CS 70 Discussion 1A

September 4, 2024

Direct Proof

Goal: Prove $A \implies B$

Approach: Do the following in order:

- 1. Assume *A* is true
- 2. Do some mathematical/logical steps...
- 3. State that therefore, B is true

Contraposition Proof

Goal: Prove $A \implies B$

Approach: Do the following:

- 1. State that you will prove $\neg B \implies \neg A$ instead (this is logically equivalent to proving $A \implies B$)
- 2. Assume $\neg B$ is true
- 3. Do some mathematical/logical steps. . .
- 4. State that therefore, $\neg A$ is true

Contradiction Proof

Goal: Prove $A \implies B$

Approach: Do the following:

- 1. Assume that A is true and B is false
- 2. Do some mathematical/logical manipulations. . .
- 3. Find out some statement C is true
- 4. Do some mathematical/logical manipulations. . .
- 5. Find out that C is now false
- 6. State that you can't have $C \land \neg C$, so we have a contradiction, and this means that $A \Longrightarrow B$

Note: Often, proofs that can be proven via contradiction can also be proven with contraposition, and vice versa

Cases Proof

Goal: Prove $A \implies B$

Approach: Do the following:

- 1. Split the scenarios where A is true into several cases (we will call these cases/propositions C_1, C_2, \ldots, C_n). For each case C_i :
 - 1.1 Assume that A and C_i are true and do a direct, contraposition, or contradiction proof for why $(A \wedge C_i) \Longrightarrow B$
- 2. Since every case C_i results in $(A \wedge C_i) \implies B$, we know that $A \implies B$.