Taylor Larrednea Ex. 29,31 Conc Q. 12 10:00 -10:50 Probs 1,12,15,39,42 Phys 131 Ch 6. Problems #1.) F=mg 80 N ON \(\frac{1}{2} = 0 = - \tau_1 + \tau_2 \cos 0 Ify = 0 = T2 - T3 sino T, = T3 (0)0 T2=T35110 Tano = 50 N Tano = 8/5 N TZ BON 0= Tan - (8/5N) 0=500 13x= T1 = 50N COS 58 T3x = 94 N 13 4 = T2 = SON SnO = Sin56 below the horizontal

15.) $M = 8.0 \times 10^4 \, \text{kg} = 1200 \, \text{km}$ $12 = 1200 \, \text{km}$ $12 = 1200 \, \text{km}$ $1200 \, \text{km} = 1200 \, \text{km}$ 1

$$V_1 = V_0 + a_1 A + b_1 (20)$$
 $V_1 = 0 m/5 + 15(20)$
 $V_1 = 300 m/5$
 $V_2 = 300 m/5$
 $V_1 = 300 m/5$
 $V_1 = 300 m/5$
 $V_2 = 300 m/5$
 $V_2 = 300 m/5$
 $V_3 = 300 m/5$
 $V_4 = 300 m/5$
 $V_1 = 300 m/5$
 $V_2 = 300 m/5$
 $V_3 = 300 m/5$
 $V_4 = 300 m/5$
 $V_1 = 300 m/5$
 $V_2 = 300 m/5$
 $V_3 = 300 m/5$
 $V_4 = 300 m/5$

$$+T_2 = \frac{9,800}{7.28}$$
 $T_2 = 4,298.25$

```
#42)
                        15m/s
                                                m=60 kg
                        60 Kg
                                                 V= 15mb
      #42.a
                                               Vix = Vox + Lasx
  to = Os
                                (0m/s) = (15m/s) + 2a(1m)
  Vox = 15m/s Vix= Om/s
                                 om/s = 225 m252+ 2m a
      ax= -112.5 m/s2
                                 -225 A13 = 2 ma
                         a=125mb2 -225 m2152 = a
    Force: F = ma
                    F=60 19(-12.5 m/s2) -112.5 m/s2 = ax
    F is force
    M; s mass
                    F=-6750 N
    a is exceleration
                     F= 6750 N
                   V1x2 = 16x2 + 2abx
   #42.5
                                             to = 05
                  (OM/5)2 = (15m/5)2+2a(0.005m) X=0M
                                                        X=0.005
                                              6x=15m15
                                                        VIX- OMIS
                   Om2/52 = 225n2/2 + 20(0.000m)
F= Ma
                  -225 m<sup>2</sup>/s<sup>2</sup> = 2a(0.008m)
 m=60 kg
                     -225 m3/52
                                          a= -22,500 m/52
a=-22,500 m/52
 F= 60 kg (-22,500 m/52) 2(0.005m)
                                  Force of 1,350,000 N
 F= -1,350,000 N
 F= 1,350,000 N
```

Chapter 6 Concept Onestions

#12.)

The normal force on the book is larger than mg.

 $\frac{15-0}{5-0} = 3m/s^2$

Cart A

29 Moving carts

Three identical carts move horizontally along tracks. Their speeds at two instants 5.0s apart are indicated. Let F_A be the magnitude of the force acting on A during this interval, F_B be the magnitude of the force acting on B, etc, Which of the following is true? Explain your answer.

ii)
$$F_B = F_C > F_A$$
.

iii)
$$F_B = F_C < F_A$$
.

iv)
$$F_A = F_B = F_C \neq 0$$

F= m(a), the cort with the greatest acceleration would have the greatest Force.

Initial Instant

 $0\,\mathrm{m/s}$

Final Instant

 $15 \,\mathrm{m/s}$

55

30 Pushing carts

Baitrox

Zog and Geraldine (his wife) each push a cart along a horizontal surface where friction is negligible. Both carts are initially at rest. Zog takes the cart with mass 25 kg and exerts a force of 400 N on it force for a period of 4.0 s and he then collapses and stops pushing. Geraldine has to push a cart of mass $50\,\mathrm{kg}$ and she is also able to exert a force of $400\,\mathrm{N}$ on it. Geraldine claims that it is possible for the speed of her cart to eventually reach the speed of Zog's cart. Is this true? Explain your answer.

31 Forces and two dimensional motion

At one moment a 2.0 kg rock slides along a horizontal surface. At the moment that it passes the $x = 1.0 \,\mathrm{m}, y = 0.0 \,\mathrm{m}$ mark it is moving with the illustrated velocity. For the next 4.0s a constant force 8.0 Nî acts on the rock.

noitien x,= 29M

- a) Determine it position and velocity at the instant 4.0s later.
 - b) Describe and sketch the trajectory of the particle while the force acts on it as accurately as possible.

s trajectory function not lisear and curves This up-word because the velocity is changing every second out rare 4 m/s2. This means the

 $x_1 = x_0 + \frac{1}{10} \times \Delta t + \frac{1}{2} \times \Delta t^2$ $x_1 = \frac{1}{10} + \frac{1}{10} \times \frac{1}{10} \times$ X1= 1m+ 20m+ 8m X1= 29M V.x= Vax + ax At MX= 1840 5.0m/5 +4.0m/s2 (45) VIX = 5.0 M/S + 16 M/S VIX= 21 M/S