实验五

崔士强 PB22151743

实验三数据

下面使用实验三的数据,对 diagnosis 进行预测。

数据读取及预处理

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	 int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	568 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	567 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	567 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	568 non-null	float64
18	concavity_se	568 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	fractal_dimension_se	568 non-null	float64
22	radius_worst	568 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	568 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst	569 non-null	float64
dtyne	ac: flos+64(30) in+64(1)	ahiac+(1)	

dtypes: float64(30), int64(1), object(1)

memory usage: 142.4+ KB

None

		diagnosis	radius_mean	texture_mean	perimeter_m	ean area_mea
n 0 0 1 0 2 0 3	842302	M	17.99	10.38	122	.80 1001.
	842517	M	1 20.57	17.77	132	.90 1326.
	84300903	M	19.69	21.25	130	.00 1203.
	84348301	M	11.42	20.38	77	.58 386.
4 0	84358402	Μ	1 20.29	14.34	135	.10 1297.
\	smoothne	ss_mean c	compactness_mean	concavity_m	nean concave	points_mean
\		0 11040	0 27760	0.0	0001	0 14710
0		0.11840	0.27760		8001	0.14710
1		0.08474	0.07864		0869	0.07017
2		0.10960	0.15990		.974	0.12790
3		0.14250	0.28390		2414	0.10520
4		0.10030	0.13280	0.1	.980	0.10430
	rad	ius_worst	texture_worst	perimeter_wo	rst area_wo	rst \
0		25.38	17.33	•	.60 2019	
1		24.99	23.41		3.80 195	
2		23.57	25.53		2.50 1709	
3		14.91	26.50			7 . 7
3 4	• • •					
4	• • • •	22.54	16.67	152	2.20 157	0.0
rs		ss_worst	compactness_wor	st concavity	_worst conc	ave points_wo
0 65		0.1622	0.66	56	0.7119	0.2
1 86		0.1238	0.18	66	0.2416	0.1
2 43		0.1444	0.42	45	0.4504	0.2
3 57.		0.2098	0.86	63	0.6869	0.2
4 62		0.1374	0.20	50	0.4000	0.1
	symmetry_worst fractal_dimension_worst					
0	-	_ 0.4601	-	_ .11890		
1		0.2750		.08902		
2		0.3613		.08758		
3		0.6638		.17300		
4		0.2364		.07678		
			· ·			

[5 rows x 32 columns]

主实验

对于主实验, 采取下面两种算法

1. 支持向量机(SVM)

SVM的目的是找到一个超平面,它可以有效地分离不同类别的数据点,同时尽可能地最大化不同类别之间的间隔。SVM对于小到中等数据集表现良好,尤其是在数据维度较高时。

参考文献:

- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
- 1. 梯度提升树(Gradient Boosting Machines, GBM)

GBM通过逐步修正前一个模型的残差来增强模型的预测能力,在处理各种统计分类和回归问题时表现出色。GBM特别适用于处理复杂的非线性关系。

参考文献:

• Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of statistics, 1189-1232.

SVM Classification Report:

SVM Classification Report:						
	precision	recall	f1-score	support		
В	0.94	0.98	0.96	63		
М	0.98	0.92	0.95	49		
accuracy			0.96	112		
macro avg	0.96	0.95	0.95	112		
weighted avg	0.96	0.96	0.96	112		
GBM Classification Report:						
	precision	recall	f1-score	support		
В	0.94	0.95	0.94	63		
М	0.94	0.92	0.93	49		
accuracy			0.94	112		
macro avg	0.94	0.94	0.94	112		
weighted avg	0.94	0.94	0.94	112		

参数优化

```
Best SVM Parameters: {'C': 10, 'gamma': 'scale', 'kernel': 'linear'}
Best SVM Score: 0.9620224719101124
Best GBM Parameters: {'learning rate': 0.5, 'max depth': 3, 'n estimator
s': 100}
Best GBM Score: 0.966541822721598
SVM Test Set Performance:
             precision recall f1-score support
          В
                 0.94
                         1.00
                                    0.97
                                                63
          М
                 1.00
                           0.92
                                    0.96
                                                49
                                     0.96
   accuracy
                                               112
                           0.96
                                    0.96
  macro avg
                 0.97
                                               112
weighted avg
                 0.97
                           0.96
                                    0.96
                                               112
GBM Test Set Performance:
             precision recall f1-score
                                           support
                          0.95
          В
                 0.94
                                    0.94
                                                63
          М
                 0.94
                           0.92
                                    0.93
                                                49
                                     0.94
                                               112
   accuracy
                           0.94
  macro avg
                0.94
                                    0.94
                                               112
                 0.94
                           0.94
                                    0.94
                                               112
weighted avg
```

与之前的结果基本一致。

实验四数据

下面使用实验四的数据,对 Class 进行预测。

数据读取及预处理

对数据进行预处理,过程包括去除缺失值,转换为独热向量等

```
Columns with missing values:
['node-caps', 'breast-quad']
Value distribution for 'tumor-size' before corrections:
tumor-size
30-34
          57
25-29
          51
20-24
          48
          29
15–19
14-0ct
          28
40-44
          22
35-39
          19
0 - 4
          8
          8
50-54
          4
9-May
45-49
           3
Name: count, dtype: int64
```

```
Value distribution for 'inv-nodes' before corrections:
inv-nodes
0-2
          209
5-Mar
           34
           17
8-Jun
            7
11-Sep
15-17
            6
            3
14-Dec
24-26
            1
Name: count, dtype: int64
Corrected value distribution for 'tumor-size':
tumor-size
30-34
         57
25-29
         51
20-24
         48
15-19
         29
10 - 14
         28
40-44
         22
35-39
         19
0 - 4
          8
50-54
          8
5-9
          4
          3
45-49
Name: count, dtype: int64
Corrected value distribution for 'inv-nodes':
inv-nodes
0-2
         209
3-5
          34
6-8
          17
9-11
          7
15-17
           6
12-14
           3
           1
24-26
Name: count, dtype: int64
0 Class=no-recurrence-events
1 Class=recurrence-events
2 age=10-19
3 age=20-29
4 age=30-39
5 age=40-49
6 age=50-59
7 age=60-69
8 age=70-79
9 age=80-89
10 age=90-99
11 menopause=lt40
12 menopause=ge40
13 menopause=premeno
14 tumor-size=0-4
15 tumor-size=5-9
16 tumor-size=10-14
17 tumor-size=15-19
18 tumor-size=20-24
19 tumor-size=25-29
20 tumor-size=30-34
```

```
21 tumor-size=35-39
22 tumor-size=40-44
23 tumor-size=45-49
24 tumor-size=50-54
25 tumor-size=55-59
26 inv-nodes=0-2
27 inv-nodes=3-5
28 inv-nodes=6-8
29 inv-nodes=9-11
30 inv-nodes=12-14
31 inv-nodes=15-17
32 inv-nodes=18-20
33 inv-nodes=21-23
34 inv-nodes=24-26
35 inv-nodes=27-29
36 inv-nodes=30-32
37 inv-nodes=33-35
38 inv-nodes=36-39
39 node-caps=yes
40 node-caps=no
41 deg-malig=1
42 deg-malig=2
43 deg-malig=3
44 breast=left
45 breast=right
46 breast-quad=left_up
47 breast-quad=left_low
48 breast-quad=right_up
49 breast-quad=right_low
50 breast-quad=central
51 irradiat=yes
52 irradiat=no
      id Class
                       menopause tumor-size inv-nodes
                                                            node-caps
                                                                        deg-mal
                  age
ig
   \
0
                    4
                               13
                                            20
                                                        26
                                                                    40
43
1
       1
                                                        26
               0
                    5
                               13
                                            18
                                                                    40
42
       2
2
               0
                    5
                               13
                                            18
                                                        26
                                                                    40
42
3
       3
                    7
                               12
                                            17
                                                        26
                                                                    40
42
4
               0
                    5
                               13
                                                        26
                                                                    40
       4
                                            14
42
                              . . .
                                                       . . .
. .
                                           . . .
                                                                   . . .
. . .
     281
               1
                    4
                               13
                                            20
                                                        26
281
                                                                    40
42
282
     282
               1
                               13
                                            18
                                                        26
                                                                    40
43
               1
                    7
283
     283
                               12
                                                        26
                                                                    40
                                            18
41
284
     284
               1
                    5
                               12
                                            20
                                                        27
                                                                    40
```

	breast	breast-quad	irradiat
0	44	47	52
1	45	48	52
2	44	47	52
3	45	46	52
4	45	49	52
281	44	46	52
282	44	46	51
283	45	46	52
284	44	47	52
285	44	47	52

[277 rows x 11 columns]

主实验

我们选择两种算法模型进行比较:

- 逻辑回归: 广泛用于二分类问题的线性模型, 它预测的是观察属于特定类别的概率。参考资料: Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression.
- 随机森林: 一个基于决策树的集成学习算法,通过构建多棵树并取它们的多数投票来提高预测准确性和稳定性。参考资料: Breiman, L. (2001). Random Forests. Machine Learning.

我们使用所有可用特征,因为逻辑回归和随机森林能够较好地处理高维数据,并从中选择重要的特征。

在这一步,第一次尝试的结果是准确度达到100%(在这里发现的原因是我先做了实验四数据),更换多种方法及模型均无果。最终发现原因是没有把id从特征中去除。

逻辑回归模型评估结果!

逻辑 凹归侯至许怕绐未。						
	precision	recall	f1-score	support		
0	0.73	0.95	0.82	37		
1	0.75	0.32	0.44	19		
accuracy			0.73	56		
macro avg	0.74	0.63	0.63	56		
weighted avg	0.74	0.73	0.69	56		
随机森林模型评估结果:						
随机森林模型评估	i结果 :					
随机森林模型评估	话果 : precision	recall	f1-score	support		
随机森林模型评估		recall 0.78	f1-score 0.73	support 37		
	precision					
0	precision 0.69	0.78	0.73	37		
0 1 accuracy	precision 0.69 0.43	0.78 0.32	0.73 0.36 0.62	37 19 56		
0 1	precision 0.69	0.78	0.73 0.36	37 19		

尝试使用k折交叉验证,结果如下

逻辑回归交叉验证评估结果:

fit_time: 0.006 (+/- 0.009)
score_time: 0.002 (+/- 0.000)
test_accuracy: 0.736 (+/- 0.039)
test_precision: 0.720 (+/- 0.044)
test_recall: 0.736 (+/- 0.039)
test_f1: 0.702 (+/- 0.039)

随机森林交叉验证评估结果:

fit_time: 0.041 (+/- 0.001)
score_time: 0.005 (+/- 0.001)
test_accuracy: 0.736 (+/- 0.027)
test_precision: 0.717 (+/- 0.040)
test_recall: 0.736 (+/- 0.027)
test_f1: 0.715 (+/- 0.049)

参数优化

Fitting 3 folds for each of 12 candidates, totalling 36 fits

最佳参数组合: {'max_depth': 10, 'n_estimators': 50}

最佳交叉验证分数: 0.7919289152165865

最佳模型评估结果:

	precision	recall	f1-score	support
0 1	0.69 0.45	0.84 0.26	0.76 0.33	37 19
accuracy macro avg	0.57	0.55	0.64 0.54	56 56
weighted avg	0.61	0.64	0.61	56

略有提升。