Algumas séries de Taylor

função = série de Taylor-Maclaurin	disco de convergência
$f(x) = \sum_{n=0}^{\infty} c_n z^n$ where $c_n = \frac{f^{(n)}(0)}{n!}$	$ z < R = (\limsup c_n ^{1/n})^{-1}$
$(1-z)^{-1} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + \dots$	z < 1
$e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n = 1 + z + \frac{1}{2} z^2 + \frac{1}{6} z^3 + \dots$	$ z < \infty$
$\cosh(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n} = 1 + \frac{1}{2}z^2 + \frac{1}{24}z^4 + \dots$	$ z < \infty$
$\sinh(z) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1} = z + \frac{1}{6}z^3 + \frac{1}{120}z^5 + \dots$	$ z < \infty$
$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} = 1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 + \dots$	$ z < \infty$
$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = z - \frac{1}{6}z^3 + \frac{1}{120}z^5 + \dots$	$ z < \infty$
$\log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n = z - \frac{1}{2}z^2 + \frac{1}{3}z^3 - \frac{1}{4}z^4 + \dots$	z < 1
$(1+z)^{\alpha} = 1 + \sum_{n=1}^{\infty} {\binom{\alpha}{n}} z^n = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2} z^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6} z^3 + \dots$	z < 1
$\arcsin(z) = \sum_{n=0}^{\infty} \frac{(2n)!}{4^n (n!)^2 (2n+1)} z^{2n+1}$	z < 1

Séries de Fourier em $[-\pi, \pi]$

função ~ série de Fourier $(x \in [-\pi, \pi])$

coefficientes de Fourier $(n \in \mathbb{Z})$

complexa

$$f(x) \sim \sum_{-\infty}^{\infty} c_n e^{inx}$$

$$c_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx$$

 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$

$$a_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Algumas séries de Fourier em $[-\pi, \pi]$

função em $[-\pi,\pi]$

 \sim série de Fourier

$$\sim 2\left(\sin(x) - \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) - \frac{1}{4}\sin(4x) + \dots\right)$$

$$\sim \frac{\pi^2}{3} - 4\left(\cos(x) - \frac{1}{4}\cos(2x) + \frac{1}{9}\cos(3x) - \frac{1}{16}\cos(4x) + \dots\right)$$

$$\sim \frac{\pi}{2} - \frac{4}{\pi} \left(\cos(x) + \frac{1}{9} \cos(3x) + \frac{1}{25} \cos(5x) + \frac{1}{49} \cos(7x) + \dots \right)$$

$$\sim \frac{1}{2} + \frac{2}{\pi} \left(\sin(x) + \frac{1}{3} \sin(3x) + \frac{1}{5} \sin(5x) + \frac{1}{7} \sin(7x) + \dots \right)$$

$$2\Theta(x) - 1 := \left\{ \begin{array}{ll} 1 & \text{se } 0 \le x < \pi \\ -1 & \text{se } -\pi \le x < 0 \end{array} \right.$$

$$2\Theta(x) - 1 := \begin{cases} 1 & \text{se } 0 \le x < \pi \\ -1 & \text{se } -\pi < x < 0 \end{cases} \sim \frac{4}{\pi} \left(\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \dots \right)$$

$$Z(x) := \begin{cases} \pi - x & \text{se } \frac{\pi}{2} \le x < \pi \\ x & \text{se } -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ -\pi - x & \text{se } -\pi < x < -\frac{\pi}{2} \end{cases} \sim \frac{4}{\pi} \left(\sin(x) - \frac{1}{9} \sin(3x) + \frac{1}{25} \sin(5x) - \frac{1}{49} \sin(7x) + \dots \right)$$

$$\sim \frac{4}{\pi} \left(\sin(x) - \frac{1}{9} \sin(3x) + \frac{1}{25} \sin(5x) - \frac{1}{49} \sin(7x) + \dots \right)$$

$$S(x) := \begin{cases} \pi - x & \text{se } 0 \le x < \pi \\ -\pi - x & \text{se } -\pi \le x < 0 \end{cases}$$

$$\begin{bmatrix} S(x) := \begin{cases} \pi - x & \text{se } 0 \le x < \pi \\ -\pi - x & \text{se } -\pi \le x < 0 \end{cases} \sim 2\left(\sin(x) + \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) + \frac{1}{4}\sin(4x) + \dots\right)$$

Transformadas de Fourier (unitária, frequência)

	(espaço do $tempo\ t$) $f(t) = \int_{-\infty}^{\infty} e^{2\pi i \xi t} \widehat{f}(\xi) d\xi$	(espaço da frequência ξ) $\widehat{f}(\xi) = \int_{-\infty}^{\infty} e^{-2\pi i \xi t} f(t) dt$
(linearidade $(\lambda, \mu \in \mathbb{C})$)	$\lambda f(t) + \mu g(t)$	$\lambda \widehat{f}(\xi) + \mu \widehat{g}(\xi)$
(conjugação)	$\overline{f(t)}$	$\overline{\widehat{f}(-\xi)}$
(homotetia $(\lambda \neq 0)$)	$f(t/\lambda)$	$\lambda \widehat{(} \lambda \xi)$
(translação/modulação)	f(t-a)	$e^{-2\pi i a \xi} \widehat{f}(\xi)$
$({\rm modula} {\it ção/transla} {\it ção})$	$e^{2\pi i b t} f(t)$	$\widehat{f}(\xi-b)$
(derivação/multiplicação)	$rac{\partial}{\partial t}f\left(t ight)$	$2\pi i \xi \widehat{f}(\xi)$
(multiplicação/derivação)	$-2\pi itf\left(t\right)$	$\frac{\partial}{\partial \xi} \widehat{f}\left(\xi\right)$
(convolução/produto)	$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$	$\widehat{f}(\xi)\widehat{g}(\xi)$
(produto/convolução)	f(t)g(t)	$(\widehat{f} * \widehat{g})(\xi) = \int_{-\infty}^{\infty} \widehat{f}(\xi - \eta) \widehat{g}(\eta) d\eta$
(energia)	$E = \ f\ ^2 = \int_{-\infty}^{\infty} f(t) ^2 dt$	$E = \ \widehat{f}\ ^2 = \int_{-\infty}^{\infty} \widehat{f}(\xi) ^2 d\xi$
(pulso/sinc)	$rect(t) := \begin{cases} 1 & \text{se } t < 1/2 \\ 0 & \text{se } t \ge 1/2 \end{cases}$	$\operatorname{sinc}(\xi) := \frac{\sin(\pi \xi)}{\pi \xi}$
(sinc/pulso)	$\operatorname{sinc}(t) := \frac{\sin(\pi t)}{\pi t}$	$rect(\xi) := \begin{cases} 1 & \text{se } \xi < 1/2 \\ 0 & \text{se } \xi \ge 1/2 \end{cases}$
(Gaussiana)	$e^{-\pi t^2}$	$e^{-\pi\xi^2}$
(secante hiperbólica)	$\operatorname{sech}(\pi t) := \frac{1}{\cosh(\pi t)}$	$\mathrm{sech}(\pi\xi)$
(exponencial em $t, a > 0$)	$e^{-a t }$	$\frac{2a}{4\pi^2\xi^2 + a^2}$

Transformadas de Fourier (não-unitária, frequência angular)

	(espaço do $tempo \ t$) $f(t) = \int_{-\infty}^{\infty} e^{i\omega t} F(\omega) \frac{d\omega}{2\pi}$	(espaço da frequência angular $\omega=2\pi\xi$) $F(\omega)=\int_{-\infty}^{\infty}e^{-i\omega t}f(t)dt$
(linearidade $(\lambda, \mu \in \mathbb{C})$)	$\lambda f(t) + \mu g(t)$	$\lambda F(\omega) + \mu G(\omega)$
(conjugação)	$\overline{f(t)}$	$\overline{F(-\omega)}$
(homotetia $(\lambda \neq 0)$)	$f(t/\lambda)$	$\lambdaF(\lambda\omega)$
(translação/modulação)	f(t-a)	$e^{-ia\omega}F(\omega)$
(modulação/translação)	$e^{ibt}f(t)$	$F(\omega-b)$
(derivação/multiplicação)	$\frac{\partial}{\partial t}f\left(t\right)$	$i\omegaF(\omega)$
(multiplicação/derivação)	-itf(t)	$rac{\partial}{\partial\omega}F\left(\omega ight)$
(convolução/produto)	$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau) d\tau$	$F(\omega)G(\omega)$
(produto/convolução)	f(t)g(t)	$\frac{1}{2\pi}(F*G)(\omega) = \int_{-\infty}^{\infty} F(\omega - \nu) G(\nu) \frac{d\nu}{2\pi}$
(energia)	$E = f ^2 = \int_{-\infty}^{\infty} f(t) ^2 dt$	$E = F ^2 / 2\pi = \int_{-\infty}^{\infty} F(\omega) ^2 \frac{d\omega}{2\pi}$
(pulso/sinc)	$rect(t) := \begin{cases} 1 & \text{se } t < 1/2 \\ 0 & \text{se } t \ge 1/2 \end{cases}$	$\mathrm{sinc}(\omega/2\pi) = rac{\sin(\omega/2)}{\omega/2}$
(sinc/pulso)	$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$	$\operatorname{rect}(\omega/2\pi) = \begin{cases} 1 & \operatorname{se} \omega < \pi \\ 0 & \operatorname{se} \omega \ge \pi \end{cases}$
(Gaussiana)	$e^{-\pi t^2}$	$e^{-\omega^2/4\pi}$
(secante hiperbólica)	$\operatorname{sech}(\pi t) := \frac{1}{\cosh(\pi t)}$	$\mathrm{sech}(\omega/2)$
(exponencial em $t, a > 0$)	$e^{-a t }$	$rac{2a}{\omega^2 + a^2}$
(exponencial em $\omega, b > 0$)	$\frac{b/\pi}{t^2\!+\!b^2}$	$e^{-b \omega }$