Complejidad computacional I

Clase 20

IIC 1253

Pedro Bahamondes

Outline

Introducción

Complejidad de algoritmos iterativos

Ecuaciones de recurrencia

Epílogo

Algoritmos

El análisis de algoritmos consta de dos partes

- Estudiar cuándo y por qué los algoritmos son correctos (es decir, hacen lo que dicen que hacen).
- Estimar la cantidad de recursos computacionales que un algoritmo necesita para su ejecución.

Hoy estudiaremos cómo medir el segundo punto, y lo aplicaremos a algoritmos iterativos y recursivos

Objetivos de la clase

- ☐ Estudiar la complejidad de algoritmos iterativos
- □ Aplicar notación asintótica a algoritmos iterativos
- □ Definir ecuaciones de recurrencia en algoritmos recursivos
- □ Estudiar la complejidad de algoritmos recursivos

Outline

Introducción

Complejidad de algoritmos iterativos

Ecuaciones de recurrencia

Epílogo

Queremos encontrar una función $\mathcal{T}(n)$ que modele el tiempo de ejecución de un algoritmo.

■ Donde *n* es el tamaño del input.

Queremos encontrar una función T(n) que modele el tiempo de ejecución de un algoritmo.

- Donde *n* es el tamaño del input.
- No queremos valores exactos de *T* para cada *n*, sino que una notación asintótica para ella.

Queremos encontrar una función T(n) que modele el tiempo de ejecución de un algoritmo.

- Donde *n* es el tamaño del input.
- No queremos valores exactos de T para cada n, sino que una notación asintótica para ella.
- Para encontrar T, contamos las instrucciones ejecutadas por el algoritmo.

Queremos encontrar una función T(n) que modele el tiempo de ejecución de un algoritmo.

- Donde *n* es el tamaño del input.
- No queremos valores exactos de T para cada n, sino que una notación asintótica para ella.
- Para encontrar T, contamos las instrucciones ejecutadas por el algoritmo.
- A veces contaremos cierto tipo de instrucciones que son relevantes para un algoritmo particular.

Contando instrucciones

Ejercicio

Considere el siguiente trozo de código:

```
1 x \leftarrow 0

2 for i = 1 to n do

3 for j = 1 to i do

4 x \leftarrow x + 1
```

Encuentre una notación asintótica para la cantidad de veces que se ejecuta la instrucción 4 en función de n.

Solución: Apuntes Jorge Pérez, Sección 3.1.3, páginas 104 y 105.

Contando instrucciones

Ejercicio

Considere el siguiente trozo de código:

```
\begin{array}{lll} 1 & x \leftarrow 0 \\ 2 & j \leftarrow n \\ 3 & \text{while } j \geq 1 \text{ do} \\ 4 & \text{for } i = 1 \text{ to } j \text{ do} \\ 5 & x \leftarrow x + 1 \\ 6 & j \leftarrow \left\lfloor \frac{j}{2} \right\rfloor \end{array}
```

Encuentre una notación asintótica para la cantidad de veces que se ejecuta la instrucción 5 en función de n.

Solución: Apuntes Jorge Pérez, Sección 3.1.3, página 105.

1

```
Consideremos el siguiente algoritmo de búsqueda en arreglos:
  input: arreglo de enteros A = [a_0, \dots, a_{n-1}], un natural n > 0
          correspondiente al largo del arreglo y un entero k
  output: índice de k en A, -1 si no está.
  Búsqueda(A, n, k):
     for i = 0 to n - 1 do
         if a_i = k then
2
             return i
3
     return -1
4
```

¿Qué instrucción(es) contamos?

- Deben ser representativas de lo que hace el problema.
- En este caso, por ejemplo 3 y 4 no lo son (¿por qué?).

¿Qué instrucción(es) contamos?

- Deben ser representativas de lo que hace el problema.
- En este caso, por ejemplo 3 y 4 no lo son (¿por qué?).
- La instrucción 2 sí lo sería, y más específicamente la comparación.

¿Qué instrucción(es) contamos?

- Deben ser representativas de lo que hace el problema.
- En este caso, por ejemplo 3 y 4 no lo son (¿por qué?).
- La instrucción 2 sí lo sería, y más específicamente la comparación.
 - Las comparaciones están entre las instrucciones que se cuentan típicamente, sobre todo en búsqueda y ordenación.

¿Respecto a qué parámetro buscamos la notación asintótica?

 \blacksquare En el ejemplo, es natural pensar en el tamaño del arreglo n.

En conclusión: queremos encontrar una notación asintótica (ojalá Θ) para la cantidad de veces que se ejecuta la comparación de la línea 2 en función de n. Llamaremos a esta cantidad $\mathcal{T}(n)$.

Ahora, $\downarrow T(n)$ depende sólo de n?

- El contenido del arreglo influye en la ejecución del algoritmo.
- Estimaremos entonces el tiempo para el peor caso (cuando el input hace que el algoritmo se demore la mayor cantidad de tiempo posible) y el mejor caso (lo contrario) para un tamaño de input n.

En nuestro ejemplo:

- **Mejor caso:** $a_0 = k$. Aquí la línea 2 se ejecuta una vez, y luego T(n) es $\Theta(1)$.
- **Peor caso:** k no está en A. La línea 2 se ejecutará tantas veces como elementos en A, y entonces T(n) es $\Theta(n)$.
- Diremos entonces que el algoritmo $B\acute{\mathrm{U}}\mathrm{SQUEDA}$ es de **complejidad** $\Theta(n)$ o lineal en el peor caso, y $\Theta(1)$ o constante en el mejor caso.

```
Ejercicio
  Determine la complejidad en el mejor y peor caso:
  input: arreglo A = [a_0, ..., a_{n-1}] y su largo n > 0
  output: arreglo está ordenado al terminar el algoritmo.
  InsertionSort(A, n):
      for i = 1 to n - 1 do
1
          j ← i
2
           while a_{i-1} > a_i \wedge j > 0 do
3
               t \leftarrow a_{i-1}
4
               a_{i-1} \leftarrow a_i
               a_i \leftarrow t
6
              i \leftarrow i - 1
7
```

Solución: Apuntes Jorge Pérez, Sección 3.1.3, página 106.

En general, nos conformaremos con encontrar la complejidad del peor caso.

Es la que más interesa, al decirnos qué tan mal se puede comportar un algoritmo en la práctica.

Además, a veces puede ser difícil encontrar una notación Θ .

- ¿Con qué nos basta?
- Es suficiente con una buena estimación O, tanto para el mejor y el peor caso.
- Nos da una cota superior para el tiempo de ejecución del algoritmo.

Outline

Introducción

Complejidad de algoritmos iterativos

Ecuaciones de recurrencia

Epílogo

En el caso de los algoritmos recursivos, el principio es el mismo: contar instrucciones.

En el caso de los algoritmos recursivos, el principio es el mismo: contar instrucciones.

■ Buscamos alguna(s) instrucción(es) representativa.

En el caso de los algoritmos recursivos, el principio es el mismo: contar instrucciones.

- Buscamos alguna(s) instrucción(es) representativa.
- Contamos cuántas veces se ejecuta en cada ejecución del algoritmo.

En el caso de los algoritmos recursivos, el principio es el mismo: contar instrucciones.

- Buscamos alguna(s) instrucción(es) representativa.
- Contamos cuántas veces se ejecuta en cada ejecución del algoritmo.
- ¿Cuál es la diferencia?

En el caso de los algoritmos recursivos, el principio es el mismo: contar instrucciones.

- Buscamos alguna(s) instrucción(es) representativa.
- Contamos cuántas veces se ejecuta en cada ejecución del algoritmo.
- ¿Cuál es la diferencia?

Ahora tenemos que considerar llamados recursivos

```
input: Arreglo ordenado A[0, ..., n-1], elemento x, índices i, f
   output: Índice m \in \{0, ..., n-1\} tq A[m] = x si x está en A, o -1
   BinarySearch(A, x, i = 0, f = n - 1):
      if i > f then
1
2
          return -1
      else if i = f then
3
          if A[i] = a then
             return i
          else
             return -1
7
      else
          m \leftarrow |(i+f)/2|
          if A[m] < x then
10
              return BinarySearch(A, x, m + 1, f)
11
          else if A[m] > x then
12
              return BinarySearch(A, x, i, m-1)
13
          else
14
              if A[m] = x then return m
15
```

■ ¿Qué operaciones contamos?

- ¿Qué operaciones contamos?
- ¿Cuál es el peor caso?

- ¿Qué operaciones contamos?
- ¿Cuál es el peor caso?

Ejercicio

Encuentre una función $\mathcal{T}(n)$ para la cantidad de comparaciones que realiza el algoritmo BinarySearch en el peor caso, en función del tamaño del arreglo.

- ¿Qué operaciones contamos?
- ¿Cuál es el peor caso?

Ejercicio

Encuentre una función T(n) para la cantidad de comparaciones que realiza el algoritmo BinarySearch en el peor caso, en función del tamaño del arreglo.

Respuesta:

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

- ¿Qué operaciones contamos?
- ¿Cuál es el peor caso?

Ejercicio

Encuentre una función T(n) para la cantidad de comparaciones que realiza el algoritmo BinarySearch en el peor caso, en función del tamaño del arreglo.

Respuesta:

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

Esta es una ecuación de recurrencia.

- ¿Qué operaciones contamos?
- ¿Cuál es el peor caso?

Ejercicio

Encuentre una función T(n) para la cantidad de comparaciones que realiza el algoritmo BinarySearch en el peor caso, en función del tamaño del arreglo.

Respuesta:

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

Esta es una ecuación de recurrencia.

¿Cómo obtenemos una fórmula explícita?

Ejercicio

Encuentre una función T(n) para la cantidad de comparaciones que realiza el algoritmo BinarySearch en el peor caso, en función del tamaño del arreglo.

Contaremos las comparaciones. Dividiremos el análisis del peor caso:

- Si el arreglo tiene largo 1, entramos en la instrucción 3 y luego hay una comparación $\Rightarrow T(n) = 3$, con n = 1.
- Si el arreglo tiene largo mayor a 1, el peor caso es entrar en el else de 8 y luego en la segunda llamada recursiva. En tal caso, se hacen las comparaciones de las líneas 1,3,10,12 a lo que sumamos las comparaciones que haga la llamada recursiva, que serán $T(\lfloor \frac{n}{2} \rfloor)$.

Entonces, nuestra función T(n) será:

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

Algoritmos recursivos: ecuaciones de recurrencia

Necesitamos resolver esta ecuación de recurrencia.

Necesitamos resolver esta ecuación de recurrencia.

■ Es decir, encontrar una expresión que no dependa de *T*, sólo de *n*.

Necesitamos resolver esta ecuación de recurrencia.

- Es decir, encontrar una expresión que no dependa de *T*, sólo de *n*.
- Técnica básica: sustitución de variables.

Necesitamos resolver esta ecuación de recurrencia.

- Es decir, encontrar una expresión que no dependa de *T*, sólo de *n*.
- Técnica básica: sustitución de variables.

¿Cuál sustitución para n nos serviría en el caso anterior?

Necesitamos resolver esta ecuación de recurrencia.

- \blacksquare Es decir, encontrar una expresión que no dependa de T, sólo de n.
- Técnica básica: sustitución de variables.

¿Cuál sustitución para n nos serviría en el caso anterior?

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

Necesitamos resolver esta ecuación de recurrencia.

- Es decir, encontrar una expresión que no dependa de T, sólo de n.
- Técnica básica: sustitución de variables.

¿Cuál sustitución para n nos serviría en el caso anterior?

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

Ejercicio

Resuelva la ecuación ocupando la sustitución $n = 2^k$.

Necesitamos resolver esta ecuación de recurrencia.

- Es decir, encontrar una expresión que no dependa de *T*, sólo de *n*.
- Técnica básica: sustitución de variables.

¿Cuál sustitución para n nos serviría en el caso anterior?

$$T(n) = \begin{cases} 3 & n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + 4 & n > 1 \end{cases}$$

Ejercicio

Resuelva la ecuación ocupando la sustitución $n = 2^k$.

Respuesta: $T(n) = 4 \cdot \log_2(n) + 3$, con *n* potencia de 2.

Ejercicio

Resuelva la ecuación ocupando la sustitución $n = 2^k$.

$$T(2^{k}) = \begin{cases} 3 & k = 0 \\ T(2^{k-1}) + 4 & k > 0 \end{cases}$$

Expandiendo el caso recursivo:

$$T(2^{k}) = T(2^{k-1}) + 4$$

$$= (T(2^{k-2}) + 4) + 4$$

$$= T(2^{k-2}) + 8$$

$$= (T(2^{k-3}) + 4) + 8$$

$$= T(2^{k-3}) + 12$$

$$\vdots$$

Ejercicio

Resuelva la ecuación ocupando la sustitución $n = 2^k$.

Deducimos una expresión general para $k - i \ge 0$:

$$T(2^k) = T(2^{k-i}) + 4i$$

Tomamos i = k:

$$T(2^k) = T(1) + 4k = 3 + 4k$$

Como $k = \log_2(n)$:

$$T(n) = 4 \cdot \log_2(n) + 3$$
, con *n* potencia de 2

Ejercicio

Resuelva la ecuación ocupando la sustitución $n = 2^k$.

Deducimos una expresión general para $k - i \ge 0$:

$$T(2^k) = T(2^{k-i}) + 4i$$

Tomamos i = k:

$$T(2^k) = T(1) + 4k = 3 + 4k$$

Como $k = \log_2(n)$:

$$T(n) = 4 \cdot \log_2(n) + 3$$
, con *n* potencia de 2

Problema: esto solo es válido cuando $n = 2^k$

Notación asintótica condicional

Sea $P \subseteq \mathbb{N}$.

Definición

$$O(f \mid P) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \\ (n \in P \to g(n) \le c \cdot f(n))\}$$

Notación asintótica condicional

Sea $P \subseteq \mathbb{N}$.

Definición

$$O(f \mid P) = \{g : \mathbb{N} \to \mathbb{R}^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \\ (n \in P \to g(n) \le c \cdot f(n))\}$$

Las notaciones $\Omega(f \mid P)$ y $\Theta(f \mid P)$ se definen análogamente.

Estamos restringiendo a un tipo de n particular

Volviendo al ejemplo...

Tenemos que $T(n) = 4 \cdot \log_2(n) + 3$, con n potencia de 2. ¿Qué podemos decir sobre la complejidad de T?

Volviendo al ejemplo...

Tenemos que $T(n) = 4 \cdot \log_2(n) + 3$, con n potencia de 2. ¿Qué podemos decir sobre la complejidad de T?

Sea $POTENCIA_2 = \{2^i \mid i \in \mathbb{N}\}$. Entonces:

$$T \in \Theta(\log_2(n) \mid POTENCIA_2)$$

Volviendo al ejemplo...

Tenemos que $T(n) = 4 \cdot \log_2(n) + 3$, con n potencia de 2. ¿Qué podemos decir sobre la complejidad de T?

Sea
$$POTENCIA_2 = \{2^i \mid i \in \mathbb{N}\}$$
. Entonces:

$$T \in \Theta(\log_2(n) \mid POTENCIA_2)$$

Pero queremos concluir que $T \in \Theta(\log_2(n))...$

Usaremos inducción

Para el ejemplo anterior:

Ejercicio

Demuestre que si $T \in O(\log_2(n) \mid POTENCIA_2)$, entonces $T \in O(\log n)$.

Para el ejemplo anterior:

Ejercicio

Demuestre que si $T \in O(\log_2(n) \mid POTENCIA_2)$, entonces $T \in O(\log n)$.

Algunas observaciones:

- Demostraremos que $(\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(T(n) \leq c \cdot \log_2(n))$.
- Primero, debemos estimar n_0 y c (expandiendo T por ejemplo).
- ¿Cuál principio de inducción usamos?

Ejercicio

Demuestre que si $T \in O(\log_2(n) \mid POTENCIA_2)$, entonces $T \in O(\log n)$.

Veamos los primeros valores de T(n) para estimar c y n_0 :

$$T(1) = 3$$

$$T(2) = T(1) + 4 = 7$$

$$T(3) = T(1) + 4 = 7$$

$$T(4) = T(2) + 4 = 11$$

Podríamos tomar c = 7 y $n_0 = 2$, pues con n = 1:

$$T(1) = 3 \nleq 7 \cdot \log_2(1) = 0$$

$$y con n = 2$$

$$T(2) = 7 \le 7 \cdot \log_2(2) = 7$$

Ejercicio

Demuestre que si $T \in O(\log_2(n) \mid POTENCIA_2)$, entonces $T \in O(\log n)$.

Veamos los primeros valores de T(n) para estimar c y n_0 :

$$T(1) = 3$$

 $T(2) = T(1) + 4 = 7$

$$T(3) = T(1) + 4 = 7$$

$$T(4) = T(2) + 4 = 11$$

Podríamos tomar c = 7 y $n_0 = 2$, pues con n = 1:

$$T(1) = 3 \nleq 7 \cdot \log_2(1) = 0$$

y con n = 2

$$T(2) = 7 \le 7 \cdot \log_2(2) = 7$$

La intuición nos dice $n_0 = 2$ y c = 7... lo demostraremos

Ejercicio

Demuestre que si $T \in O(\log_2(n) \mid POTENCIA_2)$, entonces $T \in O(\log n)$.

PD: $\forall n \ge 2$, $T(n) \le 7 \cdot \log_2(n)$. Por inducción fuerte:

<u>BI:</u> Además de n = 2, debemos mostrar la base para n = 3, puesto que depende de T(1) que no está incluido en el resultado que estamos mostrando.

$$T(2) = 7 = 7 \cdot \log_2(2)$$

 $T(3) = 7 < 7 \cdot \log_2(3)$ pues el logaritmo es creciente

<u>HI:</u> Supongamos que con $n \ge 4$, $\forall k \in \{2, \dots, n-1\}$ se cumple que $T(k) \le 7 \cdot \log_2(k)$.

Ejercicio

Demuestre que si $T \in O(\log_2(n) \mid POTENCIA_2)$, entonces $T \in O(\log n)$.

TI: Como $n \ge 4$:

Outline

Introducción

Complejidad de algoritmos iterativos

Ecuaciones de recurrencia

Epílogo

Objetivos de la clase

- ☐ Estudiar la complejidad de algoritmos iterativos
- □ Aplicar notación asintótica a algoritmos iterativos
- □ Definir ecuaciones de recurrencia en algoritmos recursivos
- □ Estudiar la complejidad de algoritmos recursivos