Лемма 4.4. Пусть функция $f \in \mathfrak{M}_T$. Тогда найдется последовательность простых функций f_n , $n=1,2,\ldots$, таких, что

$$\mathbb{E}\int_{0}^{T} [f(t,\omega) - f_{n}(t,\omega)]^{2} dt \to 0, \qquad n \to \infty.$$
(4.39)

Доказательство. а) Прежде всего заметим, что без ограничения общности можно считать функцию $f(t,\omega)$ ограниченной, $|f(t,\omega)| \le C < \infty$, $0 \le t \le T$, $\omega \in \Omega$. (В противном случае можно перейти от $f(t,\omega)$ к функции $f^{(N)}(t,\omega) := f(t,\omega) \cdot \mathbb{I}_{\{(t,\omega):|f(t,\omega)| \le N\}}(t,\omega)$ и использовать то, что $\mathbb{E}\int_0^T [f(t,\omega)-f^{(N)}(t,\omega)]^2 dt \to 0$ при $N\to\infty$. 1) Далее, если $T=\infty$, то сразу можно считать, что функция $f(t,\omega)$ финитна, т.е. обращается в нуль вне некоторого конечного интервала. 2

Итак, пусть $|f(t,\omega)| \le C < \infty$ и $T < \infty$

б) Если функция $f(t,\omega)$ непрерывна по t \mathbb{P} -(п.н.), то последовательность простых функций строится просто. Например, можно положить

$$f_n(t,\omega) = f(0,\omega) \cdot \mathbb{I}_{\{0\}}(t) + \sum_{k=0}^{n-1} f(\frac{kT}{n},\omega) \cdot \mathbb{I}_{\left(\frac{kT}{n},\frac{(k+1)T}{n}\right)}(t).$$

В силу равномерной непрерывности по $t \in [0;T]$ функции $f(t,\omega)$ (которая вытекает из непрерывности функции $f(t,\omega)$ на отрезке [0;T] и теоремы Кантора) при $n \to \infty$ имеет место сходимость

$$\begin{split} \sup_{t \in [0,T]} & \left| f_n(t,\omega) - f(t,\omega) \right|^2 = \max_{k=0,\dots,n-1} \sup_{t \in \left(\frac{kT}{n},\frac{(k+1)T}{n}\right]} \left| f_n(t,\omega) - f(t,\omega) \right|^2 = \\ = \max_{k=0,\dots,n-1} \sup_{t \in \left(\frac{kT}{n},\frac{(k+1)T}{n}\right]} \left| f(\frac{kT}{n},\omega) - f(t,\omega) \right|^2 \leq \max_{k=0,\dots,n-1} \sup_{t \in \left[\frac{kT}{n},\frac{(k+1)T}{n}\right]} \left| f(\frac{kT}{n},\omega) - f(t,\omega) \right|^2 \to 0 \,. \end{split}$$

Следовательно,

$$\int_0^T \left| f_n(t,\omega) - f(t,\omega) \right|^2 dt \le \sup_{t \in [0:T]} \left| f_n(t,\omega) - f(t,\omega) \right|^2 \cdot T \to 0. \tag{*}$$

Кроме того, в силу $|f(t,\omega)| \le C < \infty$ и определения функций $f_n(t,\omega)$ имеем $|f_n(t,\omega)| \le C$, а значит,

 $\int_0^T \left| f_n(t,\omega) - f(t,\omega) \right|^2 dt \leq 2 \int_0^T \left| f_n(t,\omega) \right|^2 dt + 2 \int_0^T \left| f(t,\omega) \right|^2 dt = 2C^2T + 2C^2T = 4C^2T \ . \tag{**}$ Тогда из условий (*), (**) и $\mathbb{E}[4C^2T] < \infty$ по теореме Лебега о мажорируемой сходимости получаем соотношение (4.39): $\mathbb{E} \int_0^T [f(t,\omega) - f_n(t,\omega)]^2 dt \to 0 \ , \quad n \to \infty \ .$

 $[\]mathbb{E} \int_0^T [f(t,\omega) - f^{(N)}(t,\omega)]^2 dt = \mathbb{E} \int_0^T [f(t,\omega)]^2 \cdot \mathbb{I}_{\{(t,\omega):|f(t,\omega)|>N\}}(t,\omega) dt \to 0 \quad \text{при} \quad N \to \infty \quad \text{по}$ теореме Лебега о мажорируемой сходимости, так как $[f(t,\omega)]^2 \cdot \mathbb{I}_{\{(t,\omega):|f(t,\omega)|>N\}}(t,\omega) \to 0 \quad \text{при}$ $N \to \infty$, $\left| [f(t,\omega)]^2 \cdot \mathbb{I}_{\{(t,\omega):|f(t,\omega)|>N\}}(t,\omega) \right| \le [f(t,\omega)]^2 \quad \text{и} \quad \mathbb{E} \int_0^T [f(t,\omega)]^2 dt < \infty$, т.е. $[f(t,\omega)]^2 - \mathbb{I}_{\{(t,\omega):|f(t,\omega)|>N\}}(t,\omega) = \mathbb{I}_{\{(t,\omega):|f(t,\omega$

 $[\]mathbb{E}\int_0^\infty [f(t,\omega)-f(t,\omega)\cdot\mathbb{I}_{[0,T]\times\Omega}(t,\omega)]^2\,dt = \mathbb{E}\int_0^T [f(t,\omega)]^2\cdot\mathbb{I}_{(T;\infty)\times\Omega}(t,\omega)dt \to 0 \quad \text{при} \quad T\to\infty \quad \text{по}$ теореме Лебега о мажорируемой сходимости, так как $[f(t,\omega)]^2\cdot\mathbb{I}_{(T;\infty)\times\Omega}(t,\omega)dt\to 0 \quad \text{при}$ $T\to\infty$, $\left|[f(t,\omega)]^2\cdot\mathbb{I}_{(T;\infty)\times\Omega}(t,\omega)\right| \le [f(t,\omega)]^2 \quad \text{и} \quad \mathbb{E}\int_0^T [f(t,\omega)]^2\,dt <\infty, \quad \text{т.e.} \quad [f(t,\omega)]^2 \quad \text{интегрируемая мажоранта.}$

в) Если функция $f(t,\omega)$, $0 \le t \le T$, $\omega \in \Omega$, прогрессивно измерима, то построить последовательность аппроксимирующих функций можно следующим образом. Пусть $F(t,\omega) := \int_0^t f(s,\omega) ds$, где интеграл понимается как интеграл Лебега. В силу прогрессивной измеримости функций $f(s,\omega)$ процесс $F(t,\omega)$, $0 \le t \le T$, измерим и при каждом t случайные величины $F(t,\omega)$ \mathcal{F}_t - измеримы.

Положим

$$\tilde{f}_m(t,\omega) := m \int_{(t-\frac{1}{m})\vee 0}^t f(s,\omega) ds \left(= \frac{F(t,\omega) - F((t-\frac{1}{m})\vee 0,\omega)}{1/m} \right).$$

Случайный процесс $\tilde{f}_m(t,\omega)$, $0 \le t \le T$, $\omega \in \Omega$, измерим, является неупреждающим и имеет \mathbb{P} -(п.н.) непрерывные траектории. Поэтому согласно пункту б) для каждого m существует последовательность неупреждающих ступенчатых функций $\tilde{f}_{m,n}(t,\omega)$, $n=1,2,\ldots$, такая, что

$$\mathbb{E}\int_0^T \left[\tilde{f}_m(t,\omega) - \tilde{f}_{m,n}(t,\omega)\right]^2 dt \to 0, \quad n \to \infty.$$

Поскольку \mathbb{P} -(п.н.) функция $F(t,\omega) = \int_0^t f(s,\omega) ds$ является интегралом Лебега с переменным верхним пределом для почти всех $t \leq T$ существует производная $F'(t,\omega)$ и $F'(t,\omega) = f(t,\omega)$ (см. Колмогоров, Фомин, изд. 7, теорема 1, § 3, гл. 6, стр. 356). С другой стороны, в тех точках, где производная $F'(t,\omega)$ существует, справедливо равенство

$$F'(t,\omega) = \lim_{m \to \infty} \frac{F(t,\omega) - F((t-\frac{1}{m}) \vee 0,\omega)}{1/m} = \lim_{m \to \infty} \tilde{f}_m(t,\omega).$$

Поэтому для почти всех (t,ω) (по мере $dt \times d\mathbb{P}$) $\lim_{m \to \infty} \tilde{f}_m(t,\omega) = f(t,\omega)$. Следовательно, $\lim [\tilde{f}_m(t,\omega) - f(t,\omega)]^2 = 0$ для почти всех (t,ω) (по мере $dt \times d\mathbb{P}$). Кроме того,

$$[\tilde{f}_m(t,\omega) - f(t,\omega)]^2 \le 2[\tilde{f}_m(t,\omega)]^2 + 2[f(t,\omega)]^2 \le 2C^2 + 2C^2 = 4C^2.$$

Здесь мы воспользовались оценками $|f(t,\omega)| \le C < \infty$ и

$$\left| \tilde{f}_m(t,\omega) \right| = m \left| \int_{(t-\frac{1}{m})\vee 0}^t f(s,\omega) ds \right| \le m \int_{(t-\frac{1}{m})\vee 0}^t \underbrace{\left| f(s,\omega) \right|}_{s} ds \le m C \frac{1}{m} = C.$$

Значит, последовательность $[\tilde{f}_m(t,\omega)-f(t,\omega)]^2$, $m=1,2,\ldots$, имеет интегрируемую мажоранту, и поэтому по тереме Лебега $\mathbb{E}\int_0^T [\tilde{f}_m(t,\omega)-f(t,\omega)]^2 dt \to 0$ при $m\to\infty$. Этим утверждение леммы доказано в случае, когда функция $f(t,\omega)$, $0 \le t \le T$, $\omega \in \Omega$, прогрессивно измерима.