WILLIAM BAUM

DESIGN OF EXPERIMENTS & MULTIPLE RESPONSE OPTIMIZATION

FATHER OF DOE

SIR RONALD FISCHER

WHY DESIGN OF EXPERIMENTS?

- Design of Experiments [DOE] provides the optimal mathematical solutions to conducting univariate and multivariate prospective (forward-looking) testing.
- One Factor At a Time [OFAT] modeling, by comparison, is extremely inefficient compared with many DOE plans.
- OFAT models can be misleading, because they do not account for common interaction or polynomial effects.
- But how does DOE work its magic?

DESIGN OF EXPERIMENTS

THE UNDERLYING STRUCTURE

ORTHOGONAL DESIGN

- DOE provides optimal efficiency by creating orthogonal, or near-orthogonal designs.
- This allows one to better understand phenomenological causality and leads to better inference than models based solely on observations.

http://www.euclideanspace.com/maths/algebra/matrix/orthogonal/index.htm

- This is because DOE systematically changes multiple input settings, simultaneously, and can model multiple outcomes.
- Designs may be modified to accommodate the difficulty in changing the settings of input factors, and also use covariates.

ORTHOGONAL DESIGN

- DOE provides optimal efficiency by creating orthogonal, or nearorthogonal designs.
- + stands for 'on' or 'True' (boolean) or 'high' (continuous).

		1 Factor Assignment							
		Main Effects		3 Interactions			4		
		Α	В	С	D (A-B)	E (A-C)	F (B-C)	G (A-B-C)	
T e s t s	1		5-	_	+	+	+	_	
	2	+	1.7	-	(A-	-	+	+	
	3	= 200	+	_		+	_	+	
	4	+	+	-	+	-	-	=	
	5		-	+	+	_	_	+	
	6	+	-	+		+	-	_	
	7	=	+	+	-	_	+	=	
	8	+	+	+	+	+	+	+	

Design Of Experiments (DOE)

- is 'off', 'false', 'low'. One can also include mid-points for continuous variables
- Constraints may be added to ensure DOE stays within budget, thereby limiting the number of runs and reassessing which designs are optimal, based on the number of available runs/tests.

MULTIPLE RESPONSE OPTIMIZATION

A BRIEF INTRODUCTION

MULTIPLE RESPONSE OPTIMIZATION

- Why optimize one outcome, when you can do so for multiple outcomes (responses) at once? Seldom is only one outcome important.
- You can do it easily with Multiple Response Optimization [MRO]!
- Uses individual and collective Desirability Functions [DF]:

 - Target (when most desirable outcome falls between Min and Max)
 - Composite (Optimizes all DFs, together, to inform a final decision)
 - https://cran.r-project.org/web/packages/desirability/vignettes/desirability.pdf

DESIGN OF EXPERIMENTS

READING & RESOURCES

RESOURCES

- pyDOE https://pypi.org/project/pyDOE/;
 https://pythonhosted.org/pyDOE/
- It seems that Data Science continues to learn from its older sibling, statistics.
- Data Camp just launched a new course in R to teach DOE https://www.datacamp.com/courses/experimental-design-in-r
- Check out Bradley Jones and his optimal designs, using JMP Discovery Software, by SAS. www.jmp.com
- https://cran.r-project.org/web/packages/desirability/index.html

RECOMMENDED READING

Optimal Design of Experiments: A Case Study Approach;

Peter Goos, Bradley Jones; SAS

- Also...
- For a general survey, the JMP community is awesome. You can access free materials on DOE, here:

https://www.jmp.com/en_us/applications/design-ofexperiments.html

