Aqueous Solutions and Net Ionic Equations

- Reactions that occur in water are said to take place in aqueous solution
 - ✓ Solution: Homogeneous mixture of two or more substances
 - Solvent: The major component of the solution
 - Solutes: The minor components of the solution

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

14

Solutions, Solvents, and Solutes

- Concentration is a key piece of information for solutions
 - ✓ Solutions are concentrated if many solute particles are present
 - ✓ Solutions are dilute if few solute particles are present

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Solution preparation

Solution preparation

- Solid CuSO₄, the solute, is transferred to a flask
- Water, the solvent, is added
- The flask is shaken to speed the dissolution process
- Two CuSO₄ solutions of different concentrations are shown
 - Solution on the left is more concentrated, as seen from its darker color

16

ppyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

(Q.4)

For most concentrated solutions, which is present in greater amounts?

- Solute
- Solvent
- · Both are roughly equal

Answer: Solute

17

opyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in par

- · Compounds can be characterized by their solubility
 - · Soluble compounds dissolve readily in water
 - Insoluble compounds do not dissolve readily in water
- Solubility can be predicted using solubility rules

Solubility guidelines Solubility guidelines for soluble salts **Usually Soluble Exceptions** Group 1 cations (Li+, Na+, K+, Rb+, Cs+), No common exceptions ammonium (NH₄⁺) Nitrates (NO₃⁻), nitrites (NO₂⁻) Moderately soluble: AgNO2 Chlorides, bromides, iodides Insoluble: AgCl, Hg2Cl2, PbCl2, AgBr, (Cl^{-}, Br^{-}, I^{-}) Hg₂Br₂, PbBr₂, AgI, Hg₂I₂, and PbI₂ Fluorides (F-) Insoluble: MgF₂, CaF₂, SrF₂, BaF₂, PbF₂ Sulfates (SO₄²⁻) Insoluble: BaSO₄, PbSO₄, HgSO₄ Moderately soluble: CaSO₄, SrSO₄, Ag₂SO₄ Chlorates (ClO₃⁻), perchlorates (ClO₄⁻) No common exceptions Acetates (CH₃COO⁻) Moderately soluble: AgCH3COO 19 pyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in wh

Solubility guidelines

Solubility guidelines for insoluble salts

Usually Insoluble	Exceptions
Phosphates (PO ₄ ³⁻)	Soluble: $(NH_4)_3PO_4$, Na_3PO_4 , K_3PO_4
Carbonates (CO ₃ ²⁻)	Soluble: $(NH_4)_2CO_3$, Na_2CO_3 , K_2CO_3
Hydroxides (OH ⁻)	Soluble: LiOH, NaOH, KOH, Ba(OH) ₂ Moderately soluble: Ca(OH) ₂ , Sr(OH) ₂
Sulfides (S ²⁻)	Soluble: $(NH_4)_2S$, Na_2S , K_2S , MgS , CaS

opyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Example Problem 3.2

20

- Which of the following compounds would you predict are soluble in water at room temperature?
 - KCIO₃
 - CaCO₃
 - BaSO₄
 - KMnO₄

Answer: KClO₃ and KMnO₄ are soluble

21

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Electrolytes and nonelectrolytes

- Electrolytes are soluble compounds that conduct electricity when dissolved in water
 - ✓ Weak electrolytes dissociate partially into ions in solution
 - ✓ Strong electrolytes dissociate completely into ions in solution
- Nonelectrolytes are substances whose solutions do not conduct electricity

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- Sugar, a nonelectrolyte, does not conduct electricity when dissolved in water
- Acetic acid, a weak electrolyte, weakly conducts electricity when dissolved in water
- Potassium chromate, a strong electrolyte, strongly conducts electricity when dissolved in water

Chemical Equations for Aqueous Reactions

- When a covalently bonded material dissolves in water and the molecules remain intact, they do not conduct electricity
 - · These compounds are nonelectrolytes

$$C_6H_{12}O_6(s) \longrightarrow C_6H_{12}O_6(aq)$$

• The water molecules are not shown clearly, although their presence is indicated by the "(aq)" labels on the product side

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

24

Chemical Equations for Aqueous Reactions

- Dissociation reaction occurs when ionic solids dissolve in water and break into their constituent ions
 - · These compounds conduct electricity and are electrolytes

$$NaCl(s) \longrightarrow Na^{+}(aq) + Cl^{-}(aq)$$

25

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in par

Chemical Equations for Aqueous Reactions

 Aqueous chemical reactions can be written as a molecular equation, which shows the complete formula for each compound

$$HNO_3(aq) + NH_3(g) \longrightarrow NH_4NO_3(aq)$$

Copyright © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

26

Chemical Equations for Aqueous Reactions

 Dissociation of reactants and products is emphasized by writing a total ionic equation

$$H^{+}(aq) + NO_{3}^{-}(aq) + NH_{3}(g) \longrightarrow NH_{4}^{+}(aq) + NO_{3}^{-}(aq)$$

- Note: ${\rm HNO_3}$ is a strong acid and thus dissociates completely, whereas ${\rm NH_3}$ does not dissociate

27

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in par

Chemical Equations for Aqueous Reactions

- · Spectator ions are ions not involved in the chemical reaction
- When spectator ions are removed, the result is a net ionic equation
 - · Total ionic equation

$$H^+(aq) + NO_3^-(aq) + NH_3(g) \longrightarrow NH_4^+(aq) + NO_3^-(aq)$$

· Net ionic equation

$$H^+(aq) + NH_3(g) \longrightarrow NH_4^+(aq)$$

Spectator ion = NO_3^-

Copyright ©2019 Cengage Learning, All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

28

(Q.5)

When HCl reacts with ammonia, what is/are the spectator ion or ions?

- H⁺
- CI-
- NH₄⁺
- · There are no spectator ions

Answer: CI-

29

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

(Q.6)

What is left out when a net ionic equation is written?

- · The physical states of the chemicals
- · Any precipitate that forms
- · Spectator ions
- · Any gases or precipitates that form

Answer: Spectator ions

opyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

30

Acid-Base Reactions

- · According to Arrhenius definition for acids and bases,
- Acids are substances that dissolve in water to produce H⁺ or H₃O⁺ ions
 - Examples: HCI, HNO₃, H₃PO₄, HCN
- Bases are substances that dissolve in water to produce OHions
 - Examples: NaOH, Ca(OH)₂, NH₃

31

Copyright © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Acid-Base Reactions

· Strong acids and bases completely dissociate in water

$$HCl(g) + H_2O(\ell) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

$$NaOH(s) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$$

opyright. ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

32

Acid-Base Reactions

All common strong acids and bases

Strong Acids		St	Strong Bases	
HCl	Hydrochloric acid	LiOH	Lithium hydroxide	
HNO ₃	Nitric acid	NaOH	Sodium hydroxide	
H ₂ SO ₄	Sulfuric acid	КОН	Potassium hydroxide	
HClO ₄	Perchloric acid	Ca(OH) ₂	Calcium hydroxide	
HBr	Hydrobromic acid	$Ba(OH)_2$	Barium hydroxide	
НІ	Hydroiodic acid	Sr(OH) ₂	Strontium hydroxide	

Convirint ©2010 Connage Learning All Digits Deserved May not be connect conied or dunlicated or nocted to a publicly accessible website in whole or in page

Acid-Base Reactions

- Weak acids and bases partially dissociate (partial ionization) in water
 - Notice the two-way arrow, which emphasizes that the reaction does not proceed completely from left to right

$$CH_3COOH(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$$

$$NH_3(aq) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Many other weak bases are amines

Conviols ©2019 Centage Learning, All Rights Reserved, May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

34

Acid-Base Reactions

Some common weak acids and bases

Weak Acids		Weak Bases		
H ₃ PO ₄	Phosphoric acid	NH_3	Ammonia	
HF	Hydrofluoric acid	CH_3NH_2	Methylamine	
CH₃COOH	Acetic acid			
HCN	Hydrocyanic acid			

nuright \$2010 Canaga Learning All Pights Descript May not be scanned conied or dunicated or nosted to a nublicly accessible watche in whole or in not

Acid-Base Reactions

- Mixing an acid and a base leads to a reaction known as neutralization, in which the resulting solution is neither acidic nor basic
 - Net ionic equation for neutralization of strong acid and strong base

$$H_3O^+(aq) + OH^-(aq) \longrightarrow 2H_2O(\ell)$$

Copyright © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

36

(Q.7)

What other property is true about a strong acid?

- · Concentrated solution
- Strong electrolyte
- · Strong salt

Answer: Strong electrolyte

37

Copyright © 2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in par

(Q.8)

What are the products of a neutralization reaction?

- Water
- Salt
- · Both water and salt
- · Water and a precipitate

Answer: Both water and salt

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

38

Example Problem 3.3

When aqueous solutions of acetic acid and potassium hydroxide are combined, a neutralization reaction will occur

Write the following equations:

- Molecular
- Total ionic
- · Net ionic

Answer:

- 1. $CH_3COOH + KOH \rightarrow H_2O + KCH_3COO$
- 2. $CH_3COOH(aq) + K^+(aq) + OH^-(aq) \rightarrow H_2O(\ell) + K^+(aq) + CH_3COO^-(aq)$
- 3. $\mathrm{CH_3COOH(aq)} + \mathrm{OH^-(aq)} \rightarrow \mathrm{H_2O}(\ell) + \mathrm{CH_3COO^-(aq)}$

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.