

OUTLINE

- Introduction (this presentation)
- ✓ Safran and Me
- ✓ EDA
- Prerequisites
- 2. Data Loading and Preprocessing
 - Essential check
 - ✓ Sidetable
- 3. Statistical Visualizations
 - ✓ Matplotlib
 - ✓ Pandas
 - ✓ Seaborn

- 4. (Easy Enough) Interactive Visualizations
 - ✓ Ipywidgets
 - ✓ Plot.ly and Plot.ly express
 - ✓ Bokeh
 - ✓ Altair
- 5. Automatic EDA Report
 - ✓ Dtale
 - ✓ Pandas-profiling
 - ✓ Sweetviz
 - ✓ Autoviz
- 6. Wrap-up and Some Tips

More than 76000 employees in 350 locations across 31 countries

SAFRAN'S AIRCRAFT ENGINES

Through CFM International (the 50/50 joint company between Safran Aircraft Engines and GE) we produce the LEAP® turbofan, successor to the best-selling CFM56®. The LEAP powers new-generation single-aisle commercial jets: the Airbus A320neo, Boeing 737 MAX and COMAC C919. We're also a leading military aircraft engine manufacturer, supplying the M88 for the Rafale fighter, and as part of a consortium making the TP400 turboprop engine for the Airbus A400M transport aircraft

Safran Research Center at Paris-Saclay About 500 persons including 80 experts

Energy & Propulsion

Electrical & Electronical Systems

Materials & Processes

Signal and Information Technologies

Modelling & Simulation

Sensors Technologies & applications

4 Technological Platforms Up to TRL* 6

Safran Composites

Safran Advanced Turbine Airfoils (Experimental Foundry)

Safran Additive Manufacturing

Safran Ceramics

* Technology Readiness Level

Plateforme digital

Things I do @Safran Tech

Since 2017. 04

Data scientist & SW engineer

- Analyzing data obtained from airplanes and helicopters (mostly from engines)
- Applying various statistical models and machine learning algorithms to improve performances and reduce costs
 - Optimizing maintenance policies

EXPLORATORY DATA ANALYSIS (EDA)

An approach of analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods

≻Objectives

- ✓ Suggest hypotheses about the causes of observed phenomena
- Assess assumptions on which statistical inference will be based
- ✓ Support the selection of appropriate statistical tools and techniques
- ✓ Provide a basis for further data collection through surveys or experiments

Source: https://en.wikipedia.org/wiki/Exploratory data analysis

PREREQUISITE

- ➤ Some Experiences with:
 - ✓ Python
 - ✓ Pandas
 - ✓ Matplotlib
 - ✓ Jupyter Notebook (or similar)
- ➤ GitHub & Google Account

Go to: https://github.com/sesise0307/pydata2021-eda/

Fork the repo

LET'S GET YOUR HANDS DIRTY

Go to:

https://colab.research.google.com/github/{your_github_id}/pydata2021-eda/

For example:

https://colab.research.google.com/github/sesise0307/pydata2021-eda/

WRAP UP

- 1. Introduction (this presentation)
- ✓ Safran and Me
- ✓ EDA
- Prerequisites
- 2. Data Loading and Preprocessing
 - Essential check
 - ✓ Sidetable
- 3. Statistical Visualizations
 - ✓ Matplotlib
 - ✓ Pandas
 - ✓ Seaborn

- 4. (Easy Enough) Interactive Visualizations
- ✓ Ipywidgets
- ✓ Plot.ly and Plot.ly express
- ✓ Bokeh
- ✓ Altair
- 5. Automatic EDA Report
 - ✓ Dtale
 - ✓ Pandas-profiling
 - ✓ Sweetviz
 - ✓ Autoviz
- 6. Wrap-up and Some Tips

SOME TIPS OR RECOMMENDATIONS

RTFM (Read The Fucking Manual)

Dashboarding

- Streamlit
- Dash
- Voila