

Gradient-Based Learning

BOSTON UNIVERSITY
MACHINE INTELLIGENCE
COMMUNITY

Univariate Functions

Univariate function

$$f(x) = x^2$$

Derivative

$$\frac{\delta f}{\delta x} = 2x$$

Multivariate functions

Multivariate function

Function of more than one variable/ **dimension**

$$f(\bar{x}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \dots$$

Multivariate derivative

Shows us slope of a function in all dimensions

$$\nabla f = \begin{bmatrix} \frac{\delta J}{\delta x_0} \\ \frac{\delta f}{\delta x_1} \\ \vdots \\ \frac{\delta f}{\delta x_n} \end{bmatrix}$$

$$f(x_0, x_1) = 4x_0 + 8x_1$$
$$\nabla f = [4, 8]$$

Linear Equations in PYTÖRCH

Generate random matrix

```
>> import torch
>> r = torch.randn(2,3)

-0.2220   1.3369 -1.3627
   0.0863   0.8932 -0.6577
[torch.FloatTensor of size 2x3]
```

$$f(\bar{x}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \dots$$

Cost Functions

- Learning algorithms need to measure how wrong it is in order to improve the model
- Cost function measures error distance between hypothesis and label (correct answer)
- For example

Learning algorithm's hypothesis: [0.1, 0.2, 0.3]

o Correct answers: [0.5, 0.8, 0.9]

o Errors: [0.4, 0.6, 0.6]

• Least Square Error (LSE): $\frac{1}{2}[(0.1-0.5)^2+(0.2-0.8)^2+(0.3-0.9)^2]$

Different Cost Functions

- Common terms: cost/ objective/ loss function
- Tailored for the model
- Common cost functions:

Regression: Least Square Error

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Classification: Negative Log Likelihood

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \qquad J(\theta) = \sum_{i=1}^{m} (y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})))$$

Loss Functions in PYTORCH

Negative Log Likelihood

$$J(\theta) = \sum_{i=1}^{m} (y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})))$$

- >> import torch.nn.functional as F
- >> from torch.autograd import Variable
- >> input = Variable(torch.randn(3, 5))
- >> target = autograd. Variable (torch.LongTensor([1, 0, 4]))
- >> loss = F.nll_loss(input, target)

Variable containing:

2.2282

[torch.FloatTensor of size 1]

Optimizing Cost Function

- Goal is to minimize cost function J
 - \circ $\,\,\,\,$ Compute derivative of J w.r.t. parameters $\, heta$

$$\nabla J = \frac{\delta J}{\delta \theta}$$

Consider this simple cost function

$$f(x) = x^2 \longrightarrow \frac{\delta f}{\delta x} = 2x$$

- Solve derivative for 0
- Convex functions have single global minima
- Most cost landscapes are non-convex contain many local minima (exponentially many in the number of dimensions)

Non-convex Optimization

Gradient Descent

Gradient Descent

- Assumption:
 - Inputs are sampled i.i.d.
- Use gradient to iteratively traverse parameter landscape
- Gradient is direction of steepest descent

Learning rate

- Gradient points in direct of steepest descent, but does not indicate magnitude of step
- Multiply the learning rate to slow down how fast our network tries to compensate for a given piece of data
- Typical learning rates to try:

0.1, 0.01, 0.001, 0.0001

Robbins-Monro Conditions

Condition 1:

$$\sum_{t} \alpha_t = \infty$$

Condition 2:

$$\sum_{t} \alpha_t^2 < \infty$$

Both conditions must be satisfied

Guarantee learning rate converges and therefore gradient descent converges

Convergence ≠ Optimality

Batch Gradient Descent (GD)

$$Loop \{ \\ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Stochastic Gradient Descent

- Calculate the gradient using one data sample at a time
 - Takes many iterations to go over entire data set
 - Each time the full data set is covered is an "epoch"
- Works better when there are many minima in a complex "manifold"
- Makes for as noisier descent, which can be useful for
 - Noise can be reduced with mini-batch
 - Use 8 or 16 samples at a time
 - Noise can be useful for "saddle points"

Stochastic Gradient Descent (SGD)

```
Size of dataset
Loop\{
     for i=1 to m {
```


Different types of Gradient Descent

The concept of gradient descent can be actualized in many different ways. Two popular, are:

- A third variety is mini-batch gradient descent
 - Still simple, though more abstract in why it works
 - Between batch and gradient, select batches at a time (ex. 16 out of 100,000)

Mini-Batch SGD

```
Number of
Loop\{ \ for \ i=1 \ to \ m \ \}
                                                 mini-batches
                        \theta_j := \theta_j - \alpha \frac{1}{|b_i|} \sum_{x \in b_i} \frac{\partial}{\partial \theta_j} J(\theta_j, x)
                                                      ith mini-batch
```


Saddle points

Can be a big issue for gradient descent.

If you are right on the saddle, the gradient does not always help you get off

- Can exist above one dimension
- Many solutions to this problem exist
 - A simple one is by just adding noise, you can force the algorithm to randomly "catch on" to the downward slope

Backpropagation (BP)

- Method for calculating the error contribution of a single computation unit
 - We can use this information to update weights (parameters), and get closer to a model with less loss
- Neurons (computational units) that contributed more to the error will be changed more by BP
 - Scaled by the learning rate, how much should the weight be adjusted

Derivatives of Computation Graph

Local Gradient

Gradient Descent + Backpropagation

- Now, we can adjust a weight based off our gradient descent calculations!
- θ_j can be updated as its old weight minus the change in cost function in respect to itself

SGD + BP with PYT & RCH

- Define optimizer >> optimizer = torch.optim.SGD(model.parameters(), lr=0.1) >> optimizer.zero grad() >> loss = F.nll loss(input, target) >> loss.backward()
- >> optimizer.step()

- **Clear local gradients**
- Compute loss
- Backpropagate error
- Apply gradients to parameters

Anything else besides Gradient Descent?

- Yes, but GD is fairly easy and effective
- Another cool option is using evolution models, or "genetic algorithms"
 - Make random mutations to your model to produce many new generation models
 - Test each one's' "fitness"
 - Kill off the bad performers, evolve the good ones (feature selection)

References & Further Reading

- [1] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).
- [2] Sun, Xu, et al. "meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting." arXiv preprint arXiv:1706.06197 (2017).
- [3] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
- [4] Zeiler, Matthew D. "ADADELTA: an adaptive learning rate method." arXiv preprint arXiv:1212.5701 (2012).
- [5] Du, Simon S., et al. "Gradient Descent Can Take Exponential Time to Escape Saddle Points." arXiv preprint arXiv:1705.10412 (2017).
- [6] Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information processing systems. 2012.
- [7] Bottou, Léon. "Curiously fast convergence of some stochastic gradient descent algorithms." Proceedings of the symposium on learning and data science, Paris. 2009.

Shoutout to our sponsors

Boston University Software Application and Innovation Lab

Boston University SPARK!

Upcoming Events

MIC Paper signup: https://goo.gl/iAm6TL
BUMIC Projects signup: https://goo.gl/GmP9oK

MIT MIC reading group:

Paper: Learning from Simulated and Unsupervised Images through Adversarial Training

Location: MIT 56-154 (building 56, room 154)

Date: 9.21.17 Time: 5 PM

BU MIC reading group:

Paper: SimRank Computation on Uncertain Graphs

Location: BU Hariri Seminar Room

Date: 9.22.17 Time: 7 PM

Next workshop:

Location: BU Hariri Seminar Room

Date: 9.26.17 Time: 7 PM

