### Overview

Data Science projects since 2014: Pharma, Utility, Predictive Maintenance, Services 10 years US onsite: business process, ERP/BPM, management. BFSI, Mfg

|    | Tabular data                                   |                                                                                                    | Text                                           |                                                                                                                  |  |
|----|------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| ML | <ol> <li>1.</li> <li>2.</li> <li>3.</li> </ol> | Reducing call center load (ARIMA)  Failure prediction (survival)  Optimizing project staffing (RF) | <ol> <li>2.</li> </ol>                         | Measuring project health (polarity & valence)  Azure helpdesk chatbot (cloud)                                    |  |
| DL | 1.                                             | Securing edge devices (T-CNN Auto Encoder)                                                         | <ol> <li>1.</li> <li>2.</li> <li>3.</li> </ol> | FLR improvement helpdesk tickets (TFHub, DBSCAN) Asset reuse (Word2Vec) Preventing revenue leakage (LSTM & BERT) |  |







Calculated output:

Silhouette score, # of

clusters, ticket-clusters,

cluster keywords

Assign new ticket

right cluster,

cosine distance

Cluster plot,

matplotlib

keywords per

embeddings

clustering,

DBSCAN

Ticket description

to text

embedding, TF &

matpl tlib

Pharma helpdesk left shift:

50% SME effort reduction

20 % improveme nt in FLR

Whitepaper

## Reducing call center load - utility client serving ~10Mn consumers, ARIMA











BPO: project health measure tor \$17Bn projects



Statistical methods for automated generation of service engagement staffing plans

J. Hu B. K. Ray M. Singh

Optimizing project staffing:

Benchmark similar + well run projects

Identified 8% labor cost savings



```
HOME DATA DISCUSSION SCRIPTS SUBMISSION LEADERBOARD

28. Bala Kesavan 0.96127
```

```
#definining a bi-directional LSTM leak
inp = Input(shape=(maxlen,))
```

```
x = Embedding(max_features, embed_size, weights=[embedding_matrix])(inp)
x = Bidirectional(LSTM(50, return_sequences=True, dropout=0.05, recurrent_dropout=0.05))(x)
x = Bidirectional(LSTM(50, return_sequences=True, dropout=0.05, recurrent_dropout=0.05))(x)
x = GlobalMaxPool1D()(x)
x = Dense(50, activation="relu")(x)
x = Dropout(0.1)(x)
```

x = Dense(10, activation="sigmoid")(x)
model = Model(inputs=inp, outputs=x)

model = model(Inputs=Inp, outputs=x)
model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy'])

| label | precision | recall | fscore | support |
|-------|-----------|--------|--------|---------|
| 0     | 0.94      | 0.91   | 0.93   | 598     |
| 1     | 0.78      | 0.80   | 0.79   | 99      |
| 2     | 0.93      | 0.93   | 0.93   | 395     |
| 3     | 0.96      | 0.96   | 0.96   | 196     |
| 4     | 0.92      | 0.93   | 0.92   | 492     |
| 5     | 0.83      | 0.89   | 0.86   | 482     |
| 6     | 0.87      | 0.86   | 0.87   | 118     |
| 7     | 0.78      | 0.73   | 0.75   | 162     |
| 8     | 0.92      | 0.73   | 0.81   | 151     |
| 9     | 0.75      | 0.86   | 0.80   | 154     |

Preventing revenue leakage

Obligations extraction from contracts

Proxy data, hackathon entry

Text classifier: BERT + TF2.0, LSTM + Keras





Azure helpdesk chatbot:

Employee experience

Time to roll out

# Edge device failure prediction



$$\hat{S} = \prod_{t_i < t} \frac{n_i - d_i}{n_i}$$

| Day | Number of devices at risk | Number of devices that failed | Survival probability (product of terms) |
|-----|---------------------------|-------------------------------|-----------------------------------------|
| 0   | 2                         | 0                             | (2-0)/2 = 1                             |
| 8   | 2                         | 1                             | $\{(2-0)/2\}x\{(2-1)/2\} = 0.5$         |
| 20  | 1                         | 0                             | ${(2-0)/2}x{(2-1)/2}x{(1-0)/1} = 0.5$   |



| · ·                     | ,       | 10        | Days           |        | 23       |
|-------------------------|---------|-----------|----------------|--------|----------|
| t_0                     | -1      |           |                |        |          |
| null_distribution chi s | quared  |           |                |        |          |
| degrees_of_freedom      | 1       |           |                |        |          |
| test_name logra         | nk_test |           |                |        |          |
|                         |         |           | test_statistic | P      | -log2(p) |
| Hitachi HDS5C4040ALE630 | ST400   | 00DM000   | 5.41           | 0.02   | 5.64     |
|                         | WDC W   | D10EADS   | 18.72          | <0.005 | 16.01    |
|                         | WDC WE  | )3200BEKT | 751.37         | <0.005 | 547.10   |
|                         | WDC W   | D800AAJS  | 799.60         | <0.005 | 581.94   |
|                         | WDC V   | VD800BB   | 262.02         | <0.005 | 193.36   |
| ST4000DM000             | WDC W   | D10EADS   | 24.96          | <0.005 | 20.70    |
|                         | WDC WE  | )3200BEKT | 389.80         | <0.005 | 285.82   |
|                         | WDC W   | D800AAJS  | 621.79         | <0.005 | 453.49   |
|                         | WDC V   | VD800BB   | 90.00          | <0.005 | 68.51    |
| WDC WD10EADS            | WDC WE  | )3200BEKT | 13.30          | <0.005 | 11.88    |
|                         | WDC W   | D800AAJS  | 0.22           | 0.64   | 0.65     |
|                         | WDC V   | VD800BB   | 0.05           | 0.83   | 0.27     |
| WDC WD3200BEKT          | WDC W   | D800AAJS  | 14.00          | <0.005 | 12.42    |
|                         | WDC V   | VD800BB   | 3.00           | 9 0.08 | 3.59     |
| WDC WD800AAJS           | WDC V   | VD800BB   | 0.47           | 0.49   | 1.02     |
|                         |         |           |                |        |          |









| Layer (type)                                                          | Output | Shape   | Param # |
|-----------------------------------------------------------------------|--------|---------|---------|
| convld_3 (ConvlD)                                                     | (None, | 24, 64) | 30784   |
| dropout_4 (Dropout)                                                   | (None, | 24, 64) | 0       |
| convld_4 (ConvlD)                                                     | (None, | 12, 32) | 12320   |
| dropout_5 (Dropout)                                                   | (None, | 12, 32) | 0       |
| convld_5 (ConvlD)                                                     | (None, | 6, 16)  | 3088    |
| convld_transpose_4 (ConvlDTr                                          | (None, | 12, 16) | 1552    |
| dropout_6 (Dropout)                                                   | (None, | 12, 16) | 0       |
| convld_transpose_5 (ConvlDTr                                          | (None, | 24, 32) | 3104    |
| dropout_7 (Dropout)                                                   | (None, | 24, 32) | 0       |
| convld_transpose_6 (ConvlDTr                                          | (None, | 48, 64) | 12352   |
| convld_transpose_7 (ConvlDTr                                          | (None, | 48, 80) | 30800   |
| Total params: 94,000 Trainable params: 94,000 Non-trainable params: 0 |        |         |         |

Securing edge devices (T-CNN Auto Encoder), anomaly detection

# Pharma market access



### Intent lead guided processing

- 1. Training: Strongly emphasized pain point
- 1.Lead time for deploying a new hire (6 to 8 wks): Less to memorize/ "know". Shorter time to productivity.
- 2.Attrition (50%): Trainees unable to cope with system complexity. Eliminate complexity, improve retention.
- 3.Universal agent (currently program specific): Common process + system guidance = enhance agent mobility across programs = Easy scalability.
- 2.Errors: Prevent through advanced validations, helpful search + scripts + links to sources + personalized tips
- 1.100% manual QA, 50:350 overheads: Eliminate waste.
- 2.Agent productivity: Enables "first time right"... prevent going three screens in to discover an earlier error and having to back out

#### Agility

- 1.Re-use services: Launch same service for new customer with more configuration than coding
- 1.Time to launch: 16 wks slash
- 2.Effort to launch: \$ 1Mn slash
- 2.Intuitive
- 1.Business user editable: Stated requirement. Provided with production class controls.
- 2. Selling tool: Enables client sales team to make customized pitches to prospects

### Partner collaboration

- 1.Reports: Secure access to live reports that provide deep insight. <Ad hoc reports?>
- 2.Transactions:
- 1.HCP: Access the same process as the call center agents
- 2. Payer: Secure token (DWA) to complete "zero touch process" (potentially)