CSE 361 HW-0

Daniel Dyla

September 10, 2016

1 1.2-1

Give an example of an application that requires algorithmic content at the application level, and discuss the function of the algorithms involved.

An application that manages students for a classroom might require algorithmic content at the application level. It could use a sorting algorithm to sort students alphabetically by name for attendance, or a random shuffling algorithm in order to assign random seats to the students in the class.

2 1.2-2

Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in $8n^2$ steps, while merge sort runs in $64n \lg n$ steps. For which values of n does insertion sort beat merge sort?

Insertion sort beats merge sort when $2 \le n \le 6$ (where n is an integer)

3 1.2-3

3 What is the smallest value of n such that an algorithm whose running time is $100n^2$ runs faster than an algorithm whose running time is 2^n on the same machine?

Assuming n can ony be an integer, the smallest value of n where $100n^2$ is faster than 2^n is 15.

4 Table of values

	$1 \mathrm{second}$	1 minute	1 hour	$1 \mathrm{day}$	1 month	$1 \mathrm{year}$	1 century
$\overline{\lg(n)}$	$\mathrm{e}^{1\mathrm{e}6}$	e^{60e6}	$e^{3.6e9}$	$e^{86.4e9}$	$e^{2.59e12}$	e^{946e12}	$e^{94.6e15}$
$\operatorname{sqrt}(n)$	1(12)	3.6(15)	12.0(18)	7.46(21)	6.72(24)	895(27)	8.95(33)
\mathbf{n}	1(6)	60(6)	3.60(9)	86.4(9)	2.59(12)	946 (12)	94.6(15)
$n \lg n$	87.8(3)	3.95(6)	189(6)	3.91(9)	102(9)	30.5(12)	2.66(15)
n^2	1000	7746	60(3)	294(3)	1.61(6)	30.7(6)	307(6)
n^3	100	391	1532	4420	13700	98(3)	455(3)
$2^{\rm n}$	19	25	31	36	41	49	56
n!	9	11	12	14	15	17	18