Project 3

Problem 1

```
%with shifts
m=50;
a=[2,-1,zeros(1,m-2)];
A0=toeplitz(a);
A=A0;
n=100;
dVec=[];
sVec=[];
for k=1:n
    if k==1
    mu=0;
    [Q,R]=qr(A-mu*eye(m));
    A=R*Q+mu*eye(m);
    dVec(:,k)=diag(A);
    sVec(:,k)=diag(A,-1);
    else
    mu=A(m,m);
    [Q,R]=qr(A-mu*eye(m));
    A=R*Q+mu*eye(m);
    dVec(:,k)=diag(A);
    sVec(:,k)=diag(A,-1);
    end
end
%without shifts
m=50;
a=[2,-1,zeros(1,m-2)];
A0=toeplitz(a);
A=A0;
n=100;
dVec=[];
sVec=[];
for k=1:n
    mu=0;
    [Q,R]=qr(A-mu*eye(m));
    A=R*Q+mu*eye(m);
    dVec(:,k)=diag(A);
    sVec(:,k)=diag(A,-1);
end
```

QR	n=50 iterations	n=100 iterations	n=1000 iterations
Shifts: max eigenval	3.94260531	3.97088411	3.9960689
No Shifts: max eigenval	3.94174757	3.97044335	3.9960565
Shifts: min eigenval	0.003793343	0.003793343	0.00379334
No Shifts: min eigenval	0.003793343	0.003793343	0.00379334

Matlab built-in	max	min
Eig(A)	3.996206657	0.00379334


```
Problem 2
```

```
%with shifts
m=50;
a=[2,-1,zeros(1,m-2)];
A0=toeplitz(a);
A=A0;
dVec=[];
sVec=[];
tol=1e-15; %epsilon machine
counter=0;
while m>1
        if counter==0
            mu=0; %first iteration, need to do mu=0
             [Q,R]=qr(A-mu*eye(m));
            A=R*Q+mu*eye(m);
            counter=counter+1; %add one to exit this loop
        else
             if abs(A(m,m-1))>tol
                 mu=A(m,m);
                 [Q,R]=qr(A-mu*eye(m));
                 A=R*Q+mu*eye(m);
                 counter=counter+1;
                 dVec(1:m, counter) = diag(A);
                 sVec(1:m-1, counter) = diag(A, -1);
             else %the A(m, m-1) entry is below tolerance here
                 counter=counter+1; %add one to make space in dVec/sVec
                 dVec(1:m, counter)=diag(A);
                 sVec(1:m-1, counter) = diag(A, -1);
                 m=m-1;
                 A=A(1:m,1:m);
            end
        end
end
%without shifts
m=50;
a=[2,-1,zeros(1,m-2)];
A0=toeplitz(a);
A=A0;
dVec=[];
sVec=[];
tol=1e-15; %epsilon machine
counter=0;
while m>1
             if abs(A(m,m-1))>tol
                 mu=0;
                 [Q,R]=qr(A-mu*eye(m));
                 A=R*Q+mu*eye(m);
                 counter=counter+1;
                 dVec(1:m, counter)=diag(A);
                 sVec(1:m-1, counter) = diag(A, -1);
             else %the A(m,m-1) entry is below tolerance here
                 counter=counter+1; %add one to make space in dVec/sVec
                 dVec(1:m, counter)=diag(A);
                 sVec(1:m-1, counter) = diag(A, -1);
                 m=m-1;
                 A=A(1:m,1:m);
            end
```

end

Deflation	Number of	Max eigenvalue	Min eigenvalue	Final size of A
Method	iterations			
Shifts	161	3.996206657474089	0.003793342525912	1x1
No Shifts	10847	3.996206657474071	0.003793342525912	1x1

Note: using the deflation method for no shifts, 4000 of the final iterations (6000 to 10000) were to deflate A from a 3x3 to a 1x1 with no noticeable change of the eigenvalues, 3000 of the iterations before that were used to deflate A from a 4x4 to a 3x3 with a change of 1*10-14.

