covid

November 20, 2021

```
[2]: library("MTS")
    library(tsDyn) # for vecm
    library(urca)
    library(lmtest) #granger test
    library('readxl')
    library('ggplot2')
    library('dplyr')
    library(lubridate)
    library(corrplot)
    library(tseries)
    library(vars)
    library(xts)
    library(forecast)
```

1 Read Data

```
[3]: covid=read_excel('covid.xlsx')
     unemployment=read_excel('unemployment.xlsx')
     economic=read_excel('Economic.xlsx')
     health=read excel('Health.xlsx')
     response=read_excel('response.xlsx')
     stringency=read_excel('Stringency.xlsx')
     colnames(covid)=c('Date', 'Sing', 'UK', 'US')
     colnames(unemployment)=c('Date', 'Sing', 'UK', 'US')
     colnames(economic)=c('Date','Sing','UK','US')
     colnames(health)=c('Date','Sing','UK','US')
     colnames(response)=c('Date','Sing','UK','US')
     colnames(stringency)=c('Date','Sing','UK','US')
     covid$Date=as.Date(covid$Date)
     economic$Date=as.Date(economic$Date)
     health $Date = as. Date (health $Date)
     response$Date=as.Date(response$Date)
     stringency$Date=as.Date(stringency$Date)
     head(covid)
     head(unemployment)
```

```
UK
                                                US
                 Date
                              Sing
                 < date >
                              <dbl>
                                       <dbl>
                                                <dbl>
                 2020-01-01
                                       0
                                                0
                 2020-01-02
                                       0
                                                0
A tibble: 6 \times 4
                 2020-01-03
                                       0
                                                0
                 2020-01-04
                                       0
                                                0
                 2020-01-05
                                       0
                                                0
                 2020-01-06 0
                                       0
                                                0
                                    UK
                                              US
                 Date
                           Sing
                 <chr>
                           <dbl>
                                    <dbl>
                                              <dbl>
                 01/2020
                           2.4
                                    3.9
                                              3.5
                 02/2020
                           2.4
                                    4.0
                                              3.5
A tibble: 6 \times 4
                 03/2020
                           2.4
                                    4.0
                                              4.4
                 04/2020
                           2.6
                                    4.0
                                              14.8
                 05/2020
                                    4.1
                           2.8
                                              13.3
                 06/2020 2.8
                                    4.1
                                              11.1
```

Show Data

```
[4]: | ggplot(data=covid, mapping = aes(x=Date, y=Sing))+geom_point()+geom_smooth()
     ggplot(data=covid,mapping = aes(x=Date,y=UK))+geom_point()+geom_smooth()
     ggplot(data=covid,mapping = aes(x=Date,y=US))+geom_point()+geom_smooth()
     cumsum covid=covid
     cumsum_covid$Sing=cumsum(covid$Sing)
     cumsum covid$UK=cumsum(covid$UK)
     cumsum_covid$US=cumsum(covid$US)
     ggplot(data=cumsum_covid,mapping =_u
      →aes(x=Date,y=Sing))+geom_point()+geom_smooth()
     ggplot(data=cumsum_covid,mapping = aes(x=Date,y=UK))+geom_point()+geom_smooth()
     ggplot(data=cumsum_covid,mapping = aes(x=Date,y=US))+geom_point()+geom_smooth()
    `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```

^{&#}x27;geom_smooth()' using method = 'loess' and formula 'y ~ x'

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

<code>`geom_smooth()`</code> using method = 'loess' and formula 'y ~ x'

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

<code>`geom_smooth()`</code> using method = 'loess' and formula 'y ~ x'

<code>`geom_smooth()`</code> using method = 'loess' and formula 'y ~ x'


```
[6]: MTSplot(as.ts(covid[,c(2,3,4)]))
    MTSplot(as.ts(economic[,c(2,3,4)]))
    MTSplot(as.ts(health[,c(2,3,4)]))
    MTSplot(as.ts(response[,c(2,3,4)]))
    MTSplot(as.ts(stringency[,c(2,3,4)]))
    MTSplot(as.ts(unemployment[,c(2,3,4)]))
```


10

Time

15

20

3 Correlation

```
[7]: colnames(covid)=c('Date','covid_Sing','covid_UK','covid_US')
    colnames(economic)=c('Date','economic_Sing','economic_UK','economic_US')
    colnames(health)=c('Date','health_Sing','health_UK','health_US')
    colnames(response)=c('Date','response_Sing','response_UK','response_US')
    colnames(stringency)=c('Date','stringency_Sing','stringency_UK','stringency_US')
    total=merge(covid,economic,by="Date")
    total=merge(total,health,by="Date")
    total=merge(total,response,by="Date")
    total=merge(total,stringency,by="Date")
```

```
totalbymonth1 <-_
→aggregate(cbind(covid_Sing,covid_UK,covid_US,economic_Sing,economic_UK,economic_US,health_S
             data=total[total["Date"] <= "2020-12-31 UTC",],FUN=sum)</pre>
totalbymonth2 <-_
→aggregate(cbind(covid_Sing,covid_UK,covid_US,economic_Sing,economic_UK,economic_US,health_S
             data=total[total["Date"]>="2021-01-01 UTC",],FUN=sum)
colnames(totalbymonth1)[1]="Month"
colnames(totalbymonth2)[1]="Month"
totalbymonth2$Month=c(13,14,15,16,17)
totalbymonth=rbind(totalbymonth1,totalbymonth2)
colnames(unemployment)=c("Date", "unemployment_Sing", "unemployment_UK", "unemployment_US", "Month
totalbymonth=merge(totalbymonth,unemployment,by="Month")
totalbymonth=totalbymonth[,-17]
M = cor(totalbymonth[,-1])
corrplot(M, order = "hclust", addrect = 2)
corrplot(M, type = "upper")
corrplot.mixed(M, lower.col = "black", number.cex = .7)
```


4 Linear Model

```
[8]: model_Sing_lm=lm(unemployment_Sing~economic_Sing+health_Sing+response_Sing+stringency_Sing+cov

→= totalbymonth)

summary(model_Sing_lm)

Call:

lm(formula = unemployment_Sing ~ economic_Sing + health_Sing +
```

Residuals:

Min 1Q Median 3Q Max

response_Sing + stringency_Sing + covid_Sing, data = totalbymonth)

-0.25021 -0.11540 0.02254 0.09730 0.20212

```
Coefficients:
```

Estimate Std. Error t value Pr(>|t|) 2.567e+00 3.292e-01 7.799 8.31e-06 *** (Intercept) economic_Sing 1.029e-01 6.492e-02 1.585 0.141 health Sing 7.165e-01 4.548e-01 1.575 0.143 response_Sing -8.207e-01 5.196e-01 -1.580 0.143 stringency_Sing 1.612e-03 1.003e-03 1.606 0.137 covid_Sing -3.128e-05 2.960e-05 -1.057 0.313 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.1756 on 11 degrees of freedom

Multiple R-squared: 0.856, Adjusted R-squared: 0.7905

F-statistic: 13.07 on 5 and 11 DF, p-value: 0.0002551

Call:

lm(formula = unemployment_US ~ economic_US + health_US + response_US +
 stringency_US + covid_US, data = totalbymonth)

Residuals:

Min 1Q Median 3Q Max -2.0154 -1.2542 -0.0179 0.8272 3.1884

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.123e+00 1.439e+00 2.865 0.01539 *
economic_US -1.128e-01 9.539e-01 -0.118 0.90798
health_US -8.264e-01 6.674e+00 -0.124 0.90369
response_US 9.297e-01 7.629e+00 0.122 0.90521
stringency_US 1.271e-02 3.325e-03 3.822 0.00283 **
covid_US -8.554e-07 2.603e-07 -3.287 0.00724 **
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.753 on 11 degrees of freedom

Multiple R-squared: 0.7907, Adjusted R-squared: 0.6956

F-statistic: 8.313 on 5 and 11 DF, p-value: 0.001806

```
[10]: | model_UK_lm=lm(unemployment_UK~economic_UK+health_UK+response_UK+stringency_UK+covid_UK,data_
      →= totalbymonth)
     summary(model_UK_lm)
     Call:
     lm(formula = unemployment_UK ~ economic_UK + health_UK + response_UK +
         stringency_UK + covid_UK, data = totalbymonth)
     Residuals:
          Min
                   1Q
                        Median
                                     3Q
                                             Max
     -0.39788 -0.05597 0.01124 0.10677 0.34587
     Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                   3.851e+00 1.989e-01 19.362 7.56e-10 ***
     (Intercept)
     economic_UK
                  -6.679e-02 1.067e-01 -0.626
                                                  0.5440
     health_UK
                  -4.671e-01 7.461e-01 -0.626
                                                  0.5440
     response_UK
                   5.355e-01 8.527e-01 0.628
                                                  0.5429
     stringency_UK -1.215e-03 4.113e-04 -2.954
                                                  0.0131 *
     covid_UK
                   6.352e-07 2.158e-07 2.944
                                                  0.0134 *
     ___
     Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
     Residual standard error: 0.2505 on 11 degrees of freedom
     Multiple R-squared: 0.808,
                                       Adjusted R-squared: 0.7207
     F-statistic: 9.258 on 5 and 11 DF, p-value: 0.001155
```

5 data representation

6 Granger Test

```
[12]: for (i in 2:7){
        for(j in 2:7){
          if (j!=i){
            GX=colnames(totalbymonth.Sing)[i]
            GY=colnames(totalbymonth.Sing)[j]
            EGtest <- grangertest(totalbymonth.Sing[,j] ~ totalbymonth.Sing[,i],order_
       →= 1, data = totalbymonth.Sing)
            if (EGtest$`Pr(>F)`[2]<0.1){</pre>
              print(paste(GX," is a cause for",GY))
            }
          }
        }
      }
     [1] "covid_Sing is a cause for economic_Sing"
     [1] "covid_Sing is a cause for unemployment_Sing"
     [1] "economic_Sing is a cause for covid_Sing"
     [1] "economic_Sing is a cause for health_Sing"
     [1] "economic_Sing is a cause for stringency_Sing"
     [1] "health_Sing is a cause for economic_Sing"
     [1] "response_Sing is a cause for economic_Sing"
     [1] "response_Sing is a cause for health_Sing"
     [1] "stringency Sing is a cause for economic Sing"
     [1] "unemployment_Sing is a cause for covid_Sing"
[13]: for (i in 2:7){
        for(j in 2:7){
          if (j!=i){
            GX=colnames(totalbymonth.US)[i]
            GY=colnames(totalbymonth.US)[j]
            EGtest <- grangertest(totalbymonth.US[,j] ~ totalbymonth.US[,i],order =_ 
       \hookrightarrow 1, data = totalbymonth.US)
            if (EGtest$`Pr(>F)`[2]<0.1){</pre>
              print(paste(GX," is a cause for",GY))
            }
          }
        }
      }
     [1] "economic_US is a cause for health_US"
     [1] "economic_US is a cause for response_US"
     [1] "economic_US is a cause for stringency_US"
     [1] "health_US is a cause for economic_US"
     [1] "health_US is a cause for response_US"
     [1] "response US is a cause for economic US"
     [1] "response_US is a cause for health_US"
```

```
[14]: for (i in 2:7){
        for(j in 2:7){
          if (j!=i){
            GX=colnames(totalbymonth.UK)[i]
            GY=colnames(totalbymonth.UK)[j]
            EGtest <- grangertest(totalbymonth.UK[,j] ~ totalbymonth.UK[,i],order =__
       \rightarrow 1, data = totalbymonth.UK)
            if (EGtest$`Pr(>F)`[2]<0.1){</pre>
              print(paste(GX," is a cause for",GY))
            }
          }
        }
      }
[15]: for (i in 2:6){
        for(j in 2:6){
          if (j!=i){
            GX=colnames(total.Sing)[i]
            GY=colnames(total.Sing)[j]
            EGtest <- grangertest(total.Sing[,j] ~ total.Sing[,i],order = 1, data =__
       →total.Sing)
            if (EGtest$`Pr(>F)`[2]<0.1){</pre>
              print(paste(GX," is a cause for",GY))
            }
          }
        }
      }
     [1] "covid_Sing is a cause for economic_Sing"
     [1] "economic_Sing is a cause for health_Sing"
     [1] "economic_Sing is a cause for response_Sing"
     [1] "economic_Sing is a cause for stringency_Sing"
     [1] "health_Sing is a cause for covid_Sing"
     [1] "health_Sing is a cause for economic_Sing"
     [1] "health_Sing is a cause for response_Sing"
     [1] "response_Sing is a cause for covid_Sing"
     [1] "response_Sing is a cause for economic_Sing"
     [1] "response_Sing is a cause for health_Sing"
     [1] "stringency_Sing is a cause for covid_Sing"
     [1] "stringency_Sing is a cause for economic_Sing"
[16]: for (i in 2:6){
        for(j in 2:6){
          if (j!=i){
            GX=colnames(total.US)[i]
            GY=colnames(total.US)[j]
```

[1] "stringency_US is a cause for economic_US"

```
EGtest <- grangertest(total.US[,j] ~ total.US[,i],order = 1, data = total.
       ن US)
            if (EGtest$`Pr(>F)`[2]<0.1){</pre>
              print(paste(GX," is a cause for",GY))
            }
          }
        }
      }
     [1] "economic_US is a cause for health_US"
     [1] "economic_US is a cause for response_US"
     [1] "economic US is a cause for stringency US"
     [1] "health_US is a cause for economic_US"
     [1] "health US is a cause for response US"
     [1] "response_US is a cause for economic_US"
     [1] "response US is a cause for health US"
     [1] "response_US is a cause for stringency_US"
     [1] "stringency US is a cause for covid US"
     [1] "stringency_US is a cause for economic_US"
     [1] "stringency_US is a cause for response_US"
[17]: for (i in 2:6){
        for(j in 2:6){
          if (j!=i){
            GX=colnames(total.UK)[i]
            GY=colnames(total.UK)[j]
            EGtest <- grangertest(total.UK[,j] ~ total.UK[,i],order = 1, data = total.</pre>
       →UK)
            if (EGtest$`Pr(>F)`[2]<0.1){</pre>
              print(paste(GX," is a cause for",GY))
          }
        }
      }
     [1] "covid_UK is a cause for health_UK"
     [1] "covid_UK is a cause for stringency_UK"
     [1] "economic UK is a cause for health UK"
     [1] "economic_UK is a cause for response_UK"
     [1] "economic UK is a cause for stringency UK"
     [1] "health_UK is a cause for response_UK"
     [1] "health UK is a cause for stringency UK"
     [1] "response_UK is a cause for health_UK"
     [1] "response_UK is a cause for stringency_UK"
     [1] "stringency_UK is a cause for health_UK"
     [1] "stringency_UK is a cause for response_UK"
```

7 Unit Root Test

```
[30]: p2 <- round(adf.test(totalbymonth.Sing[,2])$p.value,3)
      p3 <- round(adf.test(totalbymonth.Sing[,3])$p.value,3)
      p4 <- round(adf.test(totalbymonth.Sing[,4])$p.value,3)
      p5 <- round(adf.test(totalbymonth.Sing[,5])$p.value,3)
      p6 <- round(adf.test(totalbymonth.Sing[,6])$p.value,3)
      p7 <- round(adf.test(totalbymonth.Sing[,7])$p.value,3)
      Sing_df <- data.frame(matrix(c(p2,p3,p4,p5,p6,p7),nrow=1))</pre>
      colnames(Sing df) <-u</pre>
       →c("covid_Sing", "economic_Sing", "health_Sing", "response_Sing", "stringency_Sing", "Unemploymen
      rownames(Sing df) <- c("Unit Root Test p value")</pre>
      p2 <- round(adf.test(totalbymonth.US[,2])$p.value,3)</pre>
      p3 <- round(adf.test(totalbymonth.US[,3])$p.value,3)
      p4 <- round(adf.test(totalbymonth.US[,4])$p.value,3)
      p5 <- round(adf.test(totalbymonth.US[,5])$p.value,3)
      p6 <- round(adf.test(totalbymonth.US[,6])$p.value,3)
      p7 <- round(adf.test(totalbymonth.US[,7])$p.value,3)
      US_df <- data.frame(matrix(c(p2,p3,p4,p5,p6,p7),nrow=1))</pre>
      colnames(US_df) <-_
       →c("covid_US", "economic_US", "health_US", "response_US", "stringency_US", "Unemployment_US")
      rownames(US_df) <- c("Unit Root Test p value")</pre>
      p2 <- round(adf.test(totalbymonth.UK[,2])$p.value,3)</pre>
      p3 <- round(adf.test(totalbymonth.UK[,3])$p.value,3)
      p4 <- round(adf.test(totalbymonth.UK[,4])$p.value,3)
      p5 <- round(adf.test(totalbymonth.UK[,5])$p.value,3)
      p6 <- round(adf.test(totalbymonth.UK[,6])$p.value,3)
      p7 <- round(adf.test(totalbymonth.UK[,7])$p.value,3)
      UK_df <- data.frame(matrix(c(p2,p3,p4,p5,p6,p7),nrow=1))</pre>
      colnames(UK df) <- ...
       →c("covid_UK", "economic_UK", "health_UK", "response_UK", "stringency_UK", "Unemployment_UK")
      rownames(UK df) <- c("Unit Root Test p value")</pre>
      Sing df
      US_df
      UK df
     Warning message in adf.test(totalbymonth.Sing[, 3]):
     "p-value smaller than printed p-value"
     Warning message in adf.test(totalbymonth.Sing[, 4]):
     "p-value smaller than printed p-value"
     Warning message in adf.test(totalbymonth.Sing[, 5]):
     "p-value smaller than printed p-value"
     Warning message in adf.test(totalbymonth.Sing[, 6]):
     "p-value smaller than printed p-value"
     Warning message in adf.test(totalbymonth.US[, 3]):
     "p-value smaller than printed p-value"
     Warning message in adf.test(totalbymonth.US[, 4]):
     "p-value smaller than printed p-value"
```

```
Warning message in adf.test(totalbymonth.US[, 5]):
"p-value smaller than printed p-value"
Warning message in adf.test(totalbymonth.US[, 7]):
"p-value smaller than printed p-value"
Warning message in adf.test(totalbymonth.UK[, 3]):
"p-value smaller than printed p-value"
Warning message in adf.test(totalbymonth.UK[, 5]):
"p-value smaller than printed p-value"
Warning message in adf.test(totalbymonth.UK[, 6]):
"p-value smaller than printed p-value"
```

A data.frame: 1×6	Unit Root Test p value	covid_Sing <dbl></dbl>	economic_Sin <dbl></dbl>	g health_Si <dbl> 0.01</dbl>	ng response_ <dbl> 0.01</dbl>	$ \begin{array}{c} \text{Sing} & \text{stri} \\ & < d \\ \hline 0.0 \end{array} $
A data.frame: 1×6	Unit Root Test p value	covid_US <dbl></dbl>	economic_US <dbl></dbl>	health_US <dbl></dbl>	response_US <dbl></dbl>	stringene <dbl> 0.358</dbl>
A data.frame: 1×6	Unit Root Test p value	covid_UK <dbl> 0.702</dbl>	economic_UK <dbl></dbl>	health_UK <dbl> 0.023</dbl>	response_UF <dbl></dbl>	K stringer <dbl> 0.01</dbl>

8 Ljung-Box statistics

```
[19]: mq(total.Sing[,-1],lag=12)
mq(total.US[,-1],lag=12)
mq(total.UK[,-1],lag=12)

mq(totalbymonth.Sing[,-1],lag=12)
mq(totalbymonth.US[,-1],lag=12)
mq(totalbymonth.UK[,-1],lag=12)
```

Ljung-Box Statistics:

5 0				
	m	Q(m)	df	p-value
[1,]	1	2198	25	0
[2,]	2	4307	50	0
[3,]	3	6266	75	0
[4,]	4	8128	100	0
[5,]	5	9884	125	0
[6,]	6	11547	150	0
[7,]	7	13147	175	0
[8,]	8	14681	200	0
[9,]	9	16162	225	0
[10,]	10	17595	250	0
[11,]	11	18986	275	0
[12,]	12	20342	300	0
Ljung-Box Statistics:				

Q(m)

df

p-value

[1,]	1	2353	25	0	
[2,]	2	4536	50	0	
[3,]	3	6576	75	0	
[4,]	4	8480	100	0	
[5,]	5	10281	125	0	
[6,]	6	11998	150	0	
[7,]	7	13634	175	0	
[8,]	8	15164	200	0	
[9,]	9	16605	225	0	
[10,]	10	17986	250	0	
[11,]	11	19310	275	0	
[12,]	12	20595	300	0	
Ljung-	Box Sta	tistics:			
	m	Q(m)	df	p-value	
[1,]	1	2372	25	0	
[2,]	2	4563	50	0	
[3,]	3	6609	75	0	
[4,]	4	8555	100	0	
[5,]	5	10423	125	0	
[6,]	6	12226	150	0	
[7,]	7	13966	175	0	
[8,]	8	15636	200	0	
[9,]	9	17242	225	0	
[10,]	10	18782	250	0	
[11,]	11	20260	275	0	
[12,]	12	21686	300	0	
Ljung-Box Statistics:					
	m	Q(m)	df	p-value	
[1,]	1.0	62.2	36.0	0.00	
[2,]	2.0	125.2	72.0	0.00	
[3,]	3.0	183.5	108.0	0.00	
[4,]	4.0	233.2	144.0	0.00	
[5,]	5.0	278.6	180.0	0.00	
[6,]	6.0	322.9	216.0	0.00	
[7,]	7.0	358.0	252.0	0.00	
[8,]	8.0	392.2	288.0	0.00	
[9,]	9.0	418.8	324.0	0.00	
[10,]	10.0	447.0	360.0	0.00	
[11,]	11.0	470.4	396.0	0.01	
[12,]	12.0	493.7	432.0	0.02	

p-values of Ljung-Box statistics

Ljung-Box Statistics:					
	m	Q(m)	df	p-value	
[1,]	1.0	48.9	36.0	0.07	
[2,]	2.0	90.1	72.0	0.07	
[3,]	3.0	129.5	108.0	0.08	
[4,]	4.0	166.7	144.0	0.09	
[5,]	5.0	206.0	180.0	0.09	
[6,]	6.0	236.9	216.0	0.16	
[7,]	7.0	270.8	252.0	0.20	
[8,]	8.0	306.8	288.0	0.21	
[9,]	9.0	335.8	324.0	0.31	
[10,]	10.0	373.6	360.0	0.30	
[11,]	11.0	420.1	396.0	0.19	

p-values of Ljung-Box statistics

	m	Q(m)	df	p-value
[1,]	1.0	54.7	36.0	0.02
[2,]	2.0	111.8	72.0	0.00
[3,]	3.0	160.6	108.0	0.00
[4,]	4.0	206.5	144.0	0.00
[5,]	5.0	246.8	180.0	0.00
[6,]	6.0	290.6	216.0	0.00
[7,]	7.0	327.2	252.0	0.00
[8,]	8.0	372.4	288.0	0.00
[9,]	9.0	412.7	324.0	0.00

464.5

360.0

Ljung-Box Statistics:

[10,] 10.0

0.00

[11,] 11.0 511.4 396.0 0.00 [12,] 12.0 560.2 432.0 0.00

p-values of Ljung-Box statistics

p-values of Ljung-Box statistics

9 OLS-base CUSUM test

```
plot(diagnostic Sing$stability$response Sing,main='OLS-base CSingUM_
→test response_Sing')
plot(diagnostic_Sing$stability$stringency_Sing,main='OLS-base CSingUM_U
→test stringency Sing')
plot(diagnostic_Sing$stability$unemployment_Sing,main='OLS-base CSingUM_
US var=vars::VAR(totalbymonth.US,p=1)
diagnostic_US <- stability(US_var, type = c("OLS-CUSUM"), h = 0.15, dynamic =__
→FALSE, rescale = T)
par(mfrow=c(3,2))
plot(diagnostic_US$stability$covid_US,main='OLS-base CUSUM test covid_US')
plot(diagnostic_US$stability$economic_US,main='OLS-base CUSUM test economic_US')
plot(diagnostic_US$stability$health_US,main='OLS-base CUSUM test health_US')
plot(diagnostic_US$stability$response_US,main='OLS-base CUSUM test response_US')
plot(diagnostic_US$stability$stringency_US,main='OLS-base CUSUM_
→test stringency US')
plot(diagnostic_US$stability$unemployment_US,main='OLS-base CUSUM_
UK var=vars::VAR(totalbymonth.UK,p=1)
diagnostic_UK <- stability(UK_var, type = c("OLS-CUSUM"), h = 0.15, dynamic = c("OLS-CUSUM")
→FALSE, rescale = T)
par(mfrow=c(3,2))
plot(diagnostic UK$stability$covid UK,main='OLS-base CUSUM test covid UK')
plot(diagnostic_UK$stability$economic_UK,main='OLS-base CUSUM test economic_UK')
plot(diagnostic UK$stability$health UK,main='OLS-base CUSUM test health UK')
plot(diagnostic_UK$stability$response_UK,main='OLS-base CUSUM test response_UK')
plot(diagnostic UK$stability$stringency UK,main='OLS-base CUSUM,
→test stringency_UK')
plot(diagnostic_UK$stability$unemployment_UK,main='OLS-base CUSUM_
 →test unemployment_UK')
```



```
[33]: train_size <- nrow(total)
  test_size=floor(nrow(total)/3)
  train_ind <- 1:train_size
  train_size <- nrow(total)
  test_size=floor(nrow(total)/3)
  forecast_time=data.frame(Date=as.Date(total[nrow(total),1])+1)
  for(i in 2:test_size){
    forecast_time[i,1]=as.Date(total[nrow(total),1])+i
  }
  total.Sing.train <- total.Sing[train_ind, ]</pre>
```

```
VARselect(total.Sing.train[,-1], lag.max=8, type="const")[["selection"]]
total.Sing.var=VAR(as.ts(total.Sing.train[,-1]),p=1,type="const")
serial.test(total.Sing.var,lags.pt = 10, type="PT.asymptotic")
plot(forecast(total.Sing.var,test_size),xlab="Day")
MTSplot(as.ts(total.Sing[,-1]))
forest.total.Sing=forecast(total.Sing.var,test_size)
forest.total.Sing.covid=cbind(forecast_time,forest.total.
→Sing$forecast[1]$covid_Sing)
colnames(forest.total.Sing.
-covid)=c("Date", "forecast Sing covid", "forecast Sing covid low 80", "forecast Sing covid hig
write.csv(forest.total.Sing.covid,file="forest_Sing_covid.csv",row.names = F)
forest.total.Sing.economic=cbind(forecast_time,forest.total.
→Sing$forecast[2]$economic_Sing)
colnames(forest.total.Sing.
-economic)=c("Date", "forecast_Sing_economic", "forecast_Sing_economic_low_80", "forecast_Sing_
write.csv(forest.total.Sing.economic,file="forest Sing economic.csv",row.names,
\rightarrow = F
forest.total.Sing.health=cbind(forecast_time,forest.total.
→Sing$forecast[3]$health_Sing)
colnames(forest.total.Sing.
→health)=c("Date", "forecast_Sing_health", "forecast_Sing_health_low_80", "forecast_Sing_health
write.csv(forest.total.Sing.health,file="forest_Sing_health.csv",row.names = F)
forest.total.Sing.response=cbind(forecast_time,forest.total.
→Sing$forecast[4]$response_Sing)
colnames(forest.total.Sing.
→response)=c("Date", "forecast_Sing_response", "forecast_Sing_response_low_80", "forecast_Sing_
write.csv(forest.total.Sing.response,file="forest_Sing_response.csv",row.names_
\rightarrow = F)
forest.total.Sing.stringency=cbind(forecast_time,forest.total.
→Sing$forecast[5]$stringency_Sing)
colnames(forest.total.Sing.

--stringency)=c("Date", "forecast_Sing_stringency", "forecast_Sing_stringency_low_80", "forecast
write.csv(forest.total.Sing.stringency,file="forest_Sing_strigency.csv",row.
 \rightarrownames = F)
```

```
forest.total.Sing.all=cbind(forest.total.Sing.covid,forest.total.Sing.
 →economic, forest.total.Sing.health, forest.total.Sing.response, forest.total.
 →Sing.stringency)
forest.total.Sing=cbind(forest.total.Sing.covid[,c(1,2)],forest.total.Sing.
 \rightarroweconomic[,c(1,2)],forest.total.Sing.health[,c(1,2)],forest.total.Sing.
 \rightarrowresponse[,c(1,2)],forest.total.Sing.stringency[,c(1,2)])
forest.total.Sing=forest.total.Sing[,c(1,2,4,6,8,10)]
write.csv(forest.total.Sing,file="forest_Sing.csv",row.names = F)
head(forest.total.Sing.covid[,-1])
head(forest.total.Sing.economic[,-1])
head(forest.total.Sing.health[,-1])
head(forest.total.Sing.response[,-1])
head(forest.total.Sing.stringency[,-1])
AIC(n)
                 7 HQ(n)
                                    2 SC(n)
                                                      2 FPE(n)
                                                                         7
```

Portmanteau Test (asymptotic)

data: Residuals of VAR object total.Sing.var Chi-squared = 587.25, df = 225, p-value < 2.2e-16

\$serial

Portmanteau Test (asymptotic)

data: Residuals of VAR object total.Sing.var Chi-squared = 587.25, df = 225, p-value < 2.2e-16

Forecasts from VAR(1)

		forecast_Sing_covid	forecast_Sing_covid_low_80	forecast_Sing_covid_high_80
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-	1	52.65123	-54.30205	159.6045
A data.frame: 6×5	2	73.62751	-56.04098	203.2960
A data.frame: 0×0	3	88.67736	-51.43282	228.7875
	4	99.65689	-46.64322	245.9570
	5	107.82070	-43.07487	258.7163
	6	114.01797	-40.85273	268.8887

		_	forecast_Sing_economic_low_	9
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	1	100.3676	96.96764	103.7676
A data.frame: 6×5	2	100.7072	95.96089	105.4535
n data.name. 0 × 9	3	101.0268	95.27945	106.7742
	4	101.3319	94.76261	107.9013
	5	101.6261	94.34927	108.9029
	6	101.9116	94.00862	109.8147
		forecast_Sing_health for	orecast_Sing_health_low_80	forecast_Sing_health_high_8
		<dbl> <</dbl>	<dbl></dbl>	<dbl></dbl>
-	1	69.30717 6	67.71247	70.90186
A data.frame: 6×5	2	69.21633	66.97403	71.45863
A data.irame: 0×5	3	69.12683	66.39600	71.85766
	4	69.03821 6	55.90236	72.17406
	5	68.95017 6	55.46335	72.43699
	6	68.86251	55.06361	72.66140
		forecast_Sing_response	forecast_Sing_response_low_	80 forecast_Sing_response_h
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-	1	73.19430	71.74002	74.64858
A 1 + C	2	73.15687	71.10668	75.20707
A data.frame: 6×5	3	73.11815	70.61529	75.62102
	4	73.07842	70.19788	75.95895
	5	73.03784	69.82812	76.24756
	6	72.99654	69.49246	76.50061
		forecast_Sing_stringency	y forecast_Sing_stringency_lo	ow 80 forecast Sing stringer
		<dbl></dbl>	<pre><dbl></dbl></pre>	<dbl></dbl>
-	1	58.33782	56.28459	60.39104
	2	58.34790	55.47110	61.22470
A data.frame: 6×5	3	58.35771	54.86460	61.85082
	4	58.36564	54.36474	62.36654
	-			
	5	L 58 37066	53 93200	62 80933
	5 6	58.37066 58.37218	53.93200 53.54596	62.80933 63.19841

covid_Sing economic_Sing health_Sing Time

response_Sing stringency_Sing ß Time

data

```
[34]: train_size <- nrow(total)
  test_size=floor(nrow(total)/3)
  train_ind <- 1:train_size
  train_size <- nrow(total)
  test_size=floor(nrow(total)/3)
  forecast_time=data.frame(Date=as.Date(total[nrow(total),1])+1)
  for(i in 2:test_size){
    forecast_time[i,1]=as.Date(total[nrow(total),1])+i
  }

  total.UK.train <- total.UK[train_ind, ]</pre>
```

```
VARselect(total.UK.train[,-1], lag.max=8, type="const")[["selection"]]
total.UK.var=VAR(as.ts(total.UK.train[,-1]),p=1,type="const")
serial.test(total.UK.var,lags.pt = 10, type="PT.asymptotic")
plot(forecast(total.UK.var,test_size),xlab="Day")
MTSplot(as.ts(total.UK[,-1]))
forest.total.UK=forecast(total.UK.var,test_size)
forest.total.UK.covid=cbind(forecast_time,forest.total.UK$forecast[1]$covid_UK)
colnames(forest.total.UK.
-covid)=c("Date", "forecast_UK_covid", "forecast_UK_covid_low_80", "forecast_UK_covid_high_80",
write.csv(forest.total.UK.covid,file="forest_UK_covid.csv",row.names = F)
forest.total.UK.economic=cbind(forecast_time,forest.total.
→UK$forecast[2]$economic_UK)
colnames(forest.total.UK.
→economic)=c("Date", "forecast_UK_economic", "forecast_UK_economic_low_80", "forecast_UK_econom
write.csv(forest.total.UK.economic,file="forest_UK_economic.csv",row.names = F)
forest.total.UK.health=cbind(forecast_time,forest.total.
→UK$forecast[3]$health_UK)
colnames(forest.total.UK.
→health)=c("Date", "forecast_UK_health", "forecast_UK_health_low_80", "forecast_UK_health_high_
write.csv(forest.total.UK.health,file="forest_UK_health.csv",row.names = F)
forest.total.UK.response=cbind(forecast_time,forest.total.
→UK$forecast[4]$response_UK)
colnames(forest.total.UK.
→response)=c("Date", "forecast_UK_response", "forecast_UK_response_low_80", "forecast_UK_respon
write.csv(forest.total.UK.response,file="forest_UK_response.csv",row.names = F)
forest.total.UK.stringency=cbind(forecast_time,forest.total.
→UK$forecast[5]$stringency_UK)
colnames(forest.total.UK.
→stringency)=c("Date", "forecast_UK_stringency", "forecast_UK_stringency_low_80", "forecast_UK_
write.csv(forest.total.UK.stringency,file="forest_UK_stringency.csv",row.names = U
\hookrightarrow F)
forest.total.UK.all=cbind(forest.total.UK.covid,forest.total.UK.economic,forest.
 →total.UK.health,forest.total.UK.response,forest.total.UK.stringency)
```

```
forest.total.UK=cbind(forest.total.UK.covid[,c(1,2)],forest.total.UK.
    →economic[,c(1,2)],forest.total.UK.health[,c(1,2)],forest.total.UK.
    →response[,c(1,2)],forest.total.UK.stringency[,c(1,2)])

forest.total.UK=forest.total.UK[,c(1,2,4,6,8,10)]
    write.csv(forest.total.UK,file="forest_UK.csv",row.names = F)
    head(forest.total.UK.covid[,-1])
    head(forest.total.UK.economic[,-1])
    head(forest.total.UK.health[,-1])
    head(forest.total.UK.response[,-1])
    head(forest.total.UK.stringency[,-1])
AIC(n) 8 HQ(n) 6 SC(n) 2 FPE(n) 8
```

Portmanteau Test (asymptotic)

data: Residuals of VAR object total.UK.var Chi-squared = 1078.5, df = 225, p-value < 2.2e-16

\$serial

Portmanteau Test (asymptotic)

data: Residuals of VAR object total.UK.var Chi-squared = 1078.5, df = 225, p-value < 2.2e-16

Forecasts from VAR(1)

		forecast_UK_covid	$forecast_UK_covid_low_80$	$forecast_UK_covid_high_80$	for
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<
•	1	3383.533	362.0155	6405.051	-1
A data.frame: 6×5	2	3488.946	-749.1776	7727.069	-2
A data.frame: 0×0	3	3607.614	-1540.9273	8756.156	-4
	4	3737.254	-2159.8933	9634.402	-5
	5	3875.879	-2664.4944	10416.252	-6
	6	4021.760	-3085.6436	11129.163	-6

		forecast UK economic	forecast UK economic low	80 forecast UK economic h
		<dbl></dbl>	<dbl></dbl>	
	1	99.69778	96.74493	102.6506
	2	99.40768	95.23924	103.5761
A data.frame: 6×5	3	99.12837	94.03155	104.2252
	4	98.85871	92.98236	104.7351
	5	98.59770	92.03693	105.1585
	6	98.34446	91.16673	105.5222
		forecast_UK_health for	orecast_UK_health_low_80	forecast_UK_health_high_80
			idbl>	<pre><dbl></dbl></pre>
	1		2.41486	66.00381
	2		1.60757	66.55773
A data.frame: 6×5	$\frac{2}{3}$		1.00749	66.92908
	4		0.52054	67.20901
	5		0.10798	67.43367
	6		9.74868	67.62192
	Ü			
		forecast_UK_response	forecast_UK_response_low_	
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	1	68.64004	66.99356	70.28652
A data.frame: 6×5	2	68.49372	66.21010	70.77734
Traditaline. 0 × 0	3	68.35942	65.61190	71.10694
	4	68.23574	65.11404	71.35744
	5	68.12143	64.68172	71.56113
	6	68.01539	64.29610	71.73468
		forecast_UK_stringency	forecast_UK_stringency_lo	ow_80 forecast_UK_stringency
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	1	62.48104	60.35187	64.61021
A 1 + C C - F	2	62.46079	59.50668	65.41490
A data.frame: 6×5	3	62.43963	58.88345	65.99582
	4	62.41787	58.37435	66.46138
	5	62.39575	57.93621	66.85530
	5 6	62.37350	57.54625	66.85530 67.20075


```
[35]: train_size <- nrow(total)
  test_size=floor(nrow(total)/3)
  train_ind <- 1:train_size
  train_size <- nrow(total)
  test_size=floor(nrow(total)/3)
  forecast_time=data.frame(Date=as.Date(total[nrow(total),1])+1)
  for(i in 2:test_size){
    forecast_time[i,1]=as.Date(total[nrow(total),1])+i
  }

total.US.train <- total.US[train_ind, ]</pre>
```

```
VARselect(total.US.train[,-1], lag.max=8, type="const")[["selection"]]
total.US.var=VAR(as.ts(total.US.train[,-1]),p=1,type="const")
serial.test(total.US.var,lags.pt = 10, type="PT.asymptotic")
plot(forecast(total.US.var,test_size),xlab="Day")
MTSplot(as.ts(total.US[,-1]))
forest.total.US=forecast(total.US.var,test_size)
forest.total.US.covid=cbind(forecast_time,forest.total.US$forecast[1]$covid_US)
colnames(forest.total.US.
write.csv(forest.total.US.covid,file="forest_US_covid.csv",row.names = F)
forest.total.US.economic=cbind(forecast_time,forest.total.
→US$forecast[2]$economic_US)
colnames(forest.total.US.
→economic)=c("Date", "forecast_US_economic", "forecast_US_economic_low_80", "forecast_US_economic
write.csv(forest.total.US.economic,file="forest_US_economic.csv",row.names = F)
forest.total.US.health=cbind(forecast_time,forest.total.
→US$forecast[3]$health_US)
colnames(forest.total.US.
→health)=c("Date", "forecast_US_health", "forecast_US_health_low_80", "forecast_US_health_high_
write.csv(forest.total.US.health,file="forest_US_health.csv",row.names = F)
forest.total.US.response=cbind(forecast_time,forest.total.
→US$forecast[4]$response_US)
colnames(forest.total.US.
→response)=c("Date", "forecast_US_response", "forecast_US_response_low_80", "forecast_US_respon
write.csv(forest.total.US.response,file="forest_US_response.csv",row.names = F)
forest.total.US.stringency=cbind(forecast_time,forest.total.
→US$forecast[5]$stringency_US)
colnames(forest.total.US.
-stringency)=c("Date", "forecast_US_stringency", "forecast_US_stringency_low_80", "forecast_US_
write.csv(forest.total.US.stringency,file="forest_US_stringency.csv",row.names = __
\hookrightarrow F)
forest.total.US.all=cbind(forest.total.US.covid,forest.total.US.economic,forest.
 →total.US.health,forest.total.US.response,forest.total.US.stringency)
```

Portmanteau Test (asymptotic)

data: Residuals of VAR object total.US.var
Chi-squared = 640.6, df = 225, p-value < 2.2e-16</pre>

\$serial

Portmanteau Test (asymptotic)

data: Residuals of VAR object total.US.var Chi-squared = 640.6, df = 225, p-value < 2.2e-16

		forecast_US_covid	forecast_US_covid_low_80	forecast_US_covid_high_80	fore
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<d
•	1	6447.290	-15507.91	28402.49	-27
A data.frame: 6×5	2	7111.281	-23230.70	37453.26	-395
A data.frame: 0×3	3	7768.917	-28560.20	44098.04	-47
	4	8421.139	-32605.16	49447.44	-543
	5	9068.873	-35808.48	53946.23	-59
	6	9713.018	-38404.00	57830.04	-638

		forecast US economic	forecast_US_economic_low	80 forecast US economic high
		<dbl></dbl>	<dbl></dbl>	
-	1	49.87013	46.40169	53.33856
	2	49.77872	45.06672	54.49073
A data.frame: 6×5	3	49.72418	44.17763	55.27072
	4	49.70490	43.54572	55.86407
	5	49.71932	43.09237	56.34627
	6	49.76593	42.77403	56.75782
		forecast_US_health f	forecast_US_health_low_80	forecast_US_health_high_80 f
			<dbl></dbl>	<dbl></dbl>
-	1		61.79746	63.95721
	2		61.71454	64.81770
A data.frame: 6×5	3		51.73208	65.59903
	4		61.80117	66.34854
	5		61.90309	67.08344
	6		62.02847	67.81161
	~			
		forecast_US_response	forecast_US_response_low_	
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	1	61.25357	60.23938	62.26776
A data.frame: 6×5	2	61.58201	60.15349	63.01053
TI dawinianio. 5 /. 5	3	61.92440	60.17310	63.67570
	4	62.27987	60.24685	64.31288
	5	62.64754	60.35415	64.94093
	6	63.02658	60.48436	65.56879
		forecast_US_stringency	y forecast_US_stringency_lo	ow_80 forecast_US_stringency_
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
-	1	47.13441	45.55468	48.71415
A J-to frame of G V E	2	47.52667	45.25817	49.79517
A data.frame: 6×5	3	47.93563	45.11058	50.76068
	4	48.36019	45.04022	51.68016
	5	48.79928	45.01961	52.57896
	6	49.25186	45.03494	53.46879

response_US ß stringency_US Time

data

```
[24]: forest.total=cbind(forest.total.Sing,forest.total.UK[,-1],forest.total.US[,-1])
    write.csv(forest.total,file = "forest_total.csv",row.names = F)

[25]: train_size <- nrow(totalbymonth)
    test_size=floor(nrow(totalbymonth)/2)
    train_ind <- 1:train_size
    forecast_time=data.frame(Month=totalbymonth[nrow(totalbymonth),1]+1)
    for(i in 2:test_size){
        forecast_time[i,1]=totalbymonth[nrow(totalbymonth),1]+i
    }

    totalbymonth.Sing.train <- totalbymonth.Sing[train_ind,]</pre>
```

```
VARselect(totalbymonth.Sing.train[,-1], lag.max=8, type="const")[["selection"]]
totalbymonth.Sing.var=VAR(as.ts(totalbymonth.Sing.train[,-1]),p=1,type="const")
forecast.totalbymonth.Sing.var=forecast(totalbymonth.Sing.var,test_size)
plot(forecast.totalbymonth.Sing.var,xlab="Month")
MTSplot(as.ts(totalbymonth.Sing[,-1]))
totalbymonth.UK.train <- totalbymonth.UK[train_ind, ]</pre>
VARselect(totalbymonth.UK.train[,-1], lag.max=8, type="const")[["selection"]]
totalbymonth.UK.var=VAR(as.ts(totalbymonth.UK.train[,-1]),p=1,type="const")
forecast.totalbymonth.UK.var=forecast(totalbymonth.UK.var,test_size)
plot(forecast.totalbymonth.UK.var,xlab="Month")
MTSplot(as.ts(totalbymonth.UK[,-1]))
totalbymonth.US.train <- totalbymonth.US[train_ind, ]</pre>
VARselect(totalbymonth.US.train[,-1], lag.max=8, type="const")[["selection"]]
totalbymonth.US.var=VAR(as.ts(totalbymonth.US.train[,-1]),p=1,type="const")
forecast.totalbymonth.US.var=forecast(totalbymonth.US.var,test_size)
plot(forecast.totalbymonth.US.var,xlab="Month")
MTSplot(as.ts(totalbymonth.US[,-1]))
AIC(n)
                 2 HQ(n)
                                   2 SC(n)
                                                     2 FPE(n)
                                                                        2
```



```
Warning message in log(sigma.det):
" NaNs"
Warning message in log(sigma.det):
" NaNs"
Warning message in log(sigma.det):
" NaNs"
AIC(n) 2 HQ(n) 2 SC(n) 2 FPE(n) 1
```


AIC(n) 2 HQ(n) 2 SC(n) 2 FPE(n) 2

Forecasts from VAR(1)

6e+06 response_US 4e+06 covid_US 2e+06 stringency_US economic_US unemployment_US health_US

data

[26]: forecast.totalbymonth.US.var\$forecast[6]\$unemployment_US forecast.totalbymonth.Sing.var\$forecast[6] \$unemployment_Sing forecast.totalbymonth.UK.var\$forecast[6]\$unemployment_UK

Time

	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
18		7.31768	6.480471	8.154889	6.037279	8.598081
19		14.86883	12.582801	17.154854	11.372652	18.365003
20		18.48227	15.561928	21.402610	14.015993	22.948545
21		22.33748	18.264843	26.410123	16.108917	28.566049
22		25.34794	19.676952	31.018930	16.674911	34.020970
23		28.88373	21.482005	36.285446	17.563771	40.203680
24		33.40140	24.311678	42.491122	19.499870	47.302930
25		39 50307	28 717310	50 288826	23 007674	55 998462

Time

```
Point Forecast
                           Lo 80
                                    Hi 80
                                             Lo 95
                                                      Hi 95
     18
              2.864618 2.685116 3.044119 2.590094 3.139142
              2.885192 2.619862 3.150521 2.479405 3.290978
     19
     20
              2.958403 2.613084 3.303721 2.430284 3.486521
              3.011324 2.610408 3.412240 2.398175 3.624472
     21
     22
              3.048003 2.613023 3.482983 2.382759 3.713248
     23
              3.059497 2.610676 3.508319 2.373084 3.745910
              3.057031 2.604817 3.509244 2.365430 3.748632
     24
     25
              3.047803 2.594991 3.500615 2.355287 3.740319
        Point Forecast
                           Lo 80
                                    Hi 80
                                             Lo 95
                                                      Hi 95
              5.100881 4.969302 5.232461 4.899647 5.302116
     18
              5.218235 5.036208 5.400261 4.939849 5.496620
     19
              5.272435 5.037203 5.507666 4.912680 5.632190
     20
     21
              5.207019 4.929609 5.484429 4.782757 5.631281
     22
              5.101732 4.803077 5.400387 4.644978 5.558486
     23
              5.018940 4.706230 5.331650 4.540691 5.497189
              4.991461 4.664294 5.318629 4.491102 5.491821
     24
              5.016459 4.677483 5.355435 4.498040 5.534878
     25
[27]: forecast.US.unemployment=data.frame(forecast.totalbymonth.US.
       →var$forecast[6]$unemployment_US)
      forecast.Sing.unemployment=data.frame(forecast.totalbymonth.Sing.
       →var$forecast[6]$unemployment_Sing)
      forecast.UK.unemployment=data.frame(forecast.totalbymonth.UK.
       →var$forecast[6]$unemployment UK)
      colnames(forecast.US.
       →unemployment) == c("unemploymeny US", "unemploymeny US low80", "unemploymeny US high80", "unempl
      colnames(forecast.Sing.
       →unemployment)=c("unemploymeny Sing", "unemploymeny Sing low80", "unemploymeny Sing high80", "u
      colnames(forecast.UK.
       →unemployment)=c("unemploymeny_UK", "unemploymeny_UK_low80", "unemploymeny_UK_high80", "unemploymeny_UK
     1. FALSE 2. FALSE 3. FALSE 4. FALSE 5. FALSE
[28]: Month=data.
       → frame (Month=c("2021-06", "2021-07", "2021-08", "2021-09", "2021-10", "2021-11", "2021-12", "2022-0
      forecast.unemployment.all=cbind(Month, forecast.Sing.unemployment, forecast.UK.
       →unemployment,forecast.US.unemployment)
      head(forecast.unemployment.all)
```

```
Month
                                        unemploymeny_Sing
                                                             unemploymeny_Sing_low80
                                                                                          unemploymeny_Sing
                               <chr>
                                        <dbl>
                                                             <dbl>
                                                                                          <dbl>
                              2021-06
                                       2.864618
                                                             2.685116
                                                                                          3.044119
                          18
                              2021-07
                                        2.885192
                                                             2.619862
                                                                                          3.150521
                          19
     A data.frame: 6 \times 16
                          20
                              2021-08
                                                             2.613084
                                       2.958403
                                                                                          3.303721
                          21
                              2021-09
                                       3.011324
                                                             2.610408
                                                                                          3.412240
                          22
                              2021-10
                                        3.048003
                                                             2.613023
                                                                                          3.482983
                          23
                              2021-11
                                        3.059497
                                                             2.610676
                                                                                          3.508319
[29]: forecast.unemployment=forecast.unemployment.all[,c(1,2,7,12)]
      colnames(forecast.unemployment)[4]="unemploymeny_US"
      write.csv(forecast.unemployment,file = "forecast_unemployment.csv",row.names =__
       \hookrightarrowF)
 []:
```