复旦大学大数据学院 魏忠钰

Markov Decision Processes

April 25th, 2018

Non-Deterministic Search

Example: Grid World

- A maze-like problem
- Noisy movement: actions do not always go as planned
 - 80% of the time, each action achieves the intended direction.
 - 20% of the time, each action moves the agent at right angles to the intended direction.
 - If there is a wall in the direction the agent would have been taken, the agent stays.
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$= P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

> Andrey Markov (1856-1922)

Policies

- For MDPs, we want an optimal policy π^* : mapping (S \rightarrow A)
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed

Optimal Policies

$$R(s) = -0.01$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated

Racing Search Tree

MDP Search Trees

■ Each MDP state projects an expectimax-like search tree

Utilities of Sequences

MDP Goal: maximize sum of rewards

Utilities of Sequences

What preferences should an agent have over reward sequences?

■ More or less? [1, 2, 2] or [2, 3, 4]

■ Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])</p>

Stationary Preferences

■ Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Infinite Utilities?!

Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') or R(s) (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = the long-term reward of a state (discounted)

Example: Student MDP

- Draw the transition matrix.
- Sample returns for Student MDP:
 - Starting from S1 = C1 with gamma = 0.5
 - C1 C2 C3 Pass Sleep
 - C1 FB FB C1 C2 Sleep
 - C1 C2 C3 Pub C2 C3
 - C1 FB FB FB FB FB FB

Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s)$ = optimal action from state s

Values of States

- Fundamental operation: compute the (expectimax)
 value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} Q^*(s, a)$$

$$Q^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) V^*(s')$$

$$V^*(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) V^*(s')$$

Racing Search Tree

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small. Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Time-Limited Values

Key idea: time-limited values

- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Computing Time-Limited Values

Value Iteration (Bellman Update Equation)

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values:

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_k(s')$$

Repeat until convergence

- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values

Example: Value Iteration

Value Iteration Algorithm

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function
   inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a),
                  rewards R(s), discount \gamma
              \epsilon, the maximum error allowed in the utility of any state
   local variables: U, U', vectors of utilities for states in S, initially zero
                          \delta, the maximum change in the utility of any state in an iteration
   repeat
        U \leftarrow U' : \delta \leftarrow 0
        for each state s in S do
             U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \ U[s']
\mathbf{if} \ |U'[s] - U[s]| > \delta \mathbf{then} \ \delta \leftarrow |U'[s] - U[s]|
   until \delta < \epsilon(1-\gamma)/\gamma
   return U
```

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.8).

Value Iteration Property on Grid World

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value iteration. (b) The number of value iterations k required to guarantee an error of at most $\epsilon = c \cdot R_{\text{max}}$, for different values of c, as a function of the discount factor γ .

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge

Noise = 0.2 Discount = 0.9 Living reward = 0

Noise = 0.2 Discount = 0.9 Living reward = 0