1 тема. Приближение функций

1. Постановка задачи. Дан набор точек (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) . Задача алгебраической интерполяции. Найти такой полином P(x), который проходит через заданную систему точек $P(x_i) = y_i$, $i = \overline{0, n}$

Условия на точки. Чтобы полином был единственным степень его должна быть на единицу меньше количества точек (n+1 — число точек, n — степень) и все точки должны быть попарно различны

1.2. Постановка для построения полинома Эрмита. Дан набор точек

 (x_0, y_0, y_0') , (x_1, y_1, y_1') , ..., (x_n, y_n, y_n') , в который дополнительно входят значения производных в узлах. Задача найти такой полином P(x), который проходит через заданную систему точек $P(x_i) = y_i$, $i = \overline{0,n}$, и имеет в узлах заданные наклоны $P'(x_i) = y_i'$, $i = \overline{0,n}$

Здесь единственный полином будет степени на единицу меньше количества условий (2n+2- условия, 2n+1- степень). Попарное различие так же является необходимым

Важно! Полином единственный, а методов построения может быть несколько

- 2. Методы построения
- 2.1. Интерполяционный полином Лагранжа

$$L_n(x) = \sum_{k=0}^{n} y_k \prod_{i \neq k} \frac{(x - x_i)}{(x_k - x_i)}$$

2.2. Формула Ньютона для интерполирования вперед

$$P_n(x) = y(x_0) + (x - x_0)y(x_0, x_1) + (x - x_0)(x - x_1)y(x_0, x_1, x_2) + \dots$$

... +
$$(x - x_0)(x - x_1)$$
... $(x - x_{n-1})y(x_0, x_1, ..., x_n) = \sum_{i=0}^{n} y(x_0, x_1, ..., x_i) \prod_{k=0}^{i-1} (x - x_k)$

2.3. Формула Ньютона для интерполирования назад

$$P_n(x) = y(x_n) + (x - x_n)y(x_n, x_{n-1}) + (x - x_n)(x - x_{n-1})y(x_n, x_{n-1}, x_{n-2}) + \dots$$

$$\dots + (x - x_n)(x - x_{n-1}) \dots (x - x_1) y(x_0, x_1, \dots, x_n) = \sum_{i=0}^n y(x_{n-i}, x_{n-i+1}, \dots, x_n) \prod_{k=n-i+1}^n (x - x_k)$$

Разделенной разностью первого порядка называется величина $y(x_i, x_j) = \frac{y_j - y_i}{x_j - x_i}$. Разделенные

разности второго и третьего порядка определяются аналогично

$$y(x_i, x_j, x_k) = \frac{y(x_j, x_k) - y(x_i, x_j)}{x_i - x_k}, \quad y(x_i, x_j, x_k, x_l) = \frac{y(x_j, x_k, x_l) - y(x_i, x_j, x_k)}{x_l - x_i}$$

	1пор	2пор	3пор	4пор	5пор
<i>y</i> ₀	$y(x_0,x_1)$	$y(x_0,x_1,x_2)$	$y(x_0,x_1,x_2,x_3)$	$y(x_0,x_1,x_2,x_3,x_4)$	$y(x_0,x_1,x_2,x_3,x_4,x_5)$
y_1	$y(x_1,x_2)$	$y(x_1, x_2, x_3)$	$y(x_1,x_2,x_3,x_4)$	$y(x_1,x_2,x_3,x_4,x_5)$	
<i>y</i> ₂	$y(x_2,x_3)$	$y(x_2,x_3,x_4)$	$y(x_2,x_3,x_4,x_5)$		
<i>y</i> ₃	$y(x_3,x_4)$	$y(x_3, x_4, x_5)$			
y ₄	$y(x_4,x_5)$				
<i>y</i> ₅					

Для полинома Ньютона слева-направо необходимо вычислить все разности в первой строке. Для полинома Ньютона справа-налево — все разности на диагонали. Всего для вычисления полинома нужно (n+1) разность (включая значение функции). Разности вычисляются заранее, до использования основной формулы

2.4. Полином Эрмита

$$H_{2n+1}(x) = \sum_{j=0}^{n} \left\{ (x - x_j) y_j' + \left(1 - 2 \sum_{\substack{k=0 \ k \neq j}}^{n} \frac{x - x_j}{x_j - x_k} \right) y_j \right\} \prod_{\substack{i=0 \ i \neq j}}^{n} \left(\frac{x - x_i}{x_j - x_i} \right)^2$$

Степень полинома Эрмита почти в 2 раза выше, чем степень полиномов Лагранжа и Ньютона, если все они построены на сетках с одинаковым числом узлов

3. Сетки

Равномерная
$$x_i \in [a,b]$$
 $x_i = a + \frac{b-a}{n}i$, $i = \overline{0,n}$

Чебышевская
$$t_k \in [-1,1]$$
 $t_k = \cos \frac{\pi(2k+1)}{2(n+1)}$, $k = \overline{0,n}$ и $x_k \in [a,b]$ $x_k = \frac{a+b}{2} + \frac{b-a}{2}t_k$, $k = \overline{0,n}$

Границы отрезка являются узлами равномерной сетки и НЕ принадлежат сетке Чебышева **4.** Пример построения полинома на равномерных сетках и сетках Чебышева из 4х, 5ти и 6ти

узлов

Синяя – исходная ф-я
Черная, Зеленая и
Красная –
соответственно
полиномы и
разности между
полиномом и
функцией

5. Исследование зависимости **ошибки от количества узлов**. Ошибка зависит от значений производной исходной функции на отрезке, количества узлов и их расположения

$$|f(x) - P(x)| = |f^{(n+1)}(\eta)| \frac{\left| \prod_{i=0}^{n} (x - x_i) \right|}{(n+1)!} = |f^{(n+1)}(\eta)| \frac{|\omega_{n+1}(x)|}{(n+1)!}$$

На равномерных сетках при увеличении количества узлов дробь сначала уменьшается, но после некоторого количества узлов начинает увеличиваться.

На сетке Чебышева дробь с увеличением количества узлов уменьшается, поэтому поведение ошибки зависит только от значения производной

По построенному графику должно быть видно поведение ошибки:

- уменьшается до машинной точности и продолжает колебаться около эти значений
- уменьшается до определенных значений, потом с той же скоростью начинает увеличиваться, и в какой-то момент становится больше первоначальной ошибки
- уменьшается до машинной точности, колеблется около этих значений и медленно начинает расти (рост много медленней, чем убывание)
- **6.** Сгущение сетки в некоторой области отрезка позволяет уменьшить ошибку в данном месте, а возможно и на всем отрезке. Пример сгущения узлов сетки около границ и центра

7. Функция с нарушением гладкости

Есть функция f(x). Хотим сделать у нее «угол» в точке t. Опускаем функцию, чтобы в точке t ее значение было 0, отражаем от горизонтали при помощи операции модуль и снова поднимаем на прежнее место

Исходная функция — монотонно возрастающая: на [-2,0] — зеленая, на [0,1.5] — красная Функции с «углом»: Красная g(x) = |f(x) - f(t)| + f(t)

Зеленая g(x) = f(t) - |f(t) - f(x)|

