		\
	1	1
	•]
1	-	\mathcal{I}

	Drugs	No Drugs	$G_1^2 = .753$ (18
S	105	8	$\chi^2_{.05} = 3.84$ (1
AD	12	2	(6)
	- 12	~	(Not significant)
	Drugs	No Drugs	$G_2^2 = 31.740 (1$
	•		$\chi^2_{.05} = 3.84$ (18
DA +B	114	10	
N	18	. 19	(Significant)
	Drugs	No Drugs	G3 = 34.774 (1
S+AD+N	135	29	$\chi^{2}_{.05} = 3.84$ (18
PD	47	52	(Imasifinais)
	Drugs	No Drugs	G4 ² = 29.270 (1
S+AD+			$\chi^2_{.05} = 3.84 (18)$
N+PD	182	81	
SS	٥	13	(Significant)

$$G^2$$
 for equal table = 96.537
 $\chi^2_{20} = 9.49 (4 df)$

Interpretation:

It appears that patients with schizophrenia or affective disorder are generally prescribed drugs, patients with neurosis or a personality disorder are prescribed drugs roughly half the time, and patients with special symptoms are rarely prescribed drugs.

The first 2×2 table produces a "small" G^{\perp} since it considers patients with schizophrenia and patients with affective disorders; for both types of patients, the frequency with which drugs are prescribed is $\approx 90\%$. In subsequent 2×2 tables, the pooled group of patients is always prescribed drugs at a considerably higher frequency than the group of patients serving as a reference. As a result, these tables produce "large" G^{\perp} values.

2 Models

Let x = the score based on the smoking status of a student's parents, and let y=1 if the student smokes, o otherwise

The scores for x are $x_1 = 0$ (neither parent smokes), $x_2 = 2$ (one parent smokes), and $x_3 = 3$ (both parents smoke). Let T = P(Y=1).

For levels i=1,2,3, consider the models.

log
$$\frac{\pi_i}{1-\pi_i} = \alpha + \beta_i$$
 (model Ms (saturated model))
log $\frac{\pi_i}{1-\pi_i} = \alpha + \beta x$ (model M₁)

In addition, we may consider the indep model (Mo), given by $\log \frac{T_i}{1-T_i} = \alpha$

Model Ms

I. Parameter Estimates

. The MLE's for parameters (d, B1, B2,) are

$$\frac{\hat{a}}{-1.827}$$
 0.349 0.588

Note the decreasing trend in the Bi's.

The LR test for Ho: B=B=B=0 results in very low p-value (LR stat = 38.37, df = 2, p-value < .0001)

The Predicted Prob's

The predicted probabilities $\widehat{\Pi}_1$, $\widehat{\Pi}_2$, and $\widehat{\Pi}_3$ based on both the observed data $(\widehat{\Pi}_i = n_{ii}/n_{i+})$ and the fitted model M_1 $(\widehat{\Pi}_i = e^{\widehat{X} + \widehat{\beta}_i})/(1 + e^{\widehat{X} + \widehat{\beta}_i})$ are identical:

 $\hat{\mathcal{H}}_{3} = 0.225$, $\hat{\mathcal{H}}_{2} = 0.186$, $\hat{\mathcal{H}}_{3} = 0.139$.

Note the decreasing trend in the $\widehat{\pi}$'s, which is consistent with the decreasing trend in the $\widehat{\beta}$'s.

IV Canclusian

The trends in the $\widehat{\beta}_i$'s and the $\widehat{\pi}_i$'s suggest that a linear logit model iprovide an adequate fit to the data. (Deviance (MI) = 0,367)

Linear Logit Model (M1)

I. Parameter Estimates

The MLE's for \angle and β are $\hat{\lambda} = -1.844$, $\hat{\beta} = 0.196$. Note that the sign of $\hat{\beta}$ is positive, which suggests that as the smoking score for a student's parents increases, so does the probability that the student is a smoker.

II . Test for Slope

For testing Ho: B=0, we have .:

LR Stat. = 38,00, df=1, P-value < .0001.

Wald Stat = $\left(\frac{0.196}{0.033}\right)^2 = 36.29$, p-value < .0001

There is strong evidence of a trend between the smoking score for a student's parents and the log-odds of the student being a smoker.

III Tests for Goodness - of - fit.

Ho: Model MI holds

G2 = 0.367 (1df) P-value > 0.10

 $X^{2} = 0.366 \quad (1df)$

There is no evidence that the linear logit model does not provide

IV Conclusion

The linear logit model appears more appropriate than the saturated logit model. The former model is more parsimonious than the latter and seems to provide an adequate fit to the data.

```
HW2-Problem3
```

```
data Problem1; input parent smoke nonsmoke @@;
    n=smoke+nonsmoke;
 cards;
3 400 1380
2 416 1823
0 188 1168
```

proc genmod data=Problem1 descending;
 class parent(ref=first)/param=ref;
 model smoke/n=parent / dist=bin link=logit residuals type3;

MS

MI

proc genmod data=Problem1 descending;
 model smoke/n=parent / dist=bin link=logit residuals type3;
run;

Ms

The GENMOD Procedure

Model Information

Data Set Distribution Link Function Response Variable (Events) Response Variable (Trials)	WORK.PROBLEM1 Binomial Logit smoke
Number of Observations Read	3
Number of Observations Used	3
Number of Events	1004
Number of Trials	5375

Class Level Information

Class	Value	Design Variables		
parent	0	0	0	
	2	1	0	
	3	0	1	

Criteria For Assessing Goodness Of Fit

DF	Value	Value/DF
0	0.0000	•
Ů O		•
ŏ	0.0000 -2569.0722	
	0 0 0 0	0 0.0000 0 0.0000 0 0.0000 0 0.0000

Algorithm converged.

Analysis Of Parameter Estimates

Parameter		DF	Estimate	Standard Error	Wald 95% e Lim	Confidence its	Chi- Square	Pr > ChiSq
Intercept parent parent	2	1 1 1	-1.8266 0.3491 0.5882	0.0786 0.0955 0.0970	-1.9806 0.1618 0.3982 1.0000	-1.6726 0.5363 0.7783 1.0000	540.29 13.35 36.81	<.0001 0.0003 <.0001

NOTE: The scale parameter was held fixed.

The GENMOD Procedure

LR Statistics For Type 3 Analysis

Chi-Pr > Chisq DF Square Source Page 1

HW3-Problem1

parent

2

38.37

<.0001

Observation Statistics

Reslik	StReschi	StResdev	Resdev	Reschi	Resraw	Observation
	•	•	0		1.11E-14 -5.25E-15	1 2
•	•	•	ŏ	1.684E-15	2.143E-14	3

MI

The GENMOD Procedure

Model Information

Data Set Distribution Link Function Response Variable (Events) Response Variable (Trials)	WORK.PROBLEM1 Binomial Logit smoke n
Number of Observations Read	3

Number of Observations Read
Number of Observations Used
Number of Events
Number of Trials

1004
5375

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood	1 1 1	0.3669 0.3669 0.3663 0.3663	0.3669 0.3669 0.3663 0.3663

Algorithm converged.

Analysis Of Parameter Estimates

Parameter	DF	Estimate	Standard Error	Wald 95% (Lim	Confidence its	Chi- Square	Pr > ChiSq
Intercept parent Scale	1 1 0	-1.8443 0.1958 1.0000	0.0734 0.0325 0.0000	-1.9882 0.1321 1.0000	-1.7003 0.2595 1.0000	630.57 36.29	<.0001 <.0001

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source	DF	Pr > ChiSq	
parent	1	38.00	<.0001

The GENMOD Procedure

Observation Statistics

Observation	Resraw	Reschi	Resdev	StResdev	StReschi	Reslik
1	5.6783188	0.3240957	0.3235431	0.6042227	0.6052546	0.6049589
2	-8.517483	-0.459213	-0.460401	-0.60682	-0.605255	-0.606156
3	2.8391588	0.2245414	0.2240615	0.6039611	0.6052545	0.6050767

3.
$$Y(\lambda) \sim Poisson(\lambda)$$
 $P(y|\lambda) = \frac{e^{\lambda} \lambda^{y}}{y!}$
 $\lambda \sim Gramma(k, \frac{M}{k})$ $P(\lambda) = \frac{(k)k}{\Gamma(k)} \lambda^{k} e^{-\frac{k}{M}\lambda}$

$$P(Y,\lambda) = P(Y|\lambda)P(\lambda)$$

$$= \frac{e^{\lambda}\lambda^{Y}}{Y!} \frac{\left(\frac{k}{A}\right)^{k}}{\Gamma(k)} \lambda^{k'} e^{-\frac{k}{A}\lambda}$$

$$= \frac{\left(\frac{k}{A}\right)^{k}}{Y!\Gamma(k)} \lambda^{Y+k'} e^{-\left(1+\frac{k}{A}\right)\lambda}$$

$$P(y) = \frac{\left(\frac{k}{N}\right)^k}{y!\Gamma(k)} \frac{\Gamma(y+k)}{\left(\frac{Mk}{N}\right)^{k}} \frac{\Gamma(y+k)}{\Gamma(y+k)} \frac{\left(\frac{Mk}{N}\right)^{k}}{\Gamma(y+k)} \frac{\left(\frac{Mk}{N}\right)^{k}}{\Gamma(y+k)} \frac{\left(\frac{Mk}{N}\right)^{k}}{\Gamma(y+k)}$$

$$= \frac{\Gamma(y+k)}{\Gamma(y+1)\Gamma(k)} \left(\frac{k}{y+k}\right)^{k} \left(\frac{1}{y+k}\right)^{k}$$

$$= \frac{\Gamma(y+k)}{\Gamma(y+1)\Gamma(k)} \left(\frac{k}{y+k}\right)^{k} \left(\frac{y}{y+k}\right)^{k}$$

$$= \frac{\Gamma(y+k)}{\Gamma(y+k)\Gamma(y+k)} \left(\frac{k}{y+k}\right)^{k} \left(\frac{y}{y+k}\right)^{k}$$

$$= \frac{\Gamma(y+k)}{\Gamma(y+k)\Gamma(y+k)} \left(\frac{k}{y+k}\right)^{k} \left(\frac{1-k}{y+k}\right)^{k}$$

(b)
$$E(Y) = E(E(Y|X)) = E(X) = R \frac{M}{R} = M$$

 $Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$
 $= E(X) + Var(X)$
 $= M + \frac{1}{8}M^{2}$