What are vasodilators?

- dilate blood vessels
 - Which vessels? arteries, arterioles, venules and veins
 - How? smooth muscle relaxation (direct/indirect)

Why are they used?

- control blood pressure / blood flow
 - systemic / local (e.g. pulmonary, coronary, peripheral)
- \downarrow the work of the heart (thus O₂ need)
 - heart failure / angina

- Vasodilators are used
 - to antagonize increased vascular tone
 - systemically or
 - locally
 - thus improve the efficacy of circulation under pathological conditions

Sources of mediators controlling vascular smooth muscle tone

- secreted by autonomic (sympathetic) nerves
 - e.g. NAdr+, ATP+
- secreted by endothelium
 - e.g. endothelin+, prostacyclin (PGI₂)-, NO-
- circulating hormones
 - e.g. angiotensin+
- other
 - e.g. thromboxane (TXA₂)+, 5-HT+/-, natriuretic peptides-

+: constriction / -: dilation

Excitation - contraction coupling in smooth muscle

- ic. Ca is central
- but depol. and EC Ca is not absolute req.

myosin phosphatase

vascular smooth muscle tension \rightarrow diameter \rightarrow blood pressure / flow

Control of smooth muscle contraction and relaxation

Role of endothelium in controlling vascular smooth muscle

some are tonically active: e.g. NAdr, NO, endothelin

Endothelium derived mediators controlling vascular smooth muscle tension

- prostanoids
 - relax.: PGI2, PGE2
 - constr.: PGG2, PGH2
- nitric oxide
- peptides
 - relax.: CNP, adrenomedulin
 - constr.: angiotensin II, endothelin
- endothelium derived hyperpolarizing factor(s)
 - NO and PG independent vasodilation
 - identity ?

Classification of vasodilators according to their mechanism of action

directly acting vasodilators

- calcium channel blockers e.g. nifedipine
- K_{ATP} channel activators e.g. minoxidil
- drugs that increase cytoplasmic cyclic nucleotide concentrations
 - cyclase activators e.g. nitrates, β_2 agonists
 - PDE inhibitors e.g. methylxantines, sildenafil

indirectly acting vasodilators

- drugs that interfere with the sympathetic nervous system
 - e.g. α_1 blockers
- RAS blockers (aliskiren, captopril, losartan ...)
- drugs that stimulate endothelial NO release e.g. ACh, BK
- drugs that block the endothelin system
 - bosentan, ambrisentan used in pulmonary hypertension
- other (unknown) mechanism of action
 - hydralazine/dihydralazine, ethanol, propofol

Directly acting vasodilators

- calcium channel blockers (L-type voltage dependent)
 - dihydropyridines e.g. nifedipine
 - verapamil
 - diltiazem
- K_{ATP} channel activators
 - minoxidil, diazoxide, nicorandil, levosimendan
- cAMP/ cGMP level increasing drugs
 - increased adenylyl cyclase activity
 - prostacyclin (PGI₂ / epoprostenol), β₂ agonists, fenoldopam
 - increased guanylyl cyclase activity
 - organic nitrates (nitroglycerine, nitroprusside), NO, natriuretic peptides
 - phosphodiesterase inhibitors
 - sildenafil + others erectile dysfunction
 - papaverin, theophylline, milrinone, inamrinone not used as vasodilators

Classification according to clinical use

hypertension

- calcium channel blockers both outpatient and emergency
- oral vasodilators: hydralazine and minoxidil long-term outpatient therapy of severe hypertension
- parenteral vasodilators: nitroprusside, diazoxide and fenoldopam hypertensive emergencies

angina pectoris

- organic nitrates for immediate relief
- calcium channel blockers especially for prophylaxis
- heart failure (mainly acute severe form)
 - several may improve symptoms (nitroprusside, phentolamine, nitrates)
 - hydralazine + isosorbide dinitrate
 - RAS blockers

Ca²⁺ channel blockers

- "use dependent" blockade
- heart > vascular: verapamil > diltiazem > nifedipine
 - no reflex tachycardia with verapamil
- arteriolar dilation
 - decreased blood pressure
 - coronaries variant (Prinzmetal) angina
 - nimodipine cerebral vessels subarachnoid hemorrhage
- other smooth muscles
 - not significant e.g. verapamil constipation
- adverse effects
 - ankle edema
 - bradycardia, negative inotropy (verapamil)

K⁺ channel activators

- hyperpolarization voltage dependent Ca²⁺ channel ↓
- minoxidil
 - arteriolar, long duration, oral, severe hypertension, in combination
 - hirsutism (see Rogaine solution)
- diazoxide
 - iv., arteriolar dilator, long duration of action (4-12 hours)
 - now rarely used (and only for short periods)
 - tox: hypotension, inhibits insulin release used in insulinoma
- nicorandil
 - NO donor too
 - arteriolar and venous effects
 - angina, currently approved for use in Europe and Japan
- levosimendan
 - see heart failure Ca sensitizers
 - in acute heart failure in Europe, noninferiority against dobutamine

Cyclase activators

cGMP

- nitrates e.g. nitroglycerin, Na-nitroprusside
- NO
- nesiritide BNP

cAMP

- fenoldopam / dopamine
- β_2 agonists not used as vasodilators / see asthma
- prostacyclin (PGI2 / epoprostenol)

Nitrates / nitrites

- NO release
 - enzyme reaction: organic nitrates (e.g. nitroglycerine)
 - mitochondrial aldehyde dehydrogenase
 - "direct release" (e.g. Na-nitroprusside / molsidomine)
- nitroglycerine (glyceryl trinitrate)
 - acute angina sublingual (peak \sim 4 min, $t_{1/2} \sim$ 1-3 min)
 - amyl nitrite is obsolete for angina (short duration / unpleasant odor)
 - preferentially venodilation + epicardial coronaries + atherosclerotic stenosis + collateral vessels (no "coronary steal")
 - inhibiton of thrombocyte aggregation
 - long term administration deleterious ? (e.g. Nakamura et al. 1999)
- isosorbid dinitrate / isosorbid-5-mononitrate (oral F ≈ 100%)
- Na-nitroprusside
 - i.v. infusion, light sensitive, cyanide release
 - arterial effects ≈ venous effects

Nitrates / nitrites

tolerance

- mechanism ?
 - neurohumoral activation, SH depletion, free radicals, inactivation of mitochondrial aldehyde reductase ...
- to avoid/decrease: intermittent dosing

adverse effects

- orthostatic hypotension
- tachycardia
- throbbing headache
- ↑ intracranial pressure (in case of overdose)

Inhaled NO gas

- selective dilation of pulmonary vasculature
 - because rapid reaction of NO by hemoglobin
- ↓ pulmonary pressure, ↑ oxygenation
- FDA: newborns with persistent pulmonary hypertension
- questions long term outcome????
 - ARDS
 - primary pulmonary hypertension
 - pulmonary embolism
 - lung transplantation

Nesiritide

- synthetic BNP (B-type natriuretic peptide)
- effects
 - $\uparrow cGMP \rightarrow smooth muscle relax.$
 - diuresis
- clinical use
 - iv. infusion
 - acute heart failure
- toxicity
 - excessive hypotension
 - renal damage ? / mortality ?

Fenoldopam

- selective D₁ receptor agonist (cAMP ↑)
 - vasodilation
 - afferent and efferent arterioles in kidney
 - mesenteric arteries
 - natriuresis
- clinical use
 - short term iv. infusion in severe hypertension
- toxicity
 - due to vasodilation: tachycardia, headache, flushing
 - glaucoma

Prostacyclin (PGI₂, epoprostenol)

- effects
 - cAMP ↑
 - potent vasodilator
 - inhibitor of platelet aggregation
- use
 - iv. infusion ($t_{1/2}$ ≈ 2-3 min)
 - analogs with longer half life
 - iloprost ($t_{1/2}$ ≈ 30 min) inhaled / iv.
 - treprostinil $(t_{1/2} \approx 4 \text{ h})$ sc. / iv.
 - pulmonary hypertension
- toxicity
 - headache, flushing, hypotension
 - diarrhea

Vasodilators in pulmonary hypertension

- endothelin receptor antagonists
 - bosentan, ambrisentan
 - oral / in mild cases
- prostanoid analogs
 - iloprost (inhal.), treprostinil (sc), beraprost
 - parenteral / in severe cases
- epoprostenol
 - long term iv. infusion
- NO inhalation
 - in newborn babies
- sildenafil
- Ca channel blockers

PDE inhibitors

- theophylline
 - used in asthma / not only PDE inhibitor (adenosine antag.)
- papaverin
 - Ca channel block too
 - GI smooth muscle relaxation
- milrinone, inamrinone
 - PDE3 inhibitors, see positive inotropic drugs
 - — ↑ contractility and vasodilation
- cilostazol
 - PDE3 inhibitor
 - used in intermittent claudication
- sildenafil
 - PDE5 inhibitor
 - used in erectile dysfunction / pulmonary hypertension

Interaction of nitrates with PDE5 inhibitors

- risk factors for erectile dysfunction ≈ coronary artery disease
- PDE5 inhibitors: sildenafil (Viagra), tadalafil (Cialis), vardenafil (Levitra)
- profound cGMP ↑ → severely reduced BP

Hydralazine / dihydralazine

- unknown mechanism of action
 - NO release ? (not K channels)
 - selective for arterioles
- orally administered
- clinical use
 - hypertension
 - hypertensive crisis during pregnancy short term only
 - heart failure
 - in combination with nitrates (esp. African American)
- toxicity
 - headache, flushing, reflex tachycardia → angina
 - reversible lupus like syndrome
 - primarily in "slow acetylators"