EJEMPLO 6.3.1 Un producto interno en \mathbb{R}^n

 \mathbb{R}^n es un espacio con producto interno con $(\mathbf{u}, \mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$. Las condiciones iii)-vii) están contenidas en el teorema 2.2.1. Las condiciones i) y ii) están incluidas en la ecuación 6.1.9.

EJEMPLO 6.3.2 Un producto interno en \mathbb{C}^n

Se definió un espacio vectorial en \mathbb{C}^n en el ejemplo 5.1.12. Sean $\mathbf{x} = (x_1, x_2, \dots, x_n)$ y $\mathbf{y} = (y_1, y_2, \dots, y_n)$ en \mathbb{C}^n (recuerde que esto significa que los elementos x_i y y_i son números complejos). Entonces se define

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 \,\overline{y}_1 + x_2 \overline{y}_2 + \dots + x_n \overline{y}_n \tag{6.3.1}$$

Para demostrar que la ecuación (6.3.1) define un producto interno se necesitan algunos hechos sobre los números complejos. Si el lector no está familiarizado, consulte el apéndice B. Para i),

$$\langle \mathbf{x}, \mathbf{x} \rangle = x_1 \overline{x}_1 + x_2 \overline{x}_2 + \dots + x_n \overline{x}_n = |x_1|^2 + |x_2|^2 + \dots + |x_n|^2$$

Así, i) y ii) satisfacen ya que $|x_i|$ es un número real. Las condiciones iii) y iv) se deducen del hecho de que $z_1(z_2+z_3)=z_1z_2+z_1z_3$ para cualesquiera números complejos z_1,z_2 y z_3 . La condición v) se deduce del hecho de que $\overline{z_1}\overline{z_2}=\overline{z_1}\overline{z_2}$ y $\overline{\overline{z}_1}=z_1$ de manera que $\overline{x_1}\overline{y_1}=\overline{x_1}y_1$. La condición vi) es obvia. Para vii) $\langle \mathbf{u}, \alpha \mathbf{v} \rangle = \langle \overline{\alpha \mathbf{v}}, \overline{\mathbf{u}} \rangle = \langle \overline{\alpha \mathbf{v}}, \overline{\mathbf{u}} \rangle = \overline{\alpha} \langle \overline{\mathbf{v}}, \overline{\mathbf{u}} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{v} \rangle$. Aquí se usaron vi) y v).

EJEMPLO 6.3.3 Producto interno de dos vectores en \mathbb{C}^3

En \mathbb{R}^3 sean $\mathbf{x} = (1 + i, -3, 4 - 3i)$ y $\mathbf{y} = (2 - i, -i, 2 + i)$. Entonces

$$\langle \mathbf{x}, \mathbf{y} \rangle = (1+i)(\overline{2-i}) + (-3)(\overline{-i}) + (4-3i)(\overline{2+i})$$

= $(1+i)(2+i) + (-3)(i) + (4-3i)(2-i)$
= $(1+3i) - 3i + (5-10i) = 6-10i$

EJEMPLO 6.3.4 Un producto interno en C[a, b]

Suponga que a < b; sea V = C[a, b] el espacio de las funciones de valores reales continuas en el intervalo [a, b] y defina

$$\langle f, g \rangle = \int_{a}^{b} f(t) g(t) dt$$
 (6.3.2)

Se verá que esto también es un producto interno.

i)
$$(f, f) = \int_a^b f^{-2}(t) dt \ge 0$$
. Es un teorema básico del cálculo que si $q \in C[a, b], q \ge 0$ sobre $[a, b]$ y $\int_a^b q(t) dt = 0$, entonces $q = 0$ sobre $[a, b]$. Esto prueba i) y ii), iii)-vii) se deducen de los hechos básicos sobre integrales definidas.

Nota

Ésta no es la única manera de definir un producto interno sobre C[a, b], pero es la más común.

Nota. En C[a, b] se supone que los escalares son números reales y que las funciones son de valores reales, de manera que no nos preocupamos por los complejos conjugados; sin embargo, si las funciones son de valores complejos, entonces de todas maneras se puede definir un producto interno. Vea más detalles en el problema 6.3.27.

^{*} El símbolo Cálculo indica que se necesita el cálculo para resolver el problema.