On the representation of sphere-like surfaces with splines

Yoann Pradat

V. Uhlmann's lab

June 3, 2019

- Introduction
- I/ Introduction to interpolation
 - I/1 Polynomial interpolation
 - I/2 Piecewise-polynomial interpolation
- 3 II/ Introduction to spline curves
 - II/1 Cardinal B-splines
 - II/2 Schoenberg theorems
 - II/3 Ellipse-preserving snakes
- 4 III/ Representation of spline surfaces
 - III/1 Extension of Conti's scheme
 - III/2 The twist vector
- 5 Summary and future research

Framework and motivation

Unkown function $g: \mathbb{R}^d \to \mathbb{R}^d, \mathbb{R}^{d+1}$ to be reconstructed from **finite** set of values

- ② Possibly $\partial^{\alpha} g(\mathbf{t_1}), \dots, \partial^{\alpha} g(\mathbf{t_n})$ with $\alpha \in \mathbb{N}^d$

General model for the approximation f to g

$$f(t) = \sum_{k} c_k^{\mathsf{T}} \Phi(t - t_k) \tag{1}$$

Example applications

- 1D $g: \mathbb{R} \to \mathbb{R}$. Known values $g(0), \dots, g(9)$.
- 2D $r = g : \mathbb{R} \to \mathbb{R}^2$. Known values $r(0), \dots, r(3), \partial^1 r(0), \dots, \partial^1 r(3)$ 3D $\sigma = g : \mathbb{R}^2 \to \mathbb{R}^3$. Known values $\sigma(k, l), \partial^{1,0} \sigma(k, l), \partial^{0,1} \sigma(k, l), \partial^{1,1} \sigma(k, l)$.

Example 1D

Example 2D

Example 3D

Lagrange polynomials

Denote $\Pi_{\leq k}$ set of polynomials of order k (vector space). Obj: reconstruct $g: \mathbb{R} \to \mathbb{R}$ from $g(t_1), \ldots, g(t_n)$.

Theorem

Given n sites (not necessarily distinct), there exists a unique f in $\Pi_{< n}$ that agrees with g at $(t_i)_1^n$.

Simply choose *n* big enough?

Take sufficiently many points and all is well?

Runge example

Runge example

Chebychev sites are good.
$$[a..b]$$
 choose $t_i = [a+b-(a-b)\cos\left(\frac{\pi(2i-1)}{2n}\right)]/2$ $g(x) = \frac{1}{1+25x^2}$ and pol. interp. at Chebychev sites

Jackson's theorem

Theorem

If $g \in C^r([a..b])$ and n > r + 1 then

$$\operatorname{dist}(g, \Pi_{\leq n}) \leq \operatorname{const}_r\left(\frac{b-a}{n-1}\right)^r w(g^{(r)}, \frac{b-a}{2n-1-r}) \tag{2}$$

Idea: break b - a into l pieces $x_{k+1} - x_k$ and do piecewise pol. approximation.

Pros: multiple small polynomials instead of 1 big polynomial.

Cons: junction at breaks?

Piecewise-linear

Let
$$t=(t_i)_1^n$$
.

- $\Pi_{\leq k, t}$ set of pp. of order k with breaks at t_2, \ldots, t_{n-1} .
- $S_{2,t} = \Pi_{<2,t} \cap C^0$.

Piecewise-linear

Let $t = (t_i)_1^n$.

- $\Pi_{\leq k,t}$ set of pp. of order k with breaks at t_2,\ldots,t_{n-1} .
- $S_{2,t} = \Pi_{<2,t} \cap C^0$.

Order 2 interpolant operator $I_2: g \mapsto I_2g \in S_{2,t}$

$$I_2g(t) = \sum_{i=1}^{n} g(t_i)H_i(t)$$
 (3)

 (H_1,\ldots,H_n) is basis for $\$_{2,t}$

- Introduction
- 2 I/ Introduction to interpolation
 - I/1 Polynomial interpolation
 - I/2 Piecewise-polynomial interpolation
- 3 II/ Introduction to spline curves
 - II/1 Cardinal B-splines
 - II/2 Schoenberg theorems
 - II/3 Ellipse-preserving snakes
- 4 III/ Representation of spline surfaces
 - III/1 Extension of Conti's scheme
 - III/2 The twist vector
- 5 Summary and future research

The B-spline basis

Definition

The cardinal B-spline of order n (and knot multiplicity 1) is given by recursive relation

$$B^n = B^1 * B^1 * \dots * B^1 \quad (n \text{ times})$$
 (4)

with
$$B^1(t) = \begin{cases} 1 & \text{if } 0 \le 1 < 1 \\ 0 & \text{else} \end{cases}$$

Properties

Good properties

- ② B^n is zero outside [0, n]
- **4** (Riesz-basis) $\exists D_n \in (0,1)$ such that $\forall c$ bounded,

$$|D_n||\boldsymbol{c}|| \leq \|\sum_{k \in \mathbb{Z}} c[k]B^n(.-k)\| \leq \|\boldsymbol{c}\|$$

$$\hat{\mathbf{S}}^n(w) = \left(\frac{1 - e^{-jw}}{jw}\right)^n$$

Spline curve

Definition

A (cardinal) **spline** or order n (and knot multiplicity 1) is a linear combination of $\{B^n(.-k)\}$

$$f(t) = \sum_{k \in \mathbb{Z}} c[k] B^n(t - k)$$
 (5)

with $c[k] \in \mathbb{R}$. We denote $S_{n,1}$ the set of all such functions.

Spline curve

Definition

A (cardinal) **spline** or order n (and knot multiplicity 1) is a linear combination of $\{B^n(.-k)\}$

$$f(t) = \sum_{k \in \mathbb{Z}} c[k]B^n(t-k)$$
 (5)

with $c[k] \in \mathbb{R}$. We denote $S_{n,1}$ the set of all such functions.

Remarks

- (c[k]) is the sequence of **control points**.
- ② $S_{n,1} \subset \Pi_{< n,\mathbb{Z}} \cap \mathcal{C}^{n-2}$ (in fact these sets are equal!)
- **1** Denote $S_{n,r}$ splines of order n with knots of multiplicity r.
- **3** A **spline curve** is a vector-valued spline i.e $c[k] \in \mathbb{R}^d$ (d=2,3 usually)

Dream pursued

Find approximation scheme f interpolating (y_k)

$$f(t) = \sum_{k} \mathbf{y}_{k}^{T} \phi(t - t_{k})$$
 (6)

and ϕ retains good properties of splines (partition-unity, Riesz-basis, compact support, subdivision).

Hermite interpolation

Let S a vector space. C.H.I.P $(y, \ldots, y^{(r-1)}, S)$ is solved if $\exists f \in S$ such that

$$\forall s = 0, \dots, r - 1, \forall k \in \mathbb{Z} \qquad f^{(s)}(k) = y_k^{(s)} \tag{7}$$

Hermite interpolation

Let S a vector space. C.H.I.P $(y, \ldots, y^{(r-1)}, S)$ is solved if $\exists f \in S$ such that

$$\forall s = 0, \dots, r - 1, \forall k \in \mathbb{Z} \qquad f^{(s)}(k) = y_k^{(s)} \tag{7}$$

Theorem

n even, $1 \le r \le n/2$. The C.H.I.P $(y, \ldots, y^{(r-1)}, S_{n,r} \cap F_{\gamma,r} \text{ (resp. } \mathcal{L}_{p,r}))$ has a unique solution iif $y^{(s)} \in Y_{\gamma} \text{ (resp. } I_p)$. In that case

$$f(t) = \sum_{k \in \mathbb{Z}} y_k L_{n,r,0}(t-k) + \dots, y_k^{(r-1)} L_{n,r-1}(t-k)$$
 (8)

Remarks

- **1** $L_{n,r,s}$ are elements of $S_{n,r}$. Calculated by solving system of n-r equations.
- ② $f \in S_{n,r}$ is a spline of order n

Hermite snakes (Uhlmann 2016)

```
<u>Data</u>: at M sites \{r[k]\}_{k=0}^{M-1}, \{r'[k]\}_{k=0}^{M-1}.

<u>Obj</u>: Continuous representation of the curve r(t) = (r_1(t), r_2(t))
```

Hermite snakes (Uhlmann 2016)

<u>Data</u>: at M sites $\{r[k]\}_{k=0}^{M-1}, \{r'[k]\}_{k=0}^{M-1}$.

Obj: Continuous representation of the curve $r(t) = (r_1(t), r_2(t))$

Schoenberg for n = 4 and r = 2

$$r(t) = \sum_{k \in \mathbb{Z}} r[k]\phi_1(t-k) + r'[k]\phi_2(t-k)$$
 (9)

 $\phi_1 = L_{4,2,0}, \phi_2 = L_{4,2,1}$ (polynomials order 4). $r_1, r_2 \in \mathcal{C}^{n-r-1} = \mathcal{C}^1$.

Hermite snakes (Uhlmann 2016)

Fig. 11. Segmentation of differential-interference-contrast images of animal pancreatic acinar cells using closed Hermite snakes. From left to right: original image, snake initialization, automated segmentation result using a classical spline-snake [14], automated segmentation result using the Hermite snake.

Ellipse-preserving Hermite (Conti 2015)

<u>Data</u>: at M sites $\{r[k]\}_{k=0}^{M-1}, \{r'[k]\}_{k=0}^{M-1}$. <u>Obj</u>: Continuous representation of the curve $r(t) = (r_1(t), r_2(t))$. Good basis and reproduction of unit circle.

Ellipse-preserving Hermite (Conti 2015)

<u>Data</u>: at M sites $\{r[k]\}_{k=0}^{M-1}, \{r'[k]\}_{k=0}^{M-1}$.

<u>Obj.</u> Continuous representation of the curve $r(t) = (r_1(t), r_2(t))$. Good basis and **reproduction of unit circle.**

$$r(t) = \sum_{k \in \mathbb{Z}} r[k]\phi_1(t-k) + r'[k]\phi_2(t-k)$$
 (10)

with $\phi_i(t) = \left(a_i(t) + b_i(t)t + c_i(t)e^{jwx} + d_i(t)e^{-jwx}\right)\chi_{[-1,1]}$ and $w = \frac{2\pi}{M}$ (exponential polynomials).

Remark: here the curve is said to be an exponential spline curve

Ellipse-preserving Hermite (Conti 2015)

Reproducing sinusoids with M coefficients

$$\cos(2\pi t) = \sum_{k \in \mathbb{Z}} \cos(\frac{2\pi k}{M})\phi_1(Mt - k) - \frac{2\pi}{M} \sin(\frac{2\pi k}{M})\phi_2(Mt - k)$$
 (11)

$$\sin(2\pi t) = \sum_{k \in \mathbb{Z}} \sin(\frac{2\pi k}{M})\phi_1(Mt - k) + \frac{2\pi k}{M}\cos(\frac{2\pi k}{M})\phi_2(Mt - k)$$
 (12)

June 3, 2019

- Introduction
- 2 I/ Introduction to interpolation
 - I/1 Polynomial interpolation
 - I/2 Piecewise-polynomial interpolation
- 3 II/ Introduction to spline curves
 - II/1 Cardinal B-splines
 - II/2 Schoenberg theorems
 - II/3 Ellipse-preserving snakes
- 4 III/ Representation of spline surfaces
 - III/1 Extension of Conti's scheme
 - III/2 The twist vector
- 5 Summary and future research

The case of the unit sphere

The sphere surface parametrized by $g = \sigma : \mathbb{R}^2 \to \mathbb{R}^3$

$$\sigma(u,v) = \begin{bmatrix} \cos(2\pi u)\sin(\pi v) \\ \sin(2\pi u)\sin(\pi v) \\ \cos(\pi v) \end{bmatrix} \quad (u,v) \in [0,1]^2$$
 (13)

From 2D to 3D for tensor-product surfaces

<u>Data</u>: M_1 control points on latitudes, $M_2 + 1$ control points on longitudes.

At each point 4 parameters σ , $\partial^{1,0}\sigma$, $\partial^{0,1}\sigma$, $\partial^{1,1}\sigma$.

Obj: Continuous representation of $g: \mathbb{R}^2 \to \mathbb{R}^3$

From 2D to 3D for tensor-product surfaces

<u>Data</u>: M_1 control points on latitudes, M_2+1 control points on longitudes. At each point 4 parameters σ , $\partial^{1,0}\sigma$, $\partial^{0,1}\sigma$, $\partial^{1,1}\sigma$.

Obj: Continuous representation of $g:\mathbb{R}^2 \to \mathbb{R}^3$

$$\sigma(u,v) = \sum_{k=0}^{M_{1}-1} \sum_{l=0}^{M_{2}} c_{1}[k,l] \phi_{1,w_{1},per}(M_{1}u-k) \phi_{1,w_{2}}(M_{2}v-l)$$

$$+ \sum_{k=0}^{M_{1}-1} \sum_{l=0}^{M_{2}} c_{2}[k,l] \phi_{1,w_{1},per}(M_{1}u-k) \phi_{2,w_{2}}(M_{2}v-l)$$

$$+ \sum_{k=0}^{M_{1}-1} \sum_{l=0}^{M_{2}} c_{3}[k,l] \phi_{2,w_{1},per}(M_{1}u-k) \phi_{1,w_{2}}(M_{2}v-l)$$

$$+ \sum_{k=0}^{M_{1}-1} \sum_{l=0}^{M_{2}} c_{4}[k,l] \phi_{2,w_{1},per}(M_{1}u-k) \phi_{2,w_{2}}(M_{2}v-l)$$

From 2D to 3D for tensor-product surfaces

$$c_1[k, l] = \sigma(\frac{k}{M_1}, \frac{l}{M_2})$$

$$c_3[k, l] = \frac{1}{M_1} \frac{\partial \sigma}{\partial u}(\frac{k}{M_1}, \frac{l}{M_2})$$

$$\begin{split} c_1[k,l] &= \sigma(\frac{k}{M_1},\frac{l}{M_2}) & c_2[k,l] &= \frac{1}{M_2} \frac{\partial \sigma}{\partial \nu} (\frac{k}{M_1},\frac{l}{M_2}) \\ c_3[k,l] &= \frac{1}{M_1} \frac{\partial \sigma}{\partial u} (\frac{k}{M_1},\frac{l}{M_2}) & c_4[k,l] &= \frac{1}{M_1 M_2} \frac{\partial^2 \sigma}{\partial u \partial \nu} (\frac{k}{M_1},\frac{l}{M_2}) \end{split}$$

Mysterious twist vector

Summary and what next

Take-away

- How to go from discrete to continuous
- What are spline curves
- What is a good basis

Summary and what next

Take-away

- 4 How to go from discrete to continuous
- What are spline curves
- What is a good basis

Ongoing

- Estimation of not intuitive parameters
- Second-order Hermite interpolation
- What basis for what purpose