Examen Mecánica Clásica

Instrucciones

- Tiempo: 3 horas
- Conteste todas las preguntas.
- Justifique todas sus respuestas. Se otorgan puntos completos únicamente a respuestas completas y correctamente razonadas.
- Puede usar constantes físicas y matemáticas estándar sin demostración.

Parte I: Preguntas Conceptuales (30 puntos)

Responda de forma concisa pero rigurosa. Cada pregunta vale 10 puntos.

1. Fuerzas Centrales y Simetrías

Discuta el papel de las leyes de conservación en problemas de fuerzas centrales. En particular, derive las cantidades conservadas a partir de las simetrías del Lagrangiano y explique su significado físico o geométrico.

2. Modos Normales y Acoplamiento

Explique por qué los modos normales de un sistema con pequeñas oscilaciones corresponden a ecuaciones de movimiento desacopladas. ¿Cómo se relacionan los autovectores de la matriz dinámica con el movimiento físico del sistema?

3. Tensor de Inercia y Ecuaciones de Euler

Describa el significado físico de los ejes principales de inercia. Derive las ecuaciones de Euler para un cuerpo rígido en rotación libre y discuta en qué condiciones el movimiento es estable o inestable.

Parte II: Problemas Prácticos (70 puntos)

Muestre todo su procedimiento. Cada problema indica su valor en puntos.

Problema 1: Dispersión en un Potencial Central (25 puntos)

Una partícula de masa m se aproxima a un centro de fuerza con un potencial atractivo de la forma $V(r) = -\frac{k}{r}$. La partícula tiene energía E > 0 y parámetro de impacto b.

- (a) Derive la ecuación diferencial para la órbita $u(\theta) = \frac{1}{r(\theta)}$.
- (b) Resuelva la ecuación y encuentre el ángulo de dispersión Θ .
- (c) Demuestre que el parámetro de impacto se relaciona con el ángulo de dispersión mediante $\Theta=2\arcsin\left(\frac{k}{L\sqrt{2mE}}\right)$.

Problema 2: Osciladores Acoplados (20 puntos)

Dos masas m están conectadas por tres resortes idénticos de constante elástica k, dispuestos linealmente con los extremos exteriores fijos. Sean x_1 y x_2 los desplazamientos respecto al equilibrio.

- (a) Escriba el Lagrangiano del sistema.
- (b) Encuentre las frecuencias de los modos normales y describa los movimientos correspondientes.

Problema 3: El Trompo Libre Simétrico (25 puntos)

Considere un trompo simétrico con momentos de inercia $I_1 = I_2 \neq I_3$ y sin torques externos. Sea ω el vector de velocidad angular y \boldsymbol{L} el momento angular.

- (a) Escriba las ecuaciones de Euler en el sistema del cuerpo.
- (b) Resuelva $\omega_1(t), \omega_2(t)$ suponiendo ω_3 constante.
- (c) Discuta la interpretación geométrica de este movimiento utilizando la construcción de Poinsot.