

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Coping with NP-completeness

- Q. Suppose I need to solve an **NP**-hard problem. What should I do?
- A. Sacrifice one of three desired features.
 - i. Solve arbitrary instances of the problem.
 - ii. Solve problem to optimality.
 - iii. Solve problem in polynomial time.

ρ -approximation algorithm.

- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Load balancing

Input. m identical machines; n jobs, job j has processing time t_j .

- Job *j* must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i.

The load of machine i is $L_i = \sum_{j \in J(i)} t_j$.

Def. The makespan is the maximum load on any machine $L = \max_i L_i$.

Load balancing. Assign each job to a machine to minimize makespan.

Load balancing on 2 machines is NP-hard

Claim. Load balancing is hard even if only 2 machines.

Pf. Number-Partitioning \leq_P Load-Balance.

Load balancing: list scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, t_1, t_2, ..., t_n) {
   for i = 1 to m {
      J(i) \leftarrow \emptyset jobs assigned to machine i
   for j = 1 to n \{
                       machine i has smallest load
      i = argmin_k L_k
      J(i) \leftarrow J(i) \cup \{j\}  assign job j to machine i
                             ← update load of machine i
      L_i \leftarrow L_i + t_i
   return J(1), ..., J(m)
}
```

Implementation. $O(n \log m)$ using a priority queue.

Theorem. [Graham 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L^* .

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. The optimal makespan $L^* \ge \frac{1}{m} \sum_j t_j$. Pf.

- The total processing time is $\Sigma_i t_i$.
- One of m machines must do at least a 1/m fraction of total work. \blacksquare

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L_i of bottleneck machine i.
 - Let *j* be last job scheduled on machine *i*.
 - When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \implies L_i - t_j \le L_k$ for all $1 \le k \le m$.

Theorem. Greedy algorithm is a 2-approximation.

- Pf. Consider load L_i of bottleneck machine i.
 - Let *j* be last job scheduled on machine *i*.
 - When job j assigned to machine i, i had smallest load. Its load before assignment is $L_i - t_j \implies L_i - t_j \le L_k$ for all $1 \le k \le m$.
 - Sum inequalities over all *k* and divide by *m*:

$$L_i - t_j \leq \frac{1}{m} \sum_k L_k$$

$$= \frac{1}{m} \sum_k t_k$$
Lemma 2 \longrightarrow \leq L^*

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m.

list scheduling makespan = 19

- Q. Is our analysis tight?
- A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m.

Load balancing: LPT rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling(m, n, t<sub>1</sub>,t<sub>2</sub>,...,t<sub>n</sub>) {
   Sort jobs so that t_1 \ge t_2 \ge ... \ge t_n
   for i = 1 to m {
      L_i \leftarrow 0 load on machine i
       J(i) \leftarrow \emptyset jobs assigned to machine i
   }
   for j = 1 to n \{
      J(i) \leftarrow J(i) \cup \{j\} assign job j to machine i
      L_i \leftarrow L_i + t_i update load of machine i
   }
   return J(1), ..., J(m)
```

Load balancing: LPT rule

Observation. If at most m jobs, then list-scheduling is optimal.

Pf. Each job put on its own machine. •

Lemma 3. If there are more than m jobs, $L^* \ge 2t_{m+1}$. Pf.

- Consider first m+1 jobs t_1, \ldots, t_{m+1} .
- Since the t_i 's are in descending order, each takes at least t_{m+1} time.
- There are m+1 jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. \blacksquare

Theorem. LPT rule is a 3/2-approximation algorithm.

Pf. Same basic approach as for list scheduling.

$$L_{i} = \underbrace{(L_{i} - t_{j})}_{\leq L^{*}} + \underbrace{t_{j}}_{\leq \frac{1}{2}L^{*}} \leq \frac{3}{2}L^{*}.$$

Lemma 3

(by observation, can assume number of jobs > m)

Load Balancing: LPT rule

- Q. Is our 3/2 analysis tight?
- A. No.

Theorem. [Graham 1969] LPT rule is a 4/3-approximation.

Pf. More sophisticated analysis of same algorithm.

- Q. Is Graham's 4/3 analysis tight?
- A. Essentially yes.

Ex: m machines, n = 2m + 1 jobs, 2 jobs of length m, m + 1, ..., 2m - 1 and one more job of length m.

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Center selection problem

Input. Set of *n* sites $s_1, ..., s_n$ and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.

Center selection problem

Input. Set of *n* sites $s_1, ..., s_n$ and an integer k > 0.

Center selection problem. Select set of k centers C so that maximum distance r(C) from a site to nearest center is minimized.

Notation.

- dist(x, y) = distance between sites x and y.
- $dist(s_i, C) = \min_{c \in C} dist(s_i, c) = distance from s_i$ to closest center.
- $r(C) = \max_{i} dist(s_i, C) = \text{smallest covering radius.}$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

- dist(x, x) = 0 [identity]
- dist(x, y) = dist(y, x) [symmetry]
- $dist(x, y) \le dist(x, z) + dist(z, y)$ [triangle inequality]

Center selection example

Ex: each site is a point in the plane, a center can be any point in the plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

Greedy algorithm: a false start

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center selection: greedy algorithm

Repeatedly choose next center to be site farthest from any existing center.

Property. Upon termination, all centers in C are pairwise at least r(C) apart. Pf. By construction of algorithm.

Center selection: analysis of greedy algorithm

Lemma. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$. Pf. [by contradiction] Assume $r(C^*) < \frac{1}{2} r(C)$.

- For each site $c_i \in C$, consider ball of radius $\frac{1}{2} r(C)$ around it.
- Exactly one c_i^* in each ball; let c_i be the site paired with c_i^* .
- Consider any site s and its closest center $c_i^* \in C^*$.
- $dist(s, C) \leq dist(s, c_i) \leq dist(s, c_i^*) + dist(c_i^*, c_i) \leq 2r(C^*)$.
- Thus, $r(C) \leq 2r(C^*)$. $r(C^*)$ since c_i^* is closest center Δ -inequality

Center selection

Lemma. Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.

Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Dominating set reduces to center selection

Theorem. Unless $\mathbf{P} = \mathbf{NP}$, there no ρ -approximation for center selection problem for any $\rho < 2$.

Pf. We show how we could use a $(2 - \varepsilon)$ approximation algorithm for CENTER-SELECTION selection to solve DOMINATING-SET in poly-time.

- Let G = (V, E), k be an instance of Dominating-Set.
- Construct instance G' of CENTER-SELECTION with sites V and distances
 - dist(u, v) = 1 if $(u, v) \in E$
 - dist(u, v) = 2 if $(u, v) \notin E$
- Note that G' satisfies the triangle inequality.
- *G* has dominating set of size *k* iff there exists *k* centers C^* with $r(C^*) = 1$.
- Thus, if G has a dominating set of size k, a (2ε) -approximation algorithm for Center-Selection would find a solution C^* with $r(C^*) = 1$ since it cannot use any edge of distance 2.

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Weighted vertex cover

Definition. Given a graph G = (V, E), a vertex cover is a set $S \subseteq V$ such that each edge in E has at least one end in S.

Weighted vertex cover. Given a graph *G* with vertex weights, find a vertex cover of minimum weight.

weight =
$$2 + 2 + 4$$

weight = 11

Pricing method

Pricing method. Each edge must be covered by some vertex. Edge e = (i, j) pays price $p_e \ge 0$ to use both vertex i and j.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex
$$i$$
: $\sum_{e=(i,j)} p_e \le w_i$

Fairness lemma. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$.

Pf.
$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S). \blacksquare$$
 each edge e covered by at least one node in S sum fairness inequalities for each node in S

Pricing method

Set prices and find vertex cover simultaneously.

WEIGHTED-VERTEX-COVER (G, w)

$$S \leftarrow \emptyset$$
.

FOREACH $e \in E$

$$p_e \leftarrow 0$$
.

$$\sum_{e=(i,j)} p_e = w_i$$

WHILE (there exists an edge (i, j) such that neither i nor j is tight)

Select such an edge e = (i, j).

Increase p_e as much as possible until i or j tight.

 $S \leftarrow$ set of all tight nodes.

RETURN S.

Pricing method example

Pricing method: analysis

Theorem. Pricing method is a 2-approximation for WEIGHTED-VERTEX-COVER. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S =set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge (i,j) is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S^* be optimal vertex cover. We show $w(S) \le 2 w(S^*)$.

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*).$$
 all nodes in S are tight $S \subseteq V$, each edge counted twice fairness lemma prices ≥ 0

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Weighted vertex cover

Given a graph G = (V, E) with vertex weights $w_i \ge 0$, find a min weight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

total weight = 6 + 9 + 10 + 32 = 57

Weighted vertex cover: IP formulation

Given a graph G = (V, E) with vertex weights $w_i \ge 0$, find a min weight subset of vertices $S \subseteq V$ such that every edge is incident to at least one vertex in S.

Integer programming formulation.

• Model inclusion of each vertex i using a 0/1 variable x_i .

$$x_i = \begin{cases} 0 & \text{if vertex } i \text{ is not in vertex cover} \\ 1 & \text{if vertex } i \text{ is in vertex cover} \end{cases}$$

Vertex covers in 1–1 correspondence with 0/1 assignments: $S = \{i \in V : x_i = 1\}$.

- Objective function: minimize $\sum_i w_i x_i$.
- Must take either vertex i or j (or both): $x_i + x_j \ge 1$.

Weighted vertex cover: IP formulation

Weighted vertex cover. Integer programming formulation.

(ILP) min
$$\sum_{i \in V} w_i x_i$$
s.t. $x_i + x_j \ge 1$ $(i,j) \in E$

$$x_i \in \{0,1\} \quad i \in V$$

Observation. If x^* is optimal solution to (ILP), then $S = \{i \in V : x_i^* = 1\}$ is a min weight vertex cover.

Integer programming

Given integers a_{ij} , b_i , and c_j , find integers x_j that satisfy:

$$\max_{s. t. Ax \ge b} \sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \qquad 1 \le i \le m$$

$$x \quad \text{integral} \qquad x_{j} \ge 0 \qquad 1 \le j \le n$$

$$x_{j} \quad \text{integral} \quad 1 \le j \le n$$

Observation. Vertex cover formulation proves that Integer-Programming is an **NP**-hard search problem.

Linear programming

Given integers a_{ij} , b_i , and c_j , find real numbers x_j that satisfy:

(P)
$$\max c^t x$$

s. t. $Ax \ge b$
 $x \ge 0$

(P)
$$\max \sum_{j=1}^{n} c_j x_j$$

s. t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i$ $1 \le i \le m$
 $x_j \ge 0$ $1 \le j \le n$

Linear. No x^2 , xy, arccos(x), x(1-x), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice. Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

LP feasible region

LP geometry in 2D.

Weighted vertex cover: LP relaxation

Linear programming relaxation.

(LP) min
$$\sum_{i \in V} w_i x_i$$
s. t. $x_i + x_j \ge 1$ $(i,j) \in E$

$$x_i \ge 0 \quad i \in V$$

Observation. Optimal value of (LP) is \leq optimal value of (ILP). Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

1/2

- Q. How can solving LP help us find a small vertex cover?
- A. Solve LP and round fractional values.

Weighted vertex cover: LP rounding algorithm

Lemma. If x^* is optimal solution to (LP), then $S = \{i \in V : x_i^* \ge \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [*S* is a vertex cover]

- Consider an edge $(i,j) \in E$.
- Since $x_i^* + x_j^* \ge 1$, either $x_i^* \ge \frac{1}{2}$ or $x_j^* \ge \frac{1}{2}$ \Rightarrow (i, j) covered.

Pf. [S has desired cost]

• Let S^* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x_i^* \geq \frac{1}{2} \sum_{i \in S} w_i$$

$$\downarrow i \in S$$
LP is a relaxation
$$x_i^* \geq \frac{1}{2}$$

Theorem. The rounding algorithm is a 2-approximation algorithm. Pf. Lemma + fact that LP can be solved in poly-time.

Weighted vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If $P \neq NP$, then no ρ -approximation for Weighted-Vertex-Cover for any $\rho < 1.3606$ (even if all weights are 1).

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur*

Samuel Safra[†]

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To that end, one needs to develop a new proof framework, and borrow and extend ideas from several fields.

Open research problem. Close the gap.

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Generalized load balancing

Input. Set of m machines M; set of n jobs J.

- Job $j \in J$ must run contiguously on an authorized machine in $M_j \subseteq M$.
- Job $j \in J$ has processing time t_i .
- Each machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The load of machine i is $L_i = \sum_{i \in J(i)} t_i$.

Def. The makespan is the maximum load on any machine = $\max_i L_i$.

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

Generalized load balancing: integer linear program and relaxation

ILP formulation. x_{ij} = time machine i spends processing job j.

(IP) min
$$L$$

s.t. $\sum_{i} x_{ij} = t_{j}$ for all $j \in J$
 $\sum_{i} x_{ij} \leq L$ for all $i \in M$
 $x_{ij} \in \{0, t_{j}\}$ for all $j \in J$ and $i \in M_{j}$
 $x_{ij} = 0$ for all $j \in J$ and $i \notin M_{j}$

LP relaxation.

(LP) min
$$L$$

s. t. $\sum_{i} x_{ij} = t_{j}$ for all $j \in J$
 $\sum_{i} x_{ij} \le L$ for all $i \in M$
 $x_{ij} \ge 0$ for all $j \in J$ and $i \in M_{j}$
 $x_{ij} = 0$ for all $j \in J$ and $i \notin M_{j}$

Generalized load balancing: lower bounds

Lemma 1. The optimal makespan $L^* \ge \max_j t_j$.

Pf. Some machine must process the most time-consuming job. •

Lemma 2. Let L be optimal value to the LP. Then, optimal makespan $L^* \ge L$. Pf. LP has fewer constraints than IP formulation.

Generalized load balancing: structure of LP solution

Lemma 3. Let x be solution to LP. Let G(x) be the graph with an edge between machine i and job j if $x_{ij} > 0$. Then G(x) is acyclic.

Pf. (deferred)

can transform x into another LP solution where G(x) is acyclic if LP solver doesn't return such an x

Generalized load balancing: rounding

Rounded solution. Find LP solution x where G(x) is a forest. Root forest G(x) at some arbitrary machine node r.

- If job j is a leaf node, assign j to its parent machine i.
- If job j is not a leaf node, assign j to any one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job j is assigned to machine i, then $x_{ij} > 0$. LP solution can only assign positive value to authorized machines. \blacksquare

ob job

machine

Generalized load balancing: analysis

Lemma 5. If job j is a leaf node and machine i = parent(j), then $x_{ij} = t_j$. Pf.

- Since *i* is a leaf, $x_{ij} = 0$ for all $j \neq parent(i)$.
- LP constraint guarantees $\Sigma_i x_{ij} = t_j$. •

Lemma 6. At most one non-leaf job is assigned to a machine.

Pf. The only possible non-leaf job assigned to machine i is parent(i).

o job

machine

Generalized load balancing: analysis

Theorem. Rounded solution is a 2-approximation. Pf.

- Let J(i) be the jobs assigned to machine i.
- By Lemma 6, the load L_i on machine i has two components:

• Thus, the overall load $L_i \leq 2L^*$. •

Generalized load balancing: flow formulation

Flow formulation of LP.

$$\sum_{i} x_{ij} = t_{j} \text{ for all } j \in J$$

$$\sum_{j} x_{ij} \leq L \text{ for all } i \in M$$

$$x_{ij} \geq 0 \text{ for all } j \in J \text{ and } i \in M_{j}$$

$$x_{ij} = 0 \text{ for all } j \in J \text{ and } i \notin M_{j}$$

Observation. Solution to feasible flow problem with value L are in 1-to-1 correspondence with LP solutions of value L.

Generalized load balancing: structure of solution

Lemma 3. Let (x, L) be solution to LP. Let G(x) be the graph with an edge from machine i to job j if $x_{ij} > 0$. We can find another solution (x', L) such that G(x') is acyclic.

Pf. Let C be a cycle in G(x).

- Augment flow along the cycle C. \longleftarrow flow conservation maintained
- At least one edge from C is removed (and none are added).
- Repeat until G(x') is acyclic. •

Conclusions

Running time. The bottleneck operation in our 2-approximation is solving one LP with mn + 1 variables.

Remark. Can solve LP using flow techniques on a graph with m+n+1 nodes: given L, find feasible flow if it exists. Binary search to find L^* .

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]

- Job j takes t_{ij} time if processed on machine i.
- 2-approximation algorithm via LP rounding.
- If $P \neq NP$, then no no ρ -approximation exists for any $\rho < 3/2$.

11. APPROXIMATION ALGORITHMS

- load balancing
- center selection
- pricing method: vertex cover
- ▶ LP rounding: vertex cover
- generalized load balancing
- knapsack problem

Polynomial-time approximation scheme

PTAS. $(1 + \varepsilon)$ -approximation algorithm for any constant $\varepsilon > 0$.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora, Mitchell 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack problem

Knapsack problem.

- Given n objects and a knapsack.
- Item i has value $v_i > 0$ and weighs $w_i > 0$. \longleftarrow we assume $w_i \le W$ for each i
- Knapsack has weight limit W.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

item	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

original instance (W = 11)

Knapsack is NP-complete

KNAPSACK. Given a set X, weights $w_i \ge 0$, values $v_i \ge 0$, a weight limit W, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W$$

$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM. Given a set X, values $u_i \ge 0$, and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

Theorem. SUBSET-SUM \leq_P KNAPSACK.

Pf. Given instance $(u_1, ..., u_n, U)$ of SUBSET-SUM, create KNAPSACK instance:

$$v_i = w_i = u_i \qquad \sum_{i \in S} u_i \leq U$$

$$V = W = U \qquad \sum_{i \in S} u_i \geq U$$

Knapsack problem: dynamic programming I

Def. $OPT(i, w) = \max value subset of items 1,..., i with weight limit w.$

Case 1. *OPT* does not select item *i*.

• *OPT* selects best of 1, ..., i-1 using up to weight limit w.

Case 2. *OPT* selects item *i*.

- New weight limit = $w w_i$.
- *OPT* selects best of 1, ..., i-1 using up to weight limit $w-w_i$.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Theorem. Computes the optimal value in O(n W) time.

- Not polynomial in input size.
- Polynomial in input size if weights are small integers.

Knapsack problem: dynamic programming II

Def. $OPT(i, v) = \min$ weight of a knapsack for which we can obtain a solution of value $\geq v$ using a subset of items 1,...,i.

Note. Optimal value is the largest value v such that $OPT(i, v) \leq W$.

Case 1. *OPT* does not select item i.

• *OPT* selects best of 1, ..., i-1 that achieves value v.

Case 2. *OPT* selects item *i*.

- Consumes weight w_i , need to achieve value $v v_i$.
- *OPT* selects best of 1, ..., i-1 that achieves value $v-v_i$.

$$OPT(i, v) = \begin{cases} 0 & \text{if } v \leq 0 \\ \infty & \text{if } i = 0 \text{ and } v > 0 \\ \min \{OPT(i-1, v), \ w_i + OPT(i-1, v-v_i)\} & \text{otherwise} \end{cases}$$

Knapsack problem: dynamic programming II

Theorem. Dynamic programming algorithm II computes the optimal value in $O(n^2 v_{max})$ time, where v_{max} is the maximum of any value. Pf.

- The optimal value $V^* \leq n v_{max}$.
- There is one subproblem for each item and for each value $v \le V^*$.
- It takes O(1) time per subproblem. •

Remark 1. Not polynomial in input size!

Remark 2. Polynomial time if values are small integers.

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm II on rounded/scaled instance.
- Return optimal items in rounded instance.

item	value	weight
1	934221	1
2	5956342	2
3	17810013	5
4	21217800	6
5	27343199	7

original instance (W = 11)

item	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

rounded instance (W = 11)

Round up all values:

- $0 < \varepsilon \le 1$ = precision parameter.
- v_{max} = largest value in original instance.
- θ = scaling factor = $\varepsilon v_{max} / 2n$.

$$\bar{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil \theta, \quad \hat{v}_i = \left\lceil \frac{v_i}{\theta} \right\rceil$$

Observation. Optimal solutions to problem with \bar{v} are equivalent to optimal solutions to problem with \hat{v} .

Intuition. \overline{v} close to v so optimal solution using \overline{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm II is fast.

Theorem. If S is solution found by rounding algorithm and S^* is any other feasible solution, then $(1+\epsilon)\sum_{i\in S}v_i \geq \sum_{i\in S^*}v_i$

Pf. Let S^* be any feasible solution satisfying weight constraint.

$$\sum_{i \in S^*} v_i \leq \sum_{i \in S^*} \bar{v}_i$$
 always round up
$$\leq \sum_{i \in S} \bar{v}_i$$
 solve rounded instance optimally
$$\leq \sum_{i \in S} (v_i + \theta)$$
 never round up by more than θ
$$\leq \sum_{i \in S} v_i + n\theta$$
 ISI $\leq n$
$$= \sum_{i \in S} v_i + \frac{1}{2} \epsilon v_{max}$$
 $\theta = \epsilon v_{max} / 2n$
$$= (1 + \epsilon) \sum_{i \in S} v_i$$

choosing
$$S^* = \{ \max \}$$

$$v_{max} \leq \sum_{i \in S} v_i + \frac{1}{2} \epsilon v_{max}$$

$$\leq \sum_{i \in S} v_i + \frac{1}{2} v_{max}$$
 thus
$$v_{max} \leq 2 \sum_{i \in S} v_i$$

Theorem. For any $\varepsilon > 0$, the rounding algorithm computes a feasible solution whose value is within a $(1 + \varepsilon)$ factor of the optimum in $O(n^3 / \varepsilon)$ time.

Pf.

- We have already proved the accuracy bound.
- Dynamic program II running time is $O(n^2 \hat{v}_{\text{max}})$, where

$$\hat{v}_{\text{max}} = \left[\frac{v_{\text{max}}}{\theta} \right] = \left[\frac{n}{\epsilon} \right]$$