ОБРАЗЕЦ ЗАДАНИЙ ДЛЯ ЛР №1

Пример 1. При изменении диаметра валика после шлифовки была получена следующая выборка (объема n = 55):

20,3	15,4	17,2	19,2	23,3	18,1	21,9
15,3	16,8	13,2	20,4	16,5	19,7	20,5
14,3	20,1	16,8	14,7	20,8	19,5	15,3
19,3	17,8	16,2	15,7	22,8	21,9	12,5
10,1	21,1	18,3	14,7	14,5	18,1	18,4
13,9	19,8	18,5	20,2	23,8	16,7	20,4
19,5	17,2	19,6	17,8	21,3	17,5	19,4
17,8	13,5	17,8	11,8	18,6	19,1	_

Необходимо построить интервальный вариационный ряд, состоящий из семи интервалов, построить гистограмму относительных частот выборочной совокупности.

Решение:

Так как наибольшая варианта равна 23,8, а наименьшая 10,1, то вся выборка попадает в интервал (10, 24). Для удобства вычислений расширим интервал (10,1; 23,8). Длина каждого частичного интервала равна $\frac{24-10}{7}=2$.

Получаем следующие семь интервалов:

а соответствующий интервальный вариационный ряд представлен в таблице.

X	10-12	12-14	14–16	16-18	18-20	20-22	22-24
ω_i	2/55	4/55	8/55	12/55	15/55	11/55	3/55

Используя полученный интервальный вариационный ряд, находим высоты y_i по формуле $y_i = \omega_i/h$. График построенной гистограммы приведен на рисунке. Здесь же штриховой линией отмечен предполагаемый график неизвестной плотности $f^*(x)$.

Пример 2. Путем опроса получены следующие данные (n=80):

(n-60).		
2 4 2 4 3 3 3 2 0 6	1 2 3 2 2 4 3 3 5 1	0 2 4 3 2 2 3 3 1 3
3 3 1 1 2 3 1 4 3 1	7 4 3 4 2 3 2 3 3 1	4314534245
3641324131	0046474135	

- 1. Составить статистическое распределение выборки, предварительно записав дискретный вариационный ряд.
 - 2. Построить полигон относительных частот.
 - 3. Составить ряд распределения относительных частот.
 - 4. Составить эмпирическую функцию распределения.
 - 5. Построить график эмпирической функции распределения.
 - 6. Найти основные числовые характеристики вариационного ряда:
 - выборочное среднее \overline{x}_{g} ;
 - выборочную дисперсию $D_{\mathfrak{s}}$;
 - выборочное среднее квадратическое отклонение σ_ε;
 - коэффициент вариации $V_{\mathfrak{g}}$.
 - 7. Пояснить смысл полученных результатов.

Решение:

 Для составления дискретного вариационного ряда отсортируем данные опроса по величине и расположим их в порядке возрастания:

Более компактно эти данные можно представить в виде статистического распределения выборки.

x_i	0	1	2	3	4	5	6	7
n_i	4	13	14	24	16	4	3	2

3. Изобразим полигон относительных частот вариационного ряда.

2. Для построения полигона частот найдем относительные и накопленные частоты.

x_i	n_i	Относительные	Накопленные частоты		
0	4	0,050	0,050		
1	13	0,163	0,213		
2	14	0,175	0,388		
3	24	0,300	0,688		
4	16	0,200	0,888		
5	4	0,050	0,938		
6	3	0,038	0,975		
7	2	0,025	1,000		
Σ	80	1	_		

4. Эмпирическую функцию распределения найдем, используя накопленные частоты:

$$F^*(x) = \begin{cases} 0; & x \le 0, \\ 0,05; & 0 < x \le 1, \\ 0,213, & 1 < x \le 2, \\ 0,388, & 2 < x \le 3, \\ 0,688, & 3 < x \le 4, \\ 0,888, & 4 < x \le 5, \\ 0,938, & 5 < x \le 6, \\ 0,975, & 6 < x \le 7, \\ 1, & x > 7. \end{cases}$$

5. Построим график эмпирической функции распределения, используя значения, полученные в п. 4.

6. Найдем основные числовые характеристики вариационного ряда.

Для нахождения выборочного среднего $\overline{x}_{s}=\frac{\sum\limits_{i=1}^{m}x_{i}n_{i}}{n}$ и выбороч-

ной дисперсии
$$D_{6}=rac{\sum\limits_{i=1}^{m}(x_{i}-\overline{x}_{B}\,)^{2}\,n_{i}}{n}$$
 составим таблицу:

x_i	$n_{\rm i}$	$x_i n_i$	$\left(x_i - \overline{x}_e\right)^2$	$\left(x_i - \overline{x}_{\varepsilon}\right)^2 n_i$
0	4	0	8,1796	32,7184
1	13	13	3,4596	44,9748
2	14	28	0,7396	10,3544
3	24	72	0,0196	0,4704
4	16	64	1,2996	20,7936
5	4	20	4,5796	18,3184
6	3	18	9,8596	29,5788
7	2	14	17,1396	34,2792
Сумма	80	229	_	191,488

Используя таблицу, находим:

• Выборочную среднюю
$$\overline{x}_{g} = \frac{\sum\limits_{i=1}^{m} x_{i} n_{i}}{n} = \frac{229}{80} \approx 2,86.$$

• Выборочную дисперсию

$$D_{e} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x}_{B})^{2} n_{i}}{n} = \frac{191,488}{80} = 2,39.$$

• Выборочное среднее квадратическое отклонение

$$\sigma_{e} = \sqrt{D_{e}} = \sqrt{2,39} \approx 1,55$$
.

• Коэффициент вариации
$$V_{\epsilon} = \frac{\sigma_{\epsilon}}{\overline{x}_{\epsilon}} \cdot 100 \% = \frac{1,55}{2,86} \cdot 100 \% \approx 54,2 \%$$
.

7. Смысл полученных результатов заключается в том, что величина $\overline{x}_{s}\approx 2,\!86$ характеризует среднее значение признака X, т. е. среднее значение составило 2,86. Среднее квадратическое отклонение $\sigma_{s}(X)$ описывает абсолютный разброс значений показателя X и в данном случае составляет $\sigma_{s}(X)\approx 1,\!55$. Коэффициент вариации V_{s} характеризует относительную изменчивость показателя X, т. е. относительный разброс вокруг его среднего значения \overline{x}_{s} , и в данном случае составляет $V\approx 54,2\,\%$.

Пример 3. Для данных о количестве пациентов кардиологического отделения Демидовской больницы (пример 2 п. 1.2.3.) требуется найти основные числовые характеристики вариационного ряда:

- выборочное среднее \overline{x}_{s} ;
- выборочную дисперсию $D_{\mathfrak{s}}$;
- выборочное среднее квадратическое отклонение σ_ε;
- коэффициент вариации $V_{\mathfrak{s}}$.

Решение:

Для нахождения числовых характеристик построим дискретный ряд распределения.

X	10	22	34	46	58	70	82	94
n_i	5	8	16	20	24	14	7	6
ω_i	0,05	0,08	0,16	0,2	0,24	0,14	0,07	0,06

Тогда

$$\begin{split} \overline{x}_{e} &= 10 \cdot 0.05 + 22 \cdot 0.08 + 34 \cdot 0.16 + 46 \cdot 0.2 + 58 \cdot 0.24 + 70 \cdot 0.14 + \\ &\quad + 82 \cdot 0.07 + 94 \cdot 0.06 = 51.85. \\ \overline{x}_{e}^{2} &= 10^{2} \cdot 0.05 + 22^{2} \cdot 0.08 + 34^{2} \cdot 0.16 + 46^{2} \cdot 0.2 + 58^{2} \cdot 0.24 + 70^{2} \cdot 0.14 + \\ &\quad + 82^{2} \cdot 0.07 + 94^{2} \cdot 0.06 = 2729.68. \\ D_{e} &= 2729.68 - (51.52)^{2} \approx 75.37; \qquad \sigma_{e} &= \sqrt{75.37} \approx 8.68. \end{split}$$

Выборочный коэффициент вариации

$$V_{e} = \frac{\sigma_{e}}{\overline{x}_{e}} \cdot 100 \% = \frac{8,68}{51,85} \cdot 100 \% \approx 16,74 \%,$$

т. е. выборка некомпактна.