Motivating example:

The vector space R' := { (a,, _, an) | a; ER, ;=1,2,-,n}

Addition: $\vec{v} = (v_1, \dots, v_n)$ $\in \mathbb{R}^n$ $\vec{v} = (\omega_1, \dots, \omega_n)$

Diw := (v,+w,, ___, Vn+wn) ETR

Note: (TZ", t) is an abelian group with addition.

· 3 5 eR^

る、ジョジャゔョブ

Y ver?

 $, (\vec{V} + \vec{\omega}) + \vec{u} = \vec{V} + (\vec{\omega} + \vec{u})$

∀ √, ū, ūcR^

· \verp^, 3 -verp^ 5.1.

V + (-v) = (-v) + v = 0

· (Abelian) J+== = + = HJ, we R

12" also has scalar multiplication: Facilly, vell $a \cdot \vec{\nabla} = (a v_1, a v_2, \ldots, a v_n) \in \mathbb{R}^n$ properties of scalar mult: (5) We can think of scalar multiplication as amap R × R° --> R° (a, v) - a.v Suppose a, bell, v, well (D (atb) · V = a· V + b· V $a\cdot(\vec{v}\cdot\vec{\omega}) = a\cdot\vec{v} + a\cdot\vec{\omega}$

(· v = v

Défuir let R be a ring.
A (left) module over R (or R-module)
is a set M with
Da binary operation + s.t. (M, t) is an abelian group
(2) an action of Roam
1.e. a map $\mathbb{Z}_{\times}M \longrightarrow M$ $(C, m) \longmapsto \Gamma.m$
St. () (rts) · m = r·mt s·m
$(ii) (rs) \cdot m = r \cdot (s \cdot m)$
(iii) r.(m+n) = r.m + r.n
(iv) If LeR, then I M is a module
Mole: re can défine a right R-module 6-1
m·r_

Only difference m.(rs) = (m.r). S

.

Note: If R is a commutative ring any left P-module has a natural right R-module structure as well. (rs) = (sr) . m m·(sr) = m. (rs) = (m·r)·s Defui | F 15 a field, ve refer to F-modules as F-vector spaces In this sense, the is an IR-vector space. Obs. If RCS is a subring M an S-module M is also an R-module by restricting scalar multiplication. e-g. (? is a (-vector space but is also an IR-vedor space (acl , v = (v,, v2) e (then $a \cdot \vec{v} = (av_1, av_2) \in C$ still makes sease.

L-xamples (1) For any ring R, consider $\mathbb{Z}^{n} := \left\{ \left(a_{i,i} - a_{i,i} \right) \mid a_{i} \in \mathbb{R}, i = 1, 2, ..., n \right\}$ with component-wise addition (a,, az, -, an) + (b,, bz, -, bn) := (a,+b,, az+bz, ___, an+bn) [asy exorcise: (R), t) is an abelian group. Scalar multiplication is also component-wise: aeR, (a,, a,) cR $\alpha \cdot (a_1, \underline{\hspace{1cm}} a_n) := (a \cdot a_1, \underline{\hspace{1cm}} a \cdot a_n)$ Easy exercise: (R^,+) is an R-module with this scalar multiplication This is called the free R-module of rank n (2) The front module ():= {0}

Y reR, r.0:=0

Any ideal of a ring ICR is an R-module RxI >> T (r, a) > ra	
Duotient rugs of R ar R-mode $\mathbb{R} \times \mathbb{R}/\mathbb{I}$ $\mathbb{R} \times \mathbb{R}/\mathbb{R}$ \mathbb{R}/\mathbb{R}	nle >
Back to motivating example: Recall a vector subspace WCTR s a subset st.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Example: 72 - modules. let M be any abelian group. Define Yne I, a EM N.a:= atatatat (-a) + (-a) + -.. - (-a)
(-n) - times nZD -asy check: (n+m). a= n-a + m-a (n.m) \ a = n. (m.a) So & 12-modules 3 = & abelian groups 3. e-g- 2/422 15 a 2-module n-0=0, n.7=n, n.2=2n, n.3=3nA large list of 72-modules: 72, nyl 2/n2, n72

Example: (2/n2) -module let M be a 2/42) -module. (1+1+1+ _-1) ·a = 0-a=0 \ \frac{1}{\tag{2}}.

n-times l-a+ l-a+ l-a+ __+ l-a a ta tat ____ ta e-g. 27/72 is a [7/42)-module because ([mod2) + ([mod2) + ([mod2) + ([mod2)

Back again to the motivating example:
A linear transformation is a map. T. D> D.
5.1.
e.g. T. 123 -> 12? (x,4,2) -> (2x+4-2, x+24)
which we can encode in a matrix
Defu. Let R be a ring. M, N R-modules
An R-module homomorphism from M le N
is a map fim -> N
s.t. (f (min) = f(m) rf(n) Ymine M
(2) f(am) = a. f(m) Yack, meM
IF Fis afield, we call F-module homomorphisms F-Imear Fransformations
F-linear transformations