$\overline{\mathrm{BMK}}$

Задание 1. Свёрточные автокодировщики для улучшения качества классификации изображений

Курс: Практикум на ЭВМ, весна 2018

Начало выполнения задания: 17 февраля.

Мягкий дедлайн: **1 марта**, **23:59**. Жёсткий дедлайн: **15 марта**, **23:59**.

Дата последнего обновления задания: 17 февраля 2018 г.

Формулировка задания

Данное задание направлено на ознакомление с нейронными сетями и концепцией transfer learning. В задании необходимо:

- 1. Написать на языке Python собственную реализацию свёрточного автокодировщика с произвольным количеством слоёв. Прототипы функций должны строго соответствовать прототипам, описанным в спецификации и проходить все выданные тесты. Задание, не проходящее все выданные тесты, приравнивается к невыполненному. При написании необходимо пользоваться стандартными средствами языка Python, библиотеками numpy, scipy, pytorch, scikit-learn и matplotlib.
- 2. Провести описанные ниже эксперименты на датасете stl-10.
- 3. Написать отчёт о проделанной работе (формат PDF, подготовленный в системе L^AT_EX, или формат html, конвертированный из jupyter-notebook).

1 Ликбез

ToBeDone

Требования реализации

Требуется реализовать класс для свёрточного автокодировщика с заданной спецификацией. Для других сущностей спецификаций не задано.

Исследовательская часть.

Все эксперименты в этом задании проводятся на датасете stl-10. Скачать датасет можно с помощью команды torchvision.datasets.STL10. Необходимо скачать три части датасета: неразмеченную unsupervised, размеченные train и test. Рекомендуется уменьшить изображения перед процедурами обучения (например, до размера 32×32). Значения пикселей всех изображений перед подачей в сеть необходимо перевести в отрезок [-1,1].

Требуется провести следующие исследования:

- 1. Протестируйте на train/test выборках мультиномиальную логистическую регрессию (можно реализовать как однослойную нейронную сеть) и какой-нибудь из методов, основанных на деревьях. В дальнейшем, используйте полученное качество (точность, log loss) в качестве бейзлайна.
- 2. Реализуйте небольшую свёрточную сеть, работающую на train/test выборке. В качестве функции потерь используйте кросс-энтропию. Минимальный размер сети: 1 свёрточный слой, 1 pooling слой, 1 полносвязный слой. Проведите исследования, как влияют на качество и скорость работы сети:
 - размер ядра свёртки (рекомендуется брать небольшие значения, от 2 до 8)
 - количество фильтров на свёрточном слое (достаточно больше значения, от 5 до 40)
 - количество свёрточных блоков (свёрточный слой + pooling) в сети (1, 2 и больше)
 - стратегий использования momentum в методе SGD

Замечание. Обязательно используйте при обучении 12 регуляризацию!

- 3. Реализуйте однослойный (один слой на энкодер, один слой на декодер) свёрточный автокодировщик, обучающийся только по unsupervised части датасета. Подберите параметры, при которых автокодировщик определён корректно (размерность выхода равна размерности входа). Визуализируйте выход автокодировщика для нескольких изображений. Подберите параметры слоёв (padding, strides, функции потерь), при которых достигается хорошее качество работы автокодировщика (низкое значение MSE).
 - **Замечание.** Так как элементы входных массивов находятся в отрезке [-1, 1], элементы на выходе находятся в таких же границах.
- 4. Используйте признаки, выделенные с помощью автоэнкодера, как признаки для моделей из первого пункта. Сравните результаты, полученные после обучения на разных признаковых пространствах, проанализируйте результаты (какой модели преобразование лучше помогло и почему). Сравните результаты обучения с нейросетевой моделью из второго пункта, проанализируйте, помогли ли неразмеченные данные улучшить качество классификации.
- 5. Попробуйте модифицировать процесс обучения нейросети. После обучения автокодировщика, используйте параметры энкодера в качества первых слоёв новой сети. Обучите сеть, добучая в том числе и параметры автокодировщика. Проанализируйте, помогли ли неразмеченные данные улучшить качество классификации.

Бонусная часть

- 1. (до 5 баллов) Используйте автокодировщик из нескольких слоёв (2 и более). Проанализируйте, можно ли с помощью такой архитектуры улучшить качество работы автокодировщика.
 - **Замечание.** Если не удаётся обучить несколько слоёв в единой архитектуре, обучите несколько stackedавтоэнкодеров.
- 2. (до 10 баллов) Реализуйте архитектуру разреженного линейного автокодировщика. Из исходного датасета stl-10 вырежьте небольшие цельные фрагменты размера $3 \times 8 \times 8$, обучите автокодировщик на этих фрагментах. Визуализируйте средние активации нейронов на скрытом слое, сделайте выводы об их форме.
- 3. (до 5 баллов) Проведите 5 эксперимент основного задания с линейным автокодировщиком. Для получения нового признакового описания, используйте свёртку с фильтрами, обученными линейным автокодировщиком.