Use the clustering methodology to segment customers into groups: Use the following clustering algorithms:

- 1. K means
- 2. Hierarchical
- Identify the right number of customer segments.
- Provide the number of customers who are highly valued.
- Identify the clustering algorithm that gives maximum accuracy and explains robust clusters.
- If the number of observations is loaded in one of the clusters, break down that cluster further using the clustering algorithm. [hint: Here loaded means if any cluster has more number of data points as compared to other clusters then split that clusters by increasing the number of clusters and observe, compare the results with previous results.]

Here's the dataset: https://github.com/Simplilearn-Edu/Data-Science-with-R.git

Solution:

Since we want customers with high price purchases we calculate sum(Unit Price* Quantity) for each customer

```
library(dplyr)
library(cluster)

sale_info<-read.csv("D:\\Data_Analysis_Simplilearn_materials\\Data_Science_with_R\\Ecommerce.csv")

customer_sales<-sale_info%>%group_by(CustomerID)%>%summarise(total=sum(UnitPrice*Quantity))
customer_sales<-na.omit(customer_sales)
head(customer_sales)</pre>
```

```
> library(dplyr)
 > library(cluster)
 > sale_info<-read.csv("D:\\Data_Analysis_Simplilearn_materials\\Data_Science_with_R\\Ecommerce.csv")
 > customer_sales<-sale_info%>%group_by(CustomerID)%>%summarise(total=sum(UnitPrice*Quantity))
 > customer_sales<-na.omit(customer_sales)
 > head(customer_sales)
 # A tibble: 6 x 2
  CustomerID total
         <int> <db1>
         <u>12</u>346
                   0
         <u>12</u>347 <u>4</u>310
         <u>12</u>348 <u>1</u>797.
 4
         <u>12</u>349 <u>1</u>758.
         12350 334.
         <u>12</u>352 <u>1</u>545.
 6
```

K-Means Clustering

Now we perform K-means clustering on sum(Price*Quantity)

Let's find suitable number of clusters

```
10 #K-means
11
12 set.seed(101)
13
14 + for(i in 2:12){
      temp.kmean<-kmeans(customer_sales$total,centers=i,nstart=10)
cat('For ',i, ' clusters total SSE ',temp.kmean$tot.withinss,'\n')</pre>
15
16
       if(i==2){}
17+
18
         sse<-c(temp.kmean$tot.withinss)
19 -
20+
       else{
21
22 *
          sse<-c(sse,c(temp.kmean$tot.withinss))</pre>
23 4 }
24
25 plot(2:12,sse,type='l')
26
```


Elbow bend is observed at K=3. We choose K=3.

```
27 K=3;
28 cust.kmean<-kmeans(customer_sales$total,centers=K,nstart=10)
29 c_sale_kmean<-customer_sales
30 clusplot(customer_sales[2],cust.kmean$cluster,color = T,shade=T,labels=0,lines=0)
31 c_sale_kmean<-cbind(c_sale_kmean,k_mean_cluster=cust.kmean$cluster)
32 View(c_sale_kmean)
33 View(customer_sales)
34 c_sale_kmean%>%filter(k_mean_cluster==2)
35 c_sale_kmean%>%filter(k_mean_cluster==3)
4 head(c_sale_kmean%>%filter(k_mean_cluster==1))
```

CLUSPLOT(customer_sales[2])

These two components explain 100 % of the point variability.

Cluster 3 has very high value customers, Cluster 2 has reasonably high value customers and cluster 1 has low value customers. We are interested in Cluster 3 and Cluster 2

Cluster 3: Three premium level customers

```
> c_sale_kmean%>%filter(k_mean_cluster==3)
CustomerID total k_mean_cluster
1 14646 279489.0 3
2 17450 187482.2 3
3 18102 256438.5 3
```

Cluster 2: Reasonably high value customers (30 in number)

	12415 12748 12931 13081 13089 13098 13408 13694 13798 14088		2 2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 10 11	12415 12748 12931 13081 13089 13098 13408 13694 13798 14088	123725.45 29072.10 33462.81 27964.48 57385.88 28658.88 27487.41 62653.10 36351.42	2 2 2 2 2 2 2 2
2 3 4 5 6 7 8 9 10 11 12	12748 12931 13081 13089 13098 13408 13694 13798 14088	29072.10 33462.81 27964.48 57385.88 28658.88 27487.41 62653.10 36351.42	2 2 2 2 2 2 2
3 4 5 6 7 8 9 10 11	12931 13081 13089 13098 13408 13694 13798 14088	33462.81 27964.48 57385.88 28658.88 27487.41 62653.10 36351.42	2 2 2 2 2 2
4 5 6 7 8 9 10 11	13081 13089 13098 13408 13694 13798 14088	27964.48 57385.88 28658.88 27487.41 62653.10 36351.42	2 2 2 2 2
5 6 7 8 9 10 11	13089 13098 13408 13694 13798 14088	57385.88 28658.88 27487.41 62653.10 36351.42	2 2 2 2
6 7 8 9 10 11	13098 13408 13694 13798 14088	28658.88 27487.41 62653.10 36351.42	2 2 2
7 8 9 10 11 12	13408 13694 13798 14088	27487.41 62653.10 36351.42	2 2
8 9 10 11	13694 13798 14088	62653.10 36351.42	2
9 10 11 12	13798 14088	36351.42	
10 11 12	14088		2
11 12		50415 49	
12	14096		
		57120.91	
12		113384.14	
	14298	50862.44	
14		26932.34	
15		132572.62	
16	15061	54228.74	
17	15311	59419.34	
18		51823.72	
19	15838	33350.76	
20	16013	33366.25	
21	16029	50992.61	
22	16333	26626.80	2
23	16422	33805.69	2
24	16684	65892.08	
25	17389	31300.08	2
26	17404	30300.82	2
27	17511	88125.38	2
28	17841	40340.78	2
29	17857	26763.34	
30	17949	52750.84	2

Hierarchical Clustering

```
# Hierarchy

39    clus_h<-dist(customer_sales$total,'euclidian')

40    fitted_hier<-hclust(clus_h,method='ward')

41    c_sale_hier<-customer_sales

42

43    c_sale_hier<-cbind(c_sale_hier,hier_clus=cutree(fitted_hier,3))

44    View(c_sale_hier)

45

46    plot(fitted_hier)

47    head(c_sale_hier%>%filter(hier_clus==2))

48    c_sale_hier%>%filter(hier_clus==3)

49    head(c_sale_hier%>%filter(hier_clus==1))
```


Here cluster 3 are valued customers while cluster 1 and cluster 2 are low valued

			_
			nier_clus==3)
Custo	omerID	total	hier_clus
1	12415	123725.45 29072.10	3
2	12748	29072.10	3
3	1/931	33467.81	- 5
4		27964.48	
5	13089	57385.88	3
6	13098	28658.88	3
7	13408	27487.41	3
8	13694	62653.10	3
9	13777	25748.35	3
10	13798	36351.42	3
11	14088	50415.49	3
12		57120.91	
13		113384.14	
14		50862.44	
15		279489.02	
16		26932.34	
17		132572.62	
		54228.74	
		59419.34	
20		51823.72	
21		33350.76	
22	16013	33366.25	
23	16029	50992.61	
24	16333	26626.80	
25		33805.69	
26	16684	65892.08	
27	17389	31300.08	
28	17404	30300.82	
		187482.17	
30		88125.38	
31	17841	40340.78	
32		26763.34	
33		52750.84	
34		256438.49	3
	-		