

Topological Data Analysis of Attributed Networks using Diffusion Frèchet Functions with Ego Networks

Warren Keil, Mehmet Aktas
Department of Mathematics and Statistics, University of Central Oklahoma

Introduction

- Topological data analysis (TDA) has been a very active area of research in the past couple of decades. Its approach to data analysis is very different compared to most other methods.
- Network analysis on attributed networks, such as social media networks, has also been a very popular and exciting research topic in recent years.
- This research project aims to try to use the tools of TDA, along with recent results in multi-scale modeling and social network analysis to find new ways to study attributed networks.

Objectives

- 1. Apply techniques from topological data analysis to attributed network data
- 2. Extend recent studies of Ego networks on social networks to Amazon product data
- 3. Utilize the diffusion Frèchet function to map the network data to a metric space
- 4. Employ clustering techniques to analyze results

Topological Data Analysis

- Starts with the assumption that shape has meaning
- Topology is concerned with properties of shapes that are invariant under continuous deformations
- A common method of topological data analysis is persistent homology
- Map the data points to some metric space.
- $\, \blacktriangleright \,$ Embed a simplicial complex over these points for all values of a parameter t

Source: Ghrist, R. Bulletin of the American Mathematical Society 45.1 (2008): 61-75.

Ego Networks

- Type of network analysis that looks at subgraphs
- Very useful in analysis of attributed networks
- Can assist in detecting substructures in networks
- Provides a mean of using the attributes of the node to assign weights to the edges

Diffusion Frèchet Functions

- Multi-scale function useful in a variety of analysis
- ▶ Takes classical Frèchet function and replaces Euclidean distance with diffusion distance from the heat (diffusion) equation
- Able to detect multi-modal data and other patterns that traditional functions sometimes miss
- Ideal in preserving the shape of the data
- Proven stable with respect to the Wasserstein distance

Diffusion Frèchet Function on Euclidean Space [2,3]

- Let $k_t : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be the fundamental solution of the Heat equation.
- $k_t(x,y)$ can be interpreted as the temperature at time t at point y when the heat source was at point x at time 0.
- If $k_t(x,y)$ is large, it means that heat diffuses fast from x to y.
- Associate each point x in \mathbb{R}^d with the function $k_t(x,\cdot) = k_{t,x}$ in the space of square-integrable functions $L^2(\mathbb{R}^d)$
- If heat diffuses in a similar way from points $x, y \in \mathbb{R}^d$ to any other point $z \in \mathbb{R}^d$, the functions $k_{t,x}$ and $k_{t,y}$ will be close in $L^2(\mathbb{R}^d)$.
- ▶ The diffusion distance $dt : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$, for t > 0, is

$$d_t(x,y) \coloneqq ||k_{t,x} - k_{t,y}||_2.$$

► The diffusion Frèchet function, is

$$V_{\alpha,t}(x) \coloneqq \int_{\mathbb{T}^d} d_t^2(x,y) \alpha(dy)$$

t = 0.75

t = 1.0

Diffusion Frèchet Function on weighted networks [2,3] To define a heat diffusion process on networks, we must define an

- analog of the Laplacian. Let $v_1,...,v_n$ be the nodes of a weighted network K and W be the $n\times n$ weighted adjacency matrix.
 - The graph Laplacian is the matrix Δ defined by Δ = D W where D is the diagonal matrix with diagonal entries d_{ii} = $\sum_{k=1}^{n} w_{ik}$.
- The heat kernel can be expressed as $k_t(i,j) = \sum_{k=1}^n e^{-\lambda_k t} \phi(i) \phi(j)$ where $0 \le \lambda_1 \le ... \le \lambda_n$ are the eigenvalues of Δ with orthonormal eigenvectors $\phi_1, ..., \phi_n$.
- $\, {}^{\, \bullet}$ The diffusion distance between v_i and v_j is

$$d_t^2(i,j) = \sum_{k=1}^n e^{-2\lambda_k t} (\phi_k(i) - \phi_k(j))^2$$

▶ The diffusion Frèchet function for weighted networks is

$$F_{\xi,t}(i) = \sum_{j=1}^{n} d_t^2(i,j)\xi_j$$

Methodology

- 1. For each item in Amazon dataset, compute N-Ego network
- 2. Calculate diffusion Fréchet distance of each node of Ego networks
 - 3. Compute lower star filtration using diffusion distance as height
 - 4. Store persistent homology information in barcodes
- 5. Compute Wasserstein distance between each barcode. Store in dissimilarity matrix
- 6. Perform hierarchical clustering using Wasserstein distances

Lower Star Filtration

Example: Beatles 1 Album

Clustering

References

- [1] Leskovec, Jure, et al. Learning to Discover Social Circles in Ego Networks. Stanford Large Network Dataset Collection, snap. stanford.edu/data/. (2015).
- Dataset Collection, snap. stanford.edu/data/. (2015).
 [2] Martinez, Diego H. Diaz. Multiscale Summaries of Probability Measure with Applications to Plant and Microbiome Data, Dissertation, The Florida State University, (2016).
- [3] Martinez, Diego H. Diaz. *Probing the Geometry of Data with Diffusion Frèchet Functions*, Applied and Computational Harmonic Analysis (2018)
- and Computational Harmonic Analysis (2018)
 [4] Carlsson, Gunnar *Topology and Data*, Bulletin of the Amercican Mathematical Society 46.2255-308, (2009)
- [5] Ghrist, Robert. *Barcodes: the persistent topology of data*, Bulletin of the American Mathematical Society 45.1: 61-75 (2008).

