1. Explain the linear regression algorithm in detail.

Ans: In simple terms, linear regression is a method of finding the best straight-line fitting to the given data, i.e. finding the best linear relationship between the independent and dependent variables.

In technical terms, linear regression is a machine learning algorithm that finds the best linear-fit relationship on any given data, between independent and dependent variables. It is mostly done by the Sum of Squared Residuals Method.

The representation is a linear equation that combines a specific set of input values (x) the solution to which is the predicted output for that set of input values (y). As such, both the input values (x) and the output value are numeric.

The linear equation assigns one scale factor to each input value or column, called a coefficient and represented by the capital Greek letter Beta (B). One additional coefficient is also added, giving the line an additional degree of freedom (e.g. moving up and down on a two-dimensional plot) and is often called the intercept or the bias coefficient.

For example, in a simple regression problem (a single x and a single y), the form of the model would be: y = B0 + B1*x

In higher dimensions when we have more than one input (x), the line is called a plane or a hyper-plane. The representation therefore is the form of the equation and the specific values used for the coefficients (e.g. B0 and B1 in the above example).

It is common to talk about the complexity of a regression model like linear regression. This refers to the number of coefficients used in the model.

When a coefficient becomes zero, it effectively removes the influence of the input variable on the model and therefore from the prediction made from the model (0 * x = 0). This becomes relevant if you look at regularization methods that change the learning algorithm to reduce the complexity of regression models by putting pressure on the absolute size of the coefficients, driving some to zero.

2. What are the assumptions of linear regression regarding residuals?

Ans: Assumptions about the residuals:

- 1. Normality assumption: It is assumed that the error terms, $\varepsilon(i)$, are normally distributed.
- 2. Zero mean assumption: It is assumed that the residuals have a mean value of zero, i.e., the error terms are normally distributed around zero.
- 3. Constant variance assumption: It is assumed that the residual terms have the same (but unknown) variance, σ^2 . This assumption is also known as the assumption of homogeneity or homoscedasticity.
- 4. Independent error assumption: It is assumed that the residual terms are independent of each other, i.e. their pair-wise covariance is zero.

3. What is the coefficient of correlation and the coefficient of determination? Ans:

Coefficient of correlation is "R" value. It is the degree of relationship between two variables say x and y. It can go between -1 and 1. 1 indicates that the two variables are moving in unison. They rise and fall together and have perfect correlation. -1 means that the two variables are in perfect opposites. One goes up and other goes down, in perfect negative way.

Coefficient of Determination is the square of Coefficient of Correlation. It is useful because it gives the proportion of the variance (fluctuation) of one variable that is predictable from the other variable. It is a measure that allows us to determine how certain one can be in making predictions from a certain model/graph.

4. Explain the Anscombe's quartet in detail.

Ans: Anscombe's Quartet was developed by statistician Francis Anscombe. It comprises four datasets, each containing eleven (x, y) pairs. The essential thing to note about these datasets is that they share the same descriptive statistics. But things change completely, and I must emphasize **completely**, when they are graphed. Each graph tells a different story irrespective of their similar summary statistics.

	- 1		II		III		IV	
	X	У	X	у	Х	У	Х	У
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03

The summary statistics show that the means and the variances were identical for x and y across the groups:

- Mean of x is 9 and mean of y is 7.50 for each dataset.
- Similarly, the variance of x is 11 and variance of y is 4.13 for each dataset
- The correlation coefficient (how strong a relationship is between two variables) between x and y is 0.816 for each dataset

When we plot these four datasets on an x/y coordinate plane, we can observe that they show the same regression lines as well, but each dataset is telling a different story:

- Dataset I appear to have clean and well-fitting linear models.
- Dataset II is not distributed normally.
- In Dataset III the distribution is linear, but the calculated regression is thrown off by an outlier.
- Dataset IV shows that one outlier is enough to produce a high correlation coefficient.

This quartet emphasizes the importance of visualization in Data Analysis. Looking at the data reveals a lot of the structure and a clear picture of the dataset.

5. What is Pearson's R?

Ans: In statistics, the Pearson correlation also referred to as Pearson's r, the Pearson product-moment correlation coefficient (PPMCC) or the bivariate correlation, is a measure of the linear correlation between two variables X and Y. According to the Cauchy–Schwarz inequality it has a value between +1 and -1, where 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation.

6. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

Ans: Scaling is a technique to standardize the independent features present in the data in a fixed range. It is performed during the data pre-processing to handle highly varying magnitudes or values or units. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values.

Example: If an algorithm is not using feature scaling method then it can consider the value 3000 meter to be greater than 5 km but that's actually not true and in this case, the algorithm will give wrong predictions. So, we use Feature Scaling to bring all values to same magnitudes and thus, tackle this issue.

Min-Max Normalization: This technique re-scales a feature or observation value with distribution value between 0 and 1.

$$X_{new} = \frac{X_i - min(X)}{max(x) - min(X)}$$

Standardization: It is a very effective technique which re-scales a feature value so that it has distribution with 0 mean value and variance equals to 1.

$$X_{new} = \frac{X_i - X_{mean}}{S_{tenderd Deviation}}$$

7. You might have observed that sometimes the value of VIF is infinite. Why does this happen? Ans: If there is perfect correlation, then VIF = infinity

The fire is period correlation, then the

8. What is the Gauss-Markov theorem?

Ans: The Gauss Markov theorem tells us that if a certain set of assumptions are met, the ordinary least squares estimate for regression coefficients gives you the *best linear unbiased estimate (BLUE)* possible. There are five Gauss Markov assumptions (also called conditions):

- 1. **Linearity**: the parameters we are estimating using the OLS method must be themselves linear.
- 2. **Random**: our data must have been randomly sampled from the population.
- 3. Non-Collinearity: the regressors being calculated aren't perfectly correlated with each other.
- 4. **Exogeneity**: the regressors aren't correlated with the error term.
- 5. **Homoscedasticity**: no matter what the values of our regressors might be, the error of the variance is constant.

9. Explain the gradient descent algorithm in detail.

Ans: Gradient Descent is the most common optimization algorithm in *machine learning* and *deep learning*. It is a first-order optimization algorithm. This means it only takes into account the first derivative when performing the updates on the parameters. On each iteration, we update the parameters in the opposite direction of the gradient of the objective function J(w) w.r.t the parameters where the gradient gives the direction of the steepest ascent. The size of the step we take on each iteration to reach the local minimum is determined by the learning rate α . Therefore, we follow the direction of the slope downhill until we reach a local minimum.

10. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

Ans: The Q-Q plot, or quantile-quantile plot, is a graphical tool to help us assess if a set of data plausibly came from some theoretical distribution such as a Normal or exponential. For example, if we run a statistical analysis that assumes our dependent variable is Normally distributed, we can use a Normal Q-Q plot to check that assumption. It's just a visual check, not an air-tight proof, so it is somewhat subjective. But it allows us to see at-a-glance if our assumption is plausible, and if not, how the assumption is violated and what data points contribute to the violation.

A Q-Q plot is a scatterplot created by plotting two sets of quantiles against one another. If both sets of quantiles came from the same distribution, we should see the points forming a line that's roughly straight. Here's an example of a Normal Q-Q plot when both sets of quantiles truly come from Normal distributions.