გზების დახურვა

ქალაქ სურაბაიაში არის N ცალი კვანძი გადანომრილი 0-დან (N-1)-მდე. კვანძები დაკავშირებულია N-1 ცალი ორმხრივი გზით, გადანომრილი 0-დან (N-2)-მდე ისე, რომ ნებისმიერი ორ კვანძი დაკავშირებულია უნიკალური მარშრუტით. i-ური გზა $(0 \le i \le N-2)$ აკავშირებს U[i] და V[i] კვანძებს.

გარემოს დაცვაზე ცნობიერების ასამაღლებლად, პაკ დენგკლეკი, როგორც სურაბაიას მერი, გეგმავს უმანქანო დღე მოაწყოს. ღონისძიების წასახალისებლად, პაკ დენგკლეკი ორგანიზებას გაუკეთებს გზების დახურვას. პაკ დენგკლეკი ჯერ აირჩევს არაუარყოფით მთელ რიცხვ k-ს, შემდეგ დახურავს ზოგიერთ გზას ისე, რომ თითოეული კვანძი უშუალოდ დაკავშირებული იქნება **მაქსიმუმ** k გზასთან, რომელიც არ არის დახურული. i-ური გზის დახურვის ფასია W[i].

დაეხმარეთ პაკ დენგკლეკს იპოვოს მინიმალური ჯამური ფასი, რომელიც საჭიროა გზების დასახურად თითოეული არაუარყოფითი მთელი k-სთვის ($0 \le k \le N-1$).

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი ფუნქციის იმპლემენტაცია.

int64[] minimum_closure_costs(int N, int[] U, int[] V, int[] W)

- N: კვანძების რაოდენობა.
- ullet U და V: N-1 სიგრძის მასივი, სადაც U[i] და V[i] კვანძები დაკავშირებულია i გზით.
- ullet W: N-1 სიგრძის მასივი, სადაც W[i] წარმოადგენს i გზის დახურვის ფასს.
- ამ ფუნქციამ უნდა დააბრუნოს N სიგრძის მასივი. ყოველი k ($0 \le k \le N-1$), სადაც k-ური ელემენტი არის გზების დახურვის მინიმალური ჯამური ფასი, რომლის შემდეგაც თითოეული კვანძი დაკავშირებულია არაუმეტეს k დაუხურავ გზასთან.
- ეს ფუნქცია გამოიძახება მხოლოდ ერთხელ.

მაგალითები

მაგალითი 1

განვიხილოთ შემდეგი გამოძახება:

minimum_closure_costs(5, [0, 0, 0, 2], [1, 2, 3, 4], [1, 4, 3, 2])

ეს ნიშნავს, რომ მოცემულია 5 კვანძი და 4 გზა, რომლებიც აერთებენ შემდეგ კვანძთა წყვილებს $(0,1),\,(0,2),\,(0,3)$ და (2,4). ამ გზების დახურვის ფასებია შესაბამისად $1,\,4,\,3$ და 2.

მინიმალური ფასების მისაღებად:

- ullet თუ k=0, პაკ დენგკლეკმა უნდა დახუროს ყველა გზა და ჯამური ფასი იქნება 1+4+3+2=10;
- ullet თუ k=1, უნდა დაიხუროს გზა 0 და გზა 1 ჯამური ფასით 1+4=5;
- თუ k=2, უნდა დაიხუროს გზა 0 ჯამური ფასით 1;
- ullet თუ k=3 ან k=4, არცერთი გზის დახურვა საჭირო არ არის.

შესაბამისად, ფუნქცია minimum_closure_costs უნდა დააბრუნოს [10,5,1,0,0].

მაგალითი 2

განვიხილოთ შემდეგი გამოძახება:

ეს ნიშნავს, რომ მოცემულია 4 კვანძი და 3 გზა, რომლებიც აერთებენ შემდეგ კვანძთა წყვილებს (0,1), (2,0), and (0,3) ამ გზების დახურვის ფასებია შესაბამისად 5, 10 და 5.

To obtain the minimum costs:

- ullet თუ k=0, უნდა დაიხუროს ყველა გზა. ჯამური ფასი: 5+10+5=20;
- ullet თუ k=1, უნდა დაიხუროს გზა 0 და გზა 2. ჯამური ფასი: 5+5=10;
- თუ k=2, უნდა დაიხუროს გზა 0 ან გზა 2. ფასი: 5;
- თუ k=3, არცერთი გზის დახურვა საჭირო არ არის.

შესაბამისად, ფუნქციამ minimum_closure_costs უნდა დააბრუნოს [20,10,5,0].

შეზღუდვები

- $2 \le N \le 100\,000$
- ullet $0 \leq U[i], V[i] \leq N-1$ (ყველა $0 \leq i \leq N-2$)
- არსებობს გზა კვანძთა ნებისმიერ წყვილისათვის .
- ullet $1 \leq W[i] \leq 10^9$ (ყველა $0 \leq i \leq N-2$)

ქვეამოცანები

- 1. (5 ქულა) U[i]=0 (ყველა $0\leq i\leq N-2$)
- 2. (7 ქულა) U[i]=i, V[i]=i+1 (ყველა $0\leq i\leq N-2$)
- 3. (14 ქულა) $N \le 200$
- 4. (10 ქულა) $N \leq 2000$
- 5. (17 ქულა) W[i] = 1 (ყველა $0 \le i \le N-2$)
- 6. (25 ქულა) $W[i] \leq 10$ (ყველა $0 \leq i \leq N-2$)
- 7. (22 ქულა) დამატებითი შეზღუდვების გარეშე.

სანიმუშო გრადერი

სანიმუშო გრადერი კითხულობს მონაცემებს შემდეგი ფორმატით:

- სტრიქონი 1: N
- ullet სტრიქონი 2+i ($0 \le i \le N-2$): $U[i] \ V[i] \ W[i]$

სანიმუშო გრადერს ერთადერთ სტრიქონში გამოაქვს მონაცემები, რომელსაც აბრუნებს: minimum_closure_costs.