2. Übungsblatt zur Mathematik 2

Lösung zu Aufgabe Ü 2.1

Die Umrechungsformel von Celsius (=C) in Fahrenheit (=F) ist: $F = \frac{9}{5}C + 32$

a) $\left\| \cdot \frac{9}{5} \right\|$ $80 \leq T_C \leq 115$ $80 \cdot \frac{9}{5} \leq T_C \cdot \frac{9}{5} \leq 115 \cdot \frac{9}{5}$ \Leftrightarrow $144 \leq T_C \cdot \frac{9}{5} \leq 207$ ||+32 \Leftrightarrow $144 + 32 \le T_C \cdot \frac{9}{5} + 32 \le 207 + 32$ \Leftrightarrow $176 \leq T_F \leq 239$ \Leftrightarrow b) $40 \leq T_F \leq 46$ ||-32 $40-32 \leq T_F-32 \leq 46-32$ \Leftrightarrow $8 \leq T_F - 32 \leq 14$ $\left\| \cdot \frac{5}{9} \right\|$ \Leftrightarrow $8 \cdot \frac{5}{9} \le (T_F - 32) \cdot \frac{5}{9} \le 14 \cdot \frac{5}{9}$ \Leftrightarrow $4,\overline{4} \leq T_C \leq 7,\overline{7}$ \Leftrightarrow

Lösung zu Aufgabe Ü 2.2

Behauptung: Die Aussage

$$xy < x^2 + y^2$$

gilt für alle $(x, y) \in \mathbb{R}^2$

Fall 1: $x \cdot y \le 0$ (d.h. $(x \le 0 \land y \ge 0) \lor (x \ge 0 \land y \le 0)$) Die Aussage ist wahr, da $x \cdot y \le 0$ und $x^2 + y^2 \ge 0$

Fall 2: $x \cdot y > 0$ (d.h. $(x < 0 \land y < 0) \lor (x > 0 \land y > 0)$)

Variante 1: 2. Binomische Formel

$$z.z. xy \le x^2 + y^2$$
 \Leftrightarrow $z.z. x^2 + y^2 - xy \ge 0$

Wir schätzen ab:

$$x^{2} + y^{2} - xy > x^{2} + y^{2} - 2xy = (x - y)^{2} \ge 0$$

Variante 2: Ungleichung geom./arithm. Mittel

Wir wissen, dass für positive a,b gilt:

$$\sqrt{a \cdot b} \le \frac{1}{2} \cdot (a+b)$$

Wir wählen $a = x^2, b = y^2$ und erhalten

$$\Leftrightarrow \qquad \sqrt{x^2 \cdot y^2} \le \frac{1}{2} \cdot (x^2 + y^2)$$

$$\Leftrightarrow |x| \cdot |y| \le \frac{1}{2} \cdot (x^2 + y^2)$$

 $da x \cdot y > 0$

$$\Leftrightarrow x \cdot y \le \frac{1}{2} \cdot \underbrace{(x^2 + y^2)}_{\ge 0}$$

$$\Rightarrow \qquad x \cdot y \le x^2 + y^2$$