L Number	Hits	Search Text	DB	Time stamp
	0	fe72al11o17	USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24 15:55
2	26	fealo	IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24 15:56
3	47	magnetic adj loss and semiconductor and die	IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24
4	12491	tokin.as.	IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24 15:59
5	12	semiconductor adj wafer and magnetic adj loss	IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24 15:59
6	14	semiconductor adj wafer and tokin.as.	IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24 16:01
7	2	("3963489").PN.	IBM_TDB USPAT; US-PGPUB; EPO; JPO; DERWENT;	2004/05/24 16:03
8	19	3963489.URPN.	IBM_TDB USPAT	2004/05/24 16:05
9	19	3963489.uref.	USPAT	2004/05/24
10	26	semiconductor adj die and magnetic adj	USPAT	2004/05/24
11	22	5138431.URPN.	USPAT	2004/05/24
12	4	noise adj suppression and tokin.as.	USPAT	2004/05/24 16:16

	Туре	r#	Hits	Search Text	DBs	Time Stamp
1	BRS	L1	0	fe72a11o17	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:47
2	BRS	L2	26	fealo	USPAT; ; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:52
3	BR <i>S</i>	L3	47	magnetic adj loss and semiconductor and die	USPAT; ; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:53
4	BRS	L4	12491	1	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:53
5	BRS	L5	12	semiconductor adj wafer and magnetic adj loss	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	

.

	Γ	T				
	Туре	L #	Hits	Search Text	DBs	Time Stamp
6	BRS	L6	14	<u> </u>	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	
7	BRS	L 7	19		USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:53
8	BRS	L8	43	semiconductor adj die and magnetic adj material	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:54
9	BRS	L9	25	noise adj suppression and tokin.as.	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 16:54

_	Туре	L #	Hits	Search Text	DBs	Time Stamp
1	BRS	L1	4236	bare adj chip		2004/05/24 13:39
2	BRS	L2	747995	(integrated adj circuit) or IC	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 13:49
3	BRS	L3	237350	(back adj surface) or (back adj side)	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 13:40
4	BRS	L4	1932	magnetic adj loss	JPO; DERWE NT; IBM_T DB	2004/05/24 13:40
5	BRS	L5	196203 5	substrate or wafer		2004/05/24 13:40

1

•

	Туре	L #	Hits	Search Text	DBs	Time Stamp
6	BRS	L6	654	1 near4 2		2004/05/24 13:40
7	BRS	L7	1			2004/05/24 13:41
8	BRS	L8	1			2004/05/24 13:42
9	BRS	L 9	1	6 and 4		2004/05/24 13:42
10	BRS	L 10	125167 3	magnetic	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 13:42

	Туре	L #	Hits	Search Text	DBs	Time Stamp
11	BRS	L11	13	6 near8 10		2004/05/24 13:44
12	BRS	L12	91811	or nickle or iron or fluorine or nitrogen or oxygen)	EPO;	2004/05/24 13:46
13	BRS	L13	1	1 near8 12		2004/05/24 13:47
14	BRS	L14	2	1 same 12	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 13:49
15	BRS	L15	158090 8			2004/05/24 13:49

7.

	Туре	L #	Hits	Search Text	DBs	Time Stamp
16	BRS	L16	49109	10 same 15		2004/05/24 13:56
17	BRS	L17	1393	12 same 15		2004/05/24 13:57
18	BRS	L19	0	18 same 3		2004/05/24 13:58
19	BRS	L18	225	17 same 5		2004/05/24 14:57
20	BRS	L20	13	16 and 3		2004/05/24 14:07

• •

No.

	Туре	L #	Hits	Search Text	DBs	Time Stamp
21	BRS	L21	1768	2 near8 3		2004/05/24 14:57
22	BRS	L22	0	21 near8 12		2004/05/24 14:57
23	BRS	L23	0	21 near16 12		2004/05/24 14:57
24	BRS	L24	2	21 same 12	USPAT; US-PG PUB; EPO; JPO; DERWE NT; IBM_T DB	2004/05/24 15:00
25	BRS	L25	40	3 same 5 same 2 same 10		2004/05/24 15:01

, 1 , 1

•

(12) United States Patent

Awakura et al.

(10) Patent No.:

US 6,653,573 B2

(45) Date of Patent:

Nov. 25, 2003

(54) WIRING BOARD COMPRISING GRANULAR MAGNETIC FILM

(75)	Inventors:	Yoshio Awakura, Yokohama (JP);
		Shinya Watanabe, Tokyo (JP); Satoshi
		Shiratori, Tokyo (JP); Hiroshi Ono,
		Yokohama (JP)

(73) Assignee: NEC Tokin Corporation, Miyagi (JP)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/825,418

(22) Filed: Apr. 3, 2001

(65) Prior Publication Data

US 2001/0037897 A1 Nov. 8, 2001

(30) Foreign Application Priority Data

Apr	: 4, 2000	(JP)					2000	0-10	1756
Apr	. 4, 2000	(JP)	··········	•••••			2000	0-10	1765
	Int. Cl. ⁷								
(52)	U.S. Cl.			174	/256;				
						361/8	316;	257,	659
(58)	Field of	Searc	h			1	74/2	54-	256,
		174/2	58–261	, 257;					
					762,	777;	257/€	559-	-661

(56) References Cited

U.S. PATENT DOCUMENTS

5,435,903					
5,493,074	Α	*	2/1996	Murada et al.	174/254
5,639,989	Α	*	6/1997	Higgins, III	174/35 MS
5,738,931	A	*	4/1998	Sato et al	428/209
5,966,294	Α	*	10/1999	Harada et al	361/794
5,998,048	Α	+	12/1999	Jin et al	428/694 T
6,208,000	B 1	*	3/2001	Tanamoto et al	257/402

FOREIGN PATENT DOCUMENTS

FR

7331249

3/1974

JP	01-151297		6/1989
JP	401-235662 A	*	9/1989
JP	04-196285		11/1990
JP	03-120890		5/1991
JР	05-183291		7/1993
JP	06-275927		3/1994
JP	07-058485		3/1995
JP	08-250858		9/1996
JP	11-233909		2/1998
JP	11-274362		3/1998

* bingo

OTHER PUBLICATIONS

A copy of the European Search Report, Jan. 11, 2002.

* cited by examiner

Primary Examiner—Kamand Cuneo Assistant Examiner—Tuan Dinh (74) Attorney, Agent, or Firm—Bradley N Ruben, PC

(57) ABSTRACT

In order to provide a wiring board comprising a magnetic material effective in suppressing spurious radiation in semiconductor devices and electronic circuits and the like that operate at high speeds, a wiring board (15) comprises an insulative base material (17), conductor patterns (19a to 19f) formed thereon, and magnetic thin films (21a to 21f) formed on the conductor patterns (19a to 19f). The magnetic thin film is configured of a magnetic loss material represented by M-X-Y, where M is at least one of Fe, Co, and Ni, X is at least one element other than M or Y, and Y is at least one of F, N, and O, the maximum value μ "max of the loss factor μ " that is an imaginary component in the complex permeability characteristic of the magnetic loss material exists within a frequency range of 100 MHz to 10 GHz, and a relative bandwidth bwr is not greater than 200% or not smaller than 150% where the relative bandwidth bwr is obtained by extracting a frequency bandwidth between two frequencies at which the value of μ " is 50% of the maximum μ "_{max} and normalizing the frequency bandwidth at the center frequency thereof.

33 Claims, 10 Drawing Sheets

(12) United States Patent Molnar

(10) Patent No.:

US 6,719,615 B1

(45) Date of Patent:

Apr. 13, 2004

(54)	VERSATI	LE WAFER REFINING	5,989,103 A 6,004,880 A		Birang et al 451/41 Liu et al 438/692
(75)	Inventor:	Charles J. Molnar, Wilmington, DE (US)	6,005,317 A 6,033,293 A 6,083,839 A	12/1999 3/2000	Lamb
(73)	Assignee:	Beaver Creek Concepts Inc, Wilmington, DE (US)	6,095,677 A 6,113,467 A 6,116,998 A	8/2000 9/2000	Karkos, Jr. et al 366/274 Koike
(*)	Notice:	Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.	6,121,143 A 6,143,155 A 6,146,243 A 6,146,245 A 6,170,149 B1	11/2000 11/2000 11/2000	Messner et al. 438/692 Adams et al. 205/87 Imahashi 451/32 Kremen et al. 451/36 Oshiki et al. 29/603.09
(21)	Appl. No.:	10/218,740	6,176,992 B1		Talieh 205/87
(22)	Filed:	Aug. 14, 2002	(List	continue	d on next page.)

Related U.S. Application Data

--

Oct. 9, 2001, now Pat. No. 6,435,948.

Oct. 9, 2001, now rat. No. 0,455,948.

Provisional application No. 60/396,264, filed on Jul. 16, 2002, provisional application No. 60/389,042, filed on Jun. 14, 2002, provisional application No. 60/385,567, filed on Jun. 6, 2002, provisional application No. 60/245,121, filed on Nov. 2, 2000, and provisional application No. 60/238, 968, filed on Oct. 10, 2000.

(51)	Int. Cl. B24B 1/00
(52)	U.S. Cl 451/41; 451/28; 451/262;
` '	451/288
(58)	Field of Search 451/41, 11, 28,
• ,	451/36, 57, 158, 162, 259, 262, 265, 273,
	287, 288, 392, 393, 397, 908; 156/345.1,

(56) References Cited

U.S. PATENT DOCUMENTS

4,088,379	Α	5/1978	Perper 308/10
5,256,565	Α	10/1993	Bernhardt et al 437/228
5,567,300	Α	10/1996	Datta et al 205/652
5,611,725	A	3/1997	Imahashi 451/104
5,779,456	Α	7/1998	Bowes et al 417/428
5,807,165	Α	9/1998	Uzoh et al 451/41
5,906,105	Α	5/1999	Ugolini 62/136
5,957,753	Α	9/1999	Komanduri et al 451/36
5,958,794	Α	9/1999	Bruxvoort 438/692
5,961,213	Α	10/1999	Tsuyuki et al 366/273

345.11, 345.23, 345.51, 345.54, 345.55

Primary Examiner—Joseph J. Hail, III Assistant Examiner—David B. Thomas

(57) ABSTRACT

A refining apparatus having magnetically responsive refining elements that can be smaller than the workpiece being refined are disclosed. The refining apparatus can supply a parallel refining motion to the refining element(s) through magnetic coupling forces. The refining apparatus can supply multiple different parallel refining motions to multiple different refining elements solely through magnetic coupling forces to improve refining quality and versatility. New refining methods, refining apparatus, and refining elements disclosed. Methods of refining using frictional refining, chemical refining, tribochemical refining, and electrochemical refining and combinations thereof are disclosed. A refining chamber can be used. New methods of control are refining disclosed. The new magnetic refining methods, apparatus, and magnetically responsive refining elements can help improve yield and lower the cost of manufacture for refining of workpieces having extremely close tolerances such as semiconductor wafers. Refining fluids are preferred. Reactive refining aids are preferred. Electro-refining for adding and removing material is disclosed. New methods and new apparatus for non-steady state refining control are disclosed.

50 Claims, 27 Drawing Sheets

05/24/2004, EAST Version: 1.4.1

(12) United States Patent Spielberger et al.

(10) Patent No.:

US 6,515,352 B1

(45) Date of Patent:

Feb. 4, 2003

(54)	SHIELDING ARRANGEMENT TO PROTECT
	A CIRCUIT FROM STRAY MAGNETIC
	FIELDS

(75) Inventors: Richard K. Spielberger, Maple Grove, MN (US); Romney R. Katti, Maple

Grove, MN (US)

(73) Assignee: Micron Technology, Inc., Boise, ID (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 107 days.

(21) Appl. No.: 09/668,922

(22) Filed: Sep. 25, 2000

(56) References Cited

U.S. PATENT DOCUMENTS

4,953,002 A 8/1990 Nelson et al.

5,561,265	Α	10/1996	Livshits et al.	
5,635,754	A *	6/1997	Strobel et al	257/659
5,640,047	A	6/1997	Nakashima	
5,650,659	A +	7/1997	Mostafazadeh et al	257/660
5,831,331	A *	11/1998	Lee	257/659
5,902,690	A	5/1999	Tracy et al.	
5,939,772	A	8/1999	Hurst et al.	
6,429,044 I	B1 *	8/2002	Tuttle	438/106

^{*} cited by examiner

Primary Examiner—Hoai Ho Assistant Examiner—Andy Huynh (74) Attorney, Agent, or Firm—Knobbe, Martens, Olson & Bear, LLP

(57) ABSTRACT

A shielding arrangement for protecting a circuit containing magnetically sensitive materials from external stray magnetic fields. A shield of a material having a relatively high permeability is formed over the magnetically sensitive materials using thin film deposition techniques. Alternatively, a planar shield is affixed directly to a surface of semiconductor die containing an integrated circuit structure.

17 Claims, 2 Drawing Sheets

(12) United States Patent Tuttle

(10) Patent No.:

US 6,452,253 B1

(45) Date of Patent:

Sep. 17, 2002

(54) METHOD AND APPARATUS FOR MAGNETIC SHIELDING OF AN INTEGRATED CIRCUIT

(75) Inventor: Mark Tuttle, Boise, ID (US)

(73) Assignee: Micron Technology, Inc., Boise, ID

(US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(22) Filed: Aug. 31, 2000

(51)	Int. Cl. ⁷	H05K 1/00
(52)	HS CL	257/650: 257/697

(56) Refer

References Cited

U.S. PATENT DOCUMENTS

4,926,546 A 5/1990 Polczynski et al.

4,953,002 A	8/1990	Nelson et al.
5,275,975 A		Baudouin et al.
5,406,117 A		Dlugokecki et al 257/660
		Lishits et al 174/32
		Nakanishi et al 257/660

FOREIGN PATENT DOCUMENTS

JP 60-244050 * 3/1985

Primary Examiner—Roy Potter (74) Attorney, Agent, or Firm—Dickstein Shapiro Morin & Oshinsky LLP

(57) ABSTRACT

Disclosed are a method and apparatus which provide a magnetic shield for integrated circuits containing electromagnetic circuit elements. The shield is formed of a magnetically permeable material, which may be a non-conductive magnetic oxide, and either partially contacts or completely surrounds the integrated circuit.

33 Claims, 3 Drawing Sheets

^{*} cited by examiner

United States Patent [19]

Higgins, III

[11] Patent Number:

5,639,989

[45] Date of Patent:

Jun. 17, 1997

[54] SHIELDED ELECTRONIC COMPONENT ASSEMBLY AND METHOD FOR MAKING THE SAME

[75]	Inventor:	Leo M. Higgins, III, Austin, Tex.
[73]	Assignee:	Motorola Inc., Schaumburg, Ill.

[21]	Appl.	No.:	229,495
الحيا	whhr	110	2275773

[56]

f221	Filed:	Арг.	19.	1994
[44]	I HCG.	apr.	17,	ムノフマ

[51]	Int. Cl.6	***************************************		H05K 1/00
[52]	U.S. Cl.	***************************************	174/35 MS	; 174/35 R;

728, 659

References Cited

U.S. PATENT DOCUMENTS

11/1992	Chitwood et al	361/386
12/1992	Barker, III et al	257/71 3
8/1994	Nakatani et al	361/818
1/1995	Griffen et al.	361/709
2/1995	Cuntz et al	361/818
2/1995	Jones	361/765
4/1996	Komrska et al	361/816
	11/1992 11/1992 12/1992 8/1994 1/1995 2/1995 2/1995	9/1992 Nagata et al

FOREIGN PATENT DOCUMENTS

2055413 5/1992 Canada H05K 1/16

OTHER PUBLICATIONS

William M. Hall; "Design Tech. for Control of Radiated and Conducted Noise in Portable Computing Equipment;" Northcon Conference, Oct. 1-3, '91; pp. 258-263 (Oct. 1991).

Howard W. Markstein; "Shielding Electronics From EMI/RFI;" Electronic Packaging & Production; pp. 40-44 (Jan. 1991).

Primary Examiner—Laura Thomas Attorney, Agent, or Firm—Patricia S. Goddard

57] ABSTRACT

Electronic components are shielded from electromagnetic interference (EMI) by one or more conformal layers filled with selected filler particulars for attenuate specific EMI frequencies or a general range of frequencies. Shielding is accomplished through the use of a single general purpose shielding layer, or through a series of shielding layers for protecting more specific EMI frequencies. In a multilayer embodiment, a semiconductor device (50) is mounted on a printed circuit board substrate (16) as a portion of an electronic component assembly (10). A conformal insulating coating (24) is applied over the device to provide electrical insulation of signal paths (e.g. leads 54 and conductive traces 18) from subsequently deposited conductive shielding layers. One or more shielding layers (60, 62, and 64) are deposited, and are in electrical contact with a ground ring (56). In a preferred embodiment, the ground connections for the shield layers are separate from those used for power distribution within the devices.

27 Claims, 7 Drawing Sheets

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-307983

(43) Date of publication of application: 05.11.1999

(51)Int.Cl.

H05K 9/00 H01L 23/29

H01L 23/31

(21)Application number : **10-128140**

(71)Applicant: TOKIN CORP

(22)Date of filing:

21.04.1998

(72)Inventor: KAMEI KOJI

SATO MITSUHARU

(54) ELECTRONIC COMPONENT AND MANUFACTURE THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To make adaptable to working processes requiring the heat resistance by fixing an electromagnetic interference suppressor covered with a thermosetting resin to a semiconductor component or wiring board.

SOLUTION: An electromagnetic interference suppressor 3 is mounted so as to cover the top face of a semiconductor component 2 being a noise source disposed on the top of a wiring board 1 mounting CPU etc., and has a compsn. composed of a flat soft magnetic powder of Fe-Al-Si alloy 90 wt. parts, organic binder composed of a polyurethane resin 8 wt. parts and hardening agent 2 wt. parts and solvent 40 w. part. A thermosetting resin such as phenol resin, epoxy resin,

etc., is coated so as to cover the entire surface of the electromagnetic interference suppressor 3, set, and hardened by a soldering reflow process to perfectly seal and fix the electromagnetic interference suppressor 3. Thus it is possible to improve the apparent heat resistance, without deteriorating its characteristics.

LEGAL STATUS