Assignment for Algebra III

Zhang Chi (201828001207022) zhangchi2018@itp.ac.cn

July 8, 2021

Exercise 1

- (a) $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- **(b)** $(a : b)b \subseteq a$
- (c) $((\mathfrak{a}:\mathfrak{b}):\mathfrak{c}) = (\mathfrak{a}:\mathfrak{bc}) = ((\mathfrak{a}:\mathfrak{c}):\mathfrak{b})$
- (d) $(\cap_i \mathfrak{a}_i : \mathfrak{b}) = \cap_i (\mathfrak{a}_i : \mathfrak{b})$
- (e) $(\mathfrak{a}: \sum_i \mathfrak{b}_i) = \cap_i (\mathfrak{a}: \mathfrak{b}_i)$

Proof. (a) For any $x \in \mathfrak{a}$, we have $x\mathfrak{b} = \mathfrak{b}x \subseteq \mathfrak{a}$, so $x \in (\mathfrak{a} : \mathfrak{b})$. This shows that $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$.

- **(b)** For any $x \in (\mathfrak{a} : \mathfrak{b})$, by definition $x\mathfrak{b} \subseteq \mathfrak{a}$ holds. Thus $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$.
- (c) First we prove

$$((\mathfrak{a}:\mathfrak{b}):\mathfrak{c})=(\mathfrak{a}:\mathfrak{bc}), \tag{1}$$

then prove

$$(\mathfrak{a}:(\mathfrak{b}:\mathfrak{c}))=(\mathfrak{a}:\mathfrak{bc}). \tag{2}$$

For (1), take any $x \in ((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c})$, we have

$$x\mathfrak{c}\subseteq (\mathfrak{a}:\mathfrak{b}),$$

which is equivalent to say that

$$x\mathfrak{cb} = x\mathfrak{bc} \subseteq \mathfrak{a}$$
.

So $x \in (\mathfrak{a} : \mathfrak{bc})$, completing one direction. Conversely, for any $y \in (\mathfrak{a} : \mathfrak{bc})$, we have

$$y\mathfrak{cb} = y\mathfrak{bc} \subseteq \mathfrak{a}$$
,

by which we conclude

$$y\mathfrak{c}\subseteq (\mathfrak{a}:\mathfrak{b}),$$

furthermore

$$y \in ((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}),$$

completing the other direction.

For (2), for any $z \in (\mathfrak{a} : (\mathfrak{b} : \mathfrak{c}))$, we have

$$z(\mathfrak{b}:\mathfrak{c})\subseteq\mathfrak{a}$$

(d) If $x \in (\cap_i \mathfrak{a}_i, \mathfrak{b})$, we have

$$x\mathfrak{b}\subseteq\cap_i\mathfrak{a}_i$$
,

hence

$$x\mathfrak{b}\subseteq\mathfrak{a}_i$$

holds for all *i*. But this is equivalent to saying that

$$x \in (\mathfrak{a}_i : \mathfrak{b})$$

for all *i*, which implies that

$$x \in \cap_i(\mathfrak{a}_i : \mathfrak{b}).$$

Conversely, if $y \in \cap_i(\mathfrak{a}_i : \mathfrak{b})$,

$$y\mathfrak{b}\subseteq\mathfrak{a}_i$$

for all *i*. Thus

$$y\mathfrak{b} = \cap_i \mathfrak{a}_i$$

which means that

$$y \in (\cap_i \mathfrak{a}_i : \mathfrak{b}).$$

(e) If $x \in (\mathfrak{a} : \sum_i \mathfrak{b}_i)$, we have

$$x(\sum_{i}\mathfrak{b}_{i})=\sum_{i}x\mathfrak{b}_{i}\subseteq\mathfrak{a},$$

in particular

$$x\mathfrak{b}_i\subseteq\mathfrak{a}$$

holds for each *i*, thus

$$x \in (\mathfrak{a} : \mathfrak{b}_i)$$

for each *i* and equivalently

$$x \in \cap_i (\mathfrak{a} : \mathfrak{b}_i).$$

Conversely, if $y \in \cap_i(\mathfrak{a} : \mathfrak{b}_i)$, we have

$$y\mathfrak{b}_i\subseteq\mathfrak{a}$$

for all *i*, thus

$$y(\sum_{i}\mathfrak{b}_{i})\subseteq\mathfrak{a}$$
,

or equivalently

$$y \in (\mathfrak{a} : \sum_{i} \mathfrak{b}_{i}).$$

Exercise 2

If \mathfrak{a}_1 , \mathfrak{a}_2 are ideals of A and if \mathfrak{b}_1 , \mathfrak{b}_2 are ideals of B, then

$$\begin{split} \left(\mathfrak{a}_{1}+\mathfrak{a}_{2}\right)^{e} &= \mathfrak{a}_{1}^{e}+\mathfrak{a}_{2}^{e}, \left(\mathfrak{b}_{1}+\mathfrak{b}_{2}\right)^{c} \supseteq \mathfrak{b}_{1}^{c}+\mathfrak{b}_{2}^{c}, \\ \left(\mathfrak{a}_{1}\cap\mathfrak{a}_{2}\right)^{e} \subseteq \mathfrak{a}_{1}^{e}\cap\mathfrak{a}_{2}^{e}, \left(\mathfrak{b}_{1}\cap\mathfrak{b}_{2}\right)^{c} = \mathfrak{b}_{1}^{c}\cap\mathfrak{b}_{2}^{c}, \\ \left(\mathfrak{a}_{1}\mathfrak{a}_{2}\right)^{e} &= \mathfrak{a}_{1}^{e}\mathfrak{a}_{2}^{e}, \left(\mathfrak{b}_{1}\mathfrak{b}_{2}\right)^{c} \supseteq \mathfrak{b}_{1}^{c}\mathfrak{b}_{2}^{c}, \\ \left(\mathfrak{a}_{1}:\mathfrak{a}_{2}\right)^{e} \subseteq \left(\mathfrak{a}_{1}^{e}:\mathfrak{a}_{2}^{e}\right), \left(\mathfrak{b}_{1}:\mathfrak{b}_{2}\right)^{c} \subseteq \left(\mathfrak{b}_{1}^{c}:\mathfrak{b}_{2}^{c}\right), \\ \left(\sqrt{\mathfrak{a}}\right)^{e} \subseteq \sqrt{\mathfrak{a}^{e}}, \left(\sqrt{\mathfrak{b}}\right)^{c} &= \sqrt{\mathfrak{b}^{c}}. \end{split}$$

The set of ideals *E* is closed under sum and product, and *C* is closed under the other three operations.

Proof. **Sum**. We naturally have $(\mathfrak{a}_1 + \mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^e + \mathfrak{a}_2^e$. For the converse, taking any $\sum_i y_i f(x_i) \in \mathfrak{a}_1^e$, we have

$$\sum_{i} y_i f(x_i) = \sum_{i} y_i f(x_i + 0) \subseteq (\mathfrak{a}_1 + \mathfrak{a}_2)^e,$$

showing that

$$\mathfrak{a}_1^e \subseteq (\mathfrak{a}_1 + \mathfrak{a}_2)^e$$
.

Anagolously,

$$\mathfrak{a}_2^e \subseteq (\mathfrak{a}_1 + \mathfrak{a}_2)^e$$

implying that

$$\mathfrak{a}_1^e + \mathfrak{a}_2^e \subseteq (\mathfrak{a}_1 + \mathfrak{a}_2)^e$$
.

This shows that

$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e.$$

The other identity about sum is easier to prove, since for any $f^{-1}(x)+f^{-1}(y)\in\mathfrak{b}_1^c+\mathfrak{b}_2^c$, we have $f^{-1}(x)+f^{-1}(y)=f^{-1}(x+y)\in(\mathfrak{b}_1+\mathfrak{b}_2)^c$, showing that

$$\mathfrak{b}_1^c + \mathfrak{b}_2^c \subseteq (\mathfrak{b}_1 + \mathfrak{b}_2)^c$$
.

Intersection For $\sum_i y_i f(x_i) \in (\mathfrak{a}_1 \cap \mathfrak{a}_2)^e$ with all $y_i \in B$ and $x_i \in \mathfrak{a}_1 \cap \mathfrak{a}_2$, since $x_i \in \mathfrak{a}_1$ and $x_i \in \mathfrak{a}_2$, we have

$$\sum_{i} y_i f(x_i) \in \mathfrak{a}_1^{\mathrm{e}}$$

and

$$\sum_{i} y_i f(x_i) \in \mathfrak{a}_2^{\mathrm{e}}.$$

So

$$\sum_{i} y_i f(x_i) \in \mathfrak{a}_1^{\mathrm{e}} \cap \mathfrak{a}_2^{\mathrm{e}},$$

implying

$$(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^e \cap \mathfrak{a}_2^e$$
.

If $f^{-1}(y) \in (\mathfrak{b}_1 \cap \mathfrak{b}_2)^c$ with $y \in \mathfrak{b}_1 \cap \mathfrak{b}_2$, we have $f^{-1}(y) \in \mathfrak{b}_1^c$ and $f^{-1}(y) \in \mathfrak{b}_2^c$, as $y \in \mathfrak{b}_1$ and $y \in \mathfrak{b}_2$. Thus $f^{-1}(y) \in \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$, showing that $(\mathfrak{b}_1 \cap \mathfrak{b}_2)^c \subseteq \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$. Conversely, if $x \in \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$, then $x \in \mathfrak{b}_1^c$ and $x \in \mathfrak{b}_2^c$ hence $f(x) \in \mathfrak{b}_1$ and $f(x) \in \mathfrak{b}_2$. So $f(x) \in \mathfrak{b}_1 \cap \mathfrak{b}_2$ and $x = f^{-1}(f(x)) \in (\mathfrak{b}_1 \cap \mathfrak{b}_2)^c$, as desired.

Production. Taking

$$\sum_{i} y_i f(x_i) \in (\mathfrak{a}_1 \mathfrak{a}_2)^e,$$

with $y_i \in B$ and $x_i \in \mathfrak{a}_1\mathfrak{a}_2$, we can expand

$$x_i = \sum_i u_j^i v_j^i$$

with $u_i^i \in \mathfrak{a}_1$ and $v_i^i \in \mathfrak{a}_2$. So we write

$$\sum_{i} y_i f(x_i) = \sum_{i} y_i f(\sum_{j} u_j^i v_j^i) = \sum_{i} \sum_{j} y_i f(u_j^i) f(v_j^i).$$

Since all $f(u_j^i)f(v_j^i) \in \mathfrak{a}_1^e\mathfrak{a}_2^e$, their sum $\sum_i \sum_j y_i f(u_j^i) f(v_j^i)$ also lies in $\mathfrak{a}_1^e\mathfrak{a}_2^e$, namely $\sum_i y_i f(x_i) \in \mathfrak{a}_1^e\mathfrak{a}_2^e$, showing that

$$(\mathfrak{a}_1\mathfrak{a}_2)^e\subseteq \mathfrak{a}_1^e\mathfrak{a}_2^e.$$

For the other direction, suppose we have

$$\sum_i z_i w_i \in \mathfrak{a}_1^{\mathrm{e}} \mathfrak{a}_2^{\mathrm{e}}$$

with $z_i = \sum_j a_j^i f(u_j^i)$ and $w_i = \sum_k b_k^i f(v_k^i)$. Then

$$\sum_{i} z_i w_i = \sum_{i} \sum_{j} \sum_{k} a_j^i b_k^i f(u_j^i) f(v_k^i) = \sum_{j} \sum_{k} a_j^i b_k^i f(\sum_{i} u_j^i v_k^i).$$

Since all $f(\sum_i u^i_j v^i_k) \in (\mathfrak{a}_1 \mathfrak{a}_2)^e$, their sum $\sum_j \sum_k a^i_j b^i_k f(\sum_i u^i_j v^i_k) = \sum_i z_i w_i$ lies in $(\mathfrak{a}_1 \mathfrak{a}_2)^e$. This shows that

$$\mathfrak{a}_1^e\mathfrak{a}_2^e\subseteq (\mathfrak{a}_1\mathfrak{a}_2)^e$$
.

Similarly, if we have

$$\sum_{i} f^{-1}(u_i) f^{-1}(v_i) \in \mathfrak{b}_1^{\mathsf{c}} \mathfrak{b}_2^{\mathsf{c}},$$

each $f^{-1}(u_iv_i) = f^{-1}(u_i)f^{-1}(v_i)$ lies in $(\mathfrak{b}_1\mathfrak{b}_2)^c$, so does the sum $\sum_i f^{-1}(u_iv_i)$. Thus

$$\mathfrak{b}_1^c\mathfrak{b}_2^c\subseteq (\mathfrak{b}_1\mathfrak{b}_2)^c.$$

Quotient. For the first identity, assume that $x \in (\mathfrak{a}_1 : \mathfrak{a}_2)^e$. We want to show that $x \in (\mathfrak{a}_1^e : \mathfrak{a}_2^e)$, or namely

$$x\mathfrak{a}_2^{\mathrm{e}} \subseteq \mathfrak{a}_1^{\mathrm{e}}$$
.

We can expand x as

$$x = \sum_{i} y_i f(x_i)$$

with $x_i \mathfrak{a}_2 \subseteq \mathfrak{a}_1$ for each i. Also note that every element z in \mathfrak{a}_2^e has the form

$$z = \sum_{j} w_{j} f(z_{j}),$$

with $z_i \in \mathfrak{a}_2$. So, with a little computation, we have

$$xz = \left(\sum_{i} y_i f(x_i)\right)\left(\sum_{j} w_j f(z_j)\right) = \sum_{i} \sum_{j} y_i w_j f(x_i) f(z_j) = \sum_{i} \sum_{j} y_i w_j f(x_i z_j) \in \mathfrak{a}_1^{\mathsf{e}}, \tag{3}$$

since

$$x_i z_i \in \mathfrak{a}_1$$

for all i, j. Thus (3) tells us that $x\mathfrak{a}_2^e \subseteq \mathfrak{a}_1^e$, as desired.

For the other identity, assume that $x \in (\mathfrak{b}_1 : \mathfrak{b}_2)^c$, or equivalently

$$x \in f^{-1}(\mathfrak{b}_1 : \mathfrak{b}_2) \Leftrightarrow f(x) \in (\mathfrak{b}_1 : \mathfrak{b}_2) \Leftrightarrow f(x)\mathfrak{b}_2 \subseteq \mathfrak{b}_1,$$
 (4)

we want to show that

$$x \in (\mathfrak{b}_1^{\mathfrak{c}}, \mathfrak{b}_2^{\mathfrak{c}}).$$

To do this, take any $f^{-1}(y) \in \mathfrak{b}_2^c$, we have

$$f(xf^{-1}(y)) = f(x)y \in \mathfrak{b}_1,$$

by (4). This shows that

$$xf^{-1}(y) \in \mathfrak{b}_1^{\mathsf{c}}$$

for all $y \in \mathfrak{b}_2$, hence

$$x\mathfrak{b}_{2}^{c}\subset\mathfrak{b}_{1}^{c}$$

as desired. Root. Suppose

$$\sum_{i} y_{i} f(x_{i}) \in \left(\sqrt{\mathfrak{a}}\right)^{e} \tag{5}$$

with $x_i \in \sqrt{\mathfrak{a}}$, or $x_i^{m_i} \in \mathfrak{a}$ for some $m_i \in \mathbb{N}$ for each i. Since only finitely many y_i in (5) are not zero, the sum $\sum_i m_i$ makes sense. Note that

$$(\sum_i y_i f(x_i))^{\sum_i m_i} \in \mathfrak{a}^{\mathbf{e}},$$

so we have

$$\sum_{i} y_i f(x_i) \in \sqrt{\mathfrak{a}^{\mathrm{e}}}.$$

This means $(\sqrt{\mathfrak{a}})^e \subseteq \sqrt{\mathfrak{a}^e}$.

For the other identity, suppose we have

$$f^{-1}(y) \in (\sqrt{\mathfrak{b}})^{\mathfrak{c}}$$

with $y \in \sqrt{\mathfrak{b}}$. Then there is some $n \in \mathbb{N}$ making

$$(f^{-1}(y))^m = f^{-1}(y^m) \in f^{-1}(\mathfrak{b}) = \mathfrak{b}^{c},$$

hence

$$f^{-1}(y) \subseteq \sqrt{\mathfrak{b}^{\mathsf{c}}},$$

showing that

$$(\sqrt{\mathfrak{b}})^{\mathfrak{c}} \subseteq \sqrt{\mathfrak{b}^{\mathfrak{c}}}.$$

Conversely, if $x \in \sqrt{\mathfrak{b}^c}$, there is some $m \in \mathbb{N}$ such that

$$x^m \in \mathfrak{b}^{\mathrm{c}}$$
.

So we have

$$(f(x))^m = f(x^m) \in \mathfrak{b},$$

which means that

$$f(x) \in \sqrt{\mathfrak{b}}$$
,

or equivalently

$$x \in (\sqrt{\mathfrak{b}})^{\mathfrak{c}}$$
.

So we have shown that

$$\sqrt{\mathfrak{b}^{\mathrm{c}}}\subseteq \left(\sqrt{\mathfrak{b}}\right)^{\mathrm{c}}.$$

Exercise 3

Let *A* be a ring and let A[[x]] be the ring of formal power series $f = \sum_{n=0}^{\infty} a_n x^n$ with coefficient in *A*. Show that

- (a) f is a unit in A[[x]] iff a_0 is a unit in A.
- **(b)** If f is nilpotent, then a_n is nilpotent for all $n \ge 0$. Is the converse true?
- (c) f belongs to the Jacobson radical of A[[x]] iff a_0 belongs to the Jacobson radical of A.

- (d) The contraction of a maximal ideal \mathfrak{m} of A[[x]] is a maximal ideal of A, and \mathfrak{m} is generated by \mathfrak{m}^c and x.
- (e) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Proof. (a) \Rightarrow Suppose that $f = \sum_{i=0}^{\infty} a_i x^i$ is a unit in A[[x]], then there is some $g = \sum_{j=0}^{\infty} b_j x^j \in A[[x]]$ such that

$$1 = fg = \left(\sum_{i=0}^{\infty} a_i x^i\right) \left(\sum_{i=0}^{\infty} b_j x^i\right) = \sum_{n=0}^{\infty} \sum_{i+j=n} a_i b_j x^{i+j} = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + \cdots$$

Comparing the coefficients of both sides, we have at least

$$a_0 b_0 = 1$$
,

showing that a_0 is a unit in A.

 \Leftarrow Assume that a_0 in $f = \sum_{i=0}^{\infty} a_i x^i$ is a unit in A, we need to show that there is some $g \in A[[x]]$ such that fg = 1. Let $g = \sum_{j=0}^{\infty} b_j x^j$, we construct b_j inductively. For j = 0, we simply take $b_0 := (a_0)^{-1}$ by the assumption that a_0 is a unit in A. Suppose we have constructed $b_0, b_1, \ldots, b_{j-1}$ for $j \in \mathbb{N}$, we may let

$$b_i := -b_0(b_{i-1}a_1 + b_{i-2}a_2 + \cdots + b_1a_{i-1} + b_0a_i),$$

which satisfies

$$b_i a_0 + b_{i-1} a_1 + \dots + b_1 a_{i-1} + b_0 a_i = 0$$

manifestly. With these b_i 's we have

$$fg = \sum_{n=0}^{\infty} \sum_{i+j=n} a_i b_j x^{i+j} = 1,$$

completing the other direction.

(b) We prove this by induction on n. When n = 0, as f is nilpotent, there is some $m_0 \in \mathbb{N}$ such that

$$0 = f^{m_0} = (\sum_{i=0}^{\infty} a_i x^i)^{m_0},$$

which at least implies

$$a_0^{m_0} = 0$$

by comparing the coefficients of the both sides. To show that a_n is nilpotent, we apply the induction hypothesis that $a_0, a_1, \ldots, a_{n-1}$ are all nilpotent, that is, there are $m_0, m_1, \ldots, m_{n-1} \in \mathbb{N}$ making

$$a_0^{m_0} = 0,$$

 $a_1^{m_1} = 0,$
 \vdots
 $a_{n-1}^{m_{n-1}} = 0.$

Let $m_n := m_0 + m_1 + \cdots + m_{n-1}$, we have

$$0 = (f - a_0 - a_1 x - \dots + a_{n-1} x^{n-1})^{m_n} = (a_n x^n + a_{n+1} x^{n+1} + \dots)^{m_n}.$$

So we have

$$a_n^{m_n} = 0$$

by comparing the coefficients, which shows that a_n is nilpotent.

- (c) We know that f belongs to J(A[[x]]) iff 1 fg is a unit of A[[x]] for all $g = \sum_{j=0}^{\infty} b_j x^j \in A[[x]]$. By (a), the last condition holds iff $1 a_0b_0$ is a unit in A for all $b_0 \in A$, iff a_0 is in J(A).
- (d) We denote by $i:A\hookrightarrow A[[x]]$ the natural inclusion. If \mathfrak{m} is a maximal of A[[x]], we need to show that $i^{-1}(\mathfrak{m})$ is a maximal ideal of A. If $f\in \mathfrak{m}\cap i(A)$, f is a constant and can be viewed as an element of A. Since \mathfrak{m} is maximal in A[[x]], 1-f is a unit in A[[x]], and via $i:A\hookrightarrow A[[x]]$ $1-f=1-i^{-1}(f)$ is a unit in A. Since all elments in \mathfrak{m}^c are of the form $i^{-1}(f)$, the elements of $1-\mathfrak{m}^c$ are all unit in A, so \mathfrak{m}^c is maximal in A.
 - **(e)** Let $\mathfrak{p} \subseteq A$ be a prime ideal of A, note that

$$\mathfrak{p}^{\mathbf{e}} := i(\mathfrak{p})A[[x]] = \mathfrak{p}[[x]] = \left\{ f \in A[[x]] \middle| f = \sum_{i=0}^{\infty} a_i x^i, a_i \in \mathfrak{p} \right\},$$

and

$$\mathfrak{p}[[x]]^{c}=\mathfrak{p}.$$

So if we can show that $\mathfrak{p}[[x]]$ is a prime ideal of A[[x]], we are done. To show this, we can pick any two $f,g\in A[[x]]$ and assume that neither of them are in $\mathfrak{p}[[x]]$, and we need to show that

$$fg \notin \mathfrak{p}[[x]].$$

Expanding f, g in x as before,

$$f = \sum_{i=0}^{\infty} a_i x^i,$$
$$g = \sum_{i=0}^{\infty} b_j x^j,$$

we know that there exist some minimal $m, n \in \mathbb{N}$ such that $a_m, b_n \notin \mathfrak{p}$ and $a_i, b_j \in \mathfrak{p}, 0 \le i \le m-1, 0 \le j \le n-1$, by assumption. Now we consider the sum

$$a_{m+n}b_0 + a_{m+n-1}b_1 + \dots + a_mb_n + a_{m-1}b_{m+1} + \dots + a_0b_{m+n},$$
 (6)

which is the coefficient of the term x^{m+n} in the expansion of fg. We claim that (6) is an element of \mathfrak{p} . Otherwise, if it were in \mathfrak{p} , and by the assumption that $a_i \in \mathfrak{p}, 0 \le i \le m-1$ and $b_j \in \mathfrak{p}, 0 \le j \le m-1$, we have

$$a_m a_n \in \mathfrak{p}$$
,

showing that either a_m or b_n is an element of \mathfrak{p} , a contradiction. Thus our claim holds and hence $fg \notin \mathfrak{p}[[x]]$, as desired.

Exercise 4

Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- (a) if $\mathfrak a$ is the ideal generated by E, then $V(E) = V(\mathfrak a) = V(\sqrt{\mathfrak a})$.
- **(b)** $V(0) = X, V(1) = \emptyset.$
- (c) if $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V(\bigcup_{i\in I} E_i) = \bigcap_{i\in I} V(E_i).$$

(d) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the **Zariski topology**. The topological space X is called the **prime spectrum** of A, and is written SpecA.

Proof. (a) We first prove that

$$V(E) = V(\mathfrak{a}).$$

If $\mathfrak{p} \in V(\mathfrak{a})$, then $E \subseteq \mathfrak{a} \subseteq \mathfrak{p}$, showing that $\mathfrak{p} \in V(E)$. Conversely, If $\mathfrak{p} \in V(E)$, we have $E \subseteq \mathfrak{p}$. Thus

$$\sum_{i} a_i e_i \in \mathfrak{p}$$

for all $e_i \in E$ and $a_i \in A$, which is equivalent to say that

$$\mathfrak{a} = \langle E \rangle \subseteq \mathfrak{p}$$
,

as desired.

Then we prove that

$$V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}}).$$

If $\mathfrak{q} \in V(\sqrt{\mathfrak{a}})$, then

$$\mathfrak{a} \subseteq \sqrt{\mathfrak{a}} \subseteq \mathfrak{q}$$
,

showing that $\mathfrak{q} \in V(\mathfrak{a})$. Conversely, if $\mathfrak{q} \in V(\mathfrak{a})$, we have $\mathfrak{a} \subseteq \mathfrak{q}$. We want to show that $\sqrt{\mathfrak{a}} \subseteq \mathfrak{q}$ as well. Indeed, for any $x \in \sqrt{\mathfrak{a}}$, there is some $m \in \mathbb{N}$ such that

$$x^m \in \mathfrak{a} \subseteq \mathfrak{q}$$
.

Since \mathfrak{q} is prime, we conclude that $x \in \mathfrak{p}$, this shows that $\sqrt{\mathfrak{a}} \subseteq \mathfrak{q}$.

(b) Since 0 is contained in all prime ideals of *A*, so we have

$$V(0) = X$$
.

Since no proper prime ideals contain 1, we have

$$V(1) = \emptyset$$
.

(c) If $\mathfrak{p} \in \cap_{i=I} V(E_i)$, we have

$$E_i \subset \mathfrak{p}$$

for all $i \in I$, which implies

$$\bigcup_{i\in I} E_i \subseteq \mathfrak{p}.$$

Conversely, if $\mathfrak{q} \in V(\cup_{i \in I} E_i)$, we have

$$\bigcup_{i\in I} E_i \subset \mathfrak{q}$$
,

thus

$$E_i \subseteq \cup_{i \in I} \subseteq \mathfrak{q}$$
.

This means that

$$\mathfrak{q} \in V(E_i)$$

for all $i \in I$, thus

$$\mathfrak{q} \in \cap_{i \in I} V(E_i)$$
.

(d) Since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, if any prime ideal contains $\mathfrak{a} \cap \mathfrak{b}$, it also contains \mathfrak{ab} . So we have $V(\mathfrak{a} \cap \mathfrak{b}) \subseteq V(\mathfrak{ab})$. For the other direction, assume that $\mathfrak{ab} \subseteq \mathfrak{q}$, we want to show that $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{q}$. Indeed, for any $x \in \mathfrak{a} \cap \mathfrak{b}$, we have $x^2 \in \mathfrak{ab} \subseteq \mathfrak{q}$. Since \mathfrak{q} is prime, $x \in \mathfrak{q}$, as desired.

Let *A* be a ring and $\mathfrak{a} \subseteq A$ be an ideal. Let *M* be a finite *A*-module. Prove that

$$\sqrt{\operatorname{Ann}(M/\mathfrak{a}M)} = \sqrt{\operatorname{Ann}(M) + \mathfrak{a}}.$$

Proof. \supseteq If $x \in \sqrt{\operatorname{Ann}(M) + \mathfrak{a}}$, there is some $m \in \mathbb{N}$ such that $x^m \in \operatorname{Ann}(M) + \mathfrak{a}$. Thus

$$x^m M \subseteq (\operatorname{Ann}(M) + \mathfrak{a})M = \mathfrak{a}M,$$

which means that

$$x^m(M/\mathfrak{a}M)=0$$

in $M/\mathfrak{a}M$. So $x^m \in \text{Ann}(M/\mathfrak{a}M)$, or $x \in \sqrt{\text{Ann}(M/\mathfrak{a}M)}$.

 \subseteq Conversely, if $y \in \sqrt{\operatorname{Ann}(M/\mathfrak{a}M)}$, then there is some $n \in \mathbb{N}$ such that $y^n \in \operatorname{Ann}(M/\mathfrak{a}M)$, or equivalently, $y^n M \subseteq \mathfrak{a}M$. Note that M is a faithful $(A/\operatorname{Ann}(M))$ -module, and we denote \bar{y} by the image of y in the quotient ring $(A/\operatorname{Ann}(M))$. So we have

$$\bar{y}^n M \subseteq \mathfrak{a}M$$
,

by which we claim that $\bar{y}^n \in \mathfrak{a}$. Indeed, since there is always some $f \in \mathfrak{a}$ making

$$\bar{y}^n M = fM$$

by the finiteness of M, we have $\bar{y}^n = f$, as M is faithful as an $(A/\mathrm{Ann}(M))$ -module. But $\bar{y}^n \in \mathfrak{a}$ implies that

$$y^n \in \mathfrak{a} + \mathrm{Ann}(M)$$
,

or equivalently

$$y \in \sqrt{\mathfrak{a} + \operatorname{Ann}(M)}.$$

Exercise 6

Let *A* be a ring, and $0 \to L \to M \to N \to 0$ be an exact sequence of *A*-modules.

- (a) If *L* and *N* are both of finite presentation, then so is *M*.
- **(b)** If *L* is finitely generated and *M* is of finite presentation, then *N* is of finite presentation.

Proof. **(a)** Since *L* and *N* are both of finite presentation, we the following commutative diagram with exact row and columns

Thus there exists a unique $\tilde{v}:A^p\to M$ lifting $v:A^p:\to N$. Further $f\circ h:A^m\to M$ and $\tilde{v}:A^p\to M$ induce a morphism $i:A^{m+p}=A^m\oplus A^p\to M$. By the same reason there is a morphism $j:A^{n+q}\to A^{m+p}$. So the above commutative diagram can be extended to the commutative diagram

$$0 \longrightarrow A^{n} \longrightarrow A^{n+q} \longrightarrow A^{q} \longrightarrow 0$$

$$\downarrow^{k} \qquad \downarrow^{j} \qquad \downarrow^{u}$$

$$0 \longrightarrow A^{m} \longrightarrow A^{m+p} \longrightarrow A^{p} \longrightarrow 0$$

$$\downarrow^{h} \qquad \downarrow^{i} \qquad \downarrow^{v} \qquad ,$$

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$$

$$\downarrow^{0} \qquad \downarrow^{0} \qquad \downarrow^{0} \qquad \downarrow^{0}$$

where the second column is exact by construction. This shows that *M* is of finite presentation.

(b) Since *L* is finitely generated and *M* is finitely presented, we have the following commutative diagram.

where $k:A^m\to A^p$ is the unique lift of $f\circ h:A^m\to M$ along $v:A^p\to M$, by the projectivity of A^m .

Then we denote by $\psi: A^{m+q} \to A^p$ the morphism induced by $k: A^m \to A^p$ and $u: A^q \to A^p$, and $\phi: A^p \to N$ the composition of $g: M \to N$ and $v: A^p \to M$, as in the following commutative diagram

By construction,

$$A^{m+q} \xrightarrow{\psi} A^p \xrightarrow{\phi} N \to 0$$

is an exact sequence of A-modules, thus a presentation of N. This shows that N is finitely presented, completing the proof.

Let A be a ring. Suppose that, for each prime ideal \mathfrak{p} , the local ring $A_{\mathfrak{p}}$ has no nilpotent element $\neq 0$. Show that A has no nilpotent element $\neq 0$. If each $A_{\mathfrak{p}}$ is an integral domain, is A necessarily an integral domain?

Proof. If $0 \neq x \in A$ is nilpotent, then there is some $n \in \mathbb{N}$ making $x^n = 0$. For any prime ideal \mathfrak{p} , consider $x/1 \in A_{\mathfrak{p}}$. Then $(x/1)^n = 0$ in $A_{\mathfrak{p}}$ since $1 \cdot x^n = x^n = 0$, a contradiction to the assumption that there are no non-zero nilpotent element in $A_{\mathfrak{p}}$. Is being integral a local property?

Exercise 8

A multiplicatively closed subset *S* of a ring said to be **saturated** if

$$xy \in S \Leftrightarrow x \in S \text{ and } y \in S.$$

Prove that

- (a) S is saturated $\Leftrightarrow A S$ is a union of prime ideals.
- **(b)** If S is any multiplicatively closed subset of A, there is a unique smallest saturated multiplicatively closed subset \bar{S} containing S, and that \bar{S} is the complement in A of the union of the prime ideals which do not meet S. (\bar{S} is called the **saturation** of S.)
 - If $S = 1 + \mathfrak{a}$, where \mathfrak{a} is an ideal of A, find \bar{S} .
- *Proof.* (a) \Leftarrow Suppose $A S = \bigcup_i \mathfrak{p}_i$, with \mathfrak{p}_i running over prime ideals that don't meet S. Clearly S is multiplicatively closed. To see this, take any $x \in S$ and $y \in S$. Thus $x \notin \mathfrak{p}_i$ and $y \notin \mathfrak{p}_i$ for all i, so does xy. Then $xy \notin \bigcup_i \mathfrak{p}_i$, so $xy \in S$. Now suppose $xy \in S$, then $xy \notin \mathfrak{p}_i$ for all \mathfrak{p}_i , hence $x \notin \mathfrak{p}_i$ and $y \notin \mathfrak{p}_i$ for all \mathfrak{p}_i , or $x \in S$ and $y \in S$.
- \Rightarrow Suppose that S is saturated. We want to show that for any $x \notin S$, there is a prime ideal $\mathfrak p$ containing X and not meeting S. This direction is slightly non-trivial than the other, as we will conclude the existence of such a prime ideal $\mathfrak p$ by Zorn's Lemma. We define Σ to be the set

$$\Sigma := \{ \text{ ideals containing } x \text{ that don't meet } S \},$$

and endow Σ the partial order \subseteq . Thus Σ is a poset that is non-empty. Indeed, by saturation, the ideal (x) generated by the single element $x \notin S$ doesn't meet S. Otherwise, if there is some $a \in A$ making $ax \in S$ we have $a \in S$ and $x \in S$, a contradiction. Now we consider the total order subset T of Σ . For any $\mathfrak{a}, \mathfrak{b} \in T$, there is either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$. By Zorn's Lemma, there is a maximal element \mathfrak{p} of T. We want to show that \mathfrak{p} is prime. Take any $y \notin \mathfrak{p}$ and $z \notin \mathfrak{p}$, the ideals $(y) + \mathfrak{p}$ and $(z) + \mathfrak{p}$ are not in T. So $(y) + \mathfrak{p}$ and $(z) + \mathfrak{p}$ intersect with S. Take $s \in ((y) + \mathfrak{p}) \cap S$ and $t \in ((z) + \mathfrak{p}) \cap S$, st is again in S by saturation. On the other hand $st \in ((y) + \mathfrak{p})((z) + \mathfrak{p}) \subseteq (yz) + \mathfrak{p}$. So $st \in ((yz) + \mathfrak{p}) \cap S$, showing that $(yz) + \mathfrak{p}$ is not an element of Σ . Then $yz \notin \mathfrak{p}$. This shows that $A - S \subseteq \cup_i \mathfrak{p}_i$, with \mathfrak{p}_i running over prime ideals not meeting S.

The other direction $\cup_i \mathfrak{p}_i \subseteq A - S$ is trivial, since each \mathfrak{p}_i doesn't intersect with S, their union neither.

(b) The " \Leftarrow " part of **(a)** shows that \bar{S} is saturated. Now we are going to show it is minimal. Suppose there is a saturated multiplicative subset T such that $S \subseteq T$. By **(a)**, we have

$$T = A - \cup \mathfrak{q}$$

with q running over prime ideals that don't meet T, and

$$\bar{S} = A - \cup \mathfrak{p}$$

with $\mathfrak p$ running over prime ideals that don't meet S. Since $\cup \mathfrak q \subseteq \cup \mathfrak p$, we have $T \supseteq \bar S$, showing that $\bar S$ is minimal.

If
$$S = 1 + \mathfrak{a}$$
, then

$$\bar{S} = \cup \mathfrak{p}$$

with \mathfrak{p} running over all primes ideals such that $\mathfrak{p} \cap \mathfrak{a} = \emptyset$.

Exercise 9

Let *S* be a multiplicatively closed subset of an integral domain *A*. Show that $T(S^{-1}M) = S^{-1}(TM)$. Deduce that the following are equivalent:

- (a) *M* is torsion-free.
- **(b)** $M_{\mathfrak{p}}$ is torsion-free for all prime ideals \mathfrak{p} .
- (c) $M_{\mathfrak{m}}$ is torsion-free for all maximal ideals \mathfrak{m} .

Proof. We first show that $T(S^{-1}M) = S^{-1}(TM)$.

 \subseteq If $m/r \in T(S^{-1}M)$ is a torsion element, then we can find some $x/t \in S^{-1}A$ such that

$$0 = \frac{x}{t} \cdot \frac{m}{r} = \frac{x \cdot m}{tr}.$$

The last condition is equivalent to

$$zx \cdot m = 0$$

for some $z \in S$, showing that m is a torsion element in M, or $m \in TM$. Thus $m/r \in S^{-1}(TM)$. \supseteq If $n/s \in S^{-1}(TM)$, then $n \in TM$ is a torsion element. So we can find $y \in A$ such that

$$y \cdot n = 0$$
.

This implies that in $S^{-1}M$

$$\frac{y}{1} \cdot \frac{n}{s} = \frac{y \cdot n}{s} = 0,$$

since $wy \cdot n = 0$ holds for all $w \in S$. Thus we have shown that $n/s \in T(S^{-1}M)$.

Taking $S = A - \mathfrak{p}$, we have

$$T(M_{\mathfrak{p}}) = (TM)_{\mathfrak{p}},$$

while taking $S = A - \mathfrak{m}$, we have

$$T(M_{\mathfrak{m}}) = (TM)_{\mathfrak{m}}.$$

Finally note that the conditions

- (a') TM = 0.
- (b') $(TM)_{\mathfrak{p}} = 0$ for all prime ideals \mathfrak{p} .
- (c') $(TM)_{\mathfrak{m}} = 0$ for all maximal ideals \mathfrak{m} .

are all equivalent, as we have proved in class. So we are done.

Let $f: A \to B$ be an integral homomorphism of rings. Show that $f^*: \operatorname{Spec} B \to \operatorname{Spec} A$ is a **closed** mapping, *id est* that it maps closed sets to closed sets.

Proof. Any closed set of Spec*B* is of the form $V(\mathfrak{b})$, with $\mathfrak{b} \subseteq B$ an ideal of *B*. If we can prove that

$$f^*V(\mathfrak{b}) = V(\mathfrak{b}^{\mathbf{c}}),\tag{7}$$

then we can conclude that $f^* : \operatorname{Spec} B \to \operatorname{Spec} A$ is closed.

 \subseteq If $\mathfrak{q} \in V(\mathfrak{b})$, then $f^*(\mathfrak{q}) = \mathfrak{q}^c \in V(\mathfrak{b}^c)$, since the contraction of a prime ideal is again prime, and the relation $\mathfrak{b} \subseteq \mathfrak{q}$ implies $\mathfrak{b}^c \subseteq \mathfrak{q}^c$.

 \supseteq If $\mathfrak{p} \in V(\mathfrak{b}^c)$, there is always a prime ideal $\mathfrak{q} \subseteq B$ such that $\mathfrak{q}^c = \mathfrak{p}$, as B is integral over A ([AM, Theorem 5.10.]). So $\mathfrak{p} = q^c \in f^*V(\mathfrak{b})$. So (7) indeed holds and we are done.

Exercise 11

- (a) Let *A* be a subring of an integral domain *B*, and let *C* be the integral closure of *A* in *B*. Let f, g be monic polynomials in B[x] such that $fg \in C[x]$. Then f, g are in C[x].
- **(b)** Prove the same result without assuming that *B* (or *A*) is an integral domain.

Proof. (a) Take K to be the fraction field of B, there is a field extension $K \subseteq L$ with L a splitting field of fg. Then we write

$$fg = \prod_{i} (x - \xi_i) \prod_{j} (x - \eta_j),$$

where ξ_i are all the roots of f and η_j all the roots of g. Since $(fg)(\xi_i) = 0$ and $(fg)(\eta_j) = 0$ for all ξ_i and η_j , plus the fact that fg is monic, we know that ξ_i and η_j are all integral over C. But C is the integral closure of A, it is integral closed. So all ξ_i and η_j are in C. As

$$f = \prod_{i} (x - \xi_i)$$

and

$$g=\prod_{j}(x-\eta_{j}),$$

we know that the coefficients of f are symmetrical polynomials of ξ_i and the coefficients of g are symmetrical polynomials of η_j . Thus the coefficients of f are in C and the coefficients of g are in G, or f, $g \in C[x]$, as desired.

(b) If we can construct a larger ring \bar{B} such that f and g split over L, then we can repeat the argument in **(a)** to compelete the proof, just replacing L with \bar{B} . The idea is quite simple: we add all roots of f and g into B, and \bar{B} is the ring generated by these roots over B. Consider the ring $B_1 := B[x]/(f(x))$, in which f(x) has a root $\xi_1 = \bar{x}$, with \bar{x} the image of x in B_1 . Then consider the ring $B_1[y]$, we claim that in $B_1[y]$ we have a factorization

$$f(y) = (y - \xi_1)f_1(y),$$

with $f_1(y)$ some monic polynomial in $B_1[y]$. Indeed, we consider the map $B_1[y] \to B_1[y]/(y-\xi_1)$, in whose kernel lies f(y), since

$$\overline{f(y)} = f(\bar{y}) = f(\xi_1) = 0.$$

This shows that f(y) lies in the ideal $(y - \xi_1)$ of $B_1[y]$. So $f(y) = (y - \xi_1)f_1(y)$ for some $f_1(y)$. Both $y - \xi_1$ and f(y) are monic in y, so is $f_1(y)$. If deg f = n, we have

$$\deg f_1 = \deg f - 1.$$

Using induction on the degree of f, we can construct a ring \tilde{B} , on which f splits. Then we begin with the ring \tilde{B} and use induction on the degree of g, the final output ring \tilde{B} is the ring on which both f, g split.

Exercise 12

Let *A* be a subring of a ring *B* and let *C* be the integral closure of *A* in *B*. Prove that C[x] is the integral closure of A[x] in B[x].

Proof. If $f \in B[x]$ is integral over A[x], or namely there are $g_1, g_2, \ldots, g_m \in A[x]$ such that

$$f^{m} + g_{1}f^{m-1} + \dots + g_{m} = 0, \tag{8}$$

we want to show that $f \in C[x] = \bar{A}[x]$. Then let r be an integer such that

$$r > \max\{\deg f, \deg g_1, \dots, \deg g_m\},\$$

and let $f_1 := f - x^r$. If we can show that $f_1 \in C[x]$, then $f = f_1 + x^r \in C[x]$. To show this, we plug $f = f_1 + x^r$ in to (8) to get

$$(f_1 + x^r)^m + g_1(f + x^r)^{m-1} + \dots + g_m = 0,$$

or

$$f_1^m + h_1 f_1^{m-1} + \dots + h_m = 0,$$

where $h_m = x^{rm} + g_1 x^{rm-r} + \cdots + g_m$. Since $g_i \in A[x], 1 \le i \le m$, we have $h_m \in A[x] \subseteq \bar{A}[x] = C[x]$. Note that

$$h_m = (-f_1)(f_1^{m-1} + h_1f_1^{m-2} + \cdots + h_{m-1}),$$

and both $-f_1$, $f_1^{m-1} + h_1 f_1^{m-2} + \cdots + h_{m-1}$ are monic in B[x], so now we can apply **Exercise 5(b)**, to get that $-f_1 \in C[x]$. This shows that $f = -(-f_1) + x^r \in C[x]$, completing the proof. \Box

Exercise 13

Let $I_1, I_2, ..., I_n$ be ideals of a ring A such that $I_1 \cap \cdots \cap I_n = (0)$. Prove that if each A/I_i is a Noetherian ring, then A is also Noetherian.

Proof. We consider the homomorphism

$$\phi: A \to \bigoplus_{i=1}^n (A/I_i)$$

induced by the natural map $A \to A/I_i$. We claim that ϕ is injective. Indeed, if there exists some $x \in A$ such that $\phi(x) = 0$, then we have $x \in I_i$, i = 1, ..., n, thus $x \in I_1 \cap \cdots \cap I_n = (0)$, showing that x = 0 in A. Thus any ascending chain

$$a_1 \subseteq a_2 \subseteq a_2 \subseteq \cdots$$
 (9)

in A can be viewed as an ascending chain in $\bigoplus_{i=1}^{n} (A/I_i)$ via ϕ . So if we can show that $\bigoplus_{i=1}^{n} (A/I_i)$ is Noetherian, then (9) terminates and we are done. But this is indeed true, since each A/I_i is Noetherian, their direct sum $\bigoplus_{i=1}^{n} (A/I_i)$ is again Noetherian. This completes the proof.

Let $k = \mathbb{F}_q$ be the finite field of q elements, and k[X,Y] the polynomial ring in X and Y. Set $f = X^q Y - XY^q$ and A = k[X,Y]/(f). Let x,y be the image of X,Y in A respectively. For every $a \in k$, prove that A is not a finitely generated R-module with R := k[y - ax].

Proof. Observe that $x^q y = xy^q$ in A, so that every monomial in A can be written as bx^iy^j , with $b \in k, i \in \mathbb{N}$ and $0 \le j < q$. Now suppose that A is a finitely generated R-module, with generators $\xi_1(x,y), \ldots, \xi_n(x,y) \in A$. Thus for $g(x,y) \in A$, there exist $a_1, \ldots, a_n \in R = k[y-ax]$, such that

$$g(x,y) = a_1(y - ax)\xi_1(x,y) + \dots + a_n(y - ax)\xi_n(x,y).$$
 (10)

For any $h(x,y) \in A$, we denote $\deg_x h(x,y)$ by the degree of h(x,y) in variable x, and $\deg_y h(x,y)$ the degree of h(x,y) in variable y. Here we make some important observations: we have that

$$\deg_x a_i(y - ax) = \deg_y a_i(y - ax), 0 \le i \le n,$$

and that

$$\deg_x(a_i(y-ax)\xi_i(x,y)) \ge \deg_x \xi_i(x,y) + \deg_x a_i(y-ax), 0 \le i \le n, \tag{11}$$

for any $a_i \in R$. Now we pick such $d \in \mathbb{N}$ that

$$d < \min\{\deg_x \xi_1(x,y), \deg_x \xi_2(x,y), \dots, \deg_x \xi_n(x,y)\},\$$

and take g(x, y) in (10) to be

$$g(x,y) = x^d$$
.

But from (11), we know that \deg_x of the right hand side of (10) is strictly greater than d, a contradiction. So we have shown that A is not a finitely generated R-module, completing the proof.

Exercise 15

Let *A* be a ring and *B* a faithfully flat *A*-algebra. If *B* is Noetherian, show that *A* is Noetherian.

Proof. Since B is faithfully flat over A, then we have $\mathfrak{a}^{e^c} = \mathfrak{a}$ for all ideal \mathfrak{a} of A. Since the composition of the extension and the contraction is the identity, the map $\mathfrak{a} \mapsto \mathfrak{a}^e$ is injective. So any ideal of A can be viewed as an ideal of B. Now we want to show that A is Noetherian. We argue by *reductio ad absurdum*. If A were not Noetherian, we would find a strictly ascending chain of ideals

$$0 \subseteq \mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots$$

in A that doesn't stabilize. Thus the chain of ideals

$$0 \subseteq \mathfrak{a}_1^e \subseteq \mathfrak{a}_2^e \subseteq \cdots$$

is again strictly ascending and doesn't terminate in B. Thus we reach a contradiction, since B is Noetherian by assumption. This shows that A must be Noetherian, completing the proof. \Box

In the polynomial ring K[x,y,z] where K is a field and x,y,z are independent indeterminates, let $\mathfrak{p}_1 = (x,y), \mathfrak{p}_2 = (x,z), \mathfrak{m} = (x,y,z); \mathfrak{p}_1$ and \mathfrak{p}_2 are prime and \mathfrak{m} is maximal. Let $\mathfrak{a} = \mathfrak{p}_1\mathfrak{p}_2$. Show that $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is a reduced primary decomposition of \mathfrak{a} . Which components are isolated and which are embedded?

Proof. To show that the decomposition $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ is reduced, we need to verify that

$$\mathfrak{p}_1 \not\subseteq \mathfrak{p}_2 \cap \mathfrak{m}^2,$$
$$\mathfrak{p}_2 \not\subseteq \mathfrak{p}_1 \cap \mathfrak{m}^2,$$
$$\mathfrak{m}^2 \not\subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2.$$

Indeed, note that $y^2 \in \mathfrak{p}_1$ but $y^2 \notin \mathfrak{p}_2 \cap \mathfrak{m}^2$, thus the first relation holds. Also note that $z^2 \in \mathfrak{p}_2$ but $z^2 \notin \mathfrak{p}_1 \cap \mathfrak{m}^2$, which proves the second relation; and that $y^2 \in \mathfrak{m}^2$ but $y^2 \notin \mathfrak{p}_1 \cap \mathfrak{p}_2$, which proves the third relation. Thus we have shown that the decomposition is reduced.

The prime ideals associated with $\mathfrak a$ are $\mathfrak p_1$, $\mathfrak p_2$ and $\mathfrak m$, and clearly $\mathfrak p_1$ and $\mathfrak p_2$ are minimal and $\mathfrak m$ is embedded. So the components $\mathfrak p_1$, $\mathfrak p_2$ are isolated, and the component $\mathfrak m^2$ is embedded. \square

Exercise 17

Let A be a ring and $\mathfrak p$ a prime ideal of A. The nth symbolic power of $\mathfrak p$ is defined to be the ideal

$$\mathfrak{p}^{(n)}=S_{\mathfrak{p}}(\mathfrak{p}^n)$$

where $S_{\mathfrak{p}} = A - \mathfrak{p}$. Show that

- (a) $\mathfrak{p}^{(n)}$ is a \mathfrak{p} -primary ideal;
- **(b)** if \mathfrak{p}^n has a primary decomposition, then $\mathfrak{p}^{(n)}$ is its \mathfrak{p} -primary component;
- (c) if $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$ has a primary decomposition, then $\mathfrak{p}^{(m+n)}$ is its \mathfrak{p} -primary component;
- (d) $\mathfrak{p}^{(n)} = \mathfrak{p}^n \iff \mathfrak{p}^n \text{ is } \mathfrak{p}\text{-primary.}$

Proof. (a) By definition, we have $\mathfrak{p}^{(n)}=(\mathfrak{p}^n)^{\mathrm{ec}}$, where the contraction and extension is along the canonical map $A\to A_{\mathfrak{p}}\coloneqq S_{\mathfrak{p}}^{-1}A$. So

$$\sqrt{\mathfrak{p}^{(n)}} = \sqrt{(\mathfrak{p}^n)^{\mathrm{ec}}} = (\sqrt{(\mathfrak{p}^n)^{\mathrm{e}}})^{\mathrm{c}}.$$

But since localization commutes with taking radical, and $(\mathfrak{p}^n)^e = S_{\mathfrak{p}}^{-1}(\mathfrak{p}^n)$, we have

$$(\sqrt{(\mathfrak{p}^n)^e})^c = (\sqrt{\mathfrak{p}^n})^{ec} = \mathfrak{p}^{ec} = \mathfrak{p}.$$

This shows that $\sqrt{\mathfrak{p}^{(n)}}=\mathfrak{p}$, or equivalently, that $\mathfrak{p}^{(n)}$ is \mathfrak{p} -primary.

(b) Suppose $\mathfrak{p}^n = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_m$ is a primary decomposition of \mathfrak{p}^n , we need first to show that $\mathfrak{p} = \sqrt{\mathfrak{q}_i}$ for some $1 \leq i \leq m$. This is indeed true, since taking radical commutes with intersection, we have $\mathfrak{p} = \sqrt{\mathfrak{p}^n} = \sqrt{\mathfrak{q}_1} \cap \cdots \cap \sqrt{\mathfrak{q}_m}$. By [AM, Proposition 1.11. ii)], we have $\mathfrak{p} = \sqrt{\mathfrak{q}_i}$ for some $1 \leq i \leq m$.

We then need to show that $\mathfrak{p}^{(n)}$ is the smallest \mathfrak{p} -primary ideal containing \mathfrak{p}^n , this assures that $\mathfrak{p}^{(n)}$ appears in the minimal primary decomposition of \mathfrak{p}^n , so we can conclude that \mathfrak{p} is

belong to \mathfrak{p}^n and $\mathfrak{p}^{(n)}$ its \mathfrak{p} -primary component. To see this, we have to take a closer look of $\mathfrak{p}^{(n)}$. We claim that

$$\mathfrak{p}^{(n)} = \bigcup_{s \in S_{\mathfrak{p}}} (\mathfrak{p}^n : s) = \{ x \in A \mid \exists s \in S_{\mathfrak{p}}, xs \in \mathfrak{p}^n \}.$$
 (12)

For any $x \in A$, $x \in \mathfrak{p}^{(n)}$ iff $x/1 \in S_{\mathfrak{p}}^{-1}\mathfrak{p}^n$. But the last condition is equivalent to that x/1 = a/s, $\exists s \in S_{\mathfrak{p}}$, $\exists a \in \mathfrak{p}^n$, iff there exist $t, s \in S_{\mathfrak{p}}$ and $a \in \mathfrak{p}^n$ such that $tsx = ta \in S_{\mathfrak{p}}\mathfrak{p}^n = \mathfrak{p}^n$. So $x \in \mathfrak{p}^{(n)}$ iff $S_{\mathfrak{p}}x \cap \mathfrak{p}^n \neq \emptyset$, which happens exactly when $x \in \bigcup_{s \in S_{\mathfrak{p}}} (\mathfrak{p}^n : s)$. Thus (12) is proved. Now back to our concern on the minimality of $\mathfrak{p}^{(n)}$. If there is any \mathfrak{p} -primary ideal \mathfrak{q} satisfying $\mathfrak{p}^n \subseteq \mathfrak{q}$, we want to show that $\mathfrak{p}^{(n)} \subseteq \mathfrak{q}$. If $y \in \mathfrak{p}^{(n)}$, by (12) we there exists $s \in S_{\mathfrak{p}} = A - \mathfrak{p}$ such that $sy \in \mathfrak{p}^n \subseteq \mathfrak{q}$. Since $s \notin \mathfrak{p} = \sqrt{\mathfrak{q}}$, we have $y \in \mathfrak{q}$, as \mathfrak{q} is primary.

(c) This can be proved using the same strategy as for (b). By [AM, Exercise 1.13. iii)] and (a), we have $\sqrt{\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}} = \sqrt{\mathfrak{p}^{(m)}} \cap \sqrt{\mathfrak{p}^{(n)}} = \mathfrak{p} \cap \mathfrak{p} = \mathfrak{p}$. This shows that $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$ is also \mathfrak{p} -primary. As in (b), if $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)} = \mathfrak{q}_i$, we have $\mathfrak{p} = \sqrt{\mathfrak{q}_i}$ for some i. This shows that \mathfrak{p} belongs to $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$.

Now we are left to show that $\mathfrak{p}^{(m+n)}$ is the minimal \mathfrak{p} -primary containing $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$. This is easy. If \mathfrak{q} is another \mathfrak{p} -primary containing $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$, we need to show that $\mathfrak{p}^{(m+n)}\subseteq\mathfrak{q}$. Take $x\in\mathfrak{p}^{(m+n)}$, by (12), there exists $s\in S_{\mathfrak{p}}$ making $sx\in\mathfrak{p}^{m+n}=\mathfrak{p}^m\mathfrak{p}^n\subseteq\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}\subseteq\mathfrak{q}$, where the last "=" holds because \mathfrak{p}^{m+n} is defined inductively. Since $s\notin\mathfrak{p}=\sqrt{\mathfrak{q}}$, $x\in\mathfrak{q}$ as \mathfrak{q} is \mathfrak{p} -primary.

(d)
$$\Rightarrow$$
 By (a), $\mathfrak{p}^n = \mathfrak{p}^{(n)}$ is \mathfrak{p} -primary.

 \Leftarrow By **(b)**, $\mathfrak{p}^{(n)}$ is the minimal \mathfrak{p} -primary containing \mathfrak{p}^n . On the other hand, we assume \mathfrak{p}^n is itself \mathfrak{p} -primary, so there must be $\mathfrak{p}^n = \mathfrak{p}^{(n)}$, by the uniqueness of the isolated components of \mathfrak{p}^n .

Exercise 18

Let *k* be a field and *A* a finitely generated *k*-algebra. Prove that the following are equivalent:

- (a) *A* is Artinian;
- **(b)** A is a finite k-algebra.

Proof. (a) \Longrightarrow (b) If we can show that the implication holds in the case when A is local, then by the structure theorem for Artin rings [AM, Theorem 8.7.], the implication holds for general A. So we may assume that A is local Artin with a unique maximal ideal \mathfrak{m} , and is finitely generated over k. Then $K := A/\mathfrak{m}$ is a field and is also finitely generated over k. By [AM, Corollary 5.24.] K is a finite algebraic extension of k, hence is a finite dimensional k-linear space. As A is a finitely generated Artin ring, it is Noetherian with dimension 0; plus the assumption that A is local, the only prime ideal in A is \mathfrak{m} . If we view A as a finitely generated A-module, then there is a composition series of finite length

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = A$$
,

with each quotient $M_i/M_{i=1} = A/\mathfrak{p}_i$, where \mathfrak{p}_i is some prime ideal of A. But all prime ideals in A are just \mathfrak{m} , so all the quotients M_i/M_{i-1} are isomorphic to K for $1 \le i \le n$. Thus we have exact sequences A-modules

$$0 \to M_{i-1} \to M_i \to K \to 0$$

with i running through 1 to n. These exact sequence can be viewed as exact sequence of k-modules. When n=0, $M_1\simeq K$, which is a finite-dimensional k-linear space. Now we assume that all M_i with $1\leq i\leq n-1$ are finite-dimensional k-linear spaces, then the exact sequence

$$0 \to M_{n-1} \to A \to K \to 0$$

tells us that *A* is also a finite-dimensional *k*-linear space.

(b) \Longrightarrow **(a)** This direction is rather easy. Since A is a finitely generated k-module, there exists an integer m such that there is a surjection $k^m \to A$ of k-linear spaces. Thus A is also a finite dimensional k-linear space. By [AM, Proposition 6.10.], A is finite-dimensional iff the descending chain condition holds for all chains of k-submodules of A. In particular, all chains of ideals of A satisfy the descending chain condition, thus A is Artinian.

Exercise 19

Let A be a Noetherian ring and \mathfrak{q} a \mathfrak{p} -primary ideal in A. Consider chains of primary ideals from \mathfrak{q} to \mathfrak{p} . Show that all such chains are of finite bounded length, and that all maximal chains have the same length.

Proof. Note that ideals containing \mathfrak{q} of A are in one-to-one correspondence with ideals of A/\mathfrak{q} ; whilst ideals contained in \mathfrak{p} of A are in one-to-one correspondence with ideals of $A_{\mathfrak{p}}$. Hence chains of ideals from \mathfrak{q} to \mathfrak{p} in A are in one-to-one correspondence with chains of ideals in the ring $B:=(A/\mathfrak{q})_{\mathfrak{p}/\mathfrak{q}}$. Since primary ideals stay invariant under localization, chains of primary ideals from \mathfrak{q} to \mathfrak{p} of A are in bijection with chains of primary ideals of the local ring B. It suffices to show that all chains of primary ideals in B are of finite length, and all such maximal chains have the same length.

Since A is Noetherian, so the quotient ring A/\mathfrak{q} is Noetherian, as well as the localization B of the quotient ring A/\mathfrak{q} . So B is a Noetherian local ring. Since A is Noetherian and $\sqrt{\mathfrak{q}} = \mathfrak{p}$, by [AM, Proposition 7.14.] there exists some integer n such that $\mathfrak{p}^n \subseteq \mathfrak{q}$. But this means that the maximal ideal $\mathfrak{m} := \mathfrak{p}/\mathfrak{q}$ satisfies that $\mathfrak{m}^n = 0$. By [AM, Proposition 8.6.ii)], the Noetherian local ring B is an Artinian local ring. Thus for any proper ideal $\mathfrak{b} \subseteq B$, $(0) = \mathfrak{m}^n \subseteq \mathfrak{b} \subseteq \mathfrak{m}$, by [AM, Corollary 7.16.], \mathfrak{b} is primary.

So far we have shown that all proper ideals of B is primary. Then the chains of primary ideals from $\mathfrak p$ to $\mathfrak q$ of A are in bijection with chains of *ideals* of B. Since B is Artinian local, all its chains of ideals are of finite length. A maximal chain is a composition series, and all composition series have the same length.

Exercise 20

Let *A* be an integral domain, *K* its field of fractions. Show that the following are equivalent:

- (a) *A* is a valuation ring of *K*;
- **(b)** If \mathfrak{a} , \mathfrak{b} are any two ideals of A, then either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$.

Deduce that if A is a valuation ring and \mathfrak{p} is a prime ideal of A, then $A_{\mathfrak{p}}$ and A/\mathfrak{p} are valuation rings of their fields of fractions.

Proof. (a) \Longrightarrow (b) Assume that $\mathfrak{a} \not\subseteq \mathfrak{b}$, we must show that $\mathfrak{b} \subseteq \mathfrak{a}$. By assumption, there is an element $0 \neq x \in A$ whilst $x \notin \mathfrak{b}$. Then for any $0 \neq y \in \mathfrak{b}$, both x/y and y/x are non-zero elements of K. Since A is a valuation ring of K, either $x/y \in A$ or $y/x \in A$. If were the former, then $x = (x/y)y \in A\mathfrak{b} = \mathfrak{b}$, a contradiction. So the latter must hold, that is, $y/x \in A$. Then $y = (y/x)x \in A\mathfrak{a} = \mathfrak{a}$, implying that $\mathfrak{b} \subseteq \mathfrak{a}$, as desired.

(b) \Longrightarrow **(a)** To show that A is a valuation ring of K, we must show that for any $0 \neq x/y \in K$, either $x/y \in A$ or $y/x \in A$. By assumption, either $(x) \subseteq (y)$ or $(y) \subseteq (x)$ holds in A. If the former holds, $x \in (y) \iff x = uy$ for some $u \in A$; then $x/y = uy/y = u \in A$. If the latter holds, $y \in (x) \iff y = vx$ for some $v \in A$; then $y/x = vx/x = v \in A$, as desired.

Note that the ideals of $A_{\mathfrak{p}}$ are in one-to-one correspondence with ideals of A contained in \mathfrak{p} , while the ideals of A/\mathfrak{p} are in one-to-one correspondence with ideals of A containing \mathfrak{p} . So if \mathfrak{a} , \mathfrak{b} are two ideals of $A_{\mathfrak{p}}$, we consider their contractions $\mathfrak{a}^{\mathfrak{c}}$, $\mathfrak{b}^{\mathfrak{c}}$ along $A \to A_{\mathfrak{p}}$. By assumption that A is a valuation ring, either $\mathfrak{a}^{\mathfrak{c}} \subseteq \mathfrak{b}^{\mathfrak{c}}$ or $\mathfrak{b}^{\mathfrak{c}} \subseteq \mathfrak{a}^{\mathfrak{c}}$, by **(b)**. Extending them back, we have $\mathfrak{a} = \mathfrak{a}^{\mathfrak{c}^{\mathfrak{e}}}$ and $\mathfrak{b} = \mathfrak{b}^{\mathfrak{c}^{\mathfrak{e}}}$, alongside either $\mathfrak{a} \subseteq \mathfrak{b}$ or $\mathfrak{b} \subseteq \mathfrak{a}$, showing that $A_{\mathfrak{p}}$ is a valuation ring of Frac($A_{\mathfrak{p}}$). The proof for A/\mathfrak{p} is *mutatis mutandis*.

Exercise 21

Let *k* be a field, R := k[x, y, z] be the polynomial ring in x, y, z. Set $\mathfrak{a} = (xy, z - yz)$ and

$$q_1 = (x, z), q_2 = (y^2, x - yz).$$

Show that $\mathfrak{a} = \mathfrak{q}_1 \cap \mathfrak{q}_2$ and that this decomposition is a minimal primary decomposition.

Exercise 22

Let *A* be a Noetherian ring and *M* be an *A*-module, *N* be a submodule of *M*, then let $x \in A$. Prove that if $x \notin \mathfrak{p}$ for any $\mathfrak{p} \in \mathrm{Ass}(M/N)$, then $xM \cap N = xN$.

Proof. Since *A* is Noetherian, we claim that

$$\bigcup_{\mathfrak{p}\in \mathrm{Ass}\,M}\mathfrak{p}=\bigcup_{m\in M}(0:m),\tag{13}$$

for any A-module M. If $x \notin \mathfrak{p}$ for any \mathfrak{p} associated to M/N, then $x \notin \mathrm{Ann}_R(M/N)$, which means that the map $M/N \xrightarrow{x} M/N$ given by multiplying x is injective. Equivalently, if any $m \in M$ satisfying $xm \in N$, then $m \in N$. The last condition holds iff $xM \cap N \subseteq xN$. On the other hand $xN \subseteq xM \cap N$ holds trivially, thus $xM \cap N = xN$.

Now we prove the claim. If $x \in \mathfrak{p}$ with \mathfrak{p} associated to M, then by definition there is some $m \in M$ annihilated by \mathfrak{p} , hence by x. Then $x \in (0:m)$.

Conversely, if $x \in (0:m)$ for some $m \in M$, then $Am \neq 0$. Since A is Noetherian, Am has an associated prime $\mathfrak{p} = \mathrm{Ann}_A(ym)$. Since xm = 0, xym = yxm = 0, so $x \in \mathfrak{p}$. But $\mathfrak{p} \in \mathrm{Ass} Am \subseteq \mathrm{Ass} M$, therefore $x \in \bigcup_{\mathfrak{p} \in \mathrm{Ass} M} \mathfrak{p}$.

The existence of $\mathfrak{p}=\mathrm{Ann}_A(ym)$ holds as follows. Let Σ be the set of all annihilators of nonzero elements of the submodule Am. Since A is Noetherian, there is a maximal element $\mathfrak{p}=\mathrm{Ann}_A(ym)$ with $y\in A,ym\neq 0$. If we can show that \mathfrak{p} is prime, then the claim holds. Let $ab\in \mathfrak{p}$ with $a\notin \mathfrak{p}$, then abym=0 but $aym\neq 0$, so $b\in \mathrm{Ann}_A(aym)$. But $\mathfrak{p}=\mathrm{Ann}_A(ym)\subseteq \mathrm{Ann}_A(aym)$, and the maximality of \mathfrak{p} gives that $\mathfrak{p}=\mathrm{Ann}_A(aym)$. Consequently, $b\in \mathfrak{p}$.

Exercise 23

Let A be a Noetherian ring and \mathfrak{q} a \mathfrak{p} -primary ideal in A. Consider chains of primary ideals from \mathfrak{q} to \mathfrak{p} . Show that all such chains are of finite bounded length, and that all maximal chains have the same length.

Proof. Note that ideals containing \mathfrak{q} of A are in one-to-one correspondence with ideals of A/\mathfrak{q} ; whilst ideals contained in \mathfrak{p} of A are in one-to-one correspondence with ideals of $A_{\mathfrak{p}}$. Hence chains of ideals from \mathfrak{q} to \mathfrak{p} in A are in one-to-one correspondence with chains of ideals in the ring $B:=(A/\mathfrak{q})_{\mathfrak{p}/\mathfrak{q}}$. Since primary ideals stay invariant under localization, chains of primary ideals from \mathfrak{q} to \mathfrak{p} of A are in bijection with chains of primary ideals of the local ring B. It suffices to show that all chains of primary ideals in B are of finite length, and all such maximal chains have the same length.

Since A is Noetherian, so the quotient ring A/\mathfrak{q} is Noetherian, as well as the localization B of the quotient ring A/\mathfrak{q} . So B is a Noetherian local ring. Since A is Noetherian and $\sqrt{\mathfrak{q}} = \mathfrak{p}$, by [AM, Proposition 7.14.] there exists some integer n such that $\mathfrak{p}^n \subseteq \mathfrak{q}$. But this means that the maximal ideal $\mathfrak{m} := \mathfrak{p}/\mathfrak{q}$ satisfies that $\mathfrak{m}^n = 0$. By [AM, Proposition 8.6.ii)], the Noetherian local ring B is an Artinian local ring. Thus for any proper ideal $\mathfrak{b} \subseteq B$, $(0) = \mathfrak{m}^n \subseteq \mathfrak{b} \subseteq \mathfrak{m}$, by [AM, Corollary 7.16.], \mathfrak{b} is primary.

So far we have shown that all proper ideals of B is primary. Then the chains of primary ideals from $\mathfrak p$ to $\mathfrak q$ of A are in bijection with chains of *ideals* of B. Since B is Artinian local, all its chains of ideals are of finite length. A maximal chain is a composition series, and all composition series have the same length.

Exercise 24

Let k be a field and s be a homogeneous polynomial of degree s in $k[X_1, ..., X_n]$. Compute the Hilbert polynomial of $A := k[X_1, ..., X_n]/(f)$.

Proof. By definition, the Hilbert polynomial g(m) is the length $l(A_m)$ of the k-module, or equivalently, the dimension of the k-vector space A_m . There is a canonical k-linear basis for A_m , namely the image of the basis $\left\{ \left. X_1^{l_1} \cdots X_n^{l_n} \right| \sum_{i=1}^n l_i = m \right. \right\}$, by which we may calculate $\dim_k A_m$. When m < s, where $s = \deg f$, the image of $\left. \left\{ \left. X_1^{l_1} \cdots X_n^{l_n} \right| \sum_{i=1}^n l_i = m \right. \right\}$ in A can be identified with itself, and we have

$$g(m) = \dim_k A_m = \binom{n+m-1}{n-1}.$$

When $m \ge s$ there is only one linear constraint exerted

$$f(X_1,\ldots,X_n)=0$$

exerted on A_m , in which case

$$g(m) = \dim_k A_m = \binom{n+m-1}{n-1} - 1.$$

In summary, we have computed that

$$g(m) = \begin{cases} \binom{n+m+1}{n-1}, & m < s, \\ \binom{n+m+1}{n-1} - 1, & m \ge s. \end{cases}$$

Exercise 25

Let $f \in k[x_1, ..., x_n]$ be an irreducible polynomial over an algebraically closed field k. A point P on the variety f(x) = 0 is non-singular \iff not all the partial derivatives $\partial f/\partial x_i$ vanish at P. Let $A = k[x_1, ..., x_n]/(f)$, and let m be the maximal ideal of A corresponding to the point P. Prove that P is non-singular \iff A_m is a regular local ring.

Exercise 26

Prove the following generalization of Krull's principal ideal theorem. Let *A* be a Noetherian ring

- (a) If $\mathfrak{a} \subseteq A$ is an ideal generated by n elements, then evry minimial prime ideal containing \mathfrak{a} has height $\leq n$.
- **(b)** Conversely, if $ht(\mathfrak{p}) \leq n$, then \mathfrak{p} contains some ideal \mathfrak{a} which can be generated by n elements such that \mathfrak{p} is a minimal ideal containing \mathfrak{a} .
- *Proof.* (a) Let $\mathfrak{a} = (x_1, \dots, x_n)$, and let \mathfrak{p} be a primary ideal belonging to \mathfrak{a} . Then after localizing to \mathfrak{p} , \mathfrak{a} becomes \mathfrak{p} -primary, by the dimension theorem, the least number of generators of \mathfrak{a} of $A_{\mathfrak{p}}$ is equal to $ht(\mathfrak{p})$, thus $ht(\mathfrak{p}) \leq n$, since \mathfrak{a} may be generated by $\leq n$ generators.
- **(b)** Again we localize to the given prime ideal \mathfrak{p} . Then $A_{\mathfrak{p}}$ is a local Noetherian ring and dim $A_{\mathfrak{p}} = \operatorname{ht}(\mathfrak{p}) \leq n$. It suffices to find a \mathfrak{p} -primary ideal \mathfrak{q} of $A_{\mathfrak{p}}$ that can be generated by n elements. A fortiori, such ideal \mathfrak{q} exists and can be generated by n elements n_1, \dots, n_d with n_i inductively in such a way that every prime ideal containing n_i in the prime ideal containing n_i in the prime ideals of n_i inductively in such a way that every prime ideal containing n_i in the prime ideals of n_i in the prime ideal n_i in the prime ideal containing n_i in the prime ideal n_i in the prime ideal containing n_i in the prime ideal containing n_i in the prime ideal n_i in the prime ideal

We then consider $\mathfrak{a} := (x_1, \dots, x_d)$. If \mathfrak{p}' is another ideal of $A_{\mathfrak{p}}$ containing \mathfrak{a} , then $\mathsf{ht}(\mathfrak{p}') \ge d$ by construction. Hence $\mathfrak{p}' = \mathfrak{p}$. Hence the ideal \mathfrak{a} is \mathfrak{p} -primary.

References

[AM] Michael F. Atiyah and Ian G. Macdonald. *Introduction to Commutative Algebra*. Addison-Wesley Series in Mathematics. Westview Press, 22 edition.