Module X: fastlink

Rebecca C. Steorts

Reading

- ▶ Binette and Steorts (2020)
- ▶ Others ??

Probabilistic Entity Resolution

While Fellegi and Sunter (1969) have provided a framework for probabilistic entity resolution, there are few implementations that scale to large size data sets.

fastlink

- ► Edmorando et al. (2020) developed fastlink a scalable implementation of the FS method.
- ► In addition, the authors incorporated auxiliary information such as population name frequency and migration rates.
- The authors used parallelization and hashing to merge millions of records in a near real-time on a laptop computer, and provided open-source software of their proposed methodology.

- ► Two data sets (A and B) with variables in common
- Agreement value in field a for record pair (i, j)

$$ho_{\mathsf{a}}(i,j) \ = \ \left\{ egin{array}{l} \mathsf{agree} \ \\ \mathsf{disagree} \end{array}
ight.$$

	First	Last	Age	Street	
Da	Data set ${\cal A}$				
1	James	Smith	35	Devereux St.	
Data set ${\cal B}$					
7	James	Smit	43	Dvereux St.	
	agree	agree	disagree	agree	

	First	Last	Age	Street		
Da	Data set ${\cal A}$					
1	James	Smith	35	Devereux St.		
Data set ${\cal B}$						
7	James	Smit	43	Dvereux St.		
	agree agree disag		disagree	agree		

Agreement pattern $\gamma(i,j) = \{\gamma_1(i,j), \gamma_2(i,j), \dots, \gamma_K(i,j)\}$

- We observe agreement patterns $\gamma(i,j)$
- ▶ We do not observe the matching status

$$C_{i,j} = \begin{cases} \text{non-match} \\ \text{match} \end{cases}$$

fastlink Model

$$C(i,j) \stackrel{ ext{iid}}{\sim} \mathsf{Bernoulli}(\mu)$$
 $ho(i,j) \mid C(i,j) = \mathsf{non\text{-}match} \stackrel{ ext{iid}}{\sim} \mathcal{F}(\pi_{\mathsf{NM}})$
 $ho(i,j) \mid C(i,j) = \mathsf{match} \stackrel{ ext{iid}}{\sim} \mathcal{F}(\pi_{\mathsf{M}})$

Where λ , π_{M} , π_{NM} are estimated via the EM algorithm

fastlink

- Available on CRAN
- ▶ We investigate it first on RLdata500

```
fastlink in R
   library(fastLink)
   library(RecordLinkage)
   ## Loading required package: DBI
   ## Loading required package: RSQLite
   ## Loading required package: ff
   ## Loading required package: bit
   ##
   ## Attaching package: 'bit'
   ## The following object is masked from 'package:base':
   ##
   ##
          xor
```

Attaching package ff
- getOption("fftempdir")=="/var/folders/bv/xhclmwh90zg08
11/22

RLdata10000

```
# load RLdata10000
records <- read.table("data/RLdata10000.csv", sep=",", head
head(records, 4)
##
    fname_c1 fname_c2 lname_c1 lname_c2 by bm bd rec_:
       FRANK
                <NA> MUELLER
                                 <NA> 1967
## 1
                       SCHWARZ <NA> 1967 2 17
## 2
    MARTIN <NA>
## 3 HERBERT <NA> ZIMMERMANN <NA> 1961 11 6
## 4
        HANS
            <NA>
                       SCHMITT <NA> 1945 8 14
```

RLdata10000

```
# Number of unique records
length(unique(records$ent_id))

## [1] 9000

#Linkage Fields
# linkage fields
linkageFields <- c("fname_c1", "lname_c1", "by", "bm", "bd"</pre>
```

Exact Matching

```
# perform exact matching
exact.match <- merge(records, records, by = linkageFields)
# number of self-matches
sum(exact.match$rec_id.x == exact.match$rec_id.y)
## [1] 10000
# number of non-self matches
sum(exact.match$rec_id.x != exact.match$rec_id.y)
## [1] 16
```

Who are they?

Preparation

```
# linkage fields
linkageFields <- c("fname_c1", "lname_c1", "by", "bm", "bd"

# string distance fields
stringDistFields <- c("fname_c1", "lname_c1")

# partial distance fields (fields where we allow
# for agree, disagree, and partially agree)
partialMatchFields <- c("fname_c1", "lname_c1")</pre>
```

Run fastlink

```
out <- fastLink(dfA = records,
               dfB = records,
               varnames = linkageFields,
               stringdist.match = stringDistFields, # JW
               partial.match = partialMatchFields,
               cut.a = 0.94, cut.p = 0.84, # JW cutoffs
               dedupe = FALSE # 1-to-1 match
##
## ==========
## fastLink(): Fast Probabilistic Record Linkage
##
## If you set return.all to FALSE, you will not be able to
```

dfA and dfB are identical, assuming deduplication of a

Setting return.all to FALSE.
##

Coloulating matches for soch marichle

fastlink Objects

fastLink has the following objects as output:

```
names(out)
```

"patterns" "posterior" "nol ## [1] "matches" "EM"

Who is matched

The indices of each matched pair can be found in out\$matches

```
head(cbind(out$matches$inds.a, out$matches$inds.b), 6)
```

```
## [,1] [,2]
## [1,] 1 1
## [2,] 2 2
## [3,] 3 3
## [4,] 4 4
## [5,] 1957 4
## [6,] 5 5
```

Counting Patterns

- Counts and FS weights for each patterns can be found in out\$EM\$patterns.w
- ▶ Legend: 2 = Agree; 1 = Partially Agree; 0 = Disagree

```
tail(out$EM$patterns.w[, 1:7])
```

##		gamma.1	gamma.2	gamma.3	gamma.4	gamma.5	counts	
##	[65,]	2	0	2	2	2	48	10
##	[66,]	0	1	2	2	2	20	3
##	[67,]	2	1	2	2	2	242	15
##	[68,]	0	2	2	2	2	56	8
##	[69,]	1	2	2	2	2	20	12
##	[70,]	2	2	2	2	2	10924	20

Matching Threshold

==========

Setting return.all to FALSE.

By default it is 0.85, but it can be easily changed:

```
stringdist.match = stringDistFields, partial.match = partia
cut.a = 0.94, cut.p = 0.84,
threshold.match = 0.90, # Matching threshold dedupe = FALS.
##
## ==========
```

out <- fastLink(dfA = records, dfB = records, varnames = 1:

If you set return.all to FALSE, you will not be able to ## dfA and dfB are identical, assuming deduplication of a

fastLink(): Fast Probabilistic Record Linkage

##

Calculating matches for each variable. ## Getting counts for parameter estimation.

Exercises/TODO

- How would you calculate the precision and recall?
- ▶ Apply this to a much large data set with blocking. (Make this another module).
- Combine with fastlink and dblink