Assuming that $a = (A \setminus B) \setminus C$, $b = (B \setminus A) \setminus C$, $c = (C \setminus A) \setminus B$, $d = (A \cap B) \setminus C$, $e = (B \cap C) \setminus A$, $f = (A \cap C) \setminus B$, $g = A \cap B \cap C$ So, $A = a \cup d \cup g \cup f$, $B = b \cup d \cup g \cup e$, $C = c \cup e \cup g \cup f$ According to the definition of symmetric difference, $A \triangle B = a \cup f \cup b \cup e$, $B \triangle C = b \cup d \cup c \cup f$, $A \triangle C = a \cup d \cup c \cup e$.

- 1. $A\Delta(B\Delta C) = A\Delta(bUdUcUf) = (aUdUfUg)\Delta(bUdUcUf) = aUbUcUg$ $(A\Delta B)\Delta C = (aUfUbUe)\Delta C = (aUfUbUe)\Delta(cUeUgUf) = aUbUcUg$ Thus, $A\Delta(B\Delta C) = (A\Delta B)\Delta C$, the operation Δ is associative
- 2. $A^- = b \cup e \cup c$, $B^- = a \cup f \cup c$, $C^- = a \cup d \cup b$ $A \cap B \cap C = g$, $A \cap B^- \cap C^- = a$, $B \cap C^- \cap A^- = b$, $C \cap B^- \cap A^- = c$, $A \cap B \cap C^- = d$, $B \cap C \cap A^- = e$, $C \cap A \cap B^- = f$ $(A \cap B \cap C) \cup (A \cap B^- \cap C^-) \cup (B \cap C^- \cap A^-) \cup (A \cap B \cap C^-) \cup (B \cap C \cap A^-) \cup (C \cap A \cap B^-) = g + a + b + c + d + e + f$ $A \cup B \cup C = a + b + c + d + e + f + g$ Thus, $A \cup B \cup C = (A \cap B \cap C) \cup (A \cap B^- \cap C^-) \cup (B \cap C^- \cap A^-) \cup (C \cap B^- \cap A^-) \cup (A \cap B \cap C^-) \cup (B \cap C \cap A^-) \cup (C \cap A \cap B^-)$
- 3. Convert the logic into English: If A \triangle (B \triangle C)= \emptyset , then AUBUC=((A \cap B)\C)\U((A \cap C)\B)\U((B \cap C)\A) Given that A\(\Delta(B\DC)=\Ø), it can be inferred that aUbUcUg = \Ø, a=b=c=g=\Ø AUBUC = aUbUcUdUeUfUg = dUfUe ((A\C)\B)\U((B\C)\A) = ((d\Ug)\(c\UfUgUe))\U((g\Uf)\(b\Ud\UgUe))\U((g\Ue)\(a\Ud\Ug\Uf)) = d\UfUe Thus, A\UBUC=((A\C)\C)\C)\U((A\C)\B)\U((A\C)\B)\U((B\C)\A) when A \(\Delta(B\DC)=\Ø