exercise

June 11, 2019

1 Analysing Haberman Cancer Survival dataset

1.0.1 Haberman's Survival Data:

The dataset contains cases from a study that was conducted between 1958 and 1970 on the survival of patients who had undergone surgery for breast cancer.

1.0.2 Habaerman's Dataset Attribute Description:

- age: Age of patient at time of operation (numerical)
- yr_of_operate : Patient's year of operation (year 1900, numerical)
- postv_axllry_nds: Number of positive axillary nodes detected (numerical)
- survival_stat : Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 year

```
In [2]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        # in the given haberman's dataset, column names are not given
        # so we need to provide column names to the dataset ourselves
        columns_ = ['age', 'yr_of_operate', 'postv_axllry_nds', 'survival_stat']
        haberman = pd.read_csv("haberman.csv", names = columns_)
        haberman.head()
           age yr_of_operate postv_axllry_nds survival_stat
Out [2]:
        0
            30
                           64
                                              1
        1
           30
                           62
                                               3
                                                              1
        2
          30
                           65
                                              0
                                                              1
        3
                                              2
            31
                           59
                                                              1
            31
                           65
```

Note: updating the values in "survival status" column from 1's and 2's to more meaningful values like survived and not_survived respectively.

```
In [3]: # converting value of survival status i.e 1's and 2's into survived and not survivied
       haberman.survival_stat = haberman['survival_stat'].map({1:"survived", 2:"not_survived",
In [5]: # Q) data points and features
       print( haberman.shape)
(306, 4)
In [6]: # Q) names of columns in our dataframe
       print( haberman.columns)
Index(['age', 'yr_of_operate', 'postv_axllry_nds', 'survival_stat'], dtype='object')
In [7]: # Q) datapoints for each class present?
        print( haberman.survival_stat.value_counts())
        # from here we can observe that our dataset here is unbalanced ;
        # as the datapoints for every class are not equal
        # 1 = people surviving for 5 and more years are more i.e 225 as compared to
        # 2 = people died within 5 years i.e 81
survived
                225
                 81
not_survived
Name: survival_stat, dtype: int64
```

1.0.3 Observation

- From here we can observe that our dataset here is unbalanced as the datapoints for every class are not equal.
- 225 people of class "survived" (initially 1) survived for 5 or more years
- 81 people of class "not_survived" (initially 2) not sruvived for more than 5 years.

1.1 Objective:

• Given a feature or more than one feature (i.e paitents age, year of operation and the number of positive axillary nodes found) we need to calssify that whether a person can survive for 5 years(or more) or not.

1.2 Univaraite Analysis

- Performing univariate analysis contains ploting and understanding;
- PDF
- CDF

- Box Plot
- Violin Plot

Tthese analysis helps us to understand which features are useful towards classification

1.2.1 PDF

```
In [8]: # 1D scatter plot
```

```
haberman_1 = haberman[haberman.survival_stat == 'survived']
haberman_2 = haberman[haberman.survival_stat == 'not_survived']
plt.plot(haberman_1['postv_axllry_nds'], np.zeros_like(haberman_1['postv_axllry_nds'])
plt.title("1D Scatter Plot")
plt.show()
```


- C:\Users\ACER\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normal warnings.warn("The 'normal kwarg is deprecated, and has been "
- C:\Users\ACER\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normal warnings.warn("The 'normal kwarg is deprecated, and has been "

In [10]: # histogram and pdf for "year of operation"

```
sns.FacetGrid(haberman, hue = 'survival_stat', size = 5 ) \
    .map(sns.distplot, 'yr_of_operate') \
    .add_legend()
plt.title("Histogram and PDF for year of operation feature")
plt.grid()
plt.show()
```

C:\Users\ACER\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normal warnings.warn("The 'normal kwarg is deprecated, and has been "

C:\Users\ACER\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normation of the 'normation o

In [11]: # histogram and pdf for "positive axillary nodes detected"

```
sns.FacetGrid(haberman, hue = 'survival_stat', size = 5) \
    .map(sns.distplot, 'postv_axllry_nds') \
    .add_legend()
plt.title("Histogram and PDF for positive auxillary nodes feature")
plt.grid()
plt.show()
```

- C:\Users\ACER\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normation warnings.warn("The 'normation is deprecated, and has been "
- C:\Users\ACER\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: UserWarning: The 'normal warnings.warn("The 'normal kwarg is deprecated, and has been "

1.2.2 CDF

```
In [12]: # CDF
```

```
counts, bin_edges = np.histogram(haberman['age'], bins=10, density = True)
pdf = counts/(sum(counts))

#compute CDF
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:], cdf)

plt.title("Cummulative Distribution function")
plt.show();
```


1.2.3 Box Plot

```
In [14]: # BOX plot
    plt.figure(1, figsize = (15,5))

plt.subplot(131)
    sns.boxplot(x='survival_stat',y='age', data=haberman)
    plt.title("Box Plot")
    plt.grid()

plt.subplot(132)
    sns.boxplot(x='survival_stat',y='yr_of_operate', data=haberman)
    plt.title("Box Plot")
    plt.grid()

plt.subplot(133)
    sns.boxplot(x='survival_stat',y='postv_axllry_nds', data=haberman)
    plt.title("Box Plot")
    plt.grid()

plt.show()
```


1.2.4 Violin Plot

```
In [15]: # violin plot

plt.figure(1, figsize = (15,5))

plt.subplot(131)
   plt.title("Violin Plot")
   sns.violinplot(x='survival_stat',y='age', data=haberman)

plt.subplot(132)
   plt.title("Violin Plot")
   sns.violinplot(x='survival_stat',y='yr_of_operate', data=haberman)

plt.subplot(133)
   plt.title("Violin Plot")
   sns.violinplot(x='survival_stat',y='postv_axllry_nds', data=haberman)

plt.show()
```


1.2.5 Observations

- The number of positive axillary nodes of the survivors is highly densed from 0 to 5.
- Around 80% of the people have less than or equal to 5 positive axillary nodea.

1.3 Bi-Variate Analysis

Performing Bi-variate analysis contains plotting of combination of features in a single plot useful in classification.

- Scatter Plot
- Pair Plot

1.3.1 Scatter Plot

1.3.2 Observation

• A lot number of people are having positive axillayry nodes ranging between 0 and 5.

Scatter Plot between year of operation and positive axillary nodes

1.3.3 Pair Plot

1.3.4 Observations

It is really hard to make the clear and sharp observations from this data. But here are some;

- Scattering the data points between positive axillary nodes and year of operations, we can see the better seperation between the two clases than other scatter plots.
- Positive axillary nodes is a useful feature to observe the survival status.
- The people survived mostly fall into 0 positive axillary nodes.