| А. Изучение кристаллической структуры полупроводников                        |
|------------------------------------------------------------------------------|
| (index.html → Строение кристалла → Ячейка со свойствами материала)           |
| (1) Для полупроводника зарисовать проекции элементарной ячейки на            |
| (111), (100) и (110) плоскости;                                              |
| (2) Для полупроводниковвыписать в таблицу и сравнить                         |
| следующие физические параметры*:                                             |
| - Кристаллическая - Эффективные плотности состояний в зоне                   |
| структура проводимости и валентной зоне                                      |
| - Постоянная решетки - Концентрация собственных носителей заряда             |
| - Ширина запрещенной - Эффективная масса электронов                          |
| зоны                                                                         |
| - Подвижность носителей                                                      |
|                                                                              |
| *Примечание если в апплете данные по каким-либо физическим свойствам         |
| отсутствуют, найдите их в Интернете или используя иные справочные материалы. |
| Можно посмотреть, например:                                                  |
| http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html;                        |
| https://www.gomiconductorg.co.uk/                                            |

http://www.semiconductors.co.uk/

http://ru.wikipedia.org; или другие сайты.

- (3) Для полупроводников, указанных в пункте (2) построить зависимость концентрации собственных носителей заряда (Intrinisic carrier conc.) от ширины запрещенной зоны. Построить зависимость в координатах: по оси  $x E_g$ , по оси  $y \ln n_i$ . Что можно сказать об этой зависимости?
- (4) Определить несоответствие параметров кристаллических решеток для полупроводников, указанных в п.2. Которая из пар этих полупроводников предпочтительнее для получения пленки эпитаксиального слоя лучшего структурного качества?

Для определения несоответствия параметров решетки необходимо использовать соотношение типа:  $f_m = -(a_A - a_B)/(a_A) *100\%$ , где  $a_A$  и  $a_B$  — постоянные решетки для полупроводников A и B соответственно.

(5) Используя данные таблицы, составленной в п.2, что можно сказать о зависимости подвижности носителей заряда от их эффективной массы?

### Б. Изучение зонной структуры полупроводников

(index.html → E-К диаграммы → Свойства SiGe,

А также:  $index.html \rightarrow$  E-К диаграммы  $\rightarrow$  Свойства AlGaAs)

- (6) Для сплавов  $Ge_xSi_{1-x}$  зарисовать E-k диаграммы для x =\_\_\_\_\_\_.
- (7) Извлечь и построить зависимость  $E_g$  от состава сплава  $Ge_xSi_{1-x}$  (т.е.  $E_g$  от x). Указать точку кроссовера и объяснить, с чем связано ее появление.
  - (8) Для AlGaAs определить области, в которых сплавы являются прямозонными.
- (9) Выполнить задания, изложенные в пунктах «Упражнения к апплету», «Тест» и др. (там, где они имеются). Проработать и усвоить информацию, содержащуюся в соответствующих пунктах меню апплетов («Введение», «Мат. Анализ» и др.).

### В. Изучение положения уровня Ферми в запрещенной зоне

(index.html → Уровень Ферми → Зависимость от концентрации и уровня легирования)

- (10) Для T=300K извлечь и построить зависимости положения уровня Ферми в запрещенной зоне от концентрации носителей (электроны и дырки) для \_\_\_\_\_\_. Зависимость представить в виде графика(ов)  $E_F$  от  $n_0$ , где шкалу  $n_0$  представить в логарифмическом масштабе (рис.1).
  - (11) Для полупроводника, указанного в п. 10: извлечь и построить зависимости:
- -- ширины запрещенной зоны от температуры. Сравнить с теоретическими данными.
- -- положения уровня Ферми в запрещенной зоне от температуры для следующих уровней легирования (концентрации электронов и дырок): \_\_\_\_\_\_. Зависимость представить в виде семейства графиков  $E_F$  от T (рис.2). Указать положение  $E_c$   $E_d$ ,  $E_a$   $E_{fi}$  и  $E_v$ .
- (12) Для полупроводника, указанного в п. 10: извлечь и построить зависимость  $n_i$  от температуры. Результаты представить в координатах рис. 3. Для сравнения рассчитать по формулам, приведенным в Worksheet (пункт 2).
  - (13) Выполнить все задания в Worksheet
- Г. Изучение электрических свойств электронно-дырочных переходов. index.html → p-n- переход → Токи через PN-переход index.html → p-n- переход → Исследование ОПЗ
- 14. Выполнить все пункты «Задания к лабораторной работе».
- 15. При выполнении п. 1(б) и п. 2(в) использовать значения для  $N_A$  и  $N_D$ , указанные в индивидуальном задании.
- 16. Получить выражение для ВАХ. Используйте указания, изложенные в п. 2г,д.
- 17. В п.3 выполнить задание, изложенное в 1-м абзаце. Результаты представить в графическом виде.

## Д. Изучение Биполярного транзистора в активном режиме. index.html → Биполярный транзистор

- 18.Изучить теорию.
- 19. Ознакомится с пунктом «Порядок выполнения лабораторной работы»
- 19. Выполнить все пункты «Задания к лабораторной работе».
- 20.Ознакомиться со схемой Эберса-Мола.

# E. Изучение МОП полевого транзисора. index.html $\rightarrow$ МОП - транзистор

- 21. Изучить теорию.
- 22. Ознакомится с пунктом «Порядок выполнения лабораторной работы»
- 23. Выполнить все пункты «Задания к лабораторной работе».

#### Общие замечания по выполнению компьютерных апплетов.

- 1. Каждый студент получает индивидуальные исходные данные, параметры и опции для выполнения компьютерных апплетов (КА). В индивидуальных исходных данных приведены наименования полупроводников и (или) цифры и параметры, которые нужно использовать при выполнении соответствующих пунктов КА.
- 2. Перед началом выполнения каждого КА изучить весь теоретический и методический материал, содержащийся в соответствующем КА. При необходимости получения дополнительных сведений, используйте конспекты лекций по соответствующей теме и (или) интернет-ресурсы.
- 3. В дополнение к заданиям, изложенным ниже, необходимо также выполнить задания, изложенные в пунктах «Указания к апплетам», «Тесты», «Worksheet» и другие (там, где они имеются.
- 4. По результатам выполнения каждой части работы представляется отчет, обязательно включающий: Титульный лист с указанием ФИО, группы, даты с соответствующей частью индивидуального задания, результаты выполнения работы по пунктам, краткое обсуждение результатов, выводы. Перепечатка из конспекта или апплетов типа Ctr-C—Ctrl-V, так же как и заимствование результатов из чужих работ недопустимы и будут караться весьма строго.

#### Образцы построения графиков и зависимостей



