# Programación dinámica

Clase 18

IIC 2133 - Sección 2

Prof. Mario Droguett

# Sumario

#### Introducción

Programación dinámica

Dos aplicaciones

Consideremos el problema de asignar charlas en una misma sala

- Tenemos n charlas por asignar
- La charla i tiene hora de inicio  $s_i$  y de término  $f_i$
- **E**s decir, se define el intervalo de tiempo  $[s_i, f_i)$

Solo se puede realizar una charla a la vez

ADEMÁS: si la charla i es realizada, produce una ganancia  $v_i$ 

¿Qué charlas asignar de manera que maximicemos la ganancia?



#### Ejemplo

El caso que sabemos resolver consideraba  $v_i = c$  para cada charla

- $i = 1, [0, 5), v_1 = c$   $i = 4, [2, 11), v_4 = c$
- $i = 2, [1,7), v_2 = c$   $i = 5, [9,12), v_5 = c$

- $i = 3, [6, 9), v_3 = c$   $i = 6, [10, 13), v_6 = c$



Cuando la ganancia es la misma, la estrategia codiciosa de elegir la charla que termina antes es óptima

#### Ejemplo

Sean las siguientes charlas con sus intervalos y ganancias

- $i = 1, [0, 5), v_1 = 2$   $i = 4, [2, 11), v_4 = 7$
- $i = 2, [1, 7), v_2 = 4$   $i = 5, [9, 12), v_5 = 2$
- $i = 3, [6, 9), v_3 = 4$   $i = 6, [10, 13), v_6 = 1$



Con ganancias diferentes, el problema no es equivalente a maximizar el número de charlas

#### Ejemplo

Podemos pensar en una instancia del problema de forma que la estrategia codiciosa mencionada **no funciona** 

$$i = 1$$
  $v_1 = 1$   $v_2 = 4$   $v_3 = 2$ 

En este caso,

estrategia charlas ganancia codiciosa 
$$\{1,3\}$$
 3  $\{2\}$  4

Nuestra estrategia codiciosa no es óptima en el caso general del problema con ganancias

# Sumario

Introducción

Programación dinámica

Dos aplicaciones

# Una nueva estrategia algorítmica

Utilizaremos una nueva estretegia: programación dinámica

- Generalmente usada en problemas de optimización
- Se basa en la existencia de subproblemas que permiten resolver el problema original
- Además, los subproblemas se solapan, i.e. comparten sub-subproblemas

La diferencia con **dividir para conquistar** es que en esta última los subproblemas son disjuntos

La clave de programación dinámica es recordar las soluciones a los subproblemas

#### Ejemplo

Dadas las charlas  $\{1, 2, \dots, 6\}$  ordenadas por  $f_i$ , añadimos

$$b(i) \coloneqq \begin{cases} j, & j \text{ es la charla que termina más tarde antes de } s_i \\ 0, & \text{no hay tal charla} \end{cases}$$

- $i = 1, [0,5), v_1 = 2, b(1) = 0$   $i = 4, [2,11), v_4 = 7, b(4) = 0$
- $i = 2, [1,7), v_2 = 4, b(2) = 0$   $i = 5, [9,12), v_5 = 2, b(5) = 3$
- $i = 3, [6, 9), v_3 = 4, b(3) = 1$   $i = 6, [10, 13), v_6 = 1, b(6) = 3$



Consideremos una instancia con charlas  $\{1, \ldots, n\}$  ordenadas por  $f_i$ . Supongamos que tenemos una solución óptima  $\Omega$  para este problema.

Consideremos la última charla, i.e. n. Tenemos dos opciones

- Si  $n \notin \Omega$ , entonces  $\Omega$  es solución del **subproblema** que solo considera las charlas  $\{1, \ldots, n-1\}$
- Si  $n \in \Omega$ , entonces no hay charla r tal que b(n) < r < n qu esté en  $\Omega$ . Además,  $\Omega$  contiene una solución óptima al **subproblema** con charlas  $\{1, \ldots, b(n)\}$

Para encontrar la solución a un problema, necesitamos las soluciones a problemas más pequeños

#### Formalicemos las ideas anteriores

- Sea  $\Omega_j$  la solución al problema con charlas  $\{1, ..., j\}$  y sea opt(j) su ganancia total. **Objetivo final:** obtener  $\Omega_n$  con valor opt(n)
- Para cada  $1 \le j \le n$ , hay dos casos
  - Si  $j \in \Omega_j$ , entonces  $opt(j) = v_j + opt(b(j))$
  - Si  $j \notin \Omega_i$ , entonces opt(j) = opt(j-1)
- Para saber si  $j \in \Omega_i$ , comparamos las dos opciones

$$opt(j) = \max\{v_j + opt(b(j)), opt(j-1)\}$$
 (\(\phi\))

La ecuación (★) permite plantear el siguiente algoritmo recursivo

```
input : natural 0 \le j \le n
output: ganancia óptima

Opt(j):

if j = 0:

return 0

else:

return \max\{v_j + \text{Opt}(b(j)), \text{ Opt}(j-1)\}
```

Notemos que Opt requiere

- $\blacksquare$  tener ordenadas las charlas por hora de término y conocer b(j)
- suponer que Opt(0) = 0

¿Cuál es el problema de este algoritmo?

El problema con el algoritmo presentado es su complejidad

- Cada llamada a Opt, en el peor caso da origen a dos llamados Opt
- Complejidad  $\mathcal{O}(2^n)$

# Ejemplo (llamados recursivos)

Opt(6)

• 
$$Opt(b(6)) = Opt(3)$$

• 
$$Opt(b(3)) = Opt(1)$$

• 
$$Opt(3-1) = Opt(2)$$

• 
$$Opt(2-1) = Opt(1)$$

• 
$$Opt(6-1) = Opt(5)$$

• 
$$Opt(b(5)) = Opt(3)$$

• 
$$Opt(3-1) = Opt(2)...$$

• 
$$Opt(5-1) = Opt(4)$$

• 
$$Opt(4-1) = Opt(3)...$$

A pesar de hacer una cantidad exponencial de llamados, realmente se resuelven solo n+1 subproblemas

$$\mathsf{Opt}(0), \mathsf{Opt}(1), \dots, \mathsf{Opt}(n)$$

En este problema, un mismo llamado puede aparecer varias veces en el árbol de recursión

¿Podríamos hacerlo mejor?

Agregaremos un arreglo global M donde almacenaremos cada  $\mathtt{Opt}(j)$  la primera vez que lo calculamos

```
\label{eq:RecOpt} \begin{split} & \text{RecOpt}(j)\colon\\ & \text{if } j = 0:\\ & \text{2} & \text{return } 0\\ & \text{3} & \text{else:}\\ & \text{if } M[j] \neq \varnothing:\\ & \text{5} & \text{return } M[j]\\ & \text{6} & \text{else:}\\ & \text{7} & M[j] \leftarrow \max\{v_j + \text{RecOpt}(b(j)), \; \text{RecOpt}(j-1)\}\\ & \text{8} & \text{return } M[j] \end{split}
```

El algoritmo RecOpt toma tiempo  $\mathcal{O}(n)$ 

#### Ejemplo $i = 1, [0, 5), v_1 = 2, b(1) = 0$ $i = 4, [2, 11), v_4 = 7, b(4) = 0$ $i = 2, [1,7), v_2 = 4, b(2) = 0$ i = 5, [9, 12), $v_5 = 2$ , b(5) = 3 $i = 3, [6, 9), v_3 = 4, b(3) = 1$ i = 6, [10, 13), $v_6 = 1$ , b(6) = 3Opt(6) +1Opt(3) Opt(5) +2 +0+4 Opt(0) Opt(0) Opt(0) Opt(1) Opt(0) Opt(3)

#### Ejemplo

Utilizando RecOpt, obtenemos la matriz de ganancias

Podemos **deducir la asignación** a partir de M, suponiendo que cada  $v_j > 0$ .

- Como M[6] = M[6-1], no se incluye la charla 6
- Como  $M[5] = v_5 + M[b(5)]$ , se incluye la charla 5
- Como  $M[3] = v_3 + M[b(3)]$ , se incluye la charla 3
- Como  $M[1] = v_1 + M[b(1)]$ , se incluye 1

Con esto, las charlas asignadas son  $\{1,3,5\}$ 

También podemos plantear una solución **iterativa** para este problema, computando los subproblemas en orden de tamaño

```
ItOpt:  M[0] \leftarrow 0 
2   for j = 1, ..., n:  M[j] \leftarrow \max\{v_j + M[b(j)], M[j-1]\}
```

Al terminar, ItOpt deja en M las ganancias óptimas

El algoritmo ItOpt también toma tiempo  $\mathcal{O}(n)$ 

# Programación dinámica

A partir de este ejemplo, planteamos la estrategia de **programación dinámica** para resolver un problema

- 1. El número de subproblemas es (idealmente) polinomial
- 2. La solución al problema original puede calcularse a partir de subsoluciones
- 3. Hay un orden natural de los subproblemas (del más pequeño al más grande) y una recurrencia sencilla (★)
- 4. Recordamos las soluciones a subproblemas

La recurrencia es la clave para plantear el algoritmo base

# Sumario

Introducción

Programación dinámica

Dos aplicaciones

Consideremos el problema de la mochila con n objetos **no fraccionables** (cada uno se incluye o no se incluye)

- El objeto k tiene un valor  $v_k$  y un peso  $w_k$
- La mochila tiene capacidad de peso W tal que

$$W < \sum_{k} w_{k}$$

El objetivo es maximizar la suma de valores incluídos

Usaremos la variable  $x_k \in \{0,1\}$  para indicar si el objeto k se incluye o no

Resolveremos este problema con programación dinámica

Denotaremos por  $knap(p, q, \omega)$  al problema de maximizar

$$\sum_{k=p}^{q} v_k x_k$$

sujeto a

$$\sum_{k=p}^{q} w_k x_k \leq \omega$$
$$x_k \in \{0,1\}$$

Nuestro problema a resolver es knap(1, n, W)

Sea  $\Omega = y_1, y_2, \dots, y_n$  una elección óptima de valores binarios para las variables  $x_1, x_2, \dots, x_n$ 

En particular,  $y_1$  tiene dos opciones

Si  $y_1 = 0$ , entonces el objeto 1 no está en la solución. Luego,  $y_2, \ldots, y_n$  debe ser solución óptima para

De lo contrario,  $y_2, \ldots, y_n$  no sería solución óptima de knap(1, n, W)

#### En particular, $y_1$ tiene dos opciones

Si  $y_1 = 1$ , entonces  $y_2, \dots, y_n$  debe ser solución óptima para

$$knap(2, n, W - w_1)$$

De lo contrario, habría otra selección  $z_2, \ldots, z_n$  binaria tal que

$$\sum_{k=2}^{n} w_k z_k \le W - w_1 \quad \text{y} \quad \sum_{k=2}^{n} v_k z_k > \sum_{k=2}^{n} v_k y_k$$

por lo que  $y_1, z_2, \ldots, z_n$  sería una elección mejor para knap(1, n, W). Esto contradice que  $y_1, y_2, \ldots, y_n$  es óptima

Con este análisis de casos, planteamos nuestra estrategia recursiva de **subproblemas** 

Sea  $g_k(\omega)$  el valor de una solución óptima para  $knap(k+1,n,\omega)$ 

- $g_0(W)$  es el valor óptimo de knap(1, n, W)
- Como hay decisión binaria para x<sub>1</sub>,

$$g_0(W) = \max\{g_1(W), g_1(W-w_1) + v_1\}$$

Podemos generalizar para un  $0 \le k < n$ 

$$g_k(\omega) = \max\{g_{k+1}(\omega), g_{k+1}(\omega - w_1) + v_{k+1}\}$$

donde

$$g_n(\omega) = \begin{cases} 0, & \text{si } \omega \ge 0 \\ -\infty, & \text{si } \omega < 0 \end{cases}$$

#### **Ejercicio**

Usando la recurrencia anterior, muestre los llamados recursivos que permiten resolver la siguiente instancia del problema de la mochila 0/1

- n = 3, W = 6
- $[w_1, w_2, w_3] = [2, 2, 3]$
- $[v_1, v_2, v_3] = [1, 2, 5]$

Consideremos ahora el problema de dar  ${\cal S}$  pesos de vuelto usando el menor número posible de monedas

- Suponemos que los valores de las monedas, ordenados de mayor a menor, son  $\{v_1, v_2, \dots, v_n\}$
- Tenemos una cantidad ilimitada de monedas de cada valor

Posible estrategia codiciosa:

Asignar tantas monedas *grandes* como sea posible, antes de avanzar a la siguiente moneda *grande* 

#### Ejemplo

Si  $\{v_1, v_2, v_3, v_4\} = \{10, 5, 2, 1\}$ , la estrategia codiciosa **siempre** produce el menor número de monedas para un vuelto S cualquiera

#### Ejemplo

Sin embargo, la estrategia no funciona para un conjunto de valores cualquiera. Si  $\{v_1,v_2,v_3\}=\{6,4,1\}$  y S=8, entonces la estrategia produce

$$8 = 6 + 1 + 1$$

pero el óptimo es

$$8 = 4 + 4$$

Lo atacamos con programación dinámica

Dado un conjunto de valores ordenados  $\{v_1, \ldots, v_n\}$ , definimos z(S, n) como el problema de encontrar el menor número de monedas para totalizar S

### Ejercicio

Proponga una recurrencia para resolver el problema z(S,n) y plantee un algoritmo a partir de ella.

#### Ejercicio

Sea Z(S,n) la solución óptima al problema z(S,n). Para buscar intuición, notamos que hay dos opciones respecto a las monedas de valor  $v_n$ 

Si se incluye una moneda de valor  $v_n$ ,

$$Z(S,n) = Z(S - v_n, n) + 1$$

Si no se usan monedas de valor  $v_n$ ,

$$Z(S,n)=Z(S,n-1)$$

#### Ejercicio

Luego, generalizamos esta idea

Para las monedas de de valor  $v_n$ ,

$$Z(S, n) = \min\{Z(S - v_n, n) + 1, Z(S, n - 1)\}$$

 Luego, generalizamos para el subconjunto de los primeros k valores de monedas

$$Z(T,k) = \min\{Z(T-v_k,n)+1, Z(T,k-1)\}$$

donde 
$$Z(T, 0) = +\infty$$
 si  $T > 0$ , y  $Z(0, k) = 0$ 

#### Ejercicio

Luego, generalizamos esta idea

Para las monedas de de valor  $v_n$ ,

$$Z(S, n) = \min\{Z(S - v_n, n) + 1, Z(S, n - 1)\}$$

 Luego, generalizamos para el subconjunto de los primeros k valores de monedas

$$Z(T, k) = \min\{Z(T - v_k, n) + 1, Z(T, k - 1)\}$$

donde 
$$Z(T, 0) = +\infty$$
 si  $T > 0$ , y  $Z(0, k) = 0$ 

```
Ejercicio
Con esto, podemos plantear el siguiente algoritmo iterativo
  Change(S):
      for T = 1, ..., S:
          Z[T][0] \leftarrow +\infty
      for k = 0, ..., n:
          Z[0][k] \leftarrow 0
      for k = 1, ..., n:
          for T = 1, ..., S:
              Z[T][k] \leftarrow Z[T][k-1]
              if T - v_k \ge 0:
                   Z[T][k] \leftarrow \min\{Z[T][k], Z[T-v_k, k]\}
```