CS502: Graph Theory and Applications

Fall 2019-20

Lecture 1: Basics of Graph Theory

Instructor: Vinod Reddy Scribe: GVN Sai Uday(11740320) & E Suyra Teja(11740310)

In this lecture, we will be dealing with some basic terminology required to learn Graph Theory.

A graph G is a pair G = (V, E), where V is a finite set and E is a set of 2-element subsets of V. The elements of V are called vertices of the graph G and the elements of E are called edges of G.

For a graph G = (V, E), let V(G) & E(G) denote the vertex and edge set of G respectively.

Example:-

$$V = \{1, 2, 3, 4\}$$

$$E = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}\}$$

The number of vertices of a graph G is its order(or size), denoted as |G| or |V|.

Note:-

- From this lecture onwards n denotes the number of vertices in a graph.
- Also *m* denotes the number of edges in a graph.
- The graphs we consider in this course are finite unless otherwise stated.

An edge x, y is usually written as xy (or yx). Two vertices x, y of G are adjacent or neighbours if xy is an edge of G. Two edges e, f are adjacent if they have an end in common.

Definition 1.1 (Degree(or Valency)). The degree(or valency) of a vertex v in a graph G is the number of edges incident with v, with loops counted twice. It is denoted by $deg_G(v)$ or d(v).

Lemma 1.2 (Handshaking Lemma). The sum of the degrees of the vertices of a graph equals twice the number of edges.

Proof. Each edge contributes two to the sum of the degrees, one for each of its endpoints.

$$2|E| = \sum_{v \in V} d(v)$$

Corollary 1.3. *In any graph G, the number of vertices of odd degree is even.*

Proof. We know that

$$2|E| = \sum_{v \in V} d(v)$$

$$\underbrace{2|E|}_{\text{EVEN}} = \underbrace{\sum_{\substack{v \in V \\ d(v) i sodd}}}_{} d(v) + \underbrace{\sum_{\substack{v \in V \\ d(v) i seven}}}_{} d(v)$$

For the above equation to satisfy the value of \mathbf{x} should be even (i.e. for the LHS to be even sum of terms of RHS should be even, which is only possible when value of \mathbf{x} is even since the other term is even.)

Definition 1.4 (Isolated vertex). A vertex of degree zero is called isolated vertex.

Definition 1.5 (Minimum degree). The degree of the vertex with the least number of edges incident to it (i.e. $min\{d(v):v\in V\}$) is the minimum degree of G. It is represented by $\delta(G)$

Definition 1.6 (Maximum degree). The degree of the vertex with the most number of edges incident to it (i.e. $max\{d(v):v\in V\}$) is the maximum degree of G. It is represented by $\Delta(G)$

Definition 1.7 (Regular Graph). If all the vertices of G have the same degree k then the graph G is called k-regular.

Example:-

(a) 2-Regular Graph

(b) Petersen's Graph(3-Regular Graph)

(c) 3-Regular Graph

Definition 1.8 (Multiple edges). Multiple edges are two or more edges that are incident to the same two vertices. Multiple edges are also known as parallel edges

Definition 1.9 (Self loop). A self-loop is an edge that connects a vertex to itself.

Example:-

Definition 1.10 (Simple Graph). A graph with no self loops and no multiple edges is called a simple graph.

Note:- In this course unless specified all graphs are simple graphs.

Definition 1.11 (Subgraphs). A graph H is called a subgraph of a graph G, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Definition 1.12 (Induced Subgraph). A subgraph H of G is called induced subgraph of G, if for any two vertices $u, v \in H$, if $uv \in E(G)$ then $uv \in E(H)$

Example:-

(a) Let graph G be

Let the below graph be H₁

Let the below graph be H₂

Note:-

- H_1 is a subgraph of G, but not induced because $3, 4 \in V$ and edge $34 \in E(G)$ but $34 \notin E(H_1)$.
- H_2 is an induced subgraph of G because $\forall u, v \in V$ and edge $uv \in E(G)$ we have $uv \in E(H_2)$.

Representation of graphs:

1. Adjacency matrix: Adjacency matrix of a graph G is nxn matrix, where

$$a_{ij} = \begin{cases} 1 & \text{if } ij \in E(G); \\ 0 & \text{otherwise;} \end{cases}$$

Example:- Let graph G be,

For the given graph the adjacency matrix would look like,

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

2. **Adjacency list:** Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a vertex in the graph.

The adjacency list of the given graph G is,

$$\boxed{1 \rightarrow 2 \rightarrow 3}$$

$$\boxed{2 \rightarrow 1}$$

1.1 Some theorems and stuff

We now delve right into the proof.

Lemma 1.13. This is the first lemma of the lecture.

Proof. The proof is by induction on We also throw in a figure (which you might want to make larger).

This is the end of the proof, which is marked with a little box.

1.1.1 A few items of note

Here is an itemized list:

- this is the first item;
- this is the second item.

Here is an enumerated list:

- 1. this is the first item;
- 2. this is the second item.

Here is an exercise:

Exercise: Find an efficient algorithm for triangulation.

Here is how to define things in the proper mathematical style. Let f_k be the AND-OR function, defined by

$$f_k(x_1,x_2,\ldots,x_{2^k}) = \left\{ \begin{array}{ll} x_1 & \text{if } k=0; \\ \operatorname{AND}(f_{k-1}(x_1,\ldots,x_{2^{k-1}}),f_{k-1}(x_{2^{k-1}+1},\ldots,x_{2^k})) & \text{if } k \text{ is even;} \\ \operatorname{OR}(f_{k-1}(x_1,\ldots,x_{2^{k-1}}),f_{k-1}(x_{2^{k-1}+1},\ldots,x_{2^k})) & \text{otherwise.} \end{array} \right.$$

Here is another equation that uses one of the AMS commands, align

$$p(x_{1:5}) = \sum_{x_{2:5}} p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_1)p(x_6|x_2, x_5)$$

$$= p(x_1) \sum_{x_2} p(x_2|x_1) \sum_{x_3} p(x_3|x_1) \sum_{x_4} p(x_4|x_2) \sum_{x_5} p(x_5|x_1)p(x_6|x_2, x_5)$$

$$= p(x_1) \sum_{x_2} p(x_2|x_1) \sum_{x_3} p(x_3|x_1) \sum_{x_4} p(x_4|x_2) \sum_{x_5} p(x_5|x_1)\phi_{X_6}(x_2, x_5)$$

which assumes that $X_4 \perp \{X_1, X_3\} | X_2$.

Theorem 1.14. This is the first theorem.

Proof. This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between x and y:

```
if x or y or both are in S then answer accordingly else  \begin{aligned} &\text{Make the element with the larger score (say } x) \text{ win the comparison } \\ &\text{if } F(x) + F(y) < \frac{n}{t-1} \text{ then} \\ &F(x) \leftarrow F(x) + F(y) \\ &F(y) \leftarrow 0 \end{aligned}   \begin{aligned} &\text{else} \\ &S \leftarrow S \cup \{x\} \\ &r \leftarrow r+1 \end{aligned}   \end{aligned}  endif  \end{aligned}
```

This concludes the proof.

1.2 Next topic

Here is some citations [JB00] and [L2000]

References

[JB00] M.I. JORDAN and C. BISHOP, "An Introduction to Graphical Models," To be published, 2000

[L2000] S.L. LAURITZEN "Graphical Models," Oxford Science Publications, 1996