Machine Learning HW7 Report

1. PCA of color faces:

a. 請畫出所有臉的平均。

Ans:

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

Ans: 由左至右依序為:

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

原圖:

Reconstruct:

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並 四捨五入

到小數點後一位。

Ans: 4.15%, 2.95%, 2.39%, 2.21%, 2.07%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法) 方法一:

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	(None, 32, 32, 3)	0
conv2d_10 (Conv2D)	(None, 32, 32, 160)	4480
max_pooling2d_4 (MaxPooling2	(None, 16, 16, 160)	0
conv2d_11 (Conv2D)	(None, 16, 16, 80)	115280
conv2d_12 (Conv2D)	(None, 16, 16, 40)	28840
max_pooling2d_5 (MaxPooling2	(None, 8, 8, 40)	0
conv2d_13 (Conv2D)	(None, 8, 8, 20)	7220
max_pooling2d_6 (MaxPooling2	(None, 4, 4, 20)	0
conv2d_14 (Conv2D)	(None, 4, 4, 20)	3620
up_sampling2d_4 (UpSampling2	(None, 8, 8, 20)	0
conv2d_15 (Conv2D)	(None, 8, 8, 40)	7240
conv2d_16 (Conv2D)	(None, 8, 8, 80)	28880
up_sampling2d_5 (UpSampling2	(None, 16, 16, 80)	0
conv2d_17 (Conv2D)	(None, 16, 16, 160)	115360
up_sampling2d_6 (UpSampling2	(None, 32, 32, 160)	0
conv2d_18 (Conv2D)	(None, 32, 32, 3)	4323

Model: Conv2D \rightarrow pooling \rightarrow Conv2D \rightarrow

Conv2D→pooling→Conv2D→pooling→

Conv2D →upsampling →Conv2D→Conv2D→

upsampling→Conv2D→upsampling→Conv2D(維度: 320)

PCA: 260 component

Loss Function: Mean Square Error

Loss, Accuracy = 0.0088, 0.96463+0.96468

方法二:

(None, 32, 32, 3)	Param # 0
(None, 32, 32, 3)	
(None, 32, 32, 120)	3360
(None, 16, 16, 120)	0
(None, 16, 16, 80)	86480
(None, 8, 8, 80)	0
(None, 8, 8, 50)	36050
(None, 4, 4, 50)	0
(None, 4, 4, 50)	22550
(None, 8, 8, 50)	0
(None, 8, 8, 80)	36080
(None, 16, 16, 80)	0
(None, 16, 16, 120)	86520
(None, 32, 32, 120)	0
	3243
	None, 16, 16, 80) None, 8, 8, 80) None, 8, 8, 50) None, 4, 4, 50) None, 4, 4, 50) None, 8, 8, 50) None, 8, 8, 80) None, 16, 16, 80) None, 16, 16, 120) None, 32, 32, 120)

Model: Conv2D → pooling → Conv2D →

pooling→Conv2D→pooling→Conv2D

→upsampling→Conv2D→upsampling

→Conv2D→upsampling→Conv2D(維度 800)

PCA: 720 component

Loss Function: Mean Square Error

Loss, Accuracy = 0.0079, 0.97392+0.97372

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維 2 的 feature)

其中 visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同。

很難過的差有點多,基本上多數在Dataset B 的還是會被 predict 到Dataset B,但有很多 Dataset A 被誤判成為 Dataset B,其中可能是因為在training 的時候是只注意 training dataset 的 loss,並沒有管 validation。也有可能是這些資料不在 training data内,所以 model 對這些陌生的圖片encoding 的結果可能不符合 training的結果,以至於結果會不可觀。

c. 請介紹你的 model 架構(encoder, decoder, loss function...),並選出任意 32 張圖片,比較原圖片以及用 decoder reconstruct 的結果。

Ans:

encoder: Conv2D \rightarrow pooling \rightarrow Conv2D \rightarrow pooling decoder: Conv2D \rightarrow upsampling \rightarrow Conv2D \rightarrow upsampling \rightarrow Conv2D \rightarrow upsampling

loss function: mean square error

原圖:

Decoded:

Decoder reconstruct 後的圖片較為模糊,但人臉的輪廓多數依舊能看出。 (2.的附註:上述做法經過 shuffle 之後 pca 套件會有誤差故會導致 reproduce 有所不同,懇請助教協助處理相關問題 QQ)