المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -١-المدّة: أربع ساعات

هيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (2points)

Répondre par « vrai » ou « faux » et justifier.

- 1) Le complexe $(-1+i)^{10}$ est un réel.
 - 2) La fonction f' définie sur \mathbb{R} par $f'(x) = \int_{0}^{x^2} \sqrt{t^2 + 4} dt$ est la fonction dérivée d'une fonction f. On dit que la courbe de f n'admet pas un point d'inflexion pour $x \in \mathbb{R}$.
- 3) Si $f(x) = x^2 e^x$, alors sa nième dérivée est $f^{(n)}(x) = (x^2 + 2nx + (n-1))e^x$ pour tout $n \in \mathbb{N}^*$.
- 4) $1+i+...+i^{19}=0$ (i est un nombre imaginaire).

II- (2points)

Dans le plan rapporté à un repère orthonormé (O ; i , j , k), on considère le plan (P) : 3x+y-5=0 et les droites (D) et (D') et les droites d'équations

(D):
$$\begin{cases} x = t \\ y = -3t + 5 \\ z = t - 4 \end{cases}$$
 (D'):
$$\begin{cases} x = m + 1 \\ y = -2m - 1 \\ z = -m + 3 \end{cases}$$

1)

- a) Vérifier que (P) est perpendiculaire au plan (xoy).
- b) Montrer que la droite (D) est incluse dans le plan (P).
- 2) Montrer que (D) et (D') se coupent en un point A dont on déterminera les coordonnées.

Dans ce qui suit, on donne le point B (0; 1,4).

- 3) On considère dans le plan (Q) formé par (D) et (D'), le cercle (C) de centre A et de rayon AB.
 - a) Ecrire une équation du plan (Q).
 - b) Ecrire un système d'équations paramétriques de la droite (Δ) tangente en B au cercle(C).
- 4) Calculer les coordonnées des points E et F points d'intersections du cercle (C) avec la droite (D).

III- (3points)

Dans une kermesse organisée par les classes terminales d'une école, on dispose de deux boites U et V.

- La boite U contient 10 cartes dont 3 portent la lettre A, 5 la lettre B et 2 la lettre C.
- La boite V contient 6 boules dont 2 rouges et 4 noires.

La règle de jeu est la suivante :

On tire au hasard une carte de la boite U.

- Si le joueur tire une carte A, il tire deux boules de la boite V successivement et avec remise
- Si le joueur tire une carte B, il tire deux boules de la boite V successivement et sans remise
- Le jeu s'arrête si le joueur tire une carte portant C ou il tire une boule noire.

On considère les événement suivants :

A: « tirer une carte portant A».

B: « tirer une carte portant B ».

C: « tirer une carte portant C ».

G: « le joueur gagne ».

Le joueur gagne seulement s'il tire 2 boules rouges successivement ou s'il tire une carte C.

- 1) Calculer P(G/A) et montrer que $P(G \cap A) = \frac{1}{30}$.
- 2) Calculer $P(G \cap B)$, puis P(G).
- 3) Pour participer à ce jeu, le joueur doit payer 2000 LL Il gagne 5000 LL s'il tire une carte portant C et 3000 LL en tirant 2 boules rouges.

Soit X la variable aléatoire égale au gain du joueur.

- a) Montrer que les trois valeurs de X sont -2000, 1000 et 3000.
- b) Calculer la loi de probabilité de X.
- c) Estimer le gain de l'organisateur, si 100 élèves participent à ce jeu.

IV- (3 pts)

Dans le plan orienté, on donne, un rectangle ABCD de centre O tel que AB = 4cm, et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{6} (2\pi)$.

Soit E le symétrique de A par rapport à D. S est la similitude plane directe telle que S(E)=O et S(A)=B.

- 1) Vérifier que le rapport de la similitude est $k = \frac{1}{2}$ et déterminer la mesure de l'angle α de S.
- 2) Déterminer l'image de D par S. Montrer que C est le centre de S.
- 3) I est un point de [EO], distinct de E et O; et (Γ) est le cercle de centre I et qui passe par A. (Γ) coupe (AD) et (AB) respectivement en M et P.
 - a) Dessiner (Γ) et placer les points M et P.
 - b) Justifier que $C \in (\Gamma)$.
- 4) Soit N le projeté orthogonal de C sur (MP).
 - a) Montrer que $(\overrightarrow{MP}, \overrightarrow{MC}) = \frac{\pi}{6} (2\pi)$.
 - b) En déduire que S(M) = N.
- 5) Prouver que B, N et D sont alignés.
- 6) Le plan est rapporté à un repère orthonormé direct (A, \vec{u}, \vec{v}) , avec $\vec{u} = \frac{1}{4} \overrightarrow{AB}$.
 - a) Déterminer les affixes des points B et C.
 - b) Donner la forme complexe de S.

V- (3points)

1)

Dans la figure ci-contre FKH est un triangle rectangle en K tel que FK=3cm et KH= $\sqrt{3}$ cm

Soit A un point sur [FK] tel que AK=1cm et soit A' symétrique de F par rapport à K.

(L) est une hyperbole du foyer F, de directrice (KH) et d'excentricité 2.

- a) Déterminer l'axe focal de (L)
- b) Prouver que A et A' sont des sommets de (L).

Déterminer le centre O du (L) et le second foyer F'.
 Montrer que (OH) est une asymptote de (L) puis trouver la seconde asymptote.
 Tracer (L)

- 3) Soit G un point tel que $\overrightarrow{FG} = 2\sqrt{3}\overrightarrow{KH}$. Prouver que G est un point de (L).
- 4) Le plan est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$, avec $\vec{u} = \overrightarrow{OK}$.
 - a) Vérifier que l'équation de (L) est : $\frac{x^2}{4} \frac{y^2}{12} = 1$.
 - b) Prouver que (GK) est tangente à (L).

VI- (7pts)

Le plan est muni d'un repère orthonormé $(0, \vec{t}, \vec{j})$.

(Partie A)

On considère l'équation différentielle (E) définie par : $y' + y = 1 - 2e^{-x+1}$.

- 1) Déterminer les réels a et b tels que $Y = a + bxe^{-x}$ soit une solution particulière de (E).
- 2) Résoudre (E). En déduire la solution particulière (E) telle que Y(1) = 0.

(Partie B)

Soit g une fonction définie $\sup[0; +\infty[$ par $g(x) = 1 + (1-2x)e^{-x+1}$. (C) est sa courbe représentative.

- 1) Déterminer $\lim_{x \to +\infty} g(x)$. En donner une interprétation géométrique.
- 2) Calculer g'(x) la dérivée de g(x). Dresser le tableau de variations de g.
- 3) Prouver que l'équation g(x) = 0 admet deux racines 1 et α tel que $\alpha \in [2.25, 2.26]$. Vérifier que $e^{\alpha 1} = 2\alpha 1$.
- 4) Résoudre $g(x) \le 0$. En déduire les solutions de l'inéquation: $g(x^2) \le 0$.
- 5) Tracer (*C*).
- 6) Calculer l'aire de la région délimitée par (C), la droite (Δ) d'équation y=1 et les droites d'équation x=1 et x=2.

(Partie C)

Soit la fonction f définie sur \mathbb{R} par: $f(x) = 1 + x + xe^{-x^2+1}$. (Γ) est sa courbe représentative et (d) est la droite d'équation y = x + 1.

- 1) Calculer f(-x) + f(x). Que peut-on conclure?
- 2) Déterminer $\lim_{x \to +\infty} f(x)$. Montrer que (d) est une asymptote oblique au voisinage de $+\infty$. Étudier la position relative de (Γ) et (d).
- 3) Prouver que $f'(x) = g(x^2)$ pour tout $x \in \mathbb{R}$. Vérifier que $f(\sqrt{a}) = 1 + \frac{2a\sqrt{a}}{2a-1}$.
- 4) Dresser le tableau de variations de f.
- 5) Tracer (Γ) .
- 6) Soit $(U_n)_{n\geq 0}$ la suite définie par : $U_n = \int_0^1 [\int f(nx) nx] dx$.
 - a) Calculer U_0 .
 - **b**) Écrire U_n en fonction de n. Déterminer $\lim_{n\to +\infty} U_n$.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -١-المدّة: أربع ساعات

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

QI		Notes
1	Faux : sur l'axe des ordonnées	1
2	Faux : elle admet au point x=0 un point d'inflexion	1
3	Faux : pour n=2	1
4	Vrai : c'est une somme d'une suite géométrique du premier terme 1 et de raison q=i	1

QII		Notes
1.a	(3,1,0)(0,0,1) = 0 alors (P) perpendiculaire au plan (xoy)	0,5
1.b	$3t-3t+5-5=0 \Rightarrow (D) \subset (P)$	0,5
2	A(4,7,0) pour m=3 et t=4	0,5
3.a	(Q):5x+2y+z-6=0	0,5
3.b	$\vec{u} = \overrightarrow{AB} \wedge \vec{n} \text{ avec } \vec{u} \text{ vecteur directeur de la tangente et } \vec{n} \text{ vecteur normal du}$ (Q) $(\Delta) : \begin{cases} x = 0 \\ y = 6\lambda + 1 \\ z = -12\lambda + 4 \end{cases}$	1
4	$t = 4 + \frac{4\sqrt{66}}{11}$ et $t = 4 - \frac{4\sqrt{66}}{11}$	1

QIII					Notes
1	$P(G/A) = \frac{2}{6} \times \frac{2}{6} = \frac{1}{9}$. $P(G \cap A) = P(G/A) \times P(A) = \frac{1}{9} \times \frac{3}{10} = \frac{1}{30}$			1	
2	$P(G \cap B) = P(G/B)$	$B) \times P(B) = \frac{2}{6} \times \frac{1}{5} \times$	$\frac{1}{2} = \frac{1}{30}$		1
2	$P(G)=P(G \cap A) + P(G \cap B) + P(C) = \frac{4}{15}$				1
3.a	$-2000(\overline{G})$, $1000(G \cap A \text{ ou } G \cap B)$, $3000(C)$.			1	
	Xi	-2000	1000	3000	
3.b	P(X=x _i)	$\frac{11}{15}$	1 15	$\frac{1}{5}$	1
3.c	E(x) = -800 Alors le gain de l'organisateur est $800 \times 100 = 80\ 000\ LL$				1

Q4		
1.	$k = \frac{OB}{EA}$, en utilisant le triangle équilatéral OBC : $k = \frac{BC}{2BC}$	
	$k = \frac{1}{2} \operatorname{et} \alpha = (\overrightarrow{AE}, \overrightarrow{BO}) = (BC, BO) = \frac{\pi}{3} (2\pi)$	1
2	L'image de D par S , D 'est le milieu de BO]. EAC est un triangle équilatéral. L'image du triangle EAC par S est le triangle équilatéral BC de même sens, alors $S(C) = C$. De ce fait, C est le centre de S .	0,5
3.a	8 - 7 - M - 5 - E - 4 - 3 - 2 - 1 0 1 2 3 4 5 6	0.5
3.b	(OE) est la médiatrice de AC . $I \square (OE)$, $donc IC = IA$, $C \square (\Gamma)$.	0.5
.4.a	$(\overrightarrow{MP}, \overrightarrow{MC}) = (\overrightarrow{AP}, \overrightarrow{AC}) = \frac{\pi}{6} (2\pi).$	0.5
.4.b	Le triangle MNC est équilatéral, donc $(\overrightarrow{CM}, \overrightarrow{CN}) = \frac{\pi}{3}$ (2π) . et $CN = \frac{1}{2}CM$. alors $S(M) = N$.	1
5	$D \in (OB)$. $M \square (EA)$, $donc \ N \square (OB)$. $B, N \text{ et } D \text{ sont alignés.} (\overrightarrow{CM}, \overrightarrow{CN}) = \frac{\pi}{3}$ (2 π)	1
6.a	$Z_B = 4 \text{ et } Z_C = 4 + 4 \frac{\sqrt{3}}{3} i$	0.5
.6.b	$z' = \frac{1}{2}e^{i\frac{\pi}{3}}z + (1 - \frac{1}{2}e^{i\frac{\pi}{3}})(4 + 4\frac{\sqrt{3}}{3}i)$ $z' = \frac{1}{2}e^{i\frac{\pi}{3}}z + 4$	0.5

Q5		
1.a	l'axe focal est (FK)	0.5
1.b	$\frac{AF}{AK} = 2 \frac{A'F}{A'K} = 2$ avec A et A 'appartiennent à (FK), l'axe focal.	1
2.a	o milieu de [AA'] F' symétrique de F par rapport à O	0.5
2.b	la tangente de l'angle formé par (OH) et l'axe focale est égale à $\sqrt{3} = \frac{b}{a}$ avec a=OA=2 C=OF=4 et $c^2 = a^2 + b^2$ la deuxième asymptote est symétrique à (OH) par rapport à la droite perpendiculaire en O.	1 0.5
2.c		0.5
3.	$\frac{GF}{d(G/(HK))} = 2 \text{ alors G appartient à (L)}$	0.5
4.a	$a=2$ et $b=2\sqrt{3}$, centre O et l'axe focal est x'ox.	0.5
4.b	G(4;6) et K(1,0) et (GK): y=2x-2 qui est l'équation de la tangente en G à (L)	1
Q.6		
partie A	$Y = a + bxe^{-x}$, Y: vérifie (E), donc $a = 1$ et $b = -2e$	0.5
.2	La solution générale est: $y = ce^{-x} + Y = ce^{-x} + 1 - 2xe^{-x+1}$ y(1) = 0, $d'où c = e$. solution particulière: $y = 1 + (1 - 2x)e^{-x+1}$	1

partieB		
1	$\lim_{x\to +\infty} g(x) = 1$, donc $y = 1$ est l'équation de l'asymptote horizontale.	
2	$g'(x) = (2x - 3)e^{-x + 1}$ $X \qquad 0 \qquad \frac{3}{2} \qquad +\infty$ $g'(x) \qquad - \qquad \cdot \qquad +$ $g(x) \qquad 1 + e$ $g(x) \qquad -0.2$	1.5
3	g(1)=0, donc 1 est une racine. $g(2.25)=-2.77\times 10^{-3}$ $g(2.26)=1.54\times 10^{-3}$ g est continue et strictement décroissante sur $\left[2,25;2,26\right]$, alors: α est u $g(\alpha)=0$ si et seulement si $e^{\alpha-1}=2\alpha-1$	1
4	$g(x) \le 0$ si et seulement si $x \square \lfloor 1, \alpha \rfloor$ $g(x^2) \le 0$ si et seulement si $x^2 \square \lfloor 1, \alpha \rfloor$ si et seulement si $x \square \lfloor 1, \sqrt{\alpha} \rfloor$	1
5	2- 0 0 0.5 1.5 2.5 3 3.5 4 4.5 5 5.5 6 6.5	1.5
6	$A = \int_{1}^{2} \left[y_{(\Delta)} - g(x) \right] dx = \int_{1}^{2} \left[-(1 - 2x)e^{-x+1} \right] dx$ par une intégration par partie : $\int_{1}^{2} -(1 - 2x)e^{-x+1} dx = 3 - \frac{5}{e} \sim 1.1606$ $A = 1,16u^{2}$	1
partie C		

1	$f(-x) + f(x) = 2$ et \mathbb{R} est centré en 0. I(0,1)	0.5
2	$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} \left[f(x) - y_{(d)} \right] = 0$ $0 \text{si } x > 0 (\Gamma) \text{ au-dessus (d)}$ $f(x) - y_{(d)} = xe^{-x^2 + 1} = 0 \text{si } x = 0 (\Gamma) \text{ coupe (d)}$ $0 \text{si } x < 0 (\Gamma) \text{ au-dessous (d)}$	1
3	$f'(x) = g(x^{2})$ $f(\sqrt{\alpha}) = 1 + \frac{2\alpha\sqrt{\alpha}}{2\alpha - 1}.$	0.5
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
.5	2 1.5	1.5
6.a	$U_0 = \int_0^1 1 dx = 1$	0.5
6.b	$U_{n} = \int_{0}^{1} (1 + nxe^{-(nx)^{2} + 1}) dx = 1 + \int_{0}^{1} (nxe^{-(nx)^{2} + 1}) dx$ $Posons \ v = -(nx)^{2} + 1, \ donc \ dv = -2n^{2}x dx, \ nx dx = -\frac{dv}{2n}$	1

$U_n = 1 + \int_{1}^{-n^2 + 1} -e^{v} \frac{dv}{2n} = 1 - \frac{1}{2n} \left(e^{-n^2 + 1} - e \right)$	
$\lim_{n \to +\infty} U_n = 1$	