

WHAT IS CLAIMED IS:

1. A radio frequency (RF) up-convertor with reduced local oscillator leakage, for modulating an input signal $x(t)$, comprising:
a synthesizer for generating mixing signals φ_1 and φ_2 which vary irregularly over time, where $\varphi_1 * \varphi_2$ has significant power at the frequency of a local oscillator signal being emulated, and neither φ_1 nor φ_2 has significant power at the frequency of said local oscillator signal being emulated;
a first mixer coupled to said synthesizer for mixing said input signal $x(t)$ with said mixing signal φ_1 , to generate an output signal $x(t) \varphi_1$; and
a second mixer coupled to said synthesizer and to the output of said first mixer for mixing said signal $x(t) \varphi_1$ with said mixing signal φ_2 to generate an output signal $x(t) \varphi_1 \varphi_2$.

2. The radio frequency (RF) up-convertor of claim 1 wherein said synthesizer further comprises:
a synthesizer for generating mixing signals φ_1 and φ_2 , where $\varphi_1 * \varphi_1 * \varphi_2$ does not have a significant amount of power within the bandwidth of said output signal $x(t) \varphi_1 \varphi_2$.

3. The radio frequency (RF) up-convertor of claim 2 wherein said synthesizer further comprises:
a synthesizer for generating mixing signals φ_1 and φ_2 , where $\varphi_2 * \varphi_2$ does not have a significant amount of power within the bandwidth of said output signal $x(t) \varphi_1 \varphi_2$.

4. The convertor of claim 3, further comprising:
a closed loop error correction circuit.

5. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit further comprises:
an error level measurement circuit for measuring an error in said output signal $x(t) \varphi_1 \varphi_2$; and
a time-varying signal modification circuit for modifying a parameter of one of said mixing signals φ_1 and φ_2 to minimize said error level.

- 17 -

6. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a power measurement.
7. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a voltage measurement.
8. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a current measurement.
9. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter is the phase delay of one of said mixing signals φ_1 and φ_2 .
10. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter is the fall or rise time of one of said mixing signals φ_1 and φ_2 .
11. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter includes both the phase delay and the fall or rise time of one of said mixing signals φ_1 and φ_2 .
12. The radio frequency (RF) up-convertor of claim 3 wherein said synthesizer further comprises:
a synthesizer for generating mixing signals φ_1 and φ_2 , where said mixing signals φ_1 and φ_2 can change with time in order to reduce errors.
13. The radio frequency (RF) up-convertor of claim 3, further comprising:
a DC offset correction circuit.
14. The radio frequency (RF) up-convertor of claim 13, wherein said DC offset correction circuit comprises:
a DC offset generating circuit for generating a DC offset voltage;
a summer for adding said DC offset voltage to an output of one of said mixers; and
a DC error level measurement circuit for modifying the level of said DC offset voltage to minimize error level.

- 18 -

15. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a power measurement circuit.
16. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a voltage measurement circuit.
17. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a current measurement circuit.
18. The radio frequency (RF) up-convertor of claim 1, further comprising:
a filter for removing unwanted signal components.
19. The radio frequency (RF) up-convertor of claim 18, where said filter comprises:
a filter for removing unwanted signal components from said $x(t)$ φ_1 signal.
20. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ_1 and φ_2 are random.
21. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ_1 and φ_2 are pseudo-random.
22. The radio frequency (RF) up-convertor of claim 1, wherein said synthesizer uses a single time base to generate both mixing signals φ_1 and φ_2 .
23. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ_1 and φ_2 are digital waveforms.
24. The radio frequency (RF) up-convertor of claim 1, wherein said mixing signals φ_1 and φ_2 are square waveforms.
25. The radio frequency (RF) up-convertor of claim 3, further comprising:
a local oscillator coupled to said synthesizer for providing a periodic signal having a frequency that is an integral multiple of the frequency of said local oscillator signal being emulated.

26. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit comprises a digital signal processor (DSP).

27. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit comprises analogue components.

28. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit further comprises:
an error level measurement circuit for measuring an error in said output signal $x(t) \phi_1$; and
a time-varying signal modification circuit for modifying a parameter of one of said mixing signals ϕ_1 and ϕ_2 to minimize said error level.

29. The radio frequency (RF) up-convertor of claim 1, where said synthesizer uses different patterns to generate signals ϕ_1 and ϕ_2 .

31. A method of modulating a baseband signal $x(t)$ comprising the steps of:
generating mixing signals ϕ_1 and ϕ_2 which vary irregularly over time, where $\phi_1 * \phi_2$ has significant power at the frequency of a local oscillator signal being emulated, and neither ϕ_1 nor ϕ_2 has significant power at the frequency of said local oscillator signal being emulated;
mixing said input signal $x(t)$ with said mixing signal ϕ_1 ; to generate an output signal $x(t) \phi_1$;
and
mixing said signal $x(t) \phi_1$ with said mixing signal ϕ_2 to generate an output signal $x(t) \phi_1 \phi_2$.

32. An integrated circuit comprising the radio frequency (RF) up-convertor of claim 1.

- 16 -

WHAT IS CLAIMED IS:

1. A radio frequency (RF) up-convertor with reduced local oscillator leakage, for modulating an input signal $x(t)$, comprising:
a synthesizer for generating time-varyingmixing signals φ_1 and φ_2 which vary irregularly over time, where $\varphi_1 * \varphi_2$ has significant power at the frequency of a local oscillator signal being emulated, and neither φ_1 nor φ_2 has significant power at the frequency of said local oscillator signal being emulated;
a first mixer coupled to said synthesizer for mixing said input signal $x(t)$ with said time-varyingmixing signal φ_1 to generate an output signal $x(t) \varphi_1$; and
a second mixer coupled to said synthesizer and to the output of said first mixer for mixing said signal $x(t) \varphi_1$ with said time-varyingmixing signal φ_2 to generate an output signal $x(t) \varphi_1 \varphi_2$.
2. The radio frequency (RF) up-convertor of claim 1 wherein said synthesizer further comprises:
a synthesizer for generating time-varyingmixing signals φ_1 and φ_2 , where $\varphi_1 * \varphi_1 * \varphi_2$ does not have a significant amount of power within the bandwidth of said output signal $x(t) \varphi_1 \varphi_2$.
3. The radio frequency (RF) up-convertor of claim 2 wherein said synthesizer further comprises:
a synthesizer for generating time-varyingmixing signals φ_1 and φ_2 , where $\varphi_2 * \varphi_2$ does not have a significant amount of power within the bandwidth of said output signal $x(t) \varphi_1 \varphi_2$.
4. The convertor of claim 3, further comprising:
a closed loop error correction circuit.
5. The radio frequency (RF) up-convertor of claim 4, wherein said closed loop error correction circuit further comprises:
an error level measurement circuit for measuring an error in said output signal $x(t) \varphi_1$ φ_2 ; and
a time-varying signal modification circuit for modifying a parameter of one of said time-varyingmixing signals φ_1 and φ_2 to minimize said error level.

6. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a power measurement.
7. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a voltage measurement.
8. The radio frequency (RF) up-convertor of claim 5, wherein said error level measurement circuit comprises a current measurement.
9. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter is the phase delay of one of said time-varyingmixing signals φ_1 , and φ_2 .
10. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter is the fall or rise time of one of said time-varyingmixing signals φ_1 , and φ_2 .
11. The radio frequency (RF) up-convertor of claim 5, wherein said modified parameter includes both the phase delay and the fall or rise time of one of said time-varyingmixing signals φ_1 , and φ_2 .
12. The radio frequency (RF) up-convertor of claim 3 wherein said synthesizer further comprises:
a synthesizer for generating time-varyingmixing signals φ_1 and φ_2 , where said time-varyingmixing signals φ_1 , and φ_2 can change with time in order to reduce errors.
13. The radio frequency (RF) up-convertor of claim 3, further comprising:
a DC offset correction circuit.
14. The radio frequency (RF) up-convertor of claim 13, wherein said DC offset correction circuit comprises:
a DC offset generating circuit for generating a DC offset voltage;
a summer for adding said DC offset voltage to an output of one of said mixers; and

a DC error level measurement circuit for modifying the level of said DC offset voltage to minimize error level.

15. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a power measurement circuit.
16. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a voltage measurement circuit.
17. The radio frequency (RF) up-convertor of claim 14, wherein said DC error level measurement circuit comprises a current measurement circuit.
18. The radio frequency (RF) up-convertor of claim 1, further comprising:
a filter for removing unwanted signal components..
19. The radio frequency (RF) up-convertor of claim 18, further comprising where
said filter comprises:
a filter for removing unwanted signal components from said $x(t)$ φ_1 signal.
20. The radio frequency (RF) up-convertor of claim 1, wherein said time-
varyingmixing signals φ_1 and φ_2 are random.
21. The radio frequency (RF) up-convertor of claim 1, wherein said time-
varyingmixing signals φ_1 and φ_2 are pseudo-random.
22. The radio frequency (RF) up-convertor of claim 1, wherein said time-varying
signals are irregularsynthesizer uses a single time base to generate both
mixing signals φ_1 and φ_2 .
23. The radio frequency (RF) up-convertor of claim 1, wherein said time-
varyingmixing signals φ_1 and φ_2 are digital waveforms.
24. The radio frequency (RF) up-convertor of claim 1, wherein said time-
varyingmixing signals φ_1 and φ_2 are square waveforms.

25. The radio frequency (RF) up-converter of claim 3, further comprising:
a local oscillator coupled to said synthesizer for providing a periodic signal having a frequency that is an integral multiple of the frequency of said local oscillator signal being emulated.
26. The radio frequency (RF) up-converter of claim 4, wherein said closed loop error correction circuit comprises a digital signal processor (DSP).
27. The radio frequency (RF) up-converter of claim 4, wherein said closed loop error correction circuit comprises analogue components.
28. The radio frequency (RF) up-converter of claim 4, wherein said closed loop error correction circuit further comprises:
an error level measurement circuit for measuring an error in said output signal $x(t) \phi_1$;
and
a time-varying signal modification circuit for modifying a parameter of one of said time-varying mixing signals ϕ_1 and ϕ_2 to minimize said error level.
29. The radio frequency (RF) up-converter of claim 1, further comprising: a filter for removing unwanted signal components: where said synthesizer uses different patterns to generate signals ϕ_1 and ϕ_2
30. The radio frequency (RF) up-converter of claim 1, further comprising: a filter for removing unwanted signal components from said $x(t) \phi_1$ signal
31. A method of modulating a baseband signal $x(t)$ comprising the steps of:
generating time-varying mixing signals ϕ_1 and ϕ_2 which vary irregularly over time,
where $\phi_1 * \phi_2$ has significant power at the frequency of a local oscillator signal being emulated, and neither ϕ_1 nor ϕ_2 has significant power at the frequency of said local oscillator signal being emulated;
mixing said input signal $x(t)$ with said time-varying mixing signal ϕ_1 ; to generate an output signal $x(t) \phi_1$; and
mixing said signal $x(t) \phi_1$ with said time-varying mixing signal ϕ_2 to generate an output signal $x(t) \phi_1 \phi_2$.

-20-

32. An integrated circuit comprising the radio frequency (RF) up-convertor of any one of claims 1-30 claim 1.
33. ~~A computer readable memory medium, storing computer software code in a hardware development language for fabrication of an integrated circuit comprising the radio frequency (RF) up-convertor of any one of claims 1-30.~~
34. ~~A computer data signal embodied in a carrier wave, said computer data signal comprising computer software code in a hardware development language for fabrication of an integrated circuit comprising the radio frequency (RF) up-convertor of any one of claims 1-30.~~