

CONCEPTION MÉCATRONIQUE INNOVANTE – CAO (CI3)

Éléments de machines

ALAA HASSAN

2022-2023

Plan

$\Delta h = 1 \text{ m}$ $m = 75$	Notion de puissance	
	Engrenages	
	Courroies	
	Roulements	

Notion de puissance

La puissance définit la quantité de travail effectué par unité de temps (par seconde) ou autrement dit le débit d'énergie.

$$1 Watt = \frac{1 Joule}{1 seconde} = 1 \frac{J}{s} ou J. s^{-1}$$

Autre unité usuelle : le cheval (cv) 1cv = 735,5 W

Notion de puissance : le moteur utilisé

Datasheet

RS PRO, 6 V dc, 202 gcm, Brushed DC Motor, Output Speed 176 rpm

Stock No: 752-2002

Specifications:

176 rpm					
6 V dc					
202 g.cm					
Brushed 3mm 0.46 W					
					Spur
					24.25mm
12mm					
170 mA					
10g					

Operating relative humidity 20% ~ 85% Operating temperature range -10°C ~ +60°C

Ratio	L			
102:1	9.15mm			

Gearbox Housing material	Plastic
Backlash at no-load	< 1.5°
Bearing at output	Bronze
Radial load (10mm from flange)	< 0.4 kgf
Shaft axial load	< 0.2 kgf
Shaft press fit force max	< 2 kgf
Radial play of shaft	< 0.06mm
Thrust play of shaft	< 0.2mm

Reduction	Rated tolerance	Max momentary	Efficiency
Ratio	Torque	Tolerance Torque	
1/102	0.8 kgf-cm Max.	2.4 kgf-cm	66%

Reduction Table RPM SUPPLY VOLTAGE	6 v
752-2002	176

Note: Motor speeds may vary by (+) or (-) 12.5%

Notion de puissance : le moteur utilisé

Fabricant	Gebildet
Dimensions du colis	17 x 10.2 x 2.5 cm; 230 grammes
Référence	E358
Couleur	8pcs Motor
Matière	Plastique
Tension	6 Volts, 3 Volts
Puissance en cheval-vapeur (ch)	0.1 hp

Notion de puissance

Quelle puissance pour faire avancer mon vélo?

Ce graphique (à 90kg) semble correspondre à ce qui est proche du vélo minimum utilitaire: pouvoir rouler sur une piste

cyclables française sans casser le vélo.

http://fitnesscar.free.fr/rendement energetique de velos.htm

Notion de rendement

Le rendement η (éta) d'une machine est égal au rapport de l'énergie restituée sur l'énergie fournie ou reçue.

$$\eta = \frac{W_s}{W_e} = \frac{W_e - W_p}{W_e} = 1 - \frac{W_p}{W_e}$$

Et pour la puissance:

$$\eta = \frac{P_s}{P_e} = \frac{P_e - P_p}{P_e} = 1 - \frac{P_p}{P_e}$$

$$P = C \times \omega$$

P: puissance en [W]; **C**: couple en [Nm]; ω : vitesse de rotation en [rad/s]

Remarque : l'énergie perdue peut l'être sous forme de chaleur, de frottement, etc.

Les systèmes de transmission de puissance mécanique

Les transformateurs de mouvement (transforment la nature du mouvement)

 $(R \leftrightarrow T)$

Vis/écrou $(R \rightarrow T)$

Bielle/manivelle $(R \leftrightarrow T_{alternative})$

Came/poussoir $(R \rightarrow T_{alternative})$

Treuil $(R \rightarrow T)$

Poulies/courroie ou pignons/chaîne lorsque la courroie (ou la chaîne) est la sortie $(R \rightarrow T)$

Systèmes de barres articulées (mouvements quelconques)

http://chauvincpge.free.fr/cin/Tr de P cours.pdf

Les systèmes de transmission de puissance mécanique

Les adaptateurs de mouvement sans transformation (même nature du mouvement E/S) :

Engrenage droit (à axes parallèles)

Engrenage conique (à axes concourants)

Engrenage gauche (à axes ni parallèles ni concourants) pignons/chaînes

Poulies/courroie ou

http://chauvincpge.free.fr/cin/Tr de P cours.pdf

Les engrenages

Un engrenage est un mécanisme composé de deux roues dentées. L'une des roues entraîne l'autre par l'action des dents qui sont successivement en contact (sans glissement possible). La roue la plus petite est appelée pignon.

http://chauvincpge.free.fr/cin/Tr_de_P_cours.pdf

Les engrenages: principe de fonctionnement

• Roue 1 et 2 en liaison pivot d'axe respectif (O1) et (O2) par rapport au bâti

Roulement sans glissement des roues de friction au point I.

$$| \text{ fV(I} \in 1/0) | | = \omega_1 \cdot R1 = -\omega_2 \cdot R2$$

Rapport de vitesse :

$$r = -\frac{\omega_{\mathbf{2}}}{\omega_{\mathbf{1}}} = -\frac{\mathbf{d_{1}}}{\mathbf{d_{2}}} = -\frac{\mathbf{Z_{1}}}{\mathbf{Z_{2}}}$$

Z : Nombre de dents

$$fV(I \in 1/0) = fV(I \in 2/0)$$

Les engrenages: Caractéristiques

Module	m	À choisir parmis des modules normalisés
Nombre de dents	Z	Nombre entier et positif
Pas	р	$p = \pi.m$
Diamètre primitif	d	d = m.Z
Entraxe	Е	$E = \frac{d_1 + d_2}{2}$

Dans le module CI3, m = 2

Les engrenages: Caractéristiques

b : largeur de denture

(b = k.m avec k compris entre 6 et 10)

 h_a : saillie de dent $(h_a = m)$

 h_f : creux de dent (h_f = 1.25m)

h: hauteur de dent $(h = h_a + h_f)$

 d_a : diamètre de tête (d_a = d + 2m)

 d_f : diamètre de pied (d_f = d + 2.5m)

Les engrenages: La fonction involute

Soit la développante de cercle formée par l'ensemble des points A quand la droite D roule sans glisser sur le cercle de base C_b . Soit M_0 le point de rebroussement et A un point quelconque du profil situé sur un cercle de rayon r_A . On a :

$$r_b = r_A \cdot \cos \alpha_A$$
 (1)
 $\widehat{M_o N} = r_b \cdot \theta$
 $= \widehat{M_o N} - \widehat{NM}$

Et, de part la définition de la développante de cercle :

$$\widehat{M_O M} = MA = r_b \tan \alpha_A$$

Avec
$$NM = r_b \cdot \alpha_A$$
, il vient:

$$\widehat{M_o N} = r_b \cdot \theta = r_b \tan \alpha_A - r_b \cdot \alpha_A$$

Soit
$$\theta = \tan \alpha_A - \alpha_A$$

Les engrenages: La fonction involute

Dans le cas particulier où A est situé sur le cercle primitif (C), on l'appelle alors A_p :

$$r_b = r_{Ap} \cdot \cos \alpha_{Ap}$$

Avec $\alpha_{Ap} = \alpha$: angle de pression déjà défini;

$$r_{Ap} = r$$
: rayon primitif.

On a donc:

$$r_b = r.\cos\alpha$$
 (3)

Les relations (1) et (3) conduisent à :

$$\cos \alpha_A = \frac{r}{r_A} \cdot \cos \alpha$$

Différents type d'engrenages

- + : Peu couteux ; Très bon rendement (≈ 98%).
- : Engendrent bruit et vibrations.

à denture hélicoïdale

- +: Peu de bruit et de vibrations; Transmettent de grandes puissances Rendement ≈ 95%.
- : Engendrent un effort axial.

à chevrons

(= 2 x dentures hélicoïdales)

- + : Pas d'effort axial ; Puissances très grandes.
- : Mise en œuvre.

Différents type d'engrenages

Rendement global d'un train d'engrenages

$$r = \frac{\omega_{sortie}}{\omega_{entrée}} = \frac{N_{sortie}}{N_{entrée}} = (-1)^n \frac{\text{Produit du nombre de dents des roues menantes}}{\text{Produit du nombre de dents des roues menées}}$$

n : nombre de contact **extérieurs** entre roues

Roue menante : roue motrice dans un engrenage

Roue menée : roue réceptrice dans un engrenage

$$r = \frac{w_s}{w_e} = ?$$

Les engrenages : vidéo

Le système poulies courroies

Avantages:

- Silencieux
- Amortissent les chocs et les vibrations
- Les arbres de transmission peuvent être très éloignés

Inconvénients:

- Nécessitent une tension de la courroie, qui génère des efforts
- Durée de vie faible (nécessitent une maintenance préventive)

Types de courroies

Le glissement peut être important

Puissance transmissible faible

Le fonctionnement de poulie-courroie

Rapport de vitesse :

$$r = \frac{N_2}{N_1} = \frac{R_1}{R_2}$$

Guidage en rotation: Les roulements

Touret à meuler :

http://bboy78.free.fr/Cours%20TN01/C9_SolutionsTechnologiques.pdf

Guidage en rotation: Les roulements

Assemblage d'une liaison pivot assurée par des roulements à billes et vocabulaire associé

https://fr.wikipedia.org/wiki/Roulement_m%C3%A9canique

Les types de roulements

625ZZ

Type de rou	ulement	Représentation		Aptitude à la charge		Aptitude à la	Remarques	
. / / / 35 / 35		Normale	Conventionnelle	Radiale	Axiale	vitesse	Utilisations	
Roulement à billes à contact radial			+	É le v é	Modéré	Élevé	Le plus utilisé. Très économique. Existe en plusieurs variantes (Étanche, avec rainure et segment d'arrêt)	
Roulement à une de billes à contact oblique			X	É le v é	É lev é	Modéré	Les roulements à une rangée de billes doivent être montés par paire. Avec une rangée de billes, la charge ne peut être appliquée que d'un côté.	
Roulement à deux rangées de billes à rotule			*	É l ev é	Passable	Modéré	Il se monte par paire. Il est utilisé lorsque l'alignement des paliers est difficile ou dans le cas d'arbre de grande longueur pouvant fléchir sensiblement.	

http://bboy78.free.fr/Cours%20TN01/C9 SolutionsTechnologiques.pdf

Les types de roulements

Type de rou	ulement	Représentation		Aptitude à la charge		Aptitude à la	Remarques	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Normale	Conventionnelle	Radiale	Axiale —	vitesse	Utilisations	
Roulement à rouleaux cylindriques			+	Très él ev é	Nul	É lev é	Il supporte des grandes charges radiales. Les bagues sont séparables, facilitant le montage.	
Roulement à rouleaux coniques			\	Très él ev é	é lev é	Modéré	Il se monte par paire et en opposition. Les bagues sont séparables, facilitant le montage.	

http://bboy78.free.fr/Cours%20TN01/C9_SolutionsTechnologiques.pdf

Le montage en X et en O

http://bboy78.free.fr/Cours%20TN01/C9_SolutionsTechnologiques.pdf

https://www.cours-et-exercices.com/2016/12/montage-des-roulements.html

Les types de roulements

Les butées à simple effet ne supportent que des charges axiales dans un seul sens.

Les butées à double effet sont conçues pour subir des charges axiales alternées.

http://bboy78.free.fr/Cours%20TN01/C9 SolutionsTechnologiques.pdf

Exemple d'un projet

Exercice: Boîte à musique (sujet 2017)

Le travail demandé est la conception du mécanisme associant boîte à musique et personnage (ballerine) tels que décrits dans la fiche annexe. Le mouvement est donné par un micro motoréducteur électrique tournant à une vitesse de 30 tours/minute. Le cylindre a une vitesse de rotation de 2 t/mn et la ballerine de 10 t/mn .

- 1. Décrire le fonctionnement du mécanisme en complétant le schéma donné en annexe avec les commentaires utiles à la compréhension
- 2. Dimensionnez les engrenages et les entraxes

