# CS 188: Artificial Intelligence Fall 2011

Lecture 17: Decision Diagrams 10/27/2011

Dan Klein - UC Berkeley

#### **Decision Networks**

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
  - Bayes nets with nodes for utility and actions
  - Lets us calculate the expected utility for each action
- New node types:
  - Chance nodes (just like BNs)
  - Actions (rectangles, cannot have parents, act as observed evidence)
  - Utility node (diamond, depends on action and chance nodes)



[DEMO: Ghostbusters]

### **Decision Networks**

#### Action selection:

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action



5

# **Example: Decision Networks**



$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

Umbrella = take

 $EU(take) = \sum_{w} P(w)U(take, w)$ 

 $\mathrm{MEU}(\emptyset) = \max_{a} \mathrm{EU}(a) = 70$ 

 $= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$ P(W) W sun 0.7 rain 0.3 Optimal decision = leave



| Α     | W    | U(A,W) |
|-------|------|--------|
| leave | sun  | 100    |
| leave | rain | 0      |
| take  | sun  | 20     |
| take  | rain | 70     |

### **Decisions as Outcome Trees**



- Almost exactly like expectimax / MDPs
- What's changed?

7





$$\mathrm{MEU}(F = \mathrm{bad}) = \max_{a} \mathrm{EU}(a|\mathrm{bad}) = 53$$



### Value of Information

- Idea: compute value of acquiring evidence
  - Can be done directly from decision network
- Example: buying oil drilling rights
  - Two blocks A and B, exactly one has oil, worth k
  - You can drill in one location
  - Prior probabilities 0.5 each, & mutually exclusive
  - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
  - Value of knowing which of A or B has oil
  - Value is expected gain in MEU from new info
  - Survey may say "oil in a" or "oil in b," prob 0.5 each
  - If we know OilLoc, MEU is k (either way)
  - Gain in MEU from knowing OilLoc?
  - VPI(OilLoc) = k/2
  - Fair price of information: k/2



# VPI Example: Weather

#### MEU with no evidence

$$\mathrm{MEU}(\emptyset) = \max_{a} \mathrm{EU}(a) = 70$$

#### MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

#### MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Forecast distribution

| · aloui batioi i |      |  |
|------------------|------|--|
| F                | P(F) |  |
| good             | 0.59 |  |
|                  |      |  |



$$0.59 \cdot (95) + 0.41 \cdot (53) - 70$$

Umbrella

Weather

Forecast

# Value of Information

Assume we have evidence E=e. Value if we act now:

$$\mathsf{MEU}(e) = \max_{a} \sum_{s} P(s|e) \ U(s,a)$$

Assume we see that E' = e'. Value if we act then:

$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act:

$$\mathsf{MEU}(e,E') = \sum_{e'} P(e'|e) \mathsf{MEU}(e,e')$$

Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$



100

20

leave leave

take

take



### **VPI** Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

Nonadditive ---consider, e.g., obtaining E<sub>i</sub> twice

$$VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$$

Order-independent

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$

14

# **Quick VPI Questions**

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

### **POMDPs**

- MDPs have:
  - States S
  - Actions A
  - Transition fn P(s'|s,a) (or T(s,a,s'))
  - Rewards R(s,a,s')



- POMDPs add:
  - Observations O
  - Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)
- states b (distributions over o)

We'll be able to say more in a few lectures



16

# **Example: Ghostbusters**

- In (static) Ghostbusters:
  - Belief state determined by evidence to date {e}
  - Tree really over evidence sets
  - Probabilistic reasoning needed to predict new evidence given past evidence



#### Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions U(a<sub>bust</sub>, {e})
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!



# More Generally

- General solutions map belief functions to actions
  - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
  - Can build approximate policies using discretization methods
  - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSACE-) hard
- Most real problems are POMDPs, but we can rarely solve then in general!



18

# Reasoning over Time

- Often, we want to reason about a sequence of observations
  - Speech recognition
  - Robot localization
  - User attention
  - Medical monitoring
- Need to introduce time into our models
- Basic approach: hidden Markov models (HMMs)
- More general: dynamic Bayes' nets

20

#### Markov Models

- A Markov model is a chain-structured BN
  - Each node is identically distributed (stationary)
  - Value of X at a given time is called the state
  - As a BN:

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - \cdots \rightarrow$$

$$P(X_1) \qquad P(X|X_{-1})$$

 Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)

[DEMO: Ghostbusters]

# Conditional Independence



- Basic conditional independence:
  - Past and future independent of the present
  - Each time step only depends on the previous
  - This is called the (first order) Markov property
- Note that the chain is just a (growing) BN
  - We can always use generic BN reasoning on it if we truncate the chain at a fixed length

22

# Example: Markov Chain

- Weather:
  - States: X = {rain, sun}
  - Transitions:



- Initial distribution: 1.0 sun
- What's the probability distribution after one step?

$$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$

$$0.9 \cdot 1.0 + 0.1 \cdot 0.0 = 0.9$$
<sub>23</sub>

# Mini-Forward Algorithm

- Question: probability of being in state x at time t?
- Slow answer:
  - Enumerate all sequences of length t which end in s
  - Add up their probabilities

$$P(X_t = sun) = \sum_{x_1...x_{t-1}} P(x_1, ... x_{t-1}, sun)$$

$$\begin{split} &P(X_{1}=sun)P(X_{2}=sun|X_{1}=sun)P(X_{3}=sun|X_{2}=sun)P(X_{4}=sun|X_{3}=sun)\\ &P(X_{1}=sun)P(X_{2}=rain|X_{1}=sun)P(X_{3}=sun|X_{2}=rain)P(X_{4}=sun|X_{3}=sun) \end{split}$$

24

# Mini-Forward Algorithm

- Better way: cached incremental belief updates
  - An instance of variable elimination!



$$P(x_t) = \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1})$$

$$P(x_1) = \text{known}$$

Forward simulation

### Example

From initial observation of sun

From initial observation of rain

# **Stationary Distributions**

- If we simulate the chain long enough:
  - What happens?
  - Uncertainty accumulates
  - Eventually, we have no idea what the state is!
- Stationary distributions:
  - For most chains, the distribution we end up in is independent of the initial distribution
  - Called the stationary distribution of the chain
  - Usually, can only predict a short time out

[DEMO: Ghostbusters]

# Web Link Analysis

- PageRank over a web graph
  - Each web page is a state
  - Initial distribution: uniform over pages
  - Transitions:
    - With prob. c, uniform jump to a random page (dotted lines)
    - With prob. 1-c, follow a random outlink (solid lines)



- Stationary distribution
  - Will spend more time on highly reachable pages
  - E.g. many ways to get to the Acrobat Reader download page!
  - Somewhat robust to link spam
  - Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors