Ejercicio 1 Sea V un espacio vectorial que admite un endomorfismo f tal que $f \circ f = -Id_V$. Probar que si $v \neq 0$, entonces $\{v, f(v)\}$ es linealmente independiente. Como conclusión demostrar que la dimensión de V es par.

Ejercicio 2. Sea V un espacio vectorial y $B = \{e_1, ..., e_n\}$ una base de V. Sea $H = \{v_1, ..., v_r\}$, $r \le n$, un subconjunto de V. Probar que H es linealmente independiente si y solo si existe un automorfismo f de V tal que $f(e_i) = v_i \ \forall i \in \{1, ..., r\}$

Ejercicio 3. Sea V un espacio vectorial y sean $y \in V$, $\varphi \in V^*$. Definimos el endomorfismo f de V mediante $f(x) = \varphi(x)y$, $\forall x \in V$. Demostrar que la traza de f es $\varphi(x)$

Ejercicio 4. Sea $f \in End(V)$ tal que $f \circ f = Id_V$. Demostrar que f es un automorfismo, y que $V = U \oplus W$, siendo

$$U = \{x \in V : f(x) = x\}$$

$$W = \{x \in V : f(x) = -x\}$$