9 脉冲波形的变换与产生

一、内容提要及重点

本章的内容提要:

- 1. 单稳态触发器工作特点如下
- (1) 单稳态触发器没有触发脉冲作用时电路处于一种稳定状态。
- (2) 在触发脉冲作用下,电路由稳态翻转到暂稳态。
- (3) 电路在持续一段时间后自动回到稳态, 暂稳态持续时间取决于电路中的 RC 参数值。 电路主要应用于定时、延时及脉冲的变换等。
- 2. 单稳态触发器有多种构成形式,如用门电路构成的微分型单稳态触发器、集成单稳态触发器 74121、MC1483 和 555 定时器构成单稳态触发器等。电路的主要参数输出脉冲宽度、最高工作频率、恢复时间等。如微分型单稳态触发器的输出脉冲宽度 $t_{\rm w} \approx 0.7RC$ 。恢复时间 $t_{\rm re} = (3 \sim 5)RC$ 、最高工作频率 $f_{\rm max} = \frac{1}{T_{\rm min}} < \frac{1}{t_{\rm w} + t_{\rm re}}$
 - 3. 施密特触发器属于电平触发方式的电路,其工作特点如下
- (1) 当输入达到某一定值时,输出电压发生跳变,由于电路中正反馈的作用,其输出电压波形的边沿很陡。
 - (2) 电路有两个阈值电压,电压传输特性具有滞回特性。
- 4. 施密特触发器的构成形式有门电路构成的施密特触发器、集成施密特触发器和 555 定时器构成施密特触发器。电路主要应用于波形变换、整形和幅度的鉴别电路的主要参数有:正向阈值电压 $V_{T_{-}}$ 、负向阈值电压 $V_{T_{-}}$ 、回差电压 $\Delta V_{T_{-}}$ 。

正向阈值电压 V_{T+} :输入电压上升时,使电路输出状态发生转换时所对应的输入电压。 负向阈值电压 V_{T-} :输入电压下降时,使电路输出状态发生转换时所对应的输入电压。

回差电压 $\Delta V_{\text{T}}: \Delta V_{\text{T}} = V_{\text{T+}} - V_{\text{T-}}$ 。

如 CMOS 反相器构成的施密特触发器的

正向阈值电压
$$V_{\text{T+}} = \left(1 + \frac{R_1}{R_2}\right) V_{\text{TH}}$$
 负向阈值电压
$$V_{\text{T-}} = \left(1 - \frac{R_1}{R_2}\right) V_{\text{TH}}$$
 回差电压
$$\Delta V_{\text{T}} = V_{\text{T+}} - V_{\text{T-}} = 2 \frac{R_1}{R_2} V_{\text{TH}} = \frac{R_1}{R_2} V_{\text{DD}}$$

5. 多谐振荡器是一种自激振荡电路。在接通电源后,无需外加信号电路就能自动产生脉冲 波形,常用做数字系统作脉冲信号源。电路没有稳态,只有两个暂稳态,因此又称为无稳态电路。

多谐振荡器有门电路和 RC 延迟电路构成的多谐振荡器、施密特触发器构成的多谐振荡器、 石英晶体振荡器和555定时器构成多谐振荡器。

多谐振荡器的主要参数有:振荡频率、占空比等。

6. 555 定时器是一种数-模混合的中规模集成电路,只要简单外接电路就可以构成施密特 触发器、单稳态触发器和多谐振荡器。

本章的重点:

- 1. 单稳态触发器、施密特触发器和多谐振荡器的工作原理,电路分析及相关参数的计算。
- 2. 脉冲电路的分析方法。分析的关键在于电容在充、放电过程中,其电压变化对门电路输 人电平的影响。

二、典型例题解析

- 例 9.1 由 CMOS 门组成的单稳态触发器如图 9.1(a) 所示。其中 $V_{DD} = 5V$, $V_{TH} = 0.4V_{DD}$, $C = 1 \,\mathrm{nF}$, $V_{\mathrm{OH}} \approx 5 \,\mathrm{V}$, $V_{\mathrm{OI}} \approx 0 \,\mathrm{V}_{\odot}$
 - (1) 设输入 v_1 的波形如图 9.1(b)所示,试画出 v_1 ,及 v_0 的波形。
 - (2) 试确定电阻 R 的值,使输出脉冲宽度为 10 µs。

解题思路:① 根据微分型单稳态触发器的工作原理,分析电路的工作过程。明确稳态时 υ, 及 v₀的电平和当触发脉冲到达时电路状态的变化。画波形时注意逻辑门电路的阈值电压值。

- ② 根据三要素公式推导出脉冲宽度的公式,然后确定脉冲宽度。
- $\mathbf{m}:(1)$ 微分型单稳态触发器处于稳态时 $v_{12}=V_{pp}=5V, v_0=0V$ 。当触发脉冲的上升沿到来 时电路进入暂稳态, v12跳变为低电平, v2跳变为高电平, 电容开始充电。触发脉冲消失, 当电容开 始充电使 $v_{12} = V_{TH} = 0.4V_{DD} = 2V$ 时电路从暂稳态返回至稳态。

图 9.1(a) 所示电路中 v_0 及 v_1 的波形如图 9.1(c) 所示。

(2) 由三要素公式可知

$$\begin{split} v_{\mathrm{C}}(\,t\,) &= v_{\mathrm{C}}(\,\infty\,\,) + \left[\,v_{\mathrm{C}}(\,0^{\,+}\,) - v_{\mathrm{C}}(\,\infty\,\,)\,\,\right] \,\mathrm{e}^{-\frac{t}{\tau}} \\ t &= \tau\,\,\ln\,\frac{v_{\mathrm{C}}(\,\infty\,\,) - v_{\mathrm{C}}(\,0^{\,+}\,)}{v_{\mathrm{C}}(\,\infty\,\,) - v_{\mathrm{C}}(\,t\,)} \end{split}$$

当 $t = t_w$ 时, $v_C(t_w) = 0.4V_{DD} = 2V$, $v_C(0^+) = 0$, $v_C(\infty) = 5V$, 代人上式得

$$t_{\rm w} = RC \ln \frac{5}{3} \approx 0.51RC$$

根据上式可求得

$$R = \frac{t_w}{0.51C} = \frac{10^{-5}}{0.51 \times 10^{-9}} \approx 19.6 \text{ k}\Omega$$

例 9.2 由集成单稳态触发器 74121 所组成的电路及参数如图 9.2(a) 所示, 触发输入信号

如图 9.2(b) 所示。

- (1) 计算在 v₁作用下 v₀₁、v₀₂输出脉冲的宽度。
- (2) 画出对应 v_1 的输出 v_{01} 、 v_{02} 的波形。

解题思路:① 根据 74121 的功能,确定每块集成芯片的工作状态。画波形时注意 A_1 、 A_2 为下降沿触发输入端,B 为上升沿触发输入端。

② 根据公式计算 voi、voi输出脉冲的宽度。

解:(1) 74121 集成单稳态触发器输出脉冲宽度为

$$t_{\rm w} \approx 0.7RC$$

将参数代入上式可求得

$$t_{w1} = 0.7 \times 5.5 \times 10^{3} \times 1.3 \times 10^{-6} \approx 5 \,\text{ms}$$

 $t_{w2} = 0.7 \times 1.1 \times 10^{3} \times 1.3 \times 10^{-6} \approx 1 \,\text{ms}$

(2) 稳态时输出 v_{01} 、 v_{02} 均为 0。当触发脉冲 v_1 的下降沿到达时, v_{01} 跳变为高电平,片(1)进入暂稳态,在持续 5 ms 结束。 v_{01} 的下降沿使 v_{02} 跳变为高电平,片(2)进入暂稳态并持续 1 ms 结束。 v_{01} 、 v_{02} 的波形如图 9.2(c)所示。

例 9.3 CMOS 施密特与非门组成的电路如图 9.3(a) 所示, 窄脉冲触发输入信号 v, 如图 9.3(b) 所示。已知 $R = 5k\Omega$, $C = 0.1 \mu F$, $V_{DD} = 5V$, $V_{OH} \approx 5V$, $V_{OL} \approx 0V$, $V_{T+} = 3.3V$, $V_{T-} = 1.8V$ 。

- (1) 分析电路的工作原理,画出 v_c 及 v_o 的波形(两个触发脉冲间隔的时间足够长)。
- (2) 计算输出高电平持续的时间。

解题思路: ① 正确分析电路:电路由施密特与非门和场效应管构成。场效应管截止时电容 充电,导通时电容放电。注意电容充、放电会导致 v_c 的电压的变换,进而会改变施密特与非门的 输出状态。

② 通过分析可知,输出高电平持续的时间为电容从 V_{τ} 充电到 V_{τ} 所需时间,可根据三要素 公式计算输出高电平持续的时间。

 $\mathbf{m}:(1)$ 触发信号来到之前, v_1 的低电平使场效应管截止,电容充电到稳态值, $v_c = V_{DD} = 5V_o$ 施密特与非门的两个输入端均为高电平,输出 $v_0=0$ 。电路处于稳定状态,

当正触发脉冲到达时,MOS 管 T 导通,其导通电阻通常为几十至几百欧。电容 C 通过 MOS管放电。当 v_c 下降到 V_{r_c} 时,施密特与非门关闭,输出 v_0 =1,电路进入暂稳态。

在暂稳态期间触发脉冲已经消失, v_1 的低电平又使 T 截止, V_{nn} 通过 R 向 C 充电, v_c 从 V_{r_2} 开 始逐渐增加,当增加到 $v_c = V_{T+}$ 时,输出 $v_o = 0$ 暂稳态结束,此时下一个触发脉冲没有到来时,T仍 然截止, v_c 继续充电至 $V_{\rm nn}$ 。分析电路可知图 9.3(a)所示电路为单稳态触发器。稳态时,输出低电平;暂稳态时,输出高电平。

(2) 根据三要素公式

$$v_{C}(t) = v_{C}(\infty) + [v_{C}(0^{+}) - v_{C}(\infty)] e^{-\frac{t}{\tau}}$$
 并且 $v_{I}(0^{+}) = V_{T-} = 1.8 \text{ V}, v_{I}(\infty) = V_{DD} = 5 \text{ V}, v_{I}(t_{w}) = V_{T+} = 3.3 \text{ V}, \tau = RC$ 于是可求出

$$t_{\rm w} = RC \ln \frac{V_{\rm DD} - V_{\rm T-}}{V_{\rm DD} - V_{\rm T+}} = 5 \times 10^3 \times 0.1 \times 10^{-6} \ln \frac{5 - 1.8}{5 - 3.3} \approx 0.32 \,\text{ms}$$

图 9.3 例 9.3 的电路及工作波形 (a) 电路 (b) 输入波形 (c) 输出波形

- **例 9.4** 由 CMOS 施密特与非门构成的门控多谐振荡器如图 9.4(a) 所示。触发控制信号 v_1 如图 9.4(b) 所示。
 - (1) 分析电路的工作原理,画出 vc及 vo的波形。
 - (2) 试写出该电路各个充、放电时间及振荡频率的表达式。

解题思路:① 分析电路工作原理。当 v_1 =0时,与非门关闭,输出为高电平。当 v_1 =1时,与非门导通,此时电路为多谐振荡器。电路为可控振荡器。

- ② 稳态时电容的充、放电时间即为两个暂态维持时间,可根据三要素公式计算。在确定充、 放电时间后即可得到振荡频率的表达式。
- 解:(1) 当 v_I = 0 时,与非门关闭,输出为高电平,并通过 R 向电容 C 充电至 v_{cc} = V_{DD} 。当 v_I = 1 时,与非门输出 v_O 跳变为低电平。此后电容 C 开始放电, v_C 下降。当 v_C 下降到 V_{T_-} 时,电路发生翻转, v_O 由低电平跳变为高电平,C 又被重新充电。当 v_C 上升到 V_{T_+} 时,施密特触发器又发生翻转, v_O 又由高电平跳变为低电平,C 又开始放电。如此周而复始,在输出端得到矩形波,如图 9.4(c)所示。
 - (2) 根据 RC 电路过渡过程可知

$$t = \tau \ln \frac{v_C(\infty) - v_C(0^+)}{v_C(\infty) - v_C(t)}$$

当
$$t=T_0$$
时, $v_c(T_0)=V_{\mathrm{T-}}$, $v_c(0^+)=V_{\mathrm{DD}}$, $v_c(\infty)=0$,代人上式得

$$T_0 = RC \ln \frac{V_{\text{DD}}}{V_{\text{T}}}$$

同理可求得电路振荡稳定时的充、放电时间为

振荡频率

型的依须 稳定的 的允、放电的 间分
$$T_1 = RC \ln \frac{V_{\rm DD} - V_{\rm T-}}{V_{\rm DD} - V_{\rm T+}}$$

$$T_2 = RC \ln \frac{V_{\rm T+}}{V_{\rm T-}}$$

$$f = \frac{1}{T_1 + T_2} = \frac{1}{RC \ln \frac{V_{\rm T+}(V_{\rm DD} - V_{\rm T-})}{V_{\rm T-}(V_{\rm DD} - V_{\rm T+})}}$$

$$V_{\rm DD}$$

$$V_{\rm T+}$$

$$V_{\rm DD}$$

$$V_{\rm T+}$$

$$V_{\rm T-}$$

$$V_{\rm DD}$$

$$V_{\rm DD}$$

$$V_{\rm T+}$$

$$V_{\rm DD}$$

$$V_{\rm DD$$

图 9.4 (a) 电路 (b) 输入波形 (c) 工作波形

- 例 9.5 由 555 定时器组成的电路如图 9.5(a) 所示,图中 $R_1 = R_2 = 5$ kΩ,C = 0.01 μF,D 为理 想二极管。理想运放 A 的供电电压为±15V,其他参数如图所示。
 - (1) 试问 555(0)、555(1)各组成什么电路;
 - (2) 画出 $v_c \ v_A$ 和 v_o 的波形,并计算出 v_o 的周期。

解题思路:① 根据电路结构确定电路功能。图 9.5(a) 所示电路包含多谐振荡器、施密特触 发器及运放构成的反相加法电路。

- ② 确定单元电路的功能及相互连接关系,正确画出 v_c 、 v_A 和 v_o 的波形。
- 解:(1)555(0)组成多谐振荡器,555(1)组成施密特触发器。施密特触发器的正向阈值电 压 $V_{\text{T+}} = \frac{2V_{\text{cc}}}{2} = 3.33 \text{ V}$,负向阈值电压 $V_{\text{T-}} = \frac{V_{\text{cc}}}{2} = 1.67 \text{ V}$
- (2) 如果忽略 50kΩ电阻对多谐振荡器充、放电的影响,可以画出 v,的波形。由运放构成的 反相加法电路将 v_c 与-10V直流电压相加,得到信号 $v_s(v_s=10-v_c),v_s$ 为施密特触发器的触发信 号,根据施密特触发器的工作原理,可以画出输出 v。的波形如图 9.5(b) 所示。多谐振荡器充、放

电的时间分别为

$$t_{\rm pH} = R_1 C \ln 2 \approx 0.7 R_1 C$$

 $t_{\rm pL} = R_2 C \ln 2 \approx 0.7 R_2 C$

施密特触发器输出电压vo的周期

$$T \approx 0.7 (R_1 + R_2) C$$

= $0.7 \times (5+5) \times 10^3 \times 0.01 \times 10^{-6} = 70 \text{ µs}$

图 9.5 例 9.5 电路及工作波形 (a) 电路 (b) 工作波形

三、习题全解

9.1 单稳态触发器

9.1.1 微分型单稳态电路如图题 9.1.1 所示,已知 $C = 0.01 \mu F$, $R = 9.1 k \Omega$,电源电压 $V_{DD} = 10 V$ 。试对应已知输入波形画出电路输出 v_0 的波形,并确定输出脉宽 t_w 及幅值大小。

解:根据微分型单稳态电路分析可知,电路在输入信号的上升沿到来时,从稳态进入暂稳态, 暂稳态在维持一段时间后,会自动返回到稳态。于是,可对应输入波形画出输出波形如图题解 9.1.1 所示。

暂稳态持续时间由电路中的 RC 延时环节参数值决定。

电路的输出脉宽

 $t_{\omega} \approx 0.7RC$

将 $C=0.01\mu F$, $R=9.1k\Omega$ 代人上式

 $t_{x} \approx 0.7 \times 0.01 \times 10^{-6} \times 9.1 \times 10^{3}$

=0.0637 ms

输出波形的幅值

 $V_{\rm m} = V_{\rm OH} - V_{\rm OL}$

图题 9.1.1

$$\approx V_{\rm DD} - 0 = V_{DD}$$

9.1.2 由 *CMOS* 逻辑门组成的微分型单稳电路如图题 9.1.2 所示。其中 t_{pi} 为 3 μs、 $C_{\rm d}$ = 50 pF、 $R_{\rm d}$ = 10 kΩ、C = 0.01 μF,R = 10 kΩ,试对应 $v_{\rm I}$ 分别画出 $v_{\rm D}$ 、 $v_{\rm O1}$ 、 $v_{\rm R}$ 、 $v_{\rm O2}$ 、 $v_{\rm O}$ 的波形,并求出输出脉冲宽度。

解:设定 CMOS 反相器的阈值电压 $V_{\text{TH}} \approx \frac{V_{\text{DD}}}{2}$; CMOS 门的 $V_{\text{OL}} \approx 0 \text{V}$, $V_{\text{OH}} \approx V_{\text{DD}}$.

首先分析由电路的工作过程。

(1) 没有触发信号时电路处于一种稳定状态

没有触发信号时, v_1 为高电平, $v_d = V_{DD}$ 。由于 G_2 门的输入端经电阻 R 接地, $v_{02} \approx V_{DD}$; $v_0 \approx 0$ 这样, G_1 门的输出 $v_{01} \approx 0$ 。电路处于一种稳定状态。

(2) 外加触发信号,电路由稳态翻转到暂稳态。

在输入触发脉冲 v_1 的下升沿, R_d 、 C_d 微分电路输出的负脉冲使 v_{01} 迅速地从低电平跳变为高电平。由于电容C 两端的电压不可能突变, v_R 也同时跳变为高电平。 v_{02} 跳变为低电平, v_0 跳变为高电平,电路进入暂稳态。

(3) 电容器 C 充电,电路自动从暂稳态返回至稳态。

进入暂稳态期后,随着电容 C 的充电,电阻 R 上的电流逐渐减弱, v_R 按指数规律下降,当 v_R 下降到 G_2 的阈值电压 V_{TH} 时, v_{O2} 跳回到高电平, v_O 返回到低电平,暂稳态结束。在 v_{O1} 跳回低电平后,电容 C 放电,经一段恢复时间,电路完全恢复到稳态。

根据上述分析可画出单稳态触发器各点电压工作波 形如图题解 9.1.2 所示。

(4) 输出脉宽 t 的计算

根据 RC 电路过渡过程分析可知,

$$v_R(t) = v_R(\infty) + [v_R(0^+) - v_R(\infty)]^{-t/RC}$$

将 $v_R(0^+)=V_{\rm DD}$, $v_R(\infty)=0$ V , $v_R(t_{\rm w})=V_{\rm TH}\approx V_{\rm DD}/2$ 代人上式 ,

得
$$t_{w} = RC\ln \frac{v_{R}(\infty) - v_{R}(0^{+})}{v_{R}(\infty) - v_{R}(t_{w})}$$
$$= 10 \times 10^{3} \times 0.01 \times 10^{-6} \times \ln 2s$$
$$t_{w} = 69 \,\mu s$$

- 9.1.3 图题 9.1.3 所示电路是用 CMOS 或非门构成的单稳态触发器的另一种形式。试回答下列问题:
- (1) 分析电路的工作原理;(2) 画出加入触发脉冲后 v_{01} 、 v_{02} 及 v_R 的工作波形;(3) 写出输出脉宽 t_* 的表达式。

稳态: G_1 门的一个输入端经 R 接地, $v_R=0$,无触发信号, $v_I=0$, $v_{01}=1$, $v_{02}=0$, v_C 为 0V。

暂稳态: 当触发脉冲 v_1 由 0 上跳至高电平, G_1 门输出下跳至低电平, G_2 门输出 v_{02} 上跳至高电平,由于电容两端的电压不能突变,于是 v_R 由低电平跳变至高电平,且与 v_{02} 跳变幅度相同。此后 G_2 门输出的高电平向电容C放电, v_R 成指数规律下降。

返回稳态: v_1 撤销后,电容放电, v_R 成指数规律下降,当 v_R 下降至 G_1 的门阈值电压 V_{TH} 时,使 G_1 输入全为 $0,v_0$,跳变到高电平, v_0 ,跳变回低电平,暂稳态结束。

恢复阶段:此后电容充电,使 v_R回到稳态值,电路返回到稳态。

- (2) v₁、v₀₁、v₀₂、v₈的工作波形如图题解 9.1.3 所示。
- (3) 输出脉宽 t。取决于暂稳态的持续时间,其值为

$$t_{\rm w} = \tau \ln \frac{v_R(\infty) - v_R(0^+)}{v_R(\infty) - v_R(t_{\rm w})}$$

式中
$$v_R(\infty) = 0$$
 , $v_R(0^+) = V_{\rm DD}$, $v_R(t_{\rm w}) = v_{\rm TH}$ 设 $V_{\rm TH} = \frac{V_{\rm DD}}{2}$, 则
$$t_{\rm w} \approx 0.7RC$$

- 9.1.4 由集成单稳态触发器 74121 组成的延时电路及输入波形如图题 9.1.4 所示。(1) 计算输出脉宽的变化范围;(2) 解释为什么使用电位器时要串接一个电阻。
- 解:(1) 电路中集成单稳 74121 的输出脉宽与电路外接 电阻、电容取值有关。

$$t_{\rm w} \approx 0.7 RC$$

依题意将 C=1 μF R=(5.1~25.1) kΩ代人上式可算得 $t_w\approx(3.57~17.57)$ ms

- (2) 若不串接 5.1kΩ电阻,单稳 74121 外接电阻仅为电位器,那么当电位器阻值一旦调为0 时,单稳态会因无定时电阻而无法开始正常工作。
- 9.1.5 利用两片集成单稳态触发器 74LS121 构成的多谐振荡器如图题 9.1.5 所示,试说明其工作原理,并计算电路的振荡频率。

图题 9.1.4

解: 当开关 S 从闭合变为断开时,74121(1) B 端从低电平跳变为高电平使单稳(1)进入暂稳态, v_{01} 输出正脉冲,脉宽为 $0.7R_1C_1$ 。随后,在 v_{01} 的下降沿到来时,单稳(2)进入暂稳态,脉宽为 $0.7R_2C_2$ 。由于 v_0 与 74121(1)的 \overline{A}_1 相接,当 74121(2)的暂稳态结束, v_0 的下降沿到来时,74121(1)在其触发下进入暂稳态……,如此循环往复不断。于是,在 v_0 端得到一定频率的脉冲输出,电路为多谐振荡器。其工作波形如图题解 9.1.5 所示。

从分析所得工作波形可见,电路周期为: $T = t_{w1} + t_{w2} = 0.7(R_1C_1 + R_2C_2)$ 。

振荡频率,
$$f = \frac{1}{T} = \frac{1}{0.7(R_1C_1 + R_2C_2)}$$
°

9.1.6 某控制系统要求在 CP 的作用下产生时序信号 v_a 、 v_b 。两信号与 CP 的时序关系如图 题 9.1.6 所示。用 4 位二进制计数器 74LVC161、集成单稳 74121 设计该信号产生电路,试画出电路图。

解:分析题中给定的 CP_{v_a} 及 v_o 的时序关系可知, v_a 与 CP 呈四分频关系,而 v_b 则是在 v_a 波形的下降沿触发下,产生的脉宽为 t_o 的正脉冲。

电路设计应做如下考虑:首先,设计出 v_a 产生电路,然后将 v_a 作为单稳态触发器的触发信号,即可得到输出波形 v_b 。

根据 74LVC161 的逻辑功能表,将其连接为 4 位

二进制加法计数器的工作状态。画出计数器 Q_1Q_0 的工作波形如图题解 9. 1. 6(a) 所示, v_a = Q_1Q_0 。于是,用一片 74LVC16 和与门就可组成 v_a 产生电路。然后,再用 v_a 作为集成单稳触发器 74121 的触发信号,这样,在 74121 的 Q 端即可得到 v_b 波形。合理选择 $R_{\infty}C$ 的值(t_w = 0. 7 RC),使 t_w 的值满足题意要求。由以上分析,可画出 v_a 、 v_0 时序信号产生电路如图题解 9. 1. 6(b) 所示。

9.2 施密特触发器

9.2.1 在图题 9.2.1 所示的施密特触发器电路中,已知 $R_1 = 10k\Omega$, $R_2 = 20k\Omega$ 。 G_1 、 G_2 为

CMOS 反相器, $V_{\rm DD} = 10 \, \text{V}$, $V_{\rm TH} = \frac{1}{2} \, V_{\rm DD}$ 。

 $-v_0$ 2.5 0 0 0 0

图题 9.2.1

- (1) 试计算电路的正向阈值电压 V_{T+} 、负向阈值电压 V_{T-} 和回差电压 ΔV_{T-}
- (2) 若电路的输入信号 v_1 波形如图题 9.2.1(b) 所示,试画出相应的输出电压 v_0 的波形。

根据施密特触发器的电压传输特性,对应输入波形可画出输出波形如图题解9.2.1 所示。

- **9.2.2** 图题 9.2.2 电路为一个回差可调的施密特电路,它是利用射极跟随器的射极电阻来调节回差的。
 - (1) 分析电路的工作原理;
 - (2) 当 $R_{\rm el}$ 在 50~100 Ω的范围内变动时,试计算回差的变化范围。

解:图题 9.2.2 是利用射极跟随器的射极电阻分压改变滞后电压的施密特电路。工作原理如下:

当 v_1 足够高时, v_A 、 v_B 均为高电平, v_R 为低电平, v_{01} 为低电平, v_{02} 为高电平。输入电压减小,当 v_1 下降到 v_B = 1.4V(G_3 门的阈值电压)时, G_3 门关闭, v_R 为高电平,但 v_A 仍高于 1.4V, G_2 开通,电路仍维持原来状态。只有当 v_A 也下降 1.4 V 时,基本 RS 触发器才发生翻转,这时的 v_1 为负向阈值电平。显然 V_{T-} = 1.4V+ V_{RE} 。

当 v_1 上升,使 v_A 上升至1.4 V时,基本 RS 触发器并不翻转,只有当 v_B 上升至1.4V时,电路返回至第一稳态,这时 v_1 为正向阀值电平,

显然
$$V_{T+} = \frac{1.4}{R_{el}} \times (R_{el} + R_{e2}) + V_{BE}$$
 故
$$\Delta V_{T} = V_{T+} - V_{T-} = R_{el} / R_{e2} \times 1.4 \text{V}$$

从上述分析可知,改变电阻 R_{el} 的大小,即可调节滞后电压。当 v_l 输入为三角波时,电路各点波形如图题解 9.2.2 所示。

由上式可以算出,当 $R_{\rm el}$ = 50 Ω 时, $\Delta V_{\rm T}$ = 50/100×1.4 = 0.7V;当 $R_{\rm el}$ = 100 Ω 时, $\Delta V_{\rm T}$ = 1.4V。可见 $R_{\rm el}$ 在 50 ~ 100 Ω 之间变化时, $\Delta V_{\rm T}$ 变动范围为 0.7 ~ 1.4V。

- 9.2.3 集成施密特和集成单稳态触发器 74121 构成的电路如图题 9.2.3 所示。已知集成施密特的 $V_{DD} = 10 \text{V}$, $R = 100 \text{k}\Omega$, C = 0.01 μF, $V_{T_+} = 6.3 \text{V}$, $V_{T_-} = 2.7 \text{V}$, $C_{EV} = 0.01$ μF, $R_{EV} = 30 \text{k}\Omega$ 。
 - (1) 分别计算 v_{01} 的周期及 v_{02} 的脉宽。
 - (2) 根据计算结果画出 voi 、voz的波形。

解:(1)集成施密特组成多谐振荡器,当S开关接高电平后,电路开始振荡,其振荡周期

$$T = RC \ln \left(\frac{V_{\text{DD}} - V_{\text{T-}}}{V_{\text{DD}} - V_{\text{T+}}} \cdot \frac{V_{\text{T+}}}{V_{\text{T-}}} \right) = \left[10^5 \times 10^{-8} \times \ln \frac{7.3}{3.7} \cdot \frac{6.3}{2.7} \right] \text{ S}$$

$$T = 1.53 \,\text{ms}$$

单稳输出脉宽为

$$t_w \approx 0.7 R_{ext} C_{ext} = (0.7 \times 3 \times 10^4 \times 10^{-8}) S$$

 $t_w = 0.21 \text{ ms}$

(2) 分析电路可画出 v_{01} 及 v_{02} 的波形图题解 9.2.3 所示。

- 9.2.4 集成施密特触发器和 4 位同步二进制加法器 74LVC161 组成的电路如图题 9.2.4 所示。
 - (1) 分别说明图中两部分电路的功能;
 - (2) 画出图中 74LVC161 组成的电路的状态图;
 - (3) 画出图中 v_a 、 v_b 和 v_o 的对应波形。
- 解:(1) 图题 9.2.4 所示电路由脉冲产生电路和计数器两部分组成。集成施密特触发器和电阻 R、电容 C 组成多谐振荡器,为计数器提供时钟脉冲。而 4 位同步二进制加法器 74LVC161和与非门组成二进制加法计数器。

图题 9.2.4

- (2) 图中 74LVC161 用"反馈置数法"构成的计数器。设电路的初始状态为 **1010**, 在第 10 个脉冲作用后, $Q_3Q_2Q_1Q_0$ = **0011**。这时, Q_3 、 Q_2 、 Q_1 、 Q_0 信号经与非门使 74LVC161 的同步置数为 0011 状态,完成一个计数周期。电路只有 **1010~0011** 十个状态,状态图如图题解 9. 2. 4(a) 所示。该电路经 10 个时钟脉冲完成一次循环,因此,模为 M=10,是十进制计数器。
 - (3) 根据上述分析可画出图中 v_a, v_b 和 v_o 的波形如图题解9.2.4(b)所示。

图题解 9.2.4

- 9.2.5 已知某些电路的输入、输出波形分别如图题 9.2.5(a)、(b)、(c)、(d)所示,试问应选择哪些电路才能实现如图所示的输入、输出波形对应关系?
 - 解:分析图题 9.2.5(a) 所示输入、输出波形的对应关系,可见一个输出波形的周期内包含了

输入信号两个周期,它们之间是2分频关系,所以,应用2分频电路实现。

图题 9.2.5(c) 所示输入波形为正弦波, 而输出波形为矩形波, 显然, 这种输入输出波形关系是通过施密特触发器实现波形变换。

而图题 9.2.5(d) 所示输入、输出波形的对应关系是,在每个输入波形的下降沿触发下都会产生一个负脉冲。所以,要选择下降沿触发,输出为负脉冲的单稳态触发器才能实现这种输入、输出波形的对应关系。

图题 9.2.5

9.3 多谐振荡器

- **9.3.1** 图题 9.3.1 所示电路为 CMOS 或非门构成的多谐振荡器,图中 $R_{c} = 10R_{c}$
- (1) 画出 a 、b 、c 各点的波形; (2) 计算电路的振荡周期; (3) 当阈值电压 $V_{\rm TH}$ 由 $V_{\rm DD}$ /2改变至2 $V_{\rm DD}$ /3时,电路的振荡频率如何变化?与主教材中图 9.3.1(a)电路相比说明 R_s 的作用。

解:(1) 图题 9.3.1 属改进后的 RC 振荡器,电阻 R_s (10R)的加入,使得电容 C 的一端(c点)电位变化时,其过

冲由无 R_s 时的 V_{DD} (或 V_{SS})上升为 $V_{TH}+V_{DD}$ (或下降至 $V_{TH}-V_{DD}$),这样电容 C 两端电压的峰 - 峰值由原来的 $V_{DD}-V_{SS}$ 上升至 $(V_{TH}+V_{DD})-(V_{TH}-V_{DD})$,从而大大减小了由于转折电压的离散性所导致的振荡周期的变化。另一方面 R_s 电阻的串入有限流作用,保护了输入二极管。a、b、c 各点波形如图题解 9.3.1 所示。

(2) 振荡周期 T 的计算:根据 RC 电路过渡过程分析可知

$$v_C = v_C(\infty) + [v_C(0^+) - v_C(\infty)] e^{-\frac{l}{RC}}$$

可得

$$t = RC \ln \frac{v_c(0^+) - v_c(\infty)}{v_c(t) - v_c(\infty)}$$

由于 $R_s\gg R$,因此,可忽略 G_1 门输入二极管导通时由 R_s 支路对电容充放电的影响,于是,计算出:

$$\begin{split} t_{_{1}} = & RC \ln \frac{V_{_{\mathrm{DD}}} + V_{_{\mathrm{TH}}}}{V_{_{\mathrm{TH}}}} \\ t_{_{2}} = & RC \ln \frac{2V_{_{\mathrm{DD}}} - V_{_{\mathrm{TH}}}}{V_{_{\mathrm{DD}}} - V_{_{\mathrm{TH}}}} \\ T = & t_{_{1}} + t_{_{2}} = RC \ln \frac{\left(V_{_{\mathrm{DD}}} + V_{_{\mathrm{TH}}}\right) \left(2V_{_{\mathrm{DD}}} - V_{_{\mathrm{TH}}}\right)}{V_{_{\mathrm{TH}}} \left(V_{_{\mathrm{DD}}} - V_{_{\mathrm{TH}}}\right)} \end{split}$$

$$\text{如 } V_{_{\mathrm{TH}}} = \frac{V_{_{\mathrm{DD}}}}{2}, \text{则} \\ T = & RC \ln 9 \approx 2.2RC \end{split}$$

$$\text{如 } V_{_{\mathrm{TH}}} = \frac{2}{3}V_{_{\mathrm{DD}}}, \text{则} \\ T = & RC \ln 10 \\ \text{当 } V_{_{\mathrm{TH}}} \text{由} \frac{V_{_{\mathrm{DD}}}}{2} \text{改变} \underbrace{2\frac{2}{3}V_{_{\mathrm{DD}}}}_{ND} \text{h.s.}, \text{频率减小}. \end{split}$$

9.3.2 RC 环型多谐振荡电路如图题 9.3.2 所

示,试分析电路的振荡过程,画出 v_{01} 、 v_{02} 、 v_R 、 v_{03} 及 v_0 的波形。

解:若电路接通电源瞬间, v_{03} 输出为 1,则 v_{01} 为 0, v_{02} 为 1。由于电容电压不能突变, v_R 也为 0,从而保持 v_{03} 为高电平,这是电路第一暂稳态: v_{01} =0, v_{02} =1, v_{03} =1, v_0 =0。

此稳态不能长久维持,电容 C 通过图题解 9.3.2(a) 所示电路进行充电,使 v_R 上升。一旦 v_R 达到门坎电平,就会产生正反馈雪崩过程:

$$v_R \uparrow \rightarrow v_{03} \downarrow \rightarrow v_{01} \uparrow \rightarrow v_{02} \downarrow$$

$$v_C 不能突变$$

使电路进入第二暂稳态: $v_{01} = 0$, $v_{02} = 0$, $v_{03} = 0$, $v_{0} = 1$ 。

同样第二暂稳态也不能长久维持。在此期间, v_{01} 通过电阻 R 及 G_2 门对电容 C 反向充电, v_R 将按指数规律下降。当 v_R 下降至门坎电平,又发生下述雪崩过程:

结果使电路返回至第一暂稳态,如此周而复始,产生振荡。各点的工作波形如题解 9.3.2 (b) 所示。

9.3.3 由集成施密特 CMOS 与非门电路组成的脉冲占空比可调多谐振荡器如图题 9.3.3 所示。设电路中 R_1 、 R_2 、C 及 V_{DD} 、 V_{T+} 、 V_{T-} 的值已知,(1) 定性画出 v_c 及 v_o 波形;(2) 写出输出信号 v_o 频率表达式。

解:(1) 设当电路接通电源时,电容 C 上的初始电压为零, v_0 输出高电平,并经 R_1 、 D_1 向 C 充电,当电容两端电压充到使 $v_c=V_{T+}$ 时,输出跳变为低电平,电容 C 又经 D_2 、 R_2 放电。当放至 $v_c=V_{T+}$ 0

 V_{T} 时, v_0 又变为高电平,电容 C 重新开始充电,如此周而复始,在输出端便可得到振荡波形。设 $R_1 > R_2$,分析可得 v_0 及 v_0 的电压波形如图题解 9.3.3 所示。

(2) 根据 v_c 及 v_o 电压波形得到 v_o 信号周期的表达式为:

$$\begin{split} T &= t_1 + t_2 \\ &= R_1 C_1 \ln \frac{V_{\text{DD}} - V_{\text{T-}}}{V_{\text{DD}} - V_{\text{T+}}} + R_2 C_2 \ln \frac{V_{\text{T+}}}{V_{\text{T-}}} \\ f &= \frac{1}{T} \end{split}$$

9.4 555 定时器及其应用

9.4.1 图题 9.4.1 所示为一简易触摸开关电路。当手摸金属片时,发光二极管亮,经过一定时间后,发光二极管自动熄灭。试说明其工作原理,试问发光二极管亮多长时间自动熄灭?

解:图题 9.4.1 所示电路中,555 定时器与 R、C 组成单稳态触发器。当手摸金属片时,给单稳态触发器输入触发信号,单稳态触发器从稳态时进入暂稳态,输出高电平,发光二极管发亮。经 t_w 暂稳态结束,单稳态触发器自动返回到稳态,输出高电平,发光二极管自动熄灭。发光二极管亮的时间 $t=t_w\approx 1.1RC=1.1\times 200\times 10^3\times 50\times 10^{-6}$ s=11s

9.4.2 由 555 定时器及场效应管 T 组成的某功能电路如图题 9.4.2 所示,电路中 T 工作于可变电阻区,其导通电阻为 R_{DS} 。(1) 说明电路功能;(2) 写出输出 v_0 频率的表达式。

 \mathbf{m} :(1) 555 定时器与 R_1 、 R_{DS} 及 C 组成多谐振荡器。依题意,场效应管 T 工作于可变电阻区,当 v_1 变化时, R_{DS} 的阻值不同,改变 v_1 的数值,可改变振荡器的振荡频率。电路为压控振荡器。

(2) 根据 555 组成多谐振荡器的工作原理可得:

$$t_{\rm PH} \approx 0.7 (R_1 + R_{\rm DS}) C$$

$$t_{\rm PL} \approx 0.7 R_{\rm DS} C$$

$$f = \frac{1}{t_{\rm PH} + t_{\rm PL}} \approx \frac{1.43}{(R_1 + 2R_{\rm DS}) C}$$

9.4.3 由 555 定时器构成的锯齿波发生器如图题 9.4.3 所示。图中三极管 T 和电阻 R_1 、 R_2 、 R_c 构成恒流源,给定时电容 C 充电,当触发输入端输入负脉冲后,画出电容电压 v_c 及 555 输出端 v_0 的波形,并计算电容 C 充电的时间。

解:(1)当 v_1 输入一负脉冲后,555 内 RS 触发器置 1,放电 BJTT 截止,定时电容由恒流源电路充电,有 $v_c = \frac{1}{C} \int_0^t I_0 dt = \frac{I_0}{C} t$ 。故电容两端电压 v_c 随时间线性增长。当 $v_c \ge \frac{2V_{CC}}{3}$ 时,BJTT 导通,电容放电,各点波形如图题解 9.4.3 所示。

(2) 输出脉宽 tw

 t_w 为定时电容 C 上电压 v_c 从 0 充电至 $\frac{2}{3}V_{cc}$ 所需的时间。

其中,
$$t_{\rm w} = \left(\frac{2}{3} \cdot V_{\rm CC} \cdot C\right) / I_0$$

$$I_0 = \frac{V_{\rm CC} - \frac{R_2}{R_1 + R_2} V_{\rm CC} + V_{\rm BE}}{R_e}$$

$$\frac{V_{\rm CC} R_2}{R_1 + R_2} >> V_{\rm BE}, 则$$

$$t_{\rm w} = \frac{2R_e (R_1 + R_2) C}{3R_2}$$

9.4.4 由 555 定时器组成的脉冲宽度鉴别电路及输入 v_1 波形如图题 9.4.4 所示。集成施密特触发器的 $V_{T_+}=3.3~V_{\tau_-}=1.6V_{\tau_-}$ 。已知单稳的输出脉宽 t_* 与 t_1 、 t_2 关系为 t_1 < t_2 0、对应 t_3 0 出电路中 B、C、D、E 各点波形,并说明 D、E 端输出负脉冲的作用。

根据波形分析可知,当 D 端输出负脉冲时,表明 $t_w > t_1$,而 E 端输出负脉冲时表明 $t_w < t_2$,。

9.4.5 图题 9.4.5(a) 为心律失常报警电路,经放大后的心电信号 v_1 如图(b) 所示, v_1 的幅值 $v_{lm} = 4V$ 。(1) 对应 v_1 分别画出图中 A、B、E 三点波形; (2) 说明电路的组成及工作原理。

解:图题 9.4.5(a)中 555 定时器 (1)组成施密特触发器,将输入心电信号变换为脉冲信号。 555(2)与三极管、R、C 组成可重复触发的单稳。电路中,RC 参数取值使单稳输出脉宽 t_* 大于正常心电信号周期。分析该电路可画出 v_A 、 v_B 、 v_C 各点电压波形如图题解 9.4.5 所示。

根据 v_A 、 v_B 、 v_E 各点电压波形可知,当心律失常产生漏波时,E点输出低电平,发光二极管 D_2 亮,心电情况正常时发光二极管 D_1 亮。

9.4.6 一防盗报警电路如图题 9.4.6 所示,a、b 两端被一细铜丝接通,此铜丝置于小偷必经之处。当小偷闯入室内将铜丝碰断后,扬声器即发出报警声。

图题 9.4.5

图题解 9.4.5

- (1) 试问 555 定时器接成何种电路?
- (2) 简要说明该报警电路的工作原理。
- (3) 试根据图中参数计算电路的振荡频率。

解:(1) 当细铜丝断开时,555 定时器为"多谐振荡器电路"。

(2) 正常情况下,a、b 两端被一细铜丝接通,555 定时器的 4 脚为低电平使其输出端 3 脚复

位,扬声器无声音发出;当小偷闯入室内将铜丝碰断后,则4脚变为高电平,多谐振荡器工作,输出端3脚产生连续的方波信号,此时扬声器即发出报警声。

(3) 多谐振荡器的振荡频率
$$f = \frac{1}{0.7(R_2 + 2R_3)C_2}$$

将 $R_2 = 5k\Omega$, $R_2 = 2k\Omega$, $C_2 = 0.01 \mu F$ 代入上式求得报警时扬声器的振荡频率 f = 15.87 kHz。

9.4.7 分析如图题 9.4.7 所示电路。简述电路组成及工作原理。若要求扬声器在开关 S 按下后以 1.2 kHz 的频率持续响 10 秒钟,试确定图中 R_1 、 R_2 的阻值。

解:图中 555(1)组成单稳态触发器,其输出 v_{ol} 当作为 555(2)组成的多谐振荡器的清零信号。当 S 开关接通,555(1)的②脚由高电平跳变为低电平,单稳被触发,输出脉宽为 t_{w} 的正脉冲。在 t_{w} 时间内 555(2)的清零信号为高电平,多谐振荡器工作,其振荡频率为 1.2kHz。当单稳返回稳态后, v_{ol} = 0,555(2)被清零,多谐振荡器停振。

依题意,单稳脉宽
$$t_w = 10s$$

$$t_{\rm w} = 1.1 R_1 C_1$$

已知 $C_1 = 10$ μF,代人上式求得 $R_1 = 910$ kΩ

多谐振荡器振荡频率 $f = \frac{1}{0.7(R_2 + 2R_3)C_2}$

已知 $R_3 = 2.4 \text{k}\Omega$, $C_2 = 0.22 \mu\text{F}$, 代人上式求得 $R_2 = 0.61 \text{k}\Omega$

9.4.8 图题 9.4.8 电路为两个 555 定时器构成的频率可调而脉宽不变的方波发生器,试说

明工作原理;确定频率变化的范围和输出脉宽;解释二极管 D 在电路中的作用。

解:前级 555 为多谐振荡器,后级 555 构成单稳态触发器。调节多谐振荡器电位器 R_1 可改变其输出频率,多谐振荡器的输出经 C_3 、 R_4 微分电路变换为窄脉冲后作为单稳触发信号,由于单稳的定时元件 R_5 、 C_5 不变,故输出脉宽不变。于是,在单稳的输出端得到频率可调而输出脉宽不变的矩形波。其振荡频率变化范围为

$$\frac{1}{0.7(R_1 + R_2 + 2R_3)C} \sim \frac{1}{0.7(R_2 + 2R_3)C}$$

输出脉宽 $t_w = R_5 C_5 \ln 3 = 1.1 R_5 C_5$

二极管 D 在电路中起限幅削波的作用,避免大电压加到单稳输入端,造成电路因过压损坏。