Analiza skupień państw i narodów w kontekście gospodarczo-politycznym

Maria Nowicka, Zuzanna Tabisz

Agenda

- 1. Wprowadzenie
- 2. Dane
- 3. Kroki analizy:
 - Przetwarzanie wstępne danych
 - Podział na przedziały: K-bins
 - Analiza SVD
 - t-SNE
 - Klastrowanie
 - Ewaluacja i Wyniki

Wprowadzenie

Wprowadzenie

- Cel projektu: Zgrupowanie krajów na podstawie cech ekonomicznych, środowiskowych, edukacyjnych itp.
- Metody: Przetwarzanie danych, K-bins, SVD, t-SNE,
 K-średnich, ewaluacja
- Znaczenie: Identyfikacja podobieństw między krajami dla lepszego zrozumienia globalnych wzorców

Dane

Dane

Źródło danych:

- World Bank World Development Indicators (WDI):
- https://databank.worldbank.org/source/world-development-indicators

Zbiory danych obejmujące globalne wskaźniki rozwoju społeczno-ekonomicznego i środowiskowego. Dane pogrupowane według głównych kategorii:

- Polityka gospodarcza i zadłużenie (Economic Policy & Debt)
- Edukacja (Education)
- Środowisko (Environment)
- Sektor finansowy (Financial Sector)
- Zdrowie (Health)
- Sektor prywatny i handel (Private Sector & Trade)
- Sektor publiczny (Public Sector)
- Ochrona socjalna i rynek pracy (Social Protection & Labor)

Dane

Format danych:

- Pliki CSV
- Kody krajów w formacie ISO 3166-1 alpha-3
- Dane liczbowe (wskaźniki numeryczne)

Zakres danych:

- wb_econ Wskaźniki ekonomiczne (np. PKB per capita, wzrost sektora rolnictwa)
- wb_env Dane środowiskowe (np. emisje CH4, dostęp do energii)
- wb_edu Edukacja (np. wskaźniki szkolnictwa)
- wb_fin Finanse (np. usługi finansowe, transfery międzynarodowe)
- wb_health Zdrowie (np. dane demograficzne, wydatki na zdrowie)
- wb_private Sektor prywatny i handel
- wb_public Sektor publiczny
- wb_soc Ochrona socjalna i rynek pracy

Przetwarzanie wstępne danych

Przetwarzanie wstępne danych

Kroki:

- Usunięcie kolumn o stałej wartości (nunique ≤ 1)
- Usunięcie wysoko skorelowanych cech (korelacja > 0.95)
- Konwersja danych na wartości numeryczne
- Wypełnianie brakujących danych medianą
- Wybór cech na podstawie wariancji po skalowaniu (MinMaxScaler)

K-bins

K-bins

Metoda:

KBinsDiscretizer (n_bins=3, 5, 7, 10)

Strategia:

Quantile (równe przedziały liczebności)

Optymalizacja:

Liczba przedziałów wybrana na podstawie silhouette score.

Analiza SVD

Analiza SVD

Cel:

Oszacowanie optymalnej liczby klastrów.

Metoda:

TruncatedSVD (do 10 komponentów)

Działanie:

- Redukcja wymiarowości danych.
- Sugerowanie potencjalnej liczby klastrów.

Kryterium wyboru:

Liczba komponentów wyjaśniających ≥90% wariancji.

Wynik analizy:

- Wykres wartości singularnych.
- Poszukiwanie punktu załamania (ang. elbow), w którym wartości gwałtownie spadają.
- Pomaga to oszacować odpowiednią liczbę klastrów (k).

Dodatkowe uwagi:

- Im więcej wariancji wyjaśniają komponenty, tym lepiej zachowana struktura danych.
- Punkt załamania wskazuje, gdzie dodatkowe komponenty przestają wnosić znaczącą informację.

t-SIVE

Redukcja wymiarowości za pomocą t–SNE

Jak działa t-SNE:

- Analizuje podobieństwa między punktami w danych wielowymiarowych dla każdego punktu szacuje prawdopodobieństwo bycia "sąsiadem" innych punktów.
- Stara się odwzorować te relacje w przestrzeni 2D lub 3D, tak aby punkty, które były blisko w oryginalnych danych, pozostały blisko również po redukcji.
- Optymalizuje układ punktów poprzez minimalizację różnicy między rozkładem odległości w danych wysokowymiarowych a niskowymiarowych.
- Proces odbywa się iteracyjnie, z użyciem metod numerycznych (np. gradient descent).

Kluczowe parametry:

- Perplexity liczba sąsiadów branych pod uwagę (kontroluje lokalność analizy).
- Learning rate szybkość dostosowywania układu punktów.
- Liczba iteracji liczba kroków optymalizacji prowadzących do ustabilizowania układu.

Wyniki

Ocena jakości

NIVII (Normalized Mutual Information)

- Mierzy, jak dobrze klastry odpowiadają znanym grupom (np. kontynentom, systemom politycznym).
- Skala: 0 = brak zgodności, 1 = pełna zgodność.

Odległość wewnątrz klastra (Within-Cluster, WC Distance)

- Średnia odległość punktów od środka klastra.
- Im niższa wartość, tym punkty są bliżej siebie zwarte klastry.

Odległość między klastrami (Between–Cluster, BC Distance)

- Odległość między środkami różnych klastrów.
- Im wyższa wartość, tym klastry są bardziej oddzielone.

Wskaźnik sylwetki (Silhouette Score)

- Zakres od -1 do 1.
- Wyższa wartość oznacza, że punkty dobrze pasują do swojego klastra i są daleko od innych – dobre klastry.

Ocena jakości

	Clustering Evaluation Metrics					
	Dataset	Method	Silhouette Score	WC Distance	BC Distance	Noise Ratio
0	wb_econ	kmeans	0.4515	2.9829	14.9581	nan
1	wb_env	kmeans	0.4318	3.0283	13.1011	nan
2	wb_edu	kmeans	0.4990	2.7731	13.5684	nan
3	wb_fin	kmeans	0.4259	3.7664	15.8665	nan
4	wb_health	kmeans	0.4423	3.0321	13.5871	nan
5	wb_private	kmeans	0.4375	3.5069	15.8773	nan
6	wb_public	kmeans	0.5795	2.9679	13.1595	nan
7	wb_soc	kmeans	0.5019	5.1836	19.3842	nan
8	wb_econ	hierarchical	0.4232	3.0859	14.8449	nan
9	wb_env	hierarchical	0.3659	3.4120	12.6976	nan
10	wb_edu	hierarchical	0.4604	2.9488	13.3220	nan
11	wb_fin	hierarchical	0.4167	3.8103	16.0483	nan
12	wb_health	hierarchical	0.4298	3.0793	13.7001	nan
13	wb_private	hierarchical	0.4076	3.6331	16.1503	nan
14	wb_public	hierarchical	0.5725	3.0079	13.0394	nan
15	wb_soc	hierarchical	0.4743	5.3993	18.8798	nan
16	wb_econ	dbscan	0.2810	2.9452	14.4606	0.1075
17	wb_env	dbscan	0.1909	3.4805	11.6778	0.0794
18	wb_edu	dbscan	0.3799	1.6132	12.1837	0.0888
19	wb_fin	dbscan	0.1976	3.2939	15.1592	0.0748
20	wb_health	dbscan	0.3385	1.8647	11.9149	0.0794
21	wb_private	dbscan	0.3131	3.4737	14.6742	0.1028
22	wb_public	dbscan	0.3574	1.8953	10.1262	0.1075
23	wb_soc	dbscan	0.3945	15.0625	76.0878	0.0561

Grupovanie metodą Kśrednich

K-średnich

Grupowanie hierarchiczne

Grupovvanie hierarchiczne

VVnioski

Czynniki ekonomiczne

K-średnich:

- Grupuje kraje bogate, średnio bogate oraz wyspy w osobnych klastrach.
- Mniej wyraźne podziały między grupami.

Hierarchiczne:

- Tworzy bardziej zróżnicowane klastry pod względem zamożności.
- Mniej wysp w jednym klastrze, lepsze rozróżnienie.

NBSCAN:

- Żwiększa liczbę klastrów, ale zaciera podziały.
- Nietypowe połączenia, np. Chorwacja + Rwanda,...

Czynniki środowiskowe

K-średnich:

- Widoczny podział na państwa wyspiarskie.
- Polska zgrupowana razem z Kanadą, Australią i Rosją.

Hierarchiczne:

- Mniej równomierne klastry niż w metodzie K-średnich.
- Wdzielenie krajów rozwiniętych przemysłowo

- Najwięcej klastrów, w tym 2 duże (np. Polska + Curaçao, Indie + Wyspy Owcze).
- Podziały mniej intuicyjne.

Czynniki edukacyjne

K-średnich:

- 7 klastrów, łączy kraje o podobnym rozwoju (np. Bangladesz + Pakistan).
- Mniej oczywiste połączenia, np. Niemcy + Samoa. Nigeria + Monaco.

Hierarchiczne:

 Również 7 klastrów, ale z wyraźnym podziałem na wysoki i niski poziom edukacji.

- Aż 19 klastrów, rozbija kraje na małe grupy.
- Jeden duży klaster, np. USA + Afganistan.

Czynniki finansowe

K-średnich:

- 6 klastrów, z wyraźniejszymi granicami między nimi.
- Połączenie Arabii Saudyjskiej z Somalią

Hierarchiczne:

- 6 bardziej jednolitych klastrów (np. Iran + Sudan, Luksemburg + Monako).
- Bardzo duże podobieństwo do K-średnich

- VII klastrów, w tym jeden dominujący (np. USA + Norwegia).
- Pozostałe klastry od kilku do kilkudziesięciu krajów.

Czynniki zdrowotne

K-średnich:

- Klastry o podobnej liczebności.
- Podziały takie jak Korea Płn. + Afganistan, Wielka Brytania + USA.

Hierarchiczne:

- Wyraźny rozdział na kraje wyspiarskie, średnio rozwinięte jak i dobrze rozwinięte.
- Duża podobieństwo do K-średnich.

- 12 klastrów, sensownie pogrupowanych.
- Dobra separacja między grupami.

Czynniki sektora prywatnego

K-średnich:

• Podobne klastry do metody Hierarchicznej, ale mniej wycentrowane.

Hierarchiczne:

- Rozbija duży klaster DBSCAN na mniejsze, bardziej jednolite grupy.
- Klastry bardziej zrównoważone liczebnie.

- Jeden dominujący klaster (np. Syria, Indie).
- 5 średnich klastrów z niepewnymi przypadkami.

Czynniki sektora publicznego

K-średnich:

- 4 dobrze oddzielone klastry, dobrze skoncentrowane.
- Bliskość krajów wyspiarskich, krajów wysoko rozwiniętych, średnio rozwiniętych i słabo rozwiniętych w osobnych klastrach.

Hierarchiczne:

- Zachowuje podział i bliskość K-średnich.
- Podział pod względem poziomu rozwoju.

- 10 klastrów, bardzo nierównomiernych.
- Trzy dominujące klastry (kilkadziesiąt krajów) i mniejsze grupki.

Czynniki społeczne

K-średnich:

- Klastry podobne do metody Hierarchicznej, ale bardziej zrównoważone liczebnie.
- Bardzo rozproszone klastry, wyraźnie zgrupowane kraje zamożne.

Hierarchiczne:

- 4 rozproszone klastry, z dominującym klastrem krajów rozwijających się.
- Tuvalu w klastrze z Nauru i Włochami.

- 10 klastrów, w tym 2 dominujące (kraje bogate i biedne).
- Najmniejszy klaster: tylko Tuvalu.

Dziękujemy