

Pflichtenheft

Würfel, Philipp Lüders, Marius Recktenwald, Gregor Smart Mini Camper

Autor: Philipp Würfel , Marius Lüders, Gregor Recktenwald

Letzte Änderung: 17. Mai 2019

Dateiname: smart_mini_camper_pflichtenheft.docx

Version: 1.2

© htw-Berlin Seite 1 von 16

Inhaltsverzeichnis

1	Vorhandene Dokumente	ļ
2	Überblick	5
3	Hauptziele6	3
4	Annahmen und Abgrenzungen6	3
5	Workflow Smart Mini Camper	7
6	Funktionalität	3
6.1	Überblick	3
6.2	Batteriestatus, Ladeleistung und Verbrauchsleistung bestimmen)
6.3	Messdaten in einer SQL-Datenbank hinterlegen)
6.4	Verbindung mit dem Pi herstellen)
6.5	Batteriestatus, Ladeleistung und Verbrauchsleistung anzeigen (aktuelle Daten)10)
6.6	Diagramme anhand der Messdaten zeichnen	2
6.7	Verbraucher an Batterie anschließen14	1
7	Benötigte Hardware	5
8	Lizenzmodell 15	5
9	Backlog	5
1 L L :		
ADDI	ldungsverzeichnis	
Abbildu Abbildu Abbildu	ung 1 Kontextdiagramm Smart Mini Camper	7 3 1

Copyright

© SmartMiniCamper

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Version:	Datum:	Verantwortlich	Änderung
0.1	05.05.2019	Gregor Recktenwald	Initiale Dokumenterstellung, Workflow, Kapitel 6, Kapitel 8
0.2	06.05.2019	Philipp Würfel	Kontextdiagramm, UseCase Diagramm
0.3	08.05.2019	Marius Lüders, Gregor Recktenwald	Überarbeitung Texte, Kapitel 6 etc.
0.4	12.05.2019	Philipp Würfel	Überarbeitung UseCase Diagramm
0.5	15.05.2019	Marius Lüders	Kapitel 6
1.0	15.05.2019	Philipp Würfel	Kapitel 7 und Kapitel 9, Entwurf Projektplan
1.1	17.05.2019	Marius Lüders	Formatierung, Einfügen vom Projektplan
1.2	17.05.2019	Philipp Würfel, Gregor Recktenwald	Anpassung Workflow, Bearbeitung Backlog, Finalisierung

© htw-Berlin Seite 3 von 16

1 Vorhandene Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden

Dokument	Autor	Datum
Lastenheft (Lastenheft.pdf)	Gregor Recktenwald, Marius Lüders, Philipp Würfel	26.04.2019
Projektplan (ProjPlanSmartMiniCamper.mpp)	Gregor Recktenwald, Marius Lüders, Philipp Würfel	17.05.2019

© htw-Berlin Seite 4 von 16

2 Überblick

An eine 12V Batterie werden elektrische Verbraucher angeschlossen. Zusätzlich wird die Batterie über einen Laderegler mit einem Solar-Panel geladen. Mittwoch einem Raspberry Pi und daran angeschlossenen Messgeräten soll die Lade- und Verbrauchsleistung, sowie der Batteriestatus bestimmt werden. In einer SQL-Datenbank werden diese Daten hinterlegt. Mittwoch einer Android App sollen die Daten vom Raspberry Pi über einen Web-Service übertragen und in entsprechenden Diagrammen veranschaulicht werden. Die Kommunikation erfolgt, wenn sich beide im selben Netzwerk befinden.

© htw-Berlin Seite 5 von 16

3 Hauptziele

#	Ziel	Beschreibung der Implementation
1	Nachvollziehbarkeit der Ladung und Entladung einer Batterie	GUI-functionality
2	Effektivere Nutzung des Solarpanels	GUI-functionality
3	Optimierung der Kommunikation	System

4 Annahmen und Abgrenzungen

#	Annahmen (fachliche und technische Annahmen)
1	Anwender besitzen ein Smartphone
2	Anwender nutzen das Android Betriebssystem 6.0 (API 23) oder höher
3	Stromversorgung mit 12 V Autobatterie (minimale Stromstärke Input/Output : 30A)

#	Abgrenzungen (Was ist in dieser Lösung nicht enthalten bzw. abgedeckt)
1	Verbindung zum Pi durch etwas anderes als WLAN
2	Darstellung der Live-Daten vom Raspberry Pi (bspw. über LCD-Display)
3	Analyse der Daten auf Fehler bzw. Sinnhaftigkeit

© htw-Berlin Seite 6 von 16

5 Workflow Smart Mini Camper

© htw-Berlin Seite 7 von 16

6 Funktionalität

6.1 Überblick

Abbildung 3 Use-Case Diagramm Smart Mini Camper

Üb	Übersicht Hauptfunktionen		
1	Batteriestatus, Ladeleistung und Verbrauchsleistung bestimmen		
2	Messdaten in SQL-Datenbank hinterlegen		
3	Batteriestatus, Ladeleistung und Verbrauchsleistung anzeigen (aktuelle Daten)		
4	Diagramme der Daten zeichnen		
5	Verbraucher über Batterie laden		

© htw-Berlin Seite 8 von 16

6.2 Batteriestatus, Ladeleistung und Verbrauchsleistung bestimmen

Zweck/Ziel	Der Raspberry Pi soll durch die angeschlossenen Messinstrumente den Batteriestatus, Ladeleistung und Verbauchsleistung aufzeichnen		
Akteur/Auslöser	Raspberry Pi (Messinstrumente)		
Vorbedingung	 Messinstrumente sind an die Batterie und den Pi angeschlossen Messinstrumente liefern Daten 		
Dateninput	Messdaten der Sensoren		
Verarbeitungsschritte	Messinstrumente zeichnen Daten auf (Spannung und Ampere)		
Ergebnis	Verschiedene Messwerte werden aufgezeichnet, die vom Pi verarbeitet werden können.		
Fehlerbehandlung	Wenn der Pi keine Messdaten gibt wartet er 10sec, ob noch Daten kommen und schreibt dann einen Fehlercode in die Datenbank, anstatt der Messdaten		
Anforderung	Jedes Auf- oder Entladen soll aufgezeichnet werden		
Test Cases	 Mittwoch verschiedenen Verbrauchern und mit und ohne Sonneneinstrahlung die Messinstrumente testen Dummy Daten dem Pi geben um das aufzeichnen zu testen 		

6.3 Messdaten in einer SQL-Datenbank hinterlegen

Zweck/Ziel	Der Pi schreibt die aufgezeichneten Daten in eine SQL-Datenbank	
Akteur/Auslöser	Raspberry Pi	
Vorbedingung	 Messinstrumente sind an die Batterie und den Pi angeschlossen Messinstrumente liefern Daten Der Pi hat die Daten aufgezeichnet 	
Dateninput	Messdaten der Sensoren	
Verarbeitungsschritte	nritte Der Pi sendet der Datenbank die Daten und diese verarbeitet die Daten weiter	
Ergebnis Die Messdaten werden in einer Datenbank hinterlegt für einen einfacheren und sauberen Zugriff		
Fehlerbehandlung	Wenn der Pi keine Verbindung mit der Datenbank aufnehmen kann, schreibt er sie in ein Textdokument, damit nichts verloren geht	
Anforderung	Datenbank verarbeitet die Daten korrekt	
Test Cases	Die Datenbank mit Dummy Daten füttern und überprüfen ob sie richtig weiterverarbeitet werden	

© htw-Berlin Seite 9 von 16

6.4 Verbindung mit dem Pi herstellen

Die App stellt eine Verbindung mit dem Pi her	
Smart Home App	
Das Handy ist mit dem Pi im selben WlanDer Webservice läuft auf dem Pi	
Verbindungsanfrage der App	
Die App sendet eine Verbindungsanfrage an den Pi und dieser bestätigt die Verbindung	
Eine Verbindung für den Datenaustausch besteht	
Sollte die Verbindung zum Pi fehlschlagen versucht die App es noch 2mal. Sollte dann immer noch keine Verbindung zustande kommen, wird eine Fehlermeldung gezeigt	
Verbindung mit dem Pi kommt zustande	
-	

6.5 Batteriestatus, Ladeleistung und Verbrauchsleistung anzeigen (aktuelle Daten)

Zweck/Ziel	Die App soll dem User live Daten zur Batterie zur Verfügung stellen (wird sie gerade geladen, entladen oder beides)
Akteur/Auslöser	User (durch das Öffnen der App)
Vorbedingung	Verbindung zum Raspberry PiÖffnen der App
Daten-Input	Request/Anfrage von der App an den Pi und die Daten des Pis die von der App verarbeitet werden
Verarbeitungsschritte	 Beim Öffnen der App wird ein http Request an den Pi gesendet Der Pi erhält den Request und holt die Daten aus der DB und sendet diese an das Smartphone Darstellung der Daten
Ergebnis	Eine aktuelle Darstellung der Batteriedaten. Der User ist so in der Lage die Batterie zu überwachen und ein Gefühl für laden und entladen zu bekommen.
Fehlerhandling	Wenn die App keine Daten vom Pi empfängt, wird die Anfrage noch 2x mal wiederholt, sollte weiterhin keine Antwort kommen wird eine Fehlermeldung ausgegeben (Popup mit Text keine Verbindung)
Anforderung	Die Daten werden in Echtzeit dargestellt
Test Cases	Eine Minute lang mit verschiedenen Verbrauchern und mit und ohne Sonneneinstrahlung die Plausibilität der Werte überprüfen

© htw-Berlin Seite 10 von 16

Abbildung 4 Mock-Up und Workflow zur Anzeige von Batteriestatus, Ladeleistung und Verbrauchsleistung

© htw-Berlin Seite 11 von 16

6.6 Diagramme anhand der Messdaten zeichnen

Zweck/Ziel	Die App soll dem User einen Überblick verschaffen wie viel Strom in dem von ihm ausgewählten Zeitraum verbraucht und gespeichert wurde	
Akteur/Auslöser	User	
Vorbedingung	 Aufzeichnung der Daten vom Raspberry Pi Verbindung zum Raspberry Pi Öffnen der App Empfangen der Daten vom Raspberry Pi 	
Daten-Input	Die Information für welchen Zeitraum die Daten benötigt werden	
Verarbeitungsschritte	 Öffnen der App Auswählen des gewünschten Zeitraums mit http Request nach gewünschtem Zeitraum fragen (im Header den Zeitraum angeben) Pi empfängt Zeitraum und holt die Daten für den ausgewählten Zeitraum aus der DB und sendet diese an das Smartphone Smartphone stellt die Daten in Diagrammen dar 	
Ergebnis	Graphische Darstellung der Ladungs- und Entladungsdaten für den gewünschten Zeitraum.	
Fehlerhandling	Wenn die App keine Daten vom Pi empfängt, wird die Anfrage noch 2x mal wiederholt, sollte weiterhin keine Antwort kommen wird eine Fehlermeldung ausgegeben (Popup mit Text keine Verbindung)	
Anforderung	 Es kann auf die Daten verschiedener Zeiträume zugegriffen werden Diese Daten können abgebildet werden 	
Test Cases	Mittwoch verschiedenen Testdaten Diagramme zeichnen lassen	

© htw-Berlin Seite 12 von 16

Abbildung 5 Mock-Up und Workflow zum Zeichnen von Diagrammen anhand der Messdaten

© htw-Berlin Seite 13 von 16

6.7 Verbraucher an Batterie anschließen

Zweck/Ziel	Laptop und Smartphones sollen über die App geladen werden können	
Akteur/Auslöser	Anschluss von Verbrauchern an Batterie	
Vorbedingung	 Batterie ist geladen Wechselrichter mit entsprechender Leistung wurde angeschlossen 	
Daten-Input		
Verarbeitungsschritte	Batteriestatus über App überprüfen Verbraucher an Wechselrichter anschließen	
Ergebnis	Verbraucher werden von der Batterie über den Wechselrichter mit 230V Wechselspannung versorgt (Modifizierte	
Fehlerhandling	Tiefentladeschutz vom Wechselrichter schaltet Stromzufuhr bei zu niedrigem Ladezustand der Batterie ab	
Anforderung	Geräte werden geladen	
Test Cases	Verbraucher über Wechselrichter anschließen und überprüfen, ob diese genügend mit Strom versorgt werden	

© htw-Berlin Seite 14 von 16

7 Benötigte Hardware

#	Name	Beschreibung	Menge
1	Solarpanel WS120SF	120 W Solarpanel zur Stromerzeugung	1
2	Solar Laderegler PEKO10	10A PWM-Laderegler für 12V Systeme	1
3	AGM Batterie	12V AGM Batterie 20 Ah (max. Entladestrom 300A)	1
4	Wechselrichter	150W Wechselrichter mit 12V Zigarettensteckdose	1
5	Stromstärkesensor ACS712	0-30A Input, Passive Stromstärkemessung mit dem Hall- Effekt, analoges Output-Signal	2
6	Spannungssenor	0-25V Input, passiv gekühlte Spannungsmessung (Spannungsteiler), analoges Output-Signal	1
7	Analog-Digital-Wandler (ADC) MCP3008	8-Channel, 10-Bit ADC mit SPI Interface	1
8	Raspberry Pi 3	Einplatinencomputer für die Messung, Kommunikation und Datenbank	1

8 Lizenzmodell

Das Thema Nachhaltigkeit und erneuerbare Energien wird in der Zukunft immer wichtiger. Daher wird der Quellcode für dieses Projekt wird mit der MIT-Lizenz zur Verfügung gestellt. So kann er von jedem für zukünftige Projekte frei genutzt und verändert werden.

9 Backlog

Vorgangsnummer	Vorgangsname	Anforderungsreferenz (Lastenheft)
	Sprint 2	
	Technische Spezifikation	
1	Dokumentation Messsystem Raspberry Pi	
2	Dokumentation Kommunikation Raspberry Pi App	
3	Dokumentation App	
	Messystem Raspberry Pi	
4	Raspberry Pi einrichten	5.5
5	Verbindung/Verschaltung der Hardwarekomponenten	4.4, 4.5, 4.6, 4.7
6	Entwicklung Messroutine auf Raspberry Pi	4.1
7	Probemessungen Ladung Batterie	4.1
8	Probemessungen Batteriestatus	4.1
9	Probemessungen Verbrauch	4.1
10	Test Messung im Gesamtsystem	4.1
	Kommunikation Raspberry Pi <> App	
11	Webservice Planung	4.2
12	Webservice einrichten	4.2
13	Lokales WLAN einrichten	4.2, 5.5
14	Zugriff von App auf Webservice implementieren	4.2, 4.3
	App Entwicklung	
15	Design der App	5.1, 5.3, 5.6
16	Menüansichten erstellen	5.3, 5.6
17	In GUI Daten (ggf. Dummy) von Webservice empfangen	5.4, 5.6

© htw-Berlin Seite 15 von 16

Pflichtenheft Smart Mini Camper

18	Empfangene Daten von Webservice anzeigen	5.6
	Sprint 3	
	Technische Spezifikation	
19	Dokumentation Raspberry Pi	
20	Dokumentation App	
21	Datenbankmodell entwickeln	4.1
	Messystem Raspberry Pi	
22	Datenbank auf Raspberry Pi einrichten	4.1
23	Optimierung der Messungen	4.1
24	Optimierung der Messroutine	4.1
25	Übertragung Messdaten an Datenbank	4.1, 5.2
26	Test Messung im Gesamtsystem	
	Kommunikation Raspberry Pi <> App	
27	Implementierung JSON als Kommunikationsformat	4.2, 4.3
28	Zugriff von Webservice auf Datenbank implementieren	4.1, 4.2, 4.3
	App Entwicklung	
29	Weiterentwicklung App Design	5.1, 5.3, 5.6
30	In GUI Daten von Webservice empfangen	4.3, 5.2, 5.4, 5.7
31	JSON-Parsing der empfangenen Daten	4.3
32	Darstellung der Daten	4.8
33	Verschiedene Darstellungsvarianten entwickeln	4.8
34	App Testen	
	Sprint 4	
	Technische Spezifikation	
35	Dokumentation Raspberry Pi	
36	Dokumentation App	
	Messystem Raspberry Pi	
37	Optimierung und Finalisierung Messsystem	4.1
38	Testfälle entwickeln und durcharbeiten	
	Kommunikation Raspberry Pi <> App	
39	Optimierung und Finalisierung Kommunikation	4.2, 4.3, 5.5
40	Testfälle entwickeln und durcharbeiten	
	App Entwicklung	40 51 52 52 54
41	Optimierung und Finalisierung App	4.8, 5.1, 5.2, 5.3, 5.4, 5.6, 5.7
42	Testfälle entwickeln und durcharbeiten	
	Projektmanagement	
43	Projektplan 1	
44	Projektplan 2	

© htw-Berlin Seite 16 von 16