不确定规划课程作业3

方言 2021210929

2022年3月24日

1 Let ξ be an uncertain variable with regular uncertainty distribution Φ , and let f be a continuous and strictly decreasing function. Show that $f(\xi)$ has an inverse uncertainty distribution

$$\Psi^{-1}(\alpha) = f(\Phi^{-1}(1-\alpha))$$

证明:

- 1)由于 f 和 Φ^{-1} 都是连续的,显然, $\Psi^{-1}(\alpha)=f(\Phi^{-1}(1-\alpha))$ 是一个关于 α 的连续函数。并且由于 f 严格递减,则 $\Psi^{-1}(\alpha)$ 关于 α 严格递增。
 - 2) 推导可得:

$$\mathcal{M}\{f(\xi) < \Psi^{-1}(\alpha)\} = \mathcal{M}\{f(\xi) < f(\Phi^{-1}(1-\alpha))\} = \mathcal{M}\{\xi > \Phi^{-1}(1-\alpha)\} = 1 - (1-\alpha) = \alpha$$

因此:

$$\mathcal{M}\{f(\xi) \le \Psi^{-1}(\alpha)\} = \alpha$$

由定理可知, $f(\xi)$ 的逆不确定分布为 $\Psi^{-1}(\alpha)$

2 Let ξ be an uncertain variable with regular uncertainty distribution Φ , Show that $\Phi(\xi)$ is always a linear uncertain variable $\mathcal{L}(0,1)$ whose inverse uncertainty distribution is

$$\Psi^{-1}(\alpha) = \alpha$$

证明:

由定理可知,对一个连续且严格递增的函数 f ,我们有:

$$\Psi^{-1}(\alpha) = f(\Phi^{-1}(\alpha))$$

由于 Φ 满足连续和严格递增的条件,即不确定变量 $\Phi(\xi)$ 的逆分布函数:

$$\Psi^{-1}(\alpha) = \Phi(\Phi^{-1}(\alpha)) = \alpha = (1 - \alpha) \cdot 0 + \alpha \cdot 1$$

因此,不确定变量 $\Phi(\xi)$ 的逆分布函数为线性不确定变量 $\mathcal{L}(0,1)$ 的逆分布函数,则 $\Phi(\xi)$ 为线性不确定变量 $\mathcal{L}(0,1)$

3 Let $\xi_1, \xi_2, ... \xi_n$ be independent uncertain variables. Show that ξ_i and ξ_j are independent for any indexes i and j with $1 \le i < j \le n$.

证明:

由于 $\xi_1, \xi_2, ... \xi_n$ 是独立的不确定变量,则:

$$\mathcal{M}\{\bigcap_{i=1}^{n}(\xi_{i}\in B_{i})\} = \bigwedge_{i=1}^{n}\mathcal{M}\{\xi\in B_{i}\}$$

其中, $B_1, B_2, ..., B_n$ 为 \mathbb{R} 上的布雷尔集。

对任意满足 $1 \le i < j \le n$ 的 i 和 j,令 $\xi_t(\gamma) \equiv c_t$, $c_t \in B_t$, $t \ne i, j$,此时 $\{\xi_t \in B_t\} = \Gamma$,则 $\mathcal{M}\{\xi_t \in B_t\} = 1$,因此:

$$\mathcal{M}\{\bigcap_{i=1}^{n}(\xi_{i}\in B_{i})\} = \mathcal{M}\{(\xi_{i}\in B_{i})\cap(\xi_{j}\in B_{j})\cap\Gamma\cap...\cap\Gamma\} = \mathcal{M}\{\xi\in B_{i}\}\wedge\mathcal{M}\{\xi\in B_{j}\}\wedge1\wedge...\wedge1$$

整理可得:

$$\mathcal{M}\{(\xi_i \in B_i) \cap (\xi_j \in B_j)\} = \mathcal{M}\{\xi \in B_i\} \wedge \mathcal{M}\{\xi \in B_j\}$$

因此, ξ_i 和 ξ_j 是独立的, $1 \le i < j \le n$ 。

4 Let ξ be an uncertain variable. Are ξ and $1 - \xi$ independent? Please justify your answer.

证明:

- 1) 当 ξ 为常量时, $1-\xi$ 也为常量。由于常量与任何不确定变量都是独立的,因此此时 ξ 和 $1-\xi$ 是独立的。
- 2) 当 ξ 不是常量时,将不确定变量 $1-\xi$ 记为 η 。 令 $\xi(\gamma)=\gamma$,则 $\eta(\gamma)=1-\xi(\gamma)=1-\gamma$,因此:

$$\mathcal{M}\{(\xi(\gamma) < 0.4) \cap (\eta(\gamma) < 0.4)\} = \mathcal{M}\{(0 < \gamma < 0.4) \cap (0.6 < \gamma < 1)\} = \mathcal{M}\{\emptyset\} = 0$$

由于:

$$\mathcal{M}\{\xi(\gamma) < 0.4\} = \mathcal{M}\{0 < \gamma < 0.4\} = 0.4$$

$$\mathcal{M}{\eta(\gamma) < 0.4} = \mathcal{M}{0.6 < \gamma < 1} = 0.4$$

则:

$$\mathcal{M}\{(\xi(\gamma)<0.4)\cap(\eta(\gamma)<0.4)\}=0\neq0.4=\mathcal{M}\{\xi(\gamma)<0.4\}\wedge\mathcal{M}\{\eta(\gamma)<0.4\}$$

因此, $\xi 与 \eta$ 不独立, 即 $\xi 与 1 - \xi$ 不独立。

5 Construct 100 independent uncertain variables.

考虑 100 个不确定空间,分别记为 $(\Gamma_i, \mathcal{L}_i, \mathcal{M}_i)$, i=1,2,...,100, 在其中分别取不确定变量 $\xi_1(\gamma_1), \xi_2(\gamma_2),...,\xi_{100}(\gamma_{100})$, 则在乘积不确定空间中,对任意 \mathbb{R} 上的布雷尔集 $B_1, B_2,...,B_{100}$:

$$\mathcal{M}\{\bigcap_{i=1}^{\infty} (\xi_{i} \in B_{i})\}\$$

$$= \mathcal{M}\{(\gamma_{1}, \gamma_{2}, ..., \gamma_{100}) | \xi_{1}(\gamma_{1}) \in B_{1}, \xi_{2}(\gamma_{2}) \in B_{2}, ..., \xi_{100}(\gamma_{100}) \in B_{100}\}\$$

$$= \mathcal{M}\{(\gamma_{1} | \xi_{1}(\gamma_{1}) \in B_{1}) \times (\gamma_{2} | \xi_{2}(\gamma_{2}) \in B_{2}) \times ... \times (\gamma_{100} | \xi_{100}(\gamma_{100}) \in B_{100})\}\$$

$$= \mathcal{M}_{1}\{(\gamma_{1} | \xi_{1}(\gamma_{1}) \in B_{1})\} \wedge \mathcal{M}_{2}\{(\gamma_{2} | \xi_{2}(\gamma_{2}) \in B_{2})\} \wedge ... \wedge \mathcal{M}_{100}\{(\gamma_{100} | \xi_{100}(\gamma_{100}) \in B_{100})\}\$$

$$= \mathcal{M}_{1}\{\xi_{1} \in B_{1}\} \wedge \mathcal{M}_{2}\{\xi_{2} \in B_{2}\} \wedge ... \wedge \mathcal{M}_{100}\{\xi_{100} \in B_{100}\}\$$

$$= \mathcal{M}\{\xi_{1} \in B_{1}\} \wedge \mathcal{M}\{\xi_{2} \in B_{2}\} \wedge ... \wedge \mathcal{M}\{\xi_{100} \in B_{100}\}\$$

$$= \bigwedge_{i=1}^{100} \mathcal{M}\{\xi_{i} \in B_{i}\}\$$

因此,不确定变量 $\xi_1(\gamma_1), \xi_2(\gamma_2), ..., \xi_{100}(\gamma_{100})$ 是独立的。