

Определение

OpenMP (Open Multi-Processing)

Стандарт, определяющий набор директив компилятора, библиотечных процедур и переменных среды окружения для создания многопоточных программ.

Структура OpenMP программы

- Программа
 представляется в виде
 последовательных
 участков кода и
 параллельных секций
- Каждый поток имеет номер: 0, 1, 2, ...
- Главный поток (master) имеет номер 0

Библиотечные процедуры

- int omp_get_thread_num()
- int omp_get_num_threads()
- void omp_set_num_threads(int n)
- double omp_get_wtime()

Директивы OpenMP

#pragma omp <директива> [опция1] [опция2]...

- Parallel;
- For;

Директива Parallel

- if
- num_threads
- shared

```
#pragma omp parallel if (var)
{
    /* Код выполняется потоками, если var = true */
}
```


Директива Parallel

- if
- num_threads
- shared

```
#pragma omp parallel num_threads(n)
{
    /* Создается п потоков */
}
```


Директива Parallel

- if
- num_threads
- shared

Директива For

- private
- reduction
- nowait

```
#pragma omp parallel shared(A, B, C) private(i, n)
{
    n = omp_get_thread_num();

    #pragma omp for
    for (i = 0; i < 10; i++)
    {
        C[i] = A[i] + B[i];
        printf("Нить \%d сложила элементы с номером %d\n", n, i);
    }
}</pre>
```


Директива For

- private
- reduction
- nowait

```
int i, s = 0;
#pragma omp parallel for reduction(+ : s)
for(i = 0; i < 100; ++i)
    s = i;
printf("Sum: %d\n", s);</pre>
```


Директива For

- private
- reduction
- nowait

Компилирование программ

Компиляция выполняется командами с добавление параметра -openmp:

- mpicc -openmp example.c
- mpicxx -openmp example.cxx

Запуск задач на кластере

В интерактивном режиме:

srun -n <число процессов> -t <время> <имя_программы >

В пакетном режиме:

sbatch -n <число процессов> **-t <**время> <имя_скрипта>

Скрипт

Создание скрипта run.sh #!/bin/sh #SBATCH -n 1 -t 1 —cpus-per-task 4 export OMP_NUM_THREADS=4 srun ./a.out

Запуск скрипта sbatch run.sh

Пример

```
float vectorSumm(float*A, float*V,float* C,int n) {
   double start = omp_get_wtime();
   for(int i = 0; i < n; i++)
       C[i] = A[i] + V[i];
   return (float)(omp_get_wtime()-start);
}</pre>
```

```
float vectorSummOpenMP(float*A, float*V,float* C,int n) {
   int i;
   double start = omp_get_wtime();
   #pragma omp parallel default(none) shared(A,V,C,n) private(i)
   {
        #pragma omp for
        for(i = 0; i < n; i++)
            C[i] = A[i] + V[i];
   }
   return (float)(omp_get_wtime()-start);
}</pre>
```


Результаты

T_1, c	T_2, c	T_4 , c	S_2	E ₂ , %	S_4	E_4 , %
0.26	0.14	0.07	1.86	93	3.7	92

