Numerik

by

Dr. Günter Kolousek

Numerik

- Numerische Mathematik
 - zahlenmäßige Berechnung von Lösungen mathematischer Modelle, die durch Formeln, Gleichungen, als Grenzwerte,... gegeben sind
 - Zahlendarstellung und Zahlenarithmetik
- ▶ Warum?
 - auf dem Papier nicht exakt berechenbar
 - zwar exakt berechenbar, aber
 - dies muss oftmalig passieren oder
 - ▶ auf diese Weise zu langsam oder zu große Rechenfehler → Näherungslösung u.U. sinnvoller (wenn ausreichend genau)

Akteure

- ► Numerische Mathematiker (Numeriker)
 - Aufbereitung der Modelle zur numerischen Behandlung
- ▶ Informatiker
 - Umsetzung
 - ► Stichworte: Rechenzeit, Speicherbedarf, Cache-Effekte, Parallelrechner, verwendete Rechnerarchitekturen, Compiler, Programmiertechniken

Anwendungen

- Meteorologie, Strömungsberechnungen, Brückenbau,...
- Simulationen (Crash-Tests, Flugzeug, Atomkraftanlagen, Chemieanlagen, Berechnungen für Energienetze,...)
- Computergraphik, Bildverarbeitung (Kompression, Analyse, Bearbeitung)
- Neuronale Netze (Lernverfahren)
- Steuerung von Raketen, Industrieroboter, Medizintechnik (z.B. Infusionspumpen), Eisenbahnsicherungsanlagen, Antiblockiersysteme,...
- Chip Design
- Kryptographie

Probleme der Rechnerarithmetik

- ▶ Die *endliche* Menge $M \subset \mathbb{R}$, der in einem Rechner darstellbaren Zahlen heißt Menge der Maschinenzahlen
 - Es muss eine größte (kleinste) Maschinenzahl geben
 - Nicht jede Zahl zwischen größter und kleinster Zahl aus M ist in M enthalten
 - $\blacktriangleright \ \ \text{z.B.} \ \textit{M} = \{0,1,2,3,4,5\}$, dann ist $\frac{2+3}{2} \notin \textit{M}$
- Prozessor kann Rechnungen nicht exakt ausführen

Rechnen mit ganzen Zahlen

- Vergleich: VZ-behaftet und VZ-los
- Überlauf und Unterlauf
 - sowohl bei VZ-losen als auch bei VZ-behafteten Zahlen
 - Addition, Substraktion, Multiplikation
- Division
 - Division liefert im Allgemeinen keine ganzzahligen Ergebnisse
 - Division durch 0

Unsicherer Vergleich

```
#include <iostream>
using namespace std;
int main() {
    int x\{-3\};
    unsigned int y\{7\};
    cout << boolalpha;
    cout << "-3 < 7: " << (x < y) << endl; // false
    cout << "-3 <= 7: " << (x <= y) << endl; // false
    cout << "-3 > 7: " << (x > y) << endl; // true
    cout << "-3 => 7: " << (x >= y) << endl; // true
} // x will be casted to unsigned!!!
```

Sicherer Vergleich (in C++ 20)

```
#include <iostream>
#include <utility>
using namespace std;
int main() {
  int x\{-3\};
  unsigned int y\{7\};
  cout << boolalpha;</pre>
  cout << "3 == 7: " << cmp_equal(x, y) << endl;</pre>
  cout << "3 != 7: " << cmp_not_equal(x, y) << endl;</pre>
  cout << "-3 < 7: " << cmp_less(x, y) << endl;
  cout << "-3 <= 7: " << cmp_less_equal(x, y) << endl;
  cout << "-3 > 7: " << cmp_greater(x, y) << endl;</pre>
  cout \langle \langle "-3 \rangle ?: " \langle \langle cmp\_greater\_equal(x, y) \langle endl;
} // expected results!
```

Über/Unterlauf

Überlauf (overflow) und Unterlauf (underflow) bei ganzen Zahlen!

```
#include <iostream>
#include <cstdint>
using namespace std;
int main() {
   // sadly, it's an alias for unsigned char...
    uint8 t i{253}:
    cout << +i++ << endl; // -> 253
    cout << +i++ << endl; // -> 254
    cout << +i++ << endl; // -> 255
    cout << +i-- << endl; // -> 0
    cout << +i << endl; // -> 255
   // ... so you can't omit the '+'!
    cout << i + i << endl; // -> 510
    i = i + i;
    cout << +i << endl; // -> 254
```

Über/Unterlauf – 2

- meistens nicht gewünscht, d.h.
 - erkennen
 - vermeiden
- manchmal erwünscht, z.B.:
 - ► Timer, Clocks
 - gewisse Zähler (wie bei Ringpuffer)

<u>Überlauf erkennen</u>

- ganze Zahlen
 - ► Addition/Subtraktion positiver Zahlen → darf nicht kleiner/größer sein

```
#include <iostream>
#include <cstdint>
using namespace std;
int main() {
    uint8_t i{254};
    uint8_t res;
    res = i + i;
    cout << +res << endl; // -> 252
    res = res - i;
    cout << +res << endl; // -> 254
```

Überlauf erkennen – 2

- Multiplikation positiver Zahlen
 - Produkt kann größer sein, aber trotzdem falsch:

```
#include <iostream>
#include <cstdint>
using namespace std;

int main() {
    uint8_t i{90};
    uint8_t res;
    res = i * i;
    cout << +res << endl; // -> 164
```

Überlauf erkennen – 3

ightharpoonup ightarrow in größerem Datentyp rechnen:

```
uint16_t tmp;
tmp = i * i;
// erkennen und auf max setzen
res = (tmp < 255) ? tmp : 255;
cout << +res << endl; // -> 255
tmp = i * 2;
res = (tmp < 255) ? tmp : 255;
cout << +res << endl; // -> 180
```

Überlauf erkennen – 4

▶ Gleitkommazahlen

```
#include <iostream>
#include <limits>
#include <cmath>
using namespace std;
int main() {
  double x{};
   x = numeric_limits<double>::max();
   cout << x << " is inf: " << isinf(x) << end
   // -> 1.79769e+308 is inf: 0
   x = numeric_limits<double>::infinity();
   cout << x << " is inf: " << isinf(x) << end
   // -> inf is inf: 1
  cout << x + 1 << endl; // -> inf
```

Überlauf vermeiden

- abhängig von der jeweiligen Aufgabenstellung!
- ► Mittelwert zweier Zahlen?
 - ganze Zahlen
 - VZ-lose vs VZ-behanftete Zahlen
 - ► Gleitkommazahlen
- Interpolation

...Mittelpunkt zwischen zwei Zahlen am Zahlenstrahl

- ...Mittelpunkt zwischen zwei Zahlen am Zahlenstrahl
 - Lösung

$$c = (a + b) / 2;$$

funktioniert für int, unsigned und Gleitkommazahlen

- ...Mittelpunkt zwischen zwei Zahlen am Zahlenstrahl
 - Lösung

$$c = (a + b) / 2;$$

- ► funktioniert für int, unsigned und Gleitkommazahlen
 - für ganze Zahlen: nicht unbedingt ohne Abschneiden der Nachkommastellen beim Ergebnis
- ▶ aber: Überlauf kann auftreten!

- ...Mittelpunkt zwischen zwei Zahlen am Zahlenstrahl
 - Lösung

$$c = (a + b) / 2;$$

- funktioniert für int, unsigned und Gleitkommazahlen
 - für ganze Zahlen: nicht unbedingt ohne Abschneiden der Nachkommastellen beim Ergebnis
- aber: Überlauf kann auftreten!
- Lösung für VZ-lose Zahlen, $b \ge a$

$$c = a + (b - a) / 2;$$

für VZ-behaftete Zahlen?

- ...Mittelpunkt zwischen zwei Zahlen am Zahlenstrahl
 - Lösung

$$c = (a + b) / 2;$$

- funktioniert für int, unsigned und Gleitkommazahlen
 - für ganze Zahlen: nicht unbedingt ohne Abschneiden der Nachkommastellen beim Ergebnis
- aber: Überlauf kann auftreten!
- Lösung für VZ-lose Zahlen, $b \ge a$

$$c = a + (b - a) / 2;$$

- für VZ-behaftete Zahlen?
- Annahme: 4 Bit VZ-behaftet in 2er Komplement
 - ightharpoonup Zahlenbereich: [-8, 7]

$$a = 5, b = -7 \rightarrow b - a = -12!!!$$

- ...Mittelpunkt zwischen zwei Zahlen am Zahlenstrahl
 - Lösung

$$c = (a + b) / 2;$$

- funktioniert für int, unsigned und Gleitkommazahlen
 - für ganze Zahlen: nicht unbedingt ohne Abschneiden der Nachkommastellen beim Ergebnis
- aber: Überlauf kann auftreten!
- Lösung für VZ-lose Zahlen, $b \ge a$

$$c = a + (b - a) / 2;$$

- für VZ-behaftete Zahlen?
- Annahme: 4 Bit VZ-behaftet in 2er Komplement
 - ightharpoonup Zahlenbereich: [-8, 7]

$$a = 5, b = -7 \rightarrow b - a = -12!!!$$

- ► → funktioniert, wenn nicht (immer) wenn verschiedene VZ
 - ightharpoonup auch wenn b < a

```
#include <limits>
#include <tvpe traits>
using namespace std;
// iff conversion from unsigned to signed preserves bit patter
template <typename Integer> // iff int is two-complement
constexpr Integer midpoint(Integer a, Integer b) noexcept {
    using U = make_unsigned_t<Integer>; // -> type_traits
    return a > b ? a - (U(a) - b) / 2 : a + (U(b) - a) / 2;
int main() {
   cout << numeric_limits<int>::min() << endl; // -2147483648</pre>
   int a{-2147483640};
   int b{10};
   cout << a + (b - a) / 2 << endl; // 1073741833
   cout << midpoint(a, b) << endl; // -1073741815</pre>
   a = 11:
   cout << a + (b - a) / 2 << endl; // 11
   cout << midpoint(a, b) << endl; // 11</pre>
                                                             17/31
```

Wickeine der obigen Lösungen funktioniert! Überlauf bzw. hicht korrekte Rundung in Subtraktion und Addition

keine der obigen Lösungen funktioniert! Überlauf bzw. nicht korrekte Rundung in Subtraktion und

Addition

Lösung für Gleitkommazahlen:

```
c = a / 2 + b / 2;
aber: in Spezialfällen → Rundungsfehler bei subnormalen
Zahlen
```

daher:

```
#include <iostream>
#include <cmath>
using namespace std;
int main() {
   double a{numeric_limits<double>::max()};
   cout << a << endl; // 1.79769e+308
   double b{a};
   double c{(a + b) / 2};
   cout << c << endl; // inf</pre>
   a = numeric_limits<double>::denorm_min();
   b = a;
   c = a / 2 + b / 2;
   cout << c << endl; // 0
                                            18/31
```

// -> Unterlauf

Interpolation

```
▶ i.A.: a + t * (b - a) \neq b wenn t = 1
    #include <iostream>
    #include <cmath> // -> M PI
    using namespace std;
    int main() {
        double b{0.1};
        double a{M PI};
        double t{1};
        cout << M_PI << endl; // 3.14159
        cout << (a + t * (b - a)) << endl; // 0.1
        cout << (a + t * (b - a) == b) << endl; /
```

Interpolation – 2

- ▶ Überlauf, wenn *a*, *b* verschiedene Vorzeichen und größter Exponent
 - $ightharpoonup \rightarrow b a!$

Division ganzer Zahlen

```
#include <iostream>
using namespace std;
int main() {
    cout << 4 / 2 << endl; // -> 2
    cout << 5 / 2 << endl; // -> 2
    cout << -3 / 2 << endl; // -> -1
    cout << 1 / 0 << endl;
   // -> ...terminated by signal SIGFPE
```

- ▶ → kann als Rundung zur Null interpretiert werden!
- ► → Division durch 0 → Programmabsturz
 - ▶ in diesem Fall: Warnung durch Compiler: warning: division by zero [-Wdiv-by-zero]
 - ▶ daher: Divisor auf 0 überprüfen!
- Achtung in Python wie in Mathematik!
 - daher: eigener Operator / /

Def.: Rest der Division ganzer Zahlen a (Dividend) und b (Divisor):

$$a = b \cdot q + r, \qquad 0 \le r < |b|$$

- $ightharpoonup a, b \in \mathbb{N} \dots$ eindeutig definiert
- ▶ $a, b \in \mathbb{Z}$... nicht eindeutig

$$5 \div -2 = -3R - 1$$

▶ Definition in der Mathematik: Rest hat VZ vom Divisor

Def.: Rest der Division ganzer Zahlen a (Dividend) und b (Divisor):

$$a = b \cdot q + r, \qquad 0 \le r < |b|$$

- ▶ $a, b \in \mathbb{N}$... eindeutig definiert
- $ightharpoonup a,b\in\mathbb{Z}\dots$ nicht eindeutig

$$5 \div -2 = -3R - 1$$

- Definition in der Mathematik: Rest hat VZ vom Divisor
- ▶ aber: $5 \div -2 = -2R1 !!$

```
print(5 // 2, 5 % 2)
print(-5 // 2, -5 % 2)
print(5 // -2, 5 % -2)
print(-5 // -2, -5 % -2)
```

```
print(5 // 2, 5 % 2)
print(-5 // 2, -5 % 2)
print(5 // -2, 5 % -2)
print(-5 // -2, -5 % -2)
2 1
-3 1
-3 -1
2 -1
```

d.h. wie in der Mathematik!

```
#include <iostream>
using namespace std;

int main() {
    cout << 5 / 2 << ' ' ' << 5 % 2 << endl;
    cout << -5 / 2 << ' ' ' << -5 % 2 << endl;
    cout << 5 / -2 << ' ' ' << -5 % 2 << endl;
    cout << 5 / -2 << ' ' ' << 5 % -2 << endl;
    cout << 5 / -2 << ' ' ' << 5 % -2 << endl;
    cout << -5 / -2 << ' ' ' << -5 % -2 << endl;
}</pre>
```

```
#include <iostream>
using namespace std;
int main() {
    cout << 5 / 2 << ' ' << 5 % 2 << endl;
    cout << -5 / 2 << ' ' << -5 % 2 << endl;
    cout << 5 / -2 << ' ' << 5 % -2 << endl:
    cout << -5 / -2 << ' ' << -5 % -2 << endl:
2 1
-2 -1
-2 1
2 - 1
```

laut Spezifikation: "(a/b)*b + a%b is equal to a."

```
#include <iostream>
using namespace std;
int mod(int a, int b) { return ((a % b) + b) % b; }
int main() {
    cout << mod(5, 2) << endl;
    cout \ll mod(-5, 2) \ll endl;
    cout \ll mod(5, -2) \ll endl;
    cout \ll mod(-5, -2) \ll endl;
}
1
```

Rechnen mit Gleitkommazahlen

- ► Darstellung von Gleitkommazahlen
 - Abspeichern von Gleitkommazahlen
 - ► → Foliensatz "Gleitkommazahlen"
- ► Fehler beim Rechnen
- ▶ Überlauf
- Unterlauf
- ► NaN

Darstellung GKZ - Python

$$0.1 + 0.1 + 0.1 = 0.3$$

Darstellung GKZ - Python

```
0.1 + 0.1 + 0.1 = 0.3 aber:
>>> 0.1 + 0.1 + 0.1 == 0.3
False
???
```

Darstellung GKZ - Python

```
0.1 + 0.1 + 0.1 = 0.3 aber: 
>>> 0.1 + 0.1 + 0.1 == 0.3 False 
??? 
>>> 0.1 
0.1 
>>> 0.1 + 0.1 + 0.1
```

Darstellung GKZ - Python

► Rechnet Python falsch?

- ▶ Rechnet Python falsch? nein! \rightarrow Darstellung von 0.1 ist **nicht** exakt möglich! D.h. $0.1 \notin M!$
 - ▶ 0.1 kann kein Element von *M* sein... warum?

- ▶ Rechnet Python falsch? nein! \rightarrow Darstellung von 0.1 ist **nicht** exakt möglich! D.h. $0.1 \notin M$!
 - ▶ 0.1 kann kein Element von *M* sein... warum?unabhängig davon wie Gleitkommazahlen abgespeichert werden...

- ▶ Rechnet Python falsch? nein! \rightarrow Darstellung von 0.1 ist **nicht** exakt möglich! D.h. $0.1 \notin M$!
 - ▶ 0.1 kann kein Element von *M* sein... warum?unabhängig davon wie Gleitkommazahlen abgespeichert werden...
- $ightharpoonup 0.1_{10} = 0.00011001100110011... = 0.0\overline{0011}$

$$0.1 \cdot 2$$
 -

$$0.2 \cdot 2$$
 0

$$0.4 \cdot 2$$
 0

$$0.8 \cdot 2$$
 0

$$1.6 \cdot 2$$
 1

$$0.4 \cdot 2$$
 0

...

```
▶ Beispiel – C++
    \triangleright 0.1 + 0.1 + 0.1 = 0.3 in C++?
            #include <iostream>
            #include <cmath>
            using namespace std;
            int main() {
                 cout << 0.1 << endl;
       \rightarrow 0.1
            cout << 0.1 + 0.1 + 0.1 << endl;
```

```
▶ Beispiel – C++
    \triangleright 0.1 + 0.1 + 0.1 = 0.3 in C++?
            #include <iostream>
            #include <cmath>
            using namespace std;
            int main() {
                  cout << 0.1 << endl;
       \rightarrow 0.1
            cout << 0.1 + 0.1 + 0.1 << endl;
       \rightarrow 0.3
```

```
▶ Beispiel – C++
    \triangleright 0.1 + 0.1 + 0.1 = 0.3 in C++?
            #include <iostream>
            #include <cmath>
            using namespace std;
            int main() {
                 cout << 0.1 << endl;
       \rightarrow 0.1
            cout << 0.1 + 0.1 + 0.1 << endl;
       \rightarrow 0.3
       rechnet C++ besser als Python?
            cout << (0.1 + 0.1 + 0.1 == 0.3) << endl;
```

▶ Beispiel – C++ \triangleright 0.1 + 0.1 + 0.1 = 0.3 in C++? #include <iostream> #include <cmath> using namespace std; int main() { cout << 0.1 << endl; $\rightarrow 0.1$ cout << 0.1 + 0.1 + 0.1 << endl; $\rightarrow 0.3$ rechnet C++ besser als Python? cout << (0.1 + 0.1 + 0.1 == 0.3) << endl; \rightarrow 0

▶ Beispiel – C++ \triangleright 0.1 + 0.1 + 0.1 = 0.3 in C++? #include <iostream> #include <cmath> using namespace std; int main() { cout << 0.1 << endl; $\rightarrow 0.1$ cout << 0.1 + 0.1 + 0.1 << endl; \rightarrow 0.3 rechnet C++ besser als Python? cout << (0.1 + 0.1 + 0.1 == 0.3) << endl; $\rightarrow 0$ Was ist der Unterschied?

▶ Beispiel – C++ \triangleright 0.1 + 0.1 + 0.1 = 0.3 in C++? #include <iostream> #include <cmath> using namespace std; int main() { cout << 0.1 << endl; $\rightarrow 0.1$ cout << 0.1 + 0.1 + 0.1 << endl; \rightarrow 0.3 rechnet C++ besser als Python? cout << (0.1 + 0.1 + 0.1 == 0.3) << endl; $\rightarrow 0$ Was ist der Unterschied? die Ausgabe!!!

$$f(n) = (1 + \frac{1}{n})^n$$
 $\lim_{n \to \infty} f(n) = e$ $e = 2.718281828459$

 $ightharpoonup n = 10^3, f(n) = 2.7169239322355936$

$$f(n) = (1 + \frac{1}{n})^n$$
 $\lim_{n \to \infty} f(n) = e$ $e = 2.718281828459$

- $ightharpoonup n = 10^3, f(n) = 2.7169239322355936$
- $ightharpoonup n = 10^6, f(n) = 2.7182804690957534$

$$f(n) = (1 + \frac{1}{n})^n$$
 $\lim_{n \to \infty} f(n) = e$ $e = 2.718281828459$

- $ightharpoonup n = 10^3, f(n) = 2.7169239322355936$
- $ightharpoonup n = 10^6, f(n) = 2.7182804690957534$
- $n = 10^9, f(n) = 2.7182820520115603$

$$f(n) = (1 + \frac{1}{n})^n$$
 $\lim_{n \to \infty} f(n) = e$ $e = 2.718281828459$

- $ightharpoonup n = 10^3, f(n) = 2.7169239322355936$
- $n = 10^9, f(n) = 2.7182820520115603$
- $n = 10^{12}, f(n) = 2.7185234960372378$

$$f(n) = (1 + \frac{1}{n})^n$$
 $\lim_{n \to \infty} f(n) = e$ $e = 2.718281828459$

- $ightharpoonup n = 10^3, f(n) = 2.7169239322355936$
- $ightharpoonup n = 10^6, f(n) = 2.7182804690957534$
- $n = 10^9, f(n) = 2.7182820520115603$
- $n = 10^{12}, f(n) = 2.7185234960372378$
- $n = 10^{15}, f(n) = 3.035035206549262$

$$f(n) = (1 + \frac{1}{n})^n$$
 $\lim_{n \to \infty} f(n) = e$ $e = 2.718281828459$

- $ightharpoonup n = 10^3, f(n) = 2.7169239322355936$
- $n = 10^9, f(n) = 2.7182820520115603$
- $n = 10^{12}, f(n) = 2.7185234960372378$
- $n = 10^{15}, f(n) = 3.035035206549262$
- $n = 10^{18}, f(n) = 1.0$