學號:r07942092 系級:電信所碩一姓名:白佳灝

請實做以下兩種不同 feature 的模型,回答第(1)~(3)題:

- (1) 抽全部 9 小時內的污染源 feature 當作一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias) 備註:
 - a. NR 請皆設為 0,其他的數值不要做任何更動
 - b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
 - c. 第 1-3 題請都以題目給訂的兩種 model 來回答
 - d. 同學可以先把 model 訓練好, kaggle 死線之後便可以無限上傳。
 - e. 根據助教時間的公式表示, (1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響 Iteration 100000 次, learning rate 1

model	Public score	Private score
(2)	5.63779	7.21546
(1)	5.90263	7.22356

模型 2 的表現,不論是在 public score 還是 private score 都比模型 1 來的好一些,因此推測使用多一點的 feature 它的 feature space 比較有可能幫助我們找到最佳的解。而模型 1 可能要增加一些 feature 才有機會讓 training 時找到更好的解,降低 loss。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

Iteration 100000 次, learning rate 1

model	Public score	Private score
(2)	5.98345	7.16744
(1)	6.22749	7.22464

觀察 public score 的分數,發現在只使用 5 小時時,兩個模型的 loss 都比使用 9 小時來的高,使用 9hr 時的 feature space 可能比較找的到預測 PM2.5 最好的解。但觀察 private score 時發現卻又發現,模型 2 使用 9hr 的 feature 有可能 overfit training data,因為 9hr 的 private score 比 5hr 的 loss 高出一些。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖 Model (1) Iteration 10000

λ	training
0.1	6.123021522637468
0.01	6.123021522112521
0.001	6.123021522109559
0.0001	6.123021522109758

Model (2)

λ	training
0.1	5.877137928301834
0.01	5.877136047567964
0.001	5.877135859865704
0.0001	5.877135841099204

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一純量 y^n ,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\Sigma_{=1}^{\square}$ ($\square^{\square} - \square^{\square} \cdot \square$)²。若將所有訓練資料的特徵值以矩陣 $X = [x^1 \ x^2 \ ... \ x^N]^T$ 表示,所有訓練資料的標註以向量 $y = [y^1 \ y^2 \ ... \ y^N]^T$ 表示,請問如何以 X 和 y表示可以最小化損失函數的向量 w ?請選出正確答案。(其中 X^TX 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-1}yX^{T}$

Ans: (c)