Operational Amplifiers

or Op Amps for short

Op Amps Applications

- Audio amplifiers
 - Speakers and microphone circuits in cell phones, computers, mpg players, boom boxes, etc.
- Instrumentation amplifiers
 - Biomedical systems including heart monitors and oxygen sensors.
- Power amplifiers
- Analog computers
 - Combination of integrators, differentiators, summing amplifiers, and multipliers

Terminals on an Op Amp

Non-inverting Input terminal

Inverting input terminal

(Positive rail)

4

V+

1

Output terminal

Negative power supply (Negative rail)

Positive power supply

Op Amp Equivalent Circuit

Typical Op Amp Parameters

Parameter	Variable	Typical Ranges	Ideal Values
Open-Loop Voltage Gain	A	10 ⁵ to 10 ⁸	∞
Input Resistance	Ri	10 5 to 10 13 Ω	$\infty \Omega$
Output Resistance	Ro	10 to 100 Ω	ο Ω
Supply Voltage	Vcc/V+ -Vcc/V-	5 to 30 V -30V to oV	N/A N/A

How to Find These Values

- Component Datasheets
 - Many manufacturers have made these freely available on the internet
 - Example: LM 324 Operational Amplifier

dB

Decibels

Since
$$P = V^2/R$$

10 log (P/P_{ref}) or 20 log (V/V_{ref})

In this case:

20
$$\log (V_0/V_{in}) = 20 \log (A) = 100$$

A = 10⁵ = 100,000

Large Signal Voltage Gain = A

- Typical
 - A = 100 V/mV = 100 V/0.001V = 100,000
- Minimum
 - A = 25 V/mV = 25 V/0.001V = 25,000

Operational Amplifiers (Op Amps)

- Ideal Op Amp
- Non-inverting Amplifier
- Unity-Gain Buffer
- Inverting Amplifier
- Differential Amplifier
- Current-to-Voltage Converter
- Non-ideal Op Amp

Ideal Op Amp

1)
$$v_0 = A_v (v_+ - v_-)$$

The open-loop gain, A_{v} , is very large, approaching infinity.

$$i_{+} = i_{-} = 0$$

The current into the inputs are zero.

Ideal Op Amp with Negative Feedback

Golden Rules of Op Amps:

- 1. The output attempts to do whatever is necessary to make the voltage difference between the inputs zero.
- 2. The inputs draw no current.

Operational Amplifiers (Op Amps)

- Ideal Op Amp
- Non-inverting Amplifier
- Unity-Gain Buffer
- Inverting Amplifier
- Differential Amplifier
- Current-to-Voltage Converter
- Non-ideal Op Amp

Non-inverting Amplifier

Closed-loop voltage gain

$$A_F = \frac{v_o}{v_i}$$

$$v_i = v_+ = v_- = \frac{R_1}{R_1 + R_2} v_o$$

$$A_F = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1}$$

Operational Amplifiers (Op Amps)

- Ideal Op Amp
- Non-inverting Amplifier
- Unity-Gain Buffer
- Inverting Amplifier
- Differential Amplifier
- Current-to-Voltage Converter
- Non-ideal Op Amp

Unity-Gain Buffer

Closed-loop voltage gain

$$A_F = \frac{v_o}{v_i}$$

$$v_i = v_+ = v_- = v_o$$

$$A_F = \frac{v_o}{v_i} = 1$$

Used as a "line driver" that transforms a high input impedance (resistance) to a low output impedance. Can provide substantial current gain.

Operational Amplifiers (Op Amps)

- Ideal Op Amp
- Non-inverting Amplifier
- Unity-Gain Buffer
- Inverting Amplifier
- Differential Amplifier
- Current-to-Voltage Converter
- Non-ideal Op Amp

Inverting Amplifier

Current into op amp is zero

$$A_F = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

Operational Amplifiers (Op Amps)

- Ideal Op Amp
- Non-inverting Amplifier
- Unity-Gain Buffer
- Inverting Amplifier
- Differential Amplifier
- Current-to-Voltage Converter
- Non-ideal Op Amp

Differential Amplifier

Current into op amp is zero

$$v_{+} = \frac{R_2}{R_1 + R_2} v_2$$

Differential Amplifier

$$\frac{v_1 - \frac{R_2}{R_1 + R_2} v_2}{R_1} = \frac{\frac{R_2}{R_1 + R_2} v_2 - v_0}{R_2}$$

Differential Amplifies
$$\frac{v_{1} - \frac{R_{2}}{R_{1} + R_{2}} v_{2}}{R_{1}} = \frac{\frac{R_{2}}{R_{1} + R_{2}} v_{2} - v_{0}}{R_{2}}$$

$$v_{1} - \frac{R_{2}}{R_{1} + R_{2}} v_{2} = \frac{\frac{R_{2}}{R_{1} + R_{2}} v_{2} - v_{0}}{R_{2}}$$

$$v_{2} - \frac{v_{1}}{V_{2}} + \frac{v_{2}}{V_{1}} + \frac{v_{2}}{R_{1}} = \frac{v_{2}}{R_{1}} + \frac{v_{2}}{R_{1}} + \frac{R_{2}}{R_{1}} + \frac{R_{2}}{R_{2}} + \frac{R_{2}}{R_{1}} + \frac{R_{2}}{R_{2}} + \frac{R_{2}}{R_{1}} + \frac{R_{2}}{R_{2}} + \frac{R_{2}}{R_{1}} + \frac{R_{2}}{R_{2}} +$$

$$v_0 = -\frac{R_2}{R_1}v_1 + \frac{R_2}{R_1 + R_2} \left(1 + \frac{R_2}{R_1}\right)v_2$$

$$v_0 = \frac{R_2}{R_1} (v_2 - v_1)$$

INVERTING SUMMING AMPLIFIER

GAIN CALCULATIONS

$$i_1 + i_2 + i_3 = -i_o$$

$$\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} = -\frac{v_o}{R_F}$$

$$v_o = -\left[\left(\frac{R_F}{R_1}\right)v_1 + \left(\frac{R_F}{R_2}\right)v_2 + \left(\frac{R_F}{R_3}\right)v_3\right]$$

NON-INVERTING SUMMING AMPLIFIER

Integrating Op-Amp

$$V_{\text{out}} = \int_0^t -\frac{V_{\text{in}}}{RC} dt + V_{\text{initial}}$$

Differentiating Op-Amp

$$V_{\text{out}} = -RC \left(\frac{dV_{\text{in}}}{dt} \right)$$

(where V_{in} and V_{out} are functions of time)

Filters

Decouple the low-pass RC filter from the load.

Uses: Simple audio. Remove frequencies over 20kHz (audible)

Low-pass Filter (active)

Cutoff frequency

 This works because the capacitor needs time to charge.