Finding and Counting Substructures in Graphs and Hypergraphs

Liam Hardiman

December 10, 2020

A Finding Problem

• A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.

- A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.
- If $X \subseteq V$, then the **subgraph induced by** X, G[X] is the graph with vertex set X and all edges from E that have both ends in X.

- A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.
- If $X \subseteq V$, then the **subgraph induced by** X, G[X] is the graph with vertex set X and all edges from E that have both ends in X.
- The **degree** of a vertex v, denoted $d_G(v)$, is the number of edges of G that v appears in.

- A graph G = (V, E) consists of a (finite) set of vertices V and a set E of unordered pairs of vertices called edges.
- If $X \subseteq V$, then the **subgraph induced by** X, G[X] is the graph with vertex set X and all edges from E that have both ends in X.
- The **degree** of a vertex v, denoted $d_G(v)$, is the number of edges of G that v appears in.
- picture here

Theorem (L. Lovász, T. Gallai - 1979)

Let G = (V, E) be any graph. Then G admits a partitioning of its vertex set into two parts, $V = V_1 \cup V_2$, so that each vertex in $G[V_1]$ and each vertex in $G[V_2]$ has even degree. In particular, any graph on n vertices has an even subgraph of order at least n/2.

Theorem (L. Lovász, T. Gallai - 1979)

Let G = (V, E) be any graph. Then G admits a partitioning of its vertex set into two parts, $V = V_1 \cup V_2$, so that each vertex in $G[V_1]$ and each vertex in $G[V_2]$ has even degree. In particular, any graph on n vertices has an even subgraph of order at least n/2.

Proof sketch:

asdf

• What about odd subgraphs?

• What about odd subgraphs?

Theorem (A. Scott - 1992)

Every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq \frac{n}{900\log n}$ and G[W] has all degrees odd.

• What about odd subgraphs?

Theorem (A. Scott - 1992)

Every graph G(V, E) on n vertices, none of which are isolated, contains a set $W \subseteq V(G)$ such that $|W| \ge \frac{n}{900 \log n}$ and G[W] has all degrees odd.

Conjecture (A. Scott - 2001)

There exists some constant c>0 such that every graph G(V,E) on n vertices, none of which are isolated, contains a set $W\subseteq V(G)$ such that $|W|\geq cn$ and G[W] has all degrees odd.