Universal Quantum Gates

Subscriber: Y. Hua

October 17, 2019

1 General Purposes

Any unitary operator can be built with universal 1-quit gates and CNOT gates. To show this, we divide the proof into two steps:

- 1. Show that any d by d unitary matrix can be written as the product of d(d-1)/2 2-level unitary matrices.
- 2. Show that any 2-level unitary matrix can be implemented using 1-qubit gates and CNOT gates.

2 Writing an arbitrary d-by-d matrix into 2-level matrices

Consider an arbitrary 2-level unitary matrix $T^{JK}=$

where
$$\widetilde{T} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 is unitary, and $\alpha, \ \beta, \ \gamma, \ \delta \in \mathbb{C}$

To have a clearer view, take d = 2, then
$$T^{JK}_{d=2} = \begin{bmatrix} 1 & 0 \\ 0 & \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \end{bmatrix}$$

Now let $U'=UT^{JK}$, which has the same elements as U, except for those on the J^{th} and K^{th} column. We have

$$U'_{jJ} = U_{jJ}T_{JJ}^{JK} + U_{jK}T_{KJ}^{JK} = U_{jJ}\alpha + U_{jK}\gamma$$

$$U'_{kK} = U_{kJ}T_{JK}^{JK} + U_{kK}T_{KK}^{JK} = U_{kJ}\beta + U_{kK}\delta$$

Suppose U is in the form of

	J			k		
	「エ				0	
J	0			×	XXX	
K	0	Χ			X	
L	_				_]

Then $\exists T^{JK}$ such that U', which = UT^{JK} , has the same structure as U, except that $U'_{JK}=0.$

If $U'_{JK}=U_{JJ}\beta+U_{JK}\delta=0$, and $U'_{JJ}=U_{JJ}\alpha+U_{JK}\gamma=0$, \widetilde{T} can be arbitrary. If not, then

$$\beta = \frac{U_{JK}}{\sqrt{\left|U_{JJ}\right|^2 \left|U_{JK}\right|^2}} = \gamma^*$$

$$\sigma = -\alpha^* = -\frac{U_{JJ}}{\sqrt{|U_{JJ}|^2 |U_{JK}|^2}}$$

For a U^J in the form of

Since $T^{J,J+1}$ replaces $U_{J,J+1}$ with 0 in the matrix, with $T^{J,J+1}T^{J,J+2}T^{J,J+3}...$, we can transform the matrix into V =

Let A demote the upper left element that is not in the unitary sub-matrix:

With the property of unitary matrices such that rows of which form an orthornomal basis, A has to be 1 if it is some real, non-negative number. The matrix thus can be transformed into

Similarly, since the columns of a unitary matrix also form orthonormal basis, all elements on the J^{th} column except for V_{JJ} has to be 0. The matrix can thus be rewritten into

$$\begin{split} I &= U^{d-1}T^{d-1,d} \\ &= U^{d-2}T^{d-2,d-1}T^{d-2,d}T^{d-1,d} \\ &= U^{d-3}(T^{1,2}T^{1,3}...T^{1,d})(T^{2,3}T^{2,4}...T^{2,d})(T^{3,4}T^{3,5}...T^{3,d})....(T^{d-1,d} \\ \\ U &= (T^{d-1,d^{\dagger}})(T^{d-2,d^{\dagger}}T^{d-2,d-1^{\dagger}})(T^{d-3,d^{\dagger}}T^{d-3,d-2^{\dagger}}T^{d-3,d-1^{\dagger}})...(T^{1,d^{\dagger}}T^{1,d-1^{\dagger}}...T^{1,2^{\dagger}}) \\ &\sum_{i=1}^{d} i = \frac{d(d-1)}{2} \end{split}$$

3 Writing an arbitrary 2-level matrix into 1-qubit gates and CNOT gates

3.1 General Idea

Shuffle until two important levels are $\begin{cases} |1\rangle^{\otimes n-1}|0\rangle \\ |1\rangle^{\otimes n-1}|1\rangle \end{cases}$. Then we apply $C^{n-1}\widetilde{T}$ and then shuffle back.

$$T^{JK} \longrightarrow C^{n-1}\widetilde{T} \longrightarrow \left[\begin{array}{ccc} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & \widetilde{T} \end{array} \right]$$

3.2 Demonstration

Let T^{JK} , where

$$\begin{cases} |J\rangle = |j_1, j_2, ..., j_n\rangle = |g_0\rangle & where |j_1, j_2, ..., j_n\rangle \text{ is the binary representation of } |J\rangle \\ |K\rangle = |k_1, k_2, ..., k_n\rangle = |g_m\rangle & where m \text{ is } \# \text{ of bits differ} \end{cases}$$

 $J = g_0, g_1, g_2, ..., g_m = k$, where two consecutive binary numbers just differ in one bit.

From g_{i-1} to g_i , just need to switch the last bit in g_{i-1}

E.g. For
$$\begin{cases} |J\rangle = |000\rangle \\ |K\rangle = |111\rangle \end{cases}$$
 Gray Code will be
$$g_0 = 000 \rightarrow g_1 = 001 \rightarrow g_2 = 011 \rightarrow g_3 = 111 \tag{1}$$

. Then,

$$|g_0\rangle = |000\rangle \rightarrow |g_1\rangle = |001\rangle \rightarrow |g_2\rangle = |011\rangle \xrightarrow{C^{(n-1)}(\widetilde{T})} |g_2\rangle = |011\rangle \rightarrow |g_1\rangle = |001\rangle \rightarrow |g_0\rangle = |000\rangle$$

Then, applying the $C^{(n-1)}(\widetilde{T})$,

$$|g_2\rangle \rightarrow |g_2\rangle \alpha + |g_3\rangle \gamma$$

$$|g_3\rangle \rightarrow |g_2\rangle \beta + |g_3\rangle \delta$$

For example, ... Circuits

After applying controlled state $C^{(n-1)}(\widetilde{T})$, we reverse the shuffling, for example

$$|011\rangle \rightarrow |001\rangle \rightarrow |111\rangle$$

and its circuit is following

The operations above are equivalent to

$$|J\rangle = |g_0\rangle \to \alpha |g_0\rangle + \gamma |g_m\rangle \to \alpha |T\rangle + \gamma |K\rangle$$
$$|K\rangle = |g_m\rangle \to \beta |g_m\rangle + \delta |g_m\rangle \to \beta |T\rangle + \delta |K\rangle$$

Complexity:

Gate count: 2m-1=O(n) which is shuffle for each T^{JK} gate. And, we totally have O(n) controlled $C^{(n-1)}$. So, we have $O(n^2)$ gates. Also, we have $N^2=n^{2n}$ qubits. Thus, total complexity is $O(n2^n\log(n))$