

www.datascienceacademy.com.br

Matemática Para Machine Learning

Limite Pela Direita e Limite Pela Esquerda

Consideremos uma sucessão que convirja para 3 pela esquerda, por exemplo (2,9; 2,99; 2,999, ...). Nesse caso, como x é menor que 3, a expressão de f(x) é f(x) = x + 2. Assim, temos a seguinte correspondência:

х	f(x)
2,9	4,9
2,99	4,99
2,999	4,999

Percebe-se intuitivamente que, quando x tende a 3 pela esquerda, f(x) tende a 5, e escrevemos:

$$\lim_{x \to 3} f(x) = 5$$

Consideremos uma sucessão que convirja para 3 pela direita, por exemplo (3,1; 3,01; 3,001; ...). Nesse caso, como x é maior que 3, a expressão de f(x) é f(x) = 2x. Assim, temos a seguinte correspondência:

х	f(x)
3,1	6,2
3,01	6,02
3,001	6,002

Percebe-se intuitivamente que, quando x tende a 3 pela direita, f(x) tende a 6, e escrevemos:

$$\lim_{x \to 3^+} f(x) = 6$$

Nesse caso, como os limites laterais existem, mas são diferentes, dizemos que não existe o limite global de f(x) quando x tende a 3. A figura abaixo representa o gráfico dessa função e evidencia os limites laterais.

Referências:

Elements Of The Differential And Integral Calculus por J. M. Taylor