第四次上机实验

生信 2001 张子栋 2020317210101

GitHub 地址: MarkdownNotes/R at main · Bluuur/MarkdownNotes (github.com)

- 本次实验所需文件
 - hg19_gene_table.txt
 - o hg19.chrom.sizes.txt

要求: 不用任何循环语句

1. 对人染色体长度数据 hg19.chrom.sizes.txt

1.用 read.table 正确读入数据

```
1 data <- read.table('hg19.chrom.sizes.txt', header = F)</pre>
```

2.最长和最短的染色体分别是哪条? 各多长?

```
data <- read.table('hg19.chrom.sizes.txt', header = F)
data[which(data$v2 == max(data$v2)),]
data[which(data$v2 == min(data$v2)),]</pre>
```

A data.frame: 1 × 2

	V1	V2
	<chr></chr>	<int></int>
1	chr1	249250621

A data.frame: 1 × 2

	V1	V2
	<chr></chr>	<int></int>
22	chr21	48129895

3.求所有染色体的总长度和平均长度

```
data <- read.table('hg19.chrom.sizes.txt', header = F)
cat('Length in total', sum(data$V2), '\n')
cat('Average length', mean(data$V2))</pre>
```

```
1 Length in total 3095677412
2 Average length 128986559
```

1.用函数 table 得到每条染色体上的基因个数,并画 barplot

```
data <- read.table("hg19_gene_table.txt", header = T)
table(data$chrom)
barplot(table(data$chrom))</pre>
```

1	chr1	_	chr1_gl000192_random	
2	5914	9	2	
3	chr10	chr11	chr12	
4	2866	3473	2940	
5	chr13	chr14	chr15	
6	1131	1892	2170	
7	chr16	chr17	chr17_ctg5_hap1	
8	2488	3286	62	
9	chr17_g1000205_random	chr18	chr19	
10	1	898	3837	
11	chr19_gl000209_random	chr2	chr20	
12	18	4108	1688	
13	chr21	chr22	chr3	
14	789	1280	3357	
15	chr4	chr4_ctg9_hap1	chr4_gl000193_random	
16	2268	14	1	
17	chr4_gl000194_random	chr5	chr6	
18	4	2689	3051	
19	chr6_apd_hap1	chr6_cox_hap2	chr6_dbb_hap3	
20	242	476	436	
21	chr6_mann_hap4	chr6_mcf_hap5	chr6_qb1_hap6	
22	387	424	454	
23	chr6_ssto_hap7	chr7	chr7_gl000195_random	
24	392	2742	9	
25	chr8	chr9	chrM	
26	2133	2302	2	
27	chr∪n_gl000211	chrUn_gl000212	chrUn_gl000213	
28	1	1	4	
29	chr∪n_g1000215	chrUn_gl000218	chr∪n_gl000219	
30	2	3	3	
31	chrUn_g1000220	chrUn_g1000222	chrUn_g1000223	
32	21	5	10	
33	chrUn_g1000224	chrUn_g1000227	chrUn_g1000228	
34	2	1	5	
35	chr∪n_gl000241	chrX	chrY	
36	2	2582	432	

2.结合染色体长度计算每条染色体上的基因密度(每 Mbp 的基因个数)

```
data <- read.table("hg19_gene_table.txt", header = T)
chromoLength <- read.table('hg19.chrom.sizes.txt', header = F)
geneNum <- table(data$chrom)
geneNum <- geneNum[as.vector(chromoLength$v1)]
geneNum / (chromoLength$v2 / 1000000)</pre>
```

```
chr1
                 chr2
                          chr3
                                    chr4
                                             chr5
                                                      chr6
                                                                chr7
   chr8
   23.727122 16.891491 16.952625 11.864762 14.863312 17.830107 17.230257
2
   14.573254
       chr9
              chr10 chr11
                                chr12
                                           chr13
                                                     chr14
                                                              chr15
3
   16.301566 21.145869 25.724684 21.964575 9.820276 17.624668 21.164250
  27.535906
5
      chr17
              chr18 chr19
                                  chr20
                                            chr22
                                                     chr21
                                                               chrX
   chrY
 40.470368 11.501430 64.892034 26.782802 24.949046 16.393138 16.629038
   7.275965
```

3.计算基因长度, 绘制基因长度的 boxplot

```
data <- read.table("hg19_gene_table.txt", header = T)
geneLength <- data$txEnd - data$txStart + 1
boxplot(geneLength)</pre>
```



```
data <- read.table("hg19_gene_table.txt", header = T)
gene <- cbind(data$geneName,data$txEnd - data$txStart + 1)
gene[which(gene[,2]==max(gene[,2])),]</pre>
```

'ATL1' · '99986'

5.阅读 cor 函数的帮助文件, 计算基因长度和外显子个数的相关系数

```
data <- read.table("hg19_gene_table.txt", header = T)
gene <- cbind(data$txEnd - data$txStart + 1, data$exonCount)
cor(gene[,1], gene[,2])</pre>
```

0.376018862127503

6.用 prop.table 分染色体计算 +/- strand 上基因的百分比

```
data <- read.table("hg19_gene_table.txt", header = T)
gene <- table(data$strand)
prop.table(gene)</pre>
```