

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ingeniería Eléctrica IEE2113 - Teoría Electromagnética 31/05/2024-1

Ayudantía: Líneas de Transmisión

Catalina Sierra - catalina.sierra@uc.cl

1. Introducción

La principal diferencia entre la teoría de circuitos eléctricos y de líneas de transmisión es el tamaño de sus componentes respecto a las longitudes de onda involucradas. El análisis de circuitos asume que las dimensiones físicas de la red son mucho más pequeñas que las λ involucradas, mientras que las LT y sus componentes pueden tener dimensiones similares o mayores que las λ presentes.

Luego, una línea de transmisión es una red de parámetros distribuidos, donde corrientes y voltajes pueden variar en magnitud y fase en su largo, mientras que el análisis de circuitos trabaja con parámetros concentrados donde corriente y voltaje no varían de forma apreciable dentro de las dimensiones de los elementos.

Las líneas de transmisión son empleadas para transportar ondas EM y generalmente se representan por 2 cables, ya que en el caso de los modos TEM se requiere al menos dos conductores.

Figura 1: Circuito equivalente de parámetros concentrados

2. Impedancia de entrada y ROE

La línea de transmisión sin pérdidas de la Figura 2 termina en una carga $Z_L = 100 + j100 \, [\Omega]$ y está compuesta de dos tramos: el primero de impedancia característica $Z_0 = 75 \, [\Omega]$ y largo $1,5\lambda_0$, y el segundo $Z_1 = 50 \, [\Omega]$ y largo $0,75\lambda_1$.

En base a esto determine:

- Impedancia de entrada Z_{in} (ver Fig. 2)
- ROE de la línea Z_0

$Z_0 \longrightarrow Z_0 \qquad Z_1 \qquad Z_1$

Figura 2: Línea de transmisión sin pérdidas del problema 2

3. LT terminada en dos líneas

Considere la línea de transmisión que está terminada en 2 líneas, como se muestra en la Figura 3.

Los largos de los segmentos son $l_0 = l_1 = 1m$ y $l_2 = 0.8m$, y las impedancias de carga son $Z_1 = 30 + j70[\Omega]$ y $Z_2 = 75 - j10[\Omega]$.

Si todas las líneas son alimentadas con una señal de voltaje incidente $V_0^+=10V$ a frecuencia $f_0=1GHz$ y tienen las siguientes características:

Figura 3: LT terminada en 2 líneas

$$C = 73[pF/m]$$
; $L = 0.184[\mu H/m]$; $R = 0[\Omega/m]$; $G = 0[S/m]$

Determine:

- Constante de propagación, velocidad de propagación, permitividad del dieléctrico, longitud de onda e impedancia característica de la línea.
- Γ₀₀
- La potencia entregada a cada carga.

4. Terminación CA en LT sin pérdidas

Una señal viaja por un cable coaxial sin pérdidas desde el generador hacia la carga y su amplitud es $V_0^+ = 10[V]$. Si la carga es circuito abierto, muestre cuánto es el voltaje total en la línea a una distancia $d = 3\lambda/4$ de la carga.

Terminación CC en LT sin pérdidas 5.

De forma análoga al problema anterior, una señal viaja por un cable coaxial sin pérdidas desde el generador hacia la carga y su amplitud es $V_0^+ = 10[V]$. Si la carga es cortocircuito, muestre cuánto es el voltaje total en la línea a una distancia $d = 3\lambda/4$ de la carga.

Figura 4: Línea de transmisión terminada en circuito abierto

Figura 5: Línea de transmisión terminada en cortocircuito