Big Data - 1S 2025 Trabajo Práctico 9

Redes neuronales secuenciales: Credit Risk

Martín Quijano - Martina Coletto

las columnas 11 y 14 no las consideramos ya que no eran relevantes

status-cuenta	A14 = 2, A11 = 1, A12 = 3, A13 = 4	
duracion-meses	≤10 = 1, ≤20 = 2, ≤30 = 3, ≤40 = 4, >40 = 5	
credit-history	A30 = 1, A31 = 2, A32 = 3, A33 = 4, A34 = 5	
credit-purpose	A49 = 1, A48 = 2, A47 = 3, A46 = 4, A45 = 5, A44 = 6, A43 = 7, A42 = 8, A41 = 9, A40 = 10, A410 = 11	
credit-amount	Sin transformar	
saving-account-amount	A65 = 1, A61 = 2, A62 = 3, A63 = 2, A64 = 1	
antigüedad-trabajo	A75 = 1, A74 = 2, A73 = 3, A72 = 4, A71 = 5	
tasa-interés	Sin transformar	
estado-civil	A91 = 1, A92 = 2, A93 = 3, A94 = 4, A95 = 5	
garante	A101 = 3, A102 = 2, A103 = 1	
propiedades	A124 = 4, A123 = 3, A122 = 2, A121 = 1	

pasamos las categorias a numeros, manteniendo los ordenes numericos donde se podia (por ejemplo, en edad los dejamos de menor a mayor)

el objetivo de esto era hacer graficos que tengan labels que se puedan leer y entender mas facil

edad	Menor a 30 = 1, Mayor o igual a 30 = 0
alojamiento	A153 = 1, A151 = 2, A152 = 3
cantidad-créditos	Sin transformar
trabajo	A171 = 4, A172 = 3, A173 = 2, A174 = 1
cantidad-manutención	Sin transformar
teléfono	A191 = 1, A192 = 0
trabajo-doméstico	A201 = 0, A202 = 1
Variable objetivo (Rechazo)	1 = 0, 2 = 1

Vemos que la muestra esta bastante desbalanceada, siendo 0 no rechazar y 1 es rechazar

Aca vemos como algunas de las variables tienen muy poca immportancia

Aca vemos como algunas de las variables tienen muy poca immportancia

Aca vemos como algunas de las variables tienen muy poca immportancia

hacemos one hot encoding sobre las variables categoricas, ya que no queriamos que el modelo interprete relaciones lineales entre los valores de las variables

El objetivo de este modelo es minimizar el riesgo.

El caso decia que la perdida de un falso negativo (darle un credito a un mal cliente) era de 5, mientras que la perdida de un falso positivo (no darle un credito a un buen cliente) es de 1.

Lo que hicimos fue considerar la cost matrix que usa el banco.

Esto implica que cada persona a la que le damos un credito pero no es capaz de pagarlo, lo consideramos como un costo 5.

Y a la gente que no le damos un credito cuando deberiamos haberle dado un credito es un costo de 1.

Esto implica que el mejor modelo es un modelo que minimiza esta funcion de perdida.

En base a eso, definimos nuestra funcion de loss y hacemos que el modelo la considere en el compile

Arquitectura detallada

capa	neuronas	Activacion
entrada	-	
capas ocultas	64	Relu
capa oculta	32	Relu
capa de salida	1	Sigmoid

vemos que el accuracy es de 0.72, pero el recall para rechazo (1) es relativamente bajo

Lo que hicimos fue dividir los inputs entre variables numericas y las categoricas. Como las categoricas tienen one hot encoding, vemos que son 57 variables del one hot contra 4 variables numericas.

Cada input layer despues le hacemos bacth normalization, activacion y dropout. Una vez que tenemos eso, concatenamos ambas.

Una vez que tenemos la capa concatenada, tenemos dos capas ocultas. El circuito es capa oculta --> batch normalization --> activacion --> dropout para ambas capas.

El modelo termina con una capa sigmoid que predice la probabilidad de rechazo = 1

Vemos que hay muy pocos falsos negativos, y que hay una cantidad significativa de verdaderos positivos y de verdaderos negativos.

El modelo no va a buscar hacer un rechazo de todo porque no darle un prestamo a alguien que se lo merece tiene un costo.

Best CR NN (Min Cost 83) - Thr 0.60

	precision	recall	f1-score	support
No Rechazo (0)	0.929	0.657	0.770	140.0
Rechazo (1)	0.525	0.883	0.658	60.0
macro avg	0.727	0.770	0.714	200.0
weighted avg	0.808	0.725	0.736	200.0
accuracy	nan	nan	0.725	200.0
macro avg	0.727	0.770	0.714	200.0
weighted avg	0.808	0.725	0.736	200.0

vemos que el recall para rechazo es 0.883, mientras que el accuracy es de 0.725.

Nuestro foco no fue priorizar ni recall de 1 o accuracy, sino reducir la funcion de loss

en el codigo iteramos el threshold para decidir si consideramos rechazo o no. Elegimos el valor que minimiza la funcion de loss. En este caso fue 0.6

Aca vemos los valores para todos los valores del threshold.

Como vemos, para 0.6 el valor de recall para rechazo (1) no es el mas alto, para 0.6 es 0.88 pero vemos que si bajasemos el threshold habria mas recall para rechazo (1), pero empeora la funcion de loss

Lo que vemos es que el modelo funcional da mejores metricas, por lo que hacer este modelo fue mejor.

El modelo funcional mejoro el recall de 1 (de 0.717 a 0.883), pero no mejoro el accuracy.

Si bien esto es algo positivo, lo que nos interesaba era minimizar la funcion de perdida, llevandola de 124 en el modelo secuencial a 83 en el modelo funcional

