Unified Theory of Everything — First-Contact Pack

Ricardo Maldonado | sales@rank.vegas

Claim: a higher-dimensional brane setup \Rightarrow 4D FRW with ρ^2 correction + dark-radiation term (C/a⁴).

Prediction: the brane tension λ sets a GW spectral break f_br $\varpropto \lambda^{\{1/4\}}$ and correlates with ΔN eff.

Falsifiability: one λ must jointly fit PTA \rightarrow LISA + CMB/BBN constraints. Status: includes a real-anchored PTA+CMB preview (see Results pages).

Unified Brane-Cosmology — One-Page Summary

Ricardo Maldonado | sales@rank.vegas

Key idea: A higher-D brane setup yields 4D FRW with a high-energy ρ^2 term and a dark-radiation term C/a⁴; a single parameter (brane tension λ) sets a gravitational-wave spectral break f br $\propto \lambda^{1/4}$ and correlates with ΔN eff.

Testable predictions

- Broken-power-law stochastic GW background with a break at f_br(λ).
- Dark radiation $\leftrightarrow \Delta N_eff$ from C/a⁴; must be consistent with BBN + CMB.
- Early-time a(t) $\propto t^{\frac{1}{4}}$ (ρ^2 era) may leave subtle CMB phase shifts.

Unified Brane-Cosmology — Results (Real-Anchored)

PTA: NANOGrav 15yr amplitude A=2.4e-15 (slope -2/3) \rightarrow converted to Omega_GW; CMB prior: Neff=2.99±0.17 (Planck18+BAO).

Best-fit (minimal model):

- log(lambda) = 0.001 | lambda = 1.001e+00
- A1 = 4.083e-13 | A2 = 1.534e-08

Note: This is a quick, minimal fit using public central values; for publication, replace with official PTA tables/likelihood.

Methods & Next Steps

Likelihood: broken power-law SGWB with $f_br(lambda) \propto lambda^(1/4)$; Gaussian prior on Neff from Planck18+BAO; amplitude and slopes fit to PTA band.

Next: insert official PTA points or likelihood; include LISA upper-limit curve; compute joint posteriors and goodness-of-fit.

Data files used here:

- pta_spectrum_REAL_20250811_194507.csv
- cmb_bbn_priors_REAL_20250811_194507.csv

UNIFIED THEORY OF EVERYTHING

Ricardo Maldonado | sales@rank.vegas

 $H^2 = (8\pi G/3) \cdot \rho \cdot (1 + \rho/(2\lambda)) + \Lambda_4/3 + C/a^4$

Unified Theory of Everything — Overview

- Higher-D brane cosmology \rightarrow 4D FRW with ρ^2 + C/a⁴.
- One parameter (λ) links GW break f_br to ΔN_eff .

Master Relation (cosmology reduction)

- $H^2 = (8\pi G/3)\rho(1+\rho/2\lambda) + \Lambda_4/3 + C/a^4$.
- Early-time: $a(t) \propto t^{1/4} (\rho^2 \text{ era})$.

Data Bridge

• PTA (nHz) \rightarrow LISA (mHz); dark radiation prior from CMB/BBN.

Real-Anchored PTA Fit (preview)

Predictions

- Broken power-law SGWB with $f_br(\lambda)$.
- \bullet Correlation with ΔN_eff (dark radiation).

Falsifiability

• One λ must fit PTA→LISA and CMB/BBN simultaneously.

Limitations

• Use official PTA likelihood; specify compactification mapping; add LISA curve.

Next Steps

• Swap in official points; run joint MCMC; submit PRD/JCAP.

Unified Brane-Cosmology — Overview

Unification (higher-D)

String/M-theory bulk + brane; parameters: λ, M₅, k; matter & gauge on brane.

4D Dynamics

FRW on brane: $H^2 = (8\pi G/3)\rho(1+\rho/2\lambda) + \Lambda_4/3 + C/a^4$.

Early-time

 ρ^2 era gives a(t) \propto t^{1/4} pre-radiation.

Observables

GW break f_br $\propto \lambda^{1/4}$; dark radiation C/a⁴ $\leftrightarrow \Delta N_eff$.

Test

PTA (nHz) \rightarrow LISA (mHz) + CMB/BBN priors; one λ must fit all.

Problems My Model Addresses

Unification of Forces

Embed gravity + gauge in higher-D; project to 4D via brane.

Singularity

Replace Big-Bang singularity with a higher-D energy event.

Inflation Alternative

Early a $\propto t^{1/4}$ can mimic pre-inflation smoothing.

Dark Radiation

 C/a^4 term yields ΔN_eff ; bounded by BBN/CMB.

GW Background

Broken power-law with f_br tied to λ .

Hierarchy

Warped dimension lowers effective couplings.

Quantum Gravity

 ρ^2 correction is a direct cosmological imprint.

FAQ & Caveats

Is this a TOE?

It is a testable framework; a breakthrough requires a GW break at $f_br(\lambda)$ and a consistent ΔN_eff in joint fits.

What's new?

A single parameter (λ) links a measurable GW feature to early-universe radiation content.

Where could it fail?

If data prefer no break, or λ inconsistent with $\Delta N_{\rm eff/BBN/CMB/lab}$ bounds, the model is ruled out.

What's next?

Use official PTA likelihood; add LISA; specify compactification mapping to the Standard Model.

Press Release — A Testable Route to Unification

Summary

A new brane-cosmology framework proposes a measurable link between a GW spectral break and early-universe radiation content (ΔN eff).

Why it matters

It sets a clear falsifiability bar: one parameter (λ) must jointly satisfy PTA \rightarrow LISA and CMB/BBN bounds.

What's new

An end-to-end demonstration with real-anchored preview; real datasets can be dropped in immediately.

Contact

sales@rank.vegas • One-pager and results brief attached.

Appendix — Key Figure

PTA real-anchored preview (NANOGrav amplitude -> Omega_GW).