ECE 459/559 Secure & Trustworthy Computer Hardware Design

Counterfeit Mitigation

Garrett S. Rose Spring 2017

Counterfeit Defect Taxonomy

Testing for Defects

Detection Method Taxonomy

External Visual Inspection (EVI)

EVI:

- All devices optically examined at suitable magnification (3X to 100X)
- Portion of inspection (sampling) performed at 40X or higher
- IDEA-STD-1010-A good reference
- Detailed EVI Inspection:
 - Sample size of 119 devices selected
 - Normally 116/c samples inspected for 90% confidence and at most 2% failures
 - Additional 3 samples used for marking permanency, lead finish (XRF), and Delid Physical Analysis (DPA)

Burned markings from low quality laser

Verification of:

- Date & Lot Codes
- Low Power Microscopy
- High Power Microscopy
- OEM Shipping Labels
- Lead Quality
- Dimensions & Weight
- Marking Quality

More on EVI

- Test for Remarking and Resurfacing
 - First set of tests focus on part marking, is a resistance to solvents test
 - Markings should not smear or be removed by the solution
- Test for Resurfacing
 - Uses same 3 devices, consists of three separate chemical tests
 - Acetone Test
 - 1-Methyl, 2-Pyrrolidinone Test
 - Dynasolve 750 Test
 - Looks for indicators of package resurfacing and recoating
 - 3 devices that pass this inspection then undergo Delid Physical Analysis Inspection

X-Ray Fluorescence (XRF) Spectroscopy

- Tool for material composition detection
- Can be a handheld instrument or a full lab system
- Can be on external surfaces or de-lidded/de-capsulated
- Non-destructive
 - Destructive for internal material composition (e.g., wire bond, passivation, and metalization)
- Sampling required

More on XRF

- Lead finish examination
 - Performed on the 3 sample devices
 - Examined for remarking and resurfacing
 - Verify that lead finish / solder ball and column composition matches device specifications and/or datasheet
- Plating material(s) identification
 - Verify plating layer thicknesses, presence of barrier materials, and possibly the base material

Delid Physical Analysis

- The inspection:
 - Component's internal structure
 - Top surface of a microelectronic die
 - Metalization traces of a thin-film resistor
- Apparatus & Equipment:
 - Chemical Decapsulation Process
 - Use of hazardous chemicals (Nitric acid and sulfuric acid)
 - Mechanical Disassembly Tools
 - Includes cross-section tables and associated epoxy mounting material, fine-tipped picks, x-acto blades, etc.
 - Radiographic Tool
 - Metallurgical Microscopes and Photodocumentation Equipment
 - Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX)

Risk Level Inspection Test

	Critical Risk	High Risk	Moderate Risk	Low Risk
	4	3	2	1
Optically Inspect/Photo document	Х	X	X	X
Wire Pull	X	X	X	(optional)
Die Shear (hermetic)	X	Х	(optional)	(optional)
Ball Shear	X	X	(optional)	(optional)
SEM Inspection	Х	(optional)	(optional)	(optional)
Perform EDX	X	(optional)	(optional)	(optional)
Delayer/Inspect Metalization	Х	(optional)	(optional)	(optional)
Glassivation Layer Integrity Testing	Х	(optional)	(optional)	(optional)

X-Ray Inspection

- Determines:
 - If the package contains a die
 - Consistent size/shape of the die
 - Consistent internal construction
 - If the die has all wire bonds attached
 - Exact die and bond wire location
 - To avoid damage during decapsulation

"The value of X-ray is increased when there is a known good OCM device available for comparison of internal details."

– CCAP-101 Certified Document Rev D

Scanning Acoustic Microscopy

- Acoustic is non-invasive
 - Reveal cracks, voids, and delamination
 - Non-destructive die inspection
 - Uses de-ionized water or IPA as medium

MuAnalysis look deeper

Red areas indicate delamination

Sonoscan

C-SAM[®] Series – Model Gen6[™] (Advanced C-SAM[®] System for Laboratory Environments)

Electrical Tests

- Mainly focus on large scale integrated circuits
 - Microprocessors, memory, and programmable logic chips account for about 35% of all counterfeits
- As these are high cost parts, counterfeiter will probably put more effort in counterfeiting and detection is difficult
- No definite test methodology either electrical or physical (without destroying the chip) to achieve 100% confidence

Electrical Tests

- ATE (Automated Test Equipment)
 - Speed (clock rate of device)
 - Timing (strobe) accuracy
 - Number of I/O pins, etc.
- Test Programming
- Limitations:
 - HDL description of test module must be available
 - No definite methodology to detect counterfeit ICs

Recycled Parts: Aging

- Recycled parts are around 80% of total counterfeit parts
- Most of the defects in recycled parts are due to aging
- Aging mechanisms:
 - Negative bias temperature instability (NBTI)
 - Occurs in p-channel of MOS devices stressed with negative gate voltages and elevated temperature, due to generation of traps at Si-SiO₂ interface
 - Hot carrier injection (HCI)
 - Occurs in NMOS devices causes by trapped interface charge at Si-SiO2 surface near drain end during switching
 - Time-dependent dielectric breakdown (TDDB)
 - Carrier injection with high electric field leads to gradual degradation of oxide properties, eventual destruction of dielectric
 - Electromigration
 - Mass transport of metallic ions stressed at high current densities

Parametric Test

- DC Parametric Test
 - Contact test
 - Power consumption test
 - Leakage test
 - Output short current test
 - Output drive current test
 - Threshold test
- AC Parametric Test
 - Propagation delay test
 - Setup/hold time test
 - Access time test
 - Rise and fall time test

Functional Testing

- Most efficient method for verifying functionality of a component
- Functional verification of a component
 - Determine whether individual components function as a system and produce expected response
- Memory tests
 - Read/write operations performed on memory to verify functionality
 - MARCH tests can be applied for counterfeit detection
- Microprocessor tests
 - Microprocessors are binned in different groups depending on maximum functional frequency (f_{max})

Temperature Cycling / Burn-In

- Test chip at extremes of operating range
- Tester ranges:
 - Military grade: -65C to 175C
 - Industrial grade: -25C to 85C
 - Commercial grade: -10C to 70C
- Burn-in:
 - Device operated at elevated temperature (stressed condition)
 - Use to find mortality failures and unexpected failures, assure reliability
 - Test methods:
 - MIL-STD-883 for integrated circuits
 - MIL-STD-750 for other discrete components
 - Very useful for weeding out commercial components marked military
 - Can remove defective component or those not designed for certain conditions

Structural Testing

- At-speed tests
 - To detect gross and spot delay defects
 - Transition delay fault test / Path delay fault test
- Stuck-at tests
 - To detect spot delay defects
- Bridging tests
 - To detect physical bridging defects

Hardware Metering

- Set of security protocols that enable design house to achieve post-fabrication control over their fabricated ICs
- Provides way to uniquely fingerprint or tag each chip and/or each chip's functionality
 - It is possible to distinguish between different chips manufactured by same mask
- First introduced in 2005
 - First instance designed to uniquely tag each IC's functionality

Hardware Metering

- Passive IC metering
 - IDs on the package
 - IDs stored in memory
 - Pentium III Processor (PSN: Processor Serial Number)
 - Unclonable identifiers
 - Generate IDs utilizing process variations
- Active IC metering
 - Uniquely and unclonably identifies each chip
 - Provides active mechanism to control, monitor, lock, or unclock the IC after fabrication

IC Enabling by Active Metering

Physical Unclonable Function (PUF)

- Derive secret from complex physical characterics of IC rather than storing the secret in digital memory
- Extremely difficult to predict or extract the secret as PUF utilizes random process variations to generate the secret
- PUF generates volatile secrets (only exist in digital form when chip is powered on and running)
 - More difficult for an invasive attack (must accurately measure PUF delays while powered on)

More on the PUF

- A PUF is a function that maps a set of challenges to a set of responses based on complex physical system
- The function
 - Can only be evaluated with the actual physical system
 - Is unique for each physical system because of random process variations

PUF Examples

Arbiter PUF:

RO PUF:

