See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231401106

Kinetics of the reaction between hydroxyl and hydroperoxyl on the singlet potential energy surface

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY · SEPTEMBER 1991

Impact Factor: 2.78 · DOI: 10.1021/j100171a010

CITATIONS

30 18

6 AUTHORS, INCLUDING:

Carlos Gonzalez

National Institute of Standards and Technology

SEE PROFILE

READS

Ling Zhu

University of Oklahoma

9 PUBLICATIONS 413 CITATIONS

SEE PROFILE

E. W Kaiser

117 PUBLICATIONS 2,830 CITATIONS

SEE PROFILE

Kinetics of the Reaction between OH and HO₂ on the Singlet Potential Energy Surface

Carlos Gonzalez, John Theisen, Ling Zhu, H. Bernhard Schlegel, William L. Hase,*

Department of Chemistry, Wayne State University, Detroit, Michigan 48202

and E. W. Kaiser

Chemistry Department, Research Staff, Ford Motor Company, Dearborn, Michigan 48121-2053 (Received: January 22, 1991; In Final Form: April 8, 1991)

Electronic structure calculations at the HF, MP2, and MP4 levels of theory, with the 6-31G** basis set, are reported for stationary points on the OH + HO₂ singlet potential energy surface. Two particularly important stationary points are the trioxide (H_2O_3) global minimum and the reaction transition state for $O_2(^1\Delta) + H_2O$ formation. For the latter, the MP4 0 K barrier height is 15.2 kcal/mol. Thus, the formation of $O_2(^1\Delta)$ and H_2O is predicted to be unimportant, except at highly elevated temperatures. MP2 vibrational frequencies calculated for H₂O₃ are in good agreement with experiment. Reaction rate theory calculations are performed to assess the effect collisional stabilization of the vibrationally/rotationally excited intermediate H₂O₃* has on the apparent loss of the OH and HO₂ reactants. In the high-pressure limit each of the H₂O₃* intermediates is collisionally stabilized. However, at intermediate pressures the importance of collisional stabilization depends on the OH + HO₂ \rightarrow H₂O₃ reaction exothermicity. The MP4 calculations reported here and a previous configuration interaction (CI) calculation place this exothermicity at -22 to -29 kcal/mol at 0 K. With use of these energies, the collisional stabilization of H₂O₃* at room temperature is predicted to become important only at pressures in excess of 5000 Torr for the commonly used bath gas He. Thus, at atmospheric pressures of an inefficient bath gas like He, the loss of the OH and HO₂ reactants is predicted to occur only on the triplet potential energy surface.

I. Introduction

As a result of its importance in atmospheric and combustion chemistry, the reaction

$$OH + HO_2 \rightarrow H_2O + O_2 \tag{1}$$

has commanded the interest of both theoretical 1-3 and experimental⁴⁻¹¹ kineticists. It is not known whether the reaction mechanism is direct or proceeds through an intermediate complex. Two particularly intriguing aspects of this reaction are its negative temperature dependence¹⁰ and its possible pressure dependence.⁴⁻¹¹ Because of its important position in the study of radical-radical kinetics, reaction 1 has been referred to as "the Holy Grail Reaction".11

Reaction 1 is also of interest because of its close relationship to peroxy-peroxy radical reactions, the simplest of which is 12,13

$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$$
 (2)

This class of reactions plays an important role in the combustion and atmospheric oxidation of hydrocarbons. Self- and cross-reactions have been studied for the alkylperoxy radicals CH₃O₂ and C₂H₅O₂. ¹⁴⁻²⁰ An understanding of the mechanism and kinetics

- Mozurkewich, M. J. Phys. Chem. 1986, 90, 2216.
 Jackels, C. F.; Phillips, D. H. J. Chem. Phys. 1986, 84, 5013.
 Toohey, D. W.; Anderson, J. G. J. Phys. Chem. 1989, 93, 1049.
 Thrush, B. A.; Wilkinson, J. P. T. Chem. Phys. Lett. 1981, 81, 1.
 Keyser, L. F. J. Phys. Chem. 1981, 85, 3667.
 Sridharan, U. C.; Qiu, L. X.; Kaufman, F. J. Phys. Chem. 1981, 85,
- (7) Temps, F.; Wagner, H. G. Max-Planck-Institut Strömungsforschung, Berichte 18 A (1980); Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 119.
 (8) Dransfeld, P.; Wagner, H. G. Z. Naturforsch. 1987, 42a, 471.
 (9) De More, W. B. J. Phys. Chem. 1982, 86, 121.
- (10) Keyser, L. F. J. Phys. Chem. 1988, 92, 1193.
 (11) Schwab, J. J.; Brune, W. H.; Anderson, J. G. J. Phys. Chem. 1989, 93. 1030.
- (12) Lightfoot, P. D.; Veyret, B.; Lesclaux, R. Chem. Phys. Lett. 1988, 150, 120.
- (13) Hippler, H.; Troe, J.; Willner, J. J. Chem. Phys. 1990, 93, 1755.
 (14) Kurylo, M. J.; Dagaut, P.; Wallington, T. J.; Neuman, D. M. Chem. Phys. Lett. 1987, 139, 513.
- (15) Dagaut, P.; Wallington, T. J., Kurylo, M. J. J. Phys. Chem. 1988, 92, 3833.

TABLE I: Pressure Dependence Observed for k_1 at 298 K

P, Torr	k_1 , 10^{-11} cm ³ /molecule s	ref
1-3	7.3-6.2	4-8
75	8.0-5.8	9
730	12.0 ± 4.0	9
1-1000	11.0 ± 3.0	10
2	$8.0^{+3.0}_{-2.0}$	11

of reaction 1 may be helpful in establishing the mechanism and kinetics for peroxy-peroxy radical reactions.

A major uncertainty regarding reaction 1 is its pressure dependence. A list of values of k_1 determined versus pressure at 298 K is given in Table I. The earliest measurements listed in this table⁴⁻⁹ indicate that the reaction rate decreases with a decrease in pressure. To explain this effect, it was suggested that reaction 1 is a composite of the two microscopic mechanisms

OH + HO₂
$$\longrightarrow$$
 H₂O + O₂ (1a)
OH + HO₂ \Longrightarrow H₂O₃* \longrightarrow H₂O + O₂ (1b)

The role of increased pressure (i.e., larger M) would be to vibrationally quench H₂O₃* and give rise to an apparent pressure enhancement of the reaction rate.1 However, the magnitude of the pressure dependence of k_1 has been called into question by the most recent experiments of Keyser¹⁰ and Schwab et al. 11

Rather strong evidence for formation of the vibrationally/rotationally excited trioxide intermediate H₂O₃* comes from the isotopic labeling studies of Dransfeld and Wagner.8 In reactions of ¹⁸OH with H¹⁶O₂ they observed a substantial amount of ¹⁶OH, which is indicative of trioxide formation followed by dissociation

⁽¹⁶⁾ Dagaut, P.; Wallington, T. J.; Kurylo, M. J. J. Phys. Chem. 1988, *92*, 3836.

⁽¹⁷⁾ Jenkin, M. E.; Cox, R. A.; Hayman, G. D.; Whyte, L. J. J. Chem. Soc., Faraday Trans. 2 1988, 84, 913.
(18) Wallington, T. J.; Japar, S. M. Chem. Phys. Lett. 1990, 167, 513.

⁽¹⁹⁾ Lightfoot, P. D.; Veyret, B.; Lesclaux, R. J. Phys. Chem. 1990, 94,

⁽²⁰⁾ Lightfoot, P. D.; Lesclaux, R.; Veyret, B. J. Phys. Chem. 1990, 94,

Figure 1. Predictions of k_1 (cm³/molecule s) versus temperature for the 200-2000 K temperature range: solid curve, experimental result of ref 10 that $k_1 = 4.8 \times 10^{-11} \exp(250/T)$ for T = 254-382 K; dashed curve, experimental result of ref 22 that $k_1 = 1.7 \times 10^{-11} \exp(416/T)$ for T =252-420 K. The error bars denote the uncertainties in the rate constants at the limits of the temperature ranges.

to the reactants. The amount of ¹⁶OH they observed is consistent with similar OH + HO₂ bimolecular rate constants for reactions la and lb. However, the isotopically labeled product ¹⁸O¹⁶O is not observed,²¹ which is strong evidence that the excited trioxide does not dissociate to $H_2O + O_2$. Thus, the most recent experimental studies^{8,10,11} indicate that the excited trioxide intermediate H_2O_3 * is formed but that it neither dissociates to $H_2O + O_2$ nor is collisionally stabilized.

Though all experimental studies indicate that the rate of reaction 1 decreases with an increase in temperature, the exact form of the negative temperature dependence is unknown. In early work carried out at 2.5 Torr, Sridharan et al.²² found that $k_1 = (1.7)$ \pm 0.5) \times 10⁻¹¹ exp[(416 \pm 86)/T] cm³/molecule s over the 252-420 K temperature range. More recently, Keyser¹⁰ reported that at 1 Torr $k_1 = (4.8 \pm 0.8) \times 10^{-11} \exp[(250 \pm 50)/T]$ cm³/molecule s for T = 254-382. For illustration, these two measurements of k_1 are extended over the 200-2000 K temperature range in Figure 1.

One approach for calculating k_1 is to assume that the rate of reaction is controlled by the long-range attractive interaction between OH and HO_2 . This assumption gives rise to a capture model, for which reaction is assumed to occur when a critical separation between OH and HO₂ is attained.²³ The long-range interaction between OH and HO₂ is the dipole-dipole potential²⁴

$$-(\mu_1 \mu_2 / R^3) [2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos (\phi_1 - \phi_2)]$$
 (3)

where μ_i is the absolute magnitude of the dipole moment and (θ_i) ϕ_l) refer to the spherical polar angles describing the orientation of r_i , with respect to the body-fixed axes, for molecule i. If the adiabatic approximation is made, so that quantum numbers for the reactant energy levels can be used to label adiabatic potential energy curves versus OH + HO₂ separation, the collision capture rate constant is found to be25

$$k(T) = 1.766p(T)(\pi/\mu)^{1/2}(\mu_1\mu_2)^{2/3}(k_BT)^{-1/6}$$
 (4)

where μ is the reduced mass, $k_{\rm B}$ is the Boltzmann constant, and p(T) is the probability of initiating the collision on the reaction

surface. This latter term is given by²⁶

$$p(T) = g^*/Q_e(T) \tag{5}$$

where g* is the electronic degeneracy of the reaction surface and $Q_{\rm c}(T)$ is the electronic partition function for the reactants. To apply this equation requires knowing on what potential energy surface (i.e., singlet or triplet) the reaction occurs.

Ab initio quantum chemical calculations^{2,3,27} have provided insight into the mechanism for reaction 1. The potential energies and structures of different internal rotation conformations of the trioxide intermediate, H₂O₃, have been studied with Hartree-Fock theory using basis sets with and without polarization functions.27 Electron correlation was treated via many-body perturbation theory. An important finding from this study are the large barriers for simultaneous rotation of both OH groups. Jackels and Phillips² performed an extensive study of the OH plus HO₂ potential energy surfaces using the SCF-CI method with basis sets of polarized double-5 quality. They found that a hydrogen-bonded HO--HO2 species has an electronic energy 4.7 kcal/mol below that of the reactants. The minimum energy geometry of the hydrogen-bonded species is planar, with triplet and singlet states, 3A' and 1A', that are essentially degenerate. The ¹A" and ³A" hydrogen-bonded excited states, produced by rotation of the unpaired OH electron into the molecular plane, are found to be slightly bound. The reaction exothermicity for forming the H₂O₃ intermediate is found to be -22.2 kcal/mol at 0 K. This intermediate has C_2 symmetry and is in a ¹A electronic state. Both of the excited-state oxygen channels $({}^{1}\Delta_{g}$ and ${}^{1}\Sigma_{g}^{+})$ could be correlated with the ${}^{1}A$ intermediate.2 This is because the intermediate is nonplanar and lacks high symmetry, so that there is an absence of restrictions on the spatial symmetry of the intermediate. If the reaction is constrained to a planar configuration, only the ³A" state has the correct symmetry for correlation with the ground-state triplet products ${}^{3}\Sigma_{8}^{-}(O_{2})$ and ${}^{1}A_{1}(H_{2}O)$. Along a planar path, the ${}^{3}A'$ state is correlated with excited triplet channels. However, at large OH and HO₂ separations the ³A' and ³A" states are nearly degenerate, and extensive mixing of these states could arise from motions that distort the system away from planarity. As a result, it has been suggested that both the 3A' and 3A" state could lead to triplet

Most recently, Toohey and Anderson³ studied the triplet OH + HO₂ potential energy surfaces using HF and MP2 theory with 3-21G** and 6-31G** basis sets. From their calculation they found a saddlepoint for reaction 1a on the 3A" potential energy surface. However, they concluded that this saddlepoint was not rate controlling and instead the rate constant for reaction 1a is determined by the long-range dipole-dipole interaction, i.e., eq 3. By comparing the energies of the OH + HO₂ reactants, the HO...HO₂ hydrogen-bonded species, and the ³A" saddlepoint, they suggested that it might be possible for the reactive system to become temporarily trapped in the hydrogen-bonded form.

In recent research we have carried out extensive ab initio and rate calculations for reaction 1, with a goal of establishing the mechanism and kinetics for this reaction. One aspect of the research is to determine whether conventional theories like RRKM theory and transition-state theory²⁸ are applicable to this reaction or whether more sophisticated dynamical theories are required as has been suggested for other reactions.^{29,30} In this paper we present our analysis of the kinetics on the singlet potential energy surface. Results for the triplet surface will be presented in a future paper.31

work in progress.

 ⁽²¹⁾ Kurylo, M. J.; Klais, P.; Laufer, A. H. J. Phys. Chem. 1981, 85, 3674.
 (22) Sridharan, U. C.; Qiu, L. X.; Kaufman, F. J. Phys. Chem. 1984, 88, 1281.

⁽²³⁾ Hase, W. L.; Wardlaw, D. M. In Bimolecular Collisions; Ashfold, M. N. R.; Baggot, J. E.; Royal Society of Chemistry: London, 1989; p 171.
(24) Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1954; p 27.
(25) Clary, D. C. Mol. Phys. 1984, 53, 3.

⁽²⁶⁾ Graff, M. M.; Wagner, A. F. J. Chem. Phys. 1990, 92, 2423.
(27) Cremer, D. J. Chem. Phys. 1978, 69, 4456.
(28) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics; Prentice-Hall: Englewood Cliffs, NJ, 1989; Chapters 10 and 11.
(29) Bunker, D. L.; Hase, W. L. J. Chem. Phys. 1973, 59, 4621. Davis, M. J.; Skodje, R. T. In Advances in Classical Trajectory Methods; Hase, W. Ed. Davis, Gravitation Committee Control of the Control o ., Ed.; JAI Press: Greenwich, CT; Vol. 1, Intramolecular and Nonlinear Dynamics, to be published.

⁽³⁰⁾ Vande Linde, S. R.; Hase, W. L. J. Phys. Chem. 1990, 94, 6148. Vande Linde, S. R.; Hase, W. L. J. Chem. Phys. 1990, 93, 7962. (31) Gonzales, C.; Theisen, J.; Schlegel, H. B.; Hase, W. L.; Kaiser, E. W.,

TABLE II: Reactant and Product Geometries and Vibrational Frequencies^a

	HF/6-31G**	MP2/6-31G**	expt ^b	ref
	OH	+ H _R O ₂ React	ants	
r _{OHA}	0.955	0.971	0.970	36
r _{OHB}	0.950	0.975	0.971, 0.977	37, 38
r ₀₀	1.309	1.325	1.331, 1.335	37, 38
θ	105.9	104.5	104.3, 104.1	37, 38
ωOHA	4052	3847	3738	36
ωОНВ	4074	3713	3436	39
ωноо	1602	1460	1392	40
ωοο	1252	1238	1098	41
	10	O ₂ + H ₂ O Produc	ets	
r ₀₀	1.166	1.274	1.216	42
^r oн	0.943	0.960	0.9572	43
θ	106.0	103.8	104.5	43
ωοο	1998	1214	1509	42
ω _{OH,asym}	4264	4033	3943	44
^ω OH,sym	4147	3895	3832	44
ωнон	1770	1684	1648	44

^a Bond lengths, angles, and vibrational frequencies are given in units of angstroms, degrees, and cm⁻¹, respectively. ^bThe OH, O₂, and H₂O vibrational frequencies are harmonic values. For HO₂, fundamental anharmonic frequencies are listed. 'The references refer to the experimental values.

TABLE III: Reactant and Product Absolute Energies^a

method ^b	ОН	HO ₂	$O_2(^1\Delta)$	H ₂ O
HF	-75.388 33	-150.17664	-149.533 00	-76.023 62
MP2	-75.53438	-150.513 23	-149.904 52	-76.222 45
MP3	-75.544 16	-150.51677	-149.88223	-76.226 09
MP4	-75.547 57	-150.53361	-149.91542	-76.231 24
PHF	-75.390 69	-150.17971		
PMP2	-75.533 57	-150.51074		
PMP3	-75.544 96	-150.51806		
PMP4	-75.548 37	-150.53490		

^eEnergies are given in hartrees (1 hartree equals 627.51 kcal/mol). The HF energies are calculated at the HF geometries in Table II. The remaining energies are calculated at the MP2 geometries. The MP2 energy is full; the MP3, MP4, and all PMPn energies are frozen core. ^bThe prefix P identifies a spin-projected calculation; see section II.A.

II. Ab Initio Calculations

A. Computational Methods. Ab initio molecular orbital calculations were performed using the GAUSSIAN 88 system of programs.32 Fully optimized geometries, harmonic vibrational frequencies, and zero-point energy corrections for the reactants, intermediates, transition structures, and products involved in the reaction between HO₂ and OH (on the singlet surface) were calculated at the Hartree-Fock and MP2 levels using the 6-31G** basis set^{32b} with analytical derivatives.³³

Electron correlation was computed with fourth-order Moller-Plesset perturbation theory³⁴ in the space of single, double, triple, and quadruple excitations using the optimized geometries obtained at the Hartree-Fock and MP2 levels (MP4SDTQ/6-31G**// HF/6-31G** and MP4SDTQ/6-31G**//MP2/6-31G**, respectively). Since the energies of the reactants were calculated by unrestricted HF and MPn methods, an approximate spin projection method³⁵ was used to remove contamination from higher spin states (denoted by PMPn in Table III).

B. Geometries and Vibrational Frequencies for Reactants and Products. Ab initio and experimental³⁶⁻⁴⁴ geometries and vi-

TABLE IV: Structure and Vibrational Frequencies for the Trioxide Global Potential Energy Minimum^e

coordinate ^b		HF/6-31G**	MP2/6-31G**	
θ		80.8	78.7	
R(OC))	1.373	1.441	
R(OF	I)	0.949	0.972	
α(ΟΟ	O)	107.4	106.2	
β(HC	O)	103.5	100.2	
	MP2 Vil	brational Frequ	iencies	
3796	O-H str	829 ((755) O-O str asy	m
3792	O-H str	537 (500) OOO bend	
1399	OOH bend	417	torsion	
1395	OOH bend	l 366	torsion	
904 (855)°	O-O str sy	m		

^aUnits are given in footnote a of Table II. ^bThe coordinates are defined in ref 26 and Figure 2. θ is the H-OO-H dihedral angle. ^c Experimental frequencies⁴⁹ are given in parentheses.

Figure 2. Calculated HF and MP2 (indicated by asterisks) geometries for the trioxide global minimum.

brational frequencies for the reactants and products are compared in Table II. Absolute energies calculated for the reactants and products are listed in Table III. The HF/6-31G** and MP2/ 6-31G** geometries for OH and HO₂ were presented previously by Toohey and Anderson.³ However, in their work vibrational frequencies were only determined at the HF/6-31G** level of theory. The MP2 frequencies are seen to be in substantially better agreement with experiment than are the HF values. Ab initio POL-CI,46 CI,46 and contracted CI (CCI)46 calculations have also been reported for the reactants. For OH the CI bond length and harmonic frequency are 0.970 Å and 3798 cm⁻¹, respectively, and are in excellent agreement with experiment. The CCI bond length is the same, but the OH stretch frequency is slightly larger, i.e.,

To compare with the ab initio calculations, experimental harmonic vibrational frequencies are needed for HO₂. However, only anharmonic values have been reported, which are listed in Table II. As a guide for comparing ab initio and experimental HO₂ frequencies, an empirical correction⁴⁷ can be applied to the

^{(32) (}a) Frisch, M. J.; Head-Gordon, M.; Schlegel, H. B.; Raghavachari, K.; Binkley, J. S.; Gonzalex, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R.; Kahn, L. R.; Stewart, J. J. P.; Fluder, E. M.; Topiol, S.; Pople, J. A. GAUSSIAN 88; Gaussian Inc.: Pittsburgh, 1988. (b) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972,

⁽³³⁾ Schiegel, H. B. J. Comput. Chem. 1982, 3, 214

⁽³⁴⁾ Defrees, D. J.; Raghavachari, K.; Schlegel, H. B.; Pople, J. A. J. Am. Chem. Soc. 1982, 104, 5576.

⁽³⁵⁾ Gonzales, C.; Sosa, C.; Schlegel, H. B. J. Phys. Chem. 1989, 93, 2435, and references therein.

⁽³⁶⁾ Walch, S. P.; Rohlfing, C. M.; Melius, C. F.; Bauschlicher Jr.; C. W. J. Chem. Phys. 1988, 88, 6273.

⁽³⁷⁾ Uehara, H.; Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1985, 83,

⁽³⁸⁾ Beers, Y.; Howard, C. J. J. Chem. Phys. 1976, 64, 1541.
(39) Yamada, C.; Endo, Y.; Hirota, E. J. Chem. Phys. 1973, 78, 4379.
(40) Nagai, K.; Endo, Y.; Hirota, E. J. Mol. Spectrosc. 1981, 89, 520.
(41) Johns, J. W. C.; McKellar, A. R. W.; Riggin, M. J. Chem. Phys. 1978, 68, 3957. McKellar, A. R. W. Faraday Discuss. Chem. Soc. 1981, 71,

⁽⁴²⁾ Herzberg, G. Spectra of Diatomic Molecules; Van Nostrand Rein-

hold: New York, 1950.

(43) Kern, C. W.; Karplus, M. Water—A Comprehensive Treatise;
Franks, F., Ed.; Plenum: New York, 1972; Vol. 1, Chapter 2.

(44) Rosenberg, B. J.; Ermler, W. C.; Shavitt, I. J. Chem. Phys. 1976, 65,

^{4072.}

⁽⁴⁵⁾ Dunning Jr., T. H.; Walch, S. P.; Goodgame, M. M. J. Chem. Phys. 1981, 74, 3482.

⁽⁴⁶⁾ Walch, S. P.; Rohlfing, C. M.; Melius, C. F.; Bauschlicher Jr., C. W. J. Chem. Phys. 1988, 88, 6273.

⁽⁴⁷⁾ A similar technique has been used successfully by spectroscopists to estimate the harmonic frequencies of methyl halides: Duncan, J. L.; McKean, D. C.; Speirs, G. K. Mol. Phys. 1972, 24, 553. Duncan, J. L.; Allan, A.; McKean, D. C. Mol. Phys. 1970, 18, 289.

TABLE V: Absolute Energies for the Global Minimum and Reaction Transition State^a

method	global minimum	transition state
HF	-225.545 84	-225.445 77
MP2	-226.11275	-226.031 54
MP3	-226.109 07	-226.01549
MD4	-226 136 86	-226 060 28

^a Energies are given in hartrees. The geometries for which these energies were determined are given in Tables IV and VII. The HF energy is for the HF geometry. The remaining energies were evaluated at the MP2 geometry (see footnote a in Table III).

anharmonic frequency to obtain an estimated harmonic frequency: \sim 5% higher for the OH stretch and \sim 1-2% higher for the HOO bend and OO stretch. With these corrections, the most significant difference between the MP2 and estimated harmonic vibrational frequencies is for the OO stretch. It is due in part to the difference between the MP2 and experimental OO bond length for HO₂. Both POL-CI⁴⁶ and CCI⁴⁶ calculations have been performed for HO₂. The POL-CI geometry and vibrational frequencies are $r_{\rm OH}$ = 0.991 Å, $r_{\rm OO}$ = 1.370 Å, θ = 103.3°, $\omega_{\rm OH}$ = 3655 cm⁻¹, $\omega_{\rm HOO}$ = 1457 cm⁻¹, and $\omega_{\rm OO}$ = 1181 cm⁻¹. At the CCI level of theory, the geometry and vibrational frequencies for HO₂ are $r_{\rm OH}$ = 0.974 Å, $r_{\rm OO}$ = 1.334 Å, θ = 104.4°, $\omega_{\rm OH}$ = 3531 cm⁻¹, $\omega_{\rm HOO}$ = 1417 cm⁻¹, and $\omega_{\rm OO}$ = 1220 cm⁻¹. The CCI results for HO₂ are in somewhat better agreement with experiment than are the results in Table II from the MP2 level of theory.

The MP2 geometry and vibrational frequencies for H_2O are in very good agreement with the experimental values. However, these MP2 results for H_2O are not as accurate as those obtained from higher order many-body perturbation theory and coupled cluster methods.⁴⁸ The experimental bond length and harmonic frequency for singlet O_2 are only approximately reproduced by either the HF or MP2 calculation. The large differences between the experimental and MP2 1O_2 harmonic vibrational frequency and OO bond length are related. A MCSCF treatment is necessary for a more accurate determination of these properties for $^1\Delta_1(O_2)$.

¹Δ_g(O
₂).
C. Properties of the Trioxide Intermediate. In previous work, Cremer²⁷ performed an extensive ab initio study of the trioxide internal rotational potential energy surface. He determined energies and geometries for minima, local maxima, and saddlepoints on this surface. In the work presented here we have not attempted to perform a complete extension of the outstanding study by Cremer. Instead we have focused on the trioxide global minimum (Cremer's GMIN) and, during the course of the calculations, also considered one of the internal rotational saddlepoints (Cremer's S1). Our calculations for the trioxide potential energy surface employ the same level of theory as used by Cremer, i.e., HF and MP2, but incorporate the slightly larger 6-31G** basis set instead of the 6-31G* basis set used by Cremer.

In Table IV are listed the HF and MP2 geometries and vibrational frequencies found in this work for the trioxide global minimum GMIN. The HF and MP2 geometries are illustrated in Figure 2. A comparison with Cremer's²⁷ HF and MP2 geometries shows that all angles and bond lengths agree to within 0.6° and 0.008 Å, respectively. Apparently, the MP2 frequencies given in Table IV are the first ab initio values reported for the trioxide global minimum. The frequencies calculated for the bending and stretching modes of the oxygen framework are in very good agreement with the measured values (given in parentheses).⁴⁹ Absolute energies for GMIN are listed in Table V.

As discussed in section III.C, the properties of the H_2O_3 internal rotation transition states are not critical for the rate constant calculations reported here. Nevertheless, there is some general interest in these properties, and the geometry and vibrational frequencies found in this work for the S1 internal rotation transition state (Cremer's notation)²⁷ are given in Table VI. The

TABLE VI: Geometry and Vibrational Frequencies for the Trioxide S1 Internal Rotation Transition State^d

coordinate ^b	HF/6-31G**	MP2/6-31G**
θ_1	-13.4	-14.7
θ_2	107.9	105.0
$\bar{R}(O_1O_2)$	1.392	1.472
$R(O_2O_3)$	1.374	1.439
$R(O_1H)$	0.948	0.972
$R(O_3H)$	0.949	0.972
$\alpha(OOO)$	107.1	105.2
$\beta_1(HO_1O_2)$	103.7	99.2
$\beta_2(HO_3O_2)$	103.1	99.7
absolute energies	-225.535 29	-226.10283
HF Vi	brational Frequenc	ies
	4124	1085
	4110	581
	1590	436
	1559	426 <i>i</i>
	1182	

^aAngles, bond lengths, absolute energies, and frequencies are in units of degrees, angstroms, hartrees, and cm⁻¹, respectively (see footnote a in Table III). ^bThe coordinates and numbering scheme are defined in ref 26. θ_1 and θ_2 are the H-O₁O₂-O₃ and H-O₃O₂-O₁ dihedral angles, respectively.

TABLE VII: Geometry and Vibrational Frequencies for the Reaction Transition State

coordinate ^a	HF/6-31G**	MP2/6-31G**
θ_{4}	-1.8	-4.1
θ_5	-106.6	-97.0
$R(O_1O_2)$	1.406	1.337
$R(O_2O_3)$	1.479	1.712
$R(O_1H_4)$	1.469	1.309
$R(O_3H_5)$	0.954	0.981
$\alpha(OOO)$	93.7	91.4
$\beta_1(H_4O_1O_2)$	71.7	77.9
$\beta_2(H_5O_3O_2)$	106.0	96.4
HF vibration	nal M	P2 vibrational

HF vibrational freq			brational req
4062	926	3714	744
2662	703	1894	536
1589	470	1383	305
1183	1101 <i>i</i>	1344	24281
971		863	

[&]quot;The coordinates and numbering scheme are defined in ref 26 and Figure 3. θ_4 and θ_5 are the H_4 - O_1O_2 - O_3 and H_5 - O_3O_2 - O_1 dihedral angles, respectively.

Figure 3. Calculated HF and MP2 (indicated by asterisks) geometries for the reaction transition state.

geometry found here using HF and MP2 theory with the 6-31G** basis set is nearly identical with that found by Cremer at the same level of theory but with the somewhat smaller 6-31G* basis set. The HF and MP2 relative energy between the S1 transition state and the global minimum GMIN are 6.62 and 6.23 kcal/mol, respectively. These values are only slightly smaller than the HF and MP2 S1 barrier heights of 6.8 and 6.5 kcal/mol reported by Cremer.²⁷

D. OH + HO₂ \rightarrow O₂($^{1}\Delta$) + H₂O Transition State. A major emphasis of this study was to identify the transition state for

⁽⁴⁸⁾ Bartlett, R. J.; Schavitt, I.; Purvis III, G. D. J. Chem. Phys. 1979, 71, 281.

⁽⁴⁹⁾ Arnau, J. L.; Giguére, P. A. J. Chem. Phys. 1974, 60, 270.

TABLE VIII: Relative Electronic Energies for Stationary Points^a

		level o	f theory ^b	
stationary pt	HF	MP2	MP3	MP4
reactants	0.0	0.0	0.0	0.0
trioxide	15.41	-42.95	-28.89	-33.63
transition state	78.21	8.01	29.83	14.42
products	8.65	-51.87	-33.61	-39.78

^aThese are relative electronic energies in kcal/mol; i.e., zero-point energies are not included. The reactant energies used for determining these relative energies are the PHF, PMP2, PMP3, and PMP4 values in Table III. ^bThe 6-31G** basis set was used (see footnote a in Table III).

Figure 4. HF (a) and MP4 (b) reaction coordinate energies.

forming $O_2 + H_2O$ on the ¹A potential energy surface. The transition-state structure was optimized at both the HF and MP2 level and is shown in Figure 3. Specific values for the transition state's internal coordinates and its vibrational frequencies are listed in Table VII. An analysis of the occupied molecular orbitals for this ¹A transition state indicates that it correlates with the ${}^{1}\Sigma_{\bullet}^{+}(O_2)$, ${}^{1}\Delta_{\bullet}(O_2)$, and ${}^{1}A_{1}(H_2O)$ products.

 $^{1}\Sigma_{\mathbf{g}}^{+}(O_{2})$, $^{1}\Delta_{\mathbf{g}}(O_{2})$, and $^{1}A_{1}(H_{2}O)$ products. Though the HF and MP2 geometries for the transition state are qualitatively the same, there are significant differences in the HF and MP2 values for some of the coordinates. In the MP2 transition state the rupturing OO bond, $R(O_{2}O_{3})$, is much larger than in the HF transition state. The rupturing OH bond, $R(O_{1}H)$, is also longer in the MP2 than HF transition state. Consequently, there are also significant differences between the HF and MP2 vibrational frequencies for the transition state.

E. Reaction Energetics. Relative energies for the stationary points on the singlet potential energy surface are listed in Table VIII and depicted in Figure 4. These differences in electronic energies do not include the vibrational zero-point energies. One of the most profound aspects of these reaction energies is that HF theory incorrectly gives larger energies for the trioxide intermediate and products than the reactant energy. Even the qualitative shape of the HF potential energy curve is incorrect. This is perhaps not unexpected since a variety of bonds are formed and broken during the course of the reaction.

In previous calculations, Jackels and Phillips² found the electronic energy of the trioxide intermediate to be 26.4 kcal/mol lower than that of the reactants using the configuration interaction (CI) method with all single and double excitations and including Davidson's correction formula to account for quadruple excitations. A polarized double-5 basis set was used in these calculations. The

TABLE IX: Low-Pressure Transition-State Theory Rate Constant for Reaction 1 on the Singlet Potential Energy Surface^a

	k, cm	³ /molecule s
T, K	no tunnelling	tunnelling included ^b
200	2.01 × 10 ⁻³⁰	2.76×10^{-29}
300	4.19×10^{-25}	2.79×10^{-24}
500	8.50×10^{-21}	2.58×10^{-20}
750	1.53×10^{-18}	2.92×10^{-18}
1000	2.49×10^{-17}	3.76×10^{-17}
2000	3.31×10^{-15}	3.73×10^{-15}

^aThe rate constants were determined by using MP2 vibrational frequencies and geometries for the reactants and transition state and the MP4 potential energy barrier. ^bTunnelling is included using the Wigner correction, eq 8.

highest level of theory used here, MP4/6-31G**, gives a slightly lower electronic energy of 33.63 kcal/mol for the trioxide intermediate relative to reactants electronic energy. If the MP2 frequencies reported here for the reactants and trioxide intermediate (Tables II and IV) are used to calculate zero-point energies, the OH + HO₂ → H₂O₃ 0 K reaction exothermicity is -21.9 kcal/mol from the calculation of Jackels and Philips and -29.09 kcal/mol from the MP4/6-31G** calculation reported here. The accuracy of this MP4 reaction exothermicity can be assessed by comparing experiment and theory for a related reaction. For OH + HO \rightarrow H₂O₂, experimental and MP4/6-31G* values for the 0 K reaction exothermicity are -49.650 and -43.451 kcal/mol, respectively. If a similar difference between experiment and MP4/6-31G** calculations exists for the OH + $HO_2 \rightarrow H_2O_3$ reaction, the calculations give an exothermicity 6 kcal/mol less negative than the experimental value. Higher level theory may be needed to establish a more accurate $OH + HO_2 \rightarrow H_2O_3$ reaction exothermicity. Hopefully, an accurate experimental value for this reaction exothermicity will become available in the near future.

The 0 K experimental heats of formation for OH, HO_2 , $O_2(^1\Delta)$, and H_2O are 9.25, 52 3.2, 53 22.54, $^{42.52}$ and -57.10 kcal/mol, 52 respectively, which give a heat of reaction of -47.0 kcal/mol. In comparison, the MP4 heat of reaction at 0 K is -38.8 kcal/mol. To determine this energy, the MP2 frequencies were used to evaluate the reactant and product zero-point energies. A multireference configuration interaction calculation $^{45.46}$ may be needed to obtain better agreement with experiment.

III. Reaction Kinetics

A. OH + HO₂ \rightarrow O₂($^{1}\Delta$) + H₂O. Under low-pressure conditions, so that the vibrationally/rotationally excited trioxide intermediate H₂O₃* is not collisionally stabilized, conventional transition-state theory⁵⁴ can be used to calculate the rate constant for reaction 1 on the singlet potential energy surface. The low-pressure conventional transition-state theory rate constant for reaction 1 on the singlet potential energy surface is given by

$$k = p(T)(k_B T/h) \exp(-\Delta G^*/RT)$$
 (6)

where p(T) is the probability of initiating the collision on the singlet surface, and ΔG^* is the free energy difference between the transition state and reactants.

With use of eq 5, the appropriate expression for p(T) can be deduced by considering the electronic energy levels of the reactants. Only the ground $^2A''$ electronic state of HO_2 is important, since the next electronic state $^2A'$ is 17 kcal/mol higher in energy.⁵⁵

⁽⁵⁰⁾ Brouwer, L.; Cobos, C. J.; Troe, J.; Dübal, H.-R.; Crim, F. F. J. Chem. Phys. 1987, 86, 6171.
(51) Whitesick, R. A.; Frisch, M. J.; Pople, J. A. Carnegie Mellon

⁽⁵¹⁾ Whitesick, R. A.; Frisch, M. J.; Pople, J. A. Carnegie Mellon Quantum Chemistry Archive; Carnegie Mellon University, 1983, and associated computer data base.

⁽⁵²⁾ CRC Handbook of Chemistry and Physics, 65th ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, FL, 1984.

⁽⁵³⁾ Howard, C. J. J. Am. Chem. Soc. 1980, 102, 6937. (54) Truhlar, D. G.; Hase, W. L.; Hynes, J. T. J. Phys. Chem. 1983, 87,

^{2664. (55)} Miller, J. A. J. Chem. Phys. 1981, 74, 5120.

TABLE X: Collision Capture Rate Constant for OH + HO₂ Association on the Singlet Surface

	k, 10 ⁻¹¹ cm ³ /molecule s		
<i>T</i> , K	vibrationally/rotationally adiabatic, eqs 4, 7	modified Langevin ⁵⁵	CVTST, eq 10
200	5.59	10.8	12.4
300	4.72	9.75	10.2
500	3.92	8.68	8.59
750	3.46		7.61
1000	3.20		7.05
2000	2.72		5.99

For OH($^{2}\Pi$) there are the two $^{2}\Pi_{1/2}$ and $^{2}\Pi_{3/2}$ spin-orbit states, which are separated by only 0.41 kcal/mol and are each doubly degenerate.36 Combining these four OH spin-orbit states with the HO₂ ²A" ground state gives rise to eight reactant electronic substates, four of which correlate with the ¹A' and ³A' surfaces and four of which correlate with ¹A" and ³A" surfaces. Inserting the above relative energies and electronic degeneracies into eq 5 gives the following expression for p(T):

$$p(T) = 1/2[2 + 2 \exp(-205/T)] \tag{7}$$

Tunnelling can be included by multiplying the rate constant by the Wigner correction factor

$$1 - \frac{1}{24} (h \nu^4 / k_B T)^2 \tag{8}$$

where ν^* is the imaginary frequency at the transition state. In this paper, we use the MP2 geometries and vibrational frequencies for the reactants (Table II) and reaction transition state (Table VII) and the MP4 energy in Table VIII to solve eqs 6 and 8.

The rate constants calculated from eqs 6 and 7 with and without the tunnelling correction are listed in Table IX. A comparison of these rate constants with the experimental rate constants in Table I and Figure 1 shows that at only highly elevated temperatures is the formation of ${}^{1}O_{2} + H_{2}O$ predicted to contribute significantly to the experimental reaction rate. Thus, these theoretical calculations are consistent with the experimental finding²¹ that the reaction between ¹⁸OH and H¹⁶O₂ does not yield ¹⁸O¹⁶O.

It is useful to consider how an error in the ab initio energy for the reaction transition state would affect the above rate constants. As discussed in section II.E, the MP4/6-31G** calculations underestimate the OH + $HO_2 \rightarrow {}^1O_2 + H_2O$ reaction exothermicity by 8 kcal/mol. If a similar error exists for the difference in energy between the reaction transition state and reactants, the calculated barrier for reaction is 8 kcal/mol too high. Lowering the barrier by this amount increases the rate constant by $5.5 \times$ 108 at 200 K and 7.5 at 2000 K. However, these increases in the rate constant are not sufficient to make reaction on the singlet surface a significant contributor to the observed experimental rate.

B. OH + HO₂ \rightarrow H₂O₃* Association. The above analysis shows that the formation of oxygen and water is an unimportant process on the singlet potential energy surface, except at extremely high temperatures. However, loss of the OH and HO₂ reactants and apparent reaction could occur if the H₂O₃* vibrationally/rotationally excited intermediate is collisionally stabilized as shown in reaction 1b. As a first step to analyze the importance of this process, the rate constant for $OH + HO_2 \rightarrow H_2O_3^*$ association must be established.

In lieu of performing classical trajectory⁵⁷ or quantum⁵⁸ dynamical calculations, the rate constant for OH + HO₂ association on the singlet potential energy surface can be approximated by using a collision capture theory.²³ The capture rate constant used here is the one given by eq 4, which results from the vibrationally/rotationally adiabatic model of Clary.²⁵ The probability p(T)

of initiating the capture collision on the singlet surface is given by eq 7. The resulting singlet surface association rate constants are listed in Table X. Phillips⁵⁹ has developed a modified Langevin collision capture model and has applied it to OH + HO₂ association on the singlet surface by using the dipole-dipole potential in eq 3. The rate constants he determined are included in Table X. They are approximately 2 times larger than those found here by using eq 4.

Variational transition state theory (VTST)²³ can also be used to determine a capture rate constant for association. In microcanonical variation transition-state theory the transition state is located at the minimum in the number of states along the reaction path. The transition state is placed at the maximum in free energy along the reaction path in canonical variational transition state theory (CVTST). It is the latter version of transition state theory that is applied here. For these CVTST calculations it is assumed that neither the vibrational frequencies or geometries of OH and HO₂ vary along the association reaction path and that the distance between the OH and HO₂ centers of mass is the reaction coordinate value. If the OH + HO₂ interaction is assumed to be weak, the Hamiltonian for the degrees of freedom which vary along the reaction path can be written as a sum of terms that includes a "diatomic" rotation with a moment of inertia for the centers of mass of OH and HO₂, rotations of OH and HO₂ about their centers of mass, and the intermolecular potential between OH and HO₂, i.e.⁶⁰⁻⁶²

$$H = H_{2d,rot} + H_{OH,rot} + H_{HO_2,rot} + V(\theta_i,\phi_i)$$
 (9)

If a classical partition function for the transition state is calculated from this Hamiltonian, the CVTST rate constant as a function of the reaction coordinate R^* is 58,59

$$k(T,R^*) = p(T)\pi(R^*)^2(8k_BT/\pi\mu)^{1/2}\langle \exp[-V(\theta_i,\phi_i)/k_BT]\rangle$$
(10)

where the term in angular brackets represents a Monte Carlo average of $\exp[-V(\theta_i,\phi_i)/k_BT]$ over the θ_i,ϕ_i spherical polar angles of OH and HO2. The CVTST rate constant for a particular temperature is the minimum in $k(T,R^*)$, which results from $(R^*)^2$ decreasing and the term in angular brackets increasing with a decrease in R^* .

To evaluate eq 10, we use the dipole-dipole potential in eq 3 for $V(\theta_i, \phi_i)$. The resulting CVTST rate constants for OH + HO₂ \rightarrow H₂O₃* association are listed in Table X. The value of R^* at the transition state is 4.9, 4.3, 3.6, 3.2, 2.9, and 2.3 Å, respectively, for T values of 200, 300, 500, 750, 1000 and 2000 K. Thus, as found for other association reactions, 23,60-64 the internuclear separation between the reactants at the transition state decreases as the temperature increases. The CVTST rate constants are approximately a factor of 2 larger than those resulting from the use of vibrationally/rotationally adiabatic theory, eq 4.

The more accurate VTST rate constant is given by microcanonical VTST.65 The CVTST rate constant will be larger. An indication of the difference between the canonical and microcanonical rate constants for OH + $HO_2 \rightarrow H_2O_3^*$ can be attained from previous studies,23 for which this difference ranges from 15-20% for 2CH₃ \rightarrow C₂H₆ and 5-10% for H + CH₃ \rightarrow CH₄.²³ For the ion-molecule associations $Li^+ + H_2O \rightarrow Li^+(H_2O)$, Li^+ + $(CH_3)_2O \rightarrow Li^+[(CH_3)_2O]$, and $Cl^- + CH_3Cl \rightarrow Cl^- CH_3Cl$ the difference is somewhat larger and ranges from 20 to 55%. 23,31,64

⁽⁵⁶⁾ Clary, D. C.; Werner, H.-J. Chem. Phys. Lett. 1984, 112, 346.
(57) See, for example: Swamy, K. N.; Hase, W. L. J. Am. Chem. Soc.
1984, 106, 4071. Duchovic, R. J.; Hase, W. L. J. Chem. Phys. 1985, 82, 3599.
(58) See, for example: Zhang, J. Z. H.; Miller, W. H. J. Chem. Phys.
1990, 92, 1811. Kress, J. D.; Bacic, Z.; Parker, G. A.; Pack, R. T. Chem. Phys. Lett. 1989, 157, 484. Yu, C.; Kouri, D. J.; Zhao, M.; Truhlar, D. G.;
Schwarker, D. W. Chem. Phys. Lett. 1999, 157, 401.

Schwenke, D. W. Chem. Phys. Lett. 1989, 157, 491.

⁽⁵⁹⁾ Phillips, L. F. J. Phys. Chem. 1990, 94, 7482.

⁽⁶⁰⁾ Wardlaw, D. M.; Marcus, R. A. Chem. Phys. Lett. 1984, 110, 230; J. Chem. Phys. 1985, 83, 3462; J. Phys. Chem. 1986, 90, 5383. (61) Hase, W. L.; Duchovic, R. J. J. Chem. Phys. 1985, 83, 3448. Vande Linde, S. R.; Mondro, S. L.; Hase, W. L. J. Chem. Phys. 1987, 86, 1348. Hase, W. L.; Mondro, S. L.; Duchovic, R. J.; Hirst, D. M. J. Am. Chem. Soc. 1987, 109, 2916.

 ⁽⁶²⁾ Klippenstein, S. J.; Marcus, R. A. J. Chem. Phys. 1987, 87, 3410.
 (63) LeBlanc, J. F.; Pacey, P. D. J. Chem. Phys. 1985, 83, 4511. Darvesh,

<sup>K. V.; Boyd, R. J.; Pacey, P. D. J. Phys. Chem. 1989, 93, 4772.
(64) Aubanel, E. E.; Wardlaw, D. M. J. Phys. Chem. 1989, 93, 3117;</sup> Chem. Phys. Lett. 1990, 167, 145.

⁽⁶⁵⁾ Truhlar, D. G.; Garrett, B. C. Acc. Chem. Res. 1980, 13, 440.

Figure 5. Model for the OH + HO₂ association transition state.

If a similar difference applies to the OH + HO₂ system, the microcanonical VTST rate constant will be larger than that from eq 4. Such a relationship is necessary, since a properly evaluated vibrationally/rotationally adiabatic rate constant will be less than or equal to that of microcanonical VTST.66

C. Pressure Dependence of H₂O₃ Formation. To study the effect of pressure on the loss of reactants, rate constants must be determined for the individual steps in reaction 1b, i.e.

$$OH + HO_2 \xrightarrow{k_1} H_2O_3^* \xrightarrow{k_2} H_2O + O_2$$

$$\downarrow \omega H_2O_3$$

On the basis of this mechanism, the RRKM/transition-state theory rate constant for the loss of either the OH or HO₂ reactant as a function of temperature and pressure (i.e., ω) is given by 67

$$k(T,\omega) = \frac{\sigma p(T)}{hQ_{\text{OH}}Q_{\text{HO}_2}} \int_0^{\infty} dE \sum_{J=0}^{\infty} \frac{[\omega + k_2(E,J)]G^*_1(E,J)e^{-E/k_BT}}{\omega + k_{-1}(E,J) + k_2(E,J)}$$
(11)

where σ is the reaction path degeneracy, p(T) is the electronic factor, Q_{OH} and Q_{HO_2} are the reactant partition functions, ω is the collision frequency, $G^*_{1}(E_*J)$ is the sum of states at total energy E and angular momentum J for the transition-state separating reactants and $H_2O_3^*$, and $k_{-1}(E,J)$ and $k_2(E,J)$ are RRKM unimolecular rate constants versus E and J. Using a vibrator transition state model⁶⁸ and treating the K quantum number as active, ^{66,68-70} these unimolecular rate constants are given by the generic expression

$$k(E,J) = \sigma G^*(E,J) / hN(E,J)$$
 (12)

where

$$G^*(E,J) = \sum_{K=-J}^{J} G^*[E - E_0 - E^*_r(J,K)]$$
 (13a)

$$N(E,J) = \sum_{K=-J}^{J} N[E - E_{\rm r}(J,K)]$$
 (13b)

In these equations, $G^*(E,J)$ is the transition-state sum of states, N(E,J) is the $H_2O_3^*$ density of states, E_0 is the unimolecular threshold, and $E_r^*(J,K)$ and $E_r(J,K)$ are the transition-state and H₂O₃* rotation energies. These energies are given by the "almost symmetric top" expression,⁷¹ e.g.

$$E_{\rm r}(J,K) = (I_{\rm a}^{-1} + I_{\rm b}^{-1})[J(J+1) - K^2]\hbar^2/4 + K^2\hbar^2/2I_{\rm c}$$
(14)

The transition state for calculating $k_2(E,J)$ is located at the saddlepoint separating $H_2O_3^*$ and the $O_2(^1\Delta) + H_2O$ products and is given in Table VII. Since there is no saddlepoint separating OH + HO₂ and H₂O₃*, microcanonical variational transition-state theory is the most accurate procedure to determine the transition state needed to evaluate the sum of states $G_{1}^{*}(E,J)$ and the unimolecular rate constant $k_{-1}(E,J)$. An approximate variational

TABLE XI: Parameters for the Model OH + HO₂ = H₂O₃

		ten	ıp, K	
parameter	300	500	750	1000
R*, a Å	4.3	3.6	3.2	2.9
E_{0}^{r} , kcal/mol	~1.26	-2.15	-3.07	-4.12
$I^{*}_{0}{}^{c}$ amu A^{2}	224.2	162.1	131.6	111.1
•	215.4	153.6	123.3	103.0
	8.71	8.48	8.28	8.09
v_{i}^{*} cm ⁻¹	79 (4)	104 (4)	125 (4)	145 (4)

⁴OH + HO₂ center-of-mass separation. ^bClassical potential energy difference between the transition state and reactants. Zero-point energies are not included. 'Principal moments of inertia. d'Vibrational frequencies for the transitional modes. The remaining vibrational frequencies for the transition state are the same as the OH and HO2 reactant values.

Figure 6. Plot of $\log [k/k(\infty)]$ versus $\log \omega$ for the potential surface with the MP4 OH + $HO_2 \rightarrow H_2O_3$ reaction exothermicity. The curves are for T = 300, 500, 750, and 1000 K. The upper curve is for T = 300 K and the lower curve for T = 1000 K.

transition-state theory approach is used here to determine these properties. The OH + HO₂ intermolecular potential is given by the dipole-dipole potential in eq 3 and the HO--HO₂ center-ofmass separation at the transition state is assumed to be the value determined from the CVTST calculation in the previous section. The dipole moments of OH and HO₂ are assumed to be aligned so that the transition state has the geometry given in Figure 5. (The ab initio CI Mulliken population² for HO₂ was used to determine the orientation of the HO₂ dipole moment.) It is also assumed that OH and HO₂ have the same geometries and vibrational frequencies in the transition state as for separated reactants. With these assumptions, all that is unknown about the transition state are its four intermolecular transitional mode²³ vibrational frequencies. These four frequencies were assumed to be degenerate, and their value was chosen by requiring the high-pressure limit of eq 11, $k(T,\omega \rightarrow \infty)$, to equal the vibrationally/rotationally adiabatic capture rate constant in Table X. The reactant MP2 geometries and vibrational frequencies given in Table II are used for this calculation. Parameters for the temperature dependent OH + $HO_2 \rightleftharpoons H_2O_3^*$ transition state are listed in Table XI.

As shown in Figure 5, OH and HO₂ do not have the proper relative orientation in the transition-state model used here for direct formation of H₂O₃*. However, the OH and HO₂ moieties are highly flexible in the transition state. As a result, it is assumed that HO₂ can reorient to bring about H-O-O-O-H bond formation once the reactants move inside the transition state.

With use of these association transition states and the MP2 geometries and vibrational frequencies for the reactants (Table II), the H₂O₃ intermediate (Table IV), and the reaction transition

⁽⁶⁶⁾ Quack, M.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 240. (67) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, UK, 1990.

⁽⁶⁸⁾ Aubanel, E. E.; Wardlaw, D. M.; Zhu, L.; Hase, W. L. Int. Rev. Phys.

Chem., in press.

(69) Miller, W. H. J. Am. Chem. Soc. 1979, 101, 6810.

(70) Zhu, L.; Hase, W. L. Chem. Phys. Lett. 1990, 175, 117.

(71) Townes, C. H.; Schalow, A. L. Microwave Spectroscopy; McGraw-Hill: New York, 1955; pp 84-86.

Figure 7. Plot of $\log [k/k(\infty)]$ versus $\log \omega$ for the potential surface with the CI OH + HO₂ → H₂O₃ reaction exothermicity. The curves are identified the same as in Figure 6.

state (Table VII), the rate constant in eq 11 was evaluated versus temperature and collision frequency. The first series of calculations were performed with the MP4 energies in Table VIII, which, after including zero-point energies, give a OH + HO₂ \rightarrow H₂O₃ exothermicity of -29.09 kcal/mol and a threshold of 44.26 kcal/mol for H_2O_3 dissociation to $O_2(^1\Delta) + H_2O$. The results of these calculations are given in Figure 6, where the logarithm of k- $(T,\omega)/k(T,\omega\rightarrow\infty)$ is plotted versus the logarithm of ω for T=300, 500, 750, and 1000 K. For the second series of calculations, the CI result² of 26.4 kcal/mol was used for the electronic energy difference between the reactants and trioxide intermediate. This energy, with zero-point energies included, gives a OH + HO₂ -H₂O₃ exothermicity of -21.9 kcal/mol and a H₂O₃ dissociation threshold for crossing the reaction transition state of 37.0 kcal/mol. Plots like those in Figure 6 are given in Figure 7 for these CI energetics. Comparing the results in Figures 6 and 7 shows that the MP4 H₂O₃ electronic binding energy gives a larger rate constant for OH (or HO₂) loss at a particular temperature and collision frequency than does the CI binding energy, because the lower CI H₂O₃ binding energy results in a larger unimolecular rate constant $k_{-1}(E,J)$.

The Lennard-Jones collision frequency⁷³ between H₂O₃* and the commonly used⁷⁻¹¹ bath gas helium is $\omega = 1.6 \times 10^7 P \text{ s}^{-1} \text{ Torr}^{-1}$ at 300 K, where P is the helium pressure in Torr. This collision frequency has an approximate $T^{-1/2}$ temperature dependence. An approximate frequency for the collision stabilization of H₂O₃* can be evaluated by multiplying ω by β the collision efficiency (i.e., $0 < \beta \le 1$). Though β values used for helium are often lower than 0.1,74 a rather conservative large value73 of 0.25 is used for the analysis made here. Using this value for β , the 300 K curve in Figure 6, which results from the MP4 energetics, shows that $k/k(\infty)$ becomes greater than 0.1 for pressures in excess of 5000 Torr. Thus, at room temperature and for pressures near atmospheric (760 Torr), the MP4 energetics predict that the collisional stabilization of H₂O₃ in a helium bath will not contribute to the loss of OH and HO₂ on the singlet potential energy surface. From Figure 7 it is seen that the CI energetics require an even higher pressure of 20 000 Torr for $k/k(\infty)$ to equal 0.1 at room temperature.

Both Figures 6 and 7 show that for a fixed ω , H_2O_3 * collisional stabilization becomes less important as the temperature is increased. These results in Figures 6 and 7 are in accord with the ¹⁸OH + H¹⁶O₂ isotopic labeling studies of Dransfeld and Wagner⁸ performed at 2-9 Torr and room temperature. Under those conditions, our calculations show that essentially all of the iso-

(73) Chan, S. C.; Rabinovitch, B. S.; Bryant, J. T.; Spicer, L. D.; Fujimoto,
 T.; Lin, Y. N.; Pavlou, S. P. J. Phys. Chem. 1970, 74, 3160.
 (74) See, for example: Cobos, C. J.; Troe, J. Z. Phys. Chem. (Munich)

1990, 169, 129.

topically labeled H₂O₃* should dissociate to yield nearly identical amounts of ¹⁶OH and ¹⁸OH.

IV. Summary

Both electronic structure and rate theory calculations have been used to study the reaction between OH and HO₂ on the singlet potential energy surface. Geometries and vibrational frequencies for stationary points on the potential energy surface are determined with the MP2/6-31G** level of theory. With these geometries, relative energies are determined with MP4/6-31G** calculations.

An important property of the singlet potential energy surface characterized in this work is the OH + $HO_2 \rightarrow O_2(^1\Delta) + H_2O$ reaction transition state. With zero-point energies included, the MP4 calculation predicts this transition state to lie 15.2 kcal/mol higher in energy than the OH + HO₂ reactants. Thus, it is predicted that the formation of $O_2(^1\Delta) + H_2O$ is only an important process on the singlet surface at highly elevated temperatures in excess of 2000 K. This finding agrees with a previous experimental study.8 The error in the MP4 value for the OH + $HO_2 \rightarrow O_2(^1\Delta)$ + H₂O reaction exothermicity indicates that the MP4 barrier for reaction may be too large by as much as 8 kcal/mol. However, even if the barrier is lowered by this amount, reaction on the singlet surface still does not significantly contribute to the experimental reaction rate.

The H₂O₃ trioxide molecule is an intermediate on the singlet potential energy surface. Vibrational frequencies calculated for H₂O₃ at the MP2/6-31G** level of theory are in very good agreement with the experimental vibrational frequencies. 49 The $OH + HO_2 \rightarrow H_2O_3$ reaction exothermicity has not been determined by experiment, and an attempt is made here to establish it by ab initio calculations. A previous CI calculation² gave -21.9 kcal/mol for this reaction exothermicity. The value found here from MP4/6-31G** calculations is -29.1 kcal/mol.

The model used here assumes that every OH + HO₂ capture collision on the singlet surface forms vibrationally/rotationally excited H₂O₃*. At high pressures, collisional stabilization of H₂O₃* will contribute to the rate of reaction 1 since the OH and HO₂ reactants will be consumed. At low pressures the singlet surface will not contribute to the rate of reaction 1, since all of the H₂O₃* will dissociate to reactants. The exact pressure dependence of H₂O₃* collisional stabilization is uncertain at this time, since the level of $H_2O_3^*$ excitation is unknown because of the uncertainty in the OH + $HO_2 \rightarrow H_2O_3$ reaction exothermicity. However, neither the CI or MP4 value for the OH + HO₂ → H₂O₃ reaction exothermicity predicts significant collisional stabilization of H₂O₃* at room temperature and atmospheric pressure of helium, a commonly used bath gas. A 0 K reaction exothermicity substantially more negative than -30 kcal/mol is required for collisional stabilization of H₂O₃* at these conditions. A complete analysis of the pressure dependencies of H₂O₃ formation awaits an accurate determination of the OH + $HO_2 \rightarrow H_2O_3$ reaction exothermicity by higher level theoretical calculations than those reported here and/or by experiment.

To establish, from the calculations reported here, the pressures at which collisional stabilization of H₂O₃* becomes important requires knowing the collision efficiency β . For collisions of He with H_2O_3 * a relatively large value of 0.25 was used for β to obtain a lower bound to the pressures that yield significant collisional stabilization. Using a smaller value of β , which is often done,⁷⁴ would require higher He pressures for collisional stabilization. To determine a more precise relationship between H₂O₃* collision stabilization and the pressure of He or of any other bath gas will require more accurate collision efficiencies. A preferred (but difficult) approach for relating the probability to collisional stabilization to the pressure of a bath gas requires knowing energy-transfer probabilities and solving a master equation.

To conclude, the results reported here indicate that the loss of HO and HO₂ by reaction on the single surface is insignificant except at very high pressures and/or temperatures. Thus, the reaction that has been observed experimentally at room temperature and pressures of 1-1000 Torr of He must be occurring on the triplet surface. To study this thesis in detail extensive ab initio and reaction rate calculations are in progress for the triplet surface.31 However, in lieu of the results from this study several observations still can be made. First, the model advanced by Phillips⁵⁹ to explain the OH + HO₂ kinetics assumes reaction on the singlet surface. Second, the OH + HO₂ adiabatic capture rate constants calculated here for the singlet surface (Table X) are smaller than the experimental rate constants (Table I). For the triplet surface, the adiabatic capture rate constants are a factor of 3 larger and in approximate agreement with the experimental rate constants.

Acknowledgment. This research was supported by the Ford Motor Corp. Scientific Research Laboratory and the Institute for Manufacturing Research at Wayne State University. These calculations were performed in part at the NSF Pittsburgh Supercomputing Center.

Anilinopyridinium: Solvent-Dependent Fluorescence by Intramolecular Charge Transfer

Heinz Ephardt and Peter Fromherz*

Abteilung Biophysik der Universität Ulm, D-7900 Ulm-Eselsberg, Germany (Received: March 11, 1991)

Considerable intramolecular charge transfer is induced in anilinopyridinium by electronic excitation and by twist of the central single bond. Polar solvents shift the absorption spectrum to the blue and the fluorescence spectrum to the red. The effect may be assigned to an enhanced reorganization energy as described by Marcus' formula for intermolecular electron transfer. The quantum yield of fluorescence is lowered by polar media. The effect may be assigned to a lowered energy barrier leading to a nonfluorescent twisted internal charge-transfer (TICT) state as described by a Kramers-Born formula that accounts for solvation and friction.

Introduction

Homologues of (aminostyryl)pyridinium with two and three conjugated double bonds are popular fluorescence indicators of fast voltage transients in neurons in culture and in brain. 1-3 The molecular mechanism of the voltage sensitivity of fluorescence is unknown. A model for a physical mechanism must be based on a photophysical characterization of the probes, of course. In a previous paper we studied the prototype of these styryl dyes-[(dibutylamino)styryl]pyridinium butanesulfonate.4 fluorescence was found to be extremely sensitive to the polarity and viscosity of bulk solvents. We assigned this sensitivity to a modulation of radiationless deactivation that was not related to trans-cis photoisomerization. To confirm this interpretation we decided to study molecules without double bonds, i.e., to leave the class of styryl dyes and to consider anilinopyridinium dyes as presumable parent compounds of voltage-sensitive dyes. In this paper we present our results on (dibutylanilino)pyridinium butanesulfonate.

Computations

We computed the charge density of the positively charged chromophore of (dibutylanilino)pyridinium butanesulfonate. We applied the MNDO approximation⁵ to the compound 1-methyl-4-(dimethylanilino)pyridinium using the program package MOPAC.6

We evaluated the charge distribution in the ground state and in the first excited state with limited configuration interaction (CI) as provided by MOPAC.6 We varied the dihedral angle between pyridine and aniline, keeping the rest of the molecule at invariant

In the planar ground state three-quarters of the charge was found in the pyridinium. In the planar excited state two-thirds of the charge was found in the aniline: The polarity of the molecule was reversed by excitation, the two charge distributions being roughly mirror images of each other. In the perpendicular ground state 90% of the charge was found in the pyridinium, whereas in the perpendicular excited state 90% of the charge was found in the aniline. The reversal of polarity was enhanced by twist. A twisted internal charge transfer (TICT) occurs in the excited state⁷⁻⁹ as related to the twist of the dieder angle between the aromatic rings. (Twist around the amine bond did not give rise to a significant change of the charge distribution.)

The pronounced rearrangement of charge in the processes of excitation and of twist suggests that polar solvents may give rise to a considerable modulation of the energy surfaces of ground state and excited state.

Materials and Methods

Synthesis. 4-(4-N,N-Dibutylanilino)pyridine was synthesized by palladium-catalyzed coupling of p-bromo-N,N-dibutylaniline and diethyl(4-pyridyl)borane referring to a general procedure for synthesis of arylpyridines.¹⁰ The butylsulfonate group was introduced by butanesultone.¹¹ The product (dibutylanilino)-

geometry. A standard geometry was obtained by energy optimization of the ground state without CI imposing a set of symmetry conditions: The molecule, except for aliphatic hydrogens, had C_2 symmetry. The lengths of the aromatic CH bonds were equal. The methyl group at the pyridinium had $C_{3\nu}$ symmetry. The angles of the CH bonds in the methylamino group were equal. The lengths of all aliphatic CH bonds were equal. (In the optimized structure the dihedral angle was 49°.) The distribution of net charge over the atoms and the atomic groups is shown in Figure 1 for the coplanar state and for the perpendicular state.

⁽¹⁾ Cohen, L. B.; Lesher, S. In Optical Methods in Cell Physiology;

deWeer, P., Salzberg, B. M., Eds.; Wiley: New York, 1986; p 71.
(2) Loew, L. M.; Simpson, L. L. Biophys. J. 1981, 34, 353.
(3) Grinvald, A.; Hildesheim, R.; Farber, I. D.; Anglister, L. Biophys. J. 1982, 39, 301

⁽⁴⁾ Ephardt, H.; Fromherz, P. J. Phys. Chem. 1989, 93, 7717.
(5) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4899.
(6) Stewart, J. J. P. MOPAC Manual, 2nd ed.; University of Texas, Austin; QCPE No. 455.

⁽⁷⁾ Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.; Cowley, J.; Baumann, W. Nouv. J. Chim. 1979, 3, 343.
(8) Rettig, W. Angew. Chem. 1986, 98, 969.

⁽⁹⁾ Bonatic-Koutecky, V.; Koutecky, J.; Michl, J. Angew. Chem. 1987, 99, 216.

⁽¹⁰⁾ Ishikura, M.; Ohta, T.; Terashima, M. Chem. Pharm. Bull. 1985, 33,