Binary Heaps: Homework 2

- By modifying the code written during the last lessons, provide an array-based implementation of binary heaps which avoids to swap the elements in the array A.
 (Hint: use two arrays, key_pos and rev_pos, of natural numbers reporting the position of the key of a node and the node corresponding to a given position, respectively)
- Consider the next algorithm:

```
def Ex2 ( A )
D ← build ( A )

while ¬ is_empty ( D )
extract_min ( D )
endwhile
enddef
```

where A is an array. Compute the time-complexity of the algorithm when:

- build, is_empty $\in \Theta(1)$, extract_min $\in \Theta(|D|)$;
- build $\in \Theta(|A|)$, is_empty $\in \Theta(1)$, extract_min $\in O(\log n)$;

In the first case, the time complexity is $\Theta(1) + |D| \cdot \Theta(|D|) = \Theta(|D|^2)$, since build costs $\Theta(1)$ and the while is repeated until D is empty, so |D| times, with inside extract_min that costs $\Theta(|D|)$.

In the second case, $\Theta(|A|) + |D| \cdot O(\log n) = O(|A| + |D| \log n)$, since build costs $\Theta(|A|)$ and the while is repeated until D is empty, so |D| times, with inside extract_min that costs $O(\log n)$.