Feuille d'exercices 17. Continuité

Exercice 17.1 : (niveau 1)

On pose $f(x) = e^{\cos(\sqrt{x})}$.

Déterminer les limites lorsque x tend vers 0 de f(x) et f'(x).

Exercice 17.2 : (niveau 1)

Déterminer la limite en 0^+ de $f(x) = (\sin x)^{\sin x}$.

Exercice 17.3 : (niveau 1)

Soit f une application croissante de \mathbb{R}_+ dans \mathbb{R} telle que $f(n) \xrightarrow[n \to +\infty]{} +\infty$.

Montrer que $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

Exercice 17.4 : (niveau 1)

Déterminer les applications continues f de \mathbb{R} dans \mathbb{R} telles que, pour $x \in \mathbb{R}$, f(2x) = f(x).

Exercice 17.5 : (niveau 1)

Soit f une application continue de $\mathbb R$ dans $\mathbb R$ telle que $f|_{\mathbb Q}$ est croissante. Montrer que f est croissante.

Exercice 17.6: (niveau 1)

 $\mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto \sin(x^2)$ est-elle uniformément continue?

Exercice 17.7 : (niveau 2)

- 1°) Donner un exemple d'application $f: \mathbb{R} \longrightarrow \mathbb{R}$ discontinue en tout point de \mathbb{R} telle que $x \longmapsto f(x)^2$ est continue sur \mathbb{R} .
- **2°)** Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $x \longmapsto f(x)^3$ est continue sur \mathbb{R} . Montrer que f est continue sur \mathbb{R} .

Exercice 17.8 : (niveau 2)

- 1°) Pour $n \in \mathbb{N}^*$, montrer que l'équation $\tan \frac{\pi}{2}x = \frac{\pi}{2nx}$ admet une unique solution notée x_n sur]0,1[.
- **2°)** Montrer que x_n tend vers 0 en décroissant lorsque n tend vers $+\infty$.
- 3°) Donner un équivalent de x_n .

Exercice 17.9 : (niveau 2)

Déterminer les applications continues de \mathbb{R} dans \mathbb{R} telles que $\forall x \in \mathbb{R}$ f(2x+1) = f(x).

Exercice 17.10 : (niveau 2)

Soit f une application de $\mathbb R$ dans $\mathbb R$ uniformément continue.

Montrer qu'il existe $(a, b) \in \mathbb{R}^2$ tel que, pour tout $x \in \mathbb{R}$, $|f(x)| \le a|x| + b$.

Exercice 17.11 : (niveau 2)

- **1**°) Pour $n \in \mathbb{N}$ avec $n \geq 3$, montrer que l'équation $x^n = e^x$ admet une unique solution dans [0, n], que l'on notera x_n .
- 2°) Montrer que x_n tend vers 1 en décroissant.
- **3°)** Montrer que $x_n = 1 + \frac{1}{n} + \frac{3}{2n^2} + o(\frac{1}{n^2})$.

Exercice 17.12 : (niveau 2)

Soient E et F deux \mathbb{K} -espaces vectoriels normés et $f: E \longrightarrow F$ une application définie sur E.

Montrer que f est continue si et seulement si , pour tout $A \subset E$, $f(\overline{A}) \subset \overline{f(A)}$.

Exercice 17.13 : (niveau 2)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application continue admettant des limites finies l et l' en $+\infty$ et en $-\infty$. Montrer que f est uniformément continue.

Exercice 17.14 : (niveau 2)

Soit f une application uniformément continue de $\mathbb R$ dans $\mathbb R$ telle que $f(n) \underset{n \to +\infty}{\longrightarrow} +\infty$.

Montrer que $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$.

Exercice 17.15 : (niveau 2)

On note E l'ensemble des applications de classe C^{∞} de [0,1] dans \mathbb{R} et D l'application de E dans E définie par D(f)=f'.

- 1°) Montrer que D est discontinue pour toute norme de E.
- 2°) Est-ce encore vrai pour la restriction de D à un sous-espace vectoriel de E de dimension finie?
- **3°)** Lorsque $F = \mathbb{R}[X]$, vu comme un sous-espace vectoriel de E, donner une norme de F pour laquelle $D|_F$ est discontinue et une autre pour laquelle $D|_F$ est continue.

Exercice 17.16: (niveau 2)

Soit f une application continue de [0,1] dans \mathbb{R} telle que f(0)=f(1)=0.

- 1°) Montrer qu'il existe $x \in [0, \frac{1}{2}]$ tel que $f(x) = f(x + \frac{1}{2})$.
- **2**°) Soit $n \in \mathbb{N}$ avec $n \geq 2$. Montrer qu'il existe $x \in [0, 1 \frac{1}{n}]$ tel que $f(x) = f(x + \frac{1}{n})$.

Exercice 17.17 : (niveau 2)

Notons E l'ensemble des applications continues de [0,1] dans \mathbb{R} . On le munit de la norme de la convergence en moyenne (i.e : la norme 1).

Soient $\beta \geq 0$ et Φ l'application de E dans E définie par

$$\forall f \in E \ \forall t \in [0,1] \ \Phi(f)(t) = t^{\beta} \int_0^t f(u) du.$$

Montrer que $\phi \in L(E)$, puis que Φ est continue.

Calculer
$$\sup_{\substack{f \in E \\ \|f\|_1 \le 1}} \|\phi(f)\|_1.$$

Exercice 17.18: (niveau 3)

- 1°) Pour $n \in \mathbb{N}$ avec $n \geq 2$, montrer que l'équation $x^n = x + n$ admet une unique solution sur \mathbb{R}_+^* , notée x_n .
- **2°)** Montrer que, pour tout $n \geq 2$, $x_n \in]0,2]$.
- **3°)** Déterminer la limite l de x_n lorsque n tend vers $+\infty$.
- 4°) Déterminer un équivalent de $x_n l$.

Exercice 17.19: (niveau 3)

E est un espace métrique, K est un compact non vide de E et $f: K \longrightarrow K$ est une application telle que, pour tout $(x,y) \in K^2$, $x \neq y \Rightarrow ||f(x) - f(y)|| < ||x - y||$.

A l'aide de l'application $x \mapsto ||f(x) - x||$, montrer qu'il existe un unique $l \in K$ tel que f(l) = l.

Montrer que pour tout $x_0 \in K$, si l'on pose $x_{n+1} = f(x_n)$, alors $x_n \underset{n \to +\infty}{\longrightarrow} l$.

Exercice 17.20 : (niveau 3)

Soit E un \mathbb{R} -espace vectoriel normé. Montrer que H est un hyperplan fermé de E si et seulement si c'est le noyau d'une forme linéaire continue non nulle.

Exercice 17.21 : (niveau 3)

Soit f une application continue de [0,1] dans \mathbb{R} .

Pour tout
$$x \in [0,1]$$
, notons $g(x) = \sup_{t \in [0,x]} f(t)$.

Montrer que g est continue.

Exercice 17.22 : (niveau 3)

Soit f une application de \mathbb{R} dans \mathbb{R} .

- 1°) Montrer que si f est continue, le graphe de f est un fermé de \mathbb{R}^2 .
- $\mathbf{2}^{\circ})$ Montrer que toute suite bornée de réels admettant une unique valeur d'adhérence est convergente.
- $\mathbf{3}^{\circ}$) On suppose que f est bornée et que son graphe est fermé. Montrer que f est continue.
- 4°) Si l'on suppose seulement que le graphe de f est fermé. Peut-on affirmer que f est continue?

Exercice 17.23 : (niveau 3)

Soit f une application continue et surjective de \mathbb{R}_+ dans \mathbb{R} . Montrer que 0 possède une infinité d'antécédents.

Exercice 17.24 : (niveau 3)

Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction uniformément continue.

- 1°) Montrer que f est bornée.
- **2**°) Pour tout $x \in]0,1]$, on pose $g(x) = \sup_{t \in]0,x]} f(t)$ et $h(x) = \inf_{t \in]0,x]} f(t)$.

Montrer que g et h possèdent des limites en 0, notées l^+ et l^- .

 $\mathbf{3}^{\circ}$) Démontrer que f se prolonge par continuité en 0

Exercice 17.25 : (niveau 3)

 $\varphi: E \to \mathbb{C}$ $E \text{ est l'ensemble des suites presque nulles de } \mathbb{C} \text{ et} \qquad \varphi: E \to \mathbb{C}$ $(u_n) \longmapsto \sum_{n=0}^{+\infty} \frac{u_n}{2^n}.$

1°) Pour tout
$$(u_n) \in E$$
, on pose $||(u_n)||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$ et $||(u_n)||_1 = \sum_{n \in \mathbb{N}} |u_n|$.

On admettra que $\|.\|_{\infty}$ et $\|.\|_{1}$ sont des normes sur E. Pour ces deux normes, montrer que φ est continue.

 $\mathbf{2}^{\circ})$ Déterminer une norme sur E pour laquelle φ n'est pas continue.

Exercice 17.26: (niveau 3)

Montrer qu'il n'existe pas de fonction continue de \mathbb{R} dans \mathbb{R} telle que, pour tout $y \in \mathbb{R}$, le nombre d'antécédents de y par f est égal à 0 ou 2.

Exercices supplémentaires:

Exercice 17.27 : (niveau 1)

Soit $(a, b) \in \mathbb{R}^2$ avec a < b. Soit f une application 1-lipschitzienne de [a, b] dans [a, b]. On note, pour tout $x \in [a, b]$, $g(x) = \frac{1}{2}(x + f(x))$.

- 1°) Montrer que f et g admettent des points fixes.
- 2°) Montrer que g est croissante.
- **3°)** Soit $(u_n)_{n\in\mathbb{N}}$ une suite de [a,b] telle que, pour tout $n\in\mathbb{N}$, $u_{n+1}=g(u_n)$. Montrer que la suite (u_n) est convergente.

Exercice 17.28: (niveau 1)

Soit $f: E \longrightarrow F$ une application continue et surjective. Si A est une partie dense de E, montrer que f(A) est une partie dense de F.

Exercice 17.29: (niveau 1)

Soit E l'ensemble des suites de réels convergentes, muni de la norme infinie. Notons φ l'application de E dans \mathbb{R} qui à (x_n) associe sa limite. φ est-elle continue?

Montrer que $A = \{(x_n) \in E/2 \lim_{n \to +\infty} x_n + 1 > exp(\lim_{n \to +\infty} x_n)\}$ est un ouvert de E.

Exercice 17.30 : (niveau 2)

Notons $E = C([0,1], \mathbb{R})$, que l'on munit de la norme 1. On pose, pour tout $f, g \in E$, B(f,g) = fg.

Montrer que, pour tout $f \in E$, l'application $g \longmapsto B(f,g)$ est continue, mais que B n'est pas continue.

Exercice 17.31 : (niveau 2)

Soit E un \mathbb{K} -espace vectoriel normé et K un compact de E. Soit (F_n) une suite décroissante de fermés de K. Soit $f: K \longrightarrow K$ une application continue.

Montrez que
$$f\left(\bigcap_{n\in\mathbb{N}}F_n\right)=\bigcap_{n\in\mathbb{N}}f(F_n).$$

Exercice 17.32 : (niveau 2)

Déterminer les applications continues $f:[0,1] \longrightarrow [0,1]$ telles que $f \circ f = f$.

Exercice 17.33 : (niveau 2)

On note E l'ensemble des applications continues de [0,1] dans \mathbb{R} que l'on munit de la norme infinie. Soit $\varphi \in L(E,\mathbb{R})$ telle que

$$\forall f \in E \ [(\forall x \in [0,1] \ f(x) \ge 0) \Longrightarrow \varphi(f) \ge 0].$$

Montrez que φ est continue.

Exercice 17.34 : (niveau 2)

Soit A une partie bornée et non vide de \mathbb{R} et soit f une application de A dans \mathbb{R} . On suppose que $\sup_{x \in A} f(x) = +\infty$. Montrer que f n'est pas uniformément continue.

Exercice 17.35 : (niveau 2)

Soit E un $\mathbb{K}-espace$ vectoriel normé. Soient K et L deux compacts de E. Montrez que la réunion des segments joignant les points de K et de L est compacte.

Exercice 17.36 : (niveau 3)

1°) Montrer que $l^1(\mathbb{C}) \subset l^2(\mathbb{C}) \subset l^\infty(\mathbb{C})$.

$$\varphi: \ l^1(\mathbb{C}) \longrightarrow \mathbb{C}$$

$$\mathbf{2}^{\circ}) \text{ On note } (x_n) \longmapsto \sum_{n \in \mathbb{N}} x_n \cdot$$

Etudier la continuité de φ pour les normes usuelles de $l^1(\mathbb{C})$, $l^2(\mathbb{C})$ et de $l^{\infty}(\mathbb{C})$. Lorsqu'elle est continue, préciser la valeur de la norme de φ .

3°) Même question en remplaçant
$$\varphi$$
 par $\Psi: l^1(\mathbb{C}) \longrightarrow \mathbb{C}$ $(x_n) \longmapsto \sum_{n \in \mathbb{N}} \frac{x_n}{2^n}$.

Exercice 17.37 : (niveau 3)

On pose $E = \mathcal{C}([0,1],\mathbb{R})$ que l'on munit de la norme de la convergence uniforme.

 $\mathbf{1}^{\circ}$) Soit g une application continue de \mathbb{R} dans \mathbb{R} . On note

$$\Phi'$$
: $E \xrightarrow{F} E'$
 $f \longmapsto g \circ f$. Montrer que Φ est continue.

2°) Montrer que $A = \{ f \in E / \forall x \in [0,1] \ 2f(x) + 1 \ge e^{f(x)} \}$ est un fermé.

Exercice 17.38 : (niveau 3)

Soit f une application croissante de \mathbb{R}_+^* dans \mathbb{R}_+^* telle que $x \longmapsto \frac{f(x)}{x}$ est décroissante sur \mathbb{R}_+^* .

1°) Montrer que pour tout
$$(x,y) \in \mathbb{R}_+^{*2}$$
, $|f(x) - f(y)| \le |x - y| \frac{f(x)}{x}$.

 $\mathbf{2}^{\circ}$) Montrer que f est continue.

Exercice 17.39: (niveau 3)

Soient E et F deux \mathbb{K} -espaces vectoriels normés et f une application définie sur E et à valeurs dans F.

Si A est une partie non vide de F, on note $\delta(A)$ le diamètre de A.

Si $x \in E$, on note $\mathcal{V}(x)$ l'ensemble des voisinages de x et

on pose $\omega_x(f) = \inf \{ \delta(f(V)) / V \in \mathcal{V}(x) \}$. Il s'agit du saut de f en x.

1°) Soit $x \in E$. Montrer que f est continue en x si et seulement si $\omega_x(f) = 0$.

2°) Soit $\varepsilon > 0$. Montrer que $A_{\varepsilon} = \{x \in E/\omega_x(f) \geq \varepsilon\}$ est un fermé de E.

 $\mathbf{3}^{\circ}$) Montrer que l'ensemble des points de discontinuité de f est une réunion dénombrable de fermés de E.

Exercice 17.40 : (niveau 3)

Soient E un \mathbb{R} -espace vectoriel normé et f une application de E dans E que l'on suppose bornée sur la boule unité et telle que, pour tout $(x,y) \in E^2$, f(x+y) = f(x) + f(y). Montrer que f est linéaire et continue.

Exercice 17.41 : (niveau 3)

Soit E un \mathbb{K} -espace vectoriel de Banach. On note $\mathcal{LC}(E)$ l'espace vectoriel des endomorphismes continus sur E. Montrer que $\mathcal{LC}(E)$ est un espace de Banach.

Exercice 17.42 : (niveau 3)

On note E l'ensemble des applications continues de [0,1] dans \mathbb{R} . On fixe $g \in E$.

Pour tout $f \in E$, on note $N_g(f) = \int_0^1 |f(t)g(t)| dt$.

- 1°) Montrer que N_g est une norme sur E si et seulement si l'intérieur de $g^{-1}(\{0\})$ est vide.
- **2°)** Dans ce cas, montrer que N_g et $\|.\|_1$ sont équivalentes si et seulement si $g^{-1}(\{0\}) = \emptyset$.

Exercice 17.43: (niveau 3)

Soit P une fonction polynomiale à valeurs dans $\mathbb C$. Soit F un fermé de $\mathbb C$. Montrer que P(F) est fermé.

Exercice 17.44: (niveau 3)

Soit I un intervalle de \mathbb{R} contenant au moins deux réels. Soit f une application de I dans \mathbb{R} continue à droite en tout point. Montrer que le nombre de points de discontinuité de f est au plus dénombrable.

Indications: On pourra commencer par montrer qu'on peut se limiter au cas où I est un segment et où f est bornée sur I, puis utiliser la quantité

$$\omega(x) = \lim_{h \to 0^+} \sup_{t \in [x-h,x]} f(t) - \lim_{h \to 0^+} \inf_{t \in [x-h,x]} f(t).$$