

Lecture 12

Chương 5. Phân tích phổ tín hiệu và ứng dụng (cont...)

Signals and Systems

© Tran Quang Viet - FEEE - HCMU

Chương 5. Phân tích phổ tín hiệu và ứng dụng

5.3. Ứng dụng xử lý phổ tín hiệu (cont...)

Signals and Systems

5.3. Ứng dụng xử lý phổ tín hiệu

5.3.3. Điều biên xung và lấy mẫu

- a) Điều biên xung (PAM)
- b) Ghép kênh theo thời gian (TDM)
- c) Lý thuyết lấy mẫu (Sampling)
- d) Biến đổi Fourier rời rạc (DFT)
- e) Biến đổi Fourier nhanh (FFT)

Signals and Systems

© Tran Quang Viet - FEEE - HCMUT

5.3.3 Điều biên xung và lấy mẫu

a) Điều biên xung (PAM)

Signals and Systems

a1) Sơ đồ điều biên xung (PAM)

$$m(t) \longrightarrow y_{PAM}(t)=m(t)p(t)$$
 $p(t)$

- $\ \ \square$ m(t): tín hiệu mang tin tức có phổ giới hạn tới tần số ω_M
- lacktriangle p(t): chuỗi xung vuông tuần hoàn để đ/chế tín hiệu mang tin tức
- \Box y_{PAM}(t): tín hiệu điều biên xung

Signals and Systems

© Tran Quang Viet - FEEE - HCMU1

a2) Phổ của tín hiệu điều biên xung

- □ Ta có m(t) \leftrightarrow M(ω)
- ☐ Viết chuỗi Fourier cho chuỗi xung tuần hoàn p(t)

$$p(t) = \sum_{n=-\infty}^{+\infty} D_n e^{jn\omega_c t}$$

☐ Xác định tín hiệu điều biên xung:

$$y_{PAM}(t) = m(t)p(t) = \sum_{n=-\infty}^{+\infty} D_n m(t)e^{jn\omega_c t}$$

☐ Xác định phổ của tín hiệu điều biên xung:

$$Y_{PAM}(\omega) = \sum_{n=-\infty}^{+\infty} D_n M(\omega - n\omega_c)$$

Signals and Systems

<u>Ví du</u>: Cho tín hiệu m(t) có phổ M(ω) như hình vẽ và p(t) là chuỗi xung vuông đơn cực tuần hoàn với tần số ω_c = $3\omega_M$, biên độ bằng 1 và chu kỳ tích cực d=1/3

a3) Khôi phục tín hiệu tin tức từ tín hiệu PAM

$$y_{PAM}(t) \xrightarrow{LPF} H(\omega) \xrightarrow{} m(t)$$

$$H(\omega) = \frac{1}{d} \operatorname{rect}\left(\frac{\omega}{2\omega_0}\right)$$

- ☐ d là chu kỳ tích cực của chuỗi xung vuông p(t)
- \Box Phạm vị của ω_0 : $\omega_M \le \omega_0 < \omega_c \omega_M$

Signals and Systems

5.3.3 Điều biên xung và lấy mẫu b) Ghép kênh theo thời gian (TDM) Signals and Systems

5.3.3 Điều biên xung và lấy mẫu

c) Lấy mẫu

Signals and Systems

© Tran Quang Viet - FEEE - HCMUT

c) Lấy mẫu

☐ Sơ đồ lấy mẫu

☐ Phổ của tín hiệu lấy mẫu:

$$F_{p}(\omega) = \sum_{n=-\infty}^{+\infty} D_{n}F(\omega - n\omega_{s}) = \sum_{n=-\infty}^{+\infty} \frac{1}{T_{s}}F(\omega - n\omega_{s}), \omega_{s} = \frac{2\pi}{T_{s}}$$

Signals and Systems

c) Lấy mẫu

Định lý lấy mẫu: Tín hiệu có phổ giới hạn là $ω_M$ =2πB có thể khôi phục chính xác từ các mẫu của nó khi được lấy mẫu đều đặn với tốc độ F_s ≥2B mẫu/s bằng bộ lọc thông thấp. Nói cách khác tần số lấy mẫu nhỏ nhất là $ω_s$ =2 $ω_M$ =4πB

Signals and Systems

d) Biến đổi Fourier rời rạc (DFT)

Mục đích: thiết lập mối quan hệ giữa các mẫu trong miền thời gian với các mẫu trong miền tần số

Signals and Systems

© Tran Quang Viet - FEEE - HCMUT

d) Biến đổi Fourier rời rạc (DFT)

☐ Xét tín hiệu f(t) được lấy mẫu với chu kỳ T_s

 \square Xét tín hiệu tuần hoàn $f_{T0}(t)$ do lập lại $f_n(t)$ với chu kỳ T_0 :

Signals and Systems

d) Biến đổi Fourier rời rạc (DFT)

- ☐ Biến đổi DFT thuận:
 - Do f(t) chỉ tồn tại từ 0 đến T₀ (tương ứng với N₀ mẫu):

$$f_{p}(t) = \sum_{k=0}^{N_{0}-1} f(kT_{s})\delta(t-kT_{s}) \implies F_{p}(\omega) = \sum_{k=0}^{N_{0}-1} f(kT_{s})e^{-j\omega kT_{s}}$$

• Mặt khác trong đoạn - $\omega_s/2$ đến $\omega_s/2$ (tương ứng với N_0 mẫu):

$$F_{p}(\omega) = \frac{F(\omega)}{T_{s}} \implies F(r\omega_{0}) = T_{s}F_{p}(r\omega_{0}) = T_{s}\sum_{k=0}^{N_{0}-1}f(kT_{s})e^{-jr\omega_{0}kT_{s}}$$

• Đặt Ω_0 = $\omega_0 T_s$ = $2\pi/N_0$; F_r = $F(r\omega_0)$: mẫu thứ r của $F(\omega)$; f_k = $T_s f(kT_s)$: mẫu thứ k của f(t); ta có:

$$F_r = \sum_{k=0}^{N_0 - 1} f_k e^{-jr\Omega_0 k}$$
 (Biến đổi DFT thuận)

Signals and Systems

© Tran Quana Viet - FEEE - HCMLIT

d) Biến đổi Fourier rời rạc (DFT)

 $\hfill \Box$ Biến đổi DFT ngược: nhân DFT thuận với $\,e^{jm\Omega_0 r}\,$ sau đó lấy tổng:

$$\sum_{r=0}^{N_{_{0}}-1} F_{r} e^{jm\Omega_{_{0}} r} = \sum_{r=0}^{N_{_{0}}-1} \left[\sum_{k=0}^{N_{_{0}}-1} f_{k} e^{-jr\Omega_{_{0}} k} \right] e^{jm\Omega_{_{0}} r}$$

$$\implies \sum_{r=0}^{N_{_{0}}-1}F_{r}e^{jm\Omega_{_{0}}r} = \sum_{k=0}^{N_{_{0}}-1}f_{k}\left[\sum_{r=0}^{N_{_{0}}-1}e^{j(m-k)\Omega_{_{0}}r}\right]$$

$$\implies \sum_{r=0}^{N_{_{0}}-1}F_{r}e^{jm\Omega_{_{0}}r}\!=\!\!\begin{cases} 0;\,k\neq m\\ N_{0}f_{k}=N_{0}f_{m};k=m \end{cases}$$

$$f_k = \frac{1}{N_0} \sum_{r=0}^{N_0 - 1} F_r e^{jr\Omega_0 k}$$
 (Biến đổi DFT ngược)

Signals and Systems

Đưa ra bởi Turkey and Cooley năm 1965, N_0 phải là lũy thừa của 2 Giảm khối lượng tính toán: $N_0^2 \to N_0 \log N_0$

$$f_k = \frac{1}{N_0} \sum_{r=0}^{N_0-1} F_r e^{jr\Omega_0 k} F_r = \sum_{k=0}^{N_0-1} f_k e^{-jr\Omega_0 k}$$
 Nhân: N₀ Cộng: N₀-1

Tổng cộng cho các hệ số: N_0N_0 phép nhân và $N_0(N_0\text{-}1)$ phép cộng

- $lacksquare W_{N_0} = e^{-j(2\pi/N_0)} = e^{-j\Omega_0}$
- ☐ Các biểu thức DFT được viết lại:

$$F_r = \sum_{k=0}^{N_0 - 1} f_k W_{N_0}^{kr} \qquad f_k = \frac{1}{N_0} \sum_{r=0}^{N_0 - 1} F_r W_{N_0}^{-kr}$$

Signals and Systems

© Tran Quang Viet - FEEE - HCMUT

e) Biến đổi Fourier nhanh (FFT)

 \Box Chia f_k thành 2 chuỗi: chẵn và lẻ theo số thứ tự:

$$\underbrace{\frac{f_0, f_4, f_6, ..., f_{N_0-2}}{\textit{sequence} \ \mathbf{g_k}}}_{\textit{sequence} \ \mathbf{h_k}} \underbrace{\frac{f_1, f_3, f_5, ..., f_{N_0-1}}{\textit{sequence} \ \mathbf{h_k}}}$$

Biểu thức DFT được viết lại:

$$F_r = \sum_{k=0}^{\frac{N_0}{2}-1} f_{2k} W_{N_0}^{2kr} + \sum_{k=0}^{\frac{N_0}{2}-1} f_{2k+1} W_{N_0}^{(2k+1)r}$$

Ta có: $W_{\frac{N_0}{2}} = W_{N_0}^2$

$$\Rightarrow F_r = \sum_{k=0}^{\frac{N_0}{2}-1} f_{2k} W_{\frac{N_0}{2}}^{kr} + W_{N_0}^r \sum_{k=0}^{\frac{N_0}{2}-1} f_{2k+1} W_{\frac{N_0}{2}}^{kr} = G_r + W_{N_0}^r H_r$$

Signals and Systems

$$\Rightarrow F_r = \sum_{k=0}^{\frac{N_0}{2}-1} f_{2k} W_{\frac{N_0}{2}}^{kr} + W_{N_0}^r \sum_{k=0}^{\frac{N_0}{2}-1} f_{2k+1} W_{\frac{N_0}{2}}^{kr} \quad \Rightarrow \quad \boxed{F_r = G_r + W_{N_0}^r H_r}$$

$$(0 \le r \le N_0 - 1)$$

 \square Do G_r và H_r là DFT $N_0/2$ điểm nên nó có tính tuần hoàn:

$$G_{r+\frac{N_0}{2}} = G_r \& H_{r+\frac{N_0}{2}} = H_r$$

Mặt khác:
$$W_{N_0}^{r+\frac{N_0}{2}}=W_{N_0}^{\frac{N_0}{2}}W_{N_0}^r=e^{-j\pi}W_{N_0}^r=-W_{N_0}^r$$

$$\Rightarrow F_{r+\frac{N_0}{2}} = G_{r+\frac{N_0}{2}} + W_{N_0}^{r+\frac{N_0}{2}} H_{r+\frac{N_0}{2}} \Rightarrow F_{r+\frac{N_0}{2}} = G_r - W_{N_0}^r H_r$$

$$\Rightarrow F_{r+\frac{N_0}{2}} = G_{r+\frac{N_0}{2}} + W_{N_0}^{r+\frac{N_0}{2}} H_{r+\frac{N_0}{2}} \Rightarrow F_{r+\frac{N_0}{2}} = G_r - W_{N_0}^r H_r$$

$$F_r = G_r + W_{N_0}^r H_r; \ 0 \le r \le \frac{N_0}{2} - 1$$

$$F_{r+\frac{N_0}{2}} = G_r - W_{N_0}^r H_r; \ 0 \le r \le \frac{N_0}{2} - 1$$

$$\Leftrightarrow H_r \xrightarrow{-W_{N_0}^r} F_{r+N_0}$$

 \square Áp dụng tính DFT N_0 =8 điểm:

$$F_{r} = G_{r} + W_{N_{0}}^{r} H_{r}; \ 0 \le r \le \frac{N_{0}}{2} - 1$$

$$F_{r + \frac{N_{0}}{2}} = G_{r} - W_{N_{0}}^{r} H_{r}; \ 0 \le r \le \frac{N_{0}}{2} - 1$$

$$\Leftrightarrow H_{r}$$

- ☐ Số phép toán nhân và cộng dùng để tính DFT dùng giải thuật FFT:
- Số phép toán nhân: $\frac{N_0}{2} \log_2 N$
- Số phép toán cộng: $N_0 \log_2 N_0$

Signals and Systems

© Tran Quang Viet - FEEE - HCMUT

e) Biến đổi Fourier nhanh (FFT)

Fs = 1000; T = 1/Fs;L = 1000;t=(-L/2:L/2)*T;y=2*sin(2*pi*100*t)+sin(2*pi*200*t); $NFFT = 2^nextpow2(L);$ Y = fft(y, NFFT)/Fs;f = Fs/2*linspace(-1,1,NFFT); plot(f,abs(fftshift(Y)),'Linewidth',2); title('Spectrum of y(t)');xlabel('Frequen cy (Hz)') ylabel('|Y(f)|');gridon;

Signals and Systems

```
Fs = 1000; T = 1/Fs;
L = 10000;
t=(-L/2:L/2)*T;
y=2*sin(2*pi*100*t)+si
n(2*pi*200*t);
NFFT = 2^nextpow2(L);
Y = fft(y,NFFT)/Fs;
f = Fs/2*linspace(-
1,1,NFFT);
plot(f,abs(fftshift(Y)
),'Linewidth',2);
title('Spectrum of
y(t)');xlabel('Frequen
cy (Hz)')
ylabel('|Y(f)|');grid
on;
```


Signals and Systems