PROJECT SCOPE DOCUMENT

Project Name	Smart Agriculture system based on IOT				
	To implement a device based on IoT that can monitor Soil Moisture, Humidity				
Project Objective	and Temperature to grow and yield a good crop and to turn the Light and				
	water-pump ON/OFF remotely using cloud.				
Project Summary	Agricultural lands are the heart of any country for economic development.				
	Thus, it is the primary duty of the Government to preserve and protect the				
	fields by any means. Science and new technologies have evolved but nothing				
	could replace the dependency on agricultural farm lands. New technologies				
	have been proposed for the betterment of the farmers, so that they can get a				
	better result with more accuracy and less effort but with some limitations.				
	India holds the 2nd position in the farm output. Over 70% of the rural				
	households depend on agriculture as their principal means of livelihood. But				
	the pressure on farms increased due to increase in population. This leads to				
	more consumption of non- renewable energy sources.				
	Keeping in mind the practical problems faced by the farmers, With the				
	collaboration of SMARTBRIDGE(through RSIP-2020), I am trying to put				
	forward an alternative agricultural model for the betterment of the next				
	generation. We are going to use various modules like soil moisture sensor, pH				
	sensor, humidity sensor, temperature sensor, electronic scarecrow (PIR				
	sensor) under a single agriculture system to make it smarter. We ge the				
	information about various parameters that effect the crop production through				
	these sensors and make decisions to monitor the crop production even from				
	distant places using cloud technology. We also incorporate remote monitoring				
	of the system, control of water pump through cell phones, keeping track of				
	more than one field and assessing the records of each field for future study,				
	under a single system. As it may be a smart move towards the next generation				
	agriculture, thus it can be called as 'Smart Agriculture System based on IOT'.				

Project Scope	Farming has wide scope of applications when it comes to the IOT. The		
	Imminent use of technology has positively managed to minimize the risk and		
	waste experienced so far by the traditional farming methods. Farmers can now		
	diagnose the areas detecting the fertility and conditions to carefully predict the		
	possibility of the future yields.		
	The Asia-pacific region presents an immense scope for market		
	development, owing to the increasing urban population size, growing market		
	penetration of internet in farm management, and favorable government		
	investments.		
	Functional Requirements:		
	► Have a IBM cloud account		
	 Node-red And Python IDE should be installed 		
	► Have a device in IBM IoTPlatform		
	► Able to connect IoT simulator to IoT platform		
	 Able to configure Node-Red to to get data from IoT Simulator 		
	Have a web applicationAPI interface to IoT Simulator		
	Technical Requirements:		
	► Basic knowledge of Python 3		
Project Requirements	 Knowledge of IBM cloud computing 		
, ,	Programming Node-Red		
	► Usage of IBM Watson IoT Simulator		
	 Creating a Web Application and API 		
	Software Requirements:		
	► IBM Cloud Platform		
	► Python IDE		
	► Node-Red		
	IBM Watson IoT SimulatorOpenWeather API		
	► Slack		
	► Github acount		

Project Deliverables	 The Farmer will be able to monitor various parameters from a remote location. Controlling of pumping of water can be done even from a mobile. The famer can easily reap the crop at the right time and plan for the next crop. This is cost effective and can be implemented easily. It eases the work in any season for a farmer.
Project Team	M Teja Babu

Project Schedule:

S.No.	Date	Task Description		
01.	29-05-2020(fri)	Get the basic idea on the dashboard of smartbridge.		
02.	30-05-2020(sat)	Install and explore the Slack channel.		
03.	31-05-2020(sun)	Interact with the team members and the guide on slack		
		channel.Discuss about the project.		
04.	01-06-2020(mon)	Go through the discussion and the introducion video.		
05.	02-06-2020(tue)	Explore about the kickoff template and start writing the scope		
		of the project.		
06.	03-06-2020(wed)	Identify the various requirements of the project.		
07.	04-06-2020(thu)	complete the project kickoff document.		
08.	05-06-2020(fri)	set up the development environment, create the github		
		account.		
09.	06-06-2020(sat)	Explore the Github.		
10.	07-06-2020(sun)	Create IBM cloud account and Install the node-red locally.		
11.	08-06-2020(mon)	Explore the IBM watson IOT platform		
12.	09-06-2020(tue)	Install the Python IDE and understand it's fundamentals and		
		working.		
13.	10-06-2020(wed)	Connect the IOT simulaor to watson IOT platform.		
14.	11-06-2020(thu)	Explore the IOT simulator while connecting.		
15.	12-06-2020(fri)	Install the required nodes in the node-red.		
16.	13-06-2020(sat)	Connect the IBM IOT device to get the simulator data.		
17.	14-06-2020(sun)	Create an account in open weather API and Explore it.		
18.	15-06-2020(mon)	Configure the open weather API platform.		
19.	16-06-2020(tue)	Configure the node-red to get the weather forecasting data.		
20.	17-06-2020(wed)	Configure the nodes to display the weather parameters		
21.	18-06-2020(thu)	Configure the nodes for creating buttons and sending		
		commands to IOT platform.		
22.	19-06-2020(fri)	Write a python to subscribe to IBM IOT platform and get the		
		commands.		
23.	20-06-2020(sat)	Complete the entire working of project from the initial step.		
24.	21-06-2020(sun)	Take out the different inputs and observe the output.		

25.	22-06-2020(mon)	Contact the guide for the queries.
26.	23-06-2020(tue)	Start writing the report. Collect the relevant data.
27.	24-06-2020(wed)	Complete the survey and analysis.
28.	25-06-2020(thu)	complete the report writing and editing.
29.	26-06-2020(fri)	Review the report and submit. Complete the Github uploads.