To answer questions like, "Can I make what I want from what I have?" or, "How much will it cot to obtain something?", the following ideas may be employed to build resource theories.

## Symmetric Monoidal Preorders

A preorder (x, <) may be given extra structure in the following way:

• identify some 
$$I \in X$$
 monoidal unit education  $\otimes : X \times X \longrightarrow X$  monoidal product such that

a) if 
$$n \le y$$
, and  $x_2 \le y_2$  then  $x_1 \otimes x_2 \le y_1 \otimes y_2$  mondarinty  
b)  $I \otimes x = n = x \otimes I$  unitality  
c)  $n \otimes (y \otimes z) = (n \otimes y) \otimes z$  associativity  
d)  $x \otimes y = y \otimes x$  symmetry

Such a structure is called a symmetric maroidal preorder.

 $\rightarrow$  A monoid is a set M, a function  $*: M \times M \rightarrow M$  and some  $e \in M$  such that \* is unital w.r.t e and associative.

• Cost := 
$$\left( \left[ 0, \infty \right], 7, 0, + \right)$$

$$\rightarrow Note: (X, \leq)^{op}:=(X, Z)$$

## Monoidal Monotone Maps

· A map 
$$f: (P, \leq_P) \longrightarrow (Q, \leq_A)$$
 such that

also when lax monoidal monoidal

• 
$$f(P_1) \otimes_{\alpha} f(P_2) \leq_{\alpha} f(P_1 \otimes P_2)$$

$$\rightarrow e \cdot g : For Bool = (B, \leq, tne, \Lambda), (ost = ([0, os], >, 0, +) we$$
have  $g : Bool \rightarrow Cost$  with  $g(F) := zo, g(T) := 0$ .

## Enrichment

