MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA

MPE_EKON: ÚLOHA 1

Nikola Franková (437214), Miriam Moramová (434122), Michaela Poláková (434339)

ÚVOD

Akciové trhy sú neodmysliteľnou súčasťou vyspelých ekonomík. Spoločnosti aj individuálni investory chcú poznať očakávaný výnos tržného portfólia, pred tým, než sa rozhodnú k jeho kúpe. Model CAPM používaný v tejto práci vysvetľuje vzťah medzi výnosnosťou individuálnej akcie a výnosnosťou tržného portfólia.

ÚLOHA 1

V tejto práci sú použité dáta Dow Jones Industrial Average, známy aj ako Dow Jones s 30timi akciovými titulmi. Dáta predstavujú uzavieracie mesačné ceny akcií v období od februára 2014 do februára 2019. Ročnú úrokovú sadzbu trojmesačnej pokladničnej poukážky sme transformovali na mesačnú úrokovú mieru prostredníctvom nasledujúceho vzťahu:

bezriziková úr. miera =
$$\left(\frac{\text{úr. miera 3 - mesačných pokl.poukažok}}{100} + 1\right)^{\frac{1}{12}} - 1.$$

Dáta sme importovali do softwaru Gretl a pre radu celého trhu a radu jednotlivých titulov sme určili príslušné mesačné výnosy - celý trh (v_{DJIA}) a jednotlivé akcie $(v_{AAPL}), (v_{AXP}), \ldots$ Na obrázku 10 je znázorený graf vývoja bezrizikovej úrokovej miery a na obrázkoch 3, 4, 5, 6, 7 a 8 sú zobrazené grafy jednotlivých akcií zoskupené po piatich.

Obr. 1: Vývoj bezrizikovej úrokovej miery.

Obr. 2: Vývoj tržných mesačných výnosov.

Obr. 3: Vývoj cien 1. - 5. akciového titulu

Obr. 4: Vývoj cien 6. - 10. akciového titulu

Obr. 5: Vývoj cien 11. - 15. akciového titulu

Obr. 6: Vývoj cien 16. - 20. akciového titulu

Obr. 7: Vývoj cien 21. - 25. akciového titulu

Obr. 8: Vývoj cien 26. - 30. akciového titulu

ÚLOHA 2

Odhadnuté koeficienty β_1 sú ukázané v tabuľke 1. Akciám, ktorých koeficient je $\beta_i > 1$, hovoríme agresívne. To znamená, že výnosy akcie viacej "skáču", než výnosy celého trhu - je tu väčšia variabilita a teda aj riziko. Naopak ak je koeficient $\beta_i < 1$, akcie sú defenzívne. V tomto prípade je variabilita daného titulu menšia než tržná, čiže tieto akcie sú vhodné pre konzervatívnejších investorov. V situácií, kedy sa koeficient blíži k 1, teda ($\beta_i \approx 1$), výnosy akcií sa pohybujú podobne ako tržné výnosy. V tabuľke 1 vidíme, že koeficient β_1 je štatisticky významný pre všetky tituly na hladine významnosti 5%. Grafy vybraných charakteristických kriviek sú zobrazené na obrázku 9.

ÚLOHA 3

V tejto úlohe testujeme hypotézu, že úrovňová konštanta v CAPM modeli je pre každý akciový titul rovná nule oproti alternatíve, že konštanta je štatisticky významná, tj.:

$$H_0: \alpha_j = 0,$$

 $H_1: \alpha_j \neq 0.$

Podľa teórie by nulová hypotéza nemala byť zamietnutá. V opačnom prípade môžeme usudzovať, že na akciový trh pôsobia externé vplyvy, ktoré nie sú týmto modelom vysvetlené, a zároveň nie sú náhodné. Na základe tabuľky 1 vidíme, že úrovňové konštanty všetkých modelov sa javia štatisticky nevýz-

namné na hladine významnosti 5%, s výnimkou titulu UNH. Príčinou tejto významnosti môžu byť spomínané externé vplyvy.

Názov akciového titulu	konštanta	p-hodnota	$\boldsymbol{\beta_{\mathtt{1}}}$	p-hodnota
AAPL	0,00842259	0,3313	0,981499	0,0003
AXP	-0,00478895	0,4193	1,13455	2,67e-08
BA	0,0115158	0,1199	1,43927	1,49e-08
CAT	-0,00343025	0,6497	1,4903	1,30e-08
CSCO	0,00672801	$0,\!2623$	1,15481	$2,\!18e\text{-}08$
CVX	-0,00654030	$0,\!2869$	1,06323	$2,\!62e\text{-}07$
DIS	-0,00109416	0,8260	0,942151	3,70e-08
DWDP	-0,00668629	$0,\!2964$	1,23903	1,93e-08
GS	-0,00577837	$0,\!4272$	1,34472	$6,\!21e\text{-}08$
${ m HD}$	0,00648087	$0,\!2105$	1,02353	1,05e-08
$_{ m IBM}$	-0,0123901	0,0709	1,16641	$3{,}18e-07$
INTC	0,00804180	$0,\!2850$	0,771870	0,0010
JNJ	0,00136482	0,7470	0,701393	7,30e-07
$_{ m JPM}$	0,00188727	0,7237	1,20469	3,33e-010
KO	-0,00107976	0,8134	$0,\!529426$	0,0003
MCD	0,00682519	$0,\!1574$	$0,\!573011$	0,0002
MMM	-0,000439653	0,9181	1,06340	1,68e-011
MRK	$0,\!00220356$	0,7174	$0,\!564326$	0,0029
MSFT	0,0104899	$0,\!1061$	1,13734	1,74e-07
NKE	0,00887743	$0,\!1909$	0,669251	0,0015
PFE	-8,44918e-05	0,9862	0,704279	1,03e-05
PG	0,00124613	0,8069	$0,\!351983$	0,0243
TRV	-0,000188451	0,9658	1,10179	1,33e-011
UNH	0,0138907	$0,\!0185$	0,776333	$3{,}11e-05$
UTX	-0,00743521	$0,\!1187$	1,23225	$3,\!38e\text{-}012$
V	$0,\!0100357$	0,0553	0,869418	$5,\!08e-07$
VZ	-0,000378248	0,9505	0,511509	0,0067
WBA	-0,00446629	$0,\!5783$	0,893646	0,0004
WMT	$0,\!00220990$	0,7501	0,431496	0,0416
XOM	-0,00978997	0,0514	0,918309	$5,\!86e\text{-}08$

Tabuľka 1: Hodnoty konštanty, koeficientu β_1 a ich p-hodnoty.

Obr. 9: Grafy vybraných charakteristických kriviek

ÚLOHA 4

V rámci druhej fázy testovania CAPM modelu sa odhadne regresia previsov výnosov portfólií na svoje beta koeficienty, teda security market line. Keďže uvažujeme 30 titulov, vytvorili sme z nich 10 portfólií na základe podobnosti beta koeficientov. Uvažovali sme rovnaký podiel jednotlivých titulov v portfóliu, teda sme beta koeficienty portfólia zobrali ako aritmetické priemery

individuálnych beta koeficientov. Výsledok vidíme v tabuľke 2. Úrovňová konštanta je v tomto prípade štatisticky nevýznamná, čo je podľa očakávaní s ekonomickou teóriou. Podľa nej by na výnosnosť akcií mali mať vplyv len systematické riziká charakterizované beta koeficientami. Taktiež sme testovali, či vzťah medzi beta koeficientami a výnosami je lineárny. Pri pridaní kvadratického členu nezamietame nulovú hypotézu o nulovosti koeficientu.

Premenná	Koeficient	Štand.odchýlka	t-podiel	p-hodnota
konštanta	0,0193140	0,0159446	1,211	0,2603
beta	0,00448035	0,0161783	$0,\!2769$	0,7889

Tabuľka 2: Výsledky modelu k úlohe 4

Obr. 10: Graf SML.

ÚLOHA 5

V tejto úlohe zistíme, či existuje štrukturálny zlom, ktorý ovplyvňuje sklon koeficientu β , teda mieru špecifikovaného rizika. Na odhalenie najpravdepodobnejšieho miesta zlomu sme použili ORL test. Podľa tohto testu sa zlom nachádza v dobe 2016:03. Pre testovanie existencie štrukturálneho zlomu sme do CAPM modelu pridali interakciu medzi tržnými výnosami a umelou premennou, ktorá nadobúda hodnoty 1 v období od 2016:03 do 2019:02. Ďalej

testujeme hypotézu, že koeficient tejto interakcie je rovný nule. Túto hypotézu na hladine významnosti 5% zamietame iba pri tituloch DIS, IBM a WMT. V prípade titulu DIS došlo k zápornej zmene koeficientu, teda znížila sa rizikovosť tohto akciového titulu. U firmy IBM a WMT bola zaznamenaná kladná zmena, teda ich akcie sa stali agresívnejšie.

ÚLOHA 6

V tejto úlohe skúmame možnú asymetriu v koeficiente β . Túto situáciu testujeme podobne ako možnosť výskytu štrukturálneho zlomu v predchádzajúcej úlohe. Do pôvodného modelu pridáme interakciu medzi tržnými výnosmi a umelou premennou, ktorá nadobúda 1, keď tržné výnosy rastú. Následne testujeme, či koeficient novej vytvorenej umelej premennej je nulový. Na hladine významnosti 5% nezamietame nulovú hypotézu u všetkých titulov, okrem titulu AXP. Môžeme teda povedať, že rizikovosť akcií tohto titulu zavisí na tom, či je trh v období rastu alebo poklesu.

ÚLOHA 7

Teória hovorí, že vzťah medzi agregovanou rizikovou prémiou akciových titulov a ich beta koeficientami by mal byť lineárny, čo je potrebné overiť. V praxi sa jedná o rozšírenie modelu o mocniny beta koeficientov a prípadne o rozptyl reziduí z regresií jednotlivých titulov. Výsledky sú zhrnuté v tabuľke 3. Záverom testovania štatistickej významnosti jednotlivých parametrov je zistenie, že žiadny z príslušných parametrov nie je štatisticky významný na hladine významnosti 5%.

Premenná	Koeficient	Štand.odchýlka	t-podiel	p-hodnota
konštanta	-0,000909222	0,0116051	-0,07835	0,9382
beta	0,0128768	0,0251634	$0,\!5117$	0,6132
$\mathrm{beta^2}$	-0,00616514	0,0137054	-0,4498	0,6566
sigma	$1,\!55282$	1,63999	0,9468	$0,\!3524$

Tabuľka 3: Výsledky modelu k úlohe 7