ST495/590 - Assignment 2 - Due 1/27

- (1) Assume the Bayesian model with likelihood $Y|\theta \sim \text{Binomial}(n,\theta)$ and prior $\theta \sim \text{Beta}(a,b)$. Write a function that uses Monte Carlo sampling to estimate the posterior mean and standard deviation of θ given we observe Y=y. The function should take inputs y, n, a, and b. Given these inputs, the function should generate 1,000,000 samples of (θ,Y) (by first drawing θ from a beta distribution and then $Y|\theta$ from a binomial distribution), extract the samples with Y=y, and return the mean and standard deviation of θ for these samples. Include code for this function in your write-up.
- (2) Use the code from (1) with n = 10 and a = b = 1 to compute the posterior mean and standard deviation for θ for all y = 0, 1, ..., n and plot the posterior mean and standard deviation as a function of y.
- (3) Use the code from (1) with n=10 and a=b=10 to compute the posterior mean and standard deviation for θ for all y=0,1,...,n and plot the posterior mean and standard deviation as a function of y.
- (4) Comment on the differences between the plots with a = b = 1 versus a = b = 10.

You should turn in your responses to these questions in 1-2 pages (i.e., one piece of paper with text on both sides). Be sure all plots are labeled and code is commented!