BLE-TPT 蓝牙串口透传模块

手册 版本: 1C http://wch.cn

1、概述

BLE-TPT 蓝牙串口透传模块基于 CH9141 蓝牙串口透传模块开发,支持 BLE4.2,模块支持广播模式、主机模式和从机模式。支持串口 AT 配置和在从机模式下的蓝牙通信配置。串口最高波特率 1Mbps。蓝牙从机模式下可设置蓝牙名称、厂商信息等参数,也可通过 APP 或者串口命令配置,方便快捷。

提供电脑端虚拟串口驱动可使蓝牙接口直接使用串口调试工具、兼容串口应用程序,无需二次开发即可与串口接口通讯,轻松让串口实现免插线和不受线缆距离限制。

BLE-TPT 模块选型表:

型号	模块尺寸封装	特点
BLE-TPT-A-ANT	BLE-TPT-A	板载 PCB 天线; 体积小; 内置 32M 晶体。
BLE-TPT-B-ANT	BLE-TPT-B	板载 PCB 天线; 内置 32M 晶体; 功能引脚部分引出.

CH9141 一些应用方案框图:

图 1 蓝牙主机通过 CH9141 蓝牙与串口设备进行串口通讯框图

图 2 两端 MCU 或串口设备使用 CH9141 蓝牙主从连接进行通讯框图

2、特点

- 支持广播模式、主机模式和从机模式
- 支持串口 AT 配置和蓝牙传输配置
- 提供电脑端蓝牙虚拟串口驱动
- 兼容已有串口软件和工具,无需二次开发
- 支持 Windows/Linux/Android/iOS 等系统蓝牙主机连接
- 提供通用 GPIO 和同步 GPIO 功能, 支持蓝牙控制
- 支持一路 12 位 ADC 采集, 支持蓝牙读取
- 掉电睡眠电流 0.3uA
- 传输距离 100 米
- 发射功率 8 档可调
- 支持 3.3V 和 2.5V 工作电压
- 异步串口最高通讯波特率 1Mbps
- 串口支持 MODEM 联络信号 RTS、DTR、DCD、RI、DSR、CTS
- 串口支持5、6、7或者8个数据位以及1或者2个停止位
- 串口支持奇、偶、无校验、空白 0、标志 1 等校验方式
- 支持获取芯片供电电压参数

3、BLE-TPT-A 封装尺寸及引脚

引脚号	引脚名称	类型	引脚说明
1	SLEEP	I	低功耗控制引脚,低电平有效,内置上拉电阻
2	VCC	Р	模块电源输入
3	GND	Р	电源地
4	AT	ı	AT 透传功能切换引脚
4	AI	'	0: AT 模式 1: 透传模式
5	RTS#	1/0	RTS#: MODEM 联络输出信号,请求发送,低电平有效
5	/TNOW	1/0	TNOW: UART 的 RS485 收发切换控制引脚(注 2)
6	CTS	I	MODEM 联络输入信号,清除发送,低电平有效
7	TXD	0	串口发送引脚
8	RXD	I	串口接收引脚

注(1): P: 电源引脚, I: 输入引脚, 0: 输出引脚

注(2): RTS#/TNOW 在芯片上电后设置为上拉输入模式,默认高电平,外部可接一个 4.7K 下拉电阻 设置为低电平,芯片上电完成后会根据输入电平的高低分别选择 RTS#和 TNOW 引脚功能。TNOW 引脚默认串口发送时输出高电平,不发送时输出低电平。

4、BLE-TPT-A 封装推荐焊盘尺寸

名称	值	单位
Α	10. 22	
В	10.6	
С	1. 02	
D	0.8	mm
Е	1. 27	
F	0. 74	
G	1. 7	

5、BLE-TPT-B 封装尺寸及引脚

引脚号	引脚名称	类型	引脚说明
			芯片上电时为 RELOAD 恢复出厂设置功能输入引脚,
1	RELOAD	1/0	检测到连续 2 秒低电平后恢复出厂设置;
'	/LED		芯片上电完成后为 LED 芯片状态指示信号输出引脚,
			低电平有效;
2	SLEEP	I	低功耗控制引脚,低电平有效,内置上拉电阻
3	GP101	-	同步输入 10
4	GP100	0	同步输出 10
5	VCC	Р	模块电源输入
6	GND	Р	电源地
7	A.T		AT 透传功能切换引脚
/	AT		0: AT 模式 1: 透传模式
8	DSR#	1/0	DSR#: UART 的 MODEM 输入信号, 数据装置就绪
0	/GP106	1/0	GP106:通用输入输出 10 (注 2)
	DTR#		DTR#: UART 的 MODEM 输出信号,数据终端就绪
9	/BLESTA	1/0	BLESTA:蓝牙连接状态输出(注 3)
	/GP104		GP104:通用输入输出 10
10	TXD	0	串口发送引脚

11	RXD	1	串口接收引脚
12	RST#	1	模块复位引脚,低电平有效

- 注(1): P: 电源引脚, I: 输入引脚, 0: 输出引脚
- 注(2): DSR#/GP106 引脚功能复用, 默认 DSR#引脚功能, 可使用 AT 或者 APP 进行设置启用 GP10 功能, 启用后该引脚 DSR#功能失效。
- 注(3): DTR#/BLESTA/GPI04 引脚功能复用,默认 DTR#引脚功能,DTR#/BLESTA/GPI04 在芯片上电后设置为上拉输入模式,默认高电平,外部可接一个 4.7K 下拉电阻设置为低电平,芯片上电完成后会根据输入电平的高低分别选择 DTR#和 BLESTA 引脚功能。BLESTA 引脚默认蓝牙未连接输出低电平,蓝牙连接后输出高电平。GPI0 可以使用 AT 或者 APP 进行设置启用,设置 GPI0 功能后该引脚的 DTR#/BLESTA 功能失效。

6、BLE-TPT-B 封装推荐焊盘尺寸

名称	值	单位		
Α	16. 61			
В	12. 84			
С	1. 36			
D	1. 27			
Е	8. 9	mm		
F	1. 05			
G	0.8			
Н	0. 65			

7、布局建议

模块上端为板载天线,天线的布局与无线通信的质量有关,良好的通信质量可保证稳定的数据传输速率。模块可以单独运行而不需要额外的地层,但是在将该模块安装到其他 PCB 上时须注意:天线区域必须远离其他金属器件,其距离必须大于 20mm。靠近天线的任何导体都可能严重影响天线方向图(Radiation Pattern)。

下图为模块的参考布局示意图,前三种情况是正确的,只需地层没有超出模块的地层边缘即可。 后三种情况是不正确的,左边示例为天线下方有接地层,中间示例为天线周围没有足够的间隙,最后 一个示例为电池金属外壳未远离天线区域。

8、功能说明

功能参考 CH9141 芯片手册。

9、参考原理图

10、回流焊条件

潮敏等级	MSL3
平均斜率上升率(TL to TP)	最大3℃/s
预热	
最小温度(Tsmin)	150°C
最大温度(Tsmax)	200°C
时间(最小 - 最大)(ts)	60-180s
Tsmax - TL斜率上升率	最大3°C/s
保持时间	
温度(TL)	217°C
时间(tL)	60-150s
峰值温度(Tp)	260+0/-5°C
实际峰值温度5°C内的时间(tp)	20-40s
倾斜下降率	最大6℃/s
25℃到峰值温度的时间	最大8 min