Word Embeddings

Sergey Aksenov

Higher School of Economics

19 сентября 2022 г.

Метрики

Cosine similarity

$$\textit{Sim}(p,q) = \frac{\sum_{i} p_{i}q_{i}}{\sqrt{\sum_{i} p_{i}^{2}} \sqrt{\sum_{i} q_{i}^{2}}}$$

Manhattan distance

$$d(p,q) = \sum_{i} |p_i - q_i|$$

Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

One-hot кодирование

Абрикос Апельсин

Преимущества

- Простой способ получить какие-то вектора

Яблоко

**/*

Недостатки

- Длина векторов не фиксирована
- Векторы ортогональны
- ▶ Не сохраняет смысл слов

- $ightharpoonup d \in D, |D| = m$ документы
- $ightharpoonup w \in V, |V| = n$ слова
- $ightharpoonup M_{ij} = \#w_i \in d_j$

Сингулярное разложение матрицы M

- ightharpoonup Снижение размерности: выберем k наибольших сингулярных чисел в Σ
- lacktriangle Выберем k первых столбцов и строк в U и $V^T U_k$ и V_k^T

Каждому слову поставим в соответствие вектор $U_k\sqrt{\Sigma_k}$

Что стало лучше

- Векторы имеют фиксированную длину
- Векторы не ортогональны друг другу
- Семантическая близость как-то учитывается

Недостатки

- Нужно в явном виде работать с большой разреженной матрицей
- Добавление новых слов или документов невозможно без построения нового разложения

- lacktriangle Разобьем корпус текста на контексты размера $2{\cal C}+1$
- ▶ Вход нейронной сети: 2 векторов контекста, размерность каждого вектра n

- ightharpoonup Применим ко входу преобразование W и усредним результаты
- lacktriangle Получим k-мерный вектор скрытого состояния $h=rac{1}{4}W^T(a_{i-2}+a_{i-1}+a_{i+1}+a_{i+2})$

Умножим скрытое состояние на вторую матрицу и получим n—мерный выходной вектор $b = V^T h$

Оптимизационная задача

▶ Для i—го окна по контексту c_i предсказать центральное слово w_i :

$$\sum_{i} logp(w_{i}|c_{i})
ightarrow max_{W,V}$$

ightharpoonup Выход последнего слоя сети: $softmax(b) = (z_i,...,z_j)$, где

$$z_j = p(w_j|c_i) = \frac{e^{b_j}}{\sum_k e^{b_k}}$$

- ▶ Получаем две матрицы весов: W и V
- ▶ Обычно матрицу W считают матрицей искомых векторов

Модель Skip-gram

- lacktriangle Разобьем корпус на контексты размера $2{\cal C}+1$
- Вход нейронной сети: n—мерный one-hot вектор центрального слова
- ightharpoonup Вектор скрытого состояния $h = W^T x$

Модель Skip-gram

- Выход нейронной сети: вероятностное распределение слова контекста при условии центрального слова
- ightharpoonup Выходной вектор $b = V^T h$

Модель Skip-gram

Оптимизационная задача

ightharpoonup Для i-го центрального слова предсказать слово контекста c_j

$$\sum_{i}\sum_{j}log(c_{j}|w_{i})
ightarrow max_{W,V}$$

Обучение моделей Word2Vec

Проблема: вычисление softmax на выходном слое требует прохода по всему словарю - O(n) операций, вычислительно трудная задача

Методы сокращения перебра

- ▶ Иерархический softmax
- Noise Constructive Estimation (NCE)
- Negative sampling (NS)

 Будем оценивать только значения, стоящие в позициях предсказываемых слов контекста

$$\sum_i \sum_j log(c_j|w_i) o max_{W,V}$$

Заменим второй слой сети на дерево Хаффмана

- Пусть мы хотим оценить вероятность слова "лось"
- Вероятность перехода из текущей вершины в поддеревья:
 - $ightharpoonup p_0 = \sigma(u_{n(w,0)}^T,h)$, если спускаемся по левой ветке
 - $ho_0 = \sigma(-u_{n(w,0)}^T, h)$, если спускаемся по правой ветке

- ▶ В результате мы окажемся в целевом листе
- ▶ Каждый i—й спуск происходил с вероятностью p_i
- ightharpoonup Итоговая вероятность равна $\Pi_i p_i$

- ▶ Пройдем по дереву 2C раз, получим все вероятности, необходимые для подсчета ошибки и настройки весов
- ightharpoonup Сложность спуска по дереву O(nlogn)

Negative sampling

- Сформулируем задачу skip-gram как задачу бинарной классификации
- ightharpoonup Рассмотрим пару слов (w,s):
 - \blacktriangleright Класс 0: s не входит в контекст w
 - Класс 1: s входит в контекст w
- ▶ Вероятность класса $p(1|(w,s)) = \frac{1}{1+e^{-\nu_w^t \nu_s}} = \sigma(\nu_w^t, \nu_s)$

Negative sampling

- ightharpoonup Пусть D_1- множество наблюдаемых пар (w,s)
- $ightharpoonup D_0-$ множество ненаблюдаемых пар (w,s), на каждой итерации обучения выбираем случайные пары
- Функционал праводоподобия

$$L = \sum_{w,s \in D_1} log(\sigma(\nu_w^t \nu_s)) + \sum_{w,s \in D_0} log(\sigma(-\nu_w^t \nu_s))$$

Модели word2vec

Обучение

- Ускорение обучения за счет иерархического softmax и negative sampling
- ▶ Вариант по умолчанию: SGNS (skip-gram with negative sampling)

Модели word2vec

Обучение

- Ускорение обучения за счет иерархического softmax и negative sampling
- ▶ Вариант по умолчанию: SGNS (skip-gram with negative sampling)

Недостатки

- ▶ Не учитывается морфология
- ▶ Нет возможности работать с ООV-словами

Модель FastText

- ▶ Разобьем слова на последовательности символов символьные N-граммы
- Обучим вектора для каждой N-грамы с помощью CBOW или Skip-gram
- ▶ Вектор слова получим усреднением N-грамм