Department of Computer Science

CS2001 – Data Structures Spring 2023

Instructor: Samman Ashraf Email: samman.ashraf@nu.edu.pk

Office Hours: TBA

Credit Hours: 3 + 1 **Prerequisite** Object-Oriented

Programming

Course Objectives:

CS2001 is a core Computer Science course with Computer Programming as its prerequisite. The objectives of this course are:

- · Introduce students with data structures and their associated algorithms
- Introduce the concept of efficient data structures and how this efficiency can be measured
- Prepare students to select appropriate data structure for a given computational problem.

Text Book:

Any one of these books is recommended as a text book:

- Mark Allen Weiss, Data structures and algorithm analysis, Pearson Education, 2007.
- Adam Drozdek, Data structures and algorithms in C++, Course technology, 2004.
- Nell Dale, C++ Plus Data Structures, 3rd Edition, Jones and Bartlett, 2003.

LECTURES	TOPICS			
1	Introduction			
2	Time Complexity Analysis and Asymptotic Bounds			
4	List, Stacks, and Queues <array based=""></array>			
4	Linked Lists			
	Review of pointers			
	Singly linked lists			
MIDTERM 1				

2	Doubly linked lists, circular lists and corresponding iterators				
	Linked list bases stacks and queues				
2	Recursion				
5	Trees				
	Binary trees and their traversals				
	Binary search trees (Insertion, Deletion and Search)				
2	Height Balanced Binary Search Trees (AVL Trees)				
MIDTERM 2					
2	Heaps and heap sort				
1	Data compression and Huffman coding				
1	Hashing				
	Hash tables and hash functions				
	Collision resolution				
2	Graph data structure, Breadth first search and Depth first				
	search				

(Tentative) Grading Criteria:

Assignmen	nts (10%)	Quiz	(10 %)	Midterms (30 %)
Project	(10%)	Final Exam	(40 %)	

Course Policies:

- Quizzes may be unannounced.
- o All assignments and course work must be done individually.
- In case of cheating, both parties will be considered equally responsible.80% attendance is required for appearing in the exams.No Late Submissions
- No Makeup Quizzes.
- o 80% attendance is required for appearing in the Final exams.

Passing criteria:

Minimum requirement to be eligible to pass this course is to get at least 50% marks in the course. All CS department's grading policies apply. Grading scheme for this course is **Absolute**.