Your Name:	netid:	_ Group #:
Name:	netid:	_
Name:	netid:	_
Name:	netid:	

ECE 120 Worksheet 5: From Problem Statement to Digital Circuit

Before you begin today's discussion, be sure that you are familiar with terminology, such as literals, minterms, maxterms, canonical forms, implicants, prime implicants, and K-maps. Also be sure that you know how to find canonical SOP and POS forms for Boolean functions, and that you know how to use K-maps. To check these skills, you can make up a truth table at random, find a Boolean expression for the function, then check your result by writing a truth table for your expression.

Use the area heuristic—number of literals plus the number of operators, not including complemented literals—to find minimal expressions in today's problems. Choosing a minimal number of prime implicants from a K-map will give you minimal solutions in this sense.

Truth table for Problem 1

Α	В	С	D	V
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1 1
1	1	1	1	1

K-map for Problem 1

V		AB			
		00	01	11	10
	00	0	0	1	0
CD	01	0	0	1	1
	11	0	1	1	1
	10	0	0	1	1

1. From Problem Statement to Digital Circuit

You may have noticed that the carry out of a one-bit adder is a majority function of the two addends and the carry in. In other words, the carry out is a 1 whenever two or more of the inputs are 1s.

Let's design a majority voting unit to calculate the outcome of a vote by a committee of four members, A, B, C, and D. For each member, a value of 1 means a yes vote, and a value of 0 means a no vote. Let's use the same convention for the vote result V(A,B,C,D).

Sadly, a committee size of four can result in a tied vote, so let's say that, in such cases, the vote *V* goes with *A*'s vote.

a. Can you write down *V* as a function of *A*, *B*, *C*, and *D* by just thinking the problem through? It's ok if your answer is, "No," but think about the question.

$$AB + AC + AD + BCD$$

- b. Fill in the truth table on the previous page, then look at the truth table to answer these questions:
 - i. How many product terms appear in the canonical SOP form of V?
 8 (Note: you do **not** need to write down the canonical SOP form.)
 - ii. How many sum terms appear in the canonical POS form of V?8(Note: Again, you do **not** need to write down the canonical POS form.)
- c. Copy the bits from the truth table to the K-map. Be careful with ordering. Then use the K-map to find a minimal SOP expression for *V*.

$$AB + AC + AD + BCD$$

d. Draw the circuit using AND and OR gates. (You should only need five gates.)

2. A Simple Thermal Controller

Prof. Lumetta needs some help with the water heater in his home. The design is as follows. The unit has a control dial that allows the user to set the desired temperature using a two-bit unsigned value C_1C_0 . A temperature sensor reads the current water temperature, also as a two-bit unsigned value T_1T_0 . A digital circuit, which you must design, then decides whether to turn on a heating element or not. The heating element is controlled by logic signal H, which should be set as follows:

$$H = \begin{cases} 0 & \text{if } T \ge C \\ 1 & \text{if } T < C \end{cases}$$

a. Fill in the truth table below for function H.

C_1	C_0	T_1	T_0	Н
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1 1
1	1	1	0	1
1	1	1	1	0

Н		C_1C_0			
		00	01	11	10
T ₁ T ₀	00	0	1	1	1
	01	0	0	1	1
	11	0	0	0	0
	10	0	0	1	0

- b. Copy the bits from the truth table to the K-map above. Be careful with ordering.
- c. Use the K-map to find a minimal SOP expression for H.

$$C_1 T_1' + C_0 T_1' T_0' + C_1 C_0 T_0'$$

3. Two-bit Thermal Control

Prof. Lumetta has issues. Apparently, the thermal control circuit that you designed for Part 2 today doesn't quite solve the problem. His water heater radiates too much heat. So we need to use a two-bit unsigned output H_1H_0 and keep the heat on at a low level even when the temperature reaches the desired level.

Remember that the inputs provided by the system are a control dial that allows the user to set the desired temperature using a two-bit unsigned value C_1C_0 , and a temperature sensor that reads the current water temperature, also as a two-bit unsigned value T_1T_0 .

Your function *H* should then be given by:

$$H = \left\{ \begin{array}{cc} \min(3, C - T + 1) & \text{if } T \leq C \\ 0 & \text{if } T > C \end{array} \right.$$

The use of the minimum function ensures that we do not try to set the heat to 4 when C is 3 and T is 0.

Fill in the K-maps below, then derive minimal expressions for H_1 and H_0 . Hints: H_1 should be quite easy. For H_0 , consider both SOP and POS expressions, and use the better of the two.

H_1		C ₁ C ₀			
		00	01	11	10
	00	0	1	1	1
<i>T</i> ₁ <i>T</i> ₀	01	0	0	1	1
	11	0	0	0	0
	10	0	0	1	0

H₀		C_1C_0			
		00	01	11	10
	00	1	0	1	1
T ₁ T ₀	01	0	1	1	0
	11	0	0	1	0
	10	0	0	0	1