

Probabilités discrètes

Spécialité Maths

Successions d'épreuves indépendantes

Soit n expériences aléatoires modélisées par des probas $P_1, P_2, ..., P_n$ sur des univers $\Omega_1, \Omega_2, ..., \Omega_n$.

Ces n expériences = indépendantes si, \forall expérience, la proba d'une issue ne dépend pas des résultats obtenus lors des expériences précédentes. Supposons ces n expériences comme indépendantes. On peut alors considérer cette succession d'expériences aléatoires comme UNE expérience sur $\Omega = \Omega_1 \times \Omega_2 \times ... \times \Omega_n$ dont l'issue sera un n-uplet : $(x_1, x_2, ..., x_n)$ $\forall (x_1, x_2, ..., x_n) \in \Omega, \quad P((x_1, x_2, ..., x_n)) = P_1(x_1)P_2(x_2)...P_n(x_n)$

Probabilités conditionnelles

Probabilité conditionnelle de l'évènement B sachant que l'évènement A est réa-

lisé:
$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$
 avec $P(A) \neq 0$ et $0 \leqslant P_A(B) \leqslant 1$

Loi des noeuds : $P_A(B) + P_A(\overline{B}) = 1$

Équiprobabilité : $P_A(B) = \frac{\operatorname{card}(A \cap B)}{\operatorname{card}(A)}$

Expérience à deux issues : « succès » S

de probabilité p et « échec » \overline{S} de pro-

P(X = 1) = p et P(X = 0) = 1 - p

	B	\overline{B}	Somme
A	$P(A \cap B)$	$P(A \cap \overline{B})$	P(A)
\overline{A}	$P(\overline{A} \cap B)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
Somme	P(B)	$P(\overline{B})$	1

Probabilités composées : $P(A \cap B) = P(\overline{A}) \times P_A(B) = P(B) \times P_B(A)$

Probabilités totales avec $\{A_1, A_2, ..., A_n\}$ formant une partition de Ω :

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$

$$P(B) = P(A_1)P_{A_1}(B) + P(A_2)P_{A_2}(B) + \dots + P(A_n)P_{A_n}(B)$$

Loi binomiale

Répétition de n épreuves de Bernoulli identiques et indépendantes. X compte le nombre de succès.

Loi binomiale suivie par $X : \mathcal{B}(n; p)$

$$\forall k \in [0; n], P(X = k) = \binom{n}{k} p^k q^{n-k}$$
$$E(X) = np$$

$$E(X) = np$$

$$V(X) = npq$$

$$\sigma(X) = \sqrt{V(X)}$$

Somme de variables aléatoires

 $E_n = (X_1, X_2, ..., X_n)$: échantillon de taille n de variables aléatoires indépendantes suivant une même loi.

Soit
$$S = X_1 + X_2 + ... + X_n$$

$$E(S) = E(X_1) + E(X_2) + \dots + E(X_n)$$

$$V(S) = V(X_1) + V(X_2) + \dots + V(X_n)$$

Soit E_n un échantillon de taille n de $\mathcal{B}(p)$. S suit la loi binomiale $\mathcal{B}(n;p)$.

Schéma de Bernoulli

Arbre de probabilité

 $\sigma(X) = \sqrt{V(X)}$

Épreuve de Bernoulli

Loi de Bernoulli : $\mathcal{B}(p)$

babilité q = 1 - p

E(X) = p

V(X) = pq

 $P_{A}(S) - S$ $P_{A}(S) - S$ $P_{A}(S) - S$ $P_{B}(S) - S$ $P_{B}(S) - S$ $P_{B}(S) - S$ $P_{C}(S) - S$ $P_{C}(S) - S$

probabilités composées

$$-S$$
: $P(A \cap S) = P(A) \times P_A(S)$

$$P(A \cap \overline{S}) = P(A) \times P_A(\overline{S})$$

$$P(B \cap S) = P(B) \times P_B(S)$$

$$P(B \cap \overline{S}) = P(B) \times P_B(\overline{S})$$

$$P(C \cap S) = P(C) \times P_C(S)$$

$$P(C \cap \overline{S}) = P(C) \times P_C(\overline{S})$$

 $P(S) = P(A \cap S) + P(B \cap S) + P(C \cap S)$ $P(\overline{S}) = P(A \cap \overline{S}) + P(B \cap \overline{S}) + P(C \cap \overline{S})$

probabilités totales