Summary: Standalone MPE	Calculations and Summary							
Band (MHZ)	Tx Duty Cycle (%)	Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (dBi)	$S_L (W/m^2)$	$S_{20} (W/m^2)$	R _C (cm)	$S_C (W/m^2)$
902-928	100	917	28	1	2.771	0.07	3.2	2.77
Band (MHZ)	Tx Duty Cycle (%)	Tx Frequeny (MHz)	Power Total (mW)	Antenna Gain (dBi)	SL (W/m2)	S20 (W/m2)	RC (cm)	SC (W/m2)
2400-2483.5	100	2402	4	5	5.351	0.03	1.4	5.35
Simlutaneous MPE Calculation	on							
Tx Frequeny (MHz)	917	2402						
$S_{20} (W/m^2)$	0.07	0.03						
$S_L (W/m^2)$	2.771	5.351						
Power Ratio (S _L / S ₂₀)	0.025	0.005						
Sum of Power Ratios at 20cm (0.025 + 0.005)		0.030						
Requirement = Σ of MPE Ratio ≤ 1								

Model: TDSPC0U3			Test Number:	190530		
MPE Calculator	RF Exposure uses EIRP for cal	culation. EIRP is based or	n TX power added to the antenna	gain in dBi.		
	dBi = dB gain compared to an i	sotropic radiator.				
	$S = power density in mW/cm^2$					
Trans	smitter maximum Output power o		0.0280		Antenna Gain (dBi)	1
Output Power for 100% duty Cycle operation				Ante	nna Gain (Numeric)	1.26
Tx Frequency (MHz) 917		Calcualtion power (Watts)	0.0280	dBd + 2.17 = dBi		
~					Antenna Gain (dBd)	-1.17
Cable Loss (dB)	0.0	Adjusted Power (dBm)	14.47	Anteni	na minus cable (dBi)	1.00
	G 1 1 1 1770 () 21 227			EIDD D.	(IDM) - C-1- (ID)	
	Calculated ERP (mw) 21.387			EIRP = Po(dBM) + Gain (dB)		15 470
	Calculated EIRP (mw) 35.250			Radiated (EIRP) dBm ERP = EIRP - 2.17 d		15.472
	EIRP				adiated (ERP) dBm	13.302
Power density	y (S) mW/cm ² =			I N	adiated (ERF) dBIII	13.302
	4 p r^2					
r (cm) EII	RP (mW)					
	\/					
	Occupational Limit	FCC radio	frequency radiation exposure limit	s per 1.1310		
3.06		Frequency (MHz)	Occupational Limit (mW/cm ²)	Public Limit (mW/cm ²)		
30.57		30-300	1	0.2		
30.3	General Public Limit	300-1,500	f/300	f/1500		
0.61		1,500-10,000	5	1		
	III III III	1,500-10,000	3	1		
6.11	W/m ²					
	0					
0.5177.00	Occupational Limit	IC 1'- 6	1	DGG 102		
$0.6455f^{0.1}$			requency radiation exposure limits p			
24.33	W/m ²	Frequency (MHz)	Occupational Limit (W/m²)	Public Limit (W/m ²)		
	General Public Limit	100-6,000	$0.6455f^{0.5}$			
$0.02619f^{0.6836}$	W/m^2	6,000-15,000	50			
2.73		48-300		1.291		
		300-6,000		$0.02619f^{0.6834}$		
		6,000-15,000	50	10		
		5,555 15,555	30	10		
= Transmit Frequecny (MHz)				f (MHz) =	917	MHz
P _T = Power Input to Antenna (mW)				P_{T} (mW) =		mW
P _T = Power Input to Antenna (r	Duty cycle (percentage of operation)			% =	100	
-	ation)			70 —	100	
Outy cycle (percentage of oper				P. (mW) -	20	mW
Outy cycle (percentage of oper P _A = Adjusted Power due to Du	nty cycle or Cable Loss (mW)			$P_A (mW) =$ $GN (numeric) =$	-	mW numeric
Outy cycle (percentage of oper $P_A = Adjusted Power due to Du G_N = Numeric Gain of the Anter Power Gain of the Anter Power$	nty cycle or Cable Loss (mW)		S = (D C)/(App) ²	GN (numeric) =	1.26	numeric
Outy cycle (percentage of oper $P_A = A$ djusted Power due to Do $P_A = A$ Diusted Power due to Do $P_A = A$ Diusted Power Gain of the Anter $P_A = A$ Dower Density of device $P_A = A$	nty cycle or Cable Loss (mW) nna at 20cm (W/m²)		S_{20} = $(P_AG_N)/(4\pi R_{20})^2$	$GN (numeric) = S_{20} (W/m^2) =$	1.26 0.07	numeric W/m2
Outy cycle (percentage of open $P_A = A$ djusted Power due to Du $P_A = A$ djusted Power due to Du $P_A = A$ djusted Power die to Du $P_A = A$ djusted Power Density of device a $P_A = A$ device $P_A = A$ device $P_A = A$ device $P_A = A$ die Power Density Limit (W/m)	nty cycle or Cable Loss (mW) nna at 20cm (W/m²)			$GN (numeric) = $ $S_{20} (W/m^2) = $ $S_L (W/m^2) = $	1.26 0.07 2.771	numeric W/m2 W/m2
Duty cycle (percentage of open $P_A = A$ djusted Power due to Du $C_N = N$ umeric Gain of the Anter $C_{N0} = N$ umeric Gain of the Anter $C_{N0} = N$ Density of device a $C_{N0} = N$ Density Limit (W/m)	nty cycle or Cable Loss (mW) nna at 20cm (W/m²))	$R_C = \sqrt{(P_A G_N / 4\pi S_L)}$	$GN (numeric) = S_{20} (W/m^2) = S_L (W/m^2) = R_C (cm) =$	1.26 0.07 2.771 3.2	numeric W/m2 W/m2 cm
Outy cycle (percentage of oper $P_A = A$ djusted Power due to Du $P_A = A$ djusted Power due to Du $P_A = A$ unmeric Gain of the Anter $P_A = A$ unmeric Gain of the Anter $P_A = A$ unmeric $P_A = A$ unmerically P	nty cycle or Cable Loss (mW) nna at 20cm (W/m²))		$GN (numeric) =$ $S_{20} (W/m^2) =$ $S_L (W/m^2) =$ $R_C (cm) =$ $S_C (W/m^2) =$	1.26 0.07 2.771 3.2	numeric W/m2 W/m2
Outy cycle (percentage of oper $P_A = A$ djusted Power due to Du $P_A = A$ djusted Power due to Du $P_A = A$ unmeric Gain of the Anter $P_A = A$ unmeric Gain of the Anter $P_A = A$ unmeric $P_A = A$ unmerically P	nty cycle or Cable Loss (mW) nna at 20cm (W/m²) r) Radiating Element for Compliance (cm)	$R_C = \sqrt{(P_A G_N / 4\pi S_L)}$	$GN (numeric) = S_{20} (W/m^2) = S_L (W/m^2) = R_C (cm) =$	1.26 0.07 2.771 3.2	numeric W/m2 W/m2 cm W/m2

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

S/N's: 306681 000005 / 306681 000006 SAF Tehnika AS Model: TDSPC0U3 (Aranet 4) Test: 190530

FCC ID: W9Z-ARANET4 IC: 8855A-ARANET4 Test to: CFR47 15C, RSS-Gen RSS-247 Date: August 28, 2019

File: TDSPC0U3 RFExp Page 1 of 2

Model: TDSPC0U3			Test Number:	190530		
IPE Calculator	-		n TX power added to the antenna	gain in dBi.		
	dBi = dB gain compared to an					
	$S = power density in mW/cm^4$					
Trans	smitter maximum Output power				Antenna Gain (dBi)	5
	Output Power for 100% du	· · · · · · · · · · · · · · · · · · ·		Anto	enna Gain (Numeric)	3.16
Tx Frequency (MHz)	2402	Calcualtion power (Watts)	() ()()4()	dBd + 2.17 = dBi	dBi to dBd	2.2
					Antenna Gain (dBd)	2.83
able Loss (dB)	0.0	Adjusted Power (dBm)	6.02	Anten	na minus cable (dBi)	5.00
	Calculated ERP (mw) 7.675			EIRP = Po	o(dBM) + Gain (dB)	
	Calculated EIRP (mw			Radiated (EIRP) dB		11.021
	· ·	121019		ERP = EIRP - 2.17 d		
Power densit	EIRP y (S) mW/cm ² =			F	Radiated (ERP) dBm	
Tower densit	$y (S) \text{ mw/cm}^2 = \frac{1}{4 \text{ p r}^2}$				` ´	
	'P' 2					
r (cm) EI	RP (mW)					
	0	ECC and die	o frequency radiation exposure limit	n par 1 1210		
	Occupational Limit		1 7 1	1 2		
5.00	mitty cin	Frequency (MHz)	Occupational Limit (mW/cm ²)	Public Limit (mW/cm ²)		
50.00		30-300	1	0.2		
	General Public Limit	300-1,500	f/300	f/1500		
1.00	mW/cm ²	1,500-10,000	5	1		
10.00	W/m^2					
	Occupational Limit					
$0.6455f^{0.3}$		IC radio f	requency radiation exposure limits p	per RSS-102		
39.38	W/m^2	Frequency (MHz)	Occupational Limit (W/m ²)	Public Limit (W/m ²)		
	General Public Limit	100-6,000	$0.6455f^{0.5}$			
$0.02619f^{0.6836}$	$\frac{4}{W/m^2}$	6,000-15,000	50			
5.35		48-300		1.291		
5.50	14/111	300-6,000		$0.02619f^{0.6834}$		
		6,000-15,000	50	10		
		0,000-13,000	30	10		
= Transmit Frequecny (MH:	z)			f (MHz) =	2402	MHz
P _T = Power Input to Antenna (mW)				P_{T} (mW) =		
Outy cycle (percentage of operation)				% =		
$P_A = \text{Adjusted Power due to Duty cycle or Cable Loss (mW)}$				$P_A(mW) =$		
$\Delta = Adjusted Power due to$	• • • • • • • • • • • • • • • • • • • •			GN (numeric) =		numeric
			2			W/m2
$G_N = Numeric Gain of the An$			$ S_{\alpha\alpha}-(P_{\alpha}G_{\alpha\alpha})/(4\pi P_{\alpha\alpha}) ^2$			
$P_{N} = N_{N}$ = Numeric Gain of the An $P_{N} = N_{N}$ = Power Density of device	e at 20cm (W/m ²)		$S_{20} = (P_A G_N)/(4\pi R_{20})^2$	$S_{20} (W/m^2) =$		
$P_{N} = Numeric Gain of the An$ $P_{N} = Numeric Gain of the An$ $P_{N} = Power Density of device P_{N} = Power Density Limit (W. 1)$	e at 20cm (W/m²) /m²)			$S_L (W/m^2) =$	5.351	W/m2
$S_N = Numeric Gain of the An$ $S_{20} = Power Density of devices S_L = Power Density Limit (W.)$	e at 20cm (W/m ²)	em)	$R_C = \sqrt{(P_A G_N / 4\pi s_i)}$	$S_{L} (W/m^{2})=$ $R_{C} (cm) =$	5.351 1.4	W/m2 cm
$N_N = N$ umeric Gain of the An $N_N $	e at 20cm (W/m²) /m²)			$S_{L} (W/m^{2})=$ $R_{C} (cm) =$ $S_{C} (W/m^{2}) =$	5.351 1.4 5.35	W/m2 cm W/m2
P_{N} = Numeric Gain of the An P_{N} = Numeric Gain of the An P_{N} = Power Density of device P_{N} = Power Density Limit (W. P_{N} = Minimum distance to the	e at $20cm\left(W/m^2\right)$ $/m^2$) e Radiating Element for Compliance ($R_C = \sqrt{(P_A G_N / 4\pi s_i)}$	$S_{L} (W/m^{2})=$ $R_{C} (cm) =$	5.351 1.4 5.35	W/m2 cm

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

SAF Tehnika AS Model: TDSPC0U3 (Aranet 4) Test: 190530

Test to: CFR47 15C, RSS-Gen RSS-247

Date: August 28, 2019 File: TDSPC0U3 RFExp Page 2 of 2

S/N's: 306681 000005 / 306681 000006

FCC ID: W9Z-ARANET4

IC: 8855A-ARANET4