

Search

INTRODUCTION

Installation

Multi-goal API

ENVIRONMENTS

Fetch

Shadow Dexterous Hand

Manipulate Block

Manipulate Block Touch Sensors

Manipulate Egg

Manipulate Egg Touch Sensors

Manipulate Pen

Sensors

Reach

Maze

Adroit Hand

Franka Kitchen

MaMuJoCo (Multi-Agent MuJoCo)

Manipulate Pen Touch

DEVELOPMENT

Github $\ensuremath{\square}$

Release Notes

Manipulate Egg

Description

This environment was introduced in "Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research".

The environment is based on the same robot hand as in the HandReach environment, the Shadow Dexterous Hand. The task to be solved is very similar to that in the HandManipulateBlock environment, but in this case an egg-shaped object is placed on the palm of the hand. The task is to then manipulate the object such that a target pose is achieved. The goal is 7-dimensional and includes the target position (in Cartesian coordinates) and target rotation (in quaternions). In addition, variations of this environment can be used with increasing levels of difficulty:

- HandManipulateEggRotate-v1: Random target rotation for all axes of the egg. No target position.
- HandManipulateEggFull-v1: Random target rotation for all axes of the egg. Random target position.

Action Space

The action space is a Box(-1.0, 1.0, (20,), float32). The control actions are absolute angular positions of the actuated joints (non-coupled). The input of the control actions is set to a range between -1 and 1 by scaling the actual actuator angle ranges. The elements of the action array are the following:

Num	Action	Control Min	Control Max	Angle Min	Angle Max	corresponding XML file)	Joint	
0	Angular position of the horizontal wrist joint (radial/ulnar deviation)	-1	1	-0.489 (rad)	0.14 (rad)	robot0:A_WRJ1	hinge	
1	Angular position of the horizontal wrist joint (flexion/extension)	-1	1	-0.698 (rad)	0.489 (rad)	robot0:A_WRJ0	hinge	
2	Horizontal angular position of the MCP joint of the forefinger (adduction/abduction)	-1	1	-0.349 (rad)	0.349(rad)	robot0:A_FFJ3	hinge	
3	Vertical angular position of the MCP joint of the forefinger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_FFJ2	hinge	
4	Angular position of the PIP joint of the forefinger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_FFJ1	hinge	
5	Horizontal angular position of the MCP joint of the middle finger (adduction/abduction)	-1	1	-0.349 (rad)	0.349(rad)	robot0:A_MFJ3	hinge	
6	Vertical angular position of the MCP joint of the middle finger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_MFJ2	hinge	
7	Angular position of the PIP joint of the middle finger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_MFJ1	hinge	
8	Horizontal angular position of the MCP joint of the ring finger (adduction/abduction)	-1	1	-0.349 (rad)	0.349(rad)	robot0:A_RFJ3	hinge	
9	Vertical angular position of the MCP joint of the ring finger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_RFJ2	hinge	
10	Angular position of the PIP joint of the ring finger	-1	1	0 (rad)	1.571 (rad)	robot0:A_RFJ1	hinge	
11	Angular position of the CMC joint of the little finger	-1	1	0 (rad)	0.785(rad)	robot0:A_LFJ4	hinge	
12	Horizontal angular position of the MCP joint of the little finger (adduction/abduction)	-1	1	-0.349 (rad)	0.349(rad)	robot0:A_LFJ3	hinge	
13	Vertical angular position of the MCP joint of the little finger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_LFJ2	hinge	
14	Angular position of the PIP joint of the little finger (flexion/extension)	-1	1	0 (rad)	1.571 (rad)	robot0:A_LFJ1	hinge	
15	Horizontal angular position of the CMC joint of the thumb finger	-1	1	-1.047 (rad)	1.047 (rad)	robot0:A_THJ4	hinge	
16	Vertical Angular position of the CMC joint of the thumb finger	-1	1	0 (rad)	1.222 (rad)	robot0:A_THJ3	hinge	
17	Horizontal angular position of the MCP joint of the thumb finger (adduction/abduction)	-1	1	-0.209 (rad)	0.209(rad)	robot0:A_THJ2	hinge	
18	Vertical angular position of the MCP joint of the thumb finger	-1	1	-0.524 (rad)	0.524 (rad)	robot0:A_THJ1	hinge	

Num	Action	Control Min	Control Max	Angle Min	Angle Max	Name (in corresponding XML file)	Joint	U
19	Angular position of the IP joint of the thumb finger (flexion/extension)	-1	1	-1.571 (rad)	0 (rad)	robot0:A_THJ0	hinge	ar (ræ

Observation Space

The observation is a <code>goal-aware observation space</code>. It consists of a dictionary with information about the robot's joint and egg states, as well as information about the goal. The dictionary consists of the following 3 keys:

• Observation: its value is an Indarray of shape (61,). It consists of kinematic information of the egg object and finger joints. The elements of the array correspond to the following:

Num	Observation	Min	Max	corresponding XML file)	Joint Type	Un
0	Angular position of the horizontal wrist joint	-Inf	Inf	robot0:WRJ1	hinge	angle (rad)
1	Angular position of the vertical wrist joint	-Inf	Inf	robot0:WRJ0	hinge	angle (rad)
2	Horizontal angular position of the MCP joint of the forefinger	-Inf	Inf	robot0:FFJ3	hinge	angle (rad)
3	Vertical angular position of the MCP joint of the forefinge	-Inf	Inf	robot0:FFJ2	hinge	angle (rad)
4	Angular position of the PIP joint of the forefinger	-Inf	Inf	robot0:FFJ1	hinge	angle (rad)
5	Angular position of the DIP joint of the forefinger	-Inf	Inf	robot0:FFJ0	hinge	angle (rad)
6	Horizontal angular position of the MCP joint of the middle finger	-Inf	Inf	robot0:MFJ3	hinge	angle (rad)
7	Vertical angular position of the MCP joint of the middle finger	-Inf	Inf	robot0:MFJ2	hinge	angle (rad)
8	Angular position of the PIP joint of the middle finger	-Inf	Inf	robot0:MFJ1	hinge	angle (rad)
9	Angular position of the DIP joint of the middle finger	-Inf	Inf	robot0:MFJ0	hinge	angle (rad)
10	Horizontal angular position of the MCP joint of the ring finger	-Inf	Inf	robot0:RFJ3	hinge	angle (rad)
11	Vertical angular position of the MCP joint of the ring finger	-Inf	Inf	robot0:RFJ2	hinge	angle (rad)
12	Angular position of the PIP joint of the ring finger	-Inf	Inf	robot0:RFJ1	hinge	angle (rad)
13	Angular position of the DIP joint of the ring finger	-Inf	Inf	robot0:RFJ0	hinge	angle (rad)
14	Angular position of the CMC joint of the little finger	-Inf	Inf	robot0:LFJ4	hinge	angle (rad)
15	Horizontal angular position of the MCP joint of the little finger	-Inf	Inf	robot0:LFJ3	hinge	angle (rad)
16	Vertical angular position of the MCP joint of the little finger	-Inf	Inf	robot0:LFJ2	hinge	angle (rad)
17	Angular position of the PIP joint of the little finger	-Inf	Inf	robot0:LFJ1	hinge	angle (rad)
18	Angular position of the DIP joint of the little finger	-Inf	Inf	robot0:LFJ0	hinge	angle (rad)
19	Horizontal angular position of the CMC joint of the thumb finger	-Inf	Inf	robot0:THJ4	hinge	angle (rad)
20	Vertical Angular position of the CMC joint of the thumb finger	-Inf	Inf	robot0:THJ3	hinge	angle (rad)
21	Horizontal angular position of the MCP joint of the thumb finger	-Inf	Inf	robot0:THJ2	hinge	angle (rad)
22	Vertical angular position of the MCP joint of the thumb finger	-Inf	Inf	robot0:THJ1	hinge	angle (rad)
23	Angular position of the IP joint of the thumb finger	-Inf	Inf	robot0:THJ0	hinge	angle (rad)
24	Angular velocity of the horizontal wrist joint	-Inf	Inf	robot0:WRJ1	hinge	veloci (rad/s
25	Angular velocity of the vertical wrist joint	-Inf	Inf	robot0:WRJ0	hinge	angula veloci (rad/s
26	Horizontal angular velocity of the MCP joint of the forefinger	-Inf	Inf	robot0:FFJ3	hinge	angula veloci (rad/s
27	Vertical angular velocity of the MCP joint of the forefinge	-Inf	Inf	robot0:FFJ2	hinge	angula veloci (rad/s
28	Angular velocity of the PIP joint of the forefinger	-Inf	Inf	robot0:FFJ1	hinge	angula veloci (rad/s
29	Angular velocity of the DIP joint of the forefinger	-Inf	Inf	robot0:FFJ0	hinge	angula veloci (rad/s
30	Horizontal angular velocity of the MCP joint of the middle finger	-Inf	Inf	robot0:MFJ3	hinge	angula veloci (rad/s
31	Vertical angular velocity of the MCP joint of the middle finger	-Inf	Inf	robot0:MFJ2	hinge	angula veloci (rad/s

Num	Observation	Min	Max	Joint Name (in corresponding XML file)	Joint Type	Unit
32	Angular velocity of the PIP joint of the middle finger	-Inf	Inf	robot0:MFJ1	hinge	angular velocity (rad/s)
33	Angular velocity of the DIP joint of the middle finger	-Inf	Inf	robot0:MFJ0	hinge	angular velocity (rad/s)
34	Horizontal angular velocity of the MCP joint of the ring finger	-Inf	Inf	robot0:RFJ3	hinge	angular velocity (rad/s)
35	Vertical angular velocity of the MCP joint of the ring finger	-Inf	Inf	robot0:RFJ2	hinge	angular velocity (rad/s)
36	Angular velocity of the PIP joint of the ring finger	-Inf	Inf	robot0:RFJ1	hinge	angular velocity (rad/s)
37	Angular velocity of the DIP joint of the ring finger	-Inf	Inf	robot0:RFJ0	hinge	angular velocity (rad/s)
38	Angular velocity of the CMC joint of the little finger	-Inf	Inf	robot0:LFJ4	hinge	angular velocity (rad/s)
39	Horizontal angular velocity of the MCP joint of the little finger	-Inf	Inf	robot0:LFJ3	hinge	angular velocity (rad/s)
40	Vertical angular velocity of the MCP joint of the little finger	-Inf	Inf	robot0:LFJ2	hinge	angular velocity (rad/s)
41	Angular velocity of the PIP joint of the little finger	-Inf	Inf	robot0:LFJ1	hinge	angular velocity (rad/s)
42	Angular velocity of the DIP joint of the little finger	-Inf	Inf	robot0:LFJ0	hinge	angular velocity (rad/s)
43	Horizontal angular velocity of the CMC joint of the thumb finger	-Inf	Inf	robot0:THJ4	hinge	angular velocity (rad/s)
44	Vertical Angular velocity of the CMC joint of the thumb finger	-Inf	Inf	robot0:THJ3	hinge	angular velocity (rad/s)
45	Horizontal angular velocity of the MCP joint of the thumb finger	-Inf	Inf	robot0:THJ2	hinge	angular velocity (rad/s)
46	Vertical angular position of the MCP joint of the thumb finger	-Inf	Inf	robot0:THJ1	hinge	angular velocity (rad/s)
47	Angular velocity of the IP joint of the thumb finger	-Inf	Inf	robot0:THJ0	hinge	angular velocity (rad/s)
48	Linear velocity of the egg in x direction	-Inf	Inf	object:joint	free	velocity (m/s)
49	Linear velocity of the egg in y direction	-Inf	Inf	object:joint	free	velocity (m/s)
50	Linear velocity of the egg in z direction	-Inf	Inf	object:joint	free	velocity (m/s)
51	Angular velocity of the egg in x axis	-Inf	Inf	object:joint	free	angular velocity (rad/s)
52	Angular velocity of the egg in y axis	-Inf	Inf	object:joint	free	velocity (rad/s)
53	Angular velocity of the egg in z axis	-Inf	Inf	object:joint	free	angular velocity (rad/s)
54	Position of the egg in the x coordinate	-Inf	Inf	object:joint	free	position (m)
55	Position of the egg in the y coordinate	-Inf	Inf	object:joint	free	position (m)
56	Position of the egg in the z coordinate	-Inf	Inf	object:joint	free	position (m)
57	w component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-
58	x component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-
59	y component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-

I	Num	Observation	Min	Max	Joint Name (in corresponding XML file)	Joint Type	Unit
(60	z component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-

• desired_goal: this key represents the final goal to be achieved. In this environment it is a 7-dimensional ndarray, (7,), that consists of the pose information of the egg. The elements of the array are the following:

Num	Observation	Min	Max	Joint Name (in corresponding XML file)	Joint Type	Unit
0	Target x coordinate of the egg	-Inf	Inf	target:joint	free	position (m)
1	Target y coordinate of the egg	-Inf	Inf	target:joint	free	position (m)
2	Target z coordinate of the egg	-Inf	Inf	target:joint	free	position (m)
3	Target w component of the quaternion orientation of the egg	-Inf	Inf	target:joint	free	-
4	Target x component of the quaternion orientation of the egg	-Inf	Inf	target:joint	free	-
5	Target y component of the quaternion orientation of the egg	-Inf	Inf	target:joint	free	-
6	Target z component of the quaternion orientation of the egg	-Inf	Inf	target:joint	free	-

• achieved_goal: this key represents the current state of the egg, as if it would have achieved a goal. This is useful for goal orientated learning algorithms such as those that use Hindsight Experience Replay (HER). The value is an Indarray with shape (7,). The elements of the array are the following:

Num	Observation	Min	Max	Joint Name (in corresponding XML file)	Joint Type	Unit
0	Current x coordinate of the egg	-Inf	Inf	object:joint	free	position (m)
1	Current y coordinate of the egg	-Inf	Inf	object:joint	free	position (m)
2	Current z coordinate of the egg	-Inf	Inf	object:joint	free	position (m)
3	Current w component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-
4	Current x component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-
5	Current y component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-
6	Current z component of the quaternion orientation of the egg	-Inf	Inf	object:joint	free	-

Rewards

The reward can be initialized as sparse or dense:

- sparse: the returned reward can have two values: -1 if the egg hasn't reached its final target pose, and 0 if the egg is in its final target pose. The egg is considered to have reached its final goal if the theta angle difference (theta angle of the 3D axis angle representation is less than 0.1 and if the Euclidean distance to the target position is also less than 0.01 m.
- *dense*: the returned reward is the negative summation of the Euclidean distance to the egg's target and the theta angle difference to the target orientation. The positional distance is multiplied by a factor of 10 to avoid being dominated by the rotational difference.

To initialize this environment with one of the mentioned reward functions the type of reward must be specified in the id string when the environment is initialized. For sparse reward the id is the default of the environment, HandManipulateEgg-v1. However, for dense reward the id must be modified to HandManipulateEggDense-v1 and initialized as follows:

```
import gymnasium as gym
env = gym.make('HandManipulateEgg-v1')
```

The rest of the id's of the other environment variations follow the same convention to select between a sparse or dense reward function.

Starting State

When the environment is reset the joints of the hand are initialized to their resting position with a 0 displacement. The egg's position and orientation are randomly selected. The initial position is set to (x,y,z)=(1,0.87,0.2) and an offset is added to each coordinate sampled from a normal distribution with 0 mean and 0.005 standard deviation. While the initial orientation is set to (w,x,y,z)=(1,0,0,0) and an axis is randomly selected depending on the environment variation to add an angle offset sampled from a uniform distribution with range [-pi, pi].

The target pose of the egg is obtained by adding a random offset to the initial egg pose. For the position the offset is sampled from a uniform distribution with range $[(x_min, x_max), (y_min, y_max), (z_min, z_max)] = [(-0.04, 0.04), (-0.06, 0.02), (0.0, 0.06)]$. The orientation offset is sampled from a uniform distribution with range [-pi,pi] and added to one of the Euler axis depending on the environment variation.

Episode End

The episode will be truncated when the duration reaches a total of max_episode_steps which by default is set to 50 timesteps. The episode is never terminated since the task is continuing with infinite horizon.

Arguments

To increase/decrease the maximum number of timesteps before the episode is truncated the max_episode_steps argument can be set at initialization. The default value is 50. For example, to increase the total number of timesteps to 100 make the environment as follows:

```
import gymnasium as gym
env = gym.make('HandManipulateEgg-v1', max_episode_steps=100)
```

The same applies for the other environment variations.

Version History

- v1: the environment depends on the newest <u>mujoco python bindings</u> maintained by the MuJoCo team in Deepmind.
- v0: the environment depends on mujoco_py which is no longer maintained.

Copyright © 2023 Farama Foundation