

CURSO INTENSIVO 2022

ITA - 2022 Química

Prof. Thiago

Sumário

APRESENTAÇÃO DA AULA		
ELETROQUÍMICA NAS PROVAS DO ITA	3	
1. CÉLULAS GALVÂNICAS	3	
1.1. Pilha de Daniell	4	
1.2. Definições Importantes	5	
2. POTENCIAL DE ELETRODO	6	
2.1.1. Força Eletromotriz da Pilha2.1.2. Relação entre Carga e Energia		
2.1.3. Eletrodo Padrão de Hidrogênio	10	
2.3. Equação de Nernst	13	
3. ELETRÓLISE	15	
3.1. Leis de Faraday	16	
3.2. Eletrólise Ígnea	17	
3.3. Eletrólise em Meio Aquoso 3.3.1. Eletrodo de Concentração	18 21	
4. FÍSICA DE DISPOSITIVOS ELETROQUÍMICOS	23	
4.1. Interpretação Física	23	
4.1.1. Curto-Circuito	24	
4.2. Associação de Células Eletroquímicas	25	
4.3. Corrosão	26	
4.3.1. Corrosão pela Água	26	
4.3.2. Proteção Anódica	28	
4.3.3. Proteção Catódica 4.3.4. Oxidações Intermediárias	28 28	
4. LISTA DE QUESTÕES PROPOSTAS	2 9	
4.1. Gabarito	40	
5. LISTA DE QUESTÕES COMENTADAS	41	

Apresentação da Aula

A matéria é composta de partículas eletricamente carregadas. O fluxo dessas partículas numa reação química pode liberar ou absorver energia elétrica.

A Eletroquímica é o ramo da Química que estuda as conversões entre energia elétrica e uma reação química.

Eletroquímica nas Provas do ITA

O assunto Eletroquímica é um dos favoritos da Físico-Química pela prova do ITA. O ITA ama cobrar esse assunto com alto nível de profundidade, com bastantes detalhes teóricos.

Trata-se, portanto, de uma aula imperdível e que você deve considerar revisar várias vezes.

Faça todos os exercícios e treine bastante. Certamente, é um dos assuntos que vai fazer o diferencial que você precisa para a sua aprovação.

1. Células Galvânicas

Uma célula eletroquímica ou galvânica é um dispositivo que utiliza reações de óxido-redução para produzir a interconversão de energia química e elétrica. São classificadas em dois tipos:

- **Células galvânicas:** também conhecidas como **pilhas**, nas quais energia química é convertida em energia elétrica por meio de uma **reação espontânea**.
- Células eletrolíticas: nas quais energia elétrica é utilizada para induzir uma reação nãoespontânea.

Figura 1: Tipos de Células Eletroquímicas

1.1. Pilha de Daniell

Considere que mergulhamos uma chapa de zinco metálico (Zn) em uma solução aquosa de sulfato de cobre $(CuSO_4)$. a seguinte reação de óxido-redução:

$$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$$

Essa reação já é conhecida, uma vez que se trata de uma Simples Troca.

Como o Zn é mais eletropositivo que o Cu, essa reação é espontânea $\left(\Delta G^0 = -212 \frac{kJ}{mol}\right)$. Portanto, ela pode acontecer diretamente caso uma barra de zinco metálico seja mergulhada numa solução de sulfato de cobre.

Figura 2: Reação entre o Zinco e o Sulfato de Cobre

Em toda reação de oxirredução, acontece a transferência de elétrons da substância oxidada para a substância reduzida.

Para facilitar enxergar isso, podemos fracionar a reação global em duas semi-reações: uma que trata a oxidação do zinco, e outra que trata a redução do cobre.

oxidação
$$Zn(s) \rightarrow Zn^{2+} + 2e^{-}$$

redução
$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s)$$

A reação do zinco com o sulfato de cobre é uma reação espontânea e que cria um fluxo de elétrons. Porém, do jeito que foi montada na Figura 2, não cria uma corrente elétrica que pode ser aproveitada para esses fins, como a construção de uma pilha.

É possível, entretanto, arquitetar a reação, de modo que o zinco e cobre estejam em compartimentos separados. Em um eletrodo, teríamos uma mistura de zinco metálico e sulfato de zinco. No outro, teríamos, uma mistura de cobre metálico e sulfato de cobre. Os dois eletrodos precisam ser ligados por um fio para que haja um fluxo de elétrons de um para o outro.

É necessário, ainda, ser introduzida uma nova fonte de íons que seja capaz de manter o equilíbrio das cargas em ambas as soluções. Essa fonte de íons é conhecida como **ponte salina**. Ela é normalmente construída com sais formado por cátions e ânions que formem sais solúveis com facilidade – como é o caso dos metais alcalinos, dos cloretos e dos sulfatos. Por isso, o cloreto de potássio (KCl) e o sulfato de sódio (Na_2SO_4) são muito utilizados nesse papel.

A ponte de cobre e zinco com a pilha salina de cloreto de potássio é conhecida como **Pilha de Daniell**, construída pelo químico John Frederic Daniell (1790 – 1845), que foi uma evolução da pilha de Volta.

Figura 3: Esquema da Pilha de Daniell

Na ausência da ponte salina, o circuito não fecha e a passagem de corrente elétrica na solução implicaria a perda da neutralidade elétrica, o que é uma situação fisicamente impossível.

1.2. Definições Importantes

No estudo de células galvânicas, é importante ter em mente os conceitos de cátodo e ânodo.

- **Ânodo:** é o eletrodo de onde saem os elétrons, portanto, é onde ocorre a **oxidação**;
- Cátodo: é o eletrodo para onde vão os elétrons, portanto, é onde ocorre a redução.

As definições vistas valem tanto para as pilhas como para as células eletrolíticas. Portanto, é útil memorizar o seguinte bizu.

Ânodo começa com vogal, assim como Oxidação, que também começa com vogal. Cátodo começa com consoante, assim como Redução, que também começa com consoante.

Em uma pilha, como a reação é espontânea, os elétrons saem do polo negativo e partem para o polo positivo. Portanto, o polo negativo é o ânodo e o polo positivo é o cátodo. Portanto, podemos complementar a Pilha de Daniell evidenciando a posição dos polos, do cátodo e do ânodo.

Figura 4: Representação da Pilha de Daniell evidenciando o ânodo e o cátodo

2. Potencial de Eletrodo

O potencial é uma grandeza física que está relacionada com a capacidade que um corpo carregado tem de atrair ou repelir outras cargas elétricas. Considere uma carga $\bf q$ e um ponto situado a uma distância $\bf r$ dessa carga. Considerando que o potencial no infinito seja nulo, podemos escrever:

$$V = \frac{Kq}{r}$$

É importante destacar que o potencial independe da carga localizada na posição em estudo. Trata-se, portanto, de **uma grandeza intensiva.**

Os elétrons, por serem carga negativa, tendem a se dirigir para o potencial mais elevado, ou seja, para o polo positivo, que é simbolizado na Química por um +. Isso é o que acontece nas pilhas, que são caracterizadas por reações espontâneas.

Por outro lado, nas células eletrolíticas, que se caracterizam por reações não-espontâneas, os elétrons tendem a se dirigir para o potencial menor, ou seja, para o polo negativo, que é simbolizado na Química por um –.

Note, portanto, que, nas pilhas, o catódo é o polo positivo, porém, na eletrólise, o cátodo é o polo negativo.

Figura 5: Polos correspondentes ao cátodo na pilha e na eletrólise

2.1.1. Força Eletromotriz da Pilha

Na Química, faz pouco sentido falar do potencial puramente, uma vez que estamos interessados principalmente em reações químicas. Voltemos ao exemplo da Pilha de Daniell.

oxidação
$$Zn(s) \rightarrow Zn^{2+} + 2e^{-}$$

redução
$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s)$$

A diferença de potencial corresponde à **força eletromotriz**, que foi primeiramente teorizada por Alessandro Volta. A diferença de potencial entre as duas células causa a movimentação dos elétrons. Como se trata de uma pilha que, portanto, é espontânea, o fluxo de elétrons ocorre do polo negativo para o polo positivo.

$$fem = E = E_{red}^{c\acute{a}todo} - E_{red}^{\hat{a}nodo}$$

Quando a reação é invertida, a diferença de potencial é também invertida. Ou seja, ela conserva o seu valor absoluto, trocando apenas o sinal.

Veremos mais adiante que os potenciais de redução são tabelados. Por exemplo, a partir dos valores tabelados, temos que os potenciais de redução do cobre e do zinco são:

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$
 $E_{Zn^{2+}|Zn} = -0.76 V$

$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s)$$
 $E_{Cu^{2+}|Cu} = 0.34 V$

Podemos trabalhar a equação, de modo a inverter a reação de redução do zinco. Como falamos anteriormente, sempre que invertemos uma reação, o sinal do potencial se inverte.

$$Zn(s) \to Zn^{2+}(aq) + 2e^{-} \qquad E_{Zn|Zn^{2+}} = 0.76 V$$

$$(+) \qquad Cu^{2+}(s) + 2e^{-} \to Cu(s) \qquad E_{Cu^{2+}|Cu} = 0.34 V$$

$$Zn(s) + Cu^{2+}(aq) \to Zn^{2+}(aq) + Cu(s) \qquad E = 0.76 + 0.34 = 1.10V$$

É importante observar que uma pilha sempre se baseia em uma reação espontânea. Portanto, caso tenhamos calculado o potencial da pilha e encontrado um valor negativo, isso significa que a reação está invertida. Basta inverter os polos da pilha e trocar o sinal da sua diferença de potencial.

2.1.2. Relação entre Carga e Energia

Quando posicionamos uma carga na posição caracterizada pelo potencial **E**, a energia elétrica de atração entre as duas cargas é dada pelo produto entre carga e potencial.

$$Energia = Carga \times Potencial$$

A carga de 1 mol de elétrons é definida como 1 Faraday negativo. O valor do Faraday costuma ser fornecido nas questões de prova, quando necessário, portanto, você não precisa decorar esse valor.

$$1 F = 96500 C$$

Portanto, podemos calcular a carga de uma amostra de elétrons como sendo o produto entre o número de mols e a carga de 1 mol de elétrons, que é -1F

$$\Delta G = \text{número de mols de elétrons} \times (-1F) \times E$$

$$\therefore \Delta G = -nFE$$

Note que os sinais da Variação de Energia Livre de Gibbs (ΔG) e do potencial da reação (E) são sempre opostos.

Tabela 1: Espontaneidade de Reação

Espontaneidade	Interpretação	ΔG	E
Espontânea	Pilha	$\Delta G < 0$	E > 0
Equilíbrio	Pilha descarregada	$\Delta G = 0$	E=0
Não-espontânea	Eletrólise	$\Delta G < 0$	E < 0

Dessa maneira, as pilhas devem ser construídas com base em uma reação que gere um potencial positivo.

Duas consequências importantes do fato de o potencial ser uma grandeza intensiva são:

- Ao multiplicar uma reação química por qualquer valor, não se altera o seu potencial;
- O potencial não segue a Lei de Hess, portanto, ao somar duas reações, não se pode somar os seus potenciais.

1. (Estratégia Militares – TFC - Inédita)

Considere os potenciais de redução

$$Cu^{2+}$$
 (aq) +2e⁻ \rightarrow Cu (s) E⁰ = 0.34 V

$$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq) E^{0} = 0.15 V$$

Qual o potencial da reação Cu⁺(aq) + e⁻ → Cu (s)

Comentários

Olhando para o par de reações fornecidas e para a desejada, temos a tentação de inverter a segunda reação.

$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s)$$
 $E_{Cu^{2+}|Cu} = 0.34 V$

$$Cu^{2+}(s) + e^{-} \rightarrow Cu^{+}(aq)$$
 $E_{Cu^{2+}|Cu^{+}} = 0.15 V$

Ao inverter a segunda reação, invertemos também o seu potencial.

$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s)$$
 $E_{Cu^{2+}|Cu} = 0.34 V$

$$Cu^{+}(aq) \rightarrow Cu^{2+} + e^{-}$$
 $E_{Cu^{+}|Cu^{2+}} = -0.15 V$

Podemos, agora, somar as duas reações e chegaremos à reação desejada. Porém, devemos nos lembrar que não podemos somar diretamente os potenciais, tendo em vista que eles não seguem à Lei de Hess. Em vez disso, podemos somar as Energias Livres de Gibbs associadas às reações.

$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s) \qquad E_{Cu^{2+}|Cu} = 0,34 V \qquad \Delta G_{I} = -nFE_{I} = -2.F.0,34$$

$$(+) \qquad Cu^{+}(aq) \rightarrow Cu^{2+} + e^{-} \qquad E_{Cu^{+}|Cu^{2+}} = -0,15 V \qquad \Delta G_{II} = -nFE_{II} = -1.F.(-0,15)$$

$$Cu^{+}(aq) + e^{-} \rightarrow Cu(s) \qquad \qquad \Delta G_{III} = \Delta G_{I} + \Delta G_{II}$$

Substituindo a expressão $\Delta G = -nFE$ nas três reações, temos:

$$\Delta G_{III} = -1.F.E$$

Aplicando a Lei de Hess para as energias livres de Gibbs, temos:

$$\Delta G_{III} = \Delta G_I + \Delta G_{II}$$

$$-1.F.E = -2.F.0,34 - 1.F.(-0,15)$$

Podemos cortar o sinal negativo e a constante de Faraday de ambos os lados da reação.

$$E = 0.68 - 0.15 = 0.53 V$$

Gabarito: 0,53 V

2.1.3. Eletrodo Padrão de Hidrogênio

Para definir o potencial de um eletrodo, é necessário **adotar um referencial**, o qual será considerado como tendo potencial nulo.

Para estudar o principal eletrodo de referência utilizado na Química Teórica, primeiramente precisamos do conceito de eletrodo padrão.

Um eletrodo padrão é aquele em que todos os reagentes e produtos da semi-reação do eletrodo se encontram nos seus estados padrão, observando o seguinte:

- a concentração dos íons deve ser 1 mol.L⁻¹;
- a pressão parcial dos gases deve ser 1 atm (ou 760 mmHg).

Na Química, é utilizado para esse fim o **eletrodo padrão de hidrogênio**, que se baseia na seguinte reação:

$$2H^+(aq) + 2e^- \to H_2(g) \quad E_{H^+|H_2} = 0 \; V \quad P_{H_2} = 1 \; atm, [H^+] = 1 mol/L$$

Nesse eletrodo, o gás hidrogênio se encontra associado à platina, de modo que suas moléculas ficam adsorvidas na superfície do metal, facilitando a reação. Além disso, a platina é condutora, permitindo que a corrente elétrica possa fluir e atingir o hidrogênio gasoso.

Figura 6: Eletrodo Padrão de Hidrogênio

Os **potenciais-padrão** de redução dos eletrodos são tabelados em relação ao eletrodo padrão de hidrogênio. Quanto maior o potencial de redução de um eletrodo, maior é a sua capacidade de se reduzir, isto é, oxidar outros eletrodos.

Tabela 2: Potenciais Padrão de Redução a 25ºC

Reação de Redução	Potencial Padrão E ⁰ (V)
$2e^- + F_{2(g)} \to 2F_{(aq)}^-$	+2,87
$5e^{-} + 8H_{(aq)}^{+} + MnO_{4(aq)}^{-} \rightarrow Mn_{(aq)}^{2+} + 4H_{2}O$	+1,51
$2e^- + Cl_{2(g)} \rightarrow 2Cl_{(aq)}^-$	+1,36
$6e^- + 14H_{(aq)}^+ + Cr_2O_{7(aq)}^{2-} \rightarrow 2Cr_{(aq)}^{3+} + 7H_2O_{(aq)}^{2-}$	+1,33
$4e^- + 4H^+_{(aq)} + O_{2(g)} \rightarrow 2H_2O$	+1,23
$2e^- + Br_{2(l)} \rightarrow 2Br_{(aq)}^-$	+1,07
$3e^- + 4H^+_{(aq)} + NO^{3(aq)} \to NO_{(g)} + 2H_2O$	+0,96
$e^- + Ag^+_{(aq)} \to Ag_{(s)}$	+0,80
$e^{-} + Ag^{+}_{(aq)} \to Ag_{(s)}$ $e^{-} + Fe^{3+}_{(aq)} \to Fe^{2+}_{(aq)}$	+0,77
$2e^- + I_{2(s)} \to 2I_{(aq)}^-$	+0,54
$4e^- + 2H_2O + O_{2(g)} \rightarrow 4OH_{(aq)}^-$	+0,41
$2e^- + Cu^{2+} \rightarrow Cu_{(s)}$	+0,34
$e^- + AgCl_{(s)} \rightarrow Ag_{(s)} + Cl_{(aq)}^-$	+0,22
$2e^- + Sn^{4+}_{(aq)} \rightarrow Sn^{2+}_{(aq)}$	+0,15
$2e^- + 2H^+_{(aq)} \to H_{2(g)}$	0,00
$2e^- + Sn_{(aq)}^{2+} \to Sn_{(s)}$	-0,14
$2e^{-} + 2H_{(aq)}^{+} \rightarrow H_{2(g)}$ $2e^{-} + Sn_{(aq)}^{2+} \rightarrow Sn_{(s)}$ $e^{-} + Cr_{(aq)}^{3+} \rightarrow Cr_{(aq)}^{2+}$	-0,41
$2e^{-} + Fe_{(aq)}^{2+} \rightarrow Fe_{(s)}$	-0,45

Reação de Redução	Potencial Padrão E ⁰ (V)
$3e^- + Cr^{3+}_{(aq)} \rightarrow Cr_{(s)}$	-0,74
$2e^- + Zn_{(aq)}^{2+} \to Zn_{(s)}$	-0,76
$3e^- + Al_{(aq)}^{3+} \rightarrow Al_{(s)}$	-1,67
$2e^- + Mg^{2+}_{(aq)} \to Mg_{(s)}$	-2,37
$e^- + Na^+_{(aq)} \rightarrow Na_{(s)}$	-2,71
$2e^- + Ca_{(aq)}^{2+} \rightarrow Ca_{(s)}$	-2,87
$e^- + Li^+_{(aq)} \rightarrow Li_{(s)}$	-3,04

Fonte: [3]

Observe que os dados da Tabela 2 se referem aos potenciais padrão dos eletrodos citados. Ou seja, as concentrações dos íons são iguais a 1 mol/L e a pressão parcial dos gases envolvidos é igual a 1 atm.

Conhecidos os potenciais padrão de redução para diversas reações, é possível calcular o potencial padrão de diversas pilhas.

2. $(IME - 2018 - 1^{2}Fase)$

Considere que a reação abaixo ocorra em uma pilha.

$$2 Fe^{+++} + Cu \rightarrow Cu^{++} + 2 Fe^{++}$$

Assinale a alternativa que indica o valor correto do potencial padrão dessa pilha.

Dados:

$$Fe^{++} \rightarrow Fe^{+++} + e^{-} E^{0} = -0,77 V$$

$$Cu^{++} + 2e^{-} \rightarrow Cu \quad E^{0} = +0.34 \text{ V}$$

- a) +1,20 V
- b) -0,43 V
- c) +1,88 V

- d) -1,20 V
- e) +0,43 V

Comentários

De vez em quando, até o IME também coloca questões bem fáceis. Esse tipo de questão você deve responder rapidamente para garantir os pontos de que você precisa. Fique esperto.

Observe que foi fornecido o potencial de oxidação do ferro. Para somar as reações, precisamos multiplicar a oxidação do ferro por 2 para igualar o fluxo de elétrons. Para isso, devemos nos lembrar que o potencial se mantém inalterado.

$$2 Fe^{2+}(aq) \to 2 Fe^{3+}(aq) + 2 e^{-} \qquad E^{0} = -0.77 V$$

$$Cu^{2+}(s) + 2e^{-} \to Cu(s) \qquad E^{0} = +0.34 V$$

$$2 Fe^{2+}(aq) + Cu^{2+}(aq) \to 2 Fe^{3+}(aq) + Cu(s) \qquad E^{0} = -0.43 V$$

Como o potencial encontrado foi negativo e a reação se trata de uma pilha, isso significa que devemos invertê-la, pois a pilha é sempre o sentido espontâneo da reação.

$$2 Fe^{3+}(aq) + Cu(s) \rightarrow 2 Fe^{2+}(aq) + Cu^{2+}(aq) E^{0} = 0,43 V$$

Gabarito: E

2.3. Equação de Nernst

Na Tabela 2, vimos os potenciais padrão. Nunca é demais lembrar que, por potencial padrão, entendemos aquele que é registrado quando as concentrações molares dos íons envolvidos na reação são iguais a 1 mol/L e a pressão parcial dos gases envolvidos é igual a 1 atm.

Quando os eletrodos se encontram fora dessa condição, deve-se calcular o seu potencial pela Equação de Nernst.

$$E = E^0 - \frac{RT}{nF} \ln Q$$

Podemos calcular o termo RT/F a 25 °C (298K). Para isso, devemos utilizar os valores dessas constantes no SI.

$$R = 8.31 \frac{J}{mol. K}$$
 $T = 298 K$ $F = 96500 C$

Portanto, o termo RT/F a 25 °C é igual a:

$$\frac{RT}{F} = \frac{8,31.298}{96500} \cong 0,059$$

Portanto, a 25 °C, o termo RT/F da Equação de Nernst se torna 0,059. É um termo que eu recomendo que você decore, tendo em vista que as questões de prova normalmente não o fornecem, mas que pode ser muito útil, pois evitar que você faça a conta mostrada acima, o que lhe dá muito trabalho.

$$E = E^0 - \frac{0,059}{n} \log Q$$

O termo **Q** é o coeficiente de ação de massas da reação, que deve ser obtido sempre a partir da **reação global da pilha**. A expressão é exatamente a mesma que é estudada em Termoquímica.

$$Q = \frac{atividade\ dos\ produtos}{atividade\ dos\ reagentes}$$

A atividade de uma espécie química é um número adimensional dado por:

- No caso de sólidos e líquidos: é sempre igual a 1;
- No caso de gases: é igual à sua pressão parcial normalizada por 1 atm ou 760 mmHg;
- No caso de espécies dissolvidas: é igual à sua concentração molar normalizada por 1 mol/L.

3. (Estratégia Militares – TFC - Inédita)

Calcule a ddp de uma pilha $Zn|Zn^{2+}|$ | $Cu^{2+}|Cu$, sabendo que as concentrações dos íons são: $[Zn^{2+}] = 0.6$ mol/L e $[Cu^{2+}] = 0.15$ mol/L.

Dado: log 2 = 0,3

Comentários

Primeiramente, devemos calcular o potencial padrão da pilha a partir dos potenciais de redução fornecidos na Tabela 2.

$$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$$
 $E_{Zn^{2+}|Zn} = -0.76 V$

$$Cu^{2+}(s) + 2e^{-} \rightarrow Cu(s)$$
 $E_{Cu^{2+}|Cu} = 0.34 V$

Em uma pilha, um dos participantes se reduz e o outro se oxida. Portanto, devemos escolher o que possui o menor potencial de redução – no caso, o zinco – para se oxidar.

Ânodo
$$Zn(s) \to Zn^{2+}(aq) + 2e^{-}$$
 $E_{Zn|Zn^{2+}} = 0.76 \ V$
Cátodo (+) $Cu^{2+}(s) + 2e^{-} \to Cu(s)$ $E_{Cu^{2+}|Cu} = 0.34 \ V$

$$\overline{Zn(s) + Cu^{2+}(aq) \to Zn^{2+}(aq) + Cu(s)} \quad E = 0.76 + 0.34 = 1.10 V$$

De posse do potencial padrão, podemos aplicar a equação de Nernst.

$$E = E^{0} - \frac{0,059}{n} \log \left(\frac{[Zn^{2+}]}{[Cu^{2+}]} \right)$$

Gabarito: 1,08 V

4. (Estratégia Militares - TFC - Inédita)

Determine a Constante de Equilíbrio para a pilha de Daniell.

Comentários

Solução:

Como vimos, o potencial padrão da pilha de Daniell é 1,10 V. No equilíbrio, $\xi=0$ e $Q=K_C$.

$$0 = \xi^0 - \frac{0,059}{2} \log K_C$$

$$\log K_C = \frac{2.1,1}{0.059} = 37,3$$

$$K_C = 10^{37,3} = 2.10^{37}$$

O altíssimo valor de K_C é uma indicação de que a reação é quase completa.

Gabarito: 2.10³⁷

3. Eletrólise

A eletrólise utiliza energia elétrica para forçar uma reação química não-espontânea. Esse processo é muito útil para produzir metais a partir de minérios, porém, é bastante custoso, pois envolve um altíssimo consumo de energia, já que a constante de Faraday é um número muito grande $1F=96500\ C$.

3.1. Leis de Faraday

O físico inglês Michael Faraday (1791 – 1867) estudou a eletricidade e o magnetismo. Embora tenham sido revolucionárias à sua época, hoje, em dia, elas são bastante intuitivas. Porém, pense na dificuldade que seria descrever a carga elétrica e o processo de eletrólise em uma época em que nem mesmo se conhecia o conceito de elétron.

- Da Química, a Constante de Faraday (1 F = 96500 C) exprime a carga de 1 mol de elétrons. Portanto,
 2 mols de elétrons apresenta a carga 2 F, ou, ainda, 0,25 mol de elétrons apresentam a carga 0,25
 F. Portanto, a carga é igual ao produto do número de mols de elétrons pela Constante de Faraday;
- Da Física, a carga que atravessa um sistema é igual ao produto da corrente elétrica que o atravessa pelo tempo de operação.

Dessa forma, as Leis de Faraday podem ser expressas como:

$$Q = nF = It$$

5. (Estratégia Militares - TFC - Inédita)

Uma amostra de cloreto de sódio fundida é eletrolisada usando-se eletrodos inertes. Quantos gramas de sódio metálico e de gás cloro são produzidos se uma corrente de 4,0 A atravessa a célula durante 1,5h?

Comentários

A eletrólise em questão é dada pelas seguintes equações:

$$Na^+ + e^- \rightarrow Na_{(s)}$$

$$2Cl^- \rightarrow Cl_{2(g)} + 2e^-$$

Sendo assim, o número de mols de fórmulas de sódio metálico e de moléculas de cloro gasoso produzida é:

$$n_{Na} = \frac{Q}{nF} = \frac{It}{nF} = \frac{1,5.3600.4}{1.96500} = 0,22$$

$$n_{Cl_2} = \frac{Q}{nF} = \frac{It}{nF} = \frac{1,5.3600.4}{2.96500} = 0,11$$

Sendo assim, a massa das substâncias produzidas é:

$$m_{Na} = 0.22.23 = 5.15g$$

$$m_{Na} = 0,11.2.35,5 = 15,9g$$

Note que aplicamos uma corrente muito grande para

Gabarito: 5,15 g de sódio e 15,9 g de cloro

3.2. Eletrólise Ígnea

Quando fundidos – ou seja, no estado líquido –, **os compostos iônicos são eletrólitos**, que é um sinônimo para são condutores de eletricidade. Portanto, eles podem ser atravessados por correntes elétricas e sofrer eletrólise no estado líquido.

A Figura 15 ilustra uma célula eletrolítica. Ela consiste em um par de eletrodos inertes, digamos, de platina, mergulhados em NaC ℓ fundido. Para isso, a temperatura da célula deve ser superior à temperatura de fusão do sal (801 °C).

Figura 7: Eletrólise Ígnea do Cloreto de Sódio (NaCl)

3.3. Eletrólise em Meio Aquoso

Quando a eletrólise é realizada em solução aquosa, ocorre competição entre os íons da água e os íons da espécie dissolvida.

Essas competições também são conhecidas como **competição por descarga**, em alusão ao fato de que a redução de qualquer um dos cátions produz uma espécie neutra $(Na\ ou\ H_2)$ e a oxidação de qualquer um dos ânions produz também espécies neutras $(O_2\ ou\ Cl_2)$.

Para saber quais os verdadeiros produtos que se originarão da eletrólise de uma solução salina qualquer, devemos conhecer a lista de **prioridade ou facilidade de descarga.**

No cátodo, devemos saber que a água tem maior prioridade de descarga que os metais alcalinos, alcalino-terrosos e o alumínio. Em contrapartida, a água tem menor prioridade de descarga do que os demais metais.

Apresentamos na forma de gráfico, porém, não é preciso decorar a ordem da facilidade de descarga. Você precisa apenas saber que a água tem maior facilidade que os metais alcalinos, alcalinoterrosos e o alumínio. Somente isso é o suficiente para a sua prova.

$$Li^+, K^+, Na^+, Mg^{2+}, Ca^{2+}, Ba^{2+}, Al^{3+} < H_2O < Mn^{2+}, Zn^{2+}, Ag^+$$

metais alcalinos metais alcalinoterrosos metais alcalinoterrosos

Maior facilidade de descarga

Figura 8: Facilidade de Descarga no Cátodo

No ânodo, a água tem maior prioridade de descarga que os ânions oxigenados e o fluoreto. Em contrapartida, a água tem menor prioridade de descarga que os ânions não oxigenados e o hidrogenossulfato (HSO_4^-) .

Recomendo lembrar dos ânions oxigenados e o fluoreto como os únicos que perdem para a água em termos de prioridade de descarga.

$$NO_3^-, SO_4^{2-}, ClO_3^-, NO_2^-, F^- < H_2O < Cl^-, Br^-, I^-$$

ânions oxigenados e fluoreto

ânions nãooxigenados

Maior facilidade de descarga

Figura 9: Facilidade de Descarga no Ânodo

Assim, no caso da eletrolise do cloreto de sódio em solução aquosa, temos que:

- A água tem maior facilidade de descarga que o íon sódio (Na^+) , que é de metal alcalino. Portanto, ocorre produção de hidrogênio gasoso no cátodo.
- O íon cloreto (Cℓ⁻) não é oxigenado, portanto, tem maior facilidade de descarga que a água.
 Portanto, ocorre produção de cloro gasoso no ânodo.

Portanto, as reações envolvidas na eletrólise da solução aguosa de cloreto de sódio são:

$$\frac{Na^{+}(aq) + e^{-} \rightarrow Na(l)}{2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)}$$

$$\frac{40H^{-}(aq) \rightarrow 2H_{\frac{1}{2}}O + O_{\frac{1}{2}}(g) + 4e^{-}}{2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}}$$

Podemos esquematizar a célula eletrolítica.

Figura 10: Eletrólise de Solução Aquosa de Cloreto de Sódio (NaCl)

Um caso interessante acontece quando a água possui maior prioridade de descarga do que ambos os íons provenientes do sal. Tomemos como exemplo a eletrólise de uma solução aquosa de sulfato de sódio (Na_2SO_4).

No cátodo, a competição pela redução, acontece entre o cátion da água (H^+) e o cátion sódio (Na^+) . A água tem maior prioridade de descarga, tendo em vista que o íon sódio é de metal alcalino.

$$Na^+(aq) + e^- \rightarrow n\tilde{a}o \ reduz$$

 $2 H^+(aq) + 2 e^- \rightarrow H_2(g)$

No ânodo, a competição pela oxidação, acontece entre o ânion da água (OH^-) e o ânion da água (OH^-) .

$$SO_4^{2-}(aq) \rightarrow n\~ao\ oxida$$

 $4\ OH^-(aq) \rightarrow 2H_2O\ (l) + O_2(g) + 4e^-$

Dessa maneira, o que acontece é simplesmente a eletrólise da própria água, produzindo os gases hidrogênio e oxigênio.

$$2H_{2}O(l) \to 4 \ H^{+}(aq) + O_{2}(g) + 4e^{-} \qquad \text{(oxidação)}$$

$$2H_{2}O + 2e^{-} \to H_{2}(g) + 2OH^{-}(aq) \qquad \text{(redução)}$$

$$2 \ H_{2}O(l) \xrightarrow{Na_{2}SO_{4}(aq)} 2 \ H_{2}(g) + O_{2}(g) \qquad \text{(reação global)}$$

Diante disso, o aluno pode se questionar: para que serve o sulfato de sódio (Na_2SO_4) nesse sistema? Já que somente a própria molécula de água (H_2O) sofre eletrólise.

A resposta é que o sulfato de sódio é essencial para que a água seja condutora. Como a água destilada é um isolante elétrico, ela sozinha não seria capaz de sofrer eletrólise.

6. (Estratégia Militares – TFC - Inédita)

A eletrólise do nitrato ferroso em solução aquosa produz:

- a) Ferro metálico no polo negativo
- b) Íons hidroxila (OH⁻) no polo positivo
- c) Oxigênio (O₂) no polo negativo
- d) Nitrogênio (N₂) no polo positivo
- e) Hidrogênio (H₂) no polo negativo

Comentários

Na eletrólise, os elétrons seguem o sentido oposto ao sentido espontâneo. Portanto, eles saem do polo positivo e vão para o polo negativo.

Logo, o cátodo, que é onde acontece a redução, é o polo negativo. Portanto, no polo negativo, acontecerá a competição pela redução, entre os íons Fe²⁺ e a molécula de água.

A água tem maior prioridade de descarga que os metais alcalinos e alcalino-terrosos. Como o ferro não pertence a essa categoria os íons Fe²⁺ é que terão maior prioridade de descarga.

$$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$$

Portanto, como afirmado na letra A, forma-se ferro metálico no polo negativo.

O polo positivo é o ânodo da reação, que é onde acontece a oxidação. Haverá competição entre o nitrato (NO_3^-) e a molécula de água, produzindo gás oxigênio.

$$2 H_2 O(g) \rightarrow 4 H^+(aq) + O_2(g) + 4e^-$$

Portanto, o erro da letra C é afirmar que o oxigênio é produzido no polo negativo.

As letras B, C e E estão erradas, pois citam produtos que não se originam dessa eletrólise, que produz apenas ferro no polo negativo e oxigênio no polo positivo.

Gabarito: A

3.3.1. Eletrodo de Concentração

Nessa seção, vamos comentar sobre detalhes da matéria que são pouco explorados em questões de prova. Vejamos o caso do eletrodo de concentração, que é construído com duas soluções aquosas de sulfato de cobre, com concentrações diferentes.

Figura 11: Eletrodo de Concentração de Cobre-Sulfato de Cobre

O dispositivo mostrado na Figura 20 possui potencial padrão nulo, já que as reações do ânodo e do cátodo são as mesmas.

(I - ânodo)
$$Cu(I) \to Cu^{2+}(I) + 2e^{-}$$
 $E^{0} = 0.34 V$
(II - cátodo) $Cu^{2+}(II) + 2e^{-} \to Cu(II)$ $E^{0} = -0.34 V$
 $Cu^{2+}(II) + Cu(I) \to Cu(II) + Cu^{2+}(I)$ $E^{0} = 0.00 V$

Embora o dispositivo tenha potencial padrão nulo, pode haver diferença de potencial, se as concentrações de íon Cu²⁺ forem diferentes nas duas células. Esse potencial pode ser calculado pela Equação de Nernst.

$$E = E^{0} - \frac{RT}{nF} \cdot \ln Q$$

$$E = 0 - \frac{RT}{nF} \cdot \ln \left(\frac{[Cu^{2+}(I)]}{[Cu^{2+}(II)]} \right)$$

$$E = +\frac{RT}{nF} \cdot \ln \left(\frac{[Cu^{2+}(II)]}{[Cu^{2+}(I)]} \right)$$

Portanto, se a célula II tiver concentração maior de íons Cu²⁺ do que a célula I, essa célula funcionará como cátodo. O cobre dessa célula, portanto, sofre redução, causando o depósito de cobre metálico.

7. (Estratégia Militares – TFC - Inédita)

Uma pilha de concentração cobre-sulfato de cobre é construída com dois eletrodos de cobre mergulhados em duas soluções iguais de 0,1 mol/L em sulfato de cobre. A uma delas é acrescentada uma solução 0,5 mol/L de amônia. Determine a diferença de potencial surgida na pilha.

Dado: $K_C = 10^{17}$

Comentários

Primeiramente, vamos estudar o equilíbrio envolvendo o cobre e a amônia. Como a constante de equilíbrio é muito elevada, é uma reação de consumo total, produzindo rendimento de quase 100%, deixando apenas uma pequena concentração de íons Cu²⁺.

$$Cu^{2+}(aq) + 4 \ddot{N}H_3(aq) \rightarrow [Cu(NH_3)_4]^{2+}(aq)$$
 início $0,1$ $0,5$ $0,0$ reage $0,1-x$ $0,4-4x$ $0,1-x$ equilíbrio x $0,1+4x$ $0,1-x$

$$K_C = \frac{\left[Cu(NH_3)_4^{2+}\right]}{\left[Cu^{2+}\right]\left[NH_3\right]^4} = 10^{17}$$

Considerando que, como a constante de equilíbrio da reação é muito elevada, temos que $x \ll 0.1$. Podemos escrever que $(0.1 + 4x \sim 0.1)$ e que $(0.1 - x \sim 0.1)$.

$$\frac{0.1}{x.\,(0.10)^4} = 10^{17}$$

$$\therefore x = [Cu^{2+}(\hat{a}nodo)] = \frac{0.1}{(0.1)^4 \cdot 10^{17}} = \frac{0.1}{10^{13}} = 1.10^{-14} \ mol/L$$

A célula eletrolítica que recebeu amônia ocupará o ânodo da pilha. No cátodo, a concentração permanece igual a 0,1 mol/L. Pela Equação de Nernst, temos:

$$E = +\frac{0,059}{2} \cdot \log \left(\frac{[Cu^{2+}(c\acute{a}todo)]}{[Cu^{2+}(\hat{a}nodo)]} \right) = +\frac{0,059}{2} \cdot \log \left(\frac{0,1}{10^{-14}} \right)$$

$$E = +\frac{0,059}{2}.\log(10^{13}) = \frac{0,059.13}{2} = 0,383 V$$

Portanto, a amônia é capaz de induzir um pequeno potencial, o que não deixa de ser interessante, pois o processo não requer o consumo de energia elétrica, característico de uma eletrólise.

Gabarito: 0,383 V

4. Física de Dispositivos Eletroquímicos

Nessa seção, vamos falar alguns tópicos adicionais que são frequentes nas questões de Eletroquímica.

4.1. Interpretação Física

Na Física, as pilhas são conhecidas como geradores de tensão. A diferença de potencial entre os seus terminais passa a ser denominada **força eletromotriz.**

Em uma pilha, necessariamente a corrente convencional deve ser desenhada no sentido mostrado na Figura 24, ou seja, ela deve sair do polo positivo para o polo negativo. Alternativamente, o fluxo de elétrons em um apilha deve partir do polo negativo para o polo positivo. Considere, por exemplo, a pilha de Daniell.

Figura 12: Corrente Convencional e Fluxo Real de elétrons em uma Pilha Descarregando

4.1.1. Curto-Circuito

Uma pilha está em curto-circuito quando o seu polo positivo é ligado por um fio de resistência desprezível, como um fio de cobre, ao seu polo negativo. Vamos esquematizar:

Descarrega

rapidamente

Figura 13: Pilha em Curto-Circuito

Durante o curto-circuito, a corrente que atravessa a pilha é muito grande, de modo que ela descarrega rapidamente.

4.2. Associação de Células Eletroquímicas

Os potenciais padrão de redução vistos para as principais reações químicas é muito pequeno. São poucas as pilhas que excedem a diferença de potencial de 2 V.

É possível associar várias pilhas em série, formando uma bateria. Uma associação em série presume que o polo positivo de uma pilha seja ligado ao polo negativo da outra, como mostrado na Figura 14.

Figura 14: Associação em Série de Pilhas

Quando duas pilhas são associadas em série, a diferença de potencial total da bateria é igual à soma das diferenças de potenciais de cada célula. Por exemplo, ao associar 3 pilhas de 2,00 V em série, formamos uma bateria com diferença de potencial total igual a 6,00 V.

4.3. Corrosão

A corrosão é um dos fenômenos mais importantes da Química, influenciando bastante praticamente todos os sistemas físicos que podem ser montados. É o principal responsável por estragar equipamentos mecânicos e eletrônicos com o tempo.

Ela consiste na oxidação de metais, formando uma camada de um composto iônico – normalmente um óxido ou um sal.

4.3.1. Corrosão pela Água

A corrosão pela água é definida pela Fila de Reatividade dos Metais. O que é de mais importante para você saber a respeite dessa fila é:

- Os metais alcalinos são os mais reativos e são os únicos que reagem diretamente com a água pura;
- Os metais alcalino-terrosos e os comuns são mais reativos que o hidrogênio e reagem com ácidos ou com água aerada (mistura de H₂O e O₂);
- Os metais nobres são menos reativos que o hidrogênio. Portanto, não reagem com a água pura (H₂O). Os principais podem ser decorados pelo mnemônico **Cuhagau** (Cu, Hg, Ag, Au), mas existem outros, como o irídio (Ir) e a platina (Pt).

Figura 15: Fila de Reatividade dos Metais

Os metais alcalinos são os únicos que reagem com a água pura. Nessas reações, eu prefiro escrever a água como HOH em referência, ao fato de que, em geral, somente um dos hidrogênios da molécula se reduz.

Os metais comuns, em especial, o ferro, são os mais utilizados na fabricação de produtos mecânicos e eletrônicos. Por isso, é muito importante estudar **a corrosão do ferro**.

A oxidação do ferro pela água requer a presença de oxigênio devido ao par de semi-reações que acontecem. Como estudamos, a reação de redução da água envolve, na verdade, o oxigênio, que se oxida a hidróxido (OH⁻).

(oxidação – ânodo)
$$Fe(s) \to Fe^{2+}(aq) + 2e^{-}$$
 $E^{0} = 0.44 \ V$ (redução – cátodo) $2H_{2}O + O_{2} + 4e^{-} \to 4 \ OH^{-}$ $E^{0} = +1.23 \ V$ (reação global) $2Fe(s) + 2H_{2}O + O_{2}(g) \to 2Fe(OH)_{2}$ $E^{0} = +1.67 \ V$

Os metais comuns, em especial, o ferro, são os mais utilizados na fabricação de produtos mecânicos e eletrônicos. Por isso, é muito importante estudar **a corrosão do ferro**.

A oxidação do ferro pela água requer a presença de oxigênio devido ao par de semi-reações que acontecem. Como estudamos, a reação de redução da água envolve, na verdade, o oxigênio, que se oxida a hidróxido (OH⁻).

(oxidação – ânodo)
$$Fe(s) \to Fe^{2+}(aq) + 2e^{-}$$
 $E^{0} = 0.44 \ V$ (redução – cátodo) $2H_{2}O + O_{2} + 4e^{-} \to 4 \ OH^{-}$ $E^{0} = +1.23 \ V$ (reação global) $2Fe(s) + 2H_{2}O + O_{2}(g) \to 2Fe(OH)_{2}$ $E^{0} = +1.67 \ V$

4.3.2. Proteção Anódica

A proteção anódica é bastante simples, mas é muito utilizada. O seu nome pode ser entendido como "proteger o ânodo".

O zarcão (Pb_3O_4) é um pigmento vermelho que possui excelentes propriedades anticorrosivas. É insolúvel em água e em ácidos. Por isso, é capaz de proteger superfícies de ferro com ou sem ferrugem do ataque de agentes oxidantes.

Outro uso muito interessante da proteção anódica são os **banhos de ouro** aplicados em placas de circuito impresso.

4.3.3. Proteção Catódica

A proteção catódica consiste em "transformar o ânodo em um cátodo". Para isso, emprega-se um metal de sacrifício, que é uma substância que possui maior facilidade de se oxidar do que o metal que se deseja proteger.

No caso do ferro, são bastante empregados: o cromo, o zinco e o alumínio, que são metais baratos e com considerável potencial de oxidação.

Vejamos como funciona a proteção do ferro pelo zinco.

(oxidação – ânodo)
$$Zn(s) \to Zn^{2+}(aq) + 2e^ E^0 = 0.76 \ V$$
 (redução – cátodo) $Fe^{2+}(aq) + 2e^- \to Fe(s)$ $E^0 = -0.44 \ V$ (reação global) $Zn(s) + Fe^{2+}(aq) \to Zn^{2+}(aq) + Fe(s)$ $E^0 = +0.32 \ V$

Por ter maior facilidade de se oxidar, o zinco se oxida antes do ferro, protegendo a estrutura. É comum também a formação de uma camada de óxido do metal que cobre a estrutura de ferro.

4.3.4. Oxidações Intermediárias

Muitos metais possuem diferentes estados de oxidação, como é o caso do ferro, que pode se oxidar a +2 ou +3. E uma observação interessante é que os potenciais de redução são diferentes.

É possível manter o ferro no estado de oxidação intermediário (Fe^{2+}), se utilizarmos um eletrodo que tenha potencial de redução **intermediário** entre os potenciais de redução Fe^{2+} |Fe e Fe^{3+} |Fe $^{2+}$. É o caso do eletrodo Sn^{4+} | Sn^{2+} .

Primeiramente, vejamos a pilha formada pelo Sn²⁺|Sn⁴⁺ com o par Fe²⁺|Fe.

anodo
$$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$$
 $E^{0} = +0.44 V$

cátodo $Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$ $E^{0} = +0.13 V$

global $Fe(s) + Sn^{4+}(aq) \rightarrow Fe^{2+}(aq) + Sn^{2+}(aq)$ $E^{0} = +0.57 V$

Agora, vejamos a pilha formada pelo $Sn^{2+}|Sn^{4+}$ com o par $Fe^{3+}|Fe^{2+}$.

anodo
$$Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^ E^0 = -0.13 V$$
 cátodo $Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$ $E^0 = +0.77 V$ global $2 Fe^{3+}(s) + Sn^{2+}(aq) \rightarrow 2 Fe^{2+}(aq) + Sn^{4+}(aq)$ $E^0 = +0.64 V$

Note que ambas as reações são espontâneas com a produção de Fe^{2+} . Portanto, a adição do eletrodo $Sn^{2+}|Sn^{4+}$ é uma técnica que pode ser utilizada para manter o ferro sempre no estado de oxidação +2, se desejável.

4. Lista de Questões Propostas

CONSTANTES

Constante de Avogadro (N_A) = 6,02 x 10^{23} mol⁻¹

Constante de Faraday (F) = $9,65 \times 10^4 \text{ °C mol}^{-1} = 9,65 \times 10^4 \text{ A s mol}^{-1} = 9,65 \times 10^4 \text{ J V}^{-1} \text{ mol}^{-1}$

Volume molar de gás ideal = 22,4 L (CNTP)Carga elementar = $1,602 \times 10^{-19} C$

Constante dos gases (R) = $8,21 \times 10^{-2}$ atm L K⁻¹ mol⁻¹ = 8,31 J K⁻¹ mol⁻¹ = 1,98 cal K⁻¹ mol⁻¹

Constante gravitacional (g) = 9,81 m s⁻²

Constante de Planck (h) = $6,626 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$

Velocidade da luz no vácuo = 3,0 x 10⁸ m s⁻¹

Número de Euler (e) = 2,72

DEFINIÇÕES

Presão: 1 atm = 760 mmHg = $1,01325 \times 10^5 \text{ N m}^{-2}$ = 760 Torr = 1,01325 bar

Energia: $1 J = 1 N m = 1 kg m^2 s^{-2}$

Condições normais de temperatura e pressão (CNTP): 0°C e 760 mmHg

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol L-1 (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão

(s) = sólido. (l) = líquido. (g) = gás. (aq) = aquoso. (CM) = circuito metálico. (conc) = concentrado.

(ua) = unidades arbitrárias. [X] = concentração da espécie química em mol L⁻¹

MASSAS MOLARES

Elemento	Número	Massa Molar	Elemento	Número	Massa Molar
Químico	Atômico	(g mol ⁻¹)	Químico	Atômico	(g mol ⁻¹)
Н	1	1,01	Mn	25	54,94

Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)	Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)
Li	3	6,94	Fe	26	55,85
С	6	12,01	Со	27	58,93
N	7	14,01	Cu	29	63,55
0	8	16,00	Zn	30	65,39
F	9	19,00	As	33	74,92
Ne	10	20,18	Br	35	79,90
Na	11	22,99	Мо	42	95,94
Mg	12	24,30	Sb	51	121,76
Al	13	26,98	I	53	126,90
Si	14	28,08	Ва	56	137,33
S	16	32,07	Pt	78	195,08
Cl	17	35,45	Au	79	196,97
Ca	20	40,08	Hg	80	200,59

1. (TFC – INÉDITA)

Considere os potenciais de redução

$$Cu^{2+}$$
 (aq) +2e⁻ \rightarrow Cu (s) E^0 = 0,34 V

$$Cu^{2+}(aq) + e^- \rightarrow Cu^+ (aq) E^0 = 0,15 V$$

Qual o potencial da reação $Cu^+(aq) + e^- \rightarrow Cu(s)$

2. $(IME - 2018 - 1^{2}FASE)$

Considere que a reação abaixo ocorra em uma pilha.

$$2 Fe^{+++} + Cu \rightarrow Cu^{++} + 2 Fe^{++}$$

Assinale a alternativa que indica o valor correto do potencial padrão dessa pilha.

Dados:

$$Fe^{++} \rightarrow Fe^{+++} + e^{-} E^{0} = -0.77 V$$

$$Cu^{++} + 2e^{-} \rightarrow Cu \quad E^{0} = +0.34 \text{ V}$$

- a) +1,20 V
- b) -0,43 V
- c) +1,88 V
- d) -1,20 V
- e) +0,43 V

3. (TFC – INÉDITA)

Calcule a ddp de uma pilha $Zn|Zn^{2+}||Cu^{2+}|Cu$, sabendo que as concentrações dos íons são: $[Zn^{2+}] = 0,6$ mol/L e $[Cu^{2+}] = 0,15$ mol/L.

Dado: log 2 = 0,3

4. (TFC – INÉDITA)

Determine a Constante de Equilíbrio para a pilha de Daniell.

5. (TFC - INÉDITA)

Uma amostra de cloreto de sódio fundida é eletrolisada usando-se eletrodos inertes. Quantos gramas de sódio metálico e de gás cloro são produzidos se uma corrente de 4,0 A atravessa a célula durante 1,5h?

6. (TFC – INÉDITA)

A eletrólise do nitrato ferroso em solução aquosa produz:

- a) Ferro metálico no polo negativo
- b) Íons hidroxila (OH⁻) no polo positivo
- c) Oxigênio (O2) no polo negativo
- d) Nitrogênio (N₂) no polo positivo
- e) Hidrogênio (H₂) no polo negativo

7. (TFC - INÉDITA)

Uma pilha de concentração cobre-sulfato de cobre é construída com dois eletrodos de cobre mergulhados em duas soluções iguais de 0,1 mol/L em sulfato de cobre. A uma delas é acrescentada uma solução 0,5 mol/L de amônia. Determine a diferença de potencial surgida na pilha.

Dado: $K_C = 10^{17}$

8. $(ITA - 2020 - 2^{\circ} FASE)$

Uma barra de zinco foi soldada a um tubo de ferro fundido para protegê-lo contra a corrosão, estando ambos enterrados no solo. Sabendo que uma corrente constante de 0,02 A escoa entre os dois, responda:

- a) Qual é a semirreação que ocorre na superfície da barra de zinco?
- b) Como a reação descrita em (a) atua para proteger o ferro contra corrosão?
- c) Como se chama este sistema de proteção contra a corrosão?
- d) Qual deve ser a massa do metal consumida em 10 anos?
- 9. $(ITA 2020 1^2 FASE)$

Considere uma bateria de fluxo de hidrogênio gasoso (H2) e bromo líquido (Br2) operando nas condições padrão. Durante a descarga, a bateria converte H2 e Br2 em ácido bromídrico (HBr). As reações de meia célula e os respectivos potenciais – padrão de eletrodo, a 298K, são:

Anodo,
$$H2 \rightarrow 2H + + 2e - (E0 = 0 \text{ V})$$

Catodo,
$$Br2 + 2e \rightarrow 2Br - (E0 = 1,087 \text{ V})$$

A dissociação da água pode ser observada pelo efeito da seguinte semirreação:

$$02 + 4e - + 4H + \rightarrow 2H20$$
 ($E0 = 1,229$ V)

A formação de complexos iônicos de polibrometo ocorre segundo as reações e suas respectivas constantes de equilíbrio:

$$Br2 + Br - = Br3 - K3 = 16,7$$

$$2Br2 + Br - = Br5 - K5 = 37,7$$

Sejam feitas as seguintes afirmações a respeito dessa bateria:

- I O potencial da célula pode ser aproximado pela equação: $Ecatodo Eanodo = 1,087 + 0,06 \ pH$.
- II O solvente (água) é termodinamicamente estável somente a pH < 2,4.
- III Recarregar a bateria com um potencial catódico inferior a 1,229 V garante a estabilidade do solvente.
- IV Durante a descarga da bateria, a concentração de HBr aumenta e podem formar complexos iônicos de Br3-e Br5-.

Das afirmações acima, estão CORRETAS:

- A () apenas I, II e IV
- B () apenas I e III
- C () apenas II e IV
- D () apenas III e IV
- E() todas
- 10. (ITA 2019)

Considere uma pequena chapa de aço revestido com zinco (aço galvanizado) mergulhada em uma solução azul de sulfato de cobre nas condições padrão e a 25 ºC. Após determinado intervalo de tempo, observa-se que a solução fica verde. Com base nessas observações e desconsiderando a presença de espécies interferentes, é ERRADO afirmar que

- a) o aço foi corroído.
- b) o íon cobre atuou como agente oxidante preferencialmente ao oxigênio atmosférico.
- c) o zinco foi parcialmente oxidado.
- d) o zinco foi oxidado preferencialmente ao ferro.
- e) a função do zinco no aço galvanizado é oferecer proteção catódica.

11. (ITA - 2018)

Considere as seguintes semirreações de oxirredução e seus respectivos potenciais padrão na escala do eletrodo padrão de hidrogênio (EPH):

I.
$$2 \text{ CO}_2 + 12 \text{ H}^+ + 12 \text{ e}^- \Rightarrow \text{ C}_2\text{H}_5\text{OH} + 3 \text{ H}_2\text{O} \text{ E}_1^0 = 0,085 \text{ V}$$

II.
$$O_2 + 4 H^+ + 4 e^- \Rightarrow 2 H_2 O E_{II}^0 = 1,229 V$$

Assinale a opção que apresenta a afirmação ERRADA sobre uma célula eletroquímica em que a semirreação I ocorre no ânodo e a semirreação II, no cátodo.

- a) A reação global é exotérmica.
- b) Trata-se de uma célula a combustível.
- c) O potencial padrão da célula é de 1,144 V.
- d) O trabalho máximo que pode ser obtido é, em módulo, de 4.171 kJ por mol de etanol.
- e) A célula converte energia livre da reação de combustão do etanol em trabalho elétrico.

12. (ITA – 2017)

Pode-se utilizar metais de sacrifício para proteger estruturas de aço (tais como pontes, antenas e cascos de navios) da corrosão eletroquímica. Considere os seguintes metais:

- I. Alumínio
- II. Magnésio
- III. Paládio
- IV. Sódio
- V. Zinco

Assinale a opção que apresenta o(s) metal(is) de sacrifício que pode(m) ser utilizado(s).

- a) Apenas I, II e V.
- b) Apenas I e III.
- c) Apenas II e IV.
- d) Apenas III e IV.

e) Apenas V.

13. (ITA – 2017)

A 25°C, o potencial da pilha descrita abaixo é de 0,56 V. Sendo E°(Cu²+/Cu) = + 0,34 V, assinale a opção que indica aproximadamente o valor do pH da solução.

 $Pt(s)\,|\,H_2(g,\,1\;bar),\,H^+(aq,\,x\;mol\cdot L^{-1})\,|\,|\,Cu^{2+}(aq,\,1,0\;mol\cdot L^{-1})\,|\,Cu(s)\,|$

- a) 6,5
- b) 5,7
- c) 3,7
- d) 2,0
- e) 1,5

14. (ITA – 2015)

É de 0,76 V a força eletromotriz padrão, E⁰, de uma célula eletroquímica, conforme a reação

$$Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$$
.

Na concentração da espécie de Zn²+ igual a 1,0 molL⁻¹ e pressão de H₂ de 1,0 bar, a 25 ºC, foi verificado que a força eletromotriz da célula eletroquímica é de 0,64 V. Nestas condições, assinale a concentração de íons H⁺ em molL⁻¹.

- a) 1.0×10^{-12}
- b) 4.2×10^{-4}
- c) 1.0×10^{-4}
- d) 1.0×10^{-2}
- e) 2.0×10^{-2}

15. (ITA – 2017)

Deseja-se depositar uma camada de 0,85 g de níquel metálico no catodo de uma célula eletrolítica, mediante a passagem de uma corrente elétrica de 5 A através de uma solução aquosa de nitrato de níquel. Assinale a opção que apresenta o tempo necessário para esta deposição, em minutos.

- a) 4,3
- b) 4,7
- c) 5,9
- d) 9,3
- e) 17,0

16. (ITA-2014)

Em um processo de eletrodeposição, níquel metálico é eletrodepositado no cátodo de uma célula eletrolítica e permanece coeso e aderido a esse eletrodo. Sabendo que a massa específica do níquel metálico ρNi , $25^{\circ}C=8,9.103kg.m3$ e que a espessura total da camada eletrodepositada, medida final do processo, foi de 2,0.10-6m, calcule a densidade de corrente aplicada (admitida constante), expressa em A/m², considerando nesse processo uma eficiência de corrente de eletrodeposição de 100% e um tempo de operação de 900s.

Dado: massa atômica do Ni = 59u

17. (ITA-2014)

Água líquida neutra (pH = 7,0), inicialmente isenta de espécies químicas dissolvidas, é mantida em um recipiente de vidro aberto e em temperatura constante. Admitindo-se que a pressão parcial do oxigênio seja igual a 0,2 atm e sabendo-se que esse gás é solúvel em H2O(l)e que o sistema está em equilíbrio à temperatura de 25°C, pedem-se:

Escrever a equação química balanceada da semirreação que representa o processo de redução do oxigênio gasoso em meio de água líquida neutra e aerada.

Determinar o potencial de eletrodo, à temperatura de 25°C, da semirreação obtida no item (a), considerando as condições estabelecidas no enunciado desta questão.

Determinar o valor numérico, expresso em kJ/mol, da variação de energia livre de Gibbs padrão $\Delta G0$ da semirreação eletroquímica do item (a).

Dados:

E⁰_{O2/OH}- = 0,401 V_{EPH}; V_{EPH} = volt na escala do hidrogênio

$$\ell$$
og = ℓ n/2,303

$$0.2 = 10^{0,3-1}$$

18. (ITA-2012)

Assinale a opção que corresponde, aproximadamente, ao produto de solubilidade do AgC ℓ (c) em água nas condições-padrão, sendo dados:

$$Ag^{+}(aq) + e^{-} \Rightarrow Ag(c) E^{0} = 0,799 V$$

$$AgC\ell$$
 (c) + $e^- \Rightarrow Ag$ (c) + $C\ell^-$ (aq) $E^0 = 0,222 \text{ V}$

Em que E⁰ é o potencial de eletrodo em relação ao eletrodo padrão de hidrogênio nas condições padrão.

- a) 1.10⁻¹⁸
- b) 1.10⁻¹⁰
- c) 1.10⁻⁵
- d) 1.10⁵
- e) 1.10¹⁰

19. (ITA-2013)

É errado afirmar que, à temperatura de 25ºC, o potencial de um eletrodo de cobre constituído pela imersão de uma placa de cobre em solução aquosa 1 mol/L de cloreto de cobre:

- a) Diminui se amônia é acrescentada à solução eletrolítica.
- b) Diminui se a concentração do cloreto de cobre na solução eletrolítica for diminuída.
- c) Duplica se a área da placa de cobre imersa na solução for duplicada.
- d) Permanece inalterado se nitrato de potássio for adicionado à solução eletrolítica tal que sua concentração seja 1 mmol/L.
 - e) Aumenta se a concentração de íons cúprico for aumentada na solução eletrolítica.

20. (ITA-2013)

A hidrazina (N₂H₄) e o tetróxido de dinitrogênio (N₂O₄) são utilizados na propulsão líquida de foguete. A equação química que representa a reação global entre esses dois reagentes químicos é:

$$N_2H_4\left(\ell\right)+N_2O_4\left(\ell\right) \rightarrow N_2\left(g\right)+H_2O\left(g\right)$$

Analisando esta reação do ponto de vista eletroquímico:

- a) Esquematize um dispositivo eletroquímico (célula de combustível) no qual é possível realizar a adição química representada pela equação do enunciado.
- b) Escreva as reações químicas balanceadas das semirreações anódica e catódica que ocorrem no dispositivo eletroquímico.

21. (ITA-2014)

Considere uma célula a combustível alcalina (hidrogênio-oxigênio) sobre a qual são feitas as seguintes afirmações:

- I Sob condição de consumo de carga elétrica, a voltagem efetiva de serviço desse dispositivo eletroquímico é menor que a força eletromotriz da célula.
- II— O combustível (hidrogênio gasoso) é injetado no compartimento do anodo e um fluxo do oxigênio gasoso alimenta o catodo dessa célula eletroquímica.
- III Sendo o potencial padrão dessa célula galvânica igual a 1,229 V_{EPH} (volt na escala padrão do hidrogênio), a variação de energia livre de Gibbs padrão (ΔG⁰) da reação global do sistema redox é igual a –237,2 kJ.mol⁻¹.

Das afirmações acima, está(ão) CORRETA(S) apenas:

- a) I.
- b) I, II e III.
- c) I e III.
- d) II.
- e) II e III.

22. (ITA-2014)

São descritos dois experimentos:

- I Ovo cozido em água fervente teve sua casca, de modo que parte de sua clara permaneceu em contato com esta água, na qual a seguir foi também imerso um objetivo polido de prata. Após certo período de tempo, observou-se o escurecimento desse objeto, que foi retirado da água e lavado.
- II Em um béquer, foi aquecida água até a fervura e adicionada uma colher de sopa de cloreto de sódio. A seguir, esta solução foi transferida para um béquer revestido com papel alumínio. O objeto de prata utilizado no experimento I foi então imerso nesta solução e retirado após alguns minutos.

Em relação a esses experimentos:

- a) Apresente a equação global que representa a reação química ocorrida na superfície do objeto de prata no experimento I e calcule a diferença de potencial da reação química.
 - b) Preveja a aparência do objeto de prata após a realização do segundo experimento.
- c) Apresente a equação global da reação química envolvida no experimento II e sua diferença de potencial elétrico.

Dados:

$$Ag_2S(s) + 2e^- \Rightarrow 2Ag(s) + S^{2-}(aq)E^0 = -0.691V$$

$$O_2(g) + 4 H^+(aq) + 4 e^- \Rightarrow 2 H_2O(\ell) E^0 = 1,229 V$$

$$A\ell^{3+}$$
 (aq) + 4 e⁻ \Rightarrow A ℓ (s) $E^{0} = -1,662$ V

$$Ag_2S(s) + 2H^+ + 2e^- \Rightarrow 2Ag(s) + H_2S(aq)E^0 = -0.037V$$

23. (ITA - 2013)

Nas condições ambientes, uma placa de ferro metálico puro é mergulhada numa solução aquosa, com pH 9 e isenta de oxigênio, preparada pelo borbulhamento de sulfeto de hidrogênio gasoso em solução alcalina. Nesta solução, o ferro é oxidado (corroído) pelo íon hidrogenossulfeto com formação de uma camada sólida aderente e protetora sobre a superfície desse material metálico. A adição de cianeto de potássio à solução aquosa em contato com o substrato metálico protegido desestabiliza sua proteção promovendo a dissolução da camada protetora formada.

Com base nessas informações, escreva as equações químicas balanceadas das reações que representam:

- a) a corrosão eletroquímica do ferro pelo íon hidrogenossulfeto, produzindo hidrogênio atômico.
- b) a dissolução da camada passiva sobre o ferro pelo íon cianeto.

24. (ITA-2012)

Considere os seguintes potenciais de eletrodo em relação ao eletrodo padrão de hidrogênio nas condições-padrão (E^0) : $E^0(M^{3+}|M^{2+}) = 0.80 \text{ V}$ e $E^0(M^{2+}|M^0) = -0.20 \text{ V}$. Assinale a opção que apresenta o valor, em V, de $E^0(M^{3+}|M^0)$:

- a) -0,33
- b) -0,13
- c) +0,13
- d) +0,33
- e) +1,00

25. (ITA-2012)

São feitas as seguintes afirmações a respeito dos produtos formados preferencialmente em eletrodos eletroquimicamente inertes durante a eletrólise de sais inorgânicos fundidos ou de soluções aquosas de sais inorgânicos:

- I Em CaC $\ell_2(\ell)$, há formação de Ca (s) no cátodo.
- II Na solução aquosa 1.10⁻³ mol.L⁻¹ em Na₂SO₄, há aumento do pH ao redor do ânodo.
- III − Na solução aquosa 1.10⁻³ mol.L⁻¹ em AgNO₃, há formação de O₂(g) no ânodo.
- IV Em NaBr (I), há formação de Br₂(ℓ) no ânodo.

Das afirmações acima, está(ão) ERRADA(S) apenas:

- a) le II.
- b) le III.
- c) II
- d) III.
- e) IV.

26. (ITA-2012)

A 25°C, a força eletromotriz da seguinte célula eletroquímica é de 0,45V:

Pt (s) |
$$H_2$$
 (g, 1 atm) | H^+ (x mol.L⁻¹) | | $KC\ell$ (0,1 mol.L⁻¹) | $Hg_2C\ell_2$ (s) | $Hg(\ell)$ | Pt (s)

Sendo o potencial do eletrodo de calomelano – $KC\ell$ (0,1 mol.L⁻¹) | $Hg_2C\ell_2$ (s) | $Hg(\ell)$ – nas condições-padrão igual a 0,28V e x o valor numérico da concentração dos íons H^+ , assinale a opção com o valor aproximado do pH da solução.

- a) 1,0
- b) 1,4
- c) 2,9
- d) 5,1
- e) 7,5

27. (ITA-2016)

Considere a reação descrita pela seguinte equação química:

$$H_2(g, 1 \text{ bar}) + 2 \text{ AgBr (s)} \rightarrow 2 \text{ H}^+(aq) + 2 \text{ Br}^-(aq) + 2 \text{ Ag (s)}$$

Sendo X o potencial padrão (Eº) da reação, o pH da solução a 25 °C quando o potencial da reação (E) for Y será dado por:

- a) (X Y)/0,059
- b) (Y X)/0,059

- c) (X Y)/0,118
- d) (Y X)/0,118
- e) 2(X Y)/0,059

4.1. Gabarito

- **1.** 0,53 V
- **2.** E
- **3.** 1,08 V
- **4.** 2.10³⁷
- **5.** 5,15 g de sódio e 15,9 g de cloro
- **6.** A
- **7.** 0,383 V
- **8.** E
- 9. E
- **10.** C
- **11.** D
- **12.**A
- **13.** C
- **14.** B

- **15.** D
- **16.** 64,7 A/m²
- **17.**-310,7 kJ/mol
- **18.** B
- **19.** B
- 20. discursiva
- **21.** B
- 22. discursiva
- 23. discursiva
- **24.** C
- **25.** C
- **26.** C
- **27.** B

5. Lista de Questões Comentadas

8. $(ITA - 2020 - 2^{a} Fase)$

Uma barra de zinco foi soldada a um tubo de ferro fundido para protegê-lo contra a corrosão, estando ambos enterrados no solo. Sabendo que uma corrente constante de 0,02 A escoa entre os dois, responda:

- a) Qual é a semirreação que ocorre na superfície da barra de zinco?
- b) Como a reação descrita em (a) atua para proteger o ferro contra corrosão?
- c) Como se chama este sistema de proteção contra a corrosão?
- d) Qual deve ser a massa do metal consumida em 10 anos?

Comentários:

a) O zinco é um metal de potencial de redução menor que o do ferro. Logo, ele atua oxidando e sua semirreação é:

$$Zn \rightarrow Zn^{+2} + 2e^{-}$$

- b) A proteção se dá justamente porque o zinco é oxidado no lugar do ferro, funcionando como ânodo de sacrifício, formando um revestimento protetor ao Fe.
- c) Esse sistema é chamado de galvanização ou proteção catódica. Ademais, um nome muito utilizado para substâncias que agem como o zinco nesse contexto é o metal de sacrifício.
- d) Item já consagrado em provas do ITA. Calculemos, primeiramente, o equivalente em segundos à 10 anos:

$$\Delta t = 10 \cdot 365 \cdot 24 \cdot 60 \cdot 60 = 315.360.000 \, s$$

Contudo, temos uma corrente de 0,02 A, logo:

$$i = 2 \cdot 10^{-2} A$$

 $Q = 2 \cdot 10^{-2} \cdot 315360000 = 6.307.200 C$

Por outro lado:

$$Q = n_{e^-} \cdot F = n_{e^-} \cdot 96500$$

Daí:

$$96500 \cdot n_{e^-} = 6307200$$

$$n_{e^{-}} = \frac{6307200}{96500} = 65,36 \, mols$$

Mas:

$$n_{Zn} = \frac{n_e^-}{2}$$

$$n_{Zn} = \frac{65,36}{2}$$

$$n_{Zn} = 32,68 \ mols$$

Por fim:

$$m_{Zn} = n_{Zn} \cdot M = 32,68 \cdot 65,38 = 2136,6 g$$

 $\therefore m_{Zn} \cong 2,14 \ kg$

Gabarito: E

9. (ITA - 2020 - 1ª Fase)

Considere uma bateria de fluxo de hidrogênio gasoso (H_2) e bromo líquido (Br_2) operando nas condições padrão. Durante a descarga, a bateria converte H_2 e Br_2 em ácido bromídrico (HBr). As reações de meia célula e os respectivos potenciais – padrão de eletrodo, a 298K, são:

Anodo,
$$H_2
ightarrow 2H^+ + 2e^-$$
 (E^0 = 0 V)

Catodo,
$$Br_{2}$$
 $_{+}$ $2e^{-}$ $ightarrow$ $2Br^{-}$ (E^{0} = 1,087 V)

A dissociação da água pode ser observada pelo efeito da seguinte semirreação:

$${\it O}_{2}$$
 $_{+}$ $4e^{-}$ $+$ $4H^{+}$ \rightarrow $2H_{2}{\it O}$ (${\it E}^{0}$ = 1,229 V)

A formação de complexos iônicos de polibrometo ocorre segundo as reações e suas respectivas constantes de equilíbrio:

$$Br_2 + Br^- \leftrightharpoons Br_3^- \qquad K_3 = 16.7$$

$$2Br_2 + Br^- \leftrightharpoons Br_5^- \quad K_5 = 37,7$$

Sejam feitas as seguintes afirmações a respeito dessa bateria:

I – O potencial da célula pode ser aproximado pela equação: $E_{catodo} - E_{anodo} = 1,087 + 0,06 \ pH.$

II – O solvente (água) é termodinamicamente estável somente a pH < 2,4.

III – Recarregar a bateria com um potencial catódico inferior a 1,229 V garante a estabilidade do solvente.

IV – Durante a descarga da bateria, a concentração de HBr aumenta e podem formar complexos iônicos de Br_3^- e Br_5^- .

Das afirmações acima, estão CORRETAS:

- A () apenas I, II e IV
- B () apenas I e III
- C () apenas II e IV
- D () apenas III e IV
- E() todas

Comentários:

O ITA diz que todo o sistema opera nas condições padrão. Embora seja condição padrão, devemos considerar que as concentrações dos íons da água podem ser diferentes de 1 mol.L⁻¹.

I – Primeiramente, vamos escrever a equação geral da célula.

Para isso, notemos que o eletrodo do hidrogênio já foi fornecido como oxidação e o bromo como redução. Basta montar a reação global.

(oxidação)
$$H_2(g) \rightarrow 2 H^+(aq) + 2 e^ E^0 = 0 V$$
 (redução) $Br_2 + 2 e^- \rightarrow 2 Br^-(aq)$ $E^0 = 1,087 V$ $H_2(g) + Br_2(l) \rightarrow 2 H^+(aq) + 2 Br^-(aq)$ $E^0 = 1,087 V$

Para calcular o potencial da reação, devemos recorrer à equação de Nernst.

$$E = E^0 - \frac{0,059}{n} \cdot \log Q$$

Nessa reação, estão envolvidos 2 mols de elétrons. Além disso, a expressão do coeficiente de ação de massas é:

$$Q = \frac{[atividade\ dos\ produtos]}{[atividade\ dos\ reagentes]} = \frac{[H^+]^2[Br^-]^2}{P_{H_2}}$$

Como o eletrodo opera nas condições padrão, consideraremos a concentração do brometo é igual a 1 mol L⁻¹ e que a pressão parcial do hidrogênio é igual a 1 atm. Com isso, temos:

$$Q = [H^+]^2$$

Agora, vamos substituir na Equação de Nernst

$$E = E^{0} - \frac{0,059}{2} \cdot \log Q$$

$$E = 1,087 - \frac{0,059}{2} \cdot \log[H^{+}]^{2}$$

Usando as propriedades do logaritmo, temos:

$$E = 1,087 - 0,059.\log[H^+]$$

Agora, usando a definição de pH, temos:

$$E = 1.087 + 0.059. pH$$

Afirmação correta.

II – Considere a reação de quebra do solvente por oxidação e seu potencial padrão.

(oxidação)
$$2 H_2 O(l) \rightarrow O_2(g) + 4 H^+(aq) + 4 e^- E^0_{H_2 O|O_2} = -1,229 V$$

O potencial padrão dessa reação é igual a – 1,229 V. Porém, o potencial real é função do pH. Podemos, inclusive calcular pela Equação de Nernst, o que será feito mais adiante.

Para promover essa reação, devemos procurar a reação envolvida que tenha o maior potencial de redução. No caso, é a própria reação do bromo.

(oxidação)
$$2 H_2 O(l) \rightarrow O_2(g) + 4 H^+(aq) + 4 e^ E_{H_2 O|O_2}$$
 (redução) $Br_2 + 2 e^- \rightarrow 2 Br^-(aq)$ $E = 1,087 V$ $2 H_2 O(l) + Br_2(l) \rightarrow O_2 + 4 H^+ + 2 Br^ E = 1,087 + E_{H_2 O|O_2}$

A quebra do solvente será espontânea para:

$$E = 1,087 + E_{H_2O|O_2} > 0$$

$$\therefore E_{H_2O|O_2} > -1,087 V$$

Vamos utilizar a Equação de Nernst na reação de quebra da água.

$$E_{H_2O|O_2} = E^0 - \frac{0,059}{4} \cdot \log Q$$

O coeficiente de ação de massas da reação é:

$$2 H_2 O(l) \rightarrow O_2(g) + 4 H^+(aq) + 4 e^- Q = P_{O_2} \cdot [H^+]^4$$

Como o sistema opera nas condições padrão, a pressão parcial do oxigênio é igual a 1 atm.

$$E_{H_2O|O_2} = E^0 - \frac{0,059}{4} \cdot \log Q$$

$$-1,087 = -1,229 - \frac{0,059}{4} \cdot \log[H^+]^4$$

$$1,229 - 1,087 = -\frac{0,059}{4} \cdot \log[H^+]^4$$

Usando as propriedades do logaritmo e a definição de pH, temos:

$$0,142 = 0,059. pH$$
$$\therefore pH = \frac{0,142}{0.059} = 2,4$$

Portanto, o pH igual a 2,4 é realmente a situação limite para estabilidade do solvente. Afirmação correta.

III – De fato, como o potencial de quebra da molécula de água por oxidação é igual a 1,229 V, essa eletrólise pode ser induzida por uma bateria que tenha uma voltagem superior. Afirmação correta.

IV – Sim. Como falado no enunciado, a formação dos íons polibrometo (Br_3^- e Br_5^-) é favorável, tendo uma constante de equilíbrio razoável.

$$Br_2 + Br^- = Br_3^- K_3 = 16.7$$

 $Br_2 + Br^- = Br_5^- K_5 = 37.7$

Afirmação correta.

Portanto, todas as afirmações estão corretas.

Gabarito: E

10. (ITA - 2019)

Considere uma pequena chapa de aço revestido com zinco (aço galvanizado) mergulhada em uma solução azul de sulfato de cobre nas condições padrão e a 25 ºC. Após determinado intervalo de tempo, observa-se que a solução fica verde. Com base nessas observações e desconsiderando a presença de espécies interferentes, é ERRADO afirmar que

- a) o aço foi corroído.
- b) o íon cobre atuou como agente oxidante preferencialmente ao oxigênio atmosférico.
- c) o zinco foi parcialmente oxidado.
- d) o zinco foi oxidado preferencialmente ao ferro.
- e) a função do zinco no aço galvanizado é oferecer proteção catódica.

Comentários

O zinco se reduz preferencialmente em relação ao ferro. Ademais, o cátion Zn²+ é incolor. A solução fica verde devido à formação do íon Fe²+, portanto, para que esse íon se forme, é necessário que todo o zinco tenha sido oxidado. Portanto, a letra C está errada.

As reações envolvidas são:

$$Zn\left(s\right)+\mathcal{C}u^{2+}(aq)\to Zn^{2+}(aq)+\mathcal{C}u(s)$$

$$Fe\:(s)+Cu^{2+}(aq)\to Fe^{2+}(aq)+Cu(s)$$

O zinco serve como uma proteção contra a oxidação ao ferro, também conhecido como metal de sacrifício, que é um tipo de proteção catódica.

Vejamos agora análise das alternativas:

- a) Sim. O aço foi corroído e foram liberados íons Fe²⁺.
- b) Sim. O cobre é o agente oxidante, porque se reduziu.
- c) O zinco foi oxidado totalmente. Afirmação errada.
- d) O zinco apresenta menor potencial de redução, por isso, se oxida mais facilmente. Afirmação correta.
- e) O zinco serve como proteção ao ferro. Afirmação correta.

Gabarito: C

11. (ITA - 2018)

Considere as seguintes semirreações de oxirredução e seus respectivos potenciais padrão na escala do eletrodo padrão de hidrogênio (EPH):

I.
$$2 \text{ CO}_2 + 12 \text{ H}^+ + 12 \text{ e}^- \Rightarrow \text{ C}_2\text{H}_5\text{OH} + 3 \text{ H}_2\text{O} \text{ E}_1^0 = 0,085 \text{ V}$$

II.
$$O_2 + 4 H^+ + 4 e^- \Rightarrow 2 H_2 O E_{||}^0 = 1,229 V$$

Assinale a opção que apresenta a afirmação ERRADA sobre uma célula eletroquímica em que a semirreação I ocorre no ânodo e a semirreação II, no cátodo.

- a) A reação global é exotérmica.
- b) Trata-se de uma célula a combustível.
- c) O potencial padrão da célula é de 1,144 V.
- d) O trabalho máximo que pode ser obtido é, em módulo, de 4.171 kJ por mol de etanol.
- e) A célula converte energia livre da reação de combustão do etanol em trabalho elétrico.

Comentários

Como a semi-reação I acontece no ânodo, ela deve ser escrita na forma de oxidação. Lembre-se que o ânodo começa com vogal, assim como oxidação começa com vogal.

ânodo
$$C_2H_6O + 3H_2O \implies 2CO_2(g) + 12H^+(aq) + 12e^ E_I^0 = -0.085V$$

cátodo
$$O_2(g) + 4 H^+(aq) + 4 e^- \iff 2 H_2 O(l)$$
 $E_{II}^0 = 1,229 V$

Podemos multiplicar a segunda equação por 3 e somar a fim de obter a reação global e o potencial da pilha. Lembre-se que, ao multiplicar uma equação por 3, o seu potencial não se altera.

Ânodo
$$C_2H_6O + 3H_2O \implies 2CO_2(g) + 12H^+(aq) + 12e^ E_I^0 = -0.085V$$

cátodo
$$3 O_2(g) + 12 H^+(aq) + 12 e^- \leftrightarrows 6 H_2 O(l)$$
 $E_{II}^0 = 1,229 V$

global $C_2 H_6 O + 3 O_2(g) \leftrightarrows 2 C O_2(g) + 3 H_2 O(l)$ $E^0 = 1,144 V$

A reação global, portanto, é espontânea, portanto, trata-se de uma célula combustível. A reação

é exotérmica, porque é uma combustão. Temos, portanto, que A, B e C estão corretas.

O trabalho máximo que pode ser obtido pode ser calculado pela Energia Livre de Gibbs.

$$\Delta G^0 = -nFE^0 = -12.96500.1,144 = -1.324.752 \cong -1325 \, kJ/mol$$

Portanto, o trabalho máximo que pode ser obtido é de aproximadamente 1325 kJ/mol, que é inferior a 4.171 kJ/mol. Portanto, a afirmação D está errada.

Por fim, em relação a letra E, trata-se de uma reação espontânea, portanto, realmente converte energia química – proveniente da combustão do etanol – em trabalho elétrico.

Gabarito: D

12. (ITA – 2017)

Pode-se utilizar metais de sacrifício para proteger estruturas de aço (tais como pontes, antenas e cascos de navios) da corrosão eletroquímica. Considere os seguintes metais:

- I. Alumínio
- II. Magnésio
- III. Paládio
- IV. Sódio
- V. Zinco

Assinale a opção que apresenta o(s) metal(is) de sacrifício que pode(m) ser utilizado(s).

- a) Apenas I, II e V.
- b) Apenas I e III.
- c) Apenas II e IV.
- d) Apenas III e IV.
- e) Apenas V.

Comentários

Um metal de sacrifício, de produção catódica, deve ter maior potencial de redução do que o ferro. Para isso, é importante saber que o ferro somente reage com água ácida ou aerada, ou seja, a mistura de água e oxigênio.

Um metal de sacrifício deve ter maior facilidade de reagir com a água aerada do que o ferro. Vejamos os metais do enunciado classificados por ordem de potencial de redução.

Pd Fe Zn Al Mg Na

Encaixam-se nessa categoria: o alumínio, o magnésio, o sódio e o zinco.

O paládio não pode ser utilizado como metal de sacrifício, porque é mais nobre que o ferro, logo, tem menor potencial de redução.

Já o sódio não deve ser utilizado como metal de sacrifício, porque, além de ser muito caro, é extremamente reativo, podendo reagir em muitas reações que não são as mesmas do ferro. O sódio pode reagir diretamente com o oxigênio do ar ou com a água destilada.

Portanto, ao cobrir uma estrutura de aço com o sódio, rapidamente esse metal se oxidaria, muito antes do que aconteceria com o próprio ferro. Logo, o sódio não serve como metal de sacrifício, pois essa proteção seria consumida muito rapidamente.

Logo, os metais I, II e V podem ser utilizados como metais de sacrifício.

Gabarito: A

13. (ITA - 2017)

A 25°C, o potencial da pilha descrita abaixo é de 0,56 V. Sendo $E^{\circ}(Cu^{2+}/Cu) = + 0,34 V$, assinale a opção que indica aproximadamente o valor do pH da solução.

 $Pt(s)|H_2(g, 1 bar), H^+(aq, x mol \cdot L^{-1})||Cu^{2+}(aq, 1, 0 mol \cdot L^{-1})||Cu(s)||$

- a) 6,5
- b) 5,7
- c) 3,7
- d) 2,0
- e) 1,5

Comentários

Trata-se de uma reação de oxirreduração, em que um dos eletrodos é ocupado pelo par $H^+|_{H_2}$, cujo potencial padrão é igual a 0,00V. Como o cobre possui potencial de redução positivo, é esse metal que se reduz na pilha.

ânodo
$$H_2(g) \to 2H^+(aq) + 2e^ E^0 = 0,00 \, V$$
 cátodo $Cu^{2+}(aq) + 2e^- \to Cu \, (s)$ $E^0 = 0,34 \, V$ global $Cu^{2+}(aq) + H_2(g) \to 2H^+(aq) + Cu(s)$ $E^0 = 0,34 \, V$

Nessa reação, são envolvidos 2 mols de elétrons. Podemos escrever o coeficiente de ação de massas para a reação global:

$$Q = \frac{[H^+]^2}{[Cu^{2+}].P_{H_2}}$$

Vamos utilizar as informações na Equação de Nernst.

$$E = E^{0} - \frac{0,059}{n} \cdot \log Q$$

$$0,56 = 0,34 - \frac{0,059}{2} \cdot \log \left(\frac{[H^{+}]^{2}}{[Cu^{2+}] \cdot P_{H_{2}}} \right)$$

Considerando as informações dadas pelo enunciado $[Cu^{2+}] = 1 \ mol/L \ e \ P_{H_2} = 1 \ bar$:

$$0,56 = 0,34 - \frac{0,059}{2} \cdot \log[H^+]^2$$

Utilizando a definição de pH e as propriedades do logaritmo.

$$0.56 = 0.34 + 0.059$$
. pH
 $0.56 - 0.34 = 0.059$. pH

$$0,22 = 0,059. pH$$
$$\therefore pH = \frac{0,22}{0,059} = 3,7$$

Gabarito: C

14. (ITA - 2015)

É de 0,76 V a força eletromotriz padrão, E^0 , de uma célula eletroquímica, conforme a reação $Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$.

Na concentração da espécie de Zn²⁺ igual a 1,0 molL⁻¹ e pressão de H₂ de 1,0 bar, a 25 °C, foi verificado que a força eletromotriz da célula eletroquímica é de 0,64 V. Nestas condições, assinale a concentração de íons H⁺ em molL⁻¹.

- a) 1.0×10^{-12}
- b) 4.2×10^{-4}
- c) 1.0×10^{-4}
- d) 1.0×10^{-2}
- e) 2.0×10^{-2}

Comentários

Embora a reação tenha sido fornecida já na forma global, é conveniente separá-la nas duas semireações, a fim de determinar o número de mols de elétrons que estão envolvidos na oxidação e na redução.

Descobrimos, portanto, que o número de mols de elétrons envolvidos na oxidação é igual a 2. Outra forma de descobrir isso de maneira mais rápida é pela análise do elemento que se oxida diretamente na reação global.

O coeficiente de ação de massas pode ser obtida pela reação global.

$$Q = \frac{[Zn^{2+}] \cdot P_{H_2}}{[H^+]^2} = \frac{1 \cdot 1}{[H^+]^2} = \frac{1}{[H^+]^2}$$

Agora, vamos utilizar essas informações na Equação de Nernst.

$$E = E^{0} - \frac{0,059}{n} \cdot \log Q$$

$$0,64 = 0,76 - \frac{0,059}{2} \cdot \log \left(\frac{1}{[H^{+}]^{2}}\right)$$

Podemos utilizar as propriedades do logaritmo da potência para explicitar o $log[H^+]$.

$$0,64 = 0,76 + 0,059 \cdot \log[H^+]$$
$$\therefore \log[H^+] = \frac{0,64 - 0,76}{0,059} = -\frac{0,12}{0,059} \cong -2$$

Portanto, podemos obter a concentração dos íons pedida.

$$[H^+] = 10^{-2} \, mol/L$$

Gabarito: B

15. (ITA - 2017)

Deseja-se depositar uma camada de 0,85 g de níquel metálico no catodo de uma célula eletrolítica, mediante a passagem de uma corrente elétrica de 5 A através de uma solução aquosa de nitrato de níquel. Assinale a opção que apresenta o tempo necessário para esta deposição, em minutos.

- a) 4,3
- b) 4,7
- c) 5,9
- d) 9,3
- e) 17,0

Comentários

Nessa questão, o ITA exigiu que o aluno soubesse que o níquel apresenta número de oxidação +2 no nitrato de níquel.

$$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$$

A camada foi igual a 0,85 g, portanto, o número de mols do metal depositado pode ser calculado dividindo-se essa massa pela massa molar.

$$n_{Ni} = \frac{m_{Ni}}{M_{Ni}} = \frac{0.85}{59} \cong 0.0144 \ mol$$

O número de mols de elétrons utilizados na eletrólise é igual ao número de mols de níquel multiplicado por 2.

$$n = 2. n_{Ni} = 0.0288 \ mol$$

A carga associada à eletrólise é igual ao produto do número de mols de elétrons empregados na eletrólise pela carga de 1 mol de elétrons, que é dada pela Constante de Faraday.

$$Q = nF = 2. n_{Ni}. F = \frac{2. m_{Ni}. F}{M_{Ni}} = 0.0288.96500 \cong 2780 C$$

Lembrando-nos que, da Física, a carga é igual ao produto da corrente pelo tempo, temos que:

Para converter o tempo em minutos, basta dividir por 60.

$$t = \frac{556}{60} \cong 9.3 \, min$$

Gabarito: D

16. (ITA-2014)

Em um processo de eletrodeposição, níquel metálico é eletrodepositado no cátodo de uma célula eletrolítica e permanece coeso e aderido a esse eletrodo. Sabendo que a massa específica do níquel metálico $\rho_{Ni,\,25^{\circ}C}=8,\,9.\,10^3kg.\,m^3$ e que a espessura total da camada eletrodepositada, medida final do processo, foi de $2,\,0.\,10^{-6}m$, calcule a densidade de corrente aplicada (admitida constante), expressa em A/m², considerando nesse processo uma eficiência de corrente de eletrodeposição de 100% e um tempo de operação de 900s.

Dado: massa atômica do Ni = 59u

Comentários

Para resolver essa questão, é importante saber que o número de oxidação mais comum do níquel é igual a +2.

$$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$$

Portanto, são necessários 2 mols de elétrons para produzir 1 mol de níquel, que possui a massa de 59 g.

Podemos, escrever, portanto, pelas Leis de Faraday que o número de mols de níquel produzido é igual à carga que o atravessa dividida por 2F, que é a carga necessária para produzir 1 mol de níquel.

$$n_{Ni} = \frac{Q}{2.F}$$

A massa de níquel produzida pode ser obtida multiplicando-se o número de mols pela massa molar do metal, que foi fornecida no enunciado.

$$m_{Ni} = n_{Ni}.M = \frac{QM}{2F} (I)$$

Agora, vamos fazer um desenho da chapa metálica. Em laranja, colocamos o metal eletrodepositado.

Por definição, a massa de níquel eletrodepositada é igual ao produto da massa específica do metal pelo volume que ele ocupa.

$$m_{ni} = \rho V = \rho A d$$

A carga que atravessa é material pode ser expressa também em função da corrente elétrica e do tempo. Por sua vez, a corrente elétrica é igual ao produto da densidade de corrente pela área de seção transversal.

$$Q = It = JAt$$

Substituindo as duas expressões em (I), temos:

$$m_{ni} = \frac{QM}{2F}$$

$$\rho Ad = \frac{JAtM}{2F}$$

Podemos simplificar a área dos dois lados:

$$\rho d = \frac{JtM}{2F}$$

Agora, basta isolar o termo desejado, que é a densidade de corrente:

$$\therefore J = \frac{2F\rho d}{M.t}$$

Antes de fazer a conta, devemos notar que a densidade foi fornecida em kg/m³, enquanto a massa molar foi fornecida em g/mol. Portanto, podemos converter a densidade para g/m³, basta multiplicar por 1000.

$$J = \frac{2.96500.8,9.10^{6},2,0.10^{-6}}{59.900} = \left[\frac{2.965.8,9.2}{59.9}\right].10^{6-6}$$

$$J = 64,7 A/m^2$$

Gabarito: 64,7 A/m²

17. (ITA-2014)

Água líquida neutra (pH = 7,0), inicialmente isenta de espécies químicas dissolvidas, é mantida em um recipiente de vidro aberto e em temperatura constante. Admitindo-se que a pressão parcial do oxigênio seja igual a 0,2 atm e sabendo-se que esse gás é solúvel em $H_2O_{(l)}$ e que o sistema está em equilíbrio à temperatura de 25°C, pedem-se:

Escrever a equação química balanceada da semirreação que representa o processo de redução do oxigênio gasoso em meio de água líquida neutra e aerada.

Determinar o potencial de eletrodo, à temperatura de 25°C, da semirreação obtida no item (a), considerando as condições estabelecidas no enunciado desta questão.

Determinar o valor numérico, expresso em kJ/mol, da variação de energia livre de Gibbs padrão (ΔG^0) da semirreação eletroquímica do item (a).

Dados:

E⁰_{O2/OH}- = 0,401 V_{EPH}; V_{EPH} = volt na escala do hidrogênio

 ℓ og = ℓ n/2,303

 $0.2 = 10^{0,3-1}$

Comentários

A redução do oxigênio gasoso pode ser escrito como:

$$O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$$

O potencial padrão desse eletrodo foi fornecido. Porém, o eletrodo em questão é padrão, porque a concentração $[OH^-] \neq 1 \ mol/L \ e \ P_{O_2} \neq 1 \ atm$. Mas, o potencial pode ser calculado pela Equação de Nernst:

$$E = E^0 - \frac{0,0592}{n} \log(Q)$$

Essa transferência se dá com 4 mols de elétrons, como visto na equação de semi-reação do oxigênio. A expressão do coeficiente de ação de massas é:

$$Q = \frac{[produtos]}{[reagentes]} = \frac{[OH^{-}]^{4}}{P_{O_{2}}}$$

Agora, basta substituir na expressão da Equação de Nernst:

$$E = E^{0} - \frac{0,0592}{4} \log \left[\frac{[OH^{-}]^{4}}{p_{0_{2}}} \right]$$

$$E = 0,401 - \frac{0,0592}{4} \cdot \log \left[\frac{(10^{-7})^{4}}{0,2} \right] = 0,401 - \frac{0,0592}{4} \cdot \log \left[\frac{10^{-28}}{10^{0,3-1}} \right]$$

$$E = 0,401 - \frac{0,0592}{4} \cdot (-28 - 0,3 + 1)$$

$$E = 0,401 - \frac{0,0592}{4} \cdot (-27,3)$$

$$E = 0.401 + 0.404 = 0.805 V_{EPH}$$

Portanto, a energia livre associada é dada por:

$$\Delta G = -nFE = -4.96500.0,805$$

$$\Delta G = -310730 \, J/mol = -310,7 \, kJ/mol$$

Gabarito: -310,7 kJ/mol

18. (ITA-2012)

Assinale a opção que corresponde, aproximadamente, ao produto de solubilidade do AgC ℓ (c) em água nas condições-padrão, sendo dados:

$$Ag^{+}(aq) + e^{-} \Rightarrow Ag(c) E^{0} = 0,799 V$$

$$AgC\ell$$
 (c) + $e^- \Rightarrow Ag$ (c) + $C\ell^-$ (aq) $E^0 = 0,222$ V

Em que E⁰ é o potencial de eletrodo em relação ao eletrodo padrão de hidrogênio nas condições padrão.

- a) 1.10⁻¹⁸
- b) 1.10⁻¹⁰

- c) 1.10⁻⁵
- d) 1.10^5
- e) 1.10¹⁰

Comentários

Queremos conhecer o potencial da seguinte reação:

$$AgCl(c) \leftrightarrows Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Observe que essa reação pode ser escrita como a soma de outras duas, cujos potenciais são conhecidos. Basta inverter a primeira reação, transformando-a na oxidação da prata.

$$AgCl(c) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$$
 $E^{0} = 0,222$
 $Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$ $E^{0} = -0,799$
 $AgCl(c) \leftrightarrows Ag^{+}(aq) + Cl^{-}(aq)$ $E^{0} = -0,577$

Agora, basta utilizar a relação entre o ΔG , a constante de equilíbrio (K_{PS}) e o potencial padrão da reação (E^0) :

$$\Delta G^0 = -RT \ln K_{PS} = -nFE^0$$

$$\ln K_{PS} = \frac{nFE^0}{RT} : \log K_{PS} = 1 \cdot \frac{-0.577}{0.059} \approx -10$$

Agora, basta inverter o logaritmo:

$$\log K_{PS} = -10 \to K_{PS} = 10^{-10}$$

Gabarito: B

19. (ITA-2013)

É errado afirmar que, à temperatura de 25ºC, o potencial de um eletrodo de cobre constituído pela imersão de uma placa de cobre em solução aquosa 1 mol/L de cloreto de cobre:

- a) Diminui se amônia é acrescentada à solução eletrolítica.
- b) Diminui se a concentração do cloreto de cobre na solução eletrolítica for diminuída.
- c) Duplica se a área da placa de cobre imersa na solução for duplicada.
- d) Permanece inalterado se nitrato de potássio for adicionado à solução eletrolítica tal que sua concentração seja 1 mmol/L.
- e) Aumenta se a concentração de íons cúprico for aumentada na solução eletrolítica.

Comentários

O eletrodo estudado é descrito pela seguinte reação de redução:

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

Portanto, a Equação de Nernst para essa célula é:

$$E = E^0 - \frac{RT}{nF} \ln \left(\frac{1}{[Cu^{2+}]} \right)$$

$$E = E^0 + \frac{RT}{nF} \ln[Cu^{2+}]$$

Dessa forma, o único íon que interfere no potencial da célula é o íon cúprico ou Cu²⁺. Devemos, portanto, nas situações problema oferecidas no enunciado, examinar aquelas em que ocorre alteração na concentração [Cu²⁺]. Vamos analisar as afirmações individualmente:

a) A adição de amônia provoca um aumento do pH no meio, provocando a precipitação de hidróxido de cobre(II), diminuindo a concentração de Cu^{2+} :

$$Cu^{2+}(aq) + 20H^-(aq) \rightarrow Cu(0H)_2(s)$$

Afirmação correta.

- **b)** A redução da concentração de Cu^{2+} reduz o potencial da célula. Portanto, afirmação correta.
- c) A área da placa não influencia no potencial do eletrodo. Logo, a afirmação está errada e é o nosso gabarito.
- **d)** O único íon que influencia na ddp da pilha é o cobre. Como o nitrato de cobre não interfere nos íons Cu²⁺, também não interfere no potencial da célula. Afirmação correta.
- e) O aumento da concentração de Cu^{2+} aumenta o potencial da célula. Afirmação correta.

Vale lembrar que o íon cuproso é o Cu⁺ e o íon cúprico é o Cu²⁺.

Gabarito: B

20. (ITA-2013)

A hidrazina (N_2H_4) e o tetróxido de dinitrogênio (N_2O_4) são utilizados na propulsão líquida de foguete. A equação química que representa a reação global entre esses dois reagentes químicos é:

$$N_2H_4(\ell) + N_2O_4(\ell) \rightarrow N_2(g) + H_2O(g)$$

Analisando esta reação do ponto de vista eletroquímico:

- a) Esquematize um dispositivo eletroquímico (célula de combustível) no qual é possível realizar a adição química representada pela equação do enunciado.
- b) Escreva as reações químicas balanceadas das semirreações anódica e catódica que ocorrem no dispositivo eletroquímico.

Comentários

Na reação em estudo, a hidrazina é oxidada a nitrogênio gasoso, enquanto o tetróxido de nitrogênio é reduzido também produzindo nitrogênio gasoso. Portanto, podemos escrever a semireação de oxidação da hidrazina.

$$N_2H_4(l) \rightarrow N_2(g) + H^+(aq) + e^-$$

O hidrogênio deve sair na forma de H⁺, haja vista que o nitrogênio é o único elemento que sofre variação no seu número de oxidação. Portanto, o hidrogênio deve sair com o número de oxidação +1.

Vamos, então, balancear a reação.

$$N_2H_4(l) \rightarrow N_2(g) + 4H^+(ag) + 4e^-$$

Esses íons H^+ podem ser consumidos na semi-reação de redução do tetróxido de dinitrogênio (N_2O_4) . Esses hidrogênios se juntam ao oxigênio do N_2O_4 formando moléculas de água (H_2O) .

$$N_2O_4(l) + H^+ + e^- \rightarrow N_2 + H_2O(l)$$

Podemos, então, balancear a reação:

$$N_2O_4(l) + 8H^+ + 8e^- \rightarrow N_2 + 4H_2O(l)$$

Portanto, vamos escrever as reações do ânodo e do cátodo, lembrando-nos que **cátodo** começa com consoante, assim como **redução** começa com consoante.

Ânodo
$$N_2H_4(l) \rightarrow N_2 + 4H^+(aq) + 4e^-$$

Cátodo
$$N_2O_4(l) + 8H^+(aq) + 8e^- \rightarrow N_2 + 4H_2O(l)$$

Embora essa já seja a resposta para o item **b)**, é interessante obtermos uma reação global a fim de mostrar que as reações obtidas são condizentes com o que se desejava produzir. Para isso, é preciso igualar o número de elétrons nas duas semi-reações, o que pode ser feito multiplicando a primeira por 2.

Vamos, agora, construir um dispositivo eletroquímico para processar a reação.

Como a reação envolve gases, ela deve se processar em um sistema fechado. No cátodo, precisamos de uma entrada para N_2O_4 (ℓ) e uma saída para os gases (N_2 e H_2O). No ânodo, precisamos de uma entrada para hidrazina (N_2H_4) e uma saída para o gás nitrogênio (N_2).

Gabarito: discursiva

21. (ITA-2014)

Considere uma célula a combustível alcalina (hidrogênio-oxigênio) sobre a qual são feitas as seguintes afirmações:

- I Sob condição de consumo de carga elétrica, a voltagem efetiva de serviço desse dispositivo eletroquímico é menor que a força eletromotriz da célula.
- II— O combustível (hidrogênio gasoso) é injetado no compartimento do anodo e um fluxo do oxigênio gasoso alimenta o catodo dessa célula eletroquímica.
- III Sendo o potencial padrão dessa célula galvânica igual a 1,229 V_{EPH} (volt na escala padrão do hidrogênio), a variação de energia livre de Gibbs padrão (ΔG^0) da reação global do sistema redox é igual a -237,2 kJ.mol $^{-1}$.

Das afirmações acima, está(ão) CORRETA(S) apenas:

- a) I.
- b) I, II e III.
- c) I e III.
- d) II.
- e) II e III.

Comentários

Vamos analisar as informações fornecidas.

- I A tensão elétrica efetiva é sempre inferior à força eletromotriz da célula sob o consumo de carga elétrica (U = E rI). Afirmação correta.
- II O gás hidrogênio sofre oxidação, portanto deve ser colocado no ânodo. Lembre-se que ânodo começa com vogal, assim como oxidação começa com vogal. Enquanto isso, o oxigênio sofre redução, portanto deve ser colocado no cátodo.

$$H_{2(g)} + 20H_{(aq)}^{-} \rightarrow 2H_2O + 2e^{-}$$

 $\frac{1}{2}O_{2(g)} + 2e^{-} + H_2O \rightarrow 2OH^{-}$

Afirmação correta.

III – Vamos aplicar diretamente a relação entre a Energia Livre de Gibbs e o potencial padrão.

$$\Delta G^0 = -nFE^0 = -2.96500.1,229$$

 $\Delta G^0 = -237,2 \, kJ/mol$

Afirmação correta.

Gabarito: B

22. (ITA-2014)

São descritos dois experimentos:

- I Ovo cozido em água fervente teve sua casca, de modo que parte de sua clara permaneceu em contato com esta água, na qual a seguir foi também imerso um objetivo polido de prata. Após certo período de tempo, observou-se o escurecimento desse objeto, que foi retirado da água e lavado.
- II Em um béquer, foi aquecida água até a fervura e adicionada uma colher de sopa de cloreto de sódio. A seguir, esta solução foi transferida para um béquer revestido com papel alumínio. O objeto de prata utilizado no experimento I foi então imerso nesta solução e retirado após alguns minutos.

Em relação a esses experimentos:

- a) Apresente a equação global que representa a reação química ocorrida na superfície do objeto de prata no experimento I e calcule a diferença de potencial da reação química.
- b) Preveja a aparência do objeto de prata após a realização do segundo experimento.
- c) Apresente a equação global da reação química envolvida no experimento II e sua diferença de potencial elétrico.

Dados:

Ag₂S (s) + 2 e⁻
$$\Rightarrow$$
 2 Ag (s) + S²⁻ (aq) E⁰ = -0,691 V
O₂ (g) + 4 H⁺ (aq) + 4 e⁻ \Rightarrow 2 H₂O (ℓ) E⁰ = 1,229 V
A ℓ ³⁺ (aq) + 4 e⁻ \Rightarrow A ℓ (s) E⁰ = -1,662 V
Ag₂S (s) + 2H⁺ + 2 e⁻ \Rightarrow 2 Ag (s) + H₂S (aq) E⁰ = -0,037 V

Comentários

No experimento I, a prata é oxidada pela presença de sulfeto de hidrogênio. Nessa reação, o oxigênio se reduz no cátodo. As semi-reações podem ser escritas:

$$\begin{array}{lll} {\bf \hat{A}nodo} & 4Ag_{(s)} + 2H_2S_{(g)} \leftrightarrows 2Ag_sS(s) + 4H^+ + 4e^- & E^0 = -0,037V \\ \\ {\bf \hat{C}\acute{a}todo} & O_{2(g)} + 4H^+_{(aq)} + 4e^- \leftrightarrows 2H_2O_{(l)} & E^0 = 1,229V \\ \\ \hline {\bf Reação Global} & 4Ag_{(s)} + O_{2(q)} + 2H_2S_{(q)} \to 2Ag_sS(s) + 2H_2O \\ \end{array}$$

O potencial da reação global é, portanto, a soma dos dois potenciais.

$$E^0 = 1.229 - 0.037 = 1.266 V$$

No experimento II, o objeto de prata contaminado com sulfeto de prata Ag_2S é misturado ao alumínio. Pela análise dos potenciais de redução, vemos que o alumínio tem bastante facilidade de se oxidar, já que o seu potencial de redução é muito negativo.

$$Ag_sS(s) + 2e^- \leftrightarrows 2Ag(s) + S^{2-}(aq)$$
 $E^0 = -0.691 V$
 $Al^{3+}(aq) + 3e^- \leftrightarrows Al(s)$ $E^0 = -1.662 V$

Logo, comparando as duas reações e seus potenciais, é de se imaginar que o alumínio se oxida, enquanto o sulfeto de prata se reduz.

Ânodo
$$Ag_sS(s) + 2e^- \leftrightharpoons 2Ag(s) + S^{2-}(aq)$$
 $E^0 = -0.691 V$

Cátodo
$$Al(s) = Al_{(aq)}^{3+} + 3e^{-}$$
 $E^{0} = +1,662 V$

Para obter a reação global no experimento II, é conveniente multiplicar a primeira reação por três.

Ânodo
$$3Ag_sS(s) + 6e^- \leftrightarrows 6Ag(s) + 3S^{2-}(ag)$$
 $E^0 = -0.691 V$

Cátodo
$$2Al(s) = 2Al^{3+}(aq) + 6e^{-}$$
 $E^{0} = +1,662 V$

Reação Global
$$3 Ag_2S(s) + 2 Al(s) \iff 6 Ag(s) + 2 Al^{3+}(ag)$$

Assim, o objeto de prata volta a ter sua aparência original, pois a camada de sulfeto de prata é convertida novamente em prata metálica.

O potencial da reação global é, portanto, a soma dos dois potenciais.

$$E^0 = 1,662 - 0,691 = 0,971 V$$

Gabarito: discursiva

23. (ITA - 2013)

Nas condições ambientes, uma placa de ferro metálico puro é mergulhada numa solução aquosa, com pH 9 e isenta de oxigênio, preparada pelo borbulhamento de sulfeto de hidrogênio gasoso em solução alcalina. Nesta solução, o ferro é oxidado (corroído) pelo íon hidrogenossulfeto com formação de uma camada sólida aderente e protetora sobre a superfície desse material metálico. A adição de cianeto de potássio à solução aquosa em contato com o substrato metálico protegido desestabiliza sua proteção promovendo a dissolução da camada protetora formada.

Com base nessas informações, escreva as equações químicas balanceadas das reações que representam:

- a) a corrosão eletroquímica do ferro pelo íon hidrogenossulfeto, produzindo hidrogênio atômico.
- b) a dissolução da camada passiva sobre o ferro pelo íon cianeto.

Comentários

A corrosão do ferro pelo hidrogenossulfeto (HS^-) , que é um composto sulfurado, produz o sulfeto de ferro (Fe_2S_3) por meio de uma reação de simples troca.

$$2 Fe(s) + 3 HS^{-}(aq) \rightarrow Fe_2S_3(s) + 3 [H]$$

O sulfeto férrico forma uma camada sólida sobre o ferro metálico impedindo que a corrosão continue. Porém, a adição de cianeto provoca a complexação do íon ferro, formando um dos íons complexos mais importantes da Química. Como o ferro apresenta nox +3 no sulfeto férrico, o íon formado é o ferricianeto.

$$Fe_2S_3(s) + 12 CN^- \rightarrow 2 [Fe(CN)_6]^{3-}(aq) + 3 S^{2-}(aq)$$

Gabarito: discursiva

24. (ITA-2012)

Considere os seguintes potenciais de eletrodo em relação ao eletrodo padrão de hidrogênio nas condições-padrão (E^0): $E^0(M^{3+}|M^{2+}) = 0.80 \text{ V}$ e $E^0(M^{2+}|M^0) = -0.20 \text{ V}$. Assinale a opção que apresenta o valor, em V, de $E^0(M^{3+}|M^0)$:

- a) -0,33
- b) -0,13
- c) +0,13
- d) + 0,33
- e) +1,00

Comentários

Considere as três reduções tratadas pelo enunciado e seus respectivos potenciais.

(I)
$$M_{(aq)}^{3+} + e^- \rightarrow M_{(aq)}^{2+}$$
 $E^0 = 0.80 V$

$$(II) \quad M_{(aq)}^{2+} + 2e^- \to M_{(aq)}^0 \quad E^0 = -0.20 \, V$$

(III)
$$M_{(aq)}^{3+} + 3e^- \rightarrow M_{(aq)}^0$$
 $E^0 = ?$

Note que a reação (III) é igual à soma das reações (I) e (II). Porém, para os potenciais, não é válida a Lei de Hess, haja vista que é uma **grandeza intensiva**. Logo, não podemos somar diretamente os potenciais das reações I e II.

No entanto, para a Energia Livre de Gibbs, podemos sim escrever que>

$$\Delta G_{III}^0 = \Delta G_I^0 + \Delta G_{II}^0$$

Agora, basta utilizar as relações entre as Energias Livres de Gibbs e os potenciais de reação. Para isso, devemos observar o número de mols de elétrons que estão envolvidos em cada uma das reações. Na reação (I), tem-se 1 mol de elétrons; na reação (II), tem-se 2 mols de elétrons; na reação (III), são 3 mols de elétrons.

$$-3FE_{III}^{0} = -1FE_{I}^{0} - 2FE_{II}^{0}$$

Podemos simplificar o sinal negativo e a constante de Faraday de ambos os lados da equação e teremos:

$$3E_{III}^{0} = E_{I}^{0} + 2E_{II}^{0} = 0.80 + 2.(-0.20) = 0.80 - 0.40 = 0.40$$

$$\therefore E_{III}^{0} = \frac{0.40}{3} \approx 0.13$$

Gabarito: C

25. (ITA-2012)

São feitas as seguintes afirmações a respeito dos produtos formados preferencialmente em eletrodos eletroquimicamente inertes durante a eletrólise de sais inorgânicos fundidos ou de soluções aquosas de sais inorgânicos:

- I Em CaC $\ell_2(\ell)$, há formação de Ca (s) no cátodo.
- II Na solução aquosa 1.10⁻³ mol.L⁻¹ em Na₂SO₄, há aumento do pH ao redor do ânodo.
- III Na solução aquosa 1.10⁻³ mol.L⁻¹ em AgNO₃, há formação de O₂(g) no ânodo.
- IV Em NaBr (I), há formação de $Br_2(\ell)$ no ânodo.

Das afirmações acima, está(ão) ERRADA(S) apenas:

- a) I e II.
- b) I e III.
- c) II.
- d) III.
- e) IV.

Comentários

Para resolver as questões de eletrólise, devemos nos lembrar das regras de facilidade de descarga.

$$Li^+, K^+, Na^+, Mg^{2+}, Ca^{2+}, Ba^{2+}, Al^{3+} < H_2O < Mn^{2+}, Zn^{2+}, Ag^+$$

metais alcalinos metais alcalinoterrosos metais alcalinoterrosos

Maior facilidade de descarga

$$NO_3^-, SO_4^{2-}, ClO_3^-, NO_2^-, F^- < H_2O < Cl^-, Br^-, I^-$$

ânions oxigenados e fluoreto

ânions nãooxigenados

Maior facilidade de descarga

Com base nelas, vamos analisar os itens oferecidos pelo enunciado.

I – Trata-se de uma eletrólise ígnea, com o sal fundido. Nessa situação, o cálcio se reduz.

$$Ca^{2+}(l) + 2e^- \rightarrow Ca(s)$$

Vale notar que a temperatura de fusão do cloreto de cálcio é 772 °C, enquanto a do cálcio metálico é igual a 842 °C. Dessa forma, há sim a possibilidade de se produzir cálcio sólido a partir da eletrólise ígnea do seu sal.

Afirmação correta.

II – A água tem maior prioridade de descarga tanto sobre os metais alcalinos como sobre os ânions oxigenados, nos quais se enquadra o sulfato. Portanto, a eletrólise da solução aquosa de sulfato de sódio consiste simplesmente na eletrólise da própria água, produzindo os gases hidrogênio e oxigênio.

$$2 H_2 O(l) \xrightarrow{eletr\'olise} 2 H_2(g) + O_2(g)$$

Portanto, não há nenhuma variação do pH. A água permanece neutra.

III – A água tem maior prioridade de descarga que o íon nitrato, portanto, ela sofre oxidação no ânodo, liberando O₂ (g). Afirmação correta.

IV – Na eletrólise ígnea do brometo de sódio, ocorre a formação de Na (s) no cátodo e $Br_2(\ell)$ no ânodo. Afirmação correta.

Portanto, somente a afirmação II está errada.

Gabarito: C

26. (ITA-2012)

A 25°C, a força eletromotriz da seguinte célula eletroquímica é de 0,45V:

Pt (s) | H_2 (g, 1 atm) | H^+ (x mol.L⁻¹) | | $KC\ell$ (0,1 mol.L⁻¹) | $Hg_2C\ell_2$ (s) | $Hg(\ell)$ | Pt (s)

Sendo o potencial do eletrodo de calomelano – $KC\ell$ (0,1 mol.L⁻¹) | $Hg_2C\ell_2$ (s) | $Hg(\ell)$ – nas condiçõespadrão igual a 0,28V e x o valor numérico da concentração dos íons H^+ , assinale a opção com o valor aproximado do pH da solução.

- a) 1,0
- b) 1,4
- c) 2,9
- d) 5,1
- e) 7,5

Comentários

As semi-reações de eletrodo são as seguintes:

$$H_2(g) \to 2H^+(aq) + 2e^-$$

 $Hg_2Cl_2(s) + 2e^- \to 2Hg(l) + 2Cl^-(aq)$

Como o calomelano se reduz e o hidrogênio se oxida, o potencial da célula pode ser descrito como a diferença entre o potencial de redução do calomelano e o potencial de redução do hidrogênio.

$$E = E_{Hg_2Cl_2} - E_{H^+|H_2}$$

Nessa questão, o potencial de redução do hidrogênio não é nulo, porque o eletrodo não está no estado padrão, já que a concentração do íon H⁺ não é igual a 1 mol/L.

Aparentemente, o ITA se confundiu na definição de eletrodo padrão. Eles deram o potencial do eletrodo de calomelano com concentração 0,1 mol/L como se fosse estado padrão. Porém, ignorando esse erro, temos:

$$E_{H^+|H_2} = E_{Hg_2Cl_2} - E = 0.28 - 0.45 = -0.17$$

Pela Equação de Nernst (observe que estamos falando do potencial de redução):

$$E_{H^+|H_2} = 0 - \frac{0,0592}{2} \log \left(\frac{p_{H_2}}{[H^+]^2} \right)$$

-0,17 = -0,0592(0 + pH) : pH \approx 2,9

Gabarito: C

27. (ITA-2016)

Considere a reação descrita pela seguinte equação química:

$$H_2(g, 1 \text{ bar}) + 2 \text{ AgBr (s)} \rightarrow 2 \text{ H}^+(aq) + 2 \text{ Br}^-(aq) + 2 \text{ Ag (s)}$$

Sendo X o potencial padrão (E⁰) da reação, o pH da solução a 25 °C quando o potencial da reação (E) for Y será dado por:

- a) (X Y)/0,059
- b) (Y X)/0,059
- c) (X Y)/0,118
- d) (Y X)/0,118
- e) 2(X Y)/0,059

Comentários

O coeficiente de ação de massas para a pilha descrita é:

$$Q = \frac{[H^+]^2 [Br^-]^2}{P_{H_2}}$$

Usando a Equação de Nernst, temos:

$$E = E^0 - \frac{0,059}{2}.\log(Q)$$

A pressão de H_2 foi fornecida no enunciado e é igual a 1 bar, portanto, se iguala às condições padrão. Como não foi fornecida $[Br^-]$, vamos considerar que o íon está nas condições padrão, portanto, sua concentração é 1 mol/L.

$$Y = X - \frac{0,059}{2} \cdot \log\left(\frac{[H^+]^2 \cdot 1}{1}\right) = X - \frac{0,059}{2} \cdot \log([H^+]^2) = X - 0,059 \cdot \log[H^+]$$

Pela definição de pH, temos:

$$Y = X + 0.059. pH$$

$$\therefore pH = \frac{Y - X}{0.059}$$

Gabarito: B