Hardwarebeschreibung

Digital-Design

Prof. Dr.-Ing. habil. Jürgen Kampe

Automaten

26. März 2025 4. Seminar HB: 1

Untersuchen Sie die folgende sequentielle Schaltung:

	0	1	2	3	
	0	0	1	1	x_1
\underline{z}_{μ}	0	1	0	1	x_0
0	0/0	0/0	3/1	1/1	
1	2/1	2/1	1/1	1/1	
2	2/1	0/0 2/1 2/1 1/0	1/1	1/1	
3	1/0	1/0	2/0	3/1	

- 1. Wandeln Sie den gegebenen *Mealy*-Automaten in den entsprechenden *Moore*-Automaten um und zeichnen Sie beide Automatengraphen.
- 2. Realisieren Sie den Mealy-Automaten mit JK-MS-FF.
- 3. Beschreiben Sie diesen Automaten mit Hilfe eines BDD.

J. Kampe 4. Seminar HB: 2

1. Umwandlung $Mealy \rightarrow Moore$:

$$\underline{x_{\epsilon}} = B_{i,j} = B(\underline{z_i}, \underline{z_j})$$

$$\underline{x_{\epsilon}} = B_{i,i} = B(\underline{z_i}, \underline{z_i})$$

$$\underline{y_i}$$

Mealy-Automatengraph zeichnen:

	0	1	2	3	
	0	0	1	1	x_1
\underline{z}_{μ}	0	1	0	1	x_0
0	0/0	0/0	3/1	1/1	
1	2/1	2/1	3/1 1/1	1/1	
2	2/1	2/1	1/1	1/1	
3	1/0	1/0	2/0	3/1	

Umwandlung in einen *Moore*-Automatengraphen:

- Ermittlung aller Knoten, deren ankommende Kanten unterschiedliche Ausgabeforderungen enthalten.
- In alle nicht selektierten Knoten wird der Ausgabewert eingetragen, der an den *hin*führenden Kanten steht. Die selektierten Knoten werden verdoppelt, jeweils einer mit Ausgabe "0" und einer mit "1".
- Bei den duplizierten Zuständen werden die wegführenden Kanten ebenfalls dupliziert, die hinführenden dagegen entsprechend ihrer Ausgabeforderungen einem der beiden Knoten zugeteilt.

Umwandlung in einen *Moore*-Automatengraphen:

Mealy

Moore

?

2. Realisierung des *Mealy*-Automaten, Automatentabelle:

					Folge-			
	Eir	ngan	gsva		Zustand			
ϵ,μ	x_1	x_0	$ z_1 $	z_0	y	$^{1}z_{1}$	$^{1}z_{0}$	
0	0	0	0	0	?	?	?	
1	0	0	0	1	?	?	?	
2	0	0	1	0	?	?	?	
3	0	0	1	1	?	?	?	
4	0	1	0	0	?	?	?	
5	0	1	0	1	?	?	?	
6	0	1	1	0	?	?	?	
7	0	1	1	1	?	?	?	
8	1	0	0	0	?	?	?	
9	1	0	0	1	?	?	?	
10	1	0	1	0	?	?	?	
11	1	0	1	1	?	?	?	
12	1	1	0	0	?	?	?	
13	1	1	0	1	?	?	?	
14	1	1	1	0	?	?	?	
15	1	1	1	1	?	?	?	

Realisierung des *Mealy*-Automaten mit JK-MS-FF:

						Folg	ge-	erforderliche				
	Eir	ngan	gsva	riable		Zus	tand	Ansteuersignale				
ϵ, μ	$ x_1 $	x_0	$ z_1 $	z_0	y	$ ^1z_1$	$^{1}z_{0}$	J_1	K_1	J_0	K_0	
0	0	0	0	0	0	0	0	?	?	?	?	
1	0	0	0	1	1	1	0	?	?	?	?	
2	0	0	1	0	1	1	0	?	?	?	?	
3	0	0	1	1	0	0	1	?	?	?	?	
4	0	1	0	0	0	0	0	?	?	?	?	
5	0	1	0	1	1	1	0	?	?	?	?	
6	0	1	1	0	1	1	0	?	?	?	?	
7	0	1	1	1	0	0	1	?	?	?	?	
8	1	0	0	0	1	1	1	?	?	?	?	
9	1	0	0	1	1	0	1	?	?	?	?	
10	1	0	1	0	1	0	1	?	?	?	?	
11	1	0	1	1	0	1	0	?	?	?	?	
12	1	1	0	0	1	0	1	?	?	?	?	
13	1	1	0	1	1	0	1	?	?	?	?	
14	1	1	1	0	1	0	1	?	?	?	?	
15	1	1	1	1	1	1	1	?	?	?	?	

Q	^{1}Q	J	K	
0	0	0	d	rücksetzen oder halten
0	1	1	d	setzen oder toggeln
1	0	d	1	rücksetzen oder toggeln
1	1	d	0	setzen oder halten

Realisierung des *Mealy*-Automaten mit JK-MS-FF:

 $J_0 = ?$

J_1 :	z_0	K_1 :	z_0			
x_1 z_1			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
J	$T_1 = ?$	L	$K_1 = ?$			
J_0 :	z_0	K_0 :	z_0	y:	z_0	x_0
	$\begin{bmatrix} 0 & d & d & d \end{bmatrix}$	0 4	$\begin{bmatrix} \mathbf{d}_0 & 1_1 & 1_5 & \mathbf{d}_4 \end{bmatrix}$		0 0 1 1	1 5 0 4
x_1 z_1	0 2 d 3 d 7	0 6	$\begin{bmatrix} \mathbf{d}_2 & 0_3 & 0_7 & \mathbf{d}_6 \end{bmatrix}$		1 2 0 3	0 7 1 6
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1_{14} $\frac{1}{8}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x_1	1 0 11	1 ₁₅ 1 ₁₄
	1 8 d 9 d ₁₃	1 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 ₁₃ 1 ₁₂

 $K_0 = ?$

y = ?

3. Beschreibung des Automaten mit ROBDD:

Automaten werden durch ihre Zustandsüberführungs- und Ausgabefunktionen $f(\underline{x},\underline{z})$ und $g(\underline{z})$ bzw. $h(\underline{x},\underline{z})$ eindeutig bestimmt, die jeweils als BDD dargestellt werden können.

Alternativ können Automaten durch ihre charakteristische Funktion (Delta-Funktion) $\delta(\underline{x}, \underline{z}, {}^1\underline{z})$ beschrieben werden. Es gilt

$$\delta(\underline{x}_{\epsilon}, \underline{z}_{\mu}, {}^{1}\underline{z}_{\nu}) = 1,$$

wenn bei der Eingangsbelegung \underline{x}_{ϵ} der Zustandswechsel $\underline{z}_{\mu} \to {}^1\underline{z}_{\nu}$ stattfindet.

Bestimmung der charakteristischen Funktion des Mealy-Automaten:

Die DNF-Form der Delta-Funktion kann aus dem Automatengraphen ausgelesen werden: Jede abgehende Kante entspricht einem Term.

$$\delta = \overline{x_1} \underbrace{\overline{z_1} \overline{z_0}}_{0} \underbrace{\overline{z_1} \overline{z_0}}_{0} + x_1 \overline{x_0} \underbrace{\overline{z_1} \overline{z_0}}_{0} \underbrace{\overline{z_1} \overline{z_0}}_{3} + x_1 x_0 \underbrace{\overline{z_1} \overline{z_0}}_{0} \underbrace{\overline{z_1} \overline{z_0}}_{1} \underbrace{\overline{z_1}^1 z_0}_{1} + \dots$$

Zustandsüberführungsfunktion des *Mealy*-Automaten:

						Folg	ge-											
	Eingangsvariable					Zus	tand											
ϵ, μ	$ x_1 $	x_0	$ z_1 $	z_0	y	$^{1}z_{1}$	$^{1}z_{0}$											
0	0	0	0	0	0	0	0				α	.					α	· _
1	0	0	0	1	1	1	0	$^{1}z_{1}:$		-		0	_	$^{1}z_{0}:$		-		0
2	0	0	1	0	1	1	0	_	_		<u></u>			Ü	_		<u></u>	
3	0	0	1	1	0	0	1		? 0	?	? 5	$\begin{array}{c c} ? & \\ 4 & \end{array}$? 0	$\left. ? \right _{1}$	$\begin{array}{c c} ? \\ 5 \end{array}$	$?$ $_4$
4	0	1	0	0	0	0	0				? ,	? .				? .		2
5	0	1	0	1	1	1	0	$\frac{1}{2}$? 2		- 1	0		17	? 2		? 7	
6	0	1	1	0	1	1	0	x_1	?10	?11	?	?14	x_1		?10	?11	?15	?14
7	0	1	1	1	0	0	1		?	?			-		?	?		
8	1	0	0	0	1	1	1		* 8	. 9	?13	?12			8	• 9	?13	?12
9	1	0	0	1	1	0	1											
10	1	0	1	0	1	0	1		$^{1}z_{1}$	= ?								
11	1	0	1	1	0	1	0		$^{1}z_{0}$									
12	1	1	0	0	1	0	1		20	— :								
13	1	1	0	1	1	0	1											
14	1	1	1	0	1	0	1											
15	$\parallel 1$	1	1	1	1	1	1											

Repräsentation der Zustandsüberführungsfunktion mit Hilfe von ROBDDs:

Ordnung (Reihenfolge): $x_1 - x_0 - z_1 - z_0$

$$^{1}z_{1} = \overline{x_{1}} \, \overline{z_{1}} \, z_{0} + \overline{x_{1}} \, z_{1} \, \overline{z_{0}} + x_{1} \, \overline{x_{0}} \, \overline{z_{1}} \, \overline{z_{0}} + x_{1} \, z_{1} \, z_{0}$$

$$^{1}z_{0} = \overline{x_{1}} z_{1} z_{0} + x_{1} \overline{z_{1}} + x_{1} \overline{z_{0}} + x_{1} x_{0}$$

Verzeichnis der Präsentationen

Automaten	4. Seminar HB: 1
	4. Seminar HB: 2
Verzeichnis der Präsentationen	Präsentationen: 1