Lezioni del 31 Ottobre del prof. Frigerio

Teorema 0.1. Sia X uno spazio topologico e Y_i una famiglia di sottospazi chiusi con Y_{i_0} compatto per qualche $i_0 \in I$.

$$\forall J \subseteq I \ finito \quad \bigcap_{i \in J} Y_i \neq \emptyset \quad \Rightarrow \quad \bigcap_{i \in I} Y_i \neq \emptyset$$

Dimostrazione. $\forall i \in I$ poniamo $Z_i = Y_{i_0} \cap Y_i$ tale insieme è chiuso di Y_{i_0} .

Sia $W_i = Y_{i_0} \setminus Z_i = Y_{i_0} \setminus Y_i$ tale insieme è un aperto di Y_{i_0} .

Supponiamo, per assurdo, che $\bigcap_{i \in I} Y_i = \emptyset$.

La famiglia $\{W_i\}_{i\in I}$ è un ricoprimento aperto di Y_{i_0} infatti:

$$\exists p \not\in \bigcup W_i \quad \Rightarrow \quad p \in Y_{i_0} \quad \Rightarrow \quad p \in \bigcap Y_i$$

Dalla compattezza di Y_{i_0} segue che

$$Y_{i_0} = W_{i_1} \cap \cdots \cap W_{i_n} = (Y_{i_0} \setminus Y_{i_1}) \cup \cdots \cup (Y_{i_0} \setminus Y_{i_n}) = Y_{i_0} \setminus (Y_{i_1} \cap \cdots \cap Y_{i_n})$$

Ora se $A = A \backslash B$ allora $A \cap B = \emptyset$ da cui

$$Y_{i_0} \cap (Y_{i_1} \cap \cdots \cap Y_{i_n}) = \emptyset$$

Ma ciò è assurdo in quanto ogni famiglia finita di Y_i si deve intersecare in modo non banale.

Corollario 0.2. Sia $\{Y_n\}_{n\in\mathbb{N}}$ è una famiglia di sottoinsiemi non vuoti e chiusi di X. Se Y_0 è compatto e $Y_{n+1}\subseteq Y_n$ $\forall n\in N$ allora $\bigcap Y_n\neq\emptyset$

Osservazione 1. Il teorema è falso se non si richiede Y_{i_0} compatto, prendiamo come controesempio $X=\mathbb{R}$ e $Y_n=[n,+\infty)$ con $n\in\mathbb{N}$

Teorema 0.3. Sia X uno spazio topologico e \mathfrak{B} una sua base.

Se ogni ricoprimento di X con aperti di $\mathfrak B$ ammette un sottoricoprimento finito, allora X è compatto

Dimostrazione. Sia $\mathfrak{U} = \{U_i\}_{i \in I}$ un generico ricoprimento aperto di X. Per definizione di ricoprimento

$$\forall x \in X \quad \exists i(x) \in I \quad x \in U_{i(x)}$$

e dalla definizione di base

$$\exists B_x \in \mathfrak{B} \quad x \in B_x \subseteq U_{i(x)}$$

Per costruzione $\{B_x\}_{x\in X}$ è un ricoprimento aperto di X con aperti di \mathfrak{B} (si dice che $\{B_x\}$ è un raffinamento di \mathfrak{U}).

Per ipotesi

$$X = B_{x_i} \cup \cdots \cup B_{x_n} \subseteq U_{i(x_1)} \cup \cdots \cup U_{i(x_n)}$$

Teorema 0.4. X, Y compatto $\Rightarrow X \times Y$ compatto

Dimostrazione. Per il lemma posso partire da un ricoprimento di $X \times Y$ della forma

$$\mathfrak{U} = \{U_i \times V_i\}_{i \in I}$$
 dove U_i aperto di X e V_i aperto di Y

 $\forall x \in X$ il sottoinsieme $\{x\} \times Y$ è compatto in quanto omeomorfo a Y, per cui

$$\exists J_x \subseteq I \text{ finito} \quad \{x\} \times Y \subseteq \bigcup_{i \in J_x} (U_i \times V_i)$$

Pongo $U_x = \bigcap_{i \in J_x} U_i$ tale insieme è aperto in quanto intersezione di finiti aperti.

Per costruzione $U_x \times Y \subseteq \bigcup_{i \in J_x} (U_i \times V_i)$

Poichè $\{U_x\}_{x\in X}$ è un ricoprimento aperto di X compatto si ha $X=U_{x_1}\cup \cdots \cup U_{x_n}$ allora

$$X \times Y = \subseteq \bigcup_{k=1}^{n} (U_{x_k} \times Y) \subseteq \bigcup_{k=1}^{n} \bigcup_{i \in J_{x_k}} (U_i \times V_i)$$

ho ricoperto $X \times Y$ con finiti elementi di $\mathfrak U$

Osservazione 2. Siano $A \subseteq X$ e $B \subseteq Y$.

La topologia prodotto di $A \times B$ (entrambi muniti della topologia di sottospazio) coincide con quella di sottospazio che $A \times B$ eredita da $X \times Y$.

Per il teorema precedente se A,B sono sottospazio compatti allora $A\times B$ è un sottospazio compatto di $X\times Y$

Proposizione 0.5.

$$C \subseteq \mathbb{R}^n$$
 compatto \Leftrightarrow C chiuso e limitato

 $Dimostrazione. \Rightarrow$ Essendo C compatto allora è limitato.

Essendo \mathbb{R}^n metrico allora è di Hausdorff dunque i compatti sono chiusi

 \Leftarrow Se C è limitato allora $\exists R > 0$ per cui $C \subseteq [-R, R]^n \subseteq \mathbb{R}^n$.

Ora [-R, R] è compatto in quanto prodotto finito di copie del compatto $[-R, R] \cong [0, 1]$.

Se C è chiuso, è perciò chiuso in un compatto dunque compatto.

Teorema 0.6. $f: X \to Y$ continua con X compatto eY di Housdorff allora $f \ e$ chiusa

Dimostrazione. Se $C \subseteq X$ è chiuso, allora C è compatto (chiuso in compatto) dunque f(C) è compatto e perciò chiuso in quanto Y è di Housdorff.

Definizione 0.1. X topologico si dice **compattamente generato** se i compatti di X formano un ricoprimento fondamentale

Lemma 0.7. Se ogni $x \in X$ ha un intorno compatto allora X è compattamente generato

Dimostrazione. Dalla definizione di ricoprimento fondamentale, basta vedere che

$$A \subseteq X \text{ con } A \cap K \text{ aperto in } K \forall K \text{ compatto} \Rightarrow A \text{ aperto in } X$$

Sia $p \in A$ mostriamo che $p \in A^{\circ}$

Per ipotesi $\exists U$ intorno compatto di p cioè $p \in U^{\circ} \subseteq U$.

Ora, per ipotesi, $A \cap U$ aperto in U i dunque anche $A \cap U^{\circ} = (A \cap U) \cap U^{\circ}$ aperto in U° .

Ora $A\cap U^\circ$ è aperto in X essendo aperto di aperto dunque

$$p \in A \cap U^{\circ} \subseteq A \quad \Rightarrow \quad p \in A^{\circ}$$
 essendo $A \cap U^{\circ}$ aperto

Osservazione 3. \mathbb{R}^n è compattamente generato in quanto ogni punto ammette un intorno compatto

Esercizio 0.8. Nessun punto di \mathbb{Q} ammette un intorno compatto

Dimostrazione. Supponiamo che $U \subseteq \mathbb{Q}$ sia un intorno di $p \in \mathbb{Q}$. Essendo U intorno $\exists V \subseteq \mathbb{Q}$ aperto di \mathbb{Q} con $p \in V \subseteq U$ da cui

$$\exists \varepsilon > 0 \quad p \in ((p - \varepsilon, p + \varepsilon) \cap Q) \subseteq U$$

Se U fosse compatto allora U chiuso in \mathbb{R} da cui

$$\overline{(p-\varepsilon,p+\varepsilon)\cap Q} = [p-\varepsilon,p+\varepsilon] \subseteq \mathbb{Q}$$

tale inclusione è assurda infatti $U\subseteq \mathbb{Q}$ ma $[p-\varepsilon,p+\varepsilon]\not\subset \mathbb{Q}$

Definizione 0.2. $f: X \to Y$ è propia se $f^{-1}(K)$ è compatto di X per ogni K compatto di Y

Teorema 0.9. $f: X \to Y$ continua e propia.

Se Y è di Housdorff e compattamente generato allora f è chiusa

Dimostrazione. Sia $C \subseteq X$ chiuso.

Poichè Y è compattamente generato basta vedere che $f(C)\cap K$ è chiuso in K $\forall K\subseteq Y$ compatto. Ora

$$f(C) \cap K = f\left(C \cap f^{-1}(K)\right)$$

ed essendo f propria allora $f^{-1}(K)$ è compatto.

Per cui $C \cap f^{-1}(K)$ è compatto (chiuso in un compatto).

Ora $f(C \cap f^{-1}(K))$ è compatto ed essendo T2 è chiuso