Pythonic Math

Michael Colaresi

What we have been doing

- How to "enhance" your computers imagination
 - Variables nouns
 - Functions verbs
 - Classes and methods coherent phrases
 - programs narratives/stories

Remember that all of this is "math" to the computer

- Back to binary
 - All of these processes
 - Everything in memory
 - Everything in storage
- A type of math that is defined as computer science
 - How computers can efficiently process, read, write, etc

Not quite what we mean by math in empirical research

- Data
 - Vectors, matrices, graphs/networks
- Models
 - Functional forms (likelihood of the data given some unknowns), parameters, etc
 - Distributions of prior
- Inferences and quantities of interest
 - Distributions
 - Communication

But also not so different

Data

Storage and memory

- Vectors, matrices, graphs/networks
- Models
 - Functional forms (likelihood of the data given some unknowns), parameters, etc
 - Distributions of prior
- Inferences and quantities of interest
 - Distributions
 - Communication

But also not so different

Data

Storage and memory

- Vectors, matrices, graphs/networks
- Models

Algorithms/functions/methods

- Functional forms (likelihood of the data given some unknowns), parameters, etc
- Distributions of prior
- Inferences and quantities of interest
 - Distributions
 - Communication

But also not so different

Data

Storage and memory

- Vectors, matrices, graphs/networks
- Models

Algorithms/functions/methods

- Functional forms (likelihood of the data given some unknowns), parameters, etc
- Distributions of prior
- Inferences and quantities of interest

More algorithms/functions/methods

- Distributions
- Communication

Numerical Computing

- Use cases:
 - Finding minima and maxima (and stopping rules)
 - Running simulations and calculating integrals
 - Visualizing densities and quantities of interest
 - But many others
 - Shortest path in a network
 - Edit distance between two strings

The math and fractions library Builtin to Python

- import math
 - math.sin, math.cos, math.sqrt
- import fractions
 - fractions.Fraction(m, n) or fractions.Fraction('m/n')
 - Better precision for rational numbers as ratios of ints

Numpy for matrices and arrays

- Import numpy as np
- np.array()
- np.array([[a, b], [c, d])
- np.array.shape
- indexing
 - x[0:2, 0:3]; rows, then columns

Not only storage, processing Linear Algebra

- Vectors
 - Points or arrows
- Linear transformations
 - Matrices
 - Act on the vectors that make up a space, transform them

Transformed vectors

Matrix as transformer

Output = Transformer x Input

Input space is 4-d

M

5x4

Output space is 5-d

M

5x4

There are 6 transformed vectors!

There are 6 vectors to transform!

Import numpy as np SEED = 412412 my_rng = np.random.default_rng(412412)

New 5-d vectors

0	1	2	3	4	5

G 5x6

M

5x4

Vt = my.rng.random(4, 6)

4x6

M = my.rng.random(5, 4)

Import numpy as np SEED = 412412 my_rng = np.random.default_rng(412412)

New 5-d vectors

G

5x6

G = M@Vt G.shape

M

5x4

Vt = my.rng.random(4, 6)

4x6

M = my.rng.random(5, 4)

See notebook