Digital & Mixed Signal Design (EE559) Project

Name: Anish Madurai Narayanamurthy

Person# 50249279 Name: Aritra Manna Person# 50245595

Objective

Our objective is to design a fast-settling, fully differential switched-capacitor amplifier with a gain of 2. The design aim is to be able to meet the specifications while minimizing power and maximizing settling speed.

Introduction

Analog signal amplification in discrete-time system can be performed by switched-capacitor amplifiers. Switched-capacitor amplifier has been used in the design of digital-to-analog converter. Below is the circuit diagram of a fully differential CMOS switched-capacitor amplifier based on transmission gates logic based switches.

For Miller compensation capacitor circuit

 $\frac{g_{m2}}{c_L} > \frac{\sqrt{3}g_{m1}}{c_c}$; Value of C_c > 0.22*1 pf = 0.22 pf; we have chosen C_c=500fF; g_{m2} = 7.25 * $10^{-3}\Omega^{-1}$

Design methodology

Calculations

For single stage opamp

For DC voltage gain = 116.5 dB
$$GBW = g_m * \left(\frac{1}{2\pi C_L}\right)$$
= 200 MHz (Assuming)

$$g_m = 1.256 *$$

 $10^{-3}\Omega^{-1}$

Now, by using the (g_m/I_d) technique, the transistor sizes of single stage op-amp are (All transistors in saturation):

Transistor	Length	Width
N7,N8	970nm	31.3µm
P5,P4	850nm	113µm

$$\frac{g_m}{I_d} = 13.3444 \, V^{-1}$$

$$\frac{g_m}{\frac{g_m}{I_d}} = \frac{1.256*10^{-3}}{13.3444}$$
; $I_d = 9.412*10^{-5} A$

From the above equation $I_{d2} = 5.433 * 10^{-4} A$

Transistor Sizing

Transistor	Length	Width
N16,N6	970nm	590µm
P9,P3	850nm	134µm

Sizing of the remaining transistors of the two stage opamp

Transistor	Length	Width
N5	970nm	62.6µm
P8,P7	850nm	56.6µm
N9	850nm	31.3 µm
N11	970nm	15.65 μm
N12,N10	970nm	7.83 µm

Single stage op-amp

Two-stage fully differential OTA

Non-overlapping clock generator

Gain and phase margin

Gain: 63.2046 dB Phase Margin: 63°

Differential switched capacitor amplifier

Amplified output 2

All sizes and passive values of the differential switched capacitor circuit

Transmission gates	For Pmos(W/L):	For Nmos(W/L): 20um/5um
transistor sizes for	20um/5um	
the sampling switches		
C_L		10pF
fs		33kHz
fin	1	2.5kHz
Ts	}	30μs
Pulse v	vidth	15μs
Vin		30μV

The gain of the switched capacitor amplifier was found to be above 2 on giving the above values.

DFT plot of the differential output of the differential switched capacitor circuit

Final calculations:

The SNDR was found out to be **57.043 dB** from the above DFT plot

Power consumption P=VI; $1.8V*80.55\mu A$; P = $145 \mu W$

The Energy Efficiency number = $57.043 + 10\log (33*10^3/145 \mu W)$

Energy Efficiency number = 140.61

Static settling error = ϵs = -1/T (where T = Av β) where 1336688 is Av(Voltage ratio) and β is ½; T = 1.49* 10^-6 (converting it to db and calculating for settling error)

 $\epsilon s = -118 db$

Transient Noise Analysis

References

- 1. A Differential Switched-Capacitor Amplifier KEN MARTIN, MEMBER, IEEE, LEVENT OZCOLAK, MEMBER, IEEE, Y, S, LEE, AND GABOR C. TEMES, FELLOW, IEEE (IEEEJOURNAL OF SOLID-STATECIRCUITS, VOL. SC-22, NO. 1, FEBRUARY 1987)
- FULLY DIFFERENTIAL SWITCHED CAPACITOR AMPLIFIER MODELLING AND PARAMETER EVALUATION Andrei DANCHIV*, Mircea BODEA#, Claudius DAN§
 Digital CMOS design by Razavi