

1-of-8 Decoder/Demultiplexer

The MC74AC151/74ACT151 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The MC74AC151/74ACT151 can be used as a universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

- · Outputs Source/Sink 24 mA
- 'ACT151 Has TTL Compatible Inputs

PIN NAMES

$I_0 - I_7$	Data Inputs
<u>S</u> 0-S ₂	Select Inputs
E	Enable Input
Z	Data Output
Z	Inverted Data Output

MC74AC151 MC74ACT151

1-OF-8
DECODER/DEMULTIPLEXER

TRUTH TABLE

	Inp	Out	outs		
E	S ₂	S ₁	S ₀	Z	Z
H	X	X L H H L H	X	H <u>l</u> 0 <u>l</u> 1 <u>l</u> 2 <u>l</u> 3 <u>l</u> 4 <u>l</u> 5 <u>l</u> 6 l ₇	L 10 11 12 13 14 15 16 17

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

LOGIC SYMBOL

FUNCTIONAL DESCRIPTION

The MC74AC151/74ACT151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both true and complementary outputs are provided. The Enable input (E) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:

estimate propagation delays.

The MC74AC151/74ACT151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the MC74AC151/74ACT151 can provide any logic function of four variables and its complement.

 $Z = \overline{E} \cdot (|_{0} \cdot \overline{S}_{0} \cdot S_{1} \cdot \overline{S}_{2} + |_{1} \cdot S_{0} \cdot S_{1} \cdot \overline{S}_{2} + |_{2} \cdot \underline{S}_{0} \cdot \underline{S}_{1} \cdot S_{2} + |_{3} \cdot S_{0} \cdot \underline{S}_{1} \cdot S_{2} + |_{4} \cdot \underline{S}_{0} \cdot S_{1} \cdot S_{2} + |_{5} \cdot S_{0} \cdot S_{1} \cdot S_{2} + |_{6} \cdot S_{0} \cdot S_{1} \cdot S_{2} + |_{7} \cdot S_{0} \cdot S_{1} \cdot S_{2})$

S2 S1 S0 Please note that this diagram is provided only for the understanding of logic operations and should not be used to

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
lout	DC Output Sink/Source Current, per Pin	±50	mA
lcc	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
Vaa	Supply Voltage	'AC	2.0	5.0	6.0	V
Vcc	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0		Vcc	V
		V _{CC} @ 3.0 V		150		
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V		40		ns/V
	1	V _{CC} @ 5.5 V		25		
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V		10		ns/V
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V		8.0		TIS/ V
TJ	Junction Temperature (PDIP)				140	°C
T _A	Operating Ambient Temperature Range		-40	25	85	°C
loн	Output Current — High				-24	mA
loL	Output Current — Low				24	mA

DC CHARACTERISTICS

	Parameter		74AC VCC (V) T _A = +25°C		74AC		
Symbol		V _{CC} (V)			= +25°C		Conditions
			Тур	Guar	anteed Limits		
VIH	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} - 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} - 0.1 V
Vон	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟΟΤ} = 50 μΑ
		3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND

^{*} All outputs loaded; thresholds on input associated with output under test.

^{1.} V_{in} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

[†]Maximum test duration 2.0 ms, one output loaded at a time.

Note: I $_{\mbox{IN}}$ and I $_{\mbox{CC}}$ @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V $_{\mbox{CC}}$.

AC CHARACTERISTICS (For Figures and Waveforms — See Section 3)

				74AC		74.	AC		
Symbol	Parameter	V _{CC} * (V)	C* T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.	
			Min	Тур	Max	Min	Max		
^t PLH	Propagation Delay S _n to Z or Z	3.3 5.0	3.0 2.5	11.5 8.5	18.0 13.0	3.0 2.0	20.0 15.0	ns	3-6
^t PHL	Propagation Delay S _n to Z or Z	3.3 5.0	2.5 2.0	12 8.5	18.0 13.0	2.5 1.5	20.0 15.0	ns	3-6
^t PLH	Propagat <u>io</u> n Delay E to Z or Z	3.3 5.0	2.5 2.0	8.0 6.0	13.0 10.0	2.0 1.5	14.0 11.0	ns	3-6
^t PHL	Propagat <u>io</u> n Delay E to Z or Z	3.3 5.0	1.5 1.5	8.5 6.5	13.0 10.0	1.5 1.5	14.0 11.0	ns	3-6
^t PLH	Propagati <u>o</u> n Delay I _n to Z or Z	3.3 5.0	2.5 1.5	9.5 7.0	14.0 10.5	2.0 1.5	15.5 11.0	ns	3-5
tPHL	Propagati <u>o</u> n Delay I _n to Z or Z	3.3 5.0	2.5 1.5	9.5 7.0	15.0 11.0	2.0 1.5	16.0 12.0	ns	3-5

 $^{^*}$ Voltage Range 3.3 V is 3.3 V \pm 0.3 V Voltage Range 5.0 V is 5.0 V \pm 0.5 V

DC CHARACTERISTICS

			744	CT	74ACT				
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			Unit	Conditions
			Тур	Guar	anteed Limits				
VIH	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V		
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V		
VOH	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA		
		4.5 5.5		3.86 4.86	3.76 4.76	V	* V _{IN} = V _{IL} or V _{IH} I OH $^{-}$ 24 mA $^{-}$ 24 mA		
VOL	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	ΙΟυΤ = 50 μΑ		
		4.5 5.5		0.36 0.36	0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} I _{OL} 24 mA 24 mA		
IIN	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND		
Δ ICCT	Additional Max. I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$		
lold	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max		
IOHD	Output Current	5.5			- 75	mA	V _{OHD} = 3.85 V Min		
ICC	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND		

 $^{^{\}star}$ All outputs loaded; thresholds on input associated with output under test. † Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms — See Section 3)

					74ACT		74	CT		
Symbol	1	Parameter	V _{CC} *	T _A = +25°C C _L = 50 pF		T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.	
				Min	Тур	Max	Min	Max		
^t PLH	Propagation Delay S _n to Z		5.0	3.5		15.5	3.0	17.0	ns	3-6
^t PHL	Propagation Delay S _n to Z		5.0	3.5		15.5	3.0	16.5	ns	3-6
^t PLH	Propagation Delay S _n to Z		5.0	3.5		15	3.0	16.5	ns	3-6
^t PHL	Propagation Delay S _n to Z		5.0	4.0		16.5	3.5	18.5	ns	3-6
^t PLH	Propagation Delay E to Z		5.0	2.5		9.5	2.5	10.0	ns	3-6
^t PHL	Propagation Delay E to Z		5.0	2.5		9.0	2.5	10.0	ns	3-6
^t PLH	Propagation Delay E to Z		5.0	2.5		8.5	2.5	9.5	ns	3-6
^t PHL	Propagation Delay E to Z		5.0	3.0		10.0	2.5	10.5	ns	3-6
^t PLH	Propagation Delay In to Z		5.0	3.5		11.5	3.0	12.5	ns	3-6
^t PHL	Propagation Delay In to Z		5.0	3.5		12.0	3.0	13.5	ns	3-6
^t PLH	Prop <u>ag</u> ation Delay I _n to Z		5.0	3.5		12.0	3.0	13.0	ns	3-6
^t PHL	Prop <u>ag</u> ation Delay I _n to Z		5.0	4.0		12.5	3.0	14.0	ns	3-6

^{*} Voltage Range 5.0 V is 5.0 V \pm 0.5 V

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	70	pF	V _{CC} = 5.0 V

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54	BSC	
Η	0.050	BSC	1.27	BSC	
7	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0 °	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in not convey any license under its patent rights nor the rights of others. Motoroia products are not designed, interded, or authorized not use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motoroia product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motoroia products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motoroia and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and una registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://Design-NET.com

