Phase 2: Prep

•••

Joseph Nelson Farrell & Michael Massone
DS 5220 Supervised Machine Learning
Northeastern University
Professor Steven Morin, PhD

Overview

This slide deck will communicate the following:

- Machine learning attributes configuration
 - Our findings related to attributes that will be included in machine learning
 and attributes that will be excluded from machine learning
- Numerical column data transformations
 - The specific transformations that will be applied to ML numerical columns.
- Categorical column data transformations
 - The specific transformations that will be applied to ML categorical columns.
- Transformation outcome
 - The outcome of the numerical and categorical transformations on the train set.

Data

Dataset: Customer Segmentation

Origins: https://www.kaggle.com/datasets/vetrirah/customer?select=Train.csv

Size: (8068, 11)

Instances: 8068

• Attributes: 11

Description:

 The dataset contains information about customers of an automobile company segmented into 4 classes (target).

Attributes

Attribute Name	AttributeType	Percent Missing Values	ML Attribute Designation
index	Numerical - Discrete	0.0%	non_ML
ID	Numerical - Discrete	0.0%	non_ML
Gender	Categorical - Nominal	0.0%	ML
Ever_Married	Categorical - Nominal	1.7%	ML
Age	Numerical - Discrete	0.0%	ML
Graduated	Categorical - Nominal	0.9%	ML
Profession	Categorical - Nominal	1.6%	ML
Work_Experience	Numerical - Discrete	10.0%	ML
Spending_Score	Categorical - Ordinal	0.0%	ML
Family_Size	Numerical - Discrete	4.1%	ML
Var_1	Categorical - Nominal	0.9%	ML

ML Attribute Selection

ML Attributes

Numerical Attributes:

- Age
- Work_Experience
- Family_Size

Categorical Attributes:

- Gender
- Ever_Married
- Graduated
- Profession
- Spending_Score
- Var_1

Total Attributes:

• 9

Non-ML Attributes

Non-ML Attributes List:

• ID

Missingness Drop List:

- None
- No attributes missing > 20 % of the observations

ML Attributes Drop List:

- None
- No attributes were identified during EDA to exclude.

Total Attributes:

•]

Attribute Transformation

Categorical

Data Imputation:

• Fill missing values with the most frequent

Data Encoding:

- Target encoding
- Transforms single categorical column into n columns, where n equals the number of target classes.
- Values represent the probability of the original value being a member of a particular class.

Numerical

Data Imputation:

• Fill missing values with the mean.

Data Scaling:

- Standard scaling
- De-mean
- Whiten

Finalized Column Transformer:

Data Sample - Pre Transformations

	ID	Gender	Ever_Married	Age	Graduated	Profession	Work_Experience	Spending_Score	Family_Size	Var_1
917	465905	Female	No	32	Yes	Artist	9.0	Low	1.0	Cat_6
3398	462903	Male	Yes	72	Yes	Entertainment	NaN	Average	2.0	Cat_6
2045	467901	Female	No	33	Yes	Entertainment	1.0	Low	4.0	Cat_6
8060	463613	Female	Yes	48	Yes	Artist	0.0	Average	6.0	Cat_6
4604	459859	Female	Yes	28	No	Doctor	9.0	Low	1.0	Cat_7
3822	463101	Female	No	27	No	Homemaker	8.0	Low	1.0	Cat_6
5864	467844	Male	No	37	Yes	Healthcare	0.0	Low	2.0	Cat_6
3589	460706	Female	No	27	No	Engineer	6.0	Low	6.0	Cat_4
1489	464339	Male	No	26	No	Artist	0.0	Low	2.0	Cat_6
2661	459407	Female	No	37	Yes	Doctor	0.0	Low	3.0	Cat_6

Shape: (6454, 10)

Data Sample - Post Transformations

	0	1	2	3	4	5	6	7	8	9	17	18	19	20	21	22	23	24	25	26
0	0.246725	0.237006	0.250948	0.265321	0.243218	0.147315	0.117767	0.491637	0.243003	0.267905	0.184781	0.133056	0.407085	0.232460	0.237425	0.283613	0.246501	-0.695320	1.942754	-1.227022
	0.242490	0.224609	0.238557	0.294344	0.245240	0.285555	0.328461	0.140718	0.243003	0.267905	0.295321	0.452007	0.069321	0.232460	0.237425	0.283613	0.246501	1.703982	0.000000	-0.560068
2	0.243851	0.238758	0.249785	0.267605	0.251069	0.146765	0.117233	0.484873	0.246483	0.267266	0.183260	0.132564	0.403355	0.231114	0.234355	0.285701	0.248828	-0.635337	-0.513120	0.773838
3	0.245887	0.238714	0.253897	0.261501	0.243990	0.286529	0.325829	0.143627	0.246287	0.266077	0.290604	0.453880	0.077353	0.233433	0.236045	0.284289	0.246230	0.264401	-0.820105	2.107745
4	0.245887	0.238714	0.253897	0.261501	0.243990	0.286529	0.325829	0.143627	0.241845	0.169885	0.183341	0.137358	0.402381	0.255554	0.255434	0.195799	0.293140	-0.935250	1.942754	-1.227022
6449	0.246725	0.237006	0.250948	0.265321	0.243218	0.147315	0.117767	0.491637	0.246861	0.166344	0.184781	0.133056	0.407085	0.232460	0.237425	0.283613	0.246501	-0.995233	1.635769	-1.227022
6450	0.245189	0.223096	0.239132	0.292583	0.251069	0.146765	0.117233	0.484873	0.246483	0.267266	0.183260	0.132564	0.403355	0.231114	0.234355	0.285701	0.248828	-0.395407	-0.820105	-0.560068
6451	0.246725	0.237006	0.250948	0.265321	0.243218	0.147315	0.117767	0.491637	0.246861	0.166344	0.184781	0.133056	0.407085	0.307015	0.216637	0.096543	0.379651	-0.995233	1.021801	2.107745
6452	0.243553	0.222782	0.236034	0.297630	0.245563	0.146791	0.123775	0.483813	0.241845	0.169885	0.183341	0.137358	0.402381	0.233433	0.236045	0.284289	0.246230	-1.055215	-0.820105	-0.560068
6453	0.245887	0.238714	0.253897	0.261501	0.245563	0.146791	0.123775	0.483813	0.246287	0.266077	 0.183341	0.137358	0.402381	0.233433	0.236045	0.284289	0.246230	-0.395407	-0.820105	0.106885

Outcome Shape: (6454, 27)

- The 6 categorical attributes have been expanded to 24 attributes.
- Number of categorical attributes * Number of target classes = 24
- 24 + Numerical Attributes = 27

Acknowledgements

- 1. Steven Morin PhD., DS 5220 Class Materials
- 2. Sklearn.org

Thank you!