אינפי 1 - גיליון תרגילים מספר 4

eta באופן הבא: סדרות המוגדרות באופן הבא .1

$$a_1 = 4,$$
 $b_1 = \frac{1}{2}$ $a_{n+1} = \frac{a_n + b_n}{2},$ $b_{n+1} = \sqrt{a_n b_n}$

הוכח ששתי הסדרות מתכנסות, ושגבולן שווה.

.(סדרה עולה) אוכח כי b_n - הוכח מלרע וחסומה יורדת וחסומה סדרה עולה)

- . $a_n = \sum_{i=1}^n \frac{1}{(2i-1)(2i+1)}$: הוכח כי הסדרה הבאה מתכנסת.
- . $a_n = \frac{(-1)^n + 1}{2} + (-1)^n \cos\left(\frac{n\pi}{2}\right)$: מצא את הגבולות החלקיים של הסדרה . d sim sup (a_n) , lim inf (a_n)
 - 4. הוכח את הטענות הבאות:
 - $\lim \inf(-a_n) = -\lim \sup(a_n)$.
 - $\lim \inf(a_n + b_n) \ge \lim \inf(a_n) + \lim \inf(b_n)$.
 - $\lim \inf(a_n + b_n) \le \lim \sup(a_n) + \lim \inf(b_n)$.
- הוכח הקטע כל נקודות הוכח כי כל נקודות הקטע הסגור . $\lim_{n\to\infty}(a_{n+1}-a_n)=0$ הדרה שעבורה מדרה .5 .f [lim inf a_n , lim sup a_n]
- . תהא Aקבוצה. נניח שלכל x_n , און היא היא נקודת הצטברות של 6. תהא הגבול (וסופי) הוכח כי $\lim_{n\to\infty}x_n=x$ הוכח של הגבול (וסופי)
- כי לכל היטב, והוכח כי פעולות מספרים אל מספרים של בחזקות היטב, והוכח היטב, $a^{\alpha}>b^{\alpha}$ מתקיים: a>b>0 ו $\alpha>0$