MATH142A Sample Final 2014

Instructions

- 1. **Read this:** For any multi-part question, you may assume the results of all previous parts when solving subsequent parts even if you were unable to prove the previous parts.
- 2. You may not use any type of calculator or electronic devices during this exam.
- 3. You may use one pages of notes (written on both sides), but no books or other assistance during this exam.
- 4. Write your Name, PID, and Section on the front of your Blue Book.
- 5. Read each question carefully, and answer each question completely.
- 6. Show all of your work; no credit will be given for unsupported answers.

Questions

- 1. A sequence of real numbers (a_n) is called *Cauchy* if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|a_n a_m| < \epsilon$ whenever $m, n \ge N$.
 - (a) Prove that a convergent sequence is Cauchy.
 - (b) Prove that every Cauchy sequence is bounded.
 - (c) Prove that a Cauchy sequence is convergent.
- 2. Consider the function

$$f(x) = \begin{cases} x \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Show that f is continuous.

- 3. Let $f: I \to \mathbb{R}$ be continuous with I a bounded interval.
 - (a) Show that for every sequence $(x_n) \subset I$, there exists a subsequence (x_{n_k}) converging to $x \in I^-$ the closure of I, as $k \to \infty$.
 - (b) Show that if f is unbounded, then f is **not** uniformly continuous. Conclude that every uniformly continuous function defined on a bounded interval is bounded.
 - (c) Give an example of a uniformly continuous, unbounded function $f: \mathbb{R} \to \mathbb{R}$.
- 4. Let $f:[a,b] \to \mathbb{R}$ be differentiable with continuous derivative $f':[a,b] \to \mathbb{R}$ where we define f'(a) by the limit as $x \to a^+$ and f'(b) by the limit as $x \to b^-$. Show that f is Lipschitz.

5. Let $f:(a,b)\to\mathbb{R}$ be Lipschitz function such that

$$|f(x) - f(y)| \le C|x - y|.$$

Show that if f is differentiable at $x_0 \in (a, b)$, then $|f'(x_0)| \leq C$.

- 6. Let $f(x) = \sqrt{x}$ for $x \in [0,1]$. Show that f is not Lipschitz.
- 7. (a) Prove that \mathbb{Z} is discrete. That is, every point is isolated.
 - (b) Show that **every** function $f: \mathbb{Z} \to \mathbb{R}$ is continuous.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) = 1 for every $x \in \mathbb{Q}$. Prove that f(x) = 1 for every $x \in \mathbb{R}$.