Computabilità e Algoritmi (Computabilità) 21 Marzo 2014

Esercizio 1

Enunciare e dimostrare il teorema di Rice.

Esercizio 2

Sia $A \subseteq \mathbb{N}$ un insieme e sia $f : \mathbb{N} \to \mathbb{N}$ una funzione calcolabile. Dimostrare che se A è r.e. allora $f(A) = \{y \in \mathbb{N} \mid \exists x \in A. \ y = f(x)\}$ è r.e. Vale anche il contrario? Ovvero da f(A) r.e. si può dedurre che A è r.e.?

Esercizio 3

Sia $X \subseteq \mathbb{N}$ finito, $X \neq \emptyset$ e si definisca $A_X = \{x \in \mathbb{N} : W_x = E_x \cup X\}$. Studiare la ricorsività di A, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \exists k \in \mathbb{N}. \ k \cdot x \in W_x\}$, ovvero dire se B e \overline{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che l'insieme $B = \{x \in \mathbb{N} : \exists k \in \mathbb{N}. \ k \cdot x \in W_x\}$ dell'esercizio precedente non è saturato.

Nota: Correzione, risultati e visione dei compiti: Giovedì 27 Marzo, ore 9:30, 1BC/45