# **MOS** Capacitance

Material developed by Prof. C. Z. Zhao

#### **OUTLINE**

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- Voltage drops

Reference reading: Chapter 3.2.2-3.2.3

### **MOS Capacitors**

MOS: Metal-Oxide-Semiconductor



# **MOS Capacitors**

- Why capacitors
  - Foundation for understanding MOS transistors

- Applications
  - CCD camera
  - Non-volatile memory
  - Test structure during fabrication
  - As a component



# MOS Capacitor Structure

#### 重掺杂多晶硅

MOS capacitor (cross-sectional view)



Typical MOS capacitors and transistors in ICs today employ

- heavily doped polycrystalline Si ("poly-Si") film as the gateelectrode material
  - n+-type, for "n-channel" transistors (NMOS)
  - p<sup>+</sup>-type, for "p-channel" transistors (PMOS)
  - SiO<sub>2</sub> as the gate dielectric
  - band gap = 9 eV
  - $\varepsilon_{\text{r.SiO2}} = 3.9$
- Si as the semiconductor material
  - p-type, for "n-channel" transisters (NMOS)
  - n-type, for "p-channel" transistors (PMOS)

# **MOS Capacitor**

parallel-plate capacitor



• Definition:  $C = \varepsilon A/t = \varepsilon_r \varepsilon_o A/t$ where  $\varepsilon_r (SiO_2) = 3.9$ ,  $\varepsilon_o = 8.85 \times 10^{-14} \text{ F/cm}$ 

# MOS Capacitance Measurement



- $V_{\rm b}$ : dc biasing voltage and scanned slowly

• 
$$V_g = V_b + V_{ac}$$

$$C = \left| \frac{dQ_{GATE}}{dV_g} \right| = \left| \frac{dQ_s}{dV_g} \right| = \left| \frac{dQ_s}{dV_{ac}} \right|$$

• Capacitive current due to  $V_{ac}$  is measured

$$i_{ac} = C \frac{dV_{ac}}{dt}$$

$$|V_b| >> |V_{ac}|$$

# MOS Capacitance

#### <u>OUTLINE</u>

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- Voltage drops

Reference reading: Chapter 6.0-6.4

### Which one is the p-type Si?



### Which one is the heavily doped Si?



 $N_{D1} < N_{D2}$ 

# Poly-Si gate



# Coordinate system



### Guidelines for Drawing MOS Band Diagrams



### Guidelines for Drawing MOS Band Diagrams

- 1) Fermi level  $E_F$  is flat (constant with distance x) in the Si
  - Since no current flows in the x direction, we can assume that equilibrium conditions prevail
- 2) Band bending is linear in the oxide
  - No charge in the oxide =>  $d\mathcal{E}/dx = \rho/\epsilon_{ox} = 0$ , so  $\mathcal{E}$  is constant =>  $dE_C/dx$  is constant

$$\mathbf{\mathcal{E}} = - dV/dx$$

$$E_{C} = -qV$$

### Guidelines for Drawing MOS Band Diagrams

- 3) The barrier height for conduction-band electron flow from the Si into SiO<sub>2</sub> is 3.1 eV
  - This is equal to the electron-affinity difference ( $\chi_{Si}$  and  $\chi_{SiO2}$ )
- 4) The barrier height for valence-band hole flow from the Si into SiO<sub>2</sub> is 4.8 eV
- 5) The vertical distance between the Fermi level in the metal,  $E_{\rm FM}$ , and the Fermi level in the Si,  $E_{\rm FS}$ , is equal to the applied gate voltage:

$$qV_G = E_{FS} - E_{FM}$$

# MOS Equilibrium Energy-Band Diagram



# MOS Equilibrium Energy-Band Diagram



After contact, there are two questions: Q1 & Q2.

#### Q1: Carrier and ion in silicon

#### Guideline 2:

$$\varepsilon = -dV/dx$$

$$E_{\rm C} = -qV$$







#### Q2: Carrier and ion in silicon

metal oxide semiconductor





#### Q2: Carrier and ion in silicon



## Flat-Band Voltage

metal

oxide

 The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband* voltage because the resulting potential profile is flat.

semiconductor

# Flat-Band Voltage



 The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband voltage* because the resulting potential profile is flat.

∠1

### Flat-Band Condition



$$qV_G = E_{FS} - E_{FM}$$
$$= \Phi_M - \Phi_S$$
$$V_G = V_{FB}$$
$$qV_{FB} = \Phi_M - \Phi_S$$

# MOS Capacitance

#### <u>OUTLINE</u>

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- Voltage drops

Reference reading: Chapter 6.0-6.4

## Ec(O) and electric field direction



# Effects of applied biases



#### Vg increase from "-" to "+":

| 1. Vg <v<sub>FB&lt;0</v<sub>                         | Accumulation: Majority carriers                     |
|------------------------------------------------------|-----------------------------------------------------|
| 2. Vg=V <sub>FB</sub>                                | <mark>多子堆积</mark><br>Flatband                       |
| 3. V <sub>m</sub> ≥Vg>V <sub>FB</sub> including Vg=0 | 多子耗尽<br>Depletion: Majority carriers                |
| $4.1 V_T > V_g > V_m$                                | <b>そそ</b> 少子反型<br>Weak Inversion: Minority carriers |
| 4.2 Vg≥V <sub>T</sub>                                | Strong Inversion: Minority carriers                 |

What is  $V_{FB}$ ,  $V_{m}$  and  $V_{T}$ ?

# 1. Accumulation (p-type Si): Vg<V<sub>FB</sub><0

# Accumulation: Majority carriers



- Physical process: Vg<0: holes attracted to the oxide/Si interface and accumulate there.
- Separation between "-" and "+" charges: oxide

#### 1. Accumulation:

Energy band & block charge density

#### $qVg = E_{FS} - E_{FM}$



block charge density diagram & energy band diagram

More possitive: bigher electron energy (band bending a

More negative: higher electron energy (band bending up)





## 1. Capacitance in Accumulation

- As the gate voltage is varied, incremental charge is added/subtracted to/from the gate and substrate.
- The incremental charges are separated by the gate oxide.



$$C = \left| \frac{dQ_{acc}}{dV_g} \right| = C_{ox}$$

$$C = C_{OX} = \frac{\varepsilon_{OX}A}{t_{OX}} = \text{constant}$$

 $\epsilon_{r'ox}$ =3.9 is the relative dielectric constant of the oxide,  $\epsilon_{ox} = \epsilon_{r'ox} \epsilon_{o}$ ,  $\epsilon_{o}$ =8.85×10<sup>-12</sup> F/m is the permittivity of free space,  $t_{ox}$  is the oxide thickness.

Normally, we consider the capacitance per unit area, so  $A=1._{28}$ 

#### 1. Accumulation:

#### Capacitance-voltage (C-V) characteristics



# 2. Flatband Voltage, $V_{\rm FB}$

The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband* voltage because the resulting potential profile is flat.



# Depletion: Majority carriers

# 3. Depletion: $Vg > V_{FB}$

#### Physical process:

- holes repelled from the interface
- fixed negative charge left behind
- More "+" charges on the gate, holes are pushed further from the interface, to expose more "-" space charges.

0 : **B**-



### 3. Depletion:

 $qVg = E_{FS} - E_{FM}$ 

Energy band diagram: Vg>V<sub>FB</sub>

- The band is bent downward now.
- No mobile charges at the interface.





# 3. Depletion Capacitor

Capacitance

#### Higher potential





$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$

$$C_{dep} = \frac{\mathcal{E}_{Si}}{x_d}$$

- When Vg increases, Xd increases and C<sub>dep</sub> reduces.
   This in turn reduces C.
- Solving Poisson's equation, we have

$$x_d = \left(\frac{2\varepsilon_{Si}V_S}{qN_a}\right)^{1/2}$$

## 3. Capacitance in Depletion

- As the gate voltage is varied, the width of the depletion region varies.
- → Incremental charge is effectively added/subtracted at a depth x<sub>d</sub> in the substrate.



$$C = \left| \frac{dQ}{dV_G} \right|$$

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}} = \frac{1}{C_{ox}} + \frac{x_d}{\varepsilon_{Si}}$$

 $\epsilon_{r'Si}$ =11.9 is the relative dielectric constant of silicon,  $\epsilon_{Si} = \epsilon_{r'Si} \epsilon_{o}$ .

### 3. Depletion:

Capacitance-voltage (C-V) characteristics



# Midband: further increase Vg

- E<sub>FS</sub> = Ei = (Ec+Ev)/2 at interface
- Silicon becomes "intrinsic" at surface
- This is 'Midband': Vg=Vm



#### $qVg = E_{FS} - E_{FM}$

## 4. Energy band diagram: Vg>V<sub>m</sub>



## Bulk Semiconductor Potential, $\phi_{F}$

$$q\phi_F \equiv E_i - E_F$$

p-type Si:

$$\phi_F = \frac{kT}{q} \ln(N_A/n_i) > 0$$



n-type Si:

$$\phi_F = -\frac{kT}{q} \ln(N_D / n_i) < 0$$

# 4. Inversion: large positive (Vg-V<sub>FB</sub>)

- Weak Inversion:  $0 < \phi_n < \phi_F \ (\phi_F < \phi_S < 2\phi_F)$
- Strong Inversion:  $\phi_n \ge \phi_F$  ( $\phi_S \ge 2\phi_F$ ), electron density at the interface  $\ge$  hole density in Si bulk.
- Vg for strong inversion: V<sub>T</sub> 'threshold voltage'.

$$Vg = V_T \rightarrow \phi_s = 2\phi_F \rightarrow n_s = p_b$$



# Maximum Depletion Depth, x<sub>d,max</sub>

• As  $V_G$  is increased above  $V_T$ ,  $\phi_S$  and hence the depth of the depletion region  $(x_d)$  increases very slowly.

$$\rightarrow$$
  $\phi_{s} \approx 2\phi_{F}$ 

- This is because n increases exponentially with  $\phi_S$ , whereas  $x_d$  increases with the square root of  $\phi_S$ . Thus, most of the incremental negative charge in the semiconductor comes from additional conduction electrons rather than additional ionized acceptor atoms, when n exceeds  $N_A$ .
- $\rightarrow$   $x_{\rm d}$  can be reasonably approximated to reach a maximum value  $(x_{\rm d,max})$  for  $V_{\rm G} \ge V_{\rm T}$ .

$$x_{d,\text{max}} = \sqrt{\frac{2\varepsilon_{Si}(2\phi_F)}{qN_A}}$$

### 4. Capacitance in Inversion: LF

**CASE 1**: Inversion-layer charge *can* be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at the surface of the substrate.



Time required to build inversion-layer charge =  $2N_{\rm A}\tau_{\rm o}/n_{\rm i}$ , where  $\tau_{\rm o}$  = minority-carrier lifetime at surface

$$C = \left| \frac{dQ_{inv}}{dV_G} \right| = C_{ox}$$

Electrons can respond to the change in Vac

C=dQ/dVac

#### 4. Inversion:

### CASE 1: Capacitance-voltage (C-V) characteristics

Example: p-Si



### 4. Capacitance in Inversion: HF

**CASE 2:** Inversion-layer charge *cannot* be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth x<sub>dmax</sub> in the substrate.



$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}}$$

$$= \frac{1}{C_{ox}} + \frac{x_{d \max}}{\varepsilon_{Si}} \equiv \frac{1}{C_{\min}}$$

- 1. When Vac changes rapidly (e.g., 1MHz), electron creation cannot keep up.
- 2. Negative charges supplied by pushing holes away.

#### C=dQ/dVac

#### 4. Inversion

#### CASE 2: Capacitance-voltage (C-V) characteristics

Example: p-Si



### 8WH

• A MOS capacitor has: Xox=40nm,  $Nd=10^{21}$ m<sup>-3</sup>,  $\phi_F=0.3$ V,  $\epsilon_{ox}=3.9$ ,  $\epsilon_{s}=11.8$ 

#### • Determine:

- (i) C(HF) in accumulation; (ii) C(HF) in strong inversion (iii) C(LF) in strong inversion
- Solution:

#### HW9

#### Problem

Calutian

• An MOS capacitor is made on uniformly doped p type material. With -20V on the gate with respect to the substrate it has a capacitance of 20pF. With +20V on the gate it has a capacitance of 10pF. What is the thickness of the depletion layer if the capacitor has an area of 10<sup>-6</sup>m<sup>2</sup>.

| Solution |  |  |
|----------|--|--|
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |
|          |  |  |

### **HW10**

A MOS capacitor has:

Xox=10nm, Na= $10^{17}$ m<sup>-3</sup>,  $\epsilon_{ox}$ =3.9,  $\epsilon_{s}$ =11.8

### Determine:

- (i) C(HF) in accumulation;
- (ii) C(HF) in strong inversion
- (iii) C(LF) in strong inversion

# Summary: Three diagrams

- Block charge density diagram
- 2. Energy band diagram
- 3. CV diagram

Vg change from - to +: from accumulation to inversion (p-type sub.)

## Summary

### Biasing Conditions for p-type Si



## Summary





### MOS Capacitance

### <u>OUTLINE</u>

- MOS structure
- MOS energy band diagram
- Effects of applied biases
- Voltage drops

### Voltage dropped in the silicon

#### Surface Potential

$$q\phi_{\scriptscriptstyle S}=qV_{\scriptscriptstyle S}$$

$$q\phi_S = E_i(bulk) - E_i(surface)$$

$$q\phi_S = E_C(bulk) - E_C(surface)$$

$$q\phi_{S} = E_{V}(bulk) - E_{V}(surface)$$

 $V_{ox}$  is the voltage dropped across the oxide



#### PL

# Energy band diagrams: Vg=0



55

# Flatband Voltage, $V_{FB}$

The built-in potential can be "cancelled out" by applying a gate voltage that is equal in magnitude (but of the opposite polarity) as the built-in potential. This gate voltage is called the *flatband* voltage because the resulting potential profile is flat.



### Voltage Drops in the MOS System



### Voltage Drops in the MOS System

In general,

$$V_G = V_{FB} + V_{ox} + \phi_s$$

where

$$qV_{\text{FB}} = \Phi_{\text{MS}} = \Phi_{\text{M}} - \Phi_{\text{S}}$$

 $V_{ox}$  is the voltage dropped across the oxide ( $V_{ox}$  = total amount of band bending in the oxide)

 $\phi_s$  is the voltage dropped in the silicon (total amount of band bending in the silicon)

$$q\phi_S = E_i(bulk) - E_i(surface)$$

For example: When  $V_G = V_{FB}$ ,  $V_{ox} = \phi_s = 0$  *i.e.* there is no band bending

## Voltage Drops in the MOS System

$$\begin{split} V_G &= V_{FB} + V_{ox} + \phi_s \\ V_T &= V_{FB} + V_{ox} + 2\phi_F \\ \phi_s &= 2\phi_F \end{split}$$
 
$$V_T = V_{FB} + V_{ox} + 2\phi_F \\ V_{ox} &= -\frac{\sqrt{2qN_D\varepsilon_{Si}|2\phi_F|}}{C_{ox}} \\ V_T &= V_{FB} + 2\phi_F - \frac{\sqrt{2qN_D\varepsilon_{Si}|2\phi_F|}}{C} \end{split}$$

### HW8

A MOS capacitor has:

Xox=40nm, Nd=10<sup>21</sup>m<sup>-3</sup>, 
$$\phi_F$$
=0.3V,  $\varepsilon_{ox}$ =3.9,  $\varepsilon_{s}$ =11.8

- <u>Determine:</u>
  - (i) C(HF) in accumulation; (ii) C(HF) in strong inversion (iii) C(LF) in strong inversion
- Solution:

(i) 
$$C(HF) = C_{ox} = \varepsilon_o \varepsilon_{ox} / X_{ox}$$
  
=8.85E-12×3.9/4.0E-8  
=8.63E-4 F/m<sup>2</sup>

(ii) In inversion 
$$V_s = 2\phi_F = 0.6V$$
  $x_d = 8.85E-7 \text{ m}$   $C_s = \varepsilon_o \varepsilon_s / x_d = 1.18E-4F/ \text{ m}^2$   $C(HF) = C_{ox}C_s/(C_{ox}+C_s)=1.04E-4F/ \text{ m}^2$  (iii)  $C(LF) = C_{ox}=8.63E-4 \text{ F/m}^2$ 

### HW9

#### Problem

• An MOS capacitor is made on uniformly doped p type material. With -20V on the gate with respect to the substrate it has a capacitance of 20pF. With +20V on the gate it has a capacitance of 10pF. What is the thickness of the depletion layer if the capacitor has an area of 10<sup>-6</sup>m<sup>2</sup>.

#### Solution

- With negative bias on the top electrode: C = Cox. (20pF)
- With positive bias: 1/C = 1/Cox + 1/Cs
- since Cs= $(1/C 1/Cox)^{-1}$ =  $(1/10 1/20)^{-1}$  = 20 pF. The thickness of the depletion layer xd is obtained from Cs= $A\epsilon_s \epsilon_0 / x_d$ ,
- $\mathbf{x}_{d} = 10^{-6} \times 12 \times 8.8 \times 10^{-12} / 20 \times 10^{-12} = 5 \times 10^{-6} \mathbf{m}$