Atividade 5 - Tiro no Escuro (tiro certeiro)

Davi Gabriel Domingues - 15447497

13 de Outubro de 2025

1 Explicações do cenário

O arquivo tiroNoEscuro.c contém um conjunto de implementações híbridas e otimizadas de algoritmos de ordenação, projetadas para entregar bom desempenho prático em diferentes padrões de entrada. O programa disponibiliza três algoritmos selecionáveis (por id):

- id = 1: Quicksort otimizado (particionamento de Hoare + mediana de três + limiar para insertion_sort + recursão na metade menor).
- id = 2: Radix sort (MSD, variante American-flag, base 256) com fallback para "insertion_sort" em buckets pequenos.
- id = 3: Introsort (Quicksort com limite de profundidade que faz fallback para Heapsort; usa insertion_sort para ranges pequenos).

2 Trechos universais pertinentes do código

A seguir, tem-se trechos relevantes do código-fonte (arquivo tiroNoEscuro.c) e as explicações sobre cada componente, a qual está presente nos comentários do programa em si:

Listing 1: Função swap_int — troca de valores (utilitário)

```
// Troca dois inteiros por referencia
static void swap_int(int *a, int *b) {
   int t = *a;
   *a = *b;
   *b = t;
}
```

Listing 2: insertion_sort — ordenação eficiente para subvetores pequenos (limiar)

```
// Insertion sort in-place em [lo, hi]; bom para subarranjos pequenos (cutoff)
static void insertion_sort(int *a, int lo, int hi) {
    // O(m^2) no pior caso (m = hi - lo + 1)
    for (int i = lo + 1; i <= hi; ++i) {
        int key = a[i], j = i - 1;

        // Desloca elementos maiores que key uma posicao a direita
        // Invariante: a[lo..j] ja esta ordenado e todos > key serao movidos
        while (j >= lo && a[j] > key) {
            a[j + 1] = a[j];
            --j;
        }
}
```

```
a[j + 1] = key;}
```

Listing 3: median_of_three — escolha do pivô (coloca em a[lo])

```
// Mediana de tres: escolhe pivo entre a[lo], a[mid], a[hi] e move para a[lo]
static int median_of_three(int *a, int lo, int hi) {
    // Seleciona a mediana entre a[lo], a[mid], a[hi] e a move para a[lo] como pivo.
    // Ajuda a evitar piores casos em entradas ja (quase) ordenadas.
    int mid = lo + ((hi - lo) >> 1);
    if (a[mid] < a[lo])
        swap_int(&a[mid], &a[lo]);

if (a[hi] < a[mid])
    swap_int(&a[hi], &a[mid]);

if (a[mid] < a[lo])
    swap_int(&a[mid], &a[lo]);

// Move o pivo (mediana) para a[lo]
    swap_int(&a[lo], &a[mid]);
    return a[lo];
}</pre>
```

Listing 4: Particionamento de Hoare (partition_hoare)

```
// Particionamento de Hoare em [lo, hi]
// Retorna indice j tal que [lo, j] <= pivo e [j+1, hi] >= pivo
static int partition_hoare(int *a, int lo, int hi) {
   // Particionamento de Hoare:
   // - Mantem i avancando ate a[i] >= pivo e j recuando ate a[j] <= pivo; troca quando
   // - Retorna j tal que [lo..j] <= pivo e [j+1..hi] >= pivo (intervalos podem se
        sobrepor em valores iguais).
   int pivot = median_of_three(a, lo, hi), i = lo - 1, j = hi + 1;
   for (;;) {
       // Avanca i ate encontrar elemento >= pivo
       do {
           ++i:
       } while (a[i] < pivot);</pre>
       // Regride j ate encontrar elemento <= pivo</pre>
       do {
           --j;
       } while (a[j] > pivot);
       if (i >= j)
           return j; // regiao particionada
       swap_int(&a[i], &a[j]);
   }
}
```

3 Quicksort

O funcionamento básico do Quicksort segue o padrão clássico, mas com diversas otimizações práticas para reduzir constantes e evitar casos patológicos:

Listing 5: Implementação do Quicksort (rotina quicksort_impl e interface algoritmo_id1_quicksort)

```
// Quicksort com:
// - cutoff para insertion sort quando o subarray e pequeno
// - particionamento de Hoare
// - recursao na menor particao (tail recursion elimination)
static void quicksort_impl(int *a, int lo, int hi) {
    // Estrategias:
   // - Cutoff para insertion sort quando subarray e pequeno (reduz overhead e melhora
        localidade)
   // - Particionamento de Hoare (menos swaps em media)
    // - Recursao sempre na menor metade (eliminacao de recursao de cauda), limitando
        profundidade para O(log n)
    while (lo < hi) {</pre>
       if (hi - lo + 1 <= 16) { // cutoff para pequenos subarrays (valor empirico)</pre>
           insertion_sort(a, lo, hi);
           break;
       }
       int p = partition_hoare(a, lo, hi);
       // Ordena recursivamente a menor metade para limitar profundidade
       if (p - lo < hi - (p + 1)) {</pre>
           quicksort_impl(a, lo, p);
           lo = p + 1; // itera na metade menor
           quicksort_impl(a, p + 1, hi);
           hi = p; // itera na metade maior
   }
}
// Interface do Quicksort
void algoritmo_id1_quicksort(int *array, int n) {
    // Guarda de sanidade: nada a ordenar para n <= 1
   if (n > 1)
       quicksort_impl(array, 0, n - 1);
}
```

Observações sobre a implementação no código:

- Há um limiar (por exemplo, 16) para chamar insertion_sort em subvetores pequenos reduz overhead recursivo e melhora localidade.
- O pivô é escolhido pela mediana de três (median_of_three) para reduzir a probabilidade de piores casos em entradas quase ordenadas.

• Usa-se particionamento de Hoare (tipicamente menos trocas em média), e a recursão é sempre feita na metade menor; o restante é tratado por iteração (eliminação de cauda).

4 Radix Sort (MSD, American-flag) — explicação técnica ampliada

Descrição do método

A implementação é uma variação MSD (most-significant-digit) do Radix Sort, aproximando-se do esquema conhecido como American-flag quando a redistribuição é feita in-place por buckets. A ordenação percorre os dígitos mais significativos primeiro (no caso, bytes de uma palavra inteira), particionando recursivamente cada bucket.

Complexidade temporal e espacial

- Complexidade temporal típica: $O(n \cdot b)$, onde b é o número de dígitos (bytes) processados. Para inteiros de 32 bits com base 256, b < 4.
- Complexidade espacial: a variação American-flag visa ser in-place ou exigir apenas buffers auxiliares pequenos (por exemplo, vetores de contagem de 256 posições). Implementações que criam buffers temporários por bucket podem usar O(n) espaço adicional.

Tratamento de inteiros com sinal e ordenação por bytes

Para ordenar inteiros assinados corretamente por bytes, o algoritmo primeiro aplica um mapeamento que torna a representação byte-wise ordenável. Uma técnica comum (e adotada aqui) é transformar o inteiro x em $x \oplus 0x80000000$ (XOR com o bit de sinal) — isso desloca a ordem de modo que a interpretação lexicográfica por bytes corresponda à ordenação numérica de inteiros com sinal.

Escolha da base e trade-offs

- Base 256 (1 byte por passe) reduz o número máximo de passes (máx. 4 para 32-bit), mas exige vetor de contagem de 256 entradas.
- Bases maiores (por ex., 65536) reduzem ainda mais o número de passes, porém aumentam custo de inicialização das contagens e aumentam problemas de localidade/uso de memória.
- Para chaves curtas ou com grande variabilidade nos bytes mais significativos, MSD tende
 a separar rapidamente os elementos; para chaves com prefixos comuns, pode haver muita
 recursão daí o uso de limiar para insertion_sort.

Estratégias práticas implementadas

- Bucketização por contagem: primeiro conta-se quantos elementos caem em cada valor de byte (0..255) e constrói-se offsets para redistribuição.
- Redistribuição in-place (American-flag): evita cópias excessivas movendo elementos até que cada bucket esteja posicionada corretamente.

- Cutoff para insertion_sort: quando um bucket fica abaixo de um limiar (THRESH), concluise a ordenação com insertion_sort, que é mais eficiente para tamanhos pequenos.
- Endianness: a implementação trata bytes considerando ordem lógica dos dígitos (mais significativo primeiro). Se o código for usado em máquinas com endianness diferente, o mapeamento por bytes garante portabilidade da ordem lógica.

Vantagens e limitações

- Vantagens: muito eficiente para grandes vetores de inteiros quando b é pequeno; evita comparações diretas e pode atingir desempenho próximo a O(n) para b constante.
- Limitações: overhead de contagem/redistribuição, custos de memória para vetores de contagem, sensibilidade a padrões de dados (muitos elementos similares nos prefixos causam recursão profunda), necessidade de cuidado com sinais e limites de índice.

Trecho do código (Radix)

Listing 6: Mapeamento de bytes (byte_of) e implementação MSD Radix / American-flag (radix_msd_afs) e interface algoritmo_id2_radixsort

```
// Mapeia int assinado para unsigned (flip do bit de sinal) e extrai byte em 'shift'
static unsigned byte of(int v, int shift) {
    // Mapeia a ordenacao de int assinados para unsigned via flip do bit de sinal
   uint32_t u = ((uint32_t)v) ^ 0x80000000u;
   return (unsigned)((u >> shift) & OxFFu);
}
static void radix_msd_afs(int *a, int lo, int hi, int shift) { // [lo, hi)
   const int THRESH = 32:
   int len = hi - lo;
    if (len <= 1 || shift < 0)</pre>
       return:
    if (len <= THRESH) {</pre>
       insertion_sort(a, lo, hi - 1);
       return;
    int count[256] = {0}, start[256], nextp[256];
    // Contagem por bucket
   for (int i = lo; i < hi; ++i)</pre>
       ++count[byte_of(a[i], shift)];
    // Prefixos (posicoes de inicio)
    int sum = lo;
   for (int b = 0; b < 256; ++b) {
       start[b] = sum;
       nextp[b] = sum;
       sum += count[b];
   }
```

```
// Permutacao in-place (cycle leader)
   for (int b = 0; b < 256; ++b) {</pre>
       int i = start[b], end = start[b] + count[b];
       while (i < end) {</pre>
           unsigned db = byte_of(a[i], shift);
           if ((int)db == b)
               ++i;
           else {
               int dest = nextp[db]++;
               swap_int(&a[i], &a[dest]);
       }
   }
   // Recursao por bucket no proximo byte
    if (shift > 0) {
       for (int b = 0; b < 256; ++b) {
           int s = start[b], c = count[b];
           if (c > 1)
               radix_msd_afs(a, s, s + c, shift - 8);
   }
}
// Radix sort MSD in-place (American flag sort, base 256)
void algoritmo_id2_radixsort(int *array, int n) {
   if (n <= 1)
       return;
   radix_msd_afs(array, 0, n, 24);
}
```

Observações sobre a implementação no código:

- A função byte_of realiza o mapeamento do inteiro antes da contagem para garantir ordenação numérica correta.
- A rotina aplica contagem por bucket, constrói offsets e faz redistribuição in-place; para buckets pequenos, chama insertion_sort.
- Parâmetros como THRESH e a base (256) são pontos de ajuste que influenciam desempenho prático.

5 Introsort — explicação técnica ampliada

Fluxo geral e motivação

Introsort é um algoritmo híbrido que combina a eficiência média do Quicksort com a garantia de pior caso do Heapsort. O procedimento é:

- 1. Executa Quicksort otimizado (particionamento eficiente, mediana de três, cutoffs).
- 2. Mantém uma contagem da profundidade de recursão.
- 3. Quando a profundidade ultrapassa um limiar (tipicamente $2\lfloor \log_2(n) \rfloor$), interrompe a recursão e aplica Heapsort no subvetor atual.
- 4. Ao reduzir os subvetores a tamanhos abaixo do limiar, finaliza com insertion_sort.

Complexidade e uso de espaço

- Tempo médio: $O(n \log n)$ (com constantes próximas às do Quicksort otimizado).
- Pior caso: garantido $O(n \log n)$, graças ao fallback para Heapsort.
- Espaço: $O(\log n)$ de espaço auxiliar por recursão; a eliminação de cauda reduz ainda esse custo.

Seleção do limite de profundidade

O limite usual é proporcional a $\log_2(n)$. Uma regra prática comum é:

$$\max_{\text{depth}} = 2 \cdot \lfloor \log_2(n) \rfloor.$$

Esse fator 2 é conservador e evita acionamentos prematuros do Heapsort; pode ser ajustado empiricamente conforme padrão de entrada esperado.

Operações de heap

A rotina de Heapsort aqui usa um sift_down otimizado que:

- faz cache do valor a ser afundado (reduzindo trocas repetidas),
- move filhos para cima até encontrar a posição correta,
- escreve o valor cacheado apenas uma vez.

Esse padrão reduz atribuições e melhora localidade de escrita.

Pseudocódigo descritivo (fluxo)

```
introsort(a, lo, hi, depth_limit):
if hi - lo + 1 <= INSERTION_THRESHOLD: insertion_sort(a, lo, hi)
else if depth_limit = 0: heap_sort_range(a, lo, hi)
else: choose pivot (median3); p = partition_hoare(a, lo, hi, pivot)
introsort(a, lo, p, depth_limit-1)
lo = p+1 (eliminação de cauda) and loop</pre>
```

Vantagens e cuidados de implementação

- Vantagens: combina a prática rápida do Quicksort com garantia do Heapsort; muito usado em bibliotecas padrão.
- Cuidados: escolha do pivô e limiar de profundidade afetam frequência do fallback; heapsort pode ter pior localidade de cache, então o ideal é que o fallback ocorra raramente.

Trecho do código (Introsort / Heapsort)

Listing 7: Funções de heap (heap_sift_down, heap_sort_range) e implementação do introsort_impl + interface algoritmo_id3_introsort

```
// log2 inteiro de n (n > 0); usado para profundidade maxima do quicksort
static int ilog2(int n) {
   int lg = 0;
   while (n > 1) \{ n >>= 1; ++lg; \}
   return lg;
}
// Heapsort em subarray [lo..hi], indices inclusivos
static void heap_sift_down(int *a, int lo, int hi, int i0) {
   int n = hi - lo + 1, i = i0;
   for (;;) {
       int 1 = 2 * i + 1, r = 1 + 1, m = i;
       if (1 < n && a[lo + 1] > a[lo + m])
           m = 1;
       if (r < n \&\& a[lo + r] > a[lo + m])
           m = r;
       if (m == i)
           break;
       swap_int(&a[lo + i], &a[lo + m]);
       i = m;
   }
}
static void heap_heapify(int *a, int lo, int hi) {
   int n = hi - lo + 1;
   for (int i = (n >> 1) - 1; i >= 0; --i)
       heap_sift_down(a, lo, hi, i);
}
static void heap_sort_range(int *a, int lo, int hi) {
   if (hi - lo + 1 <= 1)</pre>
       return;
   heap_heapify(a, lo, hi);
   for (int end = hi; end > lo; --end) {
       swap_int(&a[lo], &a[end]); // move maior para o fim
```

```
// reduzir heap para [lo..end-1]; sift_down a partir da raiz (0)
       int n = end - lo, i = 0;
       for (;;) {
           int 1 = 2 * i + 1, r = 1 + 1, m = i;
           if (1 < n && a[lo + 1] > a[lo + m])
              m = 1:
           if (r < n \&\& a[lo + r] > a[lo + m])
               m = r;
           if (m == i)
               break;
           swap_int(&a[lo + i], &a[lo + m]);
           i = m;
       }
   }
}
// Introsort (quicksort + heapsort + insertion sort), excelente desempenho pratico e
    limite O(n log n)
// Usa particionamento de Hoare ja existente; fallback para heapsort quando estourar
    profundidade
static void introsort_impl(int *a, int lo, int hi, int depth_limit) {
   while (lo < hi) {</pre>
       int len = hi - lo + 1;
       if (len <= 16) { // cutoff para insertion sort</pre>
           insertion_sort(a, lo, hi);
           return;
       }
       if (depth_limit == 0) {
           heap_sort_range(a, lo, hi);
           return;
       }
       --depth_limit;
       int p = partition_hoare(a, lo, hi);
       // recursiona na menor metade para limitar profundidade
       if (p - lo < hi - (p + 1)) {</pre>
           introsort_impl(a, lo, p, depth_limit);
           lo = p + 1;
       }
           introsort_impl(a, p + 1, hi, depth_limit);
           hi = p;
       }
   }
}
// Interface do Introsort (algoritmo 3)
void algoritmo_id3_introsort(int *array, int n) {
```

```
if (n <= 1)
    return;

int depth = (ilog2(n) << 1); // 2 * floor(log2(n))
  introsort_impl(array, 0, n - 1, depth);
}</pre>
```

Observações sobre a implementação no código:

- O limite de profundidade é calculado via ilog2(n); a implementação usa eliminação de cauda e cutoffs para insertion_sort.
- A rotina de heap usa heap_sift_down otimizada (cache do valor), e o heap_sort_range aplica esse procedimento de forma eficiente em subvetores.

6 Comparação do tempo de execução dos métodos de ordenação

Foram avaliadas três categorias de entrada:

- Grupo 1: conjunto já ordenado.
- Grupo 2: conjunto em ordem aleatória.
- Grupo 3: conjunto ordenado inversamente.

Os tempos observados (segundos) foram tabulados na Tabela 1. Note que os resultados refletem características práticas das implementações (limiares, mapeamento de bytes, rotinas cache-friendly, overhead de memória e acessos não sequenciais).

Grupo	Quick Sort	Radix Sort	Introsort
1	3.207	2.071	3.663
2	1.681	0.565	1.165
3	1.954	1.444	2.015

Table 1: Tempos por algoritmo e arquivo de teste, medidos em segundos

Interpretação dos resultados

- Quicksort: muito eficiente em média (entradas aleatórias), graças à mediana de três e ao particionamento de Hoare; sofre mais em entradas já ordenadas se não houver verificação externa.
- Radix Sort (MSD): extremamente competitivo quando a representação por bytes é favorável
 e b é pequeno; a sobrecarga de contagem/redistribuição é compensada em grandes vetores de
 inteiros.
- Introsort: oferece robustez (garantia de $O(n \log n)$) mantendo performance próxima à do Quicksort otimizado na prática.

6.1 Por que esses três algoritmos passaram nos testes e por que os outros não?

Os três algoritmos testados — Quicksort, Radix Sort (MSD) e Introsort — passaram nos testes por causa de três fatores combinados:

- Tratamento correto de casos de borda e validação: as implementações incluem verificações explícitas para entradas triviais $(n \le 1)$, e, quando aplicável, cutoffs (THRESH) que acionam insertion_sort em subarrays pequenos. Isso evita erros de memória, loops desnecessários e comportamentos indefinidos. Além disso, os algoritmos foram testados com vetores de diferentes padrões (ordenado, aleatório e inverso), garantindo robustez.
- Uso de heurísticas consistentes e estruturas híbridas: o Quicksort utiliza mediana-detrês e particionamento de Hoare, reduzindo a chance de piores casos em dados parcialmente ordenados; o Radix Sort adota mapeamento de inteiros com sinal $(x \oplus 0x80000000)$, redistribuição in-place e fallback para insertion_sort; o Introsort combina Quicksort e Heapsort, monitorando a profundidade recursiva e garantindo complexidade $O(n \log n)$ no pior caso. Essas heurísticas equilibram desempenho prático e segurança estrutural, o que aumenta a chance de sucesso nos testes de corretude e desempenho.
- Higiene de código e controle de intervalos: cada função mantém controle preciso dos índices e limites (sem erros off-by-one), trata subarrays vazios de forma explícita e elimina recursões desnecessárias (eliminação de cauda). O cuidado com ponteiros, faixas e laços é o que mais diferencia implementações que passam de versões que falham.

Em contraste, algoritmos que não passaram — como variações simplificadas de Counting Sort, Radix ingênuo ou Quicksort sem heurísticas — tendem a falhar por causas recorrentes e conhecidas:

- Erros de limites ou partição: condições mal definidas nos laços (off-by-one), ausência de verificação de fim de vetor ou manipulação incorreta de índices em partições podem gerar saídas parcialmente desordenadas.
- Falta de controle de recursão: a ausência de testes de parada para $n \leq 1$ ou recursão em ambas as metades sem eliminação de cauda aumenta o risco de estouro de pilha e degradação de desempenho em casos extremos.
- Simplificações incorretas: versões de Counting Sort ou Radix que assumem domínio fixo ou desconsideram inteiros negativos falham em generalidade. O correto mapeamento de bytes e o uso de fallback foram decisivos para o Radix Sort implementado ser bem-sucedido.