TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG TRUNG BÌNH MỰC 5-6 ĐIỂM

Xét phương trình bậc hai $az^2 + bz + c = 0$, (*) với $a \neq 0$ có: $\Delta = b^2 - 4ac$.

- Nếu $\Delta = 0$ thì (*) có nghiệm kép: $z_1 = z_2 = -\frac{b}{2a}$.
- Nếu $\Delta \neq 0$ và gọi δ là căn bậc hai Δ thì (*) có hai nghiệm phân biệt:

$$z_1 = \frac{-b + \delta}{2a} \lor z_2 = \frac{-b - \delta}{2a}.$$

🖎 Luu ý

- Hệ thức Viét vẫn đúng trong trường phức \mathbb{C} : $z_1 + z_2 = -\frac{b}{a}$ và $z_1 z_2 = \frac{c}{a}$
- Căn bậc hai của số phức z = x + yi là một số phức w và tìm như sau:
 - + Đặt $w = \sqrt{z} = \sqrt{x + yi} = a + bi$ với $x, y, a, b \in \mathbb{R}$.
 - + $w^2 = x + yi = (a+bi)^2 \Leftrightarrow (a^2 b^2) + 2abi = x + yi \Leftrightarrow \begin{cases} a^2 b^2 = x \\ 2ab = y \end{cases}$.
 - + Giải hệ này với $a,b \in \mathbb{R}$ sẽ tìm được a và b $\Rightarrow w = \sqrt{z} = a + bi$
- (THPT Phan Bội Châu Nghệ An -2019) Gọi z_1 ; z_2 là hai nghiệm của phương trình Câu 1. $z^2+2z+10=0$. Tính giá trị biểu thức $\left.A=\left|z_1\right|^2+\left|z_2\right|^2$.

A.
$$10\sqrt{3}$$
.

B.
$$5\sqrt{2}$$
.

C.
$$2\sqrt{10}$$
.

Lời giải

Chon D

$$z^{2} + 2z + 10 = 0 \Leftrightarrow \begin{bmatrix} z_{1} = -1 + 3i \\ z_{2} = -1 - 3i \end{bmatrix}$$

Do đó:
$$A = |z_1|^2 + |z_2|^2 = |-1 + 3i|^2 + |-1 - 3i|^2 = 20$$
.

Suy ra
$$|z_1| = |z_2| = \frac{\sqrt{6}}{3}$$
. Vậy $P = \frac{4}{3}$.

(SGD và ĐT Đà Nẵng 2019) Nghiệm phức có phần ảo dương của phương trình $z^2 - 2z + 5 = 0$ là: Câu 2.

$$\underline{\mathbf{A}}$$
. $1+2i$.

B.
$$-1 + 2i$$
.

C.
$$-1-2i$$

D. 1-2i.

Lời giải

Chon A

 $z^2 - 2z + 5 = 0 \iff \begin{bmatrix} z = 1 + 2i \\ z = 1 - 2i \end{bmatrix}$. Vậy nghiệm phức có phần ảo dương của phương trình là z = 1 + 2i.

- (Mã 101 2020 Lần 1) Gọi z_0 là nghiệm phức có phần ảo dương của phương trình Câu 3. $z^2 + 6z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn số phức $1 - z_0$ là
 - **A.** N(-2;2).
- **B.** M(4;2).
- <u>C</u>. P(4;-2). **D**. Q(2;-2).

Lời giải

Chọn C

NGUYĒN BẢO VƯƠNG - 094679848

Ta có:
$$z^2 + 6z + 13 = 0 \Leftrightarrow \begin{bmatrix} z = -3 + 2i \\ z = -3 - 2i \end{bmatrix}$$
.

Do z_0 là nghiệm phức có phần ảo dương của phương trình đã cho nên $z_0 = -3 + 2i$.

Từ đó suy ra điểm biểu diễn số phức $1-z_0=4-2i$ là điểm P(4;-2).

(Mã 102 - 2020 Lần 1) Gọi z_0 là nghiệm phức có phần ảo dương của phương trình Câu 4. $z^2 - 6z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn số phức $1 - z_0$ là

A.
$$M(-2;2)$$
.

B.
$$Q(4;-2)$$
.

C.
$$N(4;2)$$
.

D.
$$P(-2;-2)$$
.

Lời giải

Chon D

Ta có
$$z^2 - 6z + 13 = 0 \Leftrightarrow \begin{bmatrix} z = 3 + 2i(TM) \\ z = 3 - 2i(L) \end{bmatrix}$$
.

Suy ra $1 - z_0 = 1 - (3 + 2i) = -2 - 2i$. Điểm biểu diễn số phức $1 - z_0$ là P(-2; -2).

(Mã 103 - 2020 Lần 1) Cho z_0 là nghiệm phức có phần ảo dương của phương trình Câu 5. $z^2 + 4z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức $1 - z_0$ là

A.
$$P(-1; -3)$$
.

B.
$$M(-1;3)$$
.

C.
$$N(3; -3)$$
.

Lời giải

Chon C

Ta có $z^2 + 4z + 13 = 0 \Leftrightarrow \begin{bmatrix} z = -2 + 3i \\ z = -2 - 3i \end{bmatrix}$. Do z_0 có phần ảo dương nên suy ra $z_0 = -2 + 3i$

Khi đó $1-z_0=1-\left(-2+3i\right)=3-3i$. Vậy điểm biểu diễn số phức $1-z_0$ là $N\left(3;-3\right)$

(Mã 104 - 2020 Lần 1) Gọi z_0 là nghiệm phức có phần ảo dương của phương trình Câu 6. $z^2 - 4z + 13 = 0$. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức $1 - z_0$ là

A.
$$M(3;-3)$$
. **B.** $P(-1;3)$. **C.** $Q(1;3)$

B.
$$P(-1;3)$$

C.
$$Q(1;3)$$

D.
$$N(-1;-3)$$
.

Lời giải

Ta có $z^2 - 4z + 13 = 0 \Leftrightarrow z = 2 \pm 3i$. Vậy $z_0 = 2 + 3i \Rightarrow 1 - z_0 = -1 - 3i$.

Điểm biểu diễn của $1-z_0$ trên mặt phẳng tọa độ là: N(-1;-3).

(**Mã 102 - 2020 Lần 2**) Gọi z_1 và z_2 là hai nghiệm phức của phương trình $z^2 - z + 3 = 0$. Khi đó Câu 7. $|z_1| + |z_2|$ bằng

A.
$$\sqrt{3}$$
 .

B.
$$2\sqrt{3}$$
.

Lời giải

Chọn B

Giải phương trình $z^2 - z + 3 = 0 \Leftrightarrow \begin{bmatrix} z = \frac{1}{2} + \frac{\sqrt{11}}{2}i \\ z = \frac{1}{2} - \frac{\sqrt{11}}{2}i \end{bmatrix}$.

Khi đó:
$$|z_1| + |z_2| = \left| \frac{1}{2} + \frac{\sqrt{11}}{2}i \right| + \left| \frac{1}{2} - \frac{\sqrt{11}}{2}i \right| = 2\sqrt{3}$$
.

Câu 8. (**Mã 103 - 2020 Lần 2**) Gọi x_1 và x_2 là hai nghiệm phức của phương trình $z^2 - z + 2 = 0$. Khi đó $|z_1| + |z_2|$ bằng

A. 2.

B. 4.

 $\underline{\mathbf{C}}$. $2\sqrt{2}$

D. $\sqrt{2}$.

Chon C

Ta có
$$z^2 - z + 2 = 0 \Leftrightarrow$$

$$z = \frac{1 - i\sqrt{7}}{2}$$

$$z = \frac{1 + i\sqrt{7}}{2}$$

Không mất tính tổng quát giả sử $z_1 = \frac{1 - i\sqrt{7}}{2}$ và $z_2 = \frac{1 + i\sqrt{7}}{2}$

$$\text{Khi } \text{d\'o} \; \left|z_1\right| + \left|z_2\right| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{-\sqrt{7}}{2}\right)^2} \; + \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{7}}{2}\right)^2} \; = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \; .$$

Câu 9. (**Mã 104 - 2020 Lần 2**) Gọi z_1, z_2 là hai nghiệm phức của phương trình $z^2 + z + 3 = 0$. Khi đó $|z_1| + |z_2|$ bằng

A. 3.

B. $2\sqrt{3}$

 $\mathbb{C} \sqrt{3}$

D. 6.

Lời giải

Chon B

Ta có
$$z^2 + z + 3 = 0 \Leftrightarrow z = -\frac{1}{2} \pm \frac{\sqrt{11}}{2}i$$
. Suy ra $|z_1| + |z_2| = 2\sqrt{3}$

Câu 10. (Đề Tham Khảo 2020 Lần 2) Gọi z_0 là nghiệm phức có phần ảo âm của phương trình $z^2-2z+5=0$. Môđun của số phức z_0+i bằng

A. 2.

 $\mathbf{\underline{B}}$. $\sqrt{2}$

C. $\sqrt{10}$

D. 10.

Lời giải

Chọn B

Ta có:
$$z^2 - 2z + 5 = 0 \Leftrightarrow z^2 - 2z + 1 = -4 \Leftrightarrow (z - 1)^2 = 4i^2 \Leftrightarrow \begin{bmatrix} z - 1 = -2i \\ z - 1 = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} z = 1 - 2i \\ z = 1 + 2i \end{bmatrix}$$

Vì z_0 là nghiệm phức có phần ảo âm nên $z_0=1-2i \Rightarrow z_0+i=1-2i+i=1-i$.

Suy ra:
$$|z_0 + i| = |1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
.

Câu 11. (**Mã 104 2017**) Kí hiệu z_1 , z_2 là hai nghiệm của phương trình $z^2 + 4 = 0$. Gọi M, N lần lượt là điểm biểu diễn của z_1 , z_2 trên mặt phẳng tọa độ. Tính T = OM + ON với O là gốc tọa độ.

A. T = 8

B. 4

C. $T = \sqrt{2}$

D. T = 2

Lời giải

Chọn B

Ta có:
$$z^2 + 4 = 0 \Leftrightarrow \begin{bmatrix} z_1 = -2i \\ z_2 = 2i \end{bmatrix}$$
.

Suy ra M(0;-2); N(0;2) nên $T = OM + ON = \sqrt{(-2)^2 + \sqrt{2^2}} = 4$.

(**Mã 123 2017**) Phương trình nào dưới đây nhận hai số phức $1+\sqrt{2}i$ và $1-\sqrt{2}i$ là nghiệm. Câu 12.

A.
$$z^2 + 2z + 3 = 0$$

B.
$$z^2 - 2z + 3 = 0$$

C.
$$z^2 + 2z - 3 = 0$$
 D. $z^2 - 2z - 3 = 0$

D.
$$z^2 - 2z - 3 = 0$$

Lời giải

Chọn B

Theo định lý Viet ta có $\begin{cases} z_1 + z_2 = 2 \\ z_1, z_2 = 3 \end{cases}$, do đó z_1, z_2 là hai nghiệm của phương trình $z^2 - 2z + 3 = 0$

Câu 13. (**Mã 110 2017**) Kí hiệu z_1, z_2 là hai nghiệm phức của phương trình $3z^2 - z + 1 = 0$. Tính $P = |z_1| + |z_2|$.

A.
$$P = \frac{2}{3}$$

B.
$$P = \frac{\sqrt{3}}{3}$$

B.
$$P = \frac{\sqrt{3}}{3}$$
 C. $P = \frac{2\sqrt{3}}{3}$ **D.** $P = \frac{\sqrt{14}}{3}$

D.
$$P = \frac{\sqrt{14}}{3}$$

Lời giải

Chọn C

Xét phương trình $3z^2 - z + 1 = 0$ có $\Delta = (-1)^2 - 4.3.1 = -11 < 0$.

Phương trình đã cho có 2 nghiệm phức phân biệt

$$z_1 = \frac{1+i\sqrt{11}}{6} = \frac{1}{6} + \frac{\sqrt{11}}{6}i; \quad z_2 = \frac{1-i\sqrt{11}}{6} = \frac{1}{6} - \frac{\sqrt{11}}{6}i$$

Suy ra

$$P = \left| z_1 \right| + \left| z_2 \right| = \left| \frac{1}{6} + \frac{\sqrt{11}}{6}i \right| + \left| \frac{1}{6} - \frac{\sqrt{11}}{6}i \right| = \sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{\sqrt{11}}{6}\right)^2} + \sqrt{\left(\frac{1}{6}\right)^2 + \left(-\frac{\sqrt{11}}{6}\right)^2} = \frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}$$

(Mã 102 - 2019) Kí hiệu z_1, z_2 là hai nghiệm phức của phương trình $z^2 - 6z + 14 = 0$. Giá trị của Câu 14. $z_1^2 + z_2^2$ bằng

A. 36.

Ta có: $z^2 - 6z + 14 = 0 \Leftrightarrow \begin{bmatrix} z = 3 + \sqrt{5}i \\ z - 3 - \sqrt{5}i \end{bmatrix} \Rightarrow z_1^2 + z_2^2 = (3 + \sqrt{5}i)^2 + (3 - \sqrt{5}i)^2 = 8.$

(Mã 104 - 2019) Gọi z_1 , z_2 là hai nghiệm phức của phương trình $z^2 - 4z + 7 = 0$. Giá trị của Câu 15. $z_1^2 + z_2^2$ bằng

Hàm số đã cho đạt cực tiểu tại

A. 2.

B. 8.

C. 16.

D. 10.

Lời giải

Chọn A

Ta có
$$\Delta' = 4 - 7 = -3 = (\sqrt{3}i)^2$$
.

Do đó phương trình có hai nghiệm phức là $z_1 = 2 + \sqrt{3}i$, $z_2 = 2 - \sqrt{3}i$.

Suy ra
$$z_1^2 + z_2^2 = (2 + \sqrt{3}i)^2 + (2 - \sqrt{3}i)^2 = 4 + 4\sqrt{3}i - 3 + 4 - 4\sqrt{3}i - 3 = 2.$$

(Đề Tham Khảo 2017) Kí hiệu z_1 ; z_2 là hai nghiệm của phương trình $z^2 + z + 1 = 0$. Tính Câu 16. $P = z_1^2 + z_2^2 + z_1 z_2.$

B. P = -1

C. P = 0

D. P = 1

Chon C Cách 1

$$z^{2}+z+1=0 \Leftrightarrow \begin{bmatrix} z=-\frac{1}{2}+\frac{\sqrt{3}}{2}i\\ z=-\frac{1}{2}-\frac{\sqrt{3}}{2}i \end{bmatrix}$$

$$P = z_1^2 + z_2^2 + z_1 z_2 = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^2 + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^2 + \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 0$$

Cách 2: Theo định lí Vi-et: $z_1 + z_2 = -1$; $z_1, z_2 = 1$.

Khi đó $P = z_1^2 + z_2^2 + z_1 z_2 = (z_1 + z_2)^2 - 2z_1 z_2 + z_1 z_2 = 1^2 - 1 = 0$.

Câu 17. (Đề Tham Khảo 2019) Kí hiệu z_1 và z_2 là hai nghiệm phức của phương trình $z^2 - 3z + 5 = 0$. Giá trị của $|z_1| + |z_2|$ bằng:

A. 10

B. $2\sqrt{5}$.

D. 3.

Lời giải

Chon B

Xét phương trình $z^2 - 3z + 5 = 0$ ta có hai nghiệm là: $\begin{vmatrix} z_1 = \frac{3}{2} - \frac{\sqrt{11}}{2}i \\ z_2 = \frac{3}{2} + \frac{\sqrt{11}}{2}i \end{vmatrix}$ $\Rightarrow |z_1| = |z_2| = \sqrt{5} \Rightarrow |z_1| = 1$

 $\Rightarrow |z_1| = |z_2| = \sqrt{5} \Rightarrow |z_1| + |z_2| = 2\sqrt{5}$.

(Mã 105 2017) Kí hiệu z_1, z_2 là hai nghiệm phức của phương trình $z^2 - z + 6 = 0$. Tính Câu 18. $P = \frac{1}{z_1} + \frac{1}{z_2}$.

B. $-\frac{1}{6}$

D. $\frac{1}{12}$

Lời giải

Chọn A

Theo định lí Vi-et, ta có $\begin{cases} z_1 + z_2 = 1 \\ z_1 z_2 = 6 \end{cases}$ nên $P = \frac{1}{z_1} + \frac{1}{z_2} = \frac{z_1 + z_2}{z_1 \cdot z_2} = \frac{1}{6}$

(Đề Tham Khảo 2018) Gọi z_1 và z_2 là hai nghiệm phức của phương trình $4z^2 - 4z + 3 = 0$. Giá trị Câu 19. của biểu thức $|z_1| + |z_2|$ bằng:

A. $3\sqrt{2}$

B. $2\sqrt{3}$

C. 3

D. $\sqrt{3}$

Lời giải

Chọn D

Xét phương trình $4z^2 - 4z + 3 = 0$ ta có hai nghiệm là: $\begin{vmatrix} z_1 = \frac{1}{2} + \frac{\sqrt{2}}{2}i \\ z_2 = \frac{1}{2} - \frac{\sqrt{2}}{2}i \end{vmatrix}$

NGUYỄN BẢO VƯƠNG - 0946798489

$$\Rightarrow |z_1| = |z_2| = \frac{\sqrt{3}}{2} \Rightarrow |z_1| + |z_2| = \sqrt{3}$$

Câu 20. (**Mã 103 - 2019**) Gọi z_1, z_2 là 2 nghiệm phức của phương trình $z^2 - 4z + 5 = 0$. Giá trị của $z_1^2 + z_2^2$ bằng

A. 16.

B. 26.

C. 6.

Lời giải

D. 8.

Chọn C

$$\triangle' = b'^2 - ac = 4 - 5 = -1$$

Phương trình có 2 nghiệm phức $z_1 = -2 + i$, $z_2 = -2 - i$

nên
$$z_1^2 + z_2^2 = (-2+i)^2 + (-2-i)^2 = 4-4i+i^2+4+4i+i^2=8+2i^2=8-2=6$$

Câu 21. (**Mã 101 - 2019**) Gọi z_1, z_2 là hai nghiệm phức của phương trình $z^2 - 6z + 10 = 0$. Giá trị của $z_1^2 + z_2^2$ bằng:

A. 16.

B. 56.

C. 20.

D. 26.

Lời giải

Chọn A

Áp dụng định lý Viet áp dụng cho phương trình trên ta được: $\begin{cases} z_1+z_2=6\\ z_1z_2=10 \end{cases}.$

Khi đó ta có
$$z_1^2 + z_2^2 = (z_1 + z_2)^2 - 2z_1z_2 = 36 - 20 = 16$$
.

Câu 22. (Chuyen Phan Bội Châu Nghệ An 2019) Gọi z_1 ; z_2 là hai nghiệm của phương trình $z^2 + 2z + 10 = 0$. Tính giá trị biểu thức $A = |z_1|^2 + |z_2|^2$.

A. $10\sqrt{3}$.

B. $5\sqrt{2}$.

C. $2\sqrt{10}$.

D. 20.

Lời giải

$$z^{2} + 2z + 10 = 0 \Leftrightarrow \begin{bmatrix} z_{1} = -1 + 3i \\ z_{2} = -1 - 3i \end{bmatrix}$$

Do đó:
$$A = |z_1|^2 + |z_2|^2 = |-1 + 3i|^2 + |-1 - 3i|^2 = 20$$
.

Câu 23. (Chuyên Sơn La 2019) Ký hiệu z_1 , z_2 là nghiệm của phương trình $z^2 + 2z + 10 = 0$. Giá trị của $|z_1|.|z_2|$ bằng

A. 5.

B. $\frac{5}{2}$.

<u>C</u>. 10.

D. 20.

Lời giải

Phương trình $z^2 + 2z + 10 = 0 \Leftrightarrow \begin{bmatrix} z = -1 + 3i \\ z = -1 - 3i \end{bmatrix}$. Vậy $z_1 = -1 + 3i$, $z_2 = -1 - 3i$.

Suy ra
$$|z_1|.|z_2| = \sqrt{10}.\sqrt{10} = 10$$
.

Câu 24. Kí hiệu z_1 , z_2 là hai nghiệm phức của phương trình $z^2=-3$. Giá trị của $\left|z_1\right|+\left|z_2\right|$ bằng

A. 6.

B. $2\sqrt{3}$.

C. 3.

D. $\sqrt{3}$.

Lời giải

Ta có:
$$z^2 = -3 \Leftrightarrow \begin{bmatrix} z = i\sqrt{3} \\ z = -i\sqrt{3} \end{bmatrix} \Rightarrow |z_1| + |z_2| = |i\sqrt{3}| + |-i\sqrt{3}| = 2\sqrt{3}$$
.

(THPT Gia Lộc Hải Dương 2019) Gọi z_1 , z_2 là các nghiệm phức của phương trình Câu 25. $z^2 - 8z + 25 = 0$. Giá trị $|z_1 - z_2|$ bằng

A. 5.

C. 8.

D. 6.

Lời giải

Phương trình $z^2 - 8z + 25 = 0 \Leftrightarrow \begin{bmatrix} z_1 = 4 - 3i \\ z_2 = 4 + 3i \end{bmatrix}$.

Suy ra: $|z_1 - z_2| = |-6i| = 6$.

Câu 26. Biết z là số phức có phần ảo âm và là nghiệm của phương trình $z^2 - 6z + 10 = 0$. Tính tổng phần thực và phần ảo của số phức $w = \frac{z}{z}$.

A. $\frac{7}{5}$.

 $\underline{\mathbf{B}} \cdot \frac{1}{5}$.

 $C. \frac{2}{5}$.

D. $\frac{4}{5}$.

Lời giải

Ta có:
$$z^2 - 6z + 10 = 0$$

 \Leftrightarrow $\begin{cases} z = 3 - i \\ z = 3 + i \end{cases}$. Vì z là số phức có phần ảo âm nên $\Leftrightarrow z = 3 - i$

Suy ra $w = \frac{z}{z} = \frac{3-i}{3+i} = \frac{4}{5} - \frac{3}{5}i$

Tổng phần thực và phần ảo: $\frac{4}{5} + \left(-\frac{3}{5}\right) = \frac{1}{5}$.

(Chuyên Lê Quý Đôn Quảng Trị 2019) Gọi z_1 , z_2 là hai nghiệm phức của phương trình Câu 27. $z^2 - 4z + 5 = 0$. Tính

$$w = \frac{1}{z_1} + \frac{1}{z_2} + i\left(z_1^2 z_2 + z_2^2 z_1\right).$$

A. $w = -\frac{4}{5} + 20i$. **B.** $w = \frac{4}{5} + 20i$. **C.** w = 4 + 20i. **D.** $w = 20 + \frac{4}{5}i$.

Lời giải

Theo hệ thức Vi-et, ta có $\begin{cases} z_1 + z_2 = 4 \\ z_1 z_2 = 5 \end{cases}$.

Suy ra $w = \frac{z_2 + z_1}{z_1 z_2} + i(z_1 + z_2)z_1 z_2 = \frac{4}{5} + 20i$.

Câu 28. Với các số thực a,b biết phương trình $z^2 + 8az + 64b = 0$ có nghiệm phức $z_0 = 8 + 16i$. Tính môđun của số phức w = a + bi

A. $|w| = \sqrt{19}$

B. $|w| = \sqrt{3}$

C. $|w| = \sqrt{7}$ **D.** $|w| = \sqrt{29}$

NGUYỄN <mark>BẢO</mark> VƯƠNG - 0946798489

Chọn D

Theo Viet ta có
$$\begin{cases} z_1 + z_2 = -8a = 16 \\ z_1 \cdot z_2 = 64b = 64.5 \end{cases} \Rightarrow \begin{cases} a = -2 \\ b = 5 \end{cases}$$
. Vậy $|\mathbf{w}| = \sqrt{29}$.

Câu 29. (THPT Yên Khánh - Ninh Bình - 2019) Phương trình $z^2 + a.z + b = 0$, với a, b là các số thực nhận số phức 1+i là một nghiệm.

Tính a-b?.

A. -2.

B. -4.

C. 4.

D. 0.

Lời giải

Do số phức 1+i là một nghiệm của phương trình $z^2+a.z+b=0$.

Nên ta có: $(1+i)^2 + a(1+i) + b = 0 \Leftrightarrow a+b+(a+2)i = 0 \Leftrightarrow \begin{cases} a+b=0 \\ a+2=0 \end{cases} \Leftrightarrow \begin{cases} a=-2 \\ b=2 \end{cases}$.

Vây: a - b = -4.

Câu 30. (Chuyên Đại Học Vinh 2019) Gọi z_1, z_2 là các nghiệm phức của phương trình $z^2 + 4z + 7 = 0$. Số phức $z_1, z_2 + z_2, z_1$ bằng

<u>A</u>. 2

B. 10

C. 2*i*

D. 10*i*

Lời giải

Chọn A

Ta có
$$\begin{bmatrix} z_1 = -2 + \sqrt{3}i \\ z_2 = -2 - \sqrt{3}i \end{bmatrix} \Rightarrow z_1 \cdot \overline{z_2} + \overline{z_2} \cdot z_1 = (-2 + \sqrt{3}i)^2 + (-2 - \sqrt{3}i)^2 = 2$$

Câu 31. Gọi z_1 ; z_2 là hai nghiệm phức của phương trình $3z^2 - 2z + 27 = 0$. Giá trị của $z_1 |z_2| + z_2 |z_1|$ bằng:

<u>**A**</u>. 2

B. 6

C. $3\sqrt{6}$

D. $\sqrt{\epsilon}$

Lờigiải

Chọn A

$$3z^2 - 2z + 27 = 0$$

$$z_1 = \frac{1 + \sqrt{80}i}{3}; z_2 = \frac{1 - \sqrt{80}i}{3} \text{ vậy } z_1 |z_2| + z_2 |z_1| = 2$$

Câu 32. (Chuyên Lê Hồng Phong Nam Định 2019) Gọi z_1 và z_2 là hai nghiệm phức của phương trình $z^2 + 4z + 29 = 0$. Tính giá trị của biểu thức $|z_1|^4 + |z_2|^4$.

A. 841.

B. 1682.

C. 1282.

D. 58.

Lời giải

Phương trình $z^2 + 4z + 29 = 0 \Leftrightarrow (z+2)^2 = -25 \Leftrightarrow (z+2)^2 = (5i)^2 \Leftrightarrow \begin{bmatrix} z_1 = -2 - 5i \\ z_2 = -2 + 5i \end{bmatrix}$

Suy ra $|z_1| = |z_2| = \sqrt{(-2)^2 + 5^2} = \sqrt{29}$.

Vậy
$$|z_1|^4 + |z_2|^4 = (\sqrt{29})^4 + (\sqrt{29})^4 = 1682$$
.

Câu 33. (Chuyên Lê Quý Đôn Điện Biên 2019) Kí hiệu z_1 ; z_2 là hai nghiệm phức của phương trình $3z^2-z+1=0$. Tính $P=|z_1|+|z_2|$.

A.
$$P = \frac{\sqrt{14}}{3}$$
. **B.** $P = \frac{2}{3}$. **C.** $P = \frac{\sqrt{3}}{3}$. **D.** $P = \frac{2\sqrt{3}}{3}$.

B.
$$P = \frac{2}{3}$$

C.
$$P = \frac{\sqrt{3}}{3}$$

D.
$$P = \frac{2\sqrt{3}}{3}$$
.

Lời giải

Cách 1:

Ta có
$$3z^2 - z + 1 = 0 \Leftrightarrow z^2 - \frac{1}{3}z + \frac{1}{3} = 0 \Leftrightarrow \left(z - \frac{1}{6}\right)^2 = -\frac{11}{36}$$

$$\Leftrightarrow \left(z - \frac{1}{6}\right)^2 = \frac{11}{36}i^2 \Leftrightarrow \begin{bmatrix} z = \frac{1}{6} + \frac{\sqrt{11}}{6}i \\ z = \frac{1}{6} - \frac{\sqrt{11}}{6}i \end{bmatrix}.$$

Khi đó
$$P = \sqrt{\left(\frac{1}{6}\right)^2 + \left(\frac{\sqrt{11}}{6}\right)^2} + \sqrt{\left(\frac{1}{6}\right)^2 + \left(-\frac{\sqrt{11}}{6}\right)^2} = \frac{2\sqrt{3}}{3}.$$

Theo tính chất phương trình bậc 2 với hệ số thực, ta có $z_1; z_2$ là hai số phức liên hợp nên

$$z_1.z_2 = |z_1^2| = |z_2^2|$$
. Mà $z_1.z_2 = \frac{1}{3}$ suy ra $|z_1| = |z_2| = \frac{\sqrt{3}}{3}$.

Vậy
$$P = |z_1| + |z_2| = \frac{2\sqrt{3}}{3}$$
.

Câu 34. (Chuyên Nguyễn Tất Thành Yên Bái 2019) Gọi z_1 , z_2 là hai nghiệm phức của phương trình $3z^2-z+2=0$. Tính giá trị biểu thức $\left.T=\left|z_1\right|^2+\left|z_2\right|^2$.

A.
$$T = \frac{2}{3}$$

B.
$$T = \frac{8}{3}$$

$$\underline{\mathbf{C}} \cdot T = \frac{4}{3}$$
.

A.
$$T = \frac{2}{3}$$
. **B.** $T = \frac{8}{3}$. **C.** $T = \frac{4}{3}$. **D.** $T = -\frac{11}{9}$.

Phương trình
$$3z^2 - z + 2 = 0$$
 có $\Delta = (-1)^2 - 4.3.2 = -23 \Rightarrow$

$$\begin{bmatrix} z_1 = \frac{1 - \sqrt{23}i}{6} \\ z_2 = \frac{1 + \sqrt{23}i}{6} \end{bmatrix}.$$

$$|z_2|^2 = |z_1|^2 = \left(\frac{1}{6}\right)^2 + \left(\frac{\sqrt{23}}{6}\right)^2 = \frac{2}{3} \Rightarrow T = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.$$

BẠN HỌC THAM KHÁO THÊM DẠNG CÂU KHÁC TẠI

Thttps://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKlG?usp=sharing \$

Theo doi Fanpage: Nguyễn Bảo Vương * https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🕶 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

NGUYĚN <mark>BẢO</mark> VƯƠNG - 0946798489

ĐỀ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

Agy Tan Bido Widnig