Minimum udSpændende Træer (MST)

Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er

- ► Sammenhængende: der er en sti mellem alle par af knuder.
- Acyklisk: der er ingen kreds af kanter.

Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er

- ► Sammenhængende: der er en sti mellem alle par af knuder.
- Acyklisk: der er ingen kreds af kanter.

(Uorienteret, acyklisk graf = skov af træer.).

Sætning (B.2): For uorienteret graf G = (V, E) er flg. ækvivalent (gælder det ene, gælder det andet):

- 1. G er et træ (dvs. sammenhængende og acyklisk).
- 2. G er sammenhængende, men er det ikke hvis nogen kant fjernes.
- 3. G er sammenhængende og m = n 1.
- 4. G er acyklisk, men er det ikke hvis nogen kant tilføjes.
- 5. G er acyklisk og m = n 1.
- 6. Mellem alle par af knuder er der præcis én vej.

Sætning (B.2): For uorienteret graf G = (V, E) er flg. ækvivalent (gælder det ene, gælder det andet):

- 1. G er et træ (dvs. sammenhængende og acyklisk).
- 2. G er sammenhængende, men er det ikke hvis nogen kant fjernes.
- 3. G er sammenhængende og m = n 1.
- 4. G er acyklisk, men er det ikke hvis nogen kant tilføjes.
- 5. G er acyklisk og m = n 1.
- 6. Mellem alle par af knuder er der præcis én vej.

Bevis (ikke pensum): se appendix B.5.

Læs (pensum) appendix B.4 og B.5 for basale definitioner for grafer.

Udspændende træ for uorienteret, sammenhængende graf G = (V, E):

En delgraf T = (V, E'), $E' \subseteq E$, som er et træ.

Udspændende træ for uorienteret, sammenhængende graf G = (V, E):

En delgraf T = (V, E'), $E' \subseteq E$, som er et træ.

NB: samme knudemængde V. Vi tænker fra nu af på T blot som E'.

Udspændende træ for uorienteret, sammenhængende graf G = (V, E):

En delgraf T = (V, E'), $E' \subseteq E$, som er et træ.

NB: samme knudemængde V. Vi tænker fra nu af på T blot som E'.

Udspændende træ for uorienteret, sammenhængende graf G = (V, E):

En delgraf T = (V, E'), $E' \subseteq E$, som er et træ.

NB: samme knudemængde V. Vi tænker fra nu af på T blot som E'.

Iflg. sætning B.2 har alle udspændende træer n-1 kanter.

Udspændende træ for uorienteret, sammenhængende graf G = (V, E):

En delgraf T = (V, E'), $E' \subseteq E$, som er et træ.

NB: samme knudemængde V. Vi tænker fra nu af på T blot som E'.

Iflg. sætning B.2 har alle udspændende træer n-1 kanter.

Minimum udSpændende Træ (MST) for en vægtet uorienteret sammenhængende graf G: et udspændende træ for G som har mindst mulig sum af kantvægte (dvs. intet udspændende træ har mindre sum).

Udspændende træ for uorienteret, sammenhængende graf G = (V, E):

En delgraf T = (V, E'), $E' \subseteq E$, som er et træ.

NB: samme knudemængde V. Vi tænker fra nu af på T blot som E'.

Iflg. sætning B.2 har alle udspændende træer n-1 kanter.

Minimum udSpændende Træ (MST) for en vægtet uorienteret sammenhængende graf G: et udspændende træ for G som har mindst mulig sum af kantvægte (dvs. intet udspændende træ har mindre sum).

Motivation: forbind punkter i et forsyningsnetværk (elektricitet, olie,...) billigst muligt. Kant i *G*: mulig forbindelse, vægt: pris for at etablere forbindelse. Dette var motivationen for den første algoritme for problemet (Borůvka, 1926, Østrig-Ungarn, nu Tjekkiet).

Grundidé er grådig algoritme: byg MST ved at vælge kanterne én efter én ved hjælp af en passende regel.

Grundidé er grådig algoritme: byg MST ved at vælge kanterne én efter én ved hjælp af en passende regel.

Korrekthed: via den sædvanlige invariant for korrekthed af grådige algoritmer: "Hvad vi har bygget indtil nu er en del af en optimal løsning".

Dvs. følgende invariant, hvor $A \subseteq E$ er de indtil nu valgte kanter:

Der findes et MST, som indeholder A.

Grundidé er grådig algoritme: byg MST ved at vælge kanterne én efter én ved hjælp af en passende regel.

Korrekthed: via den sædvanlige invariant for korrekthed af grådige algoritmer: "Hvad vi har bygget indtil nu er en del af en optimal løsning".

Dvs. følgende invariant, hvor $A \subseteq E$ er de indtil nu valgte kanter:

Der findes et MST, som indeholder A.

Terminologi: safe kant for A er en kant, som kan tilføjes uden at ødelægge invarianten (mindst én må findes, når invarianten gælder og |A| < n-1).

Invariant: Der findes et MST, som indeholder A.

```
GENERIC-MST(G, w)
A = \emptyset
while A is not a spanning tree find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

Invariant: Der findes et MST, som indeholder A.

```
GENERIC-MST(G, w)
A = \emptyset
while A is not a spanning tree
find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

Initialisering: Enhver sammenhængende graf har et mindst ét ST (via sætningen fra B.5, punkt 2 - fjern kanter til betingelsen nås), og har derfor et MST. Dette indeholder kantmængden ∅.

Invariant: Der findes et MST, som indeholder A.

```
GENERIC-MST(G, w)
A = \emptyset
while A is not a spanning tree
find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

- Initialisering: Enhver sammenhængende graf har et mindst ét ST (via sætningen fra B.5, punkt 2 - fjern kanter til betingelsen nås), og har derfor et MST. Dette indeholder kantmængden Ø.
- ▶ Vedligeholdelse: Er det samme, som at den valgte kant er safe.

Invariant: Der findes et MST, som indeholder A.

```
GENERIC-MST(G, w)
A = \emptyset
while A is not a spanning tree find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

- Initialisering: Enhver sammenhængende graf har et mindst ét ST (via sætningen fra B.5, punkt 2 - fjern kanter til betingelsen nås), og har derfor et MST. Dette indeholder kantmængden Ø.
- ▶ Vedligeholdelse: Er det samme, som at den valgte kant er safe.
- ▶ Terminering: ethvert (M)ST indeholder præcis n-1 kanter. Da A vokser med én kant per iteration, giver invarianten, at algoritmen terminerer, og at A da er et MST (A er indeholdt i et MST, og har samme antal kanter som dette, så A er lig dette).

Cuts

MEN: Hvordan finde en safe kant?

Cuts

MEN: Hvordan finde en safe kant?

Cut: En delmængde $S \subseteq$ af knuderne.

Kan ses som en to-deling af knuderne i to mængder S og V-S.

Cuts

MEN: Hvordan finde en safe kant?

Cut: En delmængde $S \subseteq$ af knuderne.

Kan ses som en to-deling af knuderne i to mængder S og V-S.

Kant henover cut: en kant i $S \times (V - S)$.

Sætning:

Hvis

- der eksisterer et MST, som indeholder A,
- S er et cut, som A ikke har kanter henover,
- e er en letteste kant blandt kanterne henover cuttet,

så

• er e safe for A (dvs. der der eksisterer et MST som indeholder $A \cup \{e\}$).

Bevis:

- Der findes et MST *T* som indeholder *A*.
- ▶ Vi skal lave et MST T' som indeholder $A \cup \{e\}$.

Bevis:

- Der findes et MST T som indeholder A.
- ▶ Vi skal lave et MST T' som indeholder $A \cup \{e\}$.

Lad e = (u, v) være en letteste kant henover cuttet S.

Da T er sammenhængende, må der være en sti i T mellem u og v, hvorpå der er mindst én kant (x,y) henover cuttet S.

Lad T' være T med (x, y) udskiftet til e = (u, v):

(Viste kanter = T, fede kanter = A, cut er angivet med knudefarver.)

Lad T' være T med (x, y) udskiftet til e = (u, v):

Lad T' være T med (x, y) udskiftet til e = (u, v):

Som T er T' stadig sammenhængende (i alle stier kan (x,y) erstattes af resten af stien fra u til v, samt kanten (u,v)), og har n knuder og n-1 kanter. T' er derfor et træ (pga. sætning tidligere). Det kan kun være lettere end T. Derfor er T' også et MST.

T' indeholder $A \cup \{e\}$, da den fjernede kant (x, y) ikke er i A, eftersom A ingen kanter har henover cuttet.

Brug af cut-sætning i MST-algoritmer

```
GENERIC-MST(G, w)
A = \emptyset
while A is not a spanning tree
find an edge (u, v) that is safe for A
A = A \cup \{(u, v)\}
return A
```

Invariant: Der findes et MST som indeholder de valgte kanter A.

- ▶ En ny kant (u, v) med begge endepunkter i samme sammenhængskomponent i G' = (V, A) vil introducere en kreds og dermed ødelægge invarianten. Sådanne er derfor aldrig safe.
- ▶ En ny kant (u, v) med endepunkterne i *forskellige* sammenhængskomponenter C_1 og C_2 i G' = (V, A) er safe, hvis den er en letteste kant ud af C_1 : brug cut-sætning på cuttet C_1 .

Man ser nemt, at hvis A udvides med en kant med endepunkterne i forskellige sammenhængskomponenter C_1 og C_2 i G', vil det ændre sammenhængskomponenterne i G' ved at C_1 og C_2 slås sammen til én sammenhængskomponent.

Prim-Jarnik MST-algoritmen (Prim 1957, Jarnik 1930)

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent i .

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

```
\begin{aligned} \text{PRIM}(G, w, r) & Q = \emptyset \\ \text{for each } u \in G.V \\ & u.key = \infty \\ & u.\pi = \text{NIL} \\ & \text{INSERT}(Q, u) \\ \text{DECREASE-KEY}(Q, r, 0) & \textit{#r.key} = 0 \\ & \text{while } Q \neq \emptyset \\ & u = \text{EXTRACT-MIN}(Q) \\ & \text{for each } v \in G.Adj[u] \\ & \text{if } v \in Q \text{ and } w(u, v) < v.key \\ & v.\pi = u \\ & \text{DECREASE-KEY}(Q, v, w(u, v)) \end{aligned}
```

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

Korrekthed: via cut-sætningen og invarianten.

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

Korrekthed: via cut-sætningen og invarianten.

Køretid:

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

Korrekthed: via cut-sætningen og invarianten.

Køretid: n Insert, n ExtractMin, m DecreaseKey

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

Korrekthed: via cut-sætningen og invarianten.

Køretid: n INSERT, n EXTRACTMIN, m DECREASEKEY på prioritetskø af størrelse O(n),

Tager udgangspunkt i en (vilkårlig) startknude r. Udvider hele tiden r's sammenhængskomponent C i G' = (V, A).

En knude $v \in V - C$ gemmer information om sin korteste kant henover cuttet C i felterne v.key og $v.\pi$. Mængden A er $\{(v, v.\pi) \mid v \in C - \{r\}\}$.

Knuderne i V-C opbevares i en (min-)prioritetskø Q.

Korrekthed: via cut-sætningen og invarianten.

Køretid: n Insert, n ExtractMin, m DecreaseKey på prioritetskø af størrelse O(n), i alt $O(m \log n)$, da $m \ge n - 1$ (G sammenhængende).

Kruskal MST-algoritmen (1956)

Forsøger at tilføje kanter til A i global letteste-først orden.

Kruskal MST-algoritmen (1956)

Forsøger at tilføje kanter til A i global letteste-først orden.

Recap fra side 11:

- 1. En kant (u, v) kan aldrig tilføjes til A, hvis u og v ligger i samme sammenhængskomponent i G' = (V, A).
- 2. Hvis en kant (u, v) mellem to forskellige sammenhængskomponenter tilføjes til A, vil disse to sammenhængskomponenter blive til én bagefter.

Vedligeholder sammenhængskomponenterne i G' = (V, A) ved hjælp af en disjoint-set datastruktur på V:

Make-Set(x), Union(x, y) Find-Set(x)

Vedligeholder sammenhængskomponenterne i G' = (V, A) ved hjælp af en disjoint-set datastruktur på V:

Make-Set(
$$x$$
), Union(x , y) Find-Set(x)

Mere præcist:

```
\begin{aligned} & \mathsf{KRUSKAL}(G,w) \\ & A = \emptyset \\ & \textbf{for} \ \mathsf{each} \ \mathsf{vertex} \ \nu \in G.V \\ & \quad \mathsf{MAKE-SET}(\nu) \\ & \mathsf{sort} \ \mathsf{the} \ \mathsf{edges} \ \mathsf{of} \ G.E \ \mathsf{into} \ \mathsf{nondecreasing} \ \mathsf{order} \ \mathsf{by} \ \mathsf{weight} \ w \\ & \textbf{for} \ \mathsf{each} \ (u,\nu) \ \mathsf{taken} \ \mathsf{from} \ \mathsf{the} \ \mathsf{sorted} \ \mathsf{list} \\ & \quad \mathsf{if} \ \mathsf{FIND-SET}(u) \neq \mathsf{FIND-SET}(\nu) \\ & \quad A = A \cup \{(u,\nu)\} \\ & \quad \mathsf{UNION}(u,\nu) \\ & \quad \mathsf{return} \ A \end{aligned}
```

```
KRUSKAL(G, w)
A = \emptyset
for each vertex v \in G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET(u) \neq FIND-SET(v)
A = A \cup \{(u, v)\}
UNION(u, v)
return A
```

Klart ud fra recap side 14 om sammenhængskomponenter at:

- 1. Datastrukturen vedligeholder sammenhængskomponenterne i G' = (V, A).
- En kant undersøgt (IF-sætningen) har begge endepunkter i samme sammenhængskomponent efter undersøgelsen, uanset udfaldet af testen i IF-sætningen. Da sammenhængskomponenter i G' kun slås sammen undervejs, gælder dette også for kanten i resten af algoritmen.

Kruskal, korrekthed

På det tidspunkt, hvor algoritmen tilføjer en kant (u, v) til A, ligger u og v i forskellige sammenhængskomponenter C_1 og C_2 i G' = (V, A). [Dette følge af punkt 1 samt testen i IF-sætningen.]

Vi ser på cuttet givet ved u's sammenhængskomponent C_1 . Alle lettere kanter er allerede undersøgt, og har derfor begge endepunkter i samme sammenhængskomponent i G' [punkt 2]. Derfor er (u, v) en letteste kant henover dette cut, og vi kan derfor bruge cut-sætningen.

Kruskal, korrekthed

På det tidspunkt, hvor algoritmen tilføjer en kant (u, v) til A, ligger u og v i forskellige sammenhængskomponenter C_1 og C_2 i G' = (V, A). [Dette følge af punkt 1 samt testen i IF-sætningen.]

Vi ser på cuttet givet ved u's sammenhængskomponent C_1 . Alle lettere kanter er allerede undersøgt, og har derfor begge endepunkter i samme sammenhængskomponent i G' [punkt 2]. Derfor er (u, v) en letteste kant henover dette cut, og vi kan derfor bruge cut-sætningen.

Når algoritmen stopper, er alle kanter undersøgt. Enhver kant i inputgrafen G=(V,E) har derfor begge endepunkter i samme sammenhængskomponent i G'=(V,A) [punkt 2]. Sådanne kanter kan ikke tilføjes A uden at introducere en kreds.

Så A er selv det MST (fra invarianten), som indeholder A, da ingen kanter kan tilføjes A. Så algoritmen er korrekt.

Kruskal, korrekthed

På det tidspunkt, hvor algoritmen tilføjer en kant (u, v) til A, ligger u og v i forskellige sammenhængskomponenter C_1 og C_2 i G' = (V, A). [Dette følge af punkt 1 samt testen i IF-sætningen.]

Vi ser på cuttet givet ved u's sammenhængskomponent C_1 . Alle lettere kanter er allerede undersøgt, og har derfor begge endepunkter i samme sammenhængskomponent i G' [punkt 2]. Derfor er (u, v) en letteste kant henover dette cut, og vi kan derfor bruge cut-sætningen.

Når algoritmen stopper, er alle kanter undersøgt. Enhver kant i inputgrafen G=(V,E) har derfor begge endepunkter i samme sammenhængskomponent i G'=(V,A) [punkt 2]. Sådanne kanter kan ikke tilføjes A uden at introducere en kreds.

Så A er selv det MST (fra invarianten), som indeholder A, da ingen kanter kan tilføjes A. Så algoritmen er korrekt.

Bemærk at der lavet præcis n-1 UNION operationer undervejs, da hver tilføjer én kant til A, og da et MST har n-1 kanter.

Kruskal, køretid

Arbejde:

Sortér m kanter Lav n Make-Set, n-1 Union, m Find-Set.

Kruskal, køretid

Arbejde:

Sortér m kanter Lav n Make-Set, n-1 Union, m Find-Set.

Fra tidligere: der findes en datastruktur for disjoint-sets hvor

- \triangleright *n* Make-Set(x)
- ▶ n-1 UNION(x, y)
- ightharpoonup m FIND-SET(x)

tager i alt $O(m + n \log n)$ tid.

Kruskal, køretid

Arbejde:

Sortér m kanter Lav n Make-Set, n-1 Union, m Find-Set.

Fra tidligere: der findes en datastruktur for disjoint-sets hvor

- \triangleright *n* Make-Set(x)
- ▶ n-1 UNION(x,y)
- \blacktriangleright m FIND-SET(x)

tager i alt $O(m + n \log n)$ tid.

Samlet køretid for Kruskal er

 $O(m \log m)$

eftersom $m \ge n - 1$, da inputgrafen er sammenhængende.