2.1. Séries de Potências e Fórmula de Taylor

(Slides com ligeiras adaptações de outros já existentes fortemente baseados no Capítulo 4 dos Apontamentos de Cálculo II da Prof. Doutora Virgínia Santos (disponíveis no Moodle))

Universidade de Aveiro, 2023/2024

Cálculo II - C

Resumo dos Conteúdos

- Séries de Potências
- Fórmula de Taylor com Resto de Lagrange
- Séries de Taylor
- 4 Anexos

Série de potências — definição

Definição:

Chama-se série de potências centrada em $c \in \mathbb{R}$ (ou série de potências de (x-c) a uma série da forma

$$\sum_{n=0}^{+\infty} a_n(x-c)^n = a_0 + a_1(x-c) + a_2(x-c)^2 + \ldots + a_n(x-c)^n + \ldots$$
 (1)

onde $a_n \in \mathbb{R}$, para todo o $n \in \mathbb{N}_0$. Os números a_n são designados de coeficientes da série.

Observação: No caso em que c=0, temos a série $\sum_{n=0}^{+\infty} a_n x^n$ que se chama série de potências centrada na origem.

Convenção: Em (1) supomos que $a_0(x-c)^0=a_0$ mesmo que x=c (isto é, vamos supor que $0^0 = 1$).

Exemplo

$$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

Série de potências centrada na origem com coeficientes unitários.

Notar que [porquê?]

- a série é convergente sse |x| < 1, *i.e.*, sse $x \in]-1,1[$.
- $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$, para |x| < 1.

O conjunto]-1,1[é chamado de domínio de convergência da série.

Domínio de convergência de uma série de potências

Definição:

Chama-se domínio de convergência da série de potências $\sum_{n=0}^{\infty} a_n(x-c)^n$ ao conjunto de pontos $x \in \mathbb{R}$ para os quais a série é convergente.

Exemplos:

Usando os Critérios de D'Alembert e/ou de Cauchy e, se necessário, outros critérios de convergência de séries numéricas (como o Critério de Leibniz), podemos concluir que:

- $\bullet \sum_{n=0}^{+\infty} \frac{x^n}{n!}; \text{ domínio de convergência: } \mathbb{R}$
- **3** $\sum n!(x-2)^n$; domínio de convergência: $\{2\}$

Domínio de convergência de uma série de potências

Notação: Usualmente denota-se o domínio de convergência de uma série de potências por D_c .

Observação: Uma vez que para x = c a série de potências

$$\sum_{n=0}^{+\infty} a_n (x-c)^n$$

é convergente, podemos concluir que $D_c \neq \emptyset$.

Intervalo de convergência/Raio de convergência

Teorema:

Qualquer que seja $\sum_{n=0}^{+\infty} a_n(x-c)^n$, verifica-se uma, e uma só, das seguintes

condições:

- (i) a série converge absolutamente em x = c e diverge se $x \neq c$;
- (ii) a série converge absolutamente em todo o $x \in \mathbb{R}$;
- (iii) existe um único R > 0 para o qual a série converge absolutamente se $x \in]c R, c + R[$ e diverge se $x \in]-\infty, c R[\cup]c + R, +\infty[$.

Definições:

Ao número R chamamos raio de convergência da série $\sum_{n=0}^{+\infty} a_n(x-c)^n$.

No caso (i) , consideramos R=0; no caso (ii) , consideramos $R=+\infty$; Caso $R\neq 0$, o intervalo $I_c=]c-R,c+R[$ (ou $\mathbb R$, quando $R=+\infty$) designa-se por intervalo de convergência da série.

Exemplos:

- $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} (x+1)^n ; \text{ intervalo de convergência: }]-2,0[; R=1]$

Observações:

- Uma série de potências pode convergir ou não nos extremos do seu intervalo de convergência. O teorema do slide anterior nada afirma sobre a natureza da série nesses pontos.
- O domínio de convergência de uma série de potências contém o seu intervalo de convergência, mas poderá ainda conter algum dos extremos desse intervalo. O estudo da natureza da série nesses pontos é feito caso a caso.

Raio de Convergência, usando os Coeficientes da Série

Proposição:

Seja $\sum a_n(x-c)^n$ uma série de potências com $a_n \neq 0$ para todo $n \in \mathbb{N}_0$.

- 2 $R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$, se este limite existir.

Observações:

- Estas fórmulas de cálculo do raio de convergência resultam da aplicação do Critério do Quociente ou do Critério da Raiz. Assim, estes métodos funcionam quando a aplicação direta desses critérios também pode ser usada.
- Cuidado com a aplicação: a série tem que apresentar uma escrita tal como no enunciado da proposição.

Polinómios de Taylor

Definição:

Seja f uma f.r.v.r. admitindo derivadas finitas até à ordem $n \in \mathbb{N}$ num dado ponto $c \in \mathbb{R}$. Ao polinómio

$$T_c^n f(x) := \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$$

chamamos polinómio de Taylor de ordem n da função f no ponto c. Caso c=0, o polinómio $T_0^n f(x)$ passa a ser designado por polinómio de MacLaurin de ordem n da função f.

Observação:

 $T_c^n f(x)$ é o único polinómio de grau menor ou igual a n que assume o mesmo valor que f em c e que as suas sucessivas derivadas em c são iguais às sucessivas derivadas de f em c, respetivamente, até à ordem n.

Exemplos

- **1** O polinómio de Taylor de ordem n em c, para c qualquer em \mathbb{R} , de uma função polinomial de grau n é a própria função. Por exemplo, $T_1^3(x^3) = x^3$.
- $T_0^n(e^x) = \sum_{k=0}^n \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$
- $T_0^n \left(\frac{1}{1-x} \right) = \sum_{k=0}^n x^k = 1 + x + x^2 + \dots + x^n$
- $T_0^{2n+1} \left(\operatorname{sen} x \right) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$
- $T_0^{2n}(\cos x) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$

Fórmula de Taylor

Teorema:

Sejam $n \in \mathbb{N}_0$, f uma função real com derivadas contínuas até à ordem (n+1) num intervalo I e $c \in I$. Então, para todo $x \in I \setminus \{c\}$, existe θ entre c e x tal que

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k}}_{T_{c}^{n}f(x)} + \underbrace{\frac{f^{(n+1)}(\theta)}{(n+1)!} (x-c)^{n+1}}_{R_{c}^{n}f(x)}.$$

Fórmula de Taylor de ordem n da função f no ponto c, com resto de Lagrange

 $R_c^n f(x) \longrightarrow \text{resto de Lagrange de ordem } n \text{ de } f \text{ no ponto } c$ $T_c^n f(x) \longrightarrow \text{polinómio de Taylor de ordem } n \text{ de } f \text{ no ponto } c$

Note que, se x = c, $f(c) = T_c^n f(c)$, (resto nulo).

Majorantes do resto de Lagrange

O módulo do resto de Lagrange $R_c^n f(x)$ dá-nos o erro absoluto cometido quando tomamos $T_c^n f(x)$ por f(x), uma vez que

$$|R_c^n f(x)| = |f(x) - T_c^n f(x)|.$$

Mesmo que desconheçamos esse resto é possível, em geral, majorá-lo.

Formas de efetuar a majoração do resto:

Se a (n+1)-ésima derivada de f é contínua num intervalo [a,b] contendo o ponto c, então ela é limitada nesse intervalo. Sendo

$$M \ge \sup_{y \in [a,b]} |f^{(n+1)}(y)|$$
, tem-se que

$$|R_c^n f(x)| \le M \frac{|x-c|^{n+1}}{(n+1)!} \le M \frac{(b-a)^{n+1}}{(n+1)!}$$
, para todo o $x \in [a,b]$.

Ver applet, sobre a aproximação de uma função usando polinómios de Taylor.

Série de Taylor — definição

Definição:

Se f admitir derivadas finitas de todas as ordens em c, à série de potências

$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!} (x-c)^2 + \cdots$$

chamamos série de Taylor da função f no ponto c.

Se c = 0, passamos a chamar-lhe série de MacLaurin de f.

Exemplo:

A série de MacLaurin da função $f(x) = \frac{1}{1-x}$ é a série de potências $\sum_{n=0}^{+\infty} x^n$.

Relacione com o ponto 3. do slide 11.

No exemplo do slide anterior, a série de Taylor da função no ponto c=0 converge para a função no intervalo]-1,1[, i.e., para cada $x\in]-1,1[$,

$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x} .$$

Questão:

Seja I um intervalo aberto centrado no ponto c onde a série de Taylor de f é convergente, será que a sua soma para cada x é igual a f(x)? Nem sempre, ver exemplo do slide seguinte!

Funções Analíticas

Definição:

Sejam I um intervalo aberto, $c \in I$, e f uma função definida em I que admite derivadas finitas de todas as ordens em c. Dizemos que f é analítica em c se existir c 0 tal que, para todo o c 0 tal que, para todo o c 1, a série de Taylor de c no ponto c converge para c 1.

Exemplos

- Função analítica em c = 0: $g(x) = \frac{1}{1-x}$
- Punção não analítica em c=0: $f(x)=\left\{ \begin{array}{ll} e^{-\frac{1}{x^2}} & , & x\neq 0 \\ 0 & , & x=0 \end{array} \right.$

f possui derivadas finitas de todas as ordens em \mathbb{R} , mas como $f^{(n)}(0)=0$ para todo $n\in\mathbb{N}_0$, a sua série de MacLaurin converge para a função nula.

Teorema:

Sejam I um intervalo, $c \in I$ e $f: I \to \mathbb{R}$ uma função com derivadas finitas de qualquer ordem em I. Então, para todo o $x \in I$,

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$
 se, e só se, $\lim_{n \to \infty} R_c^n f(x) = 0$.

Exemplo: Seja $f(x) = e^x$, $x \in \mathbb{R}$.

$$R_0^n f(x) = \frac{e^{\xi}}{(n+1)!} x^{n+1}, \quad x \neq 0, \quad \xi \text{ entre } 0 \text{ e } x.$$

Como $\lim_{n\to\infty} R_0^n f(x) = 0$, [Porquê?], concluímos que a série de MacLaurin da função exponencial converge para a própria função em \mathbb{R} , i.e.,

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}.$$

Teorema:

Sejam I um intervalo, $c \in I$ e $f: I \to \mathbb{R}$ uma função com derivadas finitas de qualquer ordem em I. Se existir M > 0 tal que

$$|f^{(n)}(x)| \leq M, \quad \forall x \in I, \quad \forall n \in \mathbb{N}_0,$$

então

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n, \quad \forall x \in I.$$

Exercício: Usando o teorema anterior mostre que:

$$\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}.$$

Compare com os pontos 4. e 5. do ▶ slide 11.

Séries geométricas e séries de Dirichlet

 $\sum_{n=0}^{+\infty} ar^n \text{ com } a, r \in \mathbb{R} \setminus \{0\}: \text{ série geométrica de razão } r \text{ e primeiro termo}$

a. Esta série converge se e só se |r| < 1 e tem soma $S = \frac{a}{1-r}$.

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$: série de Dirichlet (ou série harmónica) de ordem p. Esta série converge se e só se p > 1.

Critério de D'Alembert e Critério de Cauchy

Critério de D'Alembert ou Critério do Quociente: Seja $u_n \neq 0$, $\forall n \in \mathbb{N}$, e suponha-se que existe $L := \lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right|$. Se L < 1, a série $\sum_{n=1}^{+\infty} u_n$ é

absolutamente convergente e se L>1, a série $\sum_{n=1}^{\infty}u_n$ é divergente.

Critério de Cauchy ou Critério da Raiz: Suponha-se que existe

$$L:=\lim_{n \to +\infty} \sqrt[n]{|u_n|}$$
. Se $L < 1$, a série $\sum_{n=1}^{\infty} u_n$ é absolutamente convergente e

se L > 1, a série $\sum_{n=1}^{+\infty} u_n$ é divergente.

Critério da Comparação

Critério da Comparação: Suponha-se que existe $n_0 \in \mathbb{N}$ tal que

$$0 \leq a_n \leq b_n, \forall n \geq n_0.$$

Então:

- $\sum_{n=1}^{+\infty} b_n$ converge $\Rightarrow \sum_{n=1}^{+\infty} a_n$ converge.
- $\sum_{n=1}^{+\infty} a_n$ diverge $\Rightarrow \sum_{n=1}^{+\infty} b_n$ diverge.

Critério do Limite

Critério do Limite: Sejam $\sum a_n$ e $\sum b_n$ duas séries tais que $a_n \geq 0$ e

 $b_n > 0$, $\forall n \in \mathbb{N}$. Suponha-se que existe o limite

$$L=\lim_{n\to\infty}\frac{a_n}{b_n}.$$

Então verificam-se as condições seguintes:

- se $L \in \mathbb{R}^+$, então as séries têm a mesma natureza.
- se L = 0, $\sum_{n=0}^{\infty} b_n$ converge $\Rightarrow \sum_{n=0}^{\infty} a_n$ converge.
- se $L = +\infty$, $\sum_{n=0}^{\infty} b_n$ diverge $\Rightarrow \sum_{n=0}^{\infty} a_n$ diverge.

Critério de Leibniz

Critério de Leibniz: Seja $\sum_{n=1}^{+\infty} (-1)^n a_n$ tal que:

- $a_n > 0, \forall n \in \mathbb{N}$,
- $\bullet \lim_{n\to\infty}a_n=0,$
- a sucessão $(a_n)_{n\in\mathbb{N}}$ é monótona decrescente.

Então a série alternada é convergente.

Conceitos de Majorantes, Supremo e Máximo

Majorante de um conjunto: Seja $A \subseteq \mathbb{R}$ um conjunto não vazio. Diz-se que A é um conjunto majorado se existe $M \in \mathbb{R}$ tal que $x \leq M$, para todo o $x \in A$. Qualquer M que satisfaça essa desigualdade é chamado de majorante de A.

Supremo de um conjunto majorado: O supremo de um conjunto majorado A é o menor dos majorantes. Isto é, $s \in \mathbb{R}$ diz-se supremo de A se s for um majorante e se para todo o $\epsilon > 0$, existe $b \in A$ tal que $s - \epsilon < b$. Notação: $s = \sup A$.

Axioma do Supremo:

Todo o subconjunto de \mathbb{R} majorado tem supremo.

Máximo: Se $s = \sup A$ e $\sup A \in A$, a s chama-se máximo de A.

Notação: $s = \max A$.