Naïve Bayes for Big Data

These slides adapted from William Cohen (CMU)

Recall Bayes Nets

- $= P(x_n, ..., x_1)$
- $= P(x_n \mid x_{n-1}, ..., x_1) P(x_{n-1}, ..., x_1)$ = $P(x_n \mid x_{n-1}, ..., x_1) P(x_{n-1} \mid x_{n-2}, ..., x_1) P(x_{n-2}, ..., x_1)$
- $= \prod_{j=1}^{n} P(x_{i} \mid x_{j-1}, ..., x_{i}) = \prod_{j=1}^{n} P(x_{i} \mid parents(x_{j}))$

What would that graph look like?

 $P(c | e_1, ..., e_n) = \alpha P(e_1 | c)...P(e_n | c)P(c)$

Administrivia

- Have you met your groups yet?
- Proposals Due Tuesday!
- HW1 Due Friday
- HW2 out Friday

Naive Bayes

 $P(c | e_1, ..., e_n) = \alpha P(e_1 | c) ... P(e_n | c) P(c)$

Attributes are conditionally independent (given the class value) Assumption:

Implementing Naïve Bayes

 $= (C(e_1 \& c)) / C(c) * (C(e_2 \& c)) / C(c) * \dots * C(c) / C(any)$ $P(c \mid e_1, ..., e_n) = \alpha P(e_1 \mid c) ... P(e_n \mid c) P(c)$

Complexity of Naïve Bayes

- Sequențial reads You have a train dataset and a test dataset
 - Initialize an "event counter" (hashtable) C
 - For each example id, y, x_p ,..., x_d in train:

 Complexity: 0(n), -C("Y=ANY") ++; C("Y=y") ++
- For j in 1..d:
 C(" $Y = y \land X = x_j$ ") ++
- For each example id, y, x_1, \dots, x_d in test:
- where: $q_x = 1/|V|$ $q_y = 1/|dom(Y)|$ $mq_x = 1$ – For each y' in dom(Y): • Compute $\log \Pr(y', x_1, ..., x_d) =$

Sequential reads

- Complexity: O(|dom(Y)|*n'), n'=size of test $+\log \frac{C(Y=y')+mq_y}{C(Y=ANY)+m}$ $= \left(\sum_{j} \log \frac{C(X = x_j \land Y = y') + mq_x}{C(X = ANY \land Y = y') + m}\right)$
 - Return the best y'

Event Counters Don't fit in RAM

Heaps'. Law: If V is the size of the vocabulary and the n is the length of the corpus in words:

How to implement Naive Bayes — <u>Assuming</u> the event counters do *not* fit in memory Why?

with constants K, $0 < \beta < 1$

 $V=Kn^{\beta}$

Complexity of Naïve Bayes

•	How to implement	nlement	General Purpose - Current Generation	urrent Ger	eration			
	Now to min		t2.nano	-	Variable	0.5	EBS Only	\$0.0065 per Hour
	Naive Bayes	ส	£2.micro	-	Variable	-	EBS Only	\$0.013 per Hour
	 Assuming the 	ng the	t2.small	-	Variable	2	EBS Only	\$0.026 per Hour
	event c	event counters	t2.medlum	8	Variable	4	EBS Only	\$0.052 per Hour
	do not fit in	fit in	t2.large	2	Variable	89	EBS Only	\$0.104 per Hour
	200000	:	m4.large	23	6.5	60	EBS Only	\$0.12 per Hour
		>	m4.xlarge	4	13	16	EBS Only	\$0.239 per Hour
•	Why?		m4.2xlarge	80	58	35	EBS Only	\$0.479 per Hour
			m4.4xlarge	9	53.5	2	EBS Only	\$0.958 per Hour
			m4.10xlarge	40	124.5	160	EBS Only	\$2.394 per Hour
	Micro:	\$0.006/hr	m3.medium	-	es	3.75	1 x 4 SSD	\$0.067 per Hour
	0.6G memory	lory	m3.large	2	6.5	7.5	1 x 32 SSD	\$0.133 per Hour
	Standard:		m3.xlarge	4	13	15	2 x 40 SSD	\$0.266 per Hour
	S: 1.7Gb \$0.03/hr	\$0.03/hr	m3.2xlarge	80	58	30	2 x 80 SSD	\$0.532 per Hour
	L: 7.5Gb		. [
	XL: 15Gb	\$0.24/hr						
	Hi Memory	خ						
	XXL: 32 GB	3 \$0.48/hr	/hr					
	10XL: 160GB	GB \$2.40/hr	/hr					00
			1					

Some "obvious" answers

SCALING TO LARGE VOCABULARIES: HOW?

For text classification for a corpus with O(n) words, expect to use O(sqrt(n)) storage for vocabulary.
Scaling might be worse for other cases (e.g., hypertext, phrases, ...)

Proper names, missspellings, neologisms, ...
 Summary:

 $\begin{array}{lll} & - K \approx 1/10 & - 1/100 \\ & - \beta \approx 0.4\text{-}0.6 & \text{(approx. square-root)} \\ & \text{Why?} \end{array}$

10

What's next

- How to implement Naïve Bayes
- Assuming the event counters do not fit in memory
- Possible approaches:
- Use a database? (or at least a key-value store)

Numbers (Jeff Dean says) Everyone Should Know

	150,000,000 ns	Send packet CA->Netherlands->CA
~= 100,000x	30,000,000 ns ~=100,000x	Kead 1 Mb sequentially from network Read 1 Mb sequentially from disk
T	10,000,000 ns	Disk seek
	500,000 ns	Round trip within same datacenter
	250,000 ns	Read 1 MB sequentially from memory
	20,000 ns	Send 2K bytes over 1 Gbps network
	10,000 ns	Compress 1K bytes with Zippy
~= 15x	100 ns ~=15x	Main memory reference
	100 ns	Mutex lock/unlock
7 ns ~= 10x	7 ns	L2 cache reference
	5 ns	Branch mispredict
ıs	0.5 ns	L1 cache reference

Naïve Bayes for Big Data

13

- How to implement Naïve Bayes
- Assuming the event counters do not fit in memory
- Possible approaches:
- Use a database?
- O(n*scan) → O(n*scan*seek)
- · Counts are stored on disk, not in memory
-So, accessing a count might involve some seeks
 Caveat: many DBs are good at caching frequently-used values, so seeks might be infrequent
- In memory distributed database?

Counting

Numbers (Jeff Dean says) Everyone Should Know

Distributed Counting

Numbers (Jeff Dean says) Everyone Should Know

		10x		15x					L		~= 100,000x	
0.5 ns	5 ns	7 ns ~= 10x	100 ns	100 ns ~= 15x	ns	ns	ns	ns	ns	ns	ns ~	ns
0	2	7	100	100	10,000	20,000	250,000	200,000	10,000,000	10,000,000 ns	30,000,000 ns	150,000,000 ns
L1 cache reference	Branch mispredict	L2 cache reference	Mutex lock/unlock	Main memory reference	Compress 1K bytes with Zippy	Send 2K bytes over 1 Gbps network	Read 1 MB sequentially from memory	Round trip within same datacenter	Disk seek	Read 1 MB sequentially from network	Read 1 MB sequentially from disk	Send packet CA->Netherlands->CA

Naïve Bayes for Big Data

- How to implement Naïve Bayes
- Assuming the event counters do not fit in memory
- O(n*scan+n*send) Possible approaches:
 - Use a memory-based distributed database?
- Extra cost: Communication costs: O(n) ... but that's "ok
 - Extra complexity: routing requests correctly Compress the counter hash table?

 - Use integers as keys instead of strings?
 Use approximate counts?
 - Discard infrequent/unhelpful words?
- Trade off time for space somehow?
 Observation: if the counter updates were better-ordered we could avoid using disk

Project Announcements

- Join a team on connex (GroupProject <num>)
- everyone from your group should join the same connex group
- Only one person from a group needs to submit the proposal
- You need to join a group to see the project proposal assignment on connex
- his EEG lab is creating a possible project ideal? Friday: Olav Krigolson will talk about some data

Naïve Bayes for Big Data

- How to implement Naïve Bayes
- Assuming the event counters do not fit in memory
- O(n*scan) → O(n*scan+n*send) Possible approaches:
 - Extra cost: Communication costs: O(n) ... but that's "ok" Use a memory-based distributed database?
- Extra complexity: routing requests correctly
- Note: If the increment requests were ordered seeks would not
- 1) Distributing data in memory across machines is not as cheap as accessing memory locally because of
 - communication costs.
- interaction between size and locality: we have a large 2) The problem we're dealing with is not size. It's the structure that's being accessed in a non-local way.

Counting Naïve Bayes for Big Data

- One way trade off time for space:
- Assume you need K times as much memory as you actually have
- Method:
- Construct a hash function h(event)

 - For *i=0,...,K-1*:
 - Scan thru the train dataset
- Increment counters for event only if $h(event) \mod K == i$
- Save this counter set to disk at the end of the scan
- After K scans you have a complete counter set
 - Comment:
- this works for any counting task, not just Naïve Bayes
- What we're really doing here is organizing our "messages" to get

THE STREAM-AND-SORT DESIGN **PATTERN FOR NAIVE BAYES**

Large-vocabulary Naïve Bayes

- Create a hashtable C
- For each example id, y, x_{1} ,..., x_{d} in train:
 - C("Y=ANY") ++; C("Y=y") ++
- For j in 1..d:
- $C("Y=y \land X=x_j") ++$

Large-vocabulary Naïve Bayes

- Create a hashtable C
- For each example id, y, x_y ..., x_d in train:
- C("Y=ANY") + i; C("Y=y") + i
- Print "Y=ANY += 1"
 - Print "Y=y += 1"
- $C("Y=y \land X=x_j")$ ++ – For j in 1..d:
- Print "Y=y $^{\Lambda}$ X= x_{j} += 1"
- Think of these as update "messages"
- We will collect together messages about the same counter

Processing the Output

- Produce counts for all docs
- Sort the counts

	1	1		п п	П	1
# #	#	#	# #	# #	#	#
	X =aaa	^ X=zynga	X=hat X=hockey	X=hockey X=hockey	X=hoe	
r=business Y=business	 Y=business	 Y=business	Y=sports ^ Y=sports ^	Y=sports ? Y=sports ^	 Y=sports ^	". Y=sports

Large-vocabulary Naïve Bayes

- Create a hashtable C
- For each example id, y, x_{1} ,..., x_{d} in train:

= C("Y-ANY") + +; C("Y-y") + +– Print "Y=ANY += 1"

Think of these as "messages" to another component to increment the counters - Print "Y=y += 1"

- For j in 1..d:

• $C("Y=y \land X=x_i")$ ++

Sort the event-counter update "messages" • Print "Y=y $^{\Lambda}$ X= x_j += 1"

Scan the sorted messages and compute and output the final counter values

Example

- Document with label "business" The stock market fell today.
- Will produce counts

Large-vocabulary Naïve Bayes

Scan-and-add:

"Ebusiness ^ X=zynga Y=sports ^ X=hat Y=sports ^ X=hockey Y=sports ^ X=hockey Y=sports ^ X=hockey sports ^ X=hoe Y=business ^ X Y=business Y=business

 If PreviousKey!=Null
 print PreviousKey,sumForPreviousKey sumForPreviousKey += delta • previousKey = event • sumForPreviousKey = delta previouskey = Null
 sumForPreviouskey = 0
 For each (event,delta) in input:
 If event==previouskey OutputPreviousKey() define OutputPreviousKey(): OutputPreviousKey() • Else

Accumulating the event counts requires constant storage ... as long as the input is sorted.

/=sports ^ X=hockey

How Unix Pipes Work

- Processes are all started at the same time
- Data streaming thru the pipeline is held in a queue: writer → [...queue...] → reader
- If the queue is full:
- the writing process is blocked
- If the queue is empty:
- the reading process is blocked
- Queues are usually smallish: 64k default

Distributed Counting → Stream and Sort Counting

Large-vocabulary Naïve Bayes

- For each example *id*, *y*, x_{ν}, x_{d} in *train*:
- Print Y=ANY += 1
 - Print Y=y += 1
- For j in 1..d:
- Print $Y=y \wedge X=x_j += 1$
- Sort the event-counter update "messages"
- Scan and add the sorted messages and output the final counter values

Complexity: O(n), n=size of train

(Assuming a constant number of labels apply to each document)

Complexity: O(*nlogn)*

Complexity: O(n)

Model size: min(O(n), O(|V||dom(Y)|))

How stream-and-sort works

- Pipeline is stream \rightarrow [...queue...] \rightarrow sort
- Algorithm you get:
- sort reads --buffer-size lines in, sorts them, spills them to disk
- sort merges spill files after stream closes
- stream is blocked when sort falls behind
- and sort is blocked if it gets ahead

Stream and Sort Counting \rightarrow Distributed Counting

Using Large-vocabulary Naïve Bayes

- For each example id, y, x_1 ,..., x_d in train:
- Sort the event-counter update "messages"
- Scan and add the sorted messages and output the final counter values Model size: max O(n), O(IVI | dom(Y)|)
- For each example id, y, x_y ,..., x_d in test:
 - For each y' in dom(Y):
- Compute $\log \Pr(y', x_1, \dots, x_d) =$

$$= \left(\sum_{j} \log \frac{C(X = x_{j} \land Y = y') + mq_{x}}{C(Y = y') + m} \right) + \log \frac{C(Y = y') + mq_{y}}{C(Y = ANY) + m}$$

Using Large-vocabulary Naïve Bayes

- For each example id, y, x_y ,..., x_d in train: Sort the event-counter update "messages"
- Sort the event-counter upware more and output the final Scan and add the sorted messages and output the final Model size: O(1VI)

Counter values
 Initialize a HashSet NEEDED and a hashtable C
 For each example id, y, x_y....,x_d in test:

 Add x_y....,x_d to NEEDED

 For each event, C(event) in the summed counters

Time: $O(n_2)$, size of test Memory: same

If event involves a NEEDED term x read it into C

• For each example id, y, $x_1,...,x_d$ in test:

– For each y' in dom(Y): • Compute $\log \Pr(y', x_1, \dots, x_d) = \dots$

Time: $O(n_2)$ Memory: same