● 實驗數據

- ✓ 彈性碰撞(橡皮筋)
- \rightarrow m1=m2

質量(kg)		
車 1 ml 0.36714		
車 2 m2	0. 36596	

彈性碰撞 橡皮筋			
m1=m2	撞前速度 V(m/s)	撞後速度 √(m/s)	
車 2	3. 2181	0	
車1	0	3. 0843	
Cr	0. 95842		

	前	後	損耗%
動量 P(kg*m/s)	1. 1777	1. 1324	3.8
動能 E(J)	1.8950	1. 7463	7.8

1. 作圖

2. 分析

$$Cr = \left| \frac{V - 0}{0 - V'} \right| = \left| \frac{3.0843}{3.2181} \right| = 0.95842$$

撞前動量 P = m2 * V = 0.36596 * 3.2181 = 1.177

撞後動量 P' = m1 * V' = 0.36714 * 3.0843 = 1.1324

動量損耗 = $\frac{P-P'}{P}$ * 100% = 3.8%

撞前動能
$$Ek = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.36596 * 3.2181^2 = 1.8950$$

撞後動能 Ek' =
$$\frac{1}{2} * m1 * V'^2 = \frac{1}{2} * 0.36714 * 3.0843^2 = 1.7463$$

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 7.8\%$$

➤ m1<m2

質量(kg)		
車 1 m1 0.36714		
車 2 m2	0. 42296	

彈性碰撞 橡皮筋			
m1 <m2< td=""><td>撞前速度 V(m/s)</td><td>撞後速度 √ (m/s)</td></m2<>	撞前速度 V(m/s)	撞後速度 √ (m/s)	
車 2	4. 9883	0	
車1	0 4.78		
Cr	0. 95824		

	前	後	損耗%
動量 P(kg*m/s)	2. 1099	1.75	17. 1
動能 E(J)	5. 2623	4.19	20.4

$$Cr = \left| \frac{V - 0}{0 - V'} \right| = \left| \frac{4.78}{4.9883} \right| = 0.95842$$

動量損耗 =
$$\frac{P-P'}{P}$$
 * 100% = 17.1%

撞前動能
$$\text{Ek} = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.42296 * 4.9883^2 = 5.2623$$

撞後動能 Ek' =
$$\frac{1}{2} * m1 * V'^2 = \frac{1}{2} * 0.36714 * 4.78^2 = 4.19$$

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 20.4\%$$

➤ m1>m2

質量(kg)		
車 1 m1 0.39236		
車 2 m2	0. 36596	

彈性碰撞 橡皮筋			
m1>m2	撞前速度 V(m/s)	撞後速度 V'(m/s)	
車 2	6. 9441	0	
車1	0	6. 437	
Cr		0. 9270	

	前	後	損耗%
動量 P(kg*m/s)	2. 5413	2. 53	0.6
動能 E(J)	8. 8234	8. 13	7. 9

$$Cr = \left| \frac{V - 0}{0 - V'} \right| = \left| \frac{6.437}{6.9441} \right| = 0.9270$$

撞前動量 P = m2 * V = 0.36596 * 6.9441 = 2.5413

撞後動量 P' = m1 * V' = 0.39236 * 6.437 = 2.53

動量損耗 =
$$\frac{P-P'}{P}$$
 * 100% = 0.6%

撞前動能 Ek =
$$\frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.36596 * 6.944^2 = 8.8234$$

撞後動能 Ek' =
$$\frac{1}{2} * m1 * V'^2 = \frac{1}{2} * 0.39236 * 6.437^2 = 8.13$$

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 7.9\%$$

✓ 彈性碰撞(磁鐵)

➤ m1=m2

質量(kg)		
車 1 m1	0.36714	
車 2 m2	0.36596	

彈性碰撞 磁鐵			
m1=m2	撞前速度 V(m/s)	撞後速度 V'(m/s)	
車 2	3. 3548	0	
車1	0	3. 1563	
Cr		0. 9408	

	前	後	損耗%
動量 P(kg*m/s)	1. 2277	1. 1570	5.8
動能 E(J)	2. 0594	1.8230	11.5

2. 分析

$$Cr = \left| \frac{V - 0}{0 - V'} \right| = \left| \frac{3.1563}{3.3548} \right| = 0.9408$$

撞前動量 P = m2 * V = 0.36596 * 3.3548 = 1.2277

撞後動量 P' = m1 * V' = 0.36714 * 3.1563 = 1.1570

動量損耗 =
$$\frac{P-P'}{P}$$
 * 100% = 5.8%

撞前動能 $\text{Ek} = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.36596 * 3.3548^2 = 2.0594$

撞後動能 Ek' = $\frac{1}{2} * m1 * V'^2 = \frac{1}{2} * 0.36714 * 3.1563^2 = 1.8230$

動能損耗 = $\frac{EK - EK'}{EK} * 100\% = 11.5\%$

> m1<m2

質量(kg)		
車 1 m1	0.36714	
車 2 m2	0. 42296	

彈性碰撞 磁鐵			
m1 <m2< th=""><th>撞前速度 V(m/s)</th><th>撞後速度 V'(m/s)</th></m2<>	撞前速度 V(m/s)	撞後速度 V'(m/s)	
車 2	5. 3209	0	
車1	0	4. 9442	
Cr		0. 9292	

	前	後	損耗%
動量 P(kg*m/s)	2. 2505	1.8152	19.3
動能 E(J)	5. 9874	4. 4874	25. 1

$$\operatorname{Cr} = \left| \frac{V - 0}{0 - V'} \right| = \left| \frac{4.9442}{5.3209} \right| = 0.9292$$

撞前動量 P = m2 * V = 0.42296 * 5.3209 = 2.2505

撞後動量 P' = m1 * V' = 0.36714 * 4.9442 = 1.18152

動量損耗 =
$$\frac{P-P'}{P}$$
 * 100% = 19.3%

撞前動能 Ek =
$$\frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.4226 * 5.3209^2 = 5.9874$$

撞後動能 Ek' =
$$\frac{1}{2} * m1 * V'^2 = \frac{1}{2} * 0.36714 * 4.9442^2 = 4.4874$$

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 25.1\%$$

➤ m1>m2

質量(kg)		
車 1 m1 0.39236		
車 2 m2	0. 36596	

彈性碰撞 磁鐵			
m1>m2	撞前速度 V(m/s)	撞後速度 V'(m/s)	
車 2	3. 488	0	
車1	0	3. 2211	
Cr		0. 9235	

	前	後	損耗%
動量 P(kg*m/s)	1. 2765	1. 2638	1.0
動能 E(J)	2. 2262	2. 0355	8.6

$$Cr = \left| \frac{V - 0}{0 - V'} \right| = \left| \frac{3.2211}{3.488} \right| = 0.9235$$

動量損耗 =
$$\frac{P-P'}{P}$$
 * 100% = 1.0%

撞前動能
$$Ek = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.36596 * 3.488^2 = 2.2262$$

撞後動能 Ek' =
$$\frac{1}{2}$$
* $m1$ * V'^2 = $\frac{1}{2}$ * 0.39236 * 3.2211^2 = 2.0355

動能損耗 =
$$\frac{EK-EK'}{EK}$$
 * 100% = 8.6%

✓ 完全非彈性碰撞(黏土)

➤ m1=m2

質量(kg)		
車 1 ml 0.36714		
車 2 m2	0. 36596	

完全非彈性碰撞 黏土		
m1=m2		
車 2	2. 9686	1. 1517
車1	0	1. 1517

	前	後	損耗%
動量 P(kg*m/s)	1. 0864	0.8443	22. 3
動能 E(J)	1. 6125	0. 4862	69. 8

2. 分析

撞前動量
$$P = m2 * V = 0.36596 * 2.9686 = 1.0864$$

 撞後動量 $P' = (m1+m2) * V' = (0.36714+0.36596) * 1.1517 = 0.8443$
 動量損耗 $= \frac{P-P'}{P} * 100\% = 22.3\%$

撞前動能
$$Ek = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.36596 * 2.9386^2 = 1.6125$$

撞後動能 Ek' =
$$\frac{1}{2}$$
* $(m1 + m2)$ * V'^2 = $\frac{1}{2}$ * $(0.36714 + 0.36595)$ * 1.1517^2 = 0.4862

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 69.8\%$$

\rightarrow m1<m2

質量(kg)	
車 1 m1	0. 36714
車 2 m2	0. 42296

完全非彈性碰撞 黏土		
m1 <m2< th=""></m2<>		
車 2	1. 2691	0. 5063
車1	0	0. 5063

	前	後	損耗%
動量 P(kg*m/s)	0. 5368	0. 4000	25. 5
動能 E(J)	0. 3406	0. 1013	70. 3

撞前動量
$$P = m2 * V = 0.42296 * 1.2691 = 0.5386$$

 撞後動量 $P' = (m1+m2) * V' = (0.36714+0.42296) * 0.5063 = 0.4000$
 動量損耗 $= \frac{P-P'}{P} * 100\% = 25.5\%$

撞前動能
$$Ek = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.42296 * 1.2691^2 = 0.3406$$

撞後動能 Ek' =
$$\frac{1}{2}$$
* $(m1 + m2)$ * V'^2 = $\frac{1}{2}$ * $(0.36714 + 0.42296)$ * 0.5063^2 = 0.1013

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 70.3\%$$

➤ m1>m2

質量(kg)	
車 1 m1	0. 39236
車 2 m2	0. 36596

完全非彈性碰撞 黏土			
m1>m2	撞前速度 V(m/s)	撞後速度 V'(m/s)	
車 2	3. 6228	1. 5602	
車1	0	1. 5602	

	前	後	損耗%
動量 P(kg*m/s)	1. 3258	1. 1831	10.8
動能 E(J)	2. 4016	0. 9230	61.6

2. 分析

撞前動量
$$P = m2 * V = 0.36596 * 3.6228 = 1.3258$$

撞後動量 $P' = (m1+m2) * V' = (0.39236+0.36596) * 1.5602 = 1.1831$
動量損耗 = $\frac{P-P'}{P} * 100\% = 10.8\%$

撞前動能
$$\text{Ek} = \frac{1}{2} * m2 * V^2 = \frac{1}{2} * 0.36596 * 3.6228^2 = 2.4016$$

撞後動能 Ek' =
$$\frac{1}{2}$$
* $(m1 + m2)$ * V'^2 = $\frac{1}{2}$ * $(0.39236 + 0.36595)$ * 1.1831^2 = 0.9230

動能損耗 =
$$\frac{EK - EK'}{EK} * 100\% = 61.6\%$$

● 結果與討論

誤差來源:

設備系統誤差: 軌道非光滑具有摩擦力且具有摩擦力、電子秤精確度

人為系統誤差: 沒抓住碰撞後的滑車會增加一些震盪的速度數值

環境系統誤差: 非真空,仍會有風阻影響滑車、同學在旁走動遭程的空氣擾動

影響實驗數據

● 問題與討論

1. 在碰撞過程中,空氣層的黏滯摩擦對動量守恆的結論有何影響?

Ans: 因有摩擦力作負功,因此動能減少,換言之總動量亦減少

2. 以橡皮繩或磁鐵做彈性碰撞, 兩者的結果是否相同?那一種較準確?請說明原因。

Ans: 橡皮筋,因為從數據來看橡皮筋動能損失較少。其原因為磁鐵同時具吸引力與排斥力,若實驗時兩磁鐵碰撞時同極沒有完全對準,便會產生部分的異性相吸,抵銷蓋有的排斥力,造成動量、動能損失。

3. 假定我們可以放置少許火藥在滑車緩衝彈簧前檔上,並且使它在碰撞的瞬間 爆炸而將兩個滑車推離開,那麼動量仍能守恆嗎?動能是否守恆?請說明原 因。

Ans: 動量會守恆,因為爆炸屬於內力。動能不會守恆,因為此非完全彈性碰撞,爆炸額外造成的力造成額外加速度,使得總動能增加。

4. 時間間隔之準確性對「牛頓運動定律」的實驗是非常重要的,本實驗卻未強調要先作時間校正,為什麼?

Ans 探討動量、動能變化百分比時只需末速、初速,在計算過程中便會把時間因次消除。

● 心得與建議

覺得最近和普物實驗室相剋, arduino 數值出不來, 瘋狂 datal overflow, 花了一個小時在處理這個東西, 最後直接去併別組。建議學校施捨經費更新儀器窓