Machine learing for data analysis Week 2 assignment Running a random forest

I chose addhealth as my data set. General health (H1GH1) was used as response variable. It is a categorical variable with 5 levels (missing valued excluded). Therefore I collapsed it into a categorical variable with only two levels, and named this new variable as health. Health equal 1 means the participant is healthy, while health equal 0 means the participant is not healthy.

Then I run the random forest by **PROC HPFOREST** in SAS. Here is the output result.

Model Information						
Parameter	Value					
Variables to Try	3	(Default)				
Maximum Trees	100	(Default)				
Inbag Fraction	0.6	(Default)				
Prune Fraction	0	(Default)				
Prune Threshold	0.1	(Default)				
Leaf Fraction	0.00001	(Default)				
Leaf Size Setting	1	(Default)				
Leaf Size Used	1					
Category Bins	30	(Default)				
Interval Bins	100					
Minimum Category Size	5	(Default)				
Node Size	100000	(Default)				
Maximum Depth	20	(Default)				
Alpha	1	(Default)				
Exhaustive	5000	(Default)				
Rows of Sequence to Skip	5	(Default)				
Split Criterion		Gini				
Preselection Method		Loh				
Missing Value Handling		Valid value				

A random selection of 3 explanatory variables was used to test each possible split for each node in each tree within the forest. 100 trees were grown and 60% of the sample was selected when performing the bagging process.

The number of observations used is equal to the number of observations read, which shows that there is no missing value in the response variable. I already set aside the missing value when I was cleaning the data.

The misclassification rate is as high as 31.2%. Only 68.8% of the sample is correctly classified.

Fit Statistics								
Number of Trees	Number of Leaves	Average Square Error (Train)	Average Square Error (OOB)	Misclassification Rate (Train)	Misclassification Rate (OOB)	Log Loss (Train)	Log Loss (OOB)	
1	399	0.190	0.257	0.276	0.358	1.223	2.322	
2	807	0.161	0.244	0.238	0.349	0.529	1.916	
3	1154	0.156	0.234	0.226	0.338	0.490	1.538	
4	1548	0.151	0.228	0.215	0.328	0.466	1.290	
5	1934	0.149	0.225	0.210	0.327	0.461	1.136	
6	2349	0.147	0.221	0.206	0.327	0.458	0.991	
7	2760	0.147	0.220	0.206	0.324	0.456	0.916	
8	3178	0.145	0.217	0.206	0.321	0.454	0.818	
9	3576	0.145	0.215	0.204	0.317	0.453	0.779	
10	3979	0.144	0.212	0.204	0.316	0.452	0.716	
11	4382	0.144	0.211	0.199	0.314	0.450	0.690	
90	36421	0.139	0.197	0.195	0.298	0.439	0.581	
91	36812	0.139	0.197	0.194	0.298	0.439	0.581	
92	37201	0.139	0.197	0.194	0.298	0.439	0.581	
93	37579	0.139	0.197	0.193	0.297	0.439	0.581	
94	37959	0.139	0.197	0.193	0.298	0.439	0.581	
95	38355	0.139	0.197	0.193	0.299	0.439	0.581	
96	38761	0.139	0.197	0.193	0.299	0.439	0.582	
97	39135	0.139	0.197	0.193	0.299	0.439	0.581	
98	39506	0.139	0.197	0.194	0.299	0.439	0.581	
99	39881	0.139	0.197	0.194	0.299	0.439	0.581	
100	40264	0.139	0.197	0.193	0.299	0.439	0.581	

This is part of the fit statistics. In total, 100 trees were grown.

Loss Reduction Variable Importance								
Variable	Number of Rules	Gini	OOB Gini	Margin	OOB Margin			
H1GH6	2215	0.012827	0.00462	0.025655	0.018496			
H1FS11	2912	0.012193	0.00274	0.024386	0.015455			
BIO_SEX	2320	0.005163	-0.00095	0.010326	0.003832			
H1GH2	3959	0.009306	-0.00439	0.018612	0.005786			
H1WP9	3100	0.008223	-0.00489	0.016447	0.004571			
H1WP13	3144	0.009267	-0.00508	0.018535	0.004702			
H1GI20	4728	0.012520	-0.01310	0.025039	0.001247			
ВМІ	17786	0.077537	-0.04255	0.155075	0.035034			

This shows the importance of variables in predicting the response variable. We can see the *H1GH6*, *H1FS11* and *BIO_SEX* are the 3 variables with most importance.

My code:

```
2 LIBNAME mydata "/courses/d1406ae5ba27fe300" access=readonly;
 3 data new; set mydata.addhealth_pds;
5 if H1GI20=97 then delete; if H1GI20=99 then delete; if H1GI20=96 then delete;
6 if HiGI20=98 then delete;
7 if Highl=6 then Highl=.; if Highl=8 then Highl=.;
8 if H1GH2=6 then H1GH2=.; if H1GH2=8 then H1GH2=.;
9 if H1GH6=6 then H1GH6=.; if H1GH6=8 then H1GH6=.;
10 if HIGH59A=96 then HIGH59A=.; if HIGH59A=98 then HIGH59A=.; if HIGH59A=99 then HIGH59A=.;
11 if H1GH59B=96 then H1GH59B=.; if H1GH59B=98 then H1GH59B=.; if H1GH59B=99 then H1GH59B=.;
12 if H1GH60=996 then H1GH60=,; if H1GH60=998 then H1GH60=,; if H1GH60=999 then H1GH60=.; 13 if H1FS11=6 then H1FS11=.; if H1FS11=8 then H1FS11=.;
14 if H1WP9=6 then H1WP9=.; if H1WP9=7 then H1WP9=.;
15 if H1WP9=8 then H1WP9=.; if H1WP9=9 then H1WP9=.;
16 if H1WP13=6 then H1WP13=.; if H1WP13=7 then H1WP13=.;
17 if HiWP13=8 then HiWP13=.; if HiWP13=9 then HiWP13=.;
19 H1GH59=H1GH59A * 12 * H1GH59B;/*add a new variable*/
20 BMI=H1GH60 * 0.454/(H1GH59 * 0.0254) **2;/*body mass index*/
22 if H1GH1 <= 2 then health = 1;
23 else health = 0;
25 label AID="respondent ID"
26 BIO_SEX="gender"
        H1GI20="grade"
         HIGH1="general health"
HIGH2="frequency of headache"
28
29
         HiGH6="frequnecy of feeling Weak"
30
         H1GH59A="height in feet'
31
        H1GH59B="height in inch"
32
         H1GH60="weigt (pound)"
33
        H1FS11="feeling happy"
34
35
         HlWP9="how close with mother"
36
         HIWP13="how close with father"
         H1GH59="height (inch)";
39 proc sort; by AID;
42 *Run the random forest;
43 proc hpforest;
44 target health/level=nominal;
45 input BIO SEX HIGI20 HIGH2 HIGH6 HIFS11 HIWP9 HIWP13/level=nominal; 46 input BMI / level=interval;
47 run;
```