R Lab3 **Hypothesis Testing of Regression Coefficient** PH 1915. Fall 2013

Ming Yang

UTSPH

November 7, 2013

- Type of tests
 - Global test.
 - Test of a single covariate
 - Test of a group of covariates
- Test of the contrast
- **Regression Diagnostics**
- **Appendix**
 - Types of sums of squares
 - Eqvivalance of LRT and F-test
- References

Type of tests

- Global test
- Test of a single covariate
- Test a group of covariates

Global test

$$y_i = \beta_0 + x_{i1}\beta_1 + \cdots + x_{ik}\beta_k + \varepsilon_i$$

- Question to answer: does the *entire* set of independent variables contribute significantly to the prediction of y?
- An overall test of the significant effect of the regression predictors
- $H_0: \beta_1 = \beta_2 = \cdots = \beta_k$ $H_1: \beta_j \neq 0$ for at least one $j, j = 1, \cdots, k$
- Reject H₀ implies that at least one of the covariates contributes significantly to the model.

Global test

The ANOVA table

Source of variation	Sum of squares	Degrees of freedom
Regression	$SSR(x_1)$	1
	$SSR(x_2 x_1)$	1
	: :	:
	$SSR(x_k x_{k-1},x_{k-2},\cdots,x_1)$	1
	SSR	k
Error	SSE	n-(k+1)
Total	SST	n-1

SSR = SSR(
$$x_1$$
) + SSR($x_2|x_1$) + \cdots + SSR($x_k|x_{k-1}, x_{k-2}, \cdots, x_1$) = $\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - n \bar{\mathbf{y}}^2$
SSE = $\mathbf{y}' \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y}$ (for the full model)
SST = $\mathbf{y}' \mathbf{y} - n \bar{\mathbf{y}}^2$ (stays the same for all models)

Ming Yang (UTSPH) Hypothesis Testing Nov.7 2013 5 / 23

Global test

Type of tests

Under the null hypothesis, $SSR/\sigma^2 \sim \chi_k^2$ and $SSE/\sigma^2 \sim \chi_{n-k-1}^2$ are independent. Therefore we have

$$TS = \frac{SSR/k}{SSE/(n-k-1)} \sim F_{k,n-k-1}$$

$$p - value = Pr(F_{k,n-k-1} > TS).$$

Example:

Type of tests

$$mgp_i = \beta_0 + hp_i\beta_1 + wt_i\beta_2 + \varepsilon_i$$

$$H_0: \beta_1 = \beta_2 = 0$$
, H_1 :at least one $\beta \neq 0$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
hp	1	678.37	678.37	100.86	0.0000
wt	1	252.63	252.63	37.56	0.0000
Residuals	29	195.05	6.73		

$$TS = \frac{(678.37 + 252.63)/2}{195.05/29} = 69.21 > F_{2,29,0.95} = 3.33$$

Thus, we reject the null at 0.05 significance level and conclude that at least one β_1 and β_2 is not equal to 0.

◆ロ > ◆昼 > ◆ き > ・ き ・ り < ○

Ming Yang (UTSPH)

Example cont.

The overall F statistic is also available from the output of summary()

```
> summary(fit.all)
Call:
lm(formula = mpg ~ hp + wt, data = mtcars)
Residuals:
  Min
          10 Median
-3.941 -1.600 -0.182 1.050 5.854
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.22727
                       1.59879 23.285 < 2e-16 ***
           -0.03177
                       0.00903 -3.519 0.00145 **
hp
           -3.87783
                       0.63273 -6.129 1.12e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.593 on 29 degrees of freedom
Multiple R-squared: 0.8268, Adjusted R-squared: 0.8148
F-statistic: 69.21 on 2 and 29 DF, p-value: 9.109e-12
```

Testing of single β_j

Once we have determined that at least one of the regressors is important, a natural next question might be which one(s)?

Important considerations:

- Is the increase in the regression sums of squares sufficient to warrant an additional predictor in the model?
- Additional predictors will increase the variance of \hat{y} include only predictors that explain the response (note: we may not know this through hypothesis testing as confounders may not test significant but would still be necessary in the regression model).
- Adding an unimportant predictor may increase the residual mean square thereby reducing the usefulness of the model.

4 D > 4 A > 4 B > 4 B > B 9 Q A

Testing of single β_j

$$y_i = \beta_0 + x_{i1}\beta_1 + \dots + x_{ij}\beta_j + \dots + x_{ik}\beta_k + \varepsilon_i$$

- Question to answer: does one particular variable of interest significantly affect the prediction of y when the other independent variables presented in the model?
- $H_0: \beta_j = 0, H_1: \beta_k \neq 0$
- $TS=rac{\hat{eta}_{i}}{\hat{se}(\hat{eta}_{i})}\sim t_{n-k-1}$, reject H_{0} if $|TS|>t_{n-k-1,1-lpha/2}$
- This is a **partial test** because $\hat{\beta}_j$ depends on all of the other predictors x_i , for $i \neq j$, that are in the model. Thus, this is a test of the contribution of x_i given other predictors in the model.

Testing of single β_i

Example cont.:

$$mgp_i = \beta_0 + hp_i\beta_1 + wt_i\beta_2 + \varepsilon_i$$

$$H_0: \beta_2 = 0, H_1: \beta_2 \neq 0$$

From the summary of Im $\hat{\beta}_2 = -3.88$, the variance and covariance matrix of the parameter estimates is

$$TS = \frac{-3.88}{\sqrt{0.40}} = -6.13 < t_{29,0.025} = -2.05$$

Thus, we reject the null and conclude that $\beta_2 \neq 0$.

$$y_i = \beta_0 + x_{i1}\beta_1 + \dots + x_{ij}\beta_j + \dots + x_{ip}\beta_p + \dots + x_{ik}\beta_k + \varepsilon_i$$

- Often it is of interest to determine whether a group of predictors contribute to predicting y given another predictor or group of predictors that are in the model.
- $H_0: \beta_i = \cdots = \beta_p = 0, H_1: \beta_l \neq 0$ for at least one $l, l = j, \cdots, p$

Partition the vector of regression coefficient and **X** matrix as

$$oldsymbol{eta} = egin{bmatrix} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{bmatrix}, oldsymbol{\mathsf{X}} = [oldsymbol{\mathsf{X}}_1 | oldsymbol{\mathsf{X}}_2]$$

Hypotheses of interest: $H_0: \beta_2 = 0$ v.s. $H_1: \beta_2 \neq 0$

The model can be written as $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$

$$SSR(\mathbf{X}) = \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y} \ (k+1 \text{ degrees of freedom})$$

$$MSE = \frac{\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}}{n - k - 1}$$

$$SSR(\mathbf{X}_2|\mathbf{X}_1) = SSR(\mathbf{X}) - SSR(\mathbf{X}_1)$$

= $SSE(reduced) - SSE(full)$ (r degrees of freedom)

Under H₀

Type of tests

$$TS = \frac{SSR(\mathbf{X}_2|\mathbf{X}_1)/r}{MSE} \sim F_{r,n-k-1}$$

Ming Yang (UTSPH)

Example cont.

Type of tests

$$mgp_i = \beta_0 + disp_i\beta_1 + hp_i\beta_2 + qsec_i\beta_3 + wt_i\beta_4 + \varepsilon_i$$

```
fit.sub<-lm(mpg~disp+hp+qsec+wt,data=mtcars)
> summary(fit.sub)
Call:
lm(formula = mpg ~ disp + hp + qsec + wt. data = mtcars)
Residuals:
   Min
            10 Median
                                  Max
-3.8664 -1.5819 -0.3788 1.1712 5.6468
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.329638
                      8.639032 3.164 0.00383 **
disp
           0.002666
                      0.010738 0.248 0.80576
           -0.018666
                      0.015613 -1.196 0.24227
hp
qsec
           0.544160
                      0.466493 1.166 0.25362
           -4 609123
                       1.265851 -3.641 0.00113 **
wt.
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.622 on 27 degrees of freedom
Multiple R-squared: 0.8351, Adjusted R-squared: 0.8107
F-statistic: 34.19 on 4 and 27 DF, p-value: 3.311e-10
```

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0, \ H_1: \beta_j \neq 0, j = 1, 2, 3$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
disp	1	808.89	808.89	117.65	0.0000
hp	1	33.67	33.67	4.90	0.0356
qsec	1	6.71	6.71	0.98	0.3321
wt	1	91.15	91.15	13.26	0.0011
Residuals	27	185.64	6.88		

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
wt	1	847.73	847.73	91.38	0.0000
Residuals	30	278.32	9.28		

$$SSR(disp, hp, qsec|wt) = 278.32 - 185.64 = 92.68$$

$$TS = \frac{92.68/3}{6.88} = 4.49 > F_{3,27,0.95} = 2.96$$

Thus we reject the null and conclude that disp, hp and asec are jointly significant, o

Ming Yang (UTSPH) Hypothesis Testing Nov.7 2013 15 / 23

Test of the contrast

Many functions in R can be used to test the contrasts.

function	package	description
fit.contrast	{gmodels}	Compute and test arbitrary contrasts for regression objects
contrast.lm	$\{contrast\}$	computes one or more contrasts of the estimated regression coefficients
glht	$\{multcomp\}$	generalized linear hypothesis test
linear.hypothesis	{car}	Generic function for testing a linear hypothesis

A simple example.

Regression Diagnostics

Frequently used functions provide information used with model diagnostics

fitted.values()	Returns fitted values
residuals()	Returns residuals
rstandard()	Standardized residuals, variance one; residual standardized using overall error variance (9.25)
rstudent()	Studentized residuals, variance one; residual standardized using
	leave-one-out measure of the error variance (9.26)
qqnorm()	Normal quantile plot
qqline()	Add a line to the normal quantile plot
plot.lm()	Given a lm object it produces six diagnostic plots, selected using
	the 'which' argument; default is plots 1-3 and 5
	1.Residual versus fitted values
	2. Normal quantile-quantile plot
	3. $\sqrt{ Standardized\ residuals }$ versus fitted values
	4. Cook's distance versus row labels

Cook's distance

5.Standardized residuals versus leverage along with contours of

plot Im()	6. Cook's	distance versus	lovorago /(1 lovorago)
plot.lm()		ed residuals contou	leverage/(1-leverage)
dffits()	Return DFFITS	ed residuais contou	113
dfbeta()	Return DFBETAS	,)	
covratio()			ith element is the ratio
00114610()		•	covariance matrix with
	and without data		
cooks.distance()	Returns Cook's di	•	
hatvalues()	Diagonal of the ha	at matrix	
influence.measures()	Returns the previo	ous five measure of	influence and flags in-
V	fluential points		-
<pre>lm.influence()</pre>	Returns four meas	sures of influence:	
hat	Diagonal of the h	at matrix, measure o	of leverage
coefficients	Matrix, whose ith	row contains the ch	nange in the estimated
	coefficients when	the <i>i</i> th case is remo	ved
sigma	Vector, whose itl	h element contains	the estimated of the
		error when the <i>i</i> th c	
wt.res	Vector of weighte	d residuals or raw r	esiduals if weights are
	not set.	←□ → ← 5	P → ← E → E → 9 へ @

Regression Diagnostics

Example:

```
fit<-lm(mpg~wt,data=mtcars)</pre>
#influential points are labeled
par(mfrow=c(2,2))
plot(fit) #returns four diagnostics plot (1-3 and 5)
par(mfrow=c(2,3))
plot(fit,which=1:6) #returns all six diagnostic plots
par(ask=T)
plot(residuals(fit),fitted.values(fit))
qqnorm(residuals(fit));qqline(residuals(fit))
plot(cooks.distance(fit),rownames(fit),type="h")
#influence measures
influence.measures(fit)
#extract influential points, uses $is.inf
inf.temp<-influence.measures(fit)
inf.pts<-which(apply(inf.temp$is.inf,1,any))
mtcars[inf.pts,]
#Influence measures
```

lm.influence(fit)

Regression Diagnostics

```
#Extract points that cause the greatest change in the estimates
lm.inf.coef<-lm.influence(fit)$coefficients</pre>
lm.inf.pts<-apply(lm.inf.coef[,2,drop=F],2,</pre>
+ FUN=function(x)which.max(abs(x)))
lm.inf.coef[lm.inf.pts,]
#this gives the same results with the diagnostic plots
#Get the five points that cause the greatest
#change in the estimates
lm.inf.pts.top5<-apply(lm.inf.coef,2,</pre>
+ FUN=function(x)names(rev(sort(abs(x)))[1:5]))
lm.inf.pts.top5
```

Sums of Squares

- Type I
 - Also called "sequential" sum of squares
 - Can be viewed as the reduction in SSE obtained by adding additional term to a fit that already includes the terms listed before it.
 - Pros: a complete decomposition of the predicted SS for the whole model; Preferable when some factors should be taken out before other factors.
 - Cons:Lack of invariance to order of entry into the model; not appropriate for factorial designs.
- Type II
 - The reduction in SSE due to adding the term to the model after all other terms except those that contain it (interaction terms).
 - Pros: Appropriate for model building and natural choice for regression; Most powerful when no interaction; Invariant to the order when the factors are entered to the model.
 - Cons:Not appropriate for factorial designs
- Type III
 - ▶ Effect of each variable is evaluated after all other factors have been accounted for.
 - Pros: Appropriate for unbalanced data;
 - Cons: Testing main effects when interactions presence; not appropriate with missing cells.

Ming Yang (UTSPH) Hypothesis Testing Nov.7 2013 21 / 23

The F-test of the null hypothesis $H_0: \mathbf{C}\beta = \mathbf{t}$ is a likelihood ratio test (LRT) because the F-ratio is a monotone transformation of the likelihood ratio λ .

The log-likelihood is given by

$$\begin{split} \log L(\boldsymbol{\beta}, \sigma^2) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} SSE(\mathbf{X}) \\ \lambda &= -2 \log \frac{\max_{H_0} L(\boldsymbol{\beta})}{\max_{H_1 U H_0} L(\boldsymbol{\beta})} &= -2 \log \frac{L(\hat{\boldsymbol{\beta}}_1)}{L(\hat{\boldsymbol{\beta}}_1, \hat{\boldsymbol{\beta}}_2)} \\ &= \frac{SSE(\mathbf{X}_1) - SSE(\mathbf{X}_1 + \mathbf{X}_2)}{\sigma^2}, \end{split}$$

for a fixed value of σ^2 .

Since σ^2 is unknown, we can use $\hat{\sigma}^2_{MLF} = SSE(X_1 + X_2)/n$, then

$$F = C * \lambda = \frac{[SSE(\mathbf{X}_1) - SSE(\mathbf{X}_1 + \mathbf{X}_2)]/r}{SSE(\mathbf{X}_1 + \mathbf{X}_2)/(n-k-1)} \sim F_{r,n-k-1},$$

where $C = \frac{n-k-1}{nr}$.

◆ロト ◆問ト ◆ 恵ト ◆ 恵 ・ からぐ

Ming Yang (UTSPH) Hypothesis Testing Nov.7 2013 22 / 23

References

- Elizabeth R. Brown, Introduction to Regression Models
- Nicholas Christian, Statistical Computing in R
- **3** Langsrud, ϕ . (2003), ANOVA for Unbalanced Data: Use Type II Instead of Type III Sums of Squares, *Statistics and Computing*, 13, 163-167.

