D. ____

Example: $\int \cos^2(x) dx$

- 2 Improper Integrals (Ch. 7.8)
- 2.1 Improper Integrals Type I (integral over an infinite interval)
- 2.1.1 Case A (upper bound is infinite)

Let f(x) be a function defined on $[a, \infty)$ and assume that for all $t \ge a$, $\int_a^t f(x) dx$ exists.

Define
$$\int_{a}^{\infty} f(x) dx =$$

Terminology:

We say that $\int_a^\infty f(x) dx$ is **convergent** if _______,

else we say that $\int_a^\infty f(x) dx$ is ______.

Example:

$$1.) \qquad \int_1^t \frac{1}{x^2} \, \mathrm{d}x =$$

$$\int_1^t \frac{1}{x} \, \mathrm{d}x =$$

General Rule:

$$\int_1^\infty \frac{1}{x^p} \, \mathrm{d}x =$$

$$Example \qquad \int_0^\infty \cos(x) \, \mathrm{d}x =$$

Example
$$\int_0^\infty x e^{-x} \, \mathrm{d}x =$$

2.1.2 Case B (lower bound is infinite)

Let f(x) be a function defined on $(-\infty, b]$ and assume that for all $t \le b$, $\int_t^b f(x) dx$ exists.

Define
$$\int_{-\infty}^{b} f(x) \, \mathrm{d}x =$$

Terminology:

We say that $\int_{-\infty}^{b} f(x) dx$ is **convergent** if _______,

else we say that $\int_{-\infty}^{b} f(x) dx$ is ______.

Example: $\int_{-\infty}^{b} e^x dx =$

2.1.3 Case C (both bounds are infinite)

Let f(x) be a function defined on $(-\infty, \infty)$ and assume that $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ exists for some $c \in \mathbb{R}$.

Define
$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x =$$

Terminology:

We say that $\int_{-\infty}^{\infty} f(x) dx$ is **convergent** if both, $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ are convergent, else we say that $\int_{-\infty}^{\infty} f(x) dx$ is divergent.

Example:
$$\int_{-\infty}^{\infty} x^3 dx =$$

Careful: $\lim_{t\to\infty} \int_{-t}^t x^3 dx$

Example:
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, \mathrm{d}x =$$

In general:

If f(-x) = f(x) and $\int_{c}^{\infty} f(x) dx$ is convergent, then $\int_{-\infty}^{\infty} f(x) dx =$

Comparison Test for Type I for improper integrals:

Assume f, g are continuous functions with $0 \le g(x) \le f(x)$ for $a \le x$.

- 1. If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is ______.
- 2. If \int_a^{∞} dx is divergent, then \int_a^{∞} dx is also divergent.

Calcworkshop.com

Example:
$$\int_{1}^{\infty} \frac{1}{\sqrt{5+x^3}} \, \mathrm{d}x =$$

- 2.2 Improper Integrals Type II (discontinuous integrands)
- 2.2.1 Case A (discontinuous or undefined upper bound)

Assume f(x) is continuous on [a, b) and discontinuous or undefined at b.

Define
$$\int_a^b f(x) \, \mathrm{d}x =$$

(The integral is convergent if the limit exists, divergent otherwise.)

Example:
$$\int_{1}^{2} \frac{1}{\sqrt{2-x}}$$

2.2.2 Case B (discontinuous or undefined lower bound)

Assume f(x) is continuous on (a, b] and discontinuous or undefined at a.

Define
$$\int_a^b f(x) \, \mathrm{d}x =$$

(The integral is convergent if the limit exists, divergent otherwise.)

Example:
$$\int_0^1 \frac{1}{x}$$

Example:
$$\int_0^1 \frac{1}{\sqrt{x}}$$

General Rule: Let b > 0, then

$$\int_0^b \frac{1}{x^p} \, \mathrm{d}x =$$

2.2.3 Case C (discontinuous inbetween bounds)

Assume f(x) is discontinuous at c, where a < c < b and both, $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are convergent.

Define
$$\int_a^b f(x) \, \mathrm{d}x =$$

(The integral is convergent if both integrals are convergent, else it is divergent.)

$$Example: \int_0^5 \frac{1}{x-1} \, \mathrm{d}x =$$

Q: Why does the Fundamental Theorem of Calculus fail?