

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level in Mechanics M3 (WME03) Paper 01

1a			Form differential equation in v and x
	$-\frac{mgR^2}{2x^2} = mv\frac{\mathrm{d}v}{\mathrm{d}x}$	M1	only. Need to see $\frac{dv}{dx}$ or $v \frac{dv}{dx}$ Cannot get this mark using t . Allow with both m 's cancelled. Condone sign error.
	$-\frac{gR^2}{2}\int \frac{1}{x^2} \mathrm{d}x = \int v \mathrm{d}v$	M1	Separate variables correctly and integrate at least one side. Cannot get this mark using <i>t</i> . Condone sign error.
	$v^2 = \frac{gR^2}{x} + C *$	A1*	$v^2 = \frac{gR^2}{x} + C$ Note: If the first line of working is $\frac{1}{2}v^2 = -\int \frac{gR^2}{2x^2} dx$ followed by integration of RHS, this scores M0M1A0*
ALT1 (a)	$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = \int \frac{gmR^2}{x^2} dx$	M1	Form an energy equation with 2 KE terms and the integral of the variable force. Condone sign errors.
	$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = -\frac{gmR^2}{x} + A$	M1	Integrate the force wrt <i>x</i> . Condone sign errors.
	$v^2 = \frac{gR^2}{x} + C *$	A1*	Obtain given answer from correct work. Must include at least one line of working and correct signs seen throughout working.
		[3]	
b	$x = 3R, v^2 = 3gR$	M1	Use initial conditions to evaluate <i>C</i> in the given answer.
	$\Rightarrow C = 3gR - \frac{gR^2}{3R} \left(= \frac{8gR}{3} \right)$	A1	Or equivalent
	$x = R \Longrightarrow v = \sqrt{\frac{11gR}{3}}$	A1	Accept $\frac{\sqrt{33gR}}{3}$ Answer must be in terms of g and R
		[3]	
ALT1 (b)	Use of definite integral instead of finding $+ C$		
	$\left[v^2\right]_{\sqrt{3gR}}^v = \left[\frac{gR^2}{x}\right]_{3R}^R$	M1	Use initial conditions in a definite integral.

$v^2 - 3gR = \frac{gR^2}{R} - \frac{gR^2}{3R}$	A1	Or equivalent
$v = \sqrt{\frac{11gR}{3}}$	A1	Accept $\frac{\sqrt{33gR}}{3}$ Answer must be in terms of g and R
	(6)	

2a	Change in GPE	M1	Condone sin / cos confusion
	$= mg \times 1.3l \sin \theta (= 0.5lmg)$		
	$EPE = \frac{\lambda l^2}{2l} \text{ or } EPE = \frac{\lambda (0.3l)^2}{2l}$ Energy equation B to A	B1	One correct term for EPE
		M1	Dimensionally correct with all the required terms. Condone sign errors and sin / cos confusion
	$\frac{\lambda l^2}{2l} - \frac{\lambda (0.3l)^2}{2l} = 0.5 lmg$ $\Rightarrow \lambda = mg \frac{1}{1 - 0.09} = \frac{100}{91} mg$	A1	Correct unsimplified equation
	$\Rightarrow \lambda = mg \frac{1}{1 - 0.09} = \frac{100}{91} mg$	A1*	Obtain given answer from correct working. Must see evidence of simplification.
		[5]	
2b	Equation of motion	M1	Dimensionally correct with all the required terms. Condone sign errors and sin/cos confusion.
	$T - mg\sin\theta = ma$	A1	Correct unsimplified equation
	$\frac{\lambda \times l}{l} - mg \sin \theta = ma$ $\left(\frac{100}{91} mg - \frac{5}{13} mg = ma\right)$ $a = \frac{5}{7} g$	A1	Correct unsimplified equation with HL used to replace <i>T</i>
	$a = \frac{5}{7} g$	A1	Accept $0.71g$ or better. If $g = 9.8$ is used, accept 7.
	Note: If $g = 9.81$ is used then penalise o SHM equations can only be used if the		
		[4]	
		(9)	

3a	Moment of <i>S</i> about the <i>y</i> -axis	M1	Use of formula $(\pi)(\rho)\int xy^2 dx$
			No need to see the correct limits here. The curve equation must be substituted correctly and an attempt to integrate seen (at least one term must have a power of x raised by 1) Note the correct expression for integrating is $x\left(\frac{1}{4}x(3-x)\right)^2 = \frac{1}{16}x^3(3-x)^2$
	()()1[9,6,5,1,5]	A1	$= \frac{1}{16} (9x^3 - 6x^4 + x^5)$ Correct integrated expression.
	$=(\pi)(\rho)\frac{1}{16}\left[\frac{1}{4}x^4 - \frac{1}{5}x^5 + \frac{1}{6}x^6\right]$		
	$= (\pi)(\rho) \frac{1}{16} \left[\frac{9}{4} x^4 - \frac{6}{5} x^5 + \frac{1}{6} x^6 \right]$ $= \frac{31}{60} (\pi)(\rho)$	A1	Correct use of correct limits (0 and 2). No need to see a line of working showing substitution of limits. However, must see $\frac{31}{60}$ or
			equivalent numerical evaluation of integral.
	$\overline{x} = \frac{\frac{31}{60}(\pi)(\rho)}{\frac{2}{5}(\pi)(\rho)}$	M1	Complete method to find the distance. Formula must be the right way up $\overline{x} = \frac{(\pi)(\rho) \int xy^2 dx}{M}$ Must have consistent use of π and of ρ .
	$=\frac{31}{24}$ *	A1*	Obtain given answer from correct working
<u> </u>		[5]	
3b	Correct use of trig	M1	Correct trig ratio to find a relevant angle, α° or $(90-\alpha)^{\circ}$
	$\frac{1}{2 - \frac{31}{24} = \frac{17}{24}}$		Must use curve equation with $x = 2$ and $\left(2 - \frac{31}{24}\right)$
	$\tan \alpha^{\circ} = \frac{1}{2} \div \frac{17}{24} \left(= \frac{12}{17} \right)$	A1	Or equivalent. Condone reciprocal.
	$\alpha = 35$	A1	2 sf or better (35.2175) A0 for use of radians.
		[3]	
		(8)	

4	O 4a		If angle is between incline and
	R r mg		vertical then $\sin \theta = \frac{4}{5}, \cos \theta = \frac{3}{5}$
	Resolve vertically		Need all terms. Dimensionally
	Resolve vertically	M1	correct. Condone sign errors and sin/cos confusion.
	$R\sin\theta = mg + F\cos\theta$	A1	Unsimplified equation with at most one error.
		A1	Correct unsimplified equation
	Equation for horizontal motion	M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion. Accept any form of acceleration for the method mark
	$R\cos\theta + F\sin\theta = mr\omega^2$	A1	only. Unsimplified equation with at most one error. Direction of <i>F</i> consistent with vertical resolution. Incorrect form of acceleration is one error.
		A1	Correct unsimplified equation
	Use of $F = \mu R$	M1	Used, not just quoted. $F = \frac{1}{4}R$
	Substitute for trig and solve for max ω	DM1	Dependent on all preceding M marks. If more than two equations are produced, the correct two must be used. $\left(R = \frac{20mg}{13}, F = \frac{5mg}{13}\right)$
	$\Rightarrow \omega = \sqrt{\frac{16g}{13r}}$	A1*	Obtain given answer from correct working
		[9]	
		(9)	
Alt1	Using N2L parallel and perpendicular to the incline. Perpendicular	M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion. Note that the acceleration must have a sin/cos component. Accept any form of acceleration for the method mark
	$R - mg\sin\theta = mr\omega^2\cos\theta$	A1A1	only. Mark A's as above.
	Parallel $F + mg\cos\theta = mr\omega^2\sin\theta$	M1 A1A1	A1A0 Unsimplified equation with at most one error A1A1 Correct unsimplified equation

5			Curve equation $x^2 + y^2 = r^2$
5a	Using x-axis $(\rho) \int x \times 2\sqrt{r^2 - x^2} dx$ or Using y-axis $(\rho) \frac{1}{2} \int 2(\sqrt{r^2 - x^2})^2 dx$	M1	Use of correct integral. Limits not needed here. Accept an integral of the form: x -axis: $k \int x \sqrt{r^2 - x^2} dx$ y-axis: $k \int r^2 - x^2 dx$
	x-axis $= -\frac{2}{3}(\rho)(r^2 - x^2)^{\frac{3}{2}}$ y-axis $= (\rho)\left(xr^2 - \frac{x^3}{3}\right)$ $= \frac{2}{3}(\rho)r^3$	A1	Correct integration, ignore limits. Correct expression.
	$=\frac{2}{3}(\rho)r^3$	A1	Correct use of limits, 0 and r or $-r$ and r .
	Using x-axis $ \frac{1}{2}\pi r^2 \rho \overline{x} = \rho \int_0^r 2xy dx $ Using y-axis $ \frac{1}{2}\pi r^2 \rho \overline{y} = \rho \frac{1}{2} \int_{-r}^r y^2 dx $ or $ \frac{1}{2}\pi r^2 \rho \overline{y} = \rho \int_0^r y^2 dx $	M1	Complete method to obtain distance. Use of a correct formula, consistent with the axis and limits used, to find centre of mass with curve equation. \$\rho\$ must appear on both sides or neither.
	$\overline{x} = \frac{\frac{2}{3}r^3}{\frac{1}{2}\pi r^2} = \frac{4r}{3\pi} *$	A1*	Obtain given answer from correct working
ALT 1 5(a)	Parametric approach $x = r \cos \theta$, $y = r \sin \theta$		Curve equation $x^2 + y^2 = r^2$
	Using x-axis $2r^3 \int_0^{\frac{\pi}{2}} \sin^2 \theta \cos \theta d\theta$	M1	Use of correct integral. Limits not needed here. Accept an integral of the form: $kr^{3}\int \sin^{2}\theta \cos\theta d\theta$

	$=2r^3\bigg[\frac{\sin^3\theta}{3}\bigg]_0^{\frac{\pi}{2}}$	A1	Correct integration, ignore limits. Correct expression.
	$=\frac{2}{3}r^3$	A1	Correct use of limits
	$= \frac{2}{3}r^3$ $\bar{x} = \frac{\frac{2}{3}r^3}{\frac{1}{2}\pi r^2}$	M1	Complete method to obtain distance. Use of correct formula. ρ must appear on both sides or neither.
	$=\frac{4r}{3\pi}$ *	A1*	Obtain given answer from correct working
		[5]	
ALT 2 5(a)	Using y-axis $r^3 \int_0^{\frac{\pi}{2}} \sin^3 \theta \ d\theta$	M1	Use of correct integral. Limits not needed here. Accept an integral of the form: $kr^{3}\int \sin^{3}\theta d\theta$
	$r^{3} \int_{0}^{\frac{\pi}{2}} (1 - \cos^{2} \theta) \sin \theta d\theta$ $= r^{3} \left[-\cos \theta + \frac{\cos^{3} \theta}{3} \right]_{0}^{\frac{\pi}{2}}$	A1	Correct integration, ignore limits. Correct expression.
	$=\frac{2}{3}r^3$	A1	Correct use of limits
	$= \frac{2}{3}r^3$ $\overline{x} = \frac{\frac{2}{3}r^3}{\frac{1}{2}\pi r^2}$	M1	Complete method to obtain distance. Use of correct formula. ρ must appear on both sides or neither.
	$=\frac{4r}{3\pi}$ *	A1*	Obtain given answer from correct working
		[5]	
5b	$\begin{array}{ c c c c c c }\hline & large & Small & Small \\ \hline mass & 8\pi a^2 & 2\pi a^2 & 2\pi a^2 \\\hline From & 16a & 8a & (-)8a \\ AC & 3\pi & 3\pi & (-)3\pi \\\hline \end{array}$	B1 B1	Correct mass ratios Correct distances
	Moments about AC	M1	All terms required. Dimensionally correct or equivalent for a parallel axis. Condone sign errors. If column vectors are used, this mark is awarded once the equation is written separate to the column vectors.

	$8\pi a^2 \times \frac{16a}{3\pi} - 2\pi a^2 \times \frac{8a}{3\pi} - 2\pi a^2 \times \frac{8a}{3\pi}$ $= 8\pi a^2 d$	A1	Correct unsimplified equation.
	$\frac{96a}{3\pi} = 8d \implies d = \frac{4a}{\pi} *$	A1*	Obtain given value from correct working. Need to see at least some simplification.
		[5]	
5c	Moments about perpendicular axis through A	M1	Dimensionally correct. Need all terms. Or equivalent for a parallel axis
	From A	A1ft	Unsimplified equation with at
	$4a \times 8\pi a^2 - 2a \times 2\pi a^2 + 6a \times 2\pi a^2 = 8\pi a^2 \overline{x}$	A1ft	most one error. Correct unsimplified equation Follow their mass ratio
	$\Rightarrow \overline{x} = 5a$	A1	Correct only. If measured from <i>B</i> , distance is <i>a</i>
	Correct use of trig to find an expression for $\tan \theta$	M1	$\tan \theta = \frac{d}{\overline{x}} \text{ or } \tan \theta = \frac{\overline{x}}{d} \text{ where}$ \overline{x} is distance from A.
	$\tan\theta = \frac{4}{5\pi}$	A1	Only
		[6]	
		(16)	

6a	In equilibrium	M1	Need all three forces.
	$mg + 4mg\frac{l - e}{l} = 4mg\frac{e}{l}$	A1	Dimensionally correct Unsimplified equation with at
	$l = lm_s l$	A1	most one error Correct unsimplified equation
	$5l = 8e \Rightarrow e = \frac{5l}{8},$ $AE = l + \frac{5l}{8} = \frac{13l}{8}$	A1*	Obtain given answer from correct working. Must see $AE =$
ALT1	$mg + 4mg\frac{(2l - AE)}{l} = 4mg\frac{(AE - l)}{l}$	M1 A1	Need all three forces. Dimensionally correct Unsimplified equation with at most one error
	$AE = \frac{13l}{8} *$	A1 A1*	Obtain given answer from correct working. Must see AE
ALT2	$mg + 4mg \frac{\left(\frac{l}{2} - e\right)}{l} = 4mg \frac{\left(\frac{l}{2} + e\right)}{l}$	M1 A1 A1	Need all three forces. Dimensionally correct Unsimplified equation with at most one error Correct unsimplified equation
	$e = \frac{l}{8}, AE = l + \frac{l}{2} + \frac{l}{8} = \frac{13l}{8} *$	A1*	Obtain given answer from correct working
	2 0 0	[4]	
6b	Equation of motion	M1	Need all terms. Dimensionally correct. Condone use of <i>a</i> for acceleration.
	$4mg\frac{5l}{8} + x - 4mg\frac{3l}{8} - x - mg = -m\ddot{x}$	A1 A1	Unsimplified equation with at most one error. Correct unsimplified equation Note: the question states <i>x</i> is measured vertically down.
	$\Rightarrow -m\ddot{x} = \frac{8mg}{l}x, \ \ddot{x} = -\frac{8g}{l}x \ *$	A1*	Obtain given answer from correct working. Must use \ddot{x}
		[4]	
6с	Use of $v^2 = \omega^2 (a^2 - x^2)$ with $a = \frac{3l}{8}$	M1	Or use of equivalent correct formula
	$= \frac{8g}{l} \left(\frac{9}{64} l^2 - \frac{1}{64} l^2 \right)$ $v = \sqrt{gl}$	A1	Correct unsimplified expression for v or v^2
	$v = \sqrt{gl}$	A1	Correct only
		[3]	

$-\frac{l}{-} = \frac{3l}{\cos \omega t}$ required	te method to find t or
$\begin{vmatrix} t = -\cos \theta \\ \cos \theta \end{vmatrix}$	
or	$1^{-1} \left(\frac{1}{3}\right)$ with $\frac{1}{2}$ period
$n - \cos \left(\frac{\pi}{3}\right)$	$s^{-1}\left(\frac{1}{3}\right)$ with π
$\frac{2}{\omega}\cos^{-1}\left(\frac{-1}{3}\right) = \sqrt{\frac{l}{2g}}\cos^{-1}\left(\frac{-1}{3}\right)$ $1.91\sqrt{\frac{l}{2g}}$	valent, accept $\frac{1}{g}, 1.35\sqrt{\frac{l}{g}}, 0.43\sqrt{l}$
or $\frac{\pi}{\omega} + \frac{2}{\omega} \sin^{-1}\left(\frac{1}{3}\right) = \sqrt{\frac{l}{8g}} \left(\pi + 2\sin^{-1}\left(\frac{1}{3}\right)\right)$ 3.82 $\sqrt{\frac{l}{8g}}$	
or $\frac{2}{\omega} \left[\pi - \cos^{-1} \left(\frac{1}{3} \right) \right] = \sqrt{\frac{l}{2g}} \left[\pi - \cos^{-1} \left(\frac{1}{3} \right) \right]$	$\left(\frac{-1}{3}\right) = 1.91$
[3]	

7a	Conservation of mechanical energy:	M1	All terms required. Dimensionally correct $\cos \theta = \frac{5}{13}, \sin \theta = \frac{12}{13}$
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg\left(r + r\cos\theta\right)$	A1	Correct unsimplified equation
	$\frac{1}{2}mu^2 = \frac{1}{2}mv^2 + mg\left(r + r\cos\theta\right)$ $v^2 = u^2 - \frac{36}{13}gr *$	A1*	Obtain given answer from correct working
		[3]	
7b	Equation of motion	M1	All terms required. Dimensionally correct. Condone sign errors and sin/cos confusion. Condone use of <i>R</i> = 0
	$R + mg\cos\theta = \frac{mv^2}{r}$	A1	Correct unsimplified equation. Condone (strict) inequality the right way round.
	Use $R0$ and solve for u^2	M1	Complete method to obtain u^2 Condone use of $R = 0$ or $R > 0$
	$\frac{mv^{2}}{r} - mg\cos\theta \dots 0$ $\Rightarrow u^{2} - \frac{36}{13}gr \dots \frac{5}{13}gr, u^{2} \dots \frac{41}{13}gr$	A1*	Obtain given answer from correct working. Must have stated the inequality $R \ge 0$ If there is no reference to R , the max mark in (b) is M1A1M1A0*
		[4]	
7c	$BC = 2r\sin\theta = \frac{24}{13}r$	B1	Or equivalent $BC = 1.846r$
	Relevant vertical motion Eg time to return to the level of <i>BC</i>	M1	Complete method vertically using <i>suvat</i>
	$t = \frac{2v\sin\theta}{g} = \frac{24v}{13g}$	A1	Correct unsimplified expression for time Accept $\frac{24}{13g} \times 4\sqrt{\frac{gr}{13}}$, $\frac{24}{13}\sqrt{\frac{16r}{13g}}$ $\frac{96}{13}\sqrt{\frac{r}{13g}}$, $0.65\sqrt{r}$
	Relevant horizontal motion Eg distance travelled by <i>P</i>	M1	Complete method horizontally
	$= (v\cos\theta)t = v^2 \times \frac{120}{169g}$	A1	Correct unsimplified expression for distance $0.87r$, $\frac{1920}{2197}r$, $0.0892gr$
	$= \frac{16gr}{13} \times \frac{120}{169g} = \frac{160r}{169} \times \frac{12}{13} < 2r \times \frac{12}{13}$	A1*	Obtain given conclusion from correct working

	hence falls into the bowl *		
ALT 1	Horizontal: time, <i>T</i> , required to travel	M1	Complete method horizontally
for last	the length BC		
3 marks			
	$2r\sin\theta = v\cos\theta \times T$	A1	
	$T = \frac{2r\frac{12}{13}}{4\sqrt{\frac{gr}{13}} \times \frac{5}{13}} = 1.38\sqrt{r}$		
	$T = \frac{27}{13} = -1.38 \sqrt{r}$		
	$1 - \frac{1}{\sqrt{gr}} = 1.38 \sqrt{r}$		Correct unsimplified expression
	$4\sqrt{\frac{3}{13}} \times \frac{1}{13}$		for T
	$t < T$ since $0.654\sqrt{r} < 1.38\sqrt{r}$	A1*	Obtain given conclusion from
	hence falls into the bowl *		correct working
A T (T) (2)		3.61	
ALT 2	Horizontal: speed, V, required to reach	M1	Complete method horizontally
for last	C		
3 marks			
	$-V\sin\theta = V\sin\theta - g\frac{2r\sin\theta}{V\cos\theta}$	A1	
	$\Rightarrow V = \sqrt{\frac{gr}{\cos\theta}} = \sqrt{\frac{13gr}{5}}$		Correct unsimplified expression for <i>V</i>
	$v < V$ since $\sqrt{\frac{13gr}{5}} < \sqrt{\frac{16gr}{13}}$	A1*	Obtain given conclusion from correct working
	hence falls into the bowl *		
	SC: If range formula is quoted		
	correctly award M1A1M1A1.		
	Range = $\frac{2v^2 \sin \theta \cos \theta}{g}$		
	g		
		[6]	
		(13)	