Skriftlig eksamen i Matematik B. Vinteren 2013 - 2014

Onsdag den 8. januar 2014

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog ikke lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

1. årsprøve 2014 V-1B ex

Skriftlig eksamen i Matematik B

Onsdag den 8. januar 2014

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert talpar $(u, v) \in \mathbf{R}^2$ betragter vi den symmetriske 3×3 matrix

$$A(u,v) = \left(\begin{array}{ccc} u^2 & v & 0 \\ v & 1 & 1 \\ 0 & 1 & 1 \end{array} \right).$$

- (1) Udregn determinanten for matricen A(u, v), og bestem de talpar $(u, v) \in \mathbb{R}^2$, så matricen A(u, v) er regulær.
- (2) Udregn de ledende hovedunderdeterminanter for matricen A(u, v), og vis, at matricen A(u, v) hverken er positiv definit eller negativ definit for noget talpar $(u, v) \in \mathbf{R}^2$.
- (3) Bestem 3×3 matricen

$$B = A(1,1)^2 = (A(1,1)A(1,1)).$$

- (4) Vis, at matricen B er positiv definit.
- (5) Bestem nulrummet

$$N(B) = \{x = (x_1, x_2, x_3) \in \mathbf{R}^3 \mid Bx = \underline{0}\}\$$

for matricen B.

Opgave 2. Vi betragter funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = \sqrt{1+x^2} + y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Vis, at funktionen f har netop et stationært punkt, og bestem dette punkt.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Vis dernæst, at funktionen f er strengt konveks overalt på definitionsmængden \mathbb{R}^2 .

(4) Bestem værdimængden R(f) for f.

For ethvert $v \in \mathbf{R}$ betragter vi dobbeltintegralet

$$I(v) = \int_0^1 \left(\int_0^v x f(x, y) \, dx \right) dy.$$

(5) Udregn I(v).

Opgave 3. Vi betragter differentialligningen

(*)
$$\frac{dx}{dt} + \left(\frac{t^3}{\sqrt{1+t^4}}\right)x = \cos(t)e^{-\frac{1}{2}\sqrt{1+t^4}}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(0) = e^{-\frac{1}{2}}$ er opfyldt.
- (3) Udregn differentialkvotienten

$$\frac{dx}{dt}(0)$$

for en vilkårlig maksimal løsning x = x(t) til differentialligningen (*).

Opgave 4. I vektorrummet \mathbb{R}^4 , som er forsynet med det sædvanlige indre produkt (prikproduktet), betragter vi hyperplanerne H_1 og H_2 , som har ligningerne

$$H_1: x_1 + 7x_2 - 3x_3 + 5x_4 = 0$$

og

$$H_2: 2x_1 + 14x_2 - 5x_3 - x_4 = 0.$$

- (1) Godtgør, at hyperplanerne H_1 og H_2 begge er underrum af vektorrummet \mathbf{R}^4 .
- (2) Bestem fællesmængden $U=H_1\cap H_2$ af hyperplanerne H_1 og H_2 , og godtgør, at mængden U er et underrum af vektorrummet \mathbf{R}^4 .