Identification de faux billets

Introduction

Contexte : L'Organisation nationale de lutte contre le faux-monnayage (ONCFM) nous a sollicité afin de mettre en place une modélisation qui serait capable d'identifier automatiquement les vrais des faux billets, à partir de certaines dimensions des billets.

- I. Analyse descriptive
- II. Traitement des valeurs manquantes
 - 1. Preprocessing
 - 2. Régression linéaire multiple
- III. Algorithmes
 - 1. Régression logistique
 - 2. Kmeans

Analyses descriptives

Présentation du jeu de données :

Le jeu de données est composé de 1500 individus et de 7 variables.

Ces variables sont constituées d'une variable binaire, 'is_genuine', qui nous renseigne sur l'authenticité des billets et de 6 variables quantitatives, précisant leurs dimensions (en mm) :

- diagonal : la diagonale du billet
- height_left : la hauteur du billet (mesurée sur le côté gauche)
- height_right : la hauteur du billet (mesurée sur le côté droit)
- margin_low : la marge entre le bord inférieur du billet et l'image
- margin_up : la marge entre le bord supérieur du billet et l'image
- **length** : la longueur du billet

Vérification des données manquantes :

La variable **margin_low** est la seule variable ayant des données manquantes.

Répartition des billets vrais et faux

Dans notre jeu de données, 1/3 des billets sont faux.

Analyses descriptives

<u>Vérification de la normalité des variables quantitatives</u>

Distribution

Test de Shapiro

Hypothèse : la distribution suit-elle une loi normale ?

H0: la variable suit une loi normale

H1: la variable ne suit pas une loi normale

Les variables diagonal, height_left et height_right ont une pvalue > 5%

▶ Ces variables suivent une loi normale

Les variables margin_low, margin_up, lenght ont une pvalue < 5%

▶ Ces variables ne suivent pas une loi normale

Analyses descriptives

Comparaison de la distribution des données

Hypothèse : Y a-t-il une différence entre les billets faux et les vrais ? H0 : Il n'y a pas de différence significative entre les 2 groupes H1 : Il y a une différence significative entre les 2 groupes

diagonal, height_left, height_right: Test t (Student) pvalue < 5%

▶ Il y a une différence significative entre les vrais et faux billets
margin_low, margin_up, lenght: Test Wilcoxon-Mann-Whitney
pvalue < 5%

▶ Il y a une différence significative entre les vrais et faux billets

Traitement des valeurs manquantes

- ➤ Il manque 37 valeurs dans la variable margin_low
- Préparation des données (preprocessing)
 - Création d'un jeu de données d'entrainement et d'un jeu de données test :
 - Le train set (jeu d'entrainement) est composé de :
 - 80% du jeu de données (sans les individus ayant une valeur manquante)
 - Soit 1170 lignes
 - le test set(jeu de test) est composé de :
 - 20% du jeu de données
 - Soit 293 lignes
 - Standardisation des données

Régression linéaire multiple

Hypothèses d'application de la régression linéaire :

- Absence de multi-colinéarité entre les variables explicatives
- Homoscédasticité des résidus
- Distribution normale des résidus
- Indépendance des résidus

OLS Regression Results

==========					=======	
Dep. Variable:	•	· -	R-square			0.484
Model:	_	OLS	3	•		0.482
Method:		east Squares				218.8
Date:	Sat,	10 Dec 2022	•	•	1	.22e-164
Time:		22:27:51	0	lihood:		-1272.6
No. Observation	ons:	1170				2557.
Df Residuals:		1164				2588.
Df Model:		5				
Covariance Typ	oe:	nonrobust				
	coef			P> t	[0.025	0.975]
Intercept -	 -3.025e-15		1.44e-13		-0.041	0.041
diagonal						-0.005
height_left	0.0860	0.023	3.822	0.000	0.042	0.130
height_right	0.1239	0.023	5.274	0.000	0.078	0.170
margin_up	0.0940	0.025	3.746	0.000	0.045	0.143
length	-0.5376	0.027	-20.124	0.000	-0.590	-0.485
=========		========	=======	========	=======	======
Omnibus:		51.079	Durbin-W	latson:		2.018
Prob(Omnibus):	:	0.000	Jarque-B	era (JB):		60.873
Skew:		0.467	Prob(JB)	:		6.05e-14
Kurtosis:		3.614	Cond. No			2.16

Régression linéaire multiple

Analyses des valeurs atypiques et influentes

Atypicité sur les variables explicatives

(les leviers)

0.0200
0.0175
0.0150
0.0125
0.0050
0.0050
0.0025
0.0000
124 observations

Atypicité sur la variable à expliquer (les résidus studentisés)

Influence des observations

(distance de cook)

68 observations

> Eviction des valeurs atypiques et influentes

	OLS Regres	sion Results 	
Dep. Variable:	margin_low	R-squared:	0.548
Model:	OLS	Adj. R-squared:	0.546
Method:	Least Squares	F-statistic:	267.5
Date:	Mon, 26 Dec 2022	Prob (F-statistic):	2.11e-187
Time:	15:39:40	Log-Likelihood:	-1041.2
No. Observations:	1110	AIC:	2094
Df Residuals:	1104	BIC:	2124
Df Model:	5		
Covariance Type:	nonrohust		

L'éviction des 60 observations atypiques et influentes a permis d'améliorer le coefficient de détermination R2 et le R2 ajusté qui valent maintenant 0,55.

Régression linéaire multiple

Vérification de la multi-colinéarité des variables

	VIF	
diagonal	1.016418	
height_left	1.143632	La non-colinéarité est
height_right	1.245960	vérifiée puisque les valeurs
margin_up	1.422592	VIF sont inférieures à 2.
length	1.611214	

Indépendance des résidus

> Statistique de Durbin-Watson : 1.99

Vérification de la normalité des résidus

<u>Test de Shapiro</u>

pvalue < 5%

On rejette l'hypothèse nulle.
 Les résidus ne suivent pas une loi normale.

Vérification de l'homoscédasticité

Test Breusch Pagan pvalue < 5%

 On rejette H0.
 Les résidus ne sont pas homoscédastiques.

Evaluation du modèle

L'écart quadratique moyen sur le train set est de 0.5 et sur le test set est de 0.51

L'équivalence des écarts quadratiques moyens nous permet de valider la stabilité de ce modèle.

Régression logistique

Preprocessing

- Création d'un jeu de données d'entrainement 70% (1050 individus) et d'un jeu de données test 30% (450 individus)
- Standardisation des données

Régression logistique

<u>hypothèses</u>:

- La variable à expliquer doit être classée en 2 catégories.
- Les variables explicatives ne doivent pas avoir de multi-colinéarité.
- L'échantillon doit être de grande taille.

Vérification de la colinéarité des variables

	VIF		VIF
diagonal	1.020868	margin_low	2.029857
height_left	1.158638	margin_up	1.365642
height_right	1.260927	length	2.161742

Entrainement du modèle et évaluation de la performance

Matrice de confusion

	Billet prédit Faux	Billet prédit Vrai
Billet Faux	133	4
Billet Vrai	1	312

Mesures

Précision: 0.987

Rappel: 0.997

Spécificité: 0.971

Accuracy score: 0.989

Sélection de variables significatives

Variables significatives : 'margin_low', 'margin_up' et 'length'.

Réentrainement et évaluation de la performance

Matrice de confusion

	Billet prédit Faux	Billet prédit Vrai
Billet Faux	133	4
Billet Vrai	0	313

Mesures

Précision: 0.987

Rappel: 1

Spécificité: 0.971

Accuracy score: 0.991

On obtient une performance légèrement meilleure avec seulement 3 variables

Régression logistique

Courbe de ROC

Calcul de l'aire sous la courbe

Air sous la courbe ROC: 0.999

➤ Le calcul de l'air sous la courbe ROC nous confirme que le modèle est performant.

Cross validation

Moyenne de précision : 0.99

Moyenne d'accuracy score : 0.989

Mesures du test set

Précision: 0.987

Accuracy score: 0.991

La précision et le taux de bonnes prédictions sur le test set est équivalent aux moyennes de la cross validation, on peut donc en conclure qu'il n' y a pas surapprentissage sur ce modèle qui par ailleurs est performant

K-means

- Choix du nombre de clusters : 2
- Entrainement de l'algorithme
- Evaluation

Train set

	Billet prédit Faux	Billet prédit Vrai
Billet Faux	356	7
Billet Vrai	9	678

Précision: 0.99

Rappel: 0.987

Spécificité: 0.981

Accuracy score: 0.985

Test set

	Billet prédit Faux	Billet prédit Vrai
Billet Faux	131	6
Billet Vrai	2	311

Précision: 0.981

Rappel: 0.994

Spécificité: 0.956

Accuracy score: 0.982

Les mesures de performance sur le test set sont équivalentes à celles du train set. Ainsi avec un taux de bonnes prédiction de 98%, ce modèle est performant.

Conclusion

Comparaison des 2 algorithmes

Regression logistique

o Précision: 0.987

o Rappel: 1.0

Spécificité : 0.971

Accuracy score : 0.991

K-means

o Précision: 0.981

o Rappel: 0.994

Spécificité : 0.956

Accuracy score : 0.982

- Les 2 algorithmes fournissent une très bonne performance. En les comparant, on peut observer que le taux de bonnes prédictions est meilleur avec la régression logistique, ainsi que la précision, qui pour rappel, est la mesure que l'on souhaite maximiser afin de mieux détecter les billets faux.
- C'est pourquoi la régression logistique est retenu.
- √ Test de l'algorithme avec un jeu de données inconnu

MERCI!

