Comparing Model-Free Deep Reinforcement Learning Algorithms on Stock Market

1. The Aim

To understand the performance difference of

model-free deep reinforcement learning algorithms on stock market

in terms of

training speed, performance, generalizability.

2. Methods

Comparing Policy Optimization

Proximal Policy Optimization (PPO)

Observation
Balance
Current Portfolio
Stock Prices
Technical Indicators

Reward
Rate of Return

Environment
Stock Market

F : Ford Motor Company
NVDA: NVIDIA Corporation

Actions
Buy/Sell Stocks

Trader

Hyperparameter optimization

using Optuna Framework on six AWS EC2 instances

maalman Hillioon lood Hillioon

Training frameworks

FinRL Library
Stable Baselines3

OpenAI Gym

O-Learning

(TD3) Twin Delayed DDPG

3. Results and Conclusion

	Algorithms (Stocks)	Cumulative Return	Annual Volatility	Sharpe Ratio
	PPO (F, NVDA)	16.552928	0.468879	1.459257
	TD3 (F. NVDA)	16.559846	0.468114	1.461074
	PPO (GM, AMD)	31.933818	0.606478	1.451827
	TD3 (GM, AMD)	39.035147	0.632949	1.476289

Q-Learning generalizes better.

No statistically significant difference in performance

35 TD3 Agents and 59 PPO Agents trained in same time frame

TD3 is more **frame efficient**. PPO is **faster** in training.

→ TD3 is **off-policy**,

meaning it uses whole history to train each time [1].

PPO is **on-policy**, meaning it uses only the **latest** data [2].

PPO Agents
TD3 Agents

Cumulative Returns (%)

Overfitting? TD3 is more **stable**. PPO is **sensitive** to **hyperparameters**.

Off-policy Q-Learning algorithms are stable as they do not overtrain on the recent samples, and and generalize better to similar environments.

Policy optimization algorithms (which are also **on-policy**) are **highly sensitive** to hyperparameters, because a bad step can **destabilize learning**, even causing a **performance collapse.**

4. Contact

TUDelft

Murat Kaan Meral M.K.Meral@student.tudelft.nl

5. References

- Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing Function Approximation Error in Actor-Critic Methods. 35th International Conference on Machine Learning, ICML 2018, 4:2587–2601, 2018.
- [2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv, pages 1–12, 2017.