Internship Report

1D-Mel Spectrogram

In my first approach, because audio files have different length I took the mean in time domain for Mel Spectrograms. Thus all audio files have the same shape, which is 128x1. Summary of 1D ConvNet Model is given below figure.

Model: "sequential"		
Layer (type)	Output Shape	Param #
	(None, 128, 256)	1536
<pre>max_pooling1d (MaxPooling1D)</pre>	(None, 64, 256)	0
batch_normalization (BatchN ormalization)	(None, 64, 256)	1024
conv1d_1 (Conv1D)	(None, 64, 256)	327936
max_pooling1d_1 (MaxPooling 1D)	(None, 32, 256)	0
batch_normalization_1 (BatchNormalization)	(None, 32, 256)	1024
conv1d_2 (Conv1D)	(None, 32, 128)	163968
<pre>max_pooling1d_2 (MaxPooling 1D)</pre>	(None, 16, 128)	0
batch_normalization_2 (BatchNormalization)	(None, 16, 128)	512
conv1d_3 (Conv1D)	(None, 16, 64)	41024
max_pooling1d_3 (MaxPooling 1D)	(None, 8, 64)	0
batch_normalization_3 (BatchNormalization)	(None, 8, 64)	256
flatten (Flatten)	(None, 512)	0
dense (Dense)	(None, 32)	16416
dropout (Dropout)	(None, 32)	0
dense_1 (Dense)	(None, 6)	198

Total params: 553,894
Trainable params: 552,486
Non-trainable params: 1,408

Also because there are not enough data for a good training process, I increased number of audio file by adding noise. This increasing number of data is known as data augmentation. After that point in this report, all results have obtained with augmented data. At below figures, you can see results for 1D ConvNet Model with Mel Spectograms.

	precision	recall	f1-score	support
sad	0.80	0.75	0.77	407
angry	0.55	0.58	0.56	357
disgust	0.77	0.37	0.50	358
fear	0.67	0.60	0.63	390
happy	0.45	0.82	0.58	339
neutral	0.60	0.53	0.56	382
accuracy			0.61	2233
macro avg	0.64	0.61	0.60	2233
weighted avg	0.64	0.61	0.61	2233

Obtained best accuracy is 64%. This value is not enough for a good classification. This is because taking mean causes loss of data. Therefore my second approach became to use 2D Mel Spectrograms.

2D-Mel Spectrogram

In this approach, I took actual Mel spectrograms of audio files, that's in two dimensions. Summary of my model and results for this model are given below figures.

Layer (type)	Output Shape	Param #
conv2d_17 (Conv2D)		
max_pooling2d_17 (MaxPoolin g2D)	(None, 64, 31, 256)	0
dropout_14 (Dropout)	(None, 64, 31, 256)	0
conv2d_18 (Conv2D)	(None, 64, 31, 128)	295040
max_pooling2d_18 (MaxPoolin g2D)	(None, 32, 15, 128)	0
dropout_15 (Dropout)	(None, 32, 15, 128)	0
conv2d_19 (Conv2D)	(None, 32, 15, 64)	73792
max_pooling2d_19 (MaxPoolin g2D)	(None, 16, 7, 64)	0
dropout_16 (Dropout)	(None, 16, 7, 64)	0
flatten_5 (Flatten)	(None, 7168)	0
dense_10 (Dense)	(None, 64)	458816
batch_normalization_13 (Bat chNormalization)	(None, 64)	256
dense_11 (Dense)	(None, 6)	390

	precision	recall	f1-score	support
sad	0.86	0.85	0.85	520
angry	0.82	0.78	0.80	516
disgust	0.85	0.77	0.81	502
fear	0.80	0.81	0.80	507
happy	0.77	0.86	0.81	430
neutral	0.80	0.83	0.82	502
accuracy macro avg weighted avg	0.82 0.82	0.82 0.82	0.82 0.82 0.82	2977 2977 2977

Obtained best accuracy is 82%.

2D-MFCC

I also trained same model by using Mel Frequency Cepstral Coefficients, in short MFCC. This also gave similar results with previous model. **Obtained best accuracy is 78%**

	precision	recall	f1-score	support
sad	0.85	0.87	0.86	520
angry	0.75	0.78	0.76	516
disgust	0.75	0.74	0.75	502
fear	0.81	0.74	0.77	507
happy	0.79	0.78	0.78	430
neutral	0.75	0.78	0.76	502
accuracy			0.78	2977
macro avg	0.78	0.78	0.78	2977
weighted avg	0.78	0.78	0.78	2977

2D-Mel Spectrogram&MFCC

After these results, I tried to improve my models. To reach this aim, I made classification by using Mel spectrograms and MFCCs together. I used previous model again in this approach. Only difference is at last dense layer: I trained model with Mel spectrograms and MFCCs separately however I did not made classifications. To made classification I took outputs of last layers from both Mel spectrograms and MFCCs and gave them into a new model, which consists of 2 dense layer, one of them for classification. As a result of this combined model, accuracy increased to 84%. You can also see block schema of this model at next page.

	precision	recall	f1-score	support
sad	0.86	0.93	0.89	520
angry	0.84	0.79	0.82	516
disgust	0.83	0.82	0.82	502
fear	0.85	0.78	0.81	507
happy	0.87	0.82	0.85	430
neutral	0.78	0.87	0.82	502
accuracy			0.84	2977
macro avg	0.84	0.83	0.83	2977
weighted avg				
METRUTED AVE	0.84	0.84	0.83	2977

Conv Block

