EE 521 Power System Analysis and EE 523 Power System Stability and Control Algorithms

Preamble and Control Inputs

systemName =
"ieee11-caseTwo-"
powerFlowMethod =
"NRPF"

Read CDF file and store the data in neat MATLAB tables: busData and branchData.

busData = 11×18 table

	bus	busName	IoadFlowArea	lossZone	busType	vFinal
1	1	"Bus 1 HV"	1	1	3	1.0300
2	2	"Bus 2 HV"	1	1	2	1.0100
3	3	"Bus 3 HV"	2	1	2	1.0300
4	4	"Bus 4 HV"	2	1	2	1.0100
5	5	"Bus 5 HV"	1	1	0	1.0200
6	6	"Bus 6 LV"	1	1	0	1.0120
7	7	"Bus 7 ZV"	1	1	0	1.0210
8	8	"Bus 8 TV"	3	1	0	1.0100
9	9	"Bus 9 LV"	2	1	0	1.0020
10	10	"Bus 10 LV"	2	1	0	1.0010
11	11	"Bus 11 LV"	2	1	0	1.0150

branchData = 10×15 table

	i	j	IoadFlowArea	lossZone	ckt	type	R
1	1	5	1	1	1	0	0
2	2	6	1	1	1	0	0
3	3	11	2	1	1	0	0
4	4	10	2	1	1	0	0
5	5	6	1	1	1	0	0.0025
6	6	7	1	1	1	0	0.0010
7	7	8	1	1	1	0	0.0037
8	8	9	2	1	1	0	0.0055
9	9	10	2	1	1	0	0.0010
10	10	11	2	1	1	0	0.0025

Extract Y_{Bus} , Adjacency List E from the branchData table.

ybusTable = 11×11 table

1 2 4 11 0.0000 -59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 22 0.0000 + 0.0000i0.0000 -59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i3 3 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 -59.9880i 0.0000 + 0.0000i44 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 -59.9880i 0.0000 + 0.0000i55 0.0000 +59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i3.9604 -99.5701i 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i-3.9604 +39.6040i 7 7 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i88 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i99 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i10 10 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 0.0000 + 0.0000i11 11 0.0000 + 0.0000i0.0000 + 0.0000i0.0000 +59.9880i 0.0000 + 0.0000i0.0000 + 0.0000i

Run Newton Raphson Power Flow and obtain a steady state snapshot of the system variables $P_i, Q_i, V_i, \delta_i \ \forall$ buses $i \in [1, N], i \in \mathbb{N}$

Iteration Number 1 Jacobian:

JTable = 17×17 table

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
1 \$P_2\$	60.5879	0	0	0	-60.5879	0
2 \$P_3\$	0	61.7876	0	0	0	0
3 \$P_4\$	0	0	60.5879	0	0	0
4 \$P_5\$	0	0	0	101.3916	-39.6040	0
5 \$P_6\$	-60.5879	0	0	-39.6040	199.2017	-99.0099
6 \$P_7\$	0	0	0	0	-99.0099	126.0097
7 \$P_8\$	0	0	0	0	0	-26.9998
8 \$P_9\$	0	0	0	0	0	0
9 \$P_10\$	0	0	-60.5879	0	0	0
10 \$P_11	\$ 0	-61.7876	0	0	0	0
11 \$Q_5\$	0	0	0	-3.9604	3.9604	0
12 \$Q_69	-0	0	0	3.9604	-13.8614	9.9010
13 \$Q_7	0	0	0	0	9.9010	-12.6032

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
14 \$Q_8\$	0	0	0	0	0	2.7022
15 \$Q_9\$	0	0	0	0	0	0
16 \$Q_10\$	0	0	-0	0	0	0
17 \$Q_11\$	0	-0	0	0	0	0

Iteration Number 2 Jacobian:

JTable = 17×17 table

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
1 \$P_2\$	64.3143	0	0	0	-64.3143	0
2 \$P_3\$	0	64.4459	0	0	0	0
3 \$P_4\$	0	0	63.7632	0	0	0
4 \$P_5\$	0	0	0	109.4332	-44.7054	0
5 \$P_6\$	-64.3143	0	0	-43.3132	224.7675	-117.1400
6 \$P_7\$	0	0	0	0	-113.9729	147.1125
7 \$P_8\$	0	0	0	0	0	-32.2870
8 \$P_9\$	0	0	0	0	0	0
9 \$P_10\$	0	0	-63.7632	0	0	0
10 \$P_11\$	0	-64.4459	0	0	0	0
11 \$Q_5\$	0	0	0	-3.9040	-2.5600	0
12 \$Q_6\$	7.4638	0	0	11.3619	-14.5457	-4.2799
13 \$Q_7\$	0	0	0	0	27.3912	-26.4053
14 \$Q_8\$	0	0	0	0	0	7.5339
15 \$Q_9\$	0	0	0	0	0	0
16 \$Q_10\$	0	0	7.3998	0	0	0
17 \$Q_11\$	0	7.5334	0	0	0	0

Iteration Number 3 Jacobian:
JTable = 17×17 table

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
1 \$P_2\$	61.1546	0	0	0	-61.1546	0
2 \$P_3\$	0	62.4514	0	0	0	0
3 \$P_4\$	0	0	60.4908	0	0	0
4 \$P_5\$	0	0	0	104.0460	-41.2510	0
5 \$P_6\$	-61.1546	0	0	-39.8939	204.8646	-103.8161
6 \$P_7\$	0	0	0	0	-101.0427	129.3982
7 \$P_8\$	0	0	0	0	0	-27.5832

3

	\$delta_2\$	\$delta_3\$	\$delta_4\$	\$delta_5\$	\$delta_6\$	\$delta_7\$
8 \$P_9\$	0	0	0	0	0	0
9 \$P_10\$	0	0	-60.4908	0	0	0
10 \$P_11	\$ 0	-62.4514	0	0	0	0
11 \$Q_5\$	0	0	0	-4.1447	-2.7286	0
12 \$Q_6\$	7.0047	0	0	10.8431	-14.2238	-3.6240
13 \$Q_7\$	0	0	0	0	24.1099	-23.0510
14 \$Q_8\$	0	0	0	0	0	6.6574
15 \$Q_9\$	0	0	0	0	0	0
16 \$Q_10	0\$	0	7.0010	0	0	0
17 \$Q_11	\$ 0	7.1934	0	0	0	0

Iteration Number 4 Jacobian:

JTable = 17×17 table

\$delta_2\$ \$delta_3\$ \$delta_4\$ \$delta_5\$ \$delta_6\$ \$delta_7\$ 1 \$P_2\$ 0 0 0 0 60.9063 -60.9063 2 \$P_3\$ 0 62.3224 0 0 0 0 3 \$P_4\$ 0 0 60.2338 0 0 0 4 \$P_5\$ 0 0 0 0 103.6639 -40.9989 5 \$P_6\$ -60.9063 0 0 -39.6348 203.3142 -102.7731 6 \$P_7\$ 0 0 0 0 -100.0132 127.9725 7 \$P_8\$ 0 0 0 0 0 -27.1827 8 \$P_9\$ 0 0 0 0 0 0 9 \$P_10\$ 0 0 0 0 -60.2338 0 10 \$P_11\$ 0 0 0 -62.3224 0 0 11 \$Q_5\$ 0 0 0 -4.1236 -2.7890 0 12 \$Q_6\$ 0 6.9999 0 10.8523 -14.1924 -3.6598 13 \$Q_7\$ 0 0 0 0 23.9384 -22.8184 14 \$Q 8\$ 0 0 0 0 0 6.6388 15 \$Q 9\$ 0 0 0 0 0 0 16 \$Q_10\$ 0 0 6.9999 0 0 0 17 \$Q_11\$ 0 7.1900 0 0 0 0

Convergence using NRPF achieved in 4 iterations.

resultTable = 11×4 table

		P	Q	V	delta		
	1 \$Bus_1\$	6.9125	0.9763	1.0300	0		
	2 \$Bus_2\$	6.9999	0.2874	1.0100	-0.1631		

4

	Р	Q	V	delta
3 \$Bus_3\$	7.1900	1.3188	1.0300	-0.3319
4 \$Bus_4\$	6.9999	0.9600	1.0100	-0.5076
5 \$Bus_5\$	-0.0003	0.0001	1.0203	-0.1099
6 \$Bus_6\$	0.0001	0.0004	1.0118	-0.2775
7 \$Bus_7\$	-9.6704	-0.9992	1.0213	-0.4128
8 \$Bus_8\$	-0.0002	0.0006	1.0095	-0.5526
9 \$Bus_9\$	-17.6690	-0.9991	1.0025	-0.7645
10 \$Bus_10\$	0.0003	0.0005	1.0008	-0.6233
11 \$Bus_11\$	0	0.0001	1.0153	-0.4467

Compare obtained snapshot values of V_i and $\mathit{\delta}_i$ against the ones given in the CDF file.

Obtained Solution vs Given Solution in CDF file for Voltage Angles of $\times 10^{-5}$ ieee11-caseTwo- using NRPF Absolute Error in Radians from deltaFinal in CDF file 8 6 4 2 0 -2 -4 -6 2 6 8 10 0 4 12

Bus Number

Economic Dispatch and Optimal Power Flow Calculations:

Elapsed time is 1.369501 seconds.

Have a nice day!

In case you encounter a Java Heap Memory error, delete the above gif, or go to Preferences->General->Java Heap Memory and increase the allocated size.