Theoretische Informatik

Alphabete, Wörter und Sprachen

Alphabete

Ein **Alphabet** Σ ist eine endliche, nichtleere Menge von Symbolen.

Sprachen

Eine **Sprache** L über einem Alphabet Σ ist eine Menge von Wörtern, die aus Symbolen von Σ bestehen. Eine Sprache kann endlich oder unendlich sein. Die leere Sprache wird mit \emptyset bezeichnet.

Endliche Automaten

Deterministische endliche Automaten (DEA)

Ein DEA ist ein 5-Tupel $M = (Q, \Sigma, \delta, q_0, F)$, wobei:

- ullet Q eine endliche Menge von Zuständen ist,
- Σ ein Alphabet ist,
- $\delta: Q \times \Sigma \to Q$ die Übergangsfunktion ist,
- $q_0 \in Q$ der Startzustand ist,
- $F \subseteq Q$ die Menge der Endzustände ist.

Übergangsfunktion: $\delta(q_0, a_1) = q_1$

Ein Wort $w \in \Sigma^*$ wird akzeptiert, wenn es von M verarbeitet wird und der Endzustand in F liegt.

Wörter

Ein Wort w ist eine endliche Folge von Symbolen aus einem Alphabet Σ . Die Länge eines Wortes w wird mit |w| bezeichnet. Das leere Wort wird mit ε dargestellt und hat die Länge 0. Die Menge aller Wörter über einem Alphabet Σ wird mit Σ^* bezeichnet (Kleenesche Hülle).

Nichtdeterministische endliche Automaten (NEA)

Ein NEA ist ähnlich aufgebaut, aber die Übergangsfunktion δ kann mehrere Zustände für ein Symbol zurückgeben: $\delta: Q \times \Sigma \to 2^Q$. Ein NEA akzeptiert ein Wort, wenn es mindestens einen Pfad gibt, der das Wort vollständig verarbeitet und in einem Endzustand endet.