University of Toronto Scarborough Department of Computer & Mathematical Sciences

FINAL EXAMINATION

MATB41H - Techniques of the Calculus of Several Variables I

Examiner: E. Moore Date: December 10, 2010
Duration: 3 hours

1. [4 points] Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$ or show that it does not exist.

- 2. [5 points] Give the 4th degree Taylor polynomial about the origin of $f(x,y) = \frac{e^{-xy}}{1+x^2}$.
- 3. [8 points]

(a) Let
$$f(x,y) = \begin{cases} \frac{3xy + 5y^3}{x^2 + y^2} & \text{, if } (x,y) \neq (0,0) \\ 0 & \text{, if } (x,y) = (0,0) \end{cases}$$
. Find $\frac{\partial f}{\partial y}(0,0)$.

- (b) Carefully state what it means for a function $f: U \subset \mathbb{R}^n \to \mathbb{R}^k$ to be differentiable.
- 4. [8 points] Let f(x, y, z) = xy + yz + zx and let $\boldsymbol{a} = (1, 2, 3)$ be a point in \mathbb{R}^3 .
 - (a) Find the equation of the tangent plane to the level set f(x, y, z) = 11 at \boldsymbol{a} .
 - (b) Find the directional derivative of w = f(x, y, z) at \boldsymbol{a} in the direction $\boldsymbol{v} = (2, 0, 2)$.

5. [15 points]

- (a) Carefully state the Chain Rule for functions of more than one variable.
- (b) Let f(x, y, z) be a differentiable function from \mathbb{R}^3 to \mathbb{R} . If $x = t^2$, $y = t^3$ and $z = t^4$, use the Chain Rule to give a formula for $\frac{df}{dt}$ at the point where t = 2.
- (c) Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be be given by $f(x,y,z) = (yz^2, xyz)$ and let $g: \mathbb{R}^2 \to \mathbb{R}^4$ be given by g(x,y) = (x+y,xy,x,-y). Find Df and Dg and use the Chain Rule to find $D(g \circ f)$.

- 6. [7 points] Let $f(x,y) = 2x^4 + x^2 + 2xy + y^2 + x$. Find and classify the critical points of f.
- 7. [9 points] Find the extreme values of f(x, y, z) = x on the intersection of the unit sphere $x^2 + y^2 + z^2 = 1$ and the plane x + y + z = 1.

 Justify your answers including an explanation of why global extrema do exist.

8. [9 points] Find the maximum and minimum values of $f(x,y,z) = \frac{1}{3}x^3 + 5y^2 + 6yz + 5z^2 \text{ on the solid ball } x^2 + y^2 + z^2 \le 1.$

Justify your answers including an explanation of why global extrema do exist.

- 9. **[10 points]**
 - (a) Evaluate $\int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} \, dy \, dx$.
 - (b) Evaluate $\iint_D x \, dA$, where D is the first quadrant region between y = x and $y = x^3$.
- 10. [8 points] Find the volume of the first octant solid bounded by the graphs of $z = 1 y^2$, y = 2x and x = 3.
- 11. [8 points] Use a triple integral to find the volume of the solid bounded by the cone $x = \sqrt{y^2 + z^2}$ and the paraboloid $x = 6 y^2 z^2$.

- 12. **[14 points]**
 - (a) Carefully state the Change of Variables Theorem for multiple integrals. Make sure you define your terms.
 - (b) Use a change of variable to evaluate $\iint_D xy \, dA$, where D is the first quadrant region bounded by xy = 1, xy = 5, $y = x^2$ and $y = 4x^2$.

