Spektralne lastnosti modela *t-J* in večdelčna lokalizacija

Avtor: Jan Šuntajs

Mentor: prof. dr. Janez Bonča Somentor: doc. dr. Lev Vidmar

4. september 2018

Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Nastop večdelčne lokalizacije (MBL) v modelu t-J

Vloga spinskega in potencialnega nereda

- 4 Indikatorji
 - Povprečno razmerje razmikov med sosednjimi nivoji
 - Spektralni oblikovni faktor (SFF)
 - Prepletenostna entropija lastnih stanj

Nastop večdelčne lokalizacije (MBL) v modelu t-J

Vloga spinskega in potencialnega nereda

- 4 Indikatorji
 - Povprečno razmerje razmikov med sosednjimi nivoji
 - Spektralni oblikovni faktor (SFF)
 - Prepletenostna entropija lastnih stanj

Nastop večdelčne lokalizacije (MBL) v modelu t-J

Vloga spinskega in potencialnega nereda

- Indikatorji:
 - Povprečno razmerje razmikov med sosednjimi nivoji
 - Spektralni oblikovni faktor (SFF)
 - Prepletenostna entropija lastnih stanj

Nastop večdelčne lokalizacije (MBL) v modelu t-J

Vloga spinskega in potencialnega nereda

- 4 Indikatorji:
 - Povprečno razmerje razmikov med sosednjimi nivoji
 - Spektralni oblikovni faktor (SFF)
 - Prepletenostna entropija lastnih stanj

Nastop večdelčne lokalizacije (MBL) v modelu t-J

Vloga spinskega in potencialnega nereda

- Indikatorji:
 - Povprečno razmerje razmikov med sosednjimi nivoji
 - Spektralni oblikovni faktor (SFF)
 - Prepletenostna entropija lastnih stanj

Zaprti kvantni sistemi

Nandkishore, Huse, 2015

Zaprti kvantni sistemi

Nandkishore, Huse, 2015

Meddelčne interakcije

Zaprti kvantni sistemi

Nandkishore, Huse, 2015

- Meddelčne interakcije
- Prisotnost nereda

Zaprti kvantni sistemi

Nandkishore, Huse, 2015

Meddelčne interakcije

Prisotnost nereda

Odsotnost TERMALIZACIJE

Zaprti kvantni sistemi

Nandkishore, Huse, 2015

Meddelčne interakcije

Prisotnost nereda

Odsotnost TERMALIZACIJE

Vsebina

- Značilnosti MBL sistemov
 - Hipoteza termalizacije lastnih stanj (ETH)
- Vpeljava modela t-J
- Predstavitev numeričnih rezultatov
 - Statistika sosednjih energijskih nivojev
 - Spektralni oblikovni faktor (SFF)
 - Prepletenostna entropija
- Zaključek

NEERGODIČNOST

Abanin, Altman, Bloch, Serbyn, 2018

- PREPLETENOSTNA ENTROPIJA:
 - Površinsko skaliranje za lastna stanja
 - Logaritemsko naraščanje s časom

- POSEBNE LASTNOSTI ENERGIJSKIH SPEKTROV
 - Predmet naše numerične analize

NEERGODIČNOST

Abanin, Altman, Bloch, Serbyn, 2018

- PREPI ETENOSTNA ENTROPIJA:
 - Površinsko skaliranje za lastna stanja
 - Logaritemsko naraščanje s časom

- POSEBNE LASTNOSTI ENERGIJSKIH SPEKTROV
 - Predmet naše numerične analize

NEERGODIČNOST

Abanin, Altman, Bloch, Serbyn, 2018

PREPLETENOSTNA ENTROPIJA:

- Površinsko skaliranje za lastna stanja
- Logaritemsko naraščanje s časom

PHYSICAL REVIEW B 77, 064426 (2008)

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič, ¹ Tomaž Prosen, ¹ and Peter Prelovšek ^{1,2}

¹Department of Physics, FME University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

(Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

POSEBNE LASTNOSTI ENERGIJSKIH SPEKTROV

Predmet naše numerične analize

NEERGODIČNOST

Abanin, Altman, Bloch, Serbyn, 2018

PREPLETENOSTNA ENTROPIJA:

- Površinsko skaliranje za lastna stanja
- Logaritemsko naraščanje s časom

PHYSICAL REVIEW B 77, 064426 (2008)

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič, ¹ Tomaž Prosen, ¹ and Peter Prelovšek ^{1,2}

¹Department of Physics, FME University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

(Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

POSEBNE LASTNOSTI ENERGIJSKIH SPEKTROV

Predmet naše numerične analize

Hipoteza termalizacije lastnih stanj (**ETH**)

Če sistem termalizira \iff lastna stanja $|m\rangle$ so "TERMALNA"

Pričakovane vrednosti opazljivk so enake ansambelskim povprečjem:

$$\langle m|\hat{O}|m\rangle = \langle\hat{O}\rangle_T$$

ETH ne velja v INTEGRABILNIH in MBL sistemih

Hipoteza termalizacije lastnih stanj (ETH)

Če sistem termalizira \iff lastna stanja $|m\rangle$ so "TERMALNA"

Pričakovane vrednosti opazljivk so enake ansambelskim povprečjem:

$$\langle m|\hat{O}|m\rangle = \langle \hat{O}\rangle_T$$

ETH ne velja v INTEGRABILNIH in MBL sistemih

Model t-J

Hamiltonka

$$H = -t \sum_{i,\sigma} \left(\tilde{c}_{i,\sigma}^{\dagger} \tilde{c}_{i+1,\sigma} + c.c. \right) + J \sum_{i} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1} + \sum_{i} h_{i} S_{i}^{z} + \sum_{i,\sigma} u_{i} n_{i,\sigma}$$

- Projicirani fermionski operatorji: $\tilde{c}_{i,\sigma} = (1-n_{i,-\sigma})c_{i,\sigma}$
- h_i, u_i : spinski in vrzelni nered, škatlasti porazdelitvi s parametroma W in H
- Preučujemo: 1D, PBC primer, $S^z=0$

Model t-J

Oznake: L - št. mest, N_h - št. vrzeli, N_u - število spinov \uparrow

Spinski (W) in vrzelni (H) nered

Preučevanje spektralne statistike

- Preučujemo porazdelitev razmikov med sosednjimi nivoji v spektru hamiltonke
- Upoštevamo teorijo naključnih matrik (RMT):
 - Ergodični sistemi: spektralna statistika ustreza Gaussovemu ortogonalnemu ansamblu (GOE)
 - MBL sistemi: sosednji nivoji porazdeljeni v skladu s Poissonovo porazdelitvijo, med njimi ni odboja

Preučevanje spektralne statistike

Primeri statistik v ergodičnem, vmesnem in MBL režimu

GOE: Wigner-Dysonova porazdelitev

MBL: Poissonova porazdelitev

Povprečno razmerje razmikov

• Razmiki med sosednjimi energijskimi nivoji:

$$\delta_n = E_{n+1} - E_n \ge 0$$

• Definiramo razmerje razmikov:

$$0 \le r_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \le 1$$

• KLJUČNO: limitni povprečni vrednosti $\langle r \rangle$ sta dobro znani:

$$\langle r \rangle_{\text{GOE}} = 0.5307, \quad \langle r \rangle_{\text{P}} = 2 \ln 2 - 1 \approx 0.3863$$

Povprečno razmerje razmikov

• Razmiki med sosednjimi energijskimi nivoji:

$$\delta_n = E_{n+1} - E_n > 0$$

• Definiramo razmerje razmikov:

$$0 \le r_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \le 1$$

• KLJUČNO: limitni povprečni vrednosti $\langle r \rangle$ sta dobro znani:

$$\langle r \rangle_{\text{GOE}} = 0.5307, \quad \langle r \rangle_{\text{P}} = 2 \ln 2 - 1 \approx 0.3863$$

VPRAŠANJI:

Nastopi MBL za oba tipa nereda?

Kakšna je vloga dopiranja?

Dopiranje z eno vrzeljo, $N_h = 1$:

VRZELNI NERED: ni MBL

Dopiranje z eno vrzeljo, $N_h = 1$:

VRZELNI NERED: ni MBL

Tretjinsko dopiranje, $N_h = L/3$:

MBL za oba tipa nereda

Tretjinsko dopiranje, $N_h = L/3$:

MBL za oba tipa nereda

Oba tipa nereda hkrati

Ena vrzel.

Tretjinsko dopiranje.

Definicija

$$K(\tau) \coloneqq \left\langle \frac{1}{N} \sum_{i,j}^{N} e^{-i(E_i - E_j)\tau} \right\rangle$$

Definicija

$$K(\tau) \coloneqq \left\langle \frac{1}{N} \sum_{i,j}^{N} e^{-i(E_i - E_j)\tau} \right\rangle$$

Povezani spektralni oblikovni faktor

$$K_{\rm c}(\tau) := K(\tau) - \left| \left\langle \frac{1}{\sqrt{N}} \sum_{i} e^{-iE_i \tau} \right\rangle \right|^2$$

$K(\tau)$ v ergodičnem sistemu

$$K_{\text{GOE}}(\tau) = \begin{cases} 2\tau - \tau \log \left(1 + 2\tau\right), & \tau \leq 1, \\ 2 - \tau \log \left(\frac{2\tau + 1}{2\tau - 1}\right), & \tau > 1. \end{cases}$$

$K(\tau)$ v MBL (in integrabilnih) sistemih

$$K(\tau) = 1$$

$K(\tau)$ v ergodičnem sistemu

$$K_{\text{GOE}}(\tau) = \begin{cases} 2\tau - \tau \log \left(1 + 2\tau\right), & \tau \leq 1, \\ 2 - \tau \log \left(\frac{2\tau + 1}{2\tau - 1}\right), & \tau > 1. \end{cases}$$

SFF v ergodičnem in MBL režimu, L = 14, $N_h = 0$, $N_u = 7$

Ena vrzel -
$$L = 11, N_h = 1, N_u = 5$$

Spinski nered.

Vrzelni nered - ni MBL.

Ena vrzel -
$$L = 11, N_h = 1, N_u = 5$$

Spinski nered.

Vrzelni nered - ni MBL.

Za vrzelni nered NI PREHODA - vmesno obnašanje.

Tretjinsko dopiranje - $L=9, N_h=3, N_u=3$

Spinski nered.

Vrzelni nered.

Tretjinsko dopiranje - $L=9, N_h=3, N_u=3$

Spinski nered.

Vrzelni nered.

Prehod v MBL za oba tipa nereda.

