9. Kellerautomaten

Definition Nichtdeterministischer Kellerautomat

Ein nichtdeterministischer Kellerautomat KA = (X, K, k_0 , S, s_0 , δ , F) besteht aus:

X: Eingabealphabet

K: Kelleralphabet

 k_0 : Kellerstartsymbol $\in K$

S: Zustandsmenge

 s_0 : Startzustand $\in S$

δ: Zustandsübergangsfunktion: $δ : S × (X ∪ {∈})) × K → P_{endl}(S × K*)$

F: Menge der Endzustände ⊆ S

Definition Konfiguration eines Kellerautomaten

Das Triple (s, w, l) nennt man Konfiguration eines Kellerautomaten KA.

s ϵ S: aktueller Zustand

 $w \in X^*$: Resteingabe

 $l \in K$: Wort auf dem Keller

Aufgabe 1

Konstruieren Sie einen Kellerautomaten, welcher folgende Sprachen akzeptiert

- a) L = $\{a^n b^{2n} \mid n \in \mathbb{N}\}$
- b) L= {(ab)ⁿ c dⁿ | n \in N}
- c) L = $\{a^n b^m c^{m+2} d^n \mid n, m \in \mathbb{N}\}\$
- d) L= $\{0^k \ 1^l \ | \ k, l \in \mathbb{N}, l > k\}$
- e) L = $\{x^i y^j z^k a^{i+j+k} | i, j, k \in \mathbb{N}\}$
- f) Für ein Wort $w \in X^*$ mit $w = w_0, w_1, ..., w_n$ sei rev $(w) := w_n, ..., w_1, w_0$. L = { u rev(u) | u = (a, b, c) *}

Alexander Bleicher Tutorium

Aufgabe 2

Gegeben Sei die Sprache L = $\{a^n \text{ cd } b^{2n} \text{ d}^m \text{ c}^m \mid n \in \mathbb{N}_0, m \in \mathbb{N}\}$

- a) Geben Sie eine Grammatik G an, mit L(G) = L
- b) Konstruieren Sie den zur Grammatik G zugeordneten Kellerautomaten KA_G
- c) Geben Sie die Konfigurationsfolge von KAG für das Wort "cdddcc" an

Aufgabe 3

Sei L = $\{a^i b^{i+j} c^k d^{j+k} \mid i, k \in \mathbb{N}, j \in \mathbb{N}_0\}$. Geben Sie einen deterministischen Kellerautomaten KA an, mit L(KA) = L.

Aufgabe 4

Geben Sie einen deterministischen Kellerautomaten KA an, der L = { x^{2i} y^i z | $i \in \mathbb{N}$ } akzeptiert.

Aufgabe 5

Sei L = { $a^n b^m c^{2m} d^{n+k}$ (abcd)^k | n, m ϵ N, k ϵ N₀}. Konstruieren Sie einen deterministischen Kellerautomaten KA mit L(KA) = L