Recall that we have seen a small file system stored in a disk of 64 blocks as shown below.

Now let us consider a new disk with **128** blocks, but the organization of file system on the disk remains the same. In other words, the new disk still has the first 8 blocks storing the superblock, two bitmaps (i-map and d-map) for tracking the free slots for inodes (i-map) and free data blocks (d-map). But the new disk now has additional 64 data blocks, numbered 64 to 127.

Suppose that the disk and file system have the following parameters.

		d. invode addr.
Block size	4KB	
Number of blocks on disk	128	= oddr. of first inode +
Inode size	512B	inde # x indl size
Number of inode blocks	5 (blocks #3 to #7)	
	45	= 3×4KB+12×J12B
COL COL		- 10LD

a. [2 points] How many files can the file system store on the disk?

Answer:

5 blocks store inodes: 4KB/block*5=20KB

Inode size=512B

File system can store: 20KB/512B=40 files

b. [2 points] What is the maximum size of a file that can be stored in this file system?

Answer:

Data Region: 128-8=120

Maximum size: 120*4KB=480KB

e. # pointers =
$$\frac{block \ Size}{printer \ Size}$$

$$= \frac{4kB}{2B} = 2k = 2048$$

c. [2 points] How many bits are there in the two bitmaps, i-map and b-map?

Answer:

i-map: 40 inodes * 1bit = 40 bits b-map: 120 blocks * 1 bit = 120 bits

d. [2 points] If the inumber of a file is 12, where is its corresponding inode located on the disk (i.e., offset)?

Answer:

Offset=inodeStartAddress+inumber*Inode size=12KB+12*512B=18KB

Name: USC ID:	
Marrie.	

e. [2 points] Recall that some data block may be used to store pointers. Assume each pointer needs 2 bytes. How many pointers can a data block store?

Answer:

4KB/2Bytes=2048 pointers