Real Analysis

Hansong Huang

ECUST

At ECUST

2019.03

Lebesgue积分

Lebesgue积分的引入

回顾(R)积分的主要性质

定义3.1.1

1. $f = \sum a_i \chi_{e_i} \in S^+(X)$, e_i 两两不交,可测; $a_i > 0$, 定义

$$\int f d\mu = ?$$

定义3.1.1

1. $f = \sum a_i \chi_{e_i} \in S^+(X)$, e_i 两两不交,可测; $a_i > 0$, 定义

$$\int f d\mu = \sum a_i \mu e_i.$$

定义3.1.1

1. $f = \sum a_i \chi_{e_i} \in S^+(X)$, e_i 两两不交,可测; $a_i \geq 0$, 定义

$$\int f d\mu = \sum a_i \mu e_i.$$

esp. $a_i = 0, \ \mu e_i = +\infty, \ a_i \mu(e_i) = 0.$

$$\int f d\mu = \sum a_i \mu(e_i).$$

2. $f \in M^+(X)$. 规定

$$\int_X f d\mu = \sup_{??} \int h d\mu.$$

??: $0 \le h \le f, h \in M^+(X)$.

$$\int f d\mu = \sum a_i \mu(e_i).$$

2. $f \in M^+(X)$. 规定

$$\int_X f d\mu = \sup_{??} \int h d\mu.$$

- ??: $0 \le h \le f, h \in M^+(X)$.
- 3. $f \in M(X), f = f^+ f^-$

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu?$$

$$\int f d\mu = \sum a_i \, \mu(e_i).$$

2. $f \in M^+(X)$. 规定

$$\int_X f d\mu = \sup_{??} \int h d\mu.$$

- ??: $0 \le h \le f, h \in M^+(X)$.
- 3. $f \in M(X)$,

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu?$$

条件, $\int_X f^+ d\mu = \int_X f^- d\mu$ 中一个有限.

$$\int f d\mu = \sum a_i \mu e_i.$$

2. $f \in M^+(X)$. 规定

$$\int_X f d\mu = \sup_{??} \int h d\mu.$$

- ??: $0 \le h \le f, h \in M^+(X)$.
- 3. $f \in M(X)$,

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu?$$

条件, $\int_X f^+ d\mu = \int_X f^- d\mu$ 中一个有限. $\int_X f d\mu$: f 在X 上关于测度 μ 的积分.

$$\int f d\mu = \sum a_i \mu(e_i).$$

思考: 这个定义与f的表达形式无关 3. $f \in M(X)$,

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu?$$

条件, $\int_X f^+ d\mu = \int_X f^- d\mu$ 中一个有限. 如果 $\int_X f d\mu \in \mathbb{R}$,称f 在X 上可积.

3.
$$f \in M(X)$$
,

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu?$$

条件, $\int_X f^+ d\mu$ 与 $\int_X f^- d\mu$ 中一个有限. 如果 $\int_X f d\mu \in \mathbb{R}$,称f 在X 上可积. \Leftrightarrow $\int_X \overline{f^+ d\mu}$ 与 $\int_X f^- d\mu$ 都是有限的. ?? $\Leftrightarrow \int_Y (f^+ + f^-) d\mu$ 有限的,即 $\int_X |f| d\mu$.

当f可测时,f 可积等价于|f|可积. 比较:面积元的Riemann积分,对于连续函数h(x,y),h是 \mathcal{R} -可积的等价于|h|是 \mathcal{R} -可积的. 例:对任意可测集 $A \subseteq X$,

$$\int_X \chi_A d\mu = 1 \cdot \mu A = \mu A$$

例:对任意可测集 $A \subseteq X$,

$$\int_X \chi_A d\mu = 1 \cdot \mu A = \mu A = \int_A 1 d\mu.$$

例: Dirichelet函数. χ_Q , Q有理数集.

$$\int_{\mathbb{R}} \chi_Q dm = mQ = 0$$

 χ_Q Lebesgue可积(\mathcal{L} 可积),但不是Riemann可积(\mathcal{R} 可积).

3.1.2

 $f\in M(X),\,\int_X fd\mu$ 存在, $A\in\mathcal{A},\,$ 则 $\int_A fd\mu$ 存在,且

$$\int_{A} f d\mu = \int_{X} f \cdot \chi_{A} d\mu.$$

3.1.2 $f \in M(X)$, $\int_X f d\mu$ 存在, $A \in \mathcal{A}$, 则 $\int_A f d\mu$ 存在,且

$$\int_A f d\mu = \int_X f \cdot \chi_A d\mu.$$

证明: 1. $f = \chi_e$.

2. $f = \sum a_i \chi_{e_i}, \ a_i \ge 0.$

3.
$$f = f^+ - f^-$$
.

记号:
$$\int_X f(x)d\mu(x)$$
.

$$\int_{X} f d\mu, \quad , \int f(x) d\mu(x);$$

$$\int_{X} f, \quad \int f, \int_{X}$$

 $L^{1}(X,\mu) = \{ f \in M(X) : \int_{X} f d\mu \text{ fig} \}.$ = $\{ f \in M(X) : \int_{X} |f| d\mu \text{ fig} \}.$

$$L^{1}(X,\mu) = \{ f \in M(X) : \int_{X} |f| d\mu \text{ 有限} \}.$$

$$p > 0, L^{p}(X,\mu) = \{ f \in M(X) : \int_{X} |f|^{p} d\mu \text{ 有限} \}.$$
 限 }

 $X \subseteq \mathbb{R}^n, \ L^1(X) = L^1(X,m).$ (m, Lebesgue测度) $L^1[a,b] = L^1([a,b],m).$ 思考: $L^1[a,b] = L^1(a,b).$

Thank you!