1 Mastery set [25 points] (Aaditya)

A1 [2] $\forall k \in 1, ..., n$, define $S_k := \sum_{i=1}^k \theta_i$ and $y_k := \sum_{i=1}^k \frac{\theta_i x_i}{S_k} \in C$. Suppose that, for some $k \in 1, ..., n-1, y_k \in C$. Then,

$$y_{k+1} := \sum_{i=1}^{k+1} \frac{\theta_i x_i}{S_{k+1}} = \frac{\theta_{k+1} x_{k+1}}{S_{k+1}} + \sum_{i=1}^k \frac{\theta_i x_i}{S_{k+1}} = \frac{\theta_{k+1} x_{k+1}}{S_{k+1}} + \frac{S_k}{S_{k+1}} \sum_{i=1}^k \frac{\theta_i x_i}{S_k}$$
$$= \frac{\theta_{k+1} x_{k+1}}{S_{k+1}} + \left(1 - \frac{\theta_{k+1}}{S_{k+1}}\right) \sum_{i=1}^k \frac{\theta_i x_i}{S_k} \in C,$$

since C is convex. Since $y_1 = x_1 \in C$, by induction on $k, y = y_n \in C$.

A2 [3] We showed in class that $conv_2(M)$ is convex. Since each point in M is a convex combination of points in M, $M \subseteq conv_2(M)$, so $conv_1(M) \subseteq conv_2(M)$. If $C \supseteq M$ is convex, then, by part A1, any convex combination of points in M is in C. Thus, $conv_2(M) \subseteq conv_1(M)$.

B1 [2+2] HP(a,b) is convex. If $\theta \in [0,1]$ and $x_1, x_2 \in HP(a,b)$, then

$$a^{T}(\theta x_{1} + (1 - \theta)x_{2}) = \theta a^{T}x_{1} + (1 - \theta)a^{T}x_{2} = \theta b + (1 - \theta)b = b.$$

If $x_1 \in HP(a, b_1)$ and $x_2 \in HP(a, b_2)$, then, by Cauchy-Schwarz,

$$||x_1 - x_2|| \ge \left| \frac{a}{||a||} (x_1 - x_2) \right| = \boxed{\frac{|b_1 - b_2|}{||a||}},$$

and it is easily checked that $x_1 = \frac{b_1}{\|a\|^2}a$ and $x_2 = \frac{b_2}{\|a\|^2}a$ achieve this bound.

B2 [2+2] HS(a,b) is convex. If $\theta \in [0,1]$ and $x_1, x_2 \in HS(a,b)$, then

$$a^{T}(\theta x_{1} + (1 - \theta)x_{2}) = \theta a^{T}x_{1} + (1 - \theta)a^{T}x_{2} \le \theta b + (1 - \theta)b = b.$$

 $HS(a_1,b_1) \subseteq HS(a_2,b_2)$ if and only if $\exists c \in \mathbb{R}$ with $a_1 = ca_2$ and $b_1 \leq cb_2$.

B3 [2] $\forall x \in \mathbb{R}^d$,

$$||u - x||_2^2 \le ||v - x||_2^2$$

$$\Leftrightarrow ||u||_2 - 2u^T x + ||x||_2 \le ||v||_2 - 2v^T x + ||x||_2$$

$$\Leftrightarrow ||u|| - ||v|| \le 2(u - v)^T x.$$

Thus, $\{x \in \mathbb{R}^d \mid ||u - x|| \le ||v - x||\} = HS(2(u - v), ||u|| - ||v||)$, and is thus convex.

C [2+3] $\forall \theta \in [0,1], x, y \in \mathbb{R}_+,$

$$f(s(\theta x + (1 - \theta)y)) = f(\theta sx + (1 - \theta)sy) \le \theta f(sx) + (1 - \theta)f(sy). \quad \blacksquare$$

Note that, via the change of variables u = t/x,

$$F(x) = \frac{1}{x} \int_0^x f(t) dt = \frac{1}{x} \int_0^1 f(xu) x du = \int_0^1 f(xu) du.$$

Thus, $\forall \theta \in [0,1], x,y \in \mathbb{R}_+$, by convexity of the function $u \mapsto f(xu)$,

$$F(\theta x + (1 - \theta)y) = \int_0^1 f((\theta x + (1 - \theta)y)u) du$$

$$\leq \int_0^1 \theta f(xu) + (1 - \theta)f(yu) du = \theta F(x) + (1 - \theta)F(y). \quad \blacksquare$$

D [3+2] The LP can be written in standard form as an LP over 6 variables:

$$0 \le u = \begin{bmatrix} x_2 \\ y_2 \\ z_1 \\ z_2 \\ s_1 \\ s_2 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & -1 & 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

The optimum occurs at (x, y, z) = (1, -1, 1), when 3x - y + z = 5.