Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering Instructors: Myron Spector

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

HST 535

DISCUSSION: Comparative Analysis of Tissue Engineering Strategies

M. Spector, Ph.D.

TISSUE CHARACTERISTICS AND APPROACHES

Tissue	Lec.	Hollow (Tube) v. Solid	Layered Y or N	Immed. Funct. Y or N	Blood Contact Y or N	Cell Type	Scaff.
Periph Nerve	Yannas Gong	S	N	N	N	Nerve	Collag. Chitin
Blood Vessel	Schoen	H	Y	Y	Y	Ep, CT, Muscle	Collag. PGA
Heart Valve	Li	S	Y	Y	Y	Ep, CT, Muscle	PGA
Urin.	Atala	H	Y	Y	N	Ep, CT, Muscle	SIS Others
Bone	Liu/Xu	S	N	N	N	CT,stem	Coll/HA
Cart.	Liu/Spec	S	N	N	N	CT	Collag.

EXAMPLE OF A HOLLOW, LAYERED STRUCTURE

Epithelial cells

Muscle cells

Connective tissue cells

Diagrams removed for copyright reasons. Coronary artery structure: from Netter, F. H. *Heart* (Ciba Collection), 1969.

HOLLOW (TUBES) VERSUS SOLID ORGANS

Hollow (Tubes)

- Vessels that carry blood or urine
- Layered structures:
 - -Epithelium
 - -Smooth muscle cells
 - -Connective tissue
- Immediate function

LAYERED STRUCTURES*

How to engineer a layered structure?

- Separately seed layers of a scaffold with different types of cells
- If all the cell types are mixed and added to a scaffold will they segregate eventually to form separate layers?

*Some connective tissues like bone have a lamellar architecture, but these are layers of the same bone materials (*i.e.*, same cell type in each lamella or layer)

IMMEDIATE FUNCTION

- The degree to which the implant needs to support immediate function dictates the degree to which the tissue engineered construct needs to be mature before implantation.
- Properties cannot degrade with time.

Vessels

• Can the tissue engineered vessel be isolated from flow for a certain time period after implantation?

Musculoskeletal Tissues (e.g., bone and cartilage)

• Can the tissue/joint be immobilized (unloaded) post-operatively (using metal rods and plates)?

OTHER NEW CONCEPTS

Scaffolds: Biological Materials Processed to be Implants

- Tissue processed to eliminate the cells and retain some of the extracellular matrix composition and properties.*
- Coral (selected for its porous architecture)
 - CaCO₃ and also coral converted to hydroxyapatite but with retained coral architecture
- Demineralized bone matrix (DBM)
- SIS (small intestine submucosa)
 - Porcine connective tissue
 - * Biomimetics (Cui); ECM analogs (Yannas); biomat. should mimic ECM of tissue to be engineered (Atala)

OTHER NEW CONCEPTS

Culture Medium

• Use of human autologous serum for growing cells *in vitro*