Introduction to Graph Theory

In real world applications, graph is the base for all kinds of *network*.

Friendship Network

Scientific collaboration network

Business ties in US biotech- industry

Genetic interaction network

Protein-Protein Interaction Networks

Internet

- Network = graph
- Informally a graph is a set of nodes joined by a set of lines or arrows.

Graph-based representations

Representing a problem as a graph can provide a different point of view Representing a problem as a graph can make a problem much simpler

■ More accurately, it can provide the appropriate tools for solving the problem

What makes a problem graph-like?

There are two components to a graph

■ Vertex/Nodes and Edges

In graph-like problems, these components have natural correspondences to problem elements

- Entities are nodes and interactions between entities are edges
- Most complex systems are graph-like

Definition

G is an ordered triple G:=(V, E, f)

- V is a set of nodes, points, or vertices.
- E is a set, whose elements are known as edges or lines.
- f is a function
 - maps each element of E
 - to an unordered pair of vertices in V.

Vertex

- Basic Element
- Drawn as a *node* or a *dot*.
- Vertex set of G is usually denoted by V(G), or V

Edge

- A set of two elements
- Drawn as a line connecting two vertices, called end vertices, or endpoints.
- The edge set of G is usually denoted by E(G), or E.

Example – how to represent V and E

- V:={1,2,3,4,5,6}
- E:={{1,2},{1,5},{2,3},{2,5},{3,4},{4,5},{4,6}}

Types of graphs

Simple Graphs

Simple graphs are graphs without multiple edges or self-loops.

Directed Graph (digraph)

- Edges have directions
 - An edge is an *ordered* pair of nodes

Weighted graphs

is a graph for which each edge has an associated weight, usually given by a weight function w: E → R.

Connectivity

A graph is connected if

- you can get from any node to any other by following a sequence of edges OR
- any two nodes are connected by a path.

A directed graph is **strongly connected** if there is a directed path from any node to any other node.

Component

Every disconnected graph can be split up into a number of connected *components*.

Degree

Number of edges *incident* on a node

The degree of 5 is 3

Degree (for Directed Graphs)

In-degree: Number of edges entering Out-degree: Number of edges leaving

Degree = indeg + outdeg

outdeg(1)=2 indeg(1)=0

outdeg(2)=2 indeg(2)=2

outdeg(3)=1indeg(3)=4

If G is a graph with m edges, then $\Sigma \deg(v) = 2m = 2 |E|$

If G is a digraph then $\Sigma \ \mathsf{indeg}(v) {=} \ \Sigma \ \mathsf{outdeg}(v) = \ |E|$

Number of Odd degree Nodes is even

Special types of Graphs

Empty Graph / Edgeless graph

■ No edge

Null graph

- No nodes
- Obviously no edge

4

(5)

(3)

ĺ

Trees

- Connected Acyclic Graph
- Two nodes have exactly one path between them
- Special ones are called 'paths' and 'star'

Regular

- ConnectedGraph
- All nodes have the same degree
- Special ones are called 'cycles' see c3, c4, c5

Representation (Matrix)

Incidence Matrix

- VxE
- [vertex, edges] contains the edge's data

Adjacency Matrix

- VxV
- Boolean values (adjacent or not)
- Or Edge Weights

	1,2	1,5	2,3	2,5	3,4	4,5	4,0
1	(1	1	0	0	0	0	0
2	1	0	1	1	0	0	0
3	0	0	1	0	1	0	0
4	0	0	0	0	1	1	1
5	0	1	0	1	0	1	0
6	0	0	0	2,5 0 1 0 0 1	0	0	1

Adjacency Matrix

Incidence Matrix

Representation (List)

Edge List

- pairs (ordered if directed) of vertices
- Optionally weight and other data

Adjacency List (node list)

- \blacksquare an array of |V| lists, one for each vertex in V.
- For each $u \in V$, ADJ [u] points to all its adjacent vertices.

Edge List for Weighted Graphs

Topological Distance

A shortest path is the minimum path connecting two nodes.

The number of edges in the shortest path connecting p and q is the **topological distance** between these two nodes, $d_{p,q}$

Distance Matrix

 $|V| \times |V|$ matrix D = (d_{ij}) such that d_{ij} is the topological distance between i and j.

	1	2	3	4	5	6
1	0	1	2	2	1	3
2	1	0	1	2	1	3
3	2	1	0	1	2	2
4	2	2	1	0	1	1
5	1	1	2	1	0	2
6	3	3	2	1	2	3 3 2 1 2 0