CSCI 36 | Lecture 9: Context-Free Languages | I

Shikha Singh

Announcements & Logistics

- HW 3 due Wed (Oct 9)
 - Please ensure that any DFA/ Parse tree images attached are clear
 - You can use figure flags to ensure LaTeX places them in the right spot
- Hand in reading questions # 6 and pick up reading questions #7
- Reminder: What I did Last Summer Colloquium tomorrow
- CSCI 361 Midterm on Oct 22 (Tuesday):
 - In class exam 75 mins exam
 - Can bring your notes but no screens allowed
 - A textbook will be available for reference
 - Will provide more details about format before exam

Last Time

- Wrapped up regular languages
- Started context-free grammars

Today and Coming Lectures

- More on context-free languages and push-down automata
 - Less focus on automata than regular languages
 - Still good to know
- Non-context-free pumping lemma

Regular Languages are Context-Free

- Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA for the regular language L
- We can construct a CFG $oldsymbol{G}$ for L as follows
 - Make a variable Q_i for each state $q_i \in Q$
 - For each $q_i,q_j\in Q$ and $a\in \Sigma$ such that $\delta(q_i,a)=q_j$ a rule $Q_i\to a$ Q_j add a rule $Q_i\to a$ Q_j
 - Make Q_0 the start variable
 - Add $Q_i \to \varepsilon$ if $q_i \in F$

Regular Grammars

- A CFG is regular if any occurrence of a variable on the RHS of a rule is as the rightmost symbol
- If a CFG is regular, there is a DFA that recognizes the same language
 - $Q = V \cup \{f\}$ (A state for each variable plus an accept state)
 - Rule $A \to aB$ becomes $\delta(A, a) = B$
 - If there is a $A \to a$ then $\delta(A, a) = f$

CFG for this Language?

- CFG for $L = \{a^ib^jc^k \mid i=j \text{ or } j=k\}$
- Union of $L_1 = \{a^i b^i c^j | i, j \ge 0\}$ and $L_2 = \{a^i b^j c^j | i, j \ge 0\}$

- CFLs are closed under
 - Union
 - Concatenation
 - Kleene star
- Not closer under complement and intersection!

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union:
$$L(G_1) \cup L(G_2)$$
 is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

NB: Assume that $V_1 - \Sigma_1, V_2 - \Sigma_2$ are disjoint.

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union: $L(G_1) \cup L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

Concatenation: $L(G_1)L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \to S_1S_2\}$

NB: Assume that $V_1 - \Sigma_1, V_2 - \Sigma_2$ are disjoint.

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union: $L(G_1) \cup L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

Concatenation: $L(G_1)L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \to S_1S_2\}$

Kleene *: $L(G_1)^*$ is generated by $R_1 \cup \{S \rightarrow e | S \rightarrow S_1S\}$

Automata for CFGs

- Regular Languages : Finite Automata
- Context-free languages: ??

Pushdown Automata

- Basically an NFA with a stack (pushdown store)
- The stack can consist of unlimited number symbols but can only be read and altered at the top:
 - Can only pop symbol from top or push symbol to top

Pushdown Automata Transitions

- Transitions of a PDA have two parts:
 - State transition and stack manipulation (push/pop)
 - If in state p reading input symbol a and b on the stack, replace b with c on the stack and enter state q
 - $(p, a, b) \rightarrow (q, c)$
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathscr{P}(Q \times \Gamma_{\varepsilon})$
 - In state diagram arrow goes from $p \rightarrow q$ with label $a, b \rightarrow c$

Formal Definition: PDA

- A pushdown automaton is a six tuple $M=(Q,\Sigma,\Gamma,\delta,q_0F)$ where
 - Q is the finite set of states
 - Σ is a finite alphabet (the input symbols)
 - Γ is a finite tape alphabet (the stack symbols)
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function
 - $q_0 \in Q$ is the initial state and $F \subseteq Q$ is the set of accept states

Example PDA

- Consider the language over $\Sigma = \{[,]\}$ of all strings made up of correctly nested brackets
- CFG for this language: $S \rightarrow \varepsilon \mid [S] \mid SS$
- · Now lets create a push-down automata for this language
- What to store on the stack?

Example PDA for Balanced Brackets

Recall: A transition of the form a, b → z means "if the current input symbol is a and the current stack symbol is b, then follow this transition, pop b, and push the string z"

PDA Acceptance: Informal

- A PDA accepts an input string w if there is a computation that:
 - starts in the start state and empty stack
 - has a sequence of valid transitions
 - at least one computation branch ends in an accept state with an empty stack
- A PDA computation branch "dies off" if
 - no transition matches the input (as in an NFA)
 - no rule matches the stack states
 - any combination of the above
- · Language of a PDA: set of all strings that are accepted

•
$$L = \{0^n 1^n \mid n \ge 0\}$$

• PDA for $L = \{a^ib^jc^k \mid i=j \text{ or } j=k\}$

• PDA for $L = \{a^ib^jc^k \mid i=j \text{ or } j=k\}$

• PDA for $L = \{a^ib^jc^k \mid i=j \text{ or } j=k\}$

Practice Problem

- Draw a PDA for $L = \{ww^R \mid w \in \{0,1\}^*\}$
- Solution is in the book (Sipser 2.1)

Equivalence: CFG \iff PDA

Theorem. A language is context-free if and only it is recognized by some (non-deterministic) pushdown automaton.

We won't prove this: details are annoying but important to know!

Note: Unlike DFA and NFA, non-deterministic PDAs are more powerful than deterministic PDAs.

Intuition: CFG \Rightarrow PDA

- Let $G = (V, \Sigma, R, S)$
- Construct a PDA with three main states: start, loop and accept state (some extra states for bookkeeping)
- Start by putting S on the stack
- Each time top of stack is a variable A, guess a rule of the type $A \to u$ replace A with RHS of the rule
- Each time top of stack is a terminal match it to the current input symbol (computation dies off it they don't match)
- · If you reach bottom of stack at any point in a branch, accept

Example: $CFG \Longrightarrow PDA$

$$S o \mathtt{a} T\mathtt{b} \mid \mathtt{b}$$
 $T o T\mathtt{a} \mid oldsymbol{arepsilon}$

Intuition: PDA \(\infty\) CFG

- Wlog assume the PDA has one accept state, empties stack before accepting and each move is a push or pop (but not both)
- Let Q be the states of the PDA
- Create variables for each pair of states: $\{A_{pq} \mid p,q \in Q\}$
- A_{pq} generates all strings that take the PDA from p to q starting from an empty stack and ending at an empty stack
 - Such strings can also take PDA from p to q from a non-empty stack returning to exactly the same stack contents
- Start variable is A_{q_0,q_f} where q_0 is start state and q_f is accept state

Intuition: PDA \(\iiii) CFG

- Add the rules
 - $A_{pq} \rightarrow A_{pr} A_{rq}$ for every triple $p, q, r \in Q$
 - $A_{pp} \to \varepsilon$ for $p \in Q$

Intuition: PDA \(\iiii) CFG

- Finally, if there are rules of the form $(p,a,\epsilon) \to (r,u)$ and $(s,b,u) \to (q,\epsilon)$
- To simulate this add the rule $A_{pq} \to aA_{rs}b$ where PDA goes from p to q after pushing a and s to r after popping b

