Newton Divided Differences

- 1) Given a table of (x,y) pairs, input x values as: $x_0,x_1,x_2,x_3....x_n$, and input the y values and assign them to an f(x): $f(x_0),f(x_1),f(x_2)....f(x_n)$ as $F_{0,0},F_{1,0},....F_{n,0}$
- 2) Output the numbers $F_{0,0},\,F_{1,1}\ldots$. $F_{n,n}$ where the summation:

a)
$$P(x) = \sum_{x=0}^{n} F_{i,i} \prod_{j=0}^{i-1} (x - x_j)$$

- 3) Time for cycle:
 - a) For i = 1 < n, i++
 - (i) For j = 1 < i, j++
 - (1) Set $F_{ij} = (F_{ij-1} F_{i-1,j-1})/x_{i-1}x_{i-1}$
 - b) Output $(F_{00},F_{11},\ldots,F_{nn})$; $(F_{ii} \text{ is } f[x_0,x_1,\ldots,x_i])$
- 4) Stop