Complexity of Algorithms

Cunsheng Ding

HKUST, Hong Kong

October 9, 2015

1/19

Contents

- The Big-oh and Big-theta Notation
- The Order of Polynomials
- Algorithms
- 4 The Complexity of Algorithms

Objectives of This Lecture

- Introduce the *O*-notation and Θ -notation.
- Introduce computer algorithms.
- Define the time and space complexity of algorithms.
- Analyse the time complexity of some algorithms.

The O-Notation

This lecture introduces the O-notation and Θ -notation, which are fundamental in algorithmics.

Definition 1

Let f and g be real-valued functions that are defined on the same set of nonnegative real numbers. Then \underline{f} is of **order at most** \underline{g} , written $\underline{f}(x)$ is $O(\underline{g}(x))$, if and only if there exist a positive real number M and a real number x_0 such that for all x in the common domain of f and g,

$$|f(x)| \leq M \cdot |g(x)|$$
, where $x > x_0$

The sentence "f(x) is O(g(x))" is also read "f of x is big-oh of g of x" or "g is a big-oh approximation for f".

4/19

The O-Notation

Example 2

$$17x^6 + 20x^3 - x^2 + 8$$
 is $O(x^6)$.

Proof.

Let $x \ge 1$. Then

$$|17x^6 + 20x^3 - x^2 + 8| \le 17|x^6| + 20|x^6| + |x^6| + 8|x^6| = 46|x^6|$$

Let $x_0 = 1$ and M = 46. Then

$$|17x^6 + 20x^3 - x^2 + 8| \le M|x^6|$$
 where $x > x_0$

Hence by definition, $17x^6 + 20x^3 - x^2 + 8$ is $O(x^6)$.

The Θ-Notation

Definition 3

Let f and g be two functions defined on the same set of nonnegative real numbers. Then f is of order g, written f(x) is $\Theta(g(x))$, if and only if

- f(x) is O(g(x)) and
- g(x) is O(f(x)).

The ⊖-Notation

Example 4

$$17x^6 + 20x^3 - x^2 + 8$$
 is $\Theta(x^6)$.

Proof.

It was proved in Example 2 that $17x^6 + 20x^3 - x^2 + 8$ is $O(x^6)$. Let x > 1. Note that

$$20x^3 - x^2 + 8 \ge 20x^3 - x^3 + 8 \ge 19x^3 + 8 > 0.$$

Hence for any x > 1, we have

$$x^6 < 17x^6 < 17x^6 + 20x^3 - x^2 + 8.$$

By definition, x^6 is $O(17x^6 + 20x^3 - x^2 + 8)$.

The desired conclusion then follows from the definition of the Θ -notation.

The Order of a Polynomial

Proposition 5

If $a_0, a_1, a_2, \dots, a_n$ are real numbers and $a_n \neq 0$, then

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$
 is $\Theta(x^n)$.

Proof.

Let $M = |a_n| + |a_{n-1}| + \cdots + |a_0|$. Define $x_0 = 1$. Then for $x > x_0$,

$$|a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0| \le \sum_{i=0}^n |a_ix^i| \le M|x^n|$$

By definition, $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is $O(x^n)$.

It is left as an exercise to prove that
$$x^n$$
 is $O(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0)$.

Definition 6

Let f(n) and g(n) be functions defined on sets of integers. If there exist a positive integer M and n_0 such that

$$|f(n)| \le M|g(n)|, \quad n > n_0$$

then f(n) is O(g(n)).

Orders for Functions of Integral Variable

Definition 7

Let f(n) and g(n) be functions defined on sets of integers. Then \underline{f} is of order \underline{g} , written f(n) is $\Theta(g(n))$, if and only if

- f(n) is O(g(n)) and
- g(n) is O(f(n)).

Example 8

Prove that $1^2 + 2^2 + \cdots + n^2$ is $\Theta(n^3)$.

Proof.

It is known that

$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \le n^3.$$

By definition, $1^2 + 2^2 + \cdots + n^2$ is $O(n^3)$.

On the other hand,

$$n^3 < n(n+1)(2n+1) = 6(1^2 + 2^2 + \cdots + n^2).$$

By definition, n^3 is $O(1^2 + 2^2 + \cdots + n^2)$. The desired conclusion follows.

Proposition 9

Let f, g, f_1, g_1 be functions from the set of natural numbers to the set of real numbers.

- If f is O(g), then f + g is O(g).
- ② If f is $O(f_1)$ and g is $O(g_1)$, then fg is $O(f_1g_1)$.

Proof.

We now prove only the first part. By definition, there is a positive integer n_1 and M_1 such that

$$|f(n)| \leq M_1 |g(n)|$$
 for all $n > n_1$

Hence for all $n > n_1$

$$|f(n)+g(n)| \leq |f(n)|+|g(n)| \leq (M_1+1)|g(n)|.$$

By definition, f + g is O(g).

The Second Part of Proposition 9

Let f, g, f_1, g_1 be functions from the set of natural numbers to the set of real numbers. If f is $O(f_1)$ and g is $O(g_1)$, then fg is $O(f_1g_1)$.

Proof.

By definition, there are positive integers n_1, n_2, M_1 and M_2 such that

$$|f(n)| \leq M_1 |f_1(n)|$$
 for all $n > n_1$

and

$$|g(n)| \leq M_2|g_1(n)|$$
 for all $n > n_2$

Define $n_0 = max\{n_1, n_2\}$ and $M = M_1M_2$. Then we have for $n > n_0$,

$$|f(n)g(n)| \leq M_1 M_2 |f_1(n)g_1(n)| = M|f_1(n)g_1(n)|$$

By definition, fg is $O(f_1g_1)$.

Example 10

By Proposition 9

- \bigcirc n+1 is $O(n^2)$ implies that n^2+n+1 is $O(n^2)$.
- 2 n^2+n+1 is $O(n^2)$ and (n+1) is O(n) implies that $(n+1)(n^2+n+1)$ is $O(n^3)$.

Algorithms

Definition 11

An algorithm is a procedure that is used to solve some problem.

Example 12

The following procedure is an algorithm for calculating the sum of n given numbers a_1, a_2, \ldots, a_n .

```
Step 1: Set S = 0;
```

Step 2: For i = 1 to n, replace S by $S + a_i$;

Step 3: Output S.

The value of *S* output at Step 3 is the desired sum.

The Time and Space Complexity

Algorithms are used to solve problems and each algorithm takes time and memory space.

Definition 13

The number of **machine operations** needed in an algorithm is the <u>time complexity</u> of the algorithm, and amount of memory needed is the space complexity of the algorithm.

Example 14

Consider the algorithm of Example 12. Step 1 and Step 3 take one machine operation respectively. Step 2 takes 2n operations (n additions and n replacements). So altogether this algorithm takes 2n+2 operations. Note that 2(n+1) is O(n). So the time complexity of this algorithm is O(n).

Horner's Algorithm and Its Complexity

Example 15

Consider the evaluation of

$$f(x) = 1 + 2x + 3x^2 + 4x^3$$

Direct computation takes 3 additions and 6 multiplications. Another way is:

$$f(x) = 1 + x(2 + x(3 + 4x))$$

So it takes 3 additions and 3 multiplications. Generally, Horner's algorithm for evaluating a polynomial

$$a_0 + a_1 x + \cdots + a_n x^n$$

can be formulated as follows:

Step 1: Set
$$S = a_n$$
;

Step 2: For
$$i = 1$$
 to n , replace S by $a_{n-i} + Sx$;

Step 3: Output S.

The final value of *S* output at Step 3 is the desired value of

$$a_0 + a_1 x + \cdots + a_n x^n$$
.

The number of operations needed in this algorithm is 1 + 3n + 1 = 3n + 2. So the time complexity of this algorithm is O(n).

17 / 19

The Time and Space Complexity

Example 16

Determine the time complexity of the following algorithm:

```
for i := 1 to n

for j := 1 to n

a := 2*n + i*j

next j
```

Solution

In the second loop, computing $a := 2 \cdot n + i \cdot j$ takes 4 operations (two multiplications, one addition, and one replacement). For each i, it takes $n \times 4 = 4n$ operations to complete the second loop. So it takes $n \times 4n = 4n^2$ operations to complete the two loops. Hence the time complexity of this algorithm is $O(n^2)$.

The Time and Space Complexity

Example 17

Determine the time complexity of the following algorithm:

$$S := 0$$
for $i := 1$ to n
for $j := 1$ to i
 $S := S + i^*j$
next j

Solution

Computing $S := S + j \cdot i$ takes 3 operations. For each i, completing the second loop takes 3i operations. So altogether it takes

$$1 + \sum_{i=1}^{n} 3i = 1 + 3 \frac{n(n+1)}{2}$$

operations. hence the complexity of this algorithm is $O(n^2)$.