

Neural Networks & Deep Learning

Introduction to Neural Networks

CSE & IT Department

ECE School

Shiraz University

Biological Inspiration

- Brain is a highly complex, nonlinear, and parallel computer
 - Simple processing units called neurons
 - Cycle times in milliseconds
 - Massive number of neurons (~ 10¹¹ in humans)
 - Massive interconnection (~ 60¹² connections)
- Brain can perform certain tasks (pattern recognition, perception) many times faster than fastest digital computers

Natural Intelligence

Structure of human brain

- Frontal lobe
 - Reward, attention, planning, short-term memory, motivation
- Parietal lobe
 - Sensory inputs from skin (touch, temperature, pain)
- Occipital lobe
 - Visual processing center
- Temporal lobe
 - Visual memories, language comprehension, emotion

From Receptor to Effector (~1s)

Human Nervous System Operation

May be broken down into three stages:

- Receptors
 - Collect information from the environment (e.g. photons on the retina)
 - Convert stimuli from human body or environment into electrical pulses as information conveyer to brain

Organization of Human Nervous Systems

Neural network

Represents the brain which receives information and makes appropriate decisions

Effectors

- Convert electrical impulses generated by the neural network into responses as system outputs
- Generate interactions with the environment (e.g. activate muscles)

Arrows

 Represent the flow of information/activation (feed-forward and feed-back)

Biological Neuron

Biological Neuron

Dendrites

 Receptive zones that receive activation from other neurons

Cell body (soma)

 Processes incoming activations and converts them into output activations

Axons

 Transmission lines that send activation to other neurons

Synapses

 Allow weighted transmission of signals (using neurotransmitters) between axons and dendrites

Brain: Amazingly Efficient Computer

- ~ 10¹¹ neurons
- ~ 10⁴ synapses per neuron
- ~ 10 spikes go through each synapse per second
- ~ 10¹⁶ operations per second
- ~ 25 Watts (Very efficient)
- ~ 1.4 Kg, 1.7 liters
- ~ 2500 cm² (Unfolded cortex)

Action of Biological Neuron

 Majority of neurons encode their outputs/activations as a series of brief electrical pulses (spikes or action potentials)

Firing of Neuron

- Behavior is binary (a neuron either fires or not)
- Neurons don't fire if their accumulated activity stay below threshold
- If activity is above threshold, a neuron fires (produces a spike)
- The firing frequency increases with accumulated activity until max. firing frequency reached
- The firing frequency is limited by refractory period of about
 1-10 ms

Man vs. Machine (Hardware)

Features	Human brain	Von Neumann computer
# elements	10 ¹⁰ - 10 ¹² simple neurons	10 ⁷ - 10 ⁸ transistors 10 ⁴ complex processors
# connections/element	massive	little or no
Switching frequency	slow (10 ³ Hz)	fast (109 - 1010 Hz)
Energy/operation/sec.	10 ⁻¹⁶ Joule	10 ⁻⁶ Joule
Power consumption	10 Watt	100 - 500 Watt
Structure	dynamic	static
Reliability of elements	low	reasonable
Reliability of system	high	reasonable
Decision speed/power	high	reasonable

Man vs. Machine (Software)

Features	Human brain	Digital computer		
Data representation	analog	digital		
Memory localization	distributed	localized		
Control	distributed	localized		
Processing	parallel	sequential		
Skill acquisition	adaptive-learnable	pre-programming		
Fault/error tolerance	fault tolerant	intolerant to errors		
Structure	trained	designed		
Activation	nonlinear	linear		

What are NNs?

- Artificial neurons are crude approximations of neurons found in brains
 - Physical devices
 - Mathematical constructs

 Artificial NNs (ANN) are networks of artificial neurons as crude approximations to parts of biological brains

Conceptual Definition of NNs

- An ANN
 - Is a machine, designed to model the brain how performs a particular task or function of interest
 - Is either implemented in hardware or simulated in software
 - Mimics the brain or nervous system, in senses:
 - Structure (simple processing units, massive interconnection, ...)
 - Functionality (learning, adaptability, fault tolerance, ...)

Pragmatic Definition of NNs

An ANN

- Is a massively connected parallel computational system
- Made up of many simple processing units
- Has propensity of storing experimental knowledge
- Can perform tasks analogously to biological brains
- Resembles the brain in two respects:
 - Knowledge is acquired by the network from the environment through a learning process
 - Inter-neuron connection strengths are used to store the acquired knowledge

Why NNs?

- They are extremely powerful computational devices
- Massive parallelism makes them very efficient
- They can learn from training data and generalize to new situations
- They are particularly fault tolerant (as "graceful degradation" in biological systems)
- They are robust and noise tolerant
- They can do anything a symbolic/logic system can do, and more

Mathematical Model of a Neuron

Biological Neural Network	Artificial Neural Network
Soma	Neuron
Dendrite	Input
Axon	Output
Synapse	Weight

Characteristic of Neuron

- A neuron can receive many inputs
- Inputs may be modified by synaptic weights at receiving dendrites
- A neuron sums its weighted inputs
- An activation function limits amplitude of output to {0, 1}
- A neuron can transmit an output signal

Output can go to many other neurons

Artificial Neuron

Mathematically,
$$v = w_0 + \sum_{i=1}^n x_i w_i \implies y = f(v)$$

f(.): threshold function

ANN Features

- Neurons act nonlinearly
- Information processing is local
- Memory is distributed
- The dendrite weights learn through experience
- The weights may be inhibitory or excitatory
- Neurons can generalize novel input stimuli
- Neurons are fault tolerant and can sustain damage

ANN Categories

- Direction of information (signal) flow
 - Feed-forward network (no feed-back connections)
 - Recurrent network (with at least one feed-back connection)
- Number of layers
 - Single layer network
 - Single hidden-layer network
 - Multilayer network (shallow/deep network)
- Connectivity
 - Fully-connected network
 - Partially-connected network

ANN Categories

Activation function

- Threshold (binary, bipolar)
- Linear (identity)
- Nonlinear (sigmoid, radial-basis)

Learning methodology

- Supervised learning
- Unsupervised learning
- Reinforced learning

Training method

- Static
- Dynamic

NN Design Decisions

- Architecture: pattern of connections between neurons
 - No. of layers, no. of neurons in each layer, no. of links
 - Connectivity
- Learning algorithm: method of determining the connection weights
 - Supervised, self-organizing, competitive
- Activation function: mapping of neurons' behavior
 - Threshold, linear, nonlinear

Single-layer Feed-forward NN

Multilayer Feed-forward NN

- More powerful
- Harder to train
- Open loop

Recurrent NN

- More powerful
- Harder to train
- Closed loop

Knowledge Representation in ANN

Shirazu ac ir

- What is knowledge?
 - Information or models used to interpret, predict and appropriately respond to outside world (environment)
- Quality of knowledge representation generally translates into quality of solution
 - Better representation means better solution
- Knowledge representation in NNs is not well-understood
 - There is little theory that relates a given weight to a particular piece of information
- Knowledge is encoded in free parameters of NN
 - Weights and thresholds

Knowledge Representation Rules

Rule 1:

 Similar inputs from similar classes should usually produce similar representations inside the network, and should, therefore, be classified as belonging to the same category

Rule 2:

 Inputs to be characterized as separate classes should be given widely different representations in the network

Rule 3:

 If a particular feature is important, then there should be a large number of neurons involved in representation of that item in network

Rule 4:

 Prior knowledge and invariances should be built into design of network, thus simplifying learning

Knowledge Representation Rules

- Advantages of building-in prior knowledge
 - Specialized structure
 - Benefits of specialized structure
 - Biologically plausible, less complication, fewer free parameters, faster training, fewer examples needed, better generalization
- How to build-in prior knowledge
 - No hard and fast rules
 - In general, use domain knowledge to reduce complexity of NN based on its performance characteristics
- Built-in Invariances
 - Invariance?
 - Fault tolerance
 - Immunity to transformations
 - Invariance by structure, training, feature space

NN Learning

- Learning:
 - To acquire and maintain knowledge of interest
- Knowledge of environment that will enable NN to achieve its goals
 - Prior information
 - Current information
- Knowledge can be built into NNs from input-output examples via learning using training algorithms
- The most powerful property of NNs: ability to learn and generalize from a set of training data

NN Learning

- NNs adapt the weights of connections between neurons so that final output activations are correct
- Three broad types of learning:
 - Supervised Learning (learning with a teacher)
 - Reinforcement learning (learning with environment feedback)
 - Unsupervised learning (learning with no help)
- Most of human/animal learning is unsupervised
- If intelligence was a cherry ice-cream cake,
 - unsupervised learning would be cake
 - supervised learning would be icing on cake
 - reinforcement learning would be cherry on cake

An Example

- Using NN for signature verification
- Prior knowledge
 - Architecture of NN
- Current knowledge
 - Input-output examples, being used for NN training
- Learning
 - Modification of free parameters (weights, thresholds, ...)
- Generalization
 - Using the trained NN for predicting output for unseen input

Advantages of ANNs

- Efficiency
 - Inherent massively parallel
- Robustness
 - Can deal with incomplete and/or noisy data
- Fault tolerance
 - Still works when part of net fails
- User friendly
 - Learning instead of programming

Drawbacks of ANNs

- Difficult to design
 - No clear design rules for arbitrary applications
- Hard or impossible to train
 - When training data are rare
- Difficult to assess internal operation (black box)
 - Difficult to find out what tasks are performed by different parts of the net
- Unpredictable
 - Difficult to estimate future network performance based or current behavior

Real-world NN applications

- Financial modeling (predicting stocks, currency exchange rates)
- Time series prediction (climate, weather, airline marketing)
- Computer games (intelligent agents, backgammon)
- Control systems (autonomous robots, microwave controllers)
- Pattern recognition (speech recognition, hand-writing recognition)
- Data analysis (data compression, data mining)
- Noise reduction (function approximation, ECG noise reduction)
- Bioinformatics (protein secondary structure, DNA sequencing)

Other Applications of NNs

History of NN

- 1943 McCulloch-Pitts neuron model
- 1949 Hebbian learning rule
- 1958 Single layer network, Perceptron
- 1960 Adaline
- 1969 Limitations of Perceptrons
- 1982 Kohonen nets, Associative memory, Hopfield net
- 1985 ART

History of NN

- 1986 Back-propagation learning algorithm for multi-layer Perceptron
- 1990s Radial basis function networks
- 2000 Ensembles of NNs, Cascaded Networks
- 2004 Deep Belief Networks
- 2010~ Convolutional Networks, Autoencoders, LSTMs

Some Useful Notations

 x_i, y_j : outputs of units X_i and Y_j

 w_{ij} : weight on connection between X_i and Y_j

 b_j , θ_j : bias and threshold of neuron Y_j

$$W = \{w_{ij}, i = 1, \dots, n \mid j = 1, \dots, m\} = W_{n \times m}$$

$$\overrightarrow{w}_{\cdot j} = \begin{bmatrix} w_{1j} \\ \vdots \\ \vdots \\ w_{nj} \end{bmatrix} \text{ vector of weights to } Y_j$$

 $y_i n_i = \text{net input to neuron } Y_i$

$$y_i i n_j = b_j + \sum_{i=1}^n x_i w_{ij} = b_j + \vec{x} \cdot \vec{w}_{ij} \implies y_j = f(y_i i n_j)$$

If the brain were so simple that we could understand it then we would be so simple that we couldn't understand it

Lyall Watson