<u>ci212</u> — desempenho 2007-1

Avaliação de Desempenho

Qual é o melhor avião?

	capac	alcance	veloc	produtiv
avião	[p]	[km]	[km/h]	$[p \times km/h]$
B-777	375	7400	976	366.000
B-747	470	6640	976	458.720
Concorde	132	6400	2160	280.800
DC8-50	146	13952	870	127.020

Métricas:

velocidade \rightarrow Concorde alcance \rightarrow DC8-50 capacidade \rightarrow B-747 produtividade \rightarrow B-747

HEPR Dento de Informática

ci212 — desempenho

2007-1

Produção vs Tempo de Resposta

Usuário individual importa-se com tempo de resposta ou tempo de execução

Gerente de TI (ou da loja virtual) importa-se com **produção** ou *thoughput*

Se trocar o processador por um mais rápido, melhora o tempo de resposta ou a produção?

Se acrescentar mais processadores, melhora o tempo de resposta ou a produção?

HEPR Dento de Informática

ci212 — desempenho

2007-1

Desempenho

$$\mathsf{desempenho}_X \stackrel{\triangle}{=} \frac{1}{\mathsf{tempo}\,\,\mathsf{exec}_X}$$

 $X \in \mathcal{N}$ vezes mais rápido que Y se o tempo de execução de Y é \mathcal{N} vezes mais longo que o de X

$$\frac{\mathsf{desempenho}_X}{\mathsf{desempenho}_Y} = \frac{\mathsf{tempo}\ \mathsf{exec}_Y}{\mathsf{tempo}\ \mathsf{exec}_X} = \mathcal{N}$$

IIFPR Dento de Informática

Exemplo

Máquina A executa programa em 10 segundos; máquina B executa mesmo programa em 15 segundos. Quanto A é melhor que B ?

$$\frac{\mathsf{desempenho}_A}{\mathsf{desempenho}_B} = \frac{\mathsf{tempo}\ \mathsf{exec}_B}{\mathsf{tempo}\ \mathsf{exec}_A} = \frac{15}{10} \Rightarrow 1, 5$$

A é $1\frac{1}{2}$ vezes mais rápida que B

para evitar confusão, fala-se em **melhor** ou **pior** desempenho e não em "aumenta/diminui" a métrica de interesse

HEPR Dento de Informática

ci212 — desempenho

2007-1

Medidas de Desempenho

- tempo de resposta, tempo decorrido [s/tarefa]
- tempo de CPU (usuário + sistema) [s]
- ciclo de relógio [s] (frequência do relógio [1/s])
- vazão/produção (throughput) [tarefas/s]

desempenho do sistema = tempo decorrido (sem carga)

desempenho da CPU = tempo de CPU dedicado ao usuário

Desempenho tem unidade de "coisas" por segundo; maior desempenho é melhor!

HEPR Dento de Informática

2007-1

ci212 — desempenho

Fatores do Desempenho da CPU

tempo de CPU = ciclos da CPU
$$\times$$
 ciclo de relógio = $\frac{\text{ciclos da CPU}}{\text{freq de relógio}}$

ciclos da CPU = núm de instr \times núm de ciclos por instr

CPI = ciclos por instrução

HEPR Dento de Informática

Fatores do Desempenho da CPU (cont)

tempo de CPU = núm de instr
$$\times$$
 CPI \times ciclo de relógio = $\frac{\text{núm de instr} \times \text{CPI}}{\text{freq de relógio}}$

HEPR Dento de Informática

ci212 — desempenho

2007-1

Exemplo

Programa executa na máquina A em 10s com relógio de 4GHz. Queremos máquina B que execute mesmo programa em 6s. Por causa da mudança no projeto da CPU, máquina B usará 1.2 vezes mais ciclos de relógio que A. Qual a freqüência do relógio de B?

tempo de
$$\mathsf{CPU}_A = \frac{\mathsf{ciclos}\;\mathsf{da}\;\mathsf{CPU}_A}{\mathsf{freq}\;\mathsf{de}\;\mathsf{relógio}_A}$$

$$10s = \frac{\mathsf{ciclos}\;\mathsf{da}\;\mathsf{CPU}_A}{4\times10^9}$$
 $\Rightarrow \;\#\mathsf{ciclos}\;\mathsf{da}\;\mathsf{CPU}_A = 40\times10^9$

HEPR Dento de Informática

2007-1

ci212 — desempenho

Exemplo (cont)

Programa executa na máquina A em 10s com relógio de 4GHz. Queremos máquina B que execute mesmo programa em 6s. Ao mudar o projeto da CPU, máquina B usará 1.2 vezes mais ciclos de relógio que A. Qual a freq do relógio de B?

tempo de
$$\mathsf{CPU}_B = \frac{1.2 * \mathsf{ciclos} \; \mathsf{da} \; \mathsf{CPU}_A}{\mathsf{freq} \; \mathsf{de} \; \mathsf{relógio}_B}$$
 $\Rightarrow \; \mathsf{freq} \; \mathsf{de} \; \mathsf{relógio}_B = 1.2 * 40 \times 10^9/6s$ $\Rightarrow \; \mathsf{freq} \; \mathsf{de} \; \mathsf{relógio}_B = 8 \times 10^9$

ganho de $10/6 \;\Rightarrow\;$ freq de relógio 100% maior

HEPR Dento de Informática

Equação do Desempenho

tempo de CPU = núm de instr \times CPI \times ciclo de relógio

tempo de CPU	desempenho do sistema
núm de instruções	compilador & processador
CPI	arquitetura do processador
frequência de relógio	tecnologia de CIs & arquitetura

HEPR Dento de Informática

ci212 — desempenho

2007-1

Ciclos Por Instrução

$$\mathsf{CPI} = \sum_{j=0}^n \mathsf{CPI}_j imes \mathsf{F}_j$$

instr	freq[%]	ciclos	CPI_j
ALU	40	1	.40
load	25	3	.75
store	10	3	.30
desvios	25	2	.50
		CPI	1.95

HEPR Dento de Informática

2007-1

ci212 — desempenho

Medidas de desempenho — MIPS

MIPS = milhões de instruções por segundo

MIPS =
$$\frac{\text{núm de instr}}{\text{tempo decorrido} \times 10^6}$$

= $\frac{\text{freq de relógio}}{\text{CPI} \times 10^6}$

Problemas

- * independente do conjunto de instruções (RISC/CISC)
- * varia para programas na mesma máquina (int×PF)
- * pode variar na proporção inversa ao desempenho
- * comparar MIPS nativos pode ser aceitável

IIFPR Dento de Informática

Medidas de desempenho — MFLOPS

MFLOPS = milhões de instruções de ponto flutuante por segundo

$$\mathsf{MFLOPS} \ = \ \frac{\mathsf{n\'um} \ \mathsf{de} \ \mathsf{instr} \ \mathsf{de} \ \mathsf{pto} \ \mathsf{flutuante}}{\mathsf{tempo} \ \mathsf{decorrido} \times \mathbf{10}^6}$$

- Problemas
 - * independente do conjunto de instruções (Cray/68882)
 - * varia para programas na mesma máquina (soma×div)
 - * média ponderada de custo de instruções: soma(a,b) $\propto 1$ seno(x) $\propto 8$

LIEPR Dento de Informática

13

ci212 — desempenho

2007-1

Medir desempenho com programas de teste

programas simples: quicksort, números primos

simples de implementar, fora da realidade

programas sintéticos: Dhrystone, Whetstone

simples de implementar, não são código usável

núcleos de programas: Livermore Loops

fáceis de medir, não testam sistema de forma realista

programas de verdade: SPEC, gcc, LaTeX, Spice mistura deve refletir uso "normal" (browser?)

HEPR Dento de Informática

2007-1

ci212 — desempenho

Medir desempenho – SPEC

- primeiro conjunto em 1989
 - * 10 programas produzem um só número: SPECmarks
- segundo conjunto em 1992
 - * SPECint92 com 6 programas com inteiros
 - \star SPECfp92 com 14 programas com ponto flutuante
- terceiro conjunto em 1995
 - ★ SPECint95 com 8 programas com inteiros
 - ★ SPECfp95 com 10 programas com ponto flutuante
 - * conjunto caduca em três anos
 - * versão base com mesmas flags de compilação (todos programs)
- quarto conjunto em 2000
 - \star CINT2000 com 11 programas com inteiros (C e C++)
 - ★ CFP2000 com 14 programas com ponto flutuante (fortran{77,90}, C)

IIFPR Dento de Informática 18

Medir e comparar resultados

	máa 1	máa 12
	máq ${\cal A}$	máq ${\cal B}$
prog 1 [s]	1	10
prog 2 [s]	1000	100
soma [s]	1001	110

- ullet com programa 1, ${\cal A}$ é 10 vezes mais rápido que ${\cal B}$
- ullet com programa 2, ${\cal B}$ é 10 vezes mais rápido que ${\cal A}$
- erm...

LIEPR Dento de Informática ci212 — desempenho

$$\mathsf{M\'edia} \; \mathsf{Aritm\'etica} = \frac{1}{n} \sum_{i=1}^n \mathsf{Tempo}_i$$

 ${\cal B}$ é 1001/110=9.1 vezes mais rápido que ${\cal A}$

2007-1

Medir e comparar resultados

	máq ${\cal A}$	freq ${\cal A}$	máq ${\cal B}$	freq ${\cal B}$	
prog 1 [s]	20	0.90	200	0.20	
prog 2 [s]	1000	0.10	100	0.80	
soma	1020		300		
ponderada	102		120		melhor
méd aritmética	T_B/T	$T_A = 102$	20/300 =	$\overline{3.40}$	B
méd ponderada	$T_A/2$	$T_B = 12$	0/102 = 1	L.17	\mathcal{A}

$$T_A$$
=20*0.9+1000*0.1=101.8
 T_B =200*0.2+100*0.8=120

Média Aritmética
$$=\sum_{i=1}^n \mathsf{Tempo}_i \times \mathsf{frac}_i$$

HEPR Danto de Informática

ci212 — desempenho 2007-

Lei de Amdahl I

Tempo de execução após melhoria = (tempo de execução afetado / quanto melhorou) + tempo de execução não-afetado

Exemplo:

programa executa em 100s, multiplicações consomem 80% do tempo total. Quanto devo melhorar o circuito multiplicador se quero tempo total em 20s ?

$$20 = 80/n + 20$$

Idem se quero tempo total em 40s ?

$$40 = 80/n + 20$$

IIEPR Dento de Informática 18

Lei de Amdahl II

$$\begin{array}{ll} \mathsf{Ganho_{total}} & = & \frac{\mathsf{Tempo}_{\mathsf{orig}}}{\mathsf{Tempo}_{\mathsf{melhor}}} \\ \\ & = & \frac{1}{(1 - \mathsf{Frac}_{\mathsf{melhor}}) + (\mathsf{Frac}_{\mathsf{melhor}} \slash \mathsf{Ganho}_{\mathsf{melhor}})} \end{array}$$

TIEPR Panto de Informática 10

ci212 — desempenho 2007-1

Exemplo

programa executa em 100s, multiplicações consomem 80% do tempo total. Ao reduzir o tempo de execução do circuito multiplicador para a metade, qual será o ganho total de velocidade ?

$$\begin{array}{ll} \mathsf{Ganho}_{\mathsf{total}} \; = \; \frac{1}{(1-0.80) + \frac{0.80}{1/0.50}} \\ \\ & = \; \frac{1}{0.20 + 0.80 * 0.50} \\ \\ & = \; \frac{1}{0.60} \end{array}$$

IIEPR Danto de Informática 20