Name:	Roll Number:

Quiz 03 (Set C)

SIAS, Krea University (AY 2025-26) Mathematical Methods for Economics (Course Code: **ECON211**) 05 September 2025

Maximum Points: 10 Duration: 30 minutes

Dear students,

Instructions and Advice:

- This is a closed book quiz.
- This quiz accounts for 10% of your grades.
- You need to answer 8 questions in all.
- All questions are compulsory. Points for each question are mentioned in parentheses.
- Please select only one choice for the multiple choice questions.
- At no point during the exam, you are allowed to ask clarificatory questions. Make reasonable assumptions if you have doubts and proceed to answer the question.
- You are not permitted to use any electronic device including calculators.
- There is plenty of time. Use it wisely, do not rush.
- All the best!

Multiple Choice Questions

- 1. (1 point) Let f(x) = 200. Then,
 - A. $f^{-1}(x) = 200$
 - B. $f^{-1}(x)$ does not exist.
 - C. $f^{-1}(x) = \frac{1}{200}$
 - D. $f^{-1}(x) = \frac{1}{200x}$

Answer:

2. (1 point) Consider the following statements:

Statement (i):

$$\lim_{x \to -3} |x+3| = 0.$$

Statement (ii):

- f(x) = |x + 3| is differentiable at x = -3.
 - A. Both (i) and (ii) are correct.
 - B. Statement (i) is correct but statement (ii) is wrong.
 - C. Statement (i) is wrong but statement (ii) is correct.
 - D. Both (i) and (ii) are wrong.

Answer:

- 3. (1 point) If $f(x) = x^2$, $g(x) = x^2 + 2$ and $h(x) = (x+2)^2$, then
 - A. the graph of g(x) can be obtained by shifting f(x) downwards by 2 units.
 - B. the graph of h(x) can be obtained by shifting f(x) upwards by 1 unit.
 - C. the graph of h(x) can be obtained by shifting f(x) to the left by 2 units.
 - D. the graph of g(x) can be obtained by shifting f(x) to the right by 2 units.

Answer: _____

Short Answer Questions-I

1	(1 point)	Compute the inverse of the following function:	f(x) =	5x -	1
т.	(1 ponit)	Compute the inverse of the following function.	J(x) —	5 m _	1

6. (1 point) Compute $\frac{dy}{dx}$ if $y = 3x + \frac{6}{\sqrt{x}}$.

Short Answer Questions-II

7. (2 points) There are two parts in this question.

(a) (1 point) Calculate a such the following function is continuous for all x. $f(x) = \begin{cases} 2ax - 1 & \text{if } x \leq 1 \\ 6x^2 + 3 & \text{if } x > 1 \end{cases}$

(b) (1 point) Compute $\frac{dy}{dx}$ if $f(x) = \frac{3-x^2}{3+x^2}$.

			1	3			
(1 point)	Compute	the margir	iai revenue	•			
1							
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	ximate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	
(1 point)	Calculate	the approx	kimate reve	enue for the	2001st ticket	t.	

8. (2 points) The demand function for tickets on *Ruinmytrip* is given by

Rough Work