The Movies Dataset

dataset : https://www.kaggle.com/rounakbanik/the-movies-dataset/data (https://www.kaggle.com/rounakbanik/the-movies-dataset/data

cleaned: https://drive.google.com/drive/folders/1ZGp7ORu9nA6l3PyNK H0MGTXNI4sNMsA?usp=sharing (https://drive.google.com/drive/folders/1ZGp7ORu9nA6l3PyNK H0MGTXNI4sNMsA?usp=sharing)

```
In [1]: import warnings
        import pandas as pd
        import numpy as np
        from sklearn.feature extraction.text import TfidfVectorizer
        from sklearn.feature_extraction.text import CountVectorizer
        from wordcloud import wordcloud, STOPWORDS
        import glob
        import string
        import nltk
        from nltk.corpus import stopwords
        from sklearn.model selection import train test split
        from sklearn.model selection import train test split
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import accuracy score
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
        import seaborn as sns
        from sklearn import preprocessing
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.preprocessing import MultiLabelBinarizer
        from sklearn.metrics import f1_score
        from sklearn.linear model import LogisticRegression
        from sklearn.multiclass import OneVsRestClassifier
        import scipy.sparse as sp
        import matplotlib.pyplot as plt
        from sklearn.metrics.pairwise import linear_kernel
        from sklearn.metrics.pairwise import cosine similarity
        import itertools
        import functools
        import operator
```

```
In [2]: warnings.filterwarnings("ignore")
```

In [3]: movies = pd.read_csv('/Users/davidshi/Downloads/movie/movies.csv', header=0)
 movies = movies.replace({np.nan: None}) # replace NaN with None
 movies.head()

Out[3]:	id		title	tagline	description	genres	keywords	date	collection	runtime	revenue	
	0	862	Toy Story	None	Led by Woody, Andy's toys live happily in his	animation, comedy, family	jealousy, toy, boy, friendship, friends, rival	1995- 10-30	Toy Story Collection	81	3.73554e+08	
	1	8844	Jumanji	Roll the dice and unleash the excitement!	When siblings Judy and Peter discover an encha	adventure, fantasy, family	board game, disappearance, based on children's	1995- 12-15	None	104	2.62797e+08	 J
	2	15602	Grumpier Old Men	Still Yelling. Still Fighting. Still Ready for	A family wedding reignites the ancient feud be	romance, comedy	fishing, best friend, duringcreditsstinger, ol	1995- 12-22	Grumpy Old Men Collection	101	0	
	3	31357	Waiting to Exhale	Friends are the people who let you be yourself	Cheated on, mistreated and stepped on, the wom	comedy, drama, romance	based on novel, interracial relationship, sing	1995- 12-22	None	127	8.14522e+07	 1
	4	11862	Father of the Bride Part II	Just When His World Is Back To Normal He's	Just when George Banks has recovered from his	comedy	baby, midlife crisis, confidence, aging, daugh	1995- 02-10	Father of the Bride Collection	106	7.65789e+07	

5 rows × 21 columns

```
In [4]: movies.isnull().sum()
Out[4]: id
                                      0
                                      4
        title
        tagline
                                 25845
        description
                                   995
                                  2524
        genres
                                 14889
        keywords
        date
                                     88
        collection
                                 42054
        runtime
                                   268
        revenue
                                     4
        budget
                                     0
        director
                                   917
        cast
                                  2491
        production_companies
                                 12282
        production_countries
                                  6496
        popularity
                                     4
        average vote
                                     4
        num votes
                                     4
        language
                                    11
        imdb id
                                    17
                                   399
        poster_url
        dtype: int64
In [5]: movies.shape
Out[5]: (46628, 21)
In [6]: def get_year(date):
            year = None
            if date:
                year = date[:4]
            return year
        movies['year'] = movies.date.apply(get year)
```

Quick Explanatory

Which country have twhe most movies produced?

```
In [7]: r = movies[-movies['production_countries'].isnull()]
In [8]: r = list(r['production_countries'].str.split(', '))
In [9]: flattened_list = functools.reduce(operator.iconcat, r, [])
In [10]: dd= pd.Series(flattened_list)
```

```
In [11]: dd.value_counts().head(10).plot(kind='bar',figsize=(10, 5))
plt.title('Production Countries Movie Counts')
```

Out[11]: Text(0.5, 1.0, 'Production Countries Movie Counts')

Multilabel Classification on Genre

Using keywords column to predict Genre

Each movie is classified as mulitple genres. I am going to predict the muliple genres using keywords column. String are cleaned and vectorized.

```
In [12]: df = movies.dropna(subset = ['title','genres','description'])
In [13]: mlb = MultiLabelBinarizer()
mlb.fit(df['genres'])
y = mlb.transform(df['genres'])
```

```
In [14]: def cleanstring(x):
             x = x.translate(str.maketrans('', '', string.punctuation))
             x = [c for c in x.split() if c.lower() not in stopwords.words('english')]
             return " ".join(x)
In [15]: def removepunc(x):
             x = x.translate(str.maketrans('', '', string.punctuation))
             return x
In [16]: df['keywords'] = df['keywords'].astype(str)
In [17]: X=df['keywords'].apply(removepunc)
         X=TfidfVectorizer('english', max df=0.8, lowercase=True).fit transform(X)
         Xtrain, Xtest, ytrain, ytest = train test split(X, y, test size=0.2, random state=0)
In [18]: | lr = LogisticRegression()
         clf = OneVsRestClassifier(lr)
         results = pd.DataFrame(columns = ['F1 Score'])
In [19]: for i in range (10):
             Xtrain,Xtest,ytrain,ytest = train test split(X,y,test size=0.2,random state=i)
             clf.fit(Xtrain,ytrain)
             pred=clf.predict(Xtest)
             results=results.append({'F1 Score' : f1_score(ytest,pred,average="micro")}, ignore_inde
In [20]: plt.figure(figsize=(8,8))
         plt.title('F1 Score')
         sns.boxplot(x=results['F1 Score'])
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x7fde60ee7ed0>

Using description column to predict Genre

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x7fde68bd0a90>

Demographic Filtering

movie recommendations by rating and popularity

Although data already provides average rating, this can be quite misleading. When comparing two average ratings the consideration of number of votes is very important. Movie 1 can have a rating of 9.0 with only 3 votes compared to Movie 2 having a rating of 8.0 with 50 votes. In this situation Movie 1's rating is very biased due to the low amount of voters. To tackle this problem IMBD have a weight rating formula.

Weighted Rating = (vR)/(v+m) + (mC)/(v+m)

m = minimum votes to be listed in chart (we will assume movies with 85 percentile number of voters to be relevant)

C = mean of average rating for all movies

R = average rating for specific movie

v = number of votes for specific movie

```
In [23]: m=df['num votes'].quantile(0.85)
         C=df['average vote'].mean()
         df2=df[df['num_votes']>m]
In [24]: def weightedrating(j,m=m,C=C):
             v=j['num_votes']
             R=j['average vote']
              return (v*R)/(v+m) + (m*C)/(v+m)
In [25]: df2['imbd_wr']=df.apply(weightedrating,axis=1)
In [26]: df.shape
Out[26]: (43372, 22)
In [27]: | df2.shape
Out[27]: (6482, 23)
In [28]: df.set_index('id')
         df2.set index('id')
         df['imbd_wr']=df2['imbd_wr']
In [29]: df['genres']=df['genres'].str.split(', ')
         s = df.apply(lambda x: pd.Series(x['genres']),axis=1).stack().reset_index(level=1, drop=Tru
         s.name = 'genre'
         gen_df = df.drop('genres', axis=1).join(s)
         This seperates the genre column by listing movies duplicately in dataframe. Example would be:
         --before--
         movie 1 : [comedy,dance]
         --after--
         movie 1: [comedy]
         movie 1 : [dance]
In [30]: def genre rec(genre, method):
              if(method == 'popularity'):
                  x = gen df[gen df['genre']==genre]
                  x=x.reset index(drop=True)
                  return x[['title','year',method]].sort_values(by=[method],ascending=False).head(20)
              if(method =='imbd wr'):
                  x = gen_df[gen_df['genre']==genre]
                  x=x.reset index(drop=True)
                  return x[['title','year',method]].sort values(by=[method],ascending=False).head(20)
```

In [31]: genre_rec('horror','imbd_wr')

Out[31]:

	title	year	imbd_wr
53	Psycho	1960	8.206322
56	The Shining	1980	8.045797
51	Alien	1979	7.857514
168	The Thing	1982	7.690211
50	Aliens	1986	7.646700
4230	Train to Busan	2016	7.532656
4679	Black Mirror: White Christmas	2014	7.523496
87	Jaws	1975	7.440498
834	Shaun of the Dead	2004	7.437046
140	The Exorcist	1973	7.424285
2173	The Conjuring	2013	7.353137
1343	Let the Right One In	2008	7.351216
159	Rosemary's Baby	1968	7.335308
1707	I Saw the Devil	2010	7.326398
479	The Others	2001	7.315057
83	Nosferatu	1922	7.311819
57	Evil Dead II	1987	7.309732
178	King Kong	1933	7.287780
125	Halloween	1978	7.267883
42	Night of the Living Dead	1968	7.262514

```
In [32]: genre_rec('comedy', 'popularity')
```

Out[32]:

	title	year	popularity
9119	Minions	2015	547.488
7437	Big Hero 6	2014	213.85
8025	Deadpool	2016	187.86
8026	Guardians of the Galaxy Vol. 2	2017	185.331
8024	Pirates of the Caribbean: Dead Men Tell No Tales	2017	133.828
12415	Captain Underpants: The First Epic Movie	2017	88.5612
127	Forrest Gump	1994	48.3072
9113	Ted 2	2015	42.0615
11283	Now You See Me 2	2016	39.5407
785	Life Is Beautiful	1997	39.395
12990	Girls Trip	2017	37.9649
12685	Despicable Me 3	2017	36.6315
12397	Baywatch	2017	35.6377
3664	Dilwale Dulhania Le Jayenge	1995	34.457
12969	The Emoji Movie	2017	33.6946
12918	The House	2017	30.1468
7733	Kingsman: The Secret Service	2015	28.2242
12394	Diary of a Wimpy Kid: The Long Haul	2017	28.177
7263	Sex Tape	2014	27.4707
1767	Monsters, Inc.	2001	26.42

```
In [33]: plt.figure(figsize=(20,6))
    plt.ylim(5,6.5)
    sns.barplot(x='genre',y='average_vote',data=gen_df)
    plt.xticks(rotation=45)
    plt.title('Genre Average Ratings', fontsize=20)
```

Out[33]: Text(0.5, 1.0, 'Genre Average Ratings')

Content Based Filtering

movie recommendations by plot similarity

```
In [34]: tfidf matrix = TfidfVectorizer(stop words='english').fit transform(df['description'])
In [35]: tfidf matrix.shape
Out[35]: (43372, 73186)
          description column is vectorized and transformed into TF-IDF matrix. 70000+ words describing 40000+ movies.
In [36]: df = df.reset index(drop=True)
In [37]: indices = pd.Series(df.index, index=df['title'])
          cosine sim = linear kernel(tfidf matrix, tfidf matrix)
In [38]: indices ##movie array
Out[38]: title
          Toy Story
                                               0
          Jumanji
                                               1
          Grumpier Old Men
                                               2
         Waiting to Exhale
                                               3
          Father of the Bride Part II
                                               4
          Caged Heat 3000
                                           43367
         Robin Hood
                                           43368
          Subdue
                                           43369
          Century of Birthing
                                           43370
         Betrayal
                                           43371
         Length: 43372, dtype: int64
          redoing index so index can match between movie array and cosine similiarty matrix. Calculating the dot product / scalar
          product of TF-IDF vectorized data will give cosine similiarity score.
In [39]: def get_recommendations(title, cosine_sim=cosine_sim):
              # Get the index of movie
              idx = indices[title]
              # pair similarity scores
              sim scores = list(enumerate(cosine sim[idx]))
              # Sort the movies based on similarity scores
              sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
              sim scores = sim scores[1:11]
              movie indices = [i[0] for i in sim scores]
              return df['title'].iloc[movie indices]
In [40]: get recommendations('Minions')
Out[40]: 20713
                                           Despicable Me 2
          18175
                                      What's Up, Scarlet?
          10463
                                A Story of Floating Weeds
          30034
                                  The Mother Of Invention
          16020
                                               Madam Satan
          30908
                                         The Invisible Boy
          302
                                  Stuart Saves His Family
          43091
                                                    Banana
          5618
                                             Soul Assassin
                   Sherlock Holmes and the Secret Weapon
          7958
          Name: title, dtype: object
```

```
In [41]: get recommendations('Toy Story')
Out[41]: 15210
                                                     Toy Story 3
         2938
                                                     Toy Story 2
         23852
                                                       Small Fry
         10200
                                         The 40 Year Old Virgin
         23218
                                    Andy Hardy's Blonde Trouble
         37146
                   Superstar: The Life and Times of Andy Warhol
         40952
                   Andy Peters: Exclamation Mark Question Point
         8243
                                                       The Champ
         1047
                                          Rebel Without a Cause
         26371
                                     Life Begins for Andy Hardy
         Name: title, dtype: object
```

movie recommendation by cast, keywords, genre. Using count vectorizer to weigh frequency of repeating cast and repeating keywords in multiple movies.

```
In [42]: df.isnull().sum()
Out[42]: id
                                       0
         title
                                       0
         tagline
                                   22870
         description
                                       0
                                       0
         genres
         keywords
                                       0
         date
                                      23
         collection
                                   38914
         runtime
                                       0
         revenue
                                       0
                                       0
         budget
         director
                                     539
         cast
                                    1713
         production_companies
                                   9744
         production countries
                                    4687
         popularity
                                       0
         average vote
                                       0
         num votes
                                       0
         language
                                       9
         imdb id
                                     10
         poster_url
                                     168
         year
                                      2.3
         imbd wr
                                   36890
         dtype: int64
In [43]: df = df.dropna(subset = ['cast'])
         df = df.reset index(drop=True)
         indices = pd.Series(df.index, index=df['title'])
In [44]: |df['cast'].apply(removepunc)
Out[44]: 0
                   Tom Hanks Tim Allen Don Rickles Jim Varney Wal...
         1
                   Robin Williams Jonathan Hyde Kirsten Dunst Bra...
         2
                   Walter Matthau Jack Lemmon AnnMargret Sophia L...
         3
                   Whitney Houston Angela Bassett Loretta Devine ...
                   Steve Martin Diane Keaton Martin Short Kimberl...
         41654
                   Lisa Boyle Kena Land Zaneta Polard Don Yanan D...
         41655
                   Patrick Bergin Uma Thurman David Morrissey Jür...
         41656
                             Leila Hatami Kourosh Tahami Elham Korda
         41657
                   Angel Aquino Perry Dizon Hazel Orencio Joel To...
         41658
                   Erika Eleniak Adam Baldwin Julie du Page James...
         Name: cast, Length: 41659, dtype: object
```

```
In [45]: df['keywords'].apply(removepunc)
Out[45]: 0
                   jealousy toy boy friendship friends rivalry bo...
         1
                  board game disappearance based on childrens bo...
         2
                   fishing best friend duringcreditsstinger old men
         3
                  based on novel interracial relationship single...
         4
                  baby midlife crisis confidence aging daughter ...
         41654
                                                                 None
         41655
                                                                 None
         41656
                                                          tragic love
         41657
                                                   artist play pinoy
         41658
                                                                 None
         Name: keywords, Length: 41659, dtype: object
In [46]: def listToString(s):
             str1 = " "
             return (strl.join(s))
In [47]: df['genres'].apply(listToString)
Out[47]: 0
                   animation comedy family
         1
                  adventure fantasy family
         2
                             romance comedy
         3
                      comedy drama romance
         4
                                     comedy
                            science fiction
         41654
         41655
                       drama action romance
         41656
                               drama family
         41657
         41658
                      action drama thriller
         Name: genres, Length: 41659, dtype: object
In [48]: X = df['cast'].apply(removepunc) + df['keywords'].apply(removepunc) + df['genres'].apply(li
         count_matrix = CountVectorizer('english').fit_transform(X)
         cosine_sim2 = cosine_similarity(count_matrix,count_matrix)
In [49]: get_recommendations('Minions',cosine_sim2)
Out[49]: 40104
                                             Binky Nelson Unpacified
         25610
                                             The Wind in the Willows
                                                      Tactical Force
         24511
         40487
                                                      Despicable Me 3
         9190
                                    High Roller: The Stu Ungar Story
         9102
                                                          Kung Phooey
         15246
                                                 Life During Wartime
         22831
                                     A Good Job: Stories of the FDNY
         29294
                  Michael Jackson Dangerous Tour - Bucharest - 1992
         31477
                                            N: The Madness Of Reason
         Name: title, dtype: object
```

```
In [50]: get_recommendations('Toy Story', cosine_sim2)
Out[50]: 2916
                                      Toy Story 2
         14977
                                      Toy Story 3
         24332
                       Toy Story That Time Forgot
         20895
                             Toy Story of Terror!
         23205
                                Hawaiian Vacation
         23206
                                        Small Fry
         24330
                                  Partysaurus Rex
         2608
                                              Big
         6100
                  Gigantic (A Tale Of Two Johns)
         1748
                                   Small Soldiers
         Name: title, dtype: object
```

Using different columns to get recommendations did yield different results

Collaborative Filtering

movie recommendations by user history & plot similarity

Used user rating csv to find top movies of specific users and recommended movies based on that.

```
In [141]: user = pd.read_csv('/Users/davidshi/Downloads/movie/ratings_small.csv')
In [142]: user
```

Out[142]:

	userld	movield	rating	timestamp
0	1	31	2.5	1260759144
1	1	1029	3.0	1260759179
2	1	1061	3.0	1260759182
3	1	1129	2.0	1260759185
4	1	1172	4.0	1260759205
99999	671	6268	2.5	1065579370
100000	671	6269	4.0	1065149201
100001	671	6365	4.0	1070940363
100002	671	6385	2.5	1070979663
100003	671	6565	3.5	1074784724

100004 rows × 4 columns

User data contains rows of user ratings. rating column (1-5).

```
In [143]: links = pd.read_csv('/Users/davidshi/Downloads/movie/links.csv')
```

```
In [144]: links
```

Out[144]:

	movield	imdbld	tmdbld
0	1	114709	862.0
1	2	113497	8844.0
2	3	113228	15602.0
3	4	114885	31357.0
4	5	113041	11862.0
45838	176269	6209470	439050.0
45839	176271	2028550	111109.0
45840	176273	303758	67758.0
45841	176275	8536	227506.0
45842	176279	6980792	461257.0

45843 rows × 3 columns

links df have movield and tmbdid equivalent. Need links df to get movie title for user df

```
In [145]: user = user.merge(links[['movieId','tmdbId']],on='movieId',how='left')
In [146]: user = user.rename(columns={'tmdbId':'id'})
user = user.drop(columns =['movieId'])
In [147]: user
```

Out[147]:

	userld	rating	timestamp	id
0	1	2.5	1260759144	9909.0
1	1	3.0	1260759179	11360.0
2	1	3.0	1260759182	819.0
3	1	2.0	1260759185	1103.0
4	1	4.0	1260759205	11216.0
99999	671	2.5	1065579370	25461.0
100000	671	4.0	1065149201	51927.0
100001	671	4.0	1070940363	604.0
100002	671	2.5	1070979663	1088.0
100003	671	3.5	1074784724	4464.0

100004 rows × 4 columns

```
In [148]: user = user.merge(movies[['id','title','average_vote']],on='id',how='left')
```

```
In [149]: user
```

Out[149]:

	userld	rating	timestamp	id	title	average_vote
0	1	2.5	1260759144	9909.0	Dangerous Minds	6.4
1	1	3.0	1260759179	11360.0	Dumbo	6.8
2	1	3.0	1260759182	819.0	Sleepers	7.3
3	1	2.0	1260759185	1103.0	Escape from New York	6.9
4	1	4.0	1260759205	11216.0	Cinema Paradiso	8.2
100311	671	2.5	1065579370	25461.0	Raising Victor Vargas	7.8
100312	671	4.0	1065149201	51927.0	Stevie	6.7
100313	671	4.0	1070940363	604.0	The Matrix Reloaded	6.7
100314	671	2.5	1070979663	1088.0	Whale Rider	7.1
100315	671	3.5	1074784724	4464.0	Seabiscuit	6.8

100316 rows × 6 columns

```
In [150]: user.isnull().sum()
```

dtype: int64

```
In [151]: user = user.dropna(subset = ['id','title'])
```

In [152]: user

Out[152]:

	userId	rating	timestamp	id	title	average_vote
0	1	2.5	1260759144	9909.0	Dangerous Minds	6.4
1	1	3.0	1260759179	11360.0	Dumbo	6.8
2	1	3.0	1260759182	819.0	Sleepers	7.3
3	1	2.0	1260759185	1103.0	Escape from New York	6.9
4	1	4.0	1260759205	11216.0	Cinema Paradiso	8.2
100311	671	2.5	1065579370	25461.0	Raising Victor Vargas	7.8
100312	671	4.0	1065149201	51927.0	Stevie	6.7
100313	671	4.0	1070940363	604.0	The Matrix Reloaded	6.7
100314	671	2.5	1070979663	1088.0	Whale Rider	7.1
100315	671	3.5	1074784724	4464.0	Seabiscuit	6.8

100122 rows × 6 columns

```
In [153]: user.userId.value_counts().min()
```

Out[153]: 19

Users rated atleast 19 movies

```
In [154]: user = user.sort_values(by=['userId','rating','average_vote'],ascending=[True,False,False])
In [155]: #get top 5 movies for user
          def getTopMov(uid) :
              return user[user['userId']==uid].title.values
In [156]: #recommendation by finding 10 highest pair similartly from list of movies
          def get recommendations2(title,cosine sim):
              sim_scores=[]
              for i in title:
                  # Get the index of movie
                  idx = indices[i]
                  # pair similarity scores
                  sim_scores = sim_scores + list(enumerate(cosine_sim[idx]))
              # Sort the movies based on similarity scores
              sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
              sim scores = sim scores[5:15]
              movie indices = [i[0] for i in sim scores]
              return df['title'].iloc[movie indices]
In [157]: getTopMov(10)
Out[157]: array(['The Usual Suspects', 'The Matrix', 'Sling Blade',
                  'My Own Private Idaho', 'Runaway Train'], dtype=object)
In [158]: get recommendations2(getTopMov(10), cosine sim)
Out[158]: 10430
                               The White Countess
          6441
                                   Day of the Dead
          6567
                              Charlotte Sometimes
          22669
                                       Camouflage
                   Invasion of the Body Snatchers
          2470
                             The Care Bears Movie
          5279
                                   That Sugar Film
          27134
          8297
                             King Solomon's Mines
          4250
                                          Critters
          11502
                               Meet the Robinsons
          Name: title, dtype: object
```

```
In [159]: #recommendation by finding 3 highest pair similartiy for each movie in list
          def get_recommendations3(title,cosine_sim):
              sim scores final =[]
              for i in title:
                  # Get the index of movie
                  idx = indices[i]
                  # pair similarity scores
                  sim scores = list(enumerate(cosine sim[idx]))
              # Sort the movies based on similarity scores
                  sim scores = sorted(sim scores, key=lambda x: x[1], reverse=True)
                  sim_scores_final = sim_scores_final + sim_scores[1:4]
              movie_indices = [i[0] for i in sim_scores_final]
              return df['title'].iloc[movie_indices]
In [160]: getTopMov(10)
Out[160]: array(['The Usual Suspects', 'The Matrix', 'Sling Blade',
                  'My Own Private Idaho', 'Runaway Train'], dtype=object)
In [161]: get_recommendations3(getTopMov(10),cosine_sim)
Out[161]: 8914
                                             Gummo
                                         Pestonjee
          32264
          27965
                                         The Hands
          6567
                               Charlotte Sometimes
          22669
                                        Camouflage
          27134
                                   That Sugar Film
          10430
                                The White Countess
          6441
                                   Day of the Dead
          2470
                   Invasion of the Body Snatchers
          4896
                                         The Arena
          6315
                                       Big Trouble
          18695
                               Under African Skies
          26883
                                             Nymph
          12310
                                   Are You Scared?
          31721
                                     OceanWorld 3D
          Name: title, dtype: object
  In [ ]:
  In [ ]:
  In [ ]:
```