Exercise 2.1

Q1. Compare the following fractions by using the symbol > or < or =;

(i)
$$\frac{7}{9}$$
 and $\frac{8}{13}$

(ii)
$$\frac{11}{9}$$
 and $\frac{5}{9}$

(iii)
$$\frac{37}{41}$$
 and $\frac{19}{30}$

(iv)
$$\frac{17}{15}$$
 and $\frac{119}{105}$

Solution:

$$\frac{7}{9}$$
 and $\frac{8}{13}$
Taking the LCM of 9 and 13, we get,

Now, we convert the given fractions to equivalent fractions by making the denominators 117,

$$\frac{7\times13}{9\times13}$$
 and $\frac{8\times9}{13\times9}$ $\frac{91}{117}$ and $\frac{72}{117}$
As we know, 91 > 72

Therefore,
$$\frac{91}{117} > \frac{72}{117}$$

Hence, $\frac{7}{9} > \frac{8}{13}$

(ii) We have,
$$\frac{11}{9}$$
 and $\frac{5}{9}$

The given fractions are equivalent fractions as the denominators are equal,

And we know that, 11 > 5

Therefore, $\frac{11}{9} > \frac{5}{9}$

(iii) We have,
$$\frac{37}{41}$$
 and $\frac{19}{30}$

Taking the LCM of 41 and 30, we get,

41 x 30 = 1230

Now, we convert the given fractions to equivalent fractions by making the denominators 1230, $\frac{37\times30}{41\times30}$ and $\frac{19\times41}{30\times41}$ $\frac{1110}{1230}$ and $\frac{779}{1230}$

Now, we clearly know 1110 > 779

Therefore, $\frac{1110}{1230} > \frac{779}{1230}$

(iv) $\frac{17}{15}$ and $\frac{119}{105}$

Hence, $\frac{37}{41} > \frac{19}{30}$

Taking the LCM of 15 and 105, we get,

 $5 \times 3 \times 7 = 105$

Now, we convert the given fractions to equivalent fractions by making the denominators 105,

 $\frac{17 \times 7}{15 \times 7}$ and $\frac{119}{105}$ $=\frac{119}{105}$ and $\frac{119}{105}$

Now, we clearly know 119 = 119

Therefore, $\frac{119}{105} = \frac{119}{105}$

Hence, $\frac{17}{15} = \frac{119}{105}$

Q2. Arrange the following fractions in ascending order:

(i)
$$\frac{3}{8}$$
, $\frac{5}{6}$, $\frac{6}{8}$, $\frac{2}{4}$, $\frac{1}{3}$

(ii)
$$\frac{4}{6}$$
, $\frac{3}{8}$, $\frac{6}{12}$, $\frac{5}{16}$

Solution:

Taking the LCM of 8, 6, 8, 4 and 3, we get,

(i) We have, $\frac{3}{8}$, $\frac{5}{6}$, $\frac{6}{8}$, $\frac{2}{4}$, $\frac{1}{3}$

 $2 \times 4 \times 3 = 24$

Now, we convert the given fractions to equivalent fractions by making the denominators 24,

 $\frac{3\times3}{8\times3}$, $\frac{5\times4}{6\times4}$, $\frac{6\times3}{8\times3}$, $\frac{2\times6}{4\times6}$, $\frac{1\times8}{3\times8}$, $\frac{9}{24}$, $\frac{20}{24}$, $\frac{18}{24}$, $\frac{12}{24}$, $\frac{8}{24}$ We know that, 8 < 9 < 12 < 18 < 20

Therefore, $\frac{8}{24} < \frac{9}{24} < \frac{12}{24} < \frac{18}{24} < \frac{20}{24}$

Hence, $\frac{1}{3} < \frac{3}{8} < \frac{2}{4} < \frac{6}{8} < \frac{5}{6}$ (ii) We have, $\frac{4}{6}$, $\frac{3}{8}$, $\frac{6}{12}$, $\frac{5}{16}$

Taking the LCM of 6, 8, 12 and 16, we get,

 $2 \times 2 \times 2 \times 2 \times 3 = 48$

Now, we convert the given fractions to equivalent fractions by making the denominators 48,

$$\frac{4\times8}{6\times8}, \frac{3\times6}{8\times6}, \frac{6\times2}{12\times2}, \frac{5\times3}{16\times3}$$

$$= \frac{32}{48}, \frac{18}{48}, \frac{12}{48}, \frac{15}{48}$$

We know that, 12 < 15 < 18 < 32

Therefore, $\frac{12}{48} < \frac{15}{48} < \frac{18}{48} < \frac{32}{48}$

Hence,
$$\frac{6}{12} < \frac{5}{16} < \frac{3}{8} < \frac{4}{6}$$

Q3. Arrange the following fractions in descending order:

(i)
$$\frac{4}{5}$$
, $\frac{7}{10}$, $\frac{11}{15}$, $\frac{17}{20}$

(ii)
$$\frac{2}{7}$$
, $\frac{11}{35}$, $\frac{9}{14}$, $\frac{13}{28}$

Solution:

(i) We have,
$$\frac{4}{5}$$
, $\frac{7}{10}$, $\frac{11}{15}$, $\frac{17}{20}$

Taking the LCM of 5, 10, 15 and 20, we get,

$$5 \times 2 \times 2 \times 3 = 60$$

Now, we convert the given fractions to equivalent fractions by making the denominators 48

$$\frac{4 \times 12}{5 \times 12}, \frac{7 \times 6}{10 \times 6}, \frac{11 \times 4}{15 \times 4}, \frac{17 \times 3}{20 \times 3}$$

$$\frac{48}{60}, \frac{42}{60}, \frac{44}{60}, \frac{51}{60}$$

As we know
$$51 > 48 > 44 > 42$$

Therefore,
$$\frac{51}{60} < \frac{48}{60} < \frac{44}{60} < \frac{42}{60}$$

$$Hence, rac{17}{20} < rac{4}{5} < rac{11}{15} < rac{7}{10}$$
 (ii) $rac{2}{7}, rac{11}{35}, rac{9}{14}, rac{13}{28}$

Taking the LCM of 7, 35, 14 and 28, we get,

$$7 \times 5 \times 2 \times 2 = 140$$

Now, we convert the given fractions to equivalent fractions by making the denominators 140

$$\frac{2\times20}{7\times20}$$
, $\frac{11\times4}{35\times4}$, $\frac{9\times10}{14\times10}$, $\frac{13\times5}{28\times5}$
 $\frac{40}{140}$, $\frac{44}{140}$, $\frac{90}{140}$, $\frac{65}{140}$

As we know
$$40 > 44 > 65 > 90$$

Therefore,
$$\frac{90}{140} < \frac{65}{140} < \frac{44}{140} < \frac{40}{140}$$

Hence,
$$\frac{9}{14} < \frac{13}{28} < \frac{11}{35} < \frac{2}{7}$$

Q4. Write the equivalent fractions of $\frac{3}{5}$

Solution:

Multiplying or dividing both the numerator and denominator by the same number, so that the fraction keeps its value.

So the equivalent fractions of $\frac{3}{5}$ are

$$\frac{3\times2}{5\times2}, \frac{3\times3}{5\times3}, \frac{3\times4}{5\times4}, \frac{3\times5}{5\times5}, \frac{3\times6}{5\times6}$$

$$\frac{6}{10}, \frac{9}{15}, \frac{12}{20}, \frac{15}{25}, \frac{18}{30}$$

are the five equivalent fractions of $\frac{3}{5}$

Q5. Find the sum:

(i)
$$\frac{5}{8} + \frac{3}{10}$$

(ii)
$$4\frac{3}{4} + 9\frac{2}{5}$$

(iii)
$$\frac{5}{6} + 3 + \frac{3}{4}$$

(iv)
$$2\frac{3}{5} + 4\frac{7}{10} + 2\frac{4}{15}$$

Solution:

(i) We have,
$$\frac{5}{8} + \frac{3}{10}$$

Taking the LCM of 8 and 10, we get,

 $2 \times 4 \times 5 = 40$

Now, we convert the given fractions to equivalent fractions by making the denominators 40

- $\frac{5 \times 5}{8 \times 5} + \frac{3 \times 4}{10 \times 4}$ $\frac{25}{40} + \frac{12}{40}$
- (ii) We have, $4\frac{3}{4} + 9\frac{2}{5}$
- Taking out the LCM of 4 and 5, we get,

- $4 \times 5 = 20$
- Now, we convert the given fractions to equivalent fractions by making the denominators 20
- $=\frac{19\times5}{4\times5}+\frac{47\times4}{5\times4}$

 $=\frac{19}{4}+\frac{47}{5}$

- $=\frac{95}{20}+\frac{188}{20}$
- $=\frac{95+188}{20}$ $=\frac{283}{20}$

(iii) We have, $\frac{5}{6} + 3 + \frac{3}{4}$

Taking out the LCM of 6 and 4, we get,

$$2 \times 2 \times 3 = 12$$

Now, we convert the given fractions to equivalent fractions by making the denominators 12

$$= \frac{5 \times 2}{6 \times 2} + \frac{3 \times 12}{12} + \frac{3 \times 3}{4 \times 3}$$

$$= \frac{10}{12} + \frac{36}{12} + \frac{9}{12}$$

$$=\frac{10+36+9}{12}=\frac{55}{12}$$

$$=rac{10+36+9}{12}=rac{55}{12}$$
 (iv) We have, $2rac{3}{5}+4rac{7}{10}+2rac{4}{15}$

$$=\frac{13}{5}+\frac{47}{10}+\frac{34}{15}$$

Taking out the LCM of 5, 10 and 15, we get,

$$5 \times 2 \times 3 = 30$$

Now, we convert the given fractions to equivalent fractions by making the denominators 30

$$\frac{78}{30} + \frac{141}{30} + \frac{68}{30}$$

$$=\frac{287}{30}$$

Q6. Find the difference of

(i)
$$\frac{13}{24}$$
 and $\frac{7}{16}$

(ii) 6 and
$$\frac{23}{3}$$

(iii)
$$\frac{21}{25}$$
 and $\frac{18}{20}$

(iv)
$$3\frac{3}{10}$$
 and $2\frac{7}{15}$

Solution:

(i) We have,
$$\frac{13}{24}$$
 and $\frac{7}{16}$

Taking out the LCM of 24 and 16, we get,

$$2 \times 2 \times 2 \times 2 \times 3 = 48$$

Now, we convert the given fractions to equivalent fractions by making the denominators 48

$$\frac{26}{48} - \frac{21}{48}$$

$$=\frac{26-21}{48}$$

$$=\frac{5}{48}$$

(ii) We have, 6 and
$$\frac{23}{3}$$

The difference between 6 and $\frac{23}{3}$

$$=\frac{23}{3}-\frac{18}{3}$$

$$=\frac{5}{3}$$

(iii) We have,
$$\frac{21}{25}$$
 and $\frac{18}{20}$ Taking out the LCM of 25 and 20, we get,

 $5 \times 5 \times 4 = 100$

Now, we convert the given fractions to equivalent fractions by making the denominators 100

$$\frac{21\times4}{25\times4} \text{ and } \frac{18\times5}{20\times5}$$

$$= \frac{84}{100} \text{ and } \frac{90}{100}$$
The difference

The difference between both the fractions are

 $=\frac{90-84}{100}$

 $=\frac{6}{100}$ $=\frac{3}{50}$

(iv) We have, $3\frac{3}{10}$ and $2\frac{7}{15}$ $=\frac{33}{10}$ and $\frac{37}{15}$

Taking out the LCM of 10 and 15, we get,

 $2 \times 3 \times 5 = 30$

Now, we convert the given fractions to equivalent fractions by making the denominators 30 $=\frac{33\times3}{10\times3}$ and $\frac{37\times2}{15\times2}$

The difference between both the fractions are

 $=\frac{99}{20}$ and $\frac{74}{20}$

 $=\frac{99-74}{30}$

 $=\frac{25}{30}$ $=\frac{5}{6}$

(i)
$$\frac{6}{7} - \frac{9}{11}$$

(ii) $8 - \frac{5}{9}$
(iii) $9 - 5\frac{2}{3}$
(iv) $4\frac{3}{10} - 1\frac{2}{15}$
Solution:
(i) We have, $\frac{6}{7} - \frac{9}{11}$
Taking out the LCM of 7 and 11, we get,
 $7 \times 11 = 77$

Now, we convert the given fractions to equivalent fractions by making the denominators 77

Q7. Find the difference:

 $=\frac{6\times11}{7\times11}$ and $\frac{9\times7}{11\times7}$

(ii) We have, $8-\frac{5}{9}$

The difference between both the fractions are

 $=\frac{66}{77}$ and $\frac{63}{77}$

 $=\frac{66-63}{77}$

 $=\frac{3}{77}$

 $\frac{8 \times 9 - 5}{9}$

 $=\frac{72-5}{9}$

 $=\frac{67}{9}$

(iii) We have,
$$9 - 5\frac{2}{3}$$

=

$$9 - \frac{17}{3}$$

$$= \frac{9 \times 3 - 17}{3}$$

$$=\frac{27-17}{3}$$

$$=\frac{10}{3}$$

(iv) We have,
$$4\frac{3}{10} - 1\frac{2}{15}$$

$$=\frac{43}{10}-\frac{17}{15}$$

Taking out the LCM of 10 and 15, we get,

$$2 \times 3 \times 5 = 30$$

Now, we convert the given fractions to equivalent fractions by making the denominators 30

$$\frac{43\times3}{10\times3} - \frac{17\times2}{15\times2}$$

$$= \frac{129}{30} - \frac{34}{30}$$

$$129 - 34$$

$$=\frac{129-34}{30}$$

$$=\frac{95}{30}$$

$$=\frac{19}{6}$$

Q8. Simplify:

(i)
$$\frac{2}{3} + \frac{1}{6} - \frac{2}{9}$$

(ii)
$$12-3\frac{1}{2}$$

(iii)
$$7\frac{5}{6} - 4\frac{3}{8} + 2\frac{7}{12}$$

Solution:

(i) We have,
$$\frac{2}{3} + \frac{1}{6} - \frac{2}{9}$$

Taking out the LCM of 3, 6 and 9, we get,

$$3 \times 3 \times 2 = 18$$

Now, we convert the given fractions to equivalent fractions by making the denominators 18, we get,

=

$$\frac{12}{18} + \frac{3}{18} - \frac{4}{18}$$

$$=\frac{12+3-4}{18}$$

$$=\frac{11}{18}$$

(ii) We have,
$$12-3\frac{1}{2}$$

=

$$12 - \frac{7}{2}$$

$$= \frac{12 \times 2 - 7}{2}$$
$$= \frac{24 - 7}{2}$$

$$=\frac{17}{2}$$

(iii) We have,
$$7\frac{5}{6} - 4\frac{3}{8} + 2\frac{7}{12}$$

=

$$\frac{47}{6} - \frac{35}{8} + \frac{31}{12}$$

Taking out the LCM of 6, 8 and 12, we get,

$$2 \times 2 \times 2 \times 3 = 48$$

Now, we convert the given fractions to equivalent fractions by making the denominators 48, we get,

$$\frac{47\times8}{6\times8} - \frac{35\times6}{8\times6} + \frac{31\times4}{12\times4}$$

$$= \frac{376}{48} - \frac{210}{48} + \frac{124}{48}$$

$$=\frac{376-210+124}{48}$$

$$=\frac{290}{48}$$

$$=\frac{145}{24}$$

Q9. What should be added to $5\frac{3}{7}$ to get 12?

Solution:

We have,
$$5\frac{3}{7} = \frac{38}{7}$$

Let x be the number added to $\frac{38}{7}$ to get 12

Therefore,

$$x + \frac{38}{7} = 12$$

$$=> x = 12 - \frac{38}{7}$$

$$=> x = \frac{12 \times 7 - 38}{7}$$

$$=>x=\frac{84-38}{7}$$

$$=> x = \frac{46}{7}$$

Q10. What should be added to $5\frac{4}{15}$ to get $12\frac{3}{5}$?

Solution:

$$5\frac{4}{15} = \frac{79}{15}$$

$$12\frac{3}{5} = \frac{63}{5}$$

Let x be the number added to $\frac{79}{15}$ to get $\frac{63}{5}$

 $\frac{79}{15} + x = \frac{63}{5}$ $=> x = \frac{63}{5} - \frac{79}{15}$

Taking out the LCM of 5 and 15, we get,

 $3 \times 5 = 15$

Now, we convert the given fractions to equivalent fractions by making the denominators 15, we get,

 $=>x=rac{63 imes 3}{5 imes 3}-rac{79}{15}$

 $=>x=rac{189}{15}-rac{79}{15}$

 $=>x=rac{189-79}{15}$

 $=>x=\frac{110}{15}$

 $=> x = \frac{22}{3}$

Q11. Suman studies for $5\frac{2}{3}$ hours daily. She devotes $2\frac{4}{5}$ hours of her time for science and mathematics . How much time does she devote for other subjects?

Solution:

Given,

Suman studies for $5\frac{2}{3}$ i.e, $\frac{17}{3}$ hours daily.

She devotes $2\frac{4}{5}$ i .e, $\frac{14}{5}$ hours of her time for science and mathematics.

Let x be time she devotes for other subjects.

 $\frac{17}{3} = x + \frac{14}{5}$

 $=>x=\frac{17}{3}-\frac{14}{5}$

Taking out the LCM of 3 and 5, we get,

 $3 \times 5 = 15$

Now, we convert the given fractions to equivalent fractions by making the denominators 48, we get,

 $=> x = \frac{17 \times 5}{3 \times 5} - \frac{14 \times 3}{5 \times 3}$

 $=>x=\frac{85}{15}-\frac{42}{15}$

 $=> x = \frac{85-42}{15} \ hours$

 $=> x = \frac{43}{15} hours$

 $=> x = 2\frac{13}{15} \ hours$

Q12. A piece of wire of length $12\frac{3}{4}$ m . If it is cut into two pieces in such a way that the length of one piece is $5\frac{1}{4}$ m, what is the length of the other piece?

Solution:

Given,

A piece of wire of length $12\frac{3}{4}$ m, one piece is $5\frac{1}{4}$ m

$$12\frac{3}{4} = \frac{51}{4}$$

And
$$5\frac{1}{4} = \frac{21}{4}$$

Let the length of other piece be x m.

$$\frac{51}{4} = x + \frac{21}{4}$$

$$=> x = \frac{51}{4} - \frac{21}{4}$$

$$=>x=\frac{51-21}{4}$$

$$=> x = \frac{30}{4}$$

$$=> x = \frac{15}{2}$$

$$=> x = 7\frac{1}{2}$$

Q13. A rectangular piece of paper is $12\frac{1}{2}$ cm long and $10\frac{2}{3}$ cm wide. Find its perimeter?

Solution:

Given,

A rectangular piece of paper is $12\frac{1}{2}$ cm long and $10\frac{2}{3}$ cm wide

$$12\frac{1}{2} = \frac{25}{2}$$

And
$$10\frac{2}{3} = \frac{32}{3}$$

Perimeter = 2 (length + width)

Perimeter =
$$2\left(\frac{25}{2} cm + \frac{32}{3} cm\right)$$

Perimeter =
$$2\left(\frac{75}{6} + \frac{64}{6}\right)$$
 cm

Perimeter =
$$2\left(\frac{139}{6}\right)$$
 cm

Perimeter =
$$\frac{139}{3}$$

Perimeter =
$$46\frac{1}{3}$$

Q14. In a "magic square", the sum of numbers in each row, in each column and along the diagonal is same. Is this a "magic square"?

$\frac{4}{11}$	9	$\frac{2}{11}$	
3 11	5 11	7 11	
8 11	111	6 11	

Solution:

Given,

4 11	$\frac{9}{11}$	$\frac{2}{11}$	
3 11	<u>5</u> 11	7 11	
8 11	$\frac{1}{11}$	$\frac{6}{11}$	

Along the 1st column =
$$\frac{4}{11} + \frac{3}{11} + \frac{8}{11} = \frac{15}{11}$$

Along the 2nd column =
$$\frac{9}{11} + \frac{5}{11} + \frac{1}{11} = \frac{15}{11}$$

Along the 3rd column =
$$\frac{2}{11} + \frac{7}{11} + \frac{6}{11} = \frac{15}{11}$$

Along the 1st row =
$$\frac{4}{11} + \frac{9}{11} + \frac{2}{11} = \frac{15}{11}$$

Along the 2nd row =
$$\frac{3}{11} + \frac{5}{11} + \frac{7}{11} = \frac{15}{11}$$

Along the 3rd row =
$$\frac{8}{11} + \frac{1}{11} + \frac{6}{11} = \frac{15}{11}$$

Diagonally =
$$\frac{4}{11} + \frac{5}{11} + \frac{6}{11} = \frac{15}{11}$$

And,
$$\frac{2}{11} + \frac{5}{11} + \frac{8}{11} = \frac{15}{11}$$

Therefore, the sum of numbers in each row, in each column and along the diagonal is same and the sum is $\frac{15}{11}$

Q15. The cost of Mathematics book is Rs $25\frac{3}{4}$ and that of science book is $20\frac{1}{2}$. Which costs more and by how much?

Solution:

Given,

The cost of mathematics book is Rs $25\frac{3}{4}$ and that of science book is $20\frac{1}{2}$.

We need to compare the cost of mathematics and science book,

$$25\frac{3}{4} = \frac{103}{4}$$

And
$$20\frac{1}{2} = \frac{41}{2}$$

Taking out the LCM of 4 and 2, we get,

$$2 \times 2 = 4$$

Now, we convert the given fractions to equivalent fractions by making the denominators 4, we get

$$And, \frac{41 \times 2}{2 \times 2} = \frac{82}{4}$$

As we know, 103 > 82

Therefore,
$$\frac{103}{4} > \frac{82}{4}$$

Hence, the cost of mathematics book is more than that of the cost of the science book.

Q16. Provide the number in the box [] and also give its simplest form in each of the following:

(i)
$$\frac{2}{3} \times [] = \frac{10}{30}$$

(ii)
$$\frac{3}{5} \times [] = \frac{24}{75}$$

Solution:

(i) Given,
$$\frac{2}{3} \times [] = \frac{10}{30}$$

$$=\frac{5}{10}$$
 is the answer

(ii)
$$\frac{3}{5} \times [] = \frac{24}{75}$$

$$=\frac{8}{15}$$

Exercise 2.2

Q1. Multiply

$$\frac{7}{11}$$
 by $\frac{3}{5}$

$$\frac{3}{5}$$
 by 25

$$3\frac{4}{15}$$
 by 24

$$3\frac{1}{8}$$
 by $4\frac{10}{11}$

Solution:

We have,
$$\frac{7}{11}$$
 by $\frac{3}{5}$

$$= \frac{7}{11} \times \frac{3}{5}$$

$$=\frac{21}{55}$$

(ii) We have,
$$\frac{3}{5}$$
 by 25

$$\frac{3}{5} \times 25$$

$$=15$$

(iii) We have,
$$3\frac{4}{15}$$
 by 24

$$3\frac{4}{15} \times 24$$

$$=rac{49}{15} imes24$$

$$=\frac{1176}{24}$$

$$=78\frac{2}{5}$$

(iv) We have,
$$3\frac{1}{8}$$
 by $4\frac{10}{11}$

$$3\frac{1}{8}$$
 by $4\frac{10}{11}$

$$=\frac{25}{8}\times\frac{54}{11}$$

$$=\frac{25 \times 54}{88}$$

$$=15\frac{15}{44}$$

Q2. Find the product:

$$\frac{4}{7} \times \frac{14}{25}$$

$$7rac{1}{2} imes2rac{4}{15}$$

$$3\frac{6}{7} imes 4\frac{2}{3}$$

$$6\frac{11}{14} imes 3\frac{1}{2}$$

Solution:

We have,

$$\frac{4}{7} \times \frac{14}{25}$$

$$=\frac{4\times14}{7\times25}$$

$$=\frac{56}{175}$$

$$=\frac{8}{25}$$

We have,

$$7\frac{1}{2} imes 2\frac{4}{15}$$

$$=\frac{15}{2}\times\frac{34}{15}$$

$$= \frac{2}{15\times34}$$

$$= \frac{15\times34}{2\times15}$$

$$=\frac{510}{30}$$

$$=17$$

We have,

$$3\frac{6}{7} \times 4\frac{2}{3}$$

$$=\frac{27}{7}\times\frac{14}{3}$$

$$=3 imesrac{14}{3}$$

$$=14$$

We have,

$$6\frac{11}{14} \times 3\frac{1}{2}$$

$$=\frac{95}{14}\times\frac{7}{2}$$

$$=\frac{95\times7}{28}$$

$$=\frac{665}{28}$$

$$=23\frac{3}{4}$$

Q3. Simplify:
$$\frac{12}{25} \times \frac{15}{28} \times \frac{35}{36} \times \frac{39}{27} \times \frac{39}{56} \times \frac{28}{65} \times \frac{2}{27} \times 7^{\frac{2}{3}} \times 1$$

$2\frac{2}{17} \times 7\frac{2}{9} \times 1\frac{33}{52}$

Solution: We have,

 $\frac{12}{25} \times \frac{15}{28} \times \frac{35}{36}$ $= \frac{12 \times 15 \times 35}{25 \times 28 \times 36}$

 $=\frac{6300}{25200}$ $=\frac{1}{4}$

 $\frac{10}{27} \times \frac{39}{56} \times \frac{28}{65}$ $= \frac{10 \times 39 \times 28}{27 \times 56 \times 65}$

 $=\frac{10920}{98280}$ $=\frac{1}{9}$

We have,

 $2\frac{2}{17} \times 7\frac{2}{9} \times 1\frac{33}{52}$ $=\frac{36}{17}\times\frac{65}{9}\times\frac{85}{52}$

 $=\frac{36\times65\times85}{17\times9\times52}$

= 25

 $=\frac{198900}{7956}$

$$\frac{1}{2}of4\frac{2}{9}$$

$$\frac{5}{8}of9\frac{2}{3}$$

$$\frac{2}{3}of\frac{9}{16}$$
Solution:

We have,
$$\frac{1}{2}of4\frac{2}{9}$$

$$=\frac{1}{2}\times\frac{38}{9}$$

$$=\frac{1}{2}\times\frac{38}{9}$$

$$=\frac{38}{18}$$

$$=2\frac{1}{9}$$

$$\frac{5}{8}of9\frac{2}{3}$$

$$=\frac{5}{8}\times\frac{29}{3}$$

$$=\frac{5\times29}{8\times3}$$

$$=\frac{145}{24}$$

$$=6\frac{1}{24}$$
We have,
$$\frac{2}{3}of\frac{9}{16}$$

Q4. Find:

 $=\frac{2}{3}\times\frac{9}{16}$

 $=\frac{2\times9}{3\times16}$

 $=\frac{18}{48}$

 $=\frac{3}{8}$

Q5. Which is greater? $\frac{1}{2}$ of $\frac{6}{7}$ or $\frac{2}{3}$ of $\frac{3}{7}$. Solution:

Given.

 $\frac{1}{2} of \frac{6}{7} or \frac{2}{3} of \frac{3}{7}$ $= \frac{1}{2} \times \frac{6}{7} or \frac{2}{3} \times \frac{3}{7}$

 $=\frac{1\times 6}{2\times 7}\times\frac{2\times 3}{3\times 7}$ $=\frac{6}{14}\ or\ \frac{6}{21}$ While comparing two fractions, when the numerators of both the fractions are same, then the

denominator having higher value shows the fraction has lower value. So, $\frac{6}{14}$ is greater.

Therefore, $\frac{1}{2}$ of $\frac{6}{7}$ is greater.

Q6. Find, $\frac{7}{11}$ of 330

 $\frac{5}{9}$ of 108 meters

 $\frac{3}{7}$ of 42 litres $\frac{1}{12}$ of an hour

 $\frac{5}{6}$ of an year

in year

 $\frac{3}{20}$ of a Kg $\frac{7}{20}$ of a litres

 $\frac{5}{6}$ of a day

 $\frac{2}{7}$ of a week

```
Solution:
We have,
\frac{7}{11} of 330
=\frac{7}{11} \times 330
=7\times30
= 210
We have,
\frac{5}{9} of 108 meters
=\frac{5}{9}\times 108\ meters
= 5 \times 12 \ meters
=60 meters
We have,
 \frac{3}{7} of 42 litres
=\frac{3}{7}\times42\ litres
= 3 \times 6 litres
=18 litres
We have, \frac{1}{12} of an hour
An hour = 60 minutes
Therefore,
 \frac{1}{12} \times 60 \ minutes
=5 minutes
(v) We have, \frac{5}{6} of an year
I Year = 12 months
Therefore,
 \frac{5}{6} \times 12 \ months
= 5 \times 2  months
=10 months
(vi) We have, \frac{3}{20}
1 Kg = 1000 gms
Therefore,
 \frac{3}{20} \times 1000 \; gms
= 3 \times 50 \ gms
=150~gms
```

```
(vii) We have, \frac{7}{20} of a litre

1 litre = 1000 ml

Therefore,
\frac{7}{20} \times 1000 \text{ ml}
```

$$rac{7}{20} imes 1000 \ ml$$

$$= 7 imes 50 \ ml$$

$$=350 \ ml$$
 (viii) We have, $\frac{5}{6}$ of a day

Therefore,
$$\frac{5}{6} \times 24 \ hours$$

$$= 5 \times 4 \ hours \ = 20 \ hours$$

(ix) We have,
$$\frac{2}{7}$$
 of a week

$\frac{2}{7} \times 7 \ days$

Therefore,

$$= 2 days$$

Q7. Shikha plans 5 saplings in a row in her garden. The distance between two adjacent saplings is $\frac{3}{4}$ m. Find the distance between first and last sapling.

Solution: There are 4 adjacent spacing for 5 saplings.

Given, the distance between two adjacent saplings is $\frac{3}{4}$ m.

4 adjacent spacing for 5 saplings = $\frac{3}{4} \times 4 = 3$ m

Therefore, the distance between first and last sapling is 3 m.

Q8. Ravish reads $\frac{1}{3}$ part of a book in one hour. How much part of the book will he read in $2\frac{1}{5}$ hours?

Solution:

Let x be the full part of book.

Given, Ravish reads $\frac{1}{3}$ part of a book in one hour

1 hour =
$$\frac{1}{3}$$
 x

Part of the book will he read in $2\frac{1}{5}$ hours

$$2rac{1}{5}=rac{11}{5}$$
 hours = $rac{1}{3} imes x imes rac{11}{5}$

$$\frac{11}{15}$$
 x = $\frac{11}{15}$ part of book

Q9. Lipika reads a book for $1\frac{3}{4}$ hours every day. She reads the entire book in 6 days. How many hours in all were required by her to read the book?

Solution:

Given,

Time taken by Lipika to read a book per day = $1\frac{3}{4} = \frac{7}{4}$ hours

Time taken by Lipika to read a book for 6 days = $\frac{7}{4} \times 6 = \frac{42}{4} = 10\frac{1}{2}$ hours.

Q10. Find the area of a rectangular park which is $41\frac{2}{3}$ m long and $18\frac{3}{5}$ m broad.

Solution:

Given.

$$41\frac{2}{3} m = \frac{145}{3} m$$

And,
$$18\frac{3}{5}$$
 $m = \frac{93}{5}$ m

Area of a rectangular park = (length x breadth) = $(\frac{125}{3} m \times \frac{93}{5} m)$

$$=(\frac{125\times93}{15})m^2$$

$$=(\frac{11625}{15})m^2$$

$$=775m^{2}$$

Q11. If milk is available at Rs $17\frac{3}{4}$ per litre, find the cost of $7\frac{2}{5}$ litres of milk.

Solution:

Given,

$$Rs17\frac{3}{4} = Rs\frac{71}{4}$$

And,
$$7\frac{2}{5}$$
 litres = $\frac{37}{5}$ litres

The cost of milk per litre = $Rs\frac{71}{4}$

The cost of milk per $\frac{37}{5}$ litres = Rs

$$\frac{37}{5} \times \frac{71}{4}$$

$$= Rs \frac{2327}{20}$$

$$= Rs131\frac{7}{20}$$

Q12. Sharda can walk $8\frac{1}{3}$ km in one hour. How much distance will she cover in $2\frac{2}{5}$ hours.

Solution:

Given,

$$8\frac{1}{3}km = \frac{25}{3}km$$

$$2\frac{2}{5}hours = \frac{12}{5}hours$$

Distance covered by Sharda in one hour = $\frac{25}{3}km$

Distance covered by Sharda in $\frac{12}{5}hours$ = $2\frac{2}{5} imes \frac{25}{3}$ = 20 km

Q13. A sugar bag contains 30 kg of sugar. After consuming $\frac{2}{3}$ of it, how much sugar is left in the bag

Solution:

Given, A sugar bag contains 30 kg of sugar.

After consuming $\frac{2}{3}$ of it, the amount of sugar left in the bag =

$$30kg - \frac{2}{3} \times 30kg$$

$$=30kq-20kq$$

$$=10kg$$

Q14. Each side of a square is $6\frac{2}{3}$ m long. Find its area.

Solution:

Given,

Each side = $6\frac{2}{3}m = \frac{20}{3}m$

Area = $side^2 = (\frac{20}{3})^2 m^2 = \frac{400}{9} m^2 = 44 \frac{4}{9} m^2$

Q15. There are 45 students in a class and $\frac{3}{5}$ of them are boys. How many girls are there in the class?

Solution:

Given,

There are 45 students in a class,

And $\frac{3}{5}$ of them are boys.

Therefore, no of girls in the class = 45 – $\frac{3}{5} \times 45$

= 18

=45-27

Exercise 2.3

Q1. Find the reciprocal of each of the following fractions and classify them as proper, improper and whole numbers

- (i) $\frac{3}{7}$
- (ii) $\frac{5}{8}$
- (iii) $\frac{9}{7}$
- (iv) $\frac{6}{5}$
- (v) $\frac{12}{7}$
- (vi) $\frac{1}{8}$

Solution:

- (i) $\frac{3}{7}$
- $\frac{7}{3}$ = improper number
- (ii) $\frac{5}{8}$
- $\frac{8}{5}$ = improper number
- (iii) $\frac{9}{7}$
- $\frac{7}{9}$ = proper number
- (iv) $\frac{6}{5}$
- $\frac{5}{6}$ = proper number
- $(v) \frac{12}{7}$
- $\frac{7}{12}$ = proper number
- (vi) $\frac{1}{8}$
- 8 = whole number

Q2. Divide:

(i) $\frac{3}{8}$ by $\frac{5}{9}$

(ii) $3\frac{1}{4} by \frac{2}{3}$

(iii) $\frac{7}{8}$ by $4\frac{1}{2}$

(iv) $6\frac{1}{4}by2\frac{3}{5}$

Solution:

(i) $\frac{3}{8}$ by $\frac{5}{9}$

 $= \frac{\frac{3}{8}}{\frac{5}{9}}$ $= \frac{3 \times 9}{8 \times 5}$

(ii) $3\frac{1}{4} by \frac{2}{3}$

 $= \frac{3\frac{1}{4}}{\frac{2}{3}}$ $= \frac{\frac{13}{4}}{\frac{2}{3}}$ $=\frac{13\times3}{4\times2}$

 $=\frac{39}{8}$

 $=4\frac{7}{8}$

(iii) $\frac{7}{8}$ by $4\frac{1}{2}$

 $= \frac{\frac{7}{8}}{\frac{9}{2}}$

 $=\frac{7\times2}{9\times8}$

 $=\frac{14}{72}$

(iv)
$$6\frac{1}{4}by2\frac{3}{5}$$
=
 $\frac{6\frac{1}{4}}{2\frac{3}{5}}$
=
 $\frac{\frac{25}{4}}{\frac{13}{5}}$
=
 $\frac{25 \times 5}{4 \times 13}$
=
 $\frac{75}{52}$

(i)
$$\frac{3}{8}$$
 by 4
(ii) $\frac{9}{16}$ by 6

(iii) 9 by
$$\frac{3}{16}$$

(iv) 10 by $\frac{100}{3}$

Solution:

(i) $\frac{3}{8}$ by 4

$$= \frac{\frac{3}{8}}{4}$$

$$=$$
 $\frac{3}{8}$

$$= \frac{\frac{8}{4}}{8 \times 4}$$

$$=\frac{3}{32}$$

(ii)
$$\frac{9}{16}$$
 by 6

$$=\frac{9}{16\times6}$$

$$=\frac{9}{16\times6}$$

$$=\frac{9}{96}$$

(iii) 9 by
$$\frac{3}{16}$$

=
 $\frac{9}{\frac{3}{16}}$

= $\frac{9 \times 16}{3}$

= 3×16

= 48

(iv) 10 by $\frac{100}{3}$

= $\frac{10}{\frac{100}{3}}$

= $\frac{10 \times 3}{100}$

= $\frac{3}{10}$

Q4. Simplify: (i) $\frac{3}{10} \div \frac{10}{3}$ (ii) $4\frac{3}{5} \div \frac{4}{5}$ (iii) $5\frac{4}{7} \div 1\frac{3}{10}$

(iv)
$$4 \div 2\frac{2}{5}$$

Solution:

(i)
$$\frac{3}{10} \div \frac{10}{3}$$
 $= \frac{3 \times 3}{10 \times 10}$ $= \frac{9}{100}$ (ii) $4\frac{3}{5} \div \frac{4}{5}$

 $= \frac{23}{5} \div \frac{4}{5}$

$$= \frac{23 \times 5}{5 \times 4}$$

$$= \frac{23}{4}$$

$$= 5\frac{3}{4}$$
(iii)
$$5\frac{4}{7} \div 1\frac{3}{10}$$

$$= \frac{39 \times 10}{7 \times 13}$$

$$= \frac{390}{91}$$

$$= 4\frac{2}{7}$$
(iv)
$$4 \div 2\frac{2}{5}$$

$$= 4 \div \frac{12}{5}$$

$$= \frac{4}{12}$$

$$= \frac{20}{12}$$

$$= 1\frac{2}{3}$$

Q5. A wire of length $12\frac{1}{2}$ m is cut into 10 pieces of equal length . Find the length of each piece.

Solution:

Given,
$$12\frac{1}{2}m=\frac{25}{2}m$$

10 pieces of wire =
$$\frac{25}{2}m$$

1 piece of wire =
$$\frac{\frac{25}{2}}{10}$$

$$=\frac{25}{20}$$

$$=\frac{5}{4}$$

$$=1\frac{1}{4}$$

Q6. The length of a rectangular plot of area $65\frac{1}{3}m^2$ is $12\frac{1}{4}m$. What is the width of the plot? Solution:

 $4\frac{4}{9}$?

Given,

The length of a rectangular plot of area $65\frac{1}{3}m^2$ is $12\frac{1}{4}m$.

Area =
$$65\frac{1}{3} m^2 = \frac{196}{3} m^2$$

Length = $12\frac{1}{4}$ m Now, Area = length x breadth

$$> rac{196}{3} \; m^2 = rac{49}{4} \; m imes breadth$$

$$\Rightarrow \frac{196}{3} m^2 = \frac{49}{4} m \times breadth$$

$$Breadth = \frac{4}{49} m \times \frac{196}{3} m^2$$

$$Breadth = \frac{196 \times 4}{49 \times 3}$$

 $Breadth = \frac{184}{147}$

$$Breadth = 5\frac{3}{4}$$

Q7. By what number
$$6\frac{2}{9}$$
 be multiplied to get

Given,

$$6\frac{2}{9} = \frac{56}{9}$$
,

$$And$$
, $4\frac{4}{9}=\frac{40}{9}$
Let x be the number which needs to be multiplied by $\frac{56}{9}$,

Now,
$$x imes rac{56}{9} = rac{40}{9}$$

$$x imes \frac{56}{9} = \frac{40}{9}$$
 $x = \frac{40}{9} imes \frac{9}{56}$
 $x = \frac{40}{56} = \frac{5}{7}$

Q8. The product of two numbers is $25\frac{5}{6}$. If one of the numbers is $6\frac{2}{3}$, find the other?

Solution:

Given,

The product of two numbers is $25\frac{5}{6}$. If one of the numbers is $6\frac{2}{3}$

$$6\frac{2}{3} = \frac{20}{3}$$

$$And, 25\frac{5}{6} = \frac{155}{6}$$

Let the other number be x.

$$\frac{20}{3} \times x = \frac{155}{6}$$

$$x = \frac{3}{20} \times \frac{155}{6}$$

$$x = \frac{3 \times 155}{20 \times 6}$$

$$x = \frac{31}{8} = 3\frac{7}{8}$$

Q9. The cost of $6\frac{1}{4}$ kg of apples is Rs 400. At what rate per kg are the apples being sold?

Solution:

Given,

The cost of $6\frac{1}{4}$ kg of apples is Rs 400

$$6\frac{1}{4} = \frac{25}{4}$$

Cost of $\frac{25}{4}$ kg of apple = Rs 400

Cost of 1 kg of apple = Rs $\frac{4}{25} imes 400$ = Rs 64

Q10. By selling oranges at the rate of Rs $5\frac{1}{4}$ per orange, a fruit seller get Rs 630. How many dozens of oranges does he sell?

Solution:

Given,

Oranges at the rate of Rs $5\frac{1}{4}$ per orange, a fruit seller get Rs 630

$$5\frac{1}{4} = \frac{21}{4}$$

Number of oranges for Rs $\frac{21}{4}$ = 1

Number of oranges for Re 1 = $\frac{4}{21}$

Number of oranges for Rs 630 = $\frac{4}{21} \times 630$ = 120 apples

12 apples = 1 dozen

Therefore, 120 apples = 10 dozen

Q11. In mid-day meal scheme $\frac{3}{10}$ litre of milk is given to each student of a primary school. If 30 litres of milk is distributed everyday in the school, how many students are there in the school?

Solution:

Given,

 $\frac{3}{10}$ litre of milk is given to each student of a primary school.

30 litres of milk is distributed everyday in the school

Number of students given $\frac{3}{10}$ litres of milk = 1

Number of students given 1 litre of milk = $\frac{10}{3}$

Number of students given 30 litres of milk = $\frac{10}{3} imes 30$ = 100 Students

Q12. In a charity show Rs 6496 were collected by selling some tickets. If the price of each ticket was Rs $50\frac{3}{4}$, how many tickets were sold?

Solution:

Given,

Rs 6496 were collected by selling some tickets.

RS 0490 Were collected by selling some tickets

The price of each ticket was Rs $50\frac{3}{4}$ $50\frac{3}{4} = \frac{203}{4}$

Number of tickets bought at Rs $\frac{203}{4}$ = 1

Number of tickets bought at Re 1 = $\frac{4}{203}$

Number of tickets bought at Rs 6496 = $\frac{4}{203} \times 6496$ = 4×32 = 128