IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application of

Applicant(s) : Faur-Ghenciu et al.

Serial No. : 10/617,146 Filed : July 10, 2003

Title : HIGH ACTIVITY WATER GAS SHIFT CATALYSTS

BASED ON PLATINUM GROUP METALS AND

CERIUM-CONTAINING OXIDES

Docket No. : GMC 0025 PA / 42320.29/GP-302809

Examiner : K. Handal Art Unit : 1797

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

DECLARATION OF ANCA FAUR-GHENCIU, NATHAN E. TRUSTY, MARK R. FEAVIOUR, JESSICA G. REINKINGH, PHILLIP SHADY, AND PAUL, J. ANDERSEN UNDER 37 C.F.R. 1.131

Anca Faur-Ghenciu, Nathan E. Trusty, Mark R. Feaviour, Jessica G. Reinkingh, Phillip Shady, and Paul J. Andersen, the applicants in the above-identified patent application, declare as follows:

- We are the inventors of claims 1-61 of the above-identified patent application and inventors of the subject matter described and claimed therein.
- Prior to May 9, 2001, we reduced the present invention to practice as evidenced by Exhibits A-D attached hereto.
- 3. Exhibit A is a copy of pages 131, 133, 136, 137, 139-141, 161, and 167 of Laboratory Notebook No. 1875. These pages show the preparation of several catalysts of the present invention. Pages 131, 133, 136, 137, 139, 140, 141, and 161 have adhesive labels attached showing receipt of samples for testing by Johnson Matthey Analytical Services. Exhibit

Serial No. 10/617146 Docket No. GMC 0025 PA/40320.29/GP-302809

A has been redacted to delete dates and other proprietary information.

- 4. Exhibit B is a copy of an email from Anca Ghenciu to Stephen Bransfield and Nathan Trusty, with a cc to Coral Isikci. There is an attachment showing the Powder Catalyst List and Test Procedure. The list shows the Catalyst ID, which corresponds to the page number from the laboratory notebook, the catalyst composition, and the FPR number. The FPR number is assigned when the sample is tested. Exhibit B has been redacted to delete dates and other proprietary information.
- 5. Exhibit C is a copy of an email from Anca Ghenciu to Stephen Bransfield, with a cc to Sailesh Mullapudi and Nathan Trusty. There is an attachment showing an updated Powder Catalyst List and Test Procedure with the Catalyst ID, the catalyst composition, and the FPR number. Exhibit C has been redacted to delete dates and other proprietary information.
- 6. Exhibit D is a copy of an email from Anca Ghenciu to Stephen Bransfield and Nathan Trusty. Two attachments show the Powder Catalyst List and Test Procedure with the Catalyst ID, the catalyst composition, and the FPR number. There are also attachments of graphs showing the test results for various samples. Exhibit D has been redacted to delete dates and other proprietary information.
- Exhibit E shows the correlation between the Catalyst ID, the FPR number. and the catalyst compositions shown in Exhibits A-D.
- Each of the dates deleted from Exhibits A-D is prior to May 9, 2001. All work
 relating to the conception and reduction to practice of this invention was carried out in a WTO
 country.

Serial No. 10/617146

Docket No. GMC 0025 PA/40320.29/GP-302809

Date: Ward 4, 2008.	Hawy Lenein
	Anca Faur-Ghenciu
Date:	
	Nathan E. Trusty
Date:	
	Mark. R. Feaviour
Date:	
	Jessica G. Reinkingh
Date:	
	Phillip Shady
Date:	
	Paul I. Andersen

note:

Serial No. 10/617146 Docket No. GMC 0025 PA/40320.29/GP-302809

Date.	Anca Faur-Ghenciu
Date: 3-4-08	Matham E. Trusty Naman B. Trusty
Date:	Mark. R. Feaviour
Date:	Jessica G. Reinkingh
Date:	Phillip Shady
Date:	Paul J. Andersen

Serial No. 10/617146 Docket No. GMC 0025 PA/40320.29/GP-302809

Date:	
	Anca Faur-Ghenciu
Date:	Nathan E. Trusty
Date: 3/3/08	Mark R. Feaviour
Date:	Jessica G. Reinkingh
Date:	Phillip Shady
Date:	Paul I Andersen

Serial No. 10/617146 Docket No. GMC 0025 PA/40320.29/GP-302809

Date:	
	Anca Faur-Ghenciu
Date:	Yether T. Wester
	Nathan E. Trusty
Date:	Mark R. Feaviour
Date: March 8, 2008	Jeming Jestica G. Reinting
	Jessica G. Reinkingir
Date:	
	Phillip Shady
Date:	Paul J. Andersen
	I am J. Philippidell

DØ4

Serial No. 10/617146

Docket No. GMC 0025 PA/40320.29/GP-302809

Date:	
	Anca Faur-Ghenciu
Date:	
···	Nathan E. Trusty
Date:	
	Mark. R. Feaviour
Date:	
	Jessica G. Reinkingh
Date: March 4, 2008	Phile State
	Phillip Shady
Date:	
	Paul J. Andersen

Serial No. 10/617146 Docket No. GMC 0025 PA/40320.29/GP-302809

Date:	
	Anca Faur-Ghenciu
Date:	
• "	Nathan E. Trusty
Date:	
	Mark. R. Feaviour
Date:	
	Jessica G. Reinkingh
Date:	
Date: 3/4/2008	Phillip Shady A. Wolliss
	Paul J. Andersen

EXHIBIT A

		Dan 1757-136	-1
136		theps.	ID:
Tw. (martion		1757.
	16219101		36.
1. 1. d. late because of	eleberation and		ALSIN .
<i>d</i> :	18182DI	17.76ame); 405	
	Take	190 m 40g cf	
/ 115, 151	643+X). 01 = X	TOTAL SE
409101		17.76-1.89	Sub Id:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04g=xp	4	
	*17 Xpd=4	04g/,15079= 2.68g Pd as	Withati
O Mix	Pd Netrata	WOI (17.69g OI Brien	
to 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		twt=40.15g
6			1700.77.11.9
		word dry spots.	
3 Place	d Wet C	take in dry oven overnigh 15:00Am.	#
100	1 600 m	DIGIO IN FIRMON NUMBER (D)	Soc 2hc
' dala h	LHS EMPO	reant to Break up cake	prior to Firing.
roje: ,	•		N5-T
			11. (mil)
		A Changin	77964
	From: To:	Anca Ghenciu Trusty, Nathan	B
remarkation	Date: Subject:	Impregnation	5 filows Powder
The Paris	Nathan,	the state of the s	1 1 1 1 VIII
	30-50 g of ea I would make	ach, depending on how much powder we have. a them by co-impregnation, but successive impreg is	
	1 1%Pd/La2	O3-CeO2 %Pt/La2O3-CeO2	-rtingsupp
	3 1%Pt-0.5%	%Cu/La2O3-CeO2 %Cu/La2O3-CeO2 %Cs/La2O3-CeO2	2
	4,170,20.07		Wil

Work continued from Page · Latalyot ID. 1757-137-2 L190Pd-590 Pt/: 5 Pd: Pt: Done as Co-PTMpregnation - 39. Teg Tot Alley 1) Take 40g of . .. and Pla to in to contained E W/ IW. being 17.76ml total Volume in Extens
see I. W (on dition on 1757-136 Xpd= .404g Pd/.15074g/g = 2.68g Fd as Nitrate 1p+2.202g Pt/.14933g/s= 1.352g Pt as Nitrate 15 Pt as Pt (Wo3)2 Pot valume of PGM= 2.75 ml-17.76ml TELON Int-718 66666 001 Pot DI Meded = 15.00m Q. 1 Add OI of 15me to PGM 50/6+10m -[mixwell] oln to 1 Luntil Compl) make such (3) Take there are No (lumps in Seturated Mixture.

8 Place In draing over @ 125°C 8.15am

10 In B. Over @ 10.15 Am. 2 W & 500°C & Brk Cake of

10 firing Using a spatia Prof lo firing using a spatia-US IN House Dissolved be Her IN Salut-1cm Analytical Services navhu in col Submitter: TRUSTY Logged: ID: 1757-137-2 -Sub Int: Work continued to Page

Pt & nitrate C youthout Using Pt@1% malirial and Place into crucible 10g of @ Xp+= 404g/14933= 2.705g Pt or 1.73me Lot concentration 718 66666 001 144.334/169 8=1.5631 Mix Pt Netrade + OI HZO 10 a total volume of 17.76ml to be N10% Breezo soln. @ Add 16.029 ml of OI HZO 12 Pt (No3) 2 10 Begin addray soln to powder gradually will become hard but some it is saturated make sure all of closings are crushed to avoid any powder from be caralyzed Evenely . flow 1 Mare in drying over of 125°C Por Zhr CD#1757-140-1 @ flace in over @ Ffor 2hr @ 500 Analytical Services

No

TITLE Emprey nation of PROJECT NO. PLQ 190 (5 Q. 5 90 onto BOOK NO. (RP)	141
Work continued from Page Take 400 Pt. Lale from (RP) Let \$5 95 160/98	
* Xpt 2. 404/14833 = 2-705g Pt(NO3)2	-
YLS 7. 2026s / 144.91 CS (NO3) 2 = 029629 W(No2	7
by stir plat until dissolved completely.	
Note Order of Addition The DIT + CS PROPERTY + CSCHOOL Are Placed boaths	
Donze Mixture is thousaidy must add to. Donze Mixture is thousaidy appear to be liquid: Remember whis 14 in excess solu-	Towns of the control
Ø. Drying oven €125°C 2 hr Tim=10:00Am.	
Analytical Services	
Submitter: TRUSTY Lossed: .	
ID: PT:CS 1757-141-1 Sub Id:	int (
3	
SCHMINIC BINDERY PRODUCTIONS CHICAGO 48105 MADE IN USA WORK CONTINUED to Page DATE , DISCLOSED TO ANN UNDERSTOOD BY DATE DATE	

256 Pt/Cs Nitrate 20/0

Work continued from Pag @ Take 1757-159 and Graded material Ento fine founder

@ Take you at 1757-159. (. 206 Pt mly) see Cs Coko le tron on by 160B,

Jake 1/84 Cs Nitrat and Dissolve If in 17.064 DE 3 Dissolve CS(NO3) 2 + DE and Add to Pt.

powder slowly.

Tonce Soln. Is completely added to bound so will Good Homoging Place In drying oven the

(S) fine @ sosquelli.

Cat ID = 1757-161A and Place 2010 Pt By IW.

DW of. 2.2479 = 43 X=62.87

Take 95g and Place 20/6 Pt (NO3) 2 6 Solm to It-

+ Xp+=1.99873/.14399 = 13.469 PHULED)2 = 8.6/ml-62.87 =54.26ml

MIX DI 420 + 96M well

Gradually Mill all Sola @ ALL PGM+DI b is mixed in.

of over snot/Calculation error for ILW Condition.
Placed In Air Draing over Down stails @ 1250

Dried well w Inklimition stilling. B fluce in firing oven @ 125 500° Cert ID=

1757-161B Work continued to Page

Shade Po Work continued from Page	utlers	BOOK NO.	167
Work continued from Page			
Two	1.2 5 8 de	- 308 TV=	14-60+ PGM.
Work continued from Edge The of	1-3/02902	1 or	
Take Bog of	inal.	1 Place 10/6/6 7	Sampt or
N-A=, 303g	114933-22.	029g V+ (NO2)2	or 1.298 me
O Place PtCA	103)2+DI	420 63 A 10	3094
Slowly Mak Doubles	ving Sure all	Fsolu 15 evenly 1	aledon
2 After adding	411 Solu Pl	ale wet Caking in	la digrag
over 60	vernight.	we well Caking in, Powoks will be in	n order
3 Nort Day.	Placed	in oven & 2h	€ 500€
Starting Pine	ASSOLT 351	47 1757-1	67A
1) Take 41. 4g A	1687, Take mo1.PH2	17 oven & 2h 47 1757-16 1757-166A an 70=27-29~4	d Place ESCEX
Xes = 00°	8296/19491	(s(Nbs)2 2 ,1216 91 cs Acf = ,12	7g (s (Nb3)2
O Soo Proced			4
1 1-1	1 7	Buffer CIZXO 150gl	1 1. January
	1+mreds m	DURICI CIENE (SOG)	× .

25

30

1757-167B Work continued to Page

DATÉ

Prior, Patricia

From: Sent: Anca Ghenciu Ighencia.EP.DEVON@matthey.com]

To:

Stephen Bransfield; Nathan Trusty

Cc: Subject:

Coral Isikci Powder tests

Attachments:

RxnTest SCAT-FC F

.doc

RxnTest_SCAT-FC_

Steve, Nathan,

Although it seems odd, I am writing all these messages now (Saturday night) because on Monday morning by the time I get here you will be having many things already achieved and I may be too late.

For the powder reactor, there are four tests I would like to have run before I leave to UK (see Table attached): lines 13, 21, 20, 23, run in this order. You may have already tested line #13, I am not sure since I do not have the data for that. Could you test these on Monday and Tuesday AM? If not, whatever it is possible.

There is no need to repeat 1%Pt/CeO2 (C480-51B, Sonning) (it used to be line #16) for the time being, but if it is possible, after you set-up the GC, I would like to have the following tested using both MS and GC, so that we can validate the GC for the powder reactor:

- Cu-Zn powder
- line #8 (cat 1757-137-2); we had postponed this initially
- line#22 (cat C480-75A)
- repeat line #16 (best to date, 1757-142-12)

All above 45-60 mesh, 1 g cat, 1 g cord, 10 simp total flow, concentrations as before. When you send me the test results, please also copy Nathan form now on, so that we all stay in the loop.

Nathan.

For the above tests, Steve will only need 2 g (1cat+1cord) of 1757-142-12, and also the memorable jar of Cu-Zn and a jar of cordierite, both at 45-60 mesh, so that he can validate the GC with it from time to time.

Thank you very much,

Anca

Powder Catalyst List and Test Procedure, Matrix 3 LT

	Catalyst ID	Catalyst Composition	
		Cu-ZnO commercial (Sud-Chemie)	3FPR95
1	1757-129	MgO-Al2O3(P)/Ni/Fe	3FPR94
2	1757-131-1	1%Pd/75%La2O3-25%CeO2	3FPR96
3	1757-131A2	1%Pd-0.5%Pt/75%La2O3-25%CeO2	3FPR97
4	1757-132-3	1%Pt-0.5%Cu/75%La2O3-25%CeO2	3FPR98
5	1757-133-4	1%Pt-0.5%Cs/75%La2O3-25%CeO2	3FPR99
6	1757-139-2	1%Pt/75%La2O3-25%CeO2	3FPR104
7	1757-136-1	1%Pd/25%La2O3-75%CeO2	3FPR105
8	1757-137-2	1%Pd-0.5%Pt/ 25%La2O3-75%CeO2	27771100
9	1757-138-3	1%Pt-0.5%Cu/ 25%La2O3-75%CeO2	3FPR106
10	1757-141-1	1%Pt-0.5%Cs/ 25%La2O3-75%CeO2	3FPR107
11	1757-140-1	1%Pt/ 25%La2O3-75%CeO2	3FPR108
12	1757-142-12	1%Pt/CeO2 (2)	3FPR109
13	1757-14x-13	1%Pt-0.5%Cu/CeO2	Already
			tested??
14	1757-143-14	1%Pt-0.5%Cs/CeO2	3FPR110
15	1757-144-15	1%Pt-0.5%Cs-0.5%Cu/CeO2	3FPR111
16	1757-142-12	1%Pt/CeO2 (. RERUN)	Re-run
17	C480-82	10%(20%Pd/Fe2O3)/Al2O3	3FPR100
18	C480-74	5%Pd/Fe2O3	3FPR102
19	C480-90A	1%Au/TiO2 (gray)	3FPR103
20	C480-83	1%Au/TiO2 (lilac)	
21	C480-90B	1%Au/1%Co/TiO2 (gray)	
22	C480-75A	1%Au/Fe2O3	
23	C480-75B	5%Au/Fe2O3	
24	C480-71	MoS2/La2O3-Al2O3	3FPR70

Test procedure:

1 g catalyst, 1 g cordierite, each sieved to 45-60 mesh, well mixed. Total flow $1.125\ SLPM$

Inlet mole %: 8%CO, 30%H2O, 10%CO2, 32.5%H2, 1%CH4, 18.5% N2 (balance) Steady state temperatures: **150**, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550°C.

Please save the spent samples in new vials, with the run # on the vial.

Prior, Patricia

From: Anca Ghenciu [ghencia.EP.DEVON@matthey.com]
Sent:

To: Stephen Bransfield

Cc: Sailesh Mullapudi; Nathan Trusty
Subject: updated table

Subject: updated table

Attachments: RxnTest_SCAT-FC_ .doc

RxnTest_SCAT-FC_

" Steve,

I have updated the Table. Nathan will bring more catalysts tomorrow. Thanks,

Anca

EXHIBIT

Powder Catalyst List and Test Procedure, Matrix 4 LT

Catalyst ID	Catalyst Composition	Test Conditions	Test#
C18-7	,	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR122
C480-96A	1%Pt/La-CeOx	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	Repeat of FPR121 FPR123
C480-74		(45-60 mesh, 2g catalyst), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150-500°C	Repeat of FPR120 FPR124
C480-100A		(45-60 mesh, 2 g catalyst), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2.5slpm, 150°-500°C	
C480-100B		(45-60 mesh, 2 g catalyst), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2.5slpm, 150°-500°C	
1757-4- 149-1A		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR126
1757-4- 149-2A	:	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR125
.1757-4- 149-3A	1	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR127
C480-110B		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR128
C480-68A		durability test, (45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150-275°C, 3 ramps	FPR129
C480-110A		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR130
1875-01		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR131
1875-02	;	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR132
1875-03		(45-60 mesh, 1g + 1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4,	FPR133

			1.125 slpm, 150°-500°C	
	1875-04	,	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4,	FPR136
	C480-112A	Sonning reformer (Li-0.5%Rh/.)	1.125 slpm, 150°-500°C (45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR135
	C480-112B	Sonning reformer (Cs,0.5%Rh/)	2 slpm, 150°-500°C (45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR139
	C480-112C	Sonning reformer (Cs,1%Rh/ 1)	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR138
	1757-159		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR140
	1757-161A	.1	(45-60 mesh, 1g+1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR142
		y positive and the second of the second of	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
Calc 400°C, 2 hr.	1875-09		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
	1757-159B	2/2/12/09/2	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR141
	1757-160B	2%Pt.0.2%Cs(1a-Ceo2	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR143
Calc 400°C, 2 hr.	1875-10		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
	1757-162A	the VoRiv Lea CeO2		FPR144_
	1757-160A		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
	1757-161B	·	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
	1757-162B		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	

	1875-05			To test later
	Nathan, please fill in ID		e	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4,
		_		1.125 slpm, 150°-500°C
Calc. 400°C, 2hr.	1875-07	2		To test later
	Nathan		-	(45-60 mesh, 1g +1g cordierite), 8%CO,
			(32.5%H2, 30%H2O, 10%CO2, 1%CH4,
1		,		1.125 slpm, 150°-500°C
	Nathan		4	(45-60 mesh, 1g +1g cordierite), 8%CO,
				32.5%H2, 30%H2O, 10%CO2, 1%CH4,
		1		1.125 slpm, 150°-500°C
	Anca			(45-60 mesh, 1g +1g cordierite), 8%CO.
		N.	1	32.5%H2, 30%H2O, 10%CO2, 1%CH4.
		'	1	1.125 slpm, 150°-500°C
				(45-60 mesh, 1g +1g cordierite), 8%CO,
i				32.5%H2, 30%H2O, 10%CO2, 1%CH4,
				1.125 slpm, 150°-500°C
				(45-60 mesh, 1g +1g cordierite), 8%CO,
				32.5%H2, 30%H2O, 10%CO2, 1%CH4,
				1.125 slpm, 150°-500°C
and a constraint of	Market Calebratic Co. Calebratic			(45-60 mesh, 1g +1g cordierite), 8%CO,
				32.5%H2, 30%H2O, 10%CO2, 1%CH4,
			1	1.125 slpm, 150°-500°C
			-	(45-60 mesh, 1g +1g cordierite), 8%CO.
İ	j			32.5%H2, 30%H2O, 10%CO2, 1%CH4,
			1	1.125 slpm, 150°-500°C
Ī				(45-60 mesh, 1g +1g cordierite), 8%CO.
1			.	32.5%H2, 30%H2O, 10%CO2, 1%CH4,
				1.125 slpm, 150°-500°C
				• -

Prior, Patricia

From:

Anca Ghenciu [ghencia.EP.DEVON@matthev.com]

Sent: To: Subject:

Stephen Bransfield; Nathan Trusty

Updated files from

Attachments:

RxnTest_SCAT-FC . . .doc; RxnCond | Matr4bis.doc: Matr5 LT.doc; FPR153.xls; FPR122 micro-GC template.xls; RxnCond FPR123.xls; FPR124.xls; FPR125.xls; FPR126.xls; FPR127.xls; FPR129.xls; FPR131.xls; FPR132.xls; FPR133.xls; FPR136.xls; FPR140.xls; FPR141.xls; FPR142.xls; FPR143.xls; FPR144.xls; FPR145.xls; FPR146.xls; FPR147.xls; FPR148.xls; FPR149.xls; FPR150.xls; FPR151.xls; FPR152.xls; FPR120_bad.xls; FPR154.xls; FPR155.xls; FPR156.xls; FPR157.xls; FPR158.xls; FPR159.xls; FPR160.xls; FPR161.xls

. Matr4bis...

FPR125 xls (170

KB) FPR143.xls (164

FPR136.xls (234 KB)

KB)

KB)

KB)

FPR146.xls (198

FPR120 bad.xls (161 KB)

FPR160.xls (203

FPR161.xls (202 KB) KB)

Updated files form

Matrix 4 LT (Matrix 5 LT (

1) - current Matrix 4bis LT (Pt/Cu-Zn UCI)

The attached have the correction for methanation (taking into account the CH4 forms from CO). Please replace the old versions with these. You can use any of these (for instance, the template) for future tests. If there is any missing file between FPR120 and FPR161, please let me know. Anca

1

Powder Catalyst List and Test Procedure, Matrix 4 LT

		alyst List and Test Proce	edure, Matrix 4_LT	
	Catalyst	Catalyst	Test Conditions	Test#
	ID	Composition		
	C18-7		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR122
			32.5%H2, 30%H2O, 10%CO2, 1%CH4.	
			1.125 slpm, 150°-500°C	
	C480-96A	1%Pt/La-CeOx	(45-60 mesh, 1g +1g cordierite), 8%CO,	Repeat of
			32.5%H2, 30%H2O, 10%CO2, 1%CH4,	FPR121
			1.125 slpm, 150°-500°C	FPR123
	C480-74		(45-60 mesh, 2g catalyst), 8%CO, 32.5%H2,	Repeat of
			30%H2O, 10%CO2, 1%CH4.	FPR120
			1.125 slpm, 150-500°C	FPR124
SAR:	C480-100A	10 mars 20 17 20	(45-60 mesh, 2 g catalyst), 8%CO, 32.5%H2,	257.02.30
9 14		Starta 3 401 - 18	30%H2O, 10%CO2, 1%CH4.	
4 4 1	Media	A STATE OF THE STA	2.5slpm, 150°-500°C	
1000	C480-100B		(45-60 mesh, 2 g catalyst), 8%CO, 32.5%H2,	
		CAN STATE OF BEING	30%H2O, 10%CO2, 1%CH4.	
advante ter value	1757-4-		2.5slpm, 150°-500°C	10000
	149-1A		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR126
			32.5%H2, 30%H2O, 10%CO2, 1%CH4,	
	1757-4-		1.125 slpm, 150°-500°C	
	149-2A		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR125
	1.0 2.1		32.5%H2, 30%H2O, 10%CO2, 1%CH4,	
	1757-4-		1.125 slpm, 150°-500°C	
	149-3A		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR127
	145-511		32.5%H2, 30%H2O, 10%CO2, 1%CH4,	
	0400 4400		1.125 slpm, 150°-500°C	
	C480-110B		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR128
			32.5%H2, 30%H2O, 10%CO2, 1%CH4,	
			2 slpm, 150°-500°C	
	C480-68A	,	durability test, (45-60 mesh, 1g +1g cordierite),	FPR129
	1		8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4,	
			1.125 slpm, 150-275°C, 3 ramps	
	C480-110A		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR130
			32.5%H2, 30%H2O, 10%CO2, 1%CH4,	
			2 slpm, 150°-500°C	
	1875-01	****	(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR131
			32.5%H2, 30%H2O, 10%CO2, 1%CH4.	
			1.125 slpm, 150°-500°C	
	1875-02		(45-60 mesh, 1g +1g cordierite), 8%CO,	FPR132
			32.5%H2, 30%H2O, 10%CO2, 1%CH4,	~11132
			1.125 slpm, 150°-500°C	
	1875-03		(45-60 mesh, 1g +1g cordierite), 8%CO,	EDD 122
			32.5%H2, 30%H2O, 10%CO2, 1%CH4,	FPR133
			J2.J /0112, JU%HZO, 1U%COZ, 1%CH4.	

			1.125 slpm, 150°-500°C	7
	1875-04		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR136
	C480-112A	Sonning reformer (Li-0.5%Rh/.)	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR135
	C480-112B	Sonning reformer (Cs,0.5%Rh/,	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR139
	C480-112C	Sonning reformer (Cs,1%Rh/.)	(45-60 mesh, 1g+1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 2 slpm, 150°-500°C	FPR138
	1757-159	,	(45-60 mesh, 1g+1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR140
	1757-161A		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR142
	1757-164B	4	(45-60 mesh, 1g+1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
Calc 400°C, 2 hr.	1875-09	×	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR149
	1757-159B	2%Pr4.a.Ce02p A	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR141
	1757-160B	0.2%C\$2%Pt.La-eco2 	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR143
Calc 400°C, 2 hr.	1875-10		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	
	1757-162A	0.5% (Un) La-CeO2		FPR144
	1757-160A		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR145
	1757-161B	2%Pi	(45-60 mesh, 1g+1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR146
	1757-163B	2%Pt/0.29%Cs/	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C	FPR148

	1875-05	1	To test later
	1757-162B		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
Calc. 400°C, 2hr.	1875-07		To test later
	1757-163A	F	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
	Nathan		(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
	Anca	11	(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
			(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
			(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
1			
			(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
			(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C
			(45-60 mesh, 1g +1g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, 1.125 slpm, 150°-500°C

	Catalyst ID	Catalyst Composition	Test Conditions	Test ID
- 1	C480-100A		(45-60 mesh, 2 g catalyst), 8%CO,	
-			32.5%H2, 30%H2O, 10%CO2,	
			1%CH4, bal. N2,	1
			2.5 slpm, 150°-500°C	
	C480-100B		(45-60 mesh, 2 g catalyst), 8%CO.	
			32.5%H2, 30%H2O, 10%CO2.	1
		Į.	1%CH4, bal. N2,	
			2.5 slpm, 150°-500°C	
			(45-60 mesh, 1 g catalyst + 1 g	
Ì			cordierite), 8%CO, 32.5%H2.	ļ
			30%H2O, 10%CO2, 1%CH4, bal, N2,	
			1.125 sipm, 150°-500°C	
7			(45-60 mesh, 1 g catalyst + 1 g	
- 1			cordierite), 8%CO, 32.5%H2,	
-			30%H2O, 10%CO2, 1%CH4, bal. N2,	
- 1			1.125 slpm, 150°-500°C	
+	1875-07	,	(45-60 mesh, 1 g catalyst + 1 g	
- 1	10/3-0/	,		
			cordierite), 8%CO, 32.5%H2,	1
			30%H2O, 10%CO2, 1%CH4, bal. N2,	
+	1757 1601		1.125 slpm, 150°-500°C	
ı	1757-163A		(45-60 mesh, 1 g catalyst + 1 g	FPR151
		_	cordierite), 8%CO, 32.5%H2,	(already
			30%H2O, 10%CO2, 1%CH4, bal. N2,	reported
			1.125 sipm, 150°-500°C	to GM a
				April
4				meeting)
	1757-164A		(45-60 mesh, 1 g catalyst + 1 g	FPR153
-		3	cordierite), 8%CO, 32.5%H2,	
- 1			30%H2O, 10%CO2, 1%CH4, bal. N2,	
_			1.125 slpm, 150°-500°C	
	Prep	**	(45-60 mesh, 1 g catalyst + 1 g	
		(cordierite), 8%CO, 32.5%H2,	
			30%H2O, 10%CO2, 1%CH4, bal. N2,	
\perp			1.125 slpm, 150°-500°C	
	1757-164B	· · · · ·	(45-60 mesh, 1 g catalyst + 1 g	FPR160
		•	cordierite), 8%CO, 32.5%H2,	
			30%H2O, 10%CO2, 1%CH4, bal. N2,	
			1.125 slpm, 150°-500°C	
	Improvement	Joseph Company	and the second	
Ť	1757-166B	(2%Pt-0.2%Cs)/CeO2-ZrO2	(45-60 mesh, 1 g catalyst + 1 g	FPR157
		() (co-impreg, DI???)	cordierite), 8%CO, 32.5%H2,	-120157
1		To be compared with seq.	30%H2O, 10%CO2, 1%CH4, bal. N2,	
		1757-163B	1.125 slpm, 150°-500°C	
_	Ргер	1	(45-60 mesh, 1 g catalyst + 1 g	
	Пер		cordierite), 8%CO, 32.5%H2,	

		1	1.125 slpm, 150°-500°C	
	Improvement			
\$20/4 SX	1757-166A	2%Pt/CeO2-ZrO2 (,) from citric acid To be compared with 1757- 161B	(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2,	FPR156
	1757-167B	0.2%Cs/2%Pt/CeO2-ZrO2 (/ ', citric acid (both Pt and Cs)	1.125 slpm, 150°-500°C (45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	FPR159
	Prep	-	(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	
	Prep		(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	
	Prep		(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	
	Improvement			14
		,	(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	
			(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	
			(45-60 mesh, 1 g catalyst + 1 g cordierite), 8%CO, 32.5%H2, 30%H2O, 10%CO2, 1%CH4, bal. N2, 1.125 slpm, 150°-500°C	
	Improvement		Phil Shady	
				-
	1757-167A 1757-168A			FPR 158 FPR161

	- Car	1		4		
	- Data					1 5 45 10 5 5 5 5 5
	272000					
		California				
CO selective					200	
oxidation						
materials (lit. data) – no						
methanation						
catalyst						
Methanol		. 14				
synthesis (J.			i			
Frost)						
hest Ce-7r						
		•				
with Cu						
(copp) - no						
methanation						
II above						
						_
,						i
		E 83.70	10.00 May	MENONS STORY	A ALCOHOLOGICA	
	SHALE TO STREET O	version of				
100	235 2 F 104000 V	Manager Com	CONTRACTOR OF THE	ALTO HEROT NAMED OF	ar-a-saudrings-of Block	3677.00 A847.00 704.
						i
	~ -	• • • • • • • • • • • • • • • • • • • •				
						1
Ť						+
	•					
1	-					
Т						
	• • • • • • • • • • • • • • • • • • • •					
١,		1				
		. —				
		ARREST OF		阿里拉路		
	catalyst Methanol synthesis (J. Frost) Promotion of best Ce-Zr mixed oxide with Cu (copp) – no methanation If above works,	catalyst Methanol synthesis (J. Frost) Promotion of best Ce-Zr mixed oxide with Cu (copp) – no methanation If above works,	catalyst Methanol synthesis (J. Frost) Promotion of best Ce-Zr mixed oxide with Cu (copp) = no methanation If above works,	catalyst Methanol synthesis (J. Frost) Promotion of best Ce-Zr mixed oxide with Cu (copp) – no methanation If above works,	catalyst Methanol synthesis (J. Frost) Promotion of best Ce-Zr mixed oxide with Cu (copp) = no methanation If above works,	catalyst Methanol synthesis (J. Frost) Promotion of best Ce-Zr mixed oxide with Cu (copp) = no methanation If above works,

Materials to					
be subjected to durability			:		
study (3 T			,		
ramps, new T					
schedule,	-				
very high					
T~600°C)					
- no CH4 in the					
feed	1-				
- high SV	-	ν.			
	1		1		i

Temperature, °C FPR123 1%Pt/La-CeOx (C480-96A) 1g cordierite/1g cat, 45-60 mesh, Total Flow 1.125slpm - - CO Conv% vs. low bed T°C (TC in cat. bed) -CO Conv% vs. Outlet To -CO Conv% vs. Inlet T° CO Equil. Conv% -- CO2 Conv% -CH4 Conv% - H2 Conv% Conversion %_DRY 9.0 4.0 9.0 6.0 4.0 9.0 -0.5

FPR141 2%Pt/La-CeO2 (,

Temperature, °C ___) (1757-160B) 1.0gcat/1.0g cord, 45-60 mesh, 550 200 Total Flow 1.125slpm FPR143 0.2%Cs/2%Pt/La-CeO2 (. CO Conv vs. low bed T°C (TC in cat. bed) -CO Conv vs. Outlet T° -CO Conv vs. Inlet T° CO Equil, Conv -0.6 -- CO2 Conv -CH4 Conv -H2 Conv Frac. Conversion_DRY 6.0 8.0 9.0 Ö 6.4

._) (1757-162A) 1.0gcat/1.0g cord, 45-60 mesh, Total FPR144 0.5%Rh/La-CeO2 (.

9 Temperature, °C :) (1757-161B) 1.0gcat/1.0g cord, 45-60 mesh, Total 550 200 Flow 1.125slpm · · · · CO Conv vs. low bed T°C (TC in cat. bed) FPR146 2%Pt /CeO2-ZrO2 (-CO Conv vs. Outlet T° -CO Conv vs. Inlet T° CO Equil. Conv -CO2 Conv -CH4 Conv -H2 Conv 6.0 8.0 9.0 0.5 0.7 9 4.0 0.5 9

Frac. Conversion_DRY

9 Temperature, °C) (1757-163B) 1.0gcat/1.0g cord, 45-60 mesh, 550 200 450 Total Flow 1.125slpm FPR148 0.2%Cs/2%Pt/CeO2-ZrO2 (· · · · CO Conv vs. low bed T°C (TC in cat. bed) -CO Conv vs. Outlet T° -CO Conv vs. Infet T° CO Equil. Conv -CH4 Conv -CO2 Conv -H2 Conv 6.0 9.0 0.5 . 0.7 9.0 9. 9. 0.7 6 Ö. 6.4 0.5 6.7 Frac. Conversion_DRY

File FPR150.xls - Graph_Conv_DRY_corrCH4
JM Confidential

8 Temperature, °C) (1875-10) 1.0gcat/1.0g cord, 45-60 mesh, 550 200 Total Flow 1.125slpm FPR152 0.2%CsHPA/2%Pt/La-Ce2O3 (· · · · · CO Conv vs. low bed T°C (TC in cat. bed) -CO Conv vs. Outlet T° - CO Conv vs. Inlet T° -CO Equil. Conv -CH4 Conv -CO2 Conv 200 -H2 Conv Frac. Conversion_DRY 6.0 9.8 9.0 4 9.4 Ö. 0.5 9. . 9 0.7

9 · · · · · CO Conv vs. low bed T°C (TC in cat. bed) Temperature, °C) w/citric acid (1757-166A) 1.0gcat/1.0g cord, 45-60 550 -CO Conv vs. Outlet T° - CO Conv vs. Inlet T° -CO Equil. Conv 200 CO2 Conv *-CH4 Conv HT Conv mesh, Total Flow 1.125slpm FPR156 2%Pt/CeO2-ZrO2 (, 6.0 9.0 -0.2 9.4 ٥. 4 9.0 -0.7 9.9

Frac. Conversion_DRY

· · · · · CO Conv vs. low bed T°C (TC in cat. bed)), co imp. DI (1757-166B) 1.0gcat/1.0g cord, -0-CO Conv vs. Outlet T° CO Conv vs. Inlet T -CO Equil. Conv -d-CO2 Conv -CH4 Conv HT Conv 45-60 mesh, Total Flow 1.125slpm FPR157 (2%Pt-0.2%Cs)/CeO2-ZrO2 (Temperature, °C Fraq. Conversion_DRY 8.0 6.0 9.0 8.0 0.5 6.0 ó. 4. -0.5 9.0 6.0 0.7 ٠<u></u>

Catalyst Compositions

La₂O₃/CeO₂

1757-141-1 FPR 107 1%Pt-0.5%Cs/25%La ₂ O ₃ -75%CeO ₂ 1757-140-1 FPR 108 1%Pt/25%La ₂ O ₃ -75%CeO ₂ C480-96A FPR 123 1%Pt/ ½La ₂ O ₃ -95%CeO ₂ 1757-159B FPR 141 2%Pt/9%La ₂ O ₃ -91%CeO ₂ 1757-160B FPR 143 2%Pt/0.2%Cs/9%La ₂ O ₃ -91%CeO ₂ 1757-162-A FPR 144 0.5%Rh/9%La ₂ O ₃ -91%CeO ₂	1757-140-1 C480-96A 1757-159B 1757-160B	FPR 108 FPR 123 FPR 141 FPR 143 FPR 144	1%Pt/ 25%La ₂ O ₃ -75%CeO ₂ 1%Pt/ %La ₂ O ₃ -%CeO ₂ 2%Pt/ 9%La ₂ O ₃ -91%CeO ₂ 2%Pt/0.2%Cs/9%La ₂ O ₃ -91%CeO ₂ 0.5%Rh/9%La ₂ O ₃ -91%CeO ₂	2
FPR 152 0.2%CsHPA/2%Pt/9%La ₂ O ₃ -91%Cet		EDD 152		٦.

CeO₂/ZrO₂

Catalyst ID	Test Number	Catalyst Composition
C480-112A	FPR 135	Li-0.5%Rh/58%CeO ₂ -42%ZrO ₂
C480-112B	FPR 139	Cs.0.5%Rh/58%CeO2-42%ZrO2
C480-112C	FPR 138	Cs,1%Rh/58%CeO2-42%ZrO2
1757-161B	FPR 146	2%Pt/58%CeO2-42%ZrO2
1757-162B	FPR 148	2%Pt/0.2%Cs/58%CeO2-42%ZrO2
1757-163B	FPR 150	2%Pt/0.2%Cs/58%CeO2-42%ZrO2
1757-166A	FPR 156	2%Pt/58%CeO ₂ -42%ZrO ₂
1757-166B	FPR 157	2%Pt/0.2%Cs/58%CeO2-42%ZrO2
1757-167B	FPR 159	2%Pt/0.2%Cs/58%CeO2-42%ZrO2