Assignment 5 module 9

wliu16

2022-11-4

1. Express y1+ and y1-; y2+ and y2-; P using x1, x2, x3

$$y_1^+ - y_1^- = 50 - 6x1 - 4x2 - 5x3;$$

$$y_2^+ - y_2^- = 75 - 8x1 - 7x2 - 5x3;$$

 $P = 20x_1 + 15x_2 + 25x_3;$

2. Express management objective function

$$Max \ Z = 20x_1 + 15x_2 + 25x_3 - 6y_1^+ - 6y_1^- - 3y_2^-$$

3. Formulate and solve LP

```
library(lpSolveAPI)
gp_sl <- read.lp("dewright.lp")
gp_sl</pre>
```

Model name:

##		x1	x2	x3	y1p	y1m	y2m	y2p		
##	Maximize	20	15	25	-6	-6	-3	0		
##	R1	6	4	5	-1	1	0	0	=	50
##	R2	8	7	5	0	0	1	-1	=	75
##	Kind	Std								
##	Туре	Real								
##	Upper	Inf								
##	Lower	0	0	0	0	0	0	0		

solve(gp_sl)

[1] 0

get.objective(gp_sl)

[1] 225

get.variables(gp_sl)

[1] 0 0 15 25 0 0 0

Conclusion

Z =225 mil d, x1=x2=0, x3=15, y1p=25, y1m=y2m=y2p=0. Profit is 25*15=325 mil d. Employment is 7500 which has 2500 employees more than the goal so y1p=25, y1m=0. Earnings next year is 75 millions of dollars which is the same with the goal so y2m=y2p=0.