Today: Exam logistico, Practice publems.

(3) Compute

$$\int_{\gamma_2(0)} \frac{\cos(\pi z)}{z^2-1}, \ d$$

where $\gamma_2(0)$ is the circle of radius two centered at $0 \in \mathbb{C}$, oriented positively.

Cauchy intend finder of a lite interior of halo in I

So Jan = 2TH Jan de

(4) Compute

$$\int_{\gamma_1(0)} e^{z} = 2\pi i \cdot e = 2\pi i$$

where $\gamma_1(0)$ is the circle of radius two centered at $0 \in \mathbb{C}$, oriented positively.

(2) Let $\Omega \subseteq \mathbb{C}$ be an open and connected subset of \mathbb{C} , and let $f \colon \Omega \to \mathbb{C}$ be a holomorphic function. Suppose that there is a curve $\gamma \subseteq \Omega$ such that f is constant on γ . Prove that f is constant in Ω .

- (7) Let $f(z) = z^2$.
 - (a) Calculate $\int_0^{2\pi} f(2+e^{it})dt$, and confirm that it is non-zero.
 - (b) Does Cauchy's theorem imply $\int_{\gamma_1(2)} f(z)dz = 0$? (Here $\gamma_1(2)$ is the circle of radius one centered at $2 \in \mathbb{C}$, oriented positively.) Explain the seeming discrepancy with part (a).

$$S_{\eta(2)}$$
 can be paramitinal by z^* t $\longrightarrow 2 + e^{it}$

$$\int_{S_{\eta(2)}} f_{(3)} dz = \int_{0}^{\infty} f(2 + e^{it}) \cdot (\frac{1}{2}e^{it}) dt$$

$$= \int_{0}^{\infty} f(2 + e^{it}) dt$$

(8) Let
$$f: \mathbb{D} \to \mathbb{C}$$
 be a holomorphic function on the unit disk. Suppose that

$$|f(z)| \le \frac{1}{1 - |z|}$$
 for any $|z| < 1$.

Prove that

$$|f^{(n)}(0)| \le (n+1)! \left(1 + \frac{1}{n}\right)^n \text{ for all } n \ge 1.$$

$$|f^{(n)}(0)| \leq \frac{n!}{r^n} \sup_{|z| \leq r} |f(z)| \leq \frac{n!}{r^n} \frac{1}{4-r}$$

$$\left| \begin{cases} f(u) | o \rangle = \left| \frac{n!}{2\pi i} \int_{\mathcal{X}_r} \frac{f(u)}{(w - o)^{n+1}} dw \right| \\ \leq \frac{n!}{2\pi i} \cdot 2\pi i \int_{w \in \mathcal{X}_r} \frac{f(w)}{(w - o)^{n+1}} dw \right| \\ = \frac{n!}{2\pi i} \cdot 2\pi i \int_{w \in \mathcal{X}_r} \frac{f(w)}{(w - o)^{n+1}} dw$$

$$|f^{(n)}(v)| \leq \frac{n!}{r!} |f^{(n)}(v)| \leq \frac{n!}{r!} |f^{(n)}(v)|$$

when does \rachieve its max. in ocres?

$$\left| f^{(n)}(p) \right| \leq \frac{n!}{\left(\frac{n}{n+1} \right)^n} = \left(\frac{n+1}{n} \right)! \left(\frac{n+1}{n} \right)^n$$

•		formly in \mathbb{C} , then $a_n = 0$ for all but finitely many n , hence f must be a polynomial.												
• ,	mial.		•	•	•	-	-	٠	-	•	•	•	•	
Fact	(C.) fm		•	•	•	•	•	•	•	•	•	•	
			•	·	•	•	•	•	•	•	•	•	•	
•	2f	<u>,></u>	f. c	von∙V i	wrt	f. ,	m. S	•	•	•	•	•	•	
•		42	70 ₎	NE	>0	•	•	•	٠	•	•	•	•	
•	•						1.		•	•	•	•	•	
•	•	•	₹.	1	2 ti	Kíx,		. 0	•	•	•	•	•	
•	•	•	•	•			· A		÷ \$	•	•	•	•	
•	•	•	•	•	•	•	· A	·W.	シハ	ンり	•	•	•	
Dur	case	- Y		7,	N	•	•	•	•	•	•	•	•	
•		• \				•		•	•	•	•	•	•	
•	•	•	va.	•	50	(v. Z	Ł.	خ 2	•	A	7 °C	6	•	
•	•	•	•	·Y	Kin		•	•	•	A	m ≥	c i >	Ŋ	
•														
•														
•	•	•		ed.	j	٠, ٨		· _	Ÿ,	.c.(1	•	H.		
•	•	•	•	•	ju	n.Z	1.	Ļ	۷ ځ	s e a	٠,	V. M.	, 10	
Now!	īf	5978	7 13		i Ta	· Ps	j.	· /.	•	•	•	•	•	
the	m \	NDO	,]	n>	la.	Sol	. •	an.	キロ	•	•	•	•	
		But												

· Contradiction. D.

(9) Prove that if a power series $\sum a_n z^n$ converges to some function $f: \mathbb{C} \to \mathbb{C}$ uni-

(5) Prove that the function
$$f: \mathbb{C} \to \mathbb{C}$$
 defined by

$$f(z) = \frac{z}{1 + |z|}$$

Cauchy Fierram

is not holomorphic at any point $z_0 \in \mathbb{C} \setminus \{b\}$

$$\mathcal{N} = \frac{\chi}{1 + \int \chi^2 + y^2},$$

