רשימת נושאים:

- 1. דרגת חופש אחת
- 1.1. רטט חופשי
- 1.1.1 מערכת לא מרוסנת
 - 1.1.2. מערכת מרוסנת
- 1.1.3. חישוב מקדם ריסון
- (תנאי התחלה מאופסים) 1.2.
 - 1.2.1. עירור כוח הרמוני
- $F_{(t)} = kA\cos\left(\omega t\right)$ עירור מהצורה .1.2.1.1
 - $F_{(t)} = kAe^{i\omega t}$ עירור מהצורה .1.2.1.2
 - $y_{(t)} = A \cdot e^{i\omega t}$ -עירור בסיס הרמוני. 1.2.2
- $y_{(t)} = Y_0 \cos(\omega t)$ יישום לדגי: מכשירי מדידה
 - 1.2.3. עירור מחזורי

תזכורת- טור פורייה

- 1.2.4. עירור כללי
- 1.2.4.1. תגובה להלם
- 1.2.4.2. תגובה למדרגה
- 1.2.4.3. תגובה לרמפה
 - 1.2.4.4. קונבולוציה
 - 2. מספר סופי של דרגות חופש
- 2.1. הערות חשובות וסימונים
 - 2.2. שתי דרגות חופש
- 2.2.1. רטט חופשי ללא ריסון
 - 2.2.2 רטט מאולץ
 - 2.2.3 מרסן תנודות דינמי
 - : מערכות רציפות
 - 3.1. סימונים
 - 3.2. מיתר מתוח / מוט / ציר
- 3.2.1. ניסוח משוואת השדה
- ותנאי שפה חומוגניים ($f_{(x,t)}=0$) ותנאי שפה הומוגניים 3.2.2
 - 3.2.3. פתרון משוואה לא הומוגנית ותנאי שפה הומוגניים
 - 3.2.4. תיקון תנאי שפה לא הומוגניים
 - 3.2.5. אנלוגיה למקרים נוספים
 - 3.2.6. תנאי שפה לדוגמה
 - 3.3. קורות אוילר ברנולי
 - 3.3.1. ניסוח המשוואה
 - 3.3.2. פתרון משוואה הומוגנית
 - 3.3.3. תנאי שפה לדוגמא
 - 3.3.4. פתרונות לדוגמא

: דרגת חופש אחת

.1.1 רטט חופשי:

: מערכת לא מרוסנת. 1.1.1

$m\ddot{x}_{(t)} + kx_{(t)} = 0$	משוואת תנועה ותנאי התחלה
$x_{(0)} = x_0 \; ; \; \dot{x}_{(0)} = v_0$	
$\omega_n = \sqrt{\frac{k}{m}}$	הגדרת תדירות טבעית
$x_{(t)} = A \cdot e^{i\omega_n t} + B \cdot e^{-i\omega_n t}$	פתרון כללי
$x_{(t)} = C \cdot \cos(\omega_n t - \phi)$	הצגה ראשונה
$C = \sqrt{x_0^2 + \left(\frac{v_0}{\omega_n}\right)^2} \; ; \; \phi = \tan^{-1}\left(\frac{v_0}{x_0\omega_n}\right)$	
$x_{(t)} = x_0 \cos(\omega_n t) + \frac{v_0}{\omega_n} \sin(\omega_n t)$	הצגה נוספת

: מערכת מרוסנת. 1.1.2

$m\ddot{x}_{(t)}+c\dot{x}_{(t)}+kx_{(t)}=0$ תנועה ותנאי $x_{(0)}=x_0 \;\; ; \;\; \dot{x}_{(0)}=v_0$	משוואת ח התחלה
` ' ` ' '	
דירות טבעית ר	
$\omega_n = \sqrt{rac{k}{m}} \; ; \; \zeta = rac{c}{2m\omega_n}$ יסון ויסקוזי	ומקדם רי
"	פתרון כלכ
$\lambda(t) = A \cdot e + B \cdot e$	בונו ון בככ
$s_{1} = -\zeta \omega_{n} \pm \sqrt{\zeta^{2} - 1} \omega_{n}$	
$\omega_d = \sqrt{1-\zeta^2}\omega_n$ תדירות מרוסנת מרוסנת	מערכת בתת-
$x_{(t)} = C \cdot e^{-\zeta \omega_n t} \cos \left(\omega_d t - \phi ight)$ הצגה ראשונה	ריסון
$S_{(t)} = S_{(t)} = S_{($	$0 < \zeta < 1$
$C = \sqrt{x_0^2 + \left(\frac{\zeta \omega_n x_0 + v_0}{\omega_d}\right)^2} ; \phi = \tan^{-1}\left(\frac{\zeta \omega_n x_0 + v_0}{x_0 \omega_d}\right)$	
$x_{(t)} = e^{-\zeta\omega_n t} \left(x_0 \cos(\omega_d t) + \frac{\zeta\omega_n x_0 + v_0}{\omega_d} \sin(\omega_d t) \right)$ הצגה נוספת	
$\zeta = 0.05 \qquad \zeta = 0.1 \qquad \zeta = 0.2 \qquad Ce^{-\zeta \omega_{nt}}$ $0 \qquad 1 \qquad 2 \qquad 5$ $-10 \qquad -Ce^{-\zeta \omega_{nt}}$	
$x_{(t)} = e^{-\zeta \omega_n t} \left(x_0 \cosh\left(\sqrt{\zeta^2 - 1}\omega_n t\right) + \frac{\zeta \omega_n x_0 + \nu_0}{\sqrt{\zeta^2 - 1}\omega_n} \sinh\left(\sqrt{\zeta^2 - 1}\omega_n t\right) \right)$	מערכת בריסון יתר
$x_{(t)} = e^{-\zeta \omega_n t} \left[x_0 + (\omega_n x_0 + v_0) t \right]$ באשר $\zeta = 1$	

בעזרת מדידה של לחלץ את ניתן ו $T=\frac{2\pi}{\omega_d}$ - ו $t_2=t_1+T$ ש- כך כך $x_{(t_1)}^{}$, $x_{(t_2)}^{}$ את מקדם הריסון במצב של תת-ריסון :

$$\frac{x_1}{x_2} = \frac{x_{(t_1)}}{x_{(t_2)}} = \frac{C \cdot e^{-\zeta \omega_n t_1} \cos(\omega_d t_1 - \phi)}{C \cdot e^{-\zeta \omega_n t_2} \cos(\omega_d t_2 - \phi)} = \frac{e^{-\zeta \omega_n t_1} \cos(\omega_d t_1 - \phi)}{e^{-\zeta \omega_n (t_1 + T)} \cos(\omega_d (t_1 + T) - \phi)} = e^{\zeta \omega_n T} = e^{\zeta \omega_n \frac{2\pi \zeta}{\omega_d}} = e^{\frac{2\pi \zeta}{\sqrt{1 - \zeta^2}}}$$

$$\delta = \ln\left(\frac{x_1}{x_2}\right) = \frac{2\pi \zeta}{\sqrt{1 - \zeta^2}} \implies \zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}} \Big|_{\zeta \ll 1} \approx \frac{\delta}{2\pi}$$

.1.2. רטט מאולץ (תנאי התחלה מאופסים) : 1.2.1. עירור כוח הרמוני :

$F_{(t)} = kA\cos\left(\omega t\right)$ אירור מהצורה .1.2.1.1

$\ddot{x}_{(t)} + 2\zeta\omega_n\dot{x}_{(t)} + \omega_n^2 x_{(t)} = \omega_n^2 A\cos(\omega t)$	משוואת תנועה
$x_{(t)} = \frac{A}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2} \left\{\frac{2\zeta\omega}{\omega_n} \cdot \sin(\omega t) + \left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] \cdot \cos(\omega t)\right\}$	פתרון
$x_{(t)} = X\cos(\omega t - \phi)$	הצגה נוספת
$X = X_{(\omega)} = \frac{A}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}$	
$\phi = \phi_{(\omega)} = \tan^{-1} \left(\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n} \right)^2} \right)$	

$F_{(t)} = kAe^{i\omega t}$ אירור מהצורה. 1.2.1.2.

$\ddot{x}_{(t)} + 2\zeta\omega_n\dot{x}_{(t)} + \omega_n^2 x_{(t)} = \omega_n^2 A e^{i\omega t}$	משוואת תנועה
$x_{(t)} = X_{(i\omega)} \cdot e^{i\omega t}$	צורת פתרון
$Z_{(i\omega)}X_{(i\omega)}e^{i\omega t} = \omega_n^2 A e^{i\omega t}$	הצבה במשוואה
$Z_{(i\omega)} = (i\omega)^2 + (i\omega)2\zeta\omega_n + \omega_n^2$	
$X_{(i\omega)} = \frac{{\omega_n}^2 A}{Z_{(i\omega)}} = \frac{A}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + i2\zeta \frac{\omega}{\omega_n}}$	פתרון
$G_{(i\omega)} = \frac{X_{(i\omega)}}{A} = \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + i2\zeta\frac{\omega}{\omega_n}}$	
$x_{(t)} = AG_{(i\omega)} \cdot e^{i\omega t}$	

$$G_{(i\omega)} = \left|G_{(i\omega)}\right| \cdot e^{-i\phi_{(\omega)}}$$

$$\left|G_{(i\omega)}\right| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}}$$

$$\phi_{(\omega)} = \tan^{-1}\left(\frac{2\zeta\frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

$$\left|G_{(i\omega)}\right|_{\max} \equiv Q = \frac{1}{2\zeta\sqrt{1 - \zeta^2}} \stackrel{\cong}{=} \frac{1}{2\zeta}$$

$$\zeta = 0.05$$

$$\zeta = 0.10$$

$$\varphi_{(i\omega)} = \frac{1}{2\zeta\sqrt{1 - \zeta^2}} \stackrel{\cong}{=} \frac{1}{2\zeta}$$

$$\zeta = 0.50$$

 $\omega_1/\omega_n \checkmark 1 \searrow_{\omega_2/\omega_n}$

0

: $y_{\left(t\right)}=A\cdot e^{i\omega t}$ -יטיס הרמוני- .1.2.2

$\ddot{x}_{(t)} + 2\zeta \omega_n \dot{x}_{(t)} + \omega_n^2 x_{(t)} = 2\zeta \omega_n \dot{y}_{(t)} + \omega_n^2 y_{(t)}$	משוואת תנועה
$x_{(t)} = X_{(i\omega)} \cdot e^{i\omega t}$	צורת פתרון
$X_{(i\omega)} = \frac{1 + i2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + i2\zeta \frac{\omega}{\omega_n}} A$	פתרון
$G_{(i\omega)} = rac{1}{1 - \left(rac{\omega}{\omega_n} ight)^2 + i2\zeta rac{\omega}{\omega_n}}$ $x_{(t)} = A \left(1 + i2\zeta rac{\omega}{\omega_n} ight) G_{(i\omega)} \cdot e^{i\omega t}$	

 $y_{(t)} = Y_0 \cos \left(\omega t\right)$ -היישום לדגי: מכשירי מדידה

$$z_{(t)} = Z_0 \cos(\omega t - \phi)$$

$$Z_{0(i\omega)} = Y_0 \left(\frac{\omega}{\omega_n}\right)^2 \left|G_{(i\omega)}\right|$$

$$G_{(i\omega)} = \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + i2\zeta \frac{\omega}{\omega_n}}$$

$$\phi = \tan^{-1} \left(\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

מד תאוצה : כאשר $Z_0\simeq Y_0\left(\dfrac{\omega}{\omega_n}\right)^2$: ואז מתקיים וואז מתקיים $\dfrac{\omega}{\omega_n}\ll 1$ מד תאוצה מד תאוצה מד מד מד מתקיים וואז מתקיים מחקיים מחקיים וואז מתקיים אוצת

הקירוב הקירוב מתקבל ל- מתקבל ל- מתקבל קשר פרופורציונלי הין מתקבל מתקבל מתקבל מתקבל הקירוב ל- מתקבל המערכת.

בבניית מד תאוצה נבחר תדירות טבעית גבוהה יותר מהתדרים שאנחנו רוצים למדוד

מד מיקום : כאשר $Z_0\simeq Y_0:$ מתקיים : ואז מתקיים : $\left|G_{(i\omega)}\right|\simeq 1:$ מתקיים $\frac{\omega}{\omega_n}\gg 1$ אוז מתקיים : בריסון המערכת חלשה יחסית.

בבניית מד מיקום נבחר תדירות טבעית נמוכה יותר מהתדירות שאנחנו רוצים למדוד.

: עירור מחזורי.

:תזכורת-טור פורייה

פונקציה מחזורית
$$f_{(t)}$$
 (המקיימת המקיימת המקיימת) את טור פורייה מחזורית בריים את המקיימת לה

$$f_{(t)} \simeq \frac{1}{2} a_0 + \sum_{p=1}^{\infty} a_p \cos(p\omega_0 t) + \sum_{p=1}^{\infty} b_p \sin(p\omega_0 t)$$

$$\omega_0 = \frac{2\pi}{T}$$

$$a_p = \frac{2}{T} \int_0^T f_{(t)} \cos(p\omega_0 t) dt \quad p = 0, 1, 2...$$

$$b_p = \frac{2}{T} \int_0^T f_{(t)} \sin(p\omega_0 t) dt \quad p = 1, 2...$$

:הצגה שקולה

$$f_{(t)} \simeq \frac{1}{2} A_0 + \text{Re} \left\{ \sum_{n=1}^{\infty} A_p e^{ip\omega_0 t} \right\}$$
$$A_p = \frac{2}{T} \int_0^T f_{(t)} e^{-ip\omega_0 t} dt \quad p = 0, 1, 2...$$

$$b_p \equiv 0 \iff f_{\left(t\right)} = f_{\left(-t\right)}$$
א.

$$a_p \equiv 0 \ \ \, \leftarrow \ \, f_{\left(t\right)} = -f_{\left(-t\right)}$$
ב. פונקציה אי זוגית

תגובה לעירור מחזורי:

: לדגי

: ניתן להציג את העירור כטור פורייה

$$y_{(t)} \simeq \frac{1}{2}Y_0 + \text{Re}\left\{\sum_{p=1}^{\infty} Y_p e^{ip\omega_0 t}\right\}$$

: הפתרון מצורת העירור

$$x_{(t)} \simeq \frac{1}{2} X_0 + \text{Re} \left\{ \sum_{p=1}^{\infty} X_p e^{ip\omega_0 t} \right\}$$

ניתן לכתוב את משוואת התנועה לכל הרמוניה המרכיבה את הטורים:

$$(ip\omega_0)^2 X_p + (in\omega_0) 2\zeta \omega_n X_p + \omega_n^2 X_p = \omega_n^2 Y_p \qquad p = 0,1,2...$$

$$G_p = \frac{X_p}{Y_p} = \frac{1}{1 - \left(\frac{p\omega_0}{\omega_n}\right)^2 + i2\zeta \frac{p\omega_0}{\omega_n}} = |G_p| e^{-i\phi}$$

$$|G_p| = \frac{1}{\sqrt{\left[1 - \left(\frac{p\omega_0}{\omega_n}\right)^2\right]^2 + \left(2\zeta \frac{p\omega_0}{\omega_n}\right)^2}}$$

$$\phi = \tan^{-1} \left(\frac{2\zeta \frac{p\omega_0}{\omega_n}}{1 - \left(\frac{p\omega_0}{\omega_n}\right)^2}\right)$$

פתרון:

$$x_{(t)} \simeq \frac{1}{2}Y_0 + \text{Re}\left\{\sum_{p=1}^{\infty} G_p Y_p e^{ip\omega_0 t}\right\} = \frac{1}{2}Y_0 + \text{Re}\left\{\sum_{p=1}^{\infty} |G_p| Y_p e^{i(p\omega_0 t - \phi)}\right\}$$

כקירוב לפתרון יילקחו איברים בודדים של טור התגובה, על פי המבחן הבא:

. הוא מספר האיברים האיברים
$$n$$
 - ${X_n}^2 < 0.1 \cdot \sum_{p=1}^{n-1} {X_p}^2$

:עירור כללי 1.2.4

.1.2.4.1 תגובה להלם:

: פונקציית הלם מוגדרת באופן הבא

$$\delta_{\left(t-t_{0}\right)}=0 \text{ for } t\neq t_{0}$$

$$\int_{-\infty}^{\infty}\delta_{\left(t-t_{0}\right)}dt=1$$

:תכונת הדגימה

$$f_{(t_0)=}\int_{-\infty}^{\infty}f_{(t)}\delta_{(t-t_0)}dt$$

: מסמן המערכות התגובה להלם, ניתן להראות שקילות את $g_{(t)}$ את התגובה להלם

$$\begin{cases} m\ddot{g}_{(t)} + c\dot{g}_{(t)} + kg_{(t)} = \delta_{(t)} \\ g_{(0^{-})} = 0 \ , \ \dot{g}_{(0^{-})} = 0 \end{cases} \Leftrightarrow \begin{cases} m\dot{g}_{(t)} + c\dot{g}_{(t)} + kg_{(t)} = 0 \\ g_{(0^{+})} = 0 \ , \ \dot{g}_{(0^{+})} = \frac{1}{m} \end{cases}$$

כלומר, עירור הלם משפיע על תנאי ההתחלה של המערכת ההומוגנית. במקרה של מערכת בתת-ריסון ניתן להציב את תנאי ההתחלה בפתרון ידוע ולקבל:

$$g_{(t)} = \begin{cases} \frac{1}{m\omega_d} e^{-\zeta \omega_d t} \sin(\omega_d t) & \text{for } t > 0\\ 0 & \text{for } t < 0 \end{cases}$$

.1.2.4.2 תגובה למדרגה:

פונקציית מדרגה מוגדרת באופן הבא:

$$u_{(t-t_0)} = egin{cases} 1 & for \ t > t_0 \\ 0 & for \ t < t_0 \\ :$$
 קשר אינטגרלי ודיפרנציאלי לפונקציית הלם

$$u_{(t-t_0)} = \int_0^t \delta_{(\tau-t_0)} d\tau \qquad \delta_{(\tau-t_0)} = \frac{du_{(t-t_0)}}{dt}$$

: מתקיים את התגובה למדרגה, מלינאריות המערכת ניתן את מתגובה את מ $a_{(t)}$

$$a_{(t)} = \int_{-\infty}^{t} g_{(\tau)} d\tau = \frac{1}{k} \left[1 - e^{-\zeta \omega_d t} \left(\cos(\omega_d t) + \frac{\zeta \omega_n}{\omega_d} \sin(\omega_d t) \right) \right] u_{(t)}$$

.1.2.4.3 תגובה לרמפה:

פונקציית רמפה מוגדרת באופן הבא:

$$r_{\left(t-t_0\right)} = \left(t-t_0\right)u_{\left(t-t_0\right)}$$

: קשר אינטגרלי ודיפרנציאלי לפונקציית מדרגה

$$r_{(t-t_0)} = \int_{-\tau}^{t} u_{(\tau-t_0)} d\tau$$
 $u_{(\tau-t_0)} = \frac{dr_{(t-t_0)}}{dt}$

: נסמן ב- $\Upsilon_{(t)}$ את התגובה למדרגה, מלינאריות המערכת ניתן להראות שמתקיים

$$\Upsilon_{(t)} = \int_{-\infty}^{t} a_{(\tau)} d\tau$$

: 1.2.4.4 קונבולוציה

הגדרת הקונבולוציה:

$$f_{(t)} * g_{(t)} \equiv \int_{0}^{\infty} f_{(\tau)} g_{(t-\tau)} d\tau = \int_{0}^{\infty} f_{(t-\tau)} g_{(\tau)} d\tau$$

: בהינתן עירור כללי למערכת בהינתן בירור

$$m\ddot{x}_{(t)} + c\dot{x}_{(t)} + kx_{(t)} = f_{(t)}$$

: חנבולוציה אדי על מתקבל מתקבל הפתרון הפתרון להלם המערכת להלם ותגובת המערכת המערכת המערכת הפתרון הפתרון החנבולוציה

$$x_{(t)} = f_{(t)} * g_{(t)}$$

- .2 מספר סופי של דרגות חופש:
- 2.1. הערות חשובות וסימונים:
- א. יש לבחור ולסמן מערכת צירים לבעיה.
- ב. יש להגדיר קואורדינטה (מיקום/זווית) לכל דרגת חופש בבעיה.
- .. משוואות התנועה ייכתבו בכיוון החיובי של מערכת הצירים ולא בהכרח בכיוון גדילת הקואורדינטה.
- ד. על מנת לנתח את הכוחות הפועלים על כל מסה יש לבצע הזזה קטנה שלה מנקודת שיווי המשקל בעוד ששאר המסות נשארות נייחות.

: סימונים

וקטור עמודה	$\underline{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
מטריצה	$\underline{\underline{M}} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}$
מטריצה הופכית	<u>M</u> ⁻¹
דטרמיננטה	$\det\left(\underline{\underline{M}}\right) = \left \underline{\underline{M}}\right $

2.2. שתי דרגות חופש:

: רטט חופשי ללא ריסון. 2.2.1

$\left[m_{1}\ddot{x}_{1_{(t)}} = -k_{1}x_{1_{(t)}} - k_{2}\left(x_{1_{(t)}} - x_{2_{(t)}}\right)\right]$	משוואות תנועה (סקלארית)
$\int m_2 \ddot{x}_{2_{(t)}} = -k_2 \left(x_{2_{(t)}} - x_{1_{(t)}} \right)$	
$x_{\mathbf{l}_{(0)}} = x_{\mathbf{l}_{0}} \qquad \dot{x}_{\mathbf{l}_{(0)}} = \dot{x}_{\mathbf{l}_{0}}$	
$x_{2_{(0)}} = x_{2_0} \qquad \dot{x}_{2_{(0)}} = \dot{x}_{2_0}$	
$\underline{\underline{M}} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}$	הגדרת מטריצת מסה (אינרציה)

$\underline{\underline{K}} = \begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix}$	הגדרת מטריצת קשיחות
$\underline{x}_{(t)} = \begin{pmatrix} x_{\mathbf{l}_{(t)}} \\ x_{2_{(t)}} \end{pmatrix}$	הגדרת וקטור מיקום (דרגות החופש)
$\underline{\underline{M}}\ddot{\underline{x}}_{(t)} + \underline{\underline{K}}\underline{x}_{(t)} = \underline{0}$	משוואת התנועה (וקטורית)
$\underline{\underline{K}}^* = \underline{\underline{M}}^{-1} \underline{\underline{K}} = \underline{\underline{P}}^{-1} \underline{\underline{D}} \underline{\underline{P}}$	הגדרת מטריצת ייצוג של המערכת
$ \underline{\underline{D}} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \qquad \underline{\underline{P}} = \begin{pmatrix} & \\ \underline{v_1} \underline{v_2} \\ & \end{pmatrix} \qquad \underline{\underline{K}}^* \underline{v}_i = \lambda_i \underline{v}_i $	מטריצת ערכים עצמיים ווקטורים עצמיים *** קצת שונה מההצגה בכיתה***
$\underline{\eta}_{(t)} = \underline{P}\underline{x}_{(t)}$	הגדרת קואורדינטה טבעית
$\frac{\ddot{\eta}_{(t)} + \underline{\underline{D}} \underline{\eta}_{(t)} = \underline{0}$	הצבה במשוואה
$ \eta_{i_{(t)}} = C_i \cos(\omega_i t - \phi_i) \qquad \omega_i^2 = \lambda_i $	פתרון בקואורדינטה טבעית
$\underline{\eta}_0 = \underline{P}\underline{x}_0$	התמרת תנאי ההתחלה לקואורדינטות
$\underline{\dot{\eta}}_0 = \underline{\underline{P}} \dot{\underline{x}}_0$	

הערות לדרך הפתרון:

- א. וקטור הקואורדינטות (במקרה זה וקטור מיקומים) נלקח כווקטור עמודה ובהתאם לכך נכתבו המשוואות הווקטוריות.
- ב. המטריצה המלכסנת ($\frac{P}{=}$) מוגדרת כעמודות של ווקטורים עצמיים (מודים) ולכל מוד מתאים תדר טבעי, הפתרון הוא סופרפוזיציה של מודים בהתאם לתנאי ההתחלה כך שייתכן ואחד מהמודים לא יופעל

: רטט מאולץ 2.2.2

$ \underbrace{\underline{M}\ddot{x}_{(t)} + \underline{\underline{C}\dot{x}_{(t)}}_{\underline{L}(t)} + \underline{\underline{K}x_{(t)}}_{\underline{L}(t)} = \underline{\underline{F}_{(t)}}_{\underline{L}(t)} $	משוואת תנועה ווקטורית
$\begin{cases} \underline{x}_{(0)} = \underline{x}_0 \\ \underline{\dot{x}}_{(0)} = \underline{\dot{x}}_0 \end{cases}$	
	צורת העירור
$\underline{F}_{(t)} = \underline{F}_0 \cdot e^{i\omega t}$	
$\underline{x}_{(t)} = \underline{X} \cdot e^{i\omega t}$	צורת הפתרון
$\underline{\underline{Z}}_{(\omega)} = -\omega^2 \underline{\underline{M}} + i\omega \underline{\underline{C}} + \underline{\underline{K}}$	הגדרת מטריצת האימפדנס
$\underline{X} = \underline{\underline{Z}}^{-1} \underline{F}_0$	פתרון המערכת

כאשר תדר העירור זהה לאחד מהתדרים הטבעיים של המערכת התגובה אינסופית. 2.2.3. מרסן תנודות דינמי:

רתדר (m_1 המטרה היא לבחור (במקרה לבחור שהתגובה של המסה הראשית (במקרה לבחור $k_{2_{(o)}}$ מסוים תתאפס.

$\underline{\underline{Z}} = -\omega^2 \underline{\underline{M}} + \underline{\underline{K}} = \begin{pmatrix} k_1 + k_2 - \omega^2 m_1 & -k_2 \\ -k_2 & k_2 - \omega^2 m_2 \end{pmatrix}$	מטריצת אינפדנס
$x_{\mathbf{I}_{(t)}} = \frac{\left \begin{pmatrix} F_1 \sin(\omega t) & -k_2 \\ 0 & k_2 - \omega^2 m_2 \end{pmatrix} \right }{\left \mathbf{Z} \right } = \frac{\left(k_2 - \omega^2 m_2 \right) \cdot F_1 \sin(\omega t)}{\left \mathbf{Z} \right }$	m_1 התגובה של
$\frac{ \underline{Z} }{k_2 = \omega^2 m_2}$	בחירת קשיחות הקפיץ
$\kappa_2 - \omega m_2$	

בחירה מתאימה של קשיחות הקפיץ תאפס את התגובה לתדר מסוים, על מנת לקבל תגובה בחירה מתאימה של קשיחות הקפיץ תאפס את אפסית לטווח תדרים יש לדרוש שהשיפוע סביב נקודת האפס יהיה קטן ככל האפשר, מכלומר - $m_1 \simeq m_2 = m_2$, על מנת לקיים תנאי זה יש לבחור מסות שיקיימו - $m_1 \simeq m_2 = m_2$, על מנת לקיים תנאי זה יש לבחור מסות שיקיימו (

- : מערכות רציפות
 - :סימונים 3.1

$$\frac{\partial^2 y_{(x,t)}}{\partial t^2} = \ddot{y}_{(x,t)} :$$
נגזרת בזמן

$$\frac{\partial^2 y_{(x,t)}}{\partial x^2} = y_{(x,t)}'' :$$
נגזרת במיקום

:3.2 מיתר מתוח / מוט / ציר

: ניסוח משוואת השדה. 3.2.1

אורך אורך כוח ליחידת אורך אורך אורך מסה ליחידת אורך אורך $\rho_{(x,t)}$

$ \theta \ll 1 \Rightarrow \sin(\theta) \simeq \tan(\theta) \simeq \theta$	$\cos(\theta) \approx 1$	הנחת תזוזות
[5] 117 / Sim(6) tum(6) 6	100(0)	קטנות

$\left[\left(T_{(x)} + \frac{\partial T_{(x)}}{\partial x} dx \right) \cdot \cos \left(\theta_{(x,t)} + \frac{\partial \theta_{(x,t)}}{\partial x} dx \right) - T_{(x)} \cdot \cos \left(\theta_{(x,t)} \right) = 0 \right]$	משוואת תנועה על חלק
	אינפיניטסימלי כללי
$\left[\left(T_{(x)} + \frac{\partial T_{(x)}}{\partial x} dx \right) \cdot \sin \left(\theta_{(x,t)} + \frac{\partial \theta_{(x,t)}}{\partial x} dx \right) + f_{(x,t)} \cdot dx - T_{(x)} \cdot \sin \left(\theta_{(x,t)} \right) = \rho_{(x)} \cdot dx \frac{\partial^2 y_{(x,t)}}{\partial t^2} \right] \right]$,,,,,
$\theta_{(x,t)} = \frac{\partial y_{(x,t)}}{\partial x}$	הגדרת הזווית
$\frac{\partial T_{(x)}}{\partial x} = 0 \Rightarrow T_{(x)} = T_0$	צ פיתרון בכיוון
$T_0 y''_{(x,t)} + f_{(x,t)} = \rho_{(x)} \ddot{y}_{(x,t)}$	- y פיתוח בכיוון
	משוואת השדה

: ותנאי שפה הומוגניים ($f_{\left(x,t\right)}=0$) ותנאי שפה הומוגניים. 3.2.2

הפתרון נעשה על ידי הפרדת משתנים ובחירת פתרון תונד בזמן (בהנחת צפיפות אחידה):

$$y_{(x,t)} = X_{(x)}T_{(t)}$$

$$T_{(t)} = \cos(\omega t - \phi)$$

$$X_{(x)} = A\sin(\beta x) + B\cos(\beta x)$$

$$\beta^2 = \frac{\rho_0}{T_0}\omega^2$$

 $y_{(0,t)} = y_{(1,t)} = 0$ השפה עבור תנאי השפה, עם תלות עם תלות, עם מכפלות, של מכפלות, מתקבל מתקבל מתקבל:

$$y_{(x,t)} = \sum_{r=1}^{\infty} A_{(r)} \cos \left(\frac{\pi r}{l} \sqrt{\frac{\rho_0}{T_0}} t - \phi_{(r)} \right) \sin \left(\frac{\pi r}{l} x \right)$$

את לטור פונקציות שני פיתוח שני לחלץ מתוך תנאי ההתחלה, על את את לחלץ מתוך לחלץ מתוך את את את לעיל): עצמיות מתאים (למשל לפי הדוגמא לעיל)

$$\begin{cases} y_{(x,0)} = g_{(x)} = \sum_{r=1}^{\infty} g_{(r)} \sin\left(\frac{\pi r}{l}x\right) \\ \dot{y}_{(x,0)} = h_{(x)} = \sum_{r=1}^{\infty} h_{(r)} \sin\left(\frac{\pi r}{l}x\right) \end{cases}$$
$$\begin{cases} g_{(r)} = A_{(r)} \cos\left(\phi_{(r)}\right) \\ h_{(r)} = A_{(r)} \frac{\pi r}{l} \sqrt{\frac{\rho_0}{T_0}} \cos\left(\phi_{(r)}\right) \end{cases}$$

- ** פיתוח לטור פונקציות עצמיות זהה לטור פורייה רק עם פונקציות בסיס שונות. נוח לעבוד עם מערכת אורתונורמלית ולכן כדאי לנרמל את הפונקציות העצמיות
- .3.2.3 פתרון משוואה לא הומוגנית ותנאי שפה הומוגניים : במקרה והכוח המפולג אינו אפס, יש להתחיל לפתור את הבעיה בכיוון x, למצוא פונקציות עצמיות ולפתח את הכוח המפולג לטור פונקציות עצמיות ולהמשיך בכיוון .t
 - . מיקון תנאי שפה לא הומוגניים:

$$y_{(0,t)} = u_{(t)}$$
 אבור תנאי השפה : מגדירים $y_{(1,t)} = v_{(t)}$

$$y_{(x,t)} = \tilde{y}_{(x,t)} + u_{(t)} + \frac{v_{(t)} - u_{(t)}}{I} x$$

לכל $v_{(t)}$, $u_{(t)}$ יש לקוות יש להומוגניים, ייהפכו ייהפכו אל ייהפכה של העלי העפה אל לאחר תיקון או ייהפכו ייהפכו ייהפכו או ייהפכו או אוייה השפה אל העלי היותר ביטויים לינאריים אחרת המשוואה תהפוך ללא הומוגנית.

: אנלוגיה למקרים נוספים.

	String	Rod	Shaft
Displacement	Transverse: $y(x,t)$	Axial: $u(x,t)$	Angular: $\theta(x,t)$
Inertia per Unit Length	Mass: $\rho(x)$	Mass: m(x)	Mass Polar Moment of Inertia: I(x)
Stiffness	Tension: $T(x)$	Axial: $EA(x)$ $E = \text{modulus of elasticity}$ $A(x) = \text{cross-sectional}$ area	Torsional: $GJ(x)$ $G = \text{shear modulus}$ $J(x) = \text{polar moment of inertia}$ of cross-sectional area
Load per Unit Length	Force: $f(x,t)$	Force: $f(x,t)$	Torque: $m(x,t)$

.2.6

		:. תנאי שפה לדוגמה			
Case		Boundary condition left, $x = 0$	Boundary condition right, $x = I$		
Free end		$\frac{\partial u}{\partial x} = 0$	$\frac{\partial u}{\partial x} = 0$		
Fixed end		u(0, t) = 0	u(l,t)=0		
End spring		$AE\frac{\partial u}{\partial x} = ku$	$AE\frac{\partial u}{\partial x} = -ku$		
End mass	m	$AE\frac{\partial u}{\partial x} = m\frac{\partial^2 u}{\partial t^2}$	$AE\frac{\partial u}{\partial x} = -m\frac{\partial^2 u}{\partial t^2}$		
End damper		$AE\frac{\partial u}{\partial x} = c\frac{\partial u}{\partial t}$	$AE\frac{\partial u}{\partial x} = -c\frac{\partial u}{\partial t}$		
	. 1				
Case		Boundary condition left, $x = 0$	Boundary condition right, $x = l$		
Fixed end		$\theta(0,t)=0$	$\theta(l,t)=0$		
Free end		$\frac{\partial 0}{\partial x} = 0$	$\frac{\partial \theta}{\partial x} = 0$		
Torsional spring	k e	$I_r G \frac{\partial \theta}{\partial x} = k\theta$	$I_p G \frac{\partial \theta}{\partial x} = -k\theta$		
Inertia J _p	J _p	$I_p G \frac{\partial \theta}{\partial x} = J_p \frac{\partial^2 \theta}{\partial t^2}$	$I_p G \frac{\partial \theta}{\partial x} = -J_p \frac{\partial^2 \theta}{\partial t^2}$		
Torsional damper	c	$I_p G \frac{\partial \theta}{\partial x} = c \frac{\partial \theta}{\partial t}$	$I_p G \frac{\partial \theta}{\partial x} = -c \frac{\partial \theta}{\partial t}$		
			ירות אוילר ברנולי:		

3.3. קורות אוילר ברנולי: : ניסוח המשוואה 3.3.1

$\left[\left(M_{(x,t)} + \frac{\partial M_{(x,t)}}{\partial x} dx \right) - M_{(x,t)} + \left(Q_{(x,t)} + \frac{\partial Q_{(x,t)}}{\partial x} dx \right) dx + f_{(x,t)} dx \frac{dx}{2} = 0 \right]$	משוואת כוחות
$\left[\left(Q_{(x,t)} + \frac{\partial Q_{(x,t)}}{\partial x} dx \right) - Q_{(x,t)} + f_{(x,t)} dx = m_{(x)} \cdot dx \frac{\partial^2 y_{(x,t)}}{\partial t^2} \right]$	
$\partial M_{(x,t)}$	קשר דיפרנציאלי
$Q_{(x,t)} = -\frac{\partial M_{(x,t)}}{\partial x}$	בין מומנט לגזירה
$\partial^2 v_{(\cdot,\cdot)}$	קשר בין
$M_{(x,t)} = E_{(x)}I_{(x)} \frac{\partial^2 y_{(x,t)}}{\partial x^2}$	עקמומיות
$\frac{\partial^2 x}{\partial x^2}$	למומנט
$-\frac{\partial}{\partial x} \left[E_{(x)} I_{(x)} \frac{\partial^2 y_{(x,t)}}{\partial x^2} \right] + f_{(x,t)} = m_{(x)} \frac{\partial^2 y_{(x,t)}}{\partial t^2}$	משוואת הקורה
$m\ddot{y}_{(x,t)} + EIy_{(x,t)}''' = f_{(x,t)}$	במקרה של קורה
	אחידה

: פתרון משוואה הומוגנית. 3.3.2

פתרון החלק ההומוגני נעשה על ידי הפרדת משתנים ובחירת פתרון תונד בזמן:

$$\begin{aligned} y_{(x,t)} &= X_{(x)} T_{(t)} \\ T_{(t)} &= \cos(\omega t - \phi) \\ X_{(x)} &= A \sin(\beta x) + B \cos(\beta x) + C \sinh(\beta x) + D \cosh(\beta x) \\ \beta^4 &= \frac{m}{EI} \omega^2 \end{aligned}$$

לרוב יתקבל טור של מכפלות, עם תלות בתנאי השפה, עבור תנאי השפה : מתקבל $y_{(0,t)} = y_{(1,t)} = y_{(0,t)}'' = y_{(1,t)}'' = 0$

$$\sum_{n=0}^{\infty} \left(EI(\pi r)^2 \right) \cdot (\pi r)$$

$$y_{(x,t)} = \sum_{r=1}^{\infty} A_{(r)} \cos \left(\frac{EI}{m} \left(\frac{\pi r}{l} \right)^2 t - \phi_{(r)} \right) \sin \left(\frac{\pi r}{l} x \right)$$

מציאת הקבועים הנותרים תעשה על ידי שימוש בתנאי ההתחלה באותה טכניקה כמו תיל מתוח.

: תנאי שפה לדוגמא. 3.3.3

Case		Boundary condition left, at $x = 0$	Boundary condition right, at $x = l$
Clamped (deflection, siope = 0)	<u> </u>	$y(0, t) = 0$ $\frac{\partial y}{\partial x} = 0$	$y(t, t) = 0$ $\frac{\partial y}{\partial x} = 0$
Pinned (deflection, moment = 0)	Ā	$y(0, t) = 0$ $\frac{\partial^2 y}{\partial x^2} = 0$	$y(l, t) = 0$ $\frac{\partial^2 y}{\partial x^2} = 0$
Sliding (slope, shear = 0)		$\frac{\partial y}{\partial x} = 0$ $\frac{\partial^3 y}{\partial x^3} = 0$	$\frac{\partial y}{\partial x} = 0$ $\frac{\partial^3 y}{\partial x^3} = 0$
Free (moment, shear = 0)		$\frac{\partial^2 y}{\partial x^2} = 0$ $\frac{\partial^3 y}{\partial x^3} = 0$	$\frac{\partial^2 y}{\partial x^2} = 0$ $\frac{\partial^2 y}{\partial x^2} = 0$
Mass m and moment of inertia J_p	m, J _p	$EI\frac{\partial^2 y}{\partial x^2} = -\int_{p}^{\Phi} \frac{\partial^3 y}{\partial x \partial t^2}$ $EI\frac{\partial^3 y}{\partial x^3} = -m\frac{\partial^2 y}{\partial t^2}$	$EI\frac{\partial^{3} y}{\partial x^{2}} = J_{\rho} \frac{\partial^{3} y}{\partial x \partial t^{2}}$ $EI\frac{\partial^{3} y}{\partial x^{2}} = m\frac{\partial^{3} y}{\partial t^{2}}$
Damper c and spring k	k \$ \(\) c	$EI\frac{\partial^3 y}{\partial x^3} = -ky - c\frac{\partial y}{\partial t}$ $\frac{\partial^2 y}{\partial t} = 0$	$EI\frac{\partial^3 y}{\partial x^3} = ky + c\frac{\partial y}{\partial t}$ $\frac{\partial^3 y}{\partial t} = 0$
		- v	.3. פתרונות לדוגמא:

$\left(\mathbf{v} = \sqrt{\frac{\mathbf{w}}{c}}, c = \sqrt{\frac{EI_z}{\rho A}}, A_j = \text{constant}\right)$

Boundary conditions	Frequency equation	Mode shapes
Simply Supported	$\sin \eta l = 0$ $\omega_j = \frac{j^2 \pi^2 c}{l^2}$	$\sigma_{j} = A_{j} \sin \eta_{j} x$
Cantilever Peam	$\cos \eta l \cosh \eta l = -1$ $\eta_j l \approx (j - \frac{1}{2})\pi$ $\omega_j = \eta_j^2 c$	$\phi_{j}(x) = A_{i}[\sin \eta_{j}x - \sinh \eta_{j}x + D_{j}(\cos \eta_{j}x - \cosh \eta_{j}x)]$ $D_{j} = \frac{\cos \eta_{j}l + \cosh \eta_{j}l}{\sin \eta_{j}l - \sinh \eta_{j}l}$
Free-Free	$\cos \eta l \cosh \eta l = 1$	$\phi_{j}(x) = A_{j}[\sinh \eta_{j}x + \sin \eta_{j}x + D_{j}(\cosh \eta_{j}x + \cos \eta_{j}x)]$ $D_{j} = -\frac{\cosh \eta_{j}l - \cos \eta_{j}l}{\sinh \eta_{j}l + \sin \eta_{j}l}$
Clamped-Clamped	$\cos \eta l \cosh \eta l = 1$	$\phi_{j}(x) = A_{j} \left[\sin \eta_{j} x - \sinh \eta_{j} x + D_{j} (\cos \eta_{j} x - \cosh \eta_{j} x) \right]$ $D_{j} = -\frac{\cosh \eta_{j} l - \cos \eta_{j} l}{\sin \eta_{j} l + \sinh \eta_{j} l}$
Fixed-Simply Supported	$\tanh \eta l \cot \eta l = 1$	$\phi_{j}(x) = A_{j}[\sinh \eta_{j}x - \sin \eta_{j}x + D_{j}(\cosh \eta_{j}x - \cos \eta_{j}x)]$ $D_{j} = -\frac{\sinh \eta_{j}l - \sin \eta_{j}l}{\cosh \eta_{j}l - \cos \eta_{j}l}$
M Fixed-Mass	$\eta l \frac{\cosh \eta l \sin \eta l - \sinh \eta l \cos \eta l}{\cosh \eta l \cos \eta l + 1}$ $= \frac{\mathbf{M}}{m}$	$\phi_{j}(x) = A_{j}\{\sinh \eta_{j}x - \sin \eta_{j}x + D_{j}(\cosh \eta_{j}x - \cos \eta_{j}x)\}$ $D_{j} = -\frac{\sinh \eta_{j}l + \sin \eta_{j}l}{\cosh \eta_{j}l + \cos \eta_{j}l}$