RADET FOR VIDEREGAENDE OPPLARING Studieretning for allmenne fag Naturfaglinja 3. årstrinn EKSAMEN VÅREN 1985

Kode 3361 31. mai

KJEMI

Eksamenstid: 5 timer

Hjelpemidler: Lommeregner "Tabell i kjemi" Bokmålstekst

Nynorsk tekst på den andre sida!

Atommasser og størrelser som det blir bruk for, finnes i heftet "Tabell i kjemi".

Ι

- a) Skriv formelen for disse stoffene:
 - kaliumklorid
- 2) natriumnitrat
- 3) ammoniumsulfat
- 4) kalsiumfosfat
- b) Hva er et salt? Gjør greie for egenskapene til salter.
- c) Vi rører ut det tungtløselige saltet blyklorid i vann og bruker så mye fast blyklorid at ikke alt løser seg.

Beskriv det som skjer.

Vil tilsetting av mer fast blyklorid innvirke på konsentrasjonen av ionene i løsningen? Begrunn svaret.

Vis hvordan du kommer fram til uttrykket for løselighetsproduktet til blyklorid.

- d) Hvor stort volum vann trenger vi for akkurat å løse opp 5,60 g blyklorid ved 25 0 C?
- e) Vi har to begerglass, A og B. I begge glassene har vi 1øst 0,585 g natriumklorid i 100 cm³ vann. I begerglass A tilsetter vi 0,50 cm³ 0,020 M AgNO3, og i begerglass B tilsetter vi 0,50 cm³ 0,020 M Pb(NO3)2.

Blir det felling i begerglassene? Begrunn svaret.

Vi ser bort fra volumendring ved tilsettingene.

II

- a) Definer pH-begrepet.
 - Beregn pH i 0,050 M HCl.
 - 2) Beregn $[H_3O^*]$ i en løsning der pH = 2,8.
- b) En elev skulle bestemme konsentrasjonen av en saltsyreløsning. Eleven pipetterte ut 25,0 cm³ av saltsyreløsningen og overførte den til en erlenmeyerkolbe. Indikator ble tilsatt, og eleven titrerte med 0,100 M NaOH-løsning til ekvivalenspunktet ble nådd. Da var det brukt 23,6 cm³ av NaOH-løsningen.

Beregn konsentrasjonen av saltsyreløsningen.

Vil disse handlingene enkeltvis innvirke på den saltsyrekonsentrasjonen du finner? Begrunn svarene.

- 1) Eleven foretok titreringen sittende slik at øynene hele tiden var lavere enn væskenivået i byretten.
- 2) Byrettespissen ble ikke fylt med NaOH-løsning før titreringen startet.
- 3) Erlenmeyerkolben ble skylt med destillert vann før titreringen startet, og det var vannrester igjen i kolben da saltsyra ble pipettert over i den.
- 4) NaOH-løsningen som ble fylt i byretten, ble hentet fra en stamflaske ved hjelp av en kolbe som eleven nylig hadde vasket og til slutt skylt godt med destillert vann.
- c) Når kaliumpermanganat reagerer med hydrogenperoksyd, skjer reaksjonen:

$$2 \cdot \text{MnO}_4^- + 5 \cdot \text{H}_2^- \text{O}_2^- + 6 \cdot \text{H}^+ \longrightarrow 2 \cdot \text{Mn}^{2+} + 5 \cdot \text{O}_2^- + 8 \cdot \text{H}_2^- \text{O}$$

I et forsøk ble 50,0 cm 3 H $_2$ O $_2$ -løsning titrert med 0,0200 M KMnO $_4$.

Forbruket av KMnO, -løsning var 15,6 cm³.

Bestem konsentrasjonen av H₂O₂-løsningen

l) En saltblanding består av natriumklorid og kaliumklorid. 0,400 g av blandingen løses i vann og titreres med 0,100 M sølvnitratløsning. Forbruket er 55,7 cm².

Beregn masseprosenten av hvert salt i blandingen.

III

- a) Skriv likninga for reaksjonen mellom saltsyre og sink.
-) Finn ved hjelp av spenningsrekka om det blir reaksjon mellom saltsyre og metallene:
 - 1) aluminium 2) tinn 3) kopper

Skriv reaksjonslikninga der det blir reaksjon.

c) Forklar det som vil skje dersom vi tilsetter 3,92 g sink til 100 cm³ 1,00 M CuSO₄-løsning. Skriv reaksjonslikninga.

Regn ut konsentrasjonen av hvert av metallionene i løsningen etter reaksjonen. Se bort fra volumendring ved tilsettingen.

- d) For å løse opp 2,08 g jern tilsettes svovelsyre i overskudd. Hvor stort volum 5,00 M H₂SO₄ må vi tilsette når det skal være ti ganger det volumet som er nødvendig for å overføre jernet til Fe²⁺-ioner?
- e) En saltblanding består av AgNO, CuCO, og Ba(NO,).
 - Hva skjer om vi tilsetter denne blandingen 2,5 M HNO₃?
 Skriv reaksjonslikning.
 - Når løsningen i 1) deretter tilsettes 2,5 M HCl, får vi bunnfall. Skriv likning for reaksjonen.
 - 3) Bunnfallet i 2) fjernes fra løsningen som til slutt tilsettes 2,5 M H₂ SO₄. Hva vil skje nå? Skriv reaksjonslikning.

IV

- a) Skriv strukturformelen for disse forbindelsene:
 - 1) propan 2) 2-butanol 3) 1,2-dibrompentan 4) 2-hydroksypropansyre
- b) Hvordan kan du framstille 1,2-dibrompentan med 1-penten som utgangsstoff? Skriv likninga for reaksjonen.

Hvilken reaksjonstype er dette et eksempel på?

Ved en slik framstilling gikk en ut fra 7,0 g 1-penten. Det reine produktet hadde massen 18,9 g. Regn ut utbyttet i prosent i denne framstillingsprosessen.

c) En organisk forbindelse A inneholder 62,1 prosent karbon, 10,4 prosent hydrogen og resten oksygen. Vis at den empiriske formelen til forbindelsen er $(C_3H_6O)_n$.

Formelmassen til A er 116,1 u. Hva blir da molekylformelen til A?

- d) For å bestemme strukturformelen til den organiske forbindelsen A i c) ble en del forsøk utført:
 - 1) A ble tilsatt vann og litt saltsyre, og reaksjonsblandingen ble kokt en tid. A ble da spaltet til to andre forbindelser B (C_3H_8O) og C $(C_3H_6O_2)$.
 - B reagerte ikke med 2,4-dinitrofenylhydrazin.
 - Ved oksydasjon av B ble forbindelsen D (C₃H₆O) dannet.
 - D gir bunnfall med 2,4-dinitrofenylhydrazin, men reduserer ikke Fehlings væske.
 - 5) C gir CO, -utvikling når den tilsettes en NaHCO, -løsning.

Bruk disse opplysningene til å bestemme strukturformelen til forbindelsene A, B, C og D.

Skriv likninga for reaksjonen

Hvilken funksjon har saltsyra i denne reaksjonen?

Gi opp i margen på første side av eksamenspapiret det læreverket og den utgaven som du legger opp. RADET FOR VIDAREGAANDE OPPLARING Studieretning for allmenne fag Naturfaglinja 3. årssteg

EKSAMEN VÅREN 1985

Kođe 3361 31. mai

KJEMI

Eksamenstid: 5 timar

Nynorsk tekst

Bokmålstekst på den andre sida!

Hjelpemiddel: Lommereknar "Tabell i kjemi"

Atommassar og storleikar som det blir bruk for, finst i heftet "Tabell i kjemi".

Ι

- a) Skriv formelen for desse stoffa:
 - 1) kaliumklorid
- 2) natriumnitrat
- 3) ammoniumsulfat
- kalsiumfosfat
- b) Kva er eit salt? Gjer greie for eigenskapane til salt.
- c) Vi rører ut det tungtløyselege saltet blyklorid i vatn og bruker så mykje fast blyklorid at ikkje alt løyser seg.

Fortel om det som skier.

Vil tilsetjing av meir fast blyklorid verke inn på konsentrasjonen av ionane i løysinga? Grunngi svaret.

Vis korleis du kjem fram til uttrykket for mettingsproduktet til blyklorid.

- d) Kor stort volum vatn treng vi for akkurat å løyse opp 5,60 g blyklorid ved 25 0 C?
- e) Vi har to begerglas, A og B. I begge glasa har vi løyst 0,585 g natriumklorid i 100 cm³ vatn. I begerglas A set vi til 0,50 cm³ 0,020 M AgNO3, og i begerglas B set vi til 0,50 cm³ 0,020 M Pb(NO3)2.

Blir det felling i begerglasa? Grunngi svaret.

Vi ser bort frå volumendring ved tilsetjingane.

ΙI

- a) Definer pH-omgrepet.
 - Rekn ut pH i 0,050 M HCl.
 - 2) Rekn ut $[H_3O^{\dagger}]$ i ei løysning der pH = 2,8.
- b) Ein eley skulle bestemme konsentrasjonen av ei saltsyreløysing. Eleven pipetterte ut 25,0 cm av saltsyreløysinga og overførte ho til ein erlenmeyerkolbe. Indikator vart sett til, og eleven titrerte med 0,100 M NaOH-løsning til ekvivalenspunktet vart nådd. Da var det brukt 23,6 cm av NaOH-løysinga.

Rekn ut konsentrasjonen av saltsyreløysinga.

Vil desse handlingane kvar for seg verke inn på den saltsyrekonsentrasjonen du finn? Grunngi svara.

- Eleven titrerte sitjande slik at auga heile tida var lågare enn væskenivået i byretten.
- 2) Byrettespissen vart ikkje fylt med NaOH-løysing før titreringa starta.
- 3) Erlenmeyerkolben vart skylt med destillert vatn f\u00far titreringa starta, og det var vassrestar att i kolben da saltsyra vart pipettert over i han.
- 4) NaOH-løysinga som vart fylt i byretten, vart henta frå ei stamflaske ved hjelp av ein kolbe som eleven nyleg hadde vaska og til slutt skylt godt med destillert vatn.
- c) Når kaliumpermanganat reagerer med hydrogenperoksyd, skjer reaksjonen:

$$2 \text{ MnO}_4^{-} + 5 \text{ H}_2 \text{ O}_2 + 6 \text{ H}^{+} \longrightarrow 2 \text{ Mn}^{2+} + 5 \text{ O}_2 + 8 \text{ H}_2 \text{ O}$$

I eit forsøk vart 50,0 cm 3 H $_2$ O $_2$ -løysing titrert med 0,0200 M KMnO $_4$.

Forbruket av KMnO, -løysinga var 15,6 cm³.

Bestem konsentrasjonen av H₂O₂-løysinga.

d) Ei saltblanding består av natriumklorid og kaliumklorid. 0,400 g av blandinga blir løyst i vatn og titrert med 0,100 M sølvnitratløysing. Forbruket er 55.7 cm³.

Rekn ut masseprosenten av kvart salt i blandinga.

III

- a) Skriv likninga for reaksjonen mellom saltsyre og sink
-) Finn ved hjelp av spenningsrekkja om det blir reaksjon mellom saltsyra og metalla
 - 1) aluminium 2) tinn 3) kopper

Skriv reaksjonslikninga der det blir reaksjon.

Forklar det som vil skje dersom vi set til 3,92 g sink til 100 cm 3 1,00 M CuSO -løsning. Skriv reaksjonslikninga.

Rekn ut konsentrasjonen av kvart av metallionane i løysinga etter reaksjonen. Sjå bort frå volumendring ved tilsetjinga.

- d) For å løyse opp 2,08 g jern blir det sett til svovelsyre i overskott. Kor stort volum 5,00 M H₂SO₄ må vi setje til når det skal vere ti gonger det volumet som er nødvendig for å overføre jernet til Fe²⁺-ionar?
- e) Ei saltblanding består av AgNO3, CuCO3 og Ba(NO3)2
 - Kva skjer om vi set til 2,5 M HNO₃ til denne blandinga? Skriv reaksjonslikning.
 - Når det deretter blir sett til 2,5 M HCl til løysinga i 1), får vi botnfall.
 Skriv likning for reaksjonen.
 - 3) Botnfallet i 2) blir fjerna frå løysinga, og det blir til slutt sett til 2,5 M H₂ SO₂. Kva vil² skje no? Skriv reaksjonslikning.

ΙV

a) Skriv strukturformelen for desse sambindingane:

2) 2-butanol

propan

- •
- b) Korleis kan du framstille 1,2-dibrompentan med 1-penten som utgangsstoff? Skriv likninga for reaksjonen.

Kva for reaksjonstype er dette eit eksempel på?

Ved ei slik framstilling gjekk ein ut frå 7,0 g 1-penten. Det reine produktet hadde massen 18,9 g. Rekn ut utbyttet i prosent i denne framstillingsprosessen.

Ei organisk sambinding A inneheld 62,1 prosent karbon, 10,4 prosent hydrogen og resten oksygen. Vis at den empiriske formelen til sambindinga er $(C_3H_gO)_n$.

Formelmassen til A er 116,1 u. Kva blir da molekylformelen til A?

- For å bestemme strukturformelen til den organiske sambindinga A i c) vart ein del forsøk utført:
 - 1) A vart tilsett vatn og litt saltsyre, og reaksjonsblandinga vart kokt ei tid. A vart da spalta til to andre sambindingar B (C_3H_8O) og C $(C_3H_8O_2)$.
 - B reagerte ikkje med 2,4-dinitrofenylhydrazin.
 - Ved oksydasjon av B ble sambindinga D ($C_{\eta}H_{g}^{0}$ O) danna.
 - D gir botnfall med 2,4-dinitrofenylhydrazin, men reduserer ikkje Fehlings væske.
 - 5) C gir CO₂-utvikling når ho blir tilsett ei NaHCO₃-løysing.

Bruk desse opplysningane til å bestemme strukturformelen til sambindingane A, B, C og D.

Skriv likninga for reaksjonen

A ---- B + C

Kva for funksjon har saltsyra i denne reaksjonen?

Gi opp i margen på første side av eksamenspapiret det læreverket og den utgåva som du legg opp.

1,2-dibrompentan
 2-hydroksypropansyre