Modelos Lineares I

Regressão Linear Múltipla (RLM):

Observações discrepantes e influentes

(30^a e 31^a Aulas)

Professor: Dr. José Rodrigo de Moraes
Universidade Federal Fluminense (UFF)
Departamento de Estatística (GET)

Modelo de Regressão Linear Múltipla Normal: Introdução – Influência no ajuste do modelo:

Em situações práticas, um pequeno subconjunto de observações pode exercer influência desproporcional no ajuste do modelo de regressão.

 Será preocupante se pequenas pertubações nestas observações produzirem mudanças substanciais nas estimativas dos parâmetros do modelo (dependência do modelo).

Procedimento: Localizar essas observações e avaliar o impacto no modelo:

- Se essas observações influentes forem valores "ruins", elas podem ser eliminadas;
- E se controlarem propriedades importantes do modelo, é bom saber disso !!!

Análise Gráfica dos Resíduos do Modelo de RLS:

Outliers (valores discrepantes ou atípicos) -Recordando:

- Outliers são observações discrepantes que apresentam resíduos que são consideravelmente superiores aos resíduos de outras observações.
- Os efeitos do outlier podem ser moderados ou extremos (dependendo do local onde se encontra), em termos da magnitude da sua influência sobre a estimação dos parâmetros.
 Vejamos o exemplo a seguir:

<u>Observações discrepantes (outliers)</u> versus <u>observações influentes</u>. **OBS:** Uma observação pode ser simultamente um outlier e influente!!!!

Ilustração: Modelo de RLS com três observações extraordinárias / extremas (influentes e Outliers)

Comentários - Ilustração:

□Embora o Ponto 1 seja extremo, não vai influenciar indevidamente a inclinação e o intercepto do modelo.

□Já os Pontos 2 e 3 são pontos influentes, mas o Ponto 3 é um ponto altamente influente na inclinação e intercepto do modelo. Embora o Ponto 2 seja também influente, sua influência é menor do que a do Ponto 3.

☐ Os <u>pontos influentes</u> são susceptíveis de serem encontrados em "áreas" onde pouco ou nenhum outro dado foi coletado. Esses pontos podem ser muito bem ajustados, mas em *detrimento* do ajuste de outros dados.

Comentários (continuação) - Ilustração:

 \square Em termos de ajuste do modelo, os pontos (observações) com alta alavancagem podem ser "bons" ou "ruins": O Ponto 1 pode reduzir as estimativas das variâncias dos estimadores de β_0 e β_1 , enquanto o Ponto 3 pode alterar drasticamente o ajuste do modelo.

□Se o Ponto 3 não é resultado de erro de informação ou classificação, então o pesquisador deve escolher qual modelo adotar. Normalmente, o modelo que melhor se ajusta a maioria dos dados deve ser o preferido até que observações adicionais possam ser observadas em outras áreas.

Medidas de diagnóstico de influência:

A seguir são apresentadas algumas das principais medidas usadas para a identificação de observações ditas influentes, entre elas destaca-se a "Distância de Cook".

Matriz de projeção (H):

Muito usada nas técnicas de diagnostico de análise de regressão linear: os elementos h_{1l} , h_{22} , ..., h_{nn} da diagonal da matriz $\mathbf{H=X(X^XX)^{-1}X^*}$ são denominadas medidas de alavancagem ("leverage").

A inspeção de tais elementos podem revelar pontos (observações) que são <u>potencialmente</u> influentes na determinação dos coeficientes do modelo (ajuste do modelo), em virtude da sua localização no espaço X (ilustração).

Observações: Matriz de Projeção (ou matriz Hat):

- \square Os valores h_{ii} (medidas de alavancagem="leverage") da matriz H, tal que $\frac{1}{n} \leq h_{ii} \leq 1$, refletem parcialmente a influência de cada observação no ajuste do modelo.
- $\ensuremath{\,\square\,} h_{ii} \to \ensuremath{\,{\rm Peso}}$ da observação Y_i na determinação do modelo ajustado.
- ☐ Em geral:
 - $h_{i\widetilde{=}} 1/n \rightarrow a$ obs. i tem <u>baixo potencial</u> para influenciar o ajuste do modelo.
 - h_{ii} = 1 \rightarrow a obs. i tem <u>alto potencial</u> para influenciar o ajuste do modelo.

8

Observações: Matriz de Projeção (ou matriz Hat):

- \square Como a $\sum_{i=1} h_{ii} = p$, supondo que todas as observações exerçam a mesma influência sobre os valores ajustados ($\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$), espera-se que h_{ii} esteja próximo de p/n.
- □ Valor crítico: h_{ii} > 2p/n (p é o número de parâmetros) → a observação i é uma observação (ponto) de alta alavancagem.
- \square O SPSS calcula <u>medidas centradas de alavancagem</u> (h_{ii}^*) , que variam no intervalo $0 \le h_{ii}^* \le 1 \frac{1}{n}$, dadas por:

 $h_{ii}^* < 0.20 \rightarrow \text{baixa alavancagem}$ $0.20 \le h_{ii}^* \le 0.50 \rightarrow \text{moderada alavancagem}$ $h_{ii}^* > 0.50 \rightarrow \text{alta alavancagem}$

Resíduos estudentizados (r^{S}) – Detecção de outliers:

□ Vimos que os <u>resíduos estudentizados</u> são considerados medidas mais adequadas para o exame de valores discrepantes (*outliers*), pois a variância dos resíduos e_i 's não é constante. Com efeito, e_i tem distribuição normal de média 0 e variância VAR(e_i)= σ^2 (1 - h_{ii}). Os <u>resíduos estudentizados</u>, denotados por r^s , são definidos abaixo:

$$r_i^S = \frac{e_i}{\sqrt{\hat{\sigma}^2 \cdot \left(1 - h_{ii}\right)}}; \quad \forall i = 1, 2, ..., n$$

onde: h_{ii} é o i-ésimo elemento da diagonal da matriz de projeção $H=X(X^{*}X)^{-1}X^{*}$.

Análise Gráfica dos Resíduos do Modelo de RLS:

a unidade i é um outlier.

Resíduos estudentizados

Critério para identificação de outliers:

OBS: 95% dos resíduos devem estar no intervalo [-2,+2].

Modelo de Regressão Linear Múltipla Normal:

Outra medida de influência:

- A informação de alavancagem (h_{ii}) reflete parcialmente a influência de uma observação (LEE, 1987).
- Para verificar a completa influência da i-ésima observação, torna-se necessário comparar as estimativas $\hat{\pmb{\beta}}$ e $\hat{\pmb{\beta}}_{(i)}$, esta última obtida quando a observação i é excluída da análise estatística (avaliação do impacto).

12

Modelo de Regressão Linear Múltipla Normal:

Distância de Cook:

Medida global de diagnóstico da influência de uma observação i sobre as estimativas dos parâmetros, que combina os resíduos estudentizados e as medidas de alavancagem h_{ii} .

• Foi proposta por Cook (1977), como uma medida da distância ao quadrado entre as estimativas dos parâmetros baseadas em todas n observações ($\hat{\pmb{\beta}}$) e as estimativas obtidas com a exclusão da *i*-ésima observação ($\hat{\pmb{\beta}}_{(i)}$). A *Distância de Cook*, denotada por D_i , tem a seguinte expressão:

$$D_{i} = \frac{\left(\hat{\pmb{\beta}}_{(i)} - \hat{\pmb{\beta}}\right) \left(XX\right) \left(\hat{\pmb{\beta}}_{(i)} - \hat{\pmb{\beta}}\right)}{p \cdot \hat{\sigma}^{2}}; \quad i = 1, 2, ..., n$$
₁₃

Distância de Cook (continuação):

 $\hat{\pmb{\beta}}_{(i)} = (X_{(i)}X_{(i)})^{-1}X_{(i)}Y_{(i)} \rightarrow \text{Estimativa de } \pmb{\beta} \text{ obtida pela exclusão}$ da observação i.

☐ A Distância de Cook também pode ser escrita por:

$$D_i = \frac{\left(\hat{\boldsymbol{Y}}_{(i)} - \hat{\boldsymbol{Y}}\right) \cdot \left(\hat{\boldsymbol{Y}}_{(i)} - \hat{\boldsymbol{Y}}\right)}{p \cdot \hat{\boldsymbol{\sigma}}^2}; \quad i = 1, 2, ..., n$$

Pergunta: O que concluir sobre D_{i} , a partir das expressões acima?

Observações: Distância de Cook:

□ Pode-se demonstrar ainda que a estatística D_i (Cordeiro & Neto, 2004), pode ser calculada por:

$$D_i = \frac{(r_i^s)^2}{p} \frac{h_{ii}}{1 - h_{ii}}; \quad i = 1, 2, ..., n$$

- Medida global de quão atípica a observação i se apresenta no ajuste do modelo.
- Cada componente (ou ambos) pode contribuir para um grande valor da estatística D_i.

15

Distância de Cook (continuação):

Observações:

- □ Valores grande da estatística D_i indicam observações que influenciam bastante as estimativas dos parâmetros e as predições.
- ☐ Regra prática (valor crítico=1):
 - D_i > 1 → a obs. i é excessivamente influente.
 - Em geral, se o maior valor de D_i for muito inferior a 1, então a eliminação de qualquer observação, não vai alterar substancialmente as estimativas dos parâmetros (Cordeiro & Neto, 2004).
 - Entretanto, nós podemos <u>examinar</u> quaisquer observações cujo valor de D_i seja extraordinariamente maior em relação aos demais valores de D_i.

Observações discrepantes ou influentes:

Métodos Gráficos:

Para detectar problemas com o ajuste do modelo relacionada à *presença de observações discrepantes e influentes*, recomenda-se a utilização dos <u>gráficos de dispersão</u> entre:

 $\checkmark r_i^S$ e a ordem das observações;

✓ h_{ii} e a ordem das observações;

✓ D_i e a ordem das observações;

 $\checkmark D_i \ e \ r_i^S$.

Exemplo 1: Modelo de Regressão Linear Simples

Os dados apresentados na tabela 1 a seguir se referem a um estudo sobre o desempenho de n=22 alunos, de uma escola técnica, matriculados na disciplina de matemática e estatística.

O objetivo do estudo é avaliar se alunos com melhores desempenhos em Matemática tendem apresentar melhores desempenhos na disciplina Estatística.

As notas para ambas as disciplinas variam de 0 a 10.

18

Tabela 1: Nota	de matemática (X) ver	sus Nota de Estatística (Y)
Aluno	Nota de matemática	Nota de estatística
1	1,5	3,0
2	1,7	2,5
3	2,0	3,5
4	2,2	3,0
5	2,5	3,1
6 7	2,5	3,6
7	2,7	3,2
8	2,9	3,9
9	3,0	4,0
10	3,5	4,0
11	3,8	4,2
12	4,2	4,1
13	4,3	4,8
14	4,6	4,2
15	4,9	5,1
16	5,0	5,1
17	5,1	5,1
18	5,2	4,8
19	5,5	5,3
20	4,3	8,0
21	9,5	8,0 19
22	9,5	2,5

Exemplo 1: Resumo com os principais resultados dos 4 ajustes:

Ajustes	n	β_0	β_1	P -valor(β_1)	R ²	R ² ajust
1º) Todas as obs	22	2,909	0,343	0,018	24,9%	21,2%
2º) Excluindo a obs(20)	21	2,768	0,335	0,005	34,9%	31,4%
3°) Excluindo as obs(20) e obs(22)	20	1,775	0,640	<0,001	94,7%	94,5%
4°) Excluindo as obs(20), obs(22) e obs(21)	19	1,869	0,611	<0,001	89,0%	88,3%

10

Exemplo 2: Modelo de Regressão Linear Múltipla

Os dados apresentados na tabela a seguir se referem a um estudo sobre a duração do AME (Y), em meses, realizado com uma amostra de n=21 mães atendidas num determinado hospital

O objetivo do estudo é estudar a relação entre Y e as seguintes variáveis explicativas:

- ✓ Anos de estudo da mãe (X₁)
- ✓ Tempo de orientação (em min) voltada ao manejo (X₂).
- √ Horas de trabalho (X₄)
- √ Tempo de casada (em anos) (X₅)

OBS: A variável X₃ não foi considerada na análise !!!

50

Mãe	AME	Anos de estudo	Tempo de orientação (manejo)	Horas de trabalho	Tempo de casada
1	2,1	6	71	23	1
2	3,4	6	65	35	6
3	3,6	6	81	24	7
4	1,7	6	50	27	1
5	1,8	6	46	49	1
6	3,2	6	74	50	8
7	2,6	6	64	52	5
8	2,9	6	63	64	7
9	2,3	6	54	37	5
10	1,6	5	47	49	1
11	1,5	6	47	85	3
12	2,7	6	70	80	9
13	4,1	6	117	74	12
14	2,0	6	46	76	5
15	2,3	6	57	81	6
16	3,6	6	89	60	10
17	3,3	6	86	52	12
18	1,8	6	50	64	6
19	1,7	6	56	18	5
20	2,4	5	75	32	9
21	3,0	6	84	64	6

Exemplo 2: Resultados do ajuste do modelo 1 Modelo 1: Modelo completo (4 variáveis explicativas) Sum of Squares Regression Residual 1,975 16 ,123 Total 11,892 a. Predictors: (Constant), Tempo_casado, Anos_estudo, Horas_trabalho, Tempo_orientação_manejo b. Dependent Variable: Duração_AME Unstandardized Coefficients Collinearity Statistics 1,902 3,127 Anos_estudo Tempo_orientação manejo ,486 ,023 ,075 ,007 ,832 ,343 ,256 ,007 2,916 Horas trabalho -,112 .766 1,30 a. Dependent Variable: Duração_AME

		odelo 2: Modelo com 3 variáveis explicativas									
				ANOVA ^b							
Mode	el	Sum Squar		df	Mean	Square	F	Sig.			
1	Regression		9,802	3		3,267	26,573	,000			
	Residual		2,090	17		,123					
	Total	1 1	1,892	20							
	. Dependent Varia	abic. Dulayi	_	efficients*							
		Unstandardize	d Coefficie	Stand	lardized ficients			Collinearity S			
		В	Std. Erro		eta	t	Sig.	Tolerance			
		-1.930	1,3	865		-1,414	,175	L			
(Consta	· .	.,,	_					.920			
Anos_es	· .	,410 ,026		107	,179 ,603	1,690 3,709	,109	,391			

	Exemplo 2: Resultados do ajuste do modelo 3									
Мо	delo 3: Mod	elo com			explic	cativas	;			
	ANOVA ^b									
Mo	odel	Sum o Square		f	Mean S	Square	F	Sig.		
1	Regression	9	451	2		4,726	34,841	,000ª	7	
	Residual	2	441	18		,136				
	Total 11,892		20							
	b. Dependent Varia	aule. Dulação	Coeffic	ients ^a						
		Unstandardize	d Coefficients		lardized ficients			Collinearity S	Statistics	
		В	Std. Error	Е	leta	t	Sig.	Tolerance	VIF	
			,336		.666	,927	,366		(a	
(Co	nstant)	,312				4,006	,001	,413	2,42	
(Co	npo_orientação_	,312	,007		,000		_			
(Co Tem mar	npo_orientação_	,	,007		,272	1,635	,119	,413	2,42	
Tem mar Tem	npo_orientação_ nejo	,028	,			1,635	,119	,413	2,42	

Mãe i	Dist. de Cook (D_{ii})	$h_{ii}^{\star}=h_{ii}-1/n$	h_{ii}	
1	0,0753	0,0033	0,0510	
2	0,1434	0,0002	0,0479	
3	0,0813	0,0326	0,0802	
4	0,0222	0,0400	0,0876	
5	0,0000	0,0620	0,1096	
6	0,0282	0,0090	0,0566	
7	0,0032	0,0008	0,0484	
8	0,0406	0,0016	0,0492	
9	0,0113	0,0227	0,0704	
10	0,0249	0,0560	0,1037	
11	0,0501	0,0560	0,1037	
12	0,000	0,0021	0,0497	
13	0,5006	0,3876	0,4352	
14	0,0184	0,0620	0,1096	
15	0,0019	0,0130	0,0606	
16	0,0238	0,0777	0,1254	
17	0,0001	0,0586	0,1062	
18	0,0080	0,0400	0,0876	
19	0,0546	0,0159	0,0636	
20	0,0510	0,0114	0,0591	5
21	0,0170	0,0473	0,0949	

Comentários / Perguntas:

Como nenhum dos valores de D_i excede a 1, não existe evidência de observações fortemente influentes no conjunto de dados.

Entretanto, para checar tal conclusão, a obs 13 (maior valor de D_i) será excluída, e o modelo reajustado (n=20 observação).

Perguntas:

Мо

- 1) O mesmo modelo será selecionado?
- 2) Houve alteração nas estimativas dos parâmetros?
- 3) As hipóteses básicas do modelo permaneceram válidas?

Exemplo: Resultados do ajuste do modelo 1 Modelo 1: Modelo completo (4 variáveis explicativas)

ANOVA											
Model		Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	7,603	4	1,901	16,070	,000a					
	Residual	1,774	15	,118							
	Total	9,378	19								

a. Predictors: (Constant), Tempo_casado, Anos_estudo, Horas_trabalho, Tempo_orientação_manejo

b. Dependent Variable: Duração_AME

	Coefficients ^a										
		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics				
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF			
1	(Constant)	-2,857	1,471		-1,942	,071					
	Anos_estudo	,546	,254	,248	2,146	,049	,943	1,061			
	Tempo_orientação_ manejo	,030	,009	,608	3,362	,004	,386	2,592			
	Horas_trabalho	-,002	,004	-,070	-,530	(,604	,734	1,363			
	Tempo_casado	,069	,041	,307	1,685	,113	,379	2,638			
a. D	ependent Variable: Duração_	AME						63			

Exemplo: Resultados do ajuste do modelo 2

Modelo 2: Modelo com 3 variáveis explicativas

	ANOVA ^b										
odel		Sum of Squares	df	Mean Square	F	Sig.					
	Regression	7,570	3	2,523	22,336	,000a					
	Residual	1,808	16	,113							
	Total	9.378	19								

a. Predictors: (Constant), Tempo_casado, Anos_estudo, Tempo_orientação_manejo b. Dependent Variable: Duração AME

	Unstandardize	d Coefficients	Coefficients			Collinearity	Statistics			
Model	В	Std. Error	Beta	t	Sig.	Tolerance	VIF			
1 (Constant)	-2,872	1,437		-1,998	,063					
Anos_estudo	,514	,242	,234	2,128	,049	,997	/ 1,003 \			
Tempo_orientação_ manejo	,032	,008	,651	4,132	,001	,485	2,062			
Tempo_casado	,059	,035	,262	1,664	(,116	,486	2,058 /			
a. Dependent Variable: Duração	a. Dependent Variable: Duracao AME									
	64									

Exemplo: Resultados do ajuste do modelo 3

Modelo 3: Modelo com 2 variáveis explicativas

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	7,257	2	3,629	29,090	,000ª
	Residual	2,120	17	,125		
	Total	9,378	19			

a. Predictors: (Constant), Tempo_orientação_manejo, Anos_estudo

b. Dependent Variable: Duração_AME

Standardized Coefficients Unstandardized Coefficients B -3,066 Anos_estudo ,504 ,041 ,254 ,063 ,998 ,998 Tempo_orientação_ manejo 1.002

a. Dependent Variable: Duração AME

Exemplo: Resultados do ajuste do modelo 4

Modelo 4: Modelo com apenas 1 variável explicativa

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6,765	1	6,765	46,615	,000a
	Residual	2,612	18	,145		
	Total	9,378	19			

a. Predictors: (Constant), Tempo_orientação_manejo

b. Dependent Variable: Duração_AME

		Unstandardize	d Coefficients	Coefficients			Collinearity		
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
1	(Constant)	-,168	,396		-,424	,677			
	Tempo_orientação_ manejo	,041	,006	,849	6,828	,000	1,000	1,000	

a. Dependent Variable: Duração_AME

Modelo final: $\hat{Y}_i = -0.168 + 0.041 X_i$; i = 1,2,...,20 $R^2 = 72,1\%$

Aula prática - Exercício 1: Modelo de RLM com p-1=2 vars explicativas

Os dados apresentados na tabela a seguir se referem a um estudo sobre o desempenho de n=20 alunos de doutorado na 2ª avaliação da disciplina "Epidemiologia Social" (Y).

O objetivo do estudo é estudar a relação entre Y e as seguintes variáveis explicativas:

• Tempo total de estudo = Tempo (em horas) dedicado a resolução de exercícios + Tempo (em horas) dedicado ao estudo da teoria.

• Nota da 1ª avaliação da referida disciplina.

Aluno	Nota da V2	Tempo_exs	Tempo_teoria	Nota da V1	
1	5,4	17	36	5,0	
2	2,4	10	21	3,0	
3	4,9	13	29	4,0	
4	3,2	11	26	4,0	
5	8,2	23	38	7,0	
6	4,2	16	35	5,0	
7	5,6	15	32	5,0	
8	2,1	8	20	1,0	
9	2,8	10	25	2,0	
10	3,6	12	30	2,0	
11	6,9	20	40	7,0	
12	3,9	12	31	3,5	
13	2,3	8	23	2,0	
14	3,5	8	22	4,0	
15	9,0	20	40	9,0	
16	8,5	24	39	8,0	
17	10,0	26	42	9,5	
18	9,2	25	40	9,0	
19	9,0	25	40	9,0	
20	8,2	23	36	8,0	

Aula prática - Exercício 1: Modelo de RLM com p-1=2 vars explicativas

- a) Ajuste e selecione um modelo de regressão linear para dados observados e obtenha os resíduos estudentizados, as medidas (centradas) de alavancagem e os valores da distância de Cook (D).
- b) Identifique a presença de outliers e de observações influentes no conjunto de dados. Avalie as hipóteses de homocedasticidade e normalidade dos erros.
- c) Avalie mais detalhadamente a(s) observação (ões) com maior(es) valor(es) de D_i , isto é, elimine-a(s) e ajuste um novo modelo para os dados restantes. Verifique se as hipóteses de homocedasticidade e normalidade dos erros estão satisfeitas? Escreva a equação do modelo escolhido.

Aula prática - Exercício 2: Modelo de RLM com p-1=4 vars explicativas ("Banco de hospitais")

Usando os dados do estudo com pacientes de n=113 hospitais, cujo objetivo é estudar a variação dos percentuais de pacientes com infecção hospitalar, avalie a presença de observações influentes no conjunto de dados, e tome as medidas necessárias. Explique passo a passo a suas decisões até a escolha do modelo final.

75