14.1 Measure space

February 24, 2016

14-1

- 1. M un ensemble
- \diamond L'ensemble des $S\subseteq M$ tel que S est dénombrable où M-S est dénombrable et une $\sigma\text{-algèbre}$

Soit Σ cet ensemble. Alors il est clair que $\emptyset \in \Sigma$. Soit alors $S \in \Sigma$. Si S est dénombrable, alors S' = M - S ne l'est pas. Mais S'' = S l'est et donc $S' \in \Sigma$.

Finalement, par **thm. 7.16**, une union dénombrable d'ensembles dénombrables est dénombrable.

14-2

- 1. M un ensemble
- 2. $\Sigma \subseteq \mathcal{P}$ une σ -algèbre

a)

1.
$$A_1, \dots, A_N \in \Sigma$$

$$\diamond \bigcap_{n=1}^{N} A_n \in \Sigma$$

On pose $A_{N+i} = \emptyset$ pour $i \in \mathbb{N}$. Par **prop. 14.3**, on conclut.

b)

1.
$$A, B \in \Sigma$$

$$\diamond A - B \in \Sigma$$

On a $A-B=A\cap B'$. Or B' est dans Σ par **def. 14.1** et $A\cap B'$ est dans Σ par 14-2b.

- 1. M un ensemble
- 2. $\gamma_M: \mathcal{P}(M) \to [0, \infty]$ la mesure discrète sur M.

 \mathbf{a}

$$\diamond \gamma_M(\emptyset) = 0 \text{ ssi } A = \emptyset$$

Si
$$A = \emptyset$$
 on a $\gamma_M(A) = |\emptyset| = 0$.

Soit $\gamma_M(A) = 0$. S'il existe un élément dans A, alors sa mesure discrète n'est pas 0. Donc il n'existe aucune élément dans A. Donc $A = \emptyset$.

b)

 $\diamond \gamma_M$ est une mesure.

La première propriété à été vérifiée en 14-3a.

On suppose A,B disjoints. Supposons les finis dénombrables.

Alors il existe $f_A:A\to \{1\cdots k\}$ $f_B:B\to \{1\cdots m\}$ des bijections. On construit

$$h:A\cup B\to \{1\cdots m+k\}$$

$$h(x) := \begin{cases} f_A(x) & \text{si } x \in A \\ f_B(x) + k & \text{si } x \in B \end{cases}$$

Clairement, il s'agit d'une fonction injective. On montre facilement qu'il s'agit d'une fonction surjective.

On a donc que $\gamma_M(A \cup B) = \gamma_M(A) + \gamma_M(B)$ pour A, B finis dénombrables.

Soit alors $\{A_n\}_{n=1}^{\infty} \subseteq \Sigma$ disjoints.

Soit $\bigcup_{n=1}^{\infty} A_n$ indénombrable. Par **thm. 7.13**, il existe A_i tel que A_i est indénombrable. Donc $\gamma_M(\bigcup_{n=1}^{\infty} A_n) = \infty$ et $\sum_{n=1}^{\infty} \gamma_M(A_n) \ge \gamma_M(A_i) = \infty$.

Soit $\bigcup_{n=1}^{\infty} A_n$ infini dénombrable. Supposons $\sum_{n=1}^{\infty} \gamma_M(A_n) < \infty$. Alors $\lim_{n \to \infty} \gamma_M(A_n) = 0$. Donc il existe un N tel que $n \ge N$ implique $\gamma_M(A_n) = 0$. De plus, pour n < N, tous les A_n sont finis. Mais alors $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{N-1} A_n$.

Par ce que l'on a plus haut, $\gamma_M(\bigcup_{n=1}^\infty A_n) = \gamma_M(\bigcup_{n=1}^{N-1} A_n) = \sum_{n=1}^{N-1} \gamma_M(A_n) < \sum_{n=1}^\infty \gamma_M(A_n) < \infty$, une contradiction.

Soit alors $\bigcup_{n=1}^{\infty} A_n$ fini. Supposons A_i infinie. Alors, par **lem. 2.26**, $A_i - (\bigcup_{n=1}^{\infty} A_n) = \emptyset$ est infinie, une contradiction. Alors tous les A_i sont finis.

Soit alors $A \subseteq B$ des ensembles finis. Alors $\gamma_M(B) = \gamma_M((B-A) \cup A) = \gamma_M(B-A) + \gamma_M(A)$. Donc $\gamma_M(B) - \gamma_M(A) = \gamma_M(B-A) \ge 0$.

Alors on a $\gamma_M(A) \leq \gamma_M(B)$.

On a donc que, pour tout N, $\gamma_M(\bigcup_{n=1}^N A_n) \leq \gamma_M(\bigcup_{n=1}^\infty A_n)$. Or, pour tout N, on a $\gamma_M(\bigcup_{n=1}^N A_n) = \sum_{n=1}^N \gamma_M(A_n)$. Donc $\sum_{n=1}^N \gamma_M(A_n) \leq \gamma_M(\bigcup_{n=1}^\infty A_n)$. Mais alors $\sum_{n=1}^\infty \gamma_M(A_n) \leq \gamma_M(\bigcup_{n=1}^\infty A_n)$.

Mais alors il existe N tel que n>N implique $\gamma_M(A_n)=0$ ie. $A_n=\emptyset$ par **ex. 14-3a**.

Alors
$$\sum_{n=1}^{\infty} \gamma_M(A_n) = \sum_{n=1}^{N} \gamma_M(A_n) = \gamma_M(\bigcup_{n=1}^{N} A_n) = \gamma_M(\bigcup_{n=1}^{\infty} A_n).$$

14-4

- 1. (M,Σ,μ) un espace mesuré
- 2. $\Omega \in \Sigma$
- 3. $\Sigma^{\Omega} := \{ S \in \Sigma : S \subseteq \Omega \}$
- 4. $\mu_{\Omega} := \mu|_{\Sigma^{\Omega}}$

\mathbf{a}

 $\diamond \Sigma^{\Omega}$ est une σ -algèbre

Premièrement, $\emptyset \subseteq \Omega$ et donc $\emptyset \in \Sigma^{\Omega}$.

Soit alors $T \in \Sigma^{\Omega}$. Alors $T \subseteq \Omega$. Il est clair que le complément T' relativement à Ω est dans Σ^{Ω} .

Finalement, soit $\{A_n\}_{n=1}^{\infty}$ une séquence d'ensembles de Σ^{Ω} . Alors $x \in \bigcup_{n=1}^{\infty} A_n$ implique qu'il existe i tel que $x \in A_i$. Donc $x \in \Omega$. Donc $\sum_{n=1}^{\infty} A_n \subseteq \Omega$. Puisque $A_n \in \Sigma$ par définition, on a $\sum_{n=1}^{\infty} A_n \in \Sigma^{\Omega}$.

b)

 $\diamond \mu_{\Omega}$ est une mesure

On a que $\emptyset \in \Sigma$ et donc $\mu_{\Omega}(\emptyset) = \mu(\emptyset) = 0$.

De plus, soit $\{A_n\}_{n=1}^{\infty}$ une séquence d'ensembles disjoints de Σ^{Ω} .

Alors on a que $\bigcup_{n=1}^{\infty} A_n \in \Sigma^{\Omega} \subseteq \Sigma$ et donc $\mu_{\Omega}(\bigcup_{n=1}^{\infty} A_n) = \mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \mu_{\Omega}(A_n)$.

- 1. (M, Σ, μ) un espace mesuré
- 2. $\{A_n\}_{n=1}^{\infty}$ une séquence d'ensemble dans Σ telle que $A_n\subseteq A_{n+1}$ pour tout $n\in\mathbb{N}$

$$\diamond \mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$$

Carrément la même preuve que thm. 9.12.

14-6

- 1. (M, Σ, μ) un espace mesuré
- 2. $\{A_n\}_{n=1}^{\infty}$ une séquence dans Σ

$$\diamond \mu(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu(A_n)$$

On pose
$$B_1 = A_1$$
 et $B_i = A_i - (\bigcup_{n=1}^{i-1} A_n)$.

Alors $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_i$ et les B_i sont disjoints.

Donc $\mu(\bigcup_{n=1}^{\infty} A_n) = \mu(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} \mu(B_n) = \sum_{n=1}^{\infty} \mu(A_n - (\bigcup_{j=1}^{n-1} A_j)) \le \sum_{n=1}^{\infty} \mu(A_n)$ par **def 14.6, prop. 14.12**.

14-7

- 1. M un ensemble
- 2. $\Sigma \subseteq \mathcal{P}$

 \diamond Σ est une σ -algèbre ssi $\emptyset \in \Sigma$; si $S \in \Sigma$ alors $S' \in \Sigma$ et si pour tout $A_n \in \Sigma$ on a $\cap_{n=1}^{\infty} A_n \in \Sigma$

Si Σ est une σ -algèbre, on a ce qu'il faut (**prop. 14.3**).

Supposons alors que $\bigcap_{n=1}^{\infty} A_n \in \Sigma$ pour toutes séquences de $A_n \in \Sigma$. Alors $A'_n \in \Sigma$. Donc $\bigcap_{n=1}^{\infty} A'_n \in \Sigma$ et alors $(\bigcap_{n=1}^{\infty} A'_n)' \in \Sigma$. Cela implique que $\bigcup_{n=1}^{\infty} A_n \in \Sigma$ et donc on a une σ -algèbre.

14-8

- 1. (M, Σ, μ) un espace mesuré
- $2. A, B \in \Sigma$

$$\diamond \mu(A) - \mu(B) = \mu(A - B) - \mu(B - A)$$

Cela est équivalent à $\mu(A) + \mu(B-A) = \mu(A-B) + \mu(B)$. De part et d'autre, il s'agit d'ensemble disjoints. Par **prop. 14.11**, on a $\mu(A) + \mu(B-A) = \mu(A \cup (B-A)) = \mu(A \cup B)$ et $\mu(A-B) + \mu(B) = \mu((A-B) \cup B) = \mu(A \cup B)$.

a)

1. (M, Σ, μ) un espace mesuré

2. A_n une séquence d'ensembles de Σ tel que $A_{n+1} \subseteq A_n$ pour tout $n \in \mathbb{N}$

3. Il existe un m tel que $\mu(A_m) < \infty$

$$\diamond \mu \left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)$$

On considère $(A_m, \Sigma^{A_m}, \mu_{A_m})$ qui, par **ex. 14-4** est un espace mesuré. On pose $\mu_{A_m}(A_m) = M \in \mathbb{R}$.

On a que, pour $A \in \Sigma^{A_m}$, $\mu_{A_m}(A_m) = \mu_{A_m}(A' \cup A) = \mu_{A_m}(A) + \mu_{A_m}(A')$ et donc $\mu_{A_m}(A') = M - \mu_{A_m}(A)$ (**prop. 14.4**).

On a $A_{m+k} \in \Sigma^{A_m}$ par hypothèse. Donc $A'_{m_k} \in \Sigma_{A_m}$ par **def. 14.1**. De même pour $\bigcup_{k=1}^{\infty} A'_{m+k}$. Or, on a aussi $A'_{m+k} \subseteq A'_{m+k+1}$.

Donc $\mu_{A_m}(\bigcup_{k=1}^{\infty} A'_{m+k}) = \lim_{k \to \infty} (A'_{m+k})$ par **thm. 14.15**.

Or, on a $\mu_{A_m}(\bigcup_{k=1}^{\infty} A'_{m+k}) = \mu_{A_m}((\bigcap_{k=1}^{\infty} A_{m+k})') = M - \mu_{A_m}(\bigcap_{k=1}^{\infty} A_{m+k}).$ De même, $\lim_{k\to\infty} \mu_{A_m}(A'_{m+k}) = M - \lim_{k\to\infty} (A_{m+k}).$

Donc $\mu_{A_m}(\bigcap_{k=1}^{\infty} A_{m+k}) = \lim_{k \to \infty} \mu_{A_m}(A_{m+k}).$

Or, on a $\lim_{k\to\infty} (A_{m+k}) = \lim_{n\to\infty} \mu(A_n)$.

De plus, $\bigcap_{k=1}^{\infty} A_{m+k} \subseteq \bigcap_{n=1}^{\infty} A_n$ puisque $A_{m+1} \subseteq \bigcap_{n=1}^{m} A_n$. De même, $x \in \bigcap_{n=1}^{\infty} A_n$ implique que $x \in A_{m+k}$ pour tout k.

Donc $\mu_{A_m}(\bigcap_{k=1}^{\infty} A_{m+k}) = \mu(\bigcap_{k=1}^{\infty} A_{m+k}) = \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n).$

b)

1. $(\mathbb{N}, \mathcal{N}, \gamma_{\mathbb{N}})$ un espace mesuré

2. $A_n := \{i \in \mathbb{N} : i > n\}$

 \diamond Il n'est pas possible d'abandonner l'hypothèse 3 de 14-9a. On montre qu'on a un contre-exemple.

On a que $A_{n+1} \subseteq A_n$ pour tout $n \in \mathbb{N}$. Or, on a $\gamma_{\mathbb{N}}(A_n) = \infty$ pour tout n. Donc $\lim_{n\to\infty} \gamma_{\mathbb{N}}(A_n) = \infty$.

Or, $i \in \bigcap_{n=1}^{\infty} A_n$ implique que i > n pour tout n, ce qui est impossible. Donc $\bigcap_{n=1}^{\infty} A_n = \emptyset$ et sa mesure est nulle. On a une contradiction.

1. (M, Σ, μ) un espace mesuré

a)

1.
$$\Sigma_{\mu} := \{ A \subseteq M : (\exists E, F \in \Sigma : E \subseteq A \subseteq F, \mu(F - E) = 0) \}$$

 $\diamond \Sigma_{\mu}$ est une σ -algèbre

On a que \emptyset est dans Σ_{μ} puisque $\emptyset \subseteq M$ et $\emptyset \subseteq \emptyset \subseteq \emptyset$ et $\mu(\emptyset - \emptyset) = 0$.

Soit alors $S \in \Sigma_{\mu}$. Alors il existe $E, F \in \Sigma$ tel que $E \subseteq S \subseteq F$. Mais alors $F' \subseteq S' \subseteq E'$.

Or, $E \subseteq S$ et $F' \subseteq S'$ implique que $E \cap F' \subseteq A \cap A'$. Mais alors $E \cap F' = \emptyset$ et donc $\mu(E - F) = 0$.

Soit alors $\{A_n\}_{n=1}^{\infty}$ une séquence d'ensembles de Σ_{μ} . Alors à chaque A_i on associe E_i, F_i . Alors $\bigcup_{n=1}^{\infty} E_i \subseteq \bigcup_{n=1}^{\infty} A_i \subseteq \bigcup_{n=1}^{\infty} F_i$. Or, $\bigcup_{n=1}^{\infty} E_i, \bigcup_{n=1}^{\infty} F_i \in \Sigma$ par **def. 14.1**.

De plus, $\bigcup_{n=1}^{\infty} F_i - \bigcup_{n=1}^{\infty} E_i = (\bigcup_{n=1}^{\infty} F_i) \cap (\bigcap_{n=1}^{\infty} E_i') = \bigcup_{n=1}^{\infty} (F_i \cap (\bigcap_{n=1}^{\infty} E_i'))$ par **distributivité** et **de Morgan**.

On a
$$\mu(\bigcup_{n=1}^{\infty} (F_i \cap (\bigcap_{n=1}^{\infty} E_i'))) \leq \sum_{n=1}^{\infty} \mu(F_i \cap (\bigcap_{m=1}^{\infty} E_m'))$$
 par **ex 14-6**.

Or, $F_i \cap (\bigcap_{n=1}^{\infty} E_i') \subseteq F \cap E_i'$, qui est de mesure nulle. Donc on a une somme d'ensembles de mesure nulle.

b)

 \diamond Pour tout $A \in \Sigma_{\mu}$ et ses E, F associés, on a $\mu(E) = \mu(F)$

On a que $\mu(F-E)=0$.

Donc $\mu(E) = \mu(E) + \mu(F - E) = \mu(F)$ car il s'agit d'ensembles disjoints.

c)

- 1. $A \in \Sigma_{\mu}$ avec $E, F \in \Sigma$ associés
- 2. $\bar{\mu}(A) := \mu(F)$

 $\diamond \bar{\mu}$ est une mesure

Pour \emptyset , on a $\emptyset \subseteq \emptyset$ et donc $\bar{\mu}(\emptyset) = 0$.

Soit alors E^*, F^* tel que $E^* \subseteq A \subseteq F^*$ et $\mu(F^* - E^*) = 0$.

Alors on a que $\bar{\mu}(A) = \mu(F^*) = \mu(E^*) \le \mu(F) = \mu(E) \le \mu(F^*)$ (ex. précédent et monotonie des la mesure sur sous-ensembles). Donc $\mu(F) = \mu(F^*)$.

Soit alors $\{A_n\}_{n=1}^{\infty}\subseteq \Sigma_{\mu}$ disjoints avec les E_n, F_n associés. Alors on a que tous les E_i sont disjoints. Alors $\bar{\mu}(\bigcup_{n=1}^{\infty}A_n)=\mu(\bigcup_{n=1}^{\infty}E_n)=\sum_{n=1}^{\infty}\mu(E_n)=\sum_{n=1}^{\infty}\mu(F_n)=\sum_{n=1}^{\infty}\bar{\mu}(A_n)$ (μ est une mesure et l'union infinie des E_n correspond aux E de l'union des A_n dans Σ_{μ}).

d)

 $\diamond \ \mathbf{Pour} \ \mathbf{tout} \ B \in \Sigma, \ \mathbf{on} \ \mathbf{a} \ \bar{\mu}(B) = \mu(B)$

Car on a $B \subseteq B \subseteq B$ avec $\mu(B-B) = 0$. Donc $\bar{\mu}(B) = \mu(B)$.

e)

- 1. $N \in \Sigma_{\mu}$
- 2. $\mu(N) = 0$
- 3. $S \subseteq N$

 \diamond $S \in \Sigma_{\mu}$. On dit alors que Σ_{μ} est complet.

Soit $E \subseteq N \subseteq F$. Alors on a que $\bar{\mu}(N) = \mu(F) = \mu(E) = 0$.

On a $\emptyset \subseteq S \subseteq F$. De plus $\mu(F - \emptyset) = \mu(F) = 0$. Alors $S \in \Sigma_{\mu}$.

NOTE: Toute cette construction nous donne la complétion de Σ par rapport à μ et la complétion de μ .