Apellido y Nombre: email:

2 nota 1 3 4 5

Lenguajes y Compiladores

Primer Parcial 6/5/2015

- 1. Complete las siguientes igualdades, expresando de la forma más sencilla posible el resultado, sin efectuar ningún cálculo. Considere el lenguaje que corresponde en cada caso.
 - a) $[\![\forall x.x/0 = 0]\!] \sigma =$
 - b) $[x := 1; while true do skip] \sigma =$
 - c) $[x := 1; \mathbf{newvar} \ x := 0 \mathbf{in} \ (\mathbf{fail}; \ y := x)]] \sigma =$
 - d) $[x := 1; newvar \ x := 0 in (!x; fail; y := x)] \sigma =$
 - e) $[x := 1; \mathbf{newvar} \ x := 0 \ \mathbf{in} \ (?x; \ !x; \mathbf{fail}; \ y := x)] \sigma =$
- 2. Calcule la semántica denotacional del programa dado en el item c) del ejercicio 1.
- 3. a) Defina de la manera más clara posible el supremo de una cadena de funciones en el dominio $D \to D'$, donde D y D' son dos dominios.
 - b) Pruebe que la función $F: (\mathbf{Z} \to \mathbf{Z}_{\perp}) \to (\mathbf{Z} \to \mathbf{Z}_{\perp})$ preserva el orden.

$$Ffn = \begin{cases} n & n = 0, 1, 2 \\ 1 + f(n-3) & n > 1 \\ fn & n < 0 \end{cases}$$
c) Dé un ejemplo de una función $F: (\mathbf{Z} \to \mathbf{Z}_\perp) \to (\mathbf{Z} \to \mathbf{Z}_\perp)$ qué satsfaga que su menor

- punto fijo es $F^3 \perp_{\mathbf{Z} \to \mathbf{Z}_{\perp}}$
- 4. Considere el lenguaje imperativo con fallas.
 - a) De las reglas de la semántica smallstep \rightarrow correspondiente al comando c_0 ; c_1 .
 - b) Demuestre $\langle c, \sigma \rangle \to \sigma' \Longrightarrow [\![c]\!] \sigma = \sigma'$ para el caso $c = \mathbf{newvar} \ v := e \ \mathbf{in} \ c_0$.
 - c) Decida si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta:
 - 1) Si $\langle c, \sigma \rangle \to \gamma$, entonces la semántica operacional de c en σ es γ .
 - 2) Si $\langle c, \sigma \rangle \to \gamma$ y $\langle c, \sigma \rangle \to \gamma'$, entonces $\gamma = \gamma'$.
- 5. Considere los comandos

$$c_1 = ?x$$
; newvar $x := 0$ in skip $c_2 =$ newvar $x := 0$ in $?x$; skip $c_3 =$ skip

- a) Explique verbalmente por qué no son equivalentes (considérelos de a pares).
- b) Demuestre utilizando la semántica denotacional que c_1 y c_2 no son equivalentes.