MATH 644

Chapter 6

SECTION 6.3: RIEMANN MAPPING THEOREM

Contents

Statement of the Theorem

2

STATEMENT OF THE THEOREM

THEOREM 1. Suppose $\Omega \subset \mathbb{C}$ is simply-connected and $\Omega \neq \mathbb{C}$. Then there exists a one-to-one map f of Ω onto \mathbb{D} . If $z_0 \in \Omega$, then there is a unique such map with $f(z_0) = 0$ and $f'(z_0) > 0$.

Idea of the proof.

1. Define a family

$$\mathcal{F} = \{f : f \text{ is one-to-one, analytic, } |f| < 1 \text{ on } \Omega, f(z_0) = 0, f'(z_0) > 0\}.$$

- 2. Show \mathcal{F} is normal on Ω .
- 3. Extract a subsequence $(f_n) \subset \mathcal{F}$ which converges to some f.
- 4. Show that f has the desire properties.

Lemma 2. The family \mathcal{F} is non-empty and normal in Ω .

Proof.

THEOREM 3. [Hurwitz] Suppose $(g_n)_{n=1}^{\infty}$ is a sequence of analytic functions on a region Ω and suppose $g_n(z) \neq 0$ for all $z \in \Omega$ and all n. If g_n converges uniformly to g on compact subsets of Ω , then

- either g is identically zero in Ω or;
- $g(z) \neq 0$ for all $z \in \Omega$.

Proof.

COROLLARY 4. If $(g_n)_{n=1}^{\infty}$ is a sequence of one-to-one and analytic functions on a region Ω , and if g_n converges to g uniformly on compact subsets of Ω , then

- either g is one-to-one on Ω or;
- g is constant in Ω .

Riemann Mapp	-	