TP numéro 2 : Job-Shop Durée : 2 séances, noté

1) Connectez-vous sur la OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/info.html). Dans la section Job-Shop, vous accéderez aux instances classiques pour le Job-Shop (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt). À titre d'exemple, voilà ce qu'il est possible d'obtenir, pour les instances La01-La20:

					(Rego and Duarte,		2008)
Instances	n_{j}	n_m	n	Opt.	s*	Gap	Time
LA01	10	5	50	666	666	0.00	1
LA02	10	5	50	655	655	0.00	2
LA03	10	5	50	597	597	0.00	1
LA04	10	5	50	590	590	0.00	1
LA05	10	5	50	593	593	0.00	1
LA06	15	5	75	926	926	0.00	1
LA07	15	5	75	890	890	0.00	1
LA08	15	5	75	863	863	0.00	1
LA09	15	5	75	951	951	0.00	1
LA10	15	5	75	958	958	0.00	1
LA11	20	5	100	1222	1222	0.00	1
LA12	20	5	100	1039	1039	0.00	1
LA13	20	5	100	1150	1150	0.00	1
LA14	20	5	100	1292	1292	0.00	1
LA15	20	5	100	1207	1207	0.00	1
LA16	10	10	100	945	947	0.21	1
LA17	10	10	100	784	784	0.00	2
LA18	10	10	100	848	848	0.00	1
LA19	10	10	100	842	846	0.48	1
LA20	10	10	100	902	917	1.66	3
Avo	1.					0.12	1.20

- 2) Travail à faire : réaliser un programme en Visual Studio C++ comportant au minimum les fonctionnalités suivantes :
 - a) lecture d'un fichier Laxxx et d'une séquence S (cf. cours) pour effectuer l'affichage de la solution et du makespan
 - b) Ecriture d'une méthode nommée Evaluer ayant comme paramètre d'entrée, un vecteur par répétition (vecteur de Bierwith) comme vu en cours. Cette procédure oriente le graphe en fonction du vecteur et calcule le plus long chemin. La procédure renvoie : les dates de débuts de toutes les opérations et le plus long chemin.
 - c) Ecriture d'une méthode nommée Recherche_Locale ayant comme paramètre d'entrée, un vecteur par répétition et un nombre maximal d'itérations. Cette procédure réalise une amélioration de type descente (seules les modifications strictement améliorantes sont réalisées) en utilisant la notion de **blocks**. Elle renvoie le nouveau vecteur.
- → vous préciserez quelle opération vous réaliser sur le vecteur pour inverser un arc dans le graphe.
 - d) Ecriture d'une procédure GRASP.

- 3) Travail à rendre : un compte rendu d'environ 10 pages et les programmes réalisés. Le compte rendu comprendra :
 - a) un descriptif des points nécessaires à l'optimisation d'un JS :
 - évaluation d'un graphe
 - génération d'un graphe à partir d'une séquence
 - conception d'une recherche locale efficace
 - conception d'un GRASP()
 - b) une description algorithmique des points précédents :
 - de la procédure évaluer ()
 - de la procédure recherche_locale()
 - de la procédure GRASP()
 - de la procédure tester_double ()
 - c) une étude portant sur 10 séquences pour montrer la pertinence de la recherche locale et une étude sur la convergence de l'algorithme.

PS: la machine utilisée par (Rego and Duarte, 2008) est un Pentium IV à 1.7 Ghz avec 256MB. Vous pouvez rechercher la puissance en Mflops et normaliser les temps de calcul par rapport à vos PC.