Estadística Multivariada: Tarea 1.

Ejercicio 1. Demuestre que la matriz de centrado $\mathbf{P} = \mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}'$ cumple las siguientes propiedades:

- Tiene rango (n-1), es decir, tiene n-1 columnas o renglones linealmente independientes
- Sus valores propios son 1 o 0.

Ejercicio 2. Dado los siguientes datos:

Promotora	X ₁ =Duración media hipoteca (años)	X_2 =Precio medio (millones euros)	$X_3 = $ Superficie media (m ²) de cocina
1 2 3	8.7	0.3	3.1
	14.3	0.9	7.4
	18.9	1.8	9.0
4	19.0	0.8	9.4
5	20.5	0.9	8.3
6 7	14.7 18.8 37.3	1.1 2.5 2.7	7.6 12.6 18.1
9	12.6	1.3	5.9
10	25.7	3.4	15.9

- (a) Dibújese el diagrama de dispersión múltiple y coméntese el aspecto del gráfico.
- (b) Para X_1 y X_2 calcúlense, respectivamente, las medias muestrales $\bar{x_1}$ y $\bar{x_2}$, las varianzas muestrales s_{11} y s_{22} , la covarianza entre X_1 y X_2 , s_{12} , y la correlación entre ambas, r_12 . Interprétese el valor obtenido de r_{12} .
- (c) Utilizando la matriz de datos \mathbf{X} y la de centrado \mathbf{P} , calcúlense el vector de medias muestrales $\bar{\mathbf{x}}$ y la matriz de covarianzas muestrales \mathbf{S} . A partir de ésta obténgase la matriz de correlaciones \mathbf{R} .

Ejercicio 3. Considérese la muestra $\mathbf{x}_1, \dots, \mathbf{x}_n$ de vectores de \mathbb{R}^p . Pruébese que la matriz de covarianzas $\mathbf{S} = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})'$, se puede expresar como $\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i' - \bar{\mathbf{x}} \bar{\mathbf{x}}'$.

Ejercicio 4. Considere una población normal bivariada con $\mu_1=0, \ \mu_2=2, \ \sigma_{11}=2, \ \sigma_{22}=1, \ y \ \sigma_{12}=5.$

- (a) Escriba la densidad normal bivariada explicitamente
- (b) Escriba la expresión de distancia cuadrada generalizada $(\mathbf{x} \mu)' \mathbf{\Sigma}^{-1} (\mathbf{x} \mu)$ como función de x_1 y x_2

- (c) Determine y grafique el contorno de densidad constante que contiene el $50\,\%$ de la probabilidad.
- (d) Especifique la distribución condicional de X_1 dado que $X_2 = x_2$.

Ejercicio 5. Sea X un vector aleatorio de distribución normal con media $\mu = (-1, 1, 0)'$ y matriz de covarianzas

$$\mathbf{\Sigma} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

- (a) Hállese la distribución de $X_1 + 2X_2 3X_3$.
- (b) Hállese un vector $\mathbf{a}_{(2\times 1)}$ tal que las variables X_1 y $X_1-\mathbf{a}'\left(\begin{array}{c}X_2\\X_3\end{array}\right)$ sean independientes
- (c) Calcúlese la distribución de X_3 condicionada a $X_1=x_1$ y $X_2=x_2$.