What is claimed is:

1

2

3

4

5

6

7

8

9

1	1. An apparatus for manufacturing a semiconductor device using
2	plasma, comprising:
3	a chamber having a plasma generating region and a plasma
4	processing region for performing a manufacturing process on the
5	semiconductor device under a plasma atmosphere;
6	a plasma generating means adjacent the plasma generating region;
7	and
8	a plasma concentrating means for reducing the size of the plasma
9	processing region near the semiconductor device to be processed compared
0	to the size of a plasma generating region.

2. The apparatus as claimed in claim 1, wherein the plasma concentrating means comprises:

an electrode having a first length on which the semiconductor device to be processed is positioned;

an insulating plate having a second length longer than the first length and facing the electrode; and

a confinement layer contacting the edge of the insulating plate, forming an acute angle to a virtual plane connecting opposing ends of the insulating plate, and extending toward an edge of the first electrode.

- 5. The apparatus as claimed in claim 2, wherein the insulating plate is a circular plate having a predetermined diameter, and the second length is the diameter of the insulating plate.
- 6. The apparatus as claimed in claim 1, wherein the plasma concentrating means comprises:

an electrode having a first length;

1

2

3

1

2

3

4

5

6

7

an insulating plate having a dome shape, positioned to face the electrode and including a first part having a first radius of curvature and a second part having a second radius of curvature which is smaller than the first radius of curvature; and

a confinement layer connected to the second part of the insulating

10 and 15% of the third length.

3

1	12. The apparatus as claimed in claim 10, wherein the second	
2	length is approximately 420mm and the third length is approximately	
3	300mm.	
1	13. The apparatus as claimed in claim 12, wherein the electrode	
2	has a diameter of approximately 360mm.	
1	14. The apparatus as claimed in claim 2, wherein the acute angle	
2	is between 45 and 89 degrees.	
1	15. The apparatus as claimed in claim 2, wherein the confinement	
2	layer is formed of a sidewall of the chamber.	
1	16. The apparatus as claimed in claim 1, wherein the plasma	
2	generating means is installed outside of the chamber to generate plasma	
3	that is introduced into the plasma generating region of the chamber.	
1	17. The apparatus as claimed in claim 16, wherein the plasma	
2	generating means comprises a plurality of induction coils mounted on the	
3	chamber and a first power supply connected to the plurality of induction coil	s.

1	18. The apparatus as claimed in claim 17, wherein the plasma
2	generating means comprises a second power supply connected to an
3	electrode on which the semiconductor device is positioned.
1	19. An apparatus for increasing plasma density at an edge of a
2	semiconductor device during a plasma-etch manufacturing process,
3	comprising:
4	a first chamber within which a plasma is generated, and
5	a second chamber within which the semiconductor device is
6	positioned for plasma-etch manufacturing process,
7	the second chamber having a smaller cross-sectional area than the
8	first chamber.
1	20. The apparatus as claimed in claim 19, further comprising a
2	plurality of induction coils for generating the plasma in the first chamber, and

an electrode for attracting the plasma into the second chamber.

3