Objetivo de la Seguridad Informática

El objetivo de la seguridad informática es mantener la **Integridad**, **Disponibilidad**, **Privacidad**, Control y Autenticidad de la información manejada por computadora.

Elementos de la Seguridad Informática

Integridad

Los componentes del sistema permanecen inalterados a menos que sean modificados por los usuarios autorizados.

Disponibilidad

Los usuarios deben tener disponibles todos los componentes del sistema cuando así lo deseen.

Privacidad

Los componentes del sistema son accesibles sólo por los usuarios autorizados.

Elementos de la Seguridad Informática

Control

Solo los usuarios autorizados deciden cuando y como permitir el acceso a la información.

Autenticidad

Definir que la información requerida es válida y utilizable en tiempo, forma y distribución.

O No Repudio

Evita que cualquier entidad que envió o recibió información alegue, que no lo hizo.

Auditoria

Determinar qué, cuándo, cómo y quién realiza acciones sobre el sistema.

Operatividad vs Seguridad

Seguridad Física

Aplicación de barreras físicas y procedimientos de control, como medidas de prevención y contramedidas ante amenazas a los recursos e información.

Seguridad Física

Amenazas

- O Incendios
- Inundaciones
- Terremotos
- Trabajos no ergométricos
- O Instalaciones eléctricas
 - Estática
 - Suministro ininterrumpido de corriente
 - Cableados defectuosos
- Seguridad del equipamiento

Seguridad Física

Controles

- O Sistemas de alarma
- Control de personas
- O Control de vehículos
- Barreras infrarrojas-ultrasónicas
- O Control de hardware
- O Controles biométricos
 - Huellas digitales
 - Control de voz
 - Patrones oculares
 - Verificación de firmas

Seguridad Lógica

Aplicación de barreras y procedimientos que resguarden el acceso a los datos y sólo se permita acceder a ellos a las personas autorizadas para hacerlo.

Seguridad Lógica

Identificación: El usuario se da a conocer al sistema.

Autentificación: Verificación del sistema ante la Identificación.

Formas de Autentificación-Verificación

- ". Algo que la persona conoce Password
- 1. Algo que la persona es Huella digital
- ①. Algo que la persona hace Firmar
- ①. Algo que la persona **posee** Token Card

Cualquier comportamiento antijurídico, no ético o no autorizado, relacionado con el procesado automático de datos y/o transmisiones de datos.

Se realizan por medios informáticos y tienen como objeto a la **información** en sí misma.

Delitos Informáticos

- Fraudes cometidos mediante manipulación de computadoras
- Daños a programas o datos almacenados
- Manipulación de datos de E/S
- O Distribución de virus
- Espionaje
- Acceso no autorizado
- Reproducción y distribución de programas protegido por la ley

Amenazas Humanas

- Hacker: persona curiosa, inconformista y paciente que busca su superacion continua aprovechando las posibilidades que le brindan los sistemas.
- O Cracker: hacker dañino.
- O Phreaker: persona que engaña a las compañias telefónicas para su beneficio propio.
- O Pirata Informático: persona que vende software protegido por las leyes de Copyright.
- Creador de virus -> Diseminadores de virus
- O Insider: personal interno de una organización que amenaza de cualquier forma al sistema de la misma.

Intrusión – Amenazas

Comunicaciones

Protocolo: conjunto de normas que rige el intercambio de información entre dos computadoras.

Modelo OSI → TCP/IP

Aplicación

Presentación

Sesión

Transporte

Red

Enlace datos

Físico

Aplicación

Transporte

Internet

Físico

SMTP - POP - MIME - HTTP ICMP - FTP - TELNET

TCP - UDP

IP – IPX/SPX – Appletalk

PPP – SLIP – Ethernet Token Ring – ARP – RARR

Amenazas

Marco Legal acorde con los avances tecnólogicos

Crackers

Hackers

Insiders

Errores

Virus

Ingeniería Social

Amenaza

Bien Protegido

Marco Tecnológico – Comunicaciones – Internet

Amenaza: elemento que compromete al sistema

1

- Ingeniería Social Social Inversa
- Trashing
- Vulnerabilidades propias de los sistemas

Monitorización

Observación

- Shoulder Surfing
- O Decoy
- Scanning

Autentificación

Verificación Falsa

- Spoofing
- O Looping
- Hijacking
- Backdoors
- Exploits
- Obtención de claves

Tipos de Ataques

Denial of Service

Saturación de Servicios

- Jamming Flooding
- SynFlood
- Connection Flood
- O Land Attack
- Smurf Attack
- Nuke
- Tear Drop
- Bombing

Modificación

Daños

- Tampering
- Borrado de huellas
- Ataques con Scripts
- Ataques con ActiveX
- Ataque con JAVA
- O Virus

Ataques

Implementación

- ". Recopilación de información
- 1. Exploración del sistema
- ①. Enumeración e identificación
- ①. Intrusión

Defensa

- Mantener hardware actualizado
- No permitir tráfico broadcast
- O Filtrar tráfico de red
- Auditorías
- O Actualización de los sistemas
- Capacitación permanente

Virus

Programa de actuar subrepticio para el usuario; cuyo código incluye información suficiente y necesaria para que, utilizando los mecanismos de ejecución que le ofrecen otros programas, puedan reproducirse y ser susceptibles de mutar; resultando de dicho proceso la modificación, alteración y/o daño de los programas, información y/o hardware afectados.

Modelo:

Dañino**A**utoreproductor**S**ubrepticio

Daño Implícito Daño Explícito

Tipos de Virus

- Sector de arranque
- Archivos ejecutables
- Residentes
- Macrovirus
- O De email
- De sabotaje

Programas que no cumplen con la definición de virus

- O Hoax
- O Gusanos
- Caballos de troya
- Bombas lógicas

Carácter Dirigido

Profesional y de espionaje

Armas digitales

Antivirus

Gran base de datos con la "huella digital" de todos los virus conocidos para identificarlos y también con las pautas más comunes de los virus.

Detección

Identificación

Determinar que virus fue detectado

Detección - Identificación

- Scanning
- Búsqueda heurística
- Monitor de actividad
- Chequeador de integridad

Modelo de Protección

- O Política de seguridad de la organización
- Auditorías permanentes
- Plan de respuestas a incidentes
- O Sistema de seguridad a nivel físico
- Seguridad a nivel Router-Firewall
- O Sistemas de detección de intrusos (IDS)
- Penetration Testing

Penetration Testing

Conjuntos de técnicas tendientes a realizar una evaluación integral de las debilidades de los sistema.

Externo

- Fuerzas de las passwords
- Captura de tráfico de red
- Detección de protocolos
- Scanning de puertos
- Vulnerabilidades existentes
- Ataques de DoS
- Test de servidores

Interno

- Protocolos internos
- Autentificación de usuarios
- Aplicaciones propietarias
- O Verificación de permisos
- Ataques de DoS
- Seguridad física en las estaciones de trabajo

Firewalls

Sistema ubicado entre dos redes y que ejerce una política de seguridad establecida. Mecanismo encargado de proteger una red confiable de otra que no lo es.

Características

- Defensa perimetral.
- Defensa nula en el interior.
- Protección nula contra un intruso que lo traspasa.
- Sus reglas son definidas por humanos.

Tipos de Firewalls

- ". Filtrado de paquetes
 - Filtran Protocolos, IPs y puertos utilizados
- I. Gateway de Aplicaciones
 - Se analizan cada uno de los paquetes que ingresa al sistema
- ①. Firewalls personales
 - Aplicaciones disponibles para usuarios finales.

Tipos de Firewalls

". Filtrado de paquetes

- Filtra Protocolos, IPs y puertos utilizados
- √ Economicos y con alto desempeño
- No esconden la topología de la red

I. Gateway de Aplicaciones

- Nodo Bastion intermediario entre Cliente y Servidor
- ✓ Transparente al usuario
- Bajan rendimiento de la red

①. Dual Homed Host

- Conectados al perímetro interior y exterior
- ✓ Paquetes IPs desactivado

Tipos de Firewalls

- ①. Screened Host
 - Router + Host Bastion.
 - ✓ El Bastion es el único accesible desde el exterior.
- 2. Screened Subnet
 - O Se aisla el Nodo Bastion (el más atacado).
 - O Se utilizan dos o más routers para establecer la seguridad interna y externa.
- 3. Inspección de paquetes
 - Cada paquete es inspeccionado.
- Firewalls personales
 - Aplicaciones disponibles para usuarios finales.

IDS

Sistema encargado de detectar intentos de intrusión en tiempo real.

Ventajas

- Mantener un registro completo de actividades.
- Recoger evidencia.
- Descubre intrusiones automáticamente.
- Es disuador de "curiosos".
- Es Independiente del SO.
- Dificulta la eliminación de huellas.

Debilidades

- Tiene una alta tasa de falsas alarmas.
- Necesita reentrenamiento períodico.
- Puede sufir ataques durante la fase de aprendizaje y son considerados normales.
- O No contempla la solución a nuevos agujeros de seguridad.

Firewall-IDS

Passwords

Cant. Caracteres	26 Min.	36 Min. + Dig.	52 May. + Min.	96 Todos
6	51 min.	6 horas	2,3 días	3 meses
7	22,3 horas	9 días	4 meses	24 años
8	24 días	10,5 meses	17 años	2.280 años
9	21 meses	32,6 años	890 años	219.601 años
10	45 años	1.160 años	45.840 años	21.081.705 años

Ataque a 13.794 cuentas con un diccionario de 62.727 palabras

Ataque a 2.134 cuentas a 227.000 palabras/segundo

- 1 Año → 3.340 claves (24,22%)
- 1° Semana → 3.000 claves (21,74%)
- 1° 15 Minutos → 368 claves (2,66%)
- O Dicc. 2.030 → 36 cuentas en 19 segundos.
- Dicc. 250.000→ 64 cuentas en 36:18 minutos

Passwords

Normas de elección de passwords

- O No utilizar contraseñas que sean palabras.
- O No usar contraseñas con algún significado.
- Mezclar caracteres alfanuméricos.
- Longitud mínima de 7 caracteres.
- O Contraseñas diferentes en sistemas diferentes.

Normas de gestión de passwords

- O NO permitir cuentas sin contraseña.
- O NO mantener las contraseñas por defecto.
- NO compartirlas.
- O NO escribir, enviar o decir la contraseña.
- Cambiarlas periódicamente.

Criptografía

Criptografía: del griego Κρυιπτοζ (Kripto-Oculto). **Arte** de escribir con **clave** secreta o de un modo enigmático.

Ciencia que consiste en transformar un mensaje inteligible en otro que no lo es, mediante la utilización de claves, que solo el emisor y receptor conocen.

Texto Plano Algortimo de cifrado f(x)

otxeT onalP

Métodos Criptográficos

Simétricos o de Clave Privada: se emplea la misma clave para cifrar y descifrar. El emisor y receptor deben conocerlas.

Clásicos

- Método del Cesar
- Transposición
- Sustitución general
- La esc
 ítala

Modernos

- O Redes de Feistel
- O DES-3DES
- O IDEA
- Blowfish
- ORC5
- O CAST
- Rijndael → AES

Métodos Criptográficos

Asimétricos o de Clave Pública: se emplea una doble clave k_p (privada) y K_p (Pública). Una de ellas es utilizada para cifrar y la otra para descifrar. El emisor conoce una y el receptor la otra. Cada clave no puede obtenerse a partir de la otra.

Métodos

- Diffie-Hellman (DH): basado en el tiempo necesario para calcular el logaritmo de un número muy alto[®].
- **RSA:** basado en la dificultad de factorizar números primos muy altos[®].
- O Curvas Elípticas: basado en los Logaritmos Discretos de DH y las raíces cuadradas módulo un número compuesto.

⊙ Muy Alto = 200 dígitos +

Autenticación

Firma Digital: función Hash de resumen y de longitud constante, que es una muestra única del mensaje original.

Condiciones

- ". Si A firma dos documentos produce criptogramas distintos.
- 1. Si A y B firman dos documentos m producen criptogramas diferentes.
- ①. Cualquiera que posea la clave pública de A puede verificar que el mensaje es autenticamente de A.

Métodos

- MD5
- ⊙ SHA-1
- **O RIPEMD**
- N−Hash
- Snefru
- Tiger
- Haval

Utilidad de la Criptografía

Evaluación de Costos

Siendo:

CP: Costo de los bienes Protegidos.

CR: Costo de los medios para Romper la seguridad.

CS: Costo de las medidas de Seguridad.

CR > CP: Debe ser más costoso un ataque que el valor de los mismos.

CP > CS: Debe ser más costoso el bien protegido que las medidas de seguridad dispuestas para el mismo.

Luego:

CR > CP > CS

Minimiza el costo de la protección.

Maximiza el costo de los atques.

Políticas de Seguridad

Conclusiones

- O Se requiere un diseño seguro.
- O Adaptación de la legislación vigente.
- O Tecnología como elemento protector.
- Los daños son minimizables.
- Los riesgos son manejables.
- O Inversión baja comparada con los daños.
- O La seguridad es un viaje permanente.

Muchas Gracias!

Diapositivas Extras

Funcionamiento de PGP

Cifrado y Firmado por parte de A

Cifrado

Clave Pública B Clave Privada A Firma

Generador aleatorio

Clave Simétrica Algoritmo Asimétrico Clave Simétrica Cifrada

Texto Claro Algoritmo Simétrico Texto Cifrado

Funcionamiento de PGP

Descifrado y Verificación por parte de B

Descifrado

Clave Privada **B** Clave Pública A verificación

Clave Simétrica Cifrada

Algoritmo Asimétrico

Clave Simétrica

Texto Cifrado Algoritmo Simétrico Texto Claro

Estadísticas de Ataques

Aparición de los Bugs de IIS

Estadísticas de Ataques

Estadísticas de Ataques

