Introduction to Module Theory

Definition. Let R be a ring (not necessarily commutative nor with 1). A *left* R-module or a *left module* over R is a set M together with

- 1. a binary operation + on M under which M is an abelian group, and
- 2. an action of R on M (that is, a map $R \times M \to M$) denoted by rm, for all $r \in R$ and for all $m \in M$ which satisfies
 - (a) (r+s)m = rm + sm, for all $r, s \in R$, $m \in M$
 - (b) (rs)m = r(sm), for all $r, s \in R$, $m \in M$, and
 - (c) r(m+n) = rm + rn, for all $r, s \in R$, $m \in M$.

If the ring R has 1 we impose the additional axiom:

(d) 1m = m, for all $m \in M$.

Definition. Let R be a ring and let M be an R-module. An R-submodule of M is a subgroup N of M which is closed under the action of ring elements.

Proposition. (The Submodule Criterion) Let R be a ring and let M be an R-module. A subset N of M is a submodule of M if and only if

- 1. $N \neq \emptyset$, and
- 2. $x + ry \in N$ for all $r \in R$ and for all $x, y \in M$.

Definition. Let R be a ring and let M and N be R-modules.

- 1. A map $\varphi: M \to N$ is an R-module homomorphism if it respects the R-module structures of M and N, i.e.,
 - (a) $\varphi(x+y) = \varphi(x) + \varphi(y)$, for all $x, y \in M$ and
 - (b) $\varphi(rx) = r\varphi(x)$, for all $r \in R$, $x \in M$.
- 2. An R-module homomorphism is an isomorphism if it is both injective and surjective. The modules M and N are said to be isomorphic, denoted $M \cong N$ if there is some R-module isomorphism $\varphi: M \to N$.

- 3. If $\varphi: M \to N$ is an R-module homomorphism, let $\ker(\varphi) = \{m \in M \mid \varphi(m) = 0\}$ and let $\varphi(M) = \{n \in N \mid n = \varphi(m) \text{ for some } m \in M\}$.
- 4. Let M and N be R-modules and define $\operatorname{Hom}_R(M,N)$ to be the set of R-module homomorphisms from M to N.

Proposition. Let M, N, and L be R-modules

- 1. A map $\varphi: M \to N$ is an R-module homomorphism if and only if $\varphi(rx+y) = r\varphi(x) + \varphi(y)$ for all $c, y \in M$ and $r \in R$.
- 2. Let φ , ψ be elements of $\operatorname{Hom}_R(M,N)$. Define $\varphi + \psi$ by

$$(\varphi + \psi)(m) = \varphi(m) + \psi(m)$$
 for all $m \in M$.

Then $\varphi + \psi \in \operatorname{Hom}_R(M, N)$ and with this operation $\operatorname{Hom}_R(M, N)$ is an abelian group. If R is a commutative ring the for $r \in R$ define $r\varphi$ by

$$(r\varphi)(m) = r(\varphi(m))$$
 for all $m \in M$.

Then $r\varphi \in \operatorname{Hom}_R(M,N)$ and with this action of the commutative ring R the abelian group $\operatorname{Hom}_R(M,N)$ is an R-module.

- 3. If $\varphi \in \operatorname{Hom}_R(L, M)$ and $\psi \in \operatorname{Hom}_R(M, N)$ then $\psi \circ \varphi \in \operatorname{Hom}_R(L, N)$.
- 4. With addition as above and multiplication defined as function composition, $\operatorname{Hom}_R(M,M)$ is an R-algebra.

Definition. The ring $\operatorname{Hom}_R(M, M)$ is called the *endomorphism ring of* M and will often be denoted by $\operatorname{End}_R(M)$. Elements of $\operatorname{End}(M)$ are called *endomorphisms*.

Proposition. Let R be a ring, let M be an R-module, and let N be a submodule of M. The quotient group M/N can be made into an R-module by defining an action of elements of R by

$$r(x+N) = (rx) + N$$
, for all $r \in R$, $x+N \in M/N$.

The natural projection map $\pi: M \to M/N$ is an R-module homomorphism with kernel N.

Definition. Let A, B be submodules of the R-module M. The sum of A and B is the set

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Definition. Let M be an R-module and let N_1, \ldots, N_n be submodules of M.

- 1. The **sum** of N_1, \ldots, N_n is the set of all finite sums of elements form the sets N_i : $\{a_1 + \cdots + a_n \mid a_i \in N_i\}$. Denote this sum by $N_1 + \cdots + N_n$.
- 2. For any subset A of M let

$$RA = \{r_1 a_1 + \dots + r_m a_m \mid a_i \in A, r_i \in R, m \in \mathbb{Z}^+\}.$$

If A is finite we may write $Ra_1 + Ra_2 + \cdots + Ra_m$. Call RA th **submodule of** M **generated by** A. If N is a submodule of M and N = RA for some subset A of M, we call A a set of generators or a generating set for N, and we say that N is generated by A.

- 3. A submodule N of M is *finitely generated* if there is some finites subset A of M such that N = RA.
- 4. A submodule N of M is *cyclic* if there exists an element $a \in M$ such that N = Ra, that is, if N is generated by one element.

Proposition. Let N_1, N_2, \ldots, N_k be submodules of the R-module M. Then the following are equivalent

1. The map $\pi: N_1 \times N_2 \times \cdots \times N_k \to N_1 + N_2 + \cdots + N_k$ defined by

$$\pi(a_1, a_2, \dots, a_k) = a_1 + a_2 + \dots + a_k$$

is an isomorphism (of R-modules)

- 2. $N_i \cap N_1 + \cdots + N_{i-1} + N_{i+1} + \cdots + N_k = 0$ for all $j \in \{1, 2, \dots, k\}$.
- 3. Every $x \in N_1 + \cdots + N_k$ can be written uniquely in the form $a_1 + a_2 + \cdots + a_k$ for $a_i \in N_i$.

Definition. If an R-module $M = N_1 + N_2 + \cdots + N_k$ is the sum of submodules N_1, N_2, \ldots, N_k of M satisfying the equivalent conditions in the above proposition, then M is said to be the *(internal) direct sum* of N_1, N_2, \ldots, N_k written

$$M = N_1 \oplus N_2 \oplus \cdots \oplus N_k$$
.

Definition. And R-module F is said to be **free** on the subset A of F if for every nonzero element x of F, there exist unique nonzero elements r_1, r_2, \ldots, r_n of R and unique a_1, a_2, \ldots, a_n in A such that $x = r_1a_1 + r_2a_2 + \cdots + r_na_n$, for some $n \in \mathbb{Z}^+$. In this situation we say A is a **basis** or **set of free generators** for F. If R is a commutative ring the cardinality of A is called the **rank** of F.

Theorem 0.1. For any set A there is a free R-module F(A) on the set A and F(A) satisfies the following **universal property**: if M is any R-module and $\varphi: A \to M$ is any map of sets, then there is a unique R-module homomorphism $\Phi: F(A) \to M$ such that $\Phi(a) = \varphi(a)$, for all $a \in A$, that is, the following diagram commutes.

Corollary. 1. If F_1 and F_2 are free modules on the same set A, there is a unique isomorphism between F_1 and F_2 which is the identity map on A.

2. If F is any free R-module with basis A, then $F \cong F(A)$. In particular, F enjoys the same universal property with respect to A as F(A) does in the previous theorem.