

SEQUENCE LISTING

<110> Valtion teknillinen tutkimuskeskus

<120> A method for cleaving proteins

<130> VTT138PCT

<150> 2001050

<151> 2003-07-09

<160> 30

<170> PatentIn version 3.1

<210> 1

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 1

Gly Ser Pro Thr Gly Ala Ser Thr His His His His His His Gly Ser
1 5 10 15

Pro Thr Gly Ala Ser Thr
20

<210> 2

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 2

Gly Ser Pro Thr Gly Ala Ser Thr Gly Gly Gly Gly Gly Gly Ser
1 5 10 15

Pro Thr Gly Ala Ser Thr
20

<210> 3

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 3

Gly Ser Pro Thr Gly Ala Ser Thr His His His His His His Gly Ser
1 5 10 15Pro Thr Gly Ala Ser Thr
20

<210> 4

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 4

Gly Ser Pro Thr Gly Ala Ser Thr Gly Ser Thr Gly Pro Ser Gly Ser
1 5 10 15Pro Thr Gly Ala Ser Thr
20

<210> 5

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 5

Gly Ser Pro Thr Gly Ala Ser Thr His His His His Gly Ser Pro Thr
1 5 10 15Gly Ala Ser Thr
20

<210> 6

<211> 18

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 6

Gly Ser Pro Thr Gly Ala Ser Thr His His Gly Ser Pro Thr Gly Ala
1 5 10 15

Ser Thr

<210> 7
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acid sequence
<400> 7
Gly Ser Pro Thr Gly Ala Ser Thr His His His His His His His
1 5 10 15
Gly Ser Pro Thr Gly Ala Ser Thr
20

<210> 8
<211> 27
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acid sequence
<400> 8
Gly Ser Pro Thr Gly Ala Ser Thr His Ser His Ala His Gly His Ala
1 5 10 15
His Ser His Gly Ser Pro Thr Gly Ala Ser Thr
20 25

<210> 9
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acid sequence
<400> 9
His Ser His Ala His Gly His Ala His Ser His Gly
1 5 10

<210> 10
<211> 40
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide
<400> 10
gcattggatt cgaattctta gctgaagcta aagtcttagc

40

<210> 11

<211> 34
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide
<400> 11
gcattaa~~gct~~ tctattcgct ttttgc~~g~~ga gtag 34

<210> 12
<211> 69
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide
<400> 12
cggttagccc aaccggcg~~c~~g agcaccatc accatcacca tcacggtagc ccaaccggcg 60
cgagcaccg 69

<210> 13
<211> 77
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide
<400> 13
aattcgg~~tgc~~ tcgcgc~~gg~~gt tggctaccg t~~g~~atgg~~t~~gat ggtgatgggt gctcg~~cg~~ccg 60
gttgggctac ccgagct 77

<210> 14
<211> 69
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide
<400> 14
cggttagccc aaccggcg~~c~~g agcaccggcg gtgg~~tgg~~tgg cggcggtagc ccaaccggcg 60
cgagcaccg 69

<210> 15
<211> 77
<212> DNA
<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 15
aattcgggtgc tcgcgcgggt tgggctacccg ccgcaccac cagggccgggt gctcgcccg 60
gttgggctac ccgagct 77

<210> 16

<211> 33

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 16
gcatgttgggtt cggccgggtt aaggactcgaaagg 33

<210> 17

<211> 33

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 17
gcattaaatgtt tctactgctt aacggcgctt agc 33

<210> 18

<211> 69

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 18
cgggttagcccc aaccggcgcg agcaccggca gcaccggtcc aagcggttagc ccaaccggcg 60
cgagcaccg 69

<210> 19

<211> 77

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 19
aattcgggtgc tcgcgcgggt tgggctacccg cttggaccgg tgctgcccgggt gctcgcccg 60
gttgggctac ccgagct 77

<210> 20

<211> 63

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 20
cggtagccc aaccggcgcg agcacccatc accatcacgg tagcccaacc ggccgcgagca 60
ccg 63

<210> 21

<211> 67

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 21
aattcggtgtc tcgcgcgggt tgggctaccg tcatggtgat gggtgctcgc gccggttggg 60
ctaccgg 67

<210> 22

<211> 56

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 22
cggtagccc aaccggcgcg agcacccatc acggtagccc aaccggcgcg agcacc 56

<210> 23

<211> 65

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 23
aattcggtgtc tcgcgcgggt tgggctaccg tcatgggtgc tcgcgcgggt tgggctaccc 60
gagct 65

<210> 24

<211> 75

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 24

cggtagccc aaccggcgcg agcacccacc atcaccatca ccatcaccat ggttagccaa 60
ccggcgcgag caccg 75

<210> 25

<211> 83

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 25

aattcggtgtc tcgcgcgggt tggctacca tggatgggt gatggatgt gtgggtgctc 60
gcgcgggttg ggctacccga gct 83

<210> 26

<211> 84

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 26

cggtagccc aaccggcgcg agcacccata gccacgcgca tggcacgcg catagccacg 60
gtagccaaac cggcgcgagc accg 84

<210> 27

<211> 92

<212> DNA

<213> Artificial sequence

<220>

<223> oligonucleotide

<400> 27

aattcggtgtc tcgcgcgggt tggctacccg tggctatgcg cgtggccatg cgcgtggcta 60
tgggtgctcg cggcggttgg gctacccgag ct 92

<210> 28

<211> 4

<212> PRT

<213> Artificial sequence

<220>

<223> amino acid sequence

<400> 28

His His His His

1

<210> 29

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 29

His His His His His His
1 5

<210> 30

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> amino acid sequence

<400> 30

His His His His His His His
1 5