Computing and Plotting the Gaussian Mark

This project was done for Differential Geometry Course taught by Professor Gabriel Pripoaie at students from second year of University Spiru-Haret, Faculty of Mathematics and Computer Science.

1 Introduction

Let $u = \overset{o}{u} \subseteq R^n$ and $f: u \to E^{n+1}$ be a differentiable function with $x \in u$, with $f(x) = (f^1(x), f^2(x), ..., f^{n+1}(x))$.

Definition 1 The function $f: u \subset \mathbb{R}^n \to \mathbb{R}^{n+1}$ is called immersion if $\operatorname{rang} J_f(x)$ is n for each $x \in u$.

Definition 2 The function f is called parametrized surface if f is immersion in any domain point.

Notation 3 Let note

$$df_x(e_i) = f_{x^i}(x) = \frac{\partial f^{\alpha}}{\partial x^i}(x)\overline{e_{\alpha}}$$

Notation 4 Let $T_{f(x)}R^{n+1}$ be R^{n+1} and $df_x(T_xR^n) = T_{f(x)}f = sp\{\frac{\partial f}{\partial x^1}(x), ..., \frac{\partial f}{\partial x^n}(x)\}$

Definition 5 Let $f: u \to E^{n+1}$ be a parametrized hypersurface and $X: u \to E^{n+1}$ be a differential application we call X field of vectors along hypersurface f.

Definition 6 Let $X: u \to E^{n+1}$ be a field of vectors along hypersurface f and if $\forall x \in u, X(x) \in T_{f(x)}f$ then X is tangent.

Definition 7 Let $X: u \to E^{n+1}$ be a field of vectors along hypersurface f and if $\forall x \in u, X(x) \bot T_{f(x)} f$ then X is normal to f.

 $\textbf{Definition 8} \ \ N(x) = \frac{f_{x^1}(x) \times f_{x^2}(x) \times \ldots f_{x^n}(x)}{\left\|f_{x^1}(x) \times f_{x^2}(x) \times \ldots f_{x^n}(x)\right\|} \ \ is \ called \ unity \ normal \ to \ f.$

Definition 9 Let $f: u \to E^{n+1}$ be a parametrized hypersurface then $\{f_{x^1}, ..., f_{x^n}, N\}$ we call Gaussian mark associated to f.

Definition 10 Let $I_x(v, w) = \langle df_x(v), df_x(w) \rangle = g_x(df_x(v), df_x(w)) = v^i w^j g_x(f_{x^i}, f_{x^j})$ be the first fundamental form of hypersurface f in x, and $I_x = g_x$ be the first fundamental form associated to hypersurface f.

Definition 11 Let $f(X,Y) = \langle df_p(X), df_p(Y) \rangle$ with $X,Y \in T_{f(p)}f$, $\forall p \in u$ be the second fundamental associated to hypersurface $f_i,h_{ij}(p) = \langle f_{x^ix^j}(p),N(p) \rangle$.

2 Implementation

This is implemented in MAPLE because I have there differential, solving and plotting of data.

Algorithm 12

- compute the Jacobian and if the rank of the Jacobian is zero then we have immersion so we can continue else we return
- find the points where $\langle f_{x^1}(x) \times f_{x^2}(x) \times ... f_{x^n}(x), f_x(x) \rangle \neq 0$ because in these points we don't have normal to surface and print these points.
- compute N
- compute and print the Gaussian Mark $\{f_{x^1},...,f_{x^n},N\}$
- compute and print first and second fundamental forms.
- make the translation of the Gaussian Mark to the surface by symbolic adding the hypersurface.

Exercise 13 Find the first and second fundamental forms and plot the curve with the Gaussian Mark. The curve is given by the following parametrized relation for $\forall x \in [-\pi/2, \pi/2], \forall y \in [-2, 0]$

$$f(x,y)=(2*\cos(x)*\cos(y),2*\cos(x)*\sin(y),2*\sin(x))$$

In the following point we don't have normal to surface (1.570796327,y).

The first and second fundamental form are:

$$g(x,y) = \begin{bmatrix} 4 & 0 \\ 0 & 4\cos(x)^2 \end{bmatrix}, h(x,y) = \begin{bmatrix} \frac{2\cos(x)}{|\cos(x)|} & 0 \\ 0 & 2|\cos(x)|\cos(x) \end{bmatrix}$$

The Gaussian Mark is:

$$\begin{split} f_{x^1}(x,y) &= (-2sin(x)\cos(y), -2\sin(x)\sin(y), 2\cos(x)) \\ f_{x^2}(x,y) &= (-2\cos(x)\sin(y), 2\cos(x)\cos(y), 0) \\ N(x,y) &= \left(-\frac{\cos(x)^2\cos(y)}{|\cos(x)|}, -\frac{\cos(x)^2\sin(y)}{|\cos(x)|}, -\frac{\sin(x)\cos(x)}{|\cos(x)|}\right) \end{split}$$

