Import Modules

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Load the Dataset

```
df = pd.read_csv('./AirPassengers.csv')
df.set_index('Month', inplace=True)
df.head()
```

	()				
₹		#Passengers			
	Month				
	1949-01	112			
	1949-02	118			
	1949-03	132			
	1949-04	129			
	1949-05	121			
	,				

Exploratory Data Analysis

```
plt.figure(figsize=(20, 5))
plt.plot(df.index, df['#Passengers'], label='#Passengers')
plt.xlabel('Date')
plt.ylabel('#Passengers')
plt.title('#Passengers Over Time')
plt.legend()
plt.grid(True)
plt.xticks(rotation=90)
plt.show()
```



```
# perform seasonal decomposition
result = seasonal_decompose(df['#Passengers'], model='multiplicative', period=12)

# plot the components in the graph
sns.set(style='whitegrid')

plt figure(fissize=(18.12))
```

```
# trend component
plt.subplot(411)
sns.lineplot(data=result.trend)
plt.title('Trend')
plt.xticks(rotation=90)
# seasonal component
plt.subplot(412)
sns.lineplot(data=result.seasonal)
plt.title('Seasonal')
plt.xticks(rotation=90)
# Residuals component
plt.subplot(413)
sns.lineplot(data=result.resid)
plt.title('Residuals')
plt.xticks(rotation=90)
# Original data
plt.subplot(414)
sns.lineplot(data=df['#Passengers'])
plt.title('Original Data')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
\overline{\Rightarrow}
```


seasonal_period = 12

```
from statsmodels.tsa.stattools import adfuller # Augmented Dickey-Fuller Test
result = adfuller(df['#Passengers'], autolag='AIC') # Akaike Information Criterion
print('ADF Statistic:', result[0])
print('p-value:', result[1])
    ADF Statistic: 0.8153688792060441
     p-value: 0.9918802434376409
# first order differencing
result = adfuller(df['#Passengers'].diff().dropna(), autolag='AIC')
print('ADF Statistic:', result[0])
print('p-value:', result[1])
→ ADF Statistic: -2.8292668241700034
     p-value: 0.05421329028382497
# second order differencing
result = adfuller(df['#Passengers'].diff().diff().dropna(), autolag='AIC')
print('ADF Statistic:', result[0])
print('p-value:', result[1])
→ ADF Statistic: -16.38423154246852
     p-value: 2.732891850014085e-29
# plot the differencing values
fig, (ax1, ax2, ax3) = plt.subplots(3)
ax1.plot(df)
ax1.set_title('Original Time Series')
ax1.axes.xaxis.set_visible(False)
ax2.plot(df.diff())
ax2.set title('1st Order Differencing')
ax2.axes.xaxis.set_visible(False)
ax3.plot(df.diff().diff())
ax3.set_title('2nd Order Differencing')
ax3.axes.xaxis.set_visible(False)
plt.show()
→
                                   Original Time Series
       600
       400
       200
                                   1st Order Differencing
         0
      -100
                                  2nd Order Differencing
       100
         0
      -100
# the time series becomes stationary after first order differencing
```

Define Parameters for ARIMA

```
# p = 0 # MA - Moving Average - PACF
# d = 1 # order of differencing - I
# q = 0 # AR - Auto Regressive - ACF

fig, ax = plt.subplots(2, 1, figsize=(12, 7))
sm.graphics.tsa.plot_acf(df.diff().dropna(), lags=40, ax=ax[0])
sm.graphics.tsa.plot_pacf(df.diff().dropna(), lags=40, ax=ax[1])
plt.show()
```



```
p = 2 # pacf
d = 1 # 1st order difference
q = 1 # acf
```

P = 1 D = 0

Q = 3

Model Training

```
# define the arima model
from statsmodels.tsa.statespace.sarimax import SARIMAX

model = SARIMAX(df['#Passengers'], order=(p, d, q), seasonal_order=(P, D, Q, seasonal_period))
fitted_model = model.fit()
print(fitted_model.summary())
```

4.61

SARIMAX Results								
Dep. Variab	ole:			#Passengers	No. Obse	 rvations:	144	
Model:	SARI	MAX(2, 1, 1)x(1, 0, [1, 2, 3], 12)	Log Like	lihood	-563.224	
Date:			Mon	n, 30 Sep 2024	AIC		1142.448	
Time:		18:26:03 BIC						
Sample:	01-01-1949 HQIC						1152.080	
				- 12-01-1960				
Covariance Type:				opg				
	coef	std err	z	P> z	[0.025	0.975]		
ar.L1	0.6244		6.168	0.000	0.426			
ar.L2	0.1947	0.100	1.951	0.051	-0.001	0.390		
ma.L1	-0.9675	0.039	-24.632	0.000	-1.045	-0.891		
ar.S.L12	0.9619	0.036	26.615	0.000	0.891	1.033		
ma.S.L12	-0.1127	0.126	-0.898	0.369	-0.359	0.133		
ma.S.L24	0.1355	0.129	1.053	0.292	-0.117	0.388		
ma.S.L36	0.0049	0.147	0.033	0.973	-0.284	0.294		
O			8.421	0.000		153.119		
	 -jung-Box (L1) (Q):			Jarque-Bera (JB): Prob(JB):		16.14		
Prob(Q): Heteroskedasticity (H):			0.93			0.00		
			3.99	Skew:		0.18		
			0 00	Maria transfer and an a				

Kurtosis:

Warnings

Prob(H) (two-sided):

 $\hbox{[1] Covariance matrix calculated using the outer product of gradients (complex-step).}\\$

0.00

9/30/24, 9:10 PM mpr.ipynb - Colab

```
Forecasting
# forecast for next 2 years
forecast_steps = 24
forecast = fitted_model.get_forecast(steps=forecast_steps)
# create the date range for the forecasted values
forecast_index = pd.date_range(start=df.index[-1], periods=forecast_steps+1, freq='M')[1:].strftime('%Y-%m') # remove start date
# create a forecast dataframe
forecast_df = pd.DataFrame({
    "Forecast": list(forecast.predicted_mean),
    "Lower CI": list(forecast.conf int().iloc[:, 0]),
    "Upper CI": list(forecast.conf_int().iloc[:, 1])
}, index=forecast_index)
forecast_df.head()
\rightarrow
                Forecast
                           Lower CI
                                       Upper CI
      1961-01 446.711482 424.867844 468.555119
      1961-02 423.325499 397.191175 449.459823
      1961-03 456.418435 426.807576 486.029294
      1961-04 491.562749 459.538919 523.586579
      1961-05 505.131996 471.260404 539.003589
# plot the forecast values
plt.figure(figsize=(12, 6))
plt.plot(df['#Passengers'], label='Historical Data')
plt.plot(forecast_df['Forecast'], label='Forecast Data')
plt.fill_between(forecast_df.index, forecast_df['Lower CI'], forecast_df['Upper CI'], color='k', alpha=0.1)
plt.xlabel('Date')
plt.ylabel('Number of Passengers')
plt.title('Air Passengers Forecast')
plt.xticks(rotation=90)
plt.legend()
plt.show()
\overline{\Rightarrow}
                                                                Air Passengers Forecast
```


9/30/24, 9:10 PM mpr.ipynb - Colab