Bayesian Decision Theory

- Introduction
- Bayesian Decision Theory—Continuous Features
- Minimum-Error-Rate Classification
- Classifiers, Discriminant Functions and Decision Surfaces
- The Normal Density
- Discriminant Functions for the Normal Density
- Bayes Decision Theory Discrete Features

Introduction

- The sea bass/salmon example
 - State of nature, prior
 - State of nature is a random variable
 - The catch of salmon and sea bass is equiprobable
 - $P(\omega_1) = P(\omega_2)$ (uniform priors)
 - $P(\omega_1) + P(\omega_2) = 1$ (exclusivity and exhaustivity)

- Decision rule with only the prior information
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2
- Use of the class –conditional information
- $P(x \mid \omega_1)$ and $P(x \mid \omega_2)$ describe the difference in lightness between populations of sea and salmon

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Posterior, likelihood, evidence

•
$$P(\omega_i \mid x) = P(x \mid \omega_i) \cdot P(\omega_i) / P(x)$$

Where in case of two categories

$$P(x) = \sum_{j=1}^{j=2} P(x/\omega_j) P(\omega_j)$$

Posterior = (Likelihood. Prior) / Evidence

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Decision given the posterior probabilities

X is an observation for which:

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
 True state of nature = ω_1 if $P(\omega_1 \mid x) < P(\omega_2 \mid x)$ True state of nature = ω_2

Therefore:

whenever we observe a particular x, the probability of error is :

$$P(error \mid x) = P(\omega_1 \mid x)$$
 if we decide ω_2
 $P(error \mid x) = P(\omega_2 \mid x)$ if we decide ω_1

- Minimizing the probability of error
- Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Therefore:

$$P(error \mid x) = min [P(\omega_1 \mid x), P(\omega_2 \mid x)]$$

(Bayes decision)

Two-category classification

 $lpha_1$: deciding ω_1

 α_2 : deciding ω_2

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$$

loss incurred for deciding ω_i when the true state of nature is ω_j

Conditional risk:

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$$

$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$$

Our rule is the following:

if
$$R(\alpha_1 \mid x) < R(\alpha_2 \mid x)$$

action α_1 : "decide ω_1 " is taken

This results in the equivalent rule : decide ω_1 if:

$$(\lambda_{21} - \lambda_{11}) P(x \mid \omega_1) P(\omega_1) >$$

 $(\lambda_{12} - \lambda_{22}) P(x \mid \omega_2) P(\omega_2)$

and decide ω_2 otherwise

Likelihood ratio:

The preceding rule is equivalent to the following rule:

$$if \frac{P(x/\omega_1)}{P(x/\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Then take action α_1 (decide ω_1) Otherwise take action α_2 (decide ω_2)

Exercise

Select the optimal decision where:

$$= \{\omega_1, \omega_2\}$$

$$P(x \mid \omega_1)$$
 N(2, 0.5) (Normal distribution)
 $P(x \mid \omega_2)$ N(1.5, 0.2)

$$P(\omega_1) = 2/3$$
$$P(\omega_2) = 1/3$$

$$\lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Minimum-Error-Rate Classification

Actions are decisions on classes
 If action α_i is taken and the true state of nature is ω_j then: the decision is correct if i = j and in error if i ≠ j

 Seek a decision rule that minimizes the probability of error which is the error rate • Introduction of the zero-one loss function:

$$\lambda(\alpha_i, \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad i, j = 1, ..., c$$

Therefore, the conditional risk is:

$$R(\alpha_i \mid x) = \sum_{j=1}^{j=c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid x)$$
$$= \sum_{j \neq i} P(\omega_j \mid x) = 1 - P(\omega_i \mid x)$$

• Minimize the risk requires maximize $P(\omega_i \mid x)$ (since $R(\alpha_i \mid x) = 1 - P(\omega_i \mid x)$)

- For Minimum error rate
 - Decide ω_i if $P(\omega_i \mid x) > P(\omega_i \mid x) \ \forall j \neq i$

 Regions of decision and zero-one loss function, therefore:

Let
$$\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda}$$
 then decide ω_1 if $: \frac{P(x/\omega_1)}{P(x/\omega_2)} > \theta_{\lambda}$

• If λ is the zero-one loss function which means:

$$\lambda = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
then $\theta_{\lambda} = \frac{P(\omega_{2})}{P(\omega_{1})} = \theta_{a}$
if $\lambda = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ then $\theta_{\lambda} = \frac{2P(\omega_{2})}{P(\omega_{1})} = \theta_{b}$

FIGURE 2.3. The likelihood ratio $p(x|\omega_1)/p(x|\omega_2)$ for the distributions shown in Fig. 2.1. If we employ a zero-one or classification loss, our decision boundaries are determined by the threshold θ_a . If our loss function penalizes miscategorizing ω_2 as ω_1 patterns more than the converse, we get the larger threshold θ_b , and hence \mathcal{R}_1 becomes smaller. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

某医院确诊患者中疾病A和疾病B的概率分别为P(A)=0.7和P(B)=0.3,两种疾病发生都有症状x,其概率分别为P(x|A)=0.45和P(x|B)=0.5,同时两种疾病的误诊代价λ_{AB}=1和λ_{BA}=2。现有患者出现了症状x,请帮助医生做出疾病决策。