Information		

Preliminaries

Restrictions/Allowances

- You are allowed a calculator
- This test is closed book
- You may **not** code
- Access to any other Moodle course or page is forbidden and will be logged

Rounding

- All numerical answers must be rounded to 3 decimal places.
- Unless otherwise stated, when your calculations involve multiple steps, round any intermediate results to 5 decimal places or use fractions before using them in the next step.

Question 1
Correct
Mark 1.00 out of 1.00
Which function maps a real-valued number to a probability between 0 and 1 in logistic regression?
○ a. ReLU
○ b. Softmax
© c. Sigmoid Ø
O d. Linear
The correct answer is: Sigmoid
Question 2
Incorrect
Mark 0.00 out of 1.00

Regularisation adds a penalty term proportional to the:

- a. Sum of weights. 🗵
- b. Sum of squared weights.
- c. Sum of absolute weights.
- od. Number of non-zero weights.

The correct answer is: Sum of squared weights.

\cdot	
Question 3	
Correct	
Mark 1.00 out of 1.00	
A key difference between discriminative and generative models for classification is that:	
\bigcirc a. Discriminative models learn P(x y), while generative models learn P(y x).	
 ■ b. Generative models directly model the data distribution P(x), discriminative models do not model P(x) directly. 	
c. Discriminative models are always linear, while generative models are always Gaussian.	
 d. Generative models cannot handle continuous features, while discriminative models can handle continuous features. 	
The correct answer is: Generative models directly model the data distribution P(x), discriminative models do not model P(x) directly.	
Question 4	
Correct	
Mark 1.00 out of 1.00	
What does the term $\phi(x)$ represent in the context of $h_{\theta}(x) = \sigma(\theta^T \phi(x))$? a. The model parameters (weights). b. The activation function. c. The output probability. d. A vector of input features. \odot The correct answer is: A vector of input features.	
Question 5 Correct	
Mark 1.00 out of 1.00	
In the context of gradient descent, the learning rate α controls: a. The direction of the weight update. b. The magnitude (step size) of the weight update. \bigcirc c. The number of iterations required for convergence. d. The complexity of the model.	

The correct answer is: The magnitude (step size) of the weight update.

Question 6		
Correct		
Mark 1.00 out of 1.00		
The Perceptron Learnin	g Algorithm is guaranteed to converge if:	
a. The data is line	early separable. ⊙	
b. A sigmoid activ	vation is used.	
c. The learning ra	ate is sufficiently small.	
Od. Regularisation	is applied.	
The correct answer is: T	The data is linearly separable.	
Question 7 Correct		
Mark 1.00 out of 1.00		
The decision boundary True False	$ heta^T x = 0$ in logistic regression corresponds to where the predicted probability $h_ heta(x)$ equals 0.5.	
The correct answer is 'T	rue'.	
Question 8		
Correct		
Mark 1.00 out of 1.00		
Using polynomial basis	functions in logistic regression allows it to model non-linear decision boundaries.	
■ True ②		
○ False		
The correct answer is 'T	rue'.	
Question 9		
Correct		
Mark 2.00 out of 2.00		
Match the concept (A-F	B) with its description (i-ii).	
A. Cross-Entropy Cost	ii. Measures the performance of a classification model whose output is a probability value between 0 and 1.	
17		,

The correct answer is: A. Cross-Entropy Cost \rightarrow ii. Measures the performance of a classification model whose output is a probability value between 0 and 1., B. Softmax Function \rightarrow i. Generalises logistic regression to multi-class classification, producing probabilities that sum to 1.

i. Generalises logistic regression to multi-class classification, producing probabilities that sum to 1.

B. Softmax Function

 \odot

Information

Relevant Formulae

- $\begin{aligned} \bullet & \sigma(z) = \frac{1}{1 + e^{-z}} \\ \bullet & h_{\theta}(\mathbf{x}) = \sigma(\theta^T \phi(\mathbf{x})) \end{aligned}$
- $J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(x^{(i)}))]$

Question 10

Correct

Mark 4.00 out of 4.00

Consider a logistic regression model for a single training example (\mathbf{x},y) . The weights are $\theta = [\theta_0,\theta_1,\theta_2]^T = [-1,2,-1]^T$.

The input feature vector is $\mathbf{x} = [x_1, x_2]^T = [1.5, 0.5]^T$. The true label is y = 1.

Calculate the predicted probability $h_{\theta}(\mathbf{x})$.

Answer: 0.818 0

The correct answer is: 0.818

Question 11

Correct

Mark 3.00 out of 3.00

For a single training example a logistic regression model predicts $h_{\theta}(\mathbf{x}) = 0.7$, while the true label is y = 1. Compute the non-regularised cross-entropy cost of this single example.

Answer: 0.357 (2)

The correct answer is: 0.357

Question 12

Correct

Mark 3.00 out of 3.00

Consider a logistic regression model for a single training example (\mathbf{x},y) . The weights are $\theta=[\theta_0,\theta_1,\theta_2]^T=[0,1,-2]^T$. The input feature vector (excluding bias) is $\mathbf{x}=[x_1,x_2]^T=[1.5,0.5]^T$. The true label is y=1 and the predicted value was $h_{\theta}(\mathbf{x})=0.622$.

Compute the new values of θ after one gradient step with $\alpha=1$.

$$\theta_0 = \left[\begin{array}{c} 0.378 \end{array} \right]$$

$$\theta_1 = \left(\begin{array}{c} 1.567 \end{array} \right) \bigcirc$$

$$\theta_2 = \begin{bmatrix} -1.811 \end{bmatrix}$$

Question 13
Correct Mark 1.00 out of 1.00
Which of the following is commonly used as an activation function in hidden layers of neural networks designed for general function
approximation or classification?
○ a. Softmax
○ c. Cross-Entropy
○ d. Gradient Descent
The correct answer is: ReLU
THE COTTECT ATISWET IS. RELO
Question 14
Correct
Mark 1.00 out of 1.00
What does $a_i^{(l)}$ represent in neural network notation?
what does a_i represent in nearth network notation.
Select one:
igcirc a. The weight connecting neuron i to layer l .
$lacksquare$ b. The activation of neuron i in layer l \odot
igcup c. The pre-activation value of neuron i in layer l
\circ d. The bias term added to layer l .
The correct answer is: The activation of neuron i in layer l
45
Question 15 Correct
Mark 1.00 out of 1.00
Which activation function outputs the input directly if it's positive, and zero otherwise?
○ a. Sigmoid
b. Softmax
© c. ReLU ⊘
O d. Linear

The correct answer is: ReLU

Class Test 2 (Full Time - COMS3007A): Attempt review MS
Question 16
Correct
Mark 1.00 out of 1.00
A feed-forward network means that connections generally flow:
a. From later layers back to earlier layers.
○ b. Within the same layer only.

d. Randomly between any two neurons.
The correct answer is: From earlier layers forward to later layers.
Question 17
Correct
Mark 1.00 out of 1.00
A neural network has layer sizes (excluding bias units) $s_1=10$ (input), $s_2=20$, $s_3=5$ (output).
What is the dimension of the weight matrix $\Theta^{(2)}$ connecting layer 2 to layer 3?
Select one:
\bigcirc a. $5 imes20$
b. 5 × 21
\circ c. $21 imes 5$
\bigcirc d. $20 imes 5$
The correct answer is: $5 imes 21$
Question 18
Incorrect
Mark 0.00 out of 1.00
The Universal Approximation Theorem implies that neural networks are powerful but does NOT guarantee:
a. The ability to represent complex functions.
b. Efficient learning of the function from data.
c. The need for non-linear activation functions.
d. That a single hidden layer might suffice theoretically.

The correct answer is: Efficient learning of the function from data.

Glass 18812 (i all Tillie Gelliesser 7).7 itemperent in the
Question 19
Correct
Mark 1.00 out of 1.00
In a classification problem the number of neurons in the output layer of an MLP is typically determined by the number of classes.
True ✓
○ False
The correct answer is 'True'.
Question 20 Correct
Mark 1.00 out of 1.00
Wark 1.00 Out of 1.00
Bias units $(a_0^{(l)})$ typically have fixed activation values (e.g., 1) and do not apply the layer's main activation function $g(z)$.
True ✓
○ False
The correct answer is 'True'.
The correct answer is true .
Question 21
Correct
Mark 2.00 out of 2.00
Match the town with its servest description
Match the term with its correct description
Activation $a_i^{(l)}$ The final output value of neuron i in layer l $igodot$
Pre-activation $z_i^{(l)}$ The weighted sum of inputs (plus bias) to neuron i in layer I
The correct answer is: Activation $a_i^{(l)}$
$ ightarrow$ The final output value of neuron i in layer I, Pre-activation $z_i^{(l)}$
→ The weighted sum of inputs (plus bias) to neuron i in layer I
Information

Relevant Formulae

- **ReLU** function: g(z) = max(0,z)
- $ullet \ \mathbf{z^{(l)}} = \Theta^{(l-1)} \mathbf{a}^{(l-1)}$ for all $l \in [2,L]$

Question 22

Consider a neural network with 2 input neurons (x_1, x_2) , 1 hidden layer with 2 neurons $(a_1^{(2)}, a_2^{(2)})$, and 1 output neuron $(a_1^{(3)})$. The neural network is visualised below. Bias units are implicit and are not visualised.

The activation function for all neurons is the **ReLU** function: g(z) = max(0,z).

The weight matrices are:

$$\Theta^{(1)} = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & -1 \end{bmatrix} \quad \Theta^{(2)} = \begin{bmatrix} -0.5 & 1 & -1 \end{bmatrix}$$

Question 22.1

Correct

Mark 4.00 out of 4.00

Question 22.2

Correct

Mark 2.00 out of 2.00

Given some other $\mathbf x$ that gives $\mathbf z^{(2)} = [z_1^{(2)}, z_2^{(2)}]^T = [-10, 10]$, calculate the activation vector for the hidden layer $\mathbf a^{(2)} = [a_1^{(2)}, a_2^{(2)}]^T$.

$$a_1^{(2)} = \boxed{0}$$

$$a_2^{(2)}$$
 = 10

Question 23.3

Correct

Mark 3.00 out of 3.00

Given some other ${f x}$ assume that ${f a}^{(2)}=[a_1^{(2)},a_2^{(2)}]=[3,4].$ What is the value of z_1^3 and $h_{ heta}({f x})$?

$$z_1^3 = \left(-1.5 \right) \bigcirc$$

$$h_{\theta}(\mathbf{x}) = \boxed{0}$$

	Class Test 2 (Full Time - COMS3007A): Attempt review MS
Question 24	
Correct	
Mark 1.00 out of	1.00
Backpropag	ation is fundamentally an application of which mathematical rule?
○ a. Bay	ves' Theorem
⊚ b. The	e Chain Rule ⊘
O c. Lin	ear Algebra Matrix Inversion
O d. The	e Central Limit Theorem
The correct	answer is: The Chain Rule
Question 25	
Correct	
Mark 1.00 out of	1.00
	the cost function $J(\Theta)$ quantify in neural network training?
	e number of layers in the network.
	e speed of convergence.
	e difference between the network's predictions and the true labels. ⊘
O d. The	e computational complexity of the forward pass.
The correct	answer is: The difference between the network's predictions and the true labels.
Question 26	
Correct	100
Mark 1.00 out of	1.00
If weights a	re initialised to zero, what problem occurs during the first backpropagation step?
a. Div	ision by zero in the activation function.
b. All	neurons in a layer will compute the same gradient. 🕙
C. The	e forward pass cannot be computed.
Od. The	e cost function becomes infinite.

The correct answer is: All neurons in a layer will compute the same gradient.

Class Test 2 (Full Time - COMS3007A): Attempt review MS	
Question 27	
Correct	
Mark 1.00 out of 1.00	
Feature scaling or normalisation aims to put input features:	
\bigcirc a. Into a $\{0,1\}$ range only.	
	
c. Into an orthogonal basis.	
d. Into a higher dimensional space.	
The correct answer is: Onto similar scales or ranges.	
Question 28	
Correct	
Mark 1.00 out of 1.00	
Momentum helps gradient descent by:	
a. Adding noise to escape local minima.	
b. Decreasing the learning rate automatically.	
© c. Penalising large changes in direction. ✓	
igcup d. Temporarily removing neurons from the network according to probability $p.$	
The correct answer is: Penalising large changes in direction.	
Question 29	
Correct	
Mark 1.00 out of 1.00	
Dropout is primarily used as a technique to:	
a. Speed up computation.	
○ c. Handle missing data.	
d. Automatically determine the number of hidden units.	

The correct answer is: Reduce overfitting.

Class 18612 (Fall Time Composition). Australia Time
Question 30
Correct
Mark 1.00 out of 1.00
Backpropagation calculates the error $\delta^{(l)}$ starting from the output layer and moving backward towards the input layer.
True O
○ False
The correct answer is 'True'.
Question 31
Correct
Mark 1.00 out of 1.00
Using gradient descent on a typical neural network cost function is guaranteed to find the set of weights that gives the lowest possible error.
○ True
False
The correct answer is 'False'.
Question 32
Correct
Mark 2.00 out of 2.00
Match the backpropagation term with its role.
Error term $\delta_i^{(l)}$ Represents how much a neuron i in layer I contributed to the errors in the subsequent layer(s)
\odot
Activation
derivative Represents how much a change in the neuron's pre-activation impacts its activation, used in error backpropagation.
$g'(z_j^{(l)})$ \odot
The correct answer is: Error term $\delta_i^{(l)}$
$ o$ Represents how much a neuron i in layer I contributed to the errors in the subsequent layer(s), Activation derivative $g'(z_j^{(l)})$

→ Represents how much a change in the neuron's pre-activation impacts its activation, used in error backpropagation.

Relevant Formulae

- ⊙ represents Hadamard product (or otherwise known as element wise multiplication)
- $\sigma'(\mathbf{z}^{(l)}) = \mathbf{a}^{(l)} \odot (1 \mathbf{a}^{(l)})$
- $\bullet \quad \delta^{(L)} = \mathbf{a}^{(L)} \mathbf{y}$
- $\delta_j^{(l)} = \left(\sum_m \delta_m^{(l+1)} \Theta_{mj}^{(l)}\right) g'(z_j^{(l)})$ for all $l \in [2,L-1]$

- $\Theta^{(l)} \leftarrow \Theta^{(l)} \alpha D^{(l)}$

Information

Question 30

Consider a neural network with 2 input neurons (x_1, x_2) , 1 hidden layer with 2 neurons $(a_1^{(2)}, a_2^{(2)})$, and 1 output neuron $(a_1^{(3)})$. The neural network is visualised below. This is the same network as before except using **Sigmoid** as the activation function $g(z) = \sigma(z) = \frac{1}{1+e^{-z}}$. Bias units are implicit and are not visualised.

Each of the preceding questions in this section use the same architecture but differing values for x and y and these values will only be given when relevant. Precomputed pre-activations, activations, and errors will be given where relevant and are specific to each question. Use this information and the information provided with each of the preceding questions in your answers.

TODO: Remove following

The activation function for all neurons is the **Sigmoid** function: $\sigma(z) = \frac{1}{1+e^{-z}}$. The weight matrices are:

$$\Theta^{(1)} = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & -1 \end{bmatrix} \quad \Theta^{(2)} = \begin{bmatrix} -0.5 & 1 & -1 \end{bmatrix}$$

Given the data $\mathbf{x} = [x_1, x_2]^T = [3, 4]^T$, forward propagation produced the following values (rounded to 2 decimal places):

$$z^{(2)} = \begin{bmatrix} 1 & -6 \end{bmatrix}, \quad a^{(2)} = \begin{bmatrix} 0.73 & 0.00 \end{bmatrix}, \quad z^{(3)} = \begin{bmatrix} 0.23 \end{bmatrix}, \quad a^{(3)} = \begin{bmatrix} 0.56 \end{bmatrix}$$

Use this information to answer the subsequent questions.

Question 33.1

Correct

Mark 2.00 out of 2.00

Assume the true label for this example is y=1 and the activation for the output layer was computed as $a^{(3)}=[0.56]$. Calculate the error term for the output layer $\delta^{(3)}$. Provide the value for $\delta^{(3)}_1$.

Answer: -0.44

Ø

The correct answer is: -0.44

Question 33.2

Correct

Mark 2.00 out of 2.00

Assume that the activations for the hidden layer were calculated as $a^{(2)}=\begin{bmatrix}0.5\\0.25\end{bmatrix}$. Calculate the vector of activation derivatives for the hidden layer $g'(z^{(2)})$.

$$g'(z_1^{(2)}) = \boxed{0.25}$$

$$g'(z_2^{(2)}) = \boxed{0.188}$$

Question 33.3

Correct

Mark 4.00 out of 4.00

Assume the following values:

$$\Theta^{(2)} = [\, -0.5 \quad 1 \quad -1 \,]$$

$$\delta^{(3)} = [\,0.25\,]$$

$$g'(\mathbf{z}^{(2)}) = egin{bmatrix} 0.5 \ 0.3 \end{bmatrix}$$

Calculate the error vector for the hidden layer $\delta^{(2)}=egin{bmatrix} \delta_1^{(2)} \ \delta_2^{(2)} \end{bmatrix}$.

$$\delta_2^{(2)} = \left[\begin{array}{c} -0.075 \end{array} \right]$$

Question 37

Correct

Mark 3.00 out of 3.00

Assume that the original value of the weight matrix for the hidden layer is $\Theta^{(2)} = [-0.5 \quad 1 \quad -1]$.

Assume
$$\delta_1^{(3)} = [\ 2\]$$
 and $\mathbf{a}^{(2)} = \left[egin{array}{c} 1 \\ 1 \\ 0.5 \end{array}
ight]$

Use lpha=0.25 .

Perform one gradient update to $\Theta^{(2)}=\begin{bmatrix}\theta_0^{(2)}&\theta_1^{(2)}&\theta_2^{(2)}\end{bmatrix}$ and provide the answers below.

$$\theta_0^{(2)} = \boxed{-1}$$

$$\theta_1^{(2)} = \boxed{0.5}$$

$$\theta_2^{(2)} = \boxed{-1.25}$$