Pierre-Antoine Graham

HOMEWORK 2

Francois David and Dan Wohns Quantum Field Theory II

Contents

1	Sharp Cutoff Regularizaion	2
2	Acknowledgement	3

1 Sharp Cutoff Regularizaion

(a) We consider the renomalization of ϕ^4 theory leading to finite physical mass and coupling. At one loop, the renormalized Euclidean action $S_R[\phi] = S[\phi] + \hbar \Delta_1 S[\phi]$ for ϕ^4 theory has two contributions: an action $S[\phi]$ featuring the renormalized parameters (mass m_R and coupling g_R associated to an energy-momentum scale μ) and a counterm action $\hbar \Delta_1 S[\phi]$. Explicitly we have

$$S[\phi] = \int d^4x \left[\frac{1}{2} (\partial \phi)^2 + \frac{m_R^2}{2} \phi^2 + \frac{g_R}{4!} \phi^4 \right], \quad \Delta_1 S[\phi] = \int d^4x \left[\frac{B_1}{2} \phi^2 + \frac{C_1}{4!} \phi^4 \right]$$

where C_1 and B_1 are UV divergent quantities that are meant to cancel the divergence arising form the one loop corrections to mass and coupling. In what follows we calculate n-point functions using momentum space Feynman rules. We associate different sets of Feynman rules for the S and $\hbar \Delta_1 S[\phi]$. Respectively, their vertices contribute factors g_R (\circ) and $\hbar C_1$ (\otimes) and their propagators are $\partial^2 - m_R^2$ and $\partial^2 - (B_1\hbar)^2$. Since there is an aditionnal \hbar factor in the counter terms $\hbar \Delta_1 S[\phi]$, their tree level diagrams mix with the S diagrams at one loop order (and the $\hbar \Delta_1 S$ on loop diagram contribute at the truncated two loop order $O(\hbar^2)$). With this mixing in mind, we can approximated the momentum space irreducible 4-point function of momenta p_1, p_2, p_3, p_4 (collectively denoted p_i and all flowing inwards) with the following S diagrams

where I is the loop integral and the factor of 1/2 is the symmetry factor of the one loop diagrams. The integral I is UV divergent and we regulate it with a sharp cutoff $\pm \Lambda$ on the integration bound to get

$$I(p_1 + p_2, m_R) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{1}{k^2 + m_p^2} \frac{1}{(k + p_1 + p_2)^2 + m_p^2}.$$

The divergence of the integral is more explicit in 4-spherical coordinate with z' axis along $p_1 + p_2$ ($p = \sqrt{(p_1 + p_2)^2}$). In these coordinated, we have the angle measure $d\Omega$, θ the angle between k and p and $q = \sqrt{k^2}$ leading to the expression

$$I(p_1 + p_2, m_R, \Lambda) = \int d\Omega \int_0^{\Lambda} \frac{dq}{(2\pi)^4} \frac{q^3}{q^2 + m_R^2} \frac{1}{q^2 + p^2 + 2\cos(\theta)pq + m_R^2}$$

where we have introduced a sharp momentum cutoff Λ to regulate UV divergence.

- (b) Work in progress
- (c)
- (d)
- (e)
- (f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

2 Acknowledgement