#### 1-3-3.지수방정식과 지수부등식



# 수학 계산력 강화

#### (2)지수부등식





◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

### 01 / 지수부등식의 풀이

(1) 지수부등식: 지수에 미지수가 있는 부등식

(2) 지수부등식의 풀이

① 밑을 같게 할 수 있는 경우

:  $a^{f(x)} < a^{g(x)}$  꼴로 변형한 후

• a > 1일 때,  $a^{f(x)} < a^{g(x)} \Leftrightarrow f(x) < g(x)$ 

• 0 < a < 1일 때,  $a^{f(x)} < a^{g(x)} \Leftrightarrow f(x) > g(x)$ 

주의 지수부등식에서 밑을 같게 한 후 지수를 비교할 때에는 부등호의 방향에 주의해야 한다.

② 4™꼴이 반복되는 경우

:  $a^x = t(t > 0)$ 로 치환 후 t에 대한 부등식을 푼다.

③ 밑에도 미지수가 있는 경우

: 밑의 범위에 따라 부등호 방향이 바뀌므로 (i) 0 < (밑) < 1, (ii) (ឧ) = 1, (iii) (ឧ) > 1으로 범위를 나누어 푼다.

주의 지수부등식에서  $a^x=t$ 로 치환하여 t에 대한 부등식을 풀 때,  $a^x>0$ 이므로 t>0임에 주의한다.

# ☑ 다음 부등식을 풀어라.

1.  $4 \times 8^x < 32$ 

2.  $3^{2x+1} < 3^x$ 

3.  $\left(\frac{1}{5}\right)^x < 25$ 

4.  $2^x < 8$ 

5.  $3^{x+2} \le 9\sqrt{3}$ 

**6.**  $3^x > \frac{1}{9}$ 

7.  $\left(\frac{1}{10}\right)^{x-2} < 0.01$ 

8.  $5^{7-2x} \ge \sqrt{5}^{3x}$ 

**9.**  $\left(\frac{1}{3}\right)^{-x+2} \le \left(\frac{1}{9}\right)^{-x+3}$ 

**10.**  $3^{x-2} > 3^{-x+4}$ 

**11.**  $2^x < 4^{x+1}$ 

**12.**  $\left(\frac{1}{3}\right)^{x-4} \ge \frac{1}{3}$ 

**13.**  $0.3^{x+1} < 0.027^{-x+2}$ 

**14.**  $\left(\frac{1}{2}\right)^{2x+1} > \left(\frac{1}{8}\right)^{x-1}$ 

**15.** 
$$9^x > \left(\frac{1}{3}\right)^{3-x}$$

**16.** 
$$\left(\frac{1}{5}\right)^{2x} < \left(\frac{1}{5}\right)^3$$

**17.** 
$$\left(\frac{1}{2}\right)^{3x+1} \ge \left(\frac{1}{4}\right)^{x+5}$$

**18.** 
$$\left(\frac{1}{4}\right)^{x+1} < \left(\frac{1}{\sqrt{2}}\right)^{-2x}$$

**19.** 
$$64^x \ge (0.25)^{4-x^2}$$

**20.** 
$$\left(\frac{1}{2}\right)^{x+2} \le 64$$

**21.** 
$$3^{2x} > 729$$

**22.** 
$$4^x > 2^{x+1}$$

**23.** 
$$\left(\frac{2}{3}\right)^{x-1} < \left(\frac{3}{2}\right)^{2x+1}$$

**24.** 
$$1 < 3^x < 3^4$$

**25.** 
$$\frac{1}{4} < 2^x < 8$$

**26.** 
$$\sqrt{2} < 2^{3x} < 64$$

**27.** 
$$3^{x+2} \le 3^{x^2} \le 27 \times 9^x$$

**28.** 
$$\frac{1}{81} < \left(\frac{1}{3}\right)^x < 243$$

**29.** 
$$\frac{1}{8} < 2^x < 16$$

**30.** 
$$\left(\frac{1}{2}\right)^{2x-1} < \left(\frac{1}{2}\right)^{\frac{5}{2}} < \left(\frac{1}{2}\right)^{x-2}$$

**31.** 
$$4^{x-\frac{1}{2}} < \left(\frac{1}{2}\right)^{x^2+1} < 4 \times 2^{2x}$$

**32.** 
$$\left(\frac{1}{3}\right)^{x+2} < \left(\frac{1}{3}\right)^{x^2} < \left(\frac{1}{3}\right)^{3x-2}$$

# □ 다음 부등식을 풀어라.

**33.** 
$$7^{2x} - 4 \cdot 7^x - 21 > 0$$

**34.** 
$$4^x - 5 \cdot 2^x + 4 < 0$$

**35.** 
$$3^{2x} - 10 \cdot 3^x + 9 \le 0$$

**36.** 
$$5^{2x} + 5^{x+1} > 50$$

**37.** 
$$9^x - 10 \cdot 3^{x+1} + 81 \le 0$$

**38.** 
$$4^x - 3 \cdot 2^{x+1} + 8 \le 0$$

**39.** 
$$2 \times 9^x + 3^{x+1} - 27 > 0$$

**40.** 
$$25^x - 4 \times 5^x - 5 > 0$$

**41.** 
$$4^{2x} - 2 \cdot 4^x - 8 < 0$$

**42.** 
$$9^x + 3^{x+1} - 18 \ge 0$$

**43.** 
$$7^{2x+1} - 50 \times 7^x + 7 \le 0$$

**44.** 
$$\left(\frac{1}{4}\right)^x - 3 \cdot \left(\frac{1}{2}\right)^x - 4 \le 0$$

**45.** 
$$\left(\frac{1}{9}\right)^x - 12 \cdot \left(\frac{1}{3}\right)^x < -27$$

**46.** 
$$\left(\frac{1}{4}\right)^x - \left(\frac{1}{2}\right)^{x-1} \le \left(\frac{1}{2}\right)^x - 2$$

## **☑** 다음 부등식을 풀어라. (단, x > 0)

**47.** 
$$x^{4x-2} \ge x^{3x+1}$$

**48.** 
$$x^{3x-4} > x^{2x}$$

**49.** 
$$x^{5x-1} > x^{x+2}$$

**50.** 
$$x^{x(x+1)} > x^{-3(x+1)}$$

**51.** 
$$x^{x-2} \ge x^{-2x+7}$$

**52.** 
$$x^{3x-1} < x^{x+3}$$

**53.** 
$$x^{x-1} \le x^{5x-9}$$

**54.** 
$$x^{2x+5} \le x^{3x+2}$$

**55.** 
$$x^{x^2-1} \le x^{3x+9}$$

**56.** 
$$x^{x+1} > x^3$$

**57.** 
$$x^{x+2} > x^{3(2-x)}$$

**58.** 
$$x^{x+2} < x^{2x-1}$$

- ☑ 다음 물음에 답하여라.
- **59.** 부등식  $\left(\frac{1}{4}\right)^x + \left(\frac{1}{2}\right)^{x-2} 32 < 0$ 을 만족시키는 정 수 x의 최솟값을 구하여라.
- **60.** 부등식  $3^{x^2-x} \le 9^{5+x}$ 을 만족시키는 정수 x의 개 수를 구하여라.
- **61.** 지수부등식  $16^x 15 \times 4^x 16 \le 0$ 을 만족하는 모 든 자연수 x의 값을 구하여라.
- **62.** 지수부등식  $(0.5)^{-x} < 8 < 4^{2x-1}$ 의 해가  $\alpha < x < \beta$ 일 때,  $4\alpha - \beta$ 의 값을 구하여라.
- **63.** 부등식  $\left(\frac{1}{2}\right)^x < 64 < \left(\frac{1}{2}\right)^{2x-4}$ 를 만족시키는 모든 정수 x값들의 합을 구하여라.
- **64.** x에 대한 부등식  $4^x + p \cdot 2^x + q < 0$ 의 해가 1 < x < 4일 때, 두 실수 p, q의 합을 구하여라.

# 02 지수부등식의 응용

 $a^x = t(t > 0)$ 로 치환한 후 t > 0인 모든 실수 t에 대하여 이차부등식이 성립하는 조건을 확인한다.

- 참고 이차부등식이 성립하는 조건
- 이차방정식  $ax^2 + bx + c = 0$ 의 판별식을 D라 할 때 모든 실수 x에 대하여
- ①  $ax^2 + bx + c > 0$ 이 항상 성립  $\Rightarrow a > 0$ , D < 0
- ②  $ax^2 + bx + c \ge 0$ 이 항상 성립  $\Rightarrow a > 0$ ,  $D \le 0$
- ③  $ax^2 + bx + c < 0$ 이 항상 성립  $\Rightarrow a < 0$ , D < 0
- ④  $ax^2 + bx + c \le 0$ 이 항상 성립  $\Rightarrow a < 0, D \le 0$
- ☑ 모든 실수 x에 대하여 주어진 부등식이 항상 성립할 때, 실수 k의 값의 범위를 구하여라.
- **65.**  $4^{x+1} 2^{x+2} \ge k$

**66.** 
$$\left(\frac{1}{4}\right)^x - \left(\frac{1}{2}\right)^{x-2} + 2k > 0$$

**67.**  $4^x - k \times 2^{x+2} + 3 \ge 0$ 

**68.**  $4^x - k \cdot 2^{x+2} \ge -4$ 

**69.**  $2^{2x}-2^{x+1}+k-1\geq 0$ 

**70.** 
$$9^x - 2 \cdot 3^{x+1} + k - 1 > 0$$

**71.** 
$$k \cdot 3^x \le 9^x - 3^x + 9$$

- ☑ 다음 물음에 답하여라.
- **72.** 모든 실수 x에 대하여  $4^x 2^{x+4} + k \ge 0$ 이 성립하 도록 하는 실수 k의 최솟값을 구하여라.
- 73. 모든 실수 x에 대하여 부등식  $\left(\frac{1}{9}\right)^x + 4\left(\frac{1}{3}\right)^x + k - 1 \ge 0$ 이 성립하도록 하는 실수 k의 최소값을 구하여라.

- 74. 모든 실수 x에 대하여 부등식  $2^{x+1}-2^{\frac{x+4}{2}}+a \ge 0$ 이 성립하도록 하는 실수 a의 최솟값을 구하여라.
- **75.** 부등식  $4^x + 2^{x+1} + 1 \ge k(2^x 1)$ 이 모든 실수 x에 대하여 성립할 때, 상수 k의 값의 범위는  $\alpha \le k \le \beta$ 이다. 이 때,  $\alpha + \beta$ 의 값을 구하여라.

# 03 / 지수부등식의 실생활의 활용

주어진 문장 속에서 알맞은 지수부등식을 세워 지수부등식의 여러 가지 풀이에 맞게 답을 구한다.

- 76. 어떤 치료용 주사액은 혈관에 주입되면 몸에 흡수 되기 시작하여 t시간 후에는 처음 주사한 양의  $\left(\frac{1}{\sqrt[3]{2}}\right)^t$ 만큼 혈액 속에 남는다고 한다. 혈액 속에 남은 양이 처음 주사한 양의  $\frac{1}{64}$  보다 적으면 약효 가 없다고 판단할 때, 약효의 지속시간을 구하여라.
- 77. 어떤 치료용 주사액은 혈관에 주입되면 몸에 흡수 되기 시작하여 t시간 후에는 처음 주사한 양의  $\left(\frac{1}{4\sqrt{5}}\right)^t$ 만큼 혈액 속에 남는다고 한다. 혈액 속에 남은 양이 처음 주사한 양의  $\frac{1}{625}$ 보다 적으면 약효 가 없다고 판단할 때, 약효의 지속 시간을 구하여라. (단, 단위는 시간임)
- 78. 어느 자동차 회사의 영업 사원의 수 x명과 판매 실적 y대 사이에는  $y = cx^{k^2 + 2k - 1}$  (c는 상수)인 관계 가 있다고 한다. 올해는 작년보다 영업 사원의 수를 50% 늘려 작년에 비해 2.25배의 판매 실적을 올렸 다. 이 때 양수 k의 값을 구하여라.

**79.** n시간 후 A박테리아는  $2^n$ 마리씩, B박테리아는 8<sup>n</sup>마리씩 증가한다. 두 배양기에 각각 A박테리아를 2마리, B박테리아를 1마리씩 넣고 시간이 경과한 후 열어보았더니 두 배양기의 박테리아의 수의 합이 72마리 이상이었다면 최소 몇 시간이 경과한 것인지 구하여라.

80. 공기가 어떤 공기 정화 필터 1개를 통과하면 오 염 물질이 50%씩 줄어든다고 한다. 남아 있는 오염 물질의 양이 처음 오염 물질의 양의  $\frac{1}{128}$  이하가 되도록 하려면 공기 정화 필터 n개를 통과시켜야 한다. 이때 n의 최솟값을 구하여라.

# 

### 정답 및 해설

- 1) x < 1
- $\Rightarrow 4 \times 8^x < 32$ 에서  $2^{3x+2} < 2^5$ 밑이 1보다 크므로 3x+2 < 5  $\therefore x < 1$
- 2) x < -1
- $\Rightarrow 3^{2x+1} < 3^x$ 에서 밑 3이 3 > 1이므로 2x+1 < x  $\therefore x < -1$
- 3) x > -2
- $\Rightarrow \left(\frac{1}{5}\right)^x < 25 \text{ MH } 5^{-x} < 5^2$ 밑이 1보다 크므로 -x < 2  $\therefore x > -2$
- 4) x < 3
- $\Rightarrow$   $2^x < 8$ 에서  $2^x < 2^3$ 밑이 1보다 크므로 x < 3
- 5)  $x \le \frac{1}{2}$
- $\Rightarrow 3^{x+2} \le 9\sqrt{3} \text{ old } 3^{x+2} \le 3^{\frac{3}{2}}$ 밑이 1보다 크므로  $x+2 \le \frac{5}{2} \qquad \qquad \therefore \ \ x \le \frac{1}{2}$
- $\Rightarrow 3^x > \frac{1}{9}$ 에서  $3^x > 3^{-2}$ 밑이 1보다 크므로
- 7) x > 4
- $\Rightarrow \left(\frac{1}{10}\right)^{x-2} < 0.01 \text{ or } \left(\frac{1}{10}\right)^{x-2} < \left(\frac{1}{10}\right)^2$ 밑이 1보다 작으므로 x-2>2  $\therefore x>4$
- 8)  $x \le 2$
- $\Rightarrow 5^{7-2x} \geq \sqrt{5}^{3x}$  에서  $\sqrt{5}^{2(7-2x)} \geq \sqrt{5}^{3x}$  $\therefore \sqrt{5}^{14-4x} \ge \sqrt{5}^{3x}$ 밑이 1보다 크므로  $14 - 4x \ge 3x \qquad \qquad \therefore \ x \le 2$
- 9)  $x \ge 4$
- $\Rightarrow \left(\frac{1}{3}\right)^{-x+2} \leq \left(\frac{1}{9}\right)^{-x+3} \text{ond } \left(\frac{1}{3}\right)^{-x+2} \leq \left(\frac{1}{3}\right)^{2(-x+3)}$  $\therefore \left(\frac{1}{3}\right)^{-x+2} \le \left(\frac{1}{3}\right)^{-2x+6}$ 밑이 1보다 작으므로  $-x+2 \ge -2x+6$   $\therefore x \ge 4$
- $\Rightarrow 3^{x-2} > 3^{-x+4}$ 에서 밑이 1보다 크므로 x-2>-x+4  $\therefore x>3$

- 11) x > -2
- $\Rightarrow 2^x < 4^{x+1}$ 에서  $2^x < 2^{2(x+1)}$  :  $2^x < 2^{2x+2}$ 밑이 1보다 크므로 x < 2x + 2  $\therefore x > -2$
- 12)  $x \le 5$
- $\Rightarrow \left(\frac{1}{3}\right)^{x-4} \ge \frac{1}{3}$ 에서 밑이 1보다 작으므로  $x-4 \le 1$   $\therefore x \le 5$
- 13)  $x > \frac{5}{4}$
- $\Rightarrow 0.3^{x+1} < 0.027^{-x+2}$ 에서  $0.027 = 0.3^3$ 이므로  $0.3^{x+1} < 0.3^{-3x+6}$ 밑이 1보다 작은 양수이므로 x+1>-3x+6에서 4x > 5  $\therefore x > \frac{5}{4}$
- 14) x > 4
- $\Leftrightarrow \left(\frac{1}{2}\right)^{2x+1} > \left(\frac{1}{8}\right)^{x-1} \text{ off } k! \left(\frac{1}{2}\right)^{2x+1} > \left(\frac{1}{2}\right)^{3(x-1)}$  $\therefore \left(\frac{1}{2}\right)^{2x+1} > \left(\frac{1}{2}\right)^{3x-3}$ 밑이 1보다 작으므로  $2x+1<3x-3 \qquad \quad \therefore \ \, x>4$
- $\Rightarrow 9^x > \left(\frac{1}{3}\right)^{3-x} \text{ on } 3^{2x} > 3^{x-3}$ 밑이 1보다 크므로 2x > x - 3  $\therefore x > -3$
- 16)  $x > \frac{3}{2}$
- $\Leftrightarrow \left(\frac{1}{5}\right)^{2x} < \left(\frac{1}{5}\right)^3$ 에서 밑  $\frac{1}{5}$ 이  $0 < \frac{1}{5} < 1$ 이므로 2x > 3  $\therefore x > \frac{3}{2}$
- $\left(\frac{1}{2}\right)^{3x+1} \ge \left(\frac{1}{2}\right)^{2(x+5)}$  $\therefore \left(\frac{1}{2}\right)^{3x+1} \ge \left(\frac{1}{2}\right)^{2x+10}$ 밑이 1보다 작으므로  $3x+1 \le 2x+10 \qquad \qquad \therefore \ \ x \le 9$
- 18)  $x > -\frac{2}{3}$  $\Rightarrow \left(\frac{1}{4}\right)^{x+1} < \left(\frac{1}{\sqrt{2}}\right)^{-2x} \text{ off } \left(\frac{1}{2}\right)^{2x+2} < \left(\frac{1}{2}\right)^{-x}$

밑이 1보다 작은 양수이므로

$$2x+2 > -x$$

$$2x+2 > -x \qquad \therefore x > -\frac{2}{3}$$

19) 
$$-1 \le x \le 4$$

당 
$$64^x \ge (0.25)^{4-x^2}$$
에서  $0.25 = \frac{1}{4} = 4^{-1}$ 이므로  $4^{3x} \ge 4^{x^2-4}$  밑이 1보다 크므로  $3x \ge x^2 - 4$ 에서  $x^2 - 3x - 4 \le 0$   $(x+1)(x-4) \le 0$   $\therefore$   $-1 \le x \le 4$ 

20) 
$$x \ge -8$$

다 
$$64=2^6=\left(\frac{1}{2}\right)^{-6}$$
에서  $\left(\frac{1}{2}\right)^{x+2}\leq \left(\frac{1}{2}\right)^{-6}$  밑이 1보다 작은 양수이므로  $x+2\geq -6$   $\therefore$   $x\geq -8$ 

21) 
$$x > 3$$

22) 
$$x > 1$$

$$\Rightarrow$$
  $4^x>2^{x+1}$ 에서  $2^{2x}>2^{x+1}$ 밑이 1보다 크므로  $2x>x+1$   $\therefore$   $x>1$ 

23) 
$$x > 0$$

다 
$$\left(\frac{2}{3}\right)^{x-1} < \left(\frac{3}{2}\right)^{2x+1}$$
에서 
$$\left(\frac{3}{2}\right)^{-(x-1)} < \left(\frac{3}{2}\right)^{2x+1}$$
 
$$\therefore \left(\frac{3}{2}\right)^{-x+1} < \left(\frac{3}{2}\right)^{2x+1}$$
 밑이 1보다 크므로 
$$-x+1 < 2x+1 \qquad \therefore \quad x>0$$

24) 
$$0 < x < 4$$

$$\Rightarrow 1 < 3^x < 3^4$$
에서  $3^0 < 3^x < 3^4$  밑이 1보다 크므로  $0 < x < 4$ 

25) 
$$-2 < x < 3$$

$$\Rightarrow \frac{1}{4} < 2^x < 8 에서 2^{-2} < 2^x < 2^3$$
 밑이 1보다 크므로  $-2 < x < 3$ 

26) 
$$\frac{1}{6} < x < 2$$

$$ightharpoonup \sqrt{2} < 2^{3x} < 64$$
에서  $2^{\frac{1}{2}} < 2^{3x} < 2^{6}$ 이때 밑 2가  $2 > 1$ 이므로  $\frac{1}{2} < 3x < 6$   $\therefore$   $\frac{1}{6} < x < 2$ 

27) 
$$x = -1$$
 또는  $2 \le x \le 3$ 

$$\Rightarrow 3^{x+2} \leq 3^{x^2} \leq 27 \times 9^x$$

$$3^{x+2} \le 3^{x^2} \le 3^{2x+3}$$

$$x+2 \le x^2 \le 2x+3$$

(i) 
$$x+2 \le x^2$$
에서  $x^2-x-2 \ge 0$ 

$$(x+1)(x-2) \ge 0$$

(ii) 
$$x^2 \le 2x + 3$$
에서  $x^2 - 2x - 3 \le 0$ 

$$(x+1)(x-3) \le 0 \qquad \therefore -1 \le x \le 3$$

따라서 (i), (ii)에서 
$$x = -1$$
 또는  $2 \le x \le 3$ 

28) 
$$-5 < x < 4$$

29) 
$$-3 < x < 4$$

$$\Rightarrow \frac{1}{8} < 2^x < 16 에서 2^{-3} < 2^x < 2^4$$
 밑이 1보다 크므로  $-3 < x < 4$ 

30) 
$$\frac{7}{4} < x < \frac{9}{2}$$

(i) 
$$2x-1 > \frac{5}{2}$$
 에서  $2x > \frac{7}{2}$   $\therefore x > \frac{7}{4}$ 

(ii) 
$$\frac{5}{2} > x - 2$$
에서  $x < \frac{9}{2}$ 

( i ), (ii)에서 
$$\frac{7}{4} < x < \frac{9}{2}$$

31) 
$$-2 < x < 0$$

$$\Rightarrow 4^{x-\frac{1}{2}} < \left(\frac{1}{2}\right)^{x^2+1} < 4 \times 2^{2x} \text{ on } \mathcal{A}$$

$$2^{2x-1} < 2^{-x^2-1} < 2^{2x+2}$$

$$2x-1 < -x^2-1 < 2x+2$$

(i) 
$$2x-1 < -x^2-1$$
에서  $x^2+2x < 0$ 

$$x(x+2) < 0 \qquad \therefore \quad -2 < x < 0$$

( ii ) 
$$-x^2-1 < 2x+2$$
에서  $x^2+2x+3>0$ 

그런데 
$$x^2+2x+3=(x+1)^2+2>0$$
이므로 이 부  
등식은 모든 실수  $x$ 에 대하여 성립한다.

따라서 ( i ), ( ii )에서 
$$-2 < x < 0$$

32) 
$$-1 < x < 1$$

$$\Leftrightarrow \left(\frac{1}{3}\right)^{x+2} < \left(\frac{1}{3}\right)^{x^2} < \left(\frac{1}{3}\right)^{3x-2}$$
에서 밑  $\frac{1}{3}$ 이 
$$0 < \frac{1}{3} < 1$$
이므로  $x+2 > x^2 > 3x-2$ 

(i)  $x+2>x^2$ 에서

$$x^2-x-2<0$$
,  $(x+1)(x-2)<0$ 

- $\therefore -1 < x < 2$
- (ii)  $x^2 > 3x 2$ 에서

$$x^2-3x+2>0$$
,  $(x-1)(x-2)>0$ 

- ∴ x < 1 또는 x > 2
- (i), (ii)에서 -1 < x < 1
- 33) x > 1

$$7^x = t \ (t > 0)$$
로 놓으면

$$t^2-4t-21>0$$
,  $(t+3)(t-7)>0$ 

이때, t > 0에서 t+3 > 0이므로

t-7>0  $\therefore t>7$ 

즉,  $7^x > 7$ 이고, 밑이 1보다 크므로 x > 1

- 34) 0 < x < 2

$$2^x = t \ (t > 0)$$
로 놓으면

$$t^2 - 5t + 4 < 0$$
,  $(t-1)(t-4) < 0$ 

- $\therefore 1 < t < 4$
- 즉,  $2^0 < 2^x < 2^2$ 이고, 밑이 1보다 크므로
- 0 < x < 2
- 35) 0 < x < 2
- $\Rightarrow$   $3^{2x}-10\cdot 3^x+9<0$ 에서  $3^x=t\ (t>0)$ 로 놓으면 주어진 부등식은

$$t^2 - 10t + 9 \le 0$$
,  $(t-1)(t-9) \le 0$ 

- 1 < t < 9
- 즉  $1 \le 3^x \le 9$ 이므로  $3^0 \le 3^x \le 3^2$
- 밑이 1보다 크므로  $0 \le x \le 2$
- 36) x > 1

$$5^x = t \ (t > 0)$$
로 놓으면  $t^2 + 5t > 50$ 

$$t^2 + 5t - 50 > 0$$
,  $(t-5)(t+10) > 0$ 

이때, t > 0에서 t+10 > 0이므로

t-5 > 0 $\therefore t > 5$ 

즉,  $5^x > 5$ 이고, 밑이 1보다 크므로 x > 1

- 37)  $1 \le x \le 3$
- $\Rightarrow 9^x 10 \cdot 3^{x+1} + 81 \le 0.$

즉 
$$(3^x)^2 - 10 \cdot 3 \cdot 3^x + 81 \le 0$$
에서

 $3^x = t \ (t > 0)$ 로 놓으면

 $t^2 - 30t + 81 \le 0$ ,  $(t-3)(t-27) \le 0$ 

- $\therefore 3 \le t \le 27$
- 즉,  $3 \le 3^x \le 3^3$ 이고, 밑이 1보다 크므로
- $1 \le x \le 3$
- 38)  $1 \le x \le 2$
- $\Rightarrow 4^x 3 \cdot 2^{x+1} + 8 \le 0$ 에서  $2^x = t \ (t > 0)$ 로 놓으면

주어진 부등식은

$$t^2 - 6t + 8 \le 0$$
,  $(t-2)(t-4) \le 0$ 

 $\therefore 2 \le t \le 4$ 

즉  $2 \le 2^x \le 4$ 이므로  $2^1 \le 2^x \le 2^2$ 

믿이 1보다 크므로  $1 \le x \le 2$ 

- 39) x > 1
- $\Rightarrow 2 \times 9^x + 3^{x+1} 27 > 0$ 에서

$$2 \times (3^x)^2 + 3 \times 3^x - 27 > 0$$

 $3^x = t (t > 0)$ 로 치환하면  $2t^2 + 3t - 27 > 0$ 

$$(2t+9)(t-3) > 0$$

$$\therefore t < -\frac{9}{2} \stackrel{\square}{=} t > 3$$

그런데 t > 0이므로 t > 3

따라서  $3^x > 3$ 이고 밑이 1보다 크므로 x > 1

- 40) x > 1
- $\Rightarrow 5^{2x} 4 \times 5^x 5 > 0$ 에서

$$(5^x)^2 - 4 \times 5^x - 5 > 0$$

 $5^x = t \ (t > 0)$ 로 치환하면

 $t^2 - 4t - 5 > 0$ 

(t+1)(t-5) > 0 :  $t < -1 \, \Xi \frac{1}{5} \, t > 5$ 

그런데 t > 0이므로 t > 5

따라서  $5^x > 5$ 이고 밑이 1보다 크므로 x > 1

- 41) x < 1
- $\Rightarrow 4^{2x} 2 \cdot 4^x 8 < 0$ , 즉  $(4^x)^2 2 \cdot 4^x 8 < 0$ 에서

$$4^{x} = t \ (t > 0)$$
로 놓으면

 $t^2-2t-8<0$ , (t+2)(t-4)<0

이때, t > 0에서 t + 2 > 0이므로

t-4 < 0  $\therefore t < 4$ 

즉,  $4^x < 4$ 이고, 밑이 1보다 크므로 x < 1

- 42)  $x \ge 1$
- $\Rightarrow 9^x + 3^{x+1} 18 \ge 0$ , 즉  $(3^x)^2 + 3 \cdot 3^x 18 \ge 0$ 에서

$$3^x = t \ (t > 0)$$
로 놓으면

 $t^2 + 3t - 18 \ge 0$ ,  $(t+6)(t-3) \ge 0$ 

이때, t > 0에서 t + 6 > 0이므로

 $t-3 \ge 0$   $\therefore t \ge 3$ 

즉,  $3^x \ge 3$ 이고, 밑이 1보다 크므로  $x \ge 1$ 

- 43)  $-1 \le x \le 1$
- $\Rightarrow 7^{2x+1} 50 \times 7^x + 7 \le 0$ 에서

$$7 \times (7^x)^2 - 50 \times 7^x + 7 \le 0$$

 $7^x = t \ (t > 0)$ 로 치환하면  $7t^2 - 50t + 7 \le 0$ 

$$(7t-1)(t-7) \le 0 \qquad \qquad \therefore \quad \frac{1}{7} \le t \le 7$$

따라서  $7^{-1} \le 7^x \le 7^1$ 이고 밑이 1보다 크므로  $-1 \le x \le 1$ 

44)  $x \ge -2$ 

다 
$$\left(\frac{1}{4}\right)^x - 3 \cdot \left(\frac{1}{2}\right)^x - 4 \le 0$$
, 
$$= \left(\left(\frac{1}{2}\right)^x\right)^2 - 3 \cdot \left(\frac{1}{2}\right)^x - 4 \le 0$$
에서 
$$\left(\frac{1}{2}\right)^x = t \ (t > 0)$$
로 놓으면 
$$t^2 - 3t - 4 \le 0, \ (t+1)(t-4) \le 0$$
 이때,  $t > 0$ 에서  $t+1 > 0$ 이므로 
$$t-4 \le 0 \qquad \therefore \ t \le 4$$
 
$$= \left(\frac{1}{2}\right)^x \le \left(\frac{1}{2}\right)^{-2}$$
이고, 밑이 1보다 작으므로 
$$x \ge -2$$

- 45) -2 < x < -1
- $ightharpoonup \left(rac{1}{9}
  ight)^x 12 \cdot \left(rac{1}{3}
  ight)^x < -27$ 에서  $\left(rac{1}{3}
  ight)^x = t \ (t > 0)$ 로 놓으면 주어진 부등시은  $t^2 - 12t + 27 < 0$ , (t-3)(t-9) < 0즉  $3 < \left(\frac{1}{3}\right)^x < 9$ 이므로  $\left(\frac{1}{3}\right)^{-1} < \left(\frac{1}{3}\right)^x < \left(\frac{1}{3}\right)^{-2}$ 밑이 1보다 작으므로 -2 < x < -1
- 46)  $-1 \le x \le 0$

- 47)  $0 < x \le 1$  또는  $x \ge 3$
- $\Rightarrow x^{4x-2} \ge x^{3x+1}$ 에서
  - (i) 0 < x < 1일 때,

 $4x - 2 \le 3x + 1$ 

 $\therefore x \leq 3$ 

그런데 0 < x < 1이므로 0 < x < 1

(ii) x = 1일 때.

 $1^2 \ge 1^4$ 이므로 주어진 부등식은 성립한다.

(iii) x > 1일 때,

 $4x - 2 \ge 3x + 1$ 

그런데 x > 1이므로  $x \ge 3$ 

(i), (ii), (iii)에서  $x^{4x-2} \ge x^{3x+1}$ 의 해는  $0 < x \le 1$  또는  $x \ge 3$ 

- 48) 0 < x < 1 또는 x > 4
- $\Rightarrow$   $x^{3x-4} > x^{2x}$ 에서 x=1일 때에는 부등식이 성립하 지 않는다.

- (i) 0 < x < 1일 때, 3x 4 < 2x그런데 0 < x < 1이므로 0 < x < 1
- (ii) x > 1일 때, 3x 4 > 2x그런데 x > 1이므로 x > 4

따라서 (i), (ii)에서 주어진 부등식의 해는 0 < x < 1 또는 x > 4

- 49)  $0 < x < \frac{3}{4}$  또는 x > 1
- $\Rightarrow x^{5x-1} > x^{x+2}$ 
  - (i) x > 1, 5x 1 > x + 2  $\therefore x > 1$
  - (ii) 0 < x < 1, 5x 1 < x + 2  $\therefore 0 < x < \frac{3}{4}$
  - ( i ),( ii )에서  $0 < x < \frac{3}{4}$  또는 x > 1
- 50) x > 1
- $\Rightarrow x^{x(x+1)} > x^{-3(x+1)}$ 에서
  - (i) x > 1일 때,

x(x+1) > -3(x+1) 에서  $x^2 + 4x + 3 > 0$ 

(x+3)(x+1) > 0

 $\therefore x < -3 \subseteq x > -1$ 

그런데 x > 1이므로 x > 1

(ii) 0 < x < 1일 때,

x(x+1) < -3(x+1) 에서  $x^2 + 4x + 3 < 0$ 

(x+3)(x+1) < 0

 $\therefore$  -3 < x < -1

그런데 0 < x < 1이므로 해는 없다.

- (iii) x = 1일 때,  $1^2 = 1^{-6}$ 이므로 주어진 부등식은 성립하지 않는다.
- (i), (ii), (iii)에 의하여 x > 1
- 51)  $0 < x \le 1$  또는  $x \ge 3$
- $\Rightarrow x^{x-2} \ge x^{-2x+7}$ 에서
  - (i) x > 1일 때,

 $x-2 \ge -2x+7$ 에서  $x \ge 3$ 

(ii) 0 < x < 1일 때,

 $x-2 \le -2x+7$ 에서  $x \le 3$ 

그런데 0 < x < 1이므로 0 < x < 1

(iii) x = 1일 때,

 $1^{-1} = 1^5 = 1$ 이므로 주어진 부등식은 성립한다.

( i ), (ii), (iii)에 의하여 0 < x ≤ 1 또는 x ≥ 3

- 52) 1 < x < 2
- $\Rightarrow x^{3x-1} < x^{x+3}$ 
  - (i) x > 1일 때,

3x - 1 < x + 3에서 x < 2 : 1 < x < 2

(ii) 0 < x < 1일 때,

3x-1 > x+3에서 x > 2

그런데 0 < x < 1이므로 해는 없다.

(iii) x=1일 때,  $1^2=1^4=1$ 이므로 주어진 부등식

은 성립하지 않는다.

(i), (ii), (iii)에 의하여 1 < x < 2

#### 53) $0 < x \le 1 + x \ge 2$

- $\Rightarrow x^{x-1} \leq x^{5x-9}$ 에서
  - (i) 0 < x < 1일 때,

 $x-1 \ge 5x-9$   $\therefore x \le 2$ 

그런데 0 < x < 1이므로 0 < x < 1

(ii) x = 1일 때,

 $1^{0} \le 1^{-4}$ 이므로 주어진 부등식은 성립한다.

(iii) x > 1일 때.

 $x - 1 \le 5x - 9$ 

 $\therefore x \ge 2$ 

그런데 x > 1이므로  $x \ge 2$ 

(i), (ii), (iii)에서  $x^{x-1} \le x^{5x-9}$ 의 해는  $0 < x \le 1$  또는  $x \ge 2$ 

#### 54) $0 < x \le 1$ 또는 $x \ge 3$

- $\Rightarrow x^{2x+5} \le x^{3x+2}$ 
  - (i) 0 < x < 1일 때,  $2x + 5 \ge 3x + 2$  ∴  $x \le 3$ 그런데 0 < x < 1이므로 0 < x < 1
  - (ii) x = 1일 때,

 $1^7 \le 1^5$ 이므로 주어진 부등식은 성립한다.

- (iii) x > 1일 때  $2x + 5 \le 3x + 2$  $\therefore x > 3$ 그런데 x > 1이므로  $x \ge 3$
- (i), (ii), (iii)에서  $x^{2x+5} \le 3^{3x+2}$ 의 해는  $0 < x \le 1$  또는  $x \ge 3$
- 55)  $1 \le x \le 5$
- $\Rightarrow x^{x^2-1} \leq x^{3x+9}$ 에서
  - (i) x > 1일 때,

 $x^2-1 \le 3x+9$ 에서  $x^2-3x-10 \le 0$ 

 $(x+2)(x-5) \leq 0$ 

 $\therefore -2 \le x \le 5$ 

그런데 x > 1이므로  $1 < x \le 5$ 

(ii) 0 < x < 1일 때,

 $x^2 - 1 \ge 3x + 9$  에서  $x^2 - 3x - 10 \ge 0$ 

 $(x+2)(x-5) \ge 0$ 

 $\therefore x \leq -2 \ \text{£} \ x \geq 5$ 

그런데 0 < x < 1이므로 해는 없다.

(iii) x=1일 때,

 $1^0 = 1^{12} = 1$ 이므로 주어진 부등식은 성립한다.

 $\therefore x = 1$ 

(i), (ii), (iii)에 의하여 1 ≤ x ≤ 5

- 56) 0 < x < 1 또는 x > 2
- $\Rightarrow$  (i) 0 < x < 1일 때,

x+1 < 3 $\therefore x < 2$ 

그런데 0 < x < 1이므로 0 < x < 1

(ii) x = 1일 때,

 $1^2 > 1^3$ 이므로 주어진 부등식은 성립하지 않는다.

(iii) x > 1일 때,

x+1>3  $\therefore x>2$ 

그런데 x > 1이므로 x > 2

따라서  $x^{x+1} > x^3$ 의 해는 0 < x < 1 또는 x > 2

- 57) 0 < x < 1 또는 x > 1
- $\Rightarrow x^{x+2} > x^{3(2-x)}$ 에서
  - (i) 0 < x < 1일 때. x+2 < 3(2-x)

그런데 0 < x < 1이므로 0 < x < 1

- (ii) x = 1일 때,
- $1^{3} > 1^{3}$ 이므로 주어진 부등식은 성립하지 않는다.
- (iii) x > 1일 때, x + 2 > 3(2 x) : x > 1

그런데 x > 1이므로 x > 1

- (i), (ii), (iii)에서  $x^{x+2} > x^{3(2-x)}$ 의 해는
- 0 < x < 1 또는 x > 1
- 58) 0 < x < 1 또는 x > 3
- $\Rightarrow x^{x+2} < x^{2x-1}$ 에서

(i) 0 < x < 1일 때,

x+2 > 2x-1 $\therefore x < 3$ 

그런데 0 < x < 1이므로 0 < x < 1

- (ii) x = 1일 때,
- $1^3 < 1^1$ 이므로 주어진 부등식은 성립하지 않는다.
- (iii) x > 1일 때,

x+2 < 2x-1

 $\therefore x > 3$ 

그런데 x > 1이므로 x > 3

- (i), (ii), (iii)에서  $x^{x+2} < x^{2x-1}$ 의 해는
- 0 < x < 1 또는 x > 3
- 59) -1
- 60) 8개
- $\Rightarrow 3^{x^2-x} \le 9^{5+x}$ 에서  $9^{5+x} = 3^{2(5+x)} = 3^{10+2x}$ 이므로  $3^{x^2-x} < 3^{10+2x}$

$$3^{2} \leq 3^{2} \leq 3^{2}$$

밑이 1보다 크므로

$$x^2 - x \le 10 + 2x, \ x^2 - 3x - 10 \le 0$$

 $(x+2)(x-5) \le 0 \qquad \qquad \therefore \quad -2 \le x \le 5$ 

따라서 주어진 부등식을 만족시키는 정수 x는

-2, -1, 0, 1, 2, 3, 4, 5의 8개이다.

- 61) 1, 2
- $\Rightarrow 16^{x} 15 \times 4^{x} 16 \leq 0$ 에서

$$(4^x)^2 - 15 \times 4^x - 16 \le 0$$

 $4^x = t \ (t > 0)$ 로 치확하면

 $(t+1)(t-16) \le 0$   $\therefore -1 \le t \le 16$ 

그런데 t > 0이므로  $0 < t \le 16$ 

따라서  $0 < 4^x \le 4^2$ 이고 믿이 1보다 크므로  $x \le 2$ 로 모든 자연수 x의 값은 1, 2이다.

- 62) 2
- $\Rightarrow$   $(0.5)^{-x} < 8 < 4^{2x-1}$

$$\left(\frac{1}{2}\right)^{-x} = 2^x < 2^3 < 2^{4x-2}$$

따라서 x < 3이고 4x > 5이므로  $\frac{5}{4} < x < 3$ 을 만족 한다.

$$\therefore 4\alpha - \beta = 5 - 3 = 2$$

#### 63) -14

#### 64) 14

□ 주어진 부등식의 해가 1 < x < 4이므로 2 < 2<sup>x</sup> < 16</li>
 (2<sup>x</sup> - 2)(2<sup>x</sup> - 16) < 0</li>
 4<sup>x</sup> - 18 × 2<sup>x</sup> + 32 < 0</li>
 따라서 p=-18, q=32이므로 p+q=14이다.

#### 65) $k \le -1$

 $\Rightarrow$   $4^{x+1}-2^{x+2} \geq k$ , 즉  $4 \cdot (2^x)^2 - 4 \cdot 2^x - k \geq 0$ 에서  $2^x = t \ (t > 0)$ 로 놓으면  $4t^2 - 4t - k \geq 0$   $\therefore$   $4\left(t - \frac{1}{2}\right)^2 - k - 1 \geq 0$  위의 부등식이 t > 0인 모든 실수 t에 대하여 성립해야 하므로  $-k - 1 \geq 0$   $\therefore$   $k \leq -1$ 

### 66) k > 2

67) 
$$k \le \frac{\sqrt{3}}{2}$$

### 68) $k \le 1$

 $\Rightarrow$   $2^x = t$ 라 하고

 $f(t)=t^2-4kt+4 \ge 0 \ (t>0)$ 라 하면  $f(t)=(t-2k)^2-4k^2+4$ 이므로

(i) 축의 방정식 *t* = 2*k* < 0이면

k < 0일 때,  $f(t) \ge 0$ 가 항상 성립한다.

(ii) 축의 방정식  $t=2k \ge 0$ ,

즉,  $k \ge 0$ 일 때, 판별식  $4k^2 - 4 \le 0$ 이므로  $-1 \le k \le 1$ 이다.

따라서  $f(t) \ge 0$ 이기 위해  $0 \le k \le 1$ 이 성립한다. 그러므로 두 조건에 의해  $f(t) \ge 0$ 이 성립하는 k의 범위는  $k \le 1$ 이다.

### 69) $k \ge 2$

$$\Rightarrow$$
  $2^{2x} - 2^{x+1} + k - 1 \ge 0$ , 즉  $(2^x)^2 - 2 \cdot 2^x + k - 1 \ge 0$  에서  $2^x = t$   $(t > 0)$ 로 놓으면  $t^2 - 2t + k - 1 \ge 0$   $\therefore$   $(t-1)^2 + k - 2 \ge 0$ 

위의 부등식이 t>0인 모든 실수 t에 대하여 성립해야 하므로  $k-2\geq 0$   $\therefore k\geq 2$ 

#### 70) k > 10

□ 9<sup>x</sup> - 2 · 3<sup>x+1</sup> + k - 1 > 0,
 □ (3<sup>x</sup>)<sup>2</sup> - 2 · 3 · 3<sup>x</sup> + k - 1 > 0 에서 3<sup>x</sup> = t (t > 0)
 □ 로 놓으면 t<sup>2</sup> - 6t + k - 1 > 0
 □ (t - 3)<sup>2</sup> + k - 10 > 0
 □ 위의 부등식이 t > 0 인 모든 실수 t에 대하여 성립해야 하므로 k - 10 > 0
 □ k > 10

### 71) $k \le 5$

 $\Rightarrow$   $3^x = t(t > 0)$ 로 치확하자.

$$kt \le t^2 - t + 9$$

$$t^2 - (1+k)t + 9 \ge 0$$

 $f(t)=t^2-(1+k)t+9$ 라고 하자.

f(t)는  $\frac{1+k}{2}$ 를 축으로 갖는 이차함수이다.

(i)  $\frac{1+k}{2}$ <0, k< -1일 때, f(t)는 t=0일 때,

최솟값을 갖는다.

 $f(0) = 9 \ge 0$ 

따라서 k < -1일 때 주어진 부등식이 항상 성립한다.

(ii) 
$$\frac{1+k}{2} \ge 0$$
,  $k \ge -1$ 일 때,

f(t)는  $t = \frac{1+k}{2}$ 일 때 최솟값을 갖는다.

$$f\left(\frac{1+k}{2}\right) = 9 - \frac{k^2 + 2k + 1}{4} \ge 0$$

 $36 \ge k^2 + 2k + 1$ 

 $k^2 + 2k - 35 < 0$ 

 $(k+7)(k-5) \le 0$ 

 $-7 \le k \le 5$ 

 $\therefore -1 \le k \le 5$ 

( i ), (ii)에 의하여 k ≤ 5

#### 72) 64

 $\Rightarrow$   $2^x = t(t > 0)$ 라 하면  $t^2 - 16t + k \ge 0$   $\therefore (t - 8)^2 + k - 64 \ge 0$  위의 부등식이 t > 0인 모든 실수 t에 대하여 성립하려면  $k - 64 \ge 0$   $\therefore k \ge 64$ 따라서 실수 k의 최솟값은 64이다.

# 73) 1

74) 2

 $\Rightarrow 2^{\frac{x}{2}} = t(t>0)$ 라 하면  $2t^2 - 4t + a \ge 0$   $2(t-1)^2 - 2 + a \ge 0$  t>0의 범위에서 a의 최솟값은 t=1일 때,  $-2+a \ge 0$ 이므로  $a \ge 2$ 

따라서 실수 a의 최솟값은 2이다.

### 75) 8

$$\Rightarrow$$
  $2^x = t$ 라 하면

$$t^2 + 2t + 1 \ge k(t - 1)$$

$$t^2 + (2-k)t + 1 + k \ge 0$$

이 부등식이 t>0인 모든 t에 대하여 성립하므로

$$(2-k)^2-4(1+k) \le 0$$
을 만족한다.

$$k^2 - 8k \le 0 \qquad \therefore \ 0 \le k \le 8$$

$$\therefore 0 \le k \le 3$$

$$\therefore \alpha + \beta = 0 + 8 = 8$$

#### 76) 18시간

$$\Rightarrow \left(\frac{1}{\sqrt[3]{2}}\right)^t < \frac{1}{64}$$

$$2^{-\frac{t}{3}} < 2^{-6}$$

$$-\frac{t}{3} < -6$$

$$\therefore t > 18$$

### 77) 16시간

$$\Rightarrow \left(\frac{1}{\sqrt[4]{5}}\right)^t < \frac{1}{625}$$

$$\left(\frac{1}{\frac{1}{5^{\frac{1}{4}}}}\right)^t = 5^{-\frac{t}{4}} < \frac{1}{625} = 5^{-4}$$

$$-\frac{t}{4} < -4, \ t > 16$$

따라서 약의 지속시간은 16시간 이다.

#### 78) k = 1

 $\Rightarrow$  작년 사원수를 x라고 하자.

올해 사원수는 1.5x이다.

작년의 판매실적을 *u*라고 하자.

올해 판매실적은 2.25y이다.

$$y = cx^{k^2 + 2k - 1}$$

$$(2.25y) = c(1.5x)^{k^2 + 2k - 1}$$

두 식을 나누자.

$$2.25 = (1.5)^{k^2 + 2k - 1}$$

$$\frac{9}{4} = \left(\frac{3}{2}\right)^{k^2 + 2k - 1}$$

$$k^2 + 2k - 1 = 2$$
,  $k^2 + 2k - 3 = 0$ 

$$(k+3)(k-1)=0$$
 :  $k=1$ 

#### 79) 2시간

 $\Rightarrow$  x시간 경과 후 A박테리아의 수 :  $2 \times 2^x$  마리

x시간 경과 후 B박테리아의 수 :  $1 \times 8^x$  마리

두 배양기의 박테리아의 수의 합이 72마리 이상이

므로  $2 \times 2^x + 8^x \ge 72$ 

이때,  $2^x = t (t > 0)$ 로 놓으면

 $2t + t^3 \ge 72$ 

 $t^3 + 2t - 72 \ge 0$ 



 $(t-4)(t^2+4t+18) \ge 0$ 

 $t^2+4t+18=(t+2)^2+14>0$ 이므로

 $t-4 \ge 0$ 

 $\therefore t \ge 4$ 

즉,  $2^x \ge 4 = 2^2$ 이므로  $x \ge 2$ 

따라서 최소 2시간이 경과한 것이다.

#### 80) 7

 $\Rightarrow$  처음 오염 물질의 양을 A라 하면

$$A \left(\frac{1}{2}\right)^n \leq A \times \frac{1}{128}, \ \left(\frac{1}{2}\right)^n \leq \left(\frac{1}{2}\right)^7 \qquad \therefore \ n \geq 7$$
  
따라서  $n$ 의 최솟값은 7이다.