

Práticas de Laboratório Aula nº 5

Nome(s): Luiz Gabriel Ribeiro e Leonardo Borlot

Data: 19/04/18

Conceito teórico

O amplificador operacional se resume em um dispositivo que pode ser útil em muitos circuitos de grande importância. Possui uma entrada inversora e uma não inversora, conta com resistência que é infinita na entrada e nula na saída. Quando não possui realimentação da entrada com a saída, o mesmo possui também um ganho de malha aberta infinita.

Utilizamos também durante o experimento um transistor bipolar de junção, constituído por 3 partes de semicondutores, logo possuindo três terminais, o emissor (E), a base (B) e o coletor (C).

O sentido da corrente é informado no próprio equipamento, normalmente por uma seta desenhada. O mesmo pode operar em três regiões, sendo elas: cortado, linear e saturado, na linear, é mais utilizado como amplificador de corrente, e nas outras duas, têm funcionamento parecido com uma chave, que liga e desliga um determinado circuito.

Por fim utilizamos também um Relé, que cria um campo magnético atraindo um ou mais contatos, abrindo e fechando circuitos, no momento que uma corrente elétrica circula pela bobina, logo, interrompendo a corrente, o campo também é interrompido.

Utilizando desses equipamentos, criamos um circuito onde teoricamente deveria ser capaz de conceder energia suficiente para acender uma lâmpada.

Objetivos da aula

Essa prática teve como objetivo principal, além de adquirir mais conhecimentos sobre circuitos, fazer a verificação do transistor como driver de corrente, o funcionamento do amplificador operacional em circuito comparador e relé como chave.

Descrição do experimento

A descrição do experimento consiste na montagem de um circuito utilizando-se de um amplificador operacional (amp op), um transistor, um relé, um diodo, resistores, uma lâmpada, uma fonte de tensão cc, um protoboard e jumpers (cabos de ligação), com o objetivo de verificar a funcionalidade do AmpOp em um circuito comparador, o transistor como driver de corrente e o relé como chave.

Seguimos a montagem do circuito acima por partes. Em um primeiro momento montamos o circuito comparador com o AmpOp , um LDR, resistores e um potenciômetro, então ajustamos o potenciômetro de forma que o quando o LDR recebe luz a tensão na saída do AmpOp é zero.

Em Seguida conectamos ao circuito o driver de corrente e o relé e verificamos se o relé é acionado quando o LDR não recebe luz (verificamos tal condição através do barulho característico que se aproxima de um estalo) e então medimos a tensão entre os terminais do coletor e emissor do transistor (antes e depois de cobrir o LDR).

Para finalizar, conectamos a lâmpada e verificamos o funcionamento do circuito como um todo.

Medições

Tensão entre os terminais do coletor e emissor do transistor:

- Vce = 1,88 V (com luz)
- Vce = 9,5 V (sem luz)

Respostas ao questionário

- 1) Baseado nas observações, explique o funcionamento do circuito e dê um exemplo de aplicação.
- **R**: Nesse circuito o amplificador operacional compara as tensões de entrada nos terminais inversora e não inversora e retorna uma tensão saturada na saída, o transistor funciona como driver de corrente e o relé como chave do circuito.
- Um exemplo de aplicação mais simples foi o que utilizamos na prática (acendimento de uma lâmpada) , porém, tal circuito pode também ser feito em maior escala, e aplicado da mesma forma.
- 2) Em qual local foi conectado o LDR no circuito? Como se relacionam o valor do potenciômetro com o valor da resistência do LDR para o funcionamento do circuito (qual o efeito)?
- **R:** O LDR foi conectado na posição R1 e se relaciona com o potenciômetro em série de tal forma que quando o LDR recebe luz, a tensão na saída do AmpOp é 0, caso contrário, esta será maior que 0.
- 3) Tente explicar as tensões medidas no transistor no passo 2) fazendo uma analogia do funcionamento do transistor como uma chave.
- **R:** A tensão medida quando tapamos o LDR (sem luz) foi bem superior à medida com luz (LDR destapado), isso já era esperado, pois quando tiramos a luz do mesmo, diminuímos a resistência, assim, com essa variação de tensão, as duas regiões do transistor que atuam como espécies de chaves (cortado e saturado) sofrem alteração (como se abrisse a chave) por ter tensão suficiente para alimentar o circuito.
- 4) Qual foi a alteração no circuito para inverter o seu funcionamento no passo 3)? **R**:Neste circuito o amplificador operacional compara as tensões de entrada nos terminais inversora e não inversora e retorna uma tensão saturada na saída. Se a tensão no terminal não inversora for maior, a saída é igual a tensão em +V, caso contrário, a tensão de saída será –V. Então para inverter o funcionamento do circuito basta colocar uma tensão no terminal não inversora menor do que a tensão no terminal inversora.

Conclusão

Ao final do experimento, onde obtivemos sucesso, foi possível adquirir conhecimento sobre os Amplificadores Operacionais, Transistores e Relés, compreendendo suas funções e funcionamento, fazendo uso de novos conhecimentos e novos componentes de circuito (ferramentas) na prática.

Referências

Compreendendo a Física - Vol. 3 Alberto Gaspar; Sears - Zermansky, volume 2: eletricidade, magnetismo, eletrônica (ano 1963). Material disponibilizado no AVA a respeito do tema abordado na prática em questão (AmpOP, Transistores e Relés).