E2 210 (Jan.-Apr. 2025)

Homework Assignment 3

Submission deadline: Monday, March 3, 11:59pm

- 1. Show that the set of Pauli matrices $\{X(\mathbf{a})Z(\mathbf{b}): \mathbf{a}, \mathbf{b} \in \{0,1\}^n\}$ is an orthonormal basis for the vector space, $\mathbb{C}^{N \times N}$, of $N \times N$ complex matrices, under the Hilbert-Schmidt inner product: $(A,B) \stackrel{\text{def}}{=} \frac{1}{N} \operatorname{tr}(A^{\dagger}B)$. (Here, as usual $N=2^n$.)
- 2. Let G be a graph on the vertex set $[n] := \{1, 2, \dots, n\}$ having edge set $E \subseteq {[n] \choose 2}$. (Here, ${[n] \choose 2}$) denotes the set of all 2-subsets of [n], so that edges are certain 2-subsets of [n]. In particular, the graph has no self-loops, i.e., edges that connect a vertex to itself.)

Let A be the adjacency matrix of G; this is the $n \times n$ matrix with 0/1 entries, whose (i, j)-th entry is 1 iff $\{i, j\}$ is an edge of G. Set $H = [I \mid A]$, where I is the $n \times n$ identity matrix. Thus, H is an $n \times 2n$ matrix having rank n.

- (a) Show that the symplectic product between any pair of rows of H is 0.
- (b) If S is the stabilizer group defined by the check matrix H, what is dim Q_S ?
- 3. In this exercise, we will prove the following proposition:

Proposition: Let C_1 and C_2 be, respectively, $[n, k_1]$ and $[n, k_2]$ binary linear codes such that $C_1^{\perp} \subseteq C_2$. Let $A_0 := C_1^{\perp}, A_1, \ldots, A_{K-1}$ be a listing of the $K = 2^{k_1 + k_2 - n}$ cosets of C_1^{\perp} within C_2 . Then, the quantum states

$$|\phi_j\rangle := \frac{1}{\sqrt{2^{n-k_1}}} \sum_{\mathbf{x} \in A_j} |\mathbf{x}\rangle, \quad j = 0, 1, \dots, K - 1,$$

form an orthonormal basis of the quantum code Q obtained via the CSS construction from C_1 and C_2 .

(a) Show that $\langle \phi_i | \phi_j \rangle = \delta_{i,j}$. [*Hint*: Note that $\langle \mathbf{b} | \mathbf{b}' \rangle = 0$ for any pair of distinct binary *n*-tuples **b** and **b**'. Now, use the fact that cosets A_i and A_j are disjoint for $i \neq j$.]

Let H_1 and H_2 be any pair of parity-check matrices for C_1 and C_2 , respectively, of full row-rank. Thus, H_1 and H_2 are, respectively, $(n - k_1) \times n$ and $(n - k_2) \times n$ binary matrices such that $H_1H_2^T = \mathbf{0}$ over \mathbb{F}_2 . By the CSS construction, the stabilizer generators are $X(\mathbf{h})$ and $Z(\mathbf{h}')$, where \mathbf{h} and \mathbf{h}' range over the rows of H_1 and H_2 , respectively.

- (b) Argue that, for any binary n-tuples \mathbf{x} , \mathbf{h} and \mathbf{h}' , we have $X(\mathbf{h}) | \mathbf{x} \rangle = | \mathbf{x} \oplus \mathbf{h} \rangle$ and $Z(\mathbf{h}') | \mathbf{x} \rangle = (-1)^{\mathbf{h}' \cdot \mathbf{x}} | \mathbf{x} \rangle$. In other words, the Pauli operator $X(\mathbf{h})$ applied to $| \mathbf{x} \rangle$ yields $| \mathbf{x} \oplus \mathbf{h} \rangle$, and the Pauli operator $Z(\mathbf{h}')$ applied to $| \mathbf{x} \rangle$ yields $(-1)^{\mathbf{h}' \cdot \mathbf{x}} | \mathbf{x} \rangle$.
- (c) Show, using (b), that for any row \mathbf{h} of H_1 , we have $X(\mathbf{h}) |\phi_j\rangle = |\phi_j\rangle$, and for any row \mathbf{h}' of H_2 , we have $Z(\mathbf{h}') |\phi_j\rangle = |\phi_j\rangle$.

[*Hint*: Write the sum $\sum_{\mathbf{x} \in A_j} |\mathbf{x}\rangle$ as $\sum_{\mathbf{c} \in \mathcal{C}_1^{\perp}} |\mathbf{a} \oplus \mathbf{c}\rangle$, where \mathbf{a} is a fixed binary vector (a "coset leader") in A_j .]