Name	Rohit Singh
UID No.	2021300124
Course	Advanced Data Visualization

Experiment 1

Aim	Create basic charts using Tableau / Power BI / R / Python / D3.js to be performed on the dataset of Ecommerce field Complete all plots on practice dataset and reproduce on ecommerce dataset. Basic - Bar chart, Pie chart, Histogram, Timeline chart, Scatter plot, Bubble plot Calculate Product wise sales, region wise sales Write observations from each chart
-----	---

1. Importing Libraries and Dataset

In []: **import** numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

Dataset You can view the dataset here

Description

This dataset contains the details of Amazon Sales. It provides detailed insights into Amazon sales data, including SKU Code, Design Number, Stock, Category, Size and Color, to help optimize product profitability. It has 23 columns:

Category: Type of product. (String)
Size: Size of the product. (String)
Date: Date of the sale. (Date)
Status: Status of the sale. (String)

Fulfilment: Method of fulfilment. (String) Style: Style of the product. (String) SKU: Stock Keeping Unit. (String)

ASIN: Amazon Standard Identification Number. (String)

Courier Status: Status of the courier. (String)

Qty: Quantity of the product. (Integer)
Amount: Amount of the sale. (Float)
B2B: Business to business sale. (Boolean)

Currency: The currency used for the sale. (String)

data = pd.read_csv("../Datasets/Amazon Sale Report.csv", low_memory=False, index_co
print(data.shape)
data.head()

(128975, 23)

	Order ID	Date	Status	Fulfilment	Sales Channel	ship- service- level	Style	SKU	Cat
index									
0	405- 8078784- 5731545	04- 30- 22	Cancelled	Merchant	Amazon.in	Standard	SET389	SET389- KR-NP-S	
1	171- 9198151- 1 101 146	04- 30- 22	Shipped Delivered to Buyer	Merchant	Amazon.in	Standard	JNE3781	JNE3781- KR-XXXL	
2	404- 0687676- 7273146	04- 30- 22	Shipped	Amazon	Amazon.in	Expedited	JNE3371	JNE3371 - KR-XL	
3	403- 9615377- 8133951	04- 30- 22	Cancelled	Merchant	Amazon.in	Standard	J0341	10341- DR-L	
4	407- 1069790- 7240320	04- 30- 22	Shipped	Amazon	Amazon.in	Expedited	JNE3671	JNE3671- TU-XXXL	

5 rows x 23 columns

2. Data Preprocessing

```
In [ ]: It deLete LasI coLuøn
        data = data.iloc[:, :-1]
In [ ]: # chech for cis s Eng va Lues
        data.isnull().sum()
                                0
Out[]: Order ID
        Status
                                0
        Fulfilment
                                0
        Sales Channel
        ship-service-level
        Style
                                0
        SKU
                                0
        Category
                               0
        Size
                                0
        ASIN
                                0
        Courier Status
                               0
        Qty
                               0
                          7793
        currency
                            7793
        Amount
        ship-city
                             28
        ship-state
                              28
        ship-postal-code
                             28
        ship-country
                              28
        B2B
                                0
        dtype: int64
In []: It deLete coLurns: 'fu Lfi LLed-b'y and proînotion-ids
        data = data.drop(['fulfilled-by', 'promotion-ids'], axis:1)
In [ ]: It deLete rows with more than 28% missing values
        data = data.dropna(thresh=data.shape[1]*0.80)
        # repLace nan in courter stat us with same value as in status
        data['Courier Status'] data['Courier Status'].fillna(data['Status'])
In [ ]: print(data.shape)
        data.head()
       (128970, 20)
```

	Order ID	Date	Status	Fulfilment	Sales Channel	ship- service- level	Style	SKU	Cat
index									
0	405- 8078784- 5731545	04- 30- 22	Cancelled	Merchant	Amazon.in	Standard	SET389	SET389- KR-NP-S	
1	J71- 9J98J 51- 1 101 146	04- 30- 22	Shipped Delivered to Buyer	Merchant	Amazon.in	Standard	JNE3781	JNE378J - KR-XXXL	
2	404- 0687676- 7273146	04- 30- 22	Shipped	Amazon	Amazon.in	Expedited	JNE3371	JNE3371 - KR-XL	
3	403- 9615377- 8133951	04- 30- 22	Cancelled	Merchant	Amazon.in	Standard	J0341	J0341- DR-L	
4	407- J069790- 7240320	04- 30- 22	Shipped	Amazon	Amazon.in	Expedited	JNE3671	JNE367J - TU-XXXL	

It save cLeaned data

data.to_csv("../Datasets/Amazon_Sales_cleaned.csv")

3. Charts & Plots

df pd.read_csv("../Datasets/Amazon Sales cleaned.csv", index_col=0)
df.head()

index	Order ID	Date	Status	Fulfilment	Sales Channel	ship- service- level	Style	SKU	Cat
	405-	04-						SET389-	
0	8078784-	30-	Cancelled	Merchant	Amazon.in	Standard	SET389	KR-NP-S	
	5731545	22							
	171	0.4	Shipped						
1	171- 9198151-	04- 30-		Merchant	Amazon.in	Standard	JNE3781	JNE3781-	
1	1 101 146	22	Delivered	METCHAIL	AIIIaZOII.III	Standard	JINES/OI	KR-XXXL	
	1 101 110		to Buyer						
	404-	04-							
2		30-	Shipped	Amazon	Amazon.in	Expedited	JNE3371	JNE3371-	
	7273146	22				'		KR-XL	
2	403-	04-	6 11 1			6	102.44	10341-	
3	0020077	30-	Cancelled	Merchant	Amazon.in	Standard	J0341	DR-L	
	8133951	22							
	407-	04-						INIE2674	
4	1069790-	30-	Shipped	Amazon	Amazon.in	Expedited	JNE3671	JNE3671-	
	7240320	22				·		TU-XXXL	

3.1 Bar Chart

```
# rflahe a bar p Lot
```

```
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='Category')
plt.xticks(rotation=45)
plt.title('Number of products sold per category')
plt.show()
```

Number of products sold per category

Oberservation:

- The bar chart shows the total sales of each product category.
- The category 'Set' has the highest sales, followed by 'Kurta' and 'Western Dress'.
- The category 'Dupatta' has the lowest sales.

This suggests that the 'Set' category is the most popular among customers and should be focused on more.

3.2 Pie Chart

```
# matte a pi e chart for shi p- s erv i ce - Le ve L
plt.figure(figsize=(10, 6))
df['Fulfilment'].value_counts().plot.pie(autopct='%1.1f%%')
plt.title('Fulfilment')
plt.show()
```

fulfilment

Oberservation:

- The pie chart shows how much percentage of orders are fulfilled by each method.
- Most Orders are Fullfilled by Amazon itself followed by others being fulfilled by the seller (Merchant).

This suggests that Amazon should focus on improving its own fulfilment services.

3.3 Histogram

```
# Hahe a his tograH for price
plt.figure(figsize=(10, 6))
sns.histplot(df['Amount'], bins=30)
plt.title('Price distribution')
plt.grid()
plt.show()
```


- The histogram shows the distribution of the price per product.
- · Most products are priced between 0 and \$1000.

This suggests that most products are priced reasonably and are affordable to customers.

3.4 Timeline Chart

```
it matte a tice series pLot for order date
plt.figure(figsize=(10, 6))
df['Date'] = pd.to_datetime(df['Date'])

it group by date
df_grouped df.groupby('Date').size().reset_index(name='Count')

plt.plot(df_grouped['Date'], df_grouped['Count'])
plt.title('Number of orders per day')
plt.xlabel('Date')
plt.ylabel('Number of orders')
plt.grid(True)
plt.show()
```


- The timeline chart shows the sales trend over time.
- The sales peak in the month of May, out of the following months: April, May, June, July

This suggests that the month of May is the most profitable month for Amazon in the first quarter of the year owing to summer vacations.

3.5 Scatter Plot

```
# matte a s catter p Lot for price vs quantity
plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='Qty', y='Amount')
plt.title('Price vs Quantity')
plt.grid()
plt.show()
```


- The scatter plot shows the relationship between the quantity of products sold and the amount of the sale.
- There is a positive correlation between the quantity of products sold and the amount of the sale.

3.6 Bubble Plot

```
It matte a bubble plot f-or pri ce ve quantity

plt.figure(figsize=(10, 6))
sns.scatterplot(data=df, x='Qty', y='Amount', size='Amount', sizes=(20, 200))
plt.title('Price vs Quantity')
plt.grid()
plt.show()
```


- The bubble plot shows the relationship between the quantity of products sold and the amount of the sale, with the size of the bubble representing the price of the product.
- The bubble plot confirms the positive correlation between the quantity of products sold and the amount of the sale.

Conclusion

In this experiment, we learned how to create basic charts using Pandas and Seaborn in Python on a dataset of the Ecommerce field. We created the following plots on the practice dataset and reproduced them on the e-commerce dataset: bar chart, pie chart, histogram, timeline chart, scatter plot, and bubble plot. We wrote observations from each chart to gain insights into the data.