UNIVERSIDAD DE SAN CARLOS DE GUATEMALA **FACULTAD DE INGENIERÍA ESCUELA DE CIENCIAS Y SISTEMAS**

ARQUITECTURA DE COMPUTADORES Y ENSAMBLADORES 1

AUX: ROBINSÓN HERNÁNDEZ

VACACIONES DE DICIEMBRE 2022

GRUPO 2 PRÁCTICA 1

NOMBRE	CARNET
Rodrigo Antonio Porón De León	201902781
Marcos Geovani Josías Pérez Secay	201903878
Mario Cesar Moran Porras	202010793
Cristian Daniel Pereira Tezagüic	202010893
María Zucely Hernández García	201701160
Eliezer Abraham Zapeta Alvarado	201801719
Marvin Alexis Estrada Florian	201800476
Roxana Madahí Carías Paredes	201800672

MATERIAL DEL CIRCUITO

HERRAMIENTAS

- Simulino
- Arduino IDE
- Apache Netbeans 15 (Java)
- Proteus 8.12 o posteriores
- VSPEmulator

COMPONENTES

- Compin
- Led-Green
- Led-Red
- Matrices Led
- Controladores MAX7219
- Resistor
- Simulino Mega

DIAGRAMA DEL CIRCUITO

LIBRERÍAS DE JAVA UTILIZADAS

Código: Interfaz.java	Descripción
<pre>import com.panamahitek.ArduinoException; import com.panamahitek.PanamaHitek_Arduino; import java.util.logging.Level; import java.util.logging.Logger; import jssc.SerialPortException;</pre>	Línea 7-8: Librerías utilizadas para facilitar la comunicación entre Arduino y Java. Línea 11: Importando de la biblioteca de comunicación serial JSSC (para uso del puerto) especialmente las Excepciones.

CÓDIGO JAVA

Código: Interfaz.java

```
public static PanamaHitek_Arduino Arduino = new PanamaHitek_Arduino();

public Interfaz() {
    initComponents();

    try {
        Arduino.arduinoTX("COM2", 9600);
    } catch (ArduinoException ex) {
        System.err.println("No hay arduino para comunicar");
        Logger.getLogger(Interfaz.class.getName()).log(Level.SEVERE, null, ex);
}

}
```

Descripción

Línea 19: El objeto "Arduino" de PanamaHitek el cual nos ayudará a realizar la comunicación con arduino.

Línea 26-32: Se Encuentra el constructor de la clase Interfaz.java. arduinoTX define el puerto serial con velocidad de 9600 Baudios.

Código: Interfaz.java

```
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed try {

String message = jTextArea1.getText();

Arduino.sendData(message);

} catch (ArduinoException ex) {

Logger.getLogger(Interfaz.class.getName()).log(Level.SEVERE, null, ex);

} catch (SerialPortException ex) {

Logger.getLogger(Interfaz.class.getName()).log(Level.SEVERE, null, ex);

}

Logger.getLogger(Interfaz.class.getName()).log(Level.SEVERE, null, ex);

}

}//GEN-LAST:event_jButton1ActionPerformed
```

Descripción

Línea 416-425: Obtenemos la cadena ingresada en el TextArea y lo enviamos hacia Arduino y Proteus mediante la comunicación serial.

Notas: Utilización de ApacheNetbeas 15 y JDK 19

CÓDIGO ARDUINO

Código: MatrixProof.ino	Descripción
<pre>#include "LedControl.h" #include "Symbols.h" #define iterationDelay 200 #define CLED 8 #define BSTART 3 #define BFINISH 2</pre>	Línea 1: Para controladores de pantalla led MAX7221 y MAX7219. Línea 2: Pre definidos para setear en la matrices de leds. Línea 3: Definido para el retraso en la animación. Línea 4-6: Definidos para botones de Start y Finish.

Código: MatrixProof.ino

```
LedControl lc = LedControl(11, 13, 10, 6); //(Pin digital, Pin reloj, Pin CS
byte screen1[8] = {
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000
byte screen2[8] = {
  B00000000,
  B00000000,
  B00000000,
  В00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000
```

Descripción

Línea 8: Crear un control para los dispositivos.

Línea 9-73: Matrices de bytes para apagar las matrices de leds.

Código: MatrixProof.ino 75 byte screenAux1[500]; 76 byte screenAux2[500]; 77 byte screenAux3[500]; 78 byte screenAux4[500]; 79 byte screenAux5[500]; 80 byte screenAux6[500]; 81 int sizeFilled = 0; 82 int textSize = 0; 83 String completeText = ""; 84 int bStartState = 0; 85 int bFinishState = 0;

Descripción

Línea 75-83: declaración de las posiciones auxiliares para la matriz de leds.

Estados para los botones de inicio / finalizar y variables auxiliares para la cadena de texto.

Código: MatrixProof.ino

Descripción

```
void setup() {
    // put your setup code here, to run once:
    Serial.begin(9600);
    Seriall.begin(9600);
    pinMode(BSTART, INPUT);
    pinMode(BFINISH, INPUT);
    pinMode(CLED, OUTPUT);
    digitalWrite(CLED, LOW);
    for (int i = 0; i < 6; i++) {
        lc.shutdown(i, false); //(No de dispositivo, estado inicial)
        lc.setIntensity(i, 4); //(No de dispositivo, intensidad de luz)
        lc.clearDisplay(i); //(No de dispositivo a limpiar)
    }
}</pre>
```

Línea 87-100: Se realiza la configuración de la comunicación serial a 9600 Baudios y se configuran los pines especificados para entrada en el pin 3,2 y 8 para salida respectivamente.

digitalWrite(CLED, LOW) envía al pin CLED (8) a un estado bajo.

Describe los estados del dispositivo con un for iterado de 0 a 6.

Código: MatrixProof.ino

Descripción

```
void loop() {
    bStartState = digitalRead(BSTART);

if (completeText == "") {
    if (Serial.available()) {
        completeText = Serial.readStringUntil('\n');
    }

else {
    digitalWrite(CLED, HIGH);
}

if (bStartState == HIGH && completeText != "") {
    start();
}

119 }
```

Línea 102-119: Realiza la lectura de un pin específico si este está activo realiza la comunicación serial y muestra el resultado en la matriz de leds de lo de lo contrario apaga todas las matrices de LED

Código: MatrixProof.ino

Descripción

```
void start() {

Serial1.println(completeText);

textSize = completeText.length();

char textArray[textSize + 1];

completeText.toCharArray(textArray, textSize + 1);

fill(textArray);

cleanScreens();

}
```

Línea 121-128: Recibe y convierte a texto para la función. fill() realiza el llenado de las matrices de leds.

cleanScreens() finaliza y limpia las matrices de leds.

Código: MatrixProof.ino

```
void fill(char textArray[]) {

//Llenar Matriz general con el mensaje

for (int i = 0; i < textSize; i++) {

char singleSymbol = textArray[i];

if (singleSymbol == ' ') {

single(A_32, B_32);

} else if (singleSymbol == '!') {

single(A_33, B_33);

} else if (singleSymbol == '"') {

single(A_34, B_34);

} else if (singleSymbol == '#') {

animateText();

}</pre>
```

Descripción

Línea 130-331: For que realiza la clasificación de cada uno de los caracteres enviados y mediante **single()** envía las matrices declaradas en **Simbols.h** para su posterior impresión en las matrices de leds.

Línea 330: Realiza el llamado a la función que realiza la animación en la matriz de leds.

Código: MatrixProof.ino

Descripción

```
void single(byte A[], byte B[]) {
for (int j = 0; j < 8; j++) {
    screenAux1[sizeFilled] = A[j];
    screenAux2[sizeFilled] = A[j];
    screenAux3[sizeFilled] = A[j];

screenAux4[sizeFilled] = B[j];

screenAux5[sizeFilled] = B[j];

screenAux6[sizeFilled] = B[j];

screenAux6[sizeFilled] = B[j];

sizeFilled++;

309  }

310 }</pre>
```

Línea 299-310: Recorre las matrices de bytes declarados en "*simbols.h*" y las almacena en las posiciones auxiliares.

Código: MatrixProof.ino

```
void cleanScreens() {
  for (int i = 0; i < 500; i++) {
    screenAux1[i] = B000000000;
   screenAux2[i] = B000000000;
   screenAux3[i] = B000000000;
    screenAux4[i] = B000000000;
   screenAux5[i] = B000000000;
    screenAux6[i] = B000000000;
  for (int i = 0; i < 8; i++) {
   screen1[i] = B00000000;
   screen2[i] = B000000000;
   screen3[i] = B000000000;
   screen4[i] = B00000000;
    screen5[i] = B00000000;
    screen6[i] = B000000000;
  for (int j = 0; j < 8; j++) {
    lc.setRow(0, j, screen1[j]); //(No de dispositivo, fila, valor)
   lc.setRow(1, j, screen2[j]); //(No de dispositivo, fila, valor)
   lc.setRow(2, j, screen3[j]); //(No de dispositivo, fila, valor)
    lc.setRow(3, j, screen4[j]); //(No de dispositivo, fila, valor)
   lc.setRow(4, j, screen5[j]); //(No de dispositivo, fila, valor)
    lc.setRow(5, j, screen6[j]); //(No de dispositivo, fila, valor)
  sizeFilled = 0;
```

Descripción

Línea 383-409: *CleanScreens()* función utilizada para recorrer las matrices y dejarlas en estado 0.

```
Código: Symbols.h
byte A_32[8] = {// (espacio)
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000
};
byte B_32[8] = {// (espacio)
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000,
  B00000000
};
                       Descripción
```

Línea 1-1931: Contiene la declaración de llenado para las matrices leds para

Notas: Utilización de Simulino, Proteus 8.10 y Arduino IDE 2.0.3

Notas: Para la comunicación serial se utilizó VSPEmulator.

cada uno de los caracteres imprimibles ASCII.