Дискретная математика, модуль 1 из 4

Danił Szubin

12 февраля 2019 г.

Содержание

1	Математическая скоропись. Начала логики.									
	l.1 Высказывания и предикаты	. 2								
	l.2 Кванторы	. 2								
	1.3 Логические константы	. 2								
	1.4 Общеупотребительные логические функции	. 3								
2	Множества и операции с ними									
	2.1 Способы задания множеств	. 4								
	2.2 Операции над множествами	. 5								
	2.3 Круги Эйлера, диаграммы Венна	. 5								
	2.4 Формула включений-исключений	. 6								
3	Бинарные отношения	7								
	В.1 Свойства бинарных отношений	. 7								
	В.2 Отношение эквивалентности	. 8								
	3.3 Отношение порядка	. 9								
4	Функции									
	4.1 Определение и свойства	. 10								
	4.2 Свойства биекции	. 12								
	4.3 Индексирование	. 12								
	4.4 Аксиома выбора (Choice axiom)	. 13								
	4.5 Бесконечные множества	. 14								
	4.6 Мощности множеств	. 15								
5	Вполне упорядоченные множества									
	б.1 Математическая индукция	. 21								
	5.2 Трансфинитная индукция									
	б.3 Трансфинитная рекурсия	. 23								
	5.4 Утверждения, эквивалентные аксиоме выбора	. 25								
6	Кризис наивной теории множеств: парадоксы									
	3.1 Парадоксы									
	3.2 Аксиомы теории множеств (аксиомы Цермело-Френкеля)	. 26								
7	Натуральные числа и их свойства									
	7.1 Аксиомы Пеано									
	7.2 Определение натуральных чисел и вывод аксиом Пеано из ZF	. 28								
8	Список вопросов к экзамену									
9	Залачи к экзамену	35								

1 Математическая скоропись. Начала логики.

1.1 Высказывания и предикаты

Определение 1. Высказывание – осмысленное утверждение, про которое можно однозначно судить: истинно оно или ложно.

Высказывания
 Не высказывания

$$2+1=3$$
 $x^2=2$

 "Волга впадает в Каспийское море"
 "погода хорошая"

 $1=0$

Пример 1.1. Проблема с "погода хорошая" в том, что это слишком расплывчатая фраза, нет чётких критериев, чтобы решить, хорошая погода или нет. Проблема с " $x^2 = 2$ " в том, что не указано, что такое x.

Определение 2. Предикат (логическая функция) — высказывание, зависящее от параметра (т.е. содержащее букву), и указано, что именно можно подставлять вместо буквы. При этом при каждом возможном значении параметра (буквы) должно быть можно сказать: верно это высказывание или нет.

Пример 1.2. Например, ($x^2 = 2$, где x пробегает множество студентов нашей группы) - это не предикат, потому что не указано, как возводить студента в квадрат и как потом результат этой операции сравнивать с числом, т.е. при подстановке вместо буквы любого из разрешённых значений мы не получаем высказывание (см. определение 2 высказывания выше).

 $P(x) = (x^2 = 1), x = \mathbb{R}$ — предикат; логическая функция от одного вещественного переменного x

P(x) = (1 = 0) – предикат; логическая функция от нуля переменных, т.е. константа. Причём в данном случае это константа 0, поскольку высказывание 1=0 ложно.

1.2 Кванторы

Определение 3. Кванторы - это значки, которые пишутся перед предикатом. Иногда их можно писать и после предиката, если это не вызывает путаницы при записи нескольких предикатов рядом. Если есть цель полностью избежать путаницы, то надо поставить все кванторы на стандартное для них место — перед теми предикатами, к которым они относятся. Бывает два квантора: ∀ и ∃.

Квантор всеобщности ∀

 $\forall x: P(x)$ – для всех/любого/каждого x верно P(x)

Квантор существования ∃

 $\exists x : P(x)$ – существует такой x, что верно P(x)

Обратите внимание: если в предикате каждую из переменных связать квантором, то получится константа.

1.3 Логические константы

0 (ложь); 1 (истина);

1.4 Общеупотребительные логические функции

Название	Значок	Прочтение	Таблица истинности		
Конъюнкция	^, &,	$x \wedge y$, "хиу"	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
			$x \wedge y \mid 0 \mid 0 \mid 0 \mid 1$		
Дизъюнкция (Неисключа-	V, or	$x \lor y$, "х или у"	$x \lor y \mid 0 \mid 1 \mid 1 \mid 1$		
ющее "или")					
Исключающее "или"	\oplus , xor	$x \oplus y$, "х либо у"	$x \oplus y \mid 0 \mid 1 \mid 1 \mid 0$		
Импликация	\rightarrow	$x \to y$, "из х следует у"	$x \rightarrow y \mid 1 \mid 1 \mid 0 \mid 1$		
Эквивалентность	\leftrightarrow , \Leftrightarrow	$x \leftrightarrow y$, "х логически эви-	$x \leftrightarrow y \mid 1 \mid 0 \mid 0 \mid 1$		
		валентноно у"			
Отрицание	\neg , \bar{x}	\bar{x} , "не верно, что х"	$x \mid 0 \mid 1$		
		и, не верно, что х	$\bar{x} \mid 1 \mid 0$		

Замечание 1.1. Запись $a \longrightarrow b$ означает «из a следует b». Эта связь между a и b может быть равносильно выражена так:

2 Множества и операции с ними

Неформальное описание: **Множество** – набор, неупорядоченный список, куча, семейство каких-либо объектов, отличимых друг от друга и от всех остальных объектов материального и интеллектуального мира, называемых **элементами**.

Замечание 2.1. 1. В множестве все элементы разные, не повторяются.

- 2. Множество одно из основных понятий математики. При современном подходе каждый новый вводимый в рассмотрение объект определяется как некоторое множество.
- 3. Подходы к теории множеств
 - наивный (нет аксиом, интуитивное понимание множества через описание)
 - аксиоматический

 $He \phi o p m a n b n o e o n u c a n u e :$ Функция (в широком смысле), определённая на множестве A и принимающая значения в множестве B — это правило, способ, по которому каждому элементу x множества A сопоставлен ровно один элемент f(x) множества B. $f:A\longrightarrow B$ — функция f отображает A в B y=f(x) — значение функции f на элементе x равно элементу y $f:x\mapsto f(x)$ — f переводит элемент x в элемент f(x) $f=[x\mapsto f(x)]$ — f — это та функция, которая x переводит в f(x)

 $He\phi$ ормальное описание: **Функция** (в узком смысле) – функция в широком смысле, заданная на числовом множестве и принимающая числовые значения, т.е. A и B – некоторые множества чисел. Если $f:A\longrightarrow B$, то A называется областью определения функции $(D(f),D_f,Dom(f),$ а B – множеством значений. (Не путать с множеством всех принимаемых значений)

a – достаточное условие для b;

b – необходимое условие для a;

Пример 2.1. $A = B = \mathbb{R}, f(x) = sin(x)$

 $D(f) = A = \mathbb{R}$ – область определения

 $B=\mathbb{R}$ – множество значений

E(f) = [-1;1] – множество всех принимаетмых значений

 $x \in A$ – "x лежит в A"

 $A \ni x$ – "A содержит x"

Если из $x \in A$ следует $x \in B$, то говорят, что A является **подмножеством** в множестве B, это записывается как $A \subset B$ и $B \supset A$. При этом B называется **надмножеством** для A.

 \varnothing — **пустое множество**, т.е. множество, в котором нет элементов

2.1 Способы задания множеств

- 1. Явное перечисление (годится для небольших множеств) $A = \{1, 2, a, *\}$ –"множество A содержит элементы 1, 2, a, * и не содержит других элементов"
- 2. Задание с помощью свойства или правила (предиката) $A = \{x : P(x)\}$ "A состоит из тех x, для которых верно P(x)". Внимание! Должно быть явно указано, что можно подставлять в качестве x. Иначе могут возникнуть парадоксы, об этом будет сказано в конце курса. $\{x : x^2 < 4, x \in \mathbb{R}\} = [-2; 2]$
- 3. Множество можно выразить через уже известные множества и операции над множествами.
- 4. Множество можно задать с помощью характеристической функции

Замечание 2.2. Будем считать, что все рассматриваемые нами множества содержатся в каком-то одном большом множестве U. То есть мы не рассматриваем сколь угодно большие множества, а оперируем только подмножествами множества U.

Определение 4. Характеристической функцией χ_A множества $A(A\subset U)$ называется функция, принимающая значение 1 на элементах множества A и значение 0 на остальных элементах множества U.

$$\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$
$$\chi_A : U \longrightarrow \{0, 1\}$$

2.2 Операции над множествами

Обозна- чение	Название	Определение	Диаграмма Эйле- ра	Характеристическая функция
$A \cap B$	пересече-	$x \in A \cap B \leftrightarrow \\ \leftrightarrow (x \in A) \land (x \in B)$	A B	$\begin{array}{ccc} \chi_{A \cap B} & = \\ \chi_A(x)\chi_B(x) \end{array}$
$A \cup B$	объеди- нение <i>А</i> и <i>В</i>	$x \in A \cup B \leftrightarrow \\ \leftrightarrow (x \in A) \lor (x \in B)$	A B	$ \chi_{A \cup B} = \chi_A(x) + \chi_B(x) - \chi_A(x)\chi_B(x) $
$A \setminus B$	А без В	$x \in A \setminus B \leftrightarrow \\ \leftrightarrow (x \in A) \land (x \notin B)$	AB	$\chi_{A \setminus B}(x) = \chi_A(x) \chi_A(x)\chi_B(x)$
$A \triangle B$	Симмет- рическая разность А и В	$x \in A \triangle B \leftrightarrow \\ \leftrightarrow (x \in A) \oplus (x \in B)$	A B	$ \chi_{A\triangle B}(x) = \chi_A(x) + \chi_B(x) - 2\chi_A(x)\chi_B(x) $
			A	
$\neg A, A^C$	Дополнение (complementary) мн-а A	$x \in \neg A \leftrightarrow \\ \leftrightarrow x \not\in A$		$ \begin{vmatrix} \chi_{\neg A}(x) & = & 1 & - \\ \chi_A(x) & & & \end{vmatrix} $

2.3 Круги Эйлера, диаграммы Венна

1) Как обойтись совсем без картинок при сравнении множеств?

	A	\overline{A}	$\mid B \mid$	\overline{B}	C	\overline{C}
$A \setminus B$	1	0	0	1	1	1
$(A \setminus B) \cap C$	1	0	0	1	1	0

 $^{(4 \} B) \cap C \mid 1 \mid 0 \mid 0 \mid 1 \mid 1 \mid 0$ 2) Как нарисовать картинку для $n \ge 3$ множеств?

Определение 5. Если A — множество, то символами 2^A и $\mathcal{P}(A)$ и $\mathscr{P}(A)$ обозначается множество всех подмножеств множества A, т.е. $2^A = \mathcal{P}(A) = \mathscr{P}(A) = \{B : B \subset A\}$.

Замечание 2.3. Почему используется обозначение 2^A ? Если A — конечно, то в множестве 2^A ровно 2^n элементов. Обозначая количество элементов в конечном множестве M символом |M|, получаем равенство $|2^A| = 2^{|A|}$.

Теорема 2.1. Если в множестве A ровно n элементов, то у множества A ровно 2^n подмножеств.

Доказательство. 1 способ: $A = \{a_1, ..., a_n\}$. Тогда каждое множество $B \subset A$ однозначно задаётся своей характеристической функцией $\chi_B : A \leftarrow \{0,1\}$.

 $\chi_B(a_1),...,\chi_B(a_n)$ — строка из 0 и 1 длины n. Сколько таких строк, столько и возможных характеристических функций, столько и существует подмножеств у множества A. Всего строк 2^n , так как эти строки задают двоичное разложение целых чисел от 0 (строка из всех нулей) до $2^n - 1$ (строка из всех единиц).

База: $n=0, A=\varnothing, \, 2^A=\{\varnothing\}$ — множество из одного элемента, этот элемент — $\varnothing.$ $2^n=2^0=1$ - верно

Предположение: У множества из n элементов ровно 2^n подмножеств.

Шаг: Пусть в множестве B ровно n+1 элементов. Докажем, что у B ровно 2^{n+1} подмножеств.

- т. к. $B \neq \varnothing$, то выберем любой элемент $b \in B$. Тогда все подмножества множества B распадаются на 2 типа:
- 1. Не содержащие b, т. е. подмножества множества $B \setminus \{b\}$, в котором n (2^n подмножеств).
- 2. Содержат b, т.е. ($\{b\} \cup C, C \subset B \setminus \{b\}$. Поэтому их тоже 2^n штук.

Все подмножества множества B:

$$2^n + 2^n = 2 * 2^n = 2^{n+1}$$

Определение 6. Если $A \cap B = \emptyset$, то говорят, что множества A и B дизъюнктные. Выражение $A \sqcup B$ называют дизъюнктной суммой (дизъюнктным объединением) множеств A и B, то есть

$$C = A \sqcup B \iff \begin{cases} C = A \cup B \\ A \cap B \neq \emptyset \end{cases}$$

2.4 Формула включений-исключений

Обозначение: Если A — конечное множество, то символы |A|, #A, Card(A) обозначают количество элементов в множестве A.

Пример:
$$|\{1, a, *\}| = \#\{1, a1*\} = Card(\{1, a, *\}) = 3$$
 $|\varnothing| = 0$

Формула включений-исключений для двух множеств

$$|A \cup B = |A| + |B| - |A \cap B|$$

Формула включений-исключений для трёх множеств

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Формулу включений-исключений можно записать для любого конечного числа множеств, подробнее см. Википедию.

3 Бинарные отношения

Общество - это множество людей и отношений между ними.

И. Ремизов 2006г.

Определение 7. Если $x \neq y$, то множество $\{x, y\}$ называется **неупорядоченной парой** x и y.

Замечание 3.1. Все множества первоначально предполагаются не имеющими никакой внутренней структуры: их нельзя складывать, сравнивать, какой из них больше, и так далее. Сложение, порядок и так далее должны быть специально определены, поэтому между множествами $\{x, y\}$ и $\{y, x\}$ нет разницы (то есть $\{x, y\} = \{y, x\}$), так как обе эти записи говорят лишь, какие элементы входят в множество. У множеств $\{x, y\}$ и $\{y, x\}$ одни и те же элементы, поэтому множества $\{x, y\}$ и $\{y, x\}$ равны. Если x = y, то неупорядоченная пара $\{x, y\}$ содержит по факту только один элемент (так как x и y один и тот же элемент), поэтому $\{x, x\} = \{x\}$.

Определение 8. Упорядоченной парой называется множество $\langle x, y \rangle = \{ \{x, y\}, \{x\} \}$. Элемент x здесь называется первым элементом пары, а y — вторым.

Замечание 3.2. Если $x \neq y$, то $\langle x, y \rangle = \{ \{x, y\}, \{x\} \} \neq \{ \{x, y\}, \{y\} \} = \langle y, x \rangle$.

Определение 9. Пусть A и B - множества. Декартовым произведением A и B называют множество всех упорядоченных пар, в которых первый элемент из A, а второй — из B. $\langle a,b \rangle$ - упорядоченная пара $A \times B = \{\langle a,b \rangle : a \in A, b \in B\}$

Определение 10. Бинарным отношением на $A \times B$ (другой термин — соотношение из A в B) называется подмножество в $A \times B$.

 $R \subset A \times B$, R—соотношение из A в B.

R—те пары $\langle a,b\rangle$, которые состоят в отношении R

Обозначение: $\langle a,b\rangle \in R \Leftrightarrow aRb$

Графиком отношения R называют отношение R

3.1 Свойства бинарных отношений

Определение 11. Отношение R на множестве A называется

- **рефлексивным**, если $aRa \forall a \in A$. Геометрический смысл: диагональ принадлежит бинарному отношению.
- антирефлексивным, если $a\overline{R}a \forall a \in A$. Геометрический смысл: диагональ не пересекается с графиком отношения.

- симметричным, если $xRy \iff yRx \ \forall x \in A, \ y \in A$. Геометрический смысл: график симметричен относительно диагонали.
- антисимметричным, если $(xRy \land yRx) \Longrightarrow y = x$. Геометрический смысл: симметричные относительно диагонали точки графика могут лежать только на диагонали.
- связным, если $xRy \lor yRx \quad \forall x \in A, \quad y \in A.$
- транзитивным, если $xRy \wedge yRz \Longrightarrow xRz \quad \forall x \in A, \quad y \in A, \quad z \in A$

Определение 12. Отножение R на множестве A называется отношением предпочтения, если оно связно и транзитивно. Пример: пусть A — непустое множество, и дана функция (называемая функцией полезности) $f \colon A \to \mathbb{R}$, тогда можно положить $xRy \iff f(x) \leq f(y)$. Проверьте, что R — отношение предпочтения.

Замечание 3.3. Оказывается, что не каждое отношение предпочтения можно задать с помощью функции полезности.

3.2 Отношение эквивалентности

Определение 13. R называется **отношением эквивалентности** если и только если оно рефлексивно, симметрично и транзититвно.

Определение 14. Разбиением множества A на A_{ω} $\omega \in \Omega$ называется представление A в виде дизъюнктной суммы множеств A_{ω} , то есть $A = \bigsqcup_{\omega \in \Omega} A_{\omega}$, по использованному обозначению см. раздел 4.3.

Определение 15. M — множество и R — отношение эквивалентности на M. Классом эквивалентности элемента $x \in M$ называется множество $K_x = [x] = \{y \in M \mid xRy\}$

Теорема 3.1.
$$[x] \cap [y] \neq \emptyset \Longrightarrow [x] = [y]$$
 Доказательство .

Если
$$[x] \cap [y] \neq \emptyset$$
, то $\exists z \in M : (z \in [x]) \land (z \in [y])$

$$w \in [x] \Leftrightarrow xRw$$

$$zRy \Leftrightarrow yRz$$

 $yRw \Longleftrightarrow wRy \Longleftrightarrow w \in [y]$ Следовательно

Значит $[x] \subseteq [y]$, аналогично $[y] \subseteq [x]$ Следовательно [x] = [y].

Теорема 3.2. Каждое отношение эквивалентности R на множестве A однозначно задаёт разбиение множества A. При этом разбиения с различным порядком слагаемых считаем одинаковыми. Обратно, по каждому разбиению множества A можно единственным образом построить отношение эквивалентности, для которого классы эквивалентности будут совпадать с множествами, на которые разбито A

Доказательство .

1) Пусть R — отношение эквивалентности на A. Рассмотрим множества K_x , где $x \in A$. Так как xRx, получаем, что $A = \bigcup K_x$.

Докажем, что $\omega_1 \overline{R} \omega_2 \Rightarrow A_{\omega_1} \cap A_{\omega_2} = \emptyset$.

 $A_{\omega_1} = K_{\omega_1}, A_{\omega_2} = K_{\omega_2}$ причем $\omega_1 \overline{R} \omega_2$ т. к. из семейства $K_x, x \in A$ мы убрали повторяющиеся множества и в каждом из оставшихся выбрали ровно один элемент ω_3 , который мы использовали в обозначении A_{ω} того множества в котором $\omega \in A_{\omega}$.

Если $K_{\omega_1} \cap K_{\omega_2} \neq \emptyset$, то по ранее доказанному утверждению было бы $K_{\omega_1} = K_{\omega_2}$, а это бы влекло $\omega_1 R \omega_2$, но это не так. Противоречие с тем, что $\omega_1 \overline{R} \omega_2$.

2) Пусть
$$A = \bigsqcup_{\omega \in \Omega} A_{\omega}$$
 положим $xRy \Leftrightarrow \exists \omega_0 \in \Omega : (x \in A_{\omega_0}) \land (y \in A_{\omega_0}).$

Докажем, что R - отношение эквивалентности.

1. Рефлексивность. $(xRx) \Leftrightarrow \exists \omega_0 \in \Omega$.

$$(x \in A_{\omega_0}) \land (x \in A_{\omega_0})$$
 верно, т.к. $A = \bigcup_{\omega \in \Omega} A_{\omega}$, то $\exists A_{\omega_0} \ni x$ по определению объединения множеств.

- 2. Симметричность. $xRy \Leftrightarrow (\exists A_{\omega_0} : (x \in A_{\omega_0} \land y \in A_{\omega_0})) \Leftrightarrow (\exists A_{\omega_0} : (y \in A_{\omega_0}) \land (x \in A_{\omega_0})) \Leftrightarrow yRx$
 - 3. Транзитивность. $(xRy) \land (yRz) \Rightarrow (xRz)$

$$xRy \Longrightarrow \exists A_{\omega_1} : (x \in A_{\omega_0}) \land (y \in A_{\omega_1})$$

$$yRz \Longrightarrow \exists A_{\omega_2} : (y \in A_{\omega_2}) \land (z \in A_{\omega_2})$$

$$(y \in A_{\omega_1}) \land (y \in A_{\omega_2}) \Longrightarrow A_{\omega_1} = A_{\omega_2} \Longrightarrow \omega_1 = \omega_2$$

(т.к. $\alpha_1 \neq \alpha_2 \Leftrightarrow A_{\alpha_1} \cap A_{\alpha_2} = \emptyset$ по определению разбиения) $\Longrightarrow A_{\omega_1} = A_{\omega_2}$

Положим $\omega_3 = \omega_2 = \omega_1$

$$x \in A_{\omega_1} \Rightarrow x \in A_{\omega_3}$$

$$z \in A_{\omega_2} \Rightarrow z \in A_{\omega_3}$$

$$\exists A_{\omega_3} : (x \in A_{\omega_3}) \land (y \in A_{\omega_3}) \Rightarrow xRz$$

Замечание 3.4 (О терминологии). $K_x = \{y \mid y \in M, xRy\}$, где R — отношение эквивалентности на M.

 K_x — класс эквивалентности x,

x — представитель класса K_x ,

Но у одного класса может быть много представителей. Выбор представителя не диктуется самим отношением R. По предыдущему утверждению R однозначно определяет только разбиение на классы. Поэтому часто говорят не о классах элементов, а о классах самого отношения R.

Определение 16. Процесс разбиения множества на классы эквивалентности называется факторизацией. Множество полученных классов называется фактор-множеством.

Обозначение: $A_{/R}$, где A - множество, R - отношение эквивалентности.

3.3 Отношение порядка

Определение 17. R называется **отношением порядка** если и только если R обладает тремя свойствами:

- 1) рефлексивность $\forall x \in M : xRx$
- 2) симметричность $\forall x, y \in M : xRy \land yRx \Longrightarrow x = y$
- 3) транзитивность $\forall x, y, z \in M : (xRy) \land (yRz) \Longrightarrow xRz$

Определение 18. Пусть (M, \preccurlyeq) — упорядоченное множество, т.е. \preccurlyeq — отношение порядка. Пусть $A\subset M$. Тогда элемент $b\in M$ назывется **верхней гранью** для A, если $\forall x\in A:$ $x\preccurlyeq b.$

Если в множестве всех верхних граней множества A есть наименьший элемент, то он называется **точной верхней гранью** множества A, и обозначается $\sup A$, читается: супремум A.

Пусть (M, \succcurlyeq) — упорядоченное множество, т.е. \succcurlyeq — отношение порядка. Пусть $A \subset M$. Тогда элемент $b \in M$ назывется **нижней гранью** для A, если $\forall x \in A : x \succcurlyeq b$.

Если в множестве всех нижних граней множества A есть наибольший элемент, то он называется **точной нижней гранью** множества A, и обозначается $\inf A$, читается: инфимум A.

Определение 19. Упорядоченной суммой упорядоченных множеств $\langle A, \leqslant_A \rangle$ и $\langle B, \leqslant_B \rangle$ (не ограничивая общности, считаем, что $A \cap B = \varnothing$, иначе можно развести множества A и B, рассмотрев вместо них $A_1 = \{\langle a, 1 \rangle : a \in A\}$ и $B_1 = \{\langle b, 2 \rangle : b \in B\}$, тогда $A_1 \cap B_1 = \varnothing$) называется пара $\langle C, \leqslant_C \rangle$, где $C = A \cup B$ и

$$x \leqslant_C y \Leftrightarrow \begin{cases} x \leqslant_A y & x, y \in A \\ x \leqslant_B y & x, y \in B \\ x \leqslant_C y & x \in A \land y \in B \end{cases}$$

то есть каждый элемент $x \in A$ меньше или равен каждого $y \in B$, а внутри A и B элементы упорядочены, как в A и B.

Замечание 3.5. В упорядоченной сумме A и B всегда каждый элемент из A сравним с каждым элементом из B.

Замечание 3.6. Сумма упорядоченных множеств не коммутативна, в общем случае $A+B \neq B+A$

Определение 20. Упорядоченным произведением $\langle A, \leqslant_A \rangle$ и $\langle B, \leqslant_B \rangle$ называется упорядоченное множество $\langle C, \leqslant_C \rangle$, где : $C = A \times B$, а

$$\langle x_1, y_1 \rangle <_C \langle x_2, y_2 \rangle \Leftrightarrow \begin{cases} x_1 <_A x_2, & y_1 = y_2 \\ y_1 <_B y_2, & y_1 \neq y_2 \end{cases}$$

4 Функции

4.1 Определение и свойства

Определение 21. Пусть A и B - непустые множества, и $R \subset A \times B$ — соответствие (бинарное отношение). Тогда по определению:

 $D(R) = \{x \in A \mid \exists y \in B : xRy\}$ — проекция на первую координату;

 $E(R) = \{y \in B \mid \exists x \in A : xRy\}$ — проекция на вторую координату;

 $R^{-1}=\{\langle y,\ x\rangle\mid \langle x,\ y\rangle\in R\}\subset B\times A$ — обратное соответствие.

Непосредственно из этих определений вытекает, что

$$(R^{-1})^{-1}=R,\ D(R^{-1})=E(R),\ E(R^{-1})=D(R)$$

Определение 22. Функцией $f:A \longrightarrow B$ называется такое соответствие f, что D(f)=A и для каждого $x \in A$ существует не более одного такого $y \in A$, что $\langle x, y \rangle \in f$. (Первое условие называется условием определённости всюду на A, а второе — условие однозначности).

Вместо $\langle x, y \rangle \in f$ пишут y = f(x).

Определение 23. Функция f называется **обратимой**, если соответствие f^{-1} - функция.

Определение 24. Если f — функция, то D(f) называется областью определения функции f. А E(f) - множеством принимаемых значений.

Определение 25. Функция $f: A \longrightarrow B$ называется:

- инъективной (инъекцией), теоретико-множественным вложением, если $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$, то есть разные элементы множества A переходят в разные элементы множества B.
- сюръективной (сюръекцией), теоретико-множественным наложением, отображением A на B, если E(f) = B, то есть в каждый элемент множества B перейдёт какой-то элемент множества A.
- биективной (биекцией), если она одновременно инъективна и сюръективна.

Пример 4.1. $A = B = \mathbb{R}, f(x) = x^2$ — не инъективна, не сюръективна

- **Утверждение 4.1** (Принцип Дирихле). Пусть $f:\{a_1,\ldots,a_n\} \longrightarrow \{b_1,\ldots,b_m\}$ тогда 1) если n>m, то $\exists b^*$ такой, что под действием f в b^* перейдёт не менее $\frac{n}{m}$ элементов. В частности, f не инъективна;
- 2) если n < m, то $\exists b_*$ такой, что под действием f в b_* перейдёт не более $\frac{n}{m}$ элементов. В частности, f не сюръективна;

Доказательство .

- 1) Пусть в каждый из m элементов перешло меньше, чем $\frac{n}{m}$ элементов, тогда всего переходило меньше, чем $m\frac{n}{m}=n$ элементов. Противоречие!
- 2) усть в каждый из m элементов перешло больше, чем $\frac{n}{m}$ элементов, тогда всего переходило больше, чем $m\frac{n}{m}=n$ элементов. Противоречие!

Утверждение 4.2. Пусть $A = \{a_1, \ldots, a_n\}$ и $f : A \longrightarrow A$. Тогда следующие условия равносильны:

- 1) f биекция;
- 2) f uнъекция;
- $3) f c \omega p \sigma e \kappa u u s;$

Доказательство .

 $1 \rightarrow 2$ По определению биекции;

 $2 \rightarrow 3$

Так как f — инъективна, то среди элементов $f(a_1), f(a_2), \ldots, f(a_n)$ нет повторяющихся, при этом все они являются элементами A. Если $\exists x \in A$ такой, что $\nexists a \in A$: x = f(a), то f — инъективное отображение $A \longrightarrow A \setminus \{x\}$ множества из n элементов в множество из не более чем n-1 элементов, что невозможно по принципу Дирихле (1).

$$3 \rightarrow 1$$

Если $\exists a_1 \neq a_2: f(a_1) = f(a_2)$, то среди элементов $f(a_1), \ldots, f(a_n)$ есть не более n-1 различных, однако для каждого $f(a_i)$ существует a_j такой, что $f(a_i) = a_j$ так как f(A) = A. Тогда положим $g: f(a_j) \longmapsto a_j$. Тогда g —сюръективное отображение множества $\{f(a_1), \ldots, f(a_{n-1}\}$ из не более, чем n-1 элементов в множество $\{a_1, \ldots, a_n\}$ из n элементов, что невозможно по принципу Дирихле (2).

4.2 Свойства биекции

Утверждение 4.3. $(f - \textit{обратима}, \textit{то есть } f^{-1} - \textit{функция}) \iff f - \textit{биекция}.$

Доказательство .

- 1) f^{-1} функция, значит $D(f^{-1}) = B \iff E(f) = B$, а это значит, что f сюръективна. Так как f^{-1} функция, то она удовлетворяет условию однозначности, то есть для каждого $b \in B$ существует не более одного такого $a \in A$, что $\langle b, a \rangle \in f^{-1}$, но $\langle a, b \rangle \in f$ поэтому f инъективна.
 - 2) Доказательство получается прочтением доказательства пункта 1) снизу вверх.

Следствие 4.1. Обратная к биекции функция - тоже биекция.

Доказательство .

$$f$$
 — биекция $\longrightarrow f^{-1}$. По определению обратного отношения $(f^{-1})^{-1}=f\Longrightarrow (f^{-1})^{-1}$ — функция $\Longrightarrow f^{-1}$ — биекция.

Замечание 4.1. Биекцию называют также взаимно-однозначным соответствием или "1-1 соответствием" потому что запись « $f \colon A \longrightarrow B$ — биекция» означает, что для каждого $a \in A$ существует ровно один такой (поставленный ему в соответствие) элемент $b \in B$, что b = f(a).

Утверждение 4.4. Композиция биекций — биекция.

Доказательство . Пусть $f:A\longrightarrow B$ и $g:B\longrightarrow C$ — биекции. Докажем, что $h=g\circ f$ (h(x)=g(f(x))) $(h:A\longrightarrow C$ — биекция.

- 1) h инъекция так как f переводит разные элементы A в разные элементы B, а g переводит разные элементы B в разные элементы C.
- 2)h сюръекция, потому что f(A)=B, так как f сюръекция, а g(B)=C, так как g сюръекция, поэтому h(A)=g(f(A))=g(B)=C

4.3 Индексирование

Говорят, что элементы множества B (или ещё говорят, что само множество B) проиндексированы (проиндексировано) с помощью множества индексов A, если существует биекция $f:A\longrightarrow B$, при этом пишут, что $B=\{f(\alpha)\mid \alpha\in A\}$ или $B=\{b_{\alpha}\mid \alpha\in A\}$, полагая, что $f(\alpha)=b_{\alpha}$.

Замечание 4.2. Множество индексов непусто, это единственное его свойство. Может быть $A = \{1, 2, ..., n\}, A = \mathbb{N}, A = \mathbb{R}, A = [0, 2]$ и т. д.

Примеры: (использование индексов)

I Пусть элементами множества B являются множества, и A — множество индексов, т.е. $B = \{\mathcal{B}_{\alpha} \mid \alpha \in A\}, (B)_{\alpha}$ — множество. Тогда:

$$\bigcap_{\alpha \in A} B_{\alpha} = \{ x \mid \forall \alpha \in A, \ x \in B_{\alpha} \}$$

$$\bigcup_{\alpha \in A} B_{\alpha} = \{ x \mid \exists \alpha \in A, \ x \in B_{\alpha} \}$$

II Любое множество можно проиндексировать его собственными элементами, взяв в качестве индексирующей биекции тождественное отображение $f(\alpha) = \alpha$) Запись: $A = \{\alpha, \alpha \in A\}$, здесь $a_{\alpha} = \alpha$

Определение 26. III Декартово произведение.

Пусть
$$B = \{B_{\alpha} \mid \alpha \in A\}$$
 и при каждом $\alpha \in A$, B_{α} — множество. Положим $\mathscr{B} = \bigcup_{\alpha \in A} B_{\alpha}$.

Тогда $\prod_{\alpha\in A}B_{\alpha}$ — это 1 множество всех таких функций $f:A\longrightarrow \mathscr{B},$ что $\forall \alpha\in A$ верно

 $f(\alpha) \in B_{\alpha}$ (как и ранее, считаем, что множества B_{α} между собой не пересекаются, иначе мы можем их развести).

$$\prod_{\alpha \in A} B_{\alpha} = \left\{ f : A \longrightarrow \bigcup_{\alpha \in A} B_{\alpha} \mid \forall \alpha \in A : f(\alpha) \in B_{\alpha} \right\}$$

Пример:

$$A = \{1, 2, 3\}, B = \{B_1, B_2, B_3\}$$

 $B_1 = \{1, 2\}, B_2 = \{0\}, B_3 = \{6, 7, 8\}$

Тогда, с одной стороны:

$$B_1 \times B_2 \times B_3 = \{ \langle b_1, b_2, b_3 \rangle : b_1 \in B_1, b_2 \in B_2, b_3 \in B_3 \} = \{ \langle 1, 0, 6 \rangle, \langle 2, 0, 6 \rangle, \langle 1, 0, 7 \rangle, \langle 2, 0, 7 \rangle, \langle 1, 0, 8 \rangle, \langle 2, 0, 8 \rangle, \}$$

с другой стороны все функции f:

$$\prod_{\alpha \in A} B_{\alpha} = \prod_{\alpha=1}^{3} B_{\alpha}$$

$$f: \{1, 2, 3\} \longrightarrow B_1 \cup B_2 \cup B_3 = \{1, 2, 0, 6, 7, 8\}$$

где $f(1) \in \{1, 2\}, f(2) \in \{0\}, f(3) \in \{6, 7, 8\}$

Всего всех без исключений функций f $\{1,\ 2,\ 3\}$ \longrightarrow $\{1,\ 2,\ 0,\ 6,\ 7,\ 8\}$ $6\times 6\times 6=6^3$ штук. Но они нам нужны не все.

- $f(1) \in \{1, 2\}$
- $f(2) \in \{0\}$
- $f(3) \in \{6, 7, 8\}$

Таких будет $2 \times 1 \times 3 = 6$ штук. f — бинарное отношение

$$f = \{\langle x, f(x) \rangle, x \in D(f)\}$$

Заменим в этом виде функцию f, у которой f(1) = 1, f(2) = 0, f(3) = 6

$$f_1 = \{\langle 1, 1 \rangle, \langle 2, 0 \rangle, \langle 3, 6 \rangle\}$$

этой функции соответствует тройка (1, 0, 3)

4.4 Аксиома выбора (Choice axiom)

Аксиома 4.1. Пусть $\{B_{\alpha}: \alpha \in A\}$ — некоторое множество непустых множеств. Тогда существует множество B^* , содержащее ровно по одной точке в каждом из множеств B_{α} , $\alpha \in A$, то есть можно из каждого множества B_{α} выбрать по одному элементу и совокупность этих элементов является множеством.

 $^{^1}$ Если верить Википедии принято именно это обозначение (\prod), и для него нашлось обозначение в \LaTeX

Утверждение 4.5. Аксиома выбора равносильна тому, что декартово произведение непустого множества непустых дизтонктных множеств непусто.

Доказательство .

Выбрать по одному элементу из каждого множества B_{α} это то же самое, что для каждого $\alpha \in A$ задать такое $f(\alpha)$, что $f(\alpha) \in B_{\alpha}$. То есть $\exists f \in \prod_{\alpha \in A} B_{\alpha}$, значит $\prod_{\alpha \in A} B_{\alpha} \neq \emptyset$, так как содержит элемент f. Импликация в обратную сторону получается прочтением этого рассуждения снизу вверх.

4.5 Бесконечные множества

Утверждение 4.6. Для множества $A \neq \emptyset$ следующие утверждения равносильны:

- 1) $\exists A_1 \subsetneq A \ \exists f \textit{buekyus} \mid f : A \longrightarrow A_1;$
- 2) $\exists B \subset A \quad \exists g \textit{buekyus} \mid g : \mathbb{N} \longrightarrow B;$
- 3) $\nexists n \in \mathbb{N} : \exists h \text{bueryus} \mid h : \{1, 2, ..., n\} \longrightarrow A.$

Определение 27. При выполнении любого из этих условий множество A называется **бесконечным**.

Доказательство . $1 \longrightarrow 2$

Так как $A_1 \neq A$, то $A_2 = A \setminus A_1 \neq \emptyset$, и $A = A_1 \sqcup A_2$. Тогда $\exists b_1 \in A_2$. Так как f — биекция $(f:A \longrightarrow A_1)$. $A_2 \subset A$; $f(A_2) = A_1$, но $A_1 \cap A_2 = \emptyset$, $f(b_1) \in A_1$, $b_1 \in A_2$ поэтому $b_1 \neq f(b_1)$. Положим $b_2 = f(b_1)$. Построим $b_3 = f(b_2) = f(f(b_1))$

$$b_n = (\underbrace{f \circ \cdots \circ f}_n)(b_1)$$

Докажем, что если $i \neq j$, то $b_i \neq b_j$ От противного. Пусть $\exists i \neq j$, что $b_i = b_j$. Пусть (для определённости, но не ограничивая точности (с точностью до симметрии)) i < j, то есть $j = i + k, \ k > 0$.

$$\underbrace{f \circ \cdots \circ f}_{i-1}(b_1) = \underbrace{f \circ \cdots \circ f}_{i-1+k}(b_1) \mid \underbrace{f^{-1} \circ \cdots \circ f^{-1}}_{i-1}$$

$$A_2 \ni b_1 = \underbrace{f \circ \cdots \circ f}_{k}(b_1) \in A_1$$

 $\underbrace{f \circ \cdots \circ f}_{k-1}(b_1) = y \in A$, но $f: A \longrightarrow A_1$ поэтому $f(y) \in A_1$. Противоречие с тем, что

 $A_2 \cap A_1 = \emptyset$. Таким образом построили b_1, b_2, \dots все различные. Положим $B = \{b_1, \dots\}$. Положим $g: \mathbb{N} \longrightarrow B, \ g(s) = b_s, g$ — биекция.

Пусть $B\subset A,\ g:\mathbb{N}\longrightarrow B$ — биекция. Построим такое $A_1\varsubsetneq A,$ и биекцию $f:A\longrightarrow A_1.$ Положим

$$B_2 = \{g(2k), \ k \in \mathbb{N}\} \subset B = \{g(l), \ g \in \mathbb{N}\}\$$

Тогда $A_1=(A\setminus B)\cup B_2,\ A\setminus A_1\neq\varnothing,$ так как $g(1)\in A\setminus A_1.$ Построим

$$f(x) = \begin{cases} x, & x \in A \setminus B \\ g(2k) = b_{2k}, & x = g(k) \in B \end{cases}$$

 $f: A \longrightarrow A_1.$

Докажем, что f — инъекция:

Пусть $x_1 \neq x_2$ тогда

- $x_1 \in B$ $x_2 \in A \setminus B$, то $f(x_2) = x_2 \in A \setminus B$, а $f(x_1) \in B$. Значит $f(x_1) \neq f(x_2)$
- $x_1 \in A \setminus B$, $x_2 \in A \setminus B$, to $f(x_1) = x_1 \neq x_2 = f(x_2) \checkmark$
- $x_1 \in B$, $x_2 \in B$, to $x_1 = g(i)$, $x_2 = g(j)$ $f(x_1) = f(g(i)) = g(2i) \neq g(2j) = f(g(j)) = f(x_2) \checkmark$

Докажем, что f — сюръекция $A \longrightarrow A_1$. В самом деле $A_1 = (A \setminus B) \sqcup B_2$.

- Если $y \in A \setminus B$, то в y перейдёт $y \in A \setminus B \checkmark$
- ullet Если $y\in B_2$, то $y=b_{2k}$ в y перейдёт $b_k\in B\subset A\checkmark$

```
f — биекция! 2 \longrightarrow 3
```

От противного. Пусть $\exists n \in \mathbb{N}$ и биекция $h: \{1, 2, \ldots, n\} \longrightarrow A$. Тогда согласно $(2) \exists g: \mathbb{N} \longrightarrow B \subset A$ — биекция, и среди элементов $\{g(1), \ldots, g(n), g(n+1)\}$ ровно n+1 разлиных. Так как $h: \{1, 2, \ldots, n\} \longrightarrow A$, то h — сюръекция и в частности $h: \{1, 2, \ldots, n\} \longrightarrow \{g(1), \ldots, g(n), g(n+1)\}$ — тоже сюръекция, что не возможно по принципу Дирихле (2).

$$3 \longrightarrow 2$$

Так как $A \neq \emptyset$ $\exists a_1 \in A$. Если в A был только один элемент a_1 , то существовала бы биекция $h: \{1\} \longrightarrow A = \{a_1\}$. Значит в A более 1 элемента, $\exists a_2 \in A \setminus \{a_1\}$. Но если бы в A было два элемента, то существовала бы биекция $h: \{1,2\} \longrightarrow A = \{a_1,a_2\}$, что невозможно по (3). Значит неверно, что в A 0, 1, 2 элементов, их больше, чем 2, поэтому $\exists a_3 \in A \setminus \{a_1,a_2\}$.

На n-ом шаге построены a_1, \ldots, a_n . Если бы в A было n элементов, существовала бы биекция, что невозможно по (3). Значит неверно, что в A 0, 1, 2, ..., n элементов, их больше, чем n, поэтому $\exists a_{n+1} \in A \setminus \{a_1, \ldots, a_n\}$.

```
Положим g(k) = a_k, \ g: \mathbb{N} \longrightarrow \{a_1, \dots, \ a_n, \dots\} = \{a_k | k \in \mathbb{N}\} \subset A — биекция. g — сюръекция, так как в a_k переходит k \in \mathbb{N}. g — инъекция, так как по построению все a_1, \ a_2, \dots различны.
```

Определение 28. Множество называется конечным, если оно пусто или не является бесконечным. В частности на основании предыдущей теоремы множество $A \neq \emptyset$ называется конечным, если выполняется любое из условий:

- 1') \nexists биекции A на некоторое собственное подмножество A;
- 2') A не имеет счётного подмножества;
- 3') $\exists n \in \mathbb{N},$ что \exists биекция $h:\{1,\ 2,\ldots,\ n\} \longrightarrow A,$ то есть $A=\{h(1),\ldots,\ h(n)\}$

Определение 29. Множество A называется счётным, если существует биекция $\mathbb{N} \longrightarrow A$. Множество называется не более, чем счётным, если оно конечно или счётно.

4.6 Мощности множеств

Определение 30. Говорят, что множества A и B равномощны (синоним: имеют одинаковую мощность) если существует биекция между A и B. Пишут |A| = |B|

Утверждение 4.7. Для множеств А и В следующие три утверждения равносильны.

- 1) \exists инъекция $f:A\longrightarrow B$
- $(2)\exists B_1 \in B \exists \text{ биекция } g: A \longrightarrow B_1$
- 3) \exists сюръекция $h:B\longrightarrow A$

Определение 31. При выполнении любого из этих условий говорят, что мощность A не больше мощности B (запись $|A| \leq |B|$) и мощность B не меньше мощности A (запись $|B| \geqslant |A|$)

Доказательство .

$$1 \longrightarrow 2$$

Положим $B_1 = f(A), g(x) = f(x)$. Тогда g — инъективно так как f — инъективно и сюръективно (так как $B_1 = f(A) = \{y \in B : \exists x \in A \ y = f(x) = g(x)\}$

$$2 \longrightarrow 3$$

$$h(y) = \begin{cases} f^{-1}(y) & y \in f(A) \\ a_0 & A \neq \emptyset \land y \in \backslash (f(A)) \end{cases}$$

Здесь a_0 — некоторый выбранный элемент в A. h — сюръекция так как $h(B) = f^{-1}(f(A)) = A$, где f — биекция.

$$3 \longrightarrow 1$$

Так как h — сюръекция. Каждое из множеств $h^{-1}(\{x\})$ не пусто для каждого $x \in A$. С помощью аксиомы выбора из множеств $\{h^{-1}(\{x\}) : x \in A\}$ выберем по одному элементу $y_x = h^{-1}(\{x\})$. Положим f(x) = y(x). Функция f задана для каждого $x \in A$. Кроме того f — инъективна, так как если $x_1 \neq x_2$, то множество $\{x_1\} \cap \{x_2\} = \varnothing$, поэтому $h^{-1}(\{x_1\}) \cap h^{-1}(\{x_2\}) = \varnothing$, но

$$f(x_1) \in h^{-1}(\{x_1\})$$
 и $f(x_2) \in h^{-1}(\{x_2\})$, значит $f(x_1) \neq f(x_2)$

Определение 32. Если $|A| \leq |B|$, но $|A| \neq |B|$, то говорят, что |A| < |B| (строго меньше). То есть из A в B есть инъекция, но нет биекции.

Определение 33. Если A и B — множества, то A^B — множество всех функций, отображающих B в A, то есть

$$A^B = \{ f \mid f : B \longrightarrow A \}.$$

Утверждение 4.8. *Если* A -*множество, то*

$$|P(A)| = |\{0,1\}^A| = |\{x,y\}^A|$$

где $x \neq y$. Здесь x, y - любые объекты.

Существует биекция:

$$P(A) \ni A_1 \longmapsto \chi_{A_1}(h) = \begin{cases} 1, & h \in A_1 \\ 0, & h \in A \setminus A_1 \end{cases} \longrightarrow f(h) = \begin{cases} x, & h \in A_1 \\ y, & h \in A \setminus A_1 \end{cases}$$

По построению:

$$\chi_{A_1} \in \{0, 1\}^A \quad f \in \{x, y\}^A$$

Существует биекция между множеством всех подмножеств P(A) множества A и множеством всех характеристических функций χ_{a_i} подмножеств множества A. Тогда по определению $|P(A)| = |\{0,1\}^A|$

Определение 34. Последовательностью точек множества A называется функция $f: \mathbb{N} \longrightarrow A$. Часто пишут $f(n) = a_n = f_n$.

Теорема 4.1 (Кантора). Пусть A — множество. Тогда |A| < |P(A)| Доказательство .

 $\exists \ f: A \longrightarrow P(A)$, такая, что $f: a \mapsto \{a\} \quad \{a\} \subset A.$ f — инъекция по построению. Докажем, что не существует биекции $\psi: A \longrightarrow P(A)$. Зададим множество M так:

$$M = \{ b \in A : b \notin \psi(b) \}$$

Так как ψ — биекция, то ψ^{-1} — тоже биекция, и $\exists \psi^{-1}(M) \in A$.

Вопрос: $\psi^{-1}(M)$? $\in ?M$ ($b = \psi^{-1}(M)$ то есть $b \in A$, тот же вопрос: $a? \in ?M$)

- 1) Если $\psi^{-1}(M) \in M$, то по определению множества M верно, что $\psi^{-1}(M) = b \notin \psi(b) = \psi(\psi^{-1}(M)) = M$
 - 2) Если $\psi^{-1}(M) \notin M$, то по определению множества верно, что $\psi^{-1}(M) \in M$.

Таким образом, построили $b \in A$, $b = \psi^{-1}(M)$ и $B \subset A$, B = M, что $b \in B \iff b \notin B$. Противоречие! Значит биекции ψ не существует.

Лемма 4.1. О двух теоретико-множественных милиционерах

Пусть $A_2\subset A_1\subset A$ и $\exists f:A\longrightarrow A_2$ — биекция. Тогда $\exists g:A\longrightarrow A_1$ — биекция. Доказательство .

Шаг 1.

Определение: Назовём множество X хорошим, если $A \setminus A_1 \subset X$ и $f(X) \subset X$ (то есть $A \setminus A_1 \sqcup f(X) \subset X$) так как $X \subset A \Longrightarrow f(X) \subset f(A) = A_2 \subset A_1$, то $f(X) \cap (A \setminus A_1) \neq \emptyset$ Шаг 2.

Свойство (что ещё хорошего): Пересечение всего семейства хороших множеств — хорошее множество.

Докажем это: Пусть множества $X_\gamma \ \forall \gamma \in \Gamma$ — хорошие. Тогда $\forall \gamma \in \Gamma \ A \setminus A_1 \subset X_\gamma$, поэтому $A \setminus A_1 \subset \bigcap_{\gamma \in \Gamma} X_\gamma$

Докажем, что $f(\bigcap_{\gamma\in\Gamma}X_{\gamma})\subset\bigcap_{\gamma\in\Gamma}X_{\gamma}$. В самом деле $\forall\gamma\in\Gamma:f(X_{\gamma})\subset X_{\gamma}$ по определению хорошего множества.

Значит $f(X_\gamma)\subset\bigcap_{\gamma\in\Gamma}X_\gamma$, то есть каждое множество $f(X_\gamma)$ входит в это пересечение, а значит

$$\bigcap_{\gamma \in \Gamma} f(X_{\gamma}) \subset \bigcap_{\gamma \in \Gamma} X_{\gamma}$$

Но f — биекция (из формулировки леммы), поэтому

$$\bigcap_{\gamma \in \Gamma} f(X_{\gamma}) = \bigcap_{\gamma \in \Gamma} X_{\gamma}$$

Итак,
$$\bigcap_{\gamma \in \Gamma} f(X_{\gamma})$$
 — хорошее.

Замечание 4.3. $(f:A\longrightarrow B$ — биекция) \iff $(F:2^A\longrightarrow 2^B$ — биекция), где $\forall H\subset A$ обозначено $F(H)=\{f(a):a\in H\}$

Шаг 3.

Положим $M = \bigcap_{B \subset A} B$, где B — **хорошее**. Согласно **шагу 2** M — хорошее. То есть, по определению:

$$(A \setminus A_1) \sqcup f(M) \subset M$$

Заметим, что M — **наименьшее хорошее множество**, то есть оно содержится в каждом хорошем множестве.

Шаг 4.

Докажем, что $Y = (A \setminus A_1) \sqcup f(M)$ — хорошее.

Bo-первых, $A \setminus A_1 \subset Y$

Во-вторых, докажем, что $f(Y) \subset Y$.

 $A \setminus A_1 \subset M$, а $f(A \setminus A_1) \subset f(M)$ по определению **хорошего** множества (M -хорошее по построению в **шаге 3**. $f(f(M)) \subset f(M)$ по определению **хорошего** множества.

$$f(Y) = f((A \setminus A_1) \sqcup f(M)) = f(A \setminus A_1) \sqcup f(f(M)) \subset f(M) \subset Y$$

То есть f(Y) ⊂ Y. Y — **хорошее** по определению. \checkmark

Шаг 5.

Согласно **шагу 3** M лежит в каждом **хорошем** множестве.

Согласно **шагу** 4 Y — хорошее.

Значит $M \subset Y$

Имеем: $M \subset Y = (A \setminus A_1) \sqcup f(M) \subset M$

Значит: $M = (A \setminus A_1) \sqcup f(M)$

$$f(M) \subset A_2 \subset A_1 \subset A$$

Шаг 6.

Построим биекцию между A и A_1 так:

$$g(a) = \begin{cases} f(a), & a \in M \\ a, & a \in A \setminus M \end{cases}$$

Функция $g:A\longrightarrow A$ задана равенством корректно. Покажем, что $g(A)=A_1$, то есть что $g:A\longrightarrow A_1$ — сюръекция.

$$g(A) = g(M \sqcup (A \setminus M)) = g(M) \sqcup g(A \setminus M) = f(M) \sqcup (a \setminus M)$$

 $Z = f(M) \sqcup (A \setminus (A \setminus A_1) \sqcup f(M))$

Рассмотрим $A \setminus M = A \setminus ((A \setminus A_1) \sqcup f(M)) = (A \setminus (A \setminus A_1)) \cap (A \setminus f(M)) = A_1 \cap (A \setminus f(M)) = A_1 \setminus f(M)$

Тогда $Z = f(M) \sqcup (A_1 \setminus f(M)) = A_1$. То есть $g(A) = f(M) \sqcup (A \setminus M) = Z = A_1$

Покажем, что g — инъекция. От противного: пусть $\exists a_1 \in A, \ a_2 \in A: a_1 \neq a_2,$ но $g(a_1) = g(a_2)$

Если $a_1\in M,\ a_2\in M,$ то $g(a_1)=f(a_1)\neq f(a_2)=g(a_2)$ так как f — инъекция. \checkmark

Если $a_1 \in A \setminus M$, $a_2 \in a \setminus M$, то $g(a_1) = a_1 \neq a_2 = g(a_2) \checkmark$

Если $a_1 \in M$, $a_2 \in A \setminus M$, то $g(a_1) \in g(M) \subset M$, а $g(a_2) = a_2 \in A \setminus M$. $g(a_1)$ и $g(a_2)$ лежат в непересекающихся множествах, а значит не могут совпадать. \checkmark

g — сюръекция. g — инъекция. g — инъекция. Что и пытались построить.

Следствие 4.2. Теорема Кантора-Шрёдера-Бернштейна

Если A и B — множества, $A_1 \subset A$ и $B_1 \subset B$ и $\exists f: A \longrightarrow B_1, g: B \longrightarrow A_1$ — биекции, то $\exists h: A \longrightarrow B$. (То есть $((|A| \leqslant |B|) \land (|A| \geqslant |B|)) \Longleftrightarrow (|A| = |B|)$. Это значит, что на всём множестве множеств отношение \leqslant антисимметрично)

Доказательство . Рассмотрим $A_2 = g(B_1)$, тогда $\psi: A \longrightarrow A_2$ такая, что $\psi(a) = g(f(a))$ — биекция, так как $\psi = g \circ f$ — композиция биекций. По **лемме о двух теоретикомножественных милиционерах** $\exists \varphi: A \longrightarrow A_1$.

Тогда положим $h(x)=g^{-1}(\varphi(x)),\ h:A\longrightarrow B$ — биекция, так как $h=g^{-1}\circ\varphi$ — композиция биекций.

5 Вполне упорядоченные множества

Определение 35. Пусть (A, \leqslant_A) и (B, \leqslant_B) — упорядоченные множества. Функция $f:A\longrightarrow B$ называется **монотонной**, если $x\leqslant_A y\Longrightarrow f(x)\leqslant_B f(y)$.

Определение 36. Упорядоченные множества (A, \leqslant_A) и (B, \leqslant_B) называются изоморфными в смысле порядка, если $\exists f: A \longrightarrow B$ такая, что f — биекция, f — монотонна, f^{-1} — монотонна.

То есть $x \leqslant_A y \iff f(x) \leqslant_B f(y)$. В этом случае говорят, что (A, \leqslant_A) и (B, \leqslant_B) имеют одинаковый порядковый тип.

Определение 37. Порядковым типом множества (A, \leq_A) называется класс всех тех упорядоченных множеств, которые изоморфны (A, \leq_A) в смысле порядка.

Замечание 5.1. Пусть (A, \leqslant_A) — упорядоченное множество. B — множество (без структуры) и пусть $\exists f: A \longrightarrow B$, тогдана B можно задать отношение порядка \leqslant_B , "перетащив" порядок из (A, \leqslant_A) , то есть положив по определению $x \leqslant_B y \iff f^{-1}(x) \leqslant f^{-1}(y)$.

Определение 38. Множество (A, \leqslant_A) называется **вполне упорядоченным**, если:

- 1) A линейно упорядоченно, то есть \leq_A отношение линейного порядка;
- 2) $B \neq \emptyset$ и $B \subset A \Longrightarrow \exists b_* \in B : \forall b \in B$ верно $b_* \leqslant_A b$ то есть каждое непустое множество A имеет наименьший элемент.

Определение 39. Ординалы — это порядковые типы вполне упорядоченных множеств.

Пример 5.1. Пусть $C = \{1, 2, 3, 4\}, A = \mathcal{P}(C)$. Положим $A_1RA_2 \stackrel{def}{\Longrightarrow} A_1 \subset A_2$

- 1) A_1RA_1 верно (рефликсивность)
- 2) $A_1\overline{R}A_2$ неверно (антирефлексивность)
- 3) $A_1RA_2 \Longleftrightarrow A_2RA_1$ неверно (симметричность)
- 4) $A_1RA_2 \wedge A_2RA_1 \Longrightarrow A_2 = A_1$ верно (антисимметричность)
- 5) $A_1 \subset A_2 \subset A_3$ верное (транзитивность)
- 6) $(\{1,2,3\}\ R\ \{1,4\}) \lor (\{1,4\}\ R\ \{1,2,3\})$ неверно (связность)

Определение 40. Пусть α и β — ординалы, и (A, \leqslant_A) — упорядоченное множество, имеющее порядковый тип α , а (B, \leqslant_B) — β , $A \cap B = \emptyset$. Тогда $\alpha + \beta$ — порядковый тип упорядоченного множества A + B, $\alpha \cdot \beta$ — порядковый тип упорядоченного множества $A \cdot B$.

Доказательство коректности. Нужно доказать:

- 1) Порядковые типы $\alpha + \beta$ и $\alpha \cdot \beta$ не зависят от выбора множеств A и B.
- 2) $\alpha + \beta$ и $\alpha \cdot \beta$ ординалы.

Итак, 1). Пусть (A_1, \leqslant_{A_1}) и (B_1, \leqslant_{B_1}) — упорядоченные множества типов α и β соответственно. Покажем, что множества A_1+B_1 и A+B имееют одинаковый порядковый тип (то есть $Ord(A \sqcup B, \leqslant_{A+B}) = Ord(A_1 \sqcup B_1, \leqslant_{A_1+B_1})$). Так как $Ord(A, \leqslant_A) = Ord(A_1, \leqslant_{A_1})$, то существует порядковый изоморфизм:

$$\psi: A \longrightarrow A_1$$

такой, что (по определению) ψ — биекция, и

$$\forall x, y \in A : x \leqslant_A y \iff \psi(x) \leqslant_{A_1} \psi(y)$$

так как $Ord(B, \leqslant_B) = Ord(B_1, \leqslant_{B_1})$, то существует порядковый изоморфизм:

$$\varphi: B \longrightarrow B_1$$

такой, что φ — биекция, и

$$\forall x, y \in B : x \leqslant_B y \iff \varphi(x) \leqslant_{B_1} \varphi(y)$$

Построим биекцию $\pi:A\sqcup B\longrightarrow A_1\sqcup B_1$ и докажем, что она сохраняет порядок.

$$\pi(x) = \begin{cases} \psi(x), & x \in A \\ \varphi(x), & x \in B \end{cases}$$

 π — инъективно, так как если $\exists x_1, x_2 \in A \sqcup B$ такие, что $\pi(x_1) = \pi(x_2)$, то логически возможны три случая:

- 1) $x_1 \in A, \ x_2 \in B$. Тогда $\pi(x_1) \in A_1$ и $\pi(x_2) \in B_1$; противоречие с тем, что $A_1 \cup B_1 = \emptyset$;
- 2) $x_1 \in A$, $x_2 \in A$. Тогда $\pi(x_1) = \psi(x_1)$, а $\pi(x_2) = \psi(x_2)$; противоречие с тем, что ψ инъекция;
- 3) $x_1 \in B$, $x_2 \in B$. Тогда $\pi(x_1) = \varphi(x_1)$, а $\pi(x_2) = \varphi(x_2)$; противоречие с тем, что φ инъекция;

 π — сюръективноб так как $\pi(A \cup B) = \pi(A) \cup \pi(B) = \psi(A) \cup \varphi(B) = A_1 \cup B_1$.

Другое доказательство сюръективности: Пусть $y \in A_1 \sqcup B_1$ найдём такой $x \in A \sqcup B$, что $y = \pi(x)$.

$$x = \begin{cases} \psi^{-1}(y), & y \in A_1 \\ \varphi^{-1}(y), & y \in B_1 \end{cases}$$

Покажем, что π сохраняет порядок.

$$x \leqslant_{A+B} y \Longleftrightarrow \begin{cases} x \leqslant_A y, & x \in A, \ y \in A \\ x \leqslant_B y, & x \in B, \ y \in B \\ x \leqslant_{A+B}, & x \in A, \ y \in B \end{cases}$$

$$\begin{cases} \psi(x) \leqslant_{A_1} \psi(y), & x \in A, \ y \in A \\ \varphi(x) \leqslant_{B_1} \varphi(y), & x \in B, \ y \in B \\ \psi(x) \leqslant \varphi(y), & x \in A, \ y \in B \end{cases}$$

$$\begin{cases} \psi(x) \leqslant \varphi(y), & x \in A, \ y \in B \\ \\ \psi(x) \leqslant_{A_1} \psi(y), & \psi(x) \in A_1 \ \psi(y) \in A_1 \\ \\ \varphi(x) \leqslant_{B_1} \varphi(y), & \varphi(x) \in B_1, \ \varphi(y) \in B_1 \iff \pi(x) \leqslant_{A_1 + B_1} \pi(y) \\ \\ \psi(x) \leqslant_{A_1 + B_1} \varphi(y), & \psi(x) \in A_1, \ \varphi(y) \in B_1 \end{cases}$$

Итак, мы доказали, что упорядоченные множества $(A \cup B, \leqslant_{A+B})$ и $(A_1 \cup B_1, \leqslant_{A_1+B_1})$ имеют один порядковый тип (так как существует изоморфизм порядков π) Поэтому $\alpha + \beta$ не зависит от выбора A и B.Докажем теперь, что $\alpha + \beta$ — ординал.Для этого докажем, что если множества (A, \leqslant_A) и (B, \leqslant_B) — вполне упорядоченно, то $(A \cup B, \leqslant_{A+B})$ — тоже вполне упорядоченно

Из определения суммы упорядоченных множеств следует, что упорядоченная сумма линейно упорядочена. В самом деле, пусть $K\subset A\sqcup B,\ K\neq\varnothing.$ Покажем, что в K есть наименьший элемент

- 1) если $K_A = K \cap A \neq \emptyset$, то так как A вполне упорядоченно, то $\exists a_* \in K_A$ наименьший элемент в K_A ; то есть $a_* \leqslant x \ \forall x \in K_A$. Но из определения упорядоченной суммы следует, что $a_* \leqslant x \ \forall x \in B$ в частности и для всех $x \in K \cap B$. Поэтому $a_* \leqslant x$ для всех $x \in K$, то есть a_* наименьший элемент в K.
- 2) если $K_A = K \cap A = \emptyset \Longrightarrow K \subset B$, а так как $K \neq \emptyset$ и B вполне упорядоченно, то в K существует наименьший элемент.

Таким образом $\alpha + \beta$ — ординал (по определению).

Упражнение 1. Привести аналогичные рассуждения для $\alpha \cdot \beta$.

Определение 41. Пусть (M, \leq) — упорядоченное множество, $\emptyset \neq A \subset M$, $\emptyset \neq B \subset M$. Говорят, что A плотно в B в смысле порядка, если $\forall b_1 \in B$, $b_2 \in B$, что $b_1 < b_2$ найдётся такой $a \in A$, что $b_1 < a < b_2$.

Пример 5.2. 1) \mathbb{Q} — плотно в \mathbb{Q} с обычным порядком.

2) Дроби со знаменателем кратным 2 плотны в дробях со знаменателем кратным 3 с обычным порядком.

Определение 42. Ординалы, соответствующие порядкам на бесконечных множествах, называют **трансфинитами** или **трансфинитными числами**.

Обозначение: порядковый тип множества \mathbb{N} с обычным порядком обозначается ω ; порядковый тип упорядоченного множества $1 < 2 < \ldots < n$ обозначается n.

Пример 5.3.
$$Ord(2 < 3 < \dots < 1) = \omega + 1$$
 $Ord(1 < 3 < 5 < 7 \dots < 2 < 4 < 6 \dots) = \omega + \omega$

Упражнение 2. Построив изоморфизм порядков, обосновать предыдущие равентсва и доказать:

- 1) $1 + \omega = \omega \neq \omega + 1$
- 2) $\omega + \omega = \omega \cdot 2$
- 3) $n + \omega = \omega \ \forall n \in \mathbb{N}$
- 4) $2 \cdot \omega = \omega$

Построить упорядоченное множество, имеющее тип $\omega \cdot \omega$. Например, такой порядковый тип будет у множества $\{n+\frac{1}{m+1}\mid n\in\mathbb{N},\ m\in\mathbb{N}\}$, в котором точки сравниваются, как обычные рациональные числа.

5.1 Математическая индукция

Три равносильных вида математической индукции:

- 1. Если
- а) $1 \in M$ (база);

$$6) \forall p \in \mathbb{N} \quad p \in M \Longrightarrow (p+1) \in M;$$

то $\mathbb{N} \subset M$

- 2. Если
- a) $1 \in M$;
- 6') $\forall n \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ k < n : \ k \in M \Longrightarrow n \in M$
- то $\mathbb{N} \subset M$
 - 3. \mathbb{N} вполне упорядочено.

Доказательство этого утверждения - необязательное упражнение....

Определение 43. Пусть A — вполне упорядоченное множество. Начальным отрезком в множестве A называется такое подмножество $M \subset A$, что $\exists x \in A : M$ представимо в виде $M = \{a \in A : a < x\}$.

Теорема 5.1. (О сравнении ординалов) Пусть (A, \leqslant_A) и (B, \leqslant_B) — вполне упорядоченные множества, тогда верно ровно одно из трёх:

- 1. Ord(A) = Ord(B)
- 2. A изоморфно некоторому, не совпадающему с B, начальному отрезку множества B и $Ord(A) \neq Ord(B)$ (в этом случае будем считать, что $Ord(A) \prec Ord(B)$)

3. B изоморфно некоторому, не совпадающему с A, начальному отрезку множества A и $Ord(A) \neq Ord(B)$ (в этом случае будем считать, что $Ord(B) \prec Ord(A)$)

Теорема 5.2. Пусть \mathcal{A} — любое множество ординалов, тогда введённое выше отношение \prec превращает \mathcal{A} во вполне упорядоченное множество.

Следствие 5.1. \forall ординала α верно $\alpha \prec \alpha + 1$

Доказательство .

Если множество A упорядочено по типу α , то A изоморфно начальному отрезку в множестве, упорядоченном по типу $\alpha+1$ по построению (смотри определение упорядоченной суммы упорядоченных множеств).

То, что порядковые типы не равны примем без доказательства.

Определение 44. Нулевой ординал — это порядковый тип $Ord(\varnothing, \varnothing)$ — пустое множество с пустым бинарным отношением.

Теорема 5.3. (О стандартном представлении ординала) Каждый ординал α можно записать в виде $\alpha = \{\beta : \beta \in \mathcal{A}, \beta \in \mathcal{A} \prec \alpha\}$. Без док-ва.

```
Пример 5.4. 0 = Ord(\varnothing, \varnothing) = \{\beta : \beta \in \mathcal{A}, \ \beta \in \mathcal{A} \prec 0\} = Ord(\varnothing, \varnothing)
1 = \{\beta : \beta \in \mathcal{A}, \ \beta \in \mathcal{A} \prec 1\} = \{0\}
2 = \{\beta : \beta \in \mathcal{A}, \ \beta \in \mathcal{A} \prec 2\} = \{0, 1\}
3 = \{0, 1, 2\}
n = \{1, 2, \ldots, n-1\}
```

 $\omega = \{0, \ 1, \dots, n, \dots\}$ — наименьший ординал, который больше всех конечных

 $\omega+1=\{0,\ 1,\ 2,\dots,\ \omega\}$ — наименьший ординал, который больше всех конечных и больше ω . В самом деле, между фигурных скобок перечислены как раз все конечные ординалы и ω .

Определение 45. Стандартное представление ординала $\alpha = \{\beta : \beta \in \mathcal{A}, \beta \prec \alpha\}$ — это множество всех ординалов, меньших, чем он.

Теорема 5.4. (О сравнении множеств по мощности) Если принять аксиому выбора, то любые два множества можно сравнить по мощности.

Доказательство .

Пусть A и B — множества. По теореме Цермелло, которая эквивалентна аксиоме выбора, на A и B можно ввести полные порядки \leqslant_A и \leqslant_B , тогда порядковый тип $Ord(A, \leqslant_A)$ и $Ord(B, \leqslant_B)$ — ординалы. Все ординалы сравнимы между собой по теореме выше. Но порядковый изоморфизм — биекция, поэтому верно одно из трёх:

- 1. \exists биекция $A \longrightarrow B$ (в этом случае |A| = |B|)
- 2. \exists биекция $A \longrightarrow B_1, \ B_1 \subset B$ (в этом случае $|A| \leqslant |B|$)
- 3. \exists биекция $B \longrightarrow A_1, \ A_1 \subset A$ (в этом случае $|A| \geqslant |B|)$

Определение 46. Говорят, что ординал α — **предельный**, если не существует ординал β : $\alpha = \beta + 1$. В противном случае говорят, что ординал α — **непредельный**.

```
Пример 5.5. 4 — не предельный ординал, так как 4=3+1 \omega+5 — не предельный, так как \omega+5=(\omega+4)+1 \omega — предельный \omega+\omega — предельный \omega\cdot\omega — предельный
```

Замечание 5.2. У каждого ординала α есть следующий за ним $\alpha + 1$. У некоторых ординалов (у непредельных) есть предшествующие. У предельных нет предшествующего.

Замечание 5.3. Ординал 0 — непредельный по договорённости.

5.2 Трансфинитная индукция

Теорема 5.5. Принцип трансфинитной индукции

Пусть A — бесконечное вполне упорядоченное множество и P — предикат на A, то есть $\forall a \in A$ сформулировано высказывание P(a).

Пусть a_* — наименьший элемент A. Пусть $P(a_*)$ — верно. (база)

Пусть ($\forall b \in A \ P(a) \ \forall a < b$) $\Longrightarrow P(b)$.

Тогда P(a) — верно $\forall a \in A$.

Доказательство . От противного. Пусть множество тех a, что P(a) — ложно, непусто $A_1 = \{a: P(a) = 0\} \neq \emptyset$. Тогда $\emptyset \neq A_1 \subset A$, но A вполне упорядочено, значит в $A_1 \exists$ наименьший элемент m, то есть P(a) — верно для всех $a \prec m$, но P(m) — ложно. Это невозможно в силу шага индукции (в качестве b взять m).

5.3 Трансфинитная рекурсия

Определение 47. Трансфинитная рекурсия — это построение объекта по трансфинитной индукции.

Пример 5.6. Построение объектов по математической индукции. Построим функцию факториал.

База: 1! = 1

Шаг: (n+1)! = n! * (n+1)

Таким образом функция $n \mapsto n!$ построена по математической индукции. Такие построения называют рекурсивными.

Определение 48. Пусть α — трансфинит, $\beta_0 \prec \alpha$, и ординал β_0 — предельный. Пусть α записан в стандартном виде: $\alpha = \{\beta: \beta < \alpha\} = Ord(A)$ то есть $Ord(A) = \alpha$. Пусть $f: A \longrightarrow \mathbb{R}$ — числовая функция на A, и f_0 — число. Тогда

$$f_0 = \lim_{\beta \to \beta_0, \ \beta < \beta_0} f(\beta) \iff \forall \varepsilon > 0 \quad \exists \beta' < \beta_0 : \ \forall \beta : \beta' < \beta < \beta_0 \Longrightarrow |f(\beta) - f_0| < \varepsilon$$

Упражнение 3. Доказать, что любое вполне упорядоченное непустое подмножество прямой — не более, чем счётно.

Пример 5.7. $A=(1<3<5<\cdots<2<4<5<\cdots<0)$ тогда $Ord(A)=\omega+\omega+1$ Выберем $B_0=\mathbb{N}$ $Ord(B_0)=\beta_0=\omega+\omega$ — предельный трансфинит. Зададим функцию $\begin{pmatrix} 1 & n \neq 0 \end{pmatrix}$

$$f: A \longrightarrow \mathbb{R} \ f(n) = \begin{cases} \frac{1}{n}, & n \neq 0\\ 1, & n = 0 \end{cases}$$

$$\lim_{\beta \to \omega + \omega} f(\beta) = 0$$

так как $\forall \varepsilon > 0 \ \exists K'$ — чётное число такое, что при K: K' < K $|f(K) - 0| = \frac{1}{K} < \varepsilon$ В самом деле можно взять $K' = [\frac{1}{\epsilon} + 1] * 2$ Ещё раз!

Пусть A — вполне упорядоченное множество, B_0 — его начальный отрезок (тоже вполне упорядоченное) то есть для некоторого $b_0 \in A$ верно $B_0 = \{x \in A : x < b_0\}$. Пусть $Ord(B_0)$ — предельный трансфинит. Пусть $f: A \to \mathbb{R}$. Пусть $f_0 \in \mathbb{R}$. Говорят, что

$$f_0 = \lim_{\beta \to \beta_0, \ \beta < \beta_0} f(\beta) \Longleftrightarrow \forall \varepsilon > 0 \ \exists b' \in A : \ \forall b \in A : b' < b < b_0 \Longrightarrow |f(b) - f_0| < \varepsilon$$

Замечание 5.4. Пусть A — ординал, записанный в виде $A = \{X : X$ — ординал, $X < A\}$ Пусть B_0 — такое же как и раньше, тогда $B_0 = Ord(B_0) = \beta_0$ — предельный трансфинит. Тогда определение можно записать заменяя b на β

Пример 5.8. Определение функции с помощью трансфинитной рекурсии.

Пусть
$$f:[0,\ 1] \longrightarrow [0,\ 1]$$
. Тогда $f^2=f\circ f,\ f^2(x)=f(f(x))$ $f^n=\underbrace{f\circ f\circ \cdots \circ f}$

Ординалы $0 < 1 < 2 < 3 < \dots < \omega < \omega + 1 < \dots < \omega + \omega < \dots <$ ординалы мощности контиинум < ординалы мощности $2^{\text{контиинум}} < \dots$

$$f^0$$
 f^ω $f^{\omega+\omega}$

Пример 5.9. Пусть α — ординал. Как определенть f^{α} , то есть композицию f с собой α раз? В этом поможет трансфинитная рекурсия.

Согласно принципу трансфинитной индукции достаточно определить, f^0 и $\forall \beta < \alpha$ из определения f^{γ} вывести определение f^{β} . Тогда будет определено f^{α} .

Пусть $f^0 = id$. Пусть α — ординал, и $\beta < \alpha$ Тогда

$$f^{eta}(x) = egin{cases} f(f^{eta_1}(x)) & eta - ext{непредельный} \ f(\lim_{\gamma o eta, \ \gamma < eta} f^{\gamma}(x)) & eta - ext{предельный, и существует предел} \end{cases}$$

Если для некоторого x предел не существует, то x изымается из области определения, и функция становится частичной. Пример f(x) = 1 - x

Если n — конечный ординал, то

$$f^n(x) = \begin{cases} f(x) = 1 - x & 2|x\\ x & \text{иначе} \end{cases}$$

Найдём $f^{\omega}(x)$. В самом деле

$$f^n(x) = \begin{cases} 1/2 & x = 1/2\\ \text{не определена} & \text{иначе} \end{cases}$$

Определение 49. Пусть α — ординал, $f: [0, 1] \longrightarrow [0, 1]$. Точка x называется точкой периода α , если $x = f^{\alpha}(x)$, но все точки $f^{\beta}(x)$ разные для всех $\beta < \alpha$.

Теорема 5.6. Теорема Шарковского.

На $\mathbb N$ можно ввести такой порядок <, что если $f:[0,\ 1] \longrightarrow [0,\ 1]$ — непрерывна и имеет точку периода $n\in\mathbb N$, то f имеет также точку всех таких периодов $m\in\mathbb N$, что n< m

Пример 5.10.
$$3 < 5 < 7 < \dots < 2*3 < 2*5 < 2*7 < \dots < 2^2*3 < 2^2*5 < \dots < 2^n*3 < 2^n*5 < \dots < 2^k < 2^{k-1} < \dots < 2 < 1$$

Обозначим порядковый тип $(\cdots < -n < -n + 1 < \cdots < -3 < -2 < -1) = \omega^*$. Тогда $\mathbb N$ имеет тип $\omega \cdot \omega + \omega^*$.

5.4 Утверждения, эквивалентные аксиоме выбора

Определение 50. Цепью в упорядоченном множестве называется его подмножество, все элементы которого сравнимы между собой (то есть **цепь** — линейно упорядоченное подмножество).

Теорема 5.7. (Теорема Цермело)

Каждое множество можно вполне упорядочить.

Теорема 5.8. (Теорема Хаусдорфа о цепях)

В каждом упорядоченном множестве каждая цепь содержится в некоторой максимальной цепи.

Теорема 5.9. (Лемма Цорна)

Если в упорядоченном множестве для каждой цепи имеется верхняя грань, то оно содержит максимальный элемент.

Теорема 5.10. Теорема Цермело, теорема Хаусдорфа о цепях и лемма Цорна эквивалентны аксиоме выбора.

6 Кризис наивной теории множеств: парадоксы

6.1 Парадоксы

Парадоксы возникают как следствие неаккуратного обращения с коллективизирующим свойством, то есть не для каждой логической формулы P запись $\{x: P(x)=1\}$ задаёт множество.

- 1. Парадокс Кантора $V = \{X : X \text{множество}\}$ класс всех множеств. Если считать, что V множество, то у него есть множество всех подмножеств $2^V = \{X : X \subset V\}$ Но $2^V \in V$. Более того: $2^V \subset V$, так как $\forall x \in 2^V : x \in V$. В чём парадокс? С одной стороны, из $2^v \subset V$ следует $|2^V| \leq |V|$. С другой стороны, по теореме Кантора $|V| < |2^V|$.
- 2. Парадокс Рассела $R = \{x : x \text{множество } x \notin x\}$. Тогда $R \in R \iff R \notin R$, что невозможно, поскольку утверждения $R \in R$ и $R \notin R$ являются отрицаниями друг друга.
- 3. Парадокс Буралли-Форти $B = \{x : x \text{ординал} \}$. Противоречие основано на том, что, с одной стороны, для каждого ординала α существует следующий за ним ординал $\alpha + 1$ и $\alpha < \alpha + 1$, с другой стороны, отправляясь от B, можно построить такой ординал β , что будет $\beta + 1 < \beta$.

Почему парадокс — это плохо для математики? Потому что в математике с парадоксами сами понятия истинности и ложности теряют смысл. Должно быть: из истины следует истина. Но получится: из истины (при добавлении парадокса) следует ложь.

Пример 6.1. Как извлечь из истины ложь? Пусть $2^*2 = 4$ — истина. Положим $R = \{x : x$ — множество, $x \notin x\}$. Тогда $R \in R \iff R \notin R$, но $R \in R \iff R \notin R$ — ложно.

Ответ математического сообщества на открытие парадоксов:

Открытие аксиоматической теории множеств

Аксиомы ограничивают математика при построении построении новых множест из уже имеющихся таким образом, что приводящии к парадоксам "множества" $V,\ R,\ B$ и

другие построить нельзя, то есть V, R, B существуют как классы, а не как множества. К классам не применимы понятия мощность и другие, поэтому парадоксов при обращении с настоящими множествами, построенными на аксиомах теории множеств, не возникает, все парадоксы остались с классами (как угодно построенными семействами объектов, которые использовать в строгих доказательствах запретили).

6.2 Аксиомы теории множеств (аксиомы Цермело-Френкеля)

Замечание 6.1. Теория множеств говорит только о множествах, то есть все объекты — множества. В частности, элементами множеств могут быть **только** множества! Кроме множеств ничего нет.

Аксиома 6.1. Объёмности, равенства

- 1. Объёмности. Множества A и B равны \iff $(x \in A \iff x \in B)$
- 2. Равенства. Равные множества x и y являются элементами одних и тех же множеств, то есть $x = y \iff (\{z : x \in z\} = \{w : y \in w\})$

Аксиома 6.2. Аксиома пары. Для любых множеств x и y $\exists \{x, y\}$ — множество, единственными элементами которого являются x и y. В частности, если x = y $\exists \{x, y\} = \{x, x\} = \{y, y\} = \{y\} = \{x\}$.

Аксиома 6.3. Схема аксиома выделения. \forall свойства $\varphi(x)$ и множества $X \exists Y$ — множество, $Y = \{x \in X : \varphi(x)\}$ содержащее те и только те точки $x \in X$, для которых верно $\varphi(x)$.

Замечание 6.2. φ — предикат, так как в выражение $\varphi(x)$ переменная x пробегает указанное множество X.

Замечание 6.3. Схема аксиома позволяет определить пересечение множеств: $A \cap B = \{x \in A : x \in B\}$

Аксиома 6.4. Аксиома объединения. Если X — множество, то $\exists \bigcup X = \{x : \exists y \in X : x \in y\}$

Замечание 6.4. Из аксиомы пары и аксиомы объединения можно определить объединение двух множеств. Если A и B — множества, то по аксиоме пары $\{A, B\}$ — множество, и по аксиоме объединения $\exists \bigcup \{A, B\} = A \cup B$

Аксиома 6.5. Аксиома степени. $\forall X \ \exists \mathcal{P}(X)$ — множество всех подмножеств множества X

Определение 51. Множество S называется **индуктивным**, если выполняются два условия:

1)
$$\varnothing \in S$$

2) $x \in S \Longrightarrow (x \cup \{x\}) \in S$

Аксиома 6.6. Аксиома бесконечности, она же аксиома индуктивного множества. Существует индуктивное множество (хотя бы одно).

Пример 6.2.
$$\emptyset \in S \Longrightarrow \emptyset \cup \{\emptyset\} = \{\emptyset\} \in S$$
 $\{\emptyset\} \in S \Longrightarrow \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\} \in S$ $\{\emptyset, \{\emptyset\}\} \in S \Longrightarrow \{\emptyset, \{\emptyset\}, \{\{\emptyset, \{\emptyset\}\}\}\} \} \in S$

Аксиома 6.7. Аксиома регулярности. Если $x \neq \emptyset$, то $\exists a \in x : \forall y \in x$ верно $y \notin a$

Следствие 6.1. Никакое множество не является своим элементом, то есть $\forall x$ верно $x \notin x$

Доказательство. По аксиоме пары существует множество $\{x, x\}$, которое равно $\{x\}$ по аксиоме объёмности, так как $\{x, x\}$ и $\{x\}$ имеют одни и те же элементы. Применим к x аксиому регулярности. Тогда в $\{x\}$ должен найтись такой a, что $y \notin a$ для всех $y \in \{x\}$. Но в $\{x\}$ только один элемент - это x, поэтому a = y = x, то есть $x \notin x$

Аксиома 6.8. Схема аксиом подстановки. Пусть $\varphi(x, y)$ при любых x, y истинно или ложно. Пусть $\forall x \exists$ не более одного такого y, что верно $\varphi(x, y)$. Тогда $\forall A \exists B = \{y : \exists x \in A \text{ что верно } \varphi(x, y)\}.$

Аксиома 6.9. Аксиома выбора. Если S — непустое множество непустых множеств, то $\exists f$ — функция $f\colon S\to \cup S$ такая ($\cup S$ существует по аксиоме объединения), что $f(x)\in x$ для всех $x\in S$

Замечание 6.5. Аксиомы 1-8 вместе обозначаются ZF (Цермело-Френкеля), а 1-9 вместе обозначаются ZFC (Zermelo-Fraenkel-Choice).

Теорема 6.1. Пересечение любого непустого множества индуктивных множеств является индуктивным множеством.

Доказательство. Пусть $A \neq \emptyset$, $\forall x \in A \ x$ — индуктивное. Пусть $B = \bigcap_{x \in A} x$. Тогда:

- 1) $\forall x \in A : \emptyset \in x$. Значит, $\emptyset \in B$.
- 2) Пусть $y \in B$. Тогда $y \in x \ \forall x \in A$. Но x индуктивно, поэтому $y \cup \{y\} \in x$. Поэтому $(B \text{пересечение всех } x \in A)y \cup \{y\} \in B$.

Следствие 6.2. Существует и единственно такое индуктивное множество N, что $N \subset X$ — для любого индуктивного X. (Неформально говоря, существует наименьшее по включению индуктивное множество N).

Доказательство. Существование. По аксиоме бесконечности существует индуктивное множество S. По аксиоме степени существует $\mathcal{P}(S)$. По аксиоме выделения $\exists \{x \in \mathcal{P}(S) : x$ — индуктивно $\} = A$. Так как $S \in \mathcal{P}(S)$ и S — индуктивное, верно, что $A \neq \varnothing$. Пусть $B = \bigcap_{x \in A} x$. По только что доказанной теореме о пересечении индуктивных множеств B — индуктивное. Пусть теперь G — любое индуктивное множество. Тогда $G \cap S$ — индуктивное по той же теореме. Но $G \cap S \subset S$, поэтому $(G \cap S) \in \mathcal{P}(S)$.

$$G \cap S$$
— индуктивное $G \cap S \in \mathcal{P}(S)$ $\Longrightarrow G \cap S \in A$

Тогда в пересечении $\bigcap_{x\in A} x = B$ какой-то x равен $G\cap S$, поэтому $B\subset G\cap S$. Получаем, что $B\subset (G\cap S)\subset G$, то есть $B\subset G$ для любого индуктивного множества G.

 $E\partial$ инственность. Пусть N_1 и N_2 — два таких множестваю Но оба они индуктивные и лежат в каждом индуктивном, поэтому $N_1\subset N_2,\ N_2\subset N_1$. Отсюда по аксиоме объёмности следует, что $N_1=N_2$.

7 Натуральные числа и их свойства

Замечание 7.1. Все свойства натуральных чисел (и всех объектов, построенных только из натуральных чисел) полностью могут быть выведены из:

- 1) Двух неопределяемых понятий: первое натуральное число (обозначаемое 0 или 1 в зависимости от договорённости), следующее натуральное число (имеется в виду следующее за данным натуральным числом).
- 2) Пяти постулатов (аксиом) Пеано.

7.1 Аксиомы Пеано

Обозначим множество всех натуральных чисел буквой N, первое натуральное число 0, следующее за x натуральное число символом x'.

Тогда аксиомы Пеано записываются так:

Аксиома 7.1. $0 \in N$

Аксиома 7.2. $\forall x \in N \ \exists ! x' \in N$. Единственность означает, что из x = y следует x' = y'.

Аксиома 7.3. $\forall x \in N : x' \neq 0$

Аксиома 7.4. $(x'=y') \Longrightarrow (x=y)$

Аксиома 7.5. (аксиома индукции) Пусть $A \subset N$ и верно следующее:

 $1)0 \in A$

$$2)(x \in A) \Longrightarrow (x' \in A).$$

Тогда A = N

7.2 Определение натуральных чисел и вывод аксиом Пеано из ZF

Определение 52. Положим:

N= наименьшее по включению индуктивное множество, его существование и единственность были доказаны выше;

$$0 = \emptyset;$$

$$x' = x \cup \{x\}.$$

Докажем постулаты (аксиомы) Пеано, опираясь на эти опеределения для N,0,x' и аксиомы ZF.

Доказательство. 1) По определению индуктивного множества (часть 1) $\varnothing \in N$, но $0 = \varnothing$, значит $0 \in N$.

- 2) По определению индуктивного множества (часть 2) из $x \in N$ следует $x \cup \{x\} = x' \in N$ по аксиоме объёмности множество $x \cup \{x\}$ строится по x однозначно, то есть если x = y, то $x' = x \cup \{x\} = y \cup \{y\} = y'$.
- 3) Если y=x' для некоторого x, то $y=x\cup\{x\}\neq\varnothing$, так как $x\in y$. Но $0=\varnothing$, поэтому $x'=y\neq\varnothing=0$, то есть $x'\neq0$.
 - 4) От противного. Пусть x'=y', но $x\neq y$. Рассмотрим цепочку импликаций $x'=y'\Longleftrightarrow$

$$x \cup \{x\} = y \cup \{y\} \Longrightarrow \begin{cases} x \subset y \cup \{y\} \\ y \subset x \cup \{x\} \end{cases} \Longrightarrow \begin{cases} x \in y \cup \{y\} \longrightarrow \begin{cases} x \in \{y\} - \text{невозможно, так как } x \neq y \\ x \in y \end{cases} \\ y \in x \cup \{x\} \longrightarrow \begin{cases} y \in \{x\} - \text{невозможно, так как } x \neq y \end{cases}$$
 Получили что верны оба утверждения: $x \in y$ и $y \in x$ так как остальные возможности уже

Получили, что верны оба утверждения: $x \in y$ и $y \in x$, так как остальные возможности уже исключены в силу того, что $x \neq y$. Это порождает бесконечную вправо и влево цепочку принадлежности $\cdots \in x \in y \in x \in y \in x \in \cdots$. Аксиома регулярности позволяет показать, что невозможна (см. следствие 6.1) не только цепочка $\cdots \in x \in x \in x \in x \in x \in x \in x$, но и только что возникшая цепочка из x и y.

В самом деле, по аксиоме пары существует множество $\{x, y\}$, элементы которого различны, так как $x \neq y$. Применим к $\{x, y\}$ аксиому регулярности: $\exists a \in \{x, y\} : \begin{cases} x \notin a \\ y \notin a \end{cases}$ Но в $\{x, y\}$ два элемента, поэтому a = x или a = y.

Если
$$a=x$$
, то
$$\begin{cases} x\notin x-\text{ невозможно по следствию 6.1}\\ y\notin x-\text{ противоречит }y\in x\end{cases}$$
 Если $a=y$, то
$$\begin{cases} y\notin y-\text{ невозможно по следствию 6.1}\\ x\notin y-\text{ противоречит }x\in y\end{cases}$$
 Таким образом, стартовав с $x'=y'$ и $x\neq y$, мы пришли к тому, что $x\in y\in x$, что

невозможно. Постулат 4 доказан.

5) если $0 \in A$ и $x \in A \Longrightarrow x' \in A$, то A — индуктивно $(0 = \varnothing, \ x' = x \cup \{x\}$ Но N наименьшее по вложению индуктивное множество, поэтому $N \subset A$. Но по условию $A \subset N$, значит A=N по аксиоме объёмности.

8 Список вопросов к экзамену

- 1. Сформулируйте определение высказывания. Приведите примеры фраз, являющихся и не являющихся высказываниями.
- 2. Сформулируйте определение предиката. Приведите примеры фраз, являющихся и не являющихся предикатами.
- 3. Что такое логические константы 0 и 1? Приведите примеры высказываний, равных 0; равных 1. Может ли высказывание быть одновременно равно 0 и 1, почему (когда)?
- 4. Что такое кванторы? Какие два квантора обсуждались в курсе? Приведите примеры их использования: сформулируйте несколько предикатов и сделайте из них константы с помощью кванторов.
- 5. Приведите примеры логических функций с их таблицами истинности.
- 6. Что такое множество (дайте неформальное описание)? Назовите подходы к теории множеств и скажите, в чём они состоят. Какие существуют способы задания множеств?
- 7. Дайте неформальное описание функции в широком и в узком смысле.
- 8. Что называется характеристической функцией множества? Какие значения она может принимать?
- 9. Какие существуют операции над множествами? Приведите их определения и и задание через характеристические функции.
- 10. Нарисуйте круги Эйлера для основных операций над множествами.
- 11. Сколько существует подмножеств у множества из n элементов? Сформулируйте и двумя способами докажите теорему 2.1 о количестве подмножеств у конечного множества (сложность 2)
- 12. Сформулируйте формулу включений-исключений для случая двух и трёх множеств.
- 13. Сформулируйте определение неупорядоченной пары
- 14. Сформулируйте определение упорядоченной пары
- 15. Что называют декартовым произведением множества A на множество B?
- 16. Что называют бинарным отношением на множестве?
- 17. Какое отношение на множестве называется рефлексивным, а какое антирефлексивным? В чём состоит геометрический смысл рефлексивности и антерефлексивности отношения на множестве?
- 18. Какое отношение на множестве называется симметричным, а какое антисимметричным?
- 19. Какое отношение на множестве называется транзитивным?
- 20. Какое отношение называют связным (в другой терминологии полным)?

- 21. Какое отношение называют отношением предпочтения? Объясните, как отношение предпочтения задаётся с помощью функции полезности. Каждое ли отношение предпочтения можно задать с помощью функции полезности?
- 22. Что называют отношением эквивалентности на множестве? Что называют классом эквивалентности элемента по отношению эквивалентности? Что называют факторизапией?
- 23. Что называют классом эквивалентности элемента по отношению эквивалентности? Докажите, что классы эквивалентности либо не пересекаются, либо совпадают (Теорема 3.1).(сложность 1)
- 24. Что называют разбиением множества? Докажите, что каждое отношение эквивалентности на множестве однозначно задаёт разбиение множества. Сформулируйте и докажите обратное утверждение 3.2.(сложность 3)
- 25. Что называют отношением порядка? Что называют отношением строгого порядка?
- 26. Что называют верхней гранью упорядоченного множества? Что называют точной верхней гранью упорядоченного множества?
- 27. Что называют нижней гранью упорядоченного множества? Что называют точной нижней гранью упорядоченного множества?
- 28. Что называют упорядоченной суммой упорядоченных множеств? Коммутативна ли сумма упорядоченных множеств?
- 29. Что называют упорядоченным произведением упорядоченных множеств?
- 30. Что называют функцией? Что называют областью определения, множеством принимаемых значений?
- 31. Какая функция называется инъективной?
- 32. Какая функция называется сюръективной?
- 33. Какая функция называется биективной?
- 34. Какая функция называется обратимой?
- 35. Что называется функцией? Какая функция называется биективной? Какая функция называется обратимой? Докажите, что функция биективна тогда и только тогда, когда она обратима (Теорема 4.3).(сложность 1)
- 36. Какая функция называется биективной? Докажите, что обратная к биекции функция тоже биекция (Следствие 4.1).(сложность 1)
- 37. Какая функция называется биективной? Докажите, что композиция биекций биекция (Утверждение 4.4).(сложность 1)
- 38. В каком случае говорят, что множество B проиндексировано с помощью множества индексов A? Приведите примеры.
- 39. Объясните, как развести пересекающиеся множества.
- 40. Сформулируйте аксиому выбора.

- 41. Сформулируйте аксиому выбора. Сформулируйте определение декартова произведения семейства множеств $\{X_{\alpha}: \alpha \in A\}$, проиндексированных некоторым множеством A, т.е. произведение всех A_{α} по $\alpha \in A$. Докажите, что аксиома выбора равносильна тому, что декартово произведение непустого множества непустых дизъюнктных множеств непусто (Утверждение 4.5). (сложность 2)
- 42. Сформулируйте и докажите принцип Дирихле в двух частях (Утверждение 4.1). (сложность 2)
- 43. Пусть функция отображает конечное множество в себя. Пусть известно, что если она обладает любым из трёх свойств инъективность, сюръективность, биективность; что можно сказать о том, обладает ли она двумя другими из этих свойств? Докажите соответствующую теорему. (Утверждение 4.2). (сложность 2)
- 44. Сформулируйте три определения бесконечного множества. Докажите их эквивалентность (Утверждение 4.6).(сложность 3)
- 45. Сформулируйте три определения конечного множества. Докажите их эквивалентность со ссылкой на аналогичный факт про бесконечные множества. (сложность 1)
- 46. Какое множество называется счётным? Не более, чем счётным?
- 47. Когда говорят, что два множества равномощны? Что называют мощностью (кардинальным числом, кардиналом) множества?
- 48. Когда говорят, что мощность B не больше мощности A? Сформулируйте три определения и докажите их эквивалентность (Утверждение 4.7).(сложность 2)
- 49. Когда говорят, что мощность B строго больше мощности A?
- 50. Пусть A и B множества. Что обозначается символом A^B ? Символом P(A)? Докажите теорему, устанавливающую соотношение между мощностями |P(A)|, $|\{0,1\}^A|$, $|\{x,y\}^A|$, где $x \neq y$ любые различные объекты (Утверждение 4.8).(сложность 2)
- 51. Что называют последовательностью точек множества?
- 52. Сформулируйте и докажите теорему 4.1 Кантора о соотношении между мощностью множества и мощностью множества всех его подмножеств. (сложность 3)
- 53. Сформулируйте «лемму о двух теоретико-множественных милиционерах». На сколько шагов в курсе разбито доказательство этой леммы? Что в доказательстве было названо «хорошим множеством»?
- 54. Сформулируйте и докажите «лемму о двух теоретико-множественных милиционерах». (Лемма 4.1). (сложность 3)
- 55. Сформулируйте и докажите теорему 4.2 Кантора-Шрёдера-Бернштейна.(сложность 1)
- 56. Какая функция называется монотонной?
- 57. Какие множества называются изоморфными в смысле порядка? Что называют порядковым типом множества?
- 58. Когда говорят, что одно множество плотно в другом в смысле порядка? Приведите примеры.

- 59. Какое множество называют вполне упорядоченным?
- 60. Что назыают ординалами (ординальными числами)?
- 61. Что называют цепью?
- 62. Сформулируйте правило 5 сложения и умножения ординалов. Сформулируйте утверждения о том, что эти правила корректны.
- 63. Докажите корректность правила 5 сложения ординалов. (сложность 3)
- 64. Что называют трансфинитами (трансфинитными числами)?
- 65. Сформулируйте три вида математической индукции. Равносильны ли они?
- 66. Что называют начальным отрезком в линейно упорядоченном множестве?
- 67. Сформулируйте теорему 5.1 о сравнении ординалов в терминах начальных отрезков.
- 68. Пусть α ординал. Определите ординал $\alpha + 1$. Объясните, как вводится стандартное отношение порядка на любом множестве ординалов. Линейный ли это порядок? Докажите теорему, утверждающую, какой из ординалов α и $\alpha + 1$ больше в смысле этого отношения порядка. (Теорема 5.1). (сложность 1)
- 69. Что называют нулевым ординалом?
- 70. Что называют стандартным представлением ординала? Сформулируйте теорему 5.3 о стандартном представлении ординала.
- 71. Сформулируйте и докажите теорему о сравнении множеств по мощности (Теорема 5.4).(сложность 1)
- 72. Какой ординал называют предельным; непредельным?
- 73. Сформулируйте и докажите принцип трансфинитной индукции (Теорема 5.5).(сложность 2)
- 74. Объясните, что такое трансфинитная рекурсия.
- 75. Сформулируйте определение того, что $f_0 = \lim_{\beta \to \beta_0, \ \beta < \beta_0} f(\beta)$, где f_0 число, β_0 предельный ординал, а $f: \beta_0 \to \mathbb{R}$.
- 76. Как определить f^{α} , где α ординал, а функция f отображает отрезок [a,b] в себя?
- 77. Приведите пример такой функции $f\colon [0,1]\to [0,1],$ что функции $f,f^2,f^3,\dots,f^\omega,f^{\omega+1},f^{\omega+2},\dots,f^{\omega+\omega}$ все различны.
- 78. Что называют точкой периода α функции $f:[0,\ 1]\longrightarrow [0,\ 1],$ где α ординал?
- 79. Сформулируйте теорему Цермело.
- 80. Сформулируйте теорему Хаусдорфа о цепях.
- 81. Сформулируйте лемму Цорна.
- 82. Сформулируйте теорему о непустоте декартова произведения.

- 83. Сформулируйте утверждения, эквивалентные аксиоме выбора (5 шт. вместе с самой аксиомой выбора).
- 84. В чём состоит парадокс Кантора в наивной теории множеств?
- 85. В чём состоит парадокс Рассела в наивной теории множеств?
- 86. На чём основан парадокс Буралли-Форти в наивной теории множеств?
- 87. Сформулируйте аксиомы объёмности и равенства в системе аксиом ZF.
- 88. Сформулируйте аксиому пары в системе аксиом ZF.
- 89. Сформулируйте схему аксиом выделения в системе аксиом ZF.
- 90. Сформулируйте аксиому объединения в системе аксиом ZF.
- 91. Сформулируйте аксиому степени в системе аксиом ZF.
- 92. Какое множество называется индуктивным? Сформулируйте аксиому индуктивного множества (она же аксиома бесконечности).
- 93. Сформулируйте аксиому регулярности в системе аксиом ZF. Докажите, что никакое можество не является своим элементом (Следствие 6.1).(сложность 1)
- 94. Сформулируйте схему аксиом подстановки в системе аксиом ZF.
- 95. Сформулируйте аксиому выбора (в формулировке ZFC 6.2).
- 96. Перечислите названия всех аксиом ZF. Объясните, в чём состоит отличие ZFC от ZF.
- 97. Докажите, что пересечение любого непустого множества индуктивных множеств является индуктивным множеством(Теорема 6.1).(сложность 2)
- 98. Докажите, что существует и единственно такое индуктивное множество N, что $N \subset X$ для любого индуктивного X (Следствие 6.2). Как связаны N и \mathbb{N} ? (сложность 3)
- 99. Какие два неопределяемых понятия задают натуральные числа в аксиоматике Пеано? Сформулируйте аксиомы Пеано.
- 100. Докажите, что аксиомы Пеано являются следствием аксиом ZF (Доказательство 7.2). (сложность 3)

9 Задачи к экзамену

Тема 1. Записать утверждение с помощью логических функций и кванторов. Обратная задача: прочитать такую запись.

```
Тема 1. Задача сложности 1. p(x) = x \text{ скачет по болоту} q(y) = y \text{ является лягушкой} Записать утверждение «все лягушки скачут по болоту» Прочитать запись «\exists y : \overline{q(y)} \land p(y)»

Тема 1. Задача сложности 2. p(x) = x \text{ скачет по болоту} q(y) = y \text{ является лягушкой} w = \text{идёт дождь} Записать утверждение «если по болоту скачут не только лягушки, то дождя нет» Прочитать запись «\exists y : (p(y) \to w) \to p(y)»
```

Тема 2. С помощью диаграмм Эйлера или Венна сравнить два множества.

- Тема 2. Задача сложности 1. Сравнить $A \cap B$ и $A \setminus (B \setminus (A \cap B))$
- Тема 2. Задача сложности 2. Сравнить $(A \cup B) \setminus C$ и $(A \setminus C)\Delta(B \setminus (A \cap B))$
- Тема 3. Переход от записи множества в виде операций над известными множествами к записи в виде множества всех элементов, для которых выполняется некоторое условие. И обратно.
 - Тема 3. Задача сложности 1. Представить $(A \cap B) \setminus C$ в виде $\{x : \dots\}$
- Тема 3. Задача сложности 2. Выразить с помощью операций над множествами A, B, C множество $\{x: (x \in A) \lor ((x \notin B) \land (x \notin C))\}$

Тема 4. Задача на формулу включений-исключений.

- Тема 4. Задача сложности 1. В классе 10 учеников, и каждый любит хотя бы один предмет из списка: физика, математика. Физику любят 5 человек, математику 8 человек. Сколько учеников любят одновременно физику и математику?
- Тема 4. Задача сложности 2. В классе 20 учеников, и каждый любит хотя бы один предмет из списка: литература, биология, история. Литературу любят 10 человек, биологию 20, историю 13. Одновременно литературу и биологию 10, литературу и историю 10, историю и биологию 10. Сколько учеников любят все три предмета?

Тема 5. Исследовать свойства бинарного отношения.

Тема 5. Задача сложности 1. Отношение R на $\mathbb N$ задано так: $xRy \iff$ число x/y является целым числом. Исследовать свойства отношения R.

Тема 5. Задача сложности 2. Отношение R на $\mathbb{N} \times \mathbb{N}$ задано так: $(x_1, x_2)R(y_1, y_2) \iff$ число x_1/y_2 является целым числом. Исследовать свойства отношения R.

Тема 6. Исследовать отношение порядка - найти минимальные, максимальные элементы, ответить на другие вопросы.

Тема 6. Задача сложности 1. Пусть A — множество из четырёх элементов, и B — множество всех подмножеств множества A, состоящих из не более, чем 3 элементов. Отношение R на B задано так: $A_1RA_2 \iff (A_1 \subset A_2)$. Является ли R отношением порядка, строгого порядка, линейного порядка, частичного порядка? Нарисовать диаграмму Хассе, указать: наибольшие, наименьшие, максимальные, минимальные элементы. Применить к B теорему Хаусдорфа, теорему Цермело, указать результат применения. Применима ли к B лемма Цорна? Если применима, то указать результат применения.

Тема 6. Задача сложности 2. Построить бесконечное упорядоченное множество, к которому не применима лемма Цорна и имеющее три максимальных элемента и наименьший элемент.

Тема 7. Исследовать отношение эквивалентности. Описать классы, при возможности — составить рисунок.

Тема 7. Задача сложности 1. Определим на $\mathbb R$ отношение R так: $xRy \iff x^2 = y^2$. Проверить, что R является отношением эквивалентности. Найти классы эквивалентности. Указать мощность классов эквивалентности. Указать мощность фактор-множества.

Тема 7. Задача сложности 2. Определим на \mathbb{R}^2 отношение R так: $(x_1,y_1)R(x_2,y_2) \iff x_1^2+y_1^2=x_2^2+y_2^2$. Проверить, что R является отношением эквивалентности. Найти классы эквивалентности. Указать мощность фактормножества.

Тема 8. Исследовать функцию на инъектианость, сюръективность, биективность, монотонность. В случае обратимости найти обратную функцию и исследовать её.

Тема 8. Задача сложности 1. Исследовать функцию $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \sin(x)$ на инъектианость, сюръективность, биективность, монотонность (порядок на \mathbb{R} зададим так: $x \leq y \iff (x^3 \leq y^3)$). В случае обратимости найти обратную функцию и исследовать её.

Тема 8. Задача сложности 2. Исследовать функцию $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (y,x^5)$ на инъектианость, сюръективность, биективность, монотонность (порядок на \mathbb{R}^2 зададим так: $(x_1,y_1) \leq (x_2,y_2) \iff (x_1 \leq x_2) \land (y_1 \leq y_2)$). В случае обратимости найти обратную и исследовать её.

Тема 9. Сравнить мощности двух множеств или найти мощность множества.

Тема 9. Задача сложности 1. Найти мощность множества $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

Тема 9. Задача сложности 2. Найти мощность множества $\mathbb{N}^{\mathbb{N}}$.

Тема 10. Сложить и умножить ординалы.

- Тема 10. Задача сложности 1. Пусть $\alpha = \omega, \beta = 3$. Привести примеры множеств, упорядоченных по типам α и β . Построить множества, упорядоченные по типам $\alpha + \beta, \beta + \alpha, \alpha \cdot \beta, \beta \cdot \alpha$, предложить наиболее простые записи для их порядковых типов.
- Тема 10. Задача сложности 2. Пусть $\alpha = \omega \cdot 2, \beta = 3 \cdot \omega$. Привести примеры множеств, упорядоченных по типам α и β . Построить множества, упорядоченные по типам $\alpha + \beta, \beta + \alpha, \alpha \cdot \beta, \beta \cdot \alpha$, предложить наиболее простые записи для их порядковых типов.

Тема 11. Определить, по какому типу упорядоченно множество. Обратная задача: построить множество, упорядоченное по данному типу.

Тема 11. Задача сложности 1. Обозначим порядковый тип множества всех отрицательных целых чисел с обычным порядком символом ω^* . Привести пример множества, упорядоченного по типу $\omega + \omega^*$. Выразить через конечные ординалы, ω, ω^* порядковый тип подмножества всех натуральных чисел, состоящего из 1 и всех натуральных степеней чисел 2,3,5, упорядоченного так:

$$2 < 4 < 8 < 16 < \dots < 3 < 9 < 27 < 81 < \dots < 1 < \dots < 125 < 25 < 5$$

Тема 11. Задача сложности 2. Обозначим порядковый тип множества всех отрицательных целых чисел с обычным порядком символом ω^* . Привести пример множества, упорядоченного по типу $\omega + (\omega^* \cdot \omega^*)$. Выразить через конечные ординалы, ω, ω^* порядковый тип множества $A = \{m + \frac{1}{n+1} | m \in \mathbb{Z}, n \in \mathbb{N}\}$, где $\mathbb{N} = 1, 2, 3, \ldots$, а множество A наследует порядок с обычного порядка на вещественной оси.

Тема 12. Доказать равенство или неравенство с помощью метода математической индукции.

Тема 12. Задача сложности 1. Начиная с какого $n_0 \in \mathbb{N}$ начинает выполняться неравенство $2^n \geq n^2$? Докажите это неравенство по индукции, приняв n_0 за базу индукции.

Тема 12. Задача сложности 2. Начиная с какого $n_0 \in \mathbb{N}$ начинает выполняться равенство $1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$? Докажите это равенство по индукции, приняв n_0 за базу индукции.