20 | From Subgroups to Coverings

20.1 Definition. Let X be a locally path connected space. A *universal covering* of X is a covering $\tilde{p} \colon \widetilde{X} \to X$ such that \widetilde{X} is a simply connected space.

20.2 Proposition. Let X be a locally path connected space and $\tilde{p} \colon \widetilde{X} \to X$ be a universal covering of X. For any covering $q \colon T \to X$ there exists a map of coverings:

20.3 Theorem. Let X be a locally path connected space and let $x_0 \in X$. If there exists a universal covering $\tilde{p} \colon \widetilde{X} \to X$ then for each subgroup $H \subseteq \pi_1(X, x_0)$ there exists a covering $p_H \colon T_H \to X$ and $\tilde{x}_H \in p_H^{-1}(x_0)$ such that $p_{H*}(\pi_1(T_H, \tilde{x}_H)) = H$.

20.8 Theorem. If X is a space which is connected, locally path connected, and semi-locally simply connected then there exists a universal covering $p \colon \widetilde{X} \to X$.