MACHINE LEARNING ASSIGNMENT-3

Name: venkata.k.l.spandana vegi

ld : 700744287

GITHUB LINK

 $: \underline{https://github.com/spandanavegi/machine_learning.1/blob/main/ML_ASSIGNMEN}$

T_3.ipynb

VIDEO LINK:

https://drive.google.com/file/d/1_onlrvuEuTGawsj87EWb9XdzquQqjIA_/view?usp=sharing

1)

Find the correlation between 'survived' (target column) and 'sex' column for the Titanic use case in class.

a. Do you think we should keep this feature?

Here after importing the required libraries wie print the values using head function.

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	$\label{eq:cumings} \textbf{Cumings}, \textbf{Mrs. John Bradley (Florence Briggs Th}$	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Here after displaying the head function with values. We used correlation function and found the relation between the sex and survived

a) From the above case we can say that we have to keep this feature.

-0.5433513806577547

1 #from the above case we can say that we have to keep this feature.

```
1 matrix = df.corr()
 2 print(matrix)
            PassengerId Survived
                                    Pclass
                                                Sex
                                                          Age
                                                                  SibSp \
              1.000000 -0.005007 -0.035144 0.042939 0.036847 -0.057527
PassengerId
Survived
              -0.005007 1.000000 -0.338481 -0.543351 -0.077221 -0.035322
Pclass
             -0.035144 -0.338481 1.000000 0.131900 -0.369226 0.083081
              0.042939 -0.543351 0.131900 1.000000 0.093254 -0.114631
Sex
             0.036847 -0.077221 -0.369226  0.093254  1.000000 -0.308247
Age
SibSp
             -0.057527 -0.035322  0.083081 -0.114631 -0.308247  1.000000
              -0.001652 0.081629 0.018443 -0.245489 -0.189119 0.414838
Parch
               0.012658 0.257307 -0.549500 -0.182333 0.096067 0.159651
Fare
               Parch
                         Fare
PassengerId -0.001652 0.012658
Survived
            0.081629 0.257307
Pclass
           0.018443 -0.549500
Sex
           -0.245489 -0.182333
          -0.189119 0.096067
Age
SibSp
           0.414838 0.159651
Parch
           1.000000 0.216225
Fare
            0.216225 1.000000
```

Then we displayed the correlation between all the attributes.

	Age	Embarked	Fare	Parch	Pclass	Sex	SibSp	Survived	train
Age	1.000000	0.048993	0.178740	-0.150917	-0.408106	0.063645	-0.243699	-0.077221	-0.018528
Embarked	0.048993	1.000000	0.062017	-0.095975	0.037527	-0.121868	-0.073937	0.108669	-0.072726
Fare	0.178740	0.062017	1.000000	0.221539	-0.558629	-0.185523	0.160238	0.257307	-0.030831
Parch	-0.150917	-0.095975	0.221539	1.000000	0.018322	-0.213125	0.373587	0.081629	-0.005793
Pclass	-0.408106	0.037527	-0.558629	0.018322	1.000000	0.124617	0.060832	-0.338481	0.023988
Sex	0.063645	-0.121868	-0.185523	-0.213125	0.124617	1.000000	-0.109609	-0.543351	0.010928
SibSp	-0.243699	-0.073937	0.160238	0.373587	0.060832	-0.109609	1.000000	-0.035322	0.033867
Survived	-0.077221	0.108669	0.257307	0.081629	-0.338481	-0.543351	-0.035322	1.000000	nan
train	-0.018528	-0.072726	-0.030831	-0.005793	0.023988	0.010928	0.033867	nan	1.000000

Then using a heat map and plot show, we displaced the contents in the matrix form.

Then by using the naives bayes theorem we calculated the accuracy.

	-			
	precision	recall	f1-score	support
0.0	0.79	0.80	0.80	85
1.0	0.70	0.69	0.70	58
accuracy			0.76	143
macro avg	0.75	0.74	0.75	143
weighted avg	0.75	0.76	0.75	143
[[68 17] [18 40]] accuracy is 0	.75524475524	47552		

2)Here we have imported glass dataset and displayed the values using head function

	RI	Na	Mg	AI	Si	K	Ca	Ba	Fe	Type
0	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

Then we have found correlation between all the attributes.

	RI	Na	Mg	AI	Si	K	Ca	Ba	Fe	Type
RI	1.000000	-0.191885	-0.122274	-0.407326	-0.542052	-0.289833	0.810403	-0.000386	0.143010	-0.164237
Na	-0.191885	1.000000	-0.273732	0.156794	-0.069809	-0.266087	-0.275442	0.326603	-0.241346	0.502898
Mg	-0.122274	-0.273732	1.000000	-0.481799	-0.165927	0.005396	-0.443750	-0.492262	0.083060	-0.744993
Al	-0.407326	0.156794	-0.481799	1.000000	-0.005524	0.325958	-0.259592	0.479404	-0.074402	0.598829
Si	-0.542052	-0.069809	-0.165927	-0.005524	1.000000	-0.193331	-0.208732	-0.102151	-0.094201	0.151565
K	-0.289833	-0.266087	0.005396	0.325958	-0.193331	1.000000	-0.317836	-0.042618	-0.007719	-0.010054
Ca	0.810403	-0.275442	-0.443750	-0.259592	-0.208732	-0.317836	1.000000	-0.112841	0.124968	0.000952
Ва	-0.000386	0.326603	-0.492262	0.479404	-0.102151	-0.042618	-0.112841	1.000000	-0.058692	0.575161
Fe	0.143010	-0.241346	0.083060	-0.074402	-0.094201	-0.007719	0.124968	-0.058692	1.000000	-0.188278
Type	-0.164237	0.502898	-0.744993	0.598829	0.151565	-0.010054	0.000952	0.575161	-0.188278	1.000000

Then using a heat map and plot show, we displaced the contents in the matrix form.

Then using naives bayes theorem we got an accuracy of 83.7%

```
precision recall f1-score support
                    0.95
                                       19
        1
              0.90
                             0.92
        2
              0.92
                      0.92
                             0.92
                                       12
        3
              1.00
                      0.50
                             0.67
                                       6
        5
                     0.00
                            0.00
                                       1
             0.00
                    1.00
                           1.00
            1.00
0.75
        6
                                       1
        7
                            0.75
                                       4
                             0.84
                                      43
  accuracy
           0.76
0.89
             0.76
0.89
                      0.69 0.71
0.84 0.85
                                      43
  macro avg
weighted avg
                                      43
[[18 1 0 0 0 0]
[111 0 0 0 0]
[103200]
[000001]
[000010]
[000103]]
accuracy is 0.8372093023255814
```

Then using support vector machine learning algorithm we got an accuracy of 74.4%

Which algorithm got better accuracy? Can you justify why?

Naive Bayes algorithm got better accuracy. Naive Bayes requires a small amount of training data,

It tends to perform well for problems like spam detection and text classification. SVM algorithms typically don't account for easily interpretable probabilities and also SVM is more expensive than naive bayes.