

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 273 935 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 08.01.2003 Bulletin 2003/02

(21) Application number: 01917843.3

(22) Date of filing: 06.04.2001

(51) Int CI.7: **G02B 5/23**, G02C 7/10, B32B 27/40

(86) International application number: PCT/JP01/02978

(87) International publication number: WO 01/077723 (18.10.2001 Gazette 2001/42)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 10.04.2000 WOPCT/JP00/02298

(71) Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
Tokyo 100-0005 (JP)

(72) Inventors:

 NISHIZAWA, Chiharu Tsukuba-shi, Ibaraki-ken 300-4247 (JP)

KOUNO, Kenji
 Tsukuba-shi, Ibaraki-ken 300-4247 (JP)

(74) Representative: HOFFMANN - EITLE
Patent- und Rechtsanwälte
Arabellastrasse 4
81925 München (DE)

(54) TRANSPARENT SYNTHETIC RESIN LAMINATE HAVING PHOTOCHROMISM

(57) A transparent synthetic resin laminate with photochromism property consisting essentially of two transparent synthetic resin layers and a photochromic layer formed by curing a mixture of a two liquid polyurethane

of a polyurethane prepolymer and a curing agent and a photochromic organic compound which is interposed between said two transparent synthetic resin layers.

Description

15

20

25

30

40

45

50

FIELD OF ART

[0001] The present invention relates to a transparent synthetic resin laminate with photochromism property and specifically, to a transparent synthetic resin laminate with photochromism property for use of an optical lens which is excellent in both control of thickness of a photochromic coated film and surface smoothness thereof and exhibits a high color development speed and a high color disappearance speed.

BACKGROUND OF THE INVENTION

[0002] As conventional optical lenses, particularly, photochromic lenses, inorganic lenses have generally spread. That is, it was usual to add an inorganic coating layer with photochromism property to a surface of a glass or a curing plastic such as CR-39. Recently, as a lens itself, plastic lenses with high impact resistance have spread. Particularly, in United States of America, polycarbonate lenses have widely spread and demand for a sun glass with impact resistance has suddenly increased because of extensive outdoor activities.

[0003] As synthetic resin laminates with photochromism property, hitherto, a laminate obtained by adding a photochromic organic compound to a silicone surface curing coating agent and then coating it on one side of a substrate and then performing cure and a laminate obtained by adding a photochromic organic compound to an urethane coating agent and then coating it on one side of a synthetic resin laminate and then performing cure have been known (Japanese Patent Kokai (Laid-open) No.63-178193).

[0004] However, in the process for coating a coating agent containing a photochromic organic compound on one side of a synthetic resin substrate, it was difficult to obtain a smooth coated film surface and to control a thickness of a coated film. Thus, when a coated film surface is not smooth, it is not practically preferable since use of the laminate as a photochromic lens causes distortion through the lens.

[0005] Further. Japanese Patent Kokai (Laid-open) No.61-148048 discloses a photochromic laminate interposed a photochromic layer containing a spironaphth oxazine derivative between transparent material layers. Although the prior art discloses an example in which one liquid type polyurethane resin is contained in a photochromic layer, both a color development speed and a color disappearance speed are low, and thus insufficient.

[0006] Moreover, also in photochromic lenses, various process such as direct kneading into a resin and coating on a resin surface were tried. However, they are not yet put into practice because of development shortage in performances due to insufficient heat resistance of photochromic elements during kneading and, also in surface coating, contrast shortage from limitation of coated film thickness.

[0007] Thus, in a present situation, there is obtained no transparent synthetic resin laminate with photochromism property as a photochromic lens in which both a color development speed and a color disappearance speed are high and surface smoothness of a coated film and control of coated film thickness in a photochromic layer are excellent.

DISCLOSURE OF THE INVENTION

[0008] The present invention solves the above-mentioned prior art problems. An object of the present invention is to provide a transparent synthetic resin laminate with photochromism property in which both a color development speed and a color disappearance speed are high and contrast in color development is maintained for a long time and surface smoothness of a coated film and control of thickness of a coated film in a photochromic layer are excellent.

[0009] Under such situation, as a result of studies of the above-mentioned prior art problems, the inventors have found that there is obtained a transparent synthetic resin laminate in which both a color development speed and a color disappearance speed are high and contrast in color development is maintained for a long time and surface smoothness of a coated film and control of thickness of a coated film in a photochromic layer are excellent by interposing a photochromic layer formed by curing a mixture of a two-liquid type polyurethane of a polyurethane prepolymer and a curing agent, a photochromic organic compound, a light stabilizer and an antioxidant between two transparent synthetic resin layers, and have accomplished the present invention.

[0010] That is, the present invention provides a transparent synthetic resin laminate with photochromism property consisting essentially of two transparent synthetic resin layers and a photochromic layer formed by curing a mixture of a two liquid polyurethane of a polyurethane prepolymer and a curing agent and a photochromic organic compound and further a light stabilizer and an antioxidant which is interposed between said two transparent synthetic resin layers.

[0011] Further, the present invention provides a process for producing a transparent synthetic resin laminate with

photochromism property which comprises:

coating a mixture of a two-liquid polyurethane of a polyurethane prepolymer and a curing agent, a photochromic

organic compound and a solvent and further a light stabilizer and an antioxidant on one side of a transparent synthetic resin sheet,

then, removing the solvent from the mixture to a state not to contain substantially the solvent,

then, adhering another transparent synthetic resin sheet to the coated side of said synthetic resin sheet, and then, curing the two-liquid polyurethane,

thereby, forming a photochromic layer.

5

15

20

25

30

40

45

50

[0012] The present invention will be described in detail below.

[0013] The transparent synthetic resin to be used in the present invention is not limited as long as it is a resin with high transparency. It is preferable to use a polycarbonate resin and a polymethylmethacrylate resin. As the combination of two transparent synthetic resins, a polycarbonate resin, a polymethylmethacrylate or both thereof is applied to each two transparent synthetic resins. A transparent synthetic resin with a thickness of 50 to 2000 μ m is used. Particularly, when bending processing into a lens form is performed, it is preferable to use a synthetic resin sheet with a thickness of 100 to 1000 μ m.

[0014] In the present invention, there is provided a photochromic layer formed by cure of a two-liquid polyurethane of a polyurethane prepolymer and a curing agent containing a photochromic organic compound, a light stabilizer and an antioxidant which is interposed between two transparent synthetic resin layers. Thereby, it becomes possible to produce industrially a transparent synthetic resin laminate excellent in both heat resinstance and impact resistance which exhibits a high color development speed and a high color disappearance speed in use as a lens and possesses photochromic performance excellent in surface smoothness of a coated film in a photochromic layer equivalent to conventional inorganic type and maintains a photochromic characteristics such as contrast in color development for a long time.

[0015] Generally, polyurethane includes one-liquid type and two-liquid type. In the present invention, it is preferable to use a two-liquid polyurethane of a polyurethane prepolymer and a curing agent from the aspects of color development speed and color disappearance speed and solubility of photochromic compound and various additives. Actually, a prepolymer is dissolved in a specific solvent and mixed with various additives including a photochromic compound and then a curing agent is added thereto.

[0016] As the polyurethane prepolymer, a compound obtained by reaction of isocyanate and polyol in a specific proportion is used. That is, the polyurethane prepolymer is a compound with an isocyanate group on both ends obtained from diisocyanate and polyol. As the diisocyanate compound to be used for the polyurethane prepolymer, diphenylmethane-4.4'-diisocyanate (MDI) is preferable. Further, as the polyol, it is preferable to use polypropylene glycol (PPG) with a polymerization degree of 5 to 30.

[0017] The molecular of the polyurethane prepolymer is a number average molecular weight of 500 to 5000 and preferably 1500 to 4000 and more preferably 2000 to 3000.

[0018] On the other hand, the curing agent is not limited as long as it is a compound with two hydroxyl groups. Examples of the curing agent include polyurethane polyol, polyether polyol, polyester polyol, acryl polyol, polybutadiene polyol and polycarbonate polyol, among which polyurethane polyol with a hydroxyl group on its end obtained from specific isocyanate and specific polyol is preferable. Particularly, polyurethane polyol with a hydroxy group on at least both ends derived from diisocyanate and polyol is preferable and it is preferable to use tolylenediisocyanate (TDI) as the diisocyanate. Further, as the polyol, it is preferable to use PPG with a polymerization degree of 5 to 30.

[0019] The molecular weight of the curing agent is a number average molecular weight of 500 to 5000 and preferably 1500 to 4000 and more preferably 2000 to 3000.

[0020] In order to adjust the viscosity of the polyurethane prepolymer and the curing agent, a solvent such as ethyl acetate and tetrahydrofurane may be used.

[0021] In the present invention, the organic compound with photochromic property is not limited as long as it has good compatibility with the polyurethane prepolymer. Photochromic organic compound obtainable on the market can be used. As the photochromic organic compound, spiropyran compounds, spiroxazine compounds and naphthopyran compounds are preferably used from the aspect of photochromic performance.

[0022] Examples of the spiropyran compound include 1',3',3'-trimethylspiro(2H-1-benzopyran-2,2'-indoline), 1',3',3'-trimethylspiro-8-nitro(2H-1-benzopyran-2,2'-indoline), 1',3',3'-trimethyl-6-hydroxyspiro(2H-1-benzopyran-2,2'-indoline), 5'-chloro-1',3',3'-trimethyl-6-nitrospiro(2H-1-benzopyran-2,2'-indoline), 6,8-dibromo-1',3',3'-trimethylspiro(2H-1-benzopyran-2,2'-indoline), 8-ethoxy-1',3',3',4',7'-pentamethylspiro(2H-1-benzopyran-2,2'-indoline), 5'-chloro-1',3',3'-trimethylspiro-6,8-dinitro(2H-1-benzopyran-2,2'-indoline), 3,3,1-diphenyl-3H-naphtho(2,1-b) pyran, 1,3,3-triphenylspiro[indoline-2,3'-(3H)-naphtho(2,1-b)pyran], 1-(2,3,4,5,6-pentamethylbenzyl)-3,3-dimethylspiro[indoline-2,3'-(3H)-naphtho(2,1-b)pyran], 1-(2-methoxy-5-nitrobenzyl)-3,3-dimethylspiro[indoline-2,3'-naphtho (2,1-b)pyran], 1-(2-naphthylmethyl)-3,3-dimethylspiro [indoline-2,3'-naphtho (2,1-b)pyran] and 1,3,3-trimethyl-6'-nitrospiro[2H-1-benzopyran-2,2'-[2H]-indole].

[0023] Examples of the spiroxazine compound include 1,3,3-trimethylspiro [indolino-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 5-methoxy-1,3,3-trimethylspiro [indolino-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 5-chloro-1,3,3-trimethylspiro [indolino-2.3'-[3H] naphtho [2.1-b] [1.4] oxazine], 4.7-diethoxy-1.3.3-trimethylspiro [indolino-2.3'-[3H] naphtho [2.1-b] [1.4] oxazine], 5-chloro-1-butyl-3,3-dimethylspiro [indolino-2,3'-[3H] naphtho [2,1-b] [1.4] oxazine], 1,3,3,5-tetramethyl-9'-ethoxyspiro [indolino-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 1-benzyl-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho [2.1-b] [1,4] oxazine], 1-(4-methoxybenzyl)-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 1-(2-methylbenzyl)-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 1-(3,5-dimethylbenzyl)-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 1-(4-chlorobenzyl)-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 1-(4-bromobenzyl)-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 1-(2-fluorobenzyl)-3,3-dimethylspiro [indoline-2,3'-[3H] naphtho[2,1-b] [1,4] oxazine], 1,3,5,6-tetramethyl-3-ethylspiro [indoline-2,3'-[3H] pyrido [3,2-f] [1,4]-benzoxazine], 1,3,3,5,6-pentamethylspiro [indoline-2,3'-[3H] pyrido [3.2-f] [1.4]-benzoxazine], 6'-(2,3-dihydro-1H-indole-1-yl)-1,3-dihydro-3,3-dimethyl-1-propyl-spiro [2H-indole-2,3'-[3H] naphtho [2,1-b] [1,4] oxazine], 6'-(2,3-dihydro-1H-indole-1-yl)-1,3-dihydro-3,3-dimethyl-1-(2-methylpropyl)-spiro [2Hindole-2,3'-[3H]- naphtho [2,1-b] [1,4] oxazine], 1,3,3-trimethyl-1-6'-(2,3-dihydro-1H-indole-1-yl)-spiro [2H-indole-2,3'-[3H]- naphtho [2,1-b] [1,4] oxazine], 1,3,3-trimethyl-6'-(1-piperidinyl)-spiro [2H-indole-2,3'-[3H]-naphtho [2,1-b] [1,4] oxazine], 1,3,3-trimethyl-6'-(1-piperidinyl)-spiro [2H-indole-2,3'-[3H]-naphtho[2,1-b][1,4] oxazine], 1,3,3-trimethyl-6'-(1-piperidinyl)-6-(trifluoromethyl)-spiro [2H-indole-2.3'-[3H]-naphtho [2,1-b] [1,4] oxazine] and 1,3,3,5,6-pentamethyl-spiro [2H-indole-2,3'-[3H]-naphtho [2,1-b] [1,4] oxazine].

[0024] Examples of the naphthopyran compound include 3,3-diphenyl-3H-naphtho [2,1-b] pyran, 2,2-diphenyl-2H-naphtho [1,2-b] pyran, 3-(2-fluorophenyl)-3-(4-methoxyphenyl)-3H-naphtho [2,1-b] pyran, 3-(2-methyl-4-methoxyphenyl)-3-(4-ethoxyphenyl)-3H-naphtho [2,1-b] pyran, 3-(2-fluorophenyl)-3H-naphtho [2,1-b] pyran, 3-(2-fluoro-4-methoxyphenyl)-3H-naphtho [2,1-b] pyran, 3-{2-(1-methylpyrrolidinyl)}-3-(2-methyl-4-methoxyphenyl)-3H-naphtho [2,1-b] pyran, spiro [bicyclo [3.3.1] nonane-9,3'-3H-naphtho [2,1-b] pyran], spiro [bicyclo [3.3.1] nonane-9-2'-3H-naphtho [2,1-b] pyran], 4-[4-[6-(4-morpholinyl)-3-phenyl-3H-naphtho [2,1-b] pyran-3-yl] phenyl]-morpholine, 4-[3-(4-methoxyphenyl)-3-phenyl-3H-naphtho [2,1-b] pyran-6-yl]-morpholine, 4-[3,3-bis(4-methoxyphenyl)-3-phenyl-3-[4- (1-piperidinyl) phenyl]-3H-naphtho [2,1-b] pyran-6-yl]-morpholine and 2,2-diphenyl-2H-naphtho [2,1-b] pyran.

[0025] In order to ensure the life of the synthetic resin laminate of the present invention, it is necessary to add various stabilizers. As the stabilizer, light stabilizers such as hindered amine and antioxidants such as hindered phenol are added.

[0026] Examples of hindered amine include bis (2.2,6.6-tetramethyl-4-piperidinyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidinyl)-[[3,5-bis(1,1-dimethylethyl)]-[4-hydroxyphenyl] methyl] butyl malonate, 1-(methyl)-8-(1,2,2,6,6-pentamethyl-4-piperidinyl)-sebacate, 1-[2-[3-(3,5-di-t-butyl-4-hydroxyphenyl]) propionyloxy]-2,2,6,6-tetramethylpiperidine, 4-ben-zoyloxy-2,2,6,6-tetramethylpiperidine, triethylenediamine and 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro [4,5]decane-2,4-dione. As other nickel ultraviolet ray stabilizer, [2,2'-thiobis(4-t-octylphenolate)]-n-butylamine nickel, nickel complex-3,5-di-t-butyl-4-hydroxybenzyl - phsophoric acid monoethylate and nickel - dibutyl carbamate also can be used. Particularly, as hindered amine light stabilizer, bis(1,2,2,6,6-pentamethyl-4-piperidinyl)-sebacate or a condensation product of 1,2,2,6,6-pentamethyl-4-piperidinol, tridodecyl alcohol and 1,2,3,4-butanetetra caboxylic acid as tertiary hindered amine compound is preferable.

[0027] Examples of the antioxidant include 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, 2,2'-methylenebis (4-ethyl-6-t-butylphenol), tetrakis[methylene-3- (3',5'-di-t-butyl-4'-hydroxyphenyl) propionate]methane, 2,6-di-t-butylphenol, 4,4'-butylidenebis(3-methyl-6-t-butylphenol), 1,3,5-tris(3', 5'-di-t-butyl-4'-hydroxybenzyl)-S-triazine-2, 4,6-(1H, 3H, 5H) trione, stearyl-β-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, 4,4'-thiobis(3-methyl-6-t-butylphenol) and 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene.

[0028] Particularly, as phenol antioxidant, 1,1,3-tris(2-methyl-4-hydorxy-5-t-butylphenyl) butane, tetrakis-(methyl-ene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane and 1,3,5-tris(3,5-di-t-butyl-4-hyroxybenzyl)-1,3,5-triazine-2,4,6-(1H, 3H, 5H)-trione which contain 3 or above of hindered phenol are preferable.

[0029] The transparent synthetic resin laminate with photochromic property of the present invention is produced according to below process. A photochromic organic compound is added in the proportion of 0.2 to 5 % to resin solid matter to a solution of a polyurethane prepolymer diluted with specific organic solvent and an additive(s) of hindered amine light stabilizer and/or antioxidant is (are) further added thereto in the proportion of 0.1 to 5 % to resin solid matter and uniformly mixed with stirring. Then, a curing agent is further added thereto in a I/H ratio of isocyanate group (I) to hydroxyl group (H) of the curing agent of 0.9 to 20 and preferably 1 to 10 as a standard and stirring is further performed to form a solution. It is suitable that the polymer concentration in the solution thus obtained is usually 40 to 90 % by weight. The solution is coated with a doctor blade of coating thickness 100 to 1000 µm on one side of a transparent synthetic resin sheet. After the completion of coating, heat drying is performed to the state substantially not containing

10

15

20

30

35

the solvent on the coated surface and another transparent synthetic resin sheet is adhered to the coated surface of said synthetic resin sheet in a sandwich form. The above-mentioned heat drying is usually performed at 20 to 50 °C for 5 to 60 minutes. A laminate sheet thus obtained is heated to cure the polyurethane prepolymer containing the curing agent, whereby a transparent synthetic resin laminate is obtained. The curing conditions of the polyurethane prepolymer are usually 60 to 140 °C and 2 hours to 1 week.

[0030] Examples of the solvent include hydrocarbons such as hexane, heptane, octane, cyclohexane, toluene, xylene and ethyl benzene, esters such as ethyl acetate, methyl acetate, isopropyl acetate, n-propyl acetate, isobutyl acetate, n-butyl acetate, isoamyl acetate, methyl propionate and isobutyl propionate, ketones such as acetone, methylethyl ketone, diethyl ketone, methylisobutyl ketone, acetyl acetone and cyclohexyl ketone, ether esters such as cellosolve aetate, diethylglycol diaetate, ethyleneglycol mono n-butylether acetate, propylene glycol and monomethylether acetate, tertiary alcohols such as diacetone alcohol and t-amyl alcohol and tetrahydofuran. Particularly, ethyl aetate, tetrahydrofuran and toluene are preferable.

BEST MODE FOR CARRYING OUT THE INVENTION

[0031] The present invention will be described in more detail below, referring to Examples, which are not intended to limit the scope of the present invention.

Examples 1 to 4

10

15

20

25

30

35

40

[0032] 2 % of Photochromic compound 1 or 2 to resin solid matter and 1 to 2 % of Additive 1 to resin solid matter were dissolved in a solution of 15 g of a polyurethane precursor having a NCO group equivalent weight (equivalent weight: average molecular weight per one functional group) of 1500 obtained by reaction of diphenylmethane-4,4'-dissocyanate and polypropylene glycol having an average polymerization degree of 15 diluted with 8.3 g of tetrahydro-furan and stirred until uniformity was ensured and then 3 g of a curing agent having a hydroxyl group equivalent weight of 1050 obtained by reaction of tolylene dissocyanate and polypropylene glycol having an average polymerization degree of 10 was added thereto and further stirred.

[0033] The solution thus obtained was coated with a doctor blade of coating thickness 400 µm, manufactured by Yoshimitsu Seiki K.K., in Japan on a polycarbonate film of thickness 700 µm (trade name: IUPILON, manufactured by Mitsubishi Gas Chemical Co., Inc.). After the completion of coating, the solvent was vaporized at 45 °C for 10 minutes in a hot air dryer and the polycarbonate film was adhered to make a sheet form and then heat curing was performed at 70 °C for 2 days. The measurement of the transmittance in maximum absorption wave length and the evaluation of the light resistance for the synthetic resin laminate thus obtained were performed and the thickness of the photochromic layer was measured and its appearance was observed. The proportion of each component for the formation of the laminates was shown in Table 1. The evaluation results of the laminated were shown in Table 2.

Photochromic compound 1:

[0034] 1,3-dihydro-1,3,3.5,6 (1,3,3,4,5) pentamethyl-spiro[2H-indole-2,3-[3H]-naphtho[2,b] [1,4]oxazine]

Photochromic compound 2:

[0035] 3,3-diphenyl-3H-naphtho[2,1-b]pyran

45 Additive 1:

[0036] bis(2.2,6,6-tetramethyl-4-piperidinyl)sebacate

[0037] Each performance was evaluated according to the following methods.

50 [Measurement of transmittance]

[0038] A single wave length light of 360 nm was irradiated with an ultramonochromatic light source and transmittance after 5 minutes from the starting of the irradiation and transmittance in non-irradiation were measured. A spectrophotometer, manufactured by Nihon Bunko k.k., in Japan was used in the measurement of transmittance and the transmittance in maximum absorption wave length was measured.

[Evaluation of light resistance]

[0039] Contrast prior to exposure and contrast after exposure for 60 hours to a sunshine weather meter under below conditions were measured. In order to compare with contrast prior to exposure, contrast retention percentage was calculated to evaluate its life.

- (1) Setting conditions of sunshine weather meter
- Irradiance : 255 w/m² (300 to 700 nm)
- Temperature : room temperature
- Rainfall was not applied.
- (2) Calculation of contrast retention percentage (%)

15

10

Contrast retention percentage (%)

$$= (L_3^*-L_4^*) \times 100/(L_1^*-L_2^*)$$

20

- L*₁: contrast prior to light resistance test (in ultraviolet light non-irradiation)
- L*₂: contrast prior to light resistance test (in ultraviolet light irradiation)
- L*3: contrast after light resistance test (in ultraviolet light non-irradiation)
- L*4: contrast after light resistance test (in ultraviolet light irradiation)
- 25 (3) Evaluation

[0040] Contrast life was evaluated based on the following criterion.

- O: contrast retention percentage after light resistance test is 70 % or above.
- Δ: contrast retention percentage after light resistance test is below 70 %.

[Color development speed and color disappearance speed]

[0041] Color development speed (ta) and color disappearance speed (tb) were measured as below.

35

30

- T1: transmittance in non-irradiation of ultraviolet light
- T2: transmittance in irradiation of ultraviolet light
- ta: a time in which transmittance is changed from T1 to (T1+T2)/2 by irradiation of ultraviolet light
- tb: a time in which transmittance is changed from T2 to (T1+T2)/2 by shielding irradiated ultraviolet light

40

[0042] Both ta and to were determined by a curve of change of transmittance in maximum absorption wave length with the lapse of time.

Comparative Example 1

45

[0043] The synthetic resin laminate was obtained in the same experiment as in Example 1 except that the urethane was changed to solvent type one-liquid, Hamatai Y-7122-A, manufactured by Yokohama Gomu k.k., in Japan. The proportion of each component was shown in Table 1 and the evaluation results were shown in Table 2.

50 Examples 5 to 12

[0044] 1 % of Photochromic compound 3 to resin solid matter, 0.5 % of Photochromic compound 4 to resin solid matter were added to a solution of 15 g of a polyurethane precursor diluted with 13.6 g of an organic solvent (toluene 4.6 g, methylethyl ketone 1.8 g and ethyl acetate 7.2 g) in the same manner as in Example 1 and each Additives 1 to 4 was further added thereto in the blend proportion shown in Table 3 and dissolved and 1.6 g of the same curing agent as in Example 1 was added thereto and stirred.

[0045] The solution thus obtained was coated with a doctor blade of coating thickness 300 μm, manufactured by Yoshimitsu Seiki k.k., in Japan on a polycarbonate film of thickness 300 μm (trade name : IUPILON, manufactured by

Mitsubishi Gas Chemical Co., Inc.). After the completion of coating, the solvent was vaporized at 45 °C for 10 minutes in a hot air dryer. Another polycarbonate film of 300 μm was adhered thereto to make a sheet form and heat curing was performed at 70 °C for 3 days. The same evaluation as in Example 1 was performed for the synthetic resin laminate thus obtained. In the evaluation of light resistance, the evaluation was performed by changing the apparatus and further increasing ultraviolet light radiant intensity. The evaluation results were shown in Table 4. Further, when the samples thus prepared were exposed to sun light, they presented brown and when they were put in a dark place, color disappearance occurred.

Organic Photochromic compound 3:

5

10

20

[0046] 4- [4- [6-(4-morpholynyl) -3-phenyl-3H-naphtho [2,1-b]pyran-3-yl]phenyl]-morpholine

Organic Photochromic compound 4:

15 [0047] 1,3-dihydro-1,3,3.5,6(1,3,3,4,5)-pentamethylspiro(2H-indole-2,3-[3HJ-naphtho[2,b][1,4]oxazine]

Additive 1: the same as in Example 1 bis(2,2,6,6-tetramethyl-4-piperidinyl)sebacate

Additive 2: bis(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate

Additive 3: bis(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate

1-(methyl)-8- (1,2,2,6,6-pentamethyl-4-piperidinyl)-sebacate

25 Additive 4: 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane

[0048] The [measurement of transmittance] and measurement and evaluation of [color development speed and color disappearance speed] was performed in the same manner as in Example 1.

30 [Evaluation of light resistance]

[0049] As the evaluation, a UV lamp was irradiated for 5 minutes prior to light resistance test and after light resistance test and then contrast due to color development and color difference were measured and contrast retention percentage and color change degree in color disappearance in the light resistance test were calculated. Thus, light resistance was evaluated. In the light resistance test, an apparatus with a xenon lamp as the light source (apparatus name: SUNTEST CPS+, maker: manufactured by ATLAS) was used and an irradiance of 750 W/m² (300 to 800 nm) for 20 hours was applied. Further, the UV lamp had a single wave length of 360 nm in an ultramonochromatic light source (Nihon Bunko k.k., in Japan).

Calculation of contrast retention percentage

[0050] It was calculated in the same method as in Example 1.

② Calculation of color change degree

[0051]

45

color change degree

 $= [(L_{1}^{*}-L_{3}^{*})^{2}+(a_{1}^{*}-a_{3}^{*})^{2}+(b_{1}^{*}-b_{3}^{*})^{2}]^{1/2}$

• a*, : a* value prior to light resistance test (ultraviolet light non-irradiation)

• a*3: a* value after light resistance test (ultraviolet light non-irradiation)

• b*₁: b* value prior to light resistance test (ultraviolet light non-irradiation)

• b*3: b* value after light resistance test (ultraviolet light non-irradiation)

③ Evaluation

[0052]

20

25

30

35

40

45

50

- 5 (): After light resistance test, contrast is 70 % or above and color change degree is below 5 %.
 - Δ : After light resistance test, contrast is below 70 % and color change degree is 5 % or above.

INDUSTRIAL APPLICABILITY

[0053] In the formation of a polyurethane layer on a transparent synthetic resin surface, a polyurethane layer could be formed without impairing any photochromic performance by using specific two-liquid thermosetting poyurethane and mixing a polyurethane prepolymer, a curing agent and various additives including a photochromic compound in specific solvent and a transparent synthetic resin laminate with photochromism property to provide high availability could be produced efficiently by ensuring substantially non-solvent state thereof and then adhering another transparent synthetic resin and then performing heat cure. Further, a plastic lens with high photochromic performance and smooth photochromic layer could be obtained readily by using the laminate.

5			
10			
15			٠
20			
25		٠	
30			Table 1
35			
40			
45			
50			

	Polyurethane	ne Curing	THF	Species of	Concentration of Additive Concentration	Additive	Concentration
-	precursor	agent	(Note 1)	(Note 1) photochromic photochromic	photochromic		of additive
				compound	compound		
	(b)	(g)	(6)		(b)		(%)
Example 1	15	3	8.3		2	-	-
2	15	m	8.3		2	-	2
ю	15	ώ	8.3	2	. 2	_	~~
4	15	3	8.3	2	2	-	2
Comp. Ex. 1	30	1	1	1	2		-
	(Note 2)						

Note 1 : tetrahyrofuran

Note 2 : solvent type one-liquid

EP 1 273 935 A1

.40

	Thickness	Color in	Maximum	MaximumTransmittance in maximum Color	in maximum	Color	Color	Appea-	Life
	of	color	absor-	absorption wave length	ave length	develop-	disapp-	rance	
	Photo-	develop-	ption	ulraviolet light	t light	ment	earance		
	chromic	ment	wave	in non-	in	peeds	peeds		
	layer		length	irradia-	irradia-	t o	tb		
				tion	tion				
	(mm)		(มน)	. (&)	(%)	(sec)	(sec)		
Example 1	177	blue	620	83	85	13	13	good	0
2	178	blue	620	83	58	13	13	poob	0
ю	181	yellow	440	87	65	10	10	good	0
Ø	179	yellow	440	88	65	10	10	pood	0
Comp.Ex.1	175	blue	620	80	52	23	26	good	۵

			Tab	Table 3					
	Polyurethane	Curing	Toluene	Photochromic	romic		Addi	Additive	
	precursor	agent	MEK	compound	pu				
			(Note 3)			light		antio	antioxidant
			ethyl	,		stabilizer	lizer		
			acetae	species	concen-species	species		concen-species	concen-
			•		tration		tration		tration
	(a)	(g)			(8)		(%)		(%)
Example 5	15	1.6	13.6	3	1.0	2	3.0	1	ı
				4	0.5				
Example 6	15	1.6	13.6	3	1.0	2	3.0	4	3.0
			-	4	0.5				
Example 7	15	1.6	13.6	3	1.0	3	3.0	1	1
				4	0.5				
Example 8	15	1.6	13.6	3	1.0	3	3.0	4	3.0
			-	4	0.5				
Example 9	15	1.6	13.6	3	1.0	1	3.0	-	ı
				4	0.5				
Example 10	15	1.6	13.6	3	1.0	3	15.0	1	1
				4	0.5				
Example 11	15	1.6	13.6	3	1.0	3	15.0	7	3.0
				4	0.5				
Example 12	15	1.6	13.6	3	1.0	I	1	1	1
				4	0.5				

Note 3 : methylethyl ketone

EP 1 273 935 A1

		Evalu-	ation						0	0	0	0	۵	◁	٥	◁
	Life	color	change	degree					æ	2	7	က	7	4	m.	10
		con-	trast	reten-	tion	per-	cent	(%)	72.	74	70.	73	43	51	56	34
	Appea	rance							poob	good	good	good	poob	poob	good	good
	Color	develop-disappe-	arance	peeds	tp			(sec)	15	16	16	16	15	16	16	15
	Color	levelop-	ment	speed	t a	•		(sec)	13	14	14	14	13	14	14	13
Table 4	nce in			let light	in	irradia-	tion	(%)	63	65	61	19	65	63	99	19
	Transmittance	maximum absorption	wave length	ultraviolet	in non-	irradia-	tion	(%)	84	84	85	84	85	85	84	85
	Maximum	absor-	ption	wave	length			(mr)	460	4 60	460	460	460	460	460	460
	Thick-	ness of	photo-	chromic wave	layer			(mn)	133	140	137	128	136	132	135	138
									Example 5	Example 6		Example 8	Example 9	Example 10	Example 11	Example 12

Claims

5

10

20

35

- A transparent synthetic resin laminate with photochromism property consisting essentially of two transparent synthetic resin layers and a photochromic layer formed by curing a mixture of a two liquid polyurethane of a polyurethane prepolymer and a curing agent and a photochromic organic compound which is interposed between said two transparent synthetic resin layers.
- 2. The laminate according to claim 1, wherein said polyurethane prepolymer is a compound with an isocyanate group on both ends obtained from diisocyanate and polyol.
- 3. The laminate according to claim 1, wherein said polyurethane prepolymer is a compound derived from a prepolymer having a number average molecular weight of 500 to 5000 and a curing agent having a number average molecular weight of 500 to 5000.
- 4. The laminate according to claim 2, wherein said polyurethane prepolymer is a compound with an isocyanate group on both ends derived from diphenylmethane-4,4'-diisocyanate and polypropylene glycol.
 - 5. The laminate according to claim 1, wherein said curing agent is a compound with a hydroxyl group on at least both ends obtained from diisocyanate and polyol.
 - 6. The laminate according to claim 5, wherein said curing agent is a compound with a hydroxyl group on at least both ends derived from tolylene diisocyanate and polypropylene glycol.
- The laminate according to claim 1, wherein said two-liquid polyurethane contains tertiary hindered amine light stabilizer.
 - 8. The laminate according to claim 1, wherein said two-liquid polyurethane contains a tertiary hindered amine light stabilizer and an antioxidant containing three or above of hindered phenol.
- 30 9. The laminate according to claim 1, wherein said photochromic organic compound is a spiropyran compound, a spiroxazine compound or a naphtopyran compound.
 - 10. The laminate according to claim 1, wherein each said two transparent synthetic resins are a polycarbonate resin, a polymethyl methacrylate resin or a polycarbonate resin and a polymethyl methacrylate resin.
 - 11. The laminate according to claim 1, wherein said transparent resin is a sheet.
 - 12. A process for producing a transparent synthetic resin laminate with photochromism property which comprises:
- coating a mixture of a two-liquid polyurethane of a poyurethane prepolymer and a curing agent, a photochromic organic compound and a solvent on one side of a transparent synthetic resin sheet,
 - then, removing the solvent from the mixture to a state not to contain substantially the solvent,
 - then, adhering another transparent synthetic resin sheet to the coated side of said synthetic resin sheet, and then, curing the two-liquid polyurethane,
- 45 thereby, forming a photochromic layer.

50

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/02978

A. CLASSI Int.	FICATION OF SUBJECT MATTER C1 G02B 5/23, G02C 7/10, B32B	27/40	
According to	International Patent Classification (IPC) or to both nation	onal classification and IPC	
D CIELDS	CEARCHED		
Minimum do	cumentation searched (class:fication system followed by C1 G02B 5/23, G02C 7/10, B32B	2.710	ate Galds searched
Jitsu Kokai	on searched other than minimum documentation to the early of Shinan Koho 1940-1996 i Jitsuyo Shinan Koho 1991-2001 ta base consulted during the international search (name	Jitsuyo Shinan Toroku Ko	oho 1996-2001
Electronic da	ta base consulted during the International Section (table		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app		Relevant to claim No.
A	EP, 294056, A2 (Pilkington PLC) 07 December, 1988 (07.12.88), Pull text; all drawings & GB, 8712210, A & JP, 2849; & US, 4889413, A & DE, 3888, & BR, 8802478, A & AT, 1040;	386, B2 868, C	1-12
A	& BR, 8802476, A & ES, 2054804, T JP, 4-226750, A (Nissan Motor Color 17 August, 1992 (17.08.92), Full text; all drawings (Family: none) JP, 63-178193, A (Nippon Sheet Gold 22 July, 1988 (22.07.88), Full text; all drawings	o., Ltd., et al.),	1-12
	(Family: none)		
1 —	er documents are listed in the continuation of Box C.	See patent family annex.	
"A" docum consid "E" earlie date "L" docum cited t specia "O" docum means "P" docum	I categories of cited documents: tent defining the general state of the art which is not cred to be of particular relevance document but published on or after the international filing tent which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other it reason (as specified) tent referring to an oral disclosure, use, exhibition or other tent published prior to the international filing date but later the priority date claimed	"I" later document published after the interpriority date and not in conflict with tunderstand the principle or theory und document of particular relevance; the considered novel or cannot be considered step when the document is taken alone document of particular relevance; the considered to involve an inventive ste combined with one or more other succombination being obvious to a perso document member of the same patent	the application but cited to tertying the invention claimed invention cannot be end to involve an inventive e claimed invention cannot be provided in the document is h documents, such in skilled in the art
Date of the	Sectual completion of the international search July, 2001 (03.07.01)	Date of mailing of the international sea 10 July, 2001 (10.0	rich report 7.01)
Jap	mailing address of the ISA/ anese Patent Office	Authorized officer	
Facsimile 1	No. TSA/210 (second sheet) (July 1992)	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/02978

ategory*		Citation o	of docume	nt, with in	dication, who	rc appropria	ite, of the	relevant passa	nges .	Releva	nt to claim No
A	JP, 05 J Full	61-14 uly, text	8048, 1986	A (Un (05.07 drawi	itika Lt .92),						1-12
					e Na	٠.	·	, Au-		 -	£.
-					A			Me garbasa magan ma ma ma ma ma ma ma ma ma ma ma ma ma			ू हेर्ने हुम्स्टर-
					÷. ·			•			رغ ۽ '

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

•		
	-	
	**	