범죄율 예측을 위한 간단한 모델

목차

1) 서론

- 분석 주제 및 목적
- 데이터 설명 및 전처리
 - 분석 방법론 소개

2) 분석

- 변수선택:LASSO

- 차원축소:SIR

3 결론

- 예측 성능 확인 및 비교
- 모델 해석
 - 분석의 결론, 의의, 한계

1-1. 분석 주제 및 목적

분석 주제

- 여러 지표를 사용해 범죄율을 예측하는 모델 만들기

분석 목적

- 범죄율에 영향을 미치는 주요 요인을 분석 **→ 단순**하고 <mark>해석</mark>이 가능한 모델
- 범죄율을 최대한 정확히 예측해 범죄 예방에 도움 **→ 예측 성능**이 괜찮은 모델

1-2. 데이터 설명 및 전처리

분석에 사용한 데이터

- Kaggle의 Communities and Crime data
- n = 2215, p = 147 (id = 4, predictor = 125, target = 18)
- 각 관측치는 미국의 community를 의미 (community ⊂ county ⊂ state)

1-2. 데이터 설명 및 전처리

target variables (18개)

- 살인, 강간, 강도, 폭행, 빈집털이, 자동차 털이, 절도, 방화의 8개 범죄에 대한 범죄 건수와 10만명 당 범죄 건수
- 10만명 당 강력 범죄(살인, 강간, 강도, 폭행) 건수 ➡ 분석에 사용한 반응변수
- 10만명 당 비폭력 범죄(빈집털이, 자동차 털이, 절도, 방화) 건수

predictors (125개)

- 인구, 인종 비율, 이민자 비율 등 사회 전반에 관련된 지표들

1-2. 데이터 설명 및 전처리

전처리

- 결측치 제거
- 반응변수(10만명 당 강력 범죄 건수)를 반올림해서 자연수로 변환
- → 최종적으로 n = 1901, p = 103 (predictors = 102, target = 1)

Train/Test split

1-3. 분석 방법론 소개

분석에 사용한 방법론

- 102개의 설명변수를 모두 사용할 경우 모델이 복잡함
 - → LASSO 변수 선택 / SIR 차원축소 방법을 사용해 단순한 모델

- 해석이 가능한 모델, 예측 성능도 고려
 - → Generalized Linear Model(GLM)과 Generalized Additive Model(GAM)

반응변수에 대한 Poisson distribution 가정

square root link function 사용

변수선택을 통한 단순한 모델 적합

- LASSO : l_1 penalty를 사용한 shrinkage 방법

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{L} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

- hyperparameter : $\lambda \geq 0$, λ 값이 클수록 shrinkage가 크게 일어남
- LASSO regression은 회귀계수를 0으로 shrink하므로 **변수 선택**의 기능

LASSO를 적용한 GLM 적합

- parameter tuning by grid search
 - : 10-fold cross validation으로 tuning (λ : 10 ~ 0.0001까지 100개)
- parameter tuning 결과

- 54번째 λ (= 0.0210)일 때 가장 작은 CV RMSE(=367.8678)
- Train set 전체로 해당 모델을 적합했을 때 16개 변수의 회귀계수가 0으로 shrink되어 해당 모델에 사용된 변수는 86개
 - ➡ 아직 설명변수가 많아서 모델이 복잡함

추가적인 변수선택

λ	$\lambda_1 = 10$	$\lambda_2 = 8.90$	$\lambda_3 = 7.92$	$\lambda_4 = 7.05$	$\lambda_5 = 6.28$	$\lambda_6 = 5.59$	$\lambda_7 = 4.98$	$\lambda_8 = 4.43$	$\lambda_9 = 3.94$
p	3	4	4	4	4	6	8	8	9

- Training set으로 적합해본 결과, 첫 9개 λ값에서 10개 이하의 설명변수를 사용한 모델이 적합된 것을 확인

λ_1	 racePctWhite(백인 인구 비율), PctKids2Par(양부모 가정에 속한 아동 비율) PctKidsBornNeverMar(미혼 가정에 속한 아동 비율)
$\lambda_2, \lambda_3, \lambda_4, \lambda_5$	• FemalePctDiv(여성 이혼율)
λ_6	• PctPersDenseHous(거주 인구 대비 좁은 집의 비율), TotalPctDiv(전체 이혼율)
λ_7, λ_8	• MalePctDivorce(남성 이혼율), HousVacant(빈 집의 수)
λ_9	• MedRentPctHousInc(가구 소득에서 임대료가 차지하는 비율의 중앙값)

- 해당 변수들을 사용해 GAM 적합, 10-fold cross validation으로 적절한 설명변수의 수를 선택
- GAM에서 각 설명변수의 basis function은 effective df = 4의 smoothing splines과 df = 4의 natural cubic splines 사용
- 10-fold cross validation 결과 (10-fold CV RMSE)

	smoothing splines (effective df = 4)	natural cubic splines (df = 4)
p = 3	383.0747	384.6935
p = 4	376.6479	379.4138
p = 6	367.0452	371.4940
p = 8	437.2445	365.3163
p = 9	444.0325	367.5477

- LASSO GLM에서 가장 좋은 성능을 보였던 86개의 설명변수를 사용한 모델(CV RMSE = 367.8678)과 비슷하거나 더 좋은 성능을 보임 ➡ 성공적인 차원축소

hyperparameter tuning

- smoothing spline: effective df
- natural cubic spline : df

basis function의 flexibility에 관여 🗪 tuning parameter

- effective df, df 모두 2~10의 값을 사용해 10-fold cross validation을 통한 grid search
- smoothing splines은 effective df = 9일 때 CV RMSE = 363.5151로 가장 좋은 성능
- natural cubic splines은 df = 6일 때 CV RMSE = 358.3709로 가장 좋은 성능
- 대체로 natural cubic splines의 성능이 좋게 나타나 natural cubic splines 모델을 선택해 모델 개선 진행

모델 개선(1): GAM with natural cubic splines (df = 6)

핵심 설명변수	racePctWhite(백인 인구 비율), PctKids2Par(양부모 가정에 속한 아동 비율),
70 2001	PctKidsBornNeverMar(미혼 가정에 속한 아동 비율)
이혼과 관련된 설명변수	FemalePctDiv(여성 이혼율), MalePctDivorce(남성 이혼율), TotalPctDiv(전체 이혼율)
집과 관련된 설명변수	PctPersDenseHous(거주 인구 대비 좁은 집의 비율), HousVacant(빈 집의 수)

- 이혼과 관련된 설명변수와 집과 관련된 설명변수를 줄여서 더 간단한 모델을 만들고자 함
- 각 변수들의 여러 조합을 확인해본 결과,

racePctWhite(백인 인구 비율), PctKids2Par(양부모 가정에 속한 아동 비율),

PctKidsBornNeverMar(미혼 가정에 속한 아동 비율), MalePctDivorce(남성 이혼율),

PctPersDenseHous(거주 인구 대비 좁은 집의 비율), HousVacant(빈 집 수)

6개 변수를 사용한 모델의 10-fold CV RMSE가 357.7633로 가장 좋은 성능을 보임

(8개의 변수 모두를 사용한 모델의 10-fold CV RMSE는 358.3709로 성능이 향상되었음)

모델 개선(2): GAM with natural cubic splines (df = 6)

- training set에 모델을 적합 후 GAM plot을 참고해 변수마다 basis function 및 df 조정

최종적으로 선택된 GAM

설명변수	Basis function
racePctWhite (백인 비율)	natural cubic splines with df = 3
PctKids2Par (양부모 가정에 속한 아동 비율)	natural cubic splines with df = 5
PctKidsBornNeverMar (미혼 가정에 속한 아동 비율)	Identity (= linear model)
MalePctDivorce (남성 이혼율)	natural cubic splines with df = 6
HousVacant (빈 집의 수)	natural cubic splines with df = 6
PctPersDenseHous (거주 인구 대비 좁은 집의 비율)	natural cubic splines with df = 2

86개의 설명변수를 사용한 LASSO GLM의 10-fold CV RMSE = 367.8678

- → 최종적으로 선택된 GAM의 10-fold CV RMSE = 356.2700
- ➡ 변수선택을 통한 차원축소 및 성능 향상

차원축소를 통한 단순한 모델 적합

- Supervised dimension reduction

: find
$$\boldsymbol{\beta}$$
 s.t. $Y = f(X_1, ..., X_p) + \epsilon \iff Y = g(\beta_1^T X, ..., \beta_d^T X) + \epsilon \pmod{\infty}$

- Inverse Regression
 - : eigen decomposition to $Var[E(X|Y)] \rightarrow \beta$ consist of each eigenvector (as like PCA) select d eigen vector
- SIR(Sliced Inverse Regression)
 - : slicing Y because of practical issue

SIR 차원축소 진행

- 1~10개의 eigenvector를 선택해 10-fold cross validation error 확인
- 사용한 모델 : GLM, GAM(각 변수의 basis function은 effective df=4인 smoothing spline)

- GLM은 9개의 component를 사용했을 때
 CV RMSE = 355.0469로 가장 성능이 좋음
- GAM은 10개의 component를 사용했을 때 CV RMSE = 351.8112로 가장 성능이 좋음
- GAM은 3~6개의 component를 사용했을 때 성능이 매우 좋지 않음

모델 개선 : GAM with 10 components

- 10개의 component를 사용한 GAM의 성능이 가장 좋았으므로 해당 모델을 선택해 모델 개선 진행
- 전체 component의 basis function으로 smoothing splines 사용
 effective df = 2~10에서 10-fold cross validation으로 parameter tuning
- 전체 component의 basis function으로 natural cubic splines 사용
 df = 2~10에서 10-fold cross validation으로 parameter tuning
- 10-fold cross validation 결과,
 effective df = 4의 smoothing splines을 사용한 GAM이
 가장 성능이 좋은 것으로 확인
 (10-fold CV RMSE = 351.8112)

모델 개선 : GAM with smoothing splines (df = 4)

- training set에 모델을 적합 후 GAM plot을 참고해 변수마다 basis function의 df 조정

최종적으로 선택된 GAM

설명변수	Basis function	설명변수	Basis function
PC1	smoothing splines (effective df = 4)	PC6	smoothing splines (effective df = 4)
PC2	smoothing splines (effective df = 2)	PC7	smoothing splines (effective df = 4)
PC3	smoothing splines (effective df = 4)	PC8	smoothing splines (effective $df = 2$)
PC4	smoothing splines (effective df = 3)	PC9	smoothing splines (effective $df = 2$)
PC5	smoothing splines (effective df = 2)	PC10	smoothing splines (effective df = 4)

- 9개의 component를 사용한 GML의 10-fold CV RMSE = 355.0469
- 10개의 component를 사용하고 basis function을 모두 smoothing splines (effective df = 4)으로 선택한 GAM의 10-fold CV RMSE = 351.8112
 - → 최종적으로 선택된 GAM의 10-fold CV RMSE = 348.9979

SIR을 통해 얻은 eigenvector를 살펴본 결과,

대부분의 변수들에 대한 PC loading의 절댓값이 0.1보다 작다는 것을 확인

component	PC1	PC2	PC3	PC4	PC5
# of loading ≥ 0.1	10	12	22	11	15
component	PC6	PC7	PC8	PC9	PC10
# of loading ≥ 0.1	20	9	7	15	13

→ 102개의 설명변수 중 β 를 구성하는데 큰 영향을 주는 변수만 사용할 수 없을까?

SIR을 통한 변수선택

Step.1: 앞서 진행한 것과 같이 SIR을 통해 차원축소

Step.2: 첫 30개 eigenvector를 선택 후,

각 eigenvector에서 loading의 절댓값 상위 30개의 설명변수를 추출

Step. 3: Step.2에서 추출된 변수들에 대해서

각 eigenvector마다 추출된 설명변수 그룹에 포함되는 비율이 얼마인지 계산

Step.4: 포함 비율이 0.5를 넘는 설명변수만 선택

 X_1 : 포함 비율 $^3/_3 = 1$

 X_2 : 포함 비율 $\frac{1}{3} = 0.33$

 X_3 : 포함 비율 $\frac{1}{3} = 0.33$

 X_4 : 포함 비율 $^2/_3 = 0.66$

 X_5 : 포함 비율 $^2/_3 = 0.66$

 X_6 : 애초에 추출되지 않았으므로 고려하지 않음

 \longrightarrow 선택되는 변수 : X_1, X_4, X_5

SIR을 통한 변수선택 결과

- Step.1 → Step.2 에서 **75개의 설명변수가 추출**
- Step.3 → Step.4 에서 최종적으로 **27개의 설명변수가 선택**

- 102개의 설명변수 → 최종적으로 선택된 27개의 설명변수를 사용해 2차 SIR을 진행

2차 SIR 차원축소 진행

- 1차 SIR과 같이 1~10개의 eigenvector를 선택해 10-fold cross validation error 확인
- 사용한 모델 : GLM, GAM(각 변수의 basis function은 effective df=4인 smoothing spline)

- GLM은 1개의 component를 사용했을 때 CV RMSE = 366.7877로 가장 성능이 좋음
- GAM은 8개의 component를 사용했을 때
 CV RMSE = 366.486로 가장 성능이 좋음
- component의 수가 많아질수록 GLM의 성능이 떨어지는 경향

1차 SIR vs 2차 SIR 비교

- GLM과 GAM 모두 component의 수가
 6개 이하일 때는 2차 SIR의 성능이 더 좋음
- 이 경우 GLM보다 GAM의 성능 차이가 큼
- GLM과 GAM 모두 component의 수가
 7개 이상일 때는 1차 SIR의 성능이 더 좋음
- 이 경우 GAM보다 GLM의 성능 차이가 큼
- 2차 SIR에서 변수 선택으로 추가적 정보 손실이 일어났음에도 7개 이상의 component를 사용한 GAM은 1차 SIR에서의 모델과 성능 차이가 크게 나지 않음
 - → 2차 SIR의 GAM에서 가장 성능이 좋았던 8개의 component를 사용한 GAM을 선택해 모델 개선 진행

모델 개선 : GAM with 8 components

- 8개의 component를 사용한 GAM의 성능이 가장 좋았으므로 해당 모델을 선택해 모델 개선 진행
- 전체 component의 basis function으로 smoothing splines 사용
 effective df = 2~10에서 10-fold cross validation으로 parameter tuning
- 전체 component의 basis function으로 natural cubic splines 사용
 df = 2~10에서 10-fold cross validation으로 parameter tuning
- 10-fold cross validation 결과,
 effective df = 6의 smoothing splines을 사용한 GAM이
 10-fold RMSE = 365.9016로 가장 성능이 좋은 것으로 확인

모델 개선 : GAM with smoothing splines (df = 6)

- training set에 모델을 적합 후 GAM plot을 참고해 변수마다 basis function 및 df 조정

최종적으로 선택된 GAM

설명변수	Basis function	설명변수	Basis function
PC1	smoothing splines (effective $df = 4$)	PC5	natural cubic splines (df = 4)
PC2	smoothing splines (effective df = 6)	PC5	natural cubic splines ($df = 4$)
PC3	smoothing splines (effective $df = 6$)	PC7	smoothing splines (effective df = 8)
PC4	smoothing splines (effective df = 3)	PC8	natural cubic splines (df = 5)

- 1개의 component를 사용한 GML의 10-fold CV RMSE = 366.7877
- 8개의 component를 사용하고 basis function을 모두 smoothing splines (effective df = 4)으로 선택한 GAM의 10-fold CV RMSE = 366.486
 - → 최종적으로 선택된 GAM의 10-fold CV RMSE = 362.7237
- 1차 SIR에서 최종 선택된 GAM (10-fold RMSE = 348.9979)보다는 성능이 떨어짐

분석 과정에서 선택된 3개의 모델

- LASSO GAM, 1차 SIR GAM, 2차 SIR GAM

예측 성능 확인 및 비교

- Test set을 통해 test RMSE 확인 및 비교
- 범죄율을 총 4단계로 나눠 범죄 위험 단계 예측 성능 확인 및 비교

test set의 전처리

- training set의 설명변수 별 평균 및 표준편차를 사용해 test set의 설명변수 정규화
- SIR 방법의 경우 training set에서 얻었던 eigen vector를 사용

test RMSE 확인 및 비교

모델	10-fold CV RMSE	test RMSE
LASSO GAM	356.2700	362.6672
1차 SIR GAM	348.9979	326,2085
2차 SIR GAM	362.7237	372.2866

- 세 모델 중 10-fold CV RMSE가 가장 작았던 '1차 SIR GAM'이 test RMSE도 가장 작음
- LASSO GAM과 2차 SIR GAM은 test RMSE가 10-fold CV RMSE보다 큰 반면
 1차 SIR GAM은 오히려 test RMSE가 10-fold CV RMSE보다 작음
- 1차 SIR GAM의 예측 성능이 가장 뛰어남을 확인

범죄 위험 단계 예측 성능 확인 및 비교

- 범죄 예측 모델은 각 지역의 범죄율을 '정확히' 예측할 필요는 없음
- 범죄 예측 모델의 핵심은 각 지역이 '얼마나 위험한지' 예측하는 것

범죄 위험 단계 기준

- training set 반응변수의 분위수(25%, 50%, 75%)를 범죄 단계의 기준으로 설정

10만명 당 강력범죄 건수 (Y)	Y < 161	$161 \le Y < 374$	$374 \le Y < 783$	783 ≤ <i>Y</i>
범죄 위험 단계	1 (매우 안전)	2 (안전)	3 (위험)	4 (매우 위험)

- 위의 기준을 적용해 각 모델의 범죄 위험 단계에 대한 예측 성능 확인 및 비교

범죄 위험 단계 예측 성능 확인 및 비교

	예측 위험 단계															
	LASSO GAM					1차 SIR GAM				2차 SIR GAM				total		
		1	2	3	4		1	2	3	4		1	2	3	4	
실제	1	57	57	5	0	1	57	54	8	0	1	53	60	6	0	119
위험 단계	2	19	75	37	5	2	21	75	35	5	2	20	71	36	9	136
	3	1	17	63	31	3	1	18	66	27	3	1	24	61	26	112
	4	0	6	36	91	4	0	2	37	94	4	1	4	39	89	133
total		77	155	141	127		79	149	146	126		75	159	142	124	400

- LASSO GAM과 1차 SIR GAM은 실제 4단계를 1단계로 / 실제 1단계를 4단계로 예측하는 경우는 없음
- 2차 SIR GAM은 실제 1단계를 4단계로 예측한 경우는 없지만 실제 4단계를 1단계로 예측한 경우가 하나 존재
- **4단계에 대한 예측 성능은 1차 SIR GAM이 가장 좋음** (133개의 4단계 지역 중 94개를 4단계로 분류)
- 세 모델 모두 실제보다 1, 4단계는 적게 예측하고 2, 3단계는 많이 예측하는 경향

3-2. 모델 해석

1차 SIR GAM과 2차 SIR GAM의 해석

- training set에 적합 후 GAM plot을 통해 각 component와 반응변수의 관계를 파악할 수 있음
- 하지만 각 component가 무엇을 의미하는지 해석하기 어려움

PC1 = 0.54(인구 수) - 0.52(도시 거주 인구 수) - 0.22(전체 이혼율) - 0.23(양부모 가정 아동 비율) - 0.30(가구 소유자의 거주율) + 0.27(가구주의 거주율)

3-2. 모델 해석

LASSO GAM의 해석

- 설명변수가 명확하기 때문에 GAM plot을 통해 해석이 쉬움

- 백인비율이 낮으면 강력범죄율이 높으며,
 백인비율이 평균에 가까워질수록 강력범죄율은 급격히 감소한다.
- **양부모 가정 아동비율**이 높을수록 강력범죄율은 감소한다.
- **미혼 가정 아동비율**이 높을수록 강력범죄율은 증가한다.
- **남성 이혼율**이 높을수록 강력범죄율은 증가한다.
- 빈 집의 수가 많을수록 강력범죄율은 증가한다.
- **거주 인구 대비 좁은 집의 비율**이 높을수록 강력범죄율은 증가한다.

3-3. 분석의 결론, 의의, 한계

분석의 결론

- 여러 설명변수를 사용한 범죄 예측 모델로 3가지 모델을 선택
 : LASSO GAM, 1차 SIR GAM, 2차 SIR GAM
- 예측 성능은 1차 SIR GAM이 가장 좋음
- 모델의 해석은 LASSO GAM이 간단하고 이해하기 쉬움
- LASSO GAM을 통해서 강력범죄율에 영향을 미치는 설명변수를 파악하고 각 설명변수가 강력범죄율에 어떤 영향을 미치는지 파악 가능
- 1차 SIR GAM을 사용해 각 지역의 강력범죄율 예측 가능

3-3. 분석의 결론, 의의, 한계

분석의 의의

- 102개의 설명변수를 가진 데이터에서 변수 선택 및 차원 축소 방법을 적용해
 5~10개의 설명변수만 사용되는 간단한 모델을 세움
- LASSO GLM에서 추가적인 변수선택과 GAM을 통해 간단하고 성능도 향상된 모델을 세움
- SIR 방법을 차원축소 뿐만 아니라 변수선택에도 사용

분석의 한계

- 이상치 제거를 하지 못함
- GAM plot에만 의존해서 각 변수의 basis function과 df를 결정
- SIR을 통한 변수선택을 진행해 2차 SIR GAM을 만들었지만 모델의 성능이 좋지 않음
- SIR 방법을 사용한 모델은 해석이 어려움

감사합니다