КИСЛОТЫ ТИПЫ РЕАКЦИЙ

окислитель + восстановитель	основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ: 1) Na ₂ O + CO ₂ = Na ₂ CO ₃ 2) NaOH + HCl = NaCl + H ₂ O
более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ: 1) Fe + 2HCl = FeCl ₂ + H ₂ 2) Fe + CuSO ₄ = FeSO ₄ + Cu	электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ: 1) NaOH + HCl = NaCl + H ₂ O 2) KCl + AgNO ₃ = KNO ₃ + AgI

КЛАССИФИКАЦИЯ КИСЛОТ

H* + KAn- (анион кислотного остатка)

По агрегатному состоянию большая часть кислот являются жидкостями, однако некоторые - твёрдыми веществами (H₃PO₄, HIO₄, H₃BO₃), а другие - растворами газов в воде (HCl, H₂CO₃, H₂SO₃, H₂S). По устойчивости раличают устойчивые и неустойчивые кислоты, разлагающиеся при нагревании или на свету (H₂CO₃, H₂SO₃, HNO₃, H₂SiO₃). По летучести: летучие (HCl, H₂S, HNO₃) и нелетучие.

по растворимости

растворимые в ЕГЭ: все, кроме кремниевой НЕрастворимые в ЕГЭ: только кремниевая

по основности

однокислотные HCl, HNO,, CH,COOH MHOГОКИСЛОТНЫЕ H₂SO₄, H₃PO₄, H₄P₂O₇

по силе

сильные

см. лайфхак

слабые см. лайфхак

HI - HBr - HClO, - HCl - H,SO, - HNO, - H,SO, - H,PO, - HF - HNO, - CH,COOH - H,CO, - H,S - H,BO, - HCN - H,SiO,

сила кислот убывает...

по окислительной способности

окислители

H₂SO₄(конц) HNO₃(конц/разб)

- + вступают в ОВР с восстановителями!
- + реагируют с неМе
- + по-другому реагируют с металлами

НЕокислители

все остальные кислоты

- + НЕ вступают в ОВР с восстановителями!
- + НЕ реагируют с неМе
- + по-другому реагируют
- с Ме, как простые смертные

Fe +
$$H_2 \rightarrow 0$$
 = $FeSO_4 + H_2$

окислитель - водород

Fe +
$$H_2SO_4(\kappa) = Fe_2(SO_4)_3 + H_2O + SO_2$$

окислитель - сера

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТ ОКРАШИВАНИЕ ИНДИКАТОРОВ

Растворимые кислоты диссоциируют в растворах на H⁺ и анион кислотного остатка (даже слабые растворимые в воде кислоты хотя бы немного, но диссоциируют) -> имеют кислую среду, а значит, окрашивают индикаторы. НЕрастворимые кислоты (H₂SiO₃) - не окрашивают.

ОСНОВНО-КИСЛОТНЫЕ ВЗАИМОДЕЙСТВИЯ

Не забывайте НИКОГДА о том, что любую реакцию мы сначала ВСЕГДА рассматриваем на возможность протекания ОВР: если в ней есть вор (окислитель) и жертва (восстановитель), то происходит ОВР! Типичные жертвы: Fe⁺², Cu⁺¹, P⁺³, S⁺⁴, N⁺³

Типичные грабители: HNO_3 (конц/разб), H_2SO_4 (конц)

Помним: кислотное в избытке кислая соль, основное средняя либо основная!

РЕАКЦИИ ИОННОГО ОБМЕНА

РАСТВОРИМАЯ
КИСЛОТА

РАСТВ/НЕРАСТВ ОСНОВАНИЕ

РАСТВОРИМАЯ КИСЛОТА

РАСТВОРИМАЯ

КИСЛОТА

РАСТВ/НЕРАСТВ АМФ ГИДРОКСИД

РАСТВ/НЕР СОЛЬ CO₃², SO₃², S² ГАЗ ОСАДОК СЛ. ЭЛЕКТРОЛИТ (ВОДА)

ВНИМАНИЕ!

- 1) смотрим на возможность протекания ОВР;
 - 2) смотрим на избыток/ недостаток.

HgS, PbS, CuS, Ag,S НЕ РАСТВОРЯЮТСЯ В КИСЛОТАХ!

CH,COONH, + HBr =	
Na,SO, + H,SO,(p) =	
H,PO, + AgNO, =	
Na,CO, + CO, + H,O =	
FeCL + H S =	

MnS + HCl =

Ca(OH)₂ + HCl=

Al(OH)₃ + HCl =

AgCl + H₂SO₄(p) =

CaCO₃ + HCl =

FeCl, + H,S = BaSO, + HCl = HCl + AlPO, = HCl + NaHS = ОБРАТИТЕ ВНИМАНИЕ! средняя/кислая соль + кислота = кислая/"более кислая" соль CaHPO₄ + H₃PO₄ = CaCO, + CO, + H,O = $Ca_3(PO_4)_2 + H_3PO_4 =$ Na,SO, + H,O + SO, = основная соль + кислота = средняя соль CaOHBr + HBr = MgOHCl + HCl = AlOHCL, + HCL = (CuOH)₂CO₃ + HNO₃ = средняя/комплексная соль с амф Ме в анионе + кислота = избыток кислоты: средняя соль + средняя соль + Н,О недостаток кислоты: средняя соль + амф гидроксид (+ H₂O) $Na_2ZnO_2 + HCl(изб) =$ $Na_2ZnO_2 + HCl(нед) =$ $Na_2[Zn(OH)_4] + HCl(изб) =$ $Na_2[Zn(OH)_4] + HCl(нед) =$ Na₂ZnO₂ + HCl(изб) = РЕАКЦИИ ВЫТЕСНЕНИЯ безводная соль кислая/средняя соль Н, ЅО, (конц) летучей кислоты + летучая кислота (H: HCl, HNO₃, H₂CO₃, H₂SO₃) $H_sO_L(\kappa) + NaCl(TB) =$ $H_sO_k(\kappa) + KNO_k(TB) =$ $H_2SO_4(\kappa) + CaCO_3(TB) =$ $H_sO_(p) + KCl(TB) =$ соль H,S = сульфид ↓ + кислота Ag, Cu, Pb, Cd, Hg H,S + CuSO, = H,S + Hg(NO,), = H,S + Pb(NO,), = H,S + AgNO, = соль более новая соль + слабая кислота слабой кислоты кислота

ОВР С КИСЛОТАМИ

Типичные окислители: КМпО₄, K₂Cr₂O₇, K₂CrO₄, HNO₃, H₂SO₄(конц), Fe⁺³, H₂O₂, Hal₂, O₃, O₂, NaNO₃, HClO₄, HClO₃, HClO + соли Типичные восстановители: Me, Fe⁺², Cu⁺¹, Mn⁺², Cr⁺², C, CO, H₂, NH₃, H₂S, S, SO₃²⁻, NO₂⁻, HHal, H₂O₂, P, PCl₃, P₂O₃, PH₃

FeCl ₃ + H ₂ S =	S + H ₂ SO ₂ (p) =
FeCl, + H,S =	S + H ₂ SO ₂ (K) =
FeO + H ₂ SO ₂ (p) =	S + HNO,(p) =
FeO + H ₂ SO ₂ (K) =	S + HNO ₃ (K) =
FeO + HNO ₃ (p) =	P,O, + HNO,(p) =
FeO + HNO ₃ (K) =	P'+ H ₂ SO ₂ (K) =
Fe ₂ O ₃ + HI =	H ₂ SO ₃ + Cl ₂ + H ₂ O =
H ₂ SO ₄ (K) + HBr =	H,S + Cl, =
H,SO,(K) + H,S =	HCl + Br, =
H ₂ SO ₄ (K) + HĪ =	HI + Br, =
H ₂ SO ₃ + H ₂ S =	H,S + O,(нед) =
HNO,(K) + H,S =	H,S + O,(изб) =
HNO ₃ (K) + HÎ =	C+ H ₂ SO ₄ (K) =
HNO ₃ (κ) + Fe ₂ O ₃ =	C + HNO3(p) =

ТЕРМИЧЕСКОЕ РАЗЛОЖЕНИЕ

Кислородсодержащие кислоты, как и все остальные гидроксиды, разлагаются при нагревании с образованием соответствующего оксида и воды. Если при этом протекает OBP - см. специфические реакции.

СПЕЦИФИЧЕСКИЕ РЕАКЦИИ

 $CO_2 + 2K[Al(OH)_4] = K_2CO_3 + 2Al(OH)_3 + H_2O$ $CO_2(N36) + K[Al(OH)_4] = KHCO_3 + Al(OH)_3$

> 2H₃PO₄ (t) = H₂P₂O₇ + H₂O H₄P₂O₇ (t) = 2HPO₃ + H₂O 2H₃PO₇ (t) = 3H₂PO₄ + PH₃

4HNO₃ (t) = 4NO₂ + O₂ + 2H₂O 3HNO₂ (t) = HNO₃ + 2NO + H₂O 2HNO₂ (t) = NO₂ + NO + H₂O

3HClO (t) = 2HCl + HClO,

КИСЛОТЫ-ОКИСЛИТЕЛИ

К кислотам-окислителям относят:

- серную концентрированную H,SO, (конц)
- азотную ЛЮБОЙ концентрации НОО, (конц/разб)
- * Эти кислоты относят к кислотам-ОКИСЛИТЕЛЯМ, т.к. при их взаимодействии с металлами выделяется НЕ водород, а нечто другое:)

КИСЛОТА + МЕ = СОЛЬ МЕ В МАХ С.О. +
$$H_2O$$
 + «Х» «Х» = продукт восстановления серы или азота

Рассмотрим взаимодействие этих кислот с металами.

- 1) СЕРНАЯ КОНЦЕНТРИРОВАННАЯ КИСЛОТА Н, 50, (конц)
- ! Обратите внимание, что кислота должна быть именно концентрированной; разбавленная серка простой смертный, самая обыкновенная кислота-НЕокислитель.

Логично, что чем АКТИВНЕЕ металл, реагирующий с кислотой, тем БОЛЕЕ КРУТОЙ скачок происходит в изменении степени окисления серы, поэтому получаем следующее:

щелочные металлы, Al, Mg, Zn

- ! При этом Cr, Fe, Al, Ni ПАССИВИРУЮТСЯ холодной концентрированной серной кислотой, т.е. не реагируют с ней в обычных условиях, а вступают в реакцию ТОЛЬКО при нагревании.
- ! Au, Pt, Pd ни при каких условиях не соглашаются реагировать с концетрированной серкой :(
- 2) АЗОТНАЯ КИСЛОТА НОО (конц/разб)

Общая схема взаимодействия с металлами аналогична:

$$HNO_3(\kappa/p) + Me = Me^{max+}NO_3 + H_2O + X$$

! Запомните одну небольшую закономерность: чем РАЗБАВЛЕННЕЕ азотка, тем СИЛЬНЕЕ ВОССТАНАВЛИВА-ЕТСЯ азот, это можно отразить следующей схмой:

Теперь рассмотрим отдельно взаимодействие разбавленной и концентрированной азотки с металлами.

- ! Также стоит помнить о том, что Au, Pt, Pd ни при каких условиях не будут с азоткой вступать в реакцию.
- ! A Al, Fe, Cr, Co, Ni ПАССИВИРУЮТСЯ холодной <u>КОНЦЕН-ТРИРОВАННОЙ азоткой</u>, т.е. эти металлы вступают с ней в реакцию ТОЛЬКО при нагревании.

Итак, схема взаимодействия с металлами КОНЦЕНТРИ-РОВАННОЙ азотной кислоты:

РАЗБАВЛЕННОЙ азотной кислоты:

! Обратите внимание, что здесь действует, как и в случае с концентрированной серкой, одно и то же правило: чем АКТИВНЕЕ металл, тем СИЛЬНЕЕ ВОССТАНАВЛИВА-

ЕТСЯ азот.

ПОДВОДНЫЙ КАМЕШЕК: не забывайте о том, что перечисленные немного ранее металлы пассивируются именно холодной КОНЦЕНТРИРОВАННОЙ азоткой, т.е. с разбавленной они будут вступать в реакцию и без всякого нагревания.

3) ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ

С неметаллами ситуация ещё проще. В реакциях с ними (как и со сложными веществами) происходит следующее:

H,SO,(конц) превращается	В
HNO,(конц) - в	
HNO (разб) - в	

А ТЕПЕРЬ НАСТАЛО ВРЕМЯ ДЛЯ ПРАКТИКИ!

 $C + 2H_2SO_4(\kappa) =$ $S + 2H_2SO_4(\kappa) =$

 $P + 2H_2SO_4(K) =$

C + HNO₃(K) =

P + HNO₃(κ) = P + HNO₃(p) =

S + HNO₃(κ) = ______ S + HNO₃(ρ) =

I₂ + HNO₃(K) =

H₂S + HNO₃(κ) = Na₃S + HNO₃(κ) =

CuS + HNO₃(K) =

KI + HNO₃(p) =

Fe(OH)₂ + HNO₃(K) = HCl + HNO₃(K) =

 $SO_2 + HNO_3(\kappa) =$

H₂S + H₂SO₄(κ) = HBr + H₂SO₄(κ) = HI + H₂SO₄(κ) =