Bachelorarbeit

Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle D-Moduln

vorgelegt von Maximilian Huber

am Institut für Mathematik der Universität Augsburg

betreut durch Prof. Dr. Marco Hien

abgegeben am 04.07.2013

Inhaltsverzeichnis

Einleitung		
0	Mathematische Grundlagen	1
1	Moduln über \mathcal{D}_k	3
	1.1 Weyl-Algebra und der Ring \mathcal{D}_k	4
	1.1.1 Alternative Definition / Sichtweise	5
	1.2 (Links) \mathcal{D} -Moduln	6
	$1.2.1$ Holonome \mathcal{D} -Moduln	6
	1.3 Lokalisierung eines \mathcal{D} -Moduls	7
2	Meromorphe Zusammenhänge	8
	2.1 Systeme von ODEs und Meromorphe Zusammenhänge	8
	2.1.1 Meromorphe Zusammenhänge	8
	2.2 Eigenschaften / Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln	10
	2.3 Newton Polygon	12
	2.3.1 Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol	14
	2.4 Operationen auf Meromorphen Zusammenhängen	16
	2.4.1 Tensorprodukt	16
	2.4.2 pull-back und push-forward	16
	2.4.3 Fouriertransformation	21
3	Elementare Meromorphe Zusammenhänge	23
	3.1 Twisten von Meromorphen Zusammenhängen	27
4	Levelt-Turrittin-Theorem	28
	4.1 Klassische Version	28
5	DIE Klasse der Fourier-Transformationen	30
	5.1 Rezept für allgemeine φ	30
	5.2 Levelt-Turrittin-Zerlegung für \mathcal{M}_{φ} mit $\varphi_1 := \frac{a}{x} \dots \dots \dots \dots \dots \dots$	35
	5.2.1 Konvergenz der Summanden	42
Ar	nhang	43
Α	Aufteilung von $t\varphi'(t)$	47
В	Genaueres zu $(x^2\partial_x)^k$	48
C	Numerische berechnung der Koeffizienten	49

Abbildungsverzeichnis

2.1	Newton-Polygon zu $P_1 = x \partial_x^2 \dots \dots \dots \dots \dots \dots$	13
2.2	Newton-Polygon zu P_2	13
2.3	Newton Polygon zu	
	$P = x^3 \partial_x^2 - 4x^2 \partial_x - 1 \dots \dots \dots \dots \dots$	21
2.4	Newton Polygon zu	
	$\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1 \dots \dots$	21
2.5	Newton-Polygon zu P	
2.6	Newton-Polygon zu \mathcal{F}_P	22
5.1	Newton-Polygon zu P_{φ} mit $H(x^{2(q-m)}\partial_x^{q-m})$	33
5.2	Newton Polygon zu $P_{\varphi}^{'}$	36
5.3	Newton Polygon zu ρ^*P_{φ}	36
5.4	Newton Polygon zu \mathcal{N}	38
5.5	Newton-Polygon zu Q_1	39
5.6	Newton-Polygon zu Q_2	39
5.7	Koeffizienten in abhängigkeit von a	44

Tabellenverzeichnis

C.1 Numerisch berechnete Koeffizienten von u(t) und v(t) für $a = \frac{1}{8} \dots \dots 52$

Einleitung

0 Mathematische Grundlagen

Wir betrachten \mathbb{C} hier als Complexe Mannigfaltigkeit mit der Klassischen Topologie. In dieser Arbeit spielen die folgenden Funktionenräume eine große Rolle:

- $\bullet \ \mathbb{C}[x] := \{ \sum_{i=1}^N a_i x^i | N \in \mathbb{N} \}$ die einfachen Potenzreihen
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$ ([HTT07, Chap 5.1.1])
- $\mathbb{C}[\![x]\!] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen
- $K := \mathbb{C}(\{x\}) := \mathbb{C}\{x\}[x^{-1}]$ der Ring der Laurent Reihen.
- $\widehat{K}:=\mathbb{C}(\!(x)\!):=\mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen.
- $\tilde{\mathcal{O}}$ als der Raum der Keime aller (möglicherweise mehrdeutigen) Funktionen. (bei [HTT07] mit \tilde{K} bezeichnet)

Wobei offensichtlich die Inclulsionen $\mathbb{C}[x]\subsetneq\mathbb{C}\{x\}\subsetneq\mathbb{C}[\![x]\!]$ und $K\subsetneq\widehat{K}$ gelten.

Es bezeichnet der Hut (^) das jeweils formale äquivalent zu einem konvergentem Objekt.

Für $v = (v_1, \dots, v_n)$ ein Vektor, bezeichnet

$${}^tv := \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

den Transponierten Vektor. Es bezeichnet $M(n \times m, k)$ die Menge der n mal m Dimensionalen Matritzen mit Einträgen in k.

Sei R ein Ring, dann bezeichnet R^{\times} die Einheitengruppe von R.

Definition 0.1 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 0.2 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

$$M \times N \xrightarrow{f} M \otimes_R N$$

Für eine Abbildung $f: M \to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f: N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung 0.3. Hier ein paar Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L) \tag{0.1}$$

$$M \otimes_R R \cong M \tag{0.2}$$

Sei $f: M' \to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f)$$

$$\tag{0.3}$$

Definition 0.4 (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass $\operatorname{im}(f_{i-1}) = \ker f_i$.

Definition 0.5 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

Definition 0.6 (Kokern). Ist $f: M' \to M$ eine Abbildung, so ist der *Kokern* von f definiert als $\operatorname{coker}(f) = M/\operatorname{im}(f)$.

Proposition 0.7. Ist $f: M' \to M$ eine injektive Abbildung, so ist

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/f(M') \longrightarrow 0$$
$$m \longmapsto m \mod f(M')$$

eine kurze exacte Sequenz und $M/f(M') = \operatorname{coker}(f)$ ist der Kokern von f.

Beweis.
$$\Box$$

1 Moduln über \mathcal{D}_k

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Wir werden als Körper k immer ein Element aus $\{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \widehat{K}\}$ betrachten.

Definition 1.1 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a, b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.2. Sei $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \widehat{K}\}$. Sei $\partial_x : k \to k$ der gewohnte Ableitungs-operator nach x, so gilt

- 1. $[\partial_x, x] = \partial_x x x \partial_x = 1$
- 2. $f\ddot{u}r \ f \in k \ ist$

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$[\partial_x, x^k] = kx^{k-1} \tag{1.1}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{1.2}$$

$$[\partial_x^j, x^k] = \sum_{i>1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
(1.3)

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g.$$

3. Siehe [Sab90, 1.2.4.]

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in k$. Man hat die folgende Kommutations-Relation zwischen dem Ableitungsoperator und dem Multiplikations Operator f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.4}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f \frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g.$$

Definition 1.3. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.4). Wir schreiben diesen Ring auch als

- $A_1(\mathbb{C}) := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x], \text{ und nennen ihn die Weyl Algebra}$
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\widehat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} \mathbb{C}\{x\}[x^{-1}]$
- $\mathcal{D}_{\widehat{K}} := \mathbb{C}((x)) < \partial_x > \text{falls } k = \widehat{K} \stackrel{\text{def}}{=} \mathbb{C}[x][x^{-1}]^{[1]}$.

Bemerkung 1.4. • Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$

- Offensichtlich erhält \mathcal{D}_k in kanonischer weiße eine Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.
- \mathcal{D}_k ist nichtkommutativ.

Proposition 1.5. [Sab90, Proposition 1.2.3] Jedes Element in \mathcal{D}_k kann auf eindeutige Weise als $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Definition 1.6. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.5, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad (oder den ∂_x -Grad) von P.

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N \mathcal{D} := \{P \in \mathcal{D} | \deg P \leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D} / F_{N-1} \mathcal{D} = \{ P \in \mathcal{D} | \deg P = N \} \cong \mathbb{C}\{x\}.$

^[1] Wird mit $\widehat{\mathcal{D}}_{\widehat{K}}$ bezeichnet, in [AV09].

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.7. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als = grad. \ Ringe$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis.
$$TODO$$

1.1.1 Alternative Definition / Sichtweise

[Kas03, Chap 1.1.] Sei X eine 1-Dimensionale complexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differenzial Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n\geq 0} a_n(x)\partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat höchstens Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$.

Definition 1.8. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X.

Die Garbe \mathcal{D}_X hat eine Ring Struktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.9. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[x]\partial_x$. Wobei ∂_x als $\partial_x(x^n) = nx^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[x, \partial_x],$$
 mit $\partial_x x - x \partial_x = 1.$

Somit stimmt die Alternative Definition schon mal mit der Einfachen überein.

1.2 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts \mathcal{D} -Moduln unterschiden. Wenn ich im folgendem von \mathcal{D} -Moduln rede, werde ich mich immer auf links \mathcal{D} -Moduln beziehen.

Beispiel 1.10 (links \mathcal{D} -Moduln). [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ jeweils durch $x \cdot x^m = x^{m+1}$ und $\partial(x^m) = mx^{m-1}$
- 3. [Ark12, Exmp 2.2] Führe formal, also ohne analytischen Hintergurnd, ein Symbol $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$. So ist $\mathcal{M} = \mathscr{O}_X\exp(\lambda x)$ ein \mathcal{D} -Modul
- 4. [Gin98, Exmp 3.1.4] Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} erzeugt durch $\log(x)$ und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

1.2.1 Holonome \mathcal{D} -Moduln

Definition 1.11. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.12. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0} gr^F\mathcal{M} = 1$.

Beweis. Siehe [Sab90, Lem 3.3.8.]

Alternative Definition A

Definition 1.13 (Holonome \mathcal{D} -Moduln). [Cou95, Chap 10 §1] Ein endlich genertierter \mathcal{D} -Modul \mathcal{M} ist *holonom*, falls $\mathcal{M} = 0$ gilt, oder falls es die Dimension 1 hat.

Bemerkung 1.14. [Cou95, Chap 10 §1] Sei $\mathfrak{a} \neq 0$ ein Links-Ideal von \mathcal{D} . Es gilt nach [Cou95, Corollary 9.3.5], dass $d(\mathcal{D}/\mathfrak{a}) \leq 1$. Falls $\mathfrak{a} \neq \mathcal{D}$, dann gilt nach der Bernstein's inequality [Cou95, Chap 9 §4], dass $d(\mathcal{D}/\mathfrak{a}) = 1$. Somit ist \mathcal{D}/\mathfrak{a} ein holonomes \mathcal{D} -Modul.

Bemerkung 1.15. [Cou95, Prop 10.1.1]

- ullet Submoduln und Quotienten von holonomen \mathcal{D} -Moduln sind holonom.
- ullet Endliche Summen von holonomen \mathcal{D} -Moduln sind holonom.

Alternative Definition B

Definition 1.16. Ein lokalisiertes \mathcal{D} -Modul \mathcal{M} heißt holonom, falls es ein $\mathfrak{a} \triangleleft \mathcal{D}$ gibt, so dass

$$\mathcal{M}\cong\mathcal{D}/\mathfrak{a}$$
.

Bemerkung 1.17. In [Cou95] wird dies über die Dimension definiert, und bei [Sab90] über die Carakteristische Varietät.

1.3 Lokalisierung eines \mathcal{D} -Moduls

[Sab90, Chap 4.2.] Sei \mathcal{M} ein links \mathcal{D} -Modul. Betrachte \mathcal{M} als $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von \mathcal{M} .

Proposition 1.18. [Sab90, Prop 4.2.1.] $\mathcal{M}[x^{-1}]$ erhält in natürlicher Weise eine \mathcal{D} -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

$$\partial_x(m\otimes x^{-k})=((\partial_x m)\otimes x^{-k})-km\otimes x^{-k-1}$$

Korollar 1.19. [Sab90, Cor 4.2.8.] Sei \mathcal{M} ein holonomes Modul. Dann ist die lokalisierung von \mathcal{M} isomorph zu $\mathcal{D}/\mathcal{D} \cdot P$ für ein $P \in \mathcal{D}/\{0\}$

2 Meromorphe Zusammenhänge

Sei \mathcal{M} ein \mathcal{D} -Modul ungleich Null von endlichem Typ. Falls die links-Multiplikation mit x bijektiv ist, so nennen wir \mathcal{M} einen Meromorphen Zusammenhang. [Sab90, Chap 4]

2.1 Systeme von ODEs und Meromorphe Zusammenhänge

[HTT07, Chap 5.1.1] Für eine Matrix $A(x) = (a_{ij}(x))_{ij} \in M(n \times n, K)$ betrachten wir das System von gewöhnlichen Differentialgleichungen (kurz ODEs)

$$\frac{d}{dx}u(x) = A(x)u(x) \tag{2.1}$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor von unbekannten Funktionen. Wir werden (2.1) immer in einer Umgebung um $x = 0 \in \mathbb{C}$ betrachten. Als Lösungen von (2.1) betrachten wir Keime von holomorphen (aber möglicherweise mehrdeutigen) Funktionen an x = 0 (geschrieben als $\tilde{\mathcal{O}}$). Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (2.1), falls $v_i \in \tilde{\mathcal{O}}$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

Alternativer Zugang

[Sab90, 3.1.1] Sei \mathcal{F} ein Funktionenraum, auf dem die Differentialoperatoren \mathcal{D} wirken. Ein Element $u \in \mathcal{F}$ ist Lösung von $P \in \mathcal{D}$ falls $P \cdot u = 0$ gilt.

Falls u ein Lösung von P ist, so ist u auch Lösung von $Q \cdot P$ mit $Q \in \mathcal{D}$. Also hängt die Lösung nur vom Links Ideal $\mathcal{D} \cdot P \triangleleft \mathcal{D}$ ab.

2.1.1 Meromorphe Zusammenhänge

Nun wollen wir dieses Klassische Gebilde nun in die moderne Sprache der Meromorphen Zusammenhänge übersetzen.

Definition 2.1 (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang (bei x = 0) ist ein Tuppel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

• \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum

• einer C-linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.2}$$

erfüllen soll.

Bemerkung 2.2 (Formaler Meromorpher Zusammenhang). Analog definiert man einen formalen Meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, analog wie in Definition 2.1, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die *Leibnitzregel* (2.2) erfüllen soll.

Definition 2.3. Seien $(\mathcal{M}_K, \partial_{\mathcal{M}})$ und $(\mathcal{N}_K, \partial_{\mathcal{N}})$ zwei Meromorphe Zusammenhänge. Eine Klineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ ist ein Morphismus von Meromorphen Zusammenhängen, falls
sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}_K, \partial_{\mathcal{M}}) \to (\mathcal{N}_K, \partial_{\mathcal{N}})$.

Bemerkung 2.4. 1. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K verzichtet.

2. [HTT07, Rem 5.1.2.] Die Bedingung (2.2) ist zur schwächeren Bedingung

$$\partial(fu) = f'u + f\partial u,$$

welche für alle $f \in \tilde{\mathcal{O}}$ und für alle $u \in \mathcal{M}_K$ erfüllt sein muss, äquivalent.

Definition 2.5 (Zusammenhangsmatrix). [HTT07, Seite 129] Sei $(\mathcal{M}_K, \partial)$ ein Meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$ von \mathcal{M} . Dann ist die $Zusammenhangsmatrix\ bzgl.\ der\ Basis\ \{e_i\}_{i\in\{1,\ldots,n\}}$ die Matrix $A(x)=(a_{ij}(x))_{i,j\in\{1,\ldots,n\}}\in M(n\times n,K)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j .$$

Also ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\ldots,u_n)$ beschrieben durch

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right) \stackrel{??}{=} \sum_{i=1}^{n} \left(u_i'(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i.$$

Einfache Umformungen zeigen, dass die Bedingung $\partial u(x) = 0$, für $u(x) \in \sum_{i=1}^{n} u_i e_i \in \tilde{\mathcal{O}} \otimes_K \mathcal{M}$, äquivalent zu der Gleichung

$$u'(x) = A(x)u(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x)) \in \tilde{\mathcal{O}}^n$. Damit haben wir gesehen, dass jeder Meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem ODE zugeordnet werden kann.

Umgekehrt können wir für jede Matrix $A(x) = (a_{ij}(x))$ den assoziierten Meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ angeben, durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i,$$
 $\partial_A e_i := -\sum_{i=1}^n a_{ij}(x)e_i.$

2.2 Eigenschaften / Äquivalenz zu holonomen lokalisierten $\mathcal{D}\text{-Moduln}$

Lemma 2.6 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_x m, \ldots, \partial_x^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8] \Box

Satz 2.7. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein holonomes lo-kalisiertes \mathcal{D}_K -Modul und andersherum.

Beweis. [Sab90, Thm 4.3.2]

Lemma/Definition 2.8. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$. So ein P heißt dann Minimalpolynom von \mathcal{M}_K .

Beweis. [AV09, Satz 4.12] \Box

Satz 2.9. [AV09, Seite 64] Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$$
.

Beweis. [AV09, Seite 57-64]

Korollar 2.10. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.9 so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2) \cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1)$$

Beweis. Denn:

$$\mathcal{D}_{K}/\mathcal{D}_{K} \cdot P = \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{1} \cdot P_{2})$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2}$$

$$= \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1}$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{2} \cdot P_{1})$$

Lemma 2.11. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\mathcal{M}_{K} \xrightarrow{\partial} \mathcal{M}_{K}
\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

gilt: $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Lemma 2.12. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 2.13. Für (K^r, ∂) ein Meromorpher Zusammenhang existiert ein $A \in M(r \times r, K)$, so dass $\partial = \frac{d}{dx} - A$.

Beweis. Es sei (K^r,∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dx}-\partial:K^r\to K^r$ K-linear, also lässt sich durch eine Matrix $A\in M(r\times r,K)$ darstellen , also ist, wie behauptet, $\partial=\frac{d}{dx}-A$.

Proposition 2.14 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

 $\begin{array}{l} \textit{mit}\ \varphi, \psi\ \textit{und}\ T\ \textit{K-Linear}\ \textit{und}\ \partial, (\frac{d}{dx} + A)\ \textit{und}\ (\frac{d}{dx} + B)\ \mathbb{C}\text{-Linear},\ \textit{gilt:} \\ \textit{Der Meromorphe Zusammenhang.}\ \frac{d}{dx} + A\ \textit{auf}\ K^r\ \textit{wird durch Basiswechsel}\ T \in GL(r, K)\ \textit{zu} \end{array}$

$$\frac{d}{dx} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dx} + B$$

Definition 2.15 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent ($A \sim B$) genau dann, wenn es ein $T \in GL(r, K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

[Sab90, Chap 5.2]

Lemma 2.16. [Sab90, Lem 5.2.1.] Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaften, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.6). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

Tatsächlich kann man $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[x]$ schreiben (wegen Regularität).

Dies impliziert, dass $m, x\partial_x m, \ldots, (x\partial_x)^{d-1}m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist.

Die Matrix von $x\partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[x]$.

Lemma 2.17. [Sab90, Lem 5.2.2.] Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Beweis. TODO
$$\Box$$

2.3 Newton Polygon

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich eindeutig als

$$P = \sum_{k=0}^{n} a_k(x) \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $\alpha_{ml} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$\begin{split} H(P) :&= \bigcup_{m,l \text{ mit } \alpha_{ml} \neq 0} \left((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \\ &= \bigcup_{m \text{ mit } a_m \neq 0} \left((m,deg(a_m) - m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \,. \end{split}$$

Definition 2.18. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Bemerkung 2.19. Claude Sabbah definiert das Newton-Polygon in [Sab90, 5.1] auf eine andere Weiße. Er schreibt

$$P = \sum_{k} a_k(x) (x \partial_x)^k$$

mit $a_k(x) \in \mathbb{C}\{x\}$ und definiert das Newton-Polygon als das Randpolygon der konvexe Hülle von

$$H'(P) := \bigcup_{m \text{ mit } a_m \neq 0} \left((m, deg(a_m)) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 2.20. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- \bullet Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen slopes.
- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).

Beispiel 2.21. 1. Ein besonders einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist leicht abzulesen, dass

$$m=2$$
 $l=1$

so dass

$$H(P_1) = ((2, 1 - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}) = \{(u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1\}.$$

In Abbildung 2.1 ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$ so kann man das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 2.2 visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist.

Abbildung 2.1: Newton-Polygon zu $P_1 = x\partial_x^2$

Abbildung 2.2: Newton-Polygon zu P_2

Bemerkung 2.22. [AV09, Bem 5.4] Für alle $f \in \mathcal{D}_{\widehat{K}}^{\times}$ gilt allgemein, dass das zu $P \in \mathcal{D}_{\widehat{K}}$ gehörige Newton Polygon, bis auf vertikale Verschiebung mit dem von $f \cdot P$ übereinstimmt.

Beweis. TODO
$$\Box$$

Definition 2.23. In einem Polynom $P = \varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k$, mit $\varepsilon, \alpha_{kl} \in \mathbb{C}, p, q \in \mathbb{Z}$ sind die restlichen Monome *Therme im Quadranten* von $\varepsilon x^p \partial_x^q$, falls für alle $k \in \mathbb{N}$ und $l \in \mathbb{Z}_{\geq -N}$ mit $\alpha_{kl} \neq 0$ gilt: $k \leq q$ und $l - k \geq p - q$.

Bemerkung 2.24. • Anschaulich bedeutet das, dass

$$H(\varepsilon x^p \partial_x^q) = \left((q, p - q) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \supset \left((k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = H(\alpha_{kl} x^l \partial_x^k),$$

für alle relevanten k und l.

• Sei P ein Polynom, bei dem alle Koeffizienten im Quadranten von $\varepsilon x^p \partial_x^q$ sind, dann gilt:

$$H(P) = H(\varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k)$$

$$= H(\varepsilon x^p \partial_x^q + \mathbf{T.i.Q. von} \ x^p \partial_x^q)$$

$$= H(\varepsilon x^p \partial_x^q)$$

$$\Rightarrow N(P) = N(\varepsilon x^p \partial_x^q).$$

Also können Therme, die sich bereits im Quadranten eines anderen Therms befinden und nicht der Therm selbst sind, vernachlässigt werden, wenn das Newton-Polygon gesucht ist. Das **T.i.Q.** ist eine hier Abkürzung für Therme im Quadranten.

Lemma 2.25. [Sab90, Seite 26] Das Newton-Polygon hängt, bis auf vertikales verschieben, nur von dem assoziierten Meromorphen Zusammenhang ab.

Lemma 2.26. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

Satz 2.27. [Sab90, Thm 5.3.1] [AV09, 5.15] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \ldots, \Lambda_r\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} = \bigoplus_{i=1}^r \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Bemerkung 2.28. In Satz 2.27 ist es wirklich notwendig formale Meromorphe Zusammenhänge zu betrachten, denn das Resultat gilt nicht für konvergente Meromorphe Zusammenhänge.

2.3.1 Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das $\ell ext{-Symbol}$

Sei $\Lambda = \frac{\lambda_0}{\lambda_1} \in \mathbb{Q}_{\geq 0}$ vollständig gekürtzt, also mit λ_0 und λ_1 in \mathbb{N} relativ prim. Definiere die Linearform $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ in zwei Variablen, Sei $P \in \mathcal{D}_{\widehat{K}}$. Falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{N}$ setzen wir

$$\operatorname{ord}_{\ell}(P) = \ell(b, b - a)$$

und falls $P = \sum_{i=0}^{d} b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$ setzen wir

$$\operatorname{ord}_{\ell}(P) = \max_{\{i \mid a_i \neq 0\}} \ell(i, i - v(b_i)).$$

Definition 2.29 (Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$). [Sab90, Seite 25] Nun können wir die aufsteigende Filtration ${}^{\ell}V\mathcal{D}_{\widehat{K}}$, welche mit $\mathbb Z$ indiziert ist, durch

$${}^{\ell}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{ P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{\ell}(P) \leq \lambda \}$$

definieren.

Bemerkung 2.30. Man hat $\operatorname{ord}_{\ell}(PQ) = \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q)$ und falls $\lambda_0 \neq 0$ hat man auch, dass $\operatorname{ord}_{\ell}([P,Q]) \leq \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q) - 1$.

Definition 2.31 (ℓ -Symbol). [Sab90, Seite 25] Falls $\lambda_0 \neq 0$ ist der graduierte Ring $gr^{\ell V} \mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{\ell V} \mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$. Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_{\ell}(P)$ definiert als die Klasse von P in $gr_{\mathrm{ord}_{\ell}(P)}^{\ell V} \mathcal{D}_{\widehat{K}}$. σ_{ℓ} wir hierbei als das ℓ -Symbol Bezeichnet.

Zum Beispiel ist $\sigma_{\ell}(x^a \partial_x^b) = x^a \xi^b$.

Bemerkung 2.32. Bei [Sab90] wird der Buchstabe L anstatt ℓ für Linearformen verweden, dieser ist hier aber bereits für $\mathbb{C}\{t\}$ reserviert. Dementsprechend ist die Filtrierung dort als ${}^LV\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol als L-Symbol zu finden.

Bemerkung 2.33. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_{i} \sum_{j} \alpha_{ij} x^{j} \partial_{x}^{i}$. So erhält man $\sigma_{\ell}(P)$ durch die Setzung

$$\sigma_{\ell}(P) = \sum_{\{(i,j)|\ell(i,i-j) = \operatorname{ord}_{\ell}(P)\}} \alpha_{ij} x^{j} \xi^{i}.$$

Beweis. \Box

Definition 2.34 (Stützfunktion). Die Funktion

$$\omega_P: [0,\infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als Alternative zu dieser Ordnung verwendet.

Bemerkung 2.35. Wenn $\ell(x_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_{\ell}(P)$$
.

2.4 Operationen auf Meromorphen Zusammenhängen

2.4.1 Tensorprodukt

Proposition 2.36. [Sch, Prop 4.1.1] Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ Meromorphe Zusammenhänge. Sei $n \otimes n \in \mathcal{M} \otimes_K \mathcal{N}$. Durch setzten von

$$\partial_{\otimes}(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes\partial_{\mathcal{N}}(n) \tag{2.3}$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem Meromorphen Zusammenhang.

Lemma 2.37. [Sab90, Ex 5.3.7] Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis.
$$TODO$$

2.4.2 pull-back und push-forward

Es sei

$$\rho: \mathbb{C} \to \mathbb{C}, t \mapsto x := \rho(t) \qquad \qquad \in t \mathbb{C}[\![t]\!]$$

eine Polynomielle Abbildung mit Bewertung $p \ge 1$. Hier werden wir meistens $\rho(t) = t^p$ für ein $p \in \mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^*: \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, f \mapsto f \circ \rho$$
 bzw. $\rho^*: \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], f \mapsto f \circ \rho$

analog erhalten wir

$$\rho^*: K \hookrightarrow L := \mathbb{C}(\{t\}), f \mapsto f \circ \rho$$
 bzw. $\rho^*: \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}((t)), f \mapsto f \circ \rho$

wobei L (bzw. \widehat{L}) eine enldiche Körpererweiterung von K (bzw. \widehat{K}) ist. Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}((t))$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 2.38 (pull-back). [Sab07, 1.a] und [Sab90, Page 34] Der *pull-back* oder das *Inverses* Bild $\rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}}, \nabla)$ ist der Vektorraum

$$\rho^*\mathcal{M}_{\widehat{K}}:=\widehat{L}\otimes_{\widehat{K}}\mathcal{M}_{\widehat{K}}\stackrel{\mathrm{def}}{=}\mathbb{C}(\!(t)\!)\otimes_{\mathbb{C}(\!(x)\!)}\mathcal{M}_{\mathbb{C}(\!(x)\!)}$$

mit dem pull-back Zusammenhang $\rho^*\nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{2.4}$$

Für ein allgemeines $\varphi \otimes m \in \rho^* \mathcal{M}_{\widehat{K}}$ gilt somit

$$\partial_t(\varphi \otimes m) := \rho'(t)(\varphi \otimes \partial_x m) + \frac{\partial \varphi}{\partial t} \otimes m.$$
 (2.5)

Satz 2.39. In der Situation von Lemma 2.38, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t)$$
.

Für $P(\rho(t), \rho'(t)^{-1}\partial_t)$ werden wir auch ρ^*P schreiben.

Für den Beweis von Satz 2.39 werden zunächst ein paar Lemmata bewiesen.

Lemma 2.40. Es gilt $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als $\mathcal{D}_{\widehat{L}}$ -Moduln, mittels

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$

$$f(t) \otimes Q(x, \partial_x) \longmapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

Beweis. Prüfe zunächst die Injektivität. Sei $f(t) \otimes Q(x, \partial_x) \in \ker(\Phi)$ so, dass

$$0 = \Phi(f(t) \otimes Q(x, \partial_x))$$

= $f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$

und, da hier alles Nullteilerfrei ist, ist die Bedingung äquivalent zur folgenden

$$\Leftrightarrow \qquad 0 = f(t) \qquad \text{oder} \qquad 0 = m(\rho(t), \rho'(t)^{-1}\partial_t)$$

Nun zur Surjektivität. Sei $g(t, \partial_t) = \sum_k a_k(t) \partial_t^k \in \mathcal{D}_{\widehat{L}}$ so gilt

$$g(t, \partial_t) = \sum_k a_k(t) \partial_t^k$$

$$= \sum_k a_k(t) \underbrace{\rho'(t) \rho'(t)^{-1}}_{=1} \partial_t^k$$

$$= \rho'(t) \sum_k a_k(t) \rho'(t)^{-1} \partial_t^k$$

$$= \dots$$

Lemma 2.41. Das in Lemma 2.40 definierte Φ ist sogar ein Morphismus von Meromorphen Zusammenhängen, also gilt sogar $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als Meromorphe Zusammenhänge.

Beweis. Wir wollen noch zeigen, dass $\partial_t \circ \Phi = \Phi \circ \partial_{\otimes}$ gilt, also dass Φ ein Morphismus von Meromorphen Zusammenhängen ist. Betrachte dazu das Diagram

$$\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\partial_{\otimes}} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

und für einene Elementartensor $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$ folgt dann

$$f(t) \otimes Q(x, \partial_x) \longmapsto \partial_t f(t) \otimes Q(x, \partial_x) + \rho'(t) \otimes \partial_x Q(x, \partial_x)$$

$$\downarrow \Phi \qquad \qquad \partial_t f(t) Q(x, \partial_x) + \underbrace{\rho'(t) \cdot \rho'(t)^{-1}}_{=1} \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

$$\downarrow f(t) Q(\rho(t), \rho'(t)^{-1} \partial_t) \longmapsto \partial_t f(t) Q(x, \partial_x) + \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

also kommutiert das Diagram.

Lemma 2.42. Sei $P(x, \partial_x) \in \mathcal{D}_K$. In der Situation

$$\begin{array}{ccc} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} & \xrightarrow{\operatorname{id} \otimes \underline{\ \cdot \ } P(x,\partial_x)} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\ & \downarrow & & \downarrow \\ & \mathcal{D}_{\widehat{L}} & \xrightarrow{\alpha} & \mathcal{D}_{\widehat{L}} \end{array}$$

 $mit \ \Phi \ wie \ in \ Lemma \ 2.40 \ macht \ \alpha := \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t) \ das \ Diagram \ kommutativ.$

Beweis. Betrachte ein $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$. So gilt

$$f(t) \otimes Q(x, \partial_x) \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(x, \partial_x)} f(t) \otimes Q(x, \partial_x) \cdot P(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

und

$$f(t) \otimes Q(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \longmapsto^{-\cdot P(\rho(t), \rho'(t)^{-1}\partial_t)} f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

also kommutiert das Diagram mit $\alpha = \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t)$.

Beweis zu Satz 2.39. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \stackrel{!}{\cong} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q = P(\rho(t), \rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\widehat{K}} \xrightarrow{-\cdot P} \mathcal{D}_{\widehat{K}} \xrightarrow{\pi_{\widehat{K}}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P$$

ist exact, weil $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(_ \cdot P)$. Weil \widehat{K} flach ist, da Körper, ist auch, nach anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}}$, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^* \mathcal{M}_{\widehat{K}}$$

exact. Also mit Φ wie in Lemma 2.40 und $Q(t,\partial_t):=P(\rho(t),\rho'(t)^{-1}\partial_t)$ nach Lemma 2.42 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\hspace{1em}} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\stackrel{\stackrel{\mid}{\cong} \Phi}{\underset{\downarrow}{\cong} \Phi} \stackrel{\stackrel{\mid}{\cong} \Phi}{\underset{\downarrow}{\cong} \Phi}$$

$$\mathcal{D}_{\widehat{L}} \xrightarrow{-\cdot Q} \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagram. Nun, weil $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

und damit folgt, wegen Isomorphie der Cokerne, die Behauptung.

Lemma 2.43. [Sab90, 5.4.3] Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho: t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^* \mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_n = p \cdot \Lambda_n$.

Beweis. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ mit $P = \sum a_i(x)\partial_x^i$, dann ist $\rho^*\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ mit

$$P'(t, \partial_t) = P(\rho(t), \rho'(t)^{-1} \partial_t)$$

$$= \sum_i a_i(\rho(t)) (\rho'(t)^{-1} \partial_t)^i$$

$$= \sum_i a_i(t^p) ((p \cdot t^{p-1})^{-1} \partial_t)^i$$

Beispiel 2.44 (pull-back). Hier nun ein explizit berechneter pull-back. Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ bzgl. $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es hier ganzzahlige Slopes zu erhalten. Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 2.3) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back mit $\rho: t \to x := t^2$ an. Zunächst ein paar Nebenrechnungen, damit wir Satz 2.39 einfacher anwenden können.

$$\partial_x \leadsto \frac{1}{\rho'(t)} \partial_t = \frac{1}{2t} \partial_t$$

$$\partial_x^2 \leadsto (\frac{1}{2t} \partial_t)^2 = \frac{1}{2t} \partial_t (\frac{1}{2t} \partial_t) = \frac{1}{2t} (-\frac{1}{2t^2} \partial_t + \frac{1}{2t} \partial_t^2) = \frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t$$

also ergibt einsetzen

$$\rho^* P = (t^2)^3 (\frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t) - 4(t^2)^2 \frac{1}{2t} \partial_t - 1$$

$$= \frac{1}{4} t^4 \partial_t^2 - t^3 \frac{1}{4} \partial_t - 4t^3 \frac{1}{2} \partial_t - 1$$

$$= \frac{1}{4} t^4 \partial_t^2 - 2\frac{1}{4} t^3 \partial_t - 1$$

Also ist $\rho^*P = \frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1$ mit $slopes(\rho^*P) = \{1\}$ (siehe Abbildung 2.4) und somit $\rho^*\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1).$

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.45 (push-forward). [Sab07, 1.a] Der push-forward oder das Direktes Bild $\rho_+\mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist

Abbildung 2.3: Newton Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1$

Abbildung 2.4: Newton Polygon zu $\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1$

- der \widehat{K} -VR $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektor Raum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektor Raum Struktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$ und $(f(x),m) \mapsto f(x) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_x beschrieben durch $\rho'(t)^{-1}\partial_t$.

Satz 2.46. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{2.6}$$

Beweis.

$$\begin{split} \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) &= \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}})) & (\text{def von } \rho^{+} \mathcal{M}_{\widehat{K}}) \\ &\cong \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) & (\text{Rechenregeln Tensorprodukt}) \\ &\cong \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) & (\text{Rechenregeln Tensorprodukt}) \\ &= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} & (?) \end{split}$$

2.4.3 Fouriertransformation

Definition 2.47 (Fouriertransformation). [Blo04, Def 3.1] [GL04] [AV09, Def 6.1] Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$. Dann ist die *Fouriertransformierte* von P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$

Definition 2.48 (Fouriertransformation von lokalisierten holonomen D-Moduln). Ist $\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot P$ so ist die Fouriertransformierte davon ${}^{\mathcal{F}}\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot \mathcal{F}_P(x, \partial_x)$.

Beispiel 2.49. Sei $P=x^3\partial_x^4+x^2\partial_x^2+x$ dann ist die Fouriertransformierte davon

$$\begin{split} \mathcal{F}_{P} &= \partial_{z}^{3}(-z)^{4} + \partial_{z}^{2}(-z)^{2} + \partial_{z} \\ &= \partial_{z}^{2}z^{2} + \partial_{z}^{3}z^{4} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \left[\partial_{z}^{3}, z^{4}\right] + z^{2}\partial_{z}^{2} + \left[\partial_{z}^{2}, z^{2}\right] + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \sum_{i=1}^{3} \frac{4 \cdot 3 \dots (5-i) \cdot 3 \cdot 2 \dots (4-i)}{i!} z^{4-i}\partial_{z}^{3-i} + z^{2}\partial_{z}^{2} \\ &+ \sum_{i=1}^{2} \frac{2 \cdot 1 \dots (3-i) \cdot 2 \cdot 1 \dots (3-i)}{i!} z^{2-i}\partial_{z}^{2-i} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + 12z^{3}\partial_{z}^{2} + \frac{72}{2}z^{2}\partial_{z} + \frac{144}{6}z + z^{2}\partial_{z}^{2} + 4z\partial_{z} + \frac{4}{2} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + (12z^{3} + z^{2})\partial_{z}^{2} + (36z^{2} + 4z + 1)\partial_{z} + 24z + 2 \end{split}$$

mit den Newton Polygonen wie in Abbildung 2.5 und 2.6.

Abbildung 2.5: Newton-Polygon zu P

Abbildung 2.6: Newton-Polygon zu \mathcal{F}_P

3 Elementare Meromorphe Zusammenhänge

Definition 3.1. [Sab07, 1.a] Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang 1 Vektorraum $\mathbb{C}(\!(x)\!) \stackrel{\text{def}}{=} \widehat{K}$ ausgestattet mit dem Zusammenhang $\nabla = \partial_x + \partial_x \varphi$, im speziellen also $\nabla_{\partial_x} 1 = \partial_x 1 = \varphi'$.

Bemerkung 3.2. 1. Es für ein allgemeines $f(x) \in \mathscr{E}_{\widehat{K}}^{\varphi}$ gilt $\partial_x f(x) = f'(x) + f(x)\varphi'(x)$.

- 2. Auf die Angabe von des Rang 1 Vektorraums im Subscript wird im folgendem meist verzichtet.
- 3. Offensichtlich ist $\mathscr{E}^{\varphi} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\partial_x \varphi'(x))$, weil für den zyklischen Vektor 1 gilt, dass $\partial_x \cdot 1 = \varphi'(x) \cdot 1$.

Bemerkung 3.3. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[x]$.

Sei $\rho: t \mapsto x := t^p$ und $\mu_{\xi}: t \mapsto \xi t$.

Lemma 3.4. [Sab07, Lem 2.4] Für alle $\varphi \in \hat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagram, für einen passenden Isomorphismus, kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}} \\
\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t} \\
\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, dies ist nach Bemerkung 3.3 berechtigt. Wir wählen eine \widehat{L} Basis e des Rang 1 \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$. Es gilt

$$\partial_x t^k \mathbf{e} = \rho'(t)^{-1} \partial_t t^k \mathbf{e} = \rho'(t)^{-1} \left(t^k \partial_t + k t^{k-1} \right) \mathbf{e}. \tag{3.1}$$

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $e := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$.

Zerlege nun

$$t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \qquad \in t^{-2} \mathbb{C}[t^{-1}]$$
 (3.2)

mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$ (siehe: Anhang A). Damit gilt:

$$t\partial_t oldsymbol{e}_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) oldsymbol{e}_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) oldsymbol{e}_{k+i-p}$$

denn:

$$t\partial_{t}e_{k} = t \partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}e)$$

$$\stackrel{(2.3)}{=} t (-kt^{-k-1} \otimes_{\widehat{K}} t^{k}e + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}e}_{\in \rho + \mathscr{E}^{\varphi}}))$$

$$\stackrel{(3.1)}{=} -kt^{-k} \otimes_{\widehat{K}} t^{k}e + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}e + t^{k}\varphi'(t)e)$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}e + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}e + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)e$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k} t\varphi'(t)e$$

$$\stackrel{(3.2)}{=} t^{-k} \otimes_{\widehat{K}} t^{k} t^{j} = t^{i}\psi_{i}(t^{p})e$$

$$= \sum_{i=0}^{p-1} \psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}e)$$

$$= \sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})(t^{-k-i} \otimes_{\widehat{K}} t^{k+i}e)$$

$$= \sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})e_{k+i} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})e_{k+i-p}$$

Sei

$$V := \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

so dass $\mathbf{e} \cdot V = (\boldsymbol{e}_1, ..., \boldsymbol{e}_{p-1}, \boldsymbol{e}_0)$ gilt. Es gilt:

$$t\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^j \psi_j V^j \right]$$

denn:

$$t\partial_{t}\mathbf{e} = (t\partial_{t}\mathbf{e}_{0}, \dots, t\partial_{t}\mathbf{e}_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+i-p}\right)_{k\in\{0,\dots,p-1\}}$$

$$= \mathbf{e} \begin{bmatrix} u^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) \\ t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{2}\psi_{2}(t^{p}) \\ t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & \ddots & \cdots & \vdots \\ t^{3}\psi_{3}(t^{p}) & \cdots & \cdots & \cdots & \vdots \\ \vdots & & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ t^{p-2}\psi_{p-2}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \end{bmatrix}$$

$$= \mathbf{e} \begin{bmatrix} \sum_{j=0}^{p-1} t^{j}\psi_{j}(t^{p})V^{j} \end{bmatrix}$$

Die Wirkung von ∂_t auf die Basis **e** von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ ist also Beschrieben durch

$$\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right].$$

Da V das Minimalpolynom $\chi_V(X) = X^p - 1$ hat, können wir diese Matrix durch Ähnlichkeitstransformation mit T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. Sei so ein ξ ab jetzt Fixiert. So dass gilt:

$$T \left[\sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) V^{j} \right] T^{-1} = \left[\sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) (TVT^{-1})^{j} \right]$$

$$= \left[\sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) D^{j} \right]$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) \left(\xi^{1} \right)^{j} \right.$$

$$\left. \sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) \left(\xi^{p-1} \right)^{j} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) \left(\xi^{p-1} \right)^{j} \right)$$

$$= \left(\sum_{j=0}^{p-1} t^{j-1} \psi_{j}(t^{p}) \left(\xi^{p-1} \right)^{j-1} \psi_{j}(t^{p}) \xi^{1} \right.$$

$$\left. \sum_{j=0}^{p-1} (t\xi^{p-1})^{j-1} \psi_{j}(t^{p}) \xi^{p-1} \right)$$

$$= \begin{pmatrix} \varphi'(t) & & & & \\ & \varphi'(\xi t) \xi^{1} & & & \\ & & \ddots & & \\ & & \varphi'(\xi^{p-1} t) \xi^{p-1} \end{pmatrix}$$

$$= \begin{pmatrix} p t^{p-1} & & & \\ & p(\xi t)^{p-1} \xi & & \\ & & \ddots & \\ & & p(\xi^{p-1} t)^{p-1} \xi^{p-1} \end{pmatrix}$$

da $\varphi'(t) = pt^{p-1}$. Damit wissen wir bereits, das im Diagram

der mit (\star) bezeichnete Teil kommutiert, wobei $\Phi:(0,\ldots,0,\stackrel{\downarrow}{1},0,\ldots,0)\mapsto e_k$ der kanonische Basisisomorphismus und e_k basis von $\mathscr{E}^{\varphi\circ\mu_{\xi^{k-1}}}$. Um zu zeigen, dass das vollständige Diagram kommutiert, zeigen wir noch, dass

$$\partial_t(v) = \Phi(\Phi^{-1}(v) \cdot \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j \right]) \qquad \forall v \in \bigoplus_{i=0}^{p-1} \mathscr{E}^{\varphi \circ \mu_{\xi^i}}$$

gilt. Es reicht zu zeigen, dass die Aussage für alle Basiselemente e_k gilt. Nach Definition 3.1 gilt

$$\partial_t e_k = (\varphi \circ \mu_{\xi^{k-1}})'(t) e_k$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

und auf dem anderem Weg gilt:

Also kommutiert das Diagram und damit ist die Aussage gezeigt.

Definition 3.5. Ein *Elementarer Meromorpher Zusammenhang* ist ein Zusammenhang \mathcal{M} , für den es $\psi \in \mathbb{C}((x))$, $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$ gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}/\mathcal{D}(x\partial_x - \alpha)^p$, ist.

Lemma 3.6. $\mathscr{E}^{\psi} \otimes R_{\alpha,p} \cong \mathcal{D}/\mathcal{D} \cdot (x\partial_x - (\alpha + x\frac{\partial \psi}{\partial x}))^p$

Beweis. Siehe [Hei10, Lem 5.12]

3.1 Twisten von Meromorphen Zusammenhängen

Lemma 3.7. [Hei10, Seite 44] Sei $\mathcal{M}_{\widehat{K}} = \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot P(x, \partial_x)$ und sei $\varphi \in \widehat{K}$. So gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot Q(x, \partial_x)$$

$$mit\ Q(x,\partial_x) = P(x,\partial_x - \frac{\partial \varphi}{\partial x}).$$

Beweis. TODO \Box

4 Levelt-Turrittin-Theorem

Das Levelt-Turrittin-Theorem ist ein Satz, der hilft, Meromorphe Zusammenhänge in ihre irreduziblen Komponenten zu zerlegen.

4.1 Klassische Version

Satz 4.1. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl p so dass der Zusammenhang $\mathcal{M}_{\widehat{L}} := \rho^+ \mathcal{M}_{\widehat{K}}$, mit $\rho : t \mapsto x := t^p$, isomorph zu einer direkten Summe von formalen elementaren Meromorphen Zusammenhänge ist.

Der folgende Beweis stammt hauptsächlich aus [Sab90, Seite 35].

Beweis. Zum Beweis wird Induktion auf die Lexicographisch geordnetem Paare $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ angewendet. Wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$. Es wird $\kappa = \infty$ gesetzt, falls der größte Slope nicht Ganzzahlig ist.

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.27 in Meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda := \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) Definieren wir die dem Slope entsprechende Linearform $L(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nennen $\sigma_L(P) \in \widehat{K}[\xi]$ die Determinanten Gleichung von P. Da L zu einem Slope von P gehört, besteht $\sigma_L(P)$ aus zumindest zwei Monomen. Schreibe

$$\sigma_L(P) = \sum_{L(i,i-j) = \operatorname{ord}_L(P)} \alpha_{ij} x^j \xi^i$$
$$= \sum_{L(i,i-j) = 0} \alpha_{ij} x^j \xi^i.$$

Sei $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so können wir

$$\sigma_L(P) = \sum_{k \ge 0} \alpha_k \theta^k$$

schreiben, wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_L(P) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}$ eine Konstante ist. Sei β_0 eine der Nullstellen. So setze $R(z) := (\beta_0/(\lambda_0+1))z^{\lambda_0+1}$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}^R_{\widehat{K}}$. Falls $P(x,\partial_x) \cdot e = 0$ gilt

$$P(x, \partial_x - \frac{\partial R(x^{-1})}{\partial x}) \cdot e \otimes e(R) = 0$$

und hier haben wir

$$\frac{\partial R(x^{-1})}{\partial x} = \frac{\partial (\frac{\beta_0}{\lambda_0 + 1} x^{-(\lambda_0 + 1)})}{\partial x}$$
$$= -\beta_0 z^{-(\lambda_0 + 2)}.$$

Schreibe $P' = P(x, \partial_x + \beta_0 x^{-(\lambda_0 + 2)}).$

Lemma 4.2. Es gilt, dass P' Koeffizienten in $\mathbb{C}[\![x]\!]$ hat.

Beweis. TODO
$$\Box$$

Des weiteren ist $\sigma_L(P') = \sum_{k>0} \alpha_k (\theta + \beta_0)^k$. Wir unterscheiden nun 2 Unterfälle:

- 1. Die Determinanten Gleichung $\sigma_L(P)$ hat nur eine Nullstelle.
- 2. Die Determinanten Gleichung $\sigma_L(P)$ hat mehrere Nullstellen.

Zweiter Fall: $\lambda_1 \neq 1$. In diesem Fall ist einzige Slope Λ nicht ganzzahlig. Mache deshalb einen pull-back mit λ_1 . Sei $\rho: t \mapsto x := t^{\lambda_1}$ und erhalte P' so dass $\rho^* \mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$. Nach Lemma 2.43 hat P' den einen Slope $\Lambda \cdot \lambda_1 = \lambda_0$. Damit können wir nun die zugehörige Linearform $L' := \lambda_0 s_0 + s_1$ definieren. Es gilt dass

$$\sigma_{L'}(P') = \dots$$

ist, welches zumindest zwei unterschiedliche Nullstellen hat. Nun wendet man den zweiten Unterfall des ersten Fall an.

5 DIE Klasse der Fourier-Transformationen

In diesem Kapitel werden Beispiele einer speziellen Klasse von \mathcal{D} -Moduln diskutiert. Dazu wird im folgendem zu einem Beispiel unter anderem explizit der Beweis aus [Sab90] zur Levelt-Turrittin-Zerlegung nachvollzogen.

Es wird zunächst ein allgemeines Rezept gegeben, welches zu gegebenem φ D-Moduln ergibt. Im laufe des Kapitels werden immer speziellere φ betrachtet und zuletzt wird für konkrete Beispiele eine explizite Rechnung gegeben.

5.1 Rezept für allgemeine φ

Hier wollen wir nun eine Spezielle Klasse von Meromorphen Zusammenhängen, die die durch das folgende Rezept entstehen.

- 1. Wähle zunächst ein $\varphi \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ aus
- 2. und beginne mit \mathscr{E}^{φ} . Es gilt

$$\mathcal{E}^{\varphi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t - \frac{d}{dt} \varphi(t))$$

$$= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\underbrace{\mathbf{Hauptnenner von} \ \frac{d}{dt} \varphi(t)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*} \cdot (\partial_t - \frac{d}{dt} \varphi(t)))$$

$$= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\underbrace{t^{\max(I)+1} \cdot (\partial_t - \frac{d}{dt} \varphi(t))}_{=:Q(t,\partial_t)})$$

3. Fouriertransformiere \mathscr{E}^{φ} und erhalte

$$\mathcal{F}_{\mathcal{E}}^{\varphi} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \mathcal{F}_{Q}(z, \partial_{z}) \\
\stackrel{\text{def}}{=} \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \underbrace{Q(\partial_{z}, -z)}_{\in \mathbb{C}[z] < \partial_{z} >}$$

4. Betrachte den Zusammenhang bei Unendlich, also wende den Übergang $x \rightsquigarrow z^{-1}$ an. Was passiert mit der Ableitung ∂_x ? Es gilt

$$\begin{split} \partial_x(f(\frac{1}{x})) &= \partial_z(f) \cdot (-\frac{1}{x^2}) = -\partial_z(f) \cdot z^2 = -z^2 \cdot \partial_z(f) \\ \text{also } \partial_x \leadsto -z^2 \partial_z. \\ P_{\wp}(x, \partial_x) &:= \mathcal{F}_O(x^{-1}, -x^2 \partial_x) \in \mathbb{C}[t] < \partial_t > \end{split}$$

Im folgendem werden wir den zum Minimalpolynom P_{φ} assoziierten formalen Meromorphen Zusammenhang $\mathcal{M}_{\varphi} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$ betrachten.

Lemma 5.1. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k} \in \varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich, } a_k \in \mathbb{C} \}$ ist das Minimal-polynom von \mathcal{M}_{φ} explizit gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{\max(I)-k} \qquad \in \mathbb{C}[x] < \partial_x > 0$$

Beweis. Sei $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$, so ist

$$\begin{split} Q(t,\partial_t) &= t^{\max(I)+1} (\partial_t - \frac{d}{dt} \varphi(t)) \\ &= t^{\max(I)+1} \Big(\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}} \Big) \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k \frac{a_k}{t^{k-\max(I)}} \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ &= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k} \end{split}$$

und damit ist

$$\begin{split} P_{\varphi}(x,\partial_x) &= \mathcal{F}_Q(x^{-1},-x^2\partial_x) \\ &= -(-x^2\partial_x)^{\max(I)+1}x^{-1} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}x^2 \underbrace{\partial_x x^{-1}}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}\underbrace{x^2 \underbrace{(x^{-1}\partial_x - x^{-2})}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k}}_{k\in I} \\ &= (-x^2\partial_x)^{\max(I)}\underbrace{(x\partial_x - 1)}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &= (-x^2\partial_x)^{\max(I)}\underbrace{(x\partial_x - 1)}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{\max(I)-k} \\ &\in \mathbb{C}[x] < \partial_x > 0 \end{split}$$

Im Anhang B wird das $(x^2\partial_x)^k$ genauer diskutiert. Dies führt aber hier an dieser Stelle nicht mehr weiter in die gewünschte Richtung.

Lemma 5.2. Es gilt $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}.$

Beweis. [Sab07, 5.b.] Um zu zeigen, dass die Behauptung gilt, formen wir P_{φ} um und isolieren die Monome, die für das Newton-Polygon nicht von bedeutung sind und vernachlässigt werden können. Betrachte dazu die Konvexen Hüllen, die wie in Abschnitt 2.3 konstruiert werden. Sei $q := \max(I)$.

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(\underbrace{(-x^2\partial_x)^q(x\partial_x - 1)} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(\underbrace{(-1)^q(x^{2q}\partial_x^q + \underbrace{\mathbf{T.i.Q.\ von\ }}_{\text{liefern\ keinen\ Beitrag}} x^{2q}\partial_x^q)(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(\underbrace{(-1)^q}_{\text{liefert\ keinen\ Beitrag}} x^{2q}\partial_x^q(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q}\partial_x^q x \, \partial_x - x^{2q}\partial_x^q + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q}(x\partial_x^q + q\partial_x^{q-1}) \, \partial_x - x^{2q}\partial_x^q + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q+1}\partial_x^{q+1} + \underbrace{qx^{2q}\partial_x^q - x^{2q}\partial_x^q}_{\text{sind\ also\ vernachlässigbar}} + \sum_{k \in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q+1}\partial_x^{q+1} + \underbrace{qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}}_{\text{sind\ also\ vernachlässigbar}}\Big) \end{split}$$

Nun wollen wir noch zeigen, dass die Summe auch vernachlässigt werden kann.

Behauptung: Es gilt

$$H\left(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\right) \subset H\left(x^{2q+1}\partial_x^{q+1} + qa_q\right)$$

Denn: Betrachte zu einem $m \in I \setminus \{q\}$, einen Summanden $ma_m(-x^2\partial_x)^{q-m}$ aus der Summe:

$$H(ma_m(-x^2\partial_x)^{q-m}) = H(ma_m(-1)^q(x^{2(q-m)}\partial_x^{q-m} + \mathbf{T.i.Q. von} \ x^{2(q-m)}\partial_x^{q-m}))$$

$$= H(x^{2(q-m)}\partial_x^{q-m})$$

$$= (q-m, q-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0}$$

In Abbildung 5.1 ist die Situation, die wir gerade betrachten dargestellt, mit $N(x^{2q+1}\partial_x^{q+1}+qa_q)$ in der gewohnten Farbe und in Blau ist $H(x^{2(q-m)}\partial_x^{q-m})$ eingezeichnet. Man sieht also, dass die Behauptung gilt.

Mit der Behauptung gilt dann, dass

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &\stackrel{\text{Beh.}}{=} H\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big) \end{split}$$

Abbildung 5.1: Newton-Polygon zu P_{φ} mit $H(x^{2(q-m)}\partial_x^{q-m})$

Also ist

$$N(P_{\varphi}(x,\partial_x)) = N(x^{2q+1}\partial_x^{q+1} + qa_q).$$

womit die Behauptung folgt und das Newton-Polygon wie in Abbildung 5.1 aussieht.

Also ist, nach Lemma 2.43, ein pull-back mit Grad q+1 hinreichend, um einen ganzzahligen Slope zu bekommen. Wir wissen, dass nach Anwenden eines solchem pull-backs die Slopes mit q+1 multipliziert werden, also gilt $\mathcal{P}(\rho^+\mathcal{M}_{\varphi})=\{q\}\subset\mathbb{N}$.

Lemma 5.3. Im Fall $\varphi = \frac{a}{t^q}$ ist mit $\rho : t \mapsto x := -(q+1)t^{q+1}$ der pull-back gegeben durch

$$\rho^{+}\mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa).$$

Beweis. Sei $\varphi = \frac{a}{t^q}$, so ist P gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^q(x\partial_x - 1) + qa$$

Sei
$$\rho: t \mapsto x := -(q+1)t^{q+1}$$
 so ist

$$\rho^{+}\mathcal{M}_{\varphi} = \rho^{+}(\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x, \partial_{x}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\rho^{*}P_{\varphi}(x, \partial_{x}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(\rho(t), \rho'(t)^{-1}\partial_{t}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (P_{\varphi}(-(q+1)t^{q+1}, -\frac{1}{(q+1)^{2}t^{q}}\partial_{t}))$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((-(-(q+1)t^{q+1})^{2}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t})^{q}(-(q+1)t^{q+1}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t} - 1) + qa)$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((\underbrace{-\frac{-(q+1)^2}{(q+1)^2}}_{=1} \underbrace{t^{2(q+1)-q}} \partial_t)^q (\underbrace{\frac{1}{q+1}} t \partial_t - 1) + qa)$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2} \partial_t)^q (\underbrace{\frac{1}{q+1}} t \partial_t - 1) + qa)$$

$$= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2} \partial_t)^q (t \partial_t - (q+1)) + (q+1)qa)$$

Definiere mittels $q = \frac{q}{1} =: \frac{\lambda_0}{\lambda_1}$ die Linearform

$$\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1.$$

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$.

$$\sigma_L(\rho^* P_{\varphi}) = \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | \ell(i,i-j) = 0\}} \alpha_{ij} t^j \xi^i$$

$$= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i-j = 0\}} \alpha_{ij} t^j \xi^i$$

Da $\widehat{L}[\xi]$ kommutativ ist gilt hier, dass $(t^j\xi^i)^k=t^{jk}\xi^{ik}$ ist. Setze $\theta=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^{q+1}\xi$ so können wir

$$\sigma_L(\rho^* P_\varphi) = \sum_{k>0} \alpha_k \theta^k \qquad \alpha_k \in \mathbb{C}$$

schreiben, welches wir als nächsten Schritt faktorisieren

$$\sigma_L(\rho^* P_{\varphi}) = \varepsilon \prod_{\beta \text{ Nullstelle}} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist. Sei β eine der Nullstellen. Da $\operatorname{ord}_{\ell}(\rho^* P_{\varphi}) = 0$ und der einzige Slope von $\rho^* P_{\varphi}$ nicht gleich 0 ist, gilt offensichtlich, dass $\alpha_0 \neq 0$. Also ist 0 keine Nullstelle von $\sigma_L(\rho^* P_{\varphi})$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = (\beta/q)t^{-q}$ und betrachte

$$\mathcal{N} := \rho^+ \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^* P_{\varphi}) \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi}.$$

Lemma 5.4. Sei e ein zyklischer Vektor zu $\rho^+\mathcal{M}_{\varphi}$, so ist $e\otimes\underbrace{1}_{\in\widehat{L}}\in\mathcal{N}$ ein zyklischer Vektor

$$f\ddot{u}r \mathcal{N} \stackrel{\text{def}}{=} \rho^+ \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{\psi}.$$

Beweis. Es sei e ein zyklischer Vektor von $\rho^+\mathcal{M}_{\varphi}$. Da der Grad von ρ^*P_{φ} gleich q+1 ist, ist auch die Dimension von $\rho^+\mathcal{M}$ gleich q+1. Damit ist auch $\dim_K \mathcal{N} = q+1$, also reicht zu zeigen, dass $e \otimes 1$, $\partial_t(e \otimes 1)$, $\partial_t^2(e \otimes 1)$, ..., $\partial_t^q(e \otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_t(\mathbf{e}\otimes 1)=(\partial_t\mathbf{e})\otimes 1+t\otimes \partial_t 1$$

$$= (\partial_{t}\mathbf{e}) \otimes 1 + \mathbf{e} \otimes \psi'(t)$$

$$= (\partial_{t}\mathbf{e}) \otimes 1 + \psi'(t)(\mathbf{e} \otimes 1)$$

$$\partial_{t}^{2}(\mathbf{e} \otimes 1) = \partial_{t}((\partial_{t}\mathbf{e}) \otimes 1 + \psi'(t)(\mathbf{e} \otimes 1))$$

$$= (\partial_{t}^{2}\mathbf{e}) \otimes 1 + (\partial_{t}\mathbf{e}) \otimes \psi'(t) + \psi''(t)(\mathbf{e} \otimes 1) + \psi'(t)((\partial_{t}\mathbf{e}) \otimes 1 + \mathbf{e} \otimes \psi'(t))$$

$$= (\partial_{t}^{2}\mathbf{e}) \otimes 1 + \psi'(t)(\partial_{t}\mathbf{e}) \otimes 1 + \psi''(t)(\mathbf{e} \otimes 1) + \psi'(t)(\partial_{t}\mathbf{e}) \otimes 1 + \psi'(t)^{2}(\mathbf{e} \otimes 1)$$

$$= (\partial_{t}^{2}\mathbf{e}) \otimes 1 + 2\psi'(t)(\partial_{t}\mathbf{e}) \otimes 1 + (\psi''(t) + \psi'(t)^{2})(\mathbf{e} \otimes 1)$$

$$\vdots$$

$$\partial_{t}^{q}(\mathbf{e} \otimes 1) = (\partial_{t}^{q}\mathbf{e}) \otimes 1 + \lambda_{q-1}(\partial_{t}^{q-1}\mathbf{e}) \otimes 1 + \cdots + \lambda_{1}(\partial_{t}\mathbf{e}) \otimes 1 + \lambda_{0}(\mathbf{e} \otimes 1)$$

und somit ist dann

$$\begin{pmatrix} \boldsymbol{e} \otimes 1 \\ \partial_t(\boldsymbol{e} \otimes 1) \\ \partial_t^2(\boldsymbol{e} \otimes 1) \\ \vdots \\ \partial_t^{q-1}(\boldsymbol{e} \otimes 1) \\ \partial_t^q(\boldsymbol{e} \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(t) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \cdots & \lambda_{q-1} & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{e} \otimes 1 \\ (\partial_t \boldsymbol{e}) \otimes 1 \\ (\partial_t^2 \boldsymbol{e}) \otimes 1 \\ \vdots \\ (\partial_t^{q-1} \boldsymbol{e}) \otimes 1 \\ (\partial_t^q \boldsymbol{e}) \otimes 1 \end{pmatrix}$$

Da bekanntlich $e \otimes 1$, $(\partial_t e) \otimes 1$, $(\partial_t^2 e) \otimes 1$,..., $(\partial_t^q e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_t (e \otimes 1)$, $\partial_t^2 (e \otimes 1)$, ..., $\partial_t^q (e \otimes 1)$. Damit folgt die Behauptung.

Zerlege nun wie in Satz 2.27 den Meromorphen Zusammenhang \mathcal{N} in $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ wobei \mathcal{N}_i Meromorphe Zusammenhänge mit genau einem Slope sind. Twiste die \mathcal{N}_i jeweils mit $\mathscr{E}_{\widehat{L}}^{-\psi}$ und somit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_{i} \mathcal{N}_i \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Für jeden Summanden lässt sich nun Induktion anwenden.

5.2 Levelt-Turrittin-Zerlegung für \mathcal{M}_{arphi} mit $arphi_1:=rac{a}{x}$

Als konkreten Fall betrachten wir nun \mathcal{M}_{φ} bezüglich $\varphi_1 := \frac{a}{x}$. Es ist das zugehörigen Minimalpolynom gegeben durch

$$P_{\varphi}(x, \partial_x) = -x^2 \partial_x (x \partial_x - 1) + a$$

$$= -x^2 \partial_x x \partial_x + x^2 \partial_x + a$$

$$= -x^2 (x \partial_x + 1) \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 - x^2 \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 + a$$

Erhalte daraus das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{1}{2}\}.$

Abbildung 5.2: Newton Polygon zu P_{φ}

Berechne nun zu $\rho:t\mapsto x:=-2t^2$ ein Minimalpolynom ρ^*P_{φ} zu $\rho^+\mathcal{M}_{\varphi}$:

$$\rho^* P_{\varphi}(x, \partial_x) = t^3 \partial_t (t \partial_t - 2) + 2a$$

$$= t^3 \partial_t t \partial_t - 2t^3 \partial_t + 2a$$

$$= t^3 (t \partial_t + 1) \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 + t^3 \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 - t^3 \partial_t + 2a$$

und erhalte einen Meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot \rho^* P_{\varphi}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 5.3: Newton Polygon zu $\rho^* P_{\varphi}$

Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Berechne nun die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$ von $\rho^* P_{\varphi}$.

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$
$$= t^4 \xi^2 + 2a$$

Setze $\theta := t^{\lambda_0 + \lambda_1} \xi^{\lambda_1} = t^2 \xi$ so erhalten wir

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \theta^2 + 2a$$

schreiben, welches wir als nächstes faktorisieren

$$\sigma_L(\rho^* P_{\varphi}) = \theta^2 + 2a$$

$$= (\theta - \underbrace{i\sqrt{2a}}_{=:\beta})(\theta + i\sqrt{2a})$$

Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = i\sqrt{2a}t^{-1}$ und betrachte den Twist $\mathcal{N} := \rho^+\mathcal{M}_{\varphi} \otimes \mathscr{E}^{\psi}$ von $\rho^+\mathcal{M}$. Es ist $e \otimes 1$ ein zyklischer Vektor, wobei e ein zyklischer Vektor von $\rho^+\mathcal{M}$ ist. Es ist

$$\begin{split} \partial_t^2(e \otimes 1) &= \partial_t (\partial_t (e \otimes 1)) \\ &= \partial_t ((\partial_t e) \otimes 1 + e \otimes \psi'(t)) \\ &= (\partial_t^2 e) \otimes 1 + (\partial_t e) \otimes \psi'(t) + (\partial_t e) \otimes \psi'(t) + e \otimes \underbrace{((\frac{\partial}{\partial t} + \psi'(t))\psi'(t))}_{\in K} \\ &= \underbrace{((t^{-1}\partial_t - 2at^{-4})e) \otimes 1 + 2\psi'(t)(\partial_t e) \otimes 1 + (\psi''(t) + \psi'(t)^2)e \otimes 1}_{=(t^{-1}\partial_t e) \otimes 1 - 2at^{-4}e \otimes 1 + 2\psi'(t)(\partial_t e) \otimes 1 + (\psi''(t)e \otimes 1 + \psi'(t)^2e \otimes 1} \\ &= (t^{-1} + 2\psi'(t)) \underbrace{(\partial_t e) \otimes 1 + (-2at^{-4} + \psi''(t) + \psi'(t)^2)e \otimes 1}_{=(t^{-1} + 2\psi'(t))\partial_t(e \otimes 1) - e \otimes \psi'(t)) + (-2at^{-4} + \psi''(t) + \psi'(t)^2)e \otimes 1} \\ &= (t^{-1} + 2\psi'(t))\partial_t(e \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^2)e \otimes 1 \\ &= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2)e \otimes 1 \\ &= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2)e \otimes 1 \\ &= ((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2)e \otimes 1 \end{split}$$

also

$$0 = \left(\underbrace{\partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2}_{-P'}\right) e \otimes 1$$

und somit mit $\psi(t)=i\sqrt{2a}t^{-1}$ ist $\psi'(t)=-i\sqrt{2a}t^{-2}$ und $\psi''(t)=2i\sqrt{2a}t^{-3}$. Also durch Einsetzen ergibt sich

$$P' = \partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2a - \psi''(t) + \psi'(t)^2$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - i\sqrt{2a}t^{-3} + 2a^{-4} - 2i\sqrt{2a}t^{-3} + \underbrace{(-i\sqrt{2a}t^{-2})^2}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} + \underbrace{2at^{-4} - 2at^{-4}}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

mit, wie gewünscht, mehr als einem Slope.

Abbildung 5.4: Newton Polygon zu \mathcal{N}

Unser nächstes Ziel ist es, $\mathcal{N} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P'$ in zwei Meromorphe Zusammenhänge mit nur einem Slope zerlegen. Betrachte hierzu das Minimalpolynom und zerlege dieses in ein Produkt $P'(t, \partial_t) = Q_1(t, \partial_t) \cdot Q_2(t, \partial_t)$.

Da der ∂_t -Grad von P' genau 2 ist, müssen die Q_i jeweils den Grad 1 haben, um eine nichttriviale Zerlegung zu bekommen.

Beobachtung 5.5. Ist Q_1 und Q_2 so ein solches Paar, dann ist für $\sigma \in \widehat{K}$ das Paar $\overline{Q}_1 := Q_1 \cdot \sigma^{-1}$ und $\overline{Q}_2 := \sigma \cdot Q_2$ ebenfalls eine Zerlegung, denn

$$P' = Q_1 \cdot Q_2 = \underbrace{\mathbb{Q}_1 \cdot \sigma}_{\in \mathcal{D}_{\widehat{T}}} \cdot \underbrace{\sigma^{-1} \cdot Q_2}_{\in \mathcal{D}_{\widehat{T}}} = \bar{Q}_1 \cdot \bar{Q}_2.$$

Mit der Beobachtung 5.5 ist klar, dass wir den Faktor vor den ∂_t in Q_2 frei wählen können. Setze diesen also allgemein auf 1 und erhalte

$$Q_1 := \bar{v}(t)\partial_t + v(t) \qquad \qquad Q_2 := \partial_t + u(t) \qquad \qquad \text{mit } \bar{v}(t), v(t), u(t) \in \mathbb{C}[\![t]\!]$$

und somit ist ist das Produkt gegeben durch

$$Q_1 \cdot Q_2 = \bar{v}(t)\partial_t^2 + \bar{v}(t)\partial_t u(t) + v(t)\partial_t + v(t)u(t)$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

$$(5.1)$$

Damit ist ebenfalls $\bar{v}(t) = 1$.

Durch das Wissen über die Slopes der Q_i erhalten wir noch Informationen über die Reihen $v(t) := \sum_n v_n t^n$ bzw. $u(t) := \sum_n u_n t^n$. Die beiden Polynome Q_1 und Q_2 enthalten ∂_t als einziges Monom vom ∂_t -Grad 1, deshalb ist (1,-1) in beiden zugehörigen Newton-Polygonen enthalten. Da Q_1 nur den Slope 0 hat, muss das Newton-Polygon wie in Abbildung 5.5 aussenen

und somit wissen wir, dass $v_n = 0$ für alle n < -1. Da Q_2 genau den Slope 1 hat, ist das Newton-Polygon gegeben durch Abbildung 5.6. Damit ist $u_n = 0$ für alle n < -2 und $u_{-2} \neq 0$.

Abbildung 5.5: Newton-Polygon zu Q_1

Abbildung 5.6: Newton-Polygon zu Q_2

Mit diesen Informationen erhalten wir aus (5.1) die Gleichung

$$Q_1 \cdot Q_2 = \partial_t^2 + \partial_t \sum_{n=-2}^{\infty} u_n t^n + \sum_{n=-1}^{\infty} v_n t^n \partial_t + \left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)$$

$$(5.2)$$

und mit denn Kommutatorregeln gilt

$$\partial_t \sum_{n=-2}^{\infty} u_n t^n = \sum_{n=-2}^{\infty} (u_n t^n \partial_t + [\partial_t, u_n t^n])$$

$$= \sum_{n=-2}^{\infty} (u_n t^n \partial_t + n u_n t^{n-1})$$

$$= \sum_{n=-2}^{\infty} u_n t^n \partial_t + \sum_{n=-2}^{\infty} n u_n t^{n-1}$$

Wenn wir dieses Ergenis nun in (5.2) einsetzen ergibt sich

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} u_{n} t^{n} \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \sum_{n=-1}^{\infty} v_{n} t^{n} \partial_{t} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \left(\sum_{n=-2}^{\infty} u_{n} t^{n} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right) \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n + 1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n + 1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

Betrachte nun das Letzte Glied, auf welches wir die Cauchy-Produktformel anwenden wollen:

$$\left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right) = t^{-3} \left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)$$

$$= t^{-3} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} t^{k} u_{n-k-2} t^{(n-k)} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} t^{k+(n-k)-3} \right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} \right) t^{n-3}$$

$$= \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^{n}$$

Wenn wir auch diese Rechnung in (5.3) integrieren, erhalten wir

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n})t^{n}\partial_{t} + \sum_{n=-3}^{\infty} (n+1)u_{n+1}t^{n} + \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}\right)t^{n}$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n})t^{n}\partial_{t} + \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}\right)t^{n}$$

$$\stackrel{!}{=} \partial_{t}^{2} - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_{t} - 3i\sqrt{2a}t^{-3}$$

$$(5.4)$$

Nun haben wir ein Ergebnis, das sich Koeffizientenweise mit der gewünschten Formel vergleichen lässt:

$$2i\sqrt{2a}t^{-2} - t^{-1} = \sum_{n=-2}^{\infty} (u_n + v_n)t^n$$
(5.5)

$$-3i\sqrt{2a}t^{-3} = \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1} \right) t^n$$
(5.6)

Nun können wir mit (5.5) und (5.6) jeweils nochmals einen Koeffizientenvergleich machen und erhalten zunächst aus (5.5), dass

$$2i\sqrt{2a} = u_{-2} + \underbrace{v_{-2}}_{-0} = u_{-2} \tag{5.7}$$

$$-1 = u_{-1} + v_{-1} \tag{5.8}$$

$$0 = u_n + v_n \qquad \forall n \ge 0 \tag{5.9}$$

Als nächstes wollen wir dieses Ergenis mit (5.6) kombinieren. Betrachte zunächst den Vorfaktor vor t^{-3} :

$$-3i\sqrt{2a} = (-2)u_{-2} + \sum_{k=0}^{0} v_{k-1}u_{-3-k+1}$$

$$= -2u_{-2} + v_{-1}u_{-2}$$

$$\stackrel{(5.7)}{=} -2 \cdot 2i\sqrt{2a} + v_{-1}2i\sqrt{2a}$$

$$\stackrel{a\neq 0}{\Rightarrow} v_{-1} = \frac{4i\sqrt{2a} - 3i\sqrt{2a}}{2i\sqrt{2a}}$$

$$=\frac{1}{2}$$

und somit

$$\stackrel{(5.8)}{\Rightarrow} -1 = u_{-1} + v_{-1}$$

$$= u_{-1} + \frac{1}{2}$$

$$\Rightarrow u_{-1} = -\frac{3}{2}$$

Nun zum allgemeinem Koeffizienten vor t^n mit n > -3:

$$0 = (n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+3-1}u_{n-(n+3)+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+2}u_{-2}$$

$$\Rightarrow v_{n+2}u_{-2} = -\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

$$\Rightarrow v_{n+2} = -\frac{1}{u_{-2}}\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

und nach passendem Indexshift $n+2 \rightarrow n$ folgt

$$\Rightarrow v_n = -\frac{1}{u_{-2}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$\stackrel{(5.7)}{=} -\frac{1}{2i\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$= \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

Zusammen mit $u_{-2}=2i\sqrt{2a},\ u_{-1}=-\frac{3}{2}$ und $v_{-1}=\frac{1}{2}$ sind durch

$$v_n = -u_n = \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right) \qquad \forall n \ge 0$$
 (5.10)

die Koeffizienten von v und u vollständig bestimmt.

Nun lässt sich diese Zerlegung mit $\mathscr{E}^{-\psi(t)}$ zurücktwisten und erhalte damit die Zerlegung

$$\rho^{+}\mathcal{M}_{\varphi} = \mathcal{N}_{1} \otimes \mathscr{E}^{-\psi(t)} \oplus \mathcal{N}_{2} \otimes \mathscr{E}^{-\psi(t)}$$
$$= (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{1} \otimes \mathscr{E}^{-\psi(t)}) \oplus (\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)})$$

und, da Q_1 regulär, ist $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_1 \otimes \mathscr{E}^{-\psi(t)}$ bereits ein Elementarer Meromorpher Zusammenhang. Betrachte also noch $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_2 \otimes \mathscr{E}^{-\psi(t)}$:

$$\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2}(t, \partial_{t} - i\sqrt{2a}t^{-2})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} - i\sqrt{2a}t^{-2} + u(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + i\sqrt{2a}t^{-2} + \sum_{n=-1}^{\infty} u_{n}t^{n})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}$$

$$\stackrel{\text{regulär}}{\text{regulär}}$$

Damit ist der Zweite Summand also auch ein Elementarer Meromorpher Zusammenhang. Also zerlegt sich \mathcal{M} , nach einem pull-back mit $\rho: t \mapsto x = -2t^2$, in

$$\rho^{+}\mathcal{M}_{\varphi} = \left(\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right) \otimes \mathscr{E}^{-\psi(t)}\right) \oplus \left(\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} u_{n} t^{n}\right) \otimes \mathscr{E}^{\psi(t)}\right).$$

Damit ist die Levelt-Turrittin-Zerlegung vollständig gegeben.

5.2.1 Konvergenz der Summanden

Nun wollen wir noch prüfen, ob bei dieser Berechnung die Formalen Potenzreihen notwendig waren. Es ist klar, dass

$$Q_1 \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow v(t) \in \widehat{L} \backslash L$$
 bzw. $(\partial_t + \sum_{n=-1}^{\infty} u_n t^n) \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow u(t) \in \widehat{L} \backslash L$

Deshalb wollen wir die Potenzreihen v und u noch genauer betrachten, im besonderen deren konvergenzverhalten. Als Konvergenzkriterium betrachten wir den folgenden Satz

Satz 5.6 (Wurzlkriterium nach Cauchy). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = +\infty \Rightarrow \text{ die Potenzreihe ist nirgends Konvergent.}$$

Beweis. siehe [Kno64, §18, Satz 94].

Satz 5.7 (Quotientenkriterium). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=0 \Rightarrow \ \ die \ Potenzreihe \ ist \ nirgends \ Konvergent.$$

Beweis. TODO
$$\Box$$

Aus (5.10) ergeben sich für n = 0 die Koeffizienten

$$\begin{split} v_0 &= -\frac{1}{u_{-2}}((-1)u_{-1} + \sum_{k=0}^0 v_{k-1}u_{-k-1}) \\ &= -\frac{1}{u_{-2}}(\frac{3}{2} - \frac{3}{4}) \\ &= -\frac{3}{4u_{-2}} \\ \stackrel{(5.7)}{=} \frac{3i}{8\sqrt{2a}} = -u_0 \end{split}$$

Für n > 0 gilt $v_{n-1} \stackrel{(5.9)}{=} -u_{n-1}$ und damit wollen wir die Formel noch weiter vereinfachen, um eine Version zu bekommen, die sich gut implementieren lässt.

$$\begin{aligned} v_n &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big(\underbrace{(n-1)u_{n-1} + v_{-1}u_{n-1} + (\sum_{k=1}^{n-1} v_{k-1}u_{n-k-1}) + v_{n-1}u_{-1}} \Big) \\ &\stackrel{(5.9)}{=} -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} + \underbrace{v_{-1}(-v_{n-1})} + (\sum_{k=1}^{n-1} v_{k-1}(-v_{n-k-1}) + \underbrace{v_{n-1}u_{-1}} \Big) \\ &= -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} - \frac{1}{2}v_{n-1} - \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} - \frac{3}{2}v_{n-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n-1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \end{aligned}$$

Also, zu gegebenem $u_{-2}=2i\sqrt{2a},$ sind die Koeffizienten gegeben durch:

$$v_{-1} = \frac{1}{2}$$

$$v_{0} = -u_{0} = -\frac{3}{4u_{-2}}$$

$$v_{n} = -u_{n} = \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right)$$

$$\forall n > 0$$

Abbildung 5.7: Die Beträge der Koeffizienten für unterschiedliche \boldsymbol{a}

A Aufteilung von $t \varphi'(t)$

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Genaueres zu $(x^2\partial_x)^k$

Nun wollen wir noch $(x^2\partial_x)^{k+1}$ besser verstehen.

$$\begin{split} &(x^2\partial_x)^{k+1} = x^2 \underbrace{\partial_x x^2}_{} \partial_x (x^2\partial_x)^{k-1} \\ &= x^2 \underbrace{(2x + x^2\partial_x)}_{} \partial_x (x^2\partial_x)^{k-1} \\ &= (2x^3\partial_x + x^4\partial_x^2)(x^2\partial_x)^{k-1} \\ &= (2x^3\partial_x + x^4\partial_x^2)(x^2\partial_x)(x^2\partial_x)^{k-2} \\ &= (2x^3\underbrace{\partial_x x^2}_{} \partial_x + x^4\underbrace{\partial_x^2 x^2}_{} \partial_x)(x^2\partial_x)^{k-2} \\ &= (2x^3\underbrace{(2x + x^2\partial_x)}_{} \partial_x + x^4\underbrace{(2x\partial_x + 1 + x^2\partial_x^2)}_{} \partial_x)(x^2\partial_x)^{k-2} \\ &= (4x^4\partial_x + 2x^5\partial_x^2 + 2x^5\partial_x^2 + x^4\partial_x + x^6\partial_x^3)(x^2\partial_x)^{k-2} \\ &= (5x^4\partial_x + 4x^5\partial_x^2 + x^6\partial_x^3)(x^2\partial_x)^{k-2} \\ &= \sum_{n=1}^{k+1} \binom{k}{n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_x^n \end{split}$$

also gilt für spezielle k

$$(x^{2}\partial_{x})^{k+1} = \begin{cases} 2x^{3}\partial_{x} + x^{4}\partial_{x}^{2} & \text{falls } k = 1\\ 5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3} & \text{falls } k = 2\\ \sum_{n=1}^{k+1} {k \choose n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n} & \end{cases}$$
 (B.1)

C Numerische berechnung der Koeffizienten

Hier nun ein Haskell Programm, dass in der Funktion **main** die Koeffizienten von v und u für Abschnitt 5.2.1 numerisch berechnet. Für die beispielhaften Berechnungen hier, wählen wir $a = \frac{1}{8}$, dadurch gilt $u_{-2} = i$.

```
1 module Main where
2 import ComplRat
3 import Data.MemoTrie (memo) -- https://github.com/conal/MemoTrie
   -- parallel
5
 6 import qualified Control.Monad.Parallel as P
8 -- for writing to file
9 import System. Environment
10 import System. IO
11 import Data. Time
12
13 -- returns array with the coefficients of v(t)
14 -- first element in array is koefficient from t^{-1}
vKoeffs :: ComplRat -> [ComplRat]
16 vKoeffs uMin2 = 1/2:+:0 : [vKoeff i|i <- [0..]]
17
        -- returns n-th coefficient of v(t)
18
        vKoeff :: Int -> ComplRat
19
       vKoeff = memo vKoeff;
       vKoeff' :: Int -> ComplRat
21
        vKoeff' n | n > 0
                              = (vKoeff (n-1)*(fromIntegral n+1)+summe)/uMin2
22
                  | n == 0 = -3/(uMin2*4)
23
                  | n == -1 = 1/2
24
25
                  | otherwise = 0
                  where summe = sum [vKoeff (k-1)*(vKoeff (n-k-1))|k <- [1..n-1]]
26
27
       -- returns n-th coefficient of u(t)
       uKoeff :: Int -> ComplRat
29
       uKoeff n | n == -2 = uMin2
| n == -1 = -3/2
30
31
                 | otherwise = -(vKoeff n)
32
   -- returns array with the coefficients of \mathbf{u}(\mathsf{t})
34
35 -- first element in array is koefficient from t^{-2}
36  uKoeffs :: ComplRat -> [ComplRat]
   uKoeffs uMin2 = uMin2 : -3/2:+:0 : (tail $ vKoeffs uMin2)
37
38
  printData :: Int -> ComplRat -> IO()
  printData end uMin2 = mapM_ addLine $ take end $ zip3 [0..] (tail vals) vals
40
                    = vKoeffs uMin2
41
     where vals
           addLine a = putStr $ genLine a
42
43
   genLine :: (Int, ComplRat, ComplRat) -> String
                                                             , "\t"
   genLine (i,v1,v2) = concat [ show i
45
                                                            , "\t"
                                , show $ betrag (i,v1,v2)
46
                                , show \ (cauchy (i,v1,v2)), "\t"
                                                             , "\n" ]
                                , show $ quot (i,v1,v2)
48
      where toDbl x
                          = fromRational x :: Double
49
            betrag (_,v,_) = fromRational $ magnitude v
50
```

```
cauchy (i,v,_) = (fromRational $ magnitude v)**(1/(fromIntegral i))
51
             quot (_,v1,v2) = sqrt $ toDbl $ (magnitudeSq v2) / (magnitudeSq v1)
52
53
    54
55
56
   main :: IO()
   main = do x <- getArgs
57
               P.sequence_ (funcs $ head $ map (\x -> read x :: Int) x)
      where funcs x = map (saveData x) [ ("./data/u_-2=i"
                                                                      , (0:+:1))
59
                                            {-, ("./data/u_-2=-i"
                                                                           , (0:+:(-1)))-}
60
                                            {-, ("./data/u_-2=1"
                                                                           , (1:+:0))-}
61
                                                                          , (-1:+:0))-}
, (0:+:10000))-}
                                            {-, ("./data/u_-2=-1"
62
                                            {-, ("./data/u_-2=10000i"
63
                                            {-, ("./data/u_-2=1000i" , (0:+:1000))-}
                                                                         , (0:+:100))-}
                                            {-, ("./data/u_-2=100i"
65
                                                ("./data/u_-2=10i"
66
                                                                             (0:+:10))-}
                                            ("./data/u_-2=101" , (0:+:10))-}
, ("./data/u_-2=1.0e-1i" , (0:+:1.0e-1))
, ("./data/u_-2=1.0e-2i" , (0:+:1.0e-2))
, ("./data/u_-2=1.0e-3i" , (0:+:1.0e-3))
, ("./data/u_-2=1.0e-4i" , (0:+:1.0e-4))
, ("./data/u_-2=1.0e-5i" , (0:+:1.0e-5))
67
68
69
70
71
72
73
   testPrintData = printData 100 (0:+:1)
74
    testSaveData = saveData 100 ("./data/u_-2=i", (0:+:1))
75
76
77 saveData :: Int -> (String, ComplRat) -> IO()
   saveData end (fn, uMin2)
78
      do start <- getCurrentTime</pre>
79
         withFile fn WriteMode (\handle -> do
           hPutStr handle (concat $ take end $ map genLine triples))
81
82
         stop <- getCurrentTime</pre>
         putStrLn $ fn ++ " " ++ (show $ diffUTCTime stop start)
83
      where vals
                        = vKoeffs uMin2
84
85
             triples
                        = zip3 [0..] (tail vals) vals
```

Ist der Code in einer Datei /Pfad/zu/koeff.hs gespeicher, so lässt er sich in Unix-Artigen Systemen beispielsweise mit den folgenden Befehlen compilieren und ausführen.

```
#!/bin/sh
1
2
    max = $1
3
4
    if false; then
      ghc --make -threaded ./koeff.hs
6
      mkdir -p ./data
7
      ./koeff $max +RTS -N3
8
9
10
    if true; then
     art[2]="betrag"; art[3]="cauchy"; art[4]="quot";
11
12
     for i in 2 3 4; do
       name="${art[i]}"
13
        gnuplot << EOF
14
15
    set samples 1001
16
    set key below
17
18
    set term push
19
    set term post enh color lw 1 12 "Times-Roman"
    set output "${name}.eps"
20
21
22
    set log xy
    plot for [fn in system("ls data/*")] fn every ::0::${max} using 1:${i} with lines title
23
        system("basename ".fn)
24
    EOF
25
        epstopdf "${name}.eps" --outfile "../img/${name}.pdf"
```

```
26 rm "${name}.eps"
27 done
28 fi
```

Durch das Ausführen berechnet das Programm die Koeffizienten von v und u bis zum Index 15 sowie einzelne Werte an 20, 30, 40, 50, 100 und 150 und produziert einen Ausgang, der wie folgt aussieht

```
n
1
           \mid \  \, v\_n \qquad u\_n
2
                     0.0 :+ 1.0
(-1.5) :+ (-0.0)
3
   -2
          0.0 :+ 0.0
4
   -1
          1 0.5 :+ 0.0
5
   0
          | 1.5 :+ 0.0 (-1.5) :+ (-0.0)
6
   1
                            (-0.0) :+ 3.9375
7
   2
          | 0.0 :+ (-3.9375)
8
   3
          | (-13.5) :+ (-0.0)
                              13.5 :+ 0.0
9
          | 0.0 :+ 59.34375
                            (-0.0) :+ (-59.34375)
   4
   5
                          (-324.0) :+ (-0.0)
10
          324.0 :+ 0.0
          | 0.0 :+ (-2122.98046875)
                                   (-0.0) :+ 2122.98046875
11
          | (-16213.5) :+ (-0.0) 16213.5 :+ 0.0
12
   7
          | 0.0 :+ 141115.447265625
13
   8
                                   (-0.0) :+ (-141115.447265625)
14
          | 1376311.5 :+ 0.0
                            (-1376311.5) :+ (-0.0)
          | 0.0 :+ (-1.4850124677246094e7)
                                          (-0.0) :+ 1.4850124677246094e7
   10
15
                                    1.75490226e8 :+ 0.0
          | (-1.75490226e8) :+ (-0.0)
16
   11
   12
          | 0.0 :+ 2.2530628205925293e9
                                      (-0.0) :+ (-2.2530628205925293e9)
17
18
   13
          | 3.1217145174e10 :+ 0.0 (-3.1217145174e10) :+ (-0.0)
          19
   15
          | (-7.3709524476135e12) :+ (-0.0)
20
                                           7.3709524476135e12 :+ 0.0
21
   20
          (-0.0) :+ 2.7520294973343126e33
   30
          | 0.0 :+ (-2.7520294973343126e33)
23
                                        (-0.0) :+ (-1.1055855646065139e49)
   40
          | 0.0 :+ 1.1055855646065139e49
24
   50
           0.0 :+ (-5.0878905001062135e65)
                                          (-0.0) :+ 5.0878905001062135e65
25
   100
          | 0.0 :+ 3.045728894141079e159
                                        (-0.0) :+ (-3.045728894141079e159)
          | 0.0 :+ (-2.7737283214890534e264)
                                           (-0.0) :+ 2.7737283214890534e264
26
   150
```

In Haskell ist das :+ ein Infix-Konstruktor der Klasse **Data.Complex**. So erzeugt ein Aufruf der Form \mathbf{a} :+ \mathbf{b} eine Imaginärzahl, die a+ib entspricht.

Übersetzt in unsere Zahlenschreibweise sieht das Ergebnis also wie folgt aus:

n	v_n	u_n
-2	0	i
-1	0,5	-1,5
0	0,75i	-0,75i
1	1,5	-1,5
2	-3,9375i	3,9375i
3	-13, 5	13,5
4	59,34375i	-59,34375i
5	324,0	-324,0
6	-2122,98046875i	2122,98046875i
7	-16213, 5	16213, 5
8	141115, 447265625i	-141115, 447265625i
9	1376311,5	-1376311, 5
10	$-1,4850124677246094 \cdot 10^7 i$	$1,4850124677246094 \cdot 10^7 i$
11	$-1,75490226 \cdot 10^{8}$	$1,75490226 \cdot 10^{8}$
12	$2,2530628205925293 \cdot 10^9 i$	$-2,2530628205925293 \cdot 10^9 i$
13	$3,1217145174 \cdot 10^{10}$	$-3,1217145174 \cdot 10^{10}$
14	$-4,641652455250599 \cdot 10^{11}i$	$4,641652455250599 \cdot 10^{11}i$
15	$-7,3709524476135 \cdot 10^{12}$	$7,3709524476135 \cdot 10^{12}$
:	:	:
	1 779000940090001 1019:	1 779006940990001 1019:
20	$1.753906248830001 \cdot 10^{19}i$	$-1.753906248830001 \cdot 10^{19}i$
:	:	:
30	$-2.7520294973343126 \cdot 10^{33}i$	$2.7520294973343126 \cdot 10^{33}i$
30	-2.1920294919949120 · 10 · t	2.1020234313343120 · 10 · t
:	:	<u>:</u>
40	$1.1055855646065139 \cdot 10^{49}i$	$-1.1055855646065139 \cdot 10^{49}i$
.		
:	:	:
50	$-5.0878905001062135 \cdot 10^{65}i$	$5.0878905001062135 \cdot 10^{65}i$
.		
:	: 150	:
100	$3.045728894141079 \cdot 10^{159}i$	$-3.045728894141079 \cdot 10^{159}i$
:	:	:
150	0.7797999914900794 10264:	
150	$-2.7737283214890534 \cdot 10^{264}i$	$2.7737283214890534 \cdot 10^{264}i$
:	:	:
	•	•

Tabelle C.1: Numerisch berechnete Koeffizienten von u(t) und v(t) für $a=\frac{1}{8}$

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Blo04] Spencer Bloch, Local fourier transforms and rigidity for d-modules, Asian J. Math (2004), 587–605.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [GL04] Ricardo García López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4, 747–768. MR MR2127946 (2005m:32014)
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [Hei10] Hedwig Heizinger, Verschwindungszykel regulär singulärer D-Moduln und Fouriertransformation, 2010.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Hut07] Graham Hutton, Programming in Haskell, Cambridge University Press, January 2007.
- [Kas03] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, American Mathematical Society, 2003.
- [Kno64] Konrad Knopp, Theorie und anwendung der unendlichen reihen, Die Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1964.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.

Literatur verzeichn is

- $[Sab07] \ ____, \ An \ explicit \ stationary \ phase \ formula \ for \ the \ local \ formal \ Fourier-Laplace \ transform, \ June \ 2007.$
 - [Sch] J.P. Schneiders, An introduction to d-modules.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.