

802.11 Mac versus Ethernet

- · Different from Ethernet
 - CSMA/CA
 - Link layer ACKs and retransmissions
 - RTS/CTS
 - Duration vs packet length
 - · Rate adaptation
 - Infrastructure mode
 - Power saving

802.11 frame versus Ethernet frame

Ethernet Source (6) Dest (6) Len (2) Payload (var) Pad (var) CRC (4) 802.11 Bytes 2 2 6 0-2312 4 Address 1 Address 2 Check Frame Address 3 Sequence Data control (recipient) (transmitter) sequence Version Type Subtype To From More More Protected Order DS DS data = 00= 10= 0000frag. mgt. **Bits** 2 2 4 1

1. CSMA/CA and Retransmissions

- CSMA/CA inserts backoff slots to avoid collisions
- Slot countdown stopped when someone else is sending data

2. Virtual sensing

Virtual channel sensing with the NAV (Network Allocation Vector) and optional RTS/CTS avoids hidden terminals

3. Rate adaptation (1)

- NICs are compatible with multiple physical layer
 - E.g., 802.11 a/b/g
 - The packet rate can vary depending on technology (and even within technology)
 - Rate determines how fast the packets are sent
 - Why would you not send at a high rate?

Name	Technique	Max. Bit Rate
802.11b	Spread spectrum, 2.4 GHz	11 Mbps
802.11g	OFDM, 2.4 GHz	54 Mbps
802.11a	OFDM, 5 GHz	54 Mbps
802.11n	OFDM with MIMO, 2.4/5 GHz	600 Mbps

3. Rate adaptation (2)

- Higher rate may result in more errors
 - 802.11g can send using BPSK, QPSK, QAM-16, QAM-64

4. TXOP to accommodate varying rates

- TXOP: Transmission opportunity
- Rate anomaly:
 - · Basic multiple access is fair
 - · Every station has the same chance of being next
 - Means every station gets about the same number of transmissions during a busy period
 - Stations transmitting at a slower rate use more time for their turns
 - The result: Fast stations can't convey data any faster than the slow station
- TXOP fix: You win the right to transmit for a certain amount of time, not for a certain amount of data

Rate Anomaly

 Each station wants to send 1500 bytes of data as fast as it can

Station A: 11 Mbps connection
Station B: 150 Mbps connection

CN5E by Tanenbaum & Wetherall, @ Pearson Education-Prentice Hall and D. Wetherall. 2011

5. 802.11 send smaller frames

- Larger the packet size, higher the probability that there will be an error in the packet, so...
- Break large packets up into smaller frames
 - If an error occurs, you lose only part of the packet, not all of it
 - When you have to retransmit, the retransmission is smaller

6. 802.11 LAN architecture: Infrastructure Mode

- wireless host communicates with AP
- Client associates to the AP
- How do clients decide which AP to associate to?
 - Beaconing

7. 802.11 Infrastructure mode: Power saving

- Power save mode: The client goes to sleep and periodically wakes up
 - · Time scale of tens of milliseconds
- While the client is asleep, the APs buffer packets
 - · AP beacons tell the clients when they have to wake up
- How often do the clients have to wake up?

802.11 MAC recap

• Different from Ethernet because:

- Higher inherent error rate
- Can't collision detect
- Station-dependent view of network topology
- Power issues

Effects on protocol:

- Infrastructure mode
- CSMA/CA
- ACKs and retransmissions
- RTS/CTS
- Duration vs packet length
- Rate adaptation
- Smaller frames
- Power saving