CONVEX HULL

Convex Hull (CH)

- Closed region including / enclosing all the points
- A convex hull of a set of points S in the plane is the enclosing convex polygon with:
 - Smallest area
 - Smallest perimeter

Standard algorithms for constructing a Convex Hull

Algo: Nonextreme points

Algorithm: INTERIOR POINTS for each i do for each $j \neq i$ do for each $k \neq i \neq j$ do for each $l \neq i \neq j \neq k$ do if $p_l \in \Delta(p_i, p_j, p_k)$ then p_l is nonextreme A directed edge is not extreme if there is some point that is not left of it or on it

Algo

Algorithm: EXTREME EDGES for each i do for each $j \neq i$ do for each $k \neq i \neq j$ do if p_k is not left or on (p_i, p_j) then (p_i, p_j) is not extreme

A general pic

 The point that makes the smallest counter clockwise angle Θ with respect to the previous hull edge must determine an extreme edge

How do we start Gift wrapping?

- How do we get the first convex hull edge?
- Find the lowest y coordinate point, i₀
- Draw a line L parallel to x axis along i₀
- Take the counter clockwise angle of the edge i₀y with respect to L for all y∈S
- Select the point which takes the smallest counterclockwise angle

Pseudo code: Gift Wrapping

```
Algorithm: GIFT WRAPPING
Find the lowest point (smallest y coordinate).
Let i_0 be its index, and set i \leftarrow i_0.
repeat
      for each j \neq i do
           Compute counterclockwise angle \theta from previous hull edge.
      Let k be the index of the point with the smallest \theta.
      Output (p_i, p_k) as a hull edge.
      i \leftarrow k
until i = i_0
```

Time Complexity

```
Algorithm: GIFT WRAPPING
Find the lowest point (smallest y coordinate).
Let i₀ be its index, and set i ← i₀.
repeat
for each j ≠ i do
Compute counterclockwise angle θ from previous hull edge.
Let k be the index of the point with the smallest θ.
```

Output (p_i, p_k) as a hull edge.

$$i \leftarrow k$$

until $i = i_0$

- It depends on what all parameters?
- Number of points n?
- Number of edges of convex hull h?
- O(nh) is the time complexity
- Hence, Gift wrapping is output sensitive
- It runs faster when the hull is small
- Worst case time complexity?
- O(n²): O(n) work for each hull edge

QUICK HULL

QUICK HULL

- Proposed by independent researchers in 1970's
- Named by Preparata and Shamos [1985] due to its similarity with Quick sort algorithm
- What all we know about Quick sort algo?
- It is a divide and conquer algorithm
- Its average case complexity is O(n log n)
- Its worst case complexity is O(n²)

Quick Sort: Pictorial representation

Quick Sort: A Divide and Conquer strategy

• Divide:

- Partition the array A[p..r] to two sub arrays
 A[p..q-1] and A[q+1..r], where q is computed as part of the PARTITION function
- Each element of A[p..q-1] is less than or equal to A[q]
- Each element of A[q+1..r] is greater than A[q]
- The sub arrays can be empty or non-empty

Quick Sort: A Divide and Conquer strategy

- Conquer:
 - Sort the two sub arrays A[p..q-1] and A[q+1..r]
 - By recursive calls to quick sort

Quick Sort: A Divide and Conquer strategy

Combine :

- The two sub arrays are already sorted
- The entire array A[p ..r] is already sorted
- Nothing particular to do in combine step

What is the intuition of Quick Hull algo?

- Intuition of Quick Hull algo
- For most set of points, it is easy to discard many points as definitely interior to the hull, and then concentrate on those closer to the hull boundary
- Exercise: Draw an example input point set, where the above fact holds
- Exercise: Draw an example input point set, where the above fact does not hold

Example of a Convex hull

- Only the points on the CH /nearer to the boundary of CH have to be considered
- Some points are always part of the convex hull

Divide and Conquer Algo

How do we divide the input?

- Consider the intuition
- Recursively solve the sub problems

What are the points which are surely on the convex hull?

- Extreme points For Eg: Topmost, Lowest, Rightmost, Leftmost
- For dividing the point set we consider the rightmost lowest and the left most highest point and draw a line L between them

Divide the set of points in to two by Line xy

Divide and conquer

 The full hull is composed of an upper hull above the line xy and a lower hull below the

line xy

Recall Intuition

 For most set of points, it is easy to discard many points as definitely interior to the hull, and then concentrate on those closer to the hull boundary

y

How do we discard some interior points?

 Find a point b which is of maximum distance from the line xy

How do we discard some interior points using x, y and b?

- The points interior to Δx by are not part of CH
- Recursively continue this process

Consider xb as the next line

 Take the point with maximum distance from the line xb

• Exclude the points from Δxcb

General pic

 Quick hull discards the points in ∆abc and recurses on A and B

Algorithm: QUICKHULL function QuickHull(a, b, S)

if $S = \emptyset$ then return ()

else

 $c \leftarrow \text{index of point with max distance from } ab$.

 $A \leftarrow$ points strictly right of (a, c).

 $B \leftarrow \text{points strictly right of } (c, b).$

return QuickHull(a, c, A) + (c) + QuickHull(c, b, B)

Analysis

- Same as Quick Sort
- Best and average case : O(n log n)
- Worst case : O(n²)

References

J. O Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998)

Thank you