Logical Agents: Knowledge Representation II

CS3243: Introduction to Artificial Intelligence – Lecture 9a

20 March 2023

Contents

- 1. Administrative Matters
- 2. Recap on Logical Agents
- 3. Theorem-Proving Methods
- 4. Resolution
- 5. Uncertainty & Recap on Probability

Administrative Matters

Upcoming...

- Deadlines
 - TA7 (released last week)
 - Due in your Week 10 tutorial session
 - Submit the a physical copy (more instructions on the Tutorial Worksheet)
 - Prepare for the tutorial!
 - Participation marks = 5%
 - Project 2 (released Week 6)
 - Was due yesterday, Sunday (19 March), 2359 hrs
 - Late penalties now apply
 - Project 3 (released last week)
 - Due Week 12 Sunday (9 April), 2359 hrs

- Week 11: Final Content Lecture
- Week 12: Lecture Slot = Project 3
 Consultation (conducted over Zoom)

Recap on Logical Agents

Logical Agents

- Agent contains
 - Knowledge Base (KB)
 - Specified in some language (e.g., propositional logic)
 - Inference Engine (IE)
 - Determines sentences that will guide action choice, $\alpha_1, \alpha_2, ..., \alpha_k$
 - Uses an algorithm that infers α_i such the KB $\models \alpha_i$
- General algorithm
 - Pre-populate KB with domain knowledge
 - Each time step t:
 - Update KB with percepts
 - Use IE to make inferences
 - Update KB with inferences
 - Select action based on inferences
 - Take action and update KB with new state (current truth value assignments)

Logical Agents

- Logical Agent cannot plan an entire path to goal
 - Environment is only Partially Observable
- Assume operation as follows
 - Make inferences about environment
 - Assume query (α) to action (a_i) mappings
 - e.g., reflex agent with conditions based on KB
 - Developer designing the agent must formulate these mappings
 - Suppose $\alpha \Rightarrow a_i$
 - Agent uses the KB & IE to determine if a query (α)
 may be inferred, and if so, takes associated action (a)
 - Chosen action (a_i) is EXECUTED in environment (as we are no longer planning)
 - Loops...

Making Inferences

- Entailment (⊨)
 - KB \models α means that M(KB) ⊆ M(α)
 - This says that all value assignments that satisfy the KB will also satisfy α
 - i.e., whenever KB is true, α is true
- Inference algorithm (A)
 - Sound: $(KB \vdash_{\mathcal{A}} \alpha) \Rightarrow (KB \vDash \alpha)$
 - A only infers α that are valid
 - Complete: $(KB \models \alpha) \Rightarrow (KB \vdash_{\mathcal{A}} \alpha)$
 - \mathcal{A} is able to infer all valid α
- Inference algorithm example: Truth Table Enumeration
 - Construct entire truth table for KB and α
 - Check (via DFS) that M(KB) ⊆ M(α)
 - i.e., every model of \overline{KB} is a model of α

Truth Table Enumeration:

- Sound and Complete
- Time complexity O(2ⁿ)
- Space complexity O(n)

Theorem Proving Methods

Proof Methods

- Model checking (special case of CSPs where domains are T/F)
 - Truth Table Enumeration (time complexity exponential in n)
 - Resolution (inference via proof)
- Applying inference rules (i.e., theorem proving)
 - Generate new sentences from old
 - Proof = sequential application of inference rules
 - Inference rules help deduce valid actions
 - Proof facilitates efficiency ignores irrelevant propositions

Validity & Satisfiability

- A sentence α is valid if it is true for ALL possible truth value assignments
 - e.g., True, A $\vee \neg A$, A \Rightarrow A, (A \wedge (A \Rightarrow B)) \Rightarrow B
 - i.e., tautologies
- Validity is connected to entailment via the Deduction Theorem:
 - $(KB \models \alpha) \Leftrightarrow ((KB \Rightarrow \alpha) \text{ is valid })$
- A sentence is satisfiable if it is true for SOME truth value assignment
 - e.g., A v B, C
- A sentence if unsatisfiable if it is true for NO truth value assignments
 - e.g., A ∧ ¬A
 - i.e., contradictions
- Satisfiability is connected to entailment via the following:
 - $(KB \models \alpha) \Leftrightarrow ((KB \land \neg \alpha))$ is unsatisfiable)
 - i.e., definition of Proof by Contradiction

i.e., a model exists for that sentence

i.e., no model exists for that sentence

- A ⇒ B ≡ ¬A ∨ B
- ¬(¬A ∨ B) ≡ A ∧ ¬B
- Showing that (A A ¬B) is unsatisfiable shows that the negation, ¬A v B is valid!

Inference Algorithms: Application of Inference Rules

- Search for more knowledge (growing the KB)
 - Equivalent to a search problem
 - States: Versions of the KB (e.g., initial state is initial KB)
 - Actions: Application of inference rules
 - Transition: Update KB with an inferred sentence (may not be target query α)
 - Goal: KB contains sentence to (dis)prove (e.g., given query α)
- Examples of inference rules
 - And-Elimination (AE): e.g., $a \land b \models a$; $a \land b \models b$
 - Modus Ponens (MP): e.g., $a \land (a \Rightarrow b) \models b$
 - Logical Equivalences: e.g., $(a \lor b) \models \neg(\neg a \land \neg b)$

How does this relate to Truth Table Enumeration?

Resolution

Resolution for Conjunctive Normal Form (CNF)

- CNF = conjunction of disjunctive sentences
 - e.g., $(x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor \neg x_4)$
- Resolution
 - Method of simplifying KB to prove entailment of query a
 - Specifically
 - Given KB: $R_1 \wedge R_2 \wedge ... \wedge R_n$
 - If a literal, x, appears in R_i and its negation, $\neg x$, appears in R_j , where R_i , $R_i \in \mathsf{KB}$, it can be removed from both

resolvent
$$\underbrace{ (x_1 \vee \cdots \vee x_m \vee x) \wedge (y_1 \vee \cdots \vee y_k \vee \neg x)}_{(x_1 \vee \cdots \vee x_m \vee y_1 \vee \cdots \vee y_k)}$$

- Resolution under propositional logic
 - Sound
 - Complete

KB: (P or x) and (Q or (not x)) α: (P or Q) must hold?

x=T, Q must be True for KB to hold x=F, P must be True for KB to hold

So (P or Q) must hold

Verify with truth table as an exercise (note: we want $M(KB) \subseteq M(\alpha)$)

Some Rules for Conversion to CNF

- 1. Convert $\alpha \Leftrightarrow \beta$ to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
- 2. Convert $\alpha \Rightarrow \beta$ to $\neg \alpha \lor \beta$
- 3. Expand using De Morgan and double negation
 - a. Convert $\neg(\alpha \lor \beta)$ to $\neg\alpha \land \neg\beta$
 - b. Convert $\neg(\alpha \land \beta)$ to $\neg \alpha \lor \neg \beta$
 - c. Convert $\neg(\neg \alpha)$ to α
- 4. Convert $(\alpha \lor (\beta \land \gamma))$ to $(\alpha \lor \beta) \land (\alpha \lor \gamma)$

Each of these conversions produces two rules in the KB (the others just one)

Resolution Algorithm

 $clauses \leftarrow clauses \cup new$

Utilises proof by contradiction – tries to show that KB Λ ¬α is unsatisfiable

function PL-RESOLUTION(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α , the query, a sentence in propositional logic

clauses \leftarrow the set of clauses in the CNF representation of $KB \land \neg \alpha$ $new \leftarrow \{\}$

while true do

If cannot be resolved further and not empty clause – cannot infer a

for each pair of clauses C_i , C_j in clauses do resolvents \leftarrow PL-RESOLVE(C_i , C_j) if resolvents contains the empty clause then return true $new \leftarrow new \cup resolvents$ if $new \subseteq clauses$ then return false

What does an empty clause imply??

Suppose we have a KB as follows:

$$\frac{(x_1 \vee \cdots \vee x_m \vee x) \wedge (y_1 \vee \cdots \vee y_k \vee \neg x)}{(x_1 \vee \cdots \vee x_m \vee y_1 \vee \cdots \vee y_k)}$$

And the algorithm slowly removes literals:

$$\frac{(y_1 \vee \cdots \vee y_m \vee x) \wedge (y_1 \vee \cdots \vee y_k \vee \neg x)}{(y_1 \vee \cdots \vee y_k \vee y_1 \vee \cdots \vee y_k)}$$

Eventually, there is nothing in the KB.

KB indicates the disjunction of no literals holds. A disjunction is True only when at least one literal is true. So, whole KB is False here – i.e., the query $\neg \alpha$ is unsatisfiable.

We may infer α (via proof by contradiction).

Resolution Algorithm

Summary

- Make a clause list i.e., copy of KB specified in CNF including negation of query, ¬α
 - Use conversion rules to convert KB to CNF
- Repeatedly resolve two clauses from clause list
 - Add resolvent to clause list
- Keep doing this till empty clause found or no more resolutions possible
 - If empty clause then can infer α
 - If no more resolutions and not empty clause then cannot infer α

Why is Resolution under Propositional Logic Sound and Complete?

Soundness:

- Each resolvent is implied by generating clauses
- If Ø is found, then (KB Λ ¬α) is unsatisfiable

Completeness:

- Based on the idea of resolution closure
 set of all clauses derivable
- Not covered in CS3243
- Refer to AIMA 4th Edition pp. 228-229

Resolution Example

Resolution Example: Back to Wumpus World

- Assume that agent is at (1,1) in Wumpus World
 - And we wish to make inferences about a pit at (1,2)
- KB
 - $\left(B_{1,1} \Leftrightarrow \left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \left(\neg B_{1,1}\right)$
 - i.e., we know
 - R_a: rule for breezes
 - R_b: no breeze at (1,1)
- α
 - $\neg P_{1,2}$
 - i.e., want to know if we can move to (1,2)
- Can we infer α ?
 - Use the resolution algorithm to determine if (KB $\models \alpha$)
 - i.e., use (KB $\models \alpha$) \Leftrightarrow ((KB $\land \neg \alpha$) is unsatisfiable)

Resolution Example: Back to Wumpus World

Given

- KB =
$$\neg B_{1,1} \land B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$$

$$- \alpha = \neg P_{1,2}$$

- Step 1 Form clause list (over KB Λ ¬α)
 - $(\neg B_{1,1}) \land (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land (P_{1,2})$
- Step 2 Convert clause list to CNF

$$- B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

•
$$B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})$$

•
$$(P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1} \mid CNF \text{ (literals)}$$

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$ $(\neg B_{1,1}), (P_{1,2})$ $\bullet \quad B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})$ already in

1,2	2,2
P ?	
OK	2,1

Step 2a

- $B_{1.1} \Rightarrow (P_{1.2} \vee P_{2.1})$
 - $\neg B_{1,1} \vee (P_{1,2} \vee P_{2,1})$
 - $\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}$

Now in CNF

Step 2b

- $(P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$
 - $\neg (P_{1,2} \vee P_{2,1}) \vee B_{1,1}$
 - $(\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}$
 - $(\neg P_{1.2} \vee B_{1.1}) \wedge (\neg P_{2.1} \vee B_{1.1})$

Now in CNF - as 2 rules

Resolution Example: Back to Wumpus World

- Clause list (in CNF)
 - R₁: ¬B_{1.1}
 - $R_2: P_{1.2}$
 - R_3 : $\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}$
 - R₄: ¬P_{1.2} v B_{1.1}
 - R_5 : $\neg P_{2,1} \vee B_{1,1}$
- Step 3 Pick two rules and resolve via $\frac{(x_1 \vee \cdots \vee x_m \vee x) \wedge (y_1 \vee \cdots \vee y_k \vee \neg x)}{(x_1 \vee \cdots \vee x_m \vee y_1 \vee \cdots \vee y_k)}$
- Step 3a Reduce R₂ and R₄
 R₆: B_{1,1}
- Step 3b Reduce R₁ and R₆
 - Ø

Proof by contradiction that KB $\models \alpha$ i.e., α holds when KB holds; we can infer $\alpha = \neg P_{1,2}$

Where Does a Come From?

Regarding the Query a

- Inference algorithms show that we can infer α
- Where do we get α?
 - Recall that Logical Agent program

reasoning on what should be done

construct a sentence relating to an action to take

- Inference algorithms (\mathcal{A}) assumes α is given and decides if $KB \models \alpha$
- When discussing soundness and completeness of \mathcal{A} , we consider which among <u>any</u> given/input α that will satisfy $KB \models \alpha$

Questions about the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Ask on Archipelago
 - Specify a question
 - Upvote someone else's question

Invitation Link (Use NUS Email --- starts with E) https://archipelago.rocks/app/resend-invite/73861543030

Uncertainty

CS3243: Introduction to Artificial Intelligence – Lecture 9b

20 March 2023

Logical Agents & Uncertainty

Dealing with Uncertainty

- Example Let A_t denote an autonomous taxi agent's action
 - A_t: leave for airport t minutes before a flight
 - Will A get me to the airport on time?
- Sources of uncertainty
 - Partial observability (e.g., road state, other drivers' plans)
 - Noisy sensors (e.g., traffic reports, fuel sensor)
 - Uncertainty in action outcomes (e.g., flat tire, accident)
 - Complexity in modelling and predicting traffic (e.g., congestion)
- Logical agent will either
 - 1. Risk Falsehood e.g., A₂₅ will get me there on time
 - 2. Reaches weaker conclusion e.g., A₂₅ will get me there on time if
 - a. There is no accident on the bridge
 - b. It does not rain
 - c. I do not get a flat tire

Under logic (certainty), you may require A_{1440} to reach the airport on time (i.e., stayovernight)

Better to consider the probability of being on time with more reasonable t ...

Probability

Random Variables

- Random variable (X)
 - Quantifies an outcome of a random occurrence
 - e.g., outcome of a coin toss, die roll, or COVID-19 ART
- Domains (D_X)
 - Boolean: coin is either heads of tails (i.e., True or False)
 - Discrete: a die can have values {1, ..., 6}
- Events
 - Subsets of domains
 - e.g., Heads(X): coin flipped to heads
 - e.g., Even(X): die has value ∈ {2,4,6}

Events

- Atomic / singleton event (possible world)
 - An assignment of a value to each random variable
- Example we roll two different dice

Events

- Yellow die = X₁
- Pink die = X_2
- Event: $X_1 + X_2 = 8$

Axioms of Probability

- Let X be a random variable with finite domain D_X
- A probability distribution over D_X assigns a value $p_X(v) \in [0,1]$ to every $v \in D_X$ such that

$$\sum_{v \in D_X} p_X(v) = 1$$

• For any event $A \subseteq D_X$, we have

$$\Pr[X \subseteq A] \equiv \Pr_X[A] = \sum_{v \in A} p_X(v)$$

In particular

$$Pr[A] + Pr[B] = Pr[A \cap B] + Pr[A \cup B]$$

Joint Probability

- Given two random variables X and Y
 - The joint probability of an atomic event $(x, y) \in D_X \times D_Y$ is $p_{X,Y}(x, y) = \Pr[X = x \land Y = y]$
- In particular $p_X(x) = \sum_{y \in D_Y} p_{X,Y}(x,y)$
- Example

Income (in SGD) / AGE	15-24	25-34	35-44	45-54	55-64	65+
< <i>S</i> \$2500	0.062	0.051	0.037	0.019	0.015	0.039
<i>S</i> \$2500 — <i>S</i> \$5000	0.078	0.068	0.061	0.057	0.031	0.053
> <i>S</i> \$5000	0.015	0.051	0.094	0.119	0.111	0.039

$$Pr[Age = (25 - 34)] = 0.051 + 0.068 + 0.051 = 0.17$$

Conditional Probability

- The probability that an event occurs, given that some other event occurs
- Example rolling 2 dice; $Pr[X_1 = 2] = \frac{6}{36}$

Conditional Probability

- The probability that an event occurs, given that some other event occurs
- Example rolling 2 dice; $Pr[X_1 = 2 \mid X_1 + X_2 = 8] = \frac{1}{5}$

Conditional Probability

- The probability that an event occurs, given that some other event occurs
- Example rolling 2 dice; $Pr[X_1 + X_2 = 8 \mid X_1 = 2] = \frac{1}{6}$

Conditional Probabilities & Bayes Rule

• $Pr[A \mid B] = \frac{Pr[A \land B]}{Pr[B]}$ assuming that Pr[B] > 0

```
Note:
Pr[A \mid B] = Pr[A \land B] / Pr[B] --- (1) Pr[A \land B] = Pr[B \mid A] \cdot Pr[A] --- (4)
Pr[B | A] = Pr[B \land A] / Pr[A] --- (2)
```

From (2) and (3), we have:

$$Pr[A \land B] = Pr[B \mid A] \cdot Pr[A] --- (4)$$

Also, we know: $Pr[A \wedge B] = Pr[B \wedge A] --- (3)$ And thus from (4) and the definition above, we have Bayes Rule: P[A|B] = (P[B|A].P[A]) / P[B]

- Bayes rule: $Pr[A \mid B] = \frac{Pr[B \mid A] Pr[A]}{Pr[B]}$
- Example: $Pr[X_1 = 2 \mid X_1 + X_2 = 8] = ?$

$$= \frac{\Pr[X_1 + X_2 = 8 | X_1 = 2] \cdot \Pr[X_1 = 2]}{\Pr[X_1 + X_2 = 8]} = \frac{1}{5}$$
5/36

Next week, we will look at various applications of Bayes Rule

Questions about the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Ask on Archipelago
 - Specify a question
 - Upvote someone else's question

Invitation Link (Use NUS Email --- starts with E) https://archipelago.rocks/app/resend-invite/73861543030