NotesSomething

Yi Huang¹

University of Minnesota

¹My Personal Website

Contents

Ι	Caprice	1
	Fall 2018 1.1 Walkway equilibrium	1 1

Τ

Caprice

1 Fall 2018

This is my note for some non-trivial but not systematic problems which involves some interesting physics or maths.

Section 1. Fall 2018

1.1 Walkway equilibrium

Suppose the mass of the objects attached to each end of the rope are m_1 and m_2 , The angles between each segment of the rope, bended by the central object which has mass M, with the horizontal plane are θ and ϕ . The distance between two pulleys is L, and what we want to know is the vertical displacement d of the central object. Thus we can obtaind the equations for d when the system is at equilibrium.

$$L = d(\cot \theta + \cot \phi), \tag{1.1}$$

$$m_1 g \cos \theta = m_2 \cos \phi, \tag{1.2}$$

$$m_1 g \sin \theta + m_2 g \sin \phi = Mg, \tag{1.3}$$

From (1.2), we have $\cos \phi = \frac{m_1}{m_2} \cos \theta$, thus (1.3) can be written as

$$m_1 \sin \theta + m_2 \sqrt{1 - \frac{m_1^2}{m_2^2} (1 - \sin^2 \theta)} = M,$$
 (1.4)

such that we can solve for $\sin \theta$ and $\cos \theta$

$$\sin \theta = \frac{M^2 + m_1^2 - m_2^2}{2Mm_1},\tag{1.5}$$

$$\cos \theta = \sqrt{1 - \sin^2 \theta} = \frac{1}{2Mm_1} \sqrt{[(m_1 + m_2)^2 - M^2][M^2 - (m_1 - m_2)^2]}, \quad (1.6)$$

$$\cot \theta = \frac{\sqrt{[(m_1 + m_2)^2 - M^2][M^2 - (m_1 - m_2)^2]}}{M^2 + m_1^2 - m_2^2},$$
(1.7)

together with $\sin \phi$ and $\cos \phi$

$$\cos \phi = \frac{m_1}{m_2} \cos \theta = \frac{1}{2Mm_2} \sqrt{[(m_1 + m_2)^2 - M^2][M^2 - (m_1 - m_2)^2]},$$
 (1.8)

$$\sin \phi = \sqrt{1 - \cos^2 \phi} = \frac{M^2 - m_1^2 + m_2^2}{2Mm_2},\tag{1.9}$$

$$\cot \phi = \frac{\sqrt{[(m_1 + m_2)^2 - M^2][M^2 - (m_1 - m_2)^2]}}{M^2 - m_1^2 + m_2^2}.$$
 (1.10)

Therefore we can plug into (1.1) and obtain the expression of d as follows

$$d = \frac{L[M^4 - (m_1^2 - m_2^2)^2]}{2M^2\sqrt{[(m_1 + m_2)^2 - M^2][M^2 - (m_1 - m_2)^2]}}.$$
(1.11)

Fall 2018 Walkway equilibrium

2

The equilibrium condition in this case is

$$|m_1 - m_2| < M < (m_1 + m_2). (1.12)$$

such that the argument under the square root is positive. Also we can easily check that if $m_1=m_2=m$ then this result reduces to our former result

$$d = \frac{LM}{2\sqrt{4m^2 - M^2}}. (1.13)$$