TD 2 : Dynamique dans un référentiel non galiléen

Exercice 1 : Force de Coriolis sur un train

Un train à grande vitesse, de masse $m = 7.8.10^5$ kg, circule du nord vers le sud entre Lyon et Avignon à la vitesse constante V = 300 km.h⁻¹; à l'instant considéré il se trouve à la hauteur de Valence à la latitude $\lambda = 45^\circ$ nord. Au point P où se situe le train, on définit une base orthogonale $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ avec $\overrightarrow{e_x}$ vers l'est, $\overrightarrow{e_y}$ vers le nord et $\overrightarrow{e_z}$ vers le zénith.

- 1. Faire un schéma où apparaissent la terre (en coupe), la base ci –dessus au point P, le vecteur vitesse du train et le vecteur rotation de la terre $\overrightarrow{\Omega}$.
- 2. Déterminer la force de Coriolis qui s'exerce sur le train dans le référentiel terrestre, et comparer sa norme à celle du poids du train. On donne $\Omega = 7,3.10^{-3} rad. s^{-1}$; $g = 9.8m. s^{-2}$.
- 3. Faire un schéma local du train, vu de l'arrière, et représenter les différentes forces subies. Lequel des deux rails du train s'use le plus ? Qu'est-ce qui change quand le train va vers le nord ?

Exercice 2 : Oscillation en référentiel tournant

Un anneau circulaire horizontal, de centre C et de rayon r, est soudé en un point O à une tige verticale, confondue avec l'axe (Oz) du référentiel terrestre(R_T) supposé galiléen.

A partir de l'instant t=0, on fait tourner cet anneau par rapport à (R_T) , à la vitesse angulaire ω constante, autour de (Oz). Une perle de masse m, assimilable à un point matériel M, peut coulisser sans frottement sur l'anneau ; on note α l'angle entre \overrightarrow{OC} et \overrightarrow{CM} . A $t=0^+$, M se trouve au point A (tel que $\alpha=0$), et sa vitesse par rapport à (R_T) est encore nulle.

On note $\vec{g} = -g\vec{e_z}$ l'accélération de la pesanteur. 1. a) Le référentiel (R) lié à l'anneau est-il galiléen ?

b) Faire la liste complète des forces qui s'exercent sur M dans (R), et donner les composantes de ces forces dans la base cylindrique $(\overrightarrow{e_r}, \overrightarrow{e_\alpha}, \overrightarrow{e_z})$.

On pourra utiliser $\overrightarrow{OM} = \overrightarrow{OC} + \overrightarrow{CM}$.

- 2. Ecrire le principe fondamental de la dynamique pour M dans ce référentiel, et en déduire que l'équation différentielle vérifiée par $\alpha(t)$ est de la forme : $\ddot{\alpha} + \omega^2 sin\alpha = 0$.
- 3.a) Déterminer les positions d'équilibre de M dans (R).
- b) Préciser leur stabilité en utilisant l'équation différentielle précédente.
- 4.a) On suppose maintenant $\alpha \ll 1 \, rad$ (petites oscillations). Déterminer alors complètement la solution $\alpha(t)$ en tenant compte des conditions initiales.
- b) Montrer que la solution trouvée est en réalité incompatible avec l'hypothèse des petites oscillations. A-t-on surestimé ou sous-estimé $sin\alpha$ (en valeur absolue) ? En déduire si

l'amplitude réelle des oscillations est plus grande ou plus petite que celle calculée à la question précédente.

- 5.a) Exprimer l'énergie potentielle totale et l'énergie cinétique de M dans (R), en fonction de α , $\dot{\alpha}$ et des paramètres du système.
- b) En appliquant le théorème de l'énergie mécanique, retrouver l'équation différentielle précédente.

Exercice 3

On désigne par $\mathcal{R}'(\mathbf{0'x'y'z'})$ un repère d'origine O' dont les axes orthogonaux O'x', O'y' et O'z' sont respectivement parallèles aux axes Ox, Oy et Oz d'un repère $\mathcal{R}(\mathbf{0xyz})$ que l'on supposera galiléen. Un pendule simple est constitué d'un point matériel P de masse m, suspendu à l'origine O' de \mathcal{R}' par un fil sans masse ni raideur et de longueur ℓ . On note θ l'angle que fait le fil, que l'on supposera constamment tendu, avec la verticale Oy de \mathcal{R} (cf. figure ci-dessous). Dans un premier temps, l'origine O' de \mathcal{R}' reste fixe et confondue avec l'origine O de \mathcal{R} .

- 1. Quelle doit être la longueur ℓ du fil pour que la période des petits mouvements du pendule soit $T_0 = 1s$? On prendra pour norme de l'accélération de la pesanteur $\vec{g} = -g\vec{e}_y$, la valeur de g = 9.8 m.s⁻².
- 2. Le repère \mathcal{R}' est maintenant animé d'un mouvement de translation rectiligne uniformément accéléré d'accélération constante $\vec{a} = a\vec{e}_x$. Calculer le moment $\mathcal{M}_{O'}(\vec{F}_{ie})$ par rapport au point O' de la force d'inertie d'entrainement \vec{F}_{ie} qui s'applique au point P dans le référentiel \mathcal{R}' .
- 3. Calculer le moment $\mathcal{M}_{O'}(\vec{F}_{iC})$ par rapport au point O' de la force d'inertie de Coriolis \vec{F}_{iC} qui s'applique au point P dans le référentiel \mathcal{R}' .
- **4.** Déduire du théorème du moment cinétique appliqué en O' dans \mathcal{R}' au point matériel P l'équation différentielle à laquelle obéit l'angle θ .
- 5. Retrouver cette équation différentielle à partir de la relation fondamentale de la dynamique dans \mathcal{R}' .

- **6.** Déterminer la valeur θ_0 de l'angle θ correspondant à la position d'équilibre du pendule.
- 7. Exprimer la période T des petits mouvements autour de la position d'équilibre θ_0 en fonction de ℓ , a et g.

Exercice 4

On assimile la terre à un astre sphérique homogène de rayon $R = 6\,371$ km, de masse $M_T = 5,977.10^{24}$ kg, en rotation uniforme de période $T = \frac{2\pi}{\Omega} = 86164$ s dans le référentiel géocentrique (considéré comme galiléen) autour de l'axe de ses pôles. On s'intéresse au champ de pesanteur en un point M situé à la surface de la terre à la latitude λ .

- 1. Après avoir défini le poids d'un point M de masse m en prenant en compte le caractère non galiléen du référentiel terrestre, donner la relation entre le champ de gravitation $\vec{G}(M)$, le champ d'inertie d'entrainement défini par $\vec{G}_{ie} = -\overrightarrow{a_e}(M)$ (où $\overrightarrow{a_e}(M)$ est l'accélération d'entrainement au point M) et le champ de pesanteur $\vec{g}(M)$. Sur un schéma de la terre vue en coupe, représenter ces trois vecteurs au point M. Que se passe-t-il en particulier aux pôles et à l'équateur?
- **2.a.** Donner l'expression de g, la norme de $\vec{g}(M)$, en fonction de Ω , λ , R et de la constante de gravitation universelle $G = 6.674.10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$. En donner les valeurs numériques en un point de l'équateur, aux pôles et pour $\lambda = 44.95^{\circ}$.

Calculer aussi la valeur de \mathcal{G}_{ie} , la norme de $\vec{\mathcal{G}}_{ie}$ aux mêmes lieux. Que peut-on en conclure?

- **2.b.** L'intensité réelle du champ de pesanteur varie de $g = 9,780 \text{ m.s}^{-2}$ à l'équateur à $g = 9,832 \text{ m.s}^{-2}$ aux pôles. Proposer une explication de cette différence avec les valeurs trouvées précédemment.
- 3. On s'intéresse maintenant à la direction de ces trois champs et on note α l'angle non orienté entre les vecteurs $\vec{\mathcal{G}}$ et $\vec{\mathcal{G}}$.
 - **3.a.** Quels sont les lieux de la surface terrestre pour lesquels $\alpha = 0$?
- **3.b.** Donner l'expression de $\cos \alpha$ puis de α en fonction de g, de \mathcal{G} la norme de $\vec{\mathcal{G}}$, de λ et de \mathcal{G}_{ie} . On pourra utiliser la propriété $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(\vec{u}, \vec{v})$.
- **4.** On note d la distance entre la verticale locale du lieu (donnée par la direction de \vec{g}) et le centre de la terre O.
- **4.a.** Donner l'expression de d en fonction de α et de R. Quels sont les lieux à la surface de la terre pour lesquels la verticale locale passe exactement par le centre de la terre ?
- **4.b.** Une étude détaillée de la relation donnant α montre que cet angle est maximal pour $\lambda_0 = 44,95^{\circ}$. Calculer α_0 , la valeur de ce maximum, et d_0 , la valeur maximale de d. Commenter.