

Norwegian University of Science and Technology Institutt for matematiske fag MA0301 Elementary discrete mathematics Spring 2017

Exercise set 7

1 Basic exercises

1 Grimaldi's book (5. ed., Exercises 5.2): solve Ex. 12

For $n, k \in \mathbb{Z}^+$, prove that $\lceil n/k \rceil = \lfloor (n-1)/k \rfloor + 1$.

[2] Grimaldi's book (5. ed., Exercises 5.2): solve Ex. 14

Let a_1, a_2, a_3, \ldots be the integer sequence defined recursively by (1) $a_1 = 1$; and (2) For all $n \in \mathbb{Z}^+$ where $n \geq 2$, $a_n = 2a_{\lfloor n/2 \rfloor}$.

- a) Determine a_n for all $2 \le n \le 8$.
- b) Prove that $a_n \leq n$ for all $n \in \mathbb{Z}^+$.

Grimaldi's book (5. ed., Exercises 5.2): solve Ex. 15 a), b), e)

For each of the following functions, determine whether it is one-to-one and determine its range.

- a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1
- b) $f: \mathbb{Q} \to \mathbb{Q}$, f(x) = 2x + 1
- e) $f: [-\pi/2, \pi/2] \to \mathbb{R}, f(x) = \sin x$

4 Grimaldi's book (5. ed., Exercises 5.2): solve Ex. 22

For $n \in \mathbb{Z}^+$ define $X_n = \{1, 2, 3, \dots, n\}$. Given $m, n \in \mathbb{Z}^+$, $f: X_m \to X_n$ is called monotone increasing if for all $i, j \in X_m$, $1 \le i < j \le m \implies f(i) \le f(j)$. (a) How many monotone increasing functions are there with domain X_7 and codomain X_5 ? (b) Answer part (a) for the domain X_6 and codomain X_9 . (c) Generalize the results in part (a) and (b). (d) Determine the number of monotone increasing functions $f: X_{10} \to X_8$ where f(4) = 4. (e) How many monotone increasing functions $f: X_7 \to X_{12}$ satisfy f(5) = 9? (f) Generalize the results in parts (d) and (e).

[5] Grimaldi's book (5. ed., Exercises 5.3): solve Ex. 2 a), c), e)

For each of the following functions $f: \mathbb{Z} \to \mathbb{Z}$, determine whether the function is one-to-one and whether it is onto. If the function is not onto, determine the range $f(\mathbb{Z})$.

- a) f(x) = x + 7
- c) f(x) = -x + 5
- e) $f(x) = x^2 + x$

6 Grimaldi's book (5. ed., Exercises 5.3): solve Ex. 3 a), c), e)

For each of the following functions $g: \mathbb{R} \to \mathbb{R}$, determine whether the function is one-to-one and whether it is onto. If the function is not onto, determine the range $g(\mathbb{R})$.

- a) f(x) = x + 7
- c) f(x) = -x + 5
- e) $f(x) = x^2 + x$

7 Grimaldi's book (5. ed., Exercises 5.6): solve Ex. 10 a), c)

For each of the following functions $f: \mathbb{R} \to \mathbb{R}$, determine whether f is invertible, and, if so, determine f^{-1} .

- a) $f: \{(x,y) \mid 2x + 3y = 7\}$
- c) $f: \{(x,y) \mid y = x^3\}$

8 Grimaldi's book (5. ed., Exercises 5.6): solve Ex. 14 a), d), e)

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. For each of the following subsets B of \mathbb{R} , find $f^{-1}(B)$.

- a) $B = \{0, 1\}$
- d) B = [0, 1)
- e) B = [0, 4]

9 Grimaldi's book (5. ed., Exercises 5.6): solve Ex. 15

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{6, 7, 8, 9, 10, 11, 12\}$. How many functions $f : A \to B$ are such that $f^{-1}(\{6, 7, 8\}) = \{1, 2\}$?