Complejidad Computacional Tarea 2.1

Karla Adriana Esquivel Guzmán Andrea Itzel González Vargas Luis Pablo Mayo Vega Carlos Gerardo Acosta Hernández

Entrega: 03/04/17 Facultad de Ciencias UNAM

Ejercicios

- 1. Demuestra que el lenguaje $\Sigma_i SAT$ es completo para Σ_i^P bajo reducciones polinomiales temporales. Recuerda que SAT es NP-completo.
- 2. Demuestra que si 3SAT es temporalmente reductible polinomialmente a $\overline{3SAT}$ entonces PH=NP.

Sabemos que 3SAT es NP-completo, entonces $\overline{3SAT} \in coNP$. Supongamos que 3SAT es reductible a $\overline{3SAT}$, esto implica que NP=coNP. Como $\sum_1^p=NP$ y $\prod_1^p=coNP$, entonces $\sum_1^p=\prod_1^p$. Como vimos en clase, para toda $i\geq 1$ si $\sum_i^p=\prod_i^p$ entonces $PH=\sum_i^p$, o sea que la jerarquía se colapsa al nivel i. Como $\sum_1^p=\prod_1^p$ entonces $PH=\sum_1^p=NP$. Por lo tanto si 3SAT es reductible a $\overline{3SAT}$ (o sea NP=coNP), entonces PH=NP.

- 3. Demuestra que si $P^A = NP^A$ (para algún lenguaje A), entonces $PH^A \subseteq P^A$.
- 4. Demuestra que si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.

Dem.

Sea $L \in EXP$, entonces existe una máquina de Turing $time-oblivious\ M$ que decide L en tiempo $2^{p(n)}\ p.a$. polinomio p. Sea $s \in \{0,1\}^n$ una cadena de entrada para M. Sabemos por la definición de M que para cada $i \in [2^{p(n)}]$ denotamos con z_i la codificación de la i-ésima "instantánea" de la ejecución de M con la entrada s. Como $EXP \subseteq P/poli$, entonces existe un circuito C de tamaño q(n) (p.a. polinomio q), tal que calcula z_i a partir de una i. La correctud de lo que calcula este circuito mencionado puede ser expresado como un predicado coNP. Así,

$$s \in L \iff \exists C \in \{0,1\}^{q(n)} \ \forall i, i1, ..., ik \in \{0,1\}^{p(n)} \ T(s, C(i), C(i_1), ..., C(i_k)) = 1$$
 (1)

donde T es una TM que verifica esas condiciones en tiempo polinomial. Se puede entonces concluir que $L \in \Sigma_2^P$, que es lo que queremos. Para probar esto, consideremos $p(n) = 2^{n^k}$. Consideremos cada entrada (i,t) en la tabla de M, codifica una cadena $z_{i,t}$, i.e., el contenido de la celda i, al momento t, siempre que la cabeza lectora esté en la entrada i al momento t, y de ser así, z almacena el estado interno de M. Ahora consideremos

$$L_M = \{ \langle s, i, t, z \rangle \mid con \ la \ entrada \ s \ tenemos \ z_{i,t} = z \ para \ M \}$$
 (2)

Simulando M tendremos que $L_M \in EXP \subseteq P/poli$. Utilizando circuitos de tamaño polinomial para L_M , podemos construir un circuito de tamaño polinomial C de múltiple salida, tal que $C(\langle s,i,t\rangle)=z$. Como buscábamos en (1), decimos entonces que:

$$s \in L \iff \exists C \ \forall i, t \ t.q. \ C(\langle s, i, t \rangle) \ acepta \ si$$

 $C(\langle s, i-t, t-1 \rangle), \ C(\langle s, i, t-1 \rangle), \ C(\langle s, i+1, t-t1 \rangle) \ y \ C(\langle s, 1, 2^{n^k} \rangle) \ aceptan.$

Por lo tanto si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.