Dr. A. Kaltenbach SoSe 2024

Aufgabe 1

Seien X, Y Banachräume und $j: X \to Y$ eine Einbettung.

Zeigen Sie, dass falls X reflexiv ist, für eine beschränkte Folge $(x_n)_{n\in\mathbb{N}}\subseteq X$ und ein Element $x\in X$ aus

$$jx_n \rightharpoonup jx$$
 in Y $(n \to \infty)$,

folgt, dass

$$x_n \rightharpoonup x$$
 in X $(n \to \infty)$.

Aufgabe 2 ((Linear-)induzierte Einbettung/Isometrie/Isomorphismus)

Sei $p \in [1, \infty]$ und $A: X \to Y$ ein linearer und stetiger Operator.

Zeigen Sie, dass für den (linear-)induzierten Operator $\mathcal{A}: L^p(I;X) \to L^p(I;Y)$, für alle $u \in L^p(I;X)$ definiert durch

$$(\mathcal{A}u)(t) := A(u(t))$$
 in Y für f.a. $t \in I$,

die folgenden Aussagen gelten:

- (i) Falls $A: X \to Y$ eine Einbettung ist, dann ist auch $A: L^p(I;X) \to L^p(I;Y)$ eine Einbettung.
- (ii) Falls $A: X \to Y$ eine Isometrie ist, dann ist auch $\mathcal{A}: L^p(I;X) \to L^p(I;Y)$ eine Isometrie.
- (iii) Falls $A: X \to Y$ ein Isomorphismus ist, dann ist auch $\mathcal{A}: L^p(I; X) \to L^p(I; Y)$ ein Isomorphismus.

Aufgabe 3 (L^{∞} -Stabilität des Faltungsglättungsoperators)

Sei
$$I := (0, T), 0 < T < \infty$$
, und $p \in [1, \infty]$.

Zeigen Sie, dass der Faltungsglättungsoperator $\mathcal{S}_I^h: L^p(I;X) \to C^\infty(\mathbb{R};X)$ (cf. Satz 2.15) L^∞ -stabil mit Konstante 1 ist, d.h. für alle $u \in L^\infty(I;X)$ gilt, dass

$$\|\mathcal{S}_I^h u\|_{L^{\infty}(\mathbb{R};X)} \le \|u\|_{L^{\infty}(I;X)}$$
 für alle $h > 0$.