1. Does $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converge absolutely, converge conditionally, or diverge?

Solution.

Let
$$u_n = \left| \frac{(-1)^{n+1}}{n^2} \right| = \frac{1}{n^2}$$
. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a *p*-series with $p = 2$, it con-

verges, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converges absolutely.

2. Determine the interval of convergence of $\sum_{n=1}^{\infty} e^{2n}x^n$.

Solution. Let $a_n = e^{2n}x^n$. Then

$$\frac{|a_{n+1}|}{|a_n|} = \frac{e^{2n+2}|x|^{n+1}}{e^{2n}|x|^n} = e^2|x|.$$

Thus.

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = e^2|x|$$

Thus, the series converges (absolutely) for $e^2|x| < 1$ and diverges for $e^2|x| > 1$; that is, converges for $|x| < e^{-2}$ and diverges for $|x| > e^{-2}$.

At $x = e^{-2}$, the series is $\sum_{n=1}^{\infty} e^{2n} e^{-2n} = \sum_{n=1}^{\infty} 1$, which diverges, as the terms

do not go to zero. At $x=-e^{-2}$, the series is $\sum_{n=1}^{\infty}e^{2n}(-e^{-2})^n=\sum_{n=1}^{\infty}(-1)^n$,

which diverges, as the terms do not go to zero

Thus, the interval of convergence is $(-e^{-2}, e^{-2})$