Föreläsning 12 i ADK

Grafer: minimala spännande träd

Stefan Nilsson

KTH

Minimalt spännande träd i viktad graf

- Ett spännande träd för en graf G är en delgraf till G som är ett träd (sammanhängande, har inga cykler) och innehåller alla hörn i G.
- Vikten för ett spännande träd är summan av dom ingående kanternas vikter.
- Ett spännande träd med minimal vikt kan beräknas med exempelvis
 Prims algoritm eller Kruskals algoritm.

Minimalt spännande träd i viktad graf, Prim

Prims algoritm:

```
Indata: Graf G = \langle V, E \rangle, kantvikter f : E \to \mathbb{R}, starthörn s
```

Utdata: Ett minimalt spännande träd för G lagrat med förälderpekare $\pi(u)$

```
function PRIM(V,E,f,s)
```

```
v \rightarrow 0
for varje u \in Q do
 \ker[u] \leftarrow \infty
\text{key[s]} \leftarrow 0
```

▷ (Q är en heap med s överst)

$$\pi[s] \leftarrow \mathsf{NIL}$$

while $Q \neq \emptyset$ do

$$u \leftarrow \text{HeapExtractMin}(Q)$$

for varje granne v till u do

if
$$v \in Q$$
 and $f(u,v) < key[v]$ then

$$\texttt{key[v]} \leftarrow \texttt{f(u,v)}$$

 $\pi[v] \leftarrow u$ key $[v] \leftarrow f(u,v)$ ho (Här måste v flyttas i heapen)

Tidskomplexitet: $\mathcal{O}(|V| \log |V| + |E| \log |V|) = \mathcal{O}(|E| \log |V|)$

Minimalt spännande träd i viktad graf, Kruskal

Kruskals algoritm: **Indata:** Graf $G = \langle V, E \rangle$, kantvikter $f : E \to \mathbb{R}$ **Utdata:** Minimalt spännande träd för G lagrat som en kantmängd $A \subseteq E$ function Kruskal(V, E, f) $A \leftarrow \emptyset$ **for** varje $u \in V$ **do** MAKESET(u)Sortera kanterna i E efter stigande vikt **for** varje kant $(u, v) \in E$ i stigande viktsordning **do** if $FINDSet(u) \neq FINDSet(v)$ then $A \leftarrow A \cup \{(u, v)\}$ UNION(u, v)return A

Minimalt spännande träd i viktad graf, Kruskal

Komplexitetsanalys:

- MAKESET(u) tar tid $\mathcal{O}(1)$
- FINDSET och UNION tar tid $\mathcal{O}(\log |V|)$
- sorteringen av E tar tid $\mathcal{O}(|E| \log |E|)$

Totalt: $\mathcal{O}(|V| \cdot 1 + |E| \log |E| + |E| \log |V|) = \mathcal{O}(|E| \log |E|)$ om grafen är sammanhängande

Korrekthet för Prim och Kruskal

Idé: Visa att varje kant som läggs till i algoritmen är säker, d.v.s. ingår i något MST.

Definitioner:

- Ett **snitt** (cut) är en delning av V i S och V S.
- En kant **korsar** snittet om en änden $\in S$ och andra $\in V S$

Sats: Givet $G = \langle V, E \rangle$, $f : E \to \mathbb{R}$, $A \subseteq E$, $S \subseteq V$. Om

- Det finns ett MST som innehåller A
 - Ingen kant i A korsar snittet (S, V S)
 - (u,v) är den lättaste kant som korsar snittet

Så är (u,v) säker att lägga till, d.v.s. det finns ett MST som innehåller $A \cup \{(u,v)\}$

ADK - F12 6

Korrekthet för Prim och Kruskal

Bevis: Låt T vara MST som innehåller A men inte (u,v). Konstruera T' som är ett MST och innehåller $A \cup \{(u,v)\}$:

- T innehåller stig p mellan u och v
- Det finns kant (x,y) i p som korsar snittet
- Låt $T' = T \cup \{(u,v)\} \{(x,y)\}$
- T' är uppenbart ett spännande träd
- (u,v) är den lättaste korsande kanten \Rightarrow $f(u,v) \leqslant f(x,y) \Rightarrow |T'| \leqslant |T| \Rightarrow T'$ är MST

Problem: minimera körsträckan

Man har mätt längden av varje vägsträcka i Sverige och stoppat in denna information i en databas.

Nu vill en person veta exakt hur han ska köra från Hudiksvall till Grythyttan för att körsträckan ska bli så liten som möjligt

- Formulera problemet matematiskt
- 2 Hitta en effektiv algoritm som löser problemet

ADK - F12 8

Körsträckeproblemet som grafproblem

- Låt varje vägskäl motsvaras av ett hörn och varje väg (mellan två vägskäl) motsvaras av en kant
- Märk varje kant med motsvarande vägsträckas längd (viktfunktion kanter $\to \mathbb{N}$)

Exempel:

Problemformulering:

Givet en graf $G=\langle V,E\rangle$, en kantviktfunktion $f:E\to\mathbb{N}$, två hörn $s\in V$ och $t\in V$, hitta en stig i G från s till t vars sammanlagda kantviktsumma är minimal

Algoritm för grafproblemet "Kortaste stig"

Dijkstras algoritm:

Indata: $G = \langle V, E \rangle$, $f : E \to \mathbb{N}$, $s \in V$, $t \in V$

Utdata: Längden av den kortaste stigen i G från s till t

- Märk varje hörn med det hittills kortaste kända avståndet från s
- Upprätta en mängd S med dom hörn till vilka den optimala kortaste stigen är känd

Algoritm:

- **1** För varje hörn $u \in V$: Om $(s,u) \in E$ märk u med f(s,u) annars märk u med ∞
- 2 Märk $s \mod 0$ och låt $S = \{s\}$
- 3 Så länge $t \notin S$: Utvidga S med det hörn som är märkt med det kortaste avståndet och uppdatera hörnmärkningen

4 Returnera avståndet som t är märkt med

ADK - F12 1

Exempel på Dijkstras algoritm

Analys av Dijkstras algoritm

- S utvidgas |V| gånger (högst)
- Vid varje utvidgning letar man upp det hörn som är märkt med kortaste avståndet: $\mathcal{O}(|V|)$
- Uppdatering av hörnmärkningen görs högst en gång för varje kant i grafen: $\mathcal{O}(|E|)$
- Initiering av S och märkningen tar tid $\mathcal{O}(|V| + |E|)$
- Totalt: $\mathcal{O}(|V|^2 + |E| + |V| + |E|) = \mathcal{O}(|V|^2)$ (eftersom $|E| \in \mathcal{O}(|V|^2)$)

Korrekthet för Dijkstras algoritm

- Låt $\delta(s,v)$ vara det kortaste avståndet från s till v
- Låt d[v] vara hörnets v-s märkning i ett läge i algoritmen

Bevisskiss:

Notera att $d[v] \geqslant \delta(s,v)$ alltid gäller för alla hörn

Induktion över S:

- **Basfall:** $S = \{s\}, d[s] = 0, d(s,s) = 0$
- Induktionssteg: Visa att om $d[u] = \delta(s,v)$ för alla $v \in S$ när u just ska läggas till S så är $d[u] = \delta(s,u)$
 - 1 Kortaste stigen från s till u går helt inuti S utom sista kanten (x,u).

Antagandet
$$\Rightarrow d[x] = \delta(s,x)$$

Algoritmen satte
$$d[u] = d[x] + f(x,u) =$$

Fall $1\Rightarrow d[y]=\delta(s,y)\leqslant \delta(s,u)$ Algoritmen lägger till u före $y\Rightarrow d[u]\leqslant d[y]$

ADK - F12

Vi har nu:
$$d[y] \leqslant \delta(s,u) \leqslant d[u] \leqslant d[y] \Rightarrow$$

$$d[y] = \delta(s,u) = d[u]$$

Alla hörn som kan nås från s kommer med i S. övriga har $d[v] = \infty$

