Data Mining: Classification Ensemble Methods

Laura Brown

Some slides adapted from P. Smyth; A. Moore; D. Klein; R. Tibshirani Han, Kamber, & Pei; Tan, Steinbach, & Kumar; L. Hannah; J. Taylor and L. Kaebling

Basic Ensembles

- Build different models on data
 - E.g., build same model multiple times with different random seeds or different hyperparameters
- Average/Majority of model results
 - Soft voting: averaging the predicted probabilities and take the arg max
 - Hard voting: use each model's prediction and select most commonly predicted

Ensemble Methods

Ensemble Learning

- Select a multitude of hypotheses to make predictions and combine their results
 - Use a number of different learners
 - Use the same learner with different hyperparameters
- If the errors are independent (or approaching independence), then the different hypotheses are complementary
- Combinations are most likely to be right than any individual hypothesis

Why Ensemble Methods Work?

- The simple models that go into the ensemble are easy to learn
 - But, they have a limited hypothesis space
- By combining (averaging) many different simple models, the models can fit the data well and have a large hypothesis space

Example: Ensemble Method

Consider Linear Classifiers: divide space with a hyperplane

- No single hyperplane perfectly separate the two classes
- How can they be combined?

Example: Ensemble Method

Consider Linear Classifiers: divide space with a hyperplane

- No single hyperplane perfectly separate the two classes
- How can they be combined?

Example: Ensemble Method

- Combine by assigning majority labels
- Results in non-linear surface

Ensemble Methods and Trees

Kyphosis data:

Trees

- Flexible models work for both regression and classification
- Tend to fit pretty well, but do not always have best predictive error
- Trees are unstable

Ensemble Methods and Trees

- Instability
 - Small changes in data (or fitting method)
 produce big changes in outcome
 - This is good for ensembles!
 Diverse results

Types of Ensemble Learning

- Model Averaging flavors
 - Fully Bayesian: average over uncertainty in parameters and models
 - "empirical Bayesian": learn weights over multiple models
 - e.g., stacking and bagging
 - Build multiple models in a systematic way and combine them
 - VotingClassifier
 - Bagging
 - Random Forests
 - Stacking / Ensemble
 - Boosting

Voting Classifier

- Simplest Approach
- Learn multiple models or models with different hyperparameters on same data set
- Often better to use models that are different from each other

Bagging: Bootstrap Aggregation

Training:

- given a data set D with n tuples, at each iteration i, a training data set D_i of n tuples is sampled with replacement from D (bootstrap)
- A classifier model M_i is learned for each D_i
- Classification: classify unknown sample x
 - Each classifier M_i returns its prediction
 - The bagged classifier M* counts/averages the votes and assigns the class to x

Performance

 Often better than single classifier on data D, but loses interpretability of model

Example: Simulated Data

• From ESL (8.7.1), n=30 training data points, *p*=5 features, and 2 classes.

Example: Simulated Data

Example: Breiman's Bagging

 From Breiman's paper: compare misclassification error of tree and that of bagging result

Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.1	19.3	34%
heart	4.9	2.8	43%
breast cancer	5.9	3.7	37%
ionosphere	11.2	7.9	29%
diabetes	25.3	23.9	6%
glass	30.4	23.6	22%
soybean	8.6	6.8	21%

Bagging

- Pros:
 - Easy to implement
 - Works better than model on their own
 - Very fast and parallelizable

- Cons:
 - May not work as well as Boosting
 - Works best with high variance, low bias, low correlation estimators

Bagging

- Ensembles tend to work best with "not too complicated" hypotheses
- Why?
 - Simpler models are often less correlated
 - Cover a larger part of the hypothesis space

 Lets work again with trees, but try to decorrelate them

Random Forests

- Why de-correlate trees?
 - If inputs are the same, tree generation will produce the same branching path
 - But small changes in inputs, can lead to large changes in output
 - Force trees to split on different attributes

 Randomly select a subset of attributes that it can split on

Random Forests

- Grow each tree on independent bootstrap sample
- At each node:
 - Randomly select m variables out of all p (independently for each node)
 - Find the best split of selected m variables
- Grow each tree to maximum depth
- Vote / average the trees to get predictions

Hyperparameters for RFs

- Main hyperparameter: max_features
 - Number of features for each split
 - Sqrt(p) is common for classification
 - ~p for regression
- Number of estimators
 - More is better
- Pre-pruning can help save memory
 - Max_depth, max_leaf_nodes, min_samples_split, etc.

Stacked Generalization - Stacking

- Combine models in a different way (metalearners)
 - combine learners of different types
- Idea
 - split training data into two sets
 - train several learners on first part
 - test these learners on second part
 - use the test predictions as inputs and target output to train a higher level of learner

Strong vs. Weak Learners

- So far, strategy has been:
 - gather a bunch of data
 - think hard, then make a single, large, complicated predictor
 - test the predictor on data

 What if we wanted to use a bunch of simple predictors instead, is there a principled way to do this?

Strong vs. Weak Learners

- A strong learner is a method that can learn a decision rule arbitrarily well
- A weak learner is a simple method that does better than guessing, but cannot learn a decision rule arbitrarily well.
- Example: trying to decide whether email is spam
 - Strong learner: method that uses words, syntax, etc.
 as features, and fits a high-accuracy decision rule
 - Weak learner: use simple rules, if phrase "deal available" is in email, then predict is spam

Boosting

- Powerful technique originally designed for classification
 - extended to regression
- Basic Idea:
 - use a "weak" classifier (accuracy only slightly better than random)
 - create a series of such classifiers where the training data that was mis-classified on the previous iteration is given additional weight
 - combine successive models by voting to create a final model
- Example: Adaptive Boosting (AdaBoost)

Boosting

- Learning over weighted training set
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy

Boosting

- Difference between bagging and boosting
 - In boosting fit model to the entire training set, but adaptively weight the samples

ESL Fig 10.1 27

Training Sample $G_1(x)$

AdaBoost (Freund and Schapire, 1997)

- Given data set, (x₁, y₁), ..., (x_n, y_n)
- W(x) is a distribution of weights over the n training examples
- Initially, set uniform weight distribution $w_i = 1/n$
- For each iteration, k
 - find model (hypothesis) $H_k(x)$ with min. error e_h using weights $W_k(x)$
 - compute α_k $\alpha_k = \frac{1}{2} \ln \frac{1 e_k}{e_k}$
 - Update weights
 - correctly labeled samples; decrease wt $W_{k+1} = W_k * \exp(-\alpha_k)$
 - incorrectly labeled samples; increase wt $W_{k+1} = W_k * \exp(\alpha_k)$
- Final Model

$$H_{final}(x) = sign(\sum \alpha_k H_k(x))$$

AdaBoost

- Why consider using AdaBoost?
 - No tunable parameters
 - Works with any weak learner
 - Computational feasible
 - Tends to avoid overfitting

- Initial Training data
- All weights equal, for each sample

 h_1

$$e_1 = 0.3$$

 $\alpha_1 = 0.42$

$$e_{1} = \sum_{incorrect} w(incorrect) = 0.3$$

$$\alpha_{1} = \frac{1}{2} \ln \left(\frac{1 - e_{1}}{e_{1}} \right) = \frac{1}{2} \ln \left(\frac{0.7}{0.3} \right) = 0.42$$

$$w_{corr}' = C_{N} w_{corr} e^{-\alpha_{1}} = (1.091) 0.1 (0.6546) = 0.0714$$

$$w_{incorr}' = C_{N} w_{incorr} e^{\alpha_{1}} = (1.091) 0.1 (1.5275) = 0.1667$$

$$C_{N} = 1/\sum_{N} w' = 1.091$$

$$e_2 = 0.21$$

 $\alpha_2 = 0.65$

$$e_{2} = \sum_{incorrect} w(incorrect) = 0.21$$

$$\alpha_{2} = \frac{1}{2} \ln \left(\frac{1 - e_{1}}{e_{1}} \right) = \frac{1}{2} \ln \left(\frac{0.79}{0.21} \right) = 0.65$$

$$w_{corr}' = C_{N} w_{corr} e^{-\alpha_{2}}$$

$$w_{incorr}' = C_{N} w_{incorr} e^{\alpha_{2}}$$

$$C_{N} = 1/\sum_{N} w'$$

$$e_3 = 0.14$$

 $\alpha_3 = 0.92$

$$\alpha_3 = 0.92$$

Final Model (Hypothesis):

Example: AdaBoost Mushroom

- Mushroom data set used
- Initial weights = 1/12 = 0.0833

Pattern	Size	Color	OnPizza	Edible
S	L	Y	Y	No
S	L	N	Y	Yes
S	L	N	N	Yes
S	S	Y	N	No
S	S	N	Y	Yes
S	S	N	N	No
N	L	Y	N	No
N	L	N	Y	Yes
N	L	N	N	Yes
N	S	Y	Y	No
N	S	N	Y	No
N	S	N	N	No
				II

Boosting on Features

Boosting on Features

- Compute Weights
- Decision stump is on Color:
 - Yellow = not edible, not yellow = edible

$$e_1 = \sum w(incorrect) = 1/12 + 1/12 + 1/12 = 1/4$$

 $\alpha_1 = \frac{1}{2} \ln \frac{3}{1} = 0.55$

$$w(correct) = w(incorrect) = 1/12 = 0.0833$$

 $w'(correct) = 0.0555$
 $w'(incorrect) = 0.1666$

Example: Next Iteration

Weighted data

Pattern	Size	Color	OnPizza	Edible	
S	L	Y	Y	No	.0555
S	L	N	Y	Yes	.0555
S	L	N	N	Yes	.0555
S	S	Y	N	No	.0555
S	S	N	Y	Yes	.0555
S	S	N	N	No	.1666
N	L	Y	N	No	.0555
N	L	N	Y	Yes	.0555
N	L	N	N	Yes	.0555
N	S	Y	Y	No	.0555
N	S	N	Y	No	.1666
N	S	N	N	No	.1666
				II	

Boosting on Features (2)

Boosting on Features (2)

- Compute Weights
- Decision stump is for size
 - Large = Edible, not large = not edible

$$e_2 = \sum w(incorrect) = (2*0.0555) + (1*0.0555) = 0.1665$$

$$\alpha_2 = \frac{1}{2} \ln(\frac{0.8335}{0.1665}) = 0.80$$

Example: Boosting

• ESL p. 339, data with *n*=1000 points

 A single stump produces a misclassification rate of 45.8%

 With boosting with 400 iterations, the misclassification rate is 5.8%

 This also beats the misclassification rate of a single tree – 24.7%

Example: Boosting

