Supplementary Information

palaeoverse: a community-driven R package to support palaeobiological

3	analysis
4	_
5	Lewis A. Jones ¹ , William Gearty ² , Bethany J. Allen ^{3,4} , Kilian Eichenseer ⁵ , Christopher D. Dean ⁶ , Sofia
6	Galván ¹ , Miranta Kouvari ^{6,7} , Pedro L. Godoy ^{8,9} , Cecily Nicholl ⁶ , Lucas Buffan ¹⁰ , Erin M. Dillon ^{11,12} ,
7	Joseph T. Flannery-Sutherland ¹³ , and Alfio Alessandro Chiarenza ¹
8	<u> </u>
9	¹ Grupo de Ecoloxía Animal, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310
10	Vigo, Spain.
11	² Division of Paleontology, American Museum of Natural History, New York, NY, 10024 USA.
12	³ Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
13	⁴ Computational Evolution Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
14	⁵ Department of Earth Sciences, Durham University, South Road, DH1 3LE, Durham, United Kingdom.
15	⁶ Department of Earth Sciences, University College London, Gower Street, WC1E 6BT, London, United
16	Kingdom.
17	⁷ Life Sciences Department, Natural History Museum, Cromwell Road, SW7 5BD, London, United
18	Kingdom.
19	⁸ Laboratório de Paleontologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto,
20	Universidade de São Paulo, Ribeirão Preto, SP, 14040-901 Brazil.
21	⁹ Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11794 USA.
22	¹⁰ Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1,
23	69342 Lyon Cedex 07, France.
24	¹¹ Smithsonian Tropical Research Institute, Balboa, Republic of Panama.
25	¹² Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA
26	93106, USA.
27	¹³ School of Earth Sciences, University of Bristol, BS8 1RL, Bristol, UK
28	_
29	Corresponding author: LewisAlan.Jones@uvigo.es

1

Survey

31

- 32 We conducted an online public survey to collect the opinions of the palaeobiological community, and
- determine which tools were most needed. The survey was advertised via social media (i.e. Twitter) and a
- mailing list (not included here for the sake of privacy). The survey was opened on the 26th of May 2022 via
- 35 the following link (http://www.tinyurl.com/palaeoverse). For the purpose of this manuscript, answers were
- 36 collected until the 9th of August, 2022. However, the survey remains open for the community to respond to.
- 37 In total, 35 participants from 14 different countries completed the survey, most of which are affiliated with
- European and North American institutions. This observation likely reflects a geographical bias in the reach
- of the survey, and demonstrates the additional effort that will need to be made to reach further afield in the
- 40 future.
- Below, we include the conducted survey for the sake of completeness:

42

43

palaeoverse: towards a community-driven R package

- palaeoverse is an R package being developed by palaeobiologists, for palaeobiologists.
- The aim of palaeoverse is to generate a community-driven software package of generic functions for the
- 46 palaeobiology community. The package does not aim to provide implementations of statistical approaches,
- 47 rather it provides auxiliary functions to help streamline analyses, and improve code readability and
- 48 reproducibility.
- 49 As part of the initial development of palaeoverse, we would like to hear from you, the palaeobiology
- 50 community! What generic functions do you wish existed to streamline your work? What takes up more of
- your precious time than it should? For example, time and spatial binning of data, palaeorotating fossil
- occurrences, checking species names for errors... this kind of thing! Let us know what functions you think
- would be useful for you, and for the wider community.
- 1. Name (short answer text)
- 55 2. Email address (short answer text)
- 3. Affiliation (long answer text)
- 57 4. Do you wish to join our mailing list, and receive updates on palaeoverse? (If so, please include your email above) (select one of the following)
- 59 Yes
- No

61	5.	What types of palaeontological data do you typically use or are interested in? (Multiple choice)
62		 Taxonomic identifications
63		 Age or biozone
64		 Geographic information (modern or at time of deposition)
65		 Geological/palaeoenvironmental context
66		 Taxon abundance
67		- Taphonomy
68		 Trait values, classifications or descriptions
69		- Phylogenies
70		- Other
71 72	6.	What R packages (or other tools) have you used previously to clean or explore palaeontological data sets? (long answer text)
73 74	7.	What kinds of tasks do you typically carry out when cleaning and exploring palaeontological data? (long answer text)
75 76 77	8.	Please specify and detail generic functions that you feel would be useful to include in the palaeoverse package. If you have suggestions for more than three functions, please submit a second form.
78		 Function 1 (long answer text)
79		 Function 2 (long answer text)
80		 Function 3 (long answer text)
81 82	9.	Do you have pre-existing code (for the above functions or other functions) you would like to contribute to palaeoverse? (select one of the following)
83		- Yes
84		- No
85	10.	If yes, what function is your code performing? (long answer text)
86		

Survey responses

- 88 Below we provide a summary of the responses to survey questions not documented in the main text (6–8).
- 89 Some questions (1–4) are omitted for the sake of privacy. Where appropriate, we grouped survey responses
- 90 into the following distinct categories to aid summary:
- 91 Data access

92	•	Checking and transforming data
93	•	Plotting data
94	•	Time binning
95	•	Spatial analyses
96	•	Tree modification and plotting
97	•	Phylogenetic analyses
98	•	Other analyses
99	Respo	nses to questions related to the tasks participants usually carry out
100	Check	ing and transforming data
101	•	Transforming data into portable structures
102	•	Organising based on multiple data types
103	•	Grouping things by character state
104	•	Restructuring and filtering
105	•	Cross-referencing PBDB with other datasets for taxonomy errors (synonyms/misspellings)
106	•	Checking for occurrences outside expected taxon duration, or freshwater species in marine
107		sediments
108	•	Checking that column names are identical between imported datasets from the literature
109	•	Reshaping into tidy/long format
110	•	Transforming species abbreviations into full species names
111	•	Formatting and matching data with trees
112	•	Processing age/taxon information for phylogenetic analysis
113	•	Merging files using specific specimen ids, cleaning repeat specimens, fixing age ranges across time
114		intervals, updating species names and connecting to past species names
115	•	Checking taxonomic assignments/spellings, verifying geochronology and environmental setting,
116		checking for missing data, reviewing spatial distribution, reviewing data summaries by taxonomic
117		group
118	•	Refining chronostratigraphy for PBDB collections
119	•	Standardising taxonomy
120	•	Surveying and cleaning biostratigraphic data on PBDB
121	•	Taxonomic harmonisation, filtering non-pollen and converting to percentages

122	•	Aligning multiple ecological abundance, paleoenvironmental and depositional datasets (sometimes
123		from different csv files, collected by different people or from different core intervals) in time/space
124		and with age-depth model outputs
125	•	Calculating derived variables from raw data
126	•	Reformatting dataframes for various analyses/packages which might require data to be formatted
127		in a different way, especially when some variables are measured per sample (relative abundance)
128		and others are measured per individual specimen (taphonomy scores)
129	•	Tidying taxonomic identifications
130	•	Trimming datasets above a threshold
131	Plottin	g data
132	•	Exploratory figures
133	•	Plotting census data as a diagram to see faunal trends, nMDS, etc
134	•	Skimming through the dataset and plotting temporal/morphological data
135	•	Data visualisation
136	•	Visualising variables to look for distributions, outliers, and preliminary trends
137	•	Overlaying multiple paleo time series plots with aligned axes
138	Time l	pinning
139	•	Temporal subsetting/assignment
140	•	Binning data by time period
141	•	Time binning with variable binning rules (midpoint, range-through, random age assignment,
142		exclusion of multi-bin spanning data)
143	•	Binning
144	•	Time binning
145	Tree n	nodification and plotting
146	•	Stitching two phylogenetic trees together
147	•	Acquiring FADs and LADs, matching taxon names to tree tip labels, reading character data with
148		missing data or polymorphisms, rooting trees
149	•	Tree calibration
150	•	Time-calibrating phylogenies

Converting TNT tree files into NEXUS format

152	•	Tree plotting, pruning, assigning max ages or nodes, exploration of evolutionary rates and shape
153		changes, phylogeny building, etc
154	Phylog	genetic methods
155	•	Estimating phylogenetic signal, phylogenetic regressions and multimodel inference, predictive
156		modelling for paleobiological inference, ancestral state reconstructions, analysis and mapping of
157		evolutionary rates
158	•	Phylogenetic comparative methods and multivariate statistics, origination analyses, model fitting
159		and ancestral state reconstructions
160	•	Tree plotting, pruning, assigning max ages or nodes, exploration of evolutionary rates and shape
161		changes, phylogeny building, etc
162	Spatial analyses	
163	•	Geographical analyses
164	•	Spatial subsetting/assignment
165	•	Converting extant latitude and longitude to extinct latitude and longitude
166	•	Aggregate collections within a given radius into palaeocommunities/sites
167	Data A	Access
168	•	GBIF guide
169	Other	analyses
170	•	Diversity analyses using different metrics
171	•	Resampling and appropriate rarefaction
172	•	Creating tip priors/contrast matrices
173	•	Applying an age model
174	•	Comparing morphological/isotope measurements across space and time
175	•	Paleoenvironmental reconstructions
176	•	Ecological coupling between aquatic and terrestrial systems
177	•	Human-environment links
178	•	Trend analyses
179	•	Multi-proxy comparison/analysis
180	•	Age modelling

181 Sensitivity analyses 182 Relative abundance 183 Responses to questions related to the functions that participants consider useful to be included in 184 palaeoverse Checking and transforming data 185 186 Removing taxonomic equivalents, species with too little data and uninformative characters Checking for typos in taxa names, especially between two vectors; checking if taxa names are 187 formatted as binomial entities, i.e. checking if they follow a "Genus species" format and return an 188 189 error message if not. 190 Cross-matching PBDB and phylogenetic data (bonus: some functionality for visualising this data) 191 Cleaning specimen description data into components when single specimen number has multiple 192 entries 193 Detection of unusual spatiotemporal occurrences of PBDB records 194 Taxonomic harmonization Resolving to taxonomic authorities, such as Paleobiology Database or World Register of Marine 195 196 Species 197 Prepping datasets for RevBayes analyses 198 Merging duplicate species or lumping specified species 199 Plotting data 200 Plotting data on stratigraphic-geological timeline with appropriate colours 201 Range charts 202 Visualising geographic data 203 Adding geologic timescales to plots in base R graphics rather than ggplot 204 Plotting spindle diagrams given a tree and diversity (or abundance) data through time 205 Perspective and stacked time slice disparity plots 206 coord geo (similar to deeptime R package) to add geologic timescale to a plot 207 core photograph to automatically look up core images remotely, download them, shrink them, add 208 them to the plot Faunal diagram (eg % abundance of different species vs age or depth) from census data 209

Heatmaps to overview faunal composition

211	•	Stratigraphic charts
212	•	Summary plots (e.g. richness by geologic unit, time interval, and/or taxonomic groups)
213	•	Adding geological scales to ggplot2
214	•	Plotting
215	•	Overlaying multiple time series plots over an aligned time axis
216	Time b	oinning
217	•	Time binning
218	•	Age binning
219	•	FADs to LADs ranging with gap info
220	•	Age binning of PBDB data
221	•	Biostrat or geological epoch to quantitative age
222	•	Time binning function with variable binning rules (midpoint age, assign randomised age in FAD-
223		LAD range then bin, range-through binning)
224	•	Translating periods/stages into up-to-date absolute ages
225	•	Converting and organising input data according to age (across different age types - calBP, 14C,
226		etc)
227	•	Updating timescale ages with new chronostratigraphic works
228	•	Tools to facilitate time binning and alignment of coeval data points across time intervals, especially
229		when dealing with age-depth model uncertainty, different temporal resolutions, etc
230	Tree m	nodification and plotting
231	•	Tree slicing
232	•	Treestich: attach two trees together
233	•	Plotting unambiguous synapomorphies on a tree like MacClade used to do
234	•	Plotting up tree spaces
235	•	Finding centroid trees
236	Phylog	genetic methods
237	•	Using ranges in ancestral state estimation, rather than a single mean value
238	•	Grouping taxa by character trait and work with character matrices easily
239	•	Total-evidence phylogeny plot

240	•	Performing cross-validation for predictive models in a phylogenetic context (e.g. for PGLS)
241	•	A function that simply removes all fossil taxa based on non-ultrametricity and performs leave-n-
242		out cross-validation
243	•	Tree stats, Templeton Test, double decay indices, positional congruence, leaf stability
244	•	Comparisons or tests for correlations between the diversification rates of two different clades
245	Spatial	analyses
246	•	Latitudinal bins assignment from palaeolatitudes
247	•	Palaeo-ocean basin assignment from lat/long and date
248	•	Converting long/lat with fossil age to past long/lat
249	•	Spatial binning function using hexagonal grids
250	•	Palaeocoordinating
251	Data A	access
252	•	Gathering data from the Paleobiology Database
253	•	Processing private data into a format to be easily uploaded to Neotoma
254	•	Read TNT files or a way to quickly and easily convert files
255	•	Bringing TNT into R
256	•	Data downloading functions from various databases (e.g. PBDB)
257	•	Getting data
258	•	Compiling a list of relevant packages that perform useful functions to increase exposure
259	Other a	analyses
260	•	Rarefaction
261	•	Tools for data simulation to generate null models
262	•	Generalised differencing
263	•	Fossil frequency
264	•	Oldest record
265	•	Parsing stratigraphic range data for use in phylogenetic packages and PyRate
266	•	Age models
267	•	Converting element descriptions to a standardize form which the user can define, using a few
268		specific shared terms in those descriptions

- Integrating paleobiological and stratigraphic data
- Breakpoint and smooth community data analyses
- Age-depth modelling
- Assessing distributions of sampling rates among taxa
- Easy extraction of some results (e.g. clock rates) from Bayesian analyses
- Age model
- Beta diversity time-series analyses. For instance, a function that computes cumulative (from a reference point) and successive (between time points) assemblage turnover
- With pollen data, deciphering relative abundance of terrestrial vs all species

Figure 1: Summary of responses to the palaeoverse survey. Preferred tools for processing and analysing paleontological data. Both resources inside and outside the R environment and R packages are included as categories.