Variations

1. Direct Variations ↑↑

- "As the number of carrots goes up... the cost of carrots goes up." However the ratio of the cost to the number of carrots is always the same
- This relationship is known as direct variation or direct proportion

general form
$$\rightarrow y$$
 OC kx

e.g.1	If y is directly proportional to x and $y = 6$ when $x = 2$
	i)express y in terms of x
	given y $OC x \rightarrow y = kx$
	given when $x = 2$, $y = 6$
	$\rightarrow 2k = 6 \rightarrow k = 3$
	y = 3x
	ii) Find the value of x when $y = 12$
	12 = 3x
	x = 4
e.g.2	Given that the mass m grams of a sphercial globe varies directly as the cube of its radius,
	rcm and that $m = 675g$ when $r = 30cm$, find the mass when $r = 40cm$
	given that m direct pro.r ³
	$\rightarrow m = kr^3$
	$675 = k30^3$
	$k = \frac{675}{2700}$
	k = 0.025
	$\therefore m = 0.025r^3$
	$m = 0.025(40)^3 \to m = 1600g$

2. Inverse Variations ↑↓

- "More workers mean less time required and vice versa".
- This relationship is known as **inversely proportional**

$$general\ form \to y\ \mathsf{OC}\ \frac{k}{x}$$

e.g.1

If y is varies inversely as
$$x^2$$
 and $y = 8$ when $x = \frac{3}{2}$.

find the equation connecting x and y. Find also the value of y when $x = 3$

$$given y = \frac{k}{x^2}$$

$$8 = \frac{k}{\left(\frac{3}{2}\right)^2} \rightarrow k = 18$$

$$when x = 3 \rightarrow y = \frac{18}{(3)^2} \rightarrow y = 2$$
e.g.2

Given that the mass m grams of a sphercial globe varies directly as the cube of its radius, rcm and that $m = 675g$ when $r = 30cm$, find the mass when $r = 40cm$

$$given that m direct pro. r^3$$

$$\rightarrow m = kr^3$$

$675 = k30^3$
$k = \frac{675}{1}$
$k = \frac{1}{2700}$
k = 0.025
$\therefore m = 0.025r^3$
$m = 0.025(40)^3 \to m = 1600g$