Algebra II: Tutorial 2

February 21, 2022

Problem 1. Let R be an integral domain. Show that if R[x] is a UFD, then R is again a UFD.

Problem 2 (Relation between irreducibility and existence of roots). Let K be any field, and consider the polynomial ring R = K[x].

- 1. Suppose that $f \in R$ has degree 2 or 3. Show that f is irreducible over K if and only if f has no roots in K.
- 2. Show that the statement in part 1. no longer holds if we assume that f has degree ≥ 4 .
- 3. Show that the statement in part 1. is no longer true if we replace K by an arbitrary integral domain.

Problem 3 (Irreducibility tests over \mathbb{Q}). Determine whether or not the following polynomials are irreducible over \mathbb{Q} :

- 1. $f(x) = x^3 + 5x^2 + 4$,
- 2. $f(x) = x^4 10x^2 + 1$.

Problem 4 (Universal property of polynomial rings). Let K be a commutative ring, and L a ring containing K as a subring. Consider the polynomial ring K[x].

1. For each $\alpha \in L$, show that there exists a unique ring homomorphism

$$ev_{\alpha}: K[x] \to L,$$

satisfying the following two conditions:

- (a) $ev_{\alpha}(k) = k$, for all $k \in K$, and
- (b) $ev_{\alpha}(x) = \alpha$.

For each $\alpha \in L$, we call that homomorphism the evaluation homomorphism at α .

- 2. Suppose now that K is an infinite field, and L = K. Show that $f \in K[x]$ and $g \in K[x]$ are equal if and only if the evaluations $ev_{\alpha}(f)$ and $ev_{\alpha}(g)$ are equal in K for all elements $\alpha \in K$.
- 3. Show that this property does not hold if K is a finite field. (Hint: find two distinct polynomials f and g over \mathbb{Z}_3 whose values $f(\alpha)$ and $g(\alpha)$ coincide $\forall \alpha \in \mathbb{Z}_3$.)