1 Rate Laws

1.1 Reaction: re1

$$v_1 = \text{vmaf_re1} \cdot \frac{\left([\text{s1}] \cdot \text{vol}(\text{c1}) \right)^{\text{hic_re1_s1}}}{\left([\text{s1}] \cdot \text{vol}(\text{c1}) \right)^{\text{hic_re1_s1}} + \text{ksp_re1_s1}^{\text{hic_re1_s1}}}$$
(1)

1.2 Reaction: re2

$$v_{2} = [s3] \cdot vol(c1) \cdot \frac{kcrf_re2_s3 \cdot \frac{[s4] \cdot vol(c1)}{kmc_re2_s4_s3} \cdot \frac{[s5] \cdot vol(c1)}{kmc_re2_s5_s3} - kcrr_re2_s3 \cdot \frac{[s6] \cdot vol(c1)}{kmc_re2_s6_s3}}{\left(1 + \frac{[s4] \cdot vol(c1)}{kmc_re2_s4_s3}\right) \cdot \left(1 + \frac{[s5] \cdot vol(c1)}{kmc_re2_s5_s3}\right) + \frac{[s6] \cdot vol(c1)}{kmc_re2_s6_s3}}$$
 (2)

1.3 Reaction: re3

$$v_{3} = [s8] \cdot vol(c1) \cdot \frac{\frac{kcrf_re3_s8}{kmc_re3_s6_s8} \cdot [s6] \cdot vol(c1) - \frac{kcrr_re3_s8}{kmc_re3_s7_s8} \cdot [s7] \cdot vol(c1)}{1 + \frac{[s6] \cdot vol(c1)}{kmc_re3_s6_s8} + \frac{[s7] \cdot vol(c1)}{kmc_re3_s7_s8}}$$

$$(3)$$

: