

REPORTE DE PRÁCTICA NO. 3

Consultas a BD Flotillas

ALUMNO:

Ariana García Melo

1. Introducción

La gestión eficiente de flotillas de vehículos es esencial para las empresas que dependen del transporte de bienes y personal. Una base de datos bien estructurada permite controlar aspectos clave como el mantenimiento, consumo de combustible y la documentación de los vehículos. En este reporte, se presentan diversas consultas en álgebra relacional y SQL diseñadas para extraer información relevante de un sistema de gestión de flotillas.

El correcto manejo de la información en la administración de flotillas permite reducir costos operativos, mejorar la planificación de mantenimiento y optimizar la asignación de recursos. Sin un sistema adecuado, la empresa puede enfrentar problemas como el incumplimiento de normativas, el deterioro prematuro de los vehículos y una gestión ineficiente del consumo de combustible.

En este trabajo se busca demostrar la importancia del diseño de bases de datos en la toma de decisiones empresariales, permitiendo obtener información precisa y en tiempo real sobre el estado de la flotilla. Además, se explorarán diferentes consultas que facilitan el acceso a datos clave, permitiendo a los administradores optimizar el uso de los vehículos y mejorar la eficiencia de la empresa.

El desarrollo de las consultas incluye la aplicación de operadores del álgebra relacional y su equivalente en SQL, asegurando que la estructura de la base de datos permita extraer información de manera efectiva. Se proporcionarán ejemplos concretos con capturas de pantalla de la ejecución de las consultas en un entorno MySQL, lo que permitirá visualizar los resultados obtenidos.

2. Marco teórico

Álgebra Relacional

El álgebra relacional es el fundamento teórico sobre el que se construyen los sistemas de bases de datos relacionales. Es un lenguaje formal que permite expresar consultas y manipular datos mediante un conjunto de operaciones matemáticas. Estas operaciones incluyen:

- Selección: Permite extraer filas específicas de una tabla basándose en una condición.
- Proyección: Extrae columnas específicas de una tabla.
- Unión: Combina los resultados de dos tablas siempre que tengan la misma estructura.
- Intersección: Devuelve los registros comunes entre dos tablas.
- Diferencia: Muestra los registros que están en una tabla pero no en otra.
- Producto cartesiano: Combina todas las filas de una tabla con todas las filas de otra.
- Combinación o Join: Relaciona dos tablas basándose en una condición específica.

\mathbf{SQL}

SQL (Structured Query Language) es el lenguaje de programación estándar para la gestión de bases de datos relacionales. Se utiliza para definir estructuras de datos, insertar, actualizar y eliminar registros, así como realizar consultas y generar reportes.

MySQL y Sentencias Utilizadas

MySQL es un sistema de gestión de bases de datos relacional ampliamente utilizado. En este reporte, se emplean sentencias como SELECT, JOIN, WHERE, GROUP BY y ORDER BY para obtener la información requerida.

3. Herramientas empleadas

Para la implementación de las consultas se utilizaron:

- MySQL como gestor de bases de datos.
- MySQL Workbench para la ejecución de consultas y visualización de resultados.
- LaTeX para la elaboración del reporte.
- Respaldo de base de datos: https://github.com/idkAriana/Bases-de-Datos-Disribuidas/blob/873f0c6e7cb0df1d7d2cf54f79542c4a5bc2829e/Respaldo_Flotilla.sql

4. Desarrollo

A partir del modelo propuesta para la base de datos de Gestión de flotillas se diseñaron las siguientes consultas:

Consulta 1

Listado de autos que recibieron mantenimiento en enero del 2025.

Álgebra Relacional:

 $\pi_{\text{vehiculo_id, placa, marca, fecha, tipo_mantenimiento}}(\sigma_{\text{fecha} \geq '2025-01-01' \wedge \text{fecha} \leq '2025-01-31'}(Mantenimiento \bowtie Vehiculo))$

```
Listing 1: Sentencia
```

```
SELECT V. vehiculo_id , V. placa , V. marca , M. fecha , M. tipo_mantenimiento FROM Mantenimiento M

JOIN Vehiculo V ON M. vehiculo_id = V. vehiculo_id

WHERE M. fecha BEIWEEN '2025-01-01' AND '2025-01-31';
```

	vehiculo_id	placa	marca	fecha	tipo_mantenimiento
•	1	ABC123	Toyota	2025-01-10	Preventivo
	2	DEF456	Ford	2025-01-12	Correctivo
	3	GHI789	Chevrolet	2025-01-15	Preventivo
	4	JKL012	Nissan	2025-01-18	Correctivo
	5	MNO345	Volkswagen	2025-01-20	Preventivo
	6	PQR678	Honda	2025-01-22	Correctivo
	7	STU901	Mazda	2025-01-25	Preventivo
	8	VWX234	Јеер	2025-01-28	Correctivo
	9	YZA567	Kia	2025-01-30	Preventivo
	1	ABC123	Toyota	2025-01-10	Revisión general
	2	DEF456	Ford	2025-01-25	Cambio de neumáti.

Figure 1: Resultado

Consulta 2

Listado de autos que deben ser verificados en marzo del 2025.

Álgebra Relacional:

 $\pi_{\text{vehiculo_id}, \text{ placa, marca, tipo_documento, fecha_vencimiento}} (\sigma_{\text{fecha_vencimiento}} \geq 2025 - 03 - 01' \land \text{fecha_vencimiento} \leq 2025 - 03 - 31' (Documentacion)$

```
Listing 2: Sentencia
```

	vehiculo_id	placa	marca	tipo_documento	fecha_vencimiento
•	1	ABC123	Toyota	Tarjeta de Circulación	2025-03-15
	3	GHI789	Chevrolet	Tarjeta de Circulación	2025-03-10
	7	STU901	Mazda	Tarjeta de Circulación	2025-03-30
	14	NOP012	Audi	Póliza de Seguro	2025-03-07
	15	QRS345	Mercedes	Tarjeta de Circulación	2025-03-01

Figure 2: Resultado

Consulta 3

Reporte con el nombre de los conductores que trabajaron el 14 de febrero del 2025.

Álgebra Relacional:

 $\pi_{\texttt{conductor_id, nombre, licencia, categoria, telefono}(\sigma_{\texttt{fecha='2025-02-14'}}(TurnoConductor \bowtie Conductor))$

Listing 3: Sentencia

SELECT C. conductor_id , C. nombre , C. licencia , T. turno FROM TurnoConductor T

 $\textbf{JOIN} \ \ Conductor \ \ C \ \textbf{ON} \ \ T. \ conductor_id \ = \ C. \ conductor_id$

WHERE T. fecha = '2025-02-14';

	conductor_id	nombre	licencia	turno
١	1	Juan Pérez	LIC123	Matutino
	2	Ana López	LIC456	Vespertino
	3	Carlos Ruiz	LIC789	Nocturno
	4	Sofia Torres	LIC012	Matutino
	5	Pedro Sánchez	LIC345	Vespertino
	6	Laura Gómez	z LIC678 Noctur	Nocturno
	7	Diego Fernández	LIC901	Matutino
	8	Elena Ramírez	LIC234	Vespertino
	9	Luis Morales	LIC567	Nocturno
	10	Marta Rojas		Matutino
	11	Fernando Castro	LIC111	Vespertino
	12	Patricia Vargas	LIC222	Nocturno
	13	Ricardo Herrera	LIC333	Matutino
	14	Isabel Mendoza	LIC444	Vespertino
	15	Emilio Ortega	LIC555	Nocturno
	1	Juan Pérez	LIC123	Mañana
	1	Juan Pérez	LIC123	Tarde

Figure 3: Resultado

Consulta 4

Listado de autos que consumieron más de 2,300.00 pesos de gasolina por día en los últimos 2 meses.

Álgebra Relacional:

 $\pi_{\text{vehiculo_id, placa, marca, fecha, costo_total}) \\ 2300 \land \text{fecha} \\ \geq \text{DATE_SUB}('2025-02-01', \text{INTERVAL2 MONTH}) \\ (ConsumoCombustible \ \texttt{Expression}) \\ (ConsumoCo$

Listing 4: Sentencia

SELECT V. vehiculo_id , V. placa , V. marca , C. fecha , C. costo_total

FROM ConsumoCombustible C

JOIN Vehiculo V ON C. vehiculo_id = V. vehiculo_id

WHERE C. costo_total > 2300

AND C. fecha >= DATE_SUB(CURDATE(), INTERVAL 2 MONIH);

-					
	vehiculo_id	placa	marca	fecha	costo_total
•	1	ABC123	Toyota	2025-02-01	2500.00
	5	MNO345	Volkswagen	2025-02-05	2800.00
	6	PQR678	Honda	2025-02-06	2500.00
	7	STU901	Mazda	2025-02-07	2350.00
	9	YZA567	Kia	2025-02-09	2900.00
	10	BCD890	Hyundai	2025-02-10	3000.00
	13	KLM789	BMW	2025-02-13	3100.00
	14	NOP012	Audi	2025-02-14	3500.00
	15	QRS345	Mercedes	2025-02-15	3200.00

Figure 4: Resultado

Consulta 5

Reporte de gastos en refacciones utilizadas en el mes de enero del 2025.

Álgebra Relacional:

 $\pi_{\text{mantenimiento_id, vehiculo_id, nombre_refaccion, costo}(\sigma_{\text{fecha} \geq '2025-01-01' \wedge \text{fecha} \leq '2025-01-31'}(Refaccion \bowtie Mantenimiento))$

Listing 5: Sentencia

SELECT R. nombre_refaccion , SUM(R. costo) AS total_gasto

FROM Refaccion R

JOIN Mantenimiento M ON R. mantenimiento_id = M. mantenimiento_id

WHERE M. fecha **BETWEEN** '2025-01-01' **AND** '2025-01-31'

GROUP BY R. nombre_refaccion;

_	T	
	nombre_refaccion	total_gasto
•	Filtro de aceite	300.00
	Pastillas de freno	800.00
	Filtro de aire	450.00
	Batería	1800.00
	Juego de llantas	3200.00
	Bujías	750.00
	Radiador	4000.00
	Correa de distribución	2500.00
	Alternador	2700.00

Figure 5: Resultado

Consulta 6

Listado de autos que han recibido más de 2 mantenimientos en los últimos 6 meses.

Álgebra Relacional:

 $\pi_{\text{vehiculo_id, placa, marca, total_mantenimientos}} \left(\sigma_{\text{fecha} \geq \text{DATE_SUB}(\text{CURDATE}(), \text{ INTERVAL 6 MONTH})} \left(\gamma_{\text{vehiculo_id}}^{\text{COUNT}(*)} \rightarrow \text{total_mantenimientos} \left(M_{\text{vehiculo_id}} \right)\right)$

Listing 6: Sentencia

WHERE M. fecha >= DATE.SUB(CURDATE(), INTERVAL 6 MONIH)

GROUP BY M. vehiculo_id **HAVING COUNT**(*) > 2;

	vehiculo_id	placa	marca	total_mantenimientos
•	1	ABC123	Toyota	3
	2	DEF456	Ford	3

Figure 6: Resultado

Consulta 7

Conductores que manejaron más de un vehículo en un solo día.

Álgebra Relacional:

 $\sigma_{\text{total_vehiculos}>1} \left(\gamma_{\text{conductor_id, fecha}}^{\text{COUNT(DISTINCT vehiculo_id)} \rightarrow \text{total_vehiculos}} (TurnoConductor) \bowtie Conductor \right)$

Listing 7: Sentencia

 $\begin{array}{lll} \textbf{SELECT} \ T.\ conductor_id\ ,\ C.\ nombre\ ,\ \textbf{COUNT}(\textbf{DISTINCT}\ T.\ vehiculo_id\)\ \textbf{AS}\ total_vehiculos\\ \textbf{FROM}\ TurnoConductor\ T \end{array}$

JOIN Conductor C ON T. conductor_id = C. conductor_id

GROUP BY T. conductor_id , T. fecha

HAVING COUNT(DISTINCT T. vehiculo_id) > 1;

	conductor_id	nombre	total_vehiculos
•	1	Juan Pérez	2
	2	Ana López	2

Figure 7: Resultado

Consulta 8

Vehículos cuyo costo en mantenimiento ha superado los 10,000 pesos en el último año

Álgebra Relacional:

 $\sigma_{\text{total_gasto}>10000} \left(\pi_{\text{vehiculo_id, placa, marca, total_gasto}} \left(\sigma_{\text{fecha} \geq \text{DATE_SUB(CURDATE(), INTERVAL 1 YEAR)}} \left(\gamma_{\text{vehiculo_id}}^{\text{SUM(costo)} \rightarrow \text{total_gasto}} (M\sigma_{\text{vehiculo_id}}^{\text{SUM(costo)}} \right) \right) \right)$

Listing 8: Sentencia

SELECT M. vehiculo_id , V. placa , V. marca , SUM(M. costo) AS total_gasto

FROM Mantenimiento M

JOIN Vehiculo V **ON** M. vehiculo_id = V. vehiculo_id

WHERE M. fecha >= DATE_SUB(CURDATE(), INTERVAL 1 YEAR)

GROUP BY M. vehiculo_id

HAVING SUM(M. costo) > 10000;

	vehiculo_id	placa	marca	total_gasto
•	2	DEF456	Ford	10300.00
	3	GHI789	Chevrolet	16100.00
	4	JKL012	Nissan	13800.00

Figure 8: Resultado

Consulta 9

Conductores con licencias que expiran en los próximos 3 meses.

Álgebra Relacional:

 $\pi_{\text{conductor_id}}$, nombre, tipo_documento, fecha_vencimiento $\sigma_{\text{fecha_vencimiento}}$ CURDATE() $\sigma_{\text{fecha_vencimiento}}$ CURDATE() $\sigma_{\text{fecha_vencimiento}}$

Listing 9: Sentencia

SELECT C. conductor_id, C. nombre, D. tipo_documento, D. fecha_vencimiento

FROM Documentation D

JOIN Conductor C ON D. vehiculo_id = C. conductor_id

WHERE D. fecha_vencimiento BEIWEN CURDATE() AND DATE_ADD(CURDATE(), INTERVAL 3 MON

		_		
	conductor_id	nombre	tipo_documento	fecha_vencimiento
•	1	Juan Pérez	Tarjeta de Circulación	2025-03-15
	2	Ana López	Póliza de Seguro	2025-05-20
	3	Carlos Ruiz	Tarjeta de Circulación	2025-03-10
	6	Laura Gómez	Póliza de Seguro	2025-04-18
	7	Diego Fernández	Tarjeta de Circulación	2025-03-30
	13	Ricardo Herrera	Tarjeta de Circulación	2025-02-25
	14	Isabel Mendoza	Póliza de Seguro	2025-03-07
	15	Emilio Ortega	Tarjeta de Circulación	2025-03-01

Figure 9: Resultado

Consulta 10

Vehículos que no han tenido consumo de combustible en los últimos 3 meses

Álgebra Relacional:

 $\pi_{\text{vehiculo_id, placa, marca}} (Vehiculo - \pi_{\text{vehiculo_id, placa, marca}} (\sigma_{\text{fecha} \geq \text{DATE_SUB}(\text{CURDATE}(), INTERVAL 3 MONTH})} (ConsumoCombustic ConsumoCombustic ConsumoCombustic$

Listing 10: Sentencia

SELECT V. vehiculo_id , V. placa , V. marca

FROM Vehiculo V

 $\textbf{LEFT JOIN} \ \ ConsumoCombustible \ \ C \ \ \textbf{ON} \ \ V. \ vehiculo_id \ = C. \ vehiculo_id$

 $\textbf{AND} \ C. \ fecha >= \ DATE.SUB(CURDATE()), \ \ \textbf{INTERVAL} \ \ 3 \ \ \textbf{MONIH})$

WHERE C. consumo_id IS NULL;

Figure 10: Resultado

5. Conclusiones

El desarrollo de este reporte permitió demostrar la importancia de una base de datos bien estructurada en la gestión de flotillas. A través de la implementación de consultas en álgebra relacional y SQL, se logró extraer información clave para la administración eficiente de vehículos, conductores, mantenimiento y consumo de combustible.

Se evidenció que una base de datos relacional facilita la consulta y el análisis de información en tiempo real, lo que permite optimizar los recursos, reducir costos operativos y mejorar la toma de decisiones dentro de una empresa. Además, la normalización y el modelado adecuado de datos contribuyen a la integridad y coherencia de la información almacenada.

El proceso de formulación de consultas permitió reforzar habilidades en el manejo de MySQL y en la aplicación de técnicas de optimización de consultas. Asimismo, se destacó la importancia de utilizar herramientas como MySQL Workbench para la visualización y validación de resultados, asegurando la correcta implementación de las sentencias SQL.

En conclusión, este ejercicio permitió aplicar conocimientos teóricos en un escenario práctico, demostrando que la gestión eficiente de bases de datos es un pilar fundamental en la administración de flotillas y en cualquier sistema que requiera un manejo estructurado de la información.

Referencias Bibliográficas

References

- [1] Silberschatz, A., Korth, H. F., Sudarshan, S. (2011). Database System Concepts. McGraw-Hill
- [2] Documentación oficial de MySQL: https://dev.mysql.com/doc/