Série 3

Olivier Cloux

236079

Problème 3.1

1. Les longueurs des mots de code binaires de Shannon-Fano s'obtiennent avec la formule $\lceil \log_2\left(\frac{1}{p_i}\right) \rceil$. En l'appliquant à chaque probabilité des symboles de source, nous obtenons .

Symbole de source	a	b	c	d	e	f
Probabilité	0.08	0.1	0.02	0.3	0.2	0.3
Longueur non-arrondie	3.64	3.32	5.64	1.73	2.32	1.73
Longueur arrondie	4	4	6	2	3	2

Un code de Huffman s'obtient en remplissant un arbre, selon la méthode vue en cours. L'arbre en question est :

Nous n'avons donc qu'à lire les positions afin de trouver le code associé :

Symbole de source	a	b	
Probabilité	0.08	0.1	0
Code de Huffman	0001	001	0

La longueur moyenne de ce code de Huffman est

$$0.08 \cdot 4 + 0.1 \cdot 3 + 0.02 \cdot 4 + 0.3 \cdot 2 + 0.2 \cdot 2 + 0.3 \cdot 2 = \boxed{2.3 = L(\Gamma_H)}$$

La longueur moyenne du code de Shannon-Fano est

$$4 \cdot 0.08 + 4 \cdot 0.1 + 6 \cdot 0.02 + 2 \cdot 0.3 + 3 \cdot 0.2 + 2 \cdot 0.3 = \boxed{2.64 = L(\Gamma_{SF})}$$

L'entropie de la source S, selon la méthode vue en cours, est

$$\begin{aligned} 0.08 \cdot \log_2\left(\frac{1}{0.08}\right) + 0.1 \cdot \log_2\left(\frac{1}{0.1}\right) + 0.02 \cdot \log_2\left(\frac{1}{0.02}\right) + 0.3 \cdot \log_2\left(\frac{1}{0.3}\right) + 0.2 \cdot \log_2\left(\frac{1}{0.2}\right) + 0.3 \cdot \log_2\left(\frac{1}{0.3}\right) \\ \log_2\left(\frac{1}{0.3}\right) &= \boxed{2.24 = H(S)} \end{aligned}$$

Ainsi, l'entropie est bien la plus petite valeur, et le code de Huffman est bien optimal (en tout cas par rapport au code de Shannon-Fano).

La seconde inégalité de l'entropie est

$$\frac{H(S)}{\log_2(D)} \le L(\Gamma_{SF}) < \frac{H(S)}{\log_2(D)} + 1$$

et elle est bien respectée pour le code de Shannon-Fano car

$$2.24 \le 2.64 \le 3.24 = 2.24 + 1$$

de même que pour le code de Huffman (qui est optimal, donc meilleur ou égal à Shannon-Fano), car

$$2.24 \le 2.3 < 3.24$$

2. Premier arbre de Huffman (H_1)

Avec le code associé	ı	ı		ı	ı	i
Symbole de source	a	b	c	d	e	f
Probabilité	0.04	0.06	0.1	0.2	0.2	0.4
Γ_{H_1}	0000	0001	001	01	10	11

Second arbre de Huffman (H_2) :

Avec le code associé Symbole de source b d 0.040.20.2Probabilité 0.060.10.40000 0001001010 0111 Γ_{H_2}

$$L(\Gamma_{H_1}) = 2 \cdot 0.4 + 2 \cdot 0.2 + 2 \cdot 0.2 + 3 \cdot 0.1 + 4 \cdot 0.06 + 4 \cdot 0.04 = 2.3$$

$$L(\Gamma_{H_2}) = 1 \cdot 0.4 + 3 \cdot 0.2 + 3 \cdot 0.2 + 3 \cdot 0.1 + 4 \cdot 0.06 + 4 \cdot 0.04 = 2.3$$

3. Le théorème 3.4 du code de Huffman nous dit que

 $[\ldots]$ pour tout autre code binaire à décodage unique Γ on a

$$L(\Gamma_H) \le L(\Gamma)$$

Ce qui signifie que

$$L(\Gamma_{H_1}) \le L(\Gamma)$$

mais aussi que

$$L(\Gamma_{H_2}) \le L(\Gamma)$$

Donc que
$$(\Gamma_{H_2}) \le (\Gamma_{H_1}) \le (\Gamma_{H_2}) \le (\Gamma)$$

ce qui implique que
$$(\Gamma_{H_2})=(\Gamma_{H_1})$$

Problème 3.2

1. Nous pouvons utiliser la même formule qu'à l'exercice 3.1.1 ($\lceil \log_2 \left(\frac{1}{p_i} \right) \rceil$)

Cela nous donne les longueurs suivantes

Symbole de source	a	b	c	d	e	f
Probabilité	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Longueur non-arrondie	4	4	3	2	2	2
Longueur arrondie	4	4	3	2	2	2

Pour une longueur moyenne

$$L(\Gamma_{SF}) = \frac{4}{16} + \frac{4}{16} + \frac{3}{8} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4} = \boxed{2.375 = L(\Gamma_{SF})}$$

L'arbre de Huffman associé au code S est :

Avec le code qui en découle :

Symbole de source	a	b	c	d	e	f
Probabilité	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Γ_H	0000	0001	001	01	10	11

La longueur moyenne de ce code est :

$$\frac{4}{16} + \frac{4}{16} + \frac{3}{8} + \frac{2}{4} + \frac{2}{4} + \frac{2}{4} = \boxed{2.375 = L(\Gamma_H)}$$

L'entropie de la source S est

$$2 \cdot \frac{1}{16} \log_2(16) + \frac{1}{8} \log_2(8) + 3 \cdot \frac{1}{4} \log_2(4) = \boxed{2.375 = H(S)}$$

Il est alors amusant de constater (nous le prouverons à la question suivante) que les 3 longueurs sont exactement les mêmes.

- 2. (a) Ce qui fait varier la longueur des mots de code de Shannon par rapport à l'entropie, c'est l'arrondi vers le haut. En effet, là où l'entropie multiplie la probabilité d'apparition par le log de l'inverse de cette probabilité $(\sum p(s)\log_2(\frac{1}{p(s)}))$, la longueurs selon Shannon multiplie la probabilité d'apparition par <u>l'arrondi vers le haut</u> de ce même logarithme ; la longueur du mot de code est $\lceil \log_2(\frac{1}{p(s)}) \rceil$, et pour trouver la longueur moyenne nous multiplions les mots de code par leur probabilité d'apparition, ce qui nous donne $\sum p(s)\lceil \log_2(\frac{1}{p(s)}) \rceil$. Mais lorsque les p(s) sont des puissances de 2, alors $\lceil \log_2(\frac{1}{p(s)}) \rceil = \log_2(\frac{1}{p(s)})$ (car $\log_2(2^n) = n$). La longueurs des mots de Shannon ont alors la même longueur (car même formule) que l'entropie.
 - (b) Comme nous l'avons dit avant, $L(\Gamma_{SF}) = \sum p(s)\lceil \log_2(\frac{1}{p(s)})\rceil = \sum p(s)\log_2(\frac{1}{p(s)}) = H(S)$ quand et seulement quand tous les p(s) sont des puissances de 2, car l'arrondi n'a plus lieu (le \log_2 étant alors déjà entier). Ainsi, lorsque $L(\Gamma_{SF})$ devient plus grand que l'entropie, cela signifie qu'une longueur a été arrondie vers le haut (selon la définition), et donc qu'un des p(s) n'est plus une puissance de 2.

Problème 3.3

1.
$$\frac{A \mid B}{\frac{3}{4} \mid \frac{1}{4}}$$
. L'entropie est donc $\frac{3}{4} \log_2(\frac{4}{3}) + \frac{1}{4} \log_2(4) = \boxed{0.811 = H(S_0)}$

2.
$$H(S_1|S_0) = H(S_1|S_0 = A)p_{S_0}(A) + H(S_1|S_0 = B)p_{S_0}(B)$$

$$H(S_1|S_0 = A) = \frac{1}{2}\log_2(2) + \frac{1}{2}\log_2(2) = 2\frac{1}{2}\log_2(2) = 1$$

(car 2 issues possibles (P/F) avec chacun probabilité 1/2)

$$H(S_1|S_0 = B) = 1\log_2(1) = 0$$

(car seulement F possible, avec probabilité 1)

$$p_{S_0}(A) = \frac{3}{4}, p_{S_0}(B) = \frac{1}{4} \to H(S_1|S_0) = \frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \boxed{\frac{3}{4} = H(S_1|S_0)}$$

$$H(S_2|S_0) = H(S_2|S_0 = A)p_{S_0}(A) + H(S_2|S_0 = B)p_{S_0}(B)$$

$$H(S_2|S_0 = A) = \frac{1}{2}\log_2(2) + \frac{1}{2}\log_2(2) = 2\frac{1}{2}\log_2(2) = 1$$

$$H(S_2|S_0 = B) = 1\log_2(1) = 0$$

(mêmes justifications que pour $H(S_1|S_0)$)

$$p_{S_0}(A) = \frac{3}{4}, p_{S_0}(B) = \frac{1}{4} \to H(S_2|S_0) = \frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 0 = \boxed{\frac{3}{4} = H(S_2|S_0)}$$

$$H(S|S_0) = H(S|S_0 = A)p_{S_0}(A) + H(S|S_0 = B)p_{S_0}(B)$$

$$p_{S_0}(A) = \frac{3}{4}, \ p_{S_0}(B) = \frac{1}{4}$$

$$H(S|S_0 = B) = 1\log_2(1) = 0$$

(car seulement FF possible, avec probabilité 1)

$$H(S|S_0 = A) = 4 \cdot \frac{1}{4} \log_2(4) = 2$$

(car 4 issues possibles PF, FP, FF, PP, chacun avec probabilité $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$) $\rightarrow H(S|S_0) = \frac{3}{4} \cdot 2 + \frac{1}{4} \cdot 0 = \boxed{\frac{3}{2} = H(S|S_0)}$

Nous remarquons - à notre immense étonnement - que $H(S_2|S_0) = H(S_1|S_0)$. En effet, l'ordre des tirages n'a pas d'importance, une fois que l'on connaît S_0 . Pile arrivera avec la même probabilité que face $(\frac{1}{2})$ si la pièce A est prise, et Face arrivera forcément si B est prise, les probabilités ne changent pas $\to H(S_2|S_0) = \frac{3}{4} = H(S_1|S_0)$

3. Pour S_1 nous avons la densité de probabilité suivante :

Outcome possible Probabilité

P 3/8F 5/8

En effet,
$$p(P) = p(AP) + P(BP) = \frac{3}{8} + 0$$
$$p(F) = p(AF) + P(BF) = \frac{3}{8} + \frac{1}{4} = \frac{5}{8}$$
$$H(S_1) = \frac{3}{8} \log_2(\frac{8}{3}) + \frac{5}{8} \log_2(\frac{8}{5}) = \boxed{0.954 = H(S_1)}$$

Pour S_2 , la densité de probabilité est $\frac{\text{Outcome possible}}{\text{P}} \frac{\text{Probabilité}}{3/8}$ (Mêmes explication of the probabilité est $\frac{\text{Outcome possible}}{\text{F}} \frac{5/8}{5/8}$

tions que pour S_1). La densité de probabilité étant la même, l'entropie est donc la même aussi $\rightarrow \boxed{0.954 = H(S_2)}$

	Outcome possible	Probabilité
	PP	3/16
Pour S en revanche, la densité de probabilité change légèrement :	PF	3/16
	FP	3/16
	FF	7/16

$$\operatorname{Car}\left\{ \begin{array}{l} p(PP) = p(APP) + p(BPP) = \frac{3}{16} + 0 = \frac{3}{16} \\ p(PF) = p(APP) + p(BPF) = \frac{3}{16} + 0 = \frac{3}{16} \\ p(FP) = p(AFP) + p(BFP) = \frac{3}{16} + 0 = \frac{3}{16} \\ p(PP) = p(APP) + p(BPP) = \frac{3}{16} + 0 = \frac{3}{16} \\ p(PP) = p(APP) + p(BPP) = \frac{3}{16} + \frac{1}{4} = \frac{7}{16} \end{array} \right\}$$
 Donc $H(S) = 3 \cdot \frac{3}{16} \log_2(\frac{16}{3}) + \frac{7}{16} \log_2(\frac{16}{7}) = \boxed{1.88 = H(S)}$. $H(S_1|S_0) = \frac{3}{4} \le 0.954 = H(S_1)$

et $H(S_1, S_2|S_0) = \frac{3}{2} \le 1.88 = H(S)$. Cela semble correcte, car ces inégalités répondent au théorème 4.2(Conditionner réduit l'entropie). En effet, savoir S_0 nous apporte une information supplémentaire (caractérisée par la différence entre les deux termes d'une inégalité) ; ayant plus d'information, l'entropie s'en trouve donc réduite.

- 4. $p_{S_2|S_1}(s_2|s_1) =$ "probabilité que $S_2 = s_2$ sachant que $S_1 = s_1$ " $= \frac{p(s_1, s_2)}{p(s_1)}$ Nous pouvons donc analyser les cas un par un¹:
 - $p_{S_2|S_1}(P|P) = \frac{1}{2}$ Une fois que le premier tirage est fait et que pile est sorti, on sait que la pièce est A. La probabilité d'avoir pile est donc de $\frac{1}{2}$
 - $p_{S_2|S_1}(F|P) = \frac{1}{2}$, pour la même raison qu'au-dessus. Pile est sorti, donc nous savons que la pièce est A, donc une chance sur deux d'avoir pile, et une demi pour face.

•
$$p_{S_2|S_1}(P|F) = \frac{p_{S_1,S_2}(FP)}{p_{S_1}(F)} = \frac{\frac{3}{16}}{\frac{5}{8}} = \frac{3}{10}$$

•
$$p_{S_2|S_1}(F|F) = \frac{p_{S_1,S_2}(FF)}{p_{S_1}(F)} = \frac{\frac{7}{10}}{\frac{5}{8}} = \frac{7}{10}$$

5.
$$H(S_2|S_1) = \sum_{s_1 \in A_1} H(S_2|S_1 = s_1) p_{S_1}(s_1)$$

 $\to = H(S_2|S_1 = P) p_{S_1}(P) + H(S_2|S_1 = F) p_{S_1}(F)$
 $p_{S_1}(P) = \frac{3}{8}, \ p_{S_1}(F) = \frac{5}{8}$
 $H(S_2|S_1 = P) = 2 \cdot \frac{1}{2} \log_2(2) = 1$
 $H(S_2|S_1 = F) = \frac{3}{10} \log_2(\frac{10}{3}) + \frac{7}{10} \log_2(\frac{10}{7}) \simeq 0.8813$
 $\to H(S_2|S_1) = \frac{5}{8} \cdot 0.8813 + \frac{3}{8} \cdot 1 \simeq \boxed{0.926 = H(S_2|S_1)}$

Cette entropie est plus faible que celle de S_2 (ce qui répond au théorème 4.2), car une fois que l'on sait S_1 , nous sommes dirigés vers une solution : Si face apparaît, nous serons tentés de proposer face au tirage suivant. Cette tentation est caractérisée par une entropie inférieure.

6. La règle de l'enchaînement pour l'entropie semble être :

 $H(S_2|S_1) = H(S_2, S_1) - H(S_1) = H(S) - H(S_1) = 1.88 - 0.954 = 0.926$. La valeur de cette entropie est donc vérifiée.

¹ c.f. partie 3 pour les probabilités

	Outcome possible	probabilité
-	APP	3/16
	APF	3/16
	AFP	3/16
7. La densité de probabilité est (dans l'ordre $S_0, S_1, S_2)$	AFF	3/16
	BPP	0
	BPF	0
	BFP	0
	BFF	1/4
Donc l'entropie de cette source est : $4 \cdot \frac{3}{16} \log_2(\frac{16}{3}) + \frac{3}{16} \log_2(\frac{16}{3})$	$\frac{1}{4}\log_2(4) = 2.311 =$	$H(S_0,S_1,S_2)$

8.
$$H(S_2|S_1, S_0) = H(S_2|S_1, S_0 = PA) \cdot p_{S_1, S_0}(PA) + H(S_2|S_1, S_0 = FA) \cdot p_{S_1, S_0}(FA) + H(S_2|S_1, S_0 = PB) \cdot p_{S_1, S_0}(PB) + H(S_2|S_1, S_0 = FB) \cdot p_{S_1, S_0}(FB)$$

Outcome proba
$$\frac{P_{S_1,S_0}(FB)}{p_{S_1,S_0}(FB)} = \frac{1}{4}$$

$$p_{S_1,S_0}(PB) = 0$$

$$p_{S_1,S_0}(FA) = \frac{3}{8}$$

$$p_{S_1,S_0}(PA) = \frac{3}{8}$$

$$H(S_2|S_1,S_0 = PA) = H(S_2|S_1,S_0 = FA) = 2 \cdot \frac{1}{2}\log_2(2) = 1$$

$$H(S_2|S_1,S_0 = PA) = 0 \text{ (cas impossible)}$$

$$H(S_2|S_1,S_0 = FB) = 1\log_2(1) = 0 \text{ (source déterministe)}.$$

$$H(S_2|S_1, S_0 = 1|S) = 1 \log_2(1) = 0$$
 (source determine $H(S_1|S_1, S_0 = 1|S) = 1 \log_2(1) = 0$

$$\rightarrow H(S_2|S_1, S_0) = 2 \cdot \frac{3}{8} \cdot 1 = \boxed{\frac{3}{4} = H(S_2|S_1, S_0)}.$$

Nous voyons que $H(S_2|S_1,S_0)=H(S_2|S_0)$. En effet, savoir S_1 en plus ne nous donnera aucune information en plus ; Si la pièce est A, alors Pile et Face arriveront toujours avec la même probabilité (jets indépendants), et si la pièce est B alors Face sortira tout le temps \rightarrow connaître le premier tirage (si l'on sait quelle pièce est utilisée) ne nous fournit aucune information supplémentaire sur S_2 .

9.
$$H(S_0|S_1, S_2) = H(S_0|S) = H(S_0, S) - H(S) = H(S_0, S_1, S_2) - H(S_1, S_2) = 2.311 - 1.88 = 0.431 = H(S_0|S_1, S_2) = 0.431 = H(S_0|S_1, S_$$