

Flash D

Electrec Energy Analyzer

User Manual

Version 8 November 2005
The document can be modified without prior information.

Index

INT	TRODUCTION	5
1	1.1 COPYRIGHT	5
1	1.2 WARRANTY	5
	1.3 RETURN AND REPAIR FORMALITIES	
	1.3.1 RE-SHIPPING OF REPAIRED PRODUCT	
	1.3.2 Return Material Authorization (RMA form)	
2	Safety	
	2.1 Operator safety	
3		
_	3.1 Instruments size (mm)	ξ
_	3.2 Optional modules size (mm)	
	3.3 Fixing and blocking	
	Wiring diagrams	
	4.1 Power supply	
4	4.2 Measurement connections	
	4.2.1 Voltage connection	
	4.2.2 Current connection	9
	4.2.3 4W Star connection (4 wire)	10
	4.2.4 3W Delta connection (3 wire)	11
	4.2.4.1 Connection with 2 CTs on L1 and L3	11
	4.2.4.2 Connection with 2 CTs on L1 and L2	12
	4.2.5 2 Wire connection (single phase)	12
	4.2.6 2 Wire connection (bi-phase)	
4	4.3 Outputs connection	
	4.4 Optional modules connection	
	4.4.1 RS485 Option	
	4.4.2 RS232 Option	
	4.4.3 Dual 4-20 mA analog output option	
5	Instrument use	
	5.1 Instrument set up	
	5.1.1 Set up sequence	
	5.1.2 Configuration procedure	
	5.1.2.1 Electrical system configuration	
	5.1.2.2 Communication characteristics configuration	
	5.1.2.3 Digital Outputs configuration	
	5.1.2.4 Pulse characteristics configuration	
	5.1.2.4.1 Pulse output set up with Modbus registers	
	5.1.2.5 Alarm configuration	
	5.1.2.5.1 Alarm set up with Modbus registers.	23
	5.1.2.6 4-20 mA Analog Outputs configuration	
	5.1.2.6.1 Analog output set up with Modbus registers.	
	5.1.2.6.2 Alarms and 4-20 mA output configuration for the average (AVG) parameters	
	5.1.2.7 Contrast adjustment	
	5.1.3 Reset Procedure	
	5.1.3.1 Average and Max Demand power Reset	
	5.1.3.2 Energy Reset	
F	5.2 Readings	
	5.2.1 Readings selection keys	
	U.4. 1 1\Gauii iyə ədidulut i\gə	∠ /

	5.2.1.1	Voltage and Frequency readings	27	•
	5.2.1.1.1	3P 4 W Configuration	27	7
	5.2.1.1.2	3P 3 W Configuration	28	3
	5.2.1.1.3	3P-b 4W Configuration	28	3
	5.2.1.1.4	3P-b 3W Configuration	28	3
	5.2.1.1.5	1P 2W Configuration	28	3
	5.2.1.1.6	2P 2W Configuration		
	5.2.1.2	Current readings	29	
	5.2.1.2.1	3P 4W Configuration		
	5.2.1.2.2	3P 3W Configuration		
	5.2.1.2.3	3P-b 4W Configuration		
	5.2.1.2.4	3P-b 3W Configuration		
	5.2.1.2.5	1P 2W and 2P 2W Configuration		
	5.2.1.3	Powers		
	5.2.1.3.1	3P 4W Configuration		
	5.2.1.3.2	3P 4W only Import Configuration		
	5.2.1.3.3	3P 3W / 3P-b 3W / 2P 2W Configuration		
	5.2.1.3.4	3P-b 4W Configuration		
	5.2.1.3.5	1P 2W Configuration		
	5.2.1.4	P.F. Visualization		
	5.2.1.4.1	3P 4W Configuration		
	5.2.1.4.2	3Pb 4W Configuration		
	5.2.1.4.3	3P 3W e 3Pb 3W Configuration		
	5.2.1.4.4	1P 2W e 2P 2W Configuration		
	5.2.1.5	Life Time		
	5.2.1.6	Energies		
	5.2.1.7			
_		Only Import Energy Display		
6		escription		
		on		
		and versatility		
		monic distortion Measurement (THD)		
		leasurement		
	6.5 Calibratio	on Led	36	į
	6.6 Digital Ou	utputs	36	j
		ıtput		
		ication		
		e and peak Energy		
7		itecture		
'		Features		
		SH D		
	•	D0405 D		
	7.1.2.1	RS485 Port		
	7.1.2.2	RS232 Port		
	7.1.2.3	2 x 4-20 mA Analog Output		
8		and formulas		
	8.1 3P 4W T	hree phase with 4 wire neutral	39	j
		able Reading:		
		surement Formulas:		
		hree phase without neutral		
		able Reading:		
		surement Formulas:		
	U.L.L VICAS	,ui oiiioiil i Ulliulas		,

	8.3 3P-	-b 4vv Baianced Inree phase with neutral	.48
	8.3.1	Available Reading:	
	8.3.2	Measurements Formulas:	
	8.4 3P-	-b 3W Balanced three Phase without neutral 3 wires	.51
	8.4.1	Available Reading:	.51
	8.4.2	Measurement Formulas:	.53
	8.5 1P	(2W) Single phase	.54
	8.5.1	Available Reading:	
	8.5.2	Measurement Formulas:	.56
	8.6 2P	(2W) Double phase	
	8.6.1	Available Reading:	
	8.6.2	Measurements Formulas:	.59
	8.6.3	Sampling:	
	8.6.4	Grid frequency Measurement:	
	8.7 Ave	erage values and energy Calculation	
	8.7.1	Energy counting	
	8.7.2	Average Powers / maximum demand (m/Max)	
	8.7.3	HOLD function	
	8.7.4	Synchronization	
9		US Protocol	
		eword:	
	9.2 "De	evice dependent" Functions	.63
	9.2.1	(0x11) Slave ID Report	
		(0x07) Exception Status Read	
	9.3 "Us	ser defined" Functions	
	9.3.1	(0x42) Slave Address Change	.64
		gister Mapping	
	9.4.1	Holding registers	
	9.4.2	Parameter selection tables	
	9.4.3	Flas-D Input registers	
	9.4.4	Input Registers (backward compatibility area)	
	9.4.5	Coils (back compatibility)	
	9.4.6	FLASH D coils	
1(nnical Characteristics	
11		ware Revisions	
12	2 Orde	er codes	.83
13	3 DEC	I ARATION OF CONFORMITY	83

INTRODUCTION

We thank you for choosing an Electrex instrument

We invite you to carefully read this instructions manual for the best use of the Flash D instruments.

1.1 COPYRIGHT

Electrex S.r.l. All rights are reserved.

It is forbidden to duplicate, adapt, transcript this document without Electrex written authorization, except when regulated accordingly by the Copyright Laws.

Copyright© 2003-2004

1.2 WARRANTY

This product is covered by a warranty against material and manufacturing defects for a period of 36 months period from the manufacturing date

The warranty does not cover the defects that are due to:

- Negligent and improper use
- Failures caused by atmospheric hazards
- Acts of vandalism
- · Wear out of materials

Electrex reserves the right, at its discretion, to repair or substitute the faulty products

The warranty is not applicable to the products that will result defective in consequence of a negligent and improper use or an operating procedure not contemplated in this manual.

1.3 RETURN AND REPAIR FORMALITIES

Electrex accepts the return of instruments for repair <u>only</u> when authorized in advance. For instrument purchased directly, the repair authorization must be requested to Electrex directly by using the enclosed RMA form. We recommend otherwise to contact your local distributor for assistance on the return/repair formalities. In both the cases, the following information must be supplied:

- Company full data
- Contact name for further communication
- Product description
- Serial number
- Description of the returned accessories
- Invoice / Shipping document number and date
- Detailed description of the fault and of the operating condition when the fault occurred

The Electrex repair lab will send the authorization number to the customer directly or to the distributor as per applicable case. The RMA authorization number shall be clearly marked on the packaging and on the return transport document.

WARNING: Failure to indicate the RMA number on the external packaging will entitle our warehouse to refuse the delivery upon arrival and to return the parcel at sender's charge.

The material must be shipped:

- within 15 working days from the receipt of the return authorization number
- free destination i.e. all transport expenses at sender's charge.
- to the following address: Electrex S.r.l.

Via Claudia 96 - 41056 Savignano s/P (MO) - Italy Atn. Repair laboratory

- the units covered by warranty must be returned in their **original packaging**.

1.3.1 RE-SHIPPING OF REPAIRED PRODUCT

The terms for re-shipment of repaired products are ex-works, i.e. the transport costs are at customer charge.

Products returned as detective but found to be perfectly working by our laboratories, will be charged a fixed fee (40.00 Euro + VAT where applicable) to account for checking and testing time irrespective of the warranty terms.

1.3.2 Return Material Authorization (RMA form)

Request for the authorization number for the return of goods Date: Company: Contact name: TEL: FAX: Product description: Serial number: Description of the returned accessories (if any): Original purchase Invoice (or Shipping document) number and date. NB: The proof of purchase must be provided by the customer. Failure to complete this area will automatically void all warranty. Detailed description of the malfunction and of the operating conditions when the fault occurred Tick off for a quotation Should a product be found by our laboratories to be perfectly working, a fixed amount of 40 Euro (+VAT if applicable) will be charged to account for checking and testing time irrespective of the warranty tems. Space reserved to ELECTREX

R.M.A. No.

The RMA number shall be clearly indicated on the external packaging and on the shipping document:. Failure to observe this requirement will entitle the ELECTREX warehouse to refuse the delivery.

2 Safety

This instrument was manufactured and tested in compliance with IEC 61010 class 2 standards for operating voltages up to 250 VAC rms phase to neutral.

In order to maintain this condition and to ensure safe operation, the user must comply with the indications and markings contained in the following instructions:

- When the instrument is received, before starting its installation, check that it is intact and no damage occurred during transport.
- Before mounting, ensure that the instrument operating voltages and the mains voltage are compatible then proceed with the installation.
- The instrument power supply needs no earth connection.
- The instrument is not equipped with a power supply fuse; a suitable external protection fuse must be foreseen by the contractor.
- Maintenance and/or repair must be carried out only by qualified, authorized personnel
- If there is ever the suspicion that safe operation is no longer possible, the instrument must be taken out of service and precautions taken against its accidental use.
- Operation is no longer safe when:
 - 1) There is clearly visible damage.
 - 2) The instrument no longer functions.
 - 3) After lengthy storage in unfavorable conditions.
 - 4) After serious damage occurred during transport

The instruments FLASH D must be installed in respect of all the local regulations.

2.1 **Operator safety**

Warning:

Failure to observe the following instructions may lead to a serious danger of death.

- During normal operation dangerous voltages can occur on instrument terminals and on voltage and current transformers. Energized voltage and current transformers may generate lethal voltages. Follow carefully the standard safety precautions while carrying out any installation or service operation.
- The terminals of the instrument **must** not be accessible by the user after the installation. The user should only be allowed to access the instrument front panel where the display is located.
- Do not use the digital outputs for protection functions nor for power limitation functions. The instrument is suitable only for secondary protection functions.
- The instrument must be protected by a breaking device capable of interrupting both the power supply and the measurement terminals. It must be easily reachable by the operator and well identified as instrument cut-off device.
- The instrument and its connections must be carefully protected against short-circuit.

Precautions: Failure to respect the following instructions may irreversibly damage to the instrument.

- The instrument is equipped with PTC current limiting device but a suitable external protection fuse should be foreseen by the contractor.
- The outputs and the options operate at low voltage level; they cannot be powered by any unspecified external voltage.
- The application of currents not compatible with the current inputs levels will damage to the instrument.

3 Mounting

3.1 Instruments size (mm)

6 DIN rail modules

3.2 Optional modules size (mm)

2 DIN rail modules.

3.3 Fixing and blocking

The instrument (as well as the optional modules) are fixed to the DIN rail by means of the spring clip located on the rear side of the unit.

4 Wiring diagrams

4.1 Power supply

The instrument is fitted with a separate power supply with extended operating range. The power supply terminals are numbered (10) and (11). Use cables with max cross-section of 4 mm².

24VAC / 18-60VDC

4.2 Measurement connections

4.2.1 Voltage connection

Use cables with max cross-section of 4 mm² and connect them to the terminals marked VOLTAGE INPUT on the instrument according to the applicable diagrams that follow.

4.2.2 Current connection

It is necessary to use external CTs with a primary rating adequate to the load to be metered and with a 5A secondary rating. The number of CTs to be used (1, 2 or 3) depends upon the type of network.

Connect the CT output(s) to the terminals marked CURRENT INPUT of the instrument according to the applicable diagrams that follow.

Use cables with cross-section adequate to the VA rating of the CT and to the distance to be covered. The max cross-section for the terminals is 4 mm².

N.B. The CT secondary must always be in short circuit when not connected to the instrument in order to avoid damages and risks for the operator.

Warning: THE PHASE RELATIONSHIP AMONG VOLTAGE AND CURRENT SIGNALS MUST BE CAREFULLY RESPECTED. ALL DISREGARD OF THIS RULE OR OF THE WIRING DIAGRAM LEADS TO SEVERE MEASUREMENT ERRORS.

4.2.3 4W Star connection (4 wire)

Low voltage 3 CTs Configuration 3Ph/4W

High voltage 3 PTs 3 CTs Configuration 3Ph/4W

Low Voltage 1 CT (symmetrical and balanced load) Configuration 3Ph/4W-Bal

4.2.4 3W Delta connection (3 wire)

Connection with 3 CTs

Connection with 1 CT

Low Voltage 3 CTs (unbalanced load) Configuration 3Ph/3W

Low Voltage 1 CT (symmetrical and balanced load) Configuration 3Ph/3W-Bal

4.2.4.1 Connection with 2 CTs on L1 and L3

Low Voltage 2 CTs **Configuration 3Ph/3W**

High Voltage 2 PTs 2 CTs Configuration 3Ph/3W

4.2.4.2 Connection with 2 CTs on L1 and L2

Low Voltage 2 CTs Configuration 3Ph/3W

High Voltage 2 PTs 2 CTs Configuration 3Ph/3W

4.2.5 2 Wire connection (single phase)

Low Voltage (phase-neutral) 1 CT Configuration 1 Ph/2W

4.2.6 2 Wire connection (bi-phase)

Low Voltage (phase-phase) 1 CT Configuration 2Ph/2W

4.3 Outputs connection

The instrument is equipped with two opto-isolated transistor outputs rated 27 Vdc, 27 mA (DIN 43864 standards).

The outputs working mode is set by default to operate as pulse output proportional to the Active energy (output 1) and to the Reactive energy (output 2). They support an output rate of 1.000 pulses per kWh (or kvarh) referred to the instrument input range without any CT and PT multiplier.

In order to calculate the energy value of each pulse the following formula must be considered.

$$K_P = \frac{K_{CT} \times K_{PT}}{Pulse / kWh}$$
 Where: $K_P = \text{energy of each pulse}$; $K_{CT} = \text{CT ratio}$; $K_{PT} = \text{PT ratio}$

Other pulse rate settings may be however programmed as described in the instrument set up section. The operating mode of the digital outputs may also be changed to work as alarm output or as remote output device controlled by the Modbus protocol as described in the instrument set up section.

4.4 Optional modules connection

The optional modules shall be placed beside of the instrument and shall be connected to the same by means of the cable supplied with.

The optional modules are self-supplied; the instrument recognises the type of option(s) connected and the applicable programming menu will automatically appear when necessary.

CN1 connector: suitable for the RS485 or RS232 optional modules

CN2 connector: suitable for the 4-20 mA optional module or for the Hardware up-date key

4.4.1 RS485 Option

	RS485	pin out
1	A +	
2	В -	
3	Shie	ld

4.4.2 RS232 Option

RS232 pin out		
1	DSR (Handshake to DTE)	
2	CTS (Handshake to DTE)	
3	RD (Data to DTE)	
4	TD (Data from DTE)	
5	RTS (Handshake from DTE)	
6	GND	

4.4.3 Dual 4-20 mA analog output option

4-20 mA pin out	
1	CH1 Channel 1
2	CH2 Channel 2
3	Source Common +

NB. The outputs are self powered; do not use external power supply.

5 Instrument use

5.1 Instrument set up

The set up procedure allows to program the instrument operating parameters. Entry in the programming procedure is obtained by pressing the PROGRAM button that is located on the upper right side of the instrument.

The key allows to scroll the various entry fields within a set up page as well as to pass to the next page upon scrolling all the fields of one page.

The and keys allow the modification of the flashing field being currently selected. The content of a field can be either numeric or a parameter controlling the device behavior.

The key advances to the next page, the key returns to the previous page

By pressing the PROGRAM button (while in any configuration page) the menu is exited and the configuration entries so far performed are saved.

5.1.1 Set up sequence

Within the first page of the instrument set up menu, the following functions are available too.

- a pressure of the key opens the energy counters reset page.
- a pressure of the Pqs key opens the reset page of the average and maximum demand.

Here below the set up page formats and the programming flow diagram

NOTE: all new setting and/or alteration of the instrument programming parameters become effective only upon exit from the programming session by pressing the PROGRAM button located on the upper right side of the instrument.

5.1.2 Configuration procedure

5.1.2.1 Electrical system configuration

The first programming page shows the configuration of the type of electrical system.

The first selection sets the type of electrical system and the type of wiring used:

- 3 phase 4 wire Star system [3Ph/4W]
- 3 phase 3 wire Delta system [3Ph/3W],
- balanced 3 phase 4 wire system (1 CT only) [3Ph/4W-Bal],
- balanced 3 phase 3 wire system [3Ph/3W-Bal],

- single phase system [1Ph/2W]
- bi-phase system [2Ph/2W].

The second selection sets whether the operating mode is:

- Import only [Import (20)]
- Import-Export [Imp/Exp (40)].

The instrument is set by default to [3Ph/4W] and Import [Import (2Q)] mode. This configuration automatically compensates all possible CT output reversal.

The following page enables to set the type of voltage measurement.

If the voltage measurement is direct in low voltage, select **[Low]**; the menu passes directly to the currents setting page.

If the voltage measurement is made on the HT side and/or via a voltage transformer, select **[Hi gh]** and proceed to the next page for setting the Voltage transformer (PT) primary and secondary values

Enter the PT <u>rated</u> primary and secondary values indicated on the PT label; the values taken by measurement are unsuitable to this purpose.

The primary and the secondary values must be integers, the ratio can also be fractional.

The instrument is set by default to [Low]

After the voltage setting, the current set up page is prompted for programming the CT values; it requires the entry of the CT primary rating and the CT secondary rating.

Ensure to enter the CT <u>rated</u> primary and secondary values as indicated on the CT label.

When using 2 or 3 current transformers ensure that all the current transformers have the same ratings. The instrument is set by default to [00005/5].

The next page allows to set the integration time for calculating the Average and the Maximum Demand.

The value is expressed in minutes in a 1 to 60 min. range.

The instrument supports two average values: one calculated by using the sliding window method and the other one calculated on a fixed time basis. The time setting that is programmed by keyboard is the average demand integration time with the sliding window method. The Maximum Demand too is calculated on the sliding window basis.

The integration time on a fixed time basis is used for storing the energy data however this setting is available only as a MODBUS register via serial port setting.

5.1.2.2 Communication characteristics configuration

This menu appear only upon connection to the instrument of an RS-485 or an RS-232 optional module. The setting of the RS485 communication characteristics requires to scroll the programming pages with two keys;

The key advances to the next page, the key returns to the previous page

The first page is the following:

This page enables the setting of respectively:

- communication speed
- number of data bits
- parity
- stop bits

All these data are correlated depending upon the stop bit value.

Additional parameters regarding the MODBUS communication protocol may be set in the next page:

 Mode: it may be configured to RTU or to ASC (ASCII) mode.

Serial Interface

38400.8.n.2

- Slave Address
- Transmission delay; it stands for the time delay the instrument will wait prior to reply to a data query. It is expressed in milliseconds, the

default value is 100 msec and a 0 setting is also possible.

5.1.2.3 Digital Outputs configuration

The instrument is equipped with 2 digital outputs that are set by default to operate as pulse outputs proportional to P_{Σ} (output 1) and Q_{Σ} (output 2) at a rate of 1.000 pulses per kWh (or kvarh) referred to the instrument range without any CT and PT multiplier.

The operating mode of digital outputs may be changed to operate as alarm output or as remote output device controlled by the Modbus protocol.

When operating on the Modbus protocol, in order to ensure a protection to the outputs in case of communication failure, it is possible to configure a watchdog timer (programmable from 0 to 60 minutes; 0 = disabled).

The following entry fields are prompted (example for output 1):

- (1) Digital out number being programmed.
- (2) Contact: it configures the rest state of the output transistor.

n.c. normally closed or

n.o. normally open:

(3) Mode of operation:

PULSE (default setting) for operation as pulse output

ALARM for operation as alarm contact output

Remote for operation as remote output device controlled via Modbus

The procedure for programming the digital output 2 is identical.

5.1.2.4 Pulse characteristics configuration

If the PULSE selection is operated, the following page is shown allowing the configuration of the pulse characteristics:

Where:

- (1) Pulse output number being programmed.
- (2) Pulse duration in mSec; programmable from 50 up to 900 in steps of 10.
- (3) Parameter selected for pulse transmission: It may be selected among:

PIMP	Import Active Power
QL i mp	Reactive power (inductive) with import Active Power
Qc i mp	Reactive power (capacitive) with import Active Power
Simp	Apparent power with import Active Power
P exp	Export Active Power
QL exp	Reactive power (inductive) with export Active Power
Qc exp	Reactive power (capacitive) with export Active Power
S exp	Apparent power with export Active Power

(4) **Pri**: the pulses take into account the CT and PT ratio and are referred to their primary readings

Sec: the pulses are referred to the CT (and PT) secondary reading without any multiplier.

(5) Pulse **weight**: programmable from 0,1 Wh up to 1 MWh through all the intermediate steps. Example: 1.0 Wh = 1000 pulses/kWh.

5.1.2.4.1 Pulse output set up with Modbus registers.

To set up the pulse output the Modbus Holding Registers from 120 to 127 have to be used. Refer to chapter 9 for the details.

5.1.2.5 Alarm configuration

The Instrument is equipped with two alarms that are triggered by a programmable threshold on anyone of the measured parameters.

The types of alarm available are: maximum, minimum and 1-of-3.

A minimum alarm is triggered when the selected parameter is lower than the alarm threshold.

A maximum alarm is triggered when the selected parameter exceeds the alarm threshold.

A 1-of-3 alarm is triggered when anyone of the phase readings, whichever the phase involved, trespasses the alarm threshold – this alarm can be either maximum or minimum. On a 1-of-3 current alarm, the threshold is expressed as percentage (rather than a value) that stands for the unbalance between the phases. The alarm therefore triggers when the percent difference between two of the three phases exceeds the threshold; it is calculated as $100 \times (I_{max} - I_{min})/I_{max}$.

All alarms allow also the setting of an hysteresys and a delay time.

The **hysteresys** (in percent) sets the difference between the triggering threshold and the end threshold (this prevents repeated alarm triggering when the reading oscillates around the trigger value). Example: a 5% hysteresys on a threshold of 100, triggers the alarm when the reading exceeds 100 but it will switch off the alarm when the reading becomes lower than 95.

The **delay time** sets a time delay for triggering on the alarm after its actual occurrence (or triggering off after its actual end).

The set up of each alarm is performed on two programming pages prompting the following entry fields (example for Alarm 1).

- (A) Alarm No. and page No. identification (AL1 = alarm 1 that may be associated to output 1)
- (1) Parameter type applying to Alarm 1. The possible choices are:

None	Disabled
U	Voltage
f	Frequency
1	Current
P	Active Power
Q	Reactive Power
S	Apparent Power
PF	Power Factor
LITUD	Takal Hammanaka F

U THD Total Harmonic Distortion (Voltage)
I THD Total Harmonic Distortion (Current)

(2) Parameter definition: The possible choices are:

```
Average star value (applicable to voltage, current and THD only).
LN
LL
               Average system value (applicable to voltage and THD only).
Ν
               Neutral value (applicable to current only)
Σ
               Three phase value (applicable to active, reactive and apparent power only)
               Phase 1 value.
L1
L2
               Phase 2 value.
               Phase 3 value.
L3
               Phase-phase (L1-L2) value (applicable to system voltages and THD only)
L1-L2
L2-L3
               Phase-phase (L2-L3) value (applicable to system voltages and THD only)
               Phase-phase (L3-L1) value applicable to system voltages and THD only)
L3-L1
               Value applicable to all the three phase-phase readings of voltage or THD.
1÷3 LL
1÷ 3 LN
               Value applicable to all the three phase-neutral readings of current, voltage or THD.
               Average value (applicable to average powers – demand - only).
AVG
```

(3) Alarm type

M = maximum **m** = minimum

- (4) Threshold value: programmable in the range -1999 +1999
- (5) Decimal point: the parameter value may be scaled to the powers of ten by using the m, K, M symbols and the decimal point. Range is between 10⁻³ a 10⁹.
- (6) Hysteresys: value, from 0% to 99%
- (7) Delay time: from 0 to 99 seconds
- (4) Output trigger mode:

Non-latching = normal (the relay is active for the duration of the alarm), **Pulsed** = pulsed (the alarm triggering generates a pulse).

The Alarm 2 programming procedure is identical.

5.1.2.5.1 Alarm set up with Modbus registers.

To set up the alarm t the Modbus Holding Registers from 95 to 106 have to be used. Refer to chapter 9 for the details.

5.1.2.6 4-20 mA Analog Outputs configuration.

The instrument supports two 4-20 mA or 0-20 mA analog outputs with 500 ohms maximum load. Each output is to one of the parameters handled by the instrument.

The output is updated every 10 cycles of the network frequency (i.e. every 200mSec with 50 Hz mains) with a maximum delay of 50 mSec from the actual measurement.

- (A) Output identification: **A.o.1** = analog output 1.
- (1) Parameter applying. The possible choices are:

None	Disabled
U	Voltage
f	Frequency
	Current
P	Active Power
Q	Reactive Power
S	Apparent Power
PF	Power Factor

U THD Total Harmonic Distortion (voltage)
I THD Total Harmonic Distortion (current)

(2) Parameter definition: The possible choices are:

LN Average star value (applicable to voltage, current and THD only).

LL Average system value (applicable to voltage and THD only).

N Neutral value (applicable to current only)

Σ Three phase value (applicable to active, reactive and apparent power only)

L1 Phase 1 value.

L2	Phase 2 value.
L3	Phase 3 value.
L1-L2	Phase-phase (L1-L2) value (applicable to system voltages and THD only)
L2-L3	Phase-phase (L2-L3) value (applicable to system voltages and THD only)
L3-L1	Phase-phase (L3-L1) value applicable to system voltages and THD only)
AVG	Average value (applicable to average powers - demand - only).

- (3) Value to be associated to the 20 mA full scale signal; programmable in the range -1999 +1999
- (4) Scale; the parameter value may be scaled to the powers of ten by using the m, K, M symbols and the decimal point. Range is between 10⁻³ a 10⁹.
- (5) Value to be associated to the 4 mA (or 0 mA) signal; programmable in the range -1999 +1999.
- (6) Scale; the parameter value may be scaled to the powers of ten by using the m, K, M symbols and the decimal point. Range is between 10⁻³ a 10⁹.
- (7) Output type: 4-20 mA or 0-20 mA.

The procedure for programming of the Analogue output 2 is identical.

5.1.2.6.1 Analog output set up with Modbus registers.

To set up the analog output the Modbus Holding Registers from 80 to 91 have to be used. Refer to chapter 9 for the details.

5.1.2.6.2 Alarms and 4-20 mA output configuration for the average (AVG) parameters

In the Import-Export operating mode, the instrument supports a 4 quadrant measurement, but the selection can be made on one quadrant at a time.

When operating an AVG average selection, the following parameters are prompted.

P I MP AVG	Import Active Power
QL I MP AVG	Reactive power (inductive) with import Active Power.
QC IMP AVG	Reactive power (capacitive) with import Active Power
S I MP AVG	Apparent power with import Active Power
P EXP AVG	Export Active Power (export)
QL EXP AVG	Reactive power (inductive) with export Active Power
QC EXP AVG	Reactive power (capacitive) with export Active Power
S EXP AVG	Apparent power with export Active Power

5.1.2.7 Contrast adjustment

The A and keys allow to adjust the display contract to the viewing angle in a 1 to 15 range.

The display illumination is automatically reduced 3 minutes after the last key pressure. It will automatically becomes brighter whenever pressing a key again.

5.1.3 Reset Procedure

5.1.3.1 Average and Max Demand power Reset

In order to reset the Average Powers, the Maximum Demand and the Energy counters it is necessary to:

- Enter into the programming menu by pressing the PROGRAM button.
- Press the Pas key to display the powers reset page or the key to display the energy counters reset page.
- Select YES to reset, NO to skip. Resetting is confirmed by pressing the key that executes the rese
 and returns automatically to the readings pages.
- The reset operation clears all the average powers and the Maximum Demand.

5.1.3.2 Energy Reset

It is also possible to exit the procedure, at any time without resetting, by pressing the PROGRAM button.

5.2 Readings

5.2.1 Readings selection keys

The selection of the readings and of the reading pages is made by means of the following keys:

5.2.1.1 Voltage and Frequency readings

By pressing once the we key, a first voltage readings page is prompted showing the phase-neutral voltages and, on the bottom right side of the display, the average 3-phase system voltage.

By pressing the key, a second voltage readings page is prompted showing the phase-phase voltages and, on the bottom right side of the display, the average phase-neutral system voltage.

Another pressure of the A key prompts the total harmonic distortion readings of the voltage of each phase.

By pressing again the we key the frequency is shown on the lower right side on the display.

5.2.1.1.1 3P 4 W Configuration

5.2.1.1.2 3P 3 W Configuration

5.2.1.1.3 3P-b 4W Configuration

5.2.1.1.4 3P-b 3W Configuration

5.2.1.1.5 1P 2W Configuration

5.2.1.1.6 2P 2W Configuration

5.2.1.2 Current readings

By pressing the key, the current readings page is prompted showing the currents of each phase as well as the neutral current.

A pressure of the key prompts the total harmonic distortion readings of the current of each phase.

5.2.1.2.1 3P 4W Configuration

5.2.1.2.2 3P 3W Configuration

5.2.1.2.3 3P-b 4W Configuration

5.2.1.2.4 3P-b 3W Configuration

5.2.1.2.5 1P 2W and 2P 2W Configuration

5.2.1.3 Powers

By pressing the key the power reading pages for P Active Power, Q Reactive power and S Apparent power are scrolled in sequence. By pressing the and keys the average and the maximum powers (Demand and Maximum Demand readings) are displayed.

The displayed parameters are:

Р	Active power of each phase and three phase

P I MP AVG Import average Active Power P EXP AVG Export average Active Power

P I MP MD Max Demand on import Active Power P EXP MD Max Demand on export Active Power

Q Reactive power of each phase and three phase

QL I MP AVG
QC I MP AVG
Average reactive (inductive) power with import Active Power
Average reactive (capacitive) power with import Active Power
Average reactive (inductive) power with export Active Power
Average reactive (capacitive) power with export Active Power
Average reactive (capacitive) power with export Active Power
Average reactive (inductive) power with import Active Power
Average reactive (capacitive) power with export Active Power
Average reactive (capacitive) power with export Active Power
Average reactive (capacitive) power with import Active Power
Average reactive (capacitive) power with export Active Power

QL EXP MD Max Demand on reactive (capacitive) power with import Active Power QL EXP MD Max Demand on reactive (inductive) power with export Active Power QC EXP MD Max Demand on reactive (capacitive) power with export Active Power

S Apparent power of each phase and three phase
S I MP AVG Average apparent power with import Active Power
S EXP AVG Average apparent power with export Active Power

S I MP MD Max Demand on apparent power with import Active Power S EXP MD Max Demand on apparent power with export Active Power

5.2.1.3.1 3P 4W Configuration

5.2.1.3.2 3P 4W only Import Configuration.

5.2.1.3.3 3P 3W / 3P-b 3W / 2P 2W Configuration

5.2.1.3.4 3P-b 4W Configuration

5.2.1.3.5 1P 2W Configuration

5.2.1.4 P.F. Visualization

By pressing the PF key, the power factor readings page is prompted showing the PF of each phase as well as the 3-phase reading. Only one page is displayed.

The – sign ahead of the value identifies a capacitive (leading) reading.

5.2.1.4.1 3P 4W Configuration

5.2.1.4.2 3Pb 4W Configuration

5.2.1.4.3 3P 3W e 3Pb 3W Configuration

5.2.1.4.4 1P 2W e 2P 2W Configuration

5.2.1.5 Life Time

By pressing the key the life time reading are displayed.

The life time is the instrument operating time (when powered on) since it was manufactured. The readings is expressed in hours and hour hundredths; it can reach 99.999 hours equal to 11 years. The life time reading reset is not possible.

5.2.1.6 Energies

By pressing repeatedly the key, the several energy readings will be displayed consecutively on the lower right part of the screen.

The energy readings may be recalled at any time irrespective the readings page being displayed.

The energy readings will however disappear upon selection of another readings page but they may be recalled, at any time, by pressing the key.

Where:

- (E_a^+) Import active energy
- (E_a^-) Export active energy
- (E_{rind}^{+}) Reactive energy (inductive) with import Active Power
- $(E_{r\,cap}^{^{+}})$ Reactive energy (capacitive) with import Active Power
- (E_{rind}^{-}) Reactive energy (inductive) with export Active Power
- (E_{rcap}^{-}) Reactive energy (capacitive) with export Active Power
- (E_s^+) Apparent energy with import Active Power
- (E_s^-) Apparent energy with import Active Power

5.2.1.7 Only Import Energy Display

6 Instrument Description

6.1 Introduction

FLASH D is a microprocessor based energy analyzer with leading edge flexibility and accuracy.

The patented digital measuring system guarantees high performance with age and thermal stability. This is achieved through sophisticated strategies of automatic offset compensation - used throughout the measurement chain – and through a Phase Locked Loop (PLL) sampling probe.

The automatic rescaling feature on current inputs allows a wide measuring range - from 20mA to 6A in direct connection.

All "true-RMS" measures are obtained with continuous sampling of the voltage and current waveforms: this guarantees maximum precision even when rapidly changing loads are present (e.g. electric welding machines).

FLASH D can be programmed to analyze three phase networks, both on three and four wires with low or high voltage with 1, 2 or 3 CTs in addition to single phase measurements. The option of setting any required conversion factor on the voltage and current inputs makes FLASH D suitable for use in both high and low voltage networks.

It can measure the energy and the peak on the 4 quadrants (active, reactive and apparent).

The instrument firmware is kept in flash memory and can be updated through a serial port, using the same communication protocol. The upgrade uses special security provisions to ensure continued operations even in presence of communication failures.

All input, output, and power supply ports are electrically separated for maximum safety and noise reduction under any operating conditions.

The in-house testing and calibration process is completely automated: a conformity certificate and calibration report are supplied with each unit.

The LCD display has three 3 $\frac{1}{2}$ digit lines and a 7 digit line and an extended symbol and character set, allowing the simultaneous display of 4 measurements. Three 11-segment bar graphs give immediate feedback on the overall measuring process.

The wide keyboard, with its 9 silicon rubber coated keys, clearly marked with function, allows a simple and intuitive use of the instrument.

FLASH D is completely programmable, from either the keyboard or a PC remote connection (only for models with communication port). It is therefore the ideal solution for all the power measurement and management needs in the industrial environment.

The instrument is equipped with two optically insulated transistor driven outputs with capacity load of 27 Vdc 27 mA according to 43864 Din standard.

They can be used either as pulse output or as alarm and are fully programmable by the user on different parameters and with different pulse frequency and duration.

The factory setting is with one output is proportional to the active energy, while the other to the reactive energy and an output frequency of 1000 pulses per kWh (or kvarh) and 50 ms pulse time.

The pulses number is referred to the instrument end of range without the CT and VT scale factors.

6.2 Simplicity and versatility

Keyboard programming is extremely easy and allows setting of:

- Connection type (star and delta)
- Low Tension or Medium Tension
- Setting of CTs and VTs values (freely settable)
- Integration time (1-99 min.)
- RS485 features (speed, parity and data format)
- Alarm threshold
- · Analog output.
- Pulses
- ...and all other functions available

The sameFunctions can be programmed via PC

6.3 Total harmonic distortion Measurement (THD)

The instrument gives an evaluation of the energy quality by sampling the total harmonic distortion of the 3 voltages and 3 currents.

These functions are extremely useful to control the quality of the energy supplied by the Public Utility, because of the large number of distorting loads in industrial plants.

6.4 Energy Measurement

Energy is displayed on a 6 digit display with floating point.

The energy counters are stored on counters with minimum definition equal to 0,1 Wh and maximum counting equal to 99.999.999.9 kWh.

8 counters are available +Ea, -Ea, ++Er, -+Er, --Er, +-Es, -Es on 4 quadrant.

6.5 Calibration Led

A red led is located on the instrument front panel pulsing with a 1000 pulse/kWh (or kvarh) and 50 ms pulse duration. The pulses number is referred to the instrument end of range without the CT and VT scale factors.

6.6 Digital Outputs

The two outputs are (mostly) used as pulse output on active/reactive power or as output for the internal triggers. In other configurations, where the instruments is controlled – by a PC or PLC - through the RS485 port, the outputs can be used for signaling remote activation/deactivation.

6.7 Oulse Output

The two outputs, if in association with pulse, can be referred to one of the 8 power value available on a 4 quadrant system.

The output pulse can be freely programmed both on frequency and duration and referred to the instrument Full Scale or to the measuring cell (with CT and PT) Full Scale.

It is possible to program the output value either according to pulse number and pulse weight

The two outputs are factory programmed one proportional to the active energy while the other to the reactive energy, the output frequency is 1000 pulses per kWh (or kvarh) and 50 ms pulse time.

The pulses number is referred to the instrument Full Scale without the CT and TV scale factors.

6.8 Alarms

FLASH D is triggered and programmed by switchboard and/or Holding registers with MODBUS protocol. The advanced functions of the Energy Brain configuration software allow to customize each of the two alarms on any available parameter either as a minimum or max alarm. Two different thresholds of the same measurement can be programmed.

Minimum value and maximum value special alarms on voltage are available that can be applied on any of the three phases, one maximum value alarm on current that can be applied on any of the three phases and an unbalanced alarm on any of the three current phases.

A further flexibility in customization is provided by the possibility to program the alarm management through:

- Delay time (between 1 and 59 sec.) that is activation delay. Example: avoid alarms due to short signal peaks.
- Hysteresis, that is the cycle between the alarm activation value and the alarm deactivation value. It
 is an extremely useful function to avoid ringing and false triggering. Example: Current alarm set on
 100A Max with 5% Hysteresis. The alarm is activated at 100 A and is deactivated at 95 A. The two
 alarms can be associated singularly to:
- Output relays. In this case the output relays are activated by the exceeded threshold
- RS485 data line. The relays are disabled and the alarm consolidation are disabled and the alarm condition is available as information on information on RS485, data line.

6.9 Communication

The device can be connected to a PC through an optional RS485 or RS232 port using the MODBUS communication protocol (MODBUS, developed by AEG-MODICON, is a standard in the PLC industry and widely utilized by SCADA systems for industrial plants management).

Data read by the device can be read as the content of numeric registers, in the standard mantissa/exponent floating point IEEE format.

The communication port can be operated at any speed between 2400 bps through 38400 bps without wait states between 2 requests with a limitation on the number of registers equal to 124 registers (62 parameters)

When using the optional RS485 port, the connection uses a standard telephone pair without need of signal regeneration/amplification for distances up to 1,000 m. Up to 128 devices can be connected on the same network branch. Using line amplifiers, it is possible to connect up to 247 instruments or 1,000 m network segments.

6.10 Average and peak Energy

While the FLASH D was designed to measure energy consumption (the so called import mode), it can be configured to work in import/export mode. When in import mode, the device automatically compensates wiring errors on CTs (e.g. for current flow). On the other hand, when in import/export mode, all the energy, average and peak counters are open for measures in the four quadrants.

7 System Architecture

7.1 General Features

7.1.1 FLASH D

Energy Analyzer

- Very accurate and stable measurement system thanks to the digital signal elaboration;
- Continuous sampling of the wave shape of voltages and currents;
- Offset automatic compensation of the measurement chain;
- Current inputs with automatic scale change;
- True-RMS measurements (up to the 31st harmonic);
- Class 1 on the Active Power in compliance with IEC EN 61036;
- Neutral current calculation;
- Working temperature -20/+60 °C.
- Programmable digital outputs
- Insertion on electric 3 phase unbalanced 3 or 4 wire networks, single phase networks and on balanced symmetrical three phase 3or 4 wire networks
- Software upgrade on line
- Life Timer;
- LCD display with white white LED baclight;
- Calibration verification LED through optical devices;
- Easy to use, thanks to the 9 button keyboard with explicit function indication;
- To be used with low or high voltages (programmable relationship between VTs and CTs);
- Extended range power supply (85 ÷ 265 Vac, 100 ÷ 374 Vdc) separated from the measurement inputs:
- 2 slots for optional expansion modules:
 - RS-232 o RS-485 Communication port;
 - 4-20 mA Double analogue output;
 - Further devices for future applications;
 Galvanic insulation among all input and output ports;
- Firmware which can be upgraded to support new functions;
- 6 unit Din rail mounting;
- Compliant with all the international standards.
- Measurement of the total harmonic distortion (THD) of voltages and currents:
- Average and Max Demand powers (on 4 quadrants) with programmable integration time;

- Internal energy counters (on 4 quadrants).
- 2 digital outputs (DIN 43864) with programmable functions:
 - Pulse outputs for energy counting;
 - Event signaling (alarms);
 - Remote control of external devices.

7.1.2 Options

7.1.2.1 RS485 Port

RS485 optically insulated interface module with programmable speed from 2400 bps to 38400 bps. It is connected to the instrument via a connector and then can be easily fixed at the back with screws. It can be network connected with other instruments up to 1000 m maximum distance and up to 128 instruments. For longer distances or more instruments, an amplifier is necessary.

7.1.2.2 RS232 Port

RS232 optically insulated interface module with programmable speed from 2400 bps to 38400 bps. It is connected to the instrument via a connector and then can be easily fixed at the back with screws.

7.1.2.3 2 x 4-20 mA Analog Output

4-20 o 0-20 mA analogue double output, galvanically insulated with high precision and reliability.

The output is the result of a conversion from digital to analogue with definition higher than 10 bit, maintaining the original measurement accuracy.

The two outputs can be linked to any measurement parameter with update every 200 ms on primary parameters.

For the average power the output update is every minute due to the parameter itself.

It can be set to a 0 value (4 or 0 mA) a positive or negative value of the selected parameter and to nevertheless set to 20 mA end of scale, a lower value than the instrument end of scale. The end of scale provides for an operation margin up to 24 mA.

If the parameter has a value different from the set ones, the output will be 0 mA.

Parameters and formulas

For each type of connection, the available readings as well as the formulas used for their calculation are

The readings not available will be displayed as **_ _ _** in place of the value.

8.1 **3P 4W** Three phase with 4 wire neutral

8.1.1 Available Reading:

Frequency:

1.1 Voltage frequency V_{1N} :

RMS amplitude:

2.1 Phase Voltages:

2.2 Average Phase Voltages:

 U_{12} , U_{23} , U_{31} 2.3 Phase-phase Voltages:

2.4 Mean Phase-phase Voltage:

2.5 Phase Current:

2.6 Neutral Current:

2.7 Mean three phase Current:

$U_{\scriptscriptstyle 1N}$, $U_{\scriptscriptstyle 2N}$, $U_{\scriptscriptstyle 3N}$

 U_{λ}

 U_{Λ}

 I_1, I_2, I_3

 I_N

 I_{Σ}

f

Total harmonic Distortion (in percentage):

3.1 Phase Voltages THD:

$$THD_{U_{1N}}$$
 , $THD_{U_{2N}}$, $THD_{U_{3N}}$

3.2 Mean 3 phase voltage THD:

 $THD_{U_{s}}$

3.3 Phase Current THD:

 THD_{I_1} , THD_{I_2} , THD_{I_3}

3.4 Mean 3 phase current THD:

 $THD_{I_{\Sigma}}$

Power (on the short period):

4.1 Phase Active Powers:

 P_1, P_2, P_3

4.2 3 Phase Active Power:

 $P_{\scriptscriptstyle \Sigma}$

4.3 Phase reactive Powers:

 Q_1, Q_2, Q_3

4.4 3 Phase Reactive Power:	$Q_{\scriptscriptstyle \Sigma}$
4.5 Phase apparent Powers:	S_1 , S_2 , S_3
4.6 3 Phase Apparent Power:	$S_{_{\Sigma}}$
5 Power Factor:	
5.1 Phase Power Factor:	λ_1 , λ_2 , λ_3
5.2 3 Phase Power Factor:	$\lambda_{_{\Sigma}}$
6 Energies: 6.1 Active Energy (import):	E_a^+
6.2 Active Energy (export): E_a^-	L_a
6.3 Inductive reactive Energy with import Active Power:	$E_{r\it{ind}}^+$
6.4 Capacitive reactive Energy with import Active Power:	E_{rcap}^+
6.5 Inductive reactive Energy with export Active Power:	E^{rind}
6.6 Capacitive reactive Energy with export Active Power:	E^{rcap}
6.7 Apparent Energy with import Active Power:	E_s^+
6.8 Apparent Energy with export Active Power:	E_s^-
7 Average Power integrated over the integration period "Sliding Average",	programmed
7.1 Average import Active Power:	P_{AVG}^+
7.0 Assessment Astina Dansen	P_{AVG}^-
7.2 Average export Active Power:	1 AVG
7.2 Average export Active Power: 7.3 Average inductive reactive Power with import Active Power:	$Q^+_{AVG\ ind}$
•	
7.3 Average inductive reactive Power with import Active Power:	$Q^+_{ extit{AVG ind}}$
7.3 Average inductive reactive Power with import Active Power:7.4 Average capacitive reactive Power with import Active Power:	$egin{aligned} Q_{AVGind}^+ \ Q_{AVGcap}^+ \end{aligned}$
7.3 Average inductive reactive Power with import Active Power:7.4 Average capacitive reactive Power with import Active Power:7.5 Average inductive reactive Power with export Active Power:	$egin{aligned} Q_{AVGind}^+ \ Q_{AVGcap}^- \ Q_{AVGind}^- \end{aligned}$
 7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 	$egin{aligned} Q_{AVGind}^+ \ Q_{AVGcap}^- \ Q_{AVGind}^- \ Q_{AVGcap}^- \end{aligned}$
 7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 	Q_{AVGind}^+ Q_{AVGcap}^+ $Q_{AVGind}^ Q_{AVGcap}^ S_{AVG}^+$ S_{AVG}^-
 7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 	$Q_{AVG\ ind}^+$ $Q_{AVG\ cap}^+$ $Q_{AVG\ ind}^ Q_{AVG\ cap}^ S_{AVG}^+$
 7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 8 Maximum Demand: 	Q_{AVGind}^+ Q_{AVGcap}^+ $Q_{AVGind}^ Q_{AVGcap}^ S_{AVG}^+$ $S_{AVG}^ P_{M.D.}^+$
7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 8 Maximum Demand: 8.1 M.D. of import Active Power	Q_{AVGind}^+ Q_{AVGcap}^+ $Q_{AVGind}^ Q_{AVGcap}^ S_{AVG}^+$ $S_{AVG}^ P_{M.D.}^+$ $Q_{M.D.ind}^+$
7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 8 Maximum Demand: 8.1 M.D. of import Active Power 8.2 M.D. of export Active Power:	Q_{AVGind}^+ Q_{AVGcap}^+ $Q_{AVGind}^ Q_{AVGcap}^ S_{AVG}^+$ $S_{AVG}^ P_{M.D.}^+$
7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 8 Maximum Demand: 8.1 M.D. of import Active Power 8.2 M.D. of export Active Power: 8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{AVG\ ind}^+$ $Q_{AVG\ ind}^+$ $Q_{AVG\ cap}^ Q_{AVG\ ind}^ Q_{AVG\ cap}^ S_{AVG}^+$ $S_{AVG}^ P_{M.D.}^ Q_{M.D.\ ind}^+$ $Q_{M.D.\ ind}^ Q_{M.D.\ ind}^-$
7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 8 Maximum Demand: 8.1 M.D. of import Active Power 8.2 M.D. of export Active Power: 8.3 M.D. of inductive reactive Power with import Active Power: 8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{AVG\ ind}^+$ $Q_{AVG\ ind}^+$ $Q_{AVG\ cap}^ Q_{AVG\ ind}^ Q_{AVG\ cap}^ S_{AVG}^+$ $S_{AVG}^ S_{AVG}^ P_{M.D.}^+$ $Q_{M.D.\ ind}^+$ $Q_{M.D.\ ind}^ Q_{M.D.\ ind}^ Q_{M.D.\ cap}^-$
7.3 Average inductive reactive Power with import Active Power: 7.4 Average capacitive reactive Power with import Active Power: 7.5 Average inductive reactive Power with export Active Power: 7.6 Average capacitive reactive Power with export Active Power: 7.7 Average apparent Power with import Active Power: 7.8 Average apparent Power with export Active Power: 8 Maximum Demand: 8.1 M.D. of import Active Power 8.2 M.D. of export Active Power: 8.3 M.D. of inductive reactive Power with import Active Power: 8.4 M.D. of capacitive reactive Power with import Active Power: 8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{AVG\ ind}^+$ $Q_{AVG\ ind}^+$ $Q_{AVG\ cap}^ Q_{AVG\ ind}^ Q_{AVG\ cap}^ S_{AVG}^+$ $S_{AVG}^ P_{M.D.}^ Q_{M.D.\ ind}^+$ $Q_{M.D.\ ind}^ Q_{M.D.\ ind}^-$

9 Energy Values over the programmed integration period

9.1 Active Energy (import):	$E_{a H}^{\scriptscriptstyle +}$
9.2 Output Active Energy:	E_{aH}^-
9.3 Inductive reactive energy with import Active Power:	$E^{\scriptscriptstyle +}_{r ind H}$
9.4 Capacitive reactive energy with import Active Power:	E^+_{rcapH}
9.5 Inductive reactive energy with export Active Power:	E^{rindH}
9.6 Capacitive reactive Energy with export Active Power:	E^{rcapH}
9.7 Apparent Energy with import Active Power:	E_{sH}^+
9.8 Apparent Energy with export Active Power:	E_{sH}^-
10 Time: 10.1 Life Timer	t

8.1.2 Measurement Formulas:

Phase Voltages: \boldsymbol{U}_{1N} , \boldsymbol{U}_{2N} , \boldsymbol{U}_{3N}

$$U_{1N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{1N}^2(n)}; \qquad U_{2N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{2N}^2(n)}; \qquad U_{3N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{3N}^2(n)}$$

Phase-phase Voltages: $U_{\rm 12}$, $U_{\rm 23}$, $U_{\rm 31}$

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [U_{1N}(n) - U_{2N}(n)]^2}; \quad U_{23} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [U_{2N}(n) - U_{3N}(n)]^2}; \quad U_{31} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [U_{3N}(n) - U_{1N}(n)]^2}$$

where:

 $U_{\scriptscriptstyle 1N}(n)$, $U_{\scriptscriptstyle 2N}(n)$, $U_{\scriptscriptstyle 3N}(n)$ are the star voltage samples;

M is the number of samples taken over a period (64);

$$THD_{U_{1N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{1N}^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{1N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{1N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1$$

$$THD_{U_{2N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{2N}^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{2N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{2N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1$$

$$THD_{U_{3N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{3N}^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{3N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{3N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1$$

Phase Currents (coincident with the phase currents): I_1, I_2, I_3

$$I_{1} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{1}^{2}(n)}; \qquad I_{2} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{2}^{2}(n)}; \qquad I_{3} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{3}^{2}(n)}$$

 $I_1(n), I_2(n), I_3(n)$ are the samples of the line currents.

Neutral Current
$$I_N = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} [I_1(n) + I_2(n) + I_3(n)]^2}$$

 $\underline{ \text{Phase Currents THD}} \text{: } THD_{I_1} \text{,} THD_{I_2} \text{,} THD_{I_3}$

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

$$THD_{I_{2}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{2}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{2}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{2}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

$$THD_{I_{3}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{3}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{3}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{3}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

Phase Active Powers: P_1, P_2, P_3 ;

$$P_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n) I_{1}(n); \qquad P_{2} = \frac{1}{M} \sum_{n=0}^{M-1} U_{2N}(n) I_{2}(n); \qquad P_{3} = \frac{1}{M} \sum_{n=0}^{M-1} U_{3N}(n) I_{3}(n)$$

Phase Reactive Powers: Q_1, Q_2, Q_3

$$Q_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n+M/4) I_{1}(n);$$

$$Q_{2} = \frac{1}{M} \sum_{n=0}^{M-1} U_{2N}(n+M/4) I_{2}(n);$$

$$Q_{3} = \frac{1}{M} \sum_{n=0}^{M-1} U_{3N}(n+M/4) I_{3}(n)$$

 $\begin{array}{ll} \underline{\text{Phase Apparent Powers:}} \ S_1, S_2, S_3 & S_1 = U_1 I_1 & S_2 = U_2 I_2 & S_3 = U_3 I_3 \\ \underline{\text{Phase Power Factors:}} \ \lambda_1, \lambda_2, \lambda_3 & \lambda_1 = \frac{P_1}{S_1} \operatorname{sign}(Q_1) & \lambda_2 = \frac{P_2}{S_2} \operatorname{sign}(Q_2) & \lambda_3 = \frac{P_3}{S_3} \operatorname{sign}(Q_3) \\ \underline{\text{where size (A) in the property of t$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

Mean phase-neutral Voltage
$$U_{\lambda} = \frac{U_{1N} + U_{2N} + U_{3N}}{3}$$

Mean phase-phase Voltage
$$U_{\Delta}$$

$$U_{\Delta} = \frac{U_{12} + U_{23} + U_{31}}{3}$$

 $\underline{ \text{Average THD of the star voltages:}} \quad THD_{U_{\lambda}} \qquad \qquad THD_{U_{\lambda}} = \frac{THD_{U_{1N}} + THD_{U_{2N}} + THD_{U_{3N}}}{3}$

Three phase Current
$$I_{\Sigma}$$
 $I_{\Sigma} = \frac{S_{\Sigma}}{I_{\Sigma}\sqrt{3}}$

Average THD of the phase currents: $THD_{I_{\Sigma}} = \frac{THD_{I_{1}} + THD_{I_{2}} + THD_{I_{3}}}{3}$

Total Active Power: P_{Σ} $P_{\Sigma} = P_1 + P_2 + P_3$ Total reactive Power: Q_{Σ} $Q_{\Sigma} = Q_1 + Q_2 + Q_3$

Total apparent Power: $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$

3 Phase Power Factor: λ_{Σ} $\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}} sign(Q_{\Sigma})$

8.2 3P 3W Three phase without neutral

8.2.1 Available Reading:

Frequency:

1.1 Voltage frequency V_{1N} :

f

2 RMS amplitude:

- 2.1 Phase-phase Voltages:
- 2.2 Mean Phase-phase Voltage:
- 2.3 Line Currents:
- 2.4 Mean three phase Current:

 U_{12} , U_{23} , U_{31}

 I_1, I_2, I_3

Total harmonic distortion (in percentage):

3.1 THD of the Phase to phase Voltages

3.2 Average THD of the Phase to phase Voltages

 $THD_{U_{12}}$ $THD_{U_{23}}$ $THD_{U_{31}}$

 $THD_{U\Delta}$

 $THD_{I_{s}}$

3.3 THD of the line currents:

 THD_{I_1} THD_{I_2} THD_{I_3}

3.4 Average THD of the line currents

Power (on the short period):

4.1 3 Phase Active Power:

 $P_{\scriptscriptstyle \Sigma}$

4.2 3 Phase Reactive Power:

 Q_{Σ}

4.3 3 Phase Apparent Power:

 $S_{\scriptscriptstyle \Sigma}$

Power Factor:

5.1 3 Phase Power Factor:

 λ_{Σ}

Energies:

6.1 Active Energy (import):

 E_a^+

6.2 Active Energy (export):

 E_a^-

6.3 Inductive reactive Energy with import Active Power:

 E_{rind}^+

6.4 Capacitive reactive Energy with import Active Power:

 $E_{r\,cap}^+$

6.5 Inductive reactive Energy with export Active Power:

 E_{rind}^-

6.6 Capacitive reactive Energy with export Active Power:

 $E_{r\,cap}^-$

6.7 Apparent Energy with import Active Power:	E_s^+
6.8 Apparent Energy with export Active Power:	E_s^-
7 Average Power integrated over the integration period "Sliding Average",:	programmed
7.1 Import average Active Power:	$P_{AVG}^{^{+}}$
7.2 Export average Active Power:	$P_{\scriptscriptstyle AVG}^-$
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	Q^+_{AVGcap}
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^-$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^-$
7.7 Average apparent Power with import Active Power:	S_{AVG}^{+}
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$\mathcal{Q}_{M.D.ind}^{+}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{M.D.cap}^{\scriptscriptstyle +}$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{{\scriptsize M.D.ind}}^-$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{M.D.cap}^-$
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^+$
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Energy Values over the programmed integration per	
9.1 Active Energy (import):	$E_{aH}^{\scriptscriptstyle +}$
9.2 Output Active Energy:	$E_{a \scriptscriptstyle H}^-$
9.3 Inductive reactive energy with import Active Power Power:	$E_{rindH}^{\scriptscriptstyle +}$
9.4 Capacitive reactive energy with import Active Power:	E^+_{rcapH}
9.5 Inductive reactive energy with export Active Power:	E^{rindH}
9.6 Capacitive reactive Energy with export Active Power:	E^{rcapH}
9.7 Apparent Energy with import Active Power:	E_{sH}^+
9.8 Apparent Energy with export Active Power:	E_{sH}^-
10 Time: 10.1 Life Timer	t

8.2.2 Measurement Formulas:

Phase-phase Voltages: \boldsymbol{U}_{12} , \boldsymbol{U}_{23} , \boldsymbol{U}_{31}

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{12}^2(n)}; \qquad U_{23} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{23}^2(n)}; \qquad U_{31} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{31}^2(n)}$$

 $U_{12}(n)$, $U_{23}(n)$, $U_{31}(n)$ are the Phase to phase Voltages samples. M is the number of samples taken over a period (64)

 $\underline{ \text{Phase to phase Voltages THD} } \ THD_{U_{12}} \ \text{,} THD_{U_{23}} \ \text{,} THD_{U_{31}} \ \text{in } \%$

$$THD_{U_{12}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{12}^2(n)}{\frac{2}{N} \left\{ \sum_{n=0}^{N-1} U_{12}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{12}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

$$THD_{U_{23}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{23}^2(n)}{\frac{2}{N} \left\{ \sum_{n=0}^{N-1} U_{23}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{23}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

$$THD_{U_{31}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{23}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^2 + \left[\sum_{n=0}^{N-1} U_{31}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^2 \right\}} - 1}$$

Phase Current: I_1, I_2, I_3

$$I_{1} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{1}^{2}(n)}; \qquad I_{2} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{2}^{2}(n)}; \qquad I_{3} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_{3}^{2}(n)}$$

 $I_1(n), I_2(n), I_3(n)$ are the line current samples.

 $\underline{ Phase \ Current \ THD}; \ \ THD_{I_1} \ , THD_{I_2} \ , THD_{I_3}$

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

$$THD_{I_{2}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{2}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{2}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{2}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

$$THD_{I_3} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_3^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_3(n) \cos\left(\frac{2\pi n}{N}\right) \right]^2 + \left[\sum_{n=0}^{N-1} I_3(n) \sin\left(\frac{2\pi n}{N}\right) \right]^2 \right\}} - 1$$

Mean phase-phase Voltage

 $U_{\Delta} = \frac{U_{12} + U_{23} + U_{31}}{3}$

Average THD of the Phase to phase Voltages: $THD_{U_{\Lambda}}$ $THD_{U_{\Lambda}} = \frac{THD_{U_{12}} + THD_{U_{23}} + THD_{U_{31}}}{3}$

Three phase current: I_{Σ} $I_{\Sigma} = \frac{S_{\Sigma}}{U_{\Delta}\sqrt{3}}$

Average THD of the phase Currents: $THD_{I_{\Sigma}} = \frac{THD_{I_{1}} + THD_{I_{2}} + THD_{I_{3}}}{3}$

Three phase Active Power: $P_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{12}(n) I_1(n) - \sum_{n=0}^{M-1} U_{23}(n) I_3(n) \right]$

Three phase reactive Power: Q_{Σ} $Q_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{12} (n+M/4) I_1(n) - \sum_{n=0}^{M-1} U_{23} (n+M/4) I_3(n) \right]$

Three phase apparent Power: S_{Σ} $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$

Three phase Power Factor: λ_{Σ} $\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}} sign(Q_{\Sigma})$

8.3 3P-b 4W Balanced Three phase with neutral

f

8.3.1 Available Reading:

1 Frequency:

1.1 Voltage frequency V_{1N} :

2 RMS Amplitude:

3 Total harmonic Distortion (in percentage):

3.1 Star Voltage THD: $THD_{U_{1N}}$ 3.2 Phase Current THD: THD_{I_1}

4 Power (on the short period):

4.1 Phase Active Power: P_1 4.2 3 Phase Active Power: P_{Σ} 4.3 Phase Reactive Power: Q_1 4.4 3 Phase Reactive Power: Q_{Σ} 4.5 Phase apparent Powers: S_1 4.6 3 Phase Apparent Power: S_{Σ}

5 Power Factor:

5.1 Phase Power Factor: λ_1 5.2 Total Power Factor λ_2

6 Energies:

6.1 Active Energy (import): E_a^+

- 6.2 Active Energy (export): E_a^-
- 6.3 Inductive reactive Energy with import Active Power: E_{rind}^+ 6.4 Capacitive reactive Energy with import Active Power: E_{rcap}^+ 6.5 Inductive reactive Energy with export Active Power: E_{rind}^-

6.6 Capacitive reactive Energy with export Active Power:	E^{rcap}
6.7 Apparent Energy with import Active Power:	$E_s^{\scriptscriptstyle +}$
6.8 Apparent Energy with export Active Power:	$oldsymbol{E}_s^-$
7 Average Power integrated over the integration period "Sliding Average",	programmed
7.1 Import average Active Power:	P_{AVG}^+
7.2 Export average Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle +}$
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle -}$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^-$
7.7 Average apparent Power with import Active Power:	$S_{\scriptscriptstyle AVG}^{\scriptscriptstyle +}$
7.8 Average apparent Power with export Active Power:	$S_{\scriptscriptstyle AVG}^-$
8 Maximum Demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{{\scriptsize M.D.ind}}^{\scriptscriptstyle +}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{{\scriptscriptstyle M}.D.cap}^+$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{{\scriptscriptstyle M.D.ind}}^{\scriptscriptstyle -}$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{{\scriptscriptstyle M}.{\scriptscriptstyle D. cap}}^{\scriptscriptstyle -}$
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^+$
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Energy Values over the programmed integration pe	
9.1 Active Energy (import):	E_{aH}^{-}
9.2 Output Active Energy:	E_{aH}^{-}
9.3 Inductive reactive energy with import Active Power:	E^+_{rindH}
9.4 Capacitive reactive energy with import Active Power:	E^+_{rcapH}
9.5 Inductive reactive energy with export Active Power:	E^{rindH}
9.6 Capacitive reactive Energy with export Active Power:	E_{rcapH}^-
9.7 Apparent Energy with import Active Power:	$E_{sH}^{\scriptscriptstyle +}$
9.8 Apparent Energy with export Active Power:	E_{sH}^-
10.1 Time: Life Timer	t

8.3.2 Measurements Formulas:

Phase Voltages:
$$U_{1N}$$

$$U_{1N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{1N}^2(n)}$$

where:

 $U_{1N}(n)$ are the samples of the star voltages;

M is the number of samples on a period (64);

Star voltages THD $THD_{U_{1N}}$ in %

$$THD_{U_{1N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{1N}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{1N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{1N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Line Current (coincident with the phase current): $\boldsymbol{I_1}$

$$I_1 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_1^2(n)}$$

 $I_1(n)$ are the samples of the line currents.

Phase current THD: THD_L

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Phase Active Power: P_1 ;

$$P_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n) I_{1}(n)$$

Phase reactive Power: Q_1

$$Q_{1} = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n+M/4) I_{1}(n)$$

Phase apparent Power: S_1

$$S_1 = U_1 I_1$$

Phase Power Factor: λ_1

$$\lambda_1 = \frac{P_1}{S_1} sign(Q_1)$$

where sign(x) is equal to 1 with x > 0, to -1 with x < 0.

Total Active Power:

$$P_{\Sigma}$$

$$P_{\Sigma} = P_{1} * 3$$

Total reactive Power: Q_{Σ}

$$Q_{\Sigma} = Q_{1} * 3$$

Total apparent Power: S_{Σ}

$$S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$$

Total Power Factor: λ

$$\lambda_{\Sigma} = \lambda_{1}$$

8.4 3P-b 3W Balanced three Phase without neutral 3 wires

8.4.1 Available Reading:

•	requeriey.	
1.1 Voltage frequence	cy V_{23} :	f
2	RMS amplitude:	

Frequency:

2.1 Phase-phase Voltages: $$U_{12}$$ 2.2 Phase Current: $$I_3$$

3 Total harmonic distortion (in percentage):

3.1 Phase to phase Voltages THD: $THD_{U_{12}}$ 3.2 Phase Current THD: THD_{I_2}

4 Power (on short period):

4.1 3 Phase Active Power: $$P_{\Sigma}$$ 4.2 Total reactive Power: $$Q_{\Sigma}$$ 4.3 Total apparent Power: $$S_{\Sigma}$$

5 Power Factor:

5.1 Total Power Factor: $\lambda_{\scriptscriptstyle \Sigma}$

6 Energies:

6.1 Active Energy (import): E_a^+ 6.2 Active Energy (export): E_a^- 6.3 Inductive reactive Energy with import Active Power: E_{rind}^+

6.4 Capacitive reactive Energy with import Active Power : $E_{r\,cap}^+$

6.5 Inductive reactive Energy with export Active Power: $E_{r_{ind}}^{-}$

6.6 Capacitive reactive Energy with export Active Power: $E_{r\,cap}^{-}$

6.7 Apparent Energy with import Active Power: $E_{s}^{\scriptscriptstyle +}$

6.8 Apparent Energy with export Active Power: E_s^-

7 Average Power integrated over the programmed integration period "Sliding Average",

7.1 Import average Active Power:	P_{AVG}^{+}
7.2 Export average Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle +}$
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle -}$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle -}$
7.7 Average apparent Power with import Active Power:	$S_{AVG}^{\scriptscriptstyle +}$
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{M.D.ind}^{\scriptscriptstyle +}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{M.D.cap}^{\scriptscriptstyle +}$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{M.D.ind}^-$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{M.D.cap}^-$
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^{+}$
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Energy Values over the programmed integration period	d
9.1 Active Energy (import):	$E_{aH}^{\scriptscriptstyle +}$
9.2 Output Active Energy:	E_{aH}^-
9.3 Inductive reactive energy with import Active Power:	$E_{rindH}^{\scriptscriptstyle +}$
9.4 Capacitive reactive energy with import Active Power:	E^+_{rcapH}
9.5 Inductive reactive energy with export Active Power:	E^{rindH}
9.6 Capacitive reactive Energy with export Active Power:	E^{rcapH}
9.7 Apparent Energy with import Active Power:	$E_{sH}^{\scriptscriptstyle +}$
9.8 Apparent Energy with export Active Power:	E_{sH}^-

8.4.2 Measurement Formulas:

Phase-phase Voltages: U_{12}

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{12}^2(n)}$$

Where: $U_{12}(n)$ are the samples of the chained values.

M is the number of sampling on a period (64)

 $\underline{ \text{Phase to phase Voltages THD}} \ \underline{ THD}_{U_{23}} \ \text{in } \%$

$$THD_{U_{12}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{12}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{12}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{12}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Line Currents : I_3

$$I_3 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_3^2(n)}$$

 $I_1(n)$ are the samples of the line currents.

THD of the phase currents: THD_{I_2}

$$THD_{I_3} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_3^2(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_3(n) \cos\left(\frac{2\pi n}{N}\right) \right]^2 + \left[\sum_{n=0}^{N-1} I_3(n) \sin\left(\frac{2\pi n}{N}\right) \right]^2 \right\}} - 1$$

Three phase Active Power:

 $P_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{23} (n + M/4) I_{1}(n) \right] \sqrt{3}$

Three phase reactive Power: $Q_{\scriptscriptstyle \Sigma}$

 $Q_{\Sigma} = \frac{1}{M} \left[\sum_{n=0}^{M-1} U_{23}(n) I_{1}(n) \right] \sqrt{3}$

Three phase apparent Power: $S_{\scriptscriptstyle \Sigma}$

 $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$

Three phase Power Factor: λ_{Σ}

 $\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}} sign(Q_{\Sigma})$

8.5 1P (2W) Single phase

8.5.1 Available Reading:

.5.1 Avallable Reaul	iiig.	
	requency:	
1.1 Voltage Frequency	V_{1N} :	f
2 R	RMS Amplitude:	
2.1 Voltage:		$U_{_{1N}}$
2.2 Phase Current:		I_1
3 1	Total harmonic Distortion (in percentage):	
3.1 Voltage THD:		$\mathit{THD}_{U_{1N}}$
3.2 Phase Current THD) :	THD_{I_1}
4 P	Power (on short period):	
4.1 Active Power:		P_1
4.2 Reactive Power:		Q_1
4.3 Apparent Power:		S_1
5 P	Power Factor:	
5.1 Power Factor :		$\lambda_{_{1}}$
6 E	nergies:	
	6.1 Active Energy (import): E_a^+	
6.2 Active Energy (expo	ort): E_a^-	
6.3 Inductive reactive E	nergy with import Active Power:	$E_{rind}^{\scriptscriptstyle +}$
6.4 Capacitive reactive	Energy with import Active Power:	$E_{rcap}^{\scriptscriptstyle +}$
6.5 Inductive reactive E	nergy with export Active Power:	E_{rind}^-
6.6 Capacitive reactive	Energy with export Active Power:	E_{rcap}^{-}
6.7 Apparent Energy wi	ith import Active Power:	$E_s^{\scriptscriptstyle +}$
6.8 Apparent Energy wi	ith export Active Power:	E_s^-

7 Average Power integrated over the programmed integration period "Sliding Average",

integration period Silding Average,	
7.1 Import average Active Power:	P_{AVG}^{+}
7.2 Export average Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle +}$
7.5 Average inductive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGind}^-$
7.6 Average capacitive reactive Power with export Active Power:	$Q^{\scriptscriptstyle AVG cap}$
7.7 Average apparent Power with import Active Power:	S_{AVG}^+
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum Demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^+$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{{\scriptsize M.D.ind}}^{\scriptscriptstyle +}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{{\scriptsize M.D.cap}}^{^+}$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{{\scriptsize M.D.ind}}^-$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{{\scriptsize M.D.cap}}^-$
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^+$
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Energy Values over the programmed integr	•
9.1 Active Energy (import):	$E_{aH}^{\scriptscriptstyle +}$
9.2 Output Active Energy:	E_{aH}^-
9.3 Inductive reactive energy with import Active Power:	$E^{\scriptscriptstyle +}_{r ind H}$
9.4 Capacitive reactive energy with import Active Power:	$E^{\scriptscriptstyle +}_{rcapH}$
9.5 Inductive reactive energy with export Active Power:	E^{rindH}
9.6 Capacitive reactive Energy with export Active Power:	E^{rcapH}
9.7 Apparent Energy with import Active Power:	$E_{sH}^{\scriptscriptstyle +}$
9.8 Apparent Energy with export Active Power:	E_{sH}^-

10 Time:

Life Timer

10.1

Pag. 55 di 84

t

8.5.2 Measurement Formulas:

Voltage:
$$U_{1N} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{1N}^2(n)}$$

 $U_{1N}(n)$ are the samples of the star voltages;

M is the number of samples on a period (64);

Star voltages THD $THD_{U_{1N}}$ in %

$$THD_{U_{1N}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{1N}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{1N}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{1N}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1}$$

Phase Current: I_1

 $I_1 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_1^2(n)}$

Where: $I_1(n)$ are the samples of the line currents.

Phase current THD: THD_{I_1}

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Phase Active Powers: P_1 $P_1 = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n) I_1(n)$

Phase reactive Powers: $Q_1 = \frac{1}{M} \sum_{n=0}^{M-1} U_{1N}(n+M/4) I_1(n)$

Phase apparent Powers: $S_1 = U_1 I_1$

Phase Power Factors: $\lambda_1 = \frac{P_1}{S_1} sign(Q_1)$

8.6 2P (2W) Double phase

8.6.1 Available Reading:

.6.1 Available	Rea	ading:	
	1	Frequency:	
1.1 Voltage frequ	ienc	y V_{12} :	f
	2	RMS amplitude:	
2.1 Voltage:			U_{12}
2.2 Phase Curre	nt:		I_1
	3	Total harmonic distortion (in percentage):	
3.1 Voltage THD	:		$THD_{U_{12}}$
3.2 Phase Curre	nt TI	HD:	THD_{I_1}
	4	Power (on short period):	
4.1 Active Power	r:		P_{Σ}
4.2 Reactive Pov	ver:		Q_Σ
4.3 Apparent Pov	wer:		S_{Σ}
	5	Power Factor:	
5.1 Power Factor	r:		λ_Σ
	6	Energies:	
		6.1 Active Energy (import): $E_a^{\scriptscriptstyle +}$	
6.2 Active Energ	y (ex	kport): E_a^-	
6.3 Inductive rea	ctive	Energy with import Active Power:	E_{rind}^+
6.4 Capacitive re	activ	ve Energy with import Active Power:	E_{rcap}^{+}
6.5 Inductive rea	ctive	Energy with export Active Power:	E_{rind}^-
6.6 Capacitive re	activ	ve Energy with export Active Power:	E_{rcap}^-
6.7 Apparent End	ergy	with import Active Power:	E_s^+
6.8 Apparent En	ergy	with export Active Power:	E_s^-

7 Average Power taken on a time interval (sliding window) of programmable amplitude:

7.1 Import average Active Power:	$P_{AVG}^{\scriptscriptstyle +}$
7.2 Export average Active Power:	P_{AVG}^-
7.3 Average inductive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVGind}^{\scriptscriptstyle +}$
7.4 Average capacitive reactive Power with import Active Power:	$Q_{\scriptscriptstyle AVG cap}^{\scriptscriptstyle +}$
7.5 Average inductive reactive Power with export Active Power:	$Q_{ extit{AVG ind}}^{ extit{-}}$
7.6 Average capacitive reactive Power with export Active Power:	$Q_{\scriptscriptstyle AVGcap}^{\scriptscriptstyle -}$
7.7 Average apparent Power with import Active Power:	S_{AVG}^+
7.8 Average apparent Power with export Active Power:	S_{AVG}^-
8 Maximum Demand:	
8.1 M.D. of import Active Power:	$P_{M.D.}^{+}$
8.2 M.D. of export Active Power:	$P_{M.D.}^-$
8.3 M.D. of inductive reactive Power with import Active Power:	$Q_{M.D.ind}^{\scriptscriptstyle +}$
8.4 M.D. of capacitive reactive Power with import Active Power:	$Q_{M.D.cap}^{\scriptscriptstyle +}$
8.5 M.D. of inductive reactive Power with export Active Power:	$Q_{M.D.ind}^-$
8.6 M.D. of capacitive reactive Power with export Active Power:	$Q_{M.D.cap}^-$
8.7 M.D. of apparent Power with import Active Power:	$S_{M.D.}^{+}$
8.8 M.D. of apparent Power with export Active Power:	$S_{M.D.}^-$
9 Energy Values over the programmed integration perio	d
9.1 Active Energy (import):	$E_{a H}^{\scriptscriptstyle +}$
9.2 Output Active Energy:	E_{aH}^-
9.3 Inductive reactive energy with import Active Power:	$E^{\scriptscriptstyle +}_{rindH}$
9.4 Capacitive reactive energy with import Active Power:	$E^{\scriptscriptstyle +}_{rcapH}$
9.5 Inductive reactive energy with export Active Power:	E^{rindH}
9.6 Capacitive reactive Energy with export Active Power:	E^{rcapH}
9.7 Apparent Energy with import Active Power:	$E_{sH}^{\scriptscriptstyle +}$
9.8 Apparent Energy with export Active Power:	E_{sH}^-
10 Time:	
10.1 Life Timer	t

8.6.2 Measurements Formulas:

$$\underline{\text{Voltage:}}\ U_{12}$$

$$U_{12} = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} U_{12}^{2}(n)}$$

 $U_{12}(n)$ are the samples of the star voltages;

M is the number of samples taken on a period (64);

Star voltage THD $THD_{U_{12}}$ in %

$$THD_{U_{12}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} U_{12}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} U_{12}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} U_{12}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Phase Current: I₁

$$I_1 = \sqrt{\frac{1}{M} \sum_{n=0}^{M-1} I_1^2(n)}$$

 $I_1(n)$ are the samples of the line current.

Phase current THD: THD_{I_1}

$$THD_{I_{1}} = 100 \sqrt{\frac{\sum_{n=0}^{N-1} I_{1}^{2}(n)}{\frac{2}{N} \left\{ \left[\sum_{n=0}^{N-1} I_{1}(n) \cos \left(\frac{2\pi n}{N} \right) \right]^{2} + \left[\sum_{n=0}^{N-1} I_{1}(n) \sin \left(\frac{2\pi n}{N} \right) \right]^{2} \right\}} - 1$$

Active Power: P_{Σ}

$$P_{\Sigma} = \frac{1}{M} \sum_{n=0}^{M-1} U_{12}(n) I_{1}(n)$$

Reactive Power: Q_{Σ}

$$Q_{\Sigma} = \frac{1}{M} \sum_{n=0}^{M-1} U_{12} (n + M/4) I_1(n)$$

Phase apparent Power: S_{Σ}

$$S_{\Sigma}=U_{12}I_{1}$$

Phase Power Factor: λ_{Σ}

$$\lambda_{\Sigma} = \frac{P_1}{S_1} sign(Q_1)$$

8.6.3 Sampling:

The signals to be measured are sampled with a sampling frequency f_c equal to 64 times the network frequency f: shortly, the number of samples per wave is fixed at 64 even with frequency variation.

The sampling is continuous on all waveform. Every 10 wave the samples are passed to the calculation part and the sampling restart for the next 10 waves.

8.6.4 Grid frequency Measurement:

The minimum measurable frequency is about 38 Hz.

The A/D converter is stopped out of the range $45 \div 65$ Hz.

The frequency measurement is taken on phase L1 voltage.

The instrument can measure the fundamental frequency even in presence of very distorted waveforms and/or very low signal (few Volt).

8.7 Average values and energy Calculation.

8.7.1 Energy counting

FLASH D is equipped with 8 "non volatile" energy counters which can count up to a maximum of 99999999.9 kWh (either kvarh or kVAh) with a resolution equal to 0.1 kWh (either kvarh or kVAh). The value of these counters can be read either by communication port or display. When the highest value 99999999.9 is reached, the counting starts again from zero (roll-over).

8.7.2 Average Powers / maximum demand (m/Max)

FLASH D has a sliding window integrator which computes the average value of each of the 8 power measurements on an integration interval that is programmable in the range of 1 through 60 minutes in one minute steps.

The integration interval slides on the time axis in one minute intervals (when all the values of the measurements are updated). The settings of the integration intervals are not memorized when the instrument is turned off. While the duration of the integration interval may differ from the HOLD period, the two intervals are both aligned on the minute boundary. A command can be sent on the communication port to synchronize the HOLD period (and therefore of the minute boundary of the integration interval) with an external clock. The maximal value of each of the average power measurements is memorized in a non-volatile register (maximum demand, MD).

Both the average and maximum demand values are available through the display and the communication port. A command can be sent (either from the keyboard or the communication port) to reset the maximum demand values to zero. Another command resets the average power values: it resets the measurements taken during the last integration interval, but not the measurements taken in the last minute (the step with which the integration window slides). This preserves the synchronization of the integration interval and of the HOLD interval on the minute boundary.

8.7.3 HOLD function

The HOLD function in the Flash holds the energy counters and can be used to draw the load curves with data-logger devices or with appropriate consumption analysis software (Energy Brain). The energy counter values are sampled and memorized in registers, readable through the communication port. The sampling period programmable in the range of 1 through 60 minutes in one minute steps: the values are memorized at the beginning of the hold interval and are available through the end of the interval. At the beginning of the interval, the sampled values overwrite the old values: the hold period timer is reset when the instruments is turned on.

At the beginning of the hold period and in addition to the energy counter values, the instrument also memorizes:

- The actual duration in seconds of the last period (this may differ from the programmed value if sync commands have been sent);
- A 16 bit integer value, indicating the number of periods that have passed since the instrument was turned on (or since the last reset).

The time elapsed since the beginning of the current holding period can be read at any moment by accessing directly the hold timer.

8.7.4 Synchronization

The synchronization command terminates the current hold interval and begins a new one. The energy measurements taken in elapsed fraction are not accounted in the average power computations. When the hold interval is changed, an implicit synchronization is performed, thereby losing the contribution of the current interval to the average values. When the integration interval of the power averages is changed, all the maximum demand values and the average computations are reset, but not the measurements taken in the last minute (the step with which the integration window slides). This preserves the synchronization of the integration interval and of the HOLD interval on the minute boundary.

The integration interval can be changed either from the keyboard or the network, while the HOLD interval can only be changed from the network.

9 MODBUS Protocol

9.1 Foreword:

The instrument modbus protocol is implemented according to the document "MODBUS Application Protocol Specification V1.1", available in www.modbus.org.

The following "Public functions" are implemented:

- (0x01) Read Coils
- (0x02) Read Discrete Inputs
- (0x03) Read Holding Registers
- (0x04) Read Input Registers
- (0x05) Write Single Coil
- (0x06) Write Single Register
- (0x07) Read Exception Status
- (0x08) Diagnostics
- (0x0F) Write Multiple Coils
- (0x10) Write Multiple Registers
- (0x11) Report Slave ID

Regarding the "Diagnostics" function, the following "Sub-functions" are implemented:

- (0x0000) Return Query Data
- (0x0001) Restart Communications Option
- (0x0004) Force Listen Only Mode

The only implemented function "User Defined" is marked "Change Slave Address" (function code 0x42).

Through two coils named SWAP BYTES and SWAP WORDS, it is possible to modify the memory area organization where the modbus registers mapping are. The configuration [SWAP BYTES = FALSE, SWAP WORDS = FALSE] correspond to a "Big-Endian" type organization (Motorola like): the most significant data byte whose size is bigger than byte is allocated at the lower address.

The order of the bigger than byte data transmitted on the serial line depend on the memory organization. In the "Big-Endian" organization type, the most significant byte is the one transmitted first (standard modbus).

Vice versa, the configuration [SWAP BYTES = TRUE, SWAP WORDS = TRUE] corresponds to an "INTEL like" memory organization (the most significant byte at the higher address, that is less significant byte transmitted first on the serial line).

Note: In the released version, not all the listed commands are available, check in the following pages for availability.

The default configuration is "Big-Endian" (Motorola like) as the modbus standard specify and not "Little-Endian" as the previous instruments.

9.2 "Device dependent" Functions

9.2.1 (0x11) Slave ID Report

Company Comp	9.2.	1 (0x11) Slave ID Re	port				
1	<u></u>						
1	Byte	yte Description		Value			
2	0	address					
3 slave ID	1	function code		0x11			
4	2	byte count		0x1F			
5	3	slave ID					
Application version minor Code version version Code version ver	4	run indicator status		0xFF			
Total content Total content	5	Application version major					
8	6	Application version minor					
9 10 11 12 12 13 14 15 15 17 18 17 18 19 17 18 19 19 19 19 19 19 19	7	Loader version major					
10	8	Loader version minor					
11	9		MSB				
11	10	Serial number					
13	11	Ochai Hambei					
13 byte/word swap 0 = Standard; 1 ≡ Swapped 0 = Swapped 0 = Standard; 1 ≡ Swapped 0 = Swapped 0 = Standard; 1 ≡ Swapped 0 = Swapped 0 = Swapped 0 = Standard; 1 ≡ Swapped 0 = S	12		LSB				
14	13	byte/word swap		0 ≡ Standard; 1≡ Swapped ○○○ - Swap words: 0 ≡ Standard; 1≡ Swapped ○○○ - Swap doublewords: 0 ≡ Standard; 1≡ Swapped ○○○ - Swap words in float values: 0 ≡ Standard; 1≡ Swapped ○○○ - Standard; 1≡ Swapped			
15	14	h. dala. ()	MSB	(mast 20 oot to 0)			
17	15	ix delay (ms)	LSB				
17	16	N coils	MSB				
19	17	14 00113	LSB				
19	18	N discrete innuts (innut status)	MSB				
Second Part	19	14 disorcte inputs (input status)	LSB				
21	20	N holding registers	MSB				
CN1 option ID	21	TV Holding regioters	LSB				
CN1 option ID	22	N input registers	MSB				
24	23	Transport regional	LSB				
25	24	CN1 option ID					
27	25	CN2 option ID					
Application checksum LSB	26		MSB				
28	27	Amaliantian de alles					
30	28	Application checksum					
31	29		LSB				
32 Loader Checksum 33 LSB	30		MSB				
32 33 LSB	31	Loador Chaokaum					
34	32	Loader Checksum					
34 CDC	33		LSB				
	34	CRC					
35 CRC	35	OI/C					

9.2.2 (0x07) Exception Status Read Not available.

9.3 "User defined" Functions

9.3.1 (0x42) Slave Address Change

The instruments accepts query with function code 0x42 (change slave address) only of "Broadcast" type (address 0). Consequently, there is no answer.

	Change Slave Address Query				
Byte	Description		Value		
0	Broadcast Address		0x00		
1	Function Code		0x42		
2		MSB			
3	Serial Number				
4	Serial Number				
5		LSB			
6	New Slave Address				
7	CRC				
8	CRC				

9.4 Register Mapping

9.4.1 Holding registers
Registers from address 0 to 7 are compatible with the registers of the old instrument, in order to assure the backwards compatibility. The one described are the ones of the KILO (T).

Registers from address 70 to 79 specific for FLASH D.
Registers from address 8 to 69 and from 132 to 139 are reserved for future expansions.

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
0	Integer Word	CT Ratio	1-9999 [A/A]	
1	Integer Word	VT Ratio	1-9999 [V/V]	
2	Integer Word	AVG Integration Time	1-60 [min]	
3		NOT USED		Return undefined valued, if read. Written values will be ignored.
4		NOT USED		Return undefined valued, if read. Written values will be ignored.
5		NOT USED		Return undefined valued, if read. Written values will be ignored.
6		NOT USED		Return undefined valued, if read. Written values will be ignored.
7	Integer Word	Digital Outputs Watchdog	0-65535 [min]	0 = Watchdog disabled
8 : 69		RESERVED		Return undefined valued, if read. Don't write in this area.
70	Bitmapped Word	Words/Bytes swap flags	OOOO OOO OOOO OOO Swap bytes: 0 ≡ Standard; 1≡ Swapped OOO OOO OOO OOOO Swap words: 0 ≡ Standard; 1≡ Swapped OOO OOO OOOO Swap doublewords: 0 ≡ Standard; 1≡ Swapped OOO OOO OOOO OOOO Swap words in float values: 0 ≡ Standard; 1≡ Swapped OOO OOO OOOO OOOO Not Allocated (Must be set to 0)	Standard means Motorola like and Swapped means Intel like. The same bit combination must be written in both low and high part of register. In this manner the "byte swap" setting is meaningless for this register.
71	Integer Word	Tx delay time	0-100 [s/100]	

			Holding Registers	
Addr.	Type	Description	Range [Unit] or Bitmap	Notes
72	Bitmapped Word	Network type	○○○ ○○○ ○○○ Network type: 0 = 4 wires (Star); 1 = 3 wires (Delta) ○○○ ○○○○ ○○○○ Import/Export: 0 = Export disabled (2 quadrants); 1 = Export enabled (4 quadrants) ○○○○ ○○○○ Not Allocated	
73	Integer Word	CT Primary	1-10000 [A]	
74	Integer Word	CT Secondary	1 or 5 [A]	
75 76	Integer (4 bytes)	VT Primary	1-400000 [V]	
77	Integer Word	VT Secondary	1-999 [V]	
78	Integer Word	AVG/MD powers integration time	1-60 [min]	
79	Integer Word	Counters hold time	1-60 [min]	
80	Integer Word	Analog out 1 - Quantity index	⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙ Main Index: (see tables on next paragraph) ○○○○ ⊙⊙⊙⊙ ⊙⊙⊙⊙ Sub Index: (see tables on next paragraph)	Accessing this register cause an exception response if 4-20mA option is not present.
81	Integer Word	Analog out 1 - Mode		Accessing this register cause an exception response if 4-20mA option is not present.
82 83	Float IEEE754	Analog out 1 - Scale begin value		Accessing this register cause an exception response if 4-20mA option is not present.
84 85	Float IEEE754	Analog out 1 - Scale end value		Accessing this register cause an exception response if 4-20mA option is not present.
86	Integer Word	Analog out 2 - Quantity index	⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙○ Main Index: (see tables on next paragraph) ○○○○ ○○○○ ⊙⊙⊙⊙ Sub Index: (see tables on next paragraph)	Accessing this register cause an exception response if 4-20mA option is not present.
87	Integer Word	Analog out 2 - Mode		Accessing this register cause an exception response if 4-20mA option is not present.
88 89	Float IEEE754	Analog out 2 - Scale begin value		Accessing this register cause an exception response if 4-20mA option is not present.
90 91	Float IEEE754	Analog out 2 - Scale end value		Accessing this register cause an exception response if 4-20mA option is not present.

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
92	Bitmapped Word	Digital out 1 - Configuration	Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Not allowed	
93	Bitmapped Word	Digital out 2 - Configuration	OOO OOO OOO OO⊙ Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Not allowed OOO OOO OOO O⊙O - Polarity: 0 = Normally opened; 1 = Normally closed ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙	
94	Integer Word	Digital Outputs Watchdog	0-65535 [min]	0 = Watchdog disabled
95	Integer Word	Alarm 1 - Quantity index	●●●● ●●● ○○○ ○○○ Main Index: (see tables on next paragraph) ○○○ ○○○ ●●● ●●● Sub Index: (see tables on next paragraph)	
96	Bitmapped Word	Alarm 1 - Mode	OOO OOO OOO OO⊙ Alarm coil driving mode: 00 ≡ Normal 01 ≡ Pulsed 10 ≡ Not allowed 11 ≡ Not allowed OOO OOO OOO O⊙OO Alarm type: 0 ≡ Min; 1≡ Max ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ Not Allocated	
97	Float IEEE754	Alarm 1 - Threshold		
99	Integer Word	Alarm 1 - Histeresys	0-99 [%]	
100	Integer Word	Alarm 1 - Latency	1-99 [s]	
101	Integer Word	Alarm 2 - Quantity index	●●●● ●●●● ○○○○ Main Index: (see tables on next paragraph) ○○○○ ○○○○ ●●●● Sub Index: (see tables on next paragraph)	

			Holding Registers	
Addr.	Type	Description	Range [Unit] or Bitmap	Notes
102	Bitmapped Word	Alarm 2 - Mode	OOO OOO OOO OO⊙ Alarm coil driving mode: 00 ≡ Normal 01 ≡ Pulsed 10 ≡ Not allowed 11 ≡ Not allowed OOO OOO OOO O⊙O Alarm type: 0 ≡ Min; 1≡ Max ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙○ Not Allocated	
103	Float IEEE754	Alarm 2 - Threshold		
105	Integer Word	Alarm 2 - Histeresys	0-99 [%]	
106	Integer Word	Alarm 2 - Latency	1-99 [s]	
107 : 118		RESERVED		Return undefined valued, if read. Don't write in this area.
119	Bitmapped Word	Network type (extended)	OOO OOO OOO O⊙⊙⊙ Network type: 0-5 0 ≡ 1P 2W, 1 ≡ 2P 2W, 2 ≡ 3P 4W, 3 ≡ 3P_3W, 4 ≡ 3P-b 4W, 5 ≡ 3P-b 3W ○⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙⊙ Not Allocated ⊙○○ ○○○○ ○○○○ ○○○○ Import/Export: 0 ≡ Export disabled (2 quadrants); 1 ≡ Export enabled (4 quadrants)	
120	Bitmapped Word	Pulse Out 1 - Quantity selection	Measurement scaling: 0=scaled to signal at primary side of CT/VT; 1=scaled to signal at secondary side of CT/VT; 0○○○○○○○○○○○○○ Measurement selection: 0-7 0=P+, 1=P-, 2=Qind+, 3=Qcap+, 4=Qind-, 5=Qcap-, 6=S+, 7=S- ⊙⊙⊙ ⊙⊙⊙ ○○○○○○○○ Not Allocated	
121	Integer Word	Pulse Out 1 - Pulse weight / Pulse Duration	⊙⊙⊙⊙ ⊙⊙⊙⊙ ⊙⊙⊙ Pulse Weight: 0-7 (weight = 10^ (n-1) Wh) ○○○○ ⊙⊙⊙⊙ ⊙⊙⊙⊙ Pulse Width: 5-90 (mS * 10)	

			Holding Registers	
Addr.	Туре	Description	Range [Unit] or Bitmap	Notes
122	Bitmapped Word	Pulse Out 2 - Quantity selection	Measurement scaling: 0=scaled to signal at primary side of CT/VT; 1=scaled to signal at secondary side of CT/VT; 0○○ 0○○ 0○○ 0○○ 0○○ Measurement selection: 0-7 0=P+, 1=P-, 2=Qind+, 3=Qcap+, 4=Qind-, 5=Qcap-, 6=S+, 7=S- 0○○ 0○○ 0○○ ○○○ ○○○ Not Allocated	
123	Integer Word	Pulse Out 2 - Pulse weight / Pulse Duration	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
124 : 127	RESERVED		Return undefined valued, if read. Don't write in this area.	RESERVED
128	Bitmapped Word	Digital out 1 - Configuration	OOO OOO OOO OO⊙ Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Tariff OOO OOO OOO O⊙OO Polarity: 0 = Normally opened; 1 = Normally closed ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙	
129	Bitmapped Word	Digital out 2 - Configuration	OOO OOO OOO OO⊙ Mode: 00 = Pulse; 01 = Alarm; 10 = Remote; 11 = Tariff OOO OOO OOO O⊙OO Polarity: 0 = Normally opened; 1 = Normally closed ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙ ⊙⊙⊙	
130 139		RESERVED		Return undefined valued, if read. Don't write in this area.

9.4.2 Parameter selection tables

The following tables allow the selection of the parameters to be associated to the alarms and to analog outputs. The Main index and the <u>Sub index</u> have to be specified in binary format (HEX).

All cells identified with are available only in Import/Export configuration.

											3Ph	1-4W	1							
												Sub l	Index							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	$U_{{\scriptscriptstyle L\!N}}$	U_{IL}	×	×	$U_{_{1N}}$	$U_{_{2N}}$	$U_{\scriptscriptstyle 3N}$	U_{12}	U_{23}	U_{31}	×	×	×	×	×	×	$U_{_{1N\pm3N}}$	$U_{12 \div 31}$
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	I_N	$I_{\scriptscriptstyle \Sigma}$	I_1	I_2	I_3	×	×	×	×	×	×	×	×	×	$I_{1 \div 3}$	×
<u>2</u>	4	×	×	×	×	$P_{\scriptscriptstyle \Sigma}$	P_1	P_2	P_3	×	×	×	P_{IMPc}	P_{EXPc}	×	×	×	×	×	×
⊆.	5	×	×	×	×	$Q{\scriptscriptstyle \Sigma}$	Q_1	Q_2	Q_3	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMP,vc}$	Q_{LFXPc}	$Q_{C EXP_{MC}}$	×	×
⊠a	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	S_1	S_2	S_3	×	×	×	$S_{IMP,vc}$	$S_{EXP,vic}$	×	×	×	×	×	×
	7	×	×	×	×	PF_{Σ}	PF_1	PF_2	PF_3	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	$THD_{U,}$	$THD_{U_{2,y}}$	$THD_{U_{2,n}}$	×	×	×	×	×	×	×	×	×	$THD_{U_{1,y_{1},2,y_{2}}}$	$THD_{U_{12,22}}$
	9	×	×	×	×	×	$THD_{I.}$	THD_{I_2}	THD_{I_2}	×	×	×	×	×	×	×	×	×	$THD_{I_{1,2}}$	×

											3Ph	1-3W								
											;	Sub In	dex							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
·	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	$U_{{\scriptscriptstyle IL}}$	×	×	×	×	×	U_{12}	U_{23}	U_{31}	×	×	×	×	×	×	×	$U_{12 \div 31}$
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	×	$I_{\scriptscriptstyle \Sigma}$	I_1	I_2	I_3	×	×	×	×	×	×	×	×	×	$I_{1 \div 3}$	×
<u> </u>	4	×	×	×	×	$P_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	$P_{IMP,vc}$	P_{EXPc}	×	×	×	×	×	×
	5	×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	×	×	$Q_{L,IMP_{AVG}}$	$Q_{C IMP_{AVG}}$	$Q_{L,EXP_{SYC}}$	$Q_{CEXPose}$	×	×
Main	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	$S_{IMP_{AVG}}$	$S_{EXP_{VVG}}$	×	×	×	×	×	×
	7	×	×	×	×	PF_{Σ}	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	$THD_{U_{12}}$	$THD_{U_{\alpha \alpha}}$	$THD_{U_{2}}$	×	×	×	×	×	×	×	$THD_{U_{12,23}}$
	9	×	×	×	×	×	THD_{I_1}	$THD_{I_{2}}$	\overline{THD}_{I_3}	×	×	×	×	×	×	×	×	×	$THD_{I_{1=3}}$	×

									3	Ph-4\	N Ba	lance	ed							
											Su	b Inde	ex							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	$U_{\scriptscriptstyle 1N}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
e ×	3	×	×	×	×	×	I_1	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	4	×	×	×	×	$P_{\scriptscriptstyle \Sigma}$	P_1	×	×	×	×	×	$P_{IMP,vc}$	$P_{EXP.usc}$	×	×	×	×	×	×
	5	×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	Q_1	×	×	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMP,vc}$	$Q_{L,EXP_{eve}}$	$Q_{CEXP_{inc}}$	×	×
Main	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	S_1	×	×	×	×	×	$S_{IMP, vc}$	$S_{EXP,vo}$	×	×	×	×	×	×
	7	×	×	×	×	×	PF_1	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	$THD_{U_{i,y}}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	THD_{I}	×	×	×	×	×	×	×	×	×	×	×	×	×

									3	Ph-3W	Bala	ance	d							
											Sub	Index	K							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	×	×	×	U_{12}	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	×	×	×	×	I_3	×	×	×	×	×	×	×	×	×	×	×
2	4	×	×	×	×	P_{Σ}	×	×	×	×	×	×	P_{IMPa}	P_{EXP}	×	×	×	×	×	×
		×	×	×	×	$Q_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMP,vc}$	$Q_{LEXP,vo}$	Q_{CEXPc}	×	×
Main	6	×	×	×	×	$S_{\scriptscriptstyle \Sigma}$	×	×	×	×	×	×	$S_{IMP_{MC}}$	$S_{EXP,vo}$	×	×	×	×	×	×
	7	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	$THD_{U_{12}}$	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	×	×	THD_{I_2}	×	×	×	×	×	×	×	×	×	×	×

										1F	Ph-2V	V								
											Sub	Inde	X							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	$U_{_{1N}}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
<u>e</u>	3	×	×	×	×	×	I_1	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	4	×	×	×	×	×	P_1	×	×	×	×	×	$P_{IMP,ve}$	$P_{EXP_{BYG}}$	×	×	×	×	×	×
	5	×	×	×	×	×	$Q_{\scriptscriptstyle m l}$	×	×	×	×	×	×	×	$Q_{LIMP,uc}$	$Q_{CIMP,uc}$	$Q_{L,EXP,uc}$	$Q_{CEXP_{inc}}$	×	×
Main	6	×	×	×	×	×	S_1	×	×	×	×	×	$S_{IMP,vc}$	$S_{EXP_{eve}}$	×	×	×	×	×	×
	7	×	×	×	×	×	PF_1	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	$THD_{U_{i,y}}$	×	×	×	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	THD_L	×	×	×	×	×	×	×	×	×	×	×	×	×

										2P	h-2W	1								
											Sub	Index	(
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	OFF	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	1	×	×	×	×	×	×	×	×	U_{12}	×	×	×	×	×	×	×	×	×	×
	2	f	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Index	3	×	×	×	×	×	I_1	×	×	×	×	×	×	×	×	×	×	×	×	×
밀	4	×	×	×	×	×	P_1	×	×	×	×	×	P_{IMPa}	P_{FXP}	×	×	×	×	×	×
		×	×	×	×	×	Q_1	×	×	×	×	×	×	×	$Q_{L,IMP,vc}$	$Q_{CIMPive}$	$Q_{L,EXP,vo}$	Q_{CEXP}	×	×
Main	6	×	×	×	×	×	S_1	×	×	×	×	×	$S_{IMP,vc}$	$S_{EXP.u.c}$	×	×	×	×	×	×
	7	×	×	×	×	×	PF_1	×	×	×	×	×	×	×	×	×	×	×	×	×
	8	×	×	×	×	×	×	×	×	$THD_{U_{12}}$	×	×	×	×	×	×	×	×	×	×
	9	×	×	×	×	×	$THD_{I_{c}}$	×	×	×	×	×	×	×	×	×	×	×	×	×

9.4.3 Flas-D Input registers

In this chapter the FLASH D original registers are listed with all the available measurements.

Addr.	Туре	Description	Unit	Symbol		System config / Notes
200	Float	Phase to neutral Voltage, THD	0/	$\mathit{THD}_{U_{1N}}$	⇒	3P4W, 3P-b 4W, 1P2W
201	IEEE754	Phase to phase Voltage, THD	%	$THD_{U_{12}}$	⇒	3P3W, 3P-b 3W, 2P2W
202	Float	Phase to neutral Voltage, THD	%	$THD_{U_{2N}}$	⇒	3P4W
203	IEEE754	Phase to phase Voltage, THD	%	$\mathit{THD}_{U_{23}}$	⇒	3P3W
204	Float	Phase to neutral Voltage, THD	0/	$THD_{U_{3N}}$	⇒	3P4W
205	IEEE754	Phase to phase Voltage, THD	%	$THD_{U_{31}}$	⇒	3P3W
206 207	Float IEEE754	Line current, THD	%	THD_{I_1}	⇒	3P4W, 3P3W, 3P-b 4W, 1P2W
208 209	Float IEEE754	Line current, THD	%	THD_{I_2}	⇒	3P4W , 3P3W
210 211	Float IEEE754	Line current, THD	%	THD_{I_3}	⇒	3P4W , 3P3W, 3P-b 3W
212	Float	Voltage Input Frequency	Hz	f_{1N}	⇒	3P4W, 3P-b 4W, 1P2W
213	IEEE754	Voltage input i requeitcy	112	f_{12}	⇒	3P3W, 3P-b 3W, 2P2W
214 215	Float IEEE754	Phase to Neutral Voltage, RMS Amplitude	V	U_{1N}	⇒	3P4W, 3P-b 4W, 1P2W
216	Float	Phase to Neutral Voltage, RMS	V	U_{2N}	⇒	3P4W
217 218	IEEE754 Float	Amplitude Phase to Neutral Voltage, RMS				
219	IEEE754	Amplitude	V	U_{3N}	⇒	3P4W
220 221	Float IEEE754	Phase to Phase Voltage, RMS Amplitude	V	U_{12}	⇒	3P4W, 3P3W, 3P-b 3W, 2P2W
222 223	Float IEEE754	Phase to Phase Voltage, RMS Amplitude	V	U_{23}	⇒	3P4W, 3P3W
224 225	Float IEEE754	Phase to Phase Voltage, RMS Amplitude	V	U_{31}	⇒	3P4W, 3P3W
226 227	Float IEEE754	Line current, RMS Amplitude	Α	I_1	⇒	3P4W, 3P3W, 3P-b 4W, 1P2W
228 229	Float IEEE754	Line current, RMS Amplitude	Α	I_2	⇒	3P4W , 3P3W
230 231	Float IEEE754	Line current, RMS Amplitude	Α	I_3	⇒	3P4W , 3P3W, 3P-b 3W
232 233	Float IEEE754	Neutral Current, RMS Amplitude	Α	I_N	⇒	3P4W
234	Float	Phase Active Power (+/-)	W	P_1	⇒	3P4W, 3P-b 4W, 1P2W
235 236	IEEE754 Float	, ,				, ,
237	IEEE754	Phase Active Power (+/-)	W	P_2	⇒	3P4W
238 239	Float IEEE754	Phase Active Power (+/-)	W	P_3	⇒	3P4W
240 241	Float IEEE754	Phase Reactive Power (+/-)	var	Q_1	⇒	3P4W, 3P-b 4W, 1P2W
242 243	Float IEEE754	Phase Reactive Power (+/-)	var	Q_2	⇒	3P4W

Addr.	Туре	Description	Unit	Symbol	System config / Notes
244	Float	Phase Reactive Power (+/-)	var	Q_3	⇒ 3P4W
245 246	IEEE754 Float	, ,			
247	IEEE754	Phase Apparent Power	VA	S_1	⇒ 3P4W, 3P-b 4W, 1P2W
248	Float	Phase Apparent Power	VA	C	. 2D4W
249	IEEE754	Phase Apparent Power	VA	S_2	⇒ 3P4W
250 251	Float IEEE754	Phase Apparent Power	VA	S_3	⇒ 3P4W
252 253	Float IEEE754	Phase Power Factor (+/-)	-	λ_1	⇒ 3P4W, 3P-b 4W, 1P2W
254 255	Float IEEE754	Phase Power Factor (+/-)	-	λ_2	⇒ 3P4W
256 257	Float IEEE754	Phase Power Factor (+/-)	-	λ_3	⇒ 3P4W
258	Float	Phase Voltage, Mean THD	%	THD_{U_λ}	⇒ 3P4W
259	IEEE754	Thase voltage, Mean This	70	$\mathit{THD}_{U_{\Delta}}$	⇒ 3P3W
260 261	Float IEEE754	Line current, Mean THD	%	$THD_{I_{\Sigma}}$	⇒ 3P4W, 3P3W
262 263	Float IEEE754	Phase to Neutral Mean Voltage, RMS Amplitude	V	U_{λ}	⇒ 3P4W
264 265	Float IEEE754	Phase to Phase Mean Voltage, RMS Amplitude	V	U_{Δ}	⇒ 3P4W, 3P3W
266 267	Float IEEE754	Three phase current, RMS Amplitude	Α	$I_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P3W
268 269	Float IEEE754	Total Active Power (+/-)	W	$P_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
270 271	Float IEEE754	Total reactive power (+/-)	var	$Q_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
272 273	Float IEEE754	Total apparent power	VA	$S_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
274 275	Float IEEE754	Total power factor (+/-)	-	$\lambda_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
276 277	Float IEEE754	Total imported Active Power, AVG	W	P_m +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
278 279	Float IEEE754	Total imported inductive power, AVG	var	$Q_{m ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
280 281	Float IEEE754	Total imported capacitive power, AVG	var	$Q_{m \ cap} +$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
282 283	Float IEEE754	Total imported apparent power, AVG	VA	S_m +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
284 285	Float IEEE754	Total exported Active Power, AVG	W	P_m –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
286 287	Float IEEE754	Total exported inductive power, AVG	var	$Q_{m\ ind}$ -	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
288 289	Float IEEE754	Total exported capacitive power, AVG	var	$Q_{m \ cap}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
290 291	Float IEEE754	Total exported apparent power, AVG	VA	S_m –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only

Addr.	Type	Description	Unit	Symbol	System config / Notes
292 293	Float IEEE754	Total imported Active Power, MD	W	P_{Max} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
294 295	Float IEEE754	Total imported inductive power, MD	var	$Q_{Max\ ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
296 297	Float IEEE754	Total imported capacitive power, MD	var	$Q_{Max\ cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
298 299	Float IEEE754	Total imported apparent power, MD	VA	S _{Max} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
300 301	Float IEEE754	Total exported Active Power, MD	W	P _{Max} –	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
302 303	Float IEEE754	Total exported inductive power, MD	var	$Q_{\it Max~ind}$ $-$	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
304 305	Float IEEE754	Total exported capacitive power, MD	var	$Q_{\it Max\; cap}$ $-$	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
306 307	Float IEEE754	Total exported apparent power, MD	VA	S_{Max} $-$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
308	Integer Word	Hold counters, in progress interval elapsed time	s		- Import Export only
309	Integer Word	Hold counters, last expired interval duration	S		
310	Integer Word	Hold counters, last expired interval ID			
311 312	Integer Double Word	Hold counter, imported active energy	kWh/10	$E_a +_H$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
313 314	Integer Double Word	Hold counter, imported inductive energy	kvarh/10	$E_{rind} +_{H}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
315 316	Integer Double Word	Hold counter, imported capacitive energy	kvarh/10	$E_{r \; cap} +$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
317 318	Integer Double Word	Hold counter, imported apparent energy	kVAh/10	$E_S +_H$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
319 320	Integer Double Word	Hold counter, exported active energy	kWh/10	E_aH	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
321 322	Integer Double Word	Hold counter, exported inductive energy	kvarh/10	E_{rind} ${H}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
323 324	Integer Double Word	Hold counter, exported capacitive energy	kvarh/10	$E_{r cap}{H}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
325 326	Integer Double Word	Hold counter, exported apparent energy	kVAh/10	E_SH	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W
327 328	Integer (4 bytes)	Imported active energy	kWh/10	E_a +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W 3P-b 3W, 2P2W

Addr.	Туре	Description	Unit	Symbol	System config / Notes
329 330	Integer (4 bytes)	Imported inductive energy	kvarh/10	E_{rind} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
331 332	Integer (4 bytes)	Imported capacitive energy	kvarh/10	$E_{r cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
333 334	Integer (4 bytes)	Imported apparent energy	kVAh/10	E_S +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
335 336	Integer (4 bytes)	Exported active energy	kWh/10	E_a –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
337 338	Integer (4 bytes)	Exported inductive energy	kvarh/10	$E_{r ind}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
339 340	Integer (4 bytes)	Exported capacitive energy	kvarh/10	$E_{r cap}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
341 342	Integer (4 bytes)	Exported apparent energy	kVAh/10	E_S –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
343 344	Integer (4 bytes)	Life Timer	S	t	
345 346 347 348	Integer (8 bytes)	Imported active energy (Hi Resolution)	Wh/10	E_a +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
349 350 351 352	Integer (8 bytes)	Imported inductive energy (Hi Resolution)	varh/10	$E_{r ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
353 354 355 356	Integer (8 bytes)	Imported capacitive energy (Hi Resolution)	varh/10	$E_{r cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
357 358 359 360	Integer (8 bytes)	Imported apparent energy (Hi Resolution)	VAh/10	E_S +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
361 362 363 364	Integer (8 bytes)	Exported active energy (Hi Resolution)	Wh/10	E_a –	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
365 366 367 368	Integer (8 bytes)	Exported inductive energy (Hi Resolution)	varh/10	$E_{r ind}$ –	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
369 370 371 372	Integer (8 bytes)	Exported capacitive energy (Hi Resolution)	varh/10	$E_{r cap}$ –	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, ⇒ 3P-b 3W, 2P2W ⇒ Import/ Export only
373 374 375 376	Integer (8 bytes)	Exported apparent energy (Hi Resolution)	VAh/10	E_S –	 ⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, ⇒ 3P-b 3W, 2P2W ⇒ Import/ Export only

9.4.4 Input Registers (backward compatibility area)

In this area the registers guaranteeing the compatibility with the previous ELECTREX products are listed. This allows compatibility with written software. The considered registers are KILO (T)'s.

Addr.	Туре	Description	Unit	Symbol	Wirings / Notes
0	Float IEEE754	Three-phase voltage, RMS amplitude	V	$U_{\scriptscriptstyle \Delta}$	⇒ 3P4W, 3P3W
2 3	Float IEEE754	Three-phase current, RMS amplitude	Α	$I_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P3W
4 5	Float IEEE754	Total Active Power (+/-)	W	$P_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
6 7	Float IEEE754	Total reactive power (+/-)	var	$Q_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
8 9	Float IEEE754	Total apparent power	VA	$S_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
10 11	Float IEEE754	Total power factor (+/-)	-	$\lambda_{\scriptscriptstyle \Sigma}$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
12 13	Float IEEE754	Total imported Active Power, AVG	W	P_m +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
14 15	Float IEEE754	Total imported apparent power, AVG	VA	S_m +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
16 17	Float IEEE754	Total imported Active Power, MD	W	P _{Max} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
18 19	Float IEEE754	Total imported apparent power, MD	VA	S_{Max} +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
20 21	Float IEEE754	Imported active energy	KWh	E_a +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
22 23		NOT USED			Return undefined valued, if read.
24 25	Float IEEE754	Imported inductive energy	Kvarh	$E_{r ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W
26 27	Integer (4 bytes)	Serial number		S/N	
28	Float	Phase to neutral RMS Voltage	V	U_{1N}	⇒ 3P4W, 3P-b 4W, 1P2W
29	IEEE754	Phase to phase RMS Voltage	V	U_{12}	⇒ 3P3W, 3P-b 3W, 2P2W
30	Float	Phase to neutral RMS Voltage	V	U_{2N}	⇒ 3P4W
31	IEEE754	Phase to phase RMS Voltage	V	U_{23}	⇒ 3P3W
32	Float	Phase to neutral RMS Voltage	V	U_{3N}	⇒ 3P4W
33	IEEE754	Phase to phase RMS Voltage	V	U_{31}	⇒ 3P3W
34 35	Float IEEE754	Line current, RMS amplitude	Α	I_1	⇒ 3P4W, 3P3W, 3P-b 4W, 1P2W
36 37	Float IEEE754	Line current, RMS amplitude	Α	I_2	⇒ 3P4W , 3P3W

Addr.	Туре	Description	Unit	Symbol	Wirings / Notes
38 39	Float IEEE754	Line current, RMS amplitude	Α	I_3	⇒ 3P4W , 3P3W, 3P-b 3W
40 41	Float IEEE754	Phase Active Power (+/-)	W	P_1	⇒ 3P4W, 3P-b 4W, 1P2W
42 43	Float IEEE754	Phase Active Power (+/-)	W	P_2	⇒ 3P4W
44 45	Float IEEE754	Phase Active Power (+/-)	W	P_3	⇒ 3P4W
46 47	Float IEEE754	Voltage Input Frequency	Hz	f_{1N} f_{12}	⇒ 3P4W⇒ 3P3W
48 49	Float IEEE754	Phase reactive power (+/-)	var	Q_1	⇒ 3P4W, 3P-b 4W, 1P2W
50 51	Float IEEE754	Phase reactive power (+/-)	var	Q_2	⇒ 3P4W
52 53	Float IEEE754	Phase reactive power (+/-)	var	Q_3	⇒ 3P4W
54 55	Float IEEE754	Phase apparent power	VA	S_1	⇒ 3P4W, 3P-b 4W, 1P2W
56 57	Float IEEE754	Phase apparent power	VA	S_2	⇒ 3P4W
58 59	Float IEEE754	Phase apparent power	VA	S_3	⇒ 3P4W
60 61	Float IEEE754	Phase reactive power (+/-)	var	Q_1	⇒ 3P4W, 3P-b 4W, 1P2W
62 63	Float IEEE754	Phase reactive power (+/-)	var	Q_2	⇒ 3P4W
64 65	Float IEEE754	Phase reactive power (+/-)	var	Q_3	⇒ 3P4W
66 67	Float IEEE754	Phase power factor (+/-)	i	λ_1	⇒ 3P4W, 3P-b 4W, 1P2W
68 69	Float IEEE754	Phase power factor (+/-)	i	λ_2	⇒ 3P4W
70 71	Float IEEE754	Phase power factor (+/-)	-	λ_3	⇒ 3P4W
72 73		NOT AVAILABLE			Return undefined valued, if read.
74 75	Float IEEE754	Exported active energy	kWh	E_a –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
76 77		NOT USED			Return undefined valued, if read.
78 79	Float IEEE754	Exported capacitive energy	kvar	$E_{r \; cap}$ $-$	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
80 81	Float IEEE754	Exported inductive energy	kvar	$E_{r ind}$ –	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only

Addr.	Туре	Description	Unit	Symbol	Wirings / Notes
82 83		NOT USED			Return undefined valued, if read.
84 85	Float IEEE754	Total imported capacitive energy	kvar	$E_{r cap}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
86 : 93		NOT AVAILABLE			Return undefined valued, if read.
94 95	Float IEEE754	Total imported inductive power, AVG	var	$Q_{m ind}$ +	⇒ 3P4W, 3P-b 4W, 1P2W, 3P3W, 3P-b 3W, 2P2W ⇒ Import/ Export only
96 : 125		NOT AVAILABLE			Return undefined valued, if read.
126	Float	Phase to neutral Voltage, THD	%	$\mathit{THD}_{U_{1N}}$	⇒ 3P4W
127	IEEE754	Phase to phase Voltage, THD	70	$THD_{U_{12}}$	⇒ 3P3W
128 129	Float IEEE754	Line current, THD	%	THD_{I_1}	⇒ 3P4W, 3P3W
130	Float	Phase to neutral Voltage, THD	%	$THD_{U_{2N}}$	⇒ 3P4W
131	IEEE754	Phase to phase Voltage, THD	70	$THD_{U_{23}}$	⇒ 3P3W
132 133	Float IEEE754	Line current, THD	%	THD_{I_2}	⇒ 3P4W, 3P3W
134	Float	Phase to neutral Voltage, THD	%	$THD_{U_{3N}}$	⇒ 3P4W
135	IEEE754	Phase to phase Voltage, THD	70	$THD_{U_{31}}$	⇒ 3P3W
136 137	Float IEEE754	Line current, THD	%	THD_{I_3}	⇒ 3P4W, 3P3W
138 : 199		RESERVED			Return undefined valued, if read.

9.4.5 Coils (back compatibility)

Coils area compatible with the previous instruments:

	Coils, back compatibility				
Address	Description	Note:			
0	Clear AVG (1,3)	Reset all the power values in floating average			
1	Clear AVG (1,3)	as 0001			
2	Clear MD (1,3)	Reset all the power peak values			
3	Clear MD (1,3)	as 0003			
4	Clear energy counters (1)	Reset all the energy counters			
5	Warm boot (1)	Reinitialize the instrument (does not reset the counters)			
6	AVG/MD synchronization (1,3)	Synchronize the integration period			
7	Clear MD (1,3)	as 0003			
8	Not allocated				
9	Out 1 (3)	Controls output nr. 1 (if the alarm use is inhibited)			
10	Out 2 (3)	Controls output nr. 2 (if the alarm use is inhibited)			
11	Not allocated				
12	Digital outs watchdog enable (3)	Protection Timer on inputs in minutes			
13	Not allocated				
14	Not allocated				
15	Not allocated				
16	Not allocated				
17	Swap words & bytes (2, 4)	Format Control of the memory stored data			
18	Not allocated				

9.4.6 FLASH D coils

Proprietary FLASH D coils area.

	FLASH D Coils				
Address	Description	Note:			
64	Swap bytes (5)	Data format control in memory			
65	Swap words (5)	Data format control in memory			
66	Reset (warm boot) (1,2)	Reinitialize the device (does not reset the counters)			
67	Clear energy counters (1,2)	Reset all the energy counters			
68	Power integration synchronization (1,2)	Synchronize the integration time.			
69	Clear AVG powers (1,2)	Reset all the power value in moving average			
70	Clear MD powers (1,2)	Reset all the power peak values			
71	NOT USED (1)				

- (1) Reading the coil the result is always 1.
- (2) The command is triggered on the leading edge, that is when the coil is set to 1 (TRUE). It is not necessary to set the coil to 0 after setting it to 1.
- (4) Negative logic, to be compatible with Kilo:
 - Coil = 1

 Swap Bytes = Swap Words = FALSE (Motorola like, as Modbus standard)

 Coil = 0

 Swap Bytes = Swap Words = TRUE (Intel like).

 The measurement resets "Swap Bytes" flag status (negative).
- (5) If set to 1 (TRUE), it inverts the bytes order (or word order) respect to the modbus standard (Motorola like).

10 Technical Characteristics

Measurement sections:

Voltmetric Inputs:

500 Vrms phase-phase (crest factor max 1.7);

Amperometric Inputs:

5 Arms (crest factor max 1.7);

Frequency: 45 ÷ 65 Hz Accuracy ± 0,1 Hz

Precision: Class 1 on active energy, compliant with CEI EN 61036;

Alternate Accuracy	Voltage Se	ensitivity,	Range and
Nominal Range	Sensitivity ¹	Range	Accuracy ²
500 V	400 mV	500 V	0.06 Range ± 0.35 Reading

Nota 1: Minimal Reading 20 VNota 2: Guaranteed up to 50 V

Alternate Accuracy	Current S	ensitivity,	Range an
Nominal Range	Sensitivity ¹	Range	Accuracy ²
5 A	5 mA	6 A	0.06 Range ± 0.35 Reading
1 A	0.5 mA	1 A	0.06 Range ± 0.35 Reading

- Note 1: Minimal reading 10 mA

- Note 2: Accuracy guaranteed up to 100 mA

Overload:

Voltmetric Inputs: max 900 Vrms peak value for 1 second **Amperometric Inputs:** max 100 Arms peak value for 1 s.

Maximum voltage to ground: for both voltage and current conductors the maximum voltage to ground is 350 Vrms.

Power Supply: separated power supply 85-265Vac/100-374Vdc or 24Vac/18-60Vdc depending

on types. Maximum voltage to ground 265 Vrms

Power Consumption: 5 VA Cabling: use category II cables.

Operating Temperature: from -20 to +60 °C

Relative Humidity (R.H.): max 95% without condensation

Applicable Regulations: Safety CEI EN 61010 class 2, category II, pollution class II. To be

positioned in a protective electrical enclosure making the cabling not accessible.

Electromagnetic Compatibility: CEI EN 61326-1 A

Display: Backlit LCD with white LED lamp. **Automatic range adjustment: 2** current ranges **Offset:** automatic amplifier offset adjustment

Counters: energy counters with 0.1 Wh resolution and maximum value 99,999,999.9 kWh.

Mount: 6 units Din Rail.

Weight: 360 g (460 g with packaging). **Protection:** IP40 on front, IP20 elsewhere.

Size: 105 x 90 x 60 mm

Outputs: 2 digital outputs for pulses or alarms (Din 43864 27 Vdc 27 mA)

Options

Galvanically Isolated RS485

Output isolation 1000 Vrms

Galvanically Isolated RS232

Output isolation 1000 Vrms

Galvanically Isolated Analog Port 4-20 mA

Output isolation 1000 Vrms

Output: self supplied 0 to 20 mA on 500 Ohm max

Precision: < 0.2% Reading. Stability: 200 ppm/°C Latency: 50 ms maximum

Update frequency: 10 grid cycles frequency

11 Firmware Revisions

v1.11

First release

12 Order codes

Instruments

Designator	Description	Code
Flash D ET	Three-phase energy analyzer (Power supply 100/230 V)	PFE 430-00
Flash D ET 24	Three-phase energy analyzer (Power supply 24 V)	PFE 430-04

Options

Designator	Description	Code
RS485 Interface (Din)	Interface with optoinsulated RS485 port.	PFE 830-00
RS232 Interface (Din)	Interface with optoinsulated RS232 port.	PFE 825-00
OUTPUT 2x 4-20 mA (Din	Double analogue output 4-20 or 0-20 mA programmable on any unit.	PFE 835-00

13 DECLARATION OF CONFORMITY

Electrex hereby declares that its range of products complies with the following directives

EMC 89/336/EEC 73/23CE 93/68 CE

and complies with the following product's standard

CEI EN 61326 - IEC 61326 CEI EN 61010 - IEC 1010

The product has been tested in the typical wiring configuration and with peripherals conforming to the EMC directive and the LV directive.

ELECTREX S.r.l. Via Claudia 96 41056 Savignano sul Panaro (MO) ITALY

November 2005
Erminio Mazzoni
Technical Director

Edition 8 November 2005
The document is subject to modification without prior notice.
This document belongs to ELECTREX; all rights are reserved.

Via Claudia, 96 41056 Savignano sul Panaro (MO) ITALY

Telephone: +39 059 796372

Fax: +39 059 796378 E-mail: info@electrex.it Internet: www.electrex.it

