C. Evaluation of Decision Networks

> Let's look back at the previous network.

a) Setting Current State

1) Air Traffic

T	P(T)
h	0.6
1	0.4

h- high l- low 2) Litigation

L	P(L)
h	0.7
1	0.3

3) Construction

С	P(C)
h	0.65
1	0.35

[Say, the current state has been set to T = h, L = I, C = h.]

b) Setting Site Factor, say, for Site S₁

4. Airport Site

S	P(S)	
n	0.75	n – neai
f	0.4	f - far

P(S) may differ from Site to Site; And influences nD, nN, ... may also differ for the same Site.

[Say, for
$$S_1$$
, $S = n$.]

c) Finding Future State for Site S₁

5. Deaths

Т	S	P(deaths)
h	n	0.6
h	f	0.4
1	n	0.4
1	f	0.1

6. Noise

T	S	P(noise)
h	n	0.9
h	f	0.3
1	n	0.6
1	f	0.01

7. Cost

S	L	C	P(cost)
n	h	h	0.98
n	h	1	0.85
n	l	h	0.92
n	1	1	0.82
f	h	h	0.80
f	h	1	0.45
f	1	h	0.60
f	1	1	0.20

Say, Deaths takes values, deaths (high death risk) and —deaths (low death risk), and so on, like —cost (low cost).

d) Computing probability factors for utility function, [say, deaths_f, noise_f, cost_f] using joint probabilities:

- \circ P(deaths | (T=h) \wedge (S=n) \wedge (L=I) \wedge (C=h))
- \circ P(noise | (T=h) \wedge (S=n) \wedge (L=I) \wedge (C=h))
- \circ P(cost | (T=h) \wedge (S=n) \wedge (L=I) \wedge (C=h))
- ✓ P(deaths \land (T=h) \land (S=n) \land (L=l) \land (C=h)) / P((T=h) \land (S=n) \land (L=l) \land (C=h))

```
✓ P(deaths ∧ (T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h)) / P((T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h))

P(deaths ∧ (T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h) ∧ noise ∧ cost) +

P(deaths ∧ (T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h) ∧ noise ∧ cost) +

P(deaths ∧ (T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h) ∧ noise ∧ cost) +

P(deaths ∧ (T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h) ∧ noise ∧ cost).

For example,

P(deaths ∧ (T=h) ∧ (S=n) ∧ (L=l) ∧ (C=h) ∧ noise ∧ cost)

= P(deaths | (T=h) ∧ (S=n)) * P(T=h) * P(S=n) * P(L=l) * P(C=h) *

P(noise | (T=h) ∧ (S=n)) * P(cost | (S=n) ∧ (L=l) ∧ (C=h))

= 0.6 * 0.6 * 0.75 * 0.3 * 0.65 * 0.9 * 0.92 = ...
```

e) Computing utility function:

 $U(S_1) = -k_1 * deaths_f - k_2 * noise_f - k_3 * cost_f$, for positive constant k_i Similarly, $U(S_2)$, $U(S_3)$,

f) Taking max[U(S_1), U(S_2), U(S_3), ..., U(S_x)], for number of possible Sites x

3/22/2022