SEGUNDO EXAMEN PARCIAL (Verano 2011-2012)

1. En el grupo abeliano (\mathbb{Z}_{17}^* , ·):

(a) Calcule el resultado de
$$\begin{pmatrix} \bullet \\ 13 \end{pmatrix}^{-1} \cdot \begin{bmatrix} \bullet \\ 4 \cdot \begin{pmatrix} \bullet \\ 2 \end{pmatrix}^{-3} \end{bmatrix}^{-2}$$
 (2 puntos)

(b) Calcule, si es posible, un subgrupo de orden cuatro y otro de orden seis.

(3 puntos)

Tiempo: 2 h. 20 m.

Fecha: 10 de enero de 2012

Total: 33 puntos

- 2. En $\mathbb{R} \times \mathbb{R}^*$ se define la operación \otimes como $(a,b) \otimes (c,d) = (a+c+2,3bd)$. Si se sabe que $(\mathbb{R} \times \mathbb{R}^*, \otimes)$ es grupo abeliano:
 - (a) Determine la fórmula explícita de $(a, b)^{-1}$ (3 puntos)
 - (b) Calcule el valor exacto de $(2,-1)^{-3}\otimes (5,-\frac{1}{4})^2$ (2 puntos)
- 3. Si se sabe que $\{u, v, w, z\}$ es una base del espacio vectorial V. Determine si el conjunto $\{v 3u + z, 2w v + z, 2v + u w, -z 2v + w\}$ es o no, base de V. (3 puntos)
- 4. Considere el subespacio de P_4 dado por $H = \{ p \in P_4 \ / \ p'(1) = 0 \land p(1) = 0 \}$. Determine una base de H y calcule su dimensión. (5 puntos)
- 5. Determine si el conjunto $\{(-1,2,1), (1,0,2), (3,-4,0), (2,-2,1)\}$ genera o no al espacio vectorial \mathbb{R}^3 .

(4 puntos)

- 6. Demuestre que el conjunto de las matrices simétricas es un subespacio vectorial del espacio vectorial $(M_n, +, \cdot)$. (4 puntos)
- 7. Sea $D_2 = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M_2 \ / \ a^2 + b^2 \le 1, \ a, b \in \mathbb{R} \right\}$. Determine si $(D_2, +)$ es o no un grupo. (3 puntos)
- 8. Sean V algún espacio vectorial y $S = \{u_1, u_2, \dots, u_n\}$ un subconjunto de V, tal que S es linealmente independiente. Si $x \in V$, tal que $x \notin Gen(S)$, demuestre que el conjunto $H = \{x, u_1, u_2, \dots, u_n\}$ es, también, linealmente independiente.

(4 puntos)