Séries numériques Généralités

1 Définitions

1.1 Convergence et divergence

Définition 1

Soit (u_n) une suite réelle. La série de terme général u_n notée $\sum u_n$ est la suite des sommes partielles (S_n) où pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n u_k$. On dit que $\sum u_n$ converge si (S_n) converge. On dit qu'elle diverge sinon.

Exemple de la série géométrique

Soit $q \in \mathbb{R}$. Alors $\sum q^n$ converge ssi |q| < 1.

 $\sum q^n$ est appelée série géométrique.

Proposition 1

Soient $\sum u_n$, $\sum v_n$ deux séries numériques et $\lambda \in \mathbb{R}$. Alors

- 1. $(\sum u_n \text{ converge et } \sum v_n \text{ converge}) \Longrightarrow \sum (u_n + v_n) \text{ converge.}$
- 2. $\sum u_n$ converge $\Longrightarrow \sum \lambda u_n$ converge.
- 3. $(\sum u_n \text{ converge et } \sum v_n \text{ diverge}) \Longrightarrow \sum (u_n + v_n) \text{ diverge.}$

1.2 Somme et reste d'une série convergente

Définition 2

Soit $\sum u_n$ une série numérique convergente. On appelle somme de la série le nombre réel

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to +\infty} S_n$$

et on appelle reste de la série la suite (R_n) définie pour tout $n \in \mathbb{N}$ par

$$R_n = \sum_{k=n+1}^{+\infty} u_k$$

1.3 Télescopage

Proposition 2

Soit (u_n) une suite réelle. Alors

$$(u_n)$$
 converge $\iff \sum (u_n - u_{n-1})$ converge

1.4 Condition nécessaire de convergence

Proposition 3

Soit (u_n) une suite réelle. Alors

$$\sum u_n \text{ converge} \implies u_n \xrightarrow[n \to +\infty]{} 0$$

1 Séries à termes positifs

1.1 Définition

Définition 1

On dit qu'une série numérique $\sum u_n$ est à termes positifs si pour tout $n \in \mathbb{N}, u_n \geqslant 0$.

Condition de convergence

Proposition 1

Soient $\sum u_n$ une série termes positifs et (S_n) la suite de ses sommes partielles. Alors

$$\sum u_n$$
 converge \iff (S_n) est majorée

1.2 Théorème de comparaison

Proposition 2

Soient (u_n) et (v_n) deux suites réelles telles que pour tout $n \in \mathbb{N}, 0 \le u_n \le v_n$.

Alors
$$\begin{cases} \sum v_n \text{ converge } \Longrightarrow \sum u_n \text{ converge} \\ \text{et} \\ \sum u_n \text{ diverge } \Longrightarrow \sum v_n \text{ diverge} \end{cases}$$

1.3 Série de Riemann

Définition 2

On appelle série de Riemann, toute série de la forme $\sum \frac{1}{n^{\alpha}}$ où $\alpha \in \mathbb{R}$.

Théorème 1

Soit $\alpha \in \mathbb{R}$. Alors $\sum \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.

1.4 Comparaisons de Landau

Définition 3

Soient (u_n) et (v_n) deux suites réelles.

- 1. $u_n = O(v_n)$ si $u_n = \varepsilon_n v_n$ où (ε_n) est une suite bornée.
- 2. $u_n = o(v_n)$ si $u_n = \varepsilon_n v_n$ où (ε_n) est une suite tendant vers 0.
- 3. $u_n \sim v_n$ si $u_n = \varepsilon_n v_n$ où (ε_n) est une suite tendant vers 1.

Proposition 3

Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n = O(v_n)$.

Alors
$$\sum v_n$$
 converge $\implies \sum u_n$ converge.

Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n = o(v_n)$.

Alors
$$\sum v_n$$
 converge $\implies \sum u_n$ converge.

Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \underset{+\infty}{\sim} v_n$.

Alors $\sum u_n$ et $\sum v_n$ sont de même nature.

1.5 Règle de Riemann

Proposition 4

Soit (u_n) une suite réelle positive.

S'il existe $\alpha>1$ tel que $n^{\alpha}u_n\xrightarrow[n\to+\infty]{}0$ alors $\sum u_n$ converge.

1 Règle de d'Alembert

Théorème 1 (règle de d'Alembert)

Soit (u_n) une suite réelle strictement positive telle que

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell \text{ où } \ell \in \mathbb{R}_+ \cup \{+\infty\}$$

$$\text{Alors} \left\{ \begin{array}{l} \ell < 1 \Longrightarrow \sum u_n \text{ converge} \\ \text{et} \\ \ell > 1 \Longrightarrow \sum u_n \text{ diverge} \end{array} \right.$$

2 Règle de Cauchy

Théorème 2 (règle de Cauchy)

Soit (u_n) une suite réelle strictement positive telle que

$$\sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$$
 où $\ell \in \mathbb{R}_+ \cup \{+\infty\}$

$$\text{Alors} \left\{ \begin{array}{l} \ell < 1 \Longrightarrow \sum u_n \text{ converge} \\ \text{et} \\ \ell > 1 \Longrightarrow \sum u_n \text{ diverge} \end{array} \right.$$

1 Séries alternées

Définition

Définition 1

Soit (u_n) une suite réelle.

On dit que (u_n) est alternée s'il existe une suite réelle (a_n) positive telle que pour tout $n \in \mathbb{N}$, $u_n = (-1)^n a_n$ (ou pour tout $n \in \mathbb{N}$, $u_n = (-1)^{n+1} a_n$).

On dit qu'une série numérique $\sum u_n$ est alternée si la suite (u_n) est alternée.

Critère spécial des séries alternées

Théorème 1 (Critère spécial des séries alternées)

Soit (u_n) une suite réelle alternée.

Si $(|u_n|)$ est décroissante et converge vers 0 alors

- 1. $\sum u_n$ converge.
- 2. $\forall n \in \mathbb{N}, \quad \left| R_n \right| \leqslant |u_{n+1}| \quad \text{où } \left(R_n \right) \text{ est la suite des restes associée à } \sum u_n$.

Exemple

Soit
$$\alpha \in \mathbb{R}$$
. Alors $\sum \frac{(-1)^n}{n^{\alpha}}$ converge ssi $\alpha > 0$.

2 Convergence absolue

Définition 2

On dit qu'une série numérique $\sum u_n$ converge absolument si la série $\sum |u_n|$ converge.

Théorème 2

Soit $\sum u_n$ une série numérique convergeant absolument. Alors $\sum u_n$ converge.

Définition 3

Une série convergente mais non absolument convergente est dite semi-convergente.

1 Déterminant d'une matrice carrée d'ordre 2

Définition 1

On appelle déterminant de la matrice $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$, noté $\det(A)$, le scalaire défini par

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}.$$

2 Déterminant d'une matrice carrée d'ordre 3

Définition 2

On appelle déterminant de la matrice $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(\mathbb{K})$, noté $\det(A)$, le scalaire défini par

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix},$$

$$= a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}.$$

3 Mineur et cofacteur

Définition 3

Soit $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$.

- On appelle **mineur** d'indice (i, j) le déterminant Δ_{ij} de la matrice obtenue en supprimant la i-ième ligne et la j-ième colonne de la matrice A.
- On appelle **cofacteur** d'indice (i,j) et on note A_{ij} le scalaire $A_{ij} = (-1)^{i+j} \Delta_{ij}$.

4 Déterminant d'une matrice carrée d'ordre n

Définition 4

Soit $A = (a_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$. Le déterminant de la matrice A est

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \Delta_{ij}$$

si on développe par rapport à la j-ième colonne et

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \Delta_{ij}$$

si on développe par rapport à la i-ième ligne.

5 Propriétés du déterminant

Proposition 1

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors

- $-\det(\lambda A) = \lambda^n \det(A),$
- $\det(AB) = \det(A) \det(B),$
- $-\det(A) = \det({}^tA)$, où tA est la matrice transposée de A.

6 Condition nécessaire & suffisante d'inversibilité d'une matrice

Définition 5

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est inversible s'il existe une matrice B dans $\mathcal{M}_n(\mathbb{K})$ telle que :

$$AB = BA = I_n$$
.

Proposition 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. La matrice A est inversible si et seulement si $\det(A) \neq 0$. De plus,

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

L'ensemble des matrices inversibles est noté $GL_n(\mathbb{K})$.

7 Méthodes de calcul du déterminant

Théorème 1 1. Un déterminant ayant deux colonnes (resp. lignes) identiques est nul.

- 2. Un déterminant qui a une colonne (resp. ligne) combinaison linéaire des autres colonnes (resp. lignes) est nul.
- 3. Un déterminant dont une colonne (resp. ligne) est formée de 0 est nul.
- 4. On ne change pas la valeur du déterminant en ajoutant à une colonne (resp. ligne) une combinaison linéaire des autres colonnes (resp. lignes).
- 5. Si on permute deux colonnes (resp. lignes) d'un déterminant, le déterminant est multiplié par -1.
- 6. Si on multiplie une colonne (resp. ligne) par un scalaire λ , on multiplie le déterminant par λ .

Ce théorème peut s'écrire, en remplaçant la matrice A par l'écriture en colonne (C_1, \dots, C_n)

- 1. $\det(C_1, \dots, C_i, \dots, C_i, \dots, C_n) = 0$,
- 2. $\det(C_1, \dots, C_{i-1}, \sum_{k=1, k \neq i}^n \lambda_k C_k, C_{i+1}, \dots, C_n) = 0$, où $\lambda_k \in \mathbb{K}$,
- 3. $\det(C_1, \dots, C_{i-1}, \mathbf{0}_{\mathbb{K}^n}, C_{i+1}, \dots, C_n) = 0$,
- 4. $\det(C_1, \dots, C_{i-1}, C_i + \sum_{k=1, k \neq i}^n \lambda_k C_k, C_{i+1}, \dots, C_n) = \det(C_1, \dots, C_n),$
- 5. $\det(C_1, \cdots, C_i, \cdots, C_j, \cdots, C_n) = -\det(C_1, \cdots, C_j, \cdots, C_i, \cdots, C_n)$
- 6. $\det(C_1, \dots, \frac{\lambda C_i}{\lambda}, \dots, C_n) = \frac{\lambda}{\lambda} \det(C_1, \dots, C_n)$, où $\lambda \in \mathbb{K}$.

8 Déterminant par blocs

Proposition 3

Si
$$M = \left(\begin{array}{c|c} A & B \\ \hline 0 & C \end{array}\right) \in \mathcal{M}_n(\mathbb{K})$$
, avec $A \in \mathcal{M}_p(\mathbb{K})$ et $C \in \mathcal{M}_{n-p}(\mathbb{K})$, alors

$$det(M) = det(A) det(C)$$
.

En particulier,
$$\det \begin{pmatrix} & & & 0 \\ & A & & \vdots \\ & & & 0 \\ \hline & \times & \cdots & \times & \alpha \end{pmatrix} = \alpha \det(A), \text{ où } \alpha \in \mathbb{K}.$$

9 Déterminant de quelques matrices particulières

9.1 Matrice diagonale

Soit $D \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale, c'est-à-dire,

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix},$$

alors

$$\det(D) = \prod_{i=1}^{n} \lambda_i.$$

9.2 Matrice triangulaire supérieure

Soit $T \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire supérieure, c'est-à-dire,

$$T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1n} \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix},$$

alors

$$\det(T) = \prod_{i=1}^{n} a_{ii}.$$

9.3 Matrice triangulaire inférieure

Soit $T \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire inférieure, c'est-à-dire,

$$T = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{nn-1} & a_{nn} \end{pmatrix},$$

alors

$$\det(T) = \prod_{i=1}^{n} a_{ii}.$$

1 Valeurs propres, vecteurs propres

Définition 1

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$.

- 1. On dit que λ est une valeur propre de A s'il existe un vecteur v dans \mathbb{K}^n non nul, tel que $Av = \lambda v$.
- 2. Le vecteur v est dit **vecteur propre** associé à la valeur propre λ .
- 3. L'ensemble des valeurs propres de A dans \mathbb{K} s'appelle le spectre de A dans \mathbb{K} , noté $\operatorname{Sp}_{\mathbb{K}}(A)$.

Remarque 1

Un vecteur propre, par définition, est non nul. En revanche, une valeur propre peut être nulle.

2 Sous-espace propre

Définition 2

Soit λ une valeur propre de A. Alors

$$E_{\lambda} = \{ v \in \mathbb{K}^n | Av = \lambda v \} = \operatorname{Ker}(A - \lambda I_n)$$

est un sous-espace vectoriel de \mathbb{K}^n , appelé sous-espace propre de A associé à la valeur propre λ .

Définition 3

Un sous-espace vectoriel F de \mathbb{K}^n est **stable** (ou A-stable) par A si, pour tout v dans F, $Av \in F$. On écrit $AF \subset F$.

Proposition 1

Un espace propre d'une matrice A est stable par A.

3 Somme directe de sous-espaces

Définition 4

Soient E un espace vectoriel sur \mathbb{K} et F_1, F_2, \ldots, F_p, p sous-espaces vectoriels de E.

– La partie de E, notée $F_1 + F_2 + \ldots + F_p$, définie par

$$F_1 + F_2 + \ldots + F_p = \{v_1 + v_2 + \ldots + v_p | \forall i \in \{1, \ldots, p\}, v_i \in F_i\}$$

est un sous-espace vectoriel de E, appelé somme des sous-espaces F_i .

- La somme $F_1 + F_2 + \ldots + F_p$ est dite **directe** si la décomposition de tout vecteur v dans $F_1 + F_2 + \ldots + F_p$ est **unique**, c'est-à-dire si

$$\forall v \in F_1 + \ldots + F_p, \ \exists! (v_1, \ldots, v_p) \in F_1 \times \ldots \times F_p, \ v = v_1 + \ldots + v_p.$$

Notation : la somme directe des sous-espaces F_1, F_2, \dots, F_p est notée

$$F_1 \oplus F_2 \oplus \ldots \oplus F_p$$
.

Proposition 2

Soit E un espace vectoriel sur \mathbb{K} . La somme de p sous-espaces vectoriels F_1, F_2, \dots, F_p de E est directe si et seulement si, on a la propriété

$$\forall (v_1,\ldots,v_p)\in F_1\times\ldots\times F_p, \quad v_1+\ldots+v_p=0_E \implies \forall i\in\{1,\ldots,p\}, \ v_i=0_E.$$

Théorème 1

Soient $\lambda_1, \ldots, \lambda_k$ des valeurs propres distinctes deux à deux d'une matrice carrée A. Alors les sous-espaces propres $E_{\lambda_1}, \ldots, E_{\lambda_k}$ sont en somme directe.

1 IONISX

4 Polynômes annulateurs

Définition 5

Soit $P \in \mathbb{K}_p[X]$, qu'on écrit $P(X) = a_0 + a_1 X + \ldots + a_p X^p$. Le polynôme $P(A) = a_0 I_n + a_1 A + \ldots + a_p A^p$ est une matrice de $\mathcal{M}_n(\mathbb{K})$. On dit que le polynôme $P \in \mathbb{K}[X]$ est un polynôme annulateur de A, si

On écrit par abus P(A) = 0.

2 IONISX

1 Définition du polynôme caractéristique

Définition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle polynôme caractéristique de A, noté en général P_A , le polynôme de $\mathbb{K}[X]$ défini par

$$P_A(X) = \det(A - XI_n).$$

2 Propriétés

Proposition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le polynôme caractéristique P_A de la matrice A est un polynôme de degré n à coefficients dans \mathbb{K} et dont le coefficient dominant est $(-1)^n$.

Proposition 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

- $P_A(0) = \det(A).$
- $-P_A=P_{^t\!A},$ où $^t\!A$ est la transposée de A.

Définition 2

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A est semblable à B s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que :

$$A = PBP^{-1}.$$

Proposition 3

Si A et B sont deux matrices semblables alors $P_A = P_B$.

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$, les assertions suivantes sont équivalentes :

- 1. $KerA = \{0\}$;
- $2. \det(A) \neq 0.$

3 Ordre de multiplicité d'une valeur propre

Définition 3– Si λ est une racine simple de P_A , on dit que λ est valeur propre simple ou de multiplicité 1.

- Si λ est une racine d'ordre α de P_A , on dit que λ est valeur propre de multiplicité α .

4 Théorème de Cayley-Hamilton

Théorème 2 (de Cayley-Hamilton)

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P_A \in \mathbb{K}[X]$ le polynôme caractéristique de A. Alors

$$P_A(A) = 0_{\mathcal{M}_n(\mathbb{K})}.$$

1 Définition d'une matrice diagonalisable

Définition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est diagonalisable s'il existe une matrice inversible P dans $GL_n(\mathbb{K})$ et une matrice diagonale D dans $\mathcal{M}_n(\mathbb{K})$ telle que

$$A = PDP^{-1}.$$

2 Dimension d'un sous-espace propre

Proposition 1

Une matrice carrée A d'ordre n est diagonalisable si et seulement si \mathbb{K}^n est somme directe des sous-espaces propres.

Proposition 2

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ une racine de P_A (donc une valeur propre de A) d'ordre de multiplicité α . Alors

$$1 \leq \dim(E_{\lambda}) \leq \alpha$$
.

Remarque 1– Si dim $(E_{\lambda}) = 0$ alors λ n'est pas une valeur propre.

- si λ est une racine simple alors le sous-espace propre E_{λ} est de dimension 1.

3 Condition nécessaire et suffisante de diagonalisation

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$, A est diagonalisable si et seulement si

(i) P_A est scindé dans \mathbb{K} , ce qui veut dire que $P_A(X)$ s'écrit

$$P_A(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_p)^{\alpha_p}$$

avec $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ et $\alpha_1 + \ldots + \alpha_p = n$.

(ii) Pour chaque racine (valeur propre) λ_i de multiplicité α_i , on a

$$\dim(E_{\lambda_i}) = \alpha_i.$$

4 Diagonalisation : cas de valeurs propres simples

Théorème 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A admet n valeurs propres deux à deux distinctes alors A est diagonalisable.

1 Calcul de la puissance d'une matrice carrée

Soit $A \in \mathcal{M}_n(\mathbb{K})$, qu'on suppose diagonalisable, c'est-à-dire qu'il existe deux matrices D diagonale et P inversible telles que $D = P^{-1}AP$.

Lemme 1– Si $D \in \mathcal{M}_n(\mathbb{K})$ est une matrice diagonale, c'est-à-dire $D = \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_n)$, alors pour tout $p \in \mathbb{N}$,

$$D^p = \operatorname{diag}(\alpha_1^p, \alpha_2^p, \dots, \alpha_n^p).$$

- Pour tout $p \in \mathbb{N}$, on a

$$A^p = PD^p P^{-1}.$$

2 Résolution d'un système de suites récurrentes

Soient $A=(a_{ij})_{0\leq i,j\leq n}$, qu'on suppose diagonalisable et une suite vectorielle $(U_p)_{p\in\mathbb{N}}=\left((u_p^{(i)})_{p\in\mathbb{N}}\right)_{1\leq i\leq n}\in(\mathbb{K}^n)^\mathbb{N}$, telles que pour tout $p\in\mathbb{N},\,U_p\in\mathbb{K}^n$ et pour tout $i\in\{1,\ldots,n\},\,(u_p^{(i)})_{p\in\mathbb{N}}$ est une suite numérique à valeurs dans \mathbb{K} . On souhaite résoudre le système

$$\begin{cases} u_{p+1}^{(1)} = a_{11}u_p^{(1)} + \dots + a_{1n}u_p^{(n)}, \\ \vdots & \vdots & \vdots & \text{et telles que} \\ u_{p+1}^{(n)} = a_{n1}u_p^{(1)} + \dots + a_{nn}u_p^{(n)} \end{cases}$$
 et telles que
$$\begin{cases} u_0^{(1)} = b_1, \\ \vdots \\ u_0^{(n)} = b_n, \end{cases}$$

où les a_{ij} et les b_i , $1 \le i, j \le n$ sont des constantes. Matriciellement, pour tout $p \in \mathbb{N}$, on écrit :

$$\underbrace{\begin{pmatrix} u_{p+1}^{(1)} \\ \vdots \\ u_{p+1}^{(n)} \end{pmatrix}}_{U_{p+1}} = \underbrace{\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} u_p^{(1)} \\ \vdots \\ u_p^{(n)} \end{pmatrix}}_{U_p} \text{ et } U_0 = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

On écrit chaque $u_p^{(i)}$ en fonction de p en diagonalisant A, puis on démontre aisément que

$$\forall p \in \mathbb{N}, \ U_p = A^p U_0.$$

Donc, il suffit de calculer A^p (calcul de la puissance d'une matrice).

3 Système différentiel linéaire à coefficients constants

Soit le système différentiel suivant

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n, \\ \vdots \\ \frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n \end{cases}$$

avec $a_{ij} \in \mathbb{R}$ et $x_i : \mathbb{R} \to \mathbb{R}$ des fonctions dérivables, pour tout $i \in \{1, \dots, n\}$. La forme matricielle de ce système est

$$\frac{dX}{dt} = AX, \quad \text{où } A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Si A est diagonalisable, alors il existe une matrice diagonale $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ et une matrice inversible P telles que $D = P^{-1}AP$. Comme $\frac{dX}{dt} = AX = PDP^{-1}X$, alors $P^{-1}\frac{dX}{dt} = DP^{-1}X$.

1

En posant $Y = P^{-1}X$, le système ci-dessus s'écrit

$$\frac{dY}{dt} = DY,$$

Résoudre le système $\frac{dY}{dt}=DY$, revient à résoudre n équations différentielles indépendantes d'ordre 1 de la forme $\frac{dy_i}{dt}=\lambda_i y_i$, pour tout i dans $\{1,\ldots,n\}$. Les solutions sont $y_i(t)=C_i e^{\lambda_i t}$, où les C_i sont des constantes.

2

1 Définitions

1.1 Intégrale impropre sur un intervalle [a, b]

Définition 1

Soit [a,b[un intervalle de $\mathbb R$ vérifiant $-\infty < a < b \leqslant +\infty$.

Soit f continue de [a, b[dans \mathbb{R} et non définie en b.

$$\int_{a}^{b} f(t) dt \text{ est appelée } intégrale \ impropre \ de \ f \ \text{sur } [a, b[.$$

Si la fonction $x \mapsto \int_a^x f(t) dt$ admet une limite finie quand x tend vers b, on dit que $\int_a^b f(t) dt$ converge.

On a alors
$$\int_a^b f(t) dt = \lim_{x \to b} \int_a^x f(t) dt$$

On dit que $\int_a^b f(t) dt$ diverge sinon.

1.2 Intégrale impropre sur un intervalle]a, b]

Définition 2

Soit [a, b] un intervalle de \mathbb{R} vérifiant $-\infty \leq a < b < +\infty$.

Soit f continue de [a, b] dans \mathbb{R} et non définie en a.

$$\int_{a}^{b} f(t) dt \text{ est appelée } intégrale \ impropre \ de \ f \ \text{sur }]a,b].$$

Si la fonction $x \mapsto \int_x^b f(t) dt$ admet une limite finie quand x tend vers a, on dit que $\int_a^b f(t) dt$ converge.

On a alors
$$\int_a^b f(t) dt = \lim_{x \to a} \int_x^b f(t) dt$$

On dit que $\int_{a}^{b} f(t) dt$ diverge sinon.

1.3 Intégrale impropre sur un intervalle]a,b[

Définition 3

Soit]a,b[un intervalle de $\mathbb R$ vérifiant $-\infty \leqslant a < b \leqslant +\infty$.

Soit f continue de]a,b[dans $\mathbb R$ et non définie en a et en b.

$$\int_a^b f(t) \, \mathrm{d}t \text{ est appelée } intégrale \ impropre \ \mathrm{de} \ f \ \mathrm{sur} \]a,b[.$$

On dit que $\int_a^b f(t) dt$ converge s'il existe un c dans]a,b[tel que les intégrales impropres $\int_a^c f(t) dt$ et $\int_c^b f(t) dt$ convergent toutes les deux.

Dans ce cas
$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$
.

On dit que $\int_a^b f(t) dt$ diverge sinon.

1

2 Propriétés

Proposition 1

Soit f continue de [a, b[dans \mathbb{R} , avec $-\infty < a < b \le +\infty$, et non définie en b.

Soit c un réel tel que a < c < b.

Les intégrales : $\int_a^b f(t) \, \mathrm{d}t$ et $\int_c^b f(t) \, \mathrm{d}t$ sont de même nature.

De plus, si $\int_a^b f(t) dt$ converge alors $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$.

Proposition 2

Soient f et g continues sur [a,b[avec $-\infty < a < b \leqslant +\infty$.

• Supposons que $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent.

Alors, pour tout réel λ , $\int_a^b \left(\lambda f(t) + g(t)\right) \mathrm{d}t$ converge et

$$\int_{a}^{b} (\lambda f(t) + g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt$$

• Supposons que $\int_a^b f(t) dt$ converge et $\int_a^b g(t) dt$ diverge.

Alors
$$\int_a^b (f(t) + g(t)) dt$$
 diverge.

1 Intégrale impropre d'une fonction positive

1.1 Proposition fondamentale

Proposition 1

Soit $f: [a, b] \longrightarrow \mathbb{R}$ continue et positive sur [a, b] où $-\infty < a < b \leqslant +\infty$.

Soit φ la primitive de f sur [a,b[définie pour tout $x \in [a,b[$ par

$$\varphi(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

- $\int_a^b f(t) dt$ converge ssi φ est majorée.
- $\int_a^b f(t) dt$ diverge ssi $\lim_{x \to b} \varphi(x) = +\infty$.

1.2 Fonctions de Riemann

Théorème 1 (Riemann)

Soit $\alpha \in \mathbb{R}$. Alors

$$1. \ \int_0^1 \frac{\mathrm{d}t}{t^\alpha} \ \mathrm{converge} \ \Longleftrightarrow \ \alpha < 1.$$

$$2. \ \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \ \text{converge} \iff \alpha > 1.$$

1.3 Théorèmes de comparaison

Proposition 2

Soient $f:[a,b[\to \mathbb{R} \text{ et } g:[a,b[\to \mathbb{R} \text{ continues et positives sur } [a,b[\text{ où } -\infty < a < b \leqslant +\infty.$

Supposons qu'au voisinage de $b, 0 \le f(t) \le g(t)$. Alors

•
$$\int_a^b g(t)dt$$
 converge $\Longrightarrow \int_a^b f(t)dt$ converge;

•
$$\int_a^b f(t) dt$$
 diverge $\Longrightarrow \int_a^b g(t) dt$ diverge.

Définition 1

Soient f et g deux fonctions continues sur [a, b[.

- f = O(g) si $f = \varepsilon g$ où ε est une fonction bornée sur [a, b[.
- f = o(g) si $f = \varepsilon g$ où ε est une fonction tendant vers 0 en b.
- $f \sim g$ si $f = \varepsilon g$ où ε est une fonction tendant vers 1 en b.

Proposition 3

Soient $f: [a,b[\to \mathbb{R} \text{ et } g: [a,b[\to \mathbb{R} \text{ continues et positives sur } [a,b[\text{ où } -\infty < a < b \leqslant +\infty.$

- Si f = O(g) alors $\int_a^b g(t) dt$ converge $\implies \int_a^b f(t) dt$ converge.
- Si f = o(g) alors $\int_a^b g(t) dt$ converge $\implies \int_a^b f(t) dt$ converge.
- Si $f \sim g$ alors $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ sont de même nature.

1 Autres critères

1.1 Critère intégral de Cauchy

Théorème 1

Soient $n_0 \in \mathbb{N}$ et $f: [n_0, +\infty[\longrightarrow \mathbb{R} \text{ continue positive et décroissante sur } [n_0, +\infty[$.

Alors
$$\int_{n_0}^{+\infty} f(t) dt$$
 et $\sum f(n)$ sont de même nature.

1.2 Intégration par parties

Proposition 1

Soient f et g de classe C^1 sur [a,b[avec $-\infty < a < b \leqslant +\infty$ telles que fg admette une limite finie en b.

Alors
$$\int_a^b f'(t)g(t) dt$$
 et $\int_a^b f(t)g'(t) dt$ sont de même nature.

Si elles convergent, on a

$$\int_a^b f'(t)g(t) dt = \lim_{t \to b} (f(t)g(t)) - f(a)g(a) - \int_a^b f(t)g'(t) dt$$

1.3 Intégration par changement de variable

Proposition 2

Soient $f:[a,b[\to \mathbb{R} \text{ continue sur } [a,b[\text{ avec } -\infty < a < b \leqslant +\infty \text{ et } \varphi:[\alpha,\beta[\to [a,b[\text{ de classe } C^1 \text{ et strictement croissante sur } [\alpha,\beta[\text{ avec } -\infty < \alpha < \beta \leqslant +\infty \text{ telles que } \varphi(\alpha) = a \text{ et } \lim_{t\to\beta} \varphi(t) = b.$

Alors
$$\int_{\alpha}^{\beta} f(\varphi(u))\varphi'(u) du$$
 et $\int_{a}^{b} f(t) dt$ sont de même nature et si elles convergent, elles sont égales.

1 Convergence absolue

Définition 1

Soit $f: [a, b[\to \mathbb{R} \text{ continue sur } [a, b[\text{ avec } -\infty < a < b \leqslant +\infty.$

On dit que $\int_a^b f(t) \, \mathrm{d}t$ converge absolument si $\int_a^b \left| f(t) \right| \, \mathrm{d}t$ converge.

Théorème 1

Soit $f: [a, b[\to \mathbb{R} \text{ continue sur } [a, b[\text{ avec } -\infty < a < b \leqslant +\infty.$

Si
$$\int_a^b f(t) \mathrm{d}t$$
 converge absolument alors $\int_a^b f(t) \, \mathrm{d}t$ converge et on a de plus

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leqslant \int_{a}^{b} \left| f(t) \right| \, \mathrm{d}t$$

1 Définitions

1.1 Forme bilinéaire

Définition 1

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$. On dit que φ est une forme bilinéaire si

- $\forall x \in E, y \longmapsto \varphi(x,y)$ est linéaire
- $\forall y \in E, \ x \longmapsto \varphi(x,y)$ est linéaire

Proposition 1

Soient E un \mathbb{R} -ev de dimension finie n, $\mathscr{B}=(e_1,...,e_n)$ une base de E et $\varphi:E\times E\longrightarrow \mathbb{R}$ bilinéaire. Alors

$$\forall (x,y) \in E^2, \ \varphi(x,y) = {}^tXMY$$

où $M = (\varphi(e_i, e_j)) \in \mathscr{M}_n(\mathbb{R}), X$ et Y sont les coordonnées respectives de x et y dans \mathscr{B} .

M s'appelle la matrice de la forme bilinéaire φ relativement à \mathscr{B} .

1.2 Forme bilinéaire symétrique

Définition 2

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$ bilinéaire. On dit que φ est symétrique si

$$\forall (x,y) \in E^2, \ \varphi(x,y) = \varphi(y,x)$$

Proposition 2

Soient E un \mathbb{R} -ev de dimension finie, \mathscr{B} une base de $E,\,\varphi:E\times E\longrightarrow\mathbb{R}$ bilinéaire et $M=\mathrm{Mat}_{\mathscr{B}}(\varphi)$. Alors

$$\varphi$$
 symétrique $\iff M$ symétrique

1.3 Produit scalaire

Définition 3

Soient E un \mathbb{R} -ev et $\varphi: E \times E \longrightarrow \mathbb{R}$. On dit que φ est un *produit scalaire* si φ est bilinéaire, symétrique, positive et définie i.e. si φ est bilinéaire symétrique et

$$\left\{ \begin{array}{l} \varphi \text{ est positive}: \ \forall x \in E, \ \varphi(x,x) \geqslant 0 \\ \\ \varphi \text{ est définie}: \ \forall x \in E, \ \left(\varphi(x,x) = 0 \Longrightarrow x = 0\right) \end{array} \right.$$

On appelle espace pr'ehilbertien r'e'el tout $\mathbb{R}\text{-ev}$ muni d'un produit scalaire.

On appelle $espace \ euclidien$ tout \mathbb{R} -ev de dimension finie muni d'un produit scalaire.

1 Théorèmes de Cauchy-Schwarz et de Minkowski

1.1 Théorème de Cauchy-Schwarz

Théorème 1 (Cauchy-Schwarz)

Soit (E, <, >) préhilbertien réel.. Alors

$$\forall (x,y) \in E^2, \ |< x,y>| \le \sqrt{< x,x>} \sqrt{< y,y>}$$

1.2 Théorème de Minkowski

Théorème 2 (Minkowski)

Soit (E, <, >) préhilbertien réel. Alors

$$\forall (x,y) \in E^2, \ \sqrt{\langle x+y,x+y \rangle} \leqslant \sqrt{\langle x,x \rangle} + \sqrt{\langle y,y \rangle}$$

1.3 Norme issue d'un produit scalaire

Définition 1

Soit E un \mathbb{R} -ev. On appelle norme sur E, toute application $N:E\longrightarrow\mathbb{R}$ telle que pour tout $(x,y)\in E^2$ et tout $\lambda\in\mathbb{R}$:

$$\begin{cases}
N(x) \geqslant 0 \\
N(\lambda x) = |\lambda| N(x) \\
N(x) = 0 \iff x = 0 \\
N(x+y) \leqslant N(x) + N(y)
\end{cases}$$

Proposition 1

Soit (E, <, >) préhilbertien réel.

Alors $N: E \longrightarrow \mathbb{R}$ définie pour tout $x \in E$ par $N(x) = \sqrt{\langle x, x \rangle}$ est une norme sur E.

1 Orthogonalité de deux vecteurs et orthogonal d'une partie

1.1 Orthogonalité de deux vecteurs

Définition 1

Soit (E, <, >) préhilbertien réel.

On dit que 2 vecteurs x et y de E sont orthogonaux si $\langle x, y \rangle = 0$.

Théorème 1 (Pythagore)

Soient (E, <, >) préhilbertien réel, x et y deux vecteurs orthogonaux de E. Alors

$$||x + y||^2 = ||x||^2 + ||y||^2$$

1.2 Orthogonal d'une partie d'un espace préhilbertien réel

Définition 2

Soient (E, <, >) préhilbertien réel et $A \subset E$.

On appelle orthogonal de A l'ensemble noté A^{\perp} défini par

$$A^{\perp} = \left\{ x \in E, \ \forall y \in A \ < x, y >= 0 \right\}$$

Proposition 1

Soient (E, <, >) préhilbertien réel et $A \subset E$. Alors A^{\perp} est un \mathbb{R} -ev.

Proposition 2

Soient A et B deux parties d'un espace préhilbertien (E,<,>). Alors

- 1. $A \subset B \Longrightarrow B^{\perp} \subset A^{\perp}$
- 2. $A^{\perp} = \left(\operatorname{Vect}(A) \right)^{\perp}$
- 3. $A \subset A^{\perp \perp}$
- 4. $A \cap A^{\perp} \subset \{0\}$ et, si A est un sev de $E, A \cap A^{\perp} = \{0\}$.

1 Famille orthogonale/orthonormée

Définition 1

Soient (E, <, >) préhilbertien réel et $X = \{x_1, ..., x_n\} \subset E$

On dit que X est une famille orthogonale de E si pour tout $(i, j) \in \{1, \dots, n\}^2$,

$$i \neq j \Longrightarrow \langle x_i, x_i \rangle = 0$$

On dit que X est une famille orthonorm'ee si pour tout $(i,j) \in \{1,\ldots,n\}^2$,

$$\langle x_i, x_i \rangle = \delta_{ij}$$

où
$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Proposition 1

Soient (E, <, >) euclidien et $\mathscr{B} = (e_1, ..., e_n)$ une base orthonormée de E. Alors pour tout $x \in E$,

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

Proposition 2

Toute famille orthogonale de vecteurs non nuls d'un espace préhilbertien réel est libre.

1.1 Théorème de Gram-Schmidt

Théorème 1 (Gram-Schmidt)

Soient (E, <, >) un espace euclidien et $\mathscr{B} = (e_1, ..., e_n)$ une base de E.

Alors il existe une base orthogonale $\mathscr{O} = (\varepsilon_1, ..., \varepsilon_n)$ de E telle que $\forall k \in \{1, ..., n\}, \ \varepsilon_k \in \mathrm{Vect}(e_1, ..., e_k)$.

1 Théorème du supplémentaire orthogonal

Théorème 1

Soient (E, <, >) un espace euclidien et F un sev de E. Alors

$$E = F \oplus F^{\perp}$$

Corollaire 1

Soient (E, <, >) un espace euclidien et F un sev de E. Alors

$$F^{\perp\perp} = F$$

2 Projection orthogonale

2.1 Définition

Définition 1

Soient (E, <, >) un espace euclidien et F un sev de E.

On appelle projecteur orthogonal sur F noté p_F le projecteur sur F parallèlement à F^\perp c'est-à-dire $p_F \in \mathscr{L}(E)$, $p_F^2 = p_F$, $\mathrm{Im}(p_F) = F$ et $\mathrm{Ker}(p_F) = F^\perp$.

Proposition 1

Soient (E, <, >) un espace euclidien (resp. préhilbertien réel), F un sev (resp. de dimension finie) de E et $(e_1, ..., e_p)$ une base orthonormée de F. Alors pour tout $x \in E$,

$$p_F(x) = \sum_{i=1}^{p} \langle x, e_i \rangle e_i$$

2.2 Distance à un sous-espace

Proposition 2

Soient F un sev d'un espace euclidien (E, <, >) et $x \in E$.

Alors l'application $\left\{\begin{array}{ccc} F & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \|x-y\| \end{array}\right.$ atteint son minimum en $p_F(x)$ c'est-à-dire

$$\min_{y \in F} \lVert x - y \rVert = \left\lVert x - p_{\!F}(x) \right\rVert$$

On appelle distance de x à F noté d(x,F) le réel $||x-p_{\!{}_{\!F}}(x)||$.