U.B.M Annaba - Département de mathématiques-L3 Introduction aux Processus Aléatoires -TD3 Espérance conditionnelle (suite) - Vecteurs aléatoires

Par A. Redjil - Avril 2020

Rappel

Les vecteurs aléatoires sont un cas particulier des processus aléatoires (famille des variables aléatoires de dimension finie).

Les vecteurs aléatoires sont une géneralisation des couples aléatoires. (exercices 5, 6 et 7) **N.B:** Les vecteurs aléatoires seront traités dans la partie (TD 3 suite).

Exercice 1 (Rappel- cours)

Soit (Ω, F, P) un espace probabilisé, Soient X et Y deux variables aléatoires réelles prennent des valeurs finies respectivement dans les ensembles $\{x_i, 0 \le i \le n\}$ et $\{y_i, 0 \le j \le m\}$,

- 1-Définir la distribution conditionnelle de X sachant $[Y = y_j]$.
- 2-On notant $P^{Y=y_j} := P\left[X = x_i \mid Y = y_j\right]$, vérifier que pour tout $j, P^{Y=y_j}$ définit une mesure de probabilité sur Ω et définir $E\left[X \mid Y = y_j\right]$.
- 3-Montrer que: $E[E[X \mid Y] \varphi(Y)] = E[X\varphi(Y)]$, pour toute fonction déterministe φ .
- 4-On considère le produit scalaire $\langle X E \ [X \mid Y], \varphi(Y) \rangle_2$ pour toute fonction $\varphi : \mathbb{R} \to \mathbb{R}$:
- 4.1-Vérifier la condition d'orthogonalité de $X-E\ [X\mid Y]$ à l'espace vectoriel de toutes les fonctions de Y
 - 4.2-Donner la meilleure approximation au sens de L^2 de X par une fonction de Y.

Exercice 2

On jette deux tétraèdes parfaitement symétriques, dont les faces sont sont numérotées de 1 à 4, on considère les variables aléatoires X,égale à la somme des points, et Y,égale à leur différence

(en valeur absolue).

- 1- Spécifier un espace probabilisé permettant de décrire cette expérience et déterminer la loi conjointe de X et Y ainsi que leur espérances.
- 2-Calculer E(X/Y) et E(Y/X).

Exercice 3

Soient X et Y deux variables aléatoires indépendantes et de loi uniforme sur [0,1]. On pose $U = \inf(X,Y)$ et $V = \sup(X,Y)$.

Calculer $E(U \mid V)$ et la meilleure prédiction de U par une fonction affine de V.

Exercice 4

On considère les relations:

.
$$P[X=0] = \frac{1}{3}, \ P[X=2^n] = P[X=-2^n] = \frac{2^n}{3}, \forall n \geq 1.$$

a- Montrer que les relations ci dessus définissent une loi de probabilité d'une variable aléatoire X.

b- On introduit la probabilité de transition :

$$Q(0,.) = \frac{1}{2}(\delta_2 + \delta_{-2}), Q(x,.) = \frac{1}{2}(\delta_0 + \delta_{2x}), x \in \mathbb{R}^*$$

Rappelons que δ_{α} désigne la mesure de Dirac au point α . Soit Y une variable aléatoire réelle telle que la loi conditionnelle de Y sachant X est donnée par la probabilité de transition Q. Montrer que $E(Y \mid X) = X$ et X, Y sont identiquement distribuées. Est ce que X, Y sont indépendantes?, justifier votre réponse.

Exercice 5

Soit X une variable aléatoire dont la loi est donnée par le tableau suivant :

 P_i $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{4}$ $\frac{1}{6}$ -On pose $Y = X^2$. Déterminer la loi du couple (X, Y) ainsi que les lois marginales.

Exercice 6

Soit X et Y deux variables aléatoires à valeurs respectivement dans \mathbb{N}^* et \mathbb{N} telles que :

$$\forall (i,j) \in \mathbb{N}^* \times \mathbb{N}, P([X=i] \cap [Y=j] = \frac{a^i}{i!}$$

a- Calculer a.

Indication: utiliser la convergence de la série double $\sum_{(i,j)} \frac{a^i}{j!}$.

- b- Déterminer les lois de X et Y
- c- Est ce que les variables X et Y ont indépendantes? justifier votre réponse.
- d- Soit S = X + Y, calculer la variance de S.

Exercice 7

Soit X une variable aléatoire de loi de densité $\xi(\lambda)$, et Y une variable aléatoire de loi de densité $\xi(\mu)$.

On suppose X et Y indépendantes donc que le couple (X;Y) admet pour densité:

$$f(x,y) = \lambda \exp(-\lambda x) \mathbf{1}_{_{\mathbb{D}^+}}(x) \mu \exp(-\mu y) \ \mathbf{1}_{_{\mathbb{D}^+}}(y)$$

- 1. Calculer P(X < Y).
- 2. Calculer E(XY).
- 3. Soit $Z = \frac{X}{Y}$, trouver la fonction de répartition et la densité de Z.