Warszawski Indeks Giełdowy a indeksy innych giełd

Stanisław Galus

5 lutego 2009 r.

1 Wstęp

W niniejszej notatce badamy istnienie zależności między indeksem Giełdy Papierów Wartościowych w Warszawie a ośmioma indeksami giełd zagranicznych. Gdyby takie zależności istniały, można byłoby ich użyć do modelowania indeksu giełdy warszawskiej lub cen notowanych na niej akcji.

Badane indeksy przedstawia tabela 1. Zależności szukamy w okresie od rozpoczęcia notowań na giełdzie w Warszawie 16 kwietnia 1991 roku do końca 2008 roku. Dane o indeksie WIG pochodzą z internetowego serwisu firmy Akcje.net, a dane o pozostałych indeksach – z serwisu firmy Yahoo!¹.

2 Metoda

Analizujemy równanie regresji

$$\Delta WIG_{i} = \beta_{0} + \beta_{1} \Delta DJIA_{i-p} + \beta_{2} \Delta NASDAQ_{i-p} +$$

$$+\beta_{3} \Delta S \& P500_{i-p} + \beta_{4} \Delta NIKKEI_{i-p} +$$

$$+\beta_{5} \Delta HS_{i-p} + \beta_{6} \Delta CAC_{i-p} +$$

$$+\beta_{7} \Delta DAX_{i-p} + \beta_{8} \Delta FTSE_{i-p} + \xi_{i}$$

$$(1)$$

dla p=0 i p=1. Indeksy występujące po prawej stronie równania uważamy za zmienne egzogeniczne, zakładamy jednakową normalność i niezależność składników losowych ξ_i [1, rozdz. 4]. Równanie analizujemy dla trzech częstotliwości obserwacji: dziennych, miesięcznych i rocznych.

¹Odpowiednio: http://stooq.pl i http://finance.yahoo.com, styczeń 2009.

3 Wyniki

Wyniki estymacji przedstawia tabela 2. Jak widać, współczynnik determinacji osiąga duże wartości jedynie dla równań opartych na danych rocznych. Dla częstotliwości dziennych i miesięcznych, szczególnie dla przyrostów indeksów, jest bardzo niski. Wartości statystyki Durbina-Watsona i bliskie zeru wartości współczynników autokorelacji reszt nie pozwalają odrzucić hipotezy o nieskorelowaniu składników losowych. Duże wartości statystyki Jarque'a-Bery nie pozostawiają wątpliwości co do silnego odchylenia od normalności składników losowych dla częstotliwości dziennych i miesięcznych.

Analogiczne stwierdzenia dotyczą równania (1) w odniesieniu do okresu obserwacji ograniczonego do lat 2001–2008. W tym przypadku nieco wyższe są wartości współczynnika determinacji oraz inne indeksy są wskazywane jako istotnie wpływające na WIG.

Użycie w równaniu (1) logarytmów indeksów zamiast ich wartości nie zmienia wyciągniętych wniosków.

Reasumując, wydaje się, że badane indeksy giełd zagranicznych w pewnym stopniu mogą mieć zastosowanie do modelowania WIG dla rocznej częstotliwości danych, a raczej nie mogą mieć zastosowania do częstotliwości miesięcznej i dziennej.

Literatura

[1] G. S. Maddala, Ekonometria, Wydawnictwo Naukowe PWN, Warszawa 2006.

Tabela 1: Badane indeksy giełdowe.

Indeks	Symbol	Miasto
Warszawski Indeks Giełdowy	WIG	Warszawa
Dow Jones Industrial Average	DJIA	Nowy Jork
NASDAQ Composite	NASDAQ	Nowy Jork
S&P500	S&P500	Nowy Jork
Nikkei 225	NIKKEI	Tokio
Hang Seng	HS	Hong Kong
CAC 40	CAC	Paryż
DAX	DAX	Frankfurt
FTSE 100	FTSE	Londyn

Tabela 2: Oszacowania parametrów równania (1).

	p = 0			p = 1		
	dzienne	miesięczne	roczne	dzienne	miesięczne	roczne
$\Delta DJIA$						
$\Delta NASDAQ$	**		**	**		
$\Delta S\&P500$	*			***		
$\Delta NIKKEI$	***	**	*			
ΔHS	***	***	**	**		
$\Delta \mathit{CAC}$	**					
ΔDAX	***					***
$\Delta FTSE$	***					*
\overline{n}	3505	212	17	3505	211	16
$R^{2} \ (\%)$	27	35	91	7	6	78
$\hat{\sigma}$	358	1590	3907	419	1912	6656
d	1,85	2,13	1,59	1,88	2,05	1,46
$\hat{ ho}$	0,07	-0.07	0,19	0,06	-0.02	$0,\!15$
JB	1435	15	2,41	2062	32	3,44

Pozostałe oznaczenia są zgodne z [1, rozdz. 4, 6, 10.15].

^{*} Istotny wpływ przy poziomie istotności 0,1 ** Istotny wpływ przy poziomie istotności 0,05.

^{***} Istotny wpływ przy poziomie istotności 0,01.