COMP9020 17s1 • Problem Set 5 • 31 March 2017

Equivalence Relations, Orderings

Exercise 1. Prove or disprove that $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ is an equivalence relation if

- (a) \mathcal{R} is defined by $a\mathcal{R}b$ iff a+b is divisible by 3;
- (b) \mathcal{R} is defined by $a\mathcal{R}b$ iff a+2b is divisible by 3.

Exercise 2. Prove that if $m, n \in \mathbb{Z}$ and $m = n \pmod{p}$ then $m^2 = n^2 \pmod{p}$.

Exercise 3. Consider the relation $\mathcal{R} \subseteq \mathbb{R} \times \mathbb{R}$ defined by $(a,b) \in \mathcal{R}$ iff either $a \leq b-0.5$ or a=b. Show that \mathcal{R} is a partial order, but not a total order.

Exercise 4. Let binary relation \mathcal{R} on $\{1,\ldots,20\}$ be defined by $a\mathcal{R}b$ iff either a=b or a-b>10.

- (a) Show that \mathcal{R} is a partial order.
- (b) Is $\langle \{1, \dots, 20\}, \mathcal{R} \rangle$ a lattice?
- *Exercise 5. Using the set $\{1, ..., 10\}$ with the natural total order, define $A = \{1, ..., 10\} \times \{1..., 10\}$ and consider the two orderings over A:
 - product \sqsubseteq_P
 - lexicographic \sqsubseteq_L

Find the maximal length of a chain $a_1 \sqsubseteq a_2 \sqsubseteq \ldots \sqsubseteq a_n$ (such that $a_i \neq a_{i+1}$) for each of these orderings.