Process Mining: Data Science in Action

## **Mining Social Networks**

prof.dr.ir. Wil van der Aalst www.processmining.org



TU/e Ei

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts





## Events having a resource attribute

#### case id trace

```
 \begin{array}{ll} 1 & \langle a^{Pete}, b^{Sue}, d^{Mike}, e^{Sara}, h^{Pete} \rangle \\ 2 & \langle a^{Mike}, d^{Mike}, c^{Pete}, e^{Sara}, g^{Ellen} \rangle \\ 3 & \langle a^{Pete}, c^{Mike}, d^{Ellen}, e^{Sara}, f^{Sara}, b^{Sean}, d^{Pete}, e^{Sara}, g^{Ellen} \rangle \\ 4 & \langle a^{Pete}, d^{Mike}, b^{Sean}, e^{Sara}, h^{Ellen} \rangle \\ 5 & \langle a^{Ellen}, c^{Mike}, d^{Pete}, e^{Sara}, f^{Sara}, d^{Ellen}, c^{Mike}, e^{Sara}, f^{Sara}, b^{Sue}, d^{Pete}, e^{Sara}, h^{Mike} \rangle \\ 6 & \langle a^{Mike}, c^{Ellen}, d^{Mike}, e^{Sara}, g^{Mike} \rangle \end{array}
```

( $a = register\ request$ ,  $b = examine\ thoroughly$ ,  $c = examine\ casually$ ,  $d = check\ ticket$ , e = decide,  $f = reinitiate\ request$ ,  $g = pay\ compensation$ , and  $h = reject\ request$ )



## **Resource-activity matrix**

(mean number of times a resource performs an activity per case)

| 1 | $\langle a^{Pete}, b^{Sue}, d^{Mike}, e^{Sara}, h^{Pete} \rangle$                                                                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | $\langle a^{Mike}, d^{Mike}, c^{Pete}, e^{Sara}, g^{Ellen} \rangle$                                                                                 |
| 3 | $\langle a^{Pete}, c^{Mike}, d^{Ellen}, e^{Sara}, f^{Sara}, b^{Sean}, d^{Pete}, e^{Sara}, g^{Ellen} \rangle$                                        |
| 1 | $\langle a^{Pete}, d^{Mike}, b^{Sean}, e^{Sara}, h^{Ellen} \rangle$                                                                                 |
| 5 | $\langle a^{Ellen}, c^{Mike}, d^{Pete}, e^{Sara}, f^{Sara}, d^{Ellen}, c^{Mike}, e^{Sara}, f^{Sara}, b^{Sue}, d^{Pete}, e^{Sara}, h^{Mike} \rangle$ |
| 5 | $\langle a^{Mike}, c^{Ellen}, d^{Mike}, e^{Sara}, g^{Mike} \rangle$                                                                                 |

|       | а   | b    | $\boldsymbol{c}$ | d    | e   | f   | g     | h     |
|-------|-----|------|------------------|------|-----|-----|-------|-------|
| Pete  | 0.3 | 0    | 0.345            | 0.69 | 0   | 0   | 0.135 | 0.165 |
| Mike  | 0.5 | 0    | 0.575            | 1.15 | 0   | 0   | 0.225 | 0.275 |
| Ellen | 0.2 | 0    | 0.23             | 0.46 | 0   | 0   | 0.09  | 0.11  |
| Sue   | 0   | 0.46 | 0                | 0    | 0   | 0   | 0     | 0     |
| Sean  | 0   | 0.69 | 0                | 0    | 0   | 0   | 0     | 0     |
| Sara  | 0   | 0    | 0                | 0    | 2.3 | 1.3 | 0     | 0     |

## **Resource-activity matrix**

(mean number of times a resource performs an activity per case)



## Question: Create resource activity matrix

| case Id | activity | type     | time | resource |
|---------|----------|----------|------|----------|
| 1       | а        | start    | 10   | Pete     |
| 1       | а        | complete | 12   | Pete     |
| 1       | С        | start    | 15   | Sue      |
| 2       | а        | start    | 16   | Pete     |
| 2       | а        | complete | 17   | Pete     |
| 1       | С        | complete | 18   | Sue      |
| 3       | а        | start    | 20   | Pete     |
| 2       | b        | start    | 22   | Mary     |
| 2       | b        | complete | 25   | Mary     |
| 3       | а        | complete | 28   | Pete     |

## **Question: Create resource activity matrix**

#### **Process context:**



may take some time ...

| case id | activity | type        | time | resource |
|---------|----------|-------------|------|----------|
| 1       | а        | start       | 10   | Pete     |
| 1       | а        | complete 12 |      | Pete     |
| 1       | С        | start 15    |      | Sue      |
| 2       | а        | start       | 16   | Pete     |
| 2       | а        | complete    | 17   | Pete     |
| 1       | С        | complete    | 18   | Sue      |
| 3       | а        | start       | 20   | Pete     |
| 2       | b        | start       | 22   | Mary     |
| 2       | b        | complete    | 25   | Mary     |
| 3       | а        | complete    | 28   | Pete     |
| 1       | b        | start       | 30   | Mary     |
| 1       | b        | complete    | 34   | Mary     |
| 3       | d        | start       | 35   | Mary     |
| 3       | d        | complete    | 37   | Mary     |
| 2       | С        | start       | 40   | Sue      |
| 1       | f        | start       | 42   | Carol    |
| 2       | С        | complete    | 45   | Sue      |
| 1       | f        | complete    | 46   | Carol    |
| 2       | е        | start       | 50   | Kirsten  |
| 3       | f        | start       | 51   | Carol    |
| 2       | е        | complete    | 52   | Kirsten  |
| 2       | d        | start       | 53   | Mary     |
| 3       | f        | complete    | 55   | Carol    |
| 2       | d        | complete 56 |      | Mary     |
| 2       | f        | start       | 57   | Carol    |
| 2       | f        | complete    | 60   | Carol    |



## **Answer: Resource activity matrix**

## mean number of times a resource performs an activity per case

|         | а    | b    | С    | d    | е    | f    |
|---------|------|------|------|------|------|------|
| Pete    | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Mary    | 0.00 | 0.67 | 0.00 | 0.67 | 0.00 | 0.00 |
| Sue     | 0.00 | 0.00 | 0.67 | 0.00 | 0.00 | 0.00 |
| Kirsten | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 |
| Carol   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 |

| case id | activity | type     | time | resource |
|---------|----------|----------|------|----------|
| 1       | а        | start    | 10   | Pete     |
| 1       | а        | complete | 12   | Pete     |
| 1       | С        | start    | 15   | Sue      |
| 2       | а        | start    | 16   | Pete     |
| 2       | а        | complete | 17   | Pete     |
| 1       | С        | complete | 18   | Sue      |
| 3       | а        | start    | 20   | Pete     |
| 2       | b        | start    | 22   | Mary     |
| 2       | b        | complete | 25   | Mary     |
| 3       | а        | complete | 28   | Pete     |
| 1       | b        | start    | 30   | Mary     |
| 1       | b        | complete | 34   | Mary     |
| 3       | d        | start    | 35   | Mary     |
| 3       | d        | complete | 37   | Mary     |
| 2       | С        | start    | 40   | Sue      |
| 1       | f        | start    | 42   | Carol    |
| 2       | С        | complete | 45   | Sue      |
| 1       | f        | complete | 46   | Carol    |
| 2       | е        | start    | 50   | Kirsten  |
| 3       | f        | start    | 51   | Carol    |
| 2       | е        | complete | 52   | Kirsten  |
| 2       | d        | start    | 53   | Mary     |
| 3       | f        | complete | 55   | Carol    |
| 2       | d        | complete | 56   | Mary     |
| 2       | f        | start    | 57   | Carol    |
| 2       | f        | complete | 60   | Carol    |

## social networks

#### How two names and a sheaf of newspaper cuttings revealed the 9/11 team

This social network of the 19 hijackers behind the 9/11 attacks in the United States. and their associates, was drawn up at the end of 2001. Valdis Krebs, a commercial consultant in network analysis, started with newspaper reports of the two original terrorist suspects. Nawaf Alhazmi and Khalid Almihdhar. He then plotted the position of the other hijackers and associates. His analysis highlighted the central role played by Mohamed Atta. It also shows the close associations between the "Hamburg cell" that Atta set up, as well as the close links with the two original suspects - critical information that may have helped to avert an attack had it been known.







Atta Alhazmi

Almidhdhar



Emergency services attend the scene after Flight AA77 crashes into the Pentagon



## Social network analysis



- Sociometry: present data on interpersonal relationships in graph or matrix form.
- Jacob Levy Moreno used such techniques in the 1930s to better assign students to residential cottages.



## Social network analysis



- Arcs: weights or (inverted) distance.
- Metrics to denote importance:
  - centrality,
  - closeness,
  - betweenness.
  - ...
- Identification of cliques.

### Social network

organizational entity (resource, person, role, department, etc.)

the thickness of the arc indicates the weight of the relationship





## Importance of nodes in a social network

(figures by Claudio Rocchini, cc BY-SA 3.0)



degree centrality: number of connections a particular node has

closeness centrality:
1 divided by the sum of
all shortest paths to a
particular node

betweenness centrality: fraction of shortest paths between any two nodes passing a particular node



## Handover of work matrix



©Wil van der Aalst & T

On average Sara hands over work to Mike 1.475 times per case.

| _       |       |       |       |      |      |      |       |
|---------|-------|-------|-------|------|------|------|-------|
|         |       | Pe    | Mike  | Elle | Sue  | Sean | Sara  |
|         | Pete  | 0.135 | 0.225 | 0/   | 0.06 | 0.09 | 1.035 |
|         | Mike  | 0.225 | 0.375 |      | 0.1  | 0.15 | 1.725 |
|         | Ellen | 0.09  | 0.15  | .06  | 0.04 | 0.06 | 0.69  |
|         | Sue   | 0     | 0 /   | 0    | 0    | 0    | 0.46  |
|         | Sean  | 0     | 0 /   | 0    | 0    | 0    | 0.69  |
| TU/e (ı | Sara  | 0.885 | 1.475 | 0.59 | 0.26 | 0.39 | 1.3   |

## Process model defines "causality"



The causal dependencies in the process model are used to count handovers in the event log.

|       | Pete  | Mike  | Ellen | Sue  | Sean | Sara  |
|-------|-------|-------|-------|------|------|-------|
| Pete  | 0.135 | 0.225 | 0.09  | 0.06 | 0.09 | 1.035 |
| Mike  | 0.225 | 0.375 | 0.15  | 0.1  | 0.15 | 1.725 |
| Ellen | 0.09  | 0.15  | 0.06  | 0.04 | 0.06 | 0.69  |
| Sue   | 0     | 0     | 0     | 0    | 0    | 0.46  |
| Sean  | 0     | 0     | 0     | 0    | 0    | 0.69  |
| Sara  | 0.885 | 1.475 | 0.59  | 0.26 | 0.39 | 1.3   |

T11

# Social network based on handover of work (threshold of 0.1)



In this figure only the thickness of the arcs is based on frequencies. All nodes have the same size.

|       | Pete  | Mike  | Ellen | Sue  | Sean | Sara  |
|-------|-------|-------|-------|------|------|-------|
| Pete  | 0.135 | 0.225 | 0.09  | 0.06 | 0.09 | 1.035 |
| Mike  | 0.225 | 0.375 | 0.15  | 0.1  | 0.15 | 1.725 |
| Ellen | 0.09  | 0.15  | 0.06  | 0.04 | 0.06 | 0.69  |
| Sue   | 0     | 0     | 0     | 0    | 0    | 0.46  |
| Sean  | 0     | 0     | 0     | 0    | 0    | 0.69  |
| Sara  | 0.885 | 1.475 | 0.59  | 0.26 | 0.39 | 1.3   |

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

# Sometimes we have explicit role or group information

- Information system can provide such information (like an address book or directory).
- It may also be recorded with the event itself.
- Let's assume three roles: Assistant, Expert, and Manager.





### Handover of work at role level



In this figure also the size of each node is based on frequencies.

|           | Assistant | Expert | Manager |
|-----------|-----------|--------|---------|
| Assistant | 1.5       | 0.5    | 3.45    |
| Expert    | 0         | 0      | 1.15    |
| Manager   | 2.95      | 0.65   | 1.3     |

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

## Social network miner in ProM



## Social network based on hand-over of work





**Changing the** classifier from



•

Create new..

animation

👺 ProM UITopia

ProM 6

Reviewing just completes



- Resource-activity matrix (Who is doing what?).
- Handover of work matrix (How is work passed on?)
- Used to create social networks (one of many possibilities).
- Social network can be analyzed in many ways.

#### Part I: Preliminaries

#### Chapter 1 Introduction

#### Chapter 2

Process Modeling and Analysis

#### Chapter 3

Data Mining

#### Part III: Beyond Process Discovery

#### Chapter 7

Conformance Checking

#### Chapter 8

Mining Additional Perspectives

#### Chapter 9 **Operational Support**

#### Part II: From Event Logs to Process Models

#### Chapter 4 Getting the Data

#### Chapter 5

Process Discovery: An Introduction

#### Chapter 6

Advanced Process Discovery Techniques

#### Part IV: Putting Process Mining to

#### Chapter 10 **Tool Support**

Chapter 11 Analyzing "Lasagna Processes"

#### oter 12

Analyzing "Spaghetti Processes"

#### Part V: Reflection

#### Chapter 13

Cartography and Navigation

#### Chapter 14 **Epilogue**



#### Wil M. P. van der Aalst

## Process Mining



