Exercise 5. Show whp $np \to \infty$ implies whp G_n contains \triangle i.e. a 3-cycle⁴.

Let Y_n count the number of \triangle in G_n and for any 3-subset of vertices $S \subset V(G)$ let A_S be the event that G_n restricted to the vertices S is a \triangle .

(a) Show by linearity of expectation that:

$$\mathbb{V}(Y_n) = \sum_{S,T \in \binom{[n]}{3}} \left(\mathbb{P}(A_S \& 1_{A_T}) - \mathbb{P}(A_S)\mathbb{P}(A_T) \right).$$

(b) Notice that when the sets of vertices S and T don't intersect that the events A_S and A_T are independent. What about when they intersect on one vertex? Using (a) show that:

$$\mathbb{V}(Y_n) \le \sum_{|S \cap T| = \{2,3\}} \mathbb{P}(A_S \& A_T).$$

- (c) After some case analysis and from (b) show: $\mathbb{V}(Y_n) \leq n^4 p^5 + n^3 p^3$.
- (d) From (c) conclude that whp $Y_n > 0$. Hint: use Chebyshev's inequality.

Exercise 6. Given $k \in \mathbb{N}$, let \mathcal{P}_k be the set of graphs which have a path on k vertices as a subgraph. Find the threshold function for \mathcal{P}_3 (containing the path \wedge as a subgraph) and for \mathcal{P}_4 . Can you find the threshold for \mathcal{P}_k in terms of k and k?

⁴This exercise demonstrates a different way to prove the second part of Theorem 1.6. In the proof we showed that whp $e(G_n) \ge n$ for $np \to \infty$ and from this and Q 2a we concluded that $np \to \infty$ implies whp G_n has a cycle.