Colle 0 Disque déséquilibré – Sujet

Soit le rotor **(1)** défini ci-contre. Il est constitué d'un arbre de masse négligeable en liaison pivot par rapport à un bâti **(0)**. Sur cet arbre est monté, en liaison complète, un disque de masse M, de rayon R et d'épaisseur H. Le repère $\mathcal{R}_1' = \left(G; \overrightarrow{x_1'}, \overrightarrow{y_1'}, \overrightarrow{z_1'}\right)$ est attaché à ce solide.

La base $\mathcal{B}'_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ se déduit de $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ par une rotation d'angle α autour de $\overrightarrow{z_1} = \overrightarrow{z_1}$.

La base $\mathcal{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ se déduit de $\mathcal{B}_0 = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ par une rotation d'angle θ autour de $\overrightarrow{x_1} = \overrightarrow{x_0}$.

Enfin, le rotor **1** est entrainé par un moteur (non représenté) fournissant un couple noté $C_m \overrightarrow{x_0}$. Le montage de ce disque présente deux défauts :

- ightharpoonup un défaut de perpendicularité caractérisé par l'angle α ;
- ▶ un défaut d'excentricité représenté par la cote *e*.

Question 1 Déterminer la forme de la matrice d'inertie du cylindre en C dans la base \mathcal{B}'_1 .

Question 2 Déterminer les éléments de réduction en A du torseur dynamique de **(1)** dans son mouvement par rapport à \mathcal{R}_0 .

Question 3 Appliquer le PFD pour déterminer les inconnues de liaison.

Équipe PT – PT★ La Martinière Monplaisir.

C1-05

C2-09

