Section 7.1 The Path Integral

DEFINITION: Path Integrals The path integral, or the integral of f(x, y, z) along the path \mathbf{c} , is defined when \mathbf{c} : $I = [a, b] \to \mathbb{R}^3$ is of class C^1 and when the composite function $t \mapsto f(x(t), y(t), z(t))$ is continuous on I. We define this integral by the equation

$$\int_{\mathbf{c}} f \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \|\mathbf{c}'(t)\| \, dt.$$

Sometimes $\int_{c} f \, ds$ is denoted

$$\int_{\mathbf{c}} f(x, y, z) \, ds$$

or

$$\int_a^b f(\mathbf{c}(t)) \|\mathbf{c}'(t)\| dt.$$

If $\mathbf{c}(t)$ is only piecewise C^1 or $f(\mathbf{c}(t))$ is piecewise continuous, we define $\int_{\mathbf{c}} f \, ds$ by breaking [a, b] into pieces over which $f(\mathbf{c}(t)) \| \mathbf{c}'(t) \|$ is continuous, and summing the integrals over the pieces.

To motivate the definition of the path integral, we shall consider "Riemann-like" sums S_N in the same general way we did to define arc length in Section 4.2. For simplicity, let **c** be of class C^1 on I. Subdivide the interval I = [a, b] by means of a partition

$$a = t_0 < t_1 < \cdots < t_N = b.$$

This leads to a decomposition of \mathbf{c} into paths \mathbf{c}_i (Figure 7.1.1) defined on $[t_i, t_{i+1}]$ for $0 \le i \le N-1$. Denote the arc length of \mathbf{c}_i by Δs_i ; thus,

$$\Delta s_i = \int_{t_i}^{t_{i+1}} \|\mathbf{c}'(t)\| dt.$$

When N is large, the arc length Δs_i is small and f(x, y, z) is approximately constant for points on \mathbf{c}_i . We consider the sums

$$S_N = \sum_{i=0}^{N-1} f(x_i, y_i, z_i) \, \Delta s_i,$$

where $(x_i, y_i, z_i) = \mathbf{c}(t)$ for some $t \in [t_i, t_{i+1}]$. By the mean-value theorem we know that $\Delta s_i = \|\mathbf{c}'(t_i^*)\| \Delta t_i$, where $t_i \leq t_i^* \leq t_{i+1}$ and $\Delta t_i = t_{i+1} - t_i$. From the theory of Riemann sums, it can be shown that

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{i=0}^{N-1} f(x_i, y_i, z_i) \| \mathbf{c}'(t_i^*) \| \Delta t_i = \int_I f(x(t), y(t), z(t)) \| \mathbf{c}'(t) \| dt$$

$$= \int_{\mathbf{c}} f(x, y, z) ds.$$

DEFINITION: Path Integrals The path integral, or the integral of f(x, y, z) along the path \mathbf{c} , is defined when \mathbf{c} : $I = [a, b] \to \mathbb{R}^3$ is of class C^1 and when the composite function $t \mapsto f(x(t), y(t), z(t))$ is continuous on I. We define this integral by the equation

$$\int_{\mathbf{c}} f \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \|\mathbf{c}'(t)\| \, dt.$$

Sometimes $\int_{\mathbf{c}} f \, ds$ is denoted

$$\int_{S} f(x, y, z) ds$$

or

$$\int_a^b f(\mathbf{c}(t)) \|\mathbf{c}'(t)\| dt.$$

If $\mathbf{c}(t)$ is only piecewise C^1 or $f(\mathbf{c}(t))$ is piecewise continuous, we define $\int_{\mathbf{c}} f \, ds$ by breaking [a, b] into pieces over which $f(\mathbf{c}(t)) \| \mathbf{c}'(t) \|$ is continuous, and summing the integrals over the pieces.

EXAMPLE 1 Let **c** be the helix **c**: $[0, 2\pi] \to \mathbb{R}^3$, $t \mapsto (\cos t, \sin t, t)$ (see Figure 2.4.9), and let $f(x, y, z) = x^2 + y^2 + z^2$. Evaluate the integral $\int_{\mathbf{c}} f(x, y, z) ds$.

SOLUTION First we compute $\|\mathbf{c}'(t)\|$:

$$\|\mathbf{c}'(t)\| = \sqrt{\left[\frac{d(\cos t)}{dt}\right]^2 + \left[\frac{d(\sin t)}{dt}\right]^2 + \left[\frac{dt}{dt}\right]^2} = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}.$$

Next, we substitute for x, y, and z in terms of t to obtain

$$f(x, y, z) = x^2 + y^2 + z^2 = \cos^2 t + \sin^2 t + t^2 = 1 + t^2$$

along c. Inserting this information into the definition of the path integral yields

$$\int_{S} f(x, y, z) ds = \int_{0}^{2\pi} (1 + t^{2}) \sqrt{2} dt = \sqrt{2} \left[t + \frac{t^{3}}{3} \right]_{0}^{2\pi} = \frac{2\sqrt{2}\pi}{3} (3 + 4\pi^{2}). \quad \blacktriangle$$

The Path Integral for Planar Curves

An important special case of the path integral occurs when the path \mathbf{c} describes a plane curve. Suppose that all points $\mathbf{c}(t)$ lie in the xy plane and f is a real-valued function of two variables. The path integral of f along \mathbf{c} is

$$\int_{\mathbf{c}} f(x, y) \, ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt.$$

When $f(x, y) \ge 0$, this integral has a geometric interpretation as the "area of a fence." We can construct a "fence" with base the image of \mathbf{c} and with height f(x, y) at (x, y) (Figure 7.1.2). If \mathbf{c} moves only once along the image of \mathbf{c} , the integral $\int_{\mathbf{c}} f(x, y) \, ds$ represents the area of a side of this fence. Readers should try to justify this interpretation for themselves, using an argument like the one used to justify the arc-length formula.

EXAMPLE 2 Tom Sawyer's aunt has asked him to whitewash both sides of the old fence shown in Figure 7.1.3. Tom estimates that for each 25 ft² of whitewashing he lets someone do for him, the willing victim will pay 5 cents. How much can Tom hope to earn, assuming his aunt will provide whitewash free of charge?

EXAMPLE 2 Tom Sawyer's aunt has asked him to whitewash both sides of the old fence shown in Figure 7.1.3. Tom estimates that for each 25 ft² of whitewashing he lets someone do for him, the willing victim will pay 5 cents. How much can Tom hope to earn, assuming his aunt will provide whitewash free of charge?

SOLUTION From Figure 7.1.3, the base of the fence in the first quadrant is the path \mathbf{c} : $[0, \pi/2] \to \mathbb{R}^2$, $t \mapsto (30\cos^3 t, 30\sin^3 t)$, and the height of the fence at (x, y) is f(x, y) = 1 + y/3. The area of one side of the half of the fence is equal to the *integral* $\int_{\mathbf{c}} f(x, y) ds = \int_{\mathbf{c}} (1 + y/3) ds$. Because $\mathbf{c}'(t) = (-90\cos^2 t \sin t, 90\sin^2 t \cos t)$, we have $\|\mathbf{c}'(t)\| = 90\sin t \cos t$. Thus, the integral is

$$\int_{c} \left(1 + \frac{y}{3}\right) ds = \int_{0}^{\pi/2} \left(1 + \frac{30\sin^{3}t}{3}\right) 90\sin t \cos t \, dt$$

$$= 90 \int_{0}^{\pi/2} (\sin t + 10\sin^{4}t) \cos t \, dt$$

$$= 90 \left[\frac{\sin^{2}t}{2} + 2\sin^{5}t\right]_{0}^{\pi/2} = 90 \left(\frac{1}{2} + 2\right) = 225,$$

which is the area in the first quadrant. Hence, the area of one side of the fence is 450 ft². Because both sides are to be whitewashed, we must multiply by 2 to find the total area, which is 900 ft². Dividing by 25 and then multiplying by 5, we find that Tom could realize as much as \$1.80 for the job.