Álgebra Lineal - Clase 1

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Espacios vectoriales.
- Subespacios.
- Generadores.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 1 (Sección 1.1).

Operaciones en un conjunto

Definición.

Sea A un conjunto no vacío. Una operación (o ley de composición interna) en A es una función $*: A \times A \rightarrow A$.

Notación: *(a, b) = c se escribe a * b = c.

- $ightharpoonup + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ +(a,b) = a+b$, es una operación en \mathbb{N} .
- -(a,b) = a b, no es una operación en \mathbb{N} .
- $ightharpoonup +, \cdot y \text{son operaciones en } \mathbb{Z}, \mathbb{Q}, \mathbb{R} \ y \mathbb{C}.$

Sea $*: A \times A \rightarrow A$ una operación.

- i) * es asociativa si $(a*b)*c = a*(b*c) \forall a,b,c \in A$.
- ii) * tiene elemento neutro si $\exists e \in A$ tal que e * a = a * e = a para cada $a \in A$.
- iii) Si * tiene elemento neutro e, todo elemento tiene inverso para * si $\forall a \in A$, $\exists a' \in A$ tal que a * a' = a' * a = e.
- iv) * es conmutativa si $a * b = b * a \ \forall a, b \in A$.

Observar que si * tiene elemento neutro, éste es único, ya que si e y e' son elementos neutros, e' = e * e' = e.

Definición.

Si A es un conjunto y * es una operación en A que satisface las propiedades i), ii) y iii), (A, *) se llama un grupo. Si además * cumple iv), se dice que (A, *) es un grupo abeliano o

Si además * cumple iv), se dice que (A, *) es un grupo abeliano o conmutativo.

Ejemplos.

- \triangleright (N, +) no es un grupo: no tiene elemento neutro.
- \blacktriangleright (\mathbb{Z} , +), (\mathbb{Q} , +), (\mathbb{R} , +) y (\mathbb{C} , +) son grupos abelianos.
- \blacktriangleright (\mathbb{Z} , ·) no es un grupo: sólo 1 y -1 tienen inverso multiplicativo.
- \blacktriangleright ($\mathbb{Q} \{0\}, \cdot$), ($\mathbb{R} \{0\}, \cdot$) y ($\mathbb{C} \{0\}, \cdot$) son grupos abelianos.
- ▶ $S_{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R} / f \text{ es biyectiva}\}, * = \circ.$ ($S_{\mathbb{R}}$, \circ) es un grupo.
- ▶ *C* un conjunto, $\mathcal{P}(C) = \{S \subseteq C\}$ y $\triangle : \mathcal{P}(C) \times \mathcal{P}(C) \to \mathcal{P}(C)$, $A \triangle B = (A \cup B) (A \cap B)$. $(\mathcal{P}(C), \triangle)$ es un grupo abeliano.

Observación.

Si (G,*) es un grupo, $\forall a \in G$ existe un único inverso para a.

En efecto, si b y c son inversos de a y e es el elemento neutro de (G,*), entonces b = e * b = (c * a) * b = c * (a * b) = c * e = c.

Anillos y cuerpos

Definición

Sea A un conjunto y sean + y \cdot operaciones en A. Se dice que $(A, +, \cdot)$ es un anillo si

- i) (A, +) es un grupo abeliano.
- ii) · es asociativa y tiene elemento neutro.
- iii) Valen las propiedades distributivas: $\forall a, b, c \in A$,
 - $a \cdot (b+c) = a \cdot b + a \cdot c$
 - $(b+c) \cdot a = b \cdot a + c \cdot a$

Si · es conmutativa, se dice que $(A, +, \cdot)$ es un anillo conmutativo.

Notaremos 0 y 1 a los elementos neutros de + y \cdot respectivamente.

- $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ son anillos conmutativos.
- ▶ $(\mathbb{Z}/n\mathbb{Z}), +, \cdot$), $n \in \mathbb{N}$, son anillos conmutativos.

- Si $(A, +, \cdot)$ es un anillo conmutativo, entonces $(A[X], +, \cdot)$ con las operaciones usuales es un anillo conmutativo.
- ▶ $\{f : \mathbb{R} \to \mathbb{R}\}$ con las operaciones usuales de suma y producto de funciones es un anillo conmutativo.
- ▶ Si C es un conjunto, $(\mathcal{P}(C), \triangle, \cap)$ es un anillo conmutativo.
- \blacktriangleright ($\mathbb{R}^{n\times n}$, +, ·) es un anillo (no es conmutativo).

Un anillo conmutativo $(A, +, \cdot)$ se llama un dominio de integridad o dominio íntegro si para $a, b \in A$, $a \cdot b = 0 \Rightarrow a = 0$ o b = 0.

- \blacktriangleright ($\mathbb{Z},+,\cdot$), ($\mathbb{Q},+,\cdot$), ($\mathbb{R},+,\cdot$) y ($\mathbb{C},+,\cdot$) son dominios integros.
- ightharpoonup A dominio íntegro $\Rightarrow A[X]$ dominio íntegro.
- $\mathbb{Z}/6\mathbb{Z}$ no es un dominio íntegro: $2 \cdot 3 = 0$ en $\mathbb{Z}/6\mathbb{Z}$, pero $2 \neq 0$ y $3 \neq 0$.
- $ightharpoonup \mathbb{Z}/m\mathbb{Z}$ es un dominio íntegro $\iff m$ es primo.

Definición.

Sea K un conjunto, y sean + y \cdot operaciones en K. Se dice que $(K, +, \cdot)$ es un cuerpo si $(K, +, \cdot)$ es un anillo conmutativo y todo elemento no nulo de K tiene inverso multiplicativo. Es decir:

- i) (K, +) es un grupo abeliano,
- ii) $(K \{0\}, \cdot)$ es un grupo abeliano, y
- iii) vale la propiedad distributiva de \cdot con respecto a +.

Ejemplos.

- \blacktriangleright ($\mathbb{Q},+,\cdot$), ($\mathbb{R},+,\cdot$) y ($\mathbb{C},+,\cdot$) son cuerpos.
- ▶ $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ es un cuerpo $\iff p$ es primo.

Observación.

Todo cuerpo $(K, +, \cdot)$ es un dominio de integridad.

Supongamos que $a \cdot b = 0$. Si $a = 0 \checkmark$.

Si $a \neq 0$, $\exists a^{-1}$ tal que $a \cdot a^{-1} = a^{-1} \cdot a = 1$. Entonces:

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 \Rightarrow (a^{-1} \cdot a) \cdot b = 0 \Rightarrow 1 \cdot b = 0 \Rightarrow b = 0.$$

Otro ejemplo.

Sea
$$\mathbb{Q}[\sqrt{2}] = \left\{ \sum_{i=0}^{n} a_i (\sqrt{2})^i / a_i \in \mathbb{Q}, n \in \mathbb{N}_0 \right\} \subset \mathbb{R}.$$

 $(\mathbb{Q}[\sqrt{2}],+,\cdot)$ es un cuerpo.

$$\forall k \in \mathbb{N}, (\sqrt{2})^{2k} = 2^k \text{ y } (\sqrt{2})^{2k+1} = 2^k \sqrt{2}$$

$$\Rightarrow \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} / a, b \in \mathbb{Q}\}.$$

- ▶ $\mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$, 0 y 1 ∈ $\mathbb{Q}[\sqrt{2}] \rightsquigarrow (\mathbb{Q}[\sqrt{2}], +, \cdot)$ anillo conmutativo.
- Todo elemento no nulo tiene inverso multiplicativo: $a + b\sqrt{2} \neq 0 \Rightarrow (a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2 \neq 0$ (porque $a, b \in \mathbb{Q}$ y $\sqrt{2} \notin \mathbb{Q}$) $\Rightarrow (a + b\sqrt{2})^{-1} = \frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2}$.

Similarmente, para $d \in \mathbb{N}$ libre de cuadrados, $(\mathbb{Q}[\sqrt{d}], +, \cdot)$ es un cuerpo.

Espacios vectoriales

Sean A y B dos conjuntos. Una acción de A en B es una función $\cdot : A \times B \to B$. Notación: $\cdot (a,b) = a \cdot b$.

Definición.

Sea K un cuerpo. Sean V un conjunto no vacío, + una operación en V y \cdot una acción de K en V. Se dice que $(V, +, \cdot)$ es un K-espacio vectorial si se cumplen las siguientes condiciones:

- 1. (V, +) es un grupo abeliano.
- 2. La acción $\cdot: K \times V \to V$ satisface:
 - (a) $a \cdot (v + w) = a \cdot v + a \cdot w \quad \forall a \in K; \ \forall v, w \in V.$
 - (b) $(a+b) \cdot v = a \cdot v + b \cdot v \quad \forall a, b \in K; \ \forall v \in V.$
 - (c) $1 \cdot v = v \quad \forall v \in V$.
 - (d) $(a \cdot b) \cdot v = a \cdot (b \cdot v) \quad \forall a, b \in K; \ \forall v \in V.$

Los elementos de V se llaman vectores y los elementos de K se llaman escalares.

La acción $\cdot: K \times V \to V$ se llama producto por escalares.

En lo que sigue K es un cuerpo.

- K es un K-espacio vectorial.
- $K^n = \{(x_1, \dots, x_n) \mid x_i \in K \ \forall 1 < i < n\}.$
 - $+ : K^n \times K^n \to K^n$ $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$
 - $\cdot : K \times K^n \to K^n, \quad \lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$ $(K^n, +, \cdot)$ es un K-espacio vectorial.

$$K^{n \times m} = \{\text{matrices de } n \text{ filas y } m \text{ columnas de elementos en } K\}.$$

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{n} & A_{n} & A_{n} \end{pmatrix}$$

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix}, \quad A_{ij} \in K \\ \forall 1 \leq i \leq n, 1 \leq j \leq m.$$

+ :
$$K^{n \times m} \times K^{n \times m} \to K^{n \times m}$$
, $(A + B)_{ij} = A_{ij} + B_{ij}$
· : $K \times K^{n \times m} \to K^{n \times m}$, $(\lambda \cdot A)_{ii} = \lambda \cdot A_{ii}$

$$(K^{n \times m}, +, \cdot)$$
 es un K -espacio vectorial.

- \triangleright \mathbb{R} es un \mathbb{Q} -espacio vectorial; \mathbb{C} es un \mathbb{R} -espacio vectorial y un O-espacio vectorial.
- $ightharpoonup \mathbb{C}^n$ es un \mathbb{R} -espacio vectorial. $ightharpoonup \mathbb{Q}[\sqrt{2}]$ es un \mathbb{Q} -espacio vectorial.
- ▶ $K^Z = \{f : Z \to K \mid f \text{ es función}\}$, para Z conjunto no vacío.
- $\cdot : K \times K^Z \to K^Z, (\lambda \cdot f)(x) = \lambda \cdot f(x) \quad \forall x \in Z.$
- $(K^{\mathbb{Z}},+,\cdot)$ es un K-espacio vectorial. \triangleright K[X] con la suma usual y la multiplicación usual de

polinomios por una constante es un K-espacio vectorial.

 $+: K^{\mathbb{Z}} \times K^{\mathbb{Z}} \to K^{\mathbb{Z}}, (f+g)(x) = f(x) + g(x) \quad \forall x \in \mathbb{Z},$

Propiedades.

Sea V un K-espacio vectorial. Entonces:

- 1. $0 \cdot v = \mathbb{O} \quad \forall v \in V$. (\mathbb{O} denota el vector nulo, elemento neutro de + en V)
- 2. $(-1) \cdot v = -v$ para todo $v \in V$. (-v denota al inverso aditivo de v)

Demostración.

- 1. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$.
 - Si w es el inverso aditivo de $0 \cdot v$,
 - $\mathbb{O} = 0 \cdot v + w = (0 \cdot v + 0 \cdot v) + w = 0 \cdot v + (0 \cdot v + w) =$
- $0 \cdot v + \mathbb{O} = 0 \cdot v.$
- 2. $(-1) \cdot v + v = (-1) \cdot v + 1 \cdot v = (-1+1) \cdot v = 0 \cdot v = \mathbb{O}$. $\Rightarrow (-1) \cdot v = -v$.

Subespacios

Definición.

Sea V un K-espacio vectorial. Un subconjunto $S \subseteq V$ no vacío se dice un subespacio de V si la suma y el producto por escalares (de V) son una operación en S y una acción de K en S que lo convierten en un K-espacio vectorial.

Ejemplo. Subespacios de \mathbb{R}^2 :

- $ightharpoonup S = \{(0,0)\}$ es un subespacio.
- ▶ Si $S \neq \{(0,0)\}$, $\exists v \in S$ no nulo $\Rightarrow \forall \lambda \in \mathbb{R}$, $\lambda.v \in S$.

$$S = \{\lambda v, \lambda \in \mathbb{R}\}$$
 es subespacio.

► Si $\exists v, w \in S$ no nulos, $w \neq \lambda v$:

$$L = \{\lambda \cdot v, \lambda \in \mathbb{R}\} \subset S$$

$$L' = \{\mu \cdot w, \mu \in \mathbb{R}\} \subset S$$

$$\Rightarrow \lambda \cdot v + \mu \cdot w \in S \ \forall \lambda, \mu \in \mathbb{R}$$

$$S = \mathbb{R}^{2}.$$

Proposición.

Sea V un K-espacio vectorial y sea $S \subseteq V$. Entonces S es un subespacio de V si y sólo si valen las siguientes condiciones:

- i) 0 ∈ *S*
- ii) $v, w \in S \Rightarrow v + w \in S$
- iii) $\lambda \in K, v \in S \Rightarrow \lambda \cdot v \in S$

Ejemplos. Sea V un K-espacio vectorial.

- \triangleright {0} es un subespacio de V.
- \triangleright V es un subespacio de V.
- ▶ Si $v \in V$, $S = \{\lambda \cdot v / \lambda \in K\}$ es un subespacio de V:
 - i) $0 = 0 \cdot v \in S$.
 - ii) Si $\lambda \cdot v$, $\mu \cdot v \in S$, entonces $\lambda \cdot v + \mu \cdot v = (\lambda + \mu) \cdot v \in S$.
 - iii) Si $\lambda \cdot v \in S$ y $\alpha \in K$, entonces $\alpha \cdot (\lambda \cdot v) = (\alpha \cdot \lambda) \cdot v \in S$.

S se llama el subespacio generado por v y se nota $S = \langle v \rangle$.

▶ Dados $v_1, \ldots, v_n \in V$, $S = \{\alpha_1.v_1 + \cdots + \alpha_n.v_n \mid \alpha_i \in K, \ 1 \leq i \leq n\}$ es un subespacio de V:

- i) $0 = 0.v_1 + \cdots + 0.v_n \in S$.
- ii) $v, w \in S$, $v = \alpha_1 \cdot v_1 + \cdots + \alpha_n \cdot v_n$, $w = \beta_1 \cdot v_1 + \cdots + \beta_n \cdot v_n$, $\Rightarrow v + w = (\alpha_1 + \beta_1) \cdot v_1 + \cdots + (\alpha_n + \beta_n) \cdot v_n \in S$.
- iii) $\lambda \in K$ y $v = \alpha_1.v_1 + \cdots + \alpha_n.v_n \in S$ $\Rightarrow \lambda.v = (\lambda.\alpha_1).v_1 + \cdots + (\lambda.\alpha_n).v_n \in S$.

S se llama el subespacio generado por v_1, \ldots, v_n y se nota $S = \langle v_1, \ldots, v_n \rangle$.

- Sean $a_1, \ldots, a_n \in K$ fijos. $S = \{(x_1, \ldots, x_n) \in K^n \mid x_n \in$
 - $S = \{(x_1, \dots, x_n) \in K^n \mid a_1x_1 + \dots + a_nx_n = 0\}$ es un subespacio de K^n :
 - i) $0 \in S \checkmark$ ii) $x = (x_1, ..., x_n) \in S$ y $x' = (x'_1, ..., x'_n) \in S$

$$\Rightarrow x + x' = (x_1 + x_1', \dots, x_n + x_n') \in S \text{ ya que}$$

$$a_1(x_1 + x_1') + \dots + a_n(x_n + x_n') = (a_1x_1 + a_1x_1') + \dots + (a_nx_n + a_nx_n') = (a_1x_1 + \dots + a_nx_n) + (a_1x_1' + \dots + a_nx_n') = 0 + 0 = 0.$$

iii) Ejercicio.