Caleb Logemann MATH 520 Methods of Applied Math II Homework 4

Section 11.4

#6 Let $\mathbf{H} = L^2(0,1)$ and $T_1 u = T_2 u = i u'$ with domains

$$D(T_1) = \left\{ u \in H^1(0,1) : u(0) = u(1) \right\}$$

$$D(T_2) = \left\{ u \in H^1(0,1) : u(0) = u(1) = 0 \right\}$$

Show that T_1 is self-adjoint, and that T_2 is closed and symmetric but not self-adjoint. What is T_2^* ?

Proof. First I will show that T_1 is self-adjoint. Let $v \in D(T_1)$, then (v, iv') is an admissable pair for T_1^* . To see this note that

$$\langle T_1 u, v \rangle = \int_0^1 i u'(x) \overline{v(x)} \, dx$$

$$= i u(x) \overline{v(x)} \Big|_{x=0}^1 - \int_0^1 i u(x) \overline{v'(x)} \, dx$$

$$= i u(x) \overline{v(x)} \Big|_{x=0}^1 + \int_0^1 u(x) \overline{i v'(x)} \, dx$$

$$= i u(1) \overline{v(1)} - i u(0) \overline{v(0)} + \int_0^1 u(x) \overline{i v'(x)} \, dx$$

Since u(0) = u(1) and v(0) = v(1).

$$= \int_0^1 u(x) \overline{iv'(x)} \, dx$$
$$= \langle u, T_1 v \rangle$$

This shows that $D(T_1) \subset D(T_1^*)$ and that $T_1u = T_1^*u = iu'$ for $u \in D(T)$.

Now let $v \in D(T_1^*)$, if we can show that $v \in D(T)$ and $T_1^*v = iv'$, then we know that $T_1 = T_1^*$. Since $v \in D(T_1^*)$ then there exists $g \in L^2(0,1)$ such that (v,g) is an admissable pair for T_1^* and $\int_0^1 g(x) dx = 0$ Now by definition $T_1^*v = g$. Also since (v,g) is an admissable pair,

$$\langle Tu, v \rangle = \langle u, q \rangle$$

for all $u \in D(T)$. Next I will define the following function

$$G(x) = \int_0^x g(y) \, \mathrm{d}y + \alpha$$

where

$$\alpha = i \int_0^1 v(s) \, \mathrm{d}s - \int_0^1 \int_0^s g(y) \, \mathrm{d}y \, \mathrm{d}s.$$

Since $v, g \in L^2(0,1)$, this function is well-defined. Note that by the Fundamental Theorem of Calculus for L^2 functions, G'(x) = g(x). Also note that since $\int_0^1 g(x) dx = 0$,

$$G(0) = \int_0^0 g(y) \, dy + \alpha = \alpha = \int_0^1 g(y) \, dy + \alpha = G(1)$$

Now reconsider the inner product $\langle u, g \rangle$.

$$\langle u, g \rangle = \int_0^1 u(x) \overline{g(x)} \, dx$$

$$= \int_0^1 u(x) \overline{G'(x)} \, dx$$

$$= u(x) G(x) \Big|_{x=0}^1 - \int_0^1 u'(x) \overline{G(x)} \, dx$$

$$= (u(1)G(1) - u(0)G(0)) - \int_0^1 u'(x) \overline{G(x)} \, dx$$

Since $u \in D(T)$, u(0) = u(1) and as shown before G(0) = G(1), the first term is zero.

$$\langle u, g \rangle = -\int_0^1 u'(x) \overline{G(x)} \, \mathrm{d}x$$

$$= -\langle u', G \rangle$$

Now using the definition of admissible pair it is possible to see that

$$\langle Tu, v \rangle = \langle u, q \rangle = -\langle u', G \rangle$$

for all $u \in D(T)$. Equivalently this is

$$\int_0^1 iu'(x)\overline{v(x)} \, dx = -\int_0^1 u'(x)\overline{G(x)} \, dx$$
$$\int_0^1 u'(x)\overline{G(x) - iv(x)} \, dx = 0$$

Since this is true for any $u \in D(T_1)$ this is true in particular for

$$u(x) = \int_0^x G(y) - iv(y) \, \mathrm{d}y$$

In order to verify that $u \in D(T_1)$, note that $u(x) \in L^2(0,1)$ and that $u'(x) = G(x) - iv(x) \in L^2(0,1)$. Also u(0) = 0 and

$$u(1) = \int_0^1 G(y) - iv(y) \, dy$$

= $\int_0^1 \int_0^y g(s) \, ds + \alpha - iv(y) \, dy$
= $\alpha - i \int_0^1 v(y) \, dy + \int_0^1 \int_0^y g(s) \, ds \, dy$

Substituting in for α

$$= i \int_0^1 v(y) \, dy - \int_0^1 \int_0^y g(s) \, ds \, dy - i \int_0^1 v(y) \, dy + \int_0^1 \int_0^y g(s) \, ds \, dy$$

= 0

Now using this function we see that

$$\int_0^1 |G(x) - iv(x)|^2 dx = 0$$
$$\|G - iv\| = 0$$
$$G - iv = 0$$
$$G = iv$$

Since $G' = g \in L^2(0,1)$ is differentiable this implies that $v' = -iG' \in L^2(0,1)$. Also v(0) = -iG(0) = -iG(1) = v(1) because G(0) = G(1). This shows that $v \in D(T_1)$ and that $T_1^*v = g = iv'$. Therefore $T_1^* = T_1$.

Next I will consider T_2 . To see that T_2 is symmetric, let $u, v \in D(T^2)$.

$$\langle T_2 u, v \rangle = \int_0^1 i u'(x) \overline{v(x)} \, dx$$
$$= i u(x) \overline{v(x)} \Big|_{x=0}^1 - \int_0^1 i u(x) \overline{v'(x)} \, dx$$

Since u(0) = u(1) = 0 and v(0) = v(1) = 0

$$= 0 - \int_0^1 iu(x)\overline{v'(x)} \, dx$$
$$= \int_0^1 u(x)\overline{iv'(x)} \, dx$$
$$= \langle u, T_2 v \rangle$$

Thus T_2 is symmetric.

To see that T_2 is closed let $u_n \in D(T_2)$ such that $u_n \to u \in L^2(0,1)$ and $T_2u_n \to v \in L^2(0,1)$. Since $u_n(0) = u_n(1) = 0$ for all n this implies that u(0) = u(1) = 0. Also since $T_2u_n \to v$, this implies that $iu'_n \to v$ Therefore $u'_n \to -iv$ which shows that u' = -iv, So $u \in D(T_2)$ and $T_2u = iu' = v$ and T_2 is closed.

#7 If T is symmetric with $R(T) = \mathbf{H}$ show that T is self-adjoint.

Proof. Let T be symmetric with $R(T) = \mathbf{H}$. Let $u, v \in D(T)$, then

$$\langle Tu, v \rangle = \langle u, Tv \rangle.$$

This shows that (v, Tv) is an admissable pair for T^* and that $T^*v = Tv$. Thus for any $v \in D(T)$, $v \in D(T^*)$, which shows that $D(T) \subset D(T^*)$.

Now let $v \in D(T^*)$, so that there exists $v^* \in \mathbf{H}$ such that (v, v^*) is an admissable pair for T^* . Also since $v^* \in \mathbf{H}$, there exists some $w \in D(T)$ such that $Tw = v^*$. Now using the definition of admissible pair

$$\langle Tu, v \rangle = \langle u, v^* \rangle$$

= $\langle u, Tw \rangle$
= $\langle Tu, w \rangle$

for all $u \in D(T)$. This implies that

$$\langle Tu, v - w \rangle = 0$$

 $v - w \perp R(T) = \mathbf{H}$
 $v - w = 0v$ $= w$

This shows that $v \in D(T)$ and that $Tv = v^* = T^*v$. Thus $D(T) = D(T^*)$ and $T = T^*$, so T is self-adjoint.

#16 We say that a linear operator on a Hilbert space **H** is bounded below if there exists a constant $c_0 > 0$ such that

$$\langle Tu, u \rangle \ge -c_0 ||u||^2 \quad \forall u \in D(T)$$

Show that Theorem 11.6 remains valid if the condition that T be positive is replaced by the assumption that T is bounded below.

Proof. Let T be densely defined, symmetric, and bounded below by $c_0 > 0$. Consider the operator $T + c_0 I$, where I is the identity operator on \mathbf{H} . Note that $D(T + c_0 I) = D(T)$ so that $T + c_0 I$ is densely defined. Also $T + c_0 I$ is positive. To see this let $u \in D(T + c_0 I)$, then

$$\langle (T + c_0 I)u, u \rangle = \langle Tu + c_0 u, u \rangle$$

$$= \langle Tu, u \rangle + c_0 \langle u, u \rangle$$

$$\geq -c_0 ||u||^2 + c_0 ||u||^2$$

$$= 0$$

The operator $T + c_0 I$ is also symmetric, to show this let $u, v \in D(T + c_0 I)$, then

$$\langle (T + c_0 I)u, v \rangle = \langle Tu + c_0 u, v \rangle$$
$$= \langle Tu, v \rangle + c_0 \langle u, v \rangle.$$

Since T is symmetric

$$\langle (T + c_0 I)u, v \rangle = \langle u, Tv \rangle + c_0 \langle u, v \rangle.$$

Also since $c_0 > 0$, $c_0 \in \mathbb{R}$, so

$$\langle (T + c_0 I)u, v \rangle = \langle u, Tv \rangle + \langle u, c_0 v \rangle$$
$$= \langle u, Tv + c_0 v \rangle$$
$$= \langle u, (T + c_0 I)v \rangle.$$

Since $T + c_0I$ is densely defined, positive, and symmetric, by Theorem 11.6 there exists a positive self-adjoint extension, S, of $T + c_0I$. Next I will define the operator $R = S - c_0I$ and claim that this is a bounded below self adjoint extension of T. First note that $D(R) = D(S) \supset D(T + c_0I) = D(T)$. Let $u \in D(T)$, then

$$Ru = (S - c_0 I)u$$
$$= Su - c_0 u$$

Since $u \in D(T + c_0 I)$ and S is an extension of $T + c_0 I$

$$Ru = (T + c_0 I)u - c_0 u$$
$$= Tu + c_0 u - c_0 u$$
$$= Tu$$

This shows that R is an extension of T.

Also R is bounded below, to see this let $u \in D(R)$, then

$$\langle Ru, u \rangle = \langle (S - c_0 I)u, u \rangle$$

= $\langle Su, u \rangle - c_0 \langle u, u \rangle$

Since S is positive

$$\langle Ru, u \rangle \ge -c_0 \|u\|^2$$

Finally I will show that R is self-adjoint. Since S and I are self-adjoint.

$$R^* = (S - c_0 I)^* = S^* - c_0 I^* = S - c_0 I = R$$

Therefore for any densely defined, bounded below, symmetric operator there exists a bounded below self-adjoint extension. $\hfill\Box$

Section 12.4

#3 Recall that the resolvent operator of T is defined to be $R_{\lambda} = (\lambda I - T)^{-1}$ for $\lambda \in \rho(T)$.

(a) Prove the resolvant identity (12.1.3).

Proof. Let $\lambda, \mu \in \rho(T)$. Note that $R_{\lambda}^{-1} = \lambda I - T$ and $R_{\mu}^{-1} = \mu I - T$ are both defined and $R_{\lambda}R_{\lambda}^{-1} = R_{\mu}R_{\mu}^{-1} = I$.

$$\begin{split} R_{\lambda} - R_{\mu} &= R_{\lambda} I - I R_{\mu} \\ &= R_{\lambda} R_{\mu}^{-1} R_{\mu} - R_{\lambda} R_{\lambda}^{-1} R_{\mu} \\ &= R_{\lambda} \left(R_{\mu}^{-1} R_{\mu} - R_{\lambda}^{-1} R_{\mu} \right) \\ &= R_{\lambda} \left(R_{\mu}^{-1} - R_{\lambda}^{-1} \right) R_{\mu} \\ &= R_{\lambda} ((\mu I - T) - (\lambda I - T)) R_{\mu} \\ &= R_{\lambda} (\mu I - T - \lambda I + T) R_{\mu} \\ &= R_{\lambda} (\mu I - \lambda I) R_{\mu} \\ &= R_{\lambda} (\mu - \lambda) I R_{\mu} \\ &= (\mu - \lambda) R_{\lambda} R_{\mu} \end{split}$$

This shows that

$$R_{\lambda} - R_{\mu} = (\mu - \lambda) R_{\lambda} R_{\mu}$$

for all $\lambda, \mu \in \rho(T)$.

(b) Deduce from this that R_{λ} and R_{μ} commute.

Proof. Let $\lambda, \mu \in \mathbb{C}$. If $\lambda = \mu$, then $R_{\lambda} = R_{\mu}$ so

$$R_{\lambda}R_{\mu} = R_{\lambda}^2 = R_{\mu}R_{\lambda}.$$

In this case R_{λ} and R_{μ} commute trivially. Now let $\lambda \neq \mu$, in this case the resolvant identity states that

$$R_{\lambda}R_{\mu} = \frac{R_{\lambda} - R_{\mu}}{\lambda - \mu}.$$

Now consider the following

$$R_{\lambda}R_{\mu} = \frac{R_{\lambda} - R_{\mu}}{\lambda - \mu}$$
$$= \frac{R_{\mu} - R_{\lambda}}{\mu - \lambda}$$
$$= R_{\mu}R_{\lambda}$$

This shows that R_{λ} and R_{μ} commute.

(c) Show also that T and R_{λ} commute for $\lambda \in \rho(T)$.

Proof. Let $\lambda \in \rho(T)$, so that $R_{\lambda}^{-1} = \lambda I - T$ is well-defined.

$$TR_{\lambda} = ITR_{\lambda}$$

$$= R_{\lambda}R_{\lambda}^{-1}TR_{\lambda}$$

$$= R_{\lambda}(\lambda I - T)TR_{\lambda}$$

$$= R_{\lambda}(\lambda T - T^{2})R_{\lambda}$$

$$= R_{\lambda}T(\lambda I - T)R_{\lambda}$$

$$= R_{\lambda}TR_{\lambda}^{-1}R_{\lambda}$$

$$= R_{\lambda}T$$

This shows that T and R_{λ} commute for $\lambda \in \rho(T)$.

#4 Show that $\lambda \to R_{\lambda}$ is continuously differentiable, regarded as a mapping from $\rho(T) \subset \mathbb{C}$ into $\mathcal{B}(\mathbf{H})$, with

$$\frac{\mathrm{d}R_{\lambda}}{\mathrm{d}\lambda} = -R_{\lambda}^2$$

Proof. First I will show that this mapping is continous. Let $\lambda_n \in \rho(T)$ such that $\lambda_n \to \lambda$ as $n \to \infty$. Consider

$$\lim_{n \to infty} (\|R_{\lambda_n} - R_{\lambda}\|) = \lim_{n \to \infty} (\|(\lambda - \lambda_n) R_{\lambda_n} R_{\lambda}\|)$$

$$\leq \lim_{n \to \infty} (\langle \lambda_n - \lambda \rangle \|R_{\lambda_n}\| \|R_{\lambda}\|)$$

Since R_{λ} and R_{λ_n} are bounded

$$\lim_{n \to infty} (\|R_{\lambda_n} - R_{\lambda}\|) = 0$$

Therefore R_{λ} is continuous when seen as a function of λ .

Now consider the derivative of R_{λ} with respect to λ .

$$\frac{\mathrm{d}R_{\lambda}}{\mathrm{d}\lambda} = \lim_{n \to \infty} \left(\frac{R_{\lambda_n} - R_{\lambda}}{\lambda_n - \lambda} \right)$$
$$= \lim_{n \to \infty} \left(\frac{(\lambda - \lambda_n) R_{\lambda} R_{\lambda_n}}{\lambda_n - \lambda} \right)$$
$$= \lim_{n \to \infty} (-R_{\lambda} R_{\lambda_n})$$

Since R_{λ} is continuous

$$=-R_{\lambda}^{2}$$

Finally note that $-R_{\lambda}^2$ is continuous as a function of λ because negation and squaring are continuous operations.