8. Stiglar

Stærðfræðigreining IIB, STÆ205G, 28. janúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

8.1

Stigull

Skilgreining 8.1

Látum f(x,y) vera fall og (x,y) punkt þar sem báðar fyrsta stigs hlutafleiður f eru skilgreindar. Skilgreinum $stigul\ f$ í punktinum (x,y) sem vigurinn

$$\nabla f(x,y) = f_1(x,y)\mathbf{i} + f_2(x,y)\mathbf{j}.$$

Stigull f er stundum táknaður með **grad** f.

8.2

Stigull

Ritháttur 8.2

Oft hentugt að rita

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y}.$$

Þá er litið svo á að ∇ sé diffurvirki, þ.e.a.s. ∇ gefur fyrirmæli um hvað á að gera við f til að fá $\nabla f(x,y)$.

8.3

Dæmi

$$Graf z = 1 - x^2 - y^2$$

Jafnhæðarlínur. Stigull og snertilína við jafnhæðarlínuna z=0.5 í (x,y)=(0.5,0.5).

8.4

Stigull

Setning 8.3

Gerum ráð fyrir að fallið f(x,y) sé diffranlegt í punktinum (a,b) og að $\nabla f(a,b) \neq \mathbf{0}$. Pá er vigurinn $\nabla f(a,b)$ hornréttur á þá jafnhæðarlínu f sem liggur í gegnum punktinn (a,b).

8.5

Snertilína við jafnhæðarferil

Setning 8.4

Gerum ráð fyrir að fallið f(x,y) sé diffranlegt í punktinum (a,b) og að $\nabla f(a,b) \neq \mathbf{0}$. Jafna snertilínu við jafnhæðarferil f í punktinum (a,b) er gefin með formúlunni

$$\nabla f(a,b) \cdot (x,y) = \nabla f(a,b) \cdot (a,b),$$

eða

$$f_1(a,b)(x-a) + f_2(a,b)(y-b) = 0.$$

8.6

Stefnuafleiða

Skilgreining 8.5

Látum $\mathbf{u} = u\mathbf{i} + v\mathbf{j}$ vera einingarvigur. Stefnuafleiða f í punktinum (a, b) í stefnu \mathbf{u} er skilgreind sem

$$D_{\mathbf{u}}f(a,b) = \lim_{h \to 0^+} \frac{f(a+hu,b+hv) - f(a,b)}{h}$$

ef markgildið er skilgreint.

8.7

Stefnuafleiða

Setning 8.6

Gerum ráð fyrir að fallið f sé diffranlegt í (a, b) og $\mathbf{u} = u\mathbf{i} + v\mathbf{j}$ sé einingarvigur. Þá er stefnuafleiðan í punktinum (a, b) í stefnu \mathbf{u} skilgreind og gefin með formúlunni

$$D_{\mathbf{11}}f(a,b) = \mathbf{u} \cdot \nabla f(a,b).$$

8.8

Stefnuafleiða

Setning 8.7

Látum f vera gefið fall og gerum ráð fyrir að f sé diffranlegt í punktinum (a, b).

- (a) Hæsta gildið á stefnuafleiðunni $D_{\mathbf{u}}f(a,b)$ fæst þegar \mathbf{u} er einingarvigur í stefnu $\nabla f(a,b)$, þ.e.a.s. $\mathbf{u} = \frac{\nabla f(a,b)}{|\nabla f(a,b)|}$.
- (b) Lægsta gildið á stefnuafleiðunni $D_{\mathbf{u}}f(a,b)$ fæst þegar \mathbf{u} er einingarvigur í stefnu $-\nabla f(a,b)$, þ.e.a.s. $\mathbf{u}=-\frac{\nabla f(a,b)}{|\nabla f(a,b)|}$.
- (c) Ef \mathcal{C} er sú hæðarlína f sem liggur í gegnum (a,b) og \mathbf{u} er einingarsnertivigur við \mathcal{C} í punktinum (a,b) þá er $D_{\mathbf{u}}f(a,b)=0$.

8.9

Stefnuafleiða

8.10

Stefnuafleiða

Setning 8.8

Látum f vera gefið fall og gerum ráð fyrir að f sé diffranlegt í punktinum (a, b).

- (a) Í punktinum (a,b) þá vex f hraðast ef haldið er í stefnu $\nabla f(a,b)$.
- (b) Í punktinum (a, b) þá minnkar f hraðast ef haldið er í stefnu $-\nabla f(a, b)$.
- (c) Ef \mathcal{C} er sú hæðarlína f sem liggur í gegnum (a, b) og \mathbf{u} er einingarsnertivigur við \mathcal{C} í punktinum (a, b) þá er er vaxtarhraði f í stefnu \mathbf{u} jafn 0.

8.11

Stigull

Skilgreining 8.9

Látum f vera fall af þremur breytistærðum, þannig að allar þrjár fyrsta stigs hlutafleiður f í punktinum (x,y,z) séu skilgreindar. Stigull f í punktinum (x,y,z) er skilgreindur sem vigurinn

$$\nabla f(x,y,z) = f_1(x,y,z)\mathbf{i} + f_2(x,y,z)\mathbf{j} + f_3(x,y,z)\mathbf{k}.$$

8.12

Snertiplan við jafnhæðarflöt

Setning 8.10

Látum f vera fall af þremur breytistærðum þannig að fallið f er diffranlegt í punktinum (a, b, c). Látum \mathcal{F} tákna þann jafnhæðarflöt f sem liggur um (a, b, c). Stigullinn

 $\nabla f(a,b,c)$ er hornréttur á flötinn \mathcal{F} í punktinum (a,b,c) og snertiplan (ef $\nabla f(a,b,c)\neq \mathbf{0}$) við jafnhæðarflötinn í punktinum (a,b,c) er gefið með jöfnunni

$$\nabla f(a,b,c) \cdot (x,y,z) = \nabla f(a,b,c) \cdot (a,b,c)$$

eða með umritun

$$f_1(a,b,c)(x-a) + f_2(a,b,c)(y-b) + f_3(a,b,c)(z-c) = 0.$$

8.13