Laboratorium Rozpoznawania obrazów – Ćwiczenie #7 Poprawa jakości rozpoznawania (ciągle odzież)

Termin oddawania: 16.06.2020

W ostatnim ćwiczeniu Państwa zadaniem będzie przygotowanie metaklasyfikatora, który ma poprawić jakość klasyfikacji elementów odzieży.

Ponownie użyjemy bazy danych Fashion MNIST database again. Korzystając ze zbioru uczącego przygotowałem 7 różnych sieci splotowych (w architekturze podobnej do sieci VGG), które wykorzystacie Państwo jako klasyfikatory bazowe.

Procedura przygotowania klasyfikatorów bazowych była następująca:

- Zbiór uczący z Fashion MNIST został podzielony na dwie części: uczącą dla sieci splotowej (zbiór U - 50,000 próbek) oraz walidacyjną (zbiór V - 10,000 próbek) zostawioną z myślą o przygotowaniu metaklasyfikatora.
- 2. Zbiór U został losowo podzielony na połowy uczącą (UU) i walidacyjną (UV) używane przy uczeniu sieci splotowych, tzn. każda z sieci była uczona na 25k próbek i walidowana na pozostałych 25k próbek.
- 3. Zbiór V został sklasyfikowany za pomocą wszystkich sieci splotowych. Wyjścia sieci zostały zapisane w plikach valid_nb.txt (w tych plikach każdy wiersz odpowiada wyjściom sieci dla jednej próbki zbioru V). Rzeczywiste etykiety próbek zbioru V są zapisane w pliku validlab.txt.
- 4. Oryginalny zbiór testowy Fashion MNIST (zbiór T) także został sklasyfikowany za pomocą wszystkich sieci bazowych. Pliki test_nb.txt zawierają wyjścia sieci dla wszystkich próbek zbioru T. Rzeczywiste etykiety próbek zbioru V są zapisane w pliku testlab.txt.

Współczynniki poprawnych rozpoznań klasyfikatorów bazowych (w %%):

Klasyfikator	#1	#2	#3	#4	#5	#6	#7
Jakość na zbiorze walidacyjnym (V)	91,84	91,96	91,91	92,06	91,65	91,90	91,97
Jakość na zbiorze testowym (T)	91,06	91,41	91,04	91,29	91,10	91,05	91,36

Klasyfikatory bazowe dają decyzję na podstawie największej wartości na wyjściu sieci. Rozwiązanie referencyjne używa standardowych metod głosowania: jednomyślnego, z absolutną większością głosów oraz zwykłą większością głosów (o ile żadna inna klasa nie dostała takiej samej liczby głosów).

Wyniki są następujące:

	Jednomyślność			Absolutna większość			Zwykła większość		
	OK.	Error	Reject	OK.	Error	Reject	OK.	Error	Reject
Współczynniki rozpoznania i funkcja celu dla zbioru walidacyjnego	85,45	2,73	11,82	92,62	6,82	0,56	92,76	7,00	0,24
	79,99			78,98			78,76		
Współczynniki rozpoznania i funkcja celu dla zbioru testowego	84,30	2,99	12,71	91,82	7,63	0,55	91,95	7,80	0,25
		78,32			76,56			76,35	

Żeby łatwo porównywać ze sobą różne klasyfikatory jest używana taka funkcja celu:

fobj = recognition_coefficient - beta * error_coefficient

gdzie beta jest proporcją kosztu błędów względem decyzji wymijających (przyjmijmy w tym ćwiczeniu beta = 2).

Państwa zadaniem jest przygotowanie metaklasyfkatora działającego na innej zasadzie niż rozwiązanie referencyjne. Uzyskanie z tego ćwiczenia maksimum (sześciu) punktów wymaga uzyskania wyższej wartości funkcji celu i na zbiorze V, i na zbiorze T.

Ważną rzeczą jest uniknięcie **zużycia** zbioru testowego (w przypadku tej bazy danych właściwsze byłoby mówienie o znoszeniu zbioru testowego). Przy przygotowaniu rozwiązania referencyjnego wyniki klasyfikacji na zbiorze testowym nie były używane w ogóle. Warto spróbować takiego podejścia: tzn. użyć zbioru testowego dokładnie raz, do policzenia współczynników klasyfikacji i funkcji celu do wstawienia do raportu. To oczywiście oznacza więcej pracy, bo zbiór walidacyjny trzeba podzielić na części uczącą (do wyznaczenia parametrów metaklasyfikatora) i walidacyjną (do sprawdzenia, czy pomysł działa).

Raport powinien zawierać:

- 1. Opis metody składania wyników klasyfikatorów bazowych ze szczególnym uwzględnieniem parametrów metaklasyfikatora.
- 2. Opis algorytmu uczenia metaklasyfikatora.
- 3. Współczynniki klasyfikacji i wartość funkcji celu.

Pliki towarzyszące tej instrukcji:

valid_*.txt wyjścia sieci bazowych dla zbioru V

test *.txt wyjścia sieci bazowych dla zbioru T

validlab.txt etykiety zbioru V

testlab.txt etykiety zbioru T

*.m implementacja rozwiązania referencyjnego