Prof. Dr. J.W. Kolar

Aufgabe Nr.	Thema	Punkte max.	Punkte	Visum 1	Visum 2
NuS I-3	DC-Netzwerke	20			
Name:		ETH-Nr.:			

Aufgabe NuS I-3: DC-Brückenschaltung

Fig. 3.1: DC-Brückenschaltung

Gegeben ist eine DC-Brückenschaltung bestehend aus vier Widerständen $R=10~\Omega$, der Spannungsquelle U=10~V und der Stromquelle I=1~A. An den Klemmen A und B der Brückenschaltung kann ein Widerstandsnetzwerk, das aus den beiden Widerständen $R_1=240~\Omega$, $R_2=1~k\Omega$ und dem einstellbaren Lastwiderstand R_3 besteht, angeschlossen werden.

Betrachten Sie die für die Teilaufgabe a) die Brückenschaltung ohne Widerstandsnetzwerk.

a) Berechnen Sie zunächst allgemein die Parameter U_{qE} und R_{iE} der Ersatzspannungsquelle zwischen den Klemmen A und B als Funktion von U, I und R. Geben sie Zahlenwerte für den Innenwiderstand, die Leerlaufspannung und den Kurzschlussstrom an! (11 Pkt.)

Berücksichtigen Sie bei den folgenden Teilaufgaben das Widerstandsnetzwerk. Falls Sie Teilaufgabe **a)** nicht lösen konnten, rechnen Sie mit $U_{\text{qE}} = 6 \text{ V}$ und $R_{\text{iE}} = 12 \Omega$.

- b) Berechnen Sie den Wert des Lastwiderstands R_3 so, dass die in R_3 umgesetzte Leistung maximal wird. (4 Pkt.)
- c) Wie gross ist die Spannung am Widerstand R_3 und welche Leistung wird von R_3 aufgenommen? (5 Pkt.)