Problem 1. (Peskin & Schroeder 2.1) Classical electromagnetism (with no sources) follows from the action

$$S = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right), \qquad \text{where } F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}. \tag{1}$$

1(a) Derive Maxwell's equations as the Euler-Lagrange equations of this action, treating the components $A_{\mu}(x)$ as the dynamical variables. Write the equations in standard form by identifying

$$E^{i} = -F^{0i}; \qquad \epsilon^{ijk}B^{k} = -F^{ij}. \tag{2}$$

Solution. We want to extremize the action,

$$S[A_{\mu}] = \int d^4x \, \mathcal{L}(A_{\mu}, \partial_{\mu} A_{\mu}),$$

where \mathcal{L} is the integrand of Eq. (1). Let δA_{μ} denote some arbitrary variation that vanishes at the boundaries of spacetime. The action for $A_{\mu} + \delta A_{\mu}$ is

$$S[A_{\mu} + \delta A_{\mu}] = \int d^4x \, \mathcal{L}(A_{\mu} + \delta A_{\mu}, \partial_{\nu} A_{\mu} + \partial_{\nu} \delta A_{\mu}).$$

Then, to first order in δA_{μ} , the variation of the action is

$$\delta S = S[A_{\mu} + \delta A_{\mu}] - S[A_{\mu}],$$

which we want to vanish for all δA_{μ} . Let $\delta F_{\mu\nu} = \partial_{\mu} \delta A_{\nu} - \partial_{\nu} \delta A_{\mu}$. Then, applying the definition of $F_{\mu\nu}$ given in Eq. (1),

$$\delta S = \int d^4 x \left(-\frac{1}{4} (F_{\mu\nu} + \delta F_{\mu\nu}) (F^{\mu\nu} + \delta F^{\mu\nu}) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)
\approx \int d^4 x \left(-\frac{1}{4} (F_{\mu\nu} F^{\mu\nu} + F_{\mu\nu} \delta F^{\mu\nu} + \delta F_{\mu\nu} F^{\mu\nu}) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)
= \int d^4 x \left(-\frac{1}{4} (F_{\mu\nu} \delta F^{\mu\nu} + \delta F_{\mu\nu} F^{\mu\nu}) \right)
= \int d^4 x \left(-\frac{1}{2} \delta F_{\mu\nu} F^{\mu\nu} \right),$$
(3)

where we have discarded terms of $\mathcal{O}((\delta A^{\mu})^2)$ and swapped covariant and contravariant indices in going to the final equality.

Note that

$$\delta F_{\mu\nu} F^{\mu\nu} = (\partial_{\mu} \delta A_{\nu} - \partial_{\nu} \delta A_{\mu})(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu})$$

$$= \partial_{\mu} \delta A_{\nu} \partial^{\mu} A^{\nu} - \partial_{\mu} \delta A_{\nu} \partial^{\nu} A^{\mu} - \partial_{\nu} \delta A_{\mu} \partial^{\mu} A^{\nu} + \partial_{\nu} \delta A_{\mu} \partial^{\nu} A^{\mu}. \tag{4}$$

Integrating the first term of Eq. (4) by parts, we have

$$\int d^4x \, \frac{\partial \delta A_{\nu}}{\partial x^{\mu}} \frac{\partial A^{\nu}}{\partial x_{\mu}} = \left[\delta A_{\nu} \frac{\partial A^{\nu}}{\partial x_{\mu}} \right]_{-\infty}^{\infty} - \int d^4x \, \delta A_{\nu} \frac{\partial^2 A^{\nu}}{\partial x^{\mu} \partial x_{\mu}} = - \int d^4x \, \delta A_{\nu} \, \partial_{\mu} \partial^{\mu} A^{\nu},$$

because δA^{ν} vanishes at $\pm \infty$. The other terms follow similarly. Then we find

$$\begin{split} \int d^4x \, \delta F_{\mu\nu} \, F^{\mu\nu} &= -\int d^4x \, (\delta A_\nu \, \partial_\mu \partial^\mu A^\nu - \delta A_\nu \, \partial_\mu \partial^\nu A^\mu - \delta A_\mu \, \partial_\nu \partial^\mu A^\nu + \delta A_\mu \, \partial_\nu \partial^\nu A^\mu) \\ &= -\int d^4x \, (\delta A_\nu \, \partial_\mu F^{\mu\nu} + \delta A_\mu \, \partial_\nu F^{\nu\mu}) = -\int d^4x \, (\delta A_\nu \, \partial_\mu F^{\mu\nu} + \delta A_\nu \, \partial_\mu F^{\mu\nu}) \\ &= -2\int d^4x \, \delta A_\nu \, \partial_\mu F^{\mu\nu}, \end{split}$$

where in going to the second-to-last equality we have simply swapped the indices.

Making this substitution in Eq. (3), we obtain

$$\delta S = \delta A_{\nu} \int d^4 x \, \partial_{\mu} F^{\mu\nu}.$$

In order for the action to be at a local extremum, we need $\delta S = 0$ for any δA_{ν} . This implies that the integrand is 0. Thus, we obtain

$$\partial_{\mu}F^{\mu\nu} = 0, \tag{5}$$

which is the covariant form of the inhomogeneous Maxwell equations in a source-free region [?, p. 557], as we sought to derive. \Box

From Eq. (2) and the knowledge that $F^{\mu\nu}$ is antisymmetric [?, p. 556], we can write

$$F^{\mu\nu} = \begin{bmatrix} 0 & -E^x & -E^y & -E^z \\ E^x & 0 & -B^z & B^y \\ E^y & B^z & 0 & -B^x \\ E^z & -B^y & B^x & 0 \end{bmatrix}.$$
 (6)

The first equation of Eq. (2) is equivalent to $E^i = F^{i0}$. Then the zeroth component of Eq. (5) can be written

$$\partial_{\mu}F^{\mu0} = \frac{\partial E^{x}}{\partial x} + \frac{\partial E^{y}}{\partial y} + \frac{\partial E^{z}}{\partial z} = \mathbf{\nabla \cdot E} = 0,$$

which is the differential form of Gauss's law.

For the remaining components of Eq. (5), we apply the second equation of Eq. (5) to find

$$\partial_{\mu}F^{\mu i} = -\frac{\partial E^{i}}{\partial t} + \epsilon^{ijk}\frac{\partial B^{k}}{\partial x^{j}} = 0.$$

In vector form, this is

$$\mathbf{\nabla} \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mathbf{0},$$

the differential form of Ampère's law.

1(b) Construct the energy-momentum tensor for this theory. Note that the usual procedure does not result in a symmetric tensor. To remedy that, we can add to $T^{\mu\nu}$ a term of the form $\partial_{\lambda}K^{\lambda\mu\nu}$, where $K^{\lambda\mu\nu}$ is antisymmetric in its first two indices. Such an object is automatically divergenceless, so

$$\hat{T}^{\mu\nu} = T^{\mu\nu} + \partial_{\lambda} K^{\lambda\mu\nu} \tag{7}$$

is an equally good energy-momentum tensor with the same globally conserved energy and momentum. Show that this construction, with

$$K^{\lambda\mu\nu} = F^{\mu\lambda}A^{\nu},\tag{8}$$

leads to an energy-momentum tensor \hat{T} that is symmetric and yields the standard formulae for the electromagnetic energy and momentum densities:

$$\mathcal{E} = \frac{E^2 + B^2}{2}; \qquad \mathbf{S} = \mathbf{E} \times \mathbf{B}.$$

Solution. We want to evaluate Eq. (2.17) of Peskin & Schroeder,

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} - \mathcal{L}\delta^{\mu}{}_{\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A^{\lambda})} \partial^{\nu}A^{\lambda} - \mathcal{L}\delta^{\mu}{}_{\nu}, \tag{9}$$

where we have associated the field ϕ with A^{λ} . In order to evaluate the derivatives, we can use the variational method to calculate $\partial \mathcal{L}/\partial(\partial_{\alpha}A_{\beta})$ by letting $\partial_{\alpha}A_{\beta} \to \partial_{\alpha}A_{\beta} + \delta\partial_{\alpha}A_{\beta}$ [?, p. 81]. Let

$$\delta \mathcal{L} = \mathcal{L}(\partial_{\alpha} A_{\beta}) - \mathcal{L}(\partial_{\alpha} A_{\beta} + \delta \partial_{\alpha} A_{\beta}).$$

Note that

$$\mathcal{L}(\partial_{\alpha}A_{\beta} + \delta\partial_{\alpha}A_{\beta}) = -\frac{1}{4}(F_{\alpha\beta} + \delta F_{\alpha\beta})(F^{\alpha\beta} + \delta F^{\alpha\beta}) \approx -\frac{1}{4}(F_{\alpha\beta}F^{\alpha\beta} + F_{\alpha\beta}\delta F^{\alpha\beta} + \delta F_{\alpha\beta}F^{\alpha\beta}).$$

so

$$\begin{split} \delta \mathcal{L} &= -\frac{1}{4} (F_{\alpha\beta} \, \delta F^{\alpha\beta} + \delta F_{\alpha\beta} \, F^{\alpha\beta}) = -\frac{1}{2} \delta F_{\alpha\beta} \, F^{\alpha\beta} = -\frac{1}{2} (\partial_{\alpha} \, \delta A_{\beta} - \partial_{\beta} \, \delta A_{\alpha}) F^{\alpha\beta} = -\frac{1}{2} (\partial_{\alpha} \, \delta A_{\beta} + \partial_{\alpha} \, \delta A_{\beta}) F^{\alpha\beta} \\ &= -\partial_{\alpha} \, \delta A_{\beta} \, F^{\alpha\beta}, \end{split}$$

where we have used the antisymmetry of $F^{\alpha\beta}$. This gives us

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} A_{\beta})} = -F^{\alpha \beta} \quad \Longrightarrow \quad \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} A^{\beta})} = -F^{\alpha}{}_{\beta},$$

and then we find

$$T^{\mu\nu} = -F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} + \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda}. \tag{10}$$

Adding $K^{\lambda\mu\nu}$ as defined in Eq. (8), Eq. (7) becomes

$$\hat{T}^{\mu\nu} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} + \partial_{\lambda} (F^{\mu\lambda} A^{\nu}). \tag{11}$$

Applying the product rule to the third term, we find

$$\partial_{\lambda}(F^{\mu\lambda}A^{\nu}) = A^{\nu}\partial_{\lambda}F^{\mu\lambda} + F^{\mu\lambda}\partial_{\lambda}A^{\nu} = -A^{\nu}\partial_{\lambda}F^{\lambda\mu} + F^{\mu\lambda}\partial_{\lambda}A^{\nu} = F^{\mu\lambda}\partial_{\lambda}A^{\nu},$$

where we have applied the antisymmetry of $F^{\mu\nu}$ and Eq. (5). Making this substitution in Eq. (11),

$$\hat{T}^{\mu\nu} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} + F^{\mu\lambda} \partial_{\lambda} A^{\nu}
= \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} + F^{\mu}{}_{\lambda} \partial^{\lambda} A^{\nu} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} + F^{\mu}{}_{\lambda} F^{\lambda\nu}
= \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu\lambda} F^{\nu}{}_{\lambda}.$$
(12)

To show that $\hat{T}^{\mu\nu}$ is symmetric, note that

$$\hat{T}^{\nu\mu} = \frac{1}{4} g^{\nu\mu} F_{\alpha\beta} F^{\alpha\beta} - F^{\nu\lambda} F^{\mu}{}_{\lambda} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} F^{\nu\lambda} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu\lambda} F^{\nu}{}_{\lambda} = \hat{T}^{\mu\nu} F^{\mu\nu} F^{\mu\nu} F^{\mu\nu} F^{\nu\nu} F^{\nu$$

as desired. \Box

For the energy and momentum densities, from Eq. (12) we have

$$\hat{T}^{00} = \frac{1}{4}g^{00}F_{\alpha\beta}F^{\alpha\beta} - F^{0\lambda}F^{0}_{\lambda} = \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta} + F^{0\lambda}F_{\lambda}^{0}, \tag{13}$$

$$\hat{T}^{0i} = \frac{1}{4}g^{0i}F_{\alpha\beta}F^{\alpha\beta} - F^{0\lambda}F^{i}_{\lambda} + F^{0\lambda}F^{i}_{\lambda}. \tag{14}$$

Using Eq. (6),

$$F_{\mu\nu}F^{\mu\nu} = -E^{x^2} - E^{y^2} - E^{z^2} - E^{x^2} + B^{z^2} + B^{y^2} - E^{y^2} + B^{z^2} + B^{z^2}$$

Note also from Eq. (6) that

$$F_{\lambda}{}^{\nu} = g_{\lambda\mu}F^{\mu\nu} = \begin{bmatrix} 0 & -E^x & -E^y & -E^z \\ -E^x & 0 & -B^z & B^y \\ -E^y & B^z & 0 & -B^x \\ -E^z & -B^y & B^x & 0 \end{bmatrix},$$

so

$$F^{0\lambda}F_{\lambda}^{0} = (-\mathbf{E}) \cdot (-\mathbf{E}) = \mathbf{E}^{2},$$
 $F^{0\lambda}F_{\lambda}^{i} = B_{j}E_{k} - E_{k}B_{j} = (\mathbf{E} \times \mathbf{B})_{i}.$

Equations (13–14) are then

$$\hat{T}^{00} = \frac{1}{8\pi} (\mathbf{E}^2 + \mathbf{B}^2) = \mathcal{E}, \qquad \qquad \hat{T}^{0i} = \frac{1}{4\pi} (\mathbf{E} \times \mathbf{B})_i = \mathbf{S},$$

as we sought to show.

Problem 2. The complex scalar field (Peskin & Schroeder 2.2) Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation. The action of this theory is

$$S = \int d^4x \left(\partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^* \phi \right).$$

It is easiest to analyze this theory by considering $\phi(x)$ and $\phi^*(x)$, rather than the real and imaginary parts of $\phi(x)$, as the basic dynamical variables.

2(a) Find the conjugate momenta to $\phi(x)$ and $\phi^*(x)$ and the canonical commutation relations. Show that the Hamiltonian is

$$H = \int d^3x \left(\pi^* \pi + \nabla \phi^* \cdot \nabla \phi + m^2 \phi^* \phi \right).$$

Compute the Heisenberg equation of motion for $\phi(x)$ and show that it is indeed the Klein-Gordon equation.