This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

. 🤸

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO: JP406218013A

DOCUMENT-IDENTIFIER: JP 06218013 A

TITLE: BALANCE CHAIR

PUBN-DATE: August 9, 1994

INVENTOR-INFORMATION:

NAME

NAKAMURA, KATSUSHIGE

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MITAKA KOKI CO LTD

N/A

APPL-NO: JP05031124

APPL-DATE: January 28, 1993

INT-CL (IPC): A61G015/08, A61B019/00

US-CL-CURRENT: 297/115, 297/411.38

ABSTRACT:

PURPOSE: To provide a balance chair which can reduce physical burden on a person who performs a work while his arms are raised.

F

CONSTITUTION: The first link 10 is supported under freely rotatable condition on a fixing part 8 of a chair main body 1 and the second link 11 for supporting the upper arm is supported on a shaft on the upper end of the first link 10 and an end part of the third link 12 for supporting the forearm is supported on a shaft on an apex of the second link 11 and another end α <SB>11</SB> of the first auxiliary link 14 and another end α <SB>12</SB> of the second link 11 are connected with the first sub-link 16 and another end α <SB>13</SB> of the second auxiliary link 15 and one end α <SB>7</SB> of a crank member 17 are connected with the second sub-link 18. In addition, one parts α <SB>5</SB> and α <SB>6</SB> of the third link 12 and another ends α <SB>8</SB> and α <SB>9</SB> of the crank member 17 are connected with the third sub-links 19a and 19b and the first and the second counter wt. W<SB>1</SB> and W<SB>2</SB> are respectively provided on connecting shafts and α <SB>11</SB>.

COPYRIGHT: (C) 1994, JPO& Japio

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-218013

(43)公開日 平成6年(1994)8月9日

(51)IntCL⁵

識別記号

庁内整理番号

9052-4C

FΙ

技術表示箇所

A 6 1 G 15/08 A 6 1 B 19/00

A 6 1 G 15/00

審査請求 未請求 請求項の数1 FD (全 4 頁)

(21)出願番号

特願平5-31124

(71)出願人 390013033

(22)出願日

平成5年(1993)1月28日

三鷹光器株式会社

東京都三鷹市大沢5丁目1-4

(72)発明者 中村 勝重

東京都八王子市館町653-1

(74)代理人 弁理士 高月 猛

(54) 【発明の名称】 パランスチェアー

(57)【要約】

【目的】 腕を上げたまま作業を行う者の肉体的負担を 少なくすることができるバランスチェアーを提供する。 【構成】 椅子本体1の取付部8に第1リンク10を回 動自在に支持し、且つ該第1リンク10の上端に上腕支 持用の第2リンク11を軸支し、該第2リンク11の先 端に前腕支持用の第3リンク12の端部を軸支し、そし て、第1補助リンク14の他端α11と前記第2リンク1 1の他端α12とを第1サブリンク16で、また第2補助 リンク15の他端α13とクランク部材17の一端α7 と を第2サブリンク18で各々連結し、第3リンク12の 一部α5 、α6 とクランク部材17の他端α8 、α9 と 第3サブリンク19a、19bで連結し、そして、連結 軸α11に第1カウンタウェイトW1 を、連結軸α13に第 2カウンタウェイトW2 を、各々設けたものである。

1

【特許請求の範囲】

【請求項1】 椅子本体に設けた水平軸に回転自在な取 付部を設けると共に、該取付部に長手中心軸で回転自在 な第1リンクの途中部分を回動支点で回動自在に支持 し、且つ該第1リンクの上端の連結軸に上腕支持用の第 2リンクの途中部分を軸支し、該第2リンクの先端の連 結軸に前腕支持用の第3リンクの端部を軸支し、

前記第1リンクと第2リンクとの連結軸にクランク部材 を軸支すると共に、第1リンクの下端に第1補助リンク 及び第2補助リンクを軸支し、

そして、第1補助リンクの他端と前記第2リンクの他端 とを第1リンクと平行な第1サブリンクで、また第2補 助リンクの他端と前記クランク部材の一端とを第2リン クと平行な第2サブリンクで各々連結し、第3リンクの 一部とクランク部材の他端と第2リンクと平行な第3サ ブリンクで連結し、

そして、第1補助リンクと第1サブリンクの連結軸に第 1カウンタウェイトを、第2補助リンクと第2サブリン クの連結軸に第2カウンタウェイトを、各々設けたこと を特徴とするバランスチェアー。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は手術用のバランスチェ アーに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】脳外科 手術や心臓外科手術などは、非常に細かくて神経を使う 手術であると共に、手術時間も8~9時間の長時間にな るケースが多い。例えば、脳外科手術の場合は、手術顕 微鏡で患部を観察しながら行うものであり、ドクターは 30 メス等を持った腕を持ち上げたまま、何時間もその姿勢 を保つことを強いられる。このような長時間の手術は、 患者だけでなく、ドクターにとっても、肉体的且つ精神 的に負担をかけていた。また、このような医療に携わる ドクターに限らず、腕を上げたまま作業をする者にとっ ては、上記の如き苦労は共通してある。

【0003】この発明はこのような観点に基づいて発明 されたものであり、腕を上げたまま作業を行う者の肉体 的負担を少なくすることができるバランスチェアーを提 供するものである。

[0004]

【課題を解決するための手段】この発明に係るバランス チェアーは、上記の目的を達成するために、椅子本体に 設けた水平軸に回転自在な取付部を設けると共に、該取 付部に長手中心軸で回転自在な第1リンクの途中部分を 回動支点で回動自在に支持し、且つ該第1リンクの上端 の連結軸に上腕支持用の第2リンクの途中部分を軸支 し、該第2リンクの先端の連結軸に前腕支持用の第3リ ンクの端部を軸支し、前記第1リンクと第2リンクとの

下端に第1補助リンク及び第2補助リンクを軸支し、そ して、第1補助リンクの他端と前記第2リンクの他端と を第1リンクと平行な第1サブリンクで、また第2補助 リンクの他端と前記クランク部材の一端とを第2リンク と平行な第2サブリンクで各々連結し、第3リンクの一 部とクランク部材の他端と第2リンクと平行な第3サブ リンクで連結し、そして、第1補助リンクと第1サブリ ンクの連結軸に第1カウンタウェイトを、第2補助リン クと第2サブリンクの連結軸に第2カウンタウェイト 10 を、各々設けたものである。

2

[0005]

【作用】第1リンクにて作業者の上半身が支えられ、第 2リンクにて上腕が支えられ、第3リンクにて前腕が支 えられるため、作業者は腕等の重さを自分で支える必要 がない。従って、長時間の手術でも肉体的負担が小さ

[0006]

【実施例】以下、この発明の一実施例を図面に基づいて 説明する。1が椅子本体であり、この椅子本体1は、ベ 20 ース部2、シリンダ部3、操作レバー4、着座部5、背 もたれ部6、とから構成されている。従って、操作レバ -4を動かすことにより、着座部5を上下動させること ができる。

【0007】椅子本体1の背もたれ部6には支持アーム 7が設けられており、この支持アーム7の下部に設定さ れた水平軸α1 に取付部8が回転自在に設けられてい る。この取付部8には回動支点Xを中心に回動自在な筒 体9が設けられており、この筒体9に長手中心軸α2を 中心に回転自在な第1リンク10が設けてある。

【0008】この第1リンク10の上端の連結軸α3 に は第2リンク11の途中部分が軸支されている。この第 2リンク11はドクターDの上腕M」を支えるために下 方に湾曲状の受部11aが一対形成されている。 そし て、この第2リンク11の先端の連結軸α4にドクター Dの前腕M2 を支えるための第3リンク12が軸支して ある。この第3リンク12を軸支している連結軸α。に は第3リンク12と一体的に回動する回動部材13が設 けられており、この回動部材13には2つの連結軸 α_5 、 α_6 が設定されている。そして、この第3リンク 40 12にも前腕M2 を支えるための受部12aが設けてあ

【0009】そして、前記第1リンク10と第2リンク 11との連結軸α3 には、3つの連結軸α7 、α8 、α 9 が設定されたクランク部材17が軸支されている。ま た、第1リンク10の下端の連結軸α10には第1補助リ ンク14と第2補助リンク15とが軸支されている。そ して、この第1補助リンク14の他端の連結軸α11と前 記第2リンク11の他端の連結軸α12とを、第1リンク 10と平行な第1サブリンク16で連結し、且つ、第2 連結軸にクランク部材を軸支すると共に、第1リンクの 50 補助リンク15の他端の連結軸α13と前記クランク部材 3

17の一端の連結軸α1とを第2リンク11と平行な第 2サブリンク18で、各々連結している。更に、クラン ク部材17の他の連結軸α8 、α9 と回動部材13の連 結軸α5 、α6 同士を、互いに第2リンク11に平行な 第3サブリンク19a、19bにて連結している。

【0010】そして、第1補助リンク14と第1サブリ ンク16の連結軸α11に第1カウンタウェイトW1 が設 けられ、且つ第2補助リンク15と第2サブリンク18 の連結軸α13に第2カウンタウェイトW2 が設けられて

【0011】以上のように、この実施例のものは、連結 軸 α10→連結軸 α3 →連結軸 α12→連結軸 α11にて、メ イン平行リンクAが形成され、連結軸 α10→連結軸 α3 →連結軸 α1 →連結軸 α13にて第1のサブ平行リンクB 1 が形成され、そして連結軸 α8 →連結軸 α5 →連結軸 α6 →連結軸α9 にて第2のサブ平行リンクB2 が形成 される。

【0012】前腕支持動作: 前腕M2 の重さは、第3リ ンク12に加わるが、その重さは2本の第3サブリンク 7、平行リンクB1を介して第2カウンタウェイトW2 にて相殺されるため、ドクターDは自身の前腕M2 の重 さが負担にならない。

【0013】上腕支持動作:上腕M1 (前記前腕M2 の 重さも含む)は、第2リンク11に加わるが、その重さ は、第1リンク10及び第1サブリンク16を含むメイ ン平行リンクAを介して、第1カウンタウェイトW1に て相殺されるため、自身の上腕Miの重さを感じない。 【0014】上半身支持動作:例えば、ドクターが前か がみ状態になったような場合には、その前側への移動に 30 より、メイン平行リンクA及び第1サブ平行リンクBi が前後に変形するため、第1カウンタウェイトW1 及び 第2カウンタウェイトW2 の両方の重さにより上半身の 重さがある程度相殺されることとなる。従って、前かが み状態の姿勢を長時間強いられても楽である。

【0015】また、上半身を左右に傾ける動作は、第1 リンク10等が水平軸α1 を中心に回動自在であること から可能となる。尚、この場合も第1カウンタウェイト 4

W1及び第2カウンタウェイトW2 の両方の重さにより 上半身の重さがある程度相殺されるため楽である。

【0016】また、上半身を左右に回転させて傾ける動 作は、第1リンク10等が長手中心軸α2 を中心に回転 自在であることから可能となる。

【0017】以上説明したように、この発明のバランス チェアーは、座っている状態のドクターDがどのような 姿勢をとっても追従でき、且つ腕及び上半身の重さを支 持することができるので、長時間の手術を行っても肉体 10 的負担が小さい。尚、必要により前記「連結軸」に電磁 クラッチを設けても良い。

【0018】この発明は、上記のようなドクターDに限 らず、例えば、工場内の製造ラインにおいて腕を上げた まま作業を行う人、腕を上げたままキーボード操作等を 行う人、病気等によって腕の筋力が低下した人などにも 利用される。

[0019]

【発明の効果】この発明に係るバランスチェアーによれ ば、作業者の上半身及び腕の各部分の重さを支えること 19a、19bを含む平行リンクBz、クランク部材1 20 ができるため、長時間の作業でも肉体的負担が小さい。 また、着座状態のままどのような姿勢をとっても追従で きるため、手術の支障にはならない。また、モータ等の 駆動力を用いず、単にカウンタウェイトによるバランス 式なので故障がなく安全である。

【図面の簡単な説明】

【図1】この発明の一実施例に係るバランスチェアーを 示す側面図である。

【符号の説明】

取付部 8

- 10 第1リンク
 - 第2リンク 11
 - 12 第3リンク
 - 14 第1補助リンク
 - 15 第2補助リンク
 - 16 第1サブリンク
 - 17 クランク部材
 - 18 第2サブリンク
 - 19a, 19b 第3サブリンク

【図1】

