CONSTANTS

Plant Population Loss (pop_loss / PopLoss) [numeric]

$$pop_loss = \frac{1}{3} \left(\sum_{i=1}^{3} pop_i \right)$$

Plant Population Adjustments (pop_i / Ppop_i) [numeric]

A model for the loss of potential yield based on plant population.

 $i \in (1,2,3)$

Population Adjust. (pop_i)

Population Observ. *i* (POP_i)

$$pop_{i} = if\left(POP_{i} < 90000, -0.0003 \times \left(\frac{POP_{i}}{1000}\right)^{2} + 0.0456 \times \left(\frac{POP_{i}}{1000}\right) - 1.0246\right)$$

Soil Parameter b (soil_b / b) [numeric]

Comes from a look-up table

Soil Parameter b (b)

Look-up Table

Current
Previous
Change
Constant

if(b<1)b=2.1

Soil Water Holding Capacity (soil_qfc / qfc) [numeric]

$$soil_qfc = a2 \times (\frac{a1}{5})^{\frac{1}{soil_b}}$$

Soil Permanent Wilting Point (soil_qpwp / qpwp) [numeric]

This parameter is currently not employed in the code

$$qpwp = \left(\frac{a2 \times a1}{1500}\right)^{\frac{1}{b}}$$

Constants: soil type dependent

	b ≤ 20	b > 20
Карра (к)	0.0027	0.0008
Gamma (γ)	0.00014	0.00002701
stress_wA	2	5
stress_wB	0.6	0.8
stress_wC	300	200
RUEZero1	RUEZero	2.1

Constants: Constant

Parameter	Value	Calculation of	Comment
a1	0,4	qfc, qpwp	
a2	0,6	qfc, qpwp	
Albedo	0.23	radiation_solar	
beta0	0,00935	root_depth	
c1	378,8	rsum	
c2	8	rsum	
CSrad_k	-0,64	na	
CSrad_S	1,27	na	
delta	0,002715	root_depth	
DiseaseModel	0	na	
DiseaseProgress	0	na	
Dsowing	0,02	root_depth	
Extinction	0,7	na	
fZero	0,000015	f	
gamma2	0,00007	na	
Gsc	0,082	na	
kappa2	0,00148	na	
Ку	0,42	na	
LAImu	1150	na	
LAIsigma1	381	na	
LAIsigma2	700	na	
LAlzero	3200	na	
length0	0,0491	root_depth	
muMin02	-0,00017	na	
muZero	0,06556	na	
nuZero	0,005866	na	
psiCrop	-1500	esoil	
RUEZero	1,95	RUEZero1	
Tbase	3	ΔΤ	
Tzero	90	root_depth, bbch	
Albedo	0,23	na	
SBconstant	4,90E-09	radiation_LW	

INITIAL CALCULATIONS (COLUMN-WISE)

Day Of Year (doy / doy) [integer series]

Leap years are basically ignored, i.e. in leap year, 29 Feb = doy 60, in non-leap year 1 March = doy 60.

Day Of Year (doy)

1 Jan

 $Day\ of\ year\ with\ base\ January\ 1$

Delta (delta / na) []

Not specifically given in OM, but is included as part of the et calculation.

$$delta = \frac{press_slope}{press_slope + psychroC \times (1 + 0.34 \times vh_x)}$$

Evapotranspiration (evap / Epenman) [mm/day ? /]

The version used in R is slightly different from that in OpenModel. The way OM works, the evap values in a table post Evaluate have all been moved a day earlier. The R version is sourced from ???.

Humidity, Daily Maximum (hum_h /) [%]

Humidity, Daily Maximum (hum_h)

Weather service

Current
Previous
Change
Constant

 $\mathsf{hum_h} \!=\! \mathit{max} (\mathit{hum}_t, \mathit{for}\, t \!\in\! \mathtt{Daily_obs})$

Humidity, Daily Mean (hum_x / RH) [%]

If hum_x is not available, it can be estimated following OM.

$$hum_x = \frac{1}{n} \left(\sum_{i=1}^n hum_i \right)$$

$$if hum_x = na, hum_x = \frac{press_sat_l}{press_sat_x} \times 100$$

Humidity, Daily Minimum (hum_I /) [%]

Humidity, Daily Minimum (hum_l)

Weather service

Current
Previous
Change
Constant

 $\mathsf{hum_l} \!=\! \min(\mathit{hum}_t, \mathit{for}\, t \!\in\! \mathsf{Daily_obs})$

Pressure (press)

Pressure (press)

Elevation (mamsl)

$$press = 101.3 \times \left(\frac{293 - 0.0065 \times mamsl}{293}\right)^{5.26}$$

Pressure, Saturation Vapour, "Actual" (press_sat_a / eActual)

Used only in the estimation of radiation if this data is not available from sensors.

Pressure, Sat. Actual (press_sat_a)

Pressure, Sat. Min. (press_sat_l)

press_sat_a = press_sat_l

Pressure, Saturation Vapour, at Daily Maximum Temperature (press_sat_h / esMax)

Pressure, Sat. Max (press_sat_h)

Temperature, Daily Max. (temp_h)

press_sat_h=0.6108
$$\times$$
exp $\left(\frac{17.27\times temp_h}{temp_h+237.3}\right)$

Pressure, Saturation Vapour, at Daily Minimum Temperature (press_sat_x / esMean)

$$press_sat_x = \frac{press_sat_l}{press_sat_h} \div 2$$

Pressure, Saturation Vapour, at Daily Minimum Temperature (press_sat_I / esMin)

Pressure, Sat. Min. (press_sat_l)

Temperature, Daily Min. (temp_l)

$$press_sat_l = 0.6108 \times exp \left(\frac{17.27 \times temp_l}{temp_l + 237.3} \right)$$

Pressure, Saturation, Slope of Curve (press slope / VPslope)

OM has the second constant as 0.6101. 0.6108 was taken from the original source???

Press., Sat. Slope Curve (press_slope) Temperature, Daily Mean (temp_x)

$$press_slope = \frac{4098 \times 0.6108 \times exp(17.27 \times temp_x \div (temp_x + 237.3))}{(temp_x + 237.3)^2}$$

Pressure, Vapour, Daily Mean (press_vapour)

The alternative / backup calculation is taken from OM.

$$press_vapour = \left(\frac{press_sat_max \times hum_h}{100} + \frac{press_sat_min \times hum_l}{100}\right) \div 2$$

$$if press_vapour = na, press_vapour = press_sat_a$$

Pressure, Vapour, Deficit (psi)

Not directly included in OM, but part of the calculations of et

$$psi = \frac{psychroC}{press_slope + psychroC \times (1 + 0.34 \times vh_x)}$$

Psychrometric C (pyschroC)

OM has 0.00065 in its calculation. Not sure if this an error by me, or a simplification in OM

Psychrometric C (psychroC)

Pressure, Atmos. Base (press)

 $psychroC = 0.000665 \times press$

Radiation, Balance (radiation_balance / na)

Not directly included in OM, but part of the calculations of et

 $radiation_balance = 0.408 \times (radiation_net - radiation_LW)$

Radiation, Global (radiation_global / Rso)

OM does not have the [+2x10-5 x mamsl] component.

 $radiation_global = (0.75 + 2 \times 10^{-5} mamsl) \times radiation_space$

Radiation, Long-wave (radiation_LW / Lnet)

Note that OM uses eActual $^0.5 \equiv esMin^0.5 \equiv press_sat_l$, instead of press_vapour $^0.5$ as used here.

$$\begin{aligned} \text{radiation_LW} = & \textit{SBconstant} \times 10^{-9} \times \left(\frac{(\text{temp_l} + 273.16)^4 + (\text{temp_"h} + 273.16)^4}{2} \right) \\ & \times (0.34 - 0.14 \times \text{press_vapour}^{0.5}) \times \left(\frac{1.35 \times \text{radiation_solar}}{\text{radiation_global}} - 0.35 \right) \end{aligned}$$

Radiation, Daily Net (radiation_net / Snet) [MJ/m2/day]

Net short-wave radiation

 $radiation_net = (1 - Albedo) \times radiation_solar$

Radiation, Solar, Daily Total (radiation_solar / Radiation) [MJ/m2]

This is preferably taken direct from the weather stations, but if the data is missing, it can be calculated (method taken from OM). In OM, the constant 10 is called SunHrs, but has no description. It seems odd that the sun_hrs (≡ DaylightHrs in OM) is in the denominator here...

$$if \text{ radiation_solar} = na, \text{ radiation_solar} = \left(0.25 + 0.5 \frac{10}{\text{sun_hrs}}\right) \times 0.75 \times \text{ radiation_space}$$

Radiation, Space (radiation_space / Ra)

Radiation at the top of the atmosphere.

OM uses 118.1 instead of 24 x 60 x sun_dist.

$$\begin{aligned} \text{radiation_space} &= \frac{24 \times 60 \times \text{sun_dist}}{\pi} \times \left(\text{sun_angle} \times \sin\left(\frac{lat \times \pi}{180}\right) \times \sin\left(\text{sun_decl}\right) \right. \\ &\left. + \cos\left(\frac{lat \times \pi}{180}\right) \times \cos\left(\text{sun_decl}\right) \times \sin\left(\text{sun_angle}\right) \right) \end{aligned}$$

Sun, Angle Relative to Equator (Declination) (sun_decl / dec) [degrees]

Sun Declination (sun_decl)

Day Of Year (doy)

$$sun_decl = 0.409 \times sin(\frac{2 \times \pi \times doy}{365} - 1.39)$$

Sun, Angle Relative to Orbital Plane (sun_angle / ws) [degrees]

The angle of the sun relative to the equator is the declination (sun_decl). Note that lat x pi / 180 is used in the equation as R uses radian in trigonometry.

$$sun_angle = acos\left(-\tan\left(\frac{lat \times \pi}{180}\right) \times \tan\left(\frac{sun_decl}{1}\right)\right)$$

Sun, Hours per Day (sun_hrs / DaylightHrs)

Sun, Hours per Day (sun_hrs)

Sun Angle (sun_angle)

$$sun_hrs = \frac{24 \times sun_angle}{\pi}$$

Sun, Inverse Distance (sun_dist / dr)

Sun, Inverse Distance (sun_dist)

Day Of Year (doy)

$$sun_dist = 1 + 0.033 \times cos(\frac{2 \times \pi \times doy}{365})$$

Temperature, Daily Maximum (temp_h / Tmax) [°C]

Temperature, Daily Max. (temp_h)

Weather service

Current
Previous
Change
Constant

 $\mathsf{temp_h} \!=\! \mathit{max} (\mathit{temp}_t, \mathit{for} \, t \!\in\! \mathsf{Daily_obs})$

Temperature, Daily Mean (temp_x / DailyTemp) [°C]

Temperature, Daily Mean (temp_x)

Weather service

$$temp_x = \frac{1}{n} \left(\sum_{i=1}^{n} temp_i \right)$$

Temperature, Daily Minimum (temp_I / Tmin)

Temperature, Daily Min. (temp_l)

Weather service

Current
Previous
Change
Constant

 $temp_l = min(temp_t, for t \in Daily_obs)$

Temperature Term (temp_t /) [m/(sK)]

$$temp_t = \frac{900 \times vh_x}{temp_x + 273.15}$$

Wind, Speed, Daily Mean (vh_x / WindSpeed) [m/s]

Wind Speed, Daily Mean (vh_x)

Weather service

$$vh_x = \frac{1}{n} \left(\sum_{i=1}^{n} vh_i \right)$$
if $vh_x = na$, $vh_x = 2$

Wind, Speed, At Ground Level (wind_ground) [m/s]

$$wind_ground = \frac{vh_x \times 4.87}{log(67.8 \times wind_height - 5.42)}$$

MAIN CALCULATIONS (ROW-WISE)

Canopy Cover (canopy_cover / f) [%]

A base level plus a sigmoidal growth fraction, dependent on the Stress Adjusted Cumulative Temperature (temp_f)

Canopy Cover (canopy_cover)

Stress Adjus. Cum. Temp. (temp_f)

$$if (doy \ge sow_doy): \\ canopy_cover = 0.0015 + \frac{0.99 - 0.0015}{1 + exp(-4 \times log(\frac{temp_f}{1 - temp_f}))}$$

$$if(doy < sow_doy) f = fZero$$

Evaporation, Soil Surface (evap_soil / TotalSSE)

This is a combination of the OM steps, where TotalSSE.rate is calculated as evap_soil_d - precip

Evaporation, Soil Surface (evap_soil)

Evaporation, Soil Surfce (evap soil 0)

Evaporation, Soil Surfce (evap_soil_d)

Precipitation (precip)

```
if (doy≥doy_sow):
evap_soil=evap_soil_0+evap_soil_d-precip
if (evap_soil<0), evap_soil=0</pre>
```

Evaporation, Soil Surface, Change in / Daily (evap_soil_d / dSSE)


```
 \begin{split} & if (\textit{doy} \geq \text{doy\_sow}) \colon \\ & \text{evap\_soil\_d} = \begin{cases} & if (\text{canopy\_cover} < 1), min(1.5, evap) \times (1 - \text{canopy\_cover}) \\ & if (\text{canopy\_cover} = 1), 0 \\ & if (\text{evap\_soil\_0} > 20), 0 \end{cases}
```

Evapotranspriation, Crop, Actual (evap_actual / ea)


```
if (doy≥doy_sow):
evap_actual=min(evap_cal,evap_csl)
```

Evapotranspiration, Crop, Atmosphere Limited (evap_cal / eatmos).


```
if(doy \ge doy\_sow):

evap\_csl = 1.2 \times canopy\_cover \times evap

if(eatmos \le 0) eatmos = 0.001
```

Evapotranspiration, Crop, Soil Limited (evap_csl / esoil)

if
$$(doy \ge doy_sow)$$
:
 $evap_csl = \frac{\psi_s - \psi_c}{rsum}$
if $(soil_qrel == 0)$, $evap_csl = 0$

Growth Stage (bbch)

The last conditional equation looks like an insurance policy. In OM, the variable Temp is used for this condition. Temp in R is a mix of both temp_b_cd_sow and temp_b_cd_em

$$bbch = \begin{cases} if (doy \ge doy_sow, 01) \\ if (doy \ge doy_emerg, 09) \\ if (doy \ge doy_harvest, 99) \\ else(0) \end{cases}$$

Previous Change Constant

 $if (doy_emerg \le doy_sow \land temp_b_cd_sow \ge Tzero)bbch = 09$

Radiation Use Efficiency (rue / RUE)

How much of the available solar energy can the plant use. Depends on amount biomass per hectare and the estimated rates of evapotranspiration.

$$\begin{split} & \textit{if} \left(\textit{doy} \geq \text{doy_sow} \right) : \\ & \textit{rue} = 0.6 \times \textit{RUEZero} \times \exp\left(-\textit{Gamma} \times \text{biomass_0} \right) + \frac{0.4 \times \textit{RUEZero} \times \text{evap_actual}}{\text{evap_cal}} \\ & \times \exp\left(-\textit{Gamma} \times \text{biomass_0} \right) \\ & \textit{rue} = \left(\textit{RUEZero} \times \exp\left(-\textit{Gamma} \times \text{biomass_0} \right) \right) \left(0.6 + \frac{0.4 \times \text{evap_actual}}{\text{evap_cal}} \right) \end{split}$$

Root depth (root_depth)

Basically a function of sowing depth and cumulative temperature post-emergence.

Root Sum (root_sum)

$$if(doy \ge doy_sow)$$
:
 $root_sum = c1 + \frac{c2 \times soil_qrel^{(-(2 \times soil_b+3)-1)}}{root_depth}$
 $if(soil_qrel == 0), root_sum = c1$

Soil Moisture Deficit (soil_md / SMD)

Estimate of how much more water the soil could hold. Increases with soil $md_d > 0$.

Soil Moisture Deficit (soil_md_0)

Soil Moisture Deficit (soil_md_d)

$$if(doy < doy_sow), soil_md = 0$$

Soil Moisture Deficit, Change (soil_md_d / SMD.rate)

The change in the amount of water in the soil. Positive if there is evaporation or transpiration, negative if there is rain. Taken as 0 if Δ SMD < 0 and SMD = 0 (IS IT????).

Soil Moisture Deficit (soil_md_d)

Evaporation, Soil Surfce (evap_soil_d)

Evapotranspiration - Actual (evap_actual)

Precipitation (precip)

```
if (doy≥doy_sow):
soil_md_d=evap_soil+evap_actual - precip
```

Soil Moisture Deficit, Initial (soil_md_0)

Soil Moisture Deficit, Initial (soil_md_0) is given as from the previous period as the majority of the time.

$$soil_md_0 = \begin{cases} if (doy < doy_sow), 20 \\ if (doy == doy_sow), 0 \\ if (soil_md_{t-1} < 0), 0 \\ else (soil_md_{t-1}) \end{cases}$$

Soil Moisture Level (soil_q / Q)

Soil Moisture Deficit (soil_md_0) is given as from the previous period as the majority of the time, this is what it will be (see soil_md_0).

$$if(doy \ge doy_sow)$$
:
 $q = max(soil_qfc - \frac{soil_md_0}{root_depth}, 0.01)$

Soil Moisture, Relative Content (soil_qrel / Qrel)

In the initial calculation, soil_qrel = (soil_q - soil_qpwp) / (soil_qfc - soil_qpwp)

Soil Moisture Level (soil_q)

Soil Water Holding Capacity (soil_qfc)

$$if(doy \ge doy_sow)$$
:

$$soil_qrel = \frac{soil_q}{soil_qfc}$$

$$if(doy < doy_sow)soil_qrel = 1$$

Stress, Water Deficit Induced (stress_w)

NB: In my R code, I had w_stressC written as Wstresc at one point (last instance in calc of w_stress). Is this an error by me or an issue in the OpenModel version?

$$if(doy \ge doy_sow):$$

$$stress_w = \begin{cases} if(qrel < stress_wB \land temp_x > stress_wC), \left(\frac{soil_qrel}{stress_wB}\right)^{stress_wC} \\ else, 1 \end{cases}$$

Temperature, Rebased, Cumulative, Post Emergence (temp_b_cd_em / Temp)

Temp in OM is equivalent to temp_cd_sow until emergence, when it goes over the temp_cd_em. There is also a days lag between the values

Growth Stage (bbch)

Temp Cd Post Emrg. (temp b cd em 0)

Temp., Rebased, Daily (temp b d)

$$Cd_{em_{t}} = \begin{cases} if(bbch \ge 09,90 + Cd_{em_{t-1}} + \Delta T) \\ else(0) \end{cases}$$

Temperature, Rebased, Cumulative, Post Sowing (temp_b_cd_sow / na)

Temp. Cd Post Sow (temp_b_cd_sow)

Growth Stage (bbch)

Temp. Cd Post Sow (temp b cd sow 0)

Temp., Rebased, Daily (temp_b_d)

$$Cd_{sow_{t}} = \begin{cases} if(bbch \ge 01, Cd_{sow_{t-1}} + \Delta T) \\ else(0) \end{cases}$$

Temperature, Re-Based, Daily (temp_b_d / Temp.rate)

Temp., Rebased, Daily (temp_b_d)

Mean Daily Temp. (temp_x)

Base Temperature (Tbase)

Current
Previous
Change
Constant

 $temp_d = temp_x - Tbase$ $if(temp_d < 0), temp_d = 0$

Temperature, Stress Adjusted, Daily (temp_s_d / DailyTemp)

OM uses temp_x – Tbase (3 C) instead of temp_b_d. This includes in the if statement, where the limits are 3 and 25, not 0 and 22.

Current
Previous
Change
Constant

 $if(doy \ge doy_sow)$: $temp_s_d = \begin{cases} if(temp_b_d > 0 \land temp_b_d < 22 \land bbch \ge 09), temp_b_d \times stress_w \\ else, 0 \end{cases}$ Temperature, Stress Adjusted, Cumulative (temp_f / fTemp)

A fraction of Stress Adjusted Cumulative Temperature (Cd_stress). This seems unnecessary, except for...

Note that Cd_stress is readjusted after it is used to calculated fTemp, so fTemp can be above 0.950, but only by the amount of the current day's Stress Adjusted Temperature.

Temp., Stress Adjst. Cum. (temp_f)

Temp., Stress Adj. Cd (temp_s_cd)

```
if(doy \ge doy\_sow):

temp_f = temp\_s\_cd \times 0.0001

if(temp_f \le 0.00001)temp_f = 0.00001
```

Yield, Biomass (yield_biom / Biomass)

Potential yield of biomass, dry matter (?) = root plus top(?)

Yield, Biomass (yield_biom)

Yield, Biomass (yield_biom_0)

Yield, Biomass (yield_biom_d)

Current
Previous
Change
Constant

if (doy≥doy_sow):
yield_biom=yield_biom_0+yield_biom_d

 $if(doy < doy_sow)$ yield_biom = 0

Yield, Biomass, Change in (yield_biom_d / Biomass.rate)

Increase in biomass, dry matter(?) (root plus top(?)) in any given period.


```
if (doy≥doy_sow):
yield_biom_d=rue×canopy_cover×radiation_solar
```

Yield, Sugar, Potential, Water limited (yield_sugar / Yield) [t/ha]

Potential sugar yield, water limited.


```
if(doy \ge doy\_sow):

yield\_sugar=yield\_sugar\_d+\frac{yield\_biom\_d \times \kappa \times yield\_biomass}{1+\kappa \times yield\_biomass}
```

Yield, Sugar, Plant Population Adjusted (yield_s_pop)

Potential sugar yield adjusted for the observed plant population. Plant populations above 90 000 will result in no adjustment.


```
if (doy≥doy_sow):
yield_s_pop=pop_loss×yield_sugar
```

Yield, Sugar, Percent of Dry Matter (?) (yield_s_pct_dm / fsugar)

Potential sugar yield, percent of dry matter (?). Given Kappa is a constant, Sugar Yield Pct DM is in direct relation to the Biomass estimate.

Current
Previous
Change
Constant

 $if(doy \ge doy_sow)$: $yield_s_pct_dm = \frac{\kappa \times yield_biomass}{1 + \kappa \times yield_biomass}$

