

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Delta rules

The INFDEV@HR Team

Hogeschool Rotterdam Rotterdam, Netherlands

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Introduction

Introduction

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Lecture topics

- Make it pretty: delta rules
- Booleans, boolean logic operators, if-then-else
- Naturals, arithmetic operators, comparison operators

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Encoding boolean logic

Encoding boolean logic

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

Conclusion

Appendix

Introduction

- We can decide that some specific lambda terms have special meanings
- For example, we could decide that a given lambda term means TRUE, another FALSE, etc.
- The important thing is that we choose terms that behave as we wish

Encoding boolean logic

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

As we wish?

- Suppose we define some lambda terms for TRUE, FALSE, and AND
- We expect these terms to reduce^a following our expectations of boolean logic
- We can use truth tables to encode our expectations

^aThat is, computed according to \rightarrow_{β}

Encoding boolean logic

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms
with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

We want to formulate TRUE, FALSE, and AND so that

- ullet TRUE \wedge TRUE \to_{eta} TRUE
- TRUE \wedge FALSE \rightarrow_{β} FALSE
- FALSE \wedge TRUE \rightarrow_{β} FALSE
- ullet FALSE \wedge FALSE $ightarrow_{eta}$ FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Defining terms with special meaning

Defining terms with special meaning

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Choice terms

- Terms with special meaning essentially make a choice when given parameters
- The choice is expressed by either returning, or applying, the parameters

Defining terms with special meaning

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Delta rules

- We wish to use special symbols to these terms with special meaning
- We define a series of delta rules, which are transformation from pretty symbols into lambda terms (and vice-versa)

Defining terms with special meaning

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Delta rules

This means that we will be able to write lambda programs such as 5+3, that will then be translated into the appropriate lambda terms

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

Booleans

Natural numbers

Conclusion

Appendix

Booleans

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Idea

- Boolean operators such as TRUE and FALSE must be defined so as to identify themselves
- The choice is expressed by returning their identity from a choice of two options

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

Conclusion

Appendix

TRUE is defined as a selector of the representative for true, that is the first $\operatorname{argument}^a$

^aby arbitrary convention

(λ t fightarrowt)

FALSE is defined as a selector of the representative for false, that is the second argument^a

^aby arbitrary convention, as long as different from the previous

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

Appendix

((TRUE bit1) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((TRUE bit1) bit0)
```

```
((TRUE bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((TRUE bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((TRUE bit1) bit0)
```

```
(((\lambda t f \rightarrow t) bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow t) bit1) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambdat f\rightarrowt) bit1) bit0)
```

(((
$$\lambda t f \rightarrow t$$
) bit1) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow t) bit1) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow t) bit1) bit0)
```

```
((\lambda f \rightarrow bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

<u>Defining terms</u>

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(($\lambda f \rightarrow bit1$) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f \rightarrow bit1$$
) bit0)

((
$$\lambda f \rightarrow bit1$$
) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(($\lambda f \rightarrow bit1$) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(($\lambda f \rightarrow bit1$) bit0)

bit1

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

AND

- The conjunction^a of two terms is a function that takes as input two booleans and returns a boolean
- Since we just defined booleans to be two-parameter functions, we know that the two input booleans can be applied to each other
- Given two booleans p and q, their conjunction is q if p was true, or false otherwise

$$(\lambda p \ q \rightarrow ((p \ q) \ p))$$

 a AND, or \wedge

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

AND

Let us begin to with TRUE \wedge TRUE \rightarrow_{β} TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(TRUE \wedge TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(TRUE ∧ TRUE)

((\ TRUE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((∧ TRUE) TRUE)
```

```
(((\lambda p q \rightarrow ((p q) p))) TRUE) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

Defining ter with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE) TRUE)

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

<u>Defining terms</u>

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE)

(((
$$\lambda p q \rightarrow ((p q) p))$$
 ($\lambda t f \rightarrow t)$) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p q) p$)) ($\lambda t f \rightarrow t$)) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow t)$$
) TRUE)

(
$$((\lambda p \ q \rightarrow ((p \ q) \ p)) \ (\lambda t \ f \rightarrow t))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow t))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
( ((\lambda p \ q \rightarrow ((p \ q) \ p)) (\lambda t \ f \rightarrow t))
                                                                    TRUE)
```

```
((\lambda q \rightarrow ((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

Defining ter with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda q \rightarrow$$
 ((($\lambda t \ f \rightarrow t$) q) ($\lambda t \ f \rightarrow t$))) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

((
$$\lambda q \rightarrow$$
 ((($\lambda t f \rightarrow t$) q) ($\lambda t f \rightarrow t$))) TRUE)

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t)))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) TRUE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t)))$$
 TRUE)

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t \ f \rightarrow t) \ q) \ (\lambda t \ f \rightarrow t))) \ (\lambda t \ f \rightarrow t))
```

$$(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda t$$
 f $\rightarrow t$) (λt f $\rightarrow t$)) (λt f $\rightarrow t$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow t) (λ t f \rightarrow t)) (λ t f \rightarrow t))

$$((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining term

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))$$

$$((\lambda f t f \rightarrow t) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f$$
 t f \rightarrow t) (λt f \rightarrow t))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f$$
 t f \rightarrow t) (λt f \rightarrow t))

$$((\lambda f \ t \ f \rightarrow t) \ (\lambda t \ f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda f \ t \ f \rightarrow t) \ (\lambda t \ f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f $ightarrow$ t) (λ t f $ightarrow$ t))

(
$$\lambda$$
t f \rightarrow t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowt)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

(
$$\lambda$$
t f $ightarrow$ t)

(
$$\lambda$$
t f $ightarrow$ t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow t)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

 $(\lambda t \ f \rightarrow t)$

TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

It works, but it is probably only because of black magic.

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

It works, but it is probably only because of black magic.

Or is it? Let's see if we can get lucky again...

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

OR

- The disjunction^a of two terms is a function that takes as input two booleans and returns a boolean
- Like with conjunction, remember that the two input booleans can be applied to one another
- Given two booleans p and q, their disjunction is true if p was true, or q otherwise

$$(\lambda p \ q \rightarrow ((p \ p) \ q))$$

 a OR, or \vee

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

OR

Let us begin to with TRUE \lor TRUE \to_{β} TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(TRUE V TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(TRUE V TRUE)

((V TRUE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic Defining terms

with special

meaning Booleans

Natural numbers

Conclusion

```
( ( V
     TRUE) TRUE)
```

```
(((\lambda p q \rightarrow ((p p) q)) TRUE) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

Defining ter with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 TRUE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p p) q$)) TRUE) TRUE)

$$(((\lambda p q \rightarrow ((p p) q)) TRUE) TRUE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 TRUE) TRUE)

(((
$$\lambda p q \rightarrow ((p p) q))$$
 ($\lambda t f \rightarrow t$) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p \ q \rightarrow$$
(($p \ p$) q)) ($\lambda t \ f \rightarrow t$)) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p \ q \rightarrow$$
(($p \ p) \ q$)) ($\lambda t \ f \rightarrow t$)) TRUE)

(
$$((\lambda p \ q \rightarrow ((p \ p) \ q)) \ (\lambda t \ f \rightarrow t))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

(
$$((\lambda p \ q \rightarrow ((p \ p) \ q)) \ (\lambda t \ f \rightarrow t))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining term

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
( ((\lambda p \ q \rightarrow ((p \ p) \ q)) (\lambda t \ f \rightarrow t)) TRUE)
```

```
((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda q \rightarrow$$
((($\lambda t f \rightarrow t$) ($\lambda t f \rightarrow t$)) q)) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

((
$$\lambda$$
q $ightarrow$ (((λ t f $ightarrow$ t) (λ t f $ightarrow$ t)) q)) TRUE)

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathtt{q} {\rightarrow} (((\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t})) \ \mathtt{q})) \ \ \overline{\mathtt{TRUE}})$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda q \rightarrow$$
 ((($\lambda t f \rightarrow t$) ($\lambda t f \rightarrow t$)) q)) ($\lambda t f \rightarrow t$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special

meaning Booleans

Natural

numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t \ f \rightarrow t) \ (\lambda t \ f \rightarrow t)) \ q)) \ (\lambda t \ f \rightarrow t))
```

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow t$$
) ($\lambda t f \rightarrow t$)) ($\lambda t f \rightarrow t$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow t$$
) ($\lambda t f \rightarrow t$)) ($\lambda t f \rightarrow t$))

$$(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow t$$
) ($\lambda t f \rightarrow t$)) ($\lambda t f \rightarrow t$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining term

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow t))
```

$$((\lambda f t f \rightarrow t) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f \rightarrow t) (λ t f \rightarrow t))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Booleans

Natural numbers

Conclusion

((
$$\lambda f$$
 t f \rightarrow t) (λt f \rightarrow t))

$$((\lambda f \ t \ f \rightarrow t) \ (\lambda t \ f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda f \ t \ f \rightarrow t) \ (\lambda t \ f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f $ightarrow$ t) (λ t f $ightarrow$ t))

(
$$\lambda$$
t f \rightarrow t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowt)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

(
$$\lambda$$
t f $ightarrow$ t)

(
$$\lambda$$
t f $ightarrow$ t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow t)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

 $(\lambda t \ f \rightarrow t)$

TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

if-then-else

- The conditional operator if-then-else chooses one of two parameters based on the value of the input condition
- Given a boolean c and two values th and el, the result is th if c was true, or el otherwise
- Since c is a boolean, it already performs this choice!

$$(\lambda p \text{ th el}
ightarrow ((p \text{ th}) \text{ el}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

if-then-else

Let us try with if TRUE \lor FALSE then A else B \rightarrow_{eta} A

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

if TRUE then A else B

Delta rules

The INFDEV@HR Team

Introduction

......

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
if TRUE then A else {\tt B}
```

```
(((if-then-else TRUE) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((if-then-else TRUE) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((if-then-else TRUE) A) B)
```

```
((((\lambda p th el \rightarrow ((p th) el)) TRUE) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((((\lambda p \ th \ el \rightarrow ((p \ th) \ el)) \ TRUE) \ A) \ B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

```
((((\lambda p th el\rightarrow((p th) el)) TRUE) A) B)
```

```
((((\lambdap th el\rightarrow((p th) el)) TRUE) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((((\lambda p \ th \ el \rightarrow ((p \ th) \ el)) TRUE) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Booleans

Natural numbers

Conclusion

```
(((((\lambda p \text{ th el} \rightarrow ((p \text{ th) el})) | TRUE) A) B)
```

```
((((\lambda p \ th \ el \rightarrow ((p \ th) \ el)) \ (\lambda t \ f \rightarrow t)) \ A) \ B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((((
$$\lambda p$$
 th el \rightarrow ((p th) el)) (λt f \rightarrow t)) A) B)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

```
((((\lambda p th el\rightarrow((p th) el)) (\lambda t f\rightarrowt)) A) B)
```

```
(( ((\lambda p \ th \ el \rightarrow ((p \ th) \ el)) \ (\lambda t \ f \rightarrow t)) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(( ((\lambda p th el\rightarrow((p th) el)) (\lambda t f\rightarrowt)) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic Defining terms

with special

meaning Booleans

Natural numbers

Conclusion

```
((((\lambda p \text{ th el} \rightarrow ((p \text{ th) el})) (\lambda t \text{ f} \rightarrow t)) A) B)
```

```
(((\lambdath el\rightarrow((\lambdat f\rightarrowt) th) el)) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
th el \rightarrow (((λ t f \rightarrow t) th) el)) A) B)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(((\lambdath el	o(((\lambdat f	ot) th) el)) A) B)
```

```
( ((\lambdath el\rightarrow(((\lambdat f\rightarrowt) th) el)) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda th el \rightarrow (((\lambda t f \rightarrow t) th) el)) A) B)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
( ((\lambdath el\rightarrow(((\lambdat f\rightarrowt) th) el)) A) B)
```

$$((\lambda el \rightarrow (((\lambda t f \rightarrow t) A) el)) B)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda$$
el \rightarrow (((λ t f \rightarrow t) A) el)) B)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$((\lambda el \rightarrow (((\lambda t f \rightarrow t) A) el)) B)$$

$$((\lambda el \rightarrow (((\lambda t f \rightarrow t) A) el)) B)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda el \rightarrow (((\lambda t \ f \rightarrow t) \ A) \ el)) \ B)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda el \rightarrow (((\lambda t \ f \rightarrow t) \ A) \ el)) \ B)$$

$$(((\lambda t f \rightarrow t) A) B)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow t$$
) A) B)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow t$$
) A) B)

$$((\lambda t f \rightarrow t) A) B)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining torm

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda t f \rightarrow t) A) B)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda t f \rightarrow t) A) B)$$

$$((\lambda f \rightarrow A) B)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f $ightarrow$ A) B)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

<u>Defining terms</u>

with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda f \rightarrow A) B)$$

((
$$\lambda$$
f $ightarrow$ A) B)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda f \rightarrow A) B)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

Α

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Natural numbers

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

Conclusion

Appendix

ldea

- Natural numbers such as 3 and 0 must be defined so as to identify themselves
- Their identity is determined by how many times they perform an action
- The only action we have available is applying a function to a term

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

Defining ter with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Idea

- We will use unary numbers
- A number is defined by how many times it applies a function to a given term
- Zero applications are also possible, in this case we default to the given term

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

Defining term with special meaning

Booleans

Natural numbers

Conclusion

Appendix

0, 1, etc.

A number is defined as an applicator of a term identifying as successor to another term identifying as $zero^a$

^afirst and second arguments by arbitrary convention

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

0 will thus look like

 $(\lambda s \ z \rightarrow z)$

1 will look like

 $(\lambda s z \rightarrow (s z))$

7 will look like

 $(\lambda s z \rightarrow (s (s (s (s (s z))))))))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Addition

- Adding numbers is a function that takes as input two numbers (say m and n), and returns a number
- The first number applies its first parameter m times to its second parameter
- The second number applies its first parameter n times to its second parameter
- We can use the second number as the second parameter to the first, therefore obtaining something that applies m+n times

```
(\lambda m \ n \rightarrow (\lambda s \ z \rightarrow ((m \ s) \ ((n \ s) \ z))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

Addition

Let us try it out to 2 + 1 \rightarrow_{eta} 3

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

$$(2 + 1)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

$$(2 + 1)$$

$$((+2)1)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

((+2)1)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) 2) 1)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural

numbers Conclusion

(((
$$\lambda$$
m n $ightarrow$ (λ s z $ightarrow$ ((m s) ((n s) z)))) 2) 1)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural

numbers Conclusion

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) 2) 1)$$

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) 2) 1)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) 2) 1)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) 2) 1)$$

```
(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))))
(\lambda s z \rightarrow (s (s z))))
1)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

1)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

```
(s z))) 1)
((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) (\lambda s z \rightarrow (s (s z))))
```

 $(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m s) ((n s) z)))) (\lambda s z \rightarrow (s))))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow \ (\lambda s \ z \rightarrow ((m \ s) \ ((n \ s) \ z)))) \ (\lambda s \ z \rightarrow (s \ (s \ z))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ s) \ ((n \ s) \ z))) \ 1)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ s) \ ((n \ s) \ z))) \ 1)$$

Delta rules

The INFDEV@HR —— Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ s) \ ((n \ s) \ z))) \ 1)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \texttt{n} \texttt{s} \texttt{z} \rightarrow (((\lambda \texttt{s} \texttt{z} \rightarrow (\texttt{s} \texttt{(s} \texttt{z}))) \texttt{s}) ((\texttt{n} \texttt{s}) \texttt{z})))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \texttt{n s z} \rightarrow (((\lambda \texttt{s z} \rightarrow (\texttt{s (s z)})) \texttt{ s}) ((\texttt{n s}) \texttt{ z}))) (\lambda \texttt{s z} \rightarrow (\texttt{s z}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda n s z \rightarrow (((\lambda s z \rightarrow (s (s z))) s) ((n s) z))) (\lambda s z \rightarrow (s z))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ s) \ ((n \ s) \ z))) \ (\lambda s \ z \rightarrow (s \ z)))$$

$$(\lambda s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ s) \ (((\lambda s \ z \rightarrow (s \ z))) \ s)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) s) (((\lambda s z \rightarrow (s z)) s z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) s) (((\lambda s z \rightarrow (s z)) s) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) s) (((\lambda s z \rightarrow (s z)) s) z)))
```

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s z))) (((\lambda s z \rightarrow (s z)) s) z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (((\lambda s z \rightarrow (s z)) s) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (((\lambda s z \rightarrow (s z)) s) z)))$$

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ (((\lambda s \ z \rightarrow (s \ z)) \ s) \ z)))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms
with special

meaning Booleans

500.00...

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (((\lambda s z \rightarrow (s z)) s) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (((\lambda s z \rightarrow (s z)) s) z)))$$

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ ((\lambda z \rightarrow (s \ z)) \ z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ ((\lambda z \rightarrow (s \ z)) \ z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ ((\lambda z \rightarrow (s \ z)) \ z)))$$

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z)))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z)))) ((\lambda z \rightarrow (s z)) z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z)))) ((\lambda z \rightarrow (s z)) z)))$$

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s z)))$$

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$|(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s z))|$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s z)))$$

$$(\lambda s z \rightarrow (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s \ z \rightarrow (s \ (s \ (s \ z))))$$

$$(\lambda s z \rightarrow (s (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (s (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special meaning

Booleans

Natural

numbers
Conclusion

Appendix

$$(\lambda s z \rightarrow (s (s (s z))))$$

3

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

Booleans

Natural numbers

Conclusion

Appendix

Multiplication

- Multiplying numbers is a function that takes as input two numbers (say m and n), and returns a number
- The first number applies its first parameter m times to its second parameter
- The second number applies its first parameter n times to its second parameter
- We can use the second number as the first parameter to the first, therefore obtaining something that applies n+ m times, starting from z

```
(\lambda m \ n \rightarrow (\lambda s \ z \rightarrow ((m \ (n \ s)) \ z)))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining term

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Multiplication

Let us try it out to 2 imes 2 o_eta 4

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 (2×2)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$(2 \times 2)$$

$$((\times 2) 2)$$

Delta rules

The INFDEV@HR Team

Introduction

meroduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) 2) 2)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda \mathtt{m} \ \mathtt{n} \rightarrow \ (\lambda \mathtt{s} \ \mathtt{z} \rightarrow ((\mathtt{m} \ (\mathtt{n} \ \mathtt{s})) \ \mathtt{z}))) \ 2) \ 2)
```


Delta rules

The INFDEV@HR — Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) 2) 2)$$

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) 2) 2)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) 2) 2)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) 2) 2)$$

```
(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))))
       (\lambda s z \rightarrow (s (s z))) 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambdam n\rightarrow (\lambdas z\rightarrow((m (n s)) z))) (\lambdas z\rightarrow(s (s z )))) 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((((\lambda \mathtt{m} \ \mathtt{n} \rightarrow \ (\lambda \mathtt{s} \ \mathtt{z} \rightarrow ((\mathtt{m} \ (\mathtt{n} \ \mathtt{s})) \ \mathtt{z}))) \ (\lambda \mathtt{s} \ \mathtt{z} \rightarrow (\mathtt{s} \ (\mathtt{s} \ \mathtt{z} ))))) \ 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda m n \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) (\lambda s z \rightarrow (s (s z))))
2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning **Booleans**

Natural numbers

Conclusion

```
(((\lambda m \rightarrow (\lambda s z \rightarrow ((m (n s)) z))) (\lambda s z \rightarrow (s (s z)))))
      2)
```

```
((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (n \ s)) \ z)) \ 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (n \ s)) \ z)) \ 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \texttt{n} \texttt{s} \texttt{z} \rightarrow (((\lambda \texttt{s} \texttt{z} \rightarrow (\texttt{s} \texttt{(s} \texttt{z}))) \texttt{(n} \texttt{s})) \texttt{z})) \texttt{2})$$

$$((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (n \ s)) \ z)) \ 2)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (n \ s)) \ z)) \ 2)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (n \ s)) \ z)) \ 2)
```

```
((\lambda n s z \rightarrow (((\lambda s z \rightarrow (s (s z))) (n s)) z))
(\lambda s z \rightarrow (s (s z)))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \texttt{n s z} \rightarrow (((\lambda \texttt{s z} \rightarrow (\texttt{s (s z)})) \ (\texttt{n s})) \ \texttt{z})) \ (\lambda \texttt{s z} \rightarrow (\texttt{s (s z)}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda \texttt{n s z} \rightarrow (((\lambda \texttt{s z} \rightarrow (\texttt{s (s z)})) \ (\texttt{n s})) \ \texttt{z})) \ (\lambda \texttt{s z} \rightarrow (\texttt{s (s z)}))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((\lambda n \ s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (n \ s)) \ z)) \ (\lambda s \ z \rightarrow (s \ (s \ z))))
```

```
(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) ((\lambda s z \rightarrow (s (s z))) s))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ ((\lambda s \ z \rightarrow (s \ (s \ z))) \ s))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z)))) \ ((\lambda s \ z \rightarrow (s \ (s \ z))) \ s))
```

$$(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda z \rightarrow (s (s z)))) z)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
 | (\lambda s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (\lambda z \rightarrow (s \ (s \ z)))) \ z)) |
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda z \rightarrow (s (s z)))) z))$$

$$(\lambda s \ z \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (\lambda z \rightarrow (s \ (s \ z)))) \ z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda z \rightarrow (s (s z)))) z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda z \rightarrow (s (s z)))) z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda \mathtt{s} \ \mathtt{z} 	o ((\lambda \mathtt{z} 	o ((\lambda \mathtt{z} 	o (\mathtt{s} \ (\mathtt{s} \ \mathtt{z}))) \ ((\lambda \mathtt{z} 	o (\mathtt{s} \ (\mathtt{s} \ \mathtt{z}))) \ \mathtt{z})) \ \mathtt{z}))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow ((\lambda z \rightarrow (s (s z))) ((\lambda z \rightarrow (s (s z))) z))) z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(\lambda s z \rightarrow ((\lambda z \rightarrow ((\lambda z \rightarrow (s (s z))) ((\lambda z \rightarrow (s (s z))) z))) z))
```

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ ((\lambda z \rightarrow (s \ (s \ z))) \ z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) ((\lambda z \rightarrow (s (s z))) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ ((\lambda z \rightarrow (s \ (s \ z))) \ z)))$$

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z)))) \ ((\lambda z \rightarrow (s \ (s \ z))) \ z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$| (\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z)))) | ((\lambda z \rightarrow (s (s z))) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z)))) ((\lambda z \rightarrow (s (s z))) z)))$$

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ (s \ (s \ z))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s \ z \rightarrow ((\lambda z \rightarrow (s \ (s \ z))) \ (s \ (s \ z))))$$

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(\lambda s z \rightarrow ((\lambda z \rightarrow (s (s z))) (s (s z))))
```

$$(\lambda s z \rightarrow (s (s (s z))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (s (s (s z)))))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (s (s (s z)))))$$

$$(\lambda s z \rightarrow (s (s (s z)))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda s z \rightarrow (s (s (s z)))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

$$(\lambda s z \rightarrow (s (s (s z)))))$$

4

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

Zero checking

- We might wish to verify whether or not a number is zero
- We can simply pass the number parameters that fail the check (s) and pass it (z)

```
(\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining term

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

Zero checking

Let us try it out to 0 = 2 \rightarrow_{β} FALSE

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

$$(2 = 0)$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(2 = 0)$$

Delta rules

The INFDEV@HR Team

Introduction

meroduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

200.00...

Natural numbers

Conclusion

Appendix

(0? 2)

 $(\lambda m n \rightarrow ((m (\lambda x \rightarrow FALSE)) TRUE))$ 2)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambda m n \rightarrow((m (\lambda x \rightarrow FALSE)) TRUE)) 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ 2)
```

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ 2)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda m n \rightarrow ((m (\lambda x \rightarrow FALSE)) TRUE)))$$
 2

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda$$
m n \rightarrow ((m (λ x \rightarrow FALSE)) TRUE)) 2)

```
((\lambda m n \rightarrow ((m (\lambda x \rightarrow FALSE)) TRUE)) 
(\lambda s z \rightarrow (s (s z)))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambdam n\rightarrow((m (\lambdax\rightarrowFALSE)) TRUE)) (\lambdas z\rightarrow(s (s z))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambdam n\rightarrow((m (\lambdax\rightarrowFALSE)) TRUE)) (\lambdas z\rightarrow(s (s z)
```

```
((\lambda \texttt{m} \ \texttt{n} {\rightarrow} ((\texttt{m} \ (\lambda \texttt{x} {\rightarrow} \texttt{FALSE})) \ \texttt{TRUE})) \ (\lambda \texttt{s} \ \texttt{z} {\rightarrow} (\texttt{s} \ (\texttt{s} \ \texttt{z}))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \texttt{m} \ \texttt{n} \rightarrow ((\texttt{m} \ (\lambda \texttt{x} \rightarrow \texttt{FALSE})) \ \texttt{TRUE})) \ (\lambda \texttt{s} \ \texttt{z} \rightarrow (\texttt{s} \ (\texttt{s} \ \texttt{z}))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ (\lambda s \ z \rightarrow (s \ (s \ z))))
```

```
(\lambda n \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow FALSE)) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special

meaning Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow FALSE)) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda \mathtt{n} {
ightarrow} (((\lambda \mathtt{s} \ \mathtt{z} {
ightarrow} (\mathtt{s} \ \mathtt{z}))) \ (\lambda \mathtt{x} {
ightarrow} \mathtt{FALSE})) \ \mathtt{TRUE}))$$

$$(\lambda n \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow FALSE))) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow FALSE))) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow FALSE))) TRUE))
```

```
(\lambda n \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (\lambda x \rightarrow (\lambda t \ f \rightarrow f)))) \ TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s \ z \rightarrow (s \ (s \ z))) \ (\lambda x \rightarrow (\lambda t \ f \rightarrow f)))) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

meroduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow (\lambda t f \rightarrow f))) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s z \rightarrow (s (s z))) (\lambda x \rightarrow (\lambda t f \rightarrow f)))) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow ((\lambda x \rightarrow (\lambda t f \rightarrow f)) ((\lambda x \rightarrow (\lambda t f \rightarrow f)) z)))$$
 TRUE))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow ((\lambda x \rightarrow (\lambda t f \rightarrow f)) ((\lambda x \rightarrow (\lambda t f \rightarrow f)) z))) TRUE))$$

$$(\lambda n \rightarrow ((\lambda z \rightarrow ((\lambda x \rightarrow (\lambda t f \rightarrow f)) ((\lambda x \rightarrow (\lambda t f \rightarrow f)) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow ((\lambda x \rightarrow (\lambda t f \rightarrow f)) ((\lambda x \rightarrow (\lambda t f \rightarrow f)) z))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow ((\lambda x \rightarrow (\lambda t f \rightarrow f)) ((\lambda x \rightarrow (\lambda t f \rightarrow f)) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural

numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow ((\lambda x \rightarrow (\lambda t f \rightarrow f)) ((\lambda x \rightarrow (\lambda t f \rightarrow f)) z)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms
with special

meaning Booleans

Natural numbers

Conclusion

```
(\lambda \text{n} \rightarrow \\ ((\lambda \text{z} \rightarrow ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ \text{z}))) \ (\lambda \text{t f} \rightarrow \\ ((\lambda \text{z} \rightarrow ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ \text{z}))) \ (\lambda \text{t f} \rightarrow \\ ((\lambda \text{z} \rightarrow ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ \text{z})))) \ (\lambda \text{t f} \rightarrow \\ ((\lambda \text{z} \rightarrow ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ ((\lambda \text{x} \rightarrow \ (\lambda \text{t f} \rightarrow \text{f})) \ \text{z})))))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))))$$

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))))
```

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow f)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow f)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow f)))$$

$$(\lambda n \rightarrow ((\lambda x t f \rightarrow f) (\lambda t f \rightarrow f)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x t f \rightarrow f) (\lambda t f \rightarrow f)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda x t f \rightarrow f) (\lambda t f \rightarrow f)))$$

(
$$\lambda$$
n t f \rightarrow f)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Other arithmetic operators

- Division, subtraction, and all manners of comparison operators can be defined similarly
- The level of detail of the specification can be compared to that of a very high level CPU
- This means that we are, to an extent, programming in a sort of assembly
- This is the reason why the traces have been so verbose so far

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

Other arithmetic operators

- We could also define numbers in base two instead of base one
- This would save processing time, but would result in a slighter more complex specification
- We will just ignore these engineering details: we only focus on what can be done, not the best way to do it

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Conclusion

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

Conclusion

Appendix

Recap

- Lambda terms can be used to encode arbitrary basic data types
- The terms are always lambda expression which, when they get parameters passed in, identify themselves somehow
- Identification can be done by applying something (possibly even a given number of times), or returning one of the parameters

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms
with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

Recap

- There are many encodings of data types, but they all behave in the same way by producing the same outputs for the same inputs
- From now on we will start ignoring the reduction steps for simple terms such as 3+3
- We will instead focus on more complex data structures, such as tuples, discriminated unions, and even lists

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((FALSE bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((FALSE bit1) bit0)
```

```
((FALSE bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((FALSE bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((FALSE bit1) bit0)
```

```
(((\lambda t f \rightarrow f) bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(((λ t f \rightarrow f) bit1) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambdat f\rightarrowf) bit1) bit0)
```

```
(((\lambda t f \rightarrow f) bit1) bit0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

((($\lambda t f \rightarrow f$) bit1) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow f$$
) bit1) bit0)

((
$$\lambda f{
ightarrow} f)$$
 bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(($\lambda f \rightarrow f$) bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda f{
ightarrow} f$$
) bit0)

((
$$\lambda f{
ightarrow} f)$$
 bit0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda f \rightarrow f) \text{ bit0})$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

Appendix

 $((\lambda f \rightarrow f) \text{ bit0})$

bit0

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining and derivations

Let us move to TRUE \wedge FALSE \rightarrow_{β} FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(TRUE \wedge FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

(TRUE ∧ FALSE)

((TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(( TRUE) FALSE)
```

```
(((\lambda p q \rightarrow ((p q) p))) TRUE) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p \ q \rightarrow$$
(($p \ q$) p)) TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE) FALSE)

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
p q \rightarrow ((p q) p)) TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 TRUE) FALSE)

$$(((\lambda p \ q \rightarrow ((p \ q) \ p)) \ (\lambda t \ f \rightarrow t)) \ FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p)$$
) ($\lambda t f \rightarrow t$)) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow t)) FALSE)$$

(((
$$\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow t)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
( ((\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow t)) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda p \ q \rightarrow ((p \ q) \ p)) \ (\lambda t \ f \rightarrow t)) \ FALSE)
```

```
((\lambda q \rightarrow ((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

$$((\lambda \mathtt{q} {\rightarrow} (((\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}) \ \mathtt{q}) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}))) \ \mathtt{FALSE})$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) FALSE)$$

$$((\lambda q \rightarrow (((\lambda t \ f \rightarrow t) \ q) \ (\lambda t \ f \rightarrow t))))$$
 FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathtt{q} {\rightarrow} (((\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}) \ \mathtt{q}) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}))) \ \ \overline{\mathtt{FALSE}})$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) FALSE)$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathtt{q} {\rightarrow} (((\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}) \ \mathtt{q}) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}))) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{f}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural

numbers

Conclusion

$$((\lambda \mathtt{q} {\rightarrow} (((\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}) \ \mathtt{q}) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{t}))) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{f}))$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) q) (\lambda t f \rightarrow t))) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathbf{q} {\rightarrow} (((\lambda \mathbf{t} \ \mathbf{f} {\rightarrow} \mathbf{t}) \ \mathbf{q}) \ (\lambda \mathbf{t} \ \mathbf{f} {\rightarrow} \mathbf{t}))) \ (\lambda \mathbf{t} \ \mathbf{f} {\rightarrow} \mathbf{f}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))
```

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow t) (λ t f \rightarrow f)) (λ t f \rightarrow t))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda t f \rightarrow t) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))$$

$$((\lambda t f \rightarrow t) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda t f \rightarrow t) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))
```

$$((\lambda f t f \rightarrow f) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f $ightarrow$ f) (λ t f $ightarrow$ t))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f \rightarrow f) (λ t f \rightarrow t))

$$((\lambda f \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda f \ t \ f \rightarrow f) \ (\lambda t \ f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f \rightarrow f) (λ t f \rightarrow t))

$$(\lambda t f \rightarrow f)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowf)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowf)

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining and derivations

Let us move to FALSE \wedge TRUE \rightarrow_{β} FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(FALSE \wedge TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

(FALSE ∧ TRUE)

((FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(( FALSE) TRUE)
```

```
(((\lambda p q \rightarrow ((p q) p))) FALSE) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 FALSE) TRUE)

(((
$$\lambda p q \rightarrow ((p q) p))$$
 FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(((\lambda p q \rightarrow ((p q) p)) FALSE) TRUE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda p q \rightarrow ((p q) p)) FALSE) TRUE)$$

(((
$$\lambda p q \rightarrow ((p q) p))$$
 ($\lambda t f \rightarrow f$) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p q) p$)) ($\lambda t f \rightarrow f$)) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(((
$$\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow f)$$
) TRUE)

$$(((\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow f))$$
 TRUE)

◆ロト 4個ト 4 種 ト 4 種 ト 種 り 9 ○ ○

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda p \ q \rightarrow ((p \ q) \ p)) \ (\lambda t \ f \rightarrow f)) \ TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda p \ q \rightarrow ((p \ q) \ p)) \ (\lambda t \ f \rightarrow f)) TRUE)
```

```
((\lambda q \rightarrow ((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f))) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda q \rightarrow$$
((($\lambda t f \rightarrow f$) q) ($\lambda t f \rightarrow f$))) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda q \rightarrow$$
((($\lambda t f \rightarrow f$) q) ($\lambda t f \rightarrow f$))) TRUE)

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f)))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

.

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f))) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f))) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

 $((\lambda \mathbf{q} \rightarrow (((\lambda \mathbf{t} \ \mathbf{f} \rightarrow \mathbf{f}) \ \mathbf{q}) \ (\lambda \mathbf{t} \ \mathbf{f} \rightarrow \mathbf{f}))) \ (\lambda \mathbf{t} \ \mathbf{f} \rightarrow \mathbf{t}))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f))) (\lambda t f \rightarrow t))
```

```
(((\lambda t f \rightarrow f) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow f) (λ t f \rightarrow t)) (λ t f \rightarrow f))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow f) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))
```

$$((\lambda t f \rightarrow f) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda t f \rightarrow f) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))$$

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

$$(\lambda t f \rightarrow f)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowf)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(
$$\lambda$$
t f $ightarrow$ f)

$$(\lambda t \ f \rightarrow f)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining and derivations

Let us move to FALSE \wedge FALSE \rightarrow_{β} FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(FALSE \wedge FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining tern

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

(FALSE ∧ FALSE)

((FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(( FALSE) FALSE)
```

```
(((\lambda p q \rightarrow ((p q) p))) FALSE) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p q) p$)) FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p)$$
) FALSE) FALSE)

(((
$$\lambda p q \rightarrow ((p q) p))$$
 FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p))$$
 FALSE)

$$(((\lambda p \ q \rightarrow ((p \ q) \ p)) \ (\lambda t \ f \rightarrow f)) \ FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p)$$
) ($\lambda t f \rightarrow f$)) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow f)) FALSE)$$

(((
$$\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow f)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow f)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda p q \rightarrow ((p q) p)) (\lambda t f \rightarrow f)) FALSE)
```

```
((\lambda q \rightarrow (((\lambda f \rightarrow f) q) (\lambda f \rightarrow f)))) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

((
$$\lambda q \rightarrow$$
((($\lambda t f \rightarrow f$) q) ($\lambda t f \rightarrow f$))) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f))) FALSE)$$

$$((\lambda q \rightarrow (((\lambda t \ f \rightarrow f) \ q) \ (\lambda t \ f \rightarrow f))))$$
 FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f)))$$
 FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ \ \mathsf{FALSE})$$

$$((\lambda q \rightarrow (((\lambda t \ f \rightarrow f) \ q) \ (\lambda t \ f \rightarrow f))) \ (\lambda t \ f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \ \mathsf{q}) \ \ (\lambda \mathsf{t} \ \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ \ (\lambda \mathsf{t} \ \ \mathsf{f} {\rightarrow} \mathsf{f}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))
```

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \mathsf{q}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) q) (\lambda t f \rightarrow f))) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathbf{q} {\rightarrow} (((\lambda \mathbf{t} \ \mathbf{f} {\rightarrow} \mathbf{f}) \ \mathbf{q}) \ (\lambda \mathbf{t} \ \mathbf{f} {\rightarrow} \mathbf{f}))) \ (\lambda \mathbf{t} \ \mathbf{f} {\rightarrow} \mathbf{f}))
```

$$(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow f) (λ t f \rightarrow f)) (λ t f \rightarrow f))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow f) (λ t f \rightarrow f)) (λ t f \rightarrow f))

$$((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
( ((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))$$

((
$$\lambda f{ o}f$$
) (λt $f{ o}f$))

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

Delta rules

The INFDEV@HR Team

Introduction

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

$$(\lambda t f \rightarrow f)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowf)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowf)

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

<u>Defining terms</u>

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining or derivations

Let us begin to with TRUE \lor FALSE \rightarrow_{β} TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(TRUE V FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

(TRUE V FALSE)

((V TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((V TRUE) FALSE)
```

```
(((\lambda p q \rightarrow ((p p) q)) TRUE) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p \ q \rightarrow$$
(($p \ p$) q)) TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

.....

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 TRUE) FALSE)

(((
$$\lambda p \ q \rightarrow$$
(($p \ p$) q)) TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 TRUE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda p q \rightarrow ((p p) q)) TRUE) FALSE)$$

$$(((\lambda p \ q \rightarrow ((p \ p) \ q)) \ (\lambda t \ f \rightarrow t)) \ FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow t)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow t)) FALSE)$$

(((
$$\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow t)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
( ((\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow t)) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
( ((\lambda p \ q \rightarrow ((p \ p) \ q)) \ (\lambda t \ f \rightarrow t)) FALSE)
```

```
((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t))) q)) \text{ FALSE})
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t})) \ \mathsf{q})) \ \mathsf{FALSE})
```

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t})) \ \mathsf{q})) \ \ \mathsf{FALSE})
```

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))
```

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) q)) (\lambda t f \rightarrow f))
```

$$(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

200.00...

Natural numbers

Conclusion

```
(((\lambdat f\rightarrowt) (\lambdat f\rightarrowt)) (\lambdat f\rightarrowf))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))
```

$$((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow t) (\lambda t f \rightarrow t)) (\lambda t f \rightarrow f))
```

$$((\lambda f t f \rightarrow t) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambdaf t f\rightarrowt) (\lambdat f\rightarrowf))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda f$$
 t f \rightarrow t) (λt f \rightarrow f))

$$((\lambda f \ t \ f \rightarrow t) \ (\lambda t \ f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda f \ t \ f \rightarrow t) \ (\lambda t \ f \rightarrow f))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

((
$$\lambda$$
f t f $ightarrow$ t) (λ t f $ightarrow$ f))

(
$$\lambda$$
t f $ightarrow$ t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowt)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

(
$$\lambda$$
t f $ightarrow$ t)

(
$$\lambda$$
t f $ightarrow$ t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow t)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t \ f \rightarrow t)$

TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

<u>Defining terms</u>

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining or derivations

Let us begin to with False \vee TRUE \rightarrow_{β} TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(FALSE \vee TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(FALSE V TRUE)

((V FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((V FALSE) TRUE)
```

```
(((\lambda p q \rightarrow ((p p) q)) FALSE) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p p) q$)) FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE) TRUE)

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE) TRUE)

(((
$$\lambda p q \rightarrow ((p p) q))$$
 ($\lambda t f \rightarrow f$) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p p) q$)) ($\lambda t f \rightarrow f$)) TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f)$$
) TRUE)

$$(((\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
( ((\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f)) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
( ((\lambda p \ q \rightarrow ((p \ p) \ q)) (\lambda t \ f \rightarrow f)) TRUE)
```

```
((\lambda q \rightarrow (((\lambda f \rightarrow f) (\lambda f \rightarrow f)) q)) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t \ f \rightarrow f) \ (\lambda t \ f \rightarrow f)) \ q)) \ TRUE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) TRUE)$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q))$$
 TRUE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) TRUE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \mathsf{q})) \ \ \overline{\mathsf{TRUE}})
```

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \ \mathsf{f} {\rightarrow} \mathsf{f}) \ \ (\lambda \mathsf{t} \ \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \ \mathsf{q})) \ \ (\lambda \mathsf{t} \ \ \mathsf{f} {\rightarrow} \mathsf{t}))$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow t))
```

```
(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow f$$
) ($\lambda t f \rightarrow f$)) ($\lambda t f \rightarrow t$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural

numbers

Conclusion

```
(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))
```

$$((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow t))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda t f \rightarrow f$$
) ($\lambda t f \rightarrow f$)) ($\lambda t f \rightarrow t$))

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow t$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f{ o}f$$
) (λt f ${ o}t$))

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Doorcans

Natural numbers

Conclusion

((
$$\lambda f{ o}f$$
) (λt $f{ o}t$))

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Doolcan

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow t))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow t))$$

$$(\lambda t f \rightarrow t)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowt)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

(
$$\lambda$$
t f $ightarrow$ t)

(
$$\lambda$$
t f $ightarrow$ t)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow t)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t \ f \rightarrow t)$

TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

<u>Defining terms</u>

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining or derivations

Let us begin to with FALSE \vee FALSE \rightarrow_{β} FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(FALSE \vee FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

Appendix

(FALSE V FALSE)

((V FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

((∨ FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((V FALSE) FALSE)
```

```
(((\lambda p q \rightarrow ((p p) q)) FALSE) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow$$
(($p p) q$)) FALSE) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
p q \rightarrow ((p p) q)) FALSE) FALSE)

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q))$$
 FALSE) FALSE)

$$(((\lambda p \ q \rightarrow ((p \ p) \ q)) \ (\lambda t \ f \rightarrow f)) \ FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f)) FALSE)
```

(((
$$\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f)$$
) FALSE)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
( ((\lambda p q \rightarrow ((p p) q)) (\lambda t f \rightarrow f)) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
( ((\lambda p \ q \rightarrow ((p \ p) \ q)) \ (\lambda t \ f \rightarrow f)) FALSE)
```

```
((\lambda q \rightarrow (((\lambda f \rightarrow f) (\lambda f \rightarrow f))) q)) FALSE)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathtt{q} {\rightarrow} (((\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{f}) \ (\lambda \mathtt{t} \ \mathtt{f} {\rightarrow} \mathtt{f})) \ \mathtt{q})) \ \mathsf{FALSE})$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \mathsf{q})) \ \mathsf{FALSE})$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) FALSE)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \mathsf{q})) \ \mathsf{FALSE})$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) FALSE)
```

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow f))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$((\lambda \mathsf{q} {\rightarrow} (((\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f})) \ \mathsf{q})) \ (\lambda \mathsf{t} \ \mathsf{f} {\rightarrow} \mathsf{f}))$$

$$((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

 $((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow f))$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((\lambda q \rightarrow (((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) q)) (\lambda t f \rightarrow f))
```

$$(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow f) (λ t f \rightarrow f)) (λ t f \rightarrow f))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

(((
$$\lambda$$
t f \rightarrow f) (λ t f \rightarrow f)) (λ t f \rightarrow f))

$$((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

```
(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

$$(((\lambda t f \rightarrow f) (\lambda t f \rightarrow f)) (\lambda t f \rightarrow f))$$

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda f \rightarrow f$$
) ($\lambda t f \rightarrow f$))

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

500,000,0

Natural numbers

Conclusion

((
$$\lambda f{ o}f$$
) (λt $f{ o}f$))

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

500.00...5

Natural numbers

Conclusion

$$((\lambda f \rightarrow f) (\lambda t f \rightarrow f))$$

$$(\lambda t f \rightarrow f)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(λ t fightarrowf)

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

(
$$\lambda$$
t f $ightarrow$ f)

$$(\lambda t f \rightarrow f)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

 $(\lambda t f \rightarrow f)$

FALSE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

Remaining numeral derivations

Let us try out 0 = 0 \rightarrow_{β} TRUE

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(0 = 0)$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(0 = 0)$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

Appendix

(0? 0)

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

Appendix

(0? 0)

 $(\lambda m n \rightarrow ((m (\lambda x \rightarrow FALSE)) TRUE)) 0)$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambdam n\rightarrow((m (\lambdax\rightarrowFALSE)) TRUE)) 0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Doorcans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ 0)
```

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ 0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambda m n \rightarrow ((m (\lambda x \rightarrow FALSE)) TRUE)) 0)
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ 0)
```

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ (\lambda s \ z \rightarrow z))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ (\lambda s \ z \rightarrow z))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ (\lambda s \ z \rightarrow z))
```

```
((\lambda m \ n \rightarrow ((m \ (\lambda x \rightarrow FALSE)) \ TRUE)) \ (\lambda s \ z \rightarrow z))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

((
$$\lambda$$
m n \rightarrow ((m (λ x \rightarrow FALSE)) TRUE)) (λ s z \rightarrow z))

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
((\lambda \texttt{m} \ \texttt{n} \rightarrow ((\texttt{m} \ (\lambda \texttt{x} \rightarrow \texttt{FALSE})) \ \texttt{TRUE})) \ (\lambda \texttt{s} \ \texttt{z} \rightarrow \texttt{z}))
```

$$(\lambda n \rightarrow ((\lambda s z \rightarrow z) (\lambda x \rightarrow FALSE)) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda \mathtt{n} {\rightarrow} (((\lambda \mathtt{s} \ \mathtt{z} {\rightarrow} \mathtt{z}) \ (\lambda \mathtt{x} {\rightarrow} \mathtt{FALSE})) \ \mathtt{TRUE}))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Doolcans

Natural numbers

Conclusion

```
(\lambda \mathtt{n} {
ightarrow} (((\lambda \mathtt{s} \ \mathtt{z} {
ightarrow} \mathtt{z}) \ (\lambda \mathtt{x} {
ightarrow} \mathtt{FALSE})) TRUE))
```

$$(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow FALSE))) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow (((\lambda s \ z \rightarrow z) \ (\lambda x \rightarrow FALSE))) \ TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning

Booleans

Natural numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow FALSE))) TRUE))
```

```
(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow (\lambda t f \rightarrow f))) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow (((\lambda s \ z \rightarrow z) \ (\lambda x \rightarrow (\lambda t \ f \rightarrow f))) \ TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow (\lambda t f \rightarrow f))) TRUE))$$

$$(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow (\lambda t f \rightarrow f))) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural

numbers

Conclusion

```
(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow (\lambda t f \rightarrow f)))) TRUE))
```


Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining term

Defining terms with special

meaning Booleans

Dooleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow (((\lambda s z \rightarrow z) (\lambda x \rightarrow (\lambda t f \rightarrow f)))))$$
 TRUE))

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

.

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) TRUE))$$

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) \mid TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) \mid TRUE))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) \mid TRUE))$$

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) \quad (\lambda t \quad f \rightarrow t)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) (\lambda t f \rightarrow t)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms

with special meaning

Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) (\lambda t f \rightarrow t)))$$

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) (\lambda t f \rightarrow t)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding

boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) (\lambda t f \rightarrow t)))$$

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special

meaning Booleans

Natural numbers

Conclusion

$$(\lambda n \rightarrow ((\lambda z \rightarrow z) (\lambda t f \rightarrow t)))$$

$$(\lambda n t f \rightarrow t)$$

This is it!

Delta rules

The INFDEV@HR Team

Introduction

Encoding boolean logic

Defining terms with special meaning

Booleans

Natural numbers

Conclusion

Appendix

The best of luck, and thanks for the attention!