Il principio di Fermat

Formulato inizialmente da P. Fermat nel 1662, il principio di Fermat (o principio di minor tempo) afferma che

Per andare da un punto a un altro, un raggio di luce segue il percorso che richiede il tempo più breve

Alcune conseguenze del principio di Fermat

1. In uno stesso mezzo i raggi di luce si propagano in linea retta

Conseguenze del principio di Fermat

2. Legge della riflessione della luce: $\theta_i = \theta_r$

3. Legge di Snell per la rifrazione della luce: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Diffrazione della luce

Quando un fascio luce passa attraverso una fenditura di dimensioni molto maggiori di λ , la direzione dei raggi non cambia.

Quando invece la fenditura ha dimensioni dell'ordine di $\lambda \sim 10^{-7}$ m, vale il principio di Huygens:

La fenditura agisce come una sorgente di onde luminose che si propagano in direzione radiale

Esperimento di Young (1801)

Domanda. Quale figura appare sullo schermo rilevatore? Risposta:

Interferenza costruttiva e distruttiva

Supponiamo che la distanza d tra le fenditure sia molto minore di L

$$k = \frac{\Delta \ell}{\lambda} = \frac{d \sin \theta}{\lambda}$$

► Le frange luminose (prodotte dall'interferenza costruttiva) si ottengono in corrispondenza dei valori

$$k = 0, 1, 2, \dots$$

Le frange scure (interferenza distruttiva) corrispondono a

$$k = 0.5, 1.5, 2.5, \dots$$

Approssimazione per angoli piccoli

La relazione $\Delta \ell = d \sin \theta / \lambda$ vale soltanto se d è molto minore di L oppure, equivalentemente, se l'angolo θ è sufficientemente piccolo.

Sotto tale ipotesi:

- ightharpoonup vale l'approssimazione sin heta pprox tan heta
- ▶ la distanza x di un punto sullo schermo rispetto al centro è

$$x = L \tan \theta$$

 $\approx L \sin \theta = k \cdot \frac{L\lambda}{d}$

la distanza Δx tra due frange luminose (o scure) consecutive sullo schermo è costante e vale

$$\Delta x = \frac{L\lambda}{d}$$