Word Embeddings

Applied Text Mining

Dr. Maryam Movahedifar 14–17 July 2025

University of Bremen, Germany movahedm@uni-bremen.de

Outline

Introduction to Word Representations

Vector Space Models

Word embeddings

Evaluation

Biases in word embeddings

Application: analysis of semantic change

Contextual word embeddings

Introduction to Word

Representations

What is NLP and Why Represent Words?

- NLP enables tasks like summarization, translation, and classification.
- Key challenge: How do we represent the meaning of words computationally?
- Use cases:
 - Compute similarity between words (e.g., cat vs. dog)
 - Understand documents and sentences

Traditional Dictionaries

WordNet

bank Noun

- bank (sloping land near water) "they pulled the canoe up on the bank"; "he sat on the bank of th
- Depository financial i holds the mortgage o

• ..

Unfortunately, dictionaries and knowledge bases are hard to maintain and have limited coverage

Verb

- bank (tip laterally) –
- bank (do business wi

•

ft"

in this town?"

t the bank": "that bank

https://wordnet.princeton.edu

Vector Space Models

Vector Representations

2D space: vectors $\vec{a} = [5, 5]$, $\vec{b} = [2, 1]$

3D space: $\vec{a} = [2, 4, 3]$ (scaled here)

Words as Vectors

Key idea: Represent words as vectors to capture meaning.

- Similar words have similar vectors—close together in space.
- Vector representations should:
 - Capture meaning (semantics)
 - Reflect relationships (e.g., analogies)
 - Be efficient and interpretable
- Example vectors: cat = [0.5, 0.8, ...], dog = [0.3, 0.7, ...]
- Cosine similarity measures how close vectors are.

Similarity Example (SimLex-999)

```
smart vs. intelligent \rightarrow 9.2 (very similar) (0 = not similar, 10 = very similar) easy vs. big \rightarrow 1.12 (not similar)
```

How Are Word Vectors Used?

In Neural Networks

- Text classification
- Sequence tagging
- Machine translation

As Research Objects

- Word meaning
- Semantic change
- Language variation

cat	0.52	0.48	-0.01	 0.28
dog	0.32	0.42	-0.09	 0.78

Cosine similarity helps find similar words: $\mathbf{dog} \to \mathbf{cat}$, cow, horse $\mathbf{car} \to \mathbf{vehicle}$, driver, race

Exercise: Exploring Word Vectors (5 min)

- Go to https://projector.tensorflow.org/
- The site should load the **Word2Vec 10K** vectors by default (check left panel).
- Use the search bar (top right) to explore word neighborhoods:
 - What are the 5 nearest words to cat?
 - What are the 5 nearest words to **computer**?

One-Hot Encoding of Words

What is One-Hot Encoding?

Each word is assigned a unique integer ID. For example, cat (3), dog (5).

The vector representation is mostly zeros, except a 1 at the position of the word's ID.

cat	О	O	1	O	0	0	O
dog	O	O	O	O	1	O	O
car	0	0	O	O	O	O	1

Limitations:

- No semantic meaning: similar words have completely different vectors.
- Very high-dimensional and sparse vectors.
- No relationships or patterns captured between words.

Word embeddings

What Are Word Embeddings?

Word Embeddings: dense, low-dimensional vectors capturing word meanings and relationships.

Key characteristics:

- Map words to continuous vectors (e.g., 100–300 dimensions)
- Similar words have similar vectors (close in vector space)
- Capture semantic and syntactic relationships (e.g., analogies)
- Learned from large text corpora using models like Word2Vec or GloVe

Learning Word Embeddings

Popular models to learn word embeddings include Word2Vec, GloVe, and fastText. These models map words like cat, dog, and tree to dense vectors.

Training Word Embeddings

How can we train a model to learn word meanings?

- **Key idea:** Use text itself as training data a form of self-supervision.
- Train a neural network to predict the next word given previous words (language modeling).
- This approach lets the model learn word meanings and relationships without labeled data.

Exercise: Word Prediction Task

- Yesterday I went to the ?
- A new study has highlighted the positive ?

Question

Which word comes next?

Word2Vec: Training Tasks and Methods (Context-based)

CBOW (Continuous Bag of Words)

Predicts the current word using the surrounding context words.

Example: Given "The cat __ on the mat," predict the missing word.

Skip-gram

Predicts surrounding context words given the current word.

Example: Given "cat," predict words like "the," "sat," "on."

Training Regimes

- Hierarchical Softmax: Uses a tree structure to efficiently compute probabilities, reducing computation for large vocabularies.
- **Negative Sampling:** Samples a small number of "negative" words instead of all, speeding up training.

Word2Vec Overview

Word2Vec: Skip-gram Model and Probability

Goal: Given a target word (e.g., **cat**), predict the surrounding **context words** within a window (e.g., size = 5) in the following example.

The domestic cat is a small, typically furry
$$c_1$$
 c_2 w c_3 c_4 c_5 c_6 c_7

The model learns by computing similarity and converting it to a probability:

- For each word pair (w, c), compute similarity using dot product: $w \cdot c$
- Convert similarity into probability with a sigmoid, which gives the probability that c is a true context word of w:

$$P(+|w,c) = \frac{1}{1 + e^{-w \cdot c}}$$

• The model adjusts vectors to increase this probability for true pairs and decrease it for false ones

fastText: Subword-Level Embeddings

Problem with Word2Vec:

Struggles with rare or unseen words — it treats every word as an atomic unit.

fastText's Solution: Leverage subword information!

Each word = the sum of its character \mathbf{n} - \mathbf{gram} $\mathbf{embeddings}$ + the word itself.

How does it work? Word boundaries are marked with < and >, then split into overlapping character n-grams.

Example: word = where, n = 3

- Character n-grams: <wh, whe, her, ere, re>
- Also includes: <where>

Final Word Embedding:

Sum of all n-gram vectors \rightarrow captures word structure and generalizes better to unseen words.

GloVe: Learning from the Big Picture

What's different about GloVe? Instead of just focusing on local context like Word2Vec, GloVe captures how words relate across the *entire corpus*, using global co-occurrence statistics.

Step 1: Build a word-word co-occurrence matrix

- ullet Each cell counts how often word i appears near word j
- Captures broad patterns, e.g., "ice" co-occurs with "cold," and "fire" with "hot"

Step 2: Train word vectors so that:

$$w_i^{\top} w_j \approx \log(\text{co-occurrence}(i,j))$$

Why it works: Combines meaning and frequency, great for learning analogies and capturing rare word relationships.

Properties of Word Embeddings: Analogies (Conceptual)

We can explore **semantic relationships** in the vector space through analogies:

$$king - man + woman \approx queen$$

This reflects the idea that embeddings capture meaning through geometric patterns. Similar relationships (gender, tense, plural forms) often form consistent vector directions.

Properties of Word Embeddings: Analogies (Numeric Example)

Let's break down the vector arithmetic of an analogy:

$$king - man + woman = queen$$

Step-by-step:

$$king - man = [4, 2] - [1, 6] = [3, -4]$$

$$[3,-4] + \mathsf{woman} = [3,-4] + [4,8] = [7,4] \approx \mathsf{queen}$$

 \Rightarrow The vectors used:

- king = [4, 2]
- man = [1, 6]
- woman = [4, 8]

Evaluation

Intrinsic Evaluation: How Good Are Our Embeddings?

Goal: Test embeddings directly before plugging them into full tasks. These are quick checks to see what kind of information the vectors capture.

1. Similarity — Do similar words have similar vectors?

Example: "car" and "automobile" should be close together.

How? Compare cosine similarity with human ratings.

2. Analogies — Can the model solve word puzzles?

Example: king - man + woman = queen

How? If the relationships are encoded in the vectors, simple arithmetic should reveal them.

3. Probing Classifiers — What linguistic features are inside?

Example: Can a tiny model guess POS tag from the embedding?

Why? Tests if grammar or syntax info is encoded.

Intrinsic Evaluation: Similarity

Cosine similarity measures the angle between two vectors — not their length:

$$\mathsf{cosine}(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|}$$

Interpretation:

- ullet 1: same direction o high similarity
- 0: orthogonal \rightarrow no relation
- ullet -1: opposite direction o opposite meaning

Why cosine instead of Euclidean distance?

- Cosine focuses on direction, not magnitude
- Word vectors differ in length cosine captures semantic similarity better

Intrinsic Evaluation: Spearman Correlation

To evaluate how well embeddings reflect human intuition, we use **Spearman** correlation:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

Definitions:

- d_i : difference between ranks (human vs model)
- n: number of word pairs

Procedure:

- 1. Collect human similarity scores for word pairs
- 2. Compute cosine similarities from embeddings
- 3. Rank both sets and compute Spearman's ρ

Higher ρ means better alignment with human judgments.

Intrinsic Evaluation: Analogies

Analogies test if embeddings capture semantic and syntactic relationships:

$$king - man + woman \approx queen$$

Procedure:

- Compute vector arithmetic on word embeddings
- Find the closest word vector to the resulting vector
- Evaluate accuracy on benchmark analogy datasets (e.g., Google Analogy Test Set)

Intrinsic Evaluation: Probing Classifiers

Also called diagnostic classifiers

Mostly used to evaluate **sentence embeddings**, but sometimes also for analyzing **word embeddings**.

Caution: Performance might seem high, but the classifier may learn unrelated signals (e.g., word frequency, part-of-speech) instead of the intended linguistic property.

Biases in word embeddings

Biases in Word Embeddings

What is bias?

Bias in word embeddings means unfair associations learned from data — for example, associating the word "doctor" more with "he" and "nurse" more with "she".

Why measure bias?

- Quantify and understand social biases (e.g., gender, race) in embeddings.
- Evaluate effectiveness of bias mitigation methods.
- Examine how NLP models reflect or amplify societal prejudices.
- Reveal societal trends captured in text data.

Common methods: Measure associations between target and attribute words using tests like WEAT or SEAT.

Biases in Word Embeddings: Gender Analogies

We analyze biases by finding **gender analogies** aligned with a *seed direction* (e.g., *she-he*).

Gender-appropriate analogies

queen	king
sister	brother
ovarian cancer	prostate cancer
mother	father
convent	monastery

Goal:

Find word pairs whose vector difference aligns with the gender direction and are semantically close.

Gender-stereotype analogies

nurse	surgeon
sassy	snappy
cupcakes	pizzas
lovely	brilliant
vocalist	guitarist

Application: analysis of semantic

change

Application: Semantic Change Analysis

Goal: Detect how word meanings evolve over time using word embeddings trained on historical corpora.

Method Overview:

- Train embeddings on texts from different time periods (e.g., 1900s vs. 2000s)
- Align embeddings across time using orthogonal Procrustes
- Measure change via cosine distance between word vectors

Applications:

- Track technological shifts: cloud, tablet, mouse
- Study ideological or cultural change in media
- Support historical linguistics and lexicography

Semantic Change: Visual Examples

Examples of meaning change detected via word embeddings.

- Words like *broadcast* and *awful* exhibit strong shifts in meaning over decades.
- 2D projection (e.g., PCA or t-SNE) helps visualize drift in the embedding space.

Semantic Shift: Broadcast & Awful

Tracking Change in Embedding Space

Semantic Change Case Study: glo

Example: Analyzing the emergence of new meaning for the word *glo* using word embeddings.

- glo gained new usage linked to rapper Chief Keef's 2013 track: "Gotta Glo Up One Day".
- Embedding-based methods can detect such emerging senses by measuring shifts over time.

Contextual Word Embeddings

Why Context Matters

Traditional word embeddings assign a *single vector per word type*, regardless of how the word is used. This limitation makes it hard to capture different meanings for words with multiple senses.

Key Idea

Contextual word embeddings generate a unique representation for each **word token** based on its surrounding context — enabling models to capture the precise meaning in every situation.

- Static embeddings (e.g., Word2Vec): One fixed vector per word, ignoring context nuances.
- Contextual embeddings (e.g., BERT): Dynamic vectors that adjust meaning based on context.

Contextual Word Embeddings: BERT

Key idea: Assign a unique embedding to each **word token**, derived from its **context**.

Traditional word embeddings use one vector per word type:

- "He went to the **bank** to deposit a check."
- "She sat by the bank of the river."

Training Objectives:

- Masked Language Modeling (MLM)
- Next Sentence Prediction (NSP)

Programming

Practical