[Manuale Utente] Realizzazione di un ambiente di fault injection per applicazione ridondata

Carlo Migliaccio¹, Federico Pretini¹, Alessandro Scavone¹, and Mattia Viglino¹

¹Laurea Magistrale in Ingegneria Informatica, Politecnico di Torino

Gennaio 2025

Contents

0.1	Come navigare nel menu	1
0.2	Scelte del menù	2
0.3	Diagramma della struttura del menu	4
0.4	Esempio di utilizzo	5

Introduzione

Questo manuale fornisce istruzioni rapide per utilizzare il programma scritto in Rust.

Un menu interattivo consente di personalizzare l'esecuzione della pipeline di fault injection, scegliendo i dati di input, l'algoritmo di esecuzione e il tipo di report generato.

Requisiti

- Sistema operativo: macOS, Linux o Windows.
- Compilatore Rust: rustc installato. Puoi installarlo da https://rustup.rs.

Come Aprire ed Eseguire il Programma

- 1. Accedi alla stessa directory che contiene il file Cargo.toml del progetto.
- 2. Esegui il programma con il comando cargo run.

Guida al Menù

0.1 Come navigare nel menu

Dopo l'avvio, il programma presenterà un menu interattivo.

La scelta corrente è evidenziata dall'indicatore visivo >.

Per navigare tra le opzioni del menu, utilizza i tasti freccia Su e Giù.

Premere il tasto **Invio** per confermere la selezione.

Una selezione predefinita è racchiusa tra parentesi quadre [default option], per cofermarla premere Invio.

0.2 Scelte del menù

Il menù del programma ti permetterà di eseguire la pipeline di fault injection in maniera personalizzata. Di seguito vengono descritti gli step passo passo.

Passo 1: Inserisci il nome del file per il report.

All'avvio, il programma richiede di specificare il nome del file per il report, il documento pdf generato al termine dell'analisi con i risultati più importanti. Il nome del file può essere digitato da tastiera, non deve contenere l'estensione e consente solamente numeri, lettere, - e _. L'opzione [report] rappresenta il nome di default.

Esempio passo 1:

Realizzazione di un ambiente di Fault Injection per applicazione ridondata

Inserisci il nome del file per il report SENZA ESTENSIONE [report]:

Passo 2: Scegli la sorgente dei dati.

La sorgente dei permette di specificare il vettore sui cui verrano applicati gli algoritmi di ordinamento e le due matrici che verrano moltiplicate tra loro.

■ Data file

Il data file è un file di input personalizzabile con precaricati un vettore randomico, la matrice di Wilson e la sua inversa. Il file è disponibile al percorso src/data/input.txt.

• Dataset

Il dataset è una cartella sorgente composta da due file.

Il primo file contiene vettori casuali a dimensioni variabili.

Il secondo file contiene 64 matrici di rotazione 3x3.

Se viene eseguita un'analisi con algortimo matrix multiplication (prossimo passo), una di queste matrici verrà presa randomicamente e scalata con una matrice di scalamneto uniforme randomica.

Esempio passo 2:

Seleziona la sorgente dei dati:

> Data file

Dataset

Passo 3: Seleziona il tipo di analisi.

In entrambi i casi (Data file o Dataset), è possibile scegliere tra:

- Singolo algoritmo: Esegue la pipeline di fault injection su un singolo algoritmo.
- Tutti gli algoritmi: Esegue la pipeline di fault injection sequenzialmente per tutti gli algoritmi disponbili.

Esempio passo 3:

Seleziona il tipo di analisi:

> Esegui un singolo algoritmo

Esegui un'analisi comparativa tra tutti gli algoritmi

Passo 4: Configura l'algoritmo (se scelto Singolo algoritmo).

Se è stata selezionata l'opzione Singolo algoritmo, sarà necessario scegliere un algoritmo tra:

- Selection Sort: algortimo di ordinamento per un vettore.
- Bubble Sort: algortimo di ordinamento per un vettore.
- Matrix multiplucation: moltiplicazione tra matrici quadrate.

Esempio passo 4:

Scegli un algoritmo da utilizzare:

> Selection Sort

Bubble Sort

Matrix Multiplication

Passo 5: Configura la modalità.

Se Singolo:

Dopo aver scelto l'algoritmo, si accede alla configurazione della modalità. Sono disponibili le seguenti opzioni:

• Cardinalità a piacere della fault entry

Esegue l'analisi per l'algoritmo precedentemente selezionato una sola volta con le entry selezionate da tastiera. L'opzione [2000] rappresenta la cardinalità di default.

• Cardinalità 1000, 2000, 3000

Esegue l'analisi per l'algoritmo precedentemente selezionato tre volte per le cardinalità della fault list 1000, 2000 e 3000.

Esempio passo 5.1:

Scegli una modalità di single analysis:

> Digita una cardinalità a piacere per la fault list entry

Tre esecuzioni con cardinalità della fault list entry che varia 11000, 2000, 3000]

Se Tutti:

Nel caso in cui sia stata selezionata l'opzione *Tutti gli algoritmi*, la modalià è predefinita ma si può modificare:

• Cardinalità a piacere della fault entry

Esegue tutti gli algoritmi sequenzialmente con le entry selezionate da tastiera.

L'opzione [2000] rappresenta la cardinalità di default.

Esempio passo 5.2:

Inserisci il numero di fault entries desiderate [2000]:

Passo 6: Avvio dell'analisi.

Confermando l'ultima scelta la pipeline di fault injection verrà eseguita con i parametri selezionati.

Una volta completata l'analisi, viene mostrato il messaggio "operazione completata" e verrà salvato il report nella cartella results.

In base alla configurazione scelta, il report sarà di diverso tipo:

- Se è stata selezionata l'opzione Singolo algoritmo e Cardinalità a piacere della fault entry, verrà generato un report con nome [nomefile].pdf.
- Se è stata selezionata l'opzione Singolo algoritmo e Cardinalità 1000, 2000, 3000, verrà generato un report comparativo con nome [nomefile]_diffcard.pdf.
- Se è stata selezionata l'opzione *Tutti gli algoritmi*, verrà generato un report comparativo con nome [nomefile]_all.pdf.

0.3 Diagramma della struttura del menu

Di seguito viene riportato un diagramma esplicativo della struttura del menu.

0.4 Esempio di utilizzo

Di seguito viene riportato un esempio completo di esecuzione con sorgente da data file per tutti gli algortimi con 2000 fault entries.

Scelte del menù:

Realizzazione di un ambiente di Fault Injection per applicazione ridondata

Inserisci il nome del file per il report SENZA ESTENSIONE: report Seleziona la sorgente dei dati: Data file

Seleziona il tipo di analisi: Esegui un'analisi comparativa tra tutti gli algoritmi

Inserisci il numero di fault entries desiderate: 2000

Esecuzione Selection Sort Esecuzione Bubble Sort

Esecuzione Matrix Multiplication

Operazione completata. Report salvato in: results/report_all.pdf

Report PDF di output: