Identities

Overview

- Files and objects
- Users and groups
- Certificates and names
- Hosts and domains
- State and cookies
- Anonymity

Identity

- Identity: specifies a principal (a unique entity)
 - Accountability and access control
- Authentication: binding of a principal to a representation of identity internal to the system

Files and Objects

Files and Objects

- Identity depends on system containing object
- Different names for one object
 - Human use file name
 - Process use file descriptor or handle
 - Kernel use file allocation table entry, inode

Users and Groups

Users

- Exact representation tied to system
- Example: UNIX systems
 - Login name: used to log in to system
 - Logging usually uses this name
 - User identification number (UID): unique integer assigned to user
 - Kernel uses UID to identify users
 - One UID per login name, but multiple login names may have a common UID

Multiple Identities

- UNIX systems
 - Real UID: user identity at login, but changeable
 - Effective UID: user identity used for access control
 - Saved UID: UID before last change of UID
 - Audit/Login UID: user identity used to track original UID

Groups

- Used to share access privileges
- Set of users
 - Group ownership of objects
 - All have the same access rights to the designated files and directories

Certificates and Names

Naming and Certificates

- Certificates issued to a principal
 - Principal uniquely identified to avoid confusion
- Problem: names may be ambiguous
 - Does the name "John Smith" refer to????

Disambiguating Identity

- Include ancillary information in names
 - Enough to identify principal uniquely
 - X.509v3 Distinguished Names do this
- Example: X.509v3 Distinguished Names
 - /O=University of Alabama
 - /OU=Huntsville
 - /OU=Department of Computer Science
 - /CN=John Smith/

(CN is common name)

(OU is organizational unit)

(O is organization)

CAs and Policies

- CA's authentication policy says what type and strength of authentication
- CA's issuance policy says to which principals the CA will issue certificates

Internet Certification Hierarchy

- Tree structured arrangement of CAs
 - Root is Internet Policy Registration Authority, or IPRA
 - Sets policies all subordinate CAs must follow
 - Certifies subordinate CAs (called policy certification authorities, or PCAs), each of which has own authentication, issuance policies
 - Does not issue certificates to individuals or organizations other than subordinate CAs
 - PCAs issue certificates to ordinary CAs
 - Does not issue certificates to individuals or organizations other than subordinate CAs
 - CAs issue certificates to organizations or individuals

Avoid Naming Conflicts

- Assume CAs will prevent name conflicts as follows
- No two distinct CAs have the same Distinguished Name
- No two principals have certificates issued containing the same Distinguished Name by a single CA

Trust

- Goal of certificate: bind correct identity to DN
- Question: what is degree of assurance?
- X.509v3, certificate hierarchy
 - Depends on policy of CA issuing certificate
 - Depends on how well CA follows that policy
 - Depends on how easy the required authentication can be spoofed
- Really, estimate based on the above factors

Hosts and Domains

Identity on the Web

- Host identity
 - Static identifiers: do not change over time
 - Dynamic identifiers: changes as a result of an event or the passing of time

Dynamic Identifiers

- Assigned to principals for a limited time
 - Server maintains pool of identifiers
 - Client contacts server using local identifier
 - Example, NAT

Domain Name Server

- Maps transport identifiers (host names) to network identifiers (host addresses)
 - ightharpoonup Forward records: host names ightharpoonup IP addresses
 - Reverse records: IP addresses → host names
- Weak authentication
 - Not cryptographically based
 - Various techniques used, such as reverse domain name lookup

Danger!

- Attacker spoofs identity of another host
 - Protocols at, above the identity being spoofed will fail
 - They rely on spoofed, and hence faulty, information
- Example: spoof IP address, mapping between host names and IP addresses

Attacks on DNS

- Associate an incorrect IP address with a host name
 - Attacker controls the name server
 - Intercept the query
- "Cache poisoning"
 - Add extra DNS records to answer a query

State and cookies

Cookies

- Token containing information about state of transaction on network
 - Usual use: refers to state of interaction between web browser, client
 - Idea is to minimize storage requirements of servers, and put information on clients
- Client sends cookies to server

Some Fields in Cookies

- name, value: name has given value
- expires: how long cookie valid
 - Expired cookies discarded, not sent to server
 - If omitted, cookie deleted at end of session
- domain: domain for which cookie intended
 - Consists of last n fields of domain name of server
 - Must have at least one "." in it
- secure: send only over secured (SSL, HTTPS) connection

Example

- Caroline puts 2 books in shopping cartcart at books.com
 - Cookie: name bought, value
 BK=234&BK=8753, domain .books.com
- Caroline looks at other books, but decides to buy only those
 - She goes to the purchase page to order them
- Server requests cookie, gets above
 - From cookie, determines books in shopping cart

Who Can Get the Cookies?

- Web browser can send any cookie to a web server
 - Even if the cookie's domain does not match that of the web server
 - Usually controlled by browser settings
- Web server can only request cookies for its domain

Where Did the Visitor Go?

- Server books.com sends Caroline 2 cookies
 - First described earlier
 - Second has name "id", value "books.com", domain "adv.com"
- Advertisements at books.com include some from site adv.com
 - When drawing page, Caroline's browser requests content for ads from server "adv.com"
 - Server requests cookies from Caroline's browser
 - By looking at value, server can tell Caroline visited "books.com"

Anonymity

Anonymity on the Web

- Recipients can determine origin of incoming packet
 - Sometimes not desirable
- Anonymizer: a site that hides origins of connections
 - Usually a proxy server
 - User connects to anonymizer, tells it destination
 - Anonymizer makes connection, sends traffic in both directions
 - Destination host sees only anonymizer

Example: anon.penet.fi

Example: anon.penet.fi

- Offered anonymous email service
 - Sender sends letter to it, naming another destination
 - Anonymizer strips headers, forwards message
 - Assigns an ID (say, 1234) to sender, records real sender and ID in database
 - Letter delivered as if from anon1234@anon.penet.fi
 - Recipient replies to that address
 - Anonymizer strips headers, forwards message as indicated by database entry

Problem

- Anonymizer knows who sender, recipient really are
- Called pseudo-anonymous remailer or pseudonymous remailer
 - Keeps mappings of anonymous identities and associated identities
- If you can get the mappings, you can figure out who sent what

Example: Cypherpunk Remailer

Cypherpunk Remailer

- Remailer that deletes header of incoming message, forwards body to destination
- Also called Type I Remailer
- No record kept of association between sender address, remailer's user name
 - Prevents tracing, as happened with anon.penet.fi
- Usually used in a chain, to obfuscate trail
 - For privacy, body of message may be enciphered

Cypherpunk Remailer Message

send to remailer 1

send to remailer 2

send to Alice

Hi, Alice, It's SQUEAMISH OSSIFRIGE Bob

- Encipher message
- Add destination header
- Add header for remailer n

. . .

Add header for remailer 2

Weaknesses

- Attacker monitoring entire network
 - Observes in, out flows of remailers
 - Goal is to associate incoming, outgoing messages
- If messages are cleartext, trivial
 - So assume all messages enciphered
- So use traffic analysis!
 - Used to determine information based simply on movement of messages (traffic) around the network

Attacks

- If remailer forwards message before next message arrives, attacker can match them up
 - Hold messages for some period of time, greater than the message interarrival time
 - Randomize order of sending messages, waiting until at least n messages are ready to be forwarded
 - Note: attacker can force this by sending n−1 messages into queue

Attacks

- As messages forwarded, headers stripped so message size decreases
 - Pad message with garbage at each step, instructing next remailer to discard it
- Replay message, watch for spikes in outgoing traffic
 - Remailer can't forward same message more than once

Mixmaster Remailer

- Cypherpunk remailer that handles only enciphered mail and pads (or fragments) messages to fixed size before sending them
 - Also called Type II Remailer
 - Designed to hinder attacks on Cypherpunk remailers
 - Messages uniquely numbered
 - Fragments reassembled only at last remailer for sending to recipient

Cypherpunk Remailer Message

enciphered with RSA for remailer #1 remailer #2 address packet ID: 135 Triple DES key: 1 enciphered with Triple DES key #1 enciphered with RSA for remailer #2 final hop address packet ID: 168 message ID: 7839 Triple DES key: 2 random garbage enciphered with Triple DES key #2 recipent's address any mail headers to add message padding if needed

Anonymity and Privacy

Anonymity Itself

- Some purposes for anonymity
 - Removes personalities from debate
 - With appropriate choice of pseudonym, shapes course of debate by implication
 - Prevents retaliation
- Are these benefits or drawbacks?
 - Depends on society, and who is involved

Privacy

- Anonymity protects privacy by obstructing amalgamation of individual records
- Important, because amalgamation poses 3 risks:
 - Incorrect conclusions from misinterpreted data
 - Harm from erroneous information
 - Not being let alone
- Also hinders monitoring to deter or prevent crime
- Conclusion: anonymity can be used for good or ill
 - Right to remain anonymous entails responsibility to use that right wisely

Key Points

Key Points

- Identity specifies a principal
 - Files and objects
 - Users and groups
 - Certificates and names
 - Hosts and domains
 - State and cookies
- Unique naming a difficult problem
- Anonymity possible; may or may not be desirable