MATH 250A

KEN RIBET

Davis Foote*

University of California, Berkeley

August 27th, 2015 – December 10th, 2015

CONTENTS

1 Group Actions11.1 Stabilizers and Orbits21.2 Applications of Group Actions31.3 Sylow's Theorem4

1 GROUP ACTIONS

Lecture 1 August 27th, 2015

Let *G* be a group. There are two equivalent ways to formulate *G* as an action on a set *S*:

- 1. As a map $G \times S \to S$, $(g,s) \mapsto gs = g \cdot s$. Under this formulation, there are two axioms:
 - $e \cdot s = s$
 - $(gg') \cdot s = g \cdot (g' \cdot s)$
- 2. As a homomorphism from G to the symmetric group on S, Perm(S). It is defined as $(\phi(g))(s) = g \cdot s$. There are again two axioms:
 - $\phi(e) = id$

 $^{^*}$ djfoote@berkeley.edu

•
$$\phi(gg') = \phi(g) \cdot \phi(g')$$

One group action is just the trivial action, $g \cdot s = s$ or $g \mapsto id$.

G acts on itself by <u>left</u> translation. Here, G = S. $g \cdot s = gs$, and this is simply the group product. (gg')s = g(g's), which is just the associative law. G acts on itself by conjugation. Again, G = S. $g \cdot s := gsg^{-1}$ and $(gg')s = (gg')s(gg')^{-1} = g(g'sg'^{-1})g^{-1}$.

G acts of the set of subgroups of *G* by conjugation.

$$g \cdot H := gHg^{-1} = \{ghg^{-1} | h \in H\}$$

Let $N \subseteq G$. Then you can say that G acts on N:

$$g \cdot n := gng^{-1} \in N$$

1.1 Example. Let V be a vector space over a field K. Let G = GL(V) be the group of invertible linear maps $V \to V$. Then G acts on V. Let $L \in G$. Then $L \cdot v = L(v)$.

1.1 Stabilizers and Orbits

Suppose we have a group *G* acting on a set *S*. This defines a natural equivalence relation on *S*:

1.2 DEFINITION. Let $s, s' \in S$. Then $s \sim s' \Leftrightarrow s' = gs$ for some $g \in G$. The **orbit** of S is the equivalence class of s under this relation.

S can now be written as a disjoint union of orbits.

1.3 definition. Let G act on itself by conjugation. S = G. Then the orbit of $s \in S$ is $\{gsg^{-1}|g \in G\}$. This is called the **conjugacy class** of s.

1.4 NOTATION. The orbit of *s* is usually notated as O(s) or $G \cdot s$.

1.5 DEFINITION. The **stabilizer** of s, G_s is $\{g \in G | g \cdot s = s\}$. Intuitively, it is the set of elements of the group which leave s alone.

One piece of intuition here is that an element with a large stabilizer should have a small orbit and vice-versa.

1.6 THEOREM. Let s be an element of a group G. There is a natural bijection α between O(s) and G/G_s where $\alpha(gG_s) = g \cdot s$.

Lecture 2 September 1st, 2015

Therefore
$$\#O(s) = \#(G/G_s) = (G : G_s)$$
.

1.7 DEFINITION. Let Σ be a set of representatives for the equivalence relation given above (i.e. one point from each orbit). Then $\#S = \sum_{s \in \Sigma} \#O(s) = \sum_s (G:G_s)$. If G is finite, then $(G:G_s) = \frac{\#G}{\#G_s}$, so $\#S = \#G\sum_s \frac{1}{\#G_s}$. This is known as the mass formula.

1.8 COROLLARY.
$$G_{s'} = G_{s,g} = gG_sg^{-1}$$
.

1.9 THEOREM. $g \in G$ leaves all $s \in S$ fixed if and only if $g \in G_s$ for all s. This is the case if and only if $g \in \bigcap_{s \in S} G_s$.

1.10 definition. The above expression $\bigcap_{s \in S} G_s$ is called the **kernel**.

1.11 CLAIM. Assume $x \in G_s$. Then $gxg^{-1} \in G_{gs}$. This shows that $gG_sg^{-1} \subseteq G_{gs}$.

Proof.
$$(gxg^{-1})(gs) = gxs = gs \text{ since } x \in G_s.$$

1.2 Applications of Group Actions

In nearly all applications of group actions, we have a prime number p.

1.12 DEFINITION. A *p*-group is a finite group *G* with $\#G = p^n$ for some $n \in \mathbb{N}$.

1.13 THEOREM ("A p-group has a non-trivial center"). Let Z be the subset of G such that the elements of Z commute with all elements of G. Then $Z = \{g \in G : gs = sg \forall s \in G\}$. Note

1.14 NOTATION. S^G refers to the set of fixed points for the action of G on S.

Let *G* be some *p*-group, let *S* be a finite set, and let $s \in S$. Then $\#O(s) = \frac{\#G}{\#G_s} = \frac{p^n}{n^k}$. There are two possible cases:

1.
$$\#O(s) = 1$$
, so s is fixed by S^G

2.
$$k < n$$
, so $\#(S)$ is divisible by p .

#S is the sum of the numbers of elements in the orbits. Considered modulo p, this is the number of orbits of size 1. This is equal to $\#(S^G)$.

TODO: Make sense of this and finish derivation

1.15 THEOREM. Let G be a finite group and H be a subgroup of G. Assume that (G:H)=p where p is prime and that p is the smallest prime number dividing #G. Then $H \subseteq G$.

Proof. Consider the set $S = G/H = \{gH : g \in G\}$. Then #S = (G : H) = p. Then we have an action of G on G/H by left translation. This action is a map $G \to \operatorname{Perm}(S)$ which is the symmetric group S_p

Consider the stabilizer of H, $G_H = \{x \in G : xH = H\} = H$. So $G_{gH} = gHg^{-1}$. So the kernel K (the intersection of the stabilizers) is $\bigcap_{g \in G} gHg^{-1}$ which is the largest normal subgroup contained in H.

Reminder: First Isomorphism Theorem

(G:K) = #(G/K) divides the order of Perm(S), which is equal to p!.

 $G \supseteq H \supseteq K$, $(G : K) = (G : H) \cdot (H : K)$. The LHS divides p!. (G : H) = p. WTF (H : K). From above we know that (H : K) divides (p - 1)!. We know it is relatively prime to #(G). Therefore (H : K) = 1, i.e. H = K. We know K is normal. Therefore so is H.

1.3 Sylow's Theorem

1.16 THEOREM (Cauchy). There is a natural way to embed G in Perm(G), written $G \stackrel{\varphi}{\hookrightarrow} Perm(G)$.

Proof. Let S = G. The action $g : s \mapsto gs \in G$. This action has trivial kernel. $K = \{g \in G : gs = s \text{ for all } s\} = \{e\}.$

When a homomorphism has trivial kernel, it is one-to-one. Thus φ is an embedding.

1.17 DEFINITION. Let *G* be a finite group of order *n*. Let *V* be a set of functions $G \xrightarrow{f} \mathbb{Z}$, $V \approx \mathbb{Z}^n$.

Linear maps $V \xrightarrow{L} V \leftrightarrow n \times n$ matrices over \mathbb{Z}

Invertible linear maps $V \leftrightarrow n \times n$ invertible matrices over \mathbb{Z}

This forms a group $GL(V) \approx GL(n, \mathbb{Z})$.

Embeddings: $G \subseteq GL(V)$. $G \subseteq GL(n, \mathbb{Z})$.