CS301: Theory of Computation Sections 4.1 & 4.2 - Decidable Languages and Undecidability

Daniel White

Gettysburg College Computer Science

Spring 2024

The **acceptance problem** for DFAs asks if a TM exists which can determine whether a given DFA accepts a given input string.

Theorem 4.1 (pg. 194)

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts string } w \}$ is a decidable language.

Proof (high-level). On input $\langle B, w \rangle$:

- \blacksquare Simulate B on input w.
- 2 If the simulation ends in an accept state, *accept*. If it ends on a non-accept state, *reject*.

exercise: Discuss some implementation details of the TM used in the proof above. *e.g.* encoding and tape management

Define A_{NFA} and A_{REX} in a similar way for NFAs and regular expressions, respectively.

Theorems 4.2 & 4.2 (pgs. 195-196)

 A_{NFA} and A_{REX} are decidable languages.

Proof. We first present a TM N that decides A_{NFA} . Instead of designing N to simulate any given NFA, we first have N...

exercise: Finish this proof.

Another fundamental class of problem is **emptiness testing**. Given a DFA A, does the recognized language L(A) contain any member?

Theorem 4.4 (pg. 196)

 $E_{\mathsf{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \text{ is a decidable language.}$

Proof. On input $\langle A \rangle$:

- 1 Mark the start state of A.
- 2 Repeat until no new states get marked: Mark any state that has ...
- 3 ...

exercise: Finish this proof.

homework: 4.10

Theorem 4.8 (pg. 198)

 E_{CFG} is a decidable language.

Proof. We will test whether the start variable can generate a string of terminals by determining if every variable can generate a string of terminals. On input $\langle G \rangle$:

- 1 Mark all terminals in G.
- 2 Repeat until no new variables get marked: Mark any variable A where . . .

exercise: Finish this proof.

homework: 2.18 & 4.14

One of the most philosophically important theorems in the theory of computation: some problems are algorithmically unsolvable.

Theorem 4.11 (pg. 202)

 A_{TM} is Turing-recognizable, but undecidable.

Proof. Define the TM U so that on input $\langle M, w \rangle$:

- 1 Simulate M on input w.
- 2 If *M* ever enters its accept state, *accept*; if *M* ever enters its reject state, *reject*.

Note that while U (the so-called *universal Turing machine*) recognizes A_{TM} , it does not decide A_{TM} . This is not proof that A_{TM} is undecidable though . . .

By way of contradiction, suppose A_{TM} is decidable and let H be a decider which recogizes A_{TM} . In other words,

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w, \text{ and} \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

We further define a decider D so that on input of TM M:

- **1** Run H on input $\langle M, \langle M \rangle \rangle$, then
- 2 output the opposite of *H*'s output.

Finally, we evaluate $D(\langle D \rangle)$...

exercise: Finish this proof.

homework: Know this proof.

Definition (pgs. 202-203)

Two sets are said to have the same **cardinality**, or size, if there exists a bijection between them.

exercise: Argue that this definition is consistent for finite sets.

exercise: Prove that \mathbb{N} has the same size as $\{2,4,\ldots\}$.

Definition 4.14 (pg. 203)

A set is **countable** if either it is finite or has the same size as \mathbb{N} .

exercise: Prove that \mathbb{Q} is countable.

Definition (pg. 204)

A set is **uncountable** if it is not countable.

Theorem 4.17 (pg. 205)

 \mathbb{R} is uncountable.

Proof. By way of contradiction, suppose \mathbb{R} is countable. Then the real numbers are indexable; *i.e.* we can label the reals as r_1 , r_2 , r_3 , and so on ...

exercise: Finish this proof.

exercise: Prove that the set *B* of all infinite binary strings is

uncountable.

Decidability

Corollary 4.18 (pg. 206)

The set of languages that are not Turing-recognizable is uncountable.

Proof. Fix an alphabet Σ and consider any fixed ordering of the set Σ^* as $\Sigma^*_{\text{ord}} = [w_0, w_1, \ldots]$ For each infinite binary string $\beta \in B$, $\beta = \beta_0 \beta_1 \beta_2 \ldots$, define $L(\beta)$ to be the subset of Σ^* defined as

$$L(\beta) = \{ w_i \mid w_i \in \Sigma_{\text{ord}}^* \text{ and } \beta_i = 1 \}.$$

Note that, in this way, the set B of infinite binary strings exhaustively (and exactly) generates all languages over Σ . That is, the languages over Σ are in one-to-one correspondence with B, and so must be $uncountable \dots$

exercise: Finish this proof. homework: Thm 4.22 & Cor 4.23