上 海 交 通 大 学 试 卷(<u>A</u>卷)

(2015 至 2016 学年第一学期)

班级号		学号	姓名	
	课程名称:	概率论与数理统计	成绩	
		大题共6小题,每小题3个		
1.	设总体 X 服从	(区间(a,b)上的均匀分布,	即 $X \sim U(a,b)$, 其中参数 a,b 都未	知,
	X_1, X_2, \dots, X	"是取自该总体的简单样本,	则参数 a,b 的极大似然估计量分别为	
	â =	, 和 b=	°	
2.	设 F(x,y) 为	随机变量 (X,Y)的联合分	布函数, 已知 $P(X > 0, Y > 0) = 0$.	38,
	P(X>0)=0.	.5, $P(Y > 0) = 0.6$,	0) = 。	
3.	设总体 X 的分	布列为 $P(X=k) = \frac{1}{4}, k=0$	$1,2,3$ 。若 X_1,X_2,X_3 为来自该总体的	J样本
	$N=\min(X_1,$	X_2, X_3), $M = \max(X_1, X_2)$	P(MN = 1) =	- °
4.	设二维正态随机	凡变量 $(X,Y) \sim N(1,4;1,4;0.$	6), $U = X - 2Y$, $V = 3X + 2Y$, \mathbb{R}	IJ
	cov(U,V) =	۰		
5.	设 X_1, X_2, X_3	X_4 是来自正态总体 $N(0,$	9)的简单样本, a =, 和 b =	
	时, $Y = \frac{(X_1 - X_2)^2}{2}$	$\frac{(2X_3 - 3X_4)^2}{a} + \frac{(2X_3 - 3X_4)^2}{b}$ By	从 χ^2 分布。	
6.	设随机变量力	Y 的密度函数为 $f(x) = \begin{cases} \frac{3}{2} \\ 0 \end{cases}$	$x^2 - 1 < x < 1$,则 $Y = X^2$ 的密度 0 其它	函数
	为	- ° 大题共 6 小题,每小题 3	公 世 18 公)	
		· -		\
7.)。
	(A) 8;	(B) 9; (C) 11;	(D) 12.	

我承诺, 我将 严格遵守考试纪

题号 1~6 7~12 13~16 17~20 总分 得分 批阅人(流水阅 卷教师签名处)

承诺人:

8. 设 X_1, X_2, \cdots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的简单样本,其中 μ 未知。 σ^2 的置信度 为 $1-\alpha$ 的单侧置信区间为 $(-\infty, \hat{\sigma}^2)$,则单侧置信上限 $\hat{\sigma}^2$ 估计量应为(

$$(A) \quad \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\chi_{\alpha}^2(n)} :$$

(B)
$$\frac{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}}{\chi_{1-\alpha}^{2}(n)};$$

(C)
$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\chi_{\alpha}^2 (n-1)} : \qquad (D) \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\chi_{1-\alpha}^2 (n-1)} .$$

(D)
$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\chi_{1-\alpha}^2 (n-1)}$$

9. 设 X_1, X_2, X_3 是独立同分布的随机变量,数学期望、方差都存在,下面正确的有哪些为 (可多选)()。

(A)
$$D(X_1 + X_2 + X_3) = D(3X_1) = 9D(X_1)$$
; (B) $D(X_1 + X_2 + X_3) = 3D(X_1)$;

(B)
$$D(X_1 + X_2 + X_3) = 3D(X_1)$$
;

(C)
$$E(X_1 + X_2 + X_3) = 3E(X_1)$$
; (D) $X_1 = X_2 = X_3$.

(D)
$$X_1 = X_2 = X_3$$
.

10. 设 X_1, X_2, \dots, X_{n+m} 是来自正态总体 $X \sim N(0, \sigma^2)$ 的简单样本,随机变量

$$Y = \frac{m\sum_{i=1}^{n} (X_i^2)}{n\sum_{j=1}^{m} (X_{n+j}^2)}$$
 服从的分布为()。

(A)
$$\chi^2(1)$$

(A)
$$\chi^2(1)$$
; (B) F(n-1, m-1); (C) F(n, m); (D) $\chi^2(n)$.

(D)
$$\chi^2(n)$$

11. 设A与B为互不相容的事件,且P(A) > 0,P(B) > 0,则下列各式中正确的是() 。

$$(A) P(\overline{B} \mid A) = 0$$

(A)
$$P(\overline{B} \mid A) = 0$$
: (B) $P(A \cap \overline{B}) = P(A)$:

(C)
$$P(\overline{A} \cap B) = 0$$
:

(D)
$$P(A \cap B) = P(A)P(B)$$
.

12. 设 X 的密度函数为 $f(x) = \frac{1}{2}e^{-|x-3|}$, $-\infty < x + \infty$, 且 c 满足 $P(X > c) = P(X \le c)$,

三、计算与证明题(本大题共 8 小题,每小题 8 分,共 64 分)

- 13. 某制造厂的产品是由 B1, B2 和 B3 三台机器所生产, 其中 B1, B2 和 B3 所生产的产品份额分别为 20%, 35%和 45%, 据以往的经验知这三台机器生产出的产品的次品率分别为 25%, 10%和 20%, 现从该厂生产的产品中随机的抽查三件,
- (1) 请给出这三件产品中次品数的分布律;
- (2) 如果这三件产品都是次品,其中恰有一件是由 B3 所生产的概率是多少?

14. 设随机变量 X、Y 相互独立同分布, 其密度函数都为

$$f(x) = \begin{cases} \frac{10}{x^2}, & x > 10; \\ 0, & \text{其它}. \end{cases}$$

- (1) 求X分布函数 $F_x(x)$;
- (2) 求随机变量 $Z = \frac{X}{Y}$ 的概率密度函数。

15. **假设一个人**数学能力测试的分数 X 是 0 和 1 之间的一个数字,音乐天赋测试分数也是在 0 和 1 之间一个数字,并且假设、美国的大学生群体,分数 X 和 Y 的联合概率密度函数为

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y), & 0 \le x \le 1, 0 \le y \le 1; \\ 0, & \text{#\dot{c}.} \end{cases}$$

- (1) 大学生群体数学能力测试分数大于 0.8 的概率是多少?
- (2) Y 取何值时,X 有条件密度函数,并给出条件密度函数 $f_{x|y}(x|y)$;
- (3) 如果大学生的音乐大赋的测试分数为 0.3 时,数学能力测试分数介于 0.6 到 0.8 之 间的概率是多少?

16. 设 X_1,X_2,\cdots,X_n 是取自总体X的简单样本,该总体的密度函数为

$$f(x; \beta) = \begin{cases} \frac{2}{\beta^2} (\beta - x), & 0 < x < \beta; \\ 0, & \text{其它.} \end{cases}$$

- (1) 求未知参数 β 的矩估计量 $\hat{\beta}$,并判断其无偏性;
- (2) 证明 $\hat{\beta}$ 是 β 的一致估计量。

- 17. 设"概率统计"某次考试的学生成绩服从正态分布,从中随机抽取 36 位考生的成绩, 算得平均成绩为 71.5 分,标准差为 15 分。间在显著性水平 $\alpha = 0.05$ 下,
- (1) 能否认为这次考试全体考生的平均成绩显著偏小于75分;
- (2) 能否认为标准差为14分。

$$t_{0.05}(35) = 1.69$$
, $t_{0.025}(35) = 2.03$, $t_{0.05}(36) = 1.68$, $t_{0.025}(36) = 2.02$

$$\chi^{2}_{0.05}(35) = 49.8$$
, $\chi^{2}_{0.025}(35) = 53.2$, $\chi^{2}_{0.95}(35) = 22.46$, $\chi^{2}_{0.975}(35) = 20.57$

- 18. 某物理学家通过他的设备对体重为 μ 的人群的体重做了 n 次独立的测量,他知道他的设备的局限性使得这种测量的标准差为 σ ,X 表示物理学家 n 次测量值的平均值。
- (1)用 Chebyshev 不等式估计,测量次数 n 至少为多少才能满足不等式 $P(\left|\overline{X}-\mu\right|<\frac{\sigma}{4})\geq 0.99\;;$
- (2) 用中心极限定理估计,至少测量多少次才能使得(1)中的不等式成立。

$$\Phi(2.575) = 0.995$$
, $\Phi(1.960) = 0.975$, $\Phi(1.645) = 0.950$.

19. 一个商店每周四进货,以备周五、周六和周日 3 天销售,根据多周的统计,这三天的销售件数 X,Y,Z 相互独立,其分布为

X	9	10	11	Y	13	14	15	Z	17	18	19
p	0.3	0.5	0.2	р	0.3	0.6	0.1	р	0.1	0.8	0.1

- (1) 求这三天销售件数总和的的平均销售量:
- (2) 如果进货 44 件。求 44 件不够卖的概率:
- (3) 如果进货 40 件, 求 40 件不够卖的概率。

- 20 (1) 请叙述以概率收敛的定义:
- (2) 假设随机变量 $X_1, X_2, \cdots X_n$ 都服从正态分布 N(0, 100);并且当 $|j-i| \ge 2$ 时, X_i 与

 X_j 相互独立, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$,请证明随机变量序列 $\{Y_n\}_{n=1}^{+\infty}$ 以概率收敛到 0。