Student Information

Full Name : Yusuf Sami Lök

Id Number: 2521748

Answer 1

a) Assume any negative real number $(y \in \mathbb{R}^-)$. There is no x such that $f_1(x) = y$. Say y = -4, then $x^2 = -4$. Since there is no $x \in \mathbb{R}$ satisfies $x^2 = -4$, function f_1 is not surjective.

For $y \in \mathbb{R}, x \in \mathbb{R}^+$ and $f_1(x) = y$, there are more than one x variable in real numbers corresponding to this function. For $a, b \in \mathbb{R}$, assume $f_1(a) = 4$ and $f_1(b) = 4$. The equation satisfies if a = 2, b = -2. Since $a \neq b$ and $f_1(a) = f_1(b)$, f_1 is not injective.

b) Assume any negative real number $(y \in \mathbb{R}^-)$. There is no x such that $f_1(x) = y$. Say y = -4, then $x^2 = -4$. Since there is no non-negative real number \mathbf{x} $(x \in \mathbb{R}^+ \text{ or } x = 0)$ satisfies $x^2 = -4$, function f_2 is not surjective.

For all non-negative real number, $f_2(x) = x^2$. Say $y = x^2$ and y is non-negative. Since the number y always non-negative, there exist $\sqrt{y} = x \in \mathbb{R}$. For all $a, b \in R^+$, if $f_2(a) = f_2(b)$ then $a^2 = b^2$. Since the domain of the function is non-negative real numbers, a and b both should be non-negative and equal. Since a = b, the function f_2 is injective.

c) Consider an arbitrary element $y \in \mathbb{R}^+$. For $x \in \mathbb{R}$, $y = x^2$. Since y is always nonnegative, there exists $\sqrt{y} \in \mathbb{R}$ for all $y \in \mathbb{R}^+$. Therefore, the function f_3 is surjective.

For $y \in \mathbb{R}^+, x \in \mathbb{R}^+$ and $f_3(x) = y$, there are more than one x variable in real numbers corresponding to this function. For $a, b \in \mathbb{R}$, assume $f_3(a) = 4$ and $f_3(b) = 4$. The equation satisfies if a = 2, b = -2. Since $a \neq b$ and $f_3(a) = f_3(b)$, f_3 is not injective

d) Consider an arbitrary element $y \in \mathbb{R}^+$. For $x \in \mathbb{R}^+$, $y = x^2$. Since y is always nonnegative, there exists $\sqrt{y} \in \mathbb{R}^+$ for all $y \in \mathbb{R}^+$. Therefore, the function f_4 is surjective.

For all non-negative real number, $f_4(x) = x^2$. Say $y = x^2$ and y is non-negative. Since the number y always non-negative, there exist $\sqrt{y} \in \mathbb{R}$. For all $a, b \in \mathbb{R}^+$, if $f_4(a) = f_4(b)$ then $a^2 = b^2$. Since the domain of the function is non-negative real numbers, a and b both should be non-negative and equal. Since a = b, the function f_4 is injective.

Answer 2

a) For all function $f:A\subset\mathbb{Z}\to\mathbb{R}$ and $x\in A$, if $x=x_0$ then $\|f(x)-f(x_0)\|=0$ and $\|x-x_0\|=0$. Because of that, the expression $(\|x-x_0\|<\delta\to\|f(x)-f(x_0)\|<\epsilon)$ is true always for some $\delta\in\mathbb{R}^+$ and for all $\epsilon\in\mathbb{R}^+$ (Left and right side of the expression are always true i.e. $T\to T$). If $x\neq x_0$, $\|x-x_0\|>1$ then if we choose arbitrary $\delta=0.3$, the expression $\|x-x_0\|<\delta$ is always false for arbitrary δ . Therefore, whole expression $(\|x-x_0\|<\delta\to\|f(x)-f(x_0)\|<\epsilon)$ is always true (Since left side of the expression is false, whole expression is always true for $\exists \delta\in\mathbb{R}^+$). Since the expression $(\|x-x_0\|<\delta\to\|f(x)-f(x_0)\|<\epsilon)$ is true for some δ and for all ϵ , the function f is continous.

b)Since the codomain of the function is \mathbb{Z} , there is two possibilities of $\|f(x) - f(x_0)\|$. It is 0 or $\|f(x) - f(x_0)\| \ge 1$. If it is the case $\|f(x) - f(x_0)\| = 0$, the right side of the expression is true. Therefore, the whole expression $(\|x - x_0\| < \delta \to \|f(x) - f(x_0)\| < \epsilon)$ is true always for $\exists \delta \in \mathbb{R}^+$ and $\forall \epsilon \in \mathbb{R}^+$. However, if $\|f(x) - f(x_0)\| \ge 1$, then the right side of the equation $\|f(x) - f(x_0)\| < \epsilon$ may be false for $\exists \epsilon \in \mathbb{R}^+$. If it is the case the whole expression $(\|x - x_0\| < \delta \to \|f(x) - f(x_0)\| < \epsilon)$ is false and this prevents the function from being continuous. Therefore, $\|f(x) - f(x_0)\|$ should be zero. If it is zero, it should be constant function because there should be no change in the codomain of x for all $x \in \mathbb{R}$.

Answer 3

```
a) For the cartesian product, we can create a table. A_{11}, A_{21}, A_{31}, A_{41}, \ldots A_{12}, A_{22}, A_{32}, A_{42}, \ldots A_{13}, A_{23}, A_{33}, A_{43}, \ldots We can map it with \mathbb{Z}^+ like that:
```

Since we can map the Cartesian product of countable sets with the natural numbers, it is countable infinite.

b) Assume that an infinite countable product of the set X = 0, 1 with itself is countable.

$$a_2 = (0a_{22}00000001.....)$$

$$a_3 = (00a_{33}0000011.....)$$

b is a tuple with 0,1 and also, b_i is the i^{th} index of the b. If $a_{ii} = 0$ then $b_i = 1$, otherwise $b_i = 0$. So b is different from a_{11} ,

b is different from a_{22} ,

b is different from a_{33} ,

In this way, we can create such b such that it is different from all sets. So infinite countable product of the set X = 0, 1 with itself is uncountable.

Answer 4

a) We will compare the functions
$$log(n)^2$$
 and $\sqrt{n} \cdot log(n)$ We should check the $\lim_{n \to +\infty} \frac{log(n)^2}{\sqrt{n} \cdot log(n)} = \lim_{n \to +\infty} \frac{log(n)}{\sqrt{n}}$

Apply L'Hospital's rule
$$\rightarrow \lim_{n \to +\infty} \frac{\frac{1}{n \cdot ln(10)}}{\frac{1}{\sqrt{n}}}$$

$$=\lim_{n\to+\infty}\frac{1}{\sqrt{n\ln(10)}}=\mathbf{0}$$
 Therefore, $\log(n)^2$ is $O(\sqrt{n}\cdot\log(n))$

b) We will compare the functions $\sqrt{n} \cdot log(n)$ and n^{50} We should check the $\lim_{n \to +\infty} \frac{\sqrt{n} \cdot log(n)}{n^{50}} = \lim_{n \to +\infty} \frac{log(n)}{99}$ By L'Hospital's rule it is

$$\lim_{n \to +\infty} \frac{\frac{1}{n \cdot ln(10)}}{\frac{97}{49.5 \cdot n}} = \lim_{n \to +\infty} \frac{1}{\frac{95}{2}} = \mathbf{0} \text{ Therefore, } \sqrt{n} \cdot log(n) \text{ is } O(n^{50}).$$

c) We will compare the functions n^{50} and $n^{51} + n^{49}$

c) We will compare the functions
$$n^{50}$$
 and $n^{51} + n^{49}$
Check the limit $\lim_{n \to +\infty} \frac{n^{50}}{n^{51} + n^{49}} = \lim_{n \to +\infty} \frac{1}{n^1 + \frac{1}{n}}$

$$=\lim_{n\to+\infty}\frac{1}{n^1+0}=\mathbf{0}$$

Therefore, n^{50} is $O(n^{51} + n^{49})$

d) We will compare the functions $(n^{51} + n^{49})$ and 2^n .

$$\lim_{n \to +\infty} \frac{n^{51} + n^{49} \cdot \frac{1}{n^2}}{\frac{2^n}{(51)! + (49)!}} \to \textbf{51 times applying L'Hospital rule} \to \\ \lim_{n \to +\infty} \frac{(51)! + (49)!}{(ln(2))^{51} \cdot 2^n} = 0 \ \textbf{Since it is 0,} \ (n^{51} + n^{49}) \ \textbf{is} \ O(2^n).$$

e) We will compare 5^n and 2^n .

$$\lim_{n\to+\infty} \left(\frac{2^n}{5^n}\right) = \lim_{n\to+\infty} \left(\frac{2}{5}\right)^n \text{ It goes to 0 because } \frac{2}{5} < 1. \text{ Since it is 0 } 2^n \text{ is } O(5^n).$$

f) We will compare the functions $(n!)^2$ and 5^n by ratio test.

$$\lim_{n \to +\infty} \frac{\frac{5+1}{((n+1)!)^2}}{\frac{5^n}{(n!)^2}} = \lim_{n \to +\infty} \frac{5}{(n+1)^2} = 0 \text{ Since it goes to zero, } 5^n \text{ is } O(((n+1)!)^2) \text{ by ratio test.}$$

Answer 5

a)
$$gcd(94,134) \rightarrow 94*(1)+40$$

$$gcd(94,40) \rightarrow 40*(2) + 14$$

$$\gcd(40,14) \to 14*(2) + 12$$

$$\gcd(14,12) \to 12*(1) + 2$$

 $gcd(12,2) \rightarrow So$ the highest common factor is 2. gcd(94,134) = 2.

b) Assume m > 5 is an integer. We should consider two cases.

The case if m is even:

Then m = 2s for $m \ge 3$.

Since m-2=2s-2=2(s-1), m-2 is even. Applying Goldbach's conjecture:

 $2s-2=x+y\to \text{sum of two primes x and y. Therefore, } 2m=x+y+2 \text{ is a sum of three prime numbers. The case if m is odd:}$

$$m = 2s + 1$$
 for $n > 3$

$$m-3=2s-2=2(s-1)\to {\bf so}\ m-3 {\bf is} {\bf even}$$

Applying Goldbach's conjecture:

m-3=x+y is a sum of two prime numbers x,y.

Therefore, 2s + 1 = x + y + 3 is a sum of three prime numbers.

As a consequence of this, the Goldbach conjecture that every even integer greater than 2 is the sum of two prime numbers is equivalent to the statement that every integer greater than 5 is the sum of three prime numbers.

4