

MÉTODOS E MÉTRICAS DE AVALIAÇÃO

Prof. Julio Cesar dos Reis

<u>ireis@ic.unicamp.br</u>

www.ic.unicamp.br/~jreis

Objetivos da aula

- Estudar Métodos e Métricas de Avaliação
- Medir a qualidade de classificadores
- Aprender o uso correto das métricas para garantir modelos mais confiáveis e adequados ao contexto do problema.

Consistência e completude

- Depois de induzida, uma hipótese pode ser avaliada em relação à:
- Consistência
 - se classifica corretamente os exemplos
- Completude
 - se classifica todos os exemplos

Medindo a qualidade da predição

- Precisão, compreensível e interessante
- Acurácia = classificados corretamente/total de exemplos
- □ Erro = 1-Acurácia

- Uma matriz quadrada que indica as classificações corretas e erradas
 - A classe que está sendo analisada aparece na linha
 - As classificações encontradas aparecem nas colunas
 - A diagonal da matriz corresponde às classificações corretas

```
=== Confusion Matrix ===

a b <-- classified as

9 0 | a = Sim

0 5 | b = Nã0

=== Confusion Matrix ===

a b <-- classified as

0 8 | a = Sim

0 3 | b = Nã0
```

Qualidade da predição

- Taxa de Acertos: número de casos classificados corretamente dividido pelo número total de casos
 - taxa_de_acertos = Nacertos / Ntotal

Qualidade da predição

- Taxa de Erros: número de casos classificados incorretamente dividido pelo número total de casos
 - taxa_de_erros = Nerros / Ntotal

Qualidade da predição

- proporção_de_acertos = Nacertos / Ntotalproporção_de_acertos = 5 / 7 = 71,4%
- proporção_de_erros = Nerros / Ntotalproporção_de_erros = 2 / 7 = 28,6%

caso	montante	idade	salário	conta	empréstimo	empréstimo (predito)
15	médio	sênior	alto	sim	sim	sim
16	médio	sênior	alto	não	não	sim
17	baixo	jovem	alto	sim	sim	sim
18	baixo	sênior	alto	não	não	sim
19	alto	média	alto	não	não	não
20	alto	jovem	alto	sim	sim	sim
21	médio	jovem	alto	sim	sim	sim

- A matriz de confusão de uma hipótese h oferece uma medida efetiva do modelo de classificação
- Mostrar o número de classificações corretas versus as classificações preditas para cada classe, sobre um conjunto de exemplos T

		Valor Predito		
		Sim	Não	
	Sim	Verdadeiro Positivo	Falso Negativo	
Real	ਰੂ Sim	(TP)	(FN)	
Re	Não	Falso Positivo	Verdadeiro Negativo	
		(FP)	(TN)	

- O número de acertos, para cada classe, se localiza na diagonal principal M(Ci,Ci) da matriz
- □ Os demais elementos M(Ci,Cj), para i ≠ j, representam erros na classificação
 - A matriz de confusão de um classificador ideal possui todos esses <u>elementos iguais a zero</u> uma vez que ele não comete erros

Modelo adequado

Predicted

Modelo inadequado

Predicted

Múltiplas classes

	Elephant	25	3	0	2
Actual	Monkey	3	53	2	3
Act	Fish	2	1	24	2
	Lion	1	58	2	13
		Elephant	Monkey	Fish	Lion
	Predicted				

Acurácia

		Classe prevista		
		Sim	Não	
Classe	Sim	Verdadeiro Positivo (VP)	Falso Negativo (FN)	
real	Não	Falso Positivo (FP)	Verdadeiro Negativo (VN)	

Acurácia:
$$\frac{VP + VN}{n} \times 100\%$$

$$n = VP + VN + FP + FN$$

Erro

		Classe prevista		
		Sim	Não	
Classe	Sim	Verdadeiro Positivo (VP)	Falso Negativo (FN)	
real	Não	Falso Positivo (FP)	Verdadeiro Negativo (VN)	

Erro:
$$\frac{FP + FN}{n} \times 100\%$$

$$n = VP + VN + FP + FN$$

Cobertura

	Classe	Sim	
How many relevant items are selected?	real	Não	

Recall	= -	

		Classe prevista	
		Sim	Não
Classe	Sim	VP	FN
real	Não	FP	VN

Classe prevista

Precisão

VP	×100%
$\overline{VP + FP}$	×10070

How many selected items are relevant?

		Classe prevista	
		Sim	Não
Classe	Sim	VP	FN
real	Não	FP	VN

https://towardsdatascience.com/whats-the-deal-with-accuracy-precision-recall-and-f1-f5d8b4db1021

F-measure

■ Média harmônica entre cobertura e precisão

AUC-ROC

- Métrica usada para avaliar o desempenho de modelos de classificação binária
 - Mede a capacidade do modelo de distinguir entre duas classes
 - ROC: relação entre taxa de verdadeiros positivos (TPR) e taxa de falsos positivos (FPR) para diferentes limitares de decisão.
 - AUC (Área Under the Curve) → Representa a área sob essa curva e indica a capacidade do modelo de classificar corretamente as classes.

AUC-ROC (Interpretação)

- □ AUC = 1.0 → Modelo perfeito (classifica corretamente todas as instâncias)
- AUC = 0.5 → Modelo aleatório (desempenho equivalente a um classificador que chuta aleatoriamente)
- □ AUC < 0.5 → Modelo ruim (pior que um chute aleatório, possivelmente invertendo as classes)

AUC-ROC

 Desbalanceamento de classes em um conjunto de exemplos pode ser um problema

- Suponha um conjunto de exemplos T com a seguinte distribuição de classes
 - \square Dist(C1, C2, C3) = (99.00%, 0.25%, 0.75%)
 - Prevalência da classe C1

- Um classificador simples que classifique sempre novos exemplos como pertencentes à classe majoritária C1 teria uma precisão de 99,00% (maj-err(T) = 1,00%)
- Pode ser indesejável quando as classes minoritárias são aquelas que possuem uma informação muito importante
 - Por exemplo supondo:
 - C1: paciente normal
 - C2: paciente com doença A
 - C3: paciente com doença B

- A maioria dos sistemas de aprendizado é projetada para otimizar a precisão
 - Quando se trabalha com conjuntos de exemplos desbalanceados, é desejável utilizar uma medida de desempenho diferente da precisão
- Normalmente os algoritmos apresentam um desempenho ruim se o conjunto de treinamento encontra-se fortemente desbalanceado

- Os classificadores induzidos tendem a ser altamente precisos nos exemplos da classe majoritária
 - Frequentemente classificam incorretamente exemplos das classes minoritárias
- Algumas técnicas foram desenvolvidas para lidar com esse problema
 - Introdução de custos de classificação incorreta
 - Remoção de exemplos redundantes ou prejudiciais
 - A detecção de exemplos de borda e com ruído

Overfitting (Sobreajuste)

- Ocorre quando o modelo se ajusta muito bem aos dados de treinamento, capturando até mesmo padrões irrelevantes e ruídos.
- Como consequência, o modelo tem um desempenho excelente nos dados de treinamento, mas não generaliza bem para novos dados (dados de teste ou do mundo real).
- Indícios: erro baixo no treino, mas erro alto no teste.
- Soluções:
 - aumentar os dados de treinamento,
 - simplificar o modelo
 - usar técnicas como dropout (em redes neurais).

Underfitting (Subajuste)

- Acontece quando o modelo é muito simples e não consegue capturar os padrões relevantes nos dados.
- O desempenho é ruim tanto nos dados de treinamento quanto nos de teste.
- Indícios: erro alto no treino e no teste.
- Soluções: aumentar a complexidade do modelo, ajustar melhor os hiperparâmetros, treinar por mais tempo ou usar mais dados.

Curva de Erro

Curva de Erro com overfitting

Relação entre o tamanho do classificador e o erro

Validação cruzada

Síntese da aula

Medição do desempenho

Permite quantificar a qualidade do modelo em diferentes cenários, identificando se ele atende aos requisitos do problema.

Identificação de Overfitting e Underfitting

 Avaliar as métricas em dados de treinamento e validação ajuda a detectar modelos que memorizam demais (overfitting) ou que generalizam pouco (underfitting).

□ Equilíbrio entre Precisão e Recall

 essencial escolher métricas adequadas, como F1-score, para balancear falsos positivos e falsos negativos

Comparação Entre Modelos

Diferentes classificadores podem ser comparados objetivamente

Ajuste Fino e Melhoria Contínua

Ajustes e melhorias do classificador ao longo do tempo, garantindo eficiência e robustês