Problem Sheet

- 1. Prove that any two finite dimensional vector space are isomorphic if and only if they have equal dimension.
- 2. Give an example of distinct linear transformations T and U such that N(T) = N(U) and R(T) = R(U). Where R(T) and N(T) are Range of T and Null space of T respectively.
- 3. Suppose $U = \{(x, x, y, y) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}$. Find a subspace W of \mathbb{F}^4 such that $U \bigoplus V = \mathbb{F}^4$
- 4. Let W_1, W_2, W_3 be three distinct subspaces of \mathbb{R}^{10} with each W_i has dimension 9. If $W = W_1 \cap W_2 \cap W_3$ then prove that $7 \leq \dim(W) \leq 8$.
- 5. Let $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be a linear transformation such that T(A) = 0 whenever A is symmetric or skew symmetric. Find Rank(T).
- 6. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear.
 - (a) Prove that if dim(V) < dim(W), then T cannot be onto.
 - (b) Prove that if dim(V) > dim(W), then T cannot be one-to-one.
- 7. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^4$ and $S: \mathbb{R}^4 \to \mathbb{R}^3$ be two linear transformations such that $S \circ T = I$ on \mathbb{R}^3 . Then show that $T \circ S$ is neither one-one nor onto.
- 8. T and S be two linear operators on \mathbb{R}^n such that ST = TS = 0 and T + S is invertible. Then show that:
 - (a) Rank(T) + Rank(S) = n
 - (b) Nullity(T) + Nullity(S) = n

[Hint: Use $Rank(T+S) \leq Rank(T) + Rank(S) \leq Rank(TS) + n$]

- 9. A linear transformation T rotates each vector in \mathbb{R}^2 clockwise through an angle θ . Find the matrix of T w.r.t the standard ordered basis.
- 10. Let $T: \mathbb{R}^4 \to \mathbb{R}^5$ such that Tx = 0 iff x = 0. Find Rank(T).
- 11. Let V be a vector space and $T: V \to V$ be a linear transformation. Prove that the following two statements about T are equivalent:
 - (a) The intersection of the range of T and the null space of T is the zero subspace of V.
 - (b) If T(Ta) = 0, then Ta = 0.
- 12. Let $T: V \to W$ be a linear transformation. Then prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of w.
- 13. Let T be the linear operator on \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1, x_1 x_2, 2x_1 + x_2 + x_3)$. Is T invertible? If so, find a rule for T^{-1} like the one which defines T.

- 14. Find two linear operators T and U on \mathbb{R}^2 such that TU = O but $UT \neq O$.
- 15. If W is a k-dimensional subspace of an n-dimensional vector space V, then prove that W is the intersection of n k hyperspaces in V.
- 16. Prove the followings:
 - (a) The subspaces $\{0\}$, V, R(T), and N(T) are all T-invariant.
 - (b) If W is T-invariant, prove that T_W is linear.
- 17. Let V be a finite-dimensional vector space and $T: V \to V$ be linear. Then if V = R(T) + N(T) prove that $V = R(T) \bigoplus N(T)$.
- 18. A function $T: V \to W$ between vector spaces V and W is called additive if T(x+y) = T(x) + T(y) for all $x, y \in V$. Prove that if V and W are vector spaces over the field of rational numbers, then any additive function from V into W is a linear transformation.
- 19. Let V be a vector space and W be a subspace of V. Define the mapping $\eta: V \to V/W$ by $\eta(v) = v + W$ for $v \in V$.
 - (a) Prove that η is a linear. Find $N(\eta)$.
 - (b) Suppose that V is finite-dimensional. Then find the relation between dim(V), dim(W), and dim(V/W).
- 20. Let V and W be vector spaces, and let T and U be nonzero linear transformations from V into W. If $R(T) \cap R(U) = \{0\}$, prove that $\{T, U\}$ is a linearly independent subset of $\mathcal{L}(V, W)$.
- 21. Let S be a subset of V and S^0 is the annihilator of S. Then prove that:
 - (a) S^0 is a subspace of $\mathcal{L}(V)$.
 - (b) If S_1 and S_2 are subsets of V such that $S_1 \subseteq S_2$ then prove that $S_2^0 \subseteq S_1^0$.
 - (c) For any two subspaces V_1 and V_2 of V prove that $(V_1 + V_2)^0 = V_1^0 \cap V_2^0$.
- 22. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α , β , and γ , respectively. Let $T: V \to W$ and $U: W \to Z$ be linear transformations. Then prove that $[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.
- 23. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Furthermore, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.
- 24. Let $T:V\to Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping $\bar T:V/N(T)\to Z$ by $\bar T(v+N(T))=T(v)$ for any coset v+N(T) in V/N(T). Then prove that $\bar T$ is well-defined, linear and an isomorphism.
- 25. Suppose V & W be two finite dimensional vector spaces. Let $T: V \to W$ be a linear transformation and $T': W' \to V'$ be the dual map of T. Then prove the following:
 - (a) $(N(T))^0 = V'$ if and only if $N(T) = \{0\}$.
 - (b) Rank(T) + Nullity(T') = dim(W).
 - (c) $(R(T))^0 = N(T')$
- 26. Show that $W = \{T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^4) : Nullity(T) > 2\}$ is not a subspace of $\mathcal{L}(\mathbb{R}^5, \mathbb{R}^4)$.

- 27. Suppose that V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap N(T) = \{0\}$ and $R(T) = \{Tu : u \in U\}$.
- 28. Suppose U, V and W are arbitrary subspaces of a finite dimensional vector space. Then prove that:
 - (a) $U \cap (V + W) \supset (U \cap V) + (U \cap W)$.
 - (b) $(U \cap V) + W \subset (U + W) \cap (V + W)$.
- 29. Suppose V is finite dimensional and $v_1, v_2,, v_n \in V$. Define a linear map $\Psi : V' \to \mathbb{R}^n$ by $\Psi(\phi) = (\phi(v_1),, \phi(v_n))$. Prove that:
 - (a) $v_1, v_2,, v_n$ spans V if and only if Ψ is injective.
 - (b) $\{v_1, v_2,, v_n\}$ is linearly independent if and only if Ψ is surjective.
- 30. For any positive integer m:
 - (a) Prove that $\{1, (x-5),, (x-5)^m\}$ is a basis for $\mathcal{P}_m(\mathbb{R})$
 - (b) What is the dual basis of the basis given in (a)?