Topología

Semanas 4 y 5: Continuidad y homeomorfismos

27 de marzo - 10 de abril de 2020

§1

2. Sean X y Y espacios topológicos y supongamos que \mathcal{B} es una base para la topología sobre Y. Una función $f: X \to Y$ es continua si y solo si $f^{-1}(B)$ es abierto para todo $B \in \mathcal{B}$.

Demostración. (\Rightarrow) Si f es continua, se sigue que la preimagen de cualquier abierto en Y es abierta en X. En particular, la preimagen de cualquier elemento de la base $\mathcal B$ es abierta.

(⇐) Ahora tomemos un abierto V en Y y mostremos que $f^{-1}(V)$ es abierto en X. Entonces,

$$V = \bigcup_{i \in J} B_i,$$

de forma que

$$f^{-1}(V) = \bigcup_{i \in J} f^{-1}(B_i).$$

Al ser la unión de conjuntos abiertos, se sigue que $f^{-1}(V)$ es abierto.

11. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua tal que f(q) = 0 para todo racional q. Mostrar que f(x) = 0 para todo $x \in \mathbb{R}$.

Demostraci'on. Puesto que f es continua, se cumple que

$$f(\operatorname{cl}(\mathbb{Q})) \subseteq \operatorname{cl}(f(\mathbb{Q})),$$

es decir,

$$f(\mathbb{R}) \subseteq \{0\}.$$

Por la hipótesis, sabemos que $\{0\} \subseteq f(\mathbb{R})$. A partir de esto, deducimos que $f(\mathbb{R}) = \{0\}$.

En la demostración anterior, la función f, al ser continua, toma todos los puntos cercanos \mathbb{Q} , de forma que sus imágenes sean cercanas a $f(\mathbb{Q})$. Sin embargo, este último conjunto es el unipuntual {0}. Cabe destacar que la densidad de los racionales juega un papel importante en la demostración anterior. Específicamente, en el hecho que $cl(\mathbb{Q}) = \mathbb{R}$. La siguiente demostración muestra otra forma de usar este hecho.

Demostración. Sea x irracional y supongamos que $f(x) \neq 0$. Puesto que \mathbb{R} es T_1 , podemos encontrar un entorno U de f(x) que no contenga a 0. Se sigue, por la continuidad de f, que $f^{-1}(U)$ es abierto. Del hecho que U es abierto, podemos deducir que existe un racional q en $f^{-1}(U)$. Esto implicaría que $0 = f(q) \in U$, lo cual es una contradicción.

$\S 2$

Definición I. Sean X, Y espacios topológicos y $f: X \to Y$ una biyección. Si fy f^{-1} son continuas, decimos que f es un homeomorfismo.

- **3.** Consideremos id: $(X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$. Se cumplen las siguientes proposi-
- (i) La función id es continua si y solo si \mathcal{T}_1 es más fina que \mathcal{T}_2 .
- (ii) La función id es un homeomorfismo si y solo si $\mathcal{T}_1 = \mathcal{T}_2$.

Demostración. (i) (\Rightarrow) Supongamos que id es continua y consideremos un abierto V en \mathcal{T}_2 . Entonces, $\mathrm{id}^{-1}(V) = V$ es abierto en \mathcal{T}_1 , de modo que \mathcal{T}_1 debe ser más fina que \mathcal{T}_2 .

- (\Leftarrow) Ahora supongamos que \mathcal{T}_1 es más fina que \mathcal{T}_2 . Entonces, al tomar un abierto V de \mathcal{T}_2 , sabemos que id⁻¹(V) = V también será abierto en \mathcal{T}_1 , de lo que concluimos que id es continua
- (ii) (\Rightarrow) Supongamos que id es un homeomorfismo. Entonces, si $U \in \mathcal{T}_1$, sabemos que $id(U) = U \in \mathcal{T}_2$, de forma que $\mathcal{T}_1 \subseteq \mathcal{T}_2$. De forma análoga, si $V \in \mathcal{T}_2$, $\operatorname{id}^{-1}(V) = V$ es abierto en \mathcal{T}_1 , de manera que $\mathcal{T}_2 \subseteq \mathcal{T}_1$. (\Leftarrow) Si $\mathcal{T}_1 = \mathcal{T}_2$, se sigue inmediatamente id $= \operatorname{id}^{-1}$ es continua.

5. Todos los subespacios (a, b) de \mathbb{R} son homeomorfos. De la misma forma, todos los subespacios de \mathbb{R} de la forma [a, b] son homeomorfos.

Demostración. • Sea (a,b) arbitrario. Mostramos que $(0,1)\cong(a,b)$. Consideremos la función $f:(0,1)\to(a,b)$ dada por f(x)=a(1-x)+bx. La función $g:(a,b)\to(0,1)$ dada por g(x)=(x-a)/(b-a) es inversa de f, de lo que deducimos que f es biyectiva.

Ahora mostramos que f es continua. El conjunto

$$\mathcal{B} = \{(a,b) \cap (c,d) \subseteq \mathbb{R} \mid c < d\} = \{(c,d) \subseteq \mathbb{R} \mid a \le c < d \le b\}$$

es una base para la topología sobre (a,b). Consideremos $(c,d)\subseteq (a,b)$. Entonces,

$$f^{-1}((c,d)) = \left(\frac{c-a}{b-a}, \frac{d-a}{b-a}\right) \subseteq (0,1)$$

es abierto en la topología sobre (0,1). Así, la preimagen de todo básico de (a,b) es abierta, de lo que se sigue que f es continua.

Para mostrar que g es continua, tomemos un intervalo $(k, l) \subseteq (0, 1)$. Entonces,

$$g^{-1}((k,l)) = (a(1-k) + bk, a(1-l) + bl) \subseteq (a,b),$$

de forma que g^{-1} es continua.

Así, hemos demostrado que $(0,1)\cong(a,b)$. Puesto que la relación entre dos espacios de ser homeomorfos es una relación de equivalencia, podemos deducir que todos los intervalos abiertos de \mathbb{R} son homeomorfos.