Materials science with large-scale data and informatics:

Materials science with large-scale data and informatics:	1
Paper Details	1
Prerequisite	1
Approach	1
Project Details	1
Change Log	1
Current Situation (As per paper in 2016)	2
Computational Material Science vs Material Informatics	2
Opportunity	2
Importance of processing-structure-properties-performance	2
Current Data Landscape	2
Very Broad Materials data infrastructure	2
Free Databases	3
Challenges	3
Other Sources	4
Open Access	5
Smart Manufacturing (lab to Production Scaling)	5
Data Standards	5

Paper Details

Materials science with large-scale data and informatics: Unlocking new opportunities,
Joanne Hill

Prerequisite

MaterialScience.pptx

Approach

Project Details

Generating-Knowledge-Bases-From-Scientific-Publications

https://github.com/epochxero/Generating-Knowledge-Bases-From-Scientific-Publications

Change Log

Date	Project Team Member	Description	Version
5 th Dec 2019	Amardeep Singh Sidhu	Initial Version Created	LR002_V1_Sci

Current Situation (As per paper in 2016)

Computational Material Science vs Material Informatics

Feature\Field	Computational Material	Material Informatics
1	Science	(Our Focus)
Physics based tools.	Yes	No
(No underlying governing		
equation such as Schrödinger		
equation)		
Data Based	No	Yes
Examples	Density Functional Theory	Tomographic or high
	Molecular Dynamics	throughput X-ray diffraction.
	Phase filed simulation	
	Integrated computational	
	materials engineering (ICME)	

ICME: Connects physics-based models to predictively model alloy behaviour. Systems such as atomistic simulation, dislocation modelling, thermodynamic modelling, continuum modelling are connected.

Opportunity

Material Informatics can complement ICME by

- a) Predictively supplying key materials property parameters for underlying ICME models.
- b) integrating the outputs of an ICME workflow into higher-level machine learning based models of materials behaviour.

Importance of processing—structure—properties—performance

Current Data Landscape

Very Broad Materials data infrastructure

- a) The National Institute of Standards and Technology (NIST) Materials Data Curation System
- b) Citrine Informatics' Citrination platform

Free Databases

FIEE Databases		
Name	URL	Category
3D Materials Atlas	cosmicweb.mse.iastate.edu/wiki/display/home/	3D Characterization
AFLOWLIB	aflowlib.org	Computational
AIST Research	www.aist.go.jp/aist_e/list/database/riodb	General Materials Data
Information		
Databases		
American	rruff.geo.arizona.edu/AMS/amcsd.phP	Minerals
Mineralogist Crystal		
Structure Database		
CatApp	suncat.stanford.edu/catapp	Catalysts
Chemspider	www.chemspider.com	Chemical data
Citrination	citrination.com	General Materials Data
Computational	cmr.fysik.dtu.dk	Computational
Materials Repository		
Crystallography Open	http://www.crystallography.net	Crystallography
Database		
DOE Hydrogen	www.hydrogenmaterialssearch.govtools.us	Hydrogen Storage
Storage Materials		
Database		
Harvard Clean Energy	cepdb.molecularspace.org	Computational
Project		
Matbase	www.matbase.com	General Materials Data
Materials Project	www.materialsproject.org	Computational
MatNavi (NIMS)	mits.nims.go.jp/index_en.html	General Materials Data
MatWeb	www.matweb.com	General Materials Data
Mindat	www.mindat.org	Minerals
NanoHUB	nanohub.org	Nanomaterials
Nanomaterials	www.nanomaterialregistry.org	Nanomaterials
Registry		
NIST Materials Data	materialsdata.nist.gov/dspace/xmlui	General Materials Data
Repository (DSpace)		
NIST Interatomic	www.ctcms.nist.gov/potentials	Computational
Potentials Repository		
NIST Standard	www.nist.gov/srd/onlinelist.cfm	General Materials Data
Reference Data		
NoMaD	nomad-repository.eu/cms	Computational
Open Knowledge	openkim.org	Computational
Database of		
Interatomic Models		
(Open KIM)		
Open Quantum	oqmd.org	Computational
Materials Database		
PubChem	pubchem.ncbi.nlm.nih.gov	Chemical data
TEDesignLab	www.tedesignlab.org	Thermoelectrics
UCSB-MRL	www.mrl.ucsb.edu:8080/datamine/	Thermoelectrics
thermoelectric	thermoelectric.jsp	
database		

- a) Need to check which of above data base is downloadable in bulk.
- b) Lack of common data standards in these data bases. Example Crystallographic Information File (CIF Format)

Citrine Informatics is working to nucleate grassroots support for a flexible JavaScript Object Notation (JSON)-based material-data format.

Citrine Informatics, "MIF Schema," available at https://github.com/CitrineInformatics

Materials Project

- **Pymatgen:** document-based schema-less database, and automated open-source workflow software.
- **Fireworks:** Determine structural, thermodynamic, electronic, and mechanical properties of over 65,000 inorganic compounds by means of high-throughput ab initio calculations. More compounds and properties (e.g., elastic tensors, band structures, dielectric tensors, x-ray diffraction, piezoelectric constants, etc.) are being added on a daily basis
 - Note: Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry.
- **Web Application:** A series of web applications provide users with the capability to perform advanced searches and useful analyses (e.g., phase diagrams, reaction-energy computations, band-structure decomposition, novel structure prediction, Pourbaix diagrams). Calculated results are available by Material API.

The Open Quantum Materials Database (OQMD)

The Open Quantum Materials Database (OQMD) 24 , 49 is a high-throughput database currently consisting of \sim 400,000 DFT total energy calculations of compounds from the ICSD and decorations of commonly occurring crystal structures. OQMD is open (without restrictions) and is online.

- Search Material by composition
- Create phase diagram
- Determine ground state composition
- Determine if equilibrium exists between two phases
- Visualize crystal structure
- Download entire data base for own use

Other Sources

a) US Materials Genome Initiative (MGI), launched in 2011, to accelerate materials development and commercialization.

- b) US Air Force Research Laboratory, NIST, and NSF launched a Materials Science and Engineering Data Challenge to encourage the use of publicly available data to discover or model new material properties.
- c) https://www.mrs.org/open-data-challenge

Open Access

The open-access (OA) paradigm, in which readers are able to view and (sometimes) repurpose published research at no cost.

Smart Manufacturing (lab to Production Scaling)

Data Standards

MatML (Promoted by NIST, XML Schema)

MatDB(XML Schema)

NMC-MatDB (XML Schema)

Material Information File (JSON)