1

Digital Signal Processing

I Sai Pradeep

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	8
7	FFT	9

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/Sound_Noise.wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.

2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.way'
#sampling frequency of Input signal
sampl freq=fs
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
   polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
#output \ signal = signal.lfilter(b, a,
   input signal)
#write the output signal into .wav file
sf.write('Sound With ReducedNoise.wav',
   output signal, fs)
```

2.4 The output of the python script 2.3 Problem is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio.

Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ \frac{1}{1}, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/Pradeep8802/ EE3900-Digital-Signal-Processing/blob/main/ Assignment1/codes/3.1.py

Fig. 3.1

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/3.2.py

3.3 Repeat the above exercise using a C code. **Solution:** The following c code is used to find y(n)

wget https://github.com/Pradeep8802/ EE3900-Digital-Signal-Processing/blob/main/ Assignment1/codes/3.3.c

Fig. 3.2

The following code yields Fig. 3.3.

wget https://github.com/Pradeep8802/ EE3900-Digital-Signal-Processing/blob/main/ Assignment1/codes/3.3.py

Fig. 3.3

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = Z\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$Z\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$
 (4.4)

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.5)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem 3.1. **Solution:** Z-transform of x(n),X(z) is given by

$$\mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.7)

$$=\sum_{n=0}^{5} x(n)z^{-n} \tag{4.8}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.9)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.10}$$

from (3.2) assuming that the *Z*-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.11)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.12}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.14)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.15)

Solution: The Z-transform of $\delta(n)$ is defined

as

$$\mathcal{Z}\{\delta(n)\} = \sum_{n=-\infty}^{\infty} \delta(n) z^{-n}$$
 (4.16)

$$= \delta(0)z^{-0} \tag{4.17}$$

$$= 1 \tag{4.18}$$

Hence we can say that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.19}$$

and from (4.14),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.20)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.21}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.22}$$

Solution:

$$\mathcal{Z}\lbrace a^n u(n)\rbrace = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n}$$
 (4.23)

$$= \sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.24)

$$=\sum_{n=0}^{\infty} (z^{-1}a)^n \tag{4.25}$$

$$=\frac{1}{1-az^{-1}}, \quad |z^{-1}a| < 1 \quad (4.26)$$

$$=\frac{1}{1-az^{-1}}, \quad |z| > |a| \tag{4.27}$$

using the fomula for the sum of an infinite geometric progression.

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.28)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution:

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/4.5.py

 $H(e^{jw})$ is given by

(4.41)

Fig. 4.6: $|H(e^{j\omega})|$

$$H(e^{jw}) = \frac{1 + (e^{jw})^{-2}}{1 + \frac{1}{2}(e^{jw})^{-1}}$$
(4.29)

$$= 2\frac{1 + \cos(-2\omega) + j\sin(-2\omega)}{2 + \cos(-\omega) + j\sin(-\omega)}$$
(4.30)

$$= 2\frac{1 + \cos(2\omega) - j\sin(2\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.31)

$$= 2\frac{2\cos^{2}(\omega) - 2j\sin(\omega)\cos(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.32)

$$= 4\cos(\omega)\frac{\cos(\omega) - j\sin(\omega)}{2 + \cos(\omega) - j\sin(\omega)}$$
(4.33)

$$= 4|\cos(\omega)| \frac{e^{jw}}{2 + e^{jw}}$$
 (4.34)

So,

$$|H(e^{jw})| = 4|\cos(\omega)|\frac{|e^{jw}|}{|2 + e^{jw}|}$$
(4.35)

$$=\frac{|4\cos(\omega)|}{\sqrt{5+4\cos(\omega)}}\tag{4.36}$$

The period of $|\cos(\omega)|$ is π . The period of $5+4\cos(\omega)$ is 2π . Hence $|H(e^{J^{\omega}})|$ is periodic with period 2π .(The LCM of the period of $|\cos(\omega)|$ and $5+4\cos(\omega)$ is 2π) The graph of $|H(e^{J^{\omega}})|$ is symmetric with respect to y-axis. It is continuous over ω . The following code plots Fig. 4.6.

4.7 Express h(n) in terms of $H(e^{j\omega})$.

Solution: We know that

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.37)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.38}$$

$$=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{k=-\infty}^{\infty}h(k)e^{-j\omega k}e^{j\omega n}d\omega \quad (4.39)$$

$$=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}h(k)\int_{-\pi}^{\pi}e^{j\omega(n-k)}d\omega \qquad (4.40)$$

case-1:If $(n \neq k)$

$$= \frac{1}{2\pi} \sum_{k \neq n} h(k) \frac{e^{j\omega(n-k)}}{j(n-k)} \bigg]_{-\pi}^{\pi}$$
 (4.42)

$$= \frac{1}{2\pi} \sum_{k \neq n} h(k) \frac{2\sin(\pi(n-k))}{(n-k)}$$
 (4.43)

$$=0 (4.44)$$

case-2:If(n = k)

$$=\frac{1}{2\pi}h(n)\int_{-\pi}^{\pi}d\omega\tag{4.45}$$

$$= h(n) \tag{4.46}$$

Hence, we can say,

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.47)$$

5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.12).

Solution: H(z) is given by

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} = \frac{2 + 2z^{-2}}{2 + z^{-1}}$$
 (5.2)

$$2z^{-1} - 4 (5.3)$$

$$z^{-1} + 2) 2z^{-2} + 2$$
 (5.4)

$$2z^{-2} + 4z^{-1} (5.5)$$

$$-4z^{-1} + 2 (5.6)$$

$$-4z^{-1} - 8 (5.7)$$

$$\overline{10} \qquad (5.8)$$

So,

$$H(z) = 2z^{-1} - 4 + \frac{10}{z^{-1} + 2}$$
 (5.9)

$$=2z^{-1}-4+\frac{5}{\frac{1}{2}z^{-1}+1}$$
 (5.10)

$$=2z^{-1}-4+5\sum_{n=0}^{\infty}\left(-\frac{z^{-1}}{2}\right)^{n}$$
 (5.11)

$$= 1 - \frac{1}{2}z^{-1} + 5 \times \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n} \quad (5.12)$$

So,h(n) will be given by

$$h(n) = \begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.13)

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z)$$
 (5.14)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.12),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.15)

$$\implies h(n) = \left(-\frac{1}{2}\right)^{n} u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.16)

using (4.22) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/5.3.py

on simplfying we get h(n) as

$$\begin{cases} 5 \times \left(-\frac{1}{2}\right)^n & n \ge 2\\ \left(-\frac{1}{2}\right)^n & 2 > n \ge 0\\ 0 & n < 0 \end{cases}$$
 (5.17)

$$\therefore 5 \times \left(-\frac{1}{2}\right)^n \to 0 \quad \text{for} \quad n \to \infty \qquad (5.18)$$

So, we can conclude that h(n) is bounded.

Fig. 5.3: h(n) wrt n

5.4 Convergent? Justify using the ratio test.

Solution: We can say a given real sequence $\{x_n\}$ is convergent if

$$\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| < 1 \tag{5.19}$$

This is known as Ratio test.

In this case the limit will become,

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{5\left(\frac{-1}{2}\right)^{n+1}}{5\left(\frac{-1}{2}\right)^n} \right| \tag{5.20}$$

$$=\lim_{n\to\infty}\left|\frac{-1}{2}\right|\tag{5.21}$$

$$=\frac{1}{2}$$
 (5.22)

As $\frac{1}{2} < 1$, from root test we can say that h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.23}$$

Is the system defined by (3.2) stable for the impulse response in (5.14)?

Solution: For system of 3.2 h(n) is defined in

(5.13) So,

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=2}^{\infty} 5 \times \left(-\frac{1}{2}\right)^n + \sum_{n=0}^{1} \left(-\frac{1}{2}\right)^n + \sum_{n=-\infty}^{-1} 0$$
(5.24)

$$= 5 \times \frac{1}{6} + \frac{1}{2} \tag{5.25}$$

$$=\frac{4}{3}$$
 (5.26)

Since the sum is finite so the system is stable for impulsive response

5.6 Verify the above result using a python code. **Solution:** The above result is verified using the below python code

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.27)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 3.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.7.py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.28)

Comment. The operation in (5.28) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/tree/main/ Assignment1/codes/5.4.py

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Toeplitz matrix.

Solution:

wget https://github.com/Pradeep8802/EE3900
-Digital-Signal-Processing/tree/main/
Assignment1/codes/5.9.py

Fig. 5.9: Convolution of x(n) and h(n) using toeplitz matrix

From (5.28), we express y(n) as

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.29)

To understand how we can use a Toeplitz matrix, we will see what we are doing in (5.28)

$$y(0) = x(0)h(0) \tag{5.30}$$

$$y(1) = x(0)h(1) + x(1)h(0)$$
 (5.31)

$$y(2) = x(0) h(2) + x(1) h(1) + x(2) h(0)$$
(5.32)

.

The same thing can be written as,

$$y(0) = \begin{pmatrix} h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ . \\ x(5) \end{pmatrix} (5.33)$$

$$y(1) = \begin{pmatrix} h(1) & h(0) & 0 & 0 & . & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ . \\ x(5) \end{pmatrix}$$

$$y(2) = \begin{pmatrix} h(2) & h(1) & h(0) & 0 & . & .0 \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ . \\ x(5) \end{pmatrix}$$
(5.35)

.

Using Toeplitz matrix of h(n) we can simplify it as,

$$y(n) = \begin{pmatrix} h(0) & 0 & 0 & \dots & 0 \\ h(1) & h(0) & 0 & \dots & 0 \\ h(2) & h(1) & h(0) & \dots & 0 \\ & & & & \\ & & & & \\ 0 & 0 & 0 & \dots & h(m-1) \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ x(5) \end{pmatrix}$$
(5.36)

Now from (3.1) we will take n

$$x(n) = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix}$$
 (5.37)

And from (5.13) we will take some values of n,

$$h(n) = \begin{pmatrix} 1 \\ -0.5 \\ 1.25 \\ \vdots \\ . \end{pmatrix}$$
 (5.38)

Now using (5.36),

$$= \begin{pmatrix} 1\\1.5\\3.25\\ \cdot\\ \cdot\\ \cdot\\ \cdot \end{pmatrix}$$
 (5.41)

The above equation (5.41) is the convolution of x(n) and h(n)

5.10 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.42)

Solution: From (5.28),

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.43)

Replacing n - k with a, we get

$$y(n) = \sum_{n=-\infty}^{\infty} x(n-a)h(a)$$
 (5.44)

$$=\sum_{-a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.45)

$$=\sum_{a=-\infty}^{\infty}x(n-a)h(a)$$
 (5.46)

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

Solution: Run the following codes to compute X(k) which is plotted in 6.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.1.py

Run the following codes to compute H(k).

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.1_2.py

Fig. 6.1: DFT of x(k)

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution: Run the following codes to compute Y(k) respectively.

Fig. 6.1: *H*(*n*)

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.2.py

Fig. 6.2: DFT of *xyn*)

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 6.2. Note that this is the same as y(n) in Fig. 3.1.

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/

Fig. 6.3: y(n)

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Run the following code to plot

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/6.4.py

Fig. 6.4: y(n)

7 FFT

1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the N-point DFT matrix is defined as

$$\mathbf{F}_N = [W_N^{mn}] \tag{7.3}$$

where W_N^{mn} are the elements of \mathbf{F}_N .

3. Let

$$\mathbf{I}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^2 & \mathbf{e}_4^3 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.5}$$

4. The 4 point DFT diagonal matrix is defined as

$$\mathbf{D}_4 = diag \begin{pmatrix} W_8^0 & W_8^1 & W_8^2 & W_8^3 \end{pmatrix} \tag{7.6}$$

5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: Given

$$W_N = e^{-j2\pi/N} \tag{7.8}$$

$$\implies W_N^2 = e^{2(-j2\pi/N)} \tag{7.9}$$

$$=e^{-j2\pi/(N/2)} (7.10)$$

$$=W_{N/2}$$
 (7.11)

Therefore, hence proved that,

$$W_N^2 = W_{N/2} (7.12)$$

6. Show that

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.13}$$

Solution: I_2 is a 2×2 identity matrix, for any 2×2 A, we have

$$\mathbf{I}_2 \mathbf{A} = \mathbf{A} \mathbf{I}_2 = \mathbf{A} \tag{7.14}$$

Consider

$$\begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{F}_2 & \mathbf{D}_2 \mathbf{F}_2 \\ \mathbf{F}_2 & -\mathbf{D}_2 \mathbf{F}_2 \end{bmatrix}$$
(7.15)

where

$$\mathbf{F}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \tag{7.16}$$

$$\mathbf{D}_{2} = diag(W_{4}^{0}, W_{4}^{1}) = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix}$$
 (7.17)

Since
$$W_4 = e^{-j2\pi/4}$$

As,

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.18}$$

$$\implies \mathbf{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.19}$$

$$\mathbf{F}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix}$$
 (7.20)

$$\mathbf{D}_{2}\mathbf{F}_{2} = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 (7.21)
$$= \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix}$$
 (7.22)

$$\begin{bmatrix} \mathbf{F}_2 & \mathbf{D}_2 \mathbf{F}_2 \\ \mathbf{F}_2 & -\mathbf{D}_2 \mathbf{F}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -j & j \\ 1 & 1 & -1 & -1 \\ 1 & -1 & j & -j \end{bmatrix}$$
(7.23)

Using (7.19) and (7.23) in (7.13)

$$\begin{bmatrix} \mathbf{I}_{2} & \mathbf{D}_{2} \\ \mathbf{I}_{2} & -\mathbf{D}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{2} & 0 \\ 0 & \mathbf{F}_{2} \end{bmatrix} \mathbf{P}_{4} = \begin{bmatrix} \mathbf{F}_{2} & \mathbf{D}_{2} \mathbf{F}_{2} \\ \mathbf{F}_{2} & -\mathbf{D}_{2} \mathbf{F}_{2} \end{bmatrix} \mathbf{P}_{4}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -j & j \\ 1 & 1 & -1 & -1 \\ 1 & -1 & j & -j \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(7.25)$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix}$$

The RHS of the equation (7.26) is \mathbf{F}_4 , from (7.20).

$$\therefore \mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.27}$$

7. Show that

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.28)$$

Solution:

Consider the following properties:

$$W_N^{k(2n+1)} = W_N^k W_{N/2}^{kn} (7.29)$$

$$W_N^{k+N/2} = e^{-j2\pi[k+N/2]/N} = e^{-j2\pi k/N} e^{-j\pi}$$
 (7.30)

$$=-W_N^k$$
 (7.31)

Consider X[k],

$$X[k] = \sum_{n=0}^{N-1} W_N^{kn} x[n]$$

$$= \sum_{n=0}^{N/2-1} \left[x[2n] W_N^{k(2n)} + x[2n+1] W_N^{k(2n+1)} \right]$$
(7.32)

$$k = 0, \cdots, N-1$$

which is gathering odd and even terms seperately which allows us to write

$$X[k] = \sum_{n=0}^{N/2-1} x[2n] W_{N/2}^{kn} + W_N^k \sum_{n=0}^{N/2-1} x[2n+1] W_{N/2}^{kn}$$

$$= Y[k] + W_N^k Z[k] k = 0, \dots, N-1$$
(7.35)

where Y[k] and Z[k] are DFTs of length N/2 of even numbered sequence $\{x[2n]\}$ and of the odd numbered sequence $\{x[2n+1]\}$, respectively. Here, we cannot proceed for $k \ge N/2$. So, for $k \ge N/2$:

$$X[k+N/2] = Y[k+N/2] + W_N^{k+N/2}Z[k+N/2]$$
(7.36)

Using the periodicity of Y[k] and Z[k] and (7.30),

$$X[k+N/2] = Y[k+N/2] - W_N^k Z[k]$$
 (7.37)

Using (7.35) and (7.37), and linear transformation upon them

$$\mathbf{X}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{N/2} \\ \mathbf{Z}_{N/2} \end{bmatrix}$$
(7.38)

where $I_{N/2}$ is a unit matrix and $D_{N/2}$ is a diagonal matrix with elements as $\{W_N^k, k = 0, \dots, N/2 - 1\}$, both of dimension $N/2 \times N/2$. Whereas

 $Y_N/2=$ DFT of even terms of $X_N=F_{N/2}x_{even}$ $Z_N/2=$ DFT of odd terms of $X_N=F_{N/2}x_{odd}$ which gets us to

$$\begin{bmatrix} \mathbf{Y}_{\mathbf{N}/2} \\ \mathbf{Z}_{\mathbf{N}/2} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{x}$$
 (7.39)

which is permuting into combinations of even and odd terms of a sequence. As we have permuted it into odd and even parts, we have to reverse this process. So, a permutation matrix is multiplied.

$$\begin{bmatrix} \mathbf{Y}_{\mathbf{N}/2} \\ \mathbf{Z}_{\mathbf{N}/2} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{\mathbf{N}} \mathbf{x}$$
 (7.40)

Replacing in (7.38),

$$\mathbf{X}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{\mathbf{N}} \mathbf{x} \quad (7.41)$$

As $X_N = F_N x$,

$$\mathbf{F}_{\mathbf{N}}\mathbf{x} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{\mathbf{N}}\mathbf{x} \quad (7.42)$$

Applying x^{-1} ,

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.43)$$

8. Find

$$\mathbf{P}_{4}\mathbf{x} \tag{7.44}$$

Solution: From (7.19),

$$\mathbf{P}_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{7.45}$$

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.46}$$

After proper zero padding of P_4 ,

$$= \begin{pmatrix} 1 \\ 3 \\ 2 \\ 4 \\ 0 \\ 0 \end{pmatrix} \tag{7.49}$$

9. Show that

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.50}$$

where \mathbf{x}, \mathbf{X} are the vector representations of x(n), X(k) respectively.

Solution: Given \mathbf{x} , \mathbf{X} are the vector representations of x(n), X(k) respectively.

$$\mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$
 (7.51)

$$\mathbf{X} = \begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix}$$
 (7.52)

$$\mathbf{F}_{N} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N} & W_{N}^{2} & \cdots & W_{N}^{(N-1)} \\ 1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix}$$

$$(7.53)$$

As

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 (7.54)

Here, we have,

$$X(0) = \sum_{n=0}^{N-1} x(n)e^{0}$$
 (7.55)

$$=\sum_{n=0}^{N-1}x(n) \tag{7.56}$$

$$X(1) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi n/N}$$
 (7.57)

$$=\sum_{n=0}^{N-1} x(n)W_N^n \tag{7.58}$$

$$\vdots \qquad (7.59)$$

$$X(N-1) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi(N-1)n/N}$$
 (7.60)

$$= \sum_{n=0}^{N-1} x(n) W_N^{n \times (N-1)}$$
 (7.61)

Representing the above equations in matrix form as matrix multiplication, we get,

$$\begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & W_N & \cdots & W_N^{(N-1)} \\ 1 & W_N^2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{N-1} & \cdots & W_N^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}$$
(7.62)

$$\therefore \mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.63}$$

10. Derive the following Step-by-step visualisation of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
(7.66)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.67)

$$\begin{bmatrix} X_2(0) \\ X_2(1) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.68)

$$P_{8} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix}$$
 (7.70)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.71)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.72)

Therefore

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.73)

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.75)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.76)

11. For

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.77}$$

compte the DFT using (7.50)

(7.86)

(7.87)

(7.88)

(7.89)

Solution:

$$\mathbf{F}_{6} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-j\pi/3} & e^{-j2\pi/3} & e^{-j\pi} & e^{-j4\pi/3} & e^{-j5\pi/3} \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} & e^{-j2\pi} & e^{-j8\pi/3} & e^{-j10\pi/3} \\ 1 & e^{-j\pi} & e^{-j2\pi} & e^{-j3\pi} & e^{-j4\pi} & e^{-j5\pi} \\ 1 & e^{-j\pi/3} & e^{-j8\pi/3} & e^{-j4\pi} & e^{-j16\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \end{bmatrix}$$

$$\mathbf{F}_{8} = \begin{bmatrix} \mathbf{I}_{4} & \mathbf{D}_{4} \\ \mathbf{I}_{4} & -\mathbf{D}_{4} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{4} & 0 \\ 0 & \mathbf{F}_{4} \end{bmatrix} \mathbf{P}_{8}$$

$$\mathbf{F}_{4} = \begin{bmatrix} \mathbf{I}_{2} & \mathbf{D}_{2} \\ \mathbf{I}_{2} & -\mathbf{D}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{2} & 0 \\ 0 & \mathbf{F}_{2} \end{bmatrix} \mathbf{P}_{4}$$

$$\mathbf{F}_{2} = \begin{bmatrix} \mathbf{I}_{1} & \mathbf{D}_{1} \\ \mathbf{I}_{1} & -\mathbf{D}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{1} & 0 \\ 0 & \mathbf{F}_{1} \end{bmatrix} \mathbf{P}_{2}$$

$$(7.78)$$

Using (7.43),

$$\mathbf{F}_8 = \begin{bmatrix} \mathbf{I}_4 & \mathbf{D}_4 \\ \mathbf{I}_4 & -\mathbf{D}_4 \end{bmatrix} \begin{bmatrix} \mathbf{F}_4 & 0 \\ 0 & \mathbf{F}_4 \end{bmatrix} \mathbf{P}_8 \tag{7.83}$$

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.84}$$

$$\mathbf{F}_2 = \begin{bmatrix} \mathbf{I}_1 & \mathbf{D}_1 \\ \mathbf{I}_1 & -\mathbf{D}_1 \end{bmatrix} \begin{bmatrix} \mathbf{F}_1 & 0 \\ 0 & \mathbf{F}_1 \end{bmatrix} \mathbf{P}_2 \tag{7.85}$$

Using (7.77),

$$\mathbf{X} = \mathbf{F}_6 \mathbf{x}$$
 (7.79) As $\mathbf{F}_1 = \begin{bmatrix} W_1^0 \end{bmatrix}$, we have

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{-j\pi/3} & e^{-j2\pi/3} & e^{-j\pi} & e^{-j4\pi/3} & e^{-j5\pi/3} \\ 1 & e^{-j2\pi/3} & e^{-j4\pi/3} & e^{-j2\pi} & e^{-j8\pi/3} & e^{-j10\pi/3} \\ 1 & e^{-j\pi} & e^{-j\pi} & e^{-j2\pi} & e^{-j3\pi} & e^{-j4\pi} & e^{-j5\pi} \\ 1 & e^{-j4\pi/3} & e^{-j8\pi/3} & e^{-j4\pi} & e^{-j16\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \\ 1 & e^{-j5\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j5\pi} & e^{-j20\pi/3} & e^{-j25\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j25\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j25\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j25\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j10\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j20\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} & e^{-j6\pi/3} \\ 1 & e^{-j6\pi/3} & e^{-j6\pi/3}$$

value of F_4 is,

$$\implies X = \begin{bmatrix} 13 \\ -4 - \sqrt{3}j \\ 1 \\ -1 \\ 1 \\ -4 + \sqrt{3}j \end{bmatrix}$$
 (7.81)

 $\mathbf{D}_{2} = diag(W_{4}^{0}, W_{4}^{1})$ (7.90)

$$= diag(1, -j)$$
 (7.91)

$$= \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix} \quad (7.92)$$

$$\mathbf{D_2F_2} = \begin{bmatrix} 1 & 0 \\ 0 & -j \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad (7.93)$$

$$= \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix} \quad (7.94)$$

$$\mathbf{F_4} = \begin{bmatrix} \mathbf{F_2} & \mathbf{D_2} \mathbf{F_2} \\ \mathbf{F_2} & -\mathbf{D_2} \mathbf{F_2} \end{bmatrix} \mathbf{P_4} \quad (7.95)$$

$$\mathbf{F_4} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -j & j \\ 1 & 0 & -1 & -1 \\ 0 & 1 & j & -j \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (7.96)

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -j & 1 & j \\ 1 & -1 & 0 & j \\ 0 & i & 1 & -i \end{bmatrix}$$
 (7.97)

12. Repeat the above exercise using the FFT after zero padding x.

Solution: After padding, x becomes an 8×1 matrix, as shown below

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \tag{7.82}$$

value of F_8 is,

$$\mathbf{D_4} = diag\left(1, W_8, W_8^2, W_8^3\right)$$

$$(7.98)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1-j}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} \end{bmatrix}$$

$$(7.99)$$

$$\mathbf{D_{4}F_{4}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1-j}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & -j & 1 & j \\ 1 & -1 & 0 & j \\ 0 & j & 1 & -j \end{bmatrix}$$

$$(7.100)$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & \frac{-1-j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}} \\ -1 & 1 & 0 & -j \\ 0 & \frac{1-j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} \end{bmatrix}$$

$$(7.101)$$

 $F_8 = \mathbf{ABP_8}$ where

$$F_{8} = \mathbf{ABP_{8}} \text{ where}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & \frac{-1-j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}}\\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & -j\\ 0 & 0 & 0 & 1 & 0 & \frac{1-j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}}\\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & \frac{1+j}{\sqrt{2}} & \frac{-1+j}{\sqrt{2}} & \frac{-1-j}{\sqrt{2}}\\ 0 & 0 & 1 & 0 & 1 & -1 & 0 & j\\ 0 & 0 & 0 & 1 & 0 & \frac{-1+j}{\sqrt{2}} & \frac{1+j}{\sqrt{2}} & \frac{1-j}{\sqrt{2}} \end{bmatrix}$$

$$(7.101)$$

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -j & 1 & j & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & j & 0 & 0 & 0 & 0 \\ 0 & j & 1 & -j & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & j & -1 & j \\ 0 & 0 & 0 & 0 & 0 & -j & -1 & j \end{bmatrix}$$
(7.103)
$$\mathbf{F_8} =$$
(7.104)

And P_8 is a permutation matrix.

$$\mathbf{X} = \begin{bmatrix} 13 \\ -4 - 8j \\ j \\ 2 - 2j \\ -1 \\ 2 + 2j \\ -j \\ -4 + 8j \end{bmatrix}$$
 (7.105)

13. Write a C program to compute the 8-point FFT. **Solution:**

wget https://github.com/Pradeep8802/EE3900 -Digital-Signal-Processing/blob/main/ Assignment1/codes/7 13.py