Podejmowanie decyzji w R - w warunkach pewności, ryzyko oraz niepewności Konferencja Why R? 2017

Vasyl Martsenyuk¹

¹Katedra Informatyki i Automatyki Akademia Techniczno-Humanistyczna w Bielsku-Białej e-mail: vmartsenyuk@ath.bielsko.pl

Warszawa, 29-09-2017

Outline I

- Streszczenie
- Sytuacja decyzyjna, fazy procesu decyzyjnego
- Proces podejmowania decyzji
- Metody MCDA
- Podstawowe pojęcia
- Schemat metody TOPSIS
- Implementacja metody MCDM w R
- Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji
- Porównanie parami
- Implementacja metody analitycznej hierarchizacji w R
- Warianty Zadania
- Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe
- Implementacja metody sieci neuronowej w R
- Instrukcji do korzystania neuralnet
- Warianty zadania z użyciem neuralnet

Outline II

16 Podejmowanie decyzji w warunkach ryzyko. Drzewa decyzyjne

🕡 Warianty zadania konstruowania drzewa decyzji

18 Podejmowanie decyzji w warunkach niepewności. Logika rozmyta

19 Linki

20 Wnioski

- Z koniecznością podejmowania decyzji spotykamy się praktycznie na każdym kroku, tak w życiu prywatnym, jak i w rozwiązywaniu problemów związanych z pracą zawodową, w szczególności z pracą o charakterze inżynierskim.
- Decyzje takie dotyczyć mogą na przykład akceptacji danego rozwiązania technicznego czy też wyboru najkorzystniejszego rozwiązania spośród dostępnych wariantów.
- W zależności od horyzontu czasowego oraz warunków zewnętrznych podjęcie poprawnej decyzji może napotykać na trudności, często również związane jest z ryzykiem popełnienia błędu.
- Decyzję podejmuje z reguły człowiek lub w sposób automatyczny zaprojektowane przez niego urządzenie, np. układ sterowania lub przekaźnik zabezpieczeniowy.

Chcemy kupić Macbooka w sklepach Euro RTV AGD?

Porównanie towarów

Definition

Podejmowanie decyzji jest pewnym procesem obejmującym grupę logicznie powiązanych ze sobą operacji myślowych i/lub obliczeniowych, prowadzących do rozwiązania problemu decyzyjnego poprzez wybranie jednego z możliwych wariantów działania (decyzji).

Podstawy procesów decyzyjnych i różnorakie ich aspekty opisane są w niniejszym wykładzie.

Definition

Problematyką podejmowania decyzji zajmuje się dział nauki zwany teorią decyzji, który obejmujący analizę i wspomaganie procesu podejmowania decyzji.

- Teoria decyzji stanowi wspólny obszar zainteresowań wielu różnych dziedzin. Korzystają z niej i rozwijają ją m.in.
 - kognitywistyka,
 - matematyka,
 - statystyka,
 - psychologia,
 - socjologia,
 - ekonomia,
 - zarządzanie,
 - filozofia,
 - informatyka oraz
 - medycyna.

- Klasyczna inżynieryjna teoria decyzji szuka rozwiązań optymalnych/najlepszych w dziedzinie dobrze sformalizowanej i dotyczy tzw. well defined problems.
- Kognitywistyczne teorie decyzji, z kolei, szukają rozwiązań wystarczających/skutecznych dla tzw. real world problems oraz ill defined problems, sięgając po narzędzia psychologii, socjologii, filozofii umysłu, czy lingwistyki, pragnąc wyjaśnić procesy myślowe i strategie podejmowania decyzji.

Sformułowanie problemu decyzyjnego

Sformułowanie problemu decyzyjnego obejmuje informacje dotyczące m.in.

- decydenta (człowiek, grupa osób, maszyna),
- warunków ograniczających decyzję,
- zbioru decyzji dopuszczalnych (wynikających z ograniczeń, czynników niezależnych od decydenta),
- kryteriów oceny decyzji zdefiniowanych przez decydenta, takich jak: użyteczność (subiektywna wartość wyników działania), zysk, strata, itp.

- Stosowane w procesie decyzyjnym kryteria mogą mieć charakter jakościowy i/lub ilościowy.
- W przypadku decyzji ekonomicznych oraz inżynierskich z reguły stosowane są ilościowe miary korzyści, kosztów i zysków danej decyzji.
- Stosowane kryteria decyzyjne mogą być wyrażone zależnościami funkcyjnymi, a wartości kryteriów są porównywane z progami lub charakterystykami decyzyjnymi, a także – dla poszczególnych wariantów decyzji – między sobą.

Przykład

- Przykładowo, podejmując decyzję dot. kredytu konsumpcyjnego podstawowym kryterium decyzyjnym jest obliczona wg odpowiednich równań rata kredytu.
- Pośrednio zależy ona od wielu parametrów (liczba rat kredytu, oprocentowanie roczne, prowizja banku itd.), niemniej jej wysokość pozwala na ocenę oferty bankowej i podjęcie decyzji o przyjęciu kredytu w danym banku.

Sytuacja decyzyjna, fazy procesu decyzyjnego Literatura

Podstawowe pozycje literaturowe dotyczące teorii decyzji i podejmowania decyzji w warunkach niepewności zebrano w

- HEILPERN S., Podejmowanie decyzji w warunkach ryzyka i niepewności, Wydawnictwo Akademii Ekonomicznej, Wrocław, 2001.
- 2 KŁOSIŃSKI K.A., BIELA A., Człowiek i jego decyzje, Wydawnictwo KUL, Lublin, 2009.
- ROS J., Podejmowanie trafnych decyzji, Zysk i S-ka, Poznań, 2007.
- OBBINS S.P., Skuteczne podejmowanie decyzji, PWE, Warszawa, 2005.
- TURBAN E., Decision Support and Expert Systems, Prentice-Hall. London, 1995.

Proces podejmowania decyzji Różne definicie

Definition

Podejmowanie decyzji polega na akcie świadomego wyboru jednego z rozpoznanych i dostępnych (uznanych za możliwy do wdrożenia) wariantów przyszłego działania.

Definition

Podejmowanie decyzji polega na rozważeniu wielu możliwych działań w przyszłości, porównywaniu ich i zdecydowaniu, który z wariantów jest najodpowiedniejszy.

Proces podejmowania decyzji Różne definicje

Definition

Podejmowanie decyzji jest wyborem lub też świadomym powstrzymaniem się od wyboru (co jest także decyzją).

Decydent ma do wyboru szereg alternatyw, które musi ze sobą porównać i ocenić możliwość ich wprowadzenia oraz przewidzieć skutki ich realizacji.

Proces podejmowania decyzji

Ujęcia problemu decyzyjnego

Ujęcia problemu decyzyjnego:

- Ujęcie przedmiotowe jest to odchylenie między stanem pożądanym i rzeczywistym sytuacji decyzyjnej.
- Ujęcie podmiotowe problemu określane jest przez pryzmat możliwości i kompetencji decydenta oraz potrzeb informacyjnych i ich przetworzenia w celu podjęcia decyzji i rozwiązania problemu.

Ujęcie przedmiotowe

Czynniki charakteryzujące problem decyzyjny w ujęciu przedmiotowym:

- przedmiot decyzji,
- stopień strukturalizacji,
- stopień złożoności,
- liczba i rodzaj potrzebnych informacji,
- zakres rzeczywistości, którego problem dotyczy,
- miejsce występowania,
- częstotliwość pojawianie się problemu,
- znaczenie problemu dla sprawności funkcjonowania danego systemu.

Decydent

Czynniki charakteryzujące decydenta:

- osobowość psychiczna i fizyczna,
- jego miejsce i znaczenie w strukturze organizacyjnej,
- formalne i rzeczywiste możliwości działania,
- sposób postrzegania problemów i warunków działania,
- liczba i rodzaj posiadanych informacji.

Figure: Ocena alternatywnych wariantów w procesie decyzyjnym

Style podejmowania decyzji

Metody MCDA I

Różne metody MCDA są opracowane które wykorzystują różne paradygmy oraz podejścia. One mogą być klasyfikowane jako:

- The American School, which has as its conception the use of a utility function to obtain the information aggregation of the different criteria; for example, the sum average weighted (SAW), the Analytic Hierarchy Process (AHP) (Saaty. 1980), the Simple Multiattribute Rating Technique (SMART) (Edwards et al. 1994), and others.
- The European School, represented mainly by the French School, which bases its conception under the basic principle of establishing a preference relationship between alternatives; for example, the ELimination and Choice Expressing Reality (ELECTRE) (Roy. 1968) and the Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE) (Brans et al. 1986), with their respective variants.

Metody MCDA II

Other methods which use different conceptions such as: The
 Technique for Order of Preference by Similarity to Ideal Solution
 (TOPSIS) (Hwang et al. 1980); the Multicriteria Optimization and
 Compromise Solution (VIKOR) (Opricovic. 1998); the Closed
 Procedures near Reference Situations (ZAPROS) (Larichev et al.
 1991); the lexicographical method (Fishburn. 1973), among others.

Podstawowe pojęcia

Definition

Podejmowanie decyzji jest procedurą odnalezienia najlepszej alternatywy pomiędzy wykonalnych (feasible) alternatyw.

Definition

Problemy podejmowania decyzji zawierające kilka kryteria czasami nazywają wielokryterialne podejmowanie decyzji (multi-criteria decision-making, MCDM)

W procesie MCDM jest koniecznie określić kilka elementów w tym:

Definition

Osoby podejmujące decyzje (Decision-makers) są encje odpowiedzialne za wybór możliwej alternatywy.

Definition

Alternatywy są możliwe akcji do wyboru osobą podejmującą decyzę

Definition

Kryterium lub atrybut jest charakterystyką, parametrem lub reference point wykorzystywanym dla opisywania jakości alternatywy.

Definition

Macierz oceny (valuation matrix) przedstawia oceny wszystkich alternatyw dla każdego kryterium z elementami x_{ij} którzy przedstawiają oceny alternatywy A_i według kryterium C_i .

Definition

Wagi są miary które wskazują na odnośną ważność kryterium dla osoby podejmującej decyzję

Problem MCDA

Problem MCDA z m alternatywami i n kryteriami może być przedstawiona za pomocą macierzy zwanej też macierzą decyzji (decision matrix)

gdzie $A_1, A_2, ..., A_m$ są wykonalne alternatywy, $C_1, C_2, ..., C_n$ - kryteria oceny, x_{ij} jest oceną jakości alternatywy A_i według kryterium C_j , w_j jest wagą kryterium C_j .

W ogóle mówiąc, możemy oświadczyć, że proces wyboru lepszej alternatywy zaczyna się od ustalenia zestawu kryteria. Potem, osoby podejmujące decyzję korzystają zestawem kryteriów, żeby ocenić każdą alternatywę, i na ich podstawie otrzymują masyw ocen (rys. 2).

Figure: Ocena alternatyw

Schemat metody TOPSIS

Krok 1. Określenie macierzy decyzji (1)

Krok 2. Normalizacja macierzy decyzji

$$n_{ij} = \frac{x_{ij}}{\sqrt{\sum_{k=1}^{m} x_{kj}^2}} \tag{2}$$

Consequently, with this normalization each attribute has the same unit scale.

Krok 3. Wyliczamy zważoną znormalizowaną macierz decyzji

$$v_{ij} = w_j \otimes n_{i,j}, \quad i = \overline{1, m}, j = \overline{1, n}$$
 (3)

Wagi mogą być otrzymane np. za pomocą metody AHP (dalej)

Krok 4. Wyliczamy pozytywne i negatywne idealne rozwiązania (positive and negative ideal solutions)

Pozytywny idealny zbiór wartości określamy jako

$$A^{+} = \{v_{1}^{+}, v_{2}^{+}, ..., v_{n}^{+}\}$$
where $v_{j}^{+} = \begin{cases} \max_{i=\overline{1,m}} v_{ij} & \text{if } j \in J \\ \min_{i=\overline{1,m}} v_{ij} & \text{if } j \in J' \end{cases}$ (4)

Negatywny idealny zbiór wartości określamy jako

$$A^{-} = \{v_{1}^{-}, v_{2}^{-}, ..., v_{n}^{-}\}$$
where $v_{j}^{-} = \begin{cases} \min_{i=\overline{1,m}} v_{ij} & \text{if } j \in J \\ \max_{i=\overline{1,m}} v_{ij} & \text{if } j \in J' \end{cases}$ (5)

Tu J kryteria które chciałybyśmy maksymalizować, J' – minimalizować.

Krok 5. Wyliczamy miary odległości alternatyw od pozytywnego oraz negatywnego idealnych rozwiązań

$$d_i^+ = \left(\sum_{j=1}^n (v_{ij} - v_j^+)^2\right)^{1/2}, \quad i = \overline{1, m}$$
 (6)

$$d_{i}^{-} = \left(\sum_{j=1}^{n} (v_{ij} - v_{j}^{-})^{2}\right)^{1/2}, \quad i = \overline{1, m}$$
 (7)

Krok 6. Wyliczamy względną bliskość do idealnego rozwiązania

$$R_i = \frac{d_i^-}{d_i^+ + d_i^-}, \quad i = \overline{1, m}$$
 (8)

Zauważymy że $R_i \in [0,1]$. Jeżeli $R_i = 1$ wtedy $A_i = A^+$. Jeżeli $R_i = 0$ wtedy $A_i = A^-$.

Krok 7. Rankingujemy A_i według zmniejszającego się porządku R_i .

Implementacja metody MCDM w R

Metody MCDA są zrealizowane w paczkach

- MCDM Multi-Criteria Decision Making Methods
- OutrankingTools Functions for Solving Multiple-criteria
 Decision-making Problems https://cran.r-project.org/web/packages/OutrankingTools/OutrankingTools.pdf
- topsis TOPSIS method for multiple-criteria decision making (MCDM)

Procedura analitycznej hierarchizacji jest modelem procesu decyzyjnego, w którym główny problem (ogólnie – problemy złożone) rozkłada się na problemy prostsze z ustanowieniem hierarchicznych relacji między tymi problemami. Problem decyzyjny przedstawia się w postaci drzewa decyzyjnego, w którym wierzchołek jest celem, gałęzie reprezentują kryteria decyzyjne, a ostatni poziom przedstawia warianty decyzyjne do wyboru (Fig. 3)

- Wynikiem prowadzonej analizy jest ustalenie rankingu wariantów z wykorzystaniem subiektywnych ocen otrzymanych z analizy problemów rangi niższej (gałęzie drzewa).
- Rozwiązanie końcowe akceptowane jest z uwzględnieniem wag poszczególnych kryteriów.
- Przy skomplikowanych problemach, kiedy otrzymane drzewo jest obszerne a analiza utrudniona, aplikacja omawianej metody możliwa jest z zastosowaniem systemu ekspertowego.

Figure: Ilustracja procedury analitycznej hierarchizacji

Przykładem zastosowania metody analitycznej hierarchizacji może być rozwiązanie zadania wyboru dostawcy, w którym:

- rozważanymi aspektami (kryteriami) są: jakość produktów, koszt, szybkość i pewność dostawy, struktura biznesowa dostawcy,
- realizowane są porównania w parach,
- poszczególnym kryteriom i rozwiązaniom przypisane są współczynniki wagowe,
- zbudowana jest supermacierz dla wyboru optymalnego rozwiązania.

Nie zawsze preferencję można wyrazić w sposób bezpośredni na skali liczbowej

Wyrażenie preferencji względnej w stosunku do wszystkich par wariantów z wyróżnieniem pięciu sytuacji podstawowych (Saaty 1980):

- sytuacja równoważności, kiedy obydwa warianty są równowa żne,
- sytuacja słabej preferencji, kiedy pierwszy wariant jest słabo preferowany względem drugiego, albo odwrotnie,
- sytuacja istotnej preferencji, kiedy pierwszy wariant jest istotnie preferowany względem drugiego, albo odwrotnie,
- sytuacja wyraźnej preferencji, kiedy pierwszy wariant jest wyra źnie preferowany względem drugiego, albo odwrotnie,
- sytuacja bezwzględnej preferencji, kiedy pierwszy wariant jest bezwzględnie preferowany względem drugiego, albo odwrotnie.

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji

Wyznaczenie uporządkowania na skali liczbowej - obliczenie wag

Ocena r_{ij}	Preferencja							
1	Równoważność wariantów i, j							
3	Słaba preferencja wariantu i–tego w stosunku do wariantu							
	j-tego							
5	Istotna preferencja wariantu i–tego w stosunku do wari-							
	antu j-tego							
7	Wyraźna preferencja wariantu i–tego w stosunku do wari-							
	antu j- tego							
9	Bezwzględna preferencja wariantu i–tego w stosunku do							
	wariantu j-tego							
2,4,6,8	Wartości pośrednie							
Odwrotności	Odpowiednia preferencja odwrotna do wyżej							
powyższych	wymienionych							
liczb	4□> 4@> 4∃> 4∃> ∃							

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji

Implementacja metody analitycznej hierarchizacji w R

Metoda analitycznej hierarchizacji jest zrealizowana w paczce ahp
https://cran.r-project.org/web/packages/ahp/index.html
Dokumentacja znajdeje się to
https://cran.r-project.org/web/packages/ahp/ahp.pdf
Oto przykłady stosowań https://cran.r-project.org/web/packages/ahp/vignettes/examples.html
Format pliku .AHP dla opisywania modelu decyzyjnego https://cran.r-project.org/web/packages/ahp/vignettes/file-format.html

Wybór samochoda I

price: 20360

passengers: 5 cargo: 14

mpg: 31

Version: 2.0

```
# Alternatives Section
#

Alternatives: &alternatives
# Here, we list all the alternatives, together with th
# We can use these attributes later in the file when d
# preferenceFunctions. The attributes can be quantitat
# qualitative.
Accord Sedan:
```

Wybór samochoda II plik .AHP

```
curb weight: 3289
  safety class: Midsize Car
  crash rating: 4 in Side Impact Front
  residual value: 0.52
Accord Hybrid:
  price: 31090
 mpg: 35
  passengers: 5
  cargo: 14
  curb weight: 3501
  safety class: Midsize Car
  crash rating: 4 in Side Impact Front
  residual value: 0.46
Pilot:
  price: 27595
```

Wybór samochoda III

```
mpg: 22
  passengers: 8
  cargo: 87.6
  curb weight: 4264
  safety class: Midsize SUV
  crash rating: 4 in Rollover
  residual value: 0.4
CR-V.
  price: 20700
  mpg: 27
  passengers: 5
  cargo: 72.9
  curb weight: 3389
  safety class: Small SUV
  crash rating: 4 in Rollover
```

Wybór samochoda IV

```
residual value: 0.55
Element:
  price: 18980
 mpg: 25
  passengers: 4
  cargo: 74.6
  curb weight: 3433
  safety class: Small SUV
  crash rating: 3 in Rollover
  residual value: 0.48
Odyssey:
  price: 25645
 mpg: 26
  passengers: 8
  cargo: 147.4
```

Wybór samochoda V plik .AHP

```
curb weight: 4385
safety class: Minivan
crash rating: All 5 Stars
residual value: 0.48
```

Goal:

Wybór samochoda VI

```
# The goal spans a tree of criteria and the alternativ
  name: Buy Car
  description: >
    This is a classic single decision maker problem. I
    the situation facing by a family that wants to buy
  author: unknown
  preferences:
    # preferences are typically defined pairwise
    # 1 means: A is equal to B
    # 9 means: A is highly preferrable to B
    # 1/9 means: B is highly preferrable to A
    pairwise:
      [Cost, Safety, 3]
      - [Cost, Style, 7]
      - [Cost, Capacity, 3]
```

Wybór samochoda VII plik .AHP

```
– [Safety, Style, 9]
   Safety, Capacity, 1
   - [Style, Capacity, 1/7]
children:
  Cost:
    preferences:
      pairwise:
       - [Purchase Price, Fuel Cost, 2]
       - [Purchase Price, Maintenance Cost, 5]
       - [Purchase Price, Resale Value, 3]
       - [Fuel Cost, Maintenance Cost, 2]
       - [Fuel Cost, Resale Value, 2]

    [Maintenance Cost, Resale Value, 1/2]

    children:
      Purchase Price:
```

Wybór samochoda VIII plik .AHP

```
preferences:
 pairwise:
   - [Accord Sedan, Accord Hybrid, 9]
   - [Accord Sedan, Pilot, 9]
   – [Accord Sedan, CR–V, 1]
   – [Accord Sedan, Element, 1/2]
   [Accord Sedan, Odyssey, 5]
   - [Accord Hybrid, Pilot, 1]
   [Accord Hybrid, CR–V, 1/9]
   - [Accord Hybrid, Element, 1/9]
   – [Accord Hybrid, Odyssey, 1/7]
   [Pilot, CR–V, 1/9]
   - [Pilot, Element, 1/9]
   Pilot, Odyssey, 1/7]
   - [CR-V, Element, 1/2]
```

Wybór samochoda IX plik .AHP

- [CR-V, Odyssey, 5]
 [Element, Odyssey, 6]
 children: *alternatives
- # We don't need to retype the alternatives h
 # we can simply make a reference to the alte
 # defined in the alternatives section of the
 Fuel Cost:
 - # Alternatively to the pairwise preferences, # can define a preference function. This fun # is in R syntax, and needs to have two argu # The Calculate method will pass all combina # of alternatives to this function, and the # is expected to return the pairwise preferer # a number between 1/9 and 9.

preferences:

Wybór samochoda X plik .AHP

```
pairwiseFunction:
      function (a1, a2) min(9, max(1/9, a2)\mbox{mpg}
  children: *alternatives
Maintenance Cost:
  preferences:
    pairwise:
     - [Accord Sedan, Accord Hybrid, 1.5]
     [Accord Sedan, Pilot, 4]
     [Accord Sedan, CR–V, 4]

    [Accord Sedan, Element, 4]

     [Accord Sedan, Odyssey, 5]
     - [Accord Hybrid, Pilot, 4]
     - [Accord Hybrid, CR-V, 4]
     [Accord Hybrid, Element, 4]
     [Accord Hybrid, Odyssey, 5]
```

Wybór samochoda XI plik .AHP

```
— [Pilot, CR—V, 1]
     - [Pilot, Element, 1.2]
     - [Pilot, Odyssey, 1]
     — [CR—V, Element, 1]
     [CR–V. Odvssev. 3]
     [Element, Odyssey, 2]
 children: *alternatives
Resale Value:
 preferences:
   pairwiseFunction: >
     GetResalePreference <- function(a1, a2)
       if (a1) residual value < a2 residu
       ratio <- a1\$'residual value' / a2\$'r
       if (ratio < 1.05) return (1)
       if (ratio < 1.1) return (2)
```

```
if (ratio < 1.15) return (3)
            if (ratio < 1.2) return (4)
            if (ratio < 1.25) return (5)
            return (5)
      children: *alternatives
Safety:
  preferences:
    pairwise:
     - [Accord Sedan, Accord Hybrid, 1]
     - [Accord Sedan, Pilot, 5]
     - [Accord Sedan, CR-V, 7]
     [Accord Sedan, Element, 9]
     – [Accord Sedan, Odyssey, 1/3]
     [Accord Hybrid, Pilot, 5]
```

Wybór samochoda XIII

```
[Accord Hybrid, CR–V, 7]
     - [Accord Hybrid, Element, 9]
     - [Accord Hybrid, Odyssey, 1/3]
     [Pilot, CR–V, 2]
     - [Pilot, Element, 9]
     Pilot, Odyssey, 1/8]
     - [CR-V, Element, 2]
     [CR-V, Odyssey, 1/8]
     - [Element, Odyssey, 1/9]
 children: *alternatives
Style:
 preferences:
    pairwise:

    [Accord Sedan, Accord Hybrid, 1]

     [Accord Sedan, Pilot, 7]
```

Wybór samochoda XIV

```
[Accord Sedan, CR–V, 5]
     [Accord Sedan, Element, 9]
     [Accord Sedan, Odyssey, 6]
     - [Accord Hybrid, Pilot, 7]
     - [Accord Hybrid, CR-V, 5]
     - [Accord Hybrid, Element, 9]
     - [Accord Hybrid, Odyssey, 6]
     Pilot, CR-V, 1/6]
     [Pilot, Element, 3]
     Pilot, Odyssey, 1/3]
     - [CR-V, Element, 7]
     - [CR-V, Odyssey, 5]
     - [Element, Odyssey, 1/5]
 children: *alternatives
Capacity:
```

Wybór samochoda XV plik .AHP

```
preferences:
  pairwise:

    Cargo Capacity, Passenger Capacity, 1/5]

children:
  Cargo Capacity:
    preferences:
      pairwiseFunction: >
        CargoPreference <- function(a1, a2) {</pre>
          if (a1\scargo < a2\scargo) return (1/C)
          ratio <- a1\$cargo / a2\$cargo
          if (ratio < 3) return (1)
          if (ratio < 8) return (2)
          return (3)
    children: *alternatives
```

Wybór samochoda XVI plik .AHP

```
Passenger Capacity:
  preferences:
    pairwise:
     - [Accord Sedan, Accord Hybrid, 1]

    [Accord Sedan, Pilot, 1/2]

     – [Accord Sedan, CR–V, 1]
     - [Accord Sedan, Element, 3]
     [Accord Sedan, Odyssey, 1/2]
     - [Accord Hybrid, Pilot, 1/2]
     - [Accord Hybrid, CR-V, 1]

    [Accord Hybrid, Element, 3]

     - [Accord Hybrid, Odyssey, 1/2]
     – [Pilot, CR–V, 2]
     - [Pilot, Element, 6]
     [Pilot, Odyssey, 1]
```

Wybór samochoda XVII plik .AHP

```
- [CR-V, Element, 3]
- [CR-V, Odyssey, 1/2]
- [Element, Odyssey, 1/6]
children: *alternatives
#
# End of Goal Section
```

Visualize(carAhp)

AnalyzeTable(carAhp)

	Weight	Odyssey	Accord Sedan	CR-V	Element	Accord Hybrid	Pilot	Inconsistency
Buy Car	100.0%	22.0%	21.0%	16.3%	15.1%	14.1%	11.5%	7.4%
Cost	51.0%	5.9%	11.7%	11.7%	12.9%	4.8%	4.0%	1.5%
Purchase Price	24.9%	2.3%	6.1%	6.1%	9.1%	0.6%	0.6%	6.8%
Fuel Cost	12.8%	2.2%	1.9%	2.1%	2.3%	1.7%	2.6%	0.0%
Resale Value	8.2%	1.1%	1.9%	2.9%	1.1%	0.9%	0.3%	3.2%
Maintenance Cost	5.1%	0.3%	1.8%	0.5%	0.4%	1.6%	0.4%	2.3%
Safety	23.4%	10.2%	5.1%	0.8%	0.5%	5.1%	1.8%	8.1%
Capacity	21.5%	5.7%	2.8%	3.1%	1.5%	2.8%	5.6%	0.0%
Passenger Capacity	17.9%	4.9%	2.4%	2.4%	0.8%	2.4%	4.9%	0.0%
Cargo Capacity	3.6%	0.8%	0.3%	0.7%	0.7%	0.3%	0.7%	0.4%
Style	4.1%	0.3%	1.5%	0.6%	0.1%	1.5%	0.2%	1 0.2%

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji I Warianty Zadania

Zadanie dotyczy podejmowania decyzji przy kupowaniu urządzeń RTV AGD. Używając metody AHP opracować plik w języku R oraz plik AHP danych wejściowych z wykorzystaniem odpowiednich paczek.

Podjąć decyzję o kupowaniu smartfonu Samsung z systemem Android 6, ośmiordzieniowym procesorem dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie smartfonu: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta smartfon. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM, pamięć wbudowana, aparat foto, cena. Komunikacja (wifi itp) nie ma znaczenia. Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji II Warianty Zadania

Podjąć decyzję o kupowaniu Macbooka Apple dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie Macbooka: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta Macbook. Uwzglendniamy następijące dane: ekran, pamięć RAM, dysk, cena i ewentualnie jakieś inne parametry. Dane (10 Macbooków) pobrać ze strony

http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji III Warianty Zadania

Podjąć decyzję o kupowaniu aparatu z wymienną optyką dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie Macbooka: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta aparat. Uwzglendniamy następijące dane: rozdzielczość, zakres czułości, obiektyw w zestawie itp. Dane (12 aparatów) pobrać ze strony

http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji IV Warianty Zadania

Podjąć decyzję o kupowaniu lodówki dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie lodówki: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta lodówkę. Uwzglendniamy następijące dane: pojemność użytkową chłodziarki, pojemność użytkową zamrażarki, cena oraz jakieś inne parametry (kolor itp). Dane (15 lodówek) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji V

Warianty Zadania

- Podjąć decyzję o kupowaniu lodówki turystycznej typu elektrycznego dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie lodówki: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta lodówkę. Uwzglendniamy następijące dane: pojemność, wagą, cena itp. Dane (20 lodówek) pobrać ze strony http://www.euro.com.pl
- Podjąć decyzję o kupowaniu pralki ze sposobem załadunku od przodu dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie pralki: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta pralkę. Uwzglendniamy następijące dane: pojemność, maksymalna prędkość wirowania, cena itp. Dane (20 prałek) pobrać ze strony

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji VI ^{Warianty} Zadania

http://www.euro.com.pl

Podjąć decyzję o kupowaniu tableta iPad z systemem iOS 9, 2-rdzeniowym procesorem, modem LTE dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie tableta: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta tablet. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, cena itp. Dane (10 iPadów) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji VII

Warianty Zadania

- Podjąć decyzję o kupowaniu monitora LED dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie monitora: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta monitor. Uwzglendniamy następijące dane: matrycą (pikseli), jasność ekranu, czas reakcji matrycy, cena itp. Dane (10 monitorów) pobrać ze strony http://www.euro.com.pl
- Podjąć decyzję o kupowaniu smartfonu Microsoft dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie smartfona: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta smartfon. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji VIII Warianty Zadania

wbudowana, aparat foto, cena itp. Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Podjąć decyzję o kupowaniu smartfona Lenovo z systemem Android 6, ośmiokdzieniowym procesorem dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie smartfona: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta smartfon. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, cena, komunikacja (wifi itp). Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji IX Warianty Zadania

Podjąć decyzję o kupowaniu smartfonu z dual sim Huawei z systemem Android 6, ośmiokdzieniowym procesorem dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie smartfona: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta smartfon. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, cena, komunikacja (wifi itp). Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach pewności. Procedura analitycznej hierarchizacji X Warianty Zadania

Podjąć decyzję o kupowaniu smartfonu iPhone z czterodzieniowym procesorem architektury 64-bit dla klienta. Dla klienta udało się określić cztery kryteria, które powinny służyć ocenie smartfona: wydajność, jakość, styl, cena. Na podstawie względnej ważności poszczególnych kryteriów wybrać dla klienta smartfona. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, cena, komunikacja (wifi itp). Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe I

Sztuczne sieci neuronowe są techniką inteligentną powstałą z inspiracji strukturą i możliwościami analitycznymi ludzkiego mózgu.

Zastosowanie sieci neuronowych wiąże się z możliwością ich uczenia do konkretnego zadania, tak iż sieć taka staje się matematycznym modelem systemu czy procesu, który podlega analizie.

Niezależnie od konkretnej struktury, każda sieć neuronowa zbudowana jest z pojedynczych modułów obliczeniowych, zwanych neuronami

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe II

Figure: Model pojedynczego neuronu z nieliniową funkcją aktywacji

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe III

Pojedynczy neuron realizuje obliczeniu sumy ważonej sygnałów wejściowych z nałożoną nieliniową funkcją aktywacji. Jego wyjście określone jest zależnością

$$a = f(X * W + b)$$

gdzie: X – wektor sygnałów wejściowych o rozmiarze $[n \times 1]$, W – wektor wag synaptycznych o rozmiarze $[1 \times n]$, f(e) – funkcja aktywacji neuronu, zwykle nieliniowa, b – współczynnik przesunięcia (ang. bias). Projektowanie neuronowego układu rozpoznającego lub decyzyjnego zarówno jedno-neuronowego, jak i wielowarstwowego, jest możliwe poprzez uczenie sieci neuronowej z wykorzystaniem odpowiednio przygotowanych wzorców uczących i stosownego algorytmu uczenia.

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe IV

Figure: Ilustracja procesu uczenia pojedynczego neuronu

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe V

Szczegółowe algorytmy uczenia można znaleźć w literaturze, jak również w pomocy paczki neuralnet programu R, gdzie można skorzystać z gotowych procedur uczenia i testowania sieci neuronowych.

Ze względu na to, że możliwości obliczeniowe pojedynczego neuronu są ograniczone, praktyczne zastosowanie znalazły tzw. sieci neuronowe będące układami pojedynczych neuronów ułożonych w pewne struktury. Do najczęściej stosowanych sieci neuronowych należy zaliczyć:

- sieci typu wielowarstwowy perceptron, Rys. 6 trój- lub czterowarstwowe sieci jednokierunkowe, sieci z radialną funkcją bazową,
- sieci typu Hoppfielda maszyny Bolzmanna, Gaussa, sieci chaotyczne,
- sieci Kohonena dwu- lub trójwymiarowe sieci kratowe,
- inne rzadziej stosowane.

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe VI

Figure: Struktura wielowarstwowego perceptronu

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe VII

Przygotowanie efektywnego modułu decyzyjnego opartego na technice SSN wiąże się z rozwiązaniem zadań należących do dwóch grup problemowych:

- wybór optymalnej sieci neuronowej (rodzaj sieci, liczba warstw i neuronów w poszczególnych warstwach sieci, rodzaj funkcji aktywacji neuronów),
- uczenie sieci (algorytm uczenia, początkowe wartości wag synaptycznych i współczynników przesunięcia, dobór sygnałów uczących i testujących).

Dodatkowe trudności związane są z wyborem "najlepszych" sygnałów dla danego zadania klasyfikacji wiążą się z rozważeniem następujących kwestii:

 liczba i rodzaj sygnałów wejściowych sieci (składowych wektora uczącego i testującego) – niosących w miarę możliwości maksymalną ilość informacji o zjawiskach mających podlegać klasyfikacji,

Podejmowanie decyzji w warunkach ryzyko. Sztuczne sieci neuronowe VIII

- wstępne przetwarzanie sygnałów dostarczanych z systemu elektroenergetycznego (algorytmy cyfrowego pomiaru wielkości decyzyjnych),
- długość okna decyzyjnego (ilość próbek sygnałów w wektorze wejściowym sieci).

Implementacja metody sieci neuronowej w R

```
Metoda sztucznej sieci neuronowych jest zrealizowana w paczce neuralnet https://cran.r-project.org/web/packages/ahp/index.html

Dokumentacja znajduje się https:
//cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

Oto przykłady stosowań http://gekkoquant.com/2012/05/26/
neural-networks-with-r-simple-example
https://www.r-bloggers.com/
fitting-a-neural-network-in-r-neuralnet-package/
```

Instrukcji do korzystania neuralnet

```
http://www.kdnuggets.com/2016/08/
begineers-guide-neural-networks-r.html
https://www.r-bloggers.com/
using-neural-networks-for-credit-scoring-a-simple-example/
https://journal.r-project.org/archive/2010-1/RJournal_
2010-1_Guenther+Fritsch.pdf
```

Przykład stosowania neuralnet I

8,256, 64.500.

```
#install.packages('neuralnet')
library("neuralnet")
#Going to create a neural network to perform prediction #Type ?neuralnet
for more information on the neuralnet library
#Generate training data
#And store them as a dataframe
traininginput <- as.data.frame(matrix(c(32,1000,
16,500.
8,256,
64,500.
32,500.
64,1000.
16,500.
```

Przykład stosowania neuralnet II

```
32,500),nrow=10,ncol=2))
trainingoutput <- c(4000,3000,1100,2200,2500,4200)
# Create Vector of Column Max and Min Values
maxs <- apply(traininginput[,1:2], 10, max)
mins <- apply(traininginput[,1:2], 10, min)
# Use scale() and convert the resulting matrix to a data frame
scaled.traininginput <- as.data.frame(scale(traininginput[,1:2],center =
mins, scale = maxs - mins))
# Check out results
print(head(scaled.traininginput,2))
#Column bind the data into one variable
trainingdata <- cbind(scaled.traininginput,trainingoutput)
colnames(trainingdata) <- c("RAM", "HDD", "Price")
print(trainingdata)
#Train the neural network
\#Going to have c(3,2) hidden layers
```

Przykład stosowania neuralnet III

```
#Threshold is a numeric value specifying the threshold for the partial
#derivatives of the error function as stopping criteria.
net.price <- neuralnet(Price RAM+HDD, training data, hidden=c(7,5,3,2),
threshold=0.01)
print(net.price)
#Plot the neural network
plot(net.price)
#Test the neural network on some training data
testdata <- as.data.frame(matrix(c(64,1000,
32.500.
8,100),nrow=3,ncol=2)) #Generate some articles
scaled.testdata <- as.data.frame(scale(testdata[,1:2],center = mins, scale
= maxs - mins)
net.results <- compute(net.price, scaled.testdata) #Run them through the
neural network
#Lets see what properties net.price has
```

Przykład stosowania neuralnet IV

```
ls(net.results)
#Lets see the results
print(net.results$net.result)
```


Figure: Sieć neuronowa dla danych wejściowych znormalizowanych

Warianty zadania z użyciem neuralnet I

Zadanie dotyczy prognozowania ceny urządzeń RTV AGD (error ≤ 100 zł). Używając metody sztucznych sieci neuronowych opracować plik w języku R z wykorzystaniem paczki *neuralnet*.

- Smartfon Samsung z systemem Android 6, ośmiordzieniowym procesorem. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM, pamięć wbudowana, aparat foto. Komunikacja (wifi itp) nie ma znaczenia. Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl
- Macbook Apple. Uwzglendniamy następijące dane: ekran, pamięć RAM, dysk i ewentualnie jakieś inne parametry. Dane (10 Macbooków) pobrać ze strony http://www.euro.com.pl

Warianty zadania z użyciem neuralnet II

- Aparat z wymienną optyką. Uwzglendniamy następijące dane: rozdzielczość, zakres czułości, obiektyw w zestawie itp. Dane (12 aparatów) pobrać ze strony http://www.euro.com.pl
- Lodówka. Uwzglendniamy następijące dane: pojemność użytkowa chłodziarki, pojemność użytkową zamrażarki oraz jakieś inne parametry. Dane (15 lodówek) pobrać ze strony http://www.euro.com.pl
- Lodówka turystyczna typu elektrycznego. Uwzglendniamy następijące dane: pojemność, wagą itp. Dane (20 lodówek) pobrać ze strony http://www.euro.com.pl
- O Pralka ze sposobem załadunku od przodu. Uwzglendniamy następijące dane: pojemność, maksymalna prędkość wirowania itp. Dane (20 prałek) pobrać ze strony http://www.euro.com.pl

Warianty zadania z użyciem neuralnet III

- ▼ Tablet iPad z systemem iOS 9, 2-rdzeniowym procesorem, modem LTE. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną itp. Dane (10 iPadów) pobrać ze strony http://www.euro.com.pl
- Monitor LED. Uwzglendniamy następijące dane: matrycą (pikseli), jasność ekranu, czas reakcji matrycy itp. Dane (10 monitorów) pobrać ze strony http://www.euro.com.pl
- Smartfon Microsoft. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowana, aparat foto itp. Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Warianty zadania z użyciem neuralnet IV

- Smartfon Lenovo z systemem Android 6, ośmioκdzieniowym procesorem. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, komunikacja (wifi itp). Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl
- Smartfon z dual sim Huawei z systemem Android 6, ośmiokdzieniowym procesorem. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, komunikacja (wifi itp). Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl
- Smartfon iPhone z czterodzieniowym procesorem architektury 64-bit. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, cena, komunikacja (wifi itp). Dane (10 smartfonów) pobrać ze strony http://www.euro.com.pl

Podejmowanie decyzji w warunkach ryzyko. Drzewa decyzyjne I

Definition

Drzewa decyzyjne stanowią model decyzyjny, w którym w uporządkowany sposób przedstawia się hierarchiczne ciągi działań (w pełni zależnych od decydenta) i zdarzeń (niezależnych od decydenta, czasami o charakterze losowym).

- Graficzne przedstawienie w postaci drzewa decyzyjnego ułatwia analizę wszystkich elementów sytuacji istotnych przy podejmowaniu decyzji.
- W efekcie możliwe staje się określenie wariantów decyzyjnych i ich konsekwencji.
- W modelu tym nie występują tu w jawnej postaci warunki sztywne i elastyczne, są one uwzględniane w trakcie budowy drzewa.

Podejmowanie decyzji w warunkach ryzyko. Drzewa decyzyjne II

- Dodatkowe podanie prawdopodobieństw i kosztów poszczególnych wariantów decyzyjnych prowadzi do zwiększenia racjonalności optymalizacyjnej poprzez maksymalizację funkcji użyteczności.
- Celem stosowania modelu w postaci drzewa decyzyjnego jest uproszczenie oceny sytuacji decyzyjnej, model ten pozwala na jednoczesną analizę wielu wariantów decyzyjnych i kryteriów ich oceny.
- Model taki jest użyteczny, o ile drzewo nie staje się zbyt obszerne (nie mieści się na kartce lub ekranie).
- Z wykorzystaniem drzew decyzyjnych może być prowadzona analiza wielowariantowa (what-if analysis), a poprzez implementację programową możliwe jest zastosowanie tego modelu w komputerowych systemach wspomagania decyzji.

Podejmowanie decyzji w warunkach ryzyko. Drzewa decyzyjne III

Przykład. Przykład typowego drzewa decyzyjnego (2-poziomowego) przedstawiono na Rys. dalej

Rozważana jest tutaj sytuacja związana z ubezpieczeniem mieszkania, przy założeniu kosztów polisy w wysokości 3% oraz wkładu własnego w wysokości 2% wartości mieszkania. Możliwym zdarzeniom (brak kradzieży, kradzież niewielka – nie przekraczająca wkładu własnego oraz kradzież pełna) przypisano prawdopodobieństwa ich wystąpienia (odpowiednio 80, 15 i 5%). Zarówno wydatki związane z zakupem polisy, z ponoszeniem wkładu własnego, jak i rekompensatą za skradzione wyposażenie mieszkania (w przypadku rezygnacji z zakupu polisy) traktowane są jako strata, którą należy zminimalizować.

Podejmowanie decyzji w warunkach ryzyko. Drzewa decyzyjne IV

Figure: Drzewo decyzyjne dot. decyzji o zakupie polisy na ubezpieczenie mieszkania

Podejmowanie decyzji w warunkach ryzyko. Drzewa decyzyjne V

Wartość oczekiwaną straty związanej z daną decyzją można obliczyć z zależności (1.2) wprowadzonej przy okazji omawiania strategii scalania prawdopodobieństw i użyteczności, przy czym tutaj użytecznością (negatywną – strata) będzie koszt poniesiony przy danym wariancie decyzyjnym dla poszczególnych zdarzeń. Wartości iloczynów pi(sk) ui(sk) umieszczono w nawiasach kwadratowych pod zdarzeniami na Rys. 8. Oczekiwana strata dla poszczególnych decyzji wynosi

$$SPU(d_i) = \begin{cases} 3.4, & \text{dla decyzji kupować polisę} \\ 5.3, & \text{dla decyzji nie kupować polisę} \end{cases}$$

a zatem właściwą decyzją będzie zakup polisy ubezpieczeniowej.

Warianty zadania konstruowania drzewa decyzji I

Zadanie dotyczy prognozowania oceny klientów (w skali 5-punktowej, Error < 5%) urządzeń RTV AGD. Używając metody indukcji drzewa decyzji C5.0 opracować plik w języku R z wykorzystaniem paczki *C50*.

- Smartfon Samsung z systemem Android 6, ośmiordzieniowym procesorem. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM, pamięć wbudowana, aparat foto. Komunikacja (wifi itp) nie ma znaczenia. Dane (>10 smartfonów) pobrać ze strony http://www.euro.com.pl
- Macbook Apple. Uwzglendniamy następijące dane: ekran, pamięć RAM, dysk i ewentualnie jakieś inne parametry. Dane (>10 Macbooków) pobrać ze strony http://www.euro.com.pl

Warianty zadania konstruowania drzewa decyzji II

- Aparat z wymienną optyką. Uwzglendniamy następijące dane: rozdzielczość, zakres czułości, obiektyw w zestawie itp. Dane (12 aparatów) pobrać ze strony http://www.euro.com.pl
- Lodówka. Uwzglendniamy następijące dane: pojemność użytkowa chłodziarki, pojemność użytkową zamrażarki oraz jakieś inne parametry. Dane (15 lodówek) pobrać ze strony http://www.euro.com.pl
- Lodówka turystyczna typu elektrycznego. Uwzglendniamy następijące dane: pojemność, wagą itp. Dane (20 lodówek) pobrać ze strony http://www.euro.com.pl
- O Pralka ze sposobem załadunku od przodu. Uwzglendniamy następijące dane: pojemność, maksymalna prędkość wirowania itp. Dane (20 prałek) pobrać ze strony http://www.euro.com.pl

Warianty zadania konstruowania drzewa decyzji III

- ▼ Tablet iPad z systemem iOS 9, 2-rdzeniowym procesorem, modem LTE. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną itp. Dane (10 iPadów) pobrać ze strony http://www.euro.com.pl
- Monitor LED. Uwzglendniamy następijące dane: matrycą (pikseli), jasność ekranu, czas reakcji matrycy itp. Dane (>10 monitorów) pobrać ze strony http://www.euro.com.pl
- Smartfon Microsoft. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowana, aparat foto itp. Dane (>10 smartfonów) pobrać ze strony http://www.euro.com.pl

Warianty zadania konstruowania drzewa decyzji IV

- Smartfon Lenovo z systemem Android 6, ośmioκdzieniowym procesorem. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, komunikacja (wifi itp). Dane (>10 smartfonów) pobrać ze strony http://www.euro.com.pl
- Smartfon z dual sim Huawei z systemem Android 6, ośmiokdzieniowym procesorem. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, komunikacja (wifi itp). Dane (>10 smartfonów) pobrać ze strony http://www.euro.com.pl
- Smartfon iPhone z czterodzieniowym procesorem architektury 64-bit. Uwzglendniamy następijące dane: wyświetlacz, pamięć RAM i pamięć wbudowaną, aparat foto, cena, komunikacja (wifi itp). Dane (>10 smartfonów) pobrać ze strony http://www.euro.com.pl

Figure: Drzewo z użyciem C50

96 / 110

Drzewo decyzyjne w C50

```
library("C50")
#Generate training data
#And store them as a dataframe
RAM = c(32,16,8,64,32,64)
Monitor = c(19,19,15,15,17,19)
Price = c(4000,3000,1100,2200,2500,4200)
Responces = c("3", "2", "1", "5", "3", "5")
HDD = c(1000,500,256,500,500,1000)
mat <- data.frame(RAM,Responces,HDD,Price,Monitor)
mat
tuples <- as.data.frame(mat)
tuples
dt <- C5.0(tuples[1:6,-2],tuples$Responces)
dt
summary(dt)
plot(dt)
```

Podejmowanie decyzji w warunkach niepewności. Logika rozmyta

- Potrzeba opisania zjawisk i pojęć wieloznacznych i nieprecyzyjnych używanych swobodnie w języku naturalnym, np.
 - "wysoka temperatura"
 - "młody człowiek"
 - "średni wzrost"
 - "duże miasto"

Motywacje

- Wcześniej znane metody matematyczne, np.
 - klasyczna teoria zbiorów
 - logika dwuwartościowa,

nie były w stanie rozwiązać tego typu problemów.

Definition

Definicja [zbiór rozmyty]: Zbiorem rozmytym A w pewnej (niepustej) przestrzeni X, co zapisujemy jako $A \subseteq X$, nazywamy zbiór par

$$A = (x, \mu_A(x)); x \in X$$

gdzie

$$\mu_{A}: X \to [0,1]$$

jest funkcją przynależności zbioru rozmytego A. Funkcja ta każdemu elementowi $x \in X$ przypisuje jego stopień przynależności do zbioru rozmytego A, przy czym można wyróżnić 3 przypadki:

- $\mu_A(x) = 1$ oznacza pełną przynależność do zbioru rozmytego A, tzn. $x \in A$.
- $\mu_A(x) = 0$ oznacza brak przynależności elementu x do zbioru rozmytego A, tzn. $x \notin A$,
- $0 < \mu_A(x) < 1$ oznacza częściową przynależność elementu x do zbioru rozmytego A.

Notacja Zadeha

• X jest przestrzenią o skończonej liczbie elementów, $X=x_1,...,x_n$:

$$A = \frac{\mu_A(x_1)}{x_1} + \cdots + \frac{\mu_A(x_n)}{x_n}$$

X jest przestrzenią o nieskończonej liczbie elementów:

$$A = \int_X \frac{\mu_A(x)}{x}$$

Podejmowanie decyzji w warunkach niepewności. Logika rozmyta I

```
library(sets)
sets options("universe", seq(1, 100, 0.5))
variables <- set(
RAM = fuzzy partition(varnames = c(low = 1, middle = 50, high = 99),
sd = 5.0),
HDD = fuzzy partition(varnames = c(low = 1, sufficient = 50, excelent)
= 99),
sd = 15.0),
estimate = fuzzy partition(varnames = c(bad = 40, ok = 60, perfect = 60)
80).
FUN = fuzzy_c one, radius = 15
# Fuzzy rules
rules <- set(
```

Podejmowanie decyzji w warunkach niepewności. Logika rozmyta II

```
fuzzy rule(RAM %is% high && HDD %is% excelent, estimate %is%
perfect),
fuzzy rule(RAM %is% middle && HDD %is% sufficient, estimate %is%
ok),
fuzzy rule(RAM %is% low && HDD %is% low, estimate %is% bad),
fuzzy rule(RAM %is% middle && HDD %is% sufficient, estimate %is%
bad).
fuzzy rule(RAM %is% middle && HDD %is% low, estimate %is% bad)
model <- fuzzy system(variables, rules)
print(model)
plot(model)
example.1 <- fuzzy inference(model, list(RAM = 50, HDD = 30))
gset defuzzify(example.1, "centroid")
```

Podejmowanie decyzji w warunkach niepewności. Logika rozmyta III

```
dev.new()
plot(example.1)
```


- Tutorial http: //juandes.github.io/FuzzyLogic-R/docs/fuzzy_tutorial
- Dokumentacja pakietu sets
 https://cran.r-project.org/web/packages/sets/sets.pdf

Warianty Zadania - zbiory rozmyte

Zadanie dotyczy prognozowania oceny klientów o urządzeniach RTV AGD

Wnioski

Szczegółowa i dogłębna analiza decyzyjna nie zawsze jest niezbędna. Jest ona potrzebna, gdy:

- istnieje duża liczba możliwych wariantów decyzyjnych,
- sytuacja decyzyjna jest skomplikowana,
- z podejmowana decyzją związana jest możliwość wysokich korzyści lub dużych strat,
- proces decyzyjny jest złożony i/lub wieloetapowy,
- waga problemu decyzyjnego jest znaczna.

Wnioski

W procesie podejmowania decyzji można wyróżnić następujące fazy:

- identyfikacja sytuacji decyzyjnej,
- sformułowanie problemu decyzyjnego (opis sytuacji decyzyjnej),
- zbudowanie modelu decyzyjnego (syntetyczne, analityczne odwzorowanie problemu decyzyjnego),
- wyznaczenie zbioru decyzji dopuszczalnych i decyzji wystarczających lub decyzji optymalnych,
- podjęcie ostatecznej decyzji.

Wnioski

Metody podejmowania decyzji zrealizowane w R:

- optymalizacja wielukryterialna
- AHP
- sieci neuronowe
- drzewa decyzyjne
- reguły klasyfikacyjne
- zbiory rozmyte
- analiza krzywych decyzji (DCA)
- ???