AP Chemistry Equations & Constants

Throughout the test the following symbols have the definitions specified unless otherwise noted.

ATOMIC STRUCTURE

$$E = h\nu$$
$$c = \lambda\nu$$

 ν = frequency λ = wavelength

Planck's constant, $h = 6.626 \times 10^{-34} \, \mathrm{J \, s}$ Speed of light, $c = 2.998 \times 10^8 \, \mathrm{m \, s^{-1}}$ Avogadro's number = $6.022 \times 10^{23} \, \mathrm{mol^{-1}}$ Electron charge, $e = -1.602 \times 10^{-19} \, \mathrm{coulomb}$

E = energy

EQUILIBRIUM

$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}, \text{ where } a \text{ A} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$$

$$K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

$$= K_a \times K_b$$

$$pH = -\log[H^+], pOH = -\log[OH^-]$$

$$14 = pH + pOH$$

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

$$pK_a = -\log K_a, pK_b = -\log K_b$$

Equilibrium Constants

 K_c (molar concentrations) K_p (gas pressures) K_a (weak acid) K_b (weak base) K_w (water)

KINETICS

$$\ln[A]_t - \ln[A]_0 = -kt$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

$$t_{1/2} = \frac{0.693}{k}$$

k = rate constant t = time $t_{1/2} = \text{half-life}$

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A$$
, where $X_A = \frac{\text{moles A}}{\text{total moles}}$

$$P_{total} = P_{\rm A} + P_{\rm B} + P_{\rm C} + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

KE per molecule =
$$\frac{1}{2}mv^2$$

Molarity, M =moles of solute per liter of solution

$$A=abc$$

$$P = pressure$$

$$V = \text{volume}$$

T = temperature

n = number of moles

m = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

A = absorbancea = molar absorptivity

b = path length

c =concentration

Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ = 0.08206 L atm mol⁻¹ K⁻¹ = 62.36 L torr mol⁻¹ K⁻¹

1 atm = 760 mm Hg= 760 torr

STP = 0.00 °C and 1.000 atm

THERMOCHEMISTRY/ ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta S^{\circ} = \sum S^{\circ}$$
 products $-\sum S^{\circ}$ reactants

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products } -\sum \Delta H_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products } -\sum \Delta G_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$= -RT \ln K$$

$$= -n\,FE^\circ$$

$$I = \frac{q}{t}$$

$$q = \text{heat}$$

$$m = \text{mass}$$

$$c =$$
specific heat capacity

$$T = temperature$$

$$S^{\circ}$$
 = standard entropy

$$H^{\circ}$$
 = standard enthalpy

$$G^{\circ}$$
 = standard free energy

$$n = \text{number of moles}$$

$$E^{\circ}$$
 = standard reduction potential

$$I = \text{current (amperes)}$$

$$q = \text{charge (coulombs)}$$

$$t = time (seconds)$$

Faraday's constant, F = 96,485 coulombs per mole of electrons

$$1 \text{volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$

2	He	4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	98	Rn	(222)			
	<u> </u>	4		_																
			6	Ξ,	19.00	17	こ	35.45	35	Br	79.90	53	Ι	126.91	85	At	(210)			
			8	0	16.00	16	S	32.06	34	Se	78.96	52	Te	127.60	84	P_0	(209)			
7			7	Z	14.01	15	Ь	30.97	33	$\mathbf{A}\mathbf{s}$	74.92	51	$\mathbf{S}\mathbf{p}$	121.75	83	Bi	203.98			
LIN			9	ပ	12.01	14	Si	28.09	32	Ge	72.59	50	\mathbf{Sn}	118.71	82	Pb	207.2			
ME			5	В	10.81	13	Al	26.98	31	Сa	69.72	49	In	114.82	81	Ι	204.38			
ELI									30	Zn	62.39	48	Cq	112.41	80	Hg	200.59			
THE									59	Cn	63.55	47	Ag	107.87	79	Au	196.97	1111	Rg	(272)
RIODIC TABLE OF THE ELEMENTS									28	Z	58.69	46	Pd	106.42	78	Pt	195.08	110	Os	(271)
LE									27	ప	58.93	45	Rh	102.91	77	ï	192.2	109	Mt	(368)
TAB									26	Fe	55.85	44	Ru	101.1	92	ŏ	190.2	108	Hs	(277)
OIC									25	Mn	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)
									24	Cr	52.00	42	Mo	95.94	74	*	183.85	106	Sg	(566)
PE									23	>	50.94	41	S	92.91	73	Та	180.95	105	Dp	(292)
									22	Ξ	47.90	40	$\mathbf{Z}_{\mathbf{r}}$	91.22	72	Hľ	178.49	104	Rf	(261)
									21	Sc	44.96	39	X	88.91	57	*La	138.91	68	†Ac	226.02 227.03 (261)
			4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	\mathbf{Sr}	87.62	99	Ba	137.33	88	Ra	226.02
-	Н	1.008	3	Ľ		\vdash			\vdash		_		Rb	_	_		132.91		Fr	(223)

	ŝ	00	3	5
*Lanthanide Series	ce	Pr	Nd	P
	140.12	140.12 140.91	144.24	(14
				ľ

	28	29	09	61		63	49	65	99	
Lanthanide Series	Ç	Pr	Nd	Pm		Eu	Вd	Tb	Dy	
	140.12	140.91	144.24	(145)		151.97	157.25	158.93	162.50	_
	06	91	92	93		95	96	62	86	
†Actinide Series	$\mathbf{T}\mathbf{h}$	Pa	Ω	Np	Pu	Am	Cm	Bk	Ct	
	232.04	231.04	238.03	(237)		(243)	(247)	(247)	(251)	

70 71	Yb Lu	173.04 174.97
69	Tm	168.93
89	\mathbf{Er}	167.26
29	Ho	164.93
99	Dy	162.50
65	$\mathbf{T}\mathbf{p}$	158.93
64	Сd	157.25
63	Eu	151.97
21	E	0.4

(262)

(257) (258) (259)

(252)

103 **L**r

102 **%**

101 **Md**

100 **Fm**

99 **Es**

HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

DATA SHEET

Avogadro constant, N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and	
at 0°C (273.15 K)	22.71 L
at 25°C (298.15 K)	24.79 L
Ionisation constant for water at 25°C (298.15 K), K_w	1.0×10^{-14}
Specific heat capacity of water	$4.18\times10^3~J~kg^{-1}~K^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^+] \qquad \qquad \Delta H = -mC\Delta T$$

Some standard potentials

$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	–2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^{-}$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^{-}$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^{-}$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^{-}$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}\mathbf{F}_2(g) + \mathbf{e}^{-}$	\rightleftharpoons	F ⁻	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

		1					PERIO	DIC T	ABLE ()F TH	e ele	MENTS						
	1 H						1 22110											2 He
	1.008								*****									4.003
	Hydrogen		-						KEY	_								Helium
	3.	4					Ato	mic Number	79				5	6	7	8	9	10
	Li	Be					G: 1 14:	Symbol	Au				B	C	N	0	F	Ne
	6.941 Lithium	9.012 Beryllium					Standard Ato	omic Weight Name	197.0 Gold				10.81 Boron	12.01 Carbon	14.01 Nitrogen	16.00 Oxygen	19.00 Fluorine	20.18 Neon
	11	12	1					Name	Gold	1			13	14	15	16	17	18
	Na	Mg											Al	Si	P	S	Cl	Ar
	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
	Sodium 19	Magnesium 20	21	22	23	24	25	26	27	28	29	30	Aluminium 31	Silicon 32	Phosphorus 33	Sulfur 34	Chlorine 35	Argon 36
	K	Ca	Sc	Ti	$\begin{array}{ c c }\hline & 23 \\ V & \end{array}$	Cr	Mn	Fe Fe	Co	Ni	Cu	Zn	Ga	Ge Ge	As	Se Se	Br	Kr
	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.64	74.92	78.96	79.90	83.80
	Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y 99.01	Zr	Nb	Mo 05.06	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te 127.6	I 126.0	Xe
	85.47 Rubidium	87.61 Strontium	88.91 Yttrium	91.22 Zirconium	92.91 Niobium	95.96 Molybdenum	Technetium	101.1 Ruthenium	102.9 Rhodium	106.4 Palladium	107.9 Silver	112.4 Cadmium	114.8 Indium	118.7	121.8 Antimony	Tellurium	126.9 Iodine	131.3 Xenon
	55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
)	132.9 Caesium	137.3 Barium	Lanthanoids	178.5	180.9	183.9 Tungsten	186.2	190.2 Osmium	192.2	195.1 Platinum	197.0 Gold	200.6 Mercury	204.4 Thallium	207.2 Lead	209.0 Bismuth	Polonium	Astatine	Radon
	87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	05 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	Francium	Radium	Actinoids	Rutherfordiun	n Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganessor
			Lanthanc	side.														
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71]
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			138.9	140.1	140.9	144.2		150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
			Lanthanum	Cerium	Praseodymiun		Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
			A 1															
			Actinoids		01	02	02	0.4	05	06	07	00	00	100	101	100	102	1
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
			AC	232.0	231.0	238.0	14b	Fu	AIII	CIII	DK		ES	1.111	IVIU	INU	LI	
			Actinium	Thorium	Protactinium		Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

Information on elements with atomic numbers 113 and above is sourced from the International Union of Pure and Applied Chemistry Periodic Table of the Elements (November 2016 version). The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of all other data. Some data may have been modified.