MATH602: Correction du CC2 2017/2018

Exercice 1.

1. Pour tout $n \ge 1$, la fonction $x \longmapsto n \sin(x/n)(1+x^2)^{-1}$ est continue sur \mathbf{R} donc borélienne. Par ailleurs, pour tout $x \in [0,1]$, $\lim_{n\to\infty} n \sin(x/n)(1+x^2)^{-1} = x(1+x^2)^{-1}$. Finalement, puisque $|\sin x| \le |x|$, pour tout $x \in \mathbf{R}$,

$$\sup_{n>1} \left| n \sin(x/n) \left(1 + x^2 \right)^{-1} \right| \le |x| \left(1 + x^2 \right)^{-1}.$$

la fonction $x \mapsto |x| (1+x^2)^{-1}$ étant intégrable sur [0,1], on a, d'après le théorème de convergence dominée,

$$\lim_{n \to \infty} \int_0^1 \frac{n \sin(x/n)}{1+x^2} \, dx = \int_0^1 \lim_{n \to \infty} \frac{n \sin(x/n)}{1+x^2} \, dx = \int_0^1 \frac{x}{1+x^2} \, dx = \left[\frac{1}{2} \ln \left(1 + x^2 \right) \right]_0^1 = \frac{\ln 2}{2}.$$

2. La fonction $(x,y) \mapsto e^{-\alpha x} e^{-\beta y}$ est continue sur \mathbf{R}^2 et Δ , qui est un ouvert de \mathbf{R}^2 , appartient à $\mathcal{B}(\mathbf{R}^2)$. Par conséquent, $(x,y) \mapsto e^{-\alpha x} e^{-\beta y} \mathbf{1}_{\Delta}(x,y)$ est borélienne. Cette fonction étant d'autre part positive, le théorème de Tonelli conduit à

$$\int_{\mathbf{R}^2} e^{-\alpha x} e^{-\beta y} \, \mathbf{1}_{\Delta}(x,y) \, dx dy = \int_{\mathbf{R}} \left(\int_{\mathbf{R}} e^{-\alpha x} e^{-\beta y} \, \mathbf{1}_{\Delta}(x,y) \, dy \right) dx = \int_0^{+\infty} e^{-\alpha x} \left(\int_x^{+\infty} e^{-\beta y} \, dy \right) dx.$$

Un calcul élémentaire donne alors

$$\int_{\mathbf{R}^2} e^{-\alpha x} e^{-\beta y} \mathbf{1}_{\Delta}(x, y) \, dx dy = \frac{1}{\beta(\alpha + \beta)}.$$

3. La matrice $\begin{pmatrix} 3 & 0 \\ 1 & -2 \end{pmatrix}$ étant inversible, $(u, v) = \psi(x, y) = (3x, x - 2y)$ est un \mathcal{C}^1 -difféormorphisme de \mathbf{R}^2 dans lui-même. Par ailleurs, $J_{\psi}(x, y) = -6$. D'après la formule du changement de variable,

$$I = \int_{\mathbf{R}^2} f(u, v) \, du dv = \int_{\mathbf{R}^2} f(\psi(x, y)) \, |J_{\psi}(x, y)| \, dx dy = 6J.$$

Exercice 2. 1. Pour tout $z \in \mathbb{C}$, $x \longmapsto e^{zx}$ est borélienne car continue. Puisque μ est une mesure de probabilité, $\mu\left([-1,1]^c\right) = 0$, $e^{zx} = e^{zx}\mathbf{1}_{[-1,1]}$ pour μ -presque tout x. Par suite,

$$\int_{\mathbf{R}} |e^{zx}| \, \mu(dx) = \int_{[-1,1]} |e^{zx}| \, \mu(dx) \le e^{|\operatorname{Re}(z)|} \, \mu([-1,1]) \le e^{|z|} < +\infty.$$

Par conséquent, pour tout $z \in \mathbb{C}$, $x \longmapsto e^{zx}$ est μ -intégrable. Ceci montre que L est définie sur \mathbb{C} et, puisque $e^{zx} = e^{zx} \mathbf{1}_{[-1,1]}$ pour μ -presque tout x, on a

$$L(z) = \int_{[-1,1]} e^{zx} \mu(dx).$$

2. Pour tous $z \in \mathbf{C}$ et $x \in [-1,1]$, $e^{zx} = \sum_{n \ge 0} \frac{z^n x^n}{n!}$. On a, pour tout $z \in \mathbf{C}$,

$$\sum_{n > 0} \int_{[-1,1]} \left| \frac{z^n x^n}{n!} \right| \mu(dx) \le \sum_{n > 0} \frac{|z|^n}{n!} = e^{|z|} < +\infty.$$

D'après le corollaire du théorème de convergence dominée pour les séries de fonctions, il vient, pour $z \in \mathbf{C}$,

$$L(z) = \int_{[-1,1]} \sum_{n \geq 0} \frac{z^n x^n}{n!} \, \mu(dx) = \sum_{n \geq 0} \int_{[-1,1]} \frac{z^n x^n}{n!} \, \mu(dx) = \sum_{n \geq 0} \frac{z^n}{n!} \, \int_{[-1,1]} x^n \, \mu(dx).$$

Exercice 3. 1. Pour $t \in \mathbf{R}$ et x > 0, posons $f(t, x) = e^{-x^2} \cos(2tx)$. Nous avons :

- Pour tout $t \in \mathbf{R}$, $x \mapsto f(t,x)$ est borélienne sur \mathbf{R}_+^* car continue.
- Pour tout x > 0, $t \mapsto f(t, x)$ est de classe \mathcal{C}^1 sur \mathbf{R} et

$$\forall x > 0, \quad \forall t \in \mathbf{R}, \qquad \frac{\partial f}{\partial t}(t, x) = -2xe^{-x^2}\sin(2tx).$$

— La fonction $f(0,x) = e^{-x^2}$ est intégrable \mathbf{R}_+^* et, pour tout x > 0,

$$\sup_{t\in\mathbf{R}}\left|\frac{\partial f}{\partial t}(t,x)\right|\leq 2|x|e^{-x^2}\in\mathrm{L}^1\left(\mathbf{R}_+^*\right).$$

D'après le théorème de régularité des intégrales à paramètre, F est définie et de classe \mathcal{C}^1 sur \mathbf{R} et,

$$\forall t \in \mathbf{R}, \qquad F'(t) = \int_0^{+\infty} \frac{\partial f}{\partial t}(t, x) \, dx = \int_0^{+\infty} (-2xe^{-x^2}) \sin(2tx) \, dx.$$

2. Puisque $\left(e^{-x^2}\right)' = -2xe^{-x^2}$, on obtient en faisant une intégration par parties, pour tout réel t,

$$F'(t) = \left[e^{-x^2}\sin(2tx)\right]_0^{+\infty} - \int_0^{+\infty} e^{-x^2} 2t\cos(2tx) \, dx = -2tF(t).$$

3. (a) La fonction ψ définie par $(x,y)=\psi(r,\theta)=(r\cos\theta,r\sin\theta)$ est un \mathcal{C}^1 -difféomorphisme de l'ouvert $]0,+\infty[\times]0,\pi/2[$ sur $]0,+\infty[\times]0,+\infty[$. De plus, $|J_{\psi}(r,\theta)|=r$. On obtient alors

$$\int_0^{+\infty} \int_0^{+\infty} e^{-(x^2 + y^2)} dx dy = \int_0^{+\infty} \int_0^{\pi/2} e^{-r^2} r dr d\theta = \frac{\pi}{4}.$$

(b) D'après le théorème de Tonelli, on a

$$\int_0^{+\infty} \int_0^{+\infty} e^{-(x^2+y^2)} \, dx dy = F(0)^2,$$

et, comme $F(0) \ge 0$, il vient $F(0) = \sqrt{\pi/2}$.

(c) D'après la question 2,
$$F(t) = F(0) e^{-t^2} = \frac{\sqrt{\pi}}{2} e^{-t^2}$$
.

Exercice 4. 1. Pour tout x > 0,

$$\int_0^{+\infty} e^{-xy} \, dy = \frac{1}{x}.$$

2. Soit A > 0. La fonction $(x, y) \mapsto \sin(x)e^{-xy}$ est intégrable sur $]0, A[\times]0, +\infty[$. En effet, cette fonction est borélienne car continue et, d'après le théorème de Tonelli,

$$\int_0^A \int_0^{+\infty} |\sin x| e^{-xy} \, dxy = \int_0^A \frac{|\sin x|}{x} \, dx \le A < +\infty.$$

D'après le théorème de Fubini,

$$\int_0^A \frac{\sin x}{x} \, dx = \int_0^A \sin x \left(\int_0^{+\infty} e^{-xy} \, dy \right) dx = \int_0^{+\infty} \left(\int_0^A \sin x \, e^{-xy} \, dx \right) dy.$$

3. Soient A > 0 et y > 0. On a

$$\int_0^A \sin x \, e^{-xy} \, dx = \int_0^A \operatorname{Im} \left(e^{ix - xy} \right) \, dx = \left[\operatorname{Im} \left(\frac{e^{ix - xy}}{i - y} \right) \right]_0^A.$$

D'autre part,

$$\operatorname{Im}\left(\frac{e^{ix-xy}}{i-y}\right) = \frac{e^{-xy}}{1+y^2} \operatorname{Im}\left(-(i+y)e^{ix}\right) = \frac{e^{-xy}}{1+y^2} \left(-\cos x - y\sin x\right),$$

et par conséquent

$$\int_0^A \sin x \, e^{-xy} \, dx = -\frac{e^{-Ay}}{1+y^2} \left(\cos A + y \sin A\right) + \frac{1}{1+y^2}.$$

4. Puisque $x \mapsto \sin x/x$ est Riemann-intégrable sur $]0, +\infty[$ (sans être Lebesgue-intégrable),

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \lim_{A \to +\infty} \int_0^A \frac{\sin x}{x} \, dx = \lim_{A \to +\infty} \int_0^{+\infty} \left(\frac{1}{1 + y^2} - \frac{e^{-Ay}}{1 + y^2} \left(\cos A + y \sin A \right) \right) dy.$$

Pour tout y > 0,

$$\lim_{A \to +\infty} \left(\frac{1}{1+y^2} - \frac{e^{-Ay}}{1+y^2} \left(\cos A + y \sin A \right) \right) = \frac{1}{1+y^2}.$$

Par ailleurs, pour tout y > 0,

$$\sup_{A>1} \left| \frac{1}{1+y^2} - \frac{e^{-Ay}}{1+y^2} \left(\cos A + y \sin A \right) \right| \le \frac{1}{1+y^2} + e^{-y} \frac{1+y}{1+y^2} \le \frac{1}{1+y^2} + \frac{3}{2} e^{-y} \in \mathcal{L}^1 \left(\left] 0, +\infty \right[\right).$$

D'après le théorème de convergence dominée,

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \int_0^{+\infty} \lim_{A \to +\infty} \left(\frac{1}{1+y^2} - \frac{e^{-Ay}}{1+y^2} \left(\cos A + y \sin A \right) \right) dy = \int_0^{+\infty} \frac{dy}{1+y^2} = \frac{\pi}{2}.$$

Exercice 5. 1. Puisque $x \mapsto x^{a-1}e^{-x}$ est intégrable sur $[1, +\infty[$, le critère de Riemann en 0 montre que $\Gamma(a)$ et B(a,b) sont définies pour a>0 et b>0.

2. Fixons a > 0 et b > 0. D'après le théorème de Tonelli,

$$\Gamma(a)\Gamma(b) = \int_{]0,+\infty[^2} e^{-(x+y)} x^{a-1} y^{b-1} dx dy.$$

Considérons la fonction $\psi:]0, +\infty[^2 \longrightarrow \mathbf{R}^2$ définie par $\psi(x,y) = \left(x+y, \frac{x}{x+y}\right)$ et montrons que ψ est un \mathcal{C}^1 -difféomorphisme sur $]0, +\infty[^2$. Il est clair que ψ est de classe \mathcal{C}^1 sur l'ouvert $]0, +\infty[^2$. Il s'agit de vérifier que ψ est injective sur $]0, +\infty[^2$ et que $J_{\psi}(x,y) \neq 0$ si $(x,y) \in]0, +\infty[^2$.

Si $\psi(x,y)=\psi(x',y')$ on a x+y=x'+y' et $\frac{x}{x+y}=\frac{x'}{x'+y'}$ d'où l'on déduit immédiatement x=x' puis y=y'. D'autre part, on a

$$J_{\psi}(x,y) = \begin{vmatrix} 1 & 1 \\ y & -x \\ (x+y)^2 & (x+y)^2 \end{vmatrix} = -\frac{1}{x+y},$$

qui est bien sûr non nul sur $]0, +\infty[^2]$. Par conséquent, ψ est un \mathcal{C}^1 -difféomorphisme de $]0, +\infty[^2]$ sur $\psi(]0, +\infty[^2]$. Si x et y sont strictement positifs on a x < x + y de sorte que $\psi(]0, +\infty[^2] \subset]0, +\infty[\times]0, 1[$. Montrons l'inclusion inverse. Pour $(u, v) \in]0, +\infty[\times]0, 1[$, résolvons l'équation $\psi(x, y) = (u, v)$; on obtient facilement $(x, y) = (uv, u(1 - v)) = \psi^{-1}(u, v)$ qui appartient à $]0, +\infty[^2]$. D'où $\psi(]0, +\infty[^2] =]0, +\infty[\times]0, 1[$.

On calcule $\Gamma(a)\Gamma(b)$ – la fonction à intégrer est positive – à l'aide du changement de variables $(u,v)=\psi(x,y)$. Pour cela on exprime $e^{-(x+y)}x^{a-1}y^{b-1}/|J_{\psi}(x,y)|$ en fonction des nouvelles coordonnées, soit

$$\frac{e^{-(x+y)}x^{a-1}y^{b-1}}{|J_{\psi}(x,y)|} = e^{-u}(uv)^{a-1}(u(1-v))^{b-1}u = e^{-u}u^{a+b-1}v^{a-1}(1-v)^{b-1}u$$

Finalement, on obtient

$$\Gamma(a)\Gamma(b) = \int_{]0,+\infty[^2} e^{-(x+y)} x^{a-1} y^{b-1} dx dy = \int_{]0,+\infty[\times]0,1[} e^{-u} u^{a+b-1} v^{a-1} (1-v)^{b-1} du dv$$

et d'après le théorème de Tonelli

$$\Gamma(a) \Gamma(b) = \Gamma(a+b) B(a,b).$$