Détection de collisions Géométrie algorithmique - INFO-F-420

Tim Lenertz

ULB, MA1 INFO

22 avril 2014

- 1 Introduction
 - Bounding boxes
 - Subdivision d'espace
 - Polygones convexes
- 2 Intersection droite-polygone convexe
 - Fonction unimodale
 - Fonction bimodale
 - Bimodalité sur polygone convexe
 - Algorithme IGL
- 3 Intersection de deux polygones convexes
 - Généralisations
 - Algorithme IGG
- 4 Distance minimale de deux polygones convexes
 - Algorithme d'élimination binaire

Introduction

- Espace 2D/3D avec objets géométriques animés
- Détecter collisions de façon dynamique
- Ex. simulations physiques, jeux video, robotique, ...
- Temps réel → Algorithmes efficaces
- Calcul d'intersection, distance entre objets
- Structure de données des objets
- Subdivision de l'espace

A posteriori

- Faire avancer simulation
- Intersection de produit
- $lue{}$ ightarrow Corriger, traitement de collision
- ex. appliques lois cinétiques

A priori

- Prédire collisions
- Intersection ne se produisent jamais
- Calcul de temps/point d'inpact futur
- ex. controlleur système réel

Bounding boxes

- Enveloppe simple autour d'objet
- ex. rectangle, sphère, polygone convexe
- Permet exclure collision en O(1)

Subdivision d'espace

- Scène complexe avec bcp d'objets
- Peu de collisions possibles ($\ll n^2$)
- Regrouper objets proches / collisions potentielles
- Exclure majorité des tests

Grille uniforme

- Cellules carrées/cubiques de ême taille
- Enregistrer objets/cellule
- Tester seulement ds même cellule
- Bonne performance si objets distribués uniformement

Grille uniforme (2)

- Clustering
- Cellules trop grandes/petites
- Dégénère vers $O(n^2)$

Bounding Volume Hierarchy

- Regrouper objets dans arbre (dynamique)
- Tester d'abord *bounding boxes* des groupements
- Peut atteindre $O(\log n)$

Autres optimisations

- Quadtree/Octree
- Binary Space Partition
- View Frustum Culling
- ...

Introduction

- Traité ici : polygones convexes (2D)
- Algorithmes: intersection, distance minimale
- \bullet en $O(\log n)$

Fonction unimodale

Fonction unimodale

- Fonction réelle sur entiers $f: \{1, 2, ..., n\} \rightarrow \mathbb{R}$
- Existe entire $m \in [1, n]$
- f strictement \nearrow (\searrow) en [1, m] et str. \searrow (\nearrow) en [m+1, n]
- Exemple:

Fonction unimodale

Trouver maximum et minimum

- Comparer f(1) et f(2), pour déterminer si $\nearrow \searrow$ ou $\searrow \nearrow$
- $\nearrow \searrow$: Minimum = min{f(1), f(n)}, Maximum = m
- \nearrow : Maximum = max{f(1), f(n)}, Minimum = m
- Recherche dichotomique : Trouver point où signe de f(i+1) f(i) change
- Complexité logarithmique $O(\log n)$

Fonction bimodale

- Décalage circulaire d'une fonction unimodale
- Il existe $r \in [1, n]$ tel que f(r), f(r+1), ..., f(n), f(1), f(2), ..., f(r-1) est unimodale
- Deux extréma à l'intérieur
- Soit $\nearrow \searrow \nearrow$ et f(1) > f(n), ou $\searrow \nearrow \searrow$ et f(1) < f(n)

Fonction bimodale

Trouver maximum et minimum

- Pour le cas f(1) < f(n) et $\nearrow \nearrow$:
- Si f(2) < (1):
 - Soit T(x) droite de (1, f(1)) à (n, f(n)) (\nearrow)
 - Soit $g(x) = \min\{T(x), f(x)\}$
 - \blacksquare g est unimodale, min $f = \min g$
 - max f dans séq. unimodale f(m+1), f(m+2), ..., f(n)
 - Donc on trouve min et max en $O(\log n)$
- Si f(2) > f(1) : f(1) est minimum, maximum est dans f(2)...f(n) (unimodal)

f en vert, g en vert+ble \mathfrak{u}_{-} , \mathfrak{g} , \mathfrak{g} , \mathfrak{g} , \mathfrak{g}

Distances orientées

- Soit *P* polygone convexe
- $\{p_1, p_2, ..., p_n\}$ points en sens horlogique
- $d(p_i, L) = \text{distance}$ orthogonale de p_i à L
- Distance orientée h(p_i, L, v):
 - $= d(p_i, L)$ si p_i et v sur même côté de P
 - $\blacksquare = -d(p_i)$ sinon
- $h(i) = h(p_i, L, v)$ bimodale

Démonstration bimodalité de h

- Soit p_k point qui minimise h
- Montrer que f(k), f(k+1), ..., f(k-1) est unimodale (indices modulo n):
 - r vecteur directeur de L (avec $\angle(r, p_i p_{i+1}) < \pi$
 - $h(i+1) = h(i) + |p_i p_{i+1}| \sin a_i$
 - $a_{i+1} = a_i b_{i+1}$
 - $b_i < \pi$ car P est convexe
 - $\sum b_i = 2\pi$
 - \blacksquare sin a_k , sin a_{k+1} , ... sin $_{k-1}$ positive, puis négative
 - Donc f(k), f(k+1), ..., f(k-1)unimodale

Algorithme IGL

- Trouver points $P \cap L$ en temps logarithmique
- Utiliser $h(p_i, L, p_1)$ bimodale
- Soit p_k minimum de h
- Si h(k) > 0:
 - Tous les points sur même côté de *P*
 - (= côté de *p*₁)
 - donc pas d'intersection
- Si h(k) = 0:
 - p_k est unique point d'intersection
 - Autres points tous sur même côté

Algorithme IGL (2)

- Si h(k) < 0:
 - 2 points d'intersection
 - Sur segments $p_i p_{i+1}$ pour lesquels $h(i) \times h(i+1) < 0$
 - Recherche dichotomique sur séq. monotones h(k), h(k+1), ..., h(n) et h(1), h(2), ..., h(k)
 - $(p_1 \text{ côt\'e oppos\'e de } p_k)$
 - Calculer $p_i p_{i+1} \cap L$
- Donc points d'intersection trouvés en $O(\log n)$ □

Démo

Généralisations

- Généralisation de l'algo précédent
- Sur objets convexes 2D et 3D
- Temps logarithmiques
- On intersecte l'intérieur des objets
- Complexités : droite-droite O(1)droite-polygone $O(\log n)$ droite-plan O(1)droite-polyhédron $O(\log^2 n)$ polygone-polygone $O(\log n)$ polygone-plan $O(\log n)$ polygone-polyhédron $O(\log^2 n)$ plan-plan O(1)plan-polyhédron $O(\log^2 n)$ polyhédron-polyhédron $O(\log^3 n)$

Algorithme IGG

- Reduire à intersection de deux polylignes
- Elimination binaire
- $O(\log(n+m))$

LAlgorithme IGG

Phase initiale (1)

- $q \in Q$ quelconque
- $a, b = p_1 q \cap Q$ (algorithme IGL)
- Si $p_1 \in ab$, intersection en p_1

LAlgorithme IGG

Phase initiale (2)

- Déduire polylignes L_v et L_w
- Intersections $C_1 \cap Q$ + points de Q (même pour P)
- Possible en O(log n) par IGL
- P et Q intersectent ssi L_V et L_W intersectent

Démo

LAlgorithme IGG

Phase itérative

- Soit $n = |L_v|, m = |L_w|$
- Tant que n, m > 5 (sinon, différent algorithme)
- $i = \lfloor \frac{n}{2} \rfloor$ et $j = \lfloor \frac{m}{2} \rfloor$
- $F, G = v_i v_{i+1} \cap AYBX$ (avec $v_{i+1} \in v_i F$)
- $E, H = w_j v_{j+1} \cap AYBX$ (avec $w_{j+1} \in v_j H$)
- Eliminer à chaque étape moitié de L_v et/ou L_w

Détail algorithme

- \blacksquare Segment d de longueur minimale qui relie P et Q
- Détection collisions à priori
- Algorithme en $O(\log n + \log m)$
- 3 cas possibles : point-point, point-droite, droite-droite
- droite-droite : parallèles, = point-droite

Preuve 3 cas possibles

- Soit d = pq
- p, q doivent être sur bord des polygones
- p et/ou q doit être coin de polygone
- Eliminer cas où p et q sont sur segments :
 - Soit $p \in e_p$ et $q \in a_q$
 - Alors $e_p \parallel e_q$
 - \exists projection orthogonale de point de $e_p(e_a)$ sur $e_a(e_p)$

- Distance minimale de deux polygones convexes
 - Algorithme d'élimination binaire

Phase initiale

- Déterminer C_1 et C_2
- Polylignes L_p et L_q dans P et Q
- \blacksquare d doit relier L_p et L_q

- Distance minimale de deux polygones convexes
 - Algorithme d'élimination binaire

Phase itérative

- \bullet $i = \lfloor \frac{n}{2} \rfloor$ et $j = \lfloor \frac{m}{2} \rfloor$, $m = p_i q_j$
- $\alpha' + \alpha'' \ge \pi$ et donc $\alpha' \ge \frac{\pi}{2}$ ou $\alpha'' \ge \frac{\pi}{2}$
- $\alpha' + \beta' \le \pi$ implique $\alpha' < \beta''$
- $\alpha' + \beta' > \pi$ ou $\alpha'' + \beta'' > \pi$

☐ Algorithme d'élimination binaire

Phase itérative (2)

- lacksquare Eliminer moitié de L_p et/ou L_q
- Jusqu'à $|L_p|, |L_p| \le 2$
- Distinguer cas selon $|L_p|$ et $|L_p|$

Algorithme d'élimination binaire

Cas 1 : $|L_p| = 1$

- Si $\beta' \geq \frac{\pi}{2}$: $q_{\mathsf{first}} \leftarrow q_j$
- Si $\beta'' \geq \frac{\pi}{2}$: $q_{\mathsf{last}} \leftarrow q_j$
- $|L_q| = 1$ est symétrique
- Au moins une condition doit être vraie
- ← On élimine tjs moitié

Algorithme d'élimination binaire

Cas 2 :
$$|L_p| = 2$$

Si m sort de P:

1 Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_j$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
: $q_{last} \leftarrow q_j$

3 ...

Algorithme d'élimination binaire

Cas 2 :
$$|L_p| = 2$$

Si m sort de P:

I Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_j$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
: $q_{last} \leftarrow q_j$

3 ...

└ Algorithme d'élimination binaire

Cas 2 : $|L_p| = 2$

Si m sort de P:

1 Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_j$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
: $q_{last} \leftarrow q_j$

3

Algorithme d'élimination binaire

Cas 2 :
$$|L_p| = 2$$

Si m sort de P:

I Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_j$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
: $q_{last} \leftarrow q_j$

3 ...

LAlgorithme d'élimination binaire

Cas 2 :
$$|L_p| = 2$$
 (2)

Si m sort de P:

I Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_j$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
: $q_{\text{last}} \leftarrow q_j$:

3 Si
$$\alpha' < \beta'' < \frac{\pi}{2}$$
:

Si proj orth q

- Si proj orth q_j sur p_1p_2 existe : $q_{\text{last}} \leftarrow q_j$
- Sinon : $p_{\mathsf{last}} \leftarrow p_1$

LAlgorithme d'élimination binaire

Cas 2 :
$$|L_p| = 2$$
 (2)

Si m sort de P:

I Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_j$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
: $q_{\text{last}} \leftarrow q_j$:

3 Si
$$\alpha' < \beta'' < \frac{\pi}{2}$$
 :

- Si proj orth q_j sur p_1p_2 existe : $q_{last} \leftarrow q_j$
- Sinon : $p_{last} \leftarrow p_1$

LAlgorithme d'élimination binaire

Cas 2 :
$$|L_p| = 2$$
 (2)

Si m sort de P:

I Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$, $p_{\text{first}} \leftarrow p_2$
Si $\beta' \ge \frac{\pi}{2}$, $q_{\text{first}} \leftarrow q_i$

2 Si
$$\beta'' \geq \frac{\pi}{2}$$
 : $q_{\text{last}} \leftarrow q_j$:

$$3 \text{ Si } \alpha' < \beta'' < \frac{\pi}{2}$$
 :

- Si proj orth q_j sur p_1p_2 existe : $q_{\text{last}} \leftarrow q_j$
- Sinon : $p_{last} \leftarrow p_1$

LAlgorithme d'élimination binaire

Cas 2 : $|L_p| = 2$ (3)

Si m entre dans P:

lacksquare $p_{\mathsf{last}} \leftarrow p_1$

■ Si $\beta' \geq \pi$: $q_{\mathsf{first}} \leftarrow q_j$

■ Si $\beta'' \ge \pi : q_{\mathsf{last}} \leftarrow q_j$

Algorithme d'élimination binaire

Cas 3 : $|L_p| \ge 3$ et $|L_q| \ge 3$

Si m sort de P et de Q:

I Si
$$\alpha' + \beta' > \pi$$
:
Si $\alpha' \ge \frac{\pi}{2}$: $p_{\text{first}} \leftarrow p_i$
Si $\beta' \ge \frac{\pi}{2}$: $q_{\text{first}} \leftarrow q_i$

2 Si
$$\alpha'' + \beta'' > \pi$$
:
Si $\alpha'' \ge \frac{\pi}{2} : p_{last} \leftarrow p_i$
Si $\beta'' \ge \frac{\pi}{2} : q_{last} \leftarrow q_j$

Si m entre dans P ou Q: similaire au cas précédent

