2° Seminario de lA y problemas sociales

IA y sociedad: salud, seguridad y soberanía

Inteligencia artificial en la generación de imágenes médicas sintéticas.

Sara Cañaveral Uribe Ingeniería Biomédica Magíster en automatización y control industrial

IA Generativa

Aprendizaje profundo

INSTITUCIÓN UNIVERSITARIA DIGITAL DE ANTIOQUIA

Aprendizaje profundo o redes neuronales

Aprendizaje profundo o redes neuronales

Imagen de entrada

Proceso de la red neuronal convolucional

Capa de salida Clasificación

Imágenes

0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.6	0.6	0.0	0.0
0.0	0.6	0.0	0.0	0.6	0.0
0.0	0.6	0.6	0.6	0.6	0.0
0.0	0.6	0.0	0.0	0.6	0.0
0.0	0.0	0.0	0.0	0.0	0.0

b

Rayos X Pulmón

(Qin et al., 2022)

Resonancia magnética cardiaca

(Ossenberg-Engels & Grau, 2019)

Imágenes PET cerebro

(Islam & Zhang, 2020)

Resonancia magnética cerebro

Resonancia magnética con contraste de mama

(Li et al., 2019)

Redes empleadas para la generación de imágenes

Autoencoder

Redes GAN

Redes GAN

Paquete de rostros reales

Ruido aleatorio

Real

Redes GAN

Implementaciones

Rayos X Pulmón

(Qin et al., 2022)

FIGURE 2. Proposed multi-scale CNN architecture, with fusion of features from different scales.

(Qin et al., 2022)

Rayos X Pulmón

Resonancia magnética cardiaca

(Ossenberg-Engels & Grau, 2019)

(Ossenberg-Engels & Grau, 2019)

Imágenes PET cerebro

(Islam & Zhang, 2020)

Fig. 4 Visualization of the generator output in the training process

(Islam & Zhang, 2020)

(Islam & Zhang, 2020)

Input Modalities

(Li et al., 2019)

Resonancia Magnética Contrastada

INSTITUCIÓN UNIVERSITARIA DIGITAL DE ANTIOQUIA

Mamografía digital con realce de contraste (CEDM)

Resonancia magnética contrastada (DCE-MRI)

Posibilidad de alojarse en la base del cerebro

INSTITUCIÓN UNIVERSITARIA DIGITAL DE ANTIOQUIA

Ejemplo del resultado obtenido. (a)
Imagen con contraste, (b) imagen
sintetizada (c) información de las
regiones de realce de contraste de la
imagen real, (d) información de las
regiones de realce de contraste de la
imagen sintetizada

Postcontraste

Imagen Sintética

Mapa de diferencias

Parte de la contribución

INSTITUCIÓN UNIVERSITARIA DIGITAL DE ANTIOQUIA

PRONACES

Minciencias

Referencias

Qin, X., Bui, F. M., Nguyen, H. H., & Han, Z. (2022). Learning from Limited and Imbalanced Medical Images with Finer Synthetic Images from GANs. IEEE Access, 10, 91663–91677.

Ossenberg-Engels, J., & Grau, V. (2019). Conditional Generative Adversarial Networks for the Prediction of Cardiac Contraction from Individual Frames. In International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 1-8. Springer.

Islam, J., & Zhang, Y. (2020). GAN-based synthetic brain PET image generation. Brain Informatics, 7, 1–12.

Li, H., Paetzold, J.C., Sekuboyina, A., et al. (2019). DiamondGAN: unified multi-modal generative adversarial networks for MRI sequences synthesis. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 1-10. Springer.

¡Gracias!

INSTITUCIÓN UNIVERSITARIA DIGITAL DE ANTIOQUIA

