#### N. Gregory Mankiw

# Economics Sixth Edition







Premium
PowerPoint
Slides by
Ron Cronovich
2012 UPDATE

# In this chapter, look for the answers to these questions:

- What is the Consumer Price Index (CPI)?
   How is it calculated? What's it used for?
- What are the problems with the CPI? How serious are they?
- How does the CPI differ from the GDP deflator?
- How can we use the CPI to compare dollar amounts from different years? Why would we want to do this, anyway?
- How can we correct interest rates for inflation?

#### The Consumer Price Index (CPI)

- measures the typical consumer's cost of living
- the basis of cost of living adjustments (COLAs) in many contracts and in Social Security

#### **How the CPI Is Calculated**

#### 1. Fix the "basket."

The Bureau of Labor Statistics (BLS) surveys consumers to determine what's in the typical consumer's "shopping basket."

#### 2. Find the prices.

The BLS collects data on the prices of all the goods in the basket.

#### 3. Compute the basket's cost.

Use the prices to compute the total cost of the basket.

#### **How the CPI Is Calculated**

4. Choose a base year and compute the index.
The CPI in any year equals

100 x cost of basket in current year cost of basket in base year

5. Compute the inflation rate.

The percentage change in the CPI from the preceding period.

#### **EXAMPLE**

basket: {4 pizzas, 10 lattes}

| year | price of<br>pizza | price of<br>latte | cost of basket                        |
|------|-------------------|-------------------|---------------------------------------|
| 2010 | \$10              | \$2.00            | $$10 \times 4 + $2 \times 10 = $60$   |
| 2011 | \$11              | \$2.50            | $$11 \times 4 + $2.5 \times 10 = $69$ |
| 2012 | \$12              | \$3.00            | $$12 \times 4 + $3 \times 10 = $78$   |

#### Compute CPI in each year usingnalation base: year:

2010: 
$$100 \times (\$60/\$60) = 100$$
  
2011:  $100 \times (\$69/\$60) = 115$   
2012:  $100 \times (\$78/\$60) = 130$   
15% =  $\frac{115 - 100}{100} \times 100\%$   
13% =  $\frac{130 - 115}{115} \times 100\%$ 

# ACTIVE LEARNING 1 Calculate the CPI

CPI basket:

{10 lbs beef,20 lbs chicken}

The CPI basket cost \$120 in 2010, the base year.

|      | price<br>of beef | price of<br>chicken |
|------|------------------|---------------------|
| 2010 | \$4              | \$4                 |
| 2011 | \$5              | \$5                 |
| 2012 | \$9              | \$6                 |

- A. Compute the CPI in 2011.
- B. What was the CPI inflation rate from 2011–2012?

#### **Answers**

CPI basket: {10 lbs beef, 20 lbs chicken}

The CPI basket cost \$120 in 2010, the base year.

|      | price<br>of beef | price of<br>chicken |
|------|------------------|---------------------|
| 2010 | \$4              | \$4                 |
| 2011 | \$5              | \$5                 |
| 2012 | \$9              | \$6                 |

#### A. Compute the CPI in 2011:

Cost of CPI basket in 2011 =  $(\$5 \times 10) + (\$5 \times 20) = \$150$ 

CPI in  $2011 = 100 \times (\$150/\$120) = 125$ 

#### **Answers**

CPI basket: {10 lbs beef, 20 lbs chicken}

The CPI basket cost \$120 in 2010, the base year.

|      | price<br>of beef | price of<br>chicken |
|------|------------------|---------------------|
| 2010 | \$4              | \$4                 |
| 2011 | \$5              | \$5                 |
| 2012 | \$9              | \$6                 |

B. What was the inflation rate from 2011–2012?

Cost of CPI basket in 2012

$$= (\$9 \times 10) + (\$6 \times 20) = \$210$$

CPI in 
$$2012 = 100 \times (\$210/\$120) = 175$$

CPI inflation rate = 
$$(175 - 125)/125 = 40\%$$

#### What's in the CPI's Basket?



#### **Substitution bias**

#### **CPI** basket:

{10# beef, 20# chicken}

In 2010 and 2011, households bought CPI basket.

|      | beef chicken |     | cost of CPI<br>basket |
|------|--------------|-----|-----------------------|
| 2010 | \$4          | \$4 | \$120                 |
| 2011 | \$5          | \$5 | \$150                 |
| 2012 | \$9          | \$6 | \$210                 |

In 2012, households bought {5 lbs beef, 25 lbs chicken}.

- A. Compute cost of the 2012 household basket.
- B. Compute % increase in cost of household basket over 2011–12, compare to CPI inflation rate.

#### **Answers**

CPI basket:

{10# beef, 20# chicken}

Household basket in 2012: {5# beef, 25# chicken}

|      | beef c |     | cost of CPI<br>basket |
|------|--------|-----|-----------------------|
| 2010 | \$4    | \$4 | \$120                 |
| 2011 | \$5    | \$5 | \$150                 |
| 2012 | \$9    | \$6 | \$210                 |

A. Compute cost of the 2012 household basket.

$$(\$9 \times 5) + (\$6 \times 25) = \$195$$

#### **Answers**

CPI basket:
{10# beef,
20# chicken}
Household

Household basket in 2012: {5# beef, 25# chicken}

|      | beef | chicken | cost of CPI<br>basket |
|------|------|---------|-----------------------|
| 2010 | \$4  | \$4     | \$120                 |
| 2011 | \$5  | \$5     | \$150                 |
| 2012 | \$9  | \$6     | \$210                 |

B. Compute % increase in cost of household basket over 2011–12, compare to CPI inflation rate.

Rate of increase: (\$195 - \$150)/\$150 = 30%

CPI inflation rate from previous problem = 40%

# **Problems with the CPI: Substitution Bias**

- Over time, some prices rise faster than others.
- Consumers substitute toward goods that become relatively cheaper, mitigating the effects of price increases.
- The CPI misses this substitution because it uses a fixed basket of goods.
- Thus, the CPI overstates increases in the cost of living.

# Problems with the CPI: Introduction of New Goods

- The introduction of new goods increases variety, allows consumers to find products that more closely meet their needs.
- In effect, dollars become more valuable.
- The CPI misses this effect because it uses a fixed basket of goods.
- Thus, the CPI overstates increases in the cost of living.

# Problems with the CPI: Unmeasured Quality Change

- Improvements in the quality of goods in the basket increase the value of each dollar.
- The BLS tries to account for quality changes but probably misses some, as quality is hard to measure.
- Thus, the CPI overstates increases in the cost of living.

#### **Problems with the CPI**

- Each of these problems causes the CPI to overstate cost of living increases.
- The BLS has made technical adjustments, but the CPI probably still overstates inflation by about 0.5 percent per year.
- This is important because Social Security payments and many contracts have COLAs tied to the CPI.

#### Two Measures of Inflation, 1960–2012



#### **Contrasting the CPI and GDP Deflator**

#### Imported consumer goods:

- included in CPI
- excluded from GDP deflator

#### The basket:

- CPI uses fixed basket
- GDP deflator uses basket of currently produced goods & services
   This matters if different prices are changing by different amounts.

#### Capital goods:

- excluded from CPI
- included in GDP deflator (if produced domestically)

# ACTIVE LEARNING 3 CPI vs. GDP deflator

In each scenario, determine the effects on the CPI and the GDP deflator.

- A. Starbucks raises the price of Frappuccinos.
- B. Caterpillar raises the price of the industrial tractors it manufactures at its Illinois factory.
- **C.** Armani raises the price of the Italian jeans it sells in the U.S.

# ACTIVE LEARNING 3 Answers

- A. Starbucks raises the price of Frappuccinos.

  The CPI and GDP deflator both rise.
- B. Caterpillar raises the price of the industrial tractors it manufactures at its Illinois factory.
  The GDP deflator rises, the CPI does not.
- **C.** Armani raises the price of the Italian jeans it sells in the U.S.
  - The CPI rises, the GDP deflator does not.

# **Correcting Variables for Inflation: Comparing Dollar Figures from Different Times**

- Inflation makes it harder to compare dollar amounts from different times.
- Example: the minimum wage
  - \$1.15 in Dec 1964
  - \$7.25 in Dec 2010
- Did min wage have more purchasing power in Dec 1964 or Dec 2010?
- To compare, use CPI to convert 1964 figure into "2010 dollars"...

### **Correcting Variables for Inflation: Comparing Dollar Figures from Different Times**

Amount in today's = in year T x dollars dollars Price level today

Price level today

Price level in year T

- In our example,
  - "year T" is 12/1964, "today" is 12/2010
  - Min wage was \$1.15 in year T
  - CPI = 31.3 in year T, CPI = 220.3 today

The minimum wage in 1964 was \$8.09 in 2010 dollars.

$$\$8.09 = \$1.15 \times \frac{220.3}{31.3}$$

# **Correcting Variables for Inflation: Comparing Dollar Figures from Different Times**

- Researchers, business analysts, and policymakers often use this technique to convert a time series of current-dollar (nominal) figures into constant-dollar (real) figures.
- They can then see how a variable has changed over time after correcting for inflation.
- Example: the minimum wage...

### The U.S. Minimum Wage in Current Dollars and Today's Dollars, 1960–2012



# ACTIVE LEARNING 4 Comparing tuition increases

| Tuition and Fees at U.S. Colleges and Universities |         |          |  |  |
|----------------------------------------------------|---------|----------|--|--|
|                                                    | 1990    | 2010     |  |  |
| Private non-profit 4-year                          | \$9,340 | \$27,293 |  |  |
| Public 4-year                                      | \$1,908 | \$7,605  |  |  |
| Public 2-year                                      | \$906   | \$2,713  |  |  |
| CPI                                                | 130.7   | 218.1    |  |  |

Instructions: Express the 1990 tuition figures in 2010 dollars, then compute the percentage increase for all three types of schools. Which type experienced the largest increase in real tuition costs?

#### **Answers**

|                                        | 1990     | 2010     | % change |
|----------------------------------------|----------|----------|----------|
| CPI                                    | 130.7    | 218.1    | 66.9%    |
| Private non-profit 4-year (current \$) | \$9,340  | \$27,293 |          |
| Private non-profit 4-year (2010 \$)    | \$15,586 | \$27,293 | 75.1%    |
| Public 4-year (current \$)             | \$1,908  | \$7,605  |          |
| Public 4-year (2010 \$)                | \$3,184  | \$7,605  | 138.9%   |
| Public 2-year (current \$)             | \$906    | \$2,713  |          |
| Public 2-year (2010 \$)                | \$1,512  | \$2,713  | 79.4%    |

### **Correcting Variables for Inflation: Indexation**

A dollar amount is **indexed** for inflation if it is automatically corrected for inflation by law or in a contract.

For example, the increase in the CPI automatically determines

- the COLA in many multi-year labor contracts
- adjustments in Social Security payments and federal income tax brackets

### **Correcting Variables for Inflation: Real vs. Nominal Interest Rates**

#### The nominal interest rate:

- the interest rate <u>not</u> corrected for inflation
- the rate of growth in the dollar value of a deposit or debt

#### The real interest rate:

- corrected for inflation
- the rate of growth in the purchasing power of a deposit or debt

#### Real interest rate

= (nominal interest rate) – (inflation rate)

### **Correcting Variables for Inflation: Real vs. Nominal Interest Rates**

#### Example:

- Deposit \$1,000 for one year.
- Nominal interest rate is 9%.
- During that year, inflation is 3.5%.
- Real interest rate
  - = Nominal interest rate Inflation
  - = 9.0% 3.5% = 5.5%
- The purchasing power of the \$1000 deposit has grown 5.5%.

### Real and Nominal Interest Rates in the U.S., 1950–2012



#### SUMMARY

- The Consumer Price Index is a measure of the cost of living. The CPI tracks the cost of the typical consumer's "basket" of goods & services.
- The CPI is used to make Cost of Living Adjustments and to correct economic variables for the effects of inflation.
- The real interest rate is corrected for inflation and is computed by subtracting the inflation rate from the nominal interest rate.