Функциональный анализ

Ф. Л. Бахарев *

19 декабря 2016 г.

Содержание

1	Линейное нормированное пространство	2
2	Пространства Лебега	4
3	Непрерывность. Сжимающее отображение	6
4	Линейные операторы	9
5	Пространства линейных непрерывных операторов	11
6	Корректно разрешимые задачи	12
7	Линейные непрерывные функционалы	13
8	Интегральные операторы	15
9	Скалярное произведение	20
10	Ортогональность	22
11	Теорема о наилучшем приближении	23
12	Ортогональное дополнение и ортогональные проекторы	25
13	Ряды Фурье	26
14	Теорема Риса	30
15	Сопряжённый оператор	30
16	Собственные числа и собственные векторы	32
17	Компактность	33
18	Компактные операторы	34
19	Примеры компактных операторов	35
20	Собственные числа и собственные векторы компактных самосопряжённых	
	операторов	37

^{*}Конспект подготовлен студентом Яскевичем С. В.

1 Линейное нормированное пространство

Определение 1.1. Линейное множество L над полем скаляров \mathbb{R} (\mathbb{C}) — множество с операциями сложения и умножения на скаляр, удовлетворяющее свойствам:

1.
$$(x + y) + z = x + (y + z) \forall x, y, z \in L$$

2.
$$x + y = y + x \ \forall x, y, z \in L$$

- 3. Существует элемент 0 такой, что $x + 0 = x \ \forall x \in L$
- 4. Для любого $x\in L$ существует обратный элемент по сложению -x такой, что -x+x=0

5.
$$\lambda(\mu x) = (\lambda \mu) x \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x \in L$$

6.
$$\lambda(x+y) = \lambda x + \lambda y \ \forall \lambda \in \mathbb{R}(\mathbb{C}), \ x, y \in L$$

7.
$$(\lambda + \mu)x = \lambda x + \mu y \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C}), x, y \in L$$

Определение 1.2. $\varphi: L \to \mathbb{R}$ называется нормой, если:

1.
$$\varphi(x+y) \leqslant \varphi(x) + \varphi(y) \ \forall x, y \in L$$

2.
$$\varphi(\lambda x) = |\lambda| \varphi(x) \ \forall x \in L, \ \lambda \in \mathbb{R}(\mathbb{C})$$

3.
$$\varphi(x) \geqslant 0 \ \forall x \in L$$

4.
$$\varphi(x) = 0 \iff x = 0$$

Если выполнены только первых три свойства, то φ называется полунормой.

Замечание 1.3.

- 1. $\rho(x,y) = \phi(x-y)$ метрика.
- 2. Если на пространстве задана норма $\|\cdot\|$, то $X=(L,\phi)$ нормированное пространство.

Определение 1.4. $x_n \to x$ в X, если $\|x_n - x\| \to 0$ при $n \to \infty$, то есть $\forall \epsilon > 0$ $\exists N \colon \forall n > N$ $\|x_n - x\| < \epsilon$

Определение 1.5. $\{x_n\}\subset X$ — фундаментальная последовательность (сходящаяся в себе, последовательность Коши), если $\|x_n-x_m\|\xrightarrow{m,n\to\infty} 0$, то есть $\forall \epsilon>0$ $\exists N\colon \forall m,n>N$ $\|x_m-x_m\|<\epsilon$

Замечание 1.6. $x_n \to x \implies \{x_n\}$ — фундаментальная. Обратное, вообще говоря, неверно.

Определение 1.7. Нормированное пространство X называется полным, если из фундаментальности последовательности следует существование предела.

Определение 1.8. Пусть $x_n \in X$. $\sum\limits_{j=1}^{\infty} x_j$ сходится, если $S_n = \sum\limits_{j=1}^n x_j$ имеет предел $\lim S_n = S$. S называется суммой ряда.

Определение 1.9. Ряд $\sum\limits_{j=1}^{\infty}x_j$ называется cxodsuyumcs абсолютно, если $\sum\limits_{j=1}^{\infty}\|x_j\|$ сходится.

Замечание 1.10. Из обычной сходимости не следует абсолютная сходимость.

 S_n сходится $\iff |S_n - S_m| \to 0$. Пусть $C_n = \sum_{j=1}^n \|x\|$. C_n сходится $\iff |C_n - C_m| \to 0$. Если мы хотим, чтобы сходимость S_n была равносильна $\|S_n - S_m\| \to 0$, то нам нужна полнота пространства.

Определение 1.11. Полное линейное нормированное пространство называется банаховым пространством (в честь польского математика Стефана Банаха).

Примеры 1.12.

- Евклидово пространство: \mathbb{R}^n с нормой $\|x\| = |x| = \sqrt[n]{|x_1|^2 + \ldots + |x_n|^2}$ то же, что ℓ_n^2 с нормой $\|\cdot\|_2$;
- $\ell_n^1 = (\mathbb{R}^n, \|\cdot\|_1)$, где $\|x\|_1 = |x_1| + \ldots + |x_n|$;
- $\ell_n^\infty=(\mathbb{R}^n,\|\cdot\|_\infty)$, где $\|x\|_\infty=\max_{1\leqslant j\leqslant n}|x_j|;$
- $\ell_n^p = (\mathbb{R}^n, \|\cdot\|_p, \|x\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}, p \geqslant 1;$
- $C(\overline{\Omega})$ с нормой $\|x\|=\max_{\mathbf{t}\in\overline{\Omega}}|x(\mathbf{t})|$, где Ω область в \mathbb{R}^m . $\overline{\Omega}$ замыкание Ω . Ясно, что $\overline{\Omega}$ компакт в \mathbb{R}^m .

Упражнение 1.13. Верно ли, что $\|\mathbf{x}\|_p \xrightarrow[p \to \infty]{} \|\mathbf{x}\|_\infty$?

Теорема 1.14. Пространство $C(\overline{\Omega})$ полно.

Доказательство. Рассмотрим фундаментальную последовательность $\mathbf{x}_{\mathbf{n}} \in C(\overline{\Omega}).$

$$\forall \epsilon > 0 \quad \exists N : \forall k, n > N \quad \|x_k - x_n\| = \max_{t \in \overline{\Omega}} |x_n(t) - x_k(t)| < \epsilon$$

Возьмём $t\in\overline{\Omega}$. $\{x_n(t)\}$ — числовая последовательность. Тогда получаем $|x_n(t)-x_k(t)|<\varepsilon$, отсюда $\{x_n(t)\}$ — фундаментальна, значит существует $\lim_{n\to\infty}x_n(t)=x(t)$.

Проверим, что $\max_{t \in \overline{\Omega}} |x_n(t) - x(t)| \xrightarrow[n \to \infty]{} 0$, т. е. $x_n \stackrel{n \to \infty}{\rightrightarrows} x$ на $\overline{\Omega}$. Заметим, что $\forall k, n > N$ $|x_k(t) - x_n(t)| < \varepsilon \implies |x(t) - x_n(t)| \leqslant \varepsilon$.

Почему же x непрерывна? Потому что равномерный предел непрерывных функций непрерывен.

Пусть $[a,b] \subset \mathbb{R}$. Рассмотрим пространство дифференцируемых функций $C^1[a,b]$. Какую норму на нём выбрать?

- $\bullet \ \phi_1(x) = \max_{t \in [\mathfrak{a}, \mathfrak{b}]} |x(t)|;$
- $\varphi_2(x) = \max_{t \in [a,b]} |x'(t)|;$
- $\varphi_3(x) = \varphi_1(x) + \varphi_2(x)$;
- $\bullet \ \phi_4(x) = |x(\alpha)| + \max_{t \in [\alpha, b]} |x'(t)|.$

Заметим, что ϕ_2 нормой вообще не является, а ϕ_1 не даёт полноты пространства.

Теорема 1.15. *1.* Пространство $(C^1[a,b], \varphi_1)$ не полно.

2. Пространство $(C^{1}[a,b], \phi_{3})$ полно.

Доказательство. Докажем первое утверждение.

Первый аргумент. х — производная непрерывная на [a,b], негладкая. По аппроксимационной теореме Вейерштрасса для любого $\varepsilon>0$ существует многочлен P такой, что $\max_{[a,b]}|P-x|<\varepsilon$

Второй аргумент. Пусть [a,b]=[-1,1], $x(t)=|t|\notin C^1[a,b],$ $x^{\epsilon}(t)=|t|^{1+\epsilon}\in C^1[a,b].$ $\max|x(t)-x^{\epsilon}(t)|\xrightarrow[\epsilon\to 0]{}0.$

Для доказательства второго утверждения возьмём $x_n \in C^1[a,b]$ — последовательность, фундаментальную относительно φ_3 .

$$\phi_3(x_n-x_k)\xrightarrow[n,k\to\infty]{}0\Longrightarrow\begin{cases} \phi_1(x_n-x_k)\to 0\\ \phi_2(x_n-x_k)\to 0 \end{cases} \Longrightarrow\exists x\in C^1[a,b],y\in C^1[a,b]$$

$$\begin{cases} \phi_1(x_n-x)\to 0\iff x_n\rightrightarrows x\text{ на }[a,b]\\ \phi_1(x_n'-y)\to 0\iff x_n'\rightrightarrows y\text{ на }[a,b] \end{cases} \Longrightarrow x\in C^1[a,b],x'=y$$
 Отсюда $\phi_3(x_n-x)\to 0$

2 Пространства Лебега

Неравенство Гёльдера

Рассмотрим (T,μ) — пространство с мерой, x,y — измеримые функции, и числа p,q>0 — сопряжённые показатели, т. е. $\frac{1}{p}+\frac{1}{q}=1$. Тогда верно неравенство:

$$\int\limits_T |x(t)y(t)|\,d\mu(t)\leqslant \left(\int\limits_T |x(t)|^p\,d\mu(t)\right)^{\frac{1}{p}} \bigg(\int\limits_T |y(t)|^q\,d\mu(t)\bigg)^{\frac{1}{q}}$$

Неравенство Минковского

Если (T, μ) — пространство с мерой, x, y — измеримые функции, $p \geqslant 1$, то верно неравенство:

$$\left(\int\limits_T |x(t)|^p \, d\mu(t)\right)^{\frac{1}{p}} + \left(\int\limits_T |y(t)|^q \, d\mu(t)\right)^{\frac{1}{q}} \geqslant \int\limits_T |x(t) + y(t)| d\mu(t)$$

Обозначение: $\|x\|_p = (\int\limits_T |x|^p)^{\frac{1}{p}}.$

Замечание 2.1. Частный случай — p=q=2. Тогда неравенство Гёльдера оказывается неравенством Коши-Буняковского-Шварца:

$$\int\limits_T |x(t)|\cdot |y(t)|\,d\mu(t)\leqslant \left(\int\limits_T |x(t)|^2\,d\mu(t)\right)^{\frac{1}{2}} \left(\int\limits_T |y(t)|^2\,d\mu(t)\right)^{\frac{1}{2}}$$

Замечание 2.2. Пусть $T=\mathbb{N}$, и если $M\subset\mathbb{N}$, то $\#M=\operatorname{card} M$ — количество элементов M — будет мерой. Рассмотрим функцию $x:\mathbb{N}\to k$, где k — некоторое поле скаляров. Мы помним, что функция из натуральных чисел называется последовательностью. Как можно

вычислять $\int\limits_{\mathbb{N}} x(n) \mathrm{d} \#(n)$? Ясно, что такой интеграл — это ряд $\sum\limits_{n \in \mathbb{N}} x(n)$, а суммируемые функции в этом случае будут абсолютно сходящимися рядами. Неравенство Гёльдера будет выглядеть так:

$$\sum_{n\in\mathbb{N}}|x_n||y_n|\leqslant \bigg(\sum_{n\in\mathbb{N}}|x_n|^p\bigg)^{\frac{1}{p}}\bigg(\sum_{n\in\mathbb{N}}|y_n|^p\bigg)^{\frac{1}{p}}$$

А неравенство Минковского — так:

$$\left(\sum_{n\in\mathbb{N}}|x_n|^p\right)^{\frac{1}{p}}+\left(\sum_{n\in\mathbb{N}}|y_n|^p\right)^{\frac{1}{p}}\geqslant \left(\sum_{n\in\mathbb{N}}|x_n+y_n|\right)^{\frac{1}{p}}$$

Определение 2.3. Пространство Лебега $\mathcal{L}^p(\mathsf{T},\mu)$ — это множество $\{x \mid \int\limits_\mathsf{T} |x|^p \, \mathrm{d}\mu < \infty\}$. Оно линейно: $x,y \in \mathcal{L}^p \implies x+y \in \mathcal{L}^p$ и $\lambda y \in \mathcal{L}^p$

Заметим, что $\|x\|_p = \left(\int\limits_T |x|^p d\mu\right)^{\frac{1}{p}} -$ полунорма на $\mathcal{L}^p(T,\mu)$. Если $\|x\|_p = 0$, то x=0 почти везде.

Чтобы получить норму, введём следующее отношение эквивалентности:

$$x_1 \sim x_2$$
 если $x_1 - x_2 = 0$ почти везде.

Тогда

$$\mathcal{L}^{p}(T, \mu) /_{\sim} = L^{p}(T, \mu)$$

— это настоящее пространство Лебега. В дальнейшем мы будем считать функции, отличающиеся на множестве меры нуль, одинаковыми.

Замечание 2.4. Пусть $T \subset \mathbb{R}^n$, $\mu = \lambda$ — мера Лебега. Тогда будем обозначать $L^p(T, \mu) = L^p(T)$.

Теорема 2.5. Пространство $L^p(T, \mu)$ полно при $p \geqslant 1$.

Пример 2.6. Рассмотрим $L^2(0,+\infty)$ и $L^1(0,+\infty)$. Какое из этих пространств является вложением в другое? Возьмём функцию $x(t)=\frac{1}{t+1}$.

$$\int_{0}^{\infty} \frac{1}{t+1} dt = \infty$$

$$\int\limits_{0}^{\infty}\frac{1}{(t+1)^{2}}dt<\infty$$

Отсюда видно, что $L^2(0,+\infty) \not\subset L^1(0,+\infty)$. Легко придумать и пример, доказывающий отсутствие включения в обратную сторону.

Теорема 2.7 (О вложенности пространств L^p). Пусть $1 \leqslant p_1 < p_2 \leqslant \infty$. Тогда:

- 1. $\ell^{p_1} \subset \ell^{p_2}$.
- 2. Если (T,μ) пространство с мерой, $\mu(T)<\infty$, то $L^{p_1}(T,\mu)\supset L^{p_2}(T,\mu)$

Доказательство.

1. Пусть ${\bf x}=({\bf x}_1,{\bf x}_2,{\bf x}_3,\ldots)$. Хотим проверить, что ${\bf x}\in \ell^{{\bf p}_1}\implies {\bf x}\in \ell^{{\bf p}_2}.$

$$\sum_{j=1}^{\infty} |x_j|^{p_1} < \infty \implies \exists N \quad \forall j > N \quad |x_j| < 1 \implies |x_j|^{p_1} > |x_j|^{p_2}$$

$$\sum_{j=N+1}^{\infty}|x_j|^{p_1}>\sum_{j=N+1}^{\infty}|x_j|^{p_2}\implies\sum_{j=1}^{\infty}|x_j|^{p_2}<\infty\implies x\in\ell^{p_2}$$

2. Для доказательства второго пункта достаточно применить неравенство Гёльдера.

3 Непрерывность. Сжимающее отображение

Определение 3.1. Возьмём отображение $F: X \to Y$, где X и Y — линейные нормированные пространства. F называется непрерывным в точке x_0 , если:

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x : \|x - x_0\| < \delta \quad \|F(x) - F(x_0)\| < \varepsilon$$

F называется непрерывным, если оно непрерывно во всех точках X.

Пример 3.2. $X=Y=C[0,1], \ \|x\|_{C[0,1]}=\max_{t\in[0,1]}|x(t)|.$ Рассмотрим отображение $(F(x))(t)=\int\limits_{0}^{t}x(s)\,\mathrm{d}s$ и докажем, что оно непрерывно.

$$\|F(x_1) - F(x_2)\| = \max_{t \in [0,1]} \left| \int_0^t x_1(s) ds - \int_0^t x_2(s) ds \right| \le$$

$$\leqslant \max_{\mathbf{t} \in [0,1]} \int_{0}^{\mathbf{t}} |x_{1}(s) - x_{2}(s)| \, ds \leqslant \max_{\mathbf{t} \in [0,1]} \mathbf{t} \cdot ||x_{1} - x_{2}|| = ||x_{1} - x_{2}||$$

Достаточно взять $\delta=\epsilon$ и всё доказано.

Определение 3.3. Отображение $F: X \to Y$ называется липшицевым, если существует такое C, что для всех $x_1, x_2 \in X$ выполнено $\|F(x_1) - F(X_2)\| \leqslant C \cdot \|x_1 - x_2\|$

Заметим, что из липшицевости отображения следует его непрерывность. Достаточно взять $\delta = \frac{\varepsilon}{C}$.

Определение 3.4. Отображение $F: X \to Y$ называется сжимающим, если существует такое $\gamma < 1$, что $\forall x_1, x_2 \in X$ выполнено $\|F(x_1) - F(x_2)\| \leqslant \gamma \|x_1 - x_2\|$.

Теорема 3.5 (Банаха о неподвижной точке). Если пространство X — полное, а отображение F — сжимающее, то существует единственный элемент $x_* \in X$ такой, что $F(x_*) = x_*$. Этот элемент называется неподвижной точкой.

Доказательство. Докажем существование. Возьмём траекторию точки х₁:

$$x_1,\underbrace{F(x_1)}_{x_2},\underbrace{F(F(x_1))}_{x_3},\ldots, \text{ t. e. } x_{n+1}=F(x_n)$$

$$\|x_{n+1} - x_n\| = \|F(x_n) - F(x_{n-1})\| \leqslant \gamma \|x_n - x_{n-1}\| \leqslant \gamma^2 \|x_{n-1} - x_{n-2}\| \leqslant \ldots \leqslant \gamma^{n-1} \underbrace{\|x_2 - x_1\|}_{\alpha}$$

Таким образом, при m > n:

$$\|x_m - x_n\| \leqslant \|x_m - x_{m-1}\| + \|x_{m-1} - x_{m-2}\| + \ldots + \|x_{n+1} - x_n\| \leqslant \alpha \gamma^{m-2} + \alpha \gamma^{m-3} + \ldots + \alpha \gamma^{m-1} + \alpha \gamma^{m-1$$

$$+\alpha\gamma^{n-1} \leqslant \sum_{j=n-1}^{\infty} \alpha\gamma^{j} = \alpha\gamma^{n-1} \frac{1}{1-\gamma} \xrightarrow[n \to \infty]{} 0$$

Отсюда получаем, что $\{x_n\}$ фундаментальна, а значит существует $\lim_{n\to\infty} x_n$. Обозначим его за x_* . Ясно, что это и будет неподвижная точка.

Докажем единственность. Пусть x_* и x^* — две неподвижные точки. Тогда:

$$\underbrace{\|F(x_*) - F(x^*)\|}_{\leq \gamma \|x_* - x^*\|} = \|x_* - x^*\|$$

Отсюда $\|x_* - x^*\| = 0$, что и требовалось.

Теорема 3.6. Пусть пространство X — полное, $F: X \to X$ и существует n такое, что F^n — сжимающее. Тогда существует единственная точка x_* такая, что $F(x_*) = x_*$.

Доказательство. Если F^n сжимающее, то существует (и единственна) неподвижная точка: $F^n(x_*)=x_*$. Условие теоремы подразумевает, что если F переводит точку x_* в некоторую точку x_1 , которую, в свою очередь, переводит в x_2 , то через n итераций точка x_{n-1} снова переходит в x_* . Отсюда следует, что точки x_1,\ldots,x_{n-1} — тоже неподвижные точки F^n . Но по теореме Ванаха такая точка у F^n только одна, следовательно, $x_*=x_1=x_2=\ldots=x_{n-1}$. \square

Пример 3.7 (Интегральное уравнение Фредгольма I рода). Пусть нам даны функции K(s,t) и a(t). Мы хотим найти функцию x(t), удовлетворяющую уравнению:

$$x(t) = a(t) + \int_{s_1}^{s_2} K(s, t)x(s) ds$$

Будем рассматривать частный случай, в котором $K \in C([0,1] \times [0,1]), \ a \in C[0,1]$. Задача — найти $x \in C[0,1]$ такое, что

$$x(t) = a(t) + \int_{0}^{t} K(s, t)x(s) ds$$

Предложение 3.8. Это уравнение имеет единственное решение.

Доказательство. Рассмотрим отображение $F: C[0,1] \to C[0,1]$.

$$(F(x))(t) = a(t) + \int_0^t K(s,t)x(s) ds$$

Заметим, что оно, вообще говоря, не является сжимающим. Рассмотрим также $(F_0(x))(t) = \int\limits_0^t K(s,t)x(s)\,ds.$

Обратим внимание на несколько важных свойств:

• $F_0(x) - F_0(y) = F_0(x - y)$

•
$$F(x) - F(y) = F_0(x) - F_0(y)$$

•
$$F^n(x) - F^n(y) = F(F^{n-1}(x) - F^{n-1}(y)) = F_0(F^{n-1}(x)) - F_0(F^{n-1}(y)) = F_0(F^{n-1}(x) - F^{n-1}(y)) = F_0^n(x - y)$$

$$(F_0(x-y))(t) = \int_0^t K(s_1,t)(x(s_1)-y(s_1)) ds_1$$

$$(F_0^2(x-y))(t) = \int_0^t K(s_2,t) \int_0^{s_2} K(s_1,s_2)(x(s_1)-y(s_1)) ds_1 ds_2$$

$$\dots$$

$$(F_0^n(x-y))(t) = \int_0^t K(s_n,t) \int_0^{s_n} K(s_{n-1},s_n) \int_0^{s_{n-1}} \dots \int_0^{s_2} K(s_1,s_2)(x(s_1)-y(s_1)) ds_1 ds_2 \dots ds_n$$

Получаем:

$$\|F_0^n(x-y)\| = \max_{t \in [0,1]} |(F_0^n(x-y))(t)| \leqslant M^n \|x-y\| \max_{t \in [0,1]} \int_0^t \int_0^{s_n} \int_0^{s_{n-1}} \dots \int_0^{s_3} \int_0^{s_2} ds_1 ds_2 \dots ds_n \leqslant \frac{M^n}{n!} \|x-y\|$$

Здесь $M=\max |\mathsf{K}|$. Коэффициент $\frac{M^n}{n!}$ стремится к нулю, а это значит, что F^n_0 — сжимающее, следовательно, существует неподвижная точка.

Пример 3.9. Допустим, что мы хотим решить дифференциальное уравнение y'(t) = a(t)y(t) + b(t), $y(0) = y_0$, $a, b \in C[0, 1]$ на промежутке [0, 1]. Это уравнение имеет единственное решение $y \in C^1[0, 1]$. Как это доказать? Рассмотрим интегральное уравнение:

$$x(t) = \int_{0}^{t} a(s)x(s) ds + B(t)$$

По предыдущей теореме существует $x \in C[0,1]$, решающее это уравнение. Для этого уравнения также верны утверждения:

- x'(t) = a(t)x(t) + b(t), где b(t) = B'(t);
- $\chi(0) = B(0)$.

Для решения исходной задачи достаточно выбрать B такое, что B'=b и $B(0)=y_0$. Откуда взять непрерывную дифференцируемость y?

$$b\in C[0,1] \implies B\in C^1[0,1],$$

$$x\in C[0,1], \ \alpha\in C[0,1] \implies \int\limits_0^t x(s)\alpha(s)\,ds\in C^1[0,1]$$

Таким образом всё доказано.

4 Линейные операторы

Определение 4.1. Пусть X, Y — линейные нормированные пространства над одним полем скаляров. Отображение $U: X \to Y$ называется линейным, если:

1.
$$U(x_1 + x_2) = U(x_1) + U(x_2) \ \forall x_1, x_2 \in X$$

2.
$$U(\lambda x) = \lambda U(x)$$
, где λ — скаляр, $x \in X$

Замечание 4.2. Ясно, что выполнение обоих этих свойств равносильно $U(\lambda_1x_1+\lambda_2x_2)=\lambda_1U(x_1)+\lambda_2U(x_2).$

Замечание 4.3. В дальнейшем будем обозначать U(x) как Ux.

Предложение 4.4 (Свойства линейных отображений).

1.
$$U(0) = 0$$
:

2.
$$U\left(\sum_{j=1}^{n} \lambda_j x_j\right) = \sum_{j=1}^{n} \lambda_j Ux_j;$$

- 3. Если $M\subset X$ линейное множество, то множество U(M) линейно в Y. Если $M\subset X$ выпуклое множество, то множество U(M) выпукло в Y;
- 4. Если $N \in Y$ линейное (выпуклое), то $U^{-1}(N)$ линейное (выпуклое). Частный случай: если $N = \{0\}$, то множество $U^{-1}(N) = U^{-1}(\{0\}) = \text{Ker } U$ линейное в X;
- 5. Ker $U = \{0\} \iff U$ инъективно;
- 6. Если U -линейная биекция, то U^{-1} линейное;
- 7. Пусть $U_1, U_2: X \to Y$ линейные. Тогда $U_1 + U_2$, λU_1 тоже линейны;
- 8. Если $X \xrightarrow{U} Y \xrightarrow{V} Z$, то композиция $V \circ U$ линейна.

Определение 4.5. Множество M называется выпуклым, если для любых $x_1, x_2 \in M$ отрезок $[x_1, x_2]$ лежит в M.

Доказательство предложения. Докажем выпуклость в свойстве 3.

$$y_1, y_2 \in U(M) \implies \exists x_1, x_2 \in M : Ux_1 = y_1, Ux_2 = y_2$$

$$\lambda y_1 + (1 - \lambda)y_2 = \lambda Ux_1 + (1 - \lambda)Ux_2 = U(\underbrace{\lambda x_1 + (1 - \lambda)x_2}_{\in M}) \in U(M)$$

В свойстве 4:

$$\begin{split} x_1, x_2 \in U^{-1}(N) &\implies Ux_1, Ux_2 \in N \implies \forall \lambda_1, \lambda_2 \quad \lambda_1 Ux_1 + \lambda_2 Ux_2 \in N \implies \\ &\implies U(\lambda_1 x_1 + \lambda_2 x_2) \in N \implies \lambda_1 x_1 + \lambda_2 x_2 \in U^{-1}(N) \end{split}$$

В свойстве 6 биективность U означает, что $\forall y_1,y_2 \; \exists x_1,x_2$ такие, что $Ux_1=y_1,\; Ux_2=y_2.$ Отсюда $U^{-1}(y_1+y_2)=U^{-1}(Ux_1+Ux_2)=U^{-1}(U(x_1+x_2))=x_1+x_2=U^{-1}(x_1)+U^{-1}(x_2).$ Доказательства остальных свойств тривиальны.

Теорема 4.6 (Эквивалентные условия непрерывности линейного отображения). Пусть $U: X \to Y$ — линейный оператор. Тогда следующие утверждения эквивалентны:

- 1. U непрерывен;
- 2. Ц непрерывен в нуле;
- 3. Образ любого ограниченного множества ограничен;
- 4. Существует С такое, что $\forall x \in X$ выполняется $\|Ux\|_Y = C\|x\|_X$.

Доказательство.

- $1 \Rightarrow 2$. Тривиально.
- $4 \Rightarrow 1$. $\|Ux_1 Ux_2\| \leqslant C\|x_1 x_2\|$. Это влечёт липшицевость и, как следствие, непрерывность.
- $2\Rightarrow 3$. Непрерывность в нуле означает, что $\forall \epsilon>0$ $\exists \delta>0$ такое, что $\|x\|<\delta\Longrightarrow \|Ux\|<\epsilon$. Ограниченность множества M в X означает, что $\exists R:M\subset B_R(0)=\{\|x\|\leqslant R\}$. Таким образом, $x\in M\implies \|x\|\leqslant R$. $\|\frac{\delta}{2R}x\|\leqslant \frac{\delta}{2}<\delta\implies \|U(\frac{\delta}{2R}x)\|<\epsilon$. Отсюда $\|Ux|\leqslant \frac{\epsilon\cdot 2R}{\delta}\implies Ux\in B_{\frac{\epsilon\cdot 2R}{\delta}}(0)$. То есть, U(M) ограничено.
- 3 \Rightarrow 4. $B_1(0)$ ограниченное множество. Тогда $U(B_1(0))$ ограничено, т. е. существует такое C, что $U(B_1(0)) \subset B_C(0)$. Если $\|x\| \leqslant 1$, то $\|Ux\| \leqslant C$. Теперь возьмём произвольное x. $x' = \frac{x}{\|x\|} \in B_1(0) \implies \|Ux'\| \leqslant C$. Но $\|Ux'\| = \|U\left(\frac{x}{\|x\|}\right)\| = \frac{1}{\|x\|} \cdot \|Ux\|$. Отсюда $\|Ux\| \leqslant C\|x\|$.

Определение 4.7. Пусть $U:X\to Y$ — линейный непрерывный оператор. Тогда нормой оператора U называется величина $\|U\|=\inf\{C\,\big|\,\|Ux\|\leqslant C\|x\|\}$.

Замечание 4.8. В формулировке определения инфимум и минимум совпадают (это можно доказать, перейдя к пределу в неравенстве $\|Ux\| \leqslant C\|x\|$).

Замечание 4.9. Выполнено неравенство $\|Ux\|_Y \leqslant \|U\| \cdot \|x\|_X$. В частности, $\frac{\|Ux\|_Y}{\|x\|_X} \leqslant \|U\|$ $\forall x \in X$, т. е. можно записать $\|U\| = \sup_{x \neq 0} \frac{\|Ux\|}{\|x\|}$.

Теорема 4.10 (Об эквивалентных способах определения нормы оператора). $\Pi y cm b \ U : X \to Y -$ линейный непрерывный оператор. Тогда:

$$\|U\| = \sup_{x \neq 0} \frac{\|Ux\|}{\|x\|} = \sup_{\|x\| \leqslant 1} \|Ux\| = \sup_{\|x\| < 1} \|Ux\| = \sup_{\|x\| = 1} \|Ux\|$$

Замечание 4.11. Так как замкнутость и ограниченность, вообще говоря, неравносильна компактности (за исключением конечномерных пространств), в $\sup_{\|x\| \leqslant 1} \| \mathbf{U} \mathbf{x} \|$ максимум может и не достигаться.

Доказательство теоремы. Очевидно, что $B\geqslant C$ и $B\geqslant D$.

$$B=\sup_{\|x\|\leqslant 1,\, x\neq 0}\|Ux\|\leqslant \sup_{\|x\|\leqslant 1,\, x\neq 0}\frac{\|Ux\|}{\|x\|}\leqslant \sup_{x\neq 0}\frac{\|Ux\|}{\|x\|}=A$$

Докажем, что $D\geqslant A$. Возьмём $x'=\frac{x}{\|x\|}$, тогда $\|x'\|=1$ и $\|Ux'\|\leqslant D$. $\|U(\frac{x}{\|x\|})\|=\frac{\|ux\|}{\|x\|}$. Итак, $\frac{\|Ux\|}{\|x\|}\leqslant D$, тогда и $\sup_{x\neq 0}\frac{\|Ux\|}{\|x\|}$. Осталось проверить, что $C\geqslant A$. Возьмём $x\neq 0$, $\varepsilon>0$.

Рассмотрим
$$x' = \frac{x}{\|x\|(1+\epsilon)}$$
. Тогда $\|x\| < 1$. Отсюда следует, что $\|Ux'\| \leqslant C \implies \frac{\|Ux\|}{\|x\|} \leqslant C \implies \frac{\|Ux\|}{\|x\|} \leqslant C$. \square

5 Пространства линейных непрерывных операторов

Определение 5.1. Пусть X, Y — линейные нормированные пространства над одним полем скаляров. Возьмём $B(X,Y)=\{U:X\to Y,\ U$ — линейно, непрерывно $\}$. Это линейное пространство.

Теорема 5.2 (О свойствах операторной нормы). $U, V \in B(X, Y)$.

- 1. $\|U\| \ge 0$, $\|U\| = 0 \iff U = 0$;
- 2. $\|\lambda \mathbf{U}\| = |\lambda| \|\mathbf{U}\| (\lambda c \kappa a s p);$
- 3. $\|U + V\| \le \|U\| + \|V\|;$
- 4. $W \in B(Y, Z)$. $WU \in B(X, Z)$, $||WU|| \le ||W|| ||U||$.

Доказательство.

- 1. Неотрицательность очевидна. Если $\|\mathbf{U}\|=0$, то $\|\mathbf{U}\mathbf{x}\|\leqslant 0\cdot \|\mathbf{x}\|\implies \|\mathbf{U}\mathbf{x}\|=0\ \forall \mathbf{x};$
- $2. \ \|\lambda U\| = \sup_{\|x\|=1} \|(\lambda U)(x)\| = \sup_{\|x\|=1} |\lambda| \|Ux\| = |\lambda| \sup_{\|x\|=1} \|U_x\| = |\lambda| \|U\|;$
- $3. \ x \in X. \ \|(U+V)(x)\| = \|Ux+Vx\| \leqslant \|Ux\| + \|Vx\| \leqslant \|U\|\|x\| + \|V\|\|x\| = (\|U\| + \|V\|)\|x\|$
- 4. $x \in X$. $\|(WU)(x)\| = \|W(U(x))\| \le \|W\| \cdot \|Ux\| \le \|W\| \|U\| \|x\|$.

Теорема 5.3 (О полноте пространства операторов). Если Y полно, то B(X,Y) полно.

Доказательство. Возьмём фундаментальную последовательность линейных непрерывных отображений $U_n \in B(X,Y)$, то есть $\|U_n - U_m\| \xrightarrow[m,n \to \infty]{} 0$: $\forall \epsilon > 0 \ \exists N : \forall m,n > N$ $\|U_n - U_m\| < \epsilon$. Это означает, что $\|(U_n - U_m)(x)\| \leqslant \epsilon \|x\|$. Следовательно, $\{U_n x\}$ фундаментальна в Y. Обозначим $Ux = \lim_{n \to \infty} U_n x$. Мы хотим проверить, что U непрерывно, линейно и что есть сходимость по норме.

- 1. (Линейность U). $U(\alpha_1x_1+\alpha_2x_2)=\lim_{n\to\infty}U_n(\alpha_1x_1+\alpha_2x_2)=\alpha_1\lim U_nx_1+\alpha_2\lim U_nx_2=\alpha_1Ux_1+\alpha_2Ux_2$
- 2. (Нерерывность U). Возьмём любое $\varepsilon > 0$, N, $\forall m, n > N$, $\forall x \in X$. $\|U_n x U_m x\| \leqslant \varepsilon \|x\| \implies \|Ux U_m x\| \leqslant \varepsilon \|x\|$. $\|Ux\| = \|(Ux U_m x) + U_m x\| \leqslant \|(Ux U_m x)\| + \|U_m x\| \leqslant \varepsilon \|x\| + \|U_m\|\|x\|$. Отсюда $\|U\| \leqslant \varepsilon + \|U_m\|$.
- 3. (Сходимость U_n к U). $\forall \epsilon > 0$ $\exists N$: $\forall m, n > N$ $\forall x \in X \ \|U_n x U_m x\| \leqslant \epsilon \|x\|$. Устремив n к бесконечности, получим: $\forall \epsilon > 0$ $\exists N$: $\forall m > N$ $\forall x \in X \ \|Ux U_m x\| = \|(U U_m)(x)\| \leqslant \epsilon \|x\| \implies \|U U_m\| \leqslant \epsilon$. Итак, $\forall \epsilon > 0$ $\exists N$: $\forall m > N$ $\|U U_m\| \leqslant \epsilon$, π . e. $U_n \to U$ в B(X,Y).

Следует отметить важный частный случай.

Определение 5.4. $B(X, \text{поле скаляров}) = X^*$ называется сопряжённым пространством κ X. $f \in X^*$ называется линейным непрерывным функционалом.

Норма функционала определяется как $\|f\|=\inf\{C\ \big|\ |f(x)|\leqslant C\|x\|\}=\sup_{x\neq 0}\frac{|f(x)|}{\|x\|}=\sup_{\|x\|=1}|f(x)|.$

6 Корректно разрешимые задачи

Рассмотрим отображение $A: X \to Y$. Мы хотим решить уравнение Ax = f. f — какие-то известные данные.

В общей постановке вопроса корректная разрешимость означает три вещи:

- Решение существует для любого f.
- Решение единственно.
- Устойчивость: если $f_n \to f$, то для решений верно, что $x_n \to x$. (Здесь $Ax_n = f_n$, Ax = f.)

В частном случае, когда X и Y — линейные нормированные пространства и A — линейное отображение, вышеописанные условия равносильны тому, что $A^{-1} \in B(Y,X)$.

Замечание 6.1. Самый простой пример корректно разрешимой задачи — случай, когда оператор A тождественен.

Теорема 6.2 (Об обратимости оператора, близкого к тождественному). *Если* $B \in B(X,X)$, X - nолное $u \|B\| < 1$, то существует оператор $(I \pm B)^{-1} \in B(X,X)$. (I - mождественный оператор.)

Доказательство. Приведём два способа доказать эту теорему.

1. Возьмём уравнение (I-B)x=f. Надо доказать, что для любого $f\in X$ существует единственный $x\in X$, решающий это уравнение. Это равносильно x=f+Bx=g(x). Заметим, что x удовлетворяет уравнению тогда и только тогда, когда x — неподвижная точка отображения g. Проверим, что g — сжимающее. $\|g(x_1)-g(x_2)\|=\|(f+Bx_1)-(f+Bx_2)\|=\|Bx_1-Bx_2\|\leqslant \|B\|\cdot\|x_1-x_2\|$.

Теперь проверим устойчивость. Пусть $f_n \to f$, $(I-B)x_n = f_n$, (I-B)x = f. Нужно проверить, что $x_n \to x$. $x_n = f_n + Bx_n$, x = f + Bx.

$$\|x_n - x\| = \|f_n + Bx_n - f - Bx\| \le \|f_n - f\| + \|Bx_n - Bx\| \le \|f_n - f\| + \|B\| \cdot \|x_n - x\|$$

Отсюда

$$0 \leqslant \underbrace{(1 - \|B\|)}_{>0} \|x_n - x\| \leqslant \underbrace{\|f_n - f\|}_{\to 0} \implies \|x_n - x\| \to 0$$

2. Докажем формулу $(I-B)^{-1}=I+B+B^2+B^2+\dots$ Необходимо проверить, что этот ряд сходится. Докажем, что он сходится абсолютно, то есть $\|I\|+\|B\|+\|B^2\|+\dots<\infty$. Заметим, что $\|B^k\|\leqslant \|B\|^k$. Отсюда $\|I\|+\|B\|+\|B^2\|+\dots\leqslant \|I\|+\|B\|+\|B\|^2+\dots$ Но это — геометрическая прогрессия, она сходится. Частичные суммы: $S_n=I+B+\dots B^{n-1}$, $(I-B)S_n=S_n(I-B)=I-B^n\xrightarrow[n\to\infty]{}I$. Мы воспользовались полнотой пространства, утверждая, что абсолютная сходимость влечёт сходимость ряда.

Теорема 6.3 (Об обратимости оператора, близкого к обратимому). Пусть $U \in B(X,Y)$ — линейное отображение и существует $U^{-1} \in B(Y,X)$. Кроме того, X или Y — полное пространство. Рассмотрим $V \in B(X,Y)$ такой, что $\|V\| < \|U^{-1}\|^{-1}$. Тогда существует $(U+V)^{-1} \in B(Y,X)$.

Доказательство. $U+V=U(I_X+U^{-1}V)$ (или $(I_Y+VU^{-1})U$). Оператор U обратим, обратный к нему оператор непрерывен. Получаем $\|U^{-1}V\| \leqslant \|U^{-1}\| \cdot \|V\| < 1$.

7 Линейные непрерывные функционалы

Вспомним, что если X — нормированное пространство, то $X^* = B(X,$ поле скаляров) называется сопряжённым к X пространством. Норма функционала определяется как $\|f\| = \inf\{C \, \big| \, |f(x)| \leqslant C \|x\|\} = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|} = \sup_{\|x\| = 1} |f(x)|.$

Пример 7.1 (Функционалы в пространстве Лебега). Рассмотрим $L^p(T,\mu)$, причём 1 . Возьмём <math>q — сопряжённый показатель такой, что $\frac{1}{q} + \frac{1}{p} = 1$. Возьмём также $y_0 = L^q(T,\mu)$. Определим функционал f формулой $f(x) = \int\limits_T x(t)y_0(t)\,d\mu(t)$. Нам нужно проверить, что это действительно функционал, что он непрерывен (линейность очевидна). Чтобы этот функционал был функционалом, необходимо, чтобы подынтегральная функция была суммируемой. Для этого воспользуемся неравенством Гёльдера:

$$\begin{split} \int\limits_T |x(t)y_0(t)|\,d\mu(t) &\leqslant \left(\int\limits_T |x|^p\right)^{\frac{1}{p}} \bigg(\int\limits_T |y_0|^q\bigg)^{\frac{1}{q}} = \|y_0\|_q \cdot \|x\|_p < \infty \\ |f(x)| &\leqslant \underbrace{\|y_0\|_q}_{=C} \cdot \|x\| \implies \|f\| \leqslant \|y_0\|_q \end{split}$$

Проверим, что $||f|| \ge ||y_0||_q$.

$$\begin{split} x_0(t) &= \frac{|y_0|^q}{y_0} = |y_0|^{q-1} \frac{|y_0|}{y_0} = |y_0|^{q-1} \operatorname{sign} y_0 \implies x_0 y_0 = |y_0|^q \\ &|f(x_0)| = \left| \int\limits_T x_0 y_0 \right| = \int\limits_T |y_0|^q \end{split}$$

Но так как $\frac{1}{p} + \frac{1}{q} = 1$, то (q-1)p = q.

$$\begin{aligned} \|x_0\|_p &= \left(\int_T |x_0|^p\right)^{\frac{1}{p}} = \left(\int_T |y_0|^{(q-1)p}\right)^{\frac{1}{p}} = \left(\int_T |y_0|^q\right)^{\frac{1}{p}} \\ \|f\| &\geqslant \frac{|f(x_0)|}{\|x_0\|_p} = \frac{\int_T |y_0|^q}{\left(\int |y_0|^q\right)^{\frac{1}{p}}} = \left(\int_T |y_0|^q\right)^{\frac{1}{q}} = \|y_0\|_q \end{aligned}$$

Таким образом, $L^q(T,\mu) \hookrightarrow L^p(T,\mu)^*$, $y_0 \mapsto f$ и $\|y_0\|_q = \|f\|$. Имеет место изометрическое вложение, и даже более того, биекция.

Пример 7.2. Рассмотрим пространство C[-1,1]. Пусть $f(x)=\int\limits_{-1}^1 tx(t)\,dt$. Снова хотим доказать, что это функционал, что он непрерывен и линеен. Для непрерывности достаточно установить, что $|f(x)|\equiv C\|x\|$.

$$|f(x)| \leqslant \int_{-1}^{1} |t||x(t)| dt \leqslant \max |x| \int_{-1}^{1} |t| dt = ||x|| \implies ||f|| \leqslant 1$$

Непрерывность доказана. Теперь возьмём функцию $x_\epsilon(t)=egin{cases} 1, & t\geqslant\epsilon\\ \frac{t}{\epsilon}, & |t|\leqslant\epsilon\\ -1, & t\leqslant-\epsilon \end{cases}$

$$f(x_{\epsilon}) = \int\limits_{-1}^{1} t x_{\epsilon}(t) \, dt = \bigg(\int\limits_{-1}^{-\epsilon} + \int\limits_{\epsilon}^{1} \bigg) |t| \, dt + \int\limits_{-\epsilon}^{\epsilon} \frac{t^2}{\epsilon} \, dt = 1 + O(\epsilon)$$

Получаем, что $\|f\|\geqslant \frac{f(x_{\varepsilon})}{\|x_{\varepsilon}\|}\xrightarrow[\varepsilon\to 0]{}1.$ Теперь возьмём $y_0\in L^1(-1,1),\ f(x)=\int\limits_{-1}^1y_0(t)x(t)\,dt.$

$$|f(x)| \leqslant \int_{-1}^{1} |y_0||x| \leqslant ||x|| \int_{-1}^{1} |y_0| \leqslant ||y_0||_1 \cdot ||x||_C$$

Значит, f — линейный непрерывный функционал. $\|f\| = \|y_0\|_1$, $x_0(t) = \operatorname{sign} y_0 \notin C$.

Упражнение 7.3. Пусть $\delta(x)=x(0)$. Доказать, что $\delta\notin L^1(-1,1)$, то есть не существует $y_0\in L^1(-1,1)$ такого, что $\forall x\in C[-1,1]$ $\int\limits_{-1}^1 y_0(t)x(t)\,dt=x(0)$

Напомним, что $\ell^\infty=\{x=(x_1,x_2,\ldots),\ \|x\|_\infty=\sup_{j\geqslant 1}|x_j|<\infty\}$ и $c_0=\{x=(x_1,x_2,\ldots),\ \lim_{j\to\infty}x_j=0\},$ $c_0\subset\ell^\infty.$ При этом $\|x\|_{c_0}=\|x\|_\infty.$ c_0 — полное нормированное пространство.

Теорема 7.4. $(c_0)^* = \ell^1$

Рассмотрим $L_{\rm fin}\subset\ell^\infty$ такое, что $x\in L_{\rm fin}$, если у x лишь конечное число ненулевых координат. Отметим, что $L_{\rm fin}$ является линейной оболочкой векторов e_1,e_2,\ldots , где $e_k=(0,0,\ldots,0,\underbrace{1}_{L_i},0,\ldots)$. Также $\overline{L_{\rm fin}}=c_0$

- $x \in c_0 \implies \exists x^{(n)} \in L_{\text{fin}}: x^{(n)} \to \infty$, где $x^{(n)} = (x_1, x_2, \ldots, x_n, 0, 0, \ldots)$. $\|x x^{(n)}\| = \|(0, 0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots)\|_{\infty} = \sup_{j \geqslant n+1} |x_j|$.
- с₀ замкнуто.

Доказательство.

1. Возьмём $y^{(0)} \in \ell^1$, где $y^{(0)} = (y_1^{(0)}, y_2^{(0)}, \ldots)$ и $\|y^{(0)}\|_1 = \sum\limits_{j=1}^\infty |y_j^{(0)}| < \infty$. Построим по нему функционал на c_0 . Пусть $x \in c_0$. Рассмотрим $f(x) = \sum\limits_{j=1}^\infty x_j y_j^{(0)}$.

$$|f(x)|\leqslant \sum_{j=1}^{\infty}\underbrace{|x_{j}|}_{\leqslant \|x\|_{\infty}}|y_{j}^{(0)}|\leqslant \|x\|_{\infty}\sum_{j=1}^{\infty}|y_{j}^{(0)}|=\|y^{(0)}\|_{1}\|x\|_{\infty}\implies \|f\|\leqslant \|y^{(0)}\|_{1}$$

Мы построили вложение $\ell^1 \hookrightarrow (c_0)^*$, $y^{(0)} \mapsto f$.

2. Пусть нам дан функционал $f \in (c_0)^*$. Мы хотим построить по нему $y \in \ell^1$. Положим $f(e_j) = y_j$ ($y = (y_1, y_2, \ldots)$). Нам нужно проверить, что $y \in \ell^1$ и что $\forall x \ f(x) = \sum x_j y_j$. Возьмём $z^{(n)} = (\text{sign} \, y_1, \text{sign} \, y_2, \ldots, \text{sign} \, y_n, 0, 0, \ldots)$. $|f(z^{(n)}| \leqslant \|f\| \cdot \|z^{(n)}\|_{\infty} \leqslant \|f\|$. Но левая часть неравенства равна $\sum_{j=1}^{\infty} |y_j|$. Из неравенства следует, что ряд сходится, отсюда $y \in \ell^1$.

Покажем теперь, что $\forall x \ f(x) = \sum x_j y_j$. пусть $x = (x_1, x_2, \ldots) = \sum_{j=1}^{\infty} x_j e_j$.

$$f\left(\sum_{j=1}^{n} x_j e_j\right) = \sum_{j=1}^{n} x_j f(e_j) = \sum_{j=1}^{n} x_j y_j \xrightarrow[n \to \infty]{} \sum_{j=1}^{\infty} x_j y_j$$

Левая часть стремится к f(x), так как $\sum_{j=1}^n = x_j e_j \xrightarrow[n \to \infty]{} x$.

8 Интегральные операторы

Что такое интегральный оператор? Допустим, у нас есть функция двух переменных K(s,t), называемая ядром интегрального оператора (не путать с ядром оператора). Оператор действует следующим образом: он берёт функцию x(s) и преобразует её в функцию (Ux)(t) по формуле $(Ux)(t) = \int K(s,t)x(s)$ (множество интегрирования и мера определяются отдельно). Какими свойствами должна обладать функция K, чтобы этот оператор был «хорошим»?

Интегральные операторы в пространствах Лебега

Будем рассматривать переменные s на множестве S с мерой ν и t на множестве T с мерой μ , а также функцию $K:S\times T\to$ поле скаляров, притом измеримую. Пусть x — также измеримая функция на S, $(Ux)(t)=\int\limits_S K(s,t)x(s)\,d\nu(s)$. Какие условия нужно наложить на функцию K, чтобы оператор U действовал из $L^p(s,\nu)$ в $L^r(T,\mu)$ и был непрерывен?

$$\begin{split} \int_{T} |(Ux)(t)|^r &\leqslant \int_{T} \left(\int_{S} |K(s,t)| |x(s)| \, ds \right)^r dt \leqslant \int_{T} \left(\left(\int_{S} |K(s,t)|^q \, ds \right)^{\frac{1}{q}} \|x\|_p \right)^r dt = \\ &= \int_{T} \left(\int_{S} |K(s,t)|^q \, ds \right)^{\frac{r}{q}} dt \cdot \|x\|_p^r \\ &\|Ux\|_r \leqslant \left(\int_{T} \left(\int_{S} |K(s,t)|^q \, ds \right)^{\frac{r}{q}} dt \right)^{\frac{1}{r}} \cdot \|x\|_p \end{split}$$

Здесь мы воспользовались неравенством Гёльдера и $\frac{1}{q}+\frac{1}{p}=1.$ Таким образом, мы доказали следующую теорему.

Теорема 8.1 (О гёльдеровских условиях непрерывности). Если $\int\limits_T \left(\int\limits_S |\mathsf{K}(s,t)|^q \, ds\right)^{\frac{1}{q}} dt < \infty$, то U действует непрерывно из $\mathsf{L}^p(s,\nu)$ в $\mathsf{L}^r(\mathsf{T},\mu)$.

Пусть p = 2, r = 2, то есть q = 2. Тогда:

$$\iint\limits_{T,S} |K(s,t)|^2 \, ds \, dt < \infty \iff K \in L^2(S \times T, \nu \times \mu)$$

и $\|U\| \leqslant \|K\|_{L^2(S \times T, \nu \times \mu)}$. Операторы, удовлетворяющие таким условиям, называются операторами Гильберта-Шмидта, а K- ядром Гильберта-Шмидта.

Замечание 8.2. Существуют линейные непрерывные интегральные операторы, не являющиеся операторами Гильберта-Шмидта.

Тест Шура

Теорема 8.3 (Тест Шура). Пусть $(Ux)(t)=\int\limits_S K(s,t)x(s)\,d\nu(s)$. Предположим, что существуют строго положительные функции $\phi:S\to\mathbb{R},\ \psi:T\to\mathbb{R}$ и числа $A,B\in\mathbb{R}$ такие, что:

- 1. $\int\limits_{S} |K(s,t)| \phi(s) \, d\nu(s) \leqslant A \psi(t)$ для почти всех $t \in T.$
- 2. $\int\limits_T |K(s,t)| \psi(t) \, d\mu(t) \leqslant B \phi(s)$ для почти всех $s \in S.$

Tогда U — линейный непрерывный оператор из $L^2(S,\nu)$ в $L^2(T,\mu)$.

Доказательство.

$$|(Ux)(t)|\leqslant \int\limits_{S}\sqrt{|K(s,t)|\phi(s)}\sqrt{\frac{|K(s,t)||x(s)|^2}{\phi(s)}}\,d\nu(s)\leqslant \underbrace{\left(\int\limits_{S}|K(s,t)|\phi(s)\,ds\right)^{\frac{1}{2}}}_{\leqslant A\psi(t)}\left(\int\limits_{S}\frac{|K(s,t)||x(s)|^2}{\phi(s)}\,ds\right)^{\frac{1}{2}}$$

$$\int\limits_T |(Ux)(t)|^2\,dt \leqslant \int\limits_T A\psi(t)\int\limits_S \frac{|K(s,t)||x(s)|^2}{\phi(s)}\,ds\,dt = \int\limits_S A\frac{|x(s)|^2}{\phi(s)}\underbrace{\int\limits_{K(s,t)|\psi(t)}^2 dt}_{\text{op}(s)}\,ds < AB\int\limits_S |x(s)|^2\,ds$$

То есть,
$$\|Ux\|_2 \leqslant \sqrt{AB}\|x\|_2$$
.

Следствие 8.4. $\|U\| \leqslant \sqrt{AB}$

Упражнение 8.5.

- 1. S=T=(0,1) с мерой Лебега, $K(s,t)=\frac{1}{\sqrt{|s-t|}}$. Заметим, что получается оператор, не являющийся оператором Гильберта-Шмидта, так $\inf_{0}^{1}\int_{0}^{1}\frac{ds\,dt}{|s-t|}=+\infty$. Придумать тест Шура для этого случая.
- 2. $S=T=\mathbb{R},\ K(s,t)=e^{-(s+t)^2}.$ Является U оператором Гильберта-Шмидта, и, если нет, является ли он непрерывным?
- 3. $S=T=(0,+\infty)$, $K(s,t)=e^{-s\,t}$. Установить непрерывность U с помощью теста Шура.
- 4. $S=T=\mathbb{N},\ \nu=\mu=\#,\ K:\mathbb{N}\times\mathbb{N}\to\mathbb{R}.$ Torda onepamop U pasem $\sum\limits_{j=1}^{\infty}K_{ij}x_{j}.$

Теорема 8.6 (Тест Шура в дискретном случае). Пусть существуют $\phi_j > 0$, $\psi_i > 0$, A, В такие, что

- 1. $\sum |K_{ii}|\phi_i \leqslant A\psi_i \ \forall i \in \mathbb{N}$
- 2. $\sum |K_{ij}|\psi_j \leqslant B\phi_j \ \forall j \in \mathbb{N}$

Тогда $U:\ell^2 o \ell^2$ непрерывен $u \; \|U\| \leqslant \sqrt{AB}.$

Пример 8.7 (Оператор Харди). Оператор Харди H действует в пространстве $L^2(0, +\infty)$:

$$(Hx)(t) = \frac{1}{t} \int_{0}^{t} x(s) \, ds$$

Частный случай: $H:\ell^2 \to \ell^2$ и $(Hx)_k = \frac{1}{k}(x_1+\ldots+x_k)$ (среднее арифметическое).

Применим тест Шура.

$$\frac{1}{t} \int_{0}^{t} x(s) ds = \int_{0}^{\infty} K(s,t)x(s) ds$$

где $K(s,t)=rac{1}{t}\chi_{[0,t]}(s)=rac{1}{t}\chi_{[s,+\infty)}(t)$. Возьмём $\phi(s)\equiv 1$. Тогда

$$\int_{0}^{\infty} |K(s,t)| \varphi(s) \, \mathrm{d}s = \frac{1}{t} \int_{0}^{t} \, \mathrm{d}s = 1$$

Взяв $\psi(t) \equiv 1$, получим

$$\int\limits_{0}^{\infty}|K(s,t)|\psi(t)\,dt=\int\limits_{0}^{\infty}\frac{dt}{t}=\infty$$

Значит, такое ψ не подходит. Возьмём $\psi(t)=t^{-\alpha}$, где $\alpha>0$. Тогда

$$\int\limits_{0}^{\infty}|K(s,t)|\psi(t)\,dt=\int\limits_{0}^{s}\frac{dt}{t^{\alpha+1}}=\frac{s^{-\alpha}}{\alpha}$$

В качестве $\varphi(s)$ возьмём $s^{-\alpha}$

$$\int_{0}^{\infty} |K(s,t)| \varphi(s) \, ds = \frac{1}{t} \int_{0}^{t} s^{-\alpha} \, ds = \frac{1}{t} \frac{t^{1-\alpha}}{1-\alpha} = \frac{t^{-\alpha}}{1-\alpha}$$

Заметим, что при этом должно быть $\alpha < 1$. Кроме того,

$$\|\mathbf{H}\| \leqslant \frac{1}{\sqrt{\alpha(1-\alpha)}} \quad \forall \alpha \in (0,1) \implies \|\mathbf{H}\| \leqslant 2$$

Упражнение 8.8. Доказать, что $\|H\|=2$.

Интегральные операторы с непрерывным ядром

Вудем рассматривать ограниченную область $\Omega\subset\mathbb{R}^m$, пространство $L^2(\Omega)$ и пространство непрерывных функций $C(\overline{\Omega})$. Пусть также у нас есть функция $K:\overline{\Omega}\times\overline{\Omega}\to\mathbb{R}(\mathbb{C})$, $K\in C(\overline{\Omega})$, $\|K\|_{C(\overline{\Omega})}=M$.

Теорема 8.9. Рассмотрим оператор U такой, что $(Ux)(t)=\int\limits_{\Omega}K(s,t)x(s)\,ds.$ Верно, что $U\in B(L^2(\Omega),C(\overline{\Omega})).$

Доказательство. Докажем, что если $x \in L^2(\Omega)$, то $Ux \in C(\overline{\Omega})$. (Здесь непрерывность x не гарантируется.)

$$|Ux(t_1) - Ux(t_2)| = \left| \int\limits_{\Omega} K(s, t_1) - K(s, t_2)x(s) \, ds \right| \leqslant \left(\int\limits_{\Omega} |K(s, t_1) - K(s, t_2)|^2 \, ds \right)^{\frac{1}{2}} \|x\|_2$$

По теореме Кантора K равномерно непрерывно на $\overline{\Omega} \times \overline{\Omega}$, то есть:

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \underbrace{|(s_1,t_1) - (s_2,t_2)|}_{\sqrt{|s_1 - s_2|^2 + |t_1 - t_2|^2}} < \delta \implies |K(s_1,t_1) - K(s_2,t_2)| < \epsilon$$

Если $|t_1-t_2|<\delta$, то $|\mathsf{K}(s,t_1)-\mathsf{K}(s,t_2)|<\varepsilon$, отсюда $|\mathsf{U} x(t_1)-\mathsf{U} x(t_2)<\varepsilon|\Omega|^{\frac{1}{2}}\cdot\|x\|_2$ Теперь докажем, что $\|\mathsf{U} x\|_{C(\overline{\Omega})}\leqslant C\|x\|_{L^2(\Omega)}.$

$$\|Ux\|_{C(\overline{\Omega})} = \max_{t \in \overline{\Omega}} \bigg| \int\limits_{\Omega} K(s,t) x(s) \, ds \bigg| \leqslant \max_{t \in \overline{\Omega}} \bigg(\int\limits_{\Omega} |K(s,t)|^2 \, ds \bigg)^{\frac{1}{2}} \|x\|_2 \leqslant (M^2 \cdot |\Omega|)^{\frac{1}{2}} \|x\|_{L^2(\Omega)}$$

Рассмотрим оператор вложения $j:C(\overline{\Omega})\to L^2(\Omega),\, x\mapsto x.$ Справедливо следствие:

Следствие 8.10. 1. $jU \in B(L^2(\Omega), L^2(\Omega))$

2. $Uj \in B(C(\overline{\Omega}), C(\overline{\Omega}))$

Доказательство. Заметим, что $C(\overline{\Omega})\subset L^2(\Omega).$

$$\left(\int\limits_{\Omega}|x(s)|^2\,\mathrm{d}t\right)^{\frac{1}{2}}\leqslant \left(\|x\|_{C(\overline{\Omega})}^2\cdot|\Omega|\right)^{\frac{1}{2}}=|\Omega|^{\frac{1}{2}}\cdot\|x\|_{C(\overline{\Omega})}$$

Получаем

$$\|x\|_{L^2(\Omega)}\leqslant |\Omega|^{\frac{1}{2}}\cdot \|x\|_{C(\overline{\Omega})}$$

$$\|jx\|_{L^2(\Omega)} = \|x\|_{L^2(\Omega)} \leqslant C \cdot \|x\|_{C(\overline{\Omega})}$$

То есть ј непрерывен.

$$C(\overline{\Omega}) \hookrightarrow L^2(\Omega) \xrightarrow{U} C(\overline{\Omega}) \hookrightarrow L^2(\Omega)$$

Операторы со слабой особенностью

Рассмотрим оператор $Ux(t)=\int\limits_{\Omega}K(s,t)x(s)\,ds$, причём K — ядро со слабой особенностью, а $\Omega\subset\mathbb{R}^m$ — ограниченная область.

Определение 8.11. K — ядро со слабой особенностью, если оно представляется в виде:

$$K(s,t) = \frac{A(s,t)}{|s-t|^{\alpha}}$$

Здесь $A \in C(\overline{\Omega} \times \overline{\Omega})$, $\alpha < m$

Пример 8.12.
$$\Omega = (0,1), \ K(s,t) = \frac{1}{\sqrt{|s-t|}}$$

Замечание 8.13. Предположим, что $K(s,t)=\frac{\alpha(s,t)}{|s-t|^{\alpha}}$, $\alpha< m, \ \alpha$ — ограниченная функция, непрерывная вне диагонали множества $\overline{\Omega} \times \overline{\Omega}$, то есть в точках (s,t) таких, что $s \neq t$. Тогда K — ядро со слабой особенностью. Почему? Можно записать $K(s,t)=\frac{\alpha(s,t)|s-t|^{\delta}}{|s-t|^{\alpha+\delta}}$, где $\alpha+\delta < m$. $A(s,t)=\alpha(s,t)|s-t|^{\delta}$ непрерывно на $\overline{\Omega} \times \overline{\Omega}$

Почему особенность «слабая»? Чтобы ответить на этот вопрос, сформулируем лемму.

Лемма 8.14. Пусть у нас есть шар $B(0,\rho)\subset \mathbb{R}^m$. Тогда $\int\limits_{B(0,\rho)} \frac{dx}{|x|^\alpha}$ конечен тогда и только тогда, когда $\alpha< m$.

Доказательство. Вычислим этот интеграл.

$$\int\limits_{B(0,\rho)} \frac{dx}{|x|^{\alpha}} = \int\limits_{0}^{\rho} \int\limits_{S_{1}(0)} r^{m-1} \frac{1}{r^{\alpha}} \, d\theta \, dr = |S_{1}| \int\limits_{0}^{\rho} r^{m-\alpha-1} \, dr = |S_{1}| \frac{r^{m-\alpha}}{m-\alpha} \bigg|_{0}^{\rho} = |S_{1}| \frac{\rho^{m-\alpha}}{m-\alpha}$$

Теорема 8.15. Пусть U — оператор со слабой особенностью: $Ux(t) = \int\limits_{\Omega} K(s,t)x(s)\,ds$, $\Omega \subset \mathbb{R}^m$. Тогда $U \in B(L^2(\Omega),L^2(\Omega))$.

Доказательство. Применим тест Шура. Возьмём функцию $\phi(s) \equiv 1$.

$$\begin{split} \int\limits_{\Omega} |K(s,t)| \, ds &= \int\limits_{\Omega} \frac{|A(s,t)|}{|s-t|^{\alpha}} \, ds \leqslant M \cdot \int\limits_{\Omega} \frac{1}{|s-t|^{\alpha}} \, ds \leqslant M \cdot \int\limits_{B_d(t)} \frac{ds}{|s-t|^{\alpha}} \leqslant M \cdot \int\limits_{B_d(0)} \frac{dz}{|z|^{\alpha}} \leqslant \\ &\leqslant M \cdot |S_1| \cdot \frac{d^{m-\alpha}}{m-\alpha} \end{split}$$

Здесь $A\in C(\overline\Omega\times\overline\Omega)$, $\|A\|_{C(\overline\Omega\times\overline\Omega)}=M$, $d=\dim\overline\Omega$ Получаем, что $\psi(t)=1$.

Теорема 8.16. В условиях предыдущей теоремы также верно $U \in B(C(\overline{\Omega}), C(\overline{\Omega}))$.

Доказательство. 1. $\forall x \in C(\overline{\Omega}) \ Ux \in C(\overline{\Omega})$

2. $\|\mathbf{u}\mathbf{x}\|_{\mathbf{C}(\overline{\Omega})} \leqslant \mathbf{C}\|\mathbf{x}\|_{\mathbf{C}(\overline{\Omega})}$

Будем доказывать, что $\forall \epsilon>0$ $\exists \delta>0$ такое, что $\forall t_1,t_2\in\overline{\Omega}$ такого, что $|t_1-t_2|<\delta$, $|Ux(t_1)-Ux(t_2)|<\epsilon$

$$Ux(t_1) - Ux(t_2) = \int_{\Omega} (K(s, t_1) - K(s, t_2))x(s) ds$$

Возьмём ρ такое, что $|t_1-t_2|<\rho$. Разобьём область Ω на три части:

$$\begin{split} \Omega &= \underbrace{(\Omega \backslash (B_{\frac{\rho}{2}}(t_1) \cup B_{\frac{\rho}{2}}(t_2))}_{\Omega_{1,2}} \cup \underbrace{(B_{\frac{\rho}{2}}(t_1) \cap \Omega)}_{\Omega_{1}} \cup \underbrace{(B_{\frac{\rho}{2}}(t_2) \cap \Omega)}_{\Omega_{2}} \\ \\ \left| \int\limits_{\Omega_{1}} \ldots \right| \leqslant \int\limits_{\Omega_{1}} |K(s,t_1) - K(s,t_2)||x(s)| \, ds \leqslant \|x\|_{C(\overline{\Omega})} \bigg(\int\limits_{\Omega_{1}} |K(s,t_1)| \, ds + \int\limits_{\Omega_{1}} |K(s,t_2)| \, ds \bigg) \leqslant \\ \leqslant M \cdot \|x\| \bigg(\int\limits_{\Omega_{1}} \frac{ds}{|s-t_1|^{\alpha}} + \int\limits_{\Omega_{1}} \frac{ds}{|s-t_2|^{\alpha}} \bigg) \leqslant M \cdot \|x\| \cdot |S_1| \bigg(\frac{(\frac{\rho}{2})^{m-\alpha}}{m-\alpha} + \frac{(\frac{3\rho}{2})^{m-\alpha}}{m-\alpha} \bigg) < \frac{\epsilon}{2} \end{split}$$

Такая же оценка справедлива и для $\Big|\int\limits_{\Omega_2}\dots\Big|.$

$$\begin{split} &\left|\int\limits_{\Omega_{1,2}}\dots\right|\leqslant \|x\|\int\limits_{\Omega_{1,2}}\left|\frac{A(s,t_1)}{|s-t_1|^\alpha}-\frac{A(s,t_2)}{|s-t_2|^\alpha}\right|ds=\\ &=\|x\|\int\limits_{\Omega_{1,2}}\left|\frac{A(s,t_1)|s-t_2|^\alpha-A(s,t_2)|s-t_1|^\alpha}{|s-t_1|^\alpha|s-t_2|^\alpha}\right|ds\leqslant \end{split}$$

$$\leqslant \frac{\|x\|}{(\frac{\rho}{2})^{2\alpha}}\underbrace{\int\limits_{\Omega} \left|A(s,t_1)|s-t_2|^{\alpha}-A(s,t_2)|s-t_1|^{\alpha}\right| ds}_{\underset{|t_1-t_2|\to 0}{\underbrace{\qquad \qquad }}}$$

Мы воспользовались тем, что $|s-t_1|^{\alpha}\geqslant (\frac{\rho}{2})^{\alpha}$ и $|s-t_2|^{\alpha}\geqslant (\frac{\rho}{2})^{\alpha}.$

Возьмём $g\in C(\overline{\Omega} imes\overline{\Omega} imes\overline{\Omega})$: $g(s,t_1,t_2)=A(s,t_1)|s-t_2|^{lpha}.$ g равномерно непрерывно:

$$\begin{split} \forall \widetilde{\epsilon} > 0 \quad \exists \widetilde{\delta} > 0 : |(s,t_1,t_2) - (s',t_1',t_2')| = \\ = \sqrt{|s-s'|^2 + |t_1 - t_1'|^2 + |t_2 - t_2'|^2} < \widetilde{\delta} \implies |g(s,t_1,t_2) - g(s',t_1',t_2')| < \widetilde{\epsilon} \end{split}$$

Возьмём $\widetilde{\varepsilon} = \|\mathbf{x}\|^{-1} \left(\frac{\rho}{2}\right)^{2\alpha} |\Omega|^{-1} \frac{\varepsilon}{2}$. Заметим, что под интегралом стоит $|g(s,t_1,t_2)-g(s,t_2,t_1)|<\widetilde{\varepsilon}$ (при $|(s,t_1,t_2)-(s,t_2,t_1)|=\sqrt{2}|t_1-t_2|<\widetilde{\delta}$). Отсюда находим $\widetilde{\delta}$. В результате $\delta = \frac{\widetilde{\delta}}{\sqrt{2}}$.

9 Скалярное произведение

Пусть X — линейное множество над полем скаляров $\mathbb{R}(\mathbb{C})$.

Определение 9.1. $\phi: X \times X \to \mathbb{R}(\mathbb{C})$ называется скалярным произведением, если:

1.
$$\varphi(x_1 + x_2, y) = \varphi(x_1, y) + \varphi(x_2, y)$$

2.
$$\varphi(\lambda x, y) = \lambda \varphi(x, y)$$

3.
$$\varphi(x, y) = \overline{\varphi(y, x)}$$

4.
$$\varphi(x,x) \geqslant 0 \ \forall x \in X, \ \varphi(x,x) = 0 \iff x = 0$$

Предложение 9.2 (Свойства скалярного произведения).

1.
$$\varphi\left(\sum_{j=1}^{n} \lambda_j x_j, y\right) = \sum_{j=1}^{n} \lambda_j \varphi(x_j, y)$$

2.
$$\varphi\left(x, \sum_{j=1}^{n} \lambda_{j} y_{j}\right) = \sum_{j=1}^{n} \overline{\lambda_{j}} \varphi(x, y_{j})$$

3. Неравенство Коши-Буняковского: $|\phi(x,y)|^2\leqslant \phi(x,x)\phi(y,y)$

4.
$$p(x) = \sqrt{\phi(x,x)}$$
 является нормой.

Доказательство. Докажем свойство 2.

$$\phi\bigg(x,\sum_{j=1}^n\lambda_jy_j\bigg)=\overline{\phi\bigg(\sum_{j=1}^n\lambda_jy_j,x\bigg)}=\overline{\sum_{j=1}^n\lambda_j\phi(y_j,x)}=\sum_{j=1}^n\overline{\lambda_j}\phi(x,y_j)$$

Докажем неравенство Коши-Вуняковского. Возьмём какой-нибудь скаляр λ .

$$\begin{split} 0 \leqslant \phi(x + \lambda y, x + \lambda y) &= \phi(x, x) + \phi(x, \lambda y) + \phi(\lambda y, x) + \phi(\lambda y, \lambda y) = \\ &= \phi(x, x) + \overline{\lambda} \phi(x, y) + \underbrace{\lambda \phi(y, x)}_{\lambda \overline{\phi(x, y)}} + \underbrace{\lambda \overline{\lambda} \phi(y, y)}_{|\lambda|^2 \phi(y, y)} \end{split}$$

Выберем λ следующим образом: $\lambda = t \phi(x,y)$ $(t \in \mathbb{R})$. Тогда получим:

$$= \varphi(x, x) + 2t|\varphi(x, y)|^2 + t^2|\varphi(x, y)|^2\varphi(y, y)$$

Дискриминант этого трёхчлена $D=4|\phi(x,y)|^4-4|\phi(x,y)|^2\phi(x,x)\phi(y,y)\leqslant 0.$ Отсюда следует, что $|\phi(x,y)|^2\leqslant \phi(x,x)\phi(y,y).$

В свойстве 4 проверим аксиомы нормы:

1.
$$p(x) \ge 0$$
, $p(x) = 0 \iff x = 0$

2.
$$p(\lambda x) = \sqrt{\varphi(\lambda x, \lambda x)} = \sqrt{\lambda \overline{\lambda} \varphi(x, x)} = |\lambda| \sqrt{\varphi(x, x)} = |\lambda| p(x)$$

3. Требуется $p(x + y) \leq p(x) + p(y)$.

$$\begin{split} \sqrt{(\phi(x+y,x+y)} \leqslant \sqrt{\phi(x,x)} + \sqrt{(\phi(y,y))} \iff \\ \iff \phi(x+y,x+y) \leqslant \phi(x,x) + 2\sqrt{\phi(x,x)\phi(y,y)} + \phi(y,y) \iff \\ \iff \underbrace{\phi(x,y) + \phi(y,x)}_{2\operatorname{Re}\phi(x,y)} \leqslant 2\sqrt{\phi(x,x)\phi(y,y)} \\ 2\operatorname{Re}\phi(x,y) \leqslant 2|\phi(x,y)| \leqslant 2\sqrt{\phi(x,x)\phi(y,y)} \end{split}$$

Замечание 9.3. В пространстве со скалярным произведением можно естественным образом завести норму.

Определение 9.4. Пространство со скалярным произведением (X, φ) называется унитарным. Полное унитарное пространство называется гильбертовым (обозначается H).

Предложение 9.5 (Непрерывность скалярного произведения). Если $x_n \to x$, $y_n \to y$, то $(x_n, y_n) \to (x, y)$.

Доказательство.

$$\begin{aligned} |(x_n, y_n) - (x, y)| &= |(x_n, y_n) - (x_n, y) + (x_n, y) - (x, y)| \leqslant |(x_n, y_n - y)| + |(x_n - x, y)| \leqslant \\ &\leqslant ||x_n|| \cdot ||y_n - y|| + ||x_n - x|| \cdot ||y|| \to 0 \end{aligned}$$

Предложение 9.6. Пусть $\sum\limits_{j=1}^{\infty}x_{j}$ — сходящийся ряд в Н — гильбертовом пространстве. Тогда $\left(\sum\limits_{j=1}^{\infty}x_{j},y\right)=\sum\limits_{j=1}^{\infty}(x_{j},y).$

Доказательство. Пусть $S_n=\sum\limits_{j=1}^nx_j,\,S_n o S.$ Тогда $(S_n,y) o (S,y)=igg(\sum\limits_{j=1}^\infty x_j,yigg).$

$$(S_n,y) = \left(\sum_{j=1}^n x_j,y\right) = \sum_{j=1}^n (x_j,y) \to \sum_{j=1}^\infty (x_j,y)$$

Предложение 9.7 (Тождество параллелограмма). $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$

Доказательство. Запишем равенства:

$$||x \pm y|| = (x \pm y, x \pm y) = ||x^2|| \pm (x, y) \pm (y, x) + ||y^2||$$

Сложим их. Получим требуемое.

Пример 9.8. Рассмотрим пространство X = C[0,1], функции x(t) = 1 и y(t) = t. ||x+y|| = 2, ||x-y|| = 1, ||x|| = 1, ||y|| = 1. Отсюда $2^2 + 1^2 = 2 \cdot (1^2 + 1^2)$ — неверно. Из этого следует, что в пространстве C[0,1] нельзя ввести скалярное произведение, согласованное с естественной нормой.

Предложение 9.9 (Формула восстановления). Если пространство унитарное, то в нём можно восстановить скалярное произведение по норме. Для вещественного случая:

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$

Для комплексного случая:

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2 + i\|x+y\|^2 - i\|x-y\|^2)$$

Доказательство. Упражнение.

Пример 9.10. В пространстве $L^{2}(T, \mu)$:

$$(x,y) = \int_T x(t) \overline{y(t)} \, d\mu(t)$$

$$\sqrt{(x,x)} = \left(\int_{\mathbb{T}} |x(t)|^2 d\mu(t)\right)^{\frac{1}{2}} = \|x\|_2$$

10 Ортогональность

Определение 10.1. Пусть H — гильбертово пространство. Векторы x, y ортогональны, если (x, y) = 0.

Предложение 10.2. 1. $x \perp x \iff x \perp H \iff x = 0$.

- $\text{2. } x\perp y_1,y_2 \implies x\perp (\alpha_1y_1+\alpha_2y_2).$
- 3. $x \perp y_n \ \forall n \in \mathbb{N}, \ y_n \rightarrow y \implies x \perp y$.
- 4. $x \perp A \implies x \perp \overline{\text{Lin}(A)}$.
- 5. (Теорема Пифагора) Если для $x_1, \ldots, x_n \ x_j \perp x_k \ \forall j \neq k$, то $\|x_1 + \ldots + x_n\|^2 = \|x_1\|^2 + \ldots + \|x_n\|^2$.

Определение 10.3. Ряд $\sum\limits_{j=1}^{\infty} x_j$ в гильбертовом пространстве H называется ортогональным, если $\forall j \neq k \ x_j \perp x_k.$

Теорема 10.4 (О сходимости ортогонального ряда). Рассмотрим ортогональный ряд (1) $\sum\limits_{j=1}^{\infty}x_{j}$ и ряд (2) $\sum\limits_{j=1}^{\infty}\|x_{j}\|^{2}$. Ряд (1) сходится тогда и только тогда, когда ряд (2)

сходится. В случае сходимости выполняется теорема Пифагора $\left\|\sum\limits_{j=1}^{\infty}x_{j}\right\|^{2}=\sum\limits_{j=1}^{\infty}\|x_{j}\|^{2}.$

Доказательство. Обозначим $S_n = \sum\limits_{j=1}^n x_j, \ C_n = \sum\limits_{j=1}^n \|x_j\|^2.$ Возьмём m>n и воспользуемся критерием Коши.

$$||S_m - S_n||^2 = \left\| \sum_{j=n+1}^m x_j \right\|^2 = \sum_{j=n+1}^m ||x_j||^2 = C_m - C_n = |C_m - C_n|$$

Таким образом, фундаментальность последовательности S_n равносильна $\|S_m - S_n\| \xrightarrow[m,n \to \infty]{m,n \to \infty} 0$ $\iff \|C_m - C_n\| \xrightarrow[m,n \to \infty]{m,n \to \infty} 0$, что равносильно фундаментальности C_n . Получаем $\|S_n\|^2 = C_n$.

Пример 10.5 (Ряд Фурье). $b_0 + \sum_{n \in \mathbb{N}} a_n \sin nt + b_n \cos nt$ в пространстве $L^2(0,2\pi)$.

$$\|a_n \sin nt\|_2^2 = |a_n|^2 \int_0^{2\pi} |\sin nt|^2 dt = |a_n|^2 \pi$$

$$\|b_n \cos nt\|^2 = |b_n|^2 \pi$$

$$\|b_0\|^2 = b_0^2 \cdot 2\pi$$

Чтобы ряд сходился в $L^2(0,2\pi)$, необходимо и достаточно, чтобы выполнялось $\pi\sum_{n=1}^{\infty}(|a_n|^2+|b_n|^2)<\infty$.

Упражнение 10.6. Доказать, что:

1.
$$\int_{0}^{2\pi} \cos mt \sin nt \, dt = 0;$$

2.
$$\int_{0}^{2\pi} \sin mt \sin nt dt = 0 \ npu \ m \neq t.$$

Пример 10.7. $\sum_{n\in\mathbb{Z}}a_ne^{\mathrm{int}}$ в $L^2(0,2\pi)$.

$$(e^{int},e^{imt}) = \int\limits_0^{2\pi} e^{int} \overline{e^{imt}} \, dt = \int\limits_0^{2\pi} e^{i(n-m)t} \, dt = \begin{cases} 2\pi, & n=m \\ \frac{e^{i(n-m)t}}{i(n-m)} \bigg|_0^{2\pi}, & n\neq m \end{cases} = \begin{cases} 2\pi, & n=m \\ 0, & n\neq m \end{cases}$$

11 Теорема о наилучшем приближении

Пример 11.1. Допустим, мы рассматриваем пространство C[-1,1]. Возьмём в этом пространстве функцию $x_0(t)=t^n$ и множество $A=\text{Lin}\{1,t,t^2,\ldots,t^{n-1}\}$ многочленов степени не выше n-1. Мы хотим найти $\text{dist}(x_0,A)=\inf_{y\in A}\|x_0-y\|_{C[-1,1]}$. Необходимо ответить на ряд вопросов: существует ли минимум? единственен ли он? как его искать?

Определение 11.2. y_0 называется наилучшим приближением к x_0 в A, если $\mathrm{dist}(x_0,A) = \|x_0 - y_0\|$ и $y_0 \in A$.

Теорема 11.3 (О наилучшем приближении). Пусть H -гильбертово пространство, $A \subset H -$ замкнутое и выпуклое множество, $x_0 \in H$. Тогда существует и единственно наилучшее приближение κ x_0 в A.

Доказательство. Начнём с единственности. Предположим, что есть две точки $y_1, y_2 \in A$. Может ли так случиться, что они обе минимизируют расстояние до x_0 ? Заметим, что любая точка на интервале y_1y_2 будет ближе к x_0 , чем y_1 и y_2 . Возьмём векторы $u = x_0 - y_1$ и $v = x_0 - y_2$. По тождеству параллелограмма $\|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2)$, откуда:

$$\underbrace{\|2x_0 - (y_1 + y_2)\|^2}_{(*)} + \|y_1 - y_2\|^2 = 2(\|x_0 - y_1\|^2 + \|x_0 - y_2\|^2)$$

Обозначим $dist(x_0, A) = d$.

$$(*) = 4||x_0 - \frac{y_1 + y_2}{2}||^2 \geqslant 4d^2$$

Итого, получаем:

$$\|y_1 - y_2\|^2 \leqslant 2(\|x_0 - y_1\|^2 + \|x_0 - y_2\|^2) - 4d^2 \quad \forall y_1, y_2 \in A$$

Таким образом, если y_1, y_2 — наилучшие приближения, то $||x_0 - y_1|| = d$ и $||x_0 - y_2|| = d$, то $||y_1 - y_2||^2 \le 0$, отсюда $y_1 = y_2$. Единственность доказана.

Докажем существование. Возьмём последовательность $y_n \in A$ такую, что $||x_0 - y_n|| \to d$ ($y_n -$ *минимизирующая последовательность*).

$$\|y_{\mathfrak{n}}-y_{\mathfrak{m}}\|^2\leqslant 2(\underbrace{\|x_0-y_{\mathfrak{n}}\|^2}_{\rightarrow d^2}+\underbrace{\|x_0-y_{\mathfrak{m}}\|^2}_{\rightarrow d^2})-4d^2\rightarrow 0$$

Из этого следует, что $\|y_n-y_m\|\xrightarrow[m,n\to\infty]{}0$ \Longrightarrow $\exists y_0=\lim y_n\in A.$ $\|x_0-y_0\|=d.$ Существование доказано.

Теорема 11.4 (О проекции). Пусть H — гильбертово пространство, $L \subset H$ — линейное замкнутое подмножество H. Тогда для любого $x \in H$ существует единственная пара элементов $y \in L$, $z \perp L$ таких, что x = y + z.

Определение 11.5. у называется *проекцией* вектора x на L.

Доказательство теоремы. Так как L линейно, то оно выпукло. Значит, существует наилучшее приближение $y \in L$ для x. Определим z как x-y. Проверим, что $z \perp L$. Возьмём произвольный вектор $l \in L$, скаляр λ . Вудем рассматривать вектор $y + \lambda l$. Очевидно, что $\|y + \lambda l - x\|^2 \geqslant \|y - x\|^2$, то есть $\|\lambda l - z\|^2 \geqslant \|z\|^2$. Раскроем скобки в скалярных квадратах:

$$(\lambda \mathbf{l}, \lambda \mathbf{l}) - (\lambda \mathbf{l}, z) - (z, \lambda \mathbf{l}) + (z, z) \geqslant (z, z)$$

$$|\lambda|^2(\mathfrak{l},\mathfrak{l})-\lambda(\mathfrak{l},z)-\overline{\lambda}(z,\mathfrak{l})\geqslant 0 \quad \forall \lambda \in \mathbb{C}$$

Пусть $\lambda = \mathsf{t}(z,\mathsf{l}) \; (\mathsf{t} \in \mathbb{R})$. Тогда

$$t^{2}|(z, l)|^{2}(l, l) - 2t|(z, l)|^{2} \ge 0$$

$$|(z, l)|^2 (t^2 ||l||^2 - 2t) \geqslant 0$$

Заметим, что если $(z,l) \neq 0$, то $t^2 ||l||^2 \geqslant 2t \ \forall t$, что неверно. Значит, (z,l) = 0. Существование доказано.

Докажем единственность. Пусть существует два разложения: $x=y_1+z_1=y_2+z_2$ и $y_1,y_2\in L,\,z_1,z_2\perp L.$ Рассмотрим $w=y_1-y_2=z_2-z_1.$ Но $y_1-y_2\in L,$ а $z_2-z_1\perp L,$ значит, $w\perp w\implies w=0.$

Следствие 11.6. B условиях предыдущей теоремы $\|x\|\geqslant \|y\|$ u $\|x\|\geqslant \|z\|=\mathrm{dist}(x,\mathsf{L}).$

Доказательство.

$$||x||^2 = ||y + z||^2 = ||y||^2 + ||z||^2$$

12 Ортогональное дополнение и ортогональные проекторы

В этом параграфе рассматриваем гильбертово пространство Н.

Определение 12.1. Если $A \subset H$, то его ортогональным дополнением называется $A^{\perp} = \{x \in H : \forall y \in A \quad x \perp y\}.$

Предложение 12.2 (Свойства ортогонального дополнения).

- 1. A^{\perp} линейное.
- 2. A^{\perp} замкнутое множество, то есть если $x_n \in A^{\perp}$, $x_n \to x$, то $x \in A^{\perp}$.
- 3. $(\text{Lin } A)^{\perp} = A^{\perp}$.
- 4. $(\overline{A})^{\perp} = A^{\perp}$.
- 5. $(\overline{\operatorname{Lin} A})^{\perp} = A^{\perp}$.
- 6. $A \subset B \implies A^{\perp} \supset B^{\perp}$.
- 7. $\{0\}^{\perp} = H, H^{\perp} = \{0\}.$
- 8. Если L линейное подмножество H, то $(L^{\perp})^{\perp} = \overline{L}$.

Доказательство. Докажем свойство 8. Пусть $L=\overline{L}$. Тогда $(L^{\perp})^{\perp}=\{x\in H: x\perp L^{\perp}\}\supset L$. Предположим, что $(L^{\perp})^{\perp}\neq L$, $x\in (L^{\perp})^{\perp}\setminus L$. По теореме о проекции x представляется в виде x=y+z, где $y\in L\subset (L^{\perp})^{\perp}$, $z\in L^{\perp}$. Тогда $\underbrace{x-y}_{\in (L^{\perp})^{\perp}}=z\in L^{\perp}$. Это означает, что $x-y\perp z$,

откуда z=x-y=0, то есть $x=y\in L$ — противоречие. Значит, в случае замкнутого L его второе ортогональное дополнение совпадает с ним самим. Рассмотрим случай, когда L незамнкуто. $L^{\perp}=(\overline{L})^{\perp}, \; (L^{\perp})^{\perp}=((\overline{L})^{\perp})^{\perp}=\overline{L}.$

Определение 12.3. Пусть $L \subset H$ — замкнутое линейное множество и для всех $x \in H$ существует единственные y,z такие, что $y \in L$, $z \in L^{\perp}$, x = y + z. Отображение $P_L : H \to H$, $x \mapsto y$ называется ортогональным проектором.

Предложение 12.4 (Свойства ортогонального проектора).

- 1. Р_І линейное отображение.
- 2. $P_{L} \in B(H, H)$, m. e. P_{L} непрерывно.
- 3. Ker $P_I = L^{\perp}$.
- 4. $P_{I}(H) = L$.
- 5. $P_I + P_{I\perp} = I$

Доказательство. Докажем свойство 2. Проверим, что $\|P_Lx\| \leqslant C\|x\|$. Предствавим x в виде x=y+z, где $y\in L$, $z\in L^\perp$. Отсюда $\|x\|^2=\|y\|^2+\|z\|^2 \implies \|y\|\leqslant \|x\|$. То есть, $\|P_Lx\|\leqslant \|x\|\implies \|P_L\|\leqslant 1$.

Замечание 12.5. Если $L \neq \{0\}$, то $\|P_L\| = 1$ (так как $\forall x \in L \ P_L x = x$).

Теорема 12.6 (О характеристике ортогональных проекторов). Пусть $U \in B(H,H)$. Чтобы U был ортогональным проектором, необходимо и достаточно, чтобы выполнялись условия:

- 1. $U^2 = U$ (идемпотентность).
- 2. $\forall x_1, x_2 \in H \ (Ux_1, x_2) = (x_1, Ux_2) \ (самосопряжеённость).$

Доказательство. Предположим, что $U=P_L$. Проверим идемпотентность. Если x=y+z, где $y\in L$, $z\in L^\perp$, то $P_Lx=y$, $P_Ly=y$. Проверим самосопряжённость. Пусть $x_1=y_1+z_1$, $x_2=y_2+z_2$ ($y_j\in L$, $z_j\in L^\perp$). $P_Lx_j=y_j$. (y_1,y_2+z_2) $=(y_1,y_2)=(y_1+z_1,y_2)$.

Обратно. Положим $L = \{x \in H: Ux = x\} = Ker(U-I)$. Ясно, что L — линейное замкнутое множество (ядро непрерывного оператора всегда замкнуто). Проверим, что $\forall x \in H \ Ux \in L$, то есть U(Ux) = Ux. Ясно, что это выполнено. Далее, представим x в виде $x = \underbrace{Ux}_{\in I} + (x - Ux)$.

Нужно доказать, что $x - Ux \in L^{\perp}$. Возьмём произвольное $y \in L$. Посчитаем скалярное произведение (x - Ux, y) = (x, y) - (Ux, y) = (x, y) - (x, Uy) = (x, y) - (x, y) = 0.

13 Ряды Фурье

Определение 13.1. Пусть H — гильбертово пространство. Система векторов $\{e_{\alpha}\}_{\alpha\in A}\subset H$ (A — некоторое множество индексов) называется ортогональной, если $e_{\alpha}\neq 0\ \forall \alpha\in A$ и $(e_{\alpha_1},_{\alpha_2})=0$, если $\alpha_1\neq \alpha_2$. Система векторов называется ортонормированной, если она ортогональна и норма каждого вектора системы равна единице.

Замечание 13.2. Чаще всего множество А из определения 13.1 является множеством натуральных или целых чисел, но мы будем перенумеровывать индексы так, чтобы рассматривать множество натуральных чисел.

Предложение 13.3. Eсли cистема $\{e_j\}_{j=1}^\infty$ oртогональна, то она линейно независима.

Доказательство. Предположим, что система линейно зависима. Тогда существуют скаляры λ_j такие, что $\sum\limits_{j=1}^n \lambda_j e_j = 0$. Умножим это равенство скалярно на e_m . Получим

$$\sum_{j=1}^n \lambda_j(e_j,e_m)=0$$
. Отсюда $\lambda_m(e_m,e_m)=0$, но $(e_m,e_m)\neq 0$, значит, $\lambda_m=0$ $\forall m$.

Предложение 13.4. Пусть $\{e_j\}$ — ортогональная система и $x\in H$. Предположим, что x представимо в виде $x=\sum\limits_{j=1}^{\infty}\lambda_je_j$. Тогда такое представление единственно.

Доказательство. Рассмотрим представление $x=\sum\limits_{i=1}^{\infty}\lambda_{j}e_{j}$, умножим его скалярно на e_{m} .

$$(x, e_{m}) = \left(\sum_{j=1}^{\infty} \lambda_{j} e_{j}, e_{m}\right) = \sum_{j=1}^{\infty} (\lambda_{j} e_{j}, e_{m}) = \lambda_{m}(e_{m}, e_{m})$$

Отсюда $\lambda_m = \frac{(x,e_m)}{(e_m,e_m)}$, то есть коэффициент λ_m однозначно определяется по x.

Замечание 13.5. Даже если x не представляется в виде ряда, можно вычислить величины $\frac{(x,e_m)}{(e_m,e_m)}=\frac{(x,e_m)}{\|e_m\|^2}.$

Определение 13.6. $c_{\mathfrak{m}}(x)=\frac{(x,e_{\mathfrak{m}})}{\|e_{\mathfrak{m}}\|^2}-$ коэффициенты Фурье вектора x по ортогональной системе $\{e_j\}_{j=1}^{\infty}.$ $\sum\limits_{j=1}^{\infty}c_j(x)-$ ряд Фурье вектора x по этой системе.

Возникают естественные вопросы:

- Для всех ли х ∈ Н ряд Фурье сходится?
- Если ряд Фурье сходится, то сходится ли он к х?
- Как определить, к х или не к х он сходится?

Пример 13.7. Пусть $H=\mathbb{R}^3$, $e_1=(1,0,0)$, $e_2=(0,1,0)$. Возьмём вектор $x=(x_1,x_2,x_3)$. $c_1(x)=x_1,\,c_2(x)=x_2$. Значит, ряд Фурье x равен $x_1e_1+x_2e_2=(x_1,x_2,0)$. Он сходится как конечная сумма, но не x, а x его проекции на подпространство, натянутое на x.

Теорема 13.8 (О частичных суммах ряда Фурье). Пусть у нас есть ортогональная система $\{e_j\}$ в гильбертовом пространстве H, есть вектор x и его ряд Фурье $\sum\limits_{j=1}^{\infty}c_j(x)e_j$. Рассмотрим $S_n(x)=\sum\limits_{j=1}^nc_j(x)e_j$, $L_n=\mathrm{Lin}\{e_1,\ldots,e_n\}$. Тогда:

1.
$$x - S_n(x) \perp L_n$$

2.
$$||S_n(x)|| \le ||x||$$

Доказательство. Докажем первое утверждение. Возьмём $m:1\leqslant m\leqslant n.$

$$(x - S_n(x), e_m) = (x, e_m) - \left(\sum_{j=1}^n c_j(x)e_j, e_m\right) = (x, e_m) - c_m(x)(e_m, e_m) = 0$$

Докажем второе утверждение. $x=\underbrace{S_n(x)}_{\in L_n}+\underbrace{(x-S_n(x))}_{\perp L_n}$. Отсюда $S_n(x)=P_{L_n}(x)$ и $\|S_n(x)\|\leqslant \|x\|$, $\|x-S_n(x)\|\leqslant \|x\|$.

Следствие 13.9.

1.
$$\|S_n(x)\|^2 = \|\sum_{j=1}^n c_j(x)e_j\|^2 = \sum_{j=1}^n |c_j(x)|^2 \cdot \|e_j\|^2 \le \|x\|^2$$
.

2. (Неравенство Бесселя)
$$\sum\limits_{j=1}^{\infty}|c_{j}(x)|\cdot\|e_{j}\|^{2}\leqslant\|x\|^{2}$$

Теорема 13.10 (Риса-Фишера). Пусть $\{e_j\}$ — ортогональная система в H — гильбертовом пространстве, $x \in H$. Тогда:

- 1. Ряд Фурье для х сходится.
- 2. Если S(x) сумма этого ряда, то $x-S(x)\perp e_i$ $\forall j$.

3.
$$x = S(x) \iff \sum_{j=1}^{\infty} |c_j(x)|^2 \cdot ||e_j||^2 = ||x||^2$$

Доказательство. 1. Строим ортогональный ряд $\sum\limits_{j=1}^{\infty}c_{j}(x)e_{j}$. По теореме 10.4 этот ряд сходится тогда и только тогда, когда $\sum\limits_{j=1}^{\infty}\|c_{j}(x)e_{j}\|^{2}$ сходится, то есть $\sum\limits_{j=1}^{\infty}|c_{j}(x)|^{2}\|e_{j}\|^{2}$ сходится, что верно по неравенству Бесселя.

2.
$$(x - S(x), e_j) = (x, e_j) - \left(\sum_{k=1}^{\infty} c_k(x)e_k, e_j\right) = (x, e_j) - c_j(x)(e_j, e_j) = 0$$

3.
$$x = \underbrace{z}_{\in L^{\perp}} + \underbrace{S(x)}_{\in L}$$
, где $L = \overline{\mathrm{Lin}\{e_j\}}$. По теореме Пифагора $\|x\|^2 = \|z\|^2 + \|S(x)\|^2$. Отсюда

$$x = S(x) \iff z = 0 \iff ||x||^2 = ||S(x)||^2 = \left\| \sum_{j=1}^{\infty} c_j(x) e_j \right\|^2 = \sum_{j=1}^{\infty} |c_j(x)|^2 ||e_j||^2.$$

Определение 13.11. Рассмотрим ортогональную систему $\{e_j\} \subset H$. Эта система называется ортогональным базисом в H, если $\forall x \in H \ S(x) = x \ (S(x) - \text{сумма ряда Фурье}).$

Возвращаясь к примеру 13.7, легко видеть, что выбранная в нём ортогональная система не является базисом.

Определение 13.12. Система векторов $A \subset H$ называется *полной*, если из $x \perp A$ следует x = 0, иначе говоря, $A^{\perp} = \{0\}$.

Определение 13.13. Система векторов $A \subset H$ называется *порождающей*, если $\overline{\operatorname{Lin} A} = H$. (Здесь H — не обязательно гильбертово пространство.)

Теорема 13.14 (О характеристике ортогонального базиса). Пусть $\{e_j\}$ — ортогональная система в H — гильбертовом пространстве. Тогда следующие утверждения равносильны:

- 1. $\{e_i\}$ ортогональный базис.
- 2. $\forall x \in H \|x\|^2 = \sum_{k=1}^{\infty} |c_j(x)|^2 \|e_j\|^2$.
- 3. $\{e_{\mathbf{j}}\}$ порождающая система.
- 4. $\{e_i\}$ полная система.

Доказательство.

1. $(1 \Leftrightarrow 2)$. Утверждается в теореме Риса-Фишера.

$$2. \ (1 \Rightarrow 3). \ x = \sum_{j=1}^{\infty} c_j(x) e_j = \lim_{n \to \infty} \underbrace{\sum_{j=1}^n c_j(x) e_j}_{\in \operatorname{Lin}\{e_j\}} \in \overline{\operatorname{Lin}\{e_j\}} \implies \overline{\operatorname{Lin}\{e_j\}} = H.$$

- 3. $(3\Rightarrow 4)$. $\{e_j\}$ порождающая система, значит, $\overline{\mathrm{Lin}\{e_j\}}=\mathrm{H.}\ \{e_j\}^\perp=(\overline{\mathrm{Lin}\{e_j\}})^\perp=\mathrm{H}^\perp=\{0\}$ $\Longrightarrow \{e_i\}$ полная.
- 4. (4 \Rightarrow 1). x=z+S(x), где $z\perp e_{\rm j}$ \forall j. Это означает, что z=0, так как система полная, и x=S(x).

Примеры 13.15.

1. ℓ^2 . $e_j = (0,0,\dots,\underbrace{1}_j,0,\dots)$. $\{e_j\}_{j=1}^\infty$ — ортонормированный базис.

.

- 2. $L^2(0,2\pi)$. $\{1,\sin t,\cos t,\sin 2t,\cos 2t,\ldots\}$ ортогональный базис. Как доказать, что это действительно базис? Проще всего в данной ситуации проверить, что рассматриваемая система является порождающей. Для этого надо любую функцию из $L^2(0,2\pi)$ научиться приближать линейными комбинациями (тригонометрическими многочленами). Таким образом, необходимо доказать, что любая непрерывная функция приближается тригонометрическими многочленами и, кроме того, любая функция из $L^2(0,2\pi)$ приближается непрерывной.
- 3. $L^2(0,2\pi)$. $\{e^{int}\}_{n\in\mathbb{Z}}$ ортогональный базис.
- 4. $L^2(0,\pi)$. $\{1,\cos t,\cos 2t,\ldots\}$ ортогональный базис.

Определение 13.16. Пусть X — нормированное пространство. X сепарабельно, если в нём существует счётное всюду плотное множество.

Замечание 13.17. Множество M является всюду плотным в X, если $\overline{M} = X$.

Примеры 13.18.

- 1. $C(\overline{\Omega})$ сепарабельное. (Здесь $\Omega\subset\mathbb{R}^n$ ограниченная область.) В этом случае примером счётного всюду плотного множества служит множество многочленов с рациональными коэффициентами.
- 2. $L^p(\Omega)$ сепарабельное $(1 \leqslant p < \infty)$.
- 3. $\ell^p\ (1\leqslant p<\infty)$. Пример счётного всюду плотного множества: $M=\{(x_1,x_2,\dots,x_k,0,0,\dots)\ \big|\ k\in\mathbb{N};\ x_n\in\mathbb{Q}\}$
- 4. $\ell^\infty=\{x=(x_1,\ldots,x_n,\ldots)\,\big|\,\sup_{k\in\mathbb{N}}|x_j|<\infty\}$ несепарабельное. Почему? Предположим, что в нём есть счётное всюду плотное множество M. Рассмотрим $A\subset\ell^\infty$:

$$A = \{x = (x_1, x_2, ...) \mid x_i \in \{0, 1\}\}$$

Заметим, что:

- а) А несчётно.
- b) $\forall x, y \in A : x \neq y ||x y|| = 1$
- с) Рассмотрим различные элементы $x_{\alpha} \in A$ и шары $B_{\frac{1}{2}}(x_{\alpha})$. Ясно, что эти шары не пересекаются. Но по определению счётного всюду плотного множества каждый из этих шаров должен содержать точку из M счётного, в то время как число шаров несчётно. Очевидно, что это невозможно.

Теорема 13.19 (О существовании ортогонального базиса). Если H- сепарабельное гильбертово пространство, то в нём существует ортогональный базис.

Доказательство. Пусть M — счётное всюду плотное множество в H: $M=\{x_1,x_2,\ldots\},\overline{M}=H$. Проредим последовательность x_j так, чтобы все её элементы стали линейно независимы. В результате получим новую последовательность $M_1=\{y_1,y_2,\ldots,y_n,\ldots\}\subset M$. Ясно, что $\operatorname{Lin} M_1\supset M$. Заметим, что $\overline{\operatorname{Lin} M_1}=H$, так как оно содержит \overline{M} , и M_1 линейно независимо. Будем проводить ортогонализацию: Возьмём $e_1=\frac{y_1}{\|y_1\|}$. Пусть $w_2=y_2-(y_2,e_1)e_1$, причём $(w_2,e_1)=0,\ w_2\neq 0$ и $\operatorname{Lin}\{w_2,e_1\}=\operatorname{Lin}\{y_1,y_2\}$. Возьмём $e_2=\frac{w_2}{\|w_2\|}$. Далее, пусть $w_3=y_3-(y_3,e_1)e_1-(y_3,e_2)e_2$ ($(w_3,e_1)=(w_3,e_2)=0,\ w_3\neq 0,\ \operatorname{Lin}\{w_3,e_1,e_2\}=\operatorname{Lin}\{y_1,y_2,y_3\}$) и берём $e_3=\frac{w_3}{\|w_3\|}$. И так далее. Получим $M_2=\{e_1,e_2,\ldots\}$ — ортонормированную систему. $\overline{\operatorname{Lin} M_2}=\overline{\operatorname{Lin} M_1}=H$, то есть, M_2 — порождающая система, то есть базис.

14 Теорема Риса

Лемма 14.1. Пусть L — линейное множество (над $\mathbb R$ или $\mathbb C$), $f,g:L\to\mathbb R(\mathbb C)$ — линейные функционалы, Ker $f\subset \mathrm{Ker}\, g$. Тогда существует скаляр α такой, что $g(x)=\alpha f(x)\ \forall x$.

Доказательство.

- 1. Если $f \equiv 0$, то $\operatorname{Ker} f = L = \operatorname{Ker} g \implies g \equiv 0$.
- 2. Если $f\not\equiv 0$, то $\exists x_0: f(x_0) \neq 0$. Возьмём $x \in L$, $y = x \frac{f(x)}{f(x_0)}x_0$. $f(y) = f(x) \frac{f(x)}{f(x_0)}f(x_0) = 0$ $\implies y \in \operatorname{Ker} f \subset \operatorname{Ker} g \implies g(y) = 0$. Отсюда $0 = g(y) = g(x) \frac{f(x)}{f(x_0)}g(x_0)$ и $\forall x \in G(x) = \frac{g(x_0)}{f(x_0)}f(x)$.

Теорема 14.2 (Риса). Пусть H -гильбертово пространство.

- 1. $\forall y_0 \in H \ \exists f \in H^* : f(x) = (x, y_0), \ \|f\| = \|y_0\|_H.$
- 2. $\forall f \in H^* \exists y_0 \in H : \forall x \in H \ f(x) = (x, y_0).$

Доказательство.

1. f линеен, так как скалярное произведение линейно по первому аргументу. Непрерывность f очевидна из неравенства Коши-Буняковского:

$$|f(x)| = |(x, y_0)| \le ||y_0|| ||x|| \implies ||f|| \le ||y_0||$$

$$\|f\| = \sup \frac{|f(x)|}{\|x\|} \geqslant \frac{|f(y_0)|}{\|y_0\|} = \frac{(y_0, y_0)}{\|y_0\|} = \|y_0\|$$

2. В случае, когда $f\equiv 0$ ясно, что $y_0=0$. Иначе: Ker $f\neq H$. Тогда существует $z\neq 0$ такой, что $z\perp Ker$ f. Почему это так? Поскольку f непрерывен, то Ker f — замкнутое множество, значит, на него можно спроецировать вектор. Взяв $z'\notin Ker$ f, разложим его на две составляющие, одна из которых ортогональна Ker f. Примем её за z.

Теперь определим g как g(x)=(x,z). Если f(x)=0, то $x\in {\rm Ker}\, f$, то есть $x\perp z$, откуда g(x)=0 и $x\in {\rm Ker}\, g$. Значит, ${\rm Ker}\, f\subset {\rm Ker}\, g$.

Отсюда по лемме существует α : $g(x) = \alpha f(x) \dots$

15 Сопряжённый оператор

Теорема 15.1. Пусть $U \in B(H,H)$, где H — гильбертово пространство. Тогда существует единственный оператор $V \in B(H,H)$ такой, что $\forall x,y \in H$ (Ux,y) = (x,Vy). При этом $\|V\| \leqslant \|U\|$.

Определение 15.2. V называется сопряженным оператором к U. Обозначение: $V = U^*$.

Предложение 15.3. Пусть $x, y \in H$. Если $(x, z) = (y, z) \forall z \in H$, то x = y.

etaоказательство. Из условия следует, что $(x-y,z)=0 orall z\in \mathsf{H},$ откуда $x-y\perp x-y$. \Box

Доказательство теоремы. Возьмём вектор $y \in H$ и построим по нему функционал $f \in H^*$: f(x) = (Ux, y). Очевидно, что он линеен. Проверим непрерывность:

$$|f(x)| = |(Ux, y)| \le ||Ux|| ||y|| \le (||U|| ||y||) ||z||$$

Мы имеем линейный непрерывный функционал. По теореме Риса существует вектор z, который его задаёт: $f(x) = (x, z) \forall x$. Таким образом:

$$\forall x \quad (Ux, y) = (x, z)$$

Определим V(y)=z, то есть, $\forall x,y \ (Ux,y)=(x,V(y))$. Проверим, что V — линейный непрерывный функционал.

$$\begin{split} (x,V(\alpha_1y_1+\alpha_2y_2)) &= (Ux,\alpha_1x_1+\alpha_2x_2) = \overline{\alpha_1}(Ux,y_1) + \overline{\alpha_2}(Ux,y_2) = \\ \overline{\alpha_1}(x,V(y_1)(+\overline{\alpha_2}(x,V(y_2)=(x,\alpha_1V(y_1)+\alpha_2V(y_2)) \\ \end{split}$$

Так как это выполнено для любого x, то $V(\alpha_1y_1+\alpha_2y_2)=\alpha_1V(y_1)+\alpha_2V(y_2)$ Непрерывность V:

$$\|Vx\|^2 = (Vx, Vx) = (UVx, x) \leqslant \|UVx\| \cdot \|x\| \leqslant \|U\| \|Vx\| \|x\|$$

$$\|Vx\| \leqslant \|U\| \|x\|$$

Отсюда $\|V\|\leqslant \|U\|$ и непрерывность доказана.

Докажем единственность V. Пусть существуют V_1 , V_2 такие, что $\forall x, y \ (x, V_1 y) = (Ux, y) = (x, V_2 y)$. Ясно, что $\forall y V_1 y = V_2 y$.

Предложение 15.4 (Свойства сопряжённого оператора).

- 0. $I^* = I$, $0^* = 0$, $P_I^* = P_I$.
- 1. $(U^*)^* = U$.
- 2. $\|U^*\| = \|U\|$.
- 3. $(\alpha_1 U_1 + \alpha_2 U_2)^* = \overline{\alpha_1} U_1^* + \overline{\alpha_2} U_2^*$.
- 4. $U, V \in B(H, H)$. Тогда $(VU)^* = U^*V^*$.
- 5. $U \in B(H,H), \ U^{-1} \in B(H,H). \ Torда \ \exists (U^*)^{-1} \in B(H,H), \ npuчём \ (U^*)^{-1} = (U^{-1})^*.$
- 6. (Формула двойственности) $(U(H))^{\perp} = \operatorname{Ker} U^*, (U^*(H))^{\perp} = \operatorname{Ker} U.$
- 7. $(\operatorname{Ker} U^*)^{\perp} = \overline{U(H)}$, $(\operatorname{Ker} U)^{\perp} = \overline{U^*(H)}$

Доказательство.

- 0. Очевидно.
- 1. $\forall x,y \ (Ux,y)=(x,U^*y),$ откуда $\underbrace{(U^*y,x)}_{(y,U^{**}x)}=(y,Ux) \ \forall x,y.$
- $2. \ \|U\|\geqslant \|U^*\|\geqslant \|U^{**}\|=\|U\|.$
- 3. $(x,(\alpha_1U_1+\alpha_2U_2)^*y)=((\alpha_1U_1+\alpha_2U_2)x,y)=\alpha_1((U_1x,y)+\alpha_2(U_2x,y)=\alpha_1(x,U_1^*y)+\alpha_2(x,U_2^*y)=(x,\overline{\alpha_1}U_1^*y+\overline{\alpha_2}U_2^*y).$

- 4. $(x, (VU)^*y) = (VUx, y) = (Ux, V^*y) = (x, U^*V^*y).$
- 5. $UU^{-1} = U^{-1}U = I$. $(U^{-1})^*U^* = U^*(U^{-1})^* = I^* = I$, откуда $(U^*)^{-1} = (U^{-1})^*$.
- 6. $x \in \text{Ker } U^* \iff U^*x = 0 \iff \forall y \in H(y, U^*x) = 0 \iff \forall y (Uy, x) = 0 \iff x \perp U(H) \iff x \in (U(H))^{\perp}.$
- 7. Следует из предыдущего свойства с учётом $(L^{\perp})^{\perp} = \overline{L}$.

Определение 15.5. Оператор U называется замкнутым, если $\overline{U(H)} = U(H)$. В этом случае $(\mathop{\rm Ker} U^*)^\perp = U(H)$.

Замечание 15.6. Рассмотрим задачу Ux = f. Для каких f существует решение? $f \in U(H)$, то есть $f \perp \operatorname{Ker} U^*$ — это условие разрешимости.

Пример 15.7. Рассмотрим оператор: $Ux(t)=\int\limits_{\Omega}K(s,t)x(s)\,ds$, где $\Omega\in\mathbb{R}^m$, $K:\Omega\times\Omega\to\mathbb{R}(\mathbb{C}).$ $U:L^2(\Omega)\to L^2(\Omega)$

$$(Ux,y) = \int\limits_{\Omega} \left(\int\limits_{\Omega} K(s,t)x(s) \, ds \right) \overline{y(t)} \, dt = \int\limits_{\Omega} x(s) \int\limits_{\underline{\Omega}} K(s,t) \overline{y(t)} \, dt \, ds = (x,U^*y)$$

16 Собственные числа и собственные векторы

Определение 16.1. Пусть X — линейное нормированное пространство, $U \in B(X,X)$ — оператор. λ называется собственным числом оператора U, если существует $x \in X$, $x \neq 0$ такой, что $Ux = \lambda x$. x называется собственным вектором. $X_{\lambda} = \{x \in X \, \big| \, Ux = \lambda x\} = \mathrm{Ker}(U - \lambda I)$ — собственное подпространство. $\dim X_{\lambda}$ называется кратностью собственного числа λ .

Теорема 16.2. Пусть H — гильбертово пространство, оператор U самосопряжён. Тогда:

- 1. Все собственные числа оператора U вещественны.
- 2. Если λ,μ собственные числа, $\lambda\neq\mu$ и x,y соответствующие им собственные векторы, то $x\perp y$

Доказательство.

1. Пусть λ — собственное число, χ — собственный вектор.

$$\lambda \|x\|^2 = (\lambda x, x) = (Ux, x) = (x, Ux) = (x, \lambda x) = \overline{\lambda} \|x\|^2$$

Отсюда $\lambda = \overline{\lambda}$.

2.

$$\lambda(x,y) = (\lambda x, y) = (Ux, y) = (x, Uy) = (x, \mu y) = \mu(x, y)$$

Отсюда $(\lambda - \mu)(x, y) = 0$.

Предложение 16.3. Если λ — собственное число оператора U, то $\|U\| \geqslant |\lambda|$.

Доказательство.

$$\|\mathbf{U}\| = \sup \frac{\|\mathbf{U}\mathbf{x}\|}{\|\mathbf{x}\|} \geqslant \frac{\|\mathbf{U}\mathbf{y}\|}{\|\mathbf{y}\|} = \frac{|\lambda|\|\mathbf{y}\|}{\|\mathbf{y}\|} = |\lambda|$$

17 Компактность

Определение 17.1. Пусть X — нормированное пространство, $A\subset X$. Множество A называется компактным, если в любой последовательности $\{x_n\}\subset A$ существует сходящаяся подпоследовательность $x_{n_k}\to x\in A$.

Замечание 17.2. Если A — компактно, то оно замкнуто и ограничено. Обратное, вообще говоря, неверно.

Определение 17.3. Множество A называется nped komnakmhum, или omnocumenum komnakmhum, если \overline{A} компактно. Или, что равносильно, для любой последовательности $\{x_n\}\subset A$ существует последовательность номеров n_k такая, что $x_{n_k}\to x\in X$.

Пример 17.4. В \mathbb{R}^n предкомпактность равносильно ограниченности.

Предложение 17.5 (Критерий Хаусдорфа). Пусть X — нормированное пространство, $A \subset X$. А компактно тогда и только тогда, когда A замкнуто и для любого $\varepsilon > 0$ существует конечная ε -сеть.

Определение 17.6. Множество M называется ϵ -сетью для множества A, если $A \subset \bigcup_{x \in M} B_{\epsilon}(x)$ или, что то же самое, $\forall \alpha \in A \ \exists x \in M \colon |x - \alpha| < \epsilon$.

Любое множество является ε -сетью для самого себя.

Замечание 17.7. Конечная ε -сеть — это ε -сеть из конечного числа точек.

Замечание 17.8. В определении ε -сети можно требовать, чтобы сама ε -сеть M была подмножеством A, а можно не требовать. Критерий Хаусдорфа при этом остаётся в силе. Если есть $M \subset X - \varepsilon$ -сеть A из конечного числа элементов m_1, m_2, \ldots, m_k , то существует 2ε -сеть из k элементов $\{a_1, a_2, \ldots, a_k\} \subset A$. Достаточно выбрать $a_i \in A$ такие, что $\|a_i - m_i\| < \varepsilon$.

Следствие 17.9. Множество A предкомпактно тогда и только тогда, когда для любого $\varepsilon > 0$ у A существует конечная ε -сеть.

Предложение 17.10. Множество $A\subset X$ предкомпактно тогда и только тогда, когда для любого $\epsilon>0$ у A существует предкомпактная ϵ -сеть.

Доказательство.

- 1. (\Rightarrow) Очевидно, так как конечное множество всегда компактно.
- 2. (\Leftarrow) Возьмём предкомпактную ϵ -сеть M_{ϵ} множества A. Тогда существует N_{ϵ} предкомпактная ϵ -сеть для M_{ϵ} , откуда N_{ϵ} 2ϵ -сеть для A.

Теорема 17.11 (Арцела-Асколли). Пусть $\Omega \subset \mathbb{R}^n$ — ограниченная область. Рассмотрим пространство $X = C(\overline{\Omega})$ и множество $A \subset C(\overline{\Omega})$. А предкомпактно тогда и тогда, когда выполняются оба условия:

- 1. А ограничено (возможно, равномерно ограничено), то есть существует С такое, что $\forall x \in A \max_{t \in \overline{\Omega}} |x(t)| \leqslant C$
- 2. А равностепенно непрерывно.

Вспомним, что равномерная непрерывность функции х означает:

$$\forall \epsilon > 0 \quad \exists \delta > 0: \quad \forall s, t \in \overline{\Omega} \quad |s - t| < \delta \implies |x(s) - x(t)| < \epsilon$$

Равностепенная непрерывность:

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall x \in A \ \forall s, t \in \overline{\Omega} \quad |s - t| < \delta \implies |x(s) - x(t)| < \varepsilon$$

Таким образом, по ε строится δ , общее для всех $x \in A$.

Доказательство теоремы. Мы докажем только необходимость. Возьмём $\frac{\varepsilon}{3}$ -сеть $M\subset A$: x_1,x_2,\ldots,x_k . Мы можем построить $\delta_1,\delta_2,\ldots,\delta_k$ и взять $\delta=\min\{\delta_1,\delta_2,\ldots,\delta_k\}$. $\forall x\in A\ \exists j\colon \|x_j-x\|<\frac{\varepsilon}{3}\ \forall s,t\in\overline{\Omega}:|s-t|<\delta$. Получаем:

$$|x(s)-x(t)|\leqslant |x(s)-x_j(s)|+|x_j(s)-x_j(t)|+|x_j(t)-x(t)|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$$

18 Компактные операторы

Определение 18.1. Оператор $U \in B(X,Y)$ называется компактным, если образ любого ограниченного $M \subset X$ является предкомпактным в Y.

Предложение 18.2 (Свойства компактных операторов).

- 1. U компактен \iff $U(B_X)$ предкомпактен. $(B_X = \{x \in X : ||x|| \leqslant 1\})$
- 2. U компактен \iff образ любой ограниченной последовательность $\{x_k\}\subset X$ имеет n_k такие, что $U(x_{n_k})$ сходится в Y.
- 3. Если $U_1,U_2\in B(X,Y)$ компактны, то U_1+U_2 и λU компактны.
- 4. Рассмотрим $U \in B(X,Y)$, B(Y,Z). Если U компактен, что VU компактен. Если V компактен, то VU компактен.
- 5. Тождественный оператор $I \in B(X,X)$ компактен тогда и только тогда, когда $\dim X < \infty$.
- 6. Если $U \in (X,Y)$ конечного ранга, то есть $\dim U(X) < \infty$, то U компактен.
- 7. Если $U_n, U \in B(X,Y), U_n \to U, U_n компактны, то U тоже компактен.$
- 8. Если $U \in B(H,H)$ компактный оператор в гильбертовом пространстве H, то U^* компактен. (Более общий случай этого утверждения называется теоремой Шаудера).

Доказательство.

- 1. (⇒) Очевидно.
 - (\Leftarrow) Так как M ограничено, то существует R такое, что $M\subset B_R=RB_X$. $U(M)\subset RU(B_X)$. Но $U(B_X)-\frac{\epsilon}{R}$ -сеть.

- 2. (\Rightarrow) $M = \{x_k\}$ ограниченное множество, отсюда $U(M) = \{Ux_k\}$ предкомпактно в Y, значит, из последовательности $y_k = Ux_k \in U(M)$ можно выделить сходящуюся подпоследовательность.
 - (\Leftarrow) Возьмём $y_k \in U(M)$. Существует $x_k \in M$ такое, что $y_k = Ux_k$. Значит, $\{x_k\}$ ограниченная последовательность в X, и существует n_k такое, что Ux_{n_k} сходится. Тогда $y_{n_k} = Ux_{n_k}$.
- 3. Упражнение.
- 4. Докажем для компактного U. $VU \in B(X,Z)$. Возьмём ограниченную последовательность $\{x_k\} \subset X$. Подействуем на неё оператором U: $\{Ux_k\} \subset Y$. $\exists n_k$: Ux_{n_k} сходится в Y. Значит, VUx_{n_k} тоже сходится. Теперь рассмотрим случай компактного V. Аналогично возьмём ограниченную последовательность $\{x_k\} \subset X$. $\{Ux_k\}$ ограничена в Y, значит, $\exists n_k$ такие, что $V(Ux_{n_k})$ сходится в Z.
- 5. Докажем для случая гильбертова пространства. Достаточность очевидна из анализа. Пусть H бесконечномерное гильбертово пространство. Существуют e_1, e_2, \ldots такие, что $(e_j, e_k) = \delta_{j,k}$. Последовательность $\{e_j\}$ ограничена, но извлечь из неё сходящуюся подпоследовательность нельзя, так как всегда $\|e_j e_k\| = \sqrt{2}$, из чего следует, что единичный шар B_H не предкомпактен и из первого свойства оператор U некомпактен.
- 6. Очевидно.
- 7. Известно, что множества $U_n(Bx)$ предкомпактны. Мы хотим доказать, что $U(B_x)$ предкомпактно, то есть, для любого $\varepsilon > 0$ существует предкомпактная ε -сеть для $U(B_x)$, то есть существует n такое, что $\|U_n U\| < \varepsilon$ или, что то же самое, $\forall x \in X$ $\|Ux U_n x\| < \varepsilon \|x\| \leqslant \varepsilon$. Тогда $U_n(B_X) \varepsilon$ -сеть для $U(B_X)$.
- 8. Возьмём $\{x_n\}$ ограниченную последовательность. Мы хотим выделить такую последовательность номеров n_k , что $U_{n_k}^*$ сходится.

$$\|U^*x\|^2 = (U^*x, U^*x) = (UU^*x, x) \le \|UU^*x\| \cdot \|x\|$$

Возьмём произвольные т, п. Имеет место оценка:

$$\|\mathbf{U}^* \mathbf{x}_n - \mathbf{U}^* \mathbf{x}_m\|^2 \le \|\mathbf{U}\mathbf{U}^* \mathbf{x}_n - \mathbf{U}\mathbf{U}^* \mathbf{x}_m\| \cdot \|\mathbf{x}_n - \mathbf{x}_m\|$$

По свойству 4 UU^* — компактный оператор, то есть, существует n_k такое, что UU^*x_n сходится, что завершает доказательство.

19 Примеры компактных операторов

1. Рассмотрим пространства $X = C^1[0,1]$ и Y = C[0,1] с оператором вложения $j:C^1[0,1] \to C[0,1]$, jx = x. Этот оператор будет компактным. Вспомним нормы в рассматриваемых пространствах:

$$||x||_{C^1} = \max |x'| + \max |x|; \quad ||x||_C = \max |x|$$

Предкомпактно ли $j(B_X)$? Воспользуемся теоремой Арцела-Асколли, показав равностепенную непрерывность:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 : \forall x \in j(B_X) \quad \forall s, t \in [0, 1] : |s - t| < \delta \quad |x(s) - x(t)| < \varepsilon$$

Здесь $x\in \mathfrak{j}(B_X)$ влечёт $\max|x'|\leqslant 1$. Взяв $\delta=\epsilon$, получим $|s-t|<\epsilon$, откуда $|x(s)-x(t)|=|x'(\xi)||s-t|\leqslant |s-t|.$

- 2. Аналогично, пусть $X=C^{\alpha}[0,1],\ Y=L^2(0,1)$ и $j':C^1[0,1]\to L^2(0,1),\ j'x=x.$ Оператор j также компактен.
- 3. Интегральный оператор с непрерывным ядром. Пусть $\Omega \subset \mathbb{R}^m$, $\overline{\Omega}$ компакт. Рассматриваем простанства $C(\overline{\Omega})$, $L^2(\Omega)$. Пусть $K \in C(\overline{\Omega} \times \overline{\Omega})$ ядро. Рассмотрим интегральный оператор $(Ux)(t) = \int\limits_{\Omega} K(s,t)x(s)\,ds$. Проверим компактность оператора U при действии его из $L^2(\Omega)$ в $C(\overline{\Omega})$. Компактность при действии $C(\overline{\Omega}) \to C(\overline{\Omega})$ и $L^2(\Omega) \to L^2(\Omega)$ будет следствием. Воспользуемся теоремой Арцела-Асколли. Пусть B_X шар в $L^2(\Omega)$. U_1B_X) предкомпактен в $C(\overline{\Omega})$.

$$\begin{split} |Ux(t_1)-Ux(t_2)| \leqslant \int\limits_{\Omega} |K(s,t_1)-K(s,t_2)||x(s)|\,ds \leqslant \underbrace{\|x\|_2}_{\leqslant 1} \cdot \left(\int\limits_{\Omega} |K(s,t_1)-K(s,t_2)|^2\,ds\right)^{\frac{1}{2}} \\ \forall \epsilon > 0 \quad \exists \delta: |t_1-t_2| < \delta \implies \left(\int\limits_{\Omega} |K(s,t_1)-K(s,t_2)|^2\,ds\right)^{\frac{1}{2}} < \epsilon \end{split}$$

Другой способ доказательства заключается в приближении U конечномерными операторами. Существует многочлен P такой, что $\|P-K\|_{C(\overline{\Omega} \times \overline{\Omega})} < \varepsilon$ Рассмотрим конечномерный оператор $U_p x(t) = \int\limits_{\Omega} P(s,t) x(s) \, ds$ с вырожденным ядром P(s,t) ==

$$\sum\limits_{k=1}^{N}a_{k}(s)b_{k}(t).$$
 Тогда будет иметь место $\|U-U_{\mathfrak{p}}\|\leqslant C_{\epsilon}.$

4. Интегральный оператор с ядром со слабой особенностью. Пусть ядро $K(s,t) = \frac{A(s,t)}{|s-t|^{\alpha}}$, где $A \in C(\overline{\Omega} \times \overline{\Omega})$ и $\alpha < m$ — размерности пространства \mathbb{R}^m . Докажем, что операторы $U \in B(L^2(\Omega), L^2(\Omega)$ и $U \in B(C(\overline{\Omega}), C(\overline{\Omega}))$ компактны. Рассмотрим K_n :

$$K_n(s,t) = egin{cases} K(s,t), \ ext{ecam} \ |s-t| \geqslant rac{1}{n} \ rac{A(s,t)}{(rac{1}{n})lpha}, \ ext{ecam} \ |s-t| \leqslant rac{1}{n} \end{cases}$$

 K_n — непрерывные ядра, и соответствующие им операторы U_n будут компактными.

$$|Ux(t) - U_nx(t)| = \left| \int\limits_{\Omega} (K(s,t) - K_n(s,t))x(s) \, ds \right| = \left| \int\limits_{\Omega \cap B_{\frac{1}{n}}(t)} \right| = *$$

Для случая $C(\overline{\Omega}) o C(\overline{\Omega})$:

$$*\leqslant \|x\|\cdot\int\limits_{\Omega\cap B_{\frac{1}{n}}(t)}2|K(s,t)|\,ds\leqslant 2\|x\|\cdot\|A\|_{C(\overline{\Omega}\times\overline{\Omega})}\cdot\int\limits_{B_{\frac{1}{n}}(t)}\frac{1}{|s-t|^{\alpha}}\,ds\leqslant$$

$$\leq 2||x|| \cdot ||A|| \cdot \frac{\left(\frac{1}{n}\right)^{m-\alpha}}{m-\alpha} \cdot |\Omega|$$

Для случая $\mathsf{L}^2(\Omega) o \mathsf{L}^2(\Omega)$:

$$*\leqslant \int\limits_{B_{\frac{1}{n}}(t)}|K(s,t)-K_n(s,t)||x(s)|\,ds\leqslant 2\int\limits_{B_{\frac{1}{n}}(t)}(K(s,t)||x(s)|\,ds\leqslant$$

$$\begin{split} \leqslant 2 \int\limits_{B_{\frac{1}{n}}(t)} |K(s,t)|^{\frac{1}{2}} |K(s,t)|^{\frac{1}{2}} |x(s)| \, ds \leqslant 2 \bigg(\int\limits_{B_{\frac{1}{n}}(t)} |K(s,t)| \, ds \bigg)^{\frac{1}{2}} \bigg(\int\limits_{B_{\frac{1}{n}}(t)} |K(s,t)| \cdot |x(s)|^2 \, ds \bigg)^{\frac{1}{2}} \\ \|U_n x - U x\|^2 \leqslant C \bigg(\frac{1}{n} \bigg)^{m-\alpha} \int\limits_{\Omega} \int\limits_{B_{\frac{1}{n}}(t)} |K(s,t)| |x(s)|^2 \, ds \, dt = \\ & = C \bigg(\frac{1}{n} \bigg)^{m-\alpha} \int\limits_{\Omega} \int\limits_{\Omega} \chi_{B_{\frac{1}{n}}(t)} (s) K(s,t) |x(s)|^2 \, ds \, dt = \dots \end{split}$$

20 Собственные числа и собственные векторы компактных самосопряжённых операторов

Определение 20.1. Пусть $U:X\to X$ — оператор, $U\in B(X,X)$. λ называется собственным числом оператора U, если существует такое $x\neq 0$ (называемое собственным вектором), что $Ux=\lambda x$.

Предложение 20.2.

- 1. $|\lambda| < \|U\|$;
- 2. Если $U=U^*$, то $\lambda\in\mathbb{R}$ (для гильбертова пространства).
- 3. Ecau $U = U^*$, $Ux = \lambda x$, $Uy = \mu y$ $u \lambda \neq \mu$, mo $x \perp y$.

Лемма 20.3. Eсли $U\in B(H,H)$, где H — гильбертово пространство, u $U=U^*$, то $\|U\|=\sup_{\|x\|=1}|(Ux,x)|$

Доказательство. Пусть $\sup_{\|x\|=1} |(Ux, x)| = A$.

- 1. $|(Ux, x)| \le ||Ux|| \cdot ||x|| \le ||U|| \cdot ||x||^2 \implies A \le ||U||$.
- 2. $U=U^* \implies (Ux,x) \in \mathbb{R} \quad \forall x, \ \text{tak kak} \ (Ux,x)=(x,Ux)=\overline{(Ux,x)}$
- 3. $\forall x \in H \ |(Ux, x)| \leqslant A \|x\|^2 \iff |(U(\frac{x}{\|x\|}, \frac{x}{\|x\|})| \leqslant A$
- 4. Возьмём $x, y \in H$.

$$(U(x+y),x+y) = (Ux,x) + \underbrace{(Ux,y) + (Uy,x)}_{2\operatorname{Re}(Ux,y)} + (Uy,y)$$

$$(U(x-y), x-y) = (Ux, x) - (Ux, y) - (Uy, x) + (Uy, y)$$

 $|4\operatorname{Re}(Ux,y)| = |(U(x+y),x+y) - (U(x-y),x-y)| \leqslant A(\|x+y\|^2 + \|x-y\|^2) = 2A(\|x\|^2 + \|y\|^2)$

Положим теперь $y = t \cdot Ux$.

$$4t\|Ux\|^2\leqslant 2A(\|x\|^2+t^2\|Ux\|^2)$$

$$(4t-2At^2)\|Ux\|^2\leqslant 2A\|x\|^2$$

Взяв $t = \frac{1}{A}$, получим:

$$\left(\frac{4}{A}-\frac{2}{A}\right) \lVert Ux\rVert^2 \leqslant 2A\lVert x\rVert^2 \implies \lVert Ux\rVert^2 \leqslant A^2\lVert x\rVert^2 \implies \lVert U\rVert \leqslant A$$

Теорема 20.4. Если $U \in B(H,H)$ — компактный самосопряжённый оператор на гильбертовом пространстве H, то y него существует собственное число. Более того,

это собственное число равно $\| \mathbf{U} \|$ или $- \| \mathbf{U} \|$.

Доказательство. Воспользуемся самосопряжённостью. $\|\mathbf{U}\| = \sup_{\|\mathbf{x}\|=1} |(\mathbf{U}\mathbf{x},\mathbf{x})|$. Это зна-

чит, что существует последовательность на единичной сфере $\{x_k\}$, $\|x_k\|=1$ такая, что $(Ux_k,x_k) \to \mu, \ \mu=\pm\|U\|$. Докажем, что она сходится.

$$0 \leqslant \| Ux_k - \mu x_k \|^2 = \underbrace{(Ux_k, Ux_k)}_{\| Ux_k \|^2 \leqslant \| U \|^2 \cdot \| x_k \|^2 = \mu^2} - \underbrace{(\underbrace{(Ux_k, \mu x_k) + (\mu x_k, Ux_k)}_{2\mu(Ux_k, x_k) \to 2\mu^2}) + |\mu|^2 \underbrace{\| x_k \|^2}_{1} \to 0$$

Мы получили, что $Ux_k - \mu x_k = \eta_k \to 0$. Самое время воспользоваться компактностью. Выделим подпоследовательность n_k такую, что Ux_{n_k} сходится. Получим, что μx_{n_k} тоже сходится. Перейдём к пределу в $Ux_{n_k} - \mu x_{n_k} = \eta_{n_k}$: $Ux_0 - \mu x_0 = 0$. Заметим, что $x_0 \neq 0$, потому что $\|x_0\| = 1$. Получили $\mu = \pm \|U\|$, что и требовалось.

Замечание 20.5. Пусть U — компактный самосопряжённый оператор на гильбертовом пространстве и λ_1 — его собственное число: $|\lambda_1| = \|U\|$, e_1 — соответствующий ему собственный вектор: $\|e_1\| = 1$. $Ue_1 = \lambda_1 e_1 \in \text{Lin}\{e_1\}$. Возьмём $x \perp \text{Lin}\{e_1\}$. Тогда $Ux \perp \text{Lin}\{e_1\}$, так как:

$$(Ux, e_1) = (x, Ue_1) = \lambda_1(x, e_1) = 0$$

Пусть $H_1 = \{e_1\}^{\perp}$. $U(H_1) \subset U_1$ и $U_1 = U|_{H_1}$ — компактный самосопряжённый оператор на H_1 , у которого существует собственное число λ_2 :

$$|\lambda_2| = \|U_1\| = \sup_{x \in H_1, \|x\| = 1} |(Ux, x)| = \sup_{x \perp e_1, \|x\| = 1} |(Ux, x)|$$

Пусть e_2 — собственный вектор, соотвествующий λ_2 , $H_2 = \{e_1, e_2\}^\perp$, $U(H_2) \subset H_2$, $U|_{H_1} = U_2$ — компактный самосопряжённый оператор на U_2 , у которого существует собственное число λ_3 : $|\lambda_3| = \|U_2\| = \sup_{\mathbf{x} \perp \{e_1, e_2\}, \|\mathbf{x}\| = 1} |(\mathbf{U}\mathbf{x}, \mathbf{x})|$, и пусть e_3 — собственный вектор, ему соответствующий.

Мы получили последовательность собственных чисел λ_i и собственных векторов e_i

Теорема 20.6. Пусть U- компактный самосопряжённый оператор на гильбертовом пространстве. Тогда $\forall \varepsilon>0$ множества вида $[-\|U\|,-\varepsilon]\cup[\varepsilon,\|U\|]$ содержат лишь конечное количество собственных чисел.

Доказательство. Если собственных чисел в таком множестве бесконечно много, то существует последовательность $\lambda_k \to \lambda \in [-\|\mathbf{U}\|, -\epsilon] \cup [\epsilon, \|\mathbf{U}\| \ (\lambda_k - \mathbf{p}$ азличные собственные числа). Пусть e_k — соответствующие нормированные собственные векторы, попарно ортогональные. Выделим подпоследовательность n_k такую, что $\mathbf{U}e_{n_k}$ сходится. $\frac{1}{\lambda_{n_k}}\mathbf{U}e_{n_k} = e_{n_k}$, отсюда e_{n_k} сходится, что невозможно для ортонормированных векторов.

Теорема 20.7. Пусть U — компактный самосопряжённый оператор на гильбертовом пространстве. Тогда все ненулевые собственные числа имеют конечную кратность.

Вспомним, что кратность собственного числа есть размерность собственного подпространства $H_{\lambda} = \operatorname{Ker}(U - \lambda I) = \{x | Ux = \lambda x\}.$

Доказательство теоремы. Пусть $\lambda \neq 0$ — собственное число U. $\mathrm{Ker}(U-\lambda I) = \mathrm{Ker}\left(I-\frac{1}{\lambda}U\right)$ — имеет конечную размерность по теореме Фредгольма.

Замечание 20.8. Процедура из замечания 20.5 собирает все ненулевые собственные числа. Возможны два варианта:

- 1. $\lambda_i \neq 0$, $\lambda_i \rightarrow 0$.
- 2. Начиная с некоторого ј все собственные числа будут нулевыми.

Теорема 20.9 (Гильберта-Шмидта). Пусть H- гильбертово пространство, U- компактный оператор на нём. Рассмотрим упорядоченную последовательность собственных чисел $\{\lambda_j\}$: $|\lambda_1| \geqslant |\lambda_2| \geqslant \ldots \geqslant |\lambda_k| \to 0$; собственные векторы e_1, e_2, \ldots , $(e_j, e_k) = \delta_{j,k}$. Любой $x \in H$ можно разложить в ряд Фурье:

$$x = z + \sum_{j=1}^{\infty} (x, e_j) e_j$$

 Πpu этом $z\in {
m Ker}\, {
m U}$

Доказательство. Вудем пользоваться обозначениями из замечания 20.5. Рассмотрим частичную сумму $x_n = \sum\limits_{j=1}^n (x,e_j)e_j$. Заметим, что $x-x_n \in H_n$, то есть $x-x_n \perp e_1,\ldots,e_n$. Это означает, что $\|U(x-x_n)\| \leqslant \|U_n\| \cdot \|x-x_n\| = |\lambda_{n+1}| \cdot \|x-x_n\| \leqslant |\lambda_{n+1}| \cdot \|x\| \to 0$.

$$x = z + \lim_{n \to \infty} x_n$$

$$Ux = Uz + \lim_{n \to \infty} Ux_n$$

$$Uz = \lim_{n \to \infty} (Ux - Ux_n) = 0$$

Здесь мы воспользовались непрерывностью U.