ODK MCP System Examples

This directory contains example workflows and use cases for the ODK MCP System.

Table of Contents

- 1. Basic Workflow
- 2. NGO Field Survey
- 3. Think Tank Research Project
- 4. CSR Impact Assessment
- 5. Health Monitoring Program
- 6. Education Assessment
- 7. Environmental Monitoring
- 8. <u>Custom Analysis Examples</u>
- 9. Integration Examples
- 10. Advanced Features

Basic Workflow

This example demonstrates the basic workflow of the ODK MCP System:

- 1. Create a project
- 2. Create a form
- 3. Collect data
- 4. Analyze data
- 5. Generate a report

Step 1: Create a Project

- 1. Sign in to the ODK MCP System
- 2. Navigate to the Projects section
- 3. Click "New Project"
- 4. Fill in the project details:
- 5. Name: "Basic Workflow Example"
- 6. Description: "A simple example of the ODK MCP System workflow"
- 7. Click "Create Project"

Step 2: Create a Form

- 1. Navigate to the Forms section
- 2. Click "New Form"
- 3. Click "Upload XLSForm"
- 4. Download the example form
- 5. Upload the form
- 6. Enter the form name: "Basic Form"
- 7. Click "Upload"

The example form includes the following fields: - Name (text) - Age (integer) - Gender (select_one: Male, Female, Other) - Education (select_one: Primary, Secondary, Higher) - Income (decimal) - Satisfaction (select_one: Very Satisfied, Satisfied, Neutral, Dissatisfied, Very Dissatisfied) - Comments (text)

Step 3: Collect Data

- 1. Navigate to the Data Collection section
- 2. Select the "Basic Form"
- 3. Click "Start New Submission"
- 4. Fill in the form with sample data
- 5. Click "Submit"
- 6. Repeat steps 3-5 to create multiple submissions

Alternatively, you can use the bulk submission feature:

- 1. Download the sample data
- 2. Navigate to the Data Collection section
- 3. Select the "Basic Form"
- 4. Click "Bulk Upload"
- 5. Upload the sample data file
- 6. Click "Submit"

Step 4: Analyze Data

- 1. Navigate to the Data Analysis section
- 2. Click on the "Descriptive Analytics" tab
- 3. Select the "Basic Form"
- 4. Select all variables
- 5. Click "Generate Analysis"
- 6. View the summary statistics and visualizations

For inferential statistics:

- 1. Click on the "Inferential Statistics" tab
- 2. Select the "Basic Form"
- 3. Choose "t-test" as the analysis type
- 4. Select "Age" as the variable
- 5. Select "Gender" as the group variable
- 6. Click "Run Analysis"
- 7. View the results

Step 5: Generate a Report

- 1. Navigate to the Reports section
- 2. Click "New Report"
- 3. Select "Standard Report"
- 4. Fill in the report details:
- 5. Title: "Basic Workflow Report"
- 6. Description: "A report of the basic workflow example"
- 7. Data Source: Select the analyses created in Step 4
- 8. Click "Generate Report"
- 9. View the report
- 10. Click "Export" to download the report as PDF

NGO Field Survey

This example demonstrates how an NGO might use the ODK MCP System for a field survey.

Scenario

An NGO is conducting a survey to assess the needs of a community after a natural disaster. They need to collect data on: - Household demographics - Damage assessment - Immediate needs - Long-term recovery plans

Implementation

- 1. Create a project named "Disaster Response Survey"
- 2. Create a form using the disaster response form template
- 3. Train field workers to use the system for data collection
- 4. Collect data in the field, using offline mode when necessary
- 5. Synchronize data when internet connectivity is available
- 6. Analyze the data to identify priority areas for intervention

7. Generate reports for donors and stakeholders

Analysis Examples

- 1. Descriptive statistics of damage levels by area
- 2. Correlation between household size and immediate needs
- 3. Prioritization of areas based on damage severity and vulnerability
- 4. Time-series analysis of recovery progress

Report Examples

- 1. Donor Report: Summary of findings and intervention priorities
- Community Report: Simplified presentation of survey results for community feedback
- 3. Technical Report: Detailed analysis for program planning

Think Tank Research Project

This example demonstrates how a think tank might use the ODK MCP System for a research project.

Scenario

A think tank is conducting research on the impact of a new policy on small businesses. They need to collect data on: - Business demographics - Policy awareness -Implementation challenges - Economic impact - Future outlook

Implementation

- 1. Create a project named "Policy Impact Assessment"
- 2. Create a form using the policy impact form template
- 3. Collect data through interviews with business owners
- 4. Analyze the data to assess policy impact
- 5. Generate reports for policymakers and stakeholders

Analysis Examples

- 1. Comparative analysis of policy impact by business size
- 2. Regression analysis of factors affecting policy implementation
- 3. Cluster analysis to identify patterns in implementation challenges
- 4. Predictive modeling of future economic impact

Report Examples

- 1. Policy Brief: Concise summary of findings for policymakers
- 2. Research Report: Comprehensive analysis for academic audience
- 3. Executive Summary: Key findings for business associations

CSR Impact Assessment

This example demonstrates how a CSR department might use the ODK MCP System for impact assessment.

Scenario

A corporation is assessing the impact of its CSR initiatives in education. They need to collect data on: - School demographics - Program implementation - Student outcomes - Teacher feedback - Community perception

Implementation

- 1. Create a project named "Education CSR Impact Assessment"
- 2. Create a form using the CSR impact form template
- 3. Collect data from schools, teachers, students, and community members
- 4. Analyze the data to assess program impact
- 5. Generate reports for corporate leadership and stakeholders

Analysis Examples

- 1. Before-after comparison of student outcomes
- 2. Correlation between implementation fidelity and outcomes
- 3. Cost-benefit analysis of different program components
- 4. Qualitative analysis of teacher and community feedback

Report Examples

- 1. Executive Dashboard: Key metrics and visualizations for leadership
- 2. Impact Report: Comprehensive assessment for stakeholders
- 3. Program Improvement Plan: Recommendations based on findings

Health Monitoring Program

This example demonstrates how the ODK MCP System might be used for a health monitoring program.

Scenario

A health organization is monitoring the prevalence of a disease in a region. They need to collect data on: - Patient demographics - Symptoms and diagnosis - Treatment adherence - Outcomes - Environmental factors

Implementation

- 1. Create a project named "Disease Surveillance Program"
- 2. Create a form using the health monitoring form template
- 3. Train health workers to collect data during patient visits
- 4. Analyze the data to track disease prevalence and outcomes
- 5. Generate reports for health authorities and program managers

Analysis Examples

- 1. Geospatial analysis of disease prevalence
- 2. Time-series analysis of disease trends
- 3. Risk factor analysis using logistic regression
- 4. Treatment effectiveness analysis

Report Examples

- 1. Weekly Surveillance Report: Current disease status and trends
- 2. Quarterly Program Report: Comprehensive analysis of program performance
- 3. Annual Epidemiological Report: In-depth analysis of disease patterns and risk factors

Education Assessment

This example demonstrates how the ODK MCP System might be used for an education assessment.

Scenario

An education department is assessing the quality of schools in a district. They need to collect data on: - School infrastructure - Teacher qualifications and attendance - Student enrollment and attendance - Learning outcomes - Parent satisfaction

Implementation

- 1. Create a project named "School Quality Assessment"
- 2. Create a form using the education assessment form template
- 3. Train assessors to collect data during school visits
- 4. Analyze the data to assess school quality
- 5. Generate reports for education authorities and school administrators

Analysis Examples

- 1. Composite school quality index calculation
- 2. Correlation between infrastructure and learning outcomes
- 3. Comparative analysis of schools by location and type
- 4. Trend analysis of school performance over time

Report Examples

- 1. School Profile: Individual assessment results for each school
- 2. District Report: Comparative analysis of all schools in the district
- 3. Improvement Plan: Recommendations based on assessment findings

Environmental Monitoring

This example demonstrates how the ODK MCP System might be used for environmental monitoring.

Scenario

An environmental organization is monitoring water quality in a watershed. They need to collect data on: - Sampling location - Physical parameters (temperature, turbidity) - Chemical parameters (pH, dissolved oxygen) - Biological indicators - Land use in the surrounding area

Implementation

1. Create a project named "Watershed Monitoring Program"

- 2. Create a form using the environmental monitoring form template
- 3. Train volunteers to collect water samples and record data
- 4. Analyze the data to assess water quality
- 5. Generate reports for environmental authorities and community stakeholders

Analysis Examples

- 1. Water quality index calculation
- 2. Geospatial analysis of pollution hotspots
- 3. Correlation between land use and water quality
- 4. Trend analysis of water quality over time

Report Examples

- 1. Monthly Monitoring Report: Current water quality status
- 2. Quarterly Watershed Report: Comprehensive analysis of water quality trends
- 3. Annual State of the Watershed Report: In-depth analysis of watershed health

Custom Analysis Examples

This section provides examples of custom analyses that can be performed using the ODK MCP System.

Python Script Example

```
# Custom analysis script for income distribution
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
# Load data
data = pd.read csv('income data.csv')
# Calculate income statistics
income mean = data['income'].mean()
income median = data['income'].median()
income std = data['income'].std()
income min = data['income'].min()
income max = data['income'].max()
# Calculate income quintiles
quintiles = np.percentile(data['income'], [20, 40, 60, 80])
data['income_quintile'] = pd.qcut(data['income'], 5,
labels=['Q1', 'Q2', 'Q3', 'Q4', 'Q5'])
```

```
# Calculate Gini coefficient
def gini(array):
    """Calculate the Gini coefficient of a numpy array."""
    # Mean absolute difference
    mad = np.abs(np.subtract.outer(array, array)).mean()
    # Relative mean absolute difference
    rmad = mad / np.mean(array)
    # Gini coefficient
    q = 0.5 * rmad
    return q
gini coefficient = gini(data['income'].values)
# Generate visualizations
plt.figure(figsize=(12, 8))
# Income distribution
plt.subplot(2, 2, 1)
plt.hist(data['income'], bins=30, edgecolor='black')
plt.title('Income Distribution')
plt.xlabel('Income')
plt.ylabel('Frequency')
# Lorenz curve
plt.subplot(2, 2, 2)
lorenz = np.cumsum(np.sort(data['income'])) /
data['income'].sum()
plt.plot(np.linspace(0, 1, len(lorenz)), lorenz)
plt.plot([0, 1], [0, 1], 'r--')
plt.title(f'Lorenz Curve (Gini = {gini coefficient:.3f})')
plt.xlabel('Cumulative share of population')
plt.ylabel('Cumulative share of income')
# Income by gender
plt.subplot(2, 2, 3)
gender income = data.groupby('gender')
['income'].mean().reset index()
plt.bar(gender income['gender'], gender income['income'])
plt.title('Average Income by Gender')
plt.xlabel('Gender')
plt.ylabel('Average Income')
# Income by education
plt.subplot(2, 2, 4)
edu income = data.groupby('education')
['income'].mean().reset index()
plt.bar(edu income['education'], edu income['income'])
plt.title('Average Income by Education')
plt.xlabel('Education Level')
plt.ylabel('Average Income')
plt.xticks(rotation=45)
```

```
plt.tight layout()
plt.savefig('income analysis.png')
# Output results
results = {
    'income statistics': {
        'mean': income mean,
        'median': income median,
        'std': income std,
        'min': income min,
        'max': income max,
        'quintiles': quintiles.tolist(),
        'gini coefficient': gini coefficient
    },
    'visualizations': ['income analysis.png']
}
print(results)
```

R Script Example

```
# Custom analysis script for survey data
library(tidyverse)
library(survey)
library(ggplot2)
# Load data
data <- read.csv("survey data.csv")</pre>
# Create survey design object
survey design <- svydesign(</pre>
  ids = ~cluster id,
  strata = ~stratum,
  weights = ~weight,
  data = data
)
# Calculate weighted means
weighted means <- svymean(~age + income + education,</pre>
survey design)
# Calculate weighted proportions
weighted props <- svymean(~factor(gender) +</pre>
factor(satisfaction), survey design)
# Logistic regression model
model <- svyqlm(</pre>
  satisfaction binary ~ age + income + factor(education) +
factor(gender),
```

```
family = quasibinomial(),
  design = survey design
# Generate visualizations
# Weighted satisfaction by education
satisfaction by edu <- svyby(
  ~satisfaction score,
  ~education,
  survey design,
  svymean
)
pdf("survey analysis.pdf")
ggplot(satisfaction by edu, aes(x = education, y =
satisfaction score)) +
  geom bar(stat = "identity") +
  geom errorbar(aes(ymin = satisfaction score - 1.96 * se, ymax
= satisfaction score + 1.96 * se), width = 0.2) +
  labs(title = "Satisfaction Score by Education Level",
       x = "Education Level",
       y = "Average Satisfaction Score") +
  theme minimal()
dev.off()
# Output results
results <- list(
  weighted means = weighted means,
  weighted props = weighted props,
  model summary = summary(model),
  visualizations = "survey_analysis.pdf"
)
print(results)
```

SQL Query Example

```
-- Custom SQL query for data exploration
WITH submission_counts AS (
    SELECT
    DATE(submitted_at) AS submission_date,
        COUNT(*) AS submission_count
    FROM
        submissions
WHERE
        form_id = 123
        AND project_id = 456
        AND submitted_at >= DATE('now', '-30 days')
```

```
GROUP BY
    DATE(submitted at)
),
daily stats AS (
  SELECT
    DATE(submitted at) AS submission date,
    AVG(CAST(JSON EXTRACT(data, '$.age') AS INTEGER)) AS
avg age,
    COUNT(DISTINCT submitted by) AS unique submitters
  FROM
    submissions
 WHERE
    form id = 123
    AND project id = 456
    AND submitted at >= DATE('now', '-30 days')
  GROUP BY
    DATE(submitted at)
)
SELECT
  sc.submission_date,
  sc.submission count,
  ds.avg age,
  ds.unique submitters,
  CASE
    WHEN LAG(sc.submission count) OVER (ORDER BY
sc.submission date) IS NULL THEN 0
    ELSE (sc.submission count - LAG(sc.submission count) OVER
(ORDER BY sc.submission date)) * 100.0 /
LAG(sc.submission count) OVER (ORDER BY sc.submission date)
  END AS submission growth pct
FROM
  submission counts sc
JOIN
  daily stats ds ON sc.submission date = ds.submission date
ORDER BY
  sc.submission date;
```

Integration Examples

This section provides examples of integrating the ODK MCP System with other tools and services.

Baserow Integration Example

```
import requests
import json

# ODK MCP System API
```

```
odk base url = "http://localhost:8000/api/v1"
odk token = "your odk_api_token"
# Baserow API
baserow_url = "https://baserow.example.com/api"
baserow_token = "your baserow api token"
# Configure Baserow integration
response = requests.post(
    f"{odk base url}/data-aggregation/integrations/baserow/
configure",
    json={
        "url": baserow url,
        "api token": baserow token,
        "enabled": True
    },
    headers={
        "Authorization": f"Bearer {odk token}"
print(response.json())
# Create a table in Baserow for survey data
response = requests.post(
    f"{baserow url}/database/tables/",
    ison={
        "database id": 1,
        "name": "Survey Data"
    },
    headers={
        "Authorization": f"Token {baserow token}"
    }
table id = response.json()["id"]
print(f"Created table with ID: {table id}")
# Create fields in the Baserow table
fields = [
    {"name": "Name", "type": "text"},
    {"name": "Age", "type": "number"},
    {"name": "Gender", "type": "single_select",
"select_options": ["Male", "Female", "Other"]},
    {"name": "Education", "type": "single select",
"select_options": ["Primary", "Secondary", "Higher"]},
    {"name": "Income", "type": "number",
"number decimal places": 2},
    {"name": "Satisfaction", "type": "single select",
"select options": ["Very Satisfied", "Satisfied", "Neutral",
"Dissatisfied", "Very Dissatisfied"]},
    {"name": "Comments", "type": "long text"}
]
```

```
for field in fields:
    field type = field.pop("type")
    select options = field.pop("select options", None)
    response = requests.post(
        f"{baserow url}/database/fields/table/{table id}/",
        json={
            "name": field["name"],
            "type": field type,
            **field
        },
        headers={
            "Authorization": f"Token {baserow token}"
        }
    field id = response.json()["id"]
    print(f"Created field {field['name']} with ID: {field id}")
    if select options:
        for option in select options:
            response = requests.post(
                f"{baserow url}/database/fields/{field id}/
select-options/",
                json={
                    "value": option,
                    "color" "blue"
                },
                headers={
                     "Authorization": f"Token {baserow token}"
                }
            )
            print(f"Added option {option} to field
{field['name']}")
# Sync data from ODK MCP System to Baserow
response = requests.post(
    f"{odk base url}/data-aggregation/integrations/baserow/
sync",
    json={
        "project id": 456,
        "form id": 123,
        "table id": table id,
        "field mapping": {
            "name": "Name",
            "age": "Age",
            "gender": "Gender",
            "education": "Education",
            "income": "Income",
            "satisfaction": "Satisfaction",
            "comments": "Comments"
        }
    },
```

```
headers={
     "Authorization": f"Bearer {odk_token}"
  }
)
print(response.json())
```

AI Tool Integration Example

```
import requests
import json
# ODK MCP System API
odk base url = "http://localhost:8000/api/v1"
odk token = "your odk api token"
# Configure Claude integration
response = requests.post(
    f"{odk base url}/data-aggregation/integrations/ai-tool/
configure",
    json={
        "tool": "claude",
        "api key": "your claude api key",
        "model": "claude-3-opus-20240229",
        "enabled": True
    },
    headers={
        "Authorization": f"Bearer {odk token}"
    }
print(response.json())
# Generate AI analysis
response = requests.post(
    f"{odk base url}/data-aggregation/integrations/ai-tool/
analyze",
    json={
        "project id": 456,
        "form id": 123,
        "prompt": """
        Analyze the survey data and provide insights on the
following:
        1. Key demographic patterns
        2. Factors affecting satisfaction levels
        3. Recommendations for improving satisfaction
        4. Any unexpected patterns or outliers in the data
        Please include visualizations where appropriate.
        . . . .
        "data filter": {
            "submitted at": {
```

```
"operator": "gte",
                "value": "2023-01-01"
            }
        }
    },
    headers={
        "Authorization": f"Bearer {odk token}"
    }
analysis id = response.json()["data"]["analysis id"]
print(f"Generated AI analysis with ID: {analysis id}")
# Check analysis status
response = requests.get(
    f"{odk base url}/data-aggregation/integrations/ai-tool/
analyze/{analysis id}",
    headers={
        "Authorization": f"Bearer {odk token}"
)
print(response.json())
# Include AI analysis in a report
response = requests.post(
    f"{odk base url}/data-aggregation/reports",
    ison={
        "project id": 456,
        "title": "AI-Enhanced Survey Analysis",
        "description": "Survey analysis with AI-generated
insights",
        "sections": [
            {
                "title": "AI Analysis",
                "ai_analysis id": analysis id
            }
        ],
        "format": "pdf",
        "options": {
            "include cover page": True,
            "include table of contents": True
        }
    },
    headers={
        "Authorization": f"Bearer {odk token}"
    }
report id = response.json()["data"]["report id"]
print(f"Created report with ID: {report id}")
```

Advanced Features

This section demonstrates advanced features of the ODK MCP System.

Longitudinal Data Collection

This example demonstrates how to set up a longitudinal data collection project:

- 1. Create a project named "Longitudinal Study"
- 2. Create a baseline form using the baseline form template
- 3. Create a follow-up form using the follow-up form template
- 4. Link the forms using the "entity_id" field
- 5. Collect baseline data
- 6. Collect follow-up data at regular intervals
- 7. Analyze changes over time

Offline Data Collection

This example demonstrates how to use the offline data collection feature:

- 1. Enable offline mode in the Data Collection section
- 2. Download forms for offline use
- 3. Collect data without internet connectivity
- 4. Synchronize data when internet connectivity is restored

Custom Dashboards

This example demonstrates how to create custom dashboards:

- 1. Navigate to the Reports section
- 2. Click "New Report"
- 3. Select "Dashboard"
- 4. Add widgets to the dashboard:
- 5. Summary statistics
- 6. Charts and visualizations
- 7. Data tables
- 8. Maps
- 9. Configure refresh intervals for real-time data
- 10. Share the dashboard with stakeholders

Data Security Features

This example demonstrates the data security features of the ODK MCP System:

- 1. Configure user roles and permissions
- 2. Set up two-factor authentication
- 3. Configure data encryption
- 4. Set up audit logging
- 5. Configure data retention policies
- 6. Set up secure data sharing

API Integration

This example demonstrates how to integrate the ODK MCP System with other systems using the API:

- 1. Generate an API key in the Settings section
- 2. Use the API to:
- 3. Create forms
- 4. Submit data
- 5. Query data
- 6. Generate reports
- 7. Set up webhooks for real-time notifications
- 8. Implement custom integrations with other systems