

第三章 有关可数性的公理

3.1 第一、二可数空间

领域基:

设 X 是拓扑空间, $x\in X$,记 \mathcal{N}_x 是点 x 的领域的全体。设 $\mathcal{V}_x\subset\mathcal{N}_x$,若 \mathcal{V}_x 中有 x 充分小的 领域,则 \mathcal{V}_x 是 x 的一个领域基。

第一可数空间(A_1 空间):

设 X 是一拓扑空间, $\forall x \in X$, x 有一个可数领域基。

命题: 度量空间是第一可数空间。

命题3.1.1:

X 是第一可数空间 $\iff \forall x \in X, x$ 有一个单调递减的可数领域基。

不是第一可数空间的例子:不可数集的可数补拓扑空间。

第二可数空间(A_2 空间):

设X是拓扑空间,X有一可数拓扑基。

命题3.1.2: 第二可数空间是第一可数的。

逆命题不成立,例子:不可数离散空间。

命题3.1.3: 第一(二)可数是拓扑不变性。

可遗传性: 拓扑空间的某种性质其开子空间(闭子空间)也有这种性质。

局部连通性是开子空间可遗传性

命题3.1.4: 第一(二)可数是可遗传性质。

命题3.1.5: $X \times Y$ 第一(二)可数 \iff X, Y第一(二)可数

命题3.1.6: 设 X 第一可数, $A\subset X$, $x\in X$, 则 x 是 A 的聚点 $\iff\exists x_n\in A-\{x\}$, $s.t.x_n\to x(n\to\infty)$.

命题3.1.7: 设X第一可数, $x\in X$, $f:X\to Y$,则f在x连续 $\iff \forall x_n\to Y$

3.2 可分空间

稠密:

设 X 是一个拓扑空间, $A \subset X$, 如果 \forall 非空开集 $U, U \cap A \neq \emptyset$, 则称 A 在 X 中稠密。

命题3.2.1: $A \in X$ 中稠密 $\iff \bar{A} = X$

命题3.2.2:

设 X 第一可数, $A\subset X$, 则 A 是 X 的稠密子集 $\iff \forall x\in X$, $\exists \{x_n\}_{n\geq 1}\in A$, $s.t.x_n\to x(n\to\infty)$.

命题3.2.3:

设 X 是一个拓扑空间, A 是 X 的稠密子集. 又设 $f,g:X\to\mathbb{R}$ 连续. 若 $f|_A=g|_A$, 则 f=g.

可分空间:

设 X 是一个拓扑空间, 如果 X 有一个可分的稠密子集, 则称 X 可分。

命题3.2.4: 第二可数空间是可分的。

逆命题不成,例: Sorgenfrey直线

推论: 第二可数的子空间是可分的。

重要例子:

设 (X,\mathcal{J}) 是一个拓扑空间, $\infty \notin X$, 记 $X^* = X \cup \{\infty\}$.

给 X^* 定义如下拓扑: $U \in \mathcal{J}^* \iff U = \varnothing$ 或 $\exists V \in \mathcal{J}, s.t. U = V \cup \{\infty\}.$

 X^* 具有以下性质:

- (1) $\{\infty\}$ 在 X^* 中稠密
- (2) X^* 第二可数 \iff X 第二可数
- (3) X 是 X^* 的子空间

由此可得:

- 可分空间不一定是第二可数的
- 可分空间的子空间不一定可分

命题3.2.5: 可分度量空间是第二可数的。

推论:可分度量空间的子空间是可分的。

命题3.2.6: 设 X 是度量空间,则 X 可分 \iff X 第二可数。

不可分的度量空间的例子:

 l^{∞} 一有界数列全体, $d(x,y)=sup_{x\geq 1}|x_n-y_n|$

命题3.2.7: 可分空间有拓扑不变性。

命题3.2.8: 可分空间有有限可积性。

3.3 Lindelöf 空间

覆盖:

设 \mathscr{A} 是一个集族, B 是一个集合, 如果 $\cup_{A \in \mathscr{A}} A \supset B$, 则称 \mathscr{A} 是 B 的一个覆盖。

Lindelöf 空间:

设 X 是一个拓扑空间,若其任意一个开覆盖都有可数子覆盖,则称 X 为 Lindellof 空间。

命题3.3.1: 第二可数空间是Lindeliof空间。

第二可数空间的子空间是Lindeliof空间。

逆命题不成立,例:不可数集的可数补空间。

命题3.3.2: Lindeliof 的度量空间是第二可数空间。

命题3.3.3: Lindeliof 是拓扑不变性。

命题3.3.4: Lindelingtriangleright 是闭子空间遗传性。

子空间遗传性不成立的例子:

设X是一个不可数集, $z \in X$,令 $X_1 = X - \{z\}$

定义X的拓扑: $\mathcal{J}=2^{X_1}\cup\{U\subset X:z\in U$ 且 U^c 可数 $\}$.

有限可积性不成立的例子: Sorgenfrey平面

命题3.3.5: 设拓扑空间 X 的每一个子空间都是Lindeliof 空间, 如果 $A\subset X$ 是一个不可数集, 则 $A\cap d(A)\neq\varnothing$.