What is Machine Learning?

You know how to program ...

- You can ask computers to do lots of things for you.
- However, computer can only do what you ask it to do.
- Computer can never solve the problem you can't solve.

Some tasks are very complex

 One day, you are asked to write a program for speech recognition.

Find the common patterns from the left waveforms.

You quickly get lost in the exceptions and special cases.

It seems impossible to write a program for speech recognition.

Let the machine learn by itself

Learning ≈ Looking for a Function

Speech Recognition

Handwritten Recognition

Weather forecast

$$f($$
 weather today $)=$ "sunny tomorrow"

Play video games

$$f(\begin{array}{c} \text{Positions and} \\ \text{number of enemies} \end{array}) = \text{"fire"}$$

Framework

Deep Learning

What is Deep Learning?

End-to-end training:

What each function should do is learned automatically

Deep v.s. Shallow

- Speech Recognition
- Deep Learning

"Bye bye, MFCC"
- Deng Li in
Interspeech 2014

Less engineering labor, but machine learns more

Deep v.s. Shallow

- Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV* 2014 (pp. 818-833)

Deep Learning

What is Deep Learning?

End-to-end training:

What each function should do is learned automatically

 Deep learning usually referred to neural network based approach

A Neuron for Machine

Each neuron is a very simple function

Deep Learning

A neural network is a complex function:

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Cascading the neurons to form a neural network.
 Each layer is a simple function in the production line.

Why Deep Learning?

Deeper is Better.

Speech recognition

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deeper is Better?

Deep works better simply because it uses more parameters.

Shallow

Deep

Fat + Short v.s. Thin + Tall

If they have the same parameters,

Which one is better?

Deep

Fat + Short v.s. Thin + Tall Toy Example $f: R^2$

Sample 10,0000 points as training data

Fat + Short v.s. Thin + Tall Toy Example

1 hidden layer:

3 hidden layers:

Q: the number of parameters close to (A), (B) or (C)?

Fat + Short v.s. Thin + Tall Hand-writing digit classification

Same parameters

Deeper: Using less parameters to achieve the same performance

Fat + Short v.s. Thin + Tall Speech Recognition

Word error rate (WER)

Multiple layers

1 hidden layer

LxN	DBN-PT (%)	1xN	DBN-PT (%)
1×2k	24.2		
$2\times2k$	20.4		
$3\times2k$	18.4		
4×2 k	17.8		
$5\times2k$	17.2	1×3,772	22.5
$7 \times 2 k$	17.1	1×4,634	22.6
		1×16K	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Size of Training Data

Different numbers of training examples

Size of Training Data

Hand-writing digit classification

Deeper: Using less training data to achieve the same performance

Learning ≈ Looking for a Function

Speech Recognition

Handwritten Recognition

$$f($$
 \geqslant $)=$ "2"

Weather forecast

$$f($$
 weather today $)=$ "sunny tomorrow"

Play video games

$$f(\begin{array}{c} \text{Positions and} \\ \text{number of enemies} \end{array}) = \text{"fire"}$$

Framework

x:

 \hat{y} : "2" (label)

Outline

1. What is the model (function hypothesis set)?

2. What is the "best" function?

3. How to pick the "best" function?

Task Considered Today

Classification

Binary Classification

Only two classes

Spam filtering

- Is an e-mail spam or not?
- Recommendation systems
 - recommend the product to the customer or not?
- Malware detection
 - Is the software malicious or not?
- Stock prediction
 - Will the future value of a stock increase or not?

Task Considered Today

Classification

Binary Classification

Only two classes

input (yes) object Class B (no)

Multi-class Classification

More than two classes

Multi-class Classification

Handwriting Digit Classification

Input:

Class: "1", "2",, "9", "0"

10 classes

Image Recognition

Input:

Class: "dog", "cat", "book",

Thousands of classes

1. What is the model?

What is the function we are looking for?

classification

$$y = f(x) \qquad f: R^N \to R^M$$

- x: input object to be classified
- y: class
- Assume both x and y can be represented as fixed-size vector
 - x is a vector with N dimensions, and y is a vector with M dimensions

What is the function we are looking for?

Handwriting Digit Classification

 $f: \mathbb{R}^N \to \mathbb{R}^M$

x: image

Each pixel corresponds to an element in the vector

y: class

10 dimensions for digit recognition

1. What is the model? A Layer of Neuron

Single Neuron

$$f: \mathbb{R}^N \to \mathbb{R}$$

Single Neuron

$$f\!:\!R^N\to R$$

Single Neuron $f: \mathbb{R}^N \to \mathbb{R}$

 Single neuron can only do binary classification, cannot handle multi-class classification

A Layer of Neuron $f: \mathbb{R}^N \to \mathbb{R}^M$

Handwriting digit classification

• Classes: "1", "2",, "9", "0"

If y_2 is the max, then the image is "2".

1. What is the model? Neural Network

Neural Network as Model

 $f: \mathbb{R}^N \to \mathbb{R}^M$

- > Fully connected feedforward network
- > Deep Neural Network: many hidden layers

Layer l-1 N_{l-1} nodes

 \boldsymbol{z}_{i}^{l} : input of the activation function for neuron i at layer I

 \boldsymbol{z}^l : input of the activation function all the neurons in layer I

$$z_i^l = w_{i1}^l a_1^{l-1} + w_{i2}^l a_2^{l-1} \dots + b_i^l$$

$$z_i^l = \sum_{j=1}^{N_{l-1}} w_{ij}^l a_j^{l-1} + b_i^l$$

Layer *l* −1

 N_{l-1} nodes

Layer *l*

 N_l nodes

Notation - Summary

```
a_i^l :output of a neuron w_{ij}^l : a weight
```

$$a^l$$
 :output of a layer \mathbf{W}^l : a weight matrix

$$\boldsymbol{\mathcal{Z}}_{i}^{l}$$
 : input of activation \boldsymbol{b}_{i}^{l} : a bias function

$$z^l$$
: input of activation b^l : a bias vector function for a layer

 N_{I-1} nodes

Layer *l* $a^l = \sigma(z^l)$ N_i nodes

Layer l-1 N_{l-1} nodes

 N_I nodes

Function of Neural Network

Function of Neural Network

$$y = f(x)$$

$$= \sigma(\mathbf{W}^{L} \dots \sigma(\mathbf{W}^{2} \sigma(\mathbf{W}^{1} x + b^{1}) + b^{2}) \dots + b^{L})$$

2. What is the "best" function?

Best Function = Best Parameters

$$y = f(x) = \sigma(\mathbf{W}^L \dots \sigma(\mathbf{W}^2 \sigma(\mathbf{W}^1 x + b^1) + b^2) \dots + b^L)$$

function set

because different parameters W and b lead to different function

Formal way to define a function set:

$$f(x; \theta) \rightarrow \text{parameter set}$$

 $\theta = \{W^1, b^1, W^2, b^2 \cdots W^L, b^L\}$

Pick the "best" function f*

Pick the "best" parameter set θ^*

Cost Function

- Define a function for parameter set $C(\theta)$
 - $C(\theta)$ evaluate how bad a parameter set is
 - The best parameter set θ^* is the one that minimizes $C(\theta)$

$$\theta^* = \arg\min_{\theta} C(\theta)$$

- $C(\theta)$ is called **cost/loss/error function**
 - If you define the goodness of the parameter set by another function $O(\theta)$
 - $O(\theta)$ is called objective function

Cost Function

Given training data:

$$\{(x^1, \hat{y}^1)...(x^r, \hat{y}^r)...(x^R, \hat{y}^R)\}$$

Handwriting Digit Classification

3. How to pick the "best" function?

Gradient Descent

Statement of Problems

- Statement of problems:
 - There is a function C(θ)
 - θ represents parameter set
 - $\theta = \{\theta_1, \theta_2, \theta_3, \dots \}$
 - Find θ^* that minimizes $C(\theta)$
- Brute force?
 - Enumerate all possible θ
- Calculus?
 - Find θ^* such that $\left. \frac{\partial C(\theta)}{\partial \theta_1} \right|_{\theta = \theta^*} = 0, \frac{\partial C(\theta)}{\partial \theta_2} \right|_{\theta = \theta^*} = 0, \dots$

Gradient Descent – Idea

• For simplification, first consider that θ has only one variable

Gradient Descent – Idea

η is called "learning rate"

• For simplification, first consider that θ has only one

Gradient Descent

- Suppose that θ has two variables $\{\theta_1, \theta_2\}$
- ightharpoonup Randomly start at $\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$
- ightharpoonup Compute the gradients of $C(\theta)$ at θ^0 : $\nabla C(\theta^0) = \begin{vmatrix} \partial C(\theta_1^0)/\partial \theta_1 \\ \partial C(\theta_2^0)/\partial \theta_2 \end{vmatrix}$
- Update parameters

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta_1^0)}{\partial C(\theta_2^0)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla C(\theta^0)$$

- **>**

Gradient Descent

Formal Derivation of Gradient Descent

Gradient Descent for Neural Network

Compute
$$\nabla C(\theta^0)$$

 $\theta^1 = \theta^0 - \eta \nabla C(\theta^0)$
Compute $\nabla C(\theta^1)$
 $\theta^2 = \theta^1 - \eta \nabla C(\theta^1)$

Starting Parameters

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \dots$$

$$\nabla C(\theta)$$

$$\theta = \left\{ \mathbf{W}^1, b^1, \mathbf{W}^2, b^2, \dots, \mathbf{W}^l, b^l, \dots, \mathbf{W}^L, b^L \right\}$$

$$= \begin{bmatrix} \vdots \\ \frac{\partial \mathbf{C}(\theta)}{\partial w_{ij}^{l}} \\ \vdots \\ \frac{\partial \mathbf{C}(\theta)}{\partial b_{i}^{l}} \\ \vdots \end{bmatrix}$$

$$\begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l \\ \vdots & \ddots \end{bmatrix}$$

Millions of parameters

To compute the gradients efficiently, we use **backpropagation**.

Stuck at local minima?

- Who is Afraid of Non-Convex Loss Functions?
- http://videolectures.ne t/eml07_lecun_wia/
- Deep Learning: Theoretical Motivations
- http://videolectures.ne t/deeplearning2015_be ngio_theoretical_motiv ations/

3. How to pick the "best" function?

Practical Issues for neural network

Practical Issues for neural network

- Parameter Initialization
- Learning Rate
- Stochastic gradient descent and Mini-batch
- Recipe for Learning

Parameter Initialization

- For gradient Descent, we need to pick an initialization parameter θ^0 .
- The initialization parameters have some influence to the training.
 - We will go back to this issue in the future.
- Suggestion today:
 - Do not set all the parameters θ^0 equal
 - Set the parameters in θ^0 randomly

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

• Set the learning rate η carefully

$$heta^i$$

 $\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$

Learning Rate

Set the learning rate η carefully

Toy Example

$$\theta^* = \begin{vmatrix} w = 1 \\ b = 0 \end{vmatrix}$$

Training Data (20 examples)

x = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]y = [0.1, 0.4, 0.9, 1.6, 2.2, 2.5, 2.8, 3.5, 3.9, 4.7, 5.1, 5.3, 6.3, 6.5, 6.7, 7.5, 8.1, 8.5, 8.9, 9.5]

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

Toy Example

Error Surface: C(w,b)

Learning Rate

Toy Example

Different learning rate η

Stochastic Gradient Descent and Mini-batch

$$C(\theta) = \frac{1}{R} \sum_{r} ||f(x^{r}; \theta) - \hat{y}^{r}||$$
$$= \frac{1}{R} \sum_{r} C^{r}(\theta)$$

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1}) \qquad \nabla C(\theta^{i-1}) = \frac{1}{R} \sum_{r} \nabla C^{r}(\theta^{i-1})$$

Stochastic Gradient Descent

Faster!

Better!

Pick an example x^r

$$\theta^{i} = \theta^{i-1} - \eta \nabla C^{r} (\theta^{i-1})$$

If all example x^r have equal probabilities to be picked

$$E\left[\nabla C^{r}\left(\theta^{i-1}\right)\right] = \frac{1}{R} \sum_{r} \nabla C^{r}\left(\theta^{i-1}\right)$$

Stochastic Gradient Descent and Mini-batch

What is epoch?

Training Data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots (x^r, \hat{y}^r), \dots (x^R, \hat{y}^R)\}$$

When using stochastic gradient descent

Starting at
$$\theta_0$$
 pick \mathbf{x}^1 $\theta^1 = \theta^0 - \eta \nabla C^1 (\theta^0)$ pick \mathbf{x}^2 $\theta^2 = \theta^1 - \eta \nabla C^2 (\theta^1)$ seen all the pick \mathbf{x}^r $\theta^r = \theta^{r-1} - \eta \nabla C^r (\theta^{r-1})$ examples once in the pick \mathbf{x}^R $\theta^R = \theta^{R-1} - \eta \nabla C^R (\theta^{R-1})$

pick
$$x^1$$
 $\theta^{R+1} = \theta^R - \eta \nabla C^1(\theta^R)$

Stochastic Gradient Descent and Mini-batch

Toy Example

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

If there are 20 examples, update 20 times in one epoch.

Stochastic Gradient Descent and Mini-batch

Gradient Descent

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1}) \qquad \nabla C(\theta^{i-1}) = \frac{1}{R} \sum_{r} \nabla C^{r}(\theta^{i-1})$$

Stochastic Gradient Descent

Pick an example x_r

$$\theta^{i} = \theta^{i-1} - \eta \nabla C^{r} (\theta^{i-1})$$

Mini Batch Gradient Descent

Pick B examples as a batch b

B is batch size

Shuffle your data

$$\theta^{i} = \theta^{i-1} - \eta \frac{1}{B} \sum_{x_r \in b} \nabla C^r (\theta^{i-1})$$

Average the gradient of the examples in the batch b

Stochastic Gradient Descent and Mini-batch

Handwriting Digit Classification

Stochastic Gradient Descent and Mini-batch

 Why mini-batch is faster than stochastic gradient descent?

Stochastic Gradient Descent

$$z^1 = W^1 z^1 = W^1 x \dots$$

Mini-batch

Practically, which one is faster?

Recipe for Learning

Recipe for Learning - Overfitting

You pick a "best" parameter set θ*

Training Data:
$$\{...(x^r, \hat{y}^r)...\} \longrightarrow \forall r: f(x^r; \theta^*) = \hat{y}^r$$

However,

Testing Data:
$$\{...x^u...\} \qquad f(x^u;\theta^*) \neq \hat{y}^u$$

Training data and testing data have different distribution.

Training Data:

Testing Data:

Recipe for Learning - Overfitting

Panacea: Have more training data

We will go back to this issue in the future.

Concluding Remarks

> Learning Rate

> Recipe for Learning

1. What is the model (function hypothesis set)? **Neural Network** 2. What is the "best" function? **Cost Function** 3. How to pick the "best" function? **Gradient Descent** > Parameter Initialization

> Stochastic gradient descent, Mini-batch