

TTT4120 Digital Signal Processing Fall 2019

Lecture: The Discrete Fourier Transform

Prof. Stefan Werner stefan.werner@ntnu.no Office B329

Department of Electronic Systems
© Stefan Werner

Lecture in course book*

- Proakis, Manolakis Digital Signal Processing, 4th Ed.
 - 7.1.1 Frequency-domain sampling and reconstruction of discrete-time signals
 - 7.1.2 The discrete Fourier transform (DFT)
 - 7.2 Properties of the DFT

*Level of detail is defined by lectures and problem sets

Preliminary questions

- To perform frequency analysis of sequence x[n] we need to convert it into its frequency-domain representation
- In our toolkit we find the discrete-time Fourier transform

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

• Is this a convenient representation?

3

Contents and learning outcomes

- · Frequency-domain sampling and reconstruction
- Discrete Fourier Transform (DFT)
- Properties of the DFT

Motivation: Discrete Fourier transform

- Discrete Fourier transform (DFT) and inverse DFT (IDFT)
 - linear filtering of long sequences
 - frequency (spectrum) analysis
 - power spectrum estimation
- Efficient implementation using fast Fourier transform (FFT)

5

Frequency-domain sampling

• Consider finite-energy aperiodic sequence x[n] with DTFT

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- Spectrum $X(\omega)$ is continuous but 2π -periodic
- · Sample spectrum periodically in frequency
 - Benefits of performing such sampling?
 - Is sampled spectrum anymore related to x[n]?

- Discussion:
 - Sampling continuous-time signal versus sampling continuous-frequency signal
 - Periodicity in transform-domain

7

Frequency-domain sampling...

• In interval $0 \le \omega \le 2\pi$, take N equidistant samples,

$$X(\omega_k) = X(\omega)|_{\omega = \omega_k},$$

$$\omega_k = \frac{2\pi k}{N}, \, k = 0, \dots, N-1$$

• DTFT $X(\omega)$ evaluated at ω_k

$$X(\omega_k) = \sum_{n=-\infty}^{\infty} x[n]e^{-\frac{j2\pi k}{N}n}, k = 0, ..., N-1$$

• Make use of identity $e^{-\frac{j2\pi k}{N}n} = e^{-\frac{j2\pi k}{N}(n+N)}$

9

Frequency-domain sampling...

• DTFT $X(\omega)$ evaluated at ω_k

$$X\left(\frac{2\pi k}{N}\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-\frac{j2\pi k}{N}n}$$

$$= \dots + \sum_{n=-N}^{-1} x[n]e^{-\frac{j2\pi k}{N}n}$$

$$+ \sum_{n=0}^{N-1} x[n]e^{-\frac{j2\pi k}{N}n}$$

$$+ \sum_{n=N}^{2N-1} x[n]e^{-\frac{j2\pi k}{N}n} + \dots$$

• DTFT $X(\omega)$ evaluated at ω_k

$$X\left(\frac{2\pi k}{N}\right) = \sum_{n=0}^{N-1} \sum_{l=-\infty}^{\infty} x[n-lN] e^{-\frac{j2\pi k}{N}n}$$
$$= \sum_{n=0}^{N-1} x_p[n] e^{-\frac{j2\pi k}{N}n}$$

• Periodic extension of x[n]

$$x_p[n] = \sum_{l=-\infty}^{\infty} x[n-lN]$$

Example 1: Given $x[n] = \delta[n] + 0.5\delta[n-1]$, sketch $x_p[n]$ for N = 1 and N = 3 and comment on the results

11

Frequency-domain sampling...

- Clearly $x_p[n] = \sum_{l=-\infty}^{\infty} x[n-lN]$ is periodic with period N
- Express as a discrete-time Fourier series ⇒

$$x_p[n] = \sum_{k=0}^{N-1} c_k e^{\frac{j2\pi k}{N}n}, n = 0, ..., N-1$$

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p[n] e^{\frac{-j2\pi k}{N}n} = \frac{1}{N} X\left(\frac{2\pi k}{N}\right)$$

· Let us take stock and see where we stand

- When can x[n] be recovered from $x_p[n]$?
 - Duration of sequence x[n] versus period of $x_p[n]$?

14

Frequency-domain sampling...

Lesson learned:

The spectrum $X(\omega)$ of an aperiodic sequence x[n] of finite duration L, can be recovered from samples $X(\omega_k)$, with $\omega_k = \frac{2\pi k}{N}$, if the number of samples $N \ge L$

- Procedure for closing the circle:
 - 1. Compute $x_p[n] = \frac{1}{N} \sum_{k=0}^{N-1} X\left(\frac{2\pi k}{N}\right) e^{\frac{j2\pi k}{N}n}, n = 0, ..., N-1$
 - 2. Set $x[n] = x_p[n]$ for $0 \le n \le N 1$, zero elsewhere
 - 3. Compute $X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

• Example 2: Which periodic extension of x[n] can be used to recover spectrum $X(\omega)$?

16

Frequency-domain sampling...

• Example 3: Infinite duration sequences, reconstructed sequence will suffer from aliasing, $x[n] = a^n u[n]$, |a| < 1.

Matiab B = [1]; A = [1 -0.9]; [X,w] = freqz(B,A,'whole'); figure, plot(w/pi,abs(X)); [x,n] = impz(B,A) figure, stem(n,x),hold on X1 = X(1:length(w)/5:end) figure, stem(ifft(X1),'r') X2 = X(1:length(w)/50:end) figure, stem(ifft(X2),'g')

Discrete Fourier transform (DFT)

• Putting the bits and pieces together (remember)

$$\begin{aligned} x_p[n] &= \sum_{k=0}^{N-1} c_k e^{\frac{j2\pi k}{N}n}, n = 0, \dots, N - 1 \\ c_k &= \frac{1}{N} \sum_{n=0}^{N-1} x_p[n] e^{-\frac{j2\pi k}{N}n} = \frac{1}{N} X\left(\frac{2\pi k}{N}\right) \end{aligned}$$

• For sequence x[n] of length $L \le N$, x[n] = 0, $L \le n \le N$

DFT:
$$X(k) = \sum_{n=0}^{N-1} x[n]e^{-\frac{j2\pi k}{N}n}$$
, $k = 0, ..., N-1$

IDFT:
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{\frac{j2\pi k}{N}n}, n = 0, ..., N-1$$

• Notation: $X(k) \equiv X(\omega_k), X(k) = DFT_N\{x[n]\}$

18

Discrete Fourier transform (DFT)

DFT:
$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-\frac{j2\pi k}{N}n}$$
, $k = 0, \dots, N-1$

IDFT:
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{\frac{j2\pi k}{N}n}, n = 0, ..., N-1$$

- What happens when increasing N > L, L is kept fixed?
 - In frequency-domain?
 - In time-domain?
- Using *N* > *L* samples for computing the DFT is commonly referred to as *zero padding* and improves resolution

Discrete Fourier transform (DFT)...

• Example 4: Plot *N*-point DFT of $x[n] = \sum_{l=0}^{3} \delta[n-l]$ for N=4 and N=40

$$X(\omega) = \sum_{n=0}^{L-1=3} e^{-j\omega n} = \frac{1 - e^{-j\omega L}}{1 - e^{-j\omega}} = \frac{\sin(\omega L/2)}{\sin(\omega/2)} e^{-j\omega(L-1)/2}$$

$$X(k) = \sum_{n=0}^{L-1=3} e^{-\frac{j2\pi k}{N}n} = \frac{1 - e^{-\frac{j2\pi k}{N}L}}{1 - e^{-\frac{j2\pi k}{N}L}} = \frac{\sin(\pi k L/N)}{\sin(\pi k/N)} e^{-j\pi k(L-1)/N}$$

20

Discrete Fourier transform (DFT)...

• Example 4: Plot *N*-point DFT of $x[n] = \sum_{l=0}^{3} \delta[n-l]$ for N=4 and N=40

Matlab
L = 4; x = ones(1,L);
N = L*10; x_zp = [x,zeros(1,N-L)];
stem((0:N-1),abs(fft(x_zp,N)));

Properties of the DFT

- · Periodicity
- Linearity
- Time reversal
- Circular time shift
- · Circular frequency shift
- Conjugation
- Circular convolution
- Multiplication of two sequences
- Parseval's theorem

22

Properties of the DFT...

- Properties are similar to those of the DTFT
- Keep in mind is that operations on X(k) in frequency domain corresponds to *operations on* $x_p[n]$ in time domain

$$x_p[n] = x[n, \text{modulo } N] = x([n])_N$$

 \Rightarrow Shifting $x_p[n]$ in time by for k units, $x_p[n-k]$, is identical to a circular shift of x[n] in interval $0 \le n \le N-1$

$$x([n-k])_N \equiv x[n-k, \text{modulo } N]$$

Properties of the DFT...

• Shifting:

Properties of the DFT...

• Time-reversal:

 $x([-n])_N \equiv x[-n, \text{modulo } N] = x[N-n], 0 \le n \le N-1$

Properties of the DFT...

- Periodicity: $x[n] = x[n+N] \stackrel{\text{DFT}_N}{\longleftrightarrow} X(k) = X(k+N)$
- Linearity: $a_1x_1[n] + a_2x_2[n] \xrightarrow{\text{DFT}_N} a_1X_1(k) + a_2X_2(k)$
- Time reversal: $x[N-n] \stackrel{\text{DFT}_N}{\longleftrightarrow} X(N-k)$
- Circular time shift: $x([n-l])_N \overset{\text{DFT}_N}{\longleftrightarrow} X(k)e^{-j2\pi kl/N}$
- Circular frequency shift: $x[n]e^{j2\pi ln/N} \stackrel{\text{DFT}_N}{\longleftrightarrow} X((k-l))_N$
- Conjugation: $x^*[n] \xrightarrow{\text{DFT}_N} X^*(N-k)$
- Circular convolution: $x_1[n] \otimes_N x_2[n] \stackrel{\text{DFT}_N}{\longleftrightarrow} X_1(k) X_2(k)$
- Parseval's theorem: $\sum_{n=0}^{N-1} x[n] y^*[n] \stackrel{\text{DFT}_N}{\longleftrightarrow} \frac{1}{N} \sum_{n=0}^{N-1} X(k) Y^*(k)$

26

Properties of the DFT...

- Circular convolution: $x_1[n] \otimes_N x_2[n] \stackrel{\text{DFT}_N}{\longleftrightarrow} X_1(k) X_2(k)$ $x_1[n] \otimes_N x_2[n] = \sum_{k=0}^{N-1} x_1[k] x_2([n-k])_N, n = 0,1, \dots N-1$
- Linear convolution of causal sequences $x_1[n]$ and $x_2[n]$

$$x_1[n] * x_2[n] = \sum_{k=0}^{N-1} x_1[k] x_2[n-k]$$

- In general, $x_1[n] \otimes_N x_2[n] \neq x_1[n] * x_2[n]$
 - ⇒ important when applying the DFT to linear system analysis (next lecture)

Summary

Today:

- Frequency-domain sampling and reconstruction
- The DFT (discrete Fourier transform)
- Properties of the DFT

Next:

• Using DFT for filtering and frequency analysis