HERRAMIENTAS PARA ASISTIR OPERACIONES DE REMEDIACIÓN

SUBRED DE SINERGIAS EN DAÑO DE FORMACIÓN

Curso Programado en Asocio con Grupos de Investigación en Hidrocarburos y Química Aplicada de la Universidad Nacional de Colombia y la Universidad Industrial de Santander

Con el Apoyo Financiero de la VP de Innovación y Tecnología de Ecopetrol

Diciembre 01 y 02 de 2016

Herramientas existentes y en desarrollo

Financiadas por sinergias en Daño de Formación

- Remediación de daño por asfaltenos (30%)
- Remediación de daño por finos (60%)
- Restauración de humectabilidad (30%)
- Remediación de daño por escamas inorgánicas (UIS)
- Simulación a escala de poro de modificadores de humectabilidad (100%)
- Simulación molecular (100%)

Herramientas existentes y en desarrollo

Financiadas por sinergias en Daño de Formación

- Remediación de daño por asfaltenos (30%)
- Remediación de daño por finos (60%)
- Restauración de humectabilidad (30%)
- Remediación de daño por escamas inorgánicas (UIS)
- Simulación a escala de poro de modificadores de humectabilidad (100%)
- Simulación molecular (100%)

Otras herramientas (existentes o desarrolladas en otros proyectos)

- Herramienta para evaluación de operaciones de remediación (100%)
- Remediación de daño por condensados Miscelares dispersos en gas (100%)
- Control de aguas con RPM dispersos en gas (100%)
- Remediación e inhibición de asfaltenos con tratamientos dispersos en gas (100%)
- Nanos para inhibición de daño por asfaltenos (80%)
- Nanos para reducción de viscosidad en yac. De crudos pesados (80%)

Remediación de daño por finos

REMEDIACIÓN DEL DAÑO DE FORMACIÓN POR FINOS

Objetivo: Desarrollar una metodología de elección y un modelo del comportamiento esperado de tratamientos remediales del daño de formación por flujo de finos mediante la elaboración de una herramienta computacional.

3 de cada 10 operaciones de estimulación son exitosas.

Elección de tratamiento.

Metodología propuesta por Kalfayan

Comportamiento de ácido en formación

Modelo de cuatro parámetros

- 1. Lavado de tubería
- 2. Desplazamiento de solventes
- 3. Desplazamiento de salmuera
- 4. Preflujo
- 5. Ácido Principal
- 7. Sobredesplazamiento
- 8. Dispersante

Tomada de: Kalfayan L. Production Enhancement with Acid Stimulation.

$$\varphi\left(\frac{\partial C_j}{\partial t}\right) + u_i\left(\frac{\partial C_j}{\partial x_i}\right) = \frac{\partial D_{i,j}\partial C_j/\partial x_i}{\partial x_i} + R_j$$

- HF con aluminosilicatos
- 2. HF con cuarzo
- 3. H2SiF6 con aluminosilicatos
- 4. HF con sílice (Si(OH)4)

Gestor técnico: RICHARD ZABALA; Tutor: MARCO ANTONIO RUIZ SERNA; Estudiante: DIANA ELIZABETH CORAL RODRÍGUEZ
 GRUPO DE INVESTIGACIÓN YACIMIENTOS DE HIDROCARBUROS

REMEDIACIÓN DEL DAÑO DE FORMACIÓN POR FINOS

Avance: 60%

Falta: validación estadística del modelo de elección y modelamiento de interacción roca ácido.

Retos: Evaluación estadística y validación de modelos se debe realizar con banco de datos de estimulaciones realizadas en campo y estudios o pruebas experimentales.

Conocimientos adquiridos a partir de una práctica en campo de procesos de estimulación.

• Gestor técnico: RICHARD ZABALA; Tutor: MARCO ANTONIO RUIZ SERNA; Estudiante: DIANA ELIZABETH CORAL RODRÍGUEZ

GRUPO DE INVESTIGACIÓN YACIMIENTOS DE HIDROCARBUROS

Remediación de daño por asfaltenos

REMEDIACIÓN DE ASFALTENOS | Desarrollo del Modelo

Pseudofases Especies		Oleica	Volátil	Acuosa	Precipitada	Depositada	Matriz
Crudo	Asfalteno	X			X	X	X
	CDA*	X					
Gas		X	X				
Salmuera				X			
Solvente		X	X				
Surfactante		X	X	X			X

Modelos de disolución de asfaltenos son muy escasos en la literatura.

$$\frac{\partial}{\partial t} (\varepsilon_{j} \rho_{j} X_{ij}) + \nabla \cdot (\rho_{j} X_{ij} \mathbf{U}_{j}) + \nabla \cdot (\rho_{j} \varepsilon_{j} \mathbf{J}_{i,j}) + \dot{q}_{i,j} = \sum_{i=1}^{N_{p}} m_{i,j_{1}-j_{2}}$$
Advección Difusión/Dispersión Transferencia de masa

Se obtiene en no equilibrio un **sistema de ecuaciones diferenciales** de 9 ecuaciones fuertemente acopladas y de alta complejidad. En equilibrio 6 se obtienen

REMEDIACIÓN DE ASFALTENOS | Pruebas de Laboratorio (1/2)

Para la validación del modelo son necesarios datos de campo de pozos a los que se les haya realizados estimulación química y de los cuales se tengan datos del afluente.

Herramienta para evaluación de operaciones de remediación

Herramienta Acoplada Para El Estudio De Daño De Formación Y Su Impacto Económico En La Producción Del Pozo

Pre-diagnóstico del daño con Modelo Multiparamétrico (Restrepo, et. Al 2012)

Herramienta:

Single–Well Model+ Ec Hawkins

oducción Dei Pozo									
Escena rio	Descripción	Skin inicial	Skin final (Eficienci a 80%)	Perdurabi lidad del Tratamien to (meses)	Costo (miles de dólare s)				
0	Caso Base	32,67	-	-	-				
1	Tto. Remediación E. Minerales	32,67	24,829	3	\$300				
2	Remediación e Inhibición de E Minerales	32,67	24,829 en	12	\$750				
3		oducci 32/67		13	\$900				
4	Remediación e Inhibición de E. Minerales + Estabilización de Finos	32,67	18,818	16	\$1.350				

Herramienta para evaluación de operaciones de remediación

