

Modern technologies in bioinformatics

Vladimir Mikryukov

UT International Summer University, Tartu, August 01-05 2022

Aspects of sustainable data analysis

Abarenkov et al. (2010) DOI:10.4137/EBO.S6271 Mölder et al. (2021) DOI:10.12688/f1000research.29032.2

Version control

TRACK PROJECT HISTORY

Version control, collaborative working

Someone Else's Work

In case of fire

- → 1. git commit
- 2. git push
- 3. leave building

Software installation

Manual installation

```
sudo apt-get install build-essential autoconf automake libtool
git clone https://github.com/xflouris/PEAR.git
cd PEAR
./autogen.sh
./configure
make
sudo make install
```


conda install -c bioconda pear

Software installation

Grüning et al. (2018)

DOI:10.1038/s41592-018-0046-7

https://bioconda.github.io/

Software environments

- Package, dependency, and environment management
- Large ecosystem of pre-packaged software
- Specific versions

```
conda install -c bioconda blast=2.13.0
```

Multiple environments

```
conda --name OLDBLAST -c bioconda blast=2.13.0
conda --name NEWBLAST -c bioconda blast=2.5.0

conda activate OLDBLAST
blastn --version

conda activate NEWBLAST
blastn --version
```

Reproducibility vs OS (Linux and Mac)

Genera overlap after removal of singletons

Marizzoni et al. (2020) DOI:10.3389/fmicb.2020.01262

Stable analyses on different platforms in Dockerized environment

Di Tommaso et al. (2017) DOI:10.1038/nbt.3820

Containers

Complex pipelines

Workflow management systems

Snakemake https://snakemake.github.io/ Mölder et al. (2021) Nexflow https://nextflow.io/ Di Tommaso et al. (2017) DOI:10.1038/nbt.3820 Targets
https://docs.ropensci.org/targets/
Landau (2021)
DOI:10.21105/joss.02959

```
configfile: "config.yaml"
rule all:
    input:
        expand (
            "plots/{country}.hist.svg",
            country=config["countries"]
rule select by country:
    input:
        "data/worldcitiespop.csv"
    output:
        "by-country/{country}.csv"
    conda:
        "envs/xsv.yaml"
    shell:
        "xsv search -s Country '{wildcards.country}' "
        "{input} > {output}"
rule plot histogram:
    input:
        "by-country/{country}.csv"
    output:
        "plots/{country}.hist.svg"
    container:
        "docker://faizanbashir/python-datascience:3.6"
    script:
    "scripts/plot-hist.py"
```


Mölder et al. (2021)

DOI:10.12688/f1000research.29032.2


```
samples ch = Channel.fromPath("data/*.fastq")
process FASTQC {
  publishDir "Results", mode: 'symlink'
  cpus 3
  input:
    path reads
  output:
    path "fastqc logs/*.html", emit: qc
  script:
  0.00
  mkdir -p fastqc logs
  fastqc -o fastqc logs -f fastq -q ${reads} --threads ${task.cpus}
  11 11 11
workflow {
  FASTQC(samples ch)
```

Di Tommaso et al. (2017) DOI:10.1038/nbt.3820

https://nextflow.io/

Metabarcoding: from Lab to Bioinformatics

Metabarcoding: from Lab to Bioinformatics (UT International Summer University, 2022)

Metabarcoding: from Lab to Bioinformatics

University of Tartu, 2022

Data used during the course

"Expert mode" commands

Individual projects

HPC basics

Slides (will be released after the course)

PipeCraft2 manual

About the course

Course announcement

High performance computing (HPC)

SLURM = Simple Linux Utility for Resource Management

Working environment on HPC cluster

Software installed by system administrator

module load blast-plus/2.12.0

conda install -c bioconda blast=2.13.0

Containerized software

singularity pull docker://ncbi/blast singularity exec blast latest.sif blastn

Scheduling a task on a cluster

```
#!/bin/bash
#SBATCH --job-name=my job
#SBATCH --cpus-per-task=4
#SBATCH --nodes=1
#SBATCH --mem=10G
#SBATCH --partition amd
#SBATCH --time=48:00:00
my program \
  -i input.data \
  -o output 1.data \
  --threads 4
```

Scheduling a task on a cluster

```
sbatch my job.sh
sbatch
  --job-name=my job
  --ntasks-per-node=4
  --nodes=1
  --mem=10G
  -p amd
  --time=48:00:00
  some script.sh input.data
```

Job management

```
squeue -u $USER

scancel <JOBID>
scancel --name my_job
scancel -u $USER
```