Analysis of common loops

First Example loop

i = 0

while i < n:

i = i + c

some other constant

time work

Equivalent for loop

for i in range(0, n, c):

some constant work

Order of Growth of these

two loops are $: \ominus(n)$

Second Example loop

i = n

while i > 0:

i = i - c

some other constant

time work

Equivalent for loop

for i in range(n, 0, -c):

some constant work

Order of Growth of these

two loops are $: \ominus(n)$

Third Example loop

i = 1

while i < n:

i = i * c

some other constant

time work

1, c, c²,, c^{k-1}

 $\Rightarrow c^{k-1} < n$

 \Rightarrow k < log_cn + 1

Then, Order of

Growth: $\ominus(\log n)$

```
# Fourth Example loop
i = n
```

while i > 1:

i = i / c

some other constant

time work

Order of Growth: $\ominus(\log n)$

Fifth Example loop

i = 2

while i < n:

i = i ** c

some other constant

time work

$$\Rightarrow$$
 2, 2°, 2°, 2°,, 2°, (k-1)

$$\Rightarrow$$
 2^{c^(k-1)} < n

$$\Rightarrow$$
 c^{k-1} < log₂n

Then, Order of Growth: $\ominus(\log (\log n))$

Sixth Example subsequent loops

i = 0

while i < n:

 $\Theta(n)$

i = i + 2

i = 1

while i < n:

 $\Theta(\log n)$

i = i * 3

i = 1

while i < 100:

i = i + 1

 $\Theta(1)$

$$\Theta(n) + \Theta(\log n) + \Theta(1)$$

Order of Growth: $\Theta(n)$

```
# Seventh Example nested loops
i = 0

while i < n:

j = 1

while j < n:

j = j * 2

i = i + 1

# some other constant

# time work
```

Order of Growth: $\ominus(n \log n)$

```
# Eighth Example mixed loops
i = 0

while i < n:
j = 1

while j < n:
j = j * 2

i = i + 1

i = 0

while i < n:
j = 1

while j < n:
j = 1

j = 1

j = 1

j = 1

j = 1

j = 1

j = 1

j = 1
```

 $\Theta(n \log n) + \Theta(n^2) = \Theta(n^2)$ Order of Growth: $\Theta(n^2)$

```
# Ninth Example multiple input
i = 0
while i < n:
j = 1
while j < n:
j = j * 2
i = i + 1
i = 0
while i < m:
j = 1
while j < m:
j = j + 1
i = i + 1
```

 $\Theta(n \log n) + \Theta(m^2) = \Theta(n \log n + m^2)$ Order of Growth: $\Theta(n \log n + m^2)$