Содержание

1	Определения 3		
	1.1	Что такое предел отображения в точке между двумя метрическими просстранствами?	3
	1.2	Какой критерий непрерывности отображения в точке между двумя метрическими	
		пространствами?	3
	1.3	Что такое сходимость в $\mathbb{R}^n, n \geqslant 1$?	3
	1.4	Что такое произведение метрических пространств и какая там метрика?	3
	1.5	Что такое нормированное пространство?	4
	1.6	Что такое эквивалентность норм?	4
	1.7	Что значит выражение $f=\mathbf{o}(g),$ при $x \to a$?	4
	1.8	Что такое линейное отображение и как его можно задать?	4
	1.9	Что геометрически означает линейное отображение между конечномерными вектор-	
		ными пространствами?	4
	1.10	Что значит отображение $F: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо в точке $\mathbf{a} \in \mathbb{R}^n$?	4
	1.11	Что геометрически означает то, что отображение $F:\mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо в	
		точке $a \in \mathbb{R}^n$?	5
	1.12	Что такое дифференциал отображения в точке?	5
	1.13	Что такое производная функции от одной переменной?	5
		Производная функции то же самое, что дифференциал?	5
	1.15	Может ли быть так, что функция везде непрерывна, но нигде не дифференцируема?	
		Ответ обоснуйте	5
	1.16	Что такое частная производная?	5
		Геометрический смысл частной производной	6
		Что такое производная по направлению?	6
		Что такое градиент функции?	6
		Что значит то, что линейное отображение ограничено?	6
		Что такое полином Тейлора для функции?	6
2	Док	сазательства	7
	2.1	Докажите, что отображение между метрическими пространствами может иметь лишь	
		один предел по множеству A в данной точке $a\in \bar{A}$	7
	2.2	Докажите критерий непрерывности в точке	7
	2.3	Пусть E,E',E'' - метрические пространства, $A\subseteq E,f:A\to E',g:E'\to E''$ - отобра-	
		жения. Если $\lim_{x \to a, x \in A} f(x) = a'$ и g непрерывно в точке a' , то $g\left(a'\right) = \lim_{x \to a, x \in A} g(f(x))$.	7
	2.4	Для любой точки $a \in \bar{A}$ существует такая последовательность $\{x_n\}$ точек из A , что	
		$a = \lim_{x \to a, x \in A} x_n \dots$	7
	2.5	$x \to a, x \in A$ Пусть $f: A \to E'$ - отображение множества $A \subseteq E$ в метрическое пространство E'	
		и $a \in \bar{A}$. Для того, чтобы f имело предел $a' \in E'$ в точке a по A , необходимо и	
		достаточно, чтобы для каждой последовательности $\{s_n\}$ точек из A , сходящейся к a ,	
		последовательность $f(s_n)$ сходилась к a'	8
	2.6	Если (\mathbf{x}_n) последовательность в \mathbb{R}^n такая, что $\lim_{m \to \infty} \mathbf{x}_m = \mathbf{a}$, то она сходится покоор-	_
		динатно, т.е., $\lim_{m\to\infty} x_{mk} = a_k$, где $\mathbf{a} = (a_1,\ldots,a_n)^T$	8
	2.7	Докажите обобщенную теорему Больцано-Вейерштрасса	9
	4.1	докажите осоощенную теорему польцано-пенерштрасса	9

2.8	Пусть F, E_1, E_2 - метрические пространства, и пусть $f_1: F \to E_1, f_2: F \to E_2$. Тогда	
	отображение $f: F \to E_1 \times E_2, \ z \mapsto (f_1(z), f_2(z))$ будет непрерывным в точке $z_0 \in F,$	
	если и только если оба отображения f_1 и f_2 непрерывны в точке z_0	9
2.9	Докажите, что в векторном пространстве \mathbb{R}^n все нормы эквивалентны	10
2.10	Докажите, что любое линейное отображение $\mathscr{L}: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо	10
2.11	Если функция $f(x)$ дифференцируема в точке $x_0,$ то она непрерывна в этой точке	11
2.12	Функция $f(x)$, непрерывная на отрезке $[a,b]$, ограничена на этом отрезке \dots	11
2.13	Функция $f(x)$, непрерывная на отрезке $[a,b]$, достигает максимума и минимума в	
	некоторых точках этого отрезка	11
2.14	Докажите теорему Ферма (о функции, а не великую!)	11
2.15	Докажите теорему Ролля	12
2.16	Докажите теорему Лагранжа	12
2.17	Если функция $f:\mathbb{R}^n o \mathbb{R}$ дифференцируема на каком-то открытом $\mathscr{U}\subseteq \mathbb{R}^n$ или	
	в фиксированной точке $x,$ то она имеет в этой точке частные производные по всем	
	переменным	13
2.18	Пусть функция f имеет конечные частные производные по всем координатам в окрест-	
	ности точки а. Если они непрерывны в точке а, то f дифференцируема в этой точке	13
2.19	Пусть $L:\mathbb{R}^n \to \mathbb{R}^m$ - линейное отображение. Тогда следующие утверждения равно-	
	сильны:	
	(1) L - непрерывно	
	(2) L - непрерывно в нуле	
	(3) Существует такое $C>0,$ что $\ L(\mathbf{v})\ \leq C \ \mathbf{v}\ $ для любого $\mathbf{v} \in \mathbb{R}^n$	14
2.20	Любое линейное отображение $L: \mathbb{R}^n \to \mathbb{R}^m$ непрерывно	15

1 Определения

1.1 Что такое предел отображения в точке между двумя метрическими просстранствами?

Пусть заданы метрические пространства E, E' и подмножество $A \subseteq E$. Отображение $f: A \to E'$. Точка $a \in \bar{A}$ - точка замыкания множества A

В случае $a \notin A$, f(x) будет иметь предел $a' \in E'$ при $x \to a(x \in A)$, если отображение $\bar{f}: A \cup \{a\} \to E'$ непрерывно в точке a. Отображение $\bar{f}(x)$ определено вот так:

$$\bar{f}(x) = \begin{cases} f(x), & x \in A \\ a', & x = a \end{cases}$$

В этом случае мы пишем $a' := \lim_{\substack{x \to a \\ x \in A}} f(x)$

В случае $a \in A$ мы пользуемся той же терминологией, наше отображение f должно быть непрерывно в точке a, причем a' := f(a)

1.2 Какой критерий непрерывности отображения в точке между двумя метрическими пространствами?

Пусть $f: E \to E'$. Для того, чтобы f было непрерывно в точке $x_0 \in E$ (x_0 - точка замыкания множества $E \setminus \{x_0\}$), необходимо и достаточно, чтобы $f(x_0) = \lim_{\substack{x \to x_0 \\ x \in E \setminus \{x_0\}}} f(x)$

1.3 Что такое сходимость в $\mathbb{R}^n, n \geqslant 1$?

Если последовательность (\mathbf{x}_m) точек в \mathbb{R}^n сходится в точку \mathbf{a} , i.e. $\lim_{m\to\infty} \mathbf{x}_m = \mathbf{a}$, то она сходится покоординатно, i.e. $\lim_{m\to\infty} x_{km} = a_k$, где $\mathbf{a} = (a_1, \dots, a_n)^T$

1.4 Что такое произведение метрических пространств и какая там метрика?

Пусть (E_1, d_1) , (E_2, d_2) - два метрических пространства, где d_1, d_2 - расстояния в E_1, E_2 . Для любой пары точек $x = (x_1, x_2)$, $y = (y_1, y_2)$ положим

$$d(x,y) := \max \{d_1(x_1,y_1), d_2(x_2,y_2)\}\$$

Так как:

- (1) $d(x,y) = 0 \iff x = y$
- (2) d(x,y) = d(y,x)
- $(3) \ d(x,z) = \max \left\{ d_1\left(x_1,z_1\right), d_2\left(x_2,z_2\right) \right\} \leqslant \max \left\{ d_1\left(x_1,y_1\right) + d_1\left(y_1,z_1\right), d_2\left(x_2,y_2\right) + d_2\left(y_2,z_2\right) \right\} \leqslant \max \left\{ d_1\left(x_1,y_1\right), d_2\left(x_2,y_2\right) \right\} + \max \left\{ d_1\left(y_1,z_1\right), d_2\left(y_2,z_2\right) \right\} = d(x,y) + d(y,z)$

Мы проверили, что это метрика. Поэтому мы получаем метрическое пространство (E,d), где $E=E_1\times E_2$

1.5 Что такое нормированное пространство?

Нормированное пространство - векторное пространстово, в котором задана норма

Норма в векторном пространстве E есть отображение (обычно записываемое $x \mapsto ||x||$) пространства E в $\mathbb{R}_{\geq 0}$, обладающее следующими свойствами:

- (1) $||x|| = 0 \Longrightarrow x = 0$ нулевой вектор
- (2) $\|\lambda x\| = |\lambda| \cdot \|x\|, \forall x \in E, \lambda \in \mathbb{R}$
- (3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in E$ (неравенство треугольника)

1.6 Что такое эквивалентность норм?

Пусть на веткторном пространстве E заданы две нормы $\|?\|_1$ и $\|?\|_2$. Нормы эквивалентны, если $\exists a,b>0$:

$$a||x||_1 \le ||x||_2 \le b||x||_1 \quad (\forall x \in E)$$

Эквивалентность норм - это отношение эквивалентности

1.7 Что значит выражение $f = \mathbf{o}(g)$, при $x \to a$?

Говорят, что f - бесконечно малая по сравнению с g при $x \to a$, если f(x) = h(x)g(x) и $\lim_{\substack{x \to a \\ x \in A}} h(x) = 0$. Используется обозначение $f = \mathbf{o}(g)$ при $x \to a$

В частном случае, $f=\mathbf{o}(1)$ при $x\to a$ означает, что $\lim_{\substack{x\to a\\x\in A}}f(x)=0$ и говорят, что f - бесконечно малая функция при $x\to a$

1.8 Что такое линейное отображение и как его можно задать?

Линейное отображение $f: \mathbb{R}^n \to \mathbb{R}^m$ - это такое отображение, что $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$, где $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \alpha, \beta \in \mathbb{R}$. Его можно задать матрицей размера $m \times n$

1.9 Что геометрически означает линейное отображение между конечномерными векторными пространствами?

Геометрически $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$ показывает, что образ прямой - прямая линия

1.10 Что значит отображение $F:\mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо в точке а $\in \mathbb{R}^n$?

Пусть \mathbb{R}^n и \mathbb{R}^m - векторные пространства с евклидовой нормой $\|?\|$. Отображение $F:\mathbb{R}^n\to\mathbb{R}^m$ дифферениируемо в точке $\mathbf{a}\in\mathbb{R}^n$, если существует такое линейное отображение (зависящее от точки a) $\mathrm{d}F_{\mathbf{a}}:\mathbb{R}^n\to\mathbb{R}^m$, что:

$$F(\mathbf{a} + \mathbf{h}) = F(\mathbf{a}) + dF_{\mathbf{a}}(\mathbf{h}) + \mathbf{o}(\|\mathbf{h}\|)$$

1.11 Что геометрически означает то, что отображение $F: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо в точке $a \in \mathbb{R}^n$?

Из дифференцируемости имеем, что существует линейное отображение в точке:

$$F(\mathbf{a} + \mathbf{h}) = F(\mathbf{a}) + dF_{\mathbf{a}}(\mathbf{h}) + \mathbf{o}(\|\mathbf{h}\|)$$

А значит, геометрически в этой точке отображение локально линейно

1.12 Что такое дифференциал отображения в точке?

Линейное отображение $dF_{\mathbf{a}}$ - $\partial u \phi \phi e p e h u u a n o o m o б p a ж e h u в точке <math>\mathbf{a}$

1.13 Что такое производная функции от одной переменной?

Производная функции f(x) в точке x_0 - это предел:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

который принято обозначать $f'(x_0)$, $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$. А если x - это параметр времени, который обозначают $\dot{f}(t_0)$

1.14 Производная функции то же самое, что дифференциал?

Дифференциал - это линейная часть приращения функции, а производная - это предел отношения приращения функции к приращению аргумента при приращении стремящемся к нулю. Это не одно и то же

1.15 Может ли быть так, что функция везде непрерывна, но нигде не дифференцируема? Ответ обоснуйте

Да, например, функция Вейерштрасса:

$$f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$$

где $0 < a < 1, \quad b$ — положительное нечетное целое, а также выполняется $ab > 1 + \frac{3\pi}{2}$

По сути функция Вейерштрасса резко меняет свое направление в каждой точке, поэтому она не дифференцируема, и при этом она непрерывна.

1.16 Что такое частная производная?

$$a_i = \lim_{h_i \to 0} \frac{f(\mathbf{x} + h_i \mathbf{e}_i) + f(\mathbf{e})}{h_i}$$

 \mathbf{e}_i - базисный вектор

Частная производная - это предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю

1.17 Геометрический смысл частной производной

Геометрически, частная производная даёт производную по направлению одной из координатных осей

1.18 Что такое производная по направлению?

Пусть есть непрерывное отображение $\gamma:(-c,c)\to\mathbb{R}^n$ - кривая в \mathbb{R} .

Пусть $\gamma(0) = \mathbf{x}_0$ и пусть γ дифференцируема в точка t = 0 и $\dot{\gamma}(0) = \mathbf{v}$. Наконец, пусть $f: \mathbb{R}^n \to \mathbb{R}$ - дифференцируемая в точке \mathbf{x}_0 функция, тогда число

$$\nabla_{\dot{\gamma}(0)}(f) := \langle \nabla f(x_0), \gamma(0) \rangle$$

называется произоводной по направлению функции f вдоль вектора $\gamma(0)$

1.19 Что такое градиент функции?

Дифференициал $(\mathrm{d}f)_{\mathbf{x}_0}$ функции $f:\mathbb{R}^n\to\mathbb{R}$ в точке \mathbf{x}_0 называется градиентом функции. Принято обозначение $\nabla_{\mathbf{x}_0}f$ для градиента

1.20 Что значит то, что линейное отображение ограничено?

Линейное отображение $L: \mathbb{R}^n \to \mathbb{R}^m$ ограничено, если $\exists K \geqslant 0: \forall \mathbf{v} \in \mathbb{R}^n \ \|L(\mathbf{v})\| \leqslant K \|\mathbf{v}\|$

1.21 Что такое полином Тейлора для функции?

Пусть функция f(x) n раз дифференцируема в точке $\mathbf{a} \in \mathbb{R}$, тогда полином вида:

$$T_f(x) := \sum_{k=0}^n \frac{f^{(k)}(\mathbf{a})}{k!} (x - \mathbf{a})^k$$

называется полиномом Тейлора для функции f

$\mathbf{2}$ Доказательства

Докажите, что отображение между метрическими пространствами может иметь лишь один предел по множеству A в данной точке $a \in A$

Предположим, что отображение имеет два предела $\lim_{\substack{x \to a \\ x \in A}} f(x) = a'$ и $\lim_{\substack{x \to a \\ x \in A}} f(x) = b'(a \neq b)$ тогда согласно одному из определений предела:

$$\lim_{\substack{x \to a \\ x \in A}} f(x) = a' \Longleftrightarrow \forall \varepsilon > 0: \exists \delta > 0: x \in A \text{ и } d(x,a) < \delta \Longrightarrow d'\left(a',f(x)\right) < \varepsilon$$

Тогда, если предела два:

(1)
$$\lim_{\substack{x \to a \\ x \in A}} f(x) = a' \Longrightarrow \forall \varepsilon > 0 : \exists \delta_1 > 0 : x \in A \text{ if } d(x,a) < \delta_1 \Longrightarrow d'(a',f(x)) < \varepsilon$$

(1)
$$\lim_{\substack{x \to a \\ x \in A}} f(x) = a' \Longrightarrow \forall \varepsilon > 0 : \exists \delta_1 > 0 : x \in A \text{ if } d(x,a) < \delta_1 \Longrightarrow d'(a',f(x)) < \varepsilon$$

(2) $\lim_{\substack{x \to a \\ x \in A}} f(x) = b' \Longrightarrow \forall \varepsilon > 0 : \exists \delta_2 > 0 : x \in A \text{ if } d(x,a) < \delta_2 \Longrightarrow d'(b',f(x)) < \varepsilon$

Однако, по неравенству треугольника $d'\left(a',b'\right)\leqslant d'\left(a',f(x)\right)+d'\left(b',f(x)\right)<2\varepsilon\quad (\forall \varepsilon>0)$ $\implies d'(a',b') = 0 \iff a' = b'$. Получили противоречие. Q.E.D.

2.2Докажите критерий непрерывности в точке

$$(1) \ f: E \to E' \ \text{ непрерывно в } x_0 \in E \left(x_0 - \text{точка замыкания } E \backslash \{x_0\}\right) \Longleftrightarrow (2) f \left(x_0\right) = \lim_{\substack{x \to x_0 \\ x \in E \backslash \{x_0\}}} f(x)$$

Более подробно:

 $(1)\Longrightarrow (2)$: Если f непрерывна и определена в точке x_0 , то можно сказать, что есть отображение f_0 : $(E \setminus \{x_0\}) \to E'$, определенное на множестве, из которого выкинули точку замыкания x_0 . Положим, что $\overline{f_0}(x)=f(x)$. Это отображение будет иметь предел $\overline{f_0}\left(x_0\right)=f\left(x_0\right)=\lim_{x\to x_0} \ f_0(x)=$

$$= \lim_{\substack{x \to x_0 \\ x \in E \setminus \{x_0\}}} f(x)$$

(2) \Longrightarrow (1): Если существует предел $f(x_0) = \lim_{\substack{x \to x_0 \\ x \in E \setminus \{x_0\}}} f(x)$. Это значит, что по определению предела: $\forall \varepsilon>0:\exists \delta>0:x\in E$ и $d\left(x_{0},x\right)<\delta\Longrightarrow d'\left(f\left(x_{0}\right),f(x)\right)<\varepsilon,$ значит f непрерывна в точке x_{0} по определению непрерывности отображения

Пусть E,E',E'' - метрические пространства, $A\subseteq E,f:A\to E',\ g:E'\to E'$ 2.3E'' - отображения. Если $\lim_{x\to a, x\in A} f(x) = a'$ и g непрерывно в точке a', то $g\left(a'\right) = \lim_{x \to a, x \in A} g(f(x))$

Если $\lim_{x \to a} f(x)$ существует в точке a, значит, \bar{f} - непрерывна в точке a и принимает значение a'. А так как q непрерывна в точке a'. По теореме о непрерывности композиции непрерывных отношений: $g(\bar{f}(x))$ - непрерывно.

Обозначим $h=g\circ f$, тогда $\bar{h}=g\circ \bar{f}$ — непрерывно в точке a. Отсюда имеем $\lim_{\substack{x\to a\\x\in A}}h(x)=\bar{h}(a)$ $\Longrightarrow \lim_{\substack{x \to a \\ x \in A}} g(f(x)) = g(\bar{f}(a)) = g(a')$

Для любой точки $a \in \bar{A}$ существует такая последовательность $\{x_n\}$ точек из A, что $a = \lim_{x \to a, x \in A} x_n$

Так как a - точка замыкания множества A, то \forall шар B(a,r) содержит хотя бы одну точку из A

 $(B(a,r) \cap A \neq \varnothing).$

Пусть
$$r = \frac{1}{n} (\forall n \in \mathbb{N}, n \ge 1) \Longrightarrow B\left(a, \frac{1}{n}\right) \cap A \ne \emptyset.$$

По Аксиоме выбора мы можем для каждого n взять $x_n \in B\left(a, \frac{1}{n}\right) \cap A$. Осталось показать, что $\lim_{n \to \infty} x_n = a$. Покажем это по критерию Коши. Пусть $n < m : x_n \in B\left(a, \frac{1}{n}\right), x_m \in B\left(a, \frac{1}{m}\right)$

$$d(x_n, x_m) \le d(a, x_n) + d(a, x_m) < \frac{1}{n} + \frac{1}{m} < \frac{2}{n}$$

Для всех элементов начиная с n-го $x_n, x_{n+1}, \ldots \in B\left(a, \frac{2}{n}\right)$. Отсюда следует, что последовательность $\{x_n\}$ имеет предел и сходится к точке a. Q.E.D.

2.5 Пусть $f: A \to E'$ - отображение множества $A \subseteq E$ в метрическое пространство E' и $a \in \bar{A}$. Для того, чтобы f имело предел $a' \in E'$ в точке a по A, необходимо и достаточно, чтобы для каждой последовательности $\{s_n\}$ точек из A, сходящейся к a, последовательность $f(s_n)$ сходилась к a'

Необходимость

Пусть $\lim_{\substack{x\to a\\x\in A}}f(x)=a'$ и пусть $s:\mathbb{N}\to A\cup\{A\}$ — последовательность $\{s_n\}$. По условию, $\lim_{\substack{n\to\infty\\x\in A}}s_n=a$. Так как существует предел $\lim_{\substack{x\to a\\x\in A}}f(x)=a'$, то \bar{f} — непрерывна в точке $a.\ s':=\bar{f}\circ s:\mathbb{N}\to E'$ $(s'_n=f(s_n)).$ А отсюда по теореме 2.3 о пределе композиции: если $\lim_{\substack{n\to\infty\\n\to\infty}}s_n=a$, а \bar{f} непрерывна в a, то $\lim_{\substack{n\to\infty\\n\to\infty}}f(s_n)=\lim_{\substack{n\to\infty\\n\to\infty}}s'_n=\bar{f}(a)=a'=\lim_{\substack{x\to a\\x\in A}}f(x)$

Достаточность

Докажем от противного, пусть предел у отображения не a'.

Пусть для любой последовательности $\{s_n\}$ точек из A выполняется $\lim_{n\to\infty} s_n=a$, а значит $\lim_{n\to\infty} f(s_n)=a'$. Но $\lim_{\substack{x\to a\\x\in A}} f(x)\neq a'$

Тогда из определения предела последовательности $\lim_{n\to\infty}s_n=a,$ начиная с какого-то $N:\forall n>N:d\left(a,s_n\right)<\varepsilon$

Но с другой стороны $a' \neq \lim_{\substack{x \to a \\ x \in A}} f(x)$ а значит отображение \bar{f} не является непрерывным в точке a. Тогда существует $\varepsilon > 0$, что для любого номера n найдется такая точка $x_n \in A$, удовлетворяющая условиям $d(a,s_n) < \frac{1}{n}$ и $d'(a',f(s_n)) \geqslant \varepsilon$ (если бы выполнялась непрерыность, то $d'(a',f(x_n)) < \varepsilon$ из определения предела). Но тогда последовательность $\{f(s_n)\}$ не сходится к a', что протиоречит условию

2.6 Если (\mathbf{x}_n) последовательность в \mathbb{R}^n такая, что $\lim_{m \to \infty} \mathbf{x}_m = \mathbf{a}$, то она сходится покоординатно, т.е., $\lim_{m \to \infty} x_{mk} = a_k$, где $\mathbf{a} = (a_1, \dots, a_n)^T$

$$\left| \max_{1 \leqslant k \leqslant n} |x_k| \leqslant \sqrt{\sum_{k=1}^n x_k^2} \leqslant \sqrt{n} \max_{1 \leqslant k \leqslant n} |x_k| \right|$$

Из этого неравенства имеем: $\forall k (1 \leq k \leq n) : |x_{km} - a_k| \leq \sqrt{\sum_{k=1}^{n} (x_{km} - a_k)^2} = d(\mathbf{x}_m, \mathbf{a})$

 $\lim_{m\to\infty}\mathbf{x}_m=\mathbf{a}\Longleftrightarrow \forall \varepsilon>0:\exists M:\forall m>M:d\left(\mathbf{x}_m,\mathbf{a}\right)=\|\mathbf{x}_m-\mathbf{a}\|<\varepsilon$ (по определению предела последовательности)

$$\iff \forall k (1 \leqslant k \leqslant n) : |x_{km} - a_k| \leqslant \sqrt{\sum_{k=1}^n (x_{km} - a_k)^2} = d(\mathbf{x}_m, \mathbf{a}) = \|\mathbf{x}_{km} - a_k\| < \varepsilon$$

$$\iff \lim_{m \to \infty} x_{km} = a_k (1 \leqslant k \leqslant n) - \text{ сходится покоординатно} \qquad \text{Q.E.D.}$$

2.7 Докажите обобщенную теорему Больцано-Вейерштрасса

Рассмотрим \mathbb{R}^n с обычной метрикой d, и пусть имеется такая последовательность $\{\mathbf{x}_m\}$, элементы которой целиком лежат в каком-то шаре $B(\mathbf{a},r)\subseteq\mathbb{R}^n$, тогда в ней имеется сходящаяся подпоследовательность.

Если
$$\{\mathbf{x}_m\} \subseteq B(\mathbf{a},r) \Longrightarrow d(\mathbf{x}_m,\mathbf{a}) < r$$

Далее из неравенства:

$$|x_{km} - a_k| \le \max_{q \le k \le n} |x_{km} - a_k| \le \sqrt{\sum_{k=1}^n (x_{km} - a_k)^2} = d(\mathbf{x}_m, \mathbf{a}) < r$$

Так как $\mathbf{a} = (a_1, \dots, a_n)^T$ - фиксированная точка, значит, если мы рассмотрим покоординатно, каждая последовательность (x_{km}) ограничена при каждом m и $1 \le k \le n$. Если последовательность ограничена, то в ней есть сходящаяся подпоследовательность по теореме Больцано-Вейерштрасса, значит и в последовательности (x_{1m}) есть сходящаяся подпоследовательность $(x_{1m_{t_1}}) \subseteq (x_{1m})$, где t_1 пробегает некоторое множество индексов T_1 . Далее мы можем найти такую сходящуюся подпоследовательность $(x_{2m_{t_2}}) \subseteq (x_{2m})$, в которой t_2 пробегает множество индексов $T_2 \subseteq T_1$. Продолжая таким образом получим набор подопследовательностей

$$\left\{ \left(x_{1m_{t_{1}}}\right),\left(x_{2m_{t_{2}}}\right),\ldots,\left(x_{nm_{t_{n}}}\right)\right\}$$

где каждый t_k пробегает множество индексов T_k , при этом $T_n \subseteq T_{n-1} \subseteq \ldots \subseteq T_2 \subseteq T_1$

Тогда пусть все они пробегают одно и то же множество T_n , тогда получаем сходящююся подпоследовательность:

$$\mathbf{x}' = \begin{pmatrix} (x_{1m_{t_n}}) \\ (x_{2m_{t_n}}) \\ \dots \\ (x_{nm_{t_n}}) \end{pmatrix} = (\mathbf{x}_{m_{t_n}})$$

Q.E.D.

2.8 Пусть F, E_1, E_2 - метрические пространства, и пусть $f_1: F \to E_1, \ f_2: F \to E_2$. Тогда отображение $f: F \to E_1 \times E_2, \ z \mapsto (f_1(z), f_2(z))$ будет непрерывным в точке $z_0 \in F$, если и только если оба отображения f_1 и f_2 непрерывны в точке z_0

Пусть $p_0 = (f_1(z_0), f_2(z_0),$ покажем что

$$f^{-1}(B(p_0,r)) = f_1^{-1}(B(f(z_0),r)) \cap f_2^{-1}(B(f_2(z_0),r))$$

Действительно, $z \in f^{-1}(B(p_0, r)) \Longleftrightarrow$

$$\iff f(z) \in B(p_0, r) \\ \iff (f_1(z), f_2(z)) \in B_1(f(z_0), r) \times B_2(f_2(z_0), r) \\ \iff \{z \in F : f_1(z) \in B_1(f_1(z_0), r)\} \cap \{z \in F_1 : f_2(z) \in B_2(f_2(z_0), r)\} \\ \iff z \in f_1^{-1}(B(f(z_0), r)) \cap f_2^{-1}(B(f_2(z_0), r))$$

Используя лемму о том, что объединение любого семейства открытых множеств открыто и пересечение любого конечного числа открытых множеств открыто, заключаем, что прообраз любого открытого при f открыт, что доказывает предложение. Q.E.D

2.9 Докажите, что в векторном пространстве \mathbb{R}^n все нормы эквивалентны

Так как эквивалентность норм есть отношение эквивалентности, то достаточно показать, что любая норма $\|?\|_1$ эквивалентна евклидовой норме $\|?\|$

(1) Пусть $\mathbf{x} \in \mathbb{R}^n$, тогда $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$, тогда

$$||x||_1 = ||x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n|| \le |x_1| \cdot ||\mathbf{e}_1||_1 + \dots + |x_n| \cdot ||\mathbf{e}_n||_1$$

так как $|x_i| \le \sqrt{x_1^2 + \dots + x_n^2}$ для каждого $1 \le i \le n$, то мы получили

$$\|\mathbf{x}\|_1 \le (\|\mathbf{e}_1\|_1 + \dots + \|\mathbf{e}_n\|_1) \|\mathbf{x}\|.$$

(2) Будем рассуждать от противного. Пусть не существует такого числа c, что $\|\mathbf{x}\| \leq c\|\mathbf{x}\|_1$. Это значит, что для любого натурального $N \in \mathbb{N}$ найдётся $x_N \neq 0$ такой, что $\|x_N\| > N \|x_N\|_1$. С другой стороны, для любого $\lambda \in \mathbb{R} \setminus \{0\}, \|\lambda x_N\| > N \|\lambda x_N\|_1$.

Пусть $\mathbf{y}_N := \frac{\mathbf{x}_N}{\|\mathbf{x}_N\|}$, тогда $\|\mathbf{y}_N\| > N \|y_N\|_1$, и так как $\|y_N\| = 1$, получаем, что $\|y_N\|_1 < \frac{1}{N}$. Это значит, что $\lim_{N \to \infty} \|y_N\|_1 = 0$

Далее, мы получаем последовательность (\mathbf{y}_N) , для которой $||y_N|| = 1$, то есть все y_N лежат в шаре $B(0,r) \subseteq (\mathbb{R}^n, ||?||), r > 1$, т.е. она ограничена по норме ||?||. Тогда по обобщённой теореме Больцано-Вейерштрасса найдётся сходящаяся подпоследовательность (\mathbf{y}_{N_k}) , $\lim_{N_k \to \infty} \mathbf{y}_{N_k} = \mathbf{a}$

Мы уже показали, что $\|y_{N_k} - \mathbf{a}\|_1 \le c \|y_{N_k} - \mathbf{a}\|$, но это значит, что тогда последовательность (y_{N_k}) также сходится к \mathbf{a} и по норме $\|?\|_1$. С другой стороны, мы уже показали, что $\lim_{N\to\infty} \|y_N\|_1 = 0$, тогда $\|\mathbf{a}\|_1 = 0$, что даёт противоречие. Q.E.D.

2.10 Докажите, что любое линейное отображение $\mathscr{L}:\mathbb{R}^n \to \mathbb{R}^m$ дифференцируемо

Так как \mathscr{L} линейное, то $\forall \mathbf{x}, \mathbf{h} \in \mathbb{R}^n : \mathscr{L}(\mathbf{x} + \mathbf{h}) = \mathscr{L}(\mathbf{x}) + \mathscr{L}(\mathbf{h})$

Полагая, что $d\mathcal{L}_{\mathbf{x}} := \mathcal{L}$, и так как нулевая функция 0 точно лежит в $o(\|\mathbf{h}\|)$, мы получаем, что линейное отображение дифференцируемо. Q.E.D

2.11 Если функция f(x) дифференцируема в точке x_0 , то она непрерывна в этой точке

Нужно показать, что $\lim_{x\to x_0} f(x) = f(x_0)$, так как значение $f(x_0)$ определено по определению. Пусть $x:=x_0+h$, тогда если $h\to 0$, то $x_0\to 0$ и из определения производной в точке следует, что существует предел:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$
$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) = f'(x_0) \lim_{x \to x_0} (x - x_0) = 0$$

Это означает, что $\lim_{x\to x_0} f(x) = f(x_0)$, что означает непрерывность функции. Q.E.D

2.12 Функция f(x), непрерывная на отрезке [a,b], ограничена на этом отрезке

Докажем, что она ограничена сверху (ограниченность снизу доказывается аналогично)

Пусть для любого $n \in \mathbb{N}$ на отрезке [a,b] есть такая точка x_n , что $f(x_n) > n$. Мы получаем ограниченную последовательность (x_n) , тогда можно выбрать сходящуюся подпоследовательность (x_{n_k}) . Пусть тогда $\lim_{n\to\infty} x_{n_k} = x_0$. Тогда, $a \le x_0 \le b$

Далее, так как f(x) непрерывна на всём отрезке, то $f(x_0) = \lim_{x \to x_0} f(x)$, но тогда $f(x_0) = \lim_{n \to \infty} f(x_{n_k})$, но мы предположили, что $f(x_{n_k}) > n_k$, тогда $\lim_{n \to \infty} f(x_{n_k}) = \infty$, что даёт противоречие

2.13 Функция f(x), непрерывная на отрезке [a,b], достигает максимума и минимума в некоторых точках этого отрезка

Рассмотрим множество $\{f(x), x \in [a, b]\}$ =: Im(f). Очевидно, что оно не пусто. Согласно предыдущей теореме, оно ограничено. Тогда, согласно принципу полноты Вейерштрасса, это множество имеет супремум и инфинум

Покажем, что на отрезке [a,b] есть такая точка x_0 , для которой $f(x_0)=M:=\sup_{f(x)\in [a,b]}\{f(x)\}$. (Для инфиниума доказательство аналогичное)

Итак, множество $\{f(x), x \in [a,b]\}$ ограничено и не пусто и имеет sup, inf. Тогда из определения супремума следует, что найдутся такие $f(x_n)$, что $M-\frac{1}{n} \leq f(x_n) \leq M$ для какой-то последовательности (x_n) точек из [a,b]. Можно выбрать сходящуюся подпоследовательность (x_{n_k}) . Мы можем положить, что эта подпоследовательность сходится к x_0 , но тогда $f(x_0) = \lim_{n \to \infty} f(x_{n_k})$, но так как $M-\frac{1}{n} \leq f(x_n) \leq M$, то по лемме о зажатой последовательности $f(x_0) = M$. Q.E.D

2.14 Докажите теорему Ферма (о функции, а не великую!)

Theorem. Пусть функция f(x) определена на отрезке $[a,b], x_0 \in (a,b)$ — точка экстремума, и $f'(x_0)$ существует. Тогда $f'(x_0) = 0$

Proof. Пусть $f(x_0) \le f(x)$ для всех $x \in [a, b]$ (аналогично для максимума) Рассмотрим пределы

$$A := \lim_{\substack{x \to x_0 \\ x \in \mathbb{R}_{>} > x_0}} \frac{f(x) - f(x_0)}{x - x_0}, \quad B := \lim_{\substack{x \to x_0 \\ x \in \mathbb{R}_{$$

Так как существует производная $f'(x_0) := \lim_{\substack{x \to x_0 \\ x \in \mathbb{R}}} \frac{f(x) - f(x_0)}{x - x_0}$, то предел по любому подмножеству $U \subseteq \mathbb{R}$ (для которого $x_0 \in \bar{U}$) должен совпадать, а значит, A = B. А так как

$$\forall x \in [a, b] : f(x_0) \leqslant f(x) \Longrightarrow f(x) - f(x_0) \geqslant 0$$

$$A \geqslant 0 \Longleftrightarrow \begin{cases} f(x) - f(x_0) \geqslant 0 \\ x - x_0 \geqslant 0 \end{cases}$$

$$B \leqslant 0 \Longleftrightarrow \begin{cases} f(x) - f(x_0) \geqslant 0 \\ x - x_0 \leqslant 0 \end{cases}$$

$$\Longrightarrow A = B = 0 = f'(x_0)$$

Q.E.D.

2.15 Докажите теорему Ролля

Theorem. Пусть функция f(x) дифференцируема на отрезке [a,b], причём f(a) = f(b). Тогда существует такая точка $x_0 \in (a,b)$, что $f'(x_0) = 0$

Proof. Согласно теореме Вейештрасса 2.13 f(x) достигает максимума M и минимума m на этом отрезке

- (1) Пусть M=m, тогда $f(x)={\rm const},$ так как $m\leq f(x)\leq M$ для всех $x\in [a,b].$ Тогда в качестве x_0 можно взять любую точку из (a,b)
- (2) Пусть $f(x) \neq \text{const}$, тогда найдётся точка $x_0 \in (a,b)$ такая, что $f(x_0) \neq f(a) = f(b)$. Положим f(x) > f(a). Далее, согласно теореме Вейерштрасса, найдётся точка $x_1 \in [a,b]$, в которой $f(x_1)$ максимальна. Тогда $x_1 \neq a,b$ и по теореме Ферма мы получаем требуемое. Q.E.D.

2.16 Докажите теорему Лагранжа

Theorem. Пусть функция f(x) дифференцируема на отрезке [a,b]. Тогда существует такая точка $x_0 \in (a,b)$, что

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Proof. Рассмотрим функцию

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Эта функция дифференцируема на отрезке [a,b] и $\varphi(a)=\varphi(b)=f(a)$, тогда по теореме Ролля существует $x_0\in(a,b)$ такая, что $\varphi'(x_0)=0$, m.e.

$$\varphi'(x_0) = f'(x_0) - \frac{f(b) - f(a)}{b - a} = 0,$$

Q.E.D

Эту теорему часто записывают в виде $f(b) - f(a) = f'(x_0)(b-a)$ и называют формулой конечных приращений или теоремой о среднем значении

2.17 Если функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема на каком-то открытом $\mathscr{U} \subseteq \mathbb{R}^n$ или в фиксированной точке x, то она имеет в этой точке частные производные по всем переменным

Пусть $f: \mathbb{R}^n \to \mathbb{R}$, дифференцируемая на каком-то открытом $\mathscr{U} \subseteq \mathbb{R}^n$ или в фиксированной точке \mathbf{x} . Тогда её дифференциал $(\mathrm{d}f)_{\mathbf{x}}$ в точке \mathbf{x} задаётся матрицей размера $n \times 1$, $(\mathrm{d}f)_{\mathbf{x}} = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}$, где все a_i есть функции от \mathbf{x} . Наша цель - найти эти a_i . Пусть $\mathbf{h} = (h_1, \dots, h_n)^\top \in \mathscr{U} \subseteq \mathbb{R}^n$, тогда получаем

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = (\mathbf{d}f)_{\mathbf{x}}(\mathbf{h}) + o(\|\mathbf{h}\|)$$

$$= \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} + o(\|\mathbf{h}\|)$$

$$= a_1 h_1 + \dots + a_n h_n + o(\|\mathbf{h}\|).$$

Видно, что a_i не зависит от координат вектора \mathbf{h} кроме h_i т.е. чтобы найти a_i , нам достаточно рассмотреть вектор $\mathbf{h}_i = h_i \mathbf{e}_i$, где \mathbf{e}_i - базисный вектор. В таком случае, $\|\mathbf{h}_i\| = |h_i|$, и тогда для каждого $1 \le i \le n$ мы получаем

$$f(\mathbf{x} + h_i \mathbf{e}_i) - f(\mathbf{x}) = a_i h_i + o(|h_i|),$$

таким образом,

$$a_i = \lim_{h_i \to 0} \frac{f(\mathbf{x} + h_i \mathbf{e}_i) - f(\mathbf{x})}{h_i},$$

такое выражение называется частной производной функции по переменной x_i и обозначается либо как $\frac{\partial f}{\partial x_i}$, либо как f'_{x_i} , m.e.

$$\frac{\partial f}{\partial x_i} := \lim_{h_i \to 0} \frac{f(\mathbf{x} + h_i \mathbf{e}_i) - f(\mathbf{x})}{h_i},$$

если же мы хотим знать её значение в точке \mathbf{x}_0 , то получаем

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) := \lim_{h_i \to 0} \frac{f(\mathbf{x}_0 + h_i \mathbf{e}_i) - f(\mathbf{x}_0)}{h_i}$$

2.18 Пусть функция f имеет конечные частные производные по всем координатам в окрестности точки а. Если они непрерывны в точке а, то f дифференцируема в этой точке

Пусть $\mathscr U$ - окрестность точки a, и пусть $\mathbf a + \mathbf h \in \mathscr U$. Согласно формуле конечных приращений, мы имеем

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} f'_{x_k} (\mathbf{a} + \mathbf{v}_k) \cdot h_k$$

где $\mathbf{a} + \mathbf{v}_k \in \mathscr{U}, 1 \leq k \leq n$. По условию, все частные производные непрерывны и конечны, тогда для любого $\varepsilon > 0$ из $||\mathbf{v}_k|| < \delta$ следует $\left|f'_{x_k}\left(\mathbf{a} + \mathbf{v}_k\right) - f'_{x_k}(\mathbf{a})\right| < \varepsilon$. Другими словами, можно сказать,

ОТР

$$f'_{x_k}(\mathbf{a} + \mathbf{v}_k) = f'_{x_k}(\mathbf{a}) + \varepsilon_k(\mathbf{h})$$

где $\varepsilon_k(\mathbf{h}) \to 0$ когда $\mathbf{h} \to 0$. Таким образом, получаем

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} \left(f'_{x_k}(\mathbf{a}) + \varepsilon_k(\mathbf{h}) \right) h_k = \sum_{k=1}^{n} f'_{x_k}(\mathbf{a}) h_k + \alpha(\mathbf{h}),$$

где $\alpha(\mathbf{h}) := \sum_{k=1}^n \varepsilon_k(\mathbf{h}) h_k$. Ясно, что

$$\frac{\alpha(\mathbf{h})}{\|\mathbf{h}\|} = \sum_{k=1}^{n} \varepsilon_k(\mathbf{h}) \frac{h_k}{\|\mathbf{h}\|}$$

Наконец по определению сходимости,

$$\|\mathbf{h}\| = \sqrt{h_1^2 + \dots + h_n^2} \ge \max_{1 \le i \le n} |h_i|,$$

тогда

$$\frac{h_k}{\|\mathbf{h}\|} < \frac{h_i}{\max_{1 \le i \le n} |h_i|} \le \frac{\max_{1 \le i \le n} |h_i|}{\max_{1 \le i \le n} |h_i|} = 1$$

т.е. все дроби $\frac{h_k}{\|\mathbf{h}\|}$ ограничены. Далее, так как $\varepsilon_k(\mathbf{h})$ бесконечно малые, мы получаем

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} f'_{x_k}(\mathbf{a}) h_k + o(\|\mathbf{h}\|)$$

а это и означает, что f дифференцируема. Q.E.D.

2.19 Пусть $L: \mathbb{R}^n \to \mathbb{R}^m$ - линейное отображение. Тогда следующие утверждения равносильны:

- (1) L непрерывно
- (2) L непрерывно в нуле
- (3) Существует такое C>0, что $||L(\mathbf{v})|\leq C|\mid \mathbf{v}||$ для любого $\mathbf{v}\in\mathbb{R}^n$
- (1) \Longrightarrow (2). Это просто следует из того, что если L непрерывно, то оно непрерывно во всех точках \mathbb{R} , в частности и в нуле тоже
- $(2)\Longrightarrow (3).$ Если L непрерывно в нуле, то это значит, что для любого $\varepsilon>0$ можно всегда найти такое $\delta>0$, что из $\|\mathbf{h}\|<\delta$ будет следовать $\|L(\mathbf{h})\|<\varepsilon$. Пусть $\varepsilon=1$, тогда мы всегда найдём такой $\delta>0$, что если $\|\mathbf{h}\|<\delta$, то $\|L(\mathbf{h})\|<1$. Зафиксируем такое δ . Возьмём теперь произвольный ненулевой вектор $\|\mathbf{v}$, тогда имеем

$$\begin{split} \|L(\mathbf{v})\| &= \left\| \frac{2}{\delta} \right\| \mathbf{v} \left\| L\left(\frac{\delta \mathbf{v}}{2\|\mathbf{v}\|} \right) \right\| \\ &= \frac{2}{\delta} \|\mathbf{v}\| \cdot \left\| L\left(\frac{\delta \mathbf{v}}{2\|\mathbf{v}\|} \right) \right\| < \frac{2}{\delta} \|\mathbf{v}\| \end{split}$$

потому что

$$\left\| \frac{\delta \mathbf{v}}{2\|\mathbf{v}\|} \right\| = \frac{\delta}{2} < \delta$$

и так как δ фиксировано, мы получаем требуемое

 $(3) \Longrightarrow (1)$. Имеем

$$||L(\mathbf{v}) - L(\mathbf{u})|| = ||L(\mathbf{v} - \mathbf{u})|| \le K||\mathbf{u} - \mathbf{v}||,$$

тогда если $\|\mathbf{u} - \mathbf{v}\| < \delta$, то $\|L(\mathbf{v}) - L(\mathbf{u})\| < K\delta$, поэтому для любого $\varepsilon > 0$, если мы положим, что $0 < \delta < \frac{\varepsilon}{K}$, то мы и получаем непрерывность L. Q.E.D

2.20 Любое линейное отображение $L:\mathbb{R}^n \to \mathbb{R}^m$ непрерывно

Пусть L задаётся матрицей $(a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq m},$ тогда

$$L(\mathbf{v}) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + \dots + a_{1n}v_n \\ \vdots \\ a_{m1}v_1 + \dots + a_{mn}v_n \end{pmatrix} = (u_1, \dots, u_m)^\top =: \mathbf{u} \in \mathbb{R}^m,$$

тогда

$$||L(\mathbf{v})|| = ||\mathbf{u}||$$

$$= \sqrt{(a_{11}v_1 + \dots + a_{1n}v_n)^2 + \dots + (a_{m1}v_1 + \dots + a_{mn}v_n)^2}$$

$$\leq \sqrt{m} \max_{1 \leq k \leq m} |a_{k1}v_1 + \dots + a_{kn}v_n|$$

$$\leq \sqrt{m} \max_{1 \leq k \leq m} (|a_{k1}| \cdot ||v_1| + \dots + |a_{kn}| \cdot ||v_n|)$$

$$\leq \sqrt{m} \max_{1 \leq k \leq m} (|a_{k1}| \cdot ||\mathbf{v}|| + \dots + |a_{kn}| \cdot ||\mathbf{v}||)$$

$$= \sqrt{m} \max_{1 \leq k \leq m} (|a_{k1}| + \dots + |a_{kn}|) \cdot ||\mathbf{v}||$$

$$= K||\mathbf{v}||,$$

где $K := \sqrt{m} \max_{1 \le k \le m} (|a_{k1}| + \dots + |a_{kn}|)$, тогда по предыдущем пункту оно непрерывно.