AL 53 Cuite								
			•	D	E	F	G	<u>H</u>
(1) (a) 1	A	В				30.2	35.3	16.5
	20.4	22.2	29.9	37.8			23.6	26.8
distance (%)	20.4		20.3	28.3	34.9	29.3	23.2	
· (4)	17.7	24.1	10.0	0	4	6	7	I
convission (y)		3	5	8	•		3	5
rx	2	3		6	8	7	,	
		4	2				4	-4
ry	'		3	2	-4	-1		
d (rx-ry)	1	-1	3			1	16	16
4 (12 3)			9	4	16			
.2	١	1	_					
d ²	•							

$$\int d^{2} = 64$$

$$r_{S} = 1 - \frac{6 \int d^{2}}{n(n^{2} - 1)}$$

$$= 1 - \frac{6(64)}{8(8^{2} - 1)}$$

$$= 1 - \frac{16}{21}$$

$$= \frac{5}{21}$$

$$\approx 0.2381 (40P) [5]$$

(b)
$$H_0: P=0$$
 (there is no correlation)

 $H_1: P>0$ (there is positive correlation)

There is insufficient evidence to suggest that any positive correlation exists between the distance travelled by car and the amount of consission earned. [4]

(2) (a) Ho: there is no assosciation between the results of candidates and the test

Here is an assosciation between the results of cardidates and the test

	A		ß		C	
Observed frequency (Oi) Expected frequency (Ei) Oil Ei	92.48	108 114.52 101.85	100.97	125.03	68 83.55 \$5.34	119 103.45

$$X^{2} = \sum \frac{0i^{2}}{2i} - N$$

$$= 627.52 - 620$$

$$X^{2} = 7.52 \quad (Ei, \frac{0i^{2}}{2i} \text{ and } X^{2} \text{ for } 200)$$

$$V = (3-1)(2-1) = 2$$

$$\chi_2^2$$
 (5.1.) = 5.991 (tables)
the test is significant; reject H_0

7.52 > 5.991 => the test is significant; reject to.

The researcher's studies show that there is an assosciation between the driving test centre and the results of candidates'. [10]

- (b) The researcher should further investigate centre C as it contributes most to the test statistic, X2. [2]
- (3) (a) The sample is non-random and not representative of the true population; it will be biased towards those who arrive early to work. [2]
 - (b) . Divide population into three individual Strata: (i) Bristol; (ii) Dudley; (iii) Glasgow. Dudley: 1215 x 150 = 72.9 Bristol: 419 × 150 ≈ 25.74 2500 × 26 856 × 150 = 51.36

Number cach strata using the table of random numbers. i.e. 1 to 1815 for Glasgow, 1 to 429 for Dudley, and I to 856 for Bristol. Choose a random starting point.

1 to 429 for Dudley, and I to 856 for Bristol. Choose a random starting point.

1 to 429 for Dudley, and I to 856 for Bristol. Choose a random starting point.

- Since stratified sampling is random and gusta samply, is non-rardom due to the interviewing process involved, it is less likely for a stratified sample to be biased. [1]
- (4)(a) let adults = A and children = C.

Ho: MA=HC

H1: 44 < 4c

$$Z = \frac{59.1 - 61.2 - 0}{\sqrt{\left(\frac{5.9^2}{60} + \frac{5.2^2}{50}\right)}}$$

Z=-1.9834... <-1.6449 => the test is significant; reject Ho.

There is sufficient evidence to suggest that the mean time taken by children to complete the task is greater than that of admits. [6]

CJ

- (b) Due to the large sample sizes, the Central Limit Theorem allows us to assume that the sample means of both adults and children are normally
- (c) The sample variance, s, is the same as the population revience, or. [1]
- (a) Ho: a uniform distribution, v[0,360], is a suitable model.

H₁: a vnifom distribution, U[0, 360], is not a suitable model.

	L MICHI				
H ₁ : a vrifom distr	. 60	72-140	140-190	190-260	260-360
	0-72		51	108	144
observed (Oi)	78 90	69 85	62.5	87.5	125
expected (Ei)	67.6	4761 85	41.616	23328 175	165.888
Ei	[e]				

$$\chi^2 = \sum \frac{\partial i^2}{\partial i} - N$$

= 464.4186...-450

= 14.41862...

13.277 < 14.419 > He test is significant; reject to.

There is evidence to suggest their a uniform distribution is not a suitable model.

$$\Rightarrow P(2 < \frac{44-29}{\sqrt{36+166^2}}) = 0.9$$

$$\Rightarrow \frac{15}{\sqrt{36+160^2}} = 1.2816$$

$$\sqrt{36 + 16\sigma^2} = \frac{15}{1.2816}$$

$$166^2 = \left(\frac{15}{12816}\right)^2 - 36$$

$$6^{-2} = \frac{1}{16} \left[\left(\frac{15}{1.2816} \right)^{1} - 36 \right]$$

$$\sigma = \sqrt{(6.38)}$$

 $\sigma = 2.5123... \approx 2.51 (20P)[8]$

(b)
$$B = 2x + \sum_{i=1}^{3} A_i$$

$$= \frac{\Phi(1.99) - 1 + \Phi(0.63)}{\Phi(0.63)}$$

$$\sum 2^2 = 167218$$

$$\hat{\mu} = \frac{\sum_{x}}{n}$$

$$S^{2} = \frac{\sum x^{2} - n \hat{\mu}^{2}}{n - 1}$$

$$= \frac{167218 - 8(144)^{2}}{n - 1}$$

:
$$s^2 = 190 \text{ g}^2 \text{ [4]}$$

(b) $\sum_{i=1}^{8} (x_i - \mu)^2$ contains an unknown population parameter, μ , and hence, cannot be

(c)
$$Y = \frac{1}{8} \left(\sum_{i=1}^{8} \chi_{i^{2}} - 8 \overline{\chi}^{2} \right)$$

$$E(Y) = E(X^2) - E(X^2) +$$

$$\Rightarrow E(Y) = Var(X) + E(X)^{2} - Var(X) - E(X)^{2}$$

$$= Var(X) - Var(X)$$

$$Var(x) = E(x^2) - E(x)^2$$

$$\Rightarrow Var(x) + E(x)^2 = E(x^2)$$

$$\Rightarrow Var(\bar{x}) + E(\bar{x})^{1} = E(\bar{x})$$

$$E(Y) = \sigma^2 - \frac{\sigma^2}{n}$$
$$= \sigma^2 - \frac{\sigma^2}{8}$$

$$: E(Y) = \frac{7\sigma^2}{8} [2]$$

(d)
$$6ias = E(Y) - \sigma^{2}$$

$$= \frac{7\sigma^{2}}{8} - \sigma^{2}$$

$$= -\frac{\sigma^{2}}{8}$$

(8) (a) let X= no. of sixes obtained by each student in 30 rolls

$$\times \sim \beta(30, \frac{1}{6})$$

$$E(\times) = \text{Rep}$$

$$= 30(\frac{1}{6})$$

$$= \frac{25}{6}$$

By the Central Limit Theorem,
$$X \approx \sim N\left(5, \frac{25/6}{50}\right)$$
 [3]
 $\therefore X \sim N\left(5, \frac{1}{2}\right)$

Rejecting to at upper tent, Rejecting to at lower tent,
$$\frac{20-5}{\sqrt{1/2}} > 1.96$$

$$\frac{20-5}{\sqrt{1/2}} > 1.96$$

$$\frac{1}{\sqrt{1/2}} + 5$$

$$\frac{20-5}{\sqrt{1/2}} < -1.96$$

$$\frac{1}{\sqrt{1/2}} < -1.96$$

$$\frac{1}{\sqrt{1/2}} < -1.96$$

