四川大学期末考试试卷(A)

(2007-2008年第二学期)

科目:《大学数学》(微积分)

适用专业年级: 数学一各专业2007级本科生

题 号	_	11	=		四		.Ti.		六 :		 4
得 分	,·										

考试须知

四川大学学生参加由学校组织或由学校承办的各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》。有考试违纪作弊行为的,一律照《四川大学学生考试违纪作弊处罚条例》进行处理。

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、四川大学考场规则》和《四川大学监考人员职责》。有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理。

得分	评卷人

- 一. 填空题 (每小题 3分,共15分)
 - 1. 设 f(x) 是以 2π 为周期的周期函数,它在 $(-\pi,\pi]$ 上的表达式为

$$f(x) = \begin{cases} -x, & -\pi < x < 0 \\ x - 1, & 0 \le x \le \pi \end{cases}, \quad \iint_{\mathbb{R}^n} f(x) \text{ 的傅里叶级数在 } x = 0 \text{ 处收敛于}_____,$$

- 2. 设 $(x^4 + 4xy^n)dx + (6x^{n-1}y^2 5y^4)dy$ 是某个函数u(x, y) 的全微分,则 $n = ____$,

- 5. $f(xy, x+y) = x^2 + y^2$, y f(x,y) =

- 二. 选择题(每小题 3分,共15分)
 - 1. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则必有 (),

(A)
$$\sum_{n=1}^{\infty} |u_n|$$
 收敛, (B) $\sum_{n=1}^{\infty} u_n^2$ 收敛, (C) $\sum_{n=1}^{\infty} (-1)^n u_n$ 收敛, (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ 收敛;

2. 双曲线
$$\begin{cases} x^2 - y^2 = 1 \\ z = 0 \end{cases}$$
 绕 y 轴旋转一周而形成的旋转双曲面方程是 ();

(A)
$$x^2 - y^2 + z^2 = 1$$

(A)
$$x^2 - y^2 + z^2 = 1$$
, (B) $x^2 - y^2 - z^2 = 1$,

(C)
$$x^2 + y^2 + z^2 = 1$$
, (D) $x^2 + y^2 - z^2 = 1$;

(D)
$$x^2 + v^2 - z^2 = 1$$
:

3. 考虑二元函数 f(x,y) 在点 (x_0,y_0) 处的下面四条性质: (1) 两个偏导数存在,

(2) 沿任何方向的方向导数存在, (3) 可微, (4) 两个偏导数连续, 则有: (

(A)
$$(3) \Rightarrow (1) \Rightarrow (2)$$
,

(B)
$$(4) \Rightarrow (2) \Rightarrow (1)$$
,

(C)
$$(4) \Rightarrow (3) \Rightarrow (2)$$
,

(D)
$$(3) \Rightarrow (4) \Rightarrow (1)$$
;

4. 设函数 z = z(x, y) 由方程 $xyz = e^{x+z}$ 所确定,则 $\frac{\partial z}{\partial x} = 0$

$$(A) \ \frac{z(1-x)}{x(y-1)}$$

(B)
$$\frac{z(1-x)}{x(z-1)}$$

(C)
$$\frac{z(1-y)}{v(1-x)}$$

(A)
$$\frac{z(1-x)}{x(y-1)}$$
, (B) $\frac{z(1-x)}{x(z-1)}$, (C) $\frac{z(1-y)}{y(1-x)}$, (D) $\frac{y(1-x)}{x(y-1)}$.

5. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R ,则幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半径为 ()。

(A)
$$R^2$$

(B)
$$\sqrt{R}$$

(C)
$$2R$$

(A)
$$R^2$$
, (B) \sqrt{R} , (C) $2R$, (D) $\frac{R}{2}$.

得分

三. 计算题 (每小题 8分, 共 24分)

1. 计算曲线积分 $\int e^{\sqrt{x^2+y^2}} ds$,其中 L 是由曲线 $y=\sqrt{1-x^2}$ 与 x 轴所围成的区域的边界 曲线。

- 2. 设曲线积分 $\int_L [f(x)-e^x]\sin ydx f(x)\cos ydy$ 与路径无关,其中 f(x) 具有一阶 连续导数,且 f(0)=0 。
 - (1) 求函数 f(x), (2) 计算曲线积分 $\int_{(0,0)}^{(1,2)} [f(x) e^x] \sin y dx f(x) \cos y dy$.

3. 设 $z = f(xy, \frac{x^2 - y^2}{2})$, 其中函数 f 具有连续的二阶偏导数, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x^2}$ 。

得分 评卷人

四. 解答题 (每小题 8分,共16分)

1.已知 y'' - 6y' + 5y = 4x + 1, $y|_{x=0} = 1$, $y'|_{x=0} = 1$, 求 y 的特解。

2. 计算曲面积分 $\iint_{\Sigma} x dy dz + y dz dx + (z+1) dx dy$, 其中 Σ 是上半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 的上侧。

得分 评卷人

五. 应用题 (每小题 8分, 共 16 分)

1. 求内接于椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的体积最大的长方体(长方体的各面均平行于坐标面),指出该长方体的长、宽、高,并求出最大体积。

2. 求由曲面 $z = \sqrt{x^2 + y^2}$ 和 $z = \sqrt{1 - x^2 - y^2}$ 所围成立体的体积。

得分 评卷人

六. 证明题 (每小题 7 分, 共 14 分)

1. 证明: $\int_a^b dx \int_a^x (x-y)^{n-2} f(y) dy = \frac{1}{n-1} \int_a^b (b-y)^{n-1} f(y) dy, \quad \sharp \oplus n > 1.$

2. 设 $u_n \neq 0$ (n = 1, 2, ...),且 $\lim_{n \to \infty} u_n = a \neq 0$ 。 证明:级数 $\sum_{n=1}^{\infty} |u_{n+1} - u_n|$ 与级数

$$\sum_{n=1}^{\infty} \left| \frac{1}{u_{n+1}} - \frac{1}{u_n} \right|$$
 有相同的敛散性。