### AI506: DATA MINING AND SEARCH (SPRING 2020)

## Homework 2: Personalized PageRank

Release: April 15, 2020, Due: April 29, 2020, 11:59pm

20203221 민향숙

# [Analysis]

### 1. PageRank Score

#### 1.1. PageRank with memory-based Graph

| Preference_uniform          | Preference_onehot (506 = 1) | Preference_in_degree         |
|-----------------------------|-----------------------------|------------------------------|
| Top 10 pageranks            | Top 10 pageranks            | Top 10 pageranks             |
| 89073 0.011219708932132257  | 506 0.1541846581227055      | 226411 0.011657317330549635  |
| 241454 0.008250330457153421 | 213780 0.1168029262124912   | 89073 0.009480410535379558   |
| 226411 0.00691142510453951  | 129971 0.10917524546732417  | 241454 0.006970375326880231  |
| 262860 0.002996886841256732 | 118948 0.09914293826555216  | 105607 0.005199228603519611  |
| 134832 0.002990483136689007 | 194930 0.09914293826555215  | 234704 0.0045142774632161    |
| 234704 0.002462012099809641 | 24726 0.09914293826555215   | 167295 0.0042545803440839775 |
| 136821 0.002445472913930576 | 152422 0.02256887605009158  | 38342 0.0038882737737599296  |
| 68889 0.0024226254395939228 | 52820 0.022143999574545128  | 181701 0.0033606086363906196 |
| 69358 0.002356503411602799  | 223264 0.017177161060066008 | 247241 0.003292814312165141  |
| 105607 0.00230621338640704  | 252200 0.017177151894607737 | 259455 0.003292814312165141  |

#### 1.2. PageRank with disk-based Graph

| Preference_uniform           | Preference_onehot (506 = 1) | Preference_in_degree         |
|------------------------------|-----------------------------|------------------------------|
| Top 10 pageranks             | Top 10 pageranks            | Top 10 pageranks             |
| 89073 0.011219708932132417   | 506 0.1541846581227055      | 226411 0.011657317330549224  |
| 241454 0.008250330457153348  | 213780 0.11680292621249137  | 89073 0.009480410535379595   |
| 226411 0.0069114251045397325 | 129971 0.1091752454673243   | 241454 0.00697037532688022   |
| 262860 0.002996886841256752  | 24726 0.09914293826555226   | 105607 0.005199228603519793  |
| 134832 0.0029904831366890173 | 118948 0.09914293826555226  | 234704 0.004514277463216102  |
| 234704 0.002462012099809744  | 194930 0.09914293826555226  | 167295 0.004254580344083975  |
| 136821 0.0024454729139306197 | 152422 0.02256887605009158  | 38342 0.003888273773759927   |
| 68889 0.0024226254395939605  | 52820 0.022143999574545173  | 181701 0.0033606086363906357 |
| 69358 0.0023565034116028076  | 223264 0.017177161060066008 | 247241 0.0032928143121651546 |
| 105607 0.00230621338640716   | 252200 0.017177151894607737 | 259455 0.0032928143121651546 |

All three different preference vector cases have different results.

Pageranks are basically influenced by in\_coming nodes. If Incoming nodes have higher ranks, the nodes also can get higher ranks. Thus, pageranks can be determined by the number of incoming of nodes and the rank of incoming nodes. But in Personalized Pagerank algorithm, it assumes that random surfer jumps to a web page according to given probability distribution (we call the preference vector). According to this assumption, preference vector can also have an impact on pagerank scores. That is why all three cases have different results

with same Graphs. We saw that the list of 10 pages with the highst pagerank score change as we use different preference vector. Furthermore, if we set damping\_factor smaller, preference vectors will have more impact on pagerank score.

First, we can notice that first and third cases have similar lists. Because pageranks are determined by the number of incoming nodes and incoming nodes' ranks. But third case has preference vector in proportion to incoming degree of each node. So, third case emphasizes influence of the number of incoming nodes. Consequently, first and third case have not same lists but similar lists.

(we can find that most of top-10 pages have higher in degree.)

```
Highest in-degree (node,In degree)
(226411, 38606)(234704, 21920)(105607, 19457)(241454, 19377)(167295, 19003)
(198090, 18975)(81435, 18970)(214128, 18967)(38342, 18958)(245659, 18935)
(34573, 18925)(89073, 15277)(69358, 13936)(67756, 13872)(134832, 10336)
(231363, 10244)(17781, 8346)(62478, 8346)(77999, 8346)(120708, 8346)
```

Secondly, for preference\_onehot case, top 10 pageranks scores are a lot higher than other two cases. The top-1 page has 0.154 scores and the score of other 9 pages are higher than 0.015. The reason is that preference vector has probability 1 only for page 506, and other pages have probability 0. So, at every iteration, the score of page 506 always are added "(1-damping factor)" and other pages don't get added anything. That's why page 506 has a lot higher score than other pages. And pageranks are calculated recursively, it also affects other pages which are outgoing pages of page 506. We can also find that most of top-9 pages are outgoing pages of page 506.

```
Out-neighbors of page 506 : {223264, 118948, 152422, 252200, 194930, 129971, 213780, 24726}
```

Third, comparing memory-based graph with disk-based graph, they have same results for each preference case. Because we use same graph for each case. They are just different in loading graph data.

# 2. Time -based Memory usage plot with both graphs.

### 2.1. Memory-based graph



### 2.2. Disk-based graph



Disk-based graph takes more time to implement pagerank algorithm. And in this case, they have similar memory usage.