TWO LOGICAL THOUGHT OF RESEARCH INDUCTIVE & DEDUCTIVE

CHAKRA BAHADUR KHADKA, PhD

School of Mathematical Sciences, Tribhuvan University

Email: chakra.khadka@sms.tu.edu.np

2024

Problem

- Why price of vegetable is unstable?
- Why gold price is rising?
- Why children drop out without complete school education?
- Why trade balance of Nepal is always deficit?
- How remittance contribute in Nepalese economy?
- How control the inflation?
- What are the contributing factor of pollution in Kathmandu valley?
- What are the causes of increasing inflation?/deflation?
- GDP growth and per capita income?

Ideas to solve the problem

DEDUCTIVE LOGICAL THOUGHT

INDUCTIVE LOGICAL THOUGHT

Inductive & deductive logical thought

- When professionals carrying experiments, they use different methods to understand a problem.
- For instance, a expert could use inductive reasoning, which is drawing conclusions from evidence,
- And deductive reasoning, which is finding evidence to support or disprove conclusions.

Inductive and Deductive reasoning

Deductive and Inductive these two methods of reasoning have a very different "composition" to them when you are verifying of theoretical idea from class room knowledge in real world.

DEDUCTIVE AND INDUCTIVE

A particular study may look like it is purely deductive most science social science & management and many more range involves both inductive and deductive reasoning processes at some time in the project.

Deductive Reasoning

 Deductive reasoning works from the more general to the more specific. Sometimes this is informally called a

"TOP-DOWN" approach.

We might begin with thinking up a theory about our topic of interest. We then narrow that down into more specific hypotheses that we can test.

Deductive Reasoning

We narrow down even further when we collect observations to address the hypotheses.

Deductive reasoning is more narrow in nature and is concerned with testing or confirming hypotheses.

This ultimately leads us to be able to test the hypotheses with specific data - a confirmation (or not) of our original theories.

Deductive Reasoning: Flow Chart

Deductive Reasoning

Deductive reasoning works from the more general to the more specific

- Have Theories then Hypotheses: theory and hypothesis should also accurate
- Data are Gathered to Test
- Referred to as: "THEORY-DRIVEN"
- Conformation or testing of hypothesis
- Most Common Approach and Usually Quantitative

The Method of Deduction and Empirical Testing

- The process of deduction and empirical testing is the most important method of approach followed by modern entrepreneurs & economists. It is illustrated in sequence of following steps
- It provides a specific example of the way in which the deductive method works; it provides a good illustration of modern business & economic methodology

A priori theory: Theory of Alfred Marshall

Example: The market price of a good is determined by the demand for and supply of the good.

Law of Supply

The law of supply states that, other things remaining the same, the quantity supplied of a commodity is positively related to its price.

Example: Market Equilibrium

- 1. Application of Marshallian supply function is in Kalimati vegetable market: A study about apple market.
- 2. Hypothesis

There is positive relation between apple price and supply.

Data source: Pravigya

Supply

- PRICE SUPPLY
- PRICE 1.000000 0.617425
- SUPPLY 0.617425 1.000000

•

Example: Keynesian consumption Function

1. 2. Consumption behavior of urban population is according to the Keynesian Consumption

Hypothesis: Null H_o: β = 0

Alternative H_1 : $\beta \neq 0$

Keynesian Consumption Function: A Study of Urban Population Of Nepal

	С	у	f	Inc	Iny	Inf	
1	5.20	28.00	3.00	.72	1.45	.48	
2	5.10	26.00	3.00	.71	1.41	.48	
3	5.60	32.00	2.00	.75	1.51	.30	
4	4.60	24.00	1.00	.66	1.38	.00	
5	11.30	54.00	4.00	1.05	1.73	.60	
6	8.10	59.00	2.00	.91	1.77	.30	
7	7.80	44.00	3.00	.89	1.64	.48	
8	5.80	30.00	2.00	.76	1.48	.30	
9	5.10	40.00	1.00	.71	1.60	.00	
10	18.00	82.00	6.00	1.26	1.91	.78	
11	4.90	42.00	3.00	.69	1.62	.48	
12	11.80	58.00	4.00	1.07	1.76	.60	
13	5.20	28.00	1.00	.72	1.45	.00	
14	4.80	20.00	5.00	.68	1.30	.70	
15	7.90	42.00	3.00	.90	1.62	.48	
16	6.40	47.00	1.00	.81	1.67	.00	
17	20.00	112.00	6.00	1.30	2.05	.78	
18	13.70	85.00	5.00	1.14	1.93	.70	
19	5.10	31.00	2.00	.71	1.49	.30	
20	2.90	26.00	2.00	.46	1.41	.30	
21							
22							

Keynesian Consumption Function: A Study of Urban Population Of Nepal, Regression Result

Mode			Adjusted	Std. Error of	Durbin-
1	R	R Square	R Square	the Estimate	Watson
1	.935(a)	.874	.859	.08182	1.870

	Unstandardized		Standardized		
	Coefficients		Coefficients	t	Sig.
Variables	В	Std. Error	Beta		
(Constant)	599	.159		-3.765	.002
LNY	.842	.107	.782	7.886	.000
LNF	.216	.084	.256	2.580	.019
	(Constant) LNY	Coeffic Variables B (Constant)599 LNY .842	CoefficientsVariablesBStd. Error(Constant)599.159LNY.842.107	CoefficientsVariablesBStd. ErrorBeta(Constant)599.159LNY.842.107.782	CoefficientsCoefficientstVariablesBStd. ErrorBeta(Constant)599.159-3.765LNY.842.107.7827.886

 A priori theory: The Environmental Kuznet Curve (EKC)

Example: One explanation for the environmental Kuznets curve is that the income elasticity of marginal damage is increasing in income. So, at low levels of income, pollution will rise with neutral growth because the policy response is weak. As income rises, the policy response becomes stronger, and if at some point the income elasticity of marginal demand is sufficiently high, pollution will start to fall as income increases.

A priori theory: The Environmental Kuznet Curve (EKC) Assumptions:

- A natural progression of economic development from clean rural life economies to polluting industries to clean service economies.
- Advanced economies exporting their pollution to less developed countries.
- The internalization of externalities requires relatively advanced institutions for collective decision-making.
- Environmental quality is a stock resource that degrades over time.
- Demand for environmental quality overtakes supply ultimately.

A priori theory: The Environmental Kuznet Curve (EKC) Assumptions:

Figure 1: The Environmental Kuznets Curve (EKC)

- The EKC hypothesis contends that pollution increases initially as a country develops its industry and thereafter declines after reaching a certain level of economic progress (Figure 1).
- This implicitly suggests that environmental damage is unavoidable in the initial stage of economic development and therefore, has to be tolerated until the inversion effect kicks in.
- It is oxymoronic that irreversible damage is to be accepted in return for future improvement, which will definitely not be able to restitute the environment to its pristine state.

- When a country begins industrialization, the scale effect will take place and pollution increases (Figure 2a).
- Further along the trajectory, firms switching to lesspolluting industries results in the composition effect, which levels the rate of pollution (Figure 2b).
- Finally, the technique effect comes into play when mature companies invest in pollution abatement equipment and technology, which reduces pollution (Figure 2c).

Example: EKC

- 1. Application of EKC: levels of income, pollution will rise with neutral growth because the policy response is weak.
- 2. Environmental quality is a stock resource that degrades over time.

Hypothesis: Null H_o : $\beta = 0$

Alternative $H_1: \beta \neq 0$

$$Y=a+b_1x_1+b_2x_2$$
 (i)

GDP =
$$a + b_1MP10 + b_2$$
numbers of vehicle (ii)

Application of EKC in Nepal: Analysis of KTM valley Report

Year	GDP	PM10
1990	7113	80
1991	<i>7</i> 101	85
1992	7337	87
1993	7533	98
1994	7836	100
1995	8032	100
1996	8329	167
1997	8704	223
1998	9067	230
1999	9470	236
2000	981 <i>7</i>	243
2001	9891	250
2002	10075	252.8
2003	10381	255.6
2004	10837	270

Keynesian Consumption Function: A Study of Urban Population Of Nepal, Regression Result

Mode			Adjusted	Std. Error of	Durbin-	
1	R	R Square	R Square	the Estimate	Watson	F
1	.95	.91	.906	384	1.70	137

		Unstandardized		Standardized		
Model		Coefficients		Coefficients	t	Sig.
	Variables	В	Std. Error	Beta		
1	(Constant)	5972	258		23.0	.002
	PM10	.1566	1.3	.782	11.0	.000

THANK YOU