ICITCS2014

Pruning Algorithm for Multi-Objective Optimization with Decision Maker's Preferences of System Redundancy Allocation Problem

Naruemon Wattanapongsakorn
Tipwimol Sooktip
King Mongkut's University of Technology Thonburi
Bangkok, Thailand

Outline

- · Introduction to Multi-Objective Optimization
- Related Work
- Problem Statement:
 Pruning Algorithm According to The Decision Maker's Preferences
- · Redundancy Allocation Problem
- · Preference-Based Ranking Method
- Experimental Result
- Conclusion

Introduction to Multi-Objective Optimization

The mathematical formulation

Maximize/Minimize $f_i(\mathbf{x})$ for i = 1, 2, ..., n

Subject to
$$g_{j}(\mathbf{x}) \ge 0$$
 $j = 1, 2, ..., J$ $h_{k}(\mathbf{x}) = 0$ $k = 1, 2, ..., K$ $x_{i}^{(L)} \le x_{i} \le x_{i}^{(U)}$

where \mathbf{x} is a vector of n decision variable(s):

$$\mathbf{x} = (x_1, x_2, ..., x_n)^{\mathsf{T}}.$$

 $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_M(\mathbf{x}))^{\mathsf{T}}.$

Multi-Objective Optimization Characteristics

Figure 1 The Pareto front or Pareto-optimal solutions

Related Work

- There exists many searching algorithms such as genetic algorithm, non-dominated sorting genetic algorithm-II (NSGA-II), particle swarm optimization algorithm, ant colony algorithm, etc.
- A challenging task of multi-objective optimization is to select the appropriate solutions among a large number of non-dominated solutions.
- Preference-based methods according to the Decision maker (DM)'s preferences should be considered to identify the preferred solution(s).

Related Work

- A non-numerical ranking preference (NNRP) method [1]
 - The DM gives all relations of ordering objective functions.
 - For example, "the objective 1 is more important than objective 2; objective 2 is more important than objective 3".
 - The ranked objectives functions is: $f_1 \succ f_2 \succ f_3$
 - The weights are generated randomly
 - A relative order is $w_1 > w_2 > w_3$
 - · Likelihood of different weight combination

$$f = w_1 f_1(x) + ... + w_n f_n(x)$$

- Suitable for 3-4 objective functions
- An expanding of NNRP method [2] is presented for post-Pareto optimality method to solve a 5-objective problem.
 - Require large amount of mathematical calculation to derive the weights.

Problem Statement

- Which solution is the most appropriate one?
- A large possible solution set

Figure 2 The approximated Pareto-optimal solutions in 3-objective plane. Each point represent the possible alternative in objective space.

Problem Statement

- Propose a preference-based ranking method as a pruning algorithm for multi-objective optimization.
- Consider a posteriori pruning approach.
- Help the DM identify the prefer solutions from the approximation of the Pareto front according to the DM's preferences.
- The parameter requirements
 - A ranking priority of the objective functions.

Redundancy Allocation Problem

- Determining an optimal system design choice by allocating redundant components from the design alternatives.
- The problem can be very complex when mixing of non-identical components is allowed in each subsystem

Figure 4 A redundancy allocation problem with series-parallel structure

Notation

 R_{sys}

 t_i

m

system reliability

system cost C_{svs} W_{svs} system weight reliability in subsystem i R_i reliability of the *j*th component in subsystem *i* r_{ii} cost of the jth component in subsystem i C_{ii} weight of the jth component in subsystem i W_{ii} a vector which defines the number of components \mathbf{X}, \mathbf{X}_i type *j* in subsystem *i* number of components of type *j* in subsystem *i* X_{ii} number of maximum components in subsystem i n_{max}

number of component type choices in subsystem i

number of subsystems connected in series

Multi-objective Optimization of Series-Parallel System Model

$$\max R_{sys}(\mathbf{x}) = \prod_{i=1}^{m} R_{i}(\mathbf{x}_{i})$$

$$\min C_{sys}(\mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{t_{i}} c_{ij} x_{ij}$$

$$\min W_{sys}(\mathbf{x}) = \sum_{i=1}^{m} \sum_{j=1}^{t_{i}} w_{ij} x_{ij}$$

$$1 \le \sum_{j=1}^{t_{i}} x_{ij} \le n_{\max}$$

$$R_{i}(\mathbf{x}) = 1 - \prod_{j=1}^{t_{i}} (1 - R_{ij}(\mathbf{x}))^{x_{ij}}$$

where $x_{ij} \in \{0, 1, 2, ..., n_{\text{max}}\}, i = 1, 2, ..., m \text{ and } j = 1, 2, ..., t_i$

Problem Assumption

- · Mixing of non-identical component types is allowed.
- · NSGA-II is used as the searching algorithm.
- The alternative component choices have sindependent component.
- The components and the system have only two possible states: work or else fail.

Table I. Available Component Types for Each Subsystem

		Design alternative j														
Subsystem i		Component Choice 1			Component Choice 2						Component Choice 4			Component Choice 5		
		r _{ij}	C _{ij}	W _{ij}	r _{ij}	C _{ij}	\mathbf{w}_{ij}	r _{ij}	C _{ij}	\mathbf{w}_{ij}	r _{ij}	C _{ij}	\mathbf{w}_{ij}	r _{ij}	C _{ij}	W _{ij}
	1	0.95	2	5	0.93	1	4	0.91	2	2	0.90	1	3	0.95	2	8
	2	0.99	4	4	0.98	3	6	0.97	1	5	0.96	2	7	-	-	-
	3	0.90	6	5	0.85	5	4	0.82	3	3	0.79	3	5	0.99	2	4

Note: r = reliability, c = cost, w = weight,
"-" means that a design alternative is not available

6

Preference-Based Ranking Method

- The DM gives ranking priority of the objective functions.
 - Rank #1 means the highest priority for the objective function.
- The experiments vary the ranking priority preferences of the objective functions into four cases as following:
 - Reliability > Cost > Weight
 - Cost ≻ Reliabilit y ≻ Weight
 - Weight \succ Reliabilit $y \succ$ Cost
 - Reliabilit $y \succ Weight \succ Cost$

Parameter Setting for NSGA-II

Encoding: The chromosomes are represented as decimal strings. Each gene in the chromosomes represent the number of selected component type *j* for subsystem *i*, (x_{ij}) where *i* ={1, 2, 3, ..., *m*} and *j* ={1, 2, 3, ..., *t_i*}.

 Subsystem 1
 Subsystem 2
 Subsystem 3

 Component type
 1
 2
 3
 4
 5
 1
 2
 3
 4
 1
 2
 3
 4
 5

 x_{ii}
 0
 0
 2
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

· Selection: Binary tournament selection

· Crossover: SBX crossover

Mutation: Polynomial mutation operators

Table II. The parameter setting of NSGA-II

Parameter	Value
Population size	200
Mutation probability	0.07
Crossover probability	0.9
Max generation	1000

Figure 5 The approximated Pareto-optimal solutions in 3-objective plane. Figure 6 The approximated Pareto-optimal solutions with reliability and weight. Figure 8 The approximated Pareto-optimal solutions with reliability and weight.

Conclusion

- A pruning algorithm with preference information for multiobjective optimization problems is proposed.
 - The non-numerical ranking preference method
 - Applying after the Pareto Front is obtained by an efficient multi-objective optimization algorithm, NSGA-II.
- Solving redundancy allocation problem
- Identifying the preferred solution set without using quantitative numerical preference parameters.

Conclusion (2)

Research Contribution

- The DM can see the whole picture of the Pareto Front before making a decision for final choice.
- Helping the DM identify appropriate solution(s) among a large set of Pareto-optimal solutions and also satisfy the DM's preferences which are specified as raking/relative priority of the objective functions.
- The DM does not have to be an expert in the problem solving.

References

- H.A. Taboada, F. Baheranwala, D.W. Coit and N. Wattanapongsakorn, "Practical solutions for multi-objective optimization: an application to system reliability design problems," Reliability Engineering and System Safety, 92 (3), pp. 314-322, 2007.
- V.M. Carrillo and H.A Taboada, "General iterative procedure of the non-numerical ranking preferences method for multiple objective decision making," Procedia Computer Science, 12, pp. 135-139, 2012.
- K. Deb, A. Pratab, S. Agrawal and T. Meyarivan, "A fast and elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA II," IEEE Trans. Evol. Comput., vol. 6, pp.182 -197, 2002.
- P. Murugan, S. Kannan and S. Baskar, "NSGA-II algorithm for multi-objective generation expansion planning problem," Electric Power Systems Research, 79 (4), pp. 622-628, 2009.
- A.J. Nebro, J.J. Durillo, C.A. Coello Coello, F. Luna and E. Alba, "A study of convergence speed in multi-objective metaheuristics," Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5199 LNCS, pp. 763-772, 2008.
- Notes in Bioinformatics), 5199 LNCS, pp. 763-772, 2008.
 D. E. Fyffe, W. W. Hines, and N. K. Lee, "System reliability allocation and a computational algorithm," IEEE Trans. Reliab. R-17, pp. 64-69, 1968.
- J. Onishi, S. Kimura, R.J.W. James, and Y. Nakagawa, "Solving the redundancy allocation problem with a mix of components using the improved surrogate constraint method," IEEE Trans. Reliab., vol.56, no.1, pp.94-101, March 2007.
- 8. T. Sooktip, N. Wattanapongsakorn and D.W. Coit, "System reliability optimization with k-out-of-n subsystems and changing k," ICRMS'2011 Safety First, Reliability Primary: Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, art. no. 5979487, pp. 1382-1387, 2011.