Формули по вероятности

-	Формули по вероятности
Комбинатори-	$V_n^k = n(n-1)(n-k+1)$, $\widetilde{V}_n^k = n^k$
ка	"
	$C_n^k = \binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)(n-k+1)}{k!} \widetilde{P}_{k_1+k_2++k_n} = \frac{(k_1+k_2++k_n)!}{(k_1!)(k_2!)(k_n!)}$
	(k) $(n-k)!k!$ $k!$ $(k_1!)(k_2!)(k_n!)$
Формула за	$P(A \cup A \cup A) = \sum_{i=1}^{n} P(A) - \sum_{i=1}^{n} P(A A) + (-1)^{n-1} P(A A A)$
събиране на	$P(A_1 \cup A_2 \cup \cup A_n) = \sum_{\kappa=1}^n P(A_{\kappa}) - \sum_{\substack{\kappa, j=1\\k < i}}^n P(A_{\kappa} A_j) + + (-1)^{n-1} P(A_1 A_2 A_n)$
вероятности	k <j< th=""></j<>
Формула за	$P(B) = \sum_{i=1}^{n} P(A_i)P(B \mid A_i),$ $A_1, A_2,, A_n - n$ ылна група
пълната	$I_1, I_2,, I_n \text{nonthe approx}$
вероятност	
Формула на	$P(A_j \mid B) = \frac{P(A_j)P(B \mid A_j)}{\frac{n}{2}}, \qquad A_1, A_2,, A_n - n$ ълна група
Бейс	$\sum_{n=1}^{\infty} P(A) P(B A)$
	$\sum_{i=1} P(A_i)P(B \mid A_i)$
Бернулиево	$P(X=1) = p, P(X=0) = 1-p, \qquad EX = p, \text{Дисперсия} = p(1-p)$
разпределение	
Биномно	$P(X = k) = \frac{n(n-1)(n-k+1)}{k!} p^{k} (1-p)^{n-k}, \qquad k = 0,1,n$
разпределение	$F(\Lambda = \kappa) = \frac{1}{k!} p (1-p) , \kappa = 0,1,n$
п опита,	EX = np Дисперсия = $np(1-p)$
р=Р(Успех)	
Поасоново	$p(y, k)$ λ^k $e^{-\lambda}$ k 0122 $p(y, k)$ λ^k
разпределение	$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}, \qquad k = 0,1,2,3 \qquad EX = \lambda \qquad $ Дисперсия = λ
Геометрично	$P(X = k) = p(1-p)^{k-1}, \qquad k = 1,2,3,$ $EX = \frac{1}{p}$ $Aucn. = \frac{1-p}{p^2}$
разпределение	p p
Хипергеомет-	$P(X = k) = \frac{C_m^k C_{N-m}^{n-k}}{C_n^n}, k = 0,1,n$
рично	C_N^n
разпределение	$EX = \frac{n m}{N} \qquad \mathcal{L}ucnepcus = \frac{n m}{N} \left[\frac{(n-1)(m-1)}{N-1} + 1 - \frac{nm}{N} \right]$
	$N \longrightarrow N \longrightarrow$
Равномерно	$P(X = x_k) = \frac{1}{n}, k = 1, 2, n$ $EX = \frac{x_1 + x_2 + + x_n}{n}$
дискретно	$P(A - \lambda_k) - \frac{1}{n}, K - 1, 2, \dots M = \frac{1}{n}$
разпределение	
Равномерно	$f(x) = \frac{1}{b-a}, x \in [a,b]$ $F(x) = \frac{x-a}{b-a}, x \in [a,b]$
непрекъснато	· · · · · · · · · · · · · · · · · · ·
разпределение	a+b $a+b$ $a+b$
	$EX = {2}$ $\mathcal{L}ucnepcus = {12}$
Експоненциал	$EX = \frac{a+b}{2} \qquad \text{Дисперсия} = \frac{(b-a)^2}{12}$ $f(x) = \lambda e^{-\lambda x}, x \ge 0 \qquad F(x) = 1 - e^{-\lambda x}, x \ge 0$
но	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
разпределение	$EX = \frac{1}{2}$ $\mathcal{L}ucnepcus = \frac{1}{2}$
	λ λ^2
Нормално	$EX = \frac{1}{\lambda} \qquad \text{Дисперсия} = \frac{1}{\lambda^2}$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad -\infty < x < \infty$
разпределение	$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-2\sigma}$, $-\infty < x < \infty$
	EV μ π
	$EX = \mu$ $\mathcal{L}ucnepcus = \sigma^2$