EL1000 - Reglerteknik, allmän kurs Övning 9

Martin Biel mbiel@kth.se

27 september 2016

Repetition

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Styrbarhet

- Ett tillstånd x^* är styrbart om det finns en insignal u(t) som tar tillståndsvektorn från x(0) = 0 till x^* på ändlig tid.
- $S = \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix}$ Styrbarhetsmatrisen
- De styrbara tillstånden ligger i span $\{S\}$.
- Systemet är *styrbart* om alla tillstånd är styrbara, dvs om span $\{\mathcal{S}\} = \mathbb{R}^n$ (alternativt ifall \mathcal{S} har full rang, eller ifall $\det \mathcal{S} \neq 0$ om \mathcal{S} är kvadratisk.

Observerbarhet

• Ett tillstånd $x^* \neq 0$ är *icke-observerbart* om utsignalen är identiskt noll $(y(t) \equiv 0)$ då $x(0) = x^*$ och $u(t) \equiv 0$.

•
$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$
 - Observerbarhetsmatrisen

- De icke-observerbara tillstånden ligger i ker \mathcal{O} (nollrummet till \mathcal{O}).
- Systemet är observerbart om det saknar icke-observerbara tillstånd, dvs ker $\mathcal{O} = \emptyset$ (alternativt ifall span $\{\mathcal{O}\} = \mathbb{R}^n$, \mathcal{O} har full rang, eller ifall det $\mathcal{O} \neq 0$ om \mathcal{O} är kvadratisk).

Uppgift 8.10

Bestäm dimenion för de styrbara och icke-observerbara underrummen. Bestäm även dessa underrum.

 $\mathbf{a})$

$$\dot{x} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -3 \end{pmatrix} x + \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 3 & 1.5 \end{pmatrix} x$$

Styrbarhet:

$$S = \begin{pmatrix} 1 & -2 & 4 \\ -1 & 3 & -9 \\ 2 & -6 & 18 \end{pmatrix}$$

Första och andra raden är linjärt beroende. Ifall en stryks är de återstående linjärt oberoende.

 \Rightarrow dim (span $\{S\}$) = 2. Det styrbara underrummet spänns upp av två valfria linjärt oberoende kolumner i S:

$$\operatorname{span}\left\{\mathcal{S}\right\} = \operatorname{span}\left\{ \begin{pmatrix} 1\\-2\\2 \end{pmatrix}, \begin{pmatrix} -2\\3\\-6 \end{pmatrix} \right\}$$

Observerbarhet:

$$\mathcal{O} = \begin{pmatrix} 1 & 3 & 1.5 \\ -2 & -3 & -1.5 \\ 4 & 3 & 1.5 \end{pmatrix}$$

Ifall vi utför Gauss-elíminering kommer vi kunna svara på båda frågeställningarna.

$$\begin{pmatrix} 1 & 3 & 1.5 & 0 \\ -2 & -3 & -1.5 & 0 \\ 4 & 3 & 1.5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1.5 & 0 \\ 0 & 3 & 1.5 & 0 \\ 0 & -9 & -4.5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1.5 & 0 \\ 0 & 3 & 1.5 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\Rightarrow \dim (\operatorname{span} \{\mathcal{O}\}) = 2, \dim (\ker \mathcal{O}) = 1$

En basvektor för ker \mathcal{O} bestäms genom att införa $x_3=t,t\in\mathbb{R}$ vilket ger $x_2=-0.5t$ och $x_1=0$. Alltså ges nollrummet av

$$\Rightarrow \ker \mathcal{O} = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ -0.5 \\ 1 \end{pmatrix} \right\}$$

vilket även ger underrummet av icke-observerbara tillstånd.

b)

$$\dot{x} = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -4 \end{pmatrix} x + \begin{pmatrix} 0 \\ 4 \\ -2 \end{pmatrix} u$$

$$y = \begin{pmatrix} 0 & 3 & 0 \end{pmatrix} x$$

Styrbarhet:

$$S = \begin{pmatrix} 0 & 0 & 0 \\ 4 & -8 & 16 \\ -2 & 8 & -32 \end{pmatrix}$$

Första raden faller bort och återstående rader är linjärt oberoende.

 \Rightarrow dim (span $\{S\}$) = 2. Det styrbara underrummet spänns upp av två valfria linjärt oberoende kolumner i S:

$$\operatorname{span}\left\{\mathcal{S}\right\} = \operatorname{span}\left\{ \begin{pmatrix} 0\\4\\-2 \end{pmatrix}, \begin{pmatrix} 0\\-8\\8 \end{pmatrix} \right\}$$

Observerbarhet:

$$\mathcal{O} = \begin{pmatrix} 0 & 3 & 0 \\ 3 & -6 & 0 \\ -9 & 12 & 0 \end{pmatrix}$$

Tredje kolumnen faller bort och de återstående är linjärt oberoende. \Rightarrow dim (span $\{\mathcal{O}\}\) = 2$, dim (ker $\mathcal{O}\) = 1$. Utför Gauss-eliminering:

$$\left(\begin{array}{ccc|c}
0 & 3 & 0 & 0 \\
3 & -6 & 0 & 0 \\
-9 & 12 & 0 & 0
\end{array}\right) \quad \left(\begin{array}{ccc|c}
3 & -6 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & -12 & 0 & 0
\end{array}\right)$$

 $\Rightarrow x_1 = 0, x_2 = 0 \text{ och } x_3 = t, t \in \mathbb{R}.$

 $\Rightarrow \dim(\ker \mathcal{O}) = 1$

Alltså ges nollrummet av

$$\Rightarrow \ker \mathcal{O} = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

vilket även ger underrummet av icke-observerbara tillstånd.

Uppgift 8.13

Figur 1: Two pendlar på en vagn

a)

Linjärisera systemet kring $\varphi_1 = \varphi_2 = 0$ när l = m = g = 1.

Pendel 1: $\ddot{z}\cos\varphi_1 + \ddot{\varphi}_1 = \sin\varphi_1$

Pendel 2: $\ddot{z}\cos\varphi_2 + \alpha\ddot{\varphi}_2 = \sin\varphi_2$

Linjärisering:

Pendel 1: $\ddot{z} + \ddot{\varphi}_1 = \varphi_1$

Pendel 2: $\ddot{z} + \alpha \ddot{\varphi}_2 = \varphi_2$

Låt $u = \ddot{z}$ utgöra insignal och inför tillstånden

$$x_{1} = \varphi_{1} \qquad \Rightarrow \dot{x}_{1} = x_{2}$$

$$x_{2} = \dot{\varphi}_{1} \qquad \Rightarrow \dot{x}_{2} = x_{1} - u$$

$$x_{3} = \varphi_{2} \qquad \Rightarrow \dot{x}_{3} = x_{4}$$

$$x_{4} = \dot{\varphi}_{2} \qquad \Rightarrow \dot{x}_{4} = \frac{1}{\alpha}(x_{3} - u)$$

Alltså erhålls

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{1}{\alpha} & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ -1 \\ 0 \\ -\frac{1}{\alpha} \end{pmatrix} u$$

b)

För vilka α är systemet styrbart?

Styrbarhetsmatrisen ges av

$$S = \begin{pmatrix} 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & 0 \\ 0 & -\frac{1}{\alpha} & 0 & -\frac{1}{\alpha^2} \\ -\frac{1}{\alpha} & 0 & -\frac{1}{\alpha^2} & 0 \end{pmatrix}$$

 \mathcal{S} är kvadratisk, så vi kan beräkna determinanten för att dra slutsatser om styrbarhet.

$$S = \begin{vmatrix} -1 & -1 & 0 \\ 0 & 0 & -\frac{1}{\alpha^2} \\ -\frac{1}{\alpha} & -\frac{1}{\alpha} & 0 \end{vmatrix} + \begin{vmatrix} -1 & 0 & -1 \\ 0 & -\frac{1}{\alpha} & 0 \\ -\frac{1}{\alpha} & 0 & -\frac{1}{\alpha^2} \end{vmatrix}$$

$$= \frac{1}{\alpha^2} \begin{vmatrix} -1 & -1 \\ -\frac{1}{\alpha} & -\frac{1}{\alpha^2} \end{vmatrix} - \begin{vmatrix} -\frac{1}{\alpha} & 0 \\ 0 & -\frac{1}{\alpha^2} \end{vmatrix} - \begin{vmatrix} 0 & -\frac{1}{\alpha} \\ -\frac{1}{\alpha} & 0 \end{vmatrix}$$

$$= \frac{1}{\alpha^2} \left(\frac{1}{\alpha^2} - \frac{1}{\alpha} \right) - \frac{1}{\alpha^3} + \frac{1}{\alpha^2}$$

$$= \frac{1}{\alpha^2} \left(\frac{1}{\alpha^2} - \frac{2}{\alpha} + 1 \right)$$

$$= \frac{1}{\alpha^2} \left(\frac{1}{\alpha} - 1 \right)^2$$

$$= \left(\frac{1 - \alpha}{\alpha^2} \right)^2$$

- $\Rightarrow \det \mathcal{S} \neq 0 \text{ om } \alpha \neq 1.$
- \Rightarrow Systemet är styrbart ifall $\alpha \neq 1$.

Fallet $\alpha=1$ motsvarar ett system där pendlarna är lika långa, vilket resulterar i att varje insignal ger upphov till samma vinkelförändring $\varphi_1=\varphi_2$ i båda pendlarna. Således går det inte att uppnå alla tillstånd eftersom det inte är möjligt att nå tillstånd där $\varphi_1\neq\varphi_2$.

Tillståndsåterkoppling

Återkoppla systemets tillstånd istället för utsignalen. Slutna systemet ges av

$$\dot{x} = Ax + B(r - Lx) = (A - BL)x + Br y = Cx$$

- \Rightarrow Slutna systemet får poler motsvarande egenvärdena till A-BL (istället för A).
- \Rightarrow Vi kan påverka polerna med L!

Sats (s.183)

Ifall systemet är styrbart kan polerna (egenvärdena) till A-BL placeras godtyckligt.

Figur 2: Tillståndsåterkoppling

Ifall systemet inte är styrbart kan det ändå vara möjligt att placera polerna önskvärt.

Tillståndsobservatör

Om inte tillstånden är mätbara kan en observatör användas för att uppskatta x(t) från y(t). Observatören är också ett dynamiskt system som simulerardet ursprungliga

Figur 3: Tillståndsobservatör

systemet.

$$\dot{\hat{x}} = A\hat{x} + Bu + K(y - C\hat{x})$$

De två första termerna simulerar systemet och den sista termen är en korrigerande term som motsvarar återkoppling av den verkliga utsignalen (observatören simulerar $C\hat{x}$ men utsignalen ges av y). Undersök skattningsfelet $\tilde{x} = x - \hat{x}$:s dynamik:

$$\dot{\tilde{x}} = Ax + Bu - \{A\hat{x} + Bu + K(y - C\hat{x})\}$$

$$= Ax - A\hat{x} + K(Cx - C\hat{x})$$

$$= (A - KC)\tilde{x}$$

 \Rightarrow Om (A-KC) är stabil (egenvärden i VHP) så går skattningsfelet mot noll.

Sats (s.193)

Ifall systemet är observerbart kan polerna (egenvärdena) till A-KC placeras godtyckligt

Ifall systemet inte är observerbart kan det ändå vara möjligt att placera polerna önskvärt.

1 Uppgift 9.1

$$\dot{x} = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

 \mathbf{a}

Bestäm en tillståndsåterkoppling som placerar polerna i

- (i) -3, -5
- (ii) -10, -15

Vad begränsar godtycklig dynamik?

$$\mathcal{S} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

har full rang.

 \Rightarrow Kan placera polerna till A - BL godtyckligt.

$$A - BL = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 \end{pmatrix} = \begin{pmatrix} -2 - l_1 & -1 - l_2 \\ 1 & 0 \end{pmatrix}$$
$$\det(sI - (A - BL)) = 0 \Leftrightarrow \begin{vmatrix} s + 2 + l_1 & 1 + l_2 \\ -1 & s \end{vmatrix} = 0$$
$$\Leftrightarrow s(s + 2 + l_1 = +1 + l_2 = 0$$
$$\Leftrightarrow s^2 + (2 + l_1)s + (1 + l_2) = 0$$

Identifiera koefficient så att de efterfrågade polerna erhålls.

(i)
$$(s+3)(s+5) = s^2 + 8s + 15$$

 $\Rightarrow l_1 = 6, l_2 = 14$
 $\Rightarrow u = -6x_1 - 14x_2 + y_{ref}$

(ii)
$$(s+10)(s+15) = s^2 + 25s + 150$$

 $\Rightarrow l_1 = 23, l_2 = 149$
 $\Rightarrow u = -23x_1 - 149x_2 + y_{ref}$

Ju längre ut i VHP polerna placeras desto större koefficienter dyker upp i styrlagen, vilket resulterar i en större insignal.

⇒ Godtycklig dynamik kan ej uppnås på grund av fysiska begränsningar i insignalen.

b)

Om enbart y(t) kan mätas, bestäm en observatör. (och diskutera polernas påverkan)

$$\mathcal{O} = \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix}$$

har full rang.

 \Rightarrow kan placera polerna till A-KC godtyckligt.

Skattningsfelets dynamik ges av

$$\dot{\tilde{x}} = (A - KC)\tilde{x}$$

Vi vill att skattningsfelet går mot noll snabbare än det styrda systemets dynamik. Således bör observatörens poler placeras längre till vänster i VHP än det slutna systemet. (t.ex. i s=-20). Ifall polerna placeras för långt ut blir observatören känslig för mätbrus.

$$A - KC = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 - k_1 & -1 \\ 1 - k_2 & 0 \end{pmatrix}$$
$$\det(sI - (A - KC)) = 0$$
$$\Leftrightarrow \begin{vmatrix} s + (2 + k_1) & 1 \\ -1 + k_2 & s \end{vmatrix} = 0$$
$$\Leftrightarrow s^2 + (2 + k_1)s + (1 - k_2) = 0$$

Två poler i s=-20 ger

$$(s+20)^2 = s^2 + 40s + 400$$

 $\Rightarrow k_1 = 38, k_2 = -399$ Den resulterande observatören ges av

$$\dot{\hat{x}} = \begin{pmatrix} -2 & -1 \\ 1 & 0 \end{pmatrix} \hat{x} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u + \begin{pmatrix} 38 \\ -399 \end{pmatrix} \begin{bmatrix} y - \begin{pmatrix} 1 & 0 \end{pmatrix} \hat{x} \end{bmatrix}$$