KOREAN PATENT ABSTRACTS XML 2(1-2)

Please Click here to view the drawing

Korean FullDoc.

(19)

KOREAN INTELLECTUAL PROPERTY OFFICE

KOREAN PATENT ABSTRACTS

(11)Publication

1020000059655 A

number:

(43)Date of publication of application:

05.10.2000

(21)Application number:

1019990007430

(71)Applicant:

SAMSUNG SDI CO., LTD.

(22)Date of filing:

06.03.1999

(72)Inventor:

KIM, GEUN BAE KWON, HO JIN NOH, HYEONG GON PARK, DONG GON

(51)Int. CI

H01M 4/02

(54) ANODE ACTIVATED SUBSTANCE FOR LITHIUM SECONDARY CELL AND METHOD FOR PRODUCING THE SAME

(57) Abstract:

PURPOSE: An anode activated substance for lithium secondary cell and a method for producing the same are provided to ensure excellent cycle life properties by coating a metal oxide layer on the surface of the activated CONSTITUTION: substance. activated An substance of the invention is formed by coating metal oxide on the surface of manganate based activated substance such as LiMn2O4, LiMnO2. The metal oxide can a metal oxide originating from metal alkoxide or a composite oxide of

manganate existing in the activated complex and a metal originating from metal alkoxide solution. The metal oxide has a thickness of about 1 to 100nm. Amount of metal in the metal oxide is about 0.1 to 10wt%. Heat treatment for forming the metal oxide is carried out in a temperature over 200°C. In a temperature under 200°C, crystallization of the metal alkoxide solution is not carried out.

COPYRIGHT 2001 KIPO

공개특허특2000-0059655

(19)대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. Cl. 6 H01M 4/02

(11) 공개번호 특2000-0059655 (43) 공개일자 2000년10월05일

(21) 출원번호 (22) 출원일자	10-1999-0007430 1999년03월06일	
- (71) 출원인	삼성에스디아이 주식회사 김순택 경기도 수원시 팔달구 신동 575번지	
(72) 발명자	권호진 충청남도천안시성성동산24번지 김근배 충청남도천안시성성동산24번지 박동곤 충청남도천안시성성동산24번지 노형곤 충청남도천안시성성동산24번지	
(74) 대리인	김원호	

이상헌

심사청구: 있음

(54) 리튬 이차 전지용 양극 활물질 및 그 제조 방법

요약

사이클 수명 특성, 특히 고온 수명 특성이 우수한 망간계 리튬 이차 전지용 양극 활물질 및 그 제조 방법을 제공하 기 위한 것으로서, $\operatorname{Li}_x \operatorname{MnO}_{2,} \operatorname{Li}_x \operatorname{MnF}_{2,} \operatorname{Li}_x \operatorname{Mn}_{1-y} \operatorname{M}_y \operatorname{O}_{2,} \operatorname{Li}_x \operatorname{Mn}_{1-y} \operatorname{M}_y \operatorname{O}_{2-z} \operatorname{F}_z$, $\operatorname{Li}_x \operatorname{Mn}_{1-y} \operatorname{M}_y \operatorname{O}_{2-z} \operatorname{S}_z$, $\text{Li}_{x}\text{Mn}_{2}\text{O}_{4}, \text{Li}_{x}\text{Mn}_{2}\text{F}_{4}, \text{Li}_{x}\text{Mn}_{2}\hat{\text{O}}_{4}, \text{Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\hat{\text{O}}_{4}, \text{Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\hat{\text{O}}_{4-z}\hat{\text{F}}_{z} \not\supseteq \text{Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\hat{\text{O}}_{4-z}\text{S}_{z} (\text{GZ}|\vec{A}, \tilde{\text{O}}(x \leq 1.5, \tilde{\text{O}(x \leq 1.5, \tilde{\text{O}}(x \leq 1$ 0.05≤y≤0.3, z≤1.0, M은 Al, Co, Cr, Mg, Fe 및 La으로 이루어진 군으로부터 선택되는 적어도 하나이다)으로 이루어진 군에서 선택된 리튬 이차 전지용 양극 활물질로서, 표면에 금속 산화물이 코팅된 리튬 이차 전지용 양극 활물질을 제공하며, 상기 양극 활물질의 제조 방법으로서, Li

 ${_{x}}\text{MnO}_{2}. \text{Li}_{x}\text{MnF}_{2}. \text{Li}_{x}\text{MnS}_{2}. \text{Li}_{x}\text{Mn}_{1-y}\text{M}_{y}\text{O}_{2}. \text{Li}_{x}\text{Mn}_{1-y}\text{M}_{y}\text{O}_{2-z}\text{F}_{z}, \text{Li}_{x}\text{Mn}_{1-y}\text{M}_{y}\text{O}_{2-z}\text{S}_{z}, \text{Li}_{x}\text{Mn}_{2}\text{O}_{4}, \text{Li}_{x}\text{Mn}_{2}\text{P}_{4}, \text{Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\text{O}_{4-z}\text{F}_{z} \not \sqsubseteq \text{Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\text{O}_{4-z}\text{S}_{z} \text{(Q7M, 0 < x \le 1.5, 0.05 \le y \le 0.3, z \le 1.0, M)}$ 은 AI, Co, Cr, Mg, Fé 및 La으로 이루어진 군으로부터 선택되는 적어도 하나이다)으로 이루어진 군에서 선택된 물질의 분말을 제조하는 공정과, 상기 분말을 금속 알콕사이드 용액으로 코팅하는 공정, 및 상기 금속 알콕사이드 용액이 코팅된 분말을 열처리하는 공정을 포함하는 리튬 이차 전지용 양극 활물질 제조 방법을 제공한다.

叫丑도

52

색인어

리튬이차전지,금속알콕사이드,알루미늄,마그네슘,LiMnO2,LiMn2O4,양극활물질

명세서

도면의 간단한 설명

도 1은 본 발명의 일 실시예 및 비교예에 따른 전지의 고온 충방전 특성을 나타낸 그래프.

도 2는 본 발명의 일 실시예 및 비교예에 따른 전지의 고온 사이클 수명 특성을 나타낸 그래프.

도 3은 본 발명의 다른 실시예에 따른 활물질에 대한 SIMS 분석 결과를 나타낸 그래프.

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야 종래기술

산업상 이용 분야본 발명은 리튬 이차 전지용 양극 활물질 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는 사이클 수명 특성이 우수한 리튬 이차 전지용 망간계 양극 활물질 및 그 제조 방법에 관한 것이다.

종래 기술리튬 이차 전지용 양국 활물질 중에서 $LiMn_2O_4$, $LiMnO_2$ 등의 망간계 활물질은 합성이 용이하며, 제조 비용이 비교적 저렴하고, 환경에 대한 오염도 적다는 장점이 있다. 그 중에서도 LiMn

 $_2\mathrm{O}_4$ 는 전지 시스템의 안정성 등으로 전기 자동차(electric vehicle)에 적용 가능성이 가장 높은 양극 활물질로 부각되고 있다.

그러나, $LiMn_2O_4$ 는 $LiCoO_2$, $LiNiO_2$ 등의 다른 활물질에 비해 방전 용량이 작고, 고율 충방전시 방전 용량이 급격히 감소하며, 고온에서의 연속적인 충방전시 망간의 용출로 인해 전지 수명이 급격히 열화되는 문제점이 있다.

발명이 이루고자하는 기술적 과제

상기 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 사이클 수명 특성이 우수한 망간계 리튬 이차 전지용 양국 활물질 및 그 제조 방법을 제공하는 것이다.

발명의 구성 및 작용

상기 본 발명의 목적을 달성하기 위하여, 본 발명은 $\text{Li}_x \text{MnO}_{2,} \text{Li}_x \text{MnS}_{2,} \text{Li}_x \text{Mn}_{1-y} \text{M}_y \text{O}_{2,} \text{Li}_x \text{Mn}_{1-y} \text{M}_y \text{O}_{2-z} \text{F}_z$, $\text{Li}_x \text{Mn}_{2-y} \text{M}_y \text{O}_{4-z} \text{F}_z$ 및 $\text{Li}_x \text{Mn}_{2-y} \text{M}_y$

또한, 본 발명은 Li_xMnO_2 , Li_xMnF_2 , Li_xMnS_2 , $Li_xMn_{1-y}M_yO_2$, $Li_xMn_{1-y}M_yO_{2-z}F_z$, $Li_xMn_{1-y}M_yO_{2-z}S_z$, $Li_xMn_2O_4$, $Li_xMn_2F_4$, $Li_xMn_2S_4$, $Li_xMn_2-yM_yO_4$, $Li_xMn_2-yM_yO_4-zF_z$ 및 $Li_xMn_2-yM_yO_4-zS_z$ (여기서, $0 < x \le 1.5$, $0.05 \le y \le 0.3$, $z \le 1.0$, M은 AI, Co, Cr, Mg, Fe 및 La으로 이루어진 군으로부터 선택되는 적어도 하나이다)으로 이루어진 군에서 선택된 물질 분말을 제조하는 공정, 상기 분말을 금속 알콕사이드 용액으로 코팅하는 공정, 및 상기 금속 알콕사이드 용액이 코팅된 분말을 열처리하는 공정을 포함하는 리튬 이차 전지용 양극 활물질 제조 방법을 제공한다.

이하, 본 발명을 더욱 상세히 설명한다.

본 발명의 첫 번째 공정은 Li_xMnO_2 , Li_xMnF_2 , Li_xMnS_2 , $Li_xMn_{1-y}M_yO_2$, $Li_xMn_{1-y}M_yO_{2-z}F_z$, $Li_xMn_{1-y}M_yO_{2-z}S_z$, $Li_xMn_2O_4$, $Li_xMn_2F_4$, $Li_xMn_2S_4$, $Li_xMn_{2-y}M_yO_4$, $Li_xMn_{2-y}M_yO_{4-z}F_z$ 및 $Li_xMn_{2-y}M_yO_{4-z}S_z$ (여기서, $0 < x \le 1.5$, $0.05 \le y \le 0.3$, $z \le 1.0$, M은 AI, Co, Cr, Mg, Fe 및 La으로 이루어진 군으로부터 선택되는 적어도 하나이다)의 분말을 제조하는 공정이다. 상기 물질의 제조 공정은 본 분야에서 공지된 방법으로 제조가능하다.

이어서, 상기 $\text{Li}_x \text{MnO}_2$, $\text{Li}_x \text{MnF}_2$, $\text{Li}_x \text{Mn}_{1-y} \text{M}_y \text{O}_2$, $\text{Li}_x \text{Mn}_{1-y} \text{M}_y \text{O}_2 - \text{E}_z$, $\text{Li}_x \text{Mn}_{1-y} \text{M}_y \text{O}_{2-z} \text{S}_z$, $\text{Li}_x \text{Mn}_2 \text{O}_4$, $\text{Li}_x \text{Mn}_2 \text{$

coating)법 등 범용 코팅 방법을 사용할 수 있으며, 가장 간편한 코팅법으로서 단순히 분말을 코팅 용액에 담그었다가 빼내는 딥 코팅법을 사용하는 것이 바람직하다.

이와 같이 금속 알콕사이드 용액으로 코팅된 분말을 120℃ 오븐에서 약 5시간 동안 건조시킨다. 이 건조 공정은 분말 내에 리튬 염을 더욱 균일하게 분포시키는 역할을 한다. 이어서, 200-1000℃의 온도로 1-20시간 열처리한다. 바람직하게는 600-700℃ 온도로 1-10시간 동안 열처리한다. 이 열처리 공정으로 금속 알콕사이드가 금속 산화물로 변화함으로써 표면에 금속 산화물이 코팅된 Li

 $_{x}MnO_{2}$, $Li_{x}MnF_{2}$, $Li_{x}MnS_{2}$, $Li_{x}Mn_{1-y}M_{y}O_{2}$, $Li_{x}Mn_{1-y}M_{y}O_{2-z}F_{z}$, $Li_{x}Mn_{1-y}M_{y}O_{2-z}S_{z}$, $Li_{x}Mn_{2}O_{4}$, $Li_{x}Mn_{2}F_{4}$, $Li_{x}Mn_{2-y}M_{y}O_{4}$, $Li_{x}Mn_{2-y}M_{y}O_{4-z}F_{z}$ 또는 $Li_{x}Mn_{2-y}M_{y}O_{4-z}S_{z}$ (여기서, $0 < x \le 1.5$, $0.05 \le y \le 0.3$, $z \le 1.0$, M은 AI, Co, Cr, Mg, Fe 및 La으로 이루어진 군으로부터 선택되는 적어도 하나이다) 활물질이 제조된다. 상기 분 말 표면에 형성된 금속 산화물은 금속 알콕사이드로부터 유래하는 금속의 산화물 또는 활물질 중에 존재하는 망간과 금속 알콕사이드 용액으로부터 유래된 금속의 복합 금속 산화물일 수 있다. 상기 금속 산화물의 층 두께는 1-100nm이며, 금속 산화물 중 금속의 양은 0.1-10중량%이다. 더욱 균일한 활물질을 제조하기 위해 열처리 공정은 건조 공기 또는 산소를 블로잉하는(blowing) 조건하 즉, 산화 분위기에서 실시하는 것이 바람직하다. 이때, 열처리 온도가 200 안보다 낮으면 코팅된 금속 알콕사이드 용액이 결정화되지 않으므로 이 활물질을 전지에 적용하면 리튬 이온의 이동이 방해를 받게된다.

다음은 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예들은 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.

실시예 1알루미늄 이소프로폭사이드 분말과 에탄옽을 100℃ 정도의 온도에서 약 30분간 환류시켜 5중량% 농도의 알루미늄 이소프로폭사이드 용액을 제조하였다. 수분의 양이 조절되는 드라이 룸 내에서 상기 용액과 Li

xMn{2-v}Al_vO_{4-y}F₂ (여기서, 0 ⟨x≤1.5, 0.05≤y≤0.3, z≤1.0) 분말을 동일 부피로 혼합하여 Li

xMn_{2-y}Al_yO_{4-z}F_z의 표면을 알루미늄 이소프로폭사이드 용액으로 적신 후, 건조시켰다. 건조시킨 분말을 300 ℃에서 10시간 건조 공기 분위기에서 열처리를 실시하여 양극 활물질을 제조하였다. 제조된 양극 활물질, 도전제(카본, 상품명: 슈퍼 P), 바인더(폴리비닐리덴플루오라이드, 상품명: KF-1300) 및 용매(N-메틸피롤리돈)를 혼합하여 활물질 조성물 슬러리를 제조하고, 이 슬러리를 테이프 형태로 캐스팅하여 극판을 제조하였다. 이 극판, 이에 대한 대극으로서 Li-금속, 에틸렌 카보네이트와 디메틸 카보네이트의 1:1 부피비의 혼합물 및 LiPF

 $_{6}$ 물 포함하는 전해액을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다.

실시예 2실시예 1에서, 300℃ 대신 900℃로 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하였다.

실시예 3알루미늄 이소프로폭사이드 분말과 에탄올을 100℃ 정도의 온도에서 약 30분간 환류시켜 5중량% 농도 의 알루미늄 이소프로폭사이드 용액을 제조하였다. 수분의 양이 조절되는 드라이 룸 내에서 상기 용액과 Li

xMn₂O₄ (여기서, 0 ⟨x≤1.5) 분말을 동일 부피로 혼합하여 Li

xMn₂O₄의 표면을 알루미늄 이소프로폭사이드 용액으로 적신 후, 건조시켰다. 건조시킨 분말을 300℃에서 10시간 건조 공기 분위기에서 열처리를 실시하여 양극 활물질을 제조하였다. 상기 양극 활물질을 사용하여 실시예 1과동일한 방법으로 코인 셀 타입의 반쪽 전지를 제조하였다.

비교예 1양극 활물질로서 $\text{Li}_x \text{Mn}_{2-y} \text{Al}_y \text{O}_{4-z} \text{F}_z$ (여기서, $0 < x \le 1.5$, $0.05 \le y \le 0.3$, $z \le 1.0$) 분말을 그대로 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.

도 1은 실시예 1(b) 및 비교예 1(a)에서 제조한 전지를 50°C, 4.3V-3.0V 사이에서 0.1C로 충방전시켰을 때의 충방전 특성을 나타낸 그래프이다. 도 2는 실시예 1(b) 및 비교예 1(a)에서 제조한 전지의 고온(50°C) 사이클 수명특성을 나타낸 것으로서, 실시예 1 및 비교예 1에 따른 전지를 4.3V-3.0V 사이에서 연속적으로 충방전시킨 후, 그 결과를 나타내었다. 도 2에서 보이는 바와 같이 실시예 1에 따른 전지가 비교예 1에 따른 전지에 비해 고율 충방전 조건에서 용량의 감소 정도가 작으며, 고온에서의 사이클 수명 특성이 우수함을 알 수 있다. 이러한 사실은 활물질의 표면에 코팅된 금속 산화물 층이 활물질 중의 망간의 용출을 방지하기 때문이다. 도 3은 실시예 3에 따른 양극 활물질의 분석을 위해 실시한 SIMS(secondary ion mass spectrometry) 결과이다. SIMS 분석 결과, 도 3에서 보이는 바와 같이 알루미늄은 활물질의 표면부로 갈수록 많이 존재하며, 망간은 활물질의 표면부보다는 중심부에 많이 존재하는 것을 알 수 있다. 이러한 결과는 Li

vMn₂O₄의 활물질에 알루미늄 산화물이 표면 처리되었음을 증명하는 것이다.

발명의 효과

상기한 바와 같이 본 발명은 고온 수명 특성이 우수한 망간계 리튬 이차 전지용 양극 활물질을 제공할 수 있다.

(57)청구의 범위

청구항1

 $Li_xMnO_{2,}$ $Li_xMnF_{2,}$ $Li_xMnS_{2,}$ $Li_xMn_{1-y}M_yO_{2,}$ $Li_xMn_{1-y}M_yO_{2-z}F_z$, $Li_xMn_{1-y}M_yO_{2-z}S_z$, $Li_xMn_2O_4$, $Li_xMn_2F_4$, $Li_xMn_2S_4$

청구항2

제 1항에 있어서, 상기 금속 산화물은 Si, Mg, Ti 및 Al로 이루어진 군으로부터 선택되는 금속의 산화물인 리튬 이차 전지용 양극 활물질

청구항3

제 1항에 있어서, 상기 금속 산화물의 두께는 1-100m인 리튬 이차 전지용 양극 활물질.

청구항4

제 1항에 있어서, 상기 금속 산화물 중 금속의 양은 0.1-10중량%인 리튬 이차 전지용 양극 활물질.

청구항5

 $\text{Li}_{x}\text{MnO}_{2}, \text{Li}_{x}\text{MnF}_{2}, \text{Li}_{x}\text{MnS}_{2}, \text{Li}_{x}\text{Mn}_{1-y}\text{M}_{y}\text{O}_{2-z}\text{F}_{z}, \text{Li}_{x}\text{Mn}_{1-y}\text{M}_{y}\text{O}_{2-z}\text{S}_{z}, \text{Li}_{x}\text{Mn}_{2}\text{O}_{4}, \text{Li}_{x}\text{Mn}_{2}\text{F}_{4}, \text{Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\text{O}_{4-z}\text{F}_{z} \, \text{및 Li}_{x}\text{Mn}_{2-y}\text{M}_{y}\text{O}_{4-z}\text{S}_{z} \, \text{(q기서, 0 < x < 1.5, 0.05 < y < 0.3, z < 1.0, M 은 Al, Co, Cr, Mg, Fe 및 La으로 이루어진 군으로부터 선택되는 적어도 하나이다)으로 이루어진 군에서 선택된 물질의 분말을 제조하는 공정과;$

상기 분말을 금속 알콕사이드 용액으로 코팅하는 공정; 및상기 금속 알콕사이드 용액이 코팅된 분말을 열처리하는 공정을 포함하는 리튬 이차 전지용 양극 활물질 제조 방법.

청구항6

제 5항에 있어서, 상기 금속 알콕사이드는 Si-알콕사이드, Mg-알콕사이드, Ti-알콕사이드 및 Al-알콕사이드로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 양극 활물질 제조 방법.

청구항7

제 5항에 있어서, 상기 금속 알콕사이드 용액은 금속을 1-50중량%의 농도로 포함하는 것인 리튬 이차 전지용 양국 활물질 제조 방법.

청구항8

제 5항에 있어서, 상기 열처리 공정은 공기 또는 산소 분위기 하에서 200-1000℃의 온도로 1-20시간 열처리하는 것인 리튬 이차 전지용 양극 활물질 제조 방법.

도면

도면1

