Section 11.5 - Areas in Polar Coordinates

The area of the region between the origin and the curve r=f(o) for $\alpha \leq 0 \leq \beta$ is:

$$Area = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} (r(\theta))^2 d\theta$$

Example: Find the area inside I leaf of the rose r = cos(20).

* Check for sym: x-axis, y-axis, origin. (reduce interval to [O, T])

$$+ r=0 \iff \cos(2\theta)=0$$
 $2\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$ $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \dots$

curve is tangent to the line 0 = T/4 at the origin.

Area =
$$2\int \frac{1}{2} r^2 d\theta = 2\int \frac{1}{2} (\cos(2\theta))^2 d\theta$$

= $\int_0^{\pi/4} (\cos(2\theta))^2 d\theta = \int_0^{\pi/4} \frac{1 + \cos 4\theta}{2} d\theta = \dots = \frac{\pi}{8} u^2$

ex: Find the area of the region enclosed by the cardioid $r = 2(1 + \cos \theta)$

$$r = 2(1 + \cos \theta)$$
 : symmetry wit x-axis. (interval is $[0,\pi]$)

Area =
$$2\int_{0}^{\pi} \frac{1}{2}r^{2} d\theta = \int_{0}^{\pi} 4(1+\cos\theta)^{2} d\theta = 4\int_{0}^{\pi} 1+2\cos\theta+\cos^{2}\theta$$

= $4\int_{0}^{\pi} (1+2\cos\theta+1+\cos2\theta) d\theta = 4\int_{0}^{\pi} (1+2\cos\theta+\frac{1}{2}+\frac{\cos2\theta}{2}) d\theta$
= $4\int_{0}^{\pi} (\frac{3}{2}+2\cos\theta+\frac{\cos2\theta}{2}) d\theta$
= $4\int_{0}^{\pi} (\frac{3}{2}+2\sin\theta+\frac{\sin2\theta}{2})^{\pi} = 6\pi u^{2}$

ex: Set up an integral for the area inside the smaller loop for the limagon $r=1+2\cos\theta$

$$r=0 \iff 1+2\cos\theta=0 \iff \cos\theta=\frac{-1}{2} \iff \theta=\frac{2\pi}{3}, \frac{4\pi}{3}$$

$$=2\int_{-\pi}^{\pi}\frac{1}{2}(1+2\cos\theta)^{2}d\theta$$

$$= \int_{2\pi/3}^{\pi} (1+2\cos\theta)^2 d\theta$$

Area Between Polar Curves:

$$\int_{\chi}^{\beta} \frac{1}{2} r_{1}^{2} d\theta - \int_{\chi}^{\beta} \frac{1}{2} r_{1}^{2} d\theta$$

$$= \int_{\chi}^{\beta} \frac{1}{2} \left(r_{2}^{2} - r_{1}^{2} \right) d\theta$$

Area of region:
$$0 \le r(0) \le r(0) \le r_2(0)$$

for $\alpha \le 0 \le \beta$. is given by:

Area =
$$\int_{\alpha}^{\beta} \frac{1}{2} \left(r_2^2 - r_1^2 \right) d\theta$$

Example: Set up integral(s) for the area inside the curve

r=1 and outside the curve
$$r=1-\cos\theta$$

r=1 (circle of conter 0 and radius 1)
r=1-cos 0 (cardioid sym wit x-axis).

$$r=r$$

$$1-\cos\theta = 1$$

$$\cos\theta = 0$$

$$\theta = \frac{\pi}{2}$$

Area =
$$2\int_{0}^{\pi/2} \left[1^{2} - (1-\cos\theta)^{2}\right] d\theta$$

$$=\int_{0}^{\sqrt{2}}\left[1-\left(1-\cos 0\right)^{2}\right]d\theta$$

Area =
$$2 \left[\int_{0}^{\pi/2} \frac{1}{2} (1-\cos\theta)^{2} d\theta + \int_{\pi/2}^{\pi} \frac{1}{2} (1^{2}) d\theta \right]$$

= $\int_{0}^{\pi/2} (1-\cos\theta)^{2} d\theta + \int_{\pi/2}^{\pi} d\theta$.

Exercises:

Find the areas of the regions:

Find the areas of ...

4) Inside the cardioid
$$r = a(1 + \cos \theta)$$
 a>0

4) Inside the
$$x$$
-axis: interval is $[0,\pi]$ \Rightarrow x -axis: interval is $[0,\pi]$

* sym wit x-axis: information
$$\theta = \pi$$

* $r = 0 \iff 1 + \cos \theta = 0 \iff \cos \theta = -1 \iff \theta = \pi$

Area =
$$2\int_{0}^{\pi} \frac{1}{2} r^{2} d\theta = \int_{0}^{\pi} \alpha^{2} (1 + \cos \theta)^{2} d\theta$$

$$=a^{2}\int_{0}^{\pi}\left(1+2\cos\theta+\frac{1}{2}+\frac{\cos2\theta}{2}\right)d\theta=a^{2}\left(\frac{3}{2}\theta+2\sin\theta+\frac{\sin2\theta}{4}\right)_{0}^{\pi}$$

$$=\alpha^{2}\left(\frac{3}{2}\pi\right)=\frac{3\alpha^{2}\pi}{2}\pi u^{2}$$

5) Inside one leaf of the rose
$$r = cos(20)$$
 (done in lecture)

$$0 \le 20 \le T$$

$$0 \le 0 \le \frac{\pi}{2}$$

*
$$r=0 \iff \sin 2\theta = 0 \iff 2\theta = 0 \implies 2\theta = \pi$$

$$\theta = 0 \implies \theta = \pi$$

Area =
$$\int \frac{1}{2}r^2 d\sigma$$

$$=2\int_{0}^{\pi/2}\sin 2\theta \ d\theta$$

$$= 2\left[-\frac{\cos 2\theta}{2}\right]_{0}^{\pi/2} = -\left[\cos 2\theta\right]_{0}^{\pi/2} = -\left(-1-1\right) = 2 \quad 0^{2}$$

9) Shared by the circles
$$r = 2\cos\theta$$
 and $r = 2\sin\theta$

$$r = 2\cos\theta \quad \left(\text{center (1,0) radius 1} \right)$$

$$\frac{\theta \mid 0 \mid \pi/2 \mid \pi}{r \mid 2 \mid 0 \mid -2}$$

$$r = 2\sin\theta \quad \left(\text{center (0,1) radius 1} \right)$$

$$\frac{\theta}{r} = \frac{0}{2} \frac{\pi}{r} \quad \left(\frac{\pi}{r} \right)$$

= intersection:
$$r=r$$

 $2\cos\theta = 2\sin\theta \implies \theta = \frac{\pi}{4}$

Area =
$$\int_{0}^{\pi/4} \frac{1}{2} (2\sin \theta)^{2} d\theta + \int_{0}^{\pi/2} \frac{1}{2} (2\cos \theta)^{2} d\theta$$

$$= 2 \int_{0}^{\pi/4} \sin^{2}\theta \, d\theta + 2 \int_{\pi/4}^{\pi/2} \cos^{2}\theta \, d\theta = 2 \int_{0}^{\pi/4} \frac{1 - \cos 2\theta}{2} \, d\theta + 2 \int_{\pi/4}^{\pi/2} \frac{1 + \cos 2\theta}{2} \, d\theta$$

$$= \left[\Theta - \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{4}} + \left[\Theta + \frac{\sin 2\theta}{2} \right]_{\frac{\pi}{4}} = \left[\frac{\pi}{4} - \frac{1}{2} + \frac{\pi}{2} - \frac{\pi}{4} - \frac{1}{2} \right]$$

$$=\left(\frac{11}{2}-1\right)u^2$$

10) Shared by the circles r=1 and $r=2\sin\theta$.

intersection:
$$r = r$$

$$\operatorname{asin} \theta = 1$$

$$\operatorname{sin} \theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{6}$$

Area =
$$2 \left[\int_{2}^{\pi/2} (2\sin \theta)^{2} d\theta + \int_{2}^{\pi/2} \left(1^{2} \right) d\theta \right]$$

$$= \int_{0}^{\pi/2} 4 \sin^{2}\theta d\theta + \int_{0}^{\pi/2} d\theta = 4 \int_{0}^{\pi/2} \frac{1 - \cos 2\theta}{2} d\theta + \int_{\pi/2}^{\pi/2} d\theta$$

$$= \left[2\theta - \sin 2\theta \right]^{\frac{\pi}{2}} + \left[\theta \right]^{\frac{\pi}{2}} = \frac{\pi}{3} - \frac{\sqrt{3}}{2} + \frac{\pi}{2} - \frac{\pi}{6} = \left(\frac{2\pi}{3} - \frac{\cancel{6}}{2} \right) v^2$$

13) Inside the lemniscate $r^2 = 6\cos(20)$ and outside the circle $r = \sqrt{3}$

* $r^2 = 6 \cos(2\theta)$ lemniscate: sym wit x-axis,y-axis, origin. interval: $-\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2}$

$$\frac{7}{4} \leq 0 \leq \frac{17}{4}$$

$$r=0 \iff \cos(20)=0$$

$$2\theta = -\frac{\pi}{2} \qquad \alpha \qquad 2\theta = \frac{\pi}{2}$$

$$O = \frac{\pi}{4}$$

$$O = \frac{\pi}{4}$$

$$3 = 6 \cos(20)$$

$$cos(20) = \frac{1}{2}$$

$$2\theta = \pm \frac{\pi}{3} \longrightarrow \Theta = \pm \frac{\pi}{6}$$

Area =
$$2\int_{-\pi/6}^{\pi/6} \frac{1}{2} \left(6\cos 2\theta - 3 \right) d\theta = \int_{-\pi/6}^{\pi/6} \left(6\cos 2\theta - 3 \right) d\theta$$

$$= \left[3\sin 2\theta - 3\theta\right]_{-\pi/6}^{\pi/6} = 3\frac{\sqrt{3}}{2} - \frac{\pi}{2} + 3\frac{\sqrt{3}}{2} - \frac{\pi}{2} = \left(3\sqrt{3} - \pi\right)v^{2}$$

cardioid
$$r = a(1+\cos\theta)$$
 a>0.

*
$$r = 3a \cos\theta$$
 (circle of center $(\frac{3a}{2}, 0)$ and radius $\frac{3a}{2}$

$$\rightarrow$$
 interval is $[0,\pi]$

$$r=0 \Leftrightarrow 1+\cos\theta=0$$

$$\cos\theta=-1 \Rightarrow \theta=\pi$$

$$3a \omega s\theta = a (1 + \omega s\theta)$$

$$3\cos\theta = 1 + \cos\theta$$

$$2\omega so = 1 \implies \omega so = \frac{1}{2} \implies \boxed{0 = \frac{\pi}{3}}$$

Area =
$$2\int_{2}^{1} \frac{1}{2} \left(9\alpha^{2}\cos^{2}\theta - \alpha^{2}(1+\cos\theta)^{2}\right) d\theta$$

$$= \int \left(\partial a_1 \cos_2 \theta - a_2 - 2a_1 \cos \theta - a_3 \cos_2 \theta \right) d\theta$$

$$=a\int_{\pi/3}^{9} (8\cos^{2}\theta - 1 - 2\cos\theta)d\theta = a^{2}\int_{\pi/3}^{9} (4 + 4\cos2\theta - 1 - 2\cos\theta)d\theta$$

$$= \alpha^{2} \left[30 + 2 \sin 20 - 2 \sin 0 \right]_{0}^{\pi/3} = \alpha^{2} \left[\pi + \sqrt{3} - \sqrt{3} \right]$$

$$=(\alpha^2\pi)$$
 u^2

- 17) Inside the circle $r = 4\cos\theta$ and to the right of the vertical line $r = \sec\theta$
- * $r = 4\cos\theta$: either of center (2,0) and radius 2.
- * $r = sec0 \iff r cos0 = 1 \iff x = 1 : vertical line.$

Intersection:
$$r=r$$
 $4 \cos \theta = \sec \theta \iff 4 \cos^2 \theta = 1 \iff \cos^2 \theta = \frac{1}{4} \iff \cos \theta = \frac{1}{2}$

$$\Theta = \frac{1}{3}$$

Area =
$$2\int \frac{1}{2} \left(16\omega s^2\theta - \sec^2\theta\right) d\theta = \int \left(8 + 8\cos 2\theta - \sec^2\theta\right) d\theta$$

$$= [80 + 4\sin 2\theta - \tan \theta]_{0}^{\pi/3} = \frac{8\pi}{3} + 4\frac{\sqrt{3}}{2} - \sqrt{3}$$

$$= \left(\frac{811}{3} + \sqrt{3}\right) U^2$$

18) Inside the circle
$$r=4\sin\theta$$
 and below the horizontal line $r=3\csc\theta$.

$$*$$
 $r = Usin \theta$: circle of center $(0,2)$ and radius 2.

*
$$r = 3 \csc 0 \iff r \sin \theta = 3 \iff y = 3$$
: haritantal line

$$4 \sin \theta = 3 \cos \theta \iff \sin^2 \theta = \frac{3}{4} \iff \sin \theta = \frac{3}{2} \iff \theta = \frac{\pi}{3}$$

Area =
$$2 \left[\int \frac{\pi/3}{2} \cdot 16 \sin^2 \theta \ d\theta + \int \frac{1}{2} \cdot 9 \ \csc^2 \theta \ d\theta \right]$$

$$= \int_{0}^{\pi/3} \frac{\pi}{16 \sin^{2} \theta} d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta + \int_{0}^{\pi/3} \frac{1}{16 \sin^{2} \theta} d\theta = \int_{0}^{\pi/3} (8 - 8 \cos 2\theta) d\theta = \int_{0}^{\pi/3$$

$$= \left[80 - 4\sin 20\right]_{0}^{\pi/3} - 9\left[\cot 0\right]_{\pi/3}^{\pi/3}$$

$$= \frac{8\pi}{3} - \frac{4\sqrt{3}}{2} - 9\left(0 - \frac{3}{3}\right) = \frac{8\pi}{3} - 2\sqrt{3} + 3\sqrt{3} = \left(\frac{8\pi}{3} + \sqrt{3}\right)\alpha^{2}$$