Recitation 09

Today's agenda

- We will discuss in recitation
 - Combinational Logic
 - ► Logic gates, truth tables, rules
- For homework Tonight
 - **R10**
 - Two parts
 - ▶ One given an expression, produce the truth table
 - ▶ Two given a truth table, write a logical expression for it

Building Blocks

For combinational logic

- There is no memory
 - ► That is, the outputs are a function ONLY of the current inputs, not of anything in the past
- Values are either true or false (but not both, or anything else)
 - We commonly represent true with 1 and false with 0
- ▶ There is at least one input and at least one output
 - But there can be more
 - Each input is either true or false
 - Each output should be defined for all possible values for the inputs!

- There are three main ways to represent combinational circuits
 - 1. As a circuit diagram
 - 2. As a set of equations/expressions
 - 3. As a truth table

- Logical expressions are build from a number of "gates"
- You are already familiar with the most important ones!
 - ► AND, OR, NOT
 - ▶ All boolean functions can be written with these three building blocks!
 - ▶ There are others, like XOR and NAND
 - ▶ All boolean functions can be written with just NAND!!!
- Letters/words are used to represent the inputs
 - For recitation homework, the variables are a single letter

OR

- Output is 1 if ANY input is 1, 0 otherwise
- Output is 0 if ALL inputs are 0, 1 otherwise

a	b	a OR b
0	0	0
0	1	1
1	0	1
1	1	1

- Output is the first 1 if there is one, last 0 otherwise (from the python world)
- a or b is written as a + b
 - $ightharpoonup a \mid b \text{ or } a \lor b \text{ are also common}$
 - Use a + b for recitation

AND

- Output is 0 if ANY input is 0, 1 otherwise
- Output is 1 if ALL inputs are 1, 0 otherwise

Outr	ut is the	first 0	if there	is one.	last 1	otherwise	(from	the p	vthon	world)
------	-----------	---------	----------	---------	--------	-----------	-------	-------	-------	--------

- a or b is written as ab
 - $ightharpoonup a \& b \text{ or } a \land b \text{ are also common}$
 - Use ab for recitation

NOT

- Output is 1 if the input is 0, 0 otherwise
- A few ways to represent, both in text and graphically
 - ightharpoonup Typically, as a "hat" on the input name, such as \bar{a}
 - ► Can also be written with a prefix operator, such as
 - $\rightarrow a$, ! a, or $\sim a$
 - For recitation homework, use ~
- Note that when drawing a not, it is common to see just the circle on the input or output of another gate

a	NOT a
0	1
1	0

Circuit Diagram

• I stole this from the lecture, among the other pictures

Expression

- ~ab + ~b
- $\bar{a}b + \bar{b}$

Truth Table

a	b	~ab + ~b
0	0	1
0	1	1
1	0	1
1	1	0

Filling in a truth table

- First, list out all of the possible inputs
 - For N inputs, there are 2^N possibilities
 - It helps to split things in two, that is, have space for the 2^N possibilities, and for the first variable put 0 for the first half and 1 for the second half
 - ► For the next variable, put 0 for the first half of the previous variable's 0 group and 1 for the second half, then do the same for its 1 group
- Then, evaluate the expression for each possible inputs
 - This is tedious, so there are some shortcuts, especially if the expression is written nicely

Filling in a truth table

- Groups of things ANDed together are typically called a clause
 - That is, clauses are things separated by ORs
- For each clause, see what the variables present are
 - For any variable that is negated, keep in mind that that variable is 0
 - For any other variable in the clause, keep in mind it is 1
 - Then, look through the truth table and wherever you see a row that has all of the variables in the clause with the right value, put a 1 for the output
- Then when you are out of clauses, fill in 0 for any output left

Getting a circuit from a truth table

- For each output, look for where that output is 1 in the truth table
 - ▶ Look at the list of inputs anywhere an input a is 1, write a in the clause
 - Anywhere an input \bar{a} is 0, write \bar{a} in the clause
 - Say the output equals all of the clauses ORed together
 - Typically you can simplify, but that's a topic for a different day