Notes for Operations Research & More

Lan Peng, PhD Student

Department of Industrial and Systems Engineering University at Buffalo, SUNY lanpeng@buffalo.edu

September 11, 2019

September 11, 2019

Contents

Ι	Graph and Network Theory	5				
1	Basic concepts 1.1 Graph	7 7 7				
2	Paths, Trees, and Cycles 2.1 Walk 2.2 Path and Cycle 2.3 Tree and forest 2.4 Spanning tree 2.5 Special Graphs 2.6 Complexity 2.7 O notation, Omega notation, Theta notation 2.8 Representation of data 2.9 Size of a problem	9 9 10 10 12 13 14 14				
3	Shortest-Path Problem					
4	Minimum Spanning Tree Problem					
5	Maximum Flow Problem					
6	Minimum Cost Flow Problem 2					
7	Assignment and Matching Problem					
8	Graph Algorithms					
9	Polygon Triangulation 9.1 Types of Polygons	27 27				

4 CONTENTS

Part I Graph and Network Theory

Basic concepts

1.1 Graph

Definition 1.1.1 (Graph). A graph G consists of a finite set V(G) on vertices, a finite set E(G) on edges and an **incident relation** than associates with any edge $e \in E(G)$ an unordered pair of vertices not necessarily distinct called **ends**.

For example, the following graph

can be represented as

$$V = V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$
 (1.1)

$$E = E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7\}$$
 (1.2)

$$e_1 = v_1 v_2, e_2 = v_2 v_4, \dots$$
 (1.3)

Definition 1.1.2 (loop, parallel, simple graph). An edge with identical ends is called a **loop**, Two edges having the same ends are said to be **parallel**, A graph without loops or parallel edges is called **simple graph**

Definition 1.1.3 (adjacent). Two edges of a graph are **adjacent** if they have a common end, two vertices are **adjacent** if they are jointed by an edge.

1.2 Subgraph

Definition 1.2.1 (subgraph). Given two graphs G and H, H is a **subgraph** of G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ and an edge has the same ends in H as it does in G. Furthermore, if $E(H) \neq E(G)$ then H is a proper subgraph.

Definition 1.2.2 (spanning). A subgraph H on G is spanning if V(H) = V(G)

Definition 1.2.3 (vertex-induced, edge-induced). For a subset $V' \subseteq V(G)$ we define an **vertex-induced** subgraph G[V'] to be the subgraph with vertices V' and those edges of G having both ends in V'. The **edge-induced** subgraph G[E'] has edges E' and those vertices of G that are ends to edges in E'.

Notice: If we combine node-induced or edge-induced subgraphs G(V') and G(V - V'), we cannot always get the entire graph.

Definition 1.2.4 (degree). Let $v \in V(G)$, then the **degree** of $v \in V(G)$ denote by $d_G(v)$ is defines to be the number of edges incident of v. Loops counted twice.

Theorem 1.1. For any graph G = (V, E)

$$\sum_{v \in V} d(v) = 2|E| \tag{1.4}$$

Proof. \forall edge $e = \mu v$ with $\mu \neq v$, e is and counted once for μ and once for v, a total of two altogether. If $e = \mu \mu$, a loop, then it is counted twice for μ

Problem 1.1. Explain clearly, what is the largest possible number of vertices in a graph with 19 edges and all vertices of degree at least 3. Explain why this is the maximum value.

Solution. The maximum number is 12.

Proof. First we prove 12 vertices is possible, then we prove 13 vertices is not possible

- The following graph contains 12 vertices and 18 edges, each vertex has a degree of 3.
- For 13 vertices and each vertex has a degree of at least 3 will require at least

$$2|E| = \sum_{v \in V} d(v) \ge 3 \times |N| = 3 \times 13 \Rightarrow |E| \ge 19.5 > 19$$
(1.5)

edges, i.e., 13 vertices is not possible.

Corollary 1.1.1. Every graph has an even number of odd degree vertices.

Proof.

$$V = V_E \cup V_O \Rightarrow \sum_{v \in V} d(v) = \sum_{v \in V_E} d(v) + \sum_{v \in V_O} d(v) = 2|E|$$

$$\tag{1.6}$$

Paths, Trees, and Cycles

2.1 Walk

Definition 2.1.1 (walk). A walk in a graph G is a finite sequence $w = v_0 e_1 v_1 e_2 ... e_k v_k$, where for each $e_i = v_{i-1} v_i$ the edge and its ends exists in G. We say that walk v_0 to v_k on (v_0, v_k) -walk.

Example.

$$w = v_2 e_4 v_3 e_4 v_2 e_5 v_3 \tag{2.1}$$

is a walk, or (v_2, v_3) -walk

Definition 2.1.2 (origin, terminal, internal, length). For (v_0, v_k) -walk, The vertices v_0 and v_k are called the **origin** and the **terminal** of the walk w, $v_1...v_{k-1}$ are called **internal** vertices. The integer k is the **length** of the walk. Length of w equals to the number of edges.

We can create a reverse walk w^{-1} by reversing w.

$$w^{-1} = v_k e_k v_{k-1} e_{k-1} \dots e_2 v_1 \tag{2.2}$$

(The reverse walk is guaranteed to exist because it is an undirected graph)

Given two walks w and w' we can create a third walk denoted by ww' by concating w and w'. The new walk's origin is the same as terminal.

2.2 Path and Cycle

Definition 2.2.1 (trail). A **trail** is a walk with no repeating edges. e.g., $v_3e_4v_2e_5v_3$

Definition 2.2.2 (path). A **path** is a trail with no repeating vertices. e.g., $v_3e_4v_2$

Notice: Paths \subseteq Trails \subseteq Walks

Definition 2.2.3 (closed, cycle). A path is **closed** if it has positive length and its origin and terminal are the same. e.g., $v_1e_2v_2e_4v_3e_3v_1$. A closed trail where origin and internal vertices are distinct is called a **cycle** (The only time a vertex is repeated is the origin and terminal)

Definition 2.2.4 (even/odd cycle). A cycle is **even** if it has a even number of edges otherwise it is **odd**.

Problem 2.1. Prove that if C_1 and C_2 are cycles of a graph, then there exists cycles $K_1, K_2, ..., K_m$ such that $E(C_1)\Delta E(C_2) = E(K_1) \cup E(K_2) \cup ... \cup E(K_m)$ and $E(K_i) \cap E(K_j) = \emptyset, \forall i \neq j$. (For set X and Y, $X\Delta Y = (X - Y) \cup (Y - X)$, and is called the symmetric difference of X and Y)

Proof. Proof by constructing $K_1, K_2, ...K_m$. Denote

$$C_1 = v_{11}e_{11}v_{12}e_{12}v_{13}e_{13}...v_{1n}e_{1n}v_{11}$$
 (2.3)

$$C_2 = v_{21}e_{21}v_{22}e_{22}v_{23}e_{23}...v_{2k}e_{2k}v_{21}$$
 (2.4)

Assume both cycle start at the same vertice, $v_{11} = v_{12}$. (If there is no intersected vertex for C_1 and C_2 , just simply set $K_1 = C_1$ and $K_2 = C_2$)

The following algorithm can give us all K_j , j = 1, 2, ..., m by constructing $E(C_1)\Delta E(C_2)$. Also, the complexity is O(mn), which makes the proof doable.

Algorithm 1 Find $K_1, K_2, ...K_m$ by constructing $E(C_1)\Delta E(C_2)$

```
Require: Graph G, cycle C_1 and C_2
Ensure: K_1, K_2, ... K_m
 1: Initial, K \leftarrow \emptyset, j = 1
 2: Set temporary storage units, v_o \leftarrow v_{11}, v_t \leftarrow \emptyset
 3: for i = 1, 2, ..., n do
        if e_{1i} \in C_2 then
           if v_o \neq v_{1i} then
 5:
 6:
               v_t \leftarrow v_{1i}
 7:
               concate (v_o, v_t)-path \subset C_1 and (v_o, v_t)-path
               \subset C_2 to create a new K_i
               Append K with K_j, K \leftarrow K \cup K_j
 8:
               Reset temporary storage unit. v_o \leftarrow v_{1(i+1)}
 9:
               (or v_{11} if i = n), v_t \leftarrow \emptyset
10:
               v_o \leftarrow v_{1(i+1)} \text{ (or } v_{11} \text{ if } i = n)
11:
            end if
12:
        end if
13:
14: end for
```

Now we prove that $K_i \cap K_j = \emptyset$, $\forall i \neq j$. For each K_j , it is defined by two (v_o, v_t) -paths in the algorithm. From the algorithm we know that all the edges in (v_o, v_t) -path

in C_1 are not intersecting with C_2 , because if the edge in C_1 is intersected with C_2 , either we closed the cycle K_j before the edge, or we updated v_o after the edge (start a new K_j after that edge). By definition of cycle, all the (v_o, v_t) -path that are subset of C_1 are not intersecting with each other, as well as all the (v_o, v_t) -path that are subset of C_2 . Therefore, $K_i \cap K_j = \emptyset, \forall i \neq j$.

Definition 2.2.5 (connected vertices). Two vertices u and v in a graph are said to be **connected** if there is a path between u and v.

Definition 2.2.6 (component). Connectivity between vertices is an equivalence relation on V(G), if $V_1, ... V_k$ are the corresponding equivalent classes then $G[V_1]...G[V_k]$ are **components** of G. If graph has only one component, then we say the graph is connected. A graph is connected iff every pair of vertices in G are connected, i.e., there exists a path between every pair of vertices.

Problem 2.2. If G is a simple graph with at least two vertices, prove that G has two vertices with the same degree.

Proof. A simple graph can only be connected or not connected.

- If G is connected, i.e., for all vertices, the degree is greater than 0. Also the graph is simple, for a graph with |N| vertices, the degree of each vertex is less or equal to |N|-1 (cannot have loop or parallel edge). For |N| vertices, to make sure there is no two vertices that has same degree, it will need |N| options for degrees, however, we only have |N|-1 option. According to pigeon in holes principle, there has to be at least two vertices with the same degree.
- If G is not connected, i.e., the graph has more than one component. One of the following situation will happen:
 - For all components, each component contains only one vertex. Since we have at least two vertices, which means there are at least two component that has only one vertex. For those vertices, at least two vertices has the same degree as 0.
 - At least one component has more than one vertices. In this situation, we can find a component that has more than one vertices as a subgraph G' of the graph G. That G' is a connected simple graph by definition. We have already proved that a connected simple graph has two vertices with the same degree, which means G has two vertices with the same degree.

2.3 Tree and forest

Definition 2.3.1 (acyclic graph). A graph is called **acyclic** if it has no cycles

Definition 2.3.2 (forest, tree). A acyclic graph is called a **forest**. A connected forest is called a **tree**.

Theorem 2.1. Prove that T is a tree, if T has exactly one more vertex than it has edges.

Proof. 1. First we prove for any tree T that has at least two vertices, there has to be at least one leaf, i.e., now we prove that we can find u with degree of 1. Proof by constructing algorithm. (In fact we can prove that there are at least two leaves.)

Algorithm 2 Find one leaf in a tree

Require: d(u) = 1

Ensure: A tree T has at least one vertex

- 1: Let u and v be any distinct vertex in a tree T
- 2: Let p be the path between u and v
- 3: while $d(u) \neq 1$ do
- 4: **if** d(u) > 1 **then**
- 5: Let n(u) be the set of neighboring vertices of u
- 6: In n(u), find a u' that the edge between u and u', denoted by e, $e \notin p$
- 7: $u \leftarrow u'$
- 8: $p \leftarrow p \cup e$
- 9: end if
- 10: end while

The above algorithm is guaranteed to have an end because a tree is acyclic by definition

- 2. Then, if we remove one leaf in the tree, i.e., we remove an edge and a vertex, where that vertex only connects to the edge we removed. One of the following situations will happen:
 - (a) Situation 1: The remaining of T is one vertex. In this case, T has two vertices an one edge. (Exactly one more vertex than it has edges)
 - (b) Situation 2: The remaining of T is another tree $T^{'}$ (removal of edges will not change acyclic and connectivity), where $|V(T)| = |V(T^{'})| + 1$ and $|E(T)| = |E(V^{'}| + 1)$. (one edge and one vertex has been removed)
- 3. Do the leaf removal process recursively to $T^{'}$ if Situation 2 happens until Situation 1 happens.

2.4 Spanning tree

Definition 2.4.1 (spanning tree). A subgraph T of G is a **spanning tree** if it is spanning (V(T) = V(G)) and it is a tree.

2.4. SPANNING TREE

Example. In the following graph

This is a spanning tree

Problem 2.3. Prove that if T_1 and T_2 are spanning trees of G and $e \in E(T_1)$, then there exists a $f \in E(T_2)$, such that $T_1 - e + f$ and $T_2 + e - f$ are both spanning trees of G.

Proof. One of the following situation has to happen:

- 1. If for given $e \in E(T_1)$, $\exists f = e \in E(T_2)$, then $T_1 e + f = T_1$, $T_2 + e f = T_2$ are both spanning trees of G
- 2. If for given $e \in E(T_1)$, $e \notin E(T_2)$, the following will find an edge f that $T_1 e + f$ and $T_2 + e f$ are both spanning trees of G.
 - (a) T_1 is a spanning tree, removal of $e \in E(T_1)$ will disconnect the spanning tree into two components (by definition of spanning tree), denoted by $G_1 \subset G$ and $G_2 \subset G$, by definition, $V(G_1)$ and $V(G_2)$ is a partition of V(G).
 - (b) Add e into T_2 . We can proof that by adding an edge into a tree will create exactly one cycle, denoted by C, $e \in E(C)$.
 - (c) For C, since it is a cycle and one end of e is in $V(G_1)$, the other end of e is in $V(G_2)$, there has to be at least two edges (can be more) that has one end in $V(G_1)$ and the other end in $V(G_2)$, denote the set of those edges as $E \subset E(C)$, one of those edges is $e \in E$
 - (d) Choose any $f \in E$ and $f \neq e$, for that $f, T_1 e + f$ and $T_2 + e f$ are both spanning trees of G.
 - (e) Prove that $T_1 e + f$ is a spanning tree
 - i. $T_1 e + f$ have the same set of vertices as T_1 , therefore it is spanning.
 - ii. It is connected both within G_1 and G_2 , for f, one end is in $V(G_1)$, the other end is in $V(G_2)$ therefore $T_1 e + f$ is connected.

iii. $T_1 - e + f$ have the same number of edges as T_1 , which is $|T_1| - 1$, therefore $T_1 - e + f$ is a tree. (We have proven the connectivity in the previous step.)

11

- iv. $T_1 e + f$ is spanning, connected, a tree, therefore it is a spanning tree.
- (f) Prove that $T_2 + e f$ is a spanning tree
 - i. $T_2 + e f$ have the same set of vertices as T_2 , therefore it is spanning.
 - ii. T_2 is connected, adding an edge will not break connectivity, therefore $T_2 + e$ is connected, removing an edge in a cycle will not break connectivity, therefore $T_2 + e f$ is connected.
 - iii. $T_2 e + f$ have the same number of edges as T_2 , which is $|T_2| 1$, therefore $T_2 + e f$ is a tree. (We have proven the connectivity in the previous step.)
 - iv. $T_2 e + f$ is spanning, connected, a tree, therefore it is a spanning tree.

Theorem 2.2. Every connected graph has a spanning tree.

Proof. Prove by constructing algorithm: \Box

Algorithm 3 Find a spanning tree for connected graph Require: a connected graph G and an enumeration $e_1, ... e_m$ of the edges of G

Ensure: a spanning tree T of G

- 1: Let T be the spanning subgraph of G with V(T) = V(G) and $E(T) = \emptyset$
- $2: i \leftarrow 1$
- 3: while $i \leq |E|$ do
- 4: **if** $T + e_i$ is acyclic **then**
- 5: $T \leftarrow T + e_i$
- 6: $i \leftarrow i + 1$
- 7: end if
- 8: end while

Notice: This algorithm can be improved, one idea is to make summation of edges in spanning subgraph less or equation to |V|-1

For the complexity of spanning tree algorithm:

- 1. First we need to input the data, create an array such that the first and the second entries are the ends of e_1 , third and fourth are the ends of e_2 , and so on.
- 2. The amount of storage needs in 2|E|, which is O(|E|)
- 3. The main work involved in the algorithm is for each edges e_i and the current T, to determine if $T + e_i$ creates a cycle.

- 4. At every stage T has certain components $V_1, ... V_t$, (every time we add an edge, the number of components minus 1)
- 5. So at the beginning t = |V| with $|V_i| = 1 \forall i$
- 6. At the end, t=1
- 7. suppose we keep each component V_i by keeping for each vertex a pointer from the vertex to the name of the component containing it. Thus if $\mu \in V_3$, there will be a pointer from μ to integer 3.
- 8. Then when edge $e_i = \mu v$ is encountered in Step 2, we see that $T + e_i$ contains a cycle if and only if μ and v point to same integer which means they are in the same component
- 9. If they are not in the same component, we want to add the edge which means then I have to update the pointers.

To prove algorithm we need to show the output is a spanning tree, which means three properties must hold:

- spanning (Step I)
- acyclic (We never add an edge that create a cycle)
- connected (Proof by contradiction)

So it is sufficient to show that the output will be connected.

Proof. (Proof by Contradiction) Suppose the output graph T of the algorithm is NOT connected. Let T_1 be a component of T, let $x \in T_1$ and $y \notin T_1$. But G is a connected graph (given from the beginning), so there must be a path in G that connects x and y. Let such a path in G be $p = xe_1v_1e_2, ...v_{k-1}e_ky$. Clearly, $p \notin T_1$. So there must be a first vertex in P that not in T_1 . So $e_i \notin E(T)$, the only way this can happen when applying the algorithm is if $T + e_i$ creates a cycle C, i.e., $e_i \in C$, so $C - e_i$ is a path connecting v_{i-1} and v_i . So $c - e_i \in T$, so v_{i-1} is connected to $v_i \in T$. Contradiction.

2.5 Special Graphs

Definition 2.5.1. A **complete** graph $K_n (n \ge 1)$ is a simple graph with n vertices and with exactly one edge between each pair of distinct vertices.

Definition 2.5.2. A **cycle** graph $C_n (n \ge 3)$ consists of n vertices $v_1, ...v_n$ and n edges $\{v_1, v_2\}, \{v_2, v_3\}, ...\{v_{n-1}, v_n\}$

Definition 2.5.3. A wheel graph $W_n (n \ge 3)$ is a simple graph obtains by adding one vertex to the cycle graph C_n , and connecting this new vertex to all vertices of C_n

Definition 2.5.4. A simple graph is said to be **bipartite** if the vertex set can be expressed as the union of two disjoint non-empty subsets V_1 and V_2 such that every edges has one end in V_1 and another end in V_2

Definition 2.5.5 (complete bipartite). The **complete** bipartite graph K_{mn} is the bipartite graph V_1 containing m vertices and V_2 containing n vertices such that each vertiex in V_1 is adjacent to every vertex in V_2

Example. Here is an example for K_{53}

Theorem 2.3. (König) A graph G is bipartite iff every cycle is even.

Proof. Hereby we prove the \Rightarrow and \Leftarrow

- (⇒) If the graph G is bipartite, by definition, the vertices of graph can be partition into two groups, that within the group there is no connection between vertices. Therefore, for each cycle, the odd index of vertices and even index of vertices has to be choose alternatively from each groups. Therefore the cycle has to be even.
- (\(\Lefta\)) Prove by contradiction. A graph can be connected or not connected.
 - If G is connected and has at least two vertices, for an arbitrary vertex $v \in V(G)$, we can calculate the minimum number of edges between the other vertices v' and v (i.e., length, denoted by l(v',v)), for all the vertices that has odd length to v, assign them to set V_1 , for the rest of vertices (and v), assign to set V_2 . Assume that

G is not bipartite, which means there are at least one edge between distinct vertices in set V_1 or set V_2 , without lost of generality, assume that edge is uw, u, $w \in V_1$. For all vertices in V_1 there is an odd length of path between the vertex and v, therefore, there exists an odd l(u,v), and an odd l(w-v). The length of cycle l(u,w,v)=1+l(u,v)+l(w,v), which is an odd number, it contradict with the prerequisite that all cycles are even, which means the assumption that G is not bipartite is incorrect, G should be bipartite.

- If G is not connected. Then G can be partition into a set of disjointed subgraphs which are connected with at least two vertices or contains only one vertex. For the subgraph that has more that one vertices, we already proved that it has to be bipartite. For the subgraph $G_i \subset G, i = 1, 2, ..., n$, the vertices can be partition into $V_{i1} \in V(G_i)$ and $V_{i2} \in V(G_i)$, where $V_{i1} \cap V_{i2} = \emptyset$, the union of those subgraphs are bipartite too because $V_1 = \bigcup_{i=1}^n V_{i1} \in V(G)$ and $V_2 = \bigcup_{i=1}^n V_{i2} \in V(G)$ satisfied the condition of bipartite. For the subgraph that has one one vertices, those vertices can be assigned into either V_1 or V_2 .

Example. The following graph is bipartite, it only contains even cycles.

We can rearrange the graph to be more clear as following

The vertices of graph G can be partition into two sets, $\{a,c,f,h\}$ and $\{b,d,e,g\}$

Example. The following graph is not bipartite

The cycle $c = v_1 v_1 1 v_4 v_3 v_2$ have odd number of vertices.

2.6 Complexity

This part is going to be moved to Algorithm notes (or I will just delete this part because of duplication). We want to know guaranteed performances - "worse case" scenarios - for any algorithm working on any problem instance.

The following example is for addition of two matrices:

Algorithm 4 Add two $m \times n$ matrices A, B to get matrix

```
for i = 1, 2, ..., m do

for j = 1, 2, ..., n do

C_{ij} = A_{ij} + B_{ij}

end for

end for
```

The "running time" of an algorithm is measured by the number of basic operational steps.

For so called "basic" steps, it includes

- \bullet +, -, \times , \div
- assignments and storage of a variable
- comparisons

For the example above

- c_1mn for addition $C_{ij} = A_{ij} + B_{ij}$
- c_2mn for saving C_{ij}

FIXME

13

• c_3mn for comparison and assignment for i and j

 c_1, c_2, c_3 does not matter, the number of steps are $m \times n$, we say the algorithm runs O(mn) (big O notation, the worse case)

Example.
$$f(n) = 3n^3 + 4n^2$$

Claim: f(n) is $O(n^3)$

Proof: Find a c for $cn^3 - 3n^3 - 4n^2$ that there exist a n_0 , for $\forall n \geq n_0$, the inequality holds.

2.7 O notation, Omega notation, Theta notation

Definition 2.7.1 (O notation). An algorithm is said to run in O(f(n)) time if for some constant $C(\geq 0)$, and n_0 the time takes algorithm is at most Cf(n) for all $n \geq n_0$

Definition 2.7.2 (Ω notation). An algorithm is said to run in $\Omega(f(n))$ time if for some constant $C'(\geq 0)$, and n_0 . For all instance $n \geq n_0$, the time takes algorithm is at least C'f(n) for some instances.

Definition 2.7.3 (Θ notation). An algorithm is said to be $\Theta(f(n))$ if it is both O(f(n)) and $\Omega(f(n))$

Example. $\frac{1}{2}n^2 - 3n$, $\Omega(n^2) \leq \Theta(n^2) \leq O(n^2)$ Find c' and c (both \vdots 0) where $c'n^2 \leq \frac{1}{2}n^2 - 3n \leq cn^2$ for a given n_0 , $\forall n \geq n_0$ the inequality holds. Let $c' = \frac{1}{14}$ and $c = \frac{1}{2}$, $\forall n \geq n_0$, where $n_0 = 7$, the

inequality always holds.

2.8 Representation of data

For set $\{1, 3, 4, 6, 8\}$ we have two ways to represent, array and list.

For array, the representation is

For list, the representation is

$$\boxed{1 \longrightarrow 3 \longrightarrow 4 \longrightarrow 6 \longrightarrow 8 \longrightarrow}$$

There is no "better" representation, one can be better than the other one in different cases.

Example. For \emptyset , array need to build a space with n cells of 0, complexity O(n), list just need to build the first cell, O(1)

Example. To find if a number is in a set, array needs O(1) (look at the address), list needs O(n) (loop through list, worst case, entire list)

2.9 Size of a problem

Number of bits needed to store the problem

Example. Let $0 \le A_{ij} \le 2^{51}$

Representation by the bits of the number, $A_{ij} \leq 2^51$ can be represented by max of $O(log(A_{ij}))$, (51 bits)

For matrix addition that the total storage for addition two matrix is O(mnk), $k = O(log|A_{mn}|)$

Shortest-Path Problem

Minimum Spanning Tree Problem

Maximum Flow Problem

Minimum Cost Flow Problem

Assignment and Matching Problem

Graph Algorithms

Polygon Triangulation

9.1 Types of Polygons

Definition 9.1.1 (simple polygon). A **simple polygon** is a closed polygonal curve without self-intersection.

Simple Polygon

Non-simple Polygon

Polygons are basic building blocks in most geometric applications. It can model arbitrarily complex shapes, and apply simple algorithms and algebraic representation/manipulation.

9.2 Triangulation

Definition 9.2.1 (Triangulation). **Triangulation** is to partition polygon P into non-overlapping triangles using diagonals only. It reduces complex shapes to collection of simpler shapes. Every simple n-gon admits a triangulation which has n-2 triangles.

Theorem 9.1. Every polygon has a triangulation

theorem 9.2. Every polygon with more than three vertices has a diagonal.

Proof. (by Meisters, 1975) Let P be a polygon with more than three vertices. Every vertex of a P is either convex or concave. W.L.O.G.(any polygon must has convex corner) Assume p is a convex vertex. Denote the neighbors of p as q and r. If $q\bar{r}$ is a diagonal, done, and we call Δpqr is an ear. If Δpqr is not an ear, it means at least one vertex is inside Δpqr , assume among those vertexes inside Δpqr , s is a vertex closest to p, then $p\bar{s}$ is a diagonal.

9.3 Art Gallery Theorem

Theorem 9.3. Every n-gon can be guarded with $\lfloor \frac{n}{3} \rfloor$ vertex guards

theorem 9.4. Triangulation graph can be 3-colored.

Problem 9.1. The floor plan of an art gallery modeled as a simple polygon with n vertices, there are guards which is stationed at fixed positions with 360 degree vision but cannot see through the walls. How many guards does the art gallery need for the security? (Fun fact: This problem was posted to Vasek Chvatal by Victor Klee in 1973).

Proof. - P plus triangulation is a planar graph

- 3-coloring means there exist a 3-partition for vertices that no edge or diagonal has both endpoints within the same set of vertices.
- Proof by Induction:
 - Remove an ear (there will always exist ear)
 - Inductively 3-color the rest
- Put ear back, coloring new vertex with the label not used by the boundary diagonal. \Box

9.4 Triangulation Algorithms

9.5 Shortest Path