2.	Four observations on etch uniformity on silicon wafers are taken during a qualification
	experiment for a plasma etcher. The data are as follows:

Test the hypothesis that $\sigma^2 = 1.25$. Use $\alpha = 0.05$. Will you accept the hypotheses? [3 marks]

$$\frac{\sqrt{5}^2}{\sqrt{5}^2} = \frac{\sqrt{5}^2}{\sqrt{5}^2} = \frac{\sqrt{5}^2}{\sqrt{5}^2}$$

$$S^2 = (6.52 - 6)^2 + (6.52 - 7.52)^2 + (6.55 - 5.25)^2 + (6.55 - 65)^2$$

X ² 3 = 9.35	×2.0.995,3 = 0.22
00 NOT REJECT	

2. The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically. A completely random experiment was conducted, and the following data were collected:

Mixing Technique	Tensile Strength (lb/in2)				
1	3000	3030	2850	8880	296
2	3300	3300	3150	9750	3250
3	2850	2800 288°	3000	8730	290
4	2700	2700	2700	8100	2700

For the given data complete the following table

[111	marks]
	HIMIKSI

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	$\mathbf{F_0}$
Between Treatments	462300	r-(3	154100	26.6839
Error (Within Treatments)	46200	N- K 8	5775	`
Total	[D8500	N-1 11		

$$SS_{Cetwoon} = 0 \quad \begin{cases} \frac{k}{4\pi} \left(-\frac{\pi}{4} \right)^{2} \\ = 3 \left[(2960 - 2935)^{2} + (320 - 2935)^{2} + (2960 - 2935)^{2} \right] \\ + (2760 - 2935)^{2} \end{cases}$$

$$= 3 \left[5^{2} + 295^{2} + (-45)^{2} + (-255)^{2} \right]$$

$$= 3 \left[25 + 87025 + 2025 + 65025 \right]$$

$$= 462360$$

$$SS_{Cetol} = \begin{cases} \frac{k}{4\pi} & \frac{\pi}{4\pi} & \frac{\pi} & \frac{\pi}{4\pi} & \frac{\pi}{4\pi} & \frac{\pi}{4\pi} & \frac{\pi}{4\pi} & \frac{\pi}{4\pi} & \frac{\pi}{$$

$$= (3000 - 2957)^{2} + (3030 - 2757)^{2} + (2800 - 2757)^{2} + (3150 - 2757)^{2} + (2800 - 2757)^{2} + (2800 - 2757)^{2} + (2800 - 2757)^{2} + (2700 - 2757)^{2} + (2$$

```
452
                752
                         t (-102)<sub>5</sub> +
              +
      (345)2
              4 3452
                         + 1952 +
                        + 452 +
       (-105)2
             t (-75)2
        2512 + 2552 + 2552
         18675 +
         276075 t
         18675 +
         195075
    = 508500
SSE = SST- SSB
     = 508500 - 462300
     = 46200
MSB = SSB
              SSB
       DOF
           = 462300
              4-1
```

= 154100

$MS_{E} = SS_{E} = SS_{E}$ Oof N-K
N-C
= <u>46200</u> 12-4
= 577S
Fo = MST
ms _E
= <u>154100</u> 5775
= 26.6839

5. A pharmaceutical manufacturer wants to investigate the bioactivity of a new drug. A completely randomized single-factor experiment was conducted with three dosage levels, and the following results were obtained.

Dosage		Observat	ions	
20 g	24	28	37	30
30 g	37	44	31	35
40 g	42	47	52	38

149 29.75 149 36.75

a. Is there evidence to indicate that dosage level affects bioactivity? Use $\alpha = 0.05$. [13 marks]

$$\frac{1}{9} = \frac{24 + 28 + 37 + 30}{4} = \frac{119}{4} = \frac{29.75}{4}$$

$$\frac{\sqrt{9}}{9} = \frac{37+44+31+35}{4} = \frac{147}{4} = \frac{36.75}{4}$$

$$\frac{\sqrt{3}}{93} = 42 + 47 + 52 + 38 = 179 = 44.75$$

SS Between =
$$n \cdot \frac{k}{z} \left(\frac{1}{y_{i}} - \frac{1}{y_{i}} \right)^{2}$$

$$= 4 \cdot \left[(29.75 - 37.083)^{2} + (36.75 - 37.083)^{2} + (44.75 - 37.083)^{2} \right]$$

$$= 4 \cdot \left[(-7.33)^2 + (-0.333)^2 + (7.667)^2 \right]$$

$$= \left((24 - 37.083)^{2} + (28 - 37.083)^{2} + (37 - 37.083)^{2} + (30 - 37.083)^{2} +$$

$$(37 - 37.083)^2 + (44 - 37.083)^2 + (31 - 37.083)^2 +$$

$$(35 - 37.083)^2 +$$

$$(42-37.083)^2 + (47-37.083)^2 + (52-37.083)^2 +$$
 $(38-37.083)^2$

$$= \left[(-13.083)^{2} + (-9.083)^{2} + (-0.083)^{2} + (-7.083)^{2} + (-7.083)^{2} + (-0.083)^{2} + (-2.083)^{2} + (-4.917)^{2} + (-6.083)^{2} + (-2.083)^{2} + (-4.917)^{2} + (-4.917)^{2} + (-4.917)^{2} + (-4.917)^{2} \right]$$

```
= 303.842 +
        89.194 +
        345.88
     738 916
 SSE = SSTotal - SSBetween
    = 738.916 - 450.67
 = 288.246
DOF -> K-1 => 3-1=2
        N-K =) 12-3=9
        N-1 => 12-1 = 11
          ms Bet
 ms \rightarrow
                     450.67 = 225.34
                =>
           K-1
                      2
     \rightarrow
          MSwithin =) 288.246 = 32.02
           N-K
                       9
F_0 = MS_{Bet} = 225.34 = 7.04
       MS within
                  32.02
```

Fualve feom	touble	Fx, U, ,U2
: Fo.os, (9,2 =	9.38