$11a_{294} \ (K11a_{294})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -8634895226u^{23} - 5433253456u^{22} + \dots + 735180934969b - 781237782063,$$

$$763967991611u^{23} + 23673073992u^{22} + \dots + 2940723739876a + 7856566749775,$$

$$u^{24} + 10u^{22} + \dots + 15u - 4 \rangle$$

$$I_2^u = \langle u^{19}a + 2u^{19} + \dots - 2a - 1, -2u^{19}a - 4u^{19} + \dots + 6a + 15, u^{20} - u^{19} + \dots - 2u - 1 \rangle$$

$$I_3^u = \langle b + 1, -2u^2 + 2a - 2u - 3, u^3 + u^2 + 2u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 67 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle -8.63 \times 10^9 u^{23} - 5.43 \times 10^9 u^{22} + \dots + 7.35 \times 10^{11} b - 7.81 \times 10^{11}, \ 7.64 \times 10^{11} u^{23} + \\ 2.37 \times 10^{10} u^{22} + \dots + 2.94 \times 10^{12} a + 7.86 \times 10^{12}, \ u^{24} + 10 u^{22} + \dots + 15 u - 4 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.259789u^{23} - 0.00805008u^{22} + \dots + 6.57173u - 2.67164 \\ 0.0117453u^{23} + 0.00739036u^{22} + \dots - 0.781959u + 1.06265 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.249773u^{23} - 0.00306836u^{22} + \dots - 5.95799u + 2.87741 \\ -0.0126772u^{23} - 0.0249283u^{22} + \dots + 1.51797u - 1.05571 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.517622u^{23} - 0.0138817u^{22} + \dots + 12.5338u - 5.08757 \\ 0.0138817u^{23} + 0.00372967u^{22} + \dots - 2.67676u + 2.07049 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.265662u^{23} + 0.0117453u^{22} + \dots - 6.46270u + 3.20297 \\ -0.00805008u^{23} + 0.0403920u^{22} + \dots + 1.22519u - 1.03916 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.263929u^{23} - 0.0126772u^{22} + \dots + 6.43357u - 2.44096 \\ -0.00306836u^{23} - 0.0138773u^{22} + \dots - 0.869183u + 0.999092 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.263929u^{23} - 0.0126772u^{22} + \dots + 6.43357u - 2.44096 \\ -0.00306836u^{23} - 0.0138773u^{22} + \dots - 0.869183u + 0.999092 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.263929u^{23} - 0.0126772u^{22} + \dots + 6.43357u - 2.44096 \\ -0.00306836u^{23} - 0.0138773u^{22} + \dots - 0.869183u + 0.999092 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{818436095265}{735180934969}u^{23} + \frac{92606395200}{735180934969}u^{22} + \dots - \frac{104556151676103}{2940723739876}u + \frac{5519991831807}{735180934969}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$8(8u^{24} - 12u^{23} + \dots - u + 1)$
$c_2, c_3, c_5 \ c_{11}$	$u^{24} + 3u^{23} + \dots + 6u - 1$
c_6, c_7, c_{10}	$u^{24} + 10u^{22} + \dots - 15u - 4$
c ₈	$u^{24} + 3u^{23} + \dots + 224u + 128$
<i>c</i> 9	$u^{24} - 6u^{22} + \dots - 1079u - 676$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$64(64y^{24} - 656y^{23} + \dots - 7y + 1)$
c_2, c_3, c_5 c_{11}	$y^{24} + 13y^{23} + \dots - 38y + 1$
c_6, c_7, c_{10}	$y^{24} + 20y^{23} + \dots - 97y + 16$
<i>c</i> ₈	$y^{24} - 7y^{23} + \dots - 226304y + 16384$
c_9	$y^{24} - 12y^{23} + \dots - 1380561y + 456976$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.021460 + 0.275515I		
a = 0.39552 - 1.65501I	7.49230 - 1.49785I	16.5794 + 3.5131I
b = 0.047276 + 1.186360I		
u = -1.021460 - 0.275515I		
a = 0.39552 + 1.65501I	7.49230 + 1.49785I	16.5794 - 3.5131I
b = 0.047276 - 1.186360I		
u = 0.870278 + 0.206907I		
a = -0.50041 - 2.31304I	9.3482 + 11.6156I	9.04984 - 7.14425I
b = -0.49469 + 1.37599I		
u = 0.870278 - 0.206907I		
a = -0.50041 + 2.31304I	9.3482 - 11.6156I	9.04984 + 7.14425I
b = -0.49469 - 1.37599I		
u = -0.711520 + 0.880248I		
a = -0.496210 + 1.180490I	5.61526 - 4.36903I	11.9512 + 7.5869I
b = -0.138302 - 1.193200I		
u = -0.711520 - 0.880248I		
a = -0.496210 - 1.180490I	5.61526 + 4.36903I	11.9512 - 7.5869I
b = -0.138302 + 1.193200I		
u = 0.507475 + 1.020800I		
a = 0.471884 + 1.006850I	6.85359 - 6.74871I	7.12828 + 3.44529I
b = -0.411983 - 1.346680I		
u = 0.507475 - 1.020800I		
a = 0.471884 - 1.006850I	6.85359 + 6.74871I	7.12828 - 3.44529I
b = -0.411983 + 1.346680I		
u = 0.263649 + 1.293920I		
a = 0.137301 + 0.951214I	-4.17750 + 3.32302I	7.49326 - 7.01534I
b = 1.347430 + 0.188650I		
u = 0.263649 - 1.293920I		
a = 0.137301 - 0.951214I	-4.17750 - 3.32302I	7.49326 + 7.01534I
b = 1.347430 - 0.188650I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.102906 + 1.325920I	,	
a = 0.978679 + 0.749632I	-5.99931 + 2.29383I	-3.48033 - 0.30083I
b = 0.912691 - 0.587846I		
u = 0.102906 - 1.325920I		
a = 0.978679 - 0.749632I	-5.99931 - 2.29383I	-3.48033 + 0.30083I
b = 0.912691 + 0.587846I		
u = 0.656566		
a = -1.48947	-0.112715	17.2960
b = 1.29551		
u = -0.181673 + 1.332990I		
a = -0.477910 + 0.021115I	-3.41691 - 2.41506I	4.35202 + 1.54076I
b = -0.263704 + 0.229700I		
u = -0.181673 - 1.332990I		
a = -0.477910 - 0.021115I	-3.41691 + 2.41506I	4.35202 - 1.54076I
b = -0.263704 - 0.229700I		
u = 0.36901 + 1.39774I		
a = -1.48756 - 1.23046I	4.2704 + 16.0735I	4.86533 - 8.67439I
b = -0.55509 + 1.37302I		
u = 0.36901 - 1.39774I		
a = -1.48756 + 1.23046I	4.2704 - 16.0735I	4.86533 + 8.67439I
b = -0.55509 - 1.37302I		
u = -0.45316 + 1.40935I		
a = 0.831561 - 1.018120I	2.26090 - 6.77325I	8.15326 + 8.68487I
b = 0.207861 + 1.159740I		
u = -0.45316 - 1.40935I		
a = 0.831561 + 1.018120I	2.26090 + 6.77325I	8.15326 - 8.68487I
b = 0.207861 - 1.159740I		
u = -0.496850		
a = -0.482259	0.853473	12.2560
b = -0.161437		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.11292 + 1.52095I		
a = -0.621242 + 0.178604I	-2.48001 - 6.89114I	2.89593 + 8.03535I
b = -0.381421 - 1.074640I		
u = -0.11292 - 1.52095I		
a = -0.621242 - 0.178604I	-2.48001 + 6.89114I	2.89593 - 8.03535I
b = -0.381421 + 1.074640I		
u = 0.287554 + 0.235788I		
a = -0.37075 + 1.66780I	-1.22051 + 0.86188I	-4.63925 - 4.32694I
b = 0.662890 - 0.292141I		
u = 0.287554 - 0.235788I		
a = -0.37075 - 1.66780I	-1.22051 - 0.86188I	-4.63925 + 4.32694I
b = 0.662890 + 0.292141I		

$$\text{II. } I_2^u = \\ \langle u^{19}a + 2u^{19} + \dots - 2a - 1, \ -2u^{19}a - 4u^{19} + \dots + 6a + 15, \ u^{20} - u^{19} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{19}a - 2u^{19} + \dots + 2a + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{19}a - 4u^{19} + \dots + 2a + 3\\u^{19}a - u^{19} + \dots + 2a + 3 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{19} - 8u^{17} - 26u^{15} - 42u^{13} - 31u^{11} - 2u^{9} + 10u^{7} + 4u^{5} - u^{3} - 2u\\u^{19} - u^{18} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\-u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{19}a - u^{19} + \dots - 7u + 3\\-2u^{19} + 2u^{18} + \dots - 2u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{19}a - u^{19} + \dots + 2a - 2\\-u^{18}a - 2u^{19} + \dots + 2a + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{19}a - u^{19} + \dots + 2a - 2\\-u^{18}a - 2u^{19} + \dots + 2a + 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$4u^{18} - 4u^{17} + 32u^{16} - 28u^{15} + 104u^{14} - 76u^{13} + 164u^{12} - 92u^{11} + 104u^{10} - 32u^9 - 28u^8 + 20u^7 - 60u^6 + 4u^5 - 4u^4 - 8u^3 + 16u^2 + 4u + 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{40} - 3u^{39} + \dots - 60100u + 13049$
c_2, c_3, c_5 c_{11}	$u^{40} - 7u^{39} + \dots - 2u + 1$
c_6, c_7, c_{10}	$(u^{20} + u^{19} + \dots + 2u - 1)^2$
c_8	$(u^{20} - u^{19} + \dots + 3u^2 - 1)^2$
<i>c</i> 9	$(u^{20} - u^{19} + \dots + 4u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{40} - 21y^{39} + \dots - 1779930400y + 170276401$
c_2, c_3, c_5 c_{11}	$y^{40} + 27y^{39} + \dots + 40y^2 + 1$
c_6, c_7, c_{10}	$(y^{20} + 17y^{19} + \dots - 6y + 1)^2$
<i>c</i> ₈	$(y^{20} - 7y^{19} + \dots - 6y + 1)^2$
<i>C</i> 9	$(y^{20} - 11y^{19} + \dots - 6y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.274747 + 1.069600I		
a = -0.650977 - 1.009380I	2.02098 - 2.13456I	4.50898 + 2.16962I
b = 0.31766 + 1.39547I		
u = 0.274747 + 1.069600I		
a = -0.084213 - 0.753588I	2.02098 - 2.13456I	4.50898 + 2.16962I
b = -0.918130 - 0.259874I		
u = 0.274747 - 1.069600I		
a = -0.650977 + 1.009380I	2.02098 + 2.13456I	4.50898 - 2.16962I
b = 0.31766 - 1.39547I		
u = 0.274747 - 1.069600I		
a = -0.084213 + 0.753588I	2.02098 + 2.13456I	4.50898 - 2.16962I
b = -0.918130 + 0.259874I		
u = 0.773104 + 0.153161I		
a = 0.829907 - 0.370587I	4.77271 + 6.07240I	7.45285 - 5.87540I
b = -1.084140 + 0.080482I		
u = 0.773104 + 0.153161I		
a = 0.37153 + 2.57431I	4.77271 + 6.07240I	7.45285 - 5.87540I
b = 0.49433 - 1.41099I		
u = 0.773104 - 0.153161I		
a = 0.829907 + 0.370587I	4.77271 - 6.07240I	7.45285 + 5.87540I
b = -1.084140 - 0.080482I		
u = 0.773104 - 0.153161I		
a = 0.37153 - 2.57431I	4.77271 - 6.07240I	7.45285 + 5.87540I
b = 0.49433 + 1.41099I		
u = 0.772326		
a = 0.10498 + 2.42938I	8.84775	12.4400
b = -0.56866 - 1.40361I		
u = 0.772326		
a = 0.10498 - 2.42938I	8.84775	12.4400
b = -0.56866 + 1.40361I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198534 + 1.239650I		
a = 1.83297 - 0.91329I	0.52569 - 2.16136I	0.73748 + 3.31855I
b = 0.199750 - 0.784968I		
u = -0.198534 + 1.239650I		
a = 0.01849 - 2.83921I	0.52569 - 2.16136I	0.73748 + 3.31855I
b = 0.053071 + 1.161370I		
u = -0.198534 - 1.239650I		
a = 1.83297 + 0.91329I	0.52569 + 2.16136I	0.73748 - 3.31855I
b = 0.199750 + 0.784968I		
u = -0.198534 - 1.239650I		
a = 0.01849 + 2.83921I	0.52569 + 2.16136I	0.73748 - 3.31855I
b = 0.053071 - 1.161370I		
u = -0.692333 + 0.156175I		
a = 0.333781 + 0.644615I	3.61438 - 0.81573I	5.67172 + 1.07888I
b = 0.162072 + 0.252940I		
u = -0.692333 + 0.156175I		
a = -1.37017 + 2.40156I	3.61438 - 0.81573I	5.67172 + 1.07888I
b = -0.049861 - 1.112720I		
u = -0.692333 - 0.156175I		
a = 0.333781 - 0.644615I	3.61438 + 0.81573I	5.67172 - 1.07888I
b = 0.162072 - 0.252940I		
u = -0.692333 - 0.156175I		
a = -1.37017 - 2.40156I	3.61438 + 0.81573I	5.67172 - 1.07888I
b = -0.049861 + 1.112720I		
u = 0.327541 + 1.260030I		
a = 0.653810 + 0.673934I	4.94645 + 3.96853I	7.89349 - 3.79787I
b = -0.46464 - 1.49110I		
u = 0.327541 + 1.260030I		
a = -1.51060 - 1.23935I	4.94645 + 3.96853I	7.89349 - 3.79787I
b = -0.67909 + 1.31567I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.327541 - 1.260030I		
a = 0.653810 - 0.673934I	4.94645 - 3.96853I	7.89349 + 3.79787I
b = -0.46464 + 1.49110I		
u = 0.327541 - 1.260030I		
a = -1.51060 + 1.23935I	4.94645 - 3.96853I	7.89349 + 3.79787I
b = -0.67909 - 1.31567I		
u = -0.201509 + 0.663357I		
a = -0.408683 - 0.835639I	1.62333 - 2.35832I	2.35225 + 4.49783I
b = -0.502025 - 0.160176I		
u = -0.201509 + 0.663357I		
a = 0.005727 - 0.731461I	1.62333 - 2.35832I	2.35225 + 4.49783I
b = 0.195325 + 1.163080I		
u = -0.201509 - 0.663357I		
a = -0.408683 + 0.835639I	1.62333 + 2.35832I	2.35225 - 4.49783I
b = -0.502025 + 0.160176I		
u = -0.201509 - 0.663357I		
a = 0.005727 + 0.731461I	1.62333 + 2.35832I	2.35225 - 4.49783I
b = 0.195325 - 1.163080I		
u = -0.295567 + 1.352050I		
a = 0.356054 + 0.330760I	-1.14075 - 4.43308I	0.68370 + 2.52728I
b = 0.392505 + 0.067994I		
u = -0.295567 + 1.352050I		
a = -1.53457 + 1.07334I	-1.14075 - 4.43308I	0.68370 + 2.52728I
b = -0.177275 - 1.088720I		
u = -0.295567 - 1.352050I		
a = 0.356054 - 0.330760I	-1.14075 + 4.43308I	0.68370 - 2.52728I
b = 0.392505 - 0.067994I		
u = -0.295567 - 1.352050I		
a = -1.53457 - 1.07334I	-1.14075 + 4.43308I	0.68370 - 2.52728I
b = -0.177275 + 1.088720I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.328206 + 1.357610I		
a = -0.283063 - 0.801762I	0.00745 + 10.05770I	2.70834 - 7.26612I
b = -1.159930 - 0.023595I		
u = 0.328206 + 1.357610I		
a = 1.50051 + 1.23763I	0.00745 + 10.05770I	2.70834 - 7.26612I
b = 0.59445 - 1.40555I		
u = 0.328206 - 1.357610I		
a = -0.283063 + 0.801762I	0.00745 - 10.05770I	2.70834 + 7.26612I
b = -1.159930 + 0.023595I		
u = 0.328206 - 1.357610I		
a = 1.50051 - 1.23763I	0.00745 - 10.05770I	2.70834 + 7.26612I
b = 0.59445 + 1.40555I		
u = -0.022410 + 1.403750I		
a = -0.788895 - 0.405125I	-4.68486 - 2.84648I	-1.60998 + 2.97861I
b = -0.676901 + 0.349305I		
u = -0.022410 + 1.403750I		
a = 0.387309 + 0.213744I	-4.68486 - 2.84648I	-1.60998 + 2.97861I
b = 0.495392 + 0.955288I		
u = -0.022410 - 1.403750I		
a = -0.788895 + 0.405125I	-4.68486 + 2.84648I	-1.60998 - 2.97861I
b = -0.676901 - 0.349305I		
u = -0.022410 - 1.403750I		
a = 0.387309 - 0.213744I	-4.68486 + 2.84648I	-1.60998 - 2.97861I
b = 0.495392 - 0.955288I		
u = -0.358818		
a = -4.26389 + 1.88679I	3.97005	10.7620
b = -0.123906 + 1.022770I		
u = -0.358818		
a = -4.26389 - 1.88679I	3.97005	10.7620
b = -0.123906 - 1.022770I		

III.
$$I_3^u = \langle b+1, -2u^2 + 2a - 2u - 3, u^3 + u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + u + \frac{3}{2} \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + u + \frac{5}{2} \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{2} + 2u + 4 \\ -2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 1 \\ -\frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u + 2 \\ \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u + 2 \\ \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u + 2 \\ \frac{1}{2}u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{1}{4}u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$8(8u^3 + 4u^2 - 1)$
c_2, c_{11}	$(u-1)^3$
c_3, c_5	$(u+1)^3$
c_4	$8(8u^3 - 4u^2 + 1)$
c_6, c_7	$u^3 + u^2 + 2u + 1$
<i>c</i> ₈	u^3
<i>C</i> 9	$u^3 + u^2 - 1$
c_{10}	$u^3 - u^2 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$64(64y^3 - 16y^2 + 8y - 1)$
c_2, c_3, c_5 c_{11}	$(y-1)^3$
c_6, c_7, c_{10}	$y^3 + 3y^2 + 2y - 1$
<i>C</i> ₈	y^3
c_9	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.377439 + 0.744862I	-4.66906 - 2.82812I	-2.05377 + 0.32679I
b = -1.00000		
u = -0.215080 - 1.307140I		
a = -0.377439 - 0.744862I	-4.66906 + 2.82812I	-2.05377 - 0.32679I
b = -1.00000		
u = -0.569840		
a = 1.25488	-0.531480	-2.14250
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$64(8u^3 + 4u^2 - 1)(8u^{24} - 12u^{23} + \dots - u + 1)$ $\cdot (u^{40} - 3u^{39} + \dots - 60100u + 13049)$
c_2, c_{11}	$((u-1)^3)(u^{24} + 3u^{23} + \dots + 6u - 1)(u^{40} - 7u^{39} + \dots - 2u + 1)$
c_3, c_5	$((u+1)^3)(u^{24}+3u^{23}+\cdots+6u-1)(u^{40}-7u^{39}+\cdots-2u+1)$
c_4	$64(8u^3 - 4u^2 + 1)(8u^{24} - 12u^{23} + \dots - u + 1)$ $\cdot (u^{40} - 3u^{39} + \dots - 60100u + 13049)$
c_6, c_7	$(u^{3} + u^{2} + 2u + 1)(u^{20} + u^{19} + \dots + 2u - 1)^{2}$ $\cdot (u^{24} + 10u^{22} + \dots - 15u - 4)$
c ₈	$u^{3}(u^{20} - u^{19} + \dots + 3u^{2} - 1)^{2}(u^{24} + 3u^{23} + \dots + 224u + 128)$
<i>c</i> 9	$(u^{3} + u^{2} - 1)(u^{20} - u^{19} + \dots + 4u - 1)^{2}$ $\cdot (u^{24} - 6u^{22} + \dots - 1079u - 676)$
c_{10}	$(u^{3} - u^{2} + 2u - 1)(u^{20} + u^{19} + \dots + 2u - 1)^{2}$ $\cdot (u^{24} + 10u^{22} + \dots - 15u - 4)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$4096(64y^{3} - 16y^{2} + 8y - 1)(64y^{24} - 656y^{23} + \dots - 7y + 1)$ $\cdot (y^{40} - 21y^{39} + \dots - 1779930400y + 170276401)$
c_2, c_3, c_5 c_{11}	$((y-1)^3)(y^{24}+13y^{23}+\cdots-38y+1)(y^{40}+27y^{39}+\cdots+40y^2+1)$
c_6, c_7, c_{10}	$(y^3 + 3y^2 + 2y - 1)(y^{20} + 17y^{19} + \dots - 6y + 1)^2$ $\cdot (y^{24} + 20y^{23} + \dots - 97y + 16)$
c_8	$y^{3}(y^{20} - 7y^{19} + \dots - 6y + 1)^{2}(y^{24} - 7y^{23} + \dots - 226304y + 16384)$
<i>c</i> ₉	$(y^3 - y^2 + 2y - 1)(y^{20} - 11y^{19} + \dots - 6y + 1)^2$ $\cdot (y^{24} - 12y^{23} + \dots - 1380561y + 456976)$