

Checkmate by learning: A modular Reinforcement Learning approach to chess

Enzo Pinchon, Yann Baglin-Bunod, Luis Wiedmann, Shashwat Sharma, Mathieu Antonopoulos

Environment

Enzo 10:00

Enzo 10:00

Frontend/Backend Architecture

Backend

- Game Logic Engine: Core chess implementation in backend/src/chess handling rules, moves and state management
- Ai model architecture: modular design where agents can inherit from the base engine class
 - We have diverse AI Implementations using techniques from simple heuristics to advanced algorithms
- Communication Layer: socket-based server to interact with frontend

Engine & DeepEngine

Inheritance of engines – Modular framework to implement engine and deep engines.

```
with model | generative_head | with_prints | auto_save as env:
    plot_data = env.train(
        epochs=epochs,
        batch_size=batch_size,
        loader=ld_games | ld_puzzles
)
    env.test(loader=ld_games | ld_puzzles)
    env.plot(plot_data)
```

Frontend Interface

- Frontend allows interactive play and AI benchmarking.
- Supports human vs. Al, Al vs. Al, and human vs. human.
- Visual representation of moves, evaluations, and game states.

Models

Model Overview

- Greedy AI
- MCTS AI (Monte Carlo Tree Search)
- Random Al
- Score CNN
- Stockfish AI (Baseline engine for comparison)
- Transformer AI
- AlphaBetaSearch

Greedy / Greedy Exploration

- Optimized Greedy AI that plays as strongly as possible with a single-move evaluation.
- It uses move selection based on piece values (MVV-LVA principle) and positional advantages.

• Strengths:

- Fast decision-making (no deep search).
- Simple evaluation based on material and position.

Limitations:

- Fails in long-term strategy.
- Vulnerable to tactical traps.

MCTS

- Implemented some heuristics and optimizations that guide the search more effectively.
- It uses move selection based on piece values (MVV-LVA principle) and positional advantages .
- Improved evaluation function, weighted random selection explore/exploit.

Alpha Beta search

- Implemented Alpha-Beta pruning with iterative deepening, inspired by SunFish and Stockfish engines.
- Enhanced pruning efficiency using piece-square tables, move ordering, and time-limited search.
- Evaluation based on material balance, piece mobility, and king safety, without neural networks.

Deep Networks - Playing

- ChessEmbedding: converts board positions into a highdimensional latent space.
- GenerativeHead: generates board reconstructions.
- 3) BoardEvaluator: outputs a probability distribution for game outcomes.

Implemented with both a CNN and a Transformer

Chess Embedding

One-hot to Latent space

GenerativeHead

Ranking list of best moves

BoardEvaluator:

White: 78% Black: 22%

Score CNN

- CNN-based evaluation:
 - Captures spatial patterns in board positions.
 - Predicts win probability from a given state.

- Uses convolutional layers with CBAM & SE attention to extract chessboard patterns and enhance feature importance.
 - Incorporates heatmaps to highlight critical board areas for evaluation and move generation.
 - Less effective at long-term planning than transformers but faster and more efficient for local position analysis

CNN training without attention

Training board evaluation head

CNN training without attention

Training generation head

CNN training with CBAM attention

Training generation head

CNN training with CBAM attention

Training board evaluation head

Transformer Al

- Transformer-based evaluation:
 - Uses self-attention to evaluate chess positions.
 - Captures long-range dependencies between pieces.
 - Requires large training data & high computation.
- Architecture: Processes 8×8×13 board state through a Chess Transformer Encoder (piece + positional embeddings, CNN for local features, transformer blocks for global context).

Transformer training

Training generation head

Transformer training

Training board evaluation head

Conclusion

Modular Framework

Enabled rapid experimentation and direct comparison of diverse chessplaying methods.

Transformer Strengths

Transformer models effectively leveraged attention mechanisms for global positional understanding.

Heuristic Efficiency

Stockfish and Greedy AI excelled due to efficient search strategies and handcrafted evaluations.

CNN Limitations

CNN approaches faced generalization challenges related to spatial invariance and sequential dependencies.