

ACADEMIC UNDERGRADUATE STUDIES DIVISION FIRST SEMESTER 2019-2020 Course Handout Part II

02-08-2019

In addition to part I (general handout for all courses appended to the timetable) this portion gives specific details regarding the course.

Course No. : CHEM F311

Course Title : Organic Chemistry III Instructor-in-charge : KVG Chandra Sekhar

1. Course Description:

This course emphasizes on applications of important reagents and reactions in organic synthesis and disconnection or *synthon* approach. In *disconnection* or *synthon* approach the target molecule is broken down by a series of disconnections into possible starting materials followed by synthesis.

2. Scope and Objective of the Course:

The aim of this course is to familiarize the students with retrosynthetic analysis and enable the student to design the synthesis using organic compounds using appropriate reagents and also expose them to some of the important transition metal catalyzed organic reactions.

3. Text Book:

TB1: Michael B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6th ed., 2012.

TB2: Stuart Warren: Organic Synthesis: The Disconnection Approach: John Wiley & Sons, 2004.

Reference Books:

R1: Carruthers and Coldham, Modern Methods of Organic Synthesis, Cambridge, 4th edition, 2004.

R2: Fuhrhop and Li, Organic Synthesis: Concepts and Methods; Wiley, 3rd edition, 2014.

4. Course Plan:

Lec. No.	Learning Objectives	Topic(s) to be Covered	Learning Outcomes	Chap(s). No(s).
1	Introduction	Organic synthesis and its	Relate the importance of	Class notes
		applications	various organic compounds,	
			their synthesis and uses	
2-5	Common	NaBH4 (SS), LAH (SS), DIBAL,	Define and consolidate new	TB1 : 15-13;
	organic	BH ₃ , Birch reduction, Swern	oxidative and reductive	class notes,
	reagents	oxidation, OsO_4 , O_3 (SS), DMP, m -	reagents to be used in	SS: self-
		CPBA (SS), Ti(ⁱ OPr) ₄ , Lindlar	various organic synthesis	study
		catalyst, NBS (SS), NaIO ₄ (SS)		
6-9	Organometallic	Grignard reagent (SS),	Define the various	Class notes,
	reagents	organolithium reagents (SS),	organometallic reagents to be	SS : self-study

		organocuprates (SS), organozinc reagents, organoboranes, organosilicon reagents, organotin compound.	used in organic synthesis	
10-11	Introduction of disconnection approach	Basic principles of disconnection approach in organic synthesis	Define reterosynthesis and basis for mathematical approach towards synthesizing organic compounds	TB2: 1
12-15	Synthesis of aromatic Compounds	Basic Principles: Synthesis of Aromatic Compounds, The Order of Events	Use retrosynthetic analysis to work out and compare alternative syntheses of	TB2: 2, 3
16-23	One group C-X and C-C disconnections	One Group C-X Disconnections, Chemoselectivity Synthesis of Alcohols, General Strategy of Choosing Disconnection, Stereoselectivity, Synthesis of Carbonyl Compounds, Regioselectivity, Alkene Synthesis, Use of acetylenes for synthesis.	complex organic compounds. Outline important classical and modern reactions used in organic synthesis. Discuss how reaction conditions influence the outcome of important reactions with respect to regioselectivity, stereospecificity and	TB2: 4, 5, 10-16
24-30	Two group C-X and C-C disconnections	Two Group C-X Disconnections, Reversal of Polarity, Cyclisation Reactions, Summary of Strategy, Amine Synthesis, Diels-Alder Reactions, 1,3-Difuntionalised Compounds and α,β-Unsaturated Carbonyl Compounds, Control in Carbonyl Condensations, 1,5-Difuntionalised Compounds, Michael addition and Robinson annelation, Use of Aliphatic Nitro Compounds in Synthesis, 1,2-Difuntionalised compounds, FGA and its Reverse, Reconnections, 1,4- and 1,6-Difuntionalised Compounds, Strategy of Carbonyl Disconnections.	stereoselectivity.	TB2: 6-9, 17-28
31-34	Ring synthesis (saturated heterocycles)	Introduction to Ring synthesis, Synthesis of three, four, five and six membered Rings and general strategy of Ring Synthesis	Use disconnection approach for synthesis of ring compounds and apply all the principles learnt already in	TB2: 29, 30, 32, 34, 36, 37
35-39	Synthesis of heterocyclic compounds	Aromatic Heterocycles and advanced strategy	synthesizing various aromatic heterocycles	TB2: 39, 40
40-42	Transition metal catalyzed organic reactions	C-C bond forming reactions (Suzuki, Heck, Negishi, Sonogashira, Stille reaction), C-N bond forming reactions (Buchwald-Hartwig reaction)	Define various bond forming reactions and their application based name reactions in organic synthesis	TB1: 13-12, 13-10, class notes

5. Evaluation scheme:

Component	Duration	Weightage (%)	Date and Time	Remarks
Midsem test	90 min	35	05/10 3:30 - 5 PM	Closed Book
* Surprise tests + Presentation		20	Continuous	Closed Book
Comprehensive Examination	3 hrs	25 % closed book + 20 % open book	14/12 AN	Closed/Open Book

^{*}Seven tutorial tests will be conducted at regular intervals. Best five will be considered (15 % weightage). One presentation on a specific topic would also be conducted for each student (5 % weightage).

- **6. Chamber Consultation Hour**: Thursday 11 12 noon.
- **7. Make-up policy:** Make up would be considered only for very **genuine reasons** (**such as institute deputation outside for sports/cultural fest, hospitalization (with appropriate documentary proof)**, and any other extreme emergency situations which would be decided by the team of instructors.
- **8. Notice**: All notices concerning the course will be displayed on Chemistry Department Notice Board and/or CMS.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- **10. Final grading** will be done on the basis of the overall performance of a student in each of the components as listed in item no. 6. For **mid-semester grading**, progress made by a student up to that point of time would be evaluated.

Instructor-in-Charge Organic Chemistry – III

