Deep Learning: Dealing with Longer Sequences – LSTMs and GRUs

Course Instructor:

Dr. Bam Bahadur Sinha
Assistant Professor
Computer Science & Engineering
National Institute of Technology
Sikkim

Recurrent Neural Network (RNNs)

- At each new timestep the old information gets morphed by the current input
- One could imagine that after t steps the information stored at time step t k (for some k < t) gets completely morphed
- Even during backpropagation the information does not flow well

Dealing with Longer Sequences

Whiteboard Analogy

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

$$\mathbf{0}$$
 ac

$$bd + a$$

$$ac(bd+a)$$

$$ac(bd+a)+ad$$

$$ac = 5$$

$$bd = 33$$

$$bd + a = 34$$

Strategy

- Selectively write on the board
- Selectively read the already written content
- Selectively forget (erase) some content

Whiteboard Analogy

$$a = 1$$
 $b = 3$ $c = 5$ $d = 11$

Compute ac(bd+a)+ad

$$\mathbf{0}$$
 ac

$$bd + a$$

$$ac(bd+a)$$

- **6** ad
- ac(bd+a)+ad

Selectively write on the board

Strategy

- Selectively read the already written content
- Selectively forget (erase) some content

Whiteboard Analogy

ac = 5

ac(bd+a) = 170

bd + a = 34

Since the RNN also has a finite state size, we need to figure out a way to allow it to selectively read, write and forget

Strategy

- Selectively write to the state
- Selectively read the already written content
- Selectively forget (erase) some content

Can we use similar strategy in RNNs?

Review: The first half of the movie was dry but the second half really picked up pace. The lead actor delivered an amazing performance

Ideally, we want to

- forget the information added by stop words (a, the, etc.)
- selectively read the information added by previous sentiment bearing words (awesome, amazing, etc.)
- selectively write new information from the current word to the state

Can we use similar strategy in RNNs?

Review: The first half of the movie was dry but the second half really picked up pace. The lead actor delivered an amazing performance

Wishlist – Dealing with longer sequences

While computing s_t from s_{t-1} we want to make sure that we use selective write, selective read and selective forget so that only important information is retained in s_t

Long Short Term Memory Cells How do you implement selective read, write and forget?

$$s_t = \sigma(Ux_t + W\mathbf{s_{t-1}} + b)$$

- instead of passing s_{t-1} as it is to s_t we want to pass (write) only some portions of it to the next state
- A reasonable way of doing this would be to assign a value between 0 and 1 which determines what fraction of the current state to pass on to the next state

Selective Write

But how do we compute o_{t-1} ? How does the RNN know what fraction of the state to pass on?

- lacksquare learn o_{t-1} from data
- the only thing that we learn from data is parameters
- Solution: express o_{t-1} using parameters

Selective Write

$$egin{aligned} o_{t-1} &= \sigma(U_o x_{t-1} + W_o \dot{h}_{t-2} + b_o) \ h_{t-1} &= s_{t-1} \odot o_{t-1} \end{aligned}$$

 o_t is called the **output** gate

Selective Write

 $ilde{s}_t = \sigma(Ux_t + Wh_{t-1} + b)$

 $ilde{s}_t$ thus captures all the information from the previous state h_{t-1} and the current input x_t

However, we may not want to use all this new information and only selectively read from it before constructing the new cell st

Selective Read

$$egin{aligned} i_t &= \sigma(U_i x_t + W_i h_{t-1} + b_i) \ &= ilde{s}_t \odot i_t \end{aligned}$$

 i_t is called the **input** gate

Selective Read

Previous state:

$$s_{t-1}$$

Output gate:

$$o_{t-1} = \sigma(W_o h_{t-2} + U_o x_{t-1} + b_o)$$

Selectively Write:

$$h_{t-1} = o_{t-1} \odot \sigma(s_{t-1})$$

Current (temporary) state:

$$\tilde{s_t} = \sigma(Wh_{t-1} + Ux_t + b)$$

Input gate:

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$

Selectively Read:

$$i_t \odot \tilde{s_t}$$

Summary – till selective read and write

How do we combine $ilde{s}_t$ and s_{t-1} to get the new state s_t

$$egin{aligned} f_t &= \sigma(U_f x_t + W_f h_{t-1} + b_f) \ s_t &= ilde{s}_t \odot i_t + s_{t-1} \odot f_t \end{aligned}$$

Selective Forget

States:

Gates:

$$o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o)$$

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i)$$

$$s_t = \sigma(W h_{t-1} + U_i x_t + b_i)$$

$$s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s}_t$$

$$f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f)$$

$$h_t = o_t \odot \sigma(s_t)$$

Full set of equations (Selective Read, Selective Write and Selective Forget)

Gates:

$$o_{t} = \sigma(W_{o}h_{t-1} + U_{o}x_{t} + b_{o}) \qquad \tilde{s}_{t} = \sigma(Wh_{t-1} + Ux_{t} + b_{o})$$

$$i_{t} = \sigma(W_{i}h_{t-1} + U_{i}x_{t} + b_{i}) \qquad s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \tilde{s}_{t}$$

$$f_{t} = \sigma(W_{f}h_{t-1} + U_{f}x_{t} + b_{f}) \qquad h_{t} = o_{t} \odot \sigma(s_{t})$$

States:

$$o_{t} = \sigma(W_{o}h_{t-1} + U_{o}x_{t} + b_{o}) \qquad \tilde{s}_{t} = \sigma(Wh_{t-1} + Ux_{t} + b)$$

$$i_{t} = \sigma(W_{i}h_{t-1} + U_{i}x_{t} + b_{i}) \qquad s_{t} = f_{t} \odot s_{t-1} + i_{t} \odot \tilde{s}_{t}$$

$$f_{t} = \sigma(W_{f}h_{t-1} + U_{f}x_{t} + b_{f}) \qquad h_{t} = o_{t} \odot \sigma(s_{t})$$

Long Short Term Memory Cells

- LSTM has many variants which include different number of gates and also different arrangement of gates
- The one which we just saw is one of the most popular variants of LSTM
- Another equally popular variant of LSTM is Gated Recurrent Unit which we will see next

Gates:

$$o_t = \sigma(W_o h_{t-1} + U_o x_t + b_o) \qquad \tilde{s_t} = \sigma(W h_{t-1} + U x_t + b)$$

$$i_t = \sigma(W_i h_{t-1} + U_i x_t + b_i) \qquad s_t = f_t \odot s_{t-1} + i_t \odot \tilde{s_t}$$

$$f_t = \sigma(W_f h_{t-1} + U_f x_t + b_f) \qquad h_t = o_t \odot \sigma(s_t)$$

States:

Long Short Term Memory Cells

Gates:

$$o_t = \sigma(W_o s_{t-1} + U_o x_t + b_o)$$

$$i_t = \sigma(W_i s_{t-1} + U_i x_t + b_i)$$

$$\tilde{s_t} = \sigma(W(o_t \odot s_{t-1}) + U_i x_t + b_i)$$

$$s_t = (1 - i_t) \odot s_{t-1} + i_t \odot \tilde{s_t}$$

States:

$$\tilde{s_t} = \sigma(W(o_t \odot s_{t-1}) + Ux_t + b)$$

$$s_t = (1 - i_t) \odot s_{t-1} + i_t \odot \tilde{s_t}$$

Gated Recurrent Units (Fewer Gates)