Problem R-110. Identify the SH protons in the two 300 MHz ¹H NMR spectra (CDCl₃) below, and explain the difference in their appearance (Source: Aldrich NMR Library).

Problem R-110. Identify the SH protons in the two 300 MHz ¹H NMR spectra (CDCl₃) below, and explain the difference in their appearance (Source: Aldrich NMR Library).

In the top spectrum the SH proton is coupled to the CH₂ protons, which are well separated from their other coupling partner, the second CH₂ group. So the pattern is entirely first-oder and the SH proton is a simple triplet.

For the bottom spectrum the spin system is AA'BB'B"B" - so decidely second order. Specifically, the B protons (CH₂CH₂) are strongly coupled, so the A protons (SH) are second order - an example of virtual coupling.