March 08

Difference between decidable and recognizable

Jeajable: Yes for YES instance, No for NO instance.

reagnizable: Yes for TES instance

Ex. Check whether $P(x) = C_0 x^h + C_1 x^{h-1} + C_2 x^{h-2} + \cdots + C_{n-1} x^i + C_n$ has q_n integral root (solution), i.e. check whether there is an x_0 s.t. $x_0 \in I$

Algorithm (TM):

Check whether xo is a root for xo = 0, +1, -1, +2, -2, +3, -3, ----

Q: Does the algorithm decide the problem?

NO PCX) = x12-5, x=195

Q: Does the algorithm recognize the problem! /language?

Chapter 4 Decidability
- Dea table languages/problems
ADFA = EB, w> B is a DFA that accepts w}
EDFA = { < A > A is a DFA and L(A) = \$
EQDFA = { <a,b> A,B are DFA's and LCA)=LCB)}</a,b>
Thin 4.1 ADFA is decidable.
Proof we present a TMM that decides APFA
M: 1 Simulate the DFA B on input w.
2. If the simulation stops at an accept state, accept. If it stops at a
non-accepting state, reject.
ANFA, AREX // Similar.
Then you EDEA is Jeaidable. If graph problem
proof. TMT:
1 mark the start state of A. Ex 36 ab 029,6
proof. TMT: 1 mark the start state of A. 2 Repeat (until no new state fa, b gets marked) Mark & if P-Q and P is already marked
Mark & if P-12 and P is already marked

3. If no accept state in A is marked, accept; otherwise, reject

ERDFA, how would you proceed?

- Feed all won A and B,

if one of them accepts (the other rejects),

then reject

* But # of w's is infinite!

shaded part — ((=(ANB)U(ANB)

More formally, LCC) = (LCA) (LCB)) U (LCA) (LCB)).

- LCA) = LCB) iff LCC) = p

- Note that, regular languages are closed under U, N, - operations.