# Algoritmos y Programación Paralela

Dra. Ing. Ana Cori Morón

### ALGORITMOS PARA N-PROCESOS

### ALGORITMO DE EISENBERG-MCGUIRE

- Es un algoritmo que soluciona el problema de Exclusión Mutua para n procesos, basado en el algoritmo original de Dijkstra, utiliza las siguientes estructuras:
- S<sub>i</sub>: señal del proceso i del tipo enumerado en tres posibles valores (i:0..n-1)
  - qe=1: el proceso desea entrar a su sección crítica.
  - sc=2: el proceso se encuentra ejecutando su sección crítica.
  - rp=3: el proceso no está ni desea entrar a su sección crítica.
- Turno<sub>i</sub>: indica que proceso tiene el derecho de comprobar si puede ingresar a la sección crítica.
- Inicializar: S<sub>i</sub>=rp, Turno<sub>i</sub>=0..n-1(indistinto)
- Proceso Pi: P[0..n-1]
- N: numero de procesos

| S[0] | S[1] | S[2] | S[3] | S[4] | S[5] |
|------|------|------|------|------|------|
| 3    | 3    | 3    | 3    | 3    | 3    |

```
process P,
repeat
   repeat
       indicador[i]: =quiereentrar;
   (1) j: =indice;
      while(j≠i)
         begin
         if indicador[j] #restoproceso
       (2) then j: =indice
           else j : = (j+1) \mod n
       end:
  (3) indicador[i]: =enSC;
     j: =0;
     while ((j<n) and ((j=i) or (indicador[j] #enSC)))
       j: =j+1;
  (4) until ((j≥n) and ((indice=i) or
                                (indicador[indice]=restoproceso)));
     indice: =1;
      Sección Crítica;;
      j: =(indice+1)mod n;
     while (indicador[j]=restoproceso)
       j:=(j+1) \mod n;
 (5) indice: =j:
      indicador[i]: =restoproceso;
      Resto,
forever
```

#### Variables en el Diagrama de flujo

- S<sub>i</sub>: señal del proceso i del tipo enumerado en tres posibles valores (i:0..n-1)
  - qe: el proceso desea entrar a su sección crítica.
  - sc: el proceso se encuentra ejecutando su sección crítica.
  - rp: el proceso no está ni desea entrar a su sección crítica.
- Turno<sub>i</sub>: indica que proceso tiene el derecho de comprobar si puede ingresar a la sección crítica.
- Inicializar: S<sub>i</sub>=rp, Turno<sub>i</sub>=0..n-1(indistinto)
- Proceso Pi: P[0..n-1]

#### Variables en el libro

- Indicador<sub>i</sub>: señal del proceso i del tipo enumerado en tres posibles valores (i:0..n-1)
  - qe: el proceso desea entrar a su sección crítica.
  - sc: el proceso se encuentra ejecutando su sección crítica.
  - rp: el proceso no está ni desea entrar a su sección crítica.
- Indice<sub>i</sub>: indica que proceso tiene el derecho de comprobar si puede ingresar a la sección crítica.
- Inicializar: Indicador<sub>i</sub>=rp, Indice<sub>i</sub>=0..n-1(indistinto)
- Proceso Pi: P[0..n-1]

### DIAGRAMA DE FLUJO



### ALGORITMO DE EISENBERG-MCGUIRE

- El algoritmo se considera correcto porque:
  - 1. Satisface el requerimiento de exclusión mutua.
    - Pi entra a su sección crítica si todo S[i]<>sc (para todo j<>i)
  - 2. Satisface el requerimiento de progreso en la ejecución.
    - Turno es únicamente modificado cuando el proceso entra y sale de su sección crítica, si no hay ningún proceso en su sección crítica "turno" no cambia y entra el primer proceso que desea entrar (en orden cíclico).
  - 3. Satisface el requerimiento de espera limitada.
    - Cuando un proceso deja su sección crítica tiene que designar como su sucesor al primer proceso que desee entrar en su sección crítica.

| 1  | S(i)=qe                                          |
|----|--------------------------------------------------|
| 2  | j=turno                                          |
| 3  | J S S S S S S S S S S S S S S S S S S S          |
| 4  |                                                  |
| 5  | j=turno j=(j+1) mod n                            |
| 6  | S(i)=sc                                          |
| 7  | j=0                                              |
| 8  | y<br>W<br>j <n (j="i" o="" s(j)<="" y="">sc)</n> |
| 9  | j=j+1                                            |
| 10 | F j>=n y (turno=i o S(turno)=rp)                 |
| 11 | turno=i                                          |
| 12 | Sección crítica (i)                              |
| 13 | j=(turno+1) mod n                                |
| 14 | S(j)=rp                                          |
| 15 | j=(j+1) mod n                                    |
| 16 | turno=j                                          |
| 17 | S(i)=rp                                          |
|    |                                                  |

### EJECUCION PARA 3 PROCE3-----

TAREA HACER LA EJECUCION PARA 3 PROCESO:

|     |       | t0     | t1 | t2 | t3 | t4 | t5 | t6 |
|-----|-------|--------|----|----|----|----|----|----|
| i=0 | P[0]  | inicia |    |    |    |    |    |    |
| i=1 | P[1]  |        |    |    |    |    |    |    |
| i=2 | P[2]  |        |    |    |    |    |    |    |
|     | S[0]  | 3      |    |    |    |    |    |    |
|     | S[1]  | 3      |    |    |    |    |    |    |
|     | S[2]  | 3      |    |    |    |    |    |    |
|     | Turno | 0      |    |    |    |    |    |    |

N=3





## Continuar....

|     |       |    |         |         |         |     |     |     |    |    |    |         |     |     |     |     | 1   |
|-----|-------|----|---------|---------|---------|-----|-----|-----|----|----|----|---------|-----|-----|-----|-----|-----|
|     |       | t0 | t1      | t2      | t3      | t4  | t5  | t6  | t7 | t8 | t9 | t10     | t11 | t12 | t13 | t14 | t15 |
| i=0 | P0    | rp | S(0)=qe | ,       |         | j=0 |     |     | wF |    |    | S(0)=sc |     |     | j=0 |     |     |
| i=1 | P1    | rp |         | S(1)=qe | -       |     | j=0 |     |    | wV |    |         | ifV |     |     | j=0 |     |
| i=2 | P2    | rp |         |         | S(2)=qe |     |     | j=0 |    |    | wV |         |     | ifV |     |     | j=0 |
|     | Turno | 0  | 0       | 0       | 0       | 0   | 0   | 0   | 0  | 0  | 0  | 0       | 0   | 0   | 0   | 0   | 0   |
|     | j     |    |         |         |         | 0   | 0   | 0   | 0  | 0  | 0  | 0       | 0   | 0   | 0   | 0   | 0   |
|     |       |    |         |         |         |     |     |     |    |    |    |         |     |     |     |     |     |