Solutions for relational algebra exercises (Part 2)

September 2019

Contents

Database schema
Solutions
Exercise 01
a. Find the titles of courses in the Comp. Sci. department that have 3 credits
b. Find the IDs of all students who were taught by an instructor named Einstein; make sure there are no duplicates in the result.
c. Find the highest salary of all instructors
d. Find all instructors earning the highest salary (there may be more than one with the same salary)
e. Find the enrollment of each section that was offered in Autumn 2009
f. Find the maximum enrollment, across all sections, in Autumn 2009
g. Find the sections that had the maximum enrollment in Autumn 2009.
Exercise 02
a. Find the names of all students who have taken at least one
Comp. Sci. course
any course offering before Spring 2009
c. For each department, find the maximum salary of instructors in that department. You may assume that every department
has at least one instructor
d. Find the lowest, across all departments, of the per-department
maximum salary computed by the preceding query
Exercise 03
a. Using aggregate function(s)
b. Without using any aggregate functions

Database schema

```
classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building, room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)
```

Figure 1: University database schema

Solutions

Exercise 01

a. Find the titles of courses in the Comp. Sci. department that have 3 credits.

```
\Pi_{title}(\sigma_{dept\_name='Comp.Sci.' \land credits=3}(course))
```

b. Find the IDs of all students who were taught by an instructor named Einstein; make sure there are no duplicates in the result.

```
\Pi_{s\_ID}(\sigma_{name='Einstein'}(instructor) \bowtie teaches \bowtie \rho_{takes2[s\_ID, course\_id, sec\_id, semester, year, grade]}(takes))
```

c. Find the highest salary of all instructors

```
Without aggregate functions \Pi_{salary}(instructor) - \Pi_{salary}(instructor \bowtie_{salary} < salary2 \rho_{instructor2[ID2,name2,dept\_name2,salary2]}(instructor)) With aggregate functions \mathcal{G}_{max(salary) \ as \ salary}(instructor)
```

d. Find all instructors earning the highest salary (there may be more than one with the same salary)

Without aggregate functions

 $\Pi_{ID,name}(instructor) - \Pi_{ID,name}(instructor \bowtie_{salary} < salary_2 \rho_{instructor2[ID2,name2,dept_name2,salary2]}(instructor))$

With aggregate functions

 $\Pi_{ID,name}(instructor \bowtie \mathcal{G}_{max(salary)} \bowtie salary(instructor))$

e. Find the enrollment of each section that was offered in Autumn 2009

 $\textit{course_id}, \textit{sec_id}\, \mathcal{G} \textit{count}(\textit{ID}) \textit{ as enrollment} (\sigma_{\textit{semester}='} \textit{Autumn'} \; \wedge \; \textit{year=2009}(\textit{takes}))$

f. Find the maximum enrollment, across all sections, in Autumn 2009.

 $\mathcal{G}_{max(enrollment)}$ as enrollment (course id, sec id $\mathcal{G}_{count(ID)}$ as enrollment ($\sigma_{semester='Autumn' \land year=2009}(takes)$))

g. Find the sections that had the maximum enrollment in Autumn 2009.

```
\Pi_{course\_id, sec\_id}(\\ (_{course\_id, sec\_id}\mathcal{G}_{count(ID) \ as \ enrollment}(\sigma_{semester='Autumn' \ \land \ year=2009}(takes))))\\ \bowtie \\ (\mathcal{G}_{max(enrollment) \ as \ enrollment}(course\_id, sec\_id}\mathcal{G}_{count(ID) \ as \ enrollment}(\sigma_{semester='Autumn' \ \land \ year=2009}(takes)))))
```

Exercise 02

a. Find the names of all students who have taken at least one Comp. Sci. course.

 $\Pi_{name}(student\bowtie takes\bowtie \Pi_{course_id}(\sigma_{dept_name='Comp.Sci.'}(course)))$

b. Find the IDs and names of all students who have not taken any course offering before Spring 2009.

 $\Pi_{ID,name}(student \bowtie (\Pi_{ID}(student) - \Pi_{ID}(\sigma_{year <= 2008}(takes))))$

c. For each department, find the maximum salary of instructors in that department. You may assume that every department has at least one instructor.

```
_{dept\_name}\mathcal{G}_{max(salary)}(instructor)
```

d. Find the lowest, across all departments, of the per-department maximum salary computed by the preceding query.

```
Gmin(max dept sal) (dept name Gmax(salary) as max dept sal (instructor))
```

Exercise 03

Write relational-algebra queries to find the course sections taught by more than one instructor in the following ways:

a. Using aggregate function(s).

```
\Pi_{course\_id, sec\_id, semester, year}(\sigma_{ins\_cnt} > 1(course\_id, sec\_id, semester, year G_{count(ID)}) as ins\_cnt(teaches)))
```

b. Without using any aggregate functions.

```
Using natual join
```

```
\Pi_{course\_id,\ grade,\ sec\_id,\ semester,\ year,}(\sigma_{ID<>ID2}(teaches\bowtie\rho_{[ID2,\ course\_id,\ sec\_id,\ semester,\ year]}(teaches))) Using theta join \Pi_{course\_id,\ grade,\ sec\_id,\ semester,\ year,}(teaches) \Pi_{ID>ID2}(teaches) \wedge course\_id=course\_id2 \wedge sec\_id=sec\_id2 \wedge semester=semester2 \wedge year=year2 \wedge year=year2 \wedge year=year2, year2](teaches)
```