

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Assignment 3 and 4 late deadline on 4/20
 - Lab 12 due on 4/22
 - Assignment 5 due on 5/2 (no late deadline)
 - Bonus Opportunities:
 - Bonus Lab due on 5/2
 - Bonus Homework due on 5/2
 - 1 bonus point for entire class when response rate >= 80%
 - Currently at ~16%
 - Deadline is Sunday 4/24
- CourseMIRROR Post-survey
 - https://purdue.ca1.qualtrics.com/jfe/form/SV_8zRF6IAtHS aRKJg

Previous lecture ...

- Master Method
- Unbounded Knapsack Problem
 - Dynamic Programming algorithm
 - Greedy algorithm

CourseMIRROR Reflections (most confusing)

- how to determine the values in max value array
- Brief review of calculating runtime through master theorem
- I would like some more explanation of the recurrence relation cases
- Why T(n) for Binary Search is log2(n) instead of lg(n), as both non-recursive and recursive parts have constant time complexity.
- when we cannot use the master theorem (when it doesn't meet condition #3 from the slides about being polynomially larger/smaller)

CourseMIRROR Reflections (most interesting)

- How the greedy algorithm led to an incorrect answer for the knapsack problem
- I found the use of the master method to be much clearer and very useful
- Examples for Master Theorem
- I enjoyed learning about the knapsack problem and dynamic programming
- bottom up dynamic programming technique

Dynamic Programming Example 1: The 0/1 knapsack problem

What if we have a finite set of items that each has a weight and

value?

- O Two choices for each item:
 - Goes in the knapsack
 - Is left out

Recursive solution

```
int knapSack(int[] wt, int[] val, int L, int n) {
   if (n == 0 || L == 0) { return 0 };
   if (wt[n-1] > L) {
       return knapSack(wt, val, L, n-1)
   }
   else {
       return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),
                            knapSack(wt, val, L, n-1)
                           );
```

i∖l	0	1	2	3	4	5	6	7	8	9	10	
0											,	
1								(r	<i>[[i][l]</i> is max) v	alue v	vhen	
2					-			a	re ava	ilable		
3									nly <i>I</i> Ik ne kna			
4												

i∖l	0	1	2	3	4	5	6	7	8	9	10					
0	0	0	0	0	0	0	0	0	0	0	0					
1	0							(r	K[i][l] is the best (max) value when							
2	0				-			only the first <i>i</i> items are available and only <i>l</i> lbs remain in the knapsack								
3	0															
4	0															

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0					
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0										
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0								
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0										
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16						
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0										

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0	0									

i\l	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	30	30	30	30	30
2	0	0	0	14	14	14	30	30	30	44	44
3	0	0	0	0	16	16	30	30	30	44	46
4	0	0	9	9	16	16	30	30	39	44	46

```
int knapSack(int wt[], int val[], int L, int n) {
   int[][] K = new int[n+1][L+1];
   for (int i = 0; i <= n; i++) {
       for (int 1 = 0; 1 <= L; 1++) {
           if (i==0 | | 1==0) \{ K[i][1] = 0 \};
           else if (wt[i-1] > 1) \{ K[i][1] = K[i-1][1] \};
           else {
               K[i][1] = max(val[i-1] + K[i-1][1-wt[i-1]],
                                          K[i-1][1]);
   return K[n][L];
```

To review...

- Questions to ask in finding dynamic programming solutions:
 - O Does the problem have optimal substructure?
 - Can solve the problem by splitting it into smaller problems?
 - Can you identify subproblems that build up to a solution?
 - O Does the problem have overlapping subproblems?
 - Where would you find yourself recomputing values?
 - How can you save and reuse these values?

Dynamic Programming Example 2: Subset sum

 Given a set of non-negative integers S and a value k, is there a subset of S that sums to exactly k?

Subset sum calls

Subset sum recursive solution

```
boolean SSS(int set[], int sum, int n) {
    if (sum == 0)
        return true;
    if (sum != 0 && n == 0)
        return false;
    if (set[n-1] > sum)
        return SSS(set, sum, n-1);
    return SSS(set, sum, n-1)
        || SSS(set, sum-set[n-1], n-1);
}
```

What would a dynamic programming table look like?

Subset sum bottom-up dynamic programming

```
boolean SSS(int set[], int sum, int n) {
   boolean[][] subset = new boolean[sum+1][n+1];
   for (int i = 0; i <= n; i++) subset[0][i] = true;
   for (int i = 1; i \le sum; i++) subset[i][0] = false;
   for (int i = 1; i <= sum; i++) {
      for (int j = 1; j <= n; j++) {
             subset[i][j] = subset[i][j-1];
             if (i >= set[j-1])
                    subset[i][j] ||= subset[i - set[j-1]][j-1];
   return subset[sum][n];
```

Example 3: Change making problem

Consider a currency with n different denominations of coins d_1 , d_2 , ..., d_n . What is the minimum number of coins needed to make up a given value k?

Solution Attempt

If you were working as a cashier, what would your algorithm be to solve this problem?

... But wait ...

- Does our greedy change making algorithm solve the change making problem?
 - O For US currency...
 - O But what about a currency composed of pennies (1 cent), thrickels (3 cents), and fourters (4 cents)?
 - \blacksquare What denominations would it pick for k=6?

So, how can we solve the change making problem optimally?

We will see a dynamic programming algorithm in the recitation of this week.

Problem of the Day: Travelling Salesman problem

Given a list of cities and the distances between **each pair** of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

But first, something completely different...

- Some computational problems are unsolvable
 - No algorithm can be written that will always produce the correct output
 - One example is the *halting problem*
 - Given a program and an input, will the program halt?
 - Can we write an algorithm to determine whether any program/input pair will halt?

Intractable problems

- Solvable, but require too much time to solve to be practically solved for modest input sizes
 - O Listing all of the subsets of a set:
 - $\Theta(2^n)$
 - O Listing all of the permutations of a sequence:
 - Θ(n!)

Polynomial time algorithms

- Most of the algorithms we've covered so far this term
 - Also the most practically useful of the three classes we've just covered...
- Largest term in the runtime is a simple power with a constant exponent
 - \bigcirc E.g., n^2
 - Or a power times a logarithm
 - E.g., n lg n

Consider the following

- The shortest path problem
 - O Easily solved in polynomial time
- The longest path problem
 - O How long would it take us to find the longest path between two points in a graph?

What if a problem doesn't fall into one of our three categories?

- It can be solved
- There is no proof that a solution requires exponential time
 - O ... yet
- There is no valid solution that runs in polynomial time
 - O ... yet

P vs NP

- F
- The set of problems that can be solved by deterministic algorithms in polynomial time
- NP
 - O The set of problems that can be solved by non-deterministic algorithms in polynomial time
 - i.e., solution from a non-deterministic algorithm can be verified in polynomial time

Deterministic vs non-deterministic algorithms

Deterministic

- O At any point during the run of the program, given the current instruction and input, we can predict the next instruction
- Running the same program on the same input produces the same sequence of executed instructions
- Non-deterministic
 - A conceptual algorithm with more than one allowed step at certain times and which always takes the right or best step
 - Conceptually, could run on a deterministic computer with unlimited parallel processors
 - Would be as fast as always choosing the right step

Non-deterministic algorithms

- Array search:
 - O Linear search:
 - $\Theta(n)$
 - O Binary search:
 - **■** Θ(lg n)
 - O Non-deterministic search algorithm:
 - **■** Θ(1)

So we can group problems into P and NP...

• 5 options for how the sets P and NP intersect:

Are any of these clearly impossible?

• Why?

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

