Week 1 Day 1 Maths Skills

	60	概念	按照一定的次序排列的一列数。分有穷、无穷、增值、递减、摆动、常数数列等。		
数列、等差数列等比数列	一般 数列	通项公式	数列 $\left\{a_{n}\right\}$ 中的项用一个公式表示, $a_{n}=$	f(n)	$a_n = \begin{cases} S_1, n = 1, \\ S_n - S_{n-1}, n \ge 2. \end{cases}$
	$\{a_n\}$	前n 项和	$S_n = a_1 + a_2 + \dots + a_n$		$ (S_n - S_{n-1}, n \ge 2. $
	简单 的递	累加法	$a_{n+1} = a_n + f(n) \underline{\square}$		
		累乘法	$a_{n+1} = a_n f(n) \mathbb{D}$		解决递推数列问题的基
		转化法	$a_{n+1} = pa_n + q \cdot p^{n+1} (p \neq 0, 1, q \neq 0) \Leftrightarrow \frac{a_{n+1}}{p^{n+1}} = \frac{a_n}{p^n} + q$		本思想是"转化",即转 化为两类基本数列等
		待定	$a_{n+1}=ca_n+d(c\neq 0,1,d\neq 0)\Leftrightarrow a_{n+1}+\lambda=c(a_n+\lambda)$ 。 比较系数得出 λ ,转化为等比数列。		差数列、等比数列求解。
		系数法			
	等差 数列 {a _n }	概念	満足 $a_{n+1}-a_n=d$ (常数), $d>0$ 递增、 $d<0$ 递减、 $d=0$ 常数数列。		
		通项 公式	$a_n = a_1 + (n-1)d = a_m + (n-m)d$		$q \Leftrightarrow m+n=p+q$ 。 m+n=2p (公差不为 0)
		前 <i>n</i> 项 和公式	$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{n(a_1 + a_n)}{2}$	$S_m, S_{2m} - S_m, S_{3m}$	$-S_{2m},\cdots$ 为等差数列。
	等比 数列 { <i>a_n</i> }	概念	满足 a_{n+1} : $a_n=q$ $(q\neq 0$ 的常数),单调性由 a_1 的正负, q 的范围确定。		
		通项 公式	$a_n = a_1 q^{n-1} = a_m q^{n-m}$		$\Rightarrow m+n=p+q$, + $n=2p$ (公比不为 1)
		前 <i>n</i> 项 和公式	$S_n = \begin{cases} \frac{a_1(1-q^n)}{1-q} = \frac{a_1 - a_n q}{1-q}, q \neq 1, \\ na_1, q = 1. \end{cases}$		等于 -1 时, $-S_{2m},\cdots$ 成等比数列。

注: 表格中m,n,p,q均为正整数

数列求和及数列的简单应用	常用求和公式	等差数列	$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{n(a_1 + a_n)}{2}$, $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + n = \frac{n(n+1)}{2}$.		
		等比数列	$S_n = \begin{cases} \frac{a_1(1-q^n)}{1-q} = \frac{a_1 - a_n q}{1-q}, q \neq 1, \\ na_1, q = 1. \end{cases}, \text{ 特别 } 1 + 2 + 2^2 + \dots + 2^{n-1} = 2^n - 1.$		
		自然数 平方和	$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{(2n+1)}{3} (1 + 2 + \dots + n) = \frac{n(n+1)(2n+1)}{6}.$		
		自然数 立方和	$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2 = \left[\frac{n(n+1)}{2}\right]^2$		
	常用求和方法	公式法	如 $a_n = 2 + 2n$, $a_n = 3^n$ 。 常用製质方法: $\frac{1}{n(n+k)} = \frac{1}{k} (\frac{1}{n} - \frac{1}{n+k})$;		
		分组法	$ \ln a_n = 2n + 2^n, \ a_n = (-1)^n n + 2$		
		製项法	$\frac{1}{\sin a_n} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1},$ $\frac{1}{n^2 - 1} = \frac{1}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right);$		
		错位 相减法	$\frac{1}{4n^2 - 1} = \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right);$		
		倒序 相加法	$\frac{n+1}{n(n-1)\cdot 2^n} = \frac{1}{(n-1)2^{n-1}} - \frac{1}{n\cdot 2^n}.$		
	数	等差数列	基本特征是均匀增加或者减少。		
	列	等比数列	基本特征是指数增长,常见的是增产率问题、存款复利问题。		
	模	一个简单	基本特征是指数增长的同时又均匀减少。如年收入增长率为 20% ,每年年底要拿出 a (常数)		
	型	递推数列	作为下年度的开销,即数列 $\left\{a_n\right\}$ 满足 $a_{n+1}=1.2a_n-a$ 。		

注:表中n,k均为正整数