Distributional Temporal Difference Learning for Finance: Dealing with Leptokurtic Rewards

Shijie Huang, Nitin Yadav & Peter Bossaerts

Time Series and Forecasting Symposium
The University of Sydney
November 2019

Table of Contents

Reinforcement Learning

2 RL in finance: our experiment

Table of Contents

Reinforcement Learning

RL in finance: our experiment

An overview on reinforcement learning (RL) Brain, Mind and Markets Laboratory

An overview on reinforcement learning (RL)

Figure: Atari games (2013) [6]

Figure: Board games (Nature, 2016) [8]

Figure: Poker (Science, 2019) [2]

Figure: RTS games (Nature, 2019) [9]

An overview on reinforcement learning (RL)

- We model the interaction as a stationary Markov Decision Process (MDP): (S, A, R, P)
- S: set of states, A: set of actions
- $R: S \times A \rightarrow F$ is a reward function that maps each state-action pair to a reward that lives in outcome space F
- P(s'|s,a): state transition probability distribution
- Policy $\pi(a|s)$: the probability of action a in state s

Bellman principle

In economics and finance, we intend to find an optimal value of a state V(s) where

$$V(s) = \max_{a} \left\{ \mathbb{E}[R|s, a] + \gamma \mathbb{E}[V(s')|s, a] \right\}$$

 We do not know the functional form of V, nor do we know the expectations

Reinforcement Learning provides a solution: we start from state-action "Q" values

$$Q(s, a) = \left\{ \hat{\mathbb{E}}[R|s, a] + \gamma \hat{\mathbb{E}}[Q(s', a')|s, a] \right\}$$

• The question: how do we update Q values dynamically, and ensure that the optimal Q values converge to the Bellman values?

The SARSA approach

- SARSA stands for "State, Action, Reward, Next State, Next Action"
- When the agent is in state s, she chooses actions a that is the optimal one (according to learned Q values).
- This generates a reward R, next state s' and she uses this to update Q for state s and action a recursively:

$$Q(s, a) \leftarrow Q(s, a) + \alpha (R + \gamma Q(s', a') - Q(s, a)),$$

where α : learning rate (step size) and γ : discount rate

 With "sufficient" exploration (enough visits in all state-action pairs), the value function estimation converges to true value function [10].

Distributional reinforcement learning (2017-) | Brain, Mind and Markets | Babaratory | Babarato

Rather than using recursive estimation, we keep track of the entire **distribution** (history) of realized Q values for a state s and action a and take the weighted average to get an estimate of Q(s, a) (weights = discounting the past)

DRL: How to estimate the distribution of Qs? Min No

• Categorical: parametric densities fit to probability histograms [1]

- Quantile: parametric fitting of quantiles in cumulative density function [4, 5]
- Expectile: parametric fitting of expectiles in cumulative density function [7]

The Q value is then obtained as a simple integration over the estimated distribution (e.g. in categorical approach, $Q(s, a) = \sum_i z_i p_i(s, a)$ where $p_i(s, a)$ is the estimated probability that Q takes the value z_i)

Efficient estimation and DRL

- If we keep track of the entire distribution anyway, why not use the BEST estimation of the expectation?!
- This may be beneficial, particularly in the context of finance, where rewards are heavy tailed (leptokurtosis), and hence the simple average is not an "efficient" estimator.

(Efficient estimator: reaches the Cramér-Rao lower bound, or Chapman-Robbins lower bound [3].)

Leptokurtic reward

- Leptokurtosis: daily returns on the S&P500 index generate a distribution with a kurtosis of 10 or higher ("heavy tails")
- Neither SARSA nor distributional RL are "well-behaved" under leptokurtic rewards (see evidence later)
 - Neither method obtains optimal state-action values Q(s, a) due to frequent reward outliers
- There is more: Q value updating rule uses the sum of two random variables with (asymptotically) very different distributions:
 - Rewards are (always) leptokurtic
 - Realized Q values eventually will only depend on state transitions and actions, so their distributions are NOT leptokurtic (provided state transitions are not)

Our approach: efficient estimation

We utilize efficient estimation from mathematical statistics:

 Instead of processing the reward R directly, we estimate the mean reward, and perform standard SARSA with estimated mean reward.

$$Q(s,a) \leftarrow Q(s,a) + \alpha(\hat{\mathbb{E}}[R|s,a] + \gamma Q(s',a') - Q(s,a))$$

- We use $\hat{\mathbb{E}}[R|s,a]$ instead of (one) realized R; We compare two versions of \hat{E} :
 - **1 d-RL**: sample average of past *n* rewards:

$$\hat{\mathbb{E}}(R(s,a)) = \frac{1}{n} \sum_{i=0}^{n} R_i$$

d-RL-MLE: We use MLE, which reaches the Cramér-Rao lower bound (under certain conditions; if MLE is not efficient, we use something better)

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

MLE

- We need a good assumption about the nature of the reward/return distribution; We use student-t with low degrees of freedom.
- MLE estimator of the mean (reward) is complex; we use the Expectation-Maximization (EM) algorithm
 - ► MLE does not merely "truncate" samples!!
 - Instead, MLE projects outliers towards the middle.

Table of Contents

Reinforcement Learning

2 RL in finance: our experiment

- Two-states, two-actions MDP
- State transition is exogenous: P(s'|s, a) = P(s'|s)

$R_t(s,a) \sim$	Gaussian		Leptokurtic		S&P500	
	s_0	s_1	s_0	s_1	s_0	s_1
a_0	$N_{0,1} + 2$	$N_{0,1} + 1$	$T_{1.1} + 1.5$	$T_{1.1} + 1$	μ_d + 0.5	μ_d
a_1	$N_{0,1} + 1$	$N_{0,1} + 2$	$T_{1.1} + 1$	$T_{1.1} + 1.5$	μ_d	μ_d + 0.5

Table of Contents

Reinforcement Learning

2 RL in finance: our experiment

"Episodes" in Machine Learning

- Step/trial = each frame
- Episode: all steps until pole falls
- Game: the entire play (after pulling up pole again repeatedly).

Pole Balancing

(https://www.youtube.com/watch?v=46wjA6dqxOM)

- 100 game plays (i). $\alpha = 0.1$, constant over all episodes; Agent explores (chooses random action) with probability ε in the first 10 episodes
- We check at the end of each episode *after* exploration whether the agent learns the correct policy (s_0, a_0) and (s_1, a_1) ; If the agent passes all 190 "checks" in a game play i, we deem it one "optimal policy convergence"
- We count how many games the agents obtain such convergence

Results

% of optimal	Gaussian	Student-t	Empirical
policy convergence	N(0,1)	(v = 1.1)	S&P500
SARSA	82%	2%	47%
dis-RL-Cat	80%	4%	-
d-RL	100%	33%	95%
d-RL-MLE	100%	95%	97%

Table: Percentage of game plays where the agent computed the optimal policy at the end of *all* 190 episodes, averaged across two states.

Contamination of estimated distribution by outliers except in the case of d-RL-MLE

 In an environment with leptokurtic rewards, it is likely that a huge outlier reward (+ve/-ve) can dominate Q(s, a) updates, hence causing the robots to switch between optimal and sub-optimal actions overtime.

Conclusions

- Distributional RL can be exploited to obtain the most efficient way to estimate mean action-values across states, and hence, enhance control.
- In a leptokurtic environment, availability of the distribution allows one to estimate the mean in a more efficient way, ensuring that outliers do not cause policy non-convergence or policy instability.
- From a broader perspective, our results show the importance of bringing prior domain-specific knowledge to machine learning algorithms using the tools of mathematical statistics.
 - A non-leptokurtic example: If the reward distribution is shifted-exponential, then the best estimation of the expected reward given an action and a state is to using the running Minimum/Maximum, not the sample average!

References

- M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 449–458. JMLR.org, 2017.
- [2] N. Brown and T. Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):885–890, 2019.
- [3] G. Casella and R. L. Berger. Statistical Inference, volume 2. Duxbury Pacific Grove, CA, 2002.
- [4] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for distributional reinforcement learning. In *Proceedings of the International Conference on Machine Learning*, 2018.
- [5] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning with quantile regression. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.
- [6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
- [7] M. Rowland, M. G. Bellemare, W. Dabney, R. Munos, and Y. W. Teh. An analysis of categorical distributional reinforcement learning. arXiv preprint arXiv:1802.08163, 2018.
- [8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587):484, 2016.
- [9] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.
- [10] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.

