Curcumin modulates cell type-specific miRNA networks to induce cytotoxicity in ovarian cancer cells

Febina Ravindran¹, Anisha Mhatre¹, Jinsha Koroth¹, Suchitra Narayan¹, Bibha Choudhary¹

¹ Institute of Bioinformatics and Applied Biotechnology, Electronic city phase 1, Bangalore, India

Curcumin

A2780 cells

0 10 20 30 40 Percent

A2780 miRNAs

PA1 miRNAs

A2780 genes

hsa-miR-214-5p

hsa-miR-449a

hsa-miR-197-5p

hsa-miR-144-5p

hsa-miR-130a-5p

hsa-miR-199a-5p

hsa-miR-10b-5p

Ras signaling pathway

PI3K-Akt signaling pathway

Negative regulation of apoptotic process niRNA regulation of DNA damage response

Cellular response to DNA damage stimuli

Notch signaling pathway

MAPK signaling pathway

Apoptotic execution phase

Cell migration Cell cycle

G2/M DNA damage check point

Abstract

Curcumin, the natural polyphenolic compound extracted from the spice Curcuma longa, has proven anti-cancer activity against various human cancers. It exerts anti-tumorigenic activity by regulating multiple molecular targets and signaling cascades. Upstream, it can regulate non-coding RNAs like miRNAs and is an epigenetic modulator. An mRNA-miRNA integration study was performed to unravel the deregulated miRNAs involved in curcumin-induced cytotoxicity in two ovarian cancer cell lines: PA1 and A2780. The bioinformatic analysis and the experimental validations revealed that curcumin activity is very cell-type specific as distinct miRNAs modulated multiple modes of cellular cytotoxicities like apoptosis, autophagy, DNA damage responses, and impairment of stemness. In both curcumin-treated PA1 and A2780 cells, the expression of several miRNAs demonstrated an inverse correlation with their respective direct targets. The oncomiR/tumor-suppressor miRNA profiles revealed suppression of oncogenic processes by curcumin. Curcumin induced reversal of multiple cisplatin-resistance genes, suggesting a moderate cisplatin-sensitisation effect in both Curcumin treatment also impaired epithelial-tomesenchymal transition (EMT) characteristics like migratory and colony-forming capabilities in these cells. These findings further highlight the molecular mechanism of curcumin action in ovarian cancers.

ter down shy dirty dorty collect down shy dirty dorty

miRNAs

A2780 - upregulated miRNAs

PA1 - downregulated miRNAs

PA1 - upregulated miRNAs

Curcumin Curcumin has proven anti-cancer **Turmeric plant** (Curcuma longa)

- activity against various human cancers Curcumin targets only cancer cells,
- leaving healthy cells unaffected
- It has entered into Phase III clinical monotherapy combination therapies for colon, prostate, and pancreatic cancers
- Curcumin reduced cancer therapy side effects like radiation induced dermatitis and oral mucositis

Curcumin also exhibits antioxidant.

anti-aging, anti-inflammatory, antimicrobial, anti-proliferative, and antiangiogenic properties diverse exerts such

therapeutic properties by interacting

and modulating multiple molecular

Curcumin regulates non-coding RNAs and is an epigenetic modulator

targets, and signalling cascades

recurrence due to its chemoresistant nature.

RESULTS

Curcumin-induced downregulation of survival pathways and activation DNA damage responses

A,C Western blot images and quantifications of signaling cascades in 10 µM curcumin-treated PA1 cells. **B,C** Western blot images and quantifications of DNA damage response protein expressions in 10 µM curcumin-treated PA1 cells.

Bar plot representing reversed expression of oncogenes and TSGs in curcumin-treated PA1 and A2780 cells compared to TCGA ovarian cancer dataset

of validated gene expressions from the Indian ovarian cancer cohort

A Cell viability assay of PA1 and A2780 cells treated with curcumin showing an IC50 of ~10 μM. B miRmapper bar plot representing dominant miRNAs affecting DEG targets in curcumin-treated PA1 and A2780 cells. C Venn diagram representing common and unique genes/miRNAs in curcumin-treated PA1 and A2780 cells. **D** Curcumin induced pathways deduced from miRNA-mRNA integrated analysis and from mRNA DEGs.

mRNA-miRNA integration analysis in

curcumin-treated PA1 and A2780 cells

hsa-miR-217

hsa-miR-152-5p hsa-miR-210-5p

hsa-miR-449a hsa-miR-491-5p PA1 cells
Predicted miRNA Impact on Genes

A Histograms and bar graph quantification of cell cycle assay in 10 µM curcumin-treated PA1 cells. B Dot plots and bar graph quantifications of apoptosis assay by Annexin V-FITC/PI double staining in 10 µM curcumin-treated PA1 cells. C Western blot images and quantifications of apoptotic/autophagic protein expressions in 10 µM curcumin-treated PA1 cells

quantifications of apoptosis assay by Annexin V-FITC/PI double staining in 10 µM curcumin-treated A2780 cells. C Western blot images and quantifications of apoptotic/ autophagic protein expressions in 10 µM curcumin-treated A2780 cells.

Bubble plot representing downregulated cisplatin and antiresistance genes in curcumin-treated PA1 and A2780 cells, indicating a moderate cisplatin-sensitisation effect of curcumin

A Induction of ROS in 10 µM curcumin-treated PA1 and A2780 cells with/without NAC. B Wound healing assay images in curcumin-treated PA1 cells. C Colony formation assay images and quantification of colony area in curcumin-treated PA1 and A2780 cells. **D** Relative expression level of stemness genes in curcumin-treated PA1 and A2780

A Heatmap of upregulated TSGs and downregulated OGs in curcumin-treated PA1 and A2780 cells. B Bubble plot representing the upregulated TSmiRs and downregulated oncomiRs in curcumin-treated PA1 and A2780 cells.

A,B Relative expression levels miRNAs in curcumin-treated PA1 and A2780 cells. C Western blot images and quantifications of DDR1 signaling cascades D Luciferase assay depicting miR-199a-5p regulation of DDR1. E Curated regulatory network of the transcription factor, validated miRNAs, and validated protein targets from curcumin-treated PA1 and A2780 cells. F collagen expression upon curcumin treatment