Implizite Funktionen

Einführung in die Computergrafik

Wiederholung

- Einführung
- Lokale Beleuchtungsmodelle
- Shading
- Texturen

Ausblick

Oberflächenrepresentationen

- Es gibt viele Möglichkeiten, Oberflächen zu repräsentieren

Agenda

- Implizite Funktionen
- Interpolation
- Oberflächen-Extraktion
 - Marching Squares (2D)
 - Marching Cubes (3D)

Implizite Funktionen

Implizite Darstellung

- Idee
 - Repräsentation der Oberfläche mit Funktionen

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \to f(\begin{pmatrix} x \\ y \\ z \end{pmatrix}) \in \mathbb{R}$$

- Oberfläche: Menge aller Punkte mit gleichem Funktionswert
- dieser Wert heisst Isowert (τ)

$$\{\overrightarrow{v} \in R^3 | f(\overrightarrow{v}) = \tau\}$$

Beispiele

- Kugel mit Mittelpunkt m und Radius r

$$f_{Kuqel}(v) = (v - m)^2 - r^2$$

- oder

$$f_{Kugel}(v) = (v_x - m_x)^2 + (v_y - m_y)^2 + (v_z - m_z)^2 - r^2$$

- Oberfläche der Kugel für Isowert 0:

$$\{v \in \mathbb{R} | f_{Kugel}(v) = 0\}$$

- 2D-Beispiel: Kreis mit Mittelpunkt (1,1) und Radius 1

$$f_{Kreis}(v) = (v_x - 1)^2 + (v_y - 1)^2 - 1$$

Implizite Darstellung

- 2D-Beispiel: Kreis mit Mittelpunkt (1,1) und Radius 1

$$f_{Kreis}(\overrightarrow{v}) = (v_x - 1)^2 + (v_y - 1)^2 - 1$$

$$f_{Kreis}(\binom{2}{1}) = (2-1)^2 + (1-1)^2 - 1 = 1 + 0 - 1 = 0$$

$$f_{Kreis}(\binom{2}{2}) = (2-1)^2 + (2-1)^2 - 1 = 1 + 1 - 1 = 1$$

$$f_{Kreis}(\binom{1.5}{0.5}) = (1.5-1)^2 + (0.5-1)^2 - 1 = 0.25 + 0.25 - 1 = -0.5$$

- o auf Oberfläche
- o außen
- innen

Implizite Darstellung

- Unterscheidung
 - Oberfläche
 - Funktionswert = Isowert

$$f(\overrightarrow{v}) = \tau$$

- Inneres
 - Funktionswert kleiner Isowert

$$f(\overrightarrow{v}) < \tau$$

- Äußeres
 - Funktionswert größer
 Isowert

$$f(\overrightarrow{v}) > \tau$$

Ausflug: Gradient

- Gradient
- zeigt in die Richtung des maximalen Anstiegs
- korrespondiert zur Normalen der impliziten Oberfläche
 - Normierung notwendig

- Berechnung über partielle Ableitungen

$$\overrightarrow{\nabla} f = \begin{pmatrix} \partial_x f \\ \partial_y f \\ \partial_z f \end{pmatrix}$$

Ausflug: Gradient

- Beispiel: Berechnung des Gradienten für einen Kreis

$$\overrightarrow{\nabla} f = \begin{pmatrix} \partial_x f \\ \partial_y f \\ \partial_z f \end{pmatrix}$$

$$f_{Kugel}(v) = (v_x - m_x)^2 + (v_y - m_y)^2 + (v_z - m_z)^2 - r^2$$

$$\frac{\partial f_{Kugel}}{\partial x} = 2(v_x - m_x)$$

$$\frac{\partial f_{Kugel}}{\partial y} = 2(v_y - m_y)$$

$$\frac{\partial f_{Kugel}}{\partial z} = 2(v_z - m_z)$$

$$\overrightarrow{\nabla} f = 2 \begin{pmatrix} v_x - m_x \\ v_y - m_y \\ v_z - m_z \end{pmatrix}$$

Implizite Darstellung

- 2D-Beispiel: Kreis mit Mittelpunkt (1,1) und Radius 1

$$f_{Kreis}(\overrightarrow{v}) = (v_x - 1)^2 + (v_y - 1)^2 - 1$$

$$\overrightarrow{\nabla} f = 2 \begin{pmatrix} v_x - m_x \\ v_y - m_y \\ v_z - m_z \end{pmatrix}$$

$$\overrightarrow{\nabla} f = \begin{pmatrix} v_x - 1 \\ v_y - 1 \end{pmatrix}$$

Faktor 2 vernachlässigt, weil hier nur Richtung entscheidend

$$\overrightarrow{\nabla} f\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 2-1\\1-1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$\overrightarrow{\nabla} f(\begin{pmatrix} 2\\2 \end{pmatrix}) = \begin{pmatrix} 2-1\\2-1 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$\overrightarrow{\nabla} f(\begin{pmatrix} 1.5\\0.5 \end{pmatrix}) = \begin{pmatrix} 1.5-1\\0.5-1 \end{pmatrix} = \begin{pmatrix} 0.5\\-0.5 \end{pmatrix}$$

Übung: Ellipse

- Gegeben ist folgende implizite Funktion und deren Isowert 0.

$$f(\overrightarrow{v}) = \frac{(v_x - 2)^2}{1} + \frac{(v_y - 2)^2}{4} - 1$$

- Prüfen Sie, ob die folgenden zwei Punkte im Inneren, im Äußeren oder auf der Oberfläche liegen.
- Berechnen Sie außerdem jeweils den Gradienten.

$$\overrightarrow{v}_1 = \begin{pmatrix} 3\\2 \end{pmatrix}$$

$$\overrightarrow{v}_2 = \begin{pmatrix} 1.5\\ 2.5 \end{pmatrix}$$

Implizite Darstellung

- verschiedene Formen von Funktionen
 - Formeln
 - Diskrete Werte (z.B. Gitter)

Interpolation

Diskrete Werte

- Funktionswerte an einzelnen Punkten im Definitionsraum gegeben
- Werte dazwischen: unbekannt
 - Lösung: Interpolation der Werte

Interpolation

- generelles Problem:
 - gegeben: Datenpunkte a_i mit jeweils
 - Wert: v(a_i)
 - Position: p(a_i)
 - gesucht:
 - entweder: Wert v(x) für bekannte Position p(x)
 - oder: Position p(x) für bekannten Wert v(x)

Nächste-Nachbar-Interpolation

- verwende den Wert des Datenpunktes, der am nächsten liegt
 - hier: Datenpunkte in orange mit Werte im Kreisinneren
 - gesuchter Wert ? für Position in grün

Lineare Interpolation

- Interpolation auf Linie zwischen zwei Datenpunkten
 - hier: Datenpunkte a₁ und a₂
 - gesucht: Wert v(x) an Position p(x)
 - Abstand zwischen a₁ und x: d₁
 - Abstand zwischen a₂ und x: d₂

Hinweis: gleiches Vorgehen bei Suche nach Position für Wert Position

- Interpolation

$$- v(x) = (1-\alpha)v(a_1) + \alpha v(a_2)$$

$$-\alpha = d_1 / (d_1 + d_2)$$

hier:

$$\alpha = 2 / (2+1) = 2/3$$

 $v(x) = (1-2/3)*6 + (2/3)*9 = 2+6 = 8$

Bilineare Interpolation

- Interpolation in Gitterzelle (zwischen 4 Datenpunkten)
 - hier: Datenpunkte a₁, a₂, a₃, a₄
 - gesucht: Wert v(x) an Position p(x)
- Idee:
 - zwei Hilfsinterpolation (linear): x-Achse
 - dann (lineare) Interpolation dazwischen
- hier

$$\alpha = 3 / (3+1) = 0.75$$
 (lin. Interp. x-Achse)

-
$$h_1 = 0.75*6+0.25*2 = 5$$

-
$$h_2 = 0.75*4+0.25*0 = 3$$

$$-\beta = 2/(2+2) = 0.5$$
 (lin. Interp. y-Achse)

$$- v(y) = 0.5*5+0.5*3 = 4$$

Übung: Interpolation

- Gegeben ist folgende Funktion mit diskreten Werten. An den Koordinaten (2; 3) hat die Funktion z.B. den Wert 8.
- Berechnen Sie den interpolierten Funktionswert an der Stelle x = (1.75; 1.75)
 - mit Nächster-Nachbar-Interpolation
 - mit bilinearer Interpolation

Extraktion von Oberflächen

Extraktion von Oberflächen

- Gegeben:

- Implizite Funktion (z.B. Distanzfunktion, CT-Scan, ...)
 - 2D: f(x,y), 3D: f(x,y,z)
- Isowert τ

Beispiel: Distanzfunktion für einen Kreis

- gesucht
 - geschlossene Oberfläche = Menge aller Punkte, an denen die Funktion den Isowert annimmt
 - 2D: $f(x,y) = \tau$ (Polygonzug, Isokontur)
 - 3D: $f(x,y,z) = \tau$ (geschlossenes Dreiecksnetz, Isofläche)

Lösungsidee im 2D: Marching Squares

- basiert auf Vertex-Klassifizierung: 24 = 16 Fälle

- Reduktion auf 4 Fälle durch Symmetrie, Rotation, Spiegelung

Lösungsidee im 2D: Marching Squares

- in manchen Fällen
 - zwei Möglichkeiten, die Polygonlinie zu ziehen
- bei falscher Wahl
 - Topologie kann sich ändern

- kann durch bilineare Interpolation aufgelöst werden
 - Schnitt der Asymptoten als Entscheidungskriterium

- einfacher: konsequent das gleiche Vorgehen verwenden

Algorithmus (2D: Marching Squares, 3D: Marching Cubes)

- Unterteile gesamte Szene mir regulärem Gitter
- Iteriere über alle Zellen des Gitters
 - Betrachte jede Zelle
 - Klassifiziere die 4 Vertices als innen/außen (3D: 8 Vertices)
 - Berechne 4-bit Index (3D: 8-bit Index)
 - Schlage Schnittkanten nach
 - Bestimme Schnittpunkte
 - Erstelle Segmente (3D: Dreiecke)

Betrachte jede Zelle

Zelle im Gitter:

Zelle einzeln betrachtet:

f ist der Funktionswert der impliziten Funktion am Eckpunkt (Vertex)

Klassifiziere die 4 Vertices als innen/außen

Berechne 4-bit Index

außen: 0

innen: 1

v2/3

	v3/f3	v2/f2	v1/f1	v0/f0
Faktor	8	4	2	1

Beispiel 1: 0110 = 6

e2

Beispiel 2: 1110 = 14

v3/5

Schlage Schnittkanten in Lookup-Tabelle nach

Beispiel 1: 0110 = 6

Schnitte immer an Kanten mit einem Innen-Knoten und einem Außen-Knoten

Fall	Binär- code	Kanten
0	0000	
1	0001	e0,e3
2	0010	e0,e1
3	0011	e1,e3
4	0100	e1,e2
5	0101	e0.e1.e2.e3
6	0110	e0,e2
7	0111	e2,e3
8	1000	e2,e3
9	1001	e0,e2
10	1010	e0,e3,e1,e2
11	1011	e1,e2
12	1100	e1,e3
13	1101	e0,e1
14	1110	e0,e3
15	1111	

Bestimme Schnittpunkte

Kante mit Eckpunkten vx/fx und vy/fy:

$$p = (1 - \alpha)v_x + \alpha v_y$$
$$\alpha = \frac{\tau - f_x}{f_y - f_x}$$

Beispiel (Kante e0):

$$\alpha = \frac{4-7}{2-7} = \frac{-3}{-5} = 0.6$$
$$p = 0.4v_1 + 0.6v_2$$

Erstelle Segmente

Fall	Binär- code	Kanten
0	0000	
1	0001	e0,e3
2	0010	e0,e1
3	0011	e1,e3
4	0100	e1,e2
5	0101	e0,e1,e2,e3
6	0110	e0,e2
7	0111	e2,e3
8	1000	e2,e3
9	1001	e0,e2
10	1010	e0,e3,e1,e2
11	1011	e1,e2
12	1100	e1,e3
13	1101	e0,e1
14	1110	e0,e3
15	1111	

Übung: Marching Squares

- Bilden Sie für die dargestellte Funktion die Isokontur für den Isowert 5 mit Hilfe des Marching Squares-Algorithmus.
- Berechnen Sie mindestens an der orangenen Kante den exakten interpolierten Schnittpunkt

Fall	Binär- code	Kanten
0	0000	
1	0001	e0,e3
2	0010	e0,e1
3	0011	e1,e3
4	0100	e1,e2
5	0101	e0,e1,e2,e3
6	0110	e0,e2
7	0111	e2,e3
8	1000	e2,e3
9	1001	e0,e2
10	1010	e0,e3,e1,e2
11	1011	e1,e2
12	1100	e1,e3
13	1101	e0,e1
14	1110	e0,e3
15	1111	

Marching Cubes

- Variante im 3D
 - 8 Eckpunkte -> 8-bit-Index -> 256 Fälle
 - durch Symmetrie, Rotation, Spiegelung: Reduktion auf 15 Fälle:

- Dreiecke statt Segmenten
 - also Triple statt Tupel in der Lookup-Tabelle

Zusammenfassung

- Implizite Funktionen
- Interpolation
- Oberflächen-Extraktion
 - Marching Squares (2D)
 - Marching Cubes (3D)

Quellen

- [1] Vorlesungsfolien Prof. Hao Li, CSCI 599: Digital Geometry Processing SS 2014, USC University of Southern California