Analysis and Design of Algorithms

CS3230 CS3530 Week 2
Recurrence and
Master theorem

Ken Sung
Arnab Bhattacharyya

Properties of functions

Properties of functions

- Exponentials
- Logarithms
- Summations
- Limits

Exponentials

$$a^{-1} = 1/a$$

$$(a^m)^n = a^{mn}$$

$$a^m a^n = a^{m+n}$$

$$e^x \ge 1 + x$$

Any exponential function with base a > 1grows faster than any polynomial

- Lemma: For any constants k>0 and a>1, $n^k = o(a^n)$.
- Proof: Need to identify c and n_0 s.t. $n^k < c \cdot a^n$ for $n \ge n_0$.
 - $\frac{n}{\ln n}$ is an increasing function.
 - There exists n_0 such that $\frac{k}{\ln a} < \frac{n}{\ln n}$ for $n \ge n_0$. For $n \ge n_0$, $k \log_a n = \frac{k \ln n}{\ln a} < n$. For $n \ge n_0$, $a^{k \log_a n} < a^n$.

 - For $n \ge n_0$, $n^k < a^n$.
 - Hence, n^k=o(aⁿ).

Logarithms

- Binary log: $\lg n = \log_2 n$
- Natural log: $\ln n = \log_e n$
- Exponentiation: $\lg^k n = (\lg n)^k$
- Composition: $\lg \lg n = \lg(\lg n)$

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b (1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

Base of logarithm does not matter in asymptotics

$$\lg n = \Theta(\ln n) = \Theta(\log_{10} n)$$

Exponentials of different bases differ by an exponential factor

$$4^n = 2^n 2^n$$

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$
$$\log(n!) = \Theta(n \lg n)$$

Summations

Arithmetic Series

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

$$= \frac{1}{2}n(n+1) = \Theta(n^2)$$

Geometric series

$$\sum_{k=1}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n}$$

$$= \frac{x^{n+1} - 1}{x - 1}$$

$$\sum_{k=1}^{\infty} x^{k} = \frac{1}{1 - x} \text{ when } |x| < 1$$

Harmonic series

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

$$= \sum_{k=1}^{n} \frac{1}{k}$$

$$= \ln n + O(1)$$

Telescoping series

• For any sequence a_0 , a_1 , ..., a_n , $\sum_{k=0}^{n-1} (a_k - a_{k+1}) = \frac{(a_1 - a_2) + (a_2 - a_3) + (a_3 - a_4) + (a_3 - a_4) + (a_3 - a_4) + (a_4 - a_n)}{(a_{n-1} - a_n)}$

• Example:

$$\sum_{k=1}^{n-1} \frac{1}{k(k+1)} = \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= 1 - \frac{1}{n}$$

Limit

• Assume f(n), g(n)>0.

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \rightarrow f(n) = o(g(n))$$

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \rightarrow f(n) = O(g(n))$$

•
$$0 < \lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) < \infty \to f(n) = \Theta(g(n))$$

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) > 0 \to f(n) = \Omega(g(n))$$

•
$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) > 0 \to f(n) = \Omega(g(n))$$

• $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \infty \to f(n) = \omega(g(n))$

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = 0 \to f(n) = o(g(n))$$

• Proof:

- Since $\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = 0$, by definition, we have:
 - For all ε >0, there exists δ >0 such that $\frac{f(n)}{g(n)} < \varepsilon$ for n> δ .
- Set c= ε and $n_0 = \delta$. We have:
 - For all c>0, there exists n_0 >0 such that $\frac{f(n)}{g(n)} < c$ for $n > n_0$.
 - Hence, for all c>0, there exists n_0 >0 such that $f(n) < c \cdot g(n)$ for n> n_0 .
 - By definition, f(n) = o(g(n)).

L'Hopital's Rule

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

Example

$$\lim_{n \to \infty} \frac{n \log n}{n^2}$$

$$= \lim_{n \to \infty} \frac{\log n}{n}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$
L'Hopital's rule
$$= \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\implies n \log n \in o(n^2)$$

Example

• Question: By limit, show that $n^3 + 3n^2 + 4n + 1 = \omega(n^2)$.

• Proof:

•
$$\lim_{n \to \infty} \left(\frac{n^3 + 3n^2 + 4n + 1}{n^2} \right) = \lim_{n \to \infty} \left(n + 3 + \frac{4}{n} + \frac{1}{n^2} \right) = \infty.$$

• Hence, $n^3 + 3n^2 + 4n + 1 = \omega(n^2)$

Properties of bigO

Transitivity

$$f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

 $f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$
 $f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$
 $f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$

Reflexivity

$$f(n) = \Theta(f(n))$$
$$f(n) = O(f(n))$$
$$f(n) = \Omega(f(n))$$

Properties of bigO

Symmetry

$$f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$$

Complementarity

$$f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n))$$

 $f(n) = o(g(n)) \text{ iff } g(n) = \omega((f(n)))$

Recurrences and Master Theorem

How to analyze the running time of a recursive algorithm?

1. Derive a recurrence

2. Solve the recurrence

Merge sort

```
MERGE-SORT A[1 ...n]
1. If n = 1, done.
```

- 2. Recursively sort A[1...n/2] and A[n/2]+1...n.
- 3. "Merge" the 2 sorted lists.

Analyzing merge sort

```
MERGE-SORT A[1 ... n]
\Theta(1)
2T(n/2)
Abuse

2. Recursively sort A[1 ... \lceil n/2 \rceil]
and A[\lceil n/2 \rceil + 1 ... n].

3. "Merge" the 2 sorted lists
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1 \\ 2T\left(\frac{n}{2}\right) + \Theta(n) & if \ n > 1 \end{cases}$$

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- Below, we describe a few ways to solve the recurrence to find a good upper bound on T(n).

Solving recurrence

How to solve an recurrence?

- Substitution method
- Telescoping method
- Recursion tree
- Master method

Substitution method

- The most general method:
- 1. Guess the form of the solution
- 2. Verify by induction

Example: Solve T(n) = 4 T(n/2) + n

- [Assume T(1)=q where q is a constant.]
- Step 1: Guess $T(n) = O(n^3)$.
 - I.e. there exists a constant c such that $T(n) \le c \cdot n^3$. for $n \ge n_0$.
- Step 2: Verify by induction.
 - Set c=max $\{2,q\}$ and $n_0=1$.
 - Base case $(n=n_0=1)$: $T(1) = q \le c(1)^3$.
 - Recursive case (n>1):
 - By strong induction, assume $T(k) \le c \cdot k^3$ for $n > k \ge 1$.
 - $T(n) = 4 T(n/2) + n \le 4 c (n/2)^3 + n = (c/2) n^3 + n \le c n^3$.
 - Hence, $T(n) \le c n^3$ for $n \ge 1$.
- Conclusion: $T(n) = O(n^3)$.

$$T(n) = 4 T(n/2) + n$$

• Is $T(n) = O(n^3)$ a tight bound?

- Answer: No.
- The tight bound is $T(n) = O(n^2)$.

$$T(n) = 4 T(n/2) + n$$

- A possible solution to prove that $T(n) = O(n^2)$.
 - i.e. we show that $T(n) \le c n^2$ for $n \ge n_0$.
- Set c=max $\{2,q\}$ and $n_0=1$.
- Base case (n=1): $T(1) = q \le c(1)^2$.
- Recursive case (n>1):
 - By strong induction, assume $T(k) \le c \cdot k^2$ for $n > k \ge 1$.
 - T(n) = 4 T(n/2) + n
 - $\leq 4 \text{ c} \cdot (n/2)^2 + n$
 - = $c n^2 + n$
 - = O(n²). ←This is not correct! You
 need to show T(n) ≤ c n²!

$$T(n) = 4 T(n/2) + n$$

- [Assume T(1)=q where q is a constant.]
- Correct solution: Show that, for $n \ge n_0$, $T(n) \le c_1 n^2 c_2 n$.
- Set $c_1 = q+1$ and $c_2 = 1$ and $n_0 = 1$.
- Base case (n=1): $T(1) = q \le (q+1)(1)^2 (1)(1)$.
- Recursive case (n>1):
 - By strong induction, assume $T(k) \le c_1 \cdot k^2 c_2 \cdot k$ for $n > k \ge 1$.
 - $T(n) = 4 T(n/2) + n = 4 (c_1 (n/2)^2 c_2 (n/2)) + n = c_1 n^2 2 c_2 n + n$ = $c_1 n^2 - c_2 n + (1 - c_2) n$
 - Since $(1 c_2) = 0$, $T(n) \le c_1 n^2 c_2 n$.

Summary for substitution method

• Guess the time complexity and verify that it is correct by induction.

• Sometimes, the verification is a bit tricky.

Telescoping method

Telescoping method

- Example: T(n) = 2 T(n/2) + n (Recurrence for merge sort)
- This implies: $\frac{T(n)}{n} = \frac{T(n/2)}{n/2} + 1.$
- By telescoping, we have:

$$\frac{T(n)}{n} = \frac{T(n/2)}{n/2} + 1$$

$$\frac{T(n/2)}{n/2} = \frac{T(n/4)}{n/4} + 1$$

$$\frac{T(n/4)}{n/4} = \frac{T(n/8)}{n/8} + 1 \qquad \frac{T(n)}{n} = \frac{T(1)}{1} + \log n$$
...
$$\frac{T(2)}{n/2} = \frac{T(1)}{1} + 1$$
Hence, T(n) = O(n log n).

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Master method

The master method

The master method applies to recurrences of the form

$$\bullet \ T(n) = a \ T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ϵ} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log ba} \lg^{k+1} n)$$
.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

The regularity condition guarantees the sum of subproblems is smaller than f(n)

Idea of master theorem T(n) = a T(n/b) + f(n)

Note: $a^{\log_b n} = n^{\log_b a}$.

Case 1: $f(n) = O(n^{\log_b a - \varepsilon})$

• Let $\delta = \log_b a - \varepsilon$. $f(n) = O(n^{\log_b a - \varepsilon}) \rightarrow f(n) \le cn^{\delta}$ for some constant c.

Case 1: $f(n) = O(n^{\log_b a - \varepsilon})$

•
$$T(n) \le cn^{\delta} + cn^{\delta} \left(\frac{a}{b^{\delta}}\right) + cn^{\delta} \left(\frac{a}{b^{\delta}}\right)^2 + \dots + cn^{\delta} \left(\frac{a}{b^{\delta}}\right)^{\log_b n}$$

•
$$\delta = \log_b a - \varepsilon \rightarrow b^{\delta} = ab^{-\varepsilon} \rightarrow \frac{a}{b^{\delta}} = b^{\varepsilon}$$

- Hence,
 - $T(n) \le cn^{\delta} (1 + b^{\varepsilon} + b^{2\varepsilon} + \dots + b^{\log_b n \cdot \varepsilon})$
 - \rightarrow T(n) $\leq cn^{\delta}b^{(1+\log_b n)\varepsilon} = cb^{\varepsilon}n^{\delta+\varepsilon}$
 - \rightarrow T(n) $\leq cb^{\varepsilon}n^{\log_b a} = O(n^{\log_b a}).$

Summary: Master Theorem

$$T(n) = aT(n/b) + \Theta(f(n))$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon}) \qquad \leftarrow \text{ If ϵ=0, it is case 2.}$$

$$T(n) = \Theta(n^{\log_b a})$$

Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$

$$af(n/b) \leq cf(n), c < 1$$

$$T(n) = \Theta(f(n))$$

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \lg n)$.

Examples

```
Ex. T(n) = 4T(n/2) + n^3

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.

Case 3: f(n) = \Omega(n^{2+\epsilon}) for \epsilon = 1

and 4(n/2)^3 \le cn^3 (reg. cond.) for c = 1/2.

\therefore T(n) = \Theta(n^3).
```

Examples

```
Ex. T(n) = 4T(n/2) + n^2/\lg n
       a = 4, b = 2 \implies n^{\log_b a} = n^2; f(n) = n^2/\lg n.
       n^2/\lg n \notin O(n^{2-\varepsilon}) \rightarrow \text{Not case } 1
        - Reason: for every constant \varepsilon > 0, we have n^{\varepsilon} = \omega(\lg n).
       n^2/\lg n \notin \Theta(n^2\log^k n) for any k \ge 0 \rightarrow \text{Not case } 2
       n^2/\lg n \notin \Omega(n^{2+\varepsilon}) \to \text{Not case } 3
       Master method does not apply.
```

Acknowledgement

- The slides are modified from
 - the slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
 - the slides from Prof. Leong Hon Wai
 - the slides from Prof. Lee Wee Sun