离散型概率分布							
分布	描述	数学标记	参数	分布律或概率密度	数学期望	方差	
单点分布 (退化分布)	随机变量取 a 时,概率为 1	$b_0(a, 1)$	а	P(x=a)=1	а	0	
0-1 分布	一次随机试验中,只可能取两个值,则为0-1分布,如:抛硬币	<i>b</i> (1, <i>p</i>)	0 < p < 1	$P\{X = k\} = p^{k} (1 - p)^{1 - k}$ $k = 0,1$	p	p(1 – p)	
二项分布	进行 n 次 0-1 分布试验, 出现某个事件的次数 x 服从二项分布, 如放回抽样中, 抽到某个事件的次数的概率	${\it \Box}(n,p)$	$0 n \ge 1$	$P\{X = k\} = C_n^k \cdot p^k (1 - p)^{1 - k}$ $k = 0, 1, 2 \dots$	np	np(1-p)	
泊松分布	先说结论:泊松分布是二项分布n 很大而p很小时的一种极限形式 二 项分布是说,已知某件事情发生的 概率是p,那么做n次试验,事情发 生的次数就服从于二项分布。 泊松分布是指某段连续的时间内某 件事情发生的次数,而且"某件事 情"发生所用的时间是可以忽略 的。例如,某个公交站台一个小时 内出现了的公交车的数量 就用泊 松分布来表示	$\pi(\lambda)$	λ > 0	$P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$ $k = 0,1,2 \dots$	λ	λ	

连续型概率分布						
分布	描述	数学标记	参数	分布律或概率密度	数学期望	方差
	随机变量的概率密度在[a,b]区间上	U(a, b)	a < b	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & 其它 \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-D)^2}{12}$
	为常数 $\frac{1}{b-a}$,则此随机变量服从均匀					
均匀分布	分布,意为在某个区间内各取值是					
	等可能的,概率的大小只与长度有					
	关					
	正态分布的的普遍性可以中心极限定理		μ $\sigma > 0$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2
	得到。直白地说,如果一个指标受到若					
	干独立的因素的共同影响,且每个因素					
	不能产生支配性的影响(Lindeberg 条					
正态分布	件),那么这个指标就服从中心极限定	$N(\mu, \sigma^2)$				
(高斯分布)	理,收敛到正态分布,这就是林德伯格-	Ν (μ, σ)				
	费勒中心极限定理的意思。 $Z = \frac{x-\mu}{\sigma}$ 叫					
	标准化变量,在正态分布中叫标准					
	正态变量,在后面的推断性统计中					
	非常重要,叫 Z 分数					
对数正态分布	若 $\square \sim N(\mu, \sigma^2), Y = e^x$,则 Y 服从		μ $\sigma > 0$	$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}, & x > 0\\ 0, & 其它 \end{cases}$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$
	该分布。如果一个变量可以看作是					
	许多很小独立因子的乘积,则这个					
	变量可以看作是对数正态分布。一					
	个典型的例子是股票投资的长期收					

	益率,它可以看作是每天收益率的乘积。					
Γ分布 (伽玛分布)	首先简单认识一下伽玛函数: $\Gamma(n), 它是阶乘的延拓\Gamma(n) = (n-1)!, 伽玛分布的一个重要应用 就是作为共轭分布出现在很多机器 学习算法中$	$\Gamma(lpha,eta)$	$\alpha, \beta > 0$	$f(x) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}, & x > 0\\ 0, & 其它 \end{cases}$	α	$lphaeta^2$
指数分布	为伽玛分布的特殊形式,即当α = 1时的伽玛分布,指数函数的一个重要特征是无记忆性 (Memoryless Property,又称遗失记忆性)。这表示如果一个随机变量呈指数分布,当 s,t>0 时有 P(T>t+s T>t)=P(T>s)。即,某个公交站台任意两辆公交车出现的间隔时间就用指数分布来表示	$\Gamma(1, heta)$	$\theta > 0$	$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0\\ 0, & 其它 \end{cases}$	θ	θ^2
χ ² 分布 (卡方分布)	若 n 个相互独立的随机变量 X ₁ 、 X ₂ 、、Xn ,均服从标准正态分 布,则这 n 个服从标准正态分布的 随机变量的平方和构成一新的随机 变量,其分布规律称为卡方分布, 卡方分布主要用来进行单总体方差 检验,优度拟合检验、独立性检验	$\chi^2(n)$	$n \ge 1$	$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \cdot \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x > 0 \\ 0, & 其它 \end{cases}$	n	2n

	(可以看作优度拟合的反向使用)。 通常可以用作判断两个分布是不是一致,或者变量之间的相关程度。					
逻辑斯蒂分布	应用于机器学习方面		$\beta > 0$	$f(x) = \frac{e^{-\frac{x-\alpha}{\beta}}}{\beta \left(1 + e^{-\frac{x-\alpha}{\beta}}\right)^2}$	α	$\frac{\pi^2\beta^2}{3}$
B分布 (贝塔分布)	它两个形参决定了可以化身其它分布,以期望值为中心,1为参数界限,	eta(lpha,eta)	$\alpha, \beta > 0$	$f(x) = \begin{cases} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, & 0 < x < 1 \\ 0, $	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$
t 分布 (学生氏分布)	$Y = \frac{N(0,1^2)}{\sqrt{\chi^2(n)/n}}$,则称 Y 服从 t 分布, t 分布主要用于假设检验的均值检验,特别对小样本检验和未知总体 方差时候的检验,对于大于 120 的 样本,t 检验和正态的 Z 检验等	t(n)	$n \ge 1$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \cdot \Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$	0 n > 1	$\frac{n}{n-2}, n > 2$

	效。通常可以用作判断两组数据之					
	间的均值之间的差异。					
	$Y = \frac{\chi^2(n_1)/n_1}{\chi^2(n_2)/n_2}$,则称 Y 服从 F 分					
	布,主要用于假设检验中方差齐性					
	检验,比较两个样本的方差是否齐			$f(x)$ $ (\Gamma(n_1 + n_2) \dots n_{1-1} \dots n_1 + n_2) $	n_2	$2n_2^2(n_1 + n_2 - 2)$
F分布	性,以及单/多因素试验中的方差分	$F(n_1,n_2)$	$n_1, n_2 > 0$	$= \left\{ \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} {n_2 \choose n_2} {n_2 \choose n_2} {n_2 \choose n_2} {n_2 \choose n_2} {n_1 $	$\frac{n_2}{n_2 - 2}$ $n_2 > 2$	$\frac{2n_2(n_1+n_2-2)}{n_1(n_2-2)^2(n_2-4)}$ $n_2 > 2$
	析。通常可以用作判断两组数据之			0, 其它	$n_2 > 2$	$n_2 > 2$
	间方差差异,多组数据之间的均值					
	差异。					