Two Turn Inductor, One Turn Transformer Derivation of Reflection and Transmission Coefficients

By Mike Gibson and Ivor Catt, June 1986

Here is a description of the symbols used in the derivations:

 V_{FC} voltage on cable moving towards the inductor V_{RC} voltage on cable moving away from the inductor

Search ...

Navigation

Welcome

Catt-Question

Electromagnetic Theory

Discussion of the new theory

Energy Current

Newcomer to my theory

Battery and

Resistor

Fundamentals

of

Electromagnetic

Energy Transfer

The

Reciprocating

Capacitor

The new model for a charged

capacitor

Two Turn

Inductor, One

Turn

Transformer

Derivation of

Reflection and

Transmission

Coefficients

 Z_C characteristic impedance of the cable V_{FE} voltage traveling in the forward direction in the even mode V_{FO} voltage traveling in the forward direction in the odd mode V_{RE} voltage traveling in the reverse direction in the even mode V_{RO} voltage traveling in the reverse direction in the odd mode Z_E characteristic impedance of even mode Z_O characteristic impedance of odd mode V_{FS} secondary voltage moving away from the transformer V_{RS} secondary voltage moving towards the transformer

Going from the cable to the inductor, the following basic equations hold,

1)
$$V_{FC} + V_{RC} = V_{FE} + V_{FO} = V_{AB}$$

$$I_{FC} + I_{RC} = I_{FE} + I_{FO} = I_{AB}$$

$$3) \qquad V_{FE} - V_{FO} = V_{PQ} = 0$$

Transforming (2) into voltages gives,

$$V_{FC} = rac{V_{FC}}{Z_C} - rac{V_{RC}}{Z_C} = rac{V_{FE}}{Z_E} + rac{V_{FO}}{Z_O}$$

Multiplying through by Z_C and defining new terms for the resulting ratios yields,

$$V_{FC} - V_{RC} = r_E V_{FE} + r_O V_{FO}$$

$$6) \qquad \boxed{r_E = \frac{Z_C}{Z_E} \qquad r_O = \frac{Z_C}{Z_O}}$$

From (1),

$$7) \qquad V_{RC} = V_{FE} + V_{FO} - V_{FC}$$

Substituting (7) into (5) and gathering terms,

7)
$$V_{FC} - V_{FE} - V_{FO} + V_{FC} = r_E V_{FE} + r_O V_{FO}$$

Crosstalk
(Noise) in
Digital Systems
Books
Publications