Farbräume

R, G, B = [255, 255, 255]

1 Byte pro Farbe

RGB in HSI Umrechnung

Falls R = G = B, dann H undefiniert. Falls R = G = B = 0, dann S undefiniert.

$$c = \arccos\left(\frac{2R - G - B}{2\sqrt{(R - G)^2 + (R - B)(G - B)}}\right)$$

$$H = \begin{cases} c & \text{falls } B < G\\ 360 - c & \text{sonst} \end{cases}$$

$$S = 1 - \frac{3}{R + G + B} \cdot [\min(R, G, B)]$$

$$I = \frac{1}{3}(R + G + B)$$

RGB24 nach 8bit Graustufen

$$\begin{split} g &= (R+G+B)/3 \\ \text{oder} \\ g &= 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B \end{split}$$

Prewitt-Filter

$$p_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad P_{x} = \frac{\delta g(x, y)}{\delta x} \qquad M \approx \sqrt{P_{x}^{2} + P_{y}^{2}}$$

$$p_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad p_{y} = \frac{\delta g(x, y)}{\delta y}$$

Gauß-/Mittelwert-Filter

Bei Mittelwert: 3×3 Matrix mit allen Werten 1. Anschließende Division durch 9.

Sobel-Filter

$$S_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad S_x = \frac{\delta g(x, y)}{\delta x} \qquad M \approx \sqrt{S_x^2 + S_y^2}$$

$$S_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad S_y = \frac{\delta g(x, y)}{\delta y}$$

Roberts-Filter

$$R_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, R_y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$R(g(x, y)) = |R_x(g(x, y))| + |R_y(g(x, y))|$$

Laplace-Filter

$$\nabla^2 \approx \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \nabla^2 g(x,y) = \frac{\delta^2 g(x,y)}{\delta x^2} + \frac{\delta^2 g(x,y)}{\delta y^2}$$

Projektion

Projektion eines Szenepunktes P=(X,Y,Z) auf Bildpunkt p=(u,v,w) mit Brennweite $f\colon \frac{-u}{f}=\frac{X}{Z},\ \frac{-v}{f}=\frac{Y}{Z},\ w=-f$ Rückprojektion: $X=-\frac{uZ}{f},\ Y=-\frac{vZ}{f}$

Perspektivprojektion:

$$p = \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} u \\ v \\ -f \end{pmatrix} = -\frac{f}{Z} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = -\frac{f}{Z} P$$

Linsensysteme

$$\begin{split} \frac{1}{Z} + \frac{1}{Z'} &= \frac{1}{f} \\ \frac{1}{Z} + \frac{1}{Z'} &\approx \frac{1}{Z'} \Rightarrow \frac{1}{Z'} \approx \frac{1}{f} \end{split}$$

Iterative Endpoint Fit

Gegeben: Punkte P, Linien L =, Distand d

• Finde $x_1, x_2 \in P$ mit $||x_1 - x_2|| = max$; verbinde sie durch Linie $l_0 = \{X_1, X_2\}, L = L \cup \{l_0\}$

• Für alle $l \in L$:

Finde $x \in P$ mit ||l - x|| = max

Wenn ||l - x|| < d:

Ordne x als Mitgliedspunkt l zu

Entferne x aus P

Sonst:

Brich l in $l_1 = \{x_y, x\}$ und $l_2 = \{x, x_2\}$ auf Alle Mitgliedspunkte von l wieder in P

 $P \text{ leer} \rightarrow \text{Abbruch, sonst weiter}$

• Lösche Linien mit weniger als n Punkten

Vektoren

Skalare Multipl.	$\lambda \cdot \vec{a}$	$\begin{pmatrix} \lambda \cdot a_1 \\ \lambda \cdot a_2 \\ \lambda \cdot a_3 \end{pmatrix}$
Abstand PUrpsr.		
Betrag (Norm)	$ \vec{a} $	$ \vec{a} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
Skalarprodukt	$ec{a}\cdotec{b}$	$a_1 \cdot b_1 + \ldots + a_n \cdot b_n = x$
Winkel		$\cos lpha = rac{ec{a} \cdot ec{b}}{ ec{a} \cdot ec{b} }$

Matrizen

Gleich	A = B	$(a_{ij}) = (b_{ij})$
Addition	C = A + B	$(c_{ij}) = (a_{ij}) + (b_{ij})$
Differenz	C = A - B	$(c_{ij}) = (a_{ij}) - (b_{ij})$
Multiplikation Skalar	$c \cdot A$	$cA \in R^{m \times n}$
Multiplikation Matrizen	$A \cdot B$	$AB = \sum_{j} a_{ij} b_{ij}$

Multiplikation

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

Sinus

a°	0	30	45	60	90	120	135	150
$\sin a$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\cos a$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
a°	180	210	225	240	270	300	315	330
$\sin a$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
$\cos a$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

Trigonometrie

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha$$
$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$