Cambridge Part III Maths

Lent 2016

Black Holes

based on a course given by Harvey Reall written up by Josh Kirklin

Please send errors and suggestions to jjvk2@cam.ac.uk.

In this course we take G=c=1 and $\Lambda=0$.

Contents

1	Spherical stars		
	1.1	Spherical symmetry and time independence	
		Static, spherically symmetric spacetimes	
		The TOV equations	
	1.4	Maximum mass	
2	The	Schwarzschild solution	
	2.1	Gravitational redshift	
	2.2	Geodesics	
	2.3	Eddington-Finkelstein coordinates	

1 Spherical stars

Lecture 1 15/01/16

Consider a gas of cold fermions. This gas will resist compression due to degeneracy pressure resulting from the Pauli principle. For example, in a white dwarf star, gravity is balanced by electron degeneracy pressure. Using Newtonian gravity, we can find an upper limit on the mass of a stable white dwarf, known as the *Chandrasekhar limit*:

$$M_{\rm WD} \lesssim 1.4 M_{\odot}$$

In a neutron star, gravity is balanced by neutron degeneracy pressure. Neutron stars are tiny; a neutron star with the mass of the sun has a radius of approximately 10 km (for comparison, the sun has a radius of $R_{\odot} \approx 7 \times 10^5$ km. At the surface of a neutron star, the gravitational potential $|\phi| \approx 0.1$. Recall that in order to be able to apply Newtonian gravity, we must have $|\phi| \ll 1$. $0.1 \not \ll 1$, so it is important to consider general relativity when reasoning about neutron stars. In this section we will establish that $M \lesssim 3 M_{\odot}$ for any cold star.

1.1 Spherical symmetry and time independence

Consider the round metric on S^2 :

$$d\Omega^2 = d\theta^2 + \sin^2\theta \, d\phi^2$$

Equipped with this metric, if we exclude reflections, S^2 has SO(3) as its isometry group. This motivates the following:

Definition. A spacetime is *spherically symmetric* if its isometry group has an SO(3) subgroup whose orbits are 2-spheres.

Definition. The area-radius function $r: \mathcal{M} \to \mathbb{R}$ is defined by:

$$A(p) = 4\pi r(p)^2, \quad r(p) \ge 0$$

where A(p) is the area of the SO(3) orbit through p.

A consequence of this is that the induced metric on the SO(3) orbit through p is $r(p)^2 d\Omega^2$.

Definition. (\mathcal{M}, g) is *stationary* if it permits a timelike Killing vector field (KVF).

Suppose we have a stationary spacetime with timelike Killing vector k. Let Σ be a spacelike 3 dimensional hypersurface, and let x^i , i = 1, 2, 3 be coordinates on Σ .

We define coordinates for the manifold in the following way: from each point (x^1, x^2, x^3) extend an integral curve of k; the point (t, x^i) is a parameter distance t along this curve.

In the chart (t, x^i) , we can write:

$$k = \frac{\partial}{\partial t}$$

Then, using the defining property of Killing vectors, we have that the metric is independent of t. Thus, we can write:

$$ds^{2} = g_{00}(x^{k}) dt^{2} + 2g_{0i}(x^{k}) dt dx^{i} + g_{ij}(x^{j}) dx^{i} dx^{j}$$

and we have $g_{00} < 0$ since k is timelike.

Suppose we have a surface Σ given by f(x) = 0, where $f : \mathcal{M} \to \mathbb{R}$, $\mathrm{d} f|_{\Sigma} \neq 0$. Then $\mathrm{d} f$ is normal to Σ . Suppose n is another 1-form that is normal to Σ . Then we can write $n = g \, \mathrm{d} f + f n'$, where g is a function and n' is some 1-form. We have:

$$\mathrm{d}n = \mathrm{d}g \wedge \mathrm{d}f + g\underbrace{\mathrm{d}^2 f}_{=0} + \mathrm{d}f \wedge n' + f\,\mathrm{d}n'$$

$$\implies \operatorname{d} n \mid_{\Sigma} = (\operatorname{d} g - n') \wedge \operatorname{d} f \implies n \wedge \operatorname{d} n \mid_{\Sigma} = 0$$

In fact, the converse is true:

Theorem 1 (Frobenius). If n is a 1-form such that $n \wedge dn = 0$, then there exist functions f, g such that n = g df, so that n is normal to surfaces of constant f.

If n is a 1-form of this type, we say it is *hypersurface-orthogonal*.

Definition. (\mathcal{M}, g) is *static* if it contains a hypersurface-orthogonal timelike KVF.

Suppose we are in a static spacetime, and define coordinates t, x^i as before. Σ is a surface of constant t, so we have $k \propto dt$, $k_{\mu} \propto (1,0,0,0)$. Also note that $k_{\mu} = g_{\mu\nu}k^{\nu} = g_{\mu\nu}(\frac{\partial}{\partial t})^{\nu} = (g_{00}, g_{10}, g_{20}, g_{30})$. Hence we can deduce that $g_{i0} = 0$, and can write the metric as:

$$ds^{2} = g_{00}(x^{k}) dt^{2} + g_{ij}(x^{k}) dx^{i} dx^{j}$$

where as before $g_{00} < 0$. In this metric we have a discrete isometry $(t, x^i) \to (-t, x^i)$. A static metric must be time-independent *and* invariant under time reversal. A simple case of a stationary but not static metric is that associated with a rotating star. If we reverse time the star spins in the other direction.

1.2 Static, spherically symmetric spacetimes

If we have a spacetime that is both stationary and spherically symmetric, then the isometry group must contain:

$$\underbrace{\mathbb{R}}_{\substack{\text{time}\\\text{translation}}} \times \underbrace{SO(3)}_{S^2 \text{ orbits}}$$

It can be shown that with this condition the spacetime must also be static.

Let $\Sigma_t \perp k^a$ be a foliation of the spacetime, and use coordinates (r, θ, ϕ) on each surface, where θ, ϕ are the usual spherical coordinates and r is the area-radius function as defined earlier. Then we must have:

$$\mathrm{d}s^2 |_{\Sigma_t} = e^{2\Psi(r)} \,\mathrm{d}r^2 + r^2 \,\mathrm{d}\Omega$$

for some function $\Psi(r)$. Note that we have no $dr d\theta$ or $dr d\phi$ terms because they would violate spherical symmetry. If we define t as above we can then write the entire metric as:

$$ds^2 = -e^{2\Phi(r)} dt^2 + e^{2\Psi(r)} dr^2 + r^2 d\Omega$$

for some other function $\Phi(r)$.

1.3 The TOV equations

Consider now the matter inside a stationary and spherically symmetric star. We will model the star as a perfect fluid, which means we have the following energy-momentum tensor:

$$T_{ab} = (\rho + P)u_a u_b + \rho g_{ab}$$

where ρ is the energy density, P is the pressure, and u_a is the 4-velocity of the fluid. Since the star is stationary, we can assume the fluid is at rest, so $u^a = e^{-\Phi} \left(\frac{\partial}{\partial t}\right)^a$ (since u is a unit vector pointing in the t direction). Also, since we have spherical symmetry we can assume that ρ and P are functions of r only.

Make the following definition:

$$e^{2\Psi(r)} = \left(1 - \frac{2m(r)}{r}\right)^{-1}$$

Lecture 2 18/01/16

Note that since $e^{2\Psi(r)} > 0$, we have $m(r) < \frac{r}{2}$. Using the Einstein field equations $G = 8\pi T$ it is now possible to derive the *Tolman-Oppenheimer-Volkoff equations*:

$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi r^2 \rho \tag{TOV1}$$

$$\frac{\mathrm{d}\Phi}{\mathrm{d}r} = \frac{m + 4\pi r^3 P}{r(r - 2m)} \tag{TOV2}$$

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -(P+\rho)\frac{m+4\pi r^3 P}{r(r-2m)} \tag{TOV3}$$

We now have three equations, but four unknowns $(m, \Phi, \rho \text{ and } P)$. In order to solve this system, we will need a fourth equation, and the one most commonly chosen is an equation of state relating P and ρ . In a cold star, we can assume that the temperature $T(\rho, P) = 0$ and we can solve this to get P explicitly in terms of ρ :

$$P = P(\rho)$$

This is called a barotropic equation of state.

We will assume that $\rho, P > 0$. We will also assume that $\frac{dP}{d\rho} > 0$; this is a stability condition¹. Let the radius of the star be R.

Outside the star (r > R) we can assume $\rho = P = 0$. (TOV1) then gives that m(r) = M a constant. (TOV2) further provides that $\Phi = \frac{1}{2} \log \left(1 - \frac{2M}{r}\right) + \Phi_0$, where Φ_0 is another constant. Note that since $g_t t = -e^{2\Phi} \to e^{-2\Phi_0}$ as $r \to \infty$, we can eliminate Φ_0 by making a change of coordinates $t \to e^{\Phi_0} t$, so w.l.o.g. we assume that $\Phi_0 = 0$. Hence we have the Schwarzschild metric:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

By taking r to be large and comparing with Newtonian gravity, we can deduce that M is in fact the mass of the star. Note that this metric has a problem. It is singular at the so-called *Schwarzschild radius* r=2M. Thus a static, spherically symmetric star must have R>2M (in a normal star, $R\gg 2M$).

Inside the star (r < R), we now have matter to deal with. Integrating (TOV1), we have:

$$m(r) = 4\pi \int_0^r \rho(r')r'^2 dr' + m_*$$

where m_* is a constant. Consider a constant t hypersurface. The induced line element on this hypersurface is $ds^2 = e^{2\Psi} dr^2 + r^2 d\Omega^2$. The proper radius (i.e. distance to r = 0) of a point is given by $\int_0^r e^{\Psi(r')} dr'$. In order for our spacetime to be a manifold, we require that it is locally flat at r = 0, and this requires that the proper radius tends to the area-radius as $r \to 0$. Note that $\int_0^r e^{\Psi(r')} dr' \sim e^{\Psi(0)} r$ as $r \to 0$, so we require that $e^{\Psi(0)} = 1$, or equivalently m(0) = 0. From this we deduce that $m_* = 0$.

If we match this expression on the boundary of the star to the Schwarzschild solution for the exterior, we see that m(R) = M, or:

$$M = 4\pi \int_0^R \rho(r)r^2 \, \mathrm{d}r \tag{*}$$

¹Consider $\frac{dP}{d\rho} < 0$. Then if ρ increases by a small amount in a region R, P decreases in R, but then this causes more fluid to flow into R, increasing ρ further.

The volume form on a constant t hypersurface is $e^{\Psi}r^2\sin\theta\,\mathrm{d}r\wedge\mathrm{d}\theta\wedge\mathrm{d}\phi$, and so the energy of the matter in the star for t constant is:

$$E = 4\pi \int_0^R \rho e^{\Psi} r^2 \, \mathrm{d}r$$

Note that since m is increasing, so is e^{Ψ} and hence $e^{\Psi} \geq 1$ for all $0 \leq r \leq R$. Thus we have E > M. The reason for this is that we have a gravitational binding energy E - M.

If we evaluate $\frac{m(r)}{r} < \frac{1}{2}$ at r = R we see that $\frac{M}{R} < \frac{1}{2}$. In fact it is possible to improve this: (TOV3) $\implies \frac{\mathrm{d}P}{\mathrm{d}r} \le 0 \implies \frac{\mathrm{d}\rho}{\mathrm{d}r} \le 0$, and from this we can deduce:

$$\frac{m(r)}{r} < \frac{2}{9} \left(1 - 6\pi r^2 P(r) + \left[1 + 6\pi r^2 P(r) \right]^{\frac{1}{2}} \right) \tag{\dagger}$$

Setting r = R and noting P(R) = 0, we obtain the so-called Buchdahl inequality: $\frac{M}{R} < \frac{4}{9}$.

In general, we must solve this system of equations numerically. (TOV1) and (TOV3) are a pair of coupled first order ODEs for m(r) and $\rho(r)$, from which we can obtain a unique solution given m(0)=0 and specifying $\rho(0)=\rho_c$, the central density. From (TOV3) we have that P is decreasing in r, so $R(\rho_c)$ is determined by fixing P(R)=0. Then, using (*) we can obtain $M(\rho_c)$. Finally, using (TOV2) and the boundary condition that $\Phi(R)=\frac{1}{2}\log\left(1-\frac{2M}{R}\right)$ we can deduce $\Phi(r)$.

To summarise, given an equation of state, static, spherically symmetric, cold stars are a 1-parameter family labelled by ρ_c .

1.4 Maximum mass

We wish to find a limit on the maximum mass of a star.

In general, M_{max} depends on the equation of state, but here we run into a problem: we do not know the equation of state in certain conditions, namely $\rho > \rho_0$, where ρ_0 is typically on the order of the density of an atomic nucleus.

Remarkarbly, it is still possible to find an upper bound on the mass of a star. We do this by splitting the star into two regions: an *envelope*, in which we know the equation of state (so $\rho < \rho_0$), and a *core*, in which we do not $(\rho > \rho_0)$. Since $\frac{d\rho}{dr} < 0$, the envelope does in fact envelope the core.

Let $m_0 = m(r_0)$; we call this the *core mass*. Since the minimum density in the core is ρ_0 , we

have $m_0 \ge \frac{4}{3}\pi r_0^3 \rho_0$. Additionally, we can apply (†) at $r = r_0$ to obtain:

$$\frac{m_0}{r_0} < \frac{2}{9} \left(1 - 6\pi r_0^2 P_0 + \left[1 + 6\pi r_0^2 P_0 \right]^{\frac{1}{2}} \right)$$

where $P_0 = P(\rho_0)$. This is a decreasing function of P_0 , so $\frac{m_0}{r_0} < \frac{4}{9}$.

Lets plot these two constraints:

We see that we have an upper bound on the core mass. Solving for this upper bound, we find:

$$m_0 < \sqrt{\frac{16}{23\pi\rho_0}}$$

If $\rho_0 \approx$ nuclear density, then we have $m_0 \lesssim 5 M_{\odot}$.

Now we can extend our solution to the envelope. m_0 and r_0 together uniquely determine the envelope, as we can solve (TOV1) and (TOV3) starting at $r = r_0$ and using the known equation of state for $\rho < \rho_0$. From this we obtain M as a function of m_0 and r_0 , and so can find the maximal value of M when m_0, r_0 take values in the region in the graph above.

Numerically, we can find that M is maximised when m_0 is maximised, and that the maximum mass is $M \approx m_0 \approx 5 M_{\odot}$.

In fact, it is possible to improve this limit by imposing that the speed of sound is physical, i.e. less than the speed of light: $\sqrt{\frac{dP}{d\rho}} \leq 1$. Using this gives $M \lesssim 3M_{\odot}$.

2 The Schwarzschild solution

Lecture 3 20/01/16

We showed earlier that the only static, spherically symmetric solution of the vacuum EFEs is the Schwarzschild solution:

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

 t,r,θ,ϕ are known as $Schwarzschild\ coordinates.$ We will assume M>0. In fact:

Theorem 2 (Birkhoff). Any spherically symmetric solution of the vacuum Einstein equations is isometric to the Schwarzschild solution.

So in particular, spherical symmetry and a vacuum implies a static spacetime (for r > 2M).

2.1 Gravitational redshift

Consider two fixed observers A, B in a Schwarzschild spacetime. A sends two photons to B, separated by a time Δt .

Because $\frac{\partial}{\partial t}$ is an isometry of the spacetime, the second photon's path is the same as that of the first, but translated by Δt . Consider the 4-velocity of a fixed observer. We have:

$$-1 = u^{\mu}u_{\mu} = g_{tt} \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2 = -\left(1 - \frac{2M}{r}\right) \left(\frac{\mathrm{d}t}{\mathrm{d}\tau}\right)^2$$

Hence we have $d\tau = \sqrt{1 - \frac{2M}{r}} dt$. Therefore the proper time intervals between the photons at A and B are:

$$\Delta \tau_A = \sqrt{1 - \frac{2M}{r_A}} \Delta t, \quad \Delta \tau_B = \sqrt{1 - \frac{2M}{r_B}} \Delta t$$

So we have:

$$\frac{\Delta \tau_B}{\Delta \tau_A} = \frac{\sqrt{1 - \frac{2M}{r_B}}}{\sqrt{1 - \frac{2M}{r_A}}}$$

If we suppose that the photons were sent at two subsequent wavecrests, then $\Delta \tau$ is the period of the waves, equal to λ , the wavelength (since c=1). We define the redshift z by:

$$1 + z = \frac{\lambda_B}{\lambda_A} = \frac{\sqrt{1 - \frac{2M}{r_B}}}{\sqrt{1 - \frac{2M}{r_A}}}$$

For $r_B > r_A$, we have z > 0, so light is redshifted as it climbs out of the gravitational field. For $r_B \gg 2M$:

$$1 + z = \sqrt{\frac{1}{1 - \frac{2M}{r_A}}}$$

Note that this $\to \infty$ as $r_A \to 2M$.

For a star, we have the Buchdahl inequality, $R > \frac{9}{4}M$, so plugging this into the above, we find that the maximum redshift from the surface of a spherical star is z = 2.

2.2 Geodesics

Suppose $x^{\mu}(\tau)$ is an affinely parametrised geodesic, and let its 4-velocity be $u^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}$. We have Killing fields $k = \frac{\partial}{\partial t}$ and $m = \frac{\partial}{\partial \phi}$, so along geodesics we have two conserved quantities:

$$E = -k \cdot u = \left(1 - \frac{2M}{r}\right) \frac{\mathrm{d}t}{\mathrm{d}\tau}$$
 and $h = m \cdot u = r^2 \sin^2 \theta \frac{\mathrm{d}\phi}{\mathrm{d}\tau}$

If our geodesic is timelike and we choose τ to be proper time, we can identify E as the energy and h as the angular momentum associated with the geodesic.

In the null case, we can define the *impact parameter* $b = \left| \frac{h}{E} \right|$, and identify this as the limit of the distance between the geodesic and the star perpendicular to the geodesic as $r \to 0$.

Exercises:

- 1. Derive the Euler-Lagrange equation for $\theta(\tau)$. Show that one can choose coordinates such that $\theta(\tau) = \frac{\pi}{2}$, so that motion is contained in the equatorial plane.
- 2. Rearrange the definition of proper time:

$$g_{\mu\nu}u^{\mu}u^{\nu} = \sigma = \begin{cases} 1 & \text{timelike} \\ 0 & \text{null} \\ -1 & \text{spacelike} \end{cases}$$

to obtain
$$\frac{1}{2} \left(\frac{\mathrm{d}r}{\mathrm{d}\tau} \right)^2 + V(r) = \frac{1}{2}E^2$$
, where $V(r) = \frac{1}{2} \left(1 - \frac{2M}{r} \right) \left(\sigma + \frac{h^2}{r^2} \right)$.

2.3 Eddington-Finkelstein coordinates

Consider radial null geodesics ($\sigma = 0$) in r > 2M. Since ϕ is constant, we have h = 0 and so V = 0. Since we are dealing with a null geodesic, we are free to scale τ such that E = 1. Hence we have:

$$\frac{\mathrm{d}t}{\mathrm{d}\tau} = \left(1 - \frac{2M}{r}\right)^{-1}, \quad \frac{\mathrm{d}r}{\mathrm{d}\tau} = \pm 1$$

where the sign in the second equation depends on whether the geodesic is outgoing or ingoing. One thing of note is that an ingoing geodesic reaches r = 2M in finite τ . The same is not true of t:

$$\frac{\mathrm{d}t}{\mathrm{d}r} = \pm \left(1 - \frac{2M}{r}\right)^{-1}$$

so $t \to \mp \infty$ as $r \to 2M$.

Define
$$r_* = r + 2M \log \left| \frac{r}{2M} - 1 \right|$$
, $dr_* = \frac{dr}{1 - \frac{2M}{r}}$ (*).

 r_* 2M

We have $\frac{\mathrm{d}t^r}{\mathrm{d}r_*} = \pm 1$, so $t \mp r_*$ is a constant. Define $v = t + r_*$ (†), a constant along ingoing radial geodesics. The ingoing *Eddington-Finklestein* coordinates are v, r, θ, ϕ . In these coordinates, the line element is given by:

$$ds^2 = -\left(1 - \frac{2M}{r}\right)dv^2 + 2 dv dr + r^2 d\Omega^2$$

This is smooth for all r > 0. In matrix form, the metric is:

$$g_{\mu\nu} = \begin{pmatrix} -\left(1 - \frac{2M}{r}\right) & 1 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2\theta \end{pmatrix}$$

We have $g = \det g_{\mu\nu} = -r^4 \sin^2 \theta$, so $g_{\mu\nu}$ is non-degenerate for all r > 0 and furthermore it is Lorentzian for all r > 0.

In summary, spacetime can be extended through r = 2M to a new region r < 2M.

Exercise: for 0 < r < 2M, define r_* by (*) and t by (†). Show that the metrix in coordinates t, r, θ, ϕ is the Schwarzschild metric with 0 < r < 2M.

So for a ingoing radial null geodesic inside r=2M we have $\frac{\mathrm{d}r}{\mathrm{d}\tau}=-1$, so it reaches r=0 in finite τ . Consider $R_{abcd}R^{abcd}$. Some work will lead to:

$$R_{abcd}R^{abcd} \propto \frac{M^2}{r^6} \to \infty \text{ as } r \to 0$$

This quantity is a scalar, so it diverges in any coordinate system. We call r = 0 a curvature singularity. There are infinite tidal forces at r = 0. Note that r = 0 is not a part of the our spacetime, because g_{ab} is not defined there.

For r > 2M we have the "static" KVF $\frac{\partial}{\partial t}$. In Eddington-Finklestein coordinates x^{μ} , we have:

$$k = \frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial v}$$

Also, $k^2 = g_{vv} = -\left(1 - \frac{2M}{r}\right)$, so k is null at r = 2M, and spacelike at r < 2M. Only r > 2M is static.

