

Motivation

The Current System Motivation | Methods | Results | Future Work

Tracks Tool Pose and Anatomical Features of the Patient in 3D

This Thesis: Track Hand and Body Pose of the Surgeon in 3D

Goals

Motivation | Methods | Results | Future Work

Estimate Hand or Body Pose in 3D up to a 10 mm accuracy

Robust to Occlusions caused by Surgical Tools

Portable and Real Time Capable

Validate Results

Pose Estimation Models

WiLoR

Motivation | Methods | Results | Future Work

1. Detection: Low-latency hand detector

2. Reconstruction: Fits the MANO Hand model on the image

3. Training: Trained on the WHIM dataset

- 3rd person and ego-centric views
- Large number of occlusions present
- > 1 million images

Pose Estimation Models

DWPose

Motivation | Methods | Results | Future Work

Teacher Network: RTMPose

Backbone

Head

Logit Distillation

Stage 1: Teacher-Student Distillation

Stage 2: Head-Aware Self Distillation

Dataset: COCO-WholeBody

3rd Person View; Occlusions

Pose Estimation Models

AWR

Motivation | Methods | Results | Future Work

Datasets:

- NYU
- ICVL
- MSRA

3rd Person Views Not Many Occlusions

Results: WiLoR

Results: DWPose

Results: Issues with AWR

Goals

Motivation | Methods | Results | Future Work

Estimate Hand or Body Pose in 3D up to a 10 mm accuracy Only 2.5 D

Robust to Occlusions caused by Surgical Tools

Predicts parts of the hand occluded by the surgical tool

Portable and Real Time Capable

Validate Results

Results: DLT

Closed Form Solution:

Kabsch Umeyama Algorithm

Results: Optimization Motivation | Methods | Results | Future Work

Temporal Noise Motivation | Methods | Results | Future Work

Temporal inconsistencies between frames

Kalman Filtering: smoothen the detections

Results: Kalman Filtering Motivation | Methods | Results | Future Work

0 Without Kalman Filter

With Kalman Filter

Spatial Noise Motivation | Methods | Results | Future Work

Subtle differences in left and right detections

> Remove Outliers

Results: Outlier Removal

Goals

Motivation | Methods | Results | Future Work

Estimate Hand or Body Pose in 3D up to a 10 mm accuracy

Robust to Occlusions caused by Surgical Tools

Portable and Real Time Capable

Validate Results

A Fully Integrated System Motivation | Methods | Results | Future Work

Validation - Atracsys Motivation | Methods | Results | Future Work

- Use infrared markers to get 3D coordinates from Atracsys
- Compare with the WiLoR estimates

Results: Atracsys Motivation | Methods | Results | Future Work

Validation – Blob Markers

Motivation | Methods | Results | Future Work

- Detect circular markers using Blob Detection
- Compare with the WiLoR estimates

No correspondences

Matching Detected Keypoints Motivation | Methods | Results | Future Work

- Group into pairs
- Same y coordinate
- Similar Δx for all pairs

Assignment Problem – Use the **Hungarian Algorithm**

Results: Blob Markers

Motivation | Methods | Results | Future Work

Estimate Hand or Body Pose in 3D up to a 10 mm accuracy

3D coordinates

Robust to Occlusions caused by Surgical Tools

Predicts parts of the hand occluded by the surgical tool

Portable and Real Time Capable Max FPS achieved was 8 FPS

Validate Results

Validated up to ~10 mm accuracy

Limitations

- FPS ~ 8 is too low
- Validation test case is too simple

Future Work

Motivation | Methods | Results | Future Work

Fine tune WiLoR on custom dataset

Use tool pose to refine estimates

More robust validation method

THANK YOU!

Motivation | Methods | Results | Future Work

 $X(p) = Translate \cdot R_z \cdot R_y \cdot R_x \cdot Scale \cdot MANO$

 $\underset{p}{\text{minimize}} \quad ||X(p) - DLT||_{2}$

Closed Form Solution:

Kabsch Umeyama Algorithm

