1 5 ++

الامتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار فرنسية الدورة العادية 2019 - المهضم ع -

NS24F

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الانجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: (أ) و (ب) - خيار فرنسية	الشعبة أو المسلك

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte 4 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge n'est pas autorisé 5

0.25

0.25

0.5

2 NS24F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الرياضيات – شعبة العلوم الرياضية : (أ) و (ب) – خيار فرنسية

EXERCICE1: (3.5 points)

On rappelle que $(\mathbb{C},+, imes)$ est un corps commutatif et que $(M_2(\mathbb{R}),+, imes)$ est un anneau unitaire

de zéro la matrice nulle
$$O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 et d'unité la matrice $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Soit * la loi de composition interne définie sur $\mathbb C$ par :

$$(\forall (x,y) \in \mathbb{R}^2) (\forall (a,b) \in \mathbb{R}^2)$$
; $(x+yi)*(a+bi) = xa + (x^2b+a^2y)i$

0.25 1-a) Montrer que la loi * est commutative sur C

0.5 b) Montrer que la loi * est associative sur C

c) Montrer que la loi * admet un élément neutre e que l'on déterminera.

0.25 d) Soit $(x, y) \in \mathbb{R}^* \times \mathbb{R}$. Montrer que le nombre complexe x + yi admet le nombre complexe $\frac{1}{x} - \frac{y}{x^4}i$ comme symétrique pour la loi *

2-On considère le sous-ensemble E de $\mathbb C$ défini par : $E = \{x + yi \ / \ x \in \mathbb R_+^* \ ; \ y \in \mathbb R\}$

a) Montrer que E est stable pour la loi * dans $\mathbb C$

0.5 b) Montrer que (E,*) est un groupe commutatif.

0.5 3-On considère le sous-ensemble G de E défini par : $G = \{1 + yi / y \in \mathbb{R}\}$

Montrer que G est un sous-groupe de (E,*)

4-On considère l'ensemble $F = \left\{ M(x,y) = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} / x \in \mathbb{R}_+^* \; ; \; y \in \mathbb{R} \right\}$

0.25 a) Montrer que F est stable pour la loi \times dans $M_2(\mathbb{R})$

b) Soit φ l'application de E vers F qui à tout nombre complexe x+yi de E fait correspondre

la matrice $M(x^2, y) = \begin{pmatrix} x^2 & y \\ 0 & x^2 \end{pmatrix}$ de F

Montrer que φ est un isomorphisme de (E,*) vers (F,\times)

0.25 c) En déduire que (F,\times) est un groupe commutatif.

EXERCICE2:(3.5 points)

Soit m un nombre complexe non réel ($m \in \mathbb{C} - \mathbb{R}$)

I- On considère dans $\mathbb C$, l'équation d'inconnue z définie par :

$$(E)$$
: $z^2 - (1+i)(1+m)z + 2im = 0$

- 0.25 | 1-a) Montrer que le discriminant de l'équation (E) est non nul.
- 0.5 b) Déterminer z_1 et z_2 , les deux solutions de l'équation (E)
 - 2- On suppose dans cette question que $m = e^{i\theta}$ avec $0 < \theta < \pi$
- 0.5 a) Déterminer le module et un argument de $z_1 + z_2$
- 0.25 b) Montrer que si $z_1 z_2 \in \mathbb{R}$ alors $z_1 + z_2 = 2i$

II- Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$

On considère les points suivants :

A le point d'affixe a=1+i, B le point d'affixe b=(1+i)m, C le point d'affixe c=1-i, D l'image du point B par la rotation de centre O et d'angle $\frac{\pi}{2}$ et Ω le milieu du

segment [CD].

- 0.5 | 1-a) Montrer que l'affixe du point Ω est $\omega = \frac{(1-i)(1-m)}{2}$
- 0.25 b) Calculer $\frac{b-a}{\omega}$
- 0.5 c) En déduire que $(O\Omega) \perp (AB)$ et que $AB = 2O\Omega$
 - 2- La droite $(O\Omega)$ coupe la droite (AB) au point H d'affixe h
- a) Montrer que $\frac{h-a}{b-a}$ est un réel et que $\frac{h}{b-a}$ est un imaginaire pur.
- 0.25 b) En déduire h en fonction de m

EXERCICE3: (3 points)

On admet que 2969 (l'année amazighe actuelle) est un nombre premier.

Soient n et m deux entiers naturels vérifiant : $n^8 + m^8 \equiv 0$ [2969]

- 1- On suppose dans cette question que 2969 ne divise pas n
- 0.5 a) En utilisant le théorème de BEZOUT, montrer que : $(\exists u \in \mathbb{Z})$; $u \times n \equiv 1$ [2969]
- 0.5 b) En déduire que : $(u \times m)^8 \equiv -1 [2969]$ et que $(u \times m)^{2968} \equiv -1 [2969]$ (On remarque que : $2968 = 8 \times 371$)
- 0.5 c) Montrer que 2969 ne divise pas $u \times m$
- 0.5 d) En déduire qu'on a aussi $(u \times m)^{2968} \equiv 1 [2969]$
- 0.5 2-a) En utilisant les résultats précédents, montrer que 2969 divise n
- 0.5 b) Montrer que: $n^8 + m^8 \equiv 0$ [2969] $\Leftrightarrow n \equiv 0$ [2969] et $m \equiv 0$ [2969]

EXERCICE4: (10 points)

PARTIE I: On considère la fonction f définie sur \mathbb{R} par : $f(x) = 4x \left(e^{-x} + \frac{1}{2}x - 1\right)$ et on note (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

- 0.5 1- Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
- 0.5 2- a) Montrer que f est dérivable sur \mathbb{R} et que : $(\forall x \in \mathbb{R})$; $f'(x) = 4(e^{-x} 1)(1 x)$
- 0.75 b) Etudier les variations de $f \operatorname{sur} \mathbb{R}$, puis donner son tableau de variations.
 - c) Montrer qu'il existe un unique réel α dans l'intervalle $\frac{3}{2}$, 2 tel que $f(\alpha) = 0$

(On prendra
$$e^{\frac{3}{2}} = 4,5$$
)

0.25 d) Vérifier que : $e^{-\alpha} = 1 - \frac{\alpha}{2}$

0.5

- 0.5 3-a) En appliquant le théorème de ROLLE à la fonction f', montrer qu'il existe un réel x_0 de l'intervalle]0,1[tel que : $f''(x_0)=0$
- b) En appliquant le théorème des accroissements finis à la fonction f", montrer que, pour tout réel x différent de x_0 de l'intervalle [0,1], on a : $\frac{f''(x)}{x-x_0} > 0$

a) Montrer que : $(\forall n \in \mathbb{N})$; $u_{n+1} - u_n \le f(u_0)$

b) Montrer que : $(\forall n \in \mathbb{N})$; $u_n \le u_0 + nf(u_0)$ 0.5

c) En déduire $\lim_{n\to+\infty} u_n$ 0.25