Zestaw 2 Fizyka jądrowa

- 1. (38-1) Gdybyśmy w jądrach ${}^{13}_{6}$ C, ${}^{16}_{8}$ O, ${}^{29}_{14}$ Si, zamienili neutrony na protony, a protony na neutrony, jakie otrzymalibyśmy pierwiastki?
- 2. (38.2)Rozpatrzmy cykl przemian, w wyniku których jądro ²³⁸U przechodzi w ²³⁴U. Spróbuj odpowiedzieć jakie przemiany miały miejsce i jakie cząstki (promieniowanie) zostały wyemitowane.
- 3. (38-14) W wyniku przemian promieniotwórczych jądro uranu $^{233}_{92}$ U przechodzi w jądro bizmutu $^{209}_{83}$ Bi. Ile przemian α i β nastąpiło przy tym przejściu?
- 4. (38-16) Czas połowicznego rozpadu izotopu strontu ⁹⁰₃₈Sr wynosi 20 lat. Jaki procent pierwotnej liczby jąder pozostanie po upływie czasu 10 i 80 lat?
- 5. (38.3) Spróbuj obliczyć jaki jest czas połowicznego rozpadu pierwiastka promieniotwórczego ³²P jeżeli stwierdzono, że po czasie 42 dni rozpadło się 87,5% początkowej liczby jąder.
- 6. (38-18) Promieniotwórczy izotop kobaltu ⁶⁰₂₇Co ma czas połowicznego rozpadu 5,7 lat. Obliczyć aktywność 1 kg kobaltu.
- 7. (38.1) Oblicz energię wiązania dla 4_2 He, skorzystaj z wyliczonego niedoboru masy dla 4_2 He $\Delta M=0.0303779$ u.
- 8. (38-10) Obliczyć pracę, jaką należy wykonać, aby oderwać neutron od jądra $^{21}_{10}{\rm Ne}.$
- 9. (38.4) W reakcji rozszczepienia uranu wydziela się energia 200 MeV. Na tej podstawie oblicz jaka jest różnica pomiędzy masą jądra uranu, a sumą mas produktów rozszczepienia i jaki stanowi to procent masy uranu.
- 10. (38.5) Oblicz jaką ilość węgla należy spalić aby uzyskać tyle samo energii co w reakcji rozszczepienia 1 kg uranu. W obliczeniach uwzględnij wyniki uzyskane w poprzednim ćwiczeniu oraz to, że przy spalaniu 1 kg węgla wydziela się średnio energia 2,5·10⁷ J.
- 11. (38.6) Moc z jaką świeci Słońce wynosi około $4\cdot10^{26}$ W. Spróbuj obliczyć po jakim czasie wypaliłoby się Słońce (o masie $M_S=2\cdot10^{30}$ kg) to znaczy cały wodór zamieniłby się w hel. Pamiętaj, że energia wytwarzana przy przemianie wodoru w hel stanowi 0.7% masy "paliwa" wodorowego. Porównaj otrzymany wynik z dotychczasowym wiekiem Słońca, który szacuje się na $5\cdot10^9$ lat.

12. (38-23) Obliczyć energię reakcji jądrowej $^{14}_{7}{\rm N}\,+\,^{1}_{0}n \to ^{3}_{1}{\rm T}\,+\,^{4}_{2}{\rm He}.$

Ważne stałe fizyczne:

Prędkość światła $c=3\cdot 10^8$ m/s Ladunek elementarny $q / e = 1, 6\cdot 10^{-19}$ C Stała Planca $h=6, 63\cdot 10^{-34}$ Js Stała Rydberga $R_H=1, 097\cdot 10^7 m^{-1}$