The Optimal Design of Climate Agreements Inequality, Trade, and Incentives for Carbon Policy

Thomas Bourany
The University of Chicago

International Trade Working Group

December 2024

▶ Fighting climate change requires implementing ambitious carbon reduction policies

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies

- Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage
- ▶ Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements, e.g. UN's COP

- ► Fighting climate change requires implementing ambitious carbon reduction policies
 - The free-riding problem causes climate inaction individual countries have no incentives to implement globally optimal policies
 - Climate policy has redistributive effects across countries:
 (i) income differences, (ii) climate damages, (iii) energy markets, (iv) trade leakage
- ▶ Proposals to fight climate inaction and the free-riding problem:
 - International cooperation through climate agreements, e.g. UN's COP
 - Trade sanctions needed to give incentives to countries to reduce emissions meaningfully
 - "Climate club", Nordhaus (2015): trade sanctions on non-participations to sustain larger "clubs"
 - Carbon Border Adjustment mechanisms (CBAM), EU policy: carbon tariffs

Introduction

⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate club setting Nordhaus:
 The agreement boils down to a carbon tax, a tariff rate and a choice of countries
 - Trade-off:

 Intensive margin: a "climate club" with few countries and large emission reductions vs. Extensive margin: a larger set of countries, at the cost of lowering the carbon tax

Introduction

- ⇒ How can we design a climate agreement, to address free-riding and endogenous participation as well as redistributive effects, and effectively fight climate change?
 - Climate club setting Nordhaus:
 The agreement boils down to a carbon tax, a tariff rate and a choice of countries
 - Trade-off:
 Intensive margin: a "climate club" with few countries and large emission reductions vs. Extensive margin: a larger set of countries, at the cost of lowering the carbon tax
- ▶ What I do:
 - Build a rich Integrated-Assessment Model (IAM) with heterogeneous countries, energy markets, international trade and countries' strategic behaviors
 - Study the strategic implications of climate agreements and the optimal club design

Preview of the results:

- Optimal climate agreement:
 - Participation: all the countries in the world except Russia
 - Carbon tax: $$100/tCO_2$, lower than the policy benchmark without free-riding
 - *Trade tariffs:* 50% on non-member to impose substantial retaliation
- Impossibility result:
 - Because of free-riding, we can not achieve both a high carbon tax and complete participation, despite arbitrary trade tariffs
- Optimal agreement strikes the right balance in the intensive-extensive margin tradeoff
 - Lower emissions by 30% compared to "Business as Usual"
 - Recover most of the welfare and climate gains of the policy benchmark absent free-riding

Preview of the results:

- The optimal agreement deters free-riding and solves the intensive-extensive margin tradeoff
 - Lower emissions by 30% compared to "Business as Usual"
 - Recover most of the welfare and climate gains of the policy benchmark absent free-riding
- Optimal climate agreement:
 - Participation: all the countries in the world except Russia
 - Carbon tax: $\frac{100}{tCO_2}$, lower than the policy benchmark without free-riding
 - Trade tariffs: 50% on non-members to impose substantial retaliation
- Impossibility result:
 - Because of free-riding, we can not achieve both a high carbon tax and complete participation, despite arbitrary trade tariffs

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016),
 Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016),
 Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016),
 Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
 - Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
 - ⇒ Optimal design of climate agreements with free-riding incentives

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016),
 Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
 - Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
 - ⇒ Optimal design of climate agreements with free-riding incentives

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016),
 Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
 - Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
 - ⇒ Optimal design of climate agreements with free-riding incentives
- ▶ IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade

- ► Theoretical model of climate agreements: cooperation
 - Climate clubs and cooperation: Nordhaus (2015), Barrett (1994), Harstad (2012), Maggi (2016),
 Barrett (2003, 2013, 2022), Iverson (2024), Hagen and Schneider (2021), Chari, Nicolini, Teles (2023)
 - Dynamics of coalition building: Ray and Vohra (2015), Okada (2023), Nordhaus (2021), Harstad (2023), Maggi and Staiger (2022)
 - ⇒ Quantitative analysis of climate agreements and policy recommendation
- ► Trade policy and environment policies:
 - Trade and carbon policies: Farrokhi, Lashkaripour (2024), Kortum, Weisbach (2023), Böhringer, Carbone, Rutherford (2012, 2016), Hsiao (2022), Shapiro (2021), Caliendo et al. (2024)
 - Tariff policy: Ossa (2014), Costinot et al. (2015), Adao, Costinot (2022), Antràs et al. (2022)
 - ⇒ Optimal design of climate agreements with free-riding incentives
- ▶ IAM and macroeconomics of climate change and carbon taxation
 - RA model: Nordhaus DICE (1996-), Weitzman (2014), Golosov et al. (2014), Hassler et al (2019)
 - HA model: Krusell Smith (2022), Kotlikoff, Kubler, Polbin, Scheidegger (2021)
 - Spatial models: Cruz, Rossi-Hansberg (2022, 2023) among others
 - ⇒ Strategic and constrained policy with heterogeneous countries & trade

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Model – Household & Firms

- Deterministic Neoclassical economy
 - countries $i \in \mathbb{I}$, heterogeneous in many dimensions: income, temperature, energy production, etc.
 - In each country, five agents:
 - 1. Representative household $U_i = \max_{c_{ii}} u(c_i)$, Trade, à *la* Armington

$$c_{i} = \left(\sum_{j} a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \sum_{j \in \mathbb{I}} c_{ij} \underbrace{\left(1 + t_{ij}^{b}\right)}_{\text{tariff}} \underbrace{\tau_{ij}}_{\text{iceberg}} p_{j} = \underbrace{w_{i} \ell_{i}}_{\text{income}} + \underbrace{\pi_{i}^{f}}_{\text{fossil firm}} + \underbrace{t_{i}^{ls}}_{\text{transfers}}$$

$$\mathbb{P}_{i} = \left(\sum_{j} a_{ij} (\tau_{ij} (1 + t_{ij}^{b}) p_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

Model – Household & Firms

- Deterministic Neoclassical economy
 - countries $i \in \mathbb{I}$, heterogeneous in many dimensions: income, temperature, energy production, etc.
 - In each country, five agents:
 - 1. Representative household $U_i = \max_{c_{ii}} u(c_i)$, Trade, à *la* Armington

$$c_i = \left(\sum_j a_{ij}^{\frac{1}{\theta}} c_{ij}^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}} \sum_{j \in \mathbb{I}} c_{ij} \underbrace{\left(1 + t_{ij}^b\right)}_{\text{tariff}} \underbrace{\tau_{ij}}_{\text{iceberg}} p_j = \underbrace{w_i \ell_i}_{\substack{\text{labor} \\ \text{income}}} + \underbrace{\tau_i^f}_{\substack{\text{fossil firm} \\ \text{transfers}}} + \underbrace{t_i^{ls}}_{\substack{\text{transfers}}}$$

$$\mathbb{P}_i = \left(\sum_j a_{ij} (\tau_{ij} (1 + t_{ij}^b) p_j)^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

2. Competitive final good firm:

$$\max_{\ell_i, e_i^f, e_i^c, e_i^r} p_i \mathcal{D}_i(\mathcal{E}) z_i F(\ell_i, e_i^f, e_i^c, e_i^r) - w_i \ell_i - (q^f + t_i^{\varepsilon}) e_i^f - (q_i^c + t_i^{\varepsilon}) e_i^c - q_i^r e_i^r$$

- Externality: Damage function $\mathcal{D}_i(\mathcal{E})$, Income inequality from z_i , Carbon tax: t_i^{ε}

Model – Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

- Energy traded in international markets, at price q^f

$$E^f = \sum_{i \in \mathbb{I}} e_i^f = \sum_{i \in \mathbb{I}} e_i^x$$

Model – Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

Energy traded in international markets, at price q^f

$$E^f = \sum_{i \in \mathbb{I}} e_i^f = \sum_{i \in \mathbb{I}} e_i^x$$

- 4. Coal energy firm, CRS e_i^c : \Rightarrow price $q_i^c = z_i^c \mathbb{P}_i$
- 5. Renewable energy firm, CRS e_i^r : \Rightarrow price $q_i^r = z_i^r \mathbb{P}_i$

Model – Energy markets & Emissions

3. Competitive fossil fuels (oil-gas) producer, extracting e_i^x

$$\pi_i^f = \max_{e_i^x} q^f e_i^x - \mathcal{C}_i^f(e_i^x) \mathbb{P}_i$$

Energy traded in international markets, at price q^f

$$E^f = \sum_{i \in \mathbb{I}} e_i^f = \sum_{i \in \mathbb{I}} e_i^x$$

- 4. Coal energy firm, CRS e_i^c : \Rightarrow price $q_i^c = z_i^c \mathbb{P}_i$
- 5. Renewable energy firm, CRS e_i^r : \Rightarrow price $q_i^r = z_i^r \mathbb{P}_i$
- Climate system: mapping from emission $\mathcal{E} = \sum_{\mathbb{I}} e_i^f + e_i^c$ to damage $\mathcal{D}_i(\mathcal{E})$

- Model

Model – Equilibrium

- Given policies $\{t_i^{\varepsilon}, t_{ij}^{b}, t_i^{ls}\}_i$, a **competitive equilibrium** is a set of decisions $\{c_{ij}, e_i^{f}, e_i^{c}, e_i^{r}, e_i^{s}\}_{ij}$, emission $\{\mathcal{E}\}_i$ changing climate and prices $\{p_i, w_i, q_i^{c}, q_i^{r}\}_i, q^f$ such that:
- Households choose $\{c_{ij}\}_{ij}$ to max. utility s.t. budget constraint
- Firm choose inputs $\{e_i^f, e_i^c, e_i^r\}_i$ to max. profit
- \circ Oil-gas firms extract/produce $\{e_i^x\}_i$ to max. profit. + Elastic renewable, coal supplies $\{e_i^c, e_i^r\}_i$
- Emissions \mathcal{E} affects climate and damages $\mathcal{D}_i(\mathcal{E})$
- o Government budget clear $\sum_i t_i^{ls} = \sum_i t_i^{\varepsilon} (e_i^f + e_i^c) + \sum_{i,j} t_{ij}^b c_{ij} \tau_{ij} p_j$
- o Prices $\{p_i, w_i, q^f\}$ adjust to clear the markets for energy $\sum_{\mathbb{I}} e^x_{it} = \sum_{\mathbb{I}} e^f_{it}$ and for each good

$$y_i := \mathcal{D}_i(\mathcal{E}) z_i F(\ell_i, e_i^f, e_i^r, e_i^r) = \sum_{k \in \mathbb{I}} \tau_{ki} c_{ki} + \sum_{k \in \mathbb{I}} \tau_{ki} (x_{ki}^f + x_{ki}^c + x_{ki}^r)$$

with x_{ki}^{ℓ} export of good *i* as input in ℓ -energy production in *k*

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Climate agreements and endogenous participation

- ▶ *Definition:* A climate agreement is a set $\{J, t^{\varepsilon}, t^{b}\}$ of $J \subseteq I$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $\mathfrak{t}_{ij}^b = \mathfrak{t}^b$ on goods from j They still trade with club members in oil-gas at price q^f
 - Local, lump-sum rebate of taxes $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Indirect utility $U_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$

Climate agreements and endogenous participation

- **Definition:** A climate agreement is a set $\{\mathbb{J}, t^{\varepsilon}, t^{b}\}$ of $\mathbb{J} \subseteq \mathbb{I}$ countries and a C.E. s.t.:
 - Countries $i \in \mathbb{J}$ pay carbon tax $\mathbf{t}_i^{\varepsilon} = \mathbf{t}^{\varepsilon}$
 - If j exits agreement, club members $i \in \mathbb{J}$ impose uniform tariffs $\mathfrak{t}_{ij}^b = \mathfrak{t}^b$ on goods from j They still trade with club members in oil-gas at price q^f
 - Local, lump-sum rebate of taxes $\mathbf{t}_i^{ls} = \mathbf{t}^{\varepsilon}(e_i^f + e_i^c) + \sum_{j \notin \mathbb{J}} \mathbf{t}^b \tau_{ij} c_{ij} \mathbf{p}_j$
 - Indirect utility $\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \equiv u(c_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b))$
- ► Equilibrium concepts:
 - Exit from the agreement: unilateral deviation of i, $\mathbb{J}\setminus\{i\}$, \Rightarrow *Nash equilibrium*

$$\mathcal{U}_i(\mathbb{J},\mathfrak{t}^{arepsilon},\mathfrak{t}^b) \geq \mathcal{U}_i(\mathbb{J} \backslash \{i\},\mathfrak{t}^{arepsilon},\mathfrak{t}^b)$$

$$\forall i \in \mathbb{J}$$

• Sub-coalitional deviation ⇒ Coalitional Nash equilibrium

Optimal design with endogenous participation

Objective: search for the optimal and stable climate agreement

$$\begin{split} \max_{\mathbb{J}, t^{\varepsilon}, t^{b}} \mathcal{W}(\mathbb{J}, t^{\varepsilon}, t^{b}) &= \max_{t^{\varepsilon}, t^{b}} \ \max_{\mathbb{J}} \ \sum_{i \in \mathbb{I}} \omega_{i} \, \mathcal{U}_{i}(\mathbb{J}, t^{\varepsilon}, t^{b}) \\ s.t. & \mathcal{U}_{i}(\mathbb{J}, t^{\varepsilon}, t^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \setminus \{i\}, t^{\varepsilon}, t^{b}) \end{split}$$

- Current design:
 - (i) choose taxes $\{t^{\varepsilon}, t^{b}\}$

[outer problem]

(ii) choose the coalition J s.t. participation constraints hold

[inner problem]

 \Rightarrow Combinatorial Discrete Choice Problem for $\mathbb{J} \in \mathcal{P}(\mathbb{I})$

Solution method

- ▶ Current design: $\max_t \max_{\mathbb{J}} W(\mathbb{J}, t)$ s.t. $U_j(\mathcal{J}, t) \ge U_j(\mathcal{J} \setminus \{i\}, t)$
- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints

Solution method

- ► Current design: $\max_{\mathbf{t}} \max_{\mathbf{J}} \mathcal{W}(\mathbb{J}, \mathbf{t})$ s.t. $\mathcal{U}_{j}(\mathcal{J}, \mathbf{t}) \geq \mathcal{U}_{j}(\mathcal{J} \setminus \{i\}, \mathbf{t})$
- ► Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints
 - Squeezing step:

$$\Phi(\mathcal{J}) \equiv \left\{ j \in \mathbb{I} \mid \Delta_j \mathcal{W}(\mathcal{J}) > 0 \& \Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t}) \right\} > 0, \forall j \in \mathcal{J} \right\}$$

where marginal values of $j \in \mathcal{J}$ for global $\Delta_j \mathcal{W}(\mathcal{J}, \mathbf{t})$ and individual welfare $\Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t})$ are:

$$\Delta_{j}\mathcal{W}(\mathcal{J},\mathbf{t}) \equiv \mathcal{W}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{W}(\mathcal{J} \setminus \{j\},\mathbf{t}) \qquad \qquad \Delta_{j}\mathcal{U}_{j}(\mathcal{J},\mathbf{t}) \equiv \mathcal{U}_{j}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{U}_{j}(\mathcal{J} \setminus \{j\},\mathbf{t})$$

Solution method

- Current design: $\max_{\mathbf{t}} \max_{\mathbf{J}} \mathcal{W}(\mathbb{J}, \mathbf{t})$ s.t. $\mathcal{U}_i(\mathcal{J}, \mathbf{t}) > \mathcal{U}_i(\mathcal{J} \setminus \{i\}, \mathbf{t})$
- Inner problem: CDCP Solution method
 - Use a "squeezing procedure", as in Jia (2008), Arkolakis, Eckert, Shi (2023) extended to handle participation constraints
 - Squeezing step:

$$\Phi(\mathcal{J}) \equiv \left\{ j \in \mathbb{I} \, \middle| \, \Delta_j \mathcal{W}(\mathcal{J}) > 0 \, \& \, \Delta_j \mathcal{U}_j(\mathcal{J}, \mathbf{t})) > 0, \forall j \in \mathcal{J} \right\}$$

where marginal values of $j \in \mathcal{J}$ for global $\Delta_j \mathcal{W}(\mathcal{J}, \mathbf{t})$ and individual welfare $\Delta_j \mathcal{U}_i(\mathcal{J}, \mathbf{t})$ are:

$$\Delta_{j}\mathcal{W}(\mathcal{J},\mathbf{t}) \equiv \mathcal{W}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{W}(\mathcal{J} \setminus \{j\},\mathbf{t}) \qquad \qquad \Delta_{j}\mathcal{U}_{j}(\mathcal{J},\mathbf{t}) \equiv \mathcal{U}_{j}(\mathcal{J} \cup \{j\},\mathbf{t}) - \mathcal{U}_{j}(\mathcal{J} \setminus \{j\},\mathbf{t})$$

- Iterative procedure build lower bound $\mathcal J$ and upper bound $\overline{\mathcal J}$ by successive squeezing steps

$$\underline{\mathcal{J}}^{(k+1)} = \Phi(\underline{\mathcal{J}}^{(k)}) \qquad \qquad \overline{\mathcal{J}}^{(k+1)} = \Phi(\overline{\mathcal{J}}^{(k)})$$

Squeezing procedure converges to the optimal set under *Complementarity* Assumption. Details

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Quantification – Climate system and damage

- Static economic model: decisions $e_i^f + e_i^c$ taken "once and for all", $\mathcal{E} = \sum_i e_i^f + e_i^c$
 - Climate system:

$$\dot{S}_t = \mathcal{E} - \delta_s S_t$$

$$T_{it} = \bar{T}_{i0} + \Delta_i S_t$$

• Path damages heterogeneous across countries Quadratic, c.f. Nordhaus-DICE / IAM

$$\mathcal{D}(T_{it}-T_i^{\star})=e^{-\gamma(T_{it}-T_i^{\star})^2}$$

Economic feedback in Present discounted value

$$\mathcal{D}_{i}(\mathcal{E}) = \bar{
ho}_{i} \int_{0}^{\infty} e^{-(\overline{
ho} - n_{i} + \eta \bar{g}_{i})t} \mathcal{D}(T_{it} - T_{i}^{\star}) dt$$

Quantification

• Pareto weights ω_i : Imply no redistribution motive \bar{c}_i conso in initial equilbrium t = 2020 w/o climate change

$$\omega_i = \frac{1}{u'(\bar{c}_i)} \qquad \Leftrightarrow \qquad C.E.(\bar{c}_i) \in \underset{\bar{c}_i}{\operatorname{argmax}} \sum_i \omega_i u(\bar{c}_i)$$

Details Pareto weights

Quantification

• Pareto weights ω_i : Imply no redistribution motive \bar{c}_i conso in initial equilbrium t = 2020 w/o climate change

$$\omega_i = \frac{1}{u'(\bar{c}_i)} \qquad \Leftrightarrow \qquad C.E.(\bar{c}_i) \in \operatorname*{argmax}_{\bar{c}_i} \sum_i \omega_i u(\bar{c}_i)$$

Details Pareto weights

- Functional forms:
 - Utility: CRRA η
 - Production function $\bar{y} = zF(\ell_i, k_i, e_i^f, e_i^c, e_i^r)$
 - Nested CES energy e_i vs. labor-capital Cobb-Douglas bundle $k_i^{\alpha} \ell_i^{1-\alpha}$, elasticity $\sigma_y < 1$
 - Energy: fossil/coal/renewable $\sigma_e > 1$, $CES(e_i^f, e_i^c, e_i^r)$, elasticity σ^e
 - Energy extraction of oil-gas: isoelastic $C^f(e^x) = \bar{\nu}_i (e_i^x/\mathcal{R}_i)^{1+\nu_i} \mathcal{R}_i$

More details

▶ Parameters calibrated from the literature

► Parameters to match "world" moments from the data Details calibration

► Parameters to match (exactly) country-level variables Details country-level moments

- ▶ Parameters calibrated from the literature
 - Macro parameter: Household utility, Production function, Trade elasticities
 - Damage parameter: γ from Krusell, Smith (2022) & Barrage, Nordhaus (2023) Target temperature: $T_i^* = \alpha T^* + (1-\alpha)T_{it_0}$ with $T^* = 14.5$, $\alpha = 0.5$.
- Parameters to match "world" moments from the data Details calibration

▶ Parameters to match (exactly) country-level variables Details country-level moments

- ▶ Parameters calibrated from the literature
 - Macro parameter: Household utility, Production function, Trade elasticities
 - Damage parameter: γ from Krusell, Smith (2022) & Barrage, Nordhaus (2023) Target temperature: $T_i^{\star} = \alpha T^{\star} + (1-\alpha)T_{it_0}$ with $T^{\star} = 14.5$, $\alpha = 0.5$.
- ▶ Parameters to match "world" moments from the data Details calibration
 - Climate parameters: match IAM's Pulse experiment
 - CES shares in capital/labor/energy to match aggregate shares
- ► Parameters to match (exactly) country-level variables Details country-level moments

- ▶ Parameters calibrated from the literature
 - Macro parameter: Household utility, Production function, Trade elasticities
 - Damage parameter: γ from Krusell, Smith (2022) & Barrage, Nordhaus (2023) Target temperature: $T_i^{\star} = \alpha T^{\star} + (1-\alpha)T_{it_0}$ with $T^{\star} = 14.5$, $\alpha = 0.5$.
- ▶ Parameters to match "world" moments from the data Details calibration
 - Climate parameters: match IAM's Pulse experiment
 - CES shares in capital/labor/energy to match aggregate shares
- ► Parameters to match (exactly) country-level variables Details country-level moments
 - TFP $z_i \Rightarrow$ GDP y_i , Population \mathcal{P}_i , Temperature T_{it_0} , Pattern scaling Δ_i
 - Energy mix (Oil-gas e_i^f , Coal e_i^c , Non-carbon e_i^r), energy share, oil-gas prod $^\circ$, reserves, rents
 - Trade: cost τ_{ij} projected on distance, preferences a_{ij} to match import shares

Quantitative application – Sample of 10 "regions"

- ► Sample of 10 "regions": (i) US+Canada, (ii) China+HK, (iii) EU+UK+Schengen, (iv) South Asia, (v) Sub-saharian Africa, (vi) Middle-East+North Africa, (vii) Russia+CIS, (viii) Japan+Korea+Australia+Taiwan+Singap., (ix) South-East Asia (Asean), (x) Latin America WIP: 25 countries + 7 regions
- ► Data (Avg. 2018-2023)

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- 5. Policy Benchmarks:
 Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Optimal policy : benchmarks

- ▶ Policy benchmarks, without free-riding incentives
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects

Optimal policy : benchmarks

- ▶ Policy benchmarks, without free-riding incentives
 - First-Best, Social planner maximizing global welfare with unlimited instruments
 - Pigouvian result: Carbon tax = Social Cost of Carbon
 - Relies heavily on cross-country transfers to offset redistributive effects
 - Second-Best: Social planner, single carbon tax without transfers
 - Optimal carbon tax t^{ε} correct climate externality, but also accounts for:
 - (i) Redistribution motives, and G.E. effects on (ii) energy markets and (iii) trade leakage

$$\mathbf{t}^{\varepsilon} = \underbrace{\sum_{i} \phi_{i} LCC_{i}}_{=SCC} + \sum_{i} \phi_{i} \text{ Supply Redistrib}_{i}^{\circ} + \sum_{i} \phi_{i} \text{ Demand Distort}_{i}^{\circ} - \sum_{i} \text{Trade Redistrib}_{i}^{\circ} \qquad \phi_{i} \propto \omega_{i} u'(c_{i})$$

- Details: CE, First-Best, Second-Best
- Companion paper: Bourany (2024), Climate Change, Inequality, and Optimal Climate Policy
- *Unilateral policy*: local planners choose their own optimal climate-trade policy,

see Farrokhi-Laksharipour (2024), Kortum, Weisbach (2022) Nash-Unilateral Policies

Second-Best climate policy

- Accounting for redistribution and lack of transfers
 - ⇒ implies a carbon tax lower than the Social Cost of Carbon

Gains from cooperation – World Optimal policy

- ► Optimal carbon tax Second Best: $\sim \$147/tCO_2$
- Reduce fossil fuels / CO₂
 emissions by 42% compared to
 Competitive equilibrium
 (Business as Usual, BAU)
- Welfare difference between world optimal policy vs. Comp. Eq./BAU

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Main result

- ► The optimal and stable climate agreement:
 - *Participation:* all the countries in the world, with the exception of Russia, and former Soviet countries
 - Carbon tax: need to reduce tax level from \$147 to \$98/tCO₂
 - Trade tariffs: impose substantial tariff 50% on the goods from non-members
- ► Impossibility result:

Because of free-riding, we can not achieve **both** a *high* carbon tax and *complete participation*, despite *arbitrary* trade tariffs

Intuition

- ► The climate agreement needs to balance an intensive and extensive margin
 - Intensive margin: given a coalition: carbon tax decreases emissions
 - Extensive margin: carbon tax also deter participation individual countries free-ride, increasing emissions
 - And this, despite complete discretion in the choice of tariffs

Intuition

- ► The climate agreement needs to balance an intensive and extensive margin
 - Intensive margin: given a coalition: carbon tax decreases emissions
 - Extensive margin: carbon tax also deter participation individual countries free-ride, increasing emissions
 - And this, despite complete discretion in the choice of tariffs
- ► Mechanism:
 - $\ \ Countries \ participate \ depending \ on \ \left\{ \begin{array}{l} (i) \ the \ cost \ of \ distortionary \ carbon \ taxation \\ (ii) \ the \ cost \ of \ tariffs \ (= the \ gains \ from \ trade) \end{array} \right.$
 - Russia/Middle East/South Asia do not join the club for high carbon tax for any tariffs, because cost of taxing fossil-fuels ≫ cost of tariffs / autarky
 - ⇒ As a result, we need to decrease the carbon tax

Laffer curve for carbon taxation

- Due to free-riding incentives, cannot reach globally optimal carbon tax $t^{\varepsilon,\star} = \147

Emissions \mathcal{E} (in $GtCO_2/yr$) and welfare \mathcal{W} as a fct of carbon tax t^{ε} and tariff $t^b = 50\%$.

Laffer curve for carbon taxation

- Due to free-riding incentives, cannot reach globally optimal carbon tax $t^{\varepsilon,\star} = \147
- Not optimal to reduce participation:
 concentrates mitigation costs on remaining members ⇒ dampen welfare

Emissions \mathcal{E} (in $GtCO_2/yr$) and welfare \mathcal{W} as a fct of carbon tax t^{ε} and tariff $t^b = 50\%$.

Climate Agreements: Intensive vs. Extensive Margin

- ► Intensive margin: higher tax, emissions ↓, welfare ↑
- ► Extensive margin: higher tax, participation ↓, free-riding and emissions ↑

Optimal Climate Agreement

- Despite full discretion of instruments (t^ε, t^b), we cannot sustain an agreement with Russia, Middle East & South-Asia
- ⇒ need to reduce carbon tax from \$147 to \$98
- ⇒ Beneficial to leave Russia outside of agreement no incentive to join: cold, closed to trade, and large fossil-fuel producer

Trade-off – Cost of Carbon Taxation vs. Gains from trade

Gains from unilateral exit from agreement vs. Gains from trade, i.e. loss from tariffs/autarky

Mechanisms behind participation

Trade-off – Cost of Carbon Taxation vs. Gains from trade

Gains from unilateral exit from agreement vs. Gains from trade, i.e. loss from tariffs/autarky

Welfare decomposition Linear decomposition

Mechanisms behind participation

Emission reduction vs. Welfare: Different metrics!

- Agreements with tariffs recover 91% of welfare gains from the Second-Best optimal carbon tax without transfers – at a cost of increasing emissions by 13%
- First-best allocation relies heavily on transfers to be able to impose a higher carbon tax

Coalition building

- ► How to build sequentially the climate coalition?
 - Which countries have the most interest in joining the club?

Coalition building

- ► Sequence of "rounds" of the static equilibrium
 - At each round (n), countries decide to enter or not depending on the gain

$$\Delta_{i}\mathcal{U}_{i}(\mathbb{J}^{(n)}) = \mathcal{U}_{i}(\mathbb{J}^{(n)} \cup \{i\}, t^{\varepsilon}, t^{b}) - \mathcal{U}_{i}(\mathbb{J}^{(n)} \setminus \{i\}, t^{\varepsilon}, t^{b})$$

- Construction evaluated at the optimal carbon tax $t^{\varepsilon} = 98$ \$, and tariff $t^{b} = 50$ %.
- Sequential procedure coming for free from our CDCP algorithm / squeezing procedure
- Idea analogous to Farrokhi, Lashkaripour (2024)

Coalition building

- ► Sequence of "rounds" of the static equilibrium
 - At each round (n), countries decide to enter or not depending on the gain

$$\Delta_{i}\mathcal{U}_{i}(\mathbb{J}^{(n)}) = \mathcal{U}_{i}(\mathbb{J}^{(n)} \cup \{i\}, t^{\varepsilon}, t^{b}) - \mathcal{U}_{i}(\mathbb{J}^{(n)} \setminus \{i\}, t^{\varepsilon}, t^{b})$$

- Construction evaluated at the optimal carbon tax $t^{\varepsilon} = 98$ \$, and tariff $t^{b} = 50$ %.
- Sequential procedure coming for free from our CDCP algorithm / squeezing procedure
- Idea analogous to Farrokhi, Lashkaripour (2024)
- ▶ Result: sequence up to the optimal climate agreement
 - Round 1: European Union
 - Round 2: China, South-East Asia (Asean)
 - Round 3: North America, South Asia, Africa, Advanced East Asia, Latin America
 - Round 4: Middle-East
 - ∉ Stay out of the agreement: Russia+CIS

Outline

- 1. Introduction
- 2. Model:

An Integrated Assessment Model with Heterogenous Countries and Trade

- 3. Climate Agreements Design
- 4. Quantification
- Policy Benchmarks: Optimal Policy without Free-riding Incentives
- 6. Main result:
 The Optimal Climate Agreement
- 7. Extensions
- 8. Conclusion

Retaliation

- ► Trade policy retaliation: Suppose the regions outside the agreement impose retaliatory tariffs to club members
- **Exercise:**
 - Countries outside the club $j \notin \mathbb{J}$ impose a tariffs $\mathbf{t}_{ji} = \beta \mathbf{t}_{ij}$ on club members i

Transfers – Loss and damage funds

- ► COP28 Major policy proposal: Loss and damage funds for countries vulnerable to the effects of climate change
- Simple implementation in our context: lump-sum receipts of carbon tax revenues:

$$\mathbf{t}_{i}^{ls} = (1 - \alpha) \, \mathbf{t}^{\varepsilon} \varepsilon_{i} + \alpha \frac{1}{\mathcal{P}} \sum_{i} \mathbf{t}^{\varepsilon} \varepsilon_{j}$$

► In practice: transfers from large emitters to low emitters

Taxation of fossil fuels energy inputs

- Current climate club: only imposes penalty tariffs on final goods, not on energy imports
 - Empirically relevant, c.f. Shapiro (2021): inputs are more emission-intensives but trade policy is biased against final goods output
- Alternative: tax energy import from non-participants $\mathbf{t}_{ii}^{bf} = \beta \mathbf{t}^b \mathbb{1} \{ i \in \mathbb{J}, j \notin \mathbb{J} \}$

Conclusion

- ► In this project, I solve for the optimal design of climate agreements
 - Correcting for inequality, redistribution effects through energy markets and trade leakage, as well as free-riding incentives
- ► Climate agreement design jointly solves for:
 - The optimal choice of countries participating
 - The carbon tax and tariff levels, accounting for both the climate externality, redistributive
 effects and the participation constraints
- ▶ Optimal coalition depends on the trade-off between
 - the gains from cooperation and free riding incentives
 - the gains from trade, i.e. the cost of retaliatory tariffs
 - \Rightarrow Need a large coalition and a carbon tax at 65% of the world optimum
- Extensions:
 - Extend this to dynamic settings: coalition building and bargaining

Conclusion

Thank you!

 $thomas bour any @\,uchicago.edu$

Optimal Design of Climate Agreements

Appendices

Optimal design with endogenous participation

- Why uniform policy instruments t^{ε} and t^{b} for all club members:
 - Our social planner/designer solution represents the outcome of a "bargaining process" between countries (with bargaining weights ω_i).
 - Deviation from Coase theorem:
 - With transaction/bargaining cost: impossible to reach a consensual decision on $I + I \times I$ instruments $\{t_i^{\varepsilon}, t_{ii}^{b}\}_{ii}$
 - Such costs increase exponentially in the number of countries I

Optimal design with endogenous participation

- Why uniform policy instruments t^{ε} and t^{b} for all club members:
 - Our social planner/designer solution represents the outcome of a "bargaining process" between countries (with bargaining weights ω_i).
 - Deviation from Coase theorem:
 - With transaction/bargaining cost: impossible to reach a consensual decision on $I + I \times I$ instruments $\{t_i^{\varepsilon}, t_{ii}^{b}\}_{ii}$
 - Such costs increase exponentially in the number of countries I
- ► Optimal country specific carbon taxes:
 - Without free-riding / exogeneous participation

$$\mathbf{t}_{i}^{\varepsilon} = \frac{1}{\phi_{i}} \mathbf{t}^{\varepsilon} \propto \frac{1}{\omega_{i} u'(c_{i})} \left[SCC + SCF - SCT \right]$$

• With participation constraints: multiplier $\nu_i(\mathbb{J})$

$$\mathbf{t}_i^{arepsilon} \propto rac{1}{ig(\omega_i +
u_i(\mathbb{J})ig)u'(c_i)}ig[\mathit{SCC} + \mathit{SCF} - \mathit{SCT}ig]$$

Thomas Bourany (UChicago)

Optimal design with endogenous participation

- ► Equilibrium concepts and participation constraints:
 - *Nash equilibrium* \Rightarrow unilateral deviation $\mathbb{J}\setminus\{j\}$, $\mathbb{J}\in\mathbb{S}(\mathfrak{t}^f,\mathfrak{t}^b)$ if:

$$\mathcal{U}_i(\mathbb{J}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b) \geq \mathcal{U}_i(\mathbb{J} \setminus \{i\}, \mathfrak{t}^{\varepsilon}, \mathfrak{t}^b)$$
 $\forall i \in \mathbb{J}$

• *Coalitional Nash-equilibrium* $\mathbb{C}(\mathfrak{t}^f,\mathfrak{t}^b)$: robust of sub-coalitions deviations:

$$\mathcal{U}_{i}(\mathbb{J}, \mathfrak{t}^{f}, \mathfrak{t}^{b}) \geq \mathcal{U}_{i}(\mathbb{J} \backslash \hat{\mathbb{J}}, \mathfrak{t}^{f}, \mathfrak{t}^{b}) \ \forall i \in \hat{\mathbb{J}} \& \forall \hat{\mathbb{J}} \subseteq \mathbb{J} \cup \{i\}$$

- Stability requires to check all potential coalitions $\mathbb{J} \in \mathcal{P}(\mathbb{I})$ as all sub-coalitions $\mathbb{J} \setminus \hat{\mathbb{J}}$ are considered as deviations in the equilibrium
- Requires to solve all the combination \mathbb{J} , \mathfrak{t}^f , \mathfrak{t}^b , by exhaustive enumeration.
 - \Rightarrow becomes very computationally costly for $I = \#(\mathbb{I}) > 10$

Complementarity

- Application of *Squeezing procedure* as in Arkolakis, Eckert, Shi (2023)
- Condition: Single Crossing Differences in choice (SCD-C), that I extend to account for participation constraints (SCD-C,PC)
- In our setting, condition as follows:

IF the coalition $\mathcal J$ makes (i) allocation outcomes better for welfare with $\{j\}$, if both $\mathcal J$ and $\mathcal J \cup \{j\}$ are stable, or (ii) the coalition $\mathcal J \cup \{j\}$ is stable if $\mathcal J$ is unstable THEN one of these conditions should also be respected for larger coalitions $\mathcal J' \supseteq \mathcal J$.

$$\begin{cases} & \Delta_{i}\mathcal{U}_{i}(\mathcal{J} \cup \{j\}) \geq 0 \\ & \& \left[\begin{array}{c} \left(\Delta_{j}\mathcal{W}(\mathcal{J} \cup \{j\}) \geq 0 & \& \ \Delta_{i}\mathcal{U}_{i}(\mathcal{J}) \geq 0 \right) \\ \text{or } \Delta_{i}\mathcal{U}_{i}(\mathcal{J}) < 0 \end{array} \right] \Rightarrow \begin{cases} & \Delta_{i}\mathcal{U}_{i}(\mathcal{J}' \cup \{j\}) \geq 0 \\ & \& \left[\left(\Delta_{j}\mathcal{W}(\mathcal{J}' \cup \{j\}) \geq 0 & \& \ \Delta_{i}\mathcal{U}_{i}(\mathcal{J}') \geq 0 \right) \\ \text{or } \Delta_{i}\mathcal{U}_{i}(\mathcal{J}') < 0 \end{array}$$

$$\forall \ \mathcal{J} \subseteq \mathcal{J}' \qquad \forall \ j \in \mathbb{I} \qquad \text{(SCD-C, PC)}$$

Welfare and Pareto weights

Welfare:

$$\mathcal{W}(\mathbb{J}) = \sum_{i \in \mathbb{I}} \omega_i \ u(c_i)$$

• Pareto weights ω_i :

$$\omega_i = \frac{1}{u'(\bar{c}_i)}$$

for \bar{c}_i consumption in initial equilibrium "without climate change", i.e. year = 2020

• Imply no redistribution motive in t = 2020

$$\omega_i u'(\bar{c}_i) = \omega_i u'(\bar{c}_i) \quad \forall i, j \in \mathbb{I}$$

 Climate change, taxation, and climate agreement (tax + tariffs) have redistributive effects
 ⇒ change distribution of c_i

back

Quantification – Trade model

• Armington Trade model:

$$s_{ij} \equiv \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{((1+t_{ij})\tau_{ij}p_{j})^{1-\theta}}{\sum_{k} a_{ik}((1+t_{ik})\tau_{ik}p_{k})^{1-\theta}}$$

- CES $\theta = 5.63$ estimated from a gravity regression
- Iceberg cost τ_{ij} as projection of distance $\log \tau_{ii} = \beta \log d_{ii}$
- Preference parameters a_{ij} identified as remaining variation in the trade share s_{ij}
 ⇒ policy invariant

back

Step 0: Competitive equilibrium & Trade

- ► Each household in country *i* maximize utility and firms maximize profit
- Standard trade model results:
 - Consumption and trade:

$$s_{ij} = \frac{c_{ij}p_{ij}}{c_{i}\mathbb{P}_{i}} = a_{ij}\frac{(\tau_{ij}(1+t_{ij}^{b})p_{j})^{1-\theta}}{\sum_{k} a_{ik}(\tau_{ik}(1+t_{ik}^{b})p_{k})^{1-\theta}} \qquad \qquad \& \qquad \mathbb{P}_{i} = \left(\sum_{j} a_{ij}(\tau_{ij}p_{j})^{1-\theta}\right)^{\frac{1}{1-\theta}}$$

• Energy consumption doesn't internalize climate damage:

$$p_iMPe_i=q^e$$

• Inequality, as measured in local welfare units:

$$\lambda_i = u'(c_i)$$

"Local Social Cost of Carbon", for region i

$$LCC_{i} = \frac{\partial W_{i}/\partial \mathcal{E}}{\partial W_{i}/\partial c_{i}} = \frac{\psi_{i}^{\mathcal{E}}}{\lambda_{i}} = \Delta_{i}\gamma(T_{i} - T_{i}^{\star})p_{i}y_{i} \qquad (> 0 \text{ for warm countries})$$

Step 1: World First-best policy

► Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- Full array of instruments: cross-countries lump-sum transfers \mathbf{t}_i^{ls} , individual carbon taxes \mathbf{t}_i^f on energy e_i^f , unrestricted bilateral tariffs \mathbf{t}_{ii}^b
- Budget constraint: $\sum_i t_i^{ls} = \sum_i t_i^f e_i^f + \sum_{i,j} t_{ij}^b c_{ij} \tau_{ij} p_j$
- Maximize welfare subject to
 - Market clearing for good $[\mu_i]$, market clearing for energy μ^e

back

Step 1: World First-best policy

- ► Social planner results:
 - Consumption:

$$\omega_i u'(c_i) = \left[\sum_j a_{ij} (\tau_{ij} \omega_j \mu_j)^{1-\theta}\right]^{\frac{1}{1-\theta}} = \mathbb{P}_i \qquad \qquad \omega_i \frac{u'(c_i)}{\mathbb{P}_i} = \bar{\lambda}$$

Energy use:

$$\omega_i \mu_i MPe_i = \mu^e + SCC$$

Social cost of carbon:

$$SCC = \sum_{j} \omega_{j} \Delta_{j} \gamma (T_{i} - T_{i}^{\star}) y_{j} \mu_{j}$$

Decentralization:
 large transfers to equalize marg. utility + carbon tax = SCC

$$\mathbf{t}^{\varepsilon} = SCC$$
 $\mathbf{t}_{i}^{lb} = c_{i}^{\star} \mathbb{P}_{i} - w_{i} \ell_{i} + \pi_{i}^{f}$ s.t. $u'(c_{i}^{\star}) = \bar{\lambda} \mathbb{P}_{i} / \omega_{i}$

Step 2: World optimal Ramsey policy

Maximizing welfare of the world Social Planner:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{i \in \mathbb{I}} \omega_i \ u(c_i) = \sum_{\mathbb{I}} \mathcal{W}_i$$

- One single instrument: uniform carbon tax t^f on energy e_i^f
- Rebate tax lump-sum to HHs $t_i^{ls} = t^{\varepsilon} e_i^f + t^{\varepsilon} e_i^c$
- Ramsey policy: Primal approach, maximize welfare subject to
 - Budget constraint $[\lambda_i]$, Market clearing for good $[\mu_i]$, market clearing for energy
 - Optimality (FOC) conditions for good demands $[\eta_{ii}]$, energy demand $[v_i]$ & supply $[\theta_i]$, etc.

 - Trade-off faced by the planner:
 - (i) Correcting climate externality, (ii) Redistributive effects, (iii) Distort energy demand and supply (iv) Distort good demand

Step 2: World optimal Ramsey policy

- ► The planner takes into account
 - (i) the marginal value of wealth λ_i
 - (ii) the shadow value of good i, from market clearing, μ_i :
 - (iii) the shadow value of bilateral trade ij, from household FOC, η_{ij} :

w/ free trade
$$u'(c_i) = \lambda_i$$
 vs. w/ Armington trade
$$u'(c_i) = \lambda_i \Big(\sum_{j \in \mathbb{I}} a_{ij} (\tau_{ij} \mathbf{p}_j)^{1-\theta} \Big[1 + \frac{\omega_j}{\omega_i} \frac{\mu_j}{\lambda_i} - \frac{\eta_{ij}}{\theta \lambda_i} (1 - s_{ij}) \Big]^{1-\theta} \Big)^{\frac{1}{1-\theta}}$$

Relative welfare weights, representing inequality

$$\widehat{\lambda}_i = \frac{\omega_i \lambda_i}{\overline{\lambda}} = \frac{\omega_i u'(c_i)}{\frac{1}{I} \sum_{\overline{1}} \omega_j u'(c_j)} \leq 1 \qquad \Rightarrow \qquad \begin{array}{c} \text{ceteris paribus, poorer} \\ \text{countries have higher } \widehat{\lambda}_i \end{array}$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region *i*:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = \Delta_i \gamma (T_i - T_i^{\star}) y_i p_i$$

Step 2: Optimal policy – Social Cost of Carbon

- ► Key objects: Local vs. Global Social Cost of Carbon:
 - Marginal cost of carbon $\psi_i^{\mathcal{E}}$ for country i
 - "Local social cost of carbon" (LCC) for region i:

$$LCC_i := \frac{\partial \mathcal{W}_i / \partial \mathcal{E}}{\partial \mathcal{W}_i / \partial w_i} = \frac{\psi_i^{\mathcal{E}}}{\lambda_i} = \Delta_i \gamma (T_i - T_i^{\star}) y_i p_i$$

• Social Cost of Carbon for the planner:

$$SCC := \frac{\partial \mathcal{W}/\partial \mathcal{E}}{\partial \mathcal{W}/\partial w} = \frac{\sum_{\mathbb{I}} \omega_i \psi_i^{\mathcal{E}}}{\frac{1}{I} \sum_{\mathbb{I}} \omega_i \lambda_i}$$

Social Cost of Carbon integrates these inequalities:

$$SCC = \sum_{\mathbb{T}} \widehat{\lambda}_i LCC_i = \sum_{\mathbb{T}} LCC_i + \mathbb{C}ov_i(\widehat{\lambda}_i, LCC_i)$$

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
 - 3. Reallocate goods production, which is then supplied internationally

Supply Redistrib
$$^{\circ sb}$$
 + Demand Distort $^{\circ sb}$ - Trade effect sb = $\underbrace{\mathcal{C}_{EE}^{f}}_{\text{agg. supply}}\underbrace{\mathbb{C}\text{ov}_{i}\left(\widehat{\lambda}_{i},e_{i}^{f}-e_{i}^{x}\right)}_{\text{energy T-o-T}}$ - $\underbrace{\mathbb{C}\text{ov}_{i}\left(\widehat{\upsilon}_{i},\frac{f\left(1-s_{i}^{e}\right)}{\sigma_{i}e_{i}}\right)}_{\text{demand distortion}}$ - $\underbrace{q^{f}}_{\text{good T-o-T}}\underbrace{\mathbb{E}_{j}\left[\widehat{\mu}_{j}\right]}_{\text{good T-o-T redistrib}^{\circ}}$

 \circ Params: \mathcal{C}_{EE}^f agg. fossil inv. elasticity, s_i^e energy cost share and σ_i energy demand elasticity

Step 2: Optimal policy – Other motives

- ► Taxing fossil energy has additional redistributive effects:
 - 1. Through energy markets: distort supply, lowers eq. fossil price, benefit net importers
 - 2. Distort energy demand, of countries that need more or less energy
 - 3. Reallocate goods production, which is then supplied internationally

Supply Redistrib
$$^{\circ sb}$$
 + Demand Distort $^{\circ sb}$ - Trade effect $^{sb} = \underbrace{\mathcal{C}_{EE}^f}_{\text{agg. supply}} \underbrace{\mathbb{C}\text{ov}_i\left(\widehat{\lambda}_i, e_i^f - e_i^x\right)}_{\text{energy T-o-T}} - \underbrace{\mathbb{C}\text{ov}_i\left(\widehat{\upsilon}_i, \frac{d'(1 - s_i^e)}{\sigma_i e_i}\right)}_{\text{demand distortion}} - q^f \underbrace{\mathbb{E}_j[\widehat{\mu}_j]}_{\text{good T-o-T redistrib}}$

- \circ Params: \mathcal{C}_{EE}^f agg. fossil inv. elasticity, s_i^e energy cost share and σ_i energy demand elasticity
- ► *Proposition 2:* Optimal fossil energy tax:

$$\Rightarrow$$
 $\mathbf{t}^f = SCC^{sb} + \text{Supply Redistribution}^{sb} + \mathbf{Demand Distortion}^{sb} - \mathbf{Trade effect}^{sb}$

Reexpressing demand terms:

$$\mathbf{t}^{\varepsilon} = \left(1 + \mathbb{C}\mathrm{ov}_{i}(\widehat{\lambda}_{i}^{w}, \frac{\widehat{\sigma_{i}e_{i}}}{1 - s_{i}^{e}})\right)^{-1} \left[\sum_{\mathbb{I}} LCC_{i} + \mathbb{C}\mathrm{ov}_{i}(\widehat{\lambda}_{i}^{w}, LCC_{i}) + \mathcal{C}_{EE}^{f} \mathbb{C}\mathrm{ov}_{i}(\widehat{\lambda}_{i}^{w}, e_{i}^{f} - e_{i}^{x}) - q^{f} \mathbb{E}_{j}[\widehat{\mu}_{j}]\right]$$

Step 3: Ramsey Problem with participation constraints

- Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $\mathbf{t}^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f

Step 3: Ramsey Problem with participation constraints

- ► Consider that countries can "exit" climate agreement.
- ▶ For a climate "club" of $\mathbb{J} \subset \mathbb{I}$ countries:
 - Countries $i \in \mathbb{J}$ are subject to a carbon tax t^f
 - Countries $i \in \mathbb{J}$ can unilaterally leave, subject to retaliation tariff $\mathbf{t}^{b,r}$ on goods and get consumption \tilde{c}_i
 - Countries $i \notin \mathbb{J}$ trade in goods subject to tariff t^b with club members and countries outside the club. They still trade with the club members in energy at price q^f
- ► Participation constraints:

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

► Welfare:

$$\mathcal{W} = \max_{\{\mathbf{t}, \mathbf{e}, \mathbf{q}\}_i} \sum_{\mathbb{J}} \omega_i \ u(c_i) + \sum_{\mathbb{J}^c} \alpha \omega_i \ u(c_i)$$

Step 3: Ramsey Problem with participation constraints

Participation constraints

$$u(c_i) \geq u(\tilde{c}_i)$$
 $[\nu_i]$

- ▶ *Proposition 3.1*: Second-Best social valuation with participation constraints
 - Participation incentives change our measure of inequality

w/ trade:
$$\omega_i(1+\nu_i)u'(c_i) = \Big(\sum_{j\in\mathbb{I}} a_{ij}(\tau_{ij}p_j)^{1-\theta} \Big[\omega_i\widetilde{\lambda}_i + \omega_j\widetilde{\mu}_j + \widetilde{\eta}_{ij}(1-s_{ij})\Big]^{1-\theta}\Big)^{\frac{1}{1-\theta}}$$

$$\Rightarrow \qquad \widehat{\widetilde{\lambda}}_i = \frac{\omega_i(\widetilde{\lambda}_i + \widetilde{\mu}_i)}{\frac{1}{J}\sum_{\mathbb{J}}\omega_i(\widetilde{\lambda}_i + \widetilde{\mu}_i)} \neq \widehat{\lambda}_i$$
 vs. w/o trade
$$\widehat{\widetilde{\lambda}}_i = \frac{\omega_i(1+\nu_i)u'(c_i)}{\frac{1}{J}\sum_{\mathbb{J}}\omega_j(1+\nu_j)u'(c_j)} \neq \widehat{\lambda}_i$$

• Similarly, the "effective Pareto weights" are $\alpha\omega_i$ for countries outside the club $i \notin \mathbb{J}$ and $\omega_i(\alpha - \nu_i)$ for retaliation policy on $i \in \mathbb{J}$

Step 3: Participation constraints & Optimal policy

- ► *Proposition 3.2:* Second-Best taxes:
 - Taxation with imperfect instruments:
 - Climate change & general equilibrium effects on fossil market affects all countries $i \in \mathbb{I}$
 - Need to adjust for the "outside" countries $i \notin \mathbb{J}$ not subject to the tax, which weight on the energy market as $\vartheta_{\mathbb{J}^c} \approx \frac{E_{\mathbb{J}^c}}{E_{\mathbb{I}}} \frac{\nu \sigma}{q^f(1-s^f)}$ with ν fossil supply elasticity, σ energy demand elasticity and s^f energy cost share.
 - Optimal fossil energy tax $t^f(\mathbb{J})$:

$$\Rightarrow \quad \mathbf{t}^{f}(\mathbb{J}) = SCC + \underline{SVF}$$

$$= \frac{1}{1 - \vartheta_{\mathbb{J}^{c}}} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{i} LCC_{i} + \frac{1}{1 - \vartheta_{\mathbb{J}^{c}}} C_{EE}^{f} \sum_{i \in \mathbb{I}} \widetilde{\lambda}_{i} (\underline{e}_{i}^{f} - \underline{e}_{i}^{x}) - \sum_{i \in \mathbb{J}} \widetilde{\lambda}_{i} \frac{\underline{q}^{f}(1 - \underline{s}_{i}^{f})}{\sigma}$$

• Optimal tariffs/export taxes $t^{b,r}(\mathbb{J})$ and $t^b(\mathbb{J})$: In search for a closed-form expression As of now, only opaque system of equations (fixed point w/ demand/multipliers)

Welfare decomposition

- ► Armington model of trade with energy:
 - Linearized market clearing

$$\left(\frac{d\mathbf{p}_{i}}{d\mathbf{p}_{i}} + \frac{dy_{i}}{y_{i}} \right) = \sum_{k} t_{ik} \left[\left(\frac{\mathbf{p}_{k}y_{k}}{v_{k}} \right) (d \ln \mathbf{p}_{k} + d \ln y_{k}) + \frac{q^{f}e_{k}^{x}}{v_{k}} d \ln e_{k}^{x} - \frac{q^{f}e_{k}^{f}}{v_{k}} d \ln e_{k}^{f} + \frac{q^{f}(e_{k}^{x} - e_{k}^{f})}{v_{k}} d \ln q^{f} \right]$$

$$+ \theta \sum_{h} \left(s_{kh}d \ln t_{kh} - (1 + s_{ki})d \ln t_{ki} \right) + (\theta - 1) \sum_{h} \left(s_{kh}d \ln \mathbf{p}_{h} - d \ln \mathbf{p}_{i} \right)$$

• Fixed point for price level $d \ln p_i$

$$\begin{split} &\left[(\mathbf{I} - \mathbf{T} \odot v^{y}) [\mathbf{I} - \alpha^{y,p} \odot \mathbf{I}] + \mathbf{T} (v^{e^{x}} \odot \frac{1}{\nu}) + \mathbf{T} v^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} - (\theta - 1) (\mathbf{T} \mathbf{S} - \mathbf{T}') - \left((\mathbf{I} - \mathbf{T} \odot v^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \odot \bar{\gamma} \mathbf{I} \odot (\frac{\lambda^{x}}{\nu})' \right] d \ln p = \\ &\left[- (\mathbf{I} - \mathbf{T} \odot v^{y}) \alpha^{y,qf} + \mathbf{T} (v^{e^{x}} \odot \frac{1}{\nu} + v^{e^{f}} \frac{\sigma^{y}}{1 - s^{e}} + v^{ne}) - \left((\mathbf{I} - \mathbf{T} \odot v^{y}) \alpha^{y,z} - \frac{\sigma^{y}}{1 - s^{e}} \right) \bar{\gamma} \frac{1}{\bar{\nu}} \right] d \ln q^{f} \\ &+ \left[- (\mathbf{I} - \mathbf{T} \odot v^{y}) \alpha^{y,qf} + \mathbf{T} (v^{e^{f}} \odot \frac{\sigma^{y}}{1 - s^{e}}) \right] \odot \mathbf{J} d \ln t^{\varepsilon} + \theta \left(\mathbf{T} \mathbf{S} \odot \mathbf{J} \odot d \ln t^{b} - \mathbf{T} (\mathbf{1} + \mathbf{S}') \odot (\mathbf{J} \odot d \ln t^{b})' \right) \end{split}$$

Ouantification & Calibration

Quantification – Firms

▶ Production function $y_i = \mathcal{D}_i^y(T_i)z_iF(k,\varepsilon(e^f,e^r))$

$$F_{i}(\varepsilon(e^{f}, e^{c}, e^{r}), \ell) = \left[(1 - \epsilon)^{\frac{1}{\sigma_{y}}} (\bar{k}^{\alpha} \ell^{1 - \alpha})^{\frac{\sigma_{y} - 1}{\sigma_{y}}} + \epsilon^{\frac{1}{\sigma_{y}}} (z_{i}^{e} \varepsilon_{i}(e^{f}, e^{c}, e^{r}))^{\frac{\sigma_{y} - 1}{\sigma_{y}}} \right]^{\frac{\sigma_{y}}{\sigma_{y} - 1}}$$

$$\varepsilon_{i}(e^{f}, e^{c}, e^{r}) = \left[(\omega^{f})^{\frac{1}{\sigma_{e}}} (e^{f})^{\frac{\sigma_{e} - 1}{\sigma_{e}}} + (\omega^{c})^{\frac{1}{\sigma_{e}}} (e^{c})^{\frac{\sigma_{e} - 1}{\sigma_{e}}} + (\omega^{r})^{\frac{1}{\sigma_{e}}} (e^{r})^{\frac{\sigma_{e} - 1}{\sigma_{e}}} \right]^{\frac{\sigma_{e}}{\sigma_{e} - 1}}$$

- Calibrate TFP z_i to match $y_i = GDP_i$ per capita in 2019-23 (avg. PPP).
- Technology: $\omega^f = 56\%$, $\omega^c = 27\%$, $\omega^f = 17\%$, $\epsilon = 12\%$ for all i
- Calibrate (z_i^e) to match Energy/GDP $q^e e_i/p_i y_i$
- ▶ Damage functions in production function *y*:

$$\mathcal{D}_i^{y}(T) = e^{-\gamma_i^{\pm,y}(T - T_i^{\star})^2}$$

- Asymmetry in damage to match empirics with $\gamma^y = \gamma^{+,y} \mathbb{1}_{\{T > T_i^*\}} + \gamma^{-,y} \mathbb{1}_{\{T < T_i^*\}}$
- Today $\gamma_i^{\pm,y} = \bar{\gamma}^{\pm,y} \& T_i^{\star} = \bar{\alpha} T_{it_0} + (1 \bar{\alpha}) T^{\star}$

Quantification – Energy markets

- ► Fossil production e_{it}^x and reserve \mathcal{R}_{it}
 - Cost $C_i(e^x, \mathcal{R}) = \frac{\bar{\nu}_i}{1+\nu_i} \left(\frac{e^x}{\mathcal{R}}\right)^{1+\nu_i} \mathcal{R}$
 - Now: $\bar{\nu}_i$ to match extraction data e_i^x , \mathcal{R}_{it} calibrated to *proven reserves* data from BP. ν_i extraction cost curvature to match profit $\pi_i^f = \frac{\bar{\nu}_i \nu_i}{1 + \nu_i} (\frac{e_i^x}{\mathcal{R}_i})^{\nu_i} \mathcal{R}_i \mathbb{P}_i$
 - Future: Choose $(\bar{\nu}_i, \nu_i, \mathcal{R}_i)$ to match marginal cost C_e & extraction data e_i^x (BP, IEA)
- ► Coal and Renewable: Production \bar{e}_i^r , \bar{e}_i^x and price q_i^c , q_i^r
 - Calibrate $q_i^c = z^c \mathbb{P}_i$, $q_{it}^r = z^r \mathbb{P}_i$ Choose z_i^c , z_i^r to match the energy mix (e_i^f, e_i^c, e_i^r)
- ► Population dynamics
 - Match UN forecast for growth rate / fertility

back

Calibration Table: Baseline calibration (\star = subject to future changes) back

Techno	Technology & Energy markets					
α	0.35	Capital share in $F(\cdot)$	Capital/Output ratio			
ϵ	0.12	Energy share in $F(\cdot)$	Energy cost share (8.5%)			
σ	0.3	Elasticity capital-labor vs. energy	Complementarity in production (c.f. Bourany 2022)			
ω^f	0.56	Fossil energy share in $e(\cdot)$	Oil-gas/Energy ratio			
ω^c	0.27	Coal energy share in $e(\cdot)$	Coal/Energy ratio			
ω^r	0.17	Non-carbon energy share in $e(\cdot)$	Non-carbon/Energy ratio			
σ_e	2.0	Elasticity fossil-renewable	Slight substitutability & Study by Stern			
δ	0.06	Depreciation rate	Investment/Output ratio			
\bar{g}	0.01*	Long run TFP growth	Conservative estimate for growth			
Prefer	Preferences & Time horizon					
ρ	0.015	HH Discount factor	Long term interest rate & usual calib. in IAMs			
η	1.5	Risk aversion	Standard Calibration			
n	0.0035	Long run population growth	Average world population growth			
Clima	Climate parameters					
ξ^f, ξ^c	2.761 & 3.961	Emission factor - Oil+nat. gas vs. Coal	Conversion 1 MTOE \Rightarrow 1 MT CO ₂			
χ	2.3/1e6	Climate sensitivity	Pulse experiment: $100 GtC \equiv 0.23^{\circ} C$ medium-term warming			
$rac{\chi}{\delta_s}$	0.0004	Carbon exit from atmosphere	Pulse experiment: $100 GtC \equiv 0.15^{\circ} C$ long-term warming			
γ^{\oplus}	0.003406	Damage sensitivity	Nordhaus, Barrage (2023)			
α^T	0.5	Weight historical climate for optimal temp.	Marginal damage correlated with initial temp.			
T^{\star}	14.5	Optimal yearly temperature	Average yearly temperature/Developed economies			

20 / 23

Matching country-level moments

Table: Heterogeneity across countries

Dimension of heterogeneity	Model parameter	Matched variable from the data	Source
Population TFP/technology/institutions	Country size \mathcal{P}_i Firm productivity z_i	Population GDP per capita (2019-PPP)	UN WDI
Productivity in energy Cost of coal energy Cost of non-carbon energy	Energy-augmenting productivity z_i^e Cost of coal production C_i^c Cost of non-carbon production C_i^r	Energy cost share e_i^c/e_i Energy mix/coal share e_i^c/e_i	SRE SRE SRE
Local temperature Pattern scaling	Initial temperature T_{ii_0} Pattern scaling Δ_i	Pop-weighted yearly temperature Sensitivity of T_{it} to world \mathcal{T}_t	Burke et al Burke et al
Oil-gas reserves Cost of oil-gas extraction Cost of oil-gas extraction	Reserves \mathcal{R}_i Slope of extraction cost $\bar{\nu}_i$ Curvature of extraction cost ν_i	Proved Oil-gas reserves Oil-gas extracted/produced e_i^x Profit π_i^f / energy rent	SRE SRE WDI
Trade costs Armington preferences	Distance iceberg costs $ au_{ij}$ CES preferences a_{ij}	Geographical distance $ au_{ij} = d_{ij}^{eta}$ Trade flows	CEPII CEPII

Theoretical investigation: decomposing the welfare effects

- **Experiment:**
 - Start from the equilibrium where carbon tax $\mathbf{t}_{j}^{\varepsilon} = 0, \mathbf{t}_{jk}^{b} = 0, \forall j,$
 - Change in welfare: Linear approximation around that point \Rightarrow small changes in carbon tax dt_j^{ε} , $\forall j$ and tariffs $dt_{j,k}^{b}$, $\forall j, k$ for a club J_i

$$\frac{d\mathcal{U}_i}{u'(c_i)} = \eta_i^c d \ln p_i + \left[-\eta_i^c \bar{\gamma}_i \frac{1}{\bar{\nu}} - \eta_i^c s_i^e s_i^f + \eta_i^{\pi} (1 + \frac{1}{\bar{\nu}}) \right] d \ln q^f - \left[\eta_i^c s_i^e (s_i^c + s_i^r) + \eta_i^{\pi} \frac{1}{\bar{\nu}} + 1 \right] d \ln \mathbb{P}_i$$

• GE effect on energy markets $d \ln q^f \approx \bar{\nu} d \ln E^f + \dots$, due to taxation

$$d \ln q^f = -\frac{\bar{\nu}}{1 + \bar{\gamma} + \mathbb{C}\text{ov}_i(\widetilde{\lambda}_i^f, \bar{\gamma}_i) + \bar{\nu}\overline{\lambda}^{\sigma,f}} \sum_i \widetilde{\lambda}_i^f \mathbf{J}_i d\mathfrak{t}^{\varepsilon} + \sum_i \beta_i d \ln \mathfrak{p}_i$$

- Climate damage $\bar{\gamma}_i = \gamma (T_i T_i^*) T_i s^{E/S}$
- Trade and leakage effect: GE impact of t_i^{ε} and t_i^{b} on y_i and p_i
- \circ Params: σ energy demand elast^y, s^e energy cost share, $\bar{\nu}$ energy supply inverse elas^y

Climate agreement and welfare

Recover 90% of welfare gains, i.e. 5% out of 5.5% conso equivalent.

