Problem 1. Let f be a Borel function on [0,1] with the following property: for each $\epsilon > 0$, there exists $p \in (0,\epsilon)$ such that

$$f(x) = f(x+p), \ 0 \le x \le 1-p$$

The goal of this problem is to show that such f is constant almost everywhere.

(i). Show that it suffices to prove: For every Borel set $B \subseteq \mathbb{R}$,

$$\mathcal{L}(f^{-1}(B)) \in \{0, 1\}$$

where \mathcal{L} is the Lebesgue measure on the unit interval.

- (ii). For every Borel set B and $x \in [0,1]$, prove that $f^{-1}(B)$ and [0,x] is independent with respect to \mathcal{L} . Conclude that f is constant almost everywhere.
 - (iii). Give an example showing that f need not be constant.

Proof: (i). For fixed $y \in \mathbb{R}$ and consider the sequence $A_n := (y - 1/n, y + 1/n) \in \mathcal{B}$ for $n \in \mathbb{N}$, then

$$\mathcal{L}\left(f^{-1}(y)\right) = \mathcal{L}\left(f^{-1}\left(\bigcap_{n\in\mathbb{N}}A_n\right)\right) = \mathcal{L}\left(\bigcap_{n\in\mathbb{N}}f^{-1}(A_n)\right)$$

by continuity of measure and the fact that each $f^{-1}(A_n)$ can only take measure 0 or 1,

$$\mathcal{L}(f^{-1}(y)) = \lim_{n \to \infty} \mathcal{L}(f^{-1}(A_n))$$

equals either 0 or 1. Suppose that there exists $y_1 \neq y_2$ such that $\mathcal{L}(f^{-1}(y_1)) = \mathcal{L}(f^{-1}(y_2)) = 1$, then $\mathcal{L}(f^{-1}(y_1) \cup f^{-1}(y_2)) = 2 > \mathcal{L}[0,1] = 1$, which is absurd. Thus, we have for some unique $y \in \mathbb{R}$ such that $\mathcal{L}(f^{-1}(y)) = 1$, which indicates that f is constant y almost everywhere on [0,1].

(ii). Fix $x \in [0, 1]$ and B Borel set, by property of f, we can find some ϵ and corresponding $p \in (0, \epsilon)$ such that p < 1 - x. Define N by $Np \le 1 \le (N + 1)p$ and denote $f^{-1}(B)$ as A, then

$$\mathcal{L}(A) = \mathcal{L}(A \cap [0, Np]) + \mathcal{L}(A \cap [Np, 1]) \le N\mathcal{L}(A \cap [0, p]) + p =: N\delta + p$$

Also, define m by $mp \le x \le (m+1)p$, then

$$\mathcal{L}(A \cap [0, x]) = \mathcal{L}(A \cap [0, mp]) + \mathcal{L}(A \cap [mp, x]) =: m\delta + \gamma$$

where $0 < \gamma < p$. Since $m = \frac{x}{p} - \left\{\frac{x}{p}\right\}$, where $\left\{\frac{x}{p}\right\}$ is the decimal part of $\frac{x}{p}$, then

$$\left| m\delta + \gamma - \frac{x\delta}{p} \right| \le \left| m\delta - \frac{x\delta}{p} \right| + p \le \delta + p \le 2p$$

Also, we can do the following estimate:

$$\left| \mathcal{L}(A) - \frac{\delta}{p} \right| \le \left| \mathcal{L}(A) - \frac{\mathcal{L}(A)}{Np} \right| + \left| \frac{\mathcal{L}(A)}{Np} - \frac{\delta}{p} \right|$$

$$\le \left| \frac{1}{NP} - 1 \right| + \frac{1}{N}$$

$$\le \frac{1}{1-p} - 1 + \frac{1}{N} \le \frac{p}{1-p} + \frac{p}{1-p} \le 2p + 2p = 4p$$

for p small. Hence

$$|\mathcal{L}(A \cap [0, x]) - x\mathcal{L}(A)| \le \left| m\delta + \gamma - \frac{x\delta}{p} \right| + \left| \frac{x\delta}{p} - x\mathcal{L}(A) \right| \le 2p + 4px \le 6p$$

we can let $p \to 0$ by choosing $\epsilon \to 0$ and we obtain the desired result.

Further, suppose that for fixed Borel set B, $\mathcal{L}(f^{-1}(B) \cap [0,x]) = x\mathcal{L}(f^{-1}(B))$, then consider it as function f of x, we can write alternatively

$$\int_0^x \mathbf{1}_{f^{-1}(B)} d\mathcal{L} = x \cdot \mathcal{L}(f^{-1}(B))$$

by taking derivative on x, we have for almost every $x \in [0,1]$,

$$\mathbf{1}_{f^{-1}(B)}(x) = \mathcal{L}(f^{-1}(B))$$

then $\mathcal{L}(f^{-1}(B))$ can only take value 0 or 1, which implies that f is constant.

(iii). Consider the Dirichlet function

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is irrational} \\ 0 & \text{if } x \text{ is rational} \end{cases}$$

then for arbitrary $\epsilon > 0$, there exists a rational number $p \in (0, \epsilon)$ such that for x rational, f(x) = f(x+p) = 0 since x+p is also rational; for x irrational, f(x) = f(x+p) = 1 since x + p remains irrational.

Problem 2. Let $F: \mathbb{R} \to [0,1]$ be a function satisfying:

- (i). F is monotone increasing.
- (ii). $\lim_{x \to \infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$. (iii). F is right-continuous.

The goal is to prove that there exists a unique probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$\mu((-\infty, x]) = F(x), \ \forall x$$

- (i). Show that if μ exists, then it is unique.
- (ii). Define $G:(0,1)\to\mathbb{R}$ by

$$G(y) = \inf\{x \in \mathbb{R} : F(x) \ge y\}$$

Show that G is non-decreasing, that

$$F(x) \ge y \iff x \ge G(y)$$

and deduce that G is left-continuous.

(iii). Let $\Omega = (0,1)$, $\mathcal{F} = \mathcal{B}((0,1))$, and let \mathbb{P} be the restriction of the Lebesgue measure. Show that X := G is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$, and that its image measure $\mu_X := \mathbb{P} \circ X^{-1}$ satisfies

$$\mu_X((-\infty, x]) = \mathbb{P}(X \le x) = F(x).$$

- **Proof:** (i). Consider the π -system $\pi(\mathbb{R}) := \{(-\infty, x] : x \in \mathbb{R}\}$, then suppose that there exist two measure μ, ν satisfying $\mu((-\infty, x]) = \nu((-\infty, x]) = F(x)$. Since two measures agree on a π -system, we have $\mu = \nu$, proving uniqueness.
- (ii). Suppose that $F(x) \geq y$, then $x \in \{x \in \mathbb{R} : F(x) \geq y\} \geq \inf\{x \in \mathbb{R} : F(x) \geq y\} = G(y)$. Conversely, if $x \geq G(y)$, then by monotonicity of F, $F(x) \geq y$. Since G is non-decreasing function, $\lim_{y \to y_0^-} G(y) \leq G(y_0)$. If $\lim_{y \to y_0^-} G(y) = G(y_0)$, then there is nothing to

prove; If $\lim_{y \to y_0^-} G(y) < G(y_0)$, then there exists x such that $\lim_{y \to y_0^-} G(y) \le x < G(y_0)$, which

means that $x \ge G(y)$ for all $y < y_0$. Hence $F(x) \ge y$ for all $y < y_0$, then $F(x) \ge y_0$, which implies $x \ge G(y_0)$, leading to a contradiction. To conclude, G is left-continuous.

(iii). Consider $\{G(y) \leq b\}$ for arbitrary $b \in \mathbb{R}$, which can be equivalently written as $\{y: 0 < y \leq F(b)\} \in \mathcal{B}((0,1))$, hence G is a random variable. Further, $\mu_X((-\infty,x]) = \mathbb{P}(X^{-1}(x)) = \mathbb{P}((0,F(x))) = F(x)$.

Problem 3. For a fixed $d \geq 1$, let E be the set of edges of the lattice \mathbb{Z}^d , i.e.

$$E := \{ \{x, y\} : x, y \in \mathbb{Z}^d \text{ and } ||x - y||_1 = 1 \}$$

For a fixed $p \in [0,1]$, let $\{X_e\}_{e \in E}$ be an independent identically distributed sequence of random variables on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying

$$\mathbb{P}(X_e = 1) = p, \ \mathbb{P}(X_e = 0) = 1 - p$$

We say that an edge $e \in E$ is open if $X_e = 1$. For fixed two vertices x and y, an open path is a sequence of pairwise distinct vertices x_0, x_1, \ldots, x_k such that $x_0 = x$, $x_k = y$, and for every $0 \le i < k$, $||x_i - x_{i+1}||_1 = 1$ and each edge $\{x_i, x_{i+1}\}$ is open. Two vertices x and y are connected if there exists an open path from x to y. A connected open component is a maximal connected subset of open edges.

For $x \in \mathbb{Z}^d$, let C_x be the connected open component containing x. Denote by $|C_x|$ the number of vertices in C_x . Define the events

$$J_x := \{ |C_x| = \infty \}, \ I := \{ \omega \in \Omega : \exists \text{ infinite open connected component in } \omega \} = \bigcup_{x \in \mathbb{Z}^d} J_x$$

- (i). Prove that $I \in \mathcal{F}$ and $J_x \in \mathcal{F}$ for every $x \in \mathbb{Z}^d$.
- (ii). Consider the event

 $I_n := \{ the \ restriction \ of \ (X_e)_{e \in E} \ to \ E \setminus E_{B(n)} \ contains$ an infinite open connected component $\}$

where $E_{B(n)}$ is the set of edges in B(n). Prove that $I_n = I$ and conclude

$$I \in \sigma(X_e : e \in E \setminus E_{B(n)}) \ \forall n \ge 1$$

(iii). Prove that $\mathbb{P}(I) \in \{0, 1\}$.

Proof: (i). Let $B(n) = [-n, n]^d \cap \mathbb{Z}^d$, and

 $A_n = \{0 \text{ is connected by an open path to the set } B(n)^c\}$

then we see that $A_n \in \mathcal{F}$ since it contains finite edges, and since $J_0 = \bigcap_n A_n$, $J_0 \in \mathcal{F}$. J_x is simply a translation, then $J_x \in \mathcal{F}$ for any $x \in \mathbb{Z}^d$. Further, we have $I = \bigcup_{x \in \mathbb{Z}^d} J_x \in \mathcal{F}$.

(ii). $I_n \subseteq I$ since $(X_e)_{e \in E}$ contains an infinite open connected component in E immediately after knowing that it also contains one in the restriction $E \setminus E_{B(n)}$. Conversely, Suppose $(X_e)_{e \in E}$ contains an infinite connected component in E, if the connected component doesn't intersect $E_{B(n)}$, then there is nothing to prove, otherwise since $E_{B(n)}$ contains finite edges at most, then consider the connected components cut by B(n), one of them must be infinite, thus $I \subseteq I_n$.

(iii). Since $I \in \sigma(X_e : e \in E \setminus E_{B(n)})$ for all $n \ge 1$, then $I \in \bigcap_n \sigma(X_e : e \in E \setminus E_{B(n)})$, and by Kolmogorov's 0-1 law, $\mathbb{P}(I) = \{0, 1\}$.

Problem 4. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent identically distributed exponential random variables with parameter λ (i.e. with distribution function $F(x) = \mathbb{P}(X_n \leq x) = 1 - e^{-\lambda x}$). Prove that with probability one,

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = \frac{1}{\lambda}$$

Proof: We consider $\mathbb{P}(X_n > \mu \log n)$ for $\mu > 0$,

$$\mathbb{P}(X_n > \mu \log n) = 1 - \mathbb{P}(X_n \le \mu \log n) = e^{-\lambda \mu \log n} = \frac{1}{n^{\lambda \mu}}$$

By the Borel-Contelli lemma,

$$\mathbb{P}(X_n > \mu \log n \text{ i.o.}) = \begin{cases} 1 & \text{if } \lambda \mu \le 1\\ 0 & \text{if } \lambda \mu > 1 \end{cases}$$

Pick $\mu = \frac{1}{\lambda}$, we have

$$\mathbb{P}\left(\limsup_{n} \frac{X_n}{\log n} \ge \frac{1}{\lambda}\right) \ge \mathbb{P}\left(\frac{X_n}{\log n} > \frac{1}{\lambda} \text{ i.o.}\right) = 1$$

Now pick $\mu = \frac{1}{\lambda} + \frac{1}{k}$ for any $k \in \mathbb{N}^+$, then $\mu \lambda > 1$ and

$$\mathbb{P}\left(\frac{X_n}{\log n} > \frac{1}{\lambda} + \frac{1}{k} \text{ i.o.}\right) = 0$$

We also notice that

$$\left\{\limsup_{n} \frac{X_n}{\log n} > \frac{1}{\lambda}\right\} \subseteq \bigcup_{k} \left\{\frac{X_n}{\log n} > \frac{1}{\lambda} + \frac{1}{k} \text{ i.o.}\right\} =: \bigcup_{k} A_k$$

Since for fixed $\omega \in \left\{ \limsup_{n} \frac{X_n}{\log n} > \frac{1}{\lambda} \right\}$, suppose we have $\omega \notin \bigcup_{k} \left\{ \frac{X_n}{\log n} > \frac{1}{\lambda} + \frac{1}{k} \text{ i.o.} \right\}$, then for all $k \in \mathbb{N}$, there exists n such that for all m > n, $\frac{X_n}{\log n} \leq \frac{1}{\lambda} + \frac{1}{k}$, let $k \to \infty$, we have $\limsup_{n} \frac{X_n}{\log n} \leq \frac{1}{\lambda}$. However, $\mathbb{P}(A_k) = 0$ for each k, then $\mathbb{P}\left(\limsup_{n} \frac{X_n}{\log n} > \frac{1}{\lambda}\right) = 0$, implying that

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{X_n}{\log n} = \frac{1}{\lambda}\right) = 1 - 0 = 1$$

Problem 5. Let s > 1, $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ and $\mathbb{P}(X = n) = \frac{n^{-s}}{\zeta(s)}$. For $m \ge 1$, let E_m be the event that X is divisible by m.

- (i). Prove that the events E_p are independent for p prime.
- (ii). Prove Euler's formula

$$\frac{1}{\zeta(s)} = \prod_{p \ prime} \left(1 - \frac{1}{p^s}\right)$$

probabilistically.

(iii). A number n is squar-free if there is no natural number m > 1 such that m^2 divides n. Prove that the probability that X is square-free is $\frac{1}{\zeta(2s)}$.

Proof: (i). We want to show that

$$\mathbb{P}(E_{p_1} \cap E_{p_2}) = \mathbb{P}(E_{p_1}) \cdot \mathbb{P}(E_{p_2})$$

for any $p_1 \neq p_2$ primes. We also notice that

$$\mathbb{P}(E_{p_1} \cap E_{p_2}) = \sum_{n=1}^{\infty} \mathbb{P}(X = np_1p_2) = \sum_{n=1}^{\infty} \frac{(p_1p_2n)^{-s}}{\zeta(s)}$$

and

$$\mathbb{P}(E_{p_1}) \cdot \mathbb{P}(E_{p_2}) = \sum_{n=1}^{\infty} \frac{(p_1 n)^{-s}}{\zeta(s)} \sum_{n=1}^{\infty} \frac{(p_2 n)^{-s}}{\zeta(s)} = \frac{(p_1 p_2)^{-s}}{\zeta(s)^2} \left(\sum_{n=1}^{\infty} n^{-s}\right)^2$$
$$= \sum_{n=1}^{\infty} \frac{(p_1 p_2 n)^{-s}}{\zeta(s)}$$

and the conclusion follows from induction.

(ii). We see that

$$\frac{1}{\zeta(s)} = \mathbb{P}(X = 1) = \mathbb{P}\left(\bigcap_{p \text{ prime}} E_p^c\right) = \prod_{p \text{ prime}} (1 - \mathbb{P}(E_p))$$

$$= \prod_{p \text{ prime}} \left(\sum_{n=1}^{\infty} \frac{n^{-s}}{\zeta(s)} - \sum_{n=1}^{\infty} \frac{(pn)^{-s}}{\zeta(s)}\right)$$

$$= \prod_{p \text{ prime}} (1 - p^{-s}) \left(\sum_{n=1}^{\infty} \frac{n^{-s}}{\zeta(s)}\right)$$

$$= \prod_{p \text{ prime}} (1 - p^{-s})$$

(iii). Since for any natural number m, we can write $m = \prod_{i=1}^{n_m} p_i$ for p_i primes, then n is square-free is equivalent to p^2 doesn't divide n for all p prime. By using the same lines of reasoning as in sub-question (i), E_{p^2} are independent for p prime.

$$\mathbb{P}(\{\text{square-free}\}) = \mathbb{P}\left(\bigcap_{p \text{ prime}} E_{p^2}^c\right) = \prod_{p \text{ prime}} (1 - p^{-2s}) = \frac{1}{\zeta(2s)}$$

Problem 6. Let X_1, X_2, \ldots be independent random variables uniformly distributed on [0, 1]. Let A_n be the event that a record occurs at time n, that is,

$$X_n > X_m \ \forall m < n$$

Find $\mathbb{P}(A_n)$, and show that A_1, A_2, \ldots are independent. Deduce that, with probability one, infinitely many records occurs.

Proof: For fixed n, since X_1, \ldots, X_n are independent and identically distributed, the probability of X_n being the largest is $1/n = \mathbb{P}(A_n)$, since each X_i has equal possibility of being the largest. Consider increasing index $1 \le i_1 < i_2 < \cdots < i_n$, then it's sufficient to show that

$$\mathbb{P}(A_{i_1} \cap (A_{i_2} \cap \dots \cap A_{i_n})) = \mathbb{P}(A_{i_1})\mathbb{P}(A_{i_2} \cap \dots \cap A_{i_n})$$

Since

$$\mathbb{P}(A_{i_1} \cap (A_{i_2} \cap \dots \cap A_{i_n})) = \mathbb{P}(A_{i_1,k} \cap (A_{i_2} \cap \dots \cap A_{i_n}))$$

and

$$\mathbb{P}(A_{i_1}) = \mathbb{P}(\{X_k > X_n, \forall 1 \le n \le i_1, n \ne k\} := A_{i_1,k}) \text{ for all } 1 \le k \le i_1$$

by the fact that X_i 's are i.i.d. We also notice that $A_{i_1,k}$'s are disjoint, and

$$\mathbb{P}\left(\bigcup_{k=1}^{i_1} A_{i_1,k}\right) = 1$$

thus,

$$\mathbb{P}(A_{i_2} \cap \dots \cap A_{i_n}) = \mathbb{P}\left(\left(\bigcup_{k=1}^{i_1} A_{i_1,k}\right) \cap (A_{i_2} \cap \dots \cap A_{i_n})\right)$$

$$= \mathbb{P}\left(\bigcup_{k=1}^{i_1} (A_{i_1,k} \cap A_2 \cap \dots \cap A_{i_n})\right)$$

$$= \sum_{k=1}^{i_1} \mathbb{P}(A_{i_1,k} \cap A_2 \cap \dots \cap A_{i_n})$$

$$= i_1 \mathbb{P}(A_{i_1,k} \cap A_2 \cap \dots \cap A_{i_n})$$

hence,

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_n}) = \frac{1}{i_1} \mathbb{P}(A_{i_2} \cap \dots \cap A_{i_n}) = \mathbb{P}(A_{i_1}) \mathbb{P}(A_{i_2} \cap \dots \cap A_{i_n})$$

and by induction, we prove independence. Finally, since

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

and the fact that A_i 's are independent, apply Borel-Contelli lemma, infinitely many records occurs at probability 1.

Problem 7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let (X_n) be sequence of i.i.d random variables such that

$$\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}$$

Let $S_0 := 0$ and, for all $n \in \mathbb{N}$,

$$S_n := \sum_{k=1}^n X_k$$

Let all $x \in \mathbb{Z}$, define

$$A_x := \{S_n = x \text{ for infinitely many } n \in \mathbb{N}\}$$

$$B_{-} := \{ \liminf_{n \to \infty} S_n = -\infty \}, B_{+} = \{ \limsup_{n \to \infty} S_n = \infty \}$$

- (i). Using Kolmogorov's 0-1 law, prove that $\mathbb{P}(B_{-}) \in \{0,1\}$ and $\mathbb{P}(B_{+}) \in \{0,1\}$.
- (ii). Prove $\mathbb{P}(B_+) = \mathbb{P}(B_-)$.
- (iii). Using the Borel-Cantelli lemma, prove that, for all $k \in \mathbb{N}$,

$$\lim_{n \to \infty} \sup (S_{n+k} - S_n) = k \ a.s.$$

(iv). Deduce from (iii). that $\mathbb{P}(B_{-}^{c} \cap B_{+}^{c}) = 0$, and therefore that $\mathbb{P}(B_{-}) = \mathbb{P}(B_{+}) = 1$. Conclude that, for all $x \in \mathbb{Z}$, $\mathbb{P}(A_{x}) = 1$.

Proof: (i).

$$B_{-} = \{ \liminf_{n \to \infty} S_n = -\infty \} = \left\{ \liminf_{n \to \infty} \sum_{i=k}^n X_i = -\infty \right\}$$
$$B_{+} = \{ \limsup_{n \to \infty} S_n = \infty \} = \left\{ \limsup_{n \to \infty} \sum_{i=k}^n X_i = \infty \right\}$$

then both B_- and B_+ are in the tail σ -algebra, then by Kolmogorov's 0-1 law, $\mathbb{P}(B_-) \in \{0, 1\}$ and $\mathbb{P}(B_+) \in \{0, 1\}$.

(ii). Denote
$$Y = -X$$
, then $\mathbb{P}(Y = 1) = \mathbb{P}(Y = -1) = \frac{1}{2}$, and

$$B_{-} = \left\{ \liminf_{n \to \infty} \sum_{i=1}^{n} X_i = -\infty \right\} = \left\{ \limsup_{n \to \infty} \sum_{i=1}^{n} Y_i = \infty \right\}$$

then

$$\mathbb{P}(B_{-}) = \mathbb{P}(B_{+})$$

(iii). Since $\limsup_{n\to\infty} (S_{n+k} - S_n) \ge S_{n+k} - S_n$,

$$\{\limsup_{n\to\infty} (S_{n+k} - S_n) = k\} \supseteq \{S_{n+k} - S_n = k \text{ i.o.}\} =: \{E_n \text{ i.o.}\}$$

but the problem is that E_n 's are not independent, however, $\{E_{n+(k+1)m}\}_m$ are independent given that X_n 's are i.i.d, with $\mathbb{P}(E_{n+(k+1)m}) = \frac{1}{2^k}$ and $\sum_{m=1}^{\infty} \mathbb{P}(E_{n+(k+1)m}) = \infty$, then by Borel-Cantelli lemma,

$$\mathbb{P}(\{\limsup_{n\to\infty}(S_{n+k}-S_n)=k\})\geq \mathbb{P}(E_n \text{ i.o.})=1$$

(iv). Since $B_-^c = \bigcup_{m \in \mathbb{Z}} \{ \liminf_n S_n = m \} =: \bigcup_{m \in \mathbb{Z}} E_m \text{ and } B_+^c = \bigcup_{l \in \mathbb{Z}} \{ \limsup_n S_n = l \} =: \bigcup_{l \in \mathbb{Z}} F_l$,

$$\mathbb{P}(B_{-}^{c} \cap B_{+}^{c}) = \mathbb{P}\left(\left(\bigcup_{m \in \mathbb{Z}} E_{m}\right) \cap \left(\bigcup_{l \in \mathbb{Z}} F_{l}\right)\right) = \mathbb{P}\left(\bigcup_{m, l \in \mathbb{Z}} (E_{m} \cap F_{l})\right)$$

Consider each $E_m \cap F_l = \{ \liminf_n S_n = m \} \cap \{ \limsup_n S_n = l \}$, and the fact that

$$\limsup_{n \to \infty} (S_{n+k} - S_n) \le \limsup_{n \to \infty} S_{n+k} + \limsup_{n \to \infty} (-S_n) = \limsup_{n \to \infty} S_{n+k} - \liminf_{n \to \infty} S_n$$
$$= l - k$$

According to (iii), take K = l - k + 1, then $\mathbb{P}(\limsup_{n \to \infty} (S_{n+k} - S_n) \le l - k) = 0$, then by the fact that $\mathbb{P}(B_+^c) = \mathbb{P}(B_-^c)$, $\mathbb{P}(B_-^c) = 0$, $\mathbb{P}(B_-) = \mathbb{P}(B_+) = 1$. Since $A_x \supseteq B_- \cap B_+$, $\mathbb{P}(A_x) = 1$.

Problem 8. Let $(X_n, \geq 2)$ be a sequence of independent random variables such that

$$\mathbb{P}(X_n = n) = \mathbb{P}(X_n = -n) = \frac{1}{2n \log n}, \ \mathbb{P}(X_n = 0) = 1 - \frac{1}{n \log n}$$

Set $S_n = X_2 + \cdots + X_n$. Prove that

$$\frac{S_n}{n} \to 0$$
 in probability, but not almost surely.

Proof: We first calculate the mean and variance of S_n , and by virtue of independence,

$$\mathbb{E}(S_n) = \sum_{k=2}^n \mathbb{E}(X_k) = \sum_{k=2}^n \left(k \cdot \frac{1}{2k \log k} - k \cdot \frac{1}{2k \log k} + 0 \right) = 0$$

$$\text{Var}(S_n) = \sum_{k=2}^n \text{Var}(X_k) = \sum_{k=2}^n \mathbb{E}(X_n^2) = \sum_{k=2}^n \left(k^2 \cdot \frac{1}{2k \log k} + k^2 \cdot \frac{1}{2k \log k} \right) = \sum_{k=2}^n \frac{k}{\log k}$$

$$\text{Var}(S_n) = \mathbb{E}(S_n^2) - \mathbb{E}(S_n)^2 = \mathbb{E}(S_n^2)$$

Apply Chebychev inequality,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - 0\right| > \epsilon\right) \le \frac{1}{\epsilon^2} \int \left|\frac{S_n}{n}\right|^2 d\mathbb{P} = \frac{1}{\epsilon^2 n^2} \operatorname{Var}(S_n)$$

$$\le \frac{1}{\epsilon^2 n^2} \left(\frac{2}{\log 2} + \sum_{k=3}^n \frac{k}{\log k}\right)$$

$$\le \frac{1}{\epsilon^2 n^2} \left(\frac{2}{\log 2} + \frac{(n-2)n}{\log n}\right) \to 0$$

as $n \to \infty$, thus proving convergence in probability.

For convergence a.e, notice that since X_n can only take value $\pm n, 0$,

$$\left\{\frac{S_n}{n} \to 0\right\} \subseteq \left\{X_n = 0 \text{ eventually}\right\} =: A$$

However, since

$$\sum_{n=2}^{\infty} \mathbb{P}(X_n = n \text{ or } X_n = -n) = \sum_{n=2}^{\infty} \frac{1}{n \log n} = \infty$$

then by Borel-Cantelli lemma, $\mathbb{P}(\{X_n=n \text{ or } X_n=-n \text{ i.o.}\})=\mathbb{P}(A^c)=1$, which means that

$$\mathbb{P}\left(\frac{S_n}{n} \not\to 0\right) = 1$$