

Credit Risk Loan Prediction

October 29th

Radif Ramadan

https://www.linkedin.com/in/radiframadan/

Objectives Analysis

Lendings

Automating lending decisions with credit risk model

Prediction

Building a credit risk prediction model using the Loan Dataset from Rakamin

Efficiency

Increased efficiency through automated lending decisions

Business Understanding

- The company handles loan applications: The dataset supplied by ID/X partners from Rakamin includes both approved and declined loan data, indicating the company's involvement in processing loan applications.
- Managing credit risk is a priority for the company: The company's desire
 to develop a model for predicting credit risk indicates that managing
 credit risk is a top priority. This is because the company aims to prevent
 lending to individuals who are unlikely to repay, as this could lead to
 financial loses.
- The model will facilitate the company's lending decisions: The model under construction is expected to play a key role in shaping lending decisions. By predicting credit risk, the model will aid the company in determining whether to approve or deny loan applications, and may also impact the loan terms, such as the interest rate.

Data Understanding

```
<class 'pandas.core.frame.DataFrame'>
                                                                    24 dti
                                                                                                    466285 non-null float64
Int64Index: 466285 entries, 0 to 466284
                                                                    25 delina 2vrs
                                                                                                    466256 non-null float64
Data columns (total 74 columns):
                                                                    26 earliest cr line
                                                                                                    466256 non-null object
    Column
                                                                    27 inq_last_6mths
                                                                                                    466256 non-null
                                Non-Null Count
                                                                    28 mths since last deling
                                                                                                    215934 non-null float64
                                                                    29 mths since last record
                                                int64
                                                                                                    62638 non-null
                                                                                                                    float64
                                466285 non-null
                                466285 non-null
                                                                    30 open acc
                                                                                                    466256 non-null float64
     member id
                                                 int64
                                                                                                    466256 non-null float64
    loan amnt
                                466285 non-null int64
                                                                    31 pub_rec
                                                                    32 revol bal
                                                                                                    466285 non-null int64
     funded amnt
                                466285 non-null int64
     funded amnt inv
                                466285 non-null
                                                 float64
                                                                    33 revol util
                                                                                                    465945 non-null float64
                                                                                                    466256 non-null
                                                                                                                    float64
                                466285 non-null object
                                                                    34 total acc
                                                                    35 initial list status
    int_rate
                                466285 non-null float64
                                                                                                    466285 non-null
                                                                    36 out prncp
                                                                                                    466285 non-null
    installment
                                466285 non-null float64
                                                                    37 out prncp inv
                                                                                                    466285 non-null
                                                                                                                    float64
                                466285 non-null
                                                 object
                                                                                                    466285 non-null float64
                                466285 non-null
                                                                    38 total pymnt
     sub grade
                                                 object
                                                                                                    466285 non-null float64
    emp_title
                                438697 non-null
                                                 object
                                                                    39 total_pymnt_inv
                                                                    40 total_rec_prncp
                                                                                                    466285 non-null
                                                                                                                    float64
11 emp length
                                445277 non-null
                                                 object
12 home ownership
                                466285 non-null object
                                                                    41 total_rec_int
                                                                                                    466285 non-null
                                                                    42 total_rec_late_fee
                                                                                                    466285 non-null float64
 13 annual inc
                                466281 non-null
                                                float64
                                                                    43 recoveries
                                                                                                    466285 non-null float64
    verification status
                                466285 non-null
                                                                    44 collection recovery fee
                                                                                                    466285 non-null float64
15 issue d
                                466285 non-null
                                                object
                                                                                                    465909 non-null
 16 loan_status
                                466285 non-null object
                                                                    45 last pymnt d
17 pymnt_plan
                                466285 non-null
                                                 object
                                                                    46 last pymnt amnt
                                                                                                    466285 non-null float64
18 url
                                                                    47 next pymnt d
                                                                                                    239071 non-null
                                466285 non-null
                                                 object
19 desc
                                125983 non-null object
                                                                    48 last credit pull d
                                                                                                    466243 non-null
    purpose
                                466285 non-null object
                                                                        collections_12_mths_ex_med
                                                                                                    466140 non-null
 21 title
                                466265 non-null object
                                                                    50 mths since last major derog 98974 non-null
22 zip code
                                466285 non-null object
                                                                    51 policy code
                                                                                                    466285 non-null int64
 23 addr state
                                466285 non-null object
                                                                    52 application type
                                                                                                    466285 non-null object
```

53	annual_inc_joint	0 non-null	float64
54	dti_joint	0 non-null	float64
55	verification_status_joint	0 non-null	float64
56	acc_now_delinq	466256 non-null	float64
57	tot_coll_amt	396009 non-null	float64
58	tot_cur_bal	396009 non-null	float64
59	open_acc_6m	0 non-null	float64
60	open_il_6m	0 non-null	float64
61	open_il_12m	0 non-null	float64
62	open_i1_24m	0 non-null	float64
63	mths_since_rcnt_il	0 non-null	float64
64	total_bal_il	0 non-null	float64
65	il_util	0 non-null	float64
66	open_rv_12m	0 non-null	float64
67	open_rv_24m	0 non-null	float64
68	max_bal_bc	0 non-null	float64
69	all_util	0 non-null	float64
70	total_rev_hi_lim	396009 non-null	float64
71	inq_fi	0 non-null	float64
72	total_cu_tl	0 non-null	float64
73	inq_last_12m	0 non-null	float64
	es: float64(46), int64(6), o ry usage: 266.8+ MB	bject(22)	

 Datasets comprises 74 columns with 466,285 rows, each column featuring various data types.

- Included 22 Categorical and 52 Numerical features.
- Data types include int64, float64 and object

Statistical Descriptive

Numerical Columns

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	int_rate	installment	annual_inc	dti	delinq_2yrs
count	4.662850e+05	4.662850e+05	466285.000000	466285.000000	466285.000000	466285.000000	466285.000000	4.662810e+05	466285.000000	466256.000000
mean	1.307973e+07	1.459766e+07	14317.277577	14291.801044	14222.329888	13.829236	432.061201	7.327738e+04	17.218758	0.284678
std	1.089371e+07	1.168237e+07	8286.509164	8274.371300	8297.637788	4.357587	243.485550	5.496357e+04	7.851121	0.797365
min	5.473400e+04	7.047300e+04	500.000000	500.000000	0.000000	5.420000	15.670000	1.896000e+03	0.000000	0.000000
25%	3.639987e+06	4.379705e+06	8000.000000	8000.000000	8000.000000	10.990000	256.690000	4.500000e+04	11.360000	0.000000
50%	1.010790e+07	1.194108e+07	12000.000000	12000.000000	12000.000000	13.660000	379.890000	6.300000e+04	16.870000	0.000000
75%	2.073121e+07	2.300154e+07	20000.000000	20000.000000	19950.000000	16.490000	566.580000	8.896000e+04	22.780000	0.000000
max	3.809811e+07	4.086083e+07	35000.000000	35000.000000	35000.000000	26.060000	1409.990000	7.500000e+06	39.990000	29.000000

8 rows × 52 columns

	total_bal_il	il_util	open_rv_12m	open_rv_24m	max_bal_bc	all_util	total_rev_hi_lim	inq_fi	total_cu_tl	inq_last_12m
	0.0	0.0	0.0	0.0	0.0	0.0	3.960090e+05	0.0	0.0	0.0
22	NaN	NaN	NaN	NaN	NaN	NaN	3.037909e+04	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	3.724713e+04	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	0.000000e+00	NaN	NaN	NaN
1.1	NaN	NaN	NaN	NaN	NaN	NaN	1.350000e+04	NaN	NaN	NaN
22	NaN	NaN	NaN	NaN	NaN	NaN	2.280000e+04	NaN	NaN	NaN
	NaN	NaN	NaN	NaN	NaN	NaN	3.790000e+04	NaN	NaN	NaN
222	NaN	NaN	NaN	NaN	NaN	NaN	9.999999e+06	NaN	NaN	NaN

Statistical Descriptive

Categorical Columns

	count	unique	top	freq
term	466285	2	36 months	337953
grade	466285	7	В	136929
sub_grade	466285	35	B3	31686
emp_title	438697	205475	Teacher	5399
emp_length	445277	11	10+ years	150049
home_ownership	466285	6	MORTGAGE	235875
verification_status	466285	3	Verified	168055
issue_d	466285	91	Oct-14	38782
loan_status	466285	9	Current	224226
pymnt_plan	466285	2	, n	466276
url	466285	466285	https://www.lendingclub.com/browse/loanDetail	1
desc	125983	124436		234
purpose	466285	14	debt_consolidation	274195
title	466265	63099	Debt consolidation	164075
zip_code	466285	888	945xx	5304
addr_state	466285	50	CA	71450
earliest_cr_line	466256	664	Oct-00	3674
initial_list_status	466285	2		303005
last_pymnt_d	465909	98	Jan-16	179620
next_pymnt_d	239071	100	Feb-16	208393
last_credit_pull_d	466243	103	Jan-16	327699
application_type	466285	1	INDIVIDUAL	466285

Loan Status:

From the loan_status category, separated into various categories, to be divided into 2 categories, namely good_loan and bad_loan, which will be used as data labels

Loan Status

Loan Purpose:

The reason for borrowing credit is often for the purpose of debt consolidation and credit card usage. Additionally, there are some borrowing intentions not specified in the adjacent graph by year

Loan Purpose

Total Loan Amount by Top 5th Purpose by Year:

Here are the top 5 loan totals based on the borrowing purposes per year, indicating that debt consolidation appears to have the highest value

Borrower's Country of Origin

Borrower's Country of Origin:

The most active country utilizing the loan services is CA, according to the ISO 3166, which refers to Canada

The Status of Home Ownership

The Status of Home Ownership:

The majority of borrowers' home ownership status is Mortgage, which is used as collateral for the loan, while the remainder is solely Rent and Own.

Employment Title Borrower's

Employment Title Borrower's:

There are several borrowers based on their job titles, and here it is evident that the job of a teacher has the highest number of loan applications

Total Loan Amount

Total Loan Amount by Year:

Here are the total loan amounts per year from 2007 to 2014.

Loan Grade

Loan Grade:

This visualization contains loan grades commonly taken by borrowers, and it appears that grade B loans are predominantly used.

Customer Income Category:

Several borrowers are categorized into income groups, and those with low income are the ones who utilize loans the most.

The Dataset is untidy.

- Remove unnecessary data with numerous duplicates.
- Remove Data with NaN values in every row.

Following the data cleansing process, 50 out of 74 columns remain

```
Clean Data
[ ] # For Categorical Data
     print('shape before drop = '.df.shape)
     df_clean = df.drop(columns=['member_id','id','emp_title','url','desc','title','zip_code','policy_code','application_type'], axis=1)
     df_clean.drop_duplicates(inplace=True)
    print('shape after drop = ',df_clean.shape)
     shape before drop = (466285, 76)
     shape after drop = (466285, 67)
    Drop data yang tidak diperlukan di modeling dan memiliki duplikat
[ ] # For Numerical Data
    print('shape before drop = ',df clean.shape)
     df clean = df clean.drop(columns=f'annual inc joint', 'dti joint', 'verification status joint', 'open acc 6m', 'open il 6m', 'open il 12m', 'open il 24m', 'mths since rcnt il',
     'mths since ront il','total bal il','il util','open rv 12m','open rv 24m','max bal bc','all util','ing fi','ing last 12m','total cu tl'], axis=1)
    print('shape after drop = ',df clean.shape)
     shape before drop = (466285, 67)
     shape after drop = (466285, 50)
    Drop data yang memiliki nilai NaN pada setiap barisnya
```


Labelling Data

We must transform the target column into a binary value based on the loan status conditions. Specifically, ['Charged Off', 'Default', 'Does not meet the credit policy. Status: Charged Off', 'Late (31-120 days)', 'Late (16-30 days)'] are considered bad statuses, while all other statuses are regarded as good.

Before

Current	224226	
Fully Paid	184739	
Charged Off	42475	
Late (31-120 days)	6900	After
In Grace Period	3146	Aitei
Does not meet the credit policy. Status:Fully Paid	1988	
Late (16-30 days)	1218	
Default	832	
Does not meet the credit policy. Status:Charged Off	761	
Name: loan_status, dtype: int64		

Fully Paid
Charged Off
Fully Paid
Fully Paid
Current
Current
Charged Off
Current
1
Charged Off
Current
1
Fully Paid

Current

loan_status good/bad

Features Numerical Data

olom vang berkolasi diatas > 0.1 memiliki isi data yang ambigu

```
loan_status
                           1.000000
recoveries
                           0.435352
collection recovery fee
                           0.295281
total rec prncp
                           0.254255
total pymnt inv
                           0.194638
                                                 affect num cols
total pymnt
                           0.193977
                           0.174648
int rate
                           0.170164
last pymnt amnt
total rec late fee
                           0.151624
                                                 ['recoveries'.
out prncp
                           0.150442
out_prncp_inv
                           0.150430
                                                    'collection_recovery_fee',
inq_last_6mths
                           0.073109
                           0.064644
                                                   'total rec prncp',
revol_util
                           0.051020
tot_cur_bal
                           0.050865
                                                   'int rate',
dti
                           0.049092
                           0.037735
total rev hi lim
                                                   'last pymnt amnt',
total rec int
                           0.022833
mths since last record
                           0.022542
                                                    'total rec late fee',
total acc
                           0.022366
revol bal
                           0.018536
                                                    'out prncp'.
emp length
                           0.016499
installment
                           0.015347
                                                    'out prncp inv'l
loan amnt
                           0.013181
funded_amnt
                           0.012401
funded amnt inv
                           0.008686
                           0.008279
pub rec
open acc
                           0.005270
                           0.004850
mths_since_last_deling
mths since last major derog
                           0.004253
collections 12 mths ex med
                           0.004126
                           0.002872
delina 2yrs
tot_coll_amt
                           0.001178
acc_now_deling
                           0.000083
Name: loan status, dtvpe: float64
```

Name: loan_status, dtype: float64

Ita akan menggunakan numerical yang memiliki korelasi di atas > 0,1 dengan loan_status sebagai feature numeric. Namun ada beberapa

We have several numerical features related to Loan_Status,

and we will select some columns to be used as features with a correlation value > 0.1.

It is worth noting that some columns with correlation values > 0.1 have ambiguous data values.

After consideration, these columns are the ones that become the numerical features.

Features Categorical Data (date)

After that, we have categorical features that contain date information, and we will similarly apply it by using columns that have a correlation > 0.1.

```
affect_date_cols
['issue_d', 'last_pymnt_d', 'last_credit_pull_d', 'next_pymnt_d']
```

Kita akan menggunakan kategori date yang memiliki korelasi di atas > 0,1 dengan loan_status sebagai feature kategori (date)

Features Categorical Data (date)

Similar to the previous categorical feature, we will use columns as features that have a correlation with loan_status > 0.1.

However, we encounter an issue with the sub_grade column, which evidently holds a better position for use as a feature grade

```
# Fitur kategorikal yang akan kita gunakan
affect cat cols = ["grade"]
```

Kita akan menggunakan kategori yang memiliki korelasi di atas > 0,1 dengan loan_status sebagai feature kategori

Model Evaluation

Random Forest Classifier Evaluation

This model provides predictions with 103281 True Positives and 11904 True Negatives.

Model Evaluation

ROC AUC Evaluation & Feature Importance

Thanks!

I apologize for any shortcomings in this project.

I welcome any critique and suggestions to improve it in the future.

