FIELD-AWARE FACTORIZATION MACHINES IN A REAL-WORLD ONLINE ADVERTISING SYSTEM

Elise Chin

Mathilde Da Cruz

Vincent Duchauffour

INTRODUCTION: PRÉSENTATION DE L'ARTICLE

- a. Les auteurs
- b. Définitions
- c. Contributions
- d. Contexte

1

LES AUTEURS

Papier publié en 2017 et présenté à la World Wide Web Conférence (IW3C2)

Olivier Chapelle Google Yuchin Juan Criteo Research

Damien Lefortier Facebook

- Computational advertising (CA)
- → Publicité la plus pertinente selon un contexte
- → information retrieval, statistical modeling, machine learning, optimization large scale search, text analysis
 - Sponsored search
 - Contextual advertising
 - Display advertising

Sponsored search

Contextual Advertising

Display Advertising

- Computational advertising (CA)
- → Publicité la plus pertinente selon un contexte
- → information retrieval, statistical modeling, machine learning, optimization large scale search, text analysis
 - Sponsored search
 - Contextual advertising
 - Display advertising
 - Click-through / Click-through Rate (CTR)
- nombre de clics / nombre de vues

- Computational advertising (CA)
- → Publicité la plus pertinente selon un contexte
- → information retrieval, statistical modeling, machine learning, optimization large scale search, text analysis
 - Sponsored search
 - Contextual advertising
 - Display advertising
 - Click-through / Click-through Rate (CTR)
- nombre de clics / nombre de vues
 - Conversion / Conversion rate
- → Action spécifique de l'utilisateur

CONTRIBUTIONS

Utiliser le FFM dans un système de production pour prédire le CTR et CR.

Cette méthode est-elle aussi efficace dans le monde réel que dans des compétitions kaggle ?

2. Entrainement distribué

1. Application de FFM dans un cadre industriel

3. Pré mature Warm Start

CONTEXTE

Kaggle compétition: Predict ad CTR
"Given a user and the page he is visiting,
what is the probability that he will click on a
given ad?"

7 jours de données : prédire le jour suivant

1. Field-aware Factorization Machines

2/3? Logistic Regression with crossfeatures

CONTEXTE

Système de production = Contraintes et objectifs spécifiques! Différent d'une compétition académique.

Cas du Netflix Prize (2006)

- → \$1 million à l'équipe qui améliorerait l'accuracy de leur système de recommandation d'au moins 10%
- Codes gagnants jamais utilisés par Netflix
- X Code écrit pour 100M notes (VS +5Milliards en réalité)
- X Code ne s'adapte pas à de nouvelles notes
- X Trop de "Engineering efforts" pour le gain
- **★** Shift des recommandations (transition DVD streaming)
- = données obsolètes

CONTEXTE

SOTA Kaggle challenge = SOTA real world?

Différences entre la compétition et le monde réel :

- Prédire si clic ou non
- Données limitées
- Tout prédire avant la fin de la compétition
- etc.

- Prédire Click-Through Rate ET Conversion Rate
- Données continues
- Prédire chaque valeur au bon moment = TEMPS LIMITÉ!
- etc.

MODÈLES

a. Linéaire

b. Polynomial de degré 2 (Poly2) et Factorization Machine (FM)

d. Field-aware Factorization Machine (FFM): SOTA

2

DATASET

$$\{\mathbf{x_i}, y_i\}_{i=1}^m$$

 y_i label

X_i vecteur de features de dimension n

<u>Terminologie</u>:

- Champ: {Publisher,Advertiser}
- Feature: {ESPN, Vogue,NBC, Nike, ...}

		Publisher	Advertiser
+80	-20	ESPN	Nike
+10	-90	ESPN	Gucci
+0	-1	ESPN	Adidas
+15	-85	Vogue	Nike
+90	-10	Vogue	Gucci
+10	-90	Vogue	Adidas
+85	-15	NBC	Nike
+0	-0	NBC	Gucci
+90	-10	NBC	Adidas

Table 1: An artificial CTR data set, where +(-) represents the number of clicked (unclicked) impressions.

LINÉAIRE

Formulation:

$$\phi_{LM}(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{j \in C_1} w_j x_j$$

où C1 est l'ensemble des éléments non nuls dans x

		Publisher	Advertiser
+80	-20	ESPN	Nike
+10	-90	ESPN	Gucci
+0	-1	ESPN	Adidas
+15	-85	Vogue	Nike
+90	-10	Vogue	Gucci
+10	-90	Vogue	Adidas
+85	-15	NBC	Nike
+0	-0	NBC	Gucci
+90	-10	NBC	Adidas

Table 1: An artificial CTR data set, where +(-) represents the number of clicked (unclicked) impressions.

Exemple:

$$\phi_{LM}(\mathbf{w}, \mathbf{x}) = w_{ESPN} x_{ESPN} + w_{Vogue} x_{Vogue} + w_{Gucci} x_{Gucci} + \dots$$

<u>Limite</u>: ne permet pas de représenter l'effet d'une feature sur une autre (e.g. taux de clics plus élevé pour (Vogue, Gucci) que (ESPN, Gucci))

POLY2

FACTORIZATION MACHINE (FM)

Formulation:

$$\phi_{Poly2}(\mathbf{w}, \mathbf{x}) = \sum_{j_1, j_2 \in C_2} w_{j_1, j_2} x_{j_1} x_{j_2}$$

où C2 est l'ensemble des couples d'éléments non nuls dans x

Formulation:

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \sum_{j_1, j_2 \in C_2} \langle \mathbf{w}_{j_1}, \mathbf{w}_{j_2} \rangle x_{j_1} x_{j_2}$$

où:

- w_j1 et w_j2 sont deux vecteurs de dimension k, k étant un hyperparamètre
- C2 est l'ensemble des couples d'éléments non nuls dans x

Table 1: An artificial CTR data set, where +(-) represents the number of clicked (unclicked) impressions.

Exemple:

$$\phi_{Poly2}(\mathbf{w}, \mathbf{x}) = w_{ESPN,Gucci} \times x_{ESPN} x_{Gucci} + w_{Vogue,Gucci} \times x_{Vogue} x_{Gucci} + ...$$

$$\phi_{FM}(\mathbf{w}, \mathbf{x}) = \langle \mathbf{w}_{ESPN}, \mathbf{w}_{Gucci} \rangle \times x_{ESPN} x_{Gucci} + \langle \mathbf{w}_{Vogue}, \mathbf{w}_{Gucci} \rangle \times x_{Vogue} x_{Gucci} +$$

FIELD-AWARE FACTORIZATION MACHINE (FFM)

Formulation:

$$\phi_{FFM}(\mathbf{w}, \mathbf{x}) = \sum_{j_1, j_2 \in C_2} \langle \mathbf{w}_{j_1, f_2}, \mathbf{w}_{j_2, f_1} \rangle x_{j_1} x_{j_2}$$

où:

- f1 et f2 sont respectivement les champs des features j1 et j2
- w_j1, f2 et w_j2, f1 sont deux vecteurs pour les features j1 et j2 dans le contexte des champs f2 et f1 respectivement
- C2 est l'ensemble des couples d'éléments non nuls dans x

Exemple:

Clicked	Publisher (P)	Advertiser (A)	Gender (G)
Yes	ESPN	Nike	Male

 $oldsymbol{w}_{ ext{ESPN}} \cdot oldsymbol{w}_{ ext{Nike}} + oldsymbol{w}_{ ext{ESPN}} \cdot oldsymbol{w}_{ ext{Male}} + oldsymbol{w}_{ ext{Nike}} \cdot oldsymbol{w}_{ ext{Male}}$

FFM $w_{\text{ESPN,A}} \cdot w_{\text{Nike,P}} + w_{\text{ESPN,G}} \cdot w_{\text{Male,P}} + w_{\text{Nike,G}} \cdot w_{\text{Male,A}}$

FFM APPLIQUÉ DANS UN CADRE INDUSTRIEL

- a. Approches Offline vs Online
- b. Résultats

APPROCHES OFFLINE VS ONLINE

Offline learning:

Apprentissage fondé sur un dataset complet

Online learning:

La complétude des données d'entraînement n'est pas assurée. Complétion des données effectué selon un plan programmé

Méthode générale :

Comparaison du FFM avec une régression logistique comme baseline (L-BFGS avec warn start).

Utilisation du hashing trick pour réduire la dimension des données

Les variables prédites par les modèles sont les CTR et CR.

APPROCHES OFFLINE

Protocole:

- validation progressive
- réduction de la taille de l'espace de hashing afin de garantir le même nombre de paramètres pour la LR et le FFM

$$\mathbf{LL}(p) = -\sum_{i=1}^{N} y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$
 (2)

$$\mathbf{NLL}(p) = \frac{\mathrm{LL}(\bar{p}) - \mathrm{LL}(p)}{\mathrm{LL}(\bar{p})} \tag{3}$$

Utility =
$$\sum_{i} \int_{0}^{p(\mathbf{x}_{i})v_{i}} (y_{i} \cdot v_{i} - \tilde{c}) \Pr(\tilde{c} \mid c_{i}) d\tilde{c}$$
(4)

APPROCHES ONLINE

Protocole:

- A/B test
- entraînement sur données live (~5B de display)
- rafraîchissement synchronisé des données pour LR et FFM
- utilisation d'un ROI comme métrique de comparaison avec la méthode offline

RÉSULTATS

Prediction model with FFM	NLL on all advertisers	NLL on small advertisers
$\frac{\text{CTR}}{\text{CTR} + \text{CR}}$	$+3.71\% \blacktriangle +1.21\% \blacktriangle$	+5.9%▲ +6.2%▲

Prediction model with FFM	$Utility_{\beta=10}$ on all advertisers	Utility $_{\beta=10}$ on small advertisers	$Utility_{\beta=1000}$ on all advertisers	Utility _{$\beta=1000$} on small advertisers
$ \begin{array}{c} \text{CTR} \\ \text{CTR} + \text{CR} \end{array} $	+6.29%▲ +11.42%▲	+9.70%▲ +38.44%▲	+2.22% ▲ $+5.43%$ ▲	+4.39%▲ +18.34%▲

Observation:

Meilleurs résultats sur les petits annonceurs

Prediction model with FFM	ROI on all advertisers	ROI on small advertisers
CTR + CR	+0.97%▲	+2.61%▲

RÉDUCTION DU TEMPS D'ENTRAÎNEMENT

- a. Entraînement distribué
- b. Pre-mature warm-start

2 méthodes pour distribuer l'algorithme de descente du gradient

Distribution synchrone:

Agrégation des modèles après une certaines quantités de données traités (en général 1 epoch)

→ Iterative Parameter Mixing (IPM)

Distribution asynchrone:

Des machines sont dédié au stockage du modèle tandis que d'autres met à jour le modèle avec leurs copies locales

→ Parameter Server Approach

 $speed-up = \# machines \times \frac{\# epochs \ with \ multiple \ machines}{\# epochs \ with \ one \ machine}$

Le choix se porte sur la distribution synchrone du gradient car :

- implémentation technique simple
- suppose que le temps de calcul est équitablement distribué entre les machines
- le coût de communication entre les machines est négligeable

Cependant:

- la convergence réduit à mesure que l'on augmente le nombre de machines
- il faut donc également augmenter la valeur du learning rate

η	#epochs	$\log loss$
0.2	157	0.44585
0.5	70	0.44569
1.0	37	0.44590
2.0	26	0.44622
3.0	21	0.44654
4.0	19	0.44688
5.0	18	0.44721

En modifiant l'algorithme IPM de telle façon à ce que le gradient soit le résultat d'une agrégation, on peut avoir un learning rate élevé et une loss faible.

On peut ainsi accélérer l'entraînement de : 32 * (8/22) soit 12 fois

Algorithm 2 Improved IPM for AdaGrad

```
1: Spread m data points into k machines
  2: Initialize w
  3: Initialize G \leftarrow I
  4: for t \in \{1, \dots, T\} do
                                                              \triangleright T: number of epochs
        Let \boldsymbol{w}_i \leftarrow \boldsymbol{w} \quad \forall i \in \{1, \cdots, k\}
           Let G_i \leftarrow G \quad \forall i \in \{1, \cdots, k\}
            for i \in \{1, \dots, k\} parallel do
 8:
                  for each data point do
                        Calculate the gradient g
 9:
                         Update G_i: G_i \leftarrow G_i + \operatorname{diag}(\boldsymbol{g}\boldsymbol{g}^T)
10:
                         Update \boldsymbol{w}_i: \boldsymbol{w}_i \leftarrow \boldsymbol{w}_i - \eta G_i^{-1/2} \boldsymbol{g}
11:
            \boldsymbol{w} \leftarrow \sum_{i=1}^k \boldsymbol{w}_i / k
12:
            G \leftarrow \sum_{i=1}^{k} G_i
13:
```

PRE-MATURE WARM-START

Warm-start:

initialisation d'un modèle avec les poids d'un autre modèle **Early-stopping:**

Arret automatique d'un entraînement lorsqu'une métrique ne présente aucune amélioration

État pre-mature : le modèle est entraîné avec trop peu d'epoch

État mature : le modèle est entraîné avec un

nombre suffisant d'epoch

État post-mature : le modèle est entraîné avec un trop grand nombre d'epoch

PRE-MATURE WARM-START

Naive warm-start:

- Initialisation : modèle "mature"
- Après entraînement : obtention d'un modèle "post-mature", donc overfitting sur les anciennes données
- Observation : dégradation des performances au fur et à mesure des apprentissages.

Pre-mature warm-start (solution):

- Initialisation : modèle "pre-mature"
- Après entraînement : obtention d'un modèle "mature", donc apprentissage des nouvelles données sans sur-apprentissage sur les anciennes données.
- Nouveau modèle mature pour la prédiction, nouveau modèle pre-mature pour l'initialisation du prochain modèle

```
Algorithm 4 Our proposed "pre-mature" warm-start

Require: an initial model \mathbf{w}_{-1}

\mathbf{w} \leftarrow \mathbf{w}_0 \leftarrow \mathbf{w}_{-1}

calculate the validation loss L_0

for t \in \{1, \dots, T\} do

update \mathbf{w}

\mathbf{w}_t \leftarrow \mathbf{w}

calculate the validation loss L_t

if L_t > L_{t-1} then

return (\mathbf{w}_{t-1}, \mathbf{w}_{t-2})
```


PRE-MATURE WARM-START

Le pre-mature warm start permet ainsi :

- de réduire significativement le nombre d'epoch nécessaire (et donc le temps d'entraînement)
- de conserver des performances équivalentes

CONCLUSION

Field-aware Factorization Machines peut être déployé avec succès dans des systèmes de publicité en ligne à grande échelle!

- Amélioration des "business metrics"
- Meilleure généralisation que la regression logistique (petits annonceurs)
- L'entrainement a été accéléré efficacement
 - distributed learning
 - warm start