

CAI 4104/6108 – Machine Learning Engineering:

Adversarial ML & Privacy Threats

Prof. Vincent Bindschaedler

Spring 2024

Administrivia: Project

- Due Wednesday 4/24 by 11:59pm *no late penalty if submitted by 4/26 11:59pm*
 - Deliverables:
 - ★ Final report (PDF) 3+ pages
 - Code (ZIP)
 - Submit as a group
 - Use Canvas project groups
 - See instructions on the Canvas assignment for more details
- Evaluation criteria
 - Depth, soundness, presentation quality, and effort
- Important considerations
 - What are the results? How do they compare to the baseline(s)?
 - Did you follow best practices? Does your evaluation methodology make sense?

Administrivia: Project

Report:

- Introduction
 - What the project is about? What problem are you trying to solve?
- Approach: Dataset(s) & Pipeline(s)
 - What is your proposed approach? What are you doing to solve the problem? What ML techniques are you using? What dataset(s) are you using?
- Evaluation Methodology
 - How are you evaluating your approach? How did you split the data? What are the metrics/baselines
- Results
 - What results have you obtained? How do your results compare to the baselines?
 - Include: tables or plots
- Conclusions
 - What are your conclusions?

The Stationarity Assumption

- Many (most?) learning methods make the stationarity assumption
 - The training data and testing (evaluation) data come from the **same** distribution
- From the perspective of machine learning theory
 - The stationarity assumption makes sense
 - If the testing data comes from a different distribution, can we say anything about generalization?
- What about in the real-world (the world of deployed systems)?
 - Does the stationarity assumption hold there?
 - No! At least not always. Examples?
 - Distribution of data changes over time
 - Better data becomes available, or what we care about changes
 - The stationarity assumption may not hold in adversarial environments

What's this animal?

What's this animal?

It's a gibbon!

Adversarial Examples

Source: Goodfellow, Shlens, and Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015

Robustness

- What does robustness mean?
 - In computer science:
 - The ability of an algorithm/system to handle errors in execution or in its input
 - In machine learning:
 - testing error ≈ training error
 - low generalization error
 - performs well even on unexpected inputs, noisy inputs or outlier inputs

Adversarial robustness

- We want robustness even for the worst-case adversarial inputs
- We assume the adversary chooses the inputs

Adversarial Robustness: Intuition

Model: "cat"

Adversarial Examples: Terminology

- Adversarial sample or adversarial example
 - Malicious input designed to fool a machine learning model
- Adversarial robustness
 - Robustness to adversarial (i.e., malicious) inputs
 - Note: (traditional) robustness means robustness to unexpected inputs or outlier inputs
 - Unexpected / outlier ≠ malicious
- Adversarial perturbation
 - Perturbation of a benign input into an adversarial example
 - In the ideal case (for the adversary) the perturbation is imperceptible to humans

Evasion Attacks

- Goal:
 - Adversary aims to avoid detection by manipulating malicious test samples
- Application scenarios
 - Spam filtering: attacker crafts a malicious spam email in such a way that it appears to be legitimate
 - Malware detection: attacker takes a piece of malware and modifies it so that it is detected as benign
 - In such scenarios the stationarity assumption may not hold
 - Adversaries that manipulate the test data are realistic in this context

Adversarial Examples: FGSM

- Fast Gradient Sign Method (FGSM)
 - Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv, 2014.
 - No optimization, just compute the gradient:
 - * Let $x' = x \epsilon \operatorname{sign}(\nabla L_{f,t}(x))$
 - Here ε>0 is che
 gradient of the
 - Intuition:
 - The gradient of to minimize the
 - The attack shift

"panda" 57.7% confidence

 \boldsymbol{x}

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon"

99.3 % confidence

d $\nabla L_{f,t}(x)$ is the

should be changed

Neural Nets: Other Weird Properties

■ Nguyen, Yosinski, Clune. "Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images." IEEE CVPR 2015.

Neural Nets: Other Weird Properties

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." ICLR 2015.

Can you see the airplanes?

Randomly generated fooling images for a CIFAR-10 convolutional neural net

Each image is generated by:

- Drawing an isotropic Gaussian
- Taking a step in the direction that increases the probability for "airplane"

Yellow box: confidence of "airplane" above 50%

Privacy Attacks on ML

- What if the model's training data is sensitive?
 - We want to keep it private
- We also want to publicly release the model
 - But the model is a function of the training data!
 - What do we do?

Privacy Attacks on ML Models

What can be inferred about the training data from access to the model?

source: xkcd

Membership Inference Attacks

- Empirical observation
 - Complex ML models tend to memorize their training data (even if they do not overfit)
 - We can quantify this through membership inference

Attacker's goal

- Determine whether a given target t's record was part of the target model's training data set
- Hypotheses:

 - « (Non-member) H_{OUT}: t is **not** in the training data
- Assumption: adversary knows t's data record

Membership Inference Attack (MIA)

Black-box Membership Inference Attack:

Prediction confidence for t?

Confidence value for t

Model

Membership Inference Attack:

Inputs: model \mathcal{M} , record t, threshold $\tau \in [0,1]$

Output: IN or OUT

Procedure:

- $c \leftarrow \operatorname{prediction_confidence}(\mathcal{M}, t)$
- If $c \ge \tau$: return **IN**
- Else: return OUT

Note: here the confidence value is just the predicted probability for the true class

Memorization & Privacy Concerns in LLMs

- Empirical observation: LLMs memorize some of their training data
 - This data can be extracted

Figure 5: Extracting pre-training data from ChatGPT. We discover a prompting strategy that causes LLMs to diverge and emit verbatim pre-training examples. Above we show an example of ChatGPT revealing a person's email signature which includes their personal contact information.

Reference:

 Nasr et al. "Scalable Extraction of Training Data from (Production) Language Models." arXiv preprint arXiv:2311.17035 (2023).

Privacy Risks of Generative Models

We want models to generalize and produce novel instances, not reproduce their training data

Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

Extracting Training Data from Diffusion Models

Nicholas Carlini*1 Jamie Hayes*2 Milad Nasr*1 Matthew Jagielski⁺¹ Vikash Sehwag⁺⁴ Florian Tramèr⁺³ Borja Balle^{†2} Daphne Ippolito^{†1} Eric Wallace^{†5} ¹Google ²DeepMind ³ETHZ ⁴Princeton ⁵UC Berkeley *Equal contribution +Equal contribution †Equal contribution

Next Time

- Wednesday (4/17): Lecture
 - Topic: Fairness & Interpretable ML
- Upcoming:
 - Project due 4/24