	÷ *:	i i		~ · · · · · · · · · · · · · · · · · · ·		
			,			
	Sigmoidal	Functions	of the	torms	_	
		1			-	
16.76	f(x) =	$\frac{1}{1+e^{-\alpha x}}$	<u> </u>	y.		
	9(2)	$\frac{2}{1+e^{-\alpha x}}$,			
		$tanh(\propto x)$				
	where oc i	s a posi	tive par	ameter		
						-
	· · · · · · · · · · · · · · · · · · ·					
				9	• •	

Prof. Dr. Mahmoud M. Fahmy

NEURAL NETWORKS

(1) Consider the binary sigmoidal function

$$f(x) = \frac{1}{1 + e^{-\alpha x}}$$

$$f(x) = \frac{1}{1 + e^{-\alpha x}}$$
Verify that
$$x = \frac{1}{\alpha} \ln \left[\frac{f(x)}{1 - f(x)} \right]$$

(2) A neuron receives inputs 0.5, 1.5, and -1.1 with weights 0.7, 0.9, and 1.2, respectively. If the neuron produces an output signal s of the sigmoidal

$$s = \frac{1}{1 + e^{-0.6y}}$$

where y is the activation, find the values of y and s. Take the bias weight as 1.3.

(3) A neuron receives inputs 0.6, 1.7, and -1.5 with weights 0.6, 1.1, and 1.3, respectively. It employs a sigmoidal function of the form

$$f(y) = \frac{1}{1 + e^{-\alpha y}}$$

where y is the activation and a is a positive parameter. Find the value of a such that the output signal is 0.66. Take the bias weight as 1.1.

(4) A neuron produces a sigmoidal signal of the form

where y is the activation and a is a positive parameter. The inputs to the neuron are x, = -0.9, $x_2 = 0.9$, and $x_3 = 1.2$ with respective weights $w_1 = 0.8$, $w_2 = -0.8$, and $w_3 = 0.4$. Under certain operating conditions, the output signal s is found to be 0.5. Find the value of the bias weight w. Comment on the (corresponding) value of a.

(5) For the binary sigmoidal function

$$f(x) = \frac{1}{1 + e^{-\alpha x}}$$

verify that
$$\frac{df(x)}{dx} = \frac{\propto e^{-\alpha x}}{(1 + e^{-\alpha x})^2}$$

or, alternatively,

$$\frac{df(x)}{dx} = \infty f(x) [1 - f(x)]$$

- (6) Sketch the graph of $\frac{df(x)}{dx}$ vs. f(x) for x = 0.5, 1, and 1.5. Show that the maximum value of $\frac{df(x)}{dx}$ is $0.25 \times$ and occurs at f(x) = 0.5.
- (7) A neuron receives two inputs $x_1 = 1.5$ and $x_2 = 1.25$ with weights $w_1 = -1$ and $w_2 = 2$, respectively. The output signal s obeys a sigmoidal function of the

$$S = \frac{1}{1 + e^{-2y}}$$

where y is the activation. Find the bias weight wo

when the derivative of s with respect to y is 0.33. What is the corresponding value of s?

(8) Consider the neural network illustrated in Fig. 1.

The inputs are $x_1 = 2$ and $x_2 = -1.5$. The weights (including bias) are

 $w_{13} = -1$ $w_{23} = 1.1$ $w_{35} = 1.1$ $w_{14} = -0.5$ $w_{24} = 1.2$ $w_{45} = -1.1$

The two hidden neurons and the output neuron all employ sigmoidal functions of the form

 $f(x) = \frac{1}{1 + e^{-\alpha x}}$

with $\infty = 0.8$ for each hidden neuron and $\infty = 0.6$ for the output neuron. Find the value of the output signal S.

Fig.1 Neural network for Prob. 8

(9) Consider the bipolar sigmoidal function $g(x) = \frac{1-e^{-\alpha x}}{1+e^{-\alpha x}}$ a) Draw, on the same coordinate axes, the graphs of g(x) for $\alpha = 0.5$, 1, and 2. Comment on these _graphs. b) Verify that c) Verify that dg(x) =(10) The neuron illustrated in Fig. 2 receives inputs $x_1 = 0.5$, $x_2 = 0.4$, $x_3 = 0.6$ with weights $w_1 = 1.1$, w = -2.1, w = 0.5 and the bias weight w = 1.7. The output signal s is produced according to a sigmoidal function of the form $\frac{s-2}{1+e^{-\alpha y}}$ where y is the activation. Find the value parameter & such that s = 0.75

- (11) In Prob. 10, with the value of a arrived at, let the bias weight we he halved in value while all other weights and the inputs are kept unaltered. What is the new value of the output
- (12) In Prob. 11, find the value of the derivative of the output signal s with respect to the activation
- (13) Show that the bipolar sigmoidal function

$$g(x) = \frac{2}{1 + e^{-2x}} - 1$$

1+e^{-2x}

is the same as the hyperbolic tangent function

tanh x and that this is a special case of the relationship

$$\frac{2}{1+e^{-\alpha x}} - 1 = \tanh\left(\frac{\alpha x}{2}\right)$$

- (14) A neuron receives two inputs $x_1 = 0.7$ and $x_2 = 0.9$ with weights $w_1 = 1.5$ and $w_2 = -1.5$, respectively. The bias weight is w = 0.8. If the neuron employs a hyperbolic tangent function, find the value of the output signal.
- (15) In Prob. 14, the inputs x_1, x_2 and the weights w_1, w_2 are all kept unchanged while the bias weight w_0 is allowed to change. Find the value of w_0 if the

output signal is to be 0.81.

- (16) In Prob. 15, find the value of the derivative of the output signal with respect to the activation.
- (17) A neuron employs a hyperbolic tangent function. Under certain operating conditions, the derivative of the output signal s with respect to the activation y is found to be 0.441. Find the values of y and s
- (18) Consider the two-input, two-output neural network illustrated in Fig. 3. All hidden and output neurons employ hyperbolic tangent functions of the form h(x) = tanh(xx)

with $\alpha = 0.5$ for each hidden neuron and $\alpha = 1.5$ for each output neuron. Find the values of the

output signals s, and s2.

