<u>Data Science</u> Unit 4 Chapter 1: Process Superstep:

Introduction:

• The Process superstep adapts the assess results of the retrieve versions of the data sources into a highly structured data vault that will form the basic data structure for the rest of the data science steps.

Five categories of data:

Data Vault:

- The data structure is designed to be responsible for long-term historical storage of data from multiple operational systems.
- It supports chronological historical data tracking for full auditing and enables parallel loading of the structures.

Hubs:

- Data vault hubs contain a set of unique business keys that normally do not change over time
- Hubs hold a surrogate key for each hub data entry and metadata labeling the source of the business key.

Links:

- Data vault links are associations between business keys.
- These links are essentially many-to-many joins, with additional metadata to enhance the particular link.

Satellites

- Data vault satellites hold the chronological and descriptive characteristics for a specific section of business data.
- Satellites consist of characteristics and metadata linking them to their specific hub.
- Metadata labeling the origin of the association and characteristics, along with a time line
 with start and end dates for the characteristics, is put in safekeeping, for future use from
 the data section.
- Each satellite holds an entire chronological history of the data entities within the specific satellite.

Reference Satellites:

- Reference satellites are referenced from satellites but under no circumstances bound with metadata for hub keys.
- They prevent redundant storage of reference characteristics that are used regularly by other satellites.
- Typical reference satellites are:
- Standard codes: These are codes such as ISO 3166 for country codes, ISO 4217 for currencies, and ISO 8601 for time zones.

- Fixed lists for specific characteristics: These can be standard lists that reduce other standard lists. For example, the list of countries your business has offices in may be a reduced fixed list from the ISO 3166 list.
- Conversion lookups: Look at Global Positioning System (GPS) transformations.

• Time-Person-Object-Location-Event Data Vault

• The data vault we use is based on the Time-Person-Object-Location-Event (T-P-O-L-E) design principle.

Time Section:

• The time section contains the complete data structure for all data entities related to recording the time at which everything occurred.

Time Hub

- The time hub consists of the following fields:
- CREATE TABLE [Hub-Time] (
- IDNumber VARCHAR (100) PRIMARY KEY,
- IDTimeNumber Integer,
- ZoneBaseKey VARCHAR (100),
- DateTimeKey VARCHAR (100),
- DateTimeValue DATETIME
-);

Time Links:

- The time links link the time hub to the other hubs
- The following links are supported.

1) Time-Person Link:

- This connects date-time values within the person hub to the time hub.
- Dates such as birthdays, marriage anniversaries, and the date of reading this book can be recorded as separate links in the data vault.
- The normal format is BirthdayOn, MarriedOn, or ReadBookOn. The format is simply a pair of keys between the time and person hubs.

• 2) Time-Object Link

- This connects date-time values within the object hub to the time hub.
- Dates such as those on which you bought a car, sold a car, and read this book can be recorded as separate links in the data vault.
- The normal format is BoughtCarOn, SoldCarOn, or ReadBookOn. The format is simply a
 pair of keys between the time and object hubs.

3) Time-Location Link:

- This connects date-time values in the location hub to the time hub.
- Dates such as moved to post code SW1, moved from post code SW1, and read book at post code SW1 can be recorded as separate links in the data vault.
- The normal format is MovedToPostCode, MovedFromPostCode, or ReadBookAtPostCode. The format is simply a pair of keys between the time and location hubs.

4)Time-Event Link:

- This connects date-time values in the event hub with the time hub.
- Dates such as those on which you have moved house and changed vehicles can be recorded as separate links in the data vault.
- The normal format is MoveHouse or ChangeVehicle. The format is simply a pair of keys between the time and event hubs.

Time Satellites:

- Time satellites are the part of the vault that stores the following fields.
- CREATE TABLE [Satellite-Time-<Time Zone>] (
- IDZoneNumber VARCHAR (100) PRIMARY KEY,
- IDTimeNumber INTEGER,
- ZoneBaseKey VARCHAR (100),
- DateTimeKey VARCHAR (100),
- UTCDateTimeValue DATETIME,
- Zone VARCHAR (100),
- DateTimeValue DATETIME
-);

Person Section:

• The person section contains the complete data structure for all data entities related to recording the person involved.

Person Hub:

- The person hub consists of a series of fields that supports a "real" person. The person hub consists of the following fields:
- CREATE TABLE [Hub-Person] (
- IDPersonNumber INTEGER,
- FirstName VARCHAR (200),
- SecondName VARCHAR (200),
- LastName VARCHAR (200),
- Gender VARCHAR (20),
- TimeZone VARCHAR (100),
- BirthDateKey VARCHAR (100),
- BirthDate DATETIME
-);

Person Links:

This links the person hub to the other hubs

• 1) Person-Time Link:

- This link joins the person to the time hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Person-Time] (
- IDPersonNumber INTEGER,

- IDTimeNumber INTEGER,
- ValidDate DATETIME
-);

2) Person-Object Link:

- This link joins the person to the object hub to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Person-Object] (
- IDPersonNumber INTEGER,
- IDObjectNumber INTEGER,
- ValidDate DATETIME
-);

3)Person-Location Link:

- This link joins the person to the location hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Person-Time] (
- IDPersonNumber INTEGER,
- IDLocationNumber INTEGER,
- ValidDate DATETIME
-);

4)Person-Event Link:

- This link joins the person to the event hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Person-Time] (
- IDPersonNumber INTEGER,
- IDEventNumber INTEGER,
- ValidDate DATETIME
-);

Person Satellites:

- The person satellites are the part of the vault that stores the temporal attributes and descriptive attributes of the data. The satellite is of the following format:
- CREATE TABLE [Satellite-Person-Gender] (
- PersonSatelliteID VARCHAR (100),
- IDPersonNumber INTEGER,
- FirstName VARCHAR (200),
- SecondName VARCHAR (200),
- LastName VARCHAR (200),
- BirthDateKey VARCHAR (20),
- Gender VARCHAR (10),
-);

Object Section:

• The object section contains the complete data structure for all data entities related to recording the object involved.

Object Hub:

- The object hub consists of a series of fields that supports a "real" object. The object hub consists of the following fields:
- CREATE TABLE [Hub-Object-Species] (
- IDObjectNumber INTEGER,
- ObjectBaseKey VARCHAR (100),
- ObjectNumber VARCHAR (100),
- ObjectValue VARCHAR (200),
-);

Object Links:

• These link the object hub to the other hubs

1) Object-Time Link:

- This link joins the object to the time hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Object-Time] (
- IDObjectNumber INTEGER,
- IDTimeNumber INTEGER,
- ValidDate DATETIME
-);

2)Object-Person Link:

- This link joins the object to the person hub to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Object-Person] (
- IDObjectNumber INTEGER,
- IDPersonNumber INTEGER,
- ValidDate DATETIME
-);

3)Object-Location Link:

- This link joins the object to the location hub, to describe the relationships between the two hubs. The link consists of the following fields:
- CREATE TABLE [Link-Object-Location] (
- IDObjectNumber INTEGER,
- IDLocationNumber INTEGER,
- ValidDate DATETIME
-);

Object-Event Link:

 This link joins the object to the event hub to describe the relationships between the two hubs.

Object Satellites:

- Object satellites are the part of the vault that stores and provisions the detailed characteristics of objects.
- The typical object satellite has the following data fields:
- CREATE TABLE [Satellite-Object-Make-Model] (
- IDObjectNumber INTEGER,
- ObjectSatelliteID VARCHAR (200),

- ObjectType VARCHAR (200),
- ObjectKey VARCHAR (200),
- ObjectUUID VARCHAR (200),
- Make VARCHAR (200),
- Model VARCHAR (200)
-);

Location Section:

• The location section contains the complete data structure for all data entities related to recording the location involved.

Location Hub:

- The location hub consists of a series of fields that supports a GPS location.
- The location hub consists of the following fields:
- CREATE TABLE [Hub-Location] (
- IDLocationNumber INTEGER,
- ObjectBaseKey VARCHAR (200),
- LocationNumber INTEGER,
- LocationName VARCHAR (200),
- Longitude DECIMAL (9, 6),
- Latitude DECIMAL (9, 6)
-);

Location Links:

The location links join the location hub to the other hubs

1)Location-Time Link:

- The link joins the location to the time hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Location-Time] (
- IDLocationNumber INTEGER,
- IDTimeNumber INTEGER,
- ValidDate DATETIME
-);
- These links support business actions such as ArrivedAtShopAtDateTime or ShopOpensAtTime.

• 2)Location-Person Link:

- This link joins the location to the person hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Location-Person] (
- IDLocationNumber INTEGER,
- IDPersonNumber INTEGER,
- ValidDate DATETIME
-);
- These links support such business actions as ManagerAtShop or SecurityAtShop.

3)Location-Object Link:

- This link joins the location to the object hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Location-Object] (

- IDLocationNumber INTEGER,
- IDObjectNumber INTEGER,
- ValidDate DATETIME
-):
- These links support such business actions as ShopDeliveryVan or RackAtShop.
- 4)Location-Event Link:
- This link joins the location to the event hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Location-Event] (
- IDLocationNumber INTEGER,
- IDEventNumber INTEGER,
- ValidDate DATETIME
-);
- These links support such business actions as ShopOpened or PostCodeDeliveryStarted.

Location Satellites:

- The location satellites are the part of the vault that stores and provisions the detailed characteristics of where entities are located. The typical location satellite has the following data fields:
- CREATE TABLE [Satellite-Location-PostCode] (
- IDLocationNumber INTEGER,
- LocationSatelliteID VARCHAR (200),
- LocationType VARCHAR (200),
- LocationKey VARCHAR (200),
- LocationUUID VARCHAR (200),
- CountryCode VARCHAR (20),
- PostCode VARCHAR (200)
-);

• Event Section:

 The event section contains the complete data structure for all data entities related to recording the event that occurred.

Event Hub:

- The event hub consists of a series of fields that supports events that happens in the real world.
- The event hub consists of the following fields:
- CREATE TABLE [Hub-Event] (
- IDEventNumber INTEGER,
- EventType VARCHAR (200),
- EventDescription VARCHAR (200)
-);

Event Links:

- Event links join the event hub to the other hubs
- 1) Event-Time Link:
- This link joins the event to the time hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Event-Time] (

- IDEventNumber INTEGER,
- IDTimeNumber INTEGER,
- ValidDate DATETIME
-):
- These links support such business actions as DeliveryDueAt or DeliveredAt.

2)Event-Person Link:

- This link joins the event to the person hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Event-Person] (
- IDEventNumber INTEGER,
- IDPersonNumber INTEGER,
- ValidDate DATETIME
-);
- These links support such business actions as ManagerAppointAs or StaffMemberJoins.

3) Event-Object Link:

- This link joins the event to the object hub, to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Event-Object] (
- IDEventNumber INTEGER,
- IDObjectNumber INTEGER,
- ValidDate DATETIME
-);
- These links support such business actions as VehicleBuy, VehicleSell, or ItemInStock.

4)Event-Location Link:

- The link joins the event to the location hub to describe the relationships between the two hubs.
- The link consists of the following fields:
- CREATE TABLE [Link-Event-Location] (
- IDEventNumber INTEGER,
- IDTimeNumber INTEGER,
- ValidDate DATETIME
-):
- These links support such business actions as DeliveredAtPostCode or PickupFromGPS.

Event Satellites:

• The event satellites are the part of the vault that stores the details related to all the events that occur within the systems you will analyze with your data science.

Data Science Process:

Roots of Data Science:

- Data science is at its core about curiosity and inquisitiveness.
- This core is rooted in the 5 Whys.
- The 5 Whys is a technique used in the analysis phase of data science.

Benefits of the 5 Whys:

- The 5 Whys assist the data scientist to identify the root cause of a problem and determine the relationship between different root causes of the same problem.
- It is one of the simplest investigative tools—easy to complete without intense statistical analysis.

When Are the 5 Whys Most Useful?

- The 5 Whys are most useful for finding solutions to problems that involve human factors or interactions that generate multilayered data problems.
- In day-to-day business life, they can be used in real-world businesses to find the root causes of issues.

How to Complete the 5 Whys:

- Write down the specific problem. This will help you to formalize the problem and describe it completely.
- It also helps the data science team to focus on the same problem.
- Ask why the problem occurred and write the answer below the problem.
- If the answer you provided doesn't identify the root cause of the problem that you wrote down first, ask why again, and write down that answer.
- Loop back to the preceding step until you and your customer are in agreement that the problem's root cause is identified.
- Again, this may require fewer or more than the 5 Whys.

Fishbone Diagrams:

• The diagram is drawn up as you complete the 5 Whys process, as you will discover that there are normally many causes for why specific facts have been recorded.

- The ten cans are the effect (Y), but the four root causes of the purchase are
- 1) I was hungry, so I bought ten tins. I did not like the brand of curry that I bought 10 cans of the previous week.
- 2) My neighbor needed five cans, as she was no longer able to walk, and she requested the brand that I purchased.
- 3) I fed two cans to the dog, because I feel dog food is not nutritious, but I was not prepared to buy a more expensive brand of canned beef curry for the dog.
- 4) I put three cans in the charity bin outside the local school.

• 5 Whys Example:

• Problem Statement: Customers are unhappy because they are being shipped products that don't meet their specifications.

• 1. Why are customers being shipped bad products?

 Because manufacturing built the products to a specification that is different from what the customer and the salesperson agreed to.

2. Why did manufacturing build the products to a different specification than that of sales?

- Because the salesperson accelerates work on the shop floor by calling the head of manufacturing directly to begin work.
- An error occurred when the specifications were being communicated or written down.
- 3. Why does the salesperson call the head of manufacturing directly to start work instead of following the procedure established by the company?
- Because the "start work" form requires the sales director's approval before work can begin and slows the manufacturing process (or stops it when the director is out of the office).

4. Why does the form contain an approval for the sales director?

- Because the sales director must be continually updated on sales for discussions with the CEO, as my retailer customer was a topten key account.
- In this case, only four whys were required to determine that a non-value-added signature authority helped to cause a process breakdown in the quality assurance for a key account.

Monte Carlo Simulation:

- This technique performs analysis by building models of possible results, by substituting a range of values—a probability distribution—for parameters that have inherent uncertainty.
- It then calculates results over and over, each time using a different set of random values from the probability functions.
- Depending on the number of uncertainties and the ranges specified for them, a Monte Carlo simulation can involve thousands or tens of thousands of recalculations before it is complete.
- Monte Carlo simulation produces distributions of possible outcome values.
- As a data scientist, this gives you an indication of how your model will react under real-life situations.
- It also gives the data scientist a tool to check complex systems, wherein the input parameters are high-volume or complex.

Causal Loop Diagrams:

- A causal loop diagram (CLD) is a causal diagram that aids in visualizing how a number of variables in a system are interrelated and drive cause-and-effect processes.
- The diagram consists of a set of nodes and edges.
- Nodes represent the variables, and edges are the links that represent a connection or a relation between the two variables.
- Example: The challenge is to keep the "Number of Employees Available to Work and Productivity" as high as possible.

• Figure 9-12. Monte Carlo result

 The result was "Managers need to manage not work." The R2—percentage of manage doing employees' duties—was the biggest cause and impact driver in the system.

Pareto Chart:

- Used to perform a rapid processing plan for the data science.
- Pareto charts can be constructed by segmenting the range of the data into groups (also called segments, bins, or categories).

- Questions the Pareto chart answers:
- • What are the largest issues facing our team or my customer's business?
- What 20% of sources are causing 80% of the problems (80/20 Rule)?
- Where should we focus our efforts to achieve the greatest improvements?

Forecasting:

- Forecasting is the ability to project a possible future, by looking at historical data.
- The data vault enables these types of investigations, owing to the complete history it collects as it processes the source's systems data.
- You will perform many forecasting projects during your career as a data scientist and supply answers to such questions as the following:
- What should we buy?
- What should we sell?
- Where will our next business come from?
- People want to know what you calculate to determine what is about to happen.

Data Science:

 You must understand that data science works best when you follow approved algorithms and techniques.

data science that works follows these basic steps:

- 1. Start with a question. Make sure you have fully addressed the 5 Whys.
- 2. Follow a good pattern to formulate a model.
- Formulate a model, guess a prototype for the data, and start a virtual simulation of the real-world parameters.
- Mix some mathematics and statistics into the solution, and you have the start of a data science model.
- 3. Gather observations and use them to generate a hypothesis.
- Start the investigation by collecting the required observations, as per your model.
- Process your model against the observations and prove your hypothesis to be true or false.
- 4. Use real-world evidence to judge the hypothesis.
- Relate the findings back to the real world and, through storytelling, convert the results into real-life business advice and insights.
- 5. Collaborate early and often with customers and with subject matter experts along the way.
- You also must communicate early and often with your relevant experts to ensure that you take them with you along the journey of discovery.
- Businesspeople want to be part of solutions to their problems. Your responsibility is to supply good scientific results to support the business.