Frror Functions Def?: Ennor function of α is defined as $\frac{2}{\sqrt{11}} \int_{0}^{\pi} e^{-u^{2}} du$ and is denoted by $exf(\alpha)$ $erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} dv$ Complementary error function: It is defined as 2 se^{-u²} do and is denoted by enfection. $e^{\alpha}fc(\alpha) = \frac{2}{\sqrt{11}} \int e^{-u^2} du$ * Peoperties ① $enf(\infty) = \frac{2}{\sqrt{11}} \int e^{-u^2} dv$ (by definition) Put $u^2=t$ $\rightarrow U=t^{1/2}$ $du=\frac{1}{2}t^{-1/2}dt$ $U=0 \text{ then } t=0 \text{ , } U=\infty \text{ then } t=\infty$ $= \underset{\sim}{\cancel{z}} \int_{0}^{\infty} e^{-t} \frac{t^{\frac{1}{2}}}{\cancel{z}} dt = \frac{1}{\cancel{z}} (\cancel{x}) \cdot - \cdot (\cancel{by gammq})$ ② $e^{2}f(0) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-u^{2}} du = 0$ --- (by properties of definite integral). (3) erf(x) + erfc(x) = 1LHS: enf(x) + erfc(x) $= \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^2} dv + \frac{2}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-u^2} dv = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] - \left(\int_{-\infty}^{\infty} e^{-u^2} du \right) = \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^2} du \right] + \frac{2}{\sqrt{\pi}} \left[\int_{-\infty}^{\infty} e^{-u^$

 $=erf(\infty)=1.$

(a) esf(x) is an odd function

Proof:
$$e^{x}f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{u^{2}} dv$$
 $e^{x}f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{u^{2}} dv$
 $e^{x}f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{u^{2}} dv$

(3) S.T
$$e^{2}f(C\pi) + e^{2}f(C\pi) = 2$$

We know that $e^{2}f(x) + e^{2}f(C\pi) = 1$
 $e^{2}f(-x) + e^{2}f(C-x) = 1$
 $e^{2}f(-x) + e^{2}f(C-x) = 1$
 $e^{2}f(-x) + e^{2}f(C-x) = 1$
 $e^{2}f(-x) = 1 + e^{2}f(x)$

LHS $- e^{2}f(-x) + e^{2}f(-x) = 1 + 1 = 2$.

(A) S. $T = e^{2}dx = \sqrt{\pi} [e^{2}f(-x) - e^{2}f(-x)]$

We know that $e^{2}f(x) = \frac{2}{\sqrt{\pi}} e^{-x^{2}}dx + e^{2}f(-x)$
 $e^{2}f(-x) = e^{2}f(-x) + e^{2}f(-x)$
 $e^{2}f(-x) = e^{2}f(-x)$

$$\begin{array}{l} \text{(i)} \quad \text{(i)$$

(1) S.T
$$\frac{d}{dt}$$
 (enf \sqrt{t}) = $\frac{e^{-t}}{\sqrt{\pi t}}$ and hence evaluate (e^{t} enf \sqrt{t}) dt

3 P-T
$$\frac{1}{\pi} \frac{d}{da} \left(erfc(ax) \right) = -\frac{1}{a} \frac{d}{dx} erf(ax)$$