Assignment 1 – Robotic Workcell Design

Advanced Robotic Systems – MANU2453

Dr Ehsan Asadi, School of Engineering RMIT University, Victoria, Australia Email: ehsan asadi@rmit edu au

- This is a group assignment.
- The assignment contributes 20% to your final score.
- Submit by end of Week 4, Sunday 16 Aug, i.e., 23:59 hours AEST.

- An equipment manufacturer asks for your expertise in automating their diesel engine cylinder block deburring and polishing tasks using robots.
- Requirements:
 - They produce 10 different types of diesel engine cylinder block.
 - Each type has different design and size (the smallest and largest blocks are different in size by 10%).
 - Need to recognize block type to load the correct robot program.

- Requirements (Continued):
 - Deburring will occur first, right after casting of block from mould. After deburring, then the blocks will be polished.
 - The block need to be deburred and polished from two sides (top and bottom).
 - Need mechanism to change the orientation or flip the block.
 - The company produces a lot of blocks each day.
 - Need some storage space.
 - The system needs to run fully autonomous without human intervention, so that production continues at night.
 - You may need to think carefully what steps are required from the start to the end of the fully automated process.

- Tasks:
 - Create a Powerpoint presentation, which includes:
 - Problem Statement (Make up your own story).
 - A few possible solutions for each tasks.
 - E.g. for block recognition, give two or three solutions.
 - Provide a selection matrix, i.e. comparisons of the solutions.
 - Give a final recommendation to the customer.
 - Also provide some preliminary costing.
 - Rough estimates will do. You do not need to contact vendors to get the price. A basic 6DOF robot costs around \$50K, and you can use your engineering judgement to estimate the cost of other items.
 - Save the Powerpoint presentation as PDF, then submit through Canvas.
 - No "oral" presentation required.
 - Treat this as a "tender" document, for which your presentation will need to compete with other competitors.

- Additional Task
- Read at least 6 journal papers on collaborative manufacturing with physical human-robot(industrial manipulator) interaction

- On the same PPT from previous page, make some slides to discuss about:
 - The problems / challenges in collaborative manufacturing.
 - Some proposed solutions to make robots suitable for collaborative manufacturing
 - The results of the proposed solutions.

- Rubric for Cell Design (15%)
- A scale of 0 1 2 3 for each of the subtasks.
 - 3: Excellent, very comprehensive design which would certainly work.
 - 2: Good, design which should work with some more details or thoughts.
 - 1: Satisfactory, some errors with the design but generally should still work.
 - 0: Missing or wrong design.
- Subtask 1: Part storage and part transfer
- Subtask 2: Part recognition
- Subtask 3: Flipping mechanism You may need to design this yourself
- Subtask 4: Robot
- Subtask 5: End-Effector
- Remember: Selection matrix and costing for each subtask.

- Rubric for Literature Review on Collaborative manufacturing* (5%)
- 5: Good review, good categorisation of problems and solutions, reviewed the problems and solutions from all angles.
- 3: Good categorisation of problems and solutions, reviewed the problems and solutions from some angles (i.e. not complete)
- 1: Poor review, no categorisation of problems and solutions.

* Collaborative manufacturing with physical human-robot (industrial manipulator) interaction

