

Forecast para o radiotelescópio BINGO na perspectiva de Interação entre Energia e Matéria Escura

Aluna: Luiza Olivieri Ponte - luizaolivieriponte@usp.br

Orientador: Elcio Abdalla - eabdalla@if.usp.br

SIICUSP - Instituto de Física da Universidade de São Paulo

Métodos e Procedimentos

• Foram usadas simulações dos dados que serão obtidos pelo BINGO na faixa de redshift entre 0,127 e 0,44 dividida em 30 bins, e dados de Radiação Cósmica de Fundo (CMB) do Planck, para inferir os parâmetros cosmológicos de interesse.

• O código UCLCI permitiu a criação de imagens para análise da restrição desses parâmetros, comparando 3 modelos de descrição do Universo que pressupõem a existência de interação entre energia e matéria escura, apresentados em Costa et al. (2017).

Métodos e Procedimentos

• Equações de continuidade satisfeitas pelos 3 modelos estudados:

$$\dot{\rho_c} + 3H \, \rho_c = a^2 \, Q_c^0 = +aQ$$

$$\dot{\rho_d} + 3H \, (1+\omega) \, \rho_d = a^2 \, Q_d^0 = -aQ$$

Modelos fenomenológicos estáveis de interação entre energia escura e matéria escura

Modelo	Q	ω	λ
I	$3 \lambda_2 H \rho_d$	$-1 < \omega < 0$	$\lambda_2 < 0$
II	$3 \lambda_2 H \rho_d$	$\omega < -1$	$0 < \lambda_2 < -2 \omega \Omega_c$
III	$3 \lambda_1 H \rho_c$	$\omega < -1$	$0 < \lambda_1 < -\omega/4$

$$a = H/\mathbf{H}$$

$$= \omega = P_d/\rho_d$$

$$= Q = 3H(\lambda_1 \rho_c + \lambda_2 \rho_d)$$

Resultados e Conclusões

Média dos parâmetros cosmológicos - BINGO

Parâmetro	$\Lambda \mathrm{CDM}$	Modelo 1	Modelo 2	Modelo 3
$\Omega_b h^2$	0.0224 ± 0.0002	$0.0196^{+0.0024}_{-0.0023}$	$0.0187^{+0.0025}_{-0.0023}$	$0.0185^{+0.0028}_{-0.0024}$
$\Omega_c h^2$	$0.1189^{+0.0014}_{-0.0015}$	$0.1294^{+0.0067}_{-0.0064}$	$0.1510^{+0.0066}_{-0.0060}$	$0.1396^{+0.0065}_{-0.0060}$
$100\theta_s$	1.0420 ± 0.0003	$1.0384^{+0.0030}_{-0.0031}$	1.0359 ± 0.0022	$1.0392^{+0.0033}_{-0.0035}$
$\ln 10^{10} A_s$	3.080 ± 0.029	$2.838^{+0.061}_{-0.059}$	$2.814^{+0.055}_{-0.051}$	$3.07^{+0.26}_{-0.23}$
n_s	0.967 ± 0.005	$0.945^{+0.017}_{-0.018}$	0.946 ± 0.020	$0.997^{+0.24}_{-0.25}$
w_0	-	$-0.953^{+0.075}_{-0.071}$	$-1.58^{+0.09}_{-0.10}$	-1.65 ± 0.16
$\lambda_{(1,2)}$	-	-0.33 ± 0.18	$0.0156^{+0.0050}_{-0.0049}$	$0.0161^{+0.0047}_{-0.0045}$
H_0	67.7 ± 0.7	$56.1^{+1.9}_{-1.8}$	$59.4^{+1.1}_{-1.2}$	$59.1^{+2.6}_{-3.1}$
σ_8	$0.822^{+0.11}_{-0.10}$	$0.883^{+0.045}_{-0.049}$	$0.854^{+0.016}_{-0.015}$	$0.810^{+0.047}_{-0.041}$
Age/Gyr	13.80 ± 0.03	$14.28^{+0.25}_{-0.27}$	$14.37^{+0.24}_{-0.27}$	$14.87^{+0.29}_{-0.35}$
Ω_m	-	$0.471^{+0.029}_{-0.027}$	$0.482^{+0.021}_{-0.020}$	$0.455^{+0.047}_{-0.40}$

Resultados e Conclusões

Teste de compatibilidade de simulações: Modelo Chevallier-Polarski-Linder (CPL)

Resultados e Conclusões

Teste de compatibilidade da simulação com dados experimentais: Modelo CPL

Parâmetro	Teórico	CMB - Planck	BINGO	CMB + BINGO
Ω_b	0.0493	$0.0460^{+0.0036}_{-0.0028}$	$0.0473^{+0.0080}_{-0.0076}$	0.0558 ± 0.0011
Ω_c	0.2645	$0.246^{+0.020}_{-0.016}$	$0.292^{+0.031}_{-0.030}$	$0.302^{+0.007}_{-0.006}$
$ au_r$	0.0544	$0.0534^{+0.0071}_{-0.0070}$	-	$0.0574^{+0.0047}_{-0.0046}$
n_s	0.9649	$0.9650^{+0.0030}_{-0.0029}$	$0.958^{+0.0038}_{-0.0042}$	0.9643 ± 0.0020
h	0.6736	$0.697^{+0.021}_{-0.027}$	$0.740^{+0.048}_{-0.050}$	0.632 ± 0.006
$\ln 10^{10} A_s$	3.044	$3.042^{+0.014}_{-0.013}$	$1.99^{+0.027}_{-0.024}$	3.051 ± 0.009
w_0	-1.0	$-1.07^{+0.09}_{-0.08}$	$-1.31_{-0.01}^{+0.02}$	-0.85 ± 0.03
w_a	0.0	$-0.024_{-0.085}^{+0.087}$	$-0.036^{+0.086}_{-0.084}$	$-0.054^{+0.063}_{-0.065}$
Ω_m	-	$0.292^{+0.024}_{-0.018}$	$0.336^{+0.037}_{-0.034}$	0.358 ± 0.008

Próximos Passos

- Combinar as simulações de dados do BINGO com dados de Oscilações Acústicas de Bárion (BAO) - Sloan Digital Sky Survey (SDSS e SDSS-III) e 6dF Galaxy Survey (6dFGS) e Radiação Cósmica de Fundo (CMB) do Planck para os 3 modelos de interação para estimar os parâmetros de interesse
- Repetir a comparação com o modelo ∧CDM para analisar a viabilidade dos modelos propostos

<u>Agradecimentos</u>

- Professor Elcio Abdalla;
- Mestre Gabriel Amâncio Hoerning e Mestre Pablo Motta;
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP);
- Laboratório Nacional de Computação Científica (LNCC) pela disponibilização do Supercomputador Santos Dumont.

Obrigada!

