1) Why is this class?
-Realizing process designs
- Modeling no. simulation.
- Approach to disigning a system
(i) building a small stale model as a Pol
as a Pol
this 2 validation
this validation course => outlding & 3 8 celling.
olving these
nodels using
analytical methods.
2 Curricula.
() PDES
- classification
- boundary conditions, Eypes
- principle of linear superposition
2) Adjoint operator l'operator
-2.000 (-10
- props (eigenvaluer, eigen-un- - props (eigenvaluer, eigen-un-
3 Separation of linear, homogeneous
PDES by separation of variables
- cortesian cycindrical, spherical

	applicable when there are sowns I sinks.
4	Solution of non-homogeneous PDES
	using circuis function
(5)	
6	Solution of PDEs by (approsumate
	integral met no do
3) B c	oles
	S. Pushparam - Moth Techniques
) A. Varma l
gara)	
(3)	
7°	rtial Differential Equations
•	One des var => ODE, else PDE
0	Order of $PDE = \text{highest observative}$ e.g. $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$
(orda con	olso Du 2 U
indep. var.)	$\frac{-}{2} = \frac{-}{2} = \frac{1}{2}$
•	Linear PDES
	- linear functions of the
	un known 2 its disiratives

derivatires

un kno wns

 \mathcal{O}_{λ}

(com

4

- higher order derivatives are fine if the terms are linear.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \times \frac{\partial^2 u}{\partial x^2$$

$$\frac{\partial u}{\partial t} = \left(\frac{\partial^2 u}{\partial x^2}\right)^2 \times$$

· Momogenious, non-homogenious PDEs.

dependent var. => N.H.

$$\frac{\partial u}{\partial t} = \left(\frac{\partial^2 u}{\partial x^2}\right)^2 \rightarrow H$$

$$\frac{\partial u}{\partial t} = \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + 2x \Rightarrow N \cdot H$$

5) Boundary Conditions satisfied at · Coraning Equation all points inside the control volume · B. C.s -> satesfied only at the boundaries of the C.V. · Types of B.C.s Divichlet B.C. - value of the dep. var. e.g. u=0 c?.e. the unknown) is 0 + 1 = 0 specified at the boundaries e.g. $\frac{\partial u}{\partial t} = 0$ Neumann B.C.

- value of the dep. var.

c.o.e. the unknown) is @ t=0, specified at the boundar $\frac{\partial I}{\partial x} = 0 \quad \bigcirc \quad \chi = I$ însulated, so temp. gradient is 0).

3 Robin misced B.C.

- unknown + durivative

 $e \cdot g \cdot - k d T = h (T - T \infty)$ $Q \qquad x = 1$

(4) Cauchy B.C.

- Endep. ros. Lousin. both

present on the same

boundary.

e.g. $T = T_0$ $2 - K = 2_0$

6 Physical B.C.

- bosed on the structure!

physics of the problem:

c.g. no slip conditions

at Pipe walls => u=0