Name: Jenny Petrova

Problem Set 7

Due Date: 10/15 at 11:35 AM

Throughout, let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and \mathcal{B} denote the Borel σ -algebra on \mathbb{R} .

(P.1) Given $A \in \mathcal{A}$, we define the integral of a measurable function $f: \Omega \mapsto \mathbb{R}$ over A to be

$$\int_A f(\omega) \ d\mathbb{P}(\omega) \ \coloneqq \int_{\Omega} f(\omega) \, \mathbb{1}_A(\omega) \ d\mathbb{P}(\omega).$$

Show that if f is a simple function of the form

$$f(\omega) = \sum_{k=1}^{m} \alpha_k \, \mathbb{1}_{A_k}(\omega),$$

with $A_k \in \mathcal{A} \ (k \in \{1, \ldots, m\})$, then

$$\int_{A} f(\omega) \ d\mathbb{P}(\omega) = \sum_{k=1}^{m} \alpha_k \, \mathbb{P}(A_k \cap A), \quad A \in \mathcal{A}.$$

Prove that if f is a non-negative function (not necessarily simple), then there exists a sequence of non-negative simple functions $(f_n)_{n\in\mathbb{Z}^+}$ such that $f_n \uparrow f$ and

$$\int_{A} f_n(\omega) \ d\mathbb{P}(\omega) \ \uparrow \int_{A} f(\omega) \ d\mathbb{P}(\omega), \quad A \in \mathcal{A}.$$

Discuss the extension to general functions f which are not necessarily non-negative.

Proof. We substitute the expression for a simple function f into the integral of f:

$$\int_{\Omega} f(\omega) \mathbb{1}_{A}(\omega) d \mathbb{P}(\omega) = \int_{\Omega} \left(\sum_{k=1}^{m} \alpha_{k} \mathbb{1}_{A_{k}}(\omega) \right) \mathbb{1}_{A}(\omega) d \mathbb{P}(\omega)
= \sum_{k=1}^{m} \alpha_{k} \int_{\Omega} \mathbb{1}_{A_{k}}(\omega) \mathbb{1}_{A}(\omega) d \mathbb{P}(\omega)$$

Note $\mathbb{1}_{A_k}\mathbb{1}_A = 1$ if and only if $\omega \in (A_k \cap A)$. So $\mathbb{1}_{A_k}\mathbb{1}_A = \mathbb{1}_{A_k \cap A}$ and we can write

$$\sum_{k=1}^{m} \alpha_k \int_{\Omega} \mathbb{1}_{A_k \cap A} d \mathbb{P}(\omega) = \sum_{k=1}^{m} \alpha_k \mathbb{P}(A_k \cap A).$$

Since f is a non-negative (not necessarily simple) function, then by Theorem 9.1 we know that for every non-negative measurable function we can construct a sequence of

non-negative simple functions $(f_n)_{n\in\mathbb{Z}^+}$ such that $f_n \uparrow f$ as $n \to \infty$. Thus by the Monotone Convergence Theorem we directly satisfy

$$\int_{\Lambda} f_n(\omega) d \mathbb{P}(\omega) \uparrow \int_{\Lambda} f(\omega) d \mathbb{P}(\omega).$$

Let $f = f^+ - f^-$ for a general function f (that is not necessarily non-negative). Then we can construct

$$\int_{A} f(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) = \int_{A} f^{+}(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) - \int_{A} f^{-}(\omega) \, \mathrm{d} \, \mathbb{P}(\omega)$$

where f^+ , f^- are non-negative functions. We can extend the result above to define sequences of non-negative simple functions $(f_n^+)_{n\in\mathbb{Z}^+}$, $(f_n^-)_{n\in\mathbb{Z}^+}$ such that $f_n^+ \uparrow f^+$ and $f_n^- \uparrow f^-$ as $n \to \infty$. We apply the Monotone Convergence Theorem again to show

$$\left(\int_{A} f_{n}^{+}(\omega) d \mathbb{P}(\omega) - \int_{A} f_{n}^{-}(\omega) d \mathbb{P}(\omega)\right) \uparrow \left(\int_{A} f^{+}(\omega) d \mathbb{P}(\omega) - \int_{A} f^{-}(\omega) d \mathbb{P}(\omega)\right),$$

hence

$$\int_{A} f_{n}(\omega) d \mathbb{P}(\omega) \uparrow \int_{A} f(\omega) d \mathbb{P}(\omega)$$

when f is not necessarily non-negative.

(P.2) Let $f: \Omega \to \mathbb{R}$ be an integrable function and $N \in \mathcal{A}$ be a null set of \mathbb{P} . Show that

$$\mathbb{E} f = \int_{\Omega \setminus N} f(\omega) \ d\mathbb{P}(\omega).$$

Note: You must show this for a general f.

Proof. Since $N \in \mathcal{A}$ is a null set of \mathbb{P} , then $\mathbb{P}(N) = 0$. Hence

$$\int_{N} f(\omega) d \mathbb{P}(\omega) = \int_{\Omega} f(\omega) \mathbb{1}_{N} d \mathbb{P}(\omega) = 0.$$

Since $\Omega = (\Omega \setminus N) \cup N$, we use the definition of the expectation of f to show

$$\mathbb{E} f = \int\limits_{\Omega} f(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) = \int\limits_{\Omega \setminus N} f(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) + \int\limits_{N} f(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) = \int\limits_{\Omega \setminus N} f(\omega) \, \mathrm{d} \, \mathbb{P}(\omega).$$

(P.3) Let $(X_n)_{n\in\mathbb{Z}^+}$ be a sequence of random variables in \mathcal{L}_1 which converges (\mathbb{P} -a.s.) to a random variable $X \in \mathcal{L}_1$. Show, for all $A \in \mathcal{A}$, that

$$\int_{A} \left(\lim_{n \to \infty} X_n(\omega) \right) d\mathbb{P}(\omega) = \int_{A} X(\omega) d\mathbb{P}(\omega).$$

Note: You cannot assume that $X_n(\omega) \to X(\omega)$ for all $\omega \in A$.

Proof. For any fixed set A, we can define the integral of X_n over A as

$$\int_{A} X_{n}(\omega) d \mathbb{P}(\omega) = \int_{\Omega} X_{n}(\omega) \mathbb{1}_{A} d \mathbb{P}(\omega) = \int_{\Omega} X_{n}^{A}(\omega) d \mathbb{P}(\omega)$$

and similarly for X,

$$\int_A X(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) = \int_\Omega X(\omega) \mathbb{1}_A \, \mathrm{d} \, \mathbb{P}(\omega) = \int_\Omega X^A(\omega) \, \mathrm{d} \, \mathbb{P}(\omega).$$

Since $X_n \to X$ in \mathcal{L}_1 (\mathbb{P} -a.s.), then $X_n^A \to X^A$ (\mathbb{P} a.s.) for all $A \in \mathcal{A}$. Since $X_n, X \in \mathcal{L}_1$, then the expectations are finite, i.e. $\mathbb{E}|X| < \infty$ and $\mathbb{E}|X_n| < \infty$ for each n. Since X_n converges to X in \mathcal{L}_1 , then by definition of convergence in \mathcal{L}_1

$$\lim_{n \to \infty} \mathbb{E}|X_n - X| = 0.$$

By the triangle inequality,

$$\mathbb{E}|X_n| - \mathbb{E}|X| \le \mathbb{E}|X_n - X|$$

Since $\mathbb{E}|X_n-X|\to 0$, then $\mathbb{E}|X_n|\to \mathbb{E}|X|$. Additionally, by rearrangement we show

$$\mathbb{E}|X_n| \le \mathbb{E}|X_n - X| + \mathbb{E}|X|.$$

This implies $\mathbb{E}|X_n|$ is uniformly bounded, since $\mathbb{E}|X_n-X|\to 0$ and $\mathbb{E}|X|<\infty$. Since $\mathbb{E}|X_n|$ is uniformly bounded, there exists an integrable function $g(\omega)\in\mathcal{L}_1$ such that $|X_n(\omega)|\leq g(\omega)$ for all n and almost every ω . Hence $|X_n^A(\omega)|\leq g(\omega)$ and by the Dominated Convergence Theorem:

$$\lim_{n \to \infty} \int_{\Omega} X_n^A(\omega) d \mathbb{P}(\omega) = \int_{\Omega} X^A(\omega) d \mathbb{P}(\omega)$$

for all A. The above expression is equivalent to

$$\lim_{n\to\infty} \int_A X_n(\omega) \, \mathrm{d}\, \mathbb{P}(\omega) = \int_A \left(\lim_{n\to\infty} X_n(\omega) \right) \, \mathrm{d}\, \mathbb{P}(\omega) = \int_A X(\omega) \, \mathrm{d}\, \mathbb{P}(\omega).$$

(P.4) Let X be an integrable random variable and assume that $X \geq 0$ (\mathbb{P} -a.s.). Show that if $\mathbb{E} X = 0$, then X = 0 (\mathbb{P} -a.s.).

Proof. Since $\mathbb{E}X = 0$ and X is an integrable random variable, then by definition of the expectation of X:

$$\mathbb{E}X = \int_{\Omega} X(\omega) \, \mathrm{d} \, \mathbb{P}(\omega) = 0.$$

We will do a proof by contradiction. Suppose $\mathbb{E}X$ and $X(\omega) > 0$. Consider the case where $\mathbb{P}(A) > 0$. We define $A \subseteq \Omega$ as the set of all $X(\omega) > 0$:

$$A:=\{\omega\in\Omega:X(\omega)>0\}.$$

If $\mathbb{P}(A) > 0$, then

$$\mathbb{E}X = \int_A X(\omega) \, d\mathbb{P}(\omega) = \int_{\Omega} X(\omega) \mathbb{1}_A \, d\mathbb{P}(\omega) > 0.$$

This contradicts the assumption that $\mathbb{E}X=0$. Then we must have $\mathbb{P}(A)=0$ for all $X(\omega)\in A$. Hence the set of all X>0 has measure zero. Therefore X=0 $\mathbb{P}-a.s.$ when $X\geq 0$ and $\mathbb{E}X=0$.

(P.5) Let $X \in \mathcal{L}_1$ and $Y \in \mathcal{L}_1$ be random variables. Prove that

$$\int_{\Omega} |X(\omega) - Y(\omega)| \ d\mathbb{P}(\omega) = 0$$

if and only if X = Y (\mathbb{P} -a.s.).

Proof. For the forward direction we assume $\int_{\Omega} |X(\omega) - Y(\omega)| d \mathbb{P}(\omega) = 0$. We will show X = Y. By definition of expectation,

$$\int_{\Omega} |X(\omega) - Y(\omega)| d \mathbb{P}(\omega) = \mathbb{E}|X(\omega) - Y(\omega)| = 0.$$

By the proof in **(P.4)**, it follows that $|X(\omega) - Y(\omega)| = 0$ (\mathbb{P} -a.s.). Hence X = Y (\mathbb{P} -a.s.). Next, for the backward direction we assume X = Y (\mathbb{P} -a.s.). We will show $\int_{\Omega} |X(\omega) - Y(\omega)| d\mathbb{P}(\omega) = 0$. If X = Y (\mathbb{P} -a.s.), then

$$\mathbb{P}(X=Y) = \mathbb{P}(\{\omega : X(\omega) = Y(\omega)\}) = \mathbb{P}(\{\omega : X(\omega) - Y(\omega) = 0\}) = 1.$$

We can define $N := \{\omega : X(\omega) = Y(\omega)\}^c = \{\omega : X(\omega) \neq Y(\omega)\}$ to be the null set of \mathbb{P} . Then we use the proof in **(P.2)** to show

$$\begin{split} \int\limits_{\Omega} |X(\omega) - Y(\omega)| \, \mathrm{d}\, \mathbb{P}(\omega) &= \int\limits_{\Omega \backslash N} |X(\omega) - Y(\omega)| \, \mathrm{d}\, \mathbb{P}(\omega) + \int\limits_{N} |X(\omega) - Y(\omega)| \, \mathrm{d}\, \mathbb{P}(\omega) \\ &= \int\limits_{\Omega \backslash N} |X(\omega) - Y(\omega)| \, \mathrm{d}\, \mathbb{P}(\omega) + 0, \quad \text{and since } |X(\omega) - Y(\omega)| = 0 \\ &= 0. \end{split}$$

Then $\int_{\Omega} |X(\omega) - Y(\omega)| d \mathbb{P}(\omega) = 0$ when X = Y (P-a.s.).

(P.6) Let $f = (f_1, f_2) : \Omega \mapsto E \times F$. Show that $f : (\Omega, \mathcal{A}) \mapsto (E \times F, \mathcal{E} \otimes \mathcal{F})$ is measurable if and only if f_1 is $\langle \mathcal{A}, \mathcal{E} \rangle$ -measurable and f_2 is $\langle \mathcal{A}, \mathcal{F} \rangle$ -measurable.

Proof. First, for the forward direction we assume $f:(\Omega, \mathcal{A}) \mapsto (E \times F, \mathcal{E} \otimes \mathcal{F})$ is measurable. We will show f_1 is $\langle \mathcal{A}, \mathcal{E} \rangle$ -measurable and f_2 is $\langle \mathcal{A}, \mathcal{F} \rangle$ -measurable. Since f is measurable, then for any $A_1 \in \mathcal{E}$ we know $A_1 \times F \in \mathcal{E} \otimes \mathcal{F}$ and by definition of measurability we have

$$f^{-1}(A_1 \times F) \in \mathcal{A}.$$

Then by definition of Cartesian Product, we know

$$f^{-1}(A_1 \times F) = f_1^{-1}(A_1).$$

Hence $f_1^{-1}(A_1) \in \mathcal{A}$ for all $A_1 \in \mathcal{E}$ and we satisfy the definition of $\langle \mathcal{A}, \mathcal{E} \rangle$ -measurability for f_1 . Similarly, for any $A_2 \in \mathcal{F}$ we know $E \times A_2 \in \mathcal{E} \otimes \mathcal{F}$ and by definition of measurability we have

$$f^{-1}(E \times A_2) \in \mathcal{A}.$$

Then by definition of Cartesian Product, we know

$$f^{-1}(E \times A_2) = f_2^{-1}(A_2).$$

Hence $f_2^{-1}(A_2) \in \mathcal{A}$ for all $A_2 \in \mathcal{F}$ and we satisfy the definition of f_2 is $\langle \mathcal{A}, \mathcal{F} \rangle$ -measurability for f_2 .

For the backward direction we assume f_1 is $\langle \mathcal{A}, \mathcal{E} \rangle$ -measurable and f_2 is $\langle \mathcal{A}, \mathcal{F} \rangle$ -measurable. We will show $f:(\Omega, \mathcal{A}) \mapsto (E \times F, \mathcal{E} \otimes \mathcal{F})$ is measurable. Let $B_1 \times B_2$ be any product set such that $B_1 \in \mathcal{E}$, $B_2 \in \mathcal{F}$. Then $B_1 \times B_2 \in \mathcal{E} \otimes \mathcal{F}$. By definition of Cartesian product, we define the pre-image of f as

$$f^{-1}(B_1 \times B_2) = f_1^{-1}(B_1) \cap f_2^{-1}(B_2).$$

Since f_1 is measurable, then $f_1^{-1}(B_1) \in \mathcal{A}$ for all $B_1 \in \mathcal{E}$. Similarly, since f_2 is measurable, then $f_2^{-1}(B_2) \in \mathcal{A}$ for all $B_2 \in \mathcal{F}$. Therefore

$$f_1^{-1}(B_1) \cap f_2^{-1}(B_2) \in \mathcal{A}.$$

by definition of σ -algebra. Since $f^{-1}(B_1 \times B_2) \in \mathcal{A}$ for all $B_1 \times B_2 \in \mathcal{E} \otimes \mathcal{F}$, then we satisfy the definition of measurability. Therefore $f:(\Omega,\mathcal{A}) \mapsto (E \times F,\mathcal{E} \otimes \mathcal{F})$ is measurable.

(P.7) Consider a sequence $(X_n)_{n\in\mathbb{Z}^+}$ of random variables. Prove that $X_n \to X$ (\mathbb{P} -a.s.), i.e.,

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1,$$

if there exists a sequence of positive numbers $(\epsilon_n)_{n\in\mathbb{Z}^+}$ with $\epsilon_n\downarrow 0$ such that

$$\sum_{n=1}^{\infty} \mathbb{P}\left(\left\{\left|X_n - X\right| > \epsilon_n\right\}\right) < \infty.$$

Proof. Since $\epsilon_n \downarrow 0$ as $n \to \infty$, then $|X_{n+1} - X| \subseteq |X_n - X|$ for all n. Define the set of decreasing sequences to be $A_n := \{|X_n - X| > \epsilon_n\}$. Since $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$ by assumption, then by the Borel-Cantelli Theorem for measurable spaces we have that $\mathbb{P}(\lim_{n\to\infty} \sup A_n) = 0$. We use the definition of limit superior to show

$$\mathbb{P}(\lim_{n\to\infty}\sup A_n) = \lim_{n\to\infty}\lim_{k\to\infty}\mathbb{P}(\bigcup_{m=n}^k A_m) = \lim_{n\to\infty}\lim_{k\to\infty}(1-\mathbb{P}(\cap_{m=n}^k A_m^c)) = 0.$$

From the equation above, it follows that have $\lim_{n\to\infty}\lim_{k\to\infty}\mathbb{P}(\cap_{m=n}^kA_m^c)=1$, where $A^c:=\{0\leq |X_n-X|\leq \epsilon_n\}$. Since $|X_n-X|\downarrow \epsilon_n$ as $n\to\infty$, then for any $k\geq n$ we have $|X_n-X|\to 0$. Therefore $X_n\to X$ ($\mathbb{P}-\text{a.s.}$), and we have

$$\mathbb{P}\left(\left\{\omega\in\Omega: \lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$