Analysis I - Hw 1

Daniel Yu

September 23, 2024

1 Problem 1

Let (X, ρ) be a metric space and E, a non-empty subset in X. Consider the new metric space, (E, ρ) . Prove that a set $U \subseteq E$ is open in $E \Leftrightarrow \exists$ an open set \tilde{U} in X such that $U = \tilde{U} \cap E$. Similarly, prove this for closed sets.

Proof. \to Assume that there is a set $U \subseteq E$ that is open in (E, ρ) and $E \subseteq X$ where X forms a metric space (X, ρ) . If the open set U is also open in (X, ρ) then $\tilde{U} = U$ and we are done, so assume that U is not open in (X, ρ) . We can construct an open set \tilde{U} in (X, ρ) by taking the ball $B_r(x)' \subseteq X$ that contains $B_r(x) \subseteq U$. $B_r(x)' \supseteq B_r(x)$ since $U \subseteq X$. We can do this $\forall x \in U$ with some r > 0. By this construction, \tilde{U} is an open set because for all $x \in U$, $\exists r > 0$ such that $B_r(x)' \subseteq X$. Then, $B_r(x)' \cap E = B_r(x)$ since $B_r(x)'$ contains $B_r(x) \subseteq U \subseteq E$ and points in $B_r(x)' \setminus E$ i.e. $B_r(x)' = B_r(x) \cup B_r(x)' \setminus E$. So,

$$(\cup_{x \in U} B_r(x)') \cap E = \cup_{x \in U} B_r(x).$$

and every $x \in U$ has an open set $B_r(x) \subseteq E$, which is precisely the definition of the open set U in E! \leftarrow Assume that \exists an open set $\tilde{U} \subseteq X$ such that $U = \tilde{U} \cap E$. By set theory, $U \subseteq E$. We know that \tilde{U} is open, so

$$\forall x \in \tilde{U}, \exists r > 0$$
, such that $B_r(x) \subseteq \tilde{U}$.

Consider the ball $B_r(x) \cap E$, the intersection of the ball $B_r(x) \subseteq X$ with E. We know that this intersection must be open in E because we are taking an open set in X and intersecting it with E which is open with respect to itself. Since $B_r(x) \subseteq \tilde{U}$, then $B_r(x) \cap E \subseteq \tilde{U} \cap E = U$. So for every $x \in U$, $\exists r > 0$ such that an open set is formed in E:

$$B_r(x) \cap E \subseteq U$$
.

 $U \subseteq E$ is open in E.

Now to prove the same for closed sets. We just proved that a set $U \subseteq E$ is open in $E \Leftrightarrow \exists$ an open set \tilde{U} in X such that $U = \tilde{U} \cap E$. We know that the complement of an open set is a closed set. Thus, taking the complement, we know that there is a set $C = E \setminus U$ where $C \subseteq E$ that is closed in E. It follows that the open set \tilde{U} in X has a complement $\tilde{C} = X \setminus \tilde{U}$ that is closed in X. Then

$$\tilde{C} \cap E = (X \setminus \tilde{U}) \cap E = (X \cap E) \setminus (\tilde{U} \cap E) = X \setminus U = C.$$

Thus, there exists a closed set $C \subseteq E \Leftrightarrow \exists$ a closed set \tilde{C} in X such that $C = \tilde{C} \cap E$.

Note. Intuition

Consider $U \subseteq E$ an open set. This means that $\forall x \in U \exists r > 0$ such that

$$B_r(x) \subseteq U$$
.

If we consider U in $X \supseteq E$, then U may not be necessarily be open in X because there may $x' \in X$ but $x' \notin E$ such that $\exists B_r(x) \ \forall r > 0$ such that $x' \in B_r(x)$. Since $B_r(x) \subseteq U \subseteq E$, if $x' \in B_r(x)$, then:

$$B_r(x) \not\subseteq U$$
.

For example, let $X = \mathbb{R}$, the closed interval [0,1) would not be open because there is no ball centered at $B_r(0)$ of any radius greater than 0 that is a subset of [0,1). However, if we restrict X = [0,1), then [0,1) becomes open since $B_r(0) = [0,r) \subseteq [0,1)$ when r < 1 (now the x < 0 don't exist). The idea is that we can find an open set \tilde{U} in X that is an analogue of U in E.

2 Problem 2

Given $K \subseteq E$, then prove K is compact in $E \Leftrightarrow K$ is compact in X.

Proof. \to If K is compact in $E \subseteq X$, then for any open cover $\{U_{\alpha}\}_{{\alpha}\in I}$ in E such that $K \subseteq \cup_{{\alpha}\in I}U_{\alpha}$ that covers K and there is some finite subcover $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\} \subseteq E$ that covers K. Since $E \subseteq X$, we

can use the statement from problem 1. For each open subset $U_{\alpha_i} \subseteq E$, there exists open subset $U_{\beta_i} \subseteq X$ such that $U_{\alpha_i} = U_{\beta_i} \cap E \to U_{\alpha_i} \subseteq U_{\beta_i}$. So,

$$K \subseteq \bigcup_{\alpha_i \in I_1} U_{\alpha_i} \subseteq \bigcup_{\beta_i \in I_1} U_{\beta_i}.$$

Thus, we can construct a finite subcover $\{U_{\beta_1}, U_{\beta_2}, \dots, U_{\beta_n}\}$ of K in X. As any open cover of K in X can be restricted $\{U_{\beta} \cap E\}_{\beta \in I}$ to be an open cover of K in E and any open cover of K in E can be augmented to be an open cover of K in X, $\{\{U_{\alpha}\}_{\alpha \in I}, X \setminus E\}$, then any open cover in X can be mapped to some open cover in E such that we can follow the construction above to create a finite subcover of K in X. So, K is compact in X.

 \leftarrow Assume that K is compact in X and $K \subseteq E$. This means for any open cover of K in X:

$$\{U_{\alpha}\}_{\alpha\in I}$$
.

there exists a finite subcover $\{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ such that

$$K \subseteq \bigcup_{\alpha \in I_1} U_\alpha \subseteq X.$$

Then since $E \subseteq X$, we can use the statement from problem 1. For each open subset $U_{\alpha_i} \subseteq X$, there exists open subset $U_{\beta_i} \subseteq E$ such that $U_{\beta_i} = U_{\alpha_i} \cap E \to U_{\beta_i} \subseteq E$. And since, $K \subseteq E$,

$$U_{\alpha_i} \cap K \subseteq U_{\alpha_i} \cap E = U_{\beta_i}$$
.

so,

$$(\bigcup_{\alpha \in I_1} U_{\alpha_i}) \cap K = K \subseteq (\bigcup_{\alpha \in I_1} U_{\beta_i}) \cap E = \bigcup_{\beta \in I_1} U_{\beta_i}.$$

and $\{U_{\beta_1}, \ldots, U_{\beta_n}\}$ is an finite subcover of K in E. Then the open cover of K in E would just be $\{U_{\beta}\}_{{\beta}\in I}$. As any open cover of K in X can be restricted $\{U_{\alpha}\cap E\}_{{\alpha}\in I}$ to be an open cover of K in E and any open cover of K in E can be augmented to be an open cover of E in E, then for any open cover in E which can be mapped to some open cover in E, we can follow the construction above to create a finite subcover of E in E and E is compact.

Due October 2nd