

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ Лабораторная работа №1 «Обработка больших чисел»

Группа ИУ7-34Б

Дисциплина Типы и структуры данных

Вариант 14

Студент Козлитин Максим Александрович

Преподаватель Силантьева Александра

Васильевна

Условие задачи

Реализация арифметических операций над числами, выходящими за разрядную сетку персонального компьютера, выбор необходимых типов данных для хранения и обработки указанных чисел.

Описание задачи, реализуемой программой

Смоделировать операцию умножения действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Описание исходных данных

1. Входное действительное число

Вводится в формате \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр (от -99999 до 99999).

т - целая часть мантиссы.

n - дробная часть мантиссы.

Е - символ порядка.

К - порядок или показатель степени.

 $E \pm K - 10^{(\pm K)}$.

 \pm m.n E \pm K - тоже самое, что \pm m.n*10^(\pm K).

Для ввода допускаются символы [+-0123456789.еЕ].

Символы знака мантиссы и порядка могут отсутствовать и воспринимаются как +.

Мантисса может содержать точку, но только в единственном числе. При этом не требуется обязательно указывать целую или дробную часть - отсутствие воспринимается как ноль. Допускается отсутствие мантиссы, при этом ввод порядка - обязателен.

Порядок содержит только цифры и знак, при этом для указания должен предшествовать символ экспоненты. Цифры могут отсутствовать, в этом случае воспринимаются как ноль.

Экспонента может полностью отсутствовать.

2. Входное целое число

Вводится в формате $\pm d$, где длинна d - до 30 значащих цифр. d - цифры целого числа.

Для ввода допускаются символы [+-0123456789].

Знак числа может как присутствовать, так и отсутствовать при вводе.

3. Результат - действительное число

Выводится в форме $\pm 0.m1$ E $\pm K1$, где m1 - до 30 значащих цифр, а K1 - до 5 цифр. m1 - дробная часть мантиссы (так как вид то нормализованный то включает в себя целую и дробную части мантиссы до нормализации).

К1 - порядок или показатель степени.

 $E \pm K - 10^{(\pm K1)}$.

 $\pm 0.m1 E \pm K1$ - тоже самое, что $\pm 0.m1*10^{(\pm K1)}$.

При переполнении результата - число округляется.

Знак порядка и экспоненты присутствует всегда.

Целая и дробная части мантиссы, а также порядок - присутствуют всегда.

Способ обращения к программе

Работа с программой осуществляется с помощью консоли.

Программа запускается с помощью команды: ./app.exe

Пользователю предлагается ввести ввести два числа, требуемые для совершения операции умножения.

В ответ выводятся - исходное выражение и ответ.

Пример работы программы:

./app.exe	
	[012345678901234567890123456789 01234]
Введите первый множитель	1
Введите второй множитель	1
Первый множитель	+0.1E+1
Операция	*
Второй множитель	+1
Результат	+0.1E+1

Описания возможных аварийных ситуаций и ошибок пользователя

- 1. Ввод максимального действительного числа хоть и допускается, но так как не может быть нормализован, то обрабатывается как некорректный случай.
- 2. Ввод экспоненты превышающей максимальное допустимое значение типа данных int

- 3. Ввод не совпадающий с форматом входных данных (описано в <u>Описание исходных данных</u>).
- 4. Переполнение порядка или мантиссы в результате операции умножения.

Описание внутренних структур данных

Действительное число

```
typedef struct
{
    char m_sign;
    size_t m_size;
    size_t dot_pos;
    char mantissa[MANTISSA_SIZE];
    int exponent;
    int normalized;
} big_real_t;
```

Мантисса хранится в виде 4 переменных:

- Знак символ char.
- Размер используется тип данных size_t, размер которого рассчитывается так, чтобы в него можно было записать максимальный размер теоретически возможного массива любого типа.
- Позиция точки.
- Массив цифр использует тип данных char, так как требуется хранить только цифры от 0 до 9, соответственно можно не использовать более вместительный тип данных.

MANTISSA SIZE - максимальная длина целого числа (30 символов).

Экспонента хранится в виде целого числа.

Дополнительно хранится информация о том, приведено ли число к нормализованному виду. Это позволяет избежать повторных попыток нормализовать число.

Целое число

```
typedef struct
{
    char sign;
    size_t size;
```

```
char digits[BIG_INT_SIZE];
} big_int_t;
```

Знак числа - символ char.

Размер - используется тип данных size_t, размер которого рассчитывается так, чтобы в него можно было записать максимальный размер теоретически возможного массива любого типа.

Массив цифр - использует тип данных char, так как требуется хранить только цифры от 0 до 9, соответственно можно не использовать более вместительный тип данных.

BIG INT SIZE - максимальная длина целого числа (30 символов).

Целое число - для сохранения промежуточных вычислений

```
typedef struct
{
    size_t size;
    char data[TEMP_SIZE];
} temp_t;
```

Используется для сохранения результата промежуточных вычислений. Необходимость использования обусловлена возможностью округлить ответ, в случае выхода за пределы действительного числа.

Размер - используется тип данных size_t, размер которого рассчитывается так, чтобы в него можно было записать максимальный размер теоретически возможного массива любого типа.

Массив цифр - использует тип данных char, так как требуется хранить только цифры от 0 до 9, соответственно можно не использовать более вместительный тип данных.

TEMP_SIZE - максимальная длина целого числа промежуточного вычисления (60 символов), основывается на максимальной длине которое может получиться при умножении, т.е. MANTISSA_SIZE + BIG_INT_SIZE.

Описание алгоритма

Умножение - функция bnumsop multiply:

1. Действительное число приводится к нормализованному виду.

- 2. Действительное число посимвольно умножается на каждую цифру целого числа (в столбик).
- 3. Результат сначала записывается в развернутом виде, затем переворачивается.
 - Хранится 3 переменных для промежуточных вычислений предыдущее слагаемое, текущее слагаемое, общая сумма.
- 4. К полученному произведению добавляются нули в конец, в зависимости от того какое по счету умножение производится 0 нулей для первого, 1 ноль для второго, 2 нуля для третьего вычислений и т. д.
- 5. При первом умножении результат записывается в текущую сумму и предыдущее слагаемое. Иначе производится вычисление суммы предыдущего слагаемого и текущего, результат записывается в текущую сумму и предыдущее слагаемое.
- 6. Вычисленное в итоге произведение преобразуется к действительному числу, при этом порядок берется из исходного действительного числа, но обновляется, если исходное действительное число меньшей длины, чем результат (т.к. точка уже стоит не в начале), т.е. добавляется разница между размером числа итогового произведения и размером исходного действительного числа.
- 7. Знак итогового действительного числа отрицательный, если знаки отличаются, иначе положительный.

Полю, хранящему информацию, число нормализовано или нет, присваивается 0.

- 8. Проверяется переполнение порядка.
- 9. Возвращается статус успешности выполнения функции.

Сумма - функция temp sum:

- 1. Два целых числа посимвольно сумируются (в столбик).
- 2. Результат сначала записывается в развернутом виде, затем переворачивается.

Преобразование промежуточного числа к действительному - функция bnumsop сору:

- 1. Число округляется.
- 2. Пересчитывается порядок, т.е прибавляем значение счетчика, которое вернет функция округления, к порядку.
- 3. Копируется в переменную действительного числа.

Округление - функция bnumsop round:

- 1. Если размер числа больше требуемого, то начинаем итерируемся по цифрам с конца.
- 2. Если текущий размер числа меньше или равен требуемой точности округления. Проверяем округляется текущий разряд вверх, если да то округляем и сохраняем в переменную прибавку к следующему разряду, если нет то останавливаемся.

Если текущий разряд больше или равен 5, то прибавка к следующему разряд - 1, иначе - 0.

- 3. Иначе просто добавляем к текущему разряду значение прибавки, сохраненное на прошлом разряде, и уменьшаем счетчик на 1 (счетчик отвечает за уменьшения порядка)
- 4. Так как мы итерируемся с конца, то при циклическом поразрядном переносе размер числа станет равен 0, в таком случае увеличиваем его на 1.
- 5. Возвращаем счетчик, отвечающий за уменьшение порядка.

Тестовые случаи

№	Позитивные тесты		
	Что проверяется	Входные данные	Выходные данные
1	Отсутствие знака мантиссы	1234567E20 2	+0.2469134E+27
2	Отсутствие мантиссы	.E-123	+0.0E+0
3	Отсутствие точки	123E+10 1	+0.123E+13
4	Отсутствие экспоненты	123.123 1	+0.123123E+3
5	Отсутствие знака экспоненты	1e10 1	+0.1E+11
6	Отсутствие мантиссы и знака мантиссы	+.E-3 1	+0.0E+0
7	Отсутствие мантиссы, знака мантиссы и точки	E-3 1	+0.0E+0
8	Отсутствие экспоненты и точки (т. е. целое число)	11111111 9	+0.9999999E+8

№	Позитивные тесты		
	Что проверяется	Входные данные	Выходные данные
9	Максимально допустимое значение получается при нормализации	99999999999999999999999999999999999999	+0.999999999999999999999999999999999999
10	Умножение нуля на другое число	0 9999999	+0.0E+0
11	Умножение на ноль	999999E-12415 0	+0.0E+0
12	Проверка округления при максимальных значениях мантиссы и целого числа	99999999999999999999999999999999999999	+0.9999899999999999999999999999999999999
13	Результат такого же размера как исходное	1e10 5	+0.5E+11
14	Результат длиннее исходного	1e2 100	+0.1E+5
15	Ведущие нули	00000000000000000000000000000000000000	+0.1E+11
16	Тест при средних значениях	999E151 1234	+0.1232766E+158
17	Достаточно большие числа, округление	9E90000 9999999	+0.89999991E+90008
18	Знак результата, два отрицательных	-9 -1	+0.9E+1
19	Знак результата, первое число - отрицательное	-9 1	-0.9E+1
20	Знак результата, второе число - отрицательный	9 -1	-0.9E+1

№	Позитивные тесты		
	Что проверяется	Входные данные	Выходные данные
21	Циклический поразрядный перенос	999999999999999999999999999999999999999	+0.3E+31
22	Циклический поразрядный перенос (в обратную сторону)	3 999999999999999999 999999999999	+0.3E+31
23	Целая часть равна нулю Ведущие нули в дробной части	0.00044	+0.88E-3
	Циклический поразрядный перенос, граничное число при округлении	99999999999999999999999999999999999999	+0.5E+31
	Циклический поразрядный перенос, граничное число при округлении (в обратную сторону)	5 999999999999999999 99999999999	+0.5E+31

№	Негативные тесты		
	Что проверяется	Входные данные	Выходные данные
1	Максимальное значение действительного числа (переполнение экспоненты при нормализации)	0.001e-99999 1000	Ошибка: Порядок переполнился!
2	Переполнение экспоненты при умножении	9999999999999999 9999999999999999999 9999	Ошибка: Порядок переполнился!
3	Пустой ввод		Ошибка: Вы не ввели первое число!
4	Слишком большая мантисса при вводе	99999999999999999999999999999999999999	Ошибка: Вы ввели слишком много!
5	Целое число не введено	1231231	Ошибка: Вы не ввели второе число!

N₂	Негативные тесты		
	Что проверяется	Входные данные	Выходные данные
6	Действительное число не введено	123	Ошибка: Вы не ввели первое число!
7	Лишний знак экспоненты	-1EE 1	Ошибка: Вы ввели недопустимые символы!
8	Второе число - действительное	31231 -123E1	Ошибка: Вы ввели недопустимые символы!
9	Лишний знак плюса	++1e1 1	Ошибка: Вы ввели недопустимые символы!
10	Две точки	1.1245.12e+1 1	Ошибка: Вы ввели недопустимые символы!
11	Буква во вводе (не Е)	1244a124 1	Ошибка: Вы ввели недопустимые символы!
12	Слишком большое целое (31 знак)	1e1 999999999999999999 9999999999999	Ошибка: Слишком большое целое число!

Оценка эффективности

М - макс. размер мантиссы N - макс. размер целого числа

Т - макс. размер промежуточного числа

 $T \ge M + N$

Разворот промежуточного: $O_1(T / 2) \sim O_1(T)$ - линейное время работы.

Сумма: $O_2(T + 1 + O_1) \sim O_2(T)$ - линейной время работы.

Округление: О 3(Т) - линейной время работы.

Преобразование к действительному: $O_4(O_3 + M) \sim O_4(T + M) \sim O_4(\max(T, M)) \sim O_4(T)$ - линейное время работы.

Умножение: $O(N*(M+O_1+N)+(N-1)*(O_3)+O_4)\sim O(N*(M+T+N)+N*T+T)\sim O(N*max(M,T,N)+N*T+T)\sim O(N*max(M,T,N)+N*T+T)\sim O(N*max(M,T,N)+N*T+T)\sim O(N*T)$ - квадратичное время работы.

Итоговая асимптотика: O(N * T) - квадратичное время работы.

Вывод

В ходе проделанной работы, я научился обрабатывать числа, выходящие за разрядную сетку персонального компьютера. В частности выполнять операции сложения и умножения между целыми и действительными числами. Удобно выполнять арифметические операции в столбик, благодаря наглядности алгоритма и простоте понимания. Стоит отметить, что сам алгоритм при этом не является очень быстрым и имеет квадратичную асимптотику. Для хранения же больших чисел приоритетно использование структур данных (запись), таким образом повышается читаемость исходного кода и удобство использования данного числа.

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Целые положительные числа: $0 < x \le 2^n - 1$

Целые отрицательные числа: $-2^n-1 \le x \le 0$

для п-разрядного машинного слова

Для 32-разрядного процессора: $2^32 - 1 = 4294967295$

Для 64-разрядного процессора: $2^64 - 1 = 18446744073709551615$

Действительные числа: $3.6E-4951 \le x \le 1.1E+4932$

(максимальный размер мантиссы 52 разряда, порядок – 11 разрядов.)

Примечание: Имеется ввиду двоичные разряды, а не десятичные

2. Какова возможная точность представления чисел, чем она определяется?

Точность представления вещественного числа зависит от максимально возможной длины мантиссы, которая, опять-таки, зависит от области выделяемой памяти и наличия знака. Если длина мантиссы выходит за границы разрядной сетки, то происходит округление. Обычно, длина мантиссы это 20 десятичных разрядов.

3. Какие стандартные операции возможны над числами?

Сложение, вычитание, умножение, деление, сравнение.

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Можно представлять числа в виде массивов цифр. Таким образом числа будут обрабатываться посимвольно, соответственно любые операции над ними также будут производиться посимвольно.

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

В этом случае мы представляем число в виде массива цифр и обрабатываем поэлементно. Арифметические операции будет удобно выполнять в столбик, за счет наглядности метода и очевидной реализации.