Exploração do Capitão Levi

Nome do arquivo: exploracao.c, exploracao.cpp, exploracao.pas, exploracao.java, exploracao.js, exploracao_py2.py ou exploracao_py3.py

O Capitão Levi está indo para mais uma expedição pela tropa de exploração e, como sempre, ele resolveu olhar o mapa do local que ele e sua equipe estavam a caminho para que pudessem criar a melhor estratégia possível. Como todos sabem, a tropa de exploração é responsável por enfrentar titãs e deixar os habitantes da cidade mais protegidos.

O mapa do local pode ser resumido a um plano cartesiano e os titãs podem ser representados como pontos nesse plano. No entanto, seu dispositivo de manobra bidimensional(DMB) está defeituoso e agora Levi só consegue se locomover de um titã para outro titã durante o combate se eles estão em uma determinada direção, um em relação ao outro.

Se existe um titã no ponto $A=(X_a,Y_a)$ e um outro titã no ponto $B=(X_b,Y_b)$ ele consegue ir de A pra B se o coeficiente angular da reta que passa pelos pontos A e B for maior ou igual a $\frac{P}{Q}$. Observe que os pontos A e B devem ser distintos e que não existem pontos com a mesma coordenada X. Levi quer contar quantos pares de pontos distintos A e B existem, tais que há um titã em A e em B e ele consegue ir de A para B, ou seja $\frac{Y_a-Y_b}{X_a-X_b} \geq \frac{P}{Q}$.

No entanto, existem muitos titãs no mapa e por isso Levi pediu sua ajuda para contabilizar os pares, lembrando que o par (A,B) e (B,A) são o mesmo par, ou seja, a ordem dos pontos não faz diferença.

Entrada

A primeira linha da entrada contém três números inteiros N, P e Q, indicando respectivamente a quantidade de titãs, e os dois inteiros descritos no enunciado. Cada uma das N linhas seguintes contém dois inteiros X e Y, indicando as coordenadas de um titã.

Saída

A saída consiste em um único número inteiro, representando a quantidade de pares de titãs entre os quais Levi pode se locomover respeitando as condições do enunciado.

Restrições

- $2 < N < 5 * 10^5$
- $-10^9 \le P, Q \le 10^9$
- $P \neq 0$ e $Q \neq 0$
- $1 < X, Y < 10^7$
- ullet Não existem dois titãs com a mesma coordenada X

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 15 pontos, $2 \le N \le 10^3$, P = 1 e Q = 1.
- Para um conjunto de casos de testes valendo 20 pontos, $2 \le N \le 6 * 10^4$, P = 1 e Q = 1.
- Para um conjunto de casos de testes valendo 15 pontos, todos os titãs estão sobre uma mesma reta.
- Para um conjunto de casos de testes valendo 20 pontos, P > 0 e Q > 0.
- Para um conjunto de casos de testes valendo 30 pontos, não há restrições adicionais.

Exemplo de entrada 1	Exemplo de saída 1
6 1 1	6
1 1	
4 6	
2 5	
8 2	
7 1	
6 10	

Exemplo de entrada 2	Exemplo de saída 2
6 1 1	15
7 7	
1 1	
2 2	
16 16	
11 11	
200 200	

Exemplo de entrada 3	Exemplo de saída 3
8 418732 641936	11
60693 28595	
15649 57089	
77335 92158	
57291 25242	
21420 56599	
62278 58106	
52009 12362	
41982 64916	