LISTING OF THE CLAIMS

1. (Currently amended). A compound of the formula I or II

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^3 , where R^{11} is hydrogen or C_1 - C_4 alkyl, and

R² is hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄alkyl, O-C₁-C₄-alkylphenyl, NH₂₅, or phenyl, it also being possible for the phenyl rings to be substituted by at
most two radicals R²⁴, and R²¹ and R²² independently of one another are hydrogen or C₁-C₄ alky I, and R²³ is
hydrogen, C₁-C₄-alkyl, or phenyl and R²⁴ is OH, C₁-C₆-alkyl, O-C₁-C₆-alkyl, chlorine, bromine, iodine,
fluorine, CF₅, nitro or NH₅, and

X may be 0, 1 or 2 and

 R^3 is $[[or R^3 is]] - D - (F^1)_p - (E)_q - (F^2)_r - G$, where p, q and r may not simultaneously be 0, or R^3 is -E- $(D)_u - (E^2)_r - (G)_n$, it also being possible for the radical E to be substituted by one or two radicals A, and if v = O, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R^3 is B and

R⁴ is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR⁴IR⁴2, NH-CO-R⁴3, or O-C₁-C₆-alkyl, where R⁴1 and R⁴2 independently of one another are hydrogen or C₁-C₄-alkyl and

R43 is hydrogen, C1-C4-alkyl, C1-C4-alkylphenyl or phenyl, and

D is S or O

E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine, and

F1 is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C1-C1-alkyl group and

 $F^2 \ is \ a \ chain \ of \ 1 \ to \ 8 \ carbon \ atoms, it \ also \ being \ possible \ for \ one \ carbon \ atom \ of \ the \ chain \ to \ carry$ an OH or C_1 - C_4 -alkyl group and

p may be 0 or 1

q may be 0 or 1, and

r may be 0 or 1 and

s may be 0 or 1

u may be 0 or 1

v may be 0 or 1

G may be NR51R52 or

where

R51 is hydrogen or branched or unbranched C1-C6-alkyl, or (CH2)1-K

and

R52 is hydrogen, branched or unbranched C1-C6-alkyl, phenyl,

in which

 R^{55} may be branched or unbranched O- G_1 - C_6 -alkyl, phenyl, or branched or unbranched C_1 - C_4 -alkylphenyl, where in the case of R^{52} and R^{51} , independently of one another, one hydrogen of the C_1 - C_6 -alkyl radical may be replaced by one of the following radicals: OH, O- C_1 - C_4 -alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl or phenyl, it also being possible for the carbocycles of the radicals R^{52} and R^{53} independently of one another to carry one or two of the following

radicals: branched or unbranched C_1 - C_6 -alkyl, branched or unbranched O- C_1 - C_1 -alkyl, OH, F, Cl, Br, I, CF_5 , NO_2 , NH_2 , COOH, $COOC_1$ - C_1 -alkyl, C_1 - C_1 -alkylamino, CCl_3 , C_1 - C_1 -alkylamino, SO_2 - C_1 - C_1 -alkyl, SO_2 -benyl, CONH- C_1 - C_1 -alkyl, CONH-benyl, CONH- C_1 - C_1 -alkyl, CONH-benyl, CONH- C_1 - C_1 -alkyl, CONH- C_1 - C_1 - C_1 -alkyl, CONH- C_1 - $C_$

$$NHSO_2phenyl, S-C_1-C_1-alkyl, \qquad O_{\uparrow\uparrow}C_4-alkyl, \qquad O_{\uparrow\uparrow}C_4-alkyl, -CH_2-O_1-C_1-alkyl, -CH_2-C_1-C_1-alkyl, -CH_2-C_1-C_1-alkyl, -CH_2-C_1-C_1-alkyl, -CH_2-C_1-C_1-alkyl, -CH_2-C_1-C_1-alkyl, -SO_2NH_2, -SO_2NH_2-C_1-C_1-alkyl, -SO_2NH_2-C_1-C_1-C_1-Alkyl, -SO_2NH_2$$

or two radicals form a bridge -O-(CH)1,2-O-,

B may be

and

A may be hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, branched or unbranched C₁-C₆-alkyl, CN or NH-CO-R³³ where R³³ is hydrogen or C₁-C₄-alkyl, and

T is 0,1, 2, 3 or 4 and

K is a phenyl, which may carry at most two substitutents radicals on the ring, eemprising NR^{td}R^{t2} wherein R^{td} and R^{t2} are as defined for R^{t1} and R^{t2} respectively, NH-C₁-C₄-alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an C₁-C₆-alkyl radical, or homopiperazine, which may also be substituted by an C₁-C₆-alkyl radical, and R³ may be hydrogen, C₁-C₆-alkyl, or NR²R³ and

and

R7 is hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylphenyl or phenyl, it also being possible for the rings to be substituted by up to two radicals R71, and

R⁷¹ is OH, C₁-C₆-alkyl, O-C₁-C_{4-alkyl}, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂, and

 R^8 is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R^{81} and

R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂ and R⁹ is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched or unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the C₁-C₆-alkyl radical to be replaced in each case by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched [[and]] or unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, OH, O-C₁-C₄-alkyl, CN, CF₃, or SO₂-C₁-C₄-alkyl, or a tautormeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

2. (Currently amended). A compound of the formula I or II

in which

 R^{i} is hydrogen, or branched or unbranched C_{1} - C_{6} -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^{5} , where

R11 is hydrogen or C1-C4-alkyl, and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C₁-C₆-alkyl, nitro, CF₅, CN, NR²¹R²², NH-CO-R²³, or OR²¹, where

R21 and R22 are, independently of one another, hydrogen or C1-C4-alkyl, and

R23 is hydrogen, C1-C4-alkyl, OH or O-C4-alkyl and

R3 is O-(CH2)o-(CHR31)m-(CH2)n-R5 where

R31 is hydrogen, C1-C4-alkyl, OH or O-C1-C4-alkyl,

m, o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

R4 is hydrogen, branched or unbranched C1-C6-alkyl, chlorine, bromine, fluorine, nitro, cyano,

NR41R42, NH-CO-R43, or OR41, where

R41 and R42 are, independently of one another, hydrogen or C1-C4-alkyl, and

R43 is C1-C4-alkyl or phenyl, and

R5 is NR51R52 or one of the following radicals

where

 R^{51} is hydrogen or branched or unbranched C_1 - C_6 -alkyl, and R^{52} is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, phenyl,

R⁸³ is branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₆-alkylphenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁸³ and R⁹³ are, independently of one another, optionally replaced by one of the following radicals: OH, O-C₁-C₆-alkyl, eyclohexyl, eyclopentyl, tetrahydronaphthyl, cyclopropyl, eyclobutyl, cycloheptyl, naphthyl [[and]] or phenyl, where the carbocycles of the R⁹² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₁-alkyl, OH, F, Cl, Br, I, CF₅, NO₂, NH₂, CN, COOH, COO-C₁-C₁-alkyl, C₁-C₆-alkyl, amino, -CCl₅, C₁-C₆-di-alkylamino, SO₂-C₁-C₆-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₇-alkyl, CONH-C₁-C₇-alkyl, NHSO₂-Dhenyl, NHSO₂-C₁-C₆-alkyl, NHSO₂-Dhenyl, SC₁-C₁-alkyl, NHSO₂-Dhenyl, SC₁-C₁-alkyl, NHSO₂-Dhenyl, SC₂-C₁-C₆-alkyl,

CHO, CH2-O-C1-C4-alkvl, -

CH₂OC₁-C₄-alkyl-phenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkyl-phenyl, -SO₂NH₂, -SO₂NH-C₁-C₄-alkyl or two radicals form a bridge -O-(CH)₁₂-O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

3. (Currently amended). A compound of the formula I or II

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²¹R²², NH-CO-R²³, or OR²¹, where

R21 and R22 are, independently of one another, hydrogen or C1-C4-alkyl, and

R23 is hydrogen, C1-C4-alkyl or phenyl, and

R3 is

and

R31 is hydrogen, CHO or -O-(CH2)o-(CHR32)m-(CH2)n-R5 where

R32 is hydrogen, C1-C4-alkyl, OH or C1-C4-alkyl,

m, o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

R⁴ is hydrogen, or branched or unbranched C₁-C₀-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴IR⁴2, NH-CO-R⁴0, or OR⁴1, where

R41 and R42 are, independently of one another, hydrogen or C1-C4-alkyl and

R⁴³ is C₁-C₄-alkyl or phenyl, and R⁵ is NR⁵¹R⁵² or one of the radicals below

where

R51 is hydrogen or branched or unbranched C1-C6-alkyl, and

R³² is hydrogen, COCH₃, CO-O-C₁-C₁-alkyl, COCF₃, branched or unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be replaced by one of the following radicals: OH, O-C₁-C₆-alkyl or phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C₁-C₁-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₁-alkyl, CN, or SO₂-C₁-C₄-alkyl, or a tautomeric form, or a possible enantiomeric or disasteriomeric form, or a prodrug or pharmacologically tolerated salt thereof.

- 4. (Currently amended). A compound as claimed in claims 1, 2 [[and]] or 3 where R^2 is in position 3 and R^3 is in position 4 or R^2 is in position 4 and R^3 is in position 3 relative to the benzimidazole ring.
- 5. (Currently amended). A compound as claimed in claims 1, 2 [[and]] \underline{or} 3 where R^1 and R^4 are hydrogen.
- 6. (Currently amended). A compound as claimed in claims 1, 2 [[and]]_or 3 where R² is hydrogen, or branched or unbranched C₁-C₆-alkyl, nitro, CN, NH₂, or O-C₁-C₆-alkyl.
 - 7. (Currently amended). A compound of the formula I or II.

Submission under 35 USC 132(b) and 37 CFR 1.111 Serial No. 09/830,992 Attorney Docket No. 065483-0970 Electronically filed September 18, 2008

in which

R¹ is hydrogen, or branched or unbranched C₁-C₆-alkyl it also being possible for one C atom of thealkyl radical to carry OR¹¹ or a group R², where

R11 is hydrogen or C1-C4-alkyl and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²1R²2, NH-CO-R²3, or OR²1, where

R21 and R22 are, independently of one another, hydrogen or C1-C4-alkyl, and

R23 is hydrogen, C1-C4-alkyl or phenyl, and

R3 is

(i)

R31 is hydrogen or -(CH2)p-R5, where

p is 1 or 2 and

R³² may be hydrogen, or branched or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be replaced by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C₁-C₄-alkyl, nitro, amino, C₄-C₄-alkylamino, C₁-C₄-di-alkylamino, OH, O-C₄-C₄-alkyl, CN, or SO₂-C₁-C₄-alkyl;

or

(ii) R3 is

 R^{31} is hydrogen or $-(CH_2)_p$ - R^5 , where p is 1 or 2 and

R³² may be hydrogen, or branched or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-di-alkylamino, OH, O-C₁-G₄-alkyl, CN, or SO₂-C₄-G₄-alkyl:

where R²² is hydrogen, or branched or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆alkyl radical may be replaced by one of the following radicals: OH, O- C₁-C₁-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, branched or unbranched C₁-C₁-alkyl, nitro, amino, C₁-C₁-alkylamino, C₁-C₁-di-alkylamino, OH, O-C₁-C₁-alkyl, CN, or SO₂-C₁-C₂-alkyl, or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

8. (Previously Presented) A compound as claimed in claim 1, where R^3 is -D-(F^1)_{F^-}(E)_{q^-}(F^2)_{F^-}G, where D is O, F^1 is a C_1 - C_4 carbon chain, p is 1, q is 0 and r is 0.

9. (Currently amended). A compound as claimed in claim 1, where R^5 is a 6-membered ring selected from

and R52 is a phenyl ring.

10. (Previously Presented) A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.

11-13. (Cancelled)

14. (Previously presented). A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder wherein the disorder is stroke or cranicoerebral trauma.

15. (Cancelled)

- 16. (Previously presented). A method for treating ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from ischemia.
- 17. (Previously presented). A method for treating epilepsy, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from epilepsy.
- 18. (Previously presented). A method for treating damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. (Previously presented). A method for treating damage to the heart after cardiac ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the heart after cardiac ischemia.

Submission under 35 USC 132(b) and 37 CFR 1.111 Serial No. 09/830,992 Attorney Docket No. 065483-0970 Electronically filed September 18, 2008

20. (Previously presented). A method for treating a microinfarct said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from a microinfarct.

21. (Previously presented). A method for treating under vascularization of critically narrowed coronary arteries said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from under vascularization of critically narrowed coronary arteries.

22. (Previously presented). A method for treating an acute myocardial infarct and damage during and after medical or mechanical lysis thereof, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from an acute myocardial infarct and damage during and after medical or mechanical lysis thereof.

23. (Canceled).

24. (Previously presented). A method for treating sepsis, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from sepsis of multiorgan failure.

25. (Cancelled).

26. (Previously presented). A method for treating diabetes mellitus, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from diabetes mellitus.

Claims 27-38. (Canceled).