Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 17

Matrix-Chain Multiplication

Given a chain of matrices (A₁, A₂, ..., A_n),
 where for i = 1, 2, ..., n matrix A_i has
 dimensions p_{i-1}x p_i, fully parenthesize the
 product A₁·A₂···A_n in a way that minimizes
 the number of scalar multiplications.

$$A_1 \cdot A_2 \cdot \cdots A_i \cdot A_{i+1} \cdot \cdots A_n$$

 $p_0 x p_1 \cdot p_1 x p_2 \cdot p_{i-1} x p_i \cdot p_i x p_{i+1} \cdot p_{n-1} x p_n$

The Structure of an Optimal Parenthesization

Notation:

$$A_{i...j} = A_i A_{i+1} \cdots A_j, i \leq j$$

• For i < j:

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$

$$= A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j$$

$$= A_{i...k} A_{k+1...j}$$

• Suppose that an optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} , where $i \le k < j$

2. A Recursive Solution

```
m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j
```

- We do not know the value of k
 - There are j i possible values for k: k = i, i+1, ..., j-1
- Minimizing the cost of parenthesizing the product $A_i A_{i+1} \cdots A_i$ becomes:

3. Computing the Optimal Costs

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Length = 1: i = j, i = 1, 2, ..., n
- Length = 2: j = i + 1, i = 1, 2, ..., n-1

m[1, n] gives the optimal solution to the problem

Compute elements on each diagonal, starting with the longest diagonal.

In a similar matrix **s** we keep the optimal values of **k**. CS 477/677 - Lecture 17

3

Memoization

- Top-down approach with the efficiency of typical bottom-up dynamic programming approach
- Maintains an entry in a table for the solution to each subproblem
 - memoize the inefficient recursive top-down algorithm
- When a subproblem is first encountered its solution is computed and stored in that table
- Subsequent "calls" to the subproblem simply look up that value

Memoized Matrix-Chain

Alg.: MEMOIZED-MATRIX-CHAIN(p)

- 1. $n \leftarrow length[p]$
- 2. for $i \leftarrow 1$ to n
- 3. do for $j \leftarrow i$ to n
- 4. do $m[i, j] \leftarrow \infty$

Initialize the **m** table with large values that indicate whether the values of **m[i, j]** have been computed

5. return LOOKUP-CHAIN(p, 1, n) — Top-down approach

Memoized Matrix-Chain

```
Alg.: LOOKUP-CHAIN(p, i, j)
                                                           Running time is O(n<sup>3</sup>)
      if m[i, j] < \infty
               then return m[i, j]
2.
     if i = j
3.
        then m[i, j] \leftarrow 0
4.
                                           m[i, j] = min \{m[i, k] + m[k+1, j] + p_{i-1}p_kp_i\}
        else for k \leftarrow i to j - 1
5.
                                                    i≤k<i
                          do q \leftarrow LOOKUP-CHAIN(p, i, k) +
6.
                                  LOOKUP-CHAIN(p, k+1, j) + p_{i-1}
     _{1}p_{k}p_{i}
                               if q < m[i, j]
```

csthen meiture 15 q

8.

Dynamic Progamming vs. Memoization

- Advantages of dynamic programming vs. memoized algorithms
 - No overhead for recursion
 - The regular pattern of table accesses may be used to reduce time or space requirements
- Advantages of memoized algorithms vs. dynamic programming
 - More intuitive

Optimal Substructure - Examples

Assembly line

Fastest way of going through a station j contains:
 the fastest way of going through station j-1 on
 either line

Matrix multiplication

- Optimal parenthesization of $A_i \cdot A_{i+1} \cdots A_j$ that splits the product between A_k and A_{k+1} contains:
 - an optimal solution to the problem of parenthesizing $A_{i..k}$
 - an optimal solution to the problem of parenthesizing $A_{k+1...j}$

Parameters of Optimal Substructure

- Intuitively, the running time of a dynamic programming algorithm depends on two factors:
 - Number of subproblems overall
 - How many choices we examine for each subproblem
- Assembly line
 - $-\Theta(n)$ subproblems (n stations)
 - 2 choices for each subproblem
- Matrix multiplication:
 - $-\Theta(n^2)$ subproblems $(1 \le i \le j \le n)$
 - At most n-1 choices

 $\Theta(n^3)$ overall

 $\Theta(n)$ overall

Longest Common Subsequence

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$

 $Y = \langle y_1, y_2, ..., y_n \rangle$

find a maximum length common subsequence (LCS) of X and Y

• *E.g.:*

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequence of X:
 - A subset of elements in the sequence taken in order (but not necessarily consecutive)

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
 $X = \langle A, B, C, B, D, A, B \rangle$
 $Y = \langle B, D, C, A, B, A \rangle$ $Y = \langle B, D, C, A, B, A \rangle$

- (B, C, B, A) and (B, D, A, B) are longest common subsequences of X and Y (length = 4)
- (B, C, A), however is not a LCS of X and Y

Brute-Force Solution

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2^m subsequences of X to check
- Each subsequence takes $\Theta(n)$ time to check
 - scan Y for first letter, from there scan for second,
 and so on
- Running time: Θ(n2^m)

1. Making the choice

$$X = \langle A, B, D, E \rangle$$

 $Y = \langle Z, B, E \rangle$

 Choice: include one element into the common sequence (E) and solve the resulting subproblem

$$X = \langle A, B, D, G \rangle$$

 $Y = \langle Z, B, D \rangle$
 $X = \langle A, B, D, G \rangle$
 $Y = \langle Z, B, D \rangle$
 $Y = \langle Z, B, D \rangle$

 Choice: exclude an element from a string and solve the resulting subproblem

Notations

• Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ we define the i-th prefix of X, for i = 0, 1, 2, ..., m $X_i = \langle x_1, x_2, ..., x_i \rangle$

• c[i, j] =the length of a LCS of the sequences $X_i = \langle x_1, x_2, ..., x_i \rangle$ and $Y_i = \langle y_1, y_2, ..., y_i \rangle$

2. A Recursive Solution

Case 1:
$$x_i = y_j$$

e.g.: $X_i = \langle A, B, D, E \rangle$
 $Y_j = \langle Z, B, E \rangle$
 $c[i, j] = c[i - 1, j - 1] + 1$

- Append $x_i = y_i$ to the LCS of X_{i-1} and Y_{i-1}

2. A Recursive Solution

```
Case 2: x_i \neq y_j

e.g.: X_i = \langle A, B, D, G \rangle

Y_j = \langle Z, B, D \rangle

c[i, j] = max \{ c[i - 1, j], c[i, j-1] \}
```

- Must solve two problems
 - find a LCS of X_{i-1} and Y_i : $X_{i-1} = \langle A, B, D \rangle$ and $Y_i = \langle Z, B, D \rangle$
 - find a LCS of X_i and Y_{j-1} : $X_i = \langle A, B, D, G \rangle$ and $Y_j = \langle Z, B \rangle$
- Optimal solution to a problem includes optimal solutions to a problem includes

3. Computing the Length of the LCS

4. Additional Information

A matrix b[i, j]:

- For a subproblem [i, j]
 it tells us what choice
 was made to obtain
 the optimal value
- If $x_i = y_j$ b[i, j] = ""
- Else, if

$$c[i-1,j] \ge$$

$$c[i, j-1]$$

else

LCS-LENGTH(X, Y, m, n)

```
1. for i \leftarrow 1 to m
          do c[i, 0] \leftarrow 0
                                        The length of the LCS is zero if one
    for j \leftarrow 0 to n
                                        of the sequences is empty
        do c[0, j] \leftarrow 0
5. for i \leftarrow 1 to m
           do for j \leftarrow 1 to n
6.
                         do if x_i = y_i
7.
                                then c[i, j] \leftarrow c[i - 1, j - 1] + 1 Case 1: x_i = y_j
8.
                                        b[i, j ] ← " "
9.
                                else if c[i - 1, j] \ge c[i, j - 1]
10.
                                          then c[i, j] \leftarrow c[i - 1, j]
11.
12.
                                                  b[i, j] \leftarrow " \uparrow "
                                          else c[i, j] \leftarrow c[i, j - 1] Case 2: x_i \neq y_j
13.
                                                 b[i, j] \leftarrow " \leftarrow "
14.
15. return c and b
```

Running time: Θ(mn)

Example

4. Constructing a LCS

Start at b[m, n] and follow the arrows

• When we encounter a " $\$ " in $b[i, j] \Rightarrow x_i = y_j$ is an element of the LCS

		O	1	2	3	4	5	6
	Ī	y i	В	D	С	Α	В	<u> </u>
0	X _i	0	0	0	0	0	0	0
1	Α	0	O	← O	← O	1	←1	1
2	В	0	1	€(1)	←1	1	2	← 2
3	C	0	1 1) 1	2	4 2	^2	1 2
4	В	0	1	↑ 1	2→(2	(3)	← 3
5	D	0	1	× 2	^2	^2	<u></u> ← (((((((((^ 3
6	Α	0	1	← 2	^2	× 3) ←ო	4
7	В	0	1	†	^2	^ 3	4	4

PRINT-LCS(b, X, i, j)

```
if i = 0 or j = 0
                                  Running time: \Theta(m + n)
      then return
   if b[i, j] = " \ "
          then PRINT-LCS(b, X, i - 1, j - 1)
5.
                print x,
    else if b[i, j] = " \uparrow "
                then PRINT-LCS(b, X, i - 1, j)
7.
                else PRINT-LCS(b, X, i, j - 1)
8.
```

Initial call: PRINT-LCS(b, X, length[X], length[Y])

Readings

- For this lecture
 - Chapter 14
 - Coming next
 - Chapter 14