Exam 1

Nathan Warner

Computer Science Northern Illinois University United States

Contents

1	Part 1															1									
	1.1	Axio	$_{ m ms}$																						1
	1.2	Defin	aiti	ons	٠																				3
	1.3	Theo	orei	ms																					4
	1.4	Prop	osi	tio	ns .																				7
2	Part 2															8									
	2.1	Axio	$_{ m ms}$																						8
	2.2	Defin	niti	ons	·																				9
	2.3	Theo	orei	ms																					11
	2.4	Prop	osi	tio	ns .																				12
	2.5	Duals	ls o	f re	sul	ts f	ron	1 0	ha	pte	$_{ m rs}$	8	ano	19											13
		2.5.1	Т	'hec	ren	ns (14)																		13
		2.5.2	Р	rop	osit	tion	s .					•											•		13
Pa	art	1																							

1.1 Axioms

Axiom of distance: For all points P, Q

- 1. $PQ \geqslant 0$
- $2. PQ = 0 \iff P = Q$
- 3. PQ = QP

Axioms of incidence

- 1. There are at least two different lines
- 2. Each line contains at least two different points
- 3. Each pair of points are together in at least one line

4. Each pair of points P, Q, with $PQ < \omega$ are together in at most one line

Betweenness of points axiom (Ax. BP): If A, B, C are distinct, collinear points, and if $AB + BC \leq \omega$, then there exists a betweenness relation among A, B, C

What this is really saying is that if **any** of AB + BC, BA + AC, AC + CB is $\leq \omega$, then there is a betweenness relation.

Note: If Ax.BP is true for a plane \mathbb{P} , and if $AB + BC \leq \omega$ for distinct collinear A, B, C, then there is a betweenness relation, but not necessarily A-B-C

When $\omega = \infty$, then for any distinct collinear $A, B, C, AB + BC < \infty = \omega$, so there will be a betweenness relation

Quadrichotomy Axiom for Points (Ax.QP): If A, B, C, X are distinct, collinear points, and if A-B-C. Then, at least one of the following must hold

$$X-A-B$$
, $A-X-B$, $B-X-C$, or $B-C-X$

Thus, Ax.QP says that whenever A-B-C (say on line ℓ), then any other point X on line ℓ is in either \overrightarrow{BA} or \overrightarrow{BC} . That is,

$$\ell = \overrightarrow{BA} \cup \overrightarrow{BC}$$

Nontriviality Axiom (Ax.N): For any point A on a line ℓ there exists a point B on ℓ with $0 < AB < \omega$

This axiom is true for the planes in which $\omega = \infty$ (\mathbb{E} , \mathbb{M} , \mathbb{H} , \mathbb{G} , \mathbb{R}^3 , $\hat{\mathbb{E}}$, ws)

This axiom is also true for S and Fano, where $\omega < \infty$

Real ray Axiom (Ax.RR): For any ray \overrightarrow{AB} , and for any real number s with $0 \le s \le \omega$, there is a point X in \overrightarrow{AB} with AX = s

Separation Axiom Ax.S: for each line m, there exists a pair of opposite halfplanes with edge m.

1.2 Definitions

- **Definition (Endpoints)**. Point A is called an endpoint of ray \overrightarrow{AB}
- Definition (Interior points and length for a segment): Given a segment \overline{AB} , A and B are called its endpoints. All other points of \overline{AB} are called Interior points of \overline{AB}

Distance AB is called the **length** of \overline{AB}

The interior of \overline{AB} , denoted \overline{AB} or \overline{AB}^0 , means the set of all interior points of \overline{AB} . That is, $\overline{AB} = \overline{AB}^0 = \{X : A-X-B\}$

• **Definition**. Assume $\omega < \infty$. Let A be a point on a line m. The unique point A_m^* on m such that $AA_m^* = \omega$ is called the **antipode** of A on m. Thus,

$$\begin{cases} A, A_m^* \text{ are on m, } AA_m^* = \omega \\ \text{and } A\text{-}X\text{-}A_m^* \text{ for all other points } X \text{ on } m \end{cases}$$

• Definition (interior points of a ray): Let $h = \overrightarrow{AB}$ be a ray. All points of h that are not endpoints of h are called *interior points* of h.

The *interior* of h is the set of all interior points of h, and is denoted by h° , \overline{AB}° , or Int \overline{AB} .

- **Definition (Opposite rays)**: Two rays with the same endpoint whose union is a line are called **opposite rays**
- Notation: Denote the ray opposite to ray h by h'. So, \overrightarrow{AB}' means the ray opposite \overrightarrow{AB}
- **Definition**: Let H, K be opposite halfplanes with edge m. Two points in the same halfplane are said to be on the **same side** of m.
- **Definition**: A^* is called the **antipode** of A

1.3 Theorems

- Theorem 6.1 (Symmetry of betweenness). For a general plane \mathbb{P} with points, lines, distance, and satisfy the seven axioms, $A B C \iff C B A$
- Theorem 6.2 (UMT): If A B C then B A C and A C B are false.
- Theorem 7.6: For any point A on a line ℓ there exists a point C not on ℓ with $0 < AC < \omega$
- Triangle inequality for the line: If A, B, C are any three distinct, collinear points, then

$$AB + BC \geqslant AC$$

- Rule of insertion:
 - If A-B-C and A-X-B, then A-X-B-C
 - If A-B-C and B-X-C, then A-B-X-C
- Theorem 8.1: If $\omega = \infty$, then $\mathbb{D} = [0, \infty)$; if $\omega < \infty$, then $\mathbb{D} = [0, \omega]$
- Theorem 8.2 Each segment, ray, and line has infinitely many points.
- Theorem 8.3. If $X \neq Y$ are points different from A on ray \overrightarrow{AB} , then one of A-X-Y or A-Y-X is true.
- Theorem 8.4. If C is any point on ray \overrightarrow{AB} with $0 < AC < \omega$, then $\overrightarrow{AC} = \overrightarrow{AB}$
- Theorem 8.6 (UDR) For any ray \overrightarrow{AB} and any real number s with $0 \le s \le \omega$, there is a **unique** point X on \overrightarrow{AB} with AX = s. X is in \overline{AB} if and only if $s \le AB$
- Theorem 9.1 (Antipode on line theorem): Let A be a point on a line m (in a plane with the 11 axioms). Assume that $\omega < \infty$. Then, there exists a unique point A_m^* on m such that $AA_m^* = \omega$. Further, if X is any other point on m, then A-X- A_m^*
- Theorem 9.2 (Almost-uniqueness for Quadrichotomy): Suppose that A, B, C, X are distinct points on a line m, and that A-B-C. Then **exactly one** of the following holds:

$$X-A-B$$
, $A-X-B$, $B-X-C$, $B-C-X$

with the *only exception* that both X-A-B and B-C-X are true when $\omega<\infty$ and $X=B_m^*$.

(Note that $B_m^* - A - B$ and $B - C - B_m^*$ are both true by Thm. 9.1)

- Theorem 9.4. If h is a ray with two endpoints A and P, then $\omega < \infty$ and $P = A_m^*$, where m is the carrier of h ($h \subseteq m$).
- Theorem 9.6 (Opposite ray theorem): If B-A-C, then \overrightarrow{AB} and \overrightarrow{AC} are opposite rays

Also, for $m = \overrightarrow{AB}$

$$\overrightarrow{AB} \cap \overrightarrow{AC} = \begin{cases} \{A\} & \text{if } \omega = \infty \\ \{A, A_m^*\} & \text{if } \omega < \infty \end{cases}$$

• Corollary 9.7: Each ray has a unique opposite ray.

- Corollary 9.8: Let A, B be points on line m with $0 < AB < \omega < \infty$. Then $\overrightarrow{AB'} = \overrightarrow{AB_m^*}$
- Corollary 9.9: Let A, B be points on line m with $0 < AB < \omega < \infty$. Then, $m = \overline{AB} \cup \overline{BA_m^*} \cup \overline{A_m^*B_m^*} \cup \overline{B_m^*A}$, with the interiors of these segments being disjoint.
- Theorem 9.10: Let A,B be points on line m with $0 < AB < \omega < \infty$. Let $C \neq A,B,A_m^*,B_m^*$ be another point on m. Then there is no betweenness relation for A,B,C if and only if $C \in \overline{A_m^*B_m^*}^0$
- **Definition**. A subset S of \mathbb{P} is **convex** if for each pair of points $X \neq Y$ in S with $XY < \omega$, $\overline{XY} \subseteq S$ holds.
- Theorem 10.1: If S_1 and S_2 are convex sets in \mathbb{P} , then so is $S_1 \cap S_2$
- Theorem 10.2: Segments, rays, and lines are convex.
- Definition: A pair of sets H, K in \mathbb{P} is called **opposed around a line** m if
 - $-H, K \neq \emptyset$
 - -H, K are convex
 - $-H\cap K=\varnothing$
 - $-H \cup K = \mathbb{P} m$
- Theorem 10.3 Let H, K be sets opposed around a line m in \mathbb{P} . Suppose that A, C are points so that $C \in m$, $A \in H$, $AC < \omega$. Then, $\operatorname{Int}\overrightarrow{CA} \subseteq H$, and $\operatorname{Int}\overrightarrow{CA}' \subseteq K$
- Corollary 10.4: let H, K be sets opposed around a line m, let A, B be points not on m, with A-X-B for some point $X \in m$. Then, A, B lie one in each of H and K, in some order.
- Definition: Let m be a line. Sets H, K are called **opposite halfplanes with edge** m if:

H,K are opposed around m, and whenever $X \in H,Y \in K$ and $XY < \omega$, then, $\overline{XY} \cap m \neq \emptyset$

• Theorem 10.5: Suppose that m is a line so that there exists a pair H, K of opposite half planes with edge m. Suppose also that $\omega < \infty$ and A is a point on m. If B is any point in $\mathbb P$ with $AB = \omega$, then $B \in m$ (so $B = A_m^*$, and there is only one point B in all of $\mathbb P$ with $AB = \omega$)

In other words, let H, K be opposite halfplanes with edge a line m, let $A \in m$, $\omega < \infty$. If $B \in \mathbb{P}$, $AB = \omega$, then $B \in m$, and B unique in \mathbb{P}

- Theorem 10.6: Suppose that there is a pair H, K of opposite halfplanes with edge m. Let $A \neq B$ be points not on m. Then,
 - A, B lie one in each of $H, K \iff$ there is a point X on m such that A-X-B
- Corollary 10.7 (Needs proof): Suppose that there is a pair H, K of opposite halfplanes with edge a line m. Then, H, K is the only pair of sets opposed around m.
- Theorem 10.8: Suppose that $\omega < \infty$. For each point A, there is exactly one point A^* in \mathbb{P} with $AA^* = \omega$. Also, every line through A goes through A^* as well.

• Corollary 10.9: Suppose that $\omega < \infty$. For any line m and point P, there are just two possibilities:

$$\begin{cases} P, P^* & \text{both on } m \\ P, P^* & \text{on opposite sides of } m \end{cases}$$

- Theorem 10.10 (Pasch's Axioms) (needs proof): Let A, B, C be three non-collinear points. Let X be a point with B-X-C, and m a line through X but not through A, B, or C. Then, exactly one of
 - 1. m contains a point Y with A-Y-C
 - 2. m contains a point Z with A-Z-B
- Theorem 10.11: Assume that $\omega < \infty$. Then, any two distinct lines must have a point (in fact, a pair of antipodes) in common.

1.4 Propositions

- Proposition 6.3
 - (a) \overline{AB} lies in one line, the line \overleftrightarrow{AB}
 - (b) $\overline{AB} = \overline{BA}$
 - (c) If $x \in \overline{AB}$, with $X \neq B$, then AX < AB
- **Proposition 6.4**: Let A,B,C,D be collinear points with $0 < AB < \omega, \ 0 < CD < \omega,$ and $\overline{AB} = \overline{CD}$, then
 - (a) Either $\{A, B\} = \{C, D\}$ or $\{A, B\} \cap \{C, D\} = \emptyset$
 - (b) AB = CD
- Proposition 7.1: If A-B-C and A-C-D, then A, B, C, D are distinct and collinear
- Proposition 7.2 If A-B-C-D, then A, B, C, D are distinct and collinear, and D-C-B-A
- **Proposition 7.5**: If $X \neq Y$ are points distinct from A or ray \overrightarrow{AB} , then at least one of A-X-Y or A-Y-X or X, Y in \overline{AB} is true.
- Important fact: Suppose X is a point on a ray \overrightarrow{AB} in a general plane.
 - 1. If A-X-B then AX < AB
 - 2. If A-B-X then AX > AB
 - 3. IF X = B then AX = AB
- **Proposition 8.11** Let A, B be any two points on line m, with $0 < AB < \omega$. Then, there exists a point C on m with C-A-B and $CB < \omega$.
- Proposition 8.5: A ray has at most two endpoints
- **Proposition 8.7**: Let \overline{AB} be a segment and $X, Y \in \overline{AB}$. Then, $XY \leqslant AB$, and if XY = AB, then $\{X, Y\} = \{A, B\}$
- Proposition 8.8 If $\overline{AB} = \overline{CD}$, then $\{A, B\} = \{C, D\}$
- **Proposition 8.9**: In each segment \overline{AB} there is a unique point M, called the **midpoint** of \overline{AB} , with the property that $AM = \frac{1}{2}AB$. Further, AM = MB
- **Proposition 9.3**: Assume $\omega < \infty$. Let A, B be points on line m with $0 < AB < \omega$. Then
 - (a) $\overrightarrow{AB} = \overrightarrow{AB} \cup \overrightarrow{BA_m^*}$ and $\overrightarrow{AB}^{\circ} \cap \overrightarrow{BA_m^*}^{\circ} = \varnothing$.
 - (b) $\overrightarrow{AB} = \overrightarrow{A_m^*B}$, so that if A is an endpoint of a ray with carrier m, then so is A_m^* .
- **Proposition between** Let \overrightarrow{AB} and \overrightarrow{AC} be opposite rays, and points $X \in \operatorname{Int} \overrightarrow{AB}$, $Y \in \operatorname{Int} \overrightarrow{AC}$ with $AX + AY \leq \omega$, then X A Y
- **Proposition Noncollinear**: If A, B, C are three noncollinear points (not all on the same line), then AB, AC, BC all less than ω .

Part 2

2.1 Axioms

• Measure axioms:

M1 : For all coterminal rays $p, q, 0 \leq pq \leq 180$

$$M2: pq = 0 \iff p = q$$

$$M3: pq = qp$$

$$M4: pq = 180 \iff q = p'$$

• Betweenness of rays axiom (Ax.BR): If a, b, c are distinct, coterminal rays, and if $ab + bc \le 180$, then there exists a betweenness relation among a, b, c

Thus, if no betweenness relation exists, then

$$ab + bc > 180$$

$$ac + cb > 180$$

$$ba + ac > 180$$

• Quadrichotomy of Rays Axiom (Ax.QR): If a, b, c, x are distinct, coterminal rays, and if a-b-c, then at least one of the following must hold

$$x$$
- a - b a - x - b b - x - c b - c - x

- So, Ax.QR says that whenever $\overrightarrow{a-b-c}$ (say in pencil P), then any other ray in P is in either fan \overrightarrow{ba} or fan \overrightarrow{bc} (so $P = \overrightarrow{ba} \cup \overrightarrow{bc}$)
- Real fan axiom (Ax.RF): For any fan \overrightarrow{ab} and for any real number t with $0 \le t \le 180$, there is a ray r in \overrightarrow{ab} with ar = t

Ax.RF says every real number from 0 to 180 produces at least one ray in the fan

Note: Ax.RF is one version of what is sometimes called the Protractor Axiom

• Compatibility Axiom (Ax.C): Let A, B, C be points on line m, and X a point not on m. If A-B-C, then \overrightarrow{XA} - \overrightarrow{XB} - \overrightarrow{XC}

8

2.2 Definitions

- definition: Coterminal rays: Rays with the same endpoint
- **Definition:** Angle: $ab = a \cup b$, where a, b are coterminal rays
- **Definition:** Pencil of rays at point A: The set of all rays with endpoint A: denote by P_A or just P

When $\omega < \infty$, each ray $h = \overrightarrow{AB} = \overrightarrow{A^*B}$, so $P_A = P_{A^*}$. h' is the opposite ray to h, as before

• Undefined Term Angle distance function, or angle measure: A function μ from all pairs (p,q) of coterminal rays to \mathbb{R}

We abbreviate the angular distance between rays p,q, or the angle measure of the angle pq, $\mu(p,q)$ as pq

• Angular distance in \mathbb{E} , $\hat{\mathbb{E}}$, \mathbb{M} : The usual measure in degrees (0 to 180)

$$pq = \cos^{-1}\left(\frac{1+mn}{\sqrt{1+m^2}\sqrt{1+n^2}}\right)$$

• Angular distance in \mathbb{H} :

$$\mu_{\mathbb{H}}(p,q) = \cos^{-1}\left(\frac{1+mn-bc}{\sqrt{1+m^2-b^2}\sqrt{1+n^2-c^2}}\right)$$

- Definition (betweenness for rays): Ray b lies between rays a and c (a-b-c) provided that
 - (a) a, b, c are different, coterminal
 - (b) ab + bc = ac
- **Definition** (Wedge, fan): Let p, q be coterminal rays with 0 < pq < 180.
 - Wedge $\overline{pq} = \{p, q\} \cup \{r : p\text{-}r\text{-}q\}$
 - Fan $\overrightarrow{pq} = \{p,q\} \cup \{r: p\text{-}r\text{-}q\} \cup \{r: p\text{-}q\text{-}r\}$
- **Definition** (quad betweenness): a-b-c-d means that all four of

$$a$$
- b - c a - b - d a - c - d b - c - d

are true

• Notation and terminology: Recall that pq means $p \cup q$, then union of the rays. Measure of pq means the angular distance pq

Suppose $p = \overrightarrow{BA}$, $q = \overrightarrow{BC}$. Then, write

$$pq = \angle ABC = \angle CBA$$

Or just $\angle B$ when clear, and

$$pa = \angle ABC = \angle CBA$$

or just $\angle B$.

• Definition:

- Zero angle: pq is a zero angle if pq = 0 ($\iff p = q$)
- Straight angle: If $pq = 180 (\iff p = q')$
- Proper angle: if 0 < pq < 180
- acute angle: if 0 < pq < 90
- **right angle**: if pq = 90
- obtuse angle: if 90 < pq < 180
- **Definition**: The ray b from the midpoint proposition is called the **bisector** of angle \underline{pq}

2.3 Theorems

- Theorem 11.1 (symmetry of betweenness): a-b- $c \iff c$ -b-a
- **Theorem 11.3** UMT: If a-b-c, then b-a-c and a-c-b are false.
- Theorem 11.2 (non-triviality): For any ray p there is a coterminal ray q so that 0 < pq < 180
- Theorem (Triangle inequality for rays): If a, b, c are three distinct, coterminal rays, then $ab + bc \ge ac$
- Theorem 11.5 (Rule of insertion for rays):
 - (a) If a-b-c and a-r-b, then a-r-b-c
 - (b) If a-b-c and b-r-c, then a-b-r-c
- Theorem 11.6 (Unique angular distance for fans): For any fan \overrightarrow{pq} and any real number t with $0 \le t \le 180$, there is a unique ray r in \overline{pq} with pr = t. r is in \overline{pq} if and only if $t \le pq$
- Theorem 11.8: If ray a lies in pencil P, then a-r-a' for every other ray r in P
- Theorem 11.9 (Almost uniqueness of quadrichotomy for rays): Suppose that a, b, c, r are distinct rays in a pencil P, and that a-b-c. Then, **exactly** one of

$$r$$
- a - b a - r - b b - r - c b - c - r

With the exception that both r-a-b and b-c-r are true when r = b'

- Theorem 11.10 (Opposite fan theorem): Let p, q, r be rays in pencil P such that q-p-r. Then, $\overrightarrow{pq} \cup \overrightarrow{pr} = P$, and $\overrightarrow{pq} \cap \overrightarrow{pr} = \{p, p'\}$
- Corollary 11.11: If p, q are rays in pencil P with 0 < pq < 180, then $P = \overrightarrow{pq} \cup \overrightarrow{pq'}$ and $\overrightarrow{pq} \cap \overrightarrow{pq'} = \{p, p'\}$
- Theorem 12.2 (Fan: halfplane): Let H, K be opposite halfplanes with edge line ℓ , point $B \in H$. Let X, A be points on ℓ with $0 < AX < \omega$. Let $h = \overrightarrow{XA}, k = \overrightarrow{XB}$. Then, H consists of all points on all rays of the fan \overrightarrow{hk} , except for the points of ℓ

That is, $P \in H \iff P \in j^0$, where j^0 is the interior of some ray $j \in \overrightarrow{hk}$, $j \neq h$ or h'

- Corollary 12.3: Let z by any number with 0 < z < 180. For any ray \overrightarrow{AB} there are exactly two rays h, k in P_A such that $\overrightarrow{AB}h = z = \overrightarrow{AB}k$. Furthermore, h^0 and k^0 lie in opposite halfplanes with edge \overrightarrow{AB}
- Theorem 12.4 (The Crossbar Theorem): If hk is a proper angle with vertex (common endpoint) X, if $A \in h^0$ (so $h = \overrightarrow{XA}$), $C \in k^0$ (so $k = \overrightarrow{XC}$), and h-j-k, then there is an interior point B of j with A-B-C

2.4 Propositions

- Proposition 11.14
 - (a) If $\omega < \infty$, then $\angle ABC = \angle AB^*C$
 - (b) If $P \in \overrightarrow{BA}^0$ and $Q \in \overrightarrow{BC}^0$, then $\angle ABC = \angle PBQ$
- Proposition 11.15 (Midpoint): If \underline{pq} is a proper angle, then there is exactly one ray b in the wedge \overline{pq} so that $pb=\frac{1}{2}pq$

2.5 Duals of results from chapters 8 and 9

2.5.1 Theorems (14)

- **Theorem 8.1D**: The set of angle measures $\mathbb{D} = [0, 180]$
- Theorem 8.2D: All wedges, fans, pencils have infinitely many rays
- Theorem 8.3D: Let $x \neq y$ be distinct from a on fan \overrightarrow{ab} . Then, exactly one of

$$a$$
- x - y or a - y - x .

- Theorem 8.4D: Let \overrightarrow{ab} be a fan. If $c \in \overrightarrow{ab}$, 0 < c < 180, then $\overrightarrow{ab} = \overrightarrow{ac}$
- Theorem 8.6D: Stated in theorem 11.6
- Theorem 9.1D: Let ray a be in pencil P, there exists a unique fan $a' \in P$ such that aa' = 180. For all other rays $x \in P$, a-x-a'
- Theorem 9.2D: Stated in theorem 11.8
- Theorem 9.4D: If ap = 180 in some fan h, then p = a'.
- Theorem 9.6D: Stated in theorem 11.9
- Theorem 9.7D: Each fan has a unique opposite fan.
- Theorem 9.8D: Let rays $a, b \in P$, if 0 < ab < 180, then fan $\overrightarrow{ab'} = \overrightarrow{ab'}$
- Theorem 9.9D: Let rays $a, b \in P$, if 0 < ab < 180, then $P = \overline{ab} \cup \overline{ab'} \cup \overline{ba'} \cup \overline{b'a'}$, where the interiors of these wedges are disjoint.
- Theorem 9.10D: Let rays $a, b \in P$, if 0 < ab < 180, and c is some other ray in P, then there exists no betweenness relation among a, b, c if and only if $c \in \overline{a'b'}$

2.5.2 Propositions

- Proposition 8.11D: Let $a, b \in P$, 0 < ab < 180, there exists $c \in P$ such that c-a-b, cb < 180
- Proposition 8.5D: A fan has at most two terminal rays
- **Proposition 8.7D**: Let \overline{ab} be a wedge, for all $x, y \in \overline{ab}$, $xy \leqslant ab$, if xy = ab, then $\{x, y\} = \{a, b\}$
- **Proposition 8.8D**: If $\overline{ab} = \overline{cd}$, then $\{a, b\} = \{c, d\}$
- Proposition 8.9D: Stated in proposition 11.15
- Proposition 9.3D: Let $a, b \in P$ such that 0 < ab < 180. Then,
 - Fan $\overrightarrow{ab} = \overline{ab} \cup \overline{ba'}$, with $\overline{ab} \cap \overline{ba'} = \emptyset$
 - $\operatorname{Fan} \overrightarrow{ab} = \overrightarrow{a'b}$