1. If
$$\frac{1}{1-e^{-\frac{\pi}{2}}} = \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{1-e^{-\frac{\pi}{2}}}$$

$$= \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{1-e^{-\frac{\pi}{2}}} + x = \frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{1-e^{-\frac{\pi}{2}}}$$

$$= \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}}}{1-e^{-\frac{\pi}{2}}}$$

$$= \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{1}{1-e^{-\frac{\pi}{2}}}$$

$$= \frac{1}{1-e^{-\frac{\pi}{2}}} + \frac{1}{1-e^{-\frac{\pi}{2}}} + x = \frac{1}{1$$

3. $\angle h R^h v = \angle h (V_0, V_1, \dots, V_N)^T$, $\oplus (\angle h R^h v)_0 = V_0 = 0$ $\oplus (R^h L v)_0 = \angle v(X_0) = 0$ $\oplus |(\angle h R^h v)_0 - (R^h L v)_0| = 0$ then we have $|(\angle h R^h v)_0 - (R^h L v)_N| = 0$.

For i + C1, (U-1), (LhRh v): = - & SnS-hv:+v:
$(R^h \angle v) := \angle v(x_i) = - \mathcal{E}v''(x_i) + v(x_i)$
$\left (\angle^h \mathcal{Z}^h \mathcal{D}) : - (\mathcal{Z}^h \angle \mathcal{D}) : \right = O(h^2).$
So Lh is consistent of d=2.
For any VERNHI, if IVII = IIVIIo, then
$ \angle^h V _{\infty} \ge (\angle^h V)_o = V_o = V_l _{\infty}$
if IVNI = Ivila, then
112hv1100 = (ChV)N = (JN) = (101/co.
if Vi=(IVI)os, for come 1≤i≤N-1,
(LhV) = - > Vi+1 + SVi - > Vi-1
$= -r(V_{i+1} - V_i) - r(V_{i+1} - V_i) + (s - 2r)V_i.$
Y 70, S,0, S-2v=1. Le Love (2hV): 3.Vi,
So [KhV/(100 7 (KhV))) 2 (V) = (V)
if - U' = [V p , (2hv) = - vVi-1 + SVi - + Vi+1
$= - \times (V_{i-1} - V_i) + + (V_{i+1} - V_i) + 2V_i$
≤ 2V; ≤0.
(12hv1/2 =1(chv): =211V1/0.
,
=> IIVILIA = 112hVILIA , 2h is stable.
4. Comparing FEM error with CFD error, we can find CFD is botter.