

نظریه زبانها و ماشینها - بهار ۱۴۰۱ تمرین شماره ۲ دستیار آموزشی این مجموعه: معین شیردل moein.shirdel@ut.ac.ir

تاریخ تحویل: سهشنبه ۱۶ فروردین ۱۴۰۱

۱) برای زبانهای زیر، عبارت منظم معادل را بنویسید: (۳۰ نمره)

 $(\sum=\{0,1\})$ الف) تمام رشتهها به شکل $\mathbf{0}^{\mathrm{x}}\mathbf{1}^{\mathrm{y}}$ به طوری که $\mathbf{x+y}$ عددی زوج باشد.

پاسخ:

پاسخ به دو صورت قابل بیان است:

 $-(00)^*(01+E)(11)^*$

 $-(00)^*(11)^* + 0(00)^*1(11)^*$

پایه هر دو صورت هم، حالت بندی روی تعداد صفر ها و یک هاست. یک حالت، حالتیاست که تعداد هر دو زوج باشد و حالت دیگر اینکه تعداد هردو فرد باشد.

 $(\sum = \{0,1\})$ اعداد باینری که باقی ماندهی آنها به ۸، برابر با ۵ است.

پاسخ:

میدانیم که اعداد باینری که باقیمانده شان به ۸، برابر با ۵ است، سه رقم آخر شان ۱۰۱ است. پس عبارت منظم متناظر به شکل روبرو خواهد بود:

 $(0+1)^* 101$

 $(\sum = \{a,b,c,d\})$ دارند. b دارند. a دقیقا یک a و دقیقا یک b دارند.

پاسخ:

حالتبندی را روی ترتیب تک کاراکترهای a و b نسبت به یکدیگر انجام می دهیم:

 $(c + d)^* a (c + d)^* b (c + d)^* + (c + d)^* b (c + d)^* a (c + d)^*$

 $(\sum = \{a, b\})$. تمام رشتههایی که در آنها، تعداد a های رشته بر * بخشپذیر نباشد. ($\sum = \{a, b\}$) باسخ:

(b*ab* + b*ab*ab*+ b*ab*ab*ab*) (b*ab*ab*ab*ab*)*

پاسخ از دو بخش تشکیل شده است. قسمت اول، نشان دهنده ی باقیمانده ی تعداد a های رشته به a است که عددی بین a تا a خواهد بود و در اصل، نوعی حالت بندی روی تعداد a های رشته صورت گرفته است. قسمت دوم، قسمت تکرار شونده است که می تواند تهی هم باشد و هر واحد از آن، a تا a به رشته اضافه می کند. پس باقیمانده ی تعداد a های رشته به a عددی غیر صفر خواهد ماند.

ه) تمام رشتههایی که در آنها، دقیقا یک بار دو تا a در کنار هم آمدهباشند. ($\sum = \{a,b\}$) باسخ:

b*(abb*)*aa(bb*a)*b*

در مجموع در این رشته، باید دقیقا یک بار دو تا a را در کنار هم ببینیم و دیگر هیچجای رشته، دو تا a کنار هم قرار نگیرند و اگر قرار باشد a داشته باشیم، بعد و قبل آن حتما a قرار بگیرد. می دانیم که در ابتدا و انتهای رشته به طور نامحدود می توانیم a قرار دهیم و محدودیتی نداریم (a های ابتدا و انتها). حال، a را جایی در رشته قرار می دهیم و کنترل می کنیم که بعد و قبل آن کاراکتر a قرار نگیرد. و اگر قرار باشد a بیاید، بین این a و قسمت a حداقل یک a قرار بگیرد (a قرار باشد a به طور نامحدود می توانیم a قرار بگیرد (a و بعد از آن به طور نامحدود a داشته باشیم و بعد از آن به طور نامحدود a داشته باشیم و بعد از آن به طور نامحدود a

و) (امتیازی) تمام رشتههایی که عبارت aba در آنها وجود ندارد. ($\sum = \{a,b\}$) و اسخ:

b*(a + bbb*)*b*

در ابتدا و انتهای این زبان به طور نامحدود می توانیم b داشته باشیم چون ابتدا و انتهای a فقط a داریم. همچنین پس از b های ابتدایی که می توانند تهی هم باشند، می توانیم a ببینیم، به شرطی که پس از آن، یا حداقل دوتا a ببینیم یا اگر یک a می بینیم، آن a نشان دهنده ی انتهای رشته باشد (توسط a انتهایی به وجود آمدهباشد). پس عبارت میانی، تکراری نامتناهی از a یا بخش های حداقل دوتایی از a هاست (a هاست می رسیم.

۲) عبارت منظم متناظر با NFA های زیر را بنویسید و مراحل تبدیل و حذف هر state را نیز رسم کنید: (۳۰ نمره) الف)

ابتدا تبدیل به GNFA را انجام میدهیم:

سپس استیت S₂ را حذف می کنیم:

سپس استیت S_3 را به راحتی حذف می کنیم:

start
$$\longrightarrow$$
 S_1 $(1+01*0)(0+1)*$ S_4

و به عنوان پاسخ، به عبارت منظم روبرو میرسیم: (1+01*0)(0+1)*

ب)

ابتدا تبدیل به GNFA را انجام می دهیم:

سپس استیت S₃ را حذف می کنیم:

سیس استیت S₂ را حذف می کنیم:

بدین ترتیب، به عنوان پاسخ، به عبارت منظم زیر میرسیم:

(a*a + bb + bba*a) (ab + aba*a)*

ابتدا تبديل به GNFA را انجام ميدهيم:

سپس استیت S₂ را حذف می کنیم:

سپس استیت S₃ را حذف می کنیم:

بدین ترتیب، به عنوان پاسخ، به عبارت منظم زیر میرسیم:

E + ((a + b*b + ab*b) (a(a + b*b))* (a + E))

(۳ متناظر با هریک از عبارات منظم زیر را رسم کنید. (۲۰ نمره DFA (x(x*yx*yx*)* الف)

ab + (b + aa)b*a (ب

(b(ab*a)*b + a)* (

د) (امتيازي) *(*(1010) + *(1111)

۴) با فرض منظم بودن زبانهای L_1 و L_2 ، درستی یا نادرستی عبارات زیر را مشخص کنید. برای اثبات نادرست بودن عبارات، اشاره کردن به یک مثال نقض کافیست. (۲۰ نمره)

$$L_1*L_2* = (L_1L_2)*$$
 (الف

پاسخ:

غلط است. مثال نقض:

$$L_1 = \{a, b\} / L_2 = \{c, d\}$$

 $ac \in L_1L_2 / bc = L_1L_2 = > acbc \in (L_1L_2)^* / acbc \notin L_1^*L_2^*$

ب) زبان Lb با تعریف زیر، زبانی منظم است:

 $L_b = \{ wu \mid w \in L_1, u \in L_1^R \}$

باسخ:

صحیح. اگر L_1 زبان منظم باشد، L_1^R نیز منظم است. به این دلیل که می توان در L_1 پذیرنده زبان L_1^R جهت تمامی فلشها را برعکس کرد و استیت نهایی را به استیت آغازین و استیت آغازین را به استیت نهایی تبدیل کرد. L_1^R می L_1^R می رسیم که زبان L_1^R را می پذیرد و می توان نتیجه گرفت که L_1^R نیز زبانی منظم است. حال طبق مسائل مطرح شده در درس، می توان نتیجه گرفت که L_1^R نیز منظم است. چون در اصل حاصل concat شدن دو زبان L_1^R است و می دانیم که زبانهای منظم تحت عمل concatenation بسته هستند.

 $L_1L_2/L_2 = L_1$ (2

 $L_1/L_2 = \{ x \in \Sigma * \mid \exists y \in L_2, xy \in L_1 \}$

پاسخ:

غلط. مثال تقض:

$$L_1 = \{ab\} / L_2 = \{c, cc\}$$

 $L_1L_2 = \{abc, abcc\} => L_1L_2/L_2 = \{ab, abc\} \neq L_1$

د) \mathbf{L}_{0} زبانی منظم است، اگر شامل تمامی رشتههایی باشد که دقیقا در یکی از زبانهای \mathbf{L}_{1} و \mathbf{L}_{2} حضور دارند.

پاسخ:

صحیح. مجموعه چنین رشتههایی از رابطههای پایین به دست میآید:

 $= (L1 \cup L2) \cap \overline{(L1 \cap L2)}$

میدانیم که زبانهای منظم نسبت به عملگرهای اجتماع، اشتراک و مکملگیری بسته هستند پس این زبان جدید نیز یک زبان منظم خواهدبود.

ه عملگر pref به این صورت تعریف می شود که pref(L) مجموعه تمام رشته هایی است که پیشوند یک رشته در زبان L هستند. ثابت کنید مجموعه ی زبان های منظم نسبت به این عملیات بسته است. (۱۰ نمره) L U

برای اثبات این مسئله، تلاش می کنیم که استیت ماشین مربوط به L را به گونه ای تغییر دهیم که به استیت ماشین مربوط به pref(L) برسیم. بدین منظور، به این شکل عمل می کنیم که برای تمام استیتهایی که از استیت آغازین به آنها، و از آنها به یکی از استیتهای نهایی مسیری وجود دارد را به استیت نهایی تبدیل می کنیم. بدین صورت، pref(L) تمامی رشتههایی که پیشوند یک رشته از زبان L هستند را می پذیرد. از آنجایی که توانستیم برای pref(L) تعریف کنیم، این زبان نیز منظم خواهد بود و زبانهای منظم نیز نسبت به عملگر pref بسته خواهندبود.