Matplolib 2 import matplotlib.pyplot as plt import numpy as np %matplotlib inline x = np.linspace(1,10,20)from numpy.random import randint y = randint(1, 50, 20)y= np.sort(y) y1 = x*y In [18]: fig,ax = plt.subplots(1,3, figsize = (12,4))ax[0].plot(x,y,x,y1)ax[1].plot(x,y**2,'k')ax[1].set ylim([0,500])ax[2].plot(x,y,x,y1) $ax[2].set_ylim([0,100])$ ax[2].set xlim([1,4])Out[18]: (1, 4) 500 100 400 400 80 300 300 60 200 200 40 100 100 20 2.0 2.5 3.0 #other kind of plots. dir(plt) In [19]: Out[19]: ['Annotation', 'Arrow', 'Artist', 'AutoLocator', 'Axes', 'Button', 'Circle', 'Figure', 'FigureCanvasBase', 'FixedFormatter', 'FixedLocator', 'FormatStrFormatter', 'Formatter', 'FuncFormatter', 'GridSpec', 'IndexLocator', 'Line2D', 'LinearLocator', 'Locator', 'LogFormatter', 'LogFormatterExponent', 'LogFormatterMathtext', 'LogLocator', 'MaxNLocator', 'MultipleLocator', 'Normalize', 'NullFormatter', 'NullLocator', 'Number', 'PolarAxes', 'Polygon', 'Rectangle', 'ScalarFormatter', 'Slider', 'Subplot', 'SubplotTool', 'Text', 'TickHelper', 'Widget', ' INSTALL_FIG_OBSERVER', '_INSTALL_FIG_OBS!
'_IP_REGISTERED',
'__builtins__',
'__cached__',
'__doc__',
'_file__',
'__loader__',
'__name__',
'__nackage_' '__name__',
'__package__',
'__spec__',
'_auto_draw_if_interactive',
'_backend_mod',
'_get_running_interactive_framework',
'_interactive_bk', log', '_pylab_helpers', __setp', '_setup_pyplot_info_docstrings', '_show', 'acorr', 'angle_spectrum', 'annotate', 'arrow', 'autoscale', 'autumn', 'axes', 'axhline', 'axhspan', 'axis', 'axvline', 'axvspan', 'bar', 'barbs', 'barh', 'bone', 'box', 'boxplot', 'broken_barh', 'cbook', 'cla', 'clabel', 'clf', 'clim', 'close', 'cm', 'cohere', 'colorbar', 'colormaps', 'connect', 'contour', 'contourf', 'cool', 'copper', 'csd', 'cycler', 'dedent', 'delaxes', 'deprecated', 'disconnect', 'docstring', 'draw', 'draw_all', 'draw_if_interactive', 'errorbar', 'eventplot', 'figaspect', 'figimage', 'figlegend', 'fignum exists', 'figtext', 'figure', 'fill', 'fill_between', 'fill_betweenx', 'findobj', 'flag', 'functools', 'gca', 'gcf', 'gci', 'get', 'get_backend', 'get_cmap', 'get_current_fig_manager',
'get_figlabels',
'get_fignums', 'get plot commands', 'get scale docs', 'get_scale_names', 'getp', 'ginput', 'gray', 'grid', 'hexbin', 'hist', 'hist2d', 'hlines', 'hot', 'hsv', 'importlib', 'imread', 'imsave', 'imshow', 'inferno', 'inspect', 'install_repl_displayhook', 'interactive', 'ioff', 'ion', 'isinteractive', 'jet', 'legend', 'locator_params', 'logging', 'loglog', 'magma', 'magnitude_spectrum', 'margins', 'matplotlib', 'matshow', 'minorticks off', 'minorticks_on', 'mlab', 'new_figure_manager', 'nipy_spectral', 'np', 'pause', 'pcolor', 'pcolormesh', 'phase_spectrum', 'pie', 'pink', 'plasma', 'plot', 'plot_date', 'plotfile', 'plotting', 'polar', 'prism', 'psd', 'pylab_setup', 'quiver', 'quiverkey', 'rc', 'rcParams', 'rcParamsDefault', 'rcParamsOrig', 'rc context', 'rcdefaults', 'rcsetup', 're', 'register_cmap', 'rgrids', 'savefig', 'sca', 'scatter', 'sci', 'semilogx', 'semilogy', 'set cmap', 'set loglevel', 'setp', 'show', 'silent_list', 'specgram', 'spring', 'spy', 'stackplot', 'stem', 'step', 'streamplot', 'style', 'subplot', 'subplot2grid', 'subplot_tool', 'subplots', 'subplots_adjust', 'summer', 'suptitle', 'switch backend', 'sys', 'table', 'text', 'thetagrids', 'tick_params', 'ticklabel format', 'tight_layout', 'time', 'title', 'tricontour', 'tricontourf', 'tripcolor', 'triplot', 'twinx', 'twiny', 'uninstall_repl_displayhook', 'violinplot', 'viridis', 'vlines', 'waitforbuttonpress', 'warn deprecated', 'winter', 'xcorr', 'xkcd', 'xlabel', 'xlim', 'xscale', 'xticks', 'ylabel', 'ylim', 'yscale', 'yticks'] plt.scatter(x,y) Out[20]: <matplotlib.collections.PathCollection at 0xb1fe3d0> 40 30 20 10 from random import sample data =sample(range(1,10000),10) Out[26]: [5767, 2937, 8891, 3256, 9623, 8031, 2790, 6699, 8986, 8877] plt.hist(data,rwidth = 0.8) Out[28]: (array([3., 0., 0., 1., 1., 0., 1., 2., 2.]), array([2790. , 3473.3, 4156.6, 4839.9, 5523.2, 6206.5, 6889.8, 7573.1, 8256.4, 8939.7, 9623.]), <a list of 10 Patch objects>) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 4000 5000 6000 8000 3000 7000 data = [np.random.normal(0, std, 100) for std in range(1, 3)] plt.boxplot(data,vert = True,patch artist =True) plt.show() 4 2 0 -2 -4 1 #advance matplotlib concept fig, ax = plt.subplots(1,2, figsize = (10,5))ax[0].plot(x,y,x,y1)ax[1].plot(x, np.exp(x))ax[1].set_yscale('log') fig.tight_layout() 400 10^{4} 300 10^{3} 200 10^{2} 100 10^{1} 0 fig,ax = plt.subplots(figsize = (10,5))In [46]: ax.plot(x,y1)ax.set_xticks([1,2,3,4,5]) $ax.set_xticklabels([r'a', r'b', r'c', r'd', r'e'])$ ax.set_yticks([0,100,500]) Out[46]: [<matplotlib.axis.YTick at 0xabb7b90>, <matplotlib.axis.YTick at 0xabcdf90>, <matplotlib.axis.YTick at 0xabb4ed0>] 500 100 0 fig,ax = plt.subplots(figsize = (10,5))ax.plot(x,y1)ax.set_xticks([]) Out[38]: [] 400 300 200 100 0 import matplotlib.ticker as ticker fig,ax = plt.subplots() ax.plot(x,y1)ax.set_title('scientific Notation') formatter = ticker.ScalarFormatter(useMathText = True) formatter.set_scientific(True) formatter.set_powerlimits((-1,2)) ax.yaxis.set_major_formatter(formatter) scientific Notation $\times 10^{2}$ 3 2 1 10