Logic and Reasoning

R&N 7-9

Representing Knowledge: Propositional Logic

- Symbols
- True, False
- Implication: =>
- Equivalence: <=>
- And (conjunction): [^]
- Or (disjunction): V
- Negation: ¬
- Sentences = combination of the symbols, truth values, and operators
- Literals = Symbols and negated symbols (A and ¬A are both literals)

- Raining => Wet
- ¬(Busy ^ Sleeping)
- (A ^ B) V ¬C

Knowledge Base (KB)

- Knowledge Base (KB): a collection of sentences.
- Model: an assignment of (True/False) values to each of the symbols. If the knowledge base is built from n symbols, there are 2ⁿ possible models.
- Evaluation: A sentence s is evaluated on a model m by setting each symbol to its corresponding value in m. The result of the evaluation is a value in {True, False}
- KB Evaluation: The result of the KB evaluation is the conjunction of the results of the evaluations of all the sentences in KB

Example KB A B F F KB: F F $A \vee B$ F T $\neg C \lor A$ F T T F T F T T

T

Logical Entailment

T

C

F

T

F

T

F

T

F

T

KB

F

F

T

F

T

T

T

- "KB logically entails S" if all the models that evaluate KB to *True* also evaluate S to True.
- Denoted by: KB |= S
- Note: We do not care about those models that evaluate KB to False. The result of evaluating *S* for these models is irrelevant.

Example KB										
	A	В	C		S					
KB:	F	F	F	F	F					
ND.	F	F	T	F	F	KB ↓ S				
$A \vee B$	F	T	F	T	F	because KB is true but S is				
$\neg C \lor A$	F	T	T	F	F					
S:	T	F	F	T	F	false				
	T	F	T	T	T					
$A \wedge C$	T	T	F	T	F					
	T	T	T	T	T					

Example KB										
	A	B	C	KB	S					
KB:	F	F	F	F	F					
$A \vee B$	F	F	T	F	T	KB = S because S is true for all the assignments for which KB				
	F	T	F	T	T					
$\neg C \lor A$	F	T	T	F	T					
S:	T	F	F	T	T					
	T	F	T	T	T					
$A \vee B \vee C$	T	T	F	T	T	is true				
	T	T	T	T	T					

Inference

- An inference algorithm is a procedure for deriving a sentence from the KB
- KB |-, S means that S is inferred from KB using algorithm i.
- The inference algorithm is sound if it derives only sentences that are entailed by KB.
- The inference algorithm is complete if it can derive any sentence that is entailed by KB.

• Examples of sound inference rules

And-Elimination. In words: if two things must be true, then either of them must be true.

Modus Ponens. In words: if α implies β and α is in the KB, then β must be entailed.

$$\frac{\alpha , \beta}{\alpha \wedge \beta}$$

And-Introduction.

Inference

- Basic problem:
 - We have a KB
 - We have a sentence S (the "query")
 - We want to check KB $\mid = S$
- Informally, "prove" S from KB
- Simplest approach: Model checking = evaluate all possible settings of the symbols
- Sound and complete (if the space of models is finite), but 2ⁿ

Definitions

• Valid: A sentence is valid if it is true for all models.

$$\alpha \vee \neg \alpha$$

- Satisfiable: A sentence is satisfiable if it is true for some models.
- Unsatisfiable: A sentence is unsatisfiable if it is true for no models. $\alpha \land \neg \alpha$
- Proof by contradiction: Given KB and a sentence S, establishing entailment is equivalent to proving that no model exists that satisfies KB and ¬S.

KB = S equivalent to (KB $^ \neg S$) unsatisfiable

Proof as Search: Model Checking

- Enumerate values in the KB's truth table
- By default, exponential in the size of the KB
- All of the CSP techniques described earlier can be applied, in particular:
 - Backtracking search

Local search (hill-climbing, min-conflicts, →
 WalkSAT)

KB: $A \lor B$ $\neg C \lor A$

Proof as Search: Inference Rules

- Proof can be viewed as a search problem →
 The basic search algorithms that we saw before can be used here
 - State: KB
 - Successor: Apply inference to KB to obtain new sentences
 - Solution: Sequence of inferences to goal sentence. If the inference algorithm is sound, then this is quaranteed to establish entailment
- Questions: Is there an inference algorithm that guarantees efficient search? Will the search be complete?

Resolution

- A sentence is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses, each clause being a disjunction of literals
- Examples:

$$\underbrace{(A \lor B)}_{\text{Clause}} \land \underbrace{(C \lor D \lor J)}_{\text{Clause}} \land \underbrace{(E \lor G)}_{\text{Clause}}$$

 Key fact: It is always possible to convert any KB to CNF

CNF Conversion

1.
$$\alpha \Leftrightarrow \beta$$
 $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

2. $\alpha \Rightarrow \beta$ $\neg \alpha \lor \beta$

3. $\neg(\alpha \land \beta)$ $\neg \alpha \lor \neg \beta$

4. $\neg(\alpha \lor \beta)$ $\neg \alpha \land \neg \beta$

1. $(A \land B) \Rightarrow C$
 $\neg(A \land B) \lor C$

3. $(\neg A \lor \neg B) \lor C$
 $(\neg A \lor \neg B \lor C)$

Resolution

$$\frac{A_1 \vee \ldots \vee A_i \vee \ldots \vee A_n \quad \neg A_i}{A_1 \vee \ldots \vee A_{i-1} \vee A_{i+1} \vee \ldots \vee A_n}$$

 In words: If a literal appears in one clause and its negation in the other one, the two clauses can be merged and that literal can be discarded.

Resolution

$$\frac{A_{1} \vee \ldots \vee A_{i} \vee \ldots \vee A_{n} \quad B_{1} \vee \ldots \vee \neg A_{i} \vee \ldots \vee B_{m}}{A_{1} \vee \ldots \vee A_{i-1} \vee A_{i+1} \vee \ldots \vee A_{n} \vee B_{1} \vee \ldots \vee B_{l-1} \vee B_{l+1} \vee \ldots \vee B_{m}}$$

• In words: If a symbol appears in one clause and its negation in the other one, the two clause can be merged and that symbol can be discarded.

Resolution Algorithm (In words)

- Suppose that KB [^] ¬S is in normal form.
- If KB entails S, then there should be a sequence of inferences through resolution that will lead to at least one clause that cannot be satisfied by any model
- Idea: Keep apply resolution to all the pairs of clauses in KB ^ ¬S until:
 - We can't find anymore clauses to resolve \rightarrow KB does not entail S
 - We found an empty clause (which cannot be satisfied by any model) → KB does entail S

Resolution Algorithm

- Input: KB and S
- Output: True if KB entails S, False otherwise
- Initialize: Clauses ← CNF(KB ^ ¬S)
 - -Repeat:
 - For each pair of clauses C_i and C_i in Clauses
 - $-R \leftarrow \text{Resolution}(C_i, C_i)$
 - If R contains the empty clause: Return True
 - $-new \leftarrow new \cup R$
 - If Clauses contains new: Return False
 - Clauses ← Clauses U new

Resolution: Property

- Resolution is sound: Always produces sentences that are entailed by their premise
- Resolution is complete: It is guarantee to establish entailment of the query in finite time
- Completeness based on the key theorem: If a set of clauses is unsatisfiable, then the set of all clauses that can be obtained by resolution contains the empty clause
- So, conversely, if we cannot find the empty clause, the query must be satisfiable

Resolution can be Used to Check Consistency of a KB

- Repeat: Resolve pairs of sentences from the KB until
 - No more sentences can be produced → KB is consistent (satisfiable)
 - A unsatisfiable sentence is produced → KB is inconsistent

Chaining

- "Special" case: The KB contains only two types of sentences:
 - -Symbols
 - -Sentences of the form:

(conjunction) => symbol

$$(A_1 \wedge \cdots \wedge A_n) \Rightarrow B$$

Sentences of this type are "Horn clauses"

Chaining

Basic inference mechanism ("Modus Ponens"):

$$\frac{A_1 \wedge \ldots \wedge A_n \Rightarrow B \quad A_1 \wedge \ldots \wedge A_n}{B}$$

- Basic idea: Given KB and a symbol S
 - Forward chaining: Repeatedly apply the inference rule to KB until we get to S
 - Backward chaining: Start from S and find implications whose conclusions are S

Sentences of this type are "Horn clauses"

Forward Chaining

Counter = number of symbols on left hand-side If Counter = $0 \rightarrow$ Infer symbol on right-hand side, B

Forward Chaining

- Maintain a current list of symbols from KB
- Initialize a counter for each clause in KB = number of symbols on the left-hand side
- Repeat:
 - Get the next symbol P from the queue
 - If P = S
 - We are done, KB $\mid = S$
 - Else
 - Decrease the counter of each clause in which P appear in the left-hand side
 - If the counter is 0: Add the right-hand side of the clause to the list

Forward/Backward Chaining

- Both algorithms are
 - Sound (valid inferences)
 - Complete (every entailed symbol can be derived)
- Both algorithms are linear in the size of the knowledge base
- Forward=data-driven: Start with the data (KB) and draw conclusions (entailed symbol) through logical inferences
- Backward=goal-driven: Start with the goal (entailed symbol) and check backwards if it can be generated by an inference rule

Summary

- Knowledge base (KB) as list of sentences
- Entailment verifies that query sentence is consistent with KB
- Establishing entailment by direct model checking is exponential in the size of the KB, but:
 - If KB is in CNF form (always possible): Resolution is a sound and complete procedure
 - If KB is composed of Horn clauses:
 - Forward and backward checking algorithms are linear, and are sound and complete
- Shown so far using a restricted representation (propositional logic)
- What is the problem with using these tools for reasoning in real-world scenarios?