Berechnungsbeschreibung: Windlasten auf Freistehende Dächer

Die Berechnung erfolgt nach ÖNORM EN 1991-1-4 Allgemeine Einwirkungen - Windlasten und dem Nationalem Anhang ÖNORM B 1991-1-4 Allgemeine Einwirkungen - Windlasten.

Allgemein

Freistehende Dächer sind Dächer, die nicht an durchgehende Wände anschließen. Die entsprechende Windbelastung hängt vom Versperrungsgrad φ und von der Art des Daches ab. Der Strukturbeiwert $c_s c_d$ wird programmintern mit 1 angesetzt. Gemäß ÖNORM EN 1991-1-4 Abschnitt 7.3 (7) sind auch Reibungskräfte zu berücksichtigen.

Spitzengeschwindigkeitsdruck

Geländekategorie	$\frac{q_p}{q_{b,0}}$	$egin{array}{c} z_{min} \ [m] \end{array}$
II	$2, 1 \cdot \left(\frac{z_e}{10}\right)^{0,24}$	5
III	$1,75 \cdot \left(\frac{z_e}{10}\right)^{0,29}$	10
IV	$1, 2 \cdot \left(\frac{z_e}{10}\right)^{0.38}$	15

Tabelle 1 - Geländekategorien und Geländeparameter ÖNORM B1991-1-4

Die Bezugshöhe z_e entspricht der Höhe h gemäß Bild 7.16 bzw. 7.17 ÖNORM EN 1991-1-4 Abschnitt 7.3. Der Basisgeschwindigkeitsdruck $q_{b,0}$ wird aus der ÖNORM B 1991-1-4 Tabelle A.1 entnommen. Bei sehr hoch liegenden Ortschaften kann, aufgrund der Reduktion der Luftdichte, der Basisgeschwindigkeitsdruck mittels Abminderungsfaktor f_s abgemindert werden.

Versperrungsgrad φ

Gemäß ÖNORM EN 1991-1-4 Abschnitt 7.3 Bild 7.15 ist der Versperrungsgrad das Verhältnis der versperrten Fläche zur Gesamtquerschnittsfläche unterhalb des Daches. Der Versperrungsgrad $\varphi=1$ beschreibt ein völlig versperrtes freistehendes Dach (dies ist kein geschlossenes Gebäude). Wogegen $\varphi=0$ einem völlig freistehenden Dach ohne Versperrung entspricht.

Nettodruckbeiwerte $c_{p,net}$

Gemäß ÖNORM EN 1991-1-4 Abschnitt 7.3 beschreibt der resultierende Nettodruckbeiwert $c_{p,net}$ den maximalen lokalen Druck für alle Anströmrichtungen. Gemäß Tab.7.6 bzw. Tab.7.7 ÖNORM EN 1991-1-4 Abschnitt 7.3 sind die Dachflächen in Bereiche zu unterteilen. Abhängig von der Dachform, Neigungswinkel, Versperrungsgrad und Flächeneinteilung können die entsprechenden Druckbeiwerte $c_{p,net}$ ermittelt werden.

Kraftbeiwerte c_f

Gemäß ÖNORM EN 1991-1-4 Abschnitt 7.3 kann mithilfe der Kraftbeiwerte c_f die resultierende Windkraft bestimmt werden. Der Kraftbeiwert c_f hängt von der Dachform, dem Neigungswinkel des Daches und dem Versperrungsgrad φ ab. Die entsprechenden Werte können der Tab. 7.6 und Tab.7.7 ÖNORM EN 1991-1-4 Abschnitt 7.3 entnommen werden.

Resultierende Windkraft

Die Lastanordnung der resultierenden Windkraft kann gemäß Bild 7.16 bzw. 7.17 ÖNORM EN 1991-1-4 Abschnitt 7.3 ermittelt werden.

$$F_w = c_f \cdot c_s c_d \cdot q_p(z_e) \cdot A_{ref} \tag{1}$$

Resultierender Winddruck

Die resultierenden Winddrücke werden gemäß Tab.7.6 bzw. Tab.7.7 ÖNORM EN 1991-1-4 Abschnitt 7.3 den unterteilten Bereichen entsprechend angesetzt.

$$w_i = c_{p,net} \cdot q_p(z_e) \tag{2}$$

Symbole

 z_e ... Höhe vom Grund bis zum Flächenschwerpunkt der Anzeigetafel

 $q_{b,0}$... Basisgeschwindigkeitsdruck (Referenzwert des Geschwindigkeitsdruckes 10-min-Mittel in 10 m Höhe, Geländekategorie II)

 q_p ... Spitzengeschwindigkeitsdruck

 $c_s c_d$... Strukturbeiwert (empfohlen = 1)

 φ ... Versperrungsgrad

 $c_{p,net}$... Nettodruckbeiwert

 c_f ... Kraftbeiwert

 z_{min} ... minimale Höhe, bis zu der das jeweilige Profil gilt; darunter ist der Wert für z_{min} laut

Tabelle 1 zu nehmen

 f_s ... Abminderungsfaktor für Basisgeschwindigkeitsdrücke nach ÖNORM B 1991-1-4

Abschnitt 6.3.2.1

 A_{ref} ... Referenzfläche

 w_e ... Resultierender Winddruck

 F_w ... Resultierende Windkraft