EE25BTECH11043 - Nishid Khandagre

Question: If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is $\binom{3}{2}$, then the equation of the line will be?

Solution: The equation of line is

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{0.1}$$

Where $\mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$ is the normal vector and $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ is the position vector.

X-axis intercept $y = 0 \Rightarrow x = \frac{c}{n_1}$.

Thus, **A** is $\binom{c}{n_1}$.

Y-axis intercept $x = 0 \Rightarrow y = \frac{c}{n_2}$.

Thus, **B** is $\binom{0}{\frac{c}{n_2}}$.

Let M is the midpoint of A and B

Given $\mathbf{M} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

$$\mathbf{M} = \frac{\mathbf{A} + \mathbf{B}}{2} \tag{0.2}$$

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{c}{2n_1} \\ \frac{c}{2n_2} \end{pmatrix}$$
(0.4)

$$\frac{c}{2n_1} = 3\tag{0.5}$$

$$\frac{c}{2n_2} = 2$$
 (0.6)

$$\frac{n_1}{n_2} = \frac{2}{3} \tag{0.7}$$

1

Let $n_1 = 2$ and $n_2 = 3$. Then

$$c = 6 \times 2 = 12 \tag{0.8}$$

The final equation of the line is $\mathbf{n}^{\mathsf{T}}\mathbf{x} = c$

$$\begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 12 \tag{0.9}$$

Fig. 0.1