## Apparatus for generating clamping forc in inj ction molding machin s

Patent Number:

US5470592

Publication date:

1995-11-28

Inventor(s):

STEGER REINHARD (DE)

Applicant(s):

FERROMATIK MILACRON MASCHINENB (DE)

Requested Patent:

DE4336572

Priority Number(s):

Application Number: US19940319705 19941007

DE19934336572 19931027

IPC Classification:

B29C45/64

EC Classification:

B29C45/64

Equivalents:

EP0650817, JP7256719

#### **Abstract**

In an apparatus for generating clamping force in injection molding machines having stationary and moving platens, between which an injection molding die is mounted, and a traversing mechanism associated with the moving platen for opening and closing of the injection molding die, the present invention provides means for locking the traversing mechanism after the molding die has been closed. The clamping force required during injection is generated by at least one element made of a magnetostrictive material that is mounted between the traversing mechanism and the moving platen. Each magnetostrictive element is surrounded by a magnetic coil that is controllably energized to produce an alternating magnetic field which causes elongation of the associated element, generating the clamping force.

Data supplied from the esp@cenet database - I2

# <sup>®</sup> Patentschrift



(51) Int. Cl.<sup>5</sup>: B 29 C 45/64

B 29 C 33/20 B 22 D 17/22



**DEUTSCHES PATENTAMT**  Aktenzeichen:

P 43 36 572.8-16

Anmeldetag:

27. 10. 93

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 15. 12. 94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

Ferromatik Milacron Maschinenbau GmbH, 79364 Malterdingen, DE

(74) Vertreter:

Brundert, H., Dipl.-Phys.Dr.rer.nat.; Röther, P., Dipl.-Phys., Pat.-Anwälte, 47279 Duisburg

② Erfinder:

Steger, Reinhard, 79108 Freiburg, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DD 2 56 477 A5

(64) Formzuhaltevorrichtung, insbesondere an Spritzgießmaschinen

Bei einer Vorrichtung zum Aufbau des Schließdrucks insbesondere an Spritzgießmaschinen mit einer feststehenden und einer beweglichen Formaufspannplatte, zwischen denen ein Spritzgießwerkzeug befestigt ist und einem Verfahrmechanismus für die bewegliche Formaufspannplatte zum Öffnen und Schließen des Spritzgießwerkzeuges ist erfindungsgemäß vorgesehen, daß der Verfahrmechanismus durch eine Verriegelungseinrichtung in der geschlossenen Stellung des Spritzgießwerkzeugs verriegelbar ist und zwischen Verfahrmechanismus und beweglicher Formaufspannplatte mindestens ein Körper aus einem positiv magnetostriktivem Material angeordnet ist, welcher jeweils von einer ein magnetisches Wechselfeld erzeugenden Magnetspule umgeben ist.



### Beschreibung

Die Erfindung betrifft eine Formzuhaltevorrichtung insbesondere an Spritzgießmaschinen gemäß dem Oberbegriff des Patentanspruchs 1.

Beim Spritzgießen beispielsweise von aus thermoplastischem Kunststoffmaterial bestehenden Teil n wird die Kunststoffschmelze unter hohem Druck in den Formhohlraum des Spritzgießwerkzeuges eingespritzt. Für dessen zuverlässigen Verschluß muß durch eine 10 ausreichende Gegenkraft, die Schließkraft, gesorgt werden. Diese Schließkraft oder auch Formzuhaltekraft muß dabei größer sein als die beim Einspritzvorgang im Formhohlraum entstehende Auftreibkraft.

Die hierfür notwendigen Schließeinheiten werden 15 vollhydraulisch, hydraulisch-mechanisch oder elektromechanisch bewegt. Bei der Einrichtung eines Formwerkzeuges ist somit darauf zu achten, daß die Schließeinheit so eingestellt ist, daß nach dem Zusammenfahren der Werkzeugteile eine Kraftreserve zum sicheren Zu- 20 N/mm², d. h. bei einem Probekörperdurchmesser von halten gegen den Einspritzdruck verbleibt.

Bei hydraulischen Schließeinheiten wird die bewegliche Formaufspannplatte mit Hilfe von hydraulischen Schnellfahrzylindern auf die feststehende Formaufspannplatte zugefahren bis die Form geschlossen ist. 25 Beim Einspritzen müssen diese Zylinder einen entsprechenden Nachdruck erzeugen, was naturgemäß ein gro-Bes Nachsaugvolumen an Hydrauliköl bedingt. Das ist schon unter Umweltschutz-Gesichtspunkten nachteilig. Darüber hinaus besteht die Gefahr, daß die Hydraulik 30 tionskräfte aufnehmen kann, die auftreten, wenn durch gerade im Zeitpunkt des Einspritzens ausfällt, wodurch zum einen eine Gefährdung für das Bedienungspersonal ntsteht und zum anderen unbrauchbare Teile produziert werden.

aus einem Kniehebelgetriebe bestehen. Beim Aufbau der Schließkraft werden die Kniehebellager dynamisch stark belastet, was zu einem schnellen Verschleiß derselben führt.

Bei elektromotorisch angetriebenen Schließeinheiten, 40 beispielweise mit Kugelumlaufspindel oder Trapezgewinden, tritt in der Einspritzphase eine enorme Motorbelastung auf. Allen diesen Schließeinheiten gemeinsam ist, daß die unterschiedlichen Funktionen dieser Einheiten, einerseits die schnelle Zufahr- und Öffnungs-Bewegung bei geringer Kraft anderererseits Aufbau einer großen Kraft bei kleiner Bewegung vom gleichen System bewältigt werden müssen, welches daher entsprechend aufwendig und stabil ausgeführt werden muß.

Vorrichtung der eingangs genannten Art so auszubilden, daß die eigentliche Schließbewegung und der anschließende Schließdruckaufbau voneinander entkoppelt sind.

Merkmalen des Patentanspruchs 1 gelöst.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.

Es ist zwar aus der DD 2 56 477 A5 bekannt, zur Aufbringung des Schließdrucks Elektromagneten zu ver- 60 mechanismus aufgehoben und die Form kann geöffnet w nden.

Im Gegensatz zu dieser Lösung ist der grundlegende Gedanke der Erfindung der Einsatz von magnetostriktiven Werkstoffen zur Erzeugung der für den Spritzgußprozeß notwendigen Formschließkraft. Diese magneto- 65 gnetostriktiven Eigenschaften. Der Werkstoff reagiert striktiven Werkstoffe besitzen einen magnetoelastischen Kopplungsfaktor, der zur Folge hat, daß elektrische Energie unter geringen Verlusten in mechanische

Energie umgesetzt wird. Sie sind in der Lage, große Kräfte zu erzeugen und rasche, präzise Bewegungen bei hohen Wirkungsgraden und hoher energetischer Umsetzung auszuführen. Im Gegensatz den bekannten 5 Elektromagneten ist durch die erfindungsgemäße Lösung ein schnell ansprechendes und äußerst präzise arbeitendes Aggregat geschaffen.

Magnetostriktive Werkstoffe sind spezielle Legierungen, die in einem Magnetfeld einer bestimmten Frequenz und Stärke eine definierte Längenänderung erfahren bzw. eine definierte Kraft erzeugen. Die Längenänderung hängt dabei einerseits von der verwendeten Legierung, andererseits von der Länge des eingesetzten magnetostriktiven Bauteils und von der Größe des aufgebauten Magnetfeldes ab. Die Kraft ist dabei proportional zur Querschnittsfläche.

Die Größe der Längenänderung liegt normalerweise im Bereich von 0-1 mm. Bei einem Magnetfeld von 105A/m liegt die erreichbare Kraft im Bereich von 20 etwa 120 mm kann eine Kraft von ca. 200 kN erreicht werden.

Mit Hilfe der erfindungsgemäßen Lösung ist es möglich, den Schnellverfahrmechanismus, der lediglich die relativ geringe Kraft zum Verfahren der beweglichen Formaufspannplatte aufbringen muß, leichter und preiswerter auszubilden. Durch eine sichere und stabile Verriegelung des Verfahrmechanismus in seiner Schließstellung wird ein Gegenlager geschaffen, das die Reak-Anlegen des erforderlichen Magnetfelds der/die magnetostriktive(n) Körper durch ihre Ausdehnung die gewünschte Schließkraft erzeugen.

Somit tritt bei Verwendung von hydraulischen Ver-Die Schließeinheit kann jedoch auch beispielsweise 35 fahrzylindern kein Nachsaugvolumen auf, und die mechanisch beanspruchten Bauteile der Zylinder werden entlastet

> Ebenfalls entlastet werden bei Verwendung von Kniehebelgetrieben die Kniehebellager, da diese unter Last nur noch statisch belastet werden.

Bei elektromechanisch betriebenen Schließmechanismen mit beispielweise Kugelumlaufspindel oder vergleichbaren Bewegungseinheiten werden beim Schließdruckaufbau die Motoren nicht mehr zusätzlich bela-45 stet, wodurch sich deren Lebensdauer erhöht.

Wichtig bei allen Ausführungsformen, ob nun gemäß Anspruch 2, 3 oder 4 ist, daß die schnelle Zufahrbewegung über eine große Distanz bei relativ geringem Kraftaufwand und der Schließdruckaufbau bei kurzer Der Erfindung liegt daher die Aufgabe zugrunde, eine 50 Bewegungslänge und hohem Kraftaufwand streng voneinander getrennt sind.

> Auch bereits vorhandene Maschinen können relativ schnell und einfach nachgerüstet werden.

Darüber hinaus gewährleistet die erfindungsgemäße Diese Aufgabe wird durch eine Vorrichtung mit den 55 Ausgestaltung durch Änderung der magnetischen Feldstärke eine schnelle und problemlose Regelung der aufzubringenden Schließkraft.

> Am Ende des Einspritzvorganges wird das magnetische Feld abgeschaltet, die Verriegelung des Verfahrwerden.

> Gemäß Anspruch 6 wird als magnetostriktives Material für die Kraftkörper die Legierung Tb027Dy073Fe2 vorgeschlagen, ein Material mit besonders guten manahezu verzögerungsfrei auf Anderungen des Magnetfeldes. Ein 10 cm langer Stab dehnt sich in nur 50 Mikrosekunden um mehr 0,1 mm aus. Er ermöglicht daher die

direkte Kopplung elektrischer und mechanischer Syste-

Diese Legierung kann hohen Druckspannungen standhalten in der Größenordnung von mehreren 100 Megapascal Dadurch ist es in der Lage, die im vorliegenden Fall benötigten großen mechanischen Kräfte zu erzeugen. Hinsichtlich d r Erzeugung niederfrequenter mechanischer Energie im Bereich von 0-5 kHz ist die Legierung sämtlichen anderen verfügbaren Werkstoffen überlegen.

Die zur Magnetisierung verwendeten stromdurchflossenen Spulen weisen eine geringe Impedanz auf und werden mit relativ niedriger Spannung betrieben.

Ähnliche Kraftkörper können natürlich auch auf der Einspritzseite der Maschine vorgesehen sein, beispiels- 15 weise zum Aufbringen der Düsenanlagekraft.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist Gegenstand des Anspruchs 7. Dadurch, daß die bewegliche Formaufspannplatte mittels der axial verschiebbaren Holme verfahren wird, ergibt sich eine 20 Kniehebel nicht direkt an der beweglichen Formaufnoch kompaktere Bauart der Vorrichtung, da die Holme selbst Teile des Verfahrmechanismus sind. So können beispielweise die Holme gleichzeitig die Kolbenstangen der den Verfahrmechanismus bildenden Hydraulikzylin-

Bevorzugt werden die magnetostriktiven Körper gemäß Anspruch 8 so angeordnet, daß sie die bewegliche Formaufspannplatte mit der die freien Enden der Holme verbindenden Aufnahme verbinden. Die Aufnahme dient bei zugefahrenem Formwerkzeug als Widerlager 30 für die magnetostriktiven Körper, wenn diese durch Anliegen des Magnetfeldes die Formzuhaltekraft aufbringen. Alternativ können die Körper jedoch auch zwischen den Bauteilen des Verfahrmechanismus und der feststehenden Formaufspannplatte angeordnet sein.

Ausführungsbeispiel der Erfindung werden im folgenden anhand von Zeichnungen erläutert.

Fig. 1 schematisch eine Spritzgießmaschine ohne Einspritzeinheit dargestellt mit hydraulischer Schnellfahr- 40 einrichtung,

Fig. 2 schematisch eine Spritzgießmaschine mit kniehebelgetriebener Verfahreinrichtung (ebenfalls ohne Einspritzeinheit dargestellt),

ren Holmen.

Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen.

Der in den Fig. 1 und 2 dargestellte Teil einer Spritzgießmaschine weist eine feststehende Formaufspann- 50 platte 1 und eine beim Spritzgießbetrieb ebenfalls feststehende Endplatte 2 auf, die durch in der Regel vier Holme 3, von denen nur zwei dargestellt sind, miteinander verbunden sind. Auf den Holmen 3 verschiebbar ist zwischen den Platten 1 und 2 eine bewegliche Formauf- 55 spannplatte 4 geführt. Zwischen der feststehenden Formaufspannplatte 1 und der beweglichen Formaufspannplatte 4 ist ein Spritzgießwerkzeug 5 befestigt, welches aus zwei Formhälften 6 und 7 besteht, die den Formhohlraum einschließen. In der Fig. 1 ist das Spritz- 60 3' die bewegliche Formaufspannplatte 4. Die freien Engießwerkzeug in seinem geschlossenen Zustand darge-

Zum Verfahren der beweglichen Formaufspannplatte 4 dienen im Ausführungsbeispiel gemäß Fig. 1 Hydraulikzylinder 8, die in Ausnehmungen 9 in der Endplatte 2 65 fixiert sind und deren Kolbenstangen 10 an einer Zwischenplatte 11 angreifen. Zur besseren Führung der Zwischenplatte 11 dient ine Stange 12, die in der Endplatte 2 verschiebbar gelagert ist und ebenfalls an der Zwischenplatte 11 angreift.

Die Zwischenplatte 11 ist auf der den Hydraulikzylindern 8 entgegengesetzten Seite mit Hilfe mehrerer bei-5 spielsweise zylindrischer Körper 13, von denen lediglich zwei dargestellt sind, mit der beweglichen Formaufspannplatte 4 verbunden.

Die Körper bestehen aus einer magnetostriktiven Legierung, beispielsweise aus Tb<sub>0.27</sub>Dy<sub>0.73</sub>Fe<sub>2</sub>. Jeder ma-10 gnetostriktive Körper 13 ist von einer Magnetspule 21 umgeben, die ein magnetisches Wechselfeld erzeugt.

In der Führungsstange 12 befindet sich eine Ausnehmung 14, in die der Riegel 15 einer Verriegelungseinheit 16 greift, die an der Endplatte angeordnet ist.

Ein im Prinzip ähnlicher Aufbau ist in der Fig. 2 dargestellt. Das Formwerkzeug ist allerdings geöffnet und die für das Schließen und Öffnen verantwortliche Schnellverfahreinrichtung ist ein Kniehebelgetriebe 20. Auch bei dieser Ausführungsform greifen die Enden der spannplatte an, sondern an auf dieser Platte befestigten Körpern 13 aus magnetostriktivem Material, die ebenfalls von Magnetspulen 21 umgeben sind.

Der Spritzvorgang gestaltet sich gemäß der Erfin-25 dung folgendermaßen:

Die bewegliche Formaufspannplatte 4 wird mittels der Schnellfahreinrichtung auf die feststehende Formaufspannplatte 1 zugefahren, bis das Spritzgießwerkzeug 5 geschlossen ist. In dieser Stellung wird die Schnellverfahreinrichtung gesperrt. Das geschieht beispielsweise bei einem aus Hydraulikzylindern bestehenden Verfahrmechanismus (Fig. 1) dadurch, daß der Riegel 15 von der Verriegelungseinrichtung 16 in die in der Führungsstange 12 vorgesehene Ausnehmung 14 eingeschoben 35 wird. Nach der Verriegelung werden über die Magnetspulen 21, die die magnetostriktiven Körper 13 umgeben, die Magnetfelder aufgebaut, die die magnetostriktiven Körper 13 zur Längenänderung veranlassen. Hierdurch üben diese Körper 13 die zur Kompensation des Einspritzdrucks erforderlichen Kräfte auf die bewegliche Formaufspannplatte und damit auf das Spritzgießwerkzeug aus. Nachdem der Einspritzvorgang abgeschlossen ist und sich das eingespritzte Material verfestigt hat, werden die Magnetfelder abgeschaltet, die Fig. 3 alternative Ausführungsform mit verschiebba- 45 Sperrung des Schnellverfahrmechanismus aufgehoben, und die Formhälften 6 und 7 werden auseinandergefahren, damit das hergestellte Spritzgußteil entnommen

> In der Fig. 3 ist eine alternative Ausführungsform der Erfindung dargestellt, bei der die die feststehende Formaufspannplatte 1 und die bewegliche Formaufspannplatte 4 verbindenden Holme 3' axial verschiebbar sind.

> In diesem Ausführungsbeispiel dienen die Holme 3' als Kolbenstangen 10' der den Verfahrmechanismus bildenden Hydraulikzylinder 8', die auf der Einspritzseite an der feststehenden Formaufspannplatte 1 befestigt sind. Die Holme 31 sind in die Formaufspannplatte 1 durchstoßenden Führungen 25 axial verschiebbar geführt. In ihrem weiteren Verlauf durchstoßen die Holme den 26 der Holme 3' sind durch eine als Jochplatte zu bezeichnende Aufnahme 27 miteinander verbunden. Zwischen der Aufnahme 27 und der beweglichen Formaufspannplatte 4 sind die magnetostriktiven Körper 13 mit den sie umgebenden Magnetspulen 21 angeordnet.

> Durch Einfahren der Holme in die Hydraulikzylinder 8' wird die Aufnahme 27 zusammen mit den magnetostriktiven Körpern 13 und der beweglichen Formauf

spannplatte 4 auf die feststehende Formaufspannplatte 1 zugefahren, wodurch das dazwischen befindliche Formwerkzeug geschlossen wird. Nach der Verriegelung (nicht dargestellt) der Holme 3' in der Geschlossenstellung werden die Magnetfelder angelegt und die magnetostriktiven Körper 13 dehnen sich aus. Dadurch, daß diese an der Aufnahme 27 abgestützt sind wirkt die Kraft auf die bewegliche Formaufspannplatte 4, wodurch der erforderliche Zuhaltedruck erzeugt wird.

### Patentansprüche

1. Formhaltevorrichtung, insbesondere an Spritzgießmaschinen mit einer feststehenden und einer beweglichen Formaufspannplatte, zwischen denen 15 ein Spritzgießwerkzeug angeordnet ist und einem Verfahrmechanismus für die bewegliche Formaufspannplatte zum Öffnen und Schließen des Spritzgießwerkzeuges, dadurch gekennzeichnet, daß der Verfahrmechanismus durch eine Verriege- 20 lungseinrichtung (16) in der geschlossenen Stellung des Spritzgießwerkzeugs (5) verriegelbar ist und zwischen Verfahrmechanismus und einer der Formaufspannplatten (1, 4) mindestens ein Körper (13) aus einem positiv magnetostriktiven Material 25 angeordnet ist, welcher jeweils von einer ein magnetisches Wechselfeld erzeugenden Magnetspule (21) umgeben ist.

2. Formhaltevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Verfahrmechanismus 30 durch hydraulische Schnellfahrzylinder (8) gebildet ist, deren Kolbenstangenenden über die magnetostriktiven Körper (13) mit der beweglichen Form-

aufspannplatte (4) verbunden sind.

 Formhaltevorrichtung nach Anspruch 1, dadurch 35 gekennzeichnet, daß der Verfahrmechanismus ein Kniehebelgetriebe ist.

- 4. Formhaltevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Verfahrmechanismus aus elektromotorisch antreibbaren Kugelumlaufspin- 40 deln gebildet ist.
- 5. Formhaltevorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Feldstärke der Magnetspulen (21) einstellbar ist.
- 6. Formhaltevorrichtung nach einem der Ansprü45 che 1 bis 5, dadurch gekennzeichnet, daß die magnetostriktiven Körper (13) aus der Legierung
  Tb<sub>0.27</sub>Dy<sub>0.73</sub>Fe<sub>2</sub> bestehen.
- 7. Formhaltevorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, 50 daß die bewegliche Formaufspannplatte (4) auf in Führungen (25) in der feststehenden Formaufspannplatte (1) geführten Holmen (3') angeordnet ist, die in axialer Richtung relativ zur feststehenden Formaufspannplatte (1) mit Hilfe des Verfahrmethanismus (8, 20) verschiebbar sind.
- 8. Formhaltevorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die magnetostriktiven Körper (13) auf der von der feststehenden Formaufspannplatte (1) abgewandten Seite der beweglichen 60 Formaufspannplatte (4) zwischen dieser und der die freien Enden (26) der Holme (3') verbindenden und als Widerlager für die magnetostriktiven Körper (13) dienenden Aufnahme (27) angeordnet sind.

65

10

- Leerseite -

Int. Cl.<sup>5</sup>: **B 29 C 45/64**Veröffentlichungstag: 15. Dezember 1994



Int. Cl.<sup>5</sup>: B 29 C 45/64 V r<sup>\*</sup>ffentlichungstag: 15. Dezember 1994



Veröffentlichungstag: 15. Dezember 1994

