Codeforces Round #329 (Div. 2)

Problem B: Anton and Lines

Prof. Edson Alves

Faculdade UnB Gama

Codeforces Round #329 (Div.

2) - Problem B: Anton and Lines

Problema

The teacher gave Anton a large geometry homework, but he didn't do it (as usual) as he participated in a regular round on Codeforces. In the task he was given a set of n lines defined by the equations $y=k_ix+b_i$. It was necessary to determine whether there is at least one point of intersection of two of these lines, that lays strictly inside the strip between $x_1 < x_2$. In other words, is it true that there are $1 \le i < j \le n$ and x', y', such that:

- $y' = k_i x' + b_i$, that is, point (x', y') belongs to the line number i;
- $y' = k_j x' + b_j$, that is, point (x', y') belongs to the line number j;
- $x_1 < x' < x_2$, that is, point (x', y') lies inside the strip bounded by $x_1 < x_2$.

You can't leave Anton in trouble, can you? Write a program that solves the given task.

1

Entrada e saída

Input

The first line of the input contains an integer $n\ (2 \le n \le 100000)$ – the number of lines in the task given to Anton. The second line contains integers x_1 and x_2

 $(-1000000 \le x_1 < x_2 \le 1000000)$ defining the strip inside which you need to find a point of intersection of at least two lines.

The following n lines contain integers k_i, b_i $(-1000000 \le k_i, b_i \le 1000000)$ – the descriptions of the lines. It is guaranteed that all lines are pairwise distinct, that is, for any two $i \ne j$ it is true that either $k_i \ne k_j$, or $b_i \ne b_j$.

Output

Print "Yes" (without quotes), if there is at least one intersection of two distinct lines, located strictly inside the strip. Otherwise print "No" (without quotes).

Exemplo de entradas e saídas

Sample Input 1 2 1 2 1 0 0 1 0 2 1 3 1 0 -1 3

Sample Output

YES

NO

• A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$

- A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$
- ullet Contudo, é possível determinar as possíveis interseções no intervalo (x_1,x_2) com um algoritmo *sweep line*

- A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$
- ullet Contudo, é possível determinar as possíveis interseções no intervalo (x_1,x_2) com um algoritmo sweep line
- \bullet Os segmentos devem ser ordenados, em ordem crescente, pelo valor da coordenada y do segmento no ponto x_1

- A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$
- Contudo, é possível determinar as possíveis interseções no intervalo (x_1,x_2) com um algoritmo sweep line
- \bullet Os segmentos devem ser ordenados, em ordem crescente, pelo valor da coordenada y do segmento no ponto x_1
- ullet Em caso de empate, deve-se ordenar pela coordena y no ponto x_2

- A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$
- Contudo, é possível determinar as possíveis interseções no intervalo (x_1,x_2) com um algoritmo sweep line
- \bullet Os segmentos devem ser ordenados, em ordem crescente, pelo valor da coordenada y do segmento no ponto x_1
- ullet Em caso de empate, deve-se ordenar pela coordena y no ponto x_2
- Cada segmento deve ser processado uma única vez, nesta ordem

- A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$
- Contudo, é possível determinar as possíveis interseções no intervalo (x_1,x_2) com um algoritmo sweep line
- \bullet Os segmentos devem ser ordenados, em ordem crescente, pelo valor da coordenada y do segmento no ponto x_1
- ullet Em caso de empate, deve-se ordenar pela coordena y no ponto x_2
- Cada segmento deve ser processado uma única vez, nesta ordem
- Deve-se manter o registro da maior coordenada y em x_2 já encontrada (inicialmente, este valor deve ser igual a $-\infty$)

- A busca completa, que verifica todos os pares de segmentos de reta, tem complexidade $O(N^2)$, o que leva ao TLE, pois $N \le 10^5$
- Contudo, é possível determinar as possíveis interseções no intervalo (x_1,x_2) com um algoritmo sweep line
- \bullet Os segmentos devem ser ordenados, em ordem crescente, pelo valor da coordenada y do segmento no ponto x_1
- ullet Em caso de empate, deve-se ordenar pela coordena y no ponto x_2
- Cada segmento deve ser processado uma única vez, nesta ordem
- Deve-se manter o registro da maior coordenada y em x_2 já encontrada (inicialmente, este valor deve ser igual a $-\infty$)
- ullet Se a coordenada y em x_2 do segmento a ser processado for menor do que a maior já encontrada, significa que houve uma interseção com algum dos segmentos já processados

```
1 #include <hits/stdc++ h>
3 using namespace std;
4 using 11 = long long;
* struct line
9 {
     11 k, b;
10
     11 eval(11 x) const { return k*x + b; }
13 };
14
15 bool solve(ll x1, ll x2, vector<Line>& lines)
16 {
     sort(lines.begin(), lines.end(), [&](const Line& r, const Line& s) {
         if (r.eval(x1) != s.eval(x1))
1.8
             return r.eval(x1) < s.eval(x1);</pre>
```

```
return r.eval(x2) < s.eval(x2);</pre>
21
      });
22
      auto max_v = -oo;
24
25
      for (const auto% r : lines)
26
27
           auto y = r.eval(x2):
28
29
           if (y < max_y)
30
               return true:
31
32
           max_y = max(y, max_y);
33
34
35
      return false;
36
37 }
```