

Shape model fitting – A case study

Marcel Lüthi, Departement of Mathematics and Computer Science, University of Basel

Bayesian linear regression - revisited

Shape model fitting as Bayesian linear regression

$$u[\alpha](x) = \mu(x) + \sum_{i=1}^{r} \alpha_{i} \sqrt{\lambda_{i}} \phi_{i}(x)$$

Case study

Model

$$u \sim GP(\mu, k) \iff u = \mu + \sum_{i=1}^{r} \alpha_{i} \sqrt{\lambda_{i}} \phi_{i}, \alpha_{i} \sim N(0, 1)$$

$$p(x_i^T | x_i^R, \alpha_1 \dots \alpha_n, \sigma^2) = N(x_i^R + u[\alpha](x_i^R), \sigma^2 I_{3 \times 3})$$

$$\alpha_i \sim N(0,1), i = 1, ..., r$$

 $\sigma^2 \sim logNormal(0, 0.25)$

Posterior distribution

Posterior shapes

Measurements on posterior shape

Including pose

Model

$$p(x_i^T | x_i^R, \alpha_1 \dots \alpha_n, \sigma^2, \phi, \theta, \psi, t_x, t_y, t_z) = N(R_{\phi, \theta, \psi} [x_i^R + u[\alpha](x_i^R)] + t, \sigma^2 I_{3 \times 3})$$

$$a_i \sim N(0,1), i = 1, ..., r$$

 $\sigma^2 \sim logNormal(0,1),$
 $\phi \sim N(0,0.1), \theta \sim N(0,0.1), \psi \sim N(0,0.1)$
 $t_x \sim N(0,5), t_y \sim N(0,5), t_z \sim N(0,5)$

Pose parameters

Giving up correspondence

Model

$$p(x_i^T | \alpha_1 \dots \alpha_n, \sigma^2, \phi, \theta, \psi, t_x, t_y, t_z) = N(ClosestPoint(x_i^T, \Gamma_R[\alpha, \phi, \theta, \psi, t]), \sigma^2 I_{3\times 3})$$

$$a_i \sim N(0,1), i = 1, ..., r$$

 $\sigma^2 \sim logNormal(0,1)$
 $\phi \sim N(0,0.1), \theta \sim N(0,0.1), \psi \sim N(0,0.1)$
 $t_x \sim N(0,5), t_y \sim N(0,5), t_z \sim N(0,5)$

Surface, generated by model parameters $\alpha, \phi, \theta, \psi, t$

Posterior distribution

Beyond fitting shape

Model

Likelihood: ???

Priors:

 $\begin{aligned} a_i &\sim N(0,1), i = 1, ..., r \\ \sigma^2 &\sim logNormal(0,1) \\ \phi &\sim N(0,0.1), \theta \sim N(0,0.1), \psi \sim N(0,0.1) \\ t_x &\sim N(0,5), t_y \sim N(0,5), t_z \sim N(0,5) \end{aligned}$

Works in principle for any type of data, but the more complicated the model and synthesis function, the harder the fitting problem.