Tema 7: Cloud Computing Cloud Computing y SaaS PaaS e IaaS Aspectos económicos

Sistemas de Información para Internet 3º del Grado de Ingeniería Informática (tres menciones)

> Departamento de Lenguajes y Ciencias de la Computación Escuela Técnica Superior de Ingeniería Informática Universidad de Málaga

Cloud Computing y SaaS

Cloud Computing y SaaS Historia

Cloud Computing recuerda a los Mainframes

Cloud Computing y SaaS SaaS

- SaaS (Software as a Service) hace referencia a la oferta de aplicaciones finales a través de Internet
- Los destinatarios de SaaS son usuarios que no requieren conocimientos informáticos
- Son aplicaciones Web como las que hemos desarrollado durante el curso
- Una ventaja de estas aplicaciones frente a las de escritorio tradicional es que las actualizaciones son recibidas inmediatamente
 - Es posible hacer actualizaciones menores más frecuentemente

Cloud Computing y SaaS SaaS: ejemplos

- Google docs
- Gmail
- Salesforce.com
- eyeOS

Cloud Computing y SaaS Cloud Computing

- Cloud Computing hace referencia a la oferta a través de Internet de servicios de más bajo nivel: plataformas de desarrollo o infraestructura hardware
- Los destinatarios de Cloud Computing son desarrolladores e instituciones que no quieren mantener el equipo informático
- Dentro de Cloud Computing se distinguen dos tipos: PaaS e laaS

Cloud Computing y SaaS Cloud Computing

- Los usuarios de Cloud Computing alquilan una plataforma de ejecución, capacidad de cómputo, capacidad de almacenamiento, ancho de banda de red, etc. a empresas especializadas en la gestión de dichos recursos
- En el pasado cada institución gestionaba y mantenía todo esto
- Con Cloud Computing, las instituciones se olvidan del mantenimiento y lo confían a una empresa externa, pagando solo porque le que necesitan
- La empresa externa está especializada en dicho mantenimiento y puede ofrecer precios competitivos por trabajar con miles de equipos

Cloud Computing y SaaS Cloud Computing

- Es posible encontrar una analogía con la red eléctrica
- A principios del siglo XX las empresas montaban su propia central generadora de energía eléctrica
- A partir de 1930 aproximadamente surgieron empresas especializadas en la generación de energía eléctrica y todas las demás simplemente se conectaban a la red de distribución (grid) y pagaban por la energía consumida
- De la misma forma las empresas proveedores de Cloud Computing pretenden encargarse de la gestión y mantenimiento de la infraestructura TIC a bajo nivel

PaaS e laaS

PaaS e laaS PaaS

- PaaS (Platform αs α Service) hace referencia a la oferta de plataformas de ejecución para las aplicaciones
- El destinatario de estos servicios son los desarrolladores que desean ofrecer una aplicación a través de la Web (SaaS)
- El proveedor cobrará por el volumen de datos transferido, por el espacio de almacenamiento requerido por la aplicación, por el tiempo de ejecución en la CPU, etc.

PaaS e laaS PaaS: ejemplos

Gogle App Engine

 Entorno de ejecución para Python y Java (Servlets y JSP)

OpenShift

 Ofrece, entre otros, entorno Java EE 6 con servidor JBoss

AWS Elastic Beanstalk

Incluye suporte Java con Tomcat

Microsoft Azure

Para tecnología .NET

PaaS e laaS laaS

- laaS (Infrastructure αs α Service) hace referencia a la oferta de infraestructura de computación (memoria, cómputo, red, etc.)
- El destinatario de estos servicios son las instituciones que no quieren mantener equipos informáticos
- El proveedor cobrará por el uso de CPU, la memoria ocupada, el ancho de banda utilizado, etc.
- El cliente puede generalmente aumentar o reducir la infraestructura contratada según la demanda que prevea

PaaS e laaS laaS: ejemplo

 El ejemplo más conocido es Amazon EC2 (Elastic Compute Cloud)

Aspectos económicos

Aspectos económicos

¿Puede ser más barato alquilar infraestructura de cómputo que adquirirla?

•	12 cores 12 GB RAM	In-house server	Cloud server		
Purchase cost	300 GB HDD	\$9600			
Cost/hr (over 3 yrs)		\$0.36	\$0.68		
Price: Cloud/In-house		1.88	_		
Efficiency		40%	80%	8 cores	
Cost/Effective-hr		\$0.90	¢0 0=	15GB RAM	
Power and cooling		\$0.36		1600 GB HDD	
Management cost		\$0.10	\$0.01	1000 05 1155	
Total Cost/Effective-hr		\$1.36	\$0.86		
Cost ratio: In-house/Cloud		1.58	ajo ciertas sup	osiciones	

el coste de los equipos comprados puede ser cerca de un 60% mayor

Para ampliar conocimientos

• Gautam Shroff, Enterprise Cloud Computing, Cambridge 2010