Law And Economics

The Economics of Crime

Francisco Poggi

University of Mannheim - Fall 2021

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives
 - * Embezzlement.
 - Insider trading.
 - Tax evasion.

Economic approach to crime

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives
 - * Embezzlement.
 - Insider trading.
 - Tax evasion.

Economic approach to crime

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives.
 - Embezzlement.
 - Insider trading.
 - Tax evasion.

Economic approach to crime.

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives.
 - Embezzlement.
 - Insider trading.
 - Tax evasion.

• Economic approach to crime

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives.
 - Embezzlement.
 - Insider trading.
 - Tax evasion.

Economic approach to crime.

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives.
 - Embezzlement.
 - Insider trading.
 - Tax evasion.

Economic approach to crime

- Not all crime is rational.
 - Crime of passion.

- Some crimes respond to clear economic incentives.
 - Embezzlement.
 - Insider trading.
 - Tax evasion.

• Economic approach to crime.

- What distinguishes crimes from torts?
- Both involve (in general) harm to persons of property

- Legal action
 - " Tort: initiated by the victim.
 - Crime: initiated by the state
 - Why does this difference exists?

- What distinguishes crimes from torts?
- Both involve (in general) harm to persons of property.

- Legal action
 - Tort: initiated by the victim.
 - ' Crime: initiated by the state
 - ' Why does this difference exists?

- What distinguishes crimes from torts?
- Both involve (in general) harm to persons of property.

· Legal action:

- Tort: initiated by the victim.
- Crime: initiated by the state
- Why does this difference exists?

- What distinguishes crimes from torts?
- Both involve (in general) harm to persons of property.

- Legal action:
 - Tort: initiated by the victim.
 - Crime: initiated by the state
 - Why does this difference exists?

- What distinguishes crimes from torts?
- Both involve (in general) harm to persons of property.

- Legal action:
 - Tort: initiated by the victim.
 - Crime: initiated by the state.
 - Why does this difference exists?

- What distinguishes crimes from torts?
- Both involve (in general) harm to persons of property.

· Legal action:

- Tort: initiated by the victim.
- Crime: initiated by the state.
- Why does this difference exists?

• Intention:

- In general, tort involves accidents
- Crime is generally intentional
- However:
 - Intent is a continuum.
 - * Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - Intentional offenders might try to cover up to avoid responsability

- Intention:
 - In general, tort involves accidents.
 - * Crime is generally intentional
 - However
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - Intentional offenders might try to cover up to avoid responsability

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However
 - Intent is a continuum.
 - ' Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - Intentional offenders might try to cover up to avoid responsability

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However:
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state
 - Intentional offenders might try to cover up to avoid responsability

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However:
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - Intentional offenders might try to cover up to avoid responsability

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However:
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state
 - Intentional offenders might try to cover up to avoid responsability

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However:
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - * Intentional offenders might try to cover up to avoid responsability
 - * This makes it difficult for victims with limited resources to carry out the process against offenders.

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However:
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - Intentional offenders might try to cover up to avoid responsability.
 - This makes it difficult for victims with limited resources to carry out the process against offenders.

- Intention:
 - In general, tort involves accidents.
 - Crime is generally intentional.
 - However:
 - Intent is a continuum.
 - Generally unobservable.
- Why is legal action for crimes initiated by the state?
 - Intentional offenders might try to cover up to avoid responsability.
 - This makes it difficult for victims with limited resources to carry out the process against offenders.

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - ' Examples:

" Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - * Examples:

Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - * Examples:

' Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - Examples:
 - ° Fear.
 - Durable goods purchase decision.
 - Private investment in security.
 - Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - Examples:
 - Fear.
 - Durable goods purchase decision
 - Private investment in security
 - Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - Examples:
 - Fear.
 - Durable goods purchase decision.
 - Private investment in security
 - Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - Examples:
 - Fear.
 - Durable goods purchase decision.
 - Private investment in security.
 - Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - Examples:
 - Fear.
 - Durable goods purchase decision.
 - Private investment in security.
 - Victims might not have sufficient incentives to pursue compensation

- Scale economies.
 - High fixed costs \rightarrow natural monopoly.
- Complementarities prosecution- police force.
- Public harm in addition to direct harm.
 - Examples:
 - Fear.
 - Durable goods purchase decision.
 - Private investment in security.
 - Victims might not have sufficient incentives to pursue compensation.

- Basic assumption: in the decision to whether to commit a crime, offenders compare the gain from the act with the expected punishment.
 - This decisions generate a *supply function* of offenses.

- Given the *supply function* of offenses, policymakers determine the optimal punishment scheme.
 - Probability of apprehension.
 - Punishment on conviction (fine or imprisonment)

- Basic assumption: in the decision to whether to commit a crime, offenders compare the gain from the act with the expected punishment.
 - This decisions generate a *supply function* of offenses.

- Given the *supply function* of offenses, policymakers determine the optimal punishment scheme.
 - Probability of apprehension...
 - Punishment on conviction (fine or imprisonment).

- Basic assumption: in the decision to whether to commit a crime, offenders compare the gain from the act with the expected punishment.
 - This decisions generate a *supply function* of offenses.

- Given the *supply function* of offenses, policymakers determine the optimal punishment scheme.
 - Probability of apprehension.
 - Punishment on conviction (fine or imprisonment).

- Basic assumption: in the decision to whether to commit a crime, offenders compare the gain from the act with the expected punishment.
 - This decisions generate a *supply function* of offenses.

- Given the *supply function* of offenses, policymakers determine the optimal punishment scheme.
 - Probability of apprehension.
 - Punishment on conviction (fine or imprisonment).

Becker Seminal Article

- Basic assumption: in the decision to whether to commit a crime, offenders compare the gain from the act with the expected punishment.
 - This decisions generate a *supply function* of offenses.

- Given the *supply function* of offenses, policymakers determine the optimal punishment scheme.
 - Probability of apprehension.
 - Punishment on conviction (fine or imprisonment).

Setup

- g: gain from crime. Random variable with cdf G.
- h: harm to the victim (constant).
- p: probability of apprehension.
- f: fine.
- t: time of imprisonment.
- c: cost of imprisonment to the offender (per unit of time)

• Setup

- g: gain from crime. Random variable with cdf G.
- h: harm to the victim (constant).
- p: probability of apprehension.
- f: fine.
- \cdot t: time of imprisonment.
- c: cost of imprisonment to the offender (per unit of time)

- Setup
 - g: gain from crime. Random variable with cdf G.
 - h: harm to the victim (constant).
 - p: probability of apprehension.
 - *f*: fine.
 - \cdot t: time of imprisonment.
 - c: cost of imprisonment to the offender (per unit of time)

- Setup
 - g: gain from crime. Random variable with cdf G.
 - h: harm to the victim (constant).
 - p: probability of apprehension.
 - *f*: fine
 - \cdot t: time of imprisonment.
 - c: cost of imprisonment to the offender (per unit of time)

- Setup
 - g: gain from crime. Random variable with cdf G.
 - h: harm to the victim (constant).
 - p: probability of apprehension.
 - *f*: fine.
 - \cdot t: time of imprisonment.
 - c: cost of imprisonment to the offender (per unit of time)

- Setup
 - g: gain from crime. Random variable with cdf G.
 - h: harm to the victim (constant).
 - p: probability of apprehension.
 - f: fine.
 - \cdot t: time of imprisonment.
 - c: cost of imprisonment to the offender (per unit of time)

- Setup
 - g: gain from crime. Random variable with cdf G.
 - h: harm to the victim (constant).
 - p: probability of apprehension.
 - *f*: fine.
 - \cdot t: time of imprisonment.
 - c: cost of imprisonment to the offender (per unit of time).

Offender's Decision

• Who commits crime? Only those with

$$g > p(f + c \cdot t)$$

Total crime:

$$1 - G(p(f + c \cdot t))$$

Notice that if G(h) < 1, there is efficient crimee

Offender's Decision

• Who commits crime? Only those with

$$g > p(f + c \cdot t)$$

• Total crime:

$$1 - G(p(f + c \cdot t))$$

• Notice that if G(h) < 1, there is efficient crime.

Offender's Decision

• Who commits crime? Only those with

$$g > p(f + c \cdot t)$$

• Total crime:

$$1 - G(p(f + c \cdot t))$$

• Notice that if G(h) < 1, there is efficient crime.

- Social Welfare Function
 - Differential should offender's utility be consider in the aggregation of

- Social Welfare Function:
 - Dilemma: should offender's utility be consider in the aggregation?
 - " Standard Fractice: include offender's benefit

- Social Welfare Function:
 - Dilemma: should offender's utility be consider in the aggregation?
 - Standard Practice: include offender's benefit.

- Social Welfare Function:
 - Dilemma: should offender's utility be consider in the aggregation?
 - Standard Practice: include offender's benefit.

- set t = 0 and fix p.
- Crime if $g > p \cdot f$
- social welfare:

$$a \cdot (g - h)$$

$$\max_{a} \quad a \cdot (g - p \cdot f)$$

- Harm-based solution: Set expected punishment equal the harm.
 - $^{\circ}$ No need to know anything about the distribution of g

- set t = 0 and fix p.
- Crime if $g > p \cdot f$.
- social welfare:

$$a \cdot (g - h)$$

$$\max_{a} \quad a \cdot (g - p \cdot f)$$

- * Harm-based solution: Set expected punishment equal the harm.
 - " No need to know anything about the distribution of g

- set t = 0 and fix p.
- Crime if $g > p \cdot f$.
- social welfare:

$$a \cdot (g - h)$$

$$\max_{a} \quad a \cdot (g - p \cdot f)$$

- Harm-based solution: Set expected punishment equal the harm
 - " No need to know anything about the distribution of g

- set t = 0 and fix p.
- Crime if $g > p \cdot f$.
- social welfare:

$$a \cdot (g - h)$$

$$\max_{a} \quad a \cdot (g - p \cdot f)$$

- Harm-based solution: Set expected punishment equal the harm.
 - No need to know anything about the distribution of g.

- set t = 0 and fix p.
- Crime if $g > p \cdot f$.
- social welfare:

$$a \cdot (g - h)$$

$$\max_{a} \quad a \cdot (g - p \cdot f)$$

- Harm-based solution: Set expected punishment equal the harm.
 - \bullet No need to know anything about the distribution of g.

- set t = 0 and fix p.
- Crime if $g > p \cdot f$.
- social welfare:

$$a \cdot (g - h)$$

$$\max_{a} \quad a \cdot (g - p \cdot f)$$

- Harm-based solution: Set expected punishment equal the harm.
 - No need to know anything about the distribution of g.

• Consider the following gain-based fine:

$$f = g/p$$

• If when indifferent the agent commits no crime, the fine deters all crimes.

$$\max_{a \in \{0,1\}} \qquad a\left(g - p \cdot \frac{g}{p}\right)$$

- Efficient when it is efficient to deter all crime.
- Advantage: when gains of offender are easier to measure than the harm to the victims.
- Example:

' Insider trading.

• Consider the following gain-based fine:

$$f = g/p$$

• If when indifferent the agent commits no crime, the fine deters all crimes.

$$\max_{a \in \{0,1\}} \qquad a\left(g - p \cdot \frac{g}{p}\right)$$

- Efficient when it is efficient to deter all crime.
- Advantage: when gains of offender are easier to measure than the harm to the victims.
- Example

Insider trading.

• Consider the following gain-based fine:

$$f = g/p$$

• If when indifferent the agent commits no crime, the fine deters all crimes.

$$\max_{a \in \{0,1\}} \qquad a\left(g - p \cdot \frac{g}{p}\right)$$

- Efficient when it is efficient to deter all crime.
- Advantage: when gains of offender are easier to measure than the harm to the victims.
- Example:

Insider trading.

• Consider the following gain-based fine:

$$f = g/p$$

• If when indifferent the agent commits no crime, the fine deters all crimes.

$$\max_{a \in \{0,1\}} \qquad a\left(g - p \cdot \frac{g}{p}\right)$$

- Efficient when it is efficient to deter all crime.
- Advantage: when gains of offender are easier to measure than the harm to the victims.
- Example:

' Insider trading.

• Consider the following gain-based fine:

$$f = g/p$$

• If when indifferent the agent commits no crime, the fine deters all crimes.

$$\max_{a \in \{0,1\}} \qquad a\left(g - p \cdot \frac{g}{p}\right)$$

- Efficient when it is efficient to deter all crime.
- Advantage: when gains of offender are easier to measure than the harm to the victims.
- Example:
 - Insider trading

• Consider the following gain-based fine:

$$f = g/p$$

• If when indifferent the agent commits no crime, the fine deters all crimes.

$$\max_{a \in \{0,1\}} \qquad a\left(g - p \cdot \frac{g}{p}\right)$$

- Efficient when it is efficient to deter all crime.
- Advantage: when gains of offender are easier to measure than the harm to the victims.
- Example:
 - Insider trading.

Optimal imprisonment

- Prison is costly to the offender, but also to society.
- Thus, it is optimal to use fines up to the maximum wealth of the offender before prison is used.

$$f^* = \begin{cases} h/p & \text{if } h/p < u \\ w & \text{if } h/p \ge u \end{cases}$$

Optimal imprisonment

- Prison is costly to the offender, but also to society.
- Thus, it is optimal to use fines up to the maximum wealth of the offender before prison is used.

$$f^* = \begin{cases} h/p & \text{if } h/p < w \\ w & \text{if } h/p \ge w \end{cases}$$

- Optimal deterrance requires an expected cost to offenders equal to \$ 4000.
- Probability of detection: p = 0.5.
- Individual's wealth: w = \$2000
- Cost of jail time c = \$500

- $^{\bullet}$ Optimal deterrance requires an expected cost to of fenders equal to \$ 4000.
- Probability of detection: p = 0.5.
- Individual's wealth: w = \$2000
- Cost of jail time c = \$500

- Optimal deterrance requires an expected cost to offenders equal to \$ 4000.
- Probability of detection: p = 0.5.
- Individual's wealth: w = \$2000.
- Cost of jail time c = \$500

- Optimal deterrance requires an expected cost to offenders equal to \$ 4000.
- Probability of detection: p = 0.5.
- Individual's wealth: w = \$2000.
- Cost of jail time c = \$500

Optimal Fine with Variable Apprehension Probability

Authority chooses both p and f.

- For any given product $p \times f$, crime is unaffected.
- The authority chooses the combination of p and f that minimizes the cosmipplementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

Optimal Fine with Variable Apprehension Probability

Authority chooses both p and f.

- For any given product $p \times f$, crime is unaffected.
- The authority chooses the combination of p and f that minimizes the cost implementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

Optimal Fine with Variable Apprehension Probability

Authority chooses both p and f.

- For any given product $p \times f$, crime is unaffected.
- The authority chooses the combination of p and f that minimizes the cost implementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

- For any given product $p \times f$, crime is unaffected.
- ullet The authority chooses the combination of p and f that minimizes the cost implementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

- For any given product $p \times f$, crime is unaffected.
- ullet The authority chooses the combination of p and f that minimizes the cost implementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

- For any given product $p \times f$, crime is unaffected.
- The authority chooses the combination of p and f that minimizes the cost implementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

- For any given product $p \times f$, crime is unaffected.
- The authority chooses the combination of p and f that minimizes the cost implementation.
 - Fines are not costly.
 - increasing the probability of apprehension is costly.
- The optimal fine should be as high as possible.
- Limit: wealth of the individual.
- (This is one of the central insights of Becker's analysis.)

- Marginal reduction in net social harm = Marginal increase in enforcement costs.
- Underdeterrance is optimal:
 - " Suppose that we initially set pf = h.
 - Reducing p slightly one saves in enforcement costs, but some additional crimes are committed.
 - * However the loss for those crimes is negligible.
 - " Thus there is a social gain from lowering p.

- Marginal reduction in net social harm = Marginal increase in enforcement costs.
- Underdeterrance is optimal:
 - Suppose that we initially set pf = h.
 - Reducing p slightly one saves in enforcement costs, but some additional crimes are committed.
 - However the loss for those crimes is negligible.
 - Thus there is a social gain from lowering p.

- Marginal reduction in net social harm = Marginal increase in enforcement costs.
- Underdeterrance is optimal:
 - Suppose that we initially set pf = h.
 - Reducing p slightly one saves in enforcement costs, but some additional crimes are committed.
 - However the loss for those crimes is negligible.
 - Thus there is a social gain from lowering p.

- Marginal reduction in net social harm = Marginal increase in enforcement costs.
- Underdeterrance is optimal:
 - Suppose that we initially set pf = h.
 - Reducing *p* slightly one saves in enforcement costs, but some additional crimes are committed.
 - However the loss for those crimes is negligible.
 - Thus there is a social gain from lowering p.

- Marginal reduction in net social harm = Marginal increase in enforcement costs.
- Underdeterrance is optimal:
 - Suppose that we initially set pf = h.
 - Reducing *p* slightly one saves in enforcement costs, but some additional crimes are committed.
 - However the loss for those crimes is negligible.
 - Thus there is a social gain from lowering p.

- Marginal reduction in net social harm = Marginal increase in enforcement costs.
- Underdeterrance is optimal:
 - Suppose that we initially set pf = h.
 - Reducing *p* slightly one saves in enforcement costs, but some additional crimes are committed.
 - However the loss for those crimes is negligible.
 - Thus there is a social gain from lowering p.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - ' Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - " Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Model tell us that fines should be equal to individual's wealth to:
 - Save on enforcement costs.
 - Avoid use of prison.
- This is not observed in practice. Potential reasons:
 - Fines are not costless to impose.
 - Proportionality.
 - Rich and poor should receive equal treatment.
 - Marginal Deterrence.

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - * Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry.
 - ' Prosecutor's career concerns

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry.
 - Prosecutor's career concerns

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry.
 - ' Prosecutor's career concerns.

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry
 - Prosecutor's career concerns

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry
 - Prosecutor's career concerns

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry.
 - Prosecutor's career concerns

- Prosecutor in a criminal case has a higher standard of proof than plaintiff in a civil case.
 - Civil case: plaintiff's account must be more believable than the defendant's.
 - Criminal case: Prosecutor must prove the case beyond reasonable doubt.

- Why higher standards?
 - Type I and Type II errors.
 - State and suspect asymmetry.
 - Prosecutor's career concerns.

- Individuals privately invest in preventing crimes.
 - · Locks.
 - Guns
 - Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.)
- There are positive and negative externalities in private crime prevention.

- Individuals privately invest in preventing crimes.
 - Locks.
 - Guns
 - Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.
- There are positive and negative externalities in private crime prevention

- Individuals privately invest in preventing crimes.
 - Locks.
 - Guns.
 - · Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.)
- There are positive and negative externalities in private crime prevention.

- Individuals privately invest in preventing crimes.
 - Locks.
 - Guns.
 - Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.)
- There are positive and negative externalities in private crime prevention.

- Individuals privately invest in preventing crimes.
 - Locks.
 - Guns.
 - Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.)
- There are positive and negative externalities in private crime prevention.

- Individuals privately invest in preventing crimes.
 - Locks.
 - Guns.
 - · Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.)
- There are positive and negative externalities in private crime prevention

- Individuals privately invest in preventing crimes.
 - Locks.
 - Guns.
 - Cameras.
 - Trackers.

- (This relates to the investment in precaution by victims in tort law.)
- There are positive and negative externalities in private crime prevention.

• Setup

- $^{\circ}$ n agents, each of whom owns an item of value v
- * Agents can invests or not in a precaution technology (lock). Cost c.
- Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

• Efficient Allocation

- Makes no sense to put a lock in less than all items
- * Put a lock in all items if v > nc

- Setup
 - n agents, each of whom owns an item of value v.
 - Agents can invests or not in a precaution technology (lock). Cost c.
 - Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

- Efficient Allocation:
 - Makes no sense to put a lock in less than all items
 - ' Put a lock in all items if v > nc.

- Setup
 - n agents, each of whom owns an item of value v.
 - Agents can invests or not in a precaution technology (lock). Cost c.
 - Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

- Efficient Allocation:
 - Makes no sense to put a lock in less than all items.
 - * Put a lock in all items if v > nc.

- Setup
 - n agents, each of whom owns an item of value v.
 - * Agents can invests or not in a precaution technology (lock). Cost c.
 - Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

- Efficient Allocation:
 - " Makes no sense to put a lock in less than all items
 - * Put a lock in all items if v > nc.

Setup

- n agents, each of whom owns an item of value v.
- Agents can invests or not in a precaution technology (lock). Cost c.
- Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

• Efficient Allocation:

- Makes no sense to put a lock in less than all items.
- Put a lock in all items if v > nc.

Setup

- n agents, each of whom owns an item of value v.
- Agents can invests or not in a precaution technology (lock). Cost c.
- Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

• Efficient Allocation:

- Makes no sense to put a lock in less than all items.
- Put a lock in all items if v > nc.

- Setup
 - n agents, each of whom owns an item of value v.
 - Agents can invests or not in a precaution technology (lock). Cost c.
 - Thief steals one item from the set that has no lock. (If all items have locks, the criminal does not steal.) For simplicity, assume value zero for the thief.

- Efficient Allocation:
 - Makes no sense to put a lock in less than all items.
 - Put a lock in all items if v > nc.

- Best response:
 - Suppose that k/n-1 other agents have a lock
 - Best response to get lock if:

$$c < v/(n-k)$$

- If c < v < nc, at least two equilibria:
 - * Efficient: no one gets the lock
 - " Inefficient: everyone gets a lock.

- Best response:
 - Suppose that k/n-1 other agents have a lock.
 - Best response to get lock if:

$$c < v/(n-k)$$

- If c < v < nc, at least two equilibria:
 - * Efficient: no one gets the lock.
 - * Inefficient: everyone gets a lock.

- Best response:
 - Suppose that k/n-1 other agents have a lock.
 - Best response to get lock if:

$$c < v/(n-k)$$

- If c < v < nc, at least two equilibria:
 - * Efficient: no one gets the lock.
 - " Inefficient: everyone gets a lock.

- Best response:
 - Suppose that k/n-1 other agents have a lock.
 - Best response to get lock if:

$$c < v/(n-k)$$

- If c < v < nc, at least two equilibria:
 - Efficient: no one gets the lock.
 - Inefficient: everyone gets a lock.

- Best response:
 - Suppose that k/n-1 other agents have a lock.
 - Best response to get lock if:

$$c < v/(n-k)$$

- If c < v < nc, at least two equilibria:
 - Efficient: no one gets the lock.
 - Inefficient: everyone gets a lock.

- Best response:
 - Suppose that k/n-1 other agents have a lock.
 - Best response to get lock if:

$$c < v/(n-k)$$

- If c < v < nc, at least two equilibria:
 - Efficient: no one gets the lock.
 - Inefficient: everyone gets a lock.

• Setup

- $^{\bullet}$ n agents each of whom owns an item of value v
- $^{\circ}$ Agents can invest or not in precaution technology (gun). Cost c
- Thief can select at most one agent and robs him. Payoff for thief that robs ar agent:
 - v < v if agent has no gun.
 - $^{\circ}$ -G if agent has a gun.
- Otherwise the thief gets zero
- Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - * 0 if he is robbed without a gun.
 - " v G if he is robbed with a gun.

Setup

- n agents each of whom owns an item of value v.
- $^{\circ}$ Agents can invest or not in precaution technology (gun). Cost c
- Thief can select at most one agent and robs him. Payoff for thief that robs ar agent:
 - $^{\circ}$ v < v if agent has no gun.
 - [∗] −G if agent has a gun.
- Otherwise the thief gets zero
- Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - * 0 if he is robbed without a gun.
 - " v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - $^{\bullet}$ Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - v < v if agent has no gun...
 - $^{\circ}$ -G if agent has a gun.
 - Otherwise the thief gets zero.
 - Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - 0 if he is robbed without a gun.
 - " v-G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - * Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero
 - Payoff of the agent (not counting the cost of gun):
 - " v if he is not robbed.
 - * 0 if he is robbed without a gun.
 - " v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - * Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero
 - Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - * 0 if he is robbed without a gun.
 - " v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - $^{\bullet}$ Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero
 - Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - * 0 if he is robbed without a gun.
 - * v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - $^{\bullet}$ Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero.
 - Payoff of the agent (not counting the cost of gun):
 - " v if he is not robbed.
 - 0 if he is robbed without a gun.
 - " v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero.
 - Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - 0 if he is robbed without a gun.
 - v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero.
 - Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - 0 if he is robbed without a gun
 - v G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero.
 - Payoff of the agent (not counting the cost of gun):
 - v if he is not robbed.
 - 0 if he is robbed without a gun.
 - v-G if he is robbed with a gun.

- Setup
 - n agents each of whom owns an item of value v.
 - Agents can invest or not in precaution technology (gun). Cost c.
 - Thief can select at most one agent and robs him. Payoff for thief that robs an agent:
 - $\underline{\mathbf{v}} < v$ if agent has no gun.
 - -G if agent has a gun.
 - Otherwise the thief gets zero.
 - Payoff of the agent (not counting the cost of gun):
 - \cdot v if he is not robbed.
 - 0 if he is robbed without a gun.
 - v G if he is robbed with a gun.

- If $G \geq v$, then no agent would buy a gun.
 - Thief will rob a random agent.
- If G < v, there is a symmetric equilibrium with random strategies.
 - Decision of the thief: indifferent iff

$$\alpha(-G) + (1 - \alpha)\underline{\mathbf{v}} = 0$$

Agent is indifferent between buying gun and not iff:

$$v-c-\beta G=(1-\beta)v$$

- If $G \geq v$, then no agent would buy a gun.
 - Thief will rob a random agent.
- If G < v, there is a symmetric equilibrium with random strategies
 - " Decision of the thief: indifferent iff

 $\alpha(-G) + (1 - \alpha)y = 0$

" Agent is indifferent between buying gun and not iff:

 $v - c - \beta G = (1 - \beta)v$

- If $G \geq v$, then no agent would buy a gun.
 - Thief will rob a random agent.
- If G < v, there is a symmetric equilibrium with random strategies.
 - Decision of the thief: indifferent iff

$$\alpha(-G) + (1 - \alpha)\underline{\mathbf{v}} = 0$$

• Agent is indifferent between buying gun and not iff:

$$v - c - \beta G = (1 - \beta)v$$

- If $G \ge v$, then no agent would buy a gun.
 - Thief will rob a random agent.
- If G < v, there is a symmetric equilibrium with random strategies.
 - Decision of the thief: indifferent iff

$$\alpha(-G) + (1 - \alpha)\underline{\mathbf{v}} = 0$$

• Agent is indifferent between buying gun and not iff:

$$v - c - \beta G = (1 - \beta)v$$

- If $G \ge v$, then no agent would buy a gun.
 - Thief will rob a random agent.
- If G < v, there is a symmetric equilibrium with random strategies.
 - Decision of the thief: indifferent iff

$$\alpha(-G) + (1 - \alpha)\underline{\mathbf{v}} = 0$$

• Agent is indifferent between buying gun and not iff:

$$v - c - \beta G = (1 - \beta)v$$

- θ : type of the defendant. G for guilty and I for innocent.
- P_{θ} : Probability of conviction. $P_G > P_I$.
- S: sanction.
- C_d : defendant's cost of trial

- θ : type of the defendant. G for guilty and I for innocent.
- P_{θ} : Probability of conviction. $P_G > P_I$.
- S: sanction.
- C_d : defendant's cost of trial

- θ : type of the defendant. G for guilty and I for innocent.
- P_{θ} : Probability of conviction. $P_G > P_I$.
- S: sanction.
- C_d : defendant's cost of trial

- θ : type of the defendant. G for guilty and I for innocent.
- P_{θ} : Probability of conviction. $P_G > P_I$.
- S: sanction.
- C_d : defendant's cost of trial.

• Expected cost of trial is lower for innocent agents:

$$P_GS + C_d > P_IS + C_d$$

- Prosecutor offers a plea S_0 . She can try to:
 - a. Go to trial with both types.
 - b. Make a plea offer S_0 such that only the guilty will accept.
 - c. Make a plea offer that both types will accept

• Expected cost of trial is lower for innocent agents:

$$P_GS + C_d > P_IS + C_d$$

- Prosecutor offers a plea S_0 . She can try to:
 - a. Go to trial with both types.
 - b. Make a plea offer S_0 such that only the guilty will accept.
 - c. Make a plea offer that both types will accept.

- Claim: (a) is never socially optimal.
 - The prosecutor can impose the same cost on guilty defendants by offering $S_0 = P_G S + C_d$.
- (b) imposes higher cost on guilty defendants.
- (c) involves lower cost on innocent defendants. Saves the cost of trial of innocent defendants.

- Claim: (a) is never socially optimal.
 - The prosecutor can impose the same cost on guilty defendants by offering $S_0 = P_G S + C_d$.
- (b) imposes higher cost on guilty defendants.
- (c) involves lower cost on innocent defendants. Saves the cost of trial of innocent defendants.

- Claim: (a) is never socially optimal.
 - The prosecutor can impose the same cost on guilty defendants by offering $S_0 = P_G S + C_d$.
- (b) imposes higher cost on guilty defendants.
- (c) involves lower cost on innocent defendants. Saves the cost of trial of innocent defendants.

- Claim: (a) is never socially optimal.
 - The prosecutor can impose the same cost on guilty defendants by offering $S_0 = P_G S + C_d$.
- (b) imposes higher cost on guilty defendants.
- (c) involves lower cost on innocent defendants. Saves the cost of trial of innocent defendants.

- Notice that in (b) all defendants that go to trial are innocent!
 - This might affect how judge or jury read the evidence against the defendant
 - If this affects the probability of conviction, the plea might not work as desired.

Plea Bargaining

- Notice that in (b) all defendants that go to trial are innocent!
 - This might affect how judge or jury read the evidence against the defendant.
 - If this affects the probability of conviction, the plea might not work as desired

Plea Bargaining

- Notice that in (b) all defendants that go to trial are innocent!
 - This might affect how judge or jury read the evidence against the defendant.
 - If this affects the probability of conviction, the plea might not work as desired.

- Drugs are historically associated with crime.
- Important characteristics
 - Addictive substances.
 - Affect behavior.
 - Some are illegal. (Alcohol is the important exception.)
- Affect crime:
 - 1. Users might commit crimes to buy drugs.
 - 2. Users might commit crimes under the influence.
 - 3. Drug dealers commit crimes to protect and increase their market power

- Drugs are historically associated with crime.
- Important characteristics:
 - Addictive substances.
 - Affect behavior
 - Some are illegal. (Alcohol is the important exception.)
- Affect crime:
 - 1. Users might commit crimes to buy drugs.
 - 2. Users might commit crimes under the influence.
 - 3. Drug dealers commit crimes to protect and increase their market power

- Drugs are historically associated with crime.
- Important characteristics:
 - Addictive substances.
 - Affect behavior
 - Some are illegal. (Alcohol is the important exception.)
- Affect crime:
 - 1. Users might commit crimes to buy drugs
 - 2. Users might commit crimes under the influence
 - 3. Drug dealers commit crimes to protect and increase their market power

- Drugs are historically associated with crime.
- Important characteristics:
 - Addictive substances.
 - · Affect behavior.
 - Some are illegal. (Alcohol is the important exception.)
- Affect crime:
 - 1. Users might commit crimes to buy drugs.
 - 2. Users might commit crimes under the influence
 - 3. Drug dealers commit crimes to protect and increase their market power

- Drugs are historically associated with crime.
- Important characteristics:
 - Addictive substances.
 - · Affect behavior.
 - Some are illegal. (Alcohol is the important exception.)
- Affect crime:
 - 1. Users might commit crimes to buy drugs.
 - 2. Users might commit crimes under the influence
 - 3. Drug dealers commit crimes to protect and increase their market power

- Drugs are historically associated with crime.
- Important characteristics:
 - Addictive substances.
 - · Affect behavior.
 - Some are illegal. (Alcohol is the important exception.)
- Affect crime:
 - 1. Users might commit crimes to buy drugs.
 - 2. Users might commit crimes under the influence.
 - 3. Drug dealers commit crimes to protect and increase their market power.

• Price-elasticity of demand is different for addicts than for casual/new users.

Demand of addict on the left. Demand of casual user on the right.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - * Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - * Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users.
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users
 - Addiction registration in the UK

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined
 - Dynamic aspect: less addicts in the future.

- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.

- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users.
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users.
 - Addiction registration in the UK.

- War on drugs: generate a left-shift of supply curve. Higher equilibrium price.
 - Total expenditure is higher for addicts. Crime 1 increases.
 - Total consumption goes down. Crime 2 decreases.
 - Effect on Crime 3 is undetermined.
 - Dynamic aspect: less addicts in the future.
- Legalization: right-shift of supply curve. Lower equilibrium price.
 - Opposite effects.
- Ideal policy: reduce price for addicts but increase if for casual users.
 - Addiction registration in the UK.