Teori	Struktur
Hvad vil det sige at en ligang er mono-, bi-, etc. dentat?	Tegn strukturen af ethylendiamintetraacetat (edta) ^{4–} ionen
Kapitel 19	Kapitel 19
Teori	Teori
Vis med et eksempel hvad der forstås ved <i>linkage</i> isomerism	${\rm Co(NH_3)_5Br(SO_4)}$ optræder i flere former. En af disse indeholder ${\rm [CoBr(NH_3)_5]^{2^+}}$ ionen mens en anden indeholder ${\rm [CoSO_4(NH_3)_5]^+}$ ionen. Hvilken slags isomeri er dette et eksempel på?
Kapitel 19	Kapitel 19
Teori	Teori
Forklar med et eksempel hvad der forstås ved hydratiseringsisomeri	Vis med et eksempel hvad der forstås ved koordinationsisomeri
Kapitel 19	Kapitel 19
Teori	Teori
Tegn de mulige stereoismere af et plankvadratisk kompleks	Tegn de mulige stereoismere af et oktaederisk kompleks
Kapitel 19	Kapitel 19

Teori	Teori
Giv et eksempel på hvordan et chiralt kompleks kan se ud	Hvad er den primære begrænsning ved valens bindings teori?
Kapitel 19	Kapitel 19
Teori	Teori
Hvilke antagelser gøres i krystalfeltteorien?	Hvad er drivkraften for kompleksdannelse ifølge CFT?
Kapitel 19	Kapitel 19
Teori	Teori
Hvad forstås ved CFSE?	Hvad er sammenhængene mellem spin, felt og CFSE?
Kapitel 19	Kapitel 19
Teori	Teori
Hvilke faktorer har indflydelse på CFSE?	Opskriv den spektrokemiske serie
Kapitel 19	Kapitel 19

At teorien ikke kan forudsige men kun rationalisere	
En fri gasformig metalions d orbitaler har alle samme energiniveau (degenererede). Når liganderne binder aftager nogle af orbitalerne i energi mens andre vokser. Elektronerne fyldes i de nye lavere energiniveauer hvilket er energetisk favorabelt.	Overgangsmetalionen er fri og på gasform. Liganderne opfører sig som punktladninger. Ingen interaktion mellem metallets <i>d</i> orbitaler og ligandernes orbitaler.
Høj CFSE svarer til lavt spin hvilket svarer til et stærkt felt.	<i>crystal felts stabilisations energi</i> . Den energi der udløses når elektroner går fra degerenrerede <i>d</i> orbitaler til opsplittede <i>d</i> orbitaler.
I ⁻ < Br ⁻ < Cl ⁻ < F ⁻ < OH ⁻ < OH ₂ < NH ₃ < en < CN ⁻ < CO	Jo højere periode des højere CFSE. Jo højere oxidationstrin des højere CFSE. Jo flere ligander des højere CFSE. Selve liganderne jvf. den spektrokemiske serie.

Teori	Teori
Angiv hvorledes elektronerne fordeles i et oktaederiske kompleks	Angiv hvorledes elektronerne fordeles i et tetraedrisk kompleks
Kapitel 19	Kapitel 19
Teori	Teori
Angiv hvorledes elektronerne fordeles i et plankvadratisk kompleks	Hvilken farve vil et kompleks have hvis det absorberer i den grønne del af det synlige spektrum?
Kapitel 19	Kapitel 19
Teori	Egenskab
Hvilken farve vil du forvente et kompleks har hvis det har en høj CFSE?	Hvilke struktur har MgAl ₂ O ₄ , Fe ₃ O ₄ , Mn ₃ O ₄ og MFe ₂ O ₄ hvor M er dipositive overgangsmetalioner?
Kapitel 19	Kapitel 19
Teori	Egenskab
Hvilke komplekser har oftest intense farver?	Forklar hvorfor permangernationen har en stærk farve
Kapitel 19	Kapitel 19

Teori	Egenskab
Hvad forstås ved spinforbudte henholdsvis laporte forbudte elektronovergange?	Hvorfor er Cr³+ og Co³+ komplekser ofte inerte?
Kapitel 19	Kapitel 19
Teori	Fremstilling
Nævn tre typer af reaktioner til syntese af koordinationskomplekser og giv eksempler på dem	Giv reaktionerne til fremstilling af bariumferrat(IV)
Kapitel 19	Kapitel 19
Teori	Teori
Hvad er grundprincippet i HSAB teori? Angiv også 7 hårde, 2 mellem og 3 bløde ligandatomer	Forklar begrebet <i>kemisk symbiose</i>
Kapitel 19	Kapitel 19
Struktur	Struktur
Tegn strukturen af metalloporphyrinkomplekset	Nævn alle plankvadratiske komplekser
Kapitel 19	Kapitel 20

De har 3 henholdsvis 6 d elektroner i grundtilstanden. Med en oktaederisk konfiguration er de halvfyldte henholdsvis fyldte laveste d energiniveauer så stabile at der ikke er aktiveringsenergien bliver høj.	Spin: Sandsynligheden for ændring af spin er meget lille. Laporte: Overgange mellem <i>d</i> orbitaler er forbudte når molekylet har et inversionscenter.
$2 \operatorname{Fe}^{3^{+}} + 3 \operatorname{ClO}^{-} + 10 \operatorname{OH}^{-} \longrightarrow 2 \operatorname{FeO}_{4}^{2^{-}} + 3 \operatorname{Cl}^{-} + 5 \operatorname{H}_{2} \operatorname{O}$ $\operatorname{FeO}_{4}^{2^{-}} + \operatorname{Ba}^{2^{+}} \longrightarrow \operatorname{BaFeO}_{4}(\operatorname{s})$	Ligandudskiftning: $[Ni(OH_2)_6]^{2^+} + 6 NH_3 \longrightarrow [Ni(NH_3)_6]^{2^+} + 6 H_2O$ $Redox:$ $Os + 3 F_2 \longrightarrow OsF_6$ $Partiel dekomponering:$ $[Co(NH_3)_5(OH_2)]Cl_3 \stackrel{\Delta}{\longrightarrow} [Co(NH_3)_5Cl]Cl_2 + H_2O$
Et kompleks med bløde ligander har større tendens til at binde til en blød ligand mere end til at binde til en hård ligand og dermed opnå en "blanding". Eksempelvis er $[Co(NH_3)_5F]^{2+}$ mere stabil end $[Co(NH_3)_5I]^{2+}$	Hårde ligander binder bedst til hårde overgangsmetaller. Alle overgangsmetalioner med en ladning over +2 samt Mn ⁺² er hårde, dem med +2 er mellem og alle med lavere ladning er bløde. Bløde: C, S, As, Se, Te, I. Mellem: Cl, Br. Hårde: N, O, F.
$[PtCl_4]^{2^-}, [Ni(CN)_4]^{2^-}, [Pt(NH_3)_2Cl_2], [Ni(DMG)_2], \\ [Cu(NH_3)_4]^{2^+} \text{ samt øvrige platin og palladium komplekser.}$	$N \longrightarrow M \longrightarrow N$

Alle andre komplekser med fire ligander er tetraedriske.

Struktur	Egenskab
Opskriv for hver af 3 <i>d</i> overgangsmetallerne de oxidationstrin hvor det danner forbindelser med oxygen	Hvilke tre overgangsmetaller danne alle stabile oxyanioner i sur opløsning?
Kapitel 20	Kapitel 20
Egenskab	Fremstilling
Hvilke tre overgangsmetaller danner alle tetrachloro komplekser?	Opskriv reaktionsligninger for hvordan rent titanium og titaniumdioxid fremstilles industrielt
Kapitel 20	Kapitel 20
Egenskab	Egenskab
Angiv den primære mineralkilde til chrom	Forklar hvorfor chromat- og dichromationen ikke er farveløse
Kapitel 20	Kapitel 20
Reaktion	Struktur
Angiv ammoniumdichromats spontane reaktion ved antændelse	Tegn strukturen af dichromationen
Kapitel 20	Kapitel 20

VO ₄ ³⁻ , CrO ₄ ²⁻ og MnO ₄ ⁻ triaden	Ox. Ti V Cr Mn Fe Co Ni Cu 1 2 X
$TiO_{2} + 2C + 2Cl_{2} \xrightarrow{\Delta} TiCl_{4} + 2CO$ $TiCl_{4} + 2Mg \xrightarrow{\Delta} Ti + 2MgCl_{2}$ $eller$ $TiCl_{4} + O_{2} \xrightarrow{\Delta} TiO_{2} + 2Cl_{2}$	Fe, Co og Ni triaden
Charge transfer til oxygen.	${\rm Chromit, FeCr_2O_4}$
O	$(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + N_2 + 4H_2O(g)$

Fremstilling	Reaktion
Angiv hvordan dichromationen fremstilles industrielt	Angiv hvordan man kan undersøge om der er dichromat i en opløsning
Kapitel 20	Kapitel 20
Struktur	Fremstilling
Tegn strukturen af chromylchlorid	Angiv med en reaktionsligning hvordan man kan fremstille chromylchlorid
Kapitel 20	Kapitel 20
Reaktion	Fremstilling
Angiv chromylchlorids reaktion i basisk væske	Hvordan kan man fremstille chrom(VI)oxid?
Kapitel 20	Kapitel 20
Anvendelse	Egenskab
Angiv en karakteristisk anvendelse af chrom(III)oxid	Hvad er den primære mineralkilde til mangan?
Kapitel 20	Kapitel 20

Dichromationen er orange men reagerer til en blå forbindelse ved tilsætning af hydrogenperoxid og ether. Cr₂O ₇ ²⁻ + 4 H₂O₂ + 2 H ⁺ → 2 CrO(O₂)₂(ether) + 5 H₂O	$4 \operatorname{FeCr}_{2} O_{4} + 8 \operatorname{Na}_{2} CO_{3} + 7 O_{2} \xrightarrow{\Delta} 8 \operatorname{Na}_{2} \operatorname{Cr} O_{4} + 2 \operatorname{Fe}_{2} O_{3} + 8 \operatorname{CO}_{2}$ $2 \operatorname{Na}_{2} \operatorname{Cr} O_{4} + 2 \operatorname{CO}_{2} + \operatorname{H}_{2} O \Longleftrightarrow \operatorname{Na}_{2} \operatorname{Cr}_{2} O_{7} + 2 \operatorname{NaHCO}_{3}$
$K_{2}Cr_{2}O_{7} + 4 \text{ NaCl} + 6 \text{ H}_{2}SO_{4} \longrightarrow$ $2 \text{ CrO}_{2}Cl_{2} + 2 \text{ KHSO}_{4} + 4 \text{ NaHSO}_{4} + 3 \text{ H}_{2}O$	O Cr Cr Cl
$K_2Cr_2O_7 + H_2SO_4 + H_2O \longrightarrow K_2SO_4 + H_2CrO_4$ $H_2CrO_4 \longrightarrow CrO_3 + H_2O$	$CrO_2Cl_2 + 4OH^- \longrightarrow CrO_4^{2-} + 2Cl^- + 2H_2O$
$\mathrm{Mn_7SiO_{12}}$	Chrom(III)oxid er et grønt fast stof som ikke er opløseligt i vand. Derfor anvendes det som pigment i amerikanske dollars.

Reaktion	Egenskab
Kaliumpermangernat kan oxidere saltsyre. Angiv reaktionsligningen	Hvorfor er Mn²+ næsten farveløs?
Kapitel 20	Kapitel 20
Reaktion	Reaktion
Mangan(II)hydroxid kan reagere med oxygen. Giv reaktionsligningen	Vis med reaktionsligninger hvorledes man kan undersøge om en opløsning indeholder Mn²+
Kapitel 20	Kapitel 20
Reaktion	Reaktion
Mn ₂ O ₇ dekomponerer eksplosivt. Giv reaktionsligningen	Ionisk mangan(IV)oxid kan bruges til at fremstille chlorgas. Giv reaktionsligningen
Kapitel 20	Kapitel 20
Anvendelse	Fremstilling
Mangan kan anvendes i alkaliske batterier. Opskriv halvcellereaktionerne	Opskriv reaktionsligningerne til industriel fremstilling af jern ud fra jernmalm i en højovn
Kapitel 20	Kapitel 20

I high spin konfigurationen kan der kun ske elektronovergange ved at vende spinnet af en elektron og parre den med en anden. Sandsynligheden for dette er ekstremt lav da det er en spin forbudt elektronovergang.	$2 \text{ KMnO}_4 + 16 \text{ HCl} \longrightarrow 2 \text{ KCl} + 2 \text{ MnCl}_2 + 8 \text{ H}_2 \text{O} + 5 \text{ Cl}_2$
$2 \text{ Mn}^{2+} + 5 [\text{BiO}_3]^- + 14 \text{ H}^+ \longrightarrow 2 \text{ MnO}_4^- + 5 \text{ Bi}^{3+} + 7 \text{ H}_2 \text{O}$	$4 \operatorname{Mn(OH)}_{2}(s) + \operatorname{O}_{2} \longrightarrow 4 \operatorname{MnO(OH)}(s) + 2 \operatorname{H}_{2}\operatorname{O}$
$MnO_2 + 4 HCl \longrightarrow MnCl_2 + Cl_2 + 2 H_2O$	$2 \operatorname{Mn_2O_7}(l) \longrightarrow 4 \operatorname{MnO_2} + 3 \operatorname{O_2}$
$2 C + O_2 \longrightarrow 2 CO$ $3 Fe_2O_3 + CO \longrightarrow 2 Fe_3O_4 + CO_2$ $Fe_3O_4 + CO \longrightarrow 3 FeO + CO_2$ $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$ $FeO + CO \longrightarrow Fe + CO_2$ Slagger dannes CaO + SiO ₂ \simeq CaSiO ₃	$2 \operatorname{MnO}_{2} + 2 \operatorname{H}_{2} \operatorname{O} + 2 \operatorname{e}^{-} \longrightarrow 2 \operatorname{MnO}(\operatorname{OH}) + 2 \operatorname{OH}^{-}$ $\operatorname{Zn} + 2 \operatorname{OH}^{-} \longrightarrow \operatorname{Zn}(\operatorname{OH})_{2}(\operatorname{s}) + 2 \operatorname{e}^{-}$

Fremstilling	Struktur
Opskriv reaktionsligningerne til industriel fremstilling af jern ud fra jernmalm af høj kvalitet ved DRI metoden	Tegn strukturen af Fe₂Cl ₆
Kapitel 20	Kapitel 20
Reaktion	Egenskab
Jern kan reagere med chlorgas. Giv reaktionen samt produktets reaktion med vand	Jern(III) salte regarer ofte surt når de opløses i vand. Hvorfor?
Kapitel 20	Kapitel 20
Reaktion	Fremstilling
Jern(III) og jern(II) giver bundfald i basisk væske. Opskriv reaktionsligningerne	Angiv reaktionsligningen for industriel fremstilling af jern(II)chlorid
Kapitel 20	Kapitel 20
Reaktion	Reaktion
Jern(II) og jern(III) kan påvises ved to forskellige lignende metoder der begge giver berlinerblåt. Opskriv reaktionsligningerne	Opskriv reaktionsligningerne for dannelse af rust
Kapitel 20	Kapitel 20

$$\begin{aligned} \text{Fe}_3\text{O}_4 + \text{CO} &\longrightarrow 3 \, \text{FeO} + \text{CO}_2 \\ \text{Fe}_3\text{O}_4 + \text{H}_2 &\longrightarrow 3 \, \text{FeO} + \text{H}_2\text{O} \\ \text{FeO} + \text{CO} &\longrightarrow \text{Fe} + \text{CO}_2 \\ \text{FeO} + \text{H}_2 &\longrightarrow \text{Fe} + \text{H}_2\text{O} \end{aligned}$$
 Hydrogen til processen fremstilles via methan reforming
$$\begin{aligned} \text{CH}_4 + \text{CO}_2 &\longrightarrow 2 \, \text{CO} + 2 \, \text{H}_2 \\ \text{CH}_4 + \text{H}_2\text{O} &\longrightarrow \text{CO} + 3 \, \text{H}_2 \end{aligned}$$

Ligesom aluminium kan jern koordinere vandmolekyler. På grund af den høje ladningstæthed kan vandmolekylerne binde så stærkt at de kan reagere surt.

Eksempelvis:
$$[Fe(OH_2)_6]^{3^+} + H_2O \Longrightarrow H_3O^+ + [Fe(OH_2)_5OH]^{2^+}$$

$$2 \operatorname{Fe} + 3 \operatorname{Cl}_{2} \longrightarrow 2 \operatorname{FeCl}_{3}$$

$$\operatorname{FeCl}_{3} + 3 \operatorname{H}_{2} \operatorname{O} \longrightarrow \operatorname{Fe}(\operatorname{OH})_{3} + 3 \operatorname{HCl}(g)$$

$$Fe + 2 HCl(g) \longrightarrow FeCl_2 + H_2$$

$$\label{eq:Fe} \begin{split} Fe^{3^+} + 3 \, OH^- & \longrightarrow FeO(OH) + H_2O \\ Produktet \ af \ ovenstående \ kaldes \ i \ daglig \ tale \ rust \\ Fe^{2^+} + 2 \, OH^- & \longrightarrow Fe(OH)_2 \end{split}$$

$$2 \text{ Fe} + \text{O}_2 + 2 \text{ H}_2\text{O} \longrightarrow 2 \text{ Fe}(\text{OH})_2$$

 $4 \text{ Fe}(\text{OH})_2 + \text{O}_2 \longrightarrow 4 \text{ FeO}(\text{OH}) + 2 \text{ H}_2\text{O}$

$$3 \operatorname{Fe}^{2^{+}} + 4 \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]^{3^{-}} \longrightarrow \operatorname{Fe}_{4} \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]_{3} + 6 \operatorname{CN}^{-}$$

$$4 \operatorname{Fe}^{3^{+}} + 3 \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]^{4^{-}} \longrightarrow \operatorname{Fe}_{4} \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]_{3}$$

Reaktion	Fremstilling
Kobolt(II) kan bundfældes med en svag opløsning af stærk base. Herefter går det i opløsning ved kontakt med luft. Giv reaktionsligningerne	Opskriv reaktionen for oprensning af nikkel ved Mond processen
Kapitel 20	Kapitel 20
Egenskab	Fremstilling
Nikkel(II) kan bundfældes med base. Opskriv reaktionen	Angiv den primære kilde til kobber og hvordan kobberet kan udvindes ved en pyrometallurgisk proces
Kapitel 20	Kapitel 20
Fremstilling	Egenskab
Opskriv reaktionsligningen for udvinding af kobber fra CuFeS ₂ ved en hydrometallurgisk proces	Forklar med udgangspunkt i kobber(II) hvad der forstås ved Jahn-Teller effekten
Kapitel 20	Kapitel 20
Fremstilling	Teori
Hvorledes kan man fremstille kobber(I)chlorid?	Forventes 4-6 periode overgangsmetallerne at være lav spin eller høj spin?
Kapitel 20	Kapitel 21

Ni + 4 CO ← Ni(CO) ₄ Reaktionen er forskudt mod højre ved forholdsvis lave temperaturer	$Co^{2+} + 2 OH^{-} \longrightarrow Co(OH)_{2}$ $4 Co(OH)_{2} + O_{2} \longrightarrow 4 CoO(OH) + 2 H_{2}O$
$4 \operatorname{CuFeS}_{2} + 9 \operatorname{O}_{2} \longrightarrow 2 \operatorname{Cu}_{2} S + 6 \operatorname{SO}_{2} + 2 \operatorname{Fe}_{2} \operatorname{O}_{3}$ $\operatorname{Fe}_{2} \operatorname{O}_{3} + 3 \operatorname{SiO}_{2} \longrightarrow \operatorname{Fe}_{2} (\operatorname{SiO}_{2})_{3}$ $2 \operatorname{Cu}_{2} S + 3 \operatorname{O}_{2} \longrightarrow 2 \operatorname{Cu}_{2} \operatorname{O} + 2 \operatorname{SO}_{2}$ $\operatorname{Cu}_{2} S + 2 \operatorname{Cu}_{2} \operatorname{O} \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_{2}$	$Ni^{2+} + 2OH^- \longrightarrow Ni(OH)_2(s)$
$d_{x^2-y^2}$ og d_{z^2} opsplittes i energi fordi der er et ulige antal d elektroner (9) hvorved de to bindinger langs z -aksen forlænges.	2 CuFeS₂ + H₂SO₄ + 4 O₂ → 2 CuSO₄(aq) + 3 S + Fe₂O₃ + H₂O Kobberet oprenses ved elektrolyse
Lav spin da CFSE vokser ned gennem perioderne.	$2 \operatorname{Cu} + 2 \operatorname{H}^{+} \longrightarrow 2 \operatorname{Cu}^{+} + \operatorname{H}_{2}$ $\operatorname{Cu}^{+} + 2 \operatorname{Cl}^{-} \Longrightarrow [\operatorname{CuCl}_{2}]^{-}$ $[\operatorname{CuCl}_{2}]^{-} \longrightarrow \operatorname{CuCl} + \operatorname{Cl}^{-}$

Teori	Fremstilling
Hvad forstås ved lanthanoid contraction?	Hvordan fremstilles sølv industrielt?
Kapitel 21	Kapitel 21
Reaktion	Struktur
Der tilføjes sølvioner til en opløsning der enten indeholder iodid, bromid eller chlorid ioner. Hvordan kan man de eneklte ioner?	Giv reaktionsligningen for forbrænding af zink i chlorgas
Kapitel 21	Kapitel 22
Fremstilling	Egenskab
Giv reaktionsligningerne for industriel fremstilling af zink	Forklar hvorfor zink kan beskytte fjern mod korrosion
Kapitel 22	Kapitel 22
Egenskab	Fremstilling
Hvordan kan Zn(OH) ₂ bringes i opløsning?	Opskriv to metoder til fremstilling af zinkoxid
Kapitel 22	Kapitel 22

$2 \operatorname{AgS} + 8 \operatorname{CN}^{-} + \operatorname{O}_{2} + 2 \operatorname{H}_{2} \operatorname{O} \longrightarrow 4 \left[\operatorname{Ag(CN)}_{2} \right]^{-} + 2 \operatorname{S} + 4 \operatorname{OH}^{-}$ $2 \left[\operatorname{Ag(CN)}_{2} \right]^{-} + \operatorname{Zn} \longrightarrow 2 \operatorname{Ag} + \left[\operatorname{Zn(CN)}_{4} \right]^{2^{-}}$	Elektronerne i f orbitaler skærmer i meget ringe grad for de ydre elektroner som så oplever en stærkere tiltrækning fra kernen hvilket fører til en lavere ionradius. Derfor har overgangsmetallerne i 6. periode næsten samme radius og dermed ladningstæthed som dem i 5. periode.
$Zn + Cl_2(g) \longrightarrow ZnCl_2(g)$	Sølvchlorid er opløseligt i fortyndet ammoniak mens sølvbromid er opløseligt i koncentreret ammoniak. Sølviodid er ikke opløseligt i ammoniak. $AgCl + 2 NH_3 \longrightarrow [Ag(NH)_2]^+ + Cl^- \\ AgBr + 2 NH_3[konc] \longrightarrow [Ag(NH)_2]^+ + Br^-$
Reduktionspotentialet for zink er lavere end det er for jern. Derfor korroderer zink først hvilket efterlader jern intakt.	$2 \operatorname{ZnS} + 3 \operatorname{O}_{2} \xrightarrow{\Delta} 2 \operatorname{ZnO} + 2 \operatorname{SO}_{2}$ $\operatorname{ZnO} + \operatorname{C} \xrightarrow{\Delta} \operatorname{Zn} + \operatorname{CO}$
$2 \operatorname{Zn} + \operatorname{O}_2 \longrightarrow 2 \operatorname{ZnO}$ $\operatorname{ZnCO}_3 \stackrel{\Delta}{\longrightarrow} \operatorname{ZnO} + \operatorname{CO}_2$	Ved tilsætning af base i form af hydroxidioner eller ammoniak. $Zn(OH)_2 + 2OH^- \longrightarrow [Zn(OH)_4]^{2-}$ $Zn(OH)_2 + 4NH_3 \longrightarrow [Zn(NH_3)_4]^{2+} + 2OH^-$

Ι

Anvendelse	Fremstilling
Opskriv halvcellereaktionerne i et NiCad batteri	Angiv med reaktionsligning hvordan kviksølv fremstilles industrielt
Kapitel 22	Kapitel 22
Fremstilling	Reaktion
Hvordan kan man fremstille kviksølv(II)chlorid og kviksølv(I)chlorid?	Hvilken reaktion finder sted når kviksølvoxid opvarmes kraftigt?
Kapitel 22	Kapitel 22
Anvendelse	Egenskab
Giv halvcellereaktionerne der finder sted i et kviksølv batteri	Kobber(I), guld(I) og Hg ₂ ²⁺ ionen har tendens til at disproportionere. Giv reaktionsligningerne
Kapitel 22	Kapitel 22
Egenskab	Teori
Opskriv de tungtopløselige hydroxider af <i>d</i> metallerne samt hvorvidt de er amfotere eller ej	Hvad forstås ved en organometallisk forbindelse?
Kapitel 22	Kapitel 23

$HgS + O_2 \xrightarrow{\Delta} Hg + SO_2$	$Cd + 2 OH^{-} \longrightarrow Cd(OH)_{2} + 2 e^{-}$ $2 NiO(OH) + 2 H_{2}O + 2 e^{-} \longrightarrow 2 Ni(OH)_{2} + 2 OH^{-}$
$2 \text{ HgO} \xrightarrow{\Delta} 2 \text{ Hg} + \text{O}_2$	$\begin{aligned} & \operatorname{Hg} + \operatorname{Cl}_2(g) \longrightarrow \operatorname{HgCl}_2 \\ & \operatorname{2} \operatorname{HgCl}_2 + \operatorname{SnCl}_2 \longrightarrow \operatorname{SnCl}_4 + \operatorname{Hg}_2\operatorname{Cl}_2 \\ & \operatorname{Tilsættes} \text{ overskud af tin(II)chlorid fås kviksølv} \\ & \operatorname{Hg}_2\operatorname{Cl}_2 + \operatorname{SnCl}_2 \longrightarrow \operatorname{SmCl}_4 + \operatorname{2}\operatorname{Hg} \end{aligned}$
$2 \operatorname{Cu}^+ \longrightarrow \operatorname{Cu}_2^+ + \operatorname{Cu}$ $3 \operatorname{Au}^+ \longrightarrow 2 \operatorname{Au} + \operatorname{Au}^{3+}$ $\operatorname{Hg}_2^{2+} \Longrightarrow \operatorname{Hg} + \operatorname{Hg}^{2+}$ Da ovenstående er en ligevægt kan den forskydes mod højre ved at fælde kviksølv(II) ionerne med sulfid.	$Zn + 2 OH^{-} \longrightarrow Zn(OH)_{2} + 2 e^{-}$ $HgO + H_{2}O + 2 e^{-} \longrightarrow Hg + 2 OH^{-}$
En forbindelse hvor der er mindst en covalent binding mellem et metal atom og et carbon atom.	Ikke amfotere: Mn(OH) ₂ , MnO(OH), Fe(OH) ₂ , FeO(OH), Ni(OH) ₂ , NiO(OH), Cd(OH) ₂ Amfotere: Co(OH) ₂ , Cu(OH) ₂ , Zn(OH) ₂ Der dannes tetraedriske komplekser når ovenstående reagerer med stærk base.

Teori	Teori
Hvad betyder det hvis en metal-carbon binding er di-, tetra- eller hexahapto?	Hvad er forskellen mellem μ og η mht. hapticitet?
Kapitel 23	Kapitel 23
Teori	
Opskriv de fire forskellige typer elementarreaktioner	
Kapitel 23	

μ angiver antallet af carbonatomer der binder covalent til et metalatom. η angiver Antallet af metal atomer et carbon atom binder til.	At metallet binder til to, fire eller seks carbonatomer på én gang.
	 Oxidativ addition M går typisk 2 op i oxidationstrin, antal ligander vokser med 2 Reduktiv elimination M går typisk 2 ned i oxidationstrin, antal ligander aftager med 2 Insertion Ligand substitution