Exercises to Section 3

Exercises in red are from the list of the typical exercises for the exam. Exercises marked with a star * are for submission to your tutor.

Functions on closed and bounded intervals

- 1. Let $f \in C[a,b]$; assume that $f(x) \neq 0$ for all $x \in [a,b]$. Deduce that 1/f(x) is bounded on [a,b]. Show that without the assumption of continuity of f the conclusion is in general false.
- 2. Use the Intermediate Value Theorem to prove that a solution to the following equations exists on the given interval:
 - (a) $e^{-x} + x^3 = 0$ on [-2, 0]
 - (b) $e^{-x^2} = x$ on [0, 1]
- 3.*Let n be an odd natural number and let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a monic polynomial with real coefficients. Use the intermediate value theorem to prove that P(x) has at least one root on the real line.
- 4. Let n be an <u>even</u> natural number and let $P(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a monic polynomial with real coefficients such that $a_0 < 0$. Use the intermediate value theorem to prove that P(x) has at least two roots on the real line.
- 5. Use the Intermediate Value Theorem to prove that a solution to the following equations exists on the given interval:
 - (a) $x^3 \sqrt{x} = 10 \text{ on } [0, \infty)$
 - (b) $P(x) = \sin x$ on \mathbb{R} , where P is a polynomial of odd degree with real coefficients.
- 6. Let $f:[0,1] \to [0,1]$ be a continuous function. Prove that there exists $c \in [0,1]$ such that f(c) = c (i.e. c is a *fixed point* of f).

Hint: consider the function g(x) = f(x) - x.

Uniform continuity

- 7. Which of the following functions are uniformly continuous on the given interval? Justify your answer.
 - (a) $f(x) = e^x$ on $(-\infty, 0)$; on $(0, \infty)$
 - (b) $f(x) = x^2$ on (0, 1); on $(1, \infty)$
 - (c) $f(x) = \sin \pi x^2$ on \mathbb{R}
 - (d) $f(x) = x + \sin x$ on \mathbb{R}
 - (e)* $f(x) = \log x$ on $(0, \infty)$
 - $(f)^* f(x) = \frac{\sin x}{x} \text{ on } (0,1)$
 - (g) $f(x) = \frac{x}{4-x^2}$ on (-1,1)
 - (h) $f(x) = x \sin x$ on \mathbb{R}

8. Let f be a uniformly continuous function on a bounded (not necessarily closed) set Δ . Prove that f is bounded.

Hint: take $\varepsilon = 1$ and cover Δ by intervals of length $< \delta/2$.

Challenging exercises

- 9. Prove that if f is continuous on $[0,\infty)$ and a (finite) limit $A=\lim_{x\to\infty}f(x)$ exists, then f is uniformly continuous on $[0,\infty)$.
- 10. Construct a uniformly continuous function f on [0,1] such that the derivative of f is unbounded.
- 11. Let f be a uniformly continuous function on an interval (a,b). Prove that the limits $\lim_{x\to a_+} f(x)$ and $\lim_{x\to b_-} f(x)$ exist and thus f extends to a continuous function on [a,b]. Proceed as follows.
 - (a) By taking $\varepsilon = 1$ in the definition of uniform continuity, prove that f is bounded.
 - (b) Let $x_n \to a_+$ as $n \to \infty$. By using the definition of uniform continuity, prove that $\{f(x_n)\}_{n=1}^{\infty}$ is a Cauchy sequence. Deduce that it converges, denote the limit by
 - (c) Let $x'_n \to a_+$, $n \to \infty$, be another sequence. By using the definition of uniform continuity, prove that $\lim_{n\to\infty} f(x'_n) = A$.
 - (d) Conclude that f extends to [a,b) as a continuous function.
 - (e) Consider the point b in the same fashion.
- 12. Let $E \subset \mathbb{R}$ be any set; define the distance from $x \in \mathbb{R}$ to E by

$$d_E(x) = \inf_{z \in E} |x - z|.$$

Prove that d_E is Lipschitz continuous on \mathbb{R} , with the Lipschitz constant 1.

Hint: we have $d_E(x) \leqslant |x-z| \leqslant |x-y| + |y-z|$.

- 13. Let $D \subset \mathbb{C}$ be a set in the complex plane such that the conclusion of the Bolzano-Weierstrass theorem for D holds true; i.e. assume that for any sequence of points $\{x_n\}_{n=1}^{\infty}$ there is a convergent subsequence with a limit in D. (Such sets are called *compact* and can be identified with closed and bounded subsets of the complex plane, but this is another story; you will learn about such sets in the *Metric Spaces and Topology* course.) Let $f:D \to \mathbb{R}$ be a continuous function. By mimicking the proofs of the relevant statements from the lecture notes, prove that:
 - (a) f is bounded on D;
 - (b) f attains its maximal and minimal values on D;
 - (c) f is uniformly continuous on D.