Andrei Harbachov | 301438192

CMPT 412: Computational Vision

Dr. Furukawa

3.1 - Sparse Reconstruction

Eight point algorithm

F=

3.56440672208061e-09	-5.92131870254573e-08	-1.65029958888507e-05
-1.30829065677301e-07	-1.31095126436709e-09	0.00112471524600234
3.04775125898786e-05	-0.00108013399649288	-0.00416583180464200

Epipole is outside image boundary

Select a point in this image (Right-click when finished)

Epipole is outside image boundary

Verify that the corresponding point is on the epipolar line in this image

Epipolar Correspondences

Overall, the algorithm performed well, getting the corresponding positions of most points correctly. The only point that has a weird location is the top middle point, since it is moved a couple pixels to the right. Most likely, the reasoning behind that occurrence is similar texture that can be found all along the horizontal line of the epipole. Apart from

that, other points are placed in their corresponding locations with good accuracy. For the similarity metric, I used the Euclidean Distance.

Select a point in this image (Right-click when finished)

Verify that the corresponding point is on the epipolar line in this image

coordsIM1 =		coords	sIM2 =
136.9103	85.6282	134	91
221.0128	122.5513	228	118
104.0897	485.6282	94	474
233.3205	518.4487	217	515
348.1923	192.2949	357	193
280.5000	305.1154	276	307
157.4231	317.4231	158	310
368.7051	448.7051	370	458
151.2692	422.0385	147	423

Essential Matrix

0.00823954017957417 -0.303520601230357

-0.00112915153572458

-0.137373312525694 -0.00305238065728492

-1.67598593970846

-0.0456779305185729 1.65535639213192 -0.00287296483669530

Triangulation

I determined the correct extrinsic matrix by computing 3D point using triangulation and checking if the Z value is positive (else, it is behind the camera).

Re-projection error for image 1: 0.6883 Re-projection error for image 2: 0.6839 Re-projection error average: 0.6861

Test Script

3.2 - Dense Reconstruction

Image Rectification

Dense window matching to find per pixel density

Depth Map

3.3 - Pose Estimation

Estimate Camera Matrix

Reprojected Error with clean 2D points is 0.0000 Pose Error with clean 2D points is 0.0000

Reprojected Error with noisy 2D points is 2.6186 Pose Error with noisy 2D points is 0.0754

Estimate intrinsic/extrinsic parameters

Intrinsic Error with clean 2D points is 2.0000 Rotation Error with clean 2D points is 2.0000 Translation Error with clean 2D points is 0.1841

Intrinsic Error with clean 2D points is 2.0206

Rotation Error with clean 2D points is 2.0000 Translation Error with clean 2D points is 0.1130