

Table of Contents

Problem Statement

Goal

- > Identify the most valuable customers.
- > Identify customers at high risk of churn.
- Identify the important features that impact the churn rate.

Performance Metric

As a summation of our work it's pretty accurate...apart from the beginning, middle and end and all the words in between!

- > Area Under the Receiver Operating Characteristic Curve (ROC AUC):
 - It captures the area under the curve and compares the relation with the True Positive Rate (TPR) and False Positive Rate(FPR).
 - Sensitivity: predict true positives of each category.
 - Specificity: predict true negatives of each category.

AUC score	Interpretation
>0.8	Very good performance
0.7-0.8	Good performance
0.5-0.7	OK performance
0.5	As good as random choice

Understanding Data

Dataset:

mobile_number	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	last_date_of_month_6	last_date_of_month_7	last_date_of_month_8	last_date_of_month_9	arpu_6
7000964736	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	154.687
7002277044	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	35.793
7000342369	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	118.065
7000641584	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	100.073
7002074629	109	NaN	NaN	NaN	6/30/2014	NaN	8/31/2014	NaN	8.440
7001548952	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	18.471
7000607688	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	112.201
7000087541	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	229.187
7000498689	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	322.991
7001905007	109	0.0	0.0	0.0	6/30/2014	7/31/2014	8/31/2014	9/30/2014	687.065

Dataset Dimension:

- 179 float
- 35 int
- 12 object

Phases of customer lifecycle:

- The 'good' phase (Month 6 & 7)
- The 'action' phase (Month 8)
- The 'churn' phase (Month 9)

Data Dictionary:

- ARPU- Average Revenue per User
- Recharge- Data, Amount
- Age on Network
- Scheme related info- FB User, Night Pack
- Call info- Minutes of Usage- Divided into Outgoing / Incoming, Type of operator, Roaming/Not Roaming, Local / STD, Special, ISD and so on.

Data Preparation

Statistical Interpretation

Statistical Observations:

- Outliers
- Null Values
- Nan's
- Data type of each column

Prop list:

- Zero variance(Date Columns)
- Null Values

Frature Engintering

Change in KPI's from june and july to august

```
def kpis_changed_from_6_7_to_8(df, feature_names):
    ''' Extract new features as change in the KPI's from month 6,7(good phase) going towards 8th month(the Action phase)'''
    for f_name in feature_names:
        #Impute the missing values with zeros so as to get correct derivation
        df[f_name+'_6'] = df[f_name+'_6'].fillna(0)
        df[f_name+'_7'] = df[f_name+'_7'].fillna(0)
        df[f_name+'_8'] = df[f_name+'_8'].fillna(0)
        # Create the new feature series
        df['change_in_'+f_name] = (df[f_name+'_6'] + df[f_name+'_7'])/2 - df[f_name+'_8']
    return df
```

```
#Handling special scenario where column names are not in standard format by referencing col_not_monthwise
df['jul_vbc_3g'] = df['jul_vbc_3g'].fillna(0)
df['aug_vbc_3g'] = df['aug_vbc_3g'].fillna(0)
df['jun_vbc_3g'] = df['jun_vbc_3g'].fillna(0)
df['change_in_vbc_3g'] = (df['jul_vbc_3g'] + df['jun_vbc_3g']) /2 - df['aug_vbc_3g']
```

Filter Days from the Date Column

```
df_high_val_cust['day_of_last_rech_6']=df_high_val_cust['date_of_last_rech_6'].dt.day
df_high_val_cust['day_of_last_rech_7']=df_high_val_cust['date_of_last_rech_7'].dt.day
df_high_val_cust['day_of_last_rech_8']=df_high_val_cust['date_of_last_rech_8'].dt.day
df_high_val_cust['day_of_last_rech_data_6']=df_high_val_cust['date_of_last_rech_data_6'].dt.day
df_high_val_cust['day_of_last_rech_data_7']=df_high_val_cust['date_of_last_rech_data_7'].dt.day
df_high_val_cust['day_of_last_rech_data_8']=df_high_val_cust['date_of_last_rech_data_8'].dt.day
```

Filter High Value Customers

```
high_value_filter = df.total_avg_rech_amnt_6_7.quantile(0.7)
print('70 percentile of 6th and 7th months avg recharge amount: ',high_value_filter)
df_high_val_cust = df[df.total_avg_rech_amnt_6_7 > high_value_filter]
print('Dataframe Shape after Filtering High Value Customers: ',df_high_val_cust.shape)
```

Creating Target Variable

"After analyzing all your data, I think we can safely say that none of it is useful."

- Highly correlated columns.
- Columns having Low variance.
- Columns containing unique values.
- Columns that contained data about 9th month(Churn Phase).

Cleaned Dataset: (29953,78)

Visualization

- 0.6

- 0.0

change_in_total_og_mou
change_in_std_og_mou
change_in_std_og_mou
change_in_offnet_mou
change_in_instd_og_t2m_mou
change_in_istd_og_t2m_mou
change_in_loc_ic_mou
change_in_loc_ic_mou
change_in_loc_ic_mou
change_in_loc_ic_t2m_mou
change_in_loc_og_mou
change_in_loc_og_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_loc_og_t2m_mou
change_in_last_day_rch_amt
change_in_last_day_rch_amt
change_in_istd_ic_mou
chang

Visualization

AON refers to average Age of customer On Network

On-net service refers to a carrier that owns network facilities at a specific location, is already connected at that location.

Visualization

Positively correlated columns

- > arpu,
- total_rech_amt,
- ➤ total_og_mou,
- ➤ total_rech_num

Negatively correlated columns

- > AON,
- > aug_vbc_3g
- ➤ fb_user_8...


```
num_cols= df.select_dtypes(exclude=['category']).columns.to_list()
num_df = df[num_cols]
Q1 = num_df.quantile(0.25)
Q3 = num_df.quantile(0.75)
IQR = Q3 - Q1
outliers = ((num_df < (Q1 - 1.5 * IQR)) | (num_df > (Q3 + 1.5 * IQR))).any(axis=0)
# create a list of columns that contain outliers
out_cols = outliers.index[outliers.values==True].to_list()
print("The number of columns with outliers : ",len(out_cols))
The number of columns with outliers : 66
```


Model Training:

Binary Classification

66

Logistic Regressor

	precision	recall	f1-score	support
0	0.97	0.77	0.86	4128
1	0.22	0.76	0.34	365
accuracy			0.76	4493
macro avg	0.60	0.76	0.60	4493
weighted avg	0.91	0.76	0.82	4493
The roc of th	e LR model	is: 0.828		

SVM

	precision	recall	f1-score	support
9	0.92	1.00	0.96	4128
1	0.14	0.00	0.01	365
accuracy			0.92	4493
macro avg	0.53	0.50	0.48	4493
weighted avg	0.86	0.92	0.88	4493
The accuracy	of the model	ic. 0 50	0642110027	5522
ine accuracy	OI THE MODEL	10.00	OOTST1002/	JJ66

Random Forest Tree

Pipeline prep trans: ColumnTransformer

- SimpleImputer

FunctionTransformer

- StandardScaler

► PCA

► LogisticRegression

- SimpleImputer

- TargetEncoder

remainder

- passthrough

	//		_/	
	precision	recall	f1-score	support
	0.96	0.87	0.91	4128
1	1 0.30	0.62	0.40	365
accurac	y		0.85	4493
macro av	g 0.63	0.75	0.66	4493
weighted av	g 0.91	0.85	0.87	4493

XGBOOST

Each tree is trained on a subset of the data. Similarity weight, gain, pre pruning, post pruning (cover value) is calculated for each tree node and the predictions from each tree are combined to form the final prediction.

	precision	recall	f1-score	support	
9 1	0.96 0.33	0.89 0.61	0.92 0.42	4128 365	
accuracy			0.87	4493	
macro avg	0.64	0.75	0.67	4493	
weighted avg	0.91	0.87	0.88	4493	
The roc of the					

Model Training:

Deep Learning

KerasClassifier

Multi-layer Perceptron classifier

Validation Loss: 0.54
Validation Precision: 0.2
Validation ROC AUC: 0.82
Test Loss: 0.55
Test Precision: 0.19
Test ROC AUC: 0.79

RNN: Long Short-Term Memory networks (LSTM)

```
Validation Loss: 0.58
Validation Precision: 0.24
Validation ROC AUC: 0.83
Test Loss: 0.57
Test Precision: 0.23
Test ROC AUC: 0.82
```

-	precision	recall	f1-score	support
0	0.97	0.84	0.90	4128
1	0.28	0.71	0.41	365
accuracy			0.83	4493
macro avg	0.63	0.77	0.65	4493
weighted avg	0.91	0.83	0.86	4493
136/136 [====: 141/141 [====: F1 Score of ke	eras for val		:====] - Øs ŀ	
141/141 [==== ROC AUC score			_	1ms/step

Model Evaluation: ROC AUC Plot

Logistic Regression

XGB

Random Forest Tree

Multi-layer Perceptron classifier

RNN

Ensemble: Stacking

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import StackingClassifier
from sklearn.naive_bayes import GaussianNB
estimators = [
    ('knn', KNeighborsClassifier(n_neighbors=5)),
    ('knn2', KNeighborsClassifier(n_neighbors=7)),
    ('svc', SVC(C=10,gamma = 0.01)),#best features from gridsearchcv
    ('svc2', SVC(gamma=0.01,kernal = 'rbf')),
    ('lr', LogisticRegression(C=0.001,solver= 'lbfgs')), # best parameters from gridsearchcv
    ('lr2', LogisticRegression(max_iter=100,penalty='l2'),
    ('Naive Bayes',GaussianNB()))
]
clf = StackingClassifier(
    estimators=estimators, final_estimator=LogisticRegression()
)
```


	precision	recall	f1-score	support
0	0.99	0.92	0.95	4128
1	0.49	0.86	0.62	365
accuracy			0.91	4493
macro avg	0.74	0.89	0.79	4493
weighted avg	0.95	0.91	0.93	4493

The accuracy of the model is: 0.9373984549219496

Model Training and Evaluation

Models	AUC score of Test set	Time for training
SVM	0.50	1hr 37 min
Keras Classifier	0.75	11 min 24 s
MLP	0.79	21.3s (without gridsearchcv)
XGB	0.81	5min 5s(or more)
RNN	0.82	15.9s (without gridsearchcv)
LR	0.83	4min 35s
RFC	0.83	2hr 56min
Stacking	0.93	57 min 27s

Principal Component Analysis:

Hyperparameter tuning

It brings out strong patterns in a dataset (dimensionality reduction).

Importance:

- This can help to improve the computational efficiency of many machine learning algorithms.
- > It reduces the risk of overfitting.

Task:

Find the number of principal components that explains the variability of the dataset.

```
components = [2, 5, 10, 15, 20, 30,40,50, 60, 70]
scores val = []
scores test = []
variances = []
cumulative variances = [] # to plot cumulative variance
for n in components
    final_pipeline_rfcp = Pipeline(steps=[
        ('prep trans', prep trans),
        ('dim reduction', PCA(n_components=n, svd_solver='randomized', random_state=42)),
        ('smote', SMOTE(random_state=42)),
        ('model rfcp', RandomForestClassifier())
    final_pipeline_rfcp.fit(X_train, y_train)
    scores_val.append(final_pipeline_rfcp.score(X_val, y_val))
   scores test.append(final pipeline rfcp.score(X test, y test))
   variances.append(final_pipeline_rfcp.named_steps['dim reduction'].explained_variance_ratio_)
   cumulative variances.append(sum(final pipeline rfcp.named steps['dim reduction'].explained variance ratio ))
```

Cumulative Explained Variance vs. Number of Principal Components

Model Interpretation

Importance Score

- 1. total_avg_rech_amnt_6_7: 0.0115
- 2. change_in_vbc_3g: 0.0084
- 3. change_in_total_og_mou: 0.0072
- 4. change_in_offnet_mou: 0.0068
- 5. total_rech_amt_data_6: 0.0067
- change_in_std_og_mou: 0.0064
 aon: 0.0057
- 8. vol 2g mb 7: 0.0053
- 9. total rech amt data 7: 0.0052
- 10. vol_3g_mb_6: 0.0051

Permutation Feature Importance

Permutation Feature importance of XGBoost

Model Interpretation


```
import lime
from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(X_train.values, feature_names=all_feature_names.columns, class_names=['0', '1'])
# explain the prediction for a specific instance
exp = explainer.explain_instance(X_test[0], final_pipeline_rfc.predict_proba, num_features=10)
# Get the features that contribute to the predicted class
features = exp.as_list()
# Show the plots
exp.show_in_notebook()
```

Model Interpretation

- Actual value of y_test at same index is zero, and our model explains the higher probability for zero too.
- The features contributing to label zero are total_rech_amt_data_8, day_of_last_rech_data, change_in_last_day_rech, day_of_last_rech_data are positively contributing towards the not churned label. the total prob of these labels is higher that the other feature on the right side. Hence explains the churn value.

20

Conclusion

- LR and stacking are the best models to find the churn.
- Calculate the change in KPI's as it can explain the future churns. Our models have also shown its direct positive correlation to churn rate.
- Other important features to consider while analyzing the churn rate are: vol_3g_mb, total recharge amount, age of customer on network, fb users etc.

Future Work:

- More EDA
- Training model after tuning PCA.
- Model Interpretation with PCA pipeline. 21

Thanks!

Any questions?

