Contents

CONTENTS

Chapter 1

Graph Theory

1.1 Graphs

1.1.1 **Graph operations**

$$\begin{split} &GraphPower[G',r,G] := \left(V = V(G)\right) \wedge \left(E = \{\{x,y\} \mid d(x,y) \leq r\}\right) \wedge \left(G' = (V,E)\right) \\ &GraphSum[G_1 + G_2,G_1,G_2] := \left(V = V(G_1) \cup V(G_2)\right) \wedge \left(E = E(G_1) \cup E(G_2) \cup \{\{x,y\} \mid \left(x \in V(G_1)\right) \wedge y \in V(G_2)\}\right) \wedge \left(G_1 + G_2 = (V,E)\right) \\ &GraphCartesian[G_1 \times G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left((x_1 = x_2) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\right) \vee \left((y_1 = y_2) \wedge \left(\{x_1,x_2\} \in E(G_1)\right)\right) \} \right) \wedge \\ &GraphComposition[G_1 \circ G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left((x_1 = x_2) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\right) \vee \left(\{x_1,x_2\} \in E(G_1)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\right) \rangle \wedge \\ &\left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right)\} \wedge \left(\{x_1,x_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right)\} \wedge \left(\{x_1,x_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right)\} \wedge \left(\{x_1,x_2\} \in E(G_2)\right)\} \right) \wedge \\ &GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2) & \wedge & \\ \left((x_1,x_2) \times V(G_2) & \wedge &$$

(1) TODO: https://archive.siam.org/books/textbooks/OT91sample.pdf, etc.

 $Adjacency Kronecker Identity := \forall_{G,H} \left(\mathcal{A}(G \land H) = \mathcal{A}(H) \otimes \mathcal{A}(G) \right)$

1.1.2 Graphs

```
SimpleGraph[(V,E)] := (Set[V]) \land (E \subseteq \{\{a,b\} \in V^{\{2\}} \mid a \neq b\})
VertexSet[V((V,E)),(V,E)] := (SimpleGraph[(V,E)]) \land (V((V,E)) = V)
EdgeSet[E((V,E)),(V,E)] := (SimpleGraph[(V,E)]) \land (E((V,E)) = E)
AdjacentV[\{x,y\},G] := \{x,y\} \in E(G)
Incident[e,x,y,G] := e = \{x,y\} \in E(G)
Degree[d(x),x,G] := d(x) = |\{y \in V(G) \mid AdjacentV[\{x,y\},G]\}|
Order[n(G),G] := n(G) = |V(G)|
Size[e(G),G] := e(G) = |E(G)|
ComplementG[\bar{G},G] := \bar{G} = (V,V^{\{2\}} \land (E \cup \{\{x,x\} \mid x \in V(G)\}))
Clique[X,G] := \forall_{x_1,x_2 \in X} (AdjacentV[\{x_1,x_2\},G])
IndependentSet[X,G] := \forall_{x_1,x_2 \in X} (\neg AdjacentV[\{x_1,x_2\},G])
BipartiteG[G] := \exists_{X,Y} (IndependentSet[X,G]) \land (IndependentSet[Y,G]) \land (V(G) = X \dot{\cup} Y))
Coloring[\phi,C,G] := (Function[\phi,V(G),C]) \land (\forall_{\{x,y\} \in E(G)} (\phi(x) \neq \phi(y)))
```

$$Chromatic Number[\chi(G),G] := \chi(G) = min\Big(\{|C| \mid \exists_{\phi,C}(Coloring[\phi,C,G])\}\Big)$$

$$kPartiteG[G,k] := \exists_{S} \Big((|S| = k) \land \big(\forall_{S \in S}(IndependentSet[S,G])\big) \land \Big(V(G) = \bigcup_{S \in S}(S)\Big)\Big)$$

$$PartiteSets[S,G] := \big(\forall_{S \in S}(IndependentSet[S,G])\big) \land \Big(V(G) = \bigcup_{S \in S}(S)\Big)$$

$$CompleteBipartiteG[G,X,Y] := (PartiteSets[\{X,Y\},G]) \land \big(E(G) = \{\{x,y\} \mid (x \in X) \land (y \in Y)\}\big)$$

$$\begin{aligned} &\textbf{1.1.3} \quad \textbf{Paths, Cycles, Trails} \\ &PathG[G] := \exists_{P} \bigg(Ordering[P, V(G)] \big) \land \bigg(E(G) = \{\{p_{i}, p_{i+1}\} \mid i \in \mathbb{N}_{1}^{|P|-1}\} \bigg) \bigg) \\ &CycleG[G] := \exists_{C} \bigg((Ordering[C, V(G)]) \land \bigg(E(G) = \{\{c_{i}, c_{i+1}\} \mid i \in \mathbb{N}_{1}^{|C|-1}\} \cup \{c_{n}, c_{1}\} \bigg) \bigg) \\ &CompleteG[G] := \forall_{x,y \in V(G)} \big((x \neq y) \implies \{x,y\} \in E(G) \big) \\ &TriangleG[G] := (CompleteG[G]) \land \big(n(G) = 3 \big) \\ &Subgraph[H, G] := \big(V(H) \subseteq V(G) \big) \land \big(E(H) \subseteq E(G) \big) \\ &ConnectedV[\{x,y\}, G] := \exists H \bigg((Subgraph[H, G]) \land (PathG[H]) \land \big(\{x,y\} \subseteq V(H) \big) \bigg) \\ &ConnectedG[G] := \forall_{x,y \in V(G)} (ConnectedV[\{x,y\}, G]) \\ &AdjacencyMatrix[A(G), G] := \big(Matrix[A(G)], n(G), n(G) \big) \land \Bigg(A(G)_{i,j} = \begin{cases} 1 & \{v_{i}, v_{j}\} \in E(G) \\ 0 & \{v_{i}, v_{j}\} \notin E(G) \end{matrix} \bigg) \\ &IncidenceMatrix[I(G), G] := \big(Matrix[A(G)], n(G), e(G) \big) \land \Bigg(I(G)_{i,j} = \begin{cases} 1 & v_{i} \in e_{j} \\ 0 & v_{i} \notin e_{j} \end{matrix} \bigg) \\ &Isomorphism[\phi, G, H] := \{Bijection[\phi, V(G), V(H)] \} \land \bigg(\forall_{x,y \in V(G)} \bigg(\big(\{x,y\} \in E(G) \big) \iff \big(\{\phi(x), \phi(y)\} \in E(H) \big) \bigg) \bigg) \\ &IsomorphismEqRel := \forall_{G_{1},G_{2},G_{3}} \begin{pmatrix} (G_{1} \cong G_{1}) & \land \\ (G_{1} \cong G_{2}) \iff (G_{2} \cong G_{1}) \end{pmatrix} \land \\ & \Big((G_{1} \cong G_{2}) \land (G_{2} \cong G_{3}) \Big) \implies (G_{1} \cong G_{3}) \end{aligned}$$

(1) Bijection and composition properties

 $IsomorphismClass[\mathcal{G}] := (G \in \mathcal{G}) \land (\mathcal{G} = [G]_{\simeq})$

$$\begin{aligned} PathN[P_n,n] &:= (PathG[P_n]) \land \left(n(P_n) = n\right) \\ CycleN[C_n,n] &:= (CycleG[C_n]) \land \left(n(C_n) = n\right) \\ CompleteN[K_n,n] &:= (CompleteG[K_n]) \land \left(n(K_n) = n\right) \\ BicliqueRS[K_{r,s},r,s] &:= (CompleteBipartiteG[K_{r,s}]) \land (PartiteSets[\{R,S\},G]) \land (|R| = r) \land (|S| = s) \\ SelfComplementary[G] &:= G \cong \bar{G} \\ Decomposition[D,G] &:= \left(\forall_{D \in D}(Subgraph[D,G])\right) \land \left(\forall_{e \in E(G)} \exists !_{D \in D} \left(e \in E(D)\right)\right) \end{aligned}$$

TODO: ADD SPECIAL GRAPHS

$$Girth[girth(G),G] := (CycleLengths[L,G]) \land \left(girth(G) = \begin{cases} min(L) & L \neq \emptyset \\ \infty & L = \emptyset \end{cases}\right)$$

$$Circumf erence[circumf erence(G),G] := (CycleLengths[L,G]) \land \left(circumf erence(G) = \begin{cases} max(L) & L \neq \emptyset \\ \infty & L = \emptyset \end{cases}\right)$$

$$Automorphism[\phi,G] := (Isomorphism[\phi,G,G])$$

$$VertexTransitive[G] := \forall_{x,y \in V(G)} \exists_{\phi} \left((Automorphism[\phi,G]) \land (\phi(x) = y)\right)$$

```
Walk[W,G] := \left( \forall_{i \in \mathbb{N}_{+}^{|W|-1}} \left( \{ w_i, w_{i+1} \} \in E(G) \right) \right)
EdgesWalk[E(W), W, G] := (Walk[W, G]) \land (E(W) = \{\{w_i, w_{i+1}\} \mid i \in \mathbb{N}_1^{|W|-1}\})
Trail[W,G] := (Walk[W,G]) \land \left( \forall_{i,j \in \mathbb{N}_i^{|W|-1}} \left( (i \neq j) \implies (\{w_i,w_{i+1}\} \neq \{w_j,w_{j+1}\}) \right) \right)
uvWalk[(u, v), W, G] := (Walk[W, G]) \land (W_1 = u) \land (W_{|W|} = v)
uvTrail[(u,v),W,G] := (Trail[W,G]) \land (W_1 = u) \land (W_{|W|} = v)
uvPath[(u,v),P] := (PathG[P]) \land (u,v \in V(P)) \land (d(u) = 1 = d(v))
LengthWalk[e(W), W, G] := (Walk[W, G]) \land (e(W) = |E(W)|)
ClosedWalk[W,G] := (Walk[W,G]) \land (w_1 = w_{|W|})
OddWalk[W,G] := (Walk[W,G]) \land (Odd(e(W)))
EvenWalk[W,G] := (Walk[W,G]) \land (Even(e(W)))
Walk Contains Path[P, W, G] := (Path[P]) \land (Walk[W, G]) \land (Ordered Sublist[V(P), W]) \land (Ordered Sublist[E(P), E(W)])
WalkContainsCycle[C, W, G] := (Cycle[C]) \land (Walk[W, G]) \land (OrderedSublist[V(C), W]) \land (OrderedSublist[E(C), E(W)])
uvWalkContainsuvPath := \left(uvWalk[(x,y),W,G]\right) \implies \left(\exists_P \Big( \big(uvPath[(x,y),P]\big) \land (WalkContainsPath[P,W,G]) \Big) \right)
(1) \quad (e(W) = 0) \implies (P = (W, \emptyset)) \quad \blacksquare \quad WalkContainsPath[P, W, G]
(2) \left( (e(W) > 0) \land \left( \forall_{W'} ((e(W') < e(W)) \implies \right) \right)
     \left(uvWalk[(x,y),W',G]\right) \implies \left(\exists_{P'}\Big(\big(uvPath[(x,y),P']\big) \land (WalkContainsPath[P',W',G])\Big)\right)))) \implies \dots
   (2.1) If W has no duplicate vertices, then P = W \mid WalkContainsPath[P, W, G]
   (2.2) If W has duplicate vertices, then delete the duplicate vertices and edges between extra copies of unique vertices. This shorter uvWalk
      W' has a uvPath P' by IH. \blacksquare WalkContainsPath[P', W, G]
(3) \quad \left( (e(W) > 0) \land \left( \forall_{W'} ((e(W') < e(W)) \right) \implies \right)
\frac{\left(\left(uvWalk[(x,y),W',G]\right) \implies \left(\exists_{P'}\left(\left(uvPath[(x,y),P']\right) \land (WalkContainsPath[P',W',G])\right)\right)\right)))) \implies (WalkContainsPath[P,W,G])}{(4) \text{ By induction: } \left(uvWalk[(x,y),W,G]\right) \implies \left(\exists_{P}\left(\left(uvPath[(x,y),P]\right) \land (WalkContainsPath[P,W,G])\right)\right)
ConnectedV[(x, y), G] := \exists_{P} \Big( (Subgraph[P, G]) \land \big( uvPath[(x, y), P] \big) \Big)
Connected[G] := \forall_{x,y \in V(G)} (ConnectedV[(x,y),G])
Connection[C_G, G] := C_G = \{\langle x, y \rangle \mid ConnectedV[(x, y), G]\}
ConnectionEqRel := \forall_{G} \forall_{x_{1},x_{2},x_{3} \in G} \left( \begin{array}{c} (x_{1}C_{G}x_{1}) & \land \\ \left( (x_{1}C_{G}x_{2}) \implies (x_{2}C_{G}x_{1}) \right) & \land \\ \left( \left( (x_{1}C_{G}x_{2}) \land (x_{2}C_{G}x_{3}) \right) \implies (x_{1} \cong x_{3}) \right) \end{array} \right)
(1) By (uvWalkContainsuvPath) \land (uvPath[(x, y), W]) \iff (uvPath[(y, x), W])
Connected Subgraph[H,G] := (Subgraph[H,G]) \land (Connected[H])
Component[H,G] := Connected Subgraph[H,G] \land \left( \neg \exists_{K \neq H} \left( (Subgraph[H,K]) \land (Connected Subgraph[K,G]) \right) \right)
Trivial[G] := E(G) = \emptyset
Isolated[v, G] := d(v) = 0
Components [\mathcal{H}, G] := Partition[\mathcal{H}, G, C_G]
NumComponents[c,G] := (Components[\mathcal{H},G]) \land (c = |\mathcal{H}|)
NumComponentsBound := ((|V(G)| = n) \land (|E(G)| = k)) \implies (n - k \le |\mathcal{H}|)
```

Starting from $E(G) = \emptyset$, $|\mathcal{H}| = n$

Adding an edge would decrease the number of components by 0 or 1, so after adding k edges, $n - k \le |\mathcal{H}|$

 $RemoveV[G-W,W,G] := (V(G-W) = V(G) \setminus W) \land (E(G-W) = \{\{x,y\} \in E(G) \mid x,y \in V(G-W)\})$

```
RemoveE[G-E,E,G] := (V(G-E) = V(G)) \land (E(G-E) = E(G) \setminus E)
 AddE[G+e,e,G] := \left(e \in V(G)^{\{2\}}\right) \wedge \left(V(G+e) = V(G)\right) \wedge \left(E(G+e) = E(G) \cup \{e\}\right)
 Induced Subgraph[G[T], T, G] := G[T] = G - \overline{T}
 Independent Set[S,G] := E(G[S]) = \emptyset
CutVertex[v,G] := (NumComponents[c_1,G]) \land (NumComponents[c_2,G-v]) \land (c_2 > c_1)
CutEdge[e,G] := (NumComponents[c_1,G]) \land (NumComponents[c_2,G-e]) \land (c_2 > c_1)
CutEdgeEquiv := (CutEdge[e,G]) \iff \left( \neg \exists_{C} \left( (Subgraph[C,G]) \land (CycleG[C]) \land (e \in E(C)) \right) \right)
                Let (Component[H, G]) \land (e = {x, y} \in E(H))
                (CutEdge[e,G])) \iff (CutEdge[e,H])) \iff (\neg Connected[H-e])
(3) WTS: (Connected[H-e]) \iff \left\{ \exists_C \left\{ (CycleG[C]) \land (Subgraph[C,G]) \land \left(e \in E(C)\right) \right\} \right\}
(4) (Connected[H-e]) \implies ...
       (4.1) \quad \exists_{P} \big( (Path G[P]) \land (Subgraph[P, H - e]) \big) \quad \blacksquare \quad CycleG[\big(V(P), E(P) \cup \{e\}\big)] \quad \blacksquare \quad \exists_{C} \big( \big((CycleG[C]) \land Subgraph[C, G]\big) \land \big(e \in E(C)\big) = (1.1) \quad \exists_{P} \big( (CycleG[C]) \land Subgraph[C, G]\big) \land (CycleG[C]) \land (Cycl
                                                                                                           \left(\exists_{C} \left( (CycleG[C]) \land (Subgraph[C,G]) \land \left( e \in E(C) \right) \right) \right)
(5) (Connected[H - e]) \Longrightarrow
                       \exists_{C} \big( (CycleG[C]) \land (Subgraph[C,G]) \land \big( e \in E(C) \big) \big) \big)
(6)
      (6.1) Component[H, G] \blacksquare Connected[H]
       (6.2) \quad (u, v \in V(H)) \implies \dots
              (6.2.1) \quad \exists_{P} \left( (Subgraph[P, H]) \land \left( uvPath[(u, v), P] \right) \right)
             (6.2.2) (e \notin E(P)) \Longrightarrow \dots
                     (6.2.2.1) \quad (Subgraph[P, H - e]) \quad \blacksquare \quad \exists_P \left( (Subgraph[P, H - e]) \land \left( uvPath[(u, v), P] \right) \right)
              (6.2.3) \quad (e \notin E(P)) \implies
                                                                                                        \exists_P (Subgraph[P, H - e]) \land (uvPath[(u, v), P])
             (6.2.4) \quad (e \in E(P)) \implies \dots
                    (6.2.4.1) P' = u - xPath + x - yCycleG + y - vPath
                    (6.2.4.2) \quad (Subgraph[P', H-e]) \land (uvPath[(u,v), P']) \quad \blacksquare \quad \exists_P \left( (Subgraph[P, H-e]) \land (uvPath[(u,v), P]) \right)
                                                                                                         \exists_{P} (Subgraph[P, H - e]) \land (uvPath[(u, v), P])
             (6.2.5) (e \in E(P)) \Longrightarrow
              (6.2.6) \quad \exists_{P} \big( (Subgraph[P, H - e]) \land (uvPath[(u, v), P]) \big)
                                                                                                     \exists_P (Subgraph[P, H - e]) \land (uvPath[(u, v), P])) \mid \square Connected[H - e]
      (6.3) \quad (u, v \in V(H)) \implies
                       \exists_{C} \left| (CycleG[C]) \land (Subgraph[C,G]) \land \left( e \in E(C) \right) \right| \implies (Connected[H-e])
                                                                                                           \exists_C (CycleG[C]) \land (Subgraph[C,G]) \land (e \in E(C))
(8) (Connected[H-e]) \iff
COW\ alk Contains OCycle := \left( (Closed\ W\ alk[W,G]) \land (Od\ dW\ alk[W,G]) \right) \implies \left( \exists_{C} \left( (W\ alk\ Contains\ Cycle[C,W,G]) \land \left( Od\ d\left( e(C) \right) \right) \right) \land \left( (W\ alk\ Contains\ Cycle[C,W,G]) \land (W\ alk\ Contains\ Cycle[C,W,G]) \land (W\ alk\ Cycl
               (e(W) = 1) \implies (C = (\{w_1\}, \emptyset)) \mid \exists_C (WalkContainsCycle[C, W, G]) \land (Odd(e(C)))
               ((e(W) > 1) \land (\forall_{W'}((e(W') < e(W))) \Longrightarrow
           \left( (ClosedWalk[W',G]) \land (OddWalk[W',G]) \right) \implies \left( \exists_{C'} \left( (WalkContainsCycle[C',W',G]) \land \left( Odd \left( e(C') \right) \right) \right) \right) + \left( (ClosedWalk[W',G]) \land \left( (ClosedWalk[W',G]) \land \left( (ClosedWalk[W',G]) \land \left( (ClosedWalk[W',G]) \land (ClosedWalk[W',G]) \right) \right) \right) \right)
```

1.1. GRAPHS

(2.1) If
$$W$$
 has no repeated vertex other than the first and last, then $C = (W, E(W)) \blacksquare \exists_C (WalkContainsCycle[C, W, G]) \land (Odd(e(C)))$

- (2.2) If W has a repeated vertex v, then ...
 - (2.2.1) Break W into two v Walks W_1 , W_2 . Since W is odd, W_1 , W_2 are odd and even walks (not in order).
 - (2.2.2) WLOG let W_1 be the odd subwalk, then by IH $\exists_{C'} \bigg((WalkContainsCycle[C', W_1, G]) \land \bigg(Odd \big(e(C') \big) \bigg) \bigg)$
 - $(2.2.3) \quad \exists_{C} \left((WalkContainsCycle[C, W, G]) \land \left(Odd(e(C)) \right) \right)$
- (2.3) If W has a repeated vertex v, then $\exists_C \left((WalkContainsCycle[C, W, G]) \land \left(Odd(e(C)) \right) \right)$
- $(2.4) \quad \exists_{C} \left((WalkContainsCycle[C, W, G]) \land \left(Odd(e(C)) \right) \right)$
- $\begin{array}{l} (3) \quad \left((e(W) > 1) \land \left(\forall_{W'} ((e(W') < e(W)) \right) \Longrightarrow \\ \\ \left((ClosedWalk[W', G]) \land (OddWalk[W', G]) \right) \Longrightarrow \left(\exists_{C'} \left((WalkContainsCycle[C', W', G]) \land \left(Odd \left(e(C') \right) \right) \right) \right)))) \Longrightarrow \\ \\ \left(\exists_{C} \left((WalkContainsCycle[C, W, G]) \land \left(Odd \left(e(C) \right) \right) \right) \right) \end{aligned}$
- (4) By induction: $\exists_C \left((WalkContainsCycle[C, W, G]) \land \left(Odd(e(C)) \right) \right)$

 $Bipartiton[\{X,Y\},G] := PartiteSets[\{X,Y\},G]$ $ConnectedBipartite[G] := \exists!_{\{X,Y\}}(Bipartiton[\{X,Y\},G])$

$$BipartiteEquiv := (Bipartite[G]) \iff \left(\neg \exists_{C} \bigg((CycleG[C]) \land (Subgraph[C,G]) \land \bigg(Odd \big(e(C) \big) \bigg) \right) \right)$$

- $\overline{(1)} (Bipartite[G]) \implies \dots$
- (1.1) Every step alternates between each bipartition. Thus the end vertex of the odd walk cannot be the start vertex, and it is not a cycle.
- $(1.2) \quad \neg \exists_{C} \left((CycleG[C]) \land (Subgraph[C, G]) \land \left(Odd \left(e(C) \right) \right) \right)$
- $(2) \quad (Bipartite[G]) \implies \left(\neg \exists_{C} \left((CycleG[C]) \land (Subgraph[C,G]) \land \left(Odd \left(e(C) \right) \right) \right) \right)$
- $(3) \left(\neg \exists_{C} \left((CycleG[C]) \land (Subgraph[C,G]) \land \left(Odd \left(e(C) \right) \right) \right) \right) \Longrightarrow \dots$
 - (3.1) Consider each nontrivial component H, and pick a $u \in V(H)$.
 - (3.2) Let $X = \{v \in H \mid Even(d(v, u))\}\$ and let $Y = \{v \in H \mid Odd(d(v, u))\}\$.
- (3.3) Suppose *X* or *Y* are not independent sets. WLOG choose *X*.
 - (3.3.1) X must contain an edge call it $\{v, v'\}$
 - (3.3.2) A closed odd walk could be: min u-v path (+ even) and v-v' (+ 1) and min v'-u path (+ even)
 - (3.3.3) By COW alk Contains OCycle, there exists an odd cycle in G. \blacksquare \bot
- (3.4) X and Y are independent sets; futhermore X, Y are bipartitions of G. \blacksquare Bipartite[G]

$$(4) \left(\neg \exists_{C} \left((CycleG[C]) \land (Subgraph[C,G]) \land \left(Odd \left(e(C) \right) \right) \right) \right) \Longrightarrow (Bipartite[G])$$

$$(5) \quad (Bipartite[G]) \iff \left(\neg \exists_{C} \left((CycleG[C]) \land (Subgraph[C,G]) \land \left(Odd \left(e(C) \right) \right) \right) \right)$$

$$\begin{aligned} &UnionG[\cup(\mathcal{G}),\mathcal{G}] := \left(V\left(\cup(\mathcal{G})\right) = \bigcup_{G \in \mathcal{G}} \left(V(G)\right)\right) \wedge \left(E\left(\cup(\mathcal{G})\right) = \bigcup_{G \in \mathcal{G}} \left(E(G)\right)\right) \\ &CompleteAsBipartiteUnion := \left(\exists_{\left\langle B\right\rangle_{1}^{k}} \left(\left(\forall_{B \in \left\langle B\right\rangle_{1}^{k}} (BipartiteG[B])\right) \wedge (UnionG[K_{n},\left\langle B\right\rangle_{1}^{k}])\right)\right) \iff (n \leq 2^{k}) \end{aligned}$$

CHAPIEK I. GKAPH IHEUKI

 $\overline{(1) \quad (k=1) \implies \dots}$

$$(1.1) \quad \left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \iff (Bipartite[K_n])$$

 $(1.2) \quad (n \le 2^k) \implies \dots$

$$(1.2.1) \quad n \le 2^1 = 2 \quad \blacksquare \quad ((n=1) \lor (n=2))$$

 $(1.2.2) \quad (BipartiteG[K_1]) \land (BipartiteG[K_2]) \quad \blacksquare \quad Bipartite[K_n]$

$$(1.3) \quad (n \le 2^k) \implies (Bipartite[K_n])$$

(1.4) $(Bipartite[K_n]) \implies \dots$

$$(1.4.1) \quad (n > 2) \implies \dots$$

(1.4.1.1) K_n has an odd cycle

(1.4.1.2) Bipartite Equiv and K_n has an odd cycle $\blacksquare \neg Bipartite[K_n] \blacksquare \bot$

$$(1.4.2)$$
 $(n > 2) \Longrightarrow (\bot) \blacksquare n \le 2$

(1.5) (Bipartite[K_n]) \Longrightarrow $(n \le 2)$

$$(1.6) \quad (Bipartite[K_n]) \iff (n \leq 2) \quad \blacksquare \left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \iff (n \leq 2)$$

$$(2) \quad (k=1) \implies \left(\left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \iff (n \leq 2) \right)$$

$$(3) \quad \left((k > 1) \land \left(\forall_{k'} \left((k' < k) \right) \Longrightarrow \left(\left(\exists_{\langle B \rangle_1^{k'}} \left(\left(\forall_{B \in \langle B \rangle_1^{k'}} (BipartiteG[B]) \right) \land (UnionG[K_n, \langle B \rangle_1^{k'}]) \right) \right) \iff (n \leq 2^{k'}) \right) \right) \right) \implies \dots$$

$$(3.1) \quad \left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \Longrightarrow \dots$$

$$(3.1.1) \quad K_n = \cup (\langle B \rangle_1^k) = \bigcup_{i=1}^k (B_i) = \bigcup_{i=1}^{k-1} (B_i) \cup B_k \quad \blacksquare \quad K_n = \bigcup_{i=1}^{k-1} (B_i) \cup B_k$$

$$(3.1.2) \quad \textit{Bipartite}[B_k] \quad \blacksquare \ \exists_{X_0,Y_0}(\textit{PartiteSets}[\{X_0,Y_0\},B_k]) \quad \blacksquare \ \exists_{X,Y}\Big(\textit{PartiteSets}[\{X,Y\},\big(V(G),E(B_k)\big)]\Big)$$

$$(3.1.3) \quad K_n = \left(\bigcup_{i=1}^{k-1} (B_i) \cup B_k\right) \wedge (PartiteSets[\{X,Y\}, B_k]) \quad \blacksquare \quad \bigcup_{i=1}^{k-1} (B_i) = K_n[X] \cup K_n[Y]$$

$$(3.1.4) \quad \bigcup_{i=1}^{k-1} (B_i) = K_n[X] \cup K_n[Y] \text{ and IH } \blacksquare \left(|X| = n(K_n[X]) \le 2^{k-1} \right) \land \left(|Y| = n(K_n[Y]) \le 2^{k-1} \right)$$

$$(3.1.5) \quad n = |G| = |X| + |Y| \le 2^{k-1} + 2^{k-1} = 2^k \quad \blacksquare \quad n \le 2^k$$

$$(3.2) \left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \implies (n \leq 2^k)$$

 $(3.3) \quad (n \le 2^k) \implies \dots$

$$(3.3.1) \quad \exists_{X,Y} \Big(\big(X \dot{\cup} Y = V(K_n) \big) \wedge (|X| \le 2^{k-1}) \wedge (|Y| \le 2^{k-1}) \Big)$$

$$(3.3.2) \quad \text{IH} \quad \blacksquare \left(\exists_{\langle X \rangle_{1}^{k-1}} \left(\left(\forall_{X \in \langle X \rangle_{1}^{k-1}} (BipartiteG[X]) \right) \wedge (UnionG[K_{n}[X], \langle X \rangle_{1}^{k-1}]) \right) \right) \wedge \left(\exists_{\langle Y \rangle_{1}^{k-1}} \left(\left(\forall_{Y \in \langle Y \rangle_{1}^{k-1}} (BipartiteG[Y]) \right) \wedge (UnionG[K_{n}[Y], \langle Y \rangle_{1}^{k-1}]) \right) \right)$$

$$(3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \quad \blacksquare \\ \left(\forall_{Z \in \langle Z \rangle_1^k} (Bipartite G[Z]) \right) \wedge (Union G[K_n, \langle Z \rangle_1^k]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge (Complete Bipartite G[Z_k, X, Y]) \\ = (3.3) \quad (\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge ((\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge ((\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge ((\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge ((\langle Z \rangle_1^{k-1} = \langle X_i \cup Y_i \rangle_{i=1}^{k-1}) \wedge ((\langle$$

$$(3.4) \quad (n \leq 2^k) \implies \left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right)$$

1.1. GRAPHS

$$(3.5) \quad \left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \iff (n \leq 2^k)$$

$$(4) \quad \left((k > 1) \land \left(\forall_{k'} \left((k' < k) \right) \Longrightarrow \left(\left(\exists_{\langle B \rangle_{1}^{k}} \left((|\langle B \rangle_{1}^{k}| = k') \land \left(\forall_{B \in \langle B \rangle_{1}^{k}} (BipartiteG[B]) \right) \land (UnionG[K_{n}, \langle B \rangle_{1}^{k}]) \right) \right) \iff (n \leq 2^{k'}) \right) \right) \right) \Longrightarrow \left(\exists_{\langle B \rangle_{1}^{k}} \left(\left(\forall_{B \in \langle B \rangle_{1}^{k}} (BipartiteG[B]) \right) \land (UnionG[K_{n}, \langle B \rangle_{1}^{k}]) \right) \right) \iff (n \leq 2)$$

(5) By induction:
$$\left(\exists_{\langle B \rangle_1^k} \left(\left(\forall_{B \in \langle B \rangle_1^k} (BipartiteG[B]) \right) \wedge (UnionG[K_n, \langle B \rangle_1^k]) \right) \right) \iff (n \leq 2)$$

$$\begin{split} &Circuit[W,G] := (Trail[W,G]) \wedge (ClosedWalk[W,G]) \\ &EulerianTrail[W,G] := \left((Trail[W,G]) \right) \wedge \left(E(W) = E(G) \right) \\ &EulerianCircuit[W,G] := \left((Circuit[W,G]) \right) \wedge \left(E(W) = E(G) \right) \\ &Eulerian[G] := \exists_W (EulerianCircuit[W,G]) \end{split}$$

OddVertex[v,G] := Odd(d(v))EvenVertex[v,G] := Even(d(v))

 $EvenGraph[G] := \forall_{v \in V(G)}(EvenV_{ertex}[v, \underline{G}])$

 $MaximalPath[P,G] := (Subgraph[P,G]) \land (PathG[P]) \land \left(\neg \exists_{P' \neq P} ((Subgraph[P,P']) \land (Subgraph[P',G]) \land (PathG[P']) \right) \land (PathG[P']) \land (Pa$

 $MaximalTrail[W,G] := (Trail[W,G]) \land \left(\neg \exists_{W' \neq W} \left((W \subseteq W') \land (Trail[W',G]) \right) \right)$

 $VertexDegreeCycle := \Big(\forall_{v \in V(G)} \big(2 \leq d(v) \big) \Big) \implies \Big(\exists_{C} \big((Subgraph[C,G]) \land (CycleG[C]) \big) \Big)$

- (1) $\exists_P(MaximalPath[P,G]) \mid \exists_{u,v} (uvPath[(u,v),P])$
- (2) Since P is maximal, adjacent vertices of u must be contained in P.
- (3) Since $2 \le d(u)$, then u has at least 2 edges that are incident among the vertices in P.
- (4) These edges form a cycle from u. $\exists_C ((Subgraph[C,G]) \land (CycleG[C]))$.

 $Eulerian Equiv := (Components[\mathcal{H},G]) \implies \bigg((Eulerian[G]) \iff \bigg(\big((\nexists \lor \exists !)_{H \in \mathcal{H}} (\neg Trivial[H]) \big) \land (EvenGraph[G]) \bigg) \bigg)$

- (1) $(Eulerian[G]) \implies ...$
 - (1.1) $Eulerian[G] \blacksquare \exists_W (EulerianCircuit[W, G])$
 - (1.2) The first and last vertices have even degree, and the intermediate vertices have even degree. \blacksquare EvenGraph[G]
- (1.3) E(G) must be covered by the W, thus they must lie on the same non-trivial component. $\blacksquare (\nexists \lor \exists !)_{H \in \mathcal{H}} (\neg Trivial[H])$
- $(1.4) \quad \left((\nexists \vee \exists!)_{H \in \mathcal{H}} (\neg Trivial[H]) \right) \wedge (EvenGraph[G])$
- $(2) \quad (Eulerian[G]) \implies \Big(\big((\nexists \vee \exists !)_{H \in \mathcal{H}} (\neg Trivial[H]) \big) \wedge (EvenGraph[G]) \Big)$
- (3) $\left(\left((\nexists \vee \exists!\right)_{H \in \mathcal{H}}(\neg Trivial[H])\right) \wedge (EvenGraph[G])\right) \Longrightarrow \dots$
 - $(3.1) \quad (E(G) = 0) \implies \dots$
 - (3.1.1) Let the Eulerian circuit be consist of just one vertex. \blacksquare *Eulerian*[G]
 - $(3.2) \quad (E(G) = 0) \implies (Eulerian[G])$

$$(3.3) \quad \left(\left(E(G) > 0 \right) \land \left(\forall_{G'} \left(\left(E(G') < E(G) \right) \implies (Eulerian[G']) \right) \right) \right) \implies \dots$$

- $\exists !_H (H \in \mathcal{H} \mid \neg Trivial[H])$
- (3.3.2) EvenGraph[G] \blacksquare EvenGraph[H] $\blacksquare \forall_{v \in V(H)} (2 \le d(v))$
- (3.3.3) $VertexDegreeCycle \ \blacksquare \ \exists_C ((Subgraph[C, H]) \land (CycleG[C]))$
- (3.3.4) G' := G E(C)
- (3.3.5) Since the vertices in a cycle have degree 2, EvenGraph[G']. Each H' component of G' is also an EvenGraph[H'].

CHAPTER 1. GRAPH THEORY

- (3.3.6) By IH and $\forall_{H' \in \mathcal{H}'} (E(H') < E(G)) \quad \blacksquare \quad \forall_{H' \in \mathcal{H}'} (Eulerian[H'])$
- (3.3.7) The Eulerian circuit of G can be constructed by:
 - (3.3.7.1) Start at some vertex in C
 - (3.3.7.2) Go around C, until the trail reaches a vertex of some $H' \in \mathcal{H}'$
 - (3.3.7.3) Trail around H' using it's own Eulerian trail, and return to the vertex in C'.
 - (3.3.7.4) Continue the last two steps until the trail of C is complete.
- (3.3.8) Eulerian[G]

$$(3.4) \quad \left(\left(E(G) > 0 \right) \land \left(\forall_{G'} \left(\left(E(G') < E(G) \right) \implies \left(Eulerian[G'] \right) \right) \right) \right) \implies \left((Eulerian[G]) \right)$$

$$(4) \quad \left(\left((\nexists \vee \exists!)_{H \in \mathcal{H}} (\neg Trivial[H]) \right) \wedge (EvenGraph[G]) \right) \implies (Eulerian[G])$$

$$EvenGraphCycles := (EvenGraph[G]) \implies \bigg(\exists_{D} \Big((Decomposition[D,G]) \land \big(\forall_{D \in D} (Cycle[D]) \big) \Big) \bigg)$$

- (1) $(E(G) = 0) \implies \dots$
- $(1.1) \quad \mathcal{D} = \{G\} \quad \blacksquare \quad \exists_{\mathcal{D}} \Big((Decomposition[\mathcal{D}, G]) \land \Big(\forall_{D \in \mathcal{D}} (Cycle[D]) \Big) \Big)$

$$(2) \left(E(G) > 0 \right) \land \left(\forall_{G'} \left(E(G') < E(G) \right) \implies \left(EvenGraph[G'] \right) \implies \left(\exists_{D'} \left(Decomposition[D', G'] \right) \land \left(\forall_{D' \in D'} (Cycle[D']) \right) \right) \right) \right) \right) \right)$$

- $(2.1) \quad (E(G) > 0) \land (EvenGraph[G]) \quad \blacksquare \ \forall_{v \in V(G)} (2 \le d(v))$
- $(2.2) \quad VertexDegreeCycle \quad \exists_{C} ((Subgraph[C, G]) \land (CycleG[C]))$
- $(2.3) \quad G' := G E(C)$
- (2.4) Since the vertices in a cycle have degree 2, EvenGraph[G']. Each D' component of G' is also an EvenGraph[D'].
- (2.5) E(D') < E(G) and IH, there exists a cycle decomposition of D'.
- (2.6) The cycle decomposition of G can be constructed by collecting the cycle decompositions of all $D' \in D'$ and including C.
- $(2.7) \quad \exists_{D} \Big((Decomposition[D, G]) \land \Big(\forall_{D \in D} (Cycle[D]) \Big) \Big)$

$$(3) \left(\left(E(G) > 0 \right) \land \left(\forall_{G'} \left(\left(E(G') < E(G) \right) \right) \Longrightarrow \left(\left(EvenGraph[G'] \right) \Longrightarrow \left(\exists_{D'} \left(\left(Decomposition[D', G'] \right) \land \left(\forall_{D' \in D'} \left(Cycle[D'] \right) \right) \right) \right) \right) \right) \right) \right) \right)$$

$$\Longrightarrow \left(\exists_{D} \left(\left(Decomposition[D, G] \right) \land \left(\forall_{D \in D} \left(Cycle[D] \right) \right) \right) \right)$$

(4) By induction, $\exists_{D} \Big((Decomposition[D, G]) \land \big(\forall_{D \in D} (Cycle[D]) \big) \Big)$

$$VertexDegreePathk := \left(\forall_{v \in V(G)} \big(k \leq d(v) \big) \right) \implies \left(\exists_{P} \Big((Subgraph[P,G]) \land (PathG[P]) \land \big(k \leq e(P) \big) \Big) \right)$$

- (1) $\exists_P(MaximalPath[P,G]) \blacksquare \exists_{u,v} (uvPath[(u,v),P])$
- (2) Since P is maximal, adjacent vertices of u must be contained in P.
- (3) Since $k \le d(u)$, then u has at least k edges that are incident among the vertices in P.
- (4) Thus P has at least k vertices. $\blacksquare k \le E(P)$.
- (5) $\exists_P \Big((Subgraph[P,G]) \land (PathG[P]) \land \Big(k \le e(P)\Big) \Big)$

$$VertexDegreeCyclek := \left((k \geq 2) \land \left(\forall_{v \in V(G)} \big(k \leq d(v) \big) \right) \right) \implies \left(\exists_{C} \Big((Subgraph[C,G]) \land (CycleG[C]) \land \big(k+1 \leq e(C) \big) \right) \right)$$

- $(1) \quad VertexDegreePathk \quad \blacksquare \ \exists_{P} \Big((Subgraph[P,G]) \land (PathG[P]) \land \Big(k \leq e(P) \Big) \Big)$
- (2) The edge formed by u and it's farthest neighbor along P will form a cycle C with $k+1 \le e(C)$

$$(3) \quad \left((k \geq 2) \wedge \left(\forall_{v \in V(G)} \left(k \leq d(v) \right) \right) \right) \implies \left(\exists_{C} \left((Subgraph[C,G]) \wedge (CycleG[C]) \wedge \left(k+1 \leq e(C) \right) \right) \right)$$

 $NonCutVertices := \left(n(G) \geq 2\right) \implies \left(\exists_{x,y \in V(G)} \left((x \neq y) \land (\neg CutVertex[x,G]) \land \left((\neg CutVertex[y,G])\right)\right)\right)$

- (1) $\exists_P(MaximalPath[P,G]) \mid \exists_{u,v}(uvPath[(u,v),P])$
- (2) $Connected[P-u] \quad \neg CutVertex[u, G]$
- $(v \neq u) \implies (\neg CutVertex[v, G])$
- $(v=u) \implies \dots$ Take another maximal path within P-u. Take another endpoint u'. $\neg CutVertex[u',G]$

 $EvenGraphMaximalTrailClosed := ((EvenGraph[G]) \land (MaximumTrail[W,G])) \implies (ClosedWalk[W,G])$

- Every step in W adds 1 degree to each endpoint.
- Thus when arriving at a vertex u that is not the initial vertex, u will have an odd count of edges incident to it.
- Since u has an even degree, then there remains an edge where W can continue.
- Therefore, the W can only end (become maximal) when it reaches it's initial vertex. \blacksquare ClosedWalk[W, G]

$$\begin{aligned} OddVertexTrailDecomposition := & \left((Connected[G]) \land \left(| \{v \in V(G) \mid Odd \left(d(v) \right) \}| = 2k \right) \right) \\ \Longrightarrow & \left(\exists_{D} \left(\left(\forall_{D \in D} (Trail[D,G]) \right) \land \left(Decomposition[D,G] \right) \land \left(|D| = max(\{k,1\}) \right) \right) \right) \end{aligned}$$

- (1) $(k=0) \implies ...$
 - (1.1) k = 0 EvenGraph[G]
 - (1.2) Connected[G] $\blacksquare \exists !_{H \in \mathcal{H}} (\neg Trivial[H])$
 - (1.3) $EulerianEquiv \quad Eulerian[G] \quad \exists_W (EulerianCircuit[W,G])$
 - $(1.4) \quad D := \big(V(G), E(W)\big) \quad \blacksquare \quad (Trail[D, G]) \land (Decomposition[\{D\}, G]) \land \big(\{D\} = 1 = max(\{k, 1\})\big)$

$$(2) \quad (k=0) \implies \left(\exists_{D} \Big(\big(\forall_{D \in D} (Trail[D,G]) \big) \land (Decomposition[D,G]) \land \big(|D| = max(\{k,1\}) \big) \right) \right)$$

- $(3) (k > 0) \Longrightarrow \dots$
 - (3.1) Since each trail adds an even degree to each non-endpoint vertex, we need at least k trails to partition the 2k odd vertices.
 - (3.2) Partition the edges into k trails such that the ends of each trail will land on an odd vertex.
- (3.3) Construct a new graph G' where the k trails are connected by an edge. $\blacksquare (\exists !_{H' \in \mathcal{H}'} (\neg Trivial[H'])) \land (EvenGraph[G'])$
- (3.4) Eulerian Equiv \blacksquare Eulerian [G'] \blacksquare $\exists_{W'}(Eulerian Circuit[W', G'])$
- (3.5) Construct D to be the trails in W' separated by $E(G) \setminus E(G')$. \blacksquare (Decomposition[D, G]) \land (D = k))

$$(4) \quad (k>0) \implies \bigg(\exists_{D}\Big(\big(\forall_{D\in\mathcal{D}}(Trail[D,G])\big) \land (Decomposition[\mathcal{D},G]) \land \big(|\mathcal{D}|=max(\{k,1\})\big)\bigg)\bigg)$$

$$(5) \ \exists_{\mathcal{D}} \Big(\big(\forall_{D \in \mathcal{D}} (Trail[D,G]) \big) \land (Decomposition[\mathcal{D},G]) \land \big(|\mathcal{D}| = max(\{k,1\}) \big) \Big)$$

Vertex Degrees and Counting

$$\begin{aligned} &MinDegree[\delta(G),G] := \delta(G) = min\big(\{d(v) \mid v \in V(G)\}\big) \\ &MinDegree[\Delta(G),G] := \Delta(G) = max\big(\{d(v) \mid v \in V(G)\}\big) \\ &RegularG[G] := \delta(G) = \Delta(G) \end{aligned}$$

 $kRegularG[G, k] := k = \delta(G) = \Delta(G)$

 $Neighborhood[N(v), v, G] := N(v) = \{u \in V(G) \mid AdjacentV[\{u, v\}, G]\}$

$$\frac{DegreeSumFormula := \sum\limits_{v \in V(G)} \left(d(v)\right) = 2e(G)}{(1) \sum\limits_{v \in V(G)} \left(d(v)\right) = \sum\limits_{v \in V(G)} \left(|\{e \in E(G) | v \in e\}|\right) = 2|E(G)| = 2e(G)}$$

Average Degree := $\delta(G) \le \frac{2e(G)}{n(G)} \le \Delta(G)$

(1)
$$\delta(G) \le \frac{2e(G)}{n(G)} \le \Delta(G)$$

CHAPTER 1. GRAPH

 $EvenNumberOfOddVertices := Even(|\{v \in V(G) \mid Odd(d(v))\}|)$

(1) DegreeSumFormula \blacksquare Even $\left(\sum_{v \in V(G)} (d(v))\right)$

$$(2) \quad \left(Odd\Big(|\{v \in V(G) \mid Odd\Big(d(v)\big)\}|\Big)\right) \implies \left(Odd\Big(\sum_{v \in V(G)} \Big(d(v)\Big)\right)\right) \implies (\bot) \quad \blacksquare \quad Even\Big(|\{v \in V(G) \mid Odd\Big(d(v)\big)\}|\Big)$$

 $kRegularGraphSize := (kRegularG[G, k]) \land (n(G) = n)) \implies (e(G) = nk/2)$

(1) DegreeSumFormula
$$\blacksquare 2e(G) = \sum_{i=1}^{n} (d(v_i)) = \sum_{i=1}^{n} (k) = nk \blacksquare e(G) = nk/2$$

$$kCube[Q_k, k] := (V(Q_k) = \{0, 1\}^k) \land (E(Q_k) = \{\{x, y\} \mid diff(x, y) = 1\})$$

 $Regular Partite Set Size := ((k > 0) \land (kRegular G[G, k]) \land (Bipartiton[\{X, Y\}, G])) \implies (|X| = |Y|)$

(1)
$$kRegularG[G, k]$$
 $\blacksquare (e(G) = 2|X|) \land (e(G) = 2|Y|)$ $\blacksquare |X| = |Y|$

1.1.5 Trees

 $Acyclic[G] := \neg \exists_C ((Subgraph[C, G]) \land (CycleG[C]))$

Forest[G] := Acyclic[G]

 $Tree[G] := (Connected[G]) \land (Acyclic[G])$

Leaf[v,G] := d(v) = 1

 $SpanningSubgraph[H,G] := (Subgraph[H,G]) \land (V(H) = V(G))$

 $SpanningTree[H,G] := (SpanningSubgraph[H,G]) \land (Tree[G])$

$$Leaf \, Existence := \Big((Tree[G]) \land \Big(2 \le n(G) \Big) \Big) \implies \Big(2 \le |\{v \in V(G) \mid Leaf[v,G]\}| \Big)$$

- (1) $Tree[G] \quad (Connected[G]) \land (Acyclic[G])$
- (2) $(2 \le n(G)) \land (Connected[G]) \quad \blacksquare \quad \exists_e (e \in E(G)) \quad \blacksquare \quad \text{Let } P \text{ be the maximal path of } e.$
- (3) A maximal non-trivial path with no cycles has two endpoints. $\blacksquare 2 \le |\{v \in V(G) \mid Leaf[v, G]\}|$

$$Leaf \ Deletion := \Big((Tree[G]) \land \big(n(G) = n \big) \land (Leaf[v,G]) \Big) \implies \Big((Tree[G-v]) \land \big(n(G-v) = n-1 \big) \Big)$$

- (1) $Tree[G] \quad (Connected[G]) \land (Acyclic[G])$
- (2) Since d(v) = 1, v does not belong to any path connecting any other two $u_1, u_2 \in V(G)$. \square Connected [G v]
- (3) Since deleting a vertex cannot create a cycle. \blacksquare Acyclic[G v]
- (4) Tree[G-v]

$$TreeEquiv := (n = n(G) \ge 1) \implies \begin{pmatrix} (A) & (Tree[G]) & \iff \\ (B) & \left((Connected[G]) \land \left(e(G) = n - 1 \right) \right) & \iff \\ (C) & \left((Acyclic[G]) \land \left(e(G) = n - 1 \right) \right) & \iff \\ (D) & \left(\forall_{u,v \in V(G)} \exists !_P \left(uvPath[(u,v),P] \right) \right) \end{pmatrix}$$

- $(1) \ (Tree[G]) \implies \dots [A \implies B]$
 - (1.1) $Tree[G] \blacksquare Connected[G]$
 - $(1.2) \quad (n=1) \implies (e(G) = 0 = n-1)$

$$(1.3) \left((n > 1) \land \left(\forall_{G'} \left(\left(\left(n(G') < n \right) \land (Tree[G']) \right) \implies \left(e(G') = n(G') - 1 \right) \right) \right) \right) \Longrightarrow \dots$$

(1.3.1) Leaf Existence $\blacksquare \exists_{v \in V(G)} (Leaf[v,G])$

1.1. GRAPHS 15

```
(1.3.2) Leaf Deletion \blacksquare Tree[G-v]
```

(1.3.3) By IH,
$$e(G - v) = (n - 1) - 1 = n - 2$$

(1.3.4)
$$Leaf[v,G] \quad e(G) = e(G-v) + 1 = n-1$$

$$(1.4) \quad \left((n > 1) \land \left(\forall_{G'} \left(\left(\left(n(G') < n \right) \land (Tree[G']) \right) \implies \left(e(G') = n(G') - 1 \right) \right) \right) \right) \Longrightarrow \left(e(G) = n - 1 \right)$$

(1.5) By induction,
$$e(G) = n - 1$$
 (Connected [G]) \land ($e(G) = n - 1$)

$$(2) \quad (Tree[G]) \implies \Big((Connected[G]) \land \Big(e(G) = n - 1 \Big) \Big)$$

(3)
$$(Connected[G]) \land (e(G) = n - 1)$$
 $\implies ... [B \implies C]$

- (3.1) Delete all edges that form a cycle in G to form G'. \square Acyclic[G']
- (3.2) $(Connected[G]) \land (CutEdgeEquiv) \mid Connected[G']$
- $(3.3) \quad (Connected[G']) \land (Acyclic[G']) \land ([A \implies B]) \quad \blacksquare \ e(G') = n-1$
- (3.4) By construction of G' and e(G) = n 1 = e(G'), G = G'. \blacksquare Acyclic[G]
- $(3.5) \quad (Acyclic[G]) \land (e(G) = n 1)$

$$(4) \quad \left((Connected[G]) \land \left(e(G) = n - 1 \right) \right) \implies \left((Acyclic[G]) \land \left(e(G) = n - 1 \right) \right)$$

(5)
$$\left((Acyclic[G]) \land \left(e(G) = n - 1 \right) \right) \implies \dots [C \implies A]$$

(5.1) Acyclic[G]

(5.2) Components
$$[\langle G_i \rangle_{i=1}^k, G] \mid \prod_{i=1}^k (n(G_i)) = n(G) = n$$

- $(5.3) \quad \forall_{i \in \mathbb{N}_{1}^{k}}(Component[G_{i}, G]) \quad \blacksquare \quad \forall_{i \in \mathbb{N}_{1}^{k}}(Connected[G_{i}])$
- $(5.4) \quad \forall_{i \in \mathbb{N}^k} \left((Connected[G_i]) \land (Acyclic[G_i]) \right)$

$$(5.5) \quad ([A \implies B]) \land \left(\forall_{i \in \mathbb{N}_{1}^{k}} \left((Connected[G_{i}]) \land (Acyclic[G_{i}]) \right) \right) \quad \blacksquare \quad \forall_{i \in \mathbb{N}_{1}^{k}} \left(e(G_{i}) = n(G_{i}) - 1 \right)$$

(5.6)
$$e(G) = \sum_{i=1}^{k} (e(G_i)) = \sum_{i=1}^{k} (n(G_i) - 1) = n - k$$

$$(5.7) \quad \left(e(G) = n - k \right) \land \left(e(G) = n - 1 \right) \quad \blacksquare \quad k = 1 \quad \blacksquare \quad Connected[G]$$

(5.8) $(Connected[G]) \land (Acyclic[G]) \blacksquare Tree[G]$

(6)
$$\left((Acyclic[G]) \land \left(e(G) = n - 1 \right) \right) \implies (Tree[G])$$

- $\overline{(7)} (Tree[G]) \Longrightarrow ... [A \Longrightarrow D]$
 - (7.1) $Tree[G] \quad (Connected[G]) \land (Acyclic[G])$
 - (7.2) Connected[G] $\blacksquare \forall_{u,v \in V(G)} \exists_P (uvPath[(u,v), P])$

$$(7.3) \quad \left(\left(u, v \in V(G) \right) \land \left(uvPath[(u, v), P_1] \right) \land \left(uvPath[(u, v), P_2] \right) \right) \implies \dots$$

 $(7.3.1) (P_1 \neq P_2) \implies ...$

(7.3.1.1) Take the shortest subpaths P'_1 , P'_2 of P_1 , P_2 that ends on the same endpoints u', v'.

(7.3.1.2) By the extremal choice, P'_1, P'_2 share the same endpoints, but no internal vertices. $\square Cycle[P'_1 \cup P'_2]$

 $(7.3.1.3) \quad (Acyclic[G]) \land (Cycle[P'_1 \cup P'_2]) \quad \blacksquare \perp$

 $(7.3.2) (P_1 \neq P_2) \Longrightarrow (\bot) \blacksquare P_1 = P_2$

$$(7.4) \quad \left(\left(u, v \in V(G) \right) \land \left(uvPath[(u, v), P_1] \right) \land \left(uvPath[(u, v), P_2] \right) \right) \implies (P_1 = P_2)$$

$$(8) \ \ (Tree[G]) \implies \Big(\forall_{u,v \in V(G)} \exists !_P \big(uvPath[(u,v),P] \big) \Big)$$

$$(9) \ \left(\forall_{u,v \in V(G)} \exists !_{P} \big(uvPath[(u,v),P] \big) \right) \implies \dots [D \implies A]$$

$$(9.1) \quad \forall_{u,v \in V(G)} \exists !_{P} \big(uvPath[(u,v),P] \big) \quad \blacksquare \quad \forall_{u,v \in V(G)} \exists_{P} \big(uvPath[(u,v),P] \big) \quad \blacksquare \quad Connected[G]$$

 $(9.2) \ (\neg Acyclic[G]) \implies \dots$

$$(9.2.1) \quad \exists_{C} (Cycle[C] \land (Subgraph[C,G]))$$

$$(9.2.2) \quad \forall_{c_1,c_2 \in C} \exists_{P,P'} \Big((P \neq P') \land \big(uvPath[(c_1,c_2),P] \big) \land \big(uvPath[(c_1,c_2),P'] \big) \Big)$$

$$(9.2.3) \quad \left(\forall_{u,v \in V(G)} \exists !_{P} \left(uvPath[(u,v),P]\right)\right) \wedge \left(\forall_{c_{1},c_{2} \in C} \exists_{P,P'} \left((P \neq P') \wedge \left(uvPath[(c_{1},c_{2}),P]\right) \wedge \left(uvPath[(c_{1},c_{2}),P']\right)\right)\right) \quad \blacksquare \quad \bot$$

- $(9.3) \quad (\neg Acyclic[G]) \implies (\bot) \quad \blacksquare \quad Acyclic[G]$
- (9.4) (Connected[G]) \land (Acyclic[G])
- $(10) \ \left(\forall_{u,v \in V(G)} \exists !_{P} \big(uvPath[(u,v),P] \big) \right) \implies (Tree[G])$

$$TreeEquivCorollaries := \begin{pmatrix} (A) & \Big((Tree[G]) \implies \Big(\forall_{e \in E(G)} (CutEdge[e,G]) \Big) \Big) & \land \\ (B) & \Big((Tree[G]) \implies \Big(\exists !_{C} \Big((Cycle[C]) \land (Subgraph[C,G+e]) \Big) \Big) \Big) \land \\ (C) & \Big((Connected[G]) \implies \Big(\exists_{T} (SpanningTree[T,G]) \Big) \end{pmatrix}$$

- $\overline{(1) \ (Tree[G]) \implies \dots [A]}$
 - (1.1) $Tree[G] \ \square \ Connected[G]$
- $(1.2) \quad Tree Equiv \quad \blacksquare \ \forall_{u,v \in V(G)} \exists !_P \Big(uvPath[(u,v),P] \Big) \quad \blacksquare \ \forall_{\{u,v\} \in E(G)} (CutEdge[\{u,v\},G])$
- $(2) \quad (Tree[G]) \implies \Big(\forall_{e \in E(G)} (CutEdge[e,G]) \Big)$
- $(3) \quad (Tree[G]) \implies \dots [B]$
- (3.1) Tree[G] Connected[G]
- $\boxed{(3.2) \ TreeEquiv \ \blacksquare \ \forall_{u.v \in V(G)} \exists !_P \big(uvPath[(u,v),P]\big) \ \blacksquare \ \exists !_C \big((Cycle[C]) \land (Subgraph[C,G+e])\big)}$
- $(4) \quad (Tree[G]) \implies \Big(\exists !_{C} \Big((Cycle[C]) \land (Subgraph[C, G + e]) \Big)\Big)$
- (5) $(Connected[G]) \implies ... [C]$
 - (5.1) Delete all edges that form a cycle in G to form G'. $\blacksquare (Acyclic[G']) \land (V(G') = V(G))$
 - (5.2) $V(G') = V(G) \mid SpanningSubgraph[G', G]$
 - (5.3) $(Connected[G]) \land (CutEdgeEquiv) \blacksquare Connected[G']$
 - (5.4) $(Connected[G']) \land (Acyclic[G']) \blacksquare Tree[G']$
 - $(5.5) \quad (SpanningSubgraph[G',G]) \land (Tree[G']) \quad \blacksquare \quad SpanningTree[G',G] \quad \blacksquare \quad \exists_T (SpanningTree[T,G])$
- (6) $(Connected[G]) \Longrightarrow (\exists_T (SpanningTree[T,G]))$

CONTHERE p. 69

1.1. GKAF H3

```
Walk[W,G] := \left( \forall_{i \in \mathbb{N}_{+}^{|W|}} \left( w_{i} \in V(G) \right) \right) \wedge \left( \forall_{i \in \mathbb{N}_{+}^{|W|-1}} \left( \{v_{i},v_{i+1}\} \in E(G) \right) \right)
\overline{WalkL[l,(W,G)]} := \overline{(Walk[W,G]) \land (l = |W| - 1)}
\overline{TrailW[W,G]} := (Walk[W,G]) \land \left( \forall_{i,j \in \mathbb{N}_i^{|W|-1}} \left( (i \neq j) \right) \implies (\{w_i,w_{i+1}\} \neq \{w_j,w_{j+1}\}) \right) 
PathW[W,G] := (Walk[W,G]) \land \left( \forall_{i,j \in \mathbb{N}_{i}^{|W|}} \left( (i \neq j) \implies (w_{i} \neq w_{j}) \right) \right)
ClosedWalk[W,G] := (Walk[W,G]) \land (w_{|W|} = w_1)
Circuit[W,G] := (Trail[W,G]) \land (ClosedWalk[W,G])
CycleW[W,G] := (ClosedWalk[W,G]) \land \left( \forall_{i \in \mathbb{N}_2^{|W|-1}} (w_0 \neq w_i \neq w_{|W|}) \right) \land \left( \forall_{i,j \in \mathbb{N}_2^{|W|-1}} \left( (i \neq j) \implies (w_i \neq w_j) \right) \right) \land (|W|-1 \geq 3)
CycleE[E,(W,G)] := (CycleW[W,G]) \land (E = \{\{w_i, w_{i+1}\} \mid i \in \mathbb{N}_1^{|W|-1}\})
EvenCycleW[W,G] := (CycleW[W,G]) \land (Even(|W|-1))
OddCycleW[W,G] := (CycleW[W,G]) \land (Odd(|W|-1))
TriangleW[W,G] := (CycleW[W,G]) \land (|W|-1=3)
IndependentV[V,G] := \forall_{x,y \in V} (\neg AdjacentV[(x,y),G])
Independent E[E,G] := \forall_{a,b \in E} (\neg Adjacent E[(a,b),G])
Independent P at hG[\mathcal{P},G]:=\exists_{x,y\in V(G)}\forall_{P,Q\in\mathcal{P}}\Big((P\neq Q)\implies \big(V(P)\cap V(Q)=\{x,y\}\big)\Big)
Independent V Equiv := I ndependent V \iff (Subgraph I) nduced ByV[] \cong E_n
\overline{PathG[P,V] := \left(V(P) = V\right) \land \left(E(P) = \{\{v_i, v_{i+1}\} \mid i \in \mathbb{N}_1^{|V|-1}\}\right)}
CycleG[P,V] := (V(P) = V) \land (E(P) = \{\{v_i, v_{i+1}\} \mid i \in \mathbb{N}_1^{|V|-1}\} \cup \{v_{|V|}, v_1\})
PathInG[P, V, G] := (PathG[P, V]) \land (Subgraph[P, G])
PathXY[P,(x,y),V,G] := (PathInG[P,V,G]) \land \left( (v_1,v_{|V|}) = (x,y) \right)
CycleInG[C, V, G] := (CycleG[C, V]) \land (Subgraph[C, G])
Cycle Partition := \left( \forall_{v \in V(G)} \Big( Even \big( d(v) \big) \Big) \right) \iff \left( \exists_{\mathcal{C}} \Big( \Big( \mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \big( CycleE[C_E, (C, G)] \big) \} \right) \land \big( Partition[\mathcal{E}, E(G)] \big) \right) 
        \left(\exists_{\mathcal{C}} \left( \left( \mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \left( CycleE[C_E, (C, G)] \right) \} \right) \land \left( Partition[\mathcal{E}, E(G)] \right) \right) \right) \Longrightarrow \dots
   (1.1) \quad \forall_{v \in V(G)} \left( d(v) = 2 * |\{v \mid (C \in \mathcal{C}) \land (v \in C)\} \right)| \quad \blacksquare \quad \forall_{v \in V(G)} \left( Even\left(d(v)\right) \right)
         \left(\exists_{\mathcal{C}} \left( \left( \mathcal{E} = \{C_E \mid (C \in \mathcal{C}) \land \left( CycleE[C_E, (C, G)] \right) \} \right) \land \left( Partition[\mathcal{E}, E(G)] \right) \right) \right) \implies \left( \forall_{v \in V(G)} \left( Even \left( d(v) \right) \right) \right)
          \left( \forall_{v \in V(G)} \Big( Even \big( d(v) \big) \Big) \right) \implies \dots
   (3.1) \quad \left(e(G) = 0\right) \implies \left(\exists_{\mathcal{C}} \left(\left(\mathcal{E} = \left\{C_E \mid (C \in \mathcal{C}) \land \left(CycleE[C_E, (C, G)]\right)\right\}\right) \land \left(Partition[\mathcal{E}, E(G)]\right)\right)\right)
   (3.2) (e(G) \neq 0) \implies \dots
```

$$(3.2.1) \quad \left(e(G)>0\right) \wedge \left(\forall_{v \in V(G)} \Big(Even\big(d(v)\big)\Big)\right) \quad \blacksquare \ \exists_{x_0 \in V(G)} \Big(d(x_0) \geq 2\Big)$$

- (3.2.2) There exists a Path P of maximal length with endvertices (x_0, x_l) .
- (3.2.3) $(d(x_0) \ge 2)$ Let y be another vertex adjacent to x_0 that is not x_1 .
- (3.2.4) If y is not in P, then P is not a maximal Path contradiction.
- (3.2.5) Thus y is in P, and P contains a cycle C.
- (3.2.6) Let G' = G E(C). $\blacksquare \left(\forall_{v \in V(G')} \left(Even(d_{G'}(v)) \right) \right)$ \blacksquare Repeat on G' until all disjoint cycles C are found.

$$(3.2.7) \quad \exists_{\mathcal{C}} \left(\left(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \left(CycleE[C_E, (C, G)] \right) \} \right) \land \left(Partition[\mathcal{E}, E(G)] \right) \right)$$

CHAPTER 1. GRAPH THEOR

$$(3.3) \quad \left(e(G) \neq 0\right) \implies \left(\exists_{\mathcal{C}} \left(\left(\mathcal{E} = \left\{C_{E} \mid (C \in \mathcal{C}) \land \left(CycleE[C_{E}, (C, G)]\right)\right\}\right) \land \left(Partition[\mathcal{E}, E(G)]\right)\right)\right)$$

$$(3.4) \quad \exists_{\mathcal{C}} \left(\left(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \left(CycleE[C_E, (C, G)] \right) \} \right) \land \left(Partition[\mathcal{E}, E(G)] \right) \right)$$

$$(4) \quad \left(\forall_{v \in V(G)} \Big(Even \big(d(v) \big) \Big) \right) \implies \left(\exists_{\mathcal{C}} \Big(\Big(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \big(CycleE[C_E, (C, G)] \big) \} \right) \land \big(Partition[\mathcal{E}, E(G)] \big) \right) \right)$$

$$\overline{ \left(5 \right) \ \left(\forall_{v \in V(G)} \Big(Even \big(d(v) \big) \Big) \right) } \iff \left(\exists_{\mathcal{C}} \bigg(\Big(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \big(CycleE[C_E, (C,G)] \big) \} \right) \land \big(Partition[\mathcal{E}, E(G)] \big) \right)$$

$$MantelThm := \left((|G| = n) \land \left(e(G) > \left\lfloor n^2/4 \right\rfloor \right) \right) \implies \left(\exists_W (Triangle[W, G]) \right)$$

(1) $(\neg \exists_W (Triangle[W, G])) \implies \dots$

$$(1.1) \quad \neg \exists_{W} (Triangle[W,G]) \quad \blacksquare \quad \forall_{\{x,y\} \in E(G)} \Big(\Gamma(x) \cap \Gamma(y) = \emptyset \Big) \quad \blacksquare \quad \forall_{\{x,y\} \in E(G)} \Big(d(x) + d(y) \leq n \Big) = 0$$

$$(1.2) \quad \sum_{\{x,y\}\in E(G)} \left(d(x)+d(y)\right) \le n\left(e(G)\right)$$

(1.3)
$$\sum_{\{x,y\} \in E(G)} (d(x) + d(y)) = \sum_{v \in V(G)} ((d(v))^2)$$

$$(1.4) \quad \sum_{v \in V(G)} \left(\left(d(v) \right)^2 \right) \le n \left(e(G) \right) \quad \blacksquare \quad n \sum_{v \in V(G)} \left(\left(d(v) \right)^2 \right) \le n^2 \left(e(G) \right)$$

$$(1.5) \quad (SumDegrees) \land (CauchysInequality) \quad \blacksquare \quad \left(2e(G)\right)^2 = \left(\sum_{v \in V(G)} \left(d(v)\right)\right)^2 \leq \sum_{v \in V(G)} \left(d(v)\right)^2$$

$$(1.6) \quad (2e(G))^2 \le n^2 (e(G)) \quad \blacksquare \ e(G) \le n^2/4$$

$$(1.7) \quad \left(e(G) > \left\lfloor n^2/4 \right\rfloor\right) \land \left(e(G) \le n^2/4\right) \quad \blacksquare \ \bot$$

$$(2) \ \left(\neg \exists_W (Triangle[W,G]) \right) \implies (\bot) \ \blacksquare \ \exists_W (Triangle[W,G])$$

$$Distance[d(x, y), x, y, G] := d(x, y) = min\Big(\{e(P) \mid \exists_V \big(PathXY[P, (x, y), VG]\big)\}\Big)$$

$$Distance Metric := \forall_{G,x,y,z} \left((Graph[G]) \land \left(x,y,z \in V(G) \right) \right) \implies \left(\begin{array}{c} \left(d(x,y) \geq 0 \right) & \land \\ \left(\left(d(x,y) = 0 \right) \iff (x=y) \right) \land \\ \left(d(x,y) = d(y,x) \right) & \land \\ \left(d(x,y) + d(y,z) \geq d(x,z) \right) \end{array} \right)$$

- (1) By definition of cardinality and sets, $(d(x, y) \ge 0) \land (d(x, y) = 0 \iff (x = y))$
- (2) By cases:
 - (2.1) If $y \in [ShortestPathG[x, z]]$, then d(x, y) + d(y, z) = d(x, z)
 - (2.2) If $y \notin [ShortestPathG[x, z]]$, then d(x, y) + d(y, z) > d(x, z)
- (3) By cases, $d(x, y) + d(y, z) \ge d(x, z)$

$$AcyclicG[G] := \neg \exists_C(CycleIn[C,G])$$

 $ConnectedV[(x, y), G] := \exists_{P, V} (PathXY[P, (x, y), V, G])$

$$Connected G[G] := \forall_{x,y \in V(G)} \Big((x \neq y) \implies \Big(Connected V[(x,y),G] \Big) \Big)$$

 $Connected SG[H,G] := (Subgraph[H,G]) \land (Connected G[H])$

$$Component[C,G] := (Connected SG[C,G]) \land (\neg \exists_D ((Subgraph Strict[C,D]) \land (Connected SG[D,G]))$$

 $NComponent[n,G] := n = |\{C \mid Component[C,G]\}|$

 $CutVertex[v,G] := (v \in V(G)) \land (NComponent[n,G]) \land (NComponent[m,G-v]]) \land (m > n)$

 $Bridge[e,G] := (e \in E(G)) \land (NComponent[n,G]) \land (NComponent[m,G-e]]) \land (m > n)$

 $TreeG[G] := (AcyclicG[G]) \land (ConnectedG[G])$

ForestG[G] := AcyclicG[G]

1.1. OKAFIIS

$$BipartiteG[K_{m,n}, m, n] := \exists_{X,Y} \Big(\big(X \cup Y = V(K_{m,n}) \big) \wedge (X \cap Y = \emptyset) \wedge \Big(E(K_{m,n}) \subseteq \{\{x,y\} \mid (x \in X) \wedge (y \in Y)\} \Big) \Big)$$

$$CompleteBipartiteG[K_{m,n}, m, n] := \exists_{X,Y} \Big(\big(X \cup Y = V(K_{m,n}) \big) \wedge (X \cap Y = \emptyset) \wedge \Big(E(K_{m,n}) = \{\{x,y\} \mid (x \in X) \wedge (y \in Y)\} \Big) \Big)$$

$$[Notation] \quad \big(K(n_1, ..., n_r) \big) := CompleteRpartiteG$$

$$[Notation] \quad \big(K_r(t) \big) := K(t, ..., t \big)$$

$$UnionG(G \cup H, G, H) := \big(V(G \cup H) = V(G) \cup V(H) \big) \wedge \big(E(G \cup H) = E(G) \cup E(H) \big) \\ kG[kG, k, G] := kG = \bigcup_{i \in \mathbb{N}_1^k} (uniqueCopy(G, i)) \\ i \in \mathbb{N}_1^k \Big)$$

$$Join[G + H, G, H,] := \big(V(G + H) = V(G \cup H) \big) \wedge \big(E(G + H) = E(G \cup H) \cup \{\{g, h\} \mid (g \in V(G)) \wedge (h \in V(H))\} \big) \\ ComponentEquiv := \big((Component[W, G]) \wedge (x \in W) \big) \implies \begin{cases} \big(W = \{y \in V(G) \mid \exists_{P,V} (PathXY[P, (x, y), V, G])\} \big) \wedge \big(W = \{y \in V(G) \mid d(x, y) \in \mathbb{N}\} \big) \\ \big(W = \{y \in V(G) \mid d(x, y) \in \mathbb{N}\} \big) \wedge \big(W = \{x \in V(G)\} \big) \wedge (W = [x]_R) \big) \end{cases}$$

CHAI IER I. GRAI II IIIEORI

Chapter 2

Abstract Algebra

Functions 2.1

```
Rel[r, X] := (X \neq \emptyset) \land (r \subseteq X)
Func[f,X,Y] := (Rel[f,X\times Y]) \land \left( \forall_{x\in X} \exists !_{y\in Y} (\langle x,y\rangle \in f) \right)
Comp[g \circ f, f, g, X, Y, Z] := (Func[f, X, Y]) \land (Func[g, Y, Z]) \land \Big(g \circ f = \{\langle x, g(f(x)) \rangle \in X \times Z \mid x \in X\}\Big)
FuncComp := (Comp[g \circ f, f, g, X, Y, Z]) \implies (Func[g \circ f, X, Z])
(1) TODO
CompAssoc := h \circ (g \circ f) = (h \circ g) \circ f
(1) TODO
Domain[dom(f), f, X, Y] := (Func[f, X, Y]) \land (dom(f) = X)
Codomain[cod(f), f, X, Y] := (Func[f, X, Y]) \land (cod(f) = Y)
Image[im(A), A, f, X, Y] := (Func[f, X, Y]) \land (A \subseteq X) \land (im(A) = \{f(a) \in Y \mid a \in A\})
Preimage[pim(B), B, f, X, Y] := (Func[f, X, Y]) \land (B \subseteq Y) \land (pim(B) = \{a \in X \mid f(a) \in B\})
Range[rng(f), f, X, Y] := (Func[f, X, Y]) \land (Image[rng(f), dom(f), f, X, Y])
Inj[f,X,Y] := (Func[f,X,Y]) \land \left( \forall_{x_1,x_2 \in X} \Big( \big( f(x_1) = f(x_2) \big) \implies (x_1 = x_2) \Big) \right)
Surj[f, X, Y] := (Func[f, X, Y]) \land (\forall_{y \in Y} \exists_{x \in X} (y = f(x)))
```

 $Bij[f, X, Y] := (Inj[f, X, Y]) \wedge (Surj[f, X, Y])$

 $\overline{Inv[f^{-1},f,X,Y]:=(Func[f,X,Y])}\wedge (Func[f^{-1},Y,X])\wedge (f\circ f^{-1}=I_Y)\wedge (f^{-1}\circ f=I_X)$

 $SurjEquiv := (Surj[f, X, Y]) \iff (rng(f) = cod(f))$

(1) TODO

$$BijEquiv := (Bij[f, X, Y]) \iff \left(\exists_{f_{-1}}(Inv[f^{-1}, f, X, Y])\right)$$

 $\overline{(1)}$ TODO

$$InjComp := ((Inj[f]) \land (Inj[g])) \implies (Inj[g \circ f])$$

 $\overline{(1)}$ TODO

$$SurjComp := ((Surj[f]) \land (Surj[g])) \implies (Surj[g \circ f])$$

(1) TODO

2.2 Divisibility, Equivalence Relations, Paritions

 $DivisionAlgorithm := \forall_{b \in \mathbb{Z}} \forall_{a \in \mathbb{Z}^+} \exists !_{q,r \in \mathbb{Z}} \big((b = aq + r) \land (0 \le r < a) \big)$

 $\overline{(1)}$ TODO

 $Divides[a,b] := (a,b \in \mathbb{Z}) \land (\exists_{c \in \mathbb{Z}}(b=ac))$ $ComDiv[a, b, c] := (Divides[a, b]) \land (Divides[a, c])$ $GCD[a,b,c] := (ComDiv[a,b,c]) \land \left(\forall_{d \in \mathbb{Z}} \Big(\big((Divides[d,b]) \land (Divides[d,c]) \big) \implies (Divides[d,a]) \Big) \right)$ RelPrime[a,b] := GCD[1,a,b]CongRel[a, b, n] := Divides[n, a - b]

 $Partition[\mathcal{P},S] := \left(\forall_{P \in \mathcal{P}} (P \neq \emptyset) \right) \wedge \left(S = \bigcup_{P \in \mathcal{P}} (P) \right) \wedge \left(\forall_{P_1,P_2 \in \mathcal{P}} \left((P_1 \neq P_2) \implies (P_1 \cap P_2 = \emptyset) \right) \right)$

 $EqRel[\sim,S] := (Rel[\sim,S]) \land \left(\forall_{a \in S} (a \sim a) \right) \land \left(\forall_{a,b \in S} \left((a \sim b) \implies (b \sim a) \right) \right) \land \left(\forall_{a,b,c \in S} \left(\left((a \sim b) \land (b \sim c) \right) \implies (a \sim c) \right) \right)$ $EqClass[[s], s, \sim, S] := (Rel[\sim, S]) \land (s \in S) \land ([s] = \{x \in S \mid x \sim s\})$

 $PartitionInducesEqRel := (Partition[\mathcal{P}, S]) \implies (\exists_{\sim}(EqRel[\sim, S]))$

 $\overline{(1) \text{ TODO} : \sim = \{ \langle a, b \rangle \in S \times S \mid (P \in \mathcal{P}) \land (a, b \in P) \}}$

 $EqRelInducesPartition := (EqRel[\sim, S]) \implies (\exists_{\mathcal{P}}(Partition[\mathcal{P}, S]))$

(1) TODO: $Partition[EqClass_1, EqClass_2, ...]$

 $EqRelCong := \forall_{n \in \mathbb{Z}^+} (EqRel[CongRel, \mathbb{Z}])$

(1) TODO

2.3 Groups

$$Group[G,*] := \left(\begin{array}{ll} (Function[*,G,G]) & \land \\ \left(\forall_{a,b,c \in G} \left((a*b)*c = a*(b*c) \right) \right) \land \\ \left(\exists_{e \in G} \forall_{a \in G} (a*e = a = e*a) \right) & \land \\ \left(\forall_{a \in G} \exists_{a^{-1} \in G} (a*a^{-1} = e = a^{-1}*a) \right) \end{array} \right)$$

Abelian $Group[G, *] := (Group[G, *]) \land (\forall_{a,b \in G}(a * b = b * a))$

$$Cancel \ Laws := \forall_G \Biggl((Group[G,*]) \implies \Biggl(\forall_{a,b,c \in G} \Bigl(\bigl((a*b=a*c) \implies (b=c) \bigr) \land \bigl((a*c=b*c) \implies (a=b) \bigr) \Bigr) \Biggr) \Biggr)$$

- - $(1.1) \quad a \in G \quad \blacksquare \quad \exists_{a^{-1} \in G} (a * a^{-1} = e = a^{-1} * a)$
- (1.2) Function[*, G, G] $\blacksquare a^{-1} * a * b = a^{-1} * a * c$
- $(1.3) \quad \left(\forall_{a,b,c \in G} \left((a * b) * c = a * (b * c) \right) \right) \land \left(\forall_{a \in G} \exists_{a^{-1} \in G} (a * a^{-1} = e = a^{-1} * a) \right) \blacksquare b = c$
- $(2) \quad (a * b = a * c) \implies (b = c)$
- $(3) \quad (a*c = b*c) \implies \dots$
- (3.1) TODO
- $(4) \quad (a*c = b*c) \implies (a = b)$
- $(5) \quad \overline{\left((a*b=a*c) \implies (b=c)\right) \land \left((a*c=b*c) \implies (a=b)\right)}$

$$\frac{IdUniq := \forall_G \bigg((Group[G,*]) \implies \bigg(\forall_{e_1,e_2 \in G} \forall_{a \in G} \Big(\big((a*e_1 = a = e_1*a) \land (a*e_2 = a = e_2*a) \big) \implies (e_1 = e_2) \Big) \bigg) \bigg)}{(1) \quad (Cancel Laws) \land \bigg(\forall_{a \in G} \exists_{a^{-1} \in G} (a*a^{-1} = e = a^{-1}*a) \bigg) \quad \blacksquare \quad a*e_1 = a = a*e_2 \quad \blacksquare \quad e_1 = e_2 }$$

(1)
$$(Cancel Laws) \land (\forall_{a \in G} \exists_{a^{-1} \in G} (a * a^{-1} = e = a^{-1} * a)) \blacksquare a * e_1 = a = a * e_2 \blacksquare e_1 = e_2$$

2.4. SUBGROUTS 2.1

$$InvUniq := \forall_G \Biggl(Group[G,*]) \implies \Biggl(\forall_{a \in G} \forall_{a_1^{-1},a_2^{-1} \in G} \Biggl(\Bigl((a*a_1^{-1} = e = a_1^{-1}*a) \wedge (a*a_2^{-1} = e = a_2^{-1}*a) \Bigr) \implies (a_1^{-1} = a_2^{-1}) \Biggr) \Biggr) \Biggr)$$

 $InvProd := \forall_G \forall_{a,b \in G} \Big((a * b)^{-1} = b^{-1} * a^{-1} \Big)$

- (1) $(a * b) * (a * b)^{-1} = e$
- (2) $(a*b)*(b^{-1}*a^{-1}) = (a*(b*b^{-1})*a^{-1}) = e$
- $\overline{(3)} \ InvUniq \ \blacksquare \ (a*b)^{-1} = \overline{b^{-1}*a^{-1}}$

$$\begin{aligned} &OrderEl[o(G),G,*] := (Group[G,*]) \wedge \left(o(G) = |G|\right) \\ &gWitness[n,g,G,*] := (Group[G,*]) \wedge (n \in \mathbb{Z}^+) \wedge (g^n = e) \wedge \left(\forall_{m \in \mathbb{Z}^+} (m < n) \implies (g^m \neq e)\right) \\ &OrderEl[o(g),g,G,*] := (Group[G,*]) \wedge \left(\left(\exists_n (gWitness[n,g,G,*])\right) \implies \left(o(g) = n\right)\right) \wedge \left(\left(\neg \exists_n (gWitness[n,g,G,*])\right) \implies \left(o(g) = \infty\right)\right) \end{aligned}$$

2.4 Subgroups

 $Subgroup[H,G,*] := (Group[G,*]) \land (H \subseteq G) \land (Group[H,*])$ $TrivSubgroup[H,G,*] := (H = \{e\}) \lor (H = G)$

 $PropSubgroup[H,G,*] := (Subgroup[H,G,*]) \land (\neg TrivSubgroup[H,G,*])$

$$Subgroup Equiv := \forall_{H,G} \left(\begin{array}{l} (Subgroup[H,G,*]) \\ \\ \left((Group[G,*]) \wedge (\emptyset \neq H \subseteq G) \wedge (Function[*,H,H]) \wedge \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \end{array} \right) \right)$$

$$(1) \quad (Subgroup[H,G,*]) \implies \left((\emptyset \neq H \subseteq G) \wedge (Function[*,H,H]) \wedge \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right)$$

$$(2) \quad \left((\emptyset \neq H \subseteq G) \land (Function[*,H,H]) \land \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right) \implies \dots$$

- $(2.1) \quad \textit{Group}[G,*] \quad \blacksquare \quad (a,b,c \in H) \implies (a,b,c \in G) \implies \left((a*b)*c = a*(b*c) \right) \quad \blacksquare \quad \forall_{a,b,c \in H} \left((a*b)*c = a*(b*c) \right)$
- $(2.2) \quad \emptyset \neq H \quad \blacksquare \ \exists_h (h \in H)$
- $(2.3) \quad h \in H \quad \blacksquare \ \exists_{h^{-1} \in H} (h * h^{-1} = e = h^{-1} * h)$
- $\hline (2.4) \quad Function[*,H,H] \quad \blacksquare \quad e=h*h^{-1} \in H \quad \blacksquare \quad e\in H \quad \blacksquare \quad \exists_{e\in H} \forall_{a\in H} (a*e=a=e*a)$
- $(2.5) \quad (Function[*, H, H]) \land \left(\forall_{a,b,c \in H} \left((a * b) * c = a * (b * c) \right) \right) \land \left(\exists_{e \in H} \forall_{a \in H} (a * e = a = e * a) \land (\forall_{a \in H} \exists_{a^{-1} \in H} (a * a^{-1} = e = a^{-1} * a) \right) \land (a * e = a = e * a) \land (b * e$
- (2.6) Group[H,*]
- (2.7) $(Group[G,*]) \land (H \subseteq G) \land (Group[H,*])$ Subgroup[H,G,*]

$$(3) \quad \left((\emptyset \neq H \subseteq G) \land (Function[*,H,H]) \land \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right) \implies (Subgroup[H,G,*])$$

$$(4) \quad (Subgroup[H,G,*]) \iff \left((Group[G,*]) \wedge (\emptyset \neq H \subseteq G) \wedge (Function[*,H,H]) \wedge \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right)$$

$$Subgroup Equiv OST := \forall_{H,G} \Biggl((Subgroup [H,G,*]) \iff \Biggl((Group [G,*]) \land (\emptyset \neq H \subseteq G) \land \Bigl(\forall_{a,b \in H} (a*b^{-1} \in H) \Bigr) \Biggr) \Biggr)$$

(1) TODO

 $Subgroup Intersection := \forall_{H_1,H_2,G} \Big(\big((Subgroup[H_1,G,*]) \land (Subgroup[H_2,G,*]) \Big) \implies (Subgroup[H_1 \cap H_2,G,*]) \Big)$

- (1) Group[G, *]
- $(2) \quad (e \in H_1) \land (e \in H_2) \quad \blacksquare \quad e \in H_1 \cap H_2 \quad \blacksquare \quad \emptyset \neq H_1 \cap H_2$
- $(3) \quad (H_1 \subseteq G) \land (H_2 \subseteq G) \quad \blacksquare \quad H_1 \cap H_2 \subseteq G$

- $(4) \quad \emptyset \neq H_1 \cap H_2 \subseteq G$
- $(5) (a, b \in H_1 \cap H_2) \implies \dots$
 - (5.1) $a, b \in H_1 \blacksquare a * b \in H_1$
- $(5.2) \quad a, b \in H_2 \quad \blacksquare \ a * b \in H_2$
- $(5.3) \quad a * b \in H_1 \cap H_2$
- $(6) \quad (a,b \in H_1 \cap H_2) \implies (a*b \in H_1 \cap H_2) \quad \blacksquare \quad Function[*,H_1 \cap H_2,H_1 \cap H_2]$
- $(7) \quad (a \in H_1 \cap H_2) \implies \dots$
- $(7.1) \quad (a^{-1} \in H_1) \land (a^{-1} \in H_2) \quad \blacksquare \quad a^{-1} \in H_1 \cap H_2$
- $(8) \ \ (a \in H_1 \cap H_2) \implies (a^{-1} \in H_1 \cap H_2) \ \blacksquare \ \forall_{a \in H_1 \cap H_2} \exists_{a^{-1} \in H_1 \cap H_2} (a * a^{-1} = e = a^{-1} * a)$
- $(9) \quad (Subgroup Equiv) \wedge (Group[G,*]) \wedge (\emptyset \neq H_1 \cap H_2 \subseteq G) \wedge (Function[*,H_1 \cap H_2,H_1 \cap H_2]) \wedge \ \dots \\ \\$
- (10) ... $\left(\forall_{a \in H_1 \cap H_2} \exists_{a^{-1} \in H_1 \cap H_2} (a * a^{-1} = e = a^{-1} * a) \right)$ Subgroup $[H_1 \cap H_2, G, *]$

 $Centralizer[C(g), g, G, *] := (Group[G, *]) \land (g \in G) \land (C(g) = \{h \in G \mid g * h = h * g\})$

 $Subgroup Centralizer := \forall_{g,G} \Big((Centralizer[C(g), g, G, *]) \implies \big(Subgroup[C(g), G, *] \Big) \Big)$

- (1) $e * g = g * e \blacksquare e \in C(g) \blacksquare C(g) \neq \emptyset$
- $(2) \quad C(g) \subseteq G \quad \blacksquare \emptyset \neq C(g) \subseteq G$
- (3) $(a, b \in C(g)) \implies \dots$
- $(3.1) \quad (a * g = g * a) \land (b * g = g * b)$
- $(3.2) \quad (a*b)*g = a*(b*g) = a*(g*b) = (a*g)*b = (g*a)*b = g*(a*b) \quad \blacksquare a*b \in C(g)$
- $(4) \quad \left(a, b \in C(g)\right) \implies \left(a * b \in C(g)\right) \quad \blacksquare \quad \forall_{a, b \in C(g)} \left(a * b \in C(g)\right)$
- (5) $(a \in C(g)) \implies \dots$
- $(5.1) \quad a * g = g * a$
- $(6) \quad \left(a \in C(g)\right) \implies \left(a^{-1} \in C(g)\right) \quad \blacksquare \quad \forall_{a \in C(g)} \left(a^{-1} \in C(g)\right)$
- $(7) \quad (Subgroup Equiv) \land \left(\emptyset \neq C(g) \subseteq G\right) \land \left(\forall_{a,b \in C(g)} \left(a * b \in C(g)\right)\right) \land \left(\forall_{a \in C(g)} \left(a^{-1} \in C(g)\right)\right) \quad \blacksquare \quad Subgroup [C(g),G,*]$

$$Center[Z(G), G, *] := (Group[G, *]) \land \left(Z(G) = \bigcap_{g \in G} (C(g))\right)$$

 $Subgroup Center := \forall_G \Big(\Big(Center[Z(G), G, *] \Big) \implies \Big(Subgroup[Z(G), G, *] \Big) \Big)$

(1) $(SubgroupCentralizer) \land (SubgroupIntersection) \quad Subgroup[Z(G), G, *]$

2.5 Special Groups

2.5.1 Cyclic Group

 $CyclicSubgroup[< g >, g, G, *] := (Group[G, *]) \land (g \in G) \land (< g >= \{g^n \mid n \in \mathbb{Z}\})$

Generator[g, G, *] := CyclicSubgroup[G, g, G, *]

 $CyclicGroup[G,*] := \exists_{g \in G}(Generator[g,G,*])$

 $SubgroupOfCyclicGroupIsCyclic := \forall_{G,H} \Big((CyclicGroup[G,*]) \land (Subgroup[H,G,*]) \Big) \implies (CyclicGroup[H,*]) \Big)$

- (1) $\exists_{g \in G}(Generator[g, G, *])$
- $(2) \quad H \subseteq G \quad \blacksquare \ \exists_{m \in \mathbb{Z}^+} \left((g^m \in H) \wedge \left(\forall_{k \in \mathbb{Z}^+} \left((k < m) \implies (g^k \notin H) \right) \right) \right)$
- $(3) \quad (b \in H) \implies \dots$
 - $(3.1) \quad H \subseteq G \quad \blacksquare \quad \exists_{n \in \mathbb{Z}^+} (b = g^n)$
 - $(3.2) \quad (DivisionAlgorithm) \land (n \in \mathbb{Z}) \land (m \in \mathbb{Z}^+) \quad \blacksquare \quad \exists !_{q,r \in \mathbb{Z}} \left((n = mq + r) \land (0 \le r < m) \right)$

```
(3.3) g^n = g^{mq+r} = g^{mq} * g^r \blacksquare g^r = (g^{mq})^{-1} * g^n
```

$$(3.4) \quad g^n, g^m \in H \quad \blacksquare \quad g^n, (g^{mq})^{-1} \in H \quad \blacksquare \quad g^r = g^{mq})^{-1} * g^n \in H \quad \blacksquare \quad g^r \in H$$

$$(3.5) \quad (g^r \in H) \land (0 \le r < m) \land \left(\forall_{k \in \mathbb{Z}^+} \left((k < m) \implies (g^k \notin H) \right) \right) \ \blacksquare \ r = 0$$

(3.6)
$$(r = 0) \land (g^n = g^{mq+r}) \land (b = g^n) \blacksquare b = g^n = g^{mq} \blacksquare b \in \langle g^m \rangle$$

$$(4) \quad (b \in H) \implies (b \in \langle g^m \rangle) \quad \blacksquare \quad H \subseteq \langle g^m \rangle$$

$$\overline{(5) \ (b \in \langle g^m \rangle) \implies \dots}$$

$$(5.1) \quad \exists_{k \in \mathbb{Z}} \left(b = (g^m)^k \right)$$

$$(5.2) \quad (Group[H, G, *]) \land (g^m \in H) \quad \blacksquare \quad (g^m * g^m \in H) \land \left((g^m)^{-1} \in H \right)$$

(5.3) Induction
$$\blacksquare b = (g^m)^k \in H \blacksquare b \in H$$

$$(6) (b \in \langle g^m \rangle) \implies (b \in H) \blacksquare \langle g^m \rangle \subseteq H$$

$$(7) \quad (H \subseteq < g^m >) \land (< g^m > \subseteq H) \quad \blacksquare \quad H = < g^m > \quad \blacksquare \quad Generator[g^m, H, *] \quad \blacksquare \quad \exists_{h \in G} (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad CyclicGroup[H, G, *] = (Generator[h, G$$

$$ExpModOrder := \forall_{G,g,n,s,t} \left(\left((Group[G,*]) \wedge (OrderEl[n,g,G,*]) \right) \implies \left((g^s = g^t) \iff \left(s \equiv t (mod\ n) \right) \right) \right)$$

(1)
$$(s \equiv t \pmod{n}) \iff (Divides[n, s-t]) \iff (\exists_{k \in \mathbb{N}} (s-t=kn)) \iff \dots$$

$$\frac{(1) \quad \left(s \equiv t \pmod{n}\right) \iff \left(\text{Divides}[n, s - t]\right) \iff \left(\exists_{k \in \mathbb{N}}(s - t = kn)\right) \iff \dots}{(2) \quad \dots \left(\exists_{k \in \mathbb{N}}(s = kn + t)\right) \iff \left(g^s = g^{kn + t} = g^{kn} * g^t = e^k * g^t = g^t\right) \iff \left(g^s = g^t\right)}$$

$$ExpModOrderCorollary := \forall_{G,g,n,s,t} \Big(\big((Group[G,*]) \land (OrderEl[n,g,G,*]) \big) \implies \big((g^s = e) \iff (Divides[n,s]) \Big) \Big)$$

$$(1) \quad ExpModOrder \quad (g^s = e) \iff (g^s = g^0) \iff (s \equiv 0 \pmod{n}) \iff (Divides[n, s - 0]) \iff (Divides[n, s])$$

2.5.2 Symmetric and Alternating Groups

```
SymmetricGroup[S_n, n] := S_n = \{permutation of a set with n elements\}
```

 $Symmetric Group Order := o(S_n) = n!$

$$SymmetricGroup As Disjoins Cycles := \forall_{\sigma \in S_n} \exists_{\Sigma \subseteq S_n} \Big((Disjoint Cycles[\Sigma]) \land \Big(\sigma = \prod(\sigma_i)\Big) \Big)$$

$$Symmetric Group As Transpositions := \forall_{\sigma \in S_n} \exists_{\Sigma \subseteq S_n} \Big((Transpositions[\Sigma]) \land \Big(\sigma = \prod(\sigma_i) \Big) \Big)$$

 $vFunction[v(\sigma), \sigma, S_n] := v(\sigma) = n - |DisjointFullCycles[\Sigma]|$

 $signFunction[sign(\sigma), \sigma, S_n] := sign(\sigma) = (-1)^{v(\sigma)}$

Even Permutation $[\sigma, S_n] := sign(\sigma) = 1$

 $OddPermutation[\sigma, S_n] := sign(\overline{\sigma}) = -1$

TranspositionSigns := $sign(\tau \sigma) = -sign(\sigma)$

TranspositionSignsCorollary := $sign(\prod_{i=1}^{r} (\tau_i)) = (-1)^r$

 $SignProp := sign(\sigma \pi) = sign(\sigma)sign(\pi)$

Alternating Group $[A_n, n] := A_n = \{ \sigma \in S_n \mid Even Permutation [\sigma, S_n] \}$

Alternating Group Order := $o(A_n) = n!/2$

Dihedral Group 2.5.3

$$DihedralGroup[D_n,*] := \left(D_n = \{a^r * b^s \mid (r \in \mathbb{N}_{0,n-1}) \land (s \in \mathbb{N}_{0,1})\}\right) \land \begin{pmatrix} \left(a^p a^q = a^{(p+q)\%n}\right) \land \\ \left(a^p b a^q = a^{(p-q)\%n}b\right) \land \\ \left(a^p b a^q b = a^{(p-q)\%n}\right) \end{pmatrix}$$

$$DihedralGroup[Order:=a(D) = 2n$$

 $DihedralGroupOrder := o(D_n) = 2n$

2.6 Lagrange's Theorem

```
\begin{aligned} LeftCoset[gH,g,H,G,*] &:= (Subgroup[H,G,*]) \land (g \in G) \land (gH = \{g*h \mid h \in H\}) \\ RightCoset[Hg,g,H,G,*] &:= (Subgroup[H,G,*]) \land (g \in G) \land (Hg = \{h*g \mid h \in H\}) \end{aligned}
```

 $CosetCardinality := (RightCoset[Hg, g, H, G, *]) \implies (|H| = |Hg|)$

(1) Cancellation Laws
$$\blacksquare (h_1g = h_2g) \implies (h_1 = h_2) \blacksquare |H| = |Hg|$$

$$CosetInduceEqRel := \forall_{G,H} \bigg(\Big((Subgroup[H,G,*]) \land (\sim = \{ \langle a,b \rangle \mid a*b^{-1} \in H \}) \Big) \implies \Big((EqRel[\sim,G]) \land (EqClass[Ha,a,\sim,G]) \Big) \bigg)$$

(1) $(a, b, c \in G) \implies \dots$

$$(1.1) \quad (Subgroup[H,G,*]) \implies (e \in H) \implies (a*a^{-1} \in H) \implies (a \sim a)$$

$$(1.2) \quad (a \sim b) \implies (a * b^{-1} \in H) \implies \left(b * a^{-1} = (a * b^{-1})^{-1} \in H\right) \implies (b \sim a)$$

$$(1.3) \ \left((a \sim b) \wedge (b \sim c) \right) \implies (a * b^{-1}, b * c^{-1} \in H) \implies \left(a * c^{-1} = (a * b^{-1}) * (b * c^{-1}) \in H \right) \ \blacksquare \ a \sim c$$

- $\overline{(2)} EqRel[\sim,G]$
- $(3) \quad (a, x \in G) \implies \dots$

$$(3.1) \quad (x \sim a) \iff (x * a^{-1} \in H) \iff \left(\exists_{h \in H} (x * a^{-1} = h)\right) \iff \left(\exists_{h \in H} (x = h * a)\right) \iff (x \in Ha)$$

$$\overline{(4) \ [a] = \{x \in G \mid x \sim a\} = Ha}$$

$$CosetSet[G:H,H,G,*] := (Subgroup[H,G,*]) \land (G:H = \{gH \mid g \in G\})$$

 $IndexSubgroup[|G:H|,H,G,*] := (CosetSet[G:H,H,G,*]) \land (|G:H| = |G:H|) \land (|G| = (|H|)(|G:H|))$

$$LagrangeTheorem := \forall_{G,H} \Big(\big(Subgroup[H,G,*] \big) \land (o(G),o(H) \in \mathbb{N} \big) \Big) \implies \Big(o(G) = o(H)|G:H| \Big) \land \Big(Divides[o(H),o(G)] \Big)$$

$$(1) \quad (CosetInduceEqRel) \wedge (EqRelInducesPartition) \wedge (CosetCardinality) \quad \blacksquare \\ \left(o(G) = o(H)|G:H|\right) \wedge \left(Divides[o(H),o(G)]\right) \\ = o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| \\ = o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| \\ = o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| \\ = o(H)|G:H| + o(H)|G:H| +$$

$$OrderElDivOrder := \forall_{g,G} \Big((Order[n,G,*]) \land (OrderEl[m,g,G,*]) \Big) \implies \Big((Divides[m,n]) \land (g^n = e) \Big) \Big)$$

- (1) $CyclicSubgroup[\langle g \rangle, g, G, *]$ $Order[\langle g \rangle] = m$
- (2) $(LagrangeTheorem) \land (CyclicSubgroup)$ $\blacksquare Divides[Order[< g >], Order[G]]$ $\blacksquare Divides[m, n]$
- $\overline{(3) \quad g^n = g^{mk} = e^k = e}$

Any prime ordered cyclic group has no proper non-trivial subgroups and any non-identity element is a generator.

- (1) LagrangeTheorem Subgroups must have the order 1 or p Subgroups are trivial
- (2) CyclicSubgroup of a non-identity element is G Non-identity elements generates G

$$\left((Subgroup[H,G,*]) \land \left(Subgroup[K,G,*] \land \left(RelPrime(o(H),o(K)\right) \right) \right) \implies (H \cap K = \{e\})$$

$$(1) \quad (LagrangeTheorem) \land (SubgroupIntersection) \land \Big(RelPrime\big(o(H),o(K)\big)\Big) \quad \blacksquare \ H \cap K = \{e\}$$

2.7 Homomorphisms

$$Homomorphism[\phi,G,*,H,\diamond]:=(Function[\phi,G,H]) \land \Big(orall_{a,b\in G} \Big(\phi(a*b)=\phi(a) \diamond \phi(b) \Big) \Big)$$

$$Monomorphism[\phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land (Inj[\phi, G, H])$$

$$Epimorphism[\phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land (Surj[\phi, G, H])$$

$$Isomorphism[\phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land (Bij[\phi, G, H])$$

$$Isomorphic[G, *, H, \diamond] := \exists_{\phi}(Isomorphism[\phi, G, *, H, \diamond]) ** Notation: G \cong H **$$

Automorphism $[\phi, G, *] := I$ somorphism $[\phi, G, *, G, *]$

$$IdMapsId := (Homomorphism[\phi, G, *, H, \diamond]) \implies (\phi(e_G) = e_H)$$

$$\overline{(1) \quad \phi(e_G) = \phi(e_G * e_G) = \phi(e_G) \diamond \phi(e_G) \quad \blacksquare \ \phi(e_G) = \phi(e_G) \diamond \phi(e_G)}$$

2.7. HOMOMOKPHISMS 25

```
(2) \quad e_H = \phi(e_G)^{-1} \diamond \phi(e_G) = \phi(e_G)^{-1} \diamond \left(\phi(e_G) \diamond \phi(e_G)\right) = \phi(e_G) \quad \blacksquare \ e_H = \phi(e_G)
```

 $InvMapsInv := (Homomorphism[\phi, G, *, H, \diamond]) \implies \left(\phi(g^{-1}) = \phi(g)^{-1}\right)$

$$(1) \quad IdMapsId \quad \blacksquare \ e_H = \phi(e_G) = \phi(g*g^{-1}) = \phi(g) \diamond \phi(g^{-1}) \quad \blacksquare \ e_H = \phi(g) \diamond \phi(g^{-1}) \quad \blacksquare \ \phi(g^{-1}) = \phi(g)^{-1}$$

 $ExpMapsExp := (Homomorphism[\phi, G, *, H, \diamond]) \implies \left(\forall_{n \in \mathbb{N}^+} \left(\phi(g^n) = \phi(g)^n \right) \right)$

$$(1) \quad (n=1) \implies \dots$$

(1.1)
$$\phi(g^n) = \phi(g) = \phi(g)^n \quad \blacksquare \quad \phi(g^n) = \phi(g)^n$$

$$(2) \quad (n=1) \implies \left(\phi(g^n) = \phi(g)^n\right)$$

(3)
$$\left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left(\phi(g^m) = \phi(g)^m \right) \right) \right) \implies \dots$$

$$(3.1) \quad \phi(g^{n+1}) = \phi(g^n * g) = \phi(g)^n \diamond \phi(g) = \phi(g)^{n+1} \quad \blacksquare \phi(g^{n+1}) = \phi(g)^{n+1}$$

$$(4) \quad \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left(\phi(g^m) = \phi(g)^m \right) \right) \right) \implies \left(\phi(g^{n+1}) = \phi(g)^{n+1} \right)$$

$$(5) \quad \left((n=1) \implies \left(\phi(g^n) = \phi(g)^n \right) \right) \wedge \left(\left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left(\phi(g^m) = \phi(g)^m \right) \right) \right) \implies \left(\phi(g^{n+1}) = \phi(g)^{n+1} \right) \right) \dots$$

(6)
$$... \forall_{n \in \mathbb{N}^+} (\phi(g^n) = \phi(g)^n)$$

 $MapElDivOrder := \Big((Homomorphism[\phi,G,*,H,\diamond]) \land (Order[n,G,*]) \Big) \implies \bigg(\forall_{g \in G} \Big(\big(OrderEl[m,\phi(g),H,\diamond] \big) \implies (Divides[m,n]) \Big) \bigg)$

- $(1) \quad Order El Div Order \quad \blacksquare g^n = e_G$
- (2) $(IdMapsId) \wedge (ExpMapsExp) \blacksquare e_H = \phi(e_G) = \phi(g^n) = \phi(g)^n \blacksquare \phi(g)^n = e_H$
- (3) $(ExpModOrderCorollary) \land (OrderEl[m, \phi(g), H, \diamond]) \land (\phi(g)^n = e_H)$ \blacksquare Divides[m, n]

 $MapElDivOrderCorollary := \left((Monomorphism[\phi,G,*,H,\diamond]) \land (Order[n,G,*]) \right) \implies \left(\forall_{g \in G} \left((OrderEl[m,\phi(g),H,\diamond]) \implies (m=n) \right) \right)$

- $(1) \quad Inj[\phi, G, H] \quad \blacksquare \quad \forall_{g_1, g_2 \in G} \left(\left(\phi(g_1) = \phi(g_2) \right) \implies (g_1 = g_2) \right)$
- (2) $e_H = \phi(g)^m = \phi(g^m) \mid e_H = \phi(g^m)$
- (3) $e_H = \phi(e_G) = \phi(g^n) \mid \! \mid e_H = \phi(g^n)$

$$(4) \quad \left(\forall_{g_1,g_2 \in G} \left(\left(\phi(g_1) = \phi(g_2) \right) \right) \implies (g_1 = g_2) \right) \right) \land \left(e_H = \phi(g^m) \right) \land \left(e_H = \phi(g^n) \right) \quad \blacksquare \quad g^m = g^n$$

(5) $\left(OrderEl[m,\phi(g),H,\diamond]\right) \wedge \left(Order[n,G,*]\right) \wedge \left(g^m=g^n\right) \quad \blacksquare \quad m=n$

 $HomoCompHomo := ((Homomorphism[\phi, G, *, H, \diamond]) \land (Homomorphism[\theta, H, \diamond, K, \Box])) \implies (Homomorphism[\theta \circ \phi, G, *, K, \Box])$

- (1) $FuncComp \quad Func[\theta \circ \phi, G, K]$
- $(2) \quad (g_1, g_2 \in G) \implies \dots$
 - $(2.1) \quad (Homomorphism[\phi, G, *, H, \diamond]) \land (Homomorphism[\theta, H, \diamond, K, \square]) \quad \blacksquare \quad \theta \circ \phi(g_1 * g_2) = \theta(\phi(g_1 * g_2)) = \dots$

$$(2.2) \quad \dots \theta \left(\phi(g_1) \diamond \phi(g_2) \right) = \theta \left(\phi(g_1) \right) \square \theta \left(\phi(g_2) \right) = \theta \circ \phi(g_1) \square \theta \circ \phi(g_2) \quad \blacksquare \quad \theta \circ \phi(g_1 * g_2) = \theta \circ \phi(g_1) \square \theta \circ \phi(g_2)$$

$$(3) \quad (g_1,g_2\in G) \implies \left(\theta\circ\phi(g_1\ast g_2)=\theta\circ\phi(g_1) \ \square \ \theta\circ\phi(g_2)\right) \ \blacksquare \ \forall_{g_1,g_2\in G}\left(\theta\circ\phi(g_1\ast g_2)=\theta\circ\phi(g_1) \ \square \ \theta\circ\phi(g_2)\right)$$

$$(4) \quad (Func[\theta \circ \phi, G, K]) \land \left(\forall_{g_1, g_2 \in G} \left(\theta \circ \phi(g_1 * g_2) = \theta \circ \phi(g_1) \bigsqcup \theta \circ \phi(g_2) \right) \right) \quad \blacksquare \quad Homomorphism[\theta \circ \phi, G, *, K, \bigsqcup]$$

 $IsoInvIso := (Isomorphism[\phi, G, *, H, \diamond]) \implies (Isomorphism[\phi^{-1}, H, \diamond, G, *])$

- (1) $Isomorphism[\phi, G, *, H, \diamond]$ \blacksquare $(Homomorphism[\phi, G, *, H, \diamond]) \land (Bij[\phi, G, H])$
- (2) $BijEquiv \ \ \exists_{\phi^{-1}}(Inv[\phi^{-1},\phi,G,H]) \ \ \ \ \ Bij[\phi^{-1},H,G]$
- $(3) (x, y \in H) \implies \dots$

$$(3.1) \quad Homomorphism[\phi,G,*,H,\diamond] \quad \blacksquare \quad \phi\Big(\phi^{-1}(x)*\phi^{-1}(y)\Big) = \phi\Big(\phi^{-1}(x)\Big) \diamond \phi\Big(\phi^{-1}(y)\Big) = x \diamond y$$

CHAPTER 2. ADSTRACT ALGEDRA

$$(3.2) \quad \phi^{-1}(x \diamond y) = \phi^{-1} \left(\phi \left(\phi^{-1}(x) * \phi^{-1}(y) \right) \right) = (\phi^{-1} \circ \phi) \left(\phi^{-1}(x) * \phi^{-1}(y) \right) = \phi^{-1}(x) * \phi^{-1}(y) \quad \blacksquare \quad \phi^{-1}(x \diamond y) = \phi^{-1}(x) * \phi^{-1}(y)$$

$$\overline{ (4) \ (x,y \in H) \implies \left(\phi^{-1}(x \diamond y) = \phi^{-1}(x) * \phi^{-1}(y) \right)} \ \blacksquare \ \forall_{x,y \in H} \left(\phi^{-1}(x \diamond y) = \phi^{-1}(x) * \phi^{-1}(y) \right)$$

$$(5) \quad (Bij[\phi^{-1},H,G]) \wedge \left(\forall_{x,y \in H} \left(\phi^{-1}(x \diamond y) = \phi^{-1}(x) * \phi^{-1}(y) \right) \right) \quad \blacksquare \quad Isomorphism[\phi^{-1},H,\diamond,G,*]$$

$$KCycleGroupIsomorphic := \begin{pmatrix} \left((CyclicGroup[G,*]) \land (CyclicGroup[H,\diamond]) \land (Order[n,G,*]) \land (Order[n,H,\diamond]) \right) \implies \\ \left(Isomorphic[G,*,H,\diamond]) \end{pmatrix}$$

- $(1) \quad \left(\exists_{g \in G}(Generator[g,G,*])\right) \wedge \left(\exists_{h \in H}(Generator[h,H,\diamond])\right)$
- (2) $\phi := \{ \langle g^n, h^n \rangle \in (G \times H) \mid n \in \mathbb{Z} \}$
- $\overline{(3) \ (n_1, n_2 \in \mathbb{Z}) \implies \dots}$
 - $(3.1) \quad (ExpModOrder) \land (Order[n,G,*]) \land (Order[n,H,\diamond]) \quad \blacksquare \quad (g^{n_1} = g^{n_2}) \iff (n_1 \equiv n_2 (mod \ n)) \iff (h^{n_1} = h^{n_2}) \iff \dots$

$$(3.2) \ldots (\phi(g^{n_1}) = \phi(g^{n_2})) \blacksquare (g^{n_1} = g^{n_2}) \iff (\phi(g^{n_1}) = \phi(g^{n_2}))$$

$$(4) \quad (n_1, n_2 \in \mathbb{Z}) \implies \left((g^{n_1} = g^{n_2}) \iff \left(\phi(g^{n_1}) = \phi(g^{n_2}) \right) \right) \dots$$

- (5) ... $(Func[\phi, G, H]) \wedge (Inj[\phi, G, H]) \wedge (Surj[\phi, G, H]) \blacksquare Bij[\phi, G, H]$
- (6) $(g^n, g^m \in G) \implies \dots$
 - $(6.1) \quad \phi(g^n * g^m) = \phi(g^{n+m}) = h^{n+m} = h^n \diamond h^m = \phi(g^n) \diamond \phi(g^m) \quad \blacksquare \quad \phi(g^n * g^m) = \phi(g^n) \diamond \phi(g^m)$

$$(7) \quad (g^n,g^m\in G) \implies \left(\phi(g^n\ast g^m)=\phi(g^n)\diamond\phi(g^m)\right) \ \blacksquare \ \forall_{g^n,g^m\in G} \left(\phi(g^n\ast g^m)=\phi(g^n)\diamond\phi(g^m)\right)$$

$$(8) \quad (Bij[\phi,G,H]) \land \left(\forall_{g^n,g^m \in G} \left(\phi(g^n * g^m) = \phi(g^n) \diamond \phi(g^m) \right) \right) \quad \blacksquare \quad Isomorphism[\phi,G,*,H,\diamond]$$

(9)
$$\exists_{\phi}(Isomorphism[\phi, G, *, H, \diamond]) \mid Isomorphic[G, *, H, \diamond]$$

2.8 Kernel and Image Homomorphisms

$$Kernel[ker_{\phi}, \phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land \left(ker_{\phi} = \{g \in G \mid \phi(g) = e_H\}\right)$$

$$Image[im_{\phi}, \phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land \left(im_{\phi} = \{\phi(g) \in H \mid g \in G\}\right)$$

 $KernelSubgroupDomain := (Homomorphism[\phi, G, *, H, \diamond]) \Longrightarrow (Subgroup[ker_\phi, G, *])$

- $(1) \quad IdMapsId \quad \blacksquare \ \phi(e_G) = e_H \quad \blacksquare \ e_G \in ker_\phi \quad \blacksquare \ ker_\phi \neq \emptyset$
- (2) $ker_{\phi} \subseteq G \quad \blacksquare \emptyset \neq ker_{\phi} \subseteq G$
- (3) $(a, b \in ker_{\phi}) \implies \dots$

$$(3.1) \quad \left(\phi(a) = e_H\right) \land \left(\phi(b) = e_H\right) \quad \blacksquare \quad \phi(a * b) = \phi(a) \diamond \phi(b) = e_H \diamond e_H = e_H \quad \blacksquare \quad a * b \in ker_\phi$$

- $(4) \quad (a,b \in ker_{\phi}) \implies (a*b \in ker_{\phi}) \quad \blacksquare \quad \forall_{a,b \in ker_{\phi}} (a*b \in ker_{\phi})$
- (5) $(a \in ker_{\phi}) \implies \dots$
 - (5.1) $\phi(a) = e_H$
- $(6) \quad (a \in ker_{\phi}) \implies (a^{-1} \in ker_{\phi}) \quad \blacksquare \quad \forall_{a \in ker_{\phi}} (a^{-1} \in ker_{\phi})$
- $(7) \quad (Subgroup Equiv) \wedge (\emptyset \neq ker_{\phi} \subseteq G) \wedge \left(\forall_{a,b \in ker_{\phi}} (a*b \in ker_{\phi}) \right) \wedge \left(\forall_{a \in ker_{\phi}} (a^{-1} \in ker_{\phi}) \right) \quad \blacksquare \quad Subgroup [ker_{\phi}, G, *]$

 $ImageSubgroupCodomain := (Homomorphism[\phi, G, *, H, \diamond]) \implies (Subgroup[im_\phi, H, \diamond])$

- $(1) \quad (Id \, M \, aps \, Id) \wedge (e_G \in G) \quad \blacksquare \quad \phi(e_G) = e_H \in H \quad \blacksquare \quad e_H \in im_\phi \quad \blacksquare \quad \emptyset \neq im_\phi$
- $(2) \quad im_{\phi} \subseteq H \quad \blacksquare \ \emptyset \neq im_{\phi} \subseteq H$
- (3) $(a, b \in im_{\phi}) \implies \dots$

$$(3.1) \quad \left(\exists_{g_a \in G} \left(a = \phi(g_a)\right)\right) \land \left(\exists_{g_b \in G} \left(b = \phi(g_b)\right)\right)$$

(3.2)
$$(g_a * g_b \in G) \land (\phi(g_a * g_b) = \phi(g_a) * \phi(g_b) = a * b)$$

```
(3.3) \quad \exists_{g \in G} \left( a * b = \phi(g) \right) \quad \blacksquare \quad a * b \in im_{\phi}
```

$$(4) \quad (a,b\in im_{\phi}) \implies (a*b\in im_{\phi}) \quad \blacksquare \ \forall_{a,b\in im_{\phi}}(a*b\in im_{\phi})$$

$$(5) (a \in im_{\phi}) \implies \dots$$

$$(5.1) \quad \exists_{g_a \in G} \left(a = \phi(g_a) \right)$$

(5.2)
$$(g_a^{-1} \in G) \wedge (InvMapsInv) \quad | \quad \phi(g_a^{-1}) = \phi(g_a)^{-1} = a^{-1}$$

(5.3)
$$\exists_{g \in G} \left(a^{-1} = \phi(g) \right) \blacksquare a^{-1} \in im_{\phi}$$

$$\overline{(6) \ (a \in im_{\phi}) \implies (a^{-1} \in im_{\phi}) \ \blacksquare \ \forall_{a \in im_{\phi}} (a^{-1} \in im_{\phi})}$$

 $ImageCyclicIsCyclic := \big((Homomorphism[\phi, G, *, H, \diamond]) \land (CyclicGroup[G, *]) \big) \implies (CyclicGroup[im_{\phi}, \diamond])$

$$(1) \quad CyclicGroup[G,*] \quad \blacksquare \quad \exists_{r \in G}(Generator[r,G,*]) \quad \blacksquare \quad G = \langle r \rangle = \{r^n \mid n \in \mathbb{Z}\}$$

(2)
$$ExpMapsExp \ \blacksquare \ im_{\phi} = \{\phi(g)|g \in G\} = \{\phi(r^n)|n \in \mathbb{Z}\} = \{\phi(r)^n|n \in \mathbb{Z}\} = \langle \phi(r) \rangle$$

$$\overline{(3) \ \ Generator[\phi(r), im_{\phi}, \diamond] \ \ } \ \exists_{s \in im_{\phi}} (Generator[s, im_{\phi}, \diamond]) \ \ \underline{\blacksquare} \ CyclicGroup[im_{\phi}, \diamond]$$

 $HomoInjEquiv := (Homomorphism[\phi, G, *, H, \diamond]) \implies \Big((Inj[\phi, G, H]) \iff (ker_{\phi} = \{e_G\})\Big)$

(1)
$$(Inj[\phi, G, H]) \implies ...$$

$$(1.1) \quad Id \, Maps Id \quad \blacksquare \phi(e_G) = e_H \quad \blacksquare e_G \in ker_\phi \quad \blacksquare \{e_G\} \subseteq ker_\phi$$

$$(1.2) \quad (g \in ker_{\phi}) \implies \dots$$

$$(1.2.1) \quad (g \in ker_{\phi}) \land (IdMapsId) \quad \blacksquare \phi(g) = e_H = \phi(e_G)$$

$$(1.2.2) \quad (Inj[\phi, G, H]) \land \left(\phi(g) = \phi(e_G)\right) \quad \blacksquare \quad g = e_G \quad \blacksquare \quad g \in \{e_G\}$$

$$(1.3) \quad (g \in ker_{\phi}) \implies (g \in \{e_G\}) \quad \blacksquare \quad ker_{\phi} \subseteq \{e_G\}$$

$$(1.4) \quad (\{e_G\} \subseteq ker_{\phi}) \land (ker_{\phi} \subseteq \{e_G\}) \quad \blacksquare \ ker_{\phi} = \{e_G\}$$

(2)
$$(Inj[\phi, G, H]) \implies (ker_{\phi} = \{e_G\})$$

$$\overline{(3) \ (ker_{\phi} = \{e_G\}) \implies \dots}$$

$$(3.1) \quad \left((g_1, g_2 \in G) \land \left(\phi(g_1) = \phi(g_2) \right) \right) \implies \dots$$

$$(3.1.1) \quad InvMapsInv \quad \blacksquare \quad e_H = \phi(g_1) \diamond \phi(g_2)^{-1} = \phi(g_1) \diamond \phi(g_2^{-1}) = \phi(g_1 * g_2^{-1}) \quad \blacksquare \quad e_H = \phi(g_1 * g_2^{-1}) \quad \blacksquare \quad g_1 * g_2^{-1} \in ker_{\phi}$$

$$(3.1.2) \quad (ker_{\phi} = \{e_G\}) \land (g_1 * g_2^{-1} \in ker_{\phi}) \quad \blacksquare g_1 * g_2^{-1} = e_G \quad \blacksquare g_1 = g_2$$

$$(3.2) \quad \left((g_1, g_2 \in G) \land \left(\phi(g_1) = \phi(g_2) \right) \right) \implies (g_1 = g_2) \quad \blacksquare \quad \forall_{g_1, g_2 \in G} \left(\left(\phi(g_1) = \phi(g_2) \right) \right) \implies (g_1 = g_2) \right) \quad \blacksquare \quad Inj[\phi, G, H]$$

(4)
$$(ker_{\phi} = \{e_G\}) \implies (Inj[\phi, G, H])$$

$$(5) \quad \left((Inj[\phi, G, H]) \implies (ker_{\phi} = \{e_G\}) \right) \land \left((ker_{\phi} = \{e_G\}) \implies (Inj[\phi, G, H]) \right)$$

(6)
$$(Inj[\phi, G, H]) \iff (ker_{\phi} = \{e_G\})$$

 $KerMultiplicityMap := \left((Homomorphism[\phi, G, *, H, \diamond]) \land (g \in G) \right) \implies \left((ker_{\phi})g = \{x \in G \mid \phi(x) = \phi(g)\} \right)$

$$(1) \quad \left(x \in (ker_{\phi})g \right) \implies \dots$$

$$(1.1) \quad \exists_{K_x \in ker_{\phi}}(x = K_x * g) \quad \blacksquare \quad \phi(x) = \phi(K_x * g) = \phi(K_x) \diamond \phi(g) = e_H \diamond \phi(g) = \phi(g) \quad \blacksquare \quad \phi(x) = \phi(g)$$

$$(2) \quad \left(x \in (ker_{\phi})g\right) \implies \left(\phi(x) = \phi(g)\right) \quad \blacksquare \quad (ker_{\phi})g \subseteq \{x \in G \mid \phi(x) = \phi(g)\}$$

(3)
$$\left((x \in G) \land \left(\phi(x) = \phi(g) \right) \right) \implies \dots$$

$$(3.1) \quad e_H = \phi(x) \diamond \phi(g)^{-1} = \phi(x) \diamond \phi(g^{-1}) = \phi(x * g^{-1}) \quad \blacksquare \quad x * g^{-1} \in ker_{\phi} \quad \blacksquare \quad x \in (ker_{\phi})g$$

$$(4) \quad \left((x \in G) \land \left(\phi(x) = \phi(g) \right) \right) \implies \left(x \in (ker_{\phi})g \right) \quad \blacksquare \quad \{ x \in G \mid \phi(x) = \phi(g) \} \subseteq (ker_{\phi})g$$

$$(5) \quad \left((ker_{\phi})g \subseteq \{x \in G \mid \phi(x) = \phi(g)\} \right) \land \left(\{x \in G \mid \phi(x) = \phi(g)\} \subseteq (ker_{\phi})g \right) \quad \blacksquare \quad (ker_{\phi})g = \{x \in G \mid \phi(x) = \phi(g)\}$$

CHAPTER 2. ADSTRACT ALGEDRA

 $KerImPartitionsG := (Homomorphism[\phi, G, *, H, \diamond]) \implies (|G| = |ker_{\phi}||im_{\phi}|)$

- (1) $\forall_{g \in G} ([g] = \{x \in G \mid \phi(x) = \phi(g)\})$
- (2) $\mathcal{G} = \{[g] | g \in G\} \mid (Partition[\mathcal{G}, G]) \land (|\mathcal{G}| = |im_{\phi}|)\}$
- $(3) \quad KerMultiplicityMap \quad \blacksquare \quad \forall_{g \in G}(|[g]| = |ker_{\phi}|)$
- $(4) \quad \overline{Partition[\mathcal{G}, G]} \quad \blacksquare \quad |G| = |\mathcal{G}||ker_{\phi}| = |im_{\phi}||ker_{\phi}|$

 $ImDivDomCod := (Homomorphism[\phi,G,*,H,\diamond]) \implies \Big((Divides[|im_{\phi}|,|G|]) \land (Divides[|im_{\phi}|,|H|])\Big)$

- (1) $KerImPartitionsG \ \blacksquare \ \blacksquare \ |G| = |ker_{\phi}||im_{\phi}| \ \blacksquare \ Divides[|im_{\phi}|, |G|]$
- (2) $(LagrangeTheorem) \wedge (ImageSubgroupCodomain) \mid |H| = |im_{\phi}||H : im_{\phi}||Divides[|im_{\phi}|, |H|]$

2.9 Conjugacy

 $Conjugate[\sim^*, a, b, G, *] := (Group[G, *]) \land (a, b \in G) \land \left(\exists_{c \in G} (b = c^{-1} * a * c)\right)$

 $ConjugateEqRel := EqRel[\sim^*, G]$

- $\overline{(1) \ (a,b,c \in G) \implies \dots}$

 - $(1.2) \quad (a \sim^* b) \implies (b = x_b^{-1} * a * x_b) \implies (x_b * b * x_b^{-1} = a) \implies (b \sim^* a)$
 - $(1.3) \ \left((a \sim^* b) \land (b \sim^* c) \right) \implies \left((b = x_b^{-1} * a * x_b) \land (c = x_c^{-1} * b * x_c) \right) \implies \dots$
 - $(1.4) \quad \dots \left(c = x_c^{-1} * x_b^{-1} * a * x_b * x_c = (x_b * x_c)^{-1} * a * (x_b * x_c)\right) \blacksquare a \sim^* c$
- (2) $EqRel[\sim^*, G]$

 $ConjugacyClass[C_g,g,G,*] := (Group[G,*]) \land (g \in G) \land (EqClass[C_g,g,\sim^*,G])$

 $ConjugacyClassEquiv := (ConjugacyClass[C_g,g,G,*]) \iff \left(\forall_{x \in G} \left((x \in C_g) \iff \left(\exists_{c \in G} (x = c^{-1}gc) \right) \right) \right)$

(1) By ConjugateEqRel and the definitions of ConjugacyClass, Conjugate

 $ConjugacyCenter := (g \in G) \implies \Big((C_g = \{g\}) \iff \big(g \in Z(G)\big) \Big)$

- $\overline{(1) \ (C_g = \{g\}) \implies \dots}$
- (1.1) $(x \in G) \implies \dots$
 - $(1.1.1) \quad (ConjugacyClass[C_g,g,G,*]) \land (ConjugacyClassEquiv) \land (x \in G) \quad \blacksquare \quad x^{-1}gx \in C_g$
 - $(1.1.2) \quad (C_g = \{g\}) \land (x^{-1}gx \in C_g) \quad \blacksquare \quad x^{-1}gx = g \quad \blacksquare \quad gx = xg$
- $(1.2) \quad (x \in G) \implies (gx = xg) \quad \blacksquare \quad \forall_{x \in G} (gx = xg) \quad \blacksquare \quad g \in Z(G)$
- $(2) \quad (C_g = \{g\}) \implies (g \in Z(G))$
- $(3) \quad (g \in Z(G)) \implies \dots$
- $(3.1) \quad \left(g \in Z(G)\right) \land \left(Group[G,*]\right) \quad \blacksquare \left(\forall_{c \in G}(gc = cg)\right) \land \left(\exists_{e}(e \in G)\right)$
- $(3.2) \quad (x \in G) \implies \dots$
 - $(3.2.1) \quad \left(\forall_{c \in G} (gc = cg) \right) \wedge \left(\exists_{e} (e \in G) \right) \quad \blacksquare \quad \left(\exists_{c \in G} (x = c^{-1}gc) \right) \iff \left(\exists_{c \in G} (x = c^{-1}gc = c^{-1}cg = g) \right) \iff (x = g) \iff (x \in \{g\})$
- $(3.3) \quad (x \in G) \implies \left(\left(\exists_{c \in G} (x = c^{-1}gc) \right) \iff (x \in \{g\}) \right) \quad \blacksquare \quad \forall_{x \in G} \left((x \in \{g\}) \iff \left(\exists_{c \in G} (x = c^{-1}gc) \right) \right)$
- $(3.4) \quad (ConjugacyClassEquiv) \land \left(\forall_{x \in G} \left((x \in \{g\}) \iff \left(\exists_{c \in G} (x = c^{-1}gc) \right) \right) \right) \blacksquare C_g = \{g\}$
- $(4) \quad g \in Z(G) \implies (C_g = \{g\})$
- $\overline{(5) \ (C_{\sigma} = \{g\}) \iff (g \in Z(G))}$

2.9. CONJUGACI

```
ConjugacyAbelian := \left( \forall_{g \in G} (C_g = \{g\}) \right) \iff (AbelianGroup[G, *])
```

Conjugate $Exp := \forall_{n \in \mathbb{N}^+} \left((x^{-1}gx)^n = x^{-1}g^nx \right)$

$$(1) \quad (n=1) \implies \dots$$

$$(1.1) \quad (x^{-1}gx)^n = (x^{-1}gx)^1 = x^{-1}g^1x = x^{-1}g^nx \quad \blacksquare (x^{-1}gx)^n = x^{-1}g^nx$$

(2)
$$(n = 1) \implies ((x^{-1}gx)^n = x^{-1}g^nx)$$

(3)
$$\left((n > 1) \land \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left((x^{-1} g x)^m = x^{-1} g^m x \right) \right) \right) \right) \Longrightarrow \dots$$

$$(3.1) \quad (x^{-1}gx)^{n+1} = (x^{-1}gx)^n * (x^{-1}gx) = (x^{-1}g^nx) * (x^{-1}gx) = x^{-1}g^{n+1}x \quad \blacksquare (x^{-1}gx)^{n+1} = x^{-1}g^{n+1}x$$

$$(4) \left((n > 1) \land \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left((x^{-1}gx)^m = x^{-1}g^mx \right) \right) \right) \right) \Longrightarrow \left((x^{-1}gx)^{n+1} = x^{-1}g^{n+1}x \right)$$

(5)
$$\forall_{n \in \mathbb{N}^+} \left((x^{-1}gx)^n = x^{-1}g^nx \right)$$

 $ConjugateOrder := \left((g_1, g_2 \in G) \land (g_1 \sim^* g_2) \right) \implies \left(o(g_1) = o(g_2) \right)$

- (1) $\exists_{c \in G} (g_2 = c^{-1}g_1c)$
- (3) $ExpModOrderCorollary \ \square \ Divides[o(g_2), o(g_1)]$
- $(4) \quad Conjugate Exp \quad \blacksquare \ e = g_1^{o(g_1)} = (cg_2c^{-1})^{o(g_1)} = cg_2^{o(g_1)}c^{-1} \quad \blacksquare \ e = cg_2^{o(g_1)}c^{-1} \quad \blacksquare \ g_2^{o(g_1)} = e$
- (5) $ExpModOrderCorollary \ \square \ Divides[o(g_1), o(g_2)]$
- $(6) \quad \left(Divides[o(g_2),o(g_1)]\right) \land \left(Divides[o(g_1),o(g_2)]\right) \land (g_1,g_2 \in \mathbb{N}^+) \quad \blacksquare \ o(g_1) = o(g_2)$
- $(8) \quad \exists_{c \in G} (g_2 = c^{-1}g_1c) \quad \blacksquare \ e = g_2{}^{o(g_2)} = (c^{-1}g_1c){}^{o(g_2)} = c^{-1}g_1{}^{o(g_2)}c \quad \blacksquare \ e = c^{-1}g_1{}^{o(g_2)}c \quad \blacksquare \ g_1{}^{o(g_2)} = e$
- $(9) \quad (m \in \mathbb{Z}^+) \land (m < o(g_2)) \implies \dots$

$$(9.1) \quad e \neq g_2{}^m = (c^{-1}g_1c)^m = c^{-1}g_1{}^mc \quad \blacksquare \quad e \neq c^{-1}g_1{}^mc \quad \blacksquare \quad e = c * e * c^{-1} \neq g_1{}^m \quad \blacksquare \quad g_1{}^m \neq e$$

$$(10) \quad \left(m < o(g_2)\right) \implies \left(e \neq g_1^m\right) \ \blacksquare \ \forall_{m \in \mathbb{Z}^+} \left(\left(m < o(g_2)\right) \implies \left(g_1^m \neq e\right)\right)$$

$$(11) \quad \left(g_1^{o(g_2)} = e\right) \land \left(\forall_{m \in \mathbb{Z}^+} \left(\left(m < o(g_2)\right) \implies (g_1^m \neq e)\right)\right) \quad \blacksquare \quad o(g_1) = o(g_2)$$

CentralizerConjugateCosets := $\forall_{c,g,h \in G} \left((h = c^{-1}gc) \implies \left(C(h) = c^{-1}C(g)c \right) \right)$

$$(1) \quad \left(c^{-1}ac \in c^{-1}C(g)c\right) \implies \dots$$

$$(1.1) \quad a \in C(g) \quad \blacksquare \quad ag = ga$$

$$(1.2) \quad (c^{-1}ac)h = (c^{-1}ac)(c^{-1}gc) = c^{-1}agc = c^{-1}gac = c^{-1}g(cc^{-1})ac = h(c^{-1}ac) \quad \blacksquare \quad (c^{-1}ac)h = h(c^{-1}ac) \quad \blacksquare \quad c^{-1}ac \in C(h)$$

$$(2) \quad \left(c^{-1}ac \in c^{-1}C(g)c\right) \implies \left(c^{-1}ac \in C(h)\right) \quad \blacksquare \quad c^{-1}C(g)c \subseteq C(h)$$

- $(3) \quad \left(a \in C(h)\right) \implies \dots$
- (3.1) $a \in C(h)$ ah = ha $a(c^{-1}gc) = (c^{-1}gc)a$
- $(3.2) \quad (cac^{-1})g = g(cac^{-1}) \quad \blacksquare \quad cac^{-1} \in C(g) \quad \blacksquare \quad a \in c^{-1}C(g)c$

$$(4) \quad \left(a \in C(h)\right) \implies \left(a \in c^{-1}C(g)c\right) \quad \blacksquare \quad C(h) \subseteq c^{-1}C(g)c$$

$$(5) \quad \left(c^{-1}C(g)c \subseteq C(h)\right) \wedge \left(C(h) \subseteq c^{-1}C(g)c\right) \quad \blacksquare \quad C(h) = c^{-1}C(g)c$$

CHAPTER 2. ADSTRACT ALGEDRA

Conjugates Multiplicity: = $(g \in G) \implies (o(G) = o(C(g))|C_g|)$

$$(1) \quad \phi := \{ \langle a^{-1}ga, C(g)a \rangle \in \left(C_g \times G : C(g) \right) \mid a \in G \}$$

 $(2) \quad (x, y \in G) \implies \dots$

$$(2.1) \quad (x^{-1}gx = y^{-1}gy) \iff (gx = xy^{-1}gy) \iff \left(g(xy^{-1}) = (xy^{-1})g\right) \iff \dots$$

$$(2.2) \quad \dots \left(xy^{-1} \in C(g)\right) \iff \left(C(g)(xy^{-1}) = C(g)\right) \iff \left(C(g)x = C(g)y\right)$$

(3)
$$(x, y \in G) \implies \left((x^{-1}gx = y^{-1}gy) \iff \left(C(g)x = C(g)y \right) \right) \dots$$

$$(4) \quad \dots \left(Func[\phi, C_g, G: C(g)] \right) \wedge \left(Inj[\phi, C_g, G: C(g)] \right) \wedge \left(Surj[\phi, C_g, G: C(g)] \right) \quad \blacksquare \quad Bij[\phi, C_g, G: C(g)]$$

$$(5) \quad \exists_{\phi} \Big(Bij[\phi, C_g, G : C(g)] \Big) \quad \blacksquare \quad |C_g| = |G : C(g)|$$

$$(6) \quad (Lagrange Theorem) \wedge (Subgroup Center) \wedge \left(|C_g| = |G:C(g)| \right) \quad \blacksquare \quad o(G) = o\left(C(g)\right) |G:C(g)| \quad \blacksquare \quad o(G) = o\left(C(g)\right) |C_g| = o\left($$

2.10 Normal Subgroups

 $NormalSubgroup[H,G,*] := (Subgroup[H,G,*]) \land \left(\forall_{h \in H} \forall_{g \in G} (g^{-1}hg \in H) \right)$

Center Normal Subgroup := Normal Subgroup [Z(G), G, *]

(1)
$$SubgroupCenter \ \ \ \ Subgroup[Z(G), G, *]$$

(2)
$$(h \in Z(G)) \land (g \in G) \implies \dots$$

(2.1)
$$hg = gh \ \blacksquare \ g^{-1}hg = h \in Z(G) \ \blacksquare \ g^{-1}hg \in Z(G)$$

$$(3) \quad \left(\left(h \in Z(G)\right) \wedge (g \in G)\right) \implies \left(g^{-1}hg \in Z(G)\right) \ \blacksquare \ \forall_{h \in Z(G)} \forall_{g \in G} \left(g^{-1}hg \in Z(G)\right)$$

$$(4) \quad \left(Subgroup[Z(G),G,*]\right) \wedge \left(\forall_{h \in Z(G)} \forall_{g \in G} \left(g^{-1}hg \in Z(G)\right)\right) \quad \blacksquare \quad NormalSubgroup[Z(G),G,*]$$

 $UnionConjugacyClassesNormalSubgroup := (NormalSubgroup[H,G,*]) \implies \left(H = \bigcup_{z \in H} (C_z)\right)$

$$\overline{(1) \ (NormalSubgroup[H,G,*]) \implies \dots}$$

$$(1.1) \quad Normal Subgroup[H, G, *] \quad \blacksquare \quad \forall_{x \in H} \forall_{g \in G} (g^{-1} x g \in H)$$

$$(1.2) \quad ((x \in H) \land (y \in C_x)) \implies \dots$$

(1.2.1)
$$ConjugacyClassEquiv \ \blacksquare \ \exists_{c \in G}(y = c^{-1}xc)$$

$$(1.2.2) \quad \left(\forall_{x \in H} \forall_{g \in G} (g^{-1} x g \in H)\right) \land (x \in H) \land (c \in G) \quad \blacksquare \quad y \in H$$

$$(1.3) \ \left((x \in H) \land (y \in C_x) \right) \implies (y \in H) \ \blacksquare \ \forall_{x \in H} (C_x \subseteq H)$$

$$(1.4) \quad \forall_{x \in H} (C_x \subseteq H) \quad \blacksquare \quad \forall_{x \in H} \forall_y (y \in C_x \implies y \in H) \quad \blacksquare \quad \forall_{x \in H} \forall_y (y \notin H \implies y \notin C_x)$$

$$(1.5) \quad (b \in H) \implies \left(b \in C_b \subseteq \bigcup_{z \in H} (C_z) \right) \blacksquare (b \in H) \implies \left(b \in \bigcup_{z \in H} (C_z) \right)$$

$$(1.6) \quad (b \not\in H) \implies \left(\forall_{a \in H} (b \not\in C_a) \right) \implies \left(b \not\in \bigcup_{z \in H} (C_z) \right) \blacksquare (b \not\in H) \implies \left(b \not\in \bigcup_{z \in H} (C_z) \right)$$

$$(1.7) \left((b \in H) \implies \left(b \in \bigcup_{z \in H} (C_z) \right) \right) \wedge \left((b \notin H) \implies \left(b \notin \bigcup_{z \in H} (C_z) \right) \right) \blacksquare (b \in H) \iff \left(b \in \bigcup_{z \in H} (C_z) \right)$$

$$(1.8) \quad \forall_b \left((b \in H) \iff \left(b \in \bigcup_{z \in H} (C_z) \right) \right) \blacksquare H = \bigcup_{z \in H} (C_z)$$

2.11. QUOTIENT GROUPS

(2)
$$(NormalSubgroup[H, G, *]) \Longrightarrow \left(H = \bigcup_{z \in H} (C_z)\right)$$

 $NormalSubgroupCosetEquiv := (NormalSubgroup[H, G, *]) \iff (\forall_{g \in G}(gH = Hg))$

- $(1) \quad \textit{CosetCardinality} \quad \blacksquare \quad \forall_{g \in G} (|Hg| = |gH|) \quad \blacksquare \quad \left(\forall_{g \in G} \left((Hg \subseteq gH) \iff (Hg = gH) \right) \right)$
- $(2) \ \left(\forall_{g \in G} \left((Hg \subseteq gH) \iff (Hg = gH) \right) \right) \ \blacksquare \ (NormalSubgroup[H,G,*]) \iff \left(\forall_{h \in H} \forall_{g \in G} (g^{-1}hg \in H) \right) \iff \ldots$
- $(3) \quad \dots \left(\forall_{h \in H} \forall_{g \in G} (hg \in gH) \right) \iff \left(\forall_{g \in G} (Hg \subseteq gH) \right) \iff \left(\forall_{g \in G} (Hg = gH) \right)$

 $NormalSubgroupIndexEquiv := (NormalSubgroup[H, G, *]) \iff (IndexSubgroup[2, H, G, *])$

$$(1) \quad Normal Subgroup Coset Equiv \quad \blacksquare \quad (Index Subgroup [2, H, G, *]) \\ \iff \left(\forall_{g \in G} (gH = Hg) \right) \\ \iff (Normal Subgroup [H, G, *]) \\ \iff \left(\forall_{g \in G} (gH = Hg) \right) \\ \iff \left(\forall_{g \in G} (gH =$$

 $KerInduceNormalSubgroup := (Homomorphism[\phi, G, *, H, \diamond]) \implies (NormalSubgroup[ker_\phi, G, *])$

- (1) Kernel Subgroup Domain \blacksquare Subgroup $[\ker_{\phi}, G, *]$
- $(2) \quad \left((h \in ker_{\phi}) \land (g \in G) \right) \implies \dots$
 - $(2.1) \quad h \in ker_{\phi} \quad \blacksquare \quad \phi(h) = e_H$
 - $(2.2) \quad (Homomorphism[\phi,G,*,H,\diamond]) \wedge (InvMapsInv) \quad \blacksquare \quad \phi(g^{-1}*h*g) = \phi(g^{-1}) \diamond \phi(h) \diamond \phi(g) = \phi(g)^{-1} \diamond e_H \diamond \phi(g) = e_H \diamond \phi(g)$
 - (2.3) $\phi(g^{-1} * h * g) = e_H \quad \blacksquare \quad g^{-1}hg \in ker_{\phi}$
- $(3) \quad \left((h \in ker_{\phi}) \land (g \in G)\right) \implies (g^{-1}hg \in ker_{\phi}) \quad \blacksquare \quad \forall_{h \in ker_{\phi}} \forall_{g \in G}(g^{-1}hg \in ker_{\phi})$
- $(4) \quad (Subgroup[ker_{\phi},G,*]) \wedge \left(\forall_{h \in ker_{\phi}} \forall_{g \in G}(g^{-1}hg \in ker_{\phi})\right) \quad \blacksquare \quad NormalSubgroup[ker_{\phi},G,*]$

2.11 Quotient Groups

Quotient $Set[G/H, H, G, *] := (Subgroup[H, G, *]) \land (G/H = \{Hg \mid g \in G\})$

 $\overline{CosetMul[\bar{*},H,G,*]} := (Subgroup[H,G,*]) \land \left(\forall_{Hx,Hy \in G/H} (Hx \,\bar{*}\, Hy = \{h_1xh_2y \mid h_1,h_2 \in H\}) \right)$

 $SubsetMul[\bar{\times},G,*] := (Group[G,*]) \land \Big(\forall_{A,B \subseteq G} \Big(A \bar{\times} B = \{ a*b \mid (a \in A) \land (b \in B) \} \Big) \Big)$

$$QuotientGroupLemma := \left((NormalSubgroup[H,G,*]) \land (x,y,z \in G) \right) \implies \left(\left(\exists_{h_1,h_2 \in H} (z = h_1 x h_2 y) \right) \iff \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \right)$$

- $(1) \quad \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \implies \dots$
- (1.1) $(Group[G, *]) \land (x \in G) \quad x^{-1} \in G$
- $(1.2) \quad (Normal \, Subgroup[H,G,*]) \wedge (x^{-1} \in G) \wedge (h_2 \in H) \quad \blacksquare \ (x^{-1})^{-1}h_2x^{-1} = xh_2x^{-1} \in H$
- (1.3) $(Group[H,*]) \land (h_1, xh_2x^{-1} \in H) \mid h_1xh_2x^{-1} \in H$
- $(1.4) \quad (h_1 x h_2 x^{-1})(xy) = h_1 x h_2 y = z \quad \blacksquare \quad (h_1 x h_2 x^{-1})(xy) = z$
- $(1.5) \quad (h_1 x h_2 x^{-1} \in H) \land \left((h_1 x h_2 x^{-1})(x y) = z \right) \quad \blacksquare \quad \exists_{h_3 \in H} (z = h_3 x y)$
- $(2) \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \implies \left(\exists_{h_3 \in H} (z = h_3 x y) \right)$
- $(3) \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \implies \dots$
 - (3.1) $(NormalSubgroup[H, G, *]) \land (x \in G) \land (h_3 \in H) \quad \blacksquare x^{-1}h_3x \in H$
 - (3.2) $Group[H, *] \quad e \in H$
 - (3.3) $(e)x(x^{-1}h_3x)y = h_3xy = z$ $\blacksquare (e)x(x^{-1}h_3x)y = z$
- $(3.4) \quad (x^{-1}h_3x, e \in H) \land \left((e)x(x^{-1}h_3x)y = h_3xy = z \right) \ \blacksquare \ \exists_{h_1, h_2 \in H} (z = h_1xh_2y)$
- $(4) \quad \left(\exists_{h_3 \in H} (z = h_3 x y)\right) \implies \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y)\right)$

$$\frac{\left(5\right) \quad \left(\left(\exists_{h_1,h_2\in H}(z=h_1xh_2y)\right) \implies \left(\exists_{h_3\in H}(z=h_3xy)\right)\right) \wedge \left(\left(\exists_{h_3\in H}(z=h_3xy)\right) \implies \left(\exists_{h_1,h_2\in H}(z=h_1xh_2y)\right)\right)}{\left(6\right) \quad \left(\exists_{h_1,h_2\in H}(z=h_1xh_2y)\right) \iff \left(\exists_{h_3\in H}(z=h_3xy)\right)}$$

 $\left((NormalSubgroup[H,G,*]) \land (QuotientSet[G/H,H,G,*]) \land (CosetMul[\bar{*},x,y,H,G,*]) \right) \implies$ QuotientGroupThm :=

 $(1) (Hx, Hy \in G/H) \implies \dots$

$$(1.1) \quad (Normal Subgroup[H,G,*]) \wedge (Quotient Group Lemma) \quad \blacksquare \quad \forall_{x,y,z \in G} \left(\left(\exists_{h_1,h_2 \in H} (z = h_1 x h_2 y) \right) \iff \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \right)$$

$$(1.2) \quad (z \in Hx \bar{*}Hy) \iff \left(\exists_{h_1,h_2 \in H}(z = h_1xh_2y)\right) \iff \left(\exists_{h_3 \in H}(z = h_3xy)\right) \iff (z \in Hxy) \quad \blacksquare \quad Hx \bar{*}Hy = Hxy$$

- $(1.3) \quad (Group[G,*]) \land (x,y \in G) \quad \blacksquare \quad xy \in G \quad \blacksquare \quad Hxy \in G/H$
- (1.4) $(Hx \bar{*} Hy = Hxy) \land (Hxy \in G/H) \quad \blacksquare \exists !_{Hxy \in G/H} (Hx \bar{*} Hy = Hxy)$

$$(2) \quad (Hx, Hy \in G/H) \implies \left(\exists !_{Hxy \in G/H} (Hx \bar{*} Hy = Hxy)\right) \quad \blacksquare \quad Func[\bar{*}, G/H, G/H]$$

- $\overline{(3)} (Hx, Hy, Hz \in G/H) \implies \dots$
- $(3.1) \quad (Hx \bar{*} Hy) \bar{*} Hz = Hxy \bar{*} Hz = Hxyz = Hx \bar{*} Hyz = Hx \bar{*} (Hy \bar{*} Hz) \quad \blacksquare (Hx \bar{*} Hy) \bar{*} Hz = Hx \bar{*} (Hy \bar{*} Hz)$
- $(4) \quad (Hx, Hy, Hz \in G/H) \implies \left((Hx \bar{*} Hy) \bar{*} Hz = Hx \bar{*} (Hy \bar{*} Hz) \right) \quad \blacksquare \quad \forall_{a,b,c \in G/H} \left((a \bar{*} b) \bar{*} c = a \bar{*} (b \bar{*} c) \right)$
- $(5) \quad (He \in G/H) \land \left(\forall_{Hx \in G/H} (Hx \stackrel{?}{*} He = Hxe = Hx = Hex = He \stackrel{?}{*} Hx) \right) \quad \blacksquare \quad \exists_{e \in G/H} \forall_{a \in G/H} (a \stackrel{?}{*} e = a = e \stackrel{?}{*} a)$
- $\overline{(6) \ (Hx \in G/H) \implies \dots}$
 - (6.1) $x \in G \mid x^{-1} \in G \mid Hx^{-1} \in G/H$
- (6.2) $Hx \bar{*} Hx^{-1} = Hxx^{-1} = He = Hx^{-1}x = Hx^{-1} \bar{*} Hx$ $\blacksquare Hx \bar{*} Hx^{-1} = He = Hx^{-1} \bar{*} Hx$
- $(6.3) \quad (Hx^{-1} \in G/H) \land (Hx \bar{*} Hx^{-1} = He = Hx^{-1} \bar{*} Hx) \quad \blacksquare \ \exists_{Hx^{-1} \in G/H} (Hx \bar{*} Hx^{-1} = He = Hx^{-1} \bar{*} Hx)$

$$(7) \quad (Hx \in G/H) \implies \left(\exists_{Hx^{-1} \in G/H} (Hx \mathbin{\bar{*}} Hx^{-1} = He = Hx^{-1} \mathbin{\bar{*}} Hx) \right) \ \blacksquare \ \forall_{a \in G/H} \exists_{a^{-1} \in G/H} (a \mathbin{\bar{*}} a^{-1} = e = a^{-1} \mathbin{\bar{*}} a)$$

$$(8) \quad (Func[\bar{*},G/H,G/H]) \wedge \left(\forall_{a,b,c \in G/H} \left((a\,\bar{*}\,b)\,\bar{*}\,c = a\,\bar{*}\,(b\,\bar{*}\,c) \right) \right) \wedge \left(\exists_{e \in G/H} \forall_{a \in G/H} (a\,\bar{*}\,e = a = e\,\bar{*}\,a) \right) \wedge \ldots$$

(9) ...
$$\left(\forall_{a \in G/H} \exists_{a^{-1} \in G/H} (a \bar{*} a^{-1} = e = a^{-1} \bar{*} a) \right) \blacksquare Group[G/H, \bar{*}]$$

N atural M ap $[\bar{\phi}, H, G, *] := (\bar{\phi} = \{\langle g, Hg \rangle \in (G, G/H) \mid g \in G\}) \land (N \text{ or mal } S \text{ ubgroup}[H, G, *])$

 $Natural Map Homo := (Natural Map[\bar{\phi}, H, G, *]) \implies (Homomorphism[\bar{\phi}, G, *, G/H, \bar{*}])$

- (1) Natural Map $[\bar{\phi}, H, G, *]$ Func $[\bar{\phi}, G, *, G/H, \bar{*}]$
- $(2) \quad (x, y \in G) \implies \dots$
 - (2.1) $\bar{\phi}(x * y) = Hxy = Hx \bar{*} Hy = \bar{\phi}(x) \bar{*} \bar{\phi}(y) \quad \blacksquare \bar{\phi}(x * y) = \bar{\phi}(x) \bar{*} \bar{\phi}(y)$
- $(3) \quad (x, y \in G) \implies \left(\bar{\phi}(x * y) = \bar{\phi}(x) * \bar{\phi}(y)\right) \quad \blacksquare \quad \forall_{x, y \in G} \left(\bar{\phi}(x) * \bar{\phi}(y)\right)$
- $(4) \quad \overline{(Func[\bar{\phi},G,*,G/H,\bar{*}])} \wedge \left(\forall_{x,y \in G} \left(\bar{\phi}(x) \,\bar{*} \,\bar{\phi}(y) \right) \right)) \quad \blacksquare \quad Homomorphism[\bar{\phi},G,*,G/H,\bar{*}]$

 $Natural MapKerH := (Natural Map[\bar{\phi}, H, G, *]) \implies (ker_{\bar{\phi}} = H)$

(1)
$$Group[H, *] \mid ker_{\bar{\phi}} = \{x \in G \mid \bar{\phi}(x) = He\} = \{x \in G \mid Hx = H\} = H$$

 $FirstMap[\psi,\phi,G,*,H,\diamond] := \left(\psi = \{\langle ker_{\phi}g,\phi(g)\rangle \in (G/ker_{\phi}\times im_{\phi}) \mid g \in G\}\right) \wedge (Homomorphism[\phi,G,*,H,\diamond])$

 $FirstIsoThm := (Homomorphism[\phi, G, *, H, \diamond]) \implies (Isomorphic[G/ker_{\phi}, \bar{*}, im_{\phi}, \diamond])$

- $(1) \quad (KerInduceNormalSubgroup) \land (Homomorphism[\phi,G,*,H,\diamond]) \quad \blacksquare \quad NormalSubgroup[ker_\phi,G,*]$
- $(2) \quad (QuotientGroupThm) \land (NormalSubgroup[ker_{\phi},G,*]) \quad \blacksquare \quad Group[G/ker_{\phi},\bar{*}]$
- (3) $(ImageSubgroupCodomain) \land (Homomorphism[\phi, G, *, H, \diamond]) \blacksquare Group[im_{\phi}, \diamond]$
- $(4) \quad \textit{FirstMap}[\psi, \phi, G, *, H, \diamond] \quad \blacksquare \quad \psi = \{\langle \textit{ker}_{\phi}g, \phi(g) \rangle \in (G/\textit{ker}_{\phi} \times \textit{im}_{\phi}) \mid g \in G\}$
- (5) $(g, h \in G) \implies \dots$

```
(5.1) \quad (ker_{\phi}g = ker_{\phi}h) \iff (ker_{\phi}gh^{-1} = ker_{\phi}) \iff (gh^{-1} \in ker_{\phi}) \iff \left(\phi(gh^{-1}) = e_H\right) \iff \dots
   (5.2) \quad \dots \left(e_H = \phi(g) \diamond \phi(h^{-1}) = \phi(g) \diamond \phi(h)^{-1}\right) \iff \left(\phi(g) = \phi(h)\right) \quad \blacksquare \quad (ker_{\phi}g = ker_{\phi}h) \iff \left(\phi(g) = \phi(h)\right)
(6) (g, h \in G) \implies (ker_{\phi}g = ker_{\phi}h) \iff (\phi(g) = \phi(h))...
(7) ... (Func[\psi, G/ker_{\phi}, im_{\phi}]) \wedge (Inj[\psi, G/ker_{\phi}, im_{\phi}]) \wedge (Surj[\psi, G/ker_{\phi}, im_{\phi}]) \blacksquare Bij[\psi, G/ker_{\phi}, im_{\phi}]
(8) (ker_{\phi}g, ker_{\phi}h \in G/ker_{\phi}) \implies \dots
   (8.1) \quad \psi(ker_{\phi}g\ \bar{*}\ ker_{\phi}h) = \psi(ker_{\phi}gh) = \phi(g\ *\ h) = \phi(g) \diamond \phi(h) = \psi(ker_{\phi}g) \diamond \psi(ker_{\phi}h) \quad \blacksquare \quad \psi(ker_{\phi}g\ \bar{*}\ ker_{\phi}h) = \psi(ker_{\phi}g) \diamond \psi(ker_{\phi}h)
(9) \quad (ker_{\phi}g, ker_{\phi}h \in G/ker_{\phi}) \implies \left(\psi(ker_{\phi}g \bar{*} ker_{\phi}h) = \psi(ker_{\phi}g) \diamond \psi(ker_{\phi}h)\right) \quad \blacksquare \quad \forall_{a,b \in G/ker_{\phi}} \left(\psi(a \bar{*} b) = \psi(a) \diamond \psi(b)\right)
(10) \quad (Group[G/ker_{\phi},\bar{*}]) \wedge (Group[im_{\phi},\diamond]) \wedge (Bij[\psi,G/ker_{\phi},im_{\phi}]) \wedge \left(\forall_{a,b \in G/ker_{\phi}}(\psi(a\,\bar{*}\,b) = \psi(a) \diamond \psi(b))\right)
(11) \quad I somorphism[\psi,G/ker_{\phi},\bar{*},im_{\phi},\diamond] \quad \blacksquare \ \exists_{\psi}(I somorphism[\psi,G/ker_{\phi},\bar{*},im_{\phi},\diamond]) \quad \blacksquare \ I somorphic[G/ker_{\phi},\bar{*},im_{\phi},\diamond]
Second Iso Lemma := \left( (Subgroup[H,G,*]) \land (Normal Subgroup[N,G,*]) \right) \implies \left( \left( Group[(HN)/N,\bar{*}] \right) \land \left( Group[H/(H\cap N),\bar{*}] \right) \right)
```

- (1) $(Group[H,*]) \land (Group[N,*]) \blacksquare (e \in H) \land (e \in N)$
- (2) $e = e * e \in HN \quad \square \emptyset \neq HN \subseteq G$
- $(3) \quad (h_1 n_1, h_2 n_2 \in HN) \implies \dots$
 - $(3.1) \quad h_2 \in G \quad \blacksquare \quad (h_2)^{-1} n_1 h_2 \in N$

$$(3.2) \quad (h_1 n_1)(h_2 n_2) = h_1 \left(h_2 (h_2)^{-1} \right) n_1 h_2 n_2 = (h_1 h_2) \left((h_2)^{-1} n_1 h_2 n_2 \right) \quad \blacksquare \quad (h_1 n_1)(h_2 n_2) = (h_1 h_2) \left((h_2)^{-1} n_1 h_2 n_2 \right) = (h_1 h_2) \left((h_2)^{-1}$$

- $(3.3) \quad (Group[H,*]) \land (Group[N,*]) \quad \blacksquare \quad (h_1 h_2 \in H) \land \left((h_2)^{-1} n_1 h_2 n_2 \in N \right)$
- $(3.4) \quad (h_1 n_1)(h_2 n_2) = (h_1 h_2)((h_2)^{-1} n_1 h_2 n_2 \in N \quad \blacksquare \quad (h_1 n_1)(h_2 n_2) \in N$
- $(4) \quad (h_1 n_1, h_2 n_2 \in HN) \implies \left((h_1 n_1)(h_2 n_2) \in N \right) \ \blacksquare \ \forall_{h_1 n_1, h_2 n_2 \in HN} \left((h_1 n_1)(h_2 n_2) \in N \right)$
- (5) $(hn \in HN) \implies \dots$
 - (5.1) $(Subgroup[H, G, *]) \land (Group[N, *]) \blacksquare (h^{-1} \in G) \land (n^{-1} \in N)$
 - $(5.2) \quad (Normal Subgroup[N, G, *]) \land (h^{-1} \in G) \land (n^{-1} \in N) \quad \blacksquare \ hn^{-1}h^{-1} \in N$
 - $(5.3) \quad (hn)^{-1} = n^{-1}h^{-1} = (h^{-1}h)n^{-1}h^{-1} = h^{-1}(hn^{-1}h^{-1}) \in HN \quad \blacksquare (hn)^{-1} \in HN$

$$(7) \quad (\emptyset \neq HN \subseteq G) \land \left(\forall_{h_1n_1,h_2n_2 \in HN} \left((h_1n_1)(h_2n_2) \in N \right) \right) \land \left(\forall_{hn \in HN} \left((hn)^{-1} \in HN \right) \right) \quad \blacksquare \quad Subgroup[HN,G,*] \quad \blacksquare \quad Group[HN,*]$$

- (8) $(N \subseteq HN) \land (Group[N,*]) \blacksquare Subgroup[N,HN,*]$
- $(9) \quad ((n \in N) \land (h_1 n_1 \in HN)) \implies \dots$
- $(9.1) \quad (NormalSubgroup[N, G, *]) \land (h_1 n_1 \in G) \quad \blacksquare \quad (h_1 n_1)^{-1} n(h_1 n_1) \in N$

$$(10) \quad \left((n \in N) \land (h_1 n_1 \in HN) \right) \implies \left((h_1 n_1)^{-1} n(h_1 n_1) \in N \right) \quad \blacksquare \quad \forall_{n \in N} \forall_{h_1 n_1 \in HN} \left((h_1 n_1)^{-1} n(h_1 n_1) \in N \right)$$

$$(11) \quad (Subgroup[N,HN,*]) \land \left(\forall_{n \in N} \forall_{h_1 n_1 \in HN} \Big((h_1 n_1)^{-1} n(h_1 n_1) \in N \Big) \right) \quad \blacksquare \quad NormalSubgroup[N,HN,*]$$

- (12) $(SubgroupIntersection) \land (Subgroup[H, G, *]) \land (Subgroup[N, G, *]) \blacksquare Subgroup[H \cap N, G, *] \blacksquare Group[H \cap N, *]$
- (13) $(H \cap N \subseteq H) \land (Group[H \cap N, *])$ Subgroup $[H \cap N, H, *]$
- $(14) \quad ((x \in H \cap N) \land (h \in H)) \implies \dots$
- $(14.1) \quad x \in H \cap N \quad \blacksquare \quad (x \in H) \land (x \in N)$
- (14.2) $(Group[H,*]) \land (h \in H) \quad \blacksquare \quad h^{-1} \in H$
- (14.3) $(Group[H,*]) \land (x,h,h^{-1} \in H) \mid h^{-1}xh \in H$
- $(14.4) \quad (NormalSubgroup[N,G,*]) \land (h \in G) \land (x \in N) \quad \blacksquare \quad h^{-1}xh \in N$
- $(14.5) \quad (h^{-1}xh \in H) \land (h^{-1}xh \in N) \quad \blacksquare \quad h^{-1}xh \in H \cap N$
- $(15) \quad \left((x \in H \cap N) \land (h \in H) \right) \implies (h^{-1}xh \in H \cap N) \quad \blacksquare \quad \forall_{x \in H \cap N} \forall_{h \in H} (h^{-1}xh \in H \cap N)$
- (16) $(Subgroup[H \cap N, H, *]) \land (\forall_{x \in H \cap N} \forall_{h \in H} (h^{-1}xh \in H \cap N)) \mid Normal Subgroup[H \cap N, H, *]$
- (17) $(Group[HN,*]) \wedge (NormalSubgroup[N,HN,*]) \wedge (Group[H,*]) \wedge (NormalSubgroup[H \cap N,H,*])$

CHAPTER 2. ADSTRACT ALGEDRA

```
(18) QuotientGroupThm  [Group[(HN)/N,\bar{*}]) \land (Group[H/(H\cap N),\bar{*}])
```

 $Second\,M\,ap[\phi,H,N,G,*]\,:=\, \Big(\phi=\{\langle h,hN\rangle\in \big(H\times (HN)/N\big)\mid h\in H\}\,\Big) \wedge (Subgroup[H,G,*]) \wedge (N\,ormal\,Subgroup[N,G,*])$

 $Second IsoThm := \big((Subgroup[H,G,*]) \land (Normal Subgroup[N,G,*]) \big) \implies \big(Isomorphic[H/(H \cap N),\bar{*},(HN)/N,\bar{*}] \big)$

- (1) Second I so Lemma $[Group[(HN)/N,\bar{*}]) \land (Group[H/(H\cap N),\bar{*}])$
- (2) Second Map $[\phi, H, N, G, *] \mid \phi = \{\langle h, hN \rangle \in (H \times (HN)/N) \mid h \in H\}$
- $(3) \quad ((h_1, h_2 \in H) \land (h_1 = h_2)) \implies \dots$
- (3.1) $\phi(h_1) = h_1 N = h_2 N = \phi(h_2) \quad \phi(h_1) = \phi(h_2)$
- $(4) \quad \left((h_1,h_2\in H)\wedge (h_1=h_2)\right) \implies \left(\phi(h_1)=\phi(h_2)\right) \quad \blacksquare \quad \forall_{h_1,h_2\in H} \left((h_1=h_2)\right) \implies \left(\phi(h_1)=\phi(h_2)\right) \quad \blacksquare \quad Func[\phi,H,(HN)/N]$
- $(5) (h_1, h_2 \in H) \implies \dots$
- $(5.1) \quad \phi(h_1 * h_2) = (h_1 * h_2)N = (h_1 N) \bar{*} (h_1 N) = \phi(h_1) \bar{*} \phi(h_2) \quad \blacksquare \quad \phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2)$
- $(6) \quad (h_1, h_2 \in H) \implies \left(\phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2)\right) \quad \blacksquare \quad \forall_{h_1, h_2 \in H} \left(\phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2)\right)$
- $(7) \quad \left(Func[\phi,H,(HN)/N] \right) \wedge \left(\forall_{h_1,h_2 \in H} \left(\phi(h_1*h_2) = \phi(h_1) \,\bar{*}\, \phi(h_2) \right) \right) \quad \blacksquare \quad Homomorphism[\phi,H,*,(HN)/N,\bar{*}]$
- (9) $im_{\phi} = \{\phi(h) \mid h \in H\} = \{hN \mid h \in H\} = (HN)/N \quad \blacksquare \quad im_{\phi} = (HN)/N$
- $(10) \quad (First Map Thm) \land \left(Homomorphism[\phi, H, *, (HN)/N, \bar{*}] \right) \quad \blacksquare \quad Isomorphic[H/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]$
- $(11) \quad (ker_{\phi} = H \cap N) \wedge \left(im_{\phi} = (HN)/N\right) \wedge (Isomorphic[H/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]) \quad \blacksquare \quad Isomorphic[H/(H \cap N), \bar{*}, (HN)/N, \bar{*}]$

$$Third Map[\phi,K,H,G,*] := \left(\begin{array}{c} \left(\phi = \{\langle gK,gH \rangle \in \left((G/K) \times (G/H)\right) \mid g \in G\} \right) & \land \\ (NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[H,G,*]) \wedge (Subgroup[K,H,*]) & \land \\ (NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[K,G,*]) & \land \\ (NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[K,G,*]) & \land \\ (NormalSubgroup[K,G,*]) & \land \\$$

$$ThirdIsoThm := \left(\begin{array}{l} \left((NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[H,G,*]) \wedge (Subgroup[K,H,*]) \right) \Longrightarrow \\ \left(Isomorphic[(G/K)/(H/K),\bar{*},G/H,\bar{*}] \right) \end{array} \right)$$

- $(1) \quad Third \, Map[\phi,K,H,G,*] \quad \blacksquare \ \phi = \{\langle gK,gH \rangle \in \big((G/K) \times (G/H)\big) \mid g \in G\}$
- (2) $\left(\left(g_1 K, g_2 K \in (G/K) \right) \wedge \left(g_1 K = g_2 K \right) \right) \implies \dots$
 - (2.1) $g_1K = g_2K \quad \blacksquare \quad (g_2)^{-1}g_1K = K \quad \blacksquare \quad (g_2)^{-1}g_1 \in K$
 - $(2.2) \quad (K \subseteq H) \land \left((g_2)^{-1} g_1 \in K \right) \ \blacksquare \ (g_2)^{-1} g_1 \in H$
 - $(2.3) \quad (g_2)^{-1}g_1 \in H \quad \blacksquare \quad g_1H = g_2H \quad \blacksquare \quad \phi(g_1K) = g_1H = g_2H = \phi(g_2K) \quad \blacksquare \quad \phi(g_1K) = \phi(g_2K)$
- $(3) \quad \left(\left(g_1K, g_2K \in (G/K) \right) \wedge \left(g_1K = g_2K \right) \right) \implies \left(\phi(g_1K) = \phi(g_2K) \right) \quad \blacksquare \quad \forall_{g_1K, g_2K \in (G/K)} \left(\left(g_1K = g_2K \right) \implies \left(\phi(g_1K) = \phi(g_2K) \right) \right) \dots$
- (4) ... Func $[\phi, G/K, G/H]$
- $(5) \quad (g_1K, g_2K \in (G/K)) \implies \dots$
- $(5.1) \quad \phi(g_1K \bar{*} g_2K) = \phi((g_1 * g_2)K) = (g_1 * g_2)H = (g_1H) \bar{*} (g_2H) = \phi(g_1K) \bar{*} \phi(g_2K) \quad \blacksquare \quad \phi(g_1K \bar{*} g_2K) = \phi(g_1K) \bar{*} \phi(g_2K)$
- $\overline{(6) \quad \left(g_1K,g_2K\in (G/K)\right)} \implies \left(\phi(g_1K\ \bar{\ast}\ g_2K) = \phi(g_1K)\ \bar{\ast}\ \phi(g_2K)\right)\ \blacksquare\ \forall_{g_1K,g_2K\in (G/K)}\left(\phi(g_1K\ \bar{\ast}\ g_2K) = \phi(g_1K)\ \bar{\ast}\ \phi(g_2K)\right)$
- $(7) \quad (Func[\phi,G/K,G/H]) \land \left(\forall_{g_1K,g_2K \in (G/K)} \left(\phi(g_1K \ \bar{*} \ g_2K) = \phi(g_1K) \ \bar{*} \ \phi(g_2K) \right) \right) \quad \blacksquare \quad Homomorphism[\phi,G/K,\bar{*},G/H,\bar{*}]$
- $\overline{(8) \ \ker_{\phi} = \{gK \in (G/K) \mid \phi(gK) = e_{G/H}\} = \{gK \in (G/K) \mid gH = H\} = \{gK \in (G/K) \mid g \in H\} = H/K \ \blacksquare \ \ker_{\phi} = H/K \} = \{gK \in (G/K) \mid g \in H\} = H/K \ \blacksquare \ \ker_{\phi} = H/K \} = \{gK \in (G/K) \mid g \in H\} = H/K = H/K \} = \{gK \in (G/K) \mid g \in H\} = H/K = H$
- (9) $(y \in (G/H)) \implies \dots$
- $(9.1) \quad \exists_{g \in G} (y = gH)$
- $(9.2) \quad g \in G \quad \blacksquare \quad gK \in (G/K)$
- (9.3) $\phi(gK) = gH = y \quad y = \phi(gK)$
- $(9.4) \quad \left(gK \in (G/K)\right) \land \left(y = \phi(gK)\right) \quad \blacksquare \quad \exists_{gK \in (G/K)} \left(y = \overline{\phi(gK)}\right)$
- $(10) \quad \left(y \in (G/H)\right) \implies \left(\exists_{gK \in (G/K)} \left(y = \phi(gK)\right)\right) \quad \blacksquare \quad \forall_{y \in (G/H)} \exists_{gK \in (G/K)} \left(y = \phi(gK)\right) \quad \blacksquare \quad Surj[\phi, G/K, G/H]$
- (11) $(SurjEquiv) \wedge (Surj[\phi, G/K, G/H]) \quad \blacksquare im_{\phi} = G/H$
- $(12) \quad (First Map Thm) \land (Homomorphism[\phi, G/K, \bar{*}, G/H, \bar{*}]) \quad \blacksquare \quad Isomorphic[(G/K)/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]$

 $(13) \quad (ker_{\phi} = H/K) \wedge (im_{\phi} = G/H) \wedge \left(Isomorphic[(G/K)/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]\right) \quad \blacksquare \quad Isomorphic[(G/K)/(H/K), \bar{*}, G/H, \bar{*}]$