Multilayer Perceptron

RECAP

In class activity...

$$W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$$
 , $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

$$h(X) = W^T X$$

$$\begin{bmatrix} w_{11}, w_{21} \\ w_{12}, w_{22} \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} 0.0991, 0.7976 \\ 0.3971, 0.5926 \end{bmatrix} \times \begin{bmatrix} 0.35 \\ 0.9 \end{bmatrix} = \begin{bmatrix} 0.7525 \\ 0.6723 \end{bmatrix}$$

$$\sigma(z_i) = \begin{bmatrix} 0.6797 \\ 0.662 \end{bmatrix}$$

$$\begin{bmatrix} u_{11} \\ u_{21} \end{bmatrix} \times \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} \end{bmatrix} \qquad h(X) = U^T X$$

$$[u_{11},u_{21}]\times\begin{bmatrix}h_1\\h_2\end{bmatrix}=[\]$$

$$[0.2724, 0.8731] \times {0.6797 \brack 0.662} = [0.7631]$$

$$\sigma(z_i) = [0.682]$$

Single Image Prediction

Multiple Image Prediction

MLP Animation

Hidden Layers, Neurons, Polynomial Features

■Demo

http://playground.tensorflow.org/

Convolutions and Filters

Filter/Kernel

1	2	3
4	5	6
7	8	9

-13 -20 -17 -18 -24 -18 13 20 17

Input

Kernel

0

-1

0

1

Output

Convolution

Convolution

Image Filtering

■ Modify the pixels in an image base on some function of a local neighborhood of the pixels

7	2	3	3	8							
4	5	3	8	4		1	0	-1		6	
3	3	2	8	4	*	1	0	-1	=		
2	8	7	2	7		1	0	-1			
5	4	4	5	4		2x0-	+5x0-	+3x1+ +3x0+ 1+2x-1			

A Convolutional Layer

☐A Convolutional layer has a number of filters/kernels, that perform convolution operation to find certain patterns.

Smoothing/Blur Filter

Image	Χ						Filter \	W	ı			Conv C	Output			
128	128	128	52	52	52		1	1	1							
128	128	128	52	52	52		1	1	1	x1/9			128	103	77	52
128	128	128	52	52	52		1	1	1				103	94	86	77
52	52	52	128	128	128								77	86	94	103
52	52	52	128	128	128								52	77	103	128
52	52	52	128	128	128											
					Pade	ding	on th	e inp	ut w	ith ze	ros s	uch a	way	that		
						_		_				is no				

Vertical Edge Detection

10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0

0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0
0	0	30	30	0	0

Padding

0	0	0	0	0	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	10	10	10	10	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

-20	0	0	20	20	0	0	0
-30	0	0	30	30	0	0	0
-30	0	0	30	30	0	0	0
-30	0	0	30	30	0	0	0
-30	0	0	30	30	0	0	0
-30	0	0	30	30	0	0	0
-30	0	0	30	30	0	0	0
-20	0	0	20	20	0	0	0

Horizontal Edge Detection

□ Just change the filter!

1	0	-1
1	0	-1
1	0	-1

Vertical

1	1	1
0	0	0
-1	-1	-1

Horizontal

Horizontal Edge Detection

10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
0	0	0	0	10	10	10	10
0	0	0	0	10	10	10	10
0	0	0	0	10	10	10	10
0	0	0	0	10	10	10	10

0	0	0	0	0	0
0	0	0	0	0	0
30	30	10	-10	-30	-30
30	30	10	-10	-30	-30
0	0	0	0	0	0
0	0	0	0	0	0

Kernel/Filter As A Weight Matrix

1	0	-1
2	0	-2
1	0	-1

Sobel filter

3	0	-3
10	0	-10
3	0	-3

Scharr filter

W 1	W 2	W 3
W 4	W 5	W 6
W 7	W 8	W 9

parameterized filter

Book Reading

☐ See reference shared in the slides.