Частно решение по метода на неопределените коефициенти

• Линейното нехомогенно диференциално уравнение от вида

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = q(x) e^{\alpha x},$$

q(x) – полином, $\alpha \in \mathbb{R}$, допуска частно решение от вида

$$\eta(x) = x^k r(x) e^{\alpha x},$$

където k е кратността на α като характеристичен корен (k=0, ако α не е характеристичен корен); r(x) е полином от степен, равна на степента на q(x).

• Линейното нехомогенно диференциално уравнение от вида

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = e^{\alpha x} (p(x) \cos \beta x + q(x) \sin \beta x),$$

p(x), q(x) – полиноми, $\alpha, \beta \in \mathbb{R}$, допуска частно решение от вида

$$\eta(x) = x^k e^{\alpha x} (P(x) \cos \beta x + Q(x) \sin \beta x),$$

където k е кратността на $\alpha + i\beta$ като характеристичен корен (k = 0, ако $\alpha + i\beta$ не е характеристичен корен); P(x) и Q(x) са полиноми от степен $m = \max(\deg p(x), \deg q(x))$.

• Линейната нехомогенна система диференциални уравнения

$$\begin{vmatrix} \dot{x} = a_{11} x + a_{12} y + q_1(t) e^{\alpha t} \\ \dot{y} = a_{21} x + a_{22} y + q_2(t) e^{\alpha t}, \end{vmatrix}$$

 $q_1(t), q_2(t)$ – полиноми, $\alpha \in \mathbb{R}$, допуска частно решение от вида

$$\eta_1 = Q_1(t) e^{\alpha t},
\eta_2 = Q_2(t) e^{\alpha t},$$

където $Q_1(t)$, $Q_2(t)$ са полиноми от степен k+m; k е кратността на α като характеристичен корен (k=0), ако α не е характеристичен корен); m е най-високата степен на дадените полиноми $q_1(t)$, $q_2(t)$.

• Линейната нехомогенна система диференциални уравнения

$$\begin{vmatrix} \dot{x} = a_{11} x + a_{12} y + (p_1(t) \cos \beta t + q_1(t) \sin \beta t) e^{\alpha t} \\ \dot{y} = a_{21} x + a_{22} y + (p_2(t) \cos \beta t + q_2(t) \sin \beta t) e^{\alpha t}, \end{vmatrix}$$

 $p_i(t), q_i(t)$ – полиноми, $\alpha, \beta \in \mathbb{R}$, допуска частно решение от вида

$$\eta_1 = (P_1(t)\cos\beta t + Q_1(t)\sin\beta t)e^{\alpha t},
\eta_2 = (P_2(t)\cos\beta t + Q_2(t)\sin\beta t)e^{\alpha t},$$

където $P_i(t)$, $Q_i(t)$ са полиноми от степен k+m; k е кратността на $\alpha+i\beta$ като характеристичен корен (k=0, ако $\alpha+i\beta$ не е характеристичен корен); m е най-високата степен на дадените полиноми $p_i(t)$, $q_i(t)$.