

What is claimed is:

1. A multi-phase-locked loop for data recovery comprising
a phase detector, a charge pump, a loop filter and a
voltage controlled oscillator, wherein:
5 said phase detector is constituted by N phase detection
units (U_1, U_2, \dots, U_N , N is even, $N \geq 4$) ; said N phase
detection units are connected in cascade configuration,
and each phase detection unit contains a data signal input
10 terminal for receiving a data signal from outside; a clock
signal input terminal for receiving the multi-phase clock
signals (CK_1, CK_2, \dots, CK_N) from outside; a delay signal
input terminal for receiving a delay signal output from
another phase detection unit ; a delay signal output
15 terminal for outputting a delay signal ; and a
charge/discharge control signal output terminal for
outputting control signals for charge/discharge
operations; each of said N phase detection units
generates a delay signal (D_1, D_2, \dots, D_N) according to an
input data signal and the complement of a multi-phase
clock signal; the delay signal (D_{j+1}) generated by the $(j$
20 +1)_{th} phase detection unit is input into the j_{th} phase
detection unit via the j_{th} delay signal input terminal;
the delay signal (D_1) generated by the first phase
detection unit is input into the N_{th} phase detection unit
25 via the N_{th} delay signal input terminal; the j_{th} phase
detection unit ($U_j, 1 \leq j < N$, j is a positive integer)
generates control signals ($d_{N/2}, d_{N/2}, \dots, d_{N/2}, u_{N/2}, \dots,$
 u_2) for charge/discharge operations according to the
30 delay signal (D_j) from the j_{th} phase detection unit, the

TOKYO ELECTRON LTD.

delay signal (D_{j+1}) from the $(j+1)_{th}$ phase detection unit, and the multi-phase clock signal (CK_j) which is applied to the j_{th} phase detection unit; the N_{th} phase detection unit generates a charge control signal (up_1) according to the delay signal (D_n) from the N_{th} phase detection unit, the delay signal (D_1) from the first phase detection unit, and the multi-phase clock signal (CK_N) which is applied to the N_{th} phase detection unit;

5 said charge pump being constituted by $N/2$ charge and discharge units ($CP_1, CP_2, \dots, CP_{N/2}$), wherein the k_{th} ($CP_k, 1 \leq k \leq N/2$) charge and discharge unit (CP_k) is employed to receive the k_{th} charge/discharge control signal set (up_k/dn_k) from said phase detector, and a current Ich_k is generated by the charge/discharge control signal set

10 (up_k/dn_k); the charge/discharge current $Ich_k = (w_k \times up_k - w_k \times dn_k) Iss$, wherein w_k is a weighting value, Iss is a fixed current value, and $w_1 < w_2 < \dots < w_{N/2}$; the total charge/discharge current (Ich) from said charge pump equals to $Ich_1 + Ich_2 + \dots + Ich_k + \dots + Ich_{N/2}$; and said

15 voltage controlled oscillator is a multi-phase voltage controlled oscillator, which outputs N multi-phase clock signals (CK_1, CK_2, \dots, CK_N), which are applied to said phase detectors, respectively.

20 2. The multi-phase-locked loop for data recovery as described in claim 1, wherein the phase difference between the multi-phase clock signal (CK_{j+1}) input to the $(j+1)_{th}$ phase detection unit (U_{j+1}) and the multi-phase clock signal (CK_j) input to the j_{th} phase detection unit (U_j) equals to $2\pi/N$.

25 3. The multi-phase-locked loop for data recovery as

described in claim 1, wherein each of said N phase detection unit comprises: an inverter, a first flip-flop, an exclusive OR gate, and a second flip-flop;
5 said inverter inverting multi-phase clock signal which is to be input to each phase detection unit; the first flip-flop generating a delay signal according to the complementary multi-phase clock signal from said inverter and the data signal; the delay signal from said first flip-flop and the delay signal from the first flip-flop in another phase detection unit being input to the exclusive OR gate; the second flip-flop generating a charge/discharge control signal according to the multi-phase clock signal and the output signal from said exclusive OR gate.
10
15 4. The multi-phase-locked loop for data recovery as described in claim ~~2~~³, wherein said first flip-flop and said second flip-flop are D flip-flops.

a