

wsr

$\mathrm{May}\ 30,\ 2020$

${\bf Contents}$

~				
	Analytic Derivative Methods and Geometry Optimization			
		Introduction		
	C.2	General Considerations		
	C.3	Analytic Derivatives		
		Optimization Techniques		
		Some Optimization Algorithms		
		Ex C.1		
		Ex C.2		
		Ex C.3		
		Ex C.4		
	C.6	Transition States		
	C.7	Constrained Variation		

A Integral Evaluation with 1s Primitive Gaussians

B 2-Electron Self-consistent-field Program

C Analytic Derivative Methods and Geometry Optimization

- C.1 Introduction
- C.2 General Considerations
- C.3 Analytic Derivatives
- C.4 Optimization Techniques
- C.5 Some Optimization Algorithms

Ex C.1

(a)

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 E}{\partial x^2} & \frac{\partial^2 E}{\partial x \partial y} \\ \frac{\partial^2 E}{\partial y \partial x} & \frac{\partial^2 E}{\partial y^2} \end{pmatrix}$$
$$= \begin{pmatrix} K & K'' \\ K'' & K' \end{pmatrix} \tag{C.5.1}$$

$$\mathbf{f}(\mathbf{X}) = \begin{pmatrix} \frac{\partial E}{\partial x} \\ \frac{\partial E}{\partial y} \end{pmatrix}$$

$$= \begin{pmatrix} K(x-a) + K''y \\ K'(y-b) + K''x \end{pmatrix}$$

$$= \begin{pmatrix} K & K'' \\ K'' & K' \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} Ka \\ K'b \end{pmatrix}$$

$$= \begin{pmatrix} K & K'' \\ K'' & K' \end{pmatrix} \mathbf{X} - \begin{pmatrix} Ka \\ K'b \end{pmatrix}$$
(C.5.2)

$$\mathbf{q} = -\mathbf{H}^{-1}\mathbf{f}$$

$$= -\mathbf{X} + \begin{pmatrix} K & K'' \\ K'' & K' \end{pmatrix}^{-1} \begin{pmatrix} Ka \\ K'b \end{pmatrix}$$

$$= -\mathbf{X} + \frac{1}{KK' - K''^2} \begin{pmatrix} K' & -K'' \\ -K'' & K \end{pmatrix} \begin{pmatrix} Ka \\ K'b \end{pmatrix}$$

$$= -\mathbf{X} + \frac{1}{KK' - K''^2} \begin{pmatrix} KK'a - K'K''b \\ -KK''a + KK'b \end{pmatrix}$$

$$= -\mathbf{X} + \frac{1}{KK' - K''^2} \begin{pmatrix} KK' & -K'K'' \\ -KK'' & KK' \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
(C.5.3)

(b) Since $\mathbf{q} = \mathbf{X}_e - \mathbf{X}$,

$$\mathbf{X}_{e} = \frac{1}{KK' - K''^{2}} \begin{pmatrix} KK' & -K'K'' \\ -KK'' & KK' \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$= \frac{1}{0.1 - K''^{2}} \begin{pmatrix} 0.1 & -0.1K'' \\ -K'' & 0.1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
(C.5.4)

K''	$\mathbf{X}_e = (x_e, y_e)$
0	(3.000, 2.000)
0.010	(2.983, 1.702)
0.030	(2.967, 1.110)

Ex C.2

$$\mathbf{H} = \begin{pmatrix} K & K'' \\ K'' & K' \end{pmatrix}$$

$$= \begin{pmatrix} 1.000 & 0.030 \\ 0.030 & 0.100 \end{pmatrix}$$
(C.5.5)

$$\mathbf{f} = \begin{pmatrix} K & K'' \\ K'' & K' \end{pmatrix} \mathbf{X} - \begin{pmatrix} Ka \\ K'b \end{pmatrix}$$

$$= \begin{pmatrix} 1.000 & 0.030 \\ 0.030 & 0.100 \end{pmatrix} \begin{pmatrix} 3.3 \\ 1.8 \end{pmatrix} - \begin{pmatrix} 1.000 \times 3.00 \\ 0.100 \times 2.00 \end{pmatrix}$$

$$= \begin{pmatrix} 0.354 \\ 0.079 \end{pmatrix}$$
(C.5.6)

$$\mathbf{q} = -\mathbf{H}^{-1}\mathbf{f}$$

$$= -\begin{pmatrix} 1.000 & 0.030 \\ 0.030 & 0.100 \end{pmatrix}^{-1} \begin{pmatrix} 0.354 \\ 0.079 \end{pmatrix}$$

$$= \begin{pmatrix} -0.333, -0.690 \end{pmatrix}$$
(C.5.7)

thus

$$\mathbf{X}_e = \mathbf{q} + \mathbf{X}$$

= (2.967, 1.110) (C.5.8)

which agrees with the result in Ex C.1(b).

Ex C.3 A program is written to solve this problem, which is C-3.py.

For example, run the program by python C-3.py 0.03, and the Nelder-Mead optimization steps will be printed for K''=0.03.

Ex C.4 A program is written to solve this problem, which is C-4.py.

For example, run the program by python C-4.py, and the MS optimization steps will be printed.

C.6 Transition States

C.7 Constrained Variation

D Molecular Integrals for H₂ as a Function of Bond Length