Problema 1. Să se calculeze integrala dublă

$$\int_0^\pi \int_\pi^{2\pi} (y\sin x + x\cos y) dx dy.$$

Problema 2. Să se calculeze integrala dublă

$$\int_{4}^{6} \int_{0}^{1} (y^{2}e^{x} + x\cos y) dx dy.$$

Problema 3. Rezolvați problema:

$$y' = 1 - y^2, \qquad y(0) = 0.$$

folosind ode23 și ode45. Calculați eroarea globală, știind că soluția exactă este

 $y(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$

și verificați că este $O(h^p)$.

Problema 4. Rezolvați ecuațiile și comparați cu soluțiile exacte:

(a) $y' = \frac{1}{4}y(1 - \frac{1}{20}y), \quad x \in [0, 20], \quad y(0) = 1;$

cu soluţia exactă

$$y(x) = \frac{20}{1 + 19e^{-x/4}};$$

(b) $y'' = 0.032 - 0.4(y')^2, \quad x \in [0, 20], \quad y(0) = 30, \quad y'(0) = 0;$ cu soluția exactă

$$y(x) = \frac{5}{2} \log \left(\cosh \left(\frac{2\sqrt{2}x}{25} \right) \right) + 30,$$

$$y'(x) = \frac{\sqrt{2}}{5} \tanh \left(\frac{2\sqrt{2}x}{25} \right).$$

Problema 5. Ecuația atractorului Lorenz

$$\begin{array}{rcl} \frac{\mathrm{d}\,x}{\mathrm{d}\,t} & = & -ax + ay, \\ \frac{\mathrm{d}\,y}{\mathrm{d}\,t} & = & bx - y - xz, \\ \frac{\mathrm{d}\,z}{\mathrm{d}\,t} & = & -cz + xy \end{array}$$

are soluții haotice care sunt sensibil dependente de condițiile inițiale. Rezolvații numeric pentru $a=5,\,b=15,\,c=1$ cu condițiile inițiale

$$x(0) = 2$$
, $y(0) = 6$, $z(0) = 4$, $t \in [0, 20]$,

cu toleranța $T = 10^{-4}$. Repetați pentru

- (a) $T = 10^{-5}$;
- (b) x(0) = 2.1.

Comparați rezultatele cu cele obținute anterior. În fiecare caz reprezentați grafic.

Problema 6. Calculați valorile proprii ale matricei Hilbert pentru n = 10, $11, \ldots, 20$ și numerele de condiționare corespunzătoare.

Problema 7. Matricele

au proprietatea că dacă λ este valoare proprie, atunci și $1/\lambda$ este de asemenea valoare proprie. Cât de bine conservă valorile proprii această proprietate? Utilizați condeig pentru a explica comportarea diferită a celor două matrice.

Problema 8. Care este cea mai mare valoare proprie a lui magic(n)? De ce?

Problema 9. Determinați descompunerile cu valori singulare ale următoarelor matrice:

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

Problema 10. Găsiți primele 10 valori pozitive pentru care $x = \operatorname{tg} x$.

Problema 11. Sa se aproximeze ln 2 pornind de la o integrală convenabila. Ccomparați cu aproximanta furnizată de MATLAB.

Problema 12. Să se aproximeze

$$\int_0^1 \frac{\sin x}{x} dx.$$

Ce probleme pot să apară?

Problema 13. Pornind de la o integrală convenabilă, să se aproximeze π cu 8 zecimale exacte.

Problema 14. Funcția eroare, erf, se definește prin

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

Tabelați valorile acestei funcții pentru x = 0.1, 0.2, ..., 1, utilizând funcția quad. Să se compare rezultatele cu cele furnizate de funcția MATLAB erf.

Problema 15. (a) Utilizați funcția quad din MATLAB pentru a aproxima

$$\int_{-1}^{2} \frac{1}{\sin\sqrt{|t|}} \mathrm{d}\,t.$$

(b) De ce nu apar probleme de tip împărțire la zero în t = 0?

Problema 16. Să se reprezinte pe același grafic pentru [a, b] = [0, 1], n = 11, funcția, interpolantul Lagrange și cel Hermite pe portiuni în cazurile:

(a)
$$x_i = \frac{i-1}{n-1}$$
, $i = \overline{1, n}$, $f(x) = e^{-x}$ şi $f(x) = x^{5/2}$;

(b)
$$x_i = \left(\frac{i-1}{n-1}\right)^2$$
, $i = \overline{1, n}$, $f(x) = x^{5/2}$.

Problema 17. Fie punctele $P_i \in \mathbb{R}^2$, i = 0, n. Să se scrie o funcție MAT-LAB care determină o curbă parametrică polinomială de grad n ce trece prin punctele date. Testați funcția citind interactiv punctele cu ginput şi reprezentând apoi grafic punctele curba astfel determinată.

Problema 18. Fie punctele $P_i \in \mathbb{R}^2$, i=0,n. Să se scrie o funcție MATLAB care determină o curbă parametrică spline cubic ce trece prin punctele date. Testați funcția citind interactiv punctele cu ginput și reprezentând apoi grafic punctele curba astfel determinată.

Problema 19. Considerăm datele

$$x = -5:5; y = [0,0,0,1,1,1,0,0,0,0,0];$$

Să se determine coeficienții aproximantei polinomiale de grad 7 în sensul celor mai mici pătrate corespunzătoare și să se reprezinte pe același grafic aproximanta și polinomul de interpolare Lagrange.

Problema 20. Densitatea sodiului sodiului (în kg/m³) pentru trei temperaturi (în °C) este dată în tabela

$$\begin{array}{c|cccc} Temperatura & T_i & 94 & 205 & 371 \\ \hline Densitatea & \rho_i & 929 & 902 & 860 \\ \hline \end{array}$$

Determinați densitatea pentru $T=251^{\circ}$ prin interpolare Lagrange.

Problema 21. Aproximați

$$y = \frac{1+x}{1+2x+3x^2}$$

pentru $x \in [0,5]$ folosind interpolarea Lagrange și spline. Alegeți cinci noduri și reprezentați pe același grafic funcția și interpolanții. Reprezentați apoi erorile de aproximare.

Problema 22. Determinați o aproximare discretă în sensul celor mai mici pătrate de forma

$$y = \alpha \exp(\beta x)$$

pentru datele

x	y
0.0129	9.5600
0.0247	8.1845
0.0530	5.2616
0.1550	2.7917
0.3010	2.2611
0.4710	1.7340
0.8020	1.2370
1.2700	1.0674
1.4300	1.1171
2.4600	0.7620

Reprezentați grafic punctele și aproximanta.

Indicație: logaritmați.

Problema 23. Determinați o aproximare discretă în sensul celor mai mici pătrate de forma

$$y = c_1 + c_2 x + c_3 \sin(\pi x) + c_4 \sin(2\pi x)$$

pentru datele

i	x_i	y_i
1	0.1	0.0000
2	0.2	2.1220
3	0.3	3.0244
4	0.4	3.2568
5	0.5	3.1399
6	0.6	2.8579
7	0.7	2.5140
8	0.8	2.1639
9	0.9	1.8358

Reprezentați grafic datele și aproximanta.

Problema 24. Se consideră sistemul

$$2x_{1} - x_{2} = 1$$

$$-x_{j-1} + 2x_{j} - x_{j+1} = j, j = \overline{2, n-1}$$

$$-x_{n-1} + 2x_{n} = n$$

- (a) Să se genereze matricea sistemului folosind diag.
- (b) Să se rezolve folosind descompunerea lu.
- (c) Să se genereze matricea cu spdiags, să se rezolve cu \, comparând timpul de rezolvare cu timpul necesar pentru rezolvarea aceluiași sistem cu matrice densă.
- (d) Să se estimeze numărul de condiționare al matricei coeficienților folosind condest.

Problema 25. O analiză de tip element finit a sarcinii pe o structură ne conduce la următorul sistem

$$\begin{bmatrix} \alpha & 0 & 0 & 0 & \beta & -\beta \\ 0 & \alpha & 0 & -\beta & 0 & -\beta \\ 0 & 0 & \alpha & \beta & \beta & 0 \\ 0 & -\beta & \beta & \gamma & 0 & 0 \\ \beta & 0 & \beta & 0 & \gamma & 0 \\ -\beta & -\beta & 0 & 0 & 0 & \gamma \end{bmatrix} x = \begin{bmatrix} 15 \\ 0 \\ -15 \\ 0 \\ 25 \\ 0 \end{bmatrix},$$

unde $\alpha=482317$, $\beta=2196.05$ și $\gamma=6708.43$. Aici x_1, x_2, x_3 reprezintă deplasări laterale, iar x_4, x_5, x_6 reprezintă deplasări rotaționale (tridimensionale) corespunzând forței aplicate (membrul drept).

- (a) Determinați x.
- (b) Cât de precise sunt calculele? Presupunem întâi date exacte, apoi $\|\Delta A\|/\|A\| = 5 \times 10^{-7}$.

Problema 26. Să se genereze

- Matrice simetrice si pozitiv definite cu intrări aleatoare (folosiți ideea de la descompunerea Cholesky).
- Matrice ortogonale cu intrări aleatoare (folosiți descompunerea QR).

Problema 27 (Curba Lissajous (Bodwitch)). Să se reprezinte curba parametrică:

$$\alpha(t) = (a\sin(nt+c), b\sin t), \qquad t \in [0, 2\pi],$$

pentru (a) $a=2,\ b=3,\ c=1,\ n=2,$ (b) $a=5,\ b=7,\ c=9,\ n=4,$ (c) $a=b=c=1,\ n=10.$

Problema 28 (Curba fluture). Să se reprezinte curba polară

$$r(t) = e^{\cos(t)} - a\cos(bt) + \sin^5(ct),$$

pentru valorile (a) $a=2,\ b=4,\ c=1/12,$ (b) $a=1,\ b=2,\ c=1/4,$ (c) $a=3,\ b=1,\ c=1/2.$ Experimentați pentru t în intervale de forma $[0,2k\pi],\ k\in\mathbb{N}.$

Problema 29 (Rodoneea sferică). Să se reprezinte grafic curba tridimensională definită prin

$$\alpha(t) = a(\sin(nt)\cos t, \sin(nt)\sin t, \cos(nu)),$$

pentru valorile (a) a = n = 2, (b) a = 1/2, n = 1, (c) a = 3, n = 1/4, (d) a = 1/3, n = 5.

Problema 30 (Sfera răsucită (Corkscrew)). Să se reprezinte grafic suprafața parametrică dată prin

$$\chi(u, v) = (a\cos u\cos v, a\sin u\cos v, a\sin v + bu)$$

unde $(u, v) \in [0, 2\pi) \times [-\pi, \pi)$, pentru (a) a = b = 1, (b) a = 3, b = 1, (c) a = 1, b = 0, (d) a = 1, b = -3/2.

Problema 31. Să se reprezinte curba dată implicit

$$b^2y^2 = x^3(a-x),$$

pentru (a) a = 1, b = 2, (b) a = b = 1, (c) a = 2, b = 1.

Problema 32 (Elicoid). Să se reprezinte grafic suprafața parametrică dată prin

$$\chi(u,v) = (av\cos u, bv\sin u, cu + ev)$$

unde $(u, v) \in [0, 2\pi) \times [-d, d)$, pentru (a) a = 2, b = c = 1, e = 0, (b) a = 3, b = 1, c = 2, e = 1.

Problema 33. Calculați eficient suma

$$S_n = \sum_{k=1}^n \frac{1}{k^2},$$

pentru $k=\overline{20,200}.$ Cât de bine aproximează S_n suma seriei

$$S = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}?$$

Problema 34. Scrieți un fișier M de tip funcție care evaluează dezvoltarea MacLaurin a funcției $\ln(x+1)$:

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$

Convergența are loc pentru $x \in [-1,1]$. Testați funcția MATLAB pentru valori ale lui x din [-0.5,0.5] și verificați ce se întâmplă când x se apropie de -1 sau 1.

Problema 35. Care este cea mai mare valoare a lui n cu proprietatea că

$$S_n = \sum_{k=1}^n k^2 < L,$$

unde L este dat? Rezolvați prin însumare și utilizând formula care dă pe S_n .

Problema 36. Să se genereze matricea triunghiulară a coeficienților binomiali, pentru puteri mergând de la 1 la un $n \in \mathbb{N}$ dat.