EE 214 PROBABILITY AND RANDOM PROCESSES IN ELECTRICAL ENGINEERING

Lecture 2A: Continuous Random Variables

EXAMPLE: DISCRETEVS CONTINUOUS RV

EXAMPLE

In a game of darts, a dart is thrown to a circular board of radius a and scored depending on how near to the center of the board the dart hits. Let X be the random variable associated with the score of a single dart thrown.

Case I: The board is numbered by concentric, equally spaced regions with values of 100, 90, 80, up to 10 at the outermost annular region of the board.

 $S_X = \{10, 20, ..., 100\}$ hence X is a discrete random variable.

EXAMPLE

Case 2: The score of the dart hit is inversely proportional to its distance r (in cm) from the center, given by I/r. Assume that dart always hits the board.

 $S_X = \{x | 1/a < x < \infty\}$, hence X is a continuous random variable.

Case 3: Scoring for the dart hit is similar to case 2, except that now the dart can hit outside the board area, which will be automatically scored as a zero.

 $S_X = \{0, x | 1/a < x < \infty\}$, hence X is a mixed random variable.

WHEEL OF FORTUNE

Continuous RV case: Wheel of all real numbers from 0 to 100

PDF
$$f_X(x) = \begin{cases} 0.01 & 0 < x \le 100 \\ 0 & \text{elsewhere} \end{cases}$$

CDF
$$F_X(x) = \begin{cases} x/100 & 0 < x \le 100 \\ 1 & x > 100 \end{cases}$$

QUESTION:

What is the probability of getting a number between 10 and 30?

Area under the curve

$$P(10 < x < 30) = \int_{10}^{30} f_X(x) dx$$
$$= \int_{10}^{30} 0.01 dx = 0.01(20)$$
$$= 0.2$$

USING CDF

GAUSSIAN

- Model for natural random phenomena
- PDF

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$$
Gauss

■ Mean: m

• Variance: σ^2

GAUSSIAN PROBABILITY DENSITY

GAUSSIAN PDF AND CDF

Bell-shaped and even symmetric

Mean = 0, standard deviation = 1

PDF AND CDF

- Most important of all distributions
 - Scientific error measurements
 - noise models (AWGN)
 - Scores on tests

PERCENTILE SCORES

NORMALIZED GAUSSIAN

- Gaussian RV with m=0 and σ =1
 - Standard normal distribution
- Any Gaussian RV may be expressed in standard form

$$F_X(x) = G\left(\frac{x-m}{\sigma}\right)$$

NORMALIZED GAUSSIAN TABLE

X _{norm}	G(x _{norm})	X _{norm}	G(x _{norm})	X _{norm}	G(x _{norm})
0	0.50	0.6	0.73	1.4	0.92
0.1	0.54	0.7	0.76	1.6	0.94
0.2	0.58	0.8	0.79	1.8	0.96
0.3	0.62	0.9	0.82	2.0	0.98
0.4	0.66	1.0	0.84	2.5	0.99
0.5	0.69	1.2	0.88	3.0	1.00

EXERCISES

A Gaussian random variable Y has a mean of 10 and a standard deviation 3. Find:

- P(7 < Y)
- P(Y < 11.5)
- P(7 < Y < 11.5)

EXERCISES

Inductance values of coils made on a production line are Gaussian with a mean of 1.2mH and a standard deviation of 0.1mH. What is the probability of selecting an inductor from this line having a value within 1.0mH \pm 10%?

EXPONENTIAL RANDOM VARIABLES

 model for waiting time (i.e., radioactive particle to arrive at counter, packet to arrive at router, etc.)

$$f_X(t) = \lambda e^{-\lambda t} \quad ; \lambda \ge 0$$

- mean: 1/λ
- variance: $1/\lambda^2$

EXPONENTIAL RV

$$P[X \ge a] = \int_{a}^{\infty} \lambda e^{-\lambda x} dx = e^{-\lambda a} \le \frac{1}{\lambda a}$$

EXAMPLE

■ The time until a small meteorite first lands anywhere in the Sahara desert is modelled as an exponential random variable with a mean of 10 days. The time is currently midnight. What is the probability that a meteorite first lands some time between 6am and 6pm of the first day?

SOLUTION

Let: X = time (in days) elapsed until first landing

$$f_X(t) = \lambda e^{-\lambda t}$$
; $\lambda = 0.1$
 $Z = P(0.25 \le X \le 0.75)$
 $= P(X \ge 0.25) - P(X \ge 0.75)$
 $= e^{-0.25*0.1} - e^{-0.75*0.1} = e^{-0.025} - e^{-0.075}$
 $Z = 0.0476$