Tipos de Analizadores Sintácticos LR(k)

- LR(0)
- SLR(1): Simple LR(1)
- LALR(1): Lookahead LR(1)
- LR(1)

Poder expresivo

$$LR(0) \subset SLR(1) \subset LALR(1) \subset LR(1)$$
 \uparrow
 $menor$
 \uparrow
 $mayor$

Modelo de los analizadores sintácticos LR

Los parsers LR se representan como las tablas *ir_a* y *acción*:

- Tabla acción (Action): Mapea cada estado (del tope de la pila) y símbolo de entrada a una acción:
 - desplazar i (shift): desplazar y apilar el estado i.
 - reducir $A \rightarrow \beta$: reducir por la producción indicada.
 - aceptar: aceptar la cadena de entrada.
 - error: rechazar la cadena de entrada.
- Tabla ir_a (GOTO): Mapea un estado y un símbolo no terminal a un nuevo estado.

Conceptos para la construcción del AFD

Item LR(0)

Producción con un pivote (•) en alguna posición del lado derecho.

Representa hasta dónde se vio una producción en el proceso de análisis sintáctico, y cómo se espera que continúe la cadena de entrada.

Por ejemplo, para la producción $A \rightarrow BC$, existen estos ítems LR(0):

- $A \rightarrow \bullet BC$
- $A \rightarrow B \bullet C$
- $A \rightarrow BC \bullet$

Para la producción $A \rightarrow \lambda$ el único ítem es: $A \rightarrow \bullet$

Conceptos para la construcción del AFD

Clausura de un Conjunto de Items

```
\begin{array}{l} J \leftarrow I \\ \textbf{repeat} \\ \textbf{for item } A \rightarrow \alpha \cdot \textbf{B}\beta \in J \text{, y producción } \textbf{B} \rightarrow \gamma \text{ de } G \textbf{ do} \\ \text{agregar } B \rightarrow \cdot \gamma \text{ a } J \\ \textbf{end for} \\ \textbf{until } \text{no se puedan agregar items a } J \\ \textbf{return } J \end{array}
```

Por ejemplo, si tenemos

$$A \rightarrow BaC$$

$$B \rightarrow b$$

$$C \rightarrow c$$

La clausura de $A \rightarrow \bullet BaC$ es

$$A \rightarrow ullet BaC$$

$$B \rightarrow \bullet b$$

Conceptos para la construcción del AFD

Función $Ir_a(I \text{ conjunto de ítems, } X \text{ símbolo})$

```
J \to \emptyset for cada ítem A \to \alpha \bullet X\beta en I do agregar Clausura(\{A \to \alpha X \bullet \beta\}) a J end for return J
```

Items de una gramática G

```
C ← {Clausura({S' → •S})}
repeat
for cada conjunto de ítems I en C y cada símbolo X do
    agregar Ir_a(I, X) a C
    end for
until no se puedan agregar más conjuntos de ítems a C
```

AFD para armado de tablas

Construcción de las tablas

3 Construir la tabla acción:

```
if A \to \alpha \cdot a\beta está en I_i, y \delta(I_i, a) = I_i, a \in V_T then
  asignar desplazar j a accion[i, a]
end if
if A \to \alpha está en I_i, A \neq S' then
  asignar reducir A \to \alpha a accion[i,a]
        LR(0): para todos los terminales a
        SLR(1): para a en Siguientes(A)
end if
if S' \to S está en I_i then
  asignar aceptar a accion[i,$]
end if
```

AFD para armado de tablas

Construcción del Autómata

- 4 Construir la tabla ir_a: Para cada no terminal A, ir_a[i,A] = j $\Leftrightarrow \delta(I_i,A) = I_j$
- 5 Las entradas vacías de la tabla acción son consideradas error
- 6 El estado inicial es el que contiene el ítem $S' \rightarrow \cdot S$

Gramáticas LR(0) - SLR(1)

Conflictos

Si la tabla acción tiene más de una entrada en algún casillero, entonces la gramática no es LR(0) / SLR(1).

Posibles conflictos:

- shift-reduce
- reduce-reduce

Parsers LR(K) - Algoritmo

```
apilar s<sub>0</sub>
loop
   s \leftarrow \text{tope de la pila}
   a \leftarrow \text{pr\'oximo s\'imbolo apuntado en } w$
   if accion[s, a] = desplazar s' then
      apilar s'
      avanzar al próximo símbolo de entrada
   else if accion[s, a] = reducir A \rightarrow \beta then
      sacar |\beta| símbolos de la pila
      s' \leftarrow \text{tope de la pila}
      apilar ir_a[s', A]
   else if accion[s, a] = aceptar then
      return
   else
      error()
  end if
end loon
```

Ejercicio 1

Sea G1 la siguiente gramática:

$$\begin{array}{ccc} S & \to SA|A \\ A & \to (S)|() \end{array}$$

¿Es LR(0)? ¿Es SLR?

Analizar la siguiente cadena: (())()

Tabla acción LR(0) para G1

estado	()	\$
0	desplazar 3		
1	desplazar 3		aceptar
2	reducir $S o A$	reducir $\mathcal{S} o \mathcal{A}$	reducir $\mathcal{S} o \mathcal{A}$
3	desplazar 3	desplazar 6	
4	reducir $S o SA$	reducir $S o SA$	$reducir\; \mathcal{S} \to \mathcal{SA}$
5	desplazar 3	desplazar 7	
6	reducir $A o ()$	reducir $A o ()$	$reducir\; A \to ()$
7	reducir $A \rightarrow (S)$	reducir $A \rightarrow (S)$	reducir $A \rightarrow (S)$

Tabla ir_a LR(0) para G1

estado	S	Α
0	1	2
1		4
2		
2 3 4 5 6	5	2
4		
5		4
6		
7		

Análisis de una cadena del lenguaje generado por G1

pila	entrada	acción
0	(())()\$	desplazar 3
03	())()\$	desplazar 3
033))()\$	desplazar 6
0336)()\$	reducir $A \rightarrow ()$
032)()\$	reducir $S \to A$
035)()\$	desplazar 7
0357	()\$	reducir $A \rightarrow (S)$
02	()\$	reducir $S \rightarrow A$
01	()\$	desplazar 3
013)\$	desplazar 6
0136	\$	reducir $A \rightarrow ()$
014	\$	reducir $S \rightarrow SA$
01	\$	aceptar

Derivación:

$$S \Rightarrow SA \Rightarrow S() \Rightarrow A() \Rightarrow (S)() \Rightarrow (A)() \Rightarrow (())()$$

Ejercicio 2

Sea G2 la siguiente gramática:

$$E \rightarrow id|id(E)|E+id$$

¿Es LR(0)? ¿Es SLR?

Analizar la siguiente cadena: id(id + id)

Tabla acción SLR para G2

estado	id	()	+	\$
0	desp2				
1				desp3	aceptar
2		desp4	r(E o id)	r(E o id)	r(E o id)
3	desp5				
4	desp2				
5			$r(E \rightarrow E + id)$	$r(E \rightarrow E + id)$	$r(E \rightarrow E + id)$
6			desp7	desp3	
7			r(E o id(E))	r(E o id(E))	$r(E \rightarrow id(E))$

$$Siguientes(E) = \{), +, \$\}$$

Tabla ir_a SLR para G2

estado	Е
0	1
1	
2	
2	
4	6
5	
5 6	
7	

Análisis de una cadena del lenguaje generado por G2

pila	entrada	acción
0	id(id+id)\$	desplazar 2
02	(id+id)\$	desplazar 4
024	id+id)\$	desplazar 2
0242	+id)\$	reducir $E o id$
0246	+id)\$	desplazar 3
02463	id)\$	desplazar 5
024635)\$	reducir $E \rightarrow E + id$
0246)\$	desplazar 7
02467	\$	reducir $E o id(E)$
01	\$	aceptar

Derivación:

$$S \Rightarrow id(E) \Rightarrow id(E+id) \Rightarrow id(id+id)$$