การออกแบบระบบระบายน้ำฝน

เกณฑ์การออกแบบระบบระบายน้ำฝน

ที่มา : กรมโยธาธิการและผังเมือง

เกณฑ์การออกแบบระบบระบายน้ำ แบ่งออกได้เป็น 3 ส่วน คือ เกณฑ์กำหนดทั่วไป เกณฑ์ด้าน อุทกวิทยาและเกณฑ์ด้านชลศาสตร์

(1) เกณฑ์กำหนดทั่วไป

การแบ่งพื้นที่รับน้ำหรือระบายน้ำ แบ่งตามขอบเขตของพื้นที่ปิดล้อม โดยการระบายน้ำ ในแต่ละพื้นที่ปิดล้อมจะเป็นอิสระต่อกัน

- การปรับปรุงคลองในพื้นที่ที่มีประชากรหนาแน่น จะปรับปรุงเฉพาะในเขตคลองเดิม โดยหลีกเลี่ยงการขยายเขตคลอง ซึ่งจะต้องมีการจัดหาที่ดิน นอกจากจำเป็นจริงๆและมีแนวใน้มว่ามีความ เป็นไปได้ในการจัดหา
- การปรับปรุงคลองในพื้นที่เกษตรกรรมหรือบริเวณที่ไม่มีบ้านเรือน อาจใช้การขยาย
 ความกว้างคลองที่ไม่เกินเขตคลอง ถ้าพบว่ามีความจำเป็นและหลีกเลี่ยงไม่ได้ ซึ่งนอกจากจะทำให้สามารถ
 ระบายน้ำในสภาพปัจจุบันได้ดีแล้ว ยังเผื่อไว้สำหรับในอนาคตด้วยเมื่อพื้นที่เหล่านี้มีการพัฒนามากขึ้น
- ระดับน้ำในคลองที่ผ่านพื้นที่ชุมชนจะต้องอยู่ต่ำกว่าระดับคันป้องกันน้ำท่วมในช่วงที่ ฝนตกเท่าเกณฑ์การออกแบบเพื่อไม่ให้เกิดสภาพน้ำท่วม
- ก่อนเกิดฝนตกจะต้องรักษาระดับน้ำในคลองให้ต่ำไว้เพื่อให้คลองมีปริมาตรที่ว่างไว้ สำหรับจะรับน้ำฝนที่ระบายน้ำลงคลองเมื่อเกิดฝนตก
- ถ้าระดับน้ำภายนอกคลองสูงกว่าระดับน้ำภายในคลองจะปิดประตูน้ำและทำการสูบ น้ำออกอย่างเดียวแต่ถ้าระดับน้ำภายนอกอยู่ต่ำกว่าระดับน้ำภายในจะเปิดประตูน้ำช่วยในการระบาย
- ถ้าภายในพื้นที่มีบ่อน้ำหรือหนองน้ำสาธารณะ จะพิจารณาใช้ประโยชน์จากบ่อน้ำ ดังกล่าวไว้เป็นพื้นที่ชะลอน้ำหรือเก็บกักน้ำชั่วคราว เพื่อประโยชน์ในการลดขนาดของระบบระบายน้ำ
 - พิจารณาใช้ท่อระบายน้ำที่มีอยู่เดิมให้มากที่สุดเท่าที่จะทำได้

- การวางท่อระบายน้ำจะพิจารณาขนาดความกว้างของถนนด้วย เนื่องจากถนนบาง สายอาจมีขนาดเล็กถ้าวางท่อขนาดใหญ่ลงไปอาจมีพื้นที่วางท่อไม่พอ หรือถ้าวางท่อระบายน้ำได้ แต่อาจ วางท่อสำหรับสาธารณูปโภคอื่นๆไม่ได้
- การวางท่อระบายน้ำที่ต่อลงคลอง ระดับกันท่ออาจอยู่ต่ำกว่ากันคลองซึ่งทำให้ต้อง ทำการปรับปรุงคลองตามมา ดังนั้นการวางแผนและออกแบบท่อระบายน้ำจะต้องพิจารณาให้สอดคล้อง กับระดับกันคลองถ้าจำเป็นจริงๆจึงจะทำการปรับปรุงคลอง
- การวางแนวท่อระบายน้ำสายหลักจะพิจารณาวางบนถนนเดิมเป็นหลัก สำหรับถนน ผังเมืองในอนาคตจะวางท่อระบายน้ำสายหลักเฉพาะที่จำเป็นจริงๆ เนื่องจากความไม่แน่นอนว่าจะได้ ก่อสร้างเมื่อใด

(2) เกณฑ์การออกแบบด้านอุทกวิทยา

- ระดับน้ำสูงสุดที่คาบความถี่ ใช้ตามเกณฑ์การออกแบบระดับป้องกันน้ำท่วม
- ความเข้มของฝนที่คาบความถี่ต่าง ๆ ใช้ผลการคำนวณของความสันพันธ์ระหว่าง
 ความเข้มของฝน-ช่วงเวลา-คาบความถี่ต่าง ๆ ของสถานีวัดน้ำฝนที่อยู่ภายในพื้นที่
- ฝนออกแบบสำหรับระบบระบายน้ำใช้ฝนระยะสั้น กล่าวคือมีระยะเวลาตกทั้งสิ้น 3 ชม. มีการกระจายของฝน 10 นาที ในช่วงเวลา 3ชม. ตามลักษณะการกระจายที่ตรวจวัดได้ที่สถานีและใน การกระจายที่กำหนดให้มีฝนสูงสุดในช่วง 10 นาที ช่วง 15 นาที ช่วง 30 นาที ช่วง 1 ชม. และช่วง 3 ชม. ของรอบปีที่ระบุรวมอยู่ด้วย
 - การประเมินฝนเฉลี่ยของพื้นที่ขนาดใหญ่ใช้ค่าตัวคูณการลดพื้นที่

(3) เกณฑ์การวางออกแบบด้านชลศาสตร์

- การคำนวณหาปริมาณน้ำท่าที่เกิดขึ้นในพื้นที่จะคำนวณด้วยวิธี Rational Method โดย ใช้ความสัมพันธ์ระหว่างปริมาณน้ำฝน พื้นที่รองรับน้ำฝน และค่าสัมประสิทธิ์การไหลน้ำท่า (C) ซึ่งแตกต่าง กันตามสภาพการใช้พื้นที่ซึ่งอัตราการไหลสูงสุดของปริมาณน้ำท่าคำนวณจากสูตร ดังนี้

Q = 0.278 CIA

เมื่อ Q = อัตราการไหลสูงสุด, ลบ.ม/วินาที

C = สัมประสิทธิ์การไหลของน้ำท่า

- l = ความเข้มของฝน,มม./ชม.
- A = พื้นที่รับน้ำฝนหรือพื้นที่ระบายน้ำ, ตร.กม.

สัมประสิทธิ์ของน้ำท่าสำหรับพื้นที่รับน้ำย่อยในแต่ละแห่ง โดยมีค่าสัมประสิทธิ์การ
 ไหลสำหรับลักษณะพื้นที่แบบต่างๆ ดังนี้

สภาพการใช้ที่ดิน	ค่า C
ที่ดินประเภทที่อยู่อาศัยหนาแน่นน้อย	0.30-0.45
ที่ดินประเภทที่อยู่อาศัยหนาแน่นปานกลาง	0.40-0.50
ที่ดินประเภทที่พาณิชยกรรม และที่อยู่อาศัยหนาแน่นมาก	0.45-0.60
ที่ดินประเภทอุตสาหกรรมเฉพาะกิจ	0.50-0.70
ที่ดินประเภทชนบทและเกษตรกรรม	0.20-0.30
ที่ดินประเภทที่โล่งเพื่อนันทนาการและการรักษาคุณภาพ	0.20-0.30
สิ่งแวดล้อม	
ที่ดินประเภทสถาบันการศึกษา	0.40-0.70
ที่ดินประเภทสถาบันศาสนา	0.20-0.30
ที่ดินประเภทสถาบันราชการ	0.50-0.60

- คาบความถี่ของฝนที่ใช้ในการออกแบบคลองและทางระบายน้ำสายหลักจะทำการ ออกแบบให้รับน้ำได้ด้วยคาบความถี่ 5 ปี
- ความเข้มของฝน (Rainfall Intensity) สำหรับคาบความถี่และช่วงเวลาของฝนที่กำหนดจะ หาได้จากการวิเคราะห์ทางด้านอุทกวิทยาของฝน ช่วงเวลาของฝน กำหนดให้เท่ากับช่วงเวลาที่น้ำไหลจาก บริเวณฝนตกที่จุดไกลที่สุดมาเข้าท่อหรือรางระบายน้ำและไหลในท่อหรือรางระบายมายังจุดที่พิจารณา
 - ช่วงเวลาที่น้ำไหลบนผิวดินหาจากสมการเวลาการรวมตัวของน้ำ(Time of concentration)
- การคำนวณการไหลของน้ำในท่อหรือคลองโดยทั่วไปใช้ Manning Formula ค่าสัมประสิทธิ์ของแมนนิ่ง (n) ใช้ 0.015 สำหรับพื้นผิวที่เป็นคอนกรีต โดยตั้งสมมุติฐานว่าเป็นทางระบาย น้ำตรง (มีมุมเบี่ยงเบนไม่เกิน 5 องศา) และรวมค่าความสูญรอง (Minor Loss) ต่างๆ ไว้แล้ว เช่น ที่รอยต่อ ระหว่างท่อรอยต่อระหว่างท่อกับบ่อพักเป็นต้น สำหรับกรณีคลองธรรมชาติ กำหนดให้ค่าสัมประสิทธิ์ n เท่ากับ 0.030-0.035 สำหรับตัวลำน้ำและเท่ากับ0.050-0.075 สำหรับบริเวณ Flood Plain ของลำน้ำ

- ข้อกำหนดทั่วไปในการออกแบบระบบระบายน้ำภายใน
- (ก) การคำนวณขนาดท่อระบายน้ำได้พิจารณาเป็น 2 ลักษณะ ขึ้นอยู่กับสภาพของพื้นที่
 - กรณีที่จุดทิ้งน้ำ มีระดับน้ำในแหล่งน้ำสาธารณะต่ำกว่าระดับท้องท่อระบายน้ำจะ พิจารณาการไหลในท่อระบายน้ำในเงื่อนไขที่ระดับท้ายน้ำของท่อเป็นแบบอิสระ (Free Flow)
 - กรณีที่จุดทิ้งน้ำ มีระดับน้ำในแหล่งน้ำสาธารณะสูงกว่าระดับท้องท่อระบายน้ำจะ พิจารณาการไหลในท่อระบายน้ำในเงื่อนไขที่ระดับท้ายน้ำของท่อเป็นแบบน้ำท่วม ท้ายท่อ (Submerged Flow)
- (ข) ชนิดและขนาดท่อระบายน้ำกำหนดให้ใช้ท่อ 2 ชนิด ได้แก่
 - ท่อกลมคอนกรีต ใช้ท่อขนาดเส้นผ่านศูนย์กลางตั้งแต่ 0.60-1.50 ม.
 - ท่อสี่เหลี่ยมคอนกรีต ใช้ท่อขนาดตั้งแต่ 1.20×1.20 ม.ขึ้นไป
- (ค) ท่อระบายน้ำ (Street Drain or Trunk Drain)
 - ความเร็วต่ำสุด 0.60 ม./วินาที่ (ป้องกันการตกตะกอน)
 - ความเร็วสูงสุด 3.00 ม./วินาที (ป้องกันการกัดกร่อน)
 - ความลาดชันตามยาว ตามสภาพภูมิประเทศและใช้เกณฑ์ ดังนี้
 - ท่อขนาดเส้นผ่าศูนย์กลาง 0.40. มีความลาดชันไม่น้อยกว่า 1:400
 - ท่อขนาดเส้นผ่าศูนย์กลาง 0.60 ม. มีความลาดชันไม่น้อยกว่า 1:600
 - ท่อขนาดเส้นผ่าศูนย์กลาง 1.20 ม. มีความลาดชันไม่น้อยกว่า 1:1,200
 - ขนาดท่อเล็กสุด เส้นผ่าศูนย์กลาง 0.60 เมตร (ป้องกันการอุดตัน)
 - ระดับน้ำในท่อไหลเต็มท่อพอดีที่อัตราไหลสูงสุด ที่คำนวณได้จาก Rational
 - ที่จุดเปลี่ยนขนาดท่อ ระดับสันท่อทั้ง 2 ข้างอยู่ระดับเดียวกัน
 - ระดับดินถมหลังท่อ อย่างน้อย 0.60 เมตร
 - ความลึกในการฝังท่อ ฝังท่อลึกที่สุดไม่ควรเกิน 6.0 เมตร แต่ทั้งนี้ขึ้นอยู่กับการ
 พิจารณาค่าลงทุนและความยากของการก่อสร้างด้วย
- (ง) รางระบายน้ำเปิด (Open Drain) (ถ้ามี)
 - ความเร็วต่ำสุด 0.60 ม./วินาที

- ความลาดเอียง ตามสภาพภูมิประเทศ
- ขนาดรางเล็กสุด กว้างอย่างน้อย 0.30 ม.
- ระดับน้ำในราง ไม่ต่ำกว่า 0.30 ม.
- ที่จุดเปลี่ยนขนาด ระดับน้ำในราง 2 ข้างอยู่ระดับเดียวกัน
- ระดับดินกันราง อยู่ต่ำกว่าระดับดินเดิม
- (จ) ระยะห่างระหว่างบ่อพักน้ำเพื่อการบำรุงรักษา
 - ไม่เกิน 8 ม. สำหรับท่อขนาด เส้นผ่าศูนย์กลาง 0.60-1.00 ม.
 - ไม่เกิน 16 ม. สำหรับท่อขนาด เส้นผ่าศูนย์กลาง 1.00-1.50 ม.

อย่างไรก็ตามภายในพื้นที่ปิดล้อม จำเป็นต้องมีระบบระบายน้ำภายใน เพื่อระบายน้ำฝนที่ ตกลงมาภายในพื้นที่ปิดล้อมให้สามารถระบายออกมาจากพื้นที่ปิดล้อมได้ กรณีที่ระดับน้ำภายนอกพื้นที่ ปิดล้อมอยู่ต่ำกว่าระดับน้ำภายในพื้นที่ปิดล้อม การระบายน้ำภายในพื้นที่จะระบายได้เองตามแรงโน้มถ่วง (Gravity) แต่เมื่อใดก็ตามที่ระดับน้ำภายนอกอยู่สูงกว่าระดับน้ำภายใน น้ำภายในพื้นที่ปิดล้อมจะไม่สามารถ ระบายได้เองจำเป็นต้องใช้เครื่องสูบน้ำช่วย การวิเคราะห์หาขนาดอัตราการสูบน้ำที่เหมาะสม จะต้อง พิจารณาถึงปริมาตรความจุน้ำของคลองหนองและบึงต่างๆ ภายในพื้นที่ ทั้งนี้เพื่อให้คลอง หนองและบึง ดังกล่าว เป็นบ่อเก็บกักน้ำชั่วคราวในช่วงที่ฝนเริ่มตกเพื่อให้อัตราการสูบน้ำมีขนาดไม่ใหญ่จนเกินไปและ เพื่อประหยัดค่าใช้จ่ายในการก่อสร้างสถานีสูบน้ำ

หลักการในการวิเคราะห์หาขนาดอัตราของการสูบน้ำที่เหมาะสม มีดังนี้

- หาปริมาตรความจุของคลอง หนอง และบึงต่างๆ ที่มีอยู่ภายในพื้นที่ปิดล้อม
- คำนวณหาปริมาตรน้ำท่าสะสมในพื้นที่ปิดล้อมที่เกิดจากฝน โดยใช้วิธี Rational Method ที่เวลาต่างๆโดยการใช้ปริมาณฝน 3 ชม. รอบ 5 ปี และค่าสัมประสิทธิ์น้ำท่าตามประเภทของการใช้ที่ดิน
 - เขียนกราฟปริมาณน้ำท่าสะสมกับระยะเวลา
- ลากเส้นตรงจากจุดเริ่มต้น ความลาดชั้นของเส้นตรงจะเป็นอัตราการสูบทั้งหมดที่ ต้องการ ทั้งนี้โดยให้ระยะห่างที่มากที่สุดจากเส้นตรงนี้ถึงปริมาณน้ำท่าสะสม มีค่าเท่ากับความจุคลอง หนองและบึงที่หาไว้แล้ว

เกณฑ์การพิจารณาในการวิเคราะห์การระบายน้ำหลากสูงสุด

: หน่วยวิจัยภัยพิบัติทางธรรมชาติ (CENDRU)

การวิเคราะห์ปริมาณน้ำหลากสูงสุด เพื่อพิจารณาถึงโครงสร้างการระบายน้ำและขนาดช่องเปิด การระบายที่เหมาะสม ที่ตำแหน่งซึ่งตัดผ่านลำน้ำ การคำนวณทำได้ 2 กรณี คือ

1. กรณีพื้นที่รับน้ำน้อยกว่า 25 ตร.กม. การคำนวณปริมาณน้ำหลากสูงสุดใช้วิธี Rational โดย สูตร

$$Q_{p} = 0.278$$
 CiA (1)

โดยที่ Q_p = ปริมาณน้ำหลากสูงสุด (ลบ.ม./วินาที)

C = สัมประสิทธิ์การไหลนอง ขึ้นกับความเข้มของฝนและสภาพภูมิประเทศ

i = ความเข้มของฝน (มม./ชม.) หาจาก IDF Curve ของพื้นที่ โดย ขึ้นอยู่กับค่ารอบปีการเกิดซ้ำที่เลือกและช่วงเวลาฝนตก

A = ขนาดพื้นที่รับน้ำ (ตร.กม.)

2. กรณีพื้นที่รับน้ำมากกว่า 25 ตร.กม. การคำนวณปริมาณน้ำหลากสูงสุดสำหรับลำน้ำที่ เส้นทางตัดผ่านในลุ่มน้ำปิงและสาขา หาจากการวิเคราะห์ปริมาณน้ำหลากโดยการแจกแจงความถี่ทาง สถิติจากข้อมูลปริมาณน้ำหลากสูงสุดของสถานีวัดน้ำท่าต่างๆในลุ่มน้ำโดยที่ความยาวของช่วงสถิติข้อมูล ตั้งแต่ 15 ปีขึ้นไป แล้วนำข้อมูลปริมาณน้ำหลากสูงสุดในแต่ละปีของสถานีที่เลือกมาทำการวิเคราะห์ ความถี่ ทำการแจกแจงความถี่โดยวิธีกัมเบล เพื่อหาค่าการหลากสูงสุดในรอบปีการเกิดซ้ำขนาด 2, 5, 10, 20, 50, และ 100 ปี แล้วนำผลการวิเคราะห์หาความสัมพันธ์ระหว่างปริมาณน้ำหลากสูงสุดกับพื้นที่รับน้ำ ที่รอบปีการเกิดซ้ำขนาดต่างๆ หาจากสมการ

$$Q_{p} = a A^{b}$$
 (2)

โดยที่ Q_p = ปริมาณน้ำหลากสูงสุด ของขอบปีการเกิดซ้ำที่เลือก (ลบ.ม./วินาที)

A = ขนาดพื้นที่รับน้ำ (ตร.กม.)

a,b = ค่าสัมประสิทธิ์การถดถอยที่รอบปีการเกิดซ้ำต่างๆ ของลุ่มน้ำที่พิจารณา

ความสัมพันธ์ระหว่างปริมาณน้ำหลากสูงสุดและขนาดพื้นที่รับน้ำที่รอบปีการเกิดซ้ำต่างๆของพื้นที่ ในลุ่มน้ำปิง แสดงในรูป 1

พื้นที่หน้าตัดหรือช่องเปิดการระบายน้ำหลากเพื่อการออกแบบอาคารระบายน้ำของลำน้ำที่ เส้นทางตัดผ่านและไม่ทำให้เกิดการท่วมและกัดเซาะทำความเสียหาย หาได้จากการนำค่าปริมาณการ หลากสูงสุดมาหารค่าความเร็วการไหลของน้ำ โดยทั่วไปให้ความเร็วอยู่ในช่วง 1.5 – 2.0 เมตร/วินาที ดัง แสดงในสมการ

$$A_{d} = Q_{P} / V \tag{3}$$

โดยที่ A_d = พื้นที่หน้าตัดการระบาย (ตร.ม.)

v = ความเร็วการไหลของน้ำ (เมตร/วินาที)

หรือใช้สมการของ Manning หาความเร็วการไหลของน้ำ ดังสมการ

$$V = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{3}}$$
 (4)

โดยที่ n = ค่า Manning n ขึ้นกับชนิดผิวการระบายน้ำ

R = รัศมีทางชลศาสตร์ = พื้นที่หน้าตัดการระบาย หารค่า wetted perimeter

S = ความลาดชั้นของการไหลท้องน้ำหรือท้องอาคารระบายน้ำ

สำหรับรอบปีการเกิดซ้ำ(Return Period) ที่ใช้ในการออกแบบอาคารระบายน้ำ กำหนดให้ท่อกลม ใช้ 5 - 10 ปี Return Period ท่อลอดเหลี่ยม ค.ส.ล. ใช้ 10 - 20 ปี และ สะพาน ค.ส.ล. ใช้ 50 ปี

ความสัมพันธ์ระหว่างปริมาณน้ำหลากสูงสุดและขนาดพื้นที่รับน้ำ ณ รอบการเกิดซ้ำต่างๆ ของลุ่มแม่น้ำปึง

รูปที่ 1 กราฟความสัมพันธ์ของปริมาณน้ำหลากสูงสุดกับขนาดพื้นที่รับน้ำของลุ่มน้ำปิง

: ชูโชค อายุพงศ์ คณะวิศวกรรมศาสตร์ มช.

1. ทฤษฎีการประเมิน

ปริมาณน้ำหลากของฝนตกที่น้ำไหลบ่าจากพื้นที่ลงสู่ลำน้ำ การคำนวณหาขนาดของปริมาณน้ำ หลากสูงสุดจึงมีความจำเป็นเพื่อนำไปสู่การออกแบบขนาดของลำน้ำและรางระบายน้ำที่เหมาะสม

วิธีเรชันแนล (Rational method) ถูกใช้หาอัตราการหลากสูงสุดของน้ำบนพื้นดินเพื่อทำการ ออกแบบด้านการระบายน้ำมาอย่างกว้างขวางมาเป็นเวลานานมาแล้ว เนื่องจากเป็นวิธีที่ง่ายไม่ซับซ้อนแต่ มีข้อจำกัดหลายประการที่ผู้น้ำไปใช้ต้องมีความเข้าใจในสมมุติฐานของวิธีนี้ให้ถ่องแท้ วิธีนี้ยังสามารถใช้ เพื่อการออกแบบการระบายน้ำในพื้นที่ชุมชนเมืองและพื้นที่ อุตสาหกรรมได้เป็นอย่างดี โดยวีธีนี้เหมาะสมที่จะใช้กับพื้นที่รับน้ำขนาดเล็กไม่เกิน 25 ตารางกิโลเมตร

1.1 วิธีเรชันแนล (Rational method)

แนวความคิดของวิธีเรชันแนลมีอยู่ว่า ถ้าฝนตกโดยที่ความเข้มของฝน (Rainfall intensity) , i เริ่มต้นและต่อเนื่องอย่างสม่ำเสมอ ค่าอัตราการไหลของน้ำท่าจะเพิ่มขึ้นจนกระทั่งอัตราการหลากสูงสุดที่ เวลาหนึ่งเรียกว่า เวลาในการรวมตัวของน้ำท่า (Time of concentration), t_c ดังแสดงในรูปที่ 2 เมื่อพื้นที่ ภายในพื้นที่รับน้ำกำลังให้น้ำท่าไหลไปที่ทางออก ผลคูณของค่าความเข้มของฝน i และขนาดพื้นที่รับน้ำ A เป็นอัตราไหลเข้าสู่ระบบ , iA และอัตราส่วนของค่า iA ต่อค่าอัตราการหลากสูงสุด Q (ซึ่งเกิดที่เวลา t_c) เป็นเทอมสัมประสิทธิ์ของน้ำท่า (Runoff coefficient) ,C ซึ่งแสดงเป็นสูตรได้ดังนี้

$$Q = 0.278 \text{ CiA} \tag{1}$$

โดยที่ Q = ปริมาณน้ำหลากสูงสุดสำหรับรอบปีการเกิดซ้ำที่เลือก (ลบ.ม./วินาที)

C = สัมประสิทธิ์ของน้ำท่า ขึ้นกับความเข้มของฝนและสภาพการใช้ที่ดิน

i = ความเข้มของฝน (Rainfall intensity) หน่วยเป็น มม./ชม. หาจากกราฟ ความ
 เข้มของฝน-ช่วงเวลาการตกและความถี่การเกิด(IDF Curve) ของพื้นที่โดย ขึ้นอยู่
 กับค่ารอบปีการเกิดซ้ำที่เลือกและช่วงเวลาฝนตกออกแบบ ,t_d

A = ขนาดพื้นที่รับน้ำ (Watershed area) หน่วยเป็น ตร.กม.

สมมุติฐานที่เกี่ยวข้องกับวิธี เรชันแนลในการหาปริมาณการไหลบ่าสูงสุดเพื่อนำไปเป็นข้อมูลใช้ ออกแบบหน้าตัดของโครงสร้างการระบายน้ำ เช่นรางระบายน้ำ ท่อระบายน้ำ เป็นต้น มีดังนี้

อัตราการไหลหลากสูงสุดที่จุดทางออกพื้นที่รับน้ำเป็นฟังก์ชั่นของอัตราการตกของฝนเฉลี่ย
 ระหว่างช่วงเวลาการรวมตัวของน้ำท่า หมายถึง เวลาที่ปริมาณน้ำหลากสูงสุดให้คิดที่เวลา
 การรวมตัวของน้ำนั่นเอง ซึ่งกำหนดให้เท่ากับเวลาในการรวมตัวของน้ำ (Time of concentration), t_C ในพื้นที่รับน้ำ

รูปที่ 2 รูปแบบของกราฟน้ำท่าที่ถูกสมมุติโดยวิธีเรชันแนล

- ช่วงเวลาฝนตกออกแบบ, t_d เท่ากับเวลาในการรวมตัวของน้ำ(Time of concentration)ในพื้นที่ รับน้ำ
- ช่วงเวลาในการรวมตัวของน้ำเท่ากับเวลาที่น้ำจากทุกส่วนในพื้นที่รับน้ำไหลมาถึงจุดทางออก
 ซึ่งได้แก่เวลาที่ต้องการสำหรับการเดินทางของน้ำท่าจากจุดไกลสุดในพื้นที่รับน้ำมาถึง
 ทางออกนั่นเอง
- ความเข้มของฝนคงที่สม่ำเสมอตลอดช่วงเวลาฝนตก
- สัมประสิทธิ์ของน้ำท่าที่ใช้จะเป็นค่าตัวแทนของพื้นที่รับน้ำทั้งหมด

สัมประสิทธิ์ของน้ำท่า (Runoff coefficient) ,C

สัมประสิทธิ์ของน้ำท่าหรือสัมประสิทธิ์การไหลนอง เป็นค่าที่มีความคลาดเคลื่อนมากในวิธี เรชันแนล โดยค่านี้ถูกใช้ในสมการเป็นอัตราส่วนที่ตายตัวของอัตราการหลากสูงสุดต่ออัตราการตกของฝน ในพื้นที่รับน้ำซึ่งตามความจริงไม่ได้เป็นอย่างนั้น การเลือกค่าสัมประสิทธิ์ของน้ำท่าที่เหมาะสมต้องใช้การ ตัดสินใจและประสบการณ์ของผู้ทำการประเมินที่มีความรู้ด้านชลศาสตร์และอุทกวิทยา โดยสัดส่วนของ ปริมาณฝนทั้งหมดที่กลายเป็นน้ำท่าขึ้นอยู่กับเปอร์เซ็นต์ของพื้นที่ที่น้ำซึมผ่านไม่ได้ ความลาดชัน ลักษณะ ของพื้นผิวที่ดักน้ำ รวมทั้งค่ารอบปีการเกิดซ้ำ (Return period) ที่พิจารณา

สัมประสิทธิ์ของน้ำท่าขึ้นอยู่กับลักษณะการใช้พื้นที่และเงื่อนไขของดิน ค่าอัตราการซึมจะลดลง เมื่อเกิดฝนตกต่อเนื่องยาวนาน และยังมีผลกระทบจากเงื่อนไขความชื้นก่อนหน้า (Antecedent moisture condition)ของดินในพื้นที่รับน้ำด้วย ยังมีปัจจัยอื่นๆที่มีผลกระทบกับค่าสัมประสิทธิ์น้ำท่า ได้แก่ ความเข้ม ของฝน ระดับน้ำใต้ดิน ความแน่นของดิน ช่องว่างในดิน พืชที่ปกคลุม ความลาดชันของพื้นดิน และพื้นที่ดัก น้ำ ค่าสัมประสิทธิ์น้ำท่าที่สมเหตุสมผลควรถูกเลือกโดยการผสมผสานปัจจัยข้างต้นอย่างครบ ถ้วน สัมประสิทธิ์น้ำท่าแสดงเป็นตัวอย่างในรูปที่ 3 และ ตารางที่ 1 ถึง 2

รูปที่ 3 กราฟแสดงความสัมพันธ์ของค่าสัมประสิทธิ์ของน้ำท่า (C) , (วีระพล แต้สมบัติ 2531)

ตารางที่ 1 ค่าสัมประสิทธิ์ของน้ำท่า C (ที่มา Applied Hydrology : Ven Te Chow , 1988)

			Retu	rn Period (y	/ears)		
Character of surface	Jen	ď	ඉ ௦	₽ 0€	ď٥	๑ ೦೦	ڏ ٥٥
Developed							
Asphaltic	o.ണ⁄ ബ	o.m/m/	ం.డం	ಂ.ದಾ	୦.ଙ୍	୦.ଝାଝ	6. 00
Concrete/roof	ഠ.ണ∕๕	ం.డం	o.๘๓	೦.ಜಜ	୦.ଝାଇ	୦.ଙ୍କ	6. 00
Grass areas (lawns, parks, etc.)							
Poor condition (grass cover less	than &o% of	the area)					
Flat, ○-1en%	o.mlഇ	୦.୩๔	୦.୩୩⁄	0.៤0	୦.๔๔	୦.๔๗	೦.೬%
Average, ๒-๓⁄%	ഠ.ണണ⁄	೦.೯೦	୦.๔๓	ಂ.೯೨	୦.๔๙	୦.๕๓	o <i>c</i> '.0
Steep, over ๓/%	೦.೯೦	୦.๔๓	୦.๔๕	୦.๔๙	୦.ଝୌଷ	୦.ଝଝ	खंद.○
Fair condition (grass cover on &c	୬% to କାଝ% ।	of the area	a)				
Flat, ∘-1∞%	o.loc	୦.୭୯	୦.୩୦	o.ണ©്	ഠ.ണണ⁄	୦.୯୭	୦.๕๓
Average, ๒-๓/%	୦.୩୩	c′ഌ.ഠ	o.ണ๘	ം.ല്ല	ಂ.៤೬	୦.๔๙	೦.೬%
Steep, over ๓/%	ഠ.ണണ⁄	೦.೯೦	o.മി	ಂ.೯೪	୦.๔๙	୦.๕๓	06.0
Good condition (grass cover large	er thana/&% (of the area	<i>ı)</i>				
Flat, ○-1en%	ം.ഇ	୦.1୭୩	୦./ଇଝ୍	୍./ଇଙ୍	o.ണിഇ	o.m'ə	೦.೯೪
Average, ๒-๓/%	ം.ഇജ്	ഠ.ണിഇ	୦.୩๕	୦.୩๙	ഠ.മില	ಂ.ಥಾ	ం.లోప
Steep, over m/%	୦.୩៤	ഠ.ണണ⁄	0.៤0	୦.๔๔	୦.๔๗	ం.డి	୦.ଝ୍ଜ
Undeveloped							
Cultivated Land							
Flat, ○-1m %	୦.୩୭	0.ണ©്	ംബ'ാ	ం.๔०	୦.๔๓	୦.๔๗	୦.ଝଳ/
Average, №-๓/%	୦.୩๕	០.៣៤	o.๔๑	୍.୯୯	ಂ.៤ದ	ం.డిం	06.0
Steep, over m/%	୦.୩๙	େ. ୌଷ	୍.๔๔	೦.೬%	ం.డి	୦.ଝଝ	೦.೦
Pasture/Range							
Flat, ○-1m2%	o.lec	୦.୭୯	୦.୩୦	o.ണ©്	ഠ.ണണ⁄	୦.୯୭	୦.๕๓
Average, ๒-๓/%	o.mm	c′m.o	0.ണ്	o.മി	ಂ.៤៤	୦.๔๙	೦.೬%
Steep, over ണ'%	ഠ.ണണ⁄	೦.೯೦	୦.ଢାଇ	ಂ.ರ್	୦.๔๙	୦.๕๓	06.0
Forest/Woodlands							
Flat, o-m%	©.l⊠	୦.๒๕	୦.ଜଙ୍	୦.୩୭	○.៣៤	୦.ଗଟ	୦.୯୯
Average, ๒-๓/%	୦.୩୭	0.ണ©്	c'ഌ.ഠ	ಂ.៤೦	୦.๔๓	୦.๔๗	ం.లోప
Steep, over ണ'%	୦.୩๕	୦.୩๙	o.๔๑	୦.๔๕	೦.೬%	୦.ଝାଇ	೦.೬%

ตารางที่ ๒ ค่าสัมประสิทธิ์ของน้ำท่า C สำหรับรอบปีการเกิดซ้ำ ๕ ถึง๑๐ ปี (ที่มา: ASCE ,๑๙๓⁄๒)

Description of Area Runoff Coefficients,	
Business	
Downtown areas	0.70 – 0.95
Neighborhood areas	0.50 – 0.70
Residential	
Single-family areas	0.30 – 0.50
Multi units, detached	0.40 – 0.60
Multi units, attached	0.60 – 0.75
Residential (suburban)	0.25 – 0.40
Apartment dwelling areas	0.50 – 0.70
Industrial	
Light areas	0.50 – 0.80
Heavy areas	0.60 - 0.90
Parks, cemeteries	0.10 - 0.25
Playgrounds	0.20 - 0.35
Railroad yard areas	0.20 - 0.40
Unimproved areas	0.10 – 0.30
Streets	
Asphaltic	0.70 - 0.95
Concrete	0.80 – 0.95
Brick	0.70 – 0.85
Drives and walks	0.75 – 0.85
Roofs	0.75 – 0.95
Lawns : Sandy soil	
Flat 2 %	0.05 – 0.10
Average 2 -7%	0.10 – 0.15
Steep 7%	0.15 – 0.20
Lawns : Heavy soil	
Flat 2 % 0.13 - 0.17	
Average 2 –7% 0.18 – 0.22	
Steep 7%	0.25 – 0.35

ความเข้มของฝน (Rainfall intensity)

ความเข้มของฝน i เป็นค่าอัตราของฝนตกเฉลี่ยสำหรับพื้นที่รับน้ำที่พิจารณา ค่าความเข้มของฝน ถูกเลือกบนพื้นฐานของช่วงเวลาฝนที่ใช้ออกแบบ (Design rainfall duration) และค่ารอบปีการเกิดซ้ำ (Return period) ซึ่งความสัมพันธ์ของค่าทั้งสามในการวิเคราะห์ด้านอุทกวิทยา เรียกว่า กราฟ ความสัมพันธ์ของความเข้ม – ช่วงเวลา – ความถี่ (Intensity – Duration – Frequency Curves) หรือ IDF Curves ดังแสดงตัวอย่างในรูปที่ 4 ช่วงเวลาฝนออกแบบกำหนดให้มีค่าเท่ากับเวลาในการรวมตัวของน้ำ (Time of concentration) ในพื้นที่รับน้ำ ส่วนค่ารอบปีการเกิดซ้ำเลือกโดยพิจารณาถึงความเสี่ยงที่ยอมรับได้ และความเหมาะสมด้านอื่นๆ

รูปที่ 4 กราฟความเข้ม–ช่วงเวลา–ความถี่ของฝน (IDF Curves) ของ อ.เมือง จ.เชียงใหม่

กราฟ IDF สร้างจากการวิเคราะห์ความถี่ (Frequency analysis) โดยใช้การแจกแจงแบบกัมเบล (Gumbel distribution) หรือ Extreme value type I การแจกแจงทำโดยการเลือกช่วงเวลาฝนตกหลายช่วง เช่น 30 นาที่ 60 นาที่ 2 ชั่วโมง เป็นต้น จากข้อมูลสถิติของฝนในรอบหลายปีที่บันทึกไว้ โดยแต่ละช่วงเวลาที่ ถูกเลือก ค่าปริมาณฝนตกสูงสุดตามช่วงเวลาที่เลือกในแต่ละปี ถูกนำมาวิเคราะห์ความถี่โดยการแจกแจง สำหรับทุกช่วงเวลาและรอบปีการเกิดซ้ำต่างๆ ที่มีความสัมพันธ์กับค่าความเข้มของฝน

ค่ารอบปีในการเกิดซ้ำเป็นค่าที่แสดงถึงโอกาสที่จะเกิดฝนตกเท่ากับความเข้มของฝนที่เลือก เช่น รอบปีการเกิดซ้ำ 10 ปี หมายถึงโอกาสที่จะเกิดฝนตกในแต่ละปีที่มีขนาดความเข้มของฝนมากกว่าค่าที่ได้ จากกราฟ IDF มีโอกาส 1 ใน 10 หรือ 10 เปอร์เซ็นต์ ซึ่งเมื่อพิจารณาในช่วงเวลานานมากๆเป็นพันปีก็จะ พบว่าฝนที่ตกด้วยความเข้มขนาดดังกล่าวจะเกิดเฉลี่ย 10 ปีเกิดครั้ง ดังนั้นค่ารอบปีการเกิดซ้ำก็คือค่าส่วน กลับของค่าความน่าจะเป็นนั่นเอง ในการออกแบบโครงสร้างทางชลศาสตร์ จึงเลือกใช้ค่ารอบปีการเกิดซ้ำ ให้เหมาะสมกับการยอมรับความเสี่ยงที่จะเกิด ชนิดของโครงสร้างที่ออกแบบ รวมทั้งปัจจัยอื่นๆ ซึ่งบางพื้นที่ ได้มีกฎหมายควบคุมกำหนดค่ารอบปีการเกิดซ้ำขั้นต่ำสำหรับการออกแบบไว้แล้วด้วย

เวลาในการรวมตัวของน้ำ (Time of concentration), $t_{\rm c}$

เวลาในการรวมตัวของน้ำในพื้นที่รับน้ำ เป็นช่วงเวลาของการเดินทางของน้ำจากจุดไกลสุดมาถึง จุดทางออกของพื้นที่รับน้ำ สามารถหาได้จากการการสังเกตการณ์ทดลองในพื้นที่หรือใช้สมการที่แสดงใน ตารางที่ 3 โดยการเลือกใช้สมการดังกล่าวต้องพิจารณาให้เหมาะสมกับลักษณะของพื้นที่

ตัวอย่างของสมการเพื่อการหาค่าเวลาในการรวมตัวของน้ำในพื้นที่เพื่อนำไปใช้ในการหาค่าความ เข้มของฝนจาก IDF Curve สามารถแยกออกเป็น 2 กรณี ดังนี้

- กรณีพื้นที่รับน้ำเป็นที่ลาดชันสูงหรือเป็นป่าเขา อาจใช้สมการของ California culverts practice (1942) โดยค่า t_C มีหน่วยเป็นชั่วโมง ค่า L เป็นระยะทางที่ไกลที่สุดของลำน้ำสายหลักจากจุดที่ออกแบบถึง ขอบพื้นที่รับน้ำหน่วยเป็นกิโลเมตร และ H เป็นค่าระดับความสูงต่างกันของจุดที่ออกแบบกับจุดไกลสุดของ พื้นที่รับน้ำหน่วยเป็นเมตร นั่นคือ

$$t_c = \left[\frac{0.875 L^3}{H} \right]^{0.385} \tag{2}$$

- กรณีพื้นที่รับน้ำเป็นพื้นที่ราบหรือชุมชนเมือง ใช้สมการของ Federal Aviation Agency (FAA)
Empirical formula,1970) โดยค่า t_c มีหน่วยเป็นนาที ค่า D เป็นระยะทางที่ยาวที่สุดจากจุดทางออกถึง ขอบพื้นที่รับน้ำหน่วยเป็นเมตร และ S_o เป็นค่าความลาดชันของผิวดินหน่วยเป็นเปอร์เซ็นต์

$$t_c = \frac{3.26(1.1 - C)D^{\frac{1}{2}}}{S_0^{1/3}}$$
 (3)

ตารางที่ 3 สรุปสมการหาค่าเวลาการรวมตัวของน้ำ (Time of concentration)

Method	Formula for T _c (min.)	Remarks
Kirpich (1940)	$T_c = 0.0078 L^{0.77} S^{-0.385}$	Developed from SCS data for seven rural basins
	L = length of channel	with Well-defined channel and steep slopes (3% to 10%); for overland flow on concrete or asphalt
	/ditch from headwater to	surfaces multiply T _c by 0.4 for concrete channels
	outlet, ft	multiply by 0.2; no adjustment for overland Flow on bare soil or flow in roadside ditches
	S = average watershed slope, ft/ft	
California	$T_c = 60 (11.9 L^3/H)^{0.385}$	Formula is essentially the Kirpich equation ;
Culverts Practice (1942)	L = length of longest watercourse, mi H = elevation diff. between	developed from small mountainous basins in California; (U.S. Bureau of Reclamation, 1973,pp. 67-71)
	divide and outlet, ft	

Method	Formula for T _c (min.)	Remarks
Izzard (1946)	$T_c = [41.025 (0.0007 i + c) L^{0.33}]$	Developed in laboratory experiments by Bureau of
	/ [S ^{0.333} i ^{0.667}]	Public Roads for overland flow on roadway and turf surfaces; values of the retardance coefficient
	i = rainfall intensity, in./h	range from 0.0070 for over smooth pavement, c
	c = retardance coefficient	= 0.012 for concrete pavement, and c = 0.06 for dense turf; solution is extremely tedious and
	L = length of flow path, ft	requires iteration; product i times L < 500
	S = slope of flow path, ft/ft	
Federal Aviation	$T_c = 1.8 (1.1 - C) L^{0.50} / S^{0.333}$	Developed from air field drainage data assembled
Agency (1970)	C = rational method runoff	by the Corps of Engineers; method is intended for use on airfield drainage problems but has been us
	coefficient	frequently for overland flow in urban basins
	L = length of overland flow, ft	
	S = surface slope, %	
Kinematic wave	$T_c = 0.94 L^{0.6} n^{0.6} (i^{0.4} s^{0.3})$	Overland flow equation developed from kinematic
formulas Morgali and	L = length of overland flow, ft	wave analysis of surface runoff from developed surfaces; method requires iteration since both
Linsley (1965)	n = Manning roughness	i(rainfall intensity) and T_{c} are unknown ;
Aron and	coefficient	superposition of intensity-duration- frequency curve gives direct graphical solution for T_c
Egborge (1973)	i = rainfall intensity, in./h	
	s = average overland slope, ft/ft	

Method	Formula for Tc (min.)	Remarks
SCS (1975) lag	$T_c = \{100 L^{08} [(1000/CN) - 9]^{0.7}\}$	Equation developed by SCS from agricultural
equation	/ [1900 S ^{o.}]	watershed data ; it has been Adapted to small urban basins under 2000 acres : found generally
	L = hydraulic length of	good where area is completely paved; for mixed areas it tends to overestimate; adjustment
	watershed (longest flow	Factors are applied to correct for channel
	path), ft	improvement and impervious area ; The equation
	CN = SCS runoff curve number	assumes that $= T_c 1.67 \times basin lag$
	S = average watershed slope, %	
SCS (1975)	$T_c = 1/60 \sum L/V$	Overland flow charts of TR 55 show average
average velocity charts	L = length of flow path, ft	velocity as function Of watercourse slope and surface cover
	V = average velocity in feet	
	per second of TR 55 for	
	various surfaces	

ช่วงเวลาฝนตกที่ใช้ออกแบบ (Design rainfall duration) : t_d

การเลือกช่วงเวลาฝนตกของฝนที่ใช้ในการออกแบบ ตั้งอยู่บนสมมติฐานที่ว่าอัตราการไหลบ่าของ น้ำท่าสูงสุดจะเกิดขึ้นในช่วงเวลาฝนตกที่จะต้องนานพอที่จะทำให้น้ำท่าจากทุกจุดในพื้นที่ระบายน้ำไหล มาถึงจุดทางออกของพื้นที่ ซึ่งแนวคิดนี้สอดคล้องกับความหมายของเวลาในการรวมตัวของน้ำในพื้นที่รับ น้ำ ซึ่งหมายถึงช่วงเวลานานที่สุดของการเดินทางของน้ำจากจุดไกลสุดของพื้นที่รับน้ำมาถึงจุดทางออก ดังนั้นการคำนวณปริมาณน้ำไหลบ่าสูงสุดเพื่อนำไปเป็นข้อมูลใช้ออกแบบหน้าตัดของโครงสร้างการระบาย น้ำ เช่นรางระบายน้ำ ท่อระบายน้ำ เป็นต้น จึงกำหนดให้ t_d= t_C

การคัดแปลงหลักการของวิธีเรชันแนล (Modification to basic rational method)

นอกจากการใช้วิธี เรชันแนลในการหาปริมาณการไหลบ่าสูงสุดเพื่อนำไปเป็นข้อมูลใช้ออกแบบ หน้าตัดของโครงสร้างการระบายน้ำ เช่นรางระบายน้ำ ท่อระบายน้ำ แล้ว ยังมีการดัดแปลงหลักการของ วิธีเรชันแนลเรียกว่า Modified Rational Method สำหรับช่วงเวลาฝนตกที่ยาวนานกว่าเวลาในการรวมตัวของน้ำ โดยกราฟน้ำท่าสำหรับช่วงเวลาฝนตกที่ยาวกว่ามีค่าอัตราการไหลสูงสุดน้อยกว่าเนื่องจากความ เข้มของฝนน้อยกว่า วิธีนี้ถูกพัฒนาให้ใช้หากราฟน้ำท่า(hydrograph) เพื่อออกแบบความจุของแหล่งเก็บกัก น้ำ (Detention storage) เท่านั้น ซึ่งในกรณีนี้ผู้ออกแบบต้องกำหนดช่วงเวลาฝนตกที่ต้องการเพื่อสร้างแหล่ง เก็บกักน้ำมารองรับน้ำไหลบ่า โดยกำหนดช่วงเวลาฝนตกออกแบบ ,t_d ให้มีค่ามากกว่าช่วงเวลาในการรวมตัวของน้ำ ,t_c แล้วใช้ค่าเวลาฝนตกออกแบบดังกล่าวเป็นค่าช่วงเวลาในกราฟความเข้มของฝน – ช่วงเวลาการตกและความถี่การเกิด (IDF Curve) ค่าปริมาณการไหลสูงสุดที่หาได้จากสมการ เรชันแนล เกิดขึ้นที่เวลาเท่ากับเวลาในการรวมตัวของน้ำ แต่จะเกิดการไหลสูงสุดขนาดดังกล่าวยาวนานออกไปอีก เป็นระยะเวลาเท่ากับเวลาในการรวมตัวของน้ำ แต่จะเกิดการไหลสูงสุดขนาดดังกล่าวยาวนานออกไปอีก เป็นระยะเวลาเท่ากับผลต่างของช่วงเวลาฝนตกออกแบบกับช่วงเวลาในการรวมตัวของน้ำ (t_d – t_c) ซึ่งกราฟน้ำท่าที่ได้เป็นรูปสี่เหลี่ยมคางหมู ดังแสดงในรูปที่ 5 โดยพื้นที่ใต้กราฟของกราฟน้ำท่านำไปหาขนาดความจุของแหล่งเก็บกักน้ำได้

รูปที่ 5 ตัวอย่างของกราฟน้ำท่าสำหรับวิธีเรชันแนลดัดแปลง (Modified rational method)

1.2 สมการของแมนนิ่ง (Manning's equation)

ในการออกแบบโครงสร้างรางหรือคูระบายน้ำ เพื่อให้สามารถรองรับปริมาณน้ำหลากสูงสุดที่ไหล บ่าจากพื้นที่ได้ ขนาดพื้นที่รูปตัดของทางระบายน้ำขึ้นอยู่กับชนิดของรูปตัดที่เหมาะสมกับสภาพพื้นที่ เช่น หน้าตัดแบบ ท่อกลม ท่อเหลี่ยม รางรูปสี่เหลี่ยมคางหมู รางรูปสี่เหลี่ยมผืนผ้า รางตัววี เป็นต้น แต่ทั้งหมด จะถูกออกแบบในหลักการของการไหลในทางน้ำเปิดแบบคงรูป (Uniform flow) ทั้งสิ้น โดยคุณสมบัติรูปตัด ของทางน้ำเปิดแบบทรงเรขาคณิตแสดงในรูปที่ 6

พื้นที่หน้าตัดหรือช่องเปิดการระบายน้ำหลากเพื่อการออกแบบระบบระบายน้ำจากพื้นที่รับน้ำโดย ไม่ทำให้เกิดการท่วมและกัดเซาะทำความเสียหาย หาได้จากการนำค่าปริมาณการหลากสูงสุดมาหารค่า ความเร็วการไหลของน้ำ โดยทั่วไปให้ความเร็วอยู่ในช่วง 1.5 – 2.0 เมตร/วินาทีหรือใช้สมการของแมนนิ่ง (Manning's equation) ดังสมการ 4

$$Q = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}} A_{d}$$
 (4)

โดยที่ Q = ปริมาณน้ำหลากสูงสุดที่ต้องการระบาย (ลบ.ม./วินาที)

N = ค่า Manning n ขึ้นกับชนิดพื้นผิวและลักษณะของทางระบายน้ำ ดังแสดงในตารางที่ 1-4 และ 1-5

R = รัศมีทางชลศาสตร์ (Hydraulic radius) = A_d/P

= พื้นที่หน้าตัดการระบาย(A_d)หารด้วยค่า Wetted perimeter (P)

S = ความลาดชั้นเสียดทานการไหลของทางระบายน้ำ (Friction slope)

กำหนดให้เท่ากับค่าความลาดชั้นของท้องพื้นรางระบายน้ำ

A_d = พื้นที่หน้าตัดการระบายของรางหรือท่อระบายน้ำ (ตร.ม.)

Cross-sectional properties of prismatic open channels

Channel Shape	Area (A)	Wetted Perimeter (P)	Hydraulic Radius (R)	Top Width (T)	Hydraulic Depth (\mathcal{D}_{h})
Rectangular	Ву	B + 2y	$\frac{By}{B+2y}$	В	у
Trapezoidal	$By + zy^2$	$B + 2y\sqrt{1 + z^2}$	$B + 2y\sqrt{1 + z^2}$	B + 2zy	$\frac{By + zy^2}{B + 2zy}$
Triangular	zy ²	$2y\sqrt{1+z^2}$	$\frac{zy}{2\sqrt{1+z^2}}$	2zy	$\frac{y}{2}$
Circular ^a	$\frac{D^2(\phi-\sin\phi)}{8}$	$\frac{D\phi}{2}$	$\frac{D}{4}\left(1-\frac{\sin\phi}{\phi}\right)$	$D\sin\left(\frac{\phi}{2}\right)$	$\frac{D}{8} \left(\frac{\phi - \sin \phi}{\sin(\phi/2)} \right)$

a. Angle ϕ is measured in radians. 1 radian ≈ 57.3 degrees.

รูปที่ 6 คุณสมบัติรูปตัดของทางน้ำเปิดแบบทรงเรขาคณิต

ตารางที่ 4 ค่าสัมประสิทธิ์ของแมนนิ่งในทางน้ำเปิด

Channel type	Manning n	Range
Lined channels:		
Brick, glazed	0.013	0.011-0.015
Brick		0.012-0.018
Concrete, float finish	0.015	0.011-0.020
Asphalt		0.013-0.02
Rubble or riprap	_	0.020-0.035
Concrete, concrete bottom	0.030	0.020-0.035
Gravel bottom with riprap	0.033	0.023-0.036
Vegetal		0.030-0.40
Excavated or dredged channels:		
Earth, straight and uniform	0.027	0.022-0.033
Earth, winding, fairly uniform	0.035	0.030-0.040
Rock	0.040	0.035-0.050
Dense vegetation	_	0.05 -0.12
Unmaintained	0.080	0.050-0.12
Natural channels:		
Clean, straight	0.030	0.025-0.033
Clean, irregular	0.040	0.033-0.045
Weedy, irregular	0.070	0.050-0.080
Brush, irregular		0.07 -0.16
Floodplains:		
Pasture, no brush	0.035	0.030-0.050
Brush, scattered	0.050	0.035-0.070
Brush, dense	0.100	0.070-0.160
Timber and brush		0.10 -0.20

Source: ASCE (1982); Wurbs and James (2002); Bedient and Huber (2002).

ตารางที่ 5 ค่าสัมประสิทธิ์ของแมนนิ่งในท่อลอด (Culverts)

Type of conduit	Wall and joint description	n
Concrete pipe	Good joints, smooth walls	0.011-0.013
	Good joints, rough walls	0.014-0.016
	Poor joints, rough walls	0.016-0.017
	Badly spalled	0.015-0.020
Concrete box	Good joints, smooth finished walls	0.012-0.015
	Poor joints, rough, unfinished walls	0.014-0.018
Spiral rib metal pipe	19-mm × 19-mm recesses at 30-cm spacing, good joints	0.012-0.013
Corrugated metal pipe,	68-mm × 13-mm annular corrugations	0.022-0.027
pipe arch, and box	68-mm × 13-mm helical corrugations	0.011 - 0.023
	150-mm × 25-mm helical corrugations	0.022-0.025
	125-mm × 25-mm corrugations	0.025-0.026
	75-mm × 25-mm corrugations	0.027 - 0.028
	150-mm × 50-mm structural plate	0.033-0.035
	230-mm × 64-mm structural plate	0.033-0.037
Corrugated polyethylene	Corrugated	0.018-0.025
PVC	Smooth	0.009-0.011

Source: U.S. Federal Highway Administration (1985).

ตารางที่ 6 สัมประสิทธิ์แทนค่าความหยาบของหน้าดินที่ต้านทานการไหล (นิพนธ์ ตั้งธรรม พ.ศ. 2527)

ลักษณะผิวดิน	ลักษณะสิ่งที่ทำให้เกิดแรงเสียดทาน	สัมประสิทธิ์
		n
ก.ร่องน้ำที่	• หน้าตัดเท่ากันตลอด แนวความยาวไม่คดเคี้ยว ปราศจากก้อนกรวด	0.016
ปราศจากพืช	และพืชพรรณในร่อง ดินเกิดจากหินตะกอนละเอียด	
พรรณขึ้นปกคลุม	 หน้าตัดเท่ากันตลอด แนวความยาวไม่คดเคี้ยว ปราศจากก้อนกรวด และพืชพรรณในร่อง ดินเป็นดินเหนียวหนีบหรือชั้นดินดาน 	0.018
	 หน้าตัดเท่ากันตลอด แนวความยาวไม่คดเคี้ยว มีก้อนกรวดและหิน เล็กๆ บ้างเล็กน้อย มีพืชขึ้นน้อยมาก เนื้อดินเป็น clay loam 	0.012
	 หน้าตัดผันแปรต่างกันบ้าง แนวความยาวค่อนข้างตรงมีก้อนหินเล็กน้อย มีหญ้าขึ้นตามขอบร่องน้ำ เนื้อดินเป็นพวกดินทรายและดินเหนียว รวมทั้งร่องน้ำที่มีการไถพรวนและทำความสะอาดใหม่ๆ 	0.0225
	 ร่องน้ำที่ค่อนข้างคดเคี้ยว มีลอนคลื่นในท้องร่อง ดินมีก้อนกรวด ก้อน หิน หรือพวกดิน Shale และมีริ้วรอยหยักๆ หรือพืชพรรณ ขึ้นอยู่สอง ผั่งท้องร่อง 	0.025
	พงทอง รอง ● ทั้งหน้าตัดและแนวยาวไม่สม่ำเสมอ และหินเล็กกองกระจัดกระจายกัน หลวมๆ บนท้องร่องหรือมีพวกวัชพืชจำนวนมากปกคลุมสองฝั่งท้องร่อง หรือไม่ก็เป็นบริเวณที่ก้อนหินก้อนกรวดที่มีขนาดใหญ่มากถึง 15 เซนติเมตร	0.030
	 ร่องน้ำที่ไม่สม่ำเสมอและพังทลายง่าย ร่องน้ำเต็มไปด้วยหินก้อนโต 	0.030
ข.ร่องน้ำที่ดาด	• ดาดหรือปกคลุมด้วยหญ้าสั้นๆ (สูง 5-15 ซม.)	0.03-0.06
หรือปกคลุมด้วย พืชพรรณ	 ดาดหรือปกคลุมด้วยหญ้าสูงปานกลาง (สูง 15-20 ซม.) ดาดหรือปกคลุมด้วยหญ้าสูง (สูง 20-60 ซม.) 	0.03-0.085
	- พาพพอบบาทสุดพอบพอปายีก (ฝืก 50-00 กษา)	0.04–1.50
ค.ร่องน้ำ ธรรมชาติ	 ร่องน้ำธรรมชาติที่ตรงและสะอาด 	0.025-0.060

รูปที่ 7 แสดง กราฟความสัมพันธ์ความเข้มของฝน-ช่วงเวลา-ความถี่ (IDF curve)ของจังหวัด เชียงราย

ตารางที่ 7 IDF Curve Equation ของจังหวัดภาคเหนือประเทศไทย

$$= \frac{A}{(t_{c+}d)^n}$$

เมื่อ i = Rainfall intensity (mm/hr)

 t_c = Time of concentration (min)

A, d, n = ค่าคงที่ IDF-Curve

1) จังหวัดเชียงใหม่

Return Period (Years)	А	d	n
2	1050	14	0.719
5	1900	20	0.801
10	2100	14	0.830
15	2000	13	0.698

2) จังหวัดเชียงราย

Return Period (Years)	А	d	n
2	1100	9	0.740
5	1000	9	0.688
15	1800	14	0.810
20	1600	13	0.726

3) จังหวัดลำปาง

Return Period (Years)	А	d	n
2	1000	9	0.795
5	1500	10	0.853
10	2000	15	0.823
20	1800	6	0.778

4) อำเภอแม่สะเรียง จังหวัดแม่ฮ่องสอน

Return Period (Years)	А	d	n
2	900	10	0.808
5	800	11	0.726
10	950	13	0.698
20	3000	12	0.972

5) จังหวัดนครสวรรค์

Return Period (Years)	А	d	n
2	1200	12	0.778
5	3000	16	0.875
10	4000	14	0.903
15	3100	14	0.875

6) จังหวัดน่าน

Return Period (Years)	А	d	n
2	1100	13	0.786
5	1500	13	0.833
10	1700	13	0.783
25	1300	10.5	0.666

7) จังหวัดพิษณุโลก

Return Period (Years)	А	d	n
2	1300	19	0.683
5	700	10	0.540
10	900	12	0.632
30	900	13	0.592

8) จังหวัดแพร่

Return Period (Years)	А	d	n
2	1100	15	0.740
5	1200	12	0.778
10	1050	10	0.709
25	2000	16	0.823

9) จังหวัดตาก

Return Period (Years)	А	d	n
2	2800	22	0.970
5	3000	18	0.897
10	3900	20	0.958
15	4000	24	0.903

การออกแบบทางน้ำเปิด

หลักการในการออกแบบ (Design Principles) แบ่งเป็น 2 กรณี คือ Open channels ซึ่งดาดผิว (Lined Open channels) และ Open channels ซึ่งไม่ดาดผิว (Unlined Open channels)

<u>ก. การออกแบบ Lined Open channels</u> (ไม่มีการกัดเซาะแต่อาจมีการตกตะกอน)-เพื่อป้องกัน การตกตะกอน V (Mean velocity) > 0.76 ม/ว

ขั้นตอนในการออกแบบประกอบด้วย:

- 1. ทำการสำรวจภูมิประเทศและลักษณะกับชนิดของดิน บริเวณที่จะก่อสร้าง Open Channels
 - ก. เพื่อเลือกค่า So ที่เหมาะสม
 - ข. เพื่อเลือกค่า n และ z ที่เหมาะสม
- 2. ข้อมลเกี่ยวกับการไหล คือ อัตราการไหล,Q
- 3. คำนวณหาค่า section Factor, $Z(=AR)^{\frac{2}{3}}$ จากสมการของแมนนิง

ก. Q =
$$\frac{1.49}{n}AR^{\frac{2}{3}}So^{\frac{1}{2}}$$
 -----ในระบบหน่วยอังกฤษ (1)

ข. Q =
$$\frac{1}{n}AR^{\frac{2}{3}}So^{\frac{1}{2}}$$
 -----ในระบบหน่วย SI (2)

- 4. จากนั้นเลือกค่า $\frac{b}{v}$ ประมาณ 2 ถึง 6 นั่นคือ $2 \leq \frac{b}{v} \leq 6$
- 5. คำนวณ,A,P และR ของรูปตัดที่จะออกแบบ(สี่เหลี่ยมคางหมู) คือ:

ก. A = (b+zy)y
$$P = b + 2y\sqrt{1+z^2}$$

$$R = \frac{A}{P} = \frac{(b+zy)y}{b+2y\sqrt{1+z^2}}$$
 แล้วแต่กรณี แล้วแทนค่าลงในสมการที่ (1) หรือ (2)

- 6. คำนวณหาค่า b และ y
- 7. แทนค่าหา A ออกมาเป็นตัวเลข

- 8. หา $V(=rac{Q}{A})$ แล้วเปรียบเทียบกับค่า V allowable = 0.76 ม./ว
- 9. ถ้าใช้ได้เพิ่มระยะFreeboard (ประมาณ 5% ถึง 30% ของ y)
- 10. เขียนรูปตัดตามยาว และตามขวางของ Designed Section

ตัวอย่างที่ ก จงออกแบบรางน้ำเปิดรูปสี่เหลี่ยมคางหมู ซึ่งมี Q = 20 ม 3 /ว, n = 0.016, z = 1.5, และ So = 0.0009 กำหนดให้ V allowable เพื่อไม่ให้มีการตกตะกอนในรางน้ำ = 0.76 ม/ว

<u>วิธีทำ</u> จากรูปตัด (รูปสี่เหลี่ยมคางหมู) A = (b+zy) y, P = b+2y $\sqrt{1+2^2}$ และ

สมมุติใช้ค่า
$$\frac{b}{v}$$
 = 3 หรือ b = 3y

แทนค่า Z และ b (=3y) $\,$ จะได้ $\,$ A = (3y+1.5y) y = 4.5 $\,$ y 2

$$R = \frac{(3y+1.5y)y}{3y+2y\sqrt{1+1.5^2}} = \frac{4.5y^2}{6.61y} = 0.681y$$
สมการแมนนิง (ในระบบหน่วย S.I)
$$Q = \frac{1}{n} A R^{\frac{2}{3}} So^{\frac{1}{2}}$$

$$\tilde{n}$$

$$Z = A R^{\frac{2}{3}} = \frac{Qn}{so^{\frac{1}{2}}}$$

$$(4.5y)^2 (0.681y)^{\frac{2}{3}} = \frac{20 \times 0.016}{0.0009^{\frac{1}{2}}} = 10.67$$

$$3.48 \ y^{\frac{8}{3}} = 3.07 \ \tilde{n}$$
 $y = 3.07^{\frac{3}{8}} = 1.52 \ \text{M}$

คังนั้น
$$B=3y=3\times1.52=4.56$$
 ม คังนั้น $A=4.5(1.52)^2=10.40$ ม²
$$V=$$
 ความเร็วเฉลี่ย $=\frac{Q}{A}=\frac{20}{10.40}=1.92$ > V allow (= 0.76 ม/ว) O.K Freeboard $\approx 5\%$ of $y=\frac{5}{100}\times1.52=0.08$ ม

ดังนั้น ความสึกรวมของรางน้ำเปิด = 1.52+1.18 = 1.60 ม

Designed Section

ข.การออกแบบ Unlined Open channels (มีการกัดเซาะได้แต่ต้องออกแบบป้องกันไว้)

- วิธี Method of Maximum Permissible Velocity

ค่า Maximum Permissible Velocity, Vmax.perm คือ ความเร็วเฉลี่ยสูงสุดในทางน้ำเปิด ซึ่งจะไม่ ก่อให้เกิดการกัดเซาะต่อผิวส่วนใด ๆ ของทางน้ำนั้น แสดงในตารางที่ 8

การลดค่า Vmax.perm จากตารางที่ 8 ลงเนื่องจากความคดเคี้ยวของทางน้ำ

ก. ทางน้ำซึ่งมีแนวคดเคี้ยวเล็กน้อย (Slightly Sinuous Channels)

ลดค่า Vmax.perm ลง 5%

นั้นคือ V'max.perm. = 0.95 Vmax.perm

ข. ทางน้ำซึ่งมีแนวคดเคี้ยวปานกลาง (Moderately Sinuous Channels,

ลดค่า Vmax.perm. ลง 13%

นั่นคือ V'max.perm. = 0.87 Vmax.perm.

ค. ทางน้ำซึ่งมีแนวคดเคี้ยวมาก (Very Sinuous Channels)

ลดค่า Vmax.perm. ลง 25%

นั่นคือ V'max.perm. = 0.78 Vmax.perm.

ตารางที่ 8 : ค่าของ Manning's n และ Vmax.perm ของดินชนิดต่าง ๆ

ชนิดของดิน	n	Vmax.perm.,ม/ว	
บนทบบทน		น้ำใส	น้ำ+ตะกอนลอย
1. Fine sand, Colloidal	0.020	0.46	0.76
2. Sandy Loam, Non-colloidal	0.020	0.53	0.76
3. Sill Loam, Non-colloidal	0.020	0.61	0.91
4. Alluvial Silts, Non-colloidal	0.020	0.61	1.07
5. Ordinary Firm Loam	0.020	0.76	1.07
6. Volcanic Ash	0.020	0.76	1.07
7. Stiff Clay, Very Colloidal	0.025	1.14	1.52
8. Alluvial Silts, Colloidal	0.025	1.14	1.52
9. Shales and Hardpans	0.025	1.83	1.83
10. Fine Gravel	0.025	0.76	1.52
11. Graded Loam to Cobbles, Non-colloidal	0.030	1.14	1.52
12. Graded silts to Cobbles, Colloidal	0.030	1.22	1.68
13. Coarse Gravel, Non-colloidal	0.035	1.22	1.83
14. Cobbles and Shingles	0.035	1.52	1.68

ขั้นตอนในการออกแบบทางน้ำเปิดซึ่งมีการกัดเซาะ มีดังต่อไปนี้คือ:

- 1. จากการสำรวจลักษณะภูมิประเทศ และชนิดของดินฯ เลือกใช้ค่า n,z,so และ Vmax.perm. (รวมทั้ง V[']max.perm.) ที่เหมาะสม
- 2. คำนวณหาค่า Hydraulic Radius ของทางน้ำเปิดที่ต้องการ,R จากสมการแมนนิงในรูปแบบ ของความเร็วคือ

ก.
$$\forall$$
 (= \forall' max.perm.) = $\frac{1.49}{n}$ $R^{\frac{2}{3}}$ $So^{\frac{1}{2}}$ ในระบบหน่วยอังกฤษ (1) ข. \forall (= \forall' max.perm.) = $\frac{1}{n}$ $R^{\frac{2}{3}}$ $So^{\frac{1}{2}}$ในระบบหน่วย SI (2)

... 3. คำนวณหาค่าพื้นที่หน้าตัดของทางน้ำเปิดที่ต้องการ.A

$$A = \frac{Q}{V'max.perm.}$$
 (3)

4. คำนวณหาค่า Wetted Perimiter ของทางน้ำเปิดที่ต้องการ, P

$$P = \frac{A(\text{จากขั้นตอนที่ 3})}{R(\text{จากขั้นตอนที่ 2})}$$
 (4)

5. จากตาราง Hydraulic Properties ของรูปตัดทรงเรขาคณิตต่างๆ(ตารางที่ 3.2)

$$A = (b+zy) y \tag{5}$$

$$P = b + 2y\sqrt{1 + z^2} \tag{6}$$

- 6. หาค่า b และ y จากสมการที่(5) และ (6)
- 7. เพิ่มค่า Freeboard,F ตามข้อกำหนด คือระหว่าง 0.05y ถึง 0.10
- 8. เขียนรูปตัดตามยาว และตามขวางของ Designed Section.

ตัวอย่างที่ 1 จงออกแบบรางน้ำเปิดซึ่งมีการกัดเซาะโดย Method of Permissible Velocity จากข้อมูลดังนี้ คือ: z = 2, n = 0.025, So = 0.0006, Vmax.perm. = 1.00 ม/ว แนวทางของรางน้ำฯมีความคดเคี้ยวปาน กลาง (V'max.perm. = 0.87 Vmax.perm) และรับอัตราการไหล, Q = 7.77 ม³/ว

<u>วิธีทำ</u>

$$V (=V' \text{max.perm.}) = \frac{1}{n} R^{\frac{2}{3}} So^{\frac{1}{2}}$$

$$R = \left\{ \frac{V'max.perm. \times n}{So^{\frac{1}{2}}} \right\}^{\frac{3}{2}} = \left\{ \frac{(0.87 \times 1.00) \times 0.025}{0.0006^{\frac{1}{2}}} \right\}^{\frac{3}{2}} = 0.84 \text{ M}. \quad (1)$$

$$A = \frac{Q}{V'max.perm.} = \frac{7.77}{(0.87 \times 1.00)} = 8.93 \text{ a}/3$$
 (2)

$$P = \frac{A}{R} = \frac{8.93}{0.84} = 10.63 \text{ a}. \tag{3}$$

จากตารางที่ 8 :

$$A = (b+zy) y = (b+2y)y = 8.93$$
 (4)

$$P = b + 2y\sqrt{1 + z^2} = b + 2y\sqrt{1 + 2^2} = b + 4.47y = 10.63$$
 (5)

แทนค่า b = 10.63 - 4.47y (จาก (5)) ลงใน (4) แล้ว simplify จะได้:

$$y^2 - 4.30y + 3.62 = 0$$

$$y = \frac{-(-4.30)\pm\sqrt{(-4.30)^2-4(3.62)}}{2} = 1.15$$
 ม และ b = 10.63-4.47 (1.15) = 5.49 ม

เพิ่มค่า Freeboard, F≈ 0.22y≈ 0.22×1.15 ≈ 0.25 ม

Designed Section

