Лабораторная работа №3. Вычисление определенного интеграла

<u>**Цель работы:**</u> Получить навыки применения таких методов вычисления определенного интеграла, как метод прямоугольников, трапеций, Симпсона, научиться выполнять графическую интерпретацию полученных результатов

Порядок выполнения работы

Изучить теоретические сведения и методические указания по конспекту лекций

Практическая часть (2 часа)

Выполнить следующие задания:

задание 1 – приложение 1; задание 2 – приложение 2.

При выполнении задания предусмотреть текстовые комментарии с условиями задач. Вывести полученный документ на принтер.

Структура отчета

- 1. Титульный лист
- 2. Цель работы
- 3. Условие задачи
- 4. Листинг программы выполнения практической части работы с текстовыми комментариями
- 5. Результаты выполнения программы в численном виде
- 6. Графики, полученные в ходе выполнения работы
- 7. Выводы по работе

Приложение 1

Задание 1

- 1. Вычислить определенный интеграл при заданном количестве разбиений п указанными в задании методами, сравнить полученные значения с точным значением интеграла, сделать вывод о погрешностях методов.
- 2. Получить значение интеграла методом левых прямоугольников с заданной точностью, используя правило Рунге.
- 3. Сделать графическую интерпретацию результатов для метода прямоугольников (по желанию)

Таблица 1

N	Подынтегральная функция	a	b	n	3	Методы для
						расчета
1	$\mathbf{f}(\mathbf{x}) := \mathbf{x} \cdot \mathbf{sin}(\mathbf{x})$	0	π	4	1e-5	Метод левых прямоугольников, метод Симпсона
2	$f(x) := x \cdot \cos(x)$	0	π	4	1e-5	Метод правых прямоугольников, метод трапеций
3	$\mathbf{f}(\mathbf{x}) := \mathbf{x} \cdot \mathbf{e}^{-\mathbf{x}}$	1	3	5	1e-6	Метод средних прямоугольников, метод трапеций
4	$\mathbf{f}(\mathbf{x}) := \mathbf{sin}(\mathbf{x})^2 + \mathbf{x}$	1	3	6	1e-6	Метод правых прямоугольников, метод Симпсона
5	$\mathbf{f}(\mathbf{x}) \coloneqq \cos(\mathbf{x})^2 \cdot \mathbf{x}$	0	2,5	4	1e-7	Метод средних прямоугольников, метод Симпсона
6	$\mathbf{f}(\mathbf{x}) := \cos(\mathbf{x})^2 \cdot \frac{\mathbf{x}}{2}$	0	2,5	4	1e-6	Метод левых прямоугольников, метод трапеций
7	$\mathbf{f}(\mathbf{x}) := \cos \left \mathbf{x}^2 \right \cdot \mathbf{x}^3$	0	2	4	1e-5	Метод левых и правых прямоугольников, метод трапеций
8	$\mathbf{f}(\mathbf{x}) := \sin(\mathbf{x}) \cdot \mathbf{x}^2$	0,5	2	6	1e-7	Метод левых и средних прямоугольников, метод трапеций
9	$\mathbf{f}(\mathbf{x}) := \mathbf{e}^{-2\mathbf{x}} \cdot \mathbf{x}^2$	1	3	6	1e-5	Метод правых и средних прямоугольников, метод трапеций
10	$\mathbf{f}(\mathbf{x}) := \mathbf{e}^{-\mathbf{X}} \cdot \mathbf{x}^3$	1	3	5	1e-7	Метод левых прямоугольников, метод Симпсона

Приложение 2

Задание 2

Траектория движения робота описана функцией f(x). Вычислить длину дуги кривой, по которой движется робот, если координата x изменяется в пределах от а до b, точность вычислений ε =0.001. Построить график траектории движения робота.

Длина дуги вычисляется по формуле:

$$L = \int_{x_0}^{x_1} \sqrt{1 + (y'(x))^2} dx$$

1.
$$f(x) = x \sin(x), a=0, b=\pi$$

2.
$$f(x) = x \cos(x), a=0, b=\pi$$

3.
$$f(x) = xe^{-x}, a=0, b=1$$

4.
$$f(x) = \sin^2(x), a=0, b=\pi$$

5.
$$f(x) = \cos^2(x), a=0, b=\pi$$

6.
$$f(x) = x\cos(x^2), a=0, b=\pi$$

7.
$$f(x) = x \sin(x^2), a=0, b=\pi$$

8.
$$f(x) = x^2 e^{-2x}, a=0, b=\pi$$