Numérique et **S**ciences **I**nformatiques

Thème: Représentation des données (types de base)

A. Écriture d'un entier naturel dans une base b (b est un entier supérieur ou égal à 2):

Activité 1 :

1. Calcule le nombre entier $3 \times 4^3 + 1 \times 4^2 + 2 \times 4^1 + 0 \times 4^0 = 3 \times 64 + 1 \times 16 + 0 \times 1 = 172 + 16 = 188$ (Rappel: $x^0=1$ pour tout nombre x non nul).

Ce nombre est écrit comme la somme <u>de puissances de 4</u> multipliées par des entiers <u>compris entre 0 et 3</u>. On dira que ce nombre s'écrit (3120)₄ en base 4. 188=(3120)₄

- **2.** A quel nombre entier est égal : **a.** $(3311)_4$. **b.** $(200)_3$. **c.** $(543210)_6$. **d.** $(708)_9$. **e.** $(8439)_{10}$.

- 3125
- 18 10 885 032 150
 - *575*

8 439

3. a. Calcule les puissances de 2 ($2^0 = ...$; $2^1 = ...$; $2^2 = ...$; ; $2^7 = ...$).

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

b. Déduis en l'écriture du nombre entier 203 en base 2.

$$203 = 128 + 64 + 8 + 2 + 1 = 1 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = (11001011)_{2}$$

c. De la même manière écris 203 en base 5, puis en base 8.

$$203 = (1303)_5 = (313)_8$$

4. a. Quelle est l'écriture de $2\times3^2+2$ en base 3 ? $2\times3^2+2=2\times3^2+0\times3^1+2\times3^0=(202)_3$

$$2\times3^2+2=2\times3^2+0\times3^1+2\times3^0=(202)_3$$

b. Quelle est l'écriture de $4\times3^2+2\times3+5$ en base 3?

$$4\times3^{2}+2\times3+5=1\times3^{3}+1\times3^{2}+2\times3^{1}+5\times3^{0}=(1125)_{3}$$

<u>Ce qu'il faut savoir</u>: Si N est un entier naturel tel que $N = a_k \times b^k + a_{k-1} \times b^{k-1} + \dots + a_1 \times b^1 + a_0 \times b^0$, b étant un nombre entier naturel supérieur ou égal à 2 et tous les nombres a_i étant <u>des entiers compris</u> <u>entre 0 et b-1</u>, alors on dit que $(a_k a_{k-1} ... a_1 a_0)_b$ est <u>l'écriture en base b</u> du nombre entier naturel N.

On notera
$$\mathbf{N} = (\mathbf{a}_k \mathbf{a}_{k-1} \dots \mathbf{a}_1 \mathbf{a}_0)_b$$
.

<u>Remarque:</u> On utilisera la notation $(\dots, h)_b$ pour préciser dans quelle base est l'écriture. On conviendra que si l'on n'écrit pas cette notation, l'écriture est en base « naturelle », c'est à dire la base 10.

B. Cas particulier de la base 2 :

Activité 2:

On veut écrire le nombre entier naturel 73 en base 2.

Pour cela on va chercher à l'écrire sous la forme $b_n \times 2^n + ... + b_1 \times 2^1 + b_0 \times 2^0$ car ainsi on obtient en base 2 le nombre $(b_n ... b_1 b_0)_2$.

1. Écris la division euclidienne de 73 par 2 et l'égalité euclidienne : dividende = quotient × diviseur + reste . Écris ensuite la division euclidienne du quotient obtenu par 2 et l'égalité euclidienne correspondante que tu inséreras dans l'égalité euclidienne précédente. Pour finir poursuis ainsi jusqu'à obtenir un quotient nul.

$$73 = 2 \times 36 + 1 .$$
Or $36 = 2 \times 18 + 0$, donc $73 = 2 \times (2 \times 18 + 0) + 1 = 2^2 \times 18 + 1$.
Or $18 = 2 \times 9 + 0$, donc $73 = 2^2 \times (2 \times 9 + 0) + 1 = 2^3 \times 9 + 1$.
Or $9 = 2 \times 4 + 1$, donc $73 = 2^3 \times (2 \times 4 + 1) + 1 = 2^4 \times 4 + 2^3 \times 1 + 1$.
Or $4 = 2 \times 2 + 0$, donc $73 = 2^4 \times (2 \times 2 + 0) + 2^3 \times 1 + 1$

$$= 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$
.

2. Déduis-en l'écriture de 73 sous la forme $b_n \times 2^n + \dots + b_1 \times 2^1 + b_0 \times 2^0$, puis son écriture en base 2. **73**=(**1001001**)₂.

<u>Ce qu'il faut savoir</u>: Pour convertir un entier naturel (qui est en base 10) en base b avec $b \ge 2$, on divise cet entier naturel par b jusqu'à obtenir un quotient égal à 0.

Le résultat cherché est la juxtaposition des restes du dernier au premier.

Exemple:

 $1253 = (10011100101)_2$

Activité 3 : En utilisant la méthode ci-dessus, effectue les conversions ci-dessous.

- 1. Écris 47, puis 53 et 245 en base 2. $47 = (101111)_2$, $53 = (110101)_2$ et $245 = (11110101)_2$.
- **2.** Écris 67, puis 231 et 2 578 en base 7. $67 = (124)_7$, $231 = (450)_7$ et 2 $578 = (10342)_7$.

C. Cas particulier de la base 16 :

Activité 4:

- 1. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 2 ? 2 chiffres = 0 et 1.
- 2. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 5 ? 5 chiffres = 0, 1, 2, 3 et 4.
- 3. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 10 ? 10 chiffres = 0, 1, ..., 8 et 9.
- 4. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 12 ? Quel est le problème ? 12 chiffres. Problème : il n'y a que 10 chiffres !

<u>Ce qu'il faut savoir</u>: Pour convertir un nombre entier naturel N en base 16, il faut l'écrire sous la forme $N = a_k \times 16^k + a_{k-1} \times 16^{k-1} + \dots + a_1 \times 16^1 + a_0 \times 16^0$, les a_i étant <u>des entiers compris entre 0 et 15</u>. On pose alors $c_i = a_i$ si $0 \le a_i \le 9$ et $c_i = A$, B, C, D ou E si $a_i = 10$, 11, 12, 13, 14 ou 15. Et on dit que $(c_k c_{k-1} \dots c_1 c_0)_{16}$ est <u>l'écriture en base 16</u> ou <u>en hexadécimal</u> du nombre entier naturel N.

On notera
$$N = (c_k c_{k-1} \dots c_1 c_0)_{16}$$
.

Exemple:
$$(A5E)_{16} = 10 \times 16^2 + 5 \times 16^1 + 14 \times 16^0 = 2654$$
.

Activité 5 :

- **1.** A quel nombre entier est égal : **a.** $(7DD)_{16}$. **b.** $(2A)_{16}$. **c.** $(4F2C)_{16}$. **20268**
- **2.** Écris chaque nombre entier en base 16 : **a.** 62. **b.** 1455. **c.** 8675. $(3E)_{16}$ $(5AF)_{16}$ $(21E3)_{16}$

D. Exercices d'application :

Exercice 1:

- **1.** A quel entier est égal : **a.** $(101010101)_2$. **b.** $(111000)_2$. **c.** $(00110011)_2$. **d.** $(101000001)_2$.
- **2.** Convertis en binaire : **a.** 458. **b.** 133. **c.** 47. **d.** 1 024. **e.** 65. $(111001010)_2$ $(10000101)_2$ $(1011111)_2$ $(100000000000)_2$ $(10000001)_2$

Exercice 2:

- **1.** A quel entier est égal : **a.** $(A320)_{16}$. **b.** $(FABE51)_{16}$. **41 760 16 432 721**
- **2.** Convertis en hexadécimal : **a.** 2 020. **b.** 1 234. **c.** 56 026. **d.** 64 218. $(7E4)_{16}$ $(4D2)_{16}$ $(DADA)_{16}$ $(FADA)_{16}$

Exercice 4:

1. On veut convertir en hexadécimal (1001101)₂. Pour cela, il suffit de compléter le tableau ci-dessous.

Écriture binaire « par paquets de 4 »	0 100	1101	
Écriture décimal « des paquets de 4 »	4	13	
Écriture hexadécimale	4	D	

On ajoute des « 0 » pour avoir un paquet de 4 chiffres.

Complète ce tableau et convertis (1001101), en hexadécimal. $(1001101)_{3} = (4D)_{16}$.

- 2. En utilisant la même méthode, convertis en hexadécimal les nombres ci-dessous.
 - (2019)
 - **a.** $(10000000011001)_2$. **b.** $(10001000010001)_2$. **c.** $(100110000111)_2$. **d.** $(101110101100)_2$. $(2211)_{16}$
- (987)
- (BAC)₁₆

Exercice 5:

- 1. Pose et effectue chacune des opérations ci-dessous en base 2. Pour vérifier, convertis chaque terme des opérations en base 10, refais les opérations en base 10 et compare le résultat avec celui obtenu en base 2. <u>Important</u>: On utilisera le fait que en base 2 on a $(1)_2 + (1)_2 = (10)_2$ pour bien gérer les retenues.
- **a.** $(100011)_2 + (110100)_2$. **b.** $(100101)_2 + (110000)_2$. **c.** $(100011)_2 + (1111)_2$. **d.** $(10000000)_2 (100)_2$. (1010111),
- (1010101),
- (1111100)
- **2.** Pose et effectue : **a.** $(98)_{16} + (B9)_{16}$. **b.** $(D23)_{16} + (46 \, A)_{16}$. **c.** $(150 \, F6)_{16} (7 \, E3 \, A)_{16}$. $(D2 \, BC)_{16}$

Exercice 6 : Considérons le programme écris ci-dessous en Python.

n = int(input("Entrez un nombre entier")) while n!= 0: q = int(n/2)b = str(n-q*2)+bn = qprint(b)

1. Recopie et complète ce tableau jusqu'à ce que le programme se termine lorsqu'on a choisi n=71 :

q		35	17	8	4	2	1	0
n-q*2		1	1	1	0	0	0	1
b	""	" 1 "	"11"	"111"	"0111"	"00111"	"000111"	"1000111"
n	71	35	17	8	4	2	1	0
n!=0	VRAI	VRAI	VRAI	VRAI	VRAI	VRAI	VRAI	FAUX

- 2. Explique le rôle de ce programme. Ce programme convertit un entier naturel en base 2.
- 3. Tape ce programme sur Python et teste le sur certains résultats de cette fiche d'exercices.