

Contents

- Singapore's National Recycling Programme
 - Launched in 2001
 - Blue recycling bins and recycling collection services
 - Encourage household recycling 3Rs
- Sustainable Singapore Blueprint
 - 30% domestic recycling rate by 2030
- Total amount of plastic waste generated for 2022
 - 1 millions tones
 - Only about 6% is recycled...

- Different plastic resins have different properties
- Due to economy of scale, actual recycling process does not happen in Singapore
- By international regulation (Basel Convention)
 - limit of < 0.5% contamination

Context

- Some knowledge necessary for individuals to recycle effectively
- To nudge singapore towards 30% recycling rate by 2030
- NEA is exploring new ways to encouraging singapore to recycle on top of existing campaigns and posters
- NEA Information Technology Division has been tasked with developing a proof of concept project.

<u>Purpose</u>

 Determine if it there is a feasible way to assist the general public in their recycling activities in particular, determining which plastics are recyclable

How

By utilising computer vision in a binary classification model to classify whether
a plastic material is recyclable or not by recognising the Resin Identification
markings on the plastic material, thereby reducing the confusion and knowledge
requirement for the layperson to recycle effectively.

Metric

 Scoring metric used in classification is F1 score with at least 80% being used as as a threshold of success for the project to be considered feasible for further pursuit.

- Obtained on kaggle & mixed in with personally taken images.
 - **Separated in individual class**
- Visualised within the environment for verification
 - Logos have varying colours, shadings and styles
 - Resolution is 200 x 200 pixels.

Sample: Type 2 Symbol

Sample: Type 6 Symbol

Sample: Type 7 Symbol

Exploratory Analysis

- **Imbalanced** dataset
- Number of images per class fluctuates
- Less non-recyclables images in the data set

Average Pixel count

- Distribution of images within each class
- Some classes (2,3,4, 6,7) are not normally distributed due the the lower image counts

Data Augmentation

- To increase the number of images
- Introduce more variations and help the model generalise better
 - o Brightness, Contrast
 - Shift, Scale, Rotate
 - Better reflects
 conditions that may
 occur in life.

- Data is augmented
- Classes balanced
- Number of images per class similar
- Still less non-recyclables images overall

Average Pixel count

- Augmentation has helped to fill in some gaps
- classes 3, 4 &,6 still show quite a significant difference from a normal distribution

Collapsing back into binary form

 Data imbalance of lesser non recyclables images.

43 Modelling

Pretrained models from 3 types of network architecture used

- MobileNet
 - Computationally efficient -> Suitable for mobile devices
 - May sacrifice some accuracy
- EfficientNet
 - Offers better accuracy than MobileNet
 - Requires more computational resources than MobileNet
- ResNet
 - Higher accuracy from deeper learning from residuals(errors)
 - Requires significantly more computational resources

A Modelling results

No.	Model	Training F1 Score	Validation F1 Score
1	MobileNetV2 + dropout added	82.4%	81.0%
2	MobileNetV3 + dropout added	81.3%	80.9%
3	EfficientNetV2M + dropout added	81.2%	80.2%
4	EfficientNetV2M	82.5%	79.4%
5	ResNet50 + dropout added	82.7%	79.1%

A Modelling results

No.	Model	Training F1 Score	Validation F1 Score
1	MobileNetV2 + dropout added	82.4%	81.0%
2	MobileNetV3 + dropout added	81.3%	80.9%
3	EfficientNetV2M + dropout added	81.2%	80.2%
4	EfficientNetV2M	82.5%	79.4%
5	ResNet50 + dropout added	82.7%	79.1%

(2) Modelling results

No.	Model	Training F1 Score	Validation F1 Score
1	MobileNetV2 + dropout added	82.4%	81.0%
2	MobileNetV3 + dropout added	81.3%	80.9%
3	EfficientNetV2M + dropout added	81.2%	80.2%
4	EfficientNetV2M	82.5%	79.4%
5	ResNet50 + dropout added	82.7%	79.1%

43 Modelling results

Model 2: Score 80.9% (MobileNetV3 + dropout added)

Proof of concept: local deployment

Upload an image in the box below to begin.

Drag and drop file here

Limit 200MB per file • JPG, PNG, JPEG

Browse files

Step 1: Upload a file from a local drive or drag an image from browser

Step 2: Wait for result of classification

Please use a picture with the symbol framed as big as possible

Disclaimer: Still in beta, classification is not perfect.

Classifying plastic resin codes recycling

Upload an image in the box below to begin.

Drag and drop file here

Limit 200MB per file • JPG, PNG, JPEG

IMG 4237.JPG 180.1KB

Uploaded image "IMG_4237.JPG": Recyclable type

Conclusion

- Selected model able to classify the "recyclability" fairly well.
- Modelling score of 80% meets the threshold of success
- More images have to be sourced to improve the dataset

Future works

- Multiclass classification,
 - o 7 symbols
 - Plastics and all the other symbols
- Localisation of the symbols on images.
 - Facilitate image/video capture
- Explore SSD models for faster processing for multiple items.

Thanks!