Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models

NDA: Time Series Analysis (1/2)

Lionel Tabourier

LIP6 - CNRS and Sobonne University

first_name.last_name@lip6.fr

January 15th 2020

Bibliography

Content:

- Peter Brockwell and Richard Davis
 Introduction to Time Series and Forecasting
- William Thistleton and Tural Sadigov
 MOOC Coursera: Practical Time Series Analysis

Illustrative datasets:

- https://data.world/datasets/time-series
- https://www.kaggle.com/tags/time-series

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models

What is time series analysis

Definition

Set of observations $\{x_t\}$, recorded at time $t \in T_0$

Think of each x_t as a realization from a distribution

Specificities of the problem

A unique realization of the process

- ⇒ necessary to make assumptions
- observe time series, identify particularities
- choose a family of models X_t to represent data
- check the goodness of the model

What is time series analysis

Definition

Set of observations $\{x_t\}$, recorded at time $t \in T_0$

Think of each x_t as a realization from a distribution

Specificities of the problem

A unique realization of the process

- ⇒ necessary to make assumptions
- observe time series, identify particularities
- choose a family of models X_t to represent data
- check the goodness of the model

Assumptions for this course

Restrictions to a subfamily of problems

- discrete time series (discrete time set)
- fixed time steps (time resolution)
- univariate (one single variable over time)
 - ightarrow processes have values in $\mathbb R$

And only a few approaches

• e.g. no Fourier analysis

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models

A few examples

Average global land temperature (per month)

A few examples

Average global land temperature (per month)

A few examples

Number of airplane crashes (per year)

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models

A few examples

Daily demand of power obtained with coal in GB (per year)

A few examples

Goals of time series analysis

- Have a simplified description of the data
 → improve our understanding (ex: climate data)
- Test an assumption
 ex: is there a significant measurable global warming?
- Filter: separate signal from noise
 ex: known physical signal broadcast → filter noise
- Predict future values
 ex: predict the future demand for a product
- Simulate a process in a complex model
 ex: expectation for the GDP to predict economic activity

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models

How to analyze a time series? (1)

Analyse from Greek *análusis* ∼ unravel ⇒ decompose Decompose the time series into parts, for example:

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

First step

Plot the time series to:

- identify the existence of a trend (tendance)
- uncover seasonal variations (variations saisonnières)
- detect changes of behavior
- spot outliers (valeurs aberrantes)

→ subjective components in this analysis

The classical decomposition

Classical decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s_t
- trend m_t
- remainder r_t

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models

Mean and covariance of a time series

Two fundamental definitions

Let $\{X_t\}$ a time series with $\mathbb{E}[X_t^2] < \infty$ (finite variance) rk: here we consider X_t as a model

• **mean function** of X_t , defined for all t:

$$\mu_X(t) = \mathbb{E}[X_t]$$

• covariance function of X_t , defined for all r, s:

$$\gamma_X(r,s) = Cov(X_r, X_s) = \mathbb{E}[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

12/34

Problem definition

Some elementary concepts

Some elementary models

Decomposing the time series

Towards more elaborate models

Stationarity

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Remarks:

- stationarity is a property of a model (not of data)
- stationary processes are simpler to investigate
 - ⇒ usual to transform a TS to obtain a stationary process

Stationarity

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Formal definition

A process is said to be weakly stationary if

- the mean function $\mu_X(t)$ is independent of t
- γ_X(t + h, t) is independent of t for any h
 h is called the lag (décalage)

Stationarity

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Formal definition

A process is said to be strictly (or strongly) stationary if

• $\forall n$ and $\forall h$

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_{1+h} = x_1, ..., X_{n+h} = x_n)$$

Unless specified otherwise, we talk about weak stationarity in the following

Stationarity

Informal definition

A process is **stationary** (*stationnaire*) if its statistical properties are similar when shifted in time

Formal definition

A process is said to be strictly (or strongly) stationary if

• $\forall n$ and $\forall h$

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_{1+h} = x_1, ..., X_{n+h} = x_n)$$

Unless specified otherwise, we talk about weak stationarity in the following

Autocorrelation function

Notice that for a stationary time series: $\gamma_X(t+h,t) = \gamma_X(h)$ \Rightarrow the covariance function γ_X has one variable (the lag)

Definition

For a stationary time series:

• the autocovariance function at lag h is:

$$\gamma_X(h) = Cov(X_{t+h}, X_t)$$

• the **autocorrelation function** (ACF) at lag *h* is:

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}$$

Concepts well defined on models, but what about real data? Let $\{x_1, \dots, x_n\}$ be a series of observations

Sample mean

• the sample mean is

$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

Concepts well defined on models, but what about real data? Let $\{x_1, ..., x_n\}$ be a series of observations

Sample autocovariance function

• the sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|n|} (x_{t+|h|} - \overline{x}).(x_t - \overline{x}), -n < h < n$$

remark: notice the denominator (because of mathematical properties)

• the sample autocorrelation function is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$
, $-n < h < n$. Note that $\hat{\rho}(h) \in [-1; 1]$

15/3

Data with strong trend:

slow decay of correlations with h

Data with strong seasonality:

periodicity on the ACF (here monthly measures ⇒ period = 12)

Problem definition
Some elementary concepts
Some elementary models
Decomposing the time series
Towards more elaborate models

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- Towards more elaborate models

What is a time series model?

Definition

Time series model: specification of the joint distributions of a sequence of random variables X_t of which the observed data is supposed to be the realization

Remarks:

- suppose to know $\forall n$ the distribs $P(X_1 = x_1, ..., X_n = x_n)$ \Rightarrow in most case too many parameters...
- in practice, we focus on first and second order moments:
 - expected values $\mathbb{E}[X_t]$
 - and expected products $\mathbb{E}[X_{t+h}X_t]$, h = 1, 2, ...

Independent Identically Distributed noise model

IID noise

• independant:

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdot ... \cdot P(X_n = x_n)$$

• identically distributed: $P(X_t = x) = P(X_{t'} = x)$

IID noise is obviously stationary

ex: repeated coin flipping with heads=1, tails=-1 should be IID noise

Independent Identically Distributed noise model

IID noise

• independant:

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) \cdot ... \cdot P(X_n = x_n)$$

• identically distributed: $P(X_t = x) = P(X_{t'} = x)$

IID noise is obviously stationary ex: repeated coin flipping with heads=1, tails=-1 should be IID noise

White noise (bruit blanc)

Special case IID noise with

- 0 mean: $E[X_t] = 0$
- autocovariance function:

$$\gamma_X(h) = \sigma^2$$
 if $h = 0$ and $\gamma_X(h) = 0$ if $h \neq 0$

8/34

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose $\{X_t\}$ is IID noise, then $\{S_t\}$ defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose $\{X_t\}$ is IID noise, then $\{S_t\}$ defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

Remarks:

- is a random walk stationary?
- it's a summation of an IID process
- and conversely $X_t = S_t S_{t-1}$

Random Walk model

How to build a random walk? (marche aléatoire)

Suppose $\{X_t\}$ is IID noise, then $\{S_t\}$ defined as:

$$S_t = X_1 + \ldots + X_t$$

is a random walk

Remarks:

- is a random walk stationary? No
- it's a summation of an IID process
- and conversely $X_t = S_t S_{t-1}$

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models

How to analyze a time series? (2)

Second step:

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals (résidus)

Residual time series obtained (remainder) is stationary, but not necessarily IID noise...

Back to the classical decomposition

Classical decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s_t
- trend m_t
- remainder r_t

What is the difference between seasonality and trend?

$$s_{t+d} = s_t$$
 and $\sum_{j=1}^d s_j = 0$

22/34

Back to the classical decomposition

Classical decomposition of the time series

$$X_t = s_t + m_t + r_t$$

- seasonality s_t
- trend m_t
- remainder r_t

What is the difference between seasonality and trend?

$$s_{t+d} = s_t$$
 and $\sum_{j=1}^d s_j = 0$

22/34

Method 1: model and regression

ightarrow cf. course *Regression*

E.g.: 2nd order polynomial model with least squares regression

Minimize
$$\sum_{t=1}^{n} (x_t - m_t)^2$$
, with $m_t = a_0 + a_1 t + a_2 t^2$

Method 1: model and regression

→ cf. course Regression

E.g.: 2nd order polynomial model with least squares regression

Minimize
$$\sum_{t=1}^{n} (x_t - m_t)^2$$
, with $m_t = a_0 + a_1 t + a_2 t^2$

Then we plot the residuals $\{x_t - m_t\}$

Questions to ask oneself:

- Does it look stationary? Perceptible trend?
- Does it look like noise? Is it smooth? Do we see stretch of values of the same sign?

What is a moving average? (moyenne mobile)

To smooth a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

What is a moving average? (moyenne mobile)

To smooth a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h}, \ q < t < n-q$$

What is a moving average? (moyenne mobile)

To smooth a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h}, \ q < t < n-q$$

What is a moving average? (moyenne mobile)

To smooth a signal x_t , one possibility:

$$x'_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

consider that m_t can be computed as a MA:

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

25/34

can also be seen as a method to isolate the trend

Method 2: moving average

consider that m_t can be computed as a MA:

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

consider that m_t can be computed as a MA:

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

can also be seen as a method to isolate the trend

Method 2: moving average

consider that m_t can be computed as a MA:

$$m_t = \frac{1}{2q+1} \sum_{h=-q}^{h=+q} x_{t-h} , \ q < t < n-q$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T}\right) + b_j sin\left(\frac{2\pi t}{T}\right)$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T}\right) + b_j sin\left(\frac{2\pi t}{T}\right)$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T}\right) + b_j sin\left(\frac{2\pi t}{T}\right)$$

Regression

Which model? Harmonic regression

$$s_t = a_0 + \sum_{j=1}^k a_j cos\left(\frac{2\pi t}{T}\right) + b_j sin\left(\frac{2\pi t}{T}\right)$$

About pre-processing

Second step:

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals

When is it necessary to transform data?

Some cases

- if outliers → discard them if justified
 ex: external stimulus, mistake in data acquisition, . .
- if obvious different regimes
 - ightarrow break data into homogeneous segments
- if noise or seasonality component increases with level
 - ightarrow logarithmic transformation of the data

About pre-processing

Second step:

- (if necessary) transform data
- remove the trend and seasonal components to get stationary residuals

When is it necessary to transform data?

Some cases

- if outliers → discard them if justified
 ex: external stimulus, mistake in data acquisition, . . .
- if obvious different regimes
 - → break data into homogeneous segments
- if noise or seasonality component increases with level
 - \rightarrow logarithmic transformation of the data

Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...

... after logarithmic transform

→ c.f. course *Regression* (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to make predictions etc.

Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...

... after logarithmic transform

→ c.f. course Regression (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to make predictions etc.

Logarithmic transformation

If fluctuations (seasonality, noise) grow with magnitude...

... after logarithmic transform

→ c.f. course Regression (heteroscedasticity)

Conduct similar analysis on the transformed time series and reverse the transformations in the end to make predictions etc.

Outline

- Problem definition
- Some elementary concepts
- Some elementary models
- Decomposing the time series
- 5 Towards more elaborate models

How to analyze a time series? (3)

Third step:

fit the residuals

For this purpose, we introduce new families of models

What is autoregression?

auto means self ⇒ regression from itself

The most basic AR model: 1st order regression or AR(1)

 $\{X_t\}$ is a stationary series satisfying:

$$X_t = \phi X_{t-1} + W_t$$

where W_t is a white noise (0 means, σ^2 variance) and $|\phi| < 1$

we can check that
$$\mathbb{E}[X_t]=0$$
 and $\gamma_X(h)=\phi^{|h|}\gamma_X(0)=\phi^{|h|}rac{\sigma^2}{1-\phi^2}$

Suppose AR(1) model for residuals r_t , how to compute ϕ ?

- plot r_t as a function of r_{t-1}
- linear fit, slope is ϕ

Suppose AR(1) model for residuals r_t , how to compute ϕ ?

- plot r_t as a function of r_{t-1}
- linear fit, slope is ϕ

Now, compute we compute the "residuals of residuals":

$$r_t - \phi r_{t-1}$$

Is it much better?

Now, compute we compute the "residuals of residuals":

$$r_t - \phi r_{t-1}$$

Is it much better?

Problem definition Some elementary concepts Some elementary models Decomposing the time series Towards more elaborate models

Testing if the residuals time series is IID: method 1

General idea: suppose IID random variables What should we oberve? Is it the case?

General idea: suppose IID random variables What should we oberve? Is it the case?

Sample ACF criterion

Theorem (admitted):

- suppose x_t IID with mean 0 and variance 1 (white noise)
- if *n* large enough, $\hat{\rho}_x(h)$ is approx. distributed as $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

In practice, consider the 95% confidence interval: we measure how many values fall out of $\left[\frac{-1.96}{\sqrt{n}}, \frac{+1.96}{\sqrt{n}}\right]$

→ c.f. course Hypothesis testing

General idea: suppose IID random variables What should we oberve? Is it the case?

Sample ACF criterion

Theorem (admitted):

- suppose x_t IID with mean 0 and variance 1 (white noise)
- if *n* large enough, $\hat{\rho}_X(h)$ is approx. distributed as $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

General idea: suppose IID random variables What should we oberve? Is it the case?

Sample ACF criterion

Theorem (admitted):

- suppose x_t IID with mean 0 and variance 1 (white noise)
- if *n* large enough, $\hat{\rho}_X(h)$ is approx. distributed as $\mathcal{N}(0, \frac{1}{\sqrt{n}})$

General idea: suppose IID random variables What should we observe? Is it the case?

Turning point test

Turning point x_i (only defined for 1 < i < n): if $x_i \ge x_{i-1}$ and $x_i \ge x_{i+1}$ or x_i if $x_i \le x_{i-1}$ and $x_i \le x_{i+1}$

- Probability that a point is a turning point if IID? $\frac{2}{3}$
- $\Rightarrow \mu_T = \mathbb{E}[T_n] = \frac{2(n-2)}{3}$, with T_n number of turning points

•
$$Var(T_n) = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 \Rightarrow \sigma_T^2 = Var(T_n) = \frac{16n - 29}{90}$$

If x_i is IID, T_n is approximately $\mathcal{N}(\mu_T, \sigma_T^2)$

• test if 1.96 $> \frac{T_n - \mu_T}{\sigma_T} > -1.96$ for the 95% CI

General idea: suppose IID random variables What should we observe? Is it the case?

Turning point test

Turning point x_i (only defined for 1 < i < n): if $x_i \ge x_{i-1}$ and $x_i \ge x_{i+1}$ or x_i if $x_i \le x_{i-1}$ and $x_i \le x_{i+1}$

- Probability that a point is a turning point if IID? $\frac{2}{3}$
- $\Rightarrow \mu_T = \mathbb{E}[T_n] = \frac{2(n-2)}{3}$, with T_n number of turning points

•
$$Var(T_n) = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 \Rightarrow \sigma_T^2 = Var(T_n) = \frac{16n - 29}{90}$$

If x_i is IID, T_n is approximately $\mathcal{N}(\mu_T, \sigma_T^2)$

• test if 1.96 $> \frac{T_n - \mu_T}{\sigma_T} > -1.96$ for the 95% CI

General idea: suppose IID random variables What should we observe? Is it the case?

Turning point test

Turning point x_i (only defined for 1 < i < n): if $x_i \ge x_{i-1}$ and $x_i \ge x_{i+1}$ or x_i if $x_i \le x_{i-1}$ and $x_i \le x_{i+1}$

- Probability that a point is a turning point if IID? $\frac{2}{3}$
- $\Rightarrow \mu_T = \mathbb{E}[T_n] = \frac{2(n-2)}{3}$, with T_n number of turning points

•
$$Var(T_n) = \mathbb{E}[T_n^2] - \mathbb{E}[T_n]^2 \Rightarrow \sigma_T^2 = Var(T_n) = \frac{16n - 29}{90}$$

If x_i is IID, T_n is approximately $\mathcal{N}(\mu_T, \sigma_T^2)$

• test if 1.96 $> \frac{T_n - \mu_T}{\sigma_T} > -1.96$ for the 95% CI

General idea: suppose IID random variables What should we observe? Is it the case?

In our example (airplane crashes):

- T_n^{res} = 64 on the residuals
- T_n^{resAR1} = 59 on the residuals of the residuals (after AR1)

⇒ both pass this test

Studying time series in python

Among several options, pandas library

A few useful functions:

- Load data as dataframe: read_csv from pandas library
- Moving average: rolling from pandas library
- Fitting: curve_fit in scipy.optimize library
- Autocorrelation function: plot_ACF in statsmodels library