Welcome to Learn to Code Seattle

About Galvanize

But first...

Let's get to know each other

Turn to the person next to you and ask:

- 1) What is your name?
- 2) Why did you come here?
- 3) What is the nerdiest thing about you?

You have 2 minutes to complete this mission!

Intro to Python For Data Science

In this course you will learn

- Set up your computer
- Setting up iPython/Jupyter
- Basic Python commands
- ☐ Explorations in NumPy, Pandas, and Matplotlib
- Sandbox time!

Gut check, Galvanize style!

- This course is for beginners
- Feel free to move ahead
- Help others when you can
- Be patient and nice
- We'll all get through it!

Want to move ahead? No problem!

Go to: github.com/ GalvanizeOpenSource/ Python-Resources/

- 1. Installation *
- 2. Intro_Scripts *
- 3. Basic_Resources *
- 4. Exploring_Data

* Covering this today

What IS Python?

('Tis a silly language...)

The origins of Python

- Created by this guy (Guido Van Rossum) in the 1990s
- Totally named after Monty Python, so pun away!
- Open-source project with a huge community

Why Python for data science?

Easy to learn, scalable language Popular libraries:

- SciPy.org (Math, Science, Engineering)
- StatsModels (Statistics)
- Pandas (Frameworks)
- SciKit-Learn (Machine Learning)
- GGplot, MatplotLib, Plot.ly (Graphics)

Setting up your computer

(Brace yourself...)

We're going to set up...

- Anaconda
 - Software containing our Interactive Python Notebook (Jupyter) & Python 2.7 (3.5 also OK)
- Git (optional)
 - Working in the command prompt. You may already have this on Mac (Terminal)
 - Anaconda should work in Windows Command Prompt

1: Install Anaconda!

Download here (2.7.x): continuum.io/downloads

Follow the instructions in the website - they vary per platform

Anaconda is an open-source platform for Python, powered by Continuum Analytics.

2: Install Git (optional)

The entire Pro Git book

written by Scott Chacon and Ben Straub is available to read online for free. Dead tree versions are available on Amazon com

GUI Clients

Git comes with built-in GUI tools (git-gui, gitk), but there are several third-party tools for users looking for a platform-specific experience.

View GUI Clients →

Logos

Various Git logos in PNG (bitmap) and EPS (vector) formats are available for use in online and print projects.

View Logos →

Pictures of Sloths Wearing Onesies

Setting up your computer can take time...

If you've done the following:

- Install Anaconda
- Install Git (optional)

You're ready to move on to the next step!

In this course you will learn

- Set up your computer
- Setting up iPython/Jupyter
- Basic Python commands
- Explorations in NumPy, Pandas, and Matplotlib
- Sandbox time!

Activating Jupyter

(Wait, I thought we were using Python...)

Project Jupyter: better coding xp

Began as IPython, short for "Interactive Python"

Way for you to code within a browser in an interactive way

Now offering support beyond Python...

Let's initialize Jupyter

- 1. Open up your Git terminal
- 2. Navigate to your working directory
- 3. Type "jupyter notebook" into the prompt Some computation should happen...
- 4. Go to your browser and type in this URL a. http://localhost:8888/

What you should see...

Create a new Jupyter Notebook

- 5. Click on "New" in the top right corner
- 6. Select under "Notebooks" > "Python [root]"

Something should initialize immediately...

What you should see...

If you see this, you are good to go!

If not, raise your hand!

If you've done the following:

- Initialize Jupyter on your computer
- Created your own blank Jupyter Notebook

You're ready to move on to the next step!

In this course you will learn

- Set up your computer
- Setting up iPython/Jupyter
- Basic Python commands
- Explorations in NumPy, Pandas, and Matplotlib
- Sandbox time!

Basic Python Commands

(Finally, let's code!)

Gut check, Galvanize style!

- This course is for beginners
- Feel free to move ahead
- Help others when you can
- Be patient and nice
- We'll all get through it!

Data Types - the very basics

Five data types:

- int integer value
- float decimal value
- bool True/False
- *complex* imaginary
- NoneType null value

```
>>> type (None)
<type 'NoneType'>
>>> type(1)
<type 'int'>
>>> type(2.5)
<type 'float'>
>>> type(True)
<type 'bool'>
>>> type(2+3j)
<type 'complex'>
```

LET'S CODE!

Predict the data types Check with the of the following. type () comm

- 1. 3.1415
- 2. 10
- 3. 4+8j
- 4. False
- 5. "

Check with the type() command in Jupyter.

(Hint: hit Shift+Enter to run in Jupyter.)

Data Types - "Arrays" in Python

Five types (iterable data):

- *str* string/varchar immutable value
- *list* collection of elements
- tuple immutable list
- dict unordered key-value pairs, keys are unique and immutable
- set unordered collection of unique elements

Data Types - "Arrays" in Python

Five types (iterable data):

- str defined with quotes = 'abc'
- list defined with brackets = ['a', 'b']
- tuple defined with parentheses = ('a', 'b')
- dict defined with braces = {'a':1, 'b':2}
- set defined with braces = {'a', 'b'}

LET'S CODE!

Create a list called doc with the following data in this order:

- 1. 'Gigawatts'
- 2. 88
- 3. 'miles per hour'
- 4. 1.21

doc is a variable here, so you have to set it equal to a list of these values

When you're done, type doc[2]. What happens?

Control Flow - If-else statements

```
x, y = False, False
if x:
    print('apple')
elif y:
    print('orange')
else:
    print('sandwich')
```

Try this in your notebook (ignore the stuff on the left as you type it) what do you think will be printed out?

Control Flow - While loops

```
x = 0
while True:
    print('Hello!')
    x += 1
    if x >= 3:
        break
```

Try this in your notebook. What do you think will be printed out?

Control Flow - For loops

```
for k in range(4):
    print(k**3)
```

Try this in your notebook. What do you think will be printed out?

Functions - Creating ways to use objects

```
def x_plus_4(x):
    return x + 4
```

def subtract(x,y):
 return x - y

Try creating your own mathematical functions like this.

Import - important for our purposes!

import math
math.pi
What is the output?

from math import sin
sin(math.pi/2)

What is the output?

Importing is crucial when using libraries and frameworks, such as....

If you've done the following:

- ☐ Reviewed the basic data types
- ☐ Reviewed control flows
- Reviewed functions and importing

You're ready to move on to the next step!

In this course you will learn

- Set up your computer
- Setting up iPython/Jupyter
- Basic Python commands
- Explorations in NumPy, Pandas, and Matplotlib
- Sandbox time!

What's NumPy?

Python library of mathematical functions that allow us to operate on huge arrays and matrices of data

LET'S CODE! Array object in 1D

```
import numpy as np
a = np.array([0,1,5,7,6])
a[3]
What is the output?
```

LET'S CODE! Array object in 2D

```
a = np.array([[1,2,3],[4,5,6]])
a.shape
```

What is the output?

LET'S CODE! Array object in 2D

```
a.T # transposing the array
a.T.shape
```

What is the output?

LET'S CODE! Array object in 2D

```
b = np.array([6,7])
np.dot(a.T,b) # matrix multiplication
What is the output?
```

LET'S CODE! Array object in nD

```
aa = np.array(
    [[1,2,3],[4,5,6],[1,2,3],[4,5,6]]
    )
bb = np.array(
    [[[3],[4],[6]],[[6],[5],[7]]]
    )
```

LET'S CODE! Array object in nD

aa.shape, bb.shape # why do we check?
What is the output?

np.dot(aa,bb)
What is the output?

If you've done the following:

- Used NumPy on a 1-dimensional array
- ☐ Used NumPy on a 2-dimensional array
- Used NumPy on a n-dimensional array

You're ready to move on to the next step!

Exploration of Pandas

(Cuddly cute code?)

Pandas - yeah, science!

$$\begin{array}{c|c}
\mathsf{pandas} \\
y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}
\end{array}$$

Open-source library providing powerful data structures and analysis tools

LET'S CODE! Create a DataFrame

LET'S CODE! Create another one!

```
import pandas as pd
import numpy as np
df = pd.DataFrame({
    'int col': [1,2,6,8,-1],
    'float col': [0.1, 0.2, 0.2, 10.1, None],
    'str col': ['a', 'b', None, 'c', 'a']})
df
```

LET'S CODE! Do some statistics!

```
df.describe() # basic stats
```

```
df.corr() # correlation
```

```
df.cov() # covariance
```

LET'S CODE! Do some visualization!

First, we need to import matplotlib to aid.

```
%matplotlib inline import matplotlib.pyplot as plt
```

LET'S CODE! Do some visualization!

What is the output?

LET'S CODE! Do some visualization!

```
plot_df.plot()

plot_df.plot('x', 'y', kind='scatter')

plot_df.plot(kind='hist', alpha=0.3)
```

If you've done the following:

- ☐ Build 2 dataframes with Pandas
- Do some statistics with Pandas
- ☐ Do some visualization with Matplotlib

You're ready to move on to the next step!

In this course you will learn

- Set up your computer
- Setting up iPython/Jupyter
- Basic Python commands
- Explorations in NumPy, Pandas, and Matplotlib
- Sandbox time!

Play around in the sandbox! Try to...

Try one of the following

- Merging and joining your data frames
- Removing and replacing some missing values
- Renaming your data columns
- Download a dataset and conduct some analysis

You did it!

You are now a data scientist...ish. Welcome to the cool kids club.

Learn more on your own!

Go to: github.com/ GalvanizeOpenSource/ Python-Resources/

- 1. Installation
- 2. Intro_Scripts
- 3. Basic_Resources
- 4. Exploring_Data

Learn Data Science with Galvanize

Data Science Fundamentals: Intro to Python

• 6 week part-time workshop

Data Science Immersive Program

- 12 week full-time program
- Job placement: 92% within 6 months (2016)

GalvanizeU

- 12 month program in San Francisco
- Fully-accredited by the University of New Haven

powered by galvanize

Learn Data Science with Galvanize

To learn more, visit galvanize.com/data-science

Or contact enrollment@galvanize.com

powered by galvanize

Thank you for coming to galvanize

Email Lee Ngo at info@galvanize.com or Visit our website at galvanize.com

This course has been brought to you by the evangelists of Galvanize.

Intro to Python

For Data Science

Learn to Code Contributors

powered by galvanize

Matt Drury github.com/madrury Lead Instructor & Principal Data Scientist @ Galvanize Usually uses Spaceman Spiff as an avatar

Roger Schmidt

Sr. Web Developer and Instructor at Galvanize Still uses pen and paper

Lee Ngo github.com/lee-ngo Galvanize Evangelist based in Seattle Once did a Poisson regression on geolocation data

Julia Tao
Data Science Immersive
Alum - Seattle
Was named after Julia
Roberts.

Saralyn Ogden github.com/SaralynOgden g34 Student - Seattle Only has eight pairs of socks. UPDATED: Has more.

David Valpey

Galvanize Data Science

Alum - Seattle

Spent a sizable portion of childhood with no electricity and no hot water