Lógica y Autómatas

,

IIC3263

"Autómata = Lógica"

Nuestro objetivo es demostrar que "autómata = lógica"

▶ ¿Qué significa esto?

Queremos encontrar una lógica que defina a los lenguajes regulares

Pero antes:

- ▶ Vamos a hacer un breve repaso sobre lenguajes regulares
- Vamos a mostrar como representar palabras como estructuras

Para recordar: Autómatas

Definición

Autómata determinista: $A = (Q, \Sigma, q_0, \delta, F)$

- Q es un conjunto finito de estados
- Σ es un alfabeto finito
- $ightharpoonup q_0 \in Q$ es el estado inicial
- $ightharpoonup F \subseteq Q$ es un conjunto de estados finales
- δ es una función total:

$$\delta$$
: $Q \times \Sigma \rightarrow Q$

 δ es llamada función de transición

Para recordar: Autómatas

Dado: Palabra $w=a_0\cdots a_{n-1}\ (n\geq 1)$ sobre el alfabeto Σ

Definición

La ejecución de A sobre w es una función:

$$\rho$$
 : $\{0,\ldots,n\} \rightarrow Q$

tal que $\rho(0) = q_0$ y

$$\rho(k+1) = \delta(a_k, \rho(k))$$
 para cada $k \in \{0, \dots, n-1\}$

Además: Para la palabra vacía ε , la ejecución de $\mathcal A$ es la función $\rho:\{0\}\to Q$ tal que $\rho(0)=q_0$

Para recordar: Autómatas

Autómata \mathcal{A} acepta una palabra w de largo $n \geq 0$ si:

Para la ejecución ρ de $\mathcal A$ sobre w se tiene que $ho(n) \in \mathcal F$

Definición

$$L(A) = \{ w \in \Sigma^* \mid A \text{ acepta } w \}$$

Autómatas: Un ejemplo

¿Qué lenguaje acepta este autómata sobre el alfabeto $\{0,1\}?$

Para recordar: Lenguajes regulares

Dado: Alfabeto Σ

Definición

Un lenguaje $L \subseteq \Sigma^*$ es regular si y sólo si existe un autómata determinista \mathcal{A} tal que $L = L(\mathcal{A})$

Ejercicio

¿Es el lenguaje $\{0^n1^n\mid n\geq 0\}$ regular?

Para recordar: Expresiones regulares

Una alternativa para definir lenguajes regulares: Expresiones regulares

Definición

El conjunto de las expresiones regulares sobre un alfabeto Σ es el menor conjunto que satisface las siguientes reglas:

- ▶ \emptyset , ε y a $(a \in \Sigma)$ son expresiones regulares sobre Σ
- si r_1 y r_2 son expresiones regulares sobre Σ , entonces $(r_1 + r_2)$, (r_1r_2) y (r_1^*) son expresiones regulares sobre Σ

Para recordar: Expresiones regulares

Definición

El lenguaje aceptado por una expresión regular r sobre un alfabeto Σ , denotado como L(r), es definido recursivamente como:

- $L(\emptyset) = \emptyset \ y \ L(\varepsilon) = \{\varepsilon\}$
- ▶ $L(a) = \{a\}$, para cada $a \in \Sigma$
- $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- $L(r_1r_2) = \{w_1w_2 \mid w_1 \in L(r_1) \ y \ w_2 \in L(r_2)\}$
- $L(r_1^*) = \{\varepsilon\} \cup \left(\bigcup_{i \ge 1} L(r_1^i)\right), \text{ donde } r_1^i = \underbrace{\left(\cdots \left((r_1r_1)r_1\right)\cdots r_1\right)}_{i \text{ símbolos } r_1}$

Para recordar: Expresiones regulares

Ejemplo

De una expresión regular que acepte el mismo lenguaje que el siguiente autómata sobre el alfabeto $\{0,1\}$:

Respuesta: 1*(01*01*01*)*

Para recordar: Equivalencia entre autómatas y expresiones regulares

Dado: Lenguaje L sobre un alfabeto Σ

Teorema

L es regular (aceptado por un autómata) si y sólo si existe una expresión regular r sobre Σ tal que L=L(r)

Palabras como estructuras

Dado: Alfabeto Σ

Vamos a representar las palabras sobre Σ como estructuras sobre el vocabulario:

$$\mathcal{L}_{\Sigma} = \{P_a(\cdot) \mid a \in \Sigma\} \cup \{<\}$$

Palabras como estructuras

Notación

Una palabra $w=a_0\cdots a_{n-1}\ (n\geq 1)$ sobre el alfabeto Σ es representada como una \mathcal{L}_{Σ} -estructura \mathfrak{A}_w :

- \blacktriangleright dominio de \mathfrak{A}_w es $\{0,\ldots,n-1\}$
- ▶ $P_a^{\mathfrak{A}_w} = \{i \mid a_i = a\}$, para cada $a \in \Sigma$
- $ightharpoonup <^{\mathfrak{A}_{\mathsf{w}}}$ es el orden lineal usual sobre $\{0,\ldots,n-1\}$

Además: La palabra vacía ε es representada como la \mathcal{L}_{Σ} -estructura $\mathfrak{A}_{\varepsilon}$ con dominio vacío.

Palabras como estructuras: Ejemplos

Ejemplos

▶ Si $\Sigma = \{0,1\}$ y w = 01101, entonces $\mathcal{L}_{\Sigma} = \{P_0(\cdot), P_1(\cdot), <\}$ y:

$$\mathfrak{A}_{w} = \langle \{0, 1, 2, 3, 4\}, P_{0}^{\mathfrak{A}_{w}} = \{0, 3\}, P_{1}^{\mathfrak{A}_{w}} = \{1, 2, 4\}, \langle \mathfrak{A}_{w} \rangle$$

▶ Si $\Sigma = \{a, b, c\}$ y w = caaa, entonces $\mathcal{L}_{\Sigma} = \{P_a(\cdot), P_b(\cdot), P_c(\cdot), <\}$ y:

$$\mathfrak{A}_{w} = \langle \{0, 1, 2, 3\}, P_{a}^{\mathfrak{A}_{w}} = \{1, 2, 3\},$$

$$P_{b}^{\mathfrak{A}_{w}} = \emptyset, P_{c}^{\mathfrak{A}_{w}} = \{0\}, <^{\mathfrak{A}_{w}} \rangle$$

Lenguajes definidos por una lógica

Dado: Alfabeto Σ

Un lenguaje L sobre Σ puede ser definido por una máquina.

L es un lenguaje regular si es aceptado por un autómata

Pero un lenguaje L sobre Σ también puede ser definido por una lógica \mathcal{LO} .

▶ Dada una oración Φ en \mathcal{LO} sobre el vocabulario \mathcal{L}_{Σ} :

$$L(\Phi) = \{ w \in \Sigma^* \mid \mathfrak{A}_w \models \Phi \}$$

▶ L es definible en \mathcal{LO} si existe una oración Φ en \mathcal{LO} sobre el vocabulario \mathcal{L}_{Σ} tal que L = L(Φ)

Lenguajes definidos por una lógica: Ejercicios

Ejercicios

Sea $\Sigma = \{0, 1\}$

- 1. ¿Es el lenguaje 0*1* definible en LPO?
- 2. ¿Es el lenguaje (00)* definible en LPO?
- 3. ¿Es el lenguaje (01)* definible en LPO?
- 4. ¿En qué lógica es definible el lenguaje (000)*?

Primer resultado

Teorema

Para cada lenguaje regular L sobre Σ existe una \mathcal{L}_{Σ} -oración Φ en LSO tal que $L = L(\Phi)$.

Pero podemos hacer algo mucho más interesante!

Lógica Monádica de Segundo Orden (MSO)

La lógica monádica de segundo orden (MSO) restringe a la LSO sólo permitiendo cuantificadores de segundo orden unarios.

¿Qué se puede decir en esta lógica?

Un poco de notación

Notación

El rango de cuantificación de una fórmula φ en MSO se define como:

- Si φ es atómica, entonces $rc(\varphi) = 0$
- Si $\varphi = \neg \psi$, entonces $rc(\varphi) = rc(\psi)$
- ► Si $\varphi = \psi \lor \theta$, entonces $rc(\varphi) = máx\{rc(\psi), rc(\theta)\}$
- Si $\varphi = \exists x \, \psi$, donde x es un cuantificador de primer orden, entonces $rc(\varphi) = 1 + rc(\psi)$
- ► Si $\varphi = \exists X \psi$, donde X es un cuantificador de segundo orden, entonces $rc(\varphi) = 1 + rc(\psi)$

Un poco de notación

Dado: \mathcal{L} -estructura \mathfrak{A} con dominio A, tupla $\bar{a}=(a_1,\ldots,a_m)$ de puntos en A y tupla $\bar{A}=(A_1,\ldots,A_n)$ de subconjuntos de A

Notación

 $(\mathfrak{A}, \bar{a}, \bar{A})$ es una $(\mathcal{L} \cup \{c_1, \dots, c_m, P_1(\cdot), \dots P_n(\cdot)\})$ -estructura tal que:

- $c_i^{(\mathfrak{A},\bar{a},\bar{A})} = a_i$ para todo $i \in \{1,\ldots,m\}$
- $ightharpoonup P_j^{(\mathfrak{A},ar{a},ar{A})} = A_j \; ext{para todo} \; j \in \{1,\ldots,n\}$

Juegos para MSO

Dado: Vocabulario $\mathcal L$ que contiene constantes $\{c_1,\ldots,c_\ell\}$

Elementos del juego:

Tablero : \mathcal{L} -estructuras $\mathfrak A$ y $\mathfrak B$

Jugadores : Duplicator (**D**) y Spoiler (**S**) Número de rondas : $k \ge 0$ (parámetro del juego)

Juegos para MSO

En cada ronda, **S** decide si va a jugar un punto o un conjunto

- ➤ Si S decide jugar un punto, entonces elije una estructura y juega un punto en esa estructura
 - D responde con un punto en la otra estructura
- ➤ Si **S** decide jugar un conjunto, entonces elije una estructura y juega un conjunto en esa estructura
 - **D** responde con un conjunto en la otra estructura

Juegos para MSO

Sean (a_1,\ldots,a_m) , (b_1,\ldots,b_m) los puntos jugados en $\mathfrak A$ y $\mathfrak B$, y (A_1,\ldots,A_n) , (B_1,\ldots,B_n) los conjuntos jugados en $\mathfrak A$ y $\mathfrak B$

▶ Se tiene que k = m + n

- **S** gana el juego si $((c_1^{\mathfrak{A}}, \ldots, c_{\ell}^{\mathfrak{A}}, a_1, \ldots, a_m), (c_1^{\mathfrak{B}}, \ldots, c_{\ell}^{\mathfrak{B}}, b_1, \ldots, b_m))$ no es un isomorfismo parcial de $(\mathfrak{A}, A_1, \ldots, A_n)$ en $(\mathfrak{B}, B_1, \ldots, B_n)$
 - ► En caso contrario gana **D**

Juegos para MSO: Estrategia ganadora

Definición

D tiene una estrategia ganadora en el juego para MSO de k rondas entre $\mathfrak A$ y $\mathfrak B$, si para cada posible forma de jugar de $\mathbf S$, existe una forma de jugar de $\mathbf D$ que le permite ganar.

Notación: $\mathfrak{A} \equiv_k^{MSO} \mathfrak{B}$

Sean
$$\mathfrak{A}=\langle\{1,2,3,4\}\rangle$$
 y $\mathfrak{B}=\langle\{1,2,3,4,5\}\rangle$. ¿Es cierto que $\mathfrak{A}\equiv^{\mathsf{MSO}}_4\mathfrak{B}$?

Dado
$$k \ge 1$$
: ¿Existe algún n para el cual $\langle \{1, \ldots, n\} \rangle \equiv_k^{\mathsf{MSO}} \langle \{1, \ldots, n, n+1\} \rangle$?

Dado: $\mathcal{L} = \emptyset$

Proposición

Sean $\mathfrak A$ y $\mathfrak B$ $\mathcal L$ -estructuras con al menos 2^k elementos en el dominio cada una. Entonces $\mathfrak A \equiv_k^{MSO} \mathfrak B$.

Demostración: Por inducción en k

lacktriangle La demostración es trivial para el caso k=1

Suponga que la propiedad se cumple para $k \ge 1$, y que \mathfrak{A} , \mathfrak{B} son \mathcal{L} -estructuras con al menos 2^{k+1} elementos en el dominio cada una

ightharpoonup Vamos a demostrar que $\mathfrak{A}\equiv^{\mathsf{MSO}}_{k+1}\mathfrak{B}$

Primero suponga que **S** decide jugar un punto a_1 en \mathfrak{A} .

- ▶ Entonces **D** responde con un punto arbitrario b_1 en \mathfrak{B} .
 - ▶ Se tiene que $|A \setminus \{a_1\}| \ge 2^k$ y $|B \setminus \{b_1\}| \ge 2^k$

Entonces:

```
 \begin{array}{ll} \langle \{a_1\} \rangle & \equiv^{\mathsf{MSO}}_k & \langle \{b_1\} \rangle \\ \langle A \smallsetminus \{a_1\} \rangle & \equiv^{\mathsf{MSO}}_k & \langle B \smallsetminus \{b_1\} \rangle & \mathsf{por\ hipótesis\ de\ inducción} \end{array}
```

Por lo tanto: A partir de la movida (a_1, b_1) , **D** tiene una estrategia ganadora para las siguientes k movidas

D compone las estrategias señaladas arriba

Ahora suponga que **S** decide jugar un conjunto A_1 en \mathfrak{A} .

- ▶ Si $|A_1| \le 2^k$, entonces **D** responde con un conjunto arbitrario B_1 en \mathfrak{B} tal que $|A_1| = |B_1|$.
 - ▶ Se tiene que $|A \setminus A_1| \ge 2^k$ y $|B \setminus B_1| \ge 2^k$

Entonces:

$$\langle A_1 \rangle \equiv_k^{\mathsf{MSO}} \langle B_1 \rangle$$
 dado que $|A_1| = |B_1|$
 $\langle A \setminus A_1 \rangle \equiv_k^{\mathsf{MSO}} \langle B \setminus B_1 \rangle$ por hipótesis de inducción

Por lo tanto: A partir de la movida (A_1, B_1) , **D** tiene una estrategia ganadora para las siguientes k movidas

D compone las estrategias señaladas arriba

▶ Si $|A \setminus A_1| \le 2^k$, entonces **D** responde con un conjunto arbitrario B_1 en \mathfrak{B} tal que $|B \setminus B_1| = |A \setminus A_1|$

Como en el caso anterior, se concluye que a partir de la movida (A_1, B_1) , **D** tiene una estrategia ganadora para las siguientes k movidas.

▶ Si $|A_1| > 2^k$ y $|A \setminus A_1| > 2^k$, entonces **D** responde con un conjunto arbitrario B_1 en \mathfrak{B} tal que $|B_1| \ge 2^k$ y $|B \setminus B_1| \ge 2^k$.

Por hipótesis de inducción:

$$\begin{array}{ccc} \langle A_1 \rangle & \equiv^{\mathsf{MSO}}_k & \langle B_1 \rangle \\ \langle A \smallsetminus A_1 \rangle & \equiv^{\mathsf{MSO}}_k & \langle B \smallsetminus B_1 \rangle \end{array}$$

Por lo tanto: A partir de la movida (A_1, B_1) , **D** tiene una estrategia ganadora para las siguientes k movidas

Si S decide jugar en B, D responde de manera análoga

Por lo tanto: \mathbf{D} tiene una forma de responder a \mathbf{S} en la primera movida que le asegura una estrategia ganadora en las siguientes k movidas

Concluimos que: $\mathfrak{A} \equiv_{k+1}^{\mathsf{MSO}} \mathfrak{B}$

Juegos para MSO: Segundo Ejemplo

Sea
$$\mathcal{L} = \{<\}$$

Proposición

Sean $\mathfrak A$ y $\mathfrak B$ $\mathcal L$ -estructuras tales que $<^{\mathfrak A}$, $<^{\mathfrak B}$ son ordenes lineales, $\mathfrak A$ tiene una cantidad par de elementos y $\mathfrak B$ tiene una cantidad impar de elementos. Entonces $\mathfrak A \not\equiv^{MSO}_{4} \mathfrak B$.

Ejercicio

Demuestre la proposición

Ejercicio

Muestre como expresar PARIDAD = $\{\mathfrak{A} \in \operatorname{Struct}[\mathcal{L}] \mid \text{dominio} \text{ de } \mathfrak{A} \text{ tiene un número par de elementos} \}$ en MSO.

Caracterización de MSO

Dado: Vocabulario $\mathcal L$

Notación

MSO[k] es el conjunto de \mathcal{L} -oraciones en MSO con rango de cuantificación a lo más k.

Teorema

Para todo par de \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} , las siguientes afirmaciones son equivalentes:

- 1. $\mathfrak{A} \equiv_k^{MSO} \mathfrak{B}$
- 2. \mathfrak{A} y \mathfrak{B} están de acuerdo en MSO[k]

Demostración de la caracterización: Tipo de una estructura

Dado: \mathcal{L} -estructura $\mathfrak A$ con dominio A, tupla $\bar a$ de puntos en A y tupla $\bar A$ de subconjuntos de A

Definición

El MSO k-tipo de $(\mathfrak{A}, \bar{a}, \bar{A})$ es definido como:

$$\begin{array}{ll} \mathit{mso-tp}_k(\mathfrak{A},\bar{a},\bar{A}) &=& \{\varphi(\bar{x},\bar{X}) \mid \\ & \varphi(\bar{x},\bar{X}) \; \textit{es una fórmula en MSO tal que} \\ & \mathit{rc}(\varphi(\bar{x},\bar{X})) \leq k \; \mathit{y} \; \mathfrak{A} \models \varphi(\bar{a},\bar{A}) \} \end{array}$$

Demostración de la caracterización: Tipo de una estructura

Lema

Si \mathcal{L} es finito, entonces mso-tp_k($\mathfrak{A}, \bar{a}, \bar{A}$) contiene un número finito de fórmulas hasta equivalencia lógica.

Demostración: Como en el caso de LPO, por inducción en k se puede demostrar que hasta equivalencia lógica hay un número finito de fórmulas $\varphi(\bar{x}, \bar{X})$ en MSO con $rc(\varphi(\bar{x}, \bar{X})) \leq k$.

Demostración de la caracterización: Tipo de una estructura

Como mso-tp_k $(\mathfrak{A}, \bar{a}, \bar{A})$ es finito (hasta equivalencia lógica), existe una fórmula $\chi_{(\mathfrak{A}, \bar{a}, \bar{A})}^k(\bar{x}, \bar{X})$ que lo representa.

Para cada $(\mathfrak{B}, \bar{b}, \bar{B})$ se tiene que:

$$\mathfrak{B} \models \chi^k_{(\mathfrak{A},\bar{a},\bar{A})}(\bar{b},\bar{B})$$
 si y sólo si
$$\mathsf{mso\text{-tp}}_k(\mathfrak{B},\bar{b},\bar{B}) = \mathsf{mso\text{-tp}}_k(\mathfrak{A},\bar{a},\bar{A})$$

Demostración de la caracterización: Back & Forth

Sean $\mathfrak A$ y $\mathfrak B$ $\mathcal L$ -estructuras con dominios A y B, respectivamente

Para la demostración usamos tipos y la relación:

- $\qquad \qquad \mathfrak{A} \simeq_0^{\mathsf{MSO}} \mathfrak{B} \text{ si } \mathfrak{A} \equiv_0^{\mathsf{MSO}} \mathfrak{B}$
- $ightharpoonup \mathfrak{A} \simeq^{\mathsf{MSO}}_{k+1} \mathfrak{B}$ si
 - **forth**: para cada $a \in A$, existe $b \in B$ tal que $(\mathfrak{A}, a) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b)$ para cada $X \subseteq A$, existe $Y \subseteq B$ tal que $(\mathfrak{A}, X) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, Y)$
 - **back**: para cada $b \in B$, existe $a \in A$ tal que $(\mathfrak{A}, a) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b)$ para cada $Y \subseteq B$, existe $X \subseteq A$ tal que $(\mathfrak{A}, X) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, Y)$

Caracterización de MSO: Versión extendida

Teorema

Para todo par de \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} , las siguientes afirmaciones son equivalentes:

- 1. $\mathfrak{A} \equiv_k^{MSO} \mathfrak{B}$
- 2. \mathfrak{A} y \mathfrak{B} están de acuerdo en MSO[k]
- 3. $\mathfrak{A} \simeq_k^{MSO} \mathfrak{B}$

Demostración: Suponga que los dominios de $\mathfrak A$ y $\mathfrak B$ son A y B, respectivamente.

 $(1. \Leftrightarrow 3.)$: Por inducción en k. Para k = 0 se tiene por definición.

Suponga que la propiedad se cumple para k.

▶ Suponga que $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$. Tenemos que demostrar que $\mathfrak{A} \equiv_{k+1}^{\mathsf{MSO}} \mathfrak{B}$.

Si **S** juega $a_1 \in A$, existe $b_1 \in B$ tal que $(\mathfrak{A}, a_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$ (ya que $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$).

Por hipótesis de inducción: $(\mathfrak{A}, a_1) \equiv_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$

Para todo $a_1 \in A$, existe $b_1 \in B$ tal que $(\mathfrak{A}, a_1) \equiv^{\mathsf{MSO}}_k (\mathfrak{B}, b_1)$

Si **S** juega
$$A_1 \subseteq A$$
, existe $B_1 \subseteq B$ tal que $(\mathfrak{A}, A_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$ (ya que $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$).

Por hipótesis de inducción: $(\mathfrak{A}, A_1) \equiv_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$

Para todo $A_1 \subseteq A$, existe $B_1 \subseteq B$ tal que $(\mathfrak{A}, A_1) \equiv_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$

Combinando esto con los resultados obtenidos usando back, concluimos que $\mathfrak{A} \equiv_{k+1}^{MSO} \mathfrak{B}$.

▶ Suponga que $\mathfrak{A} \equiv_{k+1}^{\mathsf{MSO}} \mathfrak{B}$. Tenemos que demostrar que $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$

Sea $a_1 \in A$ y suponga que **S** juega a_1 . Como $\mathfrak{A} \equiv_{k+1}^{\mathsf{MSO}} \mathfrak{B}$, existe $b_1 \in B$ tal que $(\mathfrak{A}, a_1) \equiv_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$.

Por hipótesis de inducción: $(\mathfrak{A}, a_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$

lacksquare Para todo $a_1 \in A$, existe $b_1 \in B$ tal que $(\mathfrak{A}, a_1) \simeq^{\mathsf{MSO}}_k (\mathfrak{B}, b_1)$

Sea $A_1 \subseteq A$ y suponga que **S** juega A_1 . Como $\mathfrak{A} \equiv_{k+1}^{\mathsf{MSO}} \mathfrak{B}$, existe $B_1 \subseteq B$ tal que $(\mathfrak{A}, A_1) \equiv_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$.

Por hipótesis de inducción: $(\mathfrak{A}, A_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$

Para todo $A_1 \subseteq A$, existe $B_1 \subseteq B$ tal que $(\mathfrak{A}, A_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$

Combinando esto con los resultados obtenidos al hacer jugar a S en \mathfrak{B} , concluimos que $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$.

 $(2. \Leftrightarrow 3.)$: Por inducción en k.

Para k = 0 se tiene la equivalencia.

► ¿Por qué?

Supongamos que la equivalencia se tiene para k.

- ▶ Suponga que $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$. Tenemos que demostrar que \mathfrak{A} y \mathfrak{B} están de acuerdo en $\mathsf{MSO}[k+1]$.
 - Para hacer esto nos basta con considerar los casos $\exists x \varphi(x)$ y $\exists X \psi(X)$

Consideramos entonces dos casos:

▶ Si $\mathfrak{A} \models \exists x \, \varphi(x)$, entonces existe $a \in A$ tal que $\mathfrak{A} \models \varphi(a)$.

Como $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$, existe $b \in B$ tal que $(\mathfrak{A}, a) \simeq_{k}^{\mathsf{MSO}} (\mathfrak{B}, b)$.

Por hipótesis de inducción: (\mathfrak{A}, a) y (\mathfrak{B}, b) están de acuerdo en MSO[k]

Sea $\mathcal{L}_1 = \mathcal{L} \cup \{c\}$. Como $(\mathfrak{A}, a) \models \varphi(c)$, $rc(\varphi(c)) = k$ y (\mathfrak{A}, a) , (\mathfrak{B}, b) están de acuerdo en MSO[k], se tiene que $(\mathfrak{B}, b) \models \varphi(c)$.

Tenemos entonces que $\mathfrak{B} \models \varphi(b)$, por lo que concluimos que $\mathfrak{B} \models \exists x \, \varphi(x)$.

De la misma forma concluimos que si $\mathfrak{B} \models \exists x \, \varphi(x)$, entonces $\mathfrak{A} \models \exists x \, \varphi(x)$.

▶ Si $\mathfrak{A} \models \exists X \, \psi(X)$, entonces existe $A_1 \subseteq A$ tal que $\mathfrak{A} \models \psi(A_1)$.

Como
$$\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$$
, existe $B_1 \subseteq B$ tal que $(\mathfrak{A}, A_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$.

Por hipótesis de inducción: (\mathfrak{A}, A_1) y (\mathfrak{B}, B_1) están de acuerdo en MSO[k]

Sea
$$\mathcal{L}_1 = \mathcal{L} \cup \{P(\cdot)\}$$
. Como $(\mathfrak{A}, A_1) \models \psi(P)$, $rc(\psi(P)) = k$ y (\mathfrak{A}, A_1) , (\mathfrak{B}, B_1) están de acuerdo en MSO[k], se tiene que $(\mathfrak{B}, B_1) \models \psi(P)$.

Tenemos entonces que $\mathfrak{B} \models \psi(B_1)$, por lo que concluimos que $\mathfrak{B} \models \exists X \, \psi(X)$.

De la misma forma concluimos que si $\mathfrak{B} \models \exists X \, \psi(X)$, entonces $\mathfrak{A} \models \exists X \, \psi(X)$.

▶ Suponga que $\mathfrak A$ y $\mathfrak B$ están de acuerdo en $\mathsf{MSO}[k+1]$. Tenemos que demostrar que $\mathfrak A \simeq_{k+1}^{\mathsf{MSO}} \mathfrak B$.

Sea $a_1 \in A$

- ► Como $\mathfrak{A} \models \chi_{(\mathfrak{A}, a_1)}^k(a_1)$, sabemos que $\mathfrak{A} \models \exists x \, \chi_{(\mathfrak{A}, a_1)}^k(x)$
- Puesto que $rc(\exists x \, \chi^k_{(\mathfrak{A},a_1)}(x)) = k+1$, se tiene que $\mathfrak{B} \models \exists x \, \chi^k_{(\mathfrak{A},a_1)}(x)$

Entonces, existe $b_1 \in B$ tal que $\mathfrak{B} \models \chi^k_{(\mathfrak{A},a_1)}(b_1)$

Por lo tanto: $\operatorname{mso-tp}_k(\mathfrak{A}, a_1) = \operatorname{mso-tp}_k(\mathfrak{B}, b_1)$, lo cual significa que (\mathfrak{A}, a_1) y (\mathfrak{B}, b_1) están de acuerdo en $\operatorname{MSO}[k]$.

Por hipótesis de inducción: $(\mathfrak{A}, a_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$

Entonces: Para todo $a_1 \in A$, existe $b_1 \in B$ tal que $(\mathfrak{A}, a_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$

De la misma forma concluimos que para todo $b_1 \in B$, existe $a_1 \in A$ tal que $(\mathfrak{A}, a_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, b_1)$

Sea $A_1 \subseteq A$

- ▶ Como $\mathfrak{A} \models \chi^k_{(\mathfrak{A},A_1)}(A_1)$, se tiene que $\mathfrak{A} \models \exists X \, \chi^k_{(\mathfrak{A},A_1)}(X)$
- Puesto que $rc(\exists X \chi^k_{(\mathfrak{A},A_1)}(X)) = k+1$, se tiene que $\mathfrak{B} \models \exists X \chi^k_{(\mathfrak{A},A_1)}(X)$

Por lo tanto: Existe $B_1 \subseteq B$ tal que $\mathfrak{B} \models \chi^k_{(\mathfrak{A},A_1)}(B_1)$

Concluimos que $\operatorname{mso-tp}_k(\mathfrak{A}, A_1) = \operatorname{mso-tp}_k(\mathfrak{B}, B_1)$, lo cual significa que (\mathfrak{A}, A_1) y (\mathfrak{B}, B_1) están de acuerdo en $\operatorname{MSO}[k]$.

Por hipótesis de inducción: $(\mathfrak{A}, A_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$

Entonces: Para todo $A_1 \subseteq A$, existe $B_1 \subseteq B$ tal que $(\mathfrak{A}, A_1) \simeq_k^{\mathsf{MSO}} (\mathfrak{B}, B_1)$

De la misma forma concluimos que para todo $B_1\subseteq B$, existe $A_1\subseteq A$ tal que $(\mathfrak{A},A_1)\simeq_k^{\mathsf{MSO}}(\mathfrak{B},B_1)$

Tenemos que: $\mathfrak{A} \simeq_{k+1}^{\mathsf{MSO}} \mathfrak{B}$

Caracterización de MSO: Dos corolarios

Sea $\mathcal{L}=\emptyset$ y PARIDAD = $\{\mathfrak{A}\in\mathrm{Struct}[\mathcal{L}]\mid dominio\ de\ \mathfrak{A}\ tiene$ un número par de elementos $\}$

Corolario

PARIDAD no es expresable en MSO

Corolario

MSO es menos expresiva que LSO

Dado: Alfabeto Σ

Teorema (Büchi)

Un lenguaje L sobre Σ es regular si y sólo si $L=L(\Phi)$ para alguna \mathcal{L}_{Σ} -oración Φ en MSO.

Demostración: (\Rightarrow) Sea L un lenguaje regular

ightharpoonup Existe autómata \mathcal{A} tal que $L = L(\mathcal{A})$

Vamos a construir una \mathcal{L}_{Σ} -oración $\Phi_{\mathcal{A}}$ tal que $L(\mathcal{A}) = L(\Phi_{\mathcal{A}})$

Suponga que $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$, donde

$$Q = \{q_0, \ldots, q_m\}$$

Si $\varepsilon \notin L(A)$, entonces Φ_A se define como:

$$\exists X_{q_0} \cdots \exists X_{q_m} \Psi$$

donde Ψ es la conjunción de las siguientes fórmulas:

Estado inicial:

$$\exists x \left[\forall y \, \neg (y < x) \land X_{q_0}(x) \right]$$

▶ Para cada $(q_i, a) \in Q \times \Sigma$ tal que $\delta(q_i, a) = q_i$:

$$\forall x \forall y \left[\left(X_{q_i}(x) \land P_{a}(x) \land X_{q_i}(x) \land X_{q_i}(x) \land X_{q_i}(y) \right] \right]$$

Estado final:

$$\exists x \left[\forall y \, \neg (x < y) \land \bigvee_{(q,a) \in F} \left(X_q(x) \land P_a(x) \right) \right]$$

▶ Conjuntos X_{q_0} , ..., X_{q_m} forman una partición:

$$\forall x \left[\bigvee_{q \in Q} \left(X_q(x) \land \bigwedge_{q' \in (Q \setminus \{q\})} \neg X_{q'}(x) \right) \right]$$

Si $\varepsilon \in L(A)$, entonces Φ_A se define como:

$$\neg \exists x (x = x) \lor \exists X_{q_0} \cdots \exists X_{q_m} \Psi$$

¿Por qué funciona bien esto?

- (⇐) Sea Φ una \mathcal{L}_{Σ} -oración en MSO
 - ▶ Suponemos que $rc(\Phi) = k$, con k > 0

Vamos a definir un autómata \mathcal{A}_{Φ} sobre Σ tal que $\mathit{L}(\Phi) = \mathit{L}(\mathcal{A}_{\Phi})$

▶ Ingrediente esencial: MSO k-tipos de las estructuras \mathfrak{A}_w

Se tiene que $\{\chi^k_{\mathfrak{A}_w}\mid w\in\Sigma^*\}$ es finito hasta equivalencia lógica

▶ ¿Por qué?

Sea $\{\tau_0, \dots, \tau_\ell\}$ una enumeración de $\{\chi_{\mathfrak{A}_w}^k \mid w \in \Sigma^*\}$

- $\blacktriangleright \{\tau_0,\ldots,\tau_\ell\}\subseteq \{\chi_{\mathfrak{A}_w}^k\mid w\in\Sigma^*\}$
- Para cada $\chi^k_{\mathfrak{A}_w}$, existe $i \in \{0, \dots, \ell\}$ tal que $\chi^k_{\mathfrak{A}_w} \equiv \tau_i$
- ▶ Para cada $i, j \in \{0, \dots, \ell\}$ con $i \neq j$, se tiene que $\tau_i \not\equiv \tau_j$

Definimos \mathcal{A}_{Φ} a partir de $\{\tau_0,\ldots,\tau_\ell\}$

Suponga que $au_0 \equiv \chi^k_{\mathfrak{A}_{\varepsilon}}$

Entonces A_{Φ} se define como $(Q, \Sigma, \tau_0, \delta, F)$, donde:

- ► $F = \{\tau_i \mid i \in \{0, ..., \ell\} \text{ y existe } w \in \Sigma^* \text{ tal que } \tau_i \equiv \chi_{\mathfrak{A}_w}^k \text{ y } \mathfrak{A}_w \models \Phi\}$
- ▶ $\delta(\tau_i, a) = \tau_i$ si existe $w \in \Sigma^*$ tal que:

$$au_i \equiv \chi_{\mathfrak{A}_w}^k \quad \mathsf{y} \quad au_j \equiv \chi_{\mathfrak{A}_{wa}}^k$$

Primero tenemos que demostrar \mathcal{A}_{Φ} está bien definido.

Lema

Para todo
$$w_1, w_2 \in \Sigma^*$$
 $y \in \Sigma$, $si \mathfrak{A}_{w_1} \equiv_k^{MSO} \mathfrak{A}_{w_2}$, entonces $\mathfrak{A}_{w_1 a} \equiv_k^{MSO} \mathfrak{A}_{w_2 a}$

Ejercicio

Demuestre el lema usando la técnica de composición

Ahora tenemos que demostrar que $L(\Phi) = L(A_{\Phi})$

Sea $w \in \Sigma^*$ de largo $n \ge 0$

Sea $ho: \{0,\ldots,n\} o Q$ la ejecución de \mathcal{A}_{Φ} sobre w y $au_i =
ho(n)$

Por definición de δ y el lema, se tiene que:

$$\tau_i \equiv \chi_{\mathfrak{A}_w}^k$$

- (⊆) Suponga que $w \in L(\Phi)$
 - Se tiene que $\mathfrak{A}_w \models \Phi$

Dado que $\tau_i \equiv \chi_{\mathfrak{A}_{\cdots}}^k$, se tiene que $\tau_i \in F$

- ▶ Concluimos que $w \in L(A_{\Phi})$
- (\supseteq) Suponga que $w \in L(\mathcal{A}_{\Phi})$
 - ▶ Se tiene que $\tau_i ∈ F$: Existe $w_1 ∈ Σ^*$ tal que $\tau_i ≡ \chi^k_{\mathfrak{A}_{w_1}}$ y $\mathfrak{A}_{w_1} \models Φ$

Dado que $\tau_i \equiv \chi^k_{\mathfrak{A}_w}$, se tiene que $\chi^k_{\mathfrak{A}_w} \equiv \chi^k_{\mathfrak{A}_{w_1}}$

Por lo tanto: $\mathfrak{A}_w \equiv_k^{\mathsf{MSO}} \mathfrak{A}_{w_1}$

▶ Concluimos que $w \in L(\Phi)$ ya que $\mathfrak{A}_{w_1} \models \Phi$ y $rc(\Phi) = k$

"Autómata = Lógica": Algunos corolarios

Corolario

El lenguaje $\{0^n1^n \mid n \ge 1\}$ no es regular

Corolario

 $MSO = \exists MSO$ sobre las estructuras que representan palabras