Network Security - 1

Kehuan Zhang © All Rights Reserved

IERG4130 2022

Topics to Be Covered in Network Security

- Network Basics
- Various Network Attacks
 - Spoofing, Sniffing, DoS, Hijacking, Man-in-the-Middle
- Various Network Defenses
 - ► Firewall, IDS, IPS
- Web Security
- Secure Network Protocols
 - SSL/TLS, IPSec, DNSSEC, etc.
- Pay attention to CIA and attacking surface, and how they are used in network security
- Try to use some tools to help you
 - Wireshark: network traffic capture and analyzer https://www.wireshark.org/download.html
 - ▶ Fiddler: for HTTP/HTTPS https://www.telerik.com/fiddler
 - mitmproxy: another HTTP/S proxy https://mitmproxy.org/

Network Basics

Layered Structure of Networks

- ISO OSI (Open System Interconnection) Model has defined seven layers
- But in pratice, the TCP/IP model is mostly used

OSI Model

Application Presentation Session Transport Network Datalink **Physical**

TCP/IP Model

Packet Encapsulation: Headers and Payloads

Different Equipment Types (at Different Layers)

Physical layer: Hub

Data link layer: Switch

Network layer: Router, Layer-3 Switch, Gateway

• Transport layer: SOCKS 5 Proxy

Application layer: HTTP Proxy

Concept of Address in Network

- Addresses are needed to deliver packets correctly
- There are some sorts of addresses at almost every layer
 - ▶ Physical layer: interface ID
 - Data Link Layer: MAC (Media Access Control) address
 - ★ On Ethernet: 48-bit (demo)
 - Network Layer: IP address
 - Transport Layer: Port Number
 - Application Layer: URL

Translations among Different Addresses

- ullet Physical Layer o Data Link Layer
 - Lookup table (in Switches)
- ullet Data Link Layer o Network Layer
 - ► ARP (Address Resoluiton Protocol)
- ullet Network Layer o Application Layer
 - DNS (Domain Name Service)
- Transport layer address is a little bit special
 - It is specified in network packets (together with IP address)
 - Network protocol stack (in OS) will forwrad the packet to the corresponding application process who is listening on that port

Switch vs. Hub

- In Hub: packets will be broadcasted to all ports
- Switch: forwarding packets based on lookup table
 - Every entry in the lookup table will map MAC to Interface
 - ▶ Most Switch will learn and build up such a table dynamically

How Does ARP Work?

- Each host will maintain and ARP table (also called ARP cache)
 - Every entry contains:
 - ★ IP address, MAC address, TTL
 - ★ TTL: Time To Live
- ARP table will be built dynamically during communication process
 - ▶ If target IP address is not in table, then:
 - ★ Build and broadcast an ARP request packet ("who has x.x.x.x?")
 - * The ARP request will also contain (src_IP, src_MAC) information
 - When received the broadcasted ARP request, every node will:
 - ★ Update its own ARP table suing (src_IP, src_MAC) info
 - ★ Check if target IP address belongs to it
 - ★ If not, then discard the packet
 - If yes, then build and send back an ARP reply packet by filling in its MAC address
 - ★ The ARP reply packet will **NOT** be broadcasted. Why?

IP Header

IP Address and Subnet

- 32-bit for IPv4, normally written as dotted decimal format of four bytes
 - ► Each byte has the range of 0 · · · 255, e.g., 127.0.0.1
- Subnets
 - ▶ The 32 bits can be divided into **network** and **host** using a **subnet mask**
 - * subnet mask: 255.255.0.0, 255.255.255.0
 - **★** 137.189.97.1 & 255.255.0.0 \rightarrow 137.189.0.0 (which is subnet address)
 - ► Four categories: Class A/B/C, and CIDR (Classless Inter-Domain Routing)
 - ★ Class A/B/C have fixed length of subnet mask at 8/16/24-bit
 - ★ CIDR is more flexible as subnet mask is not fixed
 - ★ E.g., with CIDR, the subnet address can also be written as 136.192.0.0/18
- ullet IPv6: 128-bit o assign an address for every sand on earth
 - More security features by design
 - Out of the scope of this course

IP address Types

- Unicast: unique to a certain host or network node
- Broadcasting: packet will be sent to all possible destinations
 - Typical broadcasting address is 255.255.255.255
 - But all-one host address is also broadcasting address
 - ★ E.g., in subnet 192.168.0.0/24, 192.168.0.255 is broadcasting address
- Multicasting: packet will be delivered to a group of interested receivers
 - ▶ In IPv4, addresses in 224.0.0.0 239.255.255.255 is for multicasting
- Private address
 - ► Three ranges: 192.168.0.0/16, 10.0.0.0/8, 172.16.0.0/12
 - ▶ Routers can handle and forward packets within local network
 - Internet routers will discard packets with such addresses
- Link-local address: only valid on point-to-point or local connection
 - ▶ Routers will **NOT** forward packets with these addresses
 - ► E.g., 169.254.0.0./16
- Loopback address: packets will be send back to the host itself
 - ▶ $127.0.0.0/8 \rightarrow 127.0.0.1$ is most common

IP Address Assignment and Translation

- Assignment
 - Static assignment vs. dynamic assignment
 - Simple dynamic assignment: BOOTP (Bootstrap Protocol)
 - ★ Simple Mapping from MAC address to IP address
 - Dynamic: DHCP (Dynamic Host Configuration Protocol)
 - ★ More flexible and controls: e.g., valid time period
- NAT (Network Address Translation)
 - Due to the exhaustion of IPv4 address
 - Mainly used to let multiple private addresses to share a single (public)
 IPv4 address
 - Based on a translation table to do the mapping
 - ★ Every table entry contains: private IP & associated port, public IP and associated port
 - For every outgoing packet, will lookup that table to get public IP and port
 - ★ If not found, then a new entry will be created
 - \star For incoming packet , will get private IP and port from the lookup table
 - ★ Modify the IP headers according using the private (or public) IP & port
 - * Question: while will happen if no entry was found for incoming packet?

How Does Router Work?

Router will:

- Running routing protocol to maintain a routing table
- For an incoming packet, lookup the routing table to forward it to destination interface
 - * Using a technique call "TCAM" (Ternary Content Addressable Memory): IP \rightarrow mem address
 - Modify the IP header accordingly, e.g., TTL, phyiscal and data link layer headers
- Queue and Traffic Management, e.g, QoS (Quality of Service), congestion control

How Does DNS Work?

- Purpose: a protocol to translate name to IP address (dynamically)
 - Static approach: using host.txt file (e.g., /etc/hosts on Linux)
- Concept of Domain Namespace
 - ► Root: represented with a "." (but normally omitted)
 - ► Top-level domains: three types
 - ★ Contry Code Top Level Domains (ccTLD): 2-char, e.g., hk, jp, cn
 - ★ Generic Top Level Domains (gTLD): 3-char indicating functions, e.g, edu, gov, com
 - * Reserved (skipped)
 - Hostname or subdomain name (recursive): e.g., gTLD, organization name, or specific machine name
- Domain Name Servers
 - Each server will maintain a table mapping from domain name to IP address
 - Such servers are organized into a hierarchy structure (based on the namespace)

Domain Name Resolution Process

 To reduce DNS traffic, responses can be cached for a period of time locally and/or by name server

Use IP Address to Identify Network Problems

- If you could not visit your favorate web site, say Google.com, how can you know what is wrong?
 - Strategy: checking the protocol stack, either bottom-up or top-down
- Bottom-up approach:
 - Check physical interface: (use command ifconfig or ipconfig)
 - Is interface available, is it up, has it get an IP address, what type of IP address, etc.
 - ★ e.g., link-local address means it has not been configurated yet.
 - Check local reachability, (use command ping)
 - Can we get replies from gateway, router, or other hosts inside the same subnet?
 - Oheck the domain name resolving (a common problem)
 - Check the routing path, (use command traceroute or tracert)
 - ★ Trace the routing of your packet and see if it can reach destination host
 - You can also use ping to check the reachability of destination host
 - ★ Pay attention to the RTT (round-trip-time) (to detect possible DoS)
 - 6 If all are fine, then network is OK, so it may be other problems
 - ★ E.g., used HTTP or SOCKS proxy in browser, or blocked by firewall, etc.

TCP Service Model and TCP Header

- TCP provide a point-to-point, connection-oriented byte-stream service
 - ► Connection-oriented: hand-shaking and disconnection (SYN, ACK, FIN)
 - ► Has congestion control (sliding window and slow start on window size)
 - ▶ Incorrect sequence number and ack number will be discarded
 - ★ But packets with correct numbers will be accepted!!
 - ★ Sometime it could be problemtic (e.g., hijacking attack)

Socket Programming (Connection Oriented)

Network Attacks

Typical Network Attacks

- Spoofing
- Sniffing
- Denial of Service
- TCP Session Hijacking
- Man-in-the-Middle

Attack 1: Spoofing

- Spoofing means using a fake address to impersonate another host/node
- Spoofing can happen at multiple layers
 - ▶ Physical layer: normally not possible, except can access the hardware
 - lacktriangle Link layer: Spoofing the MAC address ightarrow No problem
 - ★ Via ARP protocol: by generating a fake ARP reply (draw a figure)
 - ★ By changing OS configuraion directly: e.g, MAC-based authentication
 - ★ What can attackers do with MAC spoofing?
 - ★ Redirect traffic to attacker's node, MITM attack, sniffing, etc.
 - ▶ Network layer: e.g., build a packet with fake source IP address
 - ★ Consequences? could bypass protections like Firewall
 - ★ Can be part of a Denial-of-Service attack (more details later)
 - ★ Limitation: could not receive replying IP packet. Why?
 - ★ Counter Measure: with source address validation
 - ► Transport layer: also possible (refer to TCP session Hijacking)
 - ▶ Domain Name Spoofing: by generating a fake reply of DNS request
 - ★ Binding the target domain to a malicious IP address
 - ★ Consequences? MITM, sniffing, DoS, etc.

Attack 2: Sniffing

- Sniffing means getting packets stealthily without authorization
- Sniffing can be done at multiple layers
 - Physical: wire-tapping (not only copper wire, but also fiber)
 - ★ Wireless is easier to be attacked
 - Link layer:
 - ★ Hub is vulnerable by nature (due to broadcasting)
 - ★ Sniffing is also possible on Switch? (by MAC flooding) (page 9)
 - Network layer
 - ★ Port mirroring at router (can be selectively with filtering option)
 - ★ Rogue Access Point (for WiFi)
- Defense? \rightarrow traffic encryption

Attack 3: Denial of Service (DoS)

- Overloading and exhaust the available resources on certain node
 - Can happen at link layer (exceeding the bandwidth)
 - Can be the router (exceeding to forwarding capacity)
 - ★ Packets would be lost from queues
 - ★ Activate congestion control algorithm
 - Can be the target Server
 - ★ E.g., exaust CPU, kernel memory object, or other resources
 - Can be a specific application
 - \star E.g., exaust heap or stack space, using JavaScript to occupy CPU time
- DoS at TCP level
 - TCP SYN Flood
 - Smurf Amplification
 - Reflectors
 - Distributed Denial of Service (DDoS)

TCP SYN Flood

- ullet TCP is connection-oriented o need to remember connection status
 - ► Some memory to manage connection status of **three-way handshake**

Smurf Amplification

ullet Defense? o disable direct boradcast across subnets

Reflectors

Reflector Attack from Multiple Nodes

ullet Defense? o Use IPSec (or similar techniques) to authenticate connections

Distributed Denial of Service (DDoS)

The traffic could be over 600Gbps (Giga bits per second)

Defense to DDoS?

- Increase servre capacity
 - Deploy more hardware and purchase more bandwidth
- Detect and filtering attacking traffic
- Use 3rd party services (from ISP, or Cloud Service providers)
 - ► E.g., Akamai: much larger pool of resource to do traffic detection and rinsing

Attack 4: TCP Session Hijacking

- What is TCP hijacking?
 - Attackers can take over and control victim's TCP connection
- Why is this attack possible?
 - ▶ TCP connection is identified by four elements in TCP header
 - * Source Port, Destination Port, Sequence Number, ACK number
 - Same session if a packet has expected values of above fields
 - ★ May also require the match of source IP and dest IP
 - ★ But it is not a problem due to IP address spoofing

How does TCP Hijacking Work?

- Eve first sniffs at the Network to discover an ongoing TCP connection
 - ▶ Then recover the corresponding TCP ACK sequence numbers being used
- 2 Eve creates an IP packet to carry its command of choice
 - Using Alice IP's address of the packet's source IP address
 - Also use the right TCP ACK sequence numbers
 - Potential Threat of TCP Hijacking Attack
 - Attack to confidentiality
 - ★ Man-in-the-Middle: take over the TCP connection
 - ★ Sniffing and injecting fake packets
 - lacktriangle Attack to availability o abrupt existing connection
- One limitation: ACK-storm to one victim
 - To avoid this problem, Eve can choose to bring Alice down by launching a DOS attack against Alice
 - Or Eve can perform an ARP or DNS spoofing on Alice and Bob to redirect their outgoing packets to a blackhole

Problem of ACK-Storm in TCP Hijack

Attack 5: Man-in-the-Middle

- Attacks can manipulate network traffic in the middle
- We have already seen lots of examples
 - Address Spoofing
 - **★** ARP (MAC-IP address binding)
 - ★ DNS spoofing (Domain Name to IP address binding)
 - Physically
 - ★ Via wire-tapping, or Rogue WiFi Access Point
- Defenses?
 - Message Authentication Code
 - Message Encryption
 - Use CA (Certificate Authority) and PKI (Public Key Infrastructure)

Summary

- In this lecture, we have covered
 - Basic concepts of TCP/IP network
 - Different attacks (spoofing, sniffing, DoS, session hijacking, Man-in-the-Middle)
- Next Lecture:
 - Defense techniques, like Firewall, IDS, etc.