Diala HAWAT

Rémi BARDENET

Raphaël LACHIEZE-REY

Point processes

Stochastic processes for numerical integration

$$\int f(x)d\mu(x) \approx \sum_{i=1}^{N} w_i f(x_i)$$

Point processes

$$\int f(x)d\mu(x) \approx \sum_{i=1}^{N} w_i f(x_i)$$

Hyperuniform point processes

$$\lim_{R\to\infty}\frac{Var(Card(\mathcal{X}\big(B(0,R)\big))}{|B(0,R)|}=\mathbf{0}$$

Hyperuniform point processes

Joint work with Guillaume GAUTIER:

Preprint:

• On estimating the structure factor of a point process, with applications to hyperuniformity

Code:

- Open-source Python toolbox "structure_factor"
- Detailed documentation
- Tutorial Jupyter notebook

Github

Documentation

Work in Progress

Construct a point process:

- Sub-Poisson variance
- Computationally tractable in any dimension
- Reduce (classical) MC variance

Thank you for your attention!

