Тренировочная работа по МАТЕМАТИКЕ 11 класс

21 апреля 2017 года Вариант МА10709 (профильный уровень)

Выполнена: ФИО	 класс	

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1-12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10709

Ответ:

Часть 1

Ответом κ каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы κ заданиям в поле ответа в тексте работы.

1	В магазине вся мебель продаётся в разобранном виде. Покупатель может
	заказать сборку мебели на дому, стоимость которой составляет 10 % от
	стоимости купленной мебели. Шкаф стоит 5700 рублей. Во сколько рублей обойдётся покупка этого шкафа вместе со сборкой?

2 На диаграмме показана среднемесячная температура воздуха в Санкт-Петербурге за каждый месяц 1999 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, в каком месяце среднемесячная температура впервые превысила 16 °C. В ответе запишите номер месяца. (Например, ответ 1 обозначает январь.)

Ответ:			
OIBCI.			

3 На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите радиус описанной около него окружности.

Ответ:

В магазине три продавца. Каждый из них занят обслуживанием клиента с вероятностью 0,2 независимо от других продавцов. Найдите вероятность того, что в случайный момент времени все три продавца заняты.

Ответ: ______.

Б Найдите корень уравнения $\log_{\frac{1}{8}}(4-4x)=-2$.

Ответ: ______.

В равнобедренном треугольнике *ABC* с основанием *AB* боковая сторона равна $16\sqrt{15}$, $\sin \angle BAC = 0.25$. Найдите длину высоты *AH*.

Ответ: ______.

7 На рисунке изображён график функции y = f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику функции y = f(x) параллельна прямой y = 2x + 5 или совпадает с ней.

Ответ: ______.

Даны два цилиндра. Объём первого цилиндра равен 36. У второго цилиндра высота в 4 раза меньше, а радиус основания в 3 раза больше, чем у первого. Найдите объём второго цилиндра.

Ответ:

Часть 2

9 Найдите значение выражения $\frac{\sqrt{3,5} \cdot \sqrt{1,5}}{\sqrt{0,21}}$.

Ответ: .

Автомобиль, масса которого равна m = 1500 кг, начинает двигаться с ускорением, которое в течение t секунд остаётся неизменным, и проходит за это время путь S = 600 метров. Значение силы (в ньютонах), приложенной в это время к автомобилю (тяги двигателя), равно $F = \frac{2mS}{t^2}$. Определите время после начала движения автомобиля, за которое он пройдёт указанный путь, если известно, что сила F, приложенная к автомобилю, равна 2000 Н. Ответ выразите в секундах.

Ответ: .

По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 80 км/ч и 50 км/ч. Длина товарного поезда равна 1200 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам. Ответ дайте в метрах.

Ответ: . .

12 Найдите точку минимума функции $y = x^3 + 5x^2 + 7x + 22$.

Ответ: .

© СтатГрад 2016-2017 уч. г.

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- a) Решите уравнение $\frac{1}{\sin^2 x} + \frac{1}{\cos(\frac{7\pi}{2} + x)} = 2$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.
- В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=4 и диагональю BD=7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS точка F так, что SF=BE=3.
 - а) Докажите, что плоскость CEF параллельна ребру SB.
 - б) Плоскость CEF пересекает ребро SD в точке Q . Найдите расстояние от точки Q до плоскости ABC .
- **15** Решите неравенство $\frac{\log_2(8x) \cdot \log_3(27x)}{x^2 |x|} \le 0$.
- Прямая, проходящая через середину M гипотенузы AB прямоугольного треугольника ABC, перпендикулярна CM и пересекает катет AC в точке K. При этом AK:KC=1:2.
 - а) Докажите, что $\angle BAC = 30^{\circ}$.
 - б) Пусть прямые MK и BC пересекаются в точке P, а прямые AP и BK в точке Q. Найдите KQ, если $BC = \sqrt{21}$.

- В июле планируется взять кредит в банке на сумму 7 млн рублей на срок 10 лет. Условия возврата таковы:
 - каждый январь долг возрастает на r% по сравнению с концом предыдущего года;
 - с февраля по июнь необходимо выплатить часть долга так, чтобы на начало июля каждого года долг уменьшался на одну и ту же сумму по сравнению с предыдущим июлем.

Найдите наименьшую возможную ставку r, если известно, что последний платёж будет не менее 0,819 млн рублей.

- Hайдите все значения a, для каждого из которых уравнение $4^x + (a-6)2^x = (2+3|a|)2^x + (a-6)(3|a|+2)$ имеет единственное решение.
- 19 Известно, что a, b, c и d попарно различные положительные двузначные числа.
 - а) Может ли выполняться равенство $\frac{a+c}{b+d} = \frac{8}{25}$?
 - б) Может ли дробь $\frac{a+c}{b+d}$ быть в 11 раз меньше, чем значение выражения $\frac{a}{b}+\frac{c}{d}$?
 - в) Какое наименьшее значение может принимать дробь $\frac{a+c}{b+d}$, если a>5b и c>6d ?

Ответы к тренировочной работе по математике от 21.04.2017 (профильный уровень)

	1	2	3	4	5	6	7	8	9	10	11	12
Вариант 10709	6270	6	3	0,008	-15	30	3	81	5	30	300	-1
Вариант 10710	4920	5	3,5	0,343	-11	42	-2	18	7	50	150	3
Вариант 10711	27	10400	3,5	0,028	-29	12	2	6	18	30	38	16
Вариант 10712	28,8	14900	4,5	0,036	62	18	2	25	21	24	48	24

Критерии оценивания заданий с развёрнутым ответом

- a) Решите уравнение $\frac{1}{\sin^2 x} + \frac{1}{\cos(\frac{7\pi}{2} + x)} = 2$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$.

Решение.

а) Преобразуем уравнение:

$$\frac{1}{\sin^2 x} + \frac{1}{\sin x} = 2,$$

$$1 + \sin x - 2\sin^2 x = 0,$$

$$(2\sin x + 1)(1 - \sin x) = 0.$$

Значит, $\sin x = -\frac{1}{2}$ или $\sin x = 1$, $x = -\frac{\pi}{6} + 2\pi k$, $x = -\frac{5\pi}{6} + 2\pi k$ или $x = \frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$.

б) Отбор корней произведём с помощью единичной окружности. Отрезку $\left[-\frac{5\pi}{2}; -\pi\right]$ принадлежат корни $-\frac{13\pi}{6}$ и $-\frac{3\pi}{2}$.

Otbet: a) $-\frac{\pi}{6} + 2\pi k$, $-\frac{5\pi}{6} + 2\pi k$, $\frac{\pi}{2} + 2\pi k$, $k \in \mathbb{Z}$; \mathfrak{H} , $-\frac{13\pi}{6}$, $-\frac{3\pi}{2}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB=4 и диагональю BD=7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF=BE=3.

а) Докажите, что плоскость CEF параллельна ребру SB.

б) Плоскость CEF пересекает ребро SD в точке Q . Найдите расстояние от точки Q до плоскости ABC .

Решение.

а) Имеем DE = 7 - BE = 4. Пусть прямая CE пересекает ребро AB в точке M. Треугольники BME и DCE подобны, поэтому $\frac{BM}{DC} = \frac{BE}{DE} = \frac{3}{4}$, откуда BM = 3. Тогда AM = 1. Треугольники ABS и AMF подобны, значит, $FM \parallel SB$. Поэтому прямая SB параллельна плоскости CEF.

б) Из доказанного в предыдущем пункте следует, что $QE \parallel SB$. Тогда $\frac{DQ}{QS} = \frac{DE}{EB} = \frac{4}{3}$. Пусть O — центр основания ABCD. Так как все боковые рёбра пирамиды равны, SO — высота пирамиды. Имеем

$$SO = \sqrt{SA^2 - AO^2} = \sqrt{16 - \left(\frac{7}{2}\right)^2} = \frac{\sqrt{15}}{2}.$$

Плоскость SDB перпендикулярна плоскости основания, и проекция H точки Q на плоскость основания лежит на отрезке DO . Из подобия треугольников DQH и DSO находим $QH = \frac{4}{7} \cdot SO = \frac{2\sqrt{15}}{7}$.

Ответ:
$$\frac{2\sqrt{15}}{7}$$
.

© СтатГрад 2016-2017 уч. г.

Содержание критерия			
Имеется верное доказательство утверждения пункта а, и	2		
обоснованно получен верный ответ в пункте б			
Верно доказан пункт а.	1		
ИЛИ			
Верно решён пункт δ при отсутствии обоснований в пункте a			
Решение не соответствует ни одному из критериев, перечисленных	0		
выше			
Максимальный балл	2		

Решите неравенство $\frac{\log_2(8x) \cdot \log_3(27x)}{x^2 - |x|} \le 0$.

Решение.

Перейдём к системе

$$\begin{cases} \frac{(8x-1)(27x-1)}{x(x-1)} \le 0\\ x > 0, \end{cases}$$

откуда $0 < x \le \frac{1}{27}$ или $\frac{1}{8} \le x < 1$.

Ответ: $\left(0; \frac{1}{27}\right]; \left\lceil \frac{1}{8}; 1 \right).$

Содержание критерия	Баллы
Обоснованно получен верный ответ	
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

- 16 Прямая, проходящая через середину M гипотенузы AB прямоугольного треугольника ABC, перпендикулярна CM и пересекает катет AC в точке K. При этом AK:KC=1:2.
 - а) Докажите, что $\angle BAC = 30^{\circ}$.
 - б) Пусть прямые MK и BC пересекаются в точке P, а прямые AP и BK в точке Q. Найдите KQ, если $BC = \sqrt{21}$.

Решение.

 \overline{a}) Пусть E — середина KC. Тогда ME — медиана прямоугольного треугольника CMK, проведённая из вершины прямого угла. Значит,

$$ME = \frac{1}{2}CK = AK = \frac{1}{2}AE.$$

Следовательно, $\angle A = 30^{\circ}$.

Математика. 11 класс. Варианты МА10709

б) Из прямоугольных треугольников АВС и КВС находим, что

$$AC = BC \operatorname{ctg} 30^{\circ} = \sqrt{21} \cdot \sqrt{3} = 3\sqrt{7}$$
,

$$BK = \sqrt{BC^2 + \left(\frac{2}{3}AC\right)^2} = \sqrt{21 + 28} = 7.$$

Через вершину A проведём прямую, параллельную BC . Пусть T — точка пересечения этой прямой c прямой MK, а D — точка пересечения прямой BK c прямой AT .

Из равенства треугольников AMT и BMP получаем, что AT = BP, а из подобия треугольников CKP и AKT следует, что CP = 2AT = 2BP. Значит, B — середина CP.

Треугольник AKD подобен треугольнику CKB с коэффициентом $\frac{1}{2}$, поэтому

$$AD=rac{1}{2}BC=rac{1}{2}BP$$
, а так как $AD\parallel BP$, AD — средняя линия треугольника

$$BQP$$
. Значит, $BQ = 2DB = 2 \cdot \frac{3}{2}BK = 2 \cdot \frac{3}{2} \cdot 7 = 21$.

Следовательно, KQ = BQ - BK = 21 - 7 = 14.

Ответ: 14.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обоснован-	3
но получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта σ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

В июле планируется взять кредит в банке на сумму 7 млн рублей на срок 10 лет. Условия возврата таковы:

- каждый январь долг возрастает на $r\,\%$ по сравнению с концом предыдущего года;
- с февраля по июнь необходимо выплатить часть долга так, чтобы на начало июля каждого года долг уменьшался на одну и ту же сумму по сравнению с предыдущим июлем.

Найдите наименьшую возможную ставку r, если известно, что последний платёж будет не менее 0.819 млн рублей.

Решение.

Долг перед банком (в млн рублей) по состоянию на июль должен уменьшаться до нуля равномерно:

По условию каждый январь долг возрастает на r %. Пусть $k = 1 + \frac{r}{100}$, тогда последовательность размеров долга (в млн рублей) в январе такова:

$$7k$$
; $6,3k$; $5,6k$; ...; $1,4k$; $0,7k$.

Следовательно, последний платёж составит 0.7k млн рублей.

Получаем 0,7 $k \ge 0$,819, откуда $k \ge 1$,17. Значит, k = 1,17, и r = 17.

Ответ: 17.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

Найдите все значения a, для каждого из которых уравнение $4^x + (a-6)2^x = (2+3|a|)2^x + (a-6)(3|a|+2)$ имеет единственное решение.

Решение.

Запишем уравнение в виде

$$(2^{x}+a-6)(2^{x}-2-3|a|)=0$$
,

откуда $2^x + a - 6 = 0$ или $2^x - 2 - 3|a| = 0$.

© СтатГрад 2016-2017 уч. г.

Построим решения уравнения на координатной плоскости xOa.

На чертеже видно, что система имеет единственное решение при $a=a_1$, $a=a_2$ и $a\geq 6$. Найдём a_1 и a_2 .

Из системы
$$\begin{cases} 2^x + a - 6 = 0, \\ 2^x - 2 + 3a = 0 \end{cases}$$
 получаем $6 - a = 2 - 3a$, откуда $a_1 = -2$. Из системы
$$\begin{cases} 2^x + a - 6 = 0, \\ 2^x - 2 - 3a = 0 \end{cases}$$
 получаем $6 - a = 2 + 3a$, откуда $a_2 = 1$.

Ответ: a = -2; a = 1; $a \ge 6$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ	3
содержит лишнее значение	
С помощью верного рассуждения получены все решения уравнения	2
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

- 19 Известно, что a, b, c и d попарно различные положительные двузначные числа.
 - а) Может ли выполняться равенство $\frac{a+c}{b+d} = \frac{8}{25}$?
 - б) Может ли дробь $\frac{a+c}{b+d}$ быть в 11 раз меньше, чем значение выражения

 $\frac{a}{b} + \frac{c}{d}$?

в) Какое наименьшее значение может принимать дробь $\frac{a+c}{b+d}$, если a>5b и c>6d?

Решение.

- а) Пусть a = 22, b = 60, c = 10 и d = 40. Тогда $\frac{a+c}{b+d} = \frac{32}{100} = \frac{8}{25}$.
- б) Предположим, что $11 \cdot \frac{a+c}{b+d} = \frac{a}{b} + \frac{c}{d}$. Тогда $11 \cdot (a+c)bd = (b+d)(ad+bc),$ $11abd+11bcd = abd+bcd+ad^2+b^2c,$ $10abd-ad^2 = b^2c-10bcd \quad \text{и}$ ad(10b-d) = bc(b-10d).

С другой стороны,

$$10b - d \ge 10 \cdot 10 - 99 > 0 > 99 - 10 \cdot 10 \ge b - 10d$$
.

Следовательно, числа ad(10b-d) и bc(b-10d) имеют разные знаки и не могут быть равны. Пришли к противоречию.

в) Из условия следует, что $99 \ge a \ge 5b+1$ и $c \ge 6d+1$. Значит, $b \le \frac{98}{5} < 20$.

Отсюда, учитывая, что число b целое, получаем, что $b \le 19$. Используя неравенства

$$a \ge 5b+1$$
, $c \ge 6d+1$, $b \le 19$ и $d \ge 10$,

получаем

$$\frac{a+c}{b+d} \ge \frac{5b+6d+2}{b+d} = 5 + \frac{d+2}{b+d} \ge 5 + \frac{d+2}{d+19} = 6 - \frac{17}{d+19} \ge 6 - \frac{17}{29} = \frac{157}{29}.$$

Пусть a = 96, b = 19, c = 61 и d = 10. Тогда $\frac{a+c}{b+d} = \frac{157}{29}$. Следовательно,

наименьшее возможное значение дроби $\frac{a+c}{b+d}$ равно $\frac{157}{29}$.

Ответ: а) Да, например, если a = 22, b = 60, c = 10 и d = 40; б) нет; в) $\frac{157}{29}$.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах а и б, либо	3
получены верные обоснованные ответы в пунктах a и b	
Получен верный обоснованный ответ в пункте б, пункты а и в не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте a , пункты δ и ϵ не решены	
Решение не соответствует ни одному из критериев, перечисленных	
выше	
Максимальный балл	4