Lecture 9: Confidence Intervals

Module 3: part 2

Spring 2025

Logistics

- Solutions of Assessment for Module 1 is available online
- Lab next week about simulations and sampling distributions

2/19

Linear Model Fundamentals

Linear Model Framework:

$$Y_i = b_0 + \sum_j b_j X_{ij} + \varepsilon_i$$

- Key Properties:
 - $E(\hat{b} \mid X) = b$ (Unbiased estimation)
 - For simple linear regression:

$$\mathsf{var}(\hat{b}_1 \mid \mathbf{X}) = rac{\sigma_arepsilon^2}{(n-1)s_{\scriptscriptstyle X}^2}$$

- Variance decreases with:
 - Larger sample size $(n \uparrow)$
 - Lower error variance $(\sigma_{\varepsilon}^2 \downarrow)$
 - More spread out covariates $(s_x^2 \uparrow)$

Understanding Errors and Residuals

Error Variance Estimation:

$$\hat{\sigma}_{\varepsilon}^2 = \frac{1}{n-2} \sum_{i} (y_i - \hat{y}_i)^2$$

Residual Decomposition:

$$y_i - \hat{y}_i = (b_0 - \hat{b}_0) + \sum_j (b_j - \hat{b}_j) x_{ij} + \varepsilon_i$$

- Key Distinctions:
 - Residual: Observable difference $(y_i \hat{y}_i)$
 - Error: Unobservable component (ε_i)

Multiple Linear Regression: Variance Structure

• Full Variance-Covariance Matrix:

$$\mathsf{var}(\mathbf{\hat{b}}\mid X) = \sigma_\varepsilon^2(\mathbf{X}'\mathbf{X})^{-1}$$

Matrix Structure:

$$\begin{bmatrix} \operatorname{var}(\hat{b}_0) & \operatorname{cov}(\hat{b}_0,\hat{b}_1) & \cdots \\ \operatorname{cov}(\hat{b}_0,\hat{b}_1) & \operatorname{var}(\hat{b}_1) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Error Variance Estimation:

$$\hat{\sigma}_{\varepsilon}^2 = \frac{1}{n - (p+1)} RSS(\hat{\mathbf{b}})$$

5/19

Impact of Collinearity

For 2 standardized covariates (mean = 0, variance = 1):

$$\mathbf{X}'\mathbf{X} = egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix}$$

• Resulting variance structure:

$$\operatorname{var}(\hat{\mathbf{b}} \mid X) = \sigma_{\varepsilon}^{2} \begin{bmatrix} \frac{1}{1-\rho^{2}} & \frac{-\rho}{1-\rho^{2}} \\ \frac{-\rho}{1-\rho^{2}} & \frac{1}{1-\rho^{2}} \end{bmatrix}$$

- Key Implications:
 - As $|\rho| \to 1$, variance $\to \infty$
 - Estimates remain unbiased but precision decreases
 - Similar predictions despite different coefficients

Confidence Intervals

Confidence Intervals: A Motivating Example

- Question: Given our observed data, what is a plausible range for a parameter?
- Case Study: House Price Model
 - Model includes interaction between quality and age
 - Estimated age coefficient: $\hat{\beta}_{age} = -0.0046$
 - Key Questions:
 - Could the true coefficient be 0?
 - Could the true coefficient be positive?

Understanding Confidence Intervals

Definition

A confidence interval is a **procedure** that produces intervals which, when applied to **new data**, will contain the true parameter a fixed proportion of the time (e.g., 95

- Critical Distinctions:
 - Correct: "This procedure, when used repeatedly, produces intervals containing the true parameter 95% of the time".
 - Incorrect: "There is a 95% chance that this interval (1.5, 2.6) contains the true parameter".
- Key Insights:
 - Once computed, an interval either contains the parameter or does not.
 - The probability relates to the **procedure**, not to the specific interval.

Analogy

Consider $X \sim N(0, 1)$:

- P(X > 0) = 0.5 before drawing X
- If we observe X = 2.5, P(2.5 > 0) = 1
- The probability applies to the process, not the outcome.

Standardizing Coefficient Estimates

Known Variance Case

When $var(\hat{b}_k)$ is known:

$$rac{\hat{b}_k - b_k}{\sqrt{\mathsf{var}(\hat{b}_k)}} \sim \mathcal{N}(0,1)$$

Estimated Variance Case

When variance is estimated (using standard error):

$$\frac{\hat{b}_k - b_k}{\sqrt{\widehat{\mathsf{var}}(\hat{b}_k)}} \sim T_{n-p-1}$$

Standardizing Coefficient Estimates

- Key Terms:
 - $\widehat{\text{var}}(\hat{b}_k)$ is called the **standard error**
 - n p 1 represents degrees of freedom
 - n = number of observations
 - p = number of predictors
- Important Note:
 - T distribution has heavier tails than Normal
 - ullet As $n o \infty$, T distribution approaches Normal

T distributions

Figure: Comparing T distributions to a normal

T distributions

Figure: Comparing T distributions to a normal

Confidence Interval for single coefficient

If t is drawn from a T_{n-p-1} then we can look up values such that for $0 < \alpha < 1$, we have

$$P(t_{\alpha/2,n-p-1} < t < t_{1-\alpha/2,n-p-1}) = 1 - \alpha$$

Confidence Interval for single coefficient

If t is drawn from a T_{n-p-1} then we can look up values such that for $0 < \alpha < 1$, we have

$$\begin{split} 1 - \alpha &= P\left(t_{\alpha/2, n-p-1} < \frac{\hat{b}_1 - b_1}{\sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}} < t_{1-\alpha/2, n-p-1}\right) \\ &= P\left(t_{\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)} < \hat{b}_1 - b_1 < t_{1-\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}\right) \\ &= P\left(t_{\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)} - \hat{b}_1 < -b_1 < t_{1-\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)} - \hat{b}_1\right) \\ &= P\left(\hat{b}_1 - t_{1-\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)} > b_1 > \hat{b}_1 - t_{1-\alpha/2, n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}\right) \end{split}$$

Understanding Confidence Intervals

General Form

For a single coefficient, the interval is:

$$\left(\hat{b}_1 - t_{\alpha/2,n-p-1}\sqrt{\widehat{\mathsf{var}}(\hat{b}_1)},\hat{b}_1 - t_{\alpha/2,n-p-1}\sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}\right)$$

Simplified Form

Since $t_{\alpha/2, n-p-1} = -t_{1-\alpha/2, n-p-1}$, we can write:

$$\hat{b}_1 \pm t_{1-lpha/2,n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}$$

- Components:
 - **1 Estimate** (\hat{b}_1) : Point estimate of coefficient
 - **4 Multiplier** $(t_{1-\alpha/2})$: Based on confidence level
 - **3 Standard Error** $(\sqrt{\widehat{\text{var}}(\hat{b}_1)})$: Estimated variability

15 / 19

Understanding Confidence Intervals

General Form

For a single coefficient, the interval is:

$$\left(\hat{b}_1 - t_{\alpha/2,n-\rho-1}\sqrt{\widehat{\mathsf{var}}(\hat{b}_1)},\hat{b}_1 - t_{\alpha/2,n-\rho-1}\sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}\right)$$

Simplified Form

Since $t_{\alpha/2,n-p-1} = -t_{1-\alpha/2,n-p-1}$, we can write:

$$\hat{b}_1 \pm t_{1-lpha/2,n-p-1} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}$$

Correct Interpretation

We are $(1 - \alpha)$ % confident that the true parameter lies in this interval.

15 / 19

Practical Exercise: Computing Confidence Intervals

Model Setup

$$Y_i = b_0 + b_1 X_1 + \varepsilon_i, \quad i = 1, ..., 100$$

- Critical Values:
 - 95% CI: $t_{.025,98} = 1.984$
 - 90% CI: $t_{.05,98} = 1.661$
- Tasks:
 - Verify your 95% CI matches the formula:

$$\hat{b}_1 \pm t_{.025,98} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}$$

② Calculate 90% CI using:

$$\hat{b}_1 \pm t_{.05,98} \sqrt{\widehat{\mathsf{var}}(\hat{b}_1)}$$

Remember

A confidence interval is a **procedure** that produces intervals containing the true parameter $(1 - \alpha)\%$ of the time when applied to **new data**.

Confidence Intervals for Conditional Mean

Goal

Estimate plausible values for $E(Y_i \mid X = x) = b_0 + b_1 x$

- Example Interpretation:
 - "We are 95% confident that the average price of a home with 1000 sq ft is between \$L and \$U"
- Formula:

$$\hat{b}_0 + \hat{b}_1 x \pm t_{lpha/2,n-(p+1)} imes \mathsf{SE}$$

Standard Error:

$$SE = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

Key Insights

- SE increases as x moves away from \bar{x}
- SE decreases with larger sample size
- Formula extends to multiple regression (computed by software)
- **Key Assumption**: Errors (ε) are normally distributed

4 -

Module 3: part 2

Questions

- All things equal, what will typically be wider? A 95% confidence interval or a 90% confidence interval?
- All things equal, what will typically be wider? A 95% confidence interval when n = 100 or when n = 500 where n is the number of observations?
- All things equal, what will typically be wider? A 95% confidence interval when p=5 or when p=10 where p is the number of predictors in the model?

18 / 19

Wrap up

- Confidence intervals reflect uncertainty we have in estimating parameters
- Can form confidence interval for regression parameters
- Can form confidence interval for conditional mean parameters
- Can form prediction interval for individual observations