MODELO DE REGRESIÓN LINEAL

PAULA SIMONETTA MADRID
PEREZ
ANIA DIAZ PEYROT
IVANNA MALDONADO
MIRANDA

FORVIA

Absolutos de la Matriz de correlación:									
	Project Type	Geographical scope	Project manager	State	Project size	Project organization	BG	Project Health	On-hold
Project Type	1.000000	0.116070	0.150064	0.141691	0.092805	0.217320	0.025657	0.045141	0.080656
Geographical scope	0.116070	1.000000	0.034761	0.027901	0.009645	0.082748	0.227722	0.054766	0.071808
Project manager	0.150064	0.034761	1.000000	0.128892	0.156898	0.181224	0.061832	0.021136	0.070125
State	0.141691	0.027901	0.128892	1.000000	0.157928	0.120862	0.084619	0.085652	0.221179
Project size	0.092805	0.009645	0.156898	0.157928	1.000000	0.115164	0.004848	0.086617	0.111695
Project organization	0.217320	0.082748	0.181224	0.120862	0.115164	1.000000	0.015659	0.072307	0.129562
BG	0.025657	0.227722	0.061832	0.084619	0.004848	0.015659	1.000000	0.060117	0.082848
Project Health	0.045141	0.054766	0.021136	0.085652	0.086617	0.072307	0.060117	1.000000	0.227482
On-hold	0.080656	0.071808	0.070125	0.221179	0.111695	0.129562	0.082848	0.227482	1.000000

	Par de Variables	Correlación
0	Geographical scope y BG	0.23
1	On-hold y Project Health	0.23
2	Project Type y Project organization	0.22
3	State y On-hold	0.22
4	Project manager y Project size	0.16

pares

O-'Presentan una correlación positiva débil, lo que indica que a mayor alcance geográfico del proyecto podría haber una ligera tendencia a cambios o variaciones en el indicador BG.',

- 1- 'Presentan una correlación positiva débil, lo que sugiere que los proyectos en espera tienden a tener una salud del proyecto similar.',
- 2- 'Presentan una correlación positiva débil, lo que indica que el tipo de proyecto podría estar relacionado con la organización del proyecto.',
- 3-'Presentan una correlación positiva débil, lo que sugiere que el estado del proyecto podría estar relacionado con su estado de espera.',
- 4- Presentan una correlación positiva débil, lo que indica que el gerente del proyecto podría estar relacionado con el tamaño del proyecto.'

PROYECT TYPE

CORRELACIÓN: 0.22

sns.scatterplot(x='Project organization', y='Project Type', color="pink", data=df_num)
sns.scatterplot(x='Project organization', y='PrediccionesTname0', color="orange", data=df_num)

GEOGRAPHICAL SCOPE

```
sns.scatterplot(x='BG', y='Geographical scope', color="pink", data=df_num)
sns.scatterplot(x='BG', y='PrediccionesGeographical scope', color="orange", data=df_num)
```


PROJECT MANAGER

CORRELACIÓN: 0.16

sns.scatterplot(x='Project size', y='Project manager', color="pink", data=df_num)
sns.scatterplot(x='Project size', y='PrediccionesProject manager', color="orange", data=df_num)

STATE

CORRELACIÓN: 0.22

sns.scatterplot(x='0n-hold', y='State', color="pink", data=df_num)
sns.scatterplot(x='0n-hold', y='PrediccionesState', color="orange", data=df_num)

PROJECT SIZE

PROJECT ORGANIZATION

ON-HOLD

CORRELACIÓN: 0.23

sns.scatterplot(x='Project Health', y='On-hold', color="pink", data=df_num)
sns.scatterplot(x='Project Health', y='PrediccionesProjectH', color="orange", data=df_num)

REGRESIÓN LINEAL

EXAMINAR LAS FRECUENCIAS DE LAS VARIABLES CATEGÓRICAS "TAXONNAME", "TAXONCODE", "SAMPLINGOPERATIONS_CODE", "CODESITE_SAMPLINGOPERATIONS" Y "DATE_SAMPLINGOPERATION"

```
#Frecuencias de mayor a menor para cada una
print("\nFrecuencias de TaxonName:")
print(df['TaxonName'].value_counts())
print()
print("\nFrecuencias de TaxonCode:")
print(df['TaxonCode'].value_counts())
print()
print("\nFrecuencias de SamplingOperations_code:")
print(df['SamplingOperations_code'].value_counts())
print()
print("\nFrecuencias de CodeSite_SamplingOperations:")
print(df['CodeSite_SamplingOperations'].value_counts())
print()
print("\nFrecuencias de Date_SamplingOperation:")
print(df['Date_SamplingOperation'].value_counts())
print()
0.2s
                                                                                                                       Python
```

CONVERTIRLAS A NÚMERICAS SEGÚN SU FRECUENCIA

CONVERTIRLAS A NÚMERICAS SEGÚN SU FRECUENCIA

```
print("\nTipos de datos en el dataframe convertido:")
   print(df_numeric.dtypes)
 ✓ 0.0s
                                                                                                                      Pythor
Tipos de datos en el dataframe convertido:
TaxonName
                                      int64
TaxonCode
                                     int64
SamplingOperations_code
                                      int64
CodeSite_SamplingOperations
                                     int64
Date_SamplingOperation
                                     int64
Abundance_nbcell
                                     int64
TotalAbundance_SamplingOperation
                                     int64
Abundance_pm
                                   float64
dtype: object
```

VERIFICAMOS LOS TIPOS DEL DATOS DEL DF CONVERTIDO

Tipos de datos en el dataframe convertido: TaxonName int64 TaxonCode int64 SamplingOperations_code int64 CodeSite_SamplingOperations int64 Date_SamplingOperation int64 Abundance_nbcell int64 TotalAbundance_SamplingOperation int64 float64 Abundance_pm dtype: object

CALCULAMOS LAS CORRELACIONES ENTRE TODAS LAS VARIABLES PARA IDENTIFICAR LOS 5 PARES CON MAYOR CORRELACIÓN

print("\nMatriz de correlación:")
Corr_Factors = df_numeric.corr()
Corr_Factors

✓ 0.1s

∍ytho

GRAFICAMOS EL MAPA DE CALOR DE LOS COEFICIENTES DE CORRELACIÓN

AJUSTAMOS EL MAPA DE CALOR DE LOS COEFICIENTES DE CORRELACIÓN

TABLA DE LOS 5 PARES

SamplingOperations_code y CodeSite_SamplingOpe...

```
top5 = pd.DataFrame({
       'Par de Variables': [
           'TaxonName y TaxonCode',
           'Abundance_nbcell y Abundance_pm',
           'TotalAbundance_SamplingOperation y Abundance_pm',
           'TotalAbundance_SamplingOperation y Abundance_nbcell',
           'SamplingOperations_code y CodeSite_SamplingOperations'
       'Correlación': [1.00, 1.00, 1.00, 1.00, 0.24],
       'Interpretación': [
           'Correlación perfecta positiva, Ambas variables representan la misma información (especies) en diferente formato.',
           'Correlación perfecta positiva, Ambas miden abundancia de las mismas especies, solo en diferentes unidades.',
           'Correlación perfecta positiva, La abundancia total está directamente relacionada con la abundancia por muestra.',
           'Correlación perfecta positiva, Misma relación que el anterior, pero con la otra medida de abundancia.',
           'Correlación baja, Muestra una relación débil entre código de operación y sitio de muestreo.'
  top5
✓ 0.0s
                                                                                            Interpretación
                                  Par de Variables Correlación
                            TaxonName y TaxonCode
                                                                 Correlación perfecta positiva, Ambas variables...
0
                                                          1.00
                                                                Correlación perfecta positiva, Ambas miden abu...
                  Abundance_nbcell y Abundance_pm
   TotalAbundance_SamplingOperation y Abundance_pm
                                                          1.00
                                                                 Correlación perfecta positiva, La abundancia t...
   TotalAbundance_SamplingOperation y Abundance_n...
                                                          1.00
                                                                  Correlación perfecta positiva, Misma relación ...
```

0.24

Correlación baja, Muestra una relación débil e...

REGRESIÓN LINEAL MÚLTIPLE

df_numeri ✓ 0.0s							Pytho
Pr	ediccionesTotalAb0	PrediccionesAbnbcellO	PrediccionesDateSamplingO	PrediccionesCodeSiteO	PrediccionesSamplingO	PrediccionesTcode0	PrediccionesTname
0	405.592225	-19.493875	505.088381	2641.856823	19501.088929	79.550099	79.5500
1	405.322372	-20.717352	489.297200	2494.596972	16268.736808	87.732102	87.7321
2	405.629760	3.275841	477.033281	2266.278194	17118.414345	94.423476	94.4234
3	407.384970	-2.294928	460.721199	1649.721219	26237.734154	111.896494	111.8964
4	405.832620	1.039577	461.347628	2018.917831	17082.195005	101.691599	101.6915
1643867	406.344626	-21.174638	434.586434	1559.520791	17987.962689	115.240699	115.2406
1643868	406.197498	-16.777252	470.007813	2044.797937	19907.303535	100.931171	100.9311
1643869	405.191909	-11.782861	494.995009	2597.532997	15948.640380	84.703279	84.7032
1643870	406.068389	-21.214419	429.465158	1551.851351	16410.119135	111.556630	111.5566
1643871	406.402373	-20.587063	440.726613	1623.382449	18817.273870	113.313509	113.3135

PrediccionesAbpm0	Pre
-48.011670	
-51.031541	
8.075914	
-5.674245	
2.556212	
-52.195329	
-41.341395	
-29.013892	
-52.293518	
-50.745034	
vs x 16 columns	