Recommender System

2024

Agenda

- What & Why
- Exploratory Data Analysis
 - Popularity & Self-Selection Biases
- Matrix Completion
- Model Testing, Model Evaluation & Model Building
 - Train vs Validation Performance
 - Test Performance

Recommender System (RecSys)

WHAT

RecSys is an area of Machine Learning that analyzes **user behavior** and **item characteristics** to predict and present the most relevant items to individual users.

WHY

Forbes

The Personalized Customer Experience: Consumers Want You To Know Them

81% of customers prefer companies that offer a personalized experience. They also want the experience to include the platforms where they...

3 weeks ago

Businesses use RecSys to achieve **personalization at scale**, enhancing CX by accurately suggesting products/services, which **increases loyalty and improves conversion rates**.

Netflix recommendation engine worth \$1 billion per year

Jun 14, 2016

Gender Distribution

Occupations Top-5

Occupation	Share
Student	21%
Educator	10%
Administrator	8%
Engineer	7%
Programmer	7%

Note: Other is an occupation with an 11% share, but it was decided to not include it due to its descriptive effect.

Movie Genres Top-5

Genre	Share
Drama	43%
Comedy	30%
Action	15%
Thriller	15%
Romance	15%

Note: A movie can belong to multiple genres.

Ratings Summary

The distribution of ratings among items often satisfies a property in real-world settings, which is referred to as the **long-tail** property.

- More than 50% of the movies were rated up to 50 times.
- On average, each movie was rated 59 times.

According to this property, only a small fraction of the items are rated frequently – popular items.

This results in a **highly skewed** distribution of the underlying ratings.

Ratings Distribution across Movies

Most Popular Movies Top-3

Star Wars (1977)

583

views

Fargo (1996)

509

508

Hottest Movies Top-3

Schindler's List (1993) 4.46

A Close Save (1995) **4.4**6

Self Selection Bias

Not only RecSys are prone to popularity bias, as shown before, but also **selection bias**. This translates as

Users generally rate movies they have chosen to watch, and often, they select movies they anticipate they will enjoy based on genres, actors, directors, or past experiences.

The **average rating**, of the 100k ratings, is **3.52** stars. Additionally

- 55% of the ratings are classified as 4 or 5 stars.
- 17% of the ratings are classified as 1 or 2 stars.
- 68% of users classified ≥50% of their ratings as 4 or 5 stars.

3.52

Ratings Distribution

Matrix Completion

Given m users and n items, the data can be represented by an incomplete mn matrix. Each entry, r_{ui} , represents the unknown or given rating by user u to the item i.

The goal is to predict the missing values in this user-item interaction matrix, by leveraging the observed entries in the matrix.

By completing the matrix, RecSys can suggest items that a user might like but has not yet interacted with.

Model Testing and Model Building

There are 3 main processes to select and evaluate the methodology, and finally generate results.

Model Testing

In the process of testing different models, it was applied the following algorithms with their default parameters. Matrix Factorization stood out as the best algorithm.

Baseline

Performance

1.02 **TEST RMSE**

0.92 TRAIN RMSE

Description

user bias, and the item bias when filling up the

KNN

Performance

1.09 **TEST RMSE**

0.77 TRAIN RMSE

Description

Similar users have similar ratings on the same item. The predicted ratings of user A are computed as the weighted average ratings of these "peer group".

Performance

1.02 TEST RMSE

0.67 TRAIN RMSE

Description

Dimensionality are used to create a incomplete dataset. A

NMF

Performance

1.08 TEST RMSE

1.06 TRAIN RMSE

Description

The advantage of Non-negative matrix factorization is not necessarily one of accuracy, but one of interpretability which provides an understanding of the user-item interactions.

CoClustering

Performance

1.09 TEST RMSE

0.90 TRAIN RMSF

Description

user and item groups, unlike KNN-based algorithms. It's prone issues compared to

Train vs Validation Performance

IDEAL NUMBER OF FACTORS

~350

BIAS vs VARIANCE TRADE-OFF

As the complexity of the model increases, the training error decreases – decreasing the bias component of the error.

A model with high variance pays a lot of attention to training data and does not generalize on the data that it hasn't seen before.

To avoid overfitting, the number of factors should be chosen when the validation error starts to Increase on the validation set.