ECE 3334 Group 4 Week 3 Presentation

Solar Panel Powered Microgrid and Monitoring Station

Kenneth Cody

Computer Engineer

Justin Price

Computer Engineer

Juan Torres

Electrical Engineer

Jared Tulio

Electrical Engineer – Team Lead

February 7, 2018

System Description

- The microgrid will use a solar panel to charge a battery while the different sections of the grid are monitored using sensors.
- Data is set via Wi-Fi to a base station built using a Raspberry Pi where data about the system is displayed on a touchscreen.

Safety

- Be sure to have safety certificates for Lab Bench
- Check for frayed or worn wires
- Be sure not to daisy chain wires
- Be sure not to overload a powerstrip

Division of Labor

Base Station Software and UI: Kenneth

Micro-grid Sensors and Communication: Justin

Battery and Power: Juan

Power Conversion and Grid Construction: Jared

Deliverables for Previous Week

- Get lab bench Completed
- Research monitoring sensors
- Research base station hardware Completed
- Research microgrid hardware
- Research Batteries Completed
- Acquire Raspberry Pi Completed

Hardware Flowchart

Grape Solar 100W Panel

Model	GS-STAR-100W			
Maximum Power P _{max}	100 W* (0%, +6%)			
Voltage at Maximum Power Point V _{mpp}	18.0 V			
Current at Maximum Power Point Impp	5.56 A			
Open Circuit Voltage V _{oc}	21.9 V			
Short Circuit Current Isc	6.13 A			
Module Efficiency (%)	14.63%			
Temperature Coefficient of V₀c	-0.32% /°C			
Temperature Coefficient of Isc	+0.04% /°C			
Temperature Coefficient of P _{max}	-0.45% /°C			
Weight	8.9 kg (19.66 lbs)			
Module Dimension (L x W x T)	1020mm x 670mm x 35mm (40.16" x 26.37" x 1.38")			

Other Performance Data

Power Tolerance	Operating Temperature	Max Series Fuse Rating	NOCT*
0%, +6%	-40 °C to +85 °C	10A	45 +/-2°C

[14]

Buck Converter – High Amperage

SMAKN® DC-DC High Power 20A Buck

*Input voltage: DC10V-40V 10V enter below the undervoltage protection

*Output voltage: 0.8V-13V (onboard potentiometer adjustable)

*Cooling: natural cooling

*Rated power: 150W (natural cooling)

*Rated power: 250W (plus fan forced cooling)

*Current Rating: 20A

*Peak current: 30A ≥35A enter overcurrent

*Efficiency: 96% (24V switch 12V / 10A measured)

*Output Ripple: 200-300mV and input-output differential and power-related

*Operating frequency: 100KHz

*Load regulation ≤1% (0-30A output drop of about 50mV)

*Short circuit protection: There can be a long short re-power recovery

*Reverse protection: reverse current is 0

*Over-temperature protection: There reaches a certain temperature automatically shut down output

Dimensions and wiring instructions:

*Dimensions: 64 * 61.5 * 32mm including heat sink, fan-free

*Fixation: four M3 screws

*Wiring: high-current-free solder terminals

Vin +, Vin- input positive and negative

OUT +, OUT- output positive and negative

[15] *Work instructions: blue for the output voltage is normal.

*Scope: 12V turn 5V, 3.3V, 24V switch 12V, 9V, 5V, 3.3V, 36V switch 12V, other voltage conversion deration is required.

Buck Converter

[16]

A battery works by the reaction of lead and lead oxide with sulfuric acid electrolyte which then produces a voltage. The supplying energy to external loads discharges the battery.

10

The battery can be recharged by applying a voltage from a charging source which in our case will be the solar panels

Battery is needed in order to store energy that is generated by the solar panel. The batteries in our project should have a high Amp Hour in order to store as much energy as possible

One battery we will be using is the UB12350 Battery

[3]

The other batteries we will be using is the UltraTech 12V 7Ah Sealed Lead Acid (SLA) Rechargeable Battery UT-1270-2 pack

Brand Name	UltraTech
Item Weight	10 pounds
Model Number	PK1270X2rfvv
Part Number	1270
Voltage	12v
Amp Hours	7Ah

[4]

To calculate battery percentage we reference this chart the lower voltage the lower the charge.

	valBlog.com	ModernSurvi	RGE	STATE OF CHA	
specific gravity	V open circuit	V open circuit	V open circuit	V open circuit	
per cell	48-V bank	24-V bank	12-V battery	6-V battery	charge
1.277	50.92	25.46	12.73	6.37	100%
1.258	50.48	25.24	12.62	6.31	90%
1.238	50.00	25.00	12.50	6.25	80%
1.217	49.48	24.74	12.37	6.19	70%
1.195	48.96	24.48	12.24	6.12	60%
1.172	48.40	24.20	12.10	6.05	50%
1.148	47.84	23.92	11.96	5.98	40%
1.124	47.24	23.62	11.81	5.91	30%
1.098	46.64	23.32	11.66	5.83	20%
1.073	46,04	23.02	11.51	5.75	10%
		100000			

[5]

L07P010S05 Current Sensor

Parameters	Symbol	L07P003S05	L07P005S0	L07P010S05	.07P015 S 05	L07P020S05	L07P025\$05	L07P030S05	
Primary nominal current	I _f	3A	5A	10A	15A	20A	25A	30A	
Saturation current	I _{fmax}		≥ ± I _f × 1.5						
Rated output voltage	V _o		V _{of} + 1.250V ± 0.040V (at If)						
Offset Voltage ¹	Vor		Vref 1± 0.040V (at If = 0A)						
Output Linearity ² (0A~If)	ει		≤ ±1% (at lf)						
Power supply voltage	Vcc	+ 5V ± 5%							

- Using the 10A module (green square)
- Vref = Vcc/2 (From datasheet)
- Output voltage range from 0 to 3.5V with input current from 0 to 10A (purple square)

L07P010S05 Pinout

Electrical connection diagram

Terminal	Function
1	+V _{CC} (+5V)
2	NC
3	V _{OUT} 1
4	V _{OUT} 2
5	GND
6	Primary input current1 (+)
7	Primary input current1 (-)
8	Primary input current2 (+)
9	Primary input current2 (-)
	[6]

ESP8266 WIFI Module

- Supports 2.4Ghz 802.11 b/g/n
- VCC of 3.3V
- Chip Enable (CH_PD) active high
- Communicated using UART
- Default 115200 baud rate, 1 stop bit, no start bit, 8 message bits
- Configured using AT commands

Relevant AT Commands

Commands[8]:

- AT ---> Put into AT command mode
- AT+RST ---> Reset module
- AT+CWMODE ---> Set if in client, access point, or both
- AT+CWJAP=<ssid>,<pwd>---> Connect to a network or access point
- AT+CIFSR ---> Retrieve assigned IP address

Base Station: Hardware

Raspberry Pi 3 Model B

Specifications[1]:

SoC: Broadcom BCM2837

CPU: 4× ARM Cortex-A53, 1.2GHz

GPU: Broadcom VideoCore IV **RAM:** 1GB LPDDR2 (900 MHz)

Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

Storage: microSD

GPIO: 40-pin header, populated

Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB

2.0, Ethernet, Camera Serial Interface (CSI), Display

Serial Interface (DSI)

Power: 5V, 2A power supply necessary to power the

Raspberry Pi and the attached touchscreen

Raspberry Pi 3 Model B[9]

Base Station: Raspberry Pi 3 Ports

Raspberry Pi Ports [10]

Raspberry Pi 3 Model B Pinout[11]

Base Station: Raspberry Pi 3 Software

Raspbian OS v4.9 is the operating system used on the Raspberry Pi 3 Model B. This supports the setup for both the on board Wi-Fi antenna and the drivers for the touchscreen.

Base Station: Raspberry Pi 3 7" Touchscreen

Features & Benefits of the Pi LCD Touch Screen[4]:

- Multi-touch capacitive touch
- 7 inch display
- 800 x 480 pixel resolution at 60 frames per second (fps)
- No electronic interference
- Full Raspbian OS functionality without a keyboard
- Kivy touch screen development software available
- Connects to the Raspberry Pi board using the DSI port
- Adapter board is used to power the display
- Will require the latest version of Raspbian OS to operate

Raspberry Pi 7" Touchscreen[12]

Base Station: GUI

The GUI displayed on the touchscreen will allow users to select any section of the microgrid to access detailed information about the specific section. The GUI will also display basic information by default without any buttons being pressed.

Kenneth Cody

25

Base Station: GUI Software

"Open source Python library for rapid development of applications that make use of innovative user interfaces, such as multi-touch apps."[13]

Kivy allows for touchscreen compatible GUI development on the Raspberry Pi 3.

<u>KivyPie</u> - Image for Raspberry Pi containing Kivy <u>Installation for Raspberry</u> Pi

532 Mb

Kenneth Cody

26

Total Budget

Lab 1 - Group 2	Group 2 Running Total Total Estimate				Running Total				Start Date 2/1/201		
Direct Labor:							Today	2/7/2018			
Category or individual:	Rate/Hr	Hrs		Rate/Hr	Hrs		Today	2/1/2010			
Kenneth	18	8	\$144.00	18	215	\$3,870.00	End Date	5/5/2018			
Jared	18		\$144.00	18	215	\$3,870.00	Days Past				
Justin	18	8	\$144.00	18	215	\$3,870.00					
Juan	18		\$144.00	18	215	\$3,870.00	Days Left				
Juan	10	0	Ψ144.00	10	213	\$3,070.00	Days Leit	01			
DL Subtotal (DL)		Subtotal:	\$576.00		Subtotal:	\$15,480.00					
Labor Overhead	rate:	100%	\$576.00	rate:	100%	\$15,480.00					
Total Direct Labor (TDL)			\$1,152.00			\$30,960.00					
Contract Labor:											
Lab 1 Help	\$15	0	\$0.00	\$15	0	\$0.00					
Lab 7 Help	\$18	0	\$0.00	\$18	0	\$0.00					
Lab 3 Help	\$18	0	\$0.00	\$18	10	\$180.00					
Lab 4 Help	\$18	0	\$0.00	\$18	15	\$270.00					
Lab 5 Help	\$25	0	\$0.00	\$25	10	\$250.00					
Tutors	\$40	0	\$0.00	\$40	15	\$600.00					
Lab Assistants	\$40	0	\$0.00	\$40	15	\$600.00					
Woodcock	\$100	0	\$0.00	\$100	5	\$500.00					
Prof. Ray	\$200	0	\$0.00	\$200	20	\$4,000.00					
Total Contract Labor (TCL)	\$200	0	\$0.00	\$200	20	\$6,400.00					
TOTAL CONTRACT LADOR (TCL)			φ0.00			\$0,400.00					
Direct Material Costs:			\$0.00			\$650.00					
(from Material Cost worksheet)]			
Total Direct Material Costs: (TDM)			\$0.00			\$650.00					
Equipment Rental Costs:	Value	Rental Rate		Value	Rental Rate		Date begin	Date end (or	today)		
Oscilloscope	\$5,300.00	0.20%	\$63.60		0.20%	\$985.80		5/5/2018	,		
Function Generator	\$500.00		\$6.00		0.20%	\$93.00	2/1/2018	5/5/2018			
DMM	\$958.00		\$11.50		0.20%	\$178.19	2/1/2018	5/5/2018			
Power Supply	\$1,700.00	0.20%	\$20.40		0.20%	\$316.20	2/1/2018	5/5/2018			
Soldering Station	\$100	0.20%	\$1.20	\$100.00	0.20%	\$18.60	2/1/2018	5/5/2018			
- Containing Change	V.00	0.2070	71.20	V 100100	0.2070	710.00	22010	31312313			
Total Rental Costs: (TRM)			\$101.50			\$1,573.19					
			A + 0.55			000 500 15					
Total TDL+TCL+TDM+TRM		10001	\$1,253.50		10001	\$39,583.19					
Business overhead		100%	\$1,253.50		100%	\$39,583.19					
Total Cost:		Current	\$2,506.99		Estimate	\$79,166.38					

Total Budget Cont'd

Name	Cost Q	uantity Web	site Notes	Purchase Date	Total	TOTAL
ESP8266 WiFi Module	\$6.95	2 SparkFun	NA		\$13.90	\$538.38
100W-Solar Panel - Grape Solar	\$97.00	1 Home Depot	NA		\$97.00	
35Ah 12V Lead Acid Battery	\$64.99	1 Amazon	NA		\$64.99	
7Ah 12V Lead Acid Battery	\$28.49	1 Amazon	Pack of 2		\$28.49	
Buck Converter - High Amperage	\$26.00	2 Amazon	NA		\$52.00	
Buck Converter - Low Amperage	\$8.00	4 Amazon	NA		\$32.00	
Rasberry Pi 3	\$35.00	1 Allied Electro	nics NA		\$35.00	
Rasberry Pi Touch Screen	\$70.00	1 Allied Electro	nics NA		\$70.00	
Rechargeable Battery	\$15.00	1 Amazon	NA		\$15.00	
Current Sensor	\$20.00	3 Mouser	NA		\$60.00	
Power Inverter	\$70.00	1 Amazon	NA		\$70.00	

Gantt Chart

References

- [1] http://hyperphysics.phy-astr.gsu.edu/hbase/electric/leadacid.html
- [2] https://powerwerx.com/ub12350-12v-35ah-battery-group-u1
- [3] https://www.amazon.com/UB12350-WKDC12-35J-U1HR1500S-0120935-6FM33U1/dp/B00IL0PVL4/ref=cm_wl_huc_item
- [4]https://www.amazon.com/dp/B007ROV36W/ encoding=UTF8?coliid=I1ZROGN1XTDKII&colid=3DVKL0V7S8W7F&psc=0
- [5] https://modernsurvivalblog.com/alternative-energy/battery-state-of-charge-chart/
- [6] https://www.mouser.com/ds/2/397/L07PXXXS05-467715.pdf
- [7] https://github.com/esp8266/esp8266-wiki/wiki
- [8] https://cdn.sparkfun.com/datasheets/Wireless/WiFi/Command%20Doc.pdf
- [9] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
- [10] https://www.jameco.com/Jameco/workshop/circuitnotes/raspberry_pi_circuit_note_fig2.jpg
- [11] https://docs.microsoft.com/en-us/windows/iot-core/learn-about-hardware/pinmappings/pinmappingsrpi
- [12] https://www.alliedelec.com/raspberry-pi-raspberry-pi-7-touchscreen/
- [13] https://kivy.org/#home
- [14] https://www.homedepot.com/catalog/pdfImages/1d/1d1b46a0-4979-46fa-b5d2-73cc1f950f30.pdf
- [15] https://www.amazon.com/SMAKN%C2%AE-Adjustable-Converter-10-40V-0-8-13V/dp/B00VY1CYL2
- [16] https://en.wikipedia.org/wiki/Buck_converter

Questions?