Chernoff faces of visualizations

One unorthodox view to visualize data is a Chernoff face (Chernoff 1973). These computer-generated drawings manipulate facial attributes to compare multivariate data sets. Humans have evolved to recognize and classify people by their faces, so this is a powerful perceptive technique to exploit (Yang & Trewn 2004). With one record to a face, Chernoff faces are well-suited to quickly grouping large numbers of records, especially when the data clusters in roughly equal sizes with few borderline cases (Sayena & Navaneetham 1991).

Chernoff faces are a type of **glyph**, a device which attempts to combine multiple dimensions of data into a single symbol. Good glyph design involves selecting each aspect carefully so that they all are available perceptively for pattern search (Wong & Bergeron 1997). Nevertheless, glyphs require complex perceptive and cognitive operations to comprehend, so applying them involves a tradeoff between comparing data in multiple simple visualizations, versus puzzling over information combined in one display (Cleveland & McGill 1984).

Pop Eye size ----Less pop

Preattentive Processing

Retinal Variables

Search	Color	Texture
Conjunctive	• Hue	Motion
Preattentive	• Saturation	 Velocity
Scanning	 Brightness 	Direction
Encoding	Luminance contrast	Flicker
Differentiation	Size	• Frequency
Just Noticeable Difference	Shape	+ Phase
	Orientation	Depth

Gestalt Eyebrow angle

Palli	Snape	Grouping
• Continuity	Closure	• Proximity
• Shortest	Symmetry	 Similarity
Edge crossings		 Common fate

Connectedness

Image

Select a visualization by its perceptual characteristics.

Context Mouth curve

Joshua Ledwell May 6, 2008

User

Match a visualization to its users' cognitive needs

Cognitive fit Hair

Evaluation

Ear size

Less detail zooming

Cognitive load

Propositional

Dual-coding

Parallel processing

More detail zooming

Data brushing

Filter

Pruning

Zoom

Focus

Queries

Views

Space-filling (treemap)

Scatter plot

Pie graph

Hyperbolic tree

More data

Views

Separate

Linking

Animation

Controls

Updates

Large data sets

Face shape

Mapping to visuals

Length

Special planar aspects

Real-time updates

Less data

Data types

Nominal

Associative

Selective

Ordinal

Ratio

Quantitative

weather map

Exploration

Explore data			
	•	Scenario casting	

Comparison

Compare multiple views

Creative thought

Radiant thinking

Non-linear thinking

Decision making Nose length Less decision support More decision support

Priming Parties involved Individual **Expected utility** Group Risk Mindlessness **Emotions**

Uncertainty Time pressure

Bias

Decision support

Weak literature support Strong literature support Measuring Studies Task results Iterating based on user feedback Intuition Bertin Tufte Models Shneiderman + Green

Task

Choose a visualization based on data analysis goals