

XXIX. Nemzetközi Magyar Matematikaverseny Földes Ferenc Gimnázium, Miskolc

2023. április 21.

9. évfolyam

1. Egy osztályban karácsony előtt minden fiú adott minden lánynak egy-egy csokit, a lányok mindegyike pedig adott az összes fiúnak egy-egy cukorkát. Az ajándékozás után minden fiú megevett a kapott cukorkák közül kettőt, a lányok mindegyike pedig három csokit. Így elfogyott az édességek negyedrésze. Határozza meg, hogy legfeljebb hány tanulója lehetett az osztálynak.

(Fedorszki Ádám, Beregszász)

2. A teniszben az ún. rövidített játékot (tiebreak-et) az a játékos nyeri meg, aki legalább 7 pontot elér, és pontszáma legalább kettővel több, mint a másik játékosé. Dia és Viki mérkőzésén a döntő játszmában rövidítésre került sor. Kezdetben még Dia vezetett 4:2-re, de 5:6-nál már Vikinél volt az előny. Végül a rövidítést 12:10-re Dia nyerte meg, és ezzel ő lett a mérkőzés győztese. A teljes rövidítést tekintve hányféle sorrend szerint szerezhették meg a lányok pontjaikat? (Két sorrendet akkor tekintünk különbözőnek, ha valamelyik labdamenetet nem ugyanaz a játékos nyeri meg.)

(Kornai Júlia, Budapest)

3. Az ABC hegyesszögű háromszögben $AC \neq BC$. Legyen T a háromszög C csúcsához tartozó magasságának talppontja, O pedig a körülírt kör középpontja. Igazolja, hogy az ATOC és a BTOC négyszögek területe egyenlő.

(Fonyóné Németh Ildikó, Keszthely)

4. Oldja meg az alábbi egyenletrendszert a valós számok halmazán:

$$|x| + |y| + z = 2021$$

$$|x| + y + |z| = 2023$$

$$x + |y| + |z| = 2025$$

(Bencze Mihály, Brassó)

5. Keresse meg azokat a pozitív egész, összetett számokat, amelyeknek valódi osztóihoz (azaz 1-től és önmaguktól különböző osztóihoz) 1-et hozzáadva megkapjuk egy másik pozitív egész szám összes valódi osztóját.

(Kekeňák Tamás, Kassa)

6. Az ABCDE ötszögben a B és az E csúcsnál lévő szög 90° , AB = EA és BC = CD = DE. A BD és a CE átlók az F pontban metszik egymást. Bizonyítsa be, hogy AF = AB.

(Fonyó Lajos, Keszthely)

Megoldások

1. Legyen az osztályba járó fiúk száma x, a lányoké pedig y $(x, y \in \mathbb{Z}^+)$. Ekkor

 \bullet a fiúk által a lányoknak adott csokik száma: xy,

 \bullet a lányok által a fiúknak adott cukorkák száma: xy,

 \bullet az ajándékba adott összes édesség száma: 2xy.

Másrészt

• a lányok által megevett csokik száma: 3y,

 \bullet a fiúk által megevett cukorkák száma: 2x,

• az összes elfogyasztott édesség száma: 2x + 3y.

A feladat feltétele szerint:

$$2x + 3y = \frac{1}{4} \cdot 2xy.$$

Az egyenletet rendezve és átalakítva:

$$0 = xy - 4x - 6y,$$

$$24 = (x - 6)(y - 4).$$

Mivel az x+y kifejezés maximumát keressük, ezért feltételezhetjük, hogy x-6 és y-4 pozitív egész számok. A 24 szorzattá bontási lehetőségeit táblázatba foglalva az alábbi megoldások adódnak:

x-6	y-4	x	y	x+y
1	24	7	28	35
2	12	8	16	24
3	8	9	12	21
4	6	10	10	20
6	4	12	8	20
8	3	14	7	21
12	2	18	6	24
24	1	30	5	35

A táblázat alapján x+y maximális értéke 35. Tehát az osztálynak legfeljebb 35 tanulója lehet.

2. A rövidített játék lefolyása az alábbiak szerint alakulhatott:

- Az első 6 labdamenetből Viki kettőt nyert meg. Győztes labdameneteinek sorszámát $\frac{6.5}{2}=15$ -féleképpen választhatjuk ki.
- A következő 5 labdamenetből Dia csak 1 pontot szerzett. Megnyert pontját az 5 labdamenetből 5-féleképpen választhatjuk ki.
- A 12. pontot csak Dia nyerhette meg, mivel ellenkező esetben Viki nyerte volna meg a rövidítést 5:7-re.

2

- A 6:6-os állás után két-két pontonként felváltva szerezhették csak meg a lányok a pontokat, hiszen semelyikük nem tehetett szert legalább kétpontos előnyre. Így az eredmény 6:6, 7:7, 8:8, 9:9, 10:10 lehetett csak a folytatásban. Ezen időszak alatt a lányok a pontokat 2⁴ = 16-féle sorrend szerint nyerhették meg.
- Végül az utolsó két pontot Diának kellett megszereznie, és ezzel fejeződött be a játék.

Mivel a rövidített játék egyes szakaszai egymástól függetlenül alakulhattak a korábbiakban megadott szabályok szerint, ezért a végeredmény $15 \cdot 5 \cdot 16 = 1200$ -féleképpen alakulhatott ki.

3. Legyen az AB oldal felezőpontja F, $OT \cap CF = D$. Mivel $CT \perp AB$ és $OF \perp AB$, ezért $CT \parallel OF$ és a CTFO négyszög trapéz.

1. ábra.

 $T_{CTO} = T_{CTF}$, mivel a két háromszög CT oldala közös, és az O illetve F pontok egyenlő távolságra vannak a CT egyenestől. Ezt felhasználva:

$$T_{ATOC} = T_{ATDC} + T_{CDO} = T_{ATDC} + T_{TFD} = T_{AFC} = \frac{1}{2} T_{ABC}.$$

(Az utolsó egyenlőség felírásával felhasználtuk, hogy a háromszög súlyvonala felezi a háromszög területét.)

A kapott egyenlőség alapján:

$$T_{BTOC} = T_{ABC} - T_{ATOC} = T_{ABC} - \frac{1}{2}T_{ABC} = \frac{1}{2}T_{ABC}.$$

Ezzel beláttuk, hogy $T_{ATOC} = T_{BTOC}$.

4. Az egyenletrendszer:

$$|x| + |y| + z = 2021\tag{1}$$

$$|x| + y + |z| = 2023 \tag{2}$$

$$x + |y| + |z| = 2025 (3)$$

A (2) és az (1) egyenletek különbségét képezve:

$$y - |y| + |z| - z = 2,$$

 $|z| - z = 2 + |y| - y \ge 2 > 0.$

Ezt figyelembe véve |z| > z, ami alapján z < 0 és |z| = -z.

A (3) és a (2) egyenletek különbségét képezve:

$$x - |x| + |y| - y = 2,$$

 $|y| - y = 2 + |x| - x \ge 2 > 0.$

Ezt figyelembe véve |y| > y, ami alapján y < 0 és |y| = -y.

Az y és a z előjelének megállapítása után egyenletrendszerünk az alábbi alakban írható fel:

$$|x| - y + z = 2021 \tag{4}$$

$$|x| + y - z = 2023 \tag{5}$$

$$x - y - z = 2025 \tag{6}$$

A (4) és (5) egyenleteket összeadva és a kapott egyenlőséget 2-vel osztva |x| = 2022 adódik. A kapott eredményt figyelembe véve az (5) egyenlet alapján y - z = 1.

- x = 2022 esetén az y z = 1 és a -y z = 3 feltételeket kapjuk, amelyek az y = -1 és a z = -2 értékek mellett teljesülnek.
- x = -2022 esetén pedig az y z = 1 és a -y z = 4047 egyenletekből az y = -2023 és a z = -2024 értékeket kapjuk.

A kapott számhármasokat ellenőrizve azok teljesítik a feladat feltételeit. Így az egyenletrendszer megoldásai: $M = \{(x; y; z) \mid (2022; -1; -2); (-2022; -2023; -2024)\}.$

5. Jelölje a keresett pozitív egész, összetett számot n, a valódi osztóinak halmazát $N = \{d_1; d_2; \ldots; d_k\}$ $(d_1 < d_2 < \cdots < d_k)$; jelölje a másik pozitív egész számot m, a valódi osztóinak halmazát pedig $M = \{d_1 + 1; d_2 + 1; \ldots; d_k + 1\}$.

Mivel $d_1 \neq 1$ ezért $d_1 + 1 \neq 2$, így m nem osztható 2-vel, tehát m páratlan szám. Egy páratlan szám összes osztója páratlan szám, ezért az M halmaz elemei páratlan számok, az N halmazé pedig párosak.

A d_1, d_2, \ldots, d_k között nem lehet $p \cdot 2^{\ell}$, ($\ell \in \mathbb{Z}^+$, p 2-től különböző prímszám) alakú szám sem, mivel ellenkező esetben p is valódi osztója lenne n-nek, és ekkor p+1 egy páros osztója lenne m-nek. Ez viszont ellentmondana az m paritásáról tett korábbi megállapításunknak.

Eddigi eredményeinket összefoglalva tehát $n=2^{\ell}$ ($\ell \in \mathbb{Z}^+$).

Az ℓ lehetséges értékeit vizsgálva:

- (a) $\ell=1$ esetén n=2, ami nem összetett szám, és így nem felel meg a feladat feltételeinek.
- (b) $\ell = 2$ esetén n = 4, $N = \{2\}$, $M = \{3\}$ és m = 9.
- (c) $\ell = 3$ esetén n = 8, $N = \{2, 4\}$, $M = \{3, 5\}$ és m = 15.
- (d) $\ell \geqslant 4$ esetén már nem kapunk újabb megoldásokat, hiszen ekkor $\{2;4;8\} \subseteq N$, $\{3;5;9\} \subseteq M$; azonban 3|m, 5|m alapján 15|m ($15 \in M$) és $14 \in N$ feltételeknek is teljesülnie kellene. Viszont a korábbiakban már megállapítottuk, hogy az N halmaz elemei között nem szerepelhet $p \cdot 2^{\ell}$ alakú szám.

Tehát a feladat feltételeinek megfelelő számok a 4 és a 8.

6. Készítsünk ábrát:

2. ábra.

A megadott feltételek alapján AB = EA, BC = DE és $ABC \triangleleft = DEA \triangleleft = 90^{\circ}$, tehát $ABC \triangle \cong AED \triangle$ (két-két oldal és a közbezárt szög egyenlő). Az egybevágóság alapján $BCA \triangleleft = EDA \triangleleft$, AC = AD és az ACD háromszögben $ACD \triangleleft = ADC \triangleleft$. Ezt felhasználva:

$$BCD \triangleleft = BCA \triangleleft + ACD \triangleleft = EDA \triangleleft + ADC \triangleleft = EDC \triangleleft$$
.

Emellett a BC = CD = DE egyenlőséget is figyelembe véve $BCD\Delta \cong CDE\Delta$ (kétkét oldal és a közbezárt szög egyenlő). Az egybevágóság alapján BD = EC, $CBD \triangleleft = CDB \triangleleft = DCE \triangleleft = DEC \triangleleft$, a CDF háromszög egyenlő szárú és FC = FD. Ezt felhasználva:

$$BF = BD - FD = EC - FC = EF$$
,

és $ABF \triangle \cong AEF \triangle$ (oldalaik páronként egyenlők). Emiatt

$$BFA \triangleleft = \frac{1}{2}BFE \triangleleft = \frac{1}{2}DFC \triangleleft = \frac{1}{2}(180^{\circ} - 2FCD \triangleleft) =$$
$$= 90^{\circ} - FCD \triangleleft = 90^{\circ} - DBC \triangleleft = ABF \triangleleft.$$

Így az ABF háromszög egyenlő szárú és AB = AF. Ezzel az állítást beláttuk.