CSE 330: Summer 2024 Assignment-2

Total Marks: 30

1. Consider the following table of data points/nodal points:

Time (sec)	Velocity (ms^-1) v(t)
2	10
4	20
6	25

- a) [4+1 marks] Find an interpolating polynomial of velocity that goes through the above data points by using **Vandermonde Matrix** method. Also compute an approximate value of acceleration at Time, **t=7 sec.**
- b) [4 marks] Find an interpolating polynomial of velocity that goes through the above data points by using **Lagrange** method.
- c) [1 mark] If a **new data point** is added in the above scenario, which method you should use in finding a new interpolating polynomial. Also what will be the degree of that new polynomial?
- 2. Read the following and answer accordingly:
- (a) (4 marks) Consider the nodes [$-\pi/2$, 0, $\pi/2$]. Find an interpolating polynomial of appropriate degree by using **Newton's divided-difference** method for $f(x) = x \sin(x)$.
- (b) (2 marks) Use the interpolating polynomial to find an approximate value at $\pi/4$, and compute the percentage relative error at $\pi/4$.
- (c) (4 marks) Add a new node π to the above nodes, and find the interpolating polynomial of appropriate degree.
- 3. An interpolating polynomial, $p_1(x) = 1.648(x 1)$ is derived for the function $f(x) = x \ln x$ at the nodes $(x_0 = 1, x_1 = 3)$ using the Lagrange method. Answer the following keeping up to 4 significant figures.
- a) (1 mark) Explain what you need to do to obtain a **degree 3** interpolating polynomial for the same function f(x) and for the same nodal points $(x_0 = 1, x_1 = 3)$.
- b) (4 marks) Calculate the bases of the degree 3 polynomial.
- 4. [5 marks] The function $f(x) = e^{3x} e^{-3x}$ has been interpolated at the nodes at (-1, 0, 1) using Vandermonde matrix method. Evaluate the upper bound of the interpolation error for the interval [-1.5, 1.5] using Cauchy's theorem. Keep up to 4 significant figures.