Постановка задачи электродинамического моделирования

Литература

Обозначения

А — скалярная величина

А — векторная величина

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Нелинейные среды

Среда называется нелинейной, отклик которой на действие внешнего излучения нелинейно зависит от амплитуды возмущения.

В нелинейных средах не выполняется принцип суперпозиции: отклик на сумму возмущений не равен сумме откликов на отдельные возмущения.

Прямая задача электродинамики

Прямая задача электродинамики (задача анализа) — определение электромагнитного поля в некоторой области V с определенными начальными и граничными условиями на поверхности S, созданное заданными источниками.

Обратная задача электродинамики

Обратная задача электродинамики (задача синтеза) — определение параметров среды и (или) источников в области V по известному распределению электромагнитного поля в некоторой другой области V_1 ,

которая может не совпадать с V.

Пример обратной задачи — диагностика многослойной среды радаром подповерхностного зондирования

Параметры среды

1.
$$\varepsilon_1 = 1.0$$
, $d_1 = 0.5$ M

2.
$$\varepsilon_2 = 4.0$$
, $d_2 = 0.10$ M

3.
$$\varepsilon_3 = 1.0$$
, $d_3 = 0.105$ m

4.
$$\varepsilon_4 = 4.0$$

Зондирующий сигнал

Отраженный сигнал

Корректно поставленная задача

Задача $\mathbf{y} = A(\mathbf{x})$ называется корректно поставленной, если для любых входных данных \mathbf{x} из некоторого класса решение \mathbf{y} существует, единственно и устойчиво по входным данным.

Устойчивость задачи

Пусть $\delta \mathbf{x}$ — погрешность входных данных $\mathbf{y} + \delta \mathbf{y} = A(\mathbf{x} + \delta \mathbf{x})$

 $\delta y = A(x + \delta x) - A(x)$ — неустранимая погрешность решения.

Если решение непрерывно зависит от входных данных, т.е. всегда $\|\mathbf{\delta y}\| \to 0$ при $\|\mathbf{\delta x}\| \to 0$, то задача называется устойчивой по входным данным; в противном случае задача неустойчива по входным данным.

Краевые задачи

Для решения задачи используются уравнения Максвелла, записанные через комплексные амплитуды.

Решение производится в частотной области.

Анализ стационарных процессов.

Начально-краевые задачи

Для решения задачи используются уравнения Максвелла, записанные для мгновенных значений.

Решение производится во временной области.

Анализ переходных процессов.

Задачи о вынужденных колебаниях

В задачах о вынужденных колебаниях (волнах) в расчетной области присутствуют сторонние токи и (или) на границе области моделирования заданы неоднородные граничные условия.

Задачи о свободных колебаниях

В задачах о собственных (свободных) колебаниях (волнах) источники возбуждения отсутствуют. Цель моделирования — определение типов колебаний (волн), которые могут существовать в заданной области при заданных условиях.

Такие задачи также называют задачами на собственные значения.

Внутренние и внешние задачи

Задачу электродинамики называют внутренней, если расчетная область ограничена в пространстве, и внешней в противном случае.

Внутренняя задача

Необходимо найти решение уравнений Максвелла или соответствующих им волновых уравнений в области V, ограниченной поверхностью S.

Это решение должно удовлетворять на поверхности S граничным условиям.

Требования для решения внутренней задачи во временной области

Решение внутренней задачи во временной области существует и единственно, если:

- 1. В начальный момент времени t_0 во всем объеме V заданы значения напряженностей электрического и магнитного полей $\mathbf{E}(\mathbf{r}, t_0)$, $\mathbf{H}(\mathbf{r}, t_0)$.
- 2. На поверхности S заданы касательные составляющие \mathbf{E}_{τ} или \mathbf{H}_{τ} , или на части поверхности заданы \mathbf{E}_{τ} , а на остальной части \mathbf{H}_{τ} .
- 3. В объеме V или его части электропроводность среды отлична от 0.

Требования для решения внутренней задачи в частотной области

Решение внутренней задачи в частотной области существует и единственно, если:

- 1. На поверхности S заданы касательные составляющие \mathbf{E}_{τ} или \mathbf{H}_{τ} , или на части поверхности заданы \mathbf{E}_{τ} , а на остальной части \mathbf{H}_{τ} .
- 2. В объеме V или его части мнимые части ε и (или) μ среды отлична от 0.

Внешняя задача

Область моделирования не ограничена.

Например, <u>задача излучения</u>: в свободном безграничном пространстве необходимо найти решение неоднородного волнового уравнения, удовлетворяющего условию излучения на бесконечности.

Требования для решения внешней задачи

Решение внешней задачи существует и единственно, если:

на поверхности областей, вне которых задано ЭМ поле, заданы касательные составляющие \mathbf{E}_{τ} или \mathbf{H}_{τ} , а энергия ЭМ поля, создаваемого источниками конечной интенсивности и размера, во всем пространстве остается конечной.

$$\lim_{r\to\infty}\int_V \left(\varepsilon_a |\mathbf{E}|^2 + \mu_a |\mathbf{H}|^2\right) r^2 dr d\theta d\phi < \infty$$

r — расстояние от источников V — заполняет все пространство

Алгоритмы оптимизации

- Алгоритм градиентного спуска.
- Алгоритм Нелдера-Мида (симплекс-метод).
- Алгоритм имитации отжига.
- Генетический алгоритм.
- Алгоритм роя частиц.
- Алгоритм дифференциальной эволюции.

• ...

Классы задач, решаемые в дальнейшем

- Линейные задачи.
- Корректные задачи.
- Прямые задачи (задачи анализа).
- Начально-краевые задачи.
- Задачи о вынужденных колебаниях.
- Размерности задачи 1D, 2D.
- Внутренние задачи.

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Источники погрешности

- Погрешность за счет неточности исходных данных.
- Погрешность математической модели.
- Погрешность метода за счет дискретизации задачи.
- Вычислительная погрешность.

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Классификация вычислительных методов

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.