```
%reload_ext autoreload
%autoreload 2
%matplotlib inline
from fastai.vision import *
bs = 64
path = untar_data(URLs.PETS)/'images'
Downloading <a href="https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet">https://s3.amazonaws.com/fast-ai-imageclas/oxford-iiit-pet</a>
tfms = get_transforms(max_rotate=20, max_zoom=1.3, max_lighting=0.4, max_warp=0.4,
                        p_affine=1., p_lighting=1.)
src = ImageList.from_folder(path).split_by_rand_pct(0.2, seed=2)
def get_data(size, bs, padding_mode='reflection'):
    return (src.label_from_re(r'([^/]+)_\d+.jpg$')
            .transform(tfms, size=size, padding_mode=padding_mode)
            .databunch(bs=bs).normalize(imagenet_stats))
data = get_data(224, bs, 'zeros')
def _plot(i,j,ax):
    x,y = data.train_ds[3]
    x.show(ax, y=y)
plot_multi(_plot, 3, 3, figsize=(8,8))
C→
```


data = get_data(224,bs)
plot_multi(_plot, 3, 3, figsize=(8,8))

□→

gc.collect()
learn = cnn_learner(data, models.resnet34, metrics=error_rate, bn_final=True)

Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to /root/.ca 100%| 83.3M/83.3M [00:00<00:00, 325MB/s]

learn.fit_one_cycle(3, slice(1e-2), pct_start=0.8)

₽	epoch	train_loss	valid_loss	error_rate	time
	0	1.644152	0.381082	0.104195	01:30
	1	0.959373	0.290972	0.086604	01:30
	2	0 711118	0 260182	0 076455	01:31

learn.unfreeze()
learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-3), pct_start=0.8)

₽	epoch	train_loss	valid_loss	error_rate	time
	0	0.577004	0.249711	0.063599	01:33
	1	0.534328	0.233516	0.064953	01:34

data = get_data(352,bs)
learn.data = data

learn.fit_one_cycle(2, max_lr=slice(1e-6,1e-4))

```
        Epoch
        train_loss
        valid_loss
        error_rate
        time

        0
        0.504815
        0.229825
        0.062246
        02:45

        1
        0.470520
        0.232784
        0.060893
        02:43

        learn.save('352')

        data = get_data(352,16)
```

learn = cnn_learner(data, models.resnet34, metrics=error_rate, bn_final=True).load('352')

idx=0
x,y = data.valid_ds[idx]
x.show()
data.valid_ds.y[idx]

Category British_Shorthair

k.shape

```
    torch.Size([1, 3, 3, 3])

t = data.valid_ds[0][0].data; t.shape

    torch.Size([3, 352, 352])

t[None].shape

    torch.Size([1, 3, 352, 352])

edge = F.conv2d(t[None], k)

show_image(edge[0], figsize=(5,5));
```


data.c

□→ 37

learn.model

C→

```
(2): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
    (3): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
    (4): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
    (5): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_s
   )
 (7): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
    (2): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_s
 )
(1): Sequential(
  (0): AdaptiveConcatPool2d(
    (ap): AdaptiveAvgPool2d(output_size=1)
    (mp): AdaptiveMaxPool2d(output_size=1)
```

```
(1): Flatten()
    (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=
    (3): Dropout(p=0.25, inplace=False)
    (4): Linear(in_features=1024, out_features=512, bias=True)
    (5): ReLU(inplace=True)
    (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=T
    (7): Dropout(p=0.5, inplace=False)
    (8): Linear(in_features=512, out_features=37, bias=True)
   (9): BatchNorm1d(37, eps=1e-05, momentum=0.01, affine=True, track_running_stats=T
 )
)
```

print(learn.summary())

 \Box

_							•		-
`	Δ	$\boldsymbol{\alpha}$	11	Δ	n	+	п	а	

Sequential			
Layer (type)	Output Shape	Param #	Trainable
Conv2d	[64, 176, 176]	9,408	False
BatchNorm2d	[64, 176, 176]	128	True
ReLU	[64, 176, 176]	0	False
MaxPool2d	[64, 88, 88]	0	False
Conv2d	[64, 88, 88]	36,864	False
BatchNorm2d	[64, 88, 88]	128	True
ReLU	[64, 88, 88]	0	False
Conv2d	[64, 88, 88]	36,864	False
BatchNorm2d	[64, 88, 88]	128	True
Conv2d	[64, 88, 88]	36,864	False
BatchNorm2d	[64, 88, 88]	128	True
ReLU	[64, 88, 88]	0	False
Conv2d	[64, 88, 88]	36,864	False
BatchNorm2d	[64, 88, 88]	128	True
Conv2d	[64, 88, 88]	36,864	False
BatchNorm2d	[64, 88, 88]	128	True
ReLU	[64, 88, 88]	0	False
Conv2d	[64, 88, 88]	36,864	False
BatchNorm2d	[64, 88, 88]	128	True
Conv2d	[128, 44, 44]	73,728	False
BatchNorm2d	[128, 44, 44]	256	True
ReLU	[128, 44, 44]	0	False
Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
Conv2d	[128, 44, 44]	8,192	False
BatchNorm2d	[128, 44, 44]	256	True
Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
ReLU	[128, 44, 44]	0	False

Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
ReLU	[128, 44, 44]	0	False
Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
ReLU	[128, 44, 44]	0	False
Conv2d	[128, 44, 44]	147,456	False
BatchNorm2d	[128, 44, 44]	256	True
Conv2d	[256, 22, 22]	294,912	False
BatchNorm2d	[256, 22, 22]	512	True
ReLU	[256, 22, 22]	0	False
Conv2d	[256, 22, 22]	589,824	False
BatchNorm2d	[256, 22, 22]	512	True
Conv2d	[256, 22, 22]	32,768	False
BatchNorm2d	[256, 22, 22]	512	True
Conv2d	[256, 22, 22]	589,824	False
BatchNorm2d	[256, 22, 22]	512	True
ReLU	[256, 22, 22]	0	False
Conv2d	[256, 22, 22]	589,824	False
BatchNorm2d	[256, 22, 22]	512	True
Conv2d	[256, 22, 22]	589,824	False
BatchNorm2d	[256, 22, 22]	512	True
ReLU	[256, 22, 22]	0	False
Conv2d	[256, 22, 22]	589,824	False
BatchNorm2d	[256, 22, 22]	512	True
Conv2d	[256, 22, 22]	589,824	False
BatchNorm2d	[256. 22. 22]	512	True