Algorithms: Design and Analysis - CS 412

Problem Set 03: Asymptotic Analysis

1. Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

Since O-notation only provides an upper bound, and not a tight bound, the statement is saying that the running time of algorithm A is at leaast a function whose rate of growth is at most n^2 . This is meaningless because the running time of algorithm A could be $O(n^3)$, $O(n^4)$, $O(n^5)$, etc. and the statement would still be true.

2. Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

Proof. Refer to Theorem 3.1 in the textbook, and the previous problem set. \Box

3. Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

Proof. By the definition of o(g(n)), for any constant c, there exists a constant $n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

By the definition of $\omega(g(n))$, for any constant c, there exists a constant $n_1 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_1$.

Let $n_2 = \max(n_0, n_1)$. Then, for all $n \ge n_2$, $0 \le f(n) < cg(n)$ and $0 \le cg(n) < f(n)$, which is a contradiction. Therefore, $o(g(n)) \cap \omega(g(n))$ is the empty set.

4. Show that $k \ln k = \Theta(n) \implies k = \Theta(n/\ln)$.

Proof. Via symmetry, we have that $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$. So $k \ln k = \Theta(n) \implies n = \Theta(k \ln k)$. Then:

$$\ln n = \Theta(\ln(k \ln k))$$
$$= \Theta(\ln k + \ln \ln k)$$
$$= \Theta(\ln k)$$

Since now we have values of both $\Theta(n)$ and $\Theta(\ln n)$, which by symmetry gives us n and $\ln n$:

$$\frac{n}{\ln n} = \frac{\Theta(k \ln k)}{\Theta(\ln k)}$$
$$= \Theta\left(\frac{k \ln k}{\ln k}\right)$$
$$= \Theta(k)$$

Therefore, again, via symmetry, we have that $k \ln k = \Theta(n) \implies k = \Theta(n/\ln)$.

5. Show that for any real constants a and b, where b > 0, $(n+a)^b = \Theta(n^b)$.

Proof. There exists cosntants c_1, c_2, n_0 such that $\forall n \geq n_0, c_1 n^b \leq (n+a)^b \leq c_2 n^b$.

Consider $n \geq |a|$. Then we have:

- Lower Bound: When $n \ge |a|$, $n + a \ge n |a|$. Since b > 0, we can raise both sides to the power of b to get $(n + a)^b \ge (n |a|)^b$. Then we can choose $c_1 = (1 \frac{|a|}{n})^b$, and $n_0 = |a|$ to satisfy the lower bound.
- Upper Bound: When $n \ge |a|$, $n + a \le n + |a|$. Since b > 0, we can raise both sides to the power of b to get $(n + a)^b \le (n + |a|)^b$. Then we can choose $c_2 = (1 + \frac{|a|}{n})^b$, and $n_0 = |a|$ to satisfy the upper bound.

Therefore, we have shown that $(n+a)^b = \Theta(n^b)$.