

Project Plan Presentation

Jingheng Pan

Adrian Lindloff

Lijunnan Bai

jingheng.pan@studium.uni-hamburg.de

adrian.lindloff@studium.uni-hamburg.de lijunnan.bai@studium.uni-hamburg.de

Structure

- Motivation & Problem Statement
- 2. Demonstration of the original Storyfinder Plugin
- 3. Use-Case
- 4. Architecture
- 5. Functionality
- 6. Project Outline
- 7. Future Work

What is the "Adaptive Storyfinder" Project?

- Personalized content recommendation system to serve the individual interests of users by finding "stories"/ articles based on reading habits
 - → we focus on re-ranking these articles
 - → enhance user engagement and satisfaction

Original Storyfinder is "only" an archive of visited websites

What is the "Adaptive Storyfinder" Project?

- Personalized content recommendation system to serve the individual interests of users by finding "stories"/ articles based on reading habits
 - → we focus on re-ranking these articles
 - → enhance user engagement and satisfaction

- Original Storyfinder is "only" an archive of visited websites
- "Adaptive" Storyfinder shall incorporate human behavioral data and preferences

WikiHow

- Link: https://www.wikihow.com/Main-Page
- Website featuring how-to articles on a variety of topics

Practical to gather information regarding all kinds of interests

- Contains large amounts of data
 - → existing datasets

Why is this project useful?

Use-Case of a typical WikiHow search:

- Person wants to know more information about a specific topic
- Has to spend some time searching for a suitable and enjoyable article

- => Goal of the Adaptive Storyfinder:
- User preference-oriented ranking of results
- (Additionally display more recommended content)
- → overall more captivating and enjoyable experience

L

Architecture

Backend:

- Django (Python web framework)
- Docker
- PyTorch for ML

Frontend:

Vue.js and some toolkits depending on the situation

Functionality

- Re-rank given result

- Recommendations

L

Re-rank given results

Re-rank goal: Article with the highest similarity to the preferences is at the top

- Create scores without ML
 - Create scores for predefined features of each presented article (f.E. amount of images etc.) by leveraging a large WikiHow dataset
 - Create user preferences
- Create user preference with ML
 - Create wikihow article embeddings and user embeddings with ML

L

Jingheng, Adrian, Lijunnan 9

Milestones

Workable environment with WikiHow Api

Create user preferences:

- Collect individual user data with Plugin → duration spends on websites
- Collect the website features (f.E. amount of images) → crawler
- Build user preferences

Re-rank results:

- Calculate similarity between user preferences & result websites

L

Jingheng, Adrian, Lijunnan 10

Project Outline

11.05.23 Jingheng, Adrian, Lijunnan 11

Future Work

More features/ thoughts:

- Make a custom reading page // Summarize an article based on preferences
- Recommendation part: actively generate new article suggestions

 Implement user/ data privacy or at least inform the users about the scope of data usage

Include other sources of information beyond the use of WikiHow

Questions

I

Recommendations

- Collaborative Filtering(CF)
 - UserCF
 - ItemCF

	item1	item2	item3	item4	item5
u1	5	3	4	4	??
u2	3	1	2	3	3
u3	4	3	4	3	5
u4	3	3	1	5	4
u5	1	5	5	2	1

- Matrix Factorization(MF)
 - Matrix decompose to implicit vector
 - General way: Machine learning from training dataset

	x1	x2		x3		x4	
u1	1		2		3		4

	x1	x2		x3	x4
Item1	4		3	0	0

11.05.23 Jingheng, Adrian, Lijunnan 14