1.1 General properties of quantum measurements

Desirable properties:

- Projective and Quantum non-demolition (QND)
 - Coupling to the meter does not change the state of the qubit $\left[H_Q,H_{int}\right]=0.$
 - Repeated measurement yields the same outcome.
- Good ON/OFF ratio
 - $[H_{int}, H_{meter}] = 0$ during "OFF"
 - $[H_{int}, H_{meter}] \neq 0$ during "ON"
- No spontaneous decay/excitation due to measurement apparatus
- Fast and high fidelity

1.2 Circuit QED

System Hamiltonian (compare chapter 2):

$$H_{\rm sys}/\hbar = \omega_r a^\dagger a + \omega_{ge} b^\dagger b - \frac{\alpha}{2} (b^\dagger)^2 b^2 - g(a-a^\dagger)(b-b^\dagger)$$

$$= \omega_r a^\dagger a + \frac{\omega_{ge}}{2} \sigma^z + g(a^\dagger \sigma^- + a\sigma^+)$$
Resonator field
A gubit
Cummings
Hamiltonian

Jaynes-Cummings Hamiltonian

- Rotating wave approximation (RWA)
 - Two-level approximation

S. Haroche & J. Raimond, Exploring the Quantum, OUP Oxford (2006)

1.3 Circuit QED: Resonant case and dispersive limit

Jaynes-Cummings Hamiltonian:

$$H/\hbar = \omega_r a^\dagger a + \left[\frac{\omega_{ge}}{2} \sigma^z \right] + g(a^\dagger \sigma^- + a \sigma^+)$$
 quantized field qubit coupling

Strong coupling regime: $g>\gamma,\,\kappa$

What happens in the limit of large detuning?

$$|\Delta| = |\omega_{ge} - \omega_r| \gg g$$

- Limit of large detuning is referred to as the dispersive limit.
 No resonant exchange of excitations.
- In the dispersive regime coupling Hamiltonian commutes with qubit Hamiltonian.

Energy level diagram for resonant case $\omega_r = \omega_{ge}$:

1.4 Principle of Dispersive Qubit Measurement

signal amplitude In-phase and

quadrature

components

In the limit of large detuning $\omega_{
m r}-\omega_{qe}\gg g$:

$$H/\hbar pprox (\omega_{
m r} + \chi \sigma_z) a^\dagger a$$
 , with $\chi pprox -\alpha \frac{g^2}{\Delta(\Delta - \alpha)}$

,with
$$\chi \approx -\alpha \frac{g^2}{\Delta(\Delta - \alpha)}$$

A. Wallraff *et al., Phys. Rev. Lett.* 95, 060501 (2005). R. Vijay *et al., Phys. Rev. Lett.* 106, 110502 (2011).

1.5 Readout Resonator Response

Transmission amplitude or readout resonator extracted through Purcell filter for qubit prepared in ground (g) or excited (e) state :

Parameter fit (input-output model): Readout resonator $\kappa_r/2\pi = 37.5 \text{ MHz}$

State dependent resonator shift $2\chi/2\pi \simeq -16$ MHz

In ground/excited state:

Data measured after state prep. (*,*)
Fit to resonator response model (-)

EIM Zurich

2.1 Control and Characterization of superconducting qubits

XY control

Drive $b_{in}(t)$ at carrier frequency ω_{ge}

Frequency (Z) control

On-chip control

- Microwave drive $b_{in}(t)$ resonant with qubit frequency rotates Bloch vector about X and Y axis. Drive power $P_{in} = \hbar \omega b_{in}^+ b_{in}$.
- Arbitrary waveform generators (AWG) used to generate pulses, up-converted to the MW frequency band by mixing with a local oscillator field.
- Coupling rate to charge line $\gamma = \frac{c_c^2 Z_0 \omega^2}{c_\Sigma}$ imposes decay and therefore needs to be $\gamma \ll 1/T_1$.
- Tunability of the qubit achieved by sending a current I(t) to a separate control line generating a magnetic flux $\Phi(t)$ in the SQUID loop.
- Used for both static (DC) control of the qubit frequency and for applying pulses on nanosecond timescales.

2.1 Control and Characterization of superconducting qubits

ETH zurich

2.2 Measurement of Rabi oscillations

- Qubit frequency $\omega_{ge}/2\pi = 5.758 \, \mathrm{GHz}$ determined spectroscopically.
- Initialize qubit in ground state.
- Apply pulse at ω_{ge} with variable amplitude Ω_0 .
- Gaussian pulse envelop with characteristic $\sigma \sim 5 10ns$.
- Readout qubit state and average over ~10³ repetitions.
- Sinusoidal fit to extract π and $\pi/2$ pulse amplitude.

2.3 Measurement of dephasing time

- Initial $\frac{\pi}{2}$ -pulse prepares $|g\rangle + |e\rangle$.
- Map remaining coherence after time τ to excited state using a second $\frac{\pi}{2}$ pulse, and measure.
- Detune pulse by $f_{\rm IF}=0.5$ MHz from qubit frequency to obtain oscillating pattern. \rightarrow Higher accuracy in estimating the qubit frequency.
- Fit Characteristic decay time $T_2^*=13~\mu {
 m s}$
- In this case, decay reasonably well described by exponential function $e^{- au/T_2^*}$
- Depending on spectral properties of the dominant noise source, decay better described by different functional form, e.g. Gaussian decay for 1/f – noise.
- If relaxation is only source of decoherence: $T_2 = 2 T_1$ ("T1 limit of dephasing time").

Ithier, G. et al. PRB 72, 134519 (2005).

2.3 Measurement of dephasing time

- Low frequency noise can be partly compensated for by applying an echo π -pulse after $\tau/2$ to reverse the direction of the Lamor precision.
- The resulting decay time $T_2^{echo} = 18 \ \mu s$ is longer than T_2^* .
- Explanation: Low frequency noise which causes the qubit frequency to change on timescales longer than τ_{max} will cancel out.
- Variants of such dynamical decoupling sequences can be used to do noise spectroscopy → See e.g. Bylander et al., Nat. Phys. (2011)

Ithier, G. et al. PRB 72, 134519 (2005).

■IH zürich

3.1 Characterization & Benchmarking of Quantum Processes

Ideally

 $\ket{\psi_{ ext{in}}} = egin{array}{c} U \ \end{array} egin{array}{c} \ket{\psi_{ ext{out}}}$

Realistically

Questions:

- General properties of the map E?
- How to measure the map E?
 - State and process tomography
- Measure of distance between quantum states and processes: Fidelity
- How to benchmark quantum gates with fidelities close to one?
 - Randomized Benchmarking

3.2 Randomized benchmarking

- For simplicity, consider single-qubit case.
- Apply sequence of n gate operations U_i before measuring.

- Gates U_i are chosen randomly from the Clifford group, mapping an element of the Pauli group to an element of the Pauli group. For a single qubit there are 24 Clifford gates.
- Last gate U_{n+1} is chosen such that in the absence of errors state is brought back to initial state, i.e. $U_{n+1} \dots U_2 U_1 = I$.
- Average over m different such sequences.
- Success probability p_0 to recover the initial state decays exponentially with # of gates $p_0 \propto \alpha^n$, with depolarization parameter α .
- The error per gate is given by $\epsilon_{RB} = (1-\alpha)\frac{(d-1)}{d}$ where d is the dimension of Hilbert space (d=2 for a single qubit).

3.3 Randomized benchmarking: Example single qubit gates

- Pulse duration typically between 15 to 50 ns.
 Leakage into second excited state avoided by using (DRAG*) pulse parametrization.
- Use Clifford decomposition in terms of X rotations and virtual Z gates (see McKay et al., PRA (2017)).
- Population of ground state decays exponentially.
- Fitted depolarization parameter $\alpha \approx 99.6\%$ and gate error $\epsilon \approx 0.2\%$ in this example.
- Orange dashed line indicates the limit expected when only considering qubit decoherence.
- Deviation from coherence limit hints at finite control errors, e.g. resulting in leakage to the flevel.

^{*}Motzoi et al., PRL 103, 110501 (2009)

3.4 Interleaved Randomized benchmarking (IRB)

Question how to characterize the fidelity of one particular Clifford gate V?

Compare decay of standard RB sequence ...

• ...with result of a 2^{nd} experiment, in which gate V gets interleaved with random Clifford gates.

- Difference between the depolarization parameters α_{RB} and α_{IRB} results in an estimate for the error $\epsilon_V = \frac{d}{d+1}(1-\frac{\alpha_{IRB}}{\alpha_{RB}})$ per gate V.
- Randomized Benchmarking can be generalized to multi-qubit gates.