

Department computer science

First hands-on: Universal hash family

Domenico Erriquez

1. PROBLEM

Prove that the family H of functions is UNIVERSAL for given m > 1 and $p \in [m + 1, 2m]$ prime:

$$H = \{h_{ab}(x) = (ax + b) \% p \% m, where a \in [1, p - 1] \text{ and } b \in [0, p - 1]\}$$

That is for any $k_1 \neq k_2$ it holds that $|\{h \in H : h(k_1) = h(k_2)\}| = \frac{|H|}{m}$

Hint: consider first

- $r = (a k_1 + b)\% p$
- $s = (a k_2 + b)\% p$

Where $k_1, k_2 \in [0, p-1]$

2. SOLUTION

H is a universal family hash function if $\forall k_1, k_2 \in U, k_1 \neq k_2$: $Pr_{h \in H}[h(k_1) = h(k_2)] \leq \frac{1}{m}$ So for any two distinct inputs $k_1, k_2 \in [0, p-1]$, the probability of a random function in H mapping them to the same output is $\frac{1}{m}$.

So, we have a collision when $k_1 \neq k_2$ we have that $h(k_1) = h(k_2)$ which can be written as follows:

$$ak_1 + b \equiv ak_2 + b \mod m \mod p$$

$$ak_1 + b - ak_2 - b \equiv i * m \mod p$$

$$a(k_1 - k_2) \equiv i * m \pmod p$$

Where $i \in [0, \frac{p-1}{m}]$

To solve a we have:

$$a \equiv i * m(k_1 - k_2)^{-1} \pmod{p}$$

Where $a \in [1, p-1]$, varying i in its range, $i * m(k_1-k_2)^{-1}$ has $\frac{p-1}{m}$ values not equal to 0. Finally the collision probability is $\frac{\#a \text{ and } b \text{ that } cause \text{ a collision}}{\#all \text{ possible } a \text{ and } b} = \frac{p(\frac{p-1}{m})}{p(p-1)} = \frac{1}{m}$