Definição: Seja A  $\neq \emptyset$  subconjunto de  $\mathbb{R}$ . Dizemos que A é <u>limitado superiormente</u> se existe M  $\in \mathbb{R}$  de modo que a  $\leq$  M para todo a  $\in$  A; qualquer elemento de  $\mathbb{R}$  com tal propriedade é uma <u>cota superior</u>. De modo análogo, A é <u>limitado inferiormente</u> se existe m  $\in \mathbb{R}$  de modo que m  $\leq$  a para todo a  $\in$  A; tais elementos são <u>cotas inferiores</u> de A.

## Teorema:

Seja A \$\pm\$\$ fimitado superiormente. Então existe uma cota superior de A (denominada <a href="superior">supremo</a> de A) que é a menor dentre todas as cotas superiores.

Analogamente, seja A  $\neq \emptyset$  limitado inferiormente. Então existe uma cota inferior de A (denominada <u>ínfimo</u> de A) que é a maior dentre todas as cotas inferiores.

A demonstração desse teorema será omitida por necessitar um conhecimento mais profundo na construção axiomática do conjunto dos números reais, o que vocês verão em um curso de Análise Real.

## Observações:

1) Pode ocorrer tanto sup  $A \in A$  quanto sup  $A \notin A$ , como se vê nos exemplos [a, b] ou [a, b). Em ambos os casos, sup A = b. Com respeito ao inf A, a observação é análoga.

3) Considere a sequência crescente de números reais  $a_1 < a_2 < a_3 < ... < a_n < a_{n+1} < ...$ , tal que  $a_n < b$ , para todo n. Pelo axioma do supremo existe  $s = \sup A$  onde  $A = \{a_1, a_2, a_3, ..., a_n, ...\}$ . Mostre que dado  $\varepsilon > 0$ , existe  $\mathbf{m}$  natural tal que  $s - \varepsilon < a_n < s$ , para todo  $n > \mathbf{m}$ .

Solução: Por definição,  $s = \sup A$  é a menor cota superior do conjunto A. Isso significa que, para todo x real com x < s (equivalentemente,  $x = s - \varepsilon$ , sendo  $\varepsilon > 0$ ), x não é cota superior do conjunto A, ou seja, existe pelo menos um elemento  $\alpha_m$  de A tal que  $x = s - \varepsilon < \alpha_m$ . No entanto, a sequência dada na questão é crescente e converge para sup A. Logo, para todo  $\alpha_m \in A, m \ge m$ , temos  $s - \varepsilon < \alpha_m < \alpha_m < s$ . Segue, portanto, que dado  $\varepsilon > 0$ , existe m natural tal que  $s - \varepsilon < \alpha_m < s$ , para todo n > m, como queríamos demonstrar.

- 4) Sejam a e b reais com a<b.
  - a) Mostre que existe  $\mathbf{p} \in N$ ,  $p \neq 0$  tal que  $\mathbf{p}(\mathbf{b} \mathbf{a}) > \sqrt{2}$  ou  $0 < \frac{\sqrt{2}}{p} < \mathbf{b} \mathbf{a}$ .
  - b) Seja A = {n inteiro:  $n\frac{\sqrt{2}}{p} \ge b$ }. Então A $\neq \emptyset$  portanto existe  $n_o$  = mínimo A. Mostre que  $(n_o$ -1)  $\frac{\sqrt{2}}{p}$  pertence ao intervalo (a,b).

## Solução:

a) Suponha, por absurdo, que p \* (b - a)  $\leq \sqrt{2}$  para todo

 $p \in \mathbb{N}$ ,  $p \neq 0$ . Temos, então, que  $p \leq \frac{\sqrt{2}}{b-a}$ ,  $\forall_{\uparrow} \in \mathbb{N}$ , o que

significa que  $\sqrt{2}$  é cota superior de  $\mathbb{N}$ , absurdo, pois  $\mathbb{N}$  b - a

não é limitado superiormente. Portanto, existe p ∈ N , p ≠ 0 0 tal que p \* (b - a) > √2, c.q.d.

- b) Sabemos que  $m_0$  é o menor elemento de A. Então,  $m_0 \cdot \sqrt{2} > b$  e  $(m_0 1) \sqrt{2} < b$ . Do item anterior, temos que p
- b a >  $\frac{\sqrt{2}}{2}$ . Note, no entanto, que  $\sqrt[n]{2}$   $(\sqrt[n]{-1})\sqrt{2}$  =  $\sqrt[n]{2}$ .

Suponha, por absurdo, que  $\binom{n}{6}$ - 1) $\sqrt{2}$  < a, ou seja, não p

pertence ao intervalo (a, b), conforme a figura a seguir.



Nesse caso, temos b - a <  $\sqrt{2}$ , absurdo.

p

Portanto,  $(_{n_0}-1)$   $\underline{2}$  > a, ou seja,  $(_{n_0}-1)$   $\underline{1}$  pertence ao p intervalo (a, b), c.q.d.

c) Sejam a, b racionais positivos. Então  $\sqrt{a}$  +  $\sqrt{b}$  é racional se e somente se  $\sqrt{a}$  e  $\sqrt{b}$  forem ambos racionais.

Sugestão: Multiplique por  $\sqrt{a} - \sqrt{b}$ .

1) Em cada item abaixo, determine o conjunto dos números reais que satisfaz a equação ou inequação:

e) 
$$(2x-1)^2(3x+2)=0$$

Solução: 
$$(2x-1)^{9}(3x+2) = 0 <=> (2x-1)^{9} = 0 \lor (3x+2)$$
  
= 0 <=> 2x-1 = 0 \lor 3x + 2 = 0 <=> x = \frac{1}{2} \lor x = -\frac{2}{2} <=> \frac{2}{3} \lor x \in \frac{1}{2}, -\frac{2}{3}\right\rangle.

1) Em cada item abaixo, determine o conjunto dos números reais que satisfaz a equação ou inequação:

a) 
$$-3/2 < 2x/5 - 8 \le 10$$

b) 
$$2-4x < 8 + 5x/3$$

c) 
$$x^3 > x^2$$

d) 
$$\frac{x+3}{2x-3} \le 3$$

f) 
$$\frac{(x+2)^7(2x-8)^5(3x-10)^{100}}{x^2-4x+4} = 0.$$

Solução: a) - 
$$3 < 2x - 8 \le 10 <=> -3 + 8 < 2x \le 10 + 8$$
  
 $2 \quad 5 \quad 2 \quad 5$   
 $<=> \frac{13}{2} < 2x \le 18 <=> \frac{5}{13} < x \le \frac{5}{18} <=> \frac{2}{2} <=> \frac{65}{4} < x \le 45 <=> x \in \big( \frac{65}{4}, 45 \big) \cdots$ 

c) 
$$x^3 > x^2 <=> x^3 - x^2 > 0 <=> x^2(x-1) > 0 <=> x-1 > 0 x \neq 0 <=> x > 1 <=> x \in (1,+\infty).$$

d) 
$$x + 3 \le 3 \le x + 3 - 3 \le 0 \le x + 3 - 3(2x - 3) \le 0$$
  
 $2x - 3$   $2x - 3$   $2x - 3$   $2x - 3$   $2x - 3$ 

$$<=> \frac{12 - 5x}{2x - 3} \le 0$$

$$\frac{19}{2} + \frac{19}{2} + \frac{19}{5} = 12 - 5x$$

$$\frac{-}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 12 - 5x$$

$$\frac{-}{2} + \frac{1}{2} + \frac{1}{2} = \frac{12 - 5x}{2x - 3}$$

$$= x < \frac{3}{2} \lor x \ge \frac{12}{5} <=> x \in \left(-\infty, \frac{3}{2}\right) \cup \left[\frac{12}{5}, +\infty\right).$$

$$\frac{12 - 5x}{2x - 3} = 2x - 3$$

$$\frac{2x - 3}{2} \cup \left[\frac{12}{5}, +\infty\right).$$

$$\frac{2}{5} \cup \left[(x + 2)^{3} = 0\right] = 0 <=> \left[(x + 2)^{3} = 0\right] \lor$$

$$\frac{x - 4x + 4}{(x - 2)^{3}} = 0$$

$$(2x-8)^{5} = 0 \lor (3x-10)^{100} = 0] \land (x-2)^{2} \neq 0 <=> [x+2 = 0 \lor 2x-8 = 0 \lor 3x-10 = 0] \land x \neq 0 <=> [x = -2 \lor x = 4 \lor x = 10] \land x \neq 0 <=> x \in \{-2, 4, 10\}.$$

- 2) Mostre as afirmativas abaixo, onde a e b são números reais.
  - a) Se a ≠ 0 então a² > 0;
  - b)  $a^2 + b^2 = 0 \iff a = b = 0$ .

Solução: a)  $\sqrt{a^2} = |a| => (\sqrt{a^2})^2 = |a|^2 => a^2 = |a|^2 = |a^2| > 0$  para todo a real não nulo.

b) (<=) trivial.

(=>)  $a \neq 0 => a^{2} > 0 => a^{2} + b^{3} > b \ge 0 => a^{2} + b^{3} = 0$ não ocorre. Analogamente,  $b \neq 0 => a^{3} + b^{3} = 0$  não ocorre. Logo, a = 0 e b = 0 => a = b = 0.