Review—1

Review—2

Alamouti 2X1

Review—3

Communication Systems Design

Lab 5: 802.11a Image Transmission and Reception (Part 2)

Dr. Wu Guang wug@sustech.edu.cn

Electrical & Electronic Engineering Southern University of Science and Technology

How to build a WiFi packet?

- How to pack the information bits?
- How to design the training sequences?
- How to compete for the wireless channels?

How to design the training sequences?

Non-HT Format PPDU

Preamble Field Duration

Frame structure of 802.11a

Channel Bandwidth (MHz)	Subcarrier frequency spacing, $\Delta_{\rm F}$ (kHz)	Fast Fourier Transform (FFT) period ($T_{FFT} = 1 + \Delta_F$)	L-STF duration $(T_{SHORT} = 10 \times T_{FFT} / 4)$
20, 40, 80, and 160	312.5	3.2 µs	8 μs
10	156.25	6.4 μs	16 µs
5	78.125	12.8 µs	32 µs

L-STF for 802.11


```
WiFi 802 11a Sim.m X createTxWaveform.m X
         %(7)产生基带NonHT数据包
26
27 -
             txWaveform = wlanWaveformGenerator(psduData, nonHTcfg, ...
                                                                                        Call the function createSTF()
              'NumPackets', numMSDUs, 'IdleTime', 80e-6, ...
28
              'ScramblerInitialization', scramblerInitialization);
29
30
             % Short Training Field
             S_k = sqrt(1/2)*[0, 0, 1+1j, 0, 0, 0, -1-1j, 0, 0, 0, 1+1j, 0, 0, 0, -1-1j, ...
31 -
                               0, 0, 0, -1-1j, 0, 0, 0, 1+1j, 0, 0, 0, 0, 0, 0, 0, -1-1j, ...
32
                               0, 0, 0, -1-1j, 0, 0, 0, 1+1j, 0, 0, 0, 1+1j, 0, 0, 0, 1+1j, 0, 0, 0, 1+1j, 0, 0]; % [1x53]
33
34 -
             Short preamble = createSTF(S k);
35 -
             figure (3)
             subplot(2, 1, 1); plot(real(txWaveform(1:length(Short_preamble)))); xlabel('n'); ylabel('wlanLSTF');
36 -
             subplot(2, 1, 2); plot(real(Short_preamble)); xlabel('n'); ylabel('S_k');
37 —
             txWaveform(1:length(Short preamble)) = Short preamble;
38 -
```


Frame structure of 802.11a

Channel Bandwidth (MHz)	Subcarrier frequency spacing, Δ_{F} (kHz)	Fast Fourier Transform (FFT) period ($T_{FFT} = 1 / \Delta_F$)	Cyclic Prefix or Training Symbol Guard Interval (GI2) Duration (T _{GI2} = T _{FFT} / 2)	L-LTF duration (T _{LONG} = T _{GI2} + 2 × T _{FFT})
20, 40, 80, and 160	312.5	3.2 µs	1.6 µs	8 µs
10	156.25	6.4 µs	3.2 µs	16 µs
5	78.125	12.8 µs	6.4 µs	32 µs

L-LTF for 802.11


```
function [Long_preamble]=createLTF(L_k)

N_FFT = 64;

virtual_subcarrier = zeros(1,N_FFT-length(L_k)); % [1x11]

Long_preamble_slot_Frequency = [virtual_subcarrier(1:6),L_k,virtual_subcarrier(7:11)]; % [1x64]

Long_preamble_slot_Time = ifft(ifftshift(Long_preamble_slot_Frequency)); % [1x64]

Long_preamble = [Long_preamble_slot_Time(33:64),Long_preamble_slot_Time,Long_preamble_slot_Time]; % [1x160]

Long_preamble = Long_preamble*10;
```



```
function [Long_preamble]=createLTF(L_k)

N_FFT = 64;
virtual_subcarrier = zeros(1,N_FFT-length(L_k)); % [1x11]

Long_preamble_slot_Frequency = [virtual_subcarrier(1:6),L_k,virtual_subcarrier(7:11)]; % [1x64]

Long_preamble_slot_Time = ifft(ifftshift(Long_preamble_slot_Frequency)); % [1x64]

Long_preamble = [Long_preamble_slot_Time(33:64),Long_preamble_slot_Time,Long_preamble_slot_Time]; % [1x160]

Long_preamble = Long_preamble*10;
```

```
createTxWaveform.m 🗶
  WiFi 802 11a Sim.m 🗶
39
         % Long Training Field
40
         41 —
              42
         Long_preamble = createLTF(L_k);
43 -
                                                                 Call the function createLTF()
         figure(4)
44 —
         subplot (2, 1, 1);
45 -
         plot(real(txWaveform(length(Short_preamble)+1:length(Short_preamble)+length(Long_preamble))));
46 —
         xlabel('n');ylabel('wlanLLTF');
47 -
         subplot(2, 1, 2); plot(real(Long_preamble)); xlabel('n'); ylabel('L_k');
48 —
         txWaveform(length(Short preamble)+1:length(Short preamble)+length(Long preamble)) = Long preamble;
49 —
50
```


L-SIG for 802.11

L-SIG for 802.11

MCS: Modulation and Coding Scheme

	Rate (bits 0-3)	Modulation	Coding rate (<i>R</i>)	Data Rate (Mb/s)		
4				20 MHz channel bandwidth	10 MHz channel bandwidth	5 MHz channel bandwidth
	1101	BPSK	1/2	6	3	1.5
	1111	BPSK	3/4	9	4.5	2.25
	0101	QPSK	1/2	12	6	3
	0111	QPSK	3/4	18	9	4.5
	1001	16-QAM	1/2	24	12	6
	1011	16-QAM	3/4	36	18	9
	0001	64-QAM	2/3	48	24	12
	0011	64-QAM	3/4	54	27	13.5

Non-HT Data Filed

Service field — Contains 16 zeros to initialize the data scrambler.

PSDU — Variable-length field containing the PLCP service data unit (PSDU).

Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for the single encoding stream.

Pad Bits — Variable-length field required to ensure that the non-HT data field contains an integer number of symbols.

HT-mixed format PPDU for 802.11n

HT-mixed format PPDU for 802.11n

Assignments

- ➤ Read the example '802.11a Transmission and Reception Using Analog Devices AD9361/AD9364' in WLAN System Toolbox.
- Explain the functions of the following six subcomponents respectively,
 - (1) ResizeImage.m
 - (2) createPSDU.m
 - (3) createTxWaveform.m
 - (4) createAWGNChannel.m
 - (5) ReceiverProc.m
 - (6) reBuildImage.m

Implement '16/64-QAM 802.11a Transmission and Reception' according to the example.

> Compare the BER under different SNR (HiperLan/2 Channel Models).

MCS=Inf

MCS=2 MCS=4 MCS=6

SNR=Inf SNR=23 SNR=29 MCS=4 Change a image

SNR=29 SNR=30 SNR=Inf

Simulation results

Question ?

