

STUDIENARBEIT

3D SLAM-Based Navigation of an Autonomous Mobile Robot Using Kinect Camera and ROS

Name: Manoj Venkatarao Sanagapalli

Matr.-Nr.: 1383616

Erstprüfer: Prof. Dr.-Ing. Dr. h. c. Hubert Roth

Zweitprüfer: M.Sc. Omar Gamal

Agenda

- Motivation
- System Architecture
- System Implementation
- Results
- Conclusion
- Future Work

Motivation

Previous work: SLAM- based navigation of an Autonomous mobile robot using 2D Lidar and ROS by Harsha

Drawbacks:

- Only 2D mapping.
- Less accuracy of Robot's Pose.

Tom 3D with LIDAR

Objective

TOM3D - Tele Operated Machine is a differential drive mobile robot developed by the chair of automatic control and engineering, University of Siegen

"The main objective of this project is to enhance Tele Operated Machine Robot (TOM3D-Robot) navigation system to autonomously navigate using visual SLAM by a Kinect RGB-D Camera and ROS framework. "

SLAM

Simultaneous Localization and Mapping

Schematic model of SLAM [4]

Localization

Schematic of localization [5]

Visual SLAM

Visual SLAM (vSLAM) uses sensor data from a vision based RGB-D sensor and performs Mapping and Localization tasks.

Schematic of vSLAM [6]

ROS

The Robot Operating System (ROS) is a framework used for robot software development.

- Nodes.
- Topics.
- Messages.

ROS

The Robot Operating System (ROS) is a framework used for robot software development.

Packages used in Project

System Architecture

System Architecture

Kinect V2 camera

Kinect is an RGB-D camera developed by PrimeSense - an expert company in high-performance 3D machine vision technologies and licensed by Microsoft.

- RGB Data and
- Depth Data

Camera Integration

Kinect Camera is mounted on the TOM3D robot. Camera is programmatically integrated through Tf Frames.

Kinect-ROS Interface

Kinect V2 RGB-D camera

- *libfreenect2* Kinect driver.
- IAI Kinect 2 ROS wrapper.

Rtabmap

Rtabmap is the package used for SLAM in this project

Rtabmap node [7]

System Implementation

ROS Navigation package

Navigation system setup

- Global planner
 - Navfn global planner.
 - Path depends on cost value of grid.
- Local planner
 - Eband local planner
- Local costmap parameters
 - Footprint
 - Inflation layer
 - Costmap resolution
 - Obstacle layer

Software Architecture

Results

Results

- Areas Mapped with the Tom3D robot using Kinect V2 camera.
- Localization accuracy.
 - Case 1: Started at (0,0) and transverse to different (x,y).
 - Case 2: Robot is moved to random locations in the lab.
- Autonomous navigation performance of TOM3D robot.

Map generation

Grid Map

Localization accuracy Case1

Localization accuracy Case2

Dynamic obstacle test

Obstacles are places dynamically while the robot is moving autonomously.

Dynamic obstacles are placed

Costmap not updated

Conclusion

- Developed SLAM based autonomous navigation system.
- Tested in different environments.
- Used system implementation is unable to detect dynamic obstacles.

Future work

- Sensor fusion of 2D laser scan data with 3D point cloud data.
- Fusion of visual odometry with IMU and wheel encoder odometry.

References

- [1] J. J. L. a. H. F. Durrant-Whyte, "Mobile Robot Localization by Tracking Geometric Beacons," *IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, Bd. 7, Nr. 3, pp. 376-382, 1991.*
- [2] C. Stachniss, "SLAM," [Online]. Available: http://ais.informatik.unifreiburg.de/teaching/ws12/mapping/pdf/slam10-fastslam-4.pdf.
- [3] W. D. Rencken, "Autonomous sonar navigation in indoor, unknown and unstructured environments," *Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94), Munich, Germany, 1994, Bd. 1*, pp. 431-438.
- [4] C. Stachniss, "SLAM," [Online]. Available: http://ais.informatik.unifreiburg.de/teaching/ws12/mapping/pdf/slam10-fastslam-4.pdf.
- [5] A. M. B. Pradeep, "Construction of a 3D Map of Indoor Environment," 6th International Conference on Smart Computing and Communications, ICSCC 2017, 2017.

References

- [6] R. M. J. M. M. &. T. J. D. (. Mur-Artal, "ORB-SLAM: a versatile and accurate monocular SLAM system," *IEEE transactions on robotics*, 31(5), pp. 1147-1163.
- [7] M. a. F. M. Labbé, "RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation," *Journal of Field Robotics 36.2*, pp. 416-446, 2019.

THANK YOU