(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 November 2001 (01.11.2001)

PCT

(10) International Publication Number WO 01/80863 A1

(51) International Patent Classification7: A61K 31/70

(21) International Application Number: PCT/US01/40611

(22) International Filing Date: 27 April 2001 (27.04.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/200,084

27 April 2000 (27.04.2000) US

(71) Applicant (for all designated States except US): THE SCRIPPS RESEARCH INSTITUTE [US/US]; 10550 North Torrey Pincs Road, La Jolla, CA 92037 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WONG, Chi-Huey [US/US]; P.O. Box 8154, Rancho Santa Fe, CA 92067 (US). SUCHECK, Steven [US/US]; 5809 Menorca, San Diego, CA 92124 (US).

(74) Agents: LEWIS, Donald, G. et al.; The Scripps Research Institute, 10550 North Torrey Pines Road, TPC-8, La Jolla, CA 92037 (ÚS). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PI, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: BIFUNCTIONAL ANTIBIOTICS

(57) Abstract: Bifunctional antibiotics that target both bacterial RNA and resistance-causing enzymes are disclosed. The A-site of bacterial 16S rRNA serves as the target site for most aminoglycoside antibiotics. Resistance to this class of antibiotics is frequently developed by microbial enzymatic acetylation, phosphorylation or ribosylation of aminoglycosides, modifications that weaken their interactions with the target RNA. Using surface plasmon resonance (SPR), the binding affinity and stoichiometry of various aminoglycosides have been investigated and it was found that neamine, the key pharmacophore of the deoxystreptamine class of aminoglycosides, binds to the A-site in a two to one stoichiometry with a K_d of 10 μ M for each binding site. A library of neamine dimers was prepared and their affinities to 16S rRNA A-site were determined by SPR, with K_d = 40 nM for the best dimer (an ~ 10³-fold increase in affinity). Antibiotic activities of the dimers were determined for several bacterial strains by the Kirby-Bauer method. The most active dimer, based on antibiotic activity, also showed the highest inhibition of in vitro translation (IC $_{50}$ = 0.055 μ M). The latter assay was developed in order to correlate the relationship between SPR-based affinity and translation inhibition. By these combined methods, transport limitations for the semisynthetic aminoglycosides as well as non-ribosomally based antibiotic activity could be determined. Further analysis of these dimers as substrates for aminoglycoside modifying-enzymes identified a neamine dimer that was a potent inhibitor (K_{ia} = 0.1 μ M) of the APH(2") activity of the bifunctional enzyme AAC(6")-APH(2"), the primary enzyme responsible for high level gentamicin C resistance in several bacterial strains.

WO 01/80863 A1

BIFUNCTIONAL ANTIBIOTICS

Description

Technical Field:

The invention relates to bifunctional antibiotics. More particularly, the invention related to bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes.

Background:

5

30

Deoxystreptamine-based aminoglycosides are a clinically important class of antibiotics that are effective against a broad range of microorganisms (Edson, 10 R. S.; Terrel, C. L. Mayo Clin. Proc. 1991, 66, 1158). It is believed that aminoglycosides exert their therapeutic effect by interfering with translational fidelity during protein synthesis via interaction with the A-site rRNA on the 16S domain of the ribosome (Moazed, D.; Noller, H. F. Nature 1987, 327, 389; Purohit, P.; Stern, S. Nature 1994, 370, 659; Formy, D.; et al. Science 1996, 274, 15 1367). Unfortunately, the high toxicity and rapid emergence of high level aminoglycoside resistance have severely limited the usefulness of this class of antibiotics. Numerous aminoglycoside resistance mechanisms have been identified, and enzymatic acetylation, phosphorylation and ribosylation are the primary causes of high level resistance in most clinical isolates (Wright, G. D.; et al. Adv. Exp. Med. Biol. 1998, 456, 27; Kondo, S.; Hotta, K. J. Infect. Chemother. 20 1999, 5, 1; Mingeot-Leclerco, M.-P.; et al. Antimicrob. Agents Chemother. 1999, 43, 727). Of the modifying enzymes, the acetyl- and phosphotransferases (AAC and APH) have been extensively studied with respect to their specificity (Wright, G. D.; et al. Adv. Exp. Med. Biol. 1998, 456, 27; Kondo, S.; Hotta, K. J. Infect. 25 Chemother. 1999, 5, 1; Mingeot-Leclerco, M.-P.; et al. Antimicrob. Agents Chemother. 1999, 43, 727; Daigle, D. M.; et al. Chem. Biol. 1999, 6, 99; Azucena, E.; et al. J. Am. Chem. Soc. 1997, 119, 2317; Patterson, J.-E.; Zervos, M. J. Rev. Infect. Dis. 1990, 12, 644).

What was needed was a method to tackle the problem of antibiotic resistance. What was needed was bifunctional aminoglycosides that can resist

WO 01/80863 PCT/US01/40611

- 2 -

or inhibit aminoglycoside-modifying enzymes while simultaneously targeting ribosomal RNA.

Summary:

5

Bifunctional antibiotics are disclosed herein that target both bacterial RNA and resistance causing enzymes. Preferred bifunctional antibiotics are disclosed to be neamine dimers. These neamine dimers represent a new class of aminoglycoside antibiotics that are functionally simpler than previously known aminoglycosides. In addition targeting bacterial RNA, they are also potent inhibitors of the APH(2") activity of the bifunctional AAC(6')-APH(2") enzyme, one of the most clinically significant of the aminoglycoside-modifying enzymes.

15

20

25

30

10

Bifunctional antibiotics that target both bacterial RNA and resistancecausing enzymes are disclosed and are demonstrated to provide a method for tackling the problem of antibiotic resistance. The A-site of bacterial 16S rRNA serves as the target site for most aminoglycoside antibiotics. Resistance to this class of antibiotics is frequently developed by microbial enzymatic acetylation, phosphorylation or ribosylation of aminoglycosides, modifications that weaken their interactions with the target RNA. Using surface plasmon resonance (SPR), the binding affinity and stoichiometry of various aminoglycosides have been investigated and it was found that neamine, the key pharmacophore of the deoxystreptamine class of aminoglycosides, binds to the A-site in a two to one stoichiometry with a K_d of 10 μM for each binding site. A library of neamine dimers was prepared and their affinities to 16S rRNA A-site were determined by SPR, with $K_d = 40$ nM for the best dimer (an ~ 10^3 -fold increase in affinity). Antibiotic activities of the dimers were determined for several bacterial strains by the Kirby-Bauer method. The most active dimer, based on antibiotic activity, also showed the highest inhibition of in vitro translation (IC₅₀ = 0.055 μ M). The latter assay was developed in order to correlate the relationship between SPR-based affinity and translation inhibition. By these combined methods, transport limitations for the semisynthetic aminoglycosides as well as non-ribosomally based antibiotic activity could be determined. Further analysis of these dimers as substrates for aminoglycoside modifying-enzymes identified a neamine dimer that was a potent inhibitor ($K_{ls} = 0.1 \, \mu\text{M}$) of the APH(2") activity of the bifunctional enzyme AAC(6")-APH(2"), the primary enzyme responsible for high level gentamicin C resistance in several bacterial strains.

5

10

15

20

One aspect of the invention is directed to a bifunctional antibiotic. The bifunctional antibiotic includes a first and a second pharmacophore and a linkage for linking the first and second pharmacophore. The first and second pharmacophore each has a binding affininty for the A-site of bacterial 16S rRNA sufficient to inhibit translation at clinically effective concentrations. The first and second pharmacophores may be either identical to one another or different from one another. The linkage has a length and structure for enabling the first and second pharmacophore to bind simultaneously to a single A-site of bacterial 16S rRNA. In an improved embodiment of the invention, at least one of the first and second pharmacophores is inhibitory of APH(2") activity with respect to bifunctional enzyme AAC(6')-APH(2"). The inhibitory activity is sufficient, at clinically effective concentrations, to diminish deactivation of the bifunctional antibiotic by the bifunctional enzyme AAC(6')-APH(2").

In one embodiment of this aspect of the invention, the bifunctional antibiotic is represented by the following structure:

In the above structure, Y¹ and Y² are the first and second pharmacophore respectively and are both represented by:

30

25

R¹ and R² are each independently selected from the group of radicals consisting of -H and -CH(Ph)CONHCH₂CO₂H. X is the linkage and is selected from the

group of diradicals consisting of -(CH₂)_n- and -[(CH₂)₂O(CH₂)₃]₂O, where $3 \le n \le 12$.

In a second embodiment of this aspect of the invention, the bifunctional antibiotic is represented by the following structure:

5

In the above structure, Y^1 and Y^2 are the first and second pharmacophore respectively and are both represented by:

10

The stereochemistry is either (S,S) or (R,R). Preferred species of this embodiment include compounds represented by the following structures:

20

15

25

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2
 H_2N
 H_2
 H_2N
 H_2
 H_2N
 H_2
 H_3
 H_4
 H_4

In a third embodiment of this aspect of the invention, the bifunctional antibiotic is represented by the following structure:

In the above structure, Y^1 and Y^2 are the first and second pharmacophore respectively and are both represented by:

X is the linkage and is selected from the group of diradicals consisting of - $(CH_2)_n$ - and - $[(CH_2)_2]_2O$, where $2 \le n \le 4$. The stereochemistry is either (S,S) or (R,R).

Preferred species of this embodiment include compound represented by the following structures:

-7-

10

15

5

Another embodiment of the above invention is directed to a bifunctional antibiotic wherein the first and second pharmacophore are independently selected from the group consisting of neamine, neomycin B, and gentamincin C_1 .

Another aspect of the invention is directed to a process for inhibiting translation within a bacterium having 16S rRNA with an A-site, said process comprising the step of contacting the bacterium with a concentration of any of the bifunctional antibiotics described above sufficient to inhibit translation.

Another aspect of the invention is directed to a process for simultaneously inhibiting translation and APH(2") activity within a bacterium having both 16S rRNA with an A-site and the bifunctional enzyme AAC(6')-APH(2"), said process comprising the step of contacting the bacterium with a concentration of any of the bifunctional antibiotics described above sufficient to inhibit translation and APH(2") activity.

25

30

20

Brief Description of Figures:

Figure 1 illustrates the biotinylated E. coli 16S rRNA A-site (AS-wt) rRNA sequence.

Figure 2 illustrates the mode of action of β-hydroxyamine commonly found in aminoglycoside antibiotics.

Figure 3 illustrates is a graph showing a binding isotherm of n amin binding to AS-wt (circles) and control mutants (U1406A, squares; U1485A,

10

15

20

25

diamonds) for determination of dissociation constants (K_d = inverse slope) and binding stoichiometry (x-intercept).

Figure 4 illustrates an energetic analysis of a bivalent neamine along with a cartoon drawing illustrating how dimers are likely to bind to AS-wt rRNA with high affinity.

Figure 5 illustrates a scheme that shows how the neamine dimers were prepared from a known neamine precursor.

Figure 6 illustrates a graph which demonstrates the relationship between antibiotic activity (MIC, minimum inhibitory concentration) and translation inhibition (IC_{50}).

Figure 7 illustrates the sites of enzymatic modification on neomycin B and gentamicin $\mathbf{C}_{\mathbf{1}}$.

Figure 8 illustrates a graph showing the results of surface plasmon resonance experiments on neomycin B binding to AS-wt rRNA and mutants.

Figure 9 illustrates a Scatchard plot for determining dissociation constants (K_d , inverse slope and binding stoichiometry (x-intercept) for the wild type organism.

Figure 10 illutrates an Ugi reaction where four separate components are reacted to produce an amide-linked dimer.

Figure 11 is a table giving the results of the Kirby Bauer test with known compounds and the synthesized dimers.

Figure 12 is a table that shows the minimum inhibitory concentration (MIC, μ M) in E. Coli ATCC 25922 and in vitro translation IC₅₀.

Figure 13 shows tables of the kinetic parameters of neamine and neamine dimers for various aminoglycoside-modifying enzymes.

10

15

20

25

30

Detailed Description:

The dissociation constant (K_d) and binding stoichiometry were determined using surface plasmon resonance (SPR) against an immobilized rRNA sequence modeling the A-site of prokaryotic rRNA (Figures 1-4) (Hendrix, M.; et al. J. Am. Chem. Soc. 1997, 119, 3641; Wong, C.-H.; et al. Chem. Biol. 1998, 5, 397). The dissociation constants were obtained from equilibrium binding curves through nonlinear curve fitting and were comparable to those obtained using Scatchard analysis. We focused on neamine as it represents the simplest effective aminoglycoside antibiotic and contains the key β -hydroxyamine motif for interaction with the phosphodiester group and the Hoogsteen face of guanine residues in RNA (Figure 2) (Hendrix, M.; et al. Angew. Chem., Int. Ed. Engl. 1997, 36, 95). Neamine was found to bind biotinylated AS-wt in a 2:1 complex with a K_d of 10 µM for each binding site (Figure 3). Various dimers of neamine were therefore constructed in order to identify a bivalent aminoglycoside that would bind AS-wt with high affinity (Figure 4), and at the same time resist and and/or inhibit the modifying enzymes due to its unnatural structure (Some aminoglycoside dimers were prepared previously; however, the monomers bind the A-site stoichiometrically: see Michael, K.; et al. Bioorg. Med. Chem. 1999, 7, 1361; for vancomycin dimers, see Rao, J.; Whitesides, G. H. J. Am. Chem. Soc. 1997, 119, 10286; Sundram, U. N.; et al. J. Am. Chem. Soc. 1996, 118, 13107).

Neamine dimers were prepared starting from perbenzyl perazido 5-O-carboxyethylneamine (Sucheck, S. J.; et al. *Angew. Chem., Int. Ed. Engl.* 2000, 39, 1080) (see Figure 5), which was prepared from the 5-O-allyl precursor (Greenberg, W. A.; et al. *J. Am. Chem. Soc.* 1999, 121, 6527). Carboxyethylneamine was distributed into a Quest 210 parallel synthesizer and was activated using a cyclohexylcarbodiimide bound to macroporous polystyrene resin. Two equivalents of resin, one equivalent of acid and 0.4 equivalents of various diamine linkers were utilized to synthesize a library of neamine dimers of variable linker length. The intermediate amides were isolated by filtration and were >95 % pure, as determined by NMR. The resulting dimers were first reduced under Staudinger conditions to convert the azides to amines, which were captured from solution using the resin bound sulfonic acid scav nger MP-TsOH

WO 01/80863 PCT/US01/40611 - 10 -

(Argonaut). The resin was washed and the free amine was released from the resin by elution with 2 M NH₃ in methanol. The resulting amines were debenzylated by hydrogenolysis in the presence of 2 equivalents of acetic acid per amine. The reaction mixture was filtered, concentrated and purified by silica gel chromatography using 8:2:4:5 NH₄OH-CHCl₃-*n*-BuOH-EtOH, followed by cation exchange chromatography to give the pure aminoglycosides dimers 4-13. The amide-linked dimers could also be prepared via Ugi reactions, e.g. dimer 14, starting from the same perbenzyl perazido 5-O-carboxyethylneamine. This procedure is also directly applicable to parallel synthesis and could be used to increase the molecular diversity of the library.

5

10

15

20

25

30

The dimers with the highest affinity for AS-wt determined by SPR were also the most potent antibiotics, as determined by the antimicrobial assays (Greenberg, W. A.; et al. *J. Am. Chem. Soc.* 1999, 121, 6527; Phillips, I; Williams, D. In *Laboratory Methods in Antimicrobial Chemotherapy*; Gerrod, L., Ed.; Churchill Livingstone Press: Edinburg, 1978; pp 3-30) and by IC₅₀ of *in vitro* translation (Greenberg, W. A.; et al. *J. Am. Chem. Soc.* 1999, 121, 6527). Of this series, the dimers with the highest antibiotic activity, 4 and 6, showed a K_d of 1.1 μ M and 0.8 μ M on AS-wt, respectively, ten-fold greater than neamine. Dimers with longer linker lengths had weaker affinities for AS-wt, a trend that correlated with antibiotic activity. Interestingly, all of the dimers continued to display a 2:1 binding stoichiometry, indicating that the increase in affinity is most likely due to an additional favorable (not dimeric) yet weak interaction with AS-wt. Antibiotic activities of dimers 4 and 6 were comparable to neamine, MIC = 31 and 125 μ M respectively, against the *E. coli* reference strain (See supplement for antibiotic testing data).

The relatively weak antibiotic activity of these dimers led us to design a flexible and hydrophilic linker by opening the 1,2-propyloxiranes with an amine as shown in Figure 5. The triflate of (S)-(-)- and (R)-(+)- glycidol (Baldwin, J. J.; et al. J. Med. Chem. 1982, 25, 931; Schlecker, R.; Thieme, P. C. Tetrahedron 1988, 44, 3289) was used to alkylate perbenzyl perazido neamine to form poxides 15 and 16, respectively. Epoxides 15 and 16 were heated for 16 h in a sealed tub

10

15

PCT/US01/40611

with excess methylamine to form 1,2-hydroxy amines 17 and 18, respectively. These hydroxy amines could then be used in an addition reaction with another equivalent of epoxide 15 or 16 to form dimers 19 and 20, respectively, after deprotection. Epoxides 15 and 16 were also opened with 0.5 equivalents of a N,N'-methyldiamines to afford protected dimers 21-28. N,N'-methyldiamine that were not commercially available were readily prepared by a one-pot synthesis via imine formation with a primary diamine and benzaldehyde, alkylation of the intermediate imime with dimethyl sulfate followed by hydrolysis of the alkylimine afforded N,N'-methyldiamines in high yield (Devinsky, F.; et al. Synthesis 1980, 4, 303). The resulting dimers were deprotected as previously described to afford dimers 21-28. These dimers possessed significantly increased antibiotic activity compared to the amide-linked dimers. Antibiotic activity was greatest with the diaminobutane linker in dimer 27, which showed a MIC = 6.25 µM against E. coli and $K_d = 40$ nM (AS-wt) with 1 to 1 stoichiometry (Compound 27 is also effective against other strains, including P. aeruginosa ATCC 27853, P. aeruginosa, PAO-1, S. aureus ATCC 29213 and ATCC 33591-MRSA, and E. faecalis ATCC 29212 and is 3 times more effective than tobramycin against the tobramycin-resistant strain of P. aeruginosa from cystic fibrosis patients.).

20 To better understand the relationship between RNA binding and antibiotic activity, inhibition of in vitro translation of luciferase gene (Greenberg, W. A.; et al. J. Am. Chem. Soc. 1999, 121, 6527) was measured as a function of MIC, Figure 6. This analysis was used to validate the target and characterize potential transport limitations for the aminoglycosides, and in vitro translation inhibition is expected to be a better indicator of aminoglycoside selectivity for 16S rRNA 25 compared to binding affinity measurements with the A-site sequences (Hendrix, M.; et al. J. Am. Chem. Soc. 1997, 119, 3641; Wong, C.-H.; et al. Chem. Biol. 1998, 5, 397; Greenberg, W. A.; et al. J. Am. Chem. Soc. 1999, 121, 6527). A nearly linear relationship between the IC₅₀ of translation inhibition and the MIC 30 was observed. This analysis is useful for analyzing structure activity relationships within a similar series of compounds. Compounds falling below the line in Figure 6 may suffer from transport limitation while compounds above the line may act via a fundamentally different mode of action than compounds at or near the line.

Further study of neamime dimers 4, 6 and 27 using several aminoglycoside-modifying enzymes revealed that the dimers were poor substrates for AAC(6')-li and APH(3')-IIIa, responsible for 6'- and 3'- N-acetylation and O-phosphorylation, respectively (Wright, G. D.; et al. Adv. Exp. Med. Biol. 5 1998, 456, 27; Kondo, S.; Hotta, K. J. Infect. Chemother. 1999, 5, 1; Mingeot-Leclerco, M.-P.; et al. Antimicrob. Agents Chemother. 1999, 43, 727). In addition, dimers 4, 6 and 27 were poor substrates for the AAC(6') activity of the bifunctional aminoglycoside modifying-enzyme AAC(6')-APH(2") (Wright, G. D.; et al. Adv. Exp. Med. Biol. 1998, 456, 27; Kondo, S.; Hotta, K. J. Infect. Chemother. 1999, 5, 1; Mingeot-Leclerco, M.-P.; et al. Antimicrob. Agents Chemother. 1999, 10 43, 727; Daigle, D. M.; et al. Chem. Biol. 1999, 6, 99; Azucena, E.; et al. J. Am. Chem. Soc. 1997, 119, 2317; Patterson, J.-E.; Zervos, M. J. Rev. Infect. Dis. 1990, 12, 644), and not substrates for the APH(2") activity of AAC(6')-APH(2"). They were in fact potent competitive inhibitors of the APH(2") activity, K_{is} = 0.8 μ M for dimer 4, 0.1 μ M for 6 and 0.7 μ M for 27. 15

Detailed Description of Figures:

Figure 1 shows the biotinylated *E. coli* 16S rRNA A-site (AS-wt) rRNA sequence.

It is this portion of the bacterial RNA on the 16S domain of the ribosome which is bound by the aminoglycosides. This interferes with translational fidelity during protein synthesis.

Figure 2 shows the mode of action of β-hydroxyamine commonly found in aminoglycoside antibiotics. The β-hydroxyamine motif interacts not only with the phosphodiester group but also the Hoogsteen face of guanine residues in RNA.

Figure 3 is a graph showing a binding isotherm of neamine binding to AS-30 wt (circles) and control mutants (U1406A, squares; U1485A, diamonds) for determination of dissociation constants (K_d = inverse slope) and binding stoichiometry (x-intercept). The binding is sequence selective. The inset in th figure is a Scatchard plot which shows the binding stoichiometry.

10

15

20

25

30

Figure 4 is an energetic analysis of a bivalent neamine along with a cartoon drawing illustrating how dimers are likely to bind to AS-wt rRNA with high affinity. Neamine units bind to AS-wt with a $\rm K_d$ of 10 $\rm \mu M$ per binding site. Addition of the proper linker would enable the unnatural dimer to bind with much higher affinity and resist modifying enzymes because of its unnatural structure.

Figure 5 is a scheme that shows how the neamine dimers were prepared from a known neamine precursor. The starting material is perbenzyl perazido 5-O-carboxyethylneamine which is prepared from the 5-O-allyl precursor. A variety of diamines were chosen to form a diamide linker to the neamine units. Dimer 14 was synthesized using the Ugi reaction. Four separate components are added during this synthetic procedure. Synthetic steps from the neamine expoxides are shown at the bottom of the scheme. Simple nucleophilic opening of the epoxide ring generates the dimers from a primary amine or a primary diamine precursor.

Figure 6 is a graph which demonstrates the relationship between antibiotic activity (MIC, minimum inhibitory concentration) and translation inhibition (IC₅₀). The compounds above the line do not target RNA and have different modes of antibiotic action, while those to the right of the line exhibit transport limitations. What was measured is the inhibition of *in vitro* translation of the luciferase gene measured as a function of MIC. This analysis was used to validate the target and characterize potential transport limitations for the aminoglycosides, and *in vitro* translation inhibition is expected to be a better indicator of aminoglycoside selectivity for 16S rRNA compared to binding affinity measurements with the Asite sequences. A nearly linear relationship between IC₅₀ of translation inhibition and the MIC was observed.

Figure 7 shows the sites of enzymatic modification on neomycin B and gentamicin C₁. *N*-acetylation, phosphorylation and *O*-ribosylation are the major modifications catalyzed by resistance causing enzymes.

Figure 8 is a graph showing the results of surface plasmon resonance

10

15

20

25

experiments on neomycin B binding to AS-wt rRNA and mutants. The circles are for the wild type organism and the squares and diamonds are for the two different mutants. The binding is sequence selective.

Figure 9 is a Scatchard plot for determining dissociation constants (K_d , inverse slope and binding stoichiometry (x-intercept) for the wild type organism. The binding is sequence selective.

Figure 10 shows an Ugi reaction where four separate components are reacted to produce an amide linked dimer. Compound 14 was synthesized in this reaction to give a linked dimer. 5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3', 4'-tri-O-benzyl-neamine (60 mg, 79 μ mol), methyl isocyanoacetate (36 μ L, 397 μ mol), benzaldehyde (8 μ L, 79 μ mol), and diaminododecane (8 mg, 40 μ mol) were dissolved in a mixture of anhydrous CH₂Cl₂/methanol (1:1, 800 μ l). After stirring 48 hours at ambient temperature, the reaction was diluted with ethyl acetate (5 ml). It was then washed with 1M HCl (2 x 5 ml), saturated sodium bicarbonate (2 x 5 ml), and brine (1 x 5 ml). The aqueous extracts were re-extracted with ethyl acetate (2 x 5 ml). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated. Flash chromatography (silica gel, gradient hexane to 1:1 hexane/ethyl acetate) yielded protected neamine dimer 14 (21.7 mg, 26%).

Figure 11 is a table giving the results of the Kirby Bauer test with known compounds and the synthesized dimers. The numbers under the test strains are for diameters (mm) of zones of inhibition. All compounds except neomycin and gentamicin were spotted at 200 nmoles/disk; neomycin was spotted at 33 nmoles/disk (30 μ g) while gentamicin was spotted at 10 nmole/disk (10 μ g). Surface plasmon resonance K_d values for dimers 4-13 is also provided.

Figure 12 is a table that shows the minimum inhibitory concentration (MIC, μM) in E. Coli ATCC 25922 and in vitro translation IC₅₀. The data from this table is graphed in figure 6 and shows the likely mechanism of action for the antibiotics.

Figure 13 shows tables of the kinetic parameters of neamine and neamine dimers for various aminoglycoside-modifying enzymes. BF refers to the bifunctional enzyme AAC(6')-APH(2"), where the particular activity is indicated. The neamine data were obtained from Daigle, D. M.; et al. *Chem. Biol.* 1999, 6, 99.

Experimental Section:

5

20

25

30

stated. THF and CH₂Cl₂ were distilled under Ar with benzophenone ketyl and CaH₂, respectively. NMR spectra were obtained on a Bruker AMX-400. The sites of enzymatic modification of neomycin and gentamicin that cause drug resistance are shown in Figure 1 (Daigle, D. M.; et al. *Chem. Biol.* 1999, 6, 99). Synthesis of biotinylated RNAs and surface plasmon resonance experiments were performed as previously described and K_d values were also calculated as previously described (figure 2) (Hendrix, M.; et al. *J. Am. Chem. Soc.* 1997, 119, 3641).

Antimicrobial Testing: The Kirby-Bauer Disk assay was performed as previously described (Hendrix, M.; et al. *J. Am. Chem. Soc.* 1997, 119, 3641; Phillips, I.; Williams, D. In Laboratory Methods in Antimicrobial Chemotherapy, Gerrod, L., Ed.; Churchill Livingstone Press: Edinburg, 1978; pp 3-30). Reference strains *E. coli* ATCC 25922 and *S. aureus* ATCC 25923 were obtained as lyophilized pellets (Difco). MIC testing was performed as recommended in the NCCLS Publication M7-A4.

In vitro translation assays: A coupled transcription-translation assay was performed as previously described with luciferase DNA to determine the extent of translational inhibition in the presence of the various aminoglycosides/mimetics (Greenberg, W. A.; et al. J. Am. Chem. Soc. 1999, 121, 6527). The transcription/translation mixture, or S-30 extract, and the reaction buffers wer prepared as described previously with slight modifications (Greenberg, W. A.; et al. J. Am. Chem. Soc. 1999, 121, 6527). The translation assays were performed

WO 01/80863 PCT/US01/40611

by mixing all of the reagents, various amounts of the compounds to be tested, and the DNA template into a small, RNase-free microcentrifuge tube. The final addition was always S-30 extract, and the reaction was maintained at 21°+/- 1°C in a water bath. The reaction was terminated after 30 minutes by diluting the reaction 10-fold with a luciferase dilution buffer containing 1% Triton X-100. Translation yield was determined by mixing 10µL of the diluted reaction mixture with 50µL of luciferase assay reagent (20mM Tricine, pH 7.8; 15mM MgSO₄; 0.1mM EDTA; 33.3mM DTT; 270µM coenzyme A; 470µM luciferin; and 530µM ATP) and monitoring the luminescence with a Turner Designs luminometer. For each assay, points were collected in duplicate, and the full assays were performed at least three times.

5

10

15

20

25

30

5-Ethylcarboxyl-1,3,2',6'-tetraazido-6, 3', 4'-tri-O- benzylneamine. (Sucheck, S. J.; et al. Angew. Chem., Int. Ed. Engl. 2000, 39, 1080) 5-O-Allyl -1, 3, 2',6 '-tetraazido-6, 3', 4'-tri-O- benzylneamine (Greenberg, W. A.; et al. J. Am. Chem. Soc. 1999, 121, 6527) (264 mg, 0.340 mmol) was dissolved in 14 mL of 1:1 methanol-dichloromethane and was cooled to -78 °C. Ozone was bubbled through the solution until it became light blue in color. The solution was treated with 272 µL of dimethyl sulfide and was allowed to stir one hour while it warmed to room temperature. The solvents were removed under diminished pressure and the crude aldehyde was taken up in 6 mL of 1:1 carbon tetrachloride-acetic acid. The solution was cooled to 0 °C in an ice bath and 305 mg of sodium chlorite (3.39 mmol) was added in portions over 1 h. The solution was poured into an ice cold $\text{Na}_2\text{S}_2\text{O}_5$ solution, acidified to pH 1 with 0.5 N H_2SO_4 , extracted with five 50-mL portions ethyl acetate and dried (MgSO₄). The solution was concentrated by co-evaporation with toluene under diminished pressure. The product was purified by silica gel flash column chromatography (3 x 15 cm). Elution with 2:1+1 % hexanes-ethyl acetate-acetic acid afforded the carboxylic acid as a colorless foam: yield 205 mg (80 %); silica gel TLC R, 0.56 (1:1+1 % hexanes-ethyl acetate-acetic acid); mass spectrum (FAB), m/z 887.1961 (M + Cs)* $(C_{35}H_{38}N_{12}O_8Cs$ requires 887.1990).

General Procedur for the Synth sis of N amine Dimers. 5-Ethylcarboxyl-1,

WO 01/80863 PCT/US01/40611 - 17 -

- 3 ,2', 6'-tetraazido-6, 3' ,4'-tri-O-benzylneamine (0.0826 mmol/tube) was dissolved in 1.5 mL/tube of dry dichloromethane and was distributed into a Quest 210 parallel synthesizer (Argonaut Technologies; San Carlos, CA). To each tube was added 143 mg of MP-carbodiimide resin (1.15 mmol/g) (Argonaut Technologies;
- San Carlos, CA) followed by the diamine (0.0413 mmol/tube). The solutions were agitated for 16 hours, filtered and concentrated under diminished pressure to obtain the dimers as colorless foams.
 - N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',
- 4'-tri-O-benzylneamine)-propylamide, Protected Dimer 4. Yield: 16.9 mg (26 %); silica gel TLC R, 0.54 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1569.6495 (M + Na)⁺ (C₇₃H₈₂N₂₆O₁₄Na requires 1569.6401).
 - N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',
- 4'-tri-O-benzylneamine)butyl-amide, Protected Dimer 5. Yield: 25.9 mg (40 %); silica gel TLC R, 0.54 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1583.6550 (M + Na)⁺ (C₇₄H₈₄N₂₆O₁₄Na requires 1583.6558).
 - N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',
- 4'-tri-O-benzylneamine)-pentylamide, Protected Dimer 6. Yield: 33.1 mg (51 %); silica gel TLC R, 0.54 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1597.6744 (M + Na)⁺ (C₇₅H₈₆N₂₆O₁₄Na requires 1597.6714).
 - N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',
- 4'-tri-O-benzylneamine)-hexylamide, Protected Dimer 7. Yield: 25.8 mg (39 %); silica gel TLC R, 0.54 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1611.6886 (M + Na)* (C₇₆H₈₈N₂₆O₁₄Na requires 1611.6871).
 - N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',
- 4'-tri-O-benzylneamine)-heptylamide, Protected Dimer 8. Yield: 39.6 mg (60 %); silica gel TLC R, 0.54 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1625.7021 (M + Na)⁺ (C₇₇H₉₀N₂₆O₁₄Na requires 1625.7027).

N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',

4'-tri-O-benzylneamine)-octylamide, Protected Dimer 9.. 'Yield: 31.7 mg (47 %); silica gel TLC R, 0.54 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1639.7137 (M + Na)+ $(C_{78}H_{92}N_{26}O_{14}Na$ requires 1639.7184).

5

N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',

4'-tri-O-benzylneamine)-nonylamide, Protected Dimer 10. Yield: 29.4 mg (44 %); silica gel TLC R, 0.59 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1653.7423 (M + Na)* ($C_{79}H_{94}N_{26}O_{14}Na$ requires 1653.7340).

10

N,N'-1,3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',

4'-tri-O-benzylneamine)decyl-amide, Protected Dimer11. Yield: 36.7 mg (54 %); silica gel TLC R, 0.63 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1667.7483 (M + Na) $^{+}$ (C₈₀H₉₆N₂₆O₁₄Na requires 1667.7497).

15

N,N'-1, 3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6,

3',4'-tri-O-benzylneamine)-dodecylamide, Protected Dimer 12. Yield: 34.2 mg (50 %); silica gel TLC R, 0.65 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1695.7802 (M + Na)* ($C_{82}H_{100}N_{26}O_{14}Na$ requires 1695.7810).

20

N,N'-1,3-bis(5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3',

4'-tri-O-benzylneamine)-4, 7, 10-trioxotetradecylamide, Protected Dimer 13.

Yield: 32.5 mg (47 %); silica gel TLC R, 0.26 (1:1 hexanes-ethyl acetate); mass spectrum (MALDI-FTMS), m/z 1715.7432 (M + Na) $^{+}$ (C₈₀H₉₆N₂₆O₁₇Na requires 1715.7344).

25

30

General Procedure for the Azide Reduction of Neamine Dimers. The

N,N'-bis(5-ethyl-carboxyl-1, 3, 2', 6'-tetraazido-6, 3',

4'-tri-O-benzylneamine)alkylamides were dissolved in 1.5 mL/tube of dry THF and were distributed into a Quest 210 parallel synthesizer. To each tube was added 150 μL of water followed by 15 μL of 1 N NaOH solution. To the resulting solutions were added 10 equivalents of 1 M trimethylphosphine in THF for each tub. The solutions were agitated for 16 hours and 100 mg/tube of MP-TsOH

resin (1.32 mmol/g) (Argonaut Technolo-gies; San Carlos, CA) was added. The solutions were allowed to agitate for 2 hours and were washed with three 10-mL portions of methanol. The resin bound amines were released from the resin by washing the resin with two 5-mL portions of 2 N ammonia in methanol. The solutions were concentrated under diminished pressure to obtain the amines as light yellow syrups. The amines were subjected to hydrogenolysis conditions without further characterization.

General Procedure for the Hydrogenolysis of Neamine Dimers. The

N,N'-bis(5-ethyl-carboxyl-6, 3', 4'-tri-O-benzylneamine)alkylamides were dissolved in 1 mL/vial of glacial acetic acid. To each vial was added 50 μg of 20 % Pd(OH)₂/C (Degussa type) and the solutions were placed under 1 atm of H₂. The solutions were stirred for 16 hours and were concentrated under diminished pressure. The deprotected dimers were purified by flash chromatography on silica del (1 x 15 cm). Flution with 8:2:5:4.30 % ammonium.

silica gel (1 x 15 cm). Elution with 8:2:5:4 30 % ammonium hydroxide-chloroform-ethanol-butanol afforded the dimers as a colorless glasses. The dimers were resuspended in water and applied to Dowex 50WX4-50 H⁺ and washed with 5 mL of water. The dimers were eluted with 3 % ammonium hydroxide to obtain the dimers as colorless foams after lyophilization.

20

5

N,N'-1,3-bis(5-Ethylcarboxyl-neamine)propylamide (4). Yield: 0.9 mg (10 %); silica gel TLC R_f 0.32 (8:2:5:4 30 % ammonium hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z 821.4355 (M + Na)* ($C_{31}H_{62}N_{10}O_{14}Na$ requires 821.4345).

25

N,N'-1,3-bis(5-Ethylcarboxyl-neamine)butylamide (5). Yield: 1.4 mg (10 %); silica gel TLC R, 0.32 (8:2:5:4 30 % ammonium hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z 835.0000 (M + Na)* ($C_{32}H_{64}N_{10}O_{14}Na$ requires 835.4501).

30

N,N'-1,3-bis(5-Ethylcarboxyl-neamine)pentylamid (6). Yield: 0.9 mg (5.2 %); silica gel TLC R, 0.32 (8:2:5:4 30 % ammonium hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z

849.4668 (M + Na)* $(C_{33}H_{66}N_{10}O_{14}Na \text{ requires } 849.4658).$

- N,N'-1,3-bis(5-Ethylcarboxyl-neamine)hexylamide (7). Yield: 1.4 mg (10 %); silica gel TLC R, 0.37 (8:2:5:4 30 % ammonium
- hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z $863.4838 \text{ (M + Na)}^{+} \text{ (C}_{34}\text{H}_{68}\text{N}_{10}\text{O}_{14}\text{Na requires }863.4814).}$
 - N,N'-1,3-bis(5-Ethylcarboxyl-neamine)heptylamide (8). Yield: 1.7 mg (8.1 %); silica gel TLC R, 0.37 (8:2:5:4 30 % ammonium
- hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z $855.5173 \, (M + H)^{+} \, (C_{35}H_{71}N_{10}O_{14} \, requires \, 855.5151).$
 - N,N'-1,3-bis(5-Ethylcarboxyl-neamine)octylamide (9). Yield: 4.4 mg (26 %); silica gel TLC R, 0.58 (8:2:5:4 30 % ammonium
- hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z $891.5131 \text{ (M + Na)}^{*} \text{ (C}_{36}\text{H}_{72}\text{N}_{10}\text{O}_{14}\text{Na requires }891.5127).}$
 - N,N'-1,3-bis(5-Ethylcarboxyl-neamine)nonylamide (10). Yield: 2.4 mg (15 %); silica gel TLC R, 0.74 (8:2:5:4 30 % ammonium
- 20 hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z $883.5472 \text{ (M + H)}^{+} \text{ (C}_{37}\text{H}_{75}\text{N}_{10}\text{O}_{14} \text{ requires } 883.5464).$
 - N,N'-1,3-bis(5-Ethylcarboxyl-neamine)decylamide (11). Yield: 13 mg (13 %); silica gel TLC R, 0.74 (8:2:5:4 30 % ammonium
- 25 hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z $897.5583 \, (M + H)^{+} \, (C_{38}H_{77}N_{10}O_{14} \, requires \, 897.5621)$.
 - N,N'-1,3-bis(5-Ethylcarboxyl-neamine)dodecylamide (12). Yield: 0.7 mg (3.7 %); silica gel TLC R, 0.79 (8:2:5:4 30 % ammonium
- 30 hydroxide-chloroform-ethanol-butanol); mass spectrum (MALDI-FTMS), m/z 947.5729 (M + Na) $^{+}$ (C₄₀H₈₀N₁₀O₁₄Na requires 947.5753).
 - N,N'-1,3-bis(5-Ethylcarboxyl-neamine)-4,7,10-trioxot trad cylamide (13).

Yield: 2.2 mg (12 %); silica gel TLC R, 0.79 (8:2:5:4 30 % ammonium hydroxide-chloroform-ethanol- butanol); mass spectrum (MALDI-FTMS), m/z 1715.7432 (M + Na) $^{+}$ (C₃₈H₇₆N₁₀O₁₇Na requires 1715.7344).

Protected Neamine Dimer 14. For a schematic Ugi reaction, see Figure 3. In a 5 representative example, 5-Ethylcarboxyl-1, 3, 2', 6'-tetraazido-6, 3', 4'-tri-O-benzylneamine neamine (60 mg, 79 µmol), methyl isocyanoacetate (36 μ L, 397 μ mol), benzaldehyde (8 μ L, 79 μ mol), and diaminododecane (8 mg, 40 μmol) were dissolved in a mixture of anhydrous CH₂Cl₂/methanol (1:1, 800 μl). 10 After stirring 48 hours at ambient temperature, the reaction was diluted with ethyl acetate (5 ml). It was then washed with 1M HCI (2 x 5 ml), saturated sodium bicarbonate (2 x 5 ml), and brine (1 x 5 ml). The aqueous extracts were re-extracted with ethyl acetate (2 x 5 ml). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated. Flash chromatography (silica gel, gradient hexane to 1:1 hexane/ethyl acetate) yielded protected neamine dimer 14 15 (21.7 mg, 26%). HRMS (FAB) calcd for $C_{104}H_{122}N_{28}O_{20}$ (M + Cs) $^{+}$ 2215.8445, found 2215.8587.

Neamine Dimer 14. Protected neamine dimer 14 (21.4 mg, 10 µmol) was suspended in ethanol (250 μl). Anhydrous hydrazine (3.2 μl, 100 μmol) was added, followed by Raney nickel (~10 mg) that had been washed thoroughly with ethanol. The reaction was stirred overnight at ambient temperature, then filtered through a plug of Celite and concentrated. The resulting residue was dissolved in $\rm H_2O/AcOH~(1:1,~0.04~M)$. Pd(OH)₂/C (~10 mg, Degussa type) was added and the reaction stirred under a H2 atmosphere (balloon) overnight. The reaction was filtered through a plug of Celite and Iyophilized. Purification was accomplished on CG-50 cation exchange resin, eluting with a gradient of 0 to 40 % NH $_3$ /H $_2$ O, to give neamine dimer 14 (3.4 mg, 26 %). 1 H NMR (500 MHz, D_{2} O) δ 7.48-7.36 (10H, bs), 5.71 (2H, d, J = 4 Hz), 4.34 (1H, d, J = 16 Hz), 4.15 (1H, d, J = 15 Hz), 3.95-3.32 (32H, m), 2.42-2.35 (2H, m), 1.76 (2H, dd, J = 26, 13 Hz), 1.27-0.92(20H, m); ES-MS (neg) calcd for $C_{60}H_{98}N_{12}O_{20}$ (M - H) 1306, found 1306.

20

25

30

Epoxid 15. To 500 mg of perbenzyl-perazido-neamin (Greenberg, W. A.; et al.

WO 01/80863 PCT/US01/40611

J. Am. Chem. Soc. 1999, 121, 6527) (0.720 mmol) dissolved in 5 mL of THF was added 31.7 mg of 60 % sodium hydride in paraffin (0.793 mmol). Freshly prepared (S)-glycidol triflate (121 mg, 0.793 mmol) was added and the solution stirred overnight at room temperature. The solution was quench with saturated NH₄Cl and partitioned with three 50 mL-aliquots of ethyl acetate. The solution was dried (MgSO₄) and concentrated under diminished pressure. The crude epoxide was purified by flash chromatography on silica gel (30 x 150 mm). The pure product was eluted with 6:1 hexanes-ethyl acetate to afford the epoxide 15 as a colorless foam: yield 405 mg (75 %); TLC R, 0.32 (6:1 hexanes-ethyl acetate); mass spectrum (MALDIFTMS): m/z 775.3038 [M + Na⁺] (C₃₆H₄₀N₁₂O₇Na requires 775.3041).

5

10

15

20

Epoxide 16. To 280 mg of perbenzyl-perazido-neamine (Greenberg, W. A.; et al. *J. Am. Chem. Soc.* **1999**, *121*, 6527) (0.403 mmol) dissolved in 5 mL of THF was added 17.8 mg of 60 % sodium hydride in paraffin (0.444 mmol). Freshly prepared (R)-glycidol triflate (65.3 mg, 0.444 mmol) was added and the solution stirred overnight at room temperature. The solution was quench with saturated NH₄Cl and partitioned with three 50 mL-aliquots of ethyl acetate. The solution was dried (MgSO₄) and concentrated under diminished pressure. The crude epoxide was purified by flash chromatography on silica gel (30 x 150 mm). The pure product was eluted with 6:1 hexanes-ethyl acetate to afford the epoxide **16** as a colorless foam: yield: 280 mg (92 %); TLC R₇ 0.32 (6:1 hexanes-ethyl acetate); mass spectrum (ESI): m/z 775 [M + Na $^+$] (C₃₆H₄₀N₁₂O₇Na requires 775).

Protected Monomer 17. yield: 50.6 mg (65 %), TLC R, 0.31 (2:2:96 triethylamine-methanol-dichloromethane); mass spectrum (MALDIFTMS): m/z 784.3616 [M + H⁺] (C₃₇H₄₆N₁₃O₇ requires 784.3643).

Protected Monomer 18. yield: 52.0 mg (66.7 %); TLC R₇ 0.31 (2:2:96 triethylamine-methanol-dichloromethane); (MALDIFTMS), m/z 784.3632 [M + H $^{+}$] (C₃₇H₄₆N₁₃O₇ requires 784.3643). **Protect d Dimer 19.** yield: 33.2 mg (72 %), TLC R₇ 0.38 (2:2:96 triethylamine-methanol-dichloromethan); mass spectrum (MALDIFTMS): m/z 1536.6846 [M + H $^{+}$] (C₇₃H₈₆N₂₅O₁₄ requires 1536.6786).

WO 01/80863 PCT/US01/40611

Protected Dimer 20. yield: 37.5 mg (73.4 %); TLC R, 0.38 (2:2:96 triethylamine-methanol-dichloro-methane); (MALDIFTMS), m/z 1536.6711 [M + H^{+}] ($C_{73}H_{86}N_{25}O_{14}$ requires 1536.6785).

- Protected Dimer 21. yield: 39.2 mg (74 %), TLC R_r 0.38 (2:2:96 triethylamine-methanol- dichloromethane); mass spectrum (MALDIFTMS): m/z 1593.7404 [M + H⁺] (C₇₆H₉₃N₂₆O₁₄ requires 1593.7365).
- Protected Dimer 22. yield: 29.3 mg (54.9 %), TLC R_r 0.38 (2:2:96 triethylamine-methanol-dichloromethane); (MALDIFTMS): m/z 1607.7503 [M + H^{*}] ($C_{77}H_{95}N_{26}O_{14}$ requires 1607.7521).
- Protected Dimer 23. yield: 29.2 mg (54 %), TLC R₇ 0.38 (2:2:96 triethylamine-methanol-dichloromethane); mass spectrum (MALDIFTMS): m/z 1621.7658 [M + H⁺] (C₇₈H₇₆N₂₆O₁₄ requires 1621.7678).
 - Protected Dimer 24. yield: 31.2 mg (58 %), TLC R_r 0.38 (2:2:96 triethylamine-methanol-dichloromethane); (MALDIFTMS): m/z 1637.7633 [M + H^{*}] (C₇₈H₉₇N₂₆O₁₅ requires 1637.7627).
 - Protected Dimer 25. yield: 42.9 mg (90 %); TLC R₇ 0.30 (2:2:96 triethylamine-methanol-dichloromethane); (MALDIFTMS), m/z 1593.7299 [M + H $^{+}$] (C₇₆H₉₃N₂₆O₁₄ requires 1593.7365).

20

- Protected Dimer 26. yield: 37.5 mg (77.9 %); TLC R, 0.26 (2:2:96 triethylamine-methanol-dichloromethane); (MALDIFTMS), m/z 1607.7531 [M + H*] (C₇₇H₉₅N₂₆O₁₄ requires 1607.7521).
- Protected Dimer 27. yield: 8.2 mg (17.0 %), TLC R_f 0.23 (2:2:96

 triethylamine-methanol-dichloromethane); (MALDIFTMS), m/z 1621.7526 [M + H⁺]
 (C₇₈H₉₇N₂₆O₁₄ requires 1621.7677).

Protected Dimer 28. yield: 8.2 mg (16.7 %); TLC R, 0.29 (2:2:96

triethylamine-methanol-dichloromethane); mass spectrum (MALDIFTMS): m/z $1637.7633 \, [\text{M} + \text{H}^+] \, (\text{C}_{78} \text{H}_{97} \text{N}_{26} \text{O}_{15} \, \text{requires} \, 1637.7627).$

Monomer 17. yield: 4.5 mg (34 %); TLC R, 0.29; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (MALDIFTMS), m/z 410.2596 [M + H $^{+}$] (C₁₆H₃₆N₅O₇ requires 410.2609).

Monomer 18. yield: 14.8 mg (47 %); TLC R, 0.27; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (MALDIFTMS), m/z 432.2421 [M + Na $^{+}$] (C₁₆H₃₅N₅O₇Na requires 432.2429).

Dimer 19. yield: 6.3 mg (35 %); TLC R_r 0.21; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (MALDIFTMS), m/z 788.4761 [M + H $^{+}$] (C₃₁H₆₆N₉O₁₄Na requires 788.4729).

15

30

10

Dimer 20. yield: 4.9 mg (26 %); TLC R, 0.24; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (MALDIFTMS), m/z 810.4514 [M + Na $^{+}$] (C₃₁H₆₅N₉O₁₄Na requires 810.4543).

Dimer 21. yield: 5.9 mg (57 %); TLC R₇ 0.27; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (ESI), m/z 843 [M - H⁻] (C₃₄H₇₁N₁₀O₁₄ requires 843).

Dimer 22. yield: 8.1 mg (99 %); TLC R₇ 0.29; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (ESI), m/z 859 [M + H⁺] (C₃₅H₇₅N₁₀O₁₄ requires 859).

Dimer 23. yield: 2.6 mg (16 %); TLC R_f 0.27; (8:2:5:4 ammonium) hydroxide-chloroform-ethanol-butanol); (MALDIFTMS), m/z 895.5439 [M + Na $^{+}$] (C₃₆H₇₆N₁₀O₁₄ requires 895.5435).

Dimer 24. yield: 5.2 mg (41 %); TLC R, 0.28; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (MALDIFTMS), m/z 889.5571 [M + H⁺]

10

 $(C_{36}H_{77}N_{10}O_{15}$ requires 889.5564).

Dimer 25. yield: 6.0 mg (51%); TLC R, 0.26; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (ESI), m/z 843 [M - H $^{-}$] (C₃₄H₇₁N₁₀O₁₄ requires 843).

Dimer 26. yield: 3.1 mg (28 %); TLC R, 0.29; (8:2:5:4 ammonium hydroxide-chloroform-ethanol-butanol); (ESI), m/z 859 [M + H $^{+}$] (C₃₅H₇₅N₁₀O₁₄ requires 859).

Dimer 27. yield: 13.0 mg (90 %); TLC R, 0.27; (8:2:5:4 ammonium hydroxide-chloroform- ethanol-butanol); (MALDIFTMS), m/z 895.5439 [M + Na $^{+}$] (C₃₆H₇₆N₁₀O₁₄ requires 895.5435).

Dimer 28. yield: 8.1mg (64 %); TLC R₇ 0.27; (8:2:5:4 ammonium hydroxide-chloroform- ethanol-butanol); (MALDIFTMS), m/z 889.5565 [M + H⁺] (C₃₆H₇₇N₁₀O₁₅ requires 889.5564).

What is claimed is:

- 1. A bifunctional antibiotic comprising a first and a second pharmacophore and a linkage for linking said first and said second pharmacophores, each of said first and second pharmacophores having a binding affinity for the A-site of bacterial 16S rRNA sufficient to inhibit translation at clinically effective concentrations, said first and second pharmacophores being identical to one another or different from one another, said linkage having a length and structure for enabling said first and second pharmacophores to bind simultaneously to a single A-site of bacterial 16S rRNA.
- 2. A bifunctional antibiotic according to claim 1 wherein at least one of said first and second pharmacophores is inhibitory of APH(2") activity with respect to bifunctional enzyme AAC(6')-APH(2"), the inhibitory activity being sufficient, at clinically effective concentrations, to diminish deactivation of said bifunctional antibiotic by said bifunctional enzyme AAC(6')-APH(2").
 - 3. A bifunctional antibiotic according to claim 1 represented by the following structure:

20

15

5

10

wherein:

Y¹ and Y² are the first and second pharmacophore respectively and are both represented by:

25

R¹ and R² are each independently selected from the group of radicals consisting of -H and -CH(Ph)CONHCH₂CO₂H; and

X is the linkage and is selected from the group of diradicals consisting of $-(CH_2)_n$ and $-[(CH_2)_2O(CH_2)_3]_2O$, where $3 \le n \le 12$.

4. A bifunctional antibiotic according to claim 1 represented by the following structure:

5

10

15

20

25

30

wherein Y1 and Y2 are the first and second pharmacophore respectively and are both represented by:

the stereochemistry is either (S,S) or (R,R).

5. A bifunctional antibiotic according to claim 4 represented by the following structure:

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2
 H_2N
 H_2
 H_2N
 H_3
 H_4
 H_4
 H_5
 H_5
 H_7
 H_8
 H_8
 H_8
 H_8
 H_8

6. A bifunctional antibiotic according to claim 4 represented by the following structure:

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_2
 H_2N
 H_2
 H_3
 H_2
 H_2
 H_3
 H_4
 H_5
 H_5
 H_7
 H_7

7. A bifunctional antibiotic according to claim 1 represented by the following structure:

5 wherein:

10

15

20

25

Y¹ and Y² are the first and second pharmacophore respectively and are both represented by:

$$H_2N$$
 HO
 HO
 H_2N
 O
 OH
 OH
 OH
 OH

X is the linkage and is selected from the group of diradicals consisting of - $(CH_2)_{n}$ - and $-[(CH_2)_2]_2O$, where $2 \le n \le 4$; and

the stereochemistry is either (S,S) or (R,R).

8. A bifunctional antibiotic according to claim 7 represented by the following structure:

$$H_2N$$
 H_2N
 H_2N

9. A bifunctional antibiotic according to claim 7 represented by the following structure:

10

5

10. A bifunctional antibiotic according to claim 7 represented by the following structure:

11. A bifunctional antibiotic according to claim 7 represented by the following structure:

25

12. A bifunctional antibiotic according to claim 7 represented by the following structure:

5 $H_{2}N$ $H_{3}N$ $H_{4}N$ $H_{4}N$ $H_{5}N$ $H_{5}N$

13. A bifunctional antibiotic according to claim 7 represented by the following structure:

14. A bifunctional antibiotic according to claim 7 represented by the following structure:

15. A bifunctional antibiotic according to claim 7 represented by the following structure:

10

- 16. A bifunctional antibiotic according to claim 1 wherein the first and second pharmacophore are independently selected from the group consisting of neamine, neomycin B, and gentamincin $\mathbf{C_1}$.
- 17. A process for inhibiting translation within a bacterium having 16S rRNA with an A-site, said process comprising the step of contacting the bacterium with a concentration of a bifunctional antibiotic selected from claims 1 -16 sufficient to inhibit translation.
- 18. A process for simultaneously inhibiting translation and APH(2") activity within a bacterium having both 16S rRNA with an A-site and the bifunctional enzyme AAC(6')-APH(2"), said process comprising the step of contacting the bacterium with a concentration of a bifunctional antibiotic selected from claims 1 -16 sufficient to inhibit translation and APH(2") activity.

Figure 1

Figure 2

Figure 3

Figure 4

(a) CH_3NH_2 ; (b) 15, EtOH, 95 °C, 16 h; (c) (i) $P(CH_3)_3$, THF, H_2O ;

(ii) 20 % Pd(OH)₂/C (Degussa), H₂, H₂O, AcOH; (d) **16**, EtOH, 95 °C, **16** h;

(e) diamine, EtOH, 95 °C, 16 h.

Figure 5

Figure 6

$$\begin{array}{c} \text{H}_2\text{N} \\ \text{HO} \\ \text{OH} \\ \text{HO} \\ \text{OH} \\ \text{HO} \\ \text{OH} \\ \text{NH}_2\text{N} \\ \text{OH} \\ \text{OH$$

Figure 7

Figure 8

Figure 9

$$R^{1}CO_{2}H$$
 + $R^{2}CHO$ + $H_{2}N-(CH_{2})_{n}-NH_{2}$
+ $R^{3}NC$ R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{1} R^{2} R^{2

Figure 10

Kirby Bauer Tests: diameters (in mm) of zones of inhibition for test strains. All compounds except neomycin and gentamicin were spotted at 200nmoles/disk; neomycin was spotted at 33nmoles/disk (30μg) while gentamicin was spotted at 10nmol/disk (10μg). SPR K_d values for dimers 4-13 is also provided.

compound	E. coli ATCC 25922	S. aureus ATCC 25923	<i>K</i> _d (µМ)	
neamine (1)	17	17	10	
neomycin (2)	18.5	21	0.2	
gentamicin (3)	19.5	20		
ribostamycin	16.5	14.5	1.7	
paromomycin	18	19.5	25	
4	14.5	20	0.2	
5	14	17.5	1.1	
6	12.5	17.5	4.6	
7	10.5	14	0.8	
8	11	14.5	4.4	
9	10.5	14.5	4.1	
10	10.5	14.5	2.3	
11	13	13.5	2.4	
12	10	12.5	2.8	
13	11	8.5	1.9	
14	14	14	21	
17	16	21	5.4	
18	15	20	12	
19	15		2.6	
20	18	19.5	17	
21	15	22.5 20.5	1.2	
22	16.5		0.5	
23	13	21.5	0.2	
24	18	18	5.0	
25	11	21.5	1.0	
26	17	17.5	0.6	
27	18.5	23	0.8	
28	16.5	21.5	0.04	
	10	22	0.8	

Figure 11

Minimum Inhibitory Concentration (μM) in E. Coli ATCC 25922 and In Vitro Translation IC₅₀.

Compound	antibiotic activity (MIC, μM)	translation inhibition (IC ₅₀ , nM)
neamine (I)	50-100	410
neomycin (2)	3.1	28
gentamicin (3)	1.6	20
ribostamycin	12.5	100
kanamycin	12.5	150
paromomycin	6.25	40
tobramycin	3.1	50
streptomycin	10	150
spectinomycin	50	500
4	. 31	300
6	125	1000
14	50	860
17	25-50	280
18	50	550
19	25	270
20	12.5	200
21	25-50	310
22	12.5-25	160
23	100	>500
24	12.5	70
25	100	>500
26	12.5	130
27	6.25	55
28	25	280

Figure 12

Kinetic Parameters of Neamine Dimers 6 and Neamine for Various Aminoglycoside Modifying-Enzymes. BF refers to the bifunctional enzyme AAC(6')-APH(2"), where the particular activity tested is indicated.

neamine (1) (Daigle, D. M.; et al. Chem. Biol. 1999, 6, 99)

Enzyme	K _M	k _{cat} (s ⁻¹)	K _{is} (μM)	k _{cat} /K _M (M ⁻¹ s ⁻¹)
BF AAC-(6')	8.40	3.00	15.0	3.6 x 10 ⁵
BF APH-(2")	9.6	0.17		1.8×10^4

neamine dimer 4

Enzyme	Κ _м (μМ)	k _{cat} (s ⁻¹)	K _{is} (μΜ)	$k_{cat}/K_{M} (M^{-1}s^{-1})$
BF AAC-(6')	0.84			
BF APH-(2")			0.78	
AAC-Ii-(6')	53.4	0.86		1.6×10^4
APH-(3')	0.82	0.75		9.14×10^{5}

neamine dimer 6

Enzyme	Κ _м (μМ)	k _{cat} (s ⁻¹)	K _{is} (μΜ)	k _{cat} /K _M (M ⁻¹ s ⁻¹)
BF AAC-(6')	4.22	0.967		2.29 x 10 ⁵
BF APH-(2")			0.149	2.27 X 10
AAC-Ii-(6')	83.6	1.89		2.26×10^4
APH-(3')	2.66	0.639		2.49×10^{5}

neamine dimer 27

Enzyme	K _M (μM)	k _{cat} (s ⁻¹)	K _{is} (μM)	$k_{cat}/K_{M} (M^{-1}s^{-1})$
BF AAC-(6')	0.53			
BF APH-(2")			0.94	
AAC-Ii-(6')	28.7	0.26	•••	9.26×10^3
APH-(3')	1.1	0.42		3.8 x 10 ⁵

Figure 13

INTERNATIONAL SEARCH REPORT

International application No.

A. CI	ASSISTED ATTOM OF SURE PROPERTY.	PC1/US01/400	511
IPC(7)	LASSIFICATION OF SUBJECT MATTER : A61K 31/70		
US CL			
According	to International Patent Classification (IPC) or to be	ab anti-out of the state of	
B. FD	ELDS SEARCHED	an national classification and IPC	
Minimum	documentation searched (classification system follo: 514/25: 536/17.2, 17.0		
U.S.	: 514/25; 536/17.2, 17.9	wed by classification symbols)	
Document	ation searched other than minimum days		
none	ation searched other than minimum documentation to	o the extent that such documents are inclu	ded in the fields searched
Electronic Please See	data base consulted during the international search (Continuation Sheet	name of data base and, where practicable	search terms used)
			
C. DO	CUMENI'S CONSIDERED TO BE RELEVANT		
Calegory •	Citation of document, with indication, where	appropriate, of the relevant passages	Pelevior to die M
X	To the city of the Desiry of Rithmeticans I.	Antibiotics that T D	Relevant to claim No.
	and Inhibit Resistance-Causing Enzymes. Journa Published on Web May 16, 2000. Vol. 122, pag		1-10
X	TOK, J.BH. et al. Enhanced Binding of Amino	alvensida Dinana a mora a ma	1, .
•	Site 16S rRNA Construct. Bioorganic & Medicit Vol. 10, pages 1593-1595. See pages 1594-1595		1, 2, aud 16-18
(WANG, H. et al. Dimeric Aminoglycosides: Des		
	Bioorganie & Medicinal Chemistry Letters. 199' See pages 1951-1952.	7. Vol. 7, No. 14, pages 1951-1956.	1, 2, and 16-18
	F-8 1/32,		
			i .
			ļ
	1		
			ĺ
			ł
		•	
Further	documents are listed in the		
	documents are listed in the continuation of Box C.	See patent family annex.	
	pecial categories of cited documents:	"T" later document published after the in	ternstonal filling date or
document be of part	defining the general state of the art which is not considered to itelar relevance	priority date and not in conflict with	the motiential has me to
	near leterage	trible is and the principle or theory or	derlying the invention
		the cramma the principle of incory or	derlying the invention
O.L.	plication or patent published on or after the international filing	the cramma the principle of incory or	claimed invention causes be
document to establis	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication due of another citation or other special pages.	-X* document of particular relevance; the considered novel or cannot be considered when the document is taken about the control of particular relevance; the	claimed invention causes be cred to involve an inventive c
document to establis (as specifi	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted)	document of particular relevance; the considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to document is taken alon of particular relevance; the considered to involve an inventive stream of the considered to involve an inventive stream.	claimed invention causes be ered to involve an inventive e claimed invention causes be up when the document is
document to establis (as specifi document document	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted) referring to an oral disclosure, use, exhibition or other means published prior to the international filling date by lates the chief.	-X" document of particular relevance; the considered novel or cannot be considered to involve an invention of particular relevance; the considered to involve an invention of particular relevance;	claimed invention causor be ered to involve an inventive e claimed invention causor be sp when the document is h documents, such is skilled in the art
document to establis (as specifi document document	plication or patent published on or after the international filing which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted) referring to an oral disclosure, use, exhibition or other means	document of particular relevance; the considered novel or cannot be considered to the document of step when the document is taken after document of particular relevance; the considered to involve an inventive step combined with one or more other succombination being obvious to a personal document member of the same patent	claimed invention causor be ered to involve an inventive e claimed invention causor be ty when the document is h documents, such is skilled in the art
document to establis (as specifi document document princity de of the act June 2001	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted) referring to an oral disclosure, use, exhibition or other means published prior to the international filling date but later than the are claimed. That completion of the international search (08.06.2001)	document of particular relevance; the considered novel or cannot be considered to involve an inventive ste considered to involve an inventive ste combined with one or more other ste combination being obvious to a person document member of the same patern. Date of mailing of the international sear	claimed invention causor be cred to involve an inventive c claimed invention causor be explained invention causor be to when the document is h documents, such in skilled in the arr family
document to establis (as specifi document priority do lite of the action and mainly document priority document priority document priority do lite of the action and mainly document document priority document doc	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted) referring to an oral disclosure, use, exhibition or other means published prior to the international filling date but later than the are claimed. That completion of the international search (08.06.2001) illing address of the ISA/US	document of particular relevance; the considered novel or cannot be considered step when the document is taken afor document of particular relevance; the considered to involve an inventive sit combined with one or more other suc combination being obvious to a personal document member of the same patern and the same patern are patern as SEP 200	claimed invention causor be cred to involve an inventive c claimed invention causor be explained invention causor be to when the document is h documents, such in skilled in the arr family
document to establis (as specific document document priority dute of the action and man Boa F	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted) referring to an oral disclosure, use, exhibition or other means published prior to the international filing date but later than the attained. (08.06.2001) iling address of the ISA/US missioner of Patents and Trademarks	-X" document of particular relevance; the considered novel or cannot be considered movel or cannot be considered movel or cannot be considered to involve an inventive steen adont considered to involve an inventive steen constitued with one or more other sue combined with one or more other sue combination being obvious or a person document member of the same patern. Date of mailing of the international sear 13 SEP 200. Authorized officer	claimed invention cannot be cred to involve an inventive c claimed invention cannot be explained invention cannot be to when the document is h documents, such in skilled in the art family
document to establis (as specifi document document princity di ate of the ac June 2001 une and ma Conne Box F Wash	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason field) referring to an oral disclosure, use, exhibition or other means published prior to the international filling date but later than the attendance citual completion of the international search (08.06.2001) illing address of the ISA/US missioner of Patents and Trademarks CT integron, D.C., 20231	document of particular relevance; the considered novel or cannot be considered step when the document is taken afor document of particular relevance; the considered to involve an inventive sit combined with one or more other suc combination being obvious to a personal document member of the same patern and the same patern are patern as SEP 200	claimed invention cannot be cred to involve an inventive c claimed invention cannot be explained invention cannot be to when the document is h documents, such in skilled in the art family
document to establis (as specifi document document priority date of the ac June 2001 une and ma Boa P Wash csimile No.	plication or patent published on or after the international filling which may throw doubts on priority claim(s) or which is cited the publication date of another citation or other special reason ted) referring to an oral disclosure, use, exhibition or other means published prior to the international filing date but later than the attained. (08.06.2001) iling address of the ISA/US missioner of Patents and Trademarks	-X" document of particular relevance; the considered novel or cannot be considered movel or cannot be considered movel or cannot be considered to involve an inventive steen adont considered to involve an inventive steen constitued with one or more other sue combined with one or more other sue combination being obvious or a person document member of the same patern. Date of mailing of the international sear 13 SEP 200. Authorized officer	claimed invention causor be cred to involve an inventive c claimed invention causor be explained invention causor be to when the document is h documents, such in skilled in the arr family

			·	٦
				à