TNS Journal Club: Interneurons of the Hippocampus, Freund and Buzsaki

Rich Turner (turner@gatsby.ucl.ac.uk)

Gatsby Unit, 22/04/2005

Introduction

- Interneuron $\stackrel{\mathrm{def}}{=}$ GABAergic non-principal cell
- Usually involved in *local circuitry*.
- Unifying review of morphological, neurochemical and physiological features of interneurons in the hippocampus.
- Massively complex:
 - Loads of facts ($\sim 10^4$) which are often exceptions to previous facts.
 - (Many) Life-times of work (original studies are 100 years old).
 - Dictionary like description is an exponential task.
- Quite an old paper (9yrs) and experimental focus is on rodents.

Why make a career out of interneurons?

• Only 10% of cells are interneurons - so why bother?

But:

ullet Primary cells are covered with synapses from interneurons (interneuron \rightarrow 1000-3000 pyramidal cells)

The authors of this paper believe:

- Interneurons have a crucial role in regulating the complex interactions between principal cells.
- Interneurons represent a key to the understanding of network operations.
- In contrast to primary cells in a hippocampal subfield, the afferent and efferent connectivity of interneurons show *great variation* thereby enabling them to carry out multiple tasks.

Morphology

- Look at data from a wide range of single cell labelling studies
- Classification of interneurons based on dendritic and axonal arborization (branching) patterns, the location of the cell body and the afferent and efferent connection types.

Two examples - connections

- Chandelier or Axo-axonic cells
 - Characteristic axon termination forming rows of boutons aligned parallel with the initial segments of principals.
 - Highly specific termination: Exclusive post synaptic elements are axon initial segments of pyramidal cells.
- Basket Cell: at least 5 different types
 - heterogeneous afferent connections
 - innervate cell bodies of principal cells

Two examples-morphology

Axo-axonal (top) and Basket cells (bottom). Quite similar: Dendritic trees tufted and span all layers. Small number of basket cell collaterals penetrate the statum radiatum. Numerous vertically oriented axon terminal segments in the axo-axonal cells.

Morphological classification

Superposed pictures of real neurons in situ 6. Axo-axonic, 11.Basket cell of CA1, 7. O-LM cell of CA3 - feedback interneuron

Rich T. 6

Morphological classification

Hippocampus

Summary of morphological classification: nb arborized axons correspond closely to field's afferents Rich T.

Neurochemical classification

Produced using a sequence of stains, final for neuropeptide in synaptic bouton.

Subcortical innervation of hippocampal interneurons

- Generally comes from relatively small groups of neurons and activate GABAergic interneurons which in turn exert GABAergic inhibition onto large populations of principal cells.
- Two pathways from the septum:
 - GABAergic pathway into the CA3 subfield
 - Cholinergic pathway direct to principal cells in DG,CA1 and CA3
- Serotonergic Raph-Hippocampal Projection (from median raphe nucleus)
 - two types of afferents possibly with different mechanisms of action one tending to release serotonin at non-synaptic sites.
- Noradrenergic innervation of the hippocampal formation from the locus coeruleus.
 - Particularly dense in regions receiving mossy fibre input and the majority do not make conventional synapses.

Hippocampal interneurons with extrahippocampal or commissural projection

- Unconventional feature of non-principal cells
- Hilar commissural projection there is a component of direct inhibition in the feed-forward inhibitory response evoked in the DG by commissural stimulation.
- Hippocamposeptal projection GABAergic feedback

Post Synaptic Actions of Interneurons

- Dendrites, cell bodies, and the axon initial segment of *every principal cell* in cortical structures are innervated by inhibitory interneurons.
- Stimulation of afferent fibres elicits biphasic IPSPs in principal cells
 - first phase due to activation of (fast) $GABA_A$ receptors
 - increases the membrane conductance and therefore shunts the membrane currents
 - late phase is mediated by K^+ ion flux through channels linked by G-proteins to (slow) $GABA_B$ receptors.
- Numerous unanswered questions remain regarding how the GABA receptors are activated.

Inhibition in networks 1

- interneurons provide stability by feedback and feedforward inhibition
 - some interneurons are innervated exclusively by extrahippocampal afferents (feedforward)
 - some exclusively by inter-regional and extra-regional afferents (feedback)
 - but many are innervated by both
- recurrent inhibition is faster than the refractory period of principal cells
- feed-forward inhibition is particularly strong in the hippocampus
- there is also evidence for disinhibition
- Boolean logic cannot capture the rich dynamics of these networks dynamics (surprise surprise)

Inhibition in networks 2

- ullet single pyramidal cell o 100s interneurons o 1000-3000 pyramidal cells
- $\bullet \Rightarrow in \ vivo \ Hippocampus \ with \ no \ input \ is \ quiet$
- However, in vitro the feedback loops are weakened by behaviour via neuromodulators and neurotransmitters
- ullet Interneurons rhythmically inhibit the pyramidal cells during heta causing their phase locked response

Rich T.

Role of interneurons in synaptic plasticity

- Inhibitory circuits may modify the long-term excitability of principal cells in several ways.
- GABAergic synapses on principal cells may undergo long term modifications (contrary to previous belief).
- The interneuron circuitry may be modified in a number of ways, including:
 - presynaptic changes of excitatory terminals on interneurons
 - modification of the postsynaptic sites on interneurons
 - excitability changes of interneurons
 - presynaptic modification of GABA release
 - post-synaptic GABA sensitivity changes

Interneurons shape population activity of principal cells

- Interneurons appear to be critically involved in the induction and maintenance of network oscillations in the theta (\sim 10Hz), gamma (40-100Hz), and ultrafast (200Hz) frequency ranges.
- They may also regulate recruitment of principal cells during SPW bursts.
- More from Máté on this one...

Rich T.

Summary

- There is a(n ever growing) wealth of morphological, physiological, neurochemical data.
- This can be collected without regard to relevance or wider implication.
- The task of the theorist to see the wood for the trees is not trivial.
- It has to involve ignoring large proportions of the forest for now.