CLAIMS

3

4

5

6

7

2

3

4

1

What is claimed is:

1	1.	An apparatus comprising:
2		a plurality of modular exponentiators including a first modular expo

- a plurality of modular exponentiators including a first modular exponentiator and a second modular exponentiator; and
- a coupling device interposed between said first modular exponentiator and said second modular exponentiator to receive a control signal and to selectively couple said first modular exponentiator to said second modular exponentiator in response to a state of said control signal.
- 2. The apparatus as set forth in claim 1, said apparatus having a first mode of operation corresponding to a first state of said control signal wherein said first modular exponentiator is operably separated from said second modular exponentiator and a second mode of operation corresponding to a second state of said control signal wherein
- 5 said first modular exponentiator is operably coupled to said second modular
- 6 exponentiator via said coupling device.
- 1 3. The apparatus as set forth in claim 2, wherein said first modular exponentiator
- 2 and said second modular exponentiator operate as two n-bit modular exponentiators in
- 3 said first mode of operation and as a single 2n-bit modular exponentiator in said second
- 4 mode of operation, where n is an integer.
- 1 4. The apparatus as set forth in claim 3, wherein n equals 512.
- 1 5. The apparatus as set forth in claim 1, wherein each of said plurality of modular
- 2 exponentiators comprises a modular multiplier to perform a modular multiplication of
- 3 the form A x B mod M, where A, B, and M are all integers.
 - 6. The apparatus as set forth in claim 5, wherein said modular multiplier comprises
- 2 a Montgomery multiplier.

1

1

- 1 7. The apparatus as set forth in claim 5, wherein said modular multiplier comprises
- 2 a systolic array of processing elements.
- 8. The apparatus as set forth in claim 1, wherein said a coupling device comprises a 1
- 2 multiplexer.
 - 9. An apparatus comprising:
- 2 a plurality of modular multipliers including a first modular multiplier and a 3 second modular multiplier;
- 4 a coupling device interposed between said first modular multiplier and said 5 second modular multiplier to receive a control signal and to selectively couple said first 6 modular multiplier to said second modular multiplier in response to a state of said
- 10. The apparatus as set forth in claim 9, said apparatus having a first mode of 2 operation corresponding to a first state of said control signal wherein said first modular 3 multiplier is operably separated from said second modular multiplier and a second mode 4 of operation corresponding to a second state of said control signal wherein said first 5 modular multiplier is operably coupled to said second modular multiplier via said
- 6 coupling device.

control signal.

- 1 The apparatus as set forth in claim 10, wherein said first modular multiplier and
- 2 said second modular multiplier operate as two n-bit modular multipliers in said first
- mode of operation and as a single 2n-bit modular multiplier in said second mode of 3
- operation, where n is an integer. 4
- 1 12. The apparatus as set forth in claim 11, wherein n equals 512.
 - 13. The apparatus as set forth in claim 9, wherein each of said plurality of modular
- 2 multipliers comprises a Montgomery multiplier.

- The apparatus as set forth in claim 9, wherein each of said plurality of modular
 multipliers comprises a systolic array of processing elements.
- 1 15. The apparatus as set forth in claim 9, wherein said a coupling device comprises a
- 2 multiplexer.

3

1

2

1

- A processor comprising:
 - a plurality of modular exponentiators including a first modular exponentiator and a second modular exponentiator; and
- a coupling device interposed between said first modular exponentiator and said

 second modular exponentiator to receive a control signal and to selectively couple said

 first modular exponentiator to said second modular exponentiator in response to a state

 of said control signal.
 - 17. The processor as set forth in claim 16, said processor having a first mode of
- 2 operation corresponding to a first state of said control signal wherein said first modular
- 3 exponentiator is operably separated from said second modular exponentiator and a
- 4 second mode of operation corresponding to a second state of said control signal wherein
- 5 said first modular exponentiator is operably coupled to said second modular
- 6 exponentiator via said coupling device.
- 1 18. The processor as set forth in claim 17, wherein said first modular exponentiator
 - and said second modular exponentiator operate as two n-bit modular exponentiators in
- 3 said first mode of operation and as a single 2n-bit modular exponentiator in said second
- 4 mode of operation, where n is an integer.
- 1 19. The processor as set forth in claim 18, wherein n equals 512.
 - The processor as set forth in claim 16, wherein said a coupling device comprises
- 2 a multiplexer.

1	21.	A system comprising:	
2		a memory to store data and instructions;	
3		a first processor coupled to said memory to process data and execute instructions;	
4	and		
5		a second processor coupled to said memory, said second processor comprising:	
6		a plurality of modular exponentiators including a first modular	
7		exponentiator and a second modular exponentiator; and	
8		a coupling device interposed between said first modular exponentiator and	
9		said second modular exponentiator to receive a control signal and to selectively	
0		couple said first modular exponentiator to said second modular exponentiator in	
1		response to a state of said control signal.	
1	22.	The system as set forth in claim 21, said second processor having a first mode of	
2	opera	tion corresponding to a first state of said control signal wherein said first modular	
3	expor	nentiator is operably separated from said second modular exponentiator and a	
4	second mode of operation corresponding to a second state of said control signal wherein		
5	said f	irst modular exponentiator is operably coupled to said second modular	
6	expor	nentiator via said coupling device.	
1	23.	The system as set forth in claim 22, wherein said first modular exponentiator and	
2	said s	econd modular exponentiator operate as two n-bit modular exponentiators in said	
3	first r	node of operation and as a single 2n-bit modular exponentiator in said second mode	
4	of op	eration, where n is an integer.	
1	24.	A method comprising:	
2		receiving a control signal;	
3		selectively coupling a first modular exponentiator to a second modular	
4	expor	nentiator of a plurality of modular exponentiators in response to a state of said	
5	control signal;		
6		receiving a plurality of operands; and	

5

6

7

8

9

2

3

4

5

6

2

3

4

5

6

7

8

9

10

8	utilizing said first modular exponentiator and said second modular exponentiator.	
1	25.	The method as set forth in claim 24, wherein selectively coupling a first modular
2	exponentiator to a second modular exponentiator of a plurality of modular exponentiator	
3	in response to a state of said control signal comprises:	
4		operably separating said first modular exponentiator from said second modular

performing a modular exponentiation operation on said plurality of operands

exponentiator in a first mode of operation corresponding to a first state of said control signal; and

operably coupling said first modular exponentiator to said second modular exponentiator in a second mode of operation corresponding to a second state of said control signal.

26. The method as set forth in claim 25, wherein performing a modular exponentiation operation on said plurality of operands utilizing said first modular exponentiator and said second modular exponentiator comprises:

operating said first modular exponentiator and said second modular exponentiator as two n-bit modular exponentiators in said first mode of operation and as a single 2n-bit modular exponentiator in said second mode of operation, where n is an integer.

27. A machine-readable medium having a plurality of machine-executable instructions embodied therein which when executed by a machine, cause said machine to perform a method comprising:

receiving a control signal;

selectively coupling a first modular exponentiator to a second modular exponentiator of a plurality of modular exponentiators in response to a state of said control signal;

receiving a plurality of operands; and

performing a modular exponentiation operation on said plurality of operands utilizing said first modular exponentiator and said second modular exponentiator.

2

3

4

5

7

8

Q

1

2

3

4

5

- 28. The machine-readable medium as set forth in claim 27, wherein selectively coupling a first modular exponentiator to a second modular exponentiator of a plurality of modular exponentiators in response to a state of said control signal comprises:
- operably separating said first modular exponentiator from said second modular exponentiator in a first mode of operation corresponding to a first state of said control signal; and
- operably coupling said first modular exponentiator to said second modular exponentiator in a second mode of operation corresponding to a second state of said control signal.
 - 29. The machine-readable medium as set forth in claim 28, wherein performing a modular exponentiation operation on said plurality of operands utilizing said first modular exponentiator and said second modular exponentiator comprises:
 - operating said first modular exponentiator and said second modular exponentiator as two n-bit modular exponentiators in said first mode of operation and as a single 2n-bit modular exponentiator in said second mode of operation, where n is an integer.