$\lambda/2$ -resonator Bandpass filter

Ashish Bora, M. Tech, IIT Kharagpur

 $July\ 31,\ 2021$

Contents

1	HFS	SS Simulation	2
	1.1	Components	2
	1.2	Design Criteria	2
	1.3	Design Specifications	4
	1.4	Conclusion	4

Chapter 1

HFSS Simulation

1.1 Components

- 1. Metal: Copper
 - Conductivity: 58000000 Siemens/m
 - Relative Permittivity (ϵ_r) : 1
- 2. Substrate: Rogers RO4003
 - Relative Permittivity (ϵ_r) : 3.55

1.2 Design Criteria

• Frequency of Operation: 7.8 GHz

Figure 1.1: Layout of the Bandpass Filter

Figure 1.2: S_{11} and S_{21} parameters of the design

1.3 Design Specifications

- Width of substrate (a): 34.30 mm
- Length of substrate (b): 66.65 mm
- Height of substrate (h): 0.508 mm
- Metal Thickness (t): 0.017 mm
- Resonating Element Length (rl): 28.82 mm
- Microstrip Width (w): 1.1363 mm
- Coupling Gap (c): 0.12 mm

1.4 Conclusion

From Fig. 1.2, there is a small deviation from the center frequency 2.4 GHz.

The S_{21} parameter is nearly -0.1 dB since the passband ripple considered during the design was 0.1 dB. The design was carried out by referring to the book[1].

Bibliography

Jia-Shen G Hong and Michael J Lancaster. Microstrip filters for RF/microwave applications.
Vol. 167. John Wiley & Sons, 2004.