Assignment #\$8

Name answer Key

Due 20 March 2015

- 1. Let $a_1 = 6$ and, for $n \ge 2$, let $a_n = \frac{2}{3}a_{n-1} + 4$.
 - (a) Find a_2 , a_3 , and a_4 .

$$a_2 = \frac{2}{3}(6) + 4 = 8$$
 $a_3 = \frac{2}{3}(8) + 4 = \frac{28}{3} \approx 9.33$
 $a_4 = \frac{2}{3}(\frac{28}{3}) + 4 = \frac{92}{9} \approx 10.22$

(b) Show that $\{a_n\}$ is monotone increasing.

$$a_2 - a_1 = 8 - 6 \ge 0$$
.
 $a_1 = a_1 = 8 - 6 \ge 0$.
 $a_1 = a_1 = a_1 - a_1 = a_1 = a_1 - a_1 = a_1 = a_1 - a_1 = a_1 =$

(c) Show that $\{a_n\}$ is bounded above.

$$a_1 \le 30$$
, because $6 \le 30$.

 $a_1 \le 30$, because $6 \le 30$.

 $a_1 \le 30$, Then

 $a_1 = \frac{2}{3}a_1 + 4 = \frac{2}{3}(30) + 4 = 24 \le 30$.

Thus $\{a_1\}$ is bounded by 30 .

(d) Find the limit of the sequence.

$$a_n \rightarrow L$$
, for some L .

 $a_n = \lim_{n \rightarrow \infty} \left(\frac{2}{3}a_{n-1} + 4\right)$
 $a_n = \lim_{n \rightarrow \infty} \left(\frac{2}{3}a_{n-1} + 4\right)$
 $a_n = \lim_{n \rightarrow \infty} \left(\frac{2}{3}a_{n-1} + 4\right)$

2. In each case, find the limit of the sequence $\{a_n\}$:

(a)
$$a_n = \frac{\sin(n)}{n^2} + \frac{4^n + 2^n}{4^n + e^n}$$

$$0 \frac{1}{n^2} \leq \frac{\sin(n)}{n^2} \leq \frac{1}{n^2}$$

(b)
$$a_n = n^2 e^{-n} + \frac{n^2 - 3}{n^2 + 4}$$

$$Q n^2 e^{n^2} = \frac{n^2}{e^n} \rightarrow 0 \quad (eg l'hopritals)$$