Maximum Weighted Independent Set

MADE BY, NAZMUL ISLAM

ROLL- 1605088

Table of Content

- The Party Problem
- Explanation of the term "treewidth of a graph"
- Tree decomposition of a graph
- Nice tree decomposition
- Dynamic Programming (DP) on graphs of bounded treewidth

The Party Problem

Problem: Invite some colleagues for a party

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!

Input: A tree with weights on the vertices.

Task: Find an independent set of maximum weight.

Solving the Party Problem

Subproblems:

- $ightharpoonup T_{v}$: The subtree rooted at v.
- ► A[v]: maximum weight of an independent set in T_v that contains v
- ightharpoonup **B[v]:** maximum weight of an independent set in T_v that does not contain v
- ► **Goal:** Determine A[r] for the root r.

Solving the Party Problem

Recurrence:

Assume $v_1, v_2, ..., v_k$ are the children of v. Use the recurrence relations

$$B[v] = \sum_{i=1}^{k} A[v_i]$$

$$A[v] = \max\{B[v], w(v) + \sum_{i=1}^{k} B[v_i]\}$$

The values A[v] and B[v] can be calculated in a bottom-up order.

Solution

Treewidth of a Graph

- The treewidth of an undirected graph is a number associated with the graph
- Treewidth captures how similar a graph is to be a tree
- Treewidth is commonly used as a parameter in the parameterized complexity analysis of graph algorithms.
- In this slide, we focus on connections to the idea of dynamic programming on the structure of a graph.

Tree Decomposition

A tree decomposition is a mapping of a graph into a tree that can be used to define the treewidth of the graph.

Tree Decomposition

- Definition: a tree decomposition of a graph G is a pair $T = (T, Xt \ t \subseteq V \ T)$, where T is a tree whose every node t is assigned a vertex subset $Xt \subseteq V(G)$.
- The following three conditions hold:
 - \rightarrow $X_t = V(G)$
 - For every uv ε E(G), there exists a node t of T such that bag X_t contains both u and v
 - For every $u \in V(G)$, the set $T_u = \{t \in V(T): u \in X_t\}$, induces a connected subtree of T.

Treewidth by a Tree Decomposition

- After we defined what a tree decomposition is , we can define the treewidth of a graph
- ► The width of tree decomposition equals $\max_{t \in V(T)} |X_t| 1$
- The treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree decomposition of G

Maximum Weighted Independent Set

- Problem: Given a tree decomposition of treewidth w, we need to find the maximum weighted independent set.
- The maximum weighted independent set is known to be NP-hard
- Therefore, it is unlikely that there exists an efficient algorithm for solving it.
- However, we will now see a dynamic-programming-based algorithm that solves it efficiently on graphs of bounded treewidth.

Nice tree decompositions

- Definition: A rooted tree decomposition is nice if every node x is one of the following 4 types:
 - ► **Leaf:** No children, $|B_x|=1$
 - ► Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
 - Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
 - ► **Join:** 2 children y_1, y_2 with $B_x = B_{v1} = B_{v2}$

Nice tree decompositions

- Recall that T is rooted at some node r
- For a node t of T, let V_t be the union of all the bags present in the subtree of T rooted at t, including X_t.

- Among independent sets I satisfying I \cap X_t = S for some fixed S, all the maximum-weight solutions have exactly the same weight of the part contained in V_t
- For every node t and every S subset X_t , define V_t the following value:
 - C[t,S] = The maximum weight of an independent set I subset V_x with I \cap X_t = S

Leaf node: If t is a leaf node, then we have only one value $c[t,\emptyset] = 0$

Leaf Node

- Introduce node: Suppose t is an introduce node with child t' such that $X_t = X_t, \cup \{v\}$
- Let S be any subset of X_t . If S is not independent, then we can immediately put $c[t,S] = -\infty$;

 Introduce Node
- Otherwise the following formula holds:

$$c[t, S] = \begin{cases} c[t', S] & \text{if } v \notin S; \\ c[t', S \setminus \{v\}] + \mathbf{w}(v) & \text{otherwise.} \end{cases}$$

- Forget node: Suppose t is a forget node with child t' such that $X_t = X_t, \setminus \{w\}$
- Let S be any subset of X_t . If S is not independent, then we can immediately put $c[t,S] = -\infty$;
- Otherwise the following formula holds:

Forget Node

$$c[t, S] = \max \{c[t', S], c[t', S \cup \{w\}]\}.$$

Join Node

- Join node: Suppose t is a join node with children t_1, t_2 such that $X_t = X_{t1} = X_{t2}$
- Let S be any subset of X_t . If S is not independent, then we can immediately put $c[t,S] = -\infty$;
- Otherwise the following formula holds:

$$c[t, S] = c[t_1, S] + c[t_2, S] - \mathbf{w}(S).$$

Thank You for Listening