Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра теоретической и прикладной информатики

Лабораторная работа № 2 по дисциплине «Методы оптимизации»

МЕТОДЫ СПУСКА

Факультет: ПМИ

Группа: ПМИ-72

Вариант: 1

Студент: Сычев Егор

Преподаватель: Постовалов Сергей Николаевич

Новосибирск

2020

1. Цель работы

Ознакомиться с методами поиска минимума функции n переменных в оптимизационных задачах без ограничений.

2. Задания

Nº	Вид работы
1.	Реализовать два метода поиска экстремума функции (разного порядка) Включить в реализуемый алгоритм собственную процедуру, реализующую одномерный поиск по направлению. Методы поиска для самостоятельной реализации выбираются студентом в зависимости от уровня сложности. Выбранные методы должны иметь разный порядок (например, метод Гаусса (нулевого порядка) - 1 балл и метод Ньютона (второго порядка) - 3 балла, итого 9 баллов).
2.	С использованием разработанного программного обеспечения исследовать алгоритмы на квадратичной функции $f(\overline{x}) = 100(x_2 - x_1^{})^2 + (1 - x_1^{})^2$, функции Розенброка $f(\overline{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1^2)^2$ и на заданной в соответствии с вариантом тестовой функции, осуществляя спуск из различных исходных точек (не менее двух). Исследовать сходимость алгоритма, фиксируя точность определения минимума/максимума, количество итераций метода и количество вычислений функции в зависимости от задаваемой точности поиска. Результатом выполнения данного пункта должны быть выводы об объёме вычислений в зависимости от задаваемой точности и начального приближения.

Найти максимум заданной функции:

$$f(x,y) = 2exp\left\{-\left(\frac{x-1}{2}\right)^2 - \left(\frac{y-1}{1}\right)^2\right\} + 3exp\left\{-\left(\frac{x-2}{3}\right)^2 - \left(\frac{y-3}{2}\right)^2\right\}$$

3. Ход работы

а. Метод сопряженных градиентов в модификации Флетчера-Ривса

і. Квадратичная функция $f(\bar{x}) = 100(x_2 - x_1)^2 + (1 - x_1)^2$

 $x_0 = (-0.1; 0.1)$

,	(0.1) 0.1)					
	epsilon	function calls	iterations	x	У	f(x, y)
	0,001	93	6	1,001	1,001	0
	0,0001	139	5	1	1	0
	0,00001	387	11	1	1	0
	0,000001	296	7	1	1	0
	0,0000001	369	7	1	1	0

 $x_0 = (7; 7)$

,	())					
	epsilon	function calls	iterations	Х	У	f(x, y)
	0,001	108	6	1	1	0
	0,0001	139	5	1,0001	1,0001	0
	0,00001	249	7	1	1	0
	0,000001	216	5	1	1	0
	0,0000001	153	3	1	1	0

іі. Функция Розенброка $f(\bar{x})=100(x_2-{x_1}^2)^2+(1-x_1)^2$ $x_0=(-0.1;0.1)$

•						
	epsilon	function calls	iterations	Х	У	f(x, y)
	0,001	649	40	1	1	0
	0,0001	1433	59	1	1	0
	0,00001	1147	33	1	1	0
	0,000001	1436	33	0,999999	0,999998	0
	0,0000001	1382	27	0,9999999	0,9999998	0

 $x_0 = (7; 7)$

U	())					
	epsilon	function calls	iterations	Х	у	f(x, y)
	0,001	1832	133	1	1,001	0
	0,0001	1441	68	1	1	0
	0,00001	2377	79	1,00001	1,00001	0
	0,000001	1439	35	1	0,999999	0
	0,0000001	2527	51	0,9999999	0,9999998	0

ііі. Функция из варианта (поиск максимума)

 $x_0 = (-0.1; 0.1)$

epsilon	function calls	iterations	Х	у	f(x, y)
0,001	145	4	1,263	1,333	3,169
0,0001	222	5	1,2625	1,3343	3,1693
0,00001	319	6	1,26303	1,3344	3,16932
0,000001	366	6	1,263035	1,334396	3,169317
0,0000001	414	6	1,263035	1,3343957	3,1693172

 $x_0 = (7; 7)$

epsilon	function calls	iterations	Х	У	f(x, y)
0,001	131	4	1,965	2,882	3,035
0,0001	264	6	1,9672	2,8861	3,0351
0,00001	311	6	1,96715	2,88611	3,03506
0,000001	359	6	1,967151	2,886115	3,035064
0,0000001	406	6	1,9671515	2,8861149	3,0350635

b. Метод Бройдена (переменной метрики) і. Квадратичная функция $f(\bar{x})=100(x_2-x_1)^2+(1-x_1)^2$ $x_0=(-0.1;0.1)$

_ (0.1, 0.	- (0.1, 0.1)						
epsilon	function calls	iterations	Х	У	f(x, y)		
0,001	57	3	1	1	0		
0,0001	80	3	1	1	0		
0,00001	104	3	1	1	0		
0,000001	91	2	1	1	0		
0,0000001	153	3	1	1	0		

 $x_0 = (7; 7)$

υ.	<u> </u>					
	epsilon	function calls	iterations	Х	У	f(x, y)
	0,001	106	4	1	1	0
	0,0001	121	4	1	1	0
	0,00001	155	4	1	1	0
	0,000001	184	4	1	1	0
	0,0000001	220	4	1	1	0

іі. Функция Розенброка $f(\bar{x})=100(x_2-{x_1}^2)^2+(1-x_1)^2$ $x_0=(-0.1;0.1)$

,	(,,					
	epsilon	function calls	iterations	х	У	f(x, y)
	0,001	487	25	1	1	0
	0,0001	680	25	1	1	0
	0,00001	887	25	1	1	0
	0,000001	1080	25	1	1	0
	0,0000001	1281	25	1	1	0

 $x_0 = (7; 7)$

U)(/)//					
	epsilon	function calls	iterations	х	У	f(x, y)
	0,001	1329	69	1	1	0
	0,0001	873	33	1	1	0
	0,00001	1058	31	1	1	0
	0,000001	1381	33	1	1	0
	0,0000001	2436	49	1	1	0

ііі. Функция из варианта (поиск максимума)

 $x_0 = (-0.1; 0.1)$

epsilon	function calls	iterations	Х	у	f(x, y)
0,001	145	4	1,263	1,333	3,169
0,0001	222	5	1,2625	1,3343	3,1693
0,00001	319	6	1,26304	1,3344	3,16932
0,000001	366	6	1,263035	1,334396	3,169317
0,0000001	414	6	1,263035	1,3343959	3,1693172

 $x_0 = (7; 7)$

epsilon	function calls	iterations	Х	у	f(x, y)
0,001	131	4	1,963	2,878	3,035
0,0001	264	6	1,9672	2,8861	3,0351
0,00001	311	6	1,96715	2,88612	3,03506
0,000001	359	6	1,967151	2,886115	3,035064
0,0000001	406	6	1,967152	2,886115	3,035064

4. Анализ сходимости

$$\varepsilon = 10^{-3}$$

 $x_0 = (3; -3)$

а. Метод сопряженных градиентов в модификации Флетчера-Ривса

і. Квадратичная функция $f(\bar{x})=100(x_2-x_1)^2+(1-x_1)^2$

_	- 1 11	атичнай фун	1) ()	$-100(n_2$, , , , , , , , , , , , , , , , , , ,	$(1 \lambda_1)$						
						lambda	yi-y(i-	yi-y(i-	fi-f(i-			
i	xi	yi	f(x, y)	si1	si2	i	1)	1)	1)	angle((xi, yi), si)"	gi1	gi2
										0,001663891975247335		
0	3	-3	3604	1204	-1200	0	0	0	0	6"	1204	-1200
						-						
			12,9799	72,4627		0,0023						
1	0,1706	-0,18	4	4	-74,1082	5	2,8294	2,82	3591,02	0,015578549011534113"	68,4612	-70,12
		-										
		0,00584562	1,00316			0,0023	0,17028	0,17415	11,9767			
2	0,00031256	1	7	-0,76774	-1,23164	5	7	4	7	0,6108290849775809"	-0,76774	-1,23164
						-						
		0,05263318				0,0474	0,03645	0,05847	0,05016			3,17358
3	0,03676524	4	0,953	-18,2516	-17,9246	8	3	9	7	2,956887098313727"	-5,10006	9
						-						
				0,28386		0,0528	0,96434	0,94706	0,95280		0,28386	
4	1,00110953	0,99970128	0,0002	9	-0,28165	4	4	8	1	1,5661685721268461"	9	-0,28165
						-						
	1,00044243	1,00036315		0,01768		0,0023	0,00066	0,00066	0,00019		0,01674	
5	8	8	8,24E-07	5	-0,01679	5	7	2	9	1,5448829744144432"	1	-0,01586
						-						
	1,00040087			0,00045	0,00034	0,0023					0,00045	0,00034
6	9	1,00040262	1,61E-07	4	8	5	4,16E-05	3,95E-05	6,63E-07	0,13052339023200682"	4	8

іі. Функция Розенброка $f(\bar{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

							yi-y(i-	yi-y(i-	fi-f(i-			
i	xi	yi	f(x, y)	si1	si2	lambdai	1)	1)	1)	angle((xi, yi), si)"	gi1	gi2
0	3	-3	14404	14404	-2400	0	0	0	0	0,6202945188567891"	14404	-2400
						-						
	1,39955			3153,38		0,0001	1,60044	0,26666	12202,2		2627,53	
1	6	-2,73333	2201,73	1	-1026,03	1	4	7	7	0,7829971579917454"	5	-938,418

						_						
			649,632			0,0006	2,10225	0,68402	1552,09			
2	-0,7027	-2,04931	6	-718,217	-508,619	7	4	3	7	0,6242774987335835"	-718,217	-508,619
	0,37462		203,946	95,1521			1,07732	0,76292	445,686	0,030678947968208633	212,545	
3	7	-1,28638	1	8	-368,48	-0,0015	6	9	5	П	6	-285,345
	0.05646		4 22040			- 0.000	0.24046	4 22240	202 725			
4	0,05646 2	-0,05428	1,22049 1	-0,58923	-11,4931	0,0033 4	0,31816 5	1,23210 4	202,725 7	0,8563466961705548"	-0,58923	-11,4931
4		-0,03428	т	-0,36323	-11,4931	-	<u> </u>	4		0,8303400301703348	-0,36323	-11,4931
	0,05941	0,00328				0,0050	0,00295	0,05755	0,33578			
5	3	1	0,88471	-1,89093	-0,35508	1	1	9	1	3,01115008330035"	-1,87527	-0,04969
						-						
		0,03930	0,61737	0,89662		0,1014	0,19183	0,03602	0,26733		0,89662	
6	0,25125	5	5	2	-4,76442	5	7	3	5	1,5399589398663636"	2	-4,76442
		0,05955	0,56662			0,0042	0,00381	0,02024	0,05074			
7	0,24744	3	7	-1,26681	-0,72103	5	1	9	8	2,860341243262149"	-1,33954	-0,3346
	-,	-		,	-,	-		-		,	,	-,
	0,42628	0,16134	0,37065	2,32627		0,1411	0,17884	0,10179	0,19597		2,32627	
8	2	4	5	8	-4,07443	7	2	1	2	1,4138429129170191"	8	-4,07443
						-						
	0,41970	0,17286 7	0,33782	0.53455	0.00534	0,0028	0,00657	0,01152	0,03283	2 5200042205676025"	0.00027	0.65660
9	3	/	3	-0,52455	-0,80524	3	9	3	2	2,5388812395676035"	-0,60937	-0,65668
	0,43705	0,19949				0,0330	0,01734	0,02663	0,01371			
10	2	9	0,32411	-2,60922	1,69696	7	9	2	3	2,1367385521461024"	-2,60922	1,69696
						-						
	0,44443		0,30945			0,0028	0,00737	0,00479	0,01465			
11	1	0,1947	2	-0,79582	-0,44295	3	9	9	8	3,046606764084174"	-0,60999	-0,56381
	0,47375			1,49085		- 0,0368	0,02932		0,01450		1 40005	
12	0,47373	0,21102	0,29495	1,49085	-2,68427	0,0368 4	0,02932	0,01632	0,01450	1,482852564638558"	1,49085 8	-2,68427
12		0,21102	0,23733		2,00727	-		0,01032		1, 102032307030330	3	2,00727
	0,46953	0,21861	0,28173			0,0028	0,00421	0,00759	0,01321			
13	6	1	6	-0,61088	-0,55435	3	6	1	5	2,840407227143663"	-0,71297	-0,37054

						-						
	0,57786	0,31691	0,20713	3,08772		0,1773	0,10832	0,09830			3,08772	
14	4	6	6	6	-3,40218	3	9	5	0,0746	1,3354476671842337"	6	-3,40218
						-						
4.5	0,57060	0,32491	0,18442	0.62002	0.24042	0,0023	0,00725	0,00799	0,02271	2.05066620227602211	0.70206	0.42646
15	8	2	4	-0,62803	-0,21912	5	6	5	2	2,959666292376932"	-0,70306	-0,13646
	0,57627	0,32688	0,18225	0,35196		0,0090	0,00566	0,00197	0,00217		0,35196	
16	4	8	1	9	-1,04067	2	6	7	3	1,7606456832732593"	9	-1,04067
						-						
	0,57527	0,32983	0,18051			0,0028	0,00099	0,00294	0,00173			
17	9	1	2	-0,47605	-0,56892	3	5	3	9	2,788134301268306"	-0,59311	-0,22279
						-						
4.0	0,70907	0,48973	0,10168	3,12137	2 64 4 2 2	0,2810	0,13380	0,15990	0,07883	4 20400000000000000000	3,12137	2 64420
18	9	7	2	6	-2,61129	7	1	6	1 0 01 266	1,3010863368334984"	6	-2,61129
10	0,70439	0,49365	0,08801	0,16986	0.54664	0.0045	0,00468	0,00391	0,01366	4 0007007267256405	0,11925	0.5043
19	7	4	7	5	-0,54664	-0,0015	2	7	5	1,8807887267256485"	3	-0,5043
	0,70399	0,49493	0,08766			0,0023	0,00039	0,00128	0,00035			
20	8	9	3	-0,40201	-0,13494	5	9	5	4	2,8526726066556436"	-0,40201	-0,13494
20	U	<u> </u>	3	0,40201	0,13434	-	,	3		2,0320720000330430	0,40201	0,15454
		0,49556	0,08723			0,0046	0,00187	0,00062	0,00042		0,16997	
21	0,70587	7	4	-0,53952	-0,77524	, 6	2	8	9	2,790901569527316"	5	-0,53709
						-						
	0,80841	0,64291	0,04798	3,05091		0,1900	0,10254	0,14734	0,03925		3,05091	
22	5	4	3	1	-2,12396	7	5	8	1	1,280007694830577"	1	-2,12396
	0,80383						0,00457	0,00318	0,00950			
23	8	0,6461	0,03848	-0,34346	-0,03269	-0,0015	6	6	3	2,5594465036441436"	-0,37445	-0,01112
	0.00464	0.6464=	0.00000	0.00000		-	0.0000		0.0004-		0.00000	
24	0,80464	0,64617	0,03832	0,02032	0.25544	0,0023	0,00080	7.000.00	0,00015	2.4600040447720204"	0,02032	0.25544
24	5	7	7	1	-0,25541	5	7	7,68E-05	3	2,1680040447730304"	1	-0,25541
	0,80456	0,64713	0,03819			0,0037		0,00095	0,00012			
25	9	0,04713 5	0,03619	-0,29388	-0,46284	5	7,62E-05	8	9	2,8138954167225507"	-0,32758	-0,03933
23	,	,	,	5,23300	J, 70207	,	,,021 03	U		2,0130334107223307	5,52750	3,03333

						_						
	0,87367	0,75597	0,02134	2,31178		0,2351	0,06910	0,10884	0,01685		2,31178	
26	8	6	2	5	-1,4676	6	9	1	5	1,2789390897879747"	5	-1,4676
						-						
	0,87118	0,75756	0,01678	0,26925		0,0010	0,00249	0,00158	0,00455		0,22902	
27	2	1	9	5	-0,30485	8	7	5	3	1,5630718102313572"	9	-0,27931
	0,87089		0,01670			0.0010	0,00029	0,00032				
28	0,87089	0,75789	0,01670	-0,06288	-0,11215	0,0010 8	0,00029	9	8,86E-05	2,797933989767279"	-0,06288	-0,11215
20		0,73703	1	0,00200	0,11213	-		<u> </u>	0,001 03	2,73733333707273	0,00200	0,11213
	0,95286	0,90409	0,00370			1,3036	0,08197	0,14620	0,01299		1,37572	
29	5	5	9	-8,08637	-17,6474	7	4	5	1	2,7596035975533137"	5	-0,77136
						-						
	0,97186	0,94556	0,00089		0,20781	0,0023	0,01900	0,04147				0,20781
30	8	6	9	-0,46021	9	5	3	2	0,00281	1,9457477781365775"	-0,46021	9
	0.07226	0.04524	0.00076	0.00204		0.0010	0.00040	0.00022	0.00013		0.00272	
31	0,97236 5	0,94534 2	0,00076 6	0,00204	-0,02958	0,0010 8	0,00049 7	0,00022 4	0,00013	2,2732119668595248"	0,00372	-0,03034
31	3		0		0,02330	-	,	7	3	2,2732113000333240	,	0,03034
	0,97235	0,94546	0,00076			0,0042		0,00012				
32	6	8	4	-0,05174	-0,00182	5	8,67E-06	6	1,81E-06	2,405459646812532"	-0,05174	-0,00182
	0,97243		0,00076								0,00606	
33	4	0,94547	2	-0,01376	-0,03216	-0,0015	7,76E-05	2,74E-06	1,82E-06	2,7463528559370283"	1	-0,03146
						-						
2.4	0,97451	0,95033	0,00069	0.20002	0,13127	0,1513	0,00208	0,00486	6 005 05	4 00447250444670771	0.20002	0,13127
34	6	9	2	-0,30683	7	6	2	8	6,99E-05	1,9644735811167877"	-0,30683	7
	0,97484	0,95019	0,00063			0,0010	0,00033	0,00014			0,00092	
35	8	7	4	-0,00098	-0,02546	8	1	2	5,81E-05	2,381976107395055"	1	-0,02627
				,	,	-			,	,		,
	0,97485	0,95035	0,00063		0,00268	0,0061		0,00015				0,00268
36	4	3	2	-0,05553	8	5	6,05E-06	7	2,01E-06	2,32055258094778"	-0,05553	8
						_						
	0,97491	0.05005	0.00000	0.0404=	0.00000	0,0010	65.05	2.05.00	4.05.00	2.00000052000045"	0.00000	0.00400
37	4	0,95035	0,00063	-0,01817	-0,02082	8	6E-05	2,9E-06	1,9E-06	3,0608985366660644"	-0,00868	-0,02128

						_						
	0,97516	0,95064	0,00062	0,07152		0,0139	0,00025	0,00029			0,07152	
38	8	2	, 6	2	-0,06214	8	4	1	4,16E-06	1,48795467546479"	2	-0,06214
						-						
	0,97509	0,95070	0,00062			0,0010						
39	1	9	1	-0,00935	-0,02225	8	7,72E-05	6,71E-05	4,95E-06	2,7414357441665578"	-0,01357	-0,01859
						-						
	0,97659	0,95428	0,00057	0.00400	0,10977	0,1605	0,00150	0,00357		4.050000==4400000		0,10977
40	2	1	8	-0,26122	1	3	1	2	4,33E-05	1,969928554139008"	-0,26122	1
	0,97687	0,95416	0,00053			0.0010	0.00029	0.00011			0.00005	
41	0,97687	0,95410	6	-0,00095	-0,02336	0,0010 8	0,00028 2	0,00011 9	4,18E-05	2,3850901472392176"	0,00095	-0,02416
41				-0,00055	-0,02330			<u> </u>	4,101-03	2,3630301472332170	2	-0,02410
		0,95430	0,00053		0,00229	0,0061		0,00014				0,00229
42	0,97688	6	5	-0,05072	4	5	5,85E-06	4	1,72E-06	2,3226900368630004"	-0,05072	4
						-			•			
	0,97693	0,95430	0,00053			0,0010						
43	5	4	3	-0,01659	-0,01921	8	5,48E-05	2,48E-06	1,58E-06	3,056725794543317"	-0,00782	-0,01961
						-						
	0,97717	0,95458	0,00052	0,06711		0,0144	0,00023	0,00027			0,06711	
44	4	1	9	6	-0,0577	3	9	7	3,62E-06	1,4838118239802047"	6	-0,0577
	0.07740	0.05464	0.00053			- 0.0010						
45	0,97710 2	0,95464 3	0,00052 5	-0,00892	-0,02021	0,0010 8	7,25E-05	6,23E-05	4,29E-06	2,760008661989359"	-0,01276	-0,01691
43		3	<u> </u>	-0,00632	-0,02021	- 0	7,236-03	0,23E-03	4,296-00	2,700000001363333	-0,01270	-0,01091
	0,97951	0,96011	0,00046		0,13303	0,2709	0,00241	0,00547				0,13303
46	7	9	4	-0,30159	7	5	6	6	6,13E-05	1,9507509468909126"	-0,30159	7
				,		-			,		,	
	0,97984	0,95997	0,00040	0,00382		0,0010	0,00032	0,00014			0,00542	
47	3	5	8	8	-0,02264	8	6	4	5,61E-05	2,1784175396506935"	2	-0,02334
						-						
	0,97983	0,96003	0,00040			0,0028						
48	2	9	7	-0,02801	-0,00629	3	1,08E-05	6,4E-05	8,26E-07	2,587391976693573"	-0,02801	-0,00629
	0.07000	0.0005	0.00040			-						
40	0,97988	0,96005	0,00040	0.01505	0.02020	0,0019	E 20F 0F	1 215 05	7 005 07	2 007152551102001"	0.00067	0.02405
49	6	1	6	-0,01505	-0,03028	2	5,38E-05	1,21E-05	7,09E-07	2,807152551183881"	0,00867	-0,02495

50	0,99927 8	0,99907 6	2,75E-05	-0,20912	0,10391 2	- 1,2888 1	0,01939	0,03902	0,00037 9	1,8951266029437075"	-0,20912	0,10391
51	0,99950 4	0,99896 4	4,41E-07	0,01527 4	-0,00814	0,0010 8	0,00022	0,00011	2,71E-05	1,2748687994650614"	0,01663	-0,00882
52	0,99948 7	0,99897 2	2,63E-07	-9,9E-05	-0,00046	- 0,0010 8	1,65E-05	8,79E-06	1,77E-07	2,56626495869736"	-9,9E-05	-0,00046

ііі. Функция из варианта (поиск максимума)

							yi-y(i-	yi-y(i-				
i	xi	yi	f(x, y)	si1	si2	lambdai	1)	1)	fi-f(i-1)	angle((xi, yi), si)"	gi1	gi2
			0,00033	671,185							671,185	
0	3	-3	1	6	-9056,86	0	0	0	0	0,7114253932326264"	6	-9056,86
	2,46305	4,24548	1,98773	0,05177	0,31332		0,53694	7,24548	3017,19	0,36194438688258684	0,05177	
1	2	7	3	3	9	-0,0008	8	7	3	II	3	0,31334
	2,23718	2,87854		0,02000		-	0,22586	1,36694	0,17089		0,02000	
2	2	5	3,01035	8	-0,00331	4,36265	9	2	8	1,074263524349068"	8	-0,00331
	1,97931	2,92125	3,03445		0,00346	-	0,25786	0,04271	0,00263	0,25453450527061455	0,00059	0,00357
3	9	6	9	0,00123	6	12,8883	3	1	9	11	2	1
	1,96686	2,88616	3,03506			-	0,01245	0,03509				
4	8	4	3	-2,1E-05	7,61E-06	10,1252	2	2	6,56E-05	1,8257789733903813"	-2,1E-05	7,61E-06

b. Метод Бройдена (переменной метрики) i. Квадратичная функция $f(\bar{x})=100(x_2-x_1)^2+(1-x_1)^2$

						lambda	yi-y(i-	yi-y(i-	fi-f(i-	angle((xi			etai1	etai1	etai2	etai2
i	xi	yi	f(x, y)	si1	si2	i	1)	1)	1)	, yi), si)	gi1	gi2	1	2	1	2
		1			1							1				
	3,00	3,00	3604,00	1204,00	1200,00						1204,00	1200,00				
0	0	0	0	0	0	0,000	0,000	0,000	0,000	0,002	0	0	1,000	0,000	0,000	1,000
		1			1											
	0,17	0,18		1204,00	1200,00				3591,02							
1	1	0	12,980	0	0	-0,002	2,829	2,820	0	0,028	68,461	-70,120	0,499	0,499	0,499	0,504

	0,99	0,99														
2	7	7	0,000	-0,827	-1,177	-1,000	0,827	1,177	12,980	2,968	0,003	-0,008	1,000	0,000	0,000	1,000
	0,99	0,99														
3	7	7	0,000	0,003	-0,008	-0,003	0,000	0,000	0,000	1,989	-0,003	-0,002	0,499	0,499	0,499	0,504
	1,00	1,00														
4	0	0	0,000	-0,003	-0,003	-1,002	0,003	0,003	0,000	3,140	0,000	0,000	1,000	0,000	0,000	1,000

іі. Функция Розенброка $f(\bar{x})=100(x_2-{x_1}^2)^2+(1-x_1)^2$

					<u> </u>	lambd	yi-y(i-	yi-y(i-		angle((x			etai1	etai1	etai2	etai2
i	xi	yi	f(x, y)	si1	si2	ai	1)	1)	fi-f(i-1)	i, yi), si)	gi1	gi2	1	2	1	2
		-			-							-				
	3,00	3,00	14404,00	14404,00	2400,00						14404,00	2400,00				
0	0	0	0	0	0	0,000	0,000	0,000	0,000	0,620	0	0	1,000	0,000	0,000	1,000
		-			-											
	1,40	2,73		14404,00	2400,00				12202,27			-				
1	0	3	2201,730	0	0	0,000	1,600	0,267	0	0,932	2627,535	938,418	0,015	0,122	0,122	0,985
	2,50	6,22			-											
2	6	9	2,542	-74,471	603,086	-0,015	1,107	8,962	2199,187	2,882	55,456	-10,463	1,000	0,000	0,000	1,000
	2,50	6,23														
3	0	0	2,291	55,456	-10,463	0,000	0,006	0,001	0,251	1,376	23,303	-4,060	0,038	0,191	0,191	0,962
	2,24	5,01														
4	9	9	1,708	0,115	0,557	-2,176	0,251	1,211	0,583	0,217	37,176	-7,710	1,000	0,000	0,000	1,000
_	2,24	5,02														
5		0	1,586	37,176	-7,710	0,000	0,004	0,001	0,122	1,355	19,669	-3,827	0,047	0,211	0,211	0,953
	2,01	4,02	4 4 4 4	0.440	0.540	4.050	0.224	0.000	0.444	0.227	20.500	6.042	4 000	0.000	0.000	4 000
6		1	1,144	0,118	0,510	-1,958	0,231	0,999	0,441	0,237	29,580	-6,842	1,000	0,000	0,000	1,000
_	2,01	4,02	1.002	20 500	C 0.42	0.000	0.002	0.001	0.000	4 224	40 202	4.044	0.050	0.222	0.222	0.042
7	0	2.10	1,062	29,580	-6,842	0,000	0,003	0,001	0,083	1,334	18,282	-4,044	0,058	0,233	0,233	0,942
	1,79	3,18	0.717	0 110	0.452	1 056	0.219	0.040	0.244	0.250	22 127	6.011	1 000	0.000	0.000	1 000
8	1 70	2 10	0,717	0,118	0,453	-1,856	0,218	0,840	0,344	0,259	23,127	-6,011	1,000	0,000	0,000	1,000
9	1,78 9	3,18 1	0,664	23,127	-6,011	0,000	0,003	0,001	0,054	1,313	16,027	-4,037	0,072	0,258	0,258	0,928
1	1,58	2,49	0,004	23,127	-0,011	0,000	0,003	0,001	0,034	1,313	10,027	-4,037	0,072	0,236	0,236	0,320
0	1,38	2,49	0,408	0,114	0,387	-1,788	0,203	0,692	0,255	0,281	17,359	-5,104	1,000	0,000	0,000	1,000
U	U	U	0,408	0,114	0,367	-1,/00	0,203	0,032	0,235	0,201	17,339	-3,104	1,000	0,000	0,000	1,000

1	1,57	2,49					ĺ									
1	4	3	0,351	17,359	-5,104	-0,001	0,012	0,003	0,058	1,293	-7,956	2,892	0,091	0,287	0,287	0,909
1	1,46	2,13		·	·	·	·	·	·	·						
2	4	1	0,232	0,105	0,346	-1,047	0,110	0,362	0,118	0,307	8,510	-2,589	1,000	0,000	0,000	1,000
1	1,46	2,13														
3	1	2	0,214	8,510	-2,589	0,000	0,003	0,001	0,019	1,265	2,705	-0,610	0,105	0,305	0,305	0,896
1	1,33	1,76														
4	3	1	0,133	0,097	0,279	-1,327	0,128	0,371	0,080	0,314	8,671	-3,003	1,000	0,000	0,000	1,000
1	1,32	1,76														
5	6	4	0,110	8,671	-3,003	-0,001	0,007	0,002	0,024	1,260	-2,441	1,166	0,124	0,329	0,329	0,877
1	1,23	1,51														
6	4	4	0,063	0,081	0,220	-1,135	0,092	0,250	0,046	0,332	4,994	-1,833	1,000	0,000	0,000	1,000
1	1,23	1,51														
7	0	6	0,053	4,994	-1,833	-0,001	0,004	0,001	0,010	1,241	-0,596	0,429	0,141	0,348	0,348	0,859
1	1,14	1,30														
8	7	7	0,027	0,065	0,162	-1,288	0,084	0,208	0,027	0,338	3,690	-1,482	1,000	0,000	0,000	1,000
1	1,14	1,30														
9	4	8	0,021	3,690	-1,482	-0,001	0,003	0,001	0,006	1,234	0,041	0,108	0,160	0,366	0,366	0,841
2	1,07	1,14														
0	4	8	0,008	0,046	0,105	-1,517	0,070	0,160	0,013	0,341	2,282	-0,993	1,000	0,000	0,000	1,000
2	1,07	1,14	0.005	2 202	0.000	0.004	0.000	0.004	0.000	4 224	0.254	0.054	0.470	0.202	0.202	0.000
1	2	9	0,005	2,282	-0,993	-0,001	0,002	0,001	0,003	1,231	0,254	-0,051	0,178	0,382	0,382	0,823
2 2	1,02 0	1,03 9	0,001	0,026	0,055	-2,009	0,052	0,110	0,004	0,338	0,961	-0,451	1,000	0,000	0,000	1,000
2	1,01	1,03	0,001	0,020	0,033	2,003	0,032	0,110	0,004	0,330	0,501	0,431	1,000	0,000	0,000	1,000
3	9	9	0,000	0,961	-0,451	-0,001	0,001	0,000	0,001	1,234	-0,104	0,070	0,194	0,394	0,394	0,807
2	1,00	1,00	2,000	5,000	0,10=	-,	-,	-,	5,552	_/ :	7,=0.					7,001
4	4	7	0,000	0,007	0,015	-2,070	0,015	0,032	0,000	0,336	0,225	-0,108	1,000	0,000	0,000	1,000
2	1,00	1,00	,	,	,	,	,	,	,	,	,	<u> </u>	,	,	,	,
5	4	7	0,000	0,225	-0,108	-0,001	0,000	0,000	0,000	1,235	-0,018	0,013	0,199	0,398	0,398	0,802
2	1,00	1,00														
6	0	1	0,000	0,001	0,003	-2,307	0,003	0,007	0,000	0,331	0,031	-0,015	1,000	0,000	0,000	1,000
2	1,00	1,00														
7	0	1	0,000	0,031	-0,015	-0,001	0,000	0,000	0,000	1,240	-0,002	0,002	0,200	0,399	0,399	0,801

2	1,00	1,00															l
8	0	0	0,000	0,000	0,000	-2,184	0,000	0,001	0,000	0,333	0,003	-0,001	1,000	0,000	0,000	1,000	ı
2	1,00	1,00															l
9	0	0	0,000	0,003	-0,001	-0,001	0,000	0,000	0,000	1,238	0,000	0,000	0,200	0,399	0,399	0,801	ı

ііі. Функция из варианта (поиск максимума)

_		· / · · · · · · · · · · ·	1	. p	TOPICK Man	,,				1		1				
			f(x,			lambda	yi-y(i-	yi-y(i-		angle((xi			etai1	etai1	etai2	etai2
i	хi	yi	y)	si1	si2	i	1)	1)	fi-f(i-1)	, yi), si)	gi1	gi2	1	2	1	2
		-			-							-				
	3,00	3,00	0,00	671,18	9056,85						671,18	9056,85				
0	0	0	0	6	8	0,000	0,000	0,000	0,000	0,711	6	8	1,000	0,000	0,000	1,000
					-											
	2,46	4,24	1,98	671,18	9056,85				3017,19							
1	3	5	8	6	8	-0,001	0,537	7,245	3	2,542	0,052	0,313	0,995	0,074	0,074	0,006
	1,79	4,19	2,09													
2	2	4	1	0,075	0,006	-9,000	0,671	0,052	0,025	1,090	-0,022	0,285	1,000	0,000	0,000	1,000
	1,89	2,87	3,03											-	-	
3	4	5	3	-0,022	0,285	-4,618	0,102	1,318	0,149	0,660	-0,005	0,000	1,024	0,297	0,297	4,594
	1,96	2,87	3,03													
4	7	9	5	-0,005	0,000	-13,775	0,073	0,004	0,000	2,226	0,000	-0,001	1,000	0,000	0,000	1,000

5. Текст программы

```
descent_methods.rs
use nalgebra::allocator::Allocator;
use nalgebra::DefaultAllocator;
use nalgebra::DimName;
use nalgebra::VectorN;
use super::one_dimension_searchers::minimize;
pub fn conjugate_gradients<D>(
   f: &dyn Fn(&VectorN<f64, D>) -> f64,
   df: &dyn Fn(&VectorN<f64, D>) -> VectorN<f64, D>,
   mut x: VectorN<f64, D>,
   eps: f64,
   rev: bool,
) -> (VectorN<f64, D>, i32, i32, String)
where
   D: DimName,
   DefaultAllocator: Allocator<f64, D>,
{
   let mut iter = 0;
   let mut func calls = 1;
   let mut result = String::new();
   let precision = -eps.log10().round() as usize;
   result.push str(&for-
{}\";\"{}\";\n",
"i", "xi", "yi", "f(x, y)", "si1", "si2", "lambdai", "|yi-y(i-1)|", "|yi-y(i-
1)|", "|fi-f(i-1)|",
"angle((xi, yi), si)", "gi1", "gi2"));
   let mut g = df(&x);
   #[allow(non_snake_case)]
   let mut S = g.clone();
   result.push_str(&for-
mat!("\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"
{}\";\"{}\";\n",
   iter,
   x[0],
   x[1],
   if rev { 1./ f(&x) } else {f(&x)},
   S[0],
   S[1],
   0,
   0,
   0,
   0,
   x.angle(&S),
```

```
g[0],
             g[1]));
             loop {
                          let (lambda, search_func_calls) =
                                       minimize(\&|lambda: f64| -> f64 { f(\&(&x + lambda * \&S)) }, 0., eps);
                          let dx = &(lambda * &S);
                          x += dx;
                          iter += 1;
                          func_calls += search_func_calls;
                          <u>let</u> _g = g;
                          g = df(&x);
                          func_calls += 1;
                          if iter % D::dim() as i32 == 0 {
                                       S = g.clone();
                           } else {
                                       S = g.clone() + (g.norm() / _g.norm()).powi(2) * S;
                          }
                          result.push_str(&for-
\mathsf{mat!}("\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\"\}\";\"\{\}\";\"\{\}\";\"\{\}\";\"\{\}\"\}\";\"\{\}\"\}\"\}
{}\";\"{}\";\n",
                          iter,
                          x[0],
                          x[1],
                          if rev \{ 1./ f(&x) \} else \{ f(&x) \},
                          S[0],
                          S[1],
                          lambda,
                          dx[0].abs(),
                          dx[1].abs(),
                           (f(&x) - f(&(&x - dx))).abs(),
                          x.angle(&S),
                          g[0],
                          g[1]));
                          if S.norm() < eps {</pre>
                                       return (x, func_calls, iter, result);
                          }
             }
}
variable_metric_methods.rs
use nalgebra::allocator::Allocator;
use nalgebra::DefaultAllocator;
use nalgebra::DimName;
use nalgebra::MatrixN;
use nalgebra::VectorN;
```

```
use super::one_dimension_searchers::minimize;
pub fn broyden<D>(
         f: &dyn Fn(&VectorN<f64, D>) -> f64,
         df: &dyn Fn(&VectorN<f64, D>) -> VectorN<f64, D>,
         mut x: VectorN<f64, D>,
         eps: f64,
         rev: bool,
) -> (VectorN<f64, D>, i32, i32, String)
where
         D: DimName,
         DefaultAllocator: Allocator<f64, D> + Allocator<f64, D, D> + Allocator<
tor<f64, nalgebra::U1, D>,
{
         let mut iter = 0;
         let mut func calls = 1;
         let mut result = String::new();
         let precision = -eps.log10().round() as usize;
         result.push str(&for-
mat!("\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"
{}\";\"{}\";\"{}\";\"{}\\";\"{}\\";\\"f}\\";\\"f}\\";\\"f
                    "i", "xi", "yi", "f(x, y)", "si1", "si2", "lambdai", "|yi-y(i-1)|", "|yi-y(i-1)|
1)|", "|fi-f(i-1)|",
"angle((xi, yi), si)", "gi1", "gi2", "etai11", "etai12", "etai21", "etai22"));
          let mut g = df(&x);
          let mut eta = MatrixN::<f64, D>::from_diagonal_element(1.);
         result.push str(&for-
mat!("\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"
{}\";\"{}\";\"{}\";\"{}\";\n",
         iter,
         x[0],
         x[1],
          if rev { 1./ f(&x) } else {f(&x)},
          (&eta * &g)[0],
          (&eta * &g)[1],
          0,
         0,
         0,
         0,
         x.angle(&(&eta * &g)),
         g[0],
         g[1],
         eta[(0, 0)],
          eta[(0, 1)],
         eta[(1, 0)],
         eta[(1, 1)]));
```

```
loop {
        #[allow(non_snake_case)]
        let S = &eta * &g;
        let (lambda, search_func_calls) =
            minimize(\&|lambda: f64| -> f64 { f(\&(&x + lambda * \&S)) }, 0., eps);
        let dx = &(lambda * &S);
        x += dx;
        iter += 1;
        func_calls += search_func_calls;
        let dg = &(df(&x) - &g);
        g += dg;
        func_calls += 1;
        if iter % D::dim() as i32 == 0 {
            eta = MatrixN::<f64, D>::from_diagonal_element(1.);
        } else {
            let dx_eta_dg = &(dx - &eta * dg);
            eta += dx_eta_dg * dx_eta_dg.transpose() / dx_eta_dg.dot(dg);
        }
        result.push_str(&for-
mat!("\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"{}\";\"
{}\";\"{}\";\"{}\";\"{}\";\"{}\";\n",
        iter,
        x[0],
        x[1],
        if rev \{ 1./ f(&x) \} else \{ f(&x) \},
        S[0],
        S[1],
        lambda,
        dx[0].abs(),
        dx[1].abs(),
        (f(&x) - f(&(&x - dx))).abs(),
        x.angle(&S),
        g[0],
        g[1],
        eta[(0, 0)],
        eta[(0, 1)],
        eta[(1, 0)],
        eta[(1, 1)]));
        if g.norm() < eps {</pre>
            return (x, func_calls, iter, result);
        }
   }
}
```

6. Выводы

В случае квадратичной функции разница между методами сопряжённых градиентов и переменной метрики не сильно различна, а выбор начального приближения слабо влияет на сходимость. Сходимость быстрая, но из-за решения задачи минимизации, количество вызовов функции достаточно велико. На сходимость может сильно повлиять точность: например, при использовании сопряжённых градиентов в модификации Флетчера-Ривса с точностью 10^{-5} было больше итераций, чем при других точностях. Причиной этого может быть неоптимальное решение задачи одномерной минимизации при заданной точности.

В случае функции Розенброка сходимость гораздо хуже, а выбор начально точки гораздо из-за наличия нескольких точек локального экстремума. При использовании сопряжённых градиентов в модификации Флетчера-Ривса точность сильно влияет на сходимость: бо́льшая обеспечивает более оптимальное решение задачи одномерной минимизации и, как следствие, меньшее количество итераций. Метод Бройдена показал более хорошую сходимость.

В случае функции из варианта методы показали почти одинаковую, хорошую сходимость при любой точности. Оба метода нашли одинаковый экстремум, но при этом выбор начального приближения оказался критичным: для разных начальных приближений были получены разные результаты. Это связано с наличием нескольких экстремумов у функции.