Escola de Engenharia Elétrica, Mecânica e de Computação Universidade Federal de Goiás

Laboratório de Microprocessadores e Microcontroladores

Experimento 2: Interrupções Externas e Relés

Alunos:	Matrícula:	

Prof. Dr. José Wilson Lima Nerys

Goiânia, 1º semestre de 2019

SUMÁRIO

1 In	terrupções Externas e Relés	3
1.1	Interrupções Externas	3
1.2	Relés	5
2 Ta	arefas do Experimento 2	6
2.1	Tarefa 1 – Rotação de LEDs com interrupção	6
2.2	Tarefa 2 – Rotação de LEDs com prioridade alta da interrupção 1	7
2.3	Tarefa 3 – LEDs piscando com interrupção	8
2.4	Tarefa 4 – Acionamento de Lâmpada de 220 V através de Relé	8
2.5	Tarefa 5 – Acionamento Temporizado de Lâmpada de 220 V	9
2.6	Tarefa 6 – Revisão de Algumas Instruções	10

1 Interrupções Externas e Relés

1.1 Interrupções Externas

Interrupção é o processo pelo qual a execução de um programa é interrompida para a execução de um outro processamento que pode ser solicitado por uma das três fontes abaixo:

Interrupção por software (instrução)

Interrupção pedida por periférico externo

Interrupção pedida por periférico interno (temporizador/contador e porta serial)

O microcontrolador 8051 pode ser interrompido de cinco maneiras diferentes:

- ➤ Pela interrupção externa INTO\ pino 12 (P3.2)
- ➤ Pelo timer/counter (temporizador/contador) interno TIMER0
- ➤ Pela interrupção externa INT1\ pino 13 (P3.3)
- Pelo timer/counter (temporizador/contador) interno TIMER1
- Pelo canal de comunicação serial (Pinos 10 e 11 = P3.0 e P3.1)

O pedido de interrupção pode ou não ser atendido, de acordo com a condição de certos registradores. No 8051 os registradores que comandam a interrupção são

- Registrador de Habilitação: **IE** (*Interrupt Enable*) = Reg. A8h
- Registrador de Prioridades: **IP** (*Interrupt Priority*) = Reg. B8h
- Registrador de Controlador: **TCON** (*Timer Control*) = Reg. 88h

Registrador IE:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
(Reg. A8h)	EA	X	X	ES	ET1	EX1	ET0	EX0

- **EA** (*Enable All*) Quando está zerado (EA = 0), todos as interrupções estão desabilitadas (mascaradas), independentemente de seus bits individuais de controle. Quanto está setada (EA = 1), cada uma das interrupções pode ser habilitada ou desabilitada fazendo seus bits de controle 1 ou 0.
- **EX0** (Enable External Interrupt 0) Quando está zerado (EX0 = 0) a interrupção externa, cujo pedido vem através do pino INT0\ está desabilitada. Quando está setado (EX0 = 1), a interrupção INT0\ fica habilitada.
- **ET0** (*Enable Timer 0*) Quando ET0 = 0, a interrupção pedida pelo temporizador/contador 0 fica desabilitada. Quando ET0 = 1, a interrupção vinda do temporizador/contador 0 fica habilitada.
- **EX1** (Enable External Interrupt 1) Quando está zerado (EX1 = 0) a interrupção externa, cujo pedido vem através do pino INT1\ está desabilitada. Quando está setado (EX1 = 1), a interrupção INT1\ fica habilitada.
- **ET1** (*Enable Timer 1*) Quando ET1 = 0, a interrupção pedida pelo temporizador/contador 1 fica desabilitada. Quando ET1 = 1, a interrupção vinda do temporizador/contador 1 fica habilitada.
- **ES** (*Enable Serial*) Quando ES = 0, a interrupção pedida pela porta serial fica dasabilitada. Quando ES = 1 essa interrupção fica habilitada.

Registrador IP :	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
(Reg. B8h)	X	X	X	PS	PT1	PX1	PT0	PX0

- **PX0** (*Priority of External Interrupt 0*) Quando PX0 = 1 a interrupção externa INT0\ recebe prioridade alta.
- **PT0** (*Priority of Timer/Counter Interrupt 0*) Quando PT0 = 1 a interrupção pedida pelo temporizador/contador 0 recebe prioridade alta.
- **PX1** (*Priority of External Interrupt 1*) Quando PX1 = 1 a interrupção externa INT1\ recebe prioridade alta.
- **PT1** (*Priority of Timer/Counter Interrupt 1*) Quando PT1 = 1 a interrupção pedida pelo temporizador/contador 1 recebe prioridade alta.
- **PS** (*Priority of Serial Port Interrupt*) Quando PS = 1 a interrupção pedida através da porta serial recebe prioridade alta.

Quando PX0, PT0, PX1, PT1 e PS são zero, elas são de prioridade baixa. Caso uma interrupção de prioridade 1 seja solicitada durante a execução de uma de prioridade 0, o processamento é interrompido para o atendimento da interrupção de prioridade maior.

No caso de todas as interrupções terem a mesma prioridade (0 ou 1), a ordem de atendimento das interrupções é:

- > Temporizador/contador 0
- Interrupção externa 1
- > Temporizador/contador 1

As interrupções externas podem ser ajustadas para serem detectadas por nível 0 ou pela transição do nível 1 para o nível 0. O ajuste é feito através do registrador TCON, dado abaixo.

 Registrador TCON:

 (Reg. 88h)
 Controle do Temporizador
 Bit 3
 Bit 2
 Bit 1
 Bit 0

 TF1
 TR1
 TF0
 TR0
 IE1
 IT1
 IE0
 IT0

- IT0 (Interrupt 0 Type) Quando IT0 = 1 a interrupção externa 0 será reconhecida pela transição de 1 para 0 no pino INTO\. Quando IT0 = 0, a interrupção é reconhecida quando o sinal no pino INTO\ está em nível baixo (0).
- **IE0** (*Interrupt 0 Edge Flag*) É setado pelo hardware quando uma interrupção externa através de INTO\ é detectada. É zerada quando da execução da instrução RETI (retorno da subrotina de atendimento).
- IT1 (*Interrupt 1 Type*) Quando IT1 = 1 a interrupção externa 1 será reconhecida pela transição de 1 para 0 no pino INT1\. Quando IT1 = 0, a interrupção é reconhecida quando o sinal no pino INT1\ está em nível baixo (0).
- **IE1** (*Interrupt 1 Edge Flag*) É setado pelo hardware quando uma interrupção externa através de INT1\ é detectada. É zerada quando da execução da instrução RETI (retorno da subrotina de atendimento).

Endereços de desvio das interrupções

Quando ocorre uma das cinco interrupções do 8051 o processamento é desviado para os endereços mostrados na Tabela 1. Como há pouco espaço em bytes nesses endereços, deve-se usar uma instrução de desvio para outro endereço, onde seja possível escrever toda a rotina de atendimento da interrupção, caso a rotina de atendimento seja maior que 8 bytes.

rabeia 1. Endereços das interrupções				
Interrupção Solicitada	Endereço de desvio			
Reset	0000h			
INT0\	0003h			
Timer/counter 0	000Bh			
INT1\	0013h			
Timer/counter 1	001Bh			
Canal Serial	0023h			

Tabela 1: Endereços das interrupções

1.2 Relés

A Fig. 1 mostra os circuitos de acionamento de lâmpadas que fazem parte do módulo do Relé do Kit Didático. Em um dos circuitos um transistor BC548 é usado para o acionamento do relé (com bobina de 12 V), através do qual uma lâmpada de 12 V é acionada. Outro circuito é utilizado para acionamento de uma lâmpada de 220 V, com a utilização de um relé com bobina de 5 V e um mosfet BS170D.

Fig. 1 - Circuito de acionamento das lâmpadas de 12 V e 220 V

A Fig. 2 mostra o circuito do sensor de presença, que é composto por um LED infravermelho e um fototransistor. A montagem do LED e do fototransistor é tal que, na presença de um obstáculo, a luz do LED reflete no obstáculo e incide na base do fototransistor, levando o nível de saída (P3.3) de alto (5 V) para baixo (0 V). Assim, a interrupção externa 1 (Pino P3.3) pode ser usada para o acionamento de uma das lâmpadas, através do sensor de presença.

Fig. 2 - Circuito do sensor de presença

2 Tarefas do Experimento 2

Os programas das tarefas a seguir devem ser **digitados e compilados no MCU 8051** e **executados** no simulador do kit didático e no kit didático do microcontrolador 8051.

2.1 Tarefa 1 – Rotação de LEDs com interrupção

A Tabela 2 apresenta um programa onde a interrupção externa 0 é usada para rotacionar para a esquerda os LEDs da porta P1 e a interrupção externa 1 é usada para rotacionar os LEDs para a direita.

Tabela 2: Rotação de LEDs usando as interrupções externas

Rótulo	Mnemônico	Comentário sobre o Efeito da Operação
	ORG 00H	
	LJMP INICIO	
	ORG 03H	
	LJMP ESQUERDA	; Desvia para a subrotina de atendimento da interrupção INTO
	ORG 13H	
	LJMP DIREITA	; Desvia para a subrotina de atendimento da interrupção INT1
	ORG 30H	
INICIO:	MOV SP, #2FH	
	MOV IE, #85H	; Habilita interrupções externas 0 e 1 (EA = 1, EX0 = 1 e EX1 = 1)
	MOV TCON, #04H	; INT0 por nível (IT0 = 0) e INT1 por transição de 1 para 0 (IT1 = 1).
	MOV A, #01H	; Valor inicial do acumulador
	SJMP \$; Aguarda interrupção em um laço infinito
ESQUERDA:	MOV P1,A	; Transfere o conteúdo do acumulador para a porta de saída P1
	RL A	; Rotaciona para a esquerda o conteúdo de A
	LCALL ATRASO	; Chama subrotina de atraso de tempo
	RETI	; retorna de subrotina de interrupção
DIREITA:	MOV R7,#16	; R7 recebe o valor decimal 16
V2:	RR A	; Rotaciona para a direita o conteúdo do acumulador
	MOV P1,A	; Transfere o conteúdo do acumulador para a porta P1
	LCALL ATRASO	; Chama subrotina de atraso de tempo
	DJNZ R7,V2	; Decrementa o conteúdo de R7; enquanto não for zero, volta para V2
	CLR IE1	; Elimina interrupção externa 1 pendente
	RETI	; Retorna de subrotina de interrupção
ATRASO:	CLR EA	; Limpa o bit EA do registrador IE. Desabilita todas as interrupções
	MOV R0,#3	; Faz R0 = 3 decimal
V3:	MOV R1,#200	; Faz R1 = 200 decimal
V4:	MOV R2,#250	; Faz R2 = 250 decimal
	DJNZ R2, \$; Decrementa R2 até zerar (desvia pra ele mesmo)
	DJNZ R1, V4	; Decrementa R1. Se R1 não for zero, desvia para V4
	DJNZ R0,V3	; Decrementa R0. Se R0 não for zero, desvia para V3

	SE	ETB EA	; Seta o bit EA do registrador IE. Habilita novamente as interrupções
	RE	ET	; Retorna da subrotina de atraso de tempo
Ī	EN	ND	

Compile o programa da Tabela 2. Execute o programa usando o **simulador do Kit Didático** e observe o funcionamento do programa quando as interrupções zero e 1 são solicitadas. Verifique o funcionamento do programa também no **Kit Real**.

Questão 1: Qual é a diferença no funcionamento para a ESQUERDA e para a DIREITA?

2.2 Tarefa 2 – Rotação de LEDs com prioridade alta da interrupção 1

No programa original da Tabela 2 acrescente a instrução **MOV IP,#04H** após a instrução **MOV TCON,#04H**. Compile o programa e o **execute no Simulador do Kit Didático** e no **Kit Real**. No registrador especial **IP**, mostrado a seguir, verifica-se que $\underline{IP} = 04\underline{H}$ significa prioridade alta para a interrupção externa 1 (PX1 = 1).

IP	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В8Н	X	X	X	PS	PT1	PX1	PT0	PX0
IP=04H	0	0	0	0	0	1	0	0

Avalie a seguinte condição de funcionamento:

Mantenha a chave da interrupção 0 (P3.2) pressionada e, durante a rotação dos LEDs para a esquerda, acione uma vez a chave da interrupção 1 (P3.3).

Questão 2: O que ocorre? Explique.

2.3 Tarefa 3 – LEDs piscando com interrupção

Escreva, na Tabela 3, as subrotinas CASO1 e CASO2, que devem substituir as subrotinas ESQUERDA e DIREITA do programa da Tabela 2. Substitua a instrução MOV TCON,#04H por MOV TCON,#05H. As novas subrotinas devem atender a duas situações:

Situação 1 (CASO 1): quando a interrupção INTO for acionada, os LEDs devem piscam 10 vezes (10 vezes ligados e 10 vezes desligados).

Situação 2 (CASO 2): quando a interrupção INT1 for acionada, os LEDs ímpares e os pares devem piscar alternadamente 10 vezes.

Tabela 3: Adaptação do programa da Tabela 2

	es. Haaptaquo do programa da racen
Rótulo	Mnemônico
CASO1:	
	RETI

Rótulo	Mnemônico
CASO2:	
	RETI

2.4 Tarefa 4 – Acionamento de Lâmpada de 220 V através de Relé

A Tabela 4 apresenta um programa para acionamento de uma lâmpada de 220 V através da interrupção externa 0.

Tabela 4: Acionamento de Lâmpada de 220 V através da interrupção externa 0

Rótulo	Mnemônico			
	LAMP EQU P3.4			
	ORG 00H			
	LJMP INICIO			
	ORG 03H			
	CPL LAMP			
	CLR IE0			
	RETI			

Rótulo	Mnemônico
	ORG 30H
INICIO:	MOV SP, #2FH
	MOV IE, #81H
	MOV TCON, #01H
	SJMP \$
	END

Questão 3: Como funciona o programa da Tabela 4?

2.5 Tarefa 5 – Acionamento Temporizado de Lâmpada de 220 V

A Tabela 5 apresenta um programa para acionamento temporizado de uma lâmpada de 220 V, através de um sensor de presença, conectado ao pino da interrupção externa 1 (Pino P3.3). Na presença de um obstáculo a lâmpada acende e, após 10 s (aproximadamente), ela apaga. A lâmpada está conectada ao pino P3.4. Verifique o funcionamento no **Kit Didático Real**.

Tabela 5: Acionamento temporizado de uma lâmpada de 220 V através da interrupção externa 1

Rótulo	Mnemônico
	LAMP EQU P3.4
	ORG 00H
	LJMP INICIO
	ORG 13H
	LJMP V1
	ORG 30H
INICIO:	MOV SP, #2FH
	MOV TMOD,#01H
	MOV IE, #84H
	MOV TCON, #04H
	CLR LAMP
	SJMP \$

Rótulo	Mnemônico
V1:	SETB LAMP
	MOV R7,#10
V2:	LCALL ATRASO1s
	DJNZ R7,V2
	CLR LAMP
	CLR IE1
	RETI
ATRASO1s:	MOV R0,#20
V3:	MOV TH0,#HIGH(19455)
	MOV TL0,#LOW(19455)
	SETB TR0
	JNB TF0,\$
	CLR TF0
	DJNZ R0,V3
	CLR TR0
	RET
	END

Questão 4: Como funciona o programa da Tabela 5?

2.6 Tarefa 6 – Revisão de Algumas Instruções

Instrução	Função
MOV IE, #81H	
MOV IE, #85H	
MOV TCON, #04H	
MOV TCON, #05H	
MOV IP,#04H	
SJMP \$	
RL A	
RR A	
CLR EA	
SETB EA	
SETB LAMP	
CLR LAMP	
CLR IE0	
CLR IE1	
DJNZ R0,V3	
JNB TF0,\$	