14,15,18 David Yah Assignment 10 Tuesday, March 8, 2016 2:08 PM 10.7-14 ۴ 9 V(T) Step E(T) L(a) L(b) L(c) L(d) L(e) L(f) L(g) Ø 0 {a} {a} 0 ∞ ∞ ∞ ∞ ∞ ∞ Ø ∞ 1 {a} {b, e} ∞ ∞ ∞ 2 {a, b} {{a, b}} {c, f, e} ∞ ∞ 3 {a, b, c} {{a, b},{b, c}} {d, g, f, e} 0 8 10 3 2 4 3 4 8 10 {a, b, c, d} {{a, b},{b, c}, {c, d}} {e, f, g, z} 0

{f ,g ,z}

0

0

 $\{g, z\}$

{z}

L(z)

 ∞

 ∞

 ∞

00

23

23

23

7

10

6

6

5

5

3

3

3

2

1

4

4

10.7-15 a 3 1 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2										
Step	V(T)	E(T)	F	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)
0	{a}	Ø	{a}	0	∞	∞ ∞	∞	∞	∞	∞
1	{a}	Ø	{b, e, g}	0	3	∞	∞	3	∞	4
2	{a, b}	{{a, b}}	{c, e, g }	0	3	10	∞	3	∞	4
3	{a, b, e}	{{a, b}, {a, e}}	{c, d, f, g}	0	3	10	14	3	7	4
4	{a, b, e, g}	{{a, b}, {a, e},{a, g}}	{c, d, f}	0	3	10	14	3	5	4
5	{a, b, e, f }	{{a, b}, {a, e},{a, g},{g, f}}	{c, d}	0	3	10	14	3	5	6
6	{a, b, e, f,c}	{{a, b}, {a, e},{a, g},{g, f}, {b, c}}	{d}	0	3	10	14	3	5	4
7	{a, b, e, f ,c, d}	{{a, b}, {a, e},{a, g},{g, f}, {b, c},{e, d}	}							

5

6

7

8

{a, b, c, d, e}

{a, b, c, d, e, f}

{a, b, c, d, e, f, g}

{{a, b},{b, c}, {c, d}, {a, e}}

{a, b, c, d, e, f, g, z} {{a, b},{b, c}, {c, d}, {a, e}, {e, f}, {f, g}, {g, z}}

{{a, b},{b, c}, {c, d}, {a, e}, {e, f}}

{{a, b},{b, c}, {c, d}, {a, e}, {e, f}, {f, g}}

(0.7-18 Given any two distinct vertices of a tree, there exists a unique path from one to another.

a) This is impossible since if there was more than one path, tree T would not be a tree since there is a circuit

Suppose not. Suppose there is a tree T, u, and v where each is a distinct vertices and P, and P2 are distinct paths that join u and v. Let P, he a path denoted with the following vertices P, = v, v, v2, ... vm = v. Let there also be a path P2 be denoted u = Vo, u, u, u, ... um which is also equal to v. Since T is a true with no pavallel paths P, must diverge from P2. Let i be the intoger such that v; \$\pmu\$ ii. Then v:-1 = ui-1.

Let there also be an integer j and k such that j and k are the least integer greater than i so that v; = uv. Then v:-1 vi v:+1 ... vi (= Uk) uk-1 ... ui ui-1 (= Vi-1)

This is a circuit. Because such a circuit exists, it contraducts the fact that T is a tree

Therefore is a tree has two distinct vertices there is only one unique jointy path.