

MATLAB Aerospace & Defense Technical Briefing

Modeling in the Stateflow® Environment to Support
Launch Vehicle Verification Testing for Mission and
Fault Management Algorithms in the NASA Space
Launch System*

Luis Trevino, Ph.D.

Jacobs ESSA Group – Marshall Space Flight Center

Mission & Fault Management (M&FM), EV43

Spacecraft and Vehicle Systems Department

04/27/2017

Huntsville, AL

** AIAA Paper previously presented at SPACE 2016, Long Beach CA*

MATLAB Aerospace & Defense Technical Briefing

AIAA Paper Co-Authors

- **Peter Berg**

SLS State Flow Lead, M&FM Team
Stinger Ghaffarian Technologies, Inc.
Intelligent Systems Division
NASA Ames Research Center

- **Dwight England**

Chief, Integrated Systems Health Management &
Automation Branch, EV43
NASA Marshall Space Flight Center

- **Stephen B. Johnson, Ph.D.**

Analysis Lead, M&FM Team
Dependable System Technologies, LLC
Jacobs ESSSA Group
University of Colorado, Colorado Springs

MATLAB Aerospace & Defense Technical Briefing

Mission & Fault Management - SLS

- Fault Management Software
 - Error Prone
 - Requirements and Design Phase
 - Other Factors
- Model Based Systems Engineering
 - Rich graphical constructs
 - Deterministic
 - Standards
- Previous NASA Stateflow® Applications
 - LADEE
 - Ares – Orion Command Abort
 - NESC – Toyota, Commercial Crew Program

MATLAB Aerospace & Defense Technical Briefing

State Analysis Model (SAM)

MATLAB Aerospace & Defense Technical Briefing

MATLAB Stateflow

MATLAB Aerospace & Defense Technical Briefing

UML Modeling and Stateflow for M&FM

Hybrid SysML - UML

Stateflow

MATLAB Aerospace & Defense Technical Briefing

SAM Testing

- Script Driven → Ground Operations Timeline → Nominal Sequence Generator → Fault Generator
- Rule Checker → Analysis Report Generator → Timeline & State Report scripts → SAM Test Report
- User GUI
- Test Cases: Nominal, Off-Nominal, VMET, MCaRT, SIL
- TRAC Trouble Ticket System Summaries

State
Flow
Env.

MATLAB Aerospace & Defense Technical Briefing

User GUI

MATLAB Aerospace & Defense Technical Briefing

VMET, MCaRT, SIL Test Cases for the SAM

Test Case ID	Test Objective	Success Criteria	Duration / Fault Injection							
MPS_Helium	<p>Test failure of helium isolation valve</p> <p>"EVT [■]_HheliumValve [■]_Redundancy_Reduced" becomes "True" at Mission_Elapsed_Time = - [■] sec</p> <p>"EVT [■]_Halt" becomes "True" at Mission_Elapsed_Time = - [■] sec</p>	<p>"EVT [■]_HheliumValve [■]_Redundancy_Reduced" becomes "True" at Mission_Elapsed_Time = - [■] sec to - [■] sec</p> <p>Fault injected at Mission_Elapsed_Time = - [■] sec by setting Helium [■]_Energy = [■] & detected [■] cycles later at - [■] sec and [■] Halt set at Autonomous_Launch_Sequence at - [■] sec</p>								
Element	System	Response	Monitored Condition Name	Monitored Condition Description	Start Monitoring	Stop Monitoring	Units	Lower Trigger Limit (TBD)	Upper Trigger Limit (TBD)	Number of Indicators Needed to Generate Response
Booster	Igniter	Safing	DualBoostersIgnitionFailure	Both Boosters fail to ignite after T- [■] msec is reached	T- [■] msec	T+ [■] msec	psia	[■]	[■]	2 of 2

MATLAB Aerospace & Defense Technical Briefing

Findings: VMET & SAM

MCaRT & SIL

19% of MCaRT entries tested
85.5% passed

45% of SIL test cases executed
27% passed

Finding Types

Logic Interpretation	30%
Editorials	55%
Logic Update	15%

MATLAB Aerospace & Defense Technical Briefing

SAM Forward Directions / Summaries

- Interactive Failures
- Prelaunch procedures → OMRs → LCCs → Rule Checker
- Hazardous State Identification
- Post Flight Analysis
- Other: EUS, crew habitat, payloads, proximity ops, rovers, robotic deep space missions, EDL ops
- MBE → M&FM Algorithms → FSW → Testing
- Challenges
- Questions