Assignment - 1

By Umme Rubaiyat Chowdhury

1. What is the basic difference and similarity between a vector and a matrix?

Ans:

Differences:

A **vector** is a list of numbers (can be **in a** row or column), A **matrix** is an **array** of numbers (one or more rows, one or more columns). Two vector can be a matrix, a matrix can not be a vactor.

Similarities:

Matrix and vector both can have data types as logical, integer, double, character in R.

2. What is the basic difference and similarity between a data frame and a matrix?

Ans:

Differences:

Matrix	Dataframe
The data stored in columns can be only of same data type.	The data stored must be numeric, character or factor type.
It's m*n array with similar data type.	It is a list of vector of equal length. It is a generalized form of matrix.

Similarities:

Matrix and vector both are m*n arrays.

3. Create a vector using (15, TRUE, "World"). What happened to your result? Ans:

The result will be a character vector with 3 strings.

4. John's scores in the final semester for the three subjects are 95, 91, and 88. The subjects are Statistics, Linear Algebra, and Calculus. Using these create a vector and give names to all elements of the vector based on their subjects.

Ans:

```
Subjects_vector <- c("Statistics", "Linear Algebra", "Calculus")
Score vector <- c(95, 91, 88)
names(Score vector) <- Subjects vector
Score vector
```

Output:

```
Statistics Linear Algebra
                             Calculus
95
              91
                             88
```

5. Please check the types (character or numeric) of the vector you created.

Ans:

typeof(Subjects vector)

Output:

"character"

typeof(Score vector)

Output:

"double"

6. You have three students in your class (choose any name you want). You must create a matrix using their score in the above mentioned subjects (question 4) Student 1 (95, 91, and 88), Student 2(96, 94, and 97), Student 3(88, 98, and 85). Create a matrix and label column and row names.

```
Ans:
```

```
student_names <- c("Umme", "Rubaiyat", "Chowdhury")
alex scores <- c(95, 91,88)
nia scores <- c(96, 94,97)
robin scores <- c(88, 98, 85)
student_scores <- c(alex_scores, nia_scores, robin_scores)
student matrix <- matrix(student scores, nrow=3, byrow=TRUE, dimnames = list(
 student_names, subjects_vector))
student_matrix
Output:
       Statistics Linear Algebra Calculus
```

Umme 95 91 88 96 94 97 Rubaiyat

Chowdhury 88 98 85

7. Convert the created matrix into a data frame.

Ans:

dframe <- data.frame(student_matrix)
dframe</pre>

Output:

Statistics Linear. Algebra Calculus

Umme	95	91	88
Rubaiyat	96	94	97
Chowdhury	88	98	85

8. Create three vectors using five countries (your choice) from the following website. The first vector should be country names, the second vector should be the total number of cases, and the third vector should contain the total number of deaths. Create a data frame using these vectors.

https://www.worldometers.info/coronavirus/

Ans:

```
countryNames <- c("Bangladesh", "USA", "India", "Russia", "France") totalCases <- c(588132,30639264, 11734058, 4483471, 4313073) totalDeath <- c(8830,556891, 160477, 96219, 92908) cov_dframe <- data.frame(countryNames, totalCases, totalDeath) cov_dframe
```

Output:

	countryNames	totalCases	totalDeath
1	Bangladesh	588132	8830
2	USA	30639264	556891
3	India	11734058	160477
4	Russia	4483471	96219
5	France	4313073	92908

9. Please read the mtcars data set from R. It is an built-in data set. Please check the structure of the data set. If required, please convert the data into their appropriate data types (character, logical, factor, etc). Save your results as a new data frame using a new name.

Ans:

data(mtcars)
str(mtcars)
sapply(mtcars, class)
newCars <- within(mtcars,{vs <- as.logical(vs)
am <- as.logical(am)
hp <- as.factor(hp) })
newCars</pre>

Output:

Output:	
mpg (cyl disp hp drat wt qsec vs
Mazda RX4	21.0 6 160.0 110 3.90 2.620 16.46 FALSE
Mazda RX4 Wag	21.0 6 160.0 110 3.90 2.875 17.02 FALSE
Datsun 710	22.8 4 108.0 93 3.85 2.320 18.61 TRUE
Hornet 4 Drive	21.4 6 258.0 110 3.08 3.215 19.44 TRUE
Hornet Sportabout	18.7 8 360.0 175 3.15 3.440 17.02 FALSE
Valiant 18.1	6 225.0 105 2.76 3.460 20.22 TRUE
Duster 360	14.3 8 360.0 245 3.21 3.570 15.84 FALSE
Merc 240D	24.4 4 146.7 62 3.69 3.190 20.00 TRUE
Merc 230 22.8	4 140.8 95 3.92 3.150 22.90 TRUE
Merc 280 19.2	6 167.6 123 3.92 3.440 18.30 TRUE
Merc 280C	17.8 6 167.6 123 3.92 3.440 18.90 TRUE
Merc 450SE	16.4 8 275.8 180 3.07 4.070 17.40 FALSE
Merc 450SL	17.3 8 275.8 180 3.07 3.730 17.60 FALSE
Merc 450SLC	15.2 8 275.8 180 3.07 3.780 18.00 FALSE
Cadillac Fleetwood	10.4 8 472.0 205 2.93 5.250 17.98 FALSE
Lincoln Continental	10.4 8 460.0 215 3.00 5.424 17.82 FALSE
Chrysler Imperial 1	4.7 8 440.0 230 3.23 5.345 17.42 FALSE
Fiat 128 32.4	4 78.7 66 4.08 2.200 19.47 TRUE
Honda Civic	30.4 4 75.7 52 4.93 1.615 18.52 TRUE
Toyota Corolla	33.9 4 71.1 65 4.22 1.835 19.90 TRUE
Toyota Corona	21.5 4 120.1 97 3.70 2.465 20.01 TRUE
Dodge Challenger	15.5 8 318.0 150 2.76 3.520 16.87 FALSE
AMC Javelin	15.2 8 304.0 150 3.15 3.435 17.30 FALSE
Camaro Z28	13.3 8 350.0 245 3.73 3.840 15.41 FALSE
Pontiac Firebird	19.2 8 400.0 175 3.08 3.845 17.05 FALSE
Fiat X1-9 27.3	4 79.0 66 4.08 1.935 18.90 TRUE
Porsche 914-2	26.0 4 120.3 91 4.43 2.140 16.70 FALSE
Lotus Europa	30.4 4 95.1 113 3.77 1.513 16.90 TRUE

Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 FALSE Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 FALSE Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 FALSE Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 TRUE am gear carb Mazda RX4 TRUE 4 4 Mazda RX4 Wag TRUE 4 4 Datsun 710 TRUE 4 1 Hornet 4 Drive FALSE 3 1 Hornet Sportabout FALSE 3 2 FALSE 3 Valiant Duster 360 FALSE 3 4 Merc 240D 2 FALSE 4 FALSE 4 Merc 230 2 Merc 280 FALSE 4 4 Merc 280C FALSE 4 4 Merc 450SE FALSE 3 3 3 Merc 450SL FALSE 3 Merc 450SLC FALSE 3 3 4 Cadillac Fleetwood FALSE 3 Lincoln Continental FALSE 4 Chrysler Imperial FALSE 4 3 Fiat 128 TRUE 4 1 Honda Civic TRUE 4 2 Toyota Corolla TRUE 4 1 1 Toyota Corona FALSE 3 2 Dodge Challenger FALSE 3 AMC Javelin FALSE 3 2 Camaro Z28 FALSE 3 4 Pontiac Firebird FALSE 3 2 Fiat X1-9 TRUE 4 1 Porsche 914-2 TRUE 5 2 Lotus Europa TRUE 5 2 Ford Pantera L TRUE 5 4 Ferrari Dino TRUE 5 6 Maserati Bora TRUE 5 8 Volvo 142E 2 TRUE 4