

FILE ID**POWERFAIL

17

- | | | |
|-----|-----|---|
| (1) | 159 | EXE\$POWERFAIL - POWER FAIL INTERRUPT SERVICE ROUTINE |
| (1) | 274 | EXE\$RESTART - Restore state and restart after power on |
| (1) | 457 | EXE\$INIT DEVICE - Initialize device drivers |
| (1) | 551 | EXE\$PWRTIMCHK - Check for reasonable interval since power recovery |

```
0000 1 .TITLE POWERFAIL - POWER FAIL INTERRUPT HANDLER
0000 2 .IDENT 'V04-000'
0000 3 ****
0000 4 ****
0000 5 *
0000 6 * COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
0000 7 * DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
0000 8 * ALL RIGHTS RESERVED.
0000 9 *
0000 10 * THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
0000 11 * ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
0000 12 * INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
0000 13 * COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
0000 14 * OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
0000 15 * TRANSFERRED.
0000 16 *
0000 17 * THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
0000 18 * AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
0000 19 * CORPORATION.
0000 20 *
0000 21 * DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
0000 22 * SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
0000 23 *
0000 24 *
0000 25 ****
0000 26 *
0000 27 ++
0000 28
0000 29 Facility: Executive , Hardware fault handling
0000 30
0000 31 Abstract: POWERFAIL contains the code necessary to save the volatile state
0000 32 necessary for restart when power is restored. POWERFAIL also
0000 33 contains the code to restore this state and continue operation
0000 34 upon power restoration.
0000 35
0000 36 Environment: MODE=Kernel , IPL=31
0000 37
0000 38 Author: RICHARD I. HUSTVEDT, Creation date: 15-JUN-1978
0000 39
0000 40 Modified by:
0000 41
0000 42 V03-016 SRB0125 Steve Beckhardt 06-Jul-1984
0000 43 Clear distributed deadlock detection bitmap expiration
0000 44 timestamps whenever system time is changed to prevent
0000 45 false deadlocks.
0000 46
0000 47 V03-015 WMC0001 Wayne Cardoza 03-May-1984
0000 48 Add support for mount verification of disks.
0000 49
0000 50 V03-014 DWT0208 David W. Thiel 28-Mar-1984
0000 51 Call connection manager on power recovery.
0000 52
0000 53 V03-013 KDM0093 Kathleen D. Morse 6-Feb-1983
0000 54 Added new powerfail codes (16 and 17) for MicroVAX II.
0000 55
0000 56 V03-012 ROW0203 Ralph O. Weber 5-AUG-1983
0000 57 Change EXE$INIT_DEVICE to use the new device driver
```

0000 58 : controller and unit initialization routine callers,
 0000 59 : IOC\$CTRLINIT and IOC\$UNITINIT. These routines provide a
 0000 60 : consistant, system-wide interface to the device driver
 0000 61 : initialization routines.
 0000 62 :
 0000 63 : V03-011 TCM0004 Trudy C. Matthews 03-Aug-1983
 0000 64 : Add a new error halt bugcheck, defined for the 11/785
 0000 65 : processor.
 0000 66 :
 0000 67 : V03-010 KDM0054 Kathleen D. Morse 11-Jul-1983
 0000 68 : Make the cpu-dependent IPR saving be done as close to
 0000 69 : the start of the power-down routine as possible for the
 0000 70 : Q-bus init. Change use of PRS_TODR to EXE\$READ_TODR.
 0000 71 : Move IPR PME into the cpu-dependent save/restore routines.
 0000 72 :
 0000 73 : V03-009 ROW0188 Ralph O. Weber 30-APR-1983
 0000 74 : Fix broken branches to ERLS routines
 0000 75 :
 0000 76 : V03-008 TCM0003 Trudy C. Matthews 22-Feb-1983
 0000 77 : Add two new error halt bugchecks (defined for 11/790
 0000 78 : processors).
 0000 79 :
 0000 80 : V03-007 KTA3024 Kerbey T. Altmann 31-Dec-1982
 0000 81 : Call new routine to do device searching.
 0000 82 :
 0000 83 : V03-006 TCM0002 Trudy C. Matthews 16-Dec-1982
 0000 84 : Initialize R2 before calling CON\$SENDCONSCMD.
 0000 85 :
 0000 86 : V03-005 TCM0001 Trudy C. Matthews 10-Nov-1982
 0000 87 : Call CPU-dependent routine CON\$SENDCONSCMD to send
 0000 88 : "clear warm start" command to the console. Correct bug
 0000 89 : in code that drops IPL to let impending powerfails occur;
 0000 90 : if one did occur the saved PC/PSL would wipe out two
 0000 91 : registers saved on the stack. Also, drop IPL to IPL\$_POWER-2
 0000 92 : instead of IPL\$_POWER-1 to allow impending powerfail
 0000 93 : interrupts to occur. (Thanks to Ruth Goldenberg.)
 0000 94 :
 0000 95 : V03-004 KTA3018 Kerbey T. Altmann 03-Nov-1982
 0000 96 : Removed adapter initialization to SYSLOA.
 0000 97 :
 0000 98 : V03-003 KDM0002 Kathleen D. Morse 28-Jun-1982
 0000 99 : Added \$DCDEF and \$DEVDEF.
 0000 100 :
 0000 101 : V03-002 ROW0093 Ralph O. Weber 4-JUN-1982
 0000 102 : In EXE\$INIT_DEVICE, correct setup for call to unit
 0000 103 : initialization to insure that R3 has primary CSR address
 0000 104 : and R4 has secondary CSR address when initialization routine
 0000 105 : address is stored in the DDT.
 0000 106 : This change is distributed as part of SYS.EXE ECO 15 in
 0000 107 : Version 3.1.
 0000 108 :
 0000 109 :
 0000 110 :--
 0000 111 :
 0000 112 :
 0000 113 : Include files:
 0000 114 :

```

0000 115 $ADPDEF
0000 116 $CONDEF
0000 117 $CRBDEF
0000 118 $DCDEF
0000 119 $DDBDEF
0000 120 $DDTDEF
0000 121 $DEVDEF
0000 122 $IDBDEF
0000 123 $IPLDEF
0000 124 $PRDEF
0000 125 $RPBDEF
0000 126 $TQEDEF
0000 127 $UBADEF
0000 128 $UCBDEF
0000 129 $VECDEF
0000 130
0000 131
0000 132 : MACROS:
0000 133
0000 134
0000 135
0000 136 : Equated Symbols:
0000 137
00000003 0000 138 RESTRT_POWERUP = 3      ; Power recovery restart code
00000004 0000 139 RESTRT_IVLISTK = 4     ; Interrupt stack not valid
00000005 0000 140 RESTRT_DBLEERR = 5     ; Double error restart code
00000006 0000 141 RESTRT_HALT = 6       ; Halt restart code
00000007 0000 142 RESTRT_ILLVEC = 7      ; Illegal vector code
00000008 0000 143 RESTRT_NOUSRWCS = 8    ; No user WCS restart code
00000009 0000 144 RESTRT_ERRHALT = 9    ; Error halt restart code
0000000A 0000 145 RESTRT_CHM = 10      ; CHMx with IS=1 restart code
0000000B 0000 146 :
0000000C 0000 147
0000000D 0000 148 .PSECT $$220,LONG   ; Data psect
0000000E 0000 149 EXE$GL_PWRDONE::    ; End time for power up interval
0000000F 0000 150 .LONG 0           ; Done now
000004650 0004 151 EXE$GL_PWRINTVL:: ; Allowable interval in 10MS units
00000000 0004 152 .LONG 100*180    ; Allow three minutes
00000001 0004 153 .PSECT $AEXENONPAGED,LONG ; INTERRUPT ROUTINES MUST BE LONGWORD
00000002 0004
00000003 0004 154
00000004 0004 155 :
00000005 0004 156 : Own Storage:
00000006 0004 157

```

; ALIGNED

0000 159 .SBTTL EXE\$POWERFAIL - POWER FAIL INTERRUPT SERVICE ROUTINE
 0000 160 :++
 0000 161
 0000 162 Functional Description:
 0000 163 EXE\$POWERFAIL is entered with IPL=31 as a result of a power fail
 0000 164 interrupt. The objective is to save the critical volatile machine
 0000 165 state as quickly as possible and halt the machine.
 0000 166
 0000 167 Calling Sequence:
 0000 168 Powerfail interrupt through Vector at offset 12 in the SCB.
 0000 169
 0000 170 Input Parameters:
 0000 171 00(SP) - PC at time of powerfail interrupt
 0000 172 04(SP) - PSL at time of powerfail interrupt
 0000 173
 0000 174 Implicit Inputs:
 0000 175 All registers and processor registers.
 0000 176 Restart Parameter Block located via EXE\$GL_RPB
 0000 177
 0000 178 :--
 0000 179 .LIST MEB ; Show macro expansions
 0000 180
 0000 181 .ALIGN LONG ; Exception and Interrupt routines must
 0000 182 ; be longword aligned
 0000 183 EXE\$POWERFAIL::
 0000'CF D5 0000 184 TSTL W^EXE\$GL_PFAILTIM ; Have we restarted yet?
 53 12 0004 185 BNEQ 10\$; No, wait for restart
 3FFF 8F BB 0006 186 PUSHR #^M<R0,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,AP,FP> ; Save all register
 00000000'EF 16 000A 187 JSB EXE\$REGSAVE ; Save CPU-specific IPR's
 55 0000'CF DO 0010 188 MOVL W^EXE\$GL_RPB,R5 ; Get address of restart parameter block
 00A8 C5 10 DB 0015 189 MFPR #PRS_PCB,RPBSL_PCB(R5); Save physical address of current pcb
 00B0 C5 11 DB 001A 190 MFPR #PRS_SCBB,RPBSL_SCBB(R5); Save physical address of System Control Bl
 00AC C5 0C DB 001F 191 MFPR #PRS_SBR,RPBSL_SBR(R5); Save physical address of System page table
 00B4 C5 15 DB 0024 192 MFPR #PRS_SISR,RPBSL_SISR(R5); Save software interrupt summary register
 00B8 C5 0D DB 0029 193 MFPR #PRS_SLR,RPBSL_SLR(R5); Save SPT length
 00000000'EF 16 002E 194 JSB EXE\$READ_TODR ; Read time-of-day processor register
 0000'CF 50 DO 0034 195 MOVL R0,W^EXE\$GL_PFAILTIM ; Save time of day at power fail
 0039 196
 0039 197 : Save all other volatile processor registers on the current stack (ISP)
 0039 198
 7E 00 DB 0039 199 MFPR #PRS_KSP,-(SP) ; Save kernel stack pointer
 7E 01 DB 003C 200 MFPR #PRS_ESP,-(SP) ; Save exec stack pointer
 7E 02 DB 003F 201 MFPR #PRS_SSP,-(SP) ; Save supervisor stack pointer
 7E 03 DB 0042 202 MFPR #PRS_USP,-(SP) ; Save user stack pointer
 7E 13 DB 0045 203 MFPR #PRS_ASTLVL,-(SP) ; Save AST level
 7E 08 DB 0048 204 MFPR #PRS_P0BR,-(SP) ; Save P0 base register
 7E 09 DB 004B 205 MFPR #PRS_POLR,-(SP) ; Save P0 length register
 7E 0A DB 004E 206 MFPR #PRS_P1BR,-(SP) ; Save P1 base register
 7E 0B DB 0051 207 MFPR #PRS_P1LR,-(SP) ; Save P1 length register
 0054 208
 0054 209 : All volatile machine state necessary for restart has now been saved.
 0054 210 : At this point the interrupt stack contains:
 0054 211
 0054 212 :-----+
 0054 213 | P1LR | 0-24(SP)
 0054 214 :-----+
 0054 215 | P1BR |

0054	216	:	
0054	217	:	POLR
0054	218	:	POBR
0054	219	:	ASTLVL
0054	220	:	USP
0054	221	:	SSP
0054	222	:	ESP
0054	223	:	KSP
0054	224	:	CPU-specific IPR's
0054	225	:	28-n(SP)
0054	226	:	R0
0054	227	:	R1
0054	228	:	R2
0054	229	:	R3
0054	230	:	R4
0054	231	:	R5
0054	232	:	R6
0054	233	:	R7
0054	234	:	R8
0054	235	:	R9
0054	236	:	R10
0054	237	:	R11
0054	238	:	AP
0054	239	:	FP
0054	240	:	PC
0054	241	:	PSL
00A4 C5	SE	DO	0054 266
FE	11		0054 267
			10\$: MOVL SP_RPB\$L_ISP(R5)
			BRB 10\$
			: Save final interrupt stack pointer
			: Wait for power off halt
			: This loop is to avoid halting
			: and confusing the console
			: by inadvertently triggering an
			: automatic restart too soon.
			005B 268
			005B 269
			005B 270
			005B 271
			005B 272

005B 274 .SBTTL EXE\$RESTART - Restore state and restart after power on
 005B 275 ++
 005B 276 Functional Description:
 005B 277 EXE\$RESTART is given control by the restart ROM bootstrap if it
 005B 278 is determined that memory content is valid, the checksum of the
 005B 279 restart routine verifies and the restart flag in the Restart Control
 005B 280 Block is enabled. Initial entry to EXE\$RESTART is made with memory
 005B 281 management disabled IPL=31 with the stack pointer set to the high
 005B 282 end of the page containing the restart control block.
 005B 283
 005B 284 Calling Sequence:
 005B 285 JMP @RPB\$L_RESTART-^X200(SP)
 005B 286
 005B 287 Input Parameters:
 005B 288 SP - Address of RPB+^x200
 005B 289
 005B 290 :--
 005B 291
 00000000 292 PSECT \$AAEXENONPAGED,PAGE ; Must be in page aligned psect
 0000 293 EXE\$RESTART:: ; Restart entry point
 55 FEO0 CE 9E 0000 294 MOVAB -512(SP),R5 ; Compute base of RPB
 54 00AC C5 D0 0005 295 MOVL RPB\$L_SBR(R5),R4 ; Get base of SPT
 0C 54 DA 000A 296 MTPR R4,#PRS_SBR ; Set SPT base register
 OD 00B8 C5 DA 000D 297 MTPR RPB\$L_SCRR(R5),#PRS_SLR ; and length register
 11 00B0 C5 DA 0012 298 MTPR RPB\$L_SCBB(R5),#PRS_SCBB ; Restore pointer to System Control Block
 53 50 A5 DO 0017 299 MOVL RPB\$L_SVASPT(R5),R3 ; Get virtual address of SPT
 51 FFC00000'8F DO 001B 300 MOVL #<>EXE\$RESTART-^X80000000>a-9>,R1 ; VPN of EXE\$RESTART
 50 50 DB AF 9E 0022 301 MOVAL EXE\$RESTART,R0 ; Physical address of EXE\$RESTART
 50 F7 8F 78 0026 302 ASHL #9,R0,R0 ; Convert to physical page number
 51 50 C2 002B 303 SUBL R0,R1 ; Compute delta VPN-PFN
 53 6341 DE 002E 304 MOVAL (R3)[R1],R3 ; Now compute base address for POPT
 50 50 D6 0032 305 INCL R0 ; Get PFN+1 of EXE\$RESTART for POLR
 09 50 DA 0034 306 MTPR R0,#PRS_POLR ; Set dummy P0 length
 08 53 DA 0037 307 MTPR R3,#PRS_P0BR ; Set base for P0 page table
 56 00A4 C5 DO 003A 308 MOVL RPB\$L_ISP(R5),R6 ; Get Saved interrupt stack pointer
 39 00 DA 003F 309 INVALID INCL R0 ; Clear translation buffer
 38 01 DA 0042 310 MTPR #0,S^#PRS_TBIA ; Enable memory management
 0000004B'9F 17 0045 311 JMP @#10\$; Set PC to system space
 5E 56 DO 004B 312 10\$: MOVL R6,SP ; Now restore correct Stack pointer
 03 5C D1 004E 313 CMPL AP,#RESTR,_POWERUP ; Is this a power recovery?
 68 13 0051 314 BEQL POWERUP ; Yes
 00000000'EF 00000200 8F C1 0053 315 ADDL3 #512,EXE\$GL_RPB,SP ; Use end of restart page as stack
 005F 316 CASE AP,<- ; Else switch on restart code
 005F 317 20\$,- ; 4 => Interrupt stack not valid
 005F 318 30\$,- ; 5 => CPU double error halt
 005F 319 40\$,- ; 6 => Halt instruction
 005F 320 50\$,- ; 7 => Illegal I/E vector
 005F 321 60\$,- ; 8 => No user WCS
 005F 322 70\$,- ; 9 => Error pending on Halt
 005F 323 80\$,- ; 10 => CHM on ISTK halt
 005F 324 90\$,- ; 11 => CHM vector <1:0> .NE. 0
 005F 325 100\$,- ; 12 => SCB physical read error
 005F 326 110\$,- ; 13 => WCS error correction failed
 005F 327 120\$,- ; 14 => CPU ceased execution
 005F 328 130\$,- ; 15 => Processor clocks out of synch
 005F 329 140\$,- ; 16 => ACV or TNV during mchk exception

OD' 04 5C AF 005F 330 150\$,- ;17 => ACV or TNV during kstk not valid
 005F 331 > LIMIT=#RESTRT_IVLISTK:
 CASEW AP,#RESTRT_IVLISTK,S^#<>30001\$-30000\$>/2>-1

0063 30000\$: .SIGNED_WORD 20\$-30000\$
 0020' 0063 .SIGNED_WORD 30\$-30000\$
 0024' 0065 .SIGNED_WORD 40\$-30000\$
 0028' 0067 .SIGNED_WORD 50\$-30000\$
 002C' 0069 .SIGNED_WORD 60\$-30000\$
 0030' 006B .SIGNED_WORD 70\$-30000\$
 0034' 006D .SIGNED_WORD 80\$-30000\$
 0038' 006F .SIGNED_WORD 90\$-30000\$
 003C' 0071 .SIGNED_WORD 100\$-30000\$
 0040' 0073 .SIGNED_WORD 110\$-30000\$
 0044' 0075 .SIGNED_WORD 120\$-30000\$
 0048' 0077 .SIGNED_WORD 130\$-30000\$
 004C' 0079 .SIGNED_WORD 140\$-30000\$
 0050' 007B .SIGNED_WORD 150\$-30000\$
 0054' 007D .SIGNED_WORD 150\$-30000\$

007F 30001\$: BUG_CHECK UNKRSTRT,FATAL ; Unknown restart code
 FEFF 007F .WORD ^XFEFF
 0004' 0081 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ UNKRSTRT!4
 0083 333 20\$: BUG_CHECK IVLISTK,FATAL ; Invalid interrupt stack (4)
 FEFF 0083 .WORD ^XFEFF
 0004' 0085 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ IVLISTK!4
 0087 334 30\$: BUG_CHECK DBLERR,FATAL ; Double error halt (5)
 FEFF 0087 .WORD ^XFEFF
 0004' 0089 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ DBLERR!4
 008B 335 40\$: BUG_CHECK HALT,FATAL ; Halt instruction (6)
 FEFF 008B .WORD ^XFEFF
 0004' 008D .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ HALT!4
 008F 336 50\$: BUG_CHECK ILLVEC,FATAL ; Illegal Vector code (7)
 FEFF 008F .WORD ^XFEFF
 0004' 0091 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ ILLVEC!4
 0093 337 60\$: BUG_CHECK NOUSRWCS,FATAL ; No user WCS for vector (8)
 FEFF 0093 .WORD ^XFEFF
 0004' 0095 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ NOUSRWCS!4
 0097 338 70\$: BUG_CHECK ERRHALT,FATAL ; Error pending on halt (9)
 FEFF 0097 .WORD ^XFEFF
 0004' 0099 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ ERRHALT!4
 009B 339 80\$: BUG_CHECK CHMONIS,FATAL ; CHM on interrupt stack (10)
 FEFF 009B .WORD ^XFEFF
 0004' 009D .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ CHMONIS!4
 009F 340 90\$: BUG_CHECK CHMVEC,FATAL ; CHM vector <1:0> NE. 0 (11)
 FEFF 009F .WORD ^XFEFF
 0004' 00A1 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ CHMVEC!4
 00A3 341 100\$: BUG_CHECK SCBRDERR,FATAL ; SCB physical read error. (12)
 FEFF 00A3 .WORD ^XFEFF
 0004' 00A5 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ SCBRDERR!4
 00A7 342 110\$: BUG_CHECK WCSCORR,FATAL ; WCS error correction failed (13)
 FEFF 00A7 .WORD ^XFEFF
 0004' 00A9 .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ WCSCORR!4
 00AB 343 120\$: BUG_CHECK CPUCEASED,FATAL ; CPU ceased execution (14)
 FEFF 00AB .WORD ^XFEFF
 0004' 00AD .IIF IDN <FATAL>, <FATAL> , .WORD BUG\$ CPUCEASED!4
 00AF 344 130\$: BUG_CHECK OUTOFSYNC,FATAL ; Processor clocks out of synch (15)
 FEFF 00AF .WORD ^XFEFF

0004' 00B1 IIF IDN <FATAL>, <FATAL> , .WORD BUGS_OUTOFSYNC!4
 FEFF 00B3 345 140\$: BUG_CHECK ACCVIOMCHK ; ACV or TNV during mchk exception (16)
 0000' 00B5 .WORD ^XFEFF
 FEFF 00B7 346 150\$: BUG_CHECK ACCVIOKSTK ; ACV or TNV during kstk not valid (17)
 0000' 00B9 .WORD ^XFEFF
 00BB 347 :IIF DIF <CONT>, <FATAL> , .WORD BUGS_ACCVIOKSTK
 00BB 348
 00BB 349 POWERUP:
 00BB 350 :
 00BB 351 : None of the interrupt stack area containing saved state will be overwritten
 00BB 352 : during the restart process in case another power failure occurs. The restart
 00BB 353 : procedure only reads the saved state and re-writes volatile registers so
 00BB 354 : that it can be repeated without harm.
 00BB 355 :
 50 03 DD 00BB 356 MOVL #CON\$C_CLRWARM,R0 : Console function=clear warm start flag.
 52 D4 00BE 357 CLRL R2 : Signal no return data expected.
 51 00000000'EF 16 00CO 358 JSB CON\$SENDCONSCMD : Send command to console.
 00000000'GF DO 00C6 359 MOVL G^EXESGL_RPB,R1 : Get virtual address of RPB.
 OC A1 01 CA 00CD 360 BICL #1, RPBSL_RSTRTFLG(R1) : Clear flag to re-enable warmstart.
 00A4 C1 D5 00D1 361 TSTL RPBSL_ISP(R1) : Test saved Interrupt SP from RPB.
 OC 12 00D5 362 BNEQ 10\$: Branch if valid ISP.
 00D7 363 :
 00D7 364 : Interrupt stack pointer field in RPB is 0. This indicates that the
 00D7 365 : the powerfail routine was not able to complete successfully, and that
 00D7 366 : it was unable to save the software state of the machine.
 00D7 367 :
 SE 51 00000200 8F C1 00D7 368 ADDL3 #512,R1,SP : Use end of RPB for stack space.
 00DF 369 BUG_CHECK - : Fatal error.
 FFFF 00DF 370 STATENTSVD,FATAL :
 0004' 00E1 .WORD ^XFEFF
 00E3 371 10\$: .IIF IDN <FATAL>, <FATAL> , .WORD BUGS_STATENTSVD!4
 15 00B4 C1 DA 00E3 372 MTPR RPBSL_SISR(R1),#PRS_SISR: Restore software interrupt state.
 10 00A8 C1 DA 00E8 373 MTPR RPBSL_PCBB(R1),#PRS_PCBB: Restore pointer to current PCB.
 0B 86 DA 00ED 374 MTPR (R6)+,#PRS_P1LR : Restore P1 length register
 0A 86 DA 00FO 375 MTPR (R6)+,#PRS_P1BR : and P1 base register
 09 86 DA 00F3 376 MTPR (R6)+,#PRS_P0LR : Restore real P0 length register
 08 86 DA 00F6 377 MTPR (R6)+,#PRS_P0BR : and P0 base register
 13 86 DA 00F9 378 MTPR (R6)+,#PRS_ASTLVL : Restore AST level
 03 86 DA 00FC 379 MTPR (R6)+,#PRS_USP : Restore user mode stack pointer
 02 86 DA 00FF 380 MTPR (R6)+,#PRS_SSP : Restore supervisor mode stack pointer
 01 86 DA 0102 381 MTPR (R6)+,#PRS_ESP : Restore executive mode stack pointer
 00 86 DA 0105 382 MTPR (R6)+,#PRS_KSP : Restore kernel mode stack pointer
 00000000'EF 16 0108 383 JSB EXE\$REGRESTOR : Restore CPU-specific registers
 010E 384 :
 010E 385 : All saved Machine state has now been restored. Renable SBI and CRD error
 010E 386 : interrupts, re-initialize interval timer and Scan device data base to
 010E 387 : set powerfail status for all units. All controllers and devices are then
 010E 388 : re-initialized.
 010E 389 :
 56 00000000'EF 16 010E 390 PUSHL R6 : Save updated "stack pointer"
 0110 391 JSB EXE\$INIPROCREG : Initialize processor registers
 0116 392 : for error detection and start interval timer.
 0116 393
 0116 394 TIMERRESET:

POWERFAIL
V04-000- POWER FAIL INTERRUPT HANDLER
EXE\$RESTART - Restore state and restart

F 8

16-SEP-1984 00:58:24 VAX/VMS Macro V04-00
5-SEP-1984 03:46:24 [SYS.SRC]POWERFAIL.MAR;1Page 9
(1)PR
Ta

0000'CF 0004'CF 50 16 0116 395 JSB EXE\$READ_TODR ; Get current time of day
 0000'CF 50 0000'CF C3 0124 396 ADDL3 R0,W^EXE\$GL_PWRINTVL,W^EXE\$GL_PWRDONE ; Compute expected done
 0000'CF 50 0000'CF C2 012C 397 SUBL3 W^EXE\$GL_PFAILTIM,R0,W^EXE\$GL_PFATIM ; Get duration of power fail
 50 00 50 50 1F 01 EF 0131 400 SUBL W^EXE\$GL_TODR,R0 ; Compute time since boot
 00030D40 8F 7A 0136 401 EXTZV #1 #31, R0, R0 Unsigned divide by 2
 50 0000'CF C0 013F 402 EMUL #<100*1000*2>, R0, #0, R0 Convert to 100 nanosecond units
 51 0004'CF D8 0144 403 ADDL W^EXE\$GQ_TODCBASE,R0
 0000'CF 50 7D 0149 404 ADWC W^EXE\$GQ_TODCBASE+4,R1
 56 0000'CF 7E 014E 405 MOVQ R0,W^EXE\$GQ_SYSTIME
 86 7C 0153 406 MOVAQ W^LCK\$GQ_BITMAP_EXP,R6
 66 7C 0155 407 CLRQ (R6)+
 66 7C 0155 407 CLRQ (R6)
 56 0000'CF 9E 0157 408 MOVAB W^EXE\$GL_TQFL,R6
 57 66 D0 015C 409 MOVL (R6),R7
 57 56 D1 015F 410 10\$: CMPL R6, R7
 17 13 0162 411 BEQL 30\$ Check for end of timer queue
 1C A7 51 D1 0164 412 CMPL R1, TQE\$Q_TIME+4(R7)
 0C 1F 0168 413 BLSSU 20\$ Check high order bits for past due
 06 1A 016A 414 BGTRU 15\$ No try another
 18 A7 50 D1 016C 415 CMPL R0, TQE\$Q_TIME(R7)
 04 1F 0170 416 BLSSU 20\$ Past due, convert entry
 18 A7 50 7D 0172 417 15\$: MOVQ R0, TQE\$Q_TIME(R7)
 57 67 D0 0176 418 20\$: MOVL (R7),R7
 E4 11 0179 419 BRB 10\$ Not yet due
 00000000'EF 16 017B 420 30\$: Set new expiration time
 00000000'GF 16 0181 421 JSB ERL\$WARMSTART
 0187 422 JSB G^CNX\$POWER_FAIL Flink to next entry
 0187 423
 0187 424 RESTARTIO:
 5D 5E D0 0187 425 MOVL SP,FP
 00000000'GF 16 018A 426 JSB G^EXE\$STARTUPADP
 5C D4 0190 427 CLRL AP
 5C 01 AE 0192 428 MNEGW #1,AP
 28 10 0195 429 BSBB EXE\$INIT_DEVICE
 5E 5D D0 0197 430
 12 1F DA 019A 431 MOVL FP,SP
 12 1F DA 019A 432 SETIPL #IPL\$_POWER
 019D 433 : Restore stack pointer
 019D 434 : Block power fail interrupt
 019D 435 : Drop IPL here to allow any impending powerfail interrupts to occur. This
 019D 436 : is because we have been running at IPL\$_POWER, and if another powerfail
 019D 437 : interrupt has occurred, it will be taken as soon as this routine REIs.
 019D 438 : There would be no guarantee how much time the power down routine has left to
 019D 439 : save the software state. However, if we drop IPL BEFORE enabling subsequent
 019D 440 : power fails, we allow any impending powerfail interrupt to occur; it will
 019D 441 : essentially be ignored by the power down routine. The power up routine will
 019D 442 : then be re-executed. And by the time we REI we are again guaranteed an
 019D 443 : adequate amount of time to execute the power down routine.
 12 1D DA 019D 444 SETIPL #<IPL\$_POWER-2>
 01 01A0 445 MTPR #<IPL\$_POWER-2>,S^#PRS_IPL
 01 01A1 446 NOP
 01A2 447 NOP
 12 1F DA 01A2 447 SETIPL #IPL\$_POWER
 5E 8E DO 01A5 448 MTPR #IPL\$_POWER,S^#PRS_IPL
 MOVL (SP)+,SP ; Set up to point to saved registers

POWERFAIL
V04-000

- POWER FAIL INTERRUPT HANDLER
EXESRESTART - Restore state and restart

G 8

16-SEP-1984 00:58:24 VAX/VMS Macro V04-00
5-SEP-1984 03:46:24 [SYS.SRC]POWERFAIL.MAR;1

Page 10
(1)

SD 00000000'GF D0 01A8 449 MOVL G^EXE\$GL RPB,FP ; Get address of RPB.
1FFF 8F BA 01AF 450 POPR #^M<R0,RT,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,AP>
0000'CF D4 01B3 451 CLRL W^EXE\$GL PFAILTIM ; Enable subsequent power fail
00A4 CD D4 01B7 452 CLRL RPB\$L_ISP(FP) ; Indicate software state not saved.
SD 8ED0 01BB 453 POPL FP ; Restore FP.
02 01BE 454 REI ; Return from powerfail restart.
01BF 455

PR
VO

```

01BF 457 .SBTTL EXESINIT_DEVICE - Initialize device drivers
01BF 458
01BF 459 :++
01BF 460 : EXESINIT_DEVICE - Call device drivers at controller and unit initialization
01BF 461
01BF 462 : INPUTS:
01BF 463
01BF 464 : Low order word:
01BF 465 AP = -1 -> Do initialization for all devices on all adaptors
01BF 466 AP >= 0 -> Only initialize for devices on this TR level
01BF 467
01BF 468 : Hi order word:
01BF 469 AP = -1 -> Called from INIT - No powerfail
01BF 470 AP = 0 -> Called from POWERFAIL/ADAPTER (UBA powerfail)
01BF 471
01BF 472 : OUTPUTS:
01BF 473
01BF 474 : Device controller and units initialized
01BF 475 : All registers destroyed!!!!!
01BF 476 :--
01BF 477
01BF 478 EXESINIT_DEVICE::
01BF 479

      5B D4 01BF 480 CLRL R11 ; Initial condition
      01C1 481
      00000000'GF 16 01C1 482 DDBLOOP:JSB G^IOC$SCAN_IODB ; Scan the I/O data base
      01 50 E8 01C7 483 BLBS R0,5$ ; Found another UCB
      05 01CA 484 RSB
      01CB 485
      5C D5 01CB 486 5$: TSTL AP ; Check if POWERFAIL mode
      06 18 01CD 487 BGEQ 7$ ; Yes, skip next
      00000000'GF 16 01CF 488 JSB G^IOC$RELOC_DDT ; Make offsets absolute system addresses
      5A D4 AB DE 01D5 489 7$: MOVAL DDB$L_UCB-UCB$L_LINK(R11),R10 ; Get address of first UCB address
      58 D4 01D9 490 CLRL R8 ; Clear last CRB address
      5A 30 AA DO 01DB 491 10$: MOVL UCB$L_LINK(R10),R10 ; Get address of next UCB
      F5 38 AA 14 E0 01E1 492 BEQL DDBLOOP ; If zero, no more for this DDB
      01E6 493 BBS S^#DEV$V_MBX,UCB$L_DEVCHAR(R10),10$ ; Branch if mailbox
      01E6 494
      01E6 495 : Check to see if we must init all devices on all adaptors or on just
      01E6 496 : one specific adaptor.
      01E6 497 :

      54 24 AA DO 01E6 498 MOVL UCB$L_CRB(R10),R4 ; Point to CRB
      5C B5 01EA 499 TSTW AP ; If AP neg, init all
      0C 19 01EC 500 BLSS 15$ ; Init all
      50 38 A4 DO 01EE 501 MOVL CRB$L_INTD+VEC$L_ADP(R4),R0 ; Point to ADP
      E7 13 01F2 502 BEQL 10$ ; No adaptor for this "device"
      OC A0 5C B1 01F4 503 CMPW AP,ADPSW_TR(R0) ; TR's match
      E1 12 01F8 504 BNEQ 10$ ; No, look for others
      01FA 505
      5C D5 01FA 506 15$: TSTL AP ; Check if POWERFAIL mode
      04 19 01FC 507 BLSS 17$ ; No, do not set it
      64 AA 20 A8 01FE 508 BISW #UCB$M_POWER,UCB$W_STS(R10) ; Set power failed status
      58 54 D1 0202 509 17$: CMPL R4, R8 ; Is this the same CRB?
      0E 13 0205 510 BEQL 40$ ; Branch if same CRB.
      58 54 D0 0207 511 MOVL R4, R8 ; Save new CRB address.
      51 D4 020A 512 CLRL R1 ; We have no extra CSR info
      020C 513

```

00000000'GF 16 020C 514 JSB G^IOC\$CTRLINIT ; Do driver controller initialization.
 41 50 E9 0212 515 BLBC R0 70\$; Branch if CSR test failed.
 55 5A D0 0215 516 40\$: MOVL R10, R5 ; Setup UCB address.
 00000000'GF 16 0218 517 JSB G^IOC\$UNITINIT ; Do driver unit initialization.
 03 B3 021E 518 BITW #UCBSM_INT!UCBSM_TIM,-
 64 A5 0220 519 UCBSW_STS(R5) ; Interrupt or timeout expected?
 B7 13 0222 520 BEQL 10\$; If eql then no
 64 A5 02 AA 0224 521 BICW #UCBSM_INT,UCBSW_STS(R5); Clear interrupt expected
 64 A5 01 A8 0228 522 BISW #UCBSM_TIM,UCBSW_STS(R5); Set timeout expected
 6C A5 D4 022C 523 CLRL UCBSL_DUETIM(R5) ; Now
 022F 524 ;
 022F 525 : Look for busy, non-MSCP disks that are not in mount verification. Clear
 022F 526 : volume-valid and set mount-verification-pending so that restarted I/Os will
 022F 527 : fail and the volume will be revalidated. Non-busy disks are handled
 022F 528 : independently.
 022F 529 :
 40 A5 91 022F 530 CMPB UCBSB_DEVCLASS(R5),- ; Make sure it is a disk
 01 0232 531 #DCS_DISK
 A6 12 0233 532 BNEQ 10\$; Not file oriented
 0E E1 0235 533 BBC #DEV\$V_FOD,-
 A1 38 A5 0237 534 UCBSL_DEVCHAR(R5),10\$; Sequential device
 05 E0 023A 535 BBS #DEV\$V_SQD,-
 9C 38 A5 023C 536 UCBSL_DEVCHAR(R5),10\$; MSCP disks are handled independently
 05 E0 023F 537 BBS #DEV\$V_MSCP,-
 97 3C A5 0241 538 UCBSL_DEVCHAR2(R5),10\$; Mount verification already in progress
 0E E2 0244 539 BBSS #UCBS\$V_MNTVERIP,-
 92 64 A5 0246 540 UCBSL_STS(R5),10\$; Mark it mount verification pending
 13 E2 0249 541 BBSS #UCBS\$V_MNTVERPND,-
 00 64 A5 024B 542 UCBSL_STS(R5),50\$; Cause I/O to fail
 0B E5 024E 543 50\$: BBCC #UCBS\$V_VALID,-
 00 64 A5 0250 544 UCBSW_STS(R5),51\$; Next unit
 FF85 31 0253 545 51\$: BRW 10\$
 0256 546 ;
 64 AA 59 D4 0256 547 70\$: CLRL R9 ; Zap CRB to force CRB search
 10 AA 0258 548 BICW #UCBSM_ONLINE,UCBSW_STS(R10) ; Set unit offline
 FF7C 31 025C 549 BRW 10\$; Continue search

025F 551 .SBTTL EXESPWRTIMCHK - Check for reasonable interval since power recovery
025F 552 :++
025F 553 Functional Description:
025F 554 EXESPWRTIMCHK is called by driver initialization code to check for
025F 555 a sufficient interval since power recovery to expect devices to be
025F 556 ready again. If the return from EXESPWRTIMCHK indicates that the
025F 557 reasonable interval has not yet elapsed, the device driver may elect
025F 558 to wait for a while using EXESPWRTIMCHK check the time.
025F 559
025F 560 Calling Sequence:
025F 561 BSB/JSB EXESPWRTIMCHK
025F 562
025F 563 Output Parameters:
025F 564 R0 - Low bit clear if interval expired.
025F 565 --
025F 566 EXESPWRTIMCHK:::
00000000'EF 16 025F 567 JSB EXESREAD_TODR ; Get current time of day
7E 50 D0 0265 568 MOVL R0,-(SP) ; Save it temporarily
50 D4 0268 569 CLRL R0 ; Assume interval expired
8E 0000'CF D1 026A 570 CMPL W^EXESGL_PWRDONE,(SP)+ ; Check for time expired
02 1B 026F 571 BLEQU 10\$; Exit with low bit clear if expired
50 D6 0271 572 INCL R0 ; Else set low bit of R0
05 0273 573 10\$: RSB ;
0274 574
0274 575 .END ;

ADPSW TR
 BUGS_ACCVIOKSTK
 BUGS_ACCVIOMCHK
 BUGS_CHMONIS
 BUGS_CHMVEC
 BUGS_CPUCEASED
 BUGS_DBLLERR
 BUGS_ERRHALT
 BUGS_HALT
 BUGS_ILLVEC
 BUGS_IVLISTK
 BUGS_NOUSRWCS
 BUGS_OUTOFSYNC
 BUGS_SCBRDERR
 BUGS_STATENTSVD
 BUGS_UNKRSTRT
 BUGS_WCSCORR
 CNXSPower FAIL
 CONSC CLRQARM
 CONSENDCONSCMD
 CRBSL_INTD
 DCS_DISK
 DDBSL_UCB
 DDBLOOP
 DEVSV_FOD
 DEVSV_MBX
 DEVSV_MSCP
 DEVSV_SQD
 ERLSWARMSTART
 EXE\$GL_PFAILTIM
 EXE\$GL_PFATIM
 EXE\$GL_PWRDONE
 EXE\$GL_PWRINTVL
 EXF\$GL_RPB
 EXE\$GL_TODR
 EXE\$GL_TQFL
 EXE\$GQ_SYSTIME
 EXE\$GQ_TODCBASE
 EXE\$INITPROCREG
 EXE\$INIT DEVICE
 EXE\$POWERFAIL
 EXE\$PWRITMCHK
 EXE\$READ TODR
 EXE\$REGRESTOR
 EXE\$REGSAVE
 EXE\$RESTART
 EXE\$STARTUPADP
 IOCSCTRLINIT
 IOCSRELOC DDT
 IOCSSCAN TODB
 IOCSUNITINIT
 IPL\$ POWER
 LCKSGQ_BITMAP_EXP
 POWERUP
 PR\$_ASTLVL
 PR\$_ESP
 PR\$_IPL

= 0000000C			PRS_KSP	= 00000000
*****	X	04	PRS_MAPEN	= 00000038
*****	X	04	PRS_POBR	= 00000008
*****	X	04	PRS_POLR	= 00000009
*****	X	04	PRS_P1BR	= 0000000A
*****	X	04	PRS_P1LR	= 0000000B
*****	X	04	PRS_PCBB	= 00000010
*****	X	04	PRS_SBR	= 0000000C
*****	X	04	PRS_SCBB	= 00000011
*****	X	04	PRS_SISR	= 00000015
*****	X	04	PRS_SLR	= 0000000D
*****	X	04	PRS_SSP	= 00000002
*****	X	04	PRS_TBIA	= 00000039
*****	X	04	PRS_USP	= 00000003
			RESTARTIO	00000187 R 04
			RESTRT_CHM	= 0000000A
			RESTRT_DBLLERR	= 00000005
			RESTRT_ERRHALT	= 00000009
			RESTRT_HALT	= 00000006
= 00000003			RESTRT_ILLVEC	= 00000007
*****	X	04	RESTRT_IVLISTK	= 00000004
			RESTRT_NOUSRWCS	= 00000008
			RESTRT_POWERUP	= 00000003
			RPBSL_ISP	= 000000A4
			RPBSL_PCBB	= 000000A8
			RPBSL_RSTRTFLG	= 0000000C
			RPBSL_SBR	= 000000AC
			RPBSL_SCBB	= 000000B0
			RPBSL_SISR	= 000000B4
			RPBSL_SLR	= 000000B8
			RPBSL_SVASPT	= 00000050
			TIMERESET	00000116 R 04
00000000	RG	02	TQESQ_TIME	= 00000018
00000004	RG	02	UCBSB_DEVCLASS	= 00000040
			UCBSL_CRB	= 00000024
			UCBSL_DEVCHAR	= 00000038
			UCBSL_DEVCHAR2	= 0000003C
			UCBSL_DUETIM	= 0000006C
			UCBSL_LINK	= 00000030
000001BF	RG	04	UCBSL_STS	= 00000064
00000000	RG	03	UCBSM_INT	= 00000002
0000025F	RG	04	UCBSM_ONLINE	= 00000010
			UCBSM_POWER	= 00000020
			UCBSM_TIM	= 00000001
			UCBSV_MNTVERIP	= 0000000E
			UCBSV_MNTVERPND	= 00000013
			UCBSV_VALID	= 0000000B
			UCBSW_STS	= 00000064
			VECSL_ADP	= 00000014
= 0000001F				
*****	X	04		
000000BB	R	04		
= 00000013				
= 00000001				
= 00000012				

```
+-----+
! Psect synopsis !
+-----+
```

PSECT name	Allocation	PSECT No.	Attributes
. ABS .	00000000	(0.) 00	(0.) NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
\$ABSS	00000000	(0.) 01	(1.) NOPIC USR CON ABS LCL NOSHR EXE RD WRT NOVEC BYTE
\$\$\$220	00000008	(8.) 02	(2.) NOPIC USR CON REL LCL NOSHR EXE RD WRT NOVEC LONG
\$AEXENONPAGED	0000005B	(91.) 03	(3.) NOPIC USR CON REL LCL NOSHR EXE RD WRT NOVEC LONG
SAAEXENONPAGED	00000274	(628.) 04	(4.) NOPIC USR CON REL LCL NOSHR EXE RD WRT NOVEC PAGE

```
+-----+
! Performance indicators !
+-----+
```

Phase	Page faults	CPU Time	Elapsed Time
Initialization	35	00:00:00.06	00:00:01.77
Command processing	119	00:00:00.61	00:00:05.18
Pass 1	346	00:00:11.41	00:00:34.23
Symbol table sort	0	00:00:01.69	00:00:04.83
Pass 2	135	00:00:02.49	00:00:09.81
Symbol table output	12	00:00:00.09	00:00:00.71
Psect synopsis output	3	00:00:00.02	00:00:00.03
Cross-reference output	0	00:00:00.00	00:00:00.00
Assembler run totals	652	00:00:16.37	00:00:56.56

The working set limit was 1650 pages.

68206 bytes (134 pages) of virtual memory were used to buffer the intermediate code.

There were 60 pages of symbol table space allocated to hold 1163 non-local and 33 local symbols.

575 source lines were read in Pass 1, producing 20 object records in Pass 2.

26 pages of virtual memory were used to define 25 macros.

```
+-----+
! Macro library statistics !
+-----+
```

Macro library name	Macros defined
\$255\$DUA28:[SYS.OBJ]LIB.MLB;1	16
\$255\$DUA28:[SYSLIB]STARLET.MLB;2	6
TOTALS (all libraries)	22

1256 GETS were required to define 22 macros.

There were no errors, warnings or information messages.

MACRO/LIS=LI\$:POWERFAIL/OBJ=OBJ\$:POWERFAIL MSRC\$:POWERFAIL/UPDATE=(ENH\$:POWERFAIL)+EXECML\$ LIB

0379 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

