

ANÁLISE DE SISTEMAS ORIENTADO A OBJETOS

AULA 7

Prof^o. Me. Flávio Henrique Fernandes Volpon flavio.volpon@docente.unip.br

"Caso de uso é a descrição de uma sequencia de atividades executadas por um agente externo ao sistema, sem que sejam revelados detalhes do funcionamento interno ao sistema, por isso dizemos que o caso de uso mostra a visão comportamental externa ao sistema" (BEZERRA, 2006)

- O agente externo de um caso de uso é chamado de Ator.
- Eles executam uma determinada ação e esperam algum resultado, ou seja, interagem diretamente com o sistema a partir dos casos de uso.

Algumas considerações importantes a respeito de atores:

- Ator é qualquer entidade externa que interage com o sistema, por exemplo:
 - √ usuários,
 - √ outros sistemas de software
 - √ ou até mesmo dispositivos de hardware.
- Um ator nunca é um componente interno do sistema, ou mesmo qualquer detalhe interno ou componente de implementação dele.
- Um sistema nunca é um ator de si mesmo.

- É uma boa prática de projeto identificar o caso de uso por um nome que o represente.
- Costuma-se utilizar frases iniciadas com verbos no infinitivo, seguido pela meta ou tarefa a ser realizada.

Por exemplo:

"Efetuar saque de conta corrente".

- Enquanto para identificar um ator, costuma-se utilizar um substantivo, sempre no singular.
- Evite tipos muito genéricos, como:
 - √ Clientes
 - ✓ ou Usuários.
- Opte sempre por uma descrição próxima a realidade, por exemplo:
 - √ Cliente Pessoa Física
 - ✓ ou Cliente Pessoa Jurídica.

Muito embora o conceito de modelagem de casos de uso esteja extremamente ligado ao conceito de UML na literatura, até mesmo por terem os mesmos criadores (Booch, Jacobson e Rumbaugh), devemos dissociar os conceitos.

Modelagem de caso de uso é um método, aplicável a qualquer modelo de processo de engenharia de requisitos, e UML é uma ferramenta de apoio.

Existem duas formas de representar os Casos de Uso, são elas:

√ Descrição de Casos de Uso

√ Diagrama de Caso de Uso

Vamos falar de cada um deles...

- Muitas são as discussões na literatura a respeito do nível de detalhamento necessário para se descrever um caso de uso.
- Podemos considerar a descrição em linguagem natural, desde que sequencial, como uma descrição de caso de uso.
- Vamos ver um exemplo a seguir, usando nosso cenário do autoatendimento:

Caso de uso: efetuar saque conta-corrente

O cliente insere o cartão. O sistema solicita que o cliente informe a senha. O cliente informa a senha. O sistema exibe as operações possíveis de serem feitas no terminal. O cliente seleciona a operação de saque em conta-corrente e informa a quantia desejada. O sistema dispensa as cédulas. O cliente retira as notas.

Exemplo de descrição de caso em descritiva natural

Note que em momento algum na descrição do caso de uso, são usados termos que remetem a soluções técnicas, detalhes de implementação ou aspectos internos do sistema.

- Podemos descrever também, o passo a passo das atividades de forma numerada.
- Temos à seguir, nada mais do que a mesma descrição exibida no quadro anterior, mas com uma sequência numerada.
- Vejamos como fica então:

Caso de uso: efetuar saque conta-corrente

- 1. O cliente insere o cartão.
- 2. O sistema solicita que o cliente informe a senha.
- 3. O cliente informa a senha.
- 4. O sistema exibe as operações possíveis de serem feitas no terminal.
- 5. O cliente seleciona a operação de saque em conta-corrente e informa a quantia desejada.
- 6. O sistema dispensa as cédulas.
- 7. O cliente retira as notas.

Exemplo de descrição de caso em descritiva numerada

Note que um caso de uso **representa** uma **transação completa**, ou seja, com **começo**, **meio** e **fim**.

- Repare nos exemplos anteriores, que existem algumas possibilidades de desvios no fluxo ou condições não descritas.
- Isso fere nossa condição de completude de um requisito.
- Um requisito precisa ser completo
- Por exemplo, onde está descrito o comportamento do sistema ou do cliente, podemos ter algumas situações como:

O cliente <u>não possui</u> saldo em conta corrente.

O cliente <u>não informa a</u> <u>senha correta</u>.

O <u>terminal não possui</u> <u>notas disponíveis</u>.

Identificação: efetuar saque conta-corrente.

Escopo: terminal autoatendimento.

Descrição do propósito: esse caso de uso permite ao cliente efetuar um saque de conta-corrente em um terminal de autoatendimento.

Ator primário: cliente.

Interessados: cliente e banco.

Pré-condições: o terminal de autoatendimento deve estar operacional.

Pós-condições: o cliente efetua o saque, a quantia é debitada de sua conta-corrente, as notas são dispensadas e retiradas pelo cliente.

Fluxo normal:

O cliente insere o cartão. O sistema solicita que o cliente informe a senha. O cliente informa a senha. O sistema exibe as operações possíveis de serem feitas no terminal. O cliente seleciona a operação de saque em conta-corrente e informa a quantia desejada. O sistema dispensa as cédulas. O cliente retira as notas.

Fluxo alternativo:

- Caso o cliente não insira o cartão corretamente, uma mensagem é exibida.
- Caso o cliente não informe a senha corretamente, uma mensagem é exibida e caso informe a senha de forma incorreta por três tentativas seguidas, o cartão será bloqueado e uma mensagem exibida.
- Caso não existam cédulas suficientes ou múltiplas da quantia desejada, uma mensagem é exibida.
- Caso o cliente não possua saldo em conta-corrente, uma mensagem é exibida.

Requisitos relacionados: RF 01 – Efetuar saque; RNF 01 – Disponibilidade de Terminal.

- Identificação: nome do caso de uso.
- **Escopo:** descreve sucintamente a que contexto se refere o caso de uso, podendo ser um processo de negocio, um sistema ou um subsistema.
- Descrição do propósito: descrição sucinta do objetivo do caso de uso.
- Ator primário: ator principal do caso de uso.
- Pré-condições e pós-condições: o que deve ser verdadeiro antes e apos a finalização do caso de uso.

- Fluxo normal: descrição do passo a passo normal do caso de uso.
- Fluxo alternativo: descrição de passos alternativos que podem ser executados dentro de uma sequência normal de passos.
- Requisitos relacionados: lista de requisitos que estão representados pelo caso de uso. Um caso de uso pode conectar um ou mais requisitos de tipos diferentes, funcionais e não funcionais.

Identificação: efetuar saque conta-corrente.

Escopo: terminal autoatendimento.

Descrição do propósito: esse caso de uso permite ao cliente efetuar um saque de conta-corrente em um terminal

de autoatendimento.

Ator primário: cliente.

Interessados: cliente e banco.

Pré-condições: o terminal de autoatendimento deve estar operacional.

Pós-condições: o cliente efetua o saque, a quantia é debitada de sua conta-corrente, as notas são dispensadas e retiradas pelo cliente.

Fluxo normal:

- O cliente insere o cartão.
- 2. O sistema solicita que o cliente informe a senha.
- 3. O cliente informa a senha.
- 4. O sistema exibe as operações possíveis de serem feitas no terminal.
- 5. O cliente seleciona a operação de saque em conta-corrente e informa a quantia desejada.
- 6. O sistema dispensa as cédulas.
- O cliente retira as notas.

Fluxo alternativo:

- 1.1 Caso o cliente não insira o cartão corretamente, uma mensagem é exibida.
- 2.1 Caso o cliente não informe a senha corretamente, uma mensagem é exibida.
- 2.2 Caso informe a senha de forma incorreta por três tentativas seguidas, o cartão será bloqueado e uma mensagem exibida.
- 5.1 Caso não existam cédulas suficientes ou múltiplas da quantia desejada, uma mensagem é exibida.
- 5.2 Caso o cliente não possua saldo em conta-corrente, uma mensagem é exibida.

Requisitos relacionados: RF 01 - Efetuar saque; RNF 01 - Disponibilidade de Terminal.

Outro Modelo proposto por Cockburn com narrativa numerada

Descrição de Caso de Uso ARCHITECT

Ferramenta Enterprise Architect

Somente **neste ponto** da **engenharia** de **requisitos** e que entramos no assunto **UML**.

A **UML** (do inglês *Unified Modeling Language*, em português Linguagem de Modelagem Unificada) É UMA linguagem de modelagem visual de sistemas orientado a objetos, que possui elementos de modelagem gráficos que representam visões de um sistema de software e que possuem regras de sintaxe e semântica.

- Diagrama de casos de uso é um diagrama da UML que tem por objetivo mostrar, a partir de um ponto de vista estático, o conjunto de casos de uso, atores e seus relacionamentos.
- Ele representa, em um modelo gráfico, os elementos fundamentais da modelagem de caso de uso: atores e casos de uso.
- Os elementos que compõem o diagrama de caso de uso são descritos no quadro a seguir:

Elemento	Notação UML
Ator	
Caso de Uso	Caso de uso
Fronteira	É a representação da fronteira do diagrama, representado por um retângulo que envolve todos os casos de uso. Corresponde ao escopo da descrição de caso de uso.

Notação UML para representação do diagrama de caso de uso

- A figura a seguir mostra todos os elementos de um diagrama de caso de uso.
- A linha continua que liga o ator ao caso de uso representa que aquele ator executa aquele caso de uso.

Diagrama de Caso de Uso

Exemplo de Diagrama de Caso de Uso - Terminal de Auto Atendimento

Relacionamento entre Casos de Uso

Com o **objetivo** de **produzir modelos** mais **ricos** e **inteligíveis** e fornecer **melhores recursos** de **modelagem**, podemos utilizar **três tipos de relacionamento** entre casos de uso:

- **✓ INCLUSÃO**
- **✓ EXTENSÃO**
- **✓** E HERANÇA

Relacionamento entre Casos de Uso INCLUSÃO

- Significa que o comportamento definido no caso de uso inclusão é incorporado ao comportamento do caso de uso base.
- Ou seja, para que este seja executado, obrigatoriamente o caso de uso de inclusão também deverá ser executado.
- Na notação da UML, um relacionamento de inclusão entre casos de uso e mostrado como uma dependência (seta pontilhada) estereotipada com a palavra-chave include, conforme exibido a seguir:

Relacionamento entre Casos de Uso

INCLUSÃO

Relacionamento entre Casos de Uso INCLUSÃO

- Por exemplo, na figura a seguir, podemos interpretar que, para o cliente efetuar um saque, e necessário que seja validada a segurança de acesso.
- Note ainda que não estamos entrando no detalhe de como e feita essa validação, apenas que essa validação é realizada por outro Ator, um sistema externo denominado Sistema de Segurança.

Um ator pode ser um usuário ou outro sistema

Relacionamento entre Casos de Uso

INCLUSÃO

Exemplo de inclusão na UML

DESCRIÇÃO + INCLUSÃO

Identificação: efetuar saque conta-corrente.

Escopo: terminal autoatendimento.

Descrição do propósito: esse caso de uso permite ao cliente efetuar um saque de conta-corrente em um terminal de autoatendimento.

Ator primário: cliente.

Interessados: cliente e banco.

Pré-condições: o terminal de autoatendimento deve estar operacional.

Pós-condições: o cliente efetua o saque, a quantia é debitada de sua conta-corrente, as notas são dispensadas e retiradas pelo cliente.

Fluxo normal:

- 0 cliente insere o cartão.
- 2. O sistema solicita que o cliente informe a senha.
- 3. Inclusão para Validar Segurança de Acesso
- O cliente informa a senha.
- O sistema exibe as operações possíveis de serem feitas no terminal.
- 6. O cliente seleciona a operação de saque em conta-corrente e informa a quantia desejada.
- 7. O sistema dispensa as cédulas.
- 8. O cliente retira as notas.

Fluxo alternativo:

- 1.2 Caso o cliente não insira o cartão corretamente, uma mensagem é exibida.
- 2.3 Caso o cliente não informe a senha corretamente, uma mensagem é exibida.
- 2.4 Caso informe a senha de forma incorreta por três tentativas seguidas, o cartão será bloqueado e uma mensagem exibida.
- 5.3. Caso não existam cédulas suficientes ou múltiplas da quantia desejada, uma mensagem é exibida.
- 5.4 Caso o cliente não possua saldo em conta-corrente, uma mensagem é exibida.

Requisitos relacionados: RF 01 - Efetuar saque; RNF 01 - Disponibilidade de Terminal.

Relacionamento entre Casos de Uso EXTENSÃO

- Significa que o comportamento definido no caso de uso de inclusão pode ou não, incorporado ao comportamento do caso de uso base.
- Ou seja, para que este seja executado, o caso de uso de extensão, pode ou não ser executado.
- Na notação da UML, um relacionamento de extensão entre casos de uso e mostrado como uma dependência (seta pontilhada) estereotipada com a palavra-chave <u>extend</u>, conforme exibido a seguir:

Relacionamento entre Casos de Uso EXTENSÃO

Relacionamento entre Casos de Uso EXTENSÃO

- Por exemplo, na figura a seguir, podemos interpretar que o cliente pode solicitar um empréstimo pessoal durante uma operação de saque,
- Note também que o ator também pode solicitar o empréstimo sem estar em uma operação de saque.

Relacionamento entre Casos de Uso

EXTENSÃO

Exemplo de extensão na UML

DESCRIÇÃO + EXTENSÃO

Identificação: efetuar saque conta-corrente.

Escopo: terminal autoatendimento.

Descrição do propósito: esse caso de uso permite ao cliente efetuar um saque de conta-corrente em um terminal de autoatendimento.

Ator primário: cliente.

Interessados: cliente e banco.

Pré-condições: o terminal de autoatendimento deve estar operacional.

Pós-condições: o cliente efetua o saque, a quantia é debitada de sua conta-corrente, as notas são dispensadas e retiradas pelo cliente.

Fluxo normal:

- O cliente insere o cartão.
- 2. O sistema solicita que o cliente informe a senha.
- 3. O cliente informa a senha.
- 4. O sistema exibe as operações possíveis de serem feitas no terminal.
- 5. O cliente seleciona a operação de saque em conta-corrente e informa a quantia desejada.
- O sistema dispensa as cédulas.
- 7. O cliente retira as notas.

Fluxo alternativo:

- 1.3 Caso o cliente não insira o cartão corretamente, uma mensagem é exibida.
- 2.5 Caso o cliente não informe a senha corretamente, uma mensagem é exibida.
- 2.6 Caso informe a senha de forma incorreta por três tentativas seguidas, o cartão será bloqueado e uma mensagem exibida.
- 5.5 Caso não existam cédulas suficientes ou múltiplas da quantia desejada, uma mensagem é exibida.
- 5.6 Caso o cliente não possua saldo em conta-corrente, uma mensagem é exibida.
- 5.7 Extensão para Contratar Empréstimo Pessoal

Requisitos relacionados: RF 01 - Efetuar saque; RNF 01 - Disponibilidade de Terminal.

- Significa que o caso de uso filho herda o comportamento e o significado do caso de uso pai, acrescentando ou mudando seu comportamento.
- Podemos também dizer que o caso de uso filho e uma especialização do caso de uso pai, ou que o caso de uso pai e uma generalização do caso de uso filho.
- Na notação da UML, um relacionamento de herança entre casos de uso e mostrado com uma linha cheia com uma seta aberta, conforme exibido a seguir:

Notação de herança na UML

- Na figura a seguir, por exemplo, podemos interpretar que a validação de acesso por biometria ou por senha são especializações da validação de segurança de acesso.
- Os casos de uso filho: "Validar Segurança Acesso por Senha" e "Validar Segurança Acesso por Biometria" possuem exatamente o mesmo comportamento do caso de uso "Validar Segurança Acesso" pai, todavia, possuem comportamentos diferentes.

- Diferentemente dos casos de uso, atores possuem apenas um tipo de relacionamento: herança.
- Significa que o ator filho herda o comportamento e o significado do ator pai, acrescentando ou mudando seu comportamento.
- Em suma, o ator filho pode executar todos os casos de uso do ator pai e mais aqueles que apenas ele executa.

HERANÇA

Notação de herança entre atores UML

- Neste caso, podemos dizer que o Ator Filho é uma especialização do Ator Pai, ou que o Ator Pai e uma generalização do Ator Filho.
- Na figura a seguir, por exemplo, podemos interpretar que o Cliente Pessoa Jurídica pode "Efetuar Saque", "Contratar Empréstimo Pessoal" e "Aumentar Limite de Credito".
 Podemos afirmar que o ator Cliente não executa o caso de uso "Aumentar Limite de Credito", mas somente "Efetuar Saque" e "Contratar Empréstimo Pessoal".

Exemplo de herança entre atores UML

Exercício de Fixação

No desenvolvimento de um software para um sistema de venda de produtos nacionais e importados, o analista gerou o diagrama de casos de uso a seguir:

Exercício de Fixação

Da análise do diagrama, conclui-se que

- A) A execução do caso de uso "Consultar estoque" incorpora opcionalmente o caso de uso "Liberar desconto".
- B) A execução do caso de uso "Liberar desconto" incorpora opcionalmente o caso de uso "Realizar venda".
- C) A execução do caso de uso "Realizar venda" incorpora obrigatoriamente o caso de uso "Consultar estoque".
- D) A execução do caso de uso "Realizar venda de produto nacional" incorpora obrigatoriamente o caso de uso "Liberar desconto".
- E) Um gerente pode interagir com o caso de uso "Realizar venda", pois ele e um usuário.

Exercício de Fixação

Da análise do diagrama, conclui-se que

- A) A execução do caso de uso "Consultar estoque" incorpora opcionalmente o caso de uso "Liberar desconto".
- B) A execução do caso de uso "Liberar desconto" incorpora opcionalmente o caso de uso "Realizar venda".
- C) A execução do caso de uso "Realizar venda" incorpora obrigatoriamente o caso de uso "Consultar estoque".
- D) A execução do caso de uso "Realizar venda de produto nacional" incorpora obrigatoriamente o caso de uso "Liberar desconto".
- E) Um gerente pode interagir com o caso de uso "Realizar venda", pois ele e um usuário.

Atividade 4

O próximo passo agora será realizar a Atividade 3.

Nos vemos nela!

Dúvidas!

Prof^o. Me. Flávio Henrique Fernandes Volpon flavio.volpon@docente.unip.br

Bibliografia

I - BIBLIOGRAFIA BÁSICA

- PAULA FILHO, W. de P. **Engenharia de software: fundamentos, métodos e padrões.** 3.ed. Rio de Janeiro: LTC, 2012.
- PRESSMAN, R. S. Engenharia de Software: Uma Abordagem Profissional. 7. ed. AMGH, 2011.
- SOMMERVILLE, I. Engenharia de Software. 9.ed. São Paulo: Adison-Wesley, 2011.

II - BIBLIOGRAFIA COMPLEMENTAR

- PRIKLADNICKI., Rafael, WILLI, Renato, and MILANI, Fabiano. Métodos Ágeis para Desenvolvimento de Software. Bookman, 2014.
- COHN, M. Desenvolvimento de Software com Scrum. Bookman, 2011.
- SCHACH, S. R. Engenharia de software: os paradigmas clássico e orientado a objetos. 7.ed. São Paulo: McGraw-Hill, 2009.
- HIRAMA, K. Engenharia de software: qualidade e produtividade com tecnologia.
 Rio de janeiro, campus, 2011.
- WAZLAWICK, R. Engenharia de software: conceitos e práticas. Rio de janeiro, campus, 2009.