Block ciphers

Block ciphers

Intro

• https://www.youtube.com/watch?v=FGhj3CGxl8I

Intuition:

 A block cipher is an encryption method that applies a deterministic algorithm along with a symmetric key to encrypt a block of text, rather than encrypting one bit at a time as in stream ciphers

Definition - block cipher

- Functionally, a block cipher is a deterministic cipher (E,D) whose message space and ciphertext space are the same (finite) set \mathcal{X} .
- If the key space of (E,D) is \mathcal{K} , we say that (E,D) is a block cipher defined over $(\mathcal{K},\mathcal{X})$.
- ullet We call an element $x\in\mathcal{X}$ a data block, and refer to \mathcal{X} as the datablock space of (E,D)

Encryption and decryption

- ullet $\forall k \in \mathcal{K}$ we define $E(k,\cdot) = f_k: \mathcal{X} \longrightarrow \mathcal{X}$
 - $\circ~$ We want the function to be one-to-one => f_k is a permutation on ${\mathcal X}$
- $D(k,\cdot) = f_k^{-1}$

Security - black box test

- ullet An adversary can give the challenger a value $x\in \mathcal{X}$ and receive y=f(x)
- · The challenger will respond by applying one of the functions

$$\circ f_k = E(k,\cdot)$$

- $\circ \; f$ = truly random function chose uniformly from all permutations on ${\mathcal X}$
- The adverary mustn't be able to distinguish which function was used => Computationaly indistinguishable
- The block cipher is secure if any efficient adversary have neglijable advantages

Remarks

· A secure block cipher is unpredictable

Constructing block ciphers

- Pick a block cipher (E,D) round cipher
- Pick a PRG to expand the key k into more keys key expansion function

$$\circ$$
 $(k_1,...,k_d) \longleftarrow G(k)$

Apply iteratively

$$\circ c = E(k_d, E(k_{d-1}, ... E(k_2, E(k_1, x))...))$$

· Decrypt by applying the round keys in reverse order

Remark

- · Linear functions never lead to secure block ciphers
- non-linear functions appear to give a secure block after a few iterations

Pseudo-random functions

A pseudo-random function (PRF) $F:\mathcal{K} imes\mathcal{X}\longrightarrow\mathcal{Y}$ is a deterministic algorithm that has two inputs:

- ullet a key $k\in\mathcal{K}$
- ullet an input data block $x \in \mathcal{X}$

Its output
$$y := F(k, x)$$

Idea: for a randomly chosen key k F must look like a random function from ${\mathcal X}$ to ${\mathcal Y}$

Security

A PRF F is secure if it's indistinguishable from a random function (The advantage for all efficient adversaries is negligible)

Weak security

A PRF F is secure if it's indistinguishable from a random function when the queries are limited(The advantage for all efficient adversaries is negligible)

When is a secure block cipher a PRF?

Let

- (E,D) be a block cipher defined over $(\mathcal{K},\mathcal{X})$
- $N = |\mathcal{X}|$
- ullet be a PRF over $(\mathcal{K},\mathcal{X},\mathcal{X})$

If N is super-poly then (E,D) is secure $\iff E$ is a secure PRF