Mid-term exam solutions

1. (Local minimum, global minimum and saddle point)

Note that the global minimum is also a local minimum since the function value only increases in a small neighborhood of x = 3. x = 2 is a saddle point since f'(2) = 0 but it is neither local minimum or local maximum. Note that f(x) is differentiable once at x = 2, but not twice.

2. (Gradient and Hessian)

Solution)

$$\nabla_{(x_1, x_2)} f(x_1, x_2) = \begin{pmatrix} \frac{\partial f(x_1, x_2)}{\partial x_1} \\ \frac{\partial f(x_1, x_2)}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 - 5x_2 + 3x_1^2 x_2^2 \\ 6x_2 - 5x_1 + 2x_1^3 x_2 \end{pmatrix}$$

$$H = \begin{pmatrix} \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} & \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 2 + 6x_1x_2^2 & -5 + 6x_1^2x_2 \\ -5 + 6x_1^2x_2 & 6 + 2x_1^3 \end{pmatrix}$$

3. (Unbiased estimator)

Solution)

$$\hat{\theta}(x) = |x|$$

will do the job since $\mathbb{E}[\hat{\theta}(x)] = \mathbb{E}[|x|] = \theta$ and the bias is $\mathbb{E}[\hat{\theta}(x)] - \theta = \theta - \theta = 0$.

4. (ReLU)

Solution)

a	b	c	d	e
1	$-\frac{1}{2}$	$-\frac{7}{2}$	4	-1

5. (XOR problem)

Solution) There are many solutions for this problem. One possibility is given as follows:

a	b	c	$\phi(x)$	
1	1	-1	1- x	

6. (Backpropagation)

Solution)

(a)

$$\frac{\partial J}{\partial z_i} = -\frac{\partial}{\partial z_i} \sum_{i'} \log \sigma((2y_{i'} - 1)z_{i'})$$

$$= -\frac{\partial}{\partial z_i} \log \sigma((2y_i - 1)z_i)$$

$$= (1 - 2y_i)(1 - \sigma((2y_i - 1)z_i))$$

$$= \begin{cases} \hat{y}_i & \text{if } y_i = 0\\ \hat{y}_i - 1 & \text{if } y_i = 1 \end{cases}$$

$$= \hat{y}_i - y_i.$$

where the third equality follows since $\frac{\partial}{\partial z} \log \sigma(\alpha z) = \frac{\partial}{\partial z} \log \frac{1}{1 + \exp(-\alpha z)} = \frac{\alpha \exp(-\alpha z)}{1 + \exp(-\alpha z)} = \alpha(1 - \sigma(\alpha z))$ and the fourth equality follows by considering two cases $y_i = 0$ or 1 and by using $1 - \sigma(-z) = \sigma(z)$.

(b) Using the result in (a), we get

$$\nabla_{\mathbf{z}}J = \hat{\mathbf{y}} - \mathbf{y}.$$

(c) $\frac{\partial J}{\partial u_i}$ can be derived as follows:

$$\frac{\partial J}{\partial u_i} = \sum_{i'} \frac{\partial z_{i'}}{\partial u_i} \frac{\partial J}{\partial z_{i'}} = \phi'(u_i) w_2 \frac{\partial J}{\partial z_i} = \phi'(u_i) w_2 g_i.$$

(d) Using the result in (c), we get

$$\nabla_{\mathbf{u}}J = w_2\phi'(\mathbf{u}) \odot \nabla_{\mathbf{z}}J = w_2\phi'(\mathbf{u}) \odot \mathbf{g}.$$

2

(e)

$$\begin{split} &\frac{\partial J}{\partial w_2} = \sum_i \frac{\partial z_i}{\partial w_2} \frac{\partial J}{\partial z_i} = \sum_i h_i \frac{\partial J}{\partial z_i} = \mathbf{h}^T \nabla_{\mathbf{z}} J = \mathbf{h}^T \mathbf{g} \\ &\frac{\partial J}{\partial b_2} = \sum_i \frac{\partial z_i}{\partial b_2} \frac{\partial J}{\partial z_i} = \sum_i \frac{\partial J}{\partial z_i} = \mathbf{1}^T \nabla_{\mathbf{z}} J = \mathbf{1}^T \mathbf{g} \\ &\frac{\partial J}{\partial w_1} = \sum_i \frac{\partial u_i}{\partial w_1} \frac{\partial J}{\partial u_i} = \sum_i x_i \frac{\partial J}{\partial u_i} = \mathbf{x}^T \nabla_{\mathbf{u}} J = \mathbf{x}^T \mathbf{f} \\ &\frac{\partial J}{\partial b_1} = \sum_i \frac{\partial u_i}{\partial b_1} \frac{\partial J}{\partial u_i} = \sum_i \frac{\partial J}{\partial u_i} = \mathbf{1}^T \nabla_{\mathbf{u}} J = \mathbf{1}^T \mathbf{f} \end{split}$$

7. $(L^1 \text{ regularization})$

Solution) The Hessian H of $J(x_1, x_2)$ is given by

$$H = \begin{pmatrix} 6 & 0 \\ 0 & 14 \end{pmatrix}.$$

Therefore,

$$\alpha_1 = H_{1,1}|w_1^*| = 6 \times 5 = 30$$

 $\alpha_2 = H_{2,2}|w_2^*| = 14 \times 4 = 56$

where $H_{i,j}$ is the (i,j)-th element of H and $(w_1^*, w_2^*) = (5,4)$ is the local minimum of J. See page 8 of lecture notes #7 to see why α_1 and α_2 shown above give the minimum α for which x_1^* and x_2^* are zero, respectively.

8. (Overfitting or underfitting)

(a) An estimator $\hat{\theta}(x) = \frac{0.95 + 0.1x}{2}$ that estimates $0 \le \theta \le 1$ from x following $Bernoulli(\theta)$

Solution) This is an example of underfitting since $\hat{\theta}(x)$ is either 0.475 (when x=0) or 0.525 (when x=1), which is close to a trivial estimator that always outputs 0.5. Such a trivial estimator and the estimator in this problem would be in the underfitting regime whereas $\hat{\theta}(x)=x$ would be in the overfitting regime. $\hat{\theta}(x)=\frac{1+2x}{4}$ would achieve a good balance between underfitting and overfitting.

(b) Someone thinks Earth is sitting on four giant elephants.

Solution)

Overfitting. Why four? Why elephants? There are infinitely many other possibilities and you are simply believing what you chose to believe based on your limited experience.