

Sindri

Uma nova ferramenta computacional para a estimativa de propriedades termodinâmicas e cálculos de equilíbrio líquido-vapor

Marcus Bruno Fernandes Silva

Orientador: Nathan Sombra Evangelista

Lavras – MG

Iulho, 2019

Um engenheiro civil não é capaz de projetar uma ponte sem antes conhecer as propriedades do aço e do concreto. Analogamente, cientistas e engenheiros muitas vezes necessitam dos conhecimentos das propriedades de gases e líquidos (POLING; PRAUSNITZ; O'CONNELL, 2001).

Propriedades termodinâmicas e → Projeto de processos, produtos, dados de equilíbrio de fases equipamentos Dados de equilíbrio de fases (diagramas e tabelas) são essenciais para dimensionamento de de processos separação de fases não-mecânicos

A **termodinâmica** não é capaz de fornecer os valores dessas propriedades, mas sim **relações** entre elas

Cientistas e engenheiros utilizam essa ferramenta para contornar a escassez de informações de propriedades e dados relevantes

Modelos termodinâmicos, equações e correlações

Por questões de velocidade de execução e facilidade de uso, softwares e programas computacionais foram desenvolvidos para aplicação e resolução desses modelos termodinâmicos ao longo das últimas décadas

Código fechado

- PRZ e VLMU (Sandler, 1999)
- PRPURE e PRMIX (Elliot e Lira, 1999)
- VRTherm (VRTech, 2004)
- Thermosolver (Koretsky, 2007)

Código aberto

- EOSC (do Carmo, 2010)
- XSEOS (Castier e Amer, 2011)
- OCTOPUS (Evangelista et al., 2016)

Limitações dos softwares e programas computacionais

- A maioria dos softwares utilizados são comerciais e de código fechado;
- Interface gráfica limitada ou ausente;
- Não intuitivos;
- Não geram relatórios e diagramas interativos.

OBJETIVOS

Desenvolver um software capaz de estimar propriedades termodinâmicas e dados de equilíbrio com as seguintes características:

- Possuir interface gráfica inuitiva e amigável;
- O Possuir banco de dados com uma grande quantidade de substâncias de interesse;
- O Possuir uma variedade de equações de estado cúbicas implementadas;
- O Efetuar cálculos de equilíbrio líquido-vapor por meio das abordagens $\phi \phi$ e $\gamma \phi$;
- Resolver problemas clássicos de equilíbrio líquido-vapor: ponto de bolha, ponto de orvalho, flash PT;
- Gerar relatórios dos cálculos e diagramas de fases interativos;
- O Calcular informações requeridas para um sistema com número de componentes arbitrários.

2 — Conceitos —

Equação de estado cúbica

É uma equação que relaciona P, T e V, algebricamente, e é cúbica no termo do volume

Pode ser escrita em uma única forma generalizada (Abbott, 1979):

$$P = \frac{RT}{V - b} - \frac{\Theta(V - \eta)}{(V - b)(V^2 + \delta V + \varepsilon)}$$

Dependendo do modelo, os parâmetros Θ, b, η e ε podem ser constantes, incluindo zero, ou podem ser dependentes de T ou da composição.

Pode ser estendida para sistemas multicomponentes utilizando regras de mistura

Equações e correlações

$$C_p \equiv a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4$$

$$\rightarrow log_{10} P_{vp} = A - \frac{B}{T + C}$$

$$ln P_{vpr} = f^{(0)} + \omega f^{(1)}$$

$$ln P_{vpr} = f^{(0)} + \omega f^{(1)} + \omega^2 f^{(2)}$$

Gás real

Figura 1 - Caminho para o cálculo de propriedades termodinâmicas usando funções de partida.

Fonte: Adaptada de (KORETSKY, 2012).

Equilibrio líquido-vapor

Quando o equilíbrio de fases é atingido, as fugacidades para cada substância na fase são iguais

$$\widehat{f}_i^V = \widehat{f}_i^L$$

Esse tipo de equilíbrio pode ser abordado por dois métodos

$$\hat{\phi}_i^V y_i = \hat{\phi}_i^L x_i \qquad y_i \Phi_i P = x_i \gamma_i P_i^{sat}$$

Em pressões baixas e moderadas
$$\Phi_{i} = \frac{\phi_{i}^{v}}{\phi_{i}^{sat}}$$

Programação orientada a objetos

- Fornece abstração da linguagem de programação;
- O A solução do problema pode ser descrita utilizando própria linguagem do problema.

Objeto: guarda dados e possui um comportamento próprio, definido pelo programador

Exemplo: Objeto "Automóvel"

Dados: "Quantidade de combustível", "Velocidade" **Comportamento:** "Acelerar", "Frear", "Ligar/Desligar"

Conceitos

- Herança: um objeto herda comportamendo de outro objeto.
 Ex.: Um objeto "Carro" herda o comportamento de um objeto "Automóvel"
- Composição: um objeto é composto de outros objetos. Ex.: Um objeto "Oficina" possui vários objetos "Automóvel" (objeto "Carro", objeto "Moto", etc.)
- Polimorfismo: Uma classe B que é herdeira de uma classe A é considerada um objeto tanto quanto do tipo A quanto do tipo B.

Ex.: Um objeto "Carro" que é herdeiro de um objeto "Automóvel" também é considerado do tipo "Automóvel".

Banco de dados

As estimativas das propriedades termodinâmicas e os cálculos de equilíbrio líquido-vapor exigem o conhecimento de alguns parâmetros fundamentais para substâncias puras

- Parâmetros críticos
- Fator acêntrico
- Parâmetros de equações e correlações

Um banco de dados foi desenvolvido no SQL – Structured Query Language. A base do banco de dados foi gerada a partir dos dados de 468 substâncias reportados por Poling *et al.* (2001). Informações contidas:

- Parâmetros críticos e fator acêntrico;
 - rametros criticos e fator acentrico,
- Massa molar;

- O Temperatura de fusão e ebulição;
- Constantes da equação da capacidade calorífica e da equação de Antoine.

O banco de dados foi estendido com informações dos grupos principais, subgrupos e parâmetros de interação do modelo UNIFAC. Essas informações foram retiradas dos artigos publicados pelos autores do método.

17

Implementação computacional

- Amplamente utilizada na comunidade de cientistas e engenheiros.

Bibliotecas utilizadas

scipy.org

Design do software

A principal classe do software é a **EOSMixture**. Ela representa um modelo (objeto) de um sistema com um número arbitrário de componentes.

- Os cálculos são realizados utilizando a forma generalizada da equação de estado cúbica, utilizando a regra de mistura clássica com um parâmetro ajustável.
- O Implementa todos os cálculos de propriedades termodinâmicos e de dados de equilíbrio líquidovapor para valores arbitrários de pressão, temperatura e das composições das substâncias.
- A equação de estado cúbica que modela o sistema pode ser alterada a qualquer instante, sem complicações externas, devido os conceitos de composição e polimorfismo.

Figura 2 - Classe EOSMixture.

```
class EOSMixture:

mun

Main class for modeling a system with multiple substances, using a cubic equation of state.

This is the main class of the software. It's responsable for calculating all properties,
and all the vapor-liquid equilibrium data. It uses a generalized cubic equation of state for all
its calculations.
```

A partir dessa classe, criam-se modelos específicos.

Ex.: sistemas com uma única substância

Equações de estado cúbicas implementadas

O software possui **20 equações de estado cúbicas**, identificadas pelos autores e ano de publicação.

- Van der Waals (1890)
- Redlich e Kwong (1949)
- Wilson (1964)
- Soave (1972)
- Peng e Robinson (1976)
- Schmidt e Wenzel (1980)
- Patel e Teja (1982)
- Péneloux, Rauzy e Fréze (1982)
- Adachi, Lu e Sugie (1983)

- Mathias e Copeman (1983)
- Soave (1984)
- Adachi, Sugie e Lu (1985)
- Stryjek e Vera (1986)
- Twu, Coon e Cunningham (1995)
- Tsai e Chen (1998)
- Ahlers e Gmehling (2001)
- Gasem et al. (2001) três equações
- Coquelet, Chapoy e Richon (2004)

As equações possuem diferentes características e por isso, dependendo da aplicação, umas são mais adequadas que outras.

Interface gráfica Interação com o banco de dados

Figura 3 – Janela principal do banco de dados.

Interface gráfica Interação com o banco de dados

Figura 4 – Formulários de adição/edição de uma substância.

Interface gráfica Sistema com uma única substância

Figura 5 – Janela principal para cálculos envolvendo uma substância pura.

Figura 6 – Alterar unidades dos resultados.

Interface gráfica Sistemas multicomponentes

Figura 7 – Janelas para estimativa de propriedades.

Interface gráfica Sistemas multicomponentes

Figura 8 – Cálculos de equilíbrio líquido-vapor.

Interface gráfica Sistemas multicomponentes

Figura 9 – Interface para construção de diagramas binários e ajuste do parâmetro de interação.

Validação dos cálculos

As validações foram feitas modelando um sistema contendo metano puro, utilizando a equação de Peng e Robinson (1976).

Sistema: metano puro à 150 K e 1,0 bar

Propriedade	PRZ	Sindri	Desvio¹ (%)
Volume molar [m³/mol]	1,2280.10 ⁻²	1,2278.10 ⁻²	-0,016
Fator de compressibilidade	0,984	0,984	0,000
Pressão de vapor [bar]	10,480	10,478	-0,019
Estado do fluido	não informa	vapor superaquecido	-

Tabela 1 – Comparação entre propriedades calculadas pelo PRZ e Sindri.

Validação dos cálculos

As validações foram feitas modelando um sistema contendo metano puro, utilizando a equação de Peng e Robinson (1976).

Sistema: metano puro Estado 1: 120 K e 1,0 bar Estado 2: 150 K e 1,0 bar

Propriedade	VRTherm	Sindri	Desvio¹ (%)	
ΔH [J/mol]	1002,95	999,57	-0,337	
ΔS [J/mol K]	7,46	7,44	-0,321	
ΔU [J/mol]	745,75	742,36	-0,455	

Tabela 2 – Comparação entre propriedades de estado calculadas pelo VRTherm e Sindri.

Como os cálculos foram implementados de maneira generalizada, a validação serve para todas as equações de estado cúbicas.

Diagramas de saturação para uma substância pura

Sistema: metano puro

Equação de estado cúbica utilizada: Soave (1972)

Figura 10 – Diagrama P vs V do metano.

Figura 11 – Diagrama H vs S do metano.

Isotermas nos diagramas de saturação

Sistema: propano puro

Equação de estado cúbica utilizada: Peng e Robinson (1976)

Figura 12 – Isotermas no diagrama de fase,

Cálculos de equilibrio líquido-vapor

Sistema: 1-hexano + etanol

Pressão [kPa]	Fração molar da fase líquida do 1-hexeno	Fração molar da fase vapor do 1-hexeno	
95,419	0,128	0,546	
108,484	0,221	0,613	
114,071	0,325	0,654	
117,044	0,424	0,674	
119,297	0,527	0,687	
117,110	0,647	0,700	
116,417	0,753	0,713	
115,111	0,859	0,732	

Tabela 3 – Dados experimentais do sistema à 333,15 K.

Fonte: Lindberg e Tassios (1971).

Figura 13 – Modelagem do sistema 1-hexeno + etanol utilizando a equação de Tsai e Chen (1998)

Figura 14 – Modelagem do sistema 1-hexeno + etanol utilizando a equação de Tsai e Chen (1998) com $k_{ij} = 0.07286$.

Figura 15 – Modelagem do sistema 1-hexeno + etanol utilizando o método UNIFAC + equação de Tsai e Chen (1998)

Cálculos de equilibrio líquido-vapor

Sistema: pentano, hexano e ciclohexano a 390,0 K e 5,0 bar

	Sindri		VRTherm		1 . (0/)	1 . (0()
Componente	x	у	x	у	x - desvio (%)	y - desvio (%)
pentano	0,32865	0,52695	0,32856	0,52735	0,029	-0,075
hexano	0,36863	0,28921	0,36802	0,28915	0,166	0,021
ciclohexano	0,30272	0,18384	0,30343	0,18350	-0,232	0,184

Tabela 4 – Modelado pela abordagem ϕ – ϕ , utilizando a equação de estado cúbica de Soave (1972).

5 — Conclusões -

5. Conclusões

Neste trabalho, foi desenvolvido um software computacional denominado Sindri.

- Possui uma interface gráfica amigável e intuitiva, tendo sido desenvolvido para estudantes, pesquisadores e profissionais de áreas correlatas à engenharia química;
- Possibilita ao usuário estimar propriedades termodinâmicas e dados de equilíbrio líquidovapor por meio de 20 equações de estado cúbicas encontradas na literatura, utilizando a abordagem ϕ - ϕ ;
- Possui o método de contribuição de grupos UNIFAC, capaz de estimar o coeficiente de atividade da fase líquida, possibilitando a abordagem $\gamma \phi$ para cálculos de equilíbrio de fases de sistemas mais complexos;
- A interface gráfica se mostrou eficiente, permitindo que o usuário altere, a qualquer momento, a equação de estado cúbica que rege o comportamento do sistema analisado.

5. Conclusões

Figura 16 – Website do Sindri.

Sindri

Estimation of thermodynamics properties and vapor-liquid equilibrium calculations.

Description • Features • Getting Started • Authors • Contribution • License

Description

Sindri is a software developed to estimate thermodynamics properties and vapor-liquid equilibrium calculations using cubic equations of state.

This software was developed as part of an undergraduate thesis to obtain a bachelor degree in Chemical Engineering at the Federal University of Lavras, Brazil.

mrcsbrn.github.io/Sindri

Figura 17 – Repositório virtual.

github.com/mrcsbrn/Sindri

5. Conclusões

Congressos

SINDRI: UMA NOVA FERRAMENTA COMPUTACIONAL PARA CÁLCULOS DE PROPRIEDADES TERMODINÂMICAS E DE EQUILÍBRIO LÍQUIDO-VAPOR A PARTIR DE EQUAÇÕES DE ESTADO CÚBICAS

M. B. F. SILVA¹ e N. S. EVANGELISTA¹

¹ Universidade Federal de Lavras, Departamento de Engenharia E-mail para contato: marcusbfs@gmail.com

CBTermo 2019

X Congresso Brasileiro de Termodinâmica Aplicada e VI Escola de Termodinâmica Nova Friburgo - RJ - Brasil 3 a 8 de novembro de 2019

UMA NOVA FERRAMENTA COMPUTACIONAL PARA A ESTIMATIVA DE PROPRIEDADES TERMODINÂMICAS E CÁLCULOS DE EQUILÍBRIO LÍQUIDO-VAPOR A PARTIR DE EQUAÇÕES DE ESTADO CÚBICAS

Marcus B. F. Silva*, Nathan S. Evangelista
Departamento de Engenharia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
*Autor para correspondência: marcusbfs@gmail.com

Referências

POLING, B. E.; PRAUSNITZ, J. M.; O'CONNELL, J. P. The properties of gases and liquids. 5. ed. New York: Mcgraw-hill, 2001.

SANDLER, S. I. Chemical and Engineering Thermodynamics. 3. ed. New York: John Wiley & Sons, 1999.

ELLIOTT, J. R.; LIRA, C. T. Introductory Chemical Engineering Thermodynamics. 1. ed. New Jersey: Prentice-Hall, 1999.

KORETSKY, M. D. Termodinâmica para Engenharia Química. 1. ed. Rio de Janeiro: LTC, 2007.

VRTECH. VRTherm Thermodynamic Package, 2004. Disponível em: http://www.iise.ltd/pt/vrtherm

CASTIER, M.; AMER, M. M. An evolving tool for teaching chemical engineering thermodynamics. **Education for Chemical Engineers**, v. 6, n. 2, p. 62–70, 2011.

EVANGELISTA, N. S.; DO CARMO, F. R.; DE SANT'ANA, H. B. **OCTOPUS: uma nova ferramenta computacional para estimativa de propriedades físicas e químicas de compostos orgânicos moleculares**. XXI Congresso Brasileiro de Engenharia Química. Anais.Fortaleza, Ceará: 2016.

ABBOTT, M. M. Cubic Equations of State: An Interpretive Review. **THE AMERICAN CHEMICAL SOCIETY**, v. 176, p. 24, 1979. KORETSKY, M. D. **Engineering and Chemical Thermodynamics**. Wiley, 2012.

VAN DER WAALS, J. D. Molekulartheorie eines Körpers, der aus zwei verschiedenen Stoffen besteht. **Zeitschrift für Physikalische Chemie**, v. 5, n. 1, p. 133–173, 1890.

REDLICH, O.; KWONG, J. N. S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chemical Reviews, 1949.

WILSON, G. M. Vapor-Liquid Equilibria, Correlation by Means of a Modified Redlich-Kwong Equation of State. **Advances in Cryogenic Engineering**, 1964.

SOAVE, G. Equilibrium constants from a modified Redlich-Kwong equation of state. **Chemical Engineering Science**, 1972. PENG, D. Y.; ROBINSON, D. B. A New Two-Constant Equation of State. **Industrial and Engineering Chemistry Fundamentals**, 1976.

SCHMIDT, G.; WENZEL, H. A modified van der Waals type equation of state. **Chemical Engineering Science**, 1980. PATEL, N. C.; TEJA, A. S. A new cubic equation of state for fluids and fluid mixtures. **Chemical Engineering Science**, 1982.

Referências

PÉNELOUX, A.; RAUZY, E.; FRÉZE, R. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilibria, 1982. ADACHI, Y.; LU, B. C. Y.; SUGIE, H. A four-parameter equation of state. Fluid Phase Equilibria, 1983.

MATHIAS, P. M.; COPEMAN, T. W. Extension of the Peng-Robinson equation of state to complex mixtures: Evaluation of the various forms of the local composition concept. **Fluid Phase Equilibria**, 1983.

SOAVE, G. Improvement of the Van Der Waals equation of state. Chemical Engineering Science, 1984.

ADACHI, Y.; SUGIE, H.; LU, B. C. Y. Development of van der waals type of equation of state. **JOURNAL OF CHEMICAL ENGINEERING OF JAPAN**, 1985.

STRYJEK, R.; VERA, J. H. PRSV: An improved peng—Robinson equation of state for pure compounds and mixtures. **The Canadian Journal of Chemical Engineering**, 1986.

TWU, C. H.; COON, J. E.; CUNNINGHAM, J. R. A new generalized alpha function for a cubic equation of state Part 1. Peng-Robinson equation. Fluid Phase Equilibria, 1995.

TSAI, J.-C.; CHEN, Y.-P. Application of a volume-translated Peng-Robinson equation of state on vapor-liquid equilibrium calculations. **Fluid Phase Equilibria**, v. 145, n. 2, p. 193–215, 1998.

AHLERS, J.; GMEHLING, J. Development of an universal group contribution equation of statel. Prediction of liquid densities for pure compounds with a volume translated Peng-Robinson equation of state. **Fluid Phase Equilibria**, 2001.

GASEM, K. A. M. et al. A modified temperature dependence for the Peng-Robinson equation of state. **Fluid Phase Equilibria**, 2001.

COQUELET, C.; CHAPOY, A.; RICHON, D. Development of a new alpha function for the Peng-Robinson equation of state: Comparative study of alpha function models for pure gases (natural gas components) and water-gas systems. **International Journal of Thermophysics**, 2004.

LINDBERG, G. W.; TASSIOS, D. Effect of Organic and Inorganic Salts on Relative Volatility of Nonaqueous Systems. **Journal of Chemical and Engineering Data**, 1971.

Obrigado!

- marcusbfs@gmail.com
- github.com/mrcsbrn