## Image Processing INT3404 1/ INT3404E 21

Giảng viên: TS. Nguyễn Thị Ngọc Diệp Email: ngocdiep@vnu.edu.vn

1

#### Schedule

| ần Nôi dung                                                                                                                                 | Yêu cầu đối với sinh viên (ngoài việc đọc tài liệu tham khảo)   |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Giới thiệu môn học                                                                                                                          | Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook |
| 2 Ånh số (Digital image) – Phép toán điểm (Point operations)<br>Làm quen với OpenCV + Python                                                |                                                                 |
| Điều chỉnh độ tương phản (Contrast adjust)– Ghép ảnh (Combining images)                                                                     | Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý             |
| 4 Histogram - Histogram equalization                                                                                                        | Thực hành ở nhà                                                 |
| 5 Phép lọc trong không gian điểm ảnh (linear processing filtering)                                                                          | Thực hành ở nhà                                                 |
| 6 Phép lọc trong không gian điểm ảnh cont. (linear processing filtering) Thực hành: Ứng dụng của histogram; Tim ảnh mẫu (Template matching) | Bài tập mid-term                                                |
| 7 Trích rút đặc trưng của ảnh<br>Cạnh (Edge) và đường (Line) và texture                                                                     | Thực hành ở nhà                                                 |
| <sup>8</sup> Các phép biến đổi hình thái (Morphological operations)                                                                         | Làm bài tập 2: tìm barcode                                      |
| 9 Chuyển đổi không gian – Miền tần số – Phép lọc trên miền tần số<br>Thông báo liên quan đồ án môn học                                      | Đăng ký thực hiện đồ án môn học                                 |
| 10 Xử lý ảnh màu (Color digital image)                                                                                                      | Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng    |
| 11 Các phép biến đổi hình học (Geometric transformations)                                                                                   | Thực hành ở nhà                                                 |
| 12 Nhiễu – Mô hình nhiễu – Khôi phục ảnh (Noise and restoration)                                                                            | Thực hành ở nhà                                                 |
| 13 Nén ảnh (Compression)                                                                                                                    | Thực hành ở nhà                                                 |
| 14 Hướng dẫn thực hiện đồ án môn học                                                                                                        | Trình bày đồ án môn học                                         |
| 15 Hướng dẫn thực hiện đồ án môn học<br>Tổng kết cuối kỳ                                                                                    | Trình bày đồ án môn học                                         |

#### This week outline

- 1. Recall Spatial Filtering (Week 4)
- 2. Some properties of Convolution and correlation
- 3. Filter design
  - 1. Non-DL
  - 2. DL

3

## Recall week 4: Spatial filtering

- Neighbors of a pixel
- Distance between two pixels
- Correlation

$$(w \Leftrightarrow f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

Filter kernels





## Padding values at borders

- Pad a constant value (black)
- Wrap around (circulate the image)
- Copy edge (replicate the edges' pixels)
- Reflect across edges (symmetric)









7

#### Filter kernels

- Smoothing/Noise reduction/Blurring
  - Box filter
  - Lowpass Gaussian filter
  - Order-statistic (nonlinear) filter
    - Max, min, median
- Other applications:
  - · Shading correction
  - · Unsharp masking

Properties

9

Fundamental properties of convolution and correlation

| Property     | Convolution                                 | Correlation                                                               |
|--------------|---------------------------------------------|---------------------------------------------------------------------------|
| Commutative  | $f \star g = g \star f$                     | -                                                                         |
| Associative  | $f \star (g \star h) = (f \star g) \star h$ | -                                                                         |
| Distributive | $f \star (g+h) = (f \star g) + (f \star h)$ | $f \Leftrightarrow (g+h) = (f \Leftrightarrow g) + (f \Leftrightarrow h)$ |

## Simpler convolution computation?

$$\frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \frac{1}{3} [1 \quad 1 \quad 1] = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{4} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} * \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

11

## Separable filter kernels

• A 2-D function G(x, y) is separable if it can be written as the product of two 1-D functions,  $G_1(x, y)$  and  $G_2(x, y)$ 

$$G(x,y) = G_1(x,y)G_2(x,y)$$

• Associative property of convolution

$$w \star f = (w_1 \star w_2) \star f = (w_2 \star w_1) \star f = w_2 \star (w_1 \star f) = (w_1 \star f) \star w_2$$

## Computational advantage

Input size: MxN Kernel size: mxn

$$C = \frac{MNmn}{MN(m+n)} = \frac{mn}{m+n}$$

13

Week 5: Filter design

Kernels with negative values? -1 0 1 2 -2 0 2 0 0 0 -1 0 1 -1 -2 -1 Vertical Horizontal

16

## Edge detection







17

## Filter learning

- With DL
  - Automatic learning <-- With a lot of engineering skills
- Without DL
  - With a lot of *a priori* knowledge

# Topic: Edge-preserving smoothing filters

19



## Kuwahara-type filter

$$\mu_{k}(I, u, v) = \frac{1}{|R_{k}|} \cdot \sum_{(i,j) \in R_{k}} I(u+i, v+j) = \frac{1}{n_{k}} \cdot S_{1,k}(I, u, v), \quad (17.1)$$

$$\sigma_{k}^{2}(I, u, v) = \frac{1}{|R_{k}|} \cdot \sum_{(i,j) \in R_{k}} \left( I(u+i, v+j) - \mu_{k}(I, u, v) \right)^{2} \quad (17.2)$$

$$= \frac{1}{|R_{k}|} \cdot \left( S_{2,k}(I, u, v) - \frac{S_{1,k}^{2}(I, u, v)}{|R_{k}|} \right), \quad (17.3)$$

$$\sigma_k^2(I, u, v) = \frac{1}{|R_k|} \cdot \sum_{(i,j) \in \mathcal{R}} (I(u+i, v+j) - \mu_k(I, u, v))^2$$
 (17.2)

$$= \frac{1}{|R_k|} \cdot \left( S_{2,k}(I, u, v) - \frac{S_{1,k}^2(I, u, v)}{|R_k|} \right), \tag{17.3}$$

for k = 1, ..., K, with<sup>2</sup>

$$S_{1,k}(I,u,v) = \sum_{i} I(u+i,v+j),$$
 (17.4)

$$S_{1,k}(I, u, v) = \sum_{\substack{(i,j) \in R_k \\ (i,j) \in R_k}} I(u+i, v+j),$$

$$S_{2,k}(I, u, v) = \sum_{\substack{(i,j) \in R_k }} I^2(u+i, v+j).$$
(17.4)

The mean  $(\mu)$  of the subregion with the smallest variance  $(\sigma^2)$  is selected as the update value, that is,

$$I'(u,v) \leftarrow \mu_{k'}(u,v), \quad \text{with } k' = \operatorname*{argmin}_{k=1,\dots,K} \sigma_k^2(I,u,v). \tag{17.6}$$

21

## Kuwahara-type filter













(b)  $r = 1 \ (3 \times 3 \ \text{filter})$ 

















(e)  $r = 4 (9 \times 9 \text{ filter})$ 

#### Nagao-Matsuyama filter



Fig. 17.2 Subregions for the  $5 \times 5$  (r=2) Nagao-Matsuyama filter [170]. Note that the centered subregion  $(R_1)$  has a different size than the remaining subregions  $(R_2, \ldots, R_9)$ .

23

## Domain filter vs Range filter

 Domain filter: weights depend only on the distance in the spatial domain

$$I'(u,v) \leftarrow \sum_{\substack{m=\\ -\infty}}^{\infty} \sum_{\substack{n=\\ -\infty}}^{\infty} I(u+m,v+n) \cdot H(m,n)$$
$$= \sum_{\substack{i=\\ -\infty}}^{\infty} \sum_{\substack{j=\\ -\infty}}^{\infty} I(i,j) \cdot H(i-u,j-v),$$

Cause some spatial effect upon the image: blurring or sharpening

 Range filter: weights depend only upon the differences in pixel values or range

$$I_r'(u,v) \leftarrow \sum_{\substack{i=\\ -\infty \\ -\infty}}^{\infty} \sum_{-\infty}^{\infty} I(i,j) \cdot H_{\mathbf{r}}\big(I(i,j) - I(u,v)\big). \tag{Act as a point opration}$$

#### Bilateral filter

• Combining both domain filtering and range filtering

$$I'(u,v) = \frac{1}{W_{u,v}} \cdot \sum_{\substack{i = \\ -\infty}}^{\infty} \sum_{-\infty}^{\infty} I(i,j) \cdot \underbrace{H_{\mathbf{d}}(i-u,j-v) \cdot H_{\mathbf{r}}\big(I(i,j)-I(u,v)\big)}_{W_{i,j}},$$

where  $H_{\rm d},~H_{\rm r}$  are the domain and range kernels, respectively,  $w_{i,j}$  are the composite weights, and

$$W_{u,v} = \sum_{\substack{i = \\ -\infty \\ -\infty}}^{\infty} \sum_{-\infty}^{\infty} w_{i,j} = \sum_{\substack{i = \\ -\infty \\ -\infty}}^{\infty} \sum_{-\infty}^{\infty} H_{\mathrm{d}}(i-u,j-v) \cdot H_{\mathrm{r}}\big(I(i,j)-I(u,v)\big)$$

is the (position-dependent) sum of the weights  $w_{i,j}$  used to normalize the combined filter kernel.

25



## A Benchmark for Edge-Preserving Image Smoothing

Feida Zhu, Student Member, IEEE, Zhetong Liang, Student Member, IEEE, Xixi Jia, Student Member, IEEE, Lei Zhang, Fellow, IEEE, and Yizhou Yu, Fellow, IEEE

- [6] B. Ham, M. Cho, and J. Ponce, "Robust guided image filtering using nonconvex potentials," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017.
- [7] L. Xu, C. Lu, Y. Xu, and J. Jia, "Image smoothing via I 0 gradient minimization," in ACM Transactions on Graphics (TOG), vol. 30, no. 6. ACM, 2011, p. 174.
- [8] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, "Fast global image smoothing based on weighted least squares," *IEEE Transactions on Image Processing*, vol. 23, no. 12, pp. 5638–5653, 2014.
- [9] L. Bao, Y. Song, Q. Yang, H. Yuan, and G. Wang, "Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree," *IEEE Transactions on Image Processing*, vol. 23, no. 2, pp. 555–569, 2014.
- [10] Q. Zhang, L. Xu, and J. Jia, "100+ times faster weighted median filter (wmf)," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2014, pp. 2830–2837.
- [11] S. Paris, S. W. Hasinoff, and J. Kautz, "Local laplacian filters: Edge- aware image processing with a laplacian pyramid." ACM Trans. Graph., vol. 30, no. 4, pp. 68–1, 2011.
- [12] S. Bi, X. Han, and Y. Yu, "An I 1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition," ACM Transactions on Graphics (TOG), vol. 34, no. 4, p. 78, 2015.