

Lecture 5 텍스트마이닝

텍스트마이닝

웹크롤링

텍스트 전처리

토픽분석

Tokeniz ation

Normali zation Stemmi ng

TF-IDF LSA LDA

텍스트 기본 전처리

Maison Kitsuné Men's Slim Jeans. These premium jeans come in a slim fit for a fashionable look.

토큰화

[Maison] [Kitsune] [Men's] [Slim] [Jeans] [These]
[premium] [jeans] [come] [in] [a] [slim] [fit]
[for] [a] [fashionable] [look]

정규화

[maison] [kitsune] [men's] [slim] [jeans] [these]
[premium] [jeans] [come] [in] [a] [slim] [fit]
[for] [a] [fashionable] [look]

불용어 제거

[maison] [kitsune] [men's] [slim] [jeans] [premium]
[jeans] [come] [slim] [fit] [fashionable] [look]

Stemming

[maison] [kitsun] [men] [slim] [jean] [premium]
[jean] [com] [slim] [fit] [fashion] [look]

Term Document Matrix

문서2

0

0

1

1

문장 유사도 계산

❖ 두 벡터의 곱

$$d \cdot q = \sum_{i=1}^{n} q_i d_i$$

❖ 벡터의 유클리드 기하학적 수식

$$\| \ d \ \| = \sqrt{{d_1}^2 + \dots + {d_n}^2}$$

코사인 유사도

$$\cos(q, d) = \frac{d \cdot q}{\parallel d \parallel \cdot \parallel q \parallel}$$

문장 유사도 계산

❖ 두 문장

Product 1: dark blue jeans blue denim fabric

Product 2: skinny jeans in bright blue

❖ 바이너리 벡터로 표현된 두 문장과 한 검색 질의의 예

	dark	blue	jeans	denim	fabric	skinny	in	bright	$\ \cdot\ $
d_1	1	1	1	1	1	O	O	O	$\sqrt{5}$
d_2	O	1	1	O	O	1	1	1	$\sqrt{5}$
q	1	O	1	O	O	O	O	O	$\sqrt{2}$

❖ 각 문장과 검색 질의 사이의 유사도

$$\cos(\mathbf{q}, \mathbf{d}_1) = \frac{1+1}{\sqrt{2}\sqrt{5}} = 0.632$$

$$\cos(\mathbf{q}, \mathbf{d}_2) = \frac{1}{\sqrt{2}\sqrt{5}} = 0.316$$

TF IDF Scoring Model

- Bag-of-words model
- ***** TF-IDF

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{i,j}} \qquad idf(w) = log(\frac{N}{df_t}) \qquad w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

- N: 문서의 전체 수
- t:용어
- d: 문서
- w: 가중치
- $tf_{i,j}$: 용어 i 와 용어 j의 단어가 등장하는 횟수
- $\mathbf{n}_{i,j}$: 용어 i 와 용어 j의 단어가 현재 문서에서 등장하는 횟수
- Σ_k : 현재 문서에서 갖고 있는 모든 용어 빈도 수
- lacksquare df_i : 용어 i 를 포함하는 문서 수 l df_t : 용어 t 를 포함하는 문서 수
- $w_{i,j}$: 용어 i 와 용어 j의 단어가 등장하는 TF-IDF 지수(가중치)

TF IDF Scoring Model

Term frequency

● 문서 내 특정 단어의 출현빈도

Variants of term frequency (tf) weight

Turiante of term requeries (a) freight							
weighting scheme	tf weight						
binary	0,1						
raw count	$f_{t,d}$						
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $						
log normalization	$\log(1+f_{t,d})$						
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$						
double normalization K	$K+(1-K)rac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$						

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

TF IDF Scoring Model

- Inverse document frequency
 - Document frequency: 특정 단어가 출현한 문서의 수

Variants of inverse document frequency (idf) weight

variants of inverse document frequency (idi) weight						
weighting scheme	$idf \; weight \; (n_t = \{d \in D : t \in d\})$					
unary	1					
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$					
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)+1$					
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$					
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$					

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

- LSA (Latent semantic analysis)
- LSI (Latent semantic indexing)
- SVD (Singular value decomposition)

The Neatest Little Guide to Stock Market Investing

Investing For Dummies, 4th Edition

The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share

of Stock Market Returns

The Little **Book** of Value Investing

Value Investing: From Graham to Buffett and Beyond

Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!

Investing in Real Estate, 5th Edition

Stock Investing For Dummies

Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most

Investors Miss

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-Isa-tutorial/

Index Words	Titles									
	T1	T2	T3	T4	T5	T6	T7	T8	T9	
book			1	1						
dads						1			1	
dummies		1						1		
estate							1		1	
guide	1					1				
investing	1	1	1	1	1	1	1	1	1	
market	1		1							
real							1		1	
rich				-		2			1	
stock	1		1					1		
value				1	1					

[[0.0.1.1.0.0.0.0.0.0] [0.0.0.0.0.0.1.0.0.1.] [0.1.0.0.0.0.0.1.0.1] [0.0.0.0.0.0.0.1.0.1.] [1.0.0.0.0.0.1.0.0.0] [1.1.1.1.1.1.1.1.1.1.1] [1.0.1.0.0.0.0.0.0.0.0] [0.0.0.0.0.0.0.1.0.1] [0.0.0.0.0.0.0.1.0.1] [0.0.0.0.0.0.0.0.1.0] [0.0.0.0.0.0.0.0.0.1]
--

book	0.15	-0.27	0.04
dads	0.24	0.38	-0.09
dummies	0.13	-0.17	0.07
estate	0.18	0.19	0.45
guide	0.22	0.09	-0.46
investing	0.74	-0.21	0.21
market	0.18	-0.3	-0.28
real	0.18	0.19	0.45
rich	0.36	0.59	-0.34
stock	0.25	-0.42	-0.28
value	0.12	-0.14	0.23

	3.91	0	0
:	0	2.61	0
	0	0	2

	T1	T2	T3	T4	T5	T6	T7	T8	T9
3	0.35	0.22	0.34	0.26	0.22	0.49	0.28	0.29	0.44
Ĭ,	-0.32	-0.15	-0.46	-0.24	-0.14	0.55	0.07	-0.31	0.44
3	-0.41	0.14	-0.16	0.25	0.22	-0.51	0.55	0	0.34

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-Isa-tutorial/

https://technowiki.wordpress.com/2011/08/27/latent-semantic-analysis-Isa-tutorial/

❖ 전치행렬 (transposed matrix)

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \qquad M^{\mathrm{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

❖ 단위행렬 (identity matrix)

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

❖ 역행렬 (inverse matrix)

$$A \times A^{-1} = I$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \times \begin{bmatrix} & 2 & 3 \\ & 2 & 3 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

출처: https://wikidocs.net/24949

❖ 직교행렬 (orthogonal matrix)

$$A^{-1} = A^{T}$$

❖ 대각행렬 (diagonal matrix)

$$\Sigma = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$

❖ 절단된 SVD (truncated SVD)

Full SVD

Truncated SVD

$$A'$$
 U_t Σ_t V_t^T $=$ $\begin{bmatrix} \sigma_1 & \sigma_t & \sigma_t$

출처: https://wikidocs.net/24949

$$\mathbf{X} = \begin{bmatrix} t_1 & d_2 & d_n \\ t_1 & tf(t_1,d_1) & tf(t_1,d_2) & \cdots & tf(t_1,d_n) \\ t_2 & tf(t_2,d_1) & tf(t_2,d_2) & \cdots & tf(t_2,d_n) \\ \vdots & \vdots & \ddots & \vdots \\ t_m & tf(t_m,d_1) & tf(t_m,d_2) & \cdots & tf(t_m,d_n) \end{bmatrix}$$

	문서1	문서2
오늘	2	0
내일	0	1
바나나	1	0
콜라	0	5
먹다	1	1

$$\begin{aligned} \mathbf{X} &= \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} \\ &= \begin{bmatrix} \ | & \ | \\ \mathbf{u}_1 & \cdots & \mathbf{u}_r \\ \ | & \ | \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_r \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_1 \\ \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix} \begin{bmatrix} \sigma_1 & \cdots & \sigma_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \vdots \\$$

d1 : Chicago Chocolate. Retro candies made with love.

d2 : Chocolate sweets and candies. Collection with mini love hearts.

d3 : Retro sweets from Chicago for chocolate lovers.

		d ₁	d ₂	d ₃	
	chicago	1	O	1	7
	chocolate	1	1	1	Ш
	retro	1	O	1	
	candy	1	1	O	
Y _	made	1	O	O	
Λ –	love	1	1	1	
	sweet	О	1	1	
	collection	О	1	O	
	mini	О	1	O	
	heart	0	1	O	

			concept 1	concept 2	
		chicago	-0.318	0.424	1
		chocolate	-0.486	0.018	
		retro	-0.318	0.424	
		candy	-0.333	-0.148	
	TI	made	-0.166	0.257	
	$\mathbf{U}_2 =$	love	-0.488	0.018	
		sweet	-0.320	-0.239	
		collection	-0.168	-0.406	
		mini	-0.168	-0.406	
		heart	-0.168	-0.406	
		Γ	٦		

$$\Sigma_2 = \begin{bmatrix} 3.562 & 0 \\ 0 & 1.966 \end{bmatrix}$$
concept 1 concept 2

$$\mathbf{V}_2 = \begin{array}{c} d_1 \\ d_2 \\ d_3 \end{array} \begin{bmatrix} -0.592 & 0.505 \\ -0.598 & -0.798 \\ -0.541 & 0.329 \end{array}$$

$q_{chicago} = [1]$	O	O	O	O	O	O	O	O	o]
$\mathbf{q}_{\mathrm{candy}} = [\ \mathrm{o}$	O	O	1	O	O	O	O	O	o]

Query	d_1	d_2	d_3
Chicago	0.891	-0.510	0.806
Candy	0.183	0.969	0.338

$$\begin{aligned} \mathbf{X} &= \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^\mathsf{T} \\ &= \begin{bmatrix} \ | & \ | \\ \mathbf{u}_1 & \cdots & \mathbf{u}_r \\ \ | & \ | \end{bmatrix} & \begin{bmatrix} \sigma_1 & \cdots & \boldsymbol{0} \\ \vdots & \ddots & \vdots \\ \boldsymbol{0} & \cdots & \sigma_r \end{bmatrix} & \begin{bmatrix} - & \mathbf{v}_1 & - \\ & \vdots & \\ - & \mathbf{v}_n & - \end{bmatrix} & \\ \mathbf{m} \times \mathbf{r} & \mathbf{r} \times \mathbf{r} & \mathbf{n} \times \mathbf{r} \end{aligned}$$

$$V = X^\mathsf{T} U \Sigma^{-1}$$

$$p = q^T U \Sigma^{-1}$$

$$score\left(\mathsf{q},\mathsf{d}_{i}\right) = \cos\left(\mathsf{p},\mathsf{v}_{i}\right) = \frac{\mathsf{p}\cdot\mathsf{v}_{i}}{\left\lVert \mathsf{p}\right\rVert \left\lVert \mathsf{v}_{i}\right\rVert}$$

