Laminar Mesh Report — Flow over a Circular Cylinder (D = 0.25 m)

1. Scope and Objectives

This report documents the **laminar-case mesh** used for 2D flow over a circular cylinder of diameter $D = 0.25 \,\mathrm{m}$.

Goals:

- Resolve near-wall gradients and the near wake at low Reynolds numbers with controlled computational
 cost.
- Verify mesh quality metrics (SICN, SIGE, aspect ratio, non-orthogonality, skewness) for solver stability and accuracy.
- $\bullet\,$ Provide a reproducible Gmsh/OpenFOAM workflow suitable for a personal workstation.

2. Problem Definition

• Geometry: 2D crossflow over a cylinder of diameter $D=0.25\,\mathrm{m}$.

• **Domain:** $6 \text{ m} \times 3 \text{ m}$ in the x-y plane, extruded by 0.05 m in z for 2D in OpenFOAM.

• Flow regime: Laminar (Re ≤ 500).

• Reference case: Re = 100, $U_{\infty} = 0.00604 \,\mathrm{m/s}, \, \nu = 1.51 \times 10^{-5} \,\mathrm{m^2/s}.$

2.1 Boundary Conditions

Patch Name	Type	Description
Inlet	patch	Uniform velocity U_{∞}
Outlet	patch	Zero-gradient pressure
Cylinder	wall	No-slip
Top	symmetry	Symmetry plane
Btm	symmetry	Symmetry plane
FrtBck	empty	2D (empty) in the spanwise direction

3. Mesh Generation (Gmsh)

Topology: Fully hexahedral (structured blocks).

Refinement strategy: near-cylinder boundary layer, wake region, and shear layers; coarsening toward far field.

3.1 Domain & Patch Layout

3

D/4

0/15

P/16

4 E/5 Q/17

5

F/6

G/7

Point 2

width=80%} \newpage

Point 1

3.2 Mesh Overview

width=80%}

Metric	Value
Total Cells	49,342
Cell Type	Hexahedra only
Total Points	99,728
Total Faces	197,890
Internal Faces	$98,\!162$
Avg Faces per Cell	6
Cell Zones	1

3

Metric	Value
Boundary Patches	6 (see §2.1)
Spanwise Thickness (Z)	0.05 m (2D extrusion)

\newpage

4. Mesh Quality

• SICN: avg 0.6467, min 0.1023, max $0.7462 \rightarrow$ moderate—good.

• SIGE: avg 0.9879, min 0.7178, max $1.0 \rightarrow$ excellent.

• Max Aspect Ratio: 3.99

• Max Non-Orthogonality: 43.93° (avg 8.77°)

• Max Skewness: 0.46

4.1 SICN Distribution

width=80%}

\newpage

4.2 SIGE Distribution

5. Suitability for Laminar Simulations

- Boundary layer and wake adequately resolved for Re $\approx 100.$
- Stable convergence expected with icoFoam.
- Avoids over-refinement in far field to keep cost low.

6. Reproducibility

- Geometry: cylinder_Laminar.geo (Gmsh)
- Solver: OpenFOAM icoFoam
- Post-processing: ParaView, Python, Gnuplot

7. Conclusion

The mesh satisfies accuracy and stability requirements for low-Re laminar cylinder flows.