The Process of Machine Learning

Using Overfitting to evaluate Linear Regression and Non-Linear Regression Model

Linear Regression Model

Copyright 2014. Laerd Statistics.

Linear Regression Model

To calculate, use the formula:

Where:

x and y are the variables.

b = The slope of the regression line

a = The intercept point of the regression line and the y axis.

N = Number of values or elements

X = First Score

Y = Second Score

 $\Sigma XY = Sum of the product of first and Second Scores$

 $\Sigma X = Sum of First Scores$

 $\Sigma Y = Sum of Second Scores$

 ΣX^2 = Sum of square First Scores

Non-Linear Regression Model

Non-Linear Regression Model

```
To calculate, use the formula:
```

```
Regression Equation(y) = a + bx^2

Slope(b) = (N\Sigma\underline{P}Y - (\Sigma\underline{P})(\Sigma Y)) / (N\Sigma\underline{P}^2 - (\Sigma\underline{P})^2)

Intercept(a) = (\Sigma Y - b(\Sigma\underline{P})) / N

Where:

Where \underline{P} = X * X
```

The Calculation

							Linear	Non-Linear
X	Υ	XY	X^2 (P)	N	PY	P^2	y=a1+b1*X	y=a2+b2*X^2
1	1.8	1.8	1	10	1.80	1.00	1.37	1.75
2	2.4	4.8	4		9.60	16.00	2.23	2.16
3.3	2.3	7.59	10.89		25.05	118.59	3.35	3.08
4.3	3.8	16.34	18.49		70.26	341.88	4.22	4.11
5.3	5.3	28.09	28.09		148.88	789.05	5.08	5.40
1.4	1.5	2.1	1.96		2.94	3.84	1.71	1.88
2.5	2.2	5.5	6.25		13.75	39.06	2.66	2.46
2.8	3.8	10.64	7.84		29.79	61.47	2.92	2.67
4.1	4	16.4	16.81		67.24	282.58	4.04	3.88
5.1	5.4	27.54	26.01		140.45	676.52	4.91	5.12
Sigma X	Sigma Y	Sigma XY	Sigma X^2 (P)		Sigma PY	Sigma P^2		
31.8	32.5	120.8	121.34		509.76	2329.99		
(Sigma X)^2		N Sigma XY	N Sigma X^2		N Sigma PY	N Sigma P^2		
1011.24		1208	1213.4		5097.62	23299.86		
b1	a1	b2	a2					
0.86	0.51	0.135	1.617					

Validation Phase

Validation Phase							
X	Υ	Linear Delta Y	Non-Linear Delta Y				
1.5	1.7	1.80	1.92				
2.9	2.7	3.01	2.75				
3.7	2.5	3.70	3.46				
4.7	2.8	4.56	4.59				
5.1	5.5	4.91	5.12				

Use Overfitting (MSE) to evaluate different 2 models

MSE			
Training-L	Training-NL	Validation-L	Validation-NL
-0.43	-0.05	0.10	0.22
-0.17	-0.24	0.31	0.05
1.05	0.78	1.20	0.96
0.42	0.31	1.76	1.79
-0.22	0.10	-0.59	-0.38
0.21	0.38		
0.46	0.26		
-0.88	-1.13		
0.04	-0.12		
-0.49	-0.28		
MSE			
0.28	0.24	1.00	0.86
Linear			
3.54	(Slightly bet		
Non-Linear			
3.67			

Training Phase

Test Phase					
X	Delta Y				
1.4	1.71				
2.5	2.66				
3.6	3.61				
4.5	4.39				
5.4	5.17				

The Full Calculation

Training Phase					Valid	ation Phase	Test Phase				
Real Data Set 1 (50%)		Linear Regression	Non-Linear Regression	Real Data Set 2 (25%)		Real Data Set 2 (25%)		Data Set 2 (25%) Linear Regression		Real Data Set 3 (25%)	The better Model
X	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	У	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	ŷ		
1	1.8	1.37	1.75	1.5	1.7	1.80	1.92	1.4	1.71		
2	2.4	2.23	2.16	2.9	2.7	3.01	2.75	2.5	2.66		
3.3	2.3	3.35	3.08	3.7	2.5	3.70	3.46	3.6	3.61		
4.3	3.8	4.22	4.11	4.7	2.8	4.56	4.59	4.5	4.39		
5.3	5.3	5.08	5.40	5.1	5.5	4.91	5.12	5.4	5.17		
1.4	1.5	1.71	1.88	x	х	х	х	х	x		
2.5	2.2	2.66	2.46	х	х	x	x	x	×		
2.8	3.8	2.92	2.67	X	Х	x	x	X	x		
4.1	4	4.04	3.88	х	Х	x	x	x	X		
5.1	5.4	4.91	5.12	X	Х	x	x	x	x		

Conclusion

Linear Regression Model is a slightly better model for this example.