Problem 9: Magnetic Levitation

Interpretation of Task

Under certain circumstances, the "flea" of a magnetic stirrer can rise up and levitate stably in a viscous fluid during stirring. Investigate the origins of the dynamic stabilization of the "flea" and how it depends on the relevant parameters.

Phenomenon

- Angular Motion
- Vertical Oscillation
- Dynamic Stabilization

Apparatus

 h_0 = initial vertical displacement

h(t) = vertical displacement

 $\theta(t) = angular displacement$

l = length of flea

 $\eta = viscosity of solution$

Initial Cause

Types of Motion

Chaotic Hopping

Grounded Asynchronous Motion

Levitating
Asynchronous Motion

Regimes

Parameters	Viscosity less than critical value $(\eta < \eta_c)$	Viscosity greater than critical value $(\eta > \eta_c)$
Height less than critical value (h ₀ < h _c)	Chaotic Hopping	Levitating Asynchronous Motion
Height greater than critical value (h ₀ > h _c)	Chaotic Hopping	Grounded Asynchronous Motion

 $\eta_c = 0.34 \pm 0.09 \text{ Pa s}$

Angular Motion

Phenomenon

Net Force

I = moment of inertia

m = mass

l = length of stirrer

 $D = drag \ constant$

C = geometric factor

 $\mu = viscosity$

M = magnetic coupling $\mu = magnetic constant$

a = magnetic dipole moment

Inertia (I)

Drag Force (D)

Magnetic Force (M)

$$= I \times \theta''$$

$$= D \times \theta'$$

$$= M \times sin(\theta - \omega_d t)$$

$$= \left[\frac{1}{12} \times m \times l^2\right] \times \theta''$$

$$= [8\pi \times C \times \eta \times (\frac{1}{2})^3] \times \theta'$$

$$= \left[\frac{\mu \times a}{4\pi h(t)^3}\right] \times sin(\theta - \omega_d t)$$

$$= [2.45 \cdot 10^{-7}] \times \theta''$$

$$= [1.03 \cdot 10^{-5}] \times \theta'$$

$$= \frac{2.5 \cdot 10^{-8}}{h^3} \times sin(\theta - \omega_d t)$$

Angular Motion 10

Theoretical Equation

$$(2.45 \cdot 10^{-7}) \theta'' + (1.03 \cdot 10^{-5}) \theta' - (\frac{2.5 \cdot 10^{-8}}{h^3} sin(\theta - \omega_d t)) = 0$$

Sample solution family:

General Equation

Vertical Oscillation

Mean Vertical Height

- Oscillation caused by drive magnet overtaking flea
- As Drive speed increases mean height decreases

Dynamic Stabilization

Stabilization

- Investigation of direction of force of waggle based flows
- $\mathbf{Re}_s = 2A^2l^2\rho\omega_w/\eta,$
- Re_s=11.7 \pm 0.4 and 400 \pm 12

Stabilization

At low Re_s fluid flows outward (Force = -0.58mN)

At high Re_s fluid flows inward (Force = 0.26mN)

Conclusion

- Theoretical Equation using net force
- General Trends shown by experimental data
- Mean Height decreases as drive speed increases
- Stabilization caused by outwards flows at low Re_s

Thank You for Listening