

L Number	Hits	Search Text	DB	Time stamp
1	13512	coli and (swine or pig or cattle)	USPAT;	2003/09/30 11:06
			US-PGPUB;	
			EPO;	
_			DERWENT	0000/00/00
2	4944	, ,- ,- ,- ,- ,- ,- ,-	USPAT;	2003/09/30 11:06
		(intestine or intestinal)	US-PGPUB;	
			EPO;	
			DERWENT	2002/00/20 11:07
3	57		USPAT;	2003/09/30 11:07
		(intestine or intestinal) and (FUT? or	US-PGPUB; EPO;	
		fucosyltransferase)	DERWENT	
4	2	(coli and (swine or pig or cattle) and	USPAT;	2003/09/30 11:07
. *	2	(intestine or intestinal) and (FUT? or	US-PGPUB;	2003/03/30 11:07
		fucosyltransferase)).clm.	EPO;	
			DERWENT	
5	10	coli and (swine or pig or cattle) and	USPAT;	2003/09/30 11:08
-		(intestine or intestinal) and (FUT? or	US-PGPUB;	
		fucosyltransferase) and (alteration or	EPO;	
-		mutation or polymorphism).clm.	DERWENT	

<220> <223> Description of Artificial Sequence: Primer	
<400> 4 ttacctccag caggctatgg ac	22
<210> 5 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 5 tccagagtgg agacaagtct gc	22
<210> 6 <211> 23 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 6 ctgcctgaac gtctatcaag atc	23
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 7 agagtttcct catgcccaca gg	22
<210> 8 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 8	22
ctgctacagg accaccagca to	44
<210> 9 <211> 35 <212> DNA	

```
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 9
accagcagcg caaagtccct gacgggcacg gectc
                                                                     35
<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 10
                                                                    22
ctccctgtgc cttggaagtg at
<210> 11
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 11
                                                                    22
aactgcactg ccagcttcat gc
<210> 12
<211> 1269
<212> DNA
<213> Porcine
<220>
<221> CDS
<222> (9)..(1103)
<400> 12
ctcgagec atg tgg gtc ecc age ege ege eac etc tgt etg acc tte etg
         Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu
cta gtc tgt gtt tta gca gca att ttc ttc ctg aac gtc tat caa gac
Leu Val Cys Val Leu Ala Ala Ile Phe Phe Leu Asn Val Tyr Gln Asp
                                          25
 15
ctc ttt tac agt ggc tta gac ctg ctg gcc ctg tgt cca gac cat aac
                                                                    146
Leu Phe Tyr Ser Gly Leu Asp Leu Leu Ala Leu Cys Pro Asp His Asn
                 35
gtg gta tca tct ccc gtg gcc ata ttc tgc ctg gcg ggc acg ccg gta
Val Val Ser Ser Pro Val Ala Ile Phe Cys Leu Ala Gly Thr Pro Val
             50
```

.

cac His	ccc	aac Asn 65	Ala	tcc Ser	gat Asp	tcc Ser	tgt Cys _70	Pro	aag Lys	g cat His	cct Pro	gcc Ala 75	Ser	ttt Phe	tcc Ser	242
ggg ggg	acc Thr 80	Trp	act Thr	att Ile	tac Tyr	ecg Pro 85	gat Asp	ggc	cgg	ttt Phe	999 Gly	Asn	cag Gln	atc Met	gga Gly	290
cag Gln 95	tat Tyr	gcc Ala	acg Thr	ctg Leu	ctg Leu 100	gcc Ala	ctg Leu	gcg Ala	cag Gln	ctc Leu 105	Asn	ggc	cgc Arg	cag Gln	gcc Ala 110	338
ttc Phe	atc Ile	cag Gln	cct Pro	gcc Ala 115	Met	cac His	gcc Ala	gtc Val	ctg Leu 120	gcc Ala	ccc Pro	gtg Val	ttc Phe	cgc Arg 125	Ile	386
acg Thr	ctg Leu	cct Pro	gtc Val 130	ctg Leu	gcg Ala	ccc Pro	gag Glu	gta Val 135	gac Asp	agg Arg	cac His	gct Ala	cct Pro 140	tgg Trp	cgg Arg	434
gag Glu	ctg Leu	gag Glu 145	ctt Leu	cac His	gac Asp	tgg Trp	atg Met 150	tcc Ser	gag Glu	gat Asp	tat Tyr	gcc Ala 155	cac His	tta Leu	aag Lys	482
gag Glu	ccc Pro 160	tgg Trp	ctg Leu	aag Lys	ctc Leu	acc Thr 165	ggc Gly	ttc Phe	ccc Pro	tgc Cys	tcc Ser 170	tgg Trp	acc Thr	ttc Phe	ttc Phe	530
cac His 175	cac His	ctc Leu	cgg Arg	gag Glu	cag Gln 180	atc Ile	cgc Arg	agc Ser	gag Glu	ttc Phe 185	acc Thr	ctg Leu	cac His	gac Asp	cac His 190	578
ctt Leu	cgg Arg	caa Gln	gag Glu	gcc Ala 195	cag Gln	Gly aaa	gta Val	ctg Leu	agt Ser 200	cag Gln	ttc Phe	cgt Arg	cta Leu	ccc Pro 205	cgc Arg	626
aca Thr	Gly	gac Asp	Arg	Pro	Ser	Thr	Phe	gtg Val 215	Gly	gtc Val	cac His	gtg Val	cgc Arg 220	cgc Arg	gly aaa	674
gac Asp	tat Tyr	ctg Leu 225	cgt Arg	gtg Val	atg Met	ccc Pro	aag Lys 230	cgc Arg	tgg Trp	aag Lys	ggg Gly	gtg Val 235	gtg Val	ggt Gly	gac Asp	722
ggc Gly	cgt Arg 240	tac Tyr	ctc Leu	cag Gln	cag Gln	gct Ala 245	atg Met	gac Asp	tgg Trp	ttc Phe	cgg Arg 250	gcc Ala	cga Arg	tac Tyr	gaa Glu	770
gcc Ala 255	ccc Pro	gtc Val	ttt Phe	Val	gtc Val 260	acc Thr	agc Ser	aac Asn	Gly	atg Met 265	gag Glu	tgg Trp	tgc Cys	cgg Arg	aag Lys 270	818
aac Asn	atc Ile	gac Asp	acc Thr	tcc Ser 275	cgg Arg	ggg Gly	gac Asp	Val	atc Ile 280	ttt Phe	gct Ala	ggc Gly	gat Asp	999 Gly 285	cgg Arg	866

:

gag gcc gcg ccc gcc agg gac ttt gcg ctg ctg gtg cag tgc aac cac	
Glu Ala Ala Pro Ala Arg Asp Phe Ala Leu Leu Val Gln Cys Asn His 290 . 295 300	. 914
acc atc atg acc att ggc acc ttc ggc ttc tgg gcc gcc tac ctg gct Thr Ile Met Thr Ile Gly Thr Phe Gly Phe Trp Ala Ala Tyr Leu Ala 305 310 315	962
ggt gga gat acc atc tac ttg gct aac ttc acc ctg ccc act tcc agc Gly Gly Asp Thr Ile Tyr Leu Ala Asn Phe Thr Leu Pro Thr Ser Ser 320 325 330	1010
ttc ctg aag atc ttt aaa ccc gag gct gcc ttc ctg ccc gag tgg gtg Phe Leu Lys Ile Phe Lys Pro Glu Ala Ala Phe Leu Pro Glu Trp Val 335 340 345 350	1058
ggc att aat gca gac ttg tct cca ctc cag atg ttg gct ggg cct Gly Ile Asn Ala Asp Leu Ser Pro Leu Gln Met Leu Ala Gly Pro 355 360 365	1103
tgaaccagcc aggagccttt ctggaatagc ctcggtcaac ccagggccag cgttatgggt	1163
ctccggaagc ccgagtaact tccggagatg ctggtggtcc tgtagcaggc tggacactta	1223
tttcaagagt gattctaatt ggctggactc agaggaaacc ctgcag	1269
<210> 13	
<211> 365 <212> PRT <213> Porcine	
<212> PRT	
<212> PRT <213> Porcine <400> 13 Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu Leu Val	
<pre><212> PRT <213> Porcine <400> 13 Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu Leu Val</pre>	
<pre><212> PRT <213> Porcine <400> 13 Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu Leu Val</pre>	
<pre><212> PRT <213> Porcine <400> 13 Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu Leu Val</pre>	
<pre><212> PRT <213> Porcine <400> 13 Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu Leu Val</pre>	
<pre><212> PRT <213> Porcine <400> 13 Met Trp Val Pro Ser Arg Arg His Leu Cys Leu Thr Phe Leu Leu Val</pre>	

Pro Val Leu Ala Pro Glu Val Asp Arg His Ala Pro Trp Arg Glu Leu 135 130 Glu Leu His Asp Trp Met Ser Glu Asp Tyr Ala His Leu Lys Glu Pro 155 150 Trp Leu Lys Leu Thr Gly Phe Pro Cys Ser Trp Thr Phe Phe His His 165 Leu Arg Glu Gln Ile Arg Ser Glu Phe Thr Leu His Asp His Leu Arg 185 Gln Glu Ala Gln Gly Val Leu Ser Gln Phe Arg Leu Pro Arg Thr Gly 200 Asp Arg Pro Ser Thr Phe Val Gly Val His Val Arg Arg Gly Asp Tyr Leu Arg Val Met Pro Lys Arg Trp Lys Gly Val Val Gly Asp Gly Arg 235 Tyr Leu Gln Gln Ala Met Asp Trp Phe Arg Ala Arg Tyr Glu Ala Pro 250 Val Phe Val Val Thr Ser Asn Gly Met Glu Trp Cys Arg Lys Asn Ile 265 Asp Thr Ser Arg Gly Asp Val Ile Phe Ala Gly Asp Gly Arg Glu Ala 280 Ala Pro Ala Arg Asp Phe Ala Leu Leu Val Gln Cys Asn His Thr Ile 295 290 Met Thr Ile Gly Thr Phe Gly Phe Trp Ala Ala Tyr Leu Ala Gly Gly 315 Asp Thr Ile Tyr Leu Ala Asn Phe Thr Leu Pro Thr Ser Ser Phe Leu 330 325 Lys Ile Phe Lys Pro Glu Ala Ala Phe Leu Pro Glu Trp Val Gly Ile 345 Asn Ala Asp Leu Ser Pro Leu Gln Met Leu Ala Gly Pro

360