Abstract Algebra Homework 5

Jack Shi - A92122910

February 15, 2018

Section 7

3.

 $\{0,2,4,6,8,10,12,14,16\}$

4.

 $\{0, 6, 12, 18, 24, 30\}$

5.

< 6 >

6.

< 3 >

Section 8

 $\mathbf{2}$

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 5 & 6 & 3 \end{pmatrix}$

3

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 6 & 2 & 5 \end{pmatrix}$

5

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 5 & 4 & 3 \end{pmatrix}$

16

Since one element in the permutation of 4 choose 4 is fixed, the number of options is therefore (4-1)! = 6

17

Since one element in the permutation of 5 choose 5 is fixed, the number of options is therefore (5-1)! = 24

20

No because S_3 is not Abelian but this group is since it is a cyclic group. Group being Abelian is a structural property. Ergo, this group is not isomorphic to S_3

31

No f_2 is not a bijection. For example -1 is in \mathbb{R} but not in the range of f_2 therfore violating surjective property.

32

Yes because f_3 is a bijection on \mathbb{R} .

46

Proof. Let the following be two groups in S_n :

$$x = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 1 & \cdots & n \end{pmatrix}$$

$$y = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 3 & 2 & \cdots & n \end{pmatrix}$$

Then the following is true:

$$xy = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 1 & 3 & \cdots & n \end{pmatrix}$$

$$yx = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 3 & 2 & 1 & \cdots & n \end{pmatrix}$$

Since $xy \neq yx$, the group S_n , $n \geq 3$ is not Abelian.