244 Exemples d'études et d'applications de fonctions usuelles et spéciales.

I - La fonction exponentielle

1. Dans le champ complexe

Définition 1. On définit la fonction **exponentielle complexe** pour tout $z \in \mathbb{C}$ par

[**QUE**] p. 4

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

on note cette somme e^z ou parfois $\exp(z)$.

Remarque 2. Cette somme est bien définie pour tout $z \in \mathbb{C}$ d'après le critère de d'Alembert.

Proposition 3. (i) $\forall z, z' \in \mathbb{C}, e^{z+z'} = e^z e^{z'}$.

- (ii) exp est holomorphe sur ℂ, de dérivée elle-même.
- (iii) exp ne s'annule jamais.
- (iv) $|\exp(z)| = \exp(\operatorname{Re}(z))$ pour tout $z \in \mathbb{C}$.

Proposition 4. La fonction $\varphi: t \mapsto e^{it}$ est un morphisme surjectif de \mathbb{R} sur \mathbb{U} .

Proposition 5. En reprenant les notations précédentes, $Ker(\varphi)$ est un sous-groupe fermé de \mathbb{R} , de la forme $Ker(\varphi) = a\mathbb{Z}$. On note $a = 2\pi$.

Application 6. Pour tout $n \in \mathbb{N}^*$, il y a n racines n-ièmes de l'unité, données par

[**R-R**] p. 259

$$e^{\frac{2ik\pi}{n}} = \cos\left(\frac{2ik\pi}{n}\right) + i\sin\left(\frac{2ik\pi}{n}\right)$$

où k parcourt les entiers de 0 à n-1.

Corollaire 7. Tout nombre complexe non nul α écrit $\alpha = re^{i\theta}$ admet exactement n racines n-ièmes données par

$$\sqrt[n]{r}e^{i\frac{\theta}{n}}e^{\frac{2ik\pi}{n}}$$

où k parcourt les entiers de 0 à n-1.

2. Dans le champ réel

Définition 8. On a plusieurs définitions (équivalentes) de la fonction exponentielle réelle.

- [**D-L**] p. 528
- **Vision "moderne":** Soit $x \in \mathbb{R}$. $\exp(x) = \sum_{n=0}^{+\infty} \frac{x^k}{k!}$ (restriction de la série entière de la Définition 1).
- **Vision "pédagogique":** exp est l'unique solution au problème de Cauchy

$$\begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

— **Vision "historique":** Soit $x \in \mathbb{R}$. $\exp(x) = \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n$.

Théorème 9. (i) exp est une bijection croissante de \mathbb{R} sur \mathbb{R}_*^+ .

- (ii) $\lim_{x\to-\infty} \exp(x) = 0$ et $\lim_{x\to+\infty} \exp(x) = +\infty$.
- (iii) $x < 0 \iff \exp(x) < 1$.

[**QUE**] p. 6

3. Fonctions trigonométriques

Définition 10. On définit les fonctions sin et $\cos \operatorname{sur} \mathbb{R}$ par

$$\forall t \in \mathbb{R}, \sin(t) = \operatorname{Im}(\exp(it)) \text{ et } \sin(t) = \operatorname{Re}(\exp(it))$$

Proposition 11. Soit $t \in \mathbb{R}$.

[**DAN**] p. 352

- (i) $\sin(t) = \frac{e^{it} e^{-it}}{2i} = \sum_{n=0}^{+\infty} \frac{t^{2n+1}}{(2n+1)!}$
- (ii) $\cos(t) = \frac{e^{it} + e^{-it}}{2} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!}$
- (iii) Ces fonctions sont réelles, 2π -périodiques et admettent un développement en série entière de rayon de convergence infini. Ceci permet de les prolonger de manière unique sur tout le plan complexe.
- (iv) \sin et cos sont dérivables avec $\cos' = -\sin$ et $\sin' = \cos$.
- (v) cos est paire, sin est impaire.

Proposition 12. L'application

$$\exp(i\theta) \mapsto \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

définit un isomorphisme de \mathbb{U} dans $SO_2(\mathbb{R})$.

[ROM21] p. 36

4. Polynômes trigonométriques

Définition 13. — On appelle **polynôme trigonométrique** de degré inférieur à $N \in \mathbb{N}$ toute fonction de la forme $x \mapsto \sum_{n=-N}^{N} c_n e^{inx}$ avec $\forall n \in [-N, N]$, $c_n \in \mathbb{C}$.

[**GOU20**] p. 268

— On appelle **série trigonométrique** une série de fonctions de la variable réelle x et de la forme $c_n + \sum_{n \in \mathbb{N}^*} (c_n e^{inx} + c_{-n} e^{-inx})$, notée $\sum_{n \in \mathbb{Z}} c_n e^{inx}$.

[AMR08] p. 184

Exemple 14. — Pour tout $N \in \mathbb{N}$, la fonction $D_N = \sum_{n=-N}^N e_N$ est appelée **noyau de Diri- chlet** d'ordre N.

— Pour tout $N \in \mathbb{N}$, la fonction $K_N = \frac{1}{N} \sum_{j=0}^{N-1} D_j$ est appelé **noyau de Fejér** d'ordre N.

p. 190

Théorème 15 (Fejér). Soit $f : \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique.

- (i) Si f est continue, alors $\|\sigma_N(f)\|_{\infty} \le \|f\|_{\infty}$ et $(\sigma_N(f))$ converge uniformément vers f.
- (ii) Si $f \in L_p^{2\pi}$ pour $p \in [1, +\infty[$, alors $\|\sigma_N(f)\|_p \le \|f\|_p$ et $(\sigma_N(f))$ converge vers f pour $\|.\|_p$.

Corollaire 16. L'espace des polynômes trigonométriques $\{\sum_{n=-N}^N c_n e_n \mid (c_n) \in \mathbb{C}^{\mathbb{N}}, N \in \mathbb{N}\}$ est dense dans l'espace des fonction continues 2π -périodiques pour $\|.\|_{\infty}$ et est dense dans $L_p^{2\pi}$ pour $\|.\|_p$ avec $p \in [1, +\infty[$.

[**GOU20**] p. 271

Théorème 17 (Dirichlet). Soient $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique, continue par morceaux sur \mathbb{R} et $t_0 \in \mathbb{R}$ tels que la fonction

$$h \mapsto \frac{f(t_0 + h) + f(t_0 - h) - f(t_0^+) - f(t_0^-)}{h}$$

est bornée au voisinage de 0. Alors,

$$S_N(f)(t_0) \longrightarrow_{N \to +\infty} \frac{f(t_0^+) + f(t_0^-)}{2}$$

Contre-exemple 18. Soit $f : \mathbb{R} \to \mathbb{R}$ paire, 2π -périodique telle que :

$$\forall x \in [0, \pi], f(x) = \sum_{p=1}^{+\infty} \frac{1}{p^2} \sin\left((2^{p^3} + 1)\frac{x}{2}\right)$$

Alors f est bien définie et continue sur \mathbb{R} . Cependant, sa série de Fourier diverge en 0.

Corollaire 19. Soient $f : \mathbb{R} \to \mathbb{C}$ 2π -périodique, \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors,

$$\forall x \in \mathbb{R}, S_N(f)(x) \longrightarrow_{N \to +\infty} \frac{f(x^+) + f(x^-)}{2}$$

En particulier, si f est continue en x, la série de Fourier de f converge vers f(x).

Exemple 20. On considère $f: x \mapsto 1 - \frac{x^2}{\pi^2}$ sur $[-\pi, \pi]$. Alors,

$$\forall x \in [-\pi, \pi], f(x) = \frac{2}{3} - \frac{4}{\pi^2} \sum_{n=1}^{+\infty} (-1)^n \frac{\cos(nx)}{n^2}$$

Théorème 21 (Formule sommatoire de Poisson). Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction de classe \mathscr{C}^1 telle que $f(x) = O\left(\frac{1}{x^2}\right)$ et $f'(x) = O\left(\frac{1}{x^2}\right)$ quand $|x| \to +\infty$. Alors :

$$\forall x \in \mathbb{R}, \sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} \widehat{f}(2\pi n) e^{2i\pi nx}$$

Application 22 (Identité de Jacobi).

$$\forall s > 0, \sum_{n = -\infty}^{+\infty} e^{-\pi n^2 s} = \frac{1}{\sqrt{s}} \sum_{n = -\infty}^{+\infty} e^{-\frac{\pi n^2}{s}}$$

II - Logarithmes

1. Logarithme dans le champ réel

Proposition 23. exp réalise une bijection strictement croissante de \mathbb{R} sur \mathbb{R}_*^+ .

[**DAN**] p. 346

p. 284

Définition 24. La bijection réciproque de $\exp : \mathbb{R} \to \mathbb{R}^+_*$ est appelée **logarithme népérien** et est notée ln.

Théorème 25. (i)
$$\forall x \in \mathbb{R}^+_*$$
, $\ln(x) = \int_1^x \frac{1}{x} dx$.

(ii)
$$\forall x, y \in \mathbb{R}^+_*$$
, $\ln(xy) = \ln(x) + \ln(y)$.

Remarque 26. La fonction ln permet de définir la mise à la puissance par un réel :

$$\forall t \in \mathbb{R}_{*}^{+}, \forall \alpha \in \mathbb{R}, t^{\alpha} = e^{\alpha \ln(t)}$$

2. Logarithmes dans le champ complexe

Théorème 27. Soient $\alpha \in \mathbb{R}$ et $\Omega_{\alpha} = \mathbb{C} \setminus \mathbb{R}^* e^{i\alpha}$. Alors, il existe une fonction L_{α} holomorphe sur Ω_{α} . Elle vérifie :

[**QUE**] p. 81

- (i) $e^{L_{\alpha}(z)} = z$ pour tout $z \in \Omega_{\alpha}$.
- (ii) $L_{\alpha}(z) = \ln(|z|) + i\theta_{\alpha}(z)$ avec $\theta_{\alpha} \in]\alpha, \alpha + 2\pi[$.
- (iii) L_{α} est dérivable dans Ω_{α} avec $L'(z) = \frac{1}{z}$ pour tout $z \in \Omega_{\alpha}$.

Définition 28. La fonction L_{α} précédente est appelée **détermination d'ordre** α (ou **détermination principale** si $\alpha = -\pi$) du logarithme.

Théorème 29. On pose D=D(0,1) et on définit $\ell:D\to\mathbb{C}$ par $\ell:z\mapsto\sum_{n=1}^{+\infty}(-1)^{n+1}\frac{z^n}{n}$. Alors :

- (i) $1 + z = \exp(\ell(z))$ pour tout $z \in D$.
- (ii) $\ell(z) = L_{-\pi}(1+z)$ pour tout $z \in D$.

III - La fonction Γ d'Euler

1. Définition

Définition 30. On pose

$$\forall x > 0, \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$

[**GOU20**] p. 162

Proposition 31. (i) Γ est \mathscr{C}^{∞} sur $]0, +\infty[$ et pour tout $n \in \mathbb{N}^*$, on a

$$\forall x \in \mathbb{R}_{*}^{+}, \, \Gamma^{(n)}(x) = \int_{0}^{+\infty} (\ln(t))^{n} e^{-t} t^{x-1} \, dt$$

- (ii) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- (iii) $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$ et en particulier, $\forall n \in \mathbb{N}$, $\Gamma(n) = n!$.

Lemme 32. La fonction Γ définie pour tout x > 0 par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ vérifie :

- (i) $\forall x \in \mathbb{R}_*^+$, $\Gamma(x+1) = x\Gamma(x)$.
- (ii) $\Gamma(1) = 1$.
- (iii) Γ est log-convexe sur \mathbb{R}_*^+ .

[ROM19-1] p. 364 **Théorème 33** (Bohr-Mollerup). Soit $f : \mathbb{R}^+_* \to \mathbb{R}^+$ vérifiant le Point (i), Point (ii) et Point (iii) du Lemme 32. Alors $f = \Gamma$.

Remarque 34. À la fin de la preuve, on obtient une formule due à Gauss :

$$\forall x \in]0,1], \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{(x+n) \dots (x+1)x}$$

que l'on peut aisément étendre à \mathbb{R}_*^+ entier.

Lemme 35. Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \Gamma(a, \gamma)$ et $Y \sim \Gamma(b, \gamma)$. Alors $Z = X + Y \sim \Gamma(a + b, \gamma)$.

[**G-K**] p. 180

p. 556

[DEV]

Application 36 (Formule de Stirling).

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

2. Prolongement complexe

On suppose ici que E est un ouvert Ω de $\mathbb C.$

[**Z-Q**] p. 314

Théorème 37 (Holomorphie sous le signe intégral). On suppose :

- (i) $\forall z \in \Omega, x \mapsto f(z, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $z \mapsto f(z, x)$ est holomorphe dans Ω . On notera $\frac{\partial f}{\partial z}$ cette dérivée définie presque partout.
- (iii) $\forall K \subseteq \Omega$ compact, $\exists g_K \in L_1(X)$ positive telle que

$$|f(x,z)| \le g_K(x) \quad \forall z \in K$$
, pp. en x

Alors F est holomorphe dans Ω avec

$$\forall z \in \Omega, F'(z) = \int_{X} \frac{\partial f}{\partial z}(z, t) \, \mathrm{d}\mu(z)$$

Exemple 38. La fonction Γ est holomorphe dans l'ouvert $\{z \in \mathbb{C} \mid \text{Re}(z) > 0\}$.

p. 318

Théorème 39. On peut prolonger Γ en une fonction holomorphe non nulle sur $\mathbb{C} \setminus -\mathbb{N}$.

p. 255

Théorème 40 (Formule des compléments).

$$\forall \mathbb{C} \setminus \mathbb{Z}, \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

IV - La fonction ζ de Riemann

1. Définition

Définition 41. Pour tout s > 1, on pose

[GOU20] p. 302

$$\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

Proposition 42. ζ définit une fonction de classe \mathscr{C}^{∞} sur]1, $+\infty$ [et,

$$\forall p \in \mathbb{N}^*, \forall s \in]1, +\infty[, \zeta^{(p)}(s) = \sum_{n=1}^{+\infty} \frac{\ln(n)^p}{n^s}$$

Proposition 43.

$$\lim_{s\to +\infty}\zeta(s)=1 \text{ et } \zeta(s)\sim_{1^+}\frac{1}{s-1}+\gamma+o(1)$$

où γ désigne la constante d'Euler.

Proposition 44.

$$\forall s > 1, \zeta(s)\Gamma(s) = \int_0^{+\infty} t^{s-1} \frac{e^{-t}}{1 - e^{-t}} dt$$

[**G-K**] p. 108

2. Prolongement complexe

Proposition 45. On prolonge la définition de ζ donnée à la Définition 41 en posant

[**Z-Q**] p. 20

$$\zeta: \begin{array}{ccc} \{s \in \mathbb{C} \mid \operatorname{Re}(s) > 0\} & \mapsto & \mathbb{C} \\ s & \mapsto & \sum_{n=1}^{+\infty} \frac{1}{n^s} \end{array}$$

Proposition 46. ζ est holomorphe sur $\{s \in \mathbb{C} \mid \text{Re}(s) > 1\}$.

p. 28

Théorème 47. Il existe une fonction $\widetilde{\zeta}$, holomorphe dans $\mathbb{C} \setminus \{1\}$ telle que :

(i) Pour tout $s \in \mathbb{C} \setminus \{1\}$, $\widetilde{\zeta}(s) = \frac{1}{s-1} + \eta(s)$ avec η holomorphe dans \mathbb{C} .

- (ii) Pour tout $s \in \mathbb{C}$ tel que Re(s) > 1, $\widetilde{\zeta}(s) = \zeta(s)$.
- (iii) En posant $I(s) = \pi^{\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$, on a I(s) = I(1-s).

Bibliographie

Analyse de Fourier dans les espaces fonctionnels

[AMR08]

Mohammed El-Amrani. *Analyse de Fourier dans les espaces fonctionnels. Niveau M1*. Ellipses, 28 août 2008.

https://www.editions-ellipses.fr/accueil/3908-14232-analyse-de-fourier-dans-les-espaces-fonctionnels-niveau-m1-9782729839031.html.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Leçons pour l'agrégation de mathématiques

[D-L]

Maximilien Dreveton et Joachim Lhabouz. *Leçons pour l'agrégation de mathématiques. Préparation à l'oral.* Ellipses, 28 mai 2019.

https://www.editions-ellipses.fr/accueil/3543-13866-lecons-pour-lagregation-de-mathematiques-preparation-a-loral-9782340030183.html.

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Analyse complexe et applications

[QUE]

Martine Quefféllec et Hervé Queffélec. *Analyse complexe et applications. Nouveau tirage.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/analyse-complexe-et-applications/.

Formulaire de maths [R-R]

Olivier Rodot et Jean-Étienne Rombaldi. *Formulaire de maths. Avec résumés de cours.* De Boeck Supérieur, 30 août 2022.

https://www.deboecksuperieur.com/ouvrage/9782807339880-formulaire-de-maths.

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne Rombaldi. Éléments d'analyse réelle. 2e éd. EDP Sciences, 6 juin 2019.

https://laboutique.edpsciences.fr/produit/1082/9782759823789/elements-d-analyse-reelle.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5° éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.