Exercise 1

- There will be five exercises in this semester, which will account for 10% of the grades of this course.
- Assignment 1 includes 3 questions, all to be attempted.
- Show the details of your work leading to the solutions.
- Submit your solutions via Blackboard before 5 p.m. on Sep. 30 2020.

Question 1

Let $X_1,...,X_n$ be independent continuous random variables with $\Pr(X_i < \theta) = 0.5$ for a real number θ , i = 1,...,n. Based on the data observed from $X_1,...,X_n$, please evaluate each of the following statements (T/F) and briefly explain the position you take:

- (a) the Wilcoxon signed-rank test is better than the sign test for $H_0: \theta = 0$.
- (b) if $\Pr(X_i < \theta x) + \Pr(X_i < \theta + x) = 1$ for all $x \in (-\infty, \infty)$, then the Wilcoxon signed-rank statistic has a symmetric distribution.
- (c) a nonparametric confidence interval of θ can be obtained from the order statistics of the sample X_1, \dots, X_n .

Question 2

Given a sample of data $(X_1,...,X_8) = (-11,6,-20,-9,-18,-22,16,-28)$, determine if there is sufficient evidence for median $\theta < 0$ at the 5% level of significance by the following nonparametric tests:

- (a) The sign test.
- (b) The Wilcoxon signed rank test.

Question 3

The table below provides paired data from continuous random variables (X_i, Y_i) and the differences $Z_i = Y_i - X_i$, i = 1, ..., 14.

i	X_{i}	Y_{i}	$Z_i = Y_i - X_i$
1	270	525	255
2	150	570	420
3	270	190	-80
4	420	395	-25
5	202	370	168
6	255	210	-45
7	165	490	325
8	220	250	30
9	305	360	55
10	210	285	75
11	240	630	390
12	300	385	85
13	300	195	-105
14	70	295	225

Let θ denote the median of Z_i such that $\Pr(Z_i > \theta) = 0.5$.

(a) Find the exact p-value of testing $H_0: \theta = 0$ against $H_1: \theta > 0$ by the sign test, and calculate its large-sample approximation. To get a closer approximation, use the *continuity correction*:

$$Pr(B \ge b) = Pr(B > b - 0.5), b \in \{0, 1, 2, ..., n\}, \text{ for } B \sim Bin(n, p).$$

(b) Estimate the median θ and obtain its exact and approximate confidence intervals with at least 95% confidence level based on the sign statistic.

- (c) Calculate the approximate p-value of testing $H_0: \theta = 0$ against $H_1: \theta > 0$ by the Wilcoxon signed rank test.
- (d) Estimate the median θ and obtain its approximate 95% confidence interval based on the Wilcoxon signed ranks.
- (e) Compare and comment on the difference between the *p*-values of the sign test obtained in part (a) and the Wilcoxon signed rank test in part (c).
- (f) Compare and comment on the difference between the confidence intervals of
 θ based on the sign statistic in part (b) and the Wilcoxon signed ranks in part
 (d).