

V _{RSM}	V _{RRM} V _{DRM}	$\left(\frac{dv}{dt}\right)_{cr}$	I _{TRMS} (maximum values for continuous operation) 63 A 78 A		
	\ /	\// ₁ =	I _{TAV} (sin. 180; T _{case} = °C)		
V	V	V/μs	40 A (80 °C)	50 A (78 °C)	
500	400	500	SKT 40/04 D	_	
700	600	500	SKT 40/06 D	SKT 50/06 D*	
900	800	500	SKT 40/08 D	SKT 50/08 D	
1300	1200	1000	SKT 40/12 E	SKT 50/12 E*	
1500	1400	1000	SKT 40/14 E	SKT 50/14 E*	
1700	1600	1000	SKT 40/16 E	SKT 50/16 E*	
1900	1800	1000	SKT 40/18 E+	SKT 50/18 E+	

Symbol	Conditions	SKT 40	SKT 50	Units
I _{TAV}	sin. 180; T _{case} = 85 °C	38	45	Α
ITSM	$T_{vj} = 25 ^{\circ}\text{C}; 10 \text{ ms}$ $T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ ms}$	700 600	1050 900	A A
i ² t	$T_{vj} = 25 ^{\circ}\text{C}; 8,35 \dots 10 \text{ ms}$ $T_{vj} = 130 ^{\circ}\text{C}; 8,35 \dots 10 \text{ ms}$	2500 1800	5000 4000	A ² s A ² s
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_G = 1 \text{A}; \\ di_G/dt = 1 \text{A}/\mu\text{s}$	typ. 1		μs
tgr	$V_D = 0.67 \cdot V_{DRM}$	typ. 1,5		μs
(di/dt) _{cr}	f = 50 60 Hz	50		A/μs
lн	T _{vj} = 25 °C	typ. 100; max. 200		mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_G = 33 \Omega$	typ. 250; max. 400		mA
tq	$T_{vj} = 130 ^{\circ}\text{C}; \text{ typ.}$	100		μs
VT	$T_{vj} = 25 ^{\circ}\text{C}; I_T = 120 \text{A}; \text{max}.$	1,95	1,8	V
$V_{T(TO)}$	T _{vj} = 130 °C	1,0	1,1	V
r _T	T _{vj} = 130 °C	9	5	$m\Omega$
I _{DD} , I _{RD}	$T_{Vj} = 130 ^{\circ}C; V_{DD} = V_{DRM} \ V_{RD} = V_{RRM}$	8	8	mA
V _G T	T _{vj} = 25 °C	;	V	
I _{GT}	T _{vj} = 25 °C	15	mA	
V_{GD}	T _{vj} = 130 °C	0,	V	
I _{GD}	T _{vj} = 130 °C	5		mA
R _{thjc}	cont.	0,60	0,57	°C/W
	sin. 180	0,66	0,60	°C/W
D., .	rec. 120	0,70	0,65	°C/W
Rthch		0,20 40 +130		°C/vv
T _{vj} T _{stg}		– 40 +130 – 55 +150		°C
M	SI units US units	4 (UNF: 2,5) 35 (UNF: 22)		Nm lb. in.
а	OO uriito	5 · 9,81		m/s ²
W		2,2		g
			B	
Case		В	3	

SKT 40 SKT 50

Features

- Hermetic metal cases with glass insulators
- glass insulators

 Threaded studs ISO M8 or UNF 1/4-28
- International standard cases

Typical Applications

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
- AC controllers
 (e. g. for temperature control)

♦ available in limited quantities

Thyristors

^{*} Available with UNF thread 1/4-28 UNF2A, e.g. SKT 50/06 D UNF

Fig. 1 a Power dissipation vs. on-state current and ambient temperature

Fig. 1 b Power dissipation vs. on-state current and ambient temperature

Fig. 2 a Rated on-state current vs. case temperature

Fig. 3 Recovered charge vs. current decrease

Fig. 4 b Transient thermal impedance vs. time

Fig. 5 b Thermal resistance vs. conduction angle

Fig. 4 a Transient thermal impedance vs. time

Fig. 5 a Thermal resistance vs. conduction angle

Fig. 6 a On-state characteristics

Fig. 6 b On-state characteristics

Fig. 7 a Power dissipation vs. on-state current

Fig. 8 Surge overload current vs. time

Fig. 9 Gate trigger characteristics

SKT 10

Case B 1

IEC-Publ. 191-2: A 13 M DIN 41891: 200 B 3 BS 3934: SO – 35 A

JEDEC: TO - 208 AB (TO - 64) metric

Case B 2

IEC-Publ. 191-2: A 11 M, A 11 U

DIN 41892: 201 C 3 BS 3934: SO - 36

JEDEC: TO - 208 AA (TO - 48)

SKT 40 SKT 50

Case B3

IEC-Publ. 191-2: A 38 MA, A 14 U

DIN 41892: 202 C 3 BS 3934: SO - 28

JEDEC: TO - 208 AC (TO - 65)

C: Cathode terminal

A: Anode terminal

G: Gate terminal

Dimensions in mm