CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 15

Samson Zhou

Previously in the Streaming Model

- Reservoir sampling
- Heavy-hitters
 - Misra-Gries
 - CountMin
 - CountSketch
- Moment estimation
 - AMS algorithm

- Suppose we have an insertion-deletion stream of length $m=\Theta(n)$ and at the end we are promised there are at most k nonzero coordinates
- Goal: Recover the k nonzero coordinates and their frequencies

 Anomaly detection: Noiseless sparse recovery can be used to identify anomalies or outliers in streaming data

 By modeling normal behavior as a sparse signal, deviations from this model can be detected in real-time. This is valuable for cybersecurity, fraud detection, and monitoring network traffic for unusual patterns.

 Network traffic analysis: Noiseless sparse recovery can be applied to analyze network traffic in real-time, identifying patterns and trends, and helping in network management, intrusion detection, and quality of service (QoS) optimization

 Real-time compressive imaging: Compressive imaging techniques can be applied to streaming video or image data. By capturing and processing fewer measurements, noiseless sparse recovery can provide real-time reconstruction of high-resolution images or videos.

"Deep Orthogonal Transform Feature for Image Denoising", Shin, et. al. [2020]

 Online natural language processing (NLP): In real-time natural language processing tasks, noiseless sparse recovery can assist in extracting relevant features or patterns from streaming text data, making it useful for sentiment analysis, topic modeling, and summarization

• Suppose we have an insertion-deletion stream of length $m = \Theta(n)$

• Suppose at the end we are promised there are at most k nonzero coordinates

How do we recover the vector?

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_1 : "Increase f_6 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_2 : "Increase f_5 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_3 : "Increase f_2 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_4 : "Increase f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_5 : "Increase f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_6 : "Increase f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_7 : "Increase f_2 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_8 : "Increase f_8 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_9 : "Decrease f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k=1 and we are promised the coordinate has frequency 1

 u_{10} : "Decrease f_5 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{11} : "Increase f_1 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{12} : "Increase f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k=1 and we are promised the coordinate has frequency 1

 u_{13} : "Decrease f_6 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{14} : "Decrease f_8 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{15} : "Decrease f_1 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{16} : "Decrease f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{17} : "Decrease f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k=1 and we are promised the coordinate has frequency 1

 u_{18} : "Decrease f_2 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1

 u_{19} : "Decrease f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate has frequency 1
- What is left?

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k=1 and we are promised the coordinate has frequency 1
- What is left?

$$f_2 = 1$$

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k=1 and we are promised the coordinate has frequency 1

Algorithm: Keep running sum of all the coordinates

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k=1 and we are promised the coordinate has frequency 1

- Algorithm: Keep running sum of all the coordinates
- Write each insertion to coordinate $c_i \in [n]$ as $u_i \leftarrow (s_i = 1, c_i)$
- Write each deletion to coordinate $c_i \in [n]$ as $u_i \leftarrow (s_i = -1, c_i)$

- Suppose k = 1 and we are promised the coordinate j has frequency 1
- Algorithm: Keep running sum of all the coordinates
- Write each insertion to coordinate $c_i \in [n]$ as $u_i \leftarrow (s_i = 1, c_i)$
- Write each deletion to coordinate $c_i \in [n]$ as $u_i \leftarrow (s_i = -1, c_i)$

• Running sum of coordinates $\sum_{i \in [m]} s_i c_i = j$

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

Algorithm: Keep running sum of all the coordinates?

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 Algorithm: Keep running sum of all the coordinates AND a different linear combination of all the coordinates

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 Algorithm: Keep running sum of all the coordinates AND a different linear combination of all the coordinates

• Keep $\sum_{i \in [m]} s_i c_i$ and $\sum_{i \in [m]} s_i c_i^2$

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_1 : "Increase f_6 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_2 : "Increase f_5 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_3 : "Increase f_2 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_4 : "Increase f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_5 : "Increase f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_6 : "Increase f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_7 : "Increase f_2 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_8 : "Increase f_8 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_9 : "Decrease f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{10} : "Decrease f_5 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{11} : "Increase f_1 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{12} : "Increase f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{13} : "Decrease f_6 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{14} : "Decrease f_8 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{15} : "Decrease f_1 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{16} : "Decrease f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{17} : "Decrease f_3 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1

 u_{18} : "Decrease f_7 "

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$\sum_{i \in [m]} s_i c_i = 4 \text{ and } \sum_{i \in [m]} s_i c_i^2 = 8$$

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$\sum_{i \in [m]} s_i c_i = 4 \text{ and } \sum_{i \in [m]} s_i c_i^2 = 8$$

• We know $\sum_{i \in [m]} s_i c_i = j \cdot f_j$ and $\sum_{i \in [m]} s_i c_i^2 = j^2 \cdot f_j$

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$\sum_{i \in [m]} s_i c_i = 4 \text{ and } \sum_{i \in [m]} s_i c_i^2 = 8$$

- We know $\sum_{i \in [m]} s_i c_i = j \cdot f_j$ and $\sum_{i \in [m]} s_i c_i^2 = j \cdot f_j^2$
- So $f_i = 2$ and j = 2

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose k = 1 and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$\sum_{i \in [m]} s_i c_i = 4 \text{ and } \sum_{i \in [m]} s_i c_i^2 = 8$$

- We know $\sum_{i \in [m]} s_i c_i = j \cdot f_j$ and $\sum_{i \in [m]} s_i c_i^2 = j \cdot f_j^2$
- So $f_i = 2$ and j = 2

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	2	0	0	0	0	0

• Suppose at the end we are promised there are at most k nonzero coordinates

• Algorithm for k = 1: Keep running sum of all the coordinates AND a different linear combination of all the coordinates

• Suppose at the end we are promised there are at most k nonzero coordinates

• Algorithm: Keep 2k running sum of different linear combinations of all the coordinates

• We have 2k equations and 2k unknown variables

Correctness can be shown (not quite linear algebra)

• Suppose at the end we are promised there are at most k nonzero coordinates

• Algorithm: Keep 2k running sum of different linear combinations of all the coordinates

• Space: O(k) words of space