

A NEW ROBUST WATERMARKING SCHEME FOR COLOUR IMAGE IN SPATIAL DOMAIN

BY:

1. ALEMU SISAY NIGRU

2. GIRMA TARIKU WOLDESEMAYAT

3. KASSAHUN MAMUYE TESFAYE

OUTLINE

- **□** INTRODUCTION
- **□** PROBLEM STATEMENT
- A HIGH-LEVEL DESCRIPTION OF THE METHOD
- **□** PROVIDED RESULTS AND DISCUSSION
- CONCLUSION

INTRODUCTION

- **Digital watermarking** is a technique to hide the copyright information into the digital data through certain algorithm.
- The watermark:
 - 1. is embedded into the host media to be protected, such as an image, audio or video.
 - 2. can be detected or extracted later to make an assertion about the host media.
 - 3. should not alter the quality and visually of the host image and it should be perceptually invisible.
 - 4. robust with respect to image distortions, i.e.
 - difficult for an attacker to remove
 - robust to common image processing and geometric operations, such as filtering, resizing, cropping and image compression.

WATERMARKING TECHNIQUES

SPATIAL DOMAIN

- The watermark embedding is achieved by directly modifying the pixel values of the host image.
- The least significant bit of each pixel in the host image is modified to embed the secret message.
- The watermark is embedded in saturation on the HIS(hue, saturation, intensity) colour space.
- The watermark is embedded into dc components of colour image directly.
- Embedding the watermark into the original image by dividing the original image into different block size and adjusting brightness of a block according to the watermark.

TRANSFORM DOMAIN

- The host image is first converted into frequency domain then, transform domain coefficients are modified by the watermark.
- the watermark is embedded into the DCT coefficients of sub images, which are obtained by subsampling the original image.
- An algorithm based on embedding the watermark image three times in different frequency bands that are low, medium and high;
- Two complementary watermarks can also embedded into the host image in order to make it difficult for attackers to destroy both of them.

NON BLIND

 Requires original image and secret key for watermark detection

BLIND

• Requires only the secret keys for extraction.

SEMI-BLIND

• Requires secret key and watermark bit sequence for extraction.

PROBLEM STATEMENT

- Most related methods are quite robust against some common image processing operations, such as median filter, scaling and rotation; however, they are **less robust** to cropping attack because the watermark bits are embedded into the whole image hence some data would be lost in cropping.
- The embedding process of the related method is done by using convolutional code. But the problem is that it needs a **constant high amount of decoding operations**, even if few or no errors occurred.

WATERMARK EMBEDDING

Embedding Process

 \mathbf{H} = original image of size 512x512

W =watermark image of size 32x32

K = pseudo random sequence of 32x32

Step 1: Permutation of the watermark image

- i. $W' = W \oplus K Xoring$
- ii. Apply Grade code to W' to find the permuted watermark W''

Step 2: Extract the **B** component and divide into non overlapping blocks of size 8x8

Step 3: Determine embedding positions using the private key

WATERMARK EMBEDDING

Step 4: The encoded watermark W" is embedded in the blue component B. For each encoded watermark bit, a block of 8*8 is modified as follows:

IF W''=1;
For all the pixels of the 8*8 blocks
{I'=I+ λ}
IF W''=0;
For all the pixels of the 8*8 blocks
{I'=I- λ}

Where I': modified pixel intensity value

I : original pixel intensity value

 λ : constant.

Step 5: The modified block of pixels is then positioned in its original location of the host image image and then step 3 and 4 is repeated until all encoded watermark bits W" are embedded.

A HIGH-LEVEL DESCRIPTION OF THE METHOD

The proposed watermarks embedded positions

WATERMARK EXTRACTION

Extraction Process

Step 1: Non blind approach. The extraction is based on the probability of detecting bit '1' or '0' as a result of pixel wise comparison of I and I'

$$P1=P1+1/64 \text{ IF I'} > I$$

$$P0=P0+1/64 \text{ IF I'} \le I$$

Step 2: Based on the probability (P1, P0), the extracted watermark bits W'' can be computed as:

$$W'' = 1 \text{ IF } P1 \ge P0$$

$$W'' = 0 \text{ IF P1} < P0$$

Step 3: The extracted watermark bits for the four watermarks are decoded using Gray code and then, the decoded bits are XOR with random bits. We obtain images W'1, W'2, W'3, W'4.

Step 4: Compute the normalized cross correlation between **W** and **W'1**, **W'2**, **W'3**, **W'4** to make a binary decision on whether a given watermark exists or not. We choose 0.5 as the threshold for the watermark decision.

$$NCC = \frac{\sum_{i} \sum_{j} W_{ij} W_{ij}'}{\sum_{i} \sum_{j} (Wij)^{2}}$$

Peak signal to noise ratio can be calculated as:

$$PSNR = 10 * \log_{10} \frac{255}{MSE}$$

Where:

$$MSE = \frac{1}{3mn} \sum_{i=0}^{m} \sum_{j=0}^{n} (r[i,j] - r'[i,j])^{2} + (b[i,j] - b'[i,j])^{2} + (g[i,j] - g'[i,j])^{2}$$

WATERMARK EXTRACTION

RESULTS AND DISCUSSION

1. Watermark Extraction

Fig.1. (a) Original image (b) Original watermark

(c) Watermarked image(d) Extracted watermark (NCC = 1.0)

14

2. Attack - Compression

Fig.2. (a) JPEG compressed watermarked Q=75

- (b) Extracted watermark NCC=0.9874
- (c) JPEG compressed watermarked Q=50
- (d) Extracted watermark (NCC = 0.77468)

3. Attack - Rotation

Fig.3. (a) Watermarked image after rotation by 20^o (b) Extracted watermark NCC=0.9290

- (c) Watermarked image after rotation by 60°
- (d) Extracted watermark (NCC = 1.0)

4. Attack - Cropping

Fig.4. (a) Cropped watermarked by 60% (b) Extracted watermark NCC=0.9290

- (c) Cropped watermarked by 75%
- (d) Extracted watermark (NCC = 1.0)

5. Attack – Salt and pepper noise

Fig.5. (a) Watermarked image under salt and pepper noise attack (\mathbf{SNR} =0.4) (c) Watermarked image after filtering (b) Extracted watermark (NCC = 1.0) (d) Extracted watermark (NCC = 1.0)

CONCLUSION

- The algorithm developed is robust against various types of image processing attacks such as, filtering, cropping, scaling, compression, rotation and salt and paper noise.
- The watermark signature is recovered with higher values of correlation when the watermarked image is attacked.
- It is also secure scheme, only the one with the correct key can extract the watermark.

ANY QUESTION?

THANK YOU!
GRAZIE!
GRAZIE!
3Gongan!

STATE OF THE STATE