Projectivity Criterira and it's deformation behavior Summer 2025 Note 4-2025-07-09 (draft version) $Yi \ Li$

1 Overview

The aim of this note is to give some projectivity critera for Moishezon/Kähler morphism and study the deformation bahavior of projectivity. The ultimate goal is to finish the proof of [Kol22, Theorem 2].

Contents

1	Overview	1
2	Projectivity critera of Nakai-Moishezon and Seshadri	1
	2.1 Seshadri criterion of projectivity, line bundle version	1
	2.2 Seshadri criterion of projectivity, cohomology class version	1
3	Chow-Barlet cycle space	2
4	Kollár Openness of projectivity	2
5	Claudon-Höring's projectivity criterion for Kähler morphism	3
6	Kollár's projectivity criterion for moduli space	3
2	Projectivity critera of Nakai-Moishezon and Seshadri	
2.	1 Seshadri criterion of projectivity, line bundle version	
2.	2 Seshadri criterion of projectivity, cohomology class version	
Nι	nmerical equivalent relation and Homological equivalent relation	
No	ow we can prove the cohomological version Seshadri criterion.	
\mathbf{T}	neorem 2.1 (see [Kol22], Proposition).	

Last time we proved the Seshadri projectivity criterion of Moishezon variety.

This time we first introduce the Chow-Barlet cycle space and prove a technical result which shows that we can approximate the Chow-Barlet cycle space by countable many projective morphism. Using this result, we can prove the main theorem of today's seminar that is some lower semi-continuity result on Seshadri constant.

Let us brief sketch the idea of the proof.

3 Chow-Barlet cycle space

In this Section, we will study the main technical tools

We can now state the result which allows to approximate the Chow-Barlet cycle space using countable many projective morphism

Theorem 3.1 (Approximation Chow-Barlet cycle space using countable many projective morphisms). Let $g: X \to S$ be a proper morphism of complex analytic spaces that is bimeromorphic to a projective morphism. Fix $m \in \mathbb{N}$. Then there are countably many diagrams of complex analytic spaces over S,

$$C_i \longleftrightarrow W_i \times_S X$$

$$w_i \downarrow \uparrow \sigma_i$$

$$W_i$$

indexed by $i \in I$, such that

- (1) the $w_i: C_i \to W_i$ are proper, of pure relative dimension 1 and flat over a dense, Zariski open subset $W_i^{\circ} \subset W_i$,
- (2) the fiber of w_i over any $p \in W_i^{\circ}$ has multiplicity m at $\sigma_i(p)$,
- (3) the W_i are irreducible, the structure maps $\pi_i:W_i\to S$ are projective, and
- (4) the fibers over all the W_i° give all irreducible curves that have multiplicity m at the marked point.

Proof. We will divide the proof into several steps.

4 Kollár Openness of projectivity

Theorem 4.1 (Openness of projectivity over Euclidean open subset, see [Kol22], Proposition 14.).

Proof. \Box

Theorem 4.2 (Openess of projectivity, [Kol22, Theorem 2]).

Let $g: X \to S$ be a proper morphism of complex analytic spaces and $S^* \subset S$ a dense, Zariski open subset such that g is flat over S^* . Assume that

- (1) X_0 is projective for some $0 \in S$,
- (2) the fibers X_s have rational singularities for $s \in S^*$, and
- (3) g is bimeromorphic to a projective morphism $g^p: X^p \to S$.

Then there is a Zariski open neighborhood $0 \in U \subset S$ and a locally closed, Zariski stratification $U \cap S^* = \bigcup_i S_i$ such that each

$$g|_{X_i}: X_i := g^{-1}(S_i) \to S_i$$
 is projective.

Proof.

- 5 Claudon-Höring's projectivity criterion for Kähler morphism
- 6 Kollár's projectivity criterion for moduli space

References

[Kol22] János Kollár. "Seshadri's criterion and openness of projectivity". In: *Proc. Indian Acad. Sci. Math. Sci.* 132.2 (2022), Paper No. 40, 12. ISSN: 0253-4142,0973-7685. DOI: 10.1007/s12044-022-00680-9. URL: https://doi.org/10.1007/s12044-022-00680-9.