

planetmath.org

Math for the people, by the people.

condensation point

Canonical name CondensationPoint
Date of creation 2013-03-22 16:40:45
Last modified on Owner sauravbhaumik (15615)
Last modified by sauravbhaumik (15615)

Numerical id 9

Author sauravbhaumik (15615)

Entry type Definition Classification msc 54A05 Let X be a topological space and $A \subset X$. A point $x \in X$ is called a *condensation point* of A if every open neighbourhood of x contains *uncountably* many points of A.

For example, if $X = \mathbb{R}$ and A any subset, then any accumulation point of A is automatically a condensation point. But if $X = \mathbb{Q}$ and A any subset, then A does not have any condensation points at all.

We have further classifications of *condensation point* where the topological space is an ordered field. Namely,

- 1. unilateral condensation point: x is a condensation point of A and there is a positive ϵ with either $(x \epsilon, x) \cap A$ countable or $(x, x + \epsilon) \cap A$ countable.
- 2. bilateral condensation point: For all $\epsilon > 0$, we have both $(x \epsilon, x) \cap A$ and $(x, x + \epsilon) \cap A$ uncountable.

If κ is any cardinal (i.e. an ordinal which is the least among all ordinals of the same cardinality as itself), then a κ -condensation point can be defined similarly.