Het toetsen van hypothesen

Sandra Van Aert

17 november 2011

Toetsen van kansverdelingen

- is aantal voorbijrijdende auto's X op een snelweg Poisson verdeeld met parameter $\lambda = 2$ (per tijdsinterval van 10 sec)?
- ► H_0 : X ~ Poisson($\lambda = 2$) H_a : X $\not\sim$ Poisson($\lambda = 2$)

x	0	1	2	3	4	5	≥6
O_i	19	38	28	20	7	4	4
kans	0.135	0.271	0.271	0.180	0.090	0.036	0.017
E_i	16.24	32.48	32.48	21.65	10.83	4.33	1.99

- $E_i = 120 \times \text{kans } p_X(x; 2)$
- ightharpoonup geobserveerde frequentie O_i en theoretische frequentie E_i vergelijken
- verschillen $O_i E_i$ berekenen
- weging: $\frac{(O_i E_i)^2}{E_i}$

χ^2 -hypothesetoets

• indien H_0 waar is, dan is toetsingsgrootheid

$$\chi = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

- χ^2_{k-1} verdeeld waarbij k = # uitkomsten
- ▶ indien H_0 waar is, dan liggen alle O_i dicht bij E_i
- indien H_0 waar is, is toetsingsgrootheid niet veel groter dan 0
- berekende toetsingsgrootheid vergelijken met $\chi^2_{\alpha:k-1}$

Voorbeeld

- $\alpha = 0.05$
- berekende toetsingsgrootheid

$$x = \frac{(19 - 16.24)^2}{16.24} + \frac{(38 - 32.48)^2}{32.48} + \dots + \frac{(4 - 1.99)^2}{1.99}$$

= 5.57

- $\chi^2_{0.05;6} = 12.59$ vermits 5.57 < 12.59 wordt H_0 aanvaard
- ► p-waarde = $P(\chi_6^2 > 5.57) = 0.473$ $p > \alpha \Rightarrow H_0$ aanvaarden
- ▶ probleem: bepaling van λ

Vervolg voorbeeld

 $\rightarrow \lambda$ schatten op basis van steekproefgegevens:

schatting voor
$$\lambda$$
: $\overline{x} = 1.88$

- ► toetsingsgrootheid nog steeds χ^2 verdeeld, maar nu slechts k-2 vrijheidsgraden
- we verliezen één vrijheidsgraad omdat we hier één parameter moeten schatten

x	0	1	2	3	4	5	≥6
O_i	19	38	28	20	7	4	4
$p_X(x)$	0.152	0.287	0.270	0.169	0.079	0.030	0.013
E_i	18.31	34.42	32.36	20.28	9.53	3.58	1.51

Vervolg voorbeeld

- berekende toetsingsgrootheid x = 5.79
- $\chi^2_{0.05;5} = 11.07$ vermits 5.79 < 11.07 wordt H_0 aanvaard
- ► p-waarde = $P(\chi_5^2 > 5.79) = 0.3272$ $p > \alpha \Rightarrow H_0$ aanvaarden

Toetsen van kansdichtheden

- klemtoon op normale kansdichtheid
- grafische aanpak
- ▶ optie 1:
 - → histogram
 - → stam- en bladdiagram
 - → polygoon
- ▶ optie 2:
 - → kwantieldiagram of *Q*−*Q*−plot: theoretische en geobserveerde kwantielen of percentielen vergelijken

Voorbeeld kwantieldiagram

- komen data uit normale verdeling?
- $n = 10, \overline{x} = 49.8 \text{ en } s = 12.4$
- ► 61,50,26,47,38,46,60,65,62,43
- rangschikken: 26,38,43,46,47,50,60,61,62,65

 ↑ ↑ ↑

10de kwantiel 20ste

. 90ste

- ▶ $26 \approx 5$ de kwantiel → cf_1
- ▶ $38 \approx 15$ de kwantiel → cf_2
- **.** . . .
- ► $65 \approx 95$ ste kwantiel \rightarrow cf₁₀ empirische of geobserveerde kwantielen

Vervolg voorbeeld

cumulatieve frequenties:

$$cf_j = \frac{j - 0.5}{n} \qquad j = 1, \dots, n$$

► theoretisch: 5de kwantiel vertrek van $z_{0.95}$ vertaal naar $N(\overline{x}, s^2) = N(49.8; (12.4)^2)$

$$\overline{x} + z_{0.95}s = 49.8 + z_{0.95} \times 12.4 = 29.4$$

theoretisch: 15de kwantiel

$$\overline{x} + z_{0.85}s = 49.8 + z_{0.85} \times 12.4 = 36.95$$

algemeen:

$$\overline{x} + z_{1-\mathrm{cf}_i} s$$

Constructie kwantieldiagram

x_i	26	38	43		62	65
cf_i	0.05	0.15	0.25	• • •	0.85	0.95
z_{1-cf_i}	-1.64	-1.04	-0.67		1.04	1.64
$49.8 + 12.4z_{1-cf_i}$	29.40	36.95	41.44	• • • •	62.65	70.20

Elementair kwantieldiagram

X-as: theoretische kwantielen *Y*-as: geobserveerde kwantielen

Verbeterde constructie van een kwantieldiagram

beter om

$$cf_j^* = \frac{j-0.375}{n+0.25}$$
 $j=1,\ldots,n$

te gebruiken

x_i	26	38	43	46		65
cf_i^*	0.061	0.159	0.256	0.354	• • •	0.9390
$z_{1-cf_i^*}$	-1.55	-1.00	-0.66	-0.38	• • •	1.55
$49.8 + 12.4z_{1-cf_i}$	30.62	37.39	41.67	45.14	• • •	68.98

Voorbeeld breeksterktes

Kwantieldiagram "breeksterkte"

Voorbeeld breeksterktes

Kwantieldiagram "ln(breeksterkte)"

Toetsen van kansdichtheden

- klemtoon op normale kansdichtheid
- formele hypothesetoets
- optie 1: Lillieforstoets
 - → ook Kolmogorov-Smirnov-toets genoemd
 - → vergelijkt theoretische cumulatieve verdelingsfunctie met empirische
- optie 2: Shapiro-Wilk toets
 - → gebruikt de correlatiecoëfficiënt van het Q-Q-diagram om na te gaan of de gegevens al dan niet normaal verdeeld zijn

Lillieforstoets

- ► $S_X(x)$ = empirische, relatieve cumulatieve frequentie van x
- ► $F_X(x)$ = theoretische cumulatieve verdelingsfunctie in x
- toetsingsgrootheid

$$D = \max_{x} |F_X(x) - S_X(x)|$$

dit is de maximale verticale afstand tussen de grafieken van $F_X(x)$ en $S_X(x)$

- berekende toetsingsgrootheid d vergelijken met kritieke waarde
- p-waarde = P(D > d) vergelijken met α

Lillieforstoets

Theoretische en empirische cumulatieve verdelingsfunctie voor de variabele "breeksterkte"

Lillieforstoets

Theoretische en empirische cumulatieve verdelingsfunctie voor de variabele "ln(breeksterkte)"

Hypothesetoetsen voor twee populaties

Sandra Van Aert

17 november 2011

Inleiding

- doel: gelijkenissen/verschillen tussen 2 populaties ontdekken en meten
- meest algemeen: cumulatieve verdelingsfuncties vergelijken

$$H_0: F_1 = F_2 \text{ versus } H_a: F_1 \neq F_2$$

 meestal beperkt men zich tot het vergelijken van gemiddeldes, varianties, medianen, proporties,...

Voorbeelden

populatiegemiddeldes

$$H_0: \mu_1 = \mu_2$$
 versus $H_a: \mu_1 > \mu_2$
 $H_a: \mu_1 < \mu_2$
 $H_a: \mu_1 \neq \mu_2$

populatievarianties

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ versus } H_a: \sigma_1^2 \leq \sigma_2^2$$

populatieproporties

$$H_0: \pi_1 = \pi_2 \text{ versus } H_a: \pi_1 \leq \pi_2$$

...

Belangrijk

gepaarde waarnemingen of afhankelijke steekproeven

1

niet-gepaarde waarnemingen of onafhankelijke steekproeven

Voorbeelden

- vergelijken van 2 types zolen (slijtvastheid)
 - → 20 proefpersonen
 - → 10 testen zool A
 - → andere 10 testen zool B
 - → onafhankelijke steekproeven
- vergelijken van 2 types zolen
 - → 20 proefpersonen
 - → iedere proefpersoon krijgt 1 schoen met zool A 1 schoen met zool B
 - → gepaarde waarnemingen

Voorbeelden (vervolg)

- vergelijk aantal bacteriën in melk vóór opwarming en na opwarming
 - → 10 melkstalen
 - → meet aantal bacteriën in elk staal
 - → warm elk staal op
 - → meet aantal bacteriën opnieuw
 - → gepaarde waarnemingen

Twee populatiegemiddeldes - onafhankelijk

algemeen

$$H_0: \mu_1 = \mu_2$$
 versus $H_a: \mu_1 > \mu_2$ rechtseenzijdig $H_a: \mu_1 < \mu_2$ linkseenzijdig $H_a: \mu_1 \neq \mu_2$ tweezijdig

herschrijven als

$$H_0: \mu_1 - \mu_2 = 0$$
 versus $H_a: \mu_1 - \mu_2 > 0$ rechts
$$H_a: \mu_1 - \mu_2 < 0 \qquad \text{links}$$

$$H_a: \mu_1 - \mu_2 \neq 0 \qquad \text{tweezijdig}$$

Twee populatiegemiddeldes (vervolg)

- ▶ voor de twee steekproeven bepalen we steekproefgemiddelde: \overline{x}_1 en \overline{x}_2 $\rightarrow \overline{X}_1$ en \overline{X}_2
- $E(\overline{X}_1) = \mu_1 \text{ en } E(\overline{X}_2) = \mu_2$ $E(\overline{X}_1 - \overline{X}_2) = \mu_1 - \mu_2$
- $var(\overline{X}_1) = \frac{\sigma_1^2}{n_1} \text{ en } var(\overline{X}_2) = \frac{\sigma_2^2}{n_2}$ $stelling 10.2 \Rightarrow var(\overline{X}_1 \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$

Overzicht

Kleine steekproeven, gelijke varianties, normaal verdeelde gegevens (15.1.1)

$$E(\overline{X}_1 - \overline{X}_2) = \mu_1 - \mu_2$$

$$\operatorname{var}(\overline{X}_1 - \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

$$\downarrow \sigma_1^2 = \sigma_2^2 = \sigma^2$$

$$= \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}$$

Kansdichtheid $\overline{X}_1 - \overline{X}_2$

► data steekproef 1: $X_{11}, X_{12}, ..., X_{1n_1} \sim N(\mu_1, \sigma^2)$

$$\overline{X}_1 = \frac{\sum_{i=1}^{n_1} X_{1i}}{n} \sim N(\mu_1, \frac{\sigma^2}{n_1})$$

► data steekproef 2: $X_{21}, X_{22}, ..., X_{2n_2} \sim N(\mu_2, \sigma^2)$

$$\overline{X}_2 = \frac{\sum_{i=1}^{n_2} X_{2i}}{n} \sim N(\mu_2, \frac{\sigma^2}{n_2})$$

$$\mathbf{gevolg:} \ \overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n_2} + \frac{\sigma^2}{n_2})$$

Toetsingsgrootheid

► als nulhypothese H_0 : $\mu_1 = \mu_2$ of H_0 : $\mu_1 - \mu_2 = 0$ waar is, dan geldt

$$\overline{X}_1 - \overline{X}_2 \sim N(0, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2})$$

en dus

$$\frac{\overline{X}_1 - \overline{X}_2 - \mathbf{0}}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}} \sim N(0, 1)$$

• probleem: $\sigma^2 = ?$

beide steekproeven bevatten informatie over σ^2

Gepoolde variantie

- steekproefvariantie steekproef 1: S_1^2
- steekproefvariantie steekproef 2: S_2^2
- ► S_1^2 en S_2^2 combineren, rekening houdend met steekproefgroottes: gepoolde schatter

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

$$\frac{\overline{X}_{1} - \overline{X}_{2} - 0}{\sqrt{\frac{S_{p}^{2}}{n_{1}} + \frac{S_{p}^{2}}{n_{2}}}} = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

toetsingsgrootheid $T \sim t_{n_1+n_2-2}$

Rechtseenzijdige toets

- $H_a: \mu_1 > \mu_2$ $H_a: \mu_1 - \mu_2 > 0$
- beslissingsregel 1:

berekende toetsingsgrootheid
$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t > t_{\alpha;n_1+n_2-2}$$
: verwerp H_0
 $t \le t_{\alpha;n_1+n_2-2}$: aanvaard H_0

beslissingsregel 2:

$$p = P(t_{n_1 + n_2 - 2} > \frac{\overline{x_1} - \overline{x_2}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}) = P(t_{n_1 + n_2 - 2} > t)$$

$$p < \alpha$$
: verwerp H_0
 $p \ge \alpha$: aanvaard H_0

Linkseenzijdige toets

- $H_a: \mu_1 < \mu_2$ $H_a: \mu_1 - \mu_2 < 0$
- beslissingsregel 1:

berekende toetsingsgrootheid
$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t < t_{1-\alpha;n_1+n_2-2} = -t_{\alpha;n_1+n_2-2}$$
: verwerp H_0
 $t \ge -t_{\alpha;n_1+n_2-2}$: aanvaard H_0

beslissingsregel 2:

$$p = P(t_{n_1 + n_2 - 2} < t)$$

$$p < \alpha$$
: verwerp H_0
 $p \ge \alpha$: aanvaard H_0

Tweezijdige toets

- $H_a: \mu_1 \neq \mu_2$ $H_a: \mu_1 - \mu_2 \neq 0$
- beslissingsregel 1:

berekende toetsingsgrootheid
$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t < -t_{\alpha/2;n_1+n_2-2}$$
 of $t > t_{\alpha/2;n_1+n_2-2}$: verwerp H_0
 $-t_{\alpha/2;n_1+n_2-2} \le t \le t_{\alpha/2;n_1+n_2-2}$: aanvaard H_0

beslissingsregel 2:

$$p = 2P(t_{n_1+n_2-2} > |t|)$$

$$p < \alpha$$
: verwerp H_0
 $p \ge \alpha$: aanvaard H_0

Voorbeeld

- $H_0: \mu_1 = \mu_2 \text{ versus } H_a: \mu_1 \neq \mu_2$
- ▶ 2 machines → identieke kabels
- normaal verdeelde populaties
- gelijke populatievarianties

steekproef 1steekproef 2
$$n_1 = 20$$
 $n_2 = 20$ $\overline{x}_1 = 50.9033$ $\overline{x}_2 = 50.2525$ $s_1^2 = 0.1848$ $s_2^2 = 0.2837$

$$\Rightarrow s_p^2 = \frac{(20-1)0.1848 + (20-1)0.2837}{20+20-2} = 0.2342$$
$$\Rightarrow s_p = 0.4840$$

Vervolg voorbeeld

berekende toetsingsgrootheid

$$t = \frac{50.9033 - 50.2525}{0.4840\sqrt{\frac{1}{20} + \frac{1}{20}}} = 4.2521$$

▶ *p*-waarde

$$p = 2P(t_{20+20-2} > t) = 2P(t_{38} > 4.2521) = 0.000133$$

 $p < \alpha = 5\% \Rightarrow \text{verwerp } H_0$

kritieke waarde

$$t_{0.025;38} = 2.0244$$

$$t_{0.025;38} < t = 4.2521 \Rightarrow \text{verwerp } H_0$$

Kleine steekproeven, ongelijke varianties, normaal verdeelde gegevens (15.1.2)

- $E(\overline{X}_1 \overline{X}_2) = \mu_1 \mu_2$
- $\operatorname{var}(\overline{X}_1 \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$
- $\overline{X}_1 \sim N(\mu_1, \frac{\sigma_1^2}{n_1})$
- $\overline{X}_2 \sim N(\mu_2, \frac{\sigma_2^2}{n_2})$

gevolg:
$$\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

Kansdichtheid

• als $H_0: \mu_1 = \mu_2$ of $H_0: \mu_1 - \mu_2 = 0$ waar is, dan

$$\overline{X}_1 - \overline{X}_2 \sim N(\mathbf{0}, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

en dus

$$\frac{\overline{X}_{1} - \overline{X}_{2} - \mathbf{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1)$$

• probleem: σ_1^2 ?, σ_2^2 ?

$$\uparrow$$
 \uparrow \uparrow S_1^2 S_2^2

Toetsingsgrootheid

$$\frac{\overline{X}_1 - \overline{X}_2 - 0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

~ Behrens-Fisher

ongeveer
$$\sim t_{\rm v}$$

met *v* geheel getal dichtst bij $\frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{\frac{(s_1^2/n_1)^2}{n_1} + \frac{(s_2^2/n_2)^2}{n_2}}$

Rechtseenzijdige toets

- $H_a: \mu_1 > \mu_2$ $H_a: \mu_1 - \mu_2 > 0$
- beslissingsregel 1:

besitssingsregel 1:
berekende toetsingsgrootheid
$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 $t > t_{\alpha;\nu}$: verwerp H_0

 $t \le t_{\alpha:\nu}$: aanvaard H_0

beslissingsregel 2:

$$p = P(t_{\rm v} > t)$$

 $p < \alpha$: verwerp H_0

 $p \ge \alpha$: aanvaard H_0

Andere hypothesen

- linkseenzijdige toets
- tweezijdige toets

verlopen analoog

Grote steekproeven (15.1.3)

$$\frac{\overline{X}_1 - \overline{X}_2 - 0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

ongeacht of σ_1^2 en σ_2^2 gelijk zijn of niet

Gekende varianties (15.1.4)

$$\frac{\overline{X}_1 - \overline{X}_2 - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

bij { normaal verdeelde populatie grote steekproeven