TEZPUR UNIVERSITY

Test III (Assignment), 2019

CO205: Formal Languages and Automata

(*Please carefully read the complete document before attempting the questions*)

There are two questions in the assignment as follows. Figures on the right indicate full marks for the questions:

- 1. Design a DFA for a regular language L_1 and write a program to simulate the DFA. The program should be able to take any random string as input from the user and determine whether the string belongs to the language L_1 . [10]
- 2. Design a PDA for a context free language L_2 and write a program to simulate the PDA. Similar to the previous question, the program should be able to determine whether a random string given as user input belongs to the language L_2 . [15]

Each student will work on a different set of languages (L_1 and L_2). The roll number-wise allocation of languages L_1 and L_2 are given in the table below:

Rol	l Nun	nber	s					Assigned set		
1	11	21	31	41	51	61	71	Set 1	$L_1 = \{w \mid w \text{ has at least two 1's}\}$ $\Sigma_1 = \{0, 1, 2\}$ $L_2 = \{w \mid w \text{ has same number of 0's and 1's}\},$ $\Sigma_2 = \{0, 1\}$	
2	12	22	32	42	52	62	72	Set 2	$L_1 = \{w \mid w \ has \ the \ substring \ 010\}$ $\Sigma_1 = \{0,1\}$ $L_2 = \{w \mid w \ starts \ and \ ends \ with \ the \ same \ symbol\}$ $\Sigma_2 = \{0,1\}$	
3	13	23	33	43	53	63	73	Set 3	$L_{1} = \{w \mid w \text{ has even number of 1's}\}$ $\Sigma_{1} = \{0, 1\}$ $L_{2} = \{0^{n}1^{m}0^{n} \mid n \geq 1, m \geq 1\}$ $\Sigma_{2} = \{0, 1\}$	
4	14	24	34	44	54	64	74	Set 4	$L_1 = \{w \mid the \ number \ of \ 0's \ in \ w \ is \ a \ multiple \ of \ 3\}$ $\Sigma_1 = \{0, 1\}$ $L_2 = \{0^n 1^n 2^m \ n \ge 1, m \ge 1\}$ $\Sigma_2 = \{0, 1, 2\}$	
5	15	25	35	45	55	65	75	Set 5	$L_1 = \{w \mid the \ length \ of \ w \% \ 3 = 1\}$ $\Sigma_1 = \{a,b,c\}$ $L_2 = \{w \mid the \ length \ of \ w \ is \ odd \ and \ the \ middle \ symbol \ is \ 0 \ \}$ $\Sigma_2 = \{0,1\}$	

6	16	26	36	46	56	66	76	Set 6	$L_1 = \{w \mid w \ ends \ with \ the \ substring \ bb\}$ $\Sigma_1 = \{a, b\}$ $L_2 = \{0^n w \mid n \ge 1, w \in \{0,1\}^* \ and \ w = n \}$ $\Sigma_2 = \{0, 1\}$
7	17	27	37	47	57	67	77	Set 7	$L_{1} = \{w \mid w \text{ does not end with } a\}$ $\Sigma_{1} = \{a, b, c\}$ $L_{2} = \{w0^{n} \mid n \ge 1, w \in \{1,2\}^{*} \text{ and } w = n\}$ $\Sigma_{2} = \{0, 1, 2\}$
8	18	28	38	48	58	68	78	Set 8	$L_1 = \{w \mid w \text{ begins with the substring aba}\}$ $\Sigma_1 = \{a, b\}$ $L_2 = \{0^j 1^k 2^{j+k} \mid j \ge 1, k \ge 1\}$ $\Sigma_2 = \{0, 1, 2\}$
9	19	29	39	49	59	69		Set 9	$L_{1} = \{w \mid the \ number \ of \ a's \ in \ w \% \ 3 \ is \ 1\}$ $\Sigma_{1} = \{a, b\}$ $L_{2} = \{a^{i}b^{j} \mid i \ge 1, \qquad j > i\}$ $\Sigma_{2} = \{0, 1\}$
10	20	30	40	50	60	70		Set 10	$L_{1} = \{w \mid w \text{ has at least 3 b's}\}$ $\Sigma_{1} = \{a, b, c\}$ $L_{2} = \{a^{i}b^{j} \mid i \geq 1, j = 2 * i\}$ $\Sigma_{2} = \{0, 1\}$

Submission details:

- 1. The state diagrams of the DFA and PDA need not be submitted separately. However, the states and the transitions should be clearly mentioned within the program itself (as comments etc).
- 2. The programs can be written in C, C++, or Python. Clearly state your roll number as a comment at the beginning of the program file.
- 3. Rename the program file using your roll number, set number, and question number. For example *CSB17001_Set1_Q1.c* and *CSB17001_Set1_Q2.c*
- 4. Please submit the assignments via Google Classroom.
- 5. The last date for submissions is 11:59PM, 21 April 2019 (Sunday).
 - Late submissions will be subject to **negative marking**.
 - If the submission is made k days after the last date, then the marks to be awarded will be calculated as, $X_k = X \frac{k(k-1)}{2}$. Here, X is the actual marks based on the evaluation.