- α) Αν υπήρχε γωνία x τέτοια ώστε $\eta\mu x = \sigma \upsilon v x = 0$, τότε από τη βασική τριγωνομετρική ταυτότητα $\eta\mu^2 x + \sigma \upsilon v^2 x = 1$ θα είχαμε 0 + 0 = 1, το οποίο είναι άτοπο. Συνεπώς δεν υπάρχει γωνία x τέτοια ώστε $\eta\mu x = \sigma \upsilon v x = 0$.
- β) Αν $\sigma \upsilon v x = 0$ τότε από την εξίσωση $\sqrt{3} \cdot \eta \mu x = 3 \cdot \sigma \upsilon v x$ θα είχαμε και $\eta \mu x = 0$, το οποίο όμως όπως δείξαμε στο α) είναι άτοπο. Συνεπώς $\sigma \upsilon v x \neq 0$.

Με $\sigma v x \neq 0$ έχουμε ισοδύναμα

$$\sqrt{3} \cdot \eta \mu x = 3 \cdot \sigma \upsilon v x \Leftrightarrow \frac{\eta \mu x}{\sigma \upsilon v x} = \frac{3}{\sqrt{3}} \Leftrightarrow \varepsilon \phi x = \sqrt{3} \Leftrightarrow \varepsilon \phi x = \varepsilon \phi \frac{\pi}{3}$$

η οποία στο διάστημα $[0,2\pi]$ έχει λύσεις τις $x=\frac{\pi}{3}$ και $x=\pi+\frac{\pi}{3}=\frac{4\pi}{3}$.

γ) Με βάση τον παρακάτω πίνακα τιμών

X	0	π/2	π	3π/2	2π
$f(x) = \sqrt{3} \cdot \eta \mu x$	0	$\sqrt{3}$	0	$-\sqrt{3}$	0
$g(x) = 3 \cdot \sigma v x$	3	0	-3	0	3

οι ζητούμενες γραφικές παραστάσεις φαίνονται στο παρακάτω σχήμα.

Όπως βλέπουμε στο παραπάνω σχήμα οι γραφικές παραστάσεις των f,g τέμνονται στα σημεία A και B οι τετμημένες των οποίων είναι οι λύσεις της εξίσωσης $f(x) = g(x) \Leftrightarrow \sqrt{3} \cdot \eta \mu x = 3 \cdot \sigma \upsilon \nu x$, που όπως βρήκαμε στο ερώτημα β) είναι $\frac{\pi}{3}$ και $\frac{4\pi}{3}$ αντίστοιχα. Αυτή είναι η ζητούμενη γραφική ερμηνεία.

δ) Η ανίσωση $\sqrt{3} \cdot \eta \mu x < 3 \cdot \sigma \upsilon \nu x$ στο διάστημα $[0,2\pi]$, γραφικά σημαίνει να βρούμε για ποιες τιμές του x στο διάστημα $[0,2\pi]$, η γραφική παράσταση της f είναι κάτω από τη γραφική παράσταση της g. Από το παραπάνω σχήμα βλέπουμε ότι αυτό συμβαίνει για $x \in \left[0,\frac{\pi}{3}\right] \cup \left(\frac{4\pi}{3},2\pi\right]$.