

Next: Bounds on the size Up: Basic concepts of linear Previous: Encoding, Decoding, and Shannon's

Sphere Packing Bound

We start to look at bounds on the size of codes.

Definition 1.11.1 We define $B_q(n, d)$ to be the maximum number of code words in a linear code over \mathbb{F}_q^n of length n and minimum weight d. $A_q(n, d)$ is the maximum number of code words in any arbitrary code over \mathbb{F}_q^n of length n and minimum weight d.

Theorem 1.11.2 Sphere Packing Bound

$$B_q(n,d) \le A_q(n,d) \le rac{q^n}{\displaystyle\sum_{i=0}^t \left(egin{array}{c} n \ i \end{array}
ight) (q-1)^i}$$

where $t = \lfloor \frac{d-1}{2} \rfloor$.

Proof. Let \mathcal{C} be a code over \mathbb{F}_q (possibly nonlinear) of length n and minimum distance d such that \mathcal{C} contains M codewords. By Theorem 1.11.2, the spheres of radius t about these distinct codewords are disjoint. Define

$$\alpha := \sum_{i=0}^{t} \binom{n}{i} (q-1)^{i}.$$

Then, α is the total number of vectors. Then, $M\alpha$ cannot be bigger than the number q^n of vectors in \mathbb{F}_q^n . Hence, we must have

$$M\alpha \leq q^n$$

or

$$B_q(n,d) \le A_q(n,d) \le \frac{q^n}{\alpha}$$

which is precisely the sphere packing bound.

Definition 1.11.3 Let C be a $[n,k,d]_q$ code and $t = \lfloor \frac{d-1}{2} \rfloor$. If the spheres of radius t are pairwise disjoint and their union is the entire space \mathbb{F}_q^n , then the code C is said to be perfect.

Example: 1.12.2 in the book.

We know that $\mathcal{H}_{q,r}$ over \mathbb{F}_q is an [n,k,3] code where $n=(q^r-1)/(q-1)$ and k=n-r (t=1).

Then,

$$\frac{q^n}{\displaystyle\sum_{i=0}^t \binom{n}{i} (q-i)^i} = \frac{q^n}{1+n(q-1)} = \frac{q^n}{q^r} = q^k$$

Hence, the Hamming codes are perfect.

Theorem 1.11.4

- (i) There exist perfect single error-correcting codes over \mathbb{F}_q which are not linear and all codes have parameters corresponding to Hamming codes.
- (ii) The only non-trivial perfect multiple error-correcting codes have the same length, number of codewords, and minimum distance as either the [23, 12, 7] Golay code or the [11, 6, 5] ternary Golay code.
- (iii) Any binary possibly nonlinear code with 2¹² (respectively 3⁶) vectors containing the **0** vector with length 23 (resp. 11) and minimum distance 7 (resp. 5) is equivalent to the [23,12,7] binary (resp. [11,6,5] ternary) Golay code.

Definition 1.11.5 The **covering radius**, $\rho(C)$ (linear code) is the smallest integer s so that \mathbb{F}_q^n is the union of spheres with radius s centered at codewords. Equivalently,

$$\rho(\mathcal{C}) = \max_{\mathbf{x} \in \mathbf{F}_q^n} \min_{\mathbf{c} \in \mathcal{C}} d(\mathbf{x}, \mathbf{c})$$

Note that $\rho(C) \ge t$ and $\rho(C) = t$ if and only if C is perfect

Definition 1.11.6 We say that C is quasi-perfect if $\rho(C) = t + 1$.

Theorem 1.11.7 Let C be linear and H a parity check matrix.

- (i) $\rho(C)$ is the weight of the coset of largest weight.
- (ii) $\rho(C)$ is the smallest number such that every nonzero syndrome is a combination of s or fewer columns of s, i.e., there exists a syndrome requiring s columns.

Theorem 1.11.8 Let $C = [n, k]_q$ code, C^{\dagger} the extension of C, and C^* be the puncturing of C on any coordinate. Then,

- (i) $C = C \oplus C_2 \Leftarrow \rho(C) = \rho(C_1)\rho(C_2)$.
- (ii) $\rho(C^*)$ is either $\rho(C)$ or $\rho(C) 1$.

(iii)

C)
$$\rho$$
 (is either $\rho(C)$ or $\rho(C) + 1$.
If $q = 2$, then $P(C) = \rho(C) + 1$.

(iv) If
$$q = 2$$
, then \mathbb{C}) = $\rho(\mathcal{C}) + 1_L$

(v) Assume $\mathbf x$ is a coset leader of $\mathcal C$. If $\mathbf x' \in \mathbb F_q^n$, all of whose nonzero entries agree with $\mathbf x$, then $\mathbf x'$ is also a coset leader of \mathcal{C} . In particular, if there exists a coset with weight \mathfrak{s} , there exists a coset of any weight less than s.

Proof. Part (iv). Let $\mathbf{x} = (x_1, \dots, x_n)$ be a coset leader; then define $\mathbf{x'} = (x_1, \dots, x_n, 1)$. It is enough to show that \mathbf{x}' is a coset leader. Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathcal{C}$ and $\hat{\mathbf{c}}$ be its extension.

If the weight of **c** is even, then

$$\operatorname{wt}(\hat{\mathbf{c}} + \mathbf{x'}) = \operatorname{wt}(\mathbf{c} + \mathbf{x}) + 1 \ge \operatorname{wt}(\mathbf{x}) + 1$$

where the last inequality is because \mathbf{x} is a coset leader ($\operatorname{wt}(\mathbf{x}) \leq \operatorname{wt}(\mathbf{x} + \mathbf{c})$ for all codewords). If the weight of **c** is odd, then

$$\mathrm{wt}(\hat{\mathbf{c}}+\mathbf{x}')=\mathrm{wt}(\mathbf{c}+\mathbf{x})$$

By Theorem 1.4.3, we get that the $\operatorname{wt}(\mathbf{c} + \mathbf{x})$ is odd if and only if $\operatorname{wt}(\mathbf{x})$ is even. In particular, the $wt(c + x) \neq wt(x)$. Therefore,

$$wt(c + x) > wt(x)$$

and

$$\operatorname{wt}(\hat{\mathbf{c}} + \mathbf{x}') = \operatorname{wt}(\mathbf{c} + \mathbf{x}) \geq \operatorname{wt}(\mathbf{x}) + 1$$

Thus, the

$$\operatorname{wt}(\mathbf{x}') = \operatorname{wt}(\mathbf{x}) + 1 \le \operatorname{wt}(\hat{\mathbf{c}} + \mathbf{x}')$$

for all C $\hat{\mathbf{c}}$ \in $\hat{\cdot}$. Hence, $\mathbf{x'}$ is a coset leader. Λ

Example 1.12.7: Let C be generated by G = [1, 1, 2]. Then,

$$C = \{000, 112, 221\}$$

d = 3, t = 1.

$$|B_1(\mathbf{c})| = \sum_{i=0}^{1} {3 \choose i} 2^i = 1 + 6 = 7$$

However, let $(x_1, x_2, x_3) \in \mathbb{F}_3^3$. Note that each vector is less than two away from an element of \mathcal{C} , so $\rho(\mathcal{C}) = 2$.

Now, let's consider the extension of C, CL. This is generated by $\hat{G} = [1122]$:

$$\mathcal{C} = \{0000, 1122, 2211\}$$

Here, d=4 and t=1. We can tell that C) ≥ 1 ρ (because $\rho(C)=2$. Suppose that (x_1,x_2,x_3,x_4) is not within 2 of 0000 and 1122. By exhaustion, we can see that this cannot happen.

Wednesday, 6-15-2005:

Next: <u>Bounds on the size</u> **Up:** <u>Basic concepts of linear</u> **Previous:** <u>Encoding, Decoding, and Shannon's</u> *Brian Bockelman 2005-06-29*