What is a vector?

- 4 An array of numbers
- * Hos two pieces of information:

 - 1. Direction 2. Magnitude (length)

$$\vec{a} = (2,3)$$
 $\vec{a} = [2 3]$

$$\vec{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

coordinate point row vector

column vector

Relationship between matrices and rectors

* Natrices are composed of row vectors and column vectors.

- * # of components in a vector = number of dimensions of the space they're in
- # # of linearly independent vectors = number of dimension of in a matrix the plane they form

$$A = \begin{bmatrix} 4 & -6 & 1 & -8 & 5 \\ 1 & 1 & -2 & 9 & 9 \end{bmatrix} \Rightarrow$$

- * A has two row vectors, a, and az, so they form a two-dimensional plane.
- " a five dimensional space. So they are vectors

How to sketch Ucclors")

$$a = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

$$3 + \begin{bmatrix} 3 & 3 & 3 \\ & & 2 & 3 \end{bmatrix}$$

- * Vector has 2 picces of information contained within it : @Direction @ Magnitude
- * Row vector: One-row matrix + Column vector: One-rolumn metrix
- * Addition, subtraction and scalar multiplication: some as the vectors.
- * Vector multiplication = Dot product
- * Magnitude = length = 11211 = 192+02+ a3

Vector Operations	* Addition . $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$
	Is we add to to the tip of a
	Scolor Multiplication: k. (q, , a,) = (k. q, , k. a,)
	Dot product : $\vec{a} \cdot \vec{b} = (a_1 \cdot b_1 + a_2 \cdot b_2)$
Leigth of a	$ \vec{a} = \sqrt{\alpha_1^2 + \alpha_2^2 + + \alpha_2^2}$
vector	hat nears the
What is a unit vector?	$ a = 1 \Rightarrow \overline{a} = \text{unit vector}(u)$
nult rector ,	$\ \vec{a}\ \neq 1$ $\Rightarrow \hat{\mu} = \frac{1}{2} \cdot \vec{a}$
	$ \vec{a} = \vec{a} + \vec{a} + \vec{a} + \vec{a} + + + + + + $
	Estimate the unit vector pointing in the same direction as $\vec{V} = (1, 4, -2)$.
	as $\vec{V} = (1, 4, -2)$
	$\vec{u} = \frac{1}{\sqrt{1+16+4'}} \cdot (1,4,-2) = \left(\frac{1}{\sqrt{21}}, \frac{4}{\sqrt{21}}, \frac{-2}{\sqrt{21'}}\right)$
	V1+16+4' N21 V21 V21'
what one basis	* A set of linearly independent vectors that can spon
vectors?	
	the whole space.
	i=[2,3] we can spon R with just these
	j = [1,4] two vectors (by addition and
	scalar multiplication), so they are
	the basis vectors for \mathbb{R}^2 .
What one stondard	* For R2: 1=[10] * For R3: 1=[100]
basis vectors?	$\hat{j} = [01]$ $\hat{i} = [010]$
of Noth makes in	
Û:	A vector with length 1.
* Storderd basis	vectors: For R, n number of vectors where each vector has a strigle reachen: The sum of scaled vectors. vector set: The collection of all vectors which can be represented ambinations of the set
* Lineer combin	rethon: The sum of scaled vectors. other entires equal to 0.
by linear ca	ambinations of the sot

* Spon of a vector set: The collection of all by linear combinations of the set

Linear	Co	mbine	ation
of t			
V	ech	210	

$$\vec{a} = (6,4) = 6 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

3. Column 4. Combinetion of besis vectors.

$$\vec{a} = (-3.2.-1) = -31 + 23 - \hat{k}$$

Linear independence in two dimensions

A Set is linearly independent if none of the vectors in the set can be represented by a linear combination of the other vectors in the set.

If a set has more than a number of vectors in \mathbb{R}^n , it can never be linearly independent.

$$V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $V_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \Rightarrow V_2 = 4 \cdot V_1 \Rightarrow$ The set is $L \cdot D \cdot U_1 = U_2 = 4 \cdot V_1 \Rightarrow U_2 \Rightarrow U$

a VI and V2 are collinear (they lie on the same line)

* n number of linearly independent vectors always spon
the IR space.

Pesting for linear independence

Spenning

If $C_1 \cdot V_1 + C_2 \cdot V_2 + \dots + C_n \cdot V_n = [0 \ 0 \ \dots \ 0]$ is true only for $C_1 = C_2 = \dots = C_n = 0$, then the Set $\{V_1, V_2 \dots V_n\}$ is linearly independent.

Linear Independence: A set is linearly independent if none of the vectors in the set con be represented by a linear combination of the other vectors in the set. $(c_1, c_2, ..., c_n) = (0, 0, ..., b)$ is the only solution to: $c_1 \cdot v_1 + c_2 \cdot v_2 + ... + c_n \cdot v_n = c_n$

② 1, 1 € w: 0, 1 € w, and ...

3 BEW, KER: K.BEW

	* The zero vector is always a subspace of R^2 * R^2 is always a subspace of itself * Any line through the origin in R^2 , any plene through the origin in R^3 , etc., is always a subspace. * If a number of vectors span a space, they are			
Difference between the spon and the basis	always its subspace In order for a set of vectors to form a basis for R, The vectors need to span R ² , and They need to be linearly independent.			
	$\begin{cases} \vec{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \vec{b} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \vec{c} \cdot \begin{bmatrix} 4 \\ 10 \end{bmatrix} \Rightarrow \\ \{ \vec{a}, \vec{b}, \vec{c} \} : \text{Spans } \mathbb{R}^2, \text{ not a basis } (\vec{c} = 2.\vec{b}) \end{cases}$ $\begin{cases} \vec{a}, \vec{b} \end{cases} : \text{Spans } \mathbb{R} \text{ and a basis } \vec{b} = \vec{b}$			
Span: The span span	on of a vector set is all the linear combinations of that set. A is always a subspace.			

Basis: A vector set is a basis for a space if:

① spans the space, and
② is linearly independent