PH504M Lab 6: Linear Regression

Vikram Khaire

14 February 2025

Q1. Justifying the Minimum Condition in Least Squares Approximation

In class, we derived the conditions for least squares approximation by setting the partial derivatives.

$$\frac{\partial f}{\partial m} = 0$$
 and $\frac{\partial f}{\partial c} = 0$

where

$$f = \sum (y_i - (mx_i + c))^2,$$

which ensures an extremum. However, these conditions do not guarantee that we obtain a minimum.

To justify that these conditions lead to a minimum, consider a dataset generated from the linear equation

$$y = 4x + 5$$

where x varies from 0 to 10.

A) Verifying the Minimum for Slope m

- Compute the function f for different values of m ranging from 1 to 7 with an interval of 0.1, while keeping c = 5.
- Plot f as a function of m and verify that the minimum occurs at m=4.
- Numerically find the minimum of f.

B) Verifying the Minimum for Intercept c

- Compute f for different values of c ranging from 2 to 8 with an interval of 0.1, while keeping m = 4.
- Plot f as a function of c and verify that the minimum occurs at c = 5.
- Numerically find the minimum of f.

Write a Python script to perform these computations, generate the plots keeping in mind the dependent and independent variables, and confirm that the least squares conditions indeed give a minimum.

Q2. Simulating the Pale Blue Dot Image Brightness

On February 14, 1990 (Valentine's Day, just like today!), NASA's *Voyager 1* spacecraft took the famous *Pale Blue Dot* image of Earth from a distance of 6×10^9 km. The image was taken at a phase angle of approximately 32 degrees (the angle between the Sun, Earth, and *Voyager 1*).

Figure 1: NASA's Voyager 1 "Pale Blue Dot" image, taken from 6×10^9 km away.

Computational Task

Write a Python program to simulate how Earth would appear from Voyager 1's position by modeling the brightness of Earth as a function of distance and phase angle using the Lambertian reflection model:

$$I = I_0 \cdot \frac{R^2}{d^2} \cdot \cos(\theta)$$

where:

- \bullet *I* is the observed intensity,
- I_0 is the intrinsic brightness of Earth (assume $I_0 = 1$ in arbitrary units),
- R is Earth's radius $(R = 6.37 \times 10^3 \,\mathrm{km})$,
- d is the distance to Voyager 1,
- θ is the phase angle (32° for Voyager 1).

Tasks:

- 1. Write a function to calculate the observed intensity I.
- 2. Compare how Earth's brightness changes for phase angles 0° (full illumination), 32° (Voyager 1's view), and 60° (partial illumination).
- 3. Calculate Earth's brightness1's current distance) with an interval of 1 AU). Note that 1 AU is $1.5 \times 10^8 \text{ km}$ (whereas 10 AU is the distance to Saturn).
- 4. Plot the observed intensity (on a log scale) as a function of distance (in AU) for the three phase angles mentioned above. Highlight the brightness seen by the Voyager 1 in the plot.

This calculation will help you understand how the brightness of a planet changes with distance and viewing angle, just like *Voyager 1*'s view of the *Pale Blue Dot*.

Hint: To improve visualization in your plot, use the following functions:

- plt.axhline(y, linestyle="--", color="gray") to draw a horizontal reference line at y.
- plt.axvline(x, linestyle="--", color="red") to draw a vertical reference line at x.
- plt.yscale("log") to set the y-axis to a logarithmic scale for better readability of intensity values over large distances.