Soutien pour le cours de probabilités appliquées

Exercices

1 Session 4 (rappel)

Exercice 2. Considerons la fonction suivante:

$$f(x) = \begin{cases} x & si \ x \in [-2,2] \\ 1 & si \ x \in [2,3] \\ 0 & sinon. \end{cases}$$

Est-ce que c'est la fonction de densité d'une variable continue? Prouver.

Exercice 3. La loi d'une variable discrète X est définie comme

$$P(X = x) = \begin{cases} cx & si \ x = 2,4,6 \\ c(x-2) & si \ x = 8 \\ 0 & sinon, \end{cases}$$

ou c = const.

- 1. Trouver c
- 2. Trouver F(5) (F la fonction de la répartition)
- 3. Calculer $\mathbb{E}[X]$
- 4. Calculer $\mathbb{E}[X^2]$
- 5. Calculer Var[4-3X].

Exercice 4. On sait que si $X \sim \mathcal{N}(0,1)$, $\mathbb{P}(X < 1.645) \approx 0.95$. Considerons une variable Y = 3X + 2. Trouver α tel que $\mathbb{P}(Y < \alpha) \approx 0.95$.

Exercice 5 (Exam 2017). Soit U une variable aléatoire de loi uniforme sur (0,1). On considère la variable V égale à U avec la probabilité $\frac{2}{3}$ et à 1 avec la probabilité $\frac{1}{3}$. Déterminer puis répresenter graphiquement la fonction de répartition de la variable V. Calculer l'espérance de la variable V.

Exercice 6 (Exam 2015). Soit U une variable aléatoire de loi uniforme sur (0,1), $\alpha \geq 0$ et A un événement de probabilité x,0 < x < 1. On suppose que l'événement A est indépendant de la variable U.

On parie dur la réalisation de A. Si A se réalise, le gain est $X = \alpha U^2$. Sinon, le gain est X = -U (on perd U). On dit que le pari est favorable si l'espérance de gain est positive.

- 1. Déterminer la fonction de répartition de la loi de la variable X.
- 2. Déterminer la densité de la loi de X
- 3. Justifier que X peut s'écrire de la manière suivante

$$X = \alpha U^2 \mathbb{1}_A - U \mathbb{1}_{\bar{A}}$$

- 4. Montrer que X est intégrable
- 5. Calculer $\mathbb{E}[X]$ et $\mathbb{E}[X^2]$. Sous quelle condition portant sur α le pari est-il favorable?
- 6. Calculer Var[X]. Pour quelle valeur de x la variance est-elle maximale?
- 7. Calculer la covariance de X et de U. (**Rappel:** covariance de X et Y est définie comme $\mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y]))$.

2 Session 5 (distribution jointe)

Exercice 1. On considère un couple (X, Y) de variables aléatoires de densité jointe

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2}{2}} e^{-\frac{y^2}{2}} \left[1 + xy \mathbb{1}_{-1 \le x, y \le 1}. \right]$$

Determiner la loi de X et de Y.

Exercice 2. On a deux variables X_1 and X_2 indépendantes, qui suivent la loi exponentielle avec les parametres λ_1 et λ_2 . Trouver la distribution $Z = \frac{X_1}{X_2}$. Calculer $\mathbb{P}(X_1 < X_2)$.

Exercice 3 (Exam 2016). On considère une variable aléatoire de loi de densité

$$\forall y \in \mathbb{R}, \quad f(y) = y \mathbb{1}_{[0,1)}(y) + \frac{1}{2}e^{1-y}\mathbb{1}_{[1,\infty)}(y)$$

1. Soit F(t) la fonction de répartition de cette loi. Montrer, que nous avons

$$F(t) = \begin{cases} \frac{1}{2}t^2 & \forall t \in [0, 1] \\ 1 - \frac{1}{2}e^{1-t} & \forall t \ge 1 \end{cases}$$

2. Soit X une variable aléatoire de loi exponentielle de paramètre 1. Montrer que la fonction de répartition de la variable aléatoire $Y_1 = \exp(-X/2)$ vérifie

$$F_1(t) = t^2 \quad \forall t \in [0, 1]$$

3. Montrer qu'il existe $p \in (0,1)$ tel que

$$F(t) = pF_1(t) + (1-p)F_2(t),$$

où F_2 et la fonction de répartition de la variable aléatoire $Y_2 = 1 + X$.

4. Soit p la valeur trouvée précédemment. On considère la variable aléatoire Y définie par

$$Y = V\sqrt{U} + (1 - V)(1 + X),$$

où U est une variable aléatoire uniforme sur (0,1), V est une variable aléatoire de Bernoulli de paramètre p et U,V,X sont mutuellement indépendantes. Calculer l'espérance des variables aléatoires Y et Y^2 .

- 5. Calculer la fonction de répartition de la variable aléatoire Y.
- 6. On dispose d'un générateur aléatoire retourant uniquement des variables aléatoires indépendantes de loi exponentielle de paramètre 1. Ecrire un algorithme de simulation e la loi de densité f(y) (on notera rexp le générateur aléatoire de loi exponentielle).