

Chapter 14

블루투스 모듈 제어해보기

Step 1. AT명령어를 사용하여 블루투스 모듈 제어하기

Step 2. BLE앱을 사용하여 블루투스를 연결하고 아두이노와 채팅하기

블루투스(Bluetooth)

- 대표적인 근거리 무선 통시 규격
- Bluetooth Classic
 - 기존의 블루투스 (4.0 이전)
- Bluetooth 4.0
 - 저전력 (Low Energy)
- Bluetooth 5.0
 - IOT 사물인터넷
 - 전송 속도, 전송가능거리 증가

블루투스 프로파일(Profile)

- 블루투스 장치를 어떻게 사용할 지 정의 (예, 헤드폰, 리모컨 등)
- SPP(Serial Port Profile)
 - 블루투스 장치로 시리얼 통신을 하는 것
 - Bluetooth Classic에서만 지원
 - 활용하기가 간편함
- Custom Profile
 - Bluetooth 4.0에서 새롭게 등장
 - 개발자가 직접 블루투스 장치의 용도를 결정함
 - 활용하기가 어려움

블루투스 모듈 제어해보기

AT명령어를 사용하여 블루투스 모듈 제어하기

아두이노와 블루투스

- HC-06
 - Bluetooth Classic
 - SPP지원: 시리얼 포트로 인식
 - Android에서만 가능
- HM-10
 - Bluetooth 4.0
 - SPP로 사용할 수 있는 Custom Profile 제공
 - Android/iOS 모두 사용 가능

Chapter 14 블루투스 모듈 제어해보기

AT명령어를 사용하여 블루투스 모듈 제어하기

회로구현

Chapter 14

AT명령어를 사용하여 블루투스 모듈 제어하기

SoftwareSerial Class

- 아두이노에서 소프트웨어 시리얼 통신을 위해 사용되는 Class
 - #include <SoftwareSerial.h> 추가
- 선언시 사용되는 TX, RX 핀 지정
 - 예) SoftwareSerial softSerial(3, 2); // 3번 핀을 RX, 2번 핀을 TX로 사용
- 함수는 Serial Class와 동일

available

- 시리얼 통신으로 받은 데이터 크기를 확인한다.
- C언어 문법
 - int available();
 - 반환값 있음, 인자 없음
- 사용방법
 - 반환: 받은 데이터 크기를 바이트 단위로 알려줌
 - 예) int num = Serial.avilable(); // num변수에 받은 데이터 크기를 저장

write

- 시리얼 통신으로 데이터 1 byte를 전송한다.
- C언어 문법
 - void write(data);
 - 반환값 없음, 인자 1개
- 사용방법
 - data: 보낼 1byte 데이터
 - 예) Serial.write('A'); // A 문자 하나를 시리얼 통신으로 보낸다.

Chapter 14

블루투스 모듈 제어해보기

AT명령어를 사용하여 블루투스 모듈 제어하기

read

- 시리얼 통신으로 데이터 1 byte를 받는다.
- C언어 문법
 - int read();
 - 반환값 있음, 인자 없음
- 사용방법
 - 반환값: 받은 1byte 데이터
 - 예) int data = Serial.read(); // 시리얼 통신으로 받은 1 byte 데이터를 data변수에 저장한다.

Chapter 14

AT명령어를 사용하여 블루투스 모듈 제어하기

소스코딩

```
#include <SoftwareSerial.h>
SoftwareSerial BTSerial(3, 2);

void setup() {
    Serial.begin(9600);
    BTSerial.begin(9600);
}

void loop() {
    if (BTSerial.available()) {
        Serial.write(BTSerial.read());
    }
    if (Serial.available()){
        BTSerial.write(Serial.read());
    }
}
```


AT Command

- HM-10을 설정하기 위해 사용하는 기능
- AT Command
 - AT+VERSION: 연결확인
 - AT+NAME: 장치 검색 이름 설정
 - AT+BAUD: 보레이트 설정

블루투스제어

• 시리얼 모니터에서 'Both NL & CR' 선택, '9600 보드레이트' 선택합니다.

블루투스제어

이름은 영문자, 숫자, _ 등 입력가능하고, 최소 6자리 이상 입력합니다. AT 명령어는 BLE모듈의 펌웨어 버전에 따라 다를 수 있습니다.

블루투스 모듈 제어해보기

BLE앱을 사용하여 블루투스를 연결하고 아두이노와 채팅하기

앱설치

• 아이폰은 앱스토어, 안드로이드는 플레이스토어에서 LightBlue 다운

BLE앱을 사용하여 블루투스를 연결하고 아두이노와 채팅하기

앱 사용법

Copyright MAKIST. All rights reserved.

BLE앱을 사용하여 블루투스를 연결하고 아두이노와 채팅하기

앱 사용법

Copyright MAKIST. All rights reserved.

Step 1. AT명령어를 사용하여 wifi 모듈 제어하기

Step 2. WiFi 모듈을 공유기에 연결하기 (STA모드)

Step 3. wifi모듈로 AP를 만들고 접속해보기 (AP모드)

AT명령어를 사용하여 WiFi 모듈 제어하기

WIFI

- IEEE 802.11 통신규격을 만족하는 기기들끼리 무선으로 데이터를 주고받을 수 있도록 하는 기술을 뜻함
 - IEEE 802.11은 미국전기전자학회 (IEEE)에서 개발한 무선 랜 규격
- 와이파이를 사용하려면 무선 접속 장치(AP: Access point)가 있어야 함
- AP, STA
 - AP: Access point로 일종의 공유기 역할
 - 802.11 Wireless LAN 인터페이스와 802.3 Ethernet 인터페이스를 가지는 장비로, STA가 보낸 데이터를 무선으로 받아 Ethernet Port를 통해 유선망으로 보내 주는 장비이다
 - STA: AP에 접속해서 HTTP Request를 보내거나 간단한 HTTP서버가 될수 있다.
 - IEEE 802.11 용어이며, Wi-Fi 단말(Wi-Fi interface를 가진 단말)을 지칭합니다.

AT명령어를 사용하여 WiFi 모듈 제어하기

Esp8266

- 아두이노기반의 개발이 가능한 마이크로프로세서와 wifi모듈이 결합된 칩.
- IOT 사물인터넷, 스마트홈 등을 구성할때 필요한 와이파이 제품에서 가장 보편적인 모듈 중 하나.
- 시리얼을 통해 AT Command 명령으로 설정 변경 가능
- 802.11 b/g/n 지원

AT명령어를 사용하여 WiFi 모듈 제어하기

회로구현

AT명령어를 사용하여 WiFi 모듈 제어하기

회로구현

AT명령어를 사용하여 WiFi 모듈 제어하기

AT Command

- AT -응답:OK
- ESP8266이 정상적으로 동작하고 있음을 나타내며, 정상적으로 동작되지 않을 경우 아무응답이 없습니다.
- AT+RST : 모듈 리셋 명령
- AT+GMR : 모듈 버전 확인 명령
- AT+CWMODE : WiFi 모드 확인 또는 설정 명령
 - AT+CWMODE?: 현재 ESP8266의 모드 확인 명령
 - AT+CWMODE=mode
 - 1: Station Mode, WiFi 디바이스 기능
 - 2: AP Mode, Access Point 기능
 - 3: AP +Station Mode, 디바이이스 + AP 기능
- https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf

AT명령어를 사용하여 WiFi 모듈 제어하기

WIFI 제어

```
※ 명령어: AT+UART_DEF=9600,8,1,0,0 를 사용하여
Esp01의 통신속도를 9600으로 변경하고
WIFI.begin(115200); -> WIFI.begin(9600);
으로 바꾼후에 사용하시면 됩니다.
참고: <a href="http://blog.naver.com/makist2015/221417792688">http://blog.naver.com/makist2015/221417792688</a>
```


AT명령어를 사용하여 WiFi 모듈 제어하기

WIFI 제어

• 시리얼 모니터에서 'Both NL & CR' 선택, '9600 보드레이트' 선택합니다.

AT명령어를 사용하여 WiFi 모듈 제어하기

WIFI 제어

STA모드

• AT+CWMODE=1
OK 응답을 받게 되면 네트워크 연결에 대한 모드가 Station Mode로 설정이 됩니다.

STA모드

AT+CWLAP

연결할수 있는 WIFI 목록이 출력됨

STA모드

• AT+CWJAP="SSID","비밀번호" ESP01 모듈이 와이파이에 연결. AT+CWJAP="SSID"," "

STA모드

• AT+CWQAP 와이파이 연결해제

라이브러리 설치하기

스케치 - 라이브러리 포함하기 라이브러리 설치

Wifiesp 를 검색하여 라이브러리를 설치해줍니다.

WiFi 모듈을 공유기에 연결하기(STA모드)

소스코딩

```
#include "WiFiEsp.h"
#include "SoftwareSerial.h"

const char* wifi_ssid = "SSID"
const char* wifi_password = "PASSWORD";
unsigned int wifi_connect_timer;

SoftwareSerial WIFI(2,3); // RX, TX

void setup() {

   Serial.begin(9600);
   WIFI.begin(9600);
   WiFi.init(&WIFI);
```

```
while (WiFi.status() != WL_CONNECTED) {
    Serial.print(".");
    WiFi.begin(wifi_ssid, wifi_password);
    wifi_connect_timer++;
    if (wifi_connect_timer >= 3) {
        WiFi.reset();
        wifi_connect_timer = 0;
        break;
    }
}

if (WiFi.status() == WL_CONNECTED) {
    Serial.println("WIFI Connected Success");
    }
}
void loop() {
}
```


실행결과

WiFi로 AP를 만들고 접속해보기(AP모드)

소스코딩

```
#include "WiFiEsp.h"
#include "SoftwareSerial.h"
SoftwareSerial WIFI(2,3); // RX, TX
char ssid[] = "MAKIST";
char pass[] = "12345678";
int status = WL IDLE STATUS;
int reqCount = 0;
WiFiEspServer server(80);
RingBuffer buf(8);
void setup()
  Serial.begin(9600);
  WIFI.begin(9600);
  WiFi.init(&WIFI);
  if (WiFi.status() == WL NO SHIELD) {
    Serial.println("WiFi shield not present");
    while (true);
```

```
if (WiFi.status() == WL_NO_SHIELD) {
    Serial.println("WiFi shield not present");
    while (true);
}

Serial.print("Attempting to start AP ");
Serial.println(ssid);

status = WiFi.beginAP(ssid, 10, pass, ENC_TYPE_WPA2_PSK);

Serial.println("Access point started");
printWifiStatus();

// start the web server on port 80
server.begin();
Serial.println("Server started");
}
```

WiFi로 AP를 만들고 접속해보기(AP모드)

소스코딩

```
void loop()
 WiFiEspClient client = server.available();
 if (client) {
   Serial.println("New client");
    buf.init();
    while (client.connected()) {
     if (client.available()) {
        char c = client.read();
       buf.push(c);
       if (buf.endsWith("\r\n\r\n")) {
         WiFiResponse(client);
         break;
    delay(10);
    client.stop();
    Serial.println("Client disconnected");
```

```
void WiFiResponse(WiFiEspClient client)
   client.print(
        "HTTP/1.1 200 OK\r\n"
        "Content-Type: text/html\r\n"
        "Connection: close\r\n"
        "\r\n");
  client.print("<!DOCTYPE HTML>\r\n");
  client.print("<html>\r\n");
  client.print("<h1>Hello World!</h1>\r\n");
  client.print("</html>\r\n");
}
void printWifiStatus()
  // print your WiFi shield's IP address
  IPAddress ip = WiFi.localIP();
  Serial.print("IP Address: ");
  Serial.println(ip);
```


WiFi로 AP를 만들고 접속해보기(AP모드)

실행결과

WiFi로 AP를 만들고 접속해보기(AP모드)

실행결과

