邏輯設計實驗

Lab14

有限狀態機

班級:資訊一甲

學號: D1109023

姓名:楊孟憲

一、摘要

- 1. 有限狀態機設計步驟
 - (1) 觀察狀態圖
 - (2) 依據狀態圖,繪製狀態表
 - (3) 狀態簡化
 - (4) 狀態變數指定
 - (5) 配合正反器之激勵表,推導轉態表
 - (6) 利用卡諾圖化簡正反器輸入的最簡布林代數
 - (7) 根據布林代數繪出序向邏輯電路 狀態表

Q ₁ (t)	Q ₂ (t)	Q ₁ (t+1)	Q ₂ (t+1)	D_1	D_2
0	0	1	0	1	0
0	1	0	0	0	0
1	0	1	1	1	1
1	1	0	1	0	1

2. 實驗

(1) 使用 3 個 D 正反器設計一個學號產生器

(2) 使用 3 個 D 正反器設計一個順時鐘閃爍的 跑馬燈

二、實驗結果

實驗一 1em 使用 3 個 D 正反器設計一個學號產生器

- CLK 頻率為 1 Hz
- 本計數器為 Moore Machine

電路圖

實驗二 使用 3 個 D 正反器設計一個順時鐘閃爍的跑馬燈

- CLK 頻率為 1 Hz
- Start=0, 停止閃爍, Start=1, 開始閃爍 電路圖

三 問題討論心得

本次實驗是本最後一個實驗,也是我覺得最好玩的一次實驗。在上課之前對於本次的實驗想法截然不同,努力地找出規律並設計電路,但是經過老師講解的觀察狀態圖,在設計電路的技巧讓我大開眼界。這次實驗除了使用本學期教的 D-flip-flop 正反器,也需要透過觀察狀態圖並實際操作 k-map 後得到邏輯電路圖,接著再把電路接出,而這次的兩個實驗又有除頻器,讓我更加了解除頻器的操作原裡。