

Aula 3: Tarefas de aprendizado (parte 1)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos a serem cobertos

- Principais tarefas de aprendizado
- Tarefas preditivas
- Tarefas descritivas
- Tarefas prescritivas
- Exemplos

Tarefas de aprendizado

Tarefas preditivas

- Tarefas que precisam de um modelo capaz de predizer o rótulo (atributo alvo) de seus exemplos
 - o A partir do valor de cada um dos atributo preditivos do exemplo
 - o Modelo preditivo
- Para a induzir o modelo pode ser usado um algoritmo de aprendizado de máquina
 - Algoritmo ensina (treina) o modelo a desempenhar bem sua tarefa por meio de um processo de aprendizado
 - Para isso, usa um conjunto de dados de treinamento
 - Um outro conjunto de dados, conjunto de dados de teste, avalia o quão bem o modelo aprendeu a realizar a tarefa

- Objetivo: aprender uma função capaz de associar a descrição de um exemplo a um valor real
 - Aproximação de função
- Exemplos:
 - Prever valor de mercado de um imóvel
 - o Prever o lucro de um empréstimo bancário
 - o Prever tempo de internação de um paciente
 - o Prever que nota alguém vai tirar em uma prova

- Imobiliária vendenada
 - Um corretor é o especialista em dar preços
 - Já vendeu várias casas
 - o Usa uma ideia simples para estimar valor de uma casa:
 - Preço é igual a 10.000 vezes o número de minutos que demora para percorrer toda a casa
 - Outro corretor acha que pode estimar parecidos (ou melhor) o valor usando área construída

Aproximação de função

- O vendedor se saiu tão melhor na estimativa, que uma imobiliária maior ofereceu um emprego para ele
 - o Ganhando muito mais, é claro
 - Como o uso de uma função linear gerou boas previsões, ele nem se preocupou em procurar outra função

- Objetivo: aprender função que associa descrição de um objeto a sua classe
 - o Fronteira de decisão
- Exemplos:
 - o Definir a função de uma proteína
 - o Diagnosticar um paciente como tendo ou não uma determinada doença
 - o Decidir se um sinistro foi fraudulento

- Posto médico Daquiproceu
 - o Tem um arquivo com o histórico de vários atendimentos e diagnósticos
 - o Um paciente, ao sentir alguns sintomas, vai ao posto para uma consulta médica
 - o O único médico, faltou
 - Mas um aluno de medicina, estagiário, pode anotar os sintomas
 - Será que o estagiário fazer um bom pré-diagnóstico?

- Sintomas coletados pelo estagiário:
 - Temperatura

• Forma mais simples de resolver

Forma mais simples de resolver

Função estimada: diagnóstico = f(temperatura)

Se temperatura $> \theta$

Então doente Senão saudável

- Basta encontrar um valor (limiar) de temperatura que separa
 - Doentes
 - Saudáveis
- Mas todo problema de classificação é tão simples assim?
 - Uso apenas da temperatura gera um bom modelo preditivo?

Supor a inclusão de outros pacientes

• Alternativa: considerar outros sintomas para o diagnóstico

- Enfermeira decide coletar outro sintoma:
 - Taxa de batimentos cardíacos
- Agora, são coletados do paciente:
 - Taxa de batimentos cardíacos
 - Temperatura

Incluindo taxa de batimentos cardíacos

SaudávelDoente

Função linear permite um bom diagnóstico

Saudável

Doente

Nova função: Se a.t + b > 0 Então doente Senão saudável

- Basta encontrar uma função linear que separa pacientes doentes de saudáveis
 - o Inclinação da reta e ponto onde cruza o eixo da ordenada
- Espaço de pacientes
 - Ordenada: taxa de batimentos cardíacos
 - Abscissa: temperatura
- Mas toda tarefa de classificação é simples assim?

• Supor que precisava incluir dados de outros pacientes

SaudávelDoente

• Função linear agora não permite um bom diagnóstico

Função não linear permite um melhor diagnóstico

SaudávelDoente

Nova função: Mais complexa

Supor a inclusão de mais pacientes

Saudável

Doente

Nova função:

Muito mais complexa

Pode apresentar overfitting

Classificação vs regressão

Continua no próximo video e conjunto de slídes

Aula 3: Tarefas de aprendizado (parte 2)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tarefas descritivas

- Também buscam por modelos em um processo de treinamento
 - Descrevem ou sumarizam dados de uma tarefa
 - o Treinamento utiliza todo o conjunto de dados
 - Ex.: Agrupamento de dados
- Algumas tarefas descritivas não possuem uma fase de treinamento
 - Ex.: Tarefas de sumarização e de associação de itens frequentes

Agrupamento (Clustering)

- Objetivo: organizar objetos n\u00e3o rotulados em grupos (clusters)
 - De acordo com uma medida de proximidade entre objetos
- Não existe conhecimento anterior sobre:
 - Número de grupos (maioria das vezes)
 - Significado dos grupos (pode ter vários)

Agrupamento

- Colégio Nãovaidar
 - o Tem um grande número de alunos
 - o Gostaria que eles formassem grupos que possuem interesses parecidos
 - Só sabe duas coisas de cada aluno
 - Quantos livros leu no ano passado
 - Quantas vezes foi para uma festa open bar no ano passado
 - É possível sugerir bons grupos?

Agrupamento

Comparação de tarefas

Sumarização

- Objetivo: encontrar descrição simples e resumida para um conjunto de dados
- Frequentemente utilizada para:
 - Exploração interativa de dados
 - Geração automática de relatórios
 - Exemplo:
 - Definir perfis de pacientes com comorbidade

Sumarização

Escolaridade	Pressão alta	Sexo	Idade	Comorbidade
Médio	Sim	М	34	Não
Superior	Não	F	40	Não
Superior	Não	F	31	Não
Fundamental	Sim	F	18	Não
Médio	Não	М	76	Sim
Superior	Não	F	35	Não
Fundamental	Sim	М	20	Não
Superior	Não	М	76	Sim
Fundamental	Não	М	43	Não
Médio	Não	F	27	Sim

Sumarização

Escolaridade	Pressão alta	Sexo	Idade	Comorbidade
Médio	Sim	М	34	Não
Superior	Não	F	40	Não
Superior	Não	F	31	Não
Fundamental	Sim	F	18	Não
Médio	Não	М	76	Sim
Superior	Não	F	35	Não
Fundamental	Sim	М	20	Não
Superior	Não	М	76	Sim
Fundamental	Não	М	43	Não
Médio	Não	F	27	Sim

Escolaridade mais comum: Superior Frequência de comorbidade: 30%

Idade média: 40

Igualdade de sexo: S

Menor idade: 18

- Frequent itemsets
- Objetivo: dado um conjunto de itens e uma base de dados de transações
 - Encontrar conjunto de regras que, nas várias transações realizadas, associem a presença de um item à presença de outros itens
 - Conjunto de regras de associação
- Exemplo:
 - Procurar por itens que s\(\tilde{a}\) o frequentemente comprados juntos em um supermercado
 - Problema das cestas de compras

- Problema das cestas de compras
 - Conjunto de transações, em que cada transação é uma compra feita em um dado supermercado

Transação	Itens comprados
1	pão, queijo, manteiga, massa
2	pão, geleia, suco
3	queijo, arroz, massa
4	queijo, vinho
5	massa, queijo, pão

	Itemset:	uma	coleção	de um	OU	mais itens
_	100111000.	GIIIG	COICQUO			111015 100115

	\sim 1		1 1	/		1 1	• • • • • • •
\circ	Quando	DOSSUL	k itens	ech	amado	de k	-itemset
_	2441140	P 0 0 0 0 1	1 (1 () 1 ()	0 011	9111999	01011	100111000

0	Ex.:	{pão,	geleia,	suco}	éum	3-itemset
	_,	(5 ,			

Transação	Itens comprados
1	pão, queijo, manteiga, massa
2	pão, geleia, suco
3	queijo, arroz, massa
4	queijo, vinho
5	massa, queijo, pão

- Cobertura: a fração das transações em que um itemset aparece
 - Ex.: cobertura {pão, queijo} = 2/5 (aparece em 2 das 5 transações) = 40%
- Itemset frequente: um itemset cuja cobertura é maior ou igual a um dado threshold (limiar)
- Regra de associação: regra em que o antecedente e o consequente são itemsents
 - o Ex.: se compra pão, então compra queijo

- Problema das cestas de compras
 - Conjunto de transações, em que cada transação é uma compra feita em um dado supermercado

Transação	Itens comprados
1	pão, queijo, manteiga, massa
2	pão, geleia, suco
3	queijo, arroz, massa
4	queijo, vinho
5	massa, queijo, pão

66% dos clientes que compraram pão também compraram queijo 75% dos clientes que compraram queijo também compraram massa

Tarefa prescritiva

- Prescreve que entrada é necessária para gerar uma dada saída
 - Contrário do aprendizado preditivo
 - Ao invés de prever o que vai acontecer, sugerir o que fazer para que algo aconteça
 - Exemplo
 - Controle de robôs
 - Gera entrada de controle para que um sistema siga uma trajetória especificada por um modelo de referência
 - Controle de processos químicos

Alchemist

- Desenvolvido em parceria com o departamento de Engenharia de Materiais da UFSCar
 - o Para criar vidros novos, com uma ou mais propriedades
 - Pode prever que combinação de elementos químicos (que átomos e em que quantidade) pode gerar um vidro com uma dada propriedade
 - o Experimentos iniciais: criar vidros com um dado valor de Tg
 - Relacionado a temperatura em que um composto químico se torna um vidro

Alchemist

Fim da apresentação

