Tech-Transfer Analysis

Presented by

Mingfeng Li Yinan Ling Nan You Jinhao Zhang

Columbia Technology Ventures

Entity-Relationship Diagram:

Use the selected features and the model to classify the inventions into 6 categories by their abilities to make money

Which 6 categories of inventions

Divided by the revenue of their agreements with companies:

- 1. "A" \$0
- 2. "B" 0-\$10K
- 3. "C" \$10K-\$100K
- 4. "D" \$100K-\$1M
- 5. "E" >\$1M
- 6. "Z" did not obtain any agreement

The relevant features:

- Invention Key (serve as index)
- PeopleKey- The number of People Collaborating
- Department- The number of Departments
 Collaborating

The relevant features:

- fundingAmount Total Funding amount received
- Type Agreements Type
- countryCode count of countries inventions applied for patents
- Application Status

The relevant features:

- Status Application Status
 - a. abandoned ->0

expired ->0.5

filed ->0.5

issued ->1

- Data Cleaning

1. Join all the relevant features to one table

	inventionsKey	peopleKey	department	fundingAmount	type	revenue	countryCode	status
0	K2AD0872121812714669	4.0	2.0	3525947.0	MTA	A \$0	3	0.5
1	K2AD0872121812714669	4.0	2.0	3525947.0	other	A \$0	3	0.5
3	K2AD0872121812714669	4.0	2.0	3525947.0	CDA	A \$0	3	0.5
5	K2AD0872124416279053	1.0	1.0	NaN	NaN	NaN	0	0.0
6	K2AD0872124530352720	2.0	2.0	0.0	LicenseNonEx	C 10 <i>K</i> -100K	5	2.5

- Data Cleaning

2. Change the data types to the ones that can be easily analyzed

	inventionsKey	peopleKey	department	fundingAmount	type	revenue	countryCode	status
0	K2AD0872121812714669	4.0	2.0	3525947.0	5	0	24	1
1	K2AD0872121812714669	4.0	2.0	3525947.0	11	0	24	1
3	K2AD0872121812714669	4.0	2.0	3525947.0	0	0	24	1
5	K2AD0872124416279053	1.0	1.0	NaN	10	5	0	0
6	K2AD0872124530352720	2.0	2.0	0.0	4	2	37	19

- Data Cleaning

3. Normalize the data and take care of all the invalid data in the set

	inventionsKey	peopleKey	department	fundingAmount	type	revenue	countryCode	status
0	K2AD0872121812714669	0.25	0.272727	3.201032e-03	0.454545	0	0.571429	0.025641
1	K2AD0872121812714669	0.25	0.272727	3.201032e-03	1.000000	0	0.571429	0.025641
3	K2AD0872121812714669	0.25	0.272727	3.201032e-03	0.000000	0	0.571429	0.025641
5	K2AD0872124416279053	0.10	0.181818	0.000000e+00	0.909091	5	0.000000	0.000000
6	K2AD0872124530352720	0.15	0.272727	9.078501e-10	0.363636	2	0.880952	0.487179
	1/04/20070404500050700	0.45	0.070707	0.070504 40	0.00000	^	0.000050	0.407470

n=11,465

- Correlation Analysis

- Fairly strong
correlation exists
between the number
of departments and
the number of people
collaborating, as
expected

Machine Learning

Splitting the data

- 80% of data is randomly chosen to be the training cases
- The remaining 20% is chosen to be the testing cases

Machine Learning

- Choice of Algorithm

Result

- Model Accuracy

92% Accuracy!!! in the first place

But.....

We realized that the set is biased because there are two many zeros in the "revenue" feature

Too many 0s means too many data fills in Category 'A'

Result

- Model Improvement

- Apply balancing

 Balanced the batch data by selecting the same amount of data from each revenue category

Result

- Model Accuracy after Balancing the data

78.7% accuracy

in test cases

Conclusion

 Use the selected features and the model to classify the inventions into 6 categories by their abilities to make money

- We trained a Neural Network model that has 78.7% of accuracy in prediction

Future Work

A further in-depth analysis of each factor's commercial impact

Take the time into consideration