# The Parkes multibeam pulsar survey – IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars

G. Hobbs, 1\* A. Faulkner, I. H. Stairs, F. Camilo, R. N. Manchester, A. G. Lyne, 2 M. Kramer,<sup>2</sup> N. D'Amico,<sup>5,6</sup> V. M. Kaspi,<sup>7</sup> A. Possenti,<sup>5</sup> M. A. McLaughlin,<sup>2</sup> D. R. Lorimer, M. Burgay, B. C. Joshi<sup>2,8</sup> and F. Crawford<sup>9</sup>

Accepted 2004 May 17. Received 2004 April 8; in original form 2004 February 19

#### ABSTRACT

The Parkes multibeam pulsar survey has led to the discovery of more than 700 pulsars. In this paper, we provide timing solutions, flux densities and pulse profiles for 180 of these new discoveries. Two pulsars, PSRs J1736–2843 and J1847–0130, have rotational periods P >6 s and are therefore among the slowest rotating radio pulsars known. Conversely, with P =1.8 ms, PSR J1843-1113 has the third-shortest period of pulsars currently known. This pulsar and PSR J1905+0400 ( $P = 3.8 \,\mathrm{ms}$ ) are both solitary. We also provide orbital parameters for a new binary system, PSR J1420-5625, which has P = 34 ms, an orbital period of 40 d and a minimum companion mass of 0.4 solar masses. The 10°-wide strip along the Galactic plane that was surveyed is known to contain 264 radio pulsars that were discovered prior to the multibeam pulsar survey. We have redetected almost all of these pulsars and provide new dispersion measure values and flux densities at 20 cm for the redetected pulsars.

**Key words:** surveys – pulsars: general.

# 1 INTRODUCTION

Observing for the Parkes multibeam pulsar survey (hereafter referred to as the 'multibeam survey') has been completed. Full details of the telescope, hardware and software used were provided by Manchester et al. (2001) along with the rotational, astrometric and derived parameters for 100 pulsar discoveries. Morris et al. (2002) and Kramer et al. (2003) provided parameters for a further 320 discoveries timed for at least one year at the Parkes, Jodrell Bank and/or Arecibo observatories. Here, we provide timing solutions for 180 newly discovered pulsars. With this paper a total of 600 timing solutions for the multibeam discoveries have now been published.

We have successfully redetected 249 of the 264 previously known radio pulsars that lie within the survey region (defined by the Galactic coordinates  $260^{\circ} < l < 50^{\circ}$  and  $|b| < 5^{\circ}$ ) and have redetected a further 32 pulsars that lie outside this nominal survey region. For many of these redetected pulsars, the 35-min observation used during the survey is longer than any previous observation. Here, we analyse these long observations to obtain, for each pulsar, a flux density at 20 cm, pulse widths and dispersion measure. The flux densities are compared to other flux density measurements, at different observing frequencies, existing in the literature, to obtain new spectral indices for 38 pulsars.

This paper is divided into three major parts. In the first, we describe the observing systems used for the timing of the new multibeam survey discoveries and provide timing solutions for these pulsars. In the second, we highlight some particularly interesting discoveries such as the long-period pulsars PSRs J1736-2843 and J1847–0130, the solitary millisecond pulsars PSRs J1843–1113 and J1905+0400 and the binary system PSR J1420-5625. The third section contains a discussion on previously known pulsars redetected during the multibeam survey. We conclude by mentioning how these new results will be used to improve upon earlier studies of the Galactic pulsar population.

<sup>&</sup>lt;sup>1</sup>Australia Telescope National Facility, CSIRO, PO Box 76, Epping NSW 1710, Australia

<sup>&</sup>lt;sup>2</sup>University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL

<sup>&</sup>lt;sup>3</sup>Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1, Canada

<sup>&</sup>lt;sup>4</sup>Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA

<sup>&</sup>lt;sup>5</sup>INAF - Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, 09012, Capoterra (CA), Italy

<sup>&</sup>lt;sup>6</sup>Universita' degli Studi di Cagliari. Dipartimento di Fisica. SP Monserrato-Sestu km 0.7, 90042, Monserrato (CA), Italy

<sup>&</sup>lt;sup>7</sup>Physics Department, McGill University, Montreal, Quebec H3W 2C4, Canada

<sup>&</sup>lt;sup>8</sup>National Centre for Radio Astrophysics, PO Bag No. 3, Ganeshkhind, Pune, India

<sup>&</sup>lt;sup>9</sup>Department of Physics, Haverford College, Haverford, PA 19041, USA

<sup>\*</sup>E-mail: george.hobbs@csiro.au

### 2 DISCOVERY AND TIMING OF 180 PULSARS

The pulsars detailed in this paper have been observed multiple (typically around 25) times for at least one year using the Parkes 64-m, the 305-m Arecibo and/or the 76-m Lovell telescopes. The observing and analysis methods used at Parkes and at Jodrell Bank were described by Manchester et al. (2001) and Morris et al. (2002) respectively. The Arecibo timing observations were taken with 100-MHz bandwidth centred at 1400 MHz, using the 'L-narrow' receiver with a system temperature of 25–30 K.¹ The incoming telescope voltages were sampled by the Wideband Arecibo Pulsar Processor (Dowd, Sisk & Hagen 2000), a digital correlator with three-level sampling, producing 128 lags across 100 MHz. Dual circular polarizations were summed in hardware, and 16-bit data samples written to disc every 64 µs. Typical integration times were 60 or 120 s. The data were then dedispersed and folded off-line modulo the predicted topocentric pulse period.

For every observation of each pulsar we obtained a pulse topocentric arrival time (TOA). Using the TEMPO program<sup>2</sup> we fitted a timing model, which contained the pulsar's position, rotational period and its derivative, to the TOAs of each pulsar. In Table 1 we provide these positions in equatorial and Galactic coordinates. Subsequent columns contain information on the discovery of each pulsar: the beam number (corresponding to the 13 beams of the multibeam receiver) for the highest signal-to-noise ratio (S/N) discovery observation of this pulsar, the radial distance between the centre of this beam and the position of the pulsar (beam radii greater than one beamwidth occur if the pulsar scintillates or nulls or the closest pointing was contaminated by interference) and the S/N of the profile during this observation. The observations used to form TOAs were added together to provide a characteristic pulse profile for each pulsar at 1374 MHz (Fig. 1). The final three columns in Table 1 contain the flux densities measured from these mean profiles and the pulse widths at 50 and 10 per cent of the pulse height. The 10 per cent width is not measurable for pulsars with mean profiles that have poor signal-to-noise ratios. For profiles containing multiple components the widths are measured across the entire profile.

Some of the profiles observed at Arecibo had significant dips at the start of the observed pulse shape. These are due to instrumental data quantization problems. For cases where dips remained even after applying a correction scheme (Van Vleck & Middleton 1966), we used Parkes observations to determine the flux density and pulse widths (and provide the profile obtained at Parkes in Fig. 1) if high S/N profiles were available. For the remaining pulsars that were observed at the Arecibo Observatory, flux densities were obtained using estimates of the gain and system temperatures (these vary significantly with zenith angle and were therefore found separately for each observation<sup>3</sup>). The sky temperature at each position was estimated from Haslam et al. (1982) assuming a spectral index of -2.5 (Reich & Reich 1988). The scale was determined by comparing the baseline noise with the predictions of the radiometer equation and flux densities were found by integrating under the peak of each profile. Individual observations were averaged to find the mean flux density for each pulsar. This was then corrected for off-centre pointing by assuming a Gaussian beam-shape with a beamwidth of 3.6 arcmin. Estimated uncertainties for all parameters are given in parentheses where relevant and refer to the last quoted digit.

The rotational parameters of the pulsars are given in Table 2. In column order, this table provides the name of each pulsar, solarsystem barycentric pulse period, period derivative, epoch of the period, the number of TOAs used in the timing solution, the MJD range covered by the timing observations, the final root-mean-square values for the timing residuals and the dispersion measure. The data have been folded at two and three times the tabulated periods in order to confirm that they represent the fundamental periods of the pulsars. Pulsars timed primarily at Arecibo or Jodrell Bank are indicated by a superscript 'A' or 'J' respectively; all other pulsars were timed using the Parkes telescope. PSRs J1016-5857 and J1437-6146 have both glitched. Table 2 contains their post-glitch solution; full details of the glitches will be provided in a later paper. A pre-glitch timing solution for PSR J1016-5857 has also been published by Camilo et al. (2001a). A timing solution for PSR J1847-0130 was previously published by McLaughlin et al. (2003a).

Five pulsars in our sample were independently discovered by other surveys. We define pulsars as independent discoveries if our confirmation of the pulsar candidate occurred prior to the parameters of the pulsar being published elsewhere. Three, PSRs J0843-5022, J1352-6803 and J1415-6621, were detected in the Swinburne multibeam pulsar survey (Edwards et al. 2001). The timing solution given in Tables 1 and 2 for PSR J0843-5022 was obtained from Edwards et al. (2001). Bailes (2003; private communication) provided a timing solution for PSR J1415–6621 and the solution for PSR J1352-6803 was obtained from our observations. PSR J1907+0918 was discovered by Lorimer & Xilouris (2000) during a search for radio emission from SGR 1900+14. The timing solution given in Tables 1 and 2 is obtained from Lorimer & Xilouris (2000). The flux density and pulse widths were obtained from the Parkes multibeam data. The flux density tabulated of 0.29(4) mJy agrees well with the earlier measurement of 0.3(1) mJy. PSR J1435-5954 was independently discovered at Parkes in an unpublished pulsar search during the year 1995. We provide a timing solution from observations between 1995 and 1998.

PSR J1420–5625 is a 34-ms pulsar in a 40-d binary system. The orbital parameters for this intermediate-mass binary pulsar system are given in Table 3 and discussed in Section 3.1.2. All published parameters may also be obtained online using the ATNF pulsar catalogue<sup>4</sup> (Manchester et al., in preparation).

### 3 DISCUSSION

This discussion section is in two parts: we first describe the newly discovered pulsars and second discuss those that were detected, but not discovered, during the multibeam survey.

#### 3.1 New discoveries

In Table 4 we list the derived parameters of the pulsars: the logarithm of the characteristic age in years, the surface dipole magnetic field strength,  $B_{\rm s}=3.2\times 10^{19}(P\dot{P})^{1/2}$  in gauss, and the rate of loss of rotational energy in erg s<sup>-1</sup> where a neutron star with moment of inertia  $10^{45}$  g cm<sup>2</sup> is assumed. The final columns contain the pulsar distances and luminosities. The distances are computed from their dispersion measures assuming the Taylor & Cordes (1993) model for the Galactic distribution of free electrons. This model is

 $<sup>^1</sup>$  See http://www.naic.edu/ $\sim$ astro/RXstatus for further technical details of this receiver

<sup>&</sup>lt;sup>2</sup> See http://www.atnf.csiro.au/research/pulsar/tempo/

<sup>&</sup>lt;sup>3</sup> See http://www.naic.edu/~astro/RXstatus/Lnarrow/ln\_gain\_postaug01. shtml and http://www.naic.edu/~astro/RXstatus/Lnarrow/ln\_tsys\_2001. shtml

<sup>4</sup> http://www.atnf.csiro.au/research/pulsar/psrcat

**Table 1.** Positions, flux densities and pulse widths for 180 pulsars discovered in the Parkes multibeam pulsar survey. Radial angular distances are given in units of beam radii. Timing solutions indicated by a *J* or an *A* have a significant number of observations from the Jodrell Bank and Arecibo telescopes, respectively. Pulse widths at 10 per cent of the peak are given only for high signal-to-noise ratio profiles.

| PSR J                  | R.A. (J2000)<br>(h m s)            | Dec. (J2000)<br>(° ′ ″)           | <i>l</i><br>(°)  | <i>b</i><br>(°) | Beam     | Radial distance | S/N          | S <sub>1400</sub> (mJy) | W <sub>50</sub> (ms) | W <sub>10</sub> (ms) |
|------------------------|------------------------------------|-----------------------------------|------------------|-----------------|----------|-----------------|--------------|-------------------------|----------------------|----------------------|
| 0843-5022              | 08:43:09.884(8)                    | -50:22:43.10(8)                   | 268.50           | -4.90           | 7        | 0.46            | 31.6         | 0.31(4)                 | 6.1                  | 29                   |
| 1016-5857              | 10:16:21.16(1)                     | -58:57:12.1(1)                    | 284.08           | -1.88           | 3        | 0.74            | 22.3         | 0.46(5)                 | 7.8                  | _                    |
| 1021-5601              | 10:21:24.82(15)                    | -56:01:50.9(11)                   | 283.04           | 0.94            | 7        | 0.77            | 21.8         | 0.37(5)                 | 52.0                 | _                    |
| 1032-5206              | 10:32:27.69(7)                     | -52:06:08.5(6)                    | 282.35           | 5.13            | 11       | 0.64            | 34.7         | 0.19(3)                 | 21.0                 | 71                   |
| 1052-6348              | 10:52:53.39(6)                     | -63:48:16.6(3)                    | 290.29           | -3.88           | 3        | 0.49            | 9.5          | 0.11(2)                 | 10.0                 | -                    |
| 1054-6452              | 10:54:08.84(16)                    | -64:52:37.5(8)                    | 290.89           | -4.78           | 8        | 1.00            | 22.2         | 0.25(4)                 | 22.0                 | 42                   |
| 1055-6022              | 10:55:48.5(4)                      | -60:22:52(3)                      | 289.11           | -0.65           | 13       | 0.90            | 10.9         | 0.16(3)                 | 23.0                 | _                    |
| 1106-6438              | 11:06:28.44(14)                    | -64:38:60.0(6)                    | 291.99           | -4.03           | 10       | 0.63            | 23.4         | 0.19(3)                 | 27.0                 | 46                   |
| 1152-5800              | 11:52:10.0(4)                      | -58:00:34(4)                      | 295.13           | 3.96            | 5        | 0.71            | 10.2         | 0.12(2)                 | 16.0                 | _                    |
| 1156-5707              | 11:56:07.45(4)                     | -57:07:01.9(5)                    | 295.45           | 4.95            | 7        | 0.76            | 14.1         | 0.19(3)                 | 4.8                  | 17                   |
| 1210-6550              | 12:10:42.0(3)                      | -65:50:04.6(19)                   | 298.77           | -3.29           | 11       | 0.91            | 15.5         | 0.17(3)                 | 39.0                 | _                    |
| 1337-6306              | 13:37:20.35(5)                     | -63:06:23.3(3)                    | 308.10           | -0.70           | 1        | 0.82            | 8.7          | 0.11(2)                 | 12.0                 | _                    |
| 1352-6803              | 13:52:34.44(3)                     | -68:03:36.79(19)                  | 308.61           | -5.87           | 12       | 1.77            | 17.4         | 0.68(8)                 | 28.0                 | 45                   |
| 1415-6621              | 14:15:31.27(3)                     | -66:21:12.2(3)                    | 311.23           | -4.85           | 6        | 0.18            | 97.8         | 0.71(8)                 | 8.9                  | 17                   |
| 1420-5625              | 14:20:03.062(3)                    | -56:25:55.00(3)                   | 315.00           | 4.35            | 8        | 0.86            | 12.3         | 0.13(2)                 | 1.3                  | 12                   |
| 1424-5556              | 14:24:12.76(3)                     | -55:56:13.9(3)                    | 315.72           | 4.61            | 6        | 0.65            | 40.3         | 0.38(5)                 | 22.0                 | 36                   |
| 1435-5954              | 14:35:00.36(5)                     | -59:54:49.2(3)                    | 315.58           | 0.39            | 1        | 0.75            | 96.1         | 3.6(4)                  | 19.0                 | 33                   |
| 1437-6146              | 14:37:15.31(9)                     | -61:46:02.0(8)                    | 315.10           | -1.42           | 13       | 0.43            | 19.4         | 0.24(3)                 | 17.0                 | _                    |
| 1502-5653              | 15:02:57.389(11)                   | -56:53:39.21(12)                  | 320.19           | 1.51            | 3        | 0.74            | 46.3         | 0.39(5)                 | 7.2                  | 14                   |
| 1519-6308              | 15:19:09.56(18)                    | -63:08:19.5(10)                   | 318.74           | -4.90           | 1        | 0.55            | 45.0         | 0.32(4)                 | 22.0                 | -                    |
| 1538-5551              | 15:38:45.03(4)                     | -55:51:36.9(6)                    | 324.91           | -0.30           | 1        | 0.87            | 10.6         | 0.25(4)                 | 11.0                 | -                    |
| 1542-5133              | 15:42:19.93(13)                    | -51:33:35(3)                      | 327.91           | 2.83            | 7        | 0.97            | 19.7         | 0.27(4)                 | 35.0                 | 59                   |
| 1547-5750              | 15:47:30.60(10)                    | -57:50:29.4(15)                   | 324.66           | -2.60           | 11       | 0.20            | 27.3         | 0.23(3)                 | 39.0                 | _                    |
| 1551-5310              | 15:51:41.25(6)                     | -53:10:59.6(8)                    | 328.03           | 0.67            | 5        | 0.97            | 18.2         | 0.54(6)                 | 62.0                 | _                    |
| 1609-4616              | 16:09:41.13(4)                     | -46:16:22.5(4)                    | 334.76           | 3.99            | 12       | 0.28            | 36.6         | 0.38(5)                 | 5.6                  | 9                    |
| 1620-5414              | 16:20:14.44(10)                    | -54:14:51.7(16)                   | 330.47           | -2.94           | 4        | 0.82            | 11.4         | 0.13(2)                 | 26.0                 | -                    |
| 1632-4509              | 16:32:14.00(17)                    | -45:09:09(9)                      | 338.34           | 2.00            | 11       | 0.06            | 14.4         | 0.16(3)                 | 18.0                 | _                    |
| 1632-4757              | 16:32:16.72(6)                     | -47:57:34.3(14)                   | 336.30           | 0.08            | 8        | 0.97            | 9.5          | 0.30(4)                 | 21.0                 | _                    |
| 1638-4417<br>1658-4958 | 16:38:46.221(14)<br>16:58:54.92(6) | -44:17:03.6(4)<br>-49:58:58.4(6)  | 339.77<br>337.60 | 1.73<br>-4.55   | 12<br>9  | 0.88<br>0.94    | 12.2<br>64.7 | 0.21(3)<br>0.87(10)     | 5.6<br>13.0          | -<br>26              |
| 1500 2010              | 45.00.00.05(0)                     | 20.40.00.00(4.40)                 | 21616            | 4.02            |          | 0.04            |              | 0.00(0)                 | 440                  |                      |
| 1700-3919              | 17:00:22.27(3)                     | -39:19:00.02(142)                 | 346.16           | 1.83            | 11       | 0.26            | 23.2         | 0.23(3)                 | 14.0                 | _                    |
| 1702-4217              | 17:02:36.44(6)                     | -42:17:01.2(22)                   | 344.08           | -0.33           | 13       | 0.48            | 18.4         | 0.50(6)                 | 41.0                 | -                    |
| 1708-4522              | 17:08:12.92(6)                     | -45:22:51(3)                      | 342.22           | -3.01           | 1        | 0.63            | 25.1         | 0.22(3)                 | 17.0                 | 37                   |
| 1715-4254<br>1718-3714 | 17:15:10.54(9)<br>17:18:18.59(16)  | -42:54:54(4)<br>-37:14:16(9)      | 344.95<br>349.93 | -2.56 0.24      | 6<br>11  | 0.71<br>0.42    | 9.5<br>9.5   | 0.07(2)<br>0.23(3)      | 26.0<br>96.0         | _                    |
| 1710 2710              | 17 10 10 0/2                       | 27.10.52/11)                      | 240.05           | 0.22            | 11       | 0.27            | 12.2         | 0.10(2)                 | 120.0                |                      |
| 1718-3718<br>1724-3149 | 17:18:10.0(3)                      | -37:18:53(11)                     | 349.85           | 0.22<br>2.23    | 11<br>11 | 0.27            | 13.3         | 0.18(3)                 | 130.0<br>32.0        | -                    |
|                        | 17:24:44.87(7)                     | -31:49:04(4)                      | 355.14           |                 |          | 0.42            | 24.9         | 0.36(5)                 |                      | -                    |
| 1726-4006<br>1727-2739 | 17:26:33.37(7)<br>17:27:30.99(12)  | -40:06:02(4)<br>-27:39:00.5(169)  | 348.48<br>358.94 | -2.71 $4.05$    | 4<br>11  | 0.86<br>0.80    | 17.7<br>79.5 | 0.21(3)<br>1.60(17)     | 20.0<br>90.0         | _                    |
| 1727-2739              | 17:30:55.58(10)                    | -27.39.00.3(109)<br>-33:53:38(12) | 354.14           | -0.00           | 3        | 0.38            | 43.9         | 0.38(5)                 | 54.0                 | _                    |
| 1730-3333              | 17.30.33.38(10)                    | -33.33.36(12)                     | 334.14           | -0.00           | 3        | 0.36            | 43.9         | 0.38(3)                 | 34.0                 | _                    |
| 1731-3123              | 17:31:00.53(3)                     | -31:23:43(4)                      | 356.23           | 1.35            | 6        | 1.06            | 14.7         | 0.29(4)                 | 19.0                 | -                    |
| 1732-4156<br>1733-3030 | 17:32:48.86(4)<br>17:33:58.89(6)   | -41:56:29.6(16)<br>-30:30:49(7)   | 347.59<br>357.32 | -4.71 1.30      | 5<br>13  | 0.67<br>0.64    | 17.9<br>10.2 | 0.22(3)<br>0.20(3)      | 21.0<br>16.0         | _                    |
| 1733-3030              | 17:33:58.89(6)                     | -30:30:49(7)<br>-40:05:39.7(15)   | 349.27           | -3.89           | 13       | 0.64            | 40.0         | 0.20(3)                 | 14.0                 | 23                   |
| 1736–2819              | 17:36:24.73(9)                     | -40:03:39.7(13)<br>-28:19:42(16)  | 359.45           | 2.04            | 7        | 0.78            | 10.3         | 0.49(6)                 | 21.0                 | -                    |
| 1736-2843              | 17:36:42.59(16)                    | -28:43:51(22)                     | 359.14           | 1.76            | 1        | 0.63            | 47.4         | 0.43(5)                 | 145.0                | _                    |
| 1730-2843              | 17:30:42.39(10)                    | -28:45:31(22)<br>-33:20:20(5)     | 355.31           | -0.79           | 5        | 0.63            | 22.2         | 0.45(3)                 | 42.0                 | _                    |
| 1737-3320              | 17:38:05.03(4)                     | -33.20.20(3)<br>-26:47:46(26)     | 0.94             | 2.54            | 12       | 0.40            | 20.6         | 0.33(4)                 | 12.0                 | _                    |
| 1738-2047              | 17:38:47.4(3)                      | -20.47.40(20)<br>-31:07:44(14)    | 357.36           | 0.10            | 12       | 1.04            | 12.0         | 0.44(3)                 | 34.0                 | _                    |
| 2.20 2101              |                                    | 2 1                               | 227.20           | 0.10            | 9        | 2.01            |              | JJ( 1)                  | 2 1.0                |                      |

Table 1 – continued

| PSR J                                      | R.A. (J2000)<br>(h m s)           | Dec. (J2000)<br>(° ′ ″)            | <i>l</i><br>(°) | <i>b</i><br>(°) | Beam     | Radial<br>distance | S/N          | $S_{1400}$ (mJy)    | W <sub>50</sub> (ms) | W <sub>10</sub> (ms |
|--------------------------------------------|-----------------------------------|------------------------------------|-----------------|-----------------|----------|--------------------|--------------|---------------------|----------------------|---------------------|
| 1740-2540                                  | 17:40:45.32(6)                    | -25:40:19(18)                      | 2.21            | 2.63            | 6        | 0.21               | 17.6         | 0.16(3)             | 30.0                 | -                   |
| 1740-3327                                  | 17:40:25.72(3)                    | -33:27:53.5(17)                    | 355.56          | -1.44           | 3        | 1.08               | 15.8         | 0.30(4)             | 11.0                 | 23                  |
| 1743-2442                                  | 17:43:20.12(10)                   | -24:42:55(41)                      | 3.33            | 2.64            | 4        | 0.38               | 14.8         | 0.14(2)             | 75.0                 |                     |
| 1745-2229                                  | 17:45:16.71(7)                    | -22:29:14(25)                      | 5.47            | 3.42            | 12       | 0.33               | 18.9         | 0.13(2)             | 14.0                 |                     |
| 1749-2347                                  | 17:49:15.61(12)                   | -23:47:17(82)                      | 4.83            | 1.97            | 5        | 1.40               | 11.5         | 0.13(2)             | 9.1                  |                     |
| 1750-2444                                  | 17:50:22.96(8)                    | -24:44:47(42)                      | 4.14            | 1.26            | 13       | 0.50               | 15.7         | 0.27(4)             | 32.0                 |                     |
| 1752-2410                                  | 17:52:58.742(15)                  | -24:10:26(15)                      | 4.93            | 1.04            | 10       | 2.71               | 30.2         | 0.47(6)             | 7.1                  |                     |
| 1754-3443                                  | 17:54:37.372(14)                  | -34:43:53.9(10)                    | 355.99          | -4.61           | 8        | 0.91               | 33.4         | 0.49(6)             | 12.0                 | 2                   |
| 1755-25211                                 | 17:55:19.31(5)                    | -25:21:09(18)                      | 4.18            | -0.02           | 6        | 0.26               | 15.1         | 0.17(3)             | 20.0                 |                     |
| 1755-2534                                  | 17:55:49.82(3)                    | -25:34:39(11)                      | 4.05            | -0.23           | 10       | 0.29               | 9.2          | 0.17(3)             | 15.0                 |                     |
| 1756-2225                                  | 17:56:25.56(8)                    | -22:25:48(66)                      | 6.84            | 1.24            | 1        | 0.67               | 17.0         | 0.25(4)             | 19.0                 |                     |
| 1758-1931                                  | 17:58:05.60(7)                    | -19:31:41(11)                      | 9.54            | 2.35            | 6        | 0.79               | 20.4         | 0.38(5)             | 21.0                 |                     |
| 1759-1903                                  | 17:59:41.76(16)                   | -19:03:19(27)                      | 10.14           | 2.26            | 2        | 0.39               | 16.4         | 0.16(3)             | 34.0                 |                     |
| 1759-3107                                  | 17:59:22.056(14)                  | -31:07:21.5(20)                    | 359.63          | -3.67           | 10       | 0.99               | 97.8         | 0.91(10)            | 16.0                 | 2                   |
| 1800-2114                                  | 18:00:12.3(4)                     | -21:14:19(75)                      | 8.31            | 1.07            | 1        | 0.56               | 18.7         | 0.30(4)             | 90.0                 | _                   |
| 1801-2115                                  | 18:01:32.49(12)                   | -21:15:18(53)                      | 8.45            | 0.79            | 1        | 0.46               | 12.0         | 0.19(3)             | 47.0                 |                     |
| 1801-2154                                  | 18:01:08.33(3)                    | -21:54:32(12)                      | 7.83            | 0.55            | 11       | 0.49               | 15.0         | 0.18(3)             | 9.6                  |                     |
| 1803-1616                                  | 18:03:34.68(3)                    | -16:16:30(4)                       | 13.02           | 2.83            | 5        | 0.55               | 16.9         | 0.16(3)             | 19.0                 |                     |
| 1803-1920                                  | 18:03:29.44(3)                    | -19:20:41(7)                       | 10.33           | 1.34            | 9        | 0.49               | 18.6         | 0.27(4)             | 12.0                 |                     |
| 1805-2447                                  | 18:05:25.93(3)                    | -24:47:30(14)                      | 5.81            | -1.72           | 3        | 0.88               | 13.6         | 0.27(4)             | 11.0                 | 2                   |
| 1806-1618                                  | 18:06:25.78(6)                    | -16:18:38(8)                       | 13.32           | 2.21            | 11       | 0.53               | 11.9         | 0.22(3)             | 34.0                 |                     |
| 1809-1850                                  | 18:09:37.21(12)                   | -18:50:55(21)                      | 11.47           | 0.32            | 6        | 0.93               | 13.0         | 0.22(3)             | 55.0                 |                     |
| 1810–1441                                  | 18:10:59.162(14)                  | -14:41:33.6(13)                    | 15.27           | 2.03            | 5        | 0.96               | 10.6         | 0.20(3)             | 14.0                 |                     |
| 1812-1910                                  | 18:12:34.89(10)                   | -14.41.33.0(13)<br>-19:10:39(10)   | 11.52           | -0.46           | 4        | 0.88               | 10.0         | 0.21(3)             | 28.0                 |                     |
| 1813-2242                                  | 18:13:29.16(8)                    | -19.10.39(10)<br>-22:42:06(42)     | 8.53            | -2.33           | 8        | 0.75               | 11.9         | 0.22(3)             | 21.0                 |                     |
| 1815-1738                                  | 18:15:14.672(9)                   | -17:38:03.0(12)                    | 13.18           | -0.27           | 1        | 0.58               | 13.9         | 0.25(4)             | 29.0                 |                     |
| 1816–1446                                  | 18:16:29.19(3)                    | -14:46:30(3)                       | 15.84           | 0.83            | 3        | 0.16               | 17.5         | 0.23(3)             | 25.0                 |                     |
| 1817–1511 <sup><i>J</i></sup>              | 18:17:36.20(6)                    | -14.40.30(3)<br>-15:11:39(6)       | 15.59           | 0.39            | 2        | 0.10               | 18.9         | 0.23(5)             | 21.0                 |                     |
| $1818 - 1116^{J}$                          | 18:18:26.45(6)                    | -13:11:35(0)<br>-11:16:29(7)       | 19.14           | 2.07            | 11       | 0.11               | 23.2         | 0.43(3)             | 25.0                 |                     |
| $1819 - 0925^{J}$                          | 18:19:50.542(19)                  | -09:25:49.9(13)                    | 20.93           | 2.63            | 9        | 0.68               | 60.0         | 0.72(8)             | 20.0                 | 3                   |
| 1819-1008 <sup>J</sup>                     | 18:19:39.986(17)                  | -10:08:28(4)                       | 20.29           | 2.34            | 1        | 0.73               | 21.4         | 0.35(4)             | 9.9                  |                     |
| 1819-1008                                  | 18:19:58.15(10)                   | -10.08.28(4)<br>-11:31:29(9)       | 19.10           | 1.62            | 7        | 0.73               | 10.8         | 0.35(4)             | 64.0                 |                     |
| $1820 - 1529^{J}$                          | * *                               | -11.31.29(9)<br>-15:29:50(10)      |                 | -0.41           | 11       | 0.37               |              |                     | 28.0                 |                     |
| 1821-1419                                  | 18:20:40.82(9)<br>18:21:34.3(4)   | -13:29:30(10)<br>-14:19:26(32)     | 15.68<br>16.82  | -0.41 $-0.04$   | 12       | 0.24               | 19.6<br>11.1 | 0.61(7)<br>0.20(3)  | 99.0                 |                     |
| 1822-0907                                  | 18:22:39.80(5)                    | -14.19.20(32)<br>-09:07:36(3)      | 21.53           | 2.16            | 1        | 0.20               | 11.1         | 0.20(3)             | 28.0                 |                     |
| 1922 1252                                  | 18:22:41.7(3)                     | 12.52.40(20)                       | 18.22           | 0.39            | 7        | 0.27               | 15.0         | 0.25(4)             | 105.0                |                     |
| 1822-1252<br>1822-1617                     | 18:22:36.6(3)                     | -12:52:49(29)<br>-16:17:35(25)     | 15.19           | -1.19           | 6        | 0.27               | 9.8          | 0.23(4)             | 105.0                |                     |
| 1822-1617                                  |                                   | * *                                | 19.57           | -1.19 0.93      | 9        |                    |              |                     | 23.0                 | 1                   |
|                                            | 18:23:19.86(10)                   | -11:26:04(5)                       |                 |                 |          | 0.68               | 36.4         | 0.51(6)             |                      | 4                   |
| 1823-1526<br>1824-1500                     | 18:23:21.42(6)<br>18:24:14.10(7)  | -15:26:22(7)<br>-15:00:33(8)       | 16.03<br>16.51  | -0.95 $-0.93$   | 5<br>1   | 0.75<br>0.86       | 26.8<br>10.9 | 0.47(6)<br>0.16(3)  | 41.0<br>18.0         |                     |
| 1020 0611                                  | 10.20.20.715(6)                   | 06.11.51.5(4)                      | 24.70           | 2.20            | 10       | 0.60               | 60.2         | 1.00(12)            | 10.0                 |                     |
| 1828-0611                                  | 18:28:20.715(6)                   | -06:11:51.5(4)                     | 24.78           | 2.28            | 10       | 0.60               | 68.3         | 1.20(13)            | 10.0                 | 1                   |
| 1828-1007                                  | 18:28:30.356(15)                  | -10:07:10.1(10)                    | 21.32           | 0.42            | 12       | 0.53               | 11.2         | 0.21(3)             | 8.7                  |                     |
| 1828-1057                                  | 18:28:33.21(4)                    | -10:57:26(3)                       | 20.59           | 0.02            | 13       | 0.67               | 11.7         | 0.23(3)             | 15.0                 | 2                   |
| 1831-0823 <sup><i>J</i></sup><br>1831-1423 | 18:31:36.334(8)<br>18:31:29.10(3) | -08:23:23.9(5)<br>-14:23:46(4)     | 23.21<br>17.87  | 0.55 $-2.20$    | 12<br>11 | 0.66<br>0.11       | 78.8<br>13.3 | 0.97(11)<br>0.19(3) | 14.0<br>23.0         | 2                   |
|                                            |                                   | . ,                                |                 |                 |          |                    |              |                     |                      |                     |
| 1833-0556                                  | 18:33:38.88(16)                   | -05:56:05(9)                       | 25.62           | 1.23            | 7        | 0.57               | 11.4         | 0.20(3)             | 69.0                 |                     |
| 1834-0633                                  | 18:34:29.25(15)                   | -06:33:01.1(63)                    | 25.17           | 0.76            | 6        | 0.43               | 17.8         | 0.28(4)             | 101.6                |                     |
| 1834-0731                                  | 18:34:16.00(7)                    | -07:31:07(4)                       | 24.29           | 0.37            | 4        | 0.44               | 46.3         | 1.00(11)            | 30.0                 |                     |
| $1834 - 0742^{J}$ $1834 - 1202$            | 18:34:31.32(3)                    | -07:42:20.6(14)<br>-12:02:26.4(13) | 24.15<br>20.29  | 0.22 $-1.74$    | 2<br>2   | 0.22               | 27.4<br>26.4 | 0.35(4)<br>0.70(8)  | 18.0<br>63.0         | 8                   |
|                                            | 18:34:23.12(3)                    |                                    |                 | 1 71            |          | 1.01               |              |                     |                      |                     |

Table 1 – continued

| PSR J                           | R.A. (J2000)                         | Dec. (J2000)                     | 1              | <i>b</i>      | Beam   | Radial       | S/N          | $S_{1400}$           | $W_{50}$     | $W_{10}$ |
|---------------------------------|--------------------------------------|----------------------------------|----------------|---------------|--------|--------------|--------------|----------------------|--------------|----------|
|                                 | (h m s)                              |                                  | (°)            | (°)           |        | distance     |              | (mJy)                | (ms)         | (ms)     |
| 1835-0522                       | 18:35:08.12(5)                       | -05:22:08(3)                     | 26.30          | 1.16          | 6      | 0.76         | 18.4         | 0.23(3)              | 23.0         | -        |
| 1836-0517                       | 18:36:25.20(11)                      | -05:17:35(4)                     | 26.51          | 0.91          | 1      | 0.89         | 9.5          | 0.15(3)              | 13.0         | -        |
| 1838-0549                       | 18:38:38.09(3)                       | -05:49:12(3)                     | 26.30          | 0.18          | 11     | 0.37         | 18.9         | 0.29(4)              | 7.0          | -        |
| 1838-0624                       | 18:38:51.78(11)                      | -06:24:54(4)                     | 25.79          | -0.14         | 5      | 0.54         | 10.9         | 0.16(3)              | 36.0         | -        |
| 1839-0905                       | 18:39:53.458(20)                     | -09:05:14.8(14)                  | 23.53          | -1.59         | 13     | 0.69         | 12.1         | 0.16(3)              | 17.0         | -        |
| 1840-0559                       | 18:40:23.18(4)                       | -05:59:16.2(18)                  | 26.35          | -0.28         | 12     | 1.16         | 12.7         | 0.31(4)              | 16.0         | 34       |
| $1840 - 0809^{J}$               | 18:40:33.364(6)                      | -08:09:03.3(4)                   | 24.44          | -1.31         | 1      | 1.02         | 134.2        | 2.3(2)               | 10.0         | 35       |
| $1840 - 0815^{J}$               | 18:40:13.775(13)                     | -08:15:10.6(7)                   | 24.31          | -1.28         | 1      | 1.79         | 19.6         | 1.40(15)             | 22.0         | 35       |
| 1840-1122                       | 18:40:24.066(19)                     | -11:22:10.7(16)                  | 21.56          | -2.74         | 3      | 0.87         | 14.5         | 0.13(2)              | 11.0         | -        |
| $1841 - 0157^{J}$               | 18:41:56.207(20)                     | -01:57:54.6(8)                   | 30.10          | 1.22          | 9      | 0.35         | 97.7         | 0.81(9)              | 21.0         | -        |
| 1841-0310                       | 18:41:25.89(14)                      | -03:10:21(9)                     | 28.97          | 0.78          | 13     | 0.39         | 14.1         | 0.15(3)              | 59.0         | -        |
| 1841-0524                       | 18:41:49.32(5)                       | -05:24:29.5(12)                  | 27.02          | -0.33         | 3      | 0.59         | 13.1         | 0.20(3)              | 13.0         | -        |
| 1842-0309                       | 18:42:19.02(5)                       | -03:09:46(3)                     | 29.08          | 0.58          | 9      | 0.64         | 11.5         | 0.25(4)              | 43.0         | -        |
| 1842-0612                       | 18:42:43.05(10)                      | -06:12:36(5)                     | 26.41          | -0.90         | 12     | 0.61         | 21.7         | 0.54(6)              | 53.0         | -        |
| $1843 - 0000^{J}$               | 18:43:27.962(9)                      | -00:00:40.9(6)                   | 32.01          | 1.77          | 10     | 0.62         | 250.4        | 2.9(3)               | 26.0         | 40       |
| 1843-0137                       | 18:43:12.63(3)                       | -01:37:46.3(12)                  | 30.54          | 1.09          | 4      | 1.04         | 13.5         | 0.26(4)              | 17.0         | -        |
| 1843-0211                       | 18:43:30.328(20)                     | -02:11:02.8(7)                   | 30.08          | 0.77          | 10     | 0.65         | 69.8         | 0.93(10)             | 24.0         | 105      |
| 1843-0408                       | 18:43:43.44(7)                       | -04:08:04(3)                     | 28.37          | -0.17         | 9      | 0.60         | 17.1         | 0.17(3)              | 12.0         | -        |
| 1843-0702                       | 18:43:22.441(10)                     | -07:02:54.6(7)                   | 25.74          | -1.43         | 3      | 0.40         | 20.1         | 0.17(3)              | 4.7          | -        |
| 1843-0806                       | 18:43:28.715(11)                     | -08:06:44.9(7)                   | 24.81          | -1.93         | 12     | 0.97         | 13.5         | 0.36(5)              | 21.0         | -        |
| 1843-1113                       | 18:43:41.26225(20)                   | -11:13:31.052(16)                | 22.05          | -3.40         | 7      | 0.18         | 17.6         | 0.10(2)              | 0.2          | _        |
| $1844 - 0030^{A}$               | 18:44:41.099(19)                     | -00:30:25.8(13)                  | 31.71          | 1.27          | 5      | 0.61         | 33.5         | 0.42(5)              | 16.0         | -        |
| 1844-0452                       | 18:44:01.54(4)                       | -04:52:20.9(19)                  | 27.75          | -0.58         | 9      | 0.84         | 8.7          | 0.19(3)              | 16.0         | -        |
| 1844-0502                       | 18:44:33.96(7)                       | -05:02:00.5(23)                  | 27.67          | -0.77         | 5      | 1.06         | 10.2         | 0.40(5)              | 24.0         | -        |
| 1845-0545                       | 18:45:38.49(4)                       | -05:45:18.2(10)                  | 27.15          | -1.34         | 10     | 0.97         | 20.9         | 0.47(6)              | 18.0         | 32       |
| 1846+0051 <sup>A</sup>          | 18:46:43.821(20)                     | +00:51:39.0(7)                   | 33.16          | 1.44          | 11     | 1.02         | 16.9         | 0.34(9)              | 28.2         | 60       |
| 1847-0130                       | 18:47:35.21(9)                       | -01:30:46(3)                     | 31.15          | 0.17          | 3      | 0.41         | 15.6         | 0.33(4)              | 205.0        | _        |
| 1847-0443                       | 18:47:51.85(3)                       | -04:43:36.2(8)                   | 28.32          | -1.36         | 7      | 0.62         | 11.1         | 0.16(3)              | 9.0          | -        |
| $1848 - 0023^{A}$               | 18:48:37.89(9)                       | -00:23:17(4)                     | 32.27          | 0.45          | 7      | 1.23         | 13.1         | 0.6(3)               | 17.7         | 38       |
| 1848-0055                       | 18:48:45.50(19)                      | -00:55:53(4)                     | 31.80          | 0.17          | 6      | 0.65         | 9.5          | 0.19(3)              | 27.9         | -        |
| 1848-0511                       | 18:48:15.01(14)                      | -05:11:38(5)                     | 27.95          | -1.66         | 8      | 0.25         | 21.4         | 0.40(5)              | 99.0         | _        |
| $1849 - 0040^{A}$               | 18:49:10.25(8)                       | -00:40:20(6)                     | 32.08          | 0.20          | 11     | 0.34         | 10.9         | 0.20(3)              | 64.6         | _        |
| 1849-0614                       | 18:49:45.157(19)                     | -06:14:31.5(8)                   | 27.18          | -2.47         | 3      | 1.18         | 36.8         | 0.59(7)              | 14.0         | 32       |
| 1850-0031                       | 18:50:33.39(9)                       | -00:31:09(4)                     | 32.37          | -0.04         | 11     | 0.93         | 9.3          | 0.23(3)              | 32.0         | _        |
| 1851+0118                       | 18:51:52.18(13)                      | +01:18:59(5)                     | 34.15          | 0.50          | 1      | 0.95         | 10.9         | 0.10(2)              | 24.0         | -        |
| $1851 - 0053^{A}$               | 18:51:03.17(8)                       | -00:53:07.3(19)                  | 32.10          | -0.32         | 5      | 1.24         | 35.9         | 1.00(11)             | 19.0         | _        |
| 1851-0241                       | 18:51:15.26(10)                      | -02:41:31(3)                     | 30.51          | -1.19         | 4      | 0.56         | 10.9         | 0.20(3)              | 35.0         | _        |
| $1852 + 0008^{A}$               | 18:52:42.78(3)                       | +00:08:09.6(8)                   | 33.20          | -0.22         | 5      | 0.58         | 15.8         | 0.31(4)              | 16.0         | _        |
| $1852 + 0013^{A}$               | 18:52:41.779(20)                     | +00:13:57.1(12)                  | 33.28          | -0.17         | 5      | 0.22         | 14.8         | 0.30(4)              | 19.0         | _        |
| 1852-0118                       | 18:52:17.15(3)                       | -01:18:14.8(17)                  | 31.87          | -0.78         | 6      | 0.98         | 22.1         | 0.35(4)              | 24.0         | -        |
| 1852-0127                       | 18:52:03.60(4)                       | -01:27:23.4(14)                  | 31.71          | -0.80         | 6      | 0.34         | 36.1         | 0.58(7)              | 18.0         | _        |
| 1852-0635                       | 18:52:57.38(14)                      | -06:35:57(8)                     | 27.22          | -3.34         | 12     | 0.86         | 160.4        | 5.9(6)               | 90.0         | _        |
| $1853 + 0011^{A}$               | 18:53:29.968(14)                     | +00:11:29.7(5)                   | 33.34          | -0.37         | 6      | 0.34         | 8.3          | 0.30(8)              | 11.8         | 21       |
| 1853+0505                       | 18:53:04.36(7)                       | +05:05:26.1(18)                  | 37.65          | 1.96          | 9      | 1.03         | 67.4         | 1.50(16)             | 92.0         | 195      |
| $1853 + 0303$ $1853 - 0004^{A}$ | 18:53:23.018(6)                      | -00:04:32.3(4)                   | 33.09          | -0.47         | 3      | 0.76         | 22.5         | 0.87(10)             | 2.2          | (        |
| 1855+0307 <sup>A</sup>          | 18:55:26.63(3)                       | +03:07:20.2(9)                   | 36.17          | 0.53          | 4      | 0.94         | 31.1         | 0.97(11)             | 12.0         |          |
| 1855+0700                       | 18:55:17.72(4)                       | +07:00:37.1(9)                   | 39.61          | 2.34          | 4      | 0.94         | 11.0         | 0.97(11)             | 5.4          | _        |
|                                 | 10.33.17.72(4)                       | TU1.00.31.1(9)                   | 33.01          |               |        |              | 11.0         |                      |              | _        |
|                                 | 18.56.28 503(13)                     | $\pm 01.02.10.6(5)$              | 34 /3          | -0.65         | 3      | 0.54         | 11 /         | 0.38(11)             | 16.8         | 29       |
| $1856+0102^{A}$ $1857+0143^{A}$ | 18:56:28.503(13)<br>18:57:33.008(15) | +01:02:10.6(5)<br>+01:43:47.0(9) | 34.43<br>35.17 | -0.65 $-0.57$ | 3<br>4 | 0.54<br>0.41 | 11.4<br>29.9 | 0.38(11)<br>0.74(18) | 16.8<br>15.7 | 28<br>43 |

Table 1 - continued

| PSR J                       | R.A. (J2000)<br>(h m s) | Dec. (J2000)      | <i>l</i><br>(°) | <i>b</i><br>(°) | Beam | Radial distance | S/N  | S <sub>1400</sub> (mJy) | W <sub>50</sub> (ms) | $W_{10}$ (ms) |
|-----------------------------|-------------------------|-------------------|-----------------|-----------------|------|-----------------|------|-------------------------|----------------------|---------------|
| 1050 + 0041                 |                         |                   |                 |                 | -    |                 | 11.0 |                         |                      | (1115)        |
| $1858+0241$ $1859+0601^{A}$ | 18:58:53.81(14)         | +02:41:38(6)      | 36.18           | -0.43           | 6    | 0.09<br>0.83    | 11.9 | 0.10(2)                 | 80.0                 | _             |
|                             | 18:59:45.76(5)          | +06:01:46.1(18)   | 39.25           | 0.90            | 6    |                 | 12.1 | 0.30(4)                 | 24.3                 | -             |
| 1900+0634 <sup>A</sup>      | 19:00:28.034(20)        | +06:34:20.9(6)    | 39.81           | 1.00            | 12   | 0.54            | 11.7 | 0.24(9)                 | 11.1                 | 20            |
| 1900-0051 <sup>J</sup>      | 19:00:46.644(7)         | -00:51:08.4(5)    | 33.24           | -2.47           | 5    | 1.00            | 30.1 | 0.45(6)                 | 5.6                  | 17            |
| 1901+0124 <sup>A</sup>      | 19:01:52.545(14)        | +01:24:49.3(8)    | 35.38           | -1.68           | 12   | 1.06            | 13.2 | 0.30(4)                 | 8.3                  | _             |
| 1901+0254                   | 19:01:15.67(7)          | +02:54:41(5)      | 36.64           | -0.86           | 11   | 0.74            | 42.8 | 0.58(7)                 | 70.0                 | _             |
| $1901 + 0320^{A}$           | 19:01:03.01(9)          | +03:20:18(4)      | 37.00           | -0.61           | 8    | 0.42            | 10.4 | 0.89(10)                | 47.2                 | _             |
| 1901+0355                   | 19:01:30.81(4)          | +03:55:58.9(9)    | 37.58           | -0.44           | 1    | 0.33            | 15.9 | 0.15(3)                 | 12.0                 | _             |
| $1901 + 0510^{A}$           | 19:01:57.85(11)         | +05:10:34(4)      | 38.74           | 0.03            | 10   | 1.51            | 8.6  | 0.66(8)                 | 56.9                 | _             |
| 1901-0312                   | 19:01:15.675(18)        | -03:12:29.5(9)    | 31.19           | -3.65           | 7    | 0.74            | 16.3 | 0.23(3)                 | 7.9                  | _             |
| 1902+0248                   | 19:02:50.26(7)          | +02:48:56(3)      | 36.74           | -1.25           | 5    | 1.24            | 11.7 | 0.17(3)                 | 35.4                 | _             |
| 1902-0340                   | 19:02:50.70(19)         | -03:40:18(4)      | 30.96           | -4.21           | 6    | 0.48            | 16.5 | 0.22(3)                 | 25.0                 | _             |
| $1903 + 0601^{J}$           | 19:03:20.874(16)        | +06:01:34.0(6)    | 39.65           | 0.11            | 11   | 1.03            | 12.7 | 0.26(4)                 | 12.0                 | _             |
| 1905+0400                   | 19:05:28.2736(3)        | +04:00:10.922(13) | 38.09           | -1.29           | 4    | 1.10            | 26.5 | 0.050(10)               | 0.6                  | _             |
| 1905+0600                   | 19:05:04.35(5)          | +06:00:59.9(14)   | 39.84           | -0.28           | 8    | 0.83            | 17.4 | 0.42(5)                 | 13.0                 | -             |
| 1906+0649 <sup>A</sup>      | 19:06:11.97(3)          | +06:49:48.1(10)   | 40.69           | -0.15           | 11   | 0.25            | 36.4 | 0.30(4)                 | 37.0                 | _             |
| $1907 + 0249^{A}$           | 19:07:42.03(4)          | +02:49:41(3)      | 37.31           | -2.32           | 11   | 1.03            | 10.7 | 0.46(12)                | 21.7                 | 32            |
| 1907+0345                   | 19:07:14.543(19)        | +03:45:10.6(4)    | 38.08           | -1.80           | 1    | 0.62            | 13.3 | 0.17(3)                 | 6.3                  | _             |
| 1907+0731                   | 19:07:54.79(3)          | +07:31:21.9(5)    | 41.50           | -0.21           | 7    | 1.21            | 20.9 | 0.35(4)                 | 11.0                 | _             |
| 1907+0918                   | 19:07:22.441(4)         | +09:18:30.76(4)   | 43.02           | 0.73            | 3    | 0.97            | 12.8 | 0.29(4)                 | 4.4                  | -             |
| 1910+0225 <sup>A</sup>      | 19:10:10.359(17)        | +02:25:23.6(5)    | 37.23           | -3.06           | 7    | 0.25            | 39.2 | 0.6(2)                  | 16.4                 | 29            |
| 1910+0728                   | 19:10:22.079(6)         | +07:28:37.09(15)  | 41.74           | -0.77           | 11   | 0.52            | 78.2 | 0.87(10)                | 15.0                 | 22            |
| 1913+1000                   | 19:13:03.59(5)          | +10:00:02.4(14)   | 44.29           | -0.19           | 2    | 0.48            | 42.5 | 0.53(6)                 | 32.0                 | 52            |
| $1914+0631^{A}$             | 19:14:17.24(4)          | +06:31:56.3(10)   | 41.35           | -2.07           | 11   | 0.83            | 15.6 | 0.26(10)                | 12.6                 | 27            |
| $1915 + 0838^{J}$           | 19:15:13.87(3)          | +08:38:59.7(13)   | 43.34           | -1.30           | 13   | 1.17            | 13.5 | 0.29(4)                 | 14.0                 | -             |
| 1916+0844 <sup>J</sup>      | 19:16:19.081(9)         | +08:44:07.0(4)    | 43.54           | -1.49           | 10   | 1.03            | 30.1 | 0.44(5)                 | 8.3                  | 19            |
| 1916+0852                   | 19:16:24.6(3)           | +08:52:36(5)      | 43.67           | -1.45           | 4    | 0.75            | 16.4 | 0.13(2)                 | 48.0                 | _             |
| $1916+1023^{A}$             | 19:16:36.91(15)         | +10:23:03(6)      | 45.03           | -0.79           | 4    | 0.20            | 29.7 | 0.36(5)                 | 72.0                 | _             |
| $1920+1040^{A}$             | 19:20:55.38(8)          | +10:40:31(3)      | 45.78           | -1.59           | 11   | 0.39            | 47.8 | 0.57(7)                 | 45.0                 | _             |
| $1937 + 1505^{J}$           | 19:37:16.31(14)         | +15:05:19(4)      | 51.57           | -2.98           | 8    | 0.76            | 11.3 | 0.13(2)                 | 46.0                 | _             |

used, rather than the more recent Cordes & Lazio (2002) or Gómez, Benjamin & Cox (2002) models, for consistency with the distance and luminosity values provided in earlier papers of this series. The implications of using the Cordes & Lazio (2002) model for the determination of the distances and luminosities of the multibeam pulsars was described by Kramer et al. (2003). In general, the distances are less accurate than the 0.1 kpc quoted because of uncertainties in the electron density model.

### 3.1.1 Rotational properties

A  $P-\dot{P}$  diagram is shown in Fig. 2 with the 180 new discoveries presented in this paper highlighted (open circles). Three of these pulsars (PSRs J1821–1419, J1718–3718 and J1847–0130) lie just inside a region of the diagram that is expected to be radio quiet (Baring & Harding 2001). However, the exact position of the boundary that defines this region is not well determined and, for instance, depends upon the poorly known height of the radio emission above the surface of the neutron star. Two of these pulsars, PSRs J1718–3718 and J1847–0130, have rotational parameters similar to the anomalous X-ray pulsars (diamond symbols in Fig. 2) and have already been discussed by McLaughlin et al. (2003a,b). PSRs J1847–0130

and J1736–2843 have rotational periods greater than six seconds and are the second and third-slowest rotating radio pulsars known. However, even with its long rotational period, PSR J1736–2843 lies in the  $P-\dot{P}$  diagram below the 'radio-quiet' boundary and above the death-line.

Our sample also includes the solitary millisecond pulsars, PSRs J1843–1113 ( $P=1.85\,\mathrm{ms}$ ) and J1905+0400 ( $P=3.78\,\mathrm{ms}$ ). PSR J1843–1113 is the third-fastest rotating pulsar known (after PSRs B1937+21 and B1957+20 which have spin periods of 1.56 and 1.61 ms respectively). We reported in earlier multibeam papers that the multibeam survey had discovered fewer recycled pulsars than expected (see also Toscano et al. 1998). This lack of recycled pulsars was partly due to a poor choice of software filters that were applied to remove known interference before searching begins for pulsar candidates. Hobbs (2002) showed that significant increases in the detection rates of millisecond pulsars could be made by improving these filters. The multibeam data are currently being reanalysed with updated search code. A full description of this reprocessing will be published by Faulkner et al. (in preparation).

Bailes et al. (1997) reported on the discovery of four isolated millisecond pulsars. Three of these have very low luminosities while the other had a more intermediate luminosity. They concluded that the



**Figure 1.** Mean 1374-MHz pulse profiles for 180 pulsars discovered in the multibeam survey. The highest point in the profile is placed at phase 0.3. For each profile, the pulsar Jname, pulse period (s) and dispersion measure (cm<sup>-3</sup> pc) are given. The small horizontal bar under the period indicates the effective resolution of the profile by adding the bin size to the effects of interstellar dispersion in quadrature.



Figure 1 - continued



Figure 1 - continued



Figure 1 - continued

solitary millisecond pulsars are less luminous than those in binary systems. This result was confirmed by Kramer et al. (1998) using a sample of seven isolated millisecond pulsars. The two solitary pulsars, PSRs J1843–1113 and J1905+0400, reported in this paper also have low luminosities at 1400 MHz of 0.39 and 0.09 mJy kpc² respectively. The median luminosity at 1400 MHz for the 16 solitary millisecond pulsars known is 0.4 mJy kpc² and the luminosity range is from 0.03 mJy kpc² for PSR J0030+0451 to 207 mJy kpc² for PSR B1937+21. The corresponding luminosities for millisecond pulsars in binary systems range between 0.39 and 126 mJy kpc² and have a median value of 3.7 mJy kpc². We must, however, emphasize that

- (i) the fastest rotating and solitary pulsar, PSR B1937+21, has the highest observed luminosity of all the recycled pulsars;
- (ii) derived luminosities are highly dependent upon the distance to the pulsar and therefore have large uncertainties; and
- (iii) many millisecond pulsars scintillate and therefore published flux densities may not give a true representation of the intrinsic luminosity of the pulsar.

The three millisecond pulsar discoveries all have implications for high-precision pulsar timing and its applications. For instance, observations of PSR B1937+21 have been used to place limits on the

gravitational wave background (Lommen 2002). The three discoveries are all well out of the ecliptic plane and have moderate dispersion measures (from  $26 \text{ cm}^{-3}$  pc for PSR J1905+0400 to  $64.9 \text{ cm}^{-3}$ pc for the binary system PSR J1420-5625). A figure of merit for precision timing measurement is the ratio  $S/W^{3/2}$  where W is the pulse width and S the flux density. However, because of their low flux densities, these three discoveries have lower figures of merit than some other millisecond pulsars such as PSRs B1937+21 and J0437–4715, but they still may be useful as part of a millisecond pulsar timing array. PSR J1843-1113 has been observed at the Parkes observatory using a filterbank with a channel bandwidth of 0.5 MHz and a sampling time of 80 µs. In a typical 10-min observation, signal-to-noise ratios of 10 and uncertainties in the arrival times between 3 and 8 µs have been achieved. It should also be possible to decrease the uncertainties in the arrival times with improved instrumentation.

# 3.1.2 PSR J1420-5625

The binary system PSR J1420–5625 has a rotational period of 34 ms, a companion mass  $> 0.4 \, \rm M_{\odot}$ , a relatively large orbital eccentricity of e = 0.0035 and an orbital period of  $\sim 40 \, \rm d$  (Table 3). We

**Table 2.** Periods, period derivatives and dispersion measures for 180 pulsars discovered in the Parkes multibeam pulsar survey. We also give the MJD of the epoch used for period determination, the number of TOAs included in the timing solution, the MJD range covered and the rms of the post-fit timing residuals. Asterisks indicate those pulsars which exhibit significant timing noise that has been removed, to first order, by the fitting of a frequency second derivative (even higher derivatives were included in the timing model if necessary). A superscript 'G' indicates pulsars that have glitched. A  $^{\dagger}$  symbol indicates timing solutions already published; see text.

| PSR J                   | Period, P            | <i>P</i>     | Epoch   | $N_{\rm toa}$ | Data span   | Residual | DM            |
|-------------------------|----------------------|--------------|---------|---------------|-------------|----------|---------------|
|                         | (s)                  | $(10^{-15})$ | (MJD)   |               | (MJD)       | (ms)     | $(cm^{-3} pc$ |
| 0843-5022 <sup>†</sup>  | 0.2089556931527(14)  | 0.17238(14)  | 51500.0 | _             | 51060-51888 | _        | 178.47(9      |
| 1016-5857 <sup>G*</sup> | 0.1073864584588(15)  | 80.8342(6)   | 52717.0 | 20            | 52571-52862 | 2.87     | 394.2(2)      |
| 021-5601                | 0.67002629761(14)    | 0.053(6)     | 51875.0 | 26            | 51632-52465 | 3.73     | 212(8)        |
| 1032-5206               | 2.40762231135(12)    | 17.891(11)   | 52161.0 | 28            | 51744-52577 | 1.97     | 139(4)        |
| 1052-6348               | 0.383830423532(15)   | 0.387(6)     | 52477.0 | 30            | 52260-52692 | 0.65     | 167.5(14      |
| 1054 (452               | 1.0400025414/2\      | 2.14(5)      | 51075.0 | 22            | 51/22 52110 | 1.07     | 22.4(4)       |
| 1054-6452               | 1.8400035414(3)      | 3.14(5)      | 51875.0 | 23            | 51632-52118 | 1.97     | 234(4)        |
| 1055-6022               | 0.9475584093(3)      | 92.39(12)    | 52746.0 | 23            | 52569-52923 | 2.83     | 590(5)        |
| 1106-6438               | 2.7179341360(3)      | 2.33(7)      | 51875.0 | 23            | 51632-52118 | 1.42     | 203(3)        |
| 1152-5800               | 1.7898294664(5)      | 1.3(3)       | 52746.0 | 21            | 52569-52923 | 3.46     | 191(7)        |
| 1156-5707               | 0.288409420325(8)    | 26.451(5)    | 52149.0 | 23            | 51944-52352 | 0.57     | 243.5(6)      |
| 1210-6550               | 4.2370102164(18)     | 0.43(11)     | 52499.0 | 20            | 52305-52893 | 2.89     | 37(6)         |
| 1337-6306               | 0.207953012189(4)    | 0.3558(3)    | 51900.0 | 95            | 51220-52578 | 1.86     | 777.7(17      |
| 1352-6803               | 0.628902611443(12)   | 1.2380(16)   | 52260.0 | 28            | 51944-52574 | 0.56     | 215.1(11      |
| 1415-6621 <sup>†</sup>  | 0.39247897310(5)     | 0.5800(10)   | 51396.2 | _             | 51569-52151 | _        | 260.17(7      |
| 1420-5625               | 0.03411713084786(12) | 0.000068(17) | 52558.0 | 57            | 52293-52853 | 0.07     | 64.56(9)      |
| 1424-5556               | 0.770374845874(18)   | 0.780(3)     | 52260.0 | 31            | 51945-52574 | 0.75     | 198.7(20      |
| 1435-5954               | 0.472995435514(16)   | 1.5433(7)    | 50545.0 | 82            | 49955-51134 | 0.10     | 44.26(11      |
| $1437 - 6146^{G*}$      | 0.46761632345(7)     | 6.3304(9)    | 51614.0 | 56            | 51710-52883 | 2.42     | 200.5(13      |
| 1502-5653               | 0.535504397790(3)    | 1.8286(3)    | 51780.0 | 30            | 51214-52345 | 0.29     | 194.0(4)      |
| 1519-6308               | 1.25405163056(10)    | 5.96(5)      | 52144.0 | 19            | 51945-52342 | 1.49     | 250(3)        |
| 1538-5551               | 0.104674920844(4)    | 3.2082(4)    | 51886.0 | 42            | 51466-52305 | 1.38     | 603(3)        |
| 1542-5133               | 1.7838649877(3)      | 0.59(6)      | 51911.0 | 26            | 51634-52187 | 3.17     | 186(4)        |
| 1547-5750               | 0.64719774666(6)     | 0.026(5)     | 52044.0 | 17            | 51744-52342 | 1.26     | 148(4)        |
| 1551-5310*              | 0.453394164640(11)   | 195.1299(9)  | 52204.0 | 71            | 51555-52852 | 2.68     | 493(2)        |
| 1609-4616               | 0.249608954839(5)    | 0.501(4)     | 52133.0 | 29            | 51945-52319 | 0.40     | 150.1(6)      |
| 1620 5414               | 1.15(2(02)792(0)     | 0.067(2)     | 51920.0 | 16            | 51466 52022 | 1.00     | 71(0)         |
| 1620-5414               | 1.15636028782(9)     | 0.067(3)     | 51830.0 | 16            | 51466-52923 | 1.98     | 71(8)         |
| 1632-4509               | 1.0468098769(4)      | 14.88(9)     | 51973.0 | 13            | 51744-52201 | 1.59     | 412(4)        |
| 1632-4757               | 0.228564097816(10)   | 15.0749(10)  | 51909.0 | 42            | 51467-52350 | 2.39     | 578(3)        |
| 1638-4417               | 0.1178015507206(9)   | 1.60526(12)  | 52142.0 | 40            | 51712-52572 | 0.53     | 436.0(7)      |
| 1658-4958               | 0.416873770089(11)   | 3.856(7)     | 52146.0 | 18            | 51946-52344 | 0.57     | 193.4(13      |
| 1700-3919               | 0.560503533065(16)   | 0.0050(13)   | 52025.0 | 18            | 51495-52596 | 0.79     | 354.3(18      |
| 1702-4217               | 0.227564958458(7)    | 0.0114(6)    | 51895.0 | 29            | 51216-52572 | 1.93     | 629(5)        |
| 1708-4522               | 1.29783683782(7)     | 2.612(7)     | 52158.0 | 28            | 51744-52572 | 2.19     | 454(3)        |
| 1715-4254               | 0.57374535892(7)     | 0.876(10)    | 52278.0 | 31            | 51984-52571 | 4.16     | 407(9)        |
| 1718-3714               | 1.2893787775(3)      | 26.21(3)     | 51799.0 | 28            | 51463-52135 | 6.74     | 833(21)       |
| 1718-3718               | 3.3782065287(14)     | 1598.15(8)   | 51776.0 | 41            | 51245-52926 | 27.33    | 373(13)       |
| 1724-3149               | 0.94823697410(9)     | 7.25(4)      | 51995.0 | 16            | 51803-52186 | 0.99     | 409(4)        |
| 1726-4006               | 0.88277826565(10)    | 3.33(4)      | 52475.0 | 26            | 52262-52686 | 1.96     | 277(3)        |
| 1727-2739               | 1.29309994235(16)    | 1.10(3)      | 52263.0 | 22            | 51946-52579 | 2.21     | 147(4)        |
| 1730-3353               | 3.2702418032(5)      | 21.96(4)     | 51672.0 | 16            | 51157-52186 | 3.36     | 256(10)       |
| 1731-3123               | 0.75304798900(3)     | 1.679(3)     | 51702.0 | 18            | 51217-52186 | 0.89     | 354(3)        |
| 1731–3123               | 0.323434055969(13)   | 0.661(6)     | 51702.0 | 21            | 51687-52133 | 0.91     | 228.7(15      |
| 1732-4130               | 0.362051962860(14)   | 1.6485(11)   | 51911.0 | 26            | 51300-52526 | 2.03     | 636(3)        |
| 1733-3030               | 0.561778329077(13)   | 3.624(3)     | 52385.0 | 27            | 51946-52823 | 0.94     | 317.8(11      |
| 1736–2819               | 1.59241948019(13)    | 14.921(13)   | 51716.0 | 19            | 51244-52186 | 2.24     | 261(11)       |
| 1726 2042               | 6.4450260961(17)     | 20.00(17)    | 52244.0 | 20            | 52001 52696 | 7 10     | 221/10)       |
| 1736-2843               | 6.4450360861(17)     | 29.99(17)    | 52344.0 | 28            | 52001-52686 | 7.48     | 331(10)       |
| 1737-3320               | 0.81627308018(6)     | 2.251(6)     | 51887.0 | 21            | 51581-52192 | 1.70     | 804(5)        |
| 1738-2647               | 0.34959099098(5)     | 3.153(15)    | 52359.0 | 13            | 52146-52572 | 0.47     | 182.2(16      |
| 1738-3107               | 0.54949769829(13)    | 0.30(7)      | 52333.0 | 28            | 52134-52532 | 5.49     | 735(10)       |
| 1738-3316               | 0.73037251102(5)     | 0.089(4)     | 51702.0 | 24            | 51217-52186 | 1.99     | 273(4)        |

Table 2 – continued

| PSR J                           | Period, P                              | <i>P</i>               | Epoch     | $N_{\mathrm{toa}}$ | Data span     | Residual | DM            |
|---------------------------------|----------------------------------------|------------------------|-----------|--------------------|---------------|----------|---------------|
|                                 | (s)                                    | $(10^{-15})$           | (MJD)     |                    | (MJD)         | (ms)     | $(cm^{-3} pc$ |
| 1740-2540                       | 1.69265634040(9)                       | 1.851(12)              | 52162.0   | 27                 | 51746-52578   | 2.11     | 333(5)        |
| 1740-3327                       | 0.515000656402(14)                     | 3.8978(14)             | 52189.0   | 26                 | 51805-52572   | 0.91     | 274.1(15      |
| 1743-2442                       | 1.24250830909(11)                      | 0.472(10)              | 52133.0   | 30                 | 51687-52579   | 3.42     | 239(5)        |
| 1745-2229                       | 1.160592538166(19)                     | 2.857(3)               | 52242.0   | 17                 | 51632-52851   | 0.80     | 299(3)        |
| 1749-2347                       | 0.87448588170(4)                       | 2.4236(10)             | 52055.0   | 16                 | 51217-52926   | 1.74     | 344(4)        |
| 1750-2444                       | 0.89937672140(5)                       | 0.264(3)               | 51835.0   | 27                 | 51091-52579   | 3.24     | 331(4)        |
| 1752-2410                       | 0.1910366935341(19)                    | 0.61773(8)             | 51865.0   | 33                 | 51159-52571   | 0.59     | 508.3(9)      |
| 1754-3443                       | 0.361690595821(10)                     | 0.5712(7)              | 52260.0   | 21                 | 51947-52572   | 0.40     | 187.7(9)      |
| 1755-25211                      | 1.00451255339(7)                       | 31.2081(13)            | 51908.0   | 22                 | 51244-52926   | 2.09     | 835(5)        |
| 1755-2534                       | 0.233540625445(9)                      | 11.2061(9)             | 52188.0   | 31                 | 51804-52571   | 1.45     | 590(3)        |
| 1756-2225                       | 0.40498030096(9)                       | 52.691(5)              | 52360.0   | 20                 | 52149-52926   | 3.68     | 326(4)        |
| 1758-1931                       | 0.69255157815(7)                       | 16.92(3)               | 52353.0   | 24                 | 52134-52571   | 1.69     | 207(5)        |
| 1759-1903                       | 0.73150547250(17)                      | 3.07(7)                | 52003.0   | 26                 | 51804-52201   | 2.67     | 467(4)        |
| 1759-3107                       | 1.07895331831(4)                       | 3.769(9)               | 52608.0   | 19                 | 52391-52823   | 0.27     | 128.6(11      |
| 1800-2114                       | 1.7992724923(7)                        | 0.55(26)               | 52360.0   | 21                 | 52149-52571   | 7.56     | 641(18)       |
| 1801-2115                       | 0.4381131572(4)                        | 0.016(6)               | 51887.0   | 22                 | 52134-53032   | 5.06     | 778.8(1)      |
| 1801-2154                       | 0.375296924221(10)                     | 15.9982(5)             | 51895.0   | 25                 | 51218-52571   | 1.02     | 387.9(14      |
| 1803-1616                       | 0.536595822673(18)                     | 1.7714(12)             | 51991.0   | 26                 | 51410-52571   | 1.58     | 388.1(20      |
| 1803-1920                       | 0.443648922251(16)                     | 0.3297(8)              | 51843.0   | 24                 | 51159-52527   | 1.23     | 436.1(17      |
| 1805-2447                       | 0.661401759025(14)                     | 0.0058(7)              | 51936.0   | 28                 | 51300-52571   | 1.06     | 269(3)        |
| 1806-1618                       | 0.66830920992(5)                       | 0.862(3)               | 51843.0   | 24                 | 51159-52527   | 2.51     | 319(5)        |
| 1809-1850                       | 1.12448108944(17)                      | 10.575(8)              | 51871.0   | 26                 | 51214-52527   | 6.01     | 598(13)       |
| 1810-1441                       | 0.217213500357(4)                      | 0.02387(19)            | 51874.0   | 28                 | 51220-52527   | 0.74     | 304.9(13      |
| 1812-1910                       | 0.43099098078(6)                       | 37.74(3)               | 51997.0   | 12                 | 51804-52190   | 0.94     | 892(5)        |
| 1813-2242                       | 0.328514216183(15)                     | 0.0478(6)              | 51843.0   | 29                 | 51159-52527   | 1.67     | 333(3)        |
| 1815-1738                       | 0.1984357331818(16)                    | 77.85293(12)           | 52204.0   | 39                 | 51584-52823   | 14.31    | 728(3)        |
| 1816-1446                       | 0.594499815819(18)                     | 1.3261(11)             | 51969.0   | 27                 | 51410-52527   | 1.29     | 629(4)        |
| $1817 - 1511^{J}$               | 0.224603837185(16)                     | 1.4313(9)              | 52160.0   | 31                 | 51643-52676   | 2.79     | 970(5)        |
| $1818 - 1116^{J}$               | 0.54479952470(5)                       | 3.824(6)               | 52158.0   | 29                 | 51669-52647   | 2.58     | 422(7)        |
| $1819 - 0925^{J}$               | 0.852047483505(15)                     | 3.1302(11)             | 52105.0   | 34                 | 51563-52647   | 1.03     | 378(3)        |
| $1819 - 1008^{J}$               | 0.301489849278(7)                      | 1.3209(5)              | 52182.0   | 22                 | 51743-52619   | 0.68     | 404(3)        |
| 1819-1131                       | 1.38813712856(16)                      | 0.761(10)              | 51874.0   | 18                 | 51220-52527   | 3.91     | 578(13)       |
| $1820 - 1529^{*J}$              | 0.333242850831(18)                     | 37.9072(10)            | 52051.0   | 21                 | 51643-52857   | 1.17     | 772(28)       |
| 1821-1419                       | 1.6560095697(9)                        | 894.5(3)               | 52303.0   | 19                 | 52077-52527   | 8.85     | 1123(16)      |
| 1822-0907                       | 0.97470037336(6)                       | 0.355(3)               | 52267.0   | 22                 | 51681-52852   | 2.15     | 467(5)        |
| 1822-1252                       | 2.0710402725(5)                        | 84.76(3)               | 51809.0   | 31                 | 51091-52527   | 15.48    | 925(25)       |
| 1822-1617                       | 0.8311557274(3)                        | 1.885(12)              | 51932.0   | 30                 | 51335-52527   | 11.69    | 647(19)       |
| 1823-1126                       | 1.8465342015(3)                        | 36.52(11)              | 52331.0   | 17                 | 52135-52527   | 1.58     | 607(3)        |
| 1823-1526                       | 1.62540547240(16)                      | 4.52(3)                | 52267.0   | 21                 | 52001-52532   | 2.16     | 611(5)        |
| 1824-1500                       | 0.41222995857(6)                       | 0.758(11)              | 52265.0   | 22                 | 52001-52527   | 3.13     | 571(6)        |
| 1828-0611                       | 0.269414732063(3)                      | 1.4595(3)              | 52045.0   | 21                 | 51563-52527   | 0.28     | 363.2(5)      |
| 1828-1007                       | 0.1531969792414(15)                    | 0.61339(12)            | 51837.0   | 17                 | 51091-52582   | 0.49     | 302.6(12      |
| 1828-1057                       | 0.246327587410(12)                     | 20.7007(19)            | 52166.0   | 29                 | 51805-52527   | 1.96     | 245(3)        |
| $1831 - 0823^{J}$               | 0.612132963973(15)                     | 0.3091(12)             | 51763.0   | 25                 | 51410-52115   | 0.35     | 245.9(17      |
| 1831-1423                       | 0.507945195243(13)                     | 1.0947(11)             | 52109.0   | 11                 | 51689-52527   | 0.43     | 352(3)        |
| 1833-0556                       | 1.5215451697(4)                        | 1.28(5)                | 52166.0   | 32                 | 51805-52527   | 8.11     | 461(13)       |
| 1834-0633                       | 0.31731488279(7)                       | 0.60(4)                | 52333.0   | 21                 | 52138-52528   | 2.86     | 707(9)        |
|                                 | ` '                                    |                        | 52323.0   | 18                 | 52117-52527   | 1.37     | 295(3)        |
| 1834-0731                       | 0.51297990872141                       | 28.20031               | JZ.1Z.1 U |                    | 32117-37.17.1 | ]7/      |               |
| $1834 - 0731$ $1834 - 0742^{J}$ | 0.51297990872(4)<br>0.788353566535(19) | 58.20(3)<br>32.4702(9) | 52145.0   | 32                 | 51466-52823   | 1.47     | 552(18)       |

Table 2 – continued

| PSR J                                                       | Period, <i>P</i> (s)                                         | $\dot{P}$ (10 <sup>-15</sup> ) | Epoch (MJD)        | $N_{\text{toa}}$ | Data span<br>(MJD)         | Residual<br>(ms) | $\frac{\text{DM}}{\text{(cm}^{-3} \text{ pc}}$ |
|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------|--------------------|------------------|----------------------------|------------------|------------------------------------------------|
| 1835-0522                                                   | 1.08774918841(8)                                             | 0.47(4)                        | 52331.0            | 20               | 52134-52528                | 1.08             | 456(4)                                         |
| 1836-0517                                                   | 0.45724503044(3)                                             | 1.3019(11)                     | 52156.0            | 27               | 51460-52852                | 2.51             | 564(5)                                         |
| 1838-0549                                                   | 0.235303200419(10)                                           | 33.429(6)                      | 52642.0            | 14               | 52459-52824                | 0.47             | 274(7)                                         |
| 1838-0624                                                   | 0.92717774151(5)                                             | 0.077(4)                       | 51875.0            | 20               | 51090-52660                | 3.31             | 424(9)                                         |
| 1839-0905                                                   | 0.418968843399(16)                                           | 26.033(3)                      | 52287.0            | 23               | 52002-52570                | 0.99             | 348(4)                                         |
| 1840-0559                                                   | 0.85936846681(5)                                             | 9.602(9)                       | 52418.0            | 18               | 52149-52687                | 0.76             | 321.7(14)                                      |
| $1840 - 0809^{J}$                                           | 0.955672135909(8)                                            | 2.3510(5)                      | 52091.0            | 30               | 51562-52620                | 0.27             | 349.8(8)                                       |
| $1840 - 0815^{J}$                                           | 1.096439972228(14)                                           | 2.4151(9)                      | 52091.0            | 29               | 51562-52620                | 0.61             | 233.2(12)                                      |
| 1840-1122                                                   | 0.94096161661(4)                                             | 6.409(6)                       | 52287.0            | 25               | 52002-52570                | 0.96             | 311(3)                                         |
| $1841 - 0157^{J}$                                           | 0.663321097981(9)                                            | 18.0768(5)                     | 52163.0            | 39               | 51467-52858                | 1.26             | 475(3)                                         |
| 1841-0310                                                   | 1.6576564582(4)                                              | 0.335(9)                       | 52353.0            | 16               | 51096-52918                | 4.47             | 216(12)                                        |
| 1841-0524                                                   | 0.44574893108(3)                                             | 233.724(10)                    | 52360.0            | 16               | 52149-52570                | 0.79             | 289(15)                                        |
| 1842-0309                                                   | 0.40491964372(3)                                             | 4.518(4)                       | 52493.0            | 30               | 52134-52852                | 2.92             | 955(7)                                         |
| 1842-0612                                                   | 0.56447537999(16)                                            | 0.022(9)                       | 52402.0            | 28               | 52233-52929                | 4.90             | 485(10)                                        |
| $1843 - 0000^{J}$                                           | 0.88033048188(3)                                             | 7.792(4)                       | 51910.0            | 21               | 51633-52186                | 0.47             | 101.5(8)                                       |
| 1843-0137                                                   | 0.66987238665(3)                                             | 2.468(14)                      | 52490.0            | 21               | 52293-52687                | 0.62             | 486(3)                                         |
| 1843-0211                                                   | 2.02752438872(5)                                             | 14.44(3)                       | 52608.0            | 17               | 52391-52824                | 0.39             | 441.7(9)                                       |
| 1843-0408                                                   | 0.78193369973(7)                                             | 2.39(3)                        | 52353.0            | 21               | 52135-52570                | 1.99             | 246(3)                                         |
| 1843-0702                                                   | 0.191614063108(3)                                            | 2.1402(15)                     | 52608.0            | 19               | 52391-52824                | 0.32             | 228.1(7)                                       |
| 1843-0806                                                   | 0.536413665506(9)                                            | 17.359(4)                      | 52608.0            | 17               | 52390-52824                | 0.29             | 215.8(9)                                       |
| 1843-1113                                                   | 0.0018456662924246(5)                                        | 0.00000959(5)                  | 52374.0            | 36               | 52041-52852                | 0.01             | 59.96(3)                                       |
| $1844 - 0030^{A}$                                           | 0.64109785122(3)                                             | 6.078(8)                       | 52632.0            | 25               | 52407-52857                | 0.86             | 605(3)                                         |
| 1844-0452                                                   | 0.26944332141(3)                                             | 0.680(6)                       | 52471.0            | 14               | 52254-52687                | 0.89             | 626(4)                                         |
| 1844-0502                                                   | 0.33516252825(4)                                             | 0.062(12)                      | 52608.0            | 20               | 52391-52824                | 1.34             | 318(5)                                         |
| 1845-0545                                                   | 1.09234815284(5)                                             | 13.43(3)                       | 52608.0            | 16               | 52391-52824                | 0.51             | 315.9(12)                                      |
| 1846+0051 <sup>A</sup>                                      | 0.434372879784(16)                                           | 11.226(3)                      | 52554.0            | 31               | 52279-52828                | 0.86             | 140(3)                                         |
| 1847-0130                                                   | 6.7070457241(9)                                              | 1274.9(3)                      | 52353.0            | 22               | 52135-52571                | 2.08             | 667(6)                                         |
| 1847-0443                                                   | 0.340832130441(14)                                           | 0.0283(4)                      | 52403.0            | 24               | 51090-52660                | 0.91             | 454.9(20)                                      |
| $1848 - 0023^{A}$                                           | 0.53762373255(9)                                             | 1.610(18)                      | 52522.0            | 18               | 52279-52763                | 1.89             | 30.6(1)                                        |
| 1848-0055                                                   | 0.27455668472(7)                                             | 1.35(3)                        | 52353.0            | 22               | 52134-52571                | 4.07             | 1166(7)                                        |
| 1848-0511                                                   | 1.6371290072(6)                                              | 8.863(11)                      | 52777.0            | 23               | 51470-53033                | 5.12             | 418(7)                                         |
| $1849 - 0040^{A}$                                           | 0.67248060717(14)                                            | 11.14(4)                       | 52633.0            | 25               | 52409-52857                | 3.18             | 1234.9(1)                                      |
| 1849-0614                                                   | 0.95338418817(3)                                             | 53.889(6)                      | 52417.0            | 20               | 52146-52687                | 0.63             | 119.6(12)                                      |
| 1850-0031                                                   | 0.73418485978(10)                                            | 1.263(6)                       | 52015.0            | 25               | 51460-52569                | 4.91             | 895(8)                                         |
| 1851+0118                                                   | 0.90697686069(14)                                            | 136.705(9)                     | 51936.0            | 23               | 51301-52569                | 5.71             | 418(7)                                         |
| $1851 - 0053^{A}$                                           | 1.40906524128(16)                                            | 0.87(8)                        | 52585.0            | 28               | 52407-52763                | 1.21             | 24(4)                                          |
| 1851-0241                                                   | 0.43519385185(4)                                             | 7.963(3)                       | 52300.0            | 25               | 51747-52852                | 2.85             | 515(5)                                         |
| $1852 + 0008^{A}$                                           | 0.467894113075(20)                                           | 5.679(7)                       | 52584.0            | 32               | 52310-52857                | 0.72             | 254.9(18)                                      |
| $1852 + 0003^{A}$                                           | 0.95775094505(5)                                             | 14.034(12)                     | 52633.0            | 38               | 52408-52857                | 0.99             | 545(3)                                         |
| 1852-0118                                                   | 0.45147285265(3)                                             | 1.757(11)                      | 52611.0            | 18               | 52396-52824                | 0.99             | 286(3)                                         |
| 1852-0127                                                   | 0.42897892562(3)                                             | 5.149(8)                       | 52608.0            | 21               | 52390-52824                | 1.12             | 431(3)                                         |
| 1852-0635                                                   | 0.52415088472(14)                                            | 14.64(5)                       | 52477.0            | 18               | 52265-52687                | 3.31             | 171(6)                                         |
| $1852 - 0033$ $1853 + 0011^{A}$                             | 0.397881893633(12)                                           | 33.5381(16)                    | 52554.0            | 28               | 52279-52828                | 0.53             | 568.8(16)                                      |
| 1853+0505                                                   | 0.90513715648(5)                                             | 1.288(5)                       | 52321.0            | 21               | 51817-52825                | 1.93             | 279(3)                                         |
| $1853 - 0004^{A}$                                           | 0.1014357461981(14)                                          | 5.5745(5)                      | 52633.0            | 19               | 52409-52857                | 0.19             | 438.2(8)                                       |
| 1055 : 02054                                                | 0.84534757461(4)                                             | 18.110(10)                     | 52632.0            | 29               | 52407-52857                | 0.61             | 402.5(19)                                      |
| 1855-10307/2                                                | * /                                                          |                                |                    | 29               | 51413-52569                |                  | 244(4)                                         |
|                                                             | 0.25868464807177                                             |                                |                    |                  |                            |                  |                                                |
| 1855+0700                                                   | 0.258684648071(7)                                            | 0.7516(6)                      | 51991.0<br>52568.0 |                  |                            | 1.35             |                                                |
| $1855+0307^{A}$ $1855+0700$ $1856+0102^{A}$ $1857+0143^{A}$ | 0.258684648071(7)<br>0.620217115135(20)<br>0.139760064515(4) | 1.222(3)<br>31.1674(12)        | 52568.0<br>52632.0 | 40<br>30         | 52279-52857<br>52407-52857 | 0.65<br>0.65     | 554(3)<br>249(3)                               |

Table 2 - continued

| PSR J                   | Period, <i>P</i> (s)   | $\dot{P}$ (10 <sup>-15</sup> ) | Epoch (MJD) | $N_{\mathrm{toa}}$ | Data span<br>(MJD) | Residual (ms) | DM<br>(cm <sup>-3</sup> pc) |
|-------------------------|------------------------|--------------------------------|-------------|--------------------|--------------------|---------------|-----------------------------|
| 1858+0241               | 4.6932329333(12)       | 24.32(9)                       | 52111.0     | 22                 | 51688-52532        | 5.64          | 336(15)                     |
| $1859 + 0601^{A}$       | 1.04431270179(15)      | 25.51(4)                       | 52503.0     | 56                 | 52279-52726        | 1.83          | 276(7)                      |
| $1900+0634^{A}$         | 0.389869101178(20)     | 5.125(5)                       | 52554.0     | 54                 | 52279-52828        | 1.16          | 323.4(18)                   |
| $1900 - 0051^{J}$       | 0.385194094862(6)      | 0.1421(9)                      | 51912.0     | 24                 | 51634-52188        | 0.26          | 136.8(7)                    |
| $1901 + 0124^A$         | 0.318817259335(11)     | 3.241(4)                       | 52632.0     | 29                 | 52407-52857        | 0.56          | 314.4(13)                   |
| 1901+0254               | 1.2996934495(3)        | 0.46(11)                       | 52626.0     | 15                 | 52426-52824        | 2.09          | 185(5)                      |
| $1901 + 0320^{A}$       | 0.63658447822(8)       | 0.52(3)                        | 52503.0     | 26                 | 52279-52726        | 2.48          | 393(7)                      |
| 1901+0355               | 0.55475646483(3)       | 12.741(10)                     | 52352.0     | 21                 | 52134-52569        | 0.92          | 547(3)                      |
| $1901 + 0510^{A}$       | 0.61475669408(12)      | 31.10(4)                       | 52618.0     | 30                 | 52407-52828        | 2.89          | 429(7)                      |
| 1901-0312               | 0.355725186569(14)     | 2.292(6)                       | 52608.0     | 18                 | 52390-52824        | 0.53          | 106.4(11)                   |
| 1902+0248               | 1.22377745359(17)      | 2.41(3)                        | 52554.0     | 35                 | 52279-52828        | 2.99          | 272.0(1)                    |
| 1902-0340               | 1.5246721060(4)        | 2.00(17)                       | 52724.0     | 18                 | 52532-52916        | 2.43          | 114(6)                      |
| $1903 + 0601^{J}$       | 0.374117028251(5)      | 19.2039(3)                     | 52146.0     | 33                 | 51467-52824        | 0.94          | 388(3)                      |
| 1905+0400               | 0.0037844047875897(12) | 0.00000486(6)                  | 52173.0     | 107                | 51492-52853        | 0.04          | 25.71(6)                    |
| 1905+0600               | 0.441209731966(18)     | 1.1123(10)                     | 52048.0     | 42                 | 51469-52626        | 0.86          | 730.1(19)                   |
| 1906+0649 <sup>A</sup>  | 1.28656437956(10)      | 0.152(5)                       | 52317.0     | 31                 | 51805-52828        | 1.37          | 249(4)                      |
| $1907 + 0249^{*A}$      | 0.351879439822(20)     | 1.135(4)                       | 52554.0     | 36                 | 52279-52828        | 3.59          | 261(6)                      |
| 1907+0345               | 0.240153263208(5)      | 8.222(3)                       | 51999.0     | 19                 | 51805-52193        | 0.35          | 311.7(9)                    |
| 1907+0731               | 0.363676330005(12)     | 18.416(4)                      | 52352.0     | 22                 | 52134-52569        | 0.69          | 239.8(13)                   |
| $1907 + 0918^{\dagger}$ | 0.2261071099878(6)     | 94.2955(4)                     | 51319.0     | _                  | 51257-51540        | _             | 357.9(1)                    |
| 1910+0225 <sup>A</sup>  | 0.337854845269(11)     | 0.2623(14)                     | 52586.0     | 33                 | 52315-52857        | 0.75          | 209(3)                      |
| 1910+0728               | 0.325415321974(3)      | 8.3062(3)                      | 52187.0     | 23                 | 51805-52569        | 0.22          | 283.7(4)                    |
| 1913+1000               | 0.83714819649(5)       | 16.737(6)                      | 52187.0     | 17                 | 51805-52569        | 1.21          | 422(3)                      |
| $1914 + 0631^{A}$       | 0.69381120574(5)       | 0.033(13)                      | 52582.0     | 39                 | 52335-52828        | 1.16          | 58(3)                       |
| $1915 + 0838^{J}$       | 0.34277679653(4)       | 1.571(4)                       | 52025.0     | 24                 | 51743-52306        | 0.99          | 358(3)                      |
| 1916+0844 <sup>J</sup>  | 0.439995272067(8)      | 2.9009(4)                      | 52018.0     | 30                 | 51467-52569        | 0.54          | 339.4(8)                    |
| 1916+0852               | 2.1827459895(6)        | 13.1(3)                        | 52352.0     | 15                 | 52134-52569        | 5.21          | 295(10)                     |
| $1916 + 1023^{A}$       | 1.6183389208(8)        | 0.68(14)                       | 52529.0     | 24                 | 52294-52763        | 4.65          | 329.8(1)                    |
| 1920+1040*A             | 2.21580173889(20)      | 6.48(3)                        | 52596.0     | 38                 | 52335-52857        | 4.46          | 304(9)                      |
| 1937+1505 <sup>J</sup>  | 2.8727736506(7)        | 5.6(3)                         | 51969.0     | 19                 | 51743-52194        | 4.11          | 237(11)                     |

**Table 3.** Orbital parameters for PSR J1420–5625 obtained using the Blandford & Teukolsky (1976) binary model. The minimum companion mass is calculated by assuming an inclination angle of  $90^\circ$  and a neutron-star mass of  $1.35\,M_{\odot}$ .

| Orbital period (d)                         | 40.294523(4) |
|--------------------------------------------|--------------|
| Projected semimajor axis of orbit (lt sec) | 29.53977(4)  |
| Eccentricity                               | 0.003500(3)  |
| Epoch of periastron (MJD)                  | 52388.945(6) |
| Longitude of periastron (degrees)          | 337.30(5)    |
| Minimum companion mass $(M_{\bigodot})$    | 0.37         |

note that the periastron advance,  $\dot{\omega}$ , is likely to be measurable soon, which would provide a value for the total system mass. As PSR J1420–5625 is a recycled pulsar and the orbital eccentricity of the system is significantly less than that measured for double neutron-star systems, the companion is almost certainly a white dwarf (WD) star. As reviewed in Tauris & van den Heuvel (2003) a pulsar is expected to have (1) a He–WD companion if  $M_{\rm WD} \lesssim 0.45 \, {\rm M}_{\odot}$ , (2) a CO–WD companion if  $0.45 \lesssim M_{\rm WD} \lesssim 0.8 \, {\rm M}_{\odot}$  or (3) an O–Ne–

Mg WD companion if  $0.8 \lesssim M_{\rm WD} \lesssim 1.4 \, {\rm M}_{\odot}$ . Due to the relatively high lower limit on the companion mass for PSR J1420–5625, it is unlikely that the companion is a He–WD; most likely it is a CO–WD.

Similar binary systems have already been discovered during the multibeam survey and were described by Camilo et al. (2001b). Due to their relatively long millisecond spin periods and/or large orbital eccentricities these pulsars are unlike the more common low-mass binary pulsars (LMBPs) and were thus categorized as being intermediate-mass binary pulsars (IMBPs).<sup>5</sup> PSR J1420–5625 has a similarly large spin period and orbital eccentricity and is therefore also an IMBP, making 14 such systems known (Table 5).

PSR J1420—5625 has the longest orbital period and largest orbital eccentricity of the known IMBPs. Edwards & Bailes (2001) reviewed two plausible scenarios for such binary systems. The first, consisting of massive late case A/early case B mass transfer (Tauris, van den Heuvel & Savonije 2000) where the Roche lobe overflow started before or soon after the termination of hydrogen core burning, is limited to systems with orbital periods greater than a few

<sup>&</sup>lt;sup>5</sup> Camilo et al. (2001b) defined IMBPs as objects that once had intermediatemass donor stars. This applies to pulsar systems with spin periods between 10 and 200 ms and orbital eccentricities less than 0.01.

**Table 4.** Derived parameters for 180 pulsars discovered in the Parkes multibeam pulsar survey. We list the characteristic age, the surface dipole magnetic field strength, the loss in rotational energy, the distance derived from the DM and the Taylor & Cordes (1993) model, the inferred *z*-height and the corresponding radio luminosity at 1400 MHz.

| PSR J                  | $\log [\tau_{c}(yr)]$ | $log[B_s(G)]$ | $\log[\dot{E}(\mathrm{erg}\mathrm{s}^{-1})]$ | Dist.<br>(kpc) | z<br>(kpc) | Luminosity<br>(mJy kpc <sup>2</sup> ) |
|------------------------|-----------------------|---------------|----------------------------------------------|----------------|------------|---------------------------------------|
| 0843-5022              | 7.28                  | 11.28         | 32.88                                        | 7.7            | -0.66      | 18.3                                  |
| 1016-5857              | 4.32                  | 12.47         | 36.41                                        | 9.3            | -0.31      | 39.9                                  |
|                        |                       |               |                                              |                |            |                                       |
| 1021-5601              | 8.30                  | 11.28         | 30.85                                        | 4.2            | 0.07       | 6.5                                   |
| 1032-5206              | 6.33                  | 12.82         | 31.71                                        | 4.3            | 0.39       | 3.6                                   |
| 1052-6348              | 7.20                  | 11.59         | 32.43                                        | 5.3            | -0.36      | 3.1                                   |
| 1054-6452              | 6.97                  | 12.39         | 31.30                                        | 13.5           | -1.13      | 45.8                                  |
| 1055-6022              | 5.21                  | 12.98         | 33.63                                        | 25.6           | -0.29      | 105.1                                 |
| 1106-6438              | 7.27                  | 12.40         | 30.66                                        | 7.9            | -0.55      | 11.8                                  |
| 1152-5800              | 7.34                  | 12.18         | 30.94                                        | 7.9            | 0.54       | 7.4                                   |
| 1156-5707              | 5.24                  | 12.45         | 34.64                                        | 20.4           | 1.76       | 79.1                                  |
| 1210-6550              | 8.19                  | 12.14         | 29.34                                        | 1.6            | -0.09      | 0.4                                   |
| 1337-6306              | 6.97                  | 11.44         | 33.20                                        | 16.0           | -0.19      | 28.2                                  |
| 1352-6803              | 6.91                  | 11.95         | 32.30                                        | 14.4           | -1.47      | 140.4                                 |
| 1415-6621              | 7.03                  | 11.68         | 32.58                                        | 14.4           | -1.22      | 147.2                                 |
| 1420-5625              | 9.90                  | 9.19          | 31.83                                        | 1.7            | 0.13       | 0.4                                   |
| 1424-5556              | 7.19                  | 11.89         | 31.83                                        | 7.7            | 0.62       | 22.6                                  |
| 1435-5954              | 6.69                  | 11.94         | 32.76                                        | 1.5            | 0.01       | 7.7                                   |
| 1437-6146              | 6.07                  | 12.24         | 33.38                                        | 4.8            | -0.12      | 5.5                                   |
| 1502-5653              | 6.67                  | 12.00         | 32.67                                        | 4.5            | 0.12       | 7.9                                   |
| 1519-6308              | 6.52                  | 12.44         | 32.08                                        | 17.8           | -1.52      | 101.5                                 |
| 1538-5551              | 5.71                  | 11.77         | 35.04                                        | 10.4           | -0.05      | 27.0                                  |
| 1542-5133              | 7.68                  | 12.02         | 30.61                                        | 4.9            | 0.24       | 6.4                                   |
| 1547-5750              | 8.60                  | 11.11         | 30.57                                        | 3.9            | -0.18      | 3.5                                   |
| 1551-5310              | 4.57                  | 12.98         | 34.92                                        | 7.5            | 0.09       | 30.5                                  |
| 1609-4616              | 6.90                  | 11.55         | 33.11                                        | 4.1            | 0.29       | 6.5                                   |
| 1620-5414              | 8.43                  | 11.45         | 30.23                                        | 1.7            | -0.09      | 0.4                                   |
| 1632-4509              | 6.05                  | 12.60         | 32.71                                        | 9.1            | 0.32       | 13.3                                  |
|                        | 5.38                  | 12.27         | 34.70                                        | 7.0            | 0.32       | 14.5                                  |
| 1632-4757<br>1638-4417 | 6.06                  | 11.64         | 34.59                                        | 8.5            | 0.26       | 15.0                                  |
| 1658-4958              | 6.23                  | 12.11         | 33.32                                        | 6.3            | -0.50      | 34.1                                  |
| 1036-4936              | 0.23                  | 12.11         | 33.32                                        | 0.5            | -0.50      | 34.1                                  |
| 1700-3919              | 9.25                  | 10.73         | 30.04                                        | 6.3            | 0.20       | 9.2                                   |
| 1702-4217              | 8.50                  | 10.71         | 31.58                                        | 7.5            | -0.04      | 28.1                                  |
| 1708-4522              | 6.90                  | 12.27         | 31.67                                        | 30.0           | -1.57      | 198.0                                 |
| 1715-4254              | 7.02                  | 11.86         | 32.26                                        | 12.6           | -0.56      | 11.1                                  |
| 1718-3714              | 5.89                  | 12.77         | 32.68                                        | 10.9           | 0.04       | 27.2                                  |
| 1718-3718              | 4.53                  | 13.87         | 33.20                                        | 5.1            | 0.02       | 4.7                                   |
| 1724-3149              | 6.32                  | 12.42         | 32.53                                        | 10.5           | 0.41       | 39.7                                  |
| 1726-4006              | 6.62                  | 12.24         | 32.28                                        | 6.2            | -0.29      | 8.0                                   |
| 1727-2739              | 7.27                  | 12.08         | 31.30                                        | 3.8            | 0.26       | 22.5                                  |
| 1730-3353              | 6.37                  | 12.93         | 31.40                                        | 4.2            | -0.00      | 6.8                                   |
| 1731-3123              | 6.85                  | 12.06         | 32.20                                        | 5.3            | 0.13       | 8.2                                   |
| 1732-4156              | 6.89                  | 11.67         | 32.89                                        | 8.8            | -0.72      | 17.0                                  |
| 1733-3030              | 6.54                  | 11.89         | 33.15                                        | 14.2           | 0.32       | 40.2                                  |
| 1733-3030              | 6.39                  | 12.16         | 32.91                                        | 13.9           | -0.95      | 95.4                                  |
| 1736-2819              | 6.23                  | 12.69         | 32.18                                        | 4.9            | 0.17       | 3.8                                   |
| 1736-2843              | 6.53                  | 13.15         | 30.64                                        | 5.5            | 0.17       | 12.9                                  |
| 1737–3320              | 6.76                  | 12.14         | 32.20                                        | 14.1           | -0.20      | 69.4                                  |
| 1737-3320              | 6.25                  | 12.14         | 33.46                                        | 3.9            | 0.17       | 6.6                                   |
| 1738-2047              | 7.47                  | 11.61         | 31.85                                        | 10.8           | 0.17       | 30.1                                  |
|                        |                       |               |                                              |                |            |                                       |
| 1738-3316              | 8.12                  | 11.41         | 30.95                                        | 4.6            | -0.08      | 11.4                                  |

Table 4 – continued

| PSR J      | $\log [\tau_c(yr)]$ | $log[B_s(G)]$ | $\log[\dot{E}(\mathrm{erg}\mathrm{s}^{-1})]$ | Dist. (kpc) | z<br>(kpc) | Luminosity<br>(mJy kpc <sup>2</sup> ) |
|------------|---------------------|---------------|----------------------------------------------|-------------|------------|---------------------------------------|
| 1740-2540  | 7.16                | 12.25         | 31.18                                        | 8.3         | 0.38       | 10.9                                  |
| 1740-3327  | 6.32                | 12.16         | 33.04                                        | 4.7         | -0.12      | 6.7                                   |
| 1743-2442  | 7.62                | 11.89         | 30.99                                        | 5.0         | 0.23       | 3.4                                   |
| 1745-2229  | 6.81                | 12.26         | 31.86                                        | 9.3         | 0.56       | 11.2                                  |
| 1749-2347  | 6.76                | 12.17         | 32.15                                        | 6.1         | 0.21       | 4.8                                   |
| 1750-2444  | 7.73                | 11.69         | 31.15                                        | 5.0         | 0.11       | 6.8                                   |
| 1752-2410  | 6.69                | 11.54         | 33.54                                        | 7.4         | 0.13       | 25.9                                  |
| 1754-3443  | 7.00                | 11.66         | 32.68                                        | 5.6         | -0.45      | 15.4                                  |
| 1755-25211 | 5.71                | 12.75         | 33.08                                        | 11.5        | -0.00      | 22.6                                  |
| 1755-2534  | 5.52                | 12.21         | 34.54                                        | 7.2         | -0.03      | 8.9                                   |
| 1756-2225  | 5.09                | 12.67         | 34.49                                        | 5.0         | 0.11       | 6.3                                   |
| 1758-1931  | 5.81                | 12.54         | 33.30                                        | 4.2         | 0.17       | 6.8                                   |
| 1759-1903  | 6.58                | 12.18         | 32.49                                        | 13.3        | 0.52       | 28.3                                  |
| 1759-3107  | 6.66                | 12.31         | 32.08                                        | 3.4         | -0.22      | 10.3                                  |
| 1800-2114  | 7.71                | 12.00         | 30.57                                        | 11.2        | 0.21       | 37.5                                  |
| 1801-2115  | 8.65                | 10.92         | 30.86                                        | -1.0        | -0.00      | 0.2                                   |
| 1801-2154  | 5.57                | 12.39         | 34.08                                        | 5.2         | 0.05       | 4.8                                   |
| 1803-1616  | 6.68                | 11.99         | 32.65                                        | 12.9        | 0.64       | 26.6                                  |
| 1803-1920  | 7.33                | 11.59         | 32.18                                        | 6.5         | 0.15       | 11.3                                  |
| 1805-2447  | 9.26                | 10.80         | 29.90                                        | 4.8         | -0.14      | 6.2                                   |
| 1806-1618  | 7.09                | 11.89         | 32.04                                        | 6.4         | 0.25       | 8.9                                   |
| 1809-1850  | 6.23                | 12.54         | 32.46                                        | 7.1         | 0.04       | 10.0                                  |
| 1810-1441  | 8.16                | 10.86         | 31.96                                        | 5.9         | 0.21       | 7.3                                   |
| 1812-1910  | 5.26                | 12.61         | 34.28                                        | 11.5        | -0.09      | 29.3                                  |
| 1813-2242  | 8.04                | 11.10         | 31.72                                        | 6.8         | -0.28      | 9.7                                   |
| 1815-1738  | 4.61                | 12.60         | 35.59                                        | 9.0         | -0.04      | 20.3                                  |
| 1816-1446  | 6.85                | 11.95         | 32.40                                        | 9.0         | 0.13       | 18.5                                  |
| 1817-1511  | 6.40                | 11.76         | 33.70                                        | 11.6        | 0.08       | 57.7                                  |
| 1818-1116  | 6.35                | 12.16         | 32.97                                        | 10.3        | 0.37       | 52.9                                  |
| 1819-0925  | 6.63                | 12.22         | 32.30                                        | 11.1        | 0.51       | 88.7                                  |
| 1819-1008  | 6.56                | 11.81         | 33.28                                        | 10.8        | 0.44       | 40.4                                  |
| 1819-1131  | 7.46                | 12.02         | 31.04                                        | 12.2        | 0.35       | 22.5                                  |
| 1820-1529  | 5.14                | 12.56         | 34.60                                        | 9.6         | -0.07      | 56.0                                  |
| 1821-1419  | 4.47                | 13.59         | 33.89                                        | 11.9        | -0.01      | 28.5                                  |
| 1822-0907  | 7.64                | 11.78         | 31.18                                        | 12.3        | 0.46       | 18.2                                  |
| 1822-1252  | 5.59                | 13.13         | 32.58                                        | 10.6        | 0.07       | 28.1                                  |
| 1822-1617  | 6.84                | 12.10         | 32.11                                        | 11.6        | -0.24      | 27.1                                  |
| 1823-1126  | 5.90                | 12.92         | 32.36                                        | 8.7         | 0.14       | 38.8                                  |
| 1823-1526  | 6.76                | 12.44         | 31.62                                        | 9.2         | -0.15      | 39.5                                  |
| 1824-1500  | 6.94                | 11.75         | 32.63                                        | 8.3         | -0.14      | 11.0                                  |
| 1828-0611  | 6.47                | 11.80         | 33.46                                        | 8.8         | 0.35       | 92.1                                  |
| 1828-1007  | 6.60                | 11.49         | 33.83                                        | 4.7         | 0.03       | 4.7                                   |
| 1828-1057  | 5.28                | 12.36         | 34.74                                        | 4.3         | -0.00      | 4.2                                   |
| 1831-0823  | 7.50                | 11.64         | 31.72                                        | 4.4         | 0.04       | 18.9                                  |
| 1831-1423  | 6.87                | 11.88         | 32.52                                        | 8.0         | -0.31      | 12.2                                  |
| 1833-0556  | 7.27                | 12.15         | 31.15                                        | 7.4         | 0.16       | 10.9                                  |
| 1834-0633  | 6.92                | 11.65         | 32.88                                        | 9.4         | 0.12       | 24.5                                  |
| 1834-0731  | 5.15                | 12.74         | 34.23                                        | 4.8         | 0.03       | 22.7                                  |
| 1834-0742  | 5.59                | 12.71         | 33.41                                        | 6.9         | 0.03       | 16.7                                  |
| 1834-1202  | 9.16                | 10.81         | 30.08                                        | 6.3         | -0.19      | 27.6                                  |

Table 4 – continued

| PSR J     | $\log [\tau_{c}(yr)]$ | $log[B_s(G)]$ | $\log[\dot{E}(\mathrm{erg}\mathrm{s}^{-1})]$ | Dist. (kpc) | z<br>(kpc)    | Luminosity<br>(mJy kpc <sup>2</sup> ) |
|-----------|-----------------------|---------------|----------------------------------------------|-------------|---------------|---------------------------------------|
| 1835-0522 | 7.56                  | 11.86         | 31.18                                        | 7.1         | 0.14          | 11.7                                  |
| 1836-0517 | 6.75                  | 11.89         | 32.73                                        | 8.1         | 0.13          | 9.8                                   |
| 1838-0549 | 5.05                  | 12.45         | 35.00                                        | 4.7         | 0.02          | 6.5                                   |
| 1838-0624 | 8.28                  | 11.43         | 30.58                                        | 5.8         | -0.01         | 5.4                                   |
| 1839-0905 | 5.41                  | 12.52         | 34.15                                        | 6.1         | -0.17         | 6.0                                   |
| 1840-0559 | 6.15                  | 12.46         | 32.78                                        | 5.0         | -0.02         | 7.9                                   |
| 1840-0809 | 6.81                  | 12.18         | 32.04                                        | 5.8         | -0.13         | 76.6                                  |
| 1840-0815 | 6.86                  | 12.22         | 31.86                                        | 4.5         | -0.10         | 28.3                                  |
| 1840-1122 | 6.37                  | 12.39         | 32.48                                        | 8.3         | -0.40         | 9.0                                   |
| 1841-0157 | 5.76                  | 12.54         | 33.38                                        | 7.3         | 0.15          | 42.8                                  |
| 1841-0310 | 7.89                  | 11.88         | 30.46                                        | 4.5         | 0.06          | 3.0                                   |
| 1841-0524 | 4.48                  | 13.01         | 35.00                                        | 4.9         | -0.03         | 4.8                                   |
| 1842-0309 | 6.15                  | 12.14         | 33.43                                        | 11.4        | 0.12          | 32.5                                  |
| 1842-0612 | 8.61                  | 11.05         | 30.68                                        | 7.0         | -0.11         | 26.5                                  |
| 1843-0000 | 6.25                  | 12.42         | 32.65                                        | 2.7         | 0.08          | 21.6                                  |
| 1843-0137 | 6.63                  | 12.11         | 32.51                                        | 7.1         | 0.14          | 13.2                                  |
| 1843-0211 | 6.35                  | 12.74         | 31.83                                        | 6.3         | 0.08          | 37.4                                  |
| 1843-0408 | 6.71                  | 12.14         | 32.30                                        | 4.7         | -0.01         | 3.7                                   |
| 1843-0702 | 6.15                  | 11.81         | 34.08                                        | 4.6         | -0.11         | 3.6                                   |
| 1843-0806 | 5.69                  | 12.49         | 33.64                                        | 4.6         | -0.15         | 7.5                                   |
| 1843-1113 | 9.48                  | 8.13          | 34.78                                        | 2.0         | -0.12         | 0.4                                   |
| 1844-0030 | 6.22                  | 12.30         | 32.96                                        | 8.7         | 0.19          | 31.5                                  |
| 1844-0452 | 6.80                  | 11.64         | 33.15                                        | 8.1         | -0.08         | 12.3                                  |
| 1844-0502 | 7.93                  | 11.16         | 31.81                                        | 5.2         | -0.08 $-0.07$ | 10.8                                  |
| 1845-0545 | 6.11                  | 12.59         | 32.61                                        | 5.4         | -0.07 $-0.13$ | 13.7                                  |
| 1846+0051 | 5.79                  | 12.35         | 33.73                                        | 3.2         | 0.08          | 3.5                                   |
| 1847-0130 | 4.92                  | 13.97         | 32.23                                        | 7.6         | 0.08          | 19.3                                  |
| 1847-0443 | 8.28                  | 11.00         | 31.45                                        | 7.6         | -0.18         | 9.2                                   |
| 1848-0023 | 6.72                  | 11.97         | 32.61                                        | 1.5         | 0.01          | 1.4                                   |
| 1848-0055 | 6.51                  | 11.79         | 33.41                                        | 15.1        | 0.01          | 43.6                                  |
| 1040 0511 | 6.47                  | 12.50         | 21.00                                        | 7.0         | 0.22          | 24.2                                  |
| 1848-0511 | 6.47                  | 12.59         | 31.90                                        | 7.8         | -0.23         | 24.2                                  |
| 1849-0040 | 5.98                  | 12.44         | 33.15                                        | 20.9        | 0.07          | 87.0                                  |
| 1849-0614 | 5.45                  | 12.86         | 33.40                                        | 2.8         | -0.12         | 4.8                                   |
| 1850-0031 | 6.96                  | 11.99         | 32.11                                        | 10.0        | -0.01         | 22.9                                  |
| 1851+0118 | 5.02                  | 13.05         | 33.86                                        | 6.8         | 0.06          | 4.6                                   |
| 1851-0053 | 7.41                  | 12.05         | 31.08                                        | 1.2         | -0.01         | 1.5                                   |
| 1851-0241 | 5.94                  | 12.27         | 33.58                                        | 7.6         | -0.16         | 11.6                                  |
| 1852+0008 | 6.12                  | 12.22         | 33.34                                        | 5.1         | -0.02         | 8.1                                   |
| 1852+0013 | 6.03                  | 12.57         | 32.80                                        | 7.2         | -0.02         | 15.6                                  |
| 1852-0118 | 6.61                  | 11.95         | 32.88                                        | 5.4         | -0.07         | 10.2                                  |
| 1852-0127 | 6.12                  | 12.18         | 33.41                                        | 6.4         | -0.09         | 24.0                                  |
| 1852-0635 | 5.75                  | 12.45         | 33.60                                        | 4.6         | -0.27         | 124.8                                 |
| 1853+0011 | 5.27                  | 12.57         | 34.32                                        | 7.5         | -0.05         | 16.8                                  |
| 1853+0505 | 7.05                  | 12.04         | 31.84                                        | 7.5         | 0.26          | 85.3                                  |
| 1853-0004 | 5.46                  | 11.88         | 35.32                                        | 6.6         | -0.05         | 37.7                                  |
| 1855+0307 | 5.87                  | 12.60         | 33.08                                        | 7.4         | 0.07          | 53.8                                  |
| 1855+0700 | 6.74                  | 11.65         | 33.23                                        | 6.8         | 0.28          | 4.7                                   |
| 1856+0102 | 6.91                  | 11.94         | 32.30                                        | 8.6         | -0.10         | 28.2                                  |
| 1857+0143 | 4.85                  | 12.32         | 35.65                                        | 5.2         | -0.05         | 19.9                                  |
| 1857+0809 | 6.23                  | 12.19         | 33.18                                        | 8.7         | 0.37          | 10.6                                  |

Table 4 - continued

| PSR J     | $\log [\tau_c(yr)]$ | $\log [B_s(G)]$ | $\log[\dot{E}(\mathrm{erg}\mathrm{s}^{-1})]$ | Dist.<br>(kpc) | z<br>(kpc) | Luminosity<br>(mJy kpc <sup>2</sup> ) |
|-----------|---------------------|-----------------|----------------------------------------------|----------------|------------|---------------------------------------|
| 1858+0241 | 6.49                | 13.03           | 30.97                                        | 6.5            | -0.05      | 4.2                                   |
| 1859+0601 | 5.81                | 12.72           | 32.94                                        | 6.0            | 0.09       | 10.7                                  |
| 1900+0634 | 6.08                | 12.16           | 33.53                                        | 7.3            | 0.13       | 12.8                                  |
| 1900-0051 | 7.63                | 11.37           | 31.99                                        | 3.3            | -0.14      | 4.9                                   |
| 1901+0124 | 6.19                | 12.01           | 33.59                                        | 7.2            | -0.21      | 15.6                                  |
| 1901+0254 | 7.66                | 11.89           | 30.91                                        | 4.0            | -0.06      | 9.0                                   |
| 1901+0320 | 7.29                | 11.77           | 31.90                                        | 7.7            | -0.08      | 53.3                                  |
| 1901+0355 | 5.84                | 12.43           | 33.46                                        | 10.2           | -0.08      | 15.5                                  |
| 1901+0510 | 5.50                | 12.65           | 33.72                                        | 8.5            | -0.00      | 47.3                                  |
| 1901-0312 | 6.39                | 11.96           | 33.30                                        | 2.9            | -0.18      | 1.9                                   |
| 1902+0248 | 6.91                | 12.24           | 31.72                                        | 6.1            | -0.13      | 6.3                                   |
| 1902-0340 | 7.08                | 12.25           | 31.34                                        | 3.1            | -0.23      | 2.2                                   |
| 1903+0601 | 5.49                | 12.43           | 34.15                                        | 7.8            | 0.01       | 16.0                                  |
| 1905+0400 | 10.09               | 8.14            | 33.54                                        | 1.3            | -0.03      | 0.1                                   |
| 1905+0600 | 6.80                | 11.85           | 32.71                                        | 18.1           | -0.09      | 137.0                                 |
| 1906+0649 | 8.13                | 11.65           | 30.45                                        | 5.1            | -0.01      | 7.7                                   |
| 1907+0249 | 6.69                | 11.81           | 33.00                                        | 7.5            | -0.30      | 25.8                                  |
| 1907+0345 | 5.67                | 12.15           | 34.36                                        | 8.6            | -0.27      | 12.6                                  |
| 1907+0731 | 5.50                | 12.42           | 34.18                                        | 4.9            | -0.02      | 8.4                                   |
| 1907+0918 | 4.58                | 12.67           | 35.51                                        | 7.7            | 0.10       | 17.1                                  |
| 1910+0225 | 7.31                | 11.48           | 32.43                                        | 6.3            | -0.34      | 24.0                                  |
| 1910+0728 | 5.79                | 12.22           | 33.98                                        | 6.0            | -0.08      | 31.7                                  |
| 1913+1000 | 5.90                | 12.58           | 33.04                                        | 7.9            | -0.03      | 33.0                                  |
| 1914+0631 | 8.52                | 11.19           | 30.59                                        | 2.7            | -0.10      | 1.9                                   |
| 1915+0838 | 6.54                | 11.87           | 33.18                                        | 8.1            | -0.18      | 19.1                                  |
| 1916+0844 | 6.38                | 12.06           | 33.11                                        | 8.0            | -0.21      | 28.0                                  |
| 1916+0852 | 6.42                | 12.73           | 31.70                                        | 7.0            | -0.18      | 6.3                                   |
| 1916+1023 | 7.58                | 12.03           | 30.80                                        | 6.9            | -0.10      | 17.3                                  |
| 1920+1040 | 6.73                | 12.58           | 31.38                                        | 7.2            | -0.20      | 29.5                                  |
| 1937+1505 | 6.91                | 12.61           | 30.97                                        | 14.1           | -0.73      | 25.7                                  |

days and up to  $\sim$ 70 d and companions lighter than  $\sim$ 0.9 M $_{\odot}$ . The second, common envelope evolution on the first or second ascent of the red giant branch, is able to account for the remaining systems. PSR J1420-5625 is well modelled by the first scenario. Edwards & Bailes (2001) noted that there seemed an underdensity of pulsars with orbital periods between 12 and 56 d. PSR J1420-5625 lies within this range and this apparent underdensity may have been due only to the small number of such systems known.

# 3.2 Previously known pulsars

The survey region contains 264 known radio pulsars not discovered by the multibeam survey; over half of these were found during the second Molonglo survey (Manchester et al. 1978), the Jodrell 'B' survey (Clifton et al. 1992) or the Parkes 20-cm survey (Johnston et al. 1992). We have obtained folded pulse profiles for 249 of these pulsars using the multibeam data. Four pulsars (J1841-0345, J1842-0415, J1844-0310 and J1905+0616) were discovered independently in the multibeam survey and other surveys. Parameters for these pulsars were provided in Morris et al. (2002). The remaining 11 pulsars listed in Table 6 were not detected. This was expected for 10 out of the 11 as these weak pulsars were originally

discovered during long observations of supernova remnants or globular clusters or with the highly sensitive Arecibo telescope. As PSR J1156-5909 was discovered during the Parkes Southern Sky survey, it should have easily been detected in the multibeam survey. However, as reported in D'Amico et al. (1998), PSR J1156-5909 has frequent and deep nulls during which the pulsar is undetectable.

A further 32 previously known pulsars that lie outside the nominal survey region were detected mainly due to

- (i) observations that were slightly outside of the survey region;
- (ii) early observations that were made in the Galactic longitude range  $220^{\circ} < l < 260^{\circ}$ ; and
- (iii) bright pulsars being observable many beamwidths away from their actual position.

For the 281 previously known pulsars that were detected during the multibeam survey we list, in Table 7, the name of each pulsar, Galactic position, the beam corresponding to the highest S/N detection of this pulsar, the radial distance from the centre of this beam to the actual position of the pulsar in units of beam radii and the S/N of the pulse profile in this detection. If available, we also provide a previously published value for the dispersion measure and flux density of the pulsar at 1400 MHz to compare with our measurements.



**Figure 2.**  $P-\dot{P}$  diagram containing the multibeam pulsars listed in this paper (circles) overlaid on the previously known population. Diamonds indicate the anomalous X-ray pulsars (AXPs) and large crosses the soft γ-ray repeaters (SGRs) that are listed in the ATNF pulsar catalogue (version 1.13; Manchester et al., in preparation). Lines of constant magnetic field are shown as dashed lines and assume that pulsars, AXPs and SGRs spin down due to magnetic dipole radiation. The AXPs and SGRs lie in a region of the diagram that is predicted to be radio quiet (indicated using a dot-dashed line; and defined by equation 10 in Baring & Harding 2001). The solid line is a 'death-line' defined by  $7 \log B_s - 13 \log P = 78$  (Chen & Ruderman 1993).

**Table 5.** Intermediate-mass binary pulsars (IMBPs) known. The table provides the pulsar's rotational period (P), orbital period  $(P_b)$ , orbital eccentricity (e) and a lower limit on the companion mass  $(M_{WD})$  assuming a neutron-star mass of  $1.35 \, \mathrm{M}_{\odot}$ .

| PSR        | P<br>(ms) | P <sub>b</sub> (days) | $e (10^{-3})$ | $M_{\mathrm{WD}}$ $(\mathrm{M}_{\bigodot})$ |
|------------|-----------|-----------------------|---------------|---------------------------------------------|
| J0621+1002 | 28.8      | 8.3                   | 2.5           | >0.44                                       |
| B0655+64   | 195.7     | 1.0                   | 0.0075        | >0.66                                       |
| J1022+1001 | 16.4      | 7.8                   | 0.097         | >0.71                                       |
| J1157-5112 | 43.6      | 3.5                   | 0.40          | >1.18                                       |
| J1232-6501 | 88.2      | 1.9                   | 0.11          | >0.14                                       |
| J1420-5625 | 34.1      | 40.3                  | 3.5           | >0.37                                       |
| J1435-6100 | 9.3       | 1.4                   | 0.010         | >0.88                                       |
| J1454-5846 | 45.2      | 12.4                  | 1.9           | >0.86                                       |
| J1603-7202 | 14.8      | 6.3                   | 0.0092        | >0.29                                       |
| J1745-0952 | 19.4      | 4.9                   | 0.018         | >0.11                                       |
| J1757-5322 | 8.9       | 0.5                   | 0.040         | >0.56                                       |
| J1810-2005 | 32.8      | 15.0                  | 0.025         | >0.28                                       |
| J1904+0412 | 71.0      | 14.9                  | 0.22          | >0.22                                       |
| J2145-0750 | 16.0      | 6.8                   | 0.019         | >0.42                                       |

The final columns in this table give the pulse width at 50 per cent and 10 per cent of the peak height obtained from the multibeam data.

### 3.2.1 Flux densities

It is notoriously difficult to obtain flux density measurements that agree with earlier values as

- (i) low dispersion measure pulsars scintillate,
- (ii) pulsar receiver systems are complex with different systematic biases in different systems,
- (iii) the received power is a function of telescope elevation and sky temperature and
- (iv) radio-frequency interference (RFI) may significantly affect measured values.

The flux density measurements given in Table 7 were obtained in an identical way to those for the Parkes multibeam discoveries listed in this and previous papers in this series. Full details of the method applied to obtain the flux densities were provided in Manchester et al. (2001). To summarize, the flux densities were calibrated using catalogued 1400-MHz flux densities for 13 pulsars that had high dispersion measures (to minimize variations caused by scintillation). The effect of the varying sky background temperature was determined by scaling the values of the sky background temperature at 408 MHz from the Haslam et al. (1982) all-sky survey to 1374 MHz. assuming a spectral index of -2.5. We correct for off-centre pointing by assuming a Gaussian beam-shape of width 14.4 arcmin. Due to uncertainties in this method, we do not provide flux density measurements for pulsars more than 1.8 beamwidths away from the centre of the beam (this cut-off is chosen as the beam-shape is still reasonably well modelled by a Gaussian up to this approximate distance). The mean pulse profiles at 1374 MHz that were used in determining the flux densities are shown in Fig. 3. The brightest pulsars (indicated with an asterisk in Table 7) saturated the digitizer leading to significantly underestimated flux density measurements and poor pulse profiles. No flux densities or pulse widths are given for these pulsars in Table 7.

In Fig. 4 we compare flux density measurements for all the pulsars with dispersion measures greater than 100 cm<sup>-3</sup> pc that are not expected to scintillate strongly. In general, there is good agreement with earlier results. Discrepancies can only be explained by calibration or measurement errors in our or in earlier work. We note that the observing bandwidth of 288 MHz used in these multibeam observations is much larger than that used for previous 20-cm observations. This has the effect of averaging over multiple interference maxima (scintles) and hence lowers the uncertainty in the flux density value due to scintillation effects. Some previous studies have tended to select their best-quality data when determining a flux density. This results in an overestimate of the mean flux density. In any case, the sample of flux densities provided here was obtained using identical on-line and off-line systems and software as the published results for the multibeam survey discoveries. This leads to a sample of almost 1000 pulsars whose flux densities have been measured in an identical way.

For the 38 pulsars listed in Table 8 we have obtained the first flux density measurement at 20 cm. As flux density measurements at other observing frequencies exist in the literature, it is possible to determine the spectral indices of these pulsars. These spectral indices range from -3.3 for PSR B0826-34 to -0.3 for PSR B1804+12 and lie well within the range of -3.4 to 0.2 found by Lorimer et al. (1995). The mean spectral index of -1.9 is, however, slightly steeper than -1.6 found in the earlier analysis. Discrepancies do, however, exist. For instance, Lorimer et al. (1995) measured spectral indices of -1.4 and -0.7 for PSRs B1813-26 and B1907+03, respectively, compared to the steeper values of -2.2 and -2.1 obtained with our data. The spectra for these two pulsars steepen at higher frequencies, an effect commonly observed in other pulsars (Maron et al. 2000).

Table 6. Known pulsars that lie within the Parkes multibeam survey region that were not detected.

| PSR J      | PSR B    | <i>l</i><br>(°) | b<br>(°) | DM<br>(cm <sup>-3</sup> pc) | Discovery telescope | S <sub>1400</sub> (mJy) | Discovery reference            |
|------------|----------|-----------------|----------|-----------------------------|---------------------|-------------------------|--------------------------------|
| J1124-5916 | _        | 292.04          | +1.75    | 330                         | Parkes              | 0.08                    | Camilo et al. (2002b)          |
| J1156-5909 | _        | 295.91          | +2.97    | 219                         | Parkes              | _                       | Lyne et al. (1998)             |
| J1617-5055 | _        | 332.50          | -0.28    | 467                         | Parkes              | _                       | Kaspi et al. (1998)            |
| J1747-2958 | _        | 359.30          | -0.84    | 102                         | Parkes              | 0.25                    | Camilo et al. (2002a)          |
| J1800-2343 | B1757-23 | 6.13            | -0.12    | 280                         | Ooty                | _                       | Mohanty (1983)                 |
| J1817-2311 | B1814-23 | 8.49            | -3.27    | 240                         | Ooty                | _                       | Mohanty (1983)                 |
| J1901+1306 | _        | 45.79           | +3.68    | 75                          | Arecibo             | _                       | Nice, Fruchter & Taylor (1995) |
| J1907+1247 | B1904+12 | 46.10           | +2.37    | 257                         | Arecibo             | _                       | Hulse & Taylor (1975)          |
| J1909+1450 | _        | 48.18           | +2.83    | 120                         | Arecibo             | _                       | Nice et al. (1995)             |
| J1910+0004 | B1908+00 | 35.17           | -4.18    | 202                         | Arecibo             | _                       | Deich et al. (1993)            |
| J1918+1541 | _        | 49.89           | +1.36    | 13                          | Arecibo             | _                       | Nice et al. (1995)             |

**Table 7.** Results for 281 previously known pulsars. Catalogued and new dispersion measures and flux densities are provided along with new pulse widths. An asterisk indicates pulsars that saturated the digitizer; for these no flux densities or pulse widths were measured. The pulsars PSR J0820–3927 and J0821–4217 were discovered during the Parkes high-latitude survey (Burgay et al., in preparation). The catalogued flux densities and dispersion are taken from 56 different journal articles. Full bibliographic references may be obtained from the ATNF pulsar catalogue, version 1.13 (Manchester et al., in preparation).

| PSR J       | PSR B      | l      | b     | Beam | Radial   | S/N    | DM <sup>cat</sup> | DM             | S <sub>1400</sub> <sup>cat</sup> | S <sub>1400</sub> | $W_{50}$ | $W_{10}$ |
|-------------|------------|--------|-------|------|----------|--------|-------------------|----------------|----------------------------------|-------------------|----------|----------|
|             |            | (°)    | (°)   |      | distance |        | $(cm^{-3} pc)$    | $(cm^{-3} pc)$ | (mJy)                            | (mJy)             | (ms)     | (ms)     |
| J0725-1635  | _          | 231.47 | -0.33 | 11   | 1.0      | 31.3   | 98.98(3)          | 98.7(4)        | 0.3                              | 0.33(4)           | 4.1      |          |
| J0729-1836  | B0727-18   | 233.76 | -0.34 | 1    | 0.6      | 0.4    | 61.292(10)        | 61.4(3)        | 1.4                              | 1.40(15)          | 5.9      | 25       |
| J0742-2822  | B0740 - 28 | 243.77 | -2.44 | 6    | 0.4      | 1494.7 | 73.758(8)         | 73.71(17)      | 15.0                             | 15.0(15)          | 5.4      | 8.3      |
| J0820-3927  | _          | 257.26 | -1.58 | 1    | 1.4      | 14.4   | 196.5(1)          | 197.0(6)       |                                  | 0.32(4)           | 161      |          |
| J0820-4114  | B0818-41   | 258.75 | -2.73 | 13   | 1.1      | 0.1    | 113.4(2)          | 113.4(8)       | 5.2                              | 5.2(5)            | 135      | _        |
| J0821-4217  | _          | 259.77 | -3.18 | 8    | 2.2      | 8.1    | 266.5(1)          | 266.63(19)     | _                                | _                 | 20       | _        |
| J0828-3417  | B0826 - 34 | 253.97 | +2.56 | 4    | 1.3      | 12.5   | 52.9(6)           | 52.3(8)        | 0.2                              | 0.25(4)           | _        | _        |
| J0835-4510* | B0833-45   | 263.55 | -2.79 | 4    | 0.8      | 2624.9 | 67.99(1)          | 67.81(8)       | 1100.0                           | _                 | _        | _        |
| J0837-4135  | B0835-41   | 260.90 | -0.34 | 8    | 0.9      | 1156.3 | 147.29(7)         | 147.29(7)      | 16.0                             | 16.0(16)          | 8.9      | 18       |
| J0842-4851  | B0840-48   | 267.18 | -4.10 | 6    | 0.6      | 126.2  | 196.85(8)         | 196.85(8)      | 0.6                              | 0.62(7)           | 8.3      | _        |
| J0846-3533  | B0844-35   | 257.19 | +4.71 | 4    | 0.7      | 239.1  | 94.16(11)         | 94.12(10)      | 2.7                              | 2.7(3)            | 22       | 76       |
| J0857-4424  | _          | 265.46 | +0.82 | 1    | 0.3      | 121.5  | 184.429(4)        | 184.02(17)     | 0.9                              | 0.88(10)          | 9.9      | 17       |
| J0904-4246  | B0903-42   | 265.07 | +2.86 | 5    | 0.3      | 113.1  | 145.8(5)          | 145.8(5)       | 0.6                              | 0.60(7)           | 21       | 32       |
| J0905-4536  | _          | 267.24 | +1.01 | 3    | 0.2      | 63.8   | 116.8(2)          | 182.5(14)      | 0.8                              | 0.83(9)           | 35       | _        |
| J0905-5127  | _          | 271.63 | -2.85 | 9    | 1.1      | 88.4   | 196.432(4)        | 196.1(4)       | 1.1                              | 1.10(12)          | 9.0      | 175      |
| J0907-5157  | B0905-51   | 272.15 | -3.03 | 8    | 0.3      | 815.7  | 103.72(6)         | 103.72(6)      | 9.3                              | 9.3(9)            | 13       | 24       |
| J0908-4913  | B0906-49   | 270.27 | -1.02 | 13   | 0.3      | 888.9  | 180.37(4)         | 180.37(4)      | 10.0                             | 10.0(10)          | 2.8      | _        |
| J0924-5302  | B0922 - 52 | 274.71 | -1.93 | 7    | 0.8      | 131.0  | 152.9(5)          | 153.5(4)       | 1.1                              | 1.10(12)          | 15       | 25       |
| J0924-5814  | B0923-58   | 278.39 | -5.60 | 13   | 1.3      | 148.9  | 57.4(3)           | 57.4(3)        | 4.3                              | 4.3(4)            | 41       | 80       |
| J0934-5249  | B0932-52   | 275.69 | -0.70 | 8    | 0.9      | 124.1  | 99.4(11)          | 101.1(15)      | 1.2                              | 1.20(13)          | 25       | 42       |
| J0941-5244  | _          | 276.45 | +0.09 | 5    | 0.7      | 36.9   | 157.94(1)         | 157.8(7)       | 0.3                              | 0.28(4)           | 18       | _        |
| J0942-5552  | B0940 - 55 | 278.57 | -2.23 | 6    | 1.1      | 491.3  | 180.2(5)          | 179.8(3)       | 10.0                             | 10.0(10)          | 11       | 49       |
| J0942-5657  | B0941 - 56 | 279.35 | -2.99 | 13   | 0.5      | 135.8  | 159.74(12)        | 159.74(12)     | 0.7                              | 0.72(8)           | 7.0      | 16       |
| J0955-5304  | B0953-52   | 278.26 | +1.16 | 12   | 1.1      | 71.3   | 156.9(2)          | 156.8(3)       | 0.9                              | 0.94(10)          | 7.8      | 33       |
| J1001-5507  | B0959-54   | 280.23 | +0.08 | 3    | 0.8      | 754.1  | 130.32(17)        | 130.32(17)     | 6.3                              | 6.3(6)            | 15       | 31       |
| J1012-5857  | B1011-58   | 283.71 | -2.14 | 2    | 1.0      | 129.5  | 383.9(1)          | 383.13(20)     | 1.7                              | 1.70(18)          | 10       | 23       |
| J1016-5345  | B1014-53   | 281.20 | +2.45 | 2    | 1.4      | 47.8   | 66.8(18)          | 67.0(4)        | 0.8                              | 0.82(9)           | 8.7      | 17       |
| J1017-5621  | B1015-56   | 282.73 | +0.34 | 9    | 0.4      | 156.5  | 439.1(9)          | 438.7(5)       | 2.9                              | 2.9(3)            | 7.3      | _        |
| J1032-5911  | B1030-58   | 285.91 | -0.98 | 4    | 0.3      | 130.6  | 418.20(17)        | 418.20(17)     | 0.9                              | 0.93(10)          | 7.7      | 17       |
| J1038-5831  | B1036-58   | 286.28 | -0.02 | 2    | 0.3      | 116.4  | 72.74(3)          | 72.7(4)        | 0.8                              | 0.79(9)           | 16       | 22       |

Table 7-continued

| PSR J                    | PSR B                | 1                | <i>b</i>       | Beam    | Radial     | S/N           | DM <sup>cat</sup>     | DM                    | Scat<br>1400 | S <sub>1400</sub> | W <sub>50</sub> | $W_{10}$  |
|--------------------------|----------------------|------------------|----------------|---------|------------|---------------|-----------------------|-----------------------|--------------|-------------------|-----------------|-----------|
|                          |                      | (°)              | (°)            |         | distance   |               | (cm <sup>-3</sup> pc) | (cm <sup>-3</sup> pc) | (mJy)        | (mJy)             | (ms)            | (ms)      |
| J1042-5521               | B1039-55             | 285.19           | +3.00          | 13      | 0.1        | 118.7         | 306.5(4)              | 306.5(4)              | 0.6          | 0.62(7)           | 25              | 39        |
| J1046-5813               | B1044-57             | 287.07           | +0.73          | 5       | 0.9        | 93.9          | 240.2(5)              | 239.9(6)              | 1.1          | 1.10(12)          | 9.1             | 16        |
| J1048-5832               | B1046-58             | 287.42           | +0.58          | 12      | 0.7        | 536.7         | 129.1(2)              | 129.2(5)              | 6.5          | 6.5(7)            | 5.6             | 9.7       |
| J1056-6258               | B1054-62             | 290.29           | -2.97          | 12      | 1.0        | 821.6         | 320.3(6)              | 320.11(18)            | 21.0         | 21(2)             | 20              | 39        |
| J1059-5742               | B1056-57             | 288.34           | +1.95          | 8       | 0.4        | 204.8         | 108.7(3)              | 108.7(3)              | 1.2          | 1.20(13)          | 18              | 34        |
| J1104-6103               | _                    | 290.33           | -0.83          | 1       | 0.9        | 19.2          | 78.506(15)            | 78.4(3)               | 0.2          | 0.24(3)           | 4.9             | _         |
| J1105-6107               | _                    | 290.49           | -0.85          | 4       | 0.4        | 56.6          | 271.01(2)             | 270.43(4)             | 0.8          | 0.75(8)           | 4.8             | _         |
| J1107-5947               | B1105-59             | 290.25           | +0.52          | 12      | 1.2        | 23.7          | 158.4(11)             | 158.4(11)             | 0.4          | 0.43(5)           | _               | _         |
| J1110-5637               | B1107-56             | 289.28           | +3.53          | 13      | 0.9        | 160.2         | 262.56(6)             | 262.0(3)              | 1.8          | 1.80(19)          | 22              | 28        |
| J1112-6613               | B1110-65             | 293.19           | -5.23          | 8       | 1.9        | 31.4          | 249.3(10)             | 249.5(5)              | 2.6          | _                 | 15              | _         |
| J1114-6100               | B1112-60             | 291.44           | -0.32          | 12      | 1.1        | 67.6          | 677.0(4)              | 677.0(4)              | 2.0          | 2.0(2)            | 29              | 60        |
| J1121-5444               | B1119-54             | 290.08           | +5.87          | 5       | 0.4        | 175.1         | 204.7(6)              | 204.5(3)              | 1.3          | 1.30(14)          | 21              | 27        |
| J1123-6259               | _                    | 293.18           | -1.78          | 6       | 0.6        | 61.7          | 223.26(3)             | 223.14(9)             | 0.6          | 0.56(7)           | 6.6             | 15        |
| J1123-6651               | _                    | 294.47           | -5.44          | 7       | 1.5        | 12.1          | 111.196(5)            | 111.19(9)             | 0.4          | 0.36(5)           | _               | _         |
| J1126-6054               | B1124-60             | 292.83           | +0.29          | 1       | 1.1        | 64.1          | 280.27(3)             | 280.25(14)            | 1.0          | 1.00(11)          | 5.1             | 105       |
| J1133-6250               | B1131-62             | 294.21           | -1.30          | 12      | 0.9        | 152.9         | 567.8(5)              | 568.6(11)             | 2.9          | 2.9(3)            | 255             | 305       |
| J1137-6700               | _                    | 295.79           | -5.17          | 1       | 0.8        | 59.5          | 228.041(9)            | 227.4(5)              | 1.2          | 1.20(13)          | 89              | _         |
| J1146-6030               | B1143-60             | 294.98           | +1.34          | 10      | 0.8        | 318.0         | 111.68(7)             | 111.68(7)             | 3.6          | 3.6(4)            | 11              | 15        |
| J1157-6224               | B1154-62             | 296.71           | -0.20          | 12      | 0.3        | 394.8         | 325.2(5)              | 324.4(3)              | 5.9          | 5.9(6)            | 13              | 47        |
| J1202-5820               | B1159-58             | 296.53           | +3.92          | 4       | 1.2        | 169.9         | 145.41(19)            | 145.41(19)            | 2.0          | 2.0(2)            | 10              | 16        |
|                          |                      |                  |                |         |            |               |                       |                       |              |                   |                 |           |
| J1224-6407               | B1221-63             | 299.98           | -1.41          | 4       | 0.4        | 548.6         | 97.47(12)             | 97.47(12)             | 3.9          | 3.9(4)            | 6.1             | 9.1       |
| J1225-6408               | B1222-63             | 300.13           | -1.41          | 8       | 0.2        | 49.2          | 415.1(5)              | 415.1(5)              | 0.4          | 0.38(5)           | 8.1             | _         |
| J1239-6832               | B1236-68             | 301.88           | -5.69          | 7       | 0.2        | 192.5         | 94.3(3)               | 94.3(3)               | 1.0          | 0.96(11)          | 20              | 40        |
| J1243-6423               | B1240-64             | 302.05           | -1.53          | 13      | 0.7        | 1466.0        | 297.25(8)             | 297.25(8)             | 13.0         | 13.0(13)          | 6.6             | 11        |
| J1253-5820               | _                    | 303.20           | +4.53          | 7       | 1.1        | 245.7         | 100.584(4)            | 100.53(12)            | 3.5          | 3.5(4)            | 4.4             | 13        |
| J1259-6741               | B1256-67             | 303.69           | -4.83          | 8       | 1.9        | 13.4          | 94.7(9)               | 94.7(9)               | 1.3          | _                 | _               | _         |
| J1302-63                 | _                    | 304.11           | -0.90          | 5       | 1.0        | 10.7          | 875(10)               | 874(17)               | 0.1          | 0.10(2)           | 7               |           |
| J1302-6350               | B1259-63             | 304.18           | -0.99          | 5       | 0.4        | 124.2         | 146.72(3)             | 146.68(8)             | 1.7          | 1.70(18)          | 23              | _         |
| J1305-6455               | B1302-64             | 304.41           | -2.09          | 10      | 1.0        | 86.4          | 505.0(3)              | 505.0(3)              | 1.6          | 1.60(17)          | 19              | 50        |
| J1306-6617               | B1303-66             | 304.46           | -3.46          | 13      | 0.9        | 130.4         | 436.9(2)              | 437.6(3)              | 2.5          | 2.5(3)            | 23              | 59        |
| J1316-6232               | _                    | 305.85           | +0.19          | 9       | 0.9        | 33.5          | 983.3(5)              | 983.3(5)              | 0.7          | 0.74(8)           | _               |           |
| J1319-6056               | B1316-60             | 306.31           | +1.74          | 4       | 1.0        | 94.6          | 400.94(4)             | 400.7(3)              | 1.2          | 1.20(13)          | 6.9             | 15        |
| J1326-5859               | B1323-58             | 307.50           | +3.56          | 12      | 0.6        | 867.2         | 287.30(15)            | 287.30(15)            | 9.9          | 9.9(10)           | 7.6             | 23        |
| J1326-6408               | B1323-63             | 306.75           | -1.53          | 3       | 0.7        | 133.0         | 502.7(4)              | 502.7(4)              | 1.4          | 1.40(15)          | 11              | 46        |
| J1326-6700               | B1322-66             | 306.31           | -4.37          | 3       | 0.5        | 725.5         | 209.6(3)              | 209.6(3)              | 11.0         | 11.0(11)          | 42              | 56        |
| J1327-6222               | B1323-62             | 307.07           | +0.20          | 10      | 0.9        | 588.9         | 318.80(6)             | 318.80(6)             | 16.0         | 16.0(16)          | 11              | 19        |
| J1327-6301               | B1323-627            | 306.97           | -0.43          | 5       | 0.7        | 180.1         | 294.91(3)             | 294.53(8)             | 3.2          | 3.2(3)            | 6.7             | 30        |
| J1334-5839               | _                    | 308.52           | +3.75          | 1       | 0.8        | 55.4          | 119.2978(9)           | 119.36(7)             | 0.6          | 0.62(7)           | 4.1             |           |
| J1338-6204               | B1334-61             | 308.37           | +0.31          | 9       | 0.7        | 199.8         | 640.3(7)              | 640.3(7)              | 3.8          | 3.8(4)            | 93              | 145       |
| J1340-6456               | B1336-64             | 308.05           | -2.56          | 12      | 1.0        | 65.7          | 76.99(13)             | 76.99(13)             | 1.1          | 1.10(12)          | 14              | _         |
| J1341-6220               | B1338-62             | 308.73           | -0.03          | 8       | 0.8        | 78.8          | 717.3(6)              | 717.9(4)              | 1.9          | 1.9(2)            | 12              | 41        |
| J1356-6230               | B1353-62             | 310.41           | -0.58          | 11      | 0.3        | 535.2         | 417.3(3)              | 416.8(4)              | 8.7          | 8.7(9)            | 20              | 42        |
| J1359-6038               | B1356-60             | 311.24           | +1.13          | 11      | 0.6        | 446.5         | 293.71(14)            | 293.71(14)            | 7.6          | 7.6(8)            | 3.9             | 7.4       |
| J1401-6357               | B1358-63             | 310.57           | -2.14          | 10      | 1.3        | 300.7         | 98.0(5)               | 97.4(3)               | 6.2          | 6.2(6)            | 10              | 19        |
| J1413-6307               | B1409-62             | 312.05           | -1.72          | 11      | 1.0        | 83.7          | 121.98(6)             | 121.82(18)            | 0.9          | 0.90(10)          | 4.1             | 9.2       |
| 11/20 5520               | R1/2// 55            | 316 42           | 1400           | 5       | 0.4        | 5175          | 82 4(6)               | 82.1(3)               | 3.9          | 3.9(4)            | 1.4             | 25        |
| J1428-5530               | B1424-55             | 316.43           | +4.80          | 5       | 0.6        | 517.5         | 82.4(6)<br>65.3(1)    | * *                   |              |                   | 14              | 25        |
| J1430-6623<br>J1440-6344 | B1426-66<br>B1436-63 | 312.65<br>314.65 | -5.40 $-3.38$  | 6<br>13 | 1.1<br>0.6 | 634.5<br>90.0 | 65.3(1)<br>124.2(5)   | 64.98(10)<br>130.2(5) | 8.0<br>0.8   | 8.0(8)<br>0.78(9) | 18<br>9.7       | 28<br>23  |
| J1440-6344<br>J1453-6413 | B1430-03<br>B1449-64 | 314.63           | -3.38 $-4.43$  | 13      | 0.6        | 1423.8        | 71.07(2)              | 71.24(8)              | 14.0         | 14.0(14)          | 9.7<br>4.4      | 23<br>9.7 |
| J1453-6413<br>J1512-5759 |                      | 313.73           | -4.43<br>-0.11 | 6<br>3  | 0.5        | 211.2         | 628.7(2)              | 627.93(10)            | 6.0          | 6.0(6)            | 7.8             | 9.7<br>16 |
| J1J14-3/39               | B1508-57             | 340.11           | -0.11          | 3       | 0.9        | 211.2         | 020.7(2)              | 027.93(10)            | 0.0          | 0.0(0)            | 7.0             | 10        |

Table 7 – continued

| J1522-5829 E J1527-5552 E J1534-5334 E J1534-5405 E  J1537-49                                                                                                                                                                                                                                                                                 | B1509-58<br>B1518-58<br>B1518-58<br>B1523-55<br>B1530-53<br>B1530-539<br>—<br>B1535-56<br>—<br>B1541-52<br>—<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55 | 320.32<br>321.63<br>323.64<br>325.72<br>325.46<br>328.74<br>324.62<br>328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57 | -1.16 -1.22 +0.59 +1.94 +1.48 +5.22 -0.81 +3.58 +1.32 +4.30 -0.90 -2.02 +1.63 -3.70 +1.29 -3.31 +2.44 -0.48 -0.48 +2.83                                        | 6<br>7<br>3<br>5<br>12<br>10<br>5<br>4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5<br>1 | 0.6 1.3 1.3 0.6 0.8 0.5 0.8 0.6 0.5 1.0 0.9 0.7 0.6 1.1 0.3 1.1 0.7                            | 50.8<br>159.0<br>43.3<br>622.0<br>73.1<br>24.2<br>296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4<br>101.8<br>311.6 | (cm <sup>-3</sup> pc)  252.5(3) 199.9(2) 362.7(8) 24.82(1) 190.82(2)  65.0(3) 175.88(6) 91.0(6) 35.16(7) 55.983(8)  210(7) 212.9(3) 260.56(9) 176.55(8) 170.93(7)  264.07(2) | (cm <sup>-3</sup> pc)  252.5(3) 199.6(8) 362.7(8) 25.55(13) 190.58(10)  65.0(3) 175.88(6) 91.0(6) 35.16(7) 56.0(3)  232(7) 212.9(3) 262.78(11) 176.55(8) 170.93(7)  264.02(16) | (mJy)  0.9 4.3 0.8 6.8 1.2  0.3 4.6 0.6 3.6 0.5  0.8 0.7 17.0 1.4 5.7                           | (mJy)  0.94(10) 4.3(4) 0.84(9) 6.8(7) 1.20(13)  0.31(4) 4.6(5) 0.55(7) 3.6(4) 0.47(6)  0.79(9) 0.72(8) 17.0(17) 1.40(15) 5.7(6)            | (ms)  16 14 17 17 6.1  — 8.8 7.3 4.6 6.1  22 9.0 5.4 11 7.9                      | (ms)                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| J1522-5829 E J1527-5552 E J1534-5334 E J1534-5405 E  J1537-49                                                                                                                                                                                                                                                                                 | B1518-58 B1523-55 B1530-53 B1530-539  B1535-56 B1541-52 B1550-54 B1555-55 B1557-50 B1556-57 B1558-50 B1600-49 B1601-52 B1607-52 B1607-52 B1609-47 B1610-50 B1611-55                                                                                   | 321.63<br>323.64<br>325.72<br>325.46<br>328.74<br>324.62<br>328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57           | -1.22<br>+0.59<br>+1.94<br>+1.48<br>+5.22<br>-0.81<br>+3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48 | 7<br>3<br>5<br>12<br>10<br>5<br>4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5           | 1.3<br>1.3<br>0.6<br>0.8<br>0.5<br>0.8<br>0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1        | 159.0<br>43.3<br>622.0<br>73.1<br>24.2<br>296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                           | 199.9(2)<br>362.7(8)<br>24.82(1)<br>190.82(2)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)       | 199.6(8)<br>362.7(8)<br>25.55(13)<br>190.58(10)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)        | 4.3<br>0.8<br>6.8<br>1.2<br>0.3<br>4.6<br>0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7 | 4.3(4)<br>0.84(9)<br>6.8(7)<br>1.20(13)<br>0.31(4)<br>4.6(5)<br>0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15) | 14<br>17<br>17<br>6.1<br>—<br>8.8<br>7.3<br>4.6<br>6.1<br>22<br>9.0<br>5.4<br>11 | 25<br>—66<br>21<br>—7<br>17<br>15<br>11<br>——24<br>11<br>26 |
| J1527-5552                                                                                                                                                                                                                                                                                                                                    | B1523-55<br>B1530-53<br>B1530-539<br>—<br>B1535-56<br>—<br>B1541-52<br>—<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1607-52<br>B1609-47                                                             | 323.64<br>325.72<br>325.46<br>328.74<br>324.62<br>328.57<br>327.27<br>330.49<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                               | +0.59<br>+1.94<br>+1.48<br>+5.22<br>-0.81<br>+3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48          | 3<br>5<br>12<br>10<br>5<br>4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5<br>1           | 1.3<br>0.6<br>0.8<br>0.5<br>0.8<br>0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1<br>0.3<br>1.1 | 43.3<br>622.0<br>73.1<br>24.2<br>296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                                    | 362.7(8)<br>24.82(1)<br>190.82(2)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                   | 362.7(8)<br>25.55(13)<br>190.58(10)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                    | 0.8<br>6.8<br>1.2<br>0.3<br>4.6<br>0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7        | 0.84(9)<br>6.8(7)<br>1.20(13)<br>0.31(4)<br>4.6(5)<br>0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)           | 17<br>17<br>6.1<br>—<br>8.8<br>7.3<br>4.6<br>6.1<br>22<br>9.0<br>5.4<br>11       |                                                             |
| J1534-5334 B J1534-5405 B J1537-49                                                                                                                                                                                                                                                                                                            | B1530-53<br>B1530-539<br>—<br>B1535-56<br>—<br>B1541-52<br>—<br>B1550-54<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                 | 325.72<br>325.46<br>328.74<br>324.62<br>328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                               | +1.94<br>+1.48<br>+5.22<br>-0.81<br>+3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                   | 5<br>12<br>10<br>5<br>4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5<br>1                | 0.6<br>0.8<br>0.5<br>0.8<br>0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1                      | 622.0<br>73.1<br>24.2<br>296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                                            | 24.82(1)<br>190.82(2)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                               | 25.55(13)<br>190.58(10)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                | 6.8<br>1.2<br>0.3<br>4.6<br>0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7               | 6.8(7)<br>1.20(13)<br>0.31(4)<br>4.6(5)<br>0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                      | 17<br>6.1<br>—<br>8.8<br>7.3<br>4.6<br>6.1<br>22<br>9.0<br>5.4<br>11             | 66<br>21<br>—<br>17<br>15<br>11<br>—<br>24<br>11<br>26      |
| J1534-5405 E J1537-49                                                                                                                                                                                                                                                                                                                         | B1530-539  B1535-56  B1535-56  B1541-52  B1550-54  B1555-55  B1557-50  B1556-57  B1558-50  B1600-49  B1601-52  B1607-52  B1609-47  B1610-50  B1611-55                                                                                                 | 325.46<br>328.74<br>324.62<br>328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                         | +1.48<br>+5.22<br>-0.81<br>+3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                            | 12<br>10<br>5<br>4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5<br>1                     | 0.8 0.5 0.8 0.6 0.5 1.0 0.9 0.7 0.6 1.1 0.3 1.1                                                | 73.1<br>24.2<br>296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                                                     | 190.82(2)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                           | 190.58(10)<br>65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                             | 1.2<br>0.3<br>4.6<br>0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7                      | 1.20(13)<br>0.31(4)<br>4.6(5)<br>0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                | 6.1<br>— 8.8<br>7.3<br>4.6<br>6.1<br>22<br>9.0<br>5.4<br>11                      | 21<br>— 17<br>15<br>11<br>— 24<br>11<br>26                  |
| J1537-49 J1539-5626 J1542-5034 J1544-5308 J1549-4848  J1553-5456 J1559-5545 J1600-5044 J1600-5751 J1602-5100  J1603-5657 J1604-4909 J1605-5257 J1611-5209 J1613-4714  J1614-5048 J1615-5537 J1617-4216 J1622-4332 J1623-4256  J1627-4845 J1633-4256  J1633-453 J1633-5015 J1633-453 J1633-4604 J1640-4715 J1644-4559* J1644-4559* J1644-4559* | B1535-56 B1541-52 B1550-54 B1555-55 B1557-50 B1556-57 B1558-50 B1600-49 B1601-52 B1607-52 B1609-47 B1610-50 B1611-55                                                                                                                                  | 328.74<br>324.62<br>328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                   | +5.22<br>-0.81<br>+3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                     | 10<br>5<br>4<br>11<br>7<br>4<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5                           | 0.5<br>0.8<br>0.8<br>0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1                             | 24.2<br>296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                                                             | 65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                        | 65.0(3)<br>175.88(6)<br>91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                           | 0.3<br>4.6<br>0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7                             | 0.31(4)<br>4.6(5)<br>0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                            |                                                                                  |                                                             |
| J1539-5626                                                                                                                                                                                                                                                                                                                                    | B1535-56  B1541-52  B1550-54 B1555-55 B1557-50 B1556-57 B1558-50  B1600-49 B1601-52 B1607-52 B1609-47 B1610-50 B1611-55                                                                                                                               | 324.62<br>328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                             | -0.81<br>+3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                              | 5<br>4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5<br>1                                 | 0.8<br>0.8<br>0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1                                    | 296.6<br>60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                                                                     | 175.88(6)<br>91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                                   | 175.88(6)<br>91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                                      | 4.6<br>0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7                                    | 4.6(5)<br>0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                                       | 8.8<br>7.3<br>4.6<br>6.1<br>22<br>9.0<br>5.4<br>11                               | 15<br>11<br>—<br>24<br>11<br>26                             |
| J1542-5034                                                                                                                                                                                                                                                                                                                                    | B1550-54<br>B1555-55<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                          | 328.57<br>327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                       | +3.58<br>+1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                                       | 4<br>11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5                                           | 0.8<br>0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1                                           | 60.7<br>267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4                                                                              | 91.0(6)<br>35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                                                | 91.0(6)<br>35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                                                   | 0.6<br>3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7                                           | 0.55(7)<br>3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                                                 | 7.3<br>4.6<br>6.1<br>22<br>9.0<br>5.4<br>11                                      | 15<br>11<br>—<br>24<br>11<br>26                             |
| J1544-5308                                                                                                                                                                                                                                                                                                                                    | B1550-54<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                      | 327.27<br>330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                 | +1.32<br>+4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                                                | 11<br>7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5                                                | 0.6<br>0.5<br>1.0<br>0.9<br>0.7<br>0.6<br>1.1                                                  | 267.0<br>64.5<br>52.7<br>74.1<br>912.0<br>112.2<br>424.4<br>101.8                                                                             | 35.16(7)<br>55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                                                           | 35.16(7)<br>56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                                                              | 3.6<br>0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7                                                  | 3.6(4)<br>0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                                                            | 4.6<br>6.1<br>22<br>9.0<br>5.4<br>11                                             | 11<br>—<br>24<br>11<br>26                                   |
| J1549-4848 - J1553-5456 E J1559-5545 E J1600-5044 E J1600-5751 E J1602-5100 E  J1603-5657 - J1604-4909 E J1605-5257 E J1611-5209 E J1613-4714 E  J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E  J1627-4845 - J1623-4256 E  J1633-453 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                  | B1550-54<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                      | 330.49<br>327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57<br>332.21                                                                                 | +4.30<br>-0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                                                         | 7<br>4<br>4<br>3<br>1<br>4<br>13<br>5<br>5                                                      | 0.5 1.0 0.9 0.7 0.6 1.1 0.3 1.1                                                                | 52.7<br>74.1<br>912.0<br>112.2<br>424.4<br>101.8                                                                                              | 55.983(8)<br>210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                                                                       | 56.0(3)<br>232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                                                                          | 0.5<br>0.8<br>0.7<br>17.0<br>1.4<br>5.7                                                         | 0.47(6)<br>0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                                                                      | 6.1<br>22<br>9.0<br>5.4<br>11                                                    |                                                             |
| J1553-5456 E J1559-5545 E J1600-5044 E J1600-5751 E J1602-5100 E  J1603-5657 - J1604-4909 E J1605-5257 E J1611-5209 E J1613-4714 E  J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E  J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                               | B1550-54<br>B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                 | 327.19<br>327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                                     | -0.90<br>-2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48                                                                                           | 4<br>4<br>3<br>1<br>4<br>13<br>5<br>5                                                           | 1.0<br>0.9<br>0.7<br>0.6<br>1.1                                                                | 52.7<br>74.1<br>912.0<br>112.2<br>424.4<br>101.8                                                                                              | 210(7)<br>212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                                                                                    | 232(7)<br>212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                                                                                     | 0.8<br>0.7<br>17.0<br>1.4<br>5.7                                                                | 0.79(9)<br>0.72(8)<br>17.0(17)<br>1.40(15)                                                                                                 | 22<br>9.0<br>5.4<br>11                                                           |                                                             |
| J1559-5545 J1600-5044 J1600-5044 J1600-5751 J1602-5100 J1603-5657 J1604-4909 J1605-5257 J1611-5209 J1613-4714 J1614-5048 J1615-5537 J1617-4216 J1622-4332 J1623-4256 J1623-4256 J1623-4256 J1633-453 J1633-5015 J1637-4553 J1639-4604 J1640-4715 J1644-4559* J1604-5044 J1640-4715 J1644-4559*                                                | B1555-55<br>B1557-50<br>B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                             | 327.24<br>330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                                               | -2.02<br>+1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48                                                                                                    | 4<br>3<br>1<br>4<br>13<br>5<br>5                                                                | 0.9<br>0.7<br>0.6<br>1.1<br>0.3<br>1.1                                                         | 74.1<br>912.0<br>112.2<br>424.4<br>101.8                                                                                                      | 212.9(3)<br>260.56(9)<br>176.55(8)<br>170.93(7)                                                                                                                              | 212.9(3)<br>262.78(11)<br>176.55(8)<br>170.93(7)                                                                                                                               | 0.7<br>17.0<br>1.4<br>5.7                                                                       | 0.72(8)<br>17.0(17)<br>1.40(15)                                                                                                            | 9.0<br>5.4<br>11                                                                 | 24<br>11<br>26                                              |
| J1600-5044 E J1600-5751 E J1602-5100 E J1603-5657 - J1604-4909 E J1605-5257 E J1611-5209 E J1613-4714 E J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E J1627-4845 E J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                             | B1557-50<br>B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                                         | 330.69<br>325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                                                         | +1.63<br>-3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48                                                                                                             | 3<br>1<br>4<br>13<br>5<br>5<br>1                                                                | 0.7<br>0.6<br>1.1<br>0.3<br>1.1                                                                | 912.0<br>112.2<br>424.4<br>101.8                                                                                                              | 260.56(9)<br>176.55(8)<br>170.93(7)                                                                                                                                          | 262.78(11)<br>176.55(8)<br>170.93(7)                                                                                                                                           | 17.0<br>1.4<br>5.7                                                                              | 17.0(17)<br>1.40(15)                                                                                                                       | 5.4<br>11                                                                        | 11<br>26                                                    |
| J1600-5751 E J1602-5100 E J1603-5657 - J1604-4909 E J1605-5257 E J1611-5209 E J1613-4714 E J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                          | B1556-57<br>B1558-50<br>—<br>B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                                                     | 325.97<br>330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                                                                   | -3.70<br>+1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                                                                                             | 1<br>4<br>13<br>5<br>5<br>1                                                                     | 0.6<br>1.1<br>0.3<br>1.1                                                                       | 112.2<br>424.4<br>101.8                                                                                                                       | 176.55(8)<br>170.93(7)                                                                                                                                                       | 176.55(8)<br>170.93(7)                                                                                                                                                         | 1.4<br>5.7                                                                                      | 1.40(15)                                                                                                                                   | 11                                                                               | 26                                                          |
| J1602-5100 E J1603-5657 - J1604-4909 E J1605-5257 E J1611-5209 E J1613-4714 E J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                                       | B1558-50  B1600-49 B1601-52 B1607-52 B1609-47 B1610-50 B1611-55                                                                                                                                                                                       | 330.69<br>326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                                                                             | +1.29<br>-3.31<br>+2.44<br>-0.48<br>-0.48                                                                                                                      | 4<br>13<br>5<br>5<br>1                                                                          | 1.1<br>0.3<br>1.1                                                                              | 424.4<br>101.8                                                                                                                                | 170.93(7)                                                                                                                                                                    | 170.93(7)                                                                                                                                                                      | 5.7                                                                                             |                                                                                                                                            |                                                                                  |                                                             |
| J1603-5657 - J1604-4909 E J1605-5257 E J1611-5209 E J1613-4714 E  J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E  J1627-4845 - J1630-4733 E J1633-5015 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                 | B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                                                                                  | 326.88<br>332.15<br>329.73<br>330.92<br>334.57                                                                                                                                                       | -3.31 $+2.44$ $-0.48$ $-0.48$                                                                                                                                  | 13<br>5<br>5<br>1                                                                               | 0.3<br>1.1                                                                                     | 101.8                                                                                                                                         | . ,                                                                                                                                                                          |                                                                                                                                                                                |                                                                                                 | 5.7(6)                                                                                                                                     | 7.9                                                                              | 30                                                          |
| J1604—4909 E J1605—5257 E J1611—5209 E J1613—4714 E J1614—5048 E J1615—5537 E J1617—4216 — J1622—4332 — J1623—4256 E J1627—4845 — J1630—4733 E J1633—5015 E J1633—5015 E J1637—4553 E J1639—4604 E J1640—4715 E J1644—4559* E                                                                                                                 | B1600-49<br>B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                                                                                  | 332.15<br>329.73<br>330.92<br>334.57                                                                                                                                                                 | +2.44 $-0.48$ $-0.48$                                                                                                                                          | 5<br>5<br>1                                                                                     | 1.1                                                                                            |                                                                                                                                               | 264.07(2)                                                                                                                                                                    | 264.02(16)                                                                                                                                                                     | 0.5                                                                                             |                                                                                                                                            |                                                                                  |                                                             |
| J1605-5257 E J1611-5209 E J1613-4714 E J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E J1627-4845 - J1630-4733 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                           | B1601-52<br>B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                                                                                              | 329.73<br>330.92<br>334.57<br>332.21                                                                                                                                                                 | -0.48 $-0.48$                                                                                                                                                  | 5<br>1                                                                                          |                                                                                                | 311.6                                                                                                                                         |                                                                                                                                                                              | . /                                                                                                                                                                            | 0.5                                                                                             | 0.53(6)                                                                                                                                    | 4.7                                                                              | 13                                                          |
| J1611-5209 J1613-4714  J1614-5048 J1615-5537 J1617-4216 J1622-4332 J1623-4256  J1627-4845 J1630-4733 J1633-4453 J1633-5015 J1637-4553  J1639-4604 J1640-4715 J1644-4559*                                                                                                                                                                      | B1607-52<br>B1609-47<br>B1610-50<br>B1611-55                                                                                                                                                                                                          | 330.92<br>334.57<br>332.21                                                                                                                                                                           | -0.48                                                                                                                                                          | 1                                                                                               | 0.7                                                                                            |                                                                                                                                               | 140.8(5)                                                                                                                                                                     | 140.69(10)                                                                                                                                                                     | 5.5                                                                                             | 5.5(6)                                                                                                                                     | 4.4                                                                              | 13                                                          |
| J1613-4714 E J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                        | B1609-47<br>B1610-50<br>B1611-55                                                                                                                                                                                                                      | 334.57<br>332.21                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                 |                                                                                                | 543.2                                                                                                                                         | 35.1(3)                                                                                                                                                                      | 35.1(3)                                                                                                                                                                        | 13.0                                                                                            | 13.0(13)                                                                                                                                   | 59                                                                               | 79                                                          |
| J1614-5048 E J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E  J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                   | B1610-50<br>B1611-55                                                                                                                                                                                                                                  | 332.21                                                                                                                                                                                               | +2.83                                                                                                                                                          |                                                                                                 | 1.0                                                                                            | 81.8                                                                                                                                          | 127.57(5)                                                                                                                                                                    | 127.57(5)                                                                                                                                                                      | 1.2                                                                                             | 1.20(13)                                                                                                                                   | 2.2                                                                              | 4.1                                                         |
| J1615-5537 E J1617-4216 - J1622-4332 - J1623-4256 E  J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                | B1611-55                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                                                | 1                                                                                               | 4.0                                                                                            | 161.7                                                                                                                                         | 161.2(3)                                                                                                                                                                     | 161.2(3)                                                                                                                                                                       | 1.5                                                                                             | _                                                                                                                                          | 9.7                                                                              | _                                                           |
| J1617-4216 - J1622-4332 - J1623-4256 E  J1627-4845 - J1630-4733 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                                          |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      | +0.17                                                                                                                                                          | 12                                                                                              | 0.8                                                                                            | 83.8                                                                                                                                          | 582.8(3)                                                                                                                                                                     | 582.7(3)                                                                                                                                                                       | 2.4                                                                                             | 2.4(3)                                                                                                                                     | 11                                                                               | 37                                                          |
| J1622-4332 - J1623-4256 E  J1627-4845 - J1630-4733 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                     | 329.04                                                                                                                                                                                               | -3.46                                                                                                                                                          | 9                                                                                               | 0.6                                                                                            | 51.1                                                                                                                                          | 124.48(8)                                                                                                                                                                    | 124.1(5)                                                                                                                                                                       | 0.4                                                                                             | 0.44(5)                                                                                                                                    | 16                                                                               | 23                                                          |
| J1623-4256 E J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                       | 338.52                                                                                                                                                                                               | +5.92                                                                                                                                                          | 4                                                                                               | 0.9                                                                                            | 22.0                                                                                                                                          | 163.6(5)                                                                                                                                                                     | 159.94(18)                                                                                                                                                                     | 0.3                                                                                             | 0.28(4)                                                                                                                                    | 38                                                                               | _                                                           |
| J1627-4845 - J1630-4733 E J1633-4453 E J1633-5015 E J1637-4553 E  J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                     | 338.33                                                                                                                                                                                               | +4.34                                                                                                                                                          | 13                                                                                              | 0.6                                                                                            | 53.1                                                                                                                                          | 230.68(2)                                                                                                                                                                    | 230.5(12)                                                                                                                                                                      | 0.5                                                                                             | 0.53(6)                                                                                                                                    | 32                                                                               | _                                                           |
| J1630-4733 E<br>J1633-4453 E<br>J1633-5015 E<br>J1637-4553 E<br>J1639-4604 E<br>J1640-4715 E<br>J1644-4559* E                                                                                                                                                                                                                                 | B1620-42                                                                                                                                                                                                                                              | 338.89                                                                                                                                                                                               | +4.62                                                                                                                                                          | 8                                                                                               | 0.5                                                                                            | 122.1                                                                                                                                         | 295(5)                                                                                                                                                                       | 286(3)                                                                                                                                                                         | 1.3                                                                                             | 1.30(14)                                                                                                                                   | 13                                                                               | 29                                                          |
| J1630-4733 E<br>J1633-4453 E<br>J1633-5015 E<br>J1637-4553 E<br>J1639-4604 E<br>J1640-4715 E<br>J1644-4559* E                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                     | 335.14                                                                                                                                                                                               | +0.15                                                                                                                                                          | 1                                                                                               | 0.5                                                                                            | 29.7                                                                                                                                          | 557.8(7)                                                                                                                                                                     | 557.8(7)                                                                                                                                                                       | 0.5                                                                                             | 0.48(6)                                                                                                                                    | 36                                                                               | _                                                           |
| J1633-4453 E J1633-5015 E J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                                                                                                | B1626-47                                                                                                                                                                                                                                              | 336.40                                                                                                                                                                                               | +0.56                                                                                                                                                          | 13                                                                                              | 1.2                                                                                            | 71.2                                                                                                                                          | 498(5)                                                                                                                                                                       | 498.2(10)                                                                                                                                                                      | 4.0                                                                                             | 4.0(4)                                                                                                                                     | 76                                                                               | _                                                           |
| J1637-4553 E J1639-4604 E J1640-4715 E J1644-4559* E                                                                                                                                                                                                                                                                                          | B1630-44                                                                                                                                                                                                                                              | 338.73                                                                                                                                                                                               | +1.98                                                                                                                                                          | 2                                                                                               | 0.4                                                                                            | 165.3                                                                                                                                         | 474.1(3)                                                                                                                                                                     | 474.1(3)                                                                                                                                                                       | 1.9                                                                                             | 1.9(2)                                                                                                                                     | 10                                                                               | 25                                                          |
| J1639-4604 E<br>J1640-4715 E<br>J1644-4559* E                                                                                                                                                                                                                                                                                                 | B1629-50                                                                                                                                                                                                                                              | 334.70                                                                                                                                                                                               | -1.57                                                                                                                                                          | 12                                                                                              | 1.1                                                                                            | 252.8                                                                                                                                         | 398.41(8)                                                                                                                                                                    | 398.69(16)                                                                                                                                                                     | 5.7                                                                                             | 5.7(6)                                                                                                                                     | 8.7                                                                              | 19                                                          |
| J1640-4715 E<br>J1644-4559* E                                                                                                                                                                                                                                                                                                                 | B1634-45                                                                                                                                                                                                                                              | 338.48                                                                                                                                                                                               | +0.76                                                                                                                                                          | 5                                                                                               | 0.7                                                                                            | 73.7                                                                                                                                          | 193.23(7)                                                                                                                                                                    | 193.11(11)                                                                                                                                                                     | 1.1                                                                                             | 1.10(12)                                                                                                                                   | 3.7                                                                              | 62                                                          |
| J1640-4715 E<br>J1644-4559* E                                                                                                                                                                                                                                                                                                                 | B1635-45                                                                                                                                                                                                                                              | 338.50                                                                                                                                                                                               | +0.46                                                                                                                                                          | 5                                                                                               | 1.3                                                                                            | 22.8                                                                                                                                          | 258.91(4)                                                                                                                                                                    | 258.91(4)                                                                                                                                                                      | 0.8                                                                                             | 0.78(9)                                                                                                                                    | 8.7                                                                              | _                                                           |
| J1644-4559* H                                                                                                                                                                                                                                                                                                                                 | B1636-47                                                                                                                                                                                                                                              | 337.71                                                                                                                                                                                               | -0.44                                                                                                                                                          | 4                                                                                               | 0.8                                                                                            | 41.4                                                                                                                                          | 591.7(8)                                                                                                                                                                     | 591.7(8)                                                                                                                                                                       | 1.2                                                                                             | 1.20(13)                                                                                                                                   | 23                                                                               | _                                                           |
|                                                                                                                                                                                                                                                                                                                                               | B1641-45                                                                                                                                                                                                                                              | 339.19                                                                                                                                                                                               | -0.19                                                                                                                                                          | 11                                                                                              | 0.3                                                                                            | 890.4                                                                                                                                         | 478.8(8)                                                                                                                                                                     | 480.7(4)                                                                                                                                                                       | 310.0                                                                                           | _                                                                                                                                          | _                                                                                | _                                                           |
|                                                                                                                                                                                                                                                                                                                                               | B1643-43                                                                                                                                                                                                                                              | 341.11                                                                                                                                                                                               | +0.97                                                                                                                                                          | 13                                                                                              | 1.1                                                                                            | 29.4                                                                                                                                          | 490.4(3)                                                                                                                                                                     | 490.4(3)                                                                                                                                                                       | 1.0                                                                                             | 0.98(11)                                                                                                                                   | 13                                                                               | _                                                           |
| J1651-4246 H                                                                                                                                                                                                                                                                                                                                  | B1648-42                                                                                                                                                                                                                                              | 342.46                                                                                                                                                                                               | +0.92                                                                                                                                                          | 5                                                                                               | 1.0                                                                                            | 427.9                                                                                                                                         | 482(3)                                                                                                                                                                       | 482(3)                                                                                                                                                                         | 16.0                                                                                            | 16.0(16)                                                                                                                                   | 110                                                                              | 165                                                         |
| J1651-5222 F                                                                                                                                                                                                                                                                                                                                  | B1647-52                                                                                                                                                                                                                                              | 335.01                                                                                                                                                                                               | -5.17                                                                                                                                                          | 12                                                                                              | 1.0                                                                                            | 229.9                                                                                                                                         | 179.1(6)                                                                                                                                                                     | 178.6(3)                                                                                                                                                                       | 2.9                                                                                             | 2.9(3)                                                                                                                                     | 17                                                                               | 24                                                          |
|                                                                                                                                                                                                                                                                                                                                               | B1650-38                                                                                                                                                                                                                                              | 345.88                                                                                                                                                                                               | +3.27                                                                                                                                                          | 10                                                                                              | 0.8                                                                                            | 107.2                                                                                                                                         | 207.2(2)                                                                                                                                                                     | 206.8(4)                                                                                                                                                                       | 1.3                                                                                             | 1.30(14)                                                                                                                                   | 4.3                                                                              | 15                                                          |
|                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                     | 351.06                                                                                                                                                                                               | +5.49                                                                                                                                                          | 5                                                                                               | 0.3                                                                                            | 157.6                                                                                                                                         | 166.97(9)                                                                                                                                                                    | 166.7(7)                                                                                                                                                                       | 1.2                                                                                             | 1.20(13)                                                                                                                                   | 30                                                                               | 50                                                          |
|                                                                                                                                                                                                                                                                                                                                               | B1658-37                                                                                                                                                                                                                                              | 347.76                                                                                                                                                                                               | +2.83                                                                                                                                                          | 6                                                                                               | 0.7                                                                                            | 258.1                                                                                                                                         | 303.4(5)                                                                                                                                                                     | 299.2(8)                                                                                                                                                                       | 2.9                                                                                             | 2.9(3)                                                                                                                                     | 43                                                                               | 105                                                         |
|                                                                                                                                                                                                                                                                                                                                               | B1657-45                                                                                                                                                                                                                                              | 341.36                                                                                                                                                                                               | -2.18                                                                                                                                                          | 9                                                                                               | 0.9                                                                                            | 103.7                                                                                                                                         | 526.0(6)                                                                                                                                                                     | 526.0(6)                                                                                                                                                                       | 2.5                                                                                             | 2.5(3)                                                                                                                                     | 21                                                                               | 35                                                          |
| J1703-3241 E                                                                                                                                                                                                                                                                                                                                  | B1700-32                                                                                                                                                                                                                                              | 351.79                                                                                                                                                                                               | +5.39                                                                                                                                                          | 2                                                                                               | 1.1                                                                                            | 534.6                                                                                                                                         | 110.306(14)                                                                                                                                                                  | 110.13(3)                                                                                                                                                                      | 7.6                                                                                             | 7.6(8)                                                                                                                                     | 39                                                                               | 50                                                          |
| 11500 1051                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | 338.99                                                                                                                                                                                               | -4.51                                                                                                                                                          | 11                                                                                              | 1.2                                                                                            | 57.6                                                                                                                                          | 150.29(3)                                                                                                                                                                    | 151.4(3)                                                                                                                                                                       | 1.1                                                                                             | 1.10(12)                                                                                                                                   | 13                                                                               | 56                                                          |
|                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                     | 350.72                                                                                                                                                                                               | +3.98                                                                                                                                                          | 7                                                                                               | 0.8                                                                                            | 276.9                                                                                                                                         | 146.36(10)                                                                                                                                                                   | 146.30(7)                                                                                                                                                                      | 4.1                                                                                             | 4.1(4)                                                                                                                                     | 12                                                                               | 21                                                          |
|                                                                                                                                                                                                                                                                                                                                               | B1703-40                                                                                                                                                                                                                                              | 345.72                                                                                                                                                                                               | -0.20                                                                                                                                                          | 11                                                                                              | 0.7                                                                                            | 276.1                                                                                                                                         | 360.0(2)                                                                                                                                                                     | 357.7(5)                                                                                                                                                                       | 7.2                                                                                             | 7.2(7)                                                                                                                                     | 33                                                                               | 79                                                          |
|                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                     | 351.08                                                                                                                                                                                               | +3.41                                                                                                                                                          | 6                                                                                               | 0.5                                                                                            | 156.7                                                                                                                                         | 190.7(3)                                                                                                                                                                     | 189.9(3)                                                                                                                                                                       | 1.5                                                                                             | 1.50(16)                                                                                                                                   | 23                                                                               | 35                                                          |
| J1709-4429 E                                                                                                                                                                                                                                                                                                                                  | B1706-44                                                                                                                                                                                                                                              | 343.10                                                                                                                                                                                               | -2.69                                                                                                                                                          | 9                                                                                               | 0.7                                                                                            | 443.3                                                                                                                                         | 75.69(5)                                                                                                                                                                     | 75.56(17)                                                                                                                                                                      | 7.3                                                                                             | 7.3(7)                                                                                                                                     | 6.0                                                                              | 13                                                          |
|                                                                                                                                                                                                                                                                                                                                               | 111/1111-44                                                                                                                                                                                                                                           | 347.30                                                                                                                                                                                               | -2.09 $-0.42$                                                                                                                                                  | 6                                                                                               | 0.7                                                                                            | 10.3                                                                                                                                          | 337(3)                                                                                                                                                                       | 338.3(17)                                                                                                                                                                      | 0.3                                                                                             | 0.35(4)                                                                                                                                    | 12                                                                               | _                                                           |
|                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       | 352.12                                                                                                                                                                                               | -0.42 $+2.02$                                                                                                                                                  | 2                                                                                               | 0.3                                                                                            | 276.1                                                                                                                                         | 585.21(6)                                                                                                                                                                    | 585.21(6)                                                                                                                                                                      | 3.3                                                                                             | 3.3(3)                                                                                                                                     | 14                                                                               | 31                                                          |
|                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | -1.73                                                                                                                                                          | 8                                                                                               | 2.3                                                                                            | 183.2                                                                                                                                         | 308.5(5)                                                                                                                                                                     | 308.5(5)                                                                                                                                                                       | 54.0                                                                                            | <del></del>                                                                                                                                | 15                                                                               | 30                                                          |
| J1717-4034 I                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       | 346.82                                                                                                                                                                                               | -1.73 $-1.53$                                                                                                                                                  | 2                                                                                               | 0.8                                                                                            | 69.8                                                                                                                                          | 386.6(2)                                                                                                                                                                     | 386.80(14)                                                                                                                                                                     | 1.1                                                                                             | 1.10(12)                                                                                                                                   | 6.7                                                                              | 13                                                          |

Table 7-continued

| PSR J       | PSR B     | <i>l</i><br>(°) | <i>b</i><br>(°) | Beam | Radial distance | S/N    | DM <sup>cat</sup><br>(cm <sup>-3</sup> pc) | DM (cm <sup>-3</sup> pc) | S <sup>cat</sup> <sub>1400</sub> (mJy) | S <sub>1400</sub> (mJy) | W <sub>50</sub> (ms) | $W_{10}$ (ms) |
|-------------|-----------|-----------------|-----------------|------|-----------------|--------|--------------------------------------------|--------------------------|----------------------------------------|-------------------------|----------------------|---------------|
| J1720-2933  | B1717-29  | 356.50          | +4.25           | 3    | 0.9             | 160.9  | 42.64(3)                                   | 42.52(10)                | 2.1                                    | 2.1(2)                  | 17                   | 33            |
| J1721-3532  | B1718-35  | 351.69          | +0.67           | 1    | 0.6             | 372.8  | 496.81(16)                                 | 496.81(16)               | 11.0                                   | 11.0(11)                | 26                   | 69            |
| J1722-3207  | B1718-32  | 354.56          | +2.53           | 6    | 0.7             | 309.1  | 126.064(8)                                 | 126.2(3)                 | 3.4                                    | 3.4(4)                  | 10                   | 20            |
| J1722-3632  | B1718-36  | 350.93          | -0.00           | 8    | 0.4             | 92.7   | 416.2(2)                                   | 415.8(5)                 | 1.6                                    | 1.60(17)                | 22                   | 37            |
| J1722-3712  | B1719-37  | 350.49          | -0.51           | 1    | 1.0             | 215.3  | 99.50(4)                                   | 99.44(11)                | 3.2                                    | 3.2(3)                  | 4.0                  | 9.0           |
| J1730-2304  | _         | 3.14            | +6.02           | 12   | 1.2             | 82.2   | 9.611(2)                                   | 9.608(15)                | 3.7                                    | 3.7(4)                  | 1.1                  | _             |
| J1730-3350  | B1727-33  | 354.13          | +0.09           | 5    | 0.9             | 106.8  | 260.6(13)                                  | 260.6(13)                | 3.2                                    | 3.2(3)                  | 8.6                  | 22            |
| J1732-4128  | B1729-41  | 347.98          | -4.46           | 4    | 0.8             | 66.5   | 195.3(4)                                   | 195.3(4)                 | 0.6                                    | 0.63(7)                 | 16                   | 24            |
| J1733-2228  | B1730-22  | 4.03            | +5.75           | 11   | 1.5             | 50.7   | 41.14(3)                                   | 40.8(10)                 | 2.3                                    | 2.3(2)                  | 60                   | _             |
| J1733-3716  | B1730-37  | 351.58          | -2.28           | 2    | 0.8             | 141.5  | 153.5(3)                                   | 153.5(3)                 | 3.4                                    | 3.4(4)                  | 6.2                  | 55            |
| J1737-3555  | B1734-35  | 353.17          | -2.27           | 3    | 0.7             | 72.8   | 89.41(4)                                   | 89.06(15)                | 0.7                                    | 0.74(8)                 | 6.9                  | 16            |
| J1738-3211  | B1735-32  | 356.47          | -0.49           | 4    | 0.9             | 92.6   | 49.59(4)                                   | 49.7(4)                  | 2.8                                    | 2.8(3)                  | 12                   | 26            |
| J1739-2903  | B1736-29  | 359.21          | +1.06           | 10   | 0.8             | 141.1  | 138.56(3)                                  | 138.5(3)                 | 2.0                                    | 2.0(2)                  | 6.7                  | _             |
| J1739-3131  | B1736-31  | 357.10          | -0.22           | 7    | 0.3             | 240.8  | 599.5(3)                                   | 599.5(3)                 | 4.9                                    | 4.9(5)                  | 22                   | 63            |
| J1740-3015  | B1737-30  | 358.29          | +0.24           | 3    | 0.5             | 503.7  | 152.14(20)                                 | 152.14(20)               | 6.4                                    | 6.4(7)                  | 5.2                  | 12            |
| J1741-3927  | B1737-39  | 350.55          | -4.75           | 3    | 1.0             | 332.7  | 158.5(6)                                   | 158.5(5)                 | 4.7                                    | 4.7(5)                  | 9.3                  | 24            |
| J1743-3150  | B1740-31  | 357.30          | -1.15           | 3    | 1.0             | 113.0  | 193.05(7)                                  | 192.3(5)                 | 1.9                                    | 1.9(2)                  | 45                   | 68            |
| J1744-2335  | _         | 4.46            | +2.94           | 7    | 2.9             | 48.3   | 96.66(2)                                   | 98.4(11)                 | 0.2                                    | _ `                     | 26                   | _             |
| J1745-3040  | B1742-30  | 358.55          | -0.96           | 1    | 0.7             | 586.3  | 88.373(4)                                  | 88.46(9)                 | 13.0                                   | 13.0(13)                | 7.8                  | 23            |
| J1748-2021  | B1745-20  | 7.73            | +3.80           | 3    | 0.8             | 19.1   | 220.4(3)                                   | 220.0(3)                 | 0.4                                    | 0.37(5)                 | 87                   | _             |
| J1748-2444  | _         | 3.96            | +1.56           | 3    | 0.4             | 26.4   | 207.33(9)                                  | 206.6(2)                 | 0.3                                    | 0.34(4)                 | 5.2                  | _             |
| J1748-2446A | B1744-24A | 3.84            | +1.70           | 6    | 1.2             | 12.9   | 242.15(4)                                  | 242.15(4)                | 0.6                                    | 0.61(7)                 | _                    | _             |
| J1749-3002  | B1746-30  | 359.46          | -1.24           | 9    | 0.3             | 146.8  | 509.4(3)                                   | 508.7(5)                 | 3.7                                    | 3.7(4)                  | 45                   | 88            |
| J1750-3157  | B1747-31  | 357.98          | -2.52           | 2    | 1.0             | 56.1   | 206.34(4)                                  | 206.6(11)                | 1.2                                    | 1.20(13)                | 10                   | 84            |
| J1750-3503  | _         | 355.31          | -4.08           | 13   | 0.2             | 49.0   | 189.35(2)                                  | 189.1(4)                 | 0.8                                    | 0.79(9)                 | 67                   | _             |
| J1752-2806  | B1749-28  | 1.54            | -0.96           | 10   | 0.2             | 1603.4 | 50.372(8)                                  | 50.45(12)                | 18.0                                   | 18.0(18)                | 9.1                  | 15            |
| J1753-2501  | B1750-24  | 4.27            | +0.51           | 6    | 1.0             | 49.1   | 676.2(7)                                   | 676.2(7)                 | 2.3                                    | 2.3(2)                  | 57                   | _             |
| J1756-2435  | B1753-24  | 5.03            | +0.04           | 7    | 0.7             | 108.9  | 367.1(4)                                   | 365.2(5)                 | 2.0                                    | 2.0(2)                  | 25                   | 39            |
| J1757-2421  | B1754-24  | 5.28            | +0.05           | 5    | 0.8             | 232.1  | 179.441(12)                                | 178.7(3)                 | 3.9                                    | 3.9(4)                  | 15                   | 24            |
| J1759-2205  | B1756-22  | 7.47            | +0.81           | 9    | 0.3             | 151.4  | 177.157(5)                                 | 177.02(20)               | 1.3                                    | 1.30(14)                | 3.9                  | 11            |
| J1759-2922  | _         | 1.20            | -2.89           | 9    | 1.1             | 41.3   | 79.42(6)                                   | 79.4(3)                  | 0.6                                    | 0.56(7)                 | 10.0                 | _             |
| J1801-2304  | B1758-23  | 6.84            | -0.07           | 3    | 1.1             | 40.1   | 1073.9(6)                                  | 1073.9(6)                | 2.2                                    | 2.2(2)                  | _                    | _             |
| J1801-2451  | B1757-24  | 5.25            | -0.88           | 8    | 1.0             | 28.3   | 289.01(4)                                  | 289.01(4)                | 0.8                                    | 0.85(9)                 | 9.6                  | _             |
| J1801-2920  | B1758-29  | 1.44            | -3.25           | 9    | 0.7             | 138.1  | 125.613(14)                                | 125.55(19)               | 1.8                                    | 1.80(19)                | 52                   | 63            |
| J1803-2137  | B1800-21  | 8.40            | +0.15           | 10   | 1.0             | 199.3  | 233.99(5)                                  | 233.8(3)                 | 7.6                                    | 7.6(8)                  | 14                   | 43            |
| J1803-2712  | B1800-27  | 3.49            | -2.53           | 1    | 0.9             | 59.8   | 165.5(3)                                   | 165.3(3)                 | 1.0                                    | 1.00(11)                | 18                   | _             |
| J1804-2717  | _         | 3.51            | -2.74           | 6    | 0.9             | 28.0   | 24.674(5)                                  | 24.666(11)               | 0.8                                    | 0.78(9)                 | _                    | _             |
| J1806-1154  | B1804-12  | 17.14           | +4.42           | 12   | 0.6             | 203.9  | 122.41(5)                                  | 122.0(11)                | 2.6                                    | 2.6(3)                  | 32                   | 41            |
| J1807-0847  | B1804-08  | 20.06           | +5.59           | 12   | 0.8             | 944.3  | 112.3802(11)                               | 112.47(11)               | 15.0                                   | 15.0(15)                | 8.9                  | 13            |
| J1807-2459  | _         | 5.84            | -2.20           | 11   | 0.7             | 10.1   | 134.0(4)                                   | 134.0(5)                 | 1.1                                    | 1.10(12)                | _                    | _             |
| J1807-2715  | B1804-27  | 3.84            | -3.26           | 10   | 1.0             | 39.9   | 312.98(3)                                  | 313.1(4)                 | 0.9                                    | 0.91(10)                | 14                   | _             |
| J1808-0813  | _         | 20.63           | +5.75           | 5    | 1.1             | 119.5  | 151.27(6)                                  | 150.6(6)                 | 1.8                                    | 1.80(19)                | 24                   | 40            |
| J1808-2057  | B1805-20  | 9.45            | -0.40           | 7    | 0.9             | 134.6  | 606.8(9)                                   | 607(4)                   | 2.6                                    | 2.6(3)                  | 76                   | _             |
| J1809-0743  | _         | 21.25           | +5.67           | 4    | 0.1             | 37.4   | 240.70(14)                                 | 240.8(4)                 | 0.3                                    | 0.29(4)                 | 12                   | _             |
| J1809-2109  | B1806-21  | 9.41            | -0.72           | 5    | 0.9             | 58.7   | 381.91(5)                                  | 381.0(4)                 | 0.8                                    | 0.84(9)                 | 13                   | _             |
| J1812-1718  | B1809-173 | 13.11           | +0.54           | 10   | 1.1             | 52.0   | 254.6(4)                                   | 254.6(4)                 | 1.0                                    | 1.00(11)                | 19                   | _             |
| J1812-1733  | B1809-176 | 12.90           | +0.39           | 10   | 0.6             | 110.2  | 518(4)                                     | 528(8)                   | 3.3                                    | 3.3(3)                  | 63                   | _             |
| J1816-1729  | B1813-17  | 13.43           | -0.42           | 1    | 0.9             | 74.1   | 525.5(7)                                   | 526.6(3)                 | 1.2                                    | 1.20(13)                | 17                   | 34            |
| 31010 1/2/  |           |                 |                 |      |                 |        |                                            |                          |                                        |                         |                      |               |
| J1816-2650  | B1813-26  | 5.22            | -4.91           | 2    | 0.9             | 67.8   | 128.12(3)                                  | 128.0(5)                 | 1.1                                    | 1.10(12)                | 40                   | _             |

Table 7 – continued

| PSR J                                  | PSR B                | <i>l</i><br>(°) | <i>b</i><br>(°) | Beam | Radial distance | S/N          | DM <sup>cat</sup><br>(cm <sup>-3</sup> pc) | DM (cm <sup>-3</sup> pc) | S <sub>1400</sub> (mJy) | S <sub>1400</sub> (mJy) | W <sub>50</sub> (ms) | W <sub>10</sub> (ms |
|----------------------------------------|----------------------|-----------------|-----------------|------|-----------------|--------------|--------------------------------------------|--------------------------|-------------------------|-------------------------|----------------------|---------------------|
| J1820-0427                             | B1818-04             | 25.46           | +4.73           | 3    | 0.9             | 562.7        | 84.435(17)                                 | 84.39(8)                 | 6.1                     | 6.1(6)                  | 11                   | 20                  |
| J1820-1346                             | B1817-13             | 17.16           | +0.48           | 12   | 0.8             | 83.7         | 776.7(17)                                  | 779.5(6)                 | 2.0                     | 2.0(2)                  | 33                   | 120                 |
| J1820-1818                             | B1817-18             | 13.20           | -1.72           | 4    | 0.9             | 64.0         | 436.0(12)                                  | 436.6(3)                 | 1.1                     | 1.10(12)                | 16                   | _                   |
| J1822-1400                             | B1820-14             | 17.25           | -0.18           | 4    | 1.1             | 24.9         | 651.1(9)                                   | 647.9(6)                 | 0.8                     | 0.80(9)                 | 9.1                  | _                   |
| J1822-2256                             | B1819-22             | 9.35            | -4.37           | 8    | 0.9             | 209.2        | 121.20(4)                                  | 119(3)                   | 2.4                     | 2.4(3)                  | 46                   | 81                  |
| J1823-0154                             | _                    | 28.08           | +5.26           | 10   | 1.0             | 78.1         | 135.87(5)                                  | 136.18(12)               | 0.8                     | 0.78(9)                 | 8.1                  | 17                  |
| J1823-1115                             | B1820-11             | 19.77           | +0.95           | 9    | 0.4             | 118.9        | 428.59(9)                                  | 428.6(5)                 | 3.2                     | 3.2(3)                  | 26                   | _                   |
| J1824-1118                             | B1821-11             | 19.81           | +0.74           | 13   | 0.6             | 77.6         | 603(2)                                     | 604(4)                   | 1.3                     | 1.30(14)                | 23                   | _                   |
| J1824-1945                             | B1821-19             | 12.28           | -3.11           | 2    | 0.8             | 492.3        | 224.649(5)                                 | 224.452(14)              | 4.9                     | 4.9(5)                  | 2.9                  | 5.5                 |
| J1824-2452                             | B1821-24             | 7.80            | -5.58           | 11   | 0.9             | 7.7          | 119.857(7)                                 | 120.1(9)                 | 0.2                     | 0.18(3)                 | _                    | _                   |
| J1825-0935                             | B1822-09             | 21.45           | +1.32           | 8    | 1.1             | 548.6        | 19.39(4)                                   | 19.33(20)                | 12.0                    | 12.0(12)                | 12                   | 42                  |
| J1825-1446                             | B1822-14             | 16.81           | -1.00           | 5    | 1.1             | 83.4         | 357(5)                                     | 353(3)                   | 2.6                     | 2.6(3)                  | 12                   | 27                  |
| J1826-1131                             | B1823-11             | 19.80           | +0.29           | 7    | 0.9             | 48.2         | 320.58(6)                                  | 322(4)                   | 0.7                     | 0.71(8)                 | 160                  | _                   |
| J1826-1334                             | B1823-13             | 18.00           | -0.69           | 11   | 1.2             | 56.5         | 231.09(8)                                  | 231.09(8)                | 2.1                     | 2.1(2)                  | 5.8                  | _                   |
| J1827-0958                             | B1824-10             | 21.29           | +0.80           | 5    | 0.3             | 93.4         | 430.1(3)                                   | 430.1(3)                 | 1.8                     | 1.80(19)                | 22                   | _                   |
| J1829-1751                             | B1826-17             | 14.60           | -3.42           | 5    | 0.1             | 724.3        | 217.109(9)                                 | 216.42(9)                | 7.7                     | 7.7(8)                  | 15                   | 20                  |
| J1830-1059                             | B1828-11             | 20.81           | -0.48           | 3    | 0.9             | 125.4        | 161.50(15)                                 | 159.67(11)               | 1.4                     | 1.40(15)                | 3.2                  | 6.3                 |
| J1832-0827                             | B1829-08             | 23.27           | +0.30           | 9    | 1.0             | 126.7        | 300.853(13)                                | 300.48(4)                | 2.1                     | 2.1(2)                  | 7.1                  | 25                  |
| J1832-1021                             | B1829-10             | 21.59           | -0.60           | 5    | 0.1             | 118.8        | 475.7(3)                                   | 474.8(4)                 | 1.3                     | 1.30(14)                | 8.4                  | 18                  |
| J1833-0338                             | B1831-03             | 27.66           | +2.27           | 1    | 0.4             | 303.9        | 234.537(14)                                | 234.17(16)               | 2.8                     | 2.8(3)                  | 7.5                  | 23                  |
| J1833-0827                             | B1830-08             | 23.39           | +0.06           | 3    | 0.8             | 113.9        | 410.925(12)                                | 410.925(12)              | 3.6                     | 3.6(4)                  | 4.9                  | 15                  |
| J1834-0010                             | B1831-00             | 30.81           | +3.73           | 10   | 0.5             | 18.4         | 88.65(15)                                  | 88.2(4)                  | 0.3                     | 0.29(4)                 | _                    | _                   |
| J1834-0426                             | B1831-04             | 27.04           | +1.75           | 8    | 1.0             | 166.3        | 79.308(8)                                  | 79(4)                    | 5.0                     | 5.0(5)                  | 84                   | 99                  |
| J1835-0643                             | B1832-06             | 25.09           | +0.55           | 10   | 0.2             | 68.6         | 472.9(10)                                  | 472.7(3)                 | 1.3                     | 1.30(14)                | 32                   | _                   |
| J1835-1106                             | _                    | 21.22           | -1.51           | 13   | 1.2             | 95.0         | 132.679(3)                                 | 132.57(10)               | 2.2                     | 2.2(2)                  | 4.7                  | 9.4                 |
| J1836-0436                             | B1834-04             | 27.17           | +1.13           | 5    | 1.2             | 84.1         | 231.5(3)                                   | 231.3(3)                 | 1.8                     | 1.80(19)                | 9.1                  | 17                  |
| J1836-1008                             | B1834-10             | 22.26           | -1.42           | 3    | 0.2             | 260.0        | 316.97(3)                                  | 316.1(3)                 | 3.7                     | 3.7(4)                  | 8.7                  | 17                  |
| J1837-0045                             | _                    | 30.67           | +2.75           | 1    | 1.1             | 32.1         | 86.98(9)                                   | 87.4(10)                 | 0.6                     | 0.61(7)                 | 9.6                  | _                   |
| J1837-0653                             | B1834-06             | 25.19           | +0.00           | 3    | 0.1             | 159.2        | 316.1(4)                                   | 315.5(12)                | 2.5                     | 2.5(3)                  | 105                  | 170                 |
| J1837-1837                             | _                    | 14.81           | -5.50           | 3    | 0.3             | 58.3         | 100.74(13)                                 | 100.8(3)                 | 0.4                     | 0.36(5)                 | 9.0                  | 18                  |
| J1841-0425                             | B1838-04             | 27.82           | +0.28           | 2    | 0.9             | 127.0        | 325.487(15)                                | 325.14(12)               | 2.6                     | 2.6(3)                  | 5.3                  | 9.9                 |
| J1842-0359                             | B1839-04             | 28.35           | +0.17           | 7    | 0.2             | 213.0        | 195.98(8)                                  | 197.4(18)                | 4.4                     | 4.4(5)                  | 285                  | 340                 |
| J1844+00                               | _                    | 32.62           | +1.88           | 3    | 1.2             | 284.7        | 345.54(20)                                 | 345.54(20)               | 8.6                     | 8.6(9)                  | 12                   | 43                  |
| J1844-0244                             | B1842-02             | 29.73           | +0.24           | 1    | 0.4             | 63.5         | 428.5(5)                                   | 428.5(5)                 | 0.9                     | 0.87(10)                | 20                   | _                   |
| J1844-0256                             | _                    | 29.57           | +0.12           | 4    | 0.9             | 14.4         | 820.2(3)                                   | 820.2(3)                 | 0.5                     | 0.46(6)                 | 68                   | _                   |
| J1844-0433                             | B1841-04             | 28.10           | -0.55           | 9    | 0.3             | 131.2        | 123.158(20)                                | 123.0(5)                 | 1.1                     | 1.10(12)                | 13                   | 28                  |
| J1844-0538                             | B1841-05             | 27.07           | -0.94           | 1    | 1.1             | 85.2         | 412.8(3)                                   | 411.0(3)                 | 2.2                     | 2.2(2)                  | 19                   | _                   |
| J1845-0316                             | _                    | 29.39           | -0.26           | 7    | 1.1             | 12.2         | 500.00(14)                                 | 500.00(14)               | 0.3                     | 0.35(4)                 | 12                   | _                   |
| J1845-0434                             | B1842-04             | 28.19           | -0.78           | 12   | 0.1             | 174.0        | 230.8(17)                                  | 230.2(17)                | 1.6                     | 1.60(17)                | 17                   | 29                  |
| J1847-0402                             | B1844-04             | 28.88           | -0.94           | 1    | 0.8             | 267.9        | 141.979(5)                                 | 141.0(5)                 | 4.3                     | 4.3(4)                  | 22                   | 30                  |
| J1848+0647                             | _                    | 38.70           | +3.65           | 8    | 0.6             | 17.0         | 27.9(2)                                    | 25.0(8)                  | 0.2                     | 0.17(3)                 | 13                   | _                   |
| J1848+0826                             | _                    | 40.15           | +4.44           | 10   | 0.4             | 9.5          | 90.77(7)                                   | 90.4(3)                  | 0.1                     | 0.11(2)                 | _                    | _                   |
| J1848-0123                             | B1845-01             | 31.34           | +0.04           | 3    | 0.7             | 514.1        | 159.531(8)                                 | 159.96(12)               | 8.6                     | 8.6(9)                  | 17                   | 37                  |
| J1849+06                               | —                    | 38.12           | +3.30           | 9    | 1.1             | 14.6         | 235(3)                                     | 235(3)                   | 0.3                     | 0.35(4)                 | 89                   | _                   |
| J1849-0636                             | B1846-06             | 26.77           | -2.50           | 13   | 0.9             | 123.4        | 148.168(12)                                | 148.3(10)                | 1.4                     | 1.40(15)                | 89                   | _                   |
| J1850+1335                             | B1848+13             | 44.99           | +6.34           | 11   | 0.7             | 83.2         | 60.147(8)                                  | 60.0(4)                  | 0.7                     | 0.65(7)                 | 5.7                  | 11                  |
| 1 - 55 5   1 5 5 5                     | B1848+04             | 36.72           | +2.05           | 10   | 0.9             | 34.0         | 115.54(5)                                  | 112.01(10)               | 0.7                     | 0.66(8)                 | 71                   | _                   |
| $11851 \pm 0418$                       |                      |                 |                 |      |                 | 27.0         | 110.0T(0)                                  | 112.01(10)               | U. /                    |                         |                      | _                   |
| J1851+0418<br>J1851+1259               |                      |                 |                 |      |                 |              | ` '                                        | 70.8(10)                 |                         |                         |                      | 21                  |
| J1851+0418<br>J1851+1259<br>J1852+0031 | B1848+12<br>B1849+00 | 44.51<br>33.52  | +5.93<br>+0.02  | 4    | 1.5<br>0.5      | 43.6<br>98.6 | 70.615(16)<br>798.2(16)                    | 70.8(10)<br>798.2(16)    | 0.8<br>2.2              | 0.75(8)<br>2.2(2)       | 11<br>235            | 21                  |

**Table 7** – continued

| PSR J                    | PSR B           | <i>l</i><br>(°) | <i>b</i><br>(°) | Beam    | Radial distance | S/N          | DM <sup>cat</sup><br>(cm <sup>-3</sup> pc) | DM (cm <sup>-3</sup> pc) | S <sup>cat</sup><br>(mJy) | S <sub>1400</sub> (mJy) | W <sub>50</sub> (ms) | $W_{10}$ (ms) |
|--------------------------|-----------------|-----------------|-----------------|---------|-----------------|--------------|--------------------------------------------|--------------------------|---------------------------|-------------------------|----------------------|---------------|
| J1855-0941               | _               | 24.72           | -5.24           | 8       | 0.3             | 39.5         | 151.99(14)                                 | 151.99(14)               | 0.5                       | 0.48(6)                 | 26                   |               |
| J1856+0113               | B1853+01        | 34.56           | -0.50           | 10      | 0.5             | 20.8         | 96.79(10)                                  | 96.83(19)                | 0.2                       | 0.19(3)                 | 3.8                  | _             |
| J1857+0057               | B1854+00        | 34.42           | -0.81           | 3       | 0.9             | 49.8         | 82.39(11)                                  | 83.0(7)                  | 0.9                       | 0.92(10)                | 22                   | _             |
| J1857+0212               | B1855+02        | 35.62           | -0.39           | 7       | 0.7             | 117.5        | 506.77(18)                                 | 504.2(4)                 | 1.6                       | 1.60(17)                | 14                   | 23            |
| J1857+0212               | B1855+09        | 42.29           | +3.06           | 2       | 0.4             | 240.2        | 13.309(5)                                  | 13.301(4)                | 4.3                       | 4.3(4)                  | 0.55                 | 3.0           |
| J1859+00                 | _               | 34.40           | -1.59           | 7       | 1.1             | 163.9        | 420(3)                                     | 420(3)                   | 4.8                       | 4.8(5)                  | 54                   | 97            |
| J1901+00                 |                 | 34.47           | -2.05           | 8       | 0.9             | 27.8         | 345.5(11)                                  | 345.5(11)                | 0.3                       | 0.35(4)                 | 22                   | _             |
| J1901+0156               | B1859+01        | 35.82           | -1.37           | 2       | 0.4             | 39.7         | 105.394(7)                                 | 102.8(4)                 | 0.4                       | 0.38(5)                 | 6.1                  | _             |
| J1901+0331               | B1859+03        | 37.21           | -0.64           | 7       | 0.2             | 359.1        | 402.080(12)                                | 400.82(10)               | 4.2                       | 4.2(4)                  | 11                   | 36            |
| J1901+0331<br>J1901+0716 | B1859+07        | 40.57           | +1.06           | 7       | 0.7             | 74.0         | 252.81(7)                                  | 252.5(5)                 | 0.9                       | 0.90(10)                | 11                   | 34            |
| J1902+0556               | B1900+05        | 39.50           | +0.21           | 11      | 0.3             | 151.0        | 177.486(13)                                | 177.7(4)                 | 1.2                       | 1.20(13)                | 11                   | 29            |
| J1902+0615               | B1900+05        | 39.81           | +0.34           | 3       | 0.8             | 99.7         | 502.900(17)                                | 502(3)                   | 1.1                       | 1.10(12)                | 24                   | _             |
| J1902+0723               | —               | 40.74           | +0.98           | 7       | 0.4             | 16.1         | 105.0(3)                                   | 105.0(4)                 | 0.2                       | 0.17(3)                 | _                    | _             |
| J1902+0725<br>J1903+0135 | B1900+01        | 35.73           | -1.96           | 10      | 1.1             | 350.3        | 245.163(6)                                 | 244.95(11)               | 5.5                       | 5.5(6)                  | 9.9                  | 23            |
| J1903+0133<br>J1904+0004 | —<br>—          | 34.45           | -1.90 $-2.81$   | 9       | 1.0             | 96.3         | 233.61(4)                                  | 233.6(3)                 | 2.1                       | 2.1(2)                  | 7.8                  | 22            |
| 11004 + 1011             | B1901+10        | 12 12           | + 1 97          | 7       | 0.9             | 26.0         | 135(2)                                     | 126 0(20)                | 0.6                       | 0.58(7)                 | 20                   |               |
| J1904+1011               |                 | 43.43           | +1.87           |         |                 |              | ` /                                        | 136.0(20)                | 0.6                       |                         | 28                   | _             |
| J1905+0709               | B1903+07        | 40.94           | +0.07           | 9       | 1.0             | 67.3         | 245.34(10)                                 | 247(13)                  | 1.8                       | 1.80(19)                | 39                   | 1.5           |
| J1905-0056               | B1902-01        | 33.69           | -3.55           | 6       | 1.1             | 68.3         | 229.131(5)                                 | 228.2(3)                 | 0.9                       | 0.92(10)                | 6.2                  | 15            |
| J1906+0641<br>J1908+0457 | B1904+06<br>—   | 40.60<br>39.27  | -0.30 $-1.47$   | 10<br>8 | 1.1<br>0.4      | 56.5<br>89.2 | 473.15(4)<br>360(5)                        | 473.15(4)<br>353(3)      | 1.7<br>0.9                | 1.70(18)<br>0.93(10)    | 18<br>42             | <u></u>       |
| 71000 - 0500             |                 | 20.20           | 4.40            |         | 0.5             | 00.2         | 204 4242                                   | 204.25(45)               | 0.0                       | 0.50(0)                 | 2.0                  |               |
| J1908+0500               | _               | 39.29           | -1.40           | 8       | 0.5             | 89.2         | 201.42(2)                                  | 201.27(17)               | 0.8                       | 0.79(9)                 | 3.9                  | 7.6           |
| J1908+0734               | —<br>D1006 : 00 | 41.58           | -0.27           | 7       | 0.7             | 30.9         | 11.104(11)                                 | 11.09(15)                | 0.5                       | 0.54(6)                 | 2.8                  | _             |
| J1908+0916               | B1906+09        | 43.17           | +0.36           | 9       | 0.1             | 20.0         | 249.8(5)                                   | 249.8(5)                 | 0.2                       | 0.23(3)                 | 26                   | _             |
| J1909+0007               | B1907+00        | 35.12           | -3.98           | 11      | 0.8             | 112.2        | 112.787(6)                                 | 112.65(12)               | 0.9                       | 0.87(10)                | 8.0                  | 31            |
| J1909+0254               | B1907+02        | 37.60           | -2.71           | 8       | 1.3             | 38.7         | 171.734(9)                                 | 172.4(14)                | 0.6                       | 0.63(7)                 | 11                   | _             |
| J1909+1102               | B1907+10        | 44.83           | +0.99           | 1       | 0.8             | 182.0        | 149.982(4)                                 | 149.74(14)               | 1.9                       | 1.9(2)                  | 4.8                  | 13            |
| J1910+0358               | B1907+03        | 38.61           | -2.34           | 12      | 0.9             | 51.8         | 82.93(10)                                  | 78.0(8)                  | 1.5                       | 1.50(16)                | 265                  | _             |
| J1910+0714               | _               | 41.52           | -0.87           | 11      | 0.8             | 39.4         | 124.06(5)                                  | 125.5(15)                | 0.4                       | 0.36(5)                 | 22                   | 735           |
| J1910+1231               | B1907+12        | 46.20           | +1.59           | 2       | 0.1             | 46.8         | 258.64(12)                                 | 257.7(7)                 | 0.3                       | 0.28(4)                 | 18                   | _             |
| J1910-0309               | B1907-03        | 32.28           | -5.68           | 11      | 1.0             | 37.6         | 205.53(3)                                  | 205.13(11)               | 0.6                       | 0.55(7)                 | 7.6                  | _             |
| J1912+1036               | B1910+10        | 44.79           | +0.15           | 9       | 0.9             | 17.6         | 147.0(5)                                   | 147.0(6)                 | 0.2                       | 0.22(3)                 | _                    | _             |
| J1913+0936               | B1911+09        | 44.03           | -0.55           | 3       | 0.7             | 14.0         | 157(2)                                     | 156.5(11)                | 0.1                       | 0.14(2)                 | _                    | _             |
| J1913+1400               | B1911+13        | 47.88           | +1.59           | 1       | 0.5             | 152.2        | 145.052(5)                                 | 145.0(3)                 | 1.2                       | 1.20(13)                | 6.2                  | 22            |
| J1914+1122               | B1911+11        | 45.62           | +0.20           | 10      | 0.3             | 68.2         | 100(10)                                    | 100(10)                  | 0.6                       | 0.55(7)                 | 25                   | _             |
| J1915+07                 | _               | 42.63           | -1.60           | 1       | 0.6             | 36.8         | 112.5(18)                                  | 112.5(18)                | 0.2                       | 0.21(3)                 | 23                   | _             |
| J1915+0738               | _               | 42.47           | -1.80           | 7       | 1.1             | 37.4         | 39.00(8)                                   | 39.3(6)                  | 0.3                       | 0.34(4)                 | 11                   | 24            |
| J1915+1009               | B1913+10        | 44.71           | -0.65           | 2       | 0.5             | 178.7        | 241.693(10)                                | 241.6(3)                 | 1.3                       | 1.30(14)                | 6.7                  | 13            |
| J1915+1606               | B1913+16        | 49.97           | +2.12           | 1       | 0.0             | 29.7         | 168.77(1)                                  | 168.73(8)                | 0.4                       | 0.42(5)                 | 7.0                  | _             |
| J1916+07                 | _               | 42.85           | -2.02           | 2       | 0.8             | 159.2        | 305.1(8)                                   | 305.1(8)                 | 2.8                       | 2.8(3)                  | 115                  | _             |
| J1916+0951               | B1914+09        | 44.56           | -1.02           | 11      | 0.8             | 57.1         | 60.953(6)                                  | 61.24(19)                | 0.9                       | 0.91(10)                | 9.6                  | _             |
| J1916+1030               | B1913+105       | 45.10           | -0.64           | 1       | 0.5             | 22.4         | 387.2(3)                                   | 387.2(3)                 | 0.2                       | 0.22(3)                 | 20                   | _             |
| J1916+1312               | B1914+13        | 47.58           | +0.45           | 12      | 0.2             | 162.2        | 237.016(11)                                | 236.7(3)                 | 1.2                       | 1.20(13)                | 6.2                  | 11            |
| J1917+1353               | B1915+13        | 48.26           | +0.62           | 6       | 0.6             | 204.6        | 94.538(4)                                  | 94.51(12)                | 1.9                       | 1.9(2)                  | 4.0                  | 9.1           |
| J1918+08                 | _               | 43.71           | -2.02           | 5       | 0.8             | 32.2         | 30(1)                                      | 29.8(15)                 | 0.3                       | 0.31(4)                 | 58                   | _             |
| J1918+1444               | B1916+14        | 49.10           | +0.87           | 3       | 1.1             | 79.8         | 27.202(17)                                 | 30.3(13)                 | 1.0                       | 1.00(11)                | 28                   | _             |
| J1919+0134               | _               | 37.58           | -5.56           | 10      | 1.1             | 40.9         | 191.9(4)                                   | 192.0(7)                 | 0.8                       | 0.77(9)                 | 55                   | _             |
| J1921+1419               | B1919+14        | 49.06           | +0.02           | 11      | 0.8             | 45.8         | 91.64(4)                                   | 91.5(5)                  | 0.7                       | 0.68(8)                 | 22                   | _             |
| J1926+1434               | B1924+14        | 49.92           | -1.04           | 8       | 0.9             | 24.2         | 211.41(8)                                  | 211.1(8)                 | 0.5                       | 0.48(6)                 | 16                   | _             |
| J1930+1316               | B1927+13        | 49.12           | -2.32           | 13      | 1.1             | 11.8         | 207.3(9)                                   | 207.6(4)                 | 0.2                       | 0.18(3)                 | _                    | _             |
| J1932+1059               | B1929+10        | 47.38           | -3.88           | 6       | 0.9             | 1697.0       | 3.181(4)                                   | 3.3(2)                   | 36.0                      | 36(4)                   | 7.4                  | 14            |
| J1933+1304               | B1930+13        | 49.35           | -3.13           | 7       | 0.9             | 37.6         | 177.9(2)                                   | 177.0(6)                 | 0.4                       | 0.42(5)                 | 29                   |               |



**Figure 3.** Mean 1374-MHz pulse profiles for 281 pulsars redetected in the Parkes multibeam survey. The highest point in the profile is placed at phase 0.3. For each profile, the pulsar Jname, pulse period (s) and dispersion measure (cm<sup>-3</sup> pc) are given. The small horizontal bar under the period indicates the effective resolution of the profile by adding the bin size to the effects of interstellar dispersion in quadrature.



Figure 3 – continued



Figure 3 – continued



Figure 3 – continued



Figure 3 – continued



Figure 3 – continued

### 3.2.2 Dispersion measures

For the pulsars listed in Table 9 we have obtained dispersion measure measurements more than an order of magnitude more precise than earlier results. Large discrepancies exist between the measured and previously determined dispersion measures for the three pulsars listed in Table 10. Small, but significant, changes in the absolute value of the dispersion measure may be accounted for by dispersion measure variations (see, for example, Hobbs et al. 2004). The largest discrepancy in Table 10 exists for PSR J0905–4536. Earlier archived observations of this pulsar from the Parkes telescope also suggest a much higher dispersion measure value than that obtained by D'Amico et al. (1998). We therefore believe that this earlier result was in error.

### 4 CONCLUSION

Observations for the Parkes multibeam pulsar survey have been completed. Processing of the data has so far led to over 700 new pulsar discoveries. Combining the new discoveries with redetections of previously known pulsars results in a sample of almost 1000 pulsars in the Galactic plane that have been analysed in a similar fashion. When we have completed processing the data from the multibeam survey, a well-defined sample of pulsars in the Galactic plane will exist with flux densities and dispersion measures all acquired in an identical manner. This sample will be used to update earlier studies of the pulsar population such as determining the pulsar birthrate and the total number of active pulsars in the Galaxy.

**Table 8.** Flux density measurements at 1400 MHz for those pulsars with no previously catalogued value at this observing frequency, but do have an earlier flux measurement at 400 MHz. If a value exists in the literature at 600 MHz then this is also provided along with the spectral index obtained from the 1400 and 400 MHz values. References for these flux density measurements are 1. Manchester, Newton & Cooke (private communication), 2. Qiao et al. (1995), 3. Manchester et al. (1996), 4. Lyne et al. (1998), 5. Stokes et al. (1986) 6. Lorimer et al. (1995) 7. Camilo & Nice (1995) 8. Lorimer, Camilo & Xilouris (2002), 9. Hulse & Taylor (1975) and 10. Costa, McCulloch & Hamilton (1991). Unfortunately, not all the  $S_{400}$  measurements have been published with corresponding uncertainties. Taking a typical uncertainty of 10 per cent leads to an error in the spectral index determination of  $\sim 0.3$ .

| PSR J      | PSR B      | DM<br>(cm <sup>-3</sup> pc) | S <sub>1400</sub> (mJy) | S <sub>400</sub> (mJy) | S <sub>600</sub> (mJy) | SI   | Ref.<br>S <sub>400</sub> | Ref.<br>S <sub>600</sub> |
|------------|------------|-----------------------------|-------------------------|------------------------|------------------------|------|--------------------------|--------------------------|
| J0828-3417 | B0826-34   | 52.3(8)                     | 0.25(4)                 | 16                     | _                      | -3.3 | 1                        |                          |
| J0842-4851 | B0840 - 48 | 196.85(8)                   | 0.62(7)                 | 6.2                    | _                      | -1.8 | 1                        | _                        |
| J0904-4246 | B0903-42   | 145.8(5)                    | 0.60(7)                 | 8                      | 4                      | -2.1 | 1                        | 2                        |
| J0905-4536 | _          | 182.5(14)                   | 0.83(9)                 | 13                     | _                      | -2.2 | 3                        | _                        |
| J0924-5814 | B0923-58   | 57.4(3)                     | 4.3(4)                  | 22                     | _                      | -1.3 | 1                        | _                        |
| J1042-5521 | B1039-55   | 306.5(4)                    | 0.62(7)                 | 14                     | _                      | -2.5 | 1                        | _                        |
| J1112-6613 | B1110-65   | 249.5(5)                    | 2.6(3)                  | 19                     | 11                     | -1.6 | 1                        | 10                       |
| J1121-5444 | B1119-54   | 204.5(3)                    | 1.30(14)                | 24                     | _                      | -2.3 | 1                        | _                        |
| J1123-6259 | _          | 223.14(9)                   | 0.56(7)                 | 11                     | _                      | -2.4 | 4                        | _                        |
| J1239-6832 | B1236-68   | 94.3(3)                     | 0.96(11)                | 6.5                    | _                      | -1.5 | 1                        | _                        |
| J1259-6741 | B1256-67   | 94.7(9)                     | 1.30(14)                | 4.5                    | _                      | -1.0 | 1                        | _                        |
| J1326-6700 | B1322-66   | 209.6(3)                    | 11.0(11)                | 28                     |                        | -0.8 | 1                        | _                        |
| J1603-5657 | _          | 264.02(16)                  | 0.53(6)                 | 8                      |                        | -2.2 | 4                        | _                        |
| J1622-4332 | _          | 230.5(12)                   | 0.53(6)                 | 16                     | _                      | -2.7 | 4                        | _                        |
| J1700-3312 | _          | 166.7(7)                    | 1.20(13)                | 21                     | _                      | -2.3 | 3                        | _                        |
| J1703-4851 | _          | 151.4(3)                    | 1.10(12)                | 22                     | _                      | -2.4 | 3                        | _                        |
| J1705-3423 | _          | 146.30(7)                   | 4.1(4)                  | 31                     | _                      | -1.6 | 3                        | _                        |
| J1732-4128 | B1729-41   | 195.3(4)                    | 0.63(7)                 | 9                      | _                      | -2.1 | 1                        | _                        |
| J1806-1154 | B1804-12   | 122.0(11)                   | 2.6(3)                  | 4                      | _                      | -0.3 | 5                        | _                        |
| J1816-2650 | B1813-26   | 128.0(5)                    | 1.10(12)                | 18                     | 10.5                   | -2.2 | 6                        | 6                        |
| J1834-0010 | B1831-00   | 88.2(4)                     | 0.29(4)                 | 5.1                    | 2.8                    | -2.3 | 6                        | 6                        |
| J1848+0826 | _          | 90.4(3)                     | 0.11(2)                 | 2.8                    |                        | -2.6 | 7                        | _                        |
| J1854+1050 | B1852+10   | 208(12)                     | 1.03(14)                | 11                     | _                      | -1.9 | 5                        | _                        |
| J1901+0156 | B1859+01   | 102.8(4)                    | 0.38(5)                 | 13.7                   | 4.2                    | -2.9 | 6                        | 6                        |
| J1902+0723 | _          | 105.0(4)                    | 0.17(3)                 | 0.6                    | _                      | -1.0 | 7                        | _                        |
| J1904+1011 | B1901+10   | 136.0(20)                   | 0.58(7)                 | 4.4                    | _                      | -1.6 | 8                        | _                        |
| J1908+0500 | _          | 201.27(17)                  | 0.79(9)                 | 6.1                    | _                      | -1.6 | 7                        | _                        |
| J1908+0734 | _          | 11.09(15)                   | 0.54(6)                 | 3.5                    | _                      | -1.5 | 7                        | _                        |
| J1908+0916 | B1906+09   | 249.8(5)                    | 0.23(3)                 | 5                      | _                      | -2.5 | 9                        | _                        |
| J1910+0358 | B1907+03   | 78.0(8)                     | 1.50(16)                | 21                     | 16                     | -2.1 | 6                        | 6                        |
| J1910+0714 | _          | 125.5(15)                   | 0.36(5)                 | 5.4                    | _                      | -2.2 | 7                        | _                        |
| J1910+1231 | B1907+12   | 257.7(7)                    | 0.28(4)                 | 5                      | _                      | -2.3 | 9                        | _                        |
| J1912+1036 | B1910+10   | 147.0(6)                    | 0.22(3)                 | 1.6                    | _                      | -1.6 | 8                        | _                        |
| J1913+0936 | B1911+09   | 156.5(11)                   | 0.14(2)                 | 0.8                    | _                      | -1.4 | 8                        | _                        |
| J1914+1122 | B1911+11   | 100(10)                     | 0.55(7)                 | 1.1                    | 0.9                    | -0.6 | 6                        | 6                        |
| J1915+0738 | _          | 39.3(6)                     | 0.34(4)                 | 1.9                    | _                      | -1.4 | 7                        | _                        |
| J1930+1316 | B1927+13   | 207.6(4)                    | 0.18(3)                 | 5                      | _                      | -2.6 | 9                        | _                        |
| J1933+1304 | B1930+13   | 177.0(6)                    | 0.42(5)                 | 2.0                    | _                      | -1.2 | 8                        | _                        |

### **ACKNOWLEDGMENTS**

We gratefully acknowledge the technical assistance with hardware and software provided by Jodrell Bank Observatory, CSIRO ATNF, Osservatorio Astronomico di Bologna and the Swinburne Centre for Astrophysics and Supercomputing. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The Arecibo Observatory, a facility of the National Astronomy and Ionosphere Centre, is operated by Cornell University under a cooperative agreement with the US National Science Foundation. IHS holds an NSERC UFA and is supported by a Discovery Grant. DRL is a University Research Fellow funded by the Royal Society. FC acknowledges support from NSF grant AST-02-05853



**Figure 4.** Flux density measurement comparisons. The new flux densities and previously published flux densities listed in Table 7 are compared. The solid lines indicate equality between the catalogued and measured flux values.

and a NRAO travel grant. VMK is a Canada Research Chair and is supported by an NSERC Discovery Grant and Steacie Supplement, by NATEQ, CIAR and NASA. NDA, AP and MB received support from the Italian Ministry of University and Research (MIUR) under the national program *Cofin* 2002.

### REFERENCES

Bailes M. et al., 1997, ApJ, 481, 386

Baring M. G., Harding A. K., 2001, ApJ, 547, 929

Blandford R., Teukolsky S. A., 1976, ApJ, 205, 580

Camilo F., Nice D. J., 1995, ApJ, 445, 756

Camilo F. et al., 2001a, ApJ, 557, L51

Camilo F. et al., 2001b, ApJ, 548, L187

Camilo F., Manchester R. N., Gaensler B. M., Lorimer D. R., 2002a, ApJ, 579, L25

Camilo F., Manchester R. N., Gaensler B. M., Lorimer D. L., Sarkissian J., 2002b, ApJ, 567, L71

Chen K., Ruderman M., 1993, ApJ, 408, 179

Clifton T. R., Lyne A. G., Jones A. W., McKenna J., Ashworth M., 1992, MNRAS, 254, 177

Cordes J. M., Lazio T. J. W., 2002, preprint (astro-ph/0207156)

Costa M. E., McCulloch P. M., Hamilton P. A., 1991, MNRAS, 252, 13

D'Amico N., Stappers B. W., Bailes M., Martin C. E., Bell J. F., Lyne A. G., Manchester R. N., 1998, MNRAS, 297, 28

Deich W. T. S., Middleditch J., Anderson S. B., Kulkarni S. R., Prince T. A., Wolszczan A., 1993, ApJ, 410, L95

Dowd A., Sisk W., Hagen J., 2000, in Kramer M., Wex N., Wielebinski R., eds, IAU Coll. 177, Pulsar Astronomy – 2000 and Beyond. Astron. Soc. Pac., San Francisco, p. 275

Edwards R. T., Bailes M., 2001, ApJ, 553, 801

Edwards R. T., Bailes M., van Straten W., Britton M. C., 2001, MNRAS, 326, 358

Gómez G. C., Benjamin R. A., Cox D. P., 2002, in Henney W. J., Franco J., Martos M., Peña M., eds, Rev. Mex. Astron. Astrof. Conf. Series, 12, 39

Haslam C. G. T., Stoffel H., Salter C. J., Wilson W. E., 1982, A&AS, 47, 1

Hobbs G., 2002, PhD thesis, Univ. Manchester

Hobbs G. et al., 2004, MNRAS, submitted

Hulse R. A., Taylor J. H., 1975, ApJ, 201, L55

**Table 9.** Dispersion measure values that have been measured more than an order-of-magnitude more precisely than in earlier studies. The earlier dispersion measures  $(DM_{cat})$  and the new measurements (DM) have been obtained from Table 7.

| PSR J                    | PSR B       | DM <sub>cat</sub><br>(cm <sup>-3</sup> pc) | DM<br>(cm <sup>-3</sup> pc) |
|--------------------------|-------------|--------------------------------------------|-----------------------------|
|                          |             |                                            |                             |
| J0842-4851               | B0840-48    | 197.0(10)                                  | 196.85(8)                   |
| J0907-5157               | B0905-51    | 104.0(7)                                   | 103.72(6)                   |
| J1001-5507               | B0959-54    | 130(2)                                     | 130.32(17)                  |
| J1032-5911               | B1030-58    | 419(5)                                     | 418.20(17)                  |
| J1107-5947               | B1105-59    | 159(19)                                    | 158.4(11)                   |
| J1239-6832               | B1236-68    | 96(5)                                      | 94.3(3)                     |
| J1326-6408               | B1323-63    | 505(5)                                     | 502.7(4)                    |
| J1327-6222               | B1323-62    | 318.4(9)                                   | 318.80(6)                   |
| J1340-6456               | B1336-64    | 77(2)                                      | 76.99(13)                   |
| J1537-49                 | _           | 65(4)                                      | 65.0(3)                     |
| J1602-5100               | B1558-50    | 172(1)                                     | 170.93(7)                   |
| J1639-4604               | B1635-45    | 259(2)                                     | 258.91(4)                   |
| J1646-4346               | B1643-43    | 490(5)                                     | 490.4(3)                    |
| J1717-3425               | B1714-34    | 587.7(7)                                   | 585.21(6)                   |
| J1717-3423<br>J1717-4054 | B1713-40    | 317(9)                                     | 308.5(5)                    |
|                          |             |                                            |                             |
| J1732-4128               | B1729-41    | 195(5)                                     | 195.3(4)                    |
| J1801-2451               | B1757-24    | 289.0(10)                                  | 289.01(4)                   |
| J1826-1334               | B1823-13    | 231.0(10)                                  | 231.09(8)                   |
| J1827-0958               | B1824-10    | 430(4)                                     | 430.1(3)                    |
| J1833-0827               | B1830-08    | 411(2)                                     | 410.925(12)                 |
| J1844+00                 | _           | 335(67)                                    | 345.54(20)                  |
| J1844-0310               | _           | 836(7)                                     | 836.1(5)                    |
| J1845-0316               | _           | 500(5)                                     | 500.00(14)                  |
| J1852+0031               | B1849+00    | 787(17)                                    | 798.2(16)                   |
| J1859+00                 | _           | 412(82)                                    | 420(3)                      |
| J1901+00                 | _           | 346(69)                                    | 345.5(11)                   |
| J1905+0616               | _           | 259(7)                                     | 257.9(6)                    |
| J1908+0916               | B1906+09    | 250(20)                                    | 249.8(5)                    |
| J1916+07                 | _           | 305(30)                                    | 305.1(8)                    |
| J1916+1030               | B1913+105   | 387(10)                                    | 387.2(3)                    |
| 01/10   1000             | 21713   103 | 307(10)                                    | 307.2(3)                    |

**Table 10.** DM measurements that are different from earlier work. Pulsars are included in this table if they are more than  $3\sigma$  discrepant and have a difference in DM greater than  $5\text{cm}^{-3}$  pc. References are 1. D'Amico et al. (1998) and 2. Newton, Manchester & Cooke (1981).

| PSR J      | PSR B    | DM <sub>cat</sub><br>(cm <sup>-3</sup> pc) | DM<br>(cm <sup>-3</sup> pc) | Ref. |
|------------|----------|--------------------------------------------|-----------------------------|------|
| J0905-4536 | _        | 116.8(2)                                   | 182.5(14)                   | 1    |
| J1440-6344 | B1436-63 | 124.2(5)                                   | 130.2(5)                    | 2    |
| J1651-4246 | B1648-42 | 525(8)                                     | 482(3)                      | 2    |

Johnston S., Lyne A. G., Manchester R. N., Kniffen D. A., D'Amico N., Lim J., Ashworth M., 1992, MNRAS, 255, 401

Kaspi V. M., Crawford F., Manchester R. N., Lyne A. G., Camilo F., D'Amico N., Gaensler B. M., 1998, ApJ, 503, L161

Kramer M., Xilouris K. M., Lorimer D. R., Doroshenko O., Jessner A., Wielebinski R., Wolszczan A., Camilo F., 1998, ApJ, 501, 270

Kramer M. et al., 2003, MNRAS, 342, 1299

Lommen A. N., 2002, in Becker W., Lesch H., Trumper J., eds, MPE Report 278, Neutron Stars, Pulsars, and Supernova Remnants. Max-Planck-Institut für extraterrestrische Physik, Garching, p. 114

Lorimer D. R., Xilouris K. M., 2000, ApJ, 545, 385

- Lorimer D. R., Yates J. A., Lyne A. G., Gould D. M., 1995, MNRAS, 273, 411
- Lorimer D. R., Camilo F., Xilouris K. M., 2002, ApJ, 123, 1750
- Lyne A. G. et al., 1998, MNRAS, 295, 743
- McLaughlin M. A. et al., 2003a, ApJ, 591, L135
- McLaughlin M. A. et al., 2003b, in Camilo F., Gaensler B. M., eds, ASP Conf. Proc., IAU Symposium 218, Young neutron stars and their environment. Astron. Soc. Pac., San Francisco, in press
- Manchester R. N., Lyne A. G., Taylor J. H., Durdin J. M., Large M. I., Little A. G., 1978, MNRAS, 185, 409
- Manchester R. N. et al., 1996, MNRAS, 279, 1235
- Manchester R. N. et al., 2001, MNRAS, 328, 17
- Maron O., Kijak J., Kramer M., Wielebinski R., 2000, in Kramer M., Wex N., Wielebinski R., eds, IAU Coll. 177, Pulsar Astronomy 2000 and Beyond. Astron. Soc. Pac., San Francisco, p. 227
- Mohanty D. K., 1983, in Danziger J., Gorenstein P., eds, IAU Symp. 101, Supernova Remnants and their X-ray emission. Dordrecht, Reidel, p. 503

- Morris D. J. et al., 2002, MNRAS, 335, 275
- Newton L. M., Manchester R. N., Cooke D. J., 1981, MNRAS, 194, 841
- Nice D. J., Fruchter A. S., Taylor J. H., 1995, ApJ, 449, 156
- Qiao G. J., Manchester R. N., Lyne A. G., Gould D. M., 1995, MNRAS, 274, 572
- Reich P., Reich W., 1988, A&A, 196, 211
- Stokes G. H., Segelstein D. J., Taylor J. H., Dewey R. J., 1986, ApJ, 311, 694
- Tauris T. M., van den Heuvel E. P. J., 2003, preprint (astro-ph/0303456)
- Tauris T. M., van den Heuvel E. P. J., Savonije G. J., 2000, ApJ, 530, L93
- Taylor J. H., Cordes J. M., 1993, ApJ, 411, 674
- Toscano M., Bailes M., Manchester R., Sandhu J., 1998, ApJ, 506, 863
- Van Vleck J. H., Middleton D., 1966, Proc. IEEE, 54, 2

This paper has been typeset from a  $T_EX/L^2T_EX$  file prepared by the author.