FORGÓMOZGÁS VIZSGÁLATA

Mérést végezte : Brindza Mátyás Mérés időpontja : 2020.10.08.

Jegyzőkönyv leadásának időpontja: 2020.10.16.

A mérés célja:

A mérés célja egy korong és egy rúd adott tengelyre vonatkozó tehetetlenségi nyomatékának kiszámolása. A korong esetén ennek kör alakú lapjára merőleges tengelyről beszélünk, a rúd esetén pedig a rúd közepét döfő, kör alakú keresztmetszetével párhuzamos tengelyről. A tehetetlenségi nyomaték kiszámolásának menetében (az illesztendő egyenesnél) gyakorlatilag bizonyítjuk a szöggyorsulás és a forgatónyomaték közti lineáris összefüggést.

A tehetetlenségi nyomtaték két módon is kiszámolható. Az első mód a test forgásának vizsgálatát követeli, a második mód a tengely és a test paramétereinek ismeretében felintegrált értékkel foglalkozik, ha merev testként tekintünk a korongra és a rúdra. A testekre rögzített tengelyre fonalat tekercselünk, átvetjük a fonalat egy csigán, és a fonál végére rögzített tömegek fogják szolgáltatni a rendszert mozgásba lendítő erőt. A forgómozgás vizsgálatánál legfőként az alábbi két összefüggésre lesz szükség. Az erők egyensúlya:

$$m \cdot a = m \cdot q - K$$

és a forgatónyomatékok egyensúlya:

$$\Theta \cdot \beta = K \cdot r - M_s$$

ahol m a fonál végén függő össztömeg, a a tömeg gyorsulása, K a cérnát feszítő kötélerő, M_s a súrlódásból fakadó fékezőnyomaték, Θ a forgó test tehetetlenségi nyomatéka, β a szöggyorsulás és r a testre rögzített tengely sugara. Ez a két összefüggés elegendő, hogy illesztőprogram által feldolgozható egyenletet alkossunk, amennyiben tudjuk, hogy $a = \beta \cdot r$.

$$K = m \cdot (g - a); \Theta \cdot \beta + M_s = K \cdot r$$

$$\Theta \cdot \beta + M_s = m \cdot (g - a) \cdot r$$

$$\Theta \cdot \beta + M_s = m \cdot (g - r \cdot \beta) \cdot r$$

Nevezzük el β -t x-nek, és az egyenlet jobb oldalát y-nak, így:

$$y = \Theta \cdot x + M_s$$

A rendelkezésre álló szenzor a értékét mérni tudja, ami alapján y és x kiszámolható, majd numerikus illesztéssel tudunk M_s és Θ értékeket kapni.

A második módszer azt takarja, hogy megmérjük a korong átmérőjét és tömegét, illetve a rúd hosszát, átmérőjét és tömegét, majd ezekből kiszámoljuk a tehetetlenségi nyomatékukat. Egyszerű tengely és test konfiguráció lévén az integrálás menete is egyszerű, de eredménye egyébként is ismert.

$$\begin{split} \Theta_{korong} &= \frac{1}{2} \cdot m \cdot R^2 \\ \Theta_{r\acute{u}d} &= \frac{1}{4} \cdot m \cdot \rho^2 + \frac{1}{12} \cdot m \cdot L^2, \end{split}$$

ahol R a korong sugara, L a rúd hossza és ρ a rúd keresztmetszetének sugara.

Mérőeszkzök:

- Fonál
- Fonáltárcsák
- Keretszerű állvány, melyben rögzíthető a testre rakott tengely
- Kis korongok (50g)
- Súlytartó, melyre a kis korongok helyezhetők (50g)
- Csiga
- Szenzor
- Számítógép
- Tolómérő
- Vonalzó
- Mérleg

A szenzor az elektronikus adatfeldolgozó alkatrészeket leszámítva egy lézerből, egy fényérzékelőből és egy csigából áll. A csiga a lézersugár útjába van helyezve. Amikor a csiga forog, a rajta lévő küllők ki-ki takarják a lézersugarat, ezeket a fényérzékelő észlelni tudja. A számítógép a kitakarások közt eltelt idő és a csiga sugara alapján meg tudja határozni, mekkora a csigán a kerületi sebesség.

A mérés rövid leírása:

Helyezzük a korongot az állványba, majd a rá erősített fonáltárcsára tekercseljük fel a fonalat - ügyelve arra, hogy a fonál csak egy rétegben legyen feltekerve, mivel a fonáltárcsa átmérője kicsi, és a többszörös tekercselés észlelhetően megváltoztatná az erőkart. A fonalat vessük át a csigán, a fonál végére akasszuk rá a súlytartót, a súlytartóra pedig kezdetben 2db 50g-os korong kerüljön. Engedjük el a korongot, várjunk egy kicsit, hogy megkezdődjön a forgás, és a számítógépen található programban kattintsunk rá a "record" gombra (piros kör a bal felső sarokban). Miután a számítógép interpolált legalább 5 mérési pontot, szakítsuk meg a felvételt és állítsuk meg a korong forgását. A mérési pontokra a "linear fit" nevű funkcióval tudunk egyenest illeszteni, melynek meredeksége megadja a fonál végén lévő korongok gyorsulását.

A fonál végén lévő tömeg kezdetben 150g, majd 50g-os lépcsőkkel növeljük azt 350g-ig. Minden tömegkonfigurációban elvégezzük a mérést háromszor. A rúd esetén is ugyanez a mérés menete.

Ugyeljünk arra, hogy a fonál csak egy rétegben tekeredjen fel a fonáltárcsára, illetve a számítógép ne vegye a fel a forgó test elengedését és az elkapását. Az előbbi a mérés pontosságát szabotálja, az utóbbi pedig a releváns adatokra való illesztést.

Mérési adatok

Jelmagyarázat:

- M forgó test tömege
- D forgó testhez tartozó átmérő
- \bullet L rúd hossza
- d fonáltárcsa átmérője
- \bullet m fonáltárcsa tömege

Korong		Rúd		Fonaltárcsa	
M [g]	1511.0	M [g]	224.0	d [mm]	5.00
D [cm]	22.00	L [cm]	35.85	Referencia f	onaltárcsa
		D [mm]	10.00	m [g]	9.0

A korong, a rúd és a fonáltárcsa paraméterei

	Korong				
tömeg [g]	Gyorsulás [m/s²]				
tomeg [g]	1.	2.	3.		
150	0.0005	0.0004	0.0004		
200	0.0008	0.0008	0.0008		
250	0.0012	0.0012	0.0013		
300	0.0016	0.0016	0.0016		
350	0.0019	0.0019	0.0019		

Rúd				
tömeg [g]	Gyorsulás [m/s²]			
tomeg [g]	1.	2.	3.	
150	0.0043	0.0042	0.0042	
200	0.0050	0.0055	0.0055	
250	0.0070	0.0070	0.0069	
300	0.0085	0.0083	0.0082	
350	0.0097	0.0097	0.0095	

A csigán fellépő kerületi gyorsulás korong esetén

A csigán fellépő kerületi gyorsulás forgó rúd esetén

Hibaforrások

- 1. Az illesztőprogram kiírja az illesztés bizonytalanságát is, ami nagyobb gyorsulások esetén egyre nő
- 2. A korong és a rúd tömegét mérleggel mérjük, aminek 0.5g a hibája
- 3. A korong és a rúd geometriai paramétereinek meghatározásához használt vonalzó és tolómérő hibája, illetve a leolvasás pontatlansága
- 4. A fonál végén a súly nem egzaktul -z irányban gyorsult, hanem x és y irányban is végzett rezgéseket
- 5. Nagy sebességeknél (azaz nagy gyorsulás hatására) a fonál elcsúszhat a csigán
- 6. A rúdnak sejthetően lényegesen kisebb a tehetetlenségi nyomatéka, mivel lényegesen nagyobb gyorsulások lépnek fel. Erre különösen érvényes az előző kettő, nagy sebességekre, illetve gyorsulásokra vonatkozó hibaforrás. A fonál olyan gyorsan letekeredik a fonáltárcsáról, hogy a nagyobb gyorsító tömegeknél a számítógép már alig tud 5-nél több mérési pontot interpolálni
- 7. A korong és a rúd nem egzaktul az (x, y) síkban forog, kicsit billeg közben
- 8. Technikailag nem tudjuk úgy elengedni a forgatandó testet, hogy ne adjunk neki valamilyen irányú kezdősebességet

Kiértékelés

Tudjuk, hogy a fonáltárcsa sugara r=2.5mm, azaz r=0.0025. Számoljuk ki ez alapján a rúd és a korong esetén a szöggyorsulást, ami $\beta=a_{\acute{a}tl}/r$ módon áll elő.

Korong					
tömaa [a]	Gyorsulás [m/s²]		a. [m/e2]	0 [4/e2]	
tömeg [g]	1.	2.	3.	a _{áti} [m/s²] β [1/s²]	b[1/2]
150	0.0005	0.0004	0.0004	0.000433	0.1733
200	0.0008	0.0008	0.0008	0.000800	0.3200
250	0.0012	0.0012	0.0013	0.001233	0.4933
300	0.0016	0.0016	0.0016	0.001600	0.6400
350	0.0019	0.0019	0.0019	0.001900	0.7600

Korong szöggyorsulásai

Rúd					
45	Gyorsulás [m/s²]		a [m/c2]	0 [4/e2]	
tömeg [g]	1.	2.	3.	a _{átl} [m/s²]	β [1/s²]
150	0.0043	0.0042	0.0042	0.004233	1.69333
200	0.0050	0.0055	0.0055	0.005333	2.13333
250	0.0070	0.0070	0.0069	0.006967	2.78667
300	0.0085	0.0083	0.0082	0.008333	3.33333
350	0.0097	0.0097	0.0095	0.009633	3.85333

Rúd szöggyorsulásai

Ezekből kiszámolhatóak az x_i és y_i mérési pontok.

	Korong		
tömeg [kg]	x=β[1/s²]	y [kg·m²]	
0.15	0.1733	0.00367859	
0.20	0.3200	0.00490460	
0.25	0.4933	0.00613048	
0.30	0.6400	0.00735630	
0.35	0.7600	0.00858209	

	Rud		
tömeg [kg]	$x=\beta[1/s^2]$	y [kg·m²]	
0.15	1.6933	0.00367716	
0.20	2.1333	0.00490233	
0.25	2.7867	0.00612690	
0.30	3.3333	0.00735125	
0.35	3.8533	0.00857532	

Korong mérési pontjai

Rúd mérési pontjai

Ezekre az adatokra egyenes illeszthető GNUPLOT segítségével. Az illesztés eredménye:

$$\Theta_{korong} = 8.17993 \cdot 10^{-3} \cdot kg \cdot m^{2}$$

$$M_{s,korong} = 2.22597 \cdot 10^{-3} Nm$$

$$\Theta_{r\acute{u}d} = 2.21234 \cdot 10^{-3} \cdot kg \cdot m^{2}$$

$$M_{s,r\acute{u}d} = 2.05712 \cdot 10^{-5} Nm$$

Korong tehetetlenségi nyomatéka

Rúd tehetetlenségi nyomatéka

Legyen Θ' a testek paramétereiből számolt tehetetlenségi nyomaték. Így

$$\Theta'_{korong} = \frac{1}{2} \cdot m \cdot R^2 = \frac{1}{2} \cdot m \frac{1}{4} \cdot D^2$$

$$\Theta'_{r\acute{u}d} = \frac{1}{4} \cdot m \cdot R^2 + \frac{1}{12} \cdot m \cdot L^2 = \frac{1}{4} \cdot m \cdot \frac{1}{4} \cdot D^2 + \frac{1}{12} \cdot m \cdot L^2$$

$$\Theta'_{korong} = \frac{1}{8} \cdot m \cdot D^2$$

$$\Theta'_{r\acute{u}d} = \frac{1}{16} \cdot m \cdot D^2 + \frac{1}{12} \cdot m \cdot L^2$$

$$\Theta'_{korong} = 9.14155 \cdot 10^{-3} \cdot kg \cdot m^2$$

$$\Theta'_{r\acute{u}d} = 2.399096 \cdot 10^{-3} \cdot kg \cdot m^2$$

Hibaszámítás

A mért tehetetlenségi nyomatékok hibáját a téglalap módszerrel határozzuk meg. A legnagyobb dy és a legnagyobb dx hányadosának kétszerese adja meg a tehetetlenségi nyomaték hibáját. Az illesztett és a mért adatok közti különbségeket, illetve ezek ábrázolását Pythonban végeztem.

A korong tehetetlenségi nyomatékának hibája téglalap módszerrel

$$\Delta\Theta_{korong} = 5.59886 \cdot 10^{-4} \cdot kg \cdot m^2$$

A rúd tehetetlenségi nyomatékának hibája téglalap módszerrel

$$\Delta\Theta_{r\acute{u}d} = 1.97773 \cdot 10^{-4} \cdot kg \cdot m^2$$

A számolt tehetetlenségi nyomatékok hibáját a tömegmérés bizonytalansága alapján határozzuk meg, mint:

$$\frac{\Delta\Theta'}{\Theta'} = \frac{\Delta m}{m}$$

A tömegmérés bizonytalansága a fonáltárcsa tömege. Így:

$$\Delta\Theta'_{korong} = \frac{m_{t\acute{a}rcsa}}{M_{korong}} \cdot \Theta'_{korong} = 4.87223 \cdot 10^{-5} \cdot kg \cdot m^2$$

$$\Delta\Theta'_{r\acute{u}d} = \frac{m_{t\acute{a}rcsa}}{M_{r\acute{u}d}} \cdot \Theta'_{r\acute{u}d} = 8.88887 \cdot 10^{-5} \cdot kg \cdot m^2$$

Eredmények

	Korong	Rúd
Mért $[kg \cdot m^2]$	$8.17993 \cdot 10^{-3} \pm 5.59886 \cdot 10^{-4}$	$2.21234 \cdot 10^{-3} \pm 1.97773 \cdot 10^{-4}$
Számolt $[kg \cdot m^2]$	$9.14155 \cdot 10^{-3} \pm 4.87223 \cdot 10^{-5}$	$2.399096 \cdot 10^{-3} \pm 8.88887 \cdot 10^{-5}$

Diszkusszió

Kiszámoltuk és megmértük a korong és a rúd tehetetlenségi nyomatékát. Látszik, hogy mindkét test esetén a számolt tehetetlenségi nyomatéknak egy nagyságrenddel kisebb a hibája - bár a rúd esetén a számolt és mért tehetlenségi nyomatékok hibája jóval közelebb van egymáshoz, mint a korong esetén megjelenő hibák. A számolt és a mért értékek között észlelhető különbség van, de a mért értékek közel állnak a valósághoz.

A korong esetén a mért és a számolt tehetetlenségi nyomaték közti különbség láthatóan nagyobb, mint a rúd esetén.

A mért értékeknél jól látszik, hogy nagyobb tehetetlenségi nyomatékhoz nagyobb hiba tartozik. A számolt értékeknél azért nem tapasztaljuk ezt az összefüggést, mert itt csupán a tömegmérés bizonytalanságát használtuk ki a hibaszámításhoz, ami mindkét esetben megegyezik - így szigorúan minél kisebb a test tömege, annál nagyobb hiba jön ki, tehát kvalitatívan egy fordított arányosságot kapunk.

A hibák legalább egy nagyságrenddel kisebbek, mint a tehetetlenségi nyomatékok, ami nem szörnyű, de nem is túl jó - 5-10%-os relatív eltérésekről beszélünk. Ha a hibák és a szükséges mérések ideje alapján kellene választani, hogy a mért vagy a számolt úton jussunk-e el az eredményhez, egyértleműen a számoltat célszerű választani.

A szöggyorsulás és a forgatónyomaték közti összefüggés igazoltnak tekinthető.