Projection-Perturbation Method (Reiter Method)

Pierre Mabille

NYU Stern

August 10, 2017

Overview

Presentation

Example economy

Solution algorithm

Step 1: finite representation of the economy

Step 2: computing the stationary steady state

Step 3: first-order perturbation around the steady state

Application examples

Caveats

Homework

Reiter method (JEDC, 2009)

Objective: solve heterogeneous agents model with aggregate risk

Combine building blocks (taught in this course)

- Projection methods
- Perturbation methods
- ► Income Fluctuation Problem, Bewley-Huggett-Aiyagari and Krusell-Smith

Idea: compute a solution that is fully nonlinear in the idiosyncratic shocks, but only linear in the aggregate shocks

Motivations

- ▶ Alternative to KS algorithm
- Continuous aggregate shocks
- Linear filtering
- Estimation

Main steps

- 1. Provide a finite representation of the economy at date t
 - (a) represent policy functions by arrays containing the policy values at grid points (if approximated by splines) or the polynomial coefficients (if approximated by orthogonal polynomials)
 - (b) represent the distribution as a vector of probability mass of agents of each type within the regions of the state space
- Compute the stationary steady state of the economy (no aggregate shocks) → finite representation of the stationary policy functions and the invariant distribution
- 3. Compute a first-order perturbation of all variables (policy functions and distribution) w.r.t. aggregate shocks, around the stationary steady state

Homework

Example economy

Presentation

Household problem in recursive form (inelastically supplies ϵ units of efficient labor):

$$v(a, \epsilon; z, \lambda) = \max_{c, a'} \left\{ \frac{c^{1-\gamma}}{1-\gamma} + \beta \mathbb{E} \left[v(a', \epsilon'; z', \lambda') | z, \epsilon \right] \right\}$$
s.t. $c + a' = w(z, \lambda) \epsilon + R(z, \lambda) a$

$$a' \geq -\underline{a}$$

$$\lambda' = \Psi(\lambda, z, z')$$

Firm problem static:

$$\max_{K,L} e^{z} K^{1-\alpha} L^{\alpha} - w(z,\lambda) L - (R(z,\lambda) - 1 + \delta) K$$
$$z' = \rho z + \sigma \eta'$$

Recursive Competitive Equilibrium

Policy and price functions, distribution law of motion

$$\{c(a,\epsilon;z,\lambda),a'(a,\epsilon;z,\lambda);R(z,\lambda),w(z,\lambda);\Psi(\lambda,z,z')\}$$
 s.t

▶ HH optimization: given price functions r(.), w(.) and the law of motion $\Psi(.)$, policy functions satisfy

$$c(a,\epsilon;z,\lambda)^{-\gamma} \geq \beta \mathbb{E}_{z,\epsilon} \left[R(z',\lambda') \times c(a'(a,\epsilon;z,\lambda),\epsilon';z',\Psi(z,\lambda))^{-\gamma} \right]$$
$$c(a,\epsilon;z,\lambda) + a'(a,\epsilon;z,\lambda) = R(z,\lambda)a + w(z,\lambda)$$

Application examples

Firm optimization: given price functions r(.), w(.), firms K and N satisfy

$$R(z,\lambda) = 1 + (1 - \alpha)e^{z}K^{-\alpha}L^{\alpha} - \delta$$

 $w(z,\lambda) = \alpha e^{z}K^{1-\alpha}L^{\alpha-1}$

Recursive Competitive Equilibrium (cont'd)

► Market clearing

$$L = \int \epsilon d\lambda (a, \epsilon; z) \quad \text{(labor)}$$

$$K = \int a' (a, \epsilon; z) d\lambda (a, \epsilon; z) \quad \text{(capital)}$$

$$e^{z} K^{1-\alpha} L^{\alpha} + (1-\delta)K = \int c (a, \epsilon; z) d\lambda (a, \epsilon; z)$$

$$+ \int a' (a, \epsilon; z) d\lambda (a, \epsilon; z) \quad \text{(goods)}$$

Application examples

▶ Distribution's law of motion: $\forall \epsilon' \in E$ and measurable set $\mathcal{A} \subseteq A$, next distribution consistent with policy functions

$$\Psi(z,\lambda)\left(\mathcal{A}\times\left\{\epsilon'\right\}\right)=\int\mathbb{1}\left\{a'\left(a,\epsilon;z,\lambda\right)\in\mathcal{A}\right\}\pi\left(\epsilon'|\epsilon\right)d\lambda\left(a,\epsilon\right)$$

Presentation

Step 1: finite representation of the economy

Discretize the state space (idiosyncratic states)

- ▶ Grid over ϵ , call it E, with n_{ϵ} points
- ▶ Grid for the consumption and savings policy rules over a, call it A^p , with n_a^p points for each ϵ
 - \triangleright For HH of each type ϵ , the borrowing constraint starts binding when $a \leq \chi_{\epsilon}$ (EE w/ inequality, solve for $a' = \underline{a}$ from constraint), and is slack when $a > \chi_{\epsilon}$ (solve for a' from EE w/ equality). χ_{ϵ} are unknown and solved for in step 2
 - ▶ Define A^p grid, for each ϵ , as $a_{i,\epsilon} = \chi_{\epsilon} + x_i$, where $0 = x_1 < x_2 < ... < x_{n_1^p}$
 - ▶ Policy functions are represented by $n_{\epsilon} \times n_{a}^{p}$ coefficients: for each ϵ : χ_{ϵ} and coefficients at $a_{2,\epsilon},...,a_{n_{2}^{p},\epsilon}$ (projection)
- Denser grid over a for the discretized density (histogram), call it A^d , with $n_a^d > n_a^p$ points
- ▶ The histogram is a series of vector of weights $\{\lambda_{\epsilon,t}\}$ (one for each value of ϵ), each of dimension $n_a^d - 1$ (sum to 1)

Homework

Step 1 (cont'd)

Presentation

Define a system of equations representing the economy at date t:

► Law of motion for exogenous aggregate state (1 eqn):

$$z_{t+1} = \rho z_t + \sigma \eta_{t+1} \tag{1}$$

- ► Euler equations and budget constraints: one eqn for each point $(\epsilon, a_{i,\epsilon}) \in E \times A^p$ $(2 \times (n_{\epsilon} \times n_a^p) \text{ eqns})$
 - collect policy function coefficients in vector $\Theta(z_t, \lambda_t)$, of dimension $n_{\epsilon} \times n_{\epsilon}^{p}$
 - define policy functions on grids, $\hat{g}(a_{i,\epsilon}, \epsilon; \Theta(z_t, \lambda_t))$ (g = c, a'): dependence on aggregate states via $\Theta(z_t, \lambda_t)$

$$\hat{c}\left(a_{i,\epsilon},\epsilon;\Theta\left(z_{t},\lambda_{t}\right)\right)^{-\gamma}=\beta\sum_{z_{t+1}}R\left(z_{t+1},\lambda_{t+1}\right)$$

$$\times \sum_{\epsilon' \in E} \hat{c}\left(a'\left(a_{i,\epsilon}, \epsilon; \Theta\left(z_{t}, \lambda_{t}\right)\right), \epsilon'; \Theta\left(z_{t+1}, \lambda_{t+1}\right)\right)^{-\gamma}$$

$$\times \qquad \pi\left(\epsilon'|\epsilon\right)\pi\left(z_{t+1}|z_{t}\right) \tag{2}$$

$$\hat{c}(a_{i,\epsilon}, \epsilon; \Theta(z_t, \lambda_t))^{-\gamma} + \hat{a}'(a_{i,\epsilon}, \epsilon; \Theta(z_t, \lambda_t))^{-\gamma}$$

$$= R(z_t, \lambda_t) a_{i,\epsilon} + w(z'_t, \lambda_t) \epsilon$$

(3)

Homework

Step 1 (cont'd)

Presentation

► Equilibrium prices (2 eqns):

$$R(z_{t}, \lambda_{t}) = 1 + (1 - \alpha)e^{z_{t}} K_{t}^{-\alpha} L_{t}^{\alpha} - \delta$$

$$= 1 + (1 - \alpha)e^{z_{t}} \left(\sum_{\epsilon \in E} \sum_{i=1}^{n_{d}^{d}} a_{i} \lambda_{\epsilon, t}(a_{i})\right)^{-\alpha} \left(\sum_{\epsilon \in E} \sum_{i=1}^{n_{d}^{d}} \epsilon \lambda_{\epsilon, t}(a_{i})\right)^{\alpha}$$

$$- \delta \qquad (4)$$

$$w(z_{t}, \lambda_{t}) = \alpha e^{z_{t}} K_{t}^{1-\alpha} L_{t}^{\alpha-1}$$

$$= \alpha e^{z_{t}} \left(\sum_{\epsilon \in E} \sum_{i=1}^{n_{d}^{d}} a_{i, \epsilon} \lambda_{\epsilon, t}(a_{i})\right)^{1-\alpha} \left(\sum_{\epsilon \in E} \sum_{i=1}^{n_{d}^{d}} \epsilon \lambda_{\epsilon, t}(a_{i})\right)^{\alpha-1}$$

$$(5)$$

Homework

Step 1 (cont'd)

▶ Law of motion for the density (histogram): for each next period point $(\epsilon', a_{i'}) \in E \times A^d$, next period weights are $((n_{\epsilon} \times n_{\epsilon}^{d}) \text{ egns})$:

$$\lambda_{\epsilon',t+1}(a_{i'}) = \sum_{\epsilon} \pi\left(\epsilon'|\epsilon\right) \omega_{i,\epsilon,i'} \lambda_{\epsilon,t}(i)$$
where $\omega_{i,\epsilon,i'} = \begin{cases} \frac{a_{i'+1} - \hat{a}'(a_{i,\epsilon},\epsilon;\Theta(z_t,\lambda_t))}{a_{i'+1} - a_{i'}} & \text{if } \hat{a}'\left(.\right) \in [a_{i'},a_{i'+1}]\\ \frac{\hat{a}'(a_{i,\epsilon},\epsilon;\Theta(z_t,\lambda_t)) - a_{i'-1}}{a_{i'+1} - a_{i'}} & \text{if } \hat{a}'\left(.\right) \in [a_{i'},a_{i'-1}] \end{cases}$

Step 1 (end)

We get a dynamic nonlinear system of $1+2\times(n_{\epsilon}\times n_{a}^{p})+2+(n_{\epsilon}\times n_{a}^{d})$ equations, which can be written as:

$$\mathbb{E}_{t}\left[\mathcal{F}\left(\mathsf{y}_{\mathsf{t}+1},\mathsf{y}_{\mathsf{t}},\mathsf{x}_{\mathsf{t}+1},\mathsf{x}_{\mathsf{t}}\right)\right]=\mathbf{0}$$

- **y**: vector of control (jump) variables: policy functions and prices
- x: vector of state (predetermined) variables: aggregate shock (exogenous) and histogram weights (endogenous)

Homework

Step 2: computing the stationary steady state

The stationary steady state without aggregate risk (z = 0) is defined by

$$\mathcal{F}\left(\mathbf{y}^{*},\mathbf{y}^{*},\mathbf{x}^{*},\mathbf{x}^{*}\right)=\mathbf{0},$$

a nonlinear system of $1 + 2 \times (n_{\epsilon} \times n_{a}^{p}) + 2 + (n_{\epsilon} \times n_{a}^{d})$ equations with as many unknowns \rightarrow very large, especially if n_a^p and n_a^d are $large \rightarrow don't solve directly$

- solution algorithm for heterogeneous agents model without aggregate risk (Bewley-Huggett-Aiyagari)
- "smooth density approximation" (not today)

Homework

Step 2 (cont'd)

Use a solution algorithm for heterogeneous households model without aggregate risk (Bewley-Huggett-Aiyagari)

Guess capital $K^{(0)}$. For n > 0:

- 1. Back out prices $R^{(n)}$, $w^{(n)}$
- 2. Given prices, solve for HH policy functions $\Theta^{(n),*}$ (use an algorithm for the income fluctuation problem, e.g. collocation with numerical equation solver using initial guess $\Theta^{(n)}$)
- 3. Using implied policy functions, compute invariant distribution $\chi(n),*$
- 4. Compute aggregate supply of capital using the invariant distribution: stop if it is close enough to $K^{(n)}$, otherwise update $K^{(n+1)}$ and go back to sub-step 1

Step 2 (end)

Obtain nonlinear solution of the model without aggregate risk

- ▶ Jump variables \mathbf{y}^* : policy function coefficients $\Theta(0, \lambda^*)$, prices $R(0, \lambda^*)$, $w(0, \lambda^*)$
- ▶ Predetermined variables \mathbf{x}^* : exogenous shock z = 0, histogram weights λ^*

For instance, consumption is a nonlinear function of the idiosyncratic states (a,ϵ) (resp. endogenous and exogenous) and of the aggregate state λ (endogenous)

Homework

Step 3: first-order perturbation around the steady state

Compute a first-order perturbation of the variables $\{y_t, x_t\}$, implicitly defined by

$$\mathbb{E}_{t}\left[\mathcal{F}\left(\mathbf{y}_{t+1},\mathbf{y}_{t},\mathbf{x}_{t+1},\mathbf{x}_{t}\right)\right]=\mathbf{0},$$

around the stationary steady state $\{y^*, x^*\}$

Use standard perturbation methods

- Sims' gensys (2002)
- Klein (2000)

Homework

Step 3 (cont'd and end)

Obtain a linear (VAR) representation of the economy, the solution of the model with aggregate risk:

$$egin{pmatrix} egin{pmatrix} \mathbf{y}_{t+1}^* \ \mathbf{x}_{t+1}^* \end{pmatrix} = \mathbf{A} egin{pmatrix} \mathbf{y}_{t}^* \ \mathbf{x}_{t}^* \end{pmatrix} + \mathbf{B} \eta_{t+1}$$

Intuition: each policy function coefficient in $\Theta(z_{t+1}, \lambda_{t+1})$ and each histogram weight in λ_{t+1} varies linearly with η_{t+1} (innovation to z_{t+1}), and they are related nonlinearly to the other coefficients and weights

Applications: compute moments, IRFs, linear filtering and estimation (Kalman filter)

Application examples

- ► Reiter (2009): Krusell-Smith "near-aggregation" result (the mean of the asset distribution – aggregate capital – suffices to accurately forecast future prices) holds with only technology shocks, but not with large redistributive tax shocks (need ≥ 4 moments of the HH distribution)
- ► McKay&Reis (2016): assess the role of automatic stabilizers in the US, in a quantitatively realistic NK business cycle model with heterogeneous agents

Caveats

- ► Two sources of numerical error: errors in decision rules due to projection (even in stationary equilibrium), and errors due to first-order perturbation when nonlinear responses to aggregate shocks → compute EE errors
- ► Local method, not for large shocks
- Linear dynamics w.r.t. aggregate shocks, not for highly nonlinear problems

Homework

Visit Felipe Alves' repository at https://github.com/FelipeAAlves/Reiter, and run the code for the Krusell-Smith model (in Julia)

References

KLEIN, P. (2000): Using the generalized Schur form to solve a multivariate linear rational expectations model, *Journal of Economic Dynamics and Control* (24), 1405-1423 MCKAY, A. AND REIS, R. (2016): The role of automatic stabilizers in the U.S. business cycle, *Econometrica* (84, 1), 141-194

REITER, M. (2009): Solving heterogeneous-agent models by projection and perturbation, *Journal of Economic Dynamics and Control* (33), 649-665

SIMS, C. (2002): Solving linear rational expectations models, *Computational Economics* (20), 1-20