3183. Показать, что для функции

$$f(x, y) = (x + y)\sin\frac{1}{x}\sin\frac{1}{y}$$

оба повторных предела $\lim_{x\to 0} \{\lim_{y\to 0} f(x,y)\}$ и $\lim_{y\to 0} \{\lim_{x\to 0} f(x,y)\}$ не существуют, тем не менее существует $\lim_{x\to 0} f(x,y) = 0$.

3183.1. Существует ли предел

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2xy}{x^2 + y^2} ?$$

3183.2. Чему равен предел функции

$$f(x, y) = x^2 e^{-(x^2 - y)}$$

вдоль любого луча

$$x = t \cos \alpha$$
, $y = t \sin \alpha$ $(0 \le t < + \infty)$

при $t \to +\infty$?

Можно ли эту функцию назвать бесконечно малой

при $x \to \infty$ и $y \to \infty$?

3184. Найти $\lim_{x \to a} \{\lim_{y \to b} f(x, y)\}$ и $\lim_{y \to b} \{\lim_{x \to a} f(x, y)\}$ если:

a)
$$f(x, y) = \frac{x^2 + y^2}{x^2 + y^4}$$
, $a = \infty$, $b = \infty$;

6)
$$f(x, y) = \frac{x^y}{1 + x^y}, a = \infty, b = +0;$$

B)
$$f(x, y) = \sin \frac{\pi x}{2x + y}$$
, $a = \infty$, $b = \infty$;

r)
$$f(x, y) = \frac{1}{xy} \text{ tg } \frac{xy}{1 + xy}, \ a = 0, \ b = \infty;$$

д)
$$f(x, y) = \log_x (x + y), a = 1, b = 0.$$

Найти следующие двойные пределы:

3185.
$$\lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x+y}{x^2-xy+y^2}$$
. 3186. $\lim_{\substack{x \to \infty \\ x \to \infty}} \frac{x^2+y^2}{x^4+y^4}$.

3187.
$$\lim_{\substack{x \to 0 \\ y \to a}} \frac{\sin xy}{x}$$
. 3188. $\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^3) e^{-(x+y)}$.