

# Chapter 3 Potential

- **≥3.1 Laplace's Equation**
- **≥3.2** The Method of Images
- **≥3.3 Separation of Variables**
- **≥3.4** Multipole Expansion



# Laplace's Equation

The primary task of electrostatics is to find the electric field of a given stationary charge distribution.

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{r}}}{\imath^2} \rho(\mathbf{r}') \, d\tau'$$

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{\imath} \rho(\mathbf{r}') \, d\tau'$$
Easier
$$\nabla^2 V = -\frac{1}{\epsilon_0} \rho$$

Poisson's equation reduces to Laplace's equation:

$$\nabla^2 V = 0$$

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

# Laplace's Equation in one Dimension

Use one dimension to show some basic properties:

$$\frac{d^2V}{dx^2} = 0 \qquad V(x) = mx + b$$



- 1. V(x) is the average of V(x+a) and V(x-a)
- 2. Laplace's equation tolerates no local maxima or minima.



#### First uniqueness theorem:

The solution to Laplace's equation in some volume  $\nu$  is uniquely determined if V is specified on the boundary surface S



Figure 3.5



### **Second uniqueness theorem:**

In a volume surrounded by conductors and containing a specified charge density, the electric field is uniquely determined if the total charge on each conductor is given.



Figure 3.6



# The Classic Image Problem

Suppose a point charge is held a distance d above an infinite grounded conducting plane, what the potential in the region above the plane?



- 1. V=0 when z=0 (since the conducting plane is grounded)
- 2.  $V \rightarrow 0$  far from the charge (that is for  $x^2 + y^2 + z^2 \gg d^2$ )

$$V(x, y, z) = \frac{1}{4\pi\epsilon_0} \left[ \frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} - \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \right].$$
(3.9)



# **Induced Surface Charge**

$$\sigma = -\epsilon_0 \frac{\partial V}{\partial n}$$

$$\sigma = -\epsilon_0 \frac{\partial V}{\partial z} \bigg|_{z=0}$$



$$\frac{\partial V}{\partial z} = \frac{1}{4\pi\epsilon_0} \left\{ \frac{-q(z-d)}{[x^2 + y^2 + (z-d)^2]^{3/2}} + \frac{q(z+d)}{[x^2 + y^2 + (z+d)^2]^{3/2}} \right\}$$
$$\sigma(r) = \frac{-qd}{2\pi (r^2 + d^2)^{3/2}}$$

$$Q = \int \sigma \, da$$

$$Q = \int_0^{2\pi} \int_0^{\infty} \frac{-qd}{2\pi (r^2 + d^2)^{3/2}} r \, dr \, d\phi = \left. \frac{qd}{\sqrt{r^2 + d^2}} \right|_0^{\infty} = -q$$



# **Force and Energy**

$$\mathbf{F} = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{(2d)^2} \hat{\mathbf{z}}$$

Same as the "image"

$$W = -\frac{1}{4\pi\epsilon_0} \frac{q^2}{2d}$$

Not the same!

$$W = \frac{\epsilon_0}{2} \int E^2 d\tau$$

Note: only the upper region contains a nonzero field

one could also determine the energy by calculating the work required to bring q in from infinity

$$W = \int_{\infty}^{d} \mathbf{F} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_{0}} \int_{\infty}^{d} \frac{q^{2}}{4z^{2}} dz$$
$$= \frac{1}{4\pi\epsilon_{0}} \left( -\frac{q^{2}}{4z} \right) \Big|_{\infty}^{d} = -\frac{1}{4\pi\epsilon_{0}} \frac{q^{2}}{4d}$$



# **Other Image Problem**

Suppose a point charge Q is situated a distance a from the center of a grounded conducting sphere of radius R0. Find the potential outside the sphere.



$$oldsymbol{arphi} = rac{1}{4\piarepsilon_0}iggl[rac{Q}{r} + rac{Q'}{r'}iggr]$$

$$\left. \varphi \right|_{R_0} = 0 \rightarrow \left. \frac{Q}{r} + \frac{Q'}{r'} \right|_{R=R_0} = 0 \rightarrow \left. \frac{Q^2}{r^2} \right|_{R=R_0} = \frac{Q'^2}{r'^2} \right|_{R=R_0}$$

$$r' = \sqrt{R^2 + b^2 - 2Rb\cos\theta}$$
  $\cos\theta = 1$   $\cos\theta = 1$   $\cos\theta = 1$   $\cos\theta = 0$ 







$$\varphi = \frac{1}{4\pi\varepsilon_0} \left[ \frac{Q}{r} + \frac{Q'}{r'} \right] \qquad \qquad Q' = -\frac{R_0 Q}{a} \qquad \qquad b = \frac{R_0^2}{a}$$

$$Q' = -\frac{R_0 Q}{a}$$

$$b=\frac{R_0^2}{a}$$

$$\begin{cases} \varphi = \frac{1}{4\pi\varepsilon_0} \left( \frac{1}{\sqrt{R^2 + a^2 - 2Ra\cos\theta}} - \frac{\frac{R_0}{a}}{\sqrt{R^2 + b^2 - 2Rb\cos\theta}} \right) (R > R_0) \\ \varphi = 0 \quad (R \le R_0) \end{cases}$$



#### Some discussions:

$$Q'=-\frac{R_0}{a}Q$$





$$\sigma = -\varepsilon_0 \frac{\partial \phi}{\partial R} \bigg|_{R=R_0} = -\frac{Q}{4\pi} \frac{a^2 - R_0^2}{R_0 (a^2 - R_0^2 - 2R_0 a \cos \theta)^{3/2}}$$

$$\oint_{R=R_0} \sigma dS = \oint_{R=R_0} \sigma R_0^2 \sin \theta \, d\theta d\phi = -\frac{R_0 Q}{a}$$

Charge distributed only on the surface

Surface charge



What if the conducting sphere is **not** connected to the ground?



$$\phi|_{R=R_0}$$
 is a constant (unknown)

To keep the sphere neutral we need another charge inside the sphere:

$$Q' = -\frac{R_0 Q}{a} \qquad \qquad Q'' = \frac{R_0}{a} Q$$

From the symmetry, the extra charge can be placed at the center of the sphere.

$$\phi_1 = \phi + \frac{Q''}{4\pi\varepsilon_0 R}$$



What if the conducting sphere contains uniformly distributed charge  $Q_0$ ?





$$\phi_2 = \phi + \frac{Q''}{4\pi\varepsilon_0 R} + \frac{Q_0}{4\pi\varepsilon_0 R}$$



# Separation of Variables

- Separation of variables is the physicist's favorite tool for solving partial differential equations.
- The method is applicable in circumstances where the potential (V) or the charge density  $(\sigma)$  is specified on the boundaries of some region, and we are asked to find the potential in the interior.
- The basic strategy is very simple: We look for solutions that are products of functions, each of which depends on only one of the coordinates.



# **Cartesian Coordinates**

#### Example

Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0, the other at y = a. The left end, at x = 0, is closed off with an infinite strip insulated from the two plates, and maintained at a specific potential  $V_0(y)$ . Find the potential inside this "slot."





The configuration is independent of z, so this is really a twodimensional problem. In mathematical terms, we must solve Laplace's equation.

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

subject to the boundary conditions:

(i) 
$$V = 0$$
 when  $y = 0$ ,

(ii) 
$$V = 0$$
 when  $y = a$ ,

(ii) 
$$V = 0$$
 when  $y = 0$ ,  
(iii)  $V = 0$  when  $y = a$ ,  
(iii)  $V = V_0(y)$  when  $x = 0$ ,  
(iv)  $V \to 0$  as  $x \to \infty$ .

(iv) 
$$V \to 0$$
 as  $x \to \infty$ .

Try a solution like:

$$V(x, y) = X(x)Y(y)$$
  $Y\frac{d^2X}{dx^2} + X\frac{d^2Y}{dy^2} = 0$ 



$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1$$
 and  $\frac{1}{Y}\frac{d^2Y}{dy^2} = C_2$ , with  $C_1 + C_2 = 0$ .

$$\frac{d^2X}{dx^2} = k^2X, \qquad \frac{d^2Y}{dy^2} = -k^2Y.$$

$$X(x) = Ae^{kx} + Be^{-kx},$$
  $Y(y) = C\sin ky + D\cos ky,$ 

$$V(x, y) = (Ae^{kx} + Be^{-kx})(C\sin ky + D\cos ky)$$

$$V(x, y) = (Ae^{kx} + Be^{-kx})(C\sin ky + D\cos ky)$$

(iv) requires that A equal zero

$$V(x, y) = e^{-kx}(C\sin ky + D\cos ky)$$

Condition (i) now demands that D equal zero, so

(i) 
$$V = 0$$
 when  $y = 0$ ,

(ii) 
$$V = 0$$
 when  $y = a$ ,

(iii) 
$$V = V_0(y)$$
 when  $x = 0$ ,  
(iv)  $V \to 0$  as  $x \to \infty$ .

(iv) 
$$V \to 0$$
 as  $x \to \infty$ 

$$V(x, y) = Ce^{-kx} \sin ky.$$

Meanwhile (ii) yields  $\sin ka = 0$ , from which it follows that

$$k = \frac{n\pi}{a},$$
  $(n = 1, 2, 3, ...).$ 

**Laplace Equation is linear:** 

$$V(x, y) = \sum_{n=1}^{\infty} C_n e^{-n\pi x/a} \sin(n\pi y/a).$$



$$V(x, y) = \sum_{n=1}^{\infty} C_n e^{-n\pi x/a} \sin(n\pi y/a).$$



(ii) 
$$V = 0$$
 when  $y = a$ ,

(iii) 
$$V = V_0(y)$$
 when  $x = 0$ ,

(iv) 
$$V \to 0$$
 as  $x \to \infty$ .

$$V(0, y) = \sum_{n=1}^{\infty} C_n \sin(n\pi y/a) = V_0(y).$$

$$\sum_{n=1}^{\infty} C_n \int_0^a \sin(n\pi y/a) \sin(n'\pi y/a) \, dy = \int_0^a V_0(y) \sin(n'\pi y/a) \, dy.$$

$$\int_0^a \sin(n\pi y/a) \sin(n'\pi y/a) dy = \begin{cases} 0, & \text{if } n' \neq n, \\ \frac{a}{2}, & \text{if } n' = n. \end{cases}$$

$$C_n = \frac{2}{a} \int_0^a V_0(y) \sin(n\pi y/a) \, dy$$

$$V(x, y) = \sum_{n=1}^{\infty} C_n e^{-n\pi x/a} \sin(n\pi y/a).$$



# **Spherical Coordinates**

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$



$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r}) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial}{\partial\theta}) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]\varphi(\vec{x}) = 0$$

Introduce 
$$\varphi(\vec{x}) = R(r)Y(\theta, \phi)$$

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = -\frac{1}{Y}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\phi^2}\right] = l(l+1)$$



$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}r} (r^2 \frac{\mathrm{d}R}{\mathrm{d}r}) - l(l+1)R = 0 \\ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial Y}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} + l(l+1)Y = 0 \end{cases}$$

$$Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$$

$$\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left( \sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + l(l+1)\sin^2 \theta = -\frac{1}{\Phi} \frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} = m^2$$

$$\sin \theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left( \sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \left( l(l+1)\sin^2 \theta - m^2 \right)\Theta = 0$$

$$\frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} + m^2 \Phi = 0$$



$$x = \cos \theta \qquad \theta = \arccos x, \ \Theta(\theta) = \Theta(x)$$

$$\frac{d}{d\theta} = \frac{dx}{d\theta} \frac{d}{dx} = -\sin \theta \frac{d}{dx}$$

$$\sin \theta \frac{d}{d\theta} (\sin \theta \frac{d}{d\theta}) = \sin^2 \theta \frac{d}{dx} (\sin^2 \theta \frac{d}{dx}) = (1 - x^2) \frac{d}{dx} \left[ (1 - x^2) \frac{d}{dx} \right]$$

$$= (1 - x^2) \left[ (1 - x^2) \frac{d^2}{dx^2} - 2x \frac{d}{dx} \right]$$

Laplace Equation becomes:

$$\begin{cases} \frac{d}{dr}(r^2\frac{dR}{dr}) - l(l+1)R = 0 \implies r^2\frac{d^2R}{dr^2} + 2r\frac{dR}{dr} - l(l+1)R = 0 \\ (1-x^2)\frac{d^2\Theta}{dx^2} - 2x\frac{d\Theta}{dx} + \left[l(l+1) - \frac{m^2}{1-x^2}\right]\Theta = 0 \end{cases}$$
 Legendre Equation 
$$\frac{d^2\Phi}{d\phi^2} + m^2\Phi = 0$$



The solution of the Legendre Equations is:

$$\Theta(x) = P_l^m(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m P_l(x)}{dx^m} = (1 - x^2)^{\frac{m}{2}} P_l^{(m)}(x)$$

associated Legendre polynomial

ordinary Legendre polynomials

rry Legendre polynomials
$$P_{0}(x) = \frac{1}{2^{l} l!} \frac{d^{l}}{dx^{l}} (x^{2} - 1)^{l}, \quad l = 0, 1, 2, \dots$$

$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) dx = \frac{2}{2l + 1} \frac{(l + m)!}{(l - m)!} \delta_{lk}$$

$$\vdots$$

The solution of the Euler Equation is

$$R(r) = a_l r^l + \frac{b_l}{r^{l+1}}$$

$$\Phi(\phi) = Ae^{im\phi}, m = -l, \dots, 0, \dots, l$$

$$\nabla^2 \varphi = 0 \longleftarrow$$

$$\nabla^2 \varphi = 0 \qquad \longleftarrow \qquad \varphi(r, \theta, \phi) = \sum_{l,m} \left( a_{lm} r^l + \frac{b_{lm}}{r^{l+1}} \right) P_l^m(\cos \theta) e^{im\phi}$$

$$\varphi(r,\theta,\phi)$$

$$= \sum_{l,m} \left( a_{lm} r^l + \frac{b_{lm}}{r^{l+1}} \right) P_l^m (\cos \theta) \cos \left( m\phi \right) + \sum_{l,m} \left( c_{lm} r^l + \frac{d_{lm}}{r^{l+1}} \right) P_l^m (\cos \theta) \sin \left( m\phi \right)$$





#### **Example (3.9)**

A specified charge density  $\sigma_0(\theta)$  is glued over the surface of a spherical shell of radius R. Find the resulting potential inside and outside the sphere.

#### **Solution**

You could, of course, do this by direct integration:

$$V = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma_0}{\imath} \, da,$$

but separation of variables is often easier. For the interior region, we have

$$V(r,\theta) = \sum_{l=0}^{\infty} A_l r^l P_l(\cos \theta) \qquad (r \le R)$$
 (3.78)



In the exterior region we have

$$V(r,\theta) = \sum_{l=0}^{\infty} \frac{B_l}{r^{l+1}} P_l(\cos \theta) \qquad (r \ge R)$$
 (3.79)

These two functions must be joined together by the appropriate boundary conditions at the surface itself. First, the potential is continuous at r = R (Eq. 2.34):

$$\sum_{l=0}^{\infty} A_l R^l P_l(\cos \theta) = \sum_{l=0}^{\infty} \frac{B_l}{R^{l+1}} P_l(\cos \theta).$$
 (3.80)

It follows that the coefficients of like Legendre polynomials are equal:

$$B_l = A_l R^{2l+1}. (3.81)$$



(To prove that formally, multiply both sides of Eq. 3.80 by  $P_{l'}(\cos \theta) \sin \theta$  and integrate from 0 to  $\pi$ , using the orthogonality relation 3.68.) Second, the radial derivative of V suffers a discontinuity at the surface (Eq. 2.36):

$$\left. \left( \frac{\partial V_{\text{out}}}{\partial r} - \frac{\partial V_{\text{in}}}{\partial r} \right) \right|_{r=R} = -\frac{1}{\epsilon_0} \sigma_0(\theta). \tag{3.82}$$

Thus 
$$-\sum_{l=0}^{\infty} (l+1) \frac{B_l}{R^{l+2}} P_l(\cos \theta) - \sum_{l=0}^{\infty} l A_l R^{l-1} P_l(\cos \theta) = -\frac{1}{\epsilon_0} \sigma_0(\theta)$$

or, using *Eq.* 3.81:

$$B_l = A_l R^{2l+1}$$
.  $\sum_{l=0}^{\infty} (2l+1) A_l R^{l-1} P_l(\cos \theta) = \frac{1}{\epsilon_0} \sigma_0(\theta)$ 



$$\int_{-1}^{1} P_{l}^{m}(x) P_{k}^{m}(x) dx = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{lk}$$

From here, the coefficients can be determined using Fourier's trick

$$A_l = \frac{1}{2\epsilon_0 R^{l-1}} \int_0^{\pi} \sigma_0(\theta) P_l(\cos \theta) \sin \theta \, d\theta. \tag{3.84}$$

Equations 3.78 and 3.79 constitute the solution to our problem, with the coefficients given by *Eqs.* 3.81 and 3.84.

For instance, if

$$\sigma_0(\theta) = k \cos \theta = k P_1(\cos \theta)$$

for some constant k, then all the  $A_l$ 's are zero except for l = 1, and

$$A_1 = \frac{k}{2\epsilon_0} \int_0^{\pi} [P_1(\cos \theta)]^2 \sin \theta \, d\theta = \frac{k}{3\epsilon_0}$$



The potential inside the sphere is therefore

$$V(r,\theta) = \frac{k}{3\epsilon_0} r \cos \theta \qquad (r \le R), \tag{3.86}$$

Whereas outside the sphere

$$V(r,\theta) = \frac{kR^3}{3\epsilon_0} \frac{1}{r^2} \cos\theta \qquad (r \ge R). \tag{3.87}$$

In particular, if  $\sigma_0(\theta)$  is the induced charge on a metal sphere in an external field  $E_0\hat{z}$ , so that  $k = 3\epsilon_0 E_0$  (Eq. 3.77), then the potential inside is  $E_0 r \cos \theta = E_0 z$ , and the field is  $E_0\hat{z}$ ---exactly right to cancel off the external field, as of course it should be. Outside the sphere the potential due to this surface charge is

$$E_0 \frac{R^3}{r^2} \cos \theta$$



# **Chapter 3 Special Techniques**

- >2.1 Laplace's Equation
- >2.2 The Method of Images
- **≥2.3 Separation of Variables**
- **▶2.4** Multipole Expansion



### **Approximate Potential at Large Distances**

If you are very far away from a localized charge distribution, it "looks" like a point charge, and the potential is—to good approximation— $\frac{Q}{4\pi\varepsilon_0 r}$ , where Q is the total charge.





## **Multipole Expansion**

## **Example**

A (physical) **electric dipole** consists of two equal and opposite charges  $(\pm q)$  separated by a distance d. Find the approximate potential at points far from the dipole



**FIGURE 3.26** 



#### **Solution:**



**FIGURE 3.26** 

Let  $v_{-}$  be the distance from -q and  $v_{+}$  the distance from +q (Fig. 3.26). Then

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left( \frac{q}{\imath_+} - \frac{q}{\imath_-} \right),\,$$

From the law of cosines:

$$a_{\pm}^2 = r^2 + (d/2)^2 \mp r d \cos \theta = r^2 \left( 1 \mp \frac{d}{r} \cos \theta + \frac{d^2}{4r^2} \right)$$

$$r >> d$$
:  $\frac{1}{n_{\pm}} \cong \frac{1}{r} \left( 1 \mp \frac{d}{r} \cos \theta \right)^{-1/2} \cong \frac{1}{r} \left( 1 \pm \frac{d}{2r} \cos \theta \right)$ 



$$\frac{1}{r_{+}} - \frac{1}{r_{-}} \cong \frac{d}{r^{2}} \cos \theta$$

hence: 
$$V(\mathbf{r}) \cong \frac{1}{4\pi\epsilon_0} \frac{qd\cos\theta}{r^2}$$
.

+ Octopole 
$$(V \sim 1/r)$$
  $(V \sim 1/r^2)$   $(V \sim 1/r^3)$   $(V \sim 1/r^4)$ 



#### **Example**

For the potential of any localized charge distribution, in powers of  $\frac{1}{r}$ . Figure 3.28 defines the relevant variables; the potential at r is given by

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{\imath} \rho(\mathbf{r}') \, d\tau'$$



**FIGURE 3.28** 





#### **FIGURE 3.28**

Using the law of cosines:

$$z^{2} = r^{2} + (r')^{2} - 2rr'\cos\alpha = r^{2}\left[1 + \left(\frac{r'}{r}\right)^{2} - 2\left(\frac{r'}{r}\right)\cos\alpha\right]$$

$$r = r\sqrt{1+\epsilon}$$

$$\epsilon \equiv \left(\frac{r'}{r}\right) \left(\frac{r'}{r} - 2\cos\alpha\right)$$

$$\frac{1}{r} = \frac{1}{r}(1+\epsilon)^{-1/2} = \frac{1}{r}\left(1 - \frac{1}{2}\epsilon + \frac{3}{8}\epsilon^2 - \frac{5}{16}\epsilon^3 + \ldots\right)$$

$$\frac{1}{n} = \frac{1}{r}(1+\epsilon)^{-1/2} = \frac{1}{r}\left(1 - \frac{1}{2}\epsilon + \frac{3}{8}\epsilon^2 - \frac{5}{16}\epsilon^3 + \ldots\right)$$

$$\frac{1}{n} = \frac{1}{r} \left[ 1 - \frac{1}{2} \left( \frac{r'}{r} \right) \left( \frac{r'}{r} - 2\cos\alpha \right) + \frac{3}{8} \left( \frac{r'}{r} \right)^2 \left( \frac{r'}{r} - 2\cos\alpha \right)^2 \right]$$

$$-\frac{5}{16}\left(\frac{r'}{r}\right)^3\left(\frac{r'}{r}-2\cos\alpha\right)^3+\ldots$$

$$= \frac{1}{r} \left[ 1 + \left( \frac{r'}{r} \right) (\cos \alpha) + \left( \frac{r'}{r} \right)^2 \left( \frac{3\cos^2 \alpha - 1}{2} \right) \right]$$

$$+\left(\frac{r'}{r}\right)^3\left(\frac{5\cos^3\alpha-3\cos\alpha}{2}\right)+\ldots$$

$$\frac{1}{r} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos \alpha)$$
 Legendre polynomials!





$$\frac{1}{n} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos \alpha)$$

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int (r')^n P_n(\cos\alpha) \rho(\mathbf{r}') d\tau'$$

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left[ \frac{1}{r} \int \rho(\mathbf{r}') d\tau' + \frac{1}{r^2} \int r' \cos \alpha \, \rho(\mathbf{r}') d\tau' + \frac{1}{r^3} \int (r')^2 \left( \frac{3}{2} \cos^2 \alpha - \frac{1}{2} \right) \rho(\mathbf{r}') d\tau' + \dots \right]$$

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{-2}^{1} \rho(\mathbf{r}') d\tau'$$



## The Monopole and Dipole Terms

$$V_{\rm mon}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$$

$$V_{\text{dip}}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \int r' \cos\alpha \, \rho(\mathbf{r}') \, d\tau'$$

$$r' \cos \alpha = \hat{\mathbf{r}} \cdot \mathbf{r}'$$

$$V_{\rm dip}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \hat{\mathbf{r}} \cdot \int \mathbf{r}' \rho(\mathbf{r}') \, d\tau'$$



Dipole moment of the charge distribution

$$\mathbf{p} \equiv \int \mathbf{r}' \rho(\mathbf{r}') d\tau', \qquad \mathbf{p} = \sum_{i=1}^{n} q_i \mathbf{r}'_i$$

$$V_{\rm dip}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$$

$$\mathbf{p} = q\mathbf{r}'_{+} - q\mathbf{r}'_{-} = q(\mathbf{r}'_{+} - \mathbf{r}'_{-}) = q\mathbf{d}$$



## The Electric Field of a pure Dipole



$$V_{\rm dip}(r,\theta) = \frac{\hat{\mathbf{r}} \cdot \mathbf{p}}{4\pi \,\epsilon_0 r^2} = \frac{p \cos \theta}{4\pi \,\epsilon_0 r^2}$$

$$F_r = -\frac{\partial V}{\partial r} = \frac{2p\cos\theta}{4\pi\epsilon_0 r^3},$$

$$E_{\theta} = -\frac{1}{r} \frac{\partial V}{\partial \theta} = \frac{p \sin \theta}{4\pi \epsilon_0 r^3},$$

$$E_{\phi} = -\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} = 0.$$

$$E_{\phi} = -\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} = 0$$

$$\mathbf{E}_{\text{dip}}(r,\theta) = \frac{p}{4\pi\epsilon_0 r^3} (2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}})$$





Field of a 'pure' dipole

Field of a 'physical' dipole