<u>GRAVIMETRIA</u>

6.8 Cálculo Gravimétrico

- A observação de redes gravimétricas nacionais apoiados estações de gravimetria absoluta;
- A densificação da rede faz-se por gravimetria relativa apoiando-se sempre em pontos gravimétricos previamente determinados;

Geodesia Física - Aula 12

FCUL-EG

GRAVIMETRIA

6.8 Cálculo Gravimétrico

- A observação gravimétrica faz-se através de <u>Circuitos</u>
 Gravimétricos, apoiados numa marca de gravimetria absoluta;
- São observados circuitos fechados com gravímetros relativos;
- Em cada estação são feitos 2 (ou mais) registos (leitura & hora TU);
- O valores registados vêm em unidades do gravímetros, são depois convertidos em valore de mGal e corrigidos de vários efeitos;
- Devem ser observadas coordenadas geodésicas (ϕ , λ) do local com altitude ortométrica (H = h N);
- No final é obtido o desnível gravimétrico (diferença de gravidade) em relação à marca de referência (de gravidade absoluta);
- Depois de se obter o valor de g observado, são calculas as anomalias de gravidade em cada estação.

Geodesia Física – Aula 12

6.8.1 Correcções das medições gravimétricas

- a) Conversão da unidade do gravímetro em unidade de mGal, a partir de uma tabela de conversão (de cada gravímetro);
- b) Correcção do efeito da maré terrestre, causada pela variação de atracção luni-solar durante o período de medição;
- c) Correcção da deriva instrumental, da deriva dinâmica e, ocasionalmente, deriva estática.

Geodesia Física - Aula 12

GRAVIMETRIA

6.8.1a) Conversão da unidade instrumental

Counter Reading*	Value in Milligals	Factor for Interval	Counter Reading*	Value in Milligals	Factor for Interval
Reduing	willigais	Interval	Redding	1011119015	inter var
000	000	1.05673			
100	105.67	1.05686	3600	3807.31	1.05874
200	211.36	1.05706	3700	3913.19	1.05870
300	317.07	1.05701	3800	4019.06	1.05868
400	422.77	1.05675	3900	4124.92	1.05870
500	528.44	1.05675	4000	4230.79	1.05870
600	634.12	1.05687	4100	4336.66	1.05869
700	739.80	1.05700	4200	4442.53	1,05866
800	845.50	1.05705	4300	4548.40	1.05864
900	951.21	1.05705	4400	4654.26	1,05860
1000	1056.91	1.05705	4500	4760.12	1.05855
1100	1162.62	1.05705	4600	4865.98	1,05850
1200	1268.32	1.05708	4700	4971.83	1.05843
3300	1374.03	1.05712	4800	5077.67	1.05840
1400	1479,74	1.05719	4900	5183.51	1.05831
1500	1585.46	1.05726	5000	5289.34	1.05822
1600	1691.19	1.05735	5100	5395.16	1.05813
1700	1796.92	1.05745	5200	5500.98	1.05800
1800	1902.67	1.05749	5300	5606.78	1.05788
1900	2008.42	1.05755	5400	5712.56	3.05774
2000	2114.17	1.05760	5500	5818.34	1.05760
2100	2219.93	1.05768	5600	5924.10	1.05745
2200	2325.70	1.05777	5700	6029.84	1,05726
2300	2431,48	1.05787	5800	6135.57	1.05707
2400	2537.26	1.05800	5900	6241.28	1.05685
2500	2643.06	1.05812	6000	6346.96	1.05662
2600	2748.88	1.05819	6100	6452.62	1.05638
2700	2854.70	1.05823	6200	6558.26	1.05611
2800	2960.52	1.05827	6300	6663.87	1.05583
2900	3066.35	1.05832	6400	6769.46	1.05553
3000	3172.18	1.05838	6500	6875.01	1.05524
3100	3278.02	1.05845	6600	6980.53	1.05489
3200	3383.86	1.05851	6700	7086.02	1.05450
3300	3489,71	1.05861	6800	7191.47	1.05408
3400	3595.57	1.05868	6900	7296.88	1.05362
3500	3701.44	1.05871	7000	7402.24	1.05315

Geodesia Física - Aula 12

FCUL-EG

FCUL-EG

6.8.1a) Conversão da unidade instrumental

• Tabela de Conversão do gravímetro L&R 1019, do IDL

UNIDADES VALOR(mGal) FACTOR 3140,77 1,01345 3200 3242,12 1,01350 3300 3343,47 1,01360 3400 3444,84 1,01365 3500 3546,20 1,01375

3461,352

$$l(mGal) = V_1 + \frac{V_2 - V_1}{U_2 - U_1}(L - U_1) \qquad l(mGal) = V_1 + Factor(L - U_1)$$

$$3507,026mGal = 3444,84 + \frac{3546,20 - 3444,84}{3500 - 3400}(3461,352 - 3400)$$

Geodesia Fisica – Aula 12 FCUL-EG

GRAVIMETRIA

6.8.1a) Conversão da unidade instrumental

FCTA CÃ O	FCTA CÃO LIONA AT	ΔΤ	Leitura	Int.Grav.	Val.mGal	Factor	Dezena	Dez.Corr	Leit. mGal
ESTAÇÃO HORA	Δ1	(1)	(2)	(3)	(4)	(5)=(1)-(2)	(6)=(4)*(5)	(7)=(3)+(6)	
LISBOA	10.05	0.00	3474.576	3400	3456.88	1.01820	74.576	75.933	3532.813
COIMBRA	11.73	1.68	3398.803	3300	3355.07	1.01805	98.803	100.586	3455.656
SEIA	19.01	8.96	3097.734	3000	3049.70	1.01770	97.734	99.464	3149.164
HOTEL	21.51	11.46	3297.206	3200	3253.27	1.01795	97.206	98.951	3352.221
HOTEL	30.85	20.80	3297.245	3200	3253.27	1.01795	97.245	98.991	3352.261
LEIRIA	36.50	26.45	3447.561	3400	3456.88	1.01820	47.561	48.427	3505.307
LISBOA	42.58	32.53	3474.985	3400	3456.88	1.01820	74.985	76.350	3533.230

(1) - Leitura efectuado no gravímetro

(2,3 e 4) - Valores respectivos, extraídos da Tabela do Gravímetro

(5) - Leitura (1) menos Unidade do Gravímetro (2), dezena da leitura

(6) - produto da dezena (5) pelo factor (4), é o 2º termo da equação

(7) - Leitura final em mGal, Valor (3) mais a correcção (6)

$$l(mGal) = V_1 + Factor(L - U_1)$$

Geodesia Física - Aula 12

FCUL-EG

6.8.1b) Correcção da maré Terrestre

1) – Esta correcção depende da paralaxe horizontal (P) do astro (L, S) e da distância zenital geocêntrica à <u>hora de observação</u> e ainda da massa dos astros em unidades de massa da Terra;

$$C_{g} = (gM_{L}^{T}P_{L}^{3}(3\cos^{2}Z_{L}-1) + gM_{S}^{T}P_{S}^{3}(3\cos^{2}Z_{S}-1))\delta$$

2) – Uma outra fórmula, a correção de maré depende da Declinação (δ) e do Ângulo Horário (h) do Sol e da Lua

$$C_g = (98,773\sin 2\delta_L \cosh_L + 45,372\sin 2\delta_S \cosh_S)\sin 2\varphi$$

ESTAÇÃO	DATA	h	min	Leit. mGal	Corr.Maré	L.Corr.maré
LISBOA	21/10/2010	10	3.0	3520.434	0.012	3520.446
COIMBRA	21/10/2010	11	44.0	3443.617	0.02	3443.637
ESTRELA	21/10/2010	19	0.5	3138.474	-0.043	3138.431
HOTEL	21/10/2010	21	30.5	3340.638	0.06	3340.698
HOTEL	22/10/2010	6	51.0	3340.678	-0.084	3340.594
LEIRIA	22/10/2010	12	30.0	3493.050	0.009	3493.059
LISBOA	22/10/2010	18	35.0	3520.849	-0.073	3520.776

Geodesia Física - Aula 12

FCUL-EG

GRAVIMETRIA

6.8.1b) Correcção da maré Terrestre

1) - Variação diária da Maré terrestre;

6.8.1c) Correcção da Deriva Instrumental

1) – A <u>Deriva Estática</u> ocorre apenas quando há uma longa pausa do gravímetro no período de observação do circuito gravimétrico; é aplicada apenas aos valores das estações depois da pausa;

	ESTAÇÃO	HORA	ΔΤ	Leit. mGal	Corr.Maré	L.Corr.maré	Corr.DerivEst	L.C.D.E.
	LISBOA	10.05	0.00	3520.434	0.012	3520.446	0.000	3520.446
	COIMBRA	11.73	1.68	3443.617	0.02	3443.637	0.000	3443.637
	ESTRELA	19.01	8.96	3138.474	-0.043	3138.431	0.000	3138.431
	HOTEL				0.06			
Į	HOTEL	30.85	20.80	3340.678	-0.084	3340.594	-0.104	3340.698
	LEIRIA	36.50	26.45	3493.050	0.009	3493.059	-0.104	3493.164
	LISBOA	42.58	32.53	3520.849	-0.073	3520.776	-0.104	3520.880

Tempo parado: 9.34 horas Tempo em Movimento: 23.19 horas

$$DerivaEst(mGal) = leitura_{depois} - leitura_{antes}$$

Geodesia Física – Aula 12 FCUL-EG

GRAVIMETRIA

6.8.1c) Correcção da Deriva Instrumental

2) – A <u>Deriva Dinâmica</u> ocorre durante o transporte do gravímetro no período de observação do circuito gravimétrico (o tempo em movimento deve ser deduzido do tempo em pausa);

ESTAÇAO	HORA	ΔΤ	Leit. mGal	L.Corr.maré	L.C.D.E.	Corr.DerivDin	Leit. Corr
LISBOA	10.05	0.00	3520.434	3520.446	3520.446	0.000	3520.446
COIMBRA	11.73	1.68	3443.617	3443.637	3443.637	-0.032	3443.605
ESTRELA	19.01	8.96	3138.474	3138.431	3138.431	-0.168	3138.263
HOTEL	21.51	11.46	3340.638	3340.698	3340.698	-0.214	3340.484
HOTEL	30.85	20.80	3340.678	3340.594	3340.698	-0.214	3340.484
LEIRIA	36.50	26.45	3493.050	3493.059	3493.164	-0.320	3492.843
LISBOA	42.58	32.53	3520.849	3520.776	3520.880	-0.434	3520.446

Tempo_Parado (Hotel) = 9.34 Fecho Gravimétrico = -0.434 Tempo_Movimento = 23.19 Deriva (mGal/h) = -0.0187 (Fecho/Temp_mov.)

$$fecho_{grav.} = leitura_{inicial} - leitura_{final}$$

Deriva(mGal) =
$$\frac{\text{fecho}_{grav.}}{\Delta t_{movimento}}$$
 $Corr(mGal) = Deriva_{grav.} \cdot \Delta T_{estação}$ $Corr(mGal) = fecho_{grav.} \cdot \frac{\Delta T_{estação}}{\Delta t}$

Geodesia Física - Aula 12

6.8.2) Cálculo dos valores de Gravidade

1) – O <u>Desnível Gravimétrico</u> corresponde à diferença das leitura corrigidas, entre a estação e a estação de referência;

ESTAÇÃO	HORA	ΔΤ	Leit. mGal	Leit. Corr	∆g (Li-L1)
LISBOA	11.73	1.68	3443.617	3520.446	0.000
COIMBRA	19.01	8.96	3138.474	3443.605	-76.841
ESTRELA	21.51	11.46	3340.638	3138.263	-382.183
HOTEL	30.85	20.80	3340.678	3340.484	-179.962
HOTEL	36.50	26.45	3493.050	3340.484	-179.962
LEIRIA	42.58	32.53	3520.849	3492.843	-27.603
LISBOA	0.00	0.00	0.000	3520.446	0.000

Geodesia Física – Aula 12

FCUL-EG

GRAVIMETRIA

6.8.2) Cálculo dos valores de Gravidade

2) – O $\underline{\text{Valor da Gravidade g}}$ é calculado simplesmente adicionando ao valor g da estação de referência (base) o respectivo desnível gravimétrico ;

g_Lx (mGal)= 980.093,85

ESTAÇÃO	HORA	ΔΤ	Leit. mGal	Leit. Corr	∆g (Li-L1)	g (mGal)
LISBOA	10,05	0,00	3532,813	3532,825	0,000	980.093,850
COIMBRA	11,73	1,68	3455,656	3455,645	-77,181	980.016,669
ESTRELA	19,01	8,96	3149,164	3148,953	-383,873	979.709,977
HOTEL	21,51	11,46	3352,221	3352,066	-180,760	979.913,090
HOTEL	30,85	20,80	3352,261	3352,066	-180,760	979.913,090
LEIRIA	36,50	26,45	3505,307	3505,098	-27,727	980.066,123
LISBOA	42,58	32,53	3533,230	3532,825	0,000	980.093,850

Geodesia Física – Aula 12

FCUL-EG

6.8.2) Cálculo dos valores de Gravidade

3) – São calculadas depois as <u>Anomalias da Gravidade Δg </u> ar-livre e de Bouguer, pelas respectivas fórmulas.

$$\Delta g_{al} = (g_P - \gamma_O) + 0.3086 h_P \, mGal$$

$$\Delta g_{al} = (g_P - \gamma_Q) + 0.3086 h_P \, mGal$$
 $\Delta g'_B = (g_P - \gamma_Q) + 0.1967 h_P \, mGal$

ESTAÇÃO	LAT	LON	Н	g (mGal)	γ (mGal)	∆g (mGal)	∆g_al (mGal)	∆g_B (mGal)
LISBOA	38.69750	-9.20833	10.20	980,093.850	980,005.755	88.095	91.242	90.101
COIMBRA	40.20778	-8.42639	457.50	980,017.009	980,138.753	-121.744	19.440	-31.754
ESTRELA	40.32167	-7.61306	1992.30	979,711.667	980,148.848	-437.181	177.643	-45.296
HOTEL	40.41333	-7.70778	1057.30	979,913.888	980,156.979	-243.091	83.192	-35.120
HOTEL	40.41333	-7.70778	1057.30	979,913.888	980,156.979	-243.091	83.192	-35.120
LEIRIA	39.74722	-8.80694	267.40	980,066.248	980,098.021	-31.773	50.747	20.824
LISBOA	38.69750	-9.20833	10.20	980,093.850	980,005.755	88.095	91.242	90.101

4) – A Gravidade Normal $\underline{\gamma}$ é calculado pela fórmula internacional da gravidade do GRS80;

$$\gamma_{1980} = 978032,677(1+0,0053024\sin^2\phi - 5,8x10^{-6}\sin^22\phi)$$

Geodesia Física – Aula 12 FCUL-EG