Learning to Navigate in Cities Without a Map

Соколов Роман

Национальный Исследовательский Университет Высшая Школа Экономики

30 ноября 2018 г.

План

- 1. Задача
- 2. Среда и агент
- 3. Обучение
- 4. Результаты
- 5. Вывод
- 6. Заключение

Задача

Diverse views and corresponding local maps in Street View.

Задача

Street View regions used in this study.

▶ Какую информацию агент получает от среды?

- ▶ Какую информацию агент получает от среды?
- ▶ Как агент взаимодействует со средой?

- Какую информацию агент получает от среды?
- ▶ Как агент взаимодействует со средой?
- Как подавать агенту на вход цель?

- Какую информацию агент получает от среды?
- Как агент взаимодействует со средой?
- Как подавать агенту на вход цель?
- $ightharpoonup g_{t,i} = \exp(-\alpha d_{t,i}) / \sum_k \exp(-\alpha d_{t,k}), \ \alpha = 0.002$

- Какую информацию агент получает от среды?
- Как агент взаимодействует со средой?
- Как подавать агенту на вход цель?
- $ightharpoonup g_{t,i} = \exp(-\alpha d_{t,i}) / \sum_k \exp(-\alpha d_{t,k}), \ \alpha = 0.002$

Goal description using landmarks.

▶ Обучаем как АЗС агента

- ▶ Обучаем как АЗС агента
- ► На самом деле используем IMPALA

- ▶ Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- ▶ Используем дополнительную задачу для предсказания угла

- Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- Используем дополнительную задачу для предсказания угла
- Награда агента пропорциональна исходному оптимальному расстоянию до цели

- ▶ Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- Используем дополнительную задачу для предсказания угла
- Награда агента пропорциональна исходному оптимальному расстоянию до цели
- Curriculum learning

- Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- Используем дополнительную задачу для предсказания угла
- Награда агента пропорциональна исходному оптимальному расстоянию до цели
- Curriculum learning
- Дополнительные стратегии формирования наград

- Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- Используем дополнительную задачу для предсказания угла
- Награда агента пропорциональна исходному оптимальному расстоянию до цели
- Curriculum learning
- Дополнительные стратегии формирования наград
 - Ранние награды

- ▶ Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- ▶ Используем дополнительную задачу для предсказания угла
- Награда агента пропорциональна исходному оптимальному расстоянию до цели
- Curriculum learning
- Дополнительные стратегии формирования наград
 - ▶ Ранние награды
 - $ightharpoonup r_t = \max(0, \min(1, (d_{ER} d_t^g)/100)) \times r^g$

- Обучаем как АЗС агента
- ► На самом деле используем IMPALA
- ▶ Используем дополнительную задачу для предсказания угла
- Награда агента пропорциональна исходному оптимальному расстоянию до цели
- Curriculum learning
- Дополнительные стратегии формирования наград
 - Ранние награды
 - $r_t = \max(0, \min(1, (d_{ER} d_t^g)/100)) \times r^g$
 - Монетки

CityNav агент обучается существенно лучше GoalNav

- CityNav агент обучается существенно лучше GoalNav
- CityNav без добавления визуальных признаков к блоку стратегии показывает себя хуже

- CityNav агент обучается существенно лучше GoalNav
- CityNav без добавления визуальных признаков к блоку стратегии показывает себя хуже
- Формирование награды сильно влияет на обучение агента, лучше всего себя показывают ранние награды и curriculum learning

REW	REW	TEST FAIL	$T_{\frac{1}{2}}$
655 637	567 293	11% 20%	229 184 243
	655	655 567 637 293	655 567 11% 637 293 20%

GRID SIZE	TRAIN REW	REW	TEST FAIL	$T_{\frac{1}{2}}$
FINE	655	567	11%	229
MEDIUM	637	293	20%	184
COARSE	623	164	38%	243

▶ Модели сложно понимать где находятся новые цели

GRID SIZE	TRAIN REW	REW	TEST FAIL	$T_{\frac{1}{2}}$
FINE	655	567	11%	229
MEDIUM	637	293	20%	184
COARSE	623	164	38%	243

- ▶ Модели сложно понимать где находятся новые цели
- И становится тем сложнее чем меньше целей из этой области она видела ранее

GRID SIZE	TRAIN REW	REW	TEST FAIL	$T_{\frac{1}{2}}$
FINE MEDIUM	655 637	567 293	11% 20%	229 184 243
MEDIUM COARSE	637 623	293 164	20% 38%	

- Модели сложно понимать где находятся новые цели
- И становится тем сложнее чем меньше целей из этой области она видела ранее
- Но агент всё равно способен дойти до середины пути за сравнимое время

(b) Transfer learning performance.

 Агент без без добавления визуальных признаков к блоку стратегии лучше дообучается для новых городов

▶ В статье была представленна новая среда для обучения агентов для навигации в реальном мире

- В статье была представленна новая среда для обучения агентов для навигации в реальном мире
- ▶ Был представлен агент с блочной архитектурой, способный дообучаться для навигации в новых городах

- В статье была представленна новая среда для обучения агентов для навигации в реальном мире
- ▶ Был представлен агент с блочной архитектурой, способный дообучаться для навигации в новых городах
- Были исследованы различные подходы для обучения данного агента

- В статье была представленна новая среда для обучения агентов для навигации в реальном мире
- ▶ Был представлен агент с блочной архитектурой, способный дообучаться для навигации в новых городах
- Были исследованы различные подходы для обучения данного агента
- И предоставлена основа для дальнейших исследований

Вопросы

- 1. Что такое curriculum learning и как этот алгоритм помогает обучению нашего агента?
- 2. Как мы задаём цель на карте нашему агенту и какие преимущества у этого подхода?
- 3. Опишите архитектуру агента CityNav, как его можно дообучить для навигации в новом городе?