Computational Methods

MATRICES AND VECTORS

Find AB and BA where

$$A = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 4 \\ 5 & 1 & -1 \end{pmatrix}$$

$$B = \begin{pmatrix} 5 & 2 & 1 \\ 0 & 3 & 4 \\ 1 & 3 & 5 \end{pmatrix}$$

Given that A^2 means the product of a matrix A with itself, find A^2 when $A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$. Find A^3 .

If
$$A = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ -4 & 5 \end{pmatrix}$ find AB , BA , $A + B$

and $(A + B)^2$. Show that

$$(A + B)^2 = A^2 + AB + BA + B^2$$

Why is $(A + B)^2$ not equal to $A^2 + 2AB + B^2$?

4

Exercises

If
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 6 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 4 \\ 3 & 8 \end{pmatrix}$

- (a) find A^T ,
- (b) find B^T ,
- (c) find AB,
- (d) find $(AB)^T$,
- (e) deduce that $(AB)^T = B^T A^T$.

Find the inverse, if it exists, of each of the following matrices:

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$

(c)
$$\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} -1 & 0 \\ -1 & 7 \end{pmatrix}$$
 (e) $\begin{pmatrix} 6 & 2 \\ 9 & 3 \end{pmatrix}$ (f) $\begin{pmatrix} -6 & 2 \\ 9 & 3 \end{pmatrix}$

(e)
$$\begin{pmatrix} 6 & 2 \\ 9 & 3 \end{pmatrix}$$

(f)
$$\begin{pmatrix} -6 & 2 \\ 9 & 3 \end{pmatrix}$$

$$\begin{pmatrix} g \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

Given that the matrix

$$M = \begin{pmatrix} \cos \omega t & -\sin \omega t & 0\\ \sin \omega t & \cos \omega t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

is orthogonal, find M^{-1} .

Given

$$A = \begin{pmatrix} 3 & 7 & 6 \\ -2 & 1 & 0 \\ 4 & 2 & -5 \end{pmatrix}$$

- (a) find |A|
- (b) find the cofactors of the elements of row 2, that is -2, 1, 0
- (c) calculate

$$-2 \times (\text{cofactor of } -2)$$

$$+1 \times (cofactor of 1)$$

$$+0 \times (cofactor of 0).$$

What do you deduce?

Find adj(A), |A| and, if it exists, A^{-1} , if

(a)
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 5 & 4 & 1 \\ 2 & -2 & -1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 2 & -1 & 1 \\ 5 & 5 & -7 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 5 & -2 & 9 \\ 3 & 2 & -1 \end{pmatrix}$$

If $\mathbf{a} = 3\mathbf{i} - 7\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} + 4\mathbf{j}$ find $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{b} \cdot \mathbf{a}$, $\mathbf{a} \cdot \mathbf{a}$ and $\mathbf{b} \cdot \mathbf{b}$.

If $\mathbf{a} = 4\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\mathbf{b} = 3\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$ and $\mathbf{c} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$, find

(a) $\mathbf{a} \cdot \mathbf{a}$ (b) $\mathbf{a} \cdot \mathbf{b}$

(c) $\mathbf{a} \cdot \mathbf{c}$ (d) $\mathbf{b} \cdot \mathbf{c}$

Evaluate $(-13\mathbf{i} - 5\mathbf{j}) \cdot (-3\mathbf{i} + 4\mathbf{j})$.

Find the angle between the vectors $\mathbf{p} = 7\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ and $\mathbf{q} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$.

Find the angle between the vectors $7\mathbf{i} + \mathbf{j}$ and $4\mathbf{j} - \mathbf{k}$.

Find the angle between the vectors $4\mathbf{i} - 2\mathbf{j}$ and $3\mathbf{i} - 3\mathbf{j}$.

If $\mathbf{a} = 7\mathbf{i} + 8\mathbf{j}$ and $\mathbf{b} = 5\mathbf{i}$ find $\mathbf{a} \cdot \hat{\mathbf{b}}$.

If
$$\mathbf{r}_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
 and $\mathbf{r}_2 = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$ find $\mathbf{r}_1 \cdot \mathbf{r}_1$, $\mathbf{r}_1 \cdot \mathbf{r}_2$ and $\mathbf{r}_2 \cdot \mathbf{r}_2$.

Given that $\mathbf{p} = 2\mathbf{q}$ simplify $\mathbf{p} \cdot \mathbf{q}$, $(\mathbf{p} + 5\mathbf{q}) \cdot \mathbf{q}$ and $(\mathbf{q} - \mathbf{p}) \cdot \mathbf{p}$.

Evaluate

(b)
$$\begin{bmatrix} 1 & \mathbf{j} & \mathbf{k} \\ -1 & 2 & -3 \\ -4 & 0 & 1 \end{bmatrix}$$

If
$$\mathbf{a} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$$
 and $\mathbf{b} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$, find

- (a) $\mathbf{a} \times \mathbf{b}$
- (b) $\mathbf{b} \times \mathbf{a}$

If $\mathbf{a} = \mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = 5\mathbf{i} + 5\mathbf{k}$ find $\mathbf{a} \times \mathbf{b}$.

If
$$\mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k}$$
, $\mathbf{b} = \mathbf{i} - \mathbf{j}$ and $\mathbf{c} = 2\mathbf{i} + \mathbf{k}$ find

- (a) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
- (b) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

If $\mathbf{p} = 6\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$ and $\mathbf{q} = 3\mathbf{i} - \mathbf{j} + 4\mathbf{k}$ find $|\mathbf{p}|$, $|\mathbf{q}|$ and $|\mathbf{p} \times \mathbf{q}|$. Deduce the sine of the angle between \mathbf{p} and \mathbf{q} .