

Bilderzeugende Verfahren zum Angriff einer Verkehrsschilder erkennenden KI

Leonhard Applis · Peter Bauer · Andreas Porada · Florian Stöckl

Herausforderung

Lösungsansätze

- Saliency Maps
- Gradient Ascent
- Degeneration

Zusammenfassung

Agenda

Herausforderung

- InformatiCup:
 - Architektur des GI-NN ist unbekannt
 - Trainingsdatensatz ist bekannt (GTSRB)
- Stand der Wissenschaft:
 - ► Transferierbarkeit von Angriffen zwischen NNs [1]
 - Unterschiedliche NN-Architektur
 - Selber Trainingsdatensatz

Erzeugung von Adversarial Examples (Surrogate CNN)

Verschiedene Ansätze zur Bilderzeugung

Saliency Maps

Gradient Ascent

Degeneration

Vorteile:

- ▶ Direkter Zugriff auf die NN-Architektur und -Parameter
- Umgehung der Web-Schnittstelle (Schnelligkeit)

Saliency Maps

► Topografische Darstellung von klassentypischen, markanten Bildmerkmalen (High-Level Features), die das trainierte CNN zu Eingabebildern "gelernt" hat. [2]

Beispielbild

Saliency Map

Hypothese:

► Hohe Erkennungsrate bei CNNs, jedoch nur abstrakte, schemenhafte Wahrnehmung beim Menschen möglich

Saliency Maps: Implementierung [3-6]

- Ungeglättete und geglättete Verfahren
 - ► (Geglättete) Guided Backpropagation
 - (Geglättete) Integrated Gradient
 - ► (Geglättete) Vanilla

Vorverarbeitung

- Surrogat CNN "Aphrodite": Implementierung, Training
- Bildklassifikation durch "Aphrodite"
- Bildselektion: Konfidenz = 100% (1.933/12.630)

Bilderzeugung

- Saliency Map:
 - Ungeglättete Verfahren
 - Geglättete Verfahren

Remote Evaluierung

• Bildselektion: Konfidenz > 90%

Saliency Maps: Ergebnisse

Ungeglättete Verfahren (Erfolge):

▶ Je Verfahren 0/1933 (0,00%)

Geglättete Verfahren (Erfolge):

► Guided Backpropagation: 7/1933 (0,36%)

► Integrated Gradient: 3/1933 (0,16%)

Vanilla Saliency: 3/1933 (0,16%)

Zul. Höchstgeschw. 50 99,95%

Zul. Höchstgeschw. 30 92,83%

Baustelle 99,99%

Gradient Ascent

- Gradient Descent [7]
 - Berechnung von Gradienten durch Backpropagation
 - Gradient Descent optimiert Parameter des NN
- Gradient Ascent: Targeted Backpropagation [6]
 - "optimiert" das Bild iterativ mithilfe von Backpropagation

Gradient Ascent: Implementierung

Vorverarbeitung

- Implementierung und Training des Surrogat CNNs "AlexNet"
- Spezifikation der Zielklasse und Zufallsbilderzeugung

Gradient Ascent

- Berechnung der Gradienten
- Veränderung des Eingabebildes bis Zielklasse mit Konfidenz >90% angenähert wird

Remote Evaluierung

• Bildselektion: Konfidenz > 90%

Gradient Ascent: Ergebnisse

- 43 Ergebnisbilder entsprechend der im GTSRB-Datensatz vorhandenen Klassen
- Erfolge: 20 Bilder (46,51%) mit Konfidenz >90%
 - Nur bei 4 Bildern Übereinstimmung der Ursprungs- und Zielklasse

Vorfahrt gewähren 99,99%

Kreisverkehr 98,68%

Allgem. Überholverbot 99,99%

Degeneration

- 1. Eingabe eines Ausgangsbildes: Echtes Verkehrsschild (I-0)
- 2. Verrauschen des Schildes
- 3. Senden an Schnittstelle
 - Weiterhin als Verkehrsschild erkannt?Weiter benutzen (Grüner Pfeil)
 - b) Zu niedrige Konfidenz? Entferne Rauschen und wdh. ab Schritt 2 (Oranger Pfeil)
- 4. Wiederhole bis n-Wiederholungen erreicht

Degeneration: Ergebnisse

Degeneration: Vor- und Nachteile

Vorteile:

- Einfache Implementierung (ca. 100 Zeilen Code)
- Modellunabhängig
- Ebenfalls für Random Forests, SVMs, etc.
- Ergebnisse beliebig gut je nach Zeitaufwand
- Zwischenergebnisse wieder aufgreifbar

Nachteile:

- Lange Laufzeit (Lokal ca. 3 Minuten pro Bild, Remote 1-2 Stunden)
- Längere Laufzeit bei besseren Netzen
- Lokal ggfs. längere Laufzeiten auf schlechter Hardware
- Feintuning der Rauschfunktion erforderlich

Degeneration: Verbesserung durch Batch-Processing

Zusammenfassung I

- ► Erfolge pro Zeiteinheit bei Gradient Ascent am höchsten (46,51%)
 - Geringe Laufzeit, zielgerichtete Bilderzeugung
- Degeneration bietet schnelle Erfolge, "guter erster Ansatz"
 - Sehr lange Laufzeit, zielgerichtet und mit "Erfolgsgarantie" (Erfolg der Bilder ist zu jeder Zeit bekannt)
- Saliency Map kann Grundlage bieten für Adversarial Attacks, weitere Optimierung erforderlich
 - Lange Laufzeit, keine zielgerichtete Bilderzeugung möglich (Brute Force; Stichprobe aus Testdatensatz)
- ▶ Bemerkbare Einschränkung durch geringe Auflösung der Bilder (Mehr Pixel → Höhere Entropie der einzelnen Pixel)

Zusammenfassung II

	Remote Degen.	Local Degen.	Gradient Ascent	Smoothed Vanilla	Smoothed Integrated Gradient	Smoothed Guided Backprop.
Bilder (Anz.)	5	5	43	1933	1933	1933
Dauer (min)	309:10	18:30	0:13	36:02	36:05	41:26
Bilder/s	/	/	3,30	0,89	0,89	0,77
Erfolge (abs.)	5	0	20	3	3	7
Erfolge (rel.)	100%	0,00%	46,51%	0,16%	0,15%	0,36%
Laufzeit		+	++			

Nicht gelistet: Saliency Map Standard Verfahren, Batch-Degeneration

Zusammenfassung III

Kontakt

- Leonhard Applis applisle74858@th-nuernberg.de
- Peter Bauer bauerpe72692@th-nuernberg.de
- Andreas Porada poradaan60975@th-nuernberg.de
- Florian Stöckl stoecklfl75458@th-nuernberg.de

Anhang

Anhang - Aphrodite CNN

- ▶ 10 Layer
- Topologischer Aufbau:
 - Conv + Pooling
 - ReLU
 - Classifier
- Accuracy: 96,5%

Layer (type)	Output	Shape	Param #
conv2d_30 (Conv2D)	(None,	64, 64, 32)	896
conv2d_31 (Conv2D)	(None,	62, 62, 32)	9248
max_pooling2d_15 (MaxPooling	(None,	31, 31, 32)	0
dropout_15 (Dropout)	(None,	31, 31, 32)	0
conv2d_32 (Conv2D)	(None,	31, 31, 64)	18496
conv2d_33 (Conv2D)	(None,	29, 29, 128)	73856
max_pooling2d_16 (MaxPooling	(None,	14, 14, 128)	0
dropout_16 (Dropout)	(None,	14, 14, 128)	0
flatten_6 (Flatten)	(None,	25088)	0
dense_18 (Dense)	(None,	128)	3211392
dense_19 (Dense)	(None,	128)	16512
dense_20 (Dense)	(None,	43)	5547

Total params: 3,335,947 Trainable params: 3,335,947 Non-trainable params: 0

Anhang - AlexNet CNN

▶ Der Aufgabenstellung angepasstes "State-of-the-Art" CNN [8]

- Modifikationen:
 - ► Eingabelayer 64 x 64 x 3 (Statt 224 x 224 x 3)
 - Ausgabelayer 43 (Statt 2)
- Accuracy: 89%

Anhang - Literatur

- [1] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. Practical Black-box Attacks Against Machine Learning.pdf. arXiv:1602.02697 [cs], February 2016. arXiv: 1602.02697.
- [2] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention forrapidsceneanalysis. *IEEETransactionsonPatternAnalysisandMachine Intelligence*, 20(11):1254-1259, November 1998.
- [3] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. *arXiv*:1312.6034 [cs], December 2013. arXiv: 1312.6034.
- [4] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for Simplicity: The All Convolutional Net. *arXiv*:1412.6806 [cs], December 2014. arXiv: 1412.6806.
- [5] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. arXiv:1703.01365 [cs], March 2017. arXiv: 1703.01365.
- [6] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. SmoothGrad: removing noise by adding noise. arXiv:1706.03825 [cs, stat], June 2017. arXiv: 1706.03825.
- [7] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into Transferable Adversarial Examples and Black-box Attacks. arXiv:1611.02770 [cs], November 2016. arXiv: 1611.02770
- [8] XueFei Zhou. Understanding the Convolutional Neural Networks with Gradient Descent and Backpropagation. Journal of Physics: Conference Series, 1004(1):012028, 2018.
- [9] Datasets, Transforms and Models specific to Computer Vision: pytorch/vision. https://github.com/pytorch/vision, January 2019. original-date: 2016-11-09T23:11:43Z.