$12a_{0859} \ (K12a_{0859})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -6396631669231u^{40} + 14505431853193u^{39} + \dots + 4256439997929b - 11189757056882, \\ -1233760383109u^{40} + 3011254162855u^{39} + \dots + 608062856847a - 1195143358109, \\ u^{41} - 2u^{40} + \dots + 5u + 1 \rangle$$

$$I_2^u = \langle b + 1, \ a - u + 1, \ u^2 - u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 43 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -6.40 \times 10^{12} u^{40} + 1.45 \times 10^{13} u^{39} + \dots + 4.26 \times 10^{12} b - 1.12 \times 10^{13}, \ -1.23 \times 10^{12} u^{40} + 3.01 \times 10^{12} u^{39} + \dots + 6.08 \times 10^{11} a - 1.20 \times 10^{12}, \ u^{41} - 2u^{40} + \dots + 5u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2.02900u^{40} - 4.95221u^{39} + \dots + 15.4220u + 1.96549 \\ 1.50281u^{40} - 3.40788u^{39} + \dots + 11.3789u + 2.62890 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.644891u^{40} - 0.202904u^{39} + \dots - 3.45077u + 0.277543 \\ -1.08688u^{40} - 0.397073u^{39} + \dots + 2.94691u + 0.644891 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 3.70468u^{40} - 8.56110u^{39} + \dots + 27.1650u + 4.70761 \\ -0.0447870u^{40} - 1.39889u^{39} + \dots + 9.37521u + 1.50458 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 3.76543u^{40} - 8.75980u^{39} + \dots + 26.5272u + 5.57736 \\ 0.0237411u^{40} - 1.60020u^{39} + \dots + 9.41064u + 1.56557 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{41} - 7u^{40} + \dots + 20u + 4$
c_2, c_5	$u^{41} + 3u^{40} + \dots + 14u - 1$
<i>c</i> ₃	$u^{41} + 2u^{40} + \dots - 7931u + 3953$
c_4	$u^{41} + 4u^{40} + \dots + 197u - 19$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$u^{41} + 2u^{40} + \dots + 5u - 1$
<i>c</i> 9	$u^{41} - 2u^{40} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} + 15y^{40} + \dots + 104y - 16$
c_2, c_5	$y^{41} - 35y^{40} + \dots + 102y - 1$
<i>c</i> ₃	$y^{41} - 12y^{40} + \dots - 126297725y - 15626209$
C_4	$y^{41} - 56y^{40} + \dots + 33831y - 361$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$y^{41} - 60y^{40} + \dots + 3y - 1$
c_9	$y^{41} + 4y^{40} + \dots + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.650909 + 0.546359I		
a = -0.342020 + 0.264851I	5.06652 + 0.73720I	15.9081 - 0.1824I
b = 0.419018 - 0.668068I		
u = -0.650909 - 0.546359I		
a = -0.342020 - 0.264851I	5.06652 - 0.73720I	15.9081 + 0.1824I
b = 0.419018 + 0.668068I		
u = 0.698668 + 0.479441I		
a = 0.153099 - 0.435306I	5.52631 + 8.23953I	13.0991 - 8.0874I
b = -0.188432 + 1.146320I		
u = 0.698668 - 0.479441I		
a = 0.153099 + 0.435306I	5.52631 - 8.23953I	13.0991 + 8.0874I
b = -0.188432 - 1.146320I		
u = -0.814283		
a = 0.0171192	1.28070	6.70620
b = -0.681057		
u = 1.247790 + 0.069918I		
a = 0.862844 + 1.105030I	6.66501 + 1.00107I	0
b = -0.437368 - 0.248810I		
u = 1.247790 - 0.069918I		
a = 0.862844 - 1.105030I	6.66501 - 1.00107I	0
b = -0.437368 + 0.248810I		
u = 1.28100		
a = -3.02459	8.47175	0
b = 2.36170		
u = -1.290140 + 0.118342I		
a = 0.175331 - 1.312220I	6.85332 - 5.09177I	0
b = -0.325850 - 0.263604I		
u = -1.290140 - 0.118342I		
a = 0.175331 + 1.312220I	6.85332 + 5.09177I	0
b = -0.325850 + 0.263604I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.328540 + 0.037966I		
a = 0.004954 - 0.826516I	10.93780 - 2.08245I	0
b = 1.188080 - 0.254233I		
u = -1.328540 - 0.037966I		
a = 0.004954 + 0.826516I	10.93780 + 2.08245I	0
b = 1.188080 + 0.254233I		
u = 0.659491 + 0.101039I		
a = 1.78864 + 0.62056I	4.32500 + 1.61112I	18.8008 - 4.7797I
b = -0.599129 - 0.924522I		
u = 0.659491 - 0.101039I		
a = 1.78864 - 0.62056I	4.32500 - 1.61112I	18.8008 + 4.7797I
b = -0.599129 + 0.924522I		
u = 0.576581 + 0.288116I		
a = -0.354068 + 1.004510I	0.71083 + 3.70513I	10.09368 - 9.17012I
b = 0.372702 - 1.123810I		
u = 0.576581 - 0.288116I		
a = -0.354068 - 1.004510I	0.71083 - 3.70513I	10.09368 + 9.17012I
b = 0.372702 + 1.123810I		
u = -0.043590 + 0.639393I		
a = 1.046310 - 0.645722I	3.26424 - 4.59923I	10.62501 + 5.19359I
b = 0.0798501 + 0.0811079I		
u = -0.043590 - 0.639393I		
a = 1.046310 + 0.645722I	3.26424 + 4.59923I	10.62501 - 5.19359I
b = 0.0798501 - 0.0811079I		
u = -1.344360 + 0.232182I		
a = -0.353369 + 1.278910I	12.2007 - 10.7908I	0
b = -0.006247 - 0.161367I		
u = -1.344360 - 0.232182I		
a = -0.353369 - 1.278910I	12.2007 + 10.7908I	0
b = -0.006247 + 0.161367I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.348660 + 0.276814I		
a = -0.414645 - 0.555057I	11.56960 + 2.23576I	0
b = -0.165637 - 0.010708I		
u = 1.348660 - 0.276814I		
a = -0.414645 + 0.555057I	11.56960 - 2.23576I	0
b = -0.165637 + 0.010708I		
u = -0.497845 + 0.153887I		_
a = -0.345928 - 0.229979I	0.963123 - 0.222847I	11.33687 + 1.79100I
b = -0.477639 + 0.446316I		
u = -0.497845 - 0.153887I		
a = -0.345928 + 0.229979I	0.963123 + 0.222847I	11.33687 - 1.79100I
b = -0.477639 - 0.446316I		
u = -0.503963		
a = 4.08982	2.49303	-73.8380
b = 2.61045		
u = 0.041427 + 0.380391I		
a = -1.47501 + 1.25938I	-0.87754 - 1.43971I	1.57134 + 2.80893I
b = 0.223887 + 0.085512I		
u = 0.041427 - 0.380391I		
a = -1.47501 - 1.25938I	-0.87754 + 1.43971I	1.57134 - 2.80893I
b = 0.223887 - 0.085512I		
u = 1.66053		
a = 0.443601	10.1068	0
b = -0.446168		
u = -0.150168 + 0.199500I		
a = -3.03352 + 0.19155I	1.94826 - 0.63992I	4.80549 - 1.01730I
b = -0.797576 + 0.621794I		
u = -0.150168 - 0.199500I		
a = -3.03352 - 0.19155I	1.94826 + 0.63992I	4.80549 + 1.01730I
b = -0.797576 - 0.621794I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.80288 + 0.01775I		
a = -0.75332 + 2.11781I	17.9481 - 1.4034I	0
b = 1.72917 - 4.38308I		
u = -1.80288 - 0.01775I		
a = -0.75332 - 2.11781I	17.9481 + 1.4034I	0
b = 1.72917 + 4.38308I		
u = -1.81126		
a = 2.44844	-19.5212	0
b = -5.97707		
u = 1.81283 + 0.02856I		
a = 0.40071 - 2.86621I	18.3589 + 5.7706I	0
b = -0.63518 + 5.58995I		
u = 1.81283 - 0.02856I		
a = 0.40071 + 2.86621I	18.3589 - 5.7706I	0
b = -0.63518 - 5.58995I		
u = 1.82183 + 0.00897I		
a = -1.28360 - 2.01039I	-16.7931 + 2.3034I	0
b = 1.99257 + 3.92606I		
u = 1.82183 - 0.00897I		
a = -1.28360 + 2.01039I	-16.7931 - 2.3034I	0
b = 1.99257 - 3.92606I		
u = 1.82503 + 0.05956I		
a = 0.04404 + 2.55326I	-15.5464 + 12.1966I	0
b = -0.10800 - 5.18854I		
u = 1.82503 - 0.05956I		
a = 0.04404 - 2.55326I	-15.5464 - 12.1966I	0
b = -0.10800 + 5.18854I		
u = -1.82989 + 0.06825I		
a = 0.39236 - 1.61771I	-16.1413 - 3.8895I	0
b = -0.69814 + 3.25968I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.82989 - 0.06825I		
a = 0.39236 + 1.61771I	-16.1413 + 3.8895I	0
b = -0.69814 - 3.25968I		

II.
$$I_2^u = \langle b+1, \ a-u+1, \ u^2-u-1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2u - 2 \\ -u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 21

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	u^2
c_2	$(u+1)^2$
c_3, c_4, c_6 c_7, c_8, c_9	u^2-u-1
c_5	$(u-1)^2$
c_{10}, c_{11}, c_{12}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	y^2
c_2, c_5	$(y-1)^2$
c_3, c_4, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -1.61803	2.63189	21.0000
b = -1.00000		
u = 1.61803		
a = 0.618034	10.5276	21.0000
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^2(u^{41} - 7u^{40} + \dots + 20u + 4)$
c_2	$((u+1)^2)(u^{41}+3u^{40}+\cdots+14u-1)$
<i>c</i> 3	$(u^2 - u - 1)(u^{41} + 2u^{40} + \dots - 7931u + 3953)$
c_4	$(u^2 - u - 1)(u^{41} + 4u^{40} + \dots + 197u - 19)$
<i>C</i> ₅	$((u-1)^2)(u^{41} + 3u^{40} + \dots + 14u - 1)$
c_6, c_7, c_8	$(u^2 - u - 1)(u^{41} + 2u^{40} + \dots + 5u - 1)$
<i>c</i> 9	$(u^2 - u - 1)(u^{41} - 2u^{40} + \dots - u + 1)$
c_{10}, c_{11}, c_{12}	$(u^2 + u - 1)(u^{41} + 2u^{40} + \dots + 5u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^2(y^{41} + 15y^{40} + \dots + 104y - 16)$
c_2, c_5	$((y-1)^2)(y^{41} - 35y^{40} + \dots + 102y - 1)$
<i>c</i> ₃	$(y^2 - 3y + 1)(y^{41} - 12y^{40} + \dots - 1.26298 \times 10^8 y - 1.56262 \times 10^7)$
C4	$(y^2 - 3y + 1)(y^{41} - 56y^{40} + \dots + 33831y - 361)$
c_6, c_7, c_8 c_{10}, c_{11}, c_{12}	$(y^2 - 3y + 1)(y^{41} - 60y^{40} + \dots + 3y - 1)$
<i>c</i> 9	$(y^2 - 3y + 1)(y^{41} + 4y^{40} + \dots + 3y - 1)$