# CPSC 313 (Winter 2014) L01

### Final Sketch Solutions

# 1. Short answers

1. Give an NFA accepting the regular language  $L = \{a^i \mid i \text{ is not divisible by 4}\}$ . Briefly justify.



2. Give an NFA for the language  $L = L(\mathbf{r}_1) \cap L(\mathbf{r}_2)$  where  $\mathbf{r}_1 = \mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a} \mathbf{b}^*$  and  $\mathbf{r}_2 = (\mathbf{a} \mathbf{b} + \mathbf{b} \mathbf{a})^*$ . Briefly justify.



3. Give a PDA for the language  $L = \{a^i b^j \mid i \geq 0, j = i + 1\}$ . Briefly justify.



4. Give a regular expression for the language accepted by the following PDA. Briefly justify.



 $r = (ab^+)$ 

5. Give a context-free grammar for the language  $L = \{a^i b^j c^k \mid i+j=k \text{ and } i,j,k \geq 0\}$ . Briefly justify.

```
S \to aSc \mid T; \quad T \to bTc \mid \lambda
```

 $r = (a(bc^nd)^me)^k$ 

6. The following pseudo-code prints a string w over the alphabet  $\{a, b, c, d, e\}$ . Express w as a regular expression, using the variables k, m, and n. Briefly justify.

7. Given a Turing Machine  $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$ , we construct a modified Turing Machine M' by moving the tape head of M' by **two** cells positions whenever the tape head of M moves one cell position. That is, we replace each left-going rule  $\delta(q_1, a) = (q_2, b, L)$  by  $\delta'(q_1, a) = (q_2, b, LL)$ , and each right-going rule  $\delta(q_1, a) = (q_2, b, R)$  by  $\delta'(q_1, a) = (q_2, b, RR)$ . Rules that stay are kept un-changed, and everything else is also the same.

If M accepts the language L(M), then what language does M' accept? Justify your answer.

 $L(M') = \{ w \in \Sigma^* \mid \text{ODD}(w) \in L(M) \}$  where  $\text{ODD}(w) = w_1 w_3 w_5 \cdots w_{n'}$  is every other symbol of w, and where n' is n for odd n, and n-1 for even n.

8. We want to construct a Turing Machine that replaces a's by b's, and b's by a's. E.g. if the input is w = bbaab, the Turing Machine starts in the initial configuration



and it ends in the following final configuration



That is, the Turing Machine ends in state  $q_f$  with its head pointing at position 1 and with all a's and b's interchanged.

Give the transition function  $\delta$  of a Turing Machine that given any input string  $w \in \{a, b\}^*$  interchanges the symbols a and b in w. You do not have to use all states given below.

## CPSC 313 Winter 2014 Final sketch solutions

$$\begin{array}{c|ccccc} & a & b & \square \\ \hline q_0 & (q_0,b,R) & (q_0,a,R) & (q_1,\square,L) \\ q_1 & (q_1,a,L) & (q_1,b,L) & (q_f,\square,R) \\ q_f & -- & -- & -- \end{array}$$

9. We are given  $\langle M, w \rangle$ , the description a Turing Machine M and an input string  $w \in \Sigma^*$ .

Let L = L(M) be the language accepted by M. We now define a new Turing Machine M' that does as follows on an input  $z \in \Sigma^*$ :

- (a) First M' checks if z = w.
- (b) If z = w, then M' halts and rejects.
- (c) If  $z \neq w$ , then M' simulates M on  $\boldsymbol{w}$ .
- (d) If the simulation halts and accepts, then M' outputs "accept."
- (e) If the simulation halts and rejects, then M' outputs "reject."

Characterize the language L(M') accepted by M'. Justify your answer.

If 
$$w \in L(M)$$
, then  $L(M') = \Sigma^* \setminus \{w\}$   
If  $w \notin L(M)$ , then  $L(M') = \emptyset$ 

## 2. Language operations

Answer True or False to each of the following four statements. If you answer "True," **no** justification is required. If you answer "False," give the correct answer and give a brief justification. The alphabet is  $\{a, b, c\}$  in questions 1 and 3, and it is  $\{a, b, c, d\}$  in questions 2 and 4.

- 1. If  $L_1 = \{a^i b^i \mid i \geq 0\}$  and  $L_2 = \{a^i b^i c^i \mid i \geq 0\}$ , then  $L_1 \cap L_2 = \emptyset$ . False.  $L_1 \cap L_2 = \{\lambda\}$
- 2. If  $L_1 = \{a^i b^i \mid i \ge 0\}$  and  $L_2 = \{c^i d^i \mid i \ge 0\}$ , then  $L_1 L_2 = \{a^i b^i c^i d^i \mid i \ge 0\}$ . False.  $L_1 L_2 = \{a^i b^i c^j d^j \mid i, j \ge 0\}$
- 3. If  $L = \{a^i b^i c^i \mid i \ge 0\}$  then  $\overline{L} = \{a^i b^j c^k \mid (i \ne j) \text{ or } (i \ne j) \text{ or } (j \ne k)\}.$

False.  $\overline{L} = L_{\text{order}} \cup L_{\text{count}}$  where  $L_{\text{order}} = \{ w \in \{a, b, c\}^* \mid w \text{ contains } ba \text{ or } ca \text{ or } cb \text{ as a substring} \}$  and  $L_{\text{count}} = \{ a^i b^j c^k \mid (i \neq j) \text{ or } (j \neq k) \}.$ 

4. If  $L_1 = \{a^i b^i c^i \mid i \ge 0\}$  and  $L_2 = \{a^i b^i c^i d^i \mid i \ge 0\}$ , then  $L_1 \setminus L_2 = \emptyset$ . False.  $L_1 \setminus L_2 = \{a^i b^i c^i \mid i \ge 1\}$ 

# 3. Reversible grammars

We say a rule is **reversible** if it is on the form

$$A \to x$$
 with  $x = x^R$ ,

#### CPSC 313 Winter 2014 Final sketch solutions

where the right hand side  $x \in (V \cup T)^*$  reads the same when reversed. For instance the rules  $A \to ABBA$  and  $B \to pop$  are reversible, while  $C \to aBc$  and  $D \to aA$  are not. A context-free grammar G = (V, T, S, P) is **reversible** if all its rules are reversible.

1. Give a reversible context-free grammar that generates PAL =  $\{w \in \{a,b\}^* \mid w = w^R\}$ . Justify your answer.

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \lambda$$

2. Give a context-free language L that can **not** be generated by a reversible grammar. Justify your answer.

$$L = \{ab\}$$

3. Give a reversible context-free grammar for  $L = \{a, b\}^*$ . Justify your answer.

$$S \to SS \mid a \mid b \mid \lambda$$

#### 4. True or False

Answer True or False. No justification required. The languages in questions 3 and 4 are over the alphabet  $\Sigma = \{a, b\}$ . In questions 1 and 8,  $\mathbf{r}$  and  $\mathbf{a}$  denote a regular expression.

|   | Question                                                                            | True     | False    |
|---|-------------------------------------------------------------------------------------|----------|----------|
| 1 | If $oldsymbol{r} = oldsymbol{r}^*$ then $oldsymbol{r} oldsymbol{r} = oldsymbol{r}$  | ✓        |          |
| 2 | All non-recursive languages are infinite                                            | ✓        |          |
| 3 | $L = \{a^i b^j \mid i \neq j\}$ is context-free                                     | ✓        |          |
| 4 | The language $L = \{\}$ is co-recursive enumerable                                  | ✓        |          |
| 5 | The grammar $S \to abSc \mid abS \mid Sc \mid \lambda$ generates a regular language | <b>✓</b> |          |
| 6 | It is easy to decide if a finite automata (FA) accepts a finite language or not     | <b>√</b> |          |
| 7 | $\{\ \}^* = \{\ \}$                                                                 |          | <b>✓</b> |
| 8 | $(aa + aaa)^* + a = a^*$                                                            | <b>✓</b> |          |

# 5. Language classification

Answer **exactly one** of four possible answers REC, RE, co-RE, None to each of the following languages. Answer REC if the language is recursive, answer RE if the language is recursive enumerable but not recursive, answer co-RE if the language is co-recursive enumerable but not recursive, and answer None if the language is neither of the first three possible answers. No justification required.

#### CPSC 313 Winter 2014 Final sketch solutions

|   | Question                                                                                                                                                  | REC         | RE | co-RE | None |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|-------|------|
| 1 | $\{\langle M_1, M_2, w \rangle \mid \text{ either TM } M_1 \text{ halts on } w \}$                                                                        |             |    |       | 1    |
| 2 | $\{\langle M, w \rangle \mid \text{TM } M \text{ loops on } w\}$                                                                                          |             | N  | /     |      |
| 3 | $\left\{ \langle M \rangle \mid \begin{array}{l} \text{whenever } M \text{ halts, it halts after an} \\ \text{even number of steps} \end{array} \right\}$ | <b>&gt;</b> |    | 7,    |      |
| 4 | $\{w \mid w = \langle M \rangle \text{ for some TM } M\}$                                                                                                 |             | Y  |       |      |

#### 6. Recursive enumerable

Define the language

Double = 
$$\{\langle M, x \rangle \mid x \in L(M) \text{ and } \lambda \in L(M)\}$$

1. Show that the language Double is recursive enumerable.

Ask  $\langle M, x \rangle \in \mathsf{Halt}$  and  $\langle M, \lambda \rangle \in \mathsf{Halt}$ . Accept if both accept, and reject if either reject. Since  $\mathsf{Halt} \in \mathsf{RE}$  and  $\mathsf{RE}$  is closed under intersection,  $\mathsf{Double} \in \mathsf{RE}$ .

2. Show that  $Halt \leq Double$ .

Given an input  $\langle M, w \rangle$  to Halt, we reduce to an input  $\langle M', w' \rangle$  to Double. We set w' = w. Our definition of the Turing Machine M' depends on whether w is  $\lambda$  or not.

- (a) If  $w = \lambda$ , we set M' = M.
- (b) If  $w \neq \lambda$ , we let M' be a Turing Machine that accepts if its input is  $\lambda$ , and that simulates M if its input is different from  $\lambda$ . That is, M' does as M on all inputs, except it has been modified to always accept the input  $\lambda$ .

Lastly, we make all states in M' final so halting implies accepting.

As for the proof of correcness, in the first case that  $w = \lambda$ , if M halts on  $\lambda$  (and hence also halts on w), M' also halts on  $\lambda$  (and hence w') and hence accepts  $\lambda$  (and hence also w').

In the second case that  $w \neq \lambda$ , M' always accepts  $\lambda$ , and it accepts w' if and only if M halts on w.

We have shown that  $\langle M, w \rangle \in \mathsf{Halt}$  if and only if  $\langle M', w' \rangle \in \mathsf{Double}$ .