Subvarieties in Abelian Variety

Xiaoxiang Zhou

Supervisor: Thomas Krämer

Humboldt-Universität zu Berlin

August 30, 2025

Setting:

- A/\mathbb{C} : an abelian variety of dim n
- $Z \subset A$: a (nondegenerate) subvariety of dim r Z is a curve C in our talk.

Goal

- Construct a family of subvarieties in A.
- Find their dimension and homology class.

iaoxiang Zhou HU berlin

Example (Jacobian case)

When C is a smooth projective curve over $\mathbb C$ of genus $g\geqslant 2$,

$$A := \operatorname{Jac}(C)$$

the Jacobian of
$${\cal C}$$

$$AJ_C: C \hookrightarrow A$$

Example (Prym case)

When $h:C\longrightarrow C'$ is an unramified double cover of smooth projective curves, we can define

$$A := Prym(C/C')$$

the Prym variety of h

$$AP_{C/C'}: C \longrightarrow A$$

Abel-Prym map

We need to assume C is non-hyperelliptic so that $\mathrm{AP}_{C/C'}$ is injective.

Construct new subvarieties

Since A has addition structure, one defines

$$C + C := \{ p + q \mid p, q \in C \} \subseteq A$$
$$2C := \{ 2p \mid p \in C \} \subseteq A$$

and so on.

Remark

Since C is nondegenerate,

$$\underbrace{C+C+\cdots+C}_{\geqslant \ n \ \mathrm{many}} = A.$$

Construct new subvarieties

Question

Can we define a family of subvarieties

$$\{m_1C + \dots + m_dC \subseteq A \mid m_1, \dots, m_k \in \mathbb{Z}\}\$$

more respect to the addition structures?

They should not be A.

In fact, we can construct a family of subvarieties

$$\left\{ Z_{\chi} \subseteq A \mid \chi \in \mathbb{Z}^d \right\}$$

via the conormal variety.

Conic Lagrangian cycle

For a (smooth) subvariety $Z \subset A$, one can define the conormal variety $\Lambda_Z \subset T^*A \cong A \times T_0^*A$ by

$$\Lambda_Z := \{ (p, \xi) \in T^*A \mid \xi|_{T_p^*Z} = 0 \}.$$

Facts

- Λ_Z is a conic Lagrangian cycle in T^*A ;
- We have one-to-one correspondence

$$\{ \text{irr conic Lagrangian cycles in } T^*\!A \} \cong \{ \text{irr subvarieties in } A \}$$

$$\Lambda_Z \qquad \longleftrightarrow \qquad Z$$

• The map $\gamma_Z: \Lambda_Z \subset A \times T_0^*A \longrightarrow T_0^*A$ is a generically finite map, when Z is nondegenerate.

4 D > 4 A > 4 B > 4 B >

Family of subvarieties

Definition

Fix a general point $\xi_0 \in T_0^*A$, and $d := \deg \gamma_Z$,

$$\gamma_Z^{-1}(\xi_0) := \{p_1, \dots, p_d\} \subset Z.$$

Denote $\Lambda_Z^{\mathrm{univ}}$ as the irreducible component of

$$\underbrace{\Lambda_Z \times_{T_0^*A} \cdots \times_{T_0^*A} \Lambda_Z}_{d \text{ many}} \subset A \times \cdots \times A \times T_0^*A$$

containing the point $(p_1, \ldots, p_d, \xi_0)$.

For
$$\chi=(m_1,\ldots,m_d)\in\mathbb{Z}^d$$
, define $\Lambda_{Z_\chi}:=f(\Lambda_Z^{\mathrm{univ}})$, where

$$f: A \times \cdots \times A \times T_0^* A \longrightarrow A \times T_0^* A$$

 $(q_1, \dots, q_d, \xi) \longmapsto (\sum_i m_i q_i, \xi)$

 Z_χ is then the corresponding subvariety of $\Lambda_{Z_\chi}.$

Our work

We determine $\dim Z_{\chi}$ and $[Z_{\chi}] \in H_*(A; \mathbb{Z})$ in special cases.

Example

In the Jacobian case, $d = \deg \gamma_C = 2g - 2$. Assume that C is non-hyperelliptic. For $\chi = (m_1, \dots, m_d) \in \mathbb{Z}^d$, when no g of m_i equal to each other, we get

$$[Z_{\chi}] = \frac{1}{\deg f|_{\Lambda_Z^{\text{univ}}}} \left(\frac{1}{2^{g-1}} \sum_{\sigma \in S_{2g-2}} \prod_{l=1}^{g-1} \left(m_{\sigma(2l-1)} - m_{\sigma(2l)} \right)^2 \right) \cdot [\Theta]$$

Xiaoxiang Zhou

Q & A

Thank you for your listening! Any questions?

loxiang Znou HU Deriii