Desenvolv. de Sistemas Embarcados em Tempo Real

Prof. Hermano Cabral

Departamento de Eletrônica e Sistemas — UFPE

18 de junho de 2024

Plano de Aula

Tema central

Máquinas de estados

Plano de Aula

Tema central

Máquinas de estados

Objetivos

- Conhecer as características de uma máquina de estados hierárquica
- Programar uma máquina de estados hierárquica

Introdução

- Uma HSM é uma FSM com algumas características adicionais:
 - Condições
 - Hierarquia, ou estados aninhados
 - Concomitância, ou estados ortogonais
 - Ações vinculadas a estados
 - Histórico de estados

Condições de guarda

• Cada transição em uma HSM é descrita por um evento, uma condição e uma ou mais ações.

Condições de guarda

- Cada transição em uma HSM é descrita por um evento, uma condição e uma ou mais ações.
- A sintaxe para a transição é Ev[cond] / ação

Hierarquia de Estados

 Em uma HSM, um estado pode ser uma FSM completa.

Hierarquia de Estados

- Em uma HSM, um estado pode ser uma FSM completa.
- Cada um destes estados são denominados de super-estados

Hierarquia de Estados

- Em uma HSM, um estado pode ser uma FSM completa.
- Cada um destes estados são denominados de super-estados
- Uma HSM sempre está em um estado comum

Hierarquia de Estados

- Em uma HSM, um estado pode ser uma FSM completa.
- Cada um destes estados são denominados de super-estados
- Uma HSM sempre está em um estado comum
- Dizemos que o estado em que a HSM está e todos aqueles que o englobam estão ativos

Hierarquia de Estados

• A transição de estados pode ser entre super-estados.

Concomitância

• Em uma HSM, 2 super-estados podem estar ativos ao mesmo tempo.

Ações associadas a estados

- Estados em uma HSM podem possuir ações associadas:
 - Ações de entrada
 - Ações de saída
 - Ações de inicialização
 - Ações de execução (transição interna)

Ações de entrada e saída

 Todo estado em uma HSM pode possuir ações de entrada e saída.

Ações de entrada e saída

- Todo estado em uma HSM pode possuir ações de entrada e saída.
- Essas ações são executadas qualquer que seja a transição que chegue ou saia do estado.

Ações de transição interna

 Alguns eventos devem disparar ações que devem ser realizadas mas não mudanças de estado.

Ações de transição interna

- Alguns eventos devem disparar ações que devem ser realizadas mas não mudanças de estado.
- Denominamos esta situação de transição interna.

- Os vários tipos de ação são executados na seguinte ordem, depois de verificada a condição de guarda:
 - Ação da transição

- Os vários tipos de ação são executados na seguinte ordem, depois de verificada a condição de guarda:
 - Ação da transição

- Os vários tipos de ação são executados na seguinte ordem, depois de verificada a condição de guarda:
 - Ação da transição
 - Ações de saída dos estados de onde saímos

- Os vários tipos de ação são executados na seguinte ordem, depois de verificada a condição de guarda:
 - Ação da transição
 - Ações de saída dos estados de onde saímos
 - Ações de entrada e de transição inicial nos novos estados

Transições locais

 Transições locais são transições entre estados que não disparam as rotinas de saída ou de entrada.

Transições locais

- Transições locais são transições entre estados que não disparam as rotinas de saída ou de entrada.
 - No caso de uma transição de um estado para um substado, a rotina de saída do super-estado não é chamada.

Transições locais

- Transições locais são transições entre estados que não disparam as rotinas de saída ou de entrada.
 - No caso de uma transição de um estado para um substado, a rotina de saída do super-estado não é chamada.
 - No outro caso, a rotina de entrada e saída do super-estado não é chamada.

Transições locais

 Apesar de ambos os tipos de transição serem definidos pela UML, nesta disciplina só usaremos transições locais.

Exemplo de uma HSM complexa

Ações de uma máquina de estados

 Se a máquina anterior receber a sequência de eventos G-I-A-D-D, a sequência de ações será:

- Se a máquina anterior receber a sequência de eventos G-I-A-D-D, a sequência de ações será:
 - Top:Init S:Entry S2:Entry S2:Init S21:Entry S211:Entry

- Se a máquina anterior receber a sequência de eventos
 G-I-A-D-D, a sequência de ações será:
 - Top:Init S:Entry S2:Entry S2:Init S21:Entry -S211:Entry
 - S21:G S211:Exit S21:Exit S2:Exit S1:Entry S11:Entry

- Se a máquina anterior receber a sequência de eventos
 G-I-A-D-D, a sequência de ações será:
 - Top:Init S:Entry S2:Entry S2:Init S21:Entry -S211:Entry
 - S21:G S211:Exit S21:Exit S2:Exit S1:Entry S11:Entry
 - S1:I

- Se a máquina anterior receber a sequência de eventos
 G-I-A-D-D, a sequência de ações será:
 - Top:Init S:Entry S2:Entry S2:Init S21:Entry -S211:Entry
 - S21:G S211:Exit S21:Exit S2:Exit S1:Entry S11:Entry
 - S1:I
 - S1:A S11:Exit S1:Exit S1:Entry S1:Init S11:Entry

- Se a máquina anterior receber a sequência de eventos G-I-A-D-D, a sequência de ações será:
 - Top:Init S:Entry S2:Entry S2:Init S21:Entry -S211:Entry
 - S21:G S211:Exit S21:Exit S2:Exit S1:Entry S11:Entry
 - S1:I
 - S1:A S11:Exit S1:Exit S1:Entry S1:Init S11:Entry
 - S1:D S11:Exit S1:Exit S:Init S1:Entry S11:Entry

- Se a máquina anterior receber a sequência de eventos
 G-I-A-D-D, a sequência de acões será:
 - Top:Init S:Entry S2:Entry S2:Init S21:Entry -S211:Entry
 - S21:G S211:Exit S21:Exit S2:Exit S1:Entry S11:Entry
 - S1:I
 - S1:A S11:Exit S1:Exit S1:Entry S1:Init S11:Entry
 - S1:D S11:Exit S1:Exit S:Init S1:Entry S11:Entry
 - S11:D S11:Exit S1:Init S11:Entry

Exemplo — calculadora

 Queremos implementar uma calculadora onde o usuário entra um operando, seguido de um operador, seguido de um operando e do sinal "=".

Exemplo — calculadora

- Queremos implementar uma calculadora onde o usuário entra um operando, seguido de um operador, seguido de um operando e do sinal "=".
- Os operandos são números de ponto flutuante com no máximo 8 dígitos, enquanto a resposta é um número com no máximo 16 dígitos.

Exemplo — calculadora

- Queremos implementar uma calculadora onde o usuário entra um operando, seguido de um operador, seguido de um operando e do sinal "=".
- Os operandos são números de ponto flutuante com no máximo 8 dígitos, enquanto a resposta é um número com no máximo 16 dígitos.
- Os operadores são +, -, * e /.

Exemplo — calculadora

 Se o primeiro operando n\u00e3o for inserido e houver uma conta anterior, o resultado desta conta \u00e9 usado como o primeiro operando.

Exemplo — calculadora

- Se o primeiro operando n\u00e3o for inserido e houver uma conta anterior, o resultado desta conta \u00e9 usado como o primeiro operando.
- Os números podem ser negativos.

Exemplo — calculadora

- Se o primeiro operando não for inserido e houver uma conta anterior, o resultado desta conta é usado como o primeiro operando.
- Os números podem ser negativos.
- A calculadora tem uma tecla "C" que limpa os dados já entrados e qualquer resultado anterior obtido.

```
expression ::= operand1 operator operand2 '='
operand1 ::= expression | ['+' | '-'] number
operand2 ::= ['+' | '-'] number
number ::= {'0' | '1' | ... '9'}* ['.' {'0' | '1' | ... '9'}*]
operator ::= '+' | '-' | '*' | '/'
```

Exemplo — calculadora

 Uma técnica formal de detalhar estes requisitos é através da notação BNF, mostrada acima.