MATH221: Mathematics for Computer Science Outline Solutions to Tutorial Sheet Week 4

Autumn 2017

1 (i) We let P= "I go to the movies", Q= "I carry my phone" and R= "I carry my 3D glasses". Then the argument's logical form is

$$P \Longrightarrow (Q \vee R).$$

$$Q \wedge \sim R.$$

Therefore, P.

We make the following truth table:

P	\overline{Q}	R	$P \Longrightarrow (Q \lor R)$	$Q \land \sim R$	P
Т	Τ	Τ	Т	F	Т
T	Т	F	Т	Т	Т
Т	F	Τ	Т	F	Т
Т	F	F	F	F	Т
F	Т	Τ	T	F	F
F	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	F
F	F	Τ	Т	F	F
F	F	F	Т	F	F

We see that the bolded row means the argument is **not** valid.

(ii) We let P= "I buy a new bike", Q= "I buy a used car" and R= "I need a loan". Then the argument's logical form is

$$\begin{split} P \lor Q. \\ (P \land Q) &\Longrightarrow R. \\ Q \land \sim R. \end{split}$$

Therefore, $\sim P$.

We make the following truth table:

P	Q	R	$P \lor Q$	$(P \wedge Q) \Longrightarrow R$	$Q \land \sim R$	$\sim P$
Т	Τ	Τ	Т	T	F	F
Т	Т	F	Т	F	Τ	F
Т	F	Τ	Т	Т	F	F
Т	F	F	Т	T	F	F
F	Т	Τ	Т	Т	F	Т
F	Τ	F	Т	T	Т	Т
F	F	Т	F	Т	F	Т
F	F	F	F	Т	F	Т

We see from the table that the argument is valid.

- 2 (i) Applying the Rule of Modus Ponens, we know that Caz will phone.
 - (ii) Applying the Law of Syllogism, we know the final conclusion is as follows. Therefore, if $x^2 3x + 2 = 0$ then x = 2 or x = 1.

1

- (iii) Applying the Rule of Modus Ponens, we know that $y = \left(\sqrt{y}\right)^2$ is positive
- (i) Disprove the statement $\forall n \in \mathbb{N}, n^2 + n + 29$ is prime. Let n = 29. Then $n^2 + n + 29 = 29^2 + 29 + 29 = 29(29 + 1 + 1) = (29)(31).$

In this case, $n^2 + n + 29$ is not prime, and thus, we have a counterexample. Therefore, it is false to say " $\forall n \in \mathbb{N}, n^2 + n + 29$ is prime."

- (ii) Prove the statement $\exists x \in \mathbb{Q}, \ \forall y \in \mathbb{Q}, \ xy \neq 1$. Let x = 0 and let $y \in \mathbb{Q}$. Then $xy = 0 \neq 1$. Thus, the statement is true.
- (iii) Disprove the statement $\forall a, b \in \mathbb{R}$, $(a+b)^2 = a^2 + b^2$. Let a = b = 1. Then $(a+b)^2 = (1+1)^2 = 4$ and $a^2 + b^2 = 1^2 + 1^2 = 2 \neq (a+b)^2$ Thus, we have a counterexample. Therefore, it is false to say that $\forall a, b \in$ \mathbb{R} , $(a+b)^2 = a^2 + b^2$.
- (iv) Let O represent the set of all odd integers. Disprove the statement $\forall n, m \in$ O, the average of n and m is odd. Let n=1 and m=3. Then the average is $\frac{n+m}{2} = \frac{1+3}{2} = 2$, which is not odd. Thus, we have a counterexample. Therefore, it is false to say that the average of any two odd integers is odd.
- (i) The statement is a Universal statement and therefore requires a general proof. One example is not enough to prove a Universal statement.
 - (ii) The mistake is in the use of the definitions of odd and even numbers. When using an existential statement on two separate occasions, you should not use the same variable; that is, if we use k for defining n as an odd integer $(n=2k+1 \text{ for some } k \in \mathbb{Z})$, then we must use a different letter for defining m as an even integer (eg. m=2q for some $q\in\mathbb{Z}$).
- (i) Forward: ??? Backward:

$$x^{2} - 2x + 1 \ge 0 \Longrightarrow x^{2} + 1 \ge 2x$$

 $(x - 1)^{2} \ge 0 \Longrightarrow x^{2} - 2x + 1 \ge 0.$

But we know that $(x-1)^2 \ge 0$ for all $x \in \mathbb{R}$. **Proof:** We know that $(x-1)^2 \ge 0$ for all $x \in \mathbb{R}$. Thus, $x^2 - 2x + 1 \ge 0$ $0 \Longrightarrow x^2 + 1 \ge 2x$ (adding 2x to both sides).

(ii) Forward: n is odd $\Longrightarrow \exists p \in \mathbb{N}, n = 2p + 1$. Thus, $n^2 = 4p^2 + 4p + 1$. *Backward:* To prove n^2 is odd, we must have $n^2 = 2k + 1$ for some $k \in \mathbb{N}$; i.e., $\exists k \in \mathbb{N}, n^2 = 2k + 1 \Longrightarrow n^2$ is odd.

Proof: n is odd $\Longrightarrow \exists p \in \mathbb{N}, \ n = 2p + 1 \Longrightarrow n^2 = 4p^2 + 4p + 1 \Longrightarrow n^2 = 2(2p^2 + 2p) + 1 \Longrightarrow n^2$ is odd. Therefore, if n is odd then n^2 is odd.

(iii) Let n, m be any two odd integers.

Forward: n is odd $\Longrightarrow \exists p \in \mathbb{Z}, n = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd} \Longrightarrow \exists q \in \mathbb{Z}, m = 2p + 1; m \text{ is odd$ 2q + 1 Thus, n + m = (2p + 1) + (2q + 1) = 2p + 2q + 2.

Backward: To prove n + m is even, we must have n + m = 2k for some $k \in \mathbb{Z}$; i.e., $\exists k \in \mathbb{N}, n+m=2k \Longrightarrow n+m$ is even.

Proof: Let n, m be odd integers $\Longrightarrow \exists p, q \in \mathbb{Z}, (n = 2p + 1 \land m = 2p + 1)$ $2q+1) \Longrightarrow n+m = 2p+2q+2 \Longrightarrow n+m = 2(p+q+1) \Longrightarrow n+m$ is even, as $p+q+1 \in \mathbb{Z}$. Therefore, the sum of any two odd integers is even.

(iv) Let ABC be a triangle, with angles A, B and C.

Forward: We are given that the sum of two angles is equal to the third angle. That is, A+B=C. We know that $A+B+C=180^{\circ}$. Combining these statements, we have $C+C=180^{\circ}$.

Backward: To prove ABC is a right angled triangle, we must show one angle is 90° .

Proof: Let ABC be a triangle such that A+B=C. Now $A+B+C=180^{\circ} \Longrightarrow C+C=2C=180^{\circ} \Longrightarrow C=90^{\circ} \Longrightarrow ABC$ is a right angled triangle. Therefore, is the sum of two angles of a triangle is equal to the third angle, then the triangle is a right angled triangle.

6 (i) Forward: $x < 0 \Longrightarrow ????$

Backward: $x^2 - 4x + 4 > 4 \implies (x - 2)^2 > 4$, and $x^2 - 4x > 0 \implies x^2 - 4x + 4 > 4$, and $x(x - 4) > 0 \implies x^2 - 4x > 0$ **STOP!** If you continue with "backward" steps, you face a "choice" (i.e. x < 0 and x < 4 **or** x > 0 and x > 4): this is the step that is not "reversible". But the choice has been made for us because x is negative.

Forward: $x < 0 \Longrightarrow x - 4 < 0$, so x < 0 and $x - 4 < 0 \Longrightarrow x(x - 4) > 0$ —hence forwards and backwards steps are linked.

Proof: We know that x < 0 and so x - 4 < 0 as well. Therefore, x(x - 4) > 0, that is, $x^2 - 4x > 0$. Adding 4 to both sides, we have $x^2 - 4x + 4 > 4 \Longrightarrow (x - 2)^2 > 4$.

- (ii) Suppose there is a smallest positive real number, x. Then $\frac{x}{2}$ is also a positive real number, and $\frac{x}{2} < x$. However, this is a contradiction, as we said x is the smallest positive real number. Therefore, there is no smallest positive real number.
- 7 Let n^2 be odd. Suppose that n is an even number. Then n=2p for some $p \in \mathbb{N}$. Now, $n^2 = (2p)^2 = 4p^2 = 2(2p^2)$. Thus, n^2 is even. Therefore, we have a contradiction, and so n must be odd.
- 8 (i) To prove the statement, the easiest thing is to prove the result for each value of x. Case 1: If x=4, then $x^2-3x+21=25\neq 4$. Case 2: If x=5, then $x^2-3x+21=31\neq 5$. Case 3: If x=6, then $x^2-3x+21=39\neq 6$. Thus, if x=4, 5, or 6, then $x^2-3x+21\neq x$.
 - (ii) $\forall x \in \mathbb{Z}, (x \neq 0 \Longrightarrow 2^x + 3 \neq 4) \equiv \forall x \in \mathbb{Z}, ((x < 0) \lor (x > 0) \Longrightarrow 2^x + 3 \neq 4)$. This statement requires a proof by cases. In each case, we prove $2^x + 3 \neq 4$. Case 1: Let x > 0. Then $2^x > 1$ and so $2^x + 3 > 4$. Therefore, $2^x + 3 \neq 4$. Case 2: Let x < 0. Then $0 < 2^x < 1$ and so $2^x + 3 < 4$. Therefore, $2^x + 3 \neq 4$. Thus, if $x \neq 0$, then $2^x + 3 \neq 4$.
- 9 (i) least element 0; greatest element 1; not well-ordered (e.g., subset (0,1) has no least element)
 - (ii) least element 0; no greatest element; not well-ordered, as in (i)
 - (iii) least element $1 \frac{1}{2} = \frac{1}{2}$; no greatest element (there are elements arbitrarily close to 1, but 1 is not in the set); well-ordered
 - (iv) no least element; no greatest element; not well-ordered.