Paper Review: The Average Posterior Variance of Smoothing Spline and A Consistent Estimate of the Average Squared Error

Douglas Nychka

Group Meeting · Meimei Liu · Feb 02, 2015

Outline

1 Introduction

2 Motivation of this Paper

3 Theorem

4 Sketch of Proof

Polynomial Smoothing Spline Estimation

■ Consider the regression problem $Y_i = f(x_i) + \varepsilon_i$, $i = 1, \dots, n$, where $x_i \in [0,1]$ and ε_i are i.i.d errors with mean 0 and variance σ^2 . f_{λ} is the minimizer of

$$\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-f(x_{i}))^{2}+\lambda\int_{0}^{1}(f^{(m)})^{2}dx \text{ for all } f\in W_{2}^{m}[0,1]$$

where $W_2^m[0,1]$ is the Sobolev Space

$$W_2^m[0,1]=\{f:f^m\in L^2[0,1] ext{and } f^k, \ 1\leq k\leq m-1 ext{ are absolutely continuous}\}.$$

■ A proper inner product makes W_2^m a RKHS with an explicit kernel. For example,

$$(f,g) = \sum_{k=0}^{m-1} f^{(v)}(0)g^{(v)}(0) + \int_0^1 f^{(m)}(x)g^{(m)}(x)dx$$

■ Then the reproducing kernel R(x, y) could be expressed as

$$R(x,y) = R_0(x,y) + R_1(x,y)$$

$$= \sum_{v=0}^{m-1} \frac{x^v}{v!} \frac{y^v}{v!} + \int_0^1 \frac{(x-u)_+^{m-1}}{(m-1)!} \frac{(y-u)_+^{m-1}}{(m-1)!} du$$

which generate their corresponding RKHS $\mathcal{H}=\mathcal{H}_0+\mathcal{H}_1$ with

$$\mathcal{H}_0 = \{ f : f^{(m)} = 0 \}$$

$$\mathcal{H}_1 = \{f: f^{(v)}(0) = 0, v = 0, \cdots, m-1, \int_0^1 (f^{(m)})^2 dx < \infty\}$$

■ Write $f \in W_2^m[0,1]$ as $f(x) = \sum_{v=0}^{m-1} d_v \frac{x^v}{v!} + \sum_{i=1}^n c_i R_1(x_i,x)$, Then the objective function becomes minimizing

$$(Y - Sd - Qc)^T(Y - Sd - Qc) + n\lambda c^TQc$$

where S the $n \times m$ matrix with the (i, v)th entry $\frac{x_i^v}{v!}$ and Q the $n \times n$ matrix with the (i, j)th entry $R_1(x_i, x_j)$.

 Differentiating wrt c and d and setting the derivatives to 0, one gets that

$$\hat{Y} = f_{\lambda}(x) = E(f(x)|Y) = A(\lambda)Y$$

where $A(\lambda) = I - n\lambda(M^{-1} - M^{-1}S(S^TM^{-1}S)^{-1}S^TM^{-1})$ with $M = Q + n\lambda I$.

 $Var[f(x)|Y] = \sigma^2 A(\lambda).$

Bayes Interpretation of Smoothing Spline Estimator

- So the smoothing spline estimator could be interpreted as the posterior mean when a particular Gaussian prior is placed on the unknown regression function.
- Wahba (1983) used this correspondence between a smoothing spline estimator and the posterior distribution of f to motivate 95% pointwise "confidence intervals" for $f(x_i)$ as

$$f_{\hat{\lambda}}(x_i) \pm 1.96 \hat{\sigma} \sqrt{A_{ii}(\hat{\lambda})}$$

where $\hat{\lambda}$ is the minimizer of the GCV function

$$V(\lambda) = \frac{(1/n)||(I - A(\lambda))Y||^2}{((1/n)tr(I - A(\lambda)))^2}$$

■ And $\hat{\sigma}^2$ is a consistent estimator of σ^2 , with

$$\hat{\sigma}^2 = \frac{||(I - A(\hat{\lambda}))Y||^2}{tr(I - A(\hat{\lambda}))}$$

- The simulation results reported in Wahba (1983) indicate that the Bayesian "confidence" interval work well when evaluated by a frequentist criterion for fixed functions.
- Goal of this paper:
 Understand the statistical properties of this method.

Motivation of this Paper

• (APV) the average posterior variance is given by

$$\frac{\sigma^2}{n}\sum_{i=1}^n A_{ii}(\lambda) = \frac{\sigma^2 tr A(\lambda)}{n}$$

(ASE) the Average squared error is given by

$$T_n(\lambda) = \frac{1}{n} \sum_{i=1}^n (f_{\lambda}(x_i) - f(x_i))^2$$

■ Wahba hypothesized that the APV is close to the expectation of ASE, i.e $E(T_n(\lambda))$.

Motivation of this Paper

Let λ^0 be the minimizer of $E(T_n(\lambda))$ for $\lambda \in [0, \infty)$, then Wahba's conjecture is: if $f \in W_2^m[0, 1]$, then

$$\frac{\sigma^2 tr A(\lambda^0)/n}{E(T_n(\lambda^0))} = \kappa(1+o(1)) \text{as } n \to \infty$$

for some $\kappa \in [1, (\frac{2m}{2m-1})(\frac{4m}{4m+1})]$.

- Wahba's conjecture is important since it links a frequency quantity with a functional of the posterior distribution.
- But λ was not fixed in the simulations, it was determined by GCV.
- In this paper, give a proof for a version of Wahba's conjecture that accounts for the adaptive choice of the smoothing parameter λ .

Theorem 1.1

Theorem

Suppose that the observation points $\{x_i\}_{1\leq i\leq n}$ are a random sample from a distribution with density function g s.t. g is strictly positive on [0,1]. If $E|\varepsilon_i|^8<\infty$, $\hat{\lambda}$ is the minimizer of $V(\lambda)$ restricted to $[\lambda_n,\infty)$ with $\lambda_n\sim n^{-4m/5}$, $f\in W_2^{2m}$ with $m\geq 2$, and f satisfies the natural boundary conditions

$$f^{(k)}(0) = f^{(k)}(1) = 0, m \le k \le 2m - 1$$

then

$$\frac{\hat{\sigma}^2 tr A(\hat{\lambda})/n}{E(T_n(\lambda^0))} \stackrel{P}{ o} K \text{ as } n o \infty$$

where $K = (\frac{2m}{2m-1})(\frac{4m}{4m+1})$.

From Speckman (1983) and Cox (1984), under the condition of Theorem 1.1, if $S_n^2 = 1/n \sum_{i=1}^n \varepsilon_i^2$, then

$$\frac{V(\hat{\lambda}) - S_n^2}{E(T_n(\lambda^0))} \stackrel{P}{\to} 1 \text{ as } n \to \infty$$

Suppose \hat{S}_n^2 is an estimator of S_n^2 s.t. $S_n^2 - \hat{S}_n^2 = o_p(E(T_n(\lambda^0)))$. Then a natural estimate of $E(T_n(\lambda^0))$ is

$$\hat{T}_n = V(\hat{\lambda}) - \hat{S}_n^2$$

Theorem 1.2

Theorem

Under the same hypotheses as Thm 1.1, if

$$\hat{S}_n^2 = \frac{||(I - A(\hat{\lambda}))Y||^2}{tr(I - CA(\hat{\lambda}))} with C = 2 - \frac{1}{K}$$

then

$$\hat{S}_n^2 - S_n^2 = o_p(E(T_n(\lambda^0)))$$
 as $n o \infty$

■ Theorem 1.1 follows easily from Theorem 1.2. With some algebra we have

$$\hat{T}_n = V(\hat{\lambda}) - \hat{S}_n^2 = (2 - C) \left[\frac{\hat{\sigma}^2 tr A(\hat{\lambda})}{n} \right] \left[\frac{1 + \beta_n^2 / (2 - C)}{(1 - C\beta_n)(1 - \beta_n)^2} \right]$$

where $\beta_n = trA(\hat{\lambda})/n$.

- Thus \hat{T}_n is proportional to the estimated APV.
- Also, from Thm 1.2 and Speckman (1983), Cox (1984), $\hat{T}_n/E(T_n(\lambda^0)) \stackrel{P}{\to} 1$.
- The second bracketed term converges to 1 in probability as $n \to \infty$ could be proved in Lemma.

- Recall $\hat{\sigma}^2 = \frac{||(I A(\hat{\lambda}))Y||^2}{tr(I A(\hat{\lambda}))}$ is also an estimation of σ , the only difference between $\hat{\sigma}^2$ and \hat{S}_n^2 is the constant C in the denominator.
- Although $\hat{\sigma}^2 S_n^2 = o_p(1)$, under the hypothesis of Theorem 1.1, $(\hat{\sigma}^2 S_n^2)/E(T_n(\lambda^0)) \stackrel{P}{\to} \mathscr{E}$ where $\mathscr{E} \neq 1$. So $V(\hat{\lambda}) \hat{\sigma}^2$ will not be a consistent estimator of $E(T_n(\lambda^0))$.

General Theorem 2

Theorem 2 includes the results of Thm 1.1 and Thm 1.2. First introduce conditions F1-F3.

- Let G_n denote the empirical distribution for the design points, $\{x_i\}$. Consider two cases:
 - Case A (Designed knots) There is a distribution function G s.t. $\sup_{v \in [0,1]} |G_n(v) G(v)| = O(\frac{1}{n})$.
 - Case B (Random knots) $\{x_i\}$ is a random from a distribution with c.d.f G.

In either case assume that g=(d/dv)G is strictly positive on [0,1], and $g\in C^\infty[0,1]$.

Conditions for Thm 2

- (F1) $E|\varepsilon|^{2+\nu} < \infty$ with Case A (Designed knots) v > 4m - 1Case B (Random knots) v > 2(8m - 3)/5
- \bullet (F2) $\lambda \in [\lambda_n, \infty)$ Case A (Designed knots) $\lambda_n \approx n^{-4m/5} \log(n)$ Case B (Random knots) $\lambda_n \approx n^{-2m/5} \log(n)^m$
- (F3) There is a $\gamma > 0$, s.t.

$$\frac{1}{n} \sum_{i=1}^{n} (Ef_{\lambda}(x_i) - f(x_i))^2 = \gamma \lambda^2 (1 + o(1))$$
uniformly for $lambda \in [\lambda_n, \infty)$

Theorem

Under (F1)-(F3), if
$$\hat{S}_n^2 = \frac{||(I-A(\hat{\lambda}))Y||^2}{tr(I-CA(\hat{\lambda}))}$$
, and $\hat{T}_n = V(\hat{\lambda}) - \hat{S}_n^2$, then
$$S_n^2 - \hat{S}_n^2 = o_p(E(T_n(\lambda^0)))$$
$$\frac{\hat{T}_n}{E(T_n(\lambda^0))} \stackrel{P}{\to} 1$$
$$\frac{\hat{\sigma}^2 tr A(\hat{\lambda})/n}{E(T_n(\lambda^0))} \stackrel{P}{\to} K$$
where $K = (\frac{2m}{2m-1})(\frac{4m}{4m+1})$ as $n \to \infty$

Sketch of Proof

Let
$$m_k(\lambda) = \frac{1}{n} tr[A(\lambda)^k]$$
, and $\mu_k(\lambda) = \alpha I_k \frac{\lambda^{-1/2m}}{n}$ where $I_k = \int_0^\infty \frac{dv}{(1+v^{2m})^k}$, $\alpha = \frac{\pi}{\int_0^1 (g(v))^{1/2m} dv}$ for $k=1,2$.
Let $\mu_k = \mu_k(\lambda^0)$, $m_k = m_k(\lambda^0)$, $A = A(\lambda^0)$, then

$$\hat{S}_n^2 - S_n^2 = \left[\hat{S}_n^2 - \frac{(1/n)||(I-A)Y||^2}{1 - Cm_1}\right] + \left[\frac{(1/n)||(I-A)Y||^2 - (1 - Cm_1)S_n^2}{1 - Cm_1}$$

Since $Y=f+\varepsilon$, and the second term can be expanded by adding and subtracting $-C\mu_1\sigma^2+2\mu_1\sigma^2-\mu_2\sigma^2$ in the numerator to give

$$\frac{R_1 + R_2 + R_3 + \tau}{1 - Cm_1}$$

Need to show each term in the numerator is $o_p(E(T_n(\lambda^0)))$.

- $R_1 = C(m_1 S_n^2 \mu_1 \sigma^2)$ is $o_p(E(T_n(\lambda^0)))$ by Lemma 3.1.
- $R_2 = -2(\frac{1}{n}\varepsilon'A\varepsilon \mu_1\sigma^2) + (\frac{1}{n}\varepsilon'A^2\varepsilon \mu_2\sigma^2)$ is $o_p(E(T_n(\lambda^0)))$ by Lemma 3.4.
- $Arr R_3 = rac{1}{n} f'(I-A)^2 \varepsilon$ is $o_p(E(T_n(\lambda^0)))$ by Lemma 3.5.
- $\tau = \frac{1}{n}||(I A)f||^2 \sigma^2(2 C)\mu_1 + \sigma^2\mu_2$ is $o_p(E(T_n(\lambda^0)))$ by Lemma 3.6.