주행 환경에 따라 바퀴와 관절 주행을 동적으로 변경하는 다관절 로봇 시스템 개발

박상은, 조민규, 박성욱, 이건아, 함정규, 박서희* 숭실대학교 전자정보공학부 IT융합전공 학부생 *메타잇주식회사

{pse0219, mingku1025, s0501, kuna001, jgham0101}@naver.com, *shpark@metait.kr

Development of a Multi-joint Robot system that enables adaptive driving of wheels and joints

Sang-Eun Park, Min-Kyu Cho, Sung-Wook Park, Gun-A Lee, Jeong-Gyu Ham, Seo-Hui Park*

Dept. of Electronic Information Engineering, Soongsil University *Metait Inc.

<u>ਲ</u> ਹ

장애물이나 경사지가 많은 협소 지역에서 탐사 활동을 수행하는 로봇은 혐지에서도 이동할 수 있는 자율주행 방법을 필수적으로 제공해야 한다. 본 논문은 협소 지역에서 탐사와 객체 탐지를 위해 주행 상황에 따라 바퀴 주행과 관절 주행을 동적으로 변경하면서 이동하는 다관절 로봇 시스템을 제안한다. 다관절 로봇은 마찰력과 수직항력, 토크 값 등을 고려해 설계한 운동 모델을 기반으로 바퀴와 관절 이동을 변경하면서 자율적으로 주행한다. 관리자는 관제 서버를 통해 로봇이 수집한 탐사정보를 실시간으로 확인하고 필요시 로봇의 원격제어를 수행할 수 있다. 본 연구를 통해 사람이 접근하기 어려운 협소 지역 탐사나 재난지역 인명구조 활동에 활용할 수 있기를 기대한다.

1. 서론

재난과 재해로 붕괴된 지역에 매몰된 매몰자 탐색은 추가 붕괴 위험이 있어 구조 요원의 생명에 위협이 된다. 재난 대응 로봇은 극한 상황에서 정찰과탐색, 인명 구조 등을 사람을 대신 수행함으로써 인명 피해를 최소화할 수 있으므로 재난 대응 로봇에대한 지속적인 연구개발 필요성이 제기되고 있다[1].

본 프로젝트는 협소 지역에서 인명 구조 및 재난 상황 정보를 수집하는 다관절 로봇을 제안한다. 본 논문의 다관절 로봇과 유사한 연구로 관절을 이용해 이동하면서 구조대상자를 탐색하는 뱀형 로봇이 있다[2][3]. 관절을 이용해 이동하는 뱀형 로봇은 이동속도가 느리고 관절 제어를 위해 많은 에너지를 소모한다. 본 논문에서는 이를 개선하기 위해 바퀴 주행이 가능한 곳에서는 바퀴로 빠르게 이동하고 험지에서는 관절 주행으로 변경해 이동하는 운동 모델을설계하고 다관절 로봇을 개발하였다.

2. 다관절 로봇 운동 모델

본 논문에서 제안하는 다관절 로봇은 여러 개의 연속된 관절로 이루어진 로봇으로 로봇의 관절을 제 어하기 위한 운동 모델을 기반으로 관절 각도와 위치를 조절해서 로봇을 이동시킨다. 본 연구에서 험지는 크고 작은 계단들의 연속으로 간주했으며 계단 등반에서의 수직항력과 마찰력을 고려해 운동 모델을 설계하였다.

[그림 1] 전면부 바퀴 중심이 장애물의 높이와 같을 때 자유물체도

[그림1]에서와 같이 로봇의 관절과 바퀴, 계단을 표현한다고 했을 때 관절 로봇은 가장 앞 단 관절의 중심으로부터 지면 사이의 높이와 계단의 높이를 비교하고 [수식1]을 이용해 지면과의 반력, 마찰력에 따른 힘 평형식과 모멘트를 계산한다.

$$egin{aligned} F_x: f_2-N_1&=0 \ F_y: f_1+N_2-(M_1+M_2+M_3+M_4)g&=0 \ M_0: \left\{(평철길이)\sin heta+r_1)
ight\}N_1+(a+r_2)f_1 \ -(M_1x_1+M_2x_2+M_4a)g \end{aligned}$$
 [수식1]

[표 1] 수식의 파라미터 정의

파라미터	정의
а	앞&뒤 바퀴 중심 사이의 거리
x_1	뒷바퀴 중심과 후부프레임 중심 사이 거리
x_2	뒷바퀴 중심과 전면프레임 중심 사이 거리
M_1	로봇 후부 프레임의 무게
M_2	로봇 전면부 프레임의 무게
M_3	후부 오프로드 바퀴의 무게
M_4	전면부 소형 바퀴의 무게
r_1	후부 오프로드 바퀴 반지름
r_2	전면부 소형 바퀴의 반지름
θ	전면부 서보 모터 회전 각도

[수식1]에서 계산한 모멘트 $M_0 > 0$ 을 만족해야 로 봇이 관절의 서보 모터를 회전해서 계단을 넘어갈 수 있다. 이때 필요한 서보 모터 최대 부하 토크 값 은 축 중심으로부터의 거리와 그 거리에서 미는 힘 인 무게의 곱으로 표현된다.

관절 주행 시 첫 번째 관절의 서보 모터 회전각은 [수식2]를 이용해 계산한다.

$$\theta = \tan^{-1}\left(\frac{h - r_1}{r_2 + 3}\right)$$
 [숙식2]

바퀴 주행이 가능한 곳에서는 바퀴로 빠르게 이동하다가 계단을 만나면 앞쪽 관절 서보 모터를 θ만큼 반시계 방향 회전하고 뒤쪽 관절 서보 모터를 반시계 방향 회전, 뒤쪽 DC 모터를 작동시켜 계단을넘어간다.

[그림2] 다관절 로봇 이동제어 순서도

[그림3] 다관절 로봇 관절 제어 모습

3. 다관절 로봇 시스템

본 논문에서 개발한 협소 지역 탐사용 다관절 로

봇 시스템은 LiDAR 센서와 SLAM 알고리즘을 활용해 자율주행하면서 탐사 정보를 수집하고 서버로 전송한다. 적외선 카메라로 수집한 영상 데이터는 관제 서버에서 관리자가 실시간 확인할 수 있으며 만약 구조대상자 발견 시 YoLo와 OpenPose를 활용한 객체 탐지 알고리즘으로 객체를 탐지한다. 로봇에 탑재된 각종 센서로 수집한 데이터는 관제 서버에 저장되며 관리자용 화면에 시각화된 형태로 제공된다.

[그림4] 다관절 로봇 서비스 구성도

4. 결론

본 연구에서는 협소 지역에서 바퀴와 관절의 가변적 주행이 가능한 다관절 로봇 시스템을 개발하였다. 관절 이동에 적합한 로봇을 제작하기 위해 가상의 장애물을 조성하여 로봇의 관절 각, 위치, 개수등을 비교했으며 이를 통해 안정적인 장애물 통과가가능한 로봇을 설계하였다. 향후 실제 재난 현장에활용할 수 있도록 로봇 외피를 제작하고 있다. 본연구 결과가 재난 상황에서 인명구조와 위험지역 탐사 등 다양한 상황에 활용될 수 있기를 기대한다.

* 본 논문은 과학기술정보통신부 정보통신창의인재 양성사업의 지원을 통해 수행한 ICT멘토링 프로젝 트 결과물입니다.

참고문헌

- [1] 김성삼, 신동윤, "난접근 재난 현장의 재난 로봇 기술개발 현황과 정책 제언", 한국산학기술학회 논 문지, vol. 22, no. 11, pp. 270-276, 2021.
- [2] 김성재, 신동관, 표주현, 신주성, 김무림, 서진호, "협소 공간 생존자 탐색을 위한 뱀형 로봇의 다중 센서 모듈", 로봇학회 논문지, vol. 16, no. 4, pp. 291-298, 2021.
- [3] 고두열, 김수현, "험지 주행을 위한 다관절 트랙로봇 설계 및 개발", 로봇학회 논문지, vol. 4, no. 4, pp. 265-272, 2009.