LECTURE

10

PARTIALLY DIFFERENTIABLE FUNCTIONS

First order partial derivatives

Definition 10.1 Let $A \subseteq \mathbb{R}^n$, $c = (c_1, \ldots, c_n) \in intA$ and $j \in \{1, \ldots, n\}$. A function $f : A \to \mathbb{R}$ is called partially differentiable w.r.t. x_j at c if the limit

$$\lim_{x_j \to c_j} \frac{f(c_1, \dots, c_{j-1}, x_j, c_{j+1}, \dots, c_n) - f(c_1, \dots, c_n)}{x_j - c_j}$$

exists in \mathbb{R} . In this case, the above limit is called the partial derivative of f w.r.t. x_j at c and is denoted by $\frac{\partial f}{\partial x_j}(c)$ (or $f'_{x_j}(c)$, $D_j f(c)$).

Definition 10.2 If for all $j \in \{1, ..., n\}$, f is partially differentiable w.r.t all variables x_j at c, then f is called partially differentiable at c. In this case, the vector

$$\left(\frac{\partial f}{\partial x_1}(c), \dots, \frac{\partial f}{\partial x_n}(c)\right) \in \mathbb{R}^n$$

is called the gradient of f at c and is denoted by $\nabla f(c)$.

Definition 10.3 If B is an open subset of A, we say that f is partially differentiable w.r.t. x_j on B if it is partially differentiable w.r.t. x_j at every point of B. In this case, the function

$$\frac{\partial f}{\partial x_j}: B \to \mathbb{R}, \quad x \in B \mapsto \frac{\partial f}{\partial x_j}(x) \in \mathbb{R}$$

is called the partial derivative of f w.r.t. x_i on B.

At the same tine, f is called partially differentiable on B if it is partially differentiable at every point of B. If A is open and f is partially differentiable on A, then we simply say that f is partially differentiable.

Remark 10.4 (i) Since $c \in intA$, we can move a small distance in all directions from c while not leaving the set.

(ii) Partial differentiation means taking the ordinary derivative w.r.t. a single variable while keeping all other variables constant. Thus, we can apply all rules of differentiation.

Example 10.5 Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$, defined for all $(x, y, z) \in \mathbb{R}^3$ by

$$f(x, y, z) = x^3 + x\sin(yz) + y^2e^z$$
.

The partial derivatives of f at any point $(x, y, z) \in \mathbb{R}^3$ are

$$\frac{\partial f}{\partial x}(x, y, z) = 3x^2 + \sin(yz),$$

$$\frac{\partial f}{\partial y}(x, y, z) = xz\cos(yz) + 2ye^z,$$

$$\frac{\partial f}{\partial z}(x, y, z) = xy\cos(yz) + y^2e^z.$$

For instance, by considering (x, y, z) = (1, 2, 0) we get $\frac{\partial f}{\partial x}(1, 2, 0) = 3$, $\frac{\partial f}{\partial y}(1, 2, 0) = 4$, $\frac{\partial f}{\partial z}(1, 2, 0) = 6$, hence the gradient of f at (1, 2, 0) is

$$\nabla f(1,2,0) = (3,4,6) \in \mathbb{R}^3$$

Remark 10.6 Partial differentiability at a given point does not imply continuity at that point.

Example 10.7 Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2}, & \text{if } (x,y) \neq 0_2 \\ 0, & \text{if } (x,y) = 0_2. \end{cases}$

Function f is partially differentiable at 0_2 , since

$$\frac{\partial f}{\partial x}(0_2) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = 0 \quad and \quad \frac{\partial f}{\partial y}(0_2) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = 0.$$

However, as we have already seen in Example 9.13.(ii), f is not continuous at 0_2 (notice that in this example f is partially differentiable on \mathbb{R}^2).

Definition 10.8 If $A \subseteq \mathbb{R}^n$ is open, a function $f: A \to \mathbb{R}$ is called continuously partially differentiable if it is partially differentiable and all partial derivatives are continuous. In this case we write $f \in C^1(A)$.

Remark 10.9 Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq 0_2 \\ 0, & \text{if } (x,y) = 0_2. \end{cases}$

We have already seen in Example 9.13.(i) that f is continuous. It is easy to prove that f is partially differentiable, but its partial derivatives are not continuous at 0_2 .

Higher order partial derivatives

Definition 10.10 Let $A \subseteq \mathbb{R}^n$, $c \in intA$, $i, j \in \{1, ..., n\}$ and $f : A \to \mathbb{R}$. We say that f is twice partially differentiable w.r.t. (x_i, x_j) at c if $\exists V \in \mathcal{V}(c)$, V open, $V \subseteq A$ such that f is partially differentiable w.r.t. x_i on V and the function

$$\frac{\partial f}{\partial x_i}: V \to \mathbb{R}, \quad x \in V \mapsto \frac{\partial f}{\partial x_i}(x) \in \mathbb{R}$$
 (10.1)

is partially differentiable w.r.t. x_j at c. The partial derivative of the function (10.1) w.r.t. x_j at c is called the second order partial derivative of f w.r.t. (x_i, x_j) at c and is denoted by $\frac{\partial^2 f}{\partial x_i \partial x_i}(c)$

(or $f''_{x_ix_j}(c)$). If i = j we use the notation $\frac{\partial^2 f}{\partial x_i^2}(c)$ (or $f''_{x_i^2}(c)$). If for all $i, j \in \{1, ..., n\}$, f is twice partially differentiable w.r.t (x_i, x_j) at c, then f is called twice partially differentiable at c.

Inductively, one can define partial derivatives of arbitrary order.

$$\mathbf{Remark} \ \mathbf{10.11} \ \ (i) \ \frac{\partial^2 f}{\partial x_i \partial x_i}(c) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)(c), \ f_{x_i x_j}''(c) = \left(f_{x_i}' \right)_{x_j}'(c).$$

Note that f has n^2 second order partial derivatives.

- (ii) Higher order partial derivatives w.r.t. two or more different variables are also called mixed partial derivatives.
- (iii) Partial derivatives introduced in Definition 10.1 will also be called first-order partial derivatives (in order to distinguish them from higher order partial derivatives).
- (iv) As in Definition 10.1, one can introduce the notions of twice partial differentiability and second order partial derivative (as a function) on open sets. In particular, if A is open, then f is called twice partially differentiable if f is twice partially differentiable at every point of A.

Example 10.12 Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = e^{xy^2}$. Let $(x,y) \in \mathbb{R}^2$. Then

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= y^2 e^{xy^2}, \\ \frac{\partial f}{\partial y}(x,y) &= 2xy e^{xy^2}, \\ \frac{\partial^2 f}{\partial x^2}(x,y) &= y^4 e^{xy^2}, \\ \frac{\partial^2 f}{\partial y^2}(x,y) &= 2x e^{xy^2} + 4x^2 y^2 e^{xy^2}, \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) &= 2y e^{xy^2} + 2xy^3 e^{xy^2} = \frac{\partial^2 f}{\partial x \partial y}(x,y). \end{split}$$

Remark 10.13 Mixed partial derivatives of a function at a point are not always equal.

Example 10.14 Consider $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \begin{cases} \frac{x^3y}{x^2+y^2}, & \text{if } (x,y) \neq 0_2 \\ 0, & \text{if } (x,y) = 0_2. \end{cases}$

Since

$$\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = 0 \quad and \quad \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y - 0} = 0,$$

we have that f is partially differentiable at 0_2 and $\frac{\partial f}{\partial x}(0,0) = 0 = \frac{\partial f}{\partial y}(0,0)$. For $(x,y) \in \mathbb{R}^2 \setminus \{0_2\}$ we have that

$$\frac{\partial f}{\partial x}(x,y) = \frac{x^2y(x^2 + 3y^2)}{(x^2 + y^2)^2} \quad and \quad \frac{\partial f}{\partial y}(x,y) = \frac{x^3(x^2 - y^2)}{(x^2 + y^2)^2}.$$

Note that

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y - 0} = 0,$$

while

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = \lim_{x \to 0} \frac{x^5/x^4}{x} = 1.$$

Remark 10.15 In the previous example the mixed second order partial derivatives $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$ are not continuous at 0_2 .

Definition 10.16 If $A \subseteq \mathbb{R}^n$ is open, a function $f: A \to \mathbb{R}$ is called twice continuously partially differentiable if it is twice partially differentiable and all first and second order partial derivatives are continuous. In this case we write $f \in C^2(A)$.

Theorem 10.17 (Schwarz) Let $A \subseteq \mathbb{R}^n$ be open and $f \in C^2(A)$. Then for every $i, j \in \{1, \ldots, n\}$,

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i}.$$

Definition 10.18 Let $A \subseteq \mathbb{R}^n$ be open, $c \in A$ and $f : A \to \mathbb{R}$. If f is twice partially differentiable at c, we can build the $n \times n$ matrix

$$H_f(c) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(c) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(c) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(c) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(c) & \frac{\partial^2 f}{\partial x_2^2}(c) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(c) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(c) & \frac{\partial^2 f}{\partial x_n \partial x_2}(c) & \dots & \frac{\partial^2 f}{\partial x_n^2}(c) \end{pmatrix},$$

which is called the Hessian matrix (or Hessian) of f at c, denoted also by $\nabla^2 f(c)$.

Remark 10.19 If f is twice partially differentiable, then we can consider the Hessian matrix at all points of A. Notice that, if $f \in C^2(A)$, then $H_f(c)$ is symmetric at every $c \in A$, in view of Theorem 10.17.

Example 10.20 Example 10.12 revisited: let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = e^{xy^2}$. Then, for $(x,y) \in \mathbb{R}^2$,

$$H_f(x,y) = \begin{pmatrix} y^4 e^{xy^2} & 2y e^{xy^2} + 2xy^3 e^{xy^2} \\ 2y e^{xy^2} + 2xy^3 e^{xy^2} & 2x e^{xy^2} + 4x^2 y^2 e^{xy^2} \end{pmatrix}$$

and

$$H_f(1,0) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right).$$

Vector-valued functions of several variables

Let $n, m \in \mathbb{N}^*$, $m \geq 2$. For $j \in \{1, ..., m\}$, consider the projection mapping $pr_j : \mathbb{R}^m \to \mathbb{R}$, $pr_j(y) = y_j, \forall y = (y_1, ..., y_m) \in \mathbb{R}^m$.

Definition 10.21 Let $A \subseteq \mathbb{R}^n$. A function $f: A \to \mathbb{R}^m$ is called a vector-valued function of n variables. The components of f are the real-valued functions $f_1, \ldots, f_m: A \to \mathbb{R}$ defined by $f_j = pr_j \circ f, \ \forall j \in \{1, \ldots, m\}$ and we write $f = (f_1, \ldots, f_m)$.

Properties of vector-valued functions can usually be studied by considering their components one at a time.

Example 10.22 Let $A \subset \mathbb{R}^n$, $f = (f_1, \dots, f_m) : A \to \mathbb{R}^m$. (i) If $c \in A'$ and $y^0 = (y_1^0, \dots, y_m^0) \in \mathbb{R}^m$, then $\lim_{x \to c} f(x) = y^0 \Leftrightarrow \forall j \in \{1, \dots, m\}$, $\lim_{x \to c} f_j(x) = y_j^0$. For instance,

$$\lim_{x \to 0} \left(\frac{\sin x}{x}, (1+x)^{\frac{1}{x}}, x \sin \frac{1}{x} \right) = \left(\lim_{x \to 0} \frac{\sin x}{x}, \lim_{x \to 0} (1+x)^{\frac{1}{x}}, \lim_{x \to 0} x \sin \frac{1}{x} \right) = (1, e, 0).$$

(ii) If $c \in A$, then f is continuous at $c \Leftrightarrow \forall j \in \{1, ..., m\}$, f_j is continuous.

(iii) If $c \in intA$, then f is partially differentiable at $c \Leftrightarrow \forall j \in \{1, ..., m\}$, f_j is partially differentiable at c.