Supervised ML Workshop

DIT Pimpri

A workshop by Atharv, Ayush, Yash

Agenda for Workshop

Supervised Machine Learning

- Overview of ML
- 2. Linear Regression 📥
- 3. Logistic Regression
- 4. Decision Trees
- 5. Ensemble Methods Part 1:
 - Cascading
 - Stacking
- 6. Ensemble Methods Part 2:
 - Bagging
 - Boosting

Atharv

AI/ML Developer

GDG DIT - Machine Learning Lead

Works with the AI team at ElevateTrust.AI

Always learning, building, and sharing

Passionate about AI, ML, Generative AI, EdgeAI

AI/ML Developer

GDG DIT - Machine Learning Co-Lead

Turning data into insights with ML & Al, one model at a time.

Building apps where Machine Learning meets real-world impact.

Speedcuber — learned algorithms from cubes, patience (and suffering) from code.

Yash

AI/ML Developer

GDG-DIT Research Lead

Ex CP Member Lead

Ex Intern Accenture

Passionate about innovative tech

Forever Student

Linear regression is a way to predict a continuous number by learning the relationship between your input data and your target number.

Example: Predicting the price of a house based on its size.

Types of Linear Regression

1. Simple Linear Regression: Predicts an outcome using just one thing (like predicting pizza price based only on its size).

Size (sq/feet)	Price(lakhs)
500	2500000
400	2000000
450	2300000
650	3800000
800	5000000

2. Multiple Linear Regression: Predicts an outcome using several things together (like predicting pizza price using size, number of toppings, and delivery distance).

Size	Location	внк	Types	Price(lakhs)
500	Pune	1	Apartment	2500000
400	Mumbai	1	Apartment	5000000
450	Dubai	2	Bungalow	12500000
650	Palghar	4	Villa	8000000
800	Thane	3	Apartment	5000000

Perfect Linear Data: All points lie exactly on a straight line with no scatter.

Sort-of Linear Data: Points show a general linear trend but with scatter around the best-fit line.

The line needs to pass through the middle of the data, as close as possible to all the points on average.

The best fit line is the straight line that passes as close as possible to all the points on average.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Multiple Linear Regression (2 Features Example)

Linear regression predicts a continuous target variable (Y) using two independent variables $(X_1 \text{ and } X_2)$.

Equation: Y=b0+b1X1+b2X2

Purpose:

- 1.To find the best-fitting plane that predicts Y from X_1 and X_2 .
- 2. The line in 2D becomes a plane in 3D space when we have 2 features.

Graphical Idea:

- 1 feature → straight line
- 2 features \rightarrow flat or sloped plane in 3D

More features → hyperplane in higher dimensions

so true

Linear Regression - Equation

Formula

$$Y_i = f(X_i, eta) + e_i$$

 Y_i = dependent variable

f = function

 X_i = independent variable

eta = unknown parameters

 e_i = error terms

Employers
when you tell
them your app
uses linear
regression

Employers
when you tell
them your app
uses "machine
learning and
A.I."

Linear Regression - Optimization Problem

$$argmin||Y_i - (W^T \cdot X + W_0)||$$

Gradient Descent

Goal: Minimize the loss function by adjusting parameters.

$$heta_{
m new} = heta_{
m old} - lpha rac{\partial {
m Loss}}{\partial heta}$$

In Simpler term:

- Move opposite to the gradient (steepest ascent)
- Learning rate α controls step size

When you are a Machine Learning Engineer and know Linear Regression only,

My 3-month-old son is now TWICE as big as when he was born.

He's on track to weigh 7.5 trillion pounds by age 10

9:41 AM · 16 Mar 24 · 279K Views

Linear Data: Points form a pattern that can be fit well with a straight line.

Non-Linear Data: Points follow a curved pattern (like a parabola or wave) where a straight line would be a poor fit.

https://github.com/atharvsp18 9/Supervised-ML-Workshop-DIT

Assignment

- 1. Explore more on Linear Regression refer this video https://youtu.be/ilkJrwVUI1c
- 2. Explore Polynomial Regression

Connect with us on LinkedIn

Join GDG DIT - ML Community

Thank You