a\phi^k+b\phi'^k$, pour certaines constantes a et b, que l'on peut calculer en considérant $F_0=a\phi^0+b\phi'^0$ et $F_1=a\phi^1+b\phi'^1$. Vérifier : $a=\frac{\sqrt{5}}{5}$, et b=-a.
- 2. Il existe donc une méthode plus rapide (du moins pour des matrices plus grandes que M!) pour calculer M^k : quand M est diagonalisable, soit D la matrice diagonale des valeurs propres, soit R la (en fait, une) matrice des vecteurs propres; comme $M = R^{-1}DR$, pour calculer $M^k = R^{-1}D^kR$. Si $D = \operatorname{diag}(\lambda_1, \ldots \lambda_n)$, alors $D^k = \operatorname{diag}(\lambda_1^k, \ldots \lambda_n^k)$, en O(n) au lieu de $O(n^3)$. Le calcul de D et R (par la méthode QR) et de R^{-1} est en $O(n^3)$. On passe donc de $O(n^3 \log k)$ à $O(n^3)$ (k est l'exposant et $n \times n$ la taille de la matrice).

Ceci se généralise à des suites plus compliquées, par exemple le nombre de noeuds de l'arbre de Fibonacci (cet arbre est l'arbre des appels récursifs dans le calcul récursif naïf de F_k) : T_0 a comme racine 0 et n'a pas de fils, T_1 a comme racine 1 et n'a pas de fils, et pour k > 1, T_k a comme racine k et a deux fils : T_{k-2} et T_{k-1} . Le nombre de noeuds de T_k et t_k et vérifie : $t_0 = 1$, $t_1 = 1$, et pour $t_0 > 1$, $t_0 = t_{k-2} + t_{k-1} + 1$. Trouvez l'équivalent de la matrice $t_0 = 1$ (elle est 3 par 3), ses valeurs propres (ce sont 1, $t_0 = t_0$). En déduire qu'il existe trois constantes $t_0 = t_0$, $t_0 = t_0$ et $t_0 = t_0$. En considérant $t_0 = t_0$, $t_0 = t_0$. Ensuite prouvez que la formule est exacte par récurrence.

1 Diagonalisation des matrices de rotation 2D

Les matrices de rotation 2D autour de l'origine sont de la forme (le point et un vecteur colonne) :

$$R = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}, \quad c = \cos \theta, s = \sin \theta$$

Les valeurs propres sont $e^{i\theta} = c + is$ et $e^{-i\theta} = c - is$, avec $i^2 = -1$. Il y a beaucoup de vecteurs propres, et j'ai choisi ceux ci-dessous pour leur symétrie :

$$R=VDV^{-1}, V=\left(\begin{array}{cc}i/\sqrt{2} & 1/\sqrt{2}\\-1/\sqrt{2} & -i/\sqrt{2}\end{array}\right), D=\left(\begin{array}{cc}c-is & 0\\0 & c+is\end{array}\right), V^{-1}=\left(\begin{array}{cc}-i/\sqrt{2} & -1/\sqrt{2}\\1/\sqrt{2} & i\sqrt{2}\end{array}\right)$$

Vérifiez que RV = VD, et que $V^{-1}V = I$. Bien sûr, les valeurs propres dans D peuvent être permutées.