CAPÍTULO IV

APLICACIONES NO LINEALES CON AMPLIFICADORES OPERACIONALES

05/04/2003

Problema 1

A partir del circuito de la figura siguiente, diseñar un comparador trigger-Schmitt con la característica que se muestra a continuación:

Característica $V_o(V_i)$: V_o 5 V $V_t = 1 V$

Datos:

Tensión de ruptura del diodo zener: V_z =3,6 V Tensión de conducción de los diodos: V_{on} =0,7 V Corriente máxima a la salida del A.O.: I_{sc} = 25 mA $R=R_2+R_3=10~k\Omega$

- a) Demostrar que la salida solo acepta valores +5V, -5V.
- b) Calcular los valores de las resistencias del circuito para $V_t = 1V$.
- c) A partir de la corriente máxima a la salida del A.O., calcular R₁
- d) Buscar una solución alternativa para estabilizar la salida con dos diodos zener.

Resultado

b) $R_1 > 400\Omega$, $R_2 = 8 k\Omega$ c) $R_3 = 2k \Omega$

Problema 2

Se desea diseñar un comparador con histéresis con una anchura de ciclo de 1 V centrado a 0 V. Para ello se parte de un circuito previo que se desea aprovechar y que es el que se presenta en la siguiente figura:

Datos:

Tensión umbral del diodo V_{on} = 0,6 V Tensión ruptura zener V_z = 5,1 V

- a) Dibujar la característica (V_x,V_o)
- b) Calcular la anchura y el centro del ciclo de histéresis.
- c) Calcular R₁ para que la potencia máxima disipada sea inferior a 0,1 W en el diodo y de 0,3 W en el Zener.

Para poder conseguir un ciclo de histéresis con centro en 0 V y anchura 1 V, se sugiere el empleo del siguiente circuito previo al anterior:

d) Calcular R_2 , R_3 y V_{ref} para que el conjunto de este circuito y el de la figura anterior tenga una característica (V_i, V_o) con un ciclo de histéresis centrado en 0 V y anchura de 1 V. Dibujar la característica (V_i, V_o) .

Resultado

b) Anchura = 20,3 V, centro = 2,25 V c)
$$R_1 > 134,3 \Omega$$
 d) $R_2/R_3 = 19,3$ $V_{ref} = -0,116$ V

c)
$$R_1 > 134.3 \Omega$$
 d)

d)
$$R_2/R_3 = 19.3$$
 $V_{ref} = -0.116$ V

Problema 3

Calcular la característica $V_0 = f(V_i)$ de los circuitos siguientes:

Datos: $R_1 = 1k\Omega$, $R_2 = 4 k\Omega$, $V_{cc} = 5 V$.

Dato: Suponga los diodos ideales.

Problema 4

El circuito de la figura siguiente es un comparador en el que la relación entre la señal de entrada y la de salida es la de la figura. Demostrar que V_{o2} = -8,55 V y que la pendiente p_2 = -0,01.

Tensión umbral del diodo V_{on}=0.7 V $R_1 = 100 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_3 = 1 \text{ k}\Omega$

Problema 5

Dado el circuito de la figura y suponiendo que los diodos y los amplificadores operacionales son ideales.

Suponiendo V1>V2

- a) ¿Cuales son los diferentes estados de funcionamiento?
- b) ¿Qué condición debe cumplir la tensión de entrada y la tensión de salida en cada estado de funcionamiento?
- c) Dibuja la característica entrada/salida del circuito $V_0 = f(V_i)$.

Problema 6

Dado el circuito de la figura siguiente:

Datos:

Tensión umbral del diodo V_{on} =0.6 VTensión de referencia V_2 constante y mayor que cero.

- a) Justificar los posibles estados de funcionamiento y el margen de la tensión de entrada V_i para el que se producen. Obtener para cada estado la tensión de salida V_o del circuito y las tensiones en los terminales de salida de los amplificadores operacionales AO_1 y AO_2 .
- b) Dibujar la característica $V_0 = f(V_i)$, indicando en ella la evolución de las tensiones de salida de los amplificadores AO_1 y AO_2 en función de V_i .
- c) Dibujar la evolución temporal de V_o para $V_i = V_2 + sen(2\pi t/T)$ (voltios)

Resultado

$$\begin{array}{lll} D_1 \text{ on, } D_2 \text{ off} & V_i \! > \! V_2 & V_0 \! = \! V_i \\ D_1 \text{ off, } D_2 \text{ on} & V_i \! \leq \! V_2 & V_0 \! = \! 2V_2 \! \! - \! V_i \end{array} \label{eq:constraints}$$

Problema 7

Se desea realizar un detector remoto de temperatura desde 0 a 100 °C. Está basado en un circuito integrado AD590 que se comporta como una fuente de corriente que proporciona 1 μA por cada grado de temperatura ambiente.El resto del circuito genera una señal cuya frecuencia depende de esta temperatura.

$$I_S(\mu A) = 273 + T(^{\circ}C)$$

Datos: $R_1 = 10 \text{ k}\Omega$, $R_2 = 54.9 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$, $R_4 = 10 \text{ k}\Omega$, $R_5 = 1.8 \text{ k}\Omega$, $R_6 = 3.6 \text{ k}\Omega$

El interruptor S está cerrado si V_o está a nivel alto y abierto si V_o está a nivel bajo.

- a) Hallar la expresión de V₀₁ en función de la temperatura en °C y el rango de valores de la misma para el rango de medida deseado.
- b) Hallar la expresión de V₀₂(t) en función de la tensión V₀₁ cuando el interruptor S está cerrado y cuando está abierto.
- c) Dibujar la característica salida/entrada del comparador CMP1 V_0 = $f(V_{02})$
- d) Dibujar la evolución temporal de las tensiones V_{02} y V_0 . Suponer que en el instante inicial t=0 el interruptor S está cerrado y la tensión V_{02} (t=0)=0.
- e) Hallar las expresiones del periodo y la frecuencia en función de la temperatura.

Resultado

a) $V_{01} = T/100$, $0 < V_{01} < 1V$

b) S cerrado $V_{02} = V_{01}/2 + V_{01}/4RC * (t-t_i) + V_{02} (t_i)$ S abierto $V_{02} = V_{01}/2 - V_{01}/4RC * (t-t_i) + V_{02}(t_i)$

d) $V_{02} < 10 \text{ V} \rightarrow V_0 = 10 \text{ V}$ $V_{02} > 0 \text{ V} \rightarrow V_0 = 0 \text{ V}$ e) $T_{osc} = 8 \cdot 10^3 \text{ RC/T}$, $f_{osc} = 1.25 \cdot 10^{-4} \text{ T/RC}$

Problema 8

El circuito de la figura es un rectificador de precisión no inversor que utiliza un amplificador operacional convencional A₁ y un comparador con histéresis A₂ cuya característica está representada en la figura. La salida del comparador controla un interruptor S supuesto ideal.

Datos: $R_1 = 10 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$

- a) Para que el funcionamiento sea el previsto (rectificador de precisión) deduzca cual de los dos niveles de salida del comparador (alto o bajo) es el que cierra el interruptor.
- b) Calcular la función $V_0(V_i)$ para valores positivos y negativos de la entrada.
- c) ¿Qué misión cumple la histéresis que tiene el comparador?

Problema 9

El circuito de la siguiente figura se diseña de manera que el LED se encienda cuando la temperatura sea menor que 10 °C o mayor que 50 °C:

Datos: Diodos D_1 y D_2 ideales.

- a) Calcular la expresión de la tensión (v_2-v_1) en función de la temperatura T, suponiendo $\alpha T <<1$, y siendo I despreciable frente a la corriente que circula por R
- b) Si α es igual a 0,004 C⁻¹ y R = 100 Ω calcular el valor de I₀ para que (v₂-v₁) varie entre 20 mV y 100 mV cuando la temperatura varía entre 10 y 50 °C.
- c) Calcular v_i en función de $(v_2\hbox{-} v_1),\,V_{\text{ref}}\,y\,R_g$ en el circuito de la figura.
- d) Obtener el valor de V_{ref} y R_g para que V_i valga 4 V cuando $(v_2-v_1)=20$ mV y 12 V cuando $(v_2-v_1)=100$ mV.
- e) Calcular la característica de transferencia $V_0 = f(V_i)$ y las expresiones de las tensiones umbrales.
- f) Sabiendo que $R_1 = 1 \text{ k}\Omega$. Calcular R_2 y R_3 para que el led se encienda cuando la temperatura es menor que 10 °C o mayor que 50 °C.
- g) Calcular el valor de las resistencias $R_B y R_C$ si cuando el led se enciende se sabe que: $I_C = 10 \text{ mA}$, $V_{BE} = 0.8 \text{ V}$, $V_{CE} = 0.4 \text{ V}, V_{led} = 1.6 \text{ V}, \beta_F = 20.$

Resultado

- a) $v_2 v_1 = RI_0/2 * \alpha T$
- $\begin{array}{ll} c) \; v_i \!\!=\! 100 / R_g (k \Omega) \; * \; (v_2 \!\!-\! v_1) + V_{ref} & f) \; R_2 \!\!=\! 4 \; k \; \Omega, \; R_3 \!\!=\! 2 \; k \; \Omega \\ d) \; V_{ref} \!\!=\! 2 \; V, \; R_g \!\!=\! 1 \; k \; \Omega & g) \; R_B \!\!=\! 26,4 \; k \; \Omega, \; R_C \!\!=\! 1.2 \\ \end{array}$

- b) $I_0 = 10 \text{ mA}$
- g) R_B = 26,4 k Ω, R_C = 1.2 k Ω

Problema 10

Dado el circuito de la figura:

- a) Calcular V_{01} para $V_i > 0$ V y para $V_i < 0$ V, indicar el estado de los diodos. b) Si V_i es una señal como la representada en la figura siguiente, dar valores a R_b y R_c para que el transistor trabaje en corte y saturación.

Datos $t_1 = 0.4 \text{ ms}$ T=1 ms

c) Dibujar $V_c(t)$ y $V_0(t)$. Vc(0) = 10V

Resultado

- a) $V_i > 0$ $V_{01} = 0$ V, $V_i < 0$ $V_{01} = -V_i$
- b) R_b = 2.1 k Ω, R_c = 50 Ω