STA303 PROTECT PROPOSAL

Li Quan Soh (utorID: sohli)

RESEARCH QUESTION

Does unhealthy lifestyle, characterized by risk factors:

- Resting Blood Pressure
- Cholesterol Level
- Fasting Blood Sugar Level

increase the risk of developing heart diseases?

Why is this interesting? How is it novel?

- Heart diseases and its risk factors has been intensively studied
- *My focus: combination of these risk factors, along with these confounders
 - *Age
 - ❖Sex

Research Question:

How does blood pressure & cholesterol affect incidence of CHD in Georgia?

Main Findings:

- ↑ cholesterol level & ↑ blood pressure → ↑ CHD risk
- ❖ Black men more likely to get CHD than white men

How it influence my analysis:

* Exposure variable selection: Cholesterol & Blood Pressure

ARTICLE #1

Blood pressure and cholesterol as coronary heart disease (CHD) risk factors

(Tyroler, 1971)

Research Question:

How does lifestyle-related factors affect the risk of ischemic heart disease (IHD)?

Main Findings:

- Life-style related risk factors, measured by
 - → ↑ BMI
 - ➤ ↑ Fasting Blood Glucose (FBG) Level increases the risk of IHD
- Effect of risk factors more pronounced in women

How it influence my analysis:

- * Exposure variable selection: Fasting Blood Sugar Level
- **❖**Confounder selection: Age & Sex

ARTICLE #2

Effects of lifestylerelated factors on ischemic heart disease according to body mass index and fasting blood glucose levels in Korean adults

(Shin et al., 2019)

Research Question:

Does sex affect the impact of cardiovascular risk factors (diabetes, lipoprotein level etc)?

Main Findings:

- Most risk factors have no sex-specific difference
- Except
 - → diabetes, HDL (cholesterol) level, triglycerides increases the risk of heart diseases in women than men
 - ▶ lipoprotein level increases the risk of heart diseases in men than women

How it influence my analysis:

- * Exposure variable selection: Fasting BS & Cholesterol level
- **♦**Confounder selection: Sex

ARTICLE #3

Risk factors for coronary heart disease: implications of gender

(Roeters van Lennep et al., 2002)

HEART DISEASE PREDICTION DATASET

Key Features

- Dataset curated from 5 datasets
- 918 observation (human individuals)
 - ❖ After cleaning: 746 observations
- No missing values or duplicated observations
- 12 variables:
 - > Age
 - > Sex
 - Chest Pain Type
 - > Resting Blood Pressure
 - Cholesterol Level
 - > Fasting Blood Sugar Level

Color Code

Red: Outcome

Blue: Risk factors/ Predictors of Interest

Green: Confounders

- > Resting ECG results
- ➤ Max Heart Rate
- > Exercised-induced Angina
- ➢ Oldpeak
- > ST Slope
- Heart Disease

PREDICTORS OF INTEREST: RESTING BLOOD PRESSURE

Unit: mmHg

Continuous variable

❖ Mean: 133 mmHg

❖ Min: 92 mmHg

❖ Max: 200 mmHg

Note: 1 observation with 0 mmHg. Removed as it's invalid.

PREDICTOR OF INTEREST: CHOLESTEROL LEVEL

❖ Unit: mm/dL

Continuous variable

❖ Mean: 244.6 mm/dL

❖ Min: 85 mm/dL

❖ Max: 603 mm/dL

Note: 172 observation with 0mm/dL. Removed as this value is invalid.

Distribution of FBS Level

Table: Heart Disease vs FBS Level

	Healthy	Unhealthy	Total
No HD	347	43	390
Have HD	274	82	356
Total	621	125	746

PREDICTOR OF INTEREST: FASTING BLOOD SUGAR (FBS) LEVEL

- Nominal categorical variable
- * Level:
 - Healthy FBS ($\leq 120 \text{ mg/dL}$)
 - Unhealthy FBS (> 120 mg/dL)
- Unbalanced
 - 83.24% of observations have healthy FBS level
- 44% of individuals with healthy FBS level have HD
- 66% of individuals with unhealthy FBS level have HD

CONFOUNDER: AGE

Discrete variable

❖ Mean: ~ 53.5 yo

❖ Min: 28 yo

❖ Max: 77 yo

Distribution of Sex

Table: Heart Disease vs Sex

	Female	Male	Total
No HD	142	248	390
Have HD	40	316	356
Total	182	564	746

CONFOUNDER: SEX

- Nominal categorical variable
- * Level:
 - Female
 - Male
- Unbalanced
 - 75.6% of observations are male
- ❖ 22% of women have HD
- ❖ 56% of men have HD

OUTCOME VARIABLE: HEART DISEASE

- Nominal categorical variable
- * Level:
 - No Heart Disease (Healthy)
 - Have Heart Disease
- ❖ Balanced
 - 47.7% of the individuals have heart disease

ASSUMPTIONS OF GLM

- Independence of Y
 - ✓ Each individual are independent from another → risk of heart disease is independent
- 2. Distribution of Y
 - ✓ Categorical Variable: Binar Outcome → binomial distribution
 - ✓ Binomial Logistic Regression
- 3. Correct Link Function
 - ✓ Logit Link
 - ✓ Correct link function for binomial logistic regression

REFERENCES

- fedesoriano. (2021). Heart Failure Prediction Dataset [Data set]. Kaggle. https://www.kaggle.com/fedesoriano/heart-failure-prediction
- Roeters van Lennep, J., Westerveld, H., Erkelens, D., & E van der Wall, E. (2002). Risk factors for coronary heart disease: Implications of gender. Cardiovascular Research, 53(3), 538–549. https://doi.org/10.1016/s0008-6363(01)00388-1
- Shin, J., Ham, D., Shin, S., Choi, S. K., Paik, H.-Y., & Joung, H. (2019). Effects of lifestyle-related factors on ischemic heart disease according to body mass index and fasting blood glucose levels in Korean adults. PLOS ONE, 14(5). https://doi.org/10.1371/journal.pone.0216534
- Tyroler, H. A. (1971). Blood pressure and cholesterol as coronary heart disease risk factors. Archives of Internal Medicine, 128(6), 907–914. https://doi.org/10.1001/archinte.1971.00310240061007

