ET4 (Blocs aritmètics combinacionals per a nombres naturals)

Exercicis per avaluar objectius de nivell B

Objectius: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 y 4.10.

Exercici 4.1. (Objectiu 4.1.1)

Escriu els **8 bits de menor pes** del vector de bits resultant d'efectuar les següents sumes en binari i indica si el resultat és representable usant 8 bits o no.

- a) 10011111+01101111.
- b) 10101011+01010101.
- c) 01011101+01110111.

Exercici 4.2. (Objectiu 4.1.2)

Escriu els **8 bits de menor pes** del vector de bits resultant d'efectuar les següents restes en binari i indica si el resultat és representable usant 8 bits o no.

- a) 10101101-01011101.
- b) 10100000-10000001.
- c) 10100011-10111111.

Exercici 4.3. (Objectiu 4.1.3)

Escriu els **8 bits de menor pes** del vector de bits resultant de les següents multiplicacions de nombres binaris per potències de 2 i digues si el resultat és representable en 8 bits o no.

- a) 00010110 per 24.
- b) 00101010 per 2³.
- c) 00000111 per 2⁵.

Exercici 4.4. (Objectiu 4.1.4)

Escriu els **8 bits de menor pes** del vector de bits resultant de les següents divisions de nombres binaris per potències de 2.

- a) 00000111 entre 2¹.
- b) 00110101 entre 2³.
- c) 00010001 entre 2°.
- d) 00101111 entre 2⁷.

Exercici 4.5. (Objectiu 4.2)

Circuits que realitzen les operacions aritmètiques bàsiques de nombres naturals en binari. Completa la taula de blocs combinacionals següent.

Nom	Dibuix	Taula de veritat
	V V	
	X Y	
	Ĭ	
	Ha c s	
	c s	

Exercici 4.6. (Objectiu 4.3.1)

Dibuixa l'esquema lògic intern del bloc combinacional INC(X) que calcula X_u+1 usant Half-adders (Ha). X és un bus de 4 bits. El bloc també genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 4 bits.

Exercici 4.7. (Objectiu 4.3.2)

Dibuixa l'esquema lògic intern del bloc combinacional ADD(X,Y) que calcula $X_u + Y_u$ usant Full-adders (Fa). X i Y són busos de 4 bits. El bloc també genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 4 bits.

Exercici 4.8. (Objectiu 4.3.3)

Dibuixa l'esquema lògic intern del bloc combinacional SUB(X,Y) que calcula X_u - Y_u usant Full-subtractors (Fs). X i Y són busos de 4 bits. El bloc també genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 4 bits.

Exercici 4.9. (Objectiu 4.4.1)

Dibuixa l'esquema lògic intern dels bloc combinacional SL-4 que realitza els desplaçaments lògics sobre naturals necessaris per calcular W_u = X_u * 4 . X i W són busos de 8 bits. També genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 8 bits.

Exercici 4.10. (Objectiu 4.4.2)

- a) Dibuixa l'esquema lògic intern del bloc combinacional SRL-2 que realitza els desplaçaments lògics sobre naturals necessaris per a calcular $W_u = X_u/2^2$. X i W són busos de 8 bits.
- b) Si entenem que el bloc SRL-2 s'usa per calcular el resultat de la divisió natural, cal que el bloc generi un senyal de sortida Irr (que indica si el resultat és o no és representable en 8 bits)? Per què?

Exercici 4.11. (Objectiu 4.4.2)

Si entenem que el bloc SRL-2 s'usa per calcular el resultat de la divisió natural, cal que el bloc generi un senyal de sortida Irr (que indica si el resultat és o no és representable en 8 bits)? Per què?

Exercici 4.12. (Objectiu 4.5)

- a) Dibuixa l'esquema lògic intern del bloc **detector de zero Z(X)**. Bloc fet a partir de portes lògiques que indica si X_u =0 o no. X és un bus de 8 bits i la sortida és d'un sol bit i ha de valdre 1 si X_u =0.
- b) Què valdrà la sortida del bloc Z(X) = si X = 111111111?

Exercici 4.13. (Objectiu 4.6.1)

- a) Dibuixa l'esquema lògic intern del bloc **Comparador LTU(X,Y)**. Bloc que calcula la funció de comparació de nombres naturals $X_u < Y_u$, a partir d'un restador amb sortida de *borrow* i portes lògiques. X i Y són busos de 8 bits.
- b) Què valdrà la sortida del bloc LTU(X,Y)= si X=10001000 i Y=01111111?

Exercici 4.14. (Objectiu 4.6.2)

- a) Dibuixa l'esquema lògic intern del bloc **Comparador LEU(X,Y)**. Bloc que calcula la funció de comparació de nombres naturals X_u≤Y_u, a partir d'un restador amb sortida de *borrow* i portes lògiques. X i Y són busos de 8 bits.
- b) Què valdrà la sortida del bloc LEU(X,Y)= si X=10001000 i Y=10001001?

Exercici 4.15. (Objectiu 4.6.3)

- a) Dibuixa l'esquema lògic intern del bloc **Comparador EQ(X,Y)**. Bloc que calcula la funció de comparació de nombres naturals $X_u=Y_u$, a partir d'un restador amb sortida de *borrow* i portes lògiques. X i Y són busos de 8 bits.
- b) Què valdrà la sortida del bloc EQ(X,Y)= si X=10101010 i Y=10101001?

Exercici 4.16. (Objectiu 4.7)

- a) Dibuixa l'esquema lògic intern del bloc **AND(X,Y)**. Bloc que calcula la funció lògica And bit a bit, W=AND(X,Y), a partir de portes lògiques And. X, Y i W són busos de 8 bits.
- b) Què valdrà la sortida del bloc AND(X,Y)= si X=11101010 i Y=10111001?

Exercici 4.17. (Objectiu 4.7)

- a) Dibuixa l'esquema lògic intern del bloc **OR(X,Y)**. Bloc que calcula la funció lògica Or bit a bit, W=OR(X,Y), a partir de portes lògiques Or. X, Y i W són busos de 8 bits.
- b) Què valdrà la sortida del bloc OR(X,Y)= si X=11101010 i Y=10111001?

Exercici 4.18. (Objectiu 4.7)

- a) Dibuixa l'esquema lògic intern del bloc **XOR(X,Y)**. Bloc que calcula la funció lògica Xor bit a bit, W=XOR(X,Y), a partir de portes lògiques Xor. X, Y i W són busos de 8 bits.
- b) Què valdrà la sortida del bloc XOR(X,Y)= si X=11101010 i Y=10111001?

Exercici 4.19. (Objectiu 4.7)

- a) Dibuixa l'esquema lògic intern del bloc **NOT(X)**. Bloc que calcula la funció lògica Not bit a bit, W=NOT(X), a partir de portes lògiques Not. X i W són busos de 8 bits.
- b) Què valdrà la sortida del bloc NOT(X)= si X=11101010?

Exercici 4.20. (Objectiu 4.8)

- a) Dibuixa l'esquema lògic intern del bloc Mx-4-1. Multiplexor 4-1 a partir de multiplexors 2-1.
- b) Dibuixa l'esquema lògic intern del bloc Mx-8-1. Multiplexor 8-1 a partir de multiplexors 2-1.

Exercici 4.21. (Objectiu 4.9)

Escriu el valor del bit de sortida a i del bus W del següent circuit (amb busos i blocs de 8 bits) pels següents valors de les entrades: X = 00110111 i Y = 11000001.

Exercici 4.22. (Objectiu 4.10)

Completa l'esquema lògic intern dels blocs combinacionals que es mostren a continuació usant els blocs vistos anteriorment per tal que calculin les funcions que es demanen.

a) Comparador multifunció.

Volem construir un comparador que pugui fer diverses comparacions en funció del valor d'una entrada de 3 bits que s'anomena F. El bloc té dues entrades més que s'anomenen X i Y ambdues de 16 bits. En concret les funcions que volem calcular segons el valor de F es poden veure a la taula següent. Substitueix els blocs A, B, C, D i E amb els blocs que creguis necessaris per aconseguir que el circuit tingui el comportament esperat. Cal connectar-los a les entrades X i Y com correspongui. També cal connectar les 3 portes Not a les sortides adients dels blocs.

Valor	Funció
de F	
000	$X_u < Y_u$
001	X _u ≤Y _u
010	$X_u = Y_u$
011	$X_u=0$
100	$Y_u=0$
101	X _u ≥Y _u
110	$X_u > Y_u$
111	$X_u \neq Y_u$

ET4 (Blocs aritmètics combinacionals per a nombres naturals) Exercicis per avaluar objectius de nivell A

Objectius: 4.11

(Recordeu que l'objectiu amb l'asterisc cal fer-lo a casa i portar-lo resolt a classe)

Exercici 4.11. (Objectiu 4.11)

Dibuixa l'esquema lògic intern dels blocs combinacionals que es demanen a continuació. Per afer-los caldrà combinar els blocs vistos anteriorment.

- a) 2X+Y. Bloc que calcula Wu=2*Xu+Yu, a partir d'un sumador ADD(X,Y) de 8 bits, un desplaçador lògic SL-1 i les portes lògiques que siguin necessàries. També genera el señal de sortida Irr, que s'activa quan el resultat no és representable en 8 bits. X, Y i W són busos de 8 bits.
- b) 5X. Bloc que calcula Wu=5*Xu. També genera el senyal de sortida Irr, que s'activa quan el resultat no és representable en 8 bits. X i W són busos de 8 bits.

(*) Exercici 4.23. (Objectiu 4.11)

Dibuixa l'esquema lògic intern dels blocs combinacionals que es demanen a continuació. Per a ferlos, caldrà combinar els blocs vistos anteriorment.

- a) Valor absolut de X-Y. Bloc que calcula Wu=|Xu-Yu|, a partir de dos restadors SUB de 8 bits, un comparador LEU, dos blocs AND, un sumador ADD (o un bloc OR) i les portes lògiques que siguin necessàries. X, Y i W són busos de 8 bits. En aquest exercici no podeu usar cap tipus de multiplexor.
- b) Majoria d'uns. Bloc amb una sortida d'un sol bit anomenada m, que val 1 si el número X de 8 bits que li entra conté més 1s que 0s, altrament m valdrà 0. Construiu el bloc a partir d'un Half-Adder, dos Full-Adders, dos blocs ADD, un bloc LEU i les portes lògiques que siguin necessàries.

Solucions ET4 (Blocs aritmètics combinacionals per a nombres naturals)

Exercici 4.1.

a) 00001110; No representable

b) 00000000; No representable

c) 11010100; Representable

Exercici 4.2.

a) 01010000; Representable

b) 00011111; Representable

c) 11100100; No representable

Exercici 4.3.

a) 01100000; No representable

b) 01010000; No representable

c) 11100000; Representable

Exercici 4.4.

a) 00000011

b) 00000110

c) 00010001

d) 00000000

Exercici 4.5.

Nom	Dibuix	Taula de veritat						
	x y	Х	У		С	S		
Half-adder	Ha C S	0			0	1		
		1	1		0	1		
	c s				· ·			
	x y ci	х	v	ci	ci+1	s		
Full-adder		0	0	0	0	0		
		0	0	1	0	1		
	Fa c s	0	1	0	0 1	0		
	75	1	0	0	0	1		
	$\Rightarrow \Rightarrow$	1	0	1	1	0		
	ci+1 s	1	1	0	1	0		
		1	1	1	1	1		

	600					
Full-subtractor	x y bi	х	У	bi	b_{i+1}	S
		0	0	0	0	0
		0	0	1	1	1
		0	1	0	1	1
		0	1	1	1	0
		1	0	0	0	1
	\$ \$	1	0	1	0	0
	bi+1 s	1	1	0	0	0
		1	1	1	1	1

Exercici 4.6.

Exercici 4.7. (Objectiu 4.3.2)

Exercici 4.8. (Objectiu 4.3.3)

Exercici 4.9. (Objectiu 4.4.1)

Exercici 4.10. (Objectiu 4.4.2)

Exercici 4.11. (Objectiu 4.4.2)

No és necessari incloure un senyal IRR perquè el resultat de la divisió sempre serà representable en 8 bits. El resultat de la divisió mai augmentarà el rang de la representació que s'usi.

Exercici 4.12. (Objectiu 4.5)

Exercici 4.13. (Objectiu 4.6.1)

a)

b) w=0

Exercici 4.14. (Objectiu 4.6.2)

a)

b) w=1

Exercici 4.15. (Objectiu 4.6.3)

a)

b) w=0

Exercici 4.16. (Objectiu 4.7) a)

b) w=10101000

Exercici 4.17. (Objectiu 4.7)

a)

b) w=11111011

Exercici 4.18. (Objectiu 4.7)

a)

b) w=01010011

Exercici 4.19. (Objectiu 4.7) a)

b) w=00010101

Exercici 4.20. (Objectiu 4.8)

a)

b)

Exercici 4.21. (Objectiu 4.9) a=0, W=00001000

Exercici 4.22. (Objectiu 4.10) a) Comparador multifunció.

