```
(a) ALGORITHM(L)
                                   //L is the list of processing times
       n = |L|
                                   //get length of list input L
   2
       R = []
                                   //output
   3
       Lcopy = deepcopy(L)
   4
       sort(Lcopy)
                                   //SORT IN ASCENDING ORDER
   5
       for i = 0 to n - 1
                                   //FOR EACH PROCESSING TIME P IN LCOPY, FIND THE INDEX OF
           P = Lcopy[i]
                                   //THE FIRST OCCURRENCE OF P IN L
   6
   7
          for j = 0 to n - 1
   8
              if L[i] = P
   9
                  L[i] = -1
                                   //found an occurrence, set the occurrence to -1 so we don't
                  R.append(j+1)
  10
                                  //RETURN THIS INDEX AGAIN IN CASE THERE ARE DUPLICATES OF
  11
                  break
                                   //THIS OCCURRENCE IN L
  12
      return R
                                   //no elements can be -1 in L originally since t_1,...,t_n \in \mathbb{N}
```

(b) A partial solution for my algorithm is a list **K** that contains the indices of processing time(s) sorted such that the average completion time of executing all process(es) in the order specified by **K** is minimized.

Partial solutions: (Let R_n be the partial solution constructed by the algorithm after iteration n)

```
 \begin{aligned} n &= 0 & R_0 &= [] \\ n &= 1 & R_1 &= [1] \\ n &= 2 & R_2 &= [1, 4] \\ n &= 3 & R_3 &= [1, 4, 3] \\ n &= 4 & R_4 &= [1, 4, 3, 2] \end{aligned}
```

(c) Let R_0 , R_1 , ..., R_n be the **R** list at the end of each iteration of the loop on line 5. For any optimum solution OPT, we say OPT **extends** R_i if

```
• for i > 0, i \in \mathbb{Z}, OPT[k] = R_i[k] for k = 0, ..., m where m = |R_i| - 1
• for i = 0, R_i = []
```

A partial solution, R_i is said to be promising iff $\exists OPT$ that extends R_i

- (d) **Proof:** R_i is promising, for all i where i = 0, ..., |L| 1 by induction on i (# of iterations)
- (e) Lcopy contains $t_1,...,t_n$ in a sorted ascending order. Let $T_1,...,T_n$ be the elements of Lcopy. Let K_1 be the index of T_1 in L, . . . , K_n be the index of T_n in L. The values of $K_1,...,K_n$ are unique, for example, if some $T_i = T_j$ then there will be at least 2 occurrences of the value \mathbf{G} , $(G = T_i = T_j)$ in L. K_i will be the index of one occurrence of \mathbf{G} in L and K_j will be the index of another occurrence of \mathbf{G} in L

For each iteration, there is only one case:

```
• R_{i+1} = R_i append K_{i+1}
```

- (f) Given that
 - $R_{i+1} = R_i$ append K_{i+1}

Does R_{i+1} extend OPT using our definition of **extend** in (c)?

There are two subcases:

Case 1: Yes, R_{i+1} extends OPT by our definition of **extend** therefore R_{i+1} is promising.

Case 2: No, R_{i+1} does not extend OPT by our definition of **extend**.

(g) Every R_i is promising, in particular, R_n is promising.

Therefore, ∃OPT such that:

- if n = 0, $R_n = []$
- if n > 0, $n \in \mathbb{Z}$, $OPT[k] = R_n[k]$ for k = 0,...,m where $m = |R_n| 1$