Spis treści

1	Cel ćwiczenia			
2	Wstęp teorytyczny			
3	Układ pomiarowy	3		
4	Wykonane ćwiczenie	4		
5	Wyniki pomiarów	4		
6				
7	Wnioski	11		

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się ze sposobem wyznaczania niepewności pomiarowych w prowadzonych doświadczeniach laboratoryjnych, a także wyznaczenie przyspieszenia ziemskiego (grawitacyjnego) w Krakowie za pomocą wahadła matematycznego.

2 Wstęp teorytyczny

Wahadło matematyczne, inaczej zwane wahadłem prostym , którego przykładowy model przedstawiono na Rys. 1, to układ mechaniczny przyjmujący postać punktu materialnego zawieszonego na cienkiej, nierozciągliwej i nieważkiej nici, którego przeciwległy koniec przymocowany jest do nieruchomej powierzchni.

Rys. 1: Układ wahadła matematycznego z zaznaczonymi siłami działającymi na zawieszone ciało.

Gdy odchylimy takie wahadło o niewielki kąt, który możemy oznaczyć jako α, zawieszony punkt materialny zaczyna drgać z pewnym okresem T. Sytuacja taka możliwa jest jedynie, gdy punkt materialny umieszczony jest w polu grawitacyjnym. Jest to podyktowane tym, że na wychylone ciało musi zadziałać pewna siła, która wprawi go w ruch harmoniczny. Wówczas na podstawie sił działających na wahadło oraz odpowiednich wzorów wiążących ze sobą prawa zachodzące w czasie oscylacji, możliwym jest wyznaczenie wzoru pozwalającego na obliczenie okresu drgań T badanego wahadła. Wzór ten ma następującą postać:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Powyższy wzór wolno stosować jedynie w przypadkach, gdy kąt wychylenia α jest bardzo mały, nieprzekraczający kilku stopni. Wzór ten da się łatwo przekształcić do postaci, dzięki której możliwe jest obliczenie doświadczalne wyznaczenie przyspieszenia grawitacyjnego. Wówczas wzór przybiera postać:

$$g = \frac{4\pi^2 l}{T^2}$$

Doświadczenie składało się z dwóch zasadniczych części. W pierwszej z nich, czterokrotnie cała grupa laboratoryjna zmierzyła czas okresu drgań wahadła matematycznego, przy każdym kolejnym pomiarze wydłużając długość l nitki. Za każdym razem, nie włączano i zatrzymywano stopera dokładnie po jednym cyklu, lecz dopiero po dziesięciu pełnych okresach, a następnie otrzymany wynik podzielono przez tę samą liczbę. Zabieg ten miał na celu zwiększenie dokładności prowadzonego doświadczenia, poprzez zniwelowanie negatywnego wpływu czasu reakcji mierzącego. W drugiej części doświadczenia obliczyliśmy przyspieszenie grawitacyjne dla każdego z wykonanych pomiarów, wraz z uwzględnieniem jakże istotnych niepewności pomiarowych. Dodatkowo posłużyliśmy się arkuszem kalkulacyjnym za pomocą którego wyznaczono regresję liniową.

3 Układ pomiarowy

Wykorzystywany w ćwiczeniach układ pomiarowy składał się z:

- 1. Zestawu wahadła prostego (w doświadczeniu użyliśmy wahadła fizycznego z zaniedbywalną masą, które potraktowaliśmy jako wahadło proste) (Rys. 2), czyli cienkiej, praktycznie nierozciągliwej nici, o zaniedbywalnej masie oraz metalowego odważnika zawieszonego na tejże nici.
- 2. Przymiaru milimetrowego (linijka) służącego do pomiaru długości nici.
- 3. Stopera, dzięki któremu byliśmy w stanie zmierzyć czas trwania 10 okresów.
- 4. Kalkulatora, za pomocą którego obliczyliśmy przyspieszenie ziemskie.

Rys. 2: Zestaw wahadła prostego

4 Wykonane ćwiczenie

Doświadczenie rozpoczęliśmy od zmierzenia długości nitki wahadła, od punktu zaczepienia do środka ciężkości, która wyniosła w naszym przypadku $l=13,0~\rm cm$. Niepewność pomiaru przyjęliśmy jako sumę niepewności przyrządu oraz niepewności obserwatora. Jako niepewność przyrządu przyjęliśmy działkę elementarną równą $0,1~\rm cm$. Zatem $u(l)=0,1~\rm cm$.

W następnym kroku przeszliśmy do mierzenia okresów drgań wahadła, do czego posłużył nam wspomniany wcześniej stoper. Każda osoba z grupy mierzyła okres samodzielnie co zaowocowało 9 różnymi pomiarami okresu drgań T. Ćwiczenie powtórzyliśmy jeszcze trzy razy, za każdym razem przyjmując inną długość nitki. Niepewność pomiaru za każdym razem pozostała taka sama.

5 Wyniki pomiarów

Lp.	k	t [s]	T _i [s]	$T_i^2[s^2]$
1	10	7,06	0,706	0,498
2	10	6,74	0,674	0,454
3	10	7,05	0,705	0.497
4	10	6,73	0,673	0.453
5	10	7,03	0,703	0.494
6	10	7,10	0,710	0.504
7	10	6,71	0,671	0.450
8	10	6,68	0,668	0.446
9	10	7,04	0,704	0.496

Tab. 1: Pomiar okresu drgań dla długości wahadła l = 13, 0 cm, u(l) = 0, 1 cm

Lp.	k	t [s]	T _i [s]	$T_i^2[s^2]$
1	10	9,28	0,928	0,861
2	10	9,48	0,948	0,899
3	10	9,39	0,939	0.882
4	10	9,27	0,927	0.859
5	10	9,14	0,914	0.835
6	10	9,21	0,921	0.848
7	10	9,18	0,918	0.843
8	10	9,41	0,941	0.885
9	10	9,35	0,935	0.874

Tab. 2: Pomiar okresu drgań dla długości wahadła $l = 21, 0 \, cm, \, u(l) = 0, 1 \, cm$

Lp.	k	t [s]	$T_i[s]$	$T_i^2 [s^2]$
1	10	11,19	1,119	1,252
2	10	11,17	1,117	1,248
3	10	11,05	1,105	1,221
4	10	11,14	1,114	1,241
5	10	11,15	1,115	1,243
6	10	10,91	1,091	1,190
7	10	11,39	1,139	1,297
8	10	10,97	1,097	1,203
9	10	11,09	1,109	1,230

Tab. 3: Pomiar okresu drgań dla długości wahadła $l = 30, 5 \, cm, \, u(l) = 0, 1 \, cm$

Lp.	k	t [s]	T _i [s]	$T_i^2[s^2]$
1	10	12,36	1,236	1,528
2	10	12,49	1,249	1,560
3	10	12,65	1,265	1,600
4	10	12,52	1,252	1,568
5	10	12,69	1,269	1,610
6	10	12,40	1,240	1,538
7	10	11,95	1,195	1,428
8	10	12,39	1,239	1,535
9	10	12,50	1,250	1,563

Tab. 4: Pomiar okresu drgań dla długości wahadła l = 38,7 cm, u(l) = 0,1 cm

6 Opracowanie wyników pomiaru

6.1 Błąd gruby

Błąd gruby najprawdopodobniej nie wystąpił w żadnym z pomiarów, ponieważ różnica między największym a najmniejszym okresem w każdym z pomiarów jest niewielka. Zmierzone wartości wydają się zatem poprawne.

6.2 Niepewność pomiaru okresu (typu A)

Niepewność pomiaru okresu typu A, gdzie T_i jest okresem zmierzonym i-tym razem dla n pomiarów jest równa:

$$u(T) = \sqrt{\frac{\sum_{i=1}^{n} (T_i - \bar{T})^2}{n(n-1)}}$$

Dla danych z Tab. 1:

$$\bar{T} = \frac{\sum_{i=1}^{9} T_i}{9} = \frac{6,214}{9} = 0,690 \text{ s}$$

$$u(T) = \sqrt{\frac{\sum_{i=1}^{9} (T_i - \bar{T})^2}{9 \times 8}} = 0,006 \ s$$

Wartości u(T) dla danych z tabel 2, 3, 4 to odpowiednio 0, 004 s, 0, 005 s, 0, 007 s.

6.3 Niepewność pomiaru długości wahadła (typu B)

Niepewność pomiaru długości wahadła typu B przyrządu milimetrowego (linijki) wynosi tyle ile działka elementarna, czyli w tym przypadku:

$$u(l) = 1 mm$$

6.4 Przyspieszenie ziemskie

Po przekształceniu wzoru na długość okresu w wahadle matematycznym otrzymujemy wzór na wartość przyspieszenia ziemskiego:

$$g = \frac{4\pi^2 l}{T^2}$$

Lp.	g [m/s ²]
1	10,306
2	11,304
3	10,326
4	11,329
5	10,389
6	10,183
7	11,405
8	11,507
9	10,342

Tab. 5: Wartości przyspieszenia ziemskiego dla długości wahadła $l=13,0\ cm$ $g_{sr}=10,788\ m/s^2$

	_
Lp.	g [m/s ²]
1	9,269
2	9,222
3	9,399
4	9,651
5	9,929
6	9,776
7	9,834
8	9,368
9	9,486

Tab. 6: Wartości przyspieszenia ziemskiego dla długości wahadła l = 21,0 cm g_{sr} = 9,548 m/s^2

Lp.	g [m/s ²]
1	9,617
2	9,648
3	9,861
4	9,703
5	9,687
6	10,118
7	9,284
8	10,009
9	9,789

Tab. 7: Wartości przyspieszenia ziemskiego dla długości wahadła l = 30,5 cm g_{sr} = 9,746 m/s^2

Lp.	g [m/s ²]
1	9,999
2	9,794
3	9,549
4	9,744
5	9,489
6	9,934
7	10,699
8	9,953
9	9,775

Tab. 8: Wartości przyspieszenia ziemskiego dla długości wahadła l = 38,7 cm g_{sr} = 9,882 m/s^2

6.5 Niepewność złożona u(g)

Wielkość wynikową g można przedstawić jako funkcję dwóch niezależnych zmiennych (okresu wahadła oraz długości nitki)

$$g = \frac{4\pi^2 l}{T^2}$$

Wtedy niepewność złożoną możemy przybliżyć przy pomocy prawa przenoszenia niepewności formułą:

$$u(g) = \sqrt{\left(\frac{\partial g}{\partial l}u(l)\right)^2 + \left(\frac{\partial g}{\partial T}u(T)\right)^2}$$

Dla danych z Tab. 1:

$$u(g) = \sqrt{\left(\frac{4\pi^2}{T^2}u(l)\right)^2 + \left(\frac{-8\pi^2l}{T^3}u(T)\right)^2} = \sqrt{\left(\frac{4\pi^2}{T^2} * 1mm\right)^2 + \left(\frac{-8\pi^2l}{T^3} * 0,006s\right)^2} = 0,205 \ m/s^2$$

Pod T podstawiliśmy średnią wartość okresu wahadła z Tab. 1. Wartości u(g) dla danych z tabel 2,3,4 to odpowiednio 0,094 m/s^2 , 0,068 m/s^2 , 0,065 m/s^2 .

6.6 Niepewność rozszerzona U(g)

Przyjmując poziom ufności $\mathbf{k}=2$ oraz korzystając z danych z Tab. 1, obliczyliśmy niepewność rozszerzoną U(g) korzystając ze wzoru:

$$U_p = k * u_c(g) = 2 * u_c(g) = 0,410 \ m/s^2$$

Wartości U(g) dla danych z tabel 2,3,4 to odpowiednio 0,188 m/s^2 , 0,136 m/s^2 , 0,130 m/s^2 .

6.7 Porównanie obliczonej wartości przyspieszenia ziemskiego z rzeczywistą

W Krakowie wartość przyspieszenia ziemskiego jest w przybliżeniu równa 9,811 m/s^2 . Wyliczone w doświadczeniu wartości średnie wynoszą kolejno 10,788 m/s^2 , 9,548 m/s^2 , 9,746 m/s^2 , 9,882 m/s^2 . Największa różnica wynosi 9,96% zaś najmniejsza 0,66%. Widać od razu, że pewne pomiary okazały się dokładniejsze, inne troszkę mniej.

6.8 Wykres zależności okresu od długości wahadła T(l)

6.9 Wykres zlinearyzowany T^2 w funkcji l

6.10 Dopasowanie prostej liniowej

Do znalezienia prostej liniowej dopasowanej do wykresu użyliśmy regresji liniowej. Wspomogliśmy się arkuszem kalkulacyjnym, który wyznaczył nam linię dopasowania:

$$y = 4,137x - 0,036$$

Program wyznaczył również niepewności pomiarowe $u(a) = 0,168 \ m/s^2$ oraz $u(b) = 0,046 \ m/s^2$.

6.11 Obliczenie przyspieszenia ziemskiego na podstawie współczynnika nachylenia

Z równości: $T^2 = \frac{4\pi^2 l}{g}$ wynika, że $a = \frac{4\pi^2}{g}$. Po wyprowadzeniu wzoru na g z tego równania mamy:

$$g = \frac{4\pi^2}{a} = \frac{4\pi^2}{4{,}137} \ m/s^2 = 9{,}543 \ m/s^2$$

6.12 Niepewność u(g) na podstawie u(a)

Niepewność u(g) możemy obliczyć przy pomocy wzoru na niepewność złożoną:

$$u(g) = \sqrt{\left(\frac{\partial g}{\partial a} * u(a)\right)^2} = \left|\frac{-4\pi^2}{a^2} * u(a)\right| = \frac{4\pi^2}{4,137^2} * 0,168 \ m/s^2$$
$$= 0,388 \ m/s^2$$

7 Wnioski

Po przeprowadzeniu doświadczenia i dokonaniu wszelkich wyliczeń wyciągneliśmy następujące wnioski:

- 1. Otrzymana wartość przyspieszenia ziemskiego w Krakowie po uwzględnieniu niepewności pomiarowych nie odbiega znacząco od dokładnej wartości przyspieszenia wynoszącej $9,81~m/s^2$. Wynika z tego, że zarówno pomiary jak i wyliczenia zostały wykonane prawidłowo.
- 2. Wielokrotne dokonywanie pomiarów, wraz z wydłużeniem okresu wahadła poprzez wydłużenie nitki znacząco poprawiło dokładność pomiarów, co skutkowało dokładniejszym wynikiem końcowym.
- 3. Dokonywanie pomiaru dla 10 okresów wahadła było doskonałym pomysłem, gdyż znacząco zwiększyło dokładość końcowego wyniku
- 4. Możliwe jest zwiększenie dokładności wszystkich wyników poprzez zastosowanie dokładniejszych przyrządów, czy też postaranie się na wyeliminowanie w jakiś sposób wpływu czynnika ludzkiego na przeprowadzane doświadczenia, jednak za każdym razem będzie wiązało się to ze znacznym wzrostem kosztów takich pomiarów oraz ich czasochłonności. Na nasze potrzeby otrzymana dokładność w porównaniu z czasem poświęconym na wykonanie doświadczenia jest w zupełności wystarczająca.
- 5. Lepszym sposobem obliczenia przyspieszenia ziemskiego okazało się użycie regresji liniowej niż skorzystanie z wzoru $g = \frac{4\pi^2 l}{T^2}$ oraz oszacowanie niepewności złożonej u(g). Wyniki regresji liniowej pozwoliły obliczyć przyspieszenie ziemskie g, które uwzględniając niepewność pomiarową było zgodne z rzeczywistą wartością przyspieszenia. Drugi sposób pozwolił otrzymać taki wynik tylko dla jednego z czterech pomiarów (pomiaru numer 3). Był zatem mniej dokładny, a co za tym idzie, mniej poprawny.
- 6. Arkusz kalkulacyjny w łatwy sposób pozwala nam dopasować prostą do otrzymanych punktów na wykresie. Prosta ta w idealny sposób przechodzi przez 3 punkty odpowiadające za odpowiednio drugi, trzeci i czwarty pomiar. Możemy z tego wywnioskować, że pierwszy pomiar był obarczony największym błędem pomiarowym i najbardziej odbiegał od rzeczywistej wartości przyspieszenia ziemskiego g.