WPI ACC NO: 2003-762909/ XRAM Acc No: C2003-209500

Process for preparing rebamipide

Patent Assignee: DONG WHA PHARM IND CO LTD (DONG-N)

Inventor: HONG H S; JUNG Y H; KANG S Y; KWON O J; LIM J G; OH Y S

1 patents, 1 countries

Patent Family

Patent

Application

Number

Kind Date

Number

Kind

Date Update

KR 2003050412

A 20030625

KR 200180842

A 20011218 200372 B

Priority Applications (no., kind, date): KR 200180842 A 20011218

Patent Details

Number

Kind Lan Pg Dwg Filing Notes

KR 2003050412

A KO

1 10

Alerting Abstract KR A

NOVELTY - A process for preparing rebamipide is provided, thereby simplifying the preparing process of rebamipide and improving the preparation yield of rebamipide.

DESCRIPTION - A process for preparing rebamipide of the formula(1) comprises the steps of: reacting 4-(bromomethyl)-1,2-dihydro-2-quinolinone of formula(2) with diethyl 2-[(4-chlorobenzoyl)amino]malonate of formula(3) to prepare a compound of formula(4); and reacting the compound of formula(4) under basic conditions, wherein R is alkyl having the carbon number of 1 to 6, wherein the diethyl 2-[(4-chlorobenzoyl)amino]malonate of formula(3) is prepared by reacting diethyl 2-aminomalonate hydrochloride with 4-chlorobenzoyl derivative of formula(6); and R is alkyl having the carbon number of 1 to 6 and X is OH or halogen atom.

(19)대한민국특허청(KR) (12) 공개특허공보(A)

(51) 。Int. Cl.⁷ C07D 215/227

(11) 공개번호 (43) 공개일자 특2003-0050412 2003년06월25일

(21) 출원번호 (22) 출원일자	10-2001-0080842 2001년12월18일
(71) 출원인	동화약품공업주식회사 서울 중구 순화동 5번지
(72) 발명자 ·	정용호 경기도안양시동안구호계동샘마을아파트301동204호
	오윤석 경기도안양시동안구호계2동895한마음아파트103동504호
	임재경 경기도안양시만안구안양7동198-66유창빌라3동202호
	권오진 경기도수원시권선구호매실동377LG-삼익아파트103동1306호
	강소연 경기도수원시장안구화서동184~141번지
	홍현수

(74) 대리인

허산후

경기도안산시부곡동678-3번지B03호

심사청구 : 없음

(54) 레바미피드의 제조방법

요약

본 발명은 레바미피드의 제조방법에 관한 것으로서, 4-(브로모메틸)-1,2-디히드로-2-퀴놀리논과 디에틸 2-[(4-클로로벤조일)아미노]말로네이트를 반응시켜 생성된 반응중간체를 염기성 화합물로 처리하여 다음 화학식 1로 표시되는 레바미피드를 합성하는 방법으로서, 중래 방법이 수행하는 아미노기 보호반응 및 탈보호반응을 생략할 수 있고, 또한 반응중간체를 염기성 화합물로 처리하여 가수분해 반응과 탈탄산반응을 한 번의 공정으로 수행하는 등 전체적인 반응공정이 단순화되면서도 제조수율도 크게 향상된 효과를 가지는 레바미피드의 개선된 제조방법에 관한 것이다.

[화학식 1]

색인이

레바미피드

명세서

발명의 상세한 설명

발명의 목직

발명이 속하는 기술 및 그 분야의 중래기술

본 발명은 레바미피드의 제조방법에 관한 것으로서, 4-(브로모메틸)-1,2-디히드로-2-퀴놀리논과 디에틸 2-[(4-클로로벤조일)아미노]말로네이트를 반응시켜 생성된 반응증간체를 염기성 화합물로 처리하여 다음 화학식 1로 표시되는 레바미피드를 합성하는 방법으로서, 종래 방법이 수행하는 아미노기 보호반응 및 탈보호반응을 생략할 수 있고, 또한 반응증간체를 염기성 화합물로 처리하여 가수분해 반응과 탈탄산반응을 한 번의 공정으로 수행하는 등 전체적인 반응공정이 단순화되면서도 제조수율도 크게 향상된 효과를 가지는 레바미피드의 개선된 제조방법에 관한 것이다.

상기 화학식 1로 표시되는 레바미피드(Rebamipide)는 소화성궤양 치료제로 사용되고 있고, 또 이의 제조방법이 여러 문헌에 공지되어 있다[한국특허 제38562호 및 *Chem. Pharm. Bull .*, **33(9)** , 3775~3786(1985)].

상기 공지 문헌에 기재된 레바미피드의 제조방법을 간략히 요약하면 다음 반응식 1 및 반응식 2로 나타낼 수 있다.

상기 반응식 1에 의하면, 먼저 상기 화학식 2로 표시되는 브로모화합물과 아미노기가 아세틸기로 보호된 디에틸 아세 트아미도말로네이트를 반응시킨 후, 얻어진 반응중간체를 20% 염산 수용액에서 환류시킨 다음, 4-클로로벤조일클로 라이드와 반응시켜 최중적으로 레바미피드를 합성하고 있다. 그러나, 상기 반응식 1에 따른 방법은 4-클로로벤조일 클로라이드와 반응하는 최종 단계의 수율이 49% [Chem. Pharm. Bull. 33(9) 3775~3786 (1985); 한국특허 제385 62호에는 레바미피드에 대한 수율 언급이 없음] 밖에 되지 않는 큰 단점을 가지고 있다.

또다른 공지 제조방법은 다음 반응식 2로 나타낼 수 있다.

상기 반응식 2에 따른 제조방법에서는 가압하에서 수소가스 환원반응을 수행하므로 대량생산에 적용하기에는 부적 절한 반응공정이라 판단된다.

발명이 이루고자 하는 기술적 과제

이에, 본 발명자들은 보다 간편하고 간단한 공정으로 레바미피드의 대량생산에 적합한 합성방법을 개발하고자 연구노력하였다. 그 결과, 선행기술로서 상기 반응식 1에 따른 제조방법이 화학식 2로 표시되는 4-(브로모메틸)-1,2-디히드로-2-퀴놀리논과 반응하는 아민화합물로서 아미노기가 아세틸기로 보호된 디에틸 아세트아미도말로네이트를 사용함으로써 아민기의 보호 및 탈보호 공정을 별도로 수행하여야 하고 이로인해 공정이 복잡하고 제조수율을 현저하게 감소시키는 결과를 나타내는데 반하여, 본 발명에서는 상기 화학식 2로 표시되는 화합물과 반응하는 아민화합물로서 디에틸 2-[(4-클로로벤조일)아미노]말로네이트를 선택 사용함으로써 별도의 아민기의 보호반응 또는 탈보호 공정을 생략할 수 있어 공정을 단순화함은 물론 레바미피드의 제조수율을 크게 향상시킬 수 있음을 알게됨으로써 본 발명을 완성하게 되었다.

따라서, 본 발명은 소화성궤양 치료에 유용한 화학식 1로 표시되는 레바미피드를 공지방법에 비교하여 간편하면서 단축된 간단한 공정으로도 높은 수율로 제조할 수 있는 새로운 경제적인 제조방법을 제공하는데 그 목적이 있다.

발명의 구성 및 작용

본 발명에 따른 제조방법은 다음 반응식 3에 나타낸 바와 같이,

다음 화학식 2로 표시되는 4-(브로모메틸)-1,2-디히드로-2-퀴놀리논과 다음 화학식 3으로 표시되는 디에틸 2-[(4-클로로벤조일)아미노]말로네이트를 반응시켜 다음 화학식 4로 표시되는 화합물을 제조한 후에,

상기 화학식 4로 표시되는 화합물을 염기성 조건에서 반응시켜 다음 화학식 1로 표시되는 레바미피드를 제조한다.

상기 반응식 3에서: R은 탄소수 1 내지 6의 알킬기를 나타낸다.

본 발명에 따른 제조방법으로서 상기 반응식 3에 의하면, 먼저 상기 화학식 2로 표시되는 화합물과 상기 화학식 3으로 표시되는 화합물을 반응시키면 92% 이상의 수율로 상기 화학식 4로 표시되는 화합물이 제조된다. 이때 반응온도는 실온 내지 용매환류온도 범위를 유지하도록 한다. 반응용매로는 메탄올, 에탄올, 이소프로판올과 같은 저급 알코올류, 테트라히드로퓨란, 1,4-디옥산과 같은 에테르류, 디메틸포름아미드, 디메틸술폭시드와 같은 극성 용매 또는 이들용매의 혼합용매를 사용할 수 있다.

그런다음, 합성된 상기 화학식 4로 표시되는 화합물을 염기성 화합물과 반응시켜 본 발명이 목적하는 상기 화학식 1로 표시되는 레바미피드를 87% 이상의 수율로 합성할 수 있다. 이때 반응온도는 실온 내지 용매환류온도 범위를 유지하는 것이 바람직하다. 반응용매로는 물을 비롯하여 메탄을, 에탄올, 이소프로판을 과 같은 저급 알코올류, 테트라히드로퓨란, 1,4-디옥산과 같은 에테르류, 디메틸포름아미드, 디메틸술폭시드와 같은 극성 용매 또는 이들 용매의 혼합용매를 사용할 수 있다. 그리고, 상기 반응조건을 염기성 조건으로 조절하기 위해 수산화나트륨, 수산화칼륨, 소디움아미드, 수소화나트륨, 소디움메톡사이드, 소디움에톡사이드를 포함한 무기계열의 염기성 화합물과 그 외 통상적인염기성 화합물을 사용할 수 있다. 이때 바람직한 염기성 화합물의 사용량은 상기 화학식 4로 표시되는 화합물에 대하여 2 내지 5 당량 범위이다. 상기 화학식 4로 표시되는 화합물로부터 최종 목적화합물인 레바미피드를 제조하는데 있어, 가수분해반응 또는 탈탄산반응이 선행기술에서는 산성조건으로 수행되는데 반하여 본 발명에서는 염기성 조건을유지하여 가수분해반응 및 탈탄산반응을 한 공정으로 수행한다는 점에 또다른 특징이 있다.

또한, 상기 반응식 3에서는 본 발명의 제조방법을 2단계로 분류하여 표기하고 있지만, 반응 중간체로 합성되는 상기 화학식 4로 표시되는 화합물은 별도의 분리 정제공정을 수행하지 않고 반응용액에 염기성 화합물을 첨가하여 곧바로 레바미피드를 합성할 수 있으며, 이는 레바미피드 합성을 위한 대량생산방법으로서 특히 유용하다.

한편, 본 발명에 따른 제조방법에서 반응물질로 사용하는 상기 화학식 3으로 표시되는 디에틸 2-[(4-클로로벤조일) 아미노]말로네이트는 다음 반응식 4에 따른 방법으로 합성하여 사용하였다.

상기 반응식 4에서: R은 탄소수 1 내지 6의 알킬기를 나타내고, X는 OH 또는 할로겐원자를 나타낸다.

상기 반응식 4에 의하면, 상기 화학식 5로 표시되는 디에틸 2-아미노말로네이트 염산염과 상기 화학식 6으로 표시되 는 4-클로로벤조일 유도체를 반응시켜 4-클로로벤조일기가 바로 치환되어 있어 별도의 아미노기 보호 및 탈보호반 응이 필요없는 상기 화학식 3으로 표시되는 화합물을 거의 정량적으로 얻는다. 상기 반응은 산 수용체 존재하에 수행 하는 바, 산 수용체로는 트리에틸아민, 1,8-디아자비시클로[5.4.0]운덱-7-엔, N-메틸모르포린, N-메틸피페리딘, 피리딘 등을 사용함이 바람직하며, 2 내지 4 당량 사용하는 것이 바람직하다. 그리고, 반응용매로는 디클로로메탄, 클 로로포름, 아세토니트릴, 디메틸포름아미드 등이 바람직하다.

또한, 상기 화학식 6으로 표시되는 화합물로서는 비교적 활성이 강한 4-클로로벤조일 할라이드(X=할로겐원자) 대신에 보다 안정한 4-클로로벤조산(X=OH)을 사용하여 한 반응조에서 활성에스테르화물을 만들어 사용할 수도 있다. 이때 활성에스테르화물은 1-히드록시벤조트리아졸, 2-히드록시피리딘, 디시클로헥실카르보디이미드(DCC)와 같은 축합제를 이용하거나 에틸클로로포르메이트와 같은 저급알킬할로포르메이트를 이용하는 통상적으로 사용할 수 있는 카르복실산의 모든 활성 에 스테르화물을 의미한다.

이상에서 설명한 본 발명의 제조방법을 수행하게 되면, 상기 화학식 2로 표시되는 화합물로부터 목적하는 상기 화학식 1로 표시되는 레바미피드를 합성하는 전체 반응수율은 80% 이상으로서, 현재까지 발표된 어떠한 제조방법과 비교하여서도 현저하게 우수한 수율을 나타낸다는 것을 확인할 수 있다. 이는 본 발명의 제조방법이 상기 화학식 2로 표시되는 브로모화합물과의 반응물로서 선택 사용하고 있는 상기 화학식 3으로 표시되는 화합물의 아미노기가 보호반응 및 탈보호반응없이 직접 반응에 참가할 수 있고, 또한 상기 화학식 4로 표시되는 화합물로부터 목적하는 레바미피드를 제조하는 반응을 염기성 조건으로 조절함으로써 가능해진 것이다.

상기한 바와 같은 본 발명의 제조방법은 다음의 실시예에 의거하여 더욱 상세히 설명하는 바, 본 발명이 이에 한정되는 것은 아니다.

실시예1:

디에틸 2-[(4-클로로밴조일)아미노]말로네이트 (화학식 3 화합물)의 제조

디클로로메탄 100 ㎡에 디에틸 2-아미노말로네이트 염산염 17.4 g과 4-클로로벤조일클로라이드 10 ㎡를 넣고 교반하면서 10 ℃ 이하에서 트리에틸아민 24.0 ㎡를 천천히 적가한 후 그 온도에서 1 시간동안 더 교반하였다. 반응이 완결되면 5% 소디움바이카보네이트 수용액과 물로 차례로 세척한 후 디클로로메탄층을 무수황산마그네슘으로 건조한다음 감압농축하였다. 잔류액을 에틸아세테이트와 n-헥산으로 결정화하여 목적화합물을 침상의 백색 고체로 23.33 g 얻었다. (수율 95.0%)

m.p. 85 °C; m/e 314(parent ion); 1 H NMR(CDCl $_3$) δ 1.29 ~ 1.32(m, 6H), 4.23 ~ 4.36(m, 4H), 5.29 ~ 5.30(m, 1H), 7.40 ~ 7.43(m, 2H), 7.76 ~ 7.78(m, 2H)

실시예 2 :

디에틸 2-[(4-클로로벤조일)아미노]말로네이트 (화학식 3 화합물)의 제조

디클로로메탄 70 ㎡에 4-클로로벤조산 10 g을 넣고 냉각하여 10 ℃ 이하에서 트리에털아민 10.7 ㎡와 에틸클로로 포르메이트 6.4 ㎡를 가한 다음 그 온도에서 20 분간 교반하였다. 반응혼합물에 트리에털아민 9.8 ㎡와 디에털 2-아미노말로네이트 염산염 13.52 g을 가하고 10 ℃ 이하에서 1 시간 동안 교반한 다음 가열하여 30 ℃에서 1 시간동안 교반하였다. 반응이 완결되면 5% 소디움바이카보네이트 수용액과 물로 차례로 세척한 후 디클로로메탄충을 무수황산마그네슘으로 건조한 다음 감압농축하였다. 잔류액을 에틸아세테이트와 n-헥산으로 결정화하여 목적화합물을 침상의 백색 고체로 18.93 g 얻었다. (수율 94.5%)

실시예3:

디에틸 2-[(4-클로로벤조일)아미노]-2-[(2-옥소-1,2-디히드로-4-퀴놀리닐)메틸]말로네이트 (화학식 4 화합물) 의 제조

에탄올 200 ㎡에 디에틸 2-[(4-클로로벤조일)아미노]말로네이트 14.5 g을 넣고 냉각하여 10 ℃ 이하에서 소디움에톡사이드 3 g을 분할첨가한 다음 실온에서 1 시간동안 교반하였다. 그 온도를 유지하면서 반응혼합물에 4-(브로모메틸)-1,2-디히드로-2-퀴놀리논 10 g을 가한 후 온도를 서서히 올려 4 시간동안 환류교반하였다. 반응이 끝나면용매를 감압증류로 제거한 다음 에탄올과 물에서 결정화하여 목적화합물을 백색고체로 18.22 g 얻었다. (수율 92.1%)

m.p. 214 $^{\circ}$ C; m/e 471(parent ion); 1 H NMR(DMSO-d $_{6}$) δ 1.12 $^{\circ}$ 1.16(m, 6H), 3.79(s, 2H), 4.14 $^{\circ}$ 4.16(m, 4H), 6.17(s, 1H), 6.98(m, 1H), 7.25(m, 1H), 7.39 $^{\circ}$ 7.54(m, 4H), 7.65 $^{\circ}$ 7.67(m, 2H)

실시예 4:

2-[(4-클로로벤조일)아미노]-3-(2-옥소-1,2-디히드로-4-퀴놀리닐)프로피온산 (화학식 1의 화합물)의 제조

에탄올 50 ml에 디에틸 2-[(4-클로로벤조일)아미노]-2-[(2-옥소-1,2-디히드로-4-퀴놀리닐)메틸]말로네이트 10 g과 1N 수산화나트륨 수용액 64 ㎖을 넣고 가열하여 55 ℃ 내지 65 ℃에서 3 시간동안 교반한 다음 10 ℃ 이하로 냉각하여 진한 염산을 사용하여 pH 1 로 조정하였다. 석출된 고체를 여과한 후 메탄올과 물로써 정제하여 목적화합물 레바미피드를 백색 고체로 6.91 g 얻었다. (수울 87.8%)

m.p. 290 $^{\circ}$ (dec.); m/e 371(parent ion); 1 H NMR(DMSO-d $_{6}$) δ 3.18 $^{\circ}$ 3.24(m, 1H), 3.46 $^{\circ}$ 3.49(m, 1H), 4.71 (m, 1H), 6.43(s, 1H), 7.21~7.25(m, 1H), 7.29~7.31(m, 1H), 7.48~7.55(m, 3H), 7.80~7.84(m, 3H), 8.89(d, 1 H. J=8.04Hz), 11.65(brs, 1H).

실시예 5:

2-[(4-클로로벤조일)아미노]-3-(2-옥소-1,2-디히드로-4-퀴놀리닐)프로피온산 (화학식 1의 화합물)의 제조

에탄올 200 ㎖에 디에틸 2-[(4-클로로벤조일)아미노]말로네이트 14.5 g을 넣고 냉각하여 10 ℃ 이하에서 소디움 에톡사이드 3 g을 분할첨가한 다음 실온에서 1 시간동안 교반하였다. 그 온도를 유지하면서 반응혼합물에 4-(브로 모메틸)-1,2-디히드로-2-퀴놀리논 10 g을 가한 후 온도를 서서히 올려 4 시간동안 환류교반하였다. 반응이 끝나면 실온으로 냉각한 후 1N 수산화나트륨 수용액 120 ㎖을 넣고 다시 가열하여 55 ℃ 내지 65 ℃에서 3 시간동안 교반한 다음 10 ℃ 이하로 냉각하여 진한 염산을 사용하여 pH 1 로 조정하였다. 석출된 고체를 여과한 후 메탄올과 물로써 정제하여 목적화합물 레바미피드를 백색 고체로 12.63 g 얻었다. (수율 81.1%)

발명의 호과

본 발명에 따른 제조방법상의 특징을 간략히 요약하면 다음과 같다: 첫째, 비교적 활성이 강한 4-클로로벤조일할라이 드 또는 안정한 4-클로로벤조산의 활성에스테르를 먼저 디에틸 2-아미노말로네이트와 반응시켜 합성한 상기 화학식 3으로 표시되는 화합물을 상기 화학식 2로 표시되는 브로모화합물과의 반응물로 선택 사용하므로써 별도의 아민보 호반응 및 탈보호반응을 생략할 수 있다는 점. 둘째, 상기 화학식 4로 표시되는 화합물을 염기성 조건에서 반응시켜 직접 레바미피드를 수득함으로써, 가수분해반응 및 탈탄산반응을 한 공정으로 수행한다는 점.

본 발명과 중래제조방법에서의 주 반응단계의 수율을 비교하면 종래의 기술[Chem. Pharm. Bull ,, 33(9) , 3775~3 786 (1985)]이 전체 수율 약 30%로 매우 저조한데 반하여, 본 발명의 제조방법은 전체 수율이 약 80% 이상으로 현 저하게 상승되었음을 확인할 수 있다. 따라서, 본 발명의 제조방법은 레바미피드의 대량생산에 유용하다.

(57) 청구의 범위

첫구항 1.

다음 화학식 2로 표시되는 4-(브로모메틸)-1,2-디히드로-2-퀴놀리논과 다음 화학식 3으로 표시되는 디에틸 2-[(4 -클로로벤조일)아미노]말로네이트를 반응시켜 다음 화학식 4로 표시되는 화합물을 제조한 후에,

상기 화학식 4로 표시되는 화합물을 염기성 조건에서 반응시켜 제조하는 것을 특징으로 하는 다음 화학식 1로 표시되 는 레바미피드의 제조방법.

[화학식 1]

상기 화학식에서: R은 탄소수 1 내지 6의 알킬기를 나타낸다.

청구항 2. -----제 1 항에 있어서, 상기 화학식 3으로 표시되는 디에틸 2-[(4-클로로벤조일)아미노] 말로네이트는 다음 화학식 5로 표시되는 디에틸 2-아미노말로네이트 염산염과 다음 화학식 6으로 표시되는 4-클로로벤조일 유도체를 반응시켜 제 조하여 사용하는 것을 특징으로 하는 레바미피드의 제조방법.

상기 화학식에서: R은 탄소수 1 내지 6의 알킬기를 나타내고, X는 OH 또는 할로겐원자를 나타낸다.

청구항 3.

제 1 항에 있어서, 상기 화학식 4로 표시되는 화합물의 분리 정제없이 곧바로 반응용액의 염기성 조건을 조절하여 제 조하는 것을 특징으로 하는 레바미피드의 제조방법.

청구항 4.

제 1 항 또는 제 3 항에 있어서, 상기 염기성 조건 유지를 위한 염기성 화합물은 수산화나트륨, 수산화칼륨, 소디움아 미드, 수소화나트륨, 소디움메톡사이드, 소디움에톡사이드를 포함한 무기계열의 염기성 화합물인 것을 특징으로 하는 레바미피드의 제조방법.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.