Clustering is the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait - often according to some defined distance measure.

Clustering is unsupervised classification

• There is no explicit teacher and the system forms clusters or "natural groupings" or structure in the input pattern

• Data WITHOUT classes or labels

$$\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\dots,\mathbf{x}_n\}, \mathbf{x} \in \square^d$$

- Deals with finding a *structure* in a collection of unlabeled data.
- The process of organizing objects into groups whose members are *similar* in some way
- A *cluster* is therefore a collection of objects which are "*similar*" between them and are "*dissimilar*" to the objects belonging to other clusters.

- In this case we easily identify the 4 clusters into which the data can be divided;
- The similarity criterion is *distance*: two or more objects belong to the same cluster if they are "*close*" according to a given distance

DISTANCE MEASURES

- Each clustering problem is based on some kind of "distance" between points.
- Two major classes of distance measure:
 - 1. Euclidean
 - 2. Non-Euclidean

EUCLIDEAN VS. NON-EUCLIDEAN

- A Euclidean space has some number of realvalued dimensions and "dense" points.
 - There is a notion of "average" of two points.
 - A Euclidean distance is based on the locations of points in such a space.
- A Non-Euclidean distance is based on properties of points, but not their "location" in a space.

EUCLIDEAN DISTANCE

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Standardization is necessary, if scales differ.

EUCLIDEAN DISTANCE

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Types of Clustering

Hierarchical algorithms

- These find successive clusters using previously established clusters.
 - 1. Agglomerative ("bottom-up"): Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters.
 - 2. <u>Divisive ("top-down")</u>: Divisive algorithms begin with the whole set and proceed to divide it into successively into smaller clusters.

Types of Clustering

Partitional clustering

- Construct a partition of a data set to produce several clusters At once
- The process is repeated iteratively –
 Termination condition
- Examples
 - K-means clustering
 - Fuzzy c-means clustering

K MEANS CLUSTERING

- 1. Chose the number (K) of clusters and randomly select the centroids of each cluster.
- 2. For each data point:
 - I. Calculate the distance from the data point to each cluster.
 - II. Assign the data point to the closest cluster.
- 3. Recompute the centroid of each cluster.
- 4. Repeat steps 2 and 3 until there is no further change in the assignment of data points (or in the centroids).

THE K-MEANS CLUSTERING METHOD

Example

Assign each objects to most similar center

Update the cluster means

K=2

Arbitrarily choose K object as initial cluster center

Update the cluster means

reassign

- Cluster the following eight points (with (x, y) representing locations) into three clusters
 - A1(2, 10) A2(2, 5) A3(8, 4) A4(5, 8) A5(7, 5) A6(6, 4) A7(1, 2) A8(4, 9)
- Initial cluster centers are:
 - C1 A1(2, 10),
 - C2 A4(5, 8) and
 - C3 A7(1, 2)
- The distance function between two points a=(x1, y1) and b=(x2, y2) is defined as:
 - $\rho(a, b) = |x2 x1| + |y2 y1|$
- Use k-means algorithm to find the three cluster centers after the second iteration

		(2, 10)	(5, 8)	(1, 2)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)				
A2	(2, 5)				
A3	(8, 4)				
A4	(5, 8)				
A5	(7, 5)				
A6	(6, 4)				
A7	(1, 2)				
A8	(4, 9)				

point

• Calculate the distance from the first point (2, 10) to each of the three means, by using the distance function

point

xI, yI	x2, y2	
(2, 10)	(2, 10)	
	,	
ρ (point, med	(n1) = x2 - x1 + y2 - y1	
	= /2 - 2/ + 10 - 10/	
	= 0	

mean1

point mean3

$$x1, y1$$
 $x2, y2$
 $(2, 10)$ $(1, 2)$

$$\rho(point, mean2) = |x2 - x1| + |y2 - y1|$$

$$= |1 - 2| + |2 - 10|$$

$$x1, y1$$
 $x2, y2$
(2, 10) $(5, 8)$
$$\rho(point, mean2) = |x2 - x1| + |y2 - y1|$$
$$= |5 - 2| + |8 - 10|$$

mean2

= 5

		(2, 10)	(5, 8)	(1, 2)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	0	5	9	1
A2	(2, 5)				
A3	(8, 4)				
A4	(5, 8)				
A5	(7, 5)				
A6	(6, 4)				
A7	(1, 2)				
A8	(4, 9)				

Cluster 1	Cluster 2	Cluster 3
(2, 10)		

• Calculate the distance of second point (2, 5) to each of the three means, by using the distance function:

politi	III C aiii	Ponit	11104112
x1, y1	x2, y2	x1, y1	x2, y2
(2, 5)	(2, 10)	(2, 5)	(5, 8)
ρ(point, me	ean1) = x2 - x1 + y	$\frac{2-y1}{\rho(point, model)}$	ean2) = x2 - x1 + y2 - y1
	= 2 - 2 + 1	0 – 5/	= 5 - 2 + 8 - 5
	– 5		=6

point

mean2

$$\rho(point, mean2) = |x2 - x1| + |y2 - y1|$$

= $|1 - 2| + |2 - 5|$
= 4

maan1

		(2, 10)	(5, 8)	(1, 2)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	0	5	9	1
A2	(2, 5)	5	6	4	3
A3	(8, 4)				
A4	(5, 8)				
A5	(7, 5)				
A6	(6, 4)				
A7	(1, 2)				
A8	(4, 9)				

Cluster 1	Cluster 2	Cluster 3
(2, 10)		(2, 5)

• Iteration I

• Analogically, we fill in the rest of the table, and place

		(2, 10)	(5, 8)	(1, 2)	
	Point	Dist Mean 1	Dist Mean 2	Dist Mean 3	Cluster
A1	(2, 10)	0	5	9	1
A2	(2, 5)	5	6	4	3
A3	(8, 4)	12	7	9	2
A4	(5, 8)	5	0	10	2
A5	(7, 5)	10	5	9	2
A6	(6, 4)	10	5	7	2
A7	(1, 2)	9	10	0	3
A8	(4, 9)	3	2	10	2

• Clusters after Iteration I

Cluster 1	Cluster 2	Cluster 3
(2, 10)	(8,4)	(2, 5)
	(5,8)	(1,2)
	(7,5)	
	(6,4)	
	(4,9)	

b) centers of the new clusters:

$$C1 = (2, 10), C2 = ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6, 6), C3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)$$

c)

- Calculate 2nd, 3rd iteration and so on till the new means do not change anymore
- o Result ^{1: {A1, A4, A8}, 2: {A3, A5, A6}, 3: {A2, A7} with centers C1=(3.66, 9), C2=(7, 4.33) and C3=(1.5, 3.5). tmple}

GETTING THE K RIGHT

How to select k?

- Try different **k**, looking at the change in the average distance to centroid as **k** increases
- Average falls rapidly until right **k**, then changes little

EXAMPLE: PICKING K

Too few; many long distances to centroid.

EXAMPLE: PICKING K

Just right; distances rather short.

EXAMPLE: PICKING K

Too many; little improvement in average

distance.

COMMENTS ON K MEAN CLUSTERING

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- <u>Comment:</u> Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Applicable only when *mean* is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes