

Chapitre 0 : Les polynômes

Définition

$$P(X) = \sum_{k=0}^n a_k X^k = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n, \ n \in \mathbb{N}, \ (a_0, a_1, ..., a_n) \in \mathbb{K}^{n+1}$$

Polynomes particuliers

Polynôme constant : $P(X) = c + 0X + 0X^2 + ...$

Polynôme nul : P(X) = 0

Monôme : polynôme de la forme aX^n , où $a\in\mathbb{K}$ et $n\in\mathbb{N}$.

Polynôme à coefficients réels : Si $\forall n \in \mathbb{N}$, $a_n \in \mathbb{R}$, on note $\mathbb{R}[X]$ l'ensemble des polynômes à coefficients réels.

Polynôme à coefficients complexes : Si $\forall n \in \mathbb{N}$, $a_n \in \mathbb{R}$, on note $\mathbb{C}[X]$ l'ensemble des polynômes à coefficients complexes.

Polynôme de degré inférieur ou égal à $n:\mathbb{K}_n[X]$

Degrés

Soit $P\in \mathbb{K}[X],\ P\neq 0.$

On appelle **degré** de P, le plus grand $k\in\mathbb{N}$ tel que $a_k
eq 0$, on le note deg(P):

$$deg(P) = \max\{k \in \mathbb{N}; \ a_k
eq 0\}$$

$$d^{\circ}(P \times Q) = d^{\circ}(P) + d^{\circ}(Q)$$

$$egin{aligned} d^\circ(P+Q) &\leq \max(d^\circ(P), d^\circ(Q)) \ d^\circ(0) &= -\infty \end{aligned}$$

Opérations

Addition:

$$P+Q=\sum_{k=0}^n (a_k+b_k)X^k, \ orall k\in \llbracket 0,n
rbracket$$

Multiplication:

$$PQ = \sum_{k=0}^{n+m} c_k X^k, \ orall k \in \llbracket 0, n+m
rbracket, c_k = \sum_{j=0}^k a_j b_{k-k}$$

Divisibilité

$$P|Q\iff \exists Q\in \mathbb{R}[X],\ F(X)=E(X) imes Q(X)$$

Division euclidienne

Soit
$$(A,B)\in (\mathbb{R}[X])^2$$
 tq $B
eq 0$

Alors
$$\exists ! (Q,R) \in (\mathbb{R}[X])^2$$
 tq $A = BQ + R$ avec $d^\circ(R) < d^\circ(B)$

▼ Méthode division euclidienne

$$A = 2X^4 - X^2 + X - 5$$

$$B = X^2 + X - 2$$

$$A = B(X^2 - 2X + 5) - 8X + 5$$

Racines et ordre de multiplicité

a racine de P

$$\iff (X-a)|P$$

$$\iff P(a) = 0$$

a racine de P d'ordre de multiplicité d'ordre exactement n

$$\iff (X-a)^n|P \text{ et } (X-a)^{n+1}|P$$

$$\iff \exists Q \in \mathbb{R}[X], \; P = (X-a)^nQ \; \mathsf{et} \; Q(a)
eq 0$$