作业数据:理解机器人传感器

教师: 赵卉菁 zhaohj@pku.edu.cn

小作业

```
作业1: 机器人定位(基于车轮编码器、IMU位姿计算)
(数据1)
```

作业2: 地图创建(车轮编码器、IMU的机器人定位 + 激光) (数据1)

作业3: 占有栅格地图(理科楼、GPS惯导 + 激光) (数据2)

数据1 (20130903data)

起点

- □ 本数据用于作业1、2
- □ 行驶路线
 - 小车机器人沿理科2号 楼2层楼道行驶一圈
- □ 传感器
 - 轮速编码器
 - 惯导
 - 水平激光

作业1

- □数据
 - 编码器COMPort_X_20130903_195003.txt
 - 惯性传感器InterSense_X_20130903_195003.txt
- □目的
 - 理解基于内部传感器机器人的机器人位姿计算和问题
- □ 基本要求
 - 利用内部传感器数据,计算小车行驶轨迹。
 - 数据在教学网下载。
- □ 拓展
 - 参考SLAM地图与运动估计结果,分析内部传感器运动估计的误差。
 - 利用采样点的方法可视化小车运动估计的误差分布与传播。

作业2

- □数据
 - 激光扫描数据 URG_X_20130903_195003. Ims
 - 定位数据 Id. nav 或 小作业1生成的小车行驶轨迹
- □目的
 - 理解激光数据和简单的地图计算方法
- □ 基本要求
 - 利用激光及定位数据,计算栅格地图(投票统计)。
 - 数据在教学网下载。

数据2(20160801data)

- □ 本数据用于 作业4
- □ 行驶路线
 - 沿理科楼行 驶一圏
- □ 传感器
 - GPS惯导
 - 水平激光

作业3

- □数据
 - 激光扫描数据 a20160801135224. Ims1
 - 定位数据 a-XW-20160801135224. nav
 - 标定参数 1. calib

激光器倒置

- 目的
 - 理解概率的地图计算方法、理解标定参数
- □ 基本要求
 - 利用激光及定位数据,计算占有栅格地图。
 - 数据在教学网下载。
- □ 拓展
 - 比较不同栅格计算方法:投票统计、占有栅格地图。

激光数据介绍

□ 设备介绍

- Hokuyo UTM/UXM
- 扫描范围
 - □ 最大-45° ~225°
 - □ 目前使用 0°~180°
- 扫描解析度 0.5°
- 频率约25Hz

LMS 数据格式 (Binary)

```
DATLEN = AngRng / AngRes + 1
e.g. 180/0.5+1 = 361
    100/0.25+1 = 401
typedef struct {
                        milli;
        long
        unsigned short
                        dat [DATLEN];
} LMSDATBUF;
    距离值 dat[i] 转换 激光点 p(x, y):
        r = dat[i] / Unit:
        a = i * AngRes;
        p. x = r * cosa;
        p.y = r * sina;
```

```
計測角度範囲(AngRng, 例、180), float
角度解像度(AngRes, 例、0.5), float
距離値単位(Unit, 例、100), float
背景データ(現在無用),LMSDATBUF
Scan #1,LMSDATBUF
```

Scan #n,LMSDATBUF

3.NAV格式 (ASCII)

• • •

71542990	0	0	-4.729993	4.154131	-0.436866	0
71543040	0	0	-4.723207	4.069446	-0.448548	0
71543090	0	0	-4.716467	3.981529	-0.450593	0
71543165	0	0	-4.712366	3.839360	-0.465019	0
71543215	0	0	-4.703820	3.754674	-0.473897	0

• • •

二维定位的有效位

1	时间戳(毫秒)			
2	roll (rad)			
3	pitch (rad)			
4	yaw (rad)			
5	X (m)			
6	Y (m)			
7	Z (m)			

激光点坐标转换(数据1)

激光点坐标转换(数据2)

机器人相对全局坐标系的位姿

$$O_k = (x_k, y_k, a_k)$$

传感器相对机器人坐标系的位姿

$$O_L = (x_L, y_L, a_L)$$

获得激光点p_ki

全局坐标系

激光点 p_k^i 转换到全局坐标系 p_w^i

$$p_{w}^{i} = R_{(ak)}(R_{(aL)}p_{k}^{i} + (x_{L}, y_{L})^{t}) + (x_{k}, y_{k})^{t}$$

激光数据坐标转换

数据1:激光器正向安装,aL=xL=yL=0

伪码

数据2: 激光器倒置,aL=4.2deg,xL=0.28m,yL=2.6m

栅格地图创建

□ 简易投票法

结果示意

统计落入该像素区域的激光点数, 并将其可视化。

栅格地图创建

□ 栅格投票法

结果示意

$$Bel(m^{[xy]}) = \frac{\text{hits}(x, y)}{\text{hits}(x, y) + \text{misses}(x, y)}$$

统计落入该像素区域激光点的比率, 并将其可视化。

Misses(): 激光束穿过该像素区域 Hits(): 激光束在该像素得到测量点

栅格地图创建

□ 占有栅格地图

结果示意

统计该像素区域被障碍物占有的几率 并将其可视化。

O(x, y)

占有栅格地图的计算

已知当前帧的观测及机器人姿态,该栅格被障碍物占有的后验概率

该栅格被障碍物 占有的先验