Waking - through loost-squares moth: let's say $S=[s_i, 1]$, $o-[s_i]$, and $y=[y_i]$. To be explicit, the equation ue an considering ax: $y_2 - 5_1 k + b + 1_1$ $\Rightarrow \begin{bmatrix} y_1 \end{bmatrix} = \begin{bmatrix} 5_1 & 1 \\ 5_2 & 1 \end{bmatrix} \begin{bmatrix} k \\ b \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix}$ (Start of 1150 - 4112 Snow this equals (50-4) (50-4). -> \[\left[25 \cdot \left] \left[0] - \left[ds \right] \right] = \left[25 \kmap - ds \right]_5 = \left[25 \kmap + \right]_5 + \left(25 \kmap + \right)_5 \right]_5 -> (SO-Y) = [Sik + p - As] [Sik + p - As] Some thing, = [2/440-21, 25/440-25] [2/4 40-21] = (2/4+10-2) + (2/4+10-2) (SO-y) (SO-y) $\Rightarrow (6757 - y^{T})(560 - y) = 675750 - 6757y - y^{T}50 + y^{T}y$ $\downarrow - (56)^{T}y = y^{T}(50) = y^{T}50$ - 675750 - 23750 + 474 3) Take gradient of 675750 (my respect to 6) => [k p] [21 25 1] [x] = [k2 +p k25 +p] [k2 +p] = (k2 +p) x + (k25 +p) x $\frac{d}{dk} \rightarrow \frac{d}{dk} \left[(k_{5}, +b)^{2} + (k_{5}, +b)^{2} \right] = 2(k_{5}, +b)s_{1} + 2(k_{5}, +b)s_{2}$ $\frac{d}{dk} \rightarrow \frac{d}{dk} \left[(k_{5}, +b)^{2} + (k_{5}, +b)s_{2} \right]$ $\frac{d}{db} \rightarrow \frac{d}{db} \left[(ks_1 + b)^2 + (ks_2 + b)^2 \right] = 2(ks_1 + b) + 2(ks_2 + b)$

Scanned by CamScanner

= J [k21 + P + k21 + P]

$$= 2 \begin{bmatrix} 5^2 + 5^2 & 5 & + 5^2 \\ 5 & + 5^2 & 1 + 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 5^2 + 5^2 & 5 \\ 5 & + 5^2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 5^2 + 5^2 & 5 \\ 5 & + 5^2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$