error metrics # handling skewed data

error metrics for skewed classes

cancer classification example

train a logistic regression model $h_{\theta}(x)$

$$y = \begin{cases} 1 & \text{if cancer} \\ 0 & \text{otherwise} \end{cases}$$

actual class

the test set results in 1% error (99% correct diagnoses')

only 50% of the patients contract cancer (the classes are skewed)

```
function y = predictCancer(x) \rightarrow 0.5\% error y = 0; %ignore x! return
```

 \rightarrow 99.2% accuracy (0.8% error) \rightarrow 99.5% accuracy (0.5% error)

an alternative evaluation metric for the above problem

precision/recall

y = 1 in presence of rare class that is the target to detect

v = 0	S		actual class			
recall = 0	class		1	0		
	ted	1	true postives (+)	false positives (+)		
	predic	0	false negatives (-)	true negatives (-)		

precision

(of all patients where prediction = 1, what fraction actually has cancer?)

$$\frac{\text{true positives}}{\text{# predicted positives}} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$

recall

(of all patients that actually have cancer, what fraction was correctly detected as having cancer?)

$$\frac{\text{true positives}}{\text{# actual positives}} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

trading off precision and recall

```
logistic regression: 0 \le h_{\theta}(x) \le 1

predict 1 if h_{\theta}(x) \ge 0.5 (default)

predict 0 if h_{\theta}(x) < 0.5 (default)

suppose prediction of y = 1 (cancer) only if very confident

predict 1 if h_{\theta}(x) \ge 0.7 or 0.9

predict 0 if h_{\theta}(x) < 0.7 or 0.9

\Rightarrow the model will produce higher precision but lower recall

suppose avoidance to missing too many cases of cancer (avoid false negatives)

predict 1 if h_{\theta}(x) \ge 0.7 or 0.9
```

predict 0 if $h_{\theta}(x)$ < 0.7 or 0.9

→ the model will produce lower precision but higher recall

in general terms: predict 1 if $h_{\theta}(x) \ge$ given threshold

F₁ score comparing precision/recall metrics

precision and recall illustrate relationships among the two. using these metrics to select algorithms requires performance to be measured as a whole. the table below displays:

	precision (p)	recall (r)	average	F ₁ score
algorithm 1	0.5	0.4	0.45	0.444
algorithm 2	0.7	0.1	0.4	0.175
algorithm 3	0.02	1.0	0.51	0.0392
average = $\frac{p+r}{2}$	F_1 score = $2\frac{pr}{p+r}$			

the average of precision and recall dictate that the 3^{rd} algorithm is most attractive. this is misleading because that model predicted y =1 for the entire sample (recall = 100%) and greatly skewed the average performance between precision and recall

the F_1 score applies a weight to the lower value, making it penalize the metric accordingly. the illustration above shows the first algorithm as the most effective and conversely the 3^{rd} algorithm substantially worse than compared to the average metric.

if
$$P = 0$$
 or $R = 0 \rightarrow F_1$ score = 0
if $P = 1$ or $R = 1 \rightarrow F_1$ score = 1

example

a logistic c regression classifier has been trained as follows:

predict
$$y = 1$$
 if $h_{\theta}(x) \ge$ threshold
predict $y = 0$ if $h_{\theta}(x) <$ threshold

different values for the threshold parameter will yield different values of precision (p) and recall (r). a reasonable way to determine the threshold would be to:

measure precision (p) and recall (r) on the **cross validation set** and choose the value of threshold which maximizes the F_1 score = $2\frac{pr}{n+r}$

using large data sets

data for machine learning

determining how much data to train on designing a high accuracy learning system example classify between confusable words {to, two, too} {then, than} {there, their}

→ "For breakfast I ate <u>two</u> eggs."

the algorithms used to predict the word that belongs in the sentence above:

- · perceptron (logistic regression)
- ·winnow
- · memory-based
- · naïve bayes

"it is not who has the best algorithm that wins, but who has the most data"

large data rationale

assuming feature $x \in \mathbb{R}^{n+1}$ has sufficient information to predict y accurately

example: "For breakfast I ate two eggs."

counterexample" "Predict housing price from only the size (feet²) as a feature."

useful test: given the input x, can a human expert confidently predict y?

using a learning algorithm with many parameters (e.g. logistic regression/linear regression with many features; neural network with many hidden units).

→ low bias algorithms

 $J_{train}(\theta)$ will be small using a very large training set (unlikely to overfit)

→ low variance algorithms

$$J_{train}(\theta) \approx J_{test}(\theta) \leftarrow$$
 $J_{test}(\theta)$ will be small

large training sets can help improve a learning algorithm's performance, except: when the features x do not contain enough information to predict y, regardless if the chosen algorithm is simple (logistic regression) or complex (neural networks)

Machine Learning System Design

1. You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F1 score (as a value from 0 to 1)? 0.16

2. Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when:

The features x contain sufficient information to predict y accurately. (For example, one way to verify this is if a human expert on the domain can confidently predict y when given only x).

We train a learning algorithm with a large number of parameters (that is able to learn/represent fairly complex functions).

3. Suppose you have trained a logistic regression classifier which is outputing $h\theta(x)$.

Currently, you predict 1 if $h\theta(x) \ge$ threshold, and predict 0 if $h\theta(x) <$ threshold, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.9:

The classifier is likely to now have higher precision.

4. Suppose you are working on a spam classifier, where spam emails are positive examples (y=1) and non-spam emails are negative examples (y=0). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam:

If you always predict non-spam (output y=0), the classifier will have accuracy of 99%.

If you always predict non-spam (output y=0), your classifier will have 99% accuracy on the training set, and it will likely perform similarly on the cross validation set.

5. Using a very large training set makes it unlikely a model to overfit the training data.

On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy is not a good measure of performance and should instead use *F*1 score based on the precision and recall.