## Exam 1 - Math 215

**Problem 1** (30 points; 3 points each). Decide if each of the following are true or false. You do not need to justify your choice here.

(a)  $(p \to q) \leftrightarrow (\neg p \land q)$  is a tautology.

FALSE: What is true is  $(p \to q) \leftrightarrow (\neg p \lor q)$ .

(b) \_\_\_\_\_  $(p \to q) \leftrightarrow (q \to p)$  is a tautology.

FALSE:  $q \to p$  is the converse and an implication is not equivalent to its converse.

(c)  $\exists x P(x) \land \exists x Q(x) \equiv \exists x (P(x) \land Q(x)).$ 

FALSE: Let P(x) be "x = 1" and Q(x) be "x = 0."

(d) \_\_\_\_  $\exists x P(x) \land \exists x Q(x) \equiv \exists x \exists y (P(x) \land Q(y)).$ 

TRUE: The following are equivalent

- $\exists x \mathbb{P}(x) \wedge \exists x Q(x)$ .
- There is some a and some b so that  $P(a) \wedge Q(b)$ .
- $\exists x \exists y (P(x) \land Q(y))$
- (e) \_\_\_\_  $\neg(\forall x P(x) \land \exists x Q(x)) \equiv \exists x \neg P(x) \lor \forall x \neg Q(x)$

TRUE: The following are equivalent

- $\bullet \ \neg (\forall x P(x) \land \exists x Q(x))$
- $\bullet \ \neg \forall x P(x) \lor \neg \exists x Q(x)$
- $\exists x \neg P(x) \lor \forall x \neg Q(x)$
- (f)  $A \subseteq B \implies C A \subseteq C B$

FALSE: For example,  $C \neq \emptyset$ ,  $A = \emptyset$ , and B = C, then  $A \subseteq B$  yet  $C - A = C \not\subseteq C - B = \emptyset$ .

(g) \_\_\_\_  $P(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ 

FALSE: The set  $\{\emptyset, \{\emptyset\}\}$  has two elements, so  $P(\{\emptyset, \{\emptyset\}\})$  must have  $2^2=4$ .

(h) \_\_\_\_\_  $f: \mathbb{Z} \times \mathbb{Z}^+ \to \mathbb{Q}$  given by f(n,m) = n/m is onto or surjective. TRUE

(i) \_\_\_\_\_  $g: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}^+$  given by g(q) = (n, m) iff q = n/m where n and m have no common factors is 1-1 or injective.

TRUE

(j) \_\_\_\_\_ With f and g as in (h) and (i),  $f \circ g : \mathbb{Q} \to \mathbb{Q}$  is the identity on  $\mathbb{Q}$ , so  $f = g^{-1}$ .

FALSE: It is true that for  $q \in \mathbb{Q}$ , if q = n/m where n and m have no common factors and m > 0, then  $(f \circ g)(q) = f(g(n/m)) = f(n/m) = n/m = q$  so  $f \circ g = \mathrm{id}_{\mathbb{Q}}$ , but for  $f = g^{-1}$  to be true, it must also be the case that  $g \circ f = \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}^+}$  and this is not true, for example,  $(g \circ f)(2,4) = g(f(2,4)) = g(2/4) = (1,2)$ .

**Problem 2** (Multiple Choice; 40 points; 4 points each). You may select any number of choices, 0-4. You get one point per each correct item, meaning if the item should be selected you get a point, if it should not be selected you get a point.

- (a) Which of the following are propositions?
  - $\bigotimes$  The rat was a spy.
  - O Wait, wait, don't tell me.

  - $\bigcap x + 2 = 4.$
- (b) Which of the conditionals are true?
  - $\bigotimes 5 > 3 \to 5$  is prime.
  - $\bigcirc$  5 > 3  $\rightarrow$  5 is not prime
  - $\bigotimes 5 < 3 \rightarrow 5$  is prime
  - $\bigotimes 5 < 3 \rightarrow 5$  is not prime.
- (c) Which biconditionals are true for arbitrary integer n?
  - $\bigcirc 5 > n \leftrightarrow 25 > n^2$ .
  - $\bigcirc 5 > n \leftrightarrow 5n > n^2.$
  - $\bigotimes 5 > n \leftrightarrow 25 > 5n$ .
  - $\bigcirc 5 > n \leftrightarrow 1/5 < 1/n.$
- (d) Which are equivalent to  $p \to q$ ?
  - $\bigotimes \neg q \to \neg p.$
- (e) Which of the following are contingencies?
  - $\bigcirc (p \land q) \lor (\neg p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$
  - $\bigotimes (p \to q) \land (q \to r) \land (r \to \neg p)$
  - $\bigotimes (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r) \vee (p \wedge \neg q \wedge r)$   $\bigotimes (p \vee q \vee \neg r) \wedge (\neg p \vee \neg q \vee r) \wedge (p \vee q \vee r).$
- (f) Which of the following say that there are exactly two things satisfying P(x):
  - $\bigcirc \exists x P(x) \land \exists y P(y) \land \neg \exists z P(z).$

(g) f is continuous at a means  $\lim_{x\to a} f(x) = f(a)$  and this is defined as

$$\forall \epsilon > 0 \exists \delta > 0 \forall x (0 < |x - a| < \delta \rightarrow |f(x) - f(a)| < \epsilon)$$

Which of the following imply that f is not continuous at a?

- $\exists \epsilon > 0 \exists \delta > 0 \exists x (0 < |x a| < \delta \land |f(x) f(a)| \ge \epsilon)$
- $\bigcirc \exists \epsilon > 0 \forall \delta > 0 \exists x (0 < |x a| < \delta \to |f(x) f(a)| \ge \epsilon)$
- $\otimes \exists \epsilon > 0 \forall \delta > 0 \exists x (0 < |x a| < \delta \land |f(x) f(a)| \ge \epsilon)$
- $\bigcirc \exists \epsilon > 0 \forall \delta > 0 \exists x (0 < |x a| < \delta \rightarrow |f(x) f(a)| < \epsilon).$
- (h) Which of the following imply A = B?
  - $\bigotimes A \subseteq B \land B \subseteq A$ .
- (i) Which of the following are always true where all sets are subsets of a universal set U?

  - $\bigcap \overline{A \cup (B \cap C)} = (\overline{A} \cup \overline{B}) \cap (\overline{A} \cup \overline{C}).$
  - $\bigcirc \overline{A \cup (B \cap C)} = \overline{A} \cup (\overline{B} \cap \overline{C}).$
- (j) Which of the following are countably infinite?
  - $\bigcirc$  The set of points on the unit interval (0,1).
  - $\bigotimes$  The set of all polynomials with integer coefficients.
  - The set of all grains of sand on the Earth.

**Problem 3** (Short answer; 40 points; 10 points each). Choose four of the five problems, I will grade the first four chosen, so if you do all five and get 1, 2, 3, and 5 correct but 4 wrong, you will score 30/40, since I will have graded 1 - 4. It is your job to decide which four I grade.

(a) Show by any method that the following is a tautology.

$$((p \land \neg q) \to F) \leftrightarrow (p \to q)$$

You can use a truth table here, or use equivalences. I will do the latter:

$$((p \land \neg q) \to F) \equiv \neg (p \land \neg q) \lor F$$

$$\equiv (\neg p \lor q) \lor F$$

$$\equiv \neg p \lor q$$

$$\equiv p \to q$$

$$a \to b \equiv \neg a \lor b$$

$$a \lor F \equiv a$$

$$a \to b \equiv \neg a \lor b \text{ again}$$

(b) Write down a sentence using quantifiers and logical connectives which asserts that P(x) has at most one items satisfying it.

We can say this by saying P is satisfied by nothing, or by exactly one thing. So the following works

$$\forall x \neg P(x) \lor \exists x (P(x) \land \forall y (P(y) \to x = y))$$

(c) Give a compound proposition in p, q, and r that is true when exactly two of p, q, or r are true.

This is just

$$(p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$

I did not ask for this, but here is more: Clearly if exactly two of p, q, r are true, then exactly one of the disjuncts is true and if there are less than two of p, q, r true, or all three are true, then all disjuncts are false. This is a simple case of the disjunctive normal form, DNF, that we have discussed.

(d) Explain why proof by contradiction is valid. That is, you want to prove  $p \to q$  and to do this you prove  $(p \land \neg q) \to F$ , that is, assuming p and  $\neg q$  you derive a contradiction.

If you did (a), there is essentially nothing to do here. If you assume p and  $\neg q$  and derive a contradiction, then by definition of a valid argument, you have shown that  $(p \land \neg q) \to F$  holds. From (a) we know this is equivalent to  $p \to q$ .

(e) Explain why  $|\mathbb{Z} \times \mathbb{Z}| \leq |\mathbb{Z}|$  by providing an injection  $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ .

There are many ways to accomplish this, here is one injection  $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ :



**Problem 4** (Free response; 60 points; 20 points each). Select three of the following four to complete. As above, you must make clear which three you choose.

(a) Either prove or disprove the following: For finite sets A and B,

$$\mathcal{P}(A\times B)\neq\{C\times D\mid C\in\mathcal{P}(A)\wedge D\in\mathcal{P}(B)\}.$$

It is clear that for  $C \in \mathcal{P}(A) \land D \in \mathcal{P}(B)$ , then  $C \times D \in \mathcal{P}(A \times D)$ . So the issue is in the other direction. Here we need only produce an example of  $E \subseteq A \times B$  so that E is not a rectangle, i.e.,  $E \neq C \times D$ . This is easy, for example take  $E = \{(a,b),(a',b')\}$  where  $a \neq a'$  and  $b \neq b'$ . If  $E = C \times D$ , then  $C = \{a,a'\}$  and  $d = \{b,b'\}$ , but then  $C \times D = \{(a,b),(a,b'),(a',b),a',b')\} \neq E$ .

(b) Use the rules of inference to provide an argument that from the premises  $\forall x (P(x) \to Q(x))$  and  $\forall x (Q(x) \to R(x))$  the conclusion  $\forall x (P(x) \to R(x))$  follows. Make sure to indicate the rules of inference used and to what they are applied.

$$\forall x(P(x) \to Q(x))$$
 Given 
$$\forall x(Q(x) \to R(x))$$
 Given 
$$P(a) \to Q(a) \text{ arbitrary } a$$
 Universal instantiation 
$$Q(a) \to R(a) \text{ arbitrary } a$$
 Universal instantiation 
$$P(a) \to R(a) \text{ arbitrary } a$$
 
$$((p \to q) \land (q \to r)) \to (p \to r)$$
 
$$\forall x(P(x) \to R(x))$$
 Universal Generalization 
$$\forall x(P(x) \to R(x))$$

- (c) Prove that there are 100 consecutive integers that are not perfect squares. Is your proof direct/indirect? Is it constructive/nonconstructive?
  - This is easy to provide direct constructive proof of. Consider  $(100+1)^2 = 100^2 + 2 \cdot 100 + 1$  so  $101^2 100^2 = 201$ . There are 200 numbers between  $100^2$  and  $101^2$  and clearly none of them can be perfect squares.
- (d) Prove the triangle inequality for real numbers,  $|x| + |y| \ge |x + y|$ . What methods do you use? Indirect/direct proof? Proof by cases? Etc.

Here we can use proof by cases.

Case 1 
$$(x \ge 0 \land y \ge 0)$$
: In this case  $x + y = |x| + |y| = |x + y| = x + y$ .

Case 2 
$$(x < 0 \land y < 0)$$
: In this case  $|x| + |y| = (-x) + (-y) = -(x+y) = |x+y|$ .

Case 3 (otherwise). Without loss of generality assume 
$$x < 0 \land y \ge 0$$
, then  $|x| + |y| = (-x) + y > x + y$  and  $|x| + |y| = (-x) + y > x + (-y) = -(x+y)$ . So  $|x| + |y| > |x+y|$ .

Notice that in cases (1) and (2) we actually get equality.