

Physics I: Introduction to Wave Theory SDU Course Number: sd01232810 (Fall 2023)

Lecture 8: Resonance

Outline

- Atomic Oscillators and Resonance
- Fabry-Perot Resonance
- Rectangular Cavity Resonator

The Phenomenon of Resonance

In physics, **resonance** is a phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at specific frequencies.

Frequencies at which the response amplitude is a relative maximum are known as the system's **resonant frequencies** or resonance frequencies.

A resonator is a device or system that exhibits resonance or resonant behavior, that is, it naturally oscillates at some frequencies, called its resonant frequencies, with greater amplitude than at others.

Swing

LC circuit

Atomic Oscillators and Resonance

No external E Field

(Lorentz Oscillator Model)

$$\varepsilon(\omega) = \varepsilon_0 \left(1 + \frac{P}{\varepsilon_0 E} \right) = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2 - \omega_0^2 - j\gamma\omega} \right)$$

$$\omega_P = \sqrt{Ne^2/m\varepsilon_0}$$

(Plasma frequency)

$$\omega_0 = \sqrt{k/m}$$

Resonant frequency (or natural frequency)

Complex permittivity

$$\varepsilon(\omega) = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2 - \omega_0^2 - j\gamma\omega} \right) = \varepsilon_R - j\varepsilon_I$$

Around the resonance frequency ω_0 , the magnitude of ε_R has a drastic change and ε_I has the maximum value.

Resonators

STANDING WAVE

RESONATORS

Resonator (Parallel PEC mirrors)

TE Waveguide Mode (kz = 0)

$$E_{y}(x,z) = E_{0}\sin(kx)$$

$$H_z(x,z) = -\frac{k}{j\omega\mu} E_0 \cos(kx)$$

$$kL = m\pi$$
 (Guidance Condition)

$$\frac{2\pi f}{c}L = m\pi$$

$$\frac{2\pi f}{c}L = m\pi \qquad \Rightarrow \qquad f = m\frac{c}{2L} \qquad m = 1, 2, 3, \cdots$$

(Resonant frequency)

Resonator (general mirrors)

$$E_{1} = E_{0}$$

$$E_{2} = E_{0}R^{2} \exp(-j2kL)$$

$$E_{3} = E_{0}R^{4} \exp(-j4kL)$$

$$\vdots$$

$$E_{cavity} = E_1 \Big[1 + R^2 \exp(-j2kL) + R^4 \exp(-j4kL) + \cdots \Big] = \frac{E_1}{1 - R^2 \exp(-j2kL)}$$

$$I_{cavity} = \frac{I_0}{\left|1 - R^2 \exp(-j2kL)\right|^2} = \frac{I_0}{\left(1 - R^2\right)^2 + 4R^2 \sin^2(kL)}$$

$$kL = m\pi$$

Peaks of I_{cavity} : $kL = m\pi$ (Fabry-Perot resonator)

Fabry-Perot resonator

$$f_m = m \frac{c}{2L}$$

$$I_{\text{max}} = \frac{I_0}{\left(1 - R^2\right)^2}$$

Full width at half maximum (FWHM): Δf_n

Quality Factor: $Q = f_m/\Delta f_m$

Fabry-Perot resonator

$$f_m = m \frac{c}{2L}$$

$$I_{\text{max}} = \frac{I_0}{\left(1 - R^2\right)^2}$$

Full width at half maximum (FWHM): Δf_n

Quality Factor: $Q = f_m/\Delta f_m$

Transmitted light through a FP cavity

$$E_{transmitted} = \sum_{n} E_{tn} = \frac{T^{2} \exp(-jkL)}{1 - R^{2} \exp(-j2kL)} E_{input}$$

$$I_{transmitted} = \frac{T^{4}I_{input}}{\left|1 - R^{2} \exp(-j2kL)\right|^{2}} = \frac{\left(1 - R^{2}\right)^{2}I_{input}}{\left(1 - R^{2}\right)^{2} + 4R^{2} \sin^{2}(kL)}$$

Transmitted light through a FP cavity

Maximum:

$$kL = m\pi$$

Minimum:

$$kL = \left(m + \frac{1}{2}\right)\pi$$

$$t = \frac{I_{transmitted}}{I_{input}} = \frac{\left(1 - R^2\right)^2}{\left(1 - R^2\right)^2 + 4R^2 \sin^2\left(kL\right)}$$

Fabry-Perot resonator

$$t = \frac{I_{transmitted}}{I_{input}} = \frac{\left(1 - R^2\right)^2}{\left(1 - R^2\right)^2 + 4R^2 \sin^2\left(kL\right)}$$

Maximum:

$$kL = m\pi$$

Minimum:

$$kL = \left(m + \frac{1}{2}\right)\pi$$

FP resonance in dielectric slab

Plane Waves in Lossy Materials

Complex refractive index:

$$\tilde{n} = n - j\kappa$$

 $\kappa > 0$

Complex wave vector:
$$\tilde{k} = (n - j\kappa)k_0$$

$$\alpha = 2\kappa k_0$$

$$E_{y}(z,t) = \operatorname{Re}\left\{e^{-j(n-j\kappa)k_{0}z}e^{j\omega t}\right\} = E_{0}e^{-\alpha z/2}\cos(\omega t - nk_{0}z)$$

Propagation distance [cm]

Resonators with Internal Loss

Image is in the public domain

$$\frac{E_{t}}{E_{i}} = \frac{T^{2} \exp(-jkL)}{1 - R^{2} \exp(-j2kL)} = \frac{T^{2} \exp(-\kappa k_{0}L) \exp(-jnk_{0}L)}{1 - R^{2} \exp(-2\kappa k_{0}L) \exp(-j2nk_{0}L)}$$

...the EM wave loss is what heats the water inside the food

Laser Using Fabre-Perot Cavity

Resonators with Internal Gain

What if it was possible to make a material with "negative absorption" so the field grew in magnitude as it passed through a material?

$$\tilde{n} = n - j\kappa$$

$$\kappa < 0$$

$$t = \frac{E_t}{E_i} = \frac{T^2 \exp(-\kappa k_0 L) \exp(-jnk_0 L)}{1 - R^2 \exp(-2\kappa k_0 L) \exp(-j2nk_0 L)}$$

Resonance: $e^{j2nk_0L} = 1$

Lasers: Something for Nothing (almost)

at resonance
$$e^{j2nk_0L} = 1$$

$$\frac{E_t}{E_i} = \frac{T^2 \exp(-\kappa k_0 L) \exp(-jnk_0 L)}{1 - R^2 \exp(-2\kappa k_0 L) \exp(-j2nk_0 L)}$$

singularity at

$$1 = R^2 \exp(-2\kappa k_0 L) \exp(-j2nk_0 L)$$

$$\frac{E_t}{E_i} \to \infty$$

Image is in the public domain

Rectangular Waveguide - TE Modes

Boundary Conditions:

- (1) Ex = 0 at y = 0 and b
- (2) Ey = 0 at x = 0 and a

$$k_{x}a = m\pi$$
$$k_{y}b = n\pi$$

(Guidance Condition)

$$H_z = \cos(k_x x)\cos(k_y y)e^{-jk_z z}$$

$$H_{x} = \frac{jk_{x}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$H_{y} = \frac{jk_{y}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$E_{x} = \frac{j\omega\mu k_{y}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$E_{y} = \frac{-j\omega\mu k_{x}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

Rectangular Cavity Resonator - TE Modes

Boundary Conditions:

- (1) Ex = 0 at y = 0 and b
- (2) Ey = 0 at x = 0 and a

$$k_x a = m\pi$$
$$k_y b = n\pi$$
$$k_z d = p\pi$$

(Resonance Condition)

$$H_z = \cos(k_x x)\cos(k_y y)\sin(k_z z)$$

$$H_{x} = \frac{-k_{x}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)\cos(k_{z}z)$$

$$H_{y} = \frac{-k_{y}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)\cos(k_{z}z)$$

$$E_{x} = \frac{j\omega\mu k_{y}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)\sin(k_{z}z)$$

$$E_{y} = \frac{-j\omega\mu k_{x}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)\sin(k_{z}z)$$

$$k_r = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}$$

Rectangular Waveguide - TM Modes

Boundary Conditions:

- (1) Ex = 0 at y = 0 and b
- (2) Ey = 0 at x = 0 and a

$$k_{x}a = m\pi$$
$$k_{y}b = n\pi$$

(Guidance Condition)

$$E_z(x, y, z) = \sin(k_x x) \sin(k_y y) e^{-jk_z z}$$

$$E_{x} = \frac{-jk_{x}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$E_{y} = \frac{-jk_{y}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$H_{x} = \frac{j\omega\varepsilon k_{y}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$H_{y} = \frac{-j\omega\varepsilon k_{x}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

Rectangular Cavity Resonator - TM Modes

Boundary Conditions:

- (1) Ex = 0 at y = 0 and b
- (2) Ey = 0 at x = 0 and a

$$k_{x}a = m\pi$$

$$k_{y}b = n\pi$$

$$k_{z}d = p\pi$$

(Resonance Condition)

$$E_z(x, y, z) = \sin(k_x x)\sin(k_y y)\cos(k_z z)$$

$$E_{x} = \frac{-k_{x}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)\sin(k_{z}z)$$

$$E_{y} = \frac{-k_{y}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)\sin(k_{z}z)$$

$$H_{x} = \frac{j\omega\varepsilon k_{y}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)\cos(k_{z}z)$$

$$H_{y} = \frac{-j\omega\varepsilon k_{x}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)\cos(k_{z}z)$$

$$k_r = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{p\pi}{d}\right)^2}$$

Example

When the resonator dimensions are such that a>b>d, the lowest resonant spatial frequency (k) is

$$k_r = \sqrt{(\pi/a)^2 + (\pi/b)^2}$$
(m = n = 1, p = 0)

TM₁₁₀ mode:

$$E_z(x, y, z) = \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{b}\right)$$

$$E_x = E_y = 0$$

$$H_{x} = \frac{j\pi k_{y}}{\omega\mu b} \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi y}{b}\right)$$

$$H_{y} = \frac{-j\pi}{\omega\mu a} \cos\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{b}\right)$$

TM₁₁₀ mode:

$$k_r = \sqrt{\left(\pi/a\right)^2 + \left(\pi/b\right)^2}$$

$$E_z(x, y, z) = \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{b}\right)$$

$$H_{x} = \frac{j\pi k_{y}}{\omega\mu b} \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{\pi y}{b}\right)$$

$$H_{y} = \frac{-j\pi}{\omega\mu a} \cos\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{b}\right)$$

$$f_r = \frac{c_0 k_r}{2\pi n} = \frac{1}{2n} \sqrt{\left(c_0/a\right)^2 + \left(c_0/b\right)^2}$$

