

Winning Space Race with Data Science

Hubert Kalaus 5.11.2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium & Dash
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis results
 - Interactive analytics screenshots
 - Predictive Analytics result

Introduction

- Project background and context
 - Commercial space age: space travel becomes accessible
 - Through: cost-effective SpaceX launches with reusable Falcon 9 rockets.
 - Reusability of Falcon 9's first stage significantly reduces launch costs.
- Problems you want to find answers
 - Explore launch data, identify key contributors to success
 - Project goal: Develop a model to predict SpaceX first stage reusability for Space Y, a new competitor.

Methodology

Executive Summary

- Data collection methodology:
 - Flight data from the SpaceX Rest API
 - additional information from wikipedia
- Perform data wrangling
 - JSON objects and html tables were converted to Pandas dataframes
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Evaluation of machine learning models to predict Falcon 9 lauch success

Data Collection

• Flight data was collected from the SpaceX Rest API and Wikipedia pages

Data Collection - SpaceX API

- Launch data obtained from SpaceX
 REST API
- Converted to Pandas dataframe via JSON object

GitHub Link:
 https://github.com/Javert15/Final-Data-Science-Coursera-project/blob/main/jupyter-labs-spacex-data-collection-api.ipynb

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	
0	1	2006- 03-24	Falcon 1	20.0	LEO	Kwajalein Atoll	None None	1	
1	2	2007- 03-21	Falcon 1	NaN	LEO	Kwajalein Atoll	None None	1	
2	4	2008- 09-28	Falcon 1	165.0	LEO	Kwajalein Atoll	None None	1	
3	5	2009- 07-13	Falcon 1	200.0	LEO	Kwajalein Atoll	None None	1	

...

Data Collection - Scraping

- Launch data for Falcon 9
 flights available on Wikipedia
- Web scraped using BeautifulSoup for further processing
- GitHub Link:
 https://github.com/Javert15/
 Final-Data-Science-Coursera-project/blob/main/jupyter-labs-webscraping.ipynb

Data Wrangling

First, the missing values were identified

 GitHub Link: https://github.com/Javert15/Final-Data-Science-Courseraproject/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

- Summarize what charts were plotted and why you used those charts
 - Categorial plot of Flight Number for each Lanch Site
 - Categorial plot of Payload Mass for each Lanch Site
 - Bar chart of Success Rate for each targeted Orbit type
 - Scatterplot of targeted Orbit for each Flight number, with indication of success
 - Scatterplot of targeted Orbit for each Payload Mass, with indication of success
 - Lineplot of Success Rate per year
- GitHub Link: https://github.com/Javert15/Final-Data-Science-Courseraproject/blob/main/edadataviz.ipynb

EDA with SQL

- Summary of SQL queries performed:
 - Selected distinct Launch Sites
 - Investigated the initial 5 launches from CCAFS LC-40
 - Calculated total masscarried by boosters launched by NASA and F9
 - Identified the initial successful landing

- Identified the Boosters that achieved successful landing in a drone ship with a payload mass between 4000 and 6000 kg
- Identified the Booster versions, that carried the maximum payload
- Listed records for months in 2015
- Counted the Successes and Failures between 2010-06-04 and 2017-03-20
- GitHub Link: https://github.com/Javert15/Final-Data-Science-Courseraproject/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Markers were added to the locations of launch sites
- Later, additional markers were added, to indicate the success of the missions from the respective launch sites
- In turn, lines were drawn to indicate the distance to the nearest coast, railway etc. to show the launch sites' proximity to these locations
- GitHub Link: https://github.com/Javert15/Final-Data-Science-Courseraproject/blob/main/lab_jupyter_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

- A Dashboard was used to visualize the success rate from different launch sites and with different payloads
- The success rate is visualized using a pie chart, where the overall success rates and the success rates for individual sites can be compared
- The payload scatter plot allows to select a range for the payload of interest and indicates whether these missions were successful or not
- GitHub Link: https://github.com/Javert15/Final-Data-Science-Courseraproject/blob/main/spacex_dash_app.py

Predictive Analysis (Classification)

- Summarize how you built, evaluated, improved, and found the best performing classification model
- You need present your model development process using key phrases and flowchart
- Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

Exploratory data analysis results
 Interactive analytics demo in screenshots

• Predictive analysis results: Best results with

logistic regression

Flight Number vs. Launch Site

- Flights at CCAFS SLC 40 were carried out continuously, with a short break at Flight Number ~ 40, where KSC was primarily used
- VAFB seems to be discontinued, as no more flights after Flight Nr 70 are recorded
- KSC started later, with no flights before Nr 20 are recorded

Payload vs. Launch Site

- VAFB was used for less and usually smaller payloads
- Most flights from CCAFS were below 8000 kg, with only 3 exceptions
- KSC has a continuous range of payload mass

Success Rate vs. Orbit Type

 The bar chart shows the success rates for different Orbit types

Flight Number vs. Orbit Type

- The scatter plot shows, that initially only LEO, ISS, PO and GTO were targeted
- Later, SSO HEO, and MEO were targeted, before focusing on VLEO
- One failed SO and one successful GEO flight are also recorder

Payload vs. Orbit Type

 The mission success of different Payloads for different Orbit Types are depicted in the scatterplot in the right

Launch Success Yearly Trend

- First successes happened in 2014, that increased until 2017
- 2018 showed some setbacks
- But 2019 and 2020 could return to success rates slightly better than 2017

All Launch Site Names

- Find the names of the unique launch sites
- SELECT DISTINCT(LAUNCH_SITE) FROM SPACEXTBL
 - CCAFS LC-40
 - CCAFS SLC-40
 - KSC LC-39A
 - VAFB SLC-4E

Launch Site Names Begin with 'CCA'

- Find 5 records where launch sites begin with `CCA`
- SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE "CCA%" LIMIT 5

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt
4									→

Total Payload Mass

- Calculate the total payload carried by boosters from NASA
- SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER="NASA (CRS)"
 - 45.596 kg

Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
- SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE Booster_Version LIKE "F9 V1.1%"
 - 2534.66 kg

First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
- SELECT MIN(DATE) FROM SPACEXTBL WHERE LANDING_OUTCOME="Success";
 - 2018-07-22

Successful Drone Ship Landing with Payload between 4000 and 6000

- List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
- SELECT Booster_Version FROM SPACEXTBL WHERE (PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000) AND (Landing_Outcome="Success (drone ship)")
 - F9 FT B1022
 - F9 FT B1026
 - F9 FT B1021.2
 - F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

- Calculate the total number of successful and failure mission outcomes
- SELECT Mission_Outcome, COUNT(Mission_Outcome) FROM SPACEXTBL GROUP BY Mission_Outcome;

Mission_Outcome	COUNT(Mission_Outcome)
Failure (in flight)	1
Success	98
Success	1
uccess (payload status unclear)	1

Boosters Carried Maximum Payload

- List the names of the booster which have carried the maximum payload mass
- SELECT Booster_Version FROM SPACEXTBL WHERE
 PAYLOAD_MASS__KG_=(SELECT MAX(PAYLOAD_MASS__KG_) FROM
 SPACEXTBL)
 - F9 B5 B1048.4
 - F9 B5 B1049.4
 - F9 B5 B1051.3
 - F9 B5 B1056.4
 - F9 B5 B1048.5
 - F9 B5 B1051.4

- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

2015 Launch Records

- List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015
- SELECT substr(Date,6,2) as month, DATE,BOOSTER_VERSION, LAUNCH_SITE, Landing_Outcome FROM SPACEXTBL WHERE Landing_Outcome='Failure (drone ship)' AND substr(Date,0,5)='2015'

month	Date	Booster_Version	Launch_Site	Landing_Outcome
01	2015-01-10	F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
04	2015-04-14	F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- SELECT Landing_Outcome, COUNT(*) FROM SPACEXTBL WHERE DATE
 BETWEEN "2010-06-04" AND "2017-03-20" GROUP BY Landing_Outcome
 HAVING Landing_Outcome="Success (ground pad)" OR
 Landing_Outcome="Failure (drone ship)" ORDER BY Landing_Outcome DESC

Landing_Outcome	COUNT(*)
Success (ground pad)	3
Failure (drone ship)	5

Launch Sites' location

- One launch site is located close to Los Angeles
 - VAFB SLC-4E
- The other three are close to one another in Florida:
 - KSC LC-39A
 - CCAFS LC-40
 - CCAFS SLC-40

Markers showing success of missions on map

- The success of a mission is marked at each launch site
 - With a green marker for successful missions
 - With a red marker for failed missions

Distance from Launch Site to Ocean

 Distance from Launch Site CCAFS SLC-40 to the ocean indicated by blue line

Total Successful Launches By Site

- Most successful launches happen from KSC LC-39A (42%)
- 29% launch from CCAFS LC-40
- VAFB SLC-4E (located on the west coast) attributes only to 17% of the successful launches
- The remaining 13% lauch from CCAFS SLC-40

Best success rate: launches from KSC LC-39A

 77% of all launches from KSC LC-39A were successful, making it the best performing launch site

Successes of Payload-Booster combinations

- Payloads between 3.000 kg and 10.000 kg are displayed
- The color indicates the employed booster version
- Class corresponds to success or failure of that mission

Classification Accuracy

- Among the 4 investigated models, the Logistic Regression gave the best result
 - Accuracy = 0.846

Confusion Matrix of Logistic Regression

Conclusions

- More flights indicate a higher success rate at a launch site
- Launch success rate increased from 2013 to 2020 (with a setback in 2018)
- Orbits LEO, ISS, PO and GTO were targeted initially, followed by SSO, HEO, and MEO, before focusing on VLEO. Only one flight each for SO and GEO
- Logistic regression gave the best results in predicting launch success

