This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-65. (cancelled).

Claim 66. (currently amended) A process for the formation of a compound of Formula I:

wherein -A-A- represents the group -CHR⁴-CHR⁵- or -CR⁴=CR⁵-;

-B-B- represents the group -CHR⁶-CHR⁷- or an alpha- or beta-oriented group of Formula III:

 R^1 represents an α -oriented lower alkoxycarbonyl or hydroxycarbonyl radical;

R³, R⁴ and R⁵ are independently selected from the group consisting of hydrogen, halo, hydroxy, lower alkyl, lower alkoxy, hydroxyalkyl, alkoxyalkyl, hydroxy carbonyl, cyano, and aryloxy;

R⁶ and R⁷ are independently selected from the group consisting of hydrogen, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonyl, alkoxycarbonyl, acyloxyalkyl, cyano, and aryloxy; and

R⁸ and R⁹ are independently selected from the group consisting of hydrogen, hydroxy, halo, lower alkoxy, acyl, hydroxyalkyl, alkoxyalkyl, hydroxycarbonylalkyl, alkoxycarbonylalkyl, acyloxyalkyl, cyano, and aryloxy, or R⁸ and R⁹ together comprise a carbocyclic or heterocyclic ring structure, or R⁸ or R⁹ together with R⁶ or R⁷ comprise a carbocyclic or heterocyclic ring structure fused to the pentacyclic D ring;

the process comprising **epoxidizing** converting a compound of Formula II to a compound of Formula I, said compound of Formula II having the structure:

wherein -A-A-, -B-B-, R¹, R³, R⁸ and R⁹ are as defined above;

wherein <u>preparation of</u> said compound of Formula II <u>comprises</u> is prepared by <u>eliminating a leaving group from</u> converting a compound of Formula IV to a compound of Formula II, said compound of Formula IV having the structure:

$$R^2$$
 R^3
 R^8
 R^9
 R^4
 R^1
 R^1

wherein -A-A-, -B-B-, R¹, R³, R⁸ and R⁹ are as defined above, and R² is a leaving group the abstraction of which is effective for generating a double bond between the 9- and 11-carbon atoms.

Claim 67. (cancelled)

Claim 68. (previously presented) A process as set forth in claim 66 wherein said compound of Formula I is:

said compound of Formula II is:

and said compound of Formula IV is:

Claim 69. (currently amended) A process as set forth in claim 66 wherein **preparation of** the compound of Formula IV **comprises** is prepared by **esterifying or halogenating** converting a compound of Formula V to a compound of Formula IV, said compound of Formula V having the structure:

wherein -A-A-, -B-B-, R¹, R³, R⁸ and R⁹ are as defined in claim 66.

Claims 70. -71. (cancelled)

Claim 72. (previously presented) The process of claim 69 wherein said compound of Formula I is:

said compound of Formula II is:

said compound of Formula IV is:

and said compound of Formula V is:

Claim 73. (currently amended) A process as set forth in claim 69 wherein preparation of the compound of Formula V comprises is prepared by reacting <a href="mailto:compound-of-or-wide-verting-on-verti

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined in claim 69.

Claim 74. (cancelled)

Claim 75. (currently amended) The process of claim 73 wherein said compound of Formula I is:

said compound of Formula II is:

said compound of Formula IV is:

said compound of Formula V is:

and said compound of Formula VI is:

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined in claim 73.

Claim 77. (cancelled)

Claim 78. (currently amended) The process of claim 76 wherein said compound of Formula I is:

said compound of Formula II is:

said compound of Formula IV is:

said compound of Formula V is:

said compound of Formula VI is:

and said compound of Formula VII is:

Claim 79. (currently amended) A process as set forth in claim 76 wherein preparation of the compound of Formula VII comprises is prepared by cyanidating compound of Formula VIII to a compound of Formula VIII having the structure:

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined in claim 76.

Claims 80. - 81. (cancelled)

Claim 82. (currently amended) A process as set forth in claim 79 wherein said compound of Formula I is:

said compound of Formula II is:

said compound of Formula IV is:

said compound of Formula V is:

said compound of Formula VI is:

said compound of Formula VII is:

and said compound of Formula VIII is:

Claim 83. (currently amended) A process as set forth in claim 79 wherein **preparation of** the compound of Formula VIII **comprises** is prepared by **hydroxylating** converting a compound of Formula XIII to a compound of Formula VIII, said compound of Formula XIII having the structure:

wherein -A-A-, -B-B-, R³, R⁸ and R⁹ are as defined in claim 79.

Claims 84. - 85 (cancelled)

Claim 86. (currently amended) A process as set forth in claim 83 wherein said compound of Formula I is:

said compound of Formula II is:

said compound of Formula IV is:

said compound of Formula V is:

said compound of Formula VI is:

said compound of Formula VII is:

said compound of Formula VIII is:

and said compound of Formula XIII is:

Claims 87. – 93. (cancelled)

Claim 94. (currently amended) A process as set forth in claim 66 wherein said epoxidation conversion of a compound of Formula II to a compound of Formula Lis effected by comprises contacting an epoxidizing reagent with a compound of Formula II.

Claim 95. (currently amended) A process as set forth in claim 66 wherein elimination of said leaving group from conversion of a compound of Formula

IV to <u>form</u> a compound of Formula II is effected by <u>comprises</u> removing an 11α -leaving group from a compound of Formula IV.

Claim 96. (currently amended) A process as set forth in claim 69 wherein said esterification or halogenation conversion of a compound of Formula V to a compound of Formula IV is effected by comprises reacting a lower alkylsulfonylating or acylating reagent or a halide generating agent with a compound of Formula V.

Claim 97. (currently amended) A process as set forth in claim 73 wherein said reaction conversion of a compound of Formula VI with a metal alkoxide to a compound of Formula VI with an alkali metal alkoxide corresponding to the formula R¹⁰OM wherein M is alkali metal and R¹⁰O- corresponds to the alkoxy substituent of R¹.

Claim 98. (cancelled) A process as set forth in claim 76 wherein said conversion of a compound of Formula VII to a compound of Formula VII is effected by hydrolyzing a compound of Formula VII.

Claim 99. (currently amended) A process as set forth in claim 79 wherein said cyanidation conversion of a compound of Formula VIII to a compound of Formula VIII is effected by comprises reacting a source of cyanide ion in the presence of an alkali metal salt with a compound of Formula VIII.

Claim 100. (currently amended) A process as set forth in claim 83 wherein said <u>hydroxylation</u> conversion of a compound of Formula XIII to a compound of Formula VIII is effected by <u>comprises</u> oxidizing a compound of Formula XIII by fermentation in the presence of a microorganism effective for introducing an 11-hydroxy group into said substrate in α -orientation.

Claim 101. (currently amended) A process for the formation of a compound of Formula IA:

wherein -A-A- represents the group -CH₂-CH₂- or -CH=CH-;

-B-B- represents the group -CH₂-CH₂- or an alpha- or beta- oriented group of Formula IIIA:

R¹ represents an alpha-oriented lower alkoxycarbonyl radical;

X represents two hydrogen atoms or oxo;

Y¹ and Y² together represent the oxygen bridge -O-, or

Y¹ represents hydroxy, and

Y² represents hydroxy, lower alkoxy or, if X represents H₂, also lower alkanoyloxy;

and salts of compounds in which X represents oxo and Y² represents hydroxy;

the process comprising **epoxidizing** converting a compound of Formula IIA to a compound of Formula IA, said compound of Formula IIA having the structure:

wherein -A-A-, -B-B-, R¹, R³, X, Y¹ and Y² are as defined above; wherein <u>formation of</u> said compound of Formula IIA is formed by <u>comprises eliminating a leaving group from</u> converting a compound of Formula IVA to a compound of Formula IIA, said compound of Formula IVA having the structure:

$$R^{2}$$
 R^{3}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{3

wherein -A-A-, -B-B-, R¹, R³, X, Y¹ and Y² are as defined above, and R² represents lower alkylsulfonyloxy or acyloxy; <u>and</u>

wherein <u>formation of</u> said compound of Formula IVA is <u>formed by</u>
<u>comprises esterifying or halogenating</u> converting a compound of Formula VA
to a compound of Formula IVA, said compound of Formula VA having the
structure:

$$R^3$$
 Y^1 $(CH_2)_2$ $C=X$ R^3 R^4 $(CH_2)_2$ $C=X$ $(CH_2)_2$ (CH_2)

wherein -A-A-, -B-B-, R¹, R³, X, Y¹ and Y² are as defined above; wherein <u>formation of</u> said compound of Formula VA is <u>formed by</u>

<u>comprises reacting converting</u> a compound of Formula VIA <u>with a metal</u>

<u>alkoxide</u> to a compound of Formula VA, said compound of Formula VIA having the structure:

wherein -A-A-, -B-B-, R³, X, Y¹ and Y² are as defined above; <u>and</u>
wherein <u>formation of</u> said compound of Formula VIA is <u>formed by</u>
<u>comprises hydrolyzing</u> converting a compound of Formula VIIA to a compound of Formula VIA, said compound of Formula VIIA having the structure:

HO.,
$$R^3$$
 Y^1 $(CH_2)_2$ $C=X$ CN B B CN NH_2 $VIIA$

wherein -A-A-, -B-B-, R³, X, Y¹ and Y² are as defined above; and

wherein <u>formation of</u> said compound of Formula VIIA is <u>formed by</u>

<u>cyanidating converting</u> a compound of Formula VIIIA to <u>form</u> a compound of

<u>Formula VIIA</u>, said compound of Formula VIIIA having the structure:

$$R^3$$
 Y^1 $(CH_2)_2$ $C=X$

wherein -A-A-, -B-B-, R³, X, Y¹ and Y² are as defined above; <u>and</u> wherein <u>formation of</u> said compound of Formula VIIIA is <u>formed by</u> <u>comprises hydroxylating</u> converting a compound of Formula XIIIA to <u>form</u> a compound of Formula VIIIA, said compound of Formula XIIIA having the structure:

$$R^3$$
 Y^1 $(CH_2)_2$ $C=X$ XIIIA

wherein -A-A-, -B-B-, R³, X, Y¹ and Y² are as defined above.