# **Project 2: Learning to Rank using Linear Regression**

#### **Anonymous Author(s)**

Affiliation Address email

#### **Abstract**

| 1        | The goal of this project is to solve the handwriting comparison task in forensics.                                                                     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | We formulate this as a problem of linear regression where we map a set of input                                                                        |
| 3        | features x to a real-valued scalar target $y(x,w)$ .                                                                                                   |
| 4        | Our task is to find similarity between the handwritten samples of the known and                                                                        |
| 5        | the questioned writer by using linear regression models and Neural Network.                                                                            |
| 6        | Each instance in the CEDAR "AND" training data consists of set of input features                                                                       |
| 7        | for each hand-written "AND" sample. The features are obtained from two different                                                                       |
| 8        | sources:                                                                                                                                               |
|          | (a) Human Obsamied factures. Eastures antoned by human decument areminent                                                                              |
| 9        | (a) Human Observed features: Features entered by human document examiners                                                                              |
| 10       | manually.                                                                                                                                              |
| 11       | (b) GSC features: Features extracted using Gradient Structural Concavity (GSC)                                                                         |
| 12       | algorithm.                                                                                                                                             |
|          | The toward values are realised that are tally two values (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0                                                      |
| 13       | The target values are scalars that can take two values {1:same writer, 0:different                                                                     |
| 14<br>15 | writers}. Although the training target values are discrete we use regression models to obtain real values which is more useful for finding similarity. |
| 15       | to obtain real values which is more useful for initing similarity.                                                                                     |
| 16       | We have two objectives Three this project:                                                                                                             |
| 17       | 1. Train a Linear Regression model on both Human read feature data-set and                                                                             |
| 18       | GSC features data-set using Concatenation and Subtraction technique.                                                                                   |
|          | 8                                                                                                                                                      |
| 19       | 2. Train a Logistic Regression model on both Human read feature data-set and                                                                           |
| 20       | GSC features data-set using Concatenation and Subtraction technique.                                                                                   |
| 04       | 3. Train a Neural Network model (Keras) on both Human read feature data-set                                                                            |
| 21<br>22 | and GSC features data-set using Concatenation and Subtraction technique.                                                                               |
|          | and obe remares data set using concatenation and subtraction technique.                                                                                |
|          |                                                                                                                                                        |

## **1** Types of Datasets:

23

25 Based on feature extraction process, we have provided two datasets:

#### 1.1 Human Observed Dataset:

The Human Observed dataset shows only the cursive samples in the data set, where for each image the features are entered by the human document examiner. There are 9 distinct features for each image in human observed dataset.

- 30 Both concatenation and substraction has been performed based on the image id. After performing
- 31 concatenation based on the image id, each sample will have 18 featue values and the dataset will look
- 32 like the following image.

| img_id_A   | img_id_B   | f <sub>A1</sub> | f <sub>A2</sub> | f <sub>A3</sub> | f <sub>A4</sub> | f <sub>A5</sub> | f <sub>A6</sub> | f <sub>A7</sub> | f <sub>A8</sub> | f <sub>A9</sub> | f <sub>B1</sub> | f <sub>B2</sub> | f <sub>B3</sub> | f <sub>B4</sub> | f <sub>B5</sub> | f <sub>B6</sub> | f <sub>B7</sub> | f <sub>B8</sub> | f <sub>B9</sub> | t |
|------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---|
| 1121a_num1 | 1121b_num2 | 2               | 1               | 1               | 3               | 2               | 2               | 0               | 1               | 2               | 2               | 1               | 1               | 0               | 2               | 2               | 0               | 3               | 2               | 1 |
| 1121a_num1 | 1386b_num1 | 2               | 1               | 1               | 3               | 2               | 2               | 0               | 1               | 2               | 3               | 1               | 1               | 0               | 2               | 2               | 0               | 1               | 2               | 0 |

Figure 1: Neural Network

#### 33 1.2 GSC Dataset:

- 34 Gradient Structural Concavity algorithm generates 512 features for an input handwritten "AND" image.
- The dataset is named as "GSC-Features-Data". Similar to the Human observed dataset.
- Both concatenation and substraction has been performed based on the image id. After performing
- concatenation based on the image id, each sample will have 1024 featue values and the dataset will
- 38 look like the following image.

| img_id_A   | img_id_B   | f <sub>A1</sub> | f <sub>A2</sub> | f <sub>A3</sub> | f <sub>A4</sub> | f <sub>A5</sub> | f <sub>A6</sub> | <br>f <sub>A512</sub> | f <sub>B1</sub> | f <sub>B2</sub> | f <sub>B3</sub> | f <sub>B4</sub> | f <sub>B5</sub> | f <sub>B6</sub> | <br>f <sub>B512</sub> | t |
|------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|---|
| 1121a_num1 | 1121b_num2 | 0               | 1               | 1               | 0               | 1               | 0               | <br>0                 | 0               | 1               | 1               | 0               | 0               | 1               | <br>1                 | 1 |
| 1121a_num1 | 1386b_num1 | 0               | 1               | 1               | 0               | 1               | 0               | <br>0                 | 1               | 1               | 1               | 0               | 1               | 0               | <br>0                 | 0 |

Figure 2: Neural Network

#### 39 1.3 Data Cleansing:

- 40 The GSC dataset contains several such features which contains all zero values (or all same values)
- which in terms generate a determinant of 0. These makes the dataset "non-inversable".
- For this reason, after performing concatenation/subtraction and removing the img\_id columns and
- target column, all the features containing all 0 values are removed from the GSC dataset.

# **2** E\_RMS Graphs:

The following diagrams describes the E\_RMS values for each iteration plotted in a line graph:

#### 46 2.1 Linear Regression on Human observed dataset:



Figure 3: Concatenation Technique

```
    E_rms Training = 0.49908
    E_rms Validation = 0.49628
    E_rms Testing = 0.49789
```

50



Figure 4: Subtraction Technique

```
    E_rms Training = 0.49993
    E_rms Validation = 0.49704
    E_rms Testing = 0.49898
```

## 55 2.2 Logistic Regression on GSC dataset:



Figure 5: Concatenation Technique

Training\_accuracy: 50.00
Validation\_accuracy: 51.89873
Testing\_accuracy: 47.7707

59



Figure 6: Subtraction Technique

Training\_accuracy: 50.31596
Validation\_accuracy: 56.32911
Testing\_accuracy: 47.13376

## 2.3 Neural Network Model on Human observed dataset:



Figure 7: Concatenation Technique

Training\_accuracy: 0.5238
Validation\_accuracy: 0.4858
Testing\_accuracy: 0.4902

68



Figure 8: Subtraction Technique

Training\_accuracy: 0.5127
Validation\_accuracy: 0.4700
Testing\_accuracy: 0.4895

## 2.4 Linear Regression on GSC dataset:



Figure 9: Concatenation Technique

```
74 E_rms Training = 0.55253
```

77



Figure 10: Subtraction Technique

 $E_{rms}$  Validation = 0.55582

E\_rms Testing = 0.54671

 $E_{rms}$  Training = 0.5284

<sup>79</sup> E\_rms Validation = 0.52922

 $E_{\text{rms}}$  Testing = 0.52997

## 2.5 Logistic Regression on GSC dataset:



Figure 11: Concatenation Technique

Training\_accuracy: 50.14375
Validation\_accuracy: 50.07504
Testing\_accuracy: 48.77439

86

90



Figure 12: Subtraction Technique

Training\_accuracy: 50.175
Validation\_accuracy: 50.97549
Testing\_accuracy: 49.92496

#### 2.6 Neural Network on GSC dataset:



Figure 13: Concatenation Technique

92 Training\_accuracy: 0.9982 93 Validation\_accuracy: 0.8875 94 Testing\_accuracy: 0.8528

95



Figure 14: Subtraction Technique

96 Training\_accuracy: 0.887597 Validation\_accuracy: 0.495098 Testing\_accuracy: 0.5249

# 100 3 references

- 101 https://www.coursera.org/learn/machine-learning
- $^{102}$  Bishop Pattern Recognition And Machine Learning Springer 2006  ${\rm https://en.wikipedia.org/wiki/Machine}_{l} earning$