МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 1.3.3 "ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ ТРУБКАХ"

Выполнил: Студент гр. Б01-305 Миннахметов Артур

1 Введение

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

1.1 Теоритическая справка

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого («внутреннего») трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Hьютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси x, а скорость течения $v_x(y)$ зависит от координаты y, в каждом слое возникает направленное по x касательное напряжение

$$\tau_{xy} = -\eta \frac{\partial v_x}{\partial y}.\tag{1}$$

Характер течения определяется безразмерным параметром задачи — числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta},\tag{2}$$

где u – характерная скорость течения, a – характерный размер системы.

В целях упрощения теоретической модели течение газа в условиях эксперимента можно считать несжимаемым, то есть принять плотность среды постоянной: $\rho = {\rm const.}$ Для газов такое приближение допустимо, если относительный перепад давления в трубе мал $\Delta P \ll P$, а скорость течения значительно меньше скорости звука (число Маха много меньше единицы).

В нашем опыте максимальная разность давлений составляет ~ 30 см водного столба (3 кПа), что составляет $\sim 3\%$ от атмосферного давления, причем в «рабочем» (ламинарном) режиме перепад в несколько раз меньше ($\sim 5 \div 10$ см вод. ст.).

Формула Пуазейля для определения расхода жидкости или газа при ламинарном течении:

 $Q = \frac{\pi r^4}{8l\eta} \Delta P. \tag{3}$

1.2 Эксперементальная установка

Рис. 1: Экспеременатльная установка

Схема экспериментальной установки изображена на Рис. 1. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

2 Ход работы

2.1 Измерения

1. Измерены димаетры труб:

$$d_1 = 3.9 \pm 0.05$$
 mm, $d_2 = 3 \pm 0.1$ mm, $d_3 = 5.25 \pm 0.1$ mm.

2. Измерены давление, температура и влажность окружающего воздуха:

$$P = x3,$$

 $t = 24$ °C,
 $\varphi = x3.$

- 3. Расчитана $Q_{\text{крит}} \approx 4 \text{ л/мин.}$
- 4. Рассмотрена зависимость изменения давления от расхода вохдуха, то есть с постоянной длиной между точками $l=50~{\rm cm}$ и $d=d_1$

ΔP , Πa	$Q_{ m cp},$ л $/$ мин
68,294277	3,11
84,176667	3,764
95,29434	4,174
111,17673	4,78
127,05912	5,242
144,529749	5,445
162,000378	5,728
176,294529	5,924
222,35346	6,582
49,235409	2,275
55,588365	2,464
31,76478	1,436
103,235535	4,48
76,235472	3,345
61,941321	2,768

5. Аналогичная зависимость рассмотрена для $d=5,25\ \mathrm{mm}$ и $l=50\ \mathrm{cm}.$

ΔP , Πa	$Q_{ m cp},$ л $/$ мин
39,705975	5,728
47,64717	6,94
55,588365	7,486
71,470755	7,991
79,41195	8,334
87,353145	8,55
95,29434	8,787
111,17673	9,41
119,117925	9,744

6. Теперь изменялись давление и длина при расходе $Q_{\rm cp}=3,336~{\rm n/muh}$ на трубе 3,9 мм.

ΔP , Πa	l, cm
128,647359	90
76,235472	50
182,647485	120
106,412013	70
46,058931	30

7. Аналогичные измерения проведены для трубы 5,25 мм и Q=4,5 л/мин.

ΔP , Πa	l, cm
57,176604	90
77,823711	120
47,64717	70
27,000063	40
20,647107	30

8. Проведены измерения для выявления зависимости Q(d). При этом $\Delta P \approx 31,77~\Pi \mathrm{a},~l=40~\mathrm{cm}.$

d, mm	Q, л/мин
5,25	5,31
3,9	1,751
3	1,536

2.2 Обработка

9. Построены графики зависимости для п. 4 и 5:

Получились уравнения для каждого из случаев (ламинарное течение):

$$Q_1 = 0,0431\Delta P + 0,0101,$$

$$Q_2 = 0,147\Delta P - 0,1261.$$

Получилось

$$\frac{\partial Q_1}{\partial (\Delta P)} = (431 \pm 7) \cdot 10^{-7} \frac{\text{M}^3}{\Pi \text{a} \cdot \text{MUH}},$$

$$\frac{\partial Q_2}{\partial (\Delta P)} = (144 \pm 3) \cdot 10^{-6} \frac{\text{M}^3}{\Pi \text{a} \cdot \text{MUH}}.$$

10. По формуле (3) посчитаем значения коэффициента динамической вязкости:

$$\eta_1 = (1, 6 \pm 0, 3) \cdot 10^{-5} \text{ Ha} \cdot c,$$

$$\eta_2 = (1, 6 \pm 0, 5) \cdot 10^{-5} \text{ Ha} \cdot c.$$

11. Построены графики зависмости для п. 6 и 7.

Получились уравнения

$$l_1 = 0,6692\Delta P - 0,2698,$$

$$l_2 = 1,5852\Delta P - 3,0118.$$

Получилось

$$\frac{\partial l_1}{\partial (\Delta P)} = (67 \pm 1) \cdot 10^{-4} \frac{M}{\Pi a},$$
$$\frac{\partial l_2}{\partial (\Delta P)} = (158 \pm 2) \cdot 10^{-5} \frac{M}{\Pi a}.$$

12. По результатам п. 8 измерен коэффициент наклона $\ln Q(\ln R)$. Измерения на d_1 не учитывалось, так как там было турбулентное течение.

$$\frac{\partial(\ln Q)}{\partial(\ln R)} = 0.5 \, \frac{\text{M} \cdot \text{MM}}{\text{MUH}}$$

3 Выводы

Экспериментально исследованы свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявлены область применимости закона Пуазейля и с его помощью определен коэффициент вязкости воздуха, который оказался примерно равен $1, 6 \cdot 10^{-5}~\Pi a \cdot c$, что практически совпадает со справочным значением.