

Υπολογιστική Μηχανική Διεργασιών Προκλήσεις και προοπτικές

Ανδρέας Γ. Μπουντουβής Πρύτανης ΕΜΠ

Προκλήσεις για τη Μηχανική Διεργασιών

- Ανάγκη για νέα προϊόντα: φάρμακα, υλικά, ένζυμα, καταλύτες ...
- □ Προσαρμογή σε διεθνείς κανονισμούς (π.χ. Περιορισμός περιεκτικότητας S στα ναυτιλιακά καύσιμα από 3.5 % σε 0.5 %)
- Αντικατάσταση επικίνδυνων/σπάνιων α' υλών
- Αξιοποίηση εναλλακτικών πηγών ενέργειας
- Στροφή σε παραγωγή κοντά στην κατανάλωση (reshoring)
- Ενσωμάτωση νέων τεχνολογιών πληροφορικής/τεχνητής νοημοσύνης (Big Data)

Διεργασίες Χημικής Μηχανικής: Digital Twins

Βάσεις δεδομένων διεργασιών (real-time)

Operational Historians (Pi- OSISoft Ltd, Honeywell *Uniperformance PHD...)*

- Η Χημική βιομηχανία έχει επενδύσει σε συστήματα διαχείρησης δεδομένων
- Σταδιακή διείσδυση και σε άλλους κλάδους (π.χ. Φαρμακοβιομηχανία)
- Συλλογή/αποθήκευση δεδομένων της διεργασίας (In-line/off line)
- Εύκολη πρόσβαση και ανάλυση δεδομένων Συσχέτιση δεδομένων από διαφορετικές πηγές και

χρονολογίες

Λεπτομερή μοντέλα διεργασιών μεγάλης κλίμακας

Κώδικες υπολογιστικής ρευστομηχανικής (ANSYS/Fluent, COMSOL, OPEN Foam...)

- Υπολογιστική ανάλυση σε πολλές κλίμακες
- Επίλυση για μεγάλο αριθμό μεταβλητών και πολλές παραμέτρους διεργασίας
- Παράλληλη επεξεργασία
- Εύχρηστη γραφική απεικόνιση
- Εύχρηστα/αποδοτικά εργαλεία για ερευνητικούς σκοπούς και τη βιομηχανία.

Δεδομένα

Πληροφορία

Αξιοποίηση δεδομένων από διεργασίες

CRISP-DM: Cross Industry Standard Process for Data Mining

- Επιχειρηματική κατανόηση: Καθορισμός στόχων/δεικτών επίτευξης στόχων
- Αξιολόγηση κατάστασης: Διαθεσιμότητα& ποιότητα δεδομένων, ανθρώπινων πόρων, υποδομών
- Προετοιμασία δεδομένων: Επιλογή, Ομογενοποίηση, Κατάταξη δεδομένων
- Μοντέλα αξιοποίησης δεδομένων
- Αξιολόγηση αποτελεσμάτων
- Εφαρμογή νέας πληροφορίας & αξιολόγηση επίτευξης αρχικού στόχου

Προκλήσεις στην Υπολογιστική Ανάλυση Διεργασιών

Παράδειγμα: Χημική Απόθεση από Ατμό Chemical Vapor Deposition (CVD)

- Αλληλεπίδραση φυσικών φαινομένων με χημικές αντιδράσεις
- Ελλιπής γνώση δικτύου Χημικών Αντιδράσεων
- Σύνθετες γεωμετρίες
- Μεγάλης κλίμακας μοντέλα/υψηλό κόστος επίλυσης

Πρόκληση :Μη γραμμικότητα Πολλαπλότητα λύσεων

Πρόκληση: ΠΟΛΛΑΠΛΕΣ ΚΛΙΜΑΚΕΣ Απόθεση σε μικρο/νανο-τοπογραφία (Αλληλεπίδραση μακροσκοπικού με Μοντέλο σε μικρο/νανο-κλίμακα)

Πρόκληση : Διερεύνηση με Υπολογισμούς μεγάλης κλίμακας

3-D
(1.2M cells grid)

Άγνωστη κινητική

Μοντέλο Κινητικής #1

Μοντέλο Κινητικής #2

...

Μοντέλο Κινητικής #n

Υπολογισμός ρυθμού απόθεσης και σύγκριση με πειράματα

The motivation

Funding: CERATIZIT Luxembourg S.`a r.l

PhD Candidate: Paris Papavasileiou, ChemEng NTUA

P.I.: Dr. Eleni Koronaki, NTUA & ULux

Study approaches: Is there a optimal blend?

Experimental (eg. [1])

 Computational Fluid Dynamics (CFD) (equation-based) (eg. [2])

Machine Learning (ML) (data-based) (eg. [3])

What to chose? How to blend?

^[1] D. Hochauer et al., (2012) Surface and Coatings Technology, vol. 206, no. 23, pp. 4771-4777.

^[2] R. Spencer, P. Gkinis, E. D. Koronaki, D. I. Gerogiorgis, S. P. A. Bordas, and A. G. Boudouvis, (2021) Computers & Chemical Engineering, vol. 149, p. 107289.

^[3] M. Bertolini, D. Mezzogori, M. Neroni, and F. Zammori, (2021) Expert Systems with Applications, vol. 175, p. 114820.

Προκλήσεις στην Υπολογιστική Ανάλυση Διεργασιών: Πολλαπλότητα λύσεων

N. Cheimarios, E. D. Koronaki and A. G. Boudouvis , Chemical Engineering Journal 181-182, 516 (2012).

E. D. Koronaki, N. Cheimarios, H. Laux and A. G. Boudouvis, ECS Solid State Letters 3, P37 (2014).

Μείωση τάξης μοντέλου (Reduced order modeling)

2. Singular value Decomposition

$$X = U \qquad \Sigma \qquad V^{T}$$
Data
Library

3. Μείωση τάξης

$$\Phi = [\mathbf{u}_1, \, \mathbf{u}_2, ..., \mathbf{u}_p]$$

p : dominant modes

Μείωση τάξης μοντέλου (Reduced order modeling)

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t; \mu)$$
$$\mathbf{x}(0, \mu) = \mathbf{x}^{0}(\mu)$$

 $\alpha(t)$

Mοντέλο μειωμένης τάξης (reduced order model)

Οι συντελεστές **α**(t) προκύπτουν από νευρωνικά δίκτυα

Εκπαίδευση Νευρωνικού

Εφαρμογή μοντέλου μειωμένης τάξης: επιτάχυνση 3D υπολογισμών

Πρόβλημα: Μοντέλο διεργασίας απόθεσης, 3D με αντιδράσεις: (~20 Μ άγνωστοι)

	Χωρίς αντιδράσεις	Με αντιδράσεις
Λεπτομερές μοντέλο	6.5 CPU h x 12 cores	7.5 CPU h x 12 cores
	= 78 core hours	= 90 core hours
Μοντέλο μειωμένης	17 CPU min (~0,25 h)	3 CPU h x 12 cores =
τάξης	– 1 επεξεργαστής	36 core hours
Επιτάχυνση	x 312	x 2.5

Εφαρμογή μοντέλου μειωμένης τάξης: Πολλαπλότητα λύσεων

Koronaki E.D. et al, Computers & Chemical Engineering, 121, (2019)

Μοντέλο μειωμένης τάξης: Μη γραμμικές μέθοδοι

Εκμάθηση πολλαπλότητας (manifold learning)

- Υποθέτει ότι τα δεδομένα ζουν σε μικρής διάστασης πολλαπλότητα
 - Η μορφή δεν είναι γνωστή εκ των προτέρων
- Αρκετές μεθοδολογίες:
 - Locally Linear Embedding (LLE)
 - Isomap
 - Laplacian Eigenmaps
 - Diffusion Maps

«Ξετιλύγοντας» την πολλαπλότητα

Μοντέλο μειωμένης τάξης: Diffusion maps

- 1. Δεδομένα
- 2. Πίνακας συσχέτισης : Gaussian Kernel $k(X_i,X_j) = \exp(-||X_i-X_j||^2/\epsilon)$
- 3. Markov chain P(Xi, Xj) = k(Xi, Xj)/d(Xi) $d(Xi) = \sum_{i} k(Xi, Xj)$
- 4. Ιδιοτιμές λ_i, ιδιοδιανύσματα φ_i

5. Diffusion map
$$\Psi_t\left(\mathbf{y}_i\right) = \begin{pmatrix} \lambda_1^t \phi_{i,1} \\ \lambda_2^t \phi_{i,2} \\ \vdots \\ \lambda_M^t \phi_{i,M} \end{pmatrix}$$
 2. Μετάβαση στο χώρο μικρής διάστασης (Nyström extension of the property of the pro

Διαδικασία μείωσης τάξης

- 1. Δεδομένα στο χώρο μεγάλης διάστασης
- Μετάβαση στο χώρο μικρής διάστασης (Nyström extension)

Industry 4.0: Work in progress...

Συνεργάτες

Στο Ε	МП
-------	----

Δρ. Ελένη Κορωνάκη, ΕΔΙΠ

Δρ. Νίκος Χειμαριός

Δρ. Γιώργος Κόκκορης

Δρ. Γιάννης Αβιζιώτης

Δρ. Γιώργος Γάκης

Δρ. Παύλος Γκίνης

Πάρις Παπαβασιλείου, Υποψ. Διδάκτορας

Θάνος Νίκας, Χημ. Μηχ.

Εκτός ΕΜΠ

Prof. Yannis Kevrekidis, Johns Hopkins U.

Dr. Constantin Vahlas, INP/CNRS Toulouse

Prof. Brigitte Caussat, ENSIACET-INP Toulouse

Prof. Stephane Bordas, Univ. Luxembourg