Auswahl der Daten

Datensets haben verschiedenste Charakteristiken

Datensatz	Anzahl Beispiele	Numerische Attribute	Nominale Attribute	Anzahl Klassen	im Zielattribut
ZOO	101	1	15	7	type
auto	205	15	10	7	symbolic
soybean	683	19	16	19	class
sick	3772	7	22	2	class
letter	20000	16	0	26	letter

Unterschiede zwischen den Datensets

- Die Genauigkeit zwischen den einzelnen Datensets ist sehr verschieden.
- Man kann aber nicht sagen, daß eine Genauigkeit von 95% besser ist als eine Genauigkeit von 35%!
- Beispiel:
 - Datenset A:
 - 2 Klassen
 - 99% der Beispiele Klasse +, 1% Klasse -
 - Algorithmus erreicht 95%
 - schlechter als immer die Klasse + raten!
 - Datenset B:
 - 5 Klassen
 - alle 5 gleich groß (ca. 20% der Beispiele)
 - Algorithmus erreicht 35%
 - immerhin besser als zufällig raten!

Abbildung 2: Falsch klassifiziertes Beispiel beim Klassifizieren im Datensatz

Z00

Verschiedene Cross-Validierungen

Data	Accuracy (%)						
Data	2 folds	5 folds	10 folds	20 folds			
autos.arff	68.7805	79.5122	81.9512	81.9512			
hepatitis.arff	81.2903	80.6452	83.8710	81.9355			
labor.arff	71.9298	77.1930	73.6842	75.4386			
soybean.arff	87.8477	90.7760	91.5081	92.3865			
zoo.arff	92.0792	92.0792	92.0792	92.0792			

Accuracy	(8)
84.8780	
80.0000	
77.1930	
92.6794	
92.0792	

- Varianz in den verschiedenen Genauigkeitsabschätzungen mitunter sehr groß!
 - → Vorsicht bei deren Interpretation
 - Genauigkeitsabschätzung ist nur eine Abschätzung!
- Unterschiede resultieren z.T. auch aus unterschiedlichen Größen der Trainings-Sets
 - Größere Training-Sets sind den realen Bedingungen ähnlicher
 - Andererseits: größere Abhängigkeiten zwischen den Sets und größerer Aufwand beim Evaluieren

Verschiedene Seeds für Cross-Validation

- Auch hier gibt es eine hohe Varianz
 - → Vorsicht bei Interpretation von Genauigkeitsunterschieden zwischen Algorithmen!
 - Unterschiede z.T. auf Varianz zurückzuführen
 - Oft wird n-fache m-fold Cross-Validierung angewandt, um Varianz zu senken
- man kann nicht sagen:
 - "Höhere Anzahl von Cross-Validations führen zu größerer Genauigkeit"
 - "Durch gute Wahl der Seed kann man die Genauigkeit verbessern"
 - → analog zu (Scherz-)Artikel über Data Set Selection im "Journal of Machine Learning Gossip"
 - "10-fold ist gut, weil 20-fold langsamer ist und nicht signifikant besser."

Vergleich von Algorithmen

Dataset	(1)	trees.J4	Ė	(2) funct	(3) rules	(4) bayes	(5) trees
kr-vs-kp	(100)	99.44	ľ	95.79 *	99.21	87.79 *	99.44
soybean	(100)	91.78	Ö	93.10	91.85	92.94	90.69
labor-neg-data	(100)	78.60	ę.	92.97 v	83.70	93.57 v	79.13
iris	(100)	94.73	Ĺ	96.27	93.93	95.53	94.80
contact-lenses	(100)	83.50	Ĺ	72.50	80.67	76.17	75.67
weather.symboli	c(100)	47.50		65.00	72.00	57.50	64.00
		(v/ /*)	1	(1/4/1)	(0/6/0)	(1/4/1)	(0/6/0)

- Typischerweise ist kein Algorithmus immer besser als alle anderen und kein Algorithmus immer schlechter als alle anderen
 - Die Wahl des Algorithmus hängt letztendlich auch von der Problemstellung ab
 - Generelle Richtlinien, welcher Algorithmus auf welches Problem paßt, gibt es nur wenige

Noise and Pruning

Noise and Pruning

	Rauschen	unpruned	0,25/2	0,25/1	0,25/3	0,25/7	0,15/2	0,05/2	0,15/1
ER	0%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
ER	15%	28,30%	15,01%	15,02%	15,01%	14,99%	15,03%	15,03%	15,03%
ER	40%	48,54%	43,11%	43,22%	43,02%	42,10%	41,01%	40,55%	41,04%
Size	0%	30,00	30,00	30,00	30,00	30,00	30,00	30,00	30,00
Size	15%	13801,00	32,60	35,40	31,40	30,00	29,60	29,60	29,60
Size	40%	21966,10	2140,90	2464,60	1625,60	700,80	177,90	15,90	199,80

- Pruning ist wichtig!
 - ansonsten große Bäume und geringe Genauigkeit!
- Anmerkungen:
 - Bei -m Parameter kann man ohne weiteres größere Werte testen!
 - In einigen Fällen war 100% Noise gleich gut wie 0% Noise. Warum?

Vergleich JRip vs. J48: Genauigkeit

- Üblicherweise kaum Unterschiede in der Genauigkeit
 - JRip funktioniert möglicherweise bei Mehr-Klassen-Problemen schlechter

Dataset	(1) rules.JR	(2) trees
balance-scale	80.30	77.82
hypothyroid	99.42	99.54
lymph	76.31	75.84
sonar	73.40	73.61
soybean	91.85	91.78

Vergleich JRip vs. J48: Größe

- Aber große Unterschiede in der Größe der Bäume
 - JRip pruned aggressiver
 - ist auch nicht daran gebunden, nicht überlappende Regeln zu lernen

Dataset	(1) rules.JR	(2) trees
balance-scale	11.33	41.60
hypothyroid	5.04	14.44
lymph	6.21	17.30
sonar	4.69	14.45
soybean	27.09	61.12

Diskretisierung

		numerische (ursprüngliche) Daten	nominelle Daten (supervised)	nominelle Daten (unsupervised)
Normale J48	Anzahl Blätter	3	5	11
	Gesamtgröße	5	8	13
	Genauigkeit	73,68%	80,70%	57,42%
Discretized	Anzahl Blätter	5	\$ -	6-:
J48	Gesamtgröße	8	120	[2]
Kombination	Genauigkeit	71,93%	2	Ter :

- Durch die Diskretisierung des gesamten Datensets fließt Information über das Test Set in die Evaluierung
- daher kann es zu viel zu optimistischen Abschätzungen der Genauigkeit kommen.
 - Im Praxis-Fall werden die Beispiele, auf denen der Klassifizierer angewendet wird, ja auch nicht beim Trainieren berücksichtigt!
- Größe der Bäume wächst oft ebenfalls mit Diskretisierung
- Genauigkeit im Vergleich zu Original-Daten kann aber auch steigen! (z.B. sonar)

Wettbewerb

- Generell zeigt sich
 - Je mehr Geduld, desto bessere Resultate :-)
 - einfaches J48 hat <90% Genauigkeit

- Datenset:
 - Optical DigitRecognition
 - file ./optdigits-orig.names
 - Es existiert ein separates Test Set
 - file ./task-test.arff
 - original publication:
 - Accuracy on test set < 98%
 - file ./optdigits.ps

Hall of Fame

removed constant attributs. SMO -E 3	S. Droste
SMO -E 3	Stefan Pohl
IBk -K 4 -W 0 -I -s 7	Anh-Minh Trinh
removed constant & nearly constant attribu	ates
IBk -K 3 -I -W 0	Jakob Andersen, Kimmo Palander
IB1	Thomas Wolf
IB1	Dominic Hajek, Heidrich, Schnitzspan
SMO -V 15	David Becker, Wladimir Awerbuch, C. Stöhr
IBk -K 3 -x 3	Holger Koetting
AdaBoost -I 100 -W J48	A. Beckhaus, J. Gönsch, T. Krause, C. Steinhard
SMO	Matteo Ceruti
SMO	Benjamin Rank
AdaBoost -I 20 -W J48	Nicola Gutberlet
AdaBoost -I 20 -W J48	Jacqueline Vogel, Arne Pottharst
SMO -N 1	Dietrich Bubenheim, Peter Eiselt
AdaBoost -I 10 -W J48	Jördis Hensen
BayesNet	Chr.Seufert, J-N. Sulzmann, T. Reinhard
FSS InfoGain 25 Atts. AdaBoost -W J48	Nikolay Jetchev, Boiana Ivanova, M. Ruskov
	SMO -E 3 IBk -K 4 -W 0 -I -s 7 removed constant & nearly constant attribution IBk -K 3 -I -W 0 IB1 IB1 SMO -V 15 IBk -K 3 -x 3 AdaBoost -I 100 -W J48 SMO SMO AdaBoost -I 20 -W J48 AdaBoost -I 20 -W J48 SMO -N 1 AdaBoost -I 10 -W J48 BayesNet

recht gute Korrelation der Genauigkeitsabschätzungen (erste Spalte) mit den auf dem unabhängigen Test-Set gemessenen (zweite Spalte)