Galois Theory

Some additional homework problems due Thursday, September 29

1. Consider the set $V = \mathbb{Q}(\sqrt[3]{2}) = \left\{ a + b\sqrt[3]{2} + c(\sqrt[3]{2})^2 \mid a, b, c \in \mathbb{Q} \right\}$. Show that V is a vector space over \mathbb{Q} with basis $\{1, \sqrt[3]{2}, (\sqrt[3]{2})^2\}$.

As an alternative, you can prove the more general statement: Suppose that α is a root of an irreducible polynomial $f(x) = x^3 + n$ for n some integer. Prove that $\{1, \alpha, \alpha^2\}$ is a basis for $V = \{a_0 + a_1\alpha + \cdots + a_s\alpha^s \mid a_i \in \mathbb{Q}, s \text{ a non-negative integer}\}$, the collection of polynomials in α with rational coefficients. Thus, V has dimension 3 as a vector space.

- 2. Assume R is a commutative ring with 1. Let \mathfrak{S} be a multiplicatively closed set.
 - (a) Suppose that \mathfrak{p} is a prime ideal of R and set $\mathfrak{S} = R \setminus \mathfrak{p}$.
 - i. Show that \mathfrak{S} is multiplicatively closed with 1.
 - ii. Prove the converse to (i): Namely, that if $\mathfrak A$ is an ideal of R and $\mathfrak S = R \setminus \mathfrak A$ is a multiplicatively closed set with 1, then $\mathfrak A$ is a prime ideal. (The upshot of this is that localization of rings takes place at *prime* ideals of R, if you require that $\mathfrak S$ contain 1.)
 - iii. Define the localization $R_{\mathfrak{p}}$ of R at \mathfrak{p} with elements

$$R_{\mathfrak{p}} = \left\{ \left[\frac{r}{s} \right] \mid r \in R, \, s \in \mathfrak{S} \right\}.$$

- A. By consulting a book, or better yet, thinking about the construction of the quotient field of a domain, define the appropriate equivalence relationship for the elements $\frac{r}{s} = (r, s) \in R \times \mathfrak{S}$ in the classes listed above. (*Hint*: Be a tad careful here. In problem, vi (c) below, we will allow \mathfrak{S} to have zero divisors.)
- iv. Convince yourself that $R_{\mathfrak{p}}$ is a ring. Convince me that you have done this, but showing me the definition of \cdot in $R_{\mathfrak{p}}$.
- v. What are the units of $R_{\mathfrak{p}}$?
- vi. Assume further that $R = \mathbb{Z}$ and $\mathfrak{p} = (5)$. What are the elements of $\mathbb{Z}_{(5)}$? (You can describe them explicitly.) What are the units of $\mathbb{Z}_{(5)}$? What are the prime ideals of $\mathbb{Z}_{(5)}$? What are all the ideals of $\mathbb{Z}_{(5)}$? Draw the ideal lattice diagram for $\mathbb{Z}_{(5)}$.

- (b) Let \mathbb{E} denote the positive even integers in the ring $R=\mathbb{Z}$. Note that \mathbb{E} is multiplicatively closed.
 - Show that the localization of \mathbb{Z} at $\mathbb{E} \doteq \mathbb{E}^{-1}\mathbb{Z}$ is the rational numbers \mathbb{Q} .
- (c) Let f be any element of R and $\mathfrak{S} = \{f^n \mid n \in \mathbb{Z}^+ \cup \{0\}\}\}$. Define R_f , the localization of R at f, to be the set of equivalence classes of the form $\left[\frac{r}{f^n}\right]$ for $r \in R$, $n \geq 0$ in the 'usual' way.
 - i. Show that f is nilpotent if, and only if, $R_f = 0$.
 - ii. Show that if f is not nilpotent, then f becomes a unit in R_f .
- 3. Continue the example started in class: Express $f(x_1, x_2, x_3) = x_1^4 + x_2^4 + x_3^4$ as a function of the elementary symmetric polynomials.
 - *Note:* This assumes that we have started this example in class; If not, postpone until next week.