Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 10 du mercredi 24 mars 2021

Exercice 1.

Définition 1 (Fonction höldérienne). Soit $E \subset \mathbb{R}^n$ un ensemble ouvert, borné, convexe et non-vide. Pour $\alpha \in [0,1]$, on dit qu'une fonction $h: E \to \mathbb{R}^m$ est α -höldérienne si

$$\exists C \in]0, +\infty[, \forall \boldsymbol{x}, \, \boldsymbol{y} \in E, \quad \|\boldsymbol{h}(\boldsymbol{x}) - \boldsymbol{h}(\boldsymbol{y})\| \leqslant C\|\boldsymbol{x} - \boldsymbol{y}\|^{\alpha}. \tag{1}$$

Les fonctions 1-höldériennes sont appelées « lipschitziennes ».

Conservons les notations de la définition 1.

- 1) Soit $f \in C^1(E, \mathbb{R})$ dont les dérivées partielles sont bornées.
 - a) Pour quelles valeurs de $\alpha \in [0,1]$ f est-elle α -höldérienne?
 - b) Montrer que f est uniformément continue sur E.
- 2) Soit $\mathbf{f} \in \mathrm{C}^1(E,\mathbb{R}^m)$ dont les dérivées partielles sont bornées. Les résultats du point 1 sont-ils toujours valables?

Indication. Soit $K \subset \mathbb{R}$ un intervalle fermé borné et $\mathbf{g} \in \mathrm{C}^0(K, \mathbb{R}^m)$. Alors

$$\left\| \int_{K} \mathbf{g} \right\| \leqslant \int_{K} \|\mathbf{g}\|,\tag{2}$$

où l'intégrale $\int_K \boldsymbol{g} \in \mathbb{R}^m$ s'obtient en intégrant chaque composante de \boldsymbol{g} . Ce résultat est vrai pour n'importe quelle norme.

3) Montrer le résultat de l'indication ci-dessus pour la norme euclidienne de \mathbb{R}^m .

Exercice 2.

On définit une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ par

$$f(x,y) = \begin{cases} 0 \text{ si } (x,y) = (0,0), \\ \frac{xy^3}{x^2 + y^2} \text{ sinon.} \end{cases}$$
 (3)

1) Calculer les grandeurs suivantes pour tout $(x, y) \in \mathbb{R}^2$:

$$\nabla f(x,y)$$
; (4)

$$\frac{\partial^2 f}{\partial x \partial y}(0, y) ; (5)$$

$$\frac{\partial^2 f}{\partial u \partial x}(x,0). \tag{6}$$

- 2) Montrer que les dérivées partielles secondes mixtes (5)–(6) sont définies sur \mathbb{R}^2 mais diffèrent en (0,0).
- 3) Le point 2 contredit-il le théorème de Schwarz?

Exercice 3.

Pour $f \in C^2(\mathbb{R}^2, \mathbb{R})$, on note

$$\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.\tag{7}$$

On appelle fle « la placien de f ». On définit $g\in \mathrm{C}^2(\mathbb{R}_+^*\times\mathbb{R},\mathbb{R})$ par

$$g(r,\theta) = f(r\cos(\theta), r\sin(\theta)). \tag{8}$$

Vérifier que, pour tout $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$,

$$\Delta f(r\cos(\theta),r\sin(\theta)) = \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{1}{r}\frac{\partial g}{\partial r}(r,\theta) + \frac{1}{r^2}\frac{\partial^2 g}{\partial \theta^2}(r,\theta). \tag{9}$$