

Introduction to Computer Operating Systems

Computer operating systems are the core software that manage the hardware and software components of a computer, enabling efficient interaction between the user, applications, and the underlying system. These systems provide a fundamental framework for running programs, managing memory, and handling input/output operations.

History of Operating Systems

Early Days

Operating systems evolved from simple batch processing systems in the 1950s to more advanced, interactive systems in the 1960s and 1970s.

Modern Era

Today, operating systems have become increasingly sophisticated, with features like multi-tasking, security, and cloud-based integration.

Personal Computing

The rise of personal computers in the 1970s and 1980s led to the development of user-friendly operating systems like DOS, macOS, and Windows.

Types of Operating Systems

Windows

Microsoft's dominant desktop operating system, known for its ease of use and widespread compatibility.

macOS

Apple's proprietary operating system, designed for their line of Macintosh computers, with a focus on user experience.

Linux

An open-source operating system with numerous distributions, known for its flexibility, security, and power-user capabilities.

Kernel and User Mode

1

Kernel Mode

The core of the operating system, responsible for managing hardware resources and providing a secure environment.

User Mode

The layer where applications and user-level processes run, with limited access to system resources.

System Calls

The interface that allows user-mode programs to request services from the kernel, such as file I/O or memory management.

2

3

Process Management

1 Process Creation

3

The operating system creates and manages processes, allowing multiple programs to run concurrently.

2 Scheduling

The OS determines the order in which processes are executed, using algorithms to optimize performance.

Inter-Process Communication

Processes can interact with each other through mechanisms like shared memory, message queues, and signals.

MAKE ITibnut sesrpreslees CPU scleduting -CPreswethorgy - Erg_weiedg Resource Allocation CPU scledliting -Selewwathorgy - Erg-Wuining UK Asiency **CPUscisentory** Suripetines Plen wainlleg Deite **IO Devices** Assigned

Memory Management

Virtual Memory

The OS provides a virtual address space that is larger than the available physical memory, using techniques like paging and swapping.

Memory Allocation

The OS allocates and manages memory for processes, ensuring efficient use of available resources.

Memory Protection

The OS enforces memory protection, preventing processes from accessing or modifying memory they don't own.

Dperating System Memory Management

MAKE IT ADVANDED

File Systems

Directories

The OS organizes files and folders in a hierarchical structure, allowing users to navigate and manage their data.

Files

The basic units of storage, containing data and metadata like file names, timestamps, and permissions.

Storage Devices

The OS manages the physical storage devices, such as hard drives and SSDs, where the file system resides.

Input/Output (I/O) Systems

Device Drivers	Provide a standardized interface for the OS to communicate with various hardware devices.
Buffering	The OS temporarily stores data in memory to optimize the speed and efficiency of I/O operations.
Spooling	The OS manages the queue of print jobs and ensures they are processed in the correct order.

Security Features

Access Control

The OS implements user accounts, permissions, and authentication mechanisms to prevent unauthorized access.

Encryption

Many operating systems provide built-in encryption capabilities to protect data at rest and in transit.

Malware Protection

Operating systems often include security features like antivirus software and firewalls to detect and prevent malicious activities.

Trends and Future Developments

1 Increased Automation

Operating systems are incorporating more AI-driven features to automate tasks and provide intelligent assistance.

2 Clo

Cloud Integration

Operating systems are integrating tightly with cloud-based services, enabling seamless data access and synchronization.

Specialized Systems

Emerging operating systems are designed for specific use cases, such as Internet of Things (IoT) and mobile devices.

