Introduction to Data Science with Python Lecture 5: Reinforcement Learning

Vladimir Osin

Data Scientist/Engineer

Signify Research (formerly known as Philips Lighting)

Outline

- Definition
- Examples
- Open Al GYM
- Practice

Reinforcement Learning

- Reinforcement learning (RL) is an area of machine learning concerned with how software agents ought to take *actions* in an *environment* to maximize some notion of cumulative *reward*.

Journey into ML world

- Supervised Learning
 - Data: features and ground truth is available (x, y)
 - Goal: learn a function that maps x to y
 - Examples: classification, regression
- Unsupervised Learning
 - Data: just features and no ground truth
 - Goal: learn some underlying hidden structure of the data
 - Examples: clustering, dimensionality reduction

Reinforcement Learning Idea

Reinforcement Learning Idea

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

```
Defined by: (\mathcal{S},\mathcal{A},\mathcal{R},\mathbb{P},\gamma)
```

 ${\cal S}$: set of possible states

A: set of possible actions

R: distribution of reward given (state, action) pair

P: transition probability i.e. distribution over next state given (state, action) pair

 γ : discount factor

Markov Decision Process

- At time step t=0, environment samples initial state $s_0 \sim p(s_0)$
- Then, for t=0 until done:
 - Agent selects action a,
 - Environment samples reward r_t ~ R(. | s_t, a_t)
 - Environment samples next state s₊₁ ~ P(. | s₊, a₊)
 - Agent receives reward r, and next state s,

- A policy π is a function from S to A that specifies what action to take in each state
- **Objective**: find policy π^* that maximizes cumulative discounted reward: $\sum_{i=1}^{n}$

Examples

- https://deepmind.com/research/publications/playing-atari-deepreinforcement-learning/
- http://news.berkeley.edu/2015/05/21/deep-learning-robot-mastersskills-via-trial-and-error/
- https://blog.google/technology/ai/alphago-machine-learning-gamego/
- https://storage.googleapis.com/deepmindmedia/dqn/DQNNaturePaper.pdf

劉OpenAI

References

- CS231n Reinforcement Learning Lecture
- https://gym.openai.com/
- https://pytorch.org/tutorials/intermediat e/reinforcement q learning.html

