Московский физико-технический институт (госудраственный университет)

Лабораторная работа по квантовой физике

Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии [5.1]

Талашкевич Даниил Александрович Группа Б01-008

Содержание

1	Аннотация										
	1.1	Теоретическая часть									
	1.2	Экспериментальная установка									
2	Ход работы										
	2.1	Экспериментальные данные									
	2.2	Обработка результатов									
3	Вы	вод									

1 Аннотация

Цель работы: с помощью сцинтилляционного счетки измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их велечине определить энергию γ -квантов.

1.1 Теоретическая часть

Гамма-лучи возникают при переходе возбужденных ядер из одного энергетического состояния в другое, более низкое. Энергия γ -квантов обычно заключена между несколькими десятками килоэлектронвольт и несколькими миллионами электрон-вольт. Гамма-кванты не несут электрического заряда, их масса равна нулю. Проходя, через вещество, пучок γ -квантов постепенно ослабляется. Ослабление просходит по експоненциальному закону, который может быть записан в следующей форме:

$$I = I_0 e^{-\mu l},\tag{1}$$

где $I,\,I_0$ – интенсивности прошедшего и падающего излучений; l – длина пути, пройденного пучком γ -лучей; μ – коэффициент ослабления потока в веществе.

Ослабление потока γ -лучей, происходящее при прохождении среды, связано с тремя эффектами: фотоэлектрическим поглощением, комптоновским рассеянием и с генерацией электрон-позитронных пар.

В случае опытов, поставленных в хорошей геометрии, при прохождении γ -лучей через вещество меняет только количество, но не энергия γ -квантов в пучке, так что коэффициент μ , характеризующий поглощение γ -квантов в веществе, не зависит от длины пути. Обозначим через -dN число γ -квантов, выбывших их пучка на пути dl. Это число пропорционально имеющемуся их числу N и пройденному пути dl. Следовательно,

$$-dN = \mu N \, dl. \tag{2}$$

Интегрируя уравнение (2) от нулевой толщины до заданной, получим

$$N = N_0 e^{-\mu l}. (3)$$

Вообще говоря, в плохой геометрии, когда рассеянные под небольшими углами γ -кванты остаются в пучке, их спектр с прохождением вещества меняется, поэтому формула (1) непреминима. Однако в этом случае она работает лучше, чем можно было ожидать.

В данной работе коэффициент ослабления μ измеряется в хорошей геометрии. Из формулы (3) имеем:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N}. \tag{*}$$

Для определения коэффициента ослабления нужно, таким образом, измерить толщтну образца l, число падающих частиц N_0 и число частиц N, прошедших через образец.

1.2 Экспериментальная установка

Схема установки, исползуемой в работе, показана на рис. 1. Свинцовый коллиматор выделяет узкий почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтиляцонным счетчиком. Сигналы от счетчика усиливаются и регистрируются пересчетным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счетчика.

Рис. 1: Блок-схема установки, используемой для измерения коэффициентов ослабления потока γ -лучей.

При недостаточно хорошей геометрии в результаты опытов могут вкрасться существенные погрешности. В реальных установках всегда имеется конечная вероятность того, что γ -квант провзаимодействует в поглотителе несколько раз до того, как попадет в детектор (пути таких квантов показаны на рис. 2). Чтобы уменьшить число таких случаев, в данной работе сцинтилляционный счетчик расположен на большом расстоянии от источиника γ -квантов, а поглотители имеют небольшие размеры. Их следует устанавливать за коллиматорной щелью на некотором расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние и выбывшие из прямого потока кванты с меньшей вероятностью могли в него вернуться.

Рис. 2: Схема рассеяния γ -квантов в поглотителе.

2 Ход работы

2.1 Экспериментальные данные

В условиях нашего эксперимента необходимо учитывать фон, поэтому

$$N_0 = n_0 - n_{\text{фон}}, \ N = n - n_{\text{фон}}.$$

Таблица 1: Измерение фона и потока γ -излучения в воздухе.

	t, c	n
$n_{\Phi^{\mathrm{oH}}}$	10	170
n_0	10	139843

Таблица 2: Результаты измерений.

Алюминий		Железо		Свинец			Пробка				
l, см	t, c	< n >	l, см	t, c	< n >	l, см	t, c	$< n >$	l, см	t, c	< n >
2,01	10	90184	1,01	10	77631	0,49	10	74789	1,97	10	139843
4,02	10	58592	2,04	10	41492	0,97	10	41581	3,92	10	136826
5,99	10	38074	3,02	10	23703	1,45	10	23430	5,91	10	133850
7,99	10	24498	4,03	10	13304	1,90	10	13986	7,92	10	131576
10,02	10	16575	5,03	10	7609	2,35	10	8351	9,78	10	129176

Здесь < n > - это усредненное значение кол-ва частит, тк мы измеряли это значение несколько раз. Отметим, что при повторном измерении результаты измерений количества частиц n отличались в среднем на 3% от значений в табл. 2. Поэтому относительная погрешность n будет порядка 3%. Длина l была измерена достаточно точно штангенциркулем и $\sigma_l/l < 1\%$, где $\sigma_l = 0,01$ см.

2.2 Обработка результатов

Для определения коэффициента ослабления μ в различных веществах небходимо построить графики зависимостей $\ln N_0/N$ от l. Погрешность вычисления натурального логарифма можно оценить следующим образом:

$$\sigma_{\text{ln}} = \frac{1}{N_0/N} \sigma_{N_0/N} = \sqrt{\left(\frac{\sigma_{N_0}}{N_0}\right)^2 + \left(\frac{\sigma_N}{N}\right)^2} \approx \sqrt{\left(\frac{\sigma_{n_0}}{n_0}\right)^2 + \left(\frac{\sigma_n}{n}\right)^2} = 0,05\sqrt{2} \approx 0,07.$$

Железо Пробка Алюминий Свинец $\ln N_0/N$, c $\ln N_0/N$, c $\ln N_0/N$, c $\ln N_0/N$, c l, cm l, cm l, cm l, cm 2,01 1,01 0,590,490,591,97 0,01 0,454,02 0,85 2,04 1,16 0,97 1,09 0,03 3,92 5,99 1,74 1,26 3,02 1,45 1,67 5,91 0,06 7,99 1,67 4,03 2,31 1,90 2,22 7,92 0,08 10,02 2,07 2,85 2,355,03 2,79 9,78 0.11

Таблица 3: Результаты вычислений.

По данным таблицы 3 были построены прямые (рис. 3), наклоны которых согласно формуле (\star) есть линейные коэффициенты ослабления μ потока γ -излучения в веществе.

Рис. 3: Графики зависимостей $\ln N_0/N$ от l для различных материалов.

Имеем:

Таблица 4: Наклоны прямых.

	Pb	Fe	Al	X
$\mu, 10^{-3} \cdot \text{cm}^{-1}$	1132 ± 11	561 ± 4	$201, 7 \pm 0, 7$	$12,3 \pm 0,4$

3 Вывод

В настоящей лабораторной работе с помощью сцинтилляционного счетчика были измерены (табл. 4) линейные коэффициенты ослабления μ потока γ -лучей в свинце, железе, алюминии и в некотором веществе «Х», которое внешне напоминало дсп. Среднюю энергию излучения, испускаемого источником, можно определить по следующей справочной таблице, приведенной в приложении лабораторного практикума по общей физике «Квантовая физика»:

Таблица 5: Коэффициенты поглощения γ -лучей в различных веществах (в см⁻¹).

E_{γ} , МэВ	Pb	Fe	Al
0,6	1,349	0,605	0,210
0,8	0,982	0,526	0,184

Видно, что полученные нами значения коэффициента ослабления потока μ для каждого вещества лежат в диапазоне энергий от 0,6 МэВ до 0,8 МэВ, поэтому средняя энергия излучения есть $E_{\gamma}=0,7$ МэВ.

Заметим, что наклоны прямых на рис. 3 по мере роста заряда ядра увеличиваются. Это связано с природой ослабления γ -лучей при их прохождении в веществе: фотоэлектрическое поглощение, комптоновское рассеяние, генерация электрон-позитронных пар. Так как $E_{\gamma}=0,7~\mathrm{MpB}<2mc^2=1,02~\mathrm{MpB}$, то в нашем случае фотон не может превратиться в электрон-позитронную пару. Комптоновское рассеяние происходит на свободных или слабосвязанных электронах, поэтому, очевидно, сечение не зависит от заряда ядра, откуда $\mu_k \propto Z$. Фотоэффект же в отличии от Комптоновского рассеяния происходит на атоме, и, естественно, что в этом случае сечение уже будет зависеть от заряда ядра. Вообще говоря, строгий квантово-механический рассчет приводит к результату $\sigma_{\phi} \propto Z^5$. Таким образом, коэффициент ослабления γ -лучей должен расти при увеличении заряда ядра.