Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil A: Reguläre Sprachen

4: Minimierung von Automaten

Version von: 24. April 2018 (12:31)

Der Borussia-Newsticker-Automat (1/3)

- Ich habe einen Bekannten, der ein ziemlich großer Fan von Borussia ist
- Er sammelt auch Fanartikel, die mit Borussia zu tun haben und verfolgt einen Newsticker, der ihn über Auktionen informiert
- Dabei möchte er vor allem Auktionen finden, in deren Beschreibung der Name "Borussia" falsch geschrieben wurde (borusssia, borusia, borrussia, brussia, borissia)
- Können wir ihm dabei helfen?

Definition (MultiSearch)

Gegeben: Menge $oldsymbol{M} = \{oldsymbol{w_1}, \dots, oldsymbol{w_n}\}$ von Zeichenketten, String $oldsymbol{v}$

Frage: Kommt einer der Strings w_1, \ldots, w_n in v vor?

- v entspricht also dem Newsticker
- $ullet w_1, \dots, w_n$ entsprechen den möglichen (richtigen und falschen) Schreibweisen von "Borussia"

Der Borussia-Newsticker-Automat (2/3)

Beispiel: Umsetzung als DFA

$$ullet$$
 $\Sigma = \{a, \ldots, z, \sqcup \}$

usteht für das Leerzeichen

- ullet Jeder Zustand hat ausgehende Transitionen für alle Symbole aus Σ
 - Nicht angezeigte Transitionen, bei denen Blanks gelesen werden, führen in den zweiten Zustand
 - Alle anderen nicht angezeigten Transitionen führen in den Startzustand
- Ist diese Lösung optimal?
- Oder gibt es einen kleineren Automaten für die "Borussia-Sprache"?

Idee: Wim Martens

Minimierung endlicher Automaten: Fragen & Antworten

- Gibt es zu jedem DFA einen kleinsten äquivalenten DFA?
 Natürlich!
- Wieviele verschiedene kleinste äquivalente DFAs kann es geben?
 Nur einen, bis auf Isomorphie
- Kann man zu jedem DFA effizient den kleinsten äquivalenten DFA konstruieren?

Ja, das ist sogar ziemlich einfach

- Zur genaueren Beantwortung dieser Fragen müssen wir die Struktur regulärer Sprachen etwas besser verstehen
- Dabei hilft uns eine etwas "mathematischere" Sicht auf reguläre Sprachen

Minimierung: Grundidee

Beispiel

Beispiel

- Unerreichbare Zustände können gelöscht werden:
- Mehrere Zustände, für die alle Übergänge in dieselben Zustände führen, und die alle akzeptierend oder alle ablehnend sind, können verschmolzen werden:
- Senkenzustände können verschmolzen werden:

 ${f E}$ L und A

- Allgemein: Zustände, von denen aus das Akzeptierverhalten für alle nachfolgenden Eingabesequenzen (inklusive ϵ) gleich ist, können verschmolzen werden:
 - $oldsymbol{-} oldsymbol{D}, oldsymbol{F}$, und $oldsymbol{J}$
 - $oldsymbol{C}$ und $oldsymbol{I}$
- Was heißt "das Akzeptierverhalten für alle nachfolgenden Eingabesequenzen ist gleich" genau?
- Wie lassen sich die verschmelzbaren Zustände systematisch berechnen?

Inhalt

- > 4.1 Satz von Myhill und Nerode
 - 4.2 Minimierungsalgorithmus für DFAs
 - 4.3 Weitere Erkenntnisse

Nerode-Relation: Definition und Beispiel

 Die folgende Definition präzisiert den vagen Begriff "das Akzeptierverhalten für alle möglichen nachfolgenden Eingabesequenzen ist gleich" durch eine Äquivalenzrelation für Strings

Definition (Nerode-Relation, \sim_L)

- ullet Sei $L\subseteq \Sigma^*$ eine Sprache
- Die Nerode-Relation \sim_L auf Σ^* ist auf Σ^* definiert durch:

$$egin{aligned} -rac{x\sim_L y}{ ext{für alle }z} &\stackrel{ ext{def}}{\Leftrightarrow} \ xz\in L \Longleftrightarrow yz\in L \end{aligned}$$

ullet Wir werden sehen: ein DFA ist minimal für L, wenn jeweils alle Strings, die bezüglich \sim_L äquivalent sind, den DFA in den selben Zustand bringen

- ullet Sei $L=L_g$ $lacksymbol{\mathbb{G}}$ gerade vielen Einsen und Nullen
- ullet Wann sind zwei Strings x und y bezüglich \sim_L äquivalent?
 - Gilt $011 \sim_L 01$?
 - * Nein: denn die Wahl von z=0 ergibt:
 - \cdot (xz=) $0110\in L$ aber
 - \cdot (yz =) $010 \notin L$
 - Gilt $10 \sim_L 010$?
 - * Nein: denn die Wahl von z=1 ergibt:
 - \cdot ($oldsymbol{xz}$ =) $oldsymbol{101}$ otin L aber
 - \cdot (yz =) $0101 \in L$
 - Gilt $100 \sim_L 10110$?
 - st Ja: Beide haben ungerade viele Einsen und gerade viele Nullen und erreichen $m{L}$ durch Anhängen von Strings mit ungerade vielen Einsen und gerade vielen Nullen
- ullet Beobachtung: \sim_L hat vier Äquivalenzklassen

Exkurs: Äquivalenzrelationen (1/3)

- Sei A eine Menge
- ullet $\underline{A^n} \stackrel{ ext{def}}{=}$ Menge der n-Tupel mit Einträgen aus A
- ullet Eine Menge $R\subseteq A^n$ heißt $n ext{-stellige}$ Relation über A

- Gleiches-Semester-Relation:
 - A: Menge aller Studierenden, $R\subseteq A^2$
 - $(oldsymbol{x},oldsymbol{y})\in oldsymbol{R}$, falls $oldsymbol{x}$ und $oldsymbol{y}$ im selben Semester sind
- Gleicher-Rest-Relation modulo k:
 - -A: Menge $\mathbb N$ der natürlichen Zahlen, $R\subseteq \mathbb N^2$
 - $\mathbf{-}\;(oldsymbol{x},oldsymbol{y})\in oldsymbol{R}$ falls $oldsymbol{x}$ und $oldsymbol{y}$ bei Division durch $oldsymbol{k}$ den selben Rest haben
 - st Schreibweise: $x \equiv_{m{k}} y$

Exkurs: Äquivalenzrelationen (2/3)

Definition (Äquivalenzrelation)

- ullet Eine 2-stellige (binäre) Relation $oldsymbol{R}$ über $oldsymbol{A}$ heißt
 - $\underline{\mathsf{reflexiv}} \overset{\scriptscriptstyle\mathsf{def}}{\Leftrightarrow}$ für alle $oldsymbol{x} \in oldsymbol{A}$ gilt: $(oldsymbol{x}, oldsymbol{x}) \in oldsymbol{R}$
 - $ext{ symmetrisch} \stackrel{ ext{def}}{\Leftrightarrow} ext{für alle } x,y \in A ext{ gilt:} ext{ } (x,y) \in R \Rightarrow (y,x) \in R ext{ }$
 - $\underline{\mathsf{transitiv}}\overset{\mathsf{def}}{\Leftrightarrow}$ für alle $oldsymbol{x},oldsymbol{y},oldsymbol{z}\in oldsymbol{A}$ gilt: $(oldsymbol{x},oldsymbol{y})\in oldsymbol{R},(oldsymbol{y},oldsymbol{z})\in oldsymbol{R}$ $\Rightarrow (oldsymbol{x},oldsymbol{z})\in oldsymbol{R}$
- Eine 2-stellige reflexive, symmetrische, transitive Relation heißt Äquivalenzrelation

Beobachtung

ullet \sim_L ist eine Äquivalenzrelation

- ullet Äquivalenzrelationen werden oft mit \sim statt R bezeichnet
- ullet Infix-Notation: $oldsymbol{x} \sim oldsymbol{y}$ statt $(oldsymbol{x}, oldsymbol{y}) \in \sim$
- Beispiele: Gleiches-Semester-Relation, Gleicher-Rest-Relation
- ullet Äquivalenzklasse: maximale Menge K von Elementen, so dass für alle $x,y\in K$: $x\sim y$
- ullet Wird eine Äquivalenzklasse in der Form [x] benannt, so wird x oft als Repräsentant dieser Klasse bezeichnet
- ullet Es gilt: $y \in [x] \Longleftrightarrow [y] = [x]$

- Bezüglich der \equiv_6 -Relation gilt:
 - $[2] = \{2, 8, 14, 20, \ldots\}$

Satz von Myhill und Nerode (1/5)

ullet Zur Erinnerung: $x\sim_L y \stackrel{ ext{def}}\Leftrightarrow$ für alle $z\in \Sigma^*$ gilt $(xz\in L \Longleftrightarrow yz\in L)$

Satz 4.1 (Myhill, Nerode)

- ullet Eine Sprache L ist genau dann regulär, wenn \sim_L endlich viele Äquivalenzklassen hat
- Dieser Satz ist das Herzstück dieses Kapitels
- Er liefert uns:
 - eine Methode zum Nachweis, dass eine Sprache regulär ist
 - eine Methode zum Nachweis, dass eine Sprache nicht regulär ist
- Sein Beweis wird uns außerdem liefern:
 - einen Beweis, dass der minimale DFA für eine reguläre Sprache eindeutig ist

bis auf Isomorphie

 einen Ansatz zur Berechnung des minimalen DFAs

- Der Beweis des Satzes beruht auf zwei einfachen Ideen
- ullet " \sim_L endlich $\Rightarrow L$ regulär":
 - Aus den Äquivalenzklassen der Relation \sim_L lässt sich ein Automat für L konstruieren: der Äquivalenzklassenautomat
 - Und wenn \sim_L nur endlich viele Klassen hat, ist das ein DFA
- ullet "L regulär $\Rightarrow \sim_L$ endlich":
 - Jeder DFA für L "bezeugt", dass \sim_L endlich ist

Satz von Myhill und Nerode (2/5)

Satz 4.1

ullet Eine Sprache L ist genau dann regulär, wenn \sim_L endlich viele Äquivalenzklassen hat

Beweis

- ullet Wir zeigen zuerst: \sim_L hat endlich viele Klassen $\Rightarrow L$ ist regulär
- ullet Wir definieren den Äquivalenzklassenautomaten $\mathcal{A}_L\stackrel{ ext{def}}{=}(Q,\Sigma,\delta,s,F)$ für L wie folgt:
 - Q ist die Menge der Äquivalenzklassen von $\sim au$
 - $s\stackrel{ ext{def}}{=} [\epsilon]$
 - $oldsymbol{-} oldsymbol{F} \stackrel{ ext{def}}{=} \{ [oldsymbol{x}] \mid oldsymbol{x} \in oldsymbol{L} \}$
 - für alle $x \in \Sigma^*, \sigma \in \Sigma$:

$$oldsymbol{\delta}([x], oldsymbol{\sigma}) \stackrel{ ext{ iny def}}{=} [x oldsymbol{\sigma}]$$

Beweis (Forts.)

- ullet Vorsicht: δ ist mit Hilfe von Repräsentanten der Klassen definiert
 - → wir müssen zeigen, dass die Definitionen des Funktionswertes nicht von der Wahl des Repräsentanten abhängen
 - Also: wenn wir zwei verschiedene Strings x,y aus einer Äquivalenzklasse von \sim_L für die Definition von δ verwenden, erhalten wir jeweils das selbe Ergebnis
- Behauptungen:
 - (1) δ ist wohldefiniert:

$$x \sim_L y \Rightarrow x\sigma \sim_L y\sigma$$

(2) $m{F}$ ist sinnvoll definiert:

$$[x] \in F \iff x \in L$$

(3)
$$L(\mathcal{A}_L) = L$$

Satz von Myhill und Nerode: Beweis (3/5)

Beweis (Forts.)

- (1) Zu zeigen: falls $x \sim_{oldsymbol{L}} y$, so gilt für alle $\sigma \in \Sigma$:
 - $-x\sigma \sim_L y\sigma$
 - Sei also $x\sim_L y$ und $\sigma\in \Sigma$
 - Sei $z\in \Sigma^*$ beliebig:

$$egin{aligned} (x\sigma)z \in L & \iff x(\sigma z) \in L \ & \iff y(\sigma z) \in L \end{aligned} ext{ wegen } x \sim_L y \ & \iff (y\sigma)z \in L \end{aligned}$$

- (2) Zu zeigen: $[x] \in F \Longleftrightarrow x \in L$
 - $oldsymbol{\mathsf{--}} [x] \in F \ \Rightarrow \mathsf{es} \ \mathsf{gibt} \ y \ \mathsf{mit} \ x \sim_L y \ \mathsf{und} \ y \in L$
 - lacktriangledown Mit $oldsymbol{z}=oldsymbol{\epsilon}$ ergibt sich $oldsymbol{x}\inoldsymbol{L}\Longleftrightarrowoldsymbol{y}\inoldsymbol{L}$, also: $oldsymbol{x}\inoldsymbol{L}$
 - Umgekehrt folgt aus $x \in L$ auch $\lceil x
 ceil \in F$

ightharpoonup Definition von $oldsymbol{F}$

Satz von Myhill und Nerode: Beweis (4/5)

Beweis (Forts.)

(3) Wir zeigen zunächst durch Induktion, dass für alle $m{w} \in \pmb{\Sigma}^*$ gilt: $m{\delta}^*(m{s}, m{w}) = [m{w}]$ (#)

$$-w=\epsilon\,\sqrt{}$$
 Definition von s $-w=u\sigma$: $\delta^*(s,u\sigma)=\delta(\delta^*(s,u),\sigma)$ Def. δ^*

 $=\delta([u],\sigma)$ Ind. $=[u\sigma]$ Def. δ

- Also:
$$m{w} \in m{L}(m{\mathcal{A}_L}) \Longleftrightarrow m{\delta}^*(s, m{w}) \in m{F} \quad ext{ $m{\mathbb{P}}$ Def } m{L}(m{\mathcal{A}_L}) \ \iff m{[}m{w}m{]} \in m{F} \ \iff m{w} \in m{L}$$

- ullet Aus (1)-(3) folgt, dass ${\cal A}_L$ ein DFA für L ist
- ightharpoonup L ist regulär

Exkurs: Äquivalenzrelationen (3/3)

• Für die "Rückrichtung" des Beweises benötigen wir den Begriff der *Verfeinerung einer Äquivalenzrelation*

• Die Äquivalenzrelation \equiv_6 ist eine Verfeinerung der Äquivalenzrelation \equiv_3

Definition (Verfeinerung)

- Seien \sim_1, \sim_2 Äquivalenzrelationen über derselben Grundmenge
- ullet \sim_1 heißt Verfeinerung von \sim_2 , wenn für alle x,y gilt: $x\sim_1 y\Rightarrow x\sim_2 y$
- ullet Falls \sim_1 Verfeinerung von \sim_2 ist, gilt: Anzahl Klassen von $\sim_1\geqslant$ Anzahl Klassen von \sim_2
- Weiteres Beispiel: die Gleiches-Semesterund-gleicher-Studiengang-Relation ist eine Verfeinerung der Gleiches-Semester-Relation

Satz von Myhill und Nerode: Beweis (5/5)

Beweis (Forts.)

- ullet Jetzt zeigen wir: L regulär $\Rightarrow \sim_L$ hat endlich viele Klassen
- ullet Sei $oldsymbol{\mathcal{A}}=(oldsymbol{Q},oldsymbol{\Sigma},oldsymbol{\delta},s,oldsymbol{F})$ ein DFA für $oldsymbol{L}$
- ullet Wir definieren eine Äquivalenzrelation $\sim_{\mathcal{A}}$ mit |Q| Klassen und zeigen:

 $\sim_{\mathcal{A}}$ ist eine Verfeinerung von \sim_L

- Dann folgt:
 - Anzahl Klassen von \sim_L \leqslant Anzahl Klassen von $\sim_{\mathcal{A}}$ $=|Q|<\infty$

Beweis (Forts.)

Wir definieren ~_A durch:

$$\underline{x \sim_{\mathcal{A}} y} \overset{ ext{ iny def}}{\Leftrightarrow} \delta^*(s,x) = \delta^*(s,y)$$

• **Behauptung:** $\sim_{\mathcal{A}}$ ist eine Verfeinerung von \sim_{L} , also:

für alle x,y gilt: $x\sim_{\mathcal{A}}y\Rightarrow x\sim_{L}y$

- ullet Seien also $x,y\in \Sigma^*$ mit $x\sim_{\mathcal{A}} y$
- $lack \delta^*(s,x) = \delta^*(s,y)$
- lacktriangleright für alle $z\in \Sigma^*$ gilt:

$$oldsymbol{\delta}^*(s,xz) = oldsymbol{\delta}^*(s,yz)$$

ightharpoonup für alle $z\in \Sigma^*$ gilt:

$$xz \in L \iff yz \in L$$

 $\Rightarrow x \sim_L y$

 Damit ist der Beweis des Satzes von Myhill und Nerode vollständig

Minimaler Automat: Eindeutigkeit (1/3)

- Was bringt uns der Satz von Myhill und Nerode für die Minimierung von Automaten?
- Aus dem Beweis können wir direkt die folgende Aussage schließen

Lemma 4.2

ullet Ist $m{L}$ eine reguläre Sprache und $m{\mathcal{A}}=(m{Q},m{\Sigma},m{\delta},s,m{F})$ ein DFA für $m{L}$, dann gilt:

 $|Q|\geqslant$ Anzahl Klassen von \sim_L

- ullet Also: Jeder DFA für L hat mindestens so viele Zustände wie der Äquivalenzklassenautomat ${\cal A}_L$
- ullet ${\cal A}_L$ ist also ${\it ein}$ minimaler DFA für L

- Wir zeigen gleich:
 - In einem gewissen Sinne ist \mathcal{A}_L sogar in jedem DFA für L enthalten
 - Und: falls |Q| gleich der Anzahl der Klassen von \sim_L ist, sind ${\cal A}$ und ${\cal A}_L$ "praktisch identisch"
- ullet ${\cal A}_L$ ist also der minimale DFA für L
- Wir betrachten zuerst die Formalisierung von "praktisch identisch": Isomorphie von DFAs

Minimaler Automat: Eindeutigkeit (2/3)

Definition (Isomorphie von DFAs, \cong)

- ullet Seien ${\cal A}_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$ und ${\cal A}_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$ DFAs mit dem selben Eingabe-Alphabet
- ullet ${\cal A}_1$ und ${\cal A}_2$ heißen ${\color{red} {
 m isomorph}}$, falls es eine Bijektion $\pi:Q_1 o Q_2$ gibt mit:
 - (1) $\pi(s_1) = s_2$,
 - (2) für alle $q\in Q_1$ gilt:

$$oldsymbol{q} \in oldsymbol{F_1} \Longleftrightarrow oldsymbol{\pi}(oldsymbol{q}) \in oldsymbol{F_2}$$
, und

(3) für alle $q \in Q_1$ und $\sigma \in \Sigma$ gilt:

$$m{\pi}(m{\delta_1}(m{q},m{\sigma})) = m{\delta_2}(m{\pi}(m{q}),m{\sigma})$$

- Notation: $A_1 \cong A_2$
- ullet Informell bedeutet ${\cal A}_1\cong {\cal A}_2$:

- \mathcal{A}_1 und \mathcal{A}_2 unterscheiden sich nur hinsichtlich der Namen der Zustände:
 - * Wenn in \mathcal{A}_1 die Zustände gemäß π umbenannt werden, ergibt sich \mathcal{A}_2

Minimaler Automat: Eindeutigkeit (3/3)

Lemma 4.3

• Ist \mathcal{A} ein DFA für eine Sprache L, der die selbe Anzahl von Zuständen wie \mathcal{A}_L hat, so gilt:

 ${\mathcal A}\cong {\mathcal A}_L$

- Der Beweis findet sich im Anhang
- ullet Der Äquivalenzklassenautomat für L_g ist isomorph

Minimalautomat

Insgesamt haben wir bisher gezeigt:

Satz 4.4

ullet Für jede reguläre Sprache L ist ${\cal A}_L$ der bis auf Isomorphie eindeutig bestimmte minimale DFA für L

Beweisskizze

- ullet Wegen Lemma 4.2 hat jeder DFA für L mindestens soviele Zustände wie ${\cal A}_L$
- Wegen Lemma 4.3 ist jeder DFA für L, der genau so viele Zustände wie \mathcal{A}_L hat, isomorph zu \mathcal{A}_L
- ullet Wir betrachten jetzt, wie sich ${\cal A}_L$ aus einem gegebenen DFA für L berechnen lässt

Inhalt

- 4.1 Satz von Myhill und Nerode
- > 4.2 Minimierungsalgorithmus für DFAs
 - 4.3 Weitere Erkenntnisse

Vom DFA zum minimalen DFA

- ullet Nehmen wir an, wir haben einen DFA ${\cal A}$ für eine reguläre Sprache L gegeben und hätten gerne einen minimalen DFA für L
- ullet Der Satz von Myhill/Nerode sagt uns, dass der minimale DFA für L in ${\cal A}$ schon "drin" ist
- Wir müssen ihn nur finden
- ullet Ein naiver Ansatz wäre jede Teilmenge $Q'\subseteq Q$ als "Trägermenge" für den minimalen DFA auszuprobieren
- Das würde allerdings zu exponentiellem Aufwand führen
- Wir werden jetzt sehen: der minimale DFA lässt sich erheblich direkter und damit auch schneller berechnen

Minimaler Automat: Berechnung

- Wie lässt sich \mathcal{A}_L aus \mathcal{A} konstruieren?
- Hierfür liefert der Beweis von Satz 4.1 einen Hinweis
- ullet Ist ${\mathcal A}$ ein DFA für L, so ist $\sim_{{\mathcal A}}$ eine Verfeinerung von \sim_L
- $ightharpoonup \mathcal{A}_L$ kann durch Zusammenlegen von Zuständen (Äquivalenzklassen) aus \mathcal{A} erzeugt werden
 - Genauer: zwei Zustände p,q von \mathcal{A} können zusammengelegt werden, wenn sie im folgenden Sinne **äquivalent** sind:
- (**) für alle $oldsymbol{z} \in oldsymbol{\Sigma}^*$ gilt: $oldsymbol{\delta}^*(oldsymbol{p},oldsymbol{z}) \in oldsymbol{F} \iff oldsymbol{\delta}^*(oldsymbol{q},oldsymbol{z}) \in oldsymbol{F}$

- → Um den minimalen DFA zu konstruieren, genügt es also, zu berechnen, welche Zustände zusammen gelegt werden können
 - Das ist "direkt" jedoch nicht so leicht möglich
- Die grundlegende Idee für unseren Minimierungsalgorithmus ist, zunächst zu berechnen, welche Zustände nicht zusammen gelegt werden können
- ullet Deshalb betrachten wir jetzt einen Algorithmus, der die Menge $N(\mathcal{A})$ der nicht äquivalenten Paare berechnet:

$$egin{aligned} egin{aligned} \dot{oldsymbol{N}}(oldsymbol{\mathcal{A}}) & \stackrel{ ext{def}}{=} \{(oldsymbol{p},oldsymbol{q}) \mid oldsymbol{p},oldsymbol{q} \in oldsymbol{Q}, \ \exists oldsymbol{w}: ig(\delta^*(oldsymbol{p},oldsymbol{w}) \in oldsymbol{F} & \iff \delta^*(oldsymbol{q},oldsymbol{w}) \in oldsymbol{F}ig) \} \end{aligned}$$

- Die Berechnung erfolgt induktiv:
 - Zuerst werden Paare berechnet, deren Inäquivalenz durch $w=\epsilon$ bezeugt wird
 - Dann werden Paare bestimmt, deren Inäquivalenz sich durch Übergänge in andere inäquivalente Paare ergibt

Der Markierungsalgorithmus

Markierungsalgorithmus

• Eingabe:

$$\mathcal{A} = (Q, \Sigma, \delta, s, F)$$

ullet Ausgabe: Relation $oldsymbol{N}(oldsymbol{\mathcal{A}})$

1.
$$M:=\{(oldsymbol{p},oldsymbol{q},oldsymbol{p})\mid oldsymbol{p}\in oldsymbol{F},oldsymbol{q}
otin oldsymbol{F}\}$$

- 2. $M' := \{(\boldsymbol{p}, \boldsymbol{q}) \notin \boldsymbol{M} \mid \exists \boldsymbol{\sigma} \in \boldsymbol{\Sigma} : (\boldsymbol{\delta}(\boldsymbol{p}, \boldsymbol{\sigma}), \boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{\sigma})) \in \boldsymbol{M}\}$
- 3. $M := M \cup M'$
- 4. Falls $M' \neq \emptyset$, weiter mit 2.
- 5. Ausgabe $oldsymbol{M}$

Markierungsalgorithmus: Korrektheit (1/2)

Lemma 4.5

ullet Der Markierungsalgorithmus berechnet $oldsymbol{N}(oldsymbol{\mathcal{A}})$

Beweisskizze

• Zur Erinnerung:

$$egin{aligned} oldsymbol{N}(oldsymbol{\mathcal{A}}) &= \{(oldsymbol{p}, oldsymbol{q}) \mid oldsymbol{p}, oldsymbol{q} \in oldsymbol{Q}, \ \exists oldsymbol{w} : ig(oldsymbol{\delta}^*(oldsymbol{p}, oldsymbol{w}) \in oldsymbol{F} \iff oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{w}) \in oldsymbol{F}ig)\} \end{aligned}$$

- Wir zeigen:
 - (a) Wenn (p,q) im k-ten Durchlauf (von 2.) markiert wird, dann gibt es einen String w der Länge k mit

$$oldsymbol{\delta^*(p,w)} \in oldsymbol{F} \iff oldsymbol{\delta^*(q,w)} \in oldsymbol{F}$$

(b) Wenn (p,q) durch den Algorithmus nicht markiert wird,

dann gilt für alle Strings
$$m{w} \in m{\Sigma}^*$$
: $m{\delta}^*(m{p},m{w}) \in m{F} \Longleftrightarrow m{\delta}^*(m{q},m{w}) \in m{F}$

Beweisskizze für (a)

ullet Beweis durch Induktion nach k

$$-k=0$$

$$w = \epsilon$$

- Von $k{-}1$ zu k:
- Zu jedem Paar (p,q), das im k-ten Durchlauf markiert wird, gibt es ein Paar (p',q'), das im (k-1)-ten Durchlauf markiert wird mit

$$oldsymbol{\delta}(oldsymbol{p},oldsymbol{\sigma})=oldsymbol{p}'$$
 , $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=oldsymbol{q}'$

– Nach Induktion gibt es also einen String $m{v}$ der Länge $m{k}-m{1}$ mit $m{\delta}^*(m{p}',m{v})\in m{F} \iff m{\delta}^*(m{q}',m{v})\in m{F}$

$$lackbox{lackbox{}} egin{aligned} lackbox{\delta}^*(oldsymbol{p}, oldsymbol{\sigma} oldsymbol{v}) \in oldsymbol{F} \ lackbox{\delta}^*(oldsymbol{q}, oldsymbol{\sigma} oldsymbol{v}) \in oldsymbol{F} \end{aligned}$$

Markierungsalgorithmus: Korrektheit (2/2)

Lemma 4.5

ullet Der Markierungsalgorithmus berechnet $oldsymbol{N}(oldsymbol{\mathcal{A}})$

Beweisskizze

• Zur Erinnerung:

$$egin{aligned} oldsymbol{N}(oldsymbol{\mathcal{A}}) &= \{(oldsymbol{p}, oldsymbol{q} \mid oldsymbol{p}, oldsymbol{q} \in oldsymbol{Q}, \ \exists oldsymbol{w} : ig(oldsymbol{\delta}^*(oldsymbol{p}, oldsymbol{w}) \in oldsymbol{F} \iff oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{w}) \in oldsymbol{F} ig) \}. \end{aligned}$$

- Wir zeigen:
 - (a) Wenn (p,q) im k-ten Durchlauf (von 2.) markiert wird, dann gibt es einen String w der Länge k mit

$$oldsymbol{\delta^*(p,w)} \in F \iff oldsymbol{\delta^*(q,w)} \in F$$

(b) Wenn $(m{p},m{q})$ durch den Algorithmus nicht markiert wird, dann gilt für alle Strings $m{w}\in m{\Sigma}^*$: $m{\delta}^*(m{p},m{w})\in m{F} \Longleftrightarrow m{\delta}^*(m{q},m{w})\in m{F}$

Beweisskizze für (b)

- Beweis durch Widerspruch:
- ullet Angenommen, es gibt ein **Gegenbei-** spiel $(oldsymbol{p},oldsymbol{q},oldsymbol{w})$, so dass
 - der Algorithmus $(oldsymbol{p},oldsymbol{q})$ nicht markiert, aber
 - $oldsymbol{-} oldsymbol{\delta^*}(oldsymbol{p},oldsymbol{w}) \in oldsymbol{F} \iff oldsymbol{\delta^*}(oldsymbol{q},oldsymbol{w}) \in oldsymbol{F}$
- ullet Sei $(oldsymbol{p},oldsymbol{q},oldsymbol{w})$ ein Gegenbeispiel mit dem kürzest möglichen $oldsymbol{w}$
- ullet Klar: $w
 eq \epsilon$ wegen Schritt (1) des Alg.
- ullet Seien $v\in \Sigma^*$, $oldsymbol{\sigma}\in \Sigma$ mit $w=oldsymbol{\sigma} v$
- ullet Da $(m{p},m{q})$ unmarkiert ist, ist auch $(m{\delta}(m{p},m{\sigma}),m{\delta}(m{q},m{\sigma}))$ unmarkiert
- lacktriangledown $(\delta(p,\sigma),\delta(q,\sigma),v)$ ist auch ein Gegenbeispiel, aber v ist kürzer als w
 - ullet Widerspruch zur Wahl von $(oldsymbol{p},oldsymbol{q},oldsymbol{w})$

Wiederholung: O-Notation

Definition

- ullet Seien $f,g:\mathbb{N} o\mathbb{R}$ zwei Funktionen
- $ullet rac{f=\mathcal{O}(g)}{ ext{gilt: }f(n)\leqslant cg(n)}$: es gibt c,d, so dass für alle $n\geqslant d$

- $12n \log n = \mathcal{O}(n^2)$
- $ullet 5n^3 + 12n^2 + 17n + 100 = \mathcal{O}(n^3n)$

Minimierungsalgorithmus

Minimierungsalgorithmus für DFA

- ullet Eingabe: ${\cal A}=(Q,\Sigma,\delta,s,F)$
- ullet Ausgabe: minimaler DFA ${\cal A}'$ mit $L({\cal A}')=L({\cal A})$
- 1. Entferne alle Zustände von \mathcal{A} , die von s aus nicht erreichbar sind.
- 2. Berechne die Relation $N(\mathcal{A})$ mit dem Markierungs-Algorithmus
- 3. Verschmelze sukzessive alle nicht markierten Zustandspaare zu jeweils einem Zustand.
 - Laufzeit des Minimierungsalgorithmus:

1.
$$\mathcal{O}(|\delta|) = \mathcal{O}(|Q|^2|\Sigma|)$$

nächstes Kapitel

- 2. $\mathcal{O}(|Q|^2|\Sigma|)$ bei geschickter Implementierung
- 3. $\mathcal{O}(|Q|^2|\Sigma|)$

Zusammen: $\mathcal{O}(|Q|^2|\Sigma|)$

Beispiel

Minimaler DFA:

Vom RE zum DFA: vollständig

- Damit kennen wir nun alle Teilschritte von der Spezifikation einer regulären Sprache bis zur Berechnung eines möglichst kleinen endlichen Automaten
 - 1. Spezifiziere die Sprache durch einen regulären Ausdruck lpha
 - 2. Wandle lpha in einen ϵ -NFA \mathcal{A}_1 um
 - 3. Wandle \mathcal{A}_1 in einen DFA \mathcal{A}_2 um
 - 4. Wandle \mathcal{A}_2 in einen minimalen DFA \mathcal{A}_3 um
- Der e-Mail-Adressen-DFA ist übrigens schon minimal...

Der Borussia-Newsticker-Automat (3/3)

Beispiel

Ist der Borussia-Automat minimal?

• Nein, dies ist der minimale DFA:

Inhalt

- 4.1 Satz von Myhill und Nerode
- 4.2 Minimierungsalgorithmus für DFAs
- > 4.3 Weitere Erkenntnisse

Satz von Myhill und Nerode: Weitere Anwendungen (1/3)

- Mit dem Satz von Myhill und Nerode lässt sich herausfinden, ob eine gegebene Sprache regulär ist
 - Z.B.: da die Relation \sim_{L_g} vier Klassen hat, ist L_g regulär
- Der Satz ist aber auch für den Nachweis, dass eine gegebene Sprache nicht regulär ist, nützlich

Satz von Myhill und Nerode: Weitere Anwendungen (2/3)

Beispiel

- ullet Wir berechnen die Äquivalenzklassen von $L_{ab}=\{a^nb^n\mid n\geqslant 0\}$
- ullet Es gilt z.B.: $a^4b\sim_{L_{ab}}a^5b^2\sim_{L_{ab}}a^6b^3\cdots$
- $\sim_{L_{ab}}$ hat die Klassen:
 - $egin{aligned} -B_{m{k}} \stackrel{ ext{ iny def}}{=} \{a^{m{i}+m{k}}b^{m{i}} \mid m{i} \geqslant 1\}, \ & ext{ iny für jedes } m{k} \geqslant 0, \end{aligned}$
 - $-A_{m{k}}\stackrel{ ext{def}}{=} \{a^{m{k}}\}$, für jedes $m{k}\geqslant 0$,
 - $-C\stackrel{ ext{def}}{=}\{a^{m{i}}b^{m{j}}\mid m{i}<m{j}\}\cup\overline{m{L}(a^*b^*)},$ die Klasse aller Strings, für die es überhaupt keine Verlängerung gibt, die in $m{L_{ab}}$ liegt:
- Notation:
 - Sei L eine Sprache über Σ und $v \in \Sigma^*$
 - $oldsymbol{L}/oldsymbol{v} \stackrel{ ext{def}}{=} \{oldsymbol{z} \in oldsymbol{\Sigma}^* \mid oldsymbol{v}oldsymbol{z} \in oldsymbol{L}\}$

Beispiel (Forts.)

- Um nachzuweisen, dass dies die Äquivalenzklassen von $\sim_{L_{ab}}$ sind, ist zu zeigen:
 - (1) Jeder String kommt in einer Klasse vor √
 - (2) Für alle Strings u,v in derselben Klasse gilt: $u\sim_{L_{ab}}v$
 - (3) Für Strings u,v aus verschiedenen Klassen gilt: $u \not\sim_{L_{ab}} v$
- Dazu genügt es zu zeigen, dass
 - (2') für alle Strings $oldsymbol{v}$ einer Klasse die Menge $oldsymbol{L_{ab}/v}$ gleich ist
 - (3') für verschiedene Klassen die Mengen $m{L_{ab}}/m{v}$ verschieden sind
- Für jedes k gilt:
 - Für $v \in B_{m{k}}$ ist $L_{m{a}m{b}}/v = \{b^{m{k}}\}$
 - Für $v \in A_k$ ist $L_{ab}/v = \{a^ib^{i+k} \mid i \geqslant 0\}$
- ullet Für $v\in C$ ist $L_{ab}/v=arnothing$
- Die Äquivalenzklassen sind korrekt angegeben
- lacktriangle unendlich viele Klassen \Rightarrow L_{ab} nicht regulär

Satz von Myhill und Nerode: Weitere Anwendungen (3/3)

- Der Satz von Myhill und Nerode liefert auch eine Methode um die Größe des Minimalautomaten für eine reguläre Sprache zu berechnen:
 - Zähle die Klassen von \sim_L

Beispiel

ullet Wir betrachten wieder die Sprache L_n aller 0-1-Strings, deren n-tes Zeichen von rechts eine 1 ist:

- ullet Es ist leicht zu zeigen, dass zwei Strings x,y genau dann in derselben Äquivalenzklasse von \sim_{L_n} sind, wenn sie dasselbe Suffix der Länge n haben
 - riangle Dabei werden bei Strings der Länge < n führende Nullen "hinzugedacht"
- lacktriangle Es gibt soviele Klassen in \sim_L wie es 0-1-Strings der Länge n gibt
- $ightharpoonup \sim_{L_n}$ hat 2^n Klassen
- ightharpoonup Jeder DFA für L_n hat mindestens 2^n Zustände

Minimale NFAs

• Es gibt zwar auch zu jedem NFA ${\cal A}$ einen kleinsten NFA ${\cal A}'$ mit

$$L(\mathcal{A}') = L(\mathcal{A})$$

 Aber der kleinste NFA ist im Allgemeinen nicht bis auf Isomorphie eindeutig

Beispiel

• Die Menge aller Strings der Form 0^n , für die 6 kein Teiler von n ist, hat zwei kleinste NFAs:

• Idee: 6 ist genau dann kein Teiler von n wenn 2 oder 3 kein Teiler von n ist

Rot, Gelb, Grün

- Minimale Automaten haben höchstens einen Zustand, von dem aus kein akzeptierender Zustand mehr erreichbar ist
 - Dieser Zustand entspricht der roten Ampel im Webformular-Beispiel
 - Akzeptierende Zustände entsprechen der grünen Ampel
 - Alle übrigen Zustände entsprechen der gelben Ampel
- Wir nennen diesen Zustand Fehlerzustand oder Senkenzustand (im Englischen: sink state)
- Dass ein solche Zustand nicht immer existiert, zeigt der DFA \mathcal{A}_g von Kapitel 2

Zusammenfassung

ullet Zu einem gegebenen DFA ist der minimale äquivalente DFA bis auf Isomorphie eindeutig bestimmt und kann mit Hilfe des Markierungsalgorithmus in Zeit $\mathcal{O}(|Q|^2|\Sigma|)$ berechnet werden

• Literatur:

- John R. Myhill. Finite automata and the representation of events. Technical Report WADC TR-57-624, Wright-Paterson Air Force Base, 1957
- A. Nerode. Linear automaton transformations. *Proc. Amer. Math. Soc.*, 9:541–544, 1958

Erläuterungen

Bemerkung 4.1

- ullet Die Notation $oldsymbol{f} = \mathcal{O}(oldsymbol{g})$ kann leicht zu Missverständnissen führen:
 - Denn: das Gleichheitszeichen wird hier, anders als sonst üblich, in einem nicht symmetrischen Sinn verwendet
 - Es gilt z.B. $* \ \boldsymbol{n^2} = \mathcal{O}(\boldsymbol{n^3}) = \mathcal{O}(\boldsymbol{n^4}), \\ * \ \text{aber nicht } \boldsymbol{n^2} = \mathcal{O}(\boldsymbol{n^4}) = \mathcal{O}(\boldsymbol{n^3})$
- Sauberer ist es, (wie in Mafl) $\mathcal{O}(g)$ als Notation für eine Menge von Funktionen (oder Folgen) zu betrachten:
 - $egin{array}{ll} oldsymbol{-}\mathcal{O}(oldsymbol{g}) \stackrel{ ext{def}}{=} \ \{oldsymbol{h} \mid \exists oldsymbol{c}, oldsymbol{d} \; orall oldsymbol{n} \geqslant oldsymbol{d} : \; oldsymbol{h}(oldsymbol{n}) \leqslant oldsymbol{c} oldsymbol{g}(oldsymbol{n}) \} \end{array}$
 - Schreibweise dann: $f \in \mathcal{O}(g)$
- Aber: Wir folgen hier der Tradition...

Minimaler Automat: Eindeutigkeit (3/3)

Lemma 4.3

ullet Ist ${\cal A}$ ein DFA für eine Sprache L, der die selbe Anzahl von Zuständen wie ${\cal A}_L$ hat, so gilt: ${\cal A}\cong {\cal A}_L$

Beweisidee

- ullet Sei ${\cal A}=(oldsymbol{Q},oldsymbol{\Sigma},oldsymbol{\delta},s,oldsymbol{F})$ ein solcher DFA
- $ullet \ {\cal A} \ {
 m minimal} \Rightarrow \ {
 m in} \ {\cal A} \ {
 m sind} \ {
 m alle} \ {
 m Zust\"ande} \ {
 m er} \ {
 m reichbar}$
- lacktriangledown für jeden Zustand q von ${\cal A}$ gibt es einen String w_q mit $\delta^*(s,w_q)=q$
 - ullet Wir definieren eine Abbildung π durch: $oldsymbol{\pi}(oldsymbol{q}) \stackrel{ ext{def}}{=} [oldsymbol{w_q}]$
 - ullet Behauptung: π ist ein Isomorphismus von ${\cal A}$ auf ${\cal A}_L$

Beweisdetails

- (1) $\pi(s) = [\epsilon] \checkmark$
- (2) $q \in F \iff w_q \in L \iff \pi(q) = [w_q]$ ist akzeptierender Zustand von \mathcal{A}_L
- (3) Für $q\in Q, \sigma\in \Sigma$ gilt: $\pi(\delta(q,\sigma))=\pi(\delta(\delta^*(s,w_q),\sigma))$ $=\pi(\delta^*(s,w_q\sigma))$ $=[w_q\sigma]$ $=\delta'([w_q],\sigma)$ $=\delta'(\pi(q),\sigma)$
 - riangle δ' bezeichnet die Überführungsfunktion von \mathcal{A}_L
 - π ist bijektiv, denn:
 - Aus dem Beweis von Satz 4.1 folgt: $\sim_{\mathcal{A}}$ ist eine Verfeinerung von \sim_L
 - Da $\sim_{\mathcal{A}}$ und \sim_{L} gleich viele Klassen haben gilt also: $\sim_{\mathcal{A}} = \sim_{L}$
 - $ightharpoonup \pi$ ist eine Bijektion
 - ullet Also ist π ein Isomorphismus und es folgt: ${\cal A}\cong {\cal A}_L$
- A: 4. Minimierung von Automaten