Train simple ★

D'après Florestan Mathurin.

A3-05

C2-06

On s'intéresse au réducteur équipant la roue arrière motrice et directionnelle d'un chariot élévateur de manutention automoteur à conducteur non porté.

Données : $z_{27} = 16$ dents, $z_{35} = 84$ dents, $z_{5} = 14$ dents, $z_{11} = 56$ dents, $z_{16} = 75$ dents.

Question 1 Identifier les classes d'équivalence cinématique sur le dessin d'ensemble.

Question 2 Construire le schéma cinématique du réducteur dans le même plan que le dessin.

Question 3 Compléter le tableau donnant les caractéristiques des roues et pignons.

Repère de la roue	Module m (mm)	Nombre de dents Z	Diamètre primitif D (mm)
27			
35	1,5		
5			
11	1,5		
16			

Question 4 Après avoir proposé un paramétrage, indiquer dans quel sens tourne la roue si le moteur 28 (31) tourne dans le sens positif.

Question 5 Pour une vitesse de 1500 tr/min en sortie de moteur, déterminer la vitesse de rotation de la roue. Le rayon de la roue est de 150 mm. Quelle est la vitesse du véhicule?

Corrigé voir .

