ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2023-2024

—-оОо-----

Môn thi: Toán rời rạc

Mã môn học: **MAT3500** Số tín chỉ: **4** Đề số: **2** Lớp học phần: **MAT3500 1, MAT3500 2** Ngành học: **KHDL**

Thời gian làm bài: 120 phút (không kể thời gian phát đề)

Chú ý: Đề gồm 5 câu/2 trang. Không sử dụng tài liệu. Điểm bài kiểm tra này chiếm 70% tổng số điểm của môn học. Cán bộ coi thi không giải thích gì thêm.

Câu 1. (1 điểm) Một tập \mathcal{C} các toán tử lôgic được gọi là *đầy đủ* nếu mỗi mệnh đề phức hợp tương đương với một mệnh đề phức hợp chỉ sử dụng các toán tử trong \mathcal{C} . Ví dụ, $\mathcal{C} = \{\neg, \land, \lor\}$ là một tập các toán tử lôgic đầy đủ.

Với các mệnh đề lôgic p và q, toán tử lôgic NAND được định nghĩa như sau: p NAND q sai khi cả p và q đều đúng, và đúng trong tất cả các trường hợp còn lại. Để thấy rằng tập $\mathcal{D} = \{\text{NAND}\}$ là một tập các toán tử lôgic đầy đủ, hãy chứng minh các tương đương lôgic sau.

(a) $\neg p \equiv p \text{ NAND } p$

- (c) $p \wedge q \equiv (p \text{ NAND } q) \text{ NAND } (p \text{ NAND } q)$
- (b) $p \wedge q \equiv \neg (p \text{ NAND } q)$
- (d) $p \lor q \equiv (p \text{ NAND } p) \text{ NAND } (q \text{ NAND } q)$

Câu 2. (1 điểm) Cho các tập hợp A, B, và C. Chứng minh hoặc tìm phản ví dụ cho đẳng thức

$$A \setminus (B \setminus C) = (A \setminus B) \setminus C \tag{1}$$

Câu 3. (2 điểm) Cho n là số nguyên không âm. Để chứng minh $n^7 - n$ chia hết cho 21, hãy chứng minh các phát biểu sau với moi số nguyên không âm n.

- (a) $n^7 n$ chia hết cho 3.
- (b) $n^7 n$ chia hết cho 7.

Câu 4. (3 điểm) Phương trình

$$x_1 + x_2 + x_3 + x_4 = 25 (2)$$

có bao nhiều nghiệm nguyên không âm thỏa mãn điều kiện $x_i \geq 0$ với mọi $i \in \{1, 2, 3, 4\}$ và

- (a) $x_1 \ge 8$, $x_2 \ge 5$, và $x_3 \ge 2$.
- (b) $x_1 \ge 10 \text{ và } x_3 \le 7.$
- (c) $x_1 \le 6 \text{ và } x_2 \le 12$.

Câu 5. (3 điểm)

- (a) Cho G là một đơn đồ thị phẳng có k thành phần liên thông. Giả sử G có n đỉnh, m cạnh, và một biểu diễn phẳng của G chia mặt phẳng ra thành r miền. Chứng minh rằng n-m+r=k+1.
- (b) Sắc số của một đơn đồ thị vô hướng G, ký hiệu $\chi(G)$, là số màu nhỏ nhất có thể dùng để tô màu các đỉnh của G sao cho hai đỉnh kề nhau luôn có màu khác nhau. Chứng minh rằng với mọi $n \geq 3$

$$\chi(C_n) = \begin{cases} 2 & \text{n\'eu } n \text{ ch\'an} \\ 3 & \text{n\'eu } n \text{ l\'e.} \end{cases}$$
 (3)

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2023-2024 Môn thi: Toán rời rạc

Mã môn học: **MAT3500** Số tín chỉ: **4** Đề số: **2** Lớp học phần: **MAT3500 1, MAT3500 2** Ngành học: **KHDL**

Lời giải 1. [1 điểm]

(a) Dùng bảng chân trị. Hai mệnh đề tương đương lôgic khi các giá trị của chúng ở các	0.25
hàng tương ứng trong bảng chân trị là giống nhau.	
lang tuong ung trong camp chair up a grong maan	
$p \mid \neg p \mid p \text{ NAND } p$	
TFF	
(b) Dùng bảng chân trị. Hai mệnh đề tương đương lôgic khi các giá trị của chúng ở các	0.25
hàng tương ứng trong bảng chân trị là giống nhau.	
$p \mid q \mid p \land q \mid \neg(p \land q) \mid p NAND q$	
(c)	0.25
$p \wedge q \equiv \neg (p NAND q) \qquad \qquad Câu (b)$	
$\equiv (p NAND q) NAND (p NAND q) \qquad \qquad Câu (a)$	
$= (p \cap (a \cup b)) \cap (a \cup b)$	
(d)	0.25
(u)	0.23
$p \lor q \equiv \neg(\neg p \land \neg q)$ Luật De Morgan	
$\equiv \neg p NAND \neg q \qquad \qquad Câu (b)$	
$\equiv (p NAND p) NAND (q NAND q) \qquad \qquad Câu (a)$	

Lời giải 2. [1 điểm]

Ta chỉ ra một phản ví dụ cho đẳng thức
$$A \setminus (B \setminus C) = (A \setminus B) \setminus C$$
. Chọn $A = \{1,2,3\}$, $B = \{1,2\}$, và $C = \{1\}$. Ta có
$$A \setminus (B \setminus C) = \{1,2,3\} \setminus \{1,2\} \setminus \{1\})$$
$$= \{1,2,3\} \setminus \{2\}$$
$$= \{1,3\}$$
và
$$(A \setminus B) \setminus C) = (\{1,2,3\} \setminus \{1,2\}) \setminus \{1\}$$
$$= \{3\} \setminus \{1\}$$
$$= \{3\}.$$
Do đó, $A \setminus (B \setminus C) \neq (A \setminus B) \setminus C$.

Lời giải 3. [2 điểm]

(a) Nếu n chia hết cho 3 thì hiển nhiên $n^7 - n$ cũng thế. Ta xét trường hợp n không chia	1
hết cho 3. Theo Định lý Fermat nhỏ, $n^2 \equiv 1 \pmod{3}$. Do đó, $n^7 = (n^2)^3 n \equiv n \pmod{3}$. Suy ra $n^7 - n$ chia hết cho 3.	
(b) Theo Định lý Fermat nhỏ, $n^7 \equiv n \pmod{7}$. Suy ra $n^7 - n$ chia hết cho 7.	1

Lời giải 4. Chú ý rằng mỗi nghiệm của (2) là một bộ các số nguyên không âm (x_1, x_2, x_3, x_4) . [3 điểm]

(a) Đặt $x_1' = x_1 - 8 \ge 0$, $x_2' = x_2 - 5 \ge 0$, và $x_3' = x_3 - 2 \ge 0$. Phương trình (2) tương 1 đương với $x_1' + x_2' + x_3' + x_4 = 25 - 8 - 5 - 2 = 10$ (4) trong đó x'_1 , x'_2 , x'_3 , và x_4 là các số nguyên không âm. Do đó, số nghiệm của (2) thỏa mãn $x_1 \ge 8$, $x_2 \ge 5$, $x_3 \ge 2$, và $x_4 \ge 0$ bằng với số nghiệm của (4) thỏa mãn $x_1' \ge 0$, $x_2' \ge 0$, $x_3' \ge 0$, và $x_4 \ge 0$, và bằng $C_{10+4-1}^{4-1} = C_{13}^3 = 286$. (b) Gọi U là tập hợp các nghiệm của (2) thỏa mãn $x_1 \ge 10$, $x_2 \ge 0$, $x_3 \ge 0$, và $x_4 \ge 0$. Gọi 1 A là tập hợp các nghiệm của (2) thỏa mãn $x_1 \ge 10$, $x_2 \ge 0$, $0 \le x_3 \le 7$, và $x_4 \ge 0$. Ta cần tính |A|. Chú ý rằng $\overline{A} = U \setminus A$ là tập hợp các nghiệm của (2) thỏa mãn $x_1 \ge 10$, $x_2 \ge 0$, $x_3 \ge 8$, và $x_4 \ge 0$. Thêm vào đó, $|A| = |U| - |\overline{A}|$. Đặt $x'_1 = x_1 - 10 \ge 0$. Tương tự như câu (a), |U| chính là số nghiệm của phương trình $x_1' + x_2 + x_3 + x_4 = 25 - 10 = 15$ thỏa mãn $x_1' \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$, và $x_4 \ge 0$. Do đó, $|U| = C_{15+4-1}^{4-1} = C_{18}^3 = 816$. Đặt $x_3'=x_3-8\geq 0$. Tương tự như câu (a), $|\overline{A}|$ chính là số nghiệm của phương trình $x_1' + x_2 + x_3' + x_4 = 25 - 10 - 8 = 7$ thỏa mãn $x_1' \ge 0$, $x_2 \ge 0$, $x_3' \ge 0$, và $x_4 \ge 0$. Do đó, $|A| = C_{7+4-1}^{4-1} = C_{10}^3 = 120$.

Do đó, $|A| = |U| - |\overline{A}| = 816 - 120 = 696$.

(c)

1

Cách 1: Gọi U là tập hợp các nghiệm của (2) thỏa mãn $x_i \ge 0$ với mọi $i \in \{1,2,3,4\}$. Gọi A là tập hợp các nghiệm của (2) thỏa mãn $0 \le x_1 \le 6$ và $x_i \ge 0$ với mọi $i \in \{2,3,4\}$. Gọi B là tập hợp các nghiệm của (2) thỏa mãn $0 \le x_2 \le 12$ và $x_i \ge 0$ với mọi $i \in \{1,3,4\}$. Ta cần tính $|A \cap B|$.

Ta có $\overline{A} = U \setminus A$, $\overline{B} = U \setminus B$, và $\overline{A \cap B} = U \setminus (A \cap B)$. Theo luật De Morgan, ta cũng có $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Theo quy tắc bù trừ, $|\overline{A} \cup \overline{B}| = |\overline{A}| + |\overline{B}| - |\overline{A} \cap \overline{B}|$. Do đó, ta cũng có $|A \cap B| = |U| - |\overline{A} \cap \overline{B}| = |U| - |\overline{A} \cup \overline{B}| = |U| - |\overline{A}| - |\overline{B}| + |\overline{A} \cap \overline{B}|$.

Ta có
$$|U| = C_{25+4-1}^{4-1} = C_{28}^3 = 3276.$$

Chú ý rằng \overline{A} là tập hợp các nghiệm của (2) thỏa mãn $x_1 \geq 7$ và $x_i \geq 0$ với mọi $i \in \{2,3,4\}$. Đặt $x_1' = x_1 - 7 \geq 0$. Tương tự câu (a), $|\overline{A}|$ bằng số nghiệm của phương trình $x_1' + x_2 + x_3 + x_4 = 25 - 7 = 18$ thỏa mãn $x_1' \geq 0$ và $x_i \geq 0$ với mọi $i \in \{2,3,4\}$. Do đó, $|\overline{A}| = C_{18+4-1}^{4-1} = C_{21}^3 = 1330$.

Chú ý rằng \overline{B} là tập hợp các nghiệm của (2) thỏa mãn $x_2 \geq 13$ và $x_i \geq 0$ với mọi $i \in \{1,3,4\}$. Đặt $x_2' = x_2 - 13 \geq 0$. Tương tự câu (a), $|\overline{B}|$ bằng số nghiệm của phương trình $x_1 + x_2' + x_3 + x_4 = 25 - 13 = 12$ thỏa mãn $x_2' \geq 0$ và $x_i \geq 0$ với mọi $i \in \{1,3,4\}$. Do đó, $|\overline{B}| = C_{12+4-1}^{4-1} = C_{15}^{3} = 455$.

Chú ý rằng $\overline{A} \cap \overline{B}$ là tập hợp các nghiệm của (2) thỏa mãn $x_1 \geq 7$, $x_2 \geq 13$ và $x_i \geq 0$ với mọi $i \in \{3,4\}$. Đặt $x_1' = x_1 - 7 \geq 0$ và $x_2' = x_2 - 13 \geq 0$. Tương tự câu (a), $|\overline{A} \cap \overline{B}|$ bằng số nghiệm của phương trình $x_1' + x_2' + x_3 + x_4 = 25 - 13 - 7 = 5$ thỏa mãn $x_1' \geq 0$, $x_2' \geq 0$, và $x_i \geq 0$ với mọi $i \in \{3,4\}$. Do đó, $|\overline{A} \cap \overline{B}| = C_{5+4-1}^{4-1} = 56$.

Do đó,
$$|A \cap B| = |U| - |\overline{A}| - |\overline{B}| + |\overline{A} \cap \overline{B}| = 3276 - 1330 - 455 + 56 = 1547.$$

Cách 2: Số nghiệm của (2) thỏa mãn $0 \le x_1 \le 6$, $0 \le x_2 \le 12$, $x_3 \ge 0$, và $x_4 \ge 0$ là hệ số của x^{25} trong hàm sinh

$$G(x) = (x^{0} + x^{1} + \dots + x^{6})(x^{0} + x^{1} + \dots + x^{12})(x^{0} + x^{1} + \dots + x^{25})^{2}$$

= $(1 - x^{7} - x^{13} + x^{20})(1 - 2x^{26} + x^{52})(1 - x)^{-4}$

Chú ý rằng hệ số của x^r trong khai triển của $(1-x)^{-4}$ là $(-1)^r C_{-4}^r = (-1)^r ((-1)^r C_{4+r-1}^r) = C_{r+3}^r$. Để có x^{25} trong khai triển của G(x) ta có thể

- (i) Nhân x^0 trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^{25} trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(i)}$ của x^{25} ở đây là hệ số của x^{25} trong khai triển của $(1-x)^{-4}$.
- (ii) Nhân x^7 trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^{18} trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(ii)}$ của x^{25} ở đây là hệ số của x^{18} trong khai triển của $(1-x)^{-4}$.
- (iii) Nhân x^{13} trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^{12} trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(iii)}$ của x^{25} ở đây là hệ số của x^{12} trong khai triển của $(1-x)^{-4}$.
- (iv) Nhân x^{20} trong $1-x^7-x^{13}+x^{20}$ với x^0 trong $1-2x^{26}+x^{52}$ và với x^5 trong khai triển của $(1-x)^{-4}$. Hệ số $c_{(iv)}$ của x^{25} ở đây là hệ số của x^5 trong khai triển của $(1-x)^{-4}$.

Hệ số của x^{25} trong khai triển của G(x) lấ $c_{(i)} - c_{(ii)} - c_{(iii)} + c_{(iv)} = C_{28}^{25} - C_{21}^{18} - C_{15}^{12} + C_8^5 = 1547$.

Lời giải 5. [3 điểm]

(a) Gọi G_i , $1 \le i \le k$, là các thành phần liên thông của G. Giả sử G_i có n_i đỉnh, m_i cạnh, và một biểu diễn phẳng của G_i chia mặt phẳng thành r_i miền, với $i \in \{1,2,\ldots,k\}$. Theo công thức Euler, với $i \in \{1,2,\ldots,k\}$, $n_i-m_i+r_i=2$. Thêm vào đó, ta cũng có $n=\sum_{i=1}^k n_i$, $m=\sum_{i=1}^k m_i$, và $r=\sum_{i=1}^k r_i-k+1$ (do các biểu diễn phẳng của G_i ($1 \le i \le k$) có chung miền vô hạn). Do đó,

1.5

$$n - m + r = \sum_{i=1}^{k} n_i - \sum_{i=1}^{k} m_i + (\sum_{i=1}^{k} r_i - k + 1)$$

$$= \sum_{i=1}^{k} (n_i - m_i + r_i) - k + 1$$

$$= 2k - k + 1$$

$$= k + 1.$$

(b) Giả sử $V(C_n) = \{v_1, \ldots, v_n\}$ và $E(C_n) = \{v_1v_2, \ldots, v_{n-1}v_n, v_nv_1\}$.

1.5

Ta chứng minh nếu n chẵn thì $\chi(C_n)=2$. Thật vậy, $f:V(C_n)\to\{0,1\}$ định nghĩa bởi $f(v_i)=0$ nếu i chẵn và $f(v_i)=1$ nếu i lẻ là một cách tô màu đồ thị C_n bằng hai màu 0 và 1.

Thêm vào đó, do C_n có ít nhất một cạnh, ta không thể tô màu tất cả các đỉnh của C_n chỉ bằng một màu.

Do đó, $\chi(C_n) = 2$.

Ta chứng minh nếu n lẻ thì $\chi(C_n)=3$. Thật vậy, $g:V(C_n)\to\{0,1,2\}$ định nghĩa bởi $g(v_i)=0$ nếu i chẵn, $g(v_i)=1$ nếu i< n lẻ, và $g(v_n)=2$ là một cách tô màu đồ thị C_n bằng ba màu 0,1, và 2.

Suy ra $\chi(C_n) = 3$.

Hà Nội, ngày 20 tháng 05 năm 2024 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

Hoàng Anh Đức