

Application of Machine Learning Algorithms to Predict Flight Arrival Delays

Sofya Torosyan

TIME	DESTINATION	FLIGHT	GATE	REMARKS
12:39	LONDON	CL 903	31	CANCELLED
12:57	SYDNEY	UQ5723	27	CANCELLED
13:08	TORONTO	IC5984	22	CANCELLED
13:21	TOKYO	AM 608	41	DELAYED
13:37	HONG KONG	IC5471	29	CANCELLED
13:48	MADRID	EK3941	30	DELAYED
14:19	BERLIN	AM5021	28	CANCELLED
14:35	NEW YORK	ON 997	11	CANCELLED
14:54	PARIS	MG5870	23	DELAYED
15:10	ROME	RI5324	43	CANCELLED

ABSTRACT

Flight delays in aviation have high impact on environment, passengers, airports and airlines. It is very essential to have some confidence/knowledge whether flight will be delayed or not. I applied machine learning algorithms like logistic regression, decision tree, random forest, support vector machine and neural networks classifiers to predict arrival delays.

DATA AND FEATURES

The flight delay data was collected and published by the DOT's Bureau of Transportation Statistics. Data contains 5 million examples with 30 features. In the end the following features with highest importance score were used for applying ML algorithms:

Departure delay, Scheduled time, Elapsed time, Taxi out

MODELS

Applied machine learning algorithms using scikit learn/keras API s.

Model	sklearn/keras method	
Logistic Regres.	Log. Regression for binomial prediction	
Decision Tree	DecisionTreeClassifier	
Random Forest	RandomForestClassifier	
SVM	SVC with gamma = 'auto' option	
Neural Network	Neural network with SGD and ADAM optimizers	

RESULTS and DISCUSSION

importance scores has 36 max depth and used 'entropy' criterion.

My final

decision tree

on 4 features

with highest

For all models except NN got more than 90% accuracy.

RESULTS

Input data: 100000 samples, 70% for train, 30% for split.

Features: Below are mentioned 4 features having highest ACCURACIES

score(received from	DecTree)	Logistic Regression	0.9956
DEPARTURE_DELAY	0.377	Decision Tree	0.9531
SCHEDULED_TIME	0.19	Random Forest	0.948
ELAPSED_TIME	0.16	SVM	0.98
TAXI_OUT	0.09	Neural Network	0.5

FUTURE WORK

As I used sample from initial data in future I will do the same on the whole data using Apache Spark unified analytics assignment algorithm". engine which is very convenient for big data preprocessing and applying machine learning models.

REFERENCES

Cetek, C., Cinar, E., Aybek, F., & Cavcar, A."Analysis of aircraft ground traffic flow and gate utilisation using a hybrid dynamic gate and taxiway

Vikrant A. Dev, Mario R. Eden, inComputer Aided Chemical Engineering, 2019"Decision Trees"

INTRODUCTION

Flight delays are responsible for large economic and environmental losses. They are highest indicators for air transportation system. Delay may be represented as difference between scheduled and real times (e.g. flight can be considered to be delayed if that difference > 15. The US FAA considers this calculation.). The economic impact of flight delays for domestic flights in US is estimated to be more than \$19 Billion per year to the airlines and over \$41 Billion per year to the national economy.