BLUETOOTH

Overview

- Wireless Technology Standard.
- Used for exchanging data through radio waves making cables and cords obsolete.
- Short distance communication.
- · Named after a danish king, Harald Bluetooth.
- Develop and managed by Bluetooth Special Interest Group (SIG).
- SIG has more than 35,000 member companies in the areas of telecommunication, computing, networking, and consumer electronics.

WTF fun fact #6433

Bluetooth technology is named after Harald Blatand, a 10th-century viking king whose last name translates to 'Bluetooth.' Whether or not he had a literal blue tooth is debated, but he was renowned for peacefully bringing people from different lands together. The symbol on Bluetooth's logo is also Blatand's initials in ancient Runes.

Technical Specs

- Low cost as cables chip \$5
- Secure as cables must support authentication and encryption
- Able to function in a noisy environment.
- Bluetooth technology operates in the unlicensed industrial, scientific and medical (ISM) band at 2.4 to 2.485

GHZ. The 2.4 GHZ ISM band is available and unlicensed in most country

- Uses a spread spectrum hopping,
- Bluetooth operating range depen
- Bluetooth supports 1Mbps data rate for version 1.2 3Mbps data rate for Version 2.0 combined with Error Data Rate.

L	S Dillion	
5		

Ranges of Bluetooth devices by class							
Class	Max. permi	Typ. range ^[2]					
Class	(mW)	(dBm)	(m)				
1	100	20	~100				
1.5 (BT 5 Vol 6 Part A Sect 3)	10	10	~20				
2	2.5	4	~10				
3	1	0	~1				
4	0.5	-3	~0.5				

Bluetooth Network Configuration

- •Bluetooth enabled electronic devices connect and communicate wirelessly through shortrange devices known as **Piconets**.
- Master -Slave Mechanism
- When more than two Bluetooth devices communicate with o a PICONET.
- A Piconet can contain up to seven slaves clustered around a single master.
- The device that initializes establishment of the Piconet becomes the **master**.

Cianna, Diagnata and Castlemate

Features of Piconets

- •Within a Piconet, the timing of various devices and the frequency hopping sequence of individual devices is determined by the clock and unique 48-bit address of master.
- •Each device can communicate simultaneously with up to seven other devices within a single Piconet.
- •Each device can communicate with several piconets simultaneously.
- •Piconets are established dynamically and automatically as Bluetooth enabled devices enter and leave piconets.
- There is no direct connection between the slaves and all the connections are essentially master-to-slave or slave-to-master.
- Slaves are allowed to transmit once these have been polled by the master. Slaves are allowed to transmit once these have been polled by the master.
- Devices resident in adjacent piconets provide a bridge to support inner-piconet connections, allowing assemblies of linked piconets to form a physically extensible communication infrastructure known

Bluetooth Protocol Stack

Protocols

RADIO PROTOCOL

- Responsible for the modulation and demodulation of data into RF signals
- The radio layer describes the physical characteristics a bluetooth device's receiver -transmitter component must have.

BASEBAND PROTOCOL

- Responsible for channel coding and decoding.
- Digitizes the signals received by the radio for passing up the stack.
- Formats the data it receives from the Link Controller(upper protocol) for transmission over the channel

Link Manager

- Responsible for establishing and maintaining the links between Bluetooth units.
- Handles Link setup, authentication, link configuration and security procedures.
- Establishes all connections with the help of baseband protocol

Host Controller Interface

• The host controller interface defines uniform methods for accessing and controlling the lower layers of the protocol stack (baseband and the link manager).

Logical Link Control and Adaptation Protocol (L2CAP)

- Multiplexing data between different higher layer protocols.
- Segmentation and reassembly of packets.
- Providing one-way transmission management of multicast data to a group of other Bluetooth devices.
- Quality of service (QoS) management for higher layer protocols.

Service Discovery Protocol

- Defines procedures for discovering services of other devices.
- Determining the characteristics of those services.

Telephony Control Protocol Specification (TCS) defines call

Bluetooth vs Other Wireless Technologies

Technology	Ideal Application	Range (m)	Data Rate (Mbps)	Current Required	Cost (\$)	Connection Type
IR	Device synchronization, data transfer	1	16	Low	10	Single Freq
Bluetooth	Cable Replacement, Ad hoc PAN	10-100	<1	Medium	10	FHSS
802.11b	High speed LAN	100+	11	High	45	DSSS

Scope of Bluetooth in Future

- A good future ahead because of meeting the basic means of connectivity.
- Currently a protocol is being searched that would support large ad-hoc networks
- Latest version of bluetooth both its securities and capabilities.
- New versions of Bluetooth are meeting the high speed and large range.
- Many companies are creating impressive bluetooth applications in demand.

ZIGBEE

• Zigbee is a wireless standard that defines a set of communication protocols for short-range communications.

Why another short-range communication standard

• Zigbee standard is especially build for control and sensor networks

What is ZIGBE?

- Zigbee is a standard that addresses the need of very low-cost implementation of Low power devices with low data rate for short range wireless communications.
- ZigBee gots its name from the zig zag Dance of Bees.

alliance

- One of the most commonly used standard for Internet of thing
- Open source standard that was developed by Zigbee Alliance.

ZIGBEE Applications

- Home automation
- Medical data collection
- Industrial Control systems

Purpose:

- Collect information

Perform control tasks inside a building

Home Automation

Supported Devices

- Lights
- Door Locks
- Switches
- Smoke Detectors
- Fans
- Appliances
- Etc..

Remote Monitoring System

Why can't use these?

General Characteristics of Zigbee Standard

General Characteristics

• Low Power consumption: Devices can typically operate for several years on a single battery.

• Low Data rate: 20kbps-250 kbps. Wifi: 11 Mbps, Bluetooth: 1Mbps

• Short Range: Upto 75-100 metres indoor and upto 300+metres (line of sight).

- Network Join time:~30 msec
 Wifi:Upto 3 seconds, Bluetooth:Upto 10 seconds
- **Support small and large networks**:Upto 65000 devices(in theory)/240 devices(in practice). Wifi:Upto 32 devices,Bluetooth:upto 7 devices.
- Low cost of products and cheap implementation.
 Simplicity of the technology
 Open Source Protocol
- Security: Uses AES cryptographic algorithm.

Operating Frequency Bands

• There are three frequency bands currently assigned to ZigBee:

• Only one channel will be selected for use in network.

ZIGBEE DEVICES

Coordinator

- Most Capable Device
- Root of the network
- One coordinator in each network

Tasks:

- Channel Selection
- Assign an ID to the network
- Allocates unique address to each device
- Initiates and transfer messages in the network

ZIGBEE Devices

Routers

- Act as intermediate nodes between the coordinator and the end devices.
- Route traffic between different nodes.
- Receive and store messages intended for their children
- Can allow other routers and end devices to join the network.

End Devices

- Contains just enough information to talk to the parent node.
- They may sleep (a standby), which makes end devices a suitable choice for battery operated devices.
- All traffic to end device is first routed to its parent.

ZIGBEE Network Architecture

Types of Zigbee Topologies

- Star Topology
- Mesh Topology
- Tree Topology

ZIGBEE Network Architecture

STAR Topology

- This is the simplest and less expensive implementation.
- There are no routers in this architecture.
- End device can not communicate directly with another end de

Mesh Topology

- Every node is connected with the neighbouring node(except for the end devices).
- A message hops from one device to another to reach its destination.
- If a node fails, data can be re-routed using another path.
- Self-Healing Process.

Tree Topology

- Its not very different from a mesh configuration
- Routers are not interconnected.

Cluster Tree Network

Expand Network Range

Channel Access

• The coordinator assigns only one channel to the network.

All devices will have to share this single channel to communicate.

- There are two methods for channel access:
 - -Contention based method
 - -Contention free method

Channel Acces

Contention free-method

- The coordinator dedicates a specific time slot to each device. This is called a guaranteed time slot(GTS).
- Beacon is used to synchronise the clocks of all devices in network

Channel Access

Contention based method

- Devices do not need to be synchronised.
- Carrier Sense Multiple Access-Collision Avoidance Mechanism.
- Anytime a device wants to transmit:
 - It first goes into receive mode.
 - Detect if there is any signal in the channel.
 - Device will only transmit the data if the channel is clear.
 - If the channel is not clear, the device backs off for a random period of time and tries again.