Compresión No Estadística

AGENDA

- Formas de compresión no estadística
- Compresión Run-Length
- Compresor LZ77
- Compresor LZ78
- Compresor LZH
- Compresor LZP
- Aplicaciones
- Referencias

FORMAS DE COMPRESIÓN NO ESTADÍSTICA

- Compresores predictores
 - Se basan en la experiencia previa para predecir el próximo carácter
 - Si aciertan generan un código pequeño
- Compresores por sustitución (dictionary coders)
 - Consisten en sustituir una cadena de varios símbolos por un puntero a la entrada en un diccionario
 - Un mismo símbolo no siempre sustituye con lo mismo (≠ codificación)
- Compresión Run-length

COMPRESIÓN RUN-LENGTH

- Detecta repeticiones de símbolos y las reemplaza por pares (símbolo,longitud)
- Se basa en el desplazamiento de una ventana sobre el archivo (sólo una pasada por el archivo)
- Funciona bien cuando hay secuencias de símbolos que se repiten mucho
- Ejemplos:

Notar que aumenta el tamaño si no se repiten los caracteres

LZ77 (SLIDING WINDOWS)

- Abraham Lempel y Jacob Ziv en 1977
- El diccionario es la ventana de memoria (adaptativo)

Logitud Mínima de Match (A)

Emito una letra o un par (posición, longitud)

LZ77 (EJEMPLO)

Siempre me quedo con el acierto más grande.

Un bit más para distinguir la codificación de un **par ordenado** de un **carácter**. Para codificar posiciones y longitudes:

- 3 posiciones posibles (0,1,2): 2 bits \rightarrow Log₂ (M A + 1)
- 4 longitudes posibles (0,1,2,3): 2 bits $\rightarrow \text{Log}_2(\text{Min}(M,N)) \text{Log}_2(A)$
- + 1 bit de diferencia entre carácter y dupla = 5 bits
- •Original: 11 letras x 8 bits = 88 bits
- •Comprimido: 3 letras x 9 bits + 3 duplas x 5 bits = 42 bits

LZ78

- Abraham Lempel y Jacob Ziv en 1978
- También utiliza un diccionario adaptativo, pero de todos los símbolos anteriores

U	1	2	3	4	5	6	/	8	9	10
L	Α	L	A	L	A	L	A	A	A	A

Ubicación	Emisión	Agrego al dicc.
0	L	256 – LA
1	А	257 – AL

Diccionario

Código	Símbolo
0	′0′
•••	
255	'255'
256	LA
257	

- La cantidad de bits emitidos dependen del tamaño de la tabla
- Original: 11 letras x 8 bits = 88 bits
- Comprimido: 1 código x 8 bits + 6 códigos x 9 bits = 62 bits

LZ78

Descompresión

- El tamaño de la tabla indica la cantidad de bits que tengo que leer
- Se empieza con el diccionario vacío y se va regenerando
- Siempre se almacena lo anterior más la primera letra del próximo

Caso Especial

 Cuando para agregar una entrada en la tabla tengo que leer un símbolo que no tengo

Diccionario

Código	Símbolo
256	LA
257	AL
258	??

¿Cómo lleno este símbolo? LA (256) + L (primera letra del símbolo actual)

LZH (LZ + HUFFMAN)

• Es un LZ77 que utiliza árboles de Huffman

 Ahora no necesito un bit más para distinguir entre duplas y caracteres

LZP

• Charles Bloom, 1994. Le agrega predicción al algoritmo de los LZ

APLICACIONES

- RLE → Windows Bitmap (bmp)
- LZH → DEFLATE → PNG (Imágenes Blanco y Negro),
 ZIP, Gzip, HTTP, PPP
- LZW →GIF / Acrobat® PDFs

REFERENCIAS

- Data Compression: The Complete Reference, David Salomon, 3rd Edition, Springer
- The Data Compression Book, Mark Nelson, 2nd Edition, M&T Books, 1995
- Ziv, J. and Lempel, A., "A Universal Algorithm for Secuential Data Compression", IEEE Trans. Information Theory, vol. 23, pp. 337-343, May 1977. (http://www.stanford.edu/class/ee398a/resources/ziv:77-SDC.pdf)
- Ziv, J. and Lempel, A., "Compression of Individual Secuences via Variable-Rate Coding", IEEE. Transactions on Information Theory, vol. 24, pp. 530-536, 1978.
 (http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1978_variable-rate.pdf)
- http://www.datacompression.info/
- http://www.data-compression.com/
- http://ccc.inaoep.mx/~mmorales/documents/Compre.pdf
- http://www.binaryessence.com/dct/en000003.htm (Muy bueno!)
- Wikipedia:
 - http://es.wikipedia.org/wiki/RLE
 - http://en.wikipedia.org/wiki/Dictionary_coder
 - http://en.wikipedia.org/wiki/LZ77 and LZ78