Lecture 15 Worksheet

Chrysafis Vogiatzis

Every worksheet will work as follows.

- 1. You will be entered into a Zoom breakout session with other students in the class.
- 2. Read through the worksheet, discussing any questions with the other participants in your breakout session.
 - You can call me using the "Ask for help" button.
 - Keep in mind that I will be going through all rooms during the session so it might take me a while to get to you.
- 3. Answer each question (preferably in the order provided) to the best of your knowledge.
- 4. While collaboration between students in a breakout session is highly encouraged and expected, each student has to submit their own version.
- 5. You will have 24 hours (see Compass) to submit your work.

Worksheet 1: Biases

You are interested in estimating the (unknown) mean μ of a population X. You have been able to collect only a sample of n=2 observations, so you are worried about your estimating the mean. You are already aware of one good estimator: take the average of the 2 elements and use that as a proxy of the unknown mean μ .

However, a friend of yours tells you about this revolutionary technique they read about online! First, flip a fair coin. If it comes up Heads (with probability 50%) take the first element X_1 and report that the mean is actually $\frac{3X_1}{2}$. If the coin comes up Tails (with probability 50%) take the first two elements X_1 , X_2 and report that the mean is $\frac{X_1+2X_2}{6}$.

Problem 1:
$$\hat{\Theta}_1 = \frac{X_1 + X_2}{2}$$

Let $\hat{\Theta}_1$ be equal to $\frac{X_1+X_2}{2}$ (the sample average). What is the estimator's bias? 1

Answer to Problem 1.

¹ Recall that because X_1 , X_2 have come from the population X you know that

$$E[X_1] = E[X_2] = E[X] = \mu$$

$$Var[X_1] = Var[X_2] = Var[X] = \sigma^2.$$

You will not need the variance in this question, but you may need it later!

Problem 2: $\hat{\Theta}_2 = \frac{3X_1}{2}$

Let $\hat{\Theta}_2$ be equal to $\frac{3X_1}{2}$ (the weird estimator your friend recommended if the coin comes up Heads). What is its bias?

Answer to Problem 2.

Problem 3: $\hat{\Theta}_3 = \frac{X_1 + 2X_2}{6}$

Let $\hat{\Theta}_3$ be equal to $\frac{X_1+2X_2}{6}$ (the other weird estimator your friend recommended if the coin comes up Tails). What is its bias?

Answer to Problem 3.

Problem 4: Bias is a weird thing

Based on your answers in Problems 3 and 4, what is the bias of the technique your friend is recommending? 2

Answer to Problem 4.

$$E[X] = E[X|A] \cdot P(A) + E[X|\overline{A}] \cdot P(\overline{A}).$$

² Let us revisit what the law of total expectation states for two mutually exclusive events A, \overline{A} :

Worksheet 2: Weird point estimators

Assume that a population is distributed with pdf $f(x) = c(1 + \theta x)$, $-1 \le x \le 1$, where θ is an unknown parameter, and c a constant. ³

Problem 5: Back to basics

Let's return to the basics for a second! What should *c* be equal to in order for f(x) to be a valid continuous pdf?

Answer to Problem 5.	

Problem 6: Where did you come up with this?

Assume you obtain a sample of n observations. Consider the sample average $\overline{X} = (X_1 + X_2 + ... + X_n) / n$. Show that $\hat{\Theta} = 3\overline{X}$ is an **unbiased estimator** for θ .

Answer to Problem 6.	

 3 That means, in English, that c has to be one value and one value alone, whereas θ can be *anything*.

Problem 7: Variance and standard error

What is the standard error of the point estimator $\hat{\Theta}=3\overline{X}?~^4$

Answer to Problem 7.	

⁴ To calculate this you will first need to calculate the expectation and the variance of population *X*. They could very well be a function of θ as you do not know what the parameter is equal to...

Worksheet 3: Comparing point estimators

Assume we have collected a sample of n = 3 observations X_1, X_2, X_3 coming from a population X distributed with some pdf with unknown u and known $\sigma^2 = 16$. We have devised three point estimators for the unknown population mean:

• Get the average from the first two observations omitting the third,

$$\hat{\Theta}_1 = \frac{X_1 + X_2}{2}.$$

• Add the "odd" observations once and the "even" observations doubled and divide everything by 4, i.e.,

$$\hat{\Theta}_2 = \frac{X_1 + 2X_2 + X_3}{4}.$$

• Once again omit the third observation and simply add the first two and divide by 4, i.e.,

$$\hat{\Theta}_3 = \frac{X_1 + X_2}{4}.$$

Problem 8: Comparison I

For one last time in this worksheet, calculate the bias and variance of each of the estimators.

Answer to Problem 8.	

Problem 9: Comparison II

What is the MSE of each of the estimators? Which estimator is the best according to its MSE, if we have been told that $\mu > 4$?

Problem 10: Observation

In Problem 8, you must have gotten that the first two estimators are unbiased (i.e., zero bias). In general, assume you are collecting a $a_2X_2 + ... + a_nX_n$ to estimate the unknown mean. What condition should $a_1 + a_2 + ... + a_n$ satisfy in order for $\hat{\Theta}$ to have bias equal to zero? 5

Answer to Problem 9.	

⁵ Hmmm.. What can you tell about $E\left[\sum_{i=1}^{n} a_i X_i\right]$? Additionally, never forget that $E[X_1] = E[X_2] = \dots = E[X_n] =$ E[X] because all observations come from the same population *X*!