DAY 6

In previous section we have discussed about irrational numbers, now we will discuss decimal representation of rational numbers without actual division.

Decimal Representation of Rational Numbers:

Every rational number can be expressed in the form of terminating and recurring decimal.

Terminating Decimals:- The rational numbers for which the long division terminate after a finite number of steps are called Terminating decimals. e.g. $\frac{5}{16} = 0.3125$

Recurring Decimals:- The rational numbers for which the long division does not terminate after a number of steps are called recurring decimals. e.g. $\frac{10}{3}$ = 3.333.....

Remarks

If $\frac{p}{a}$ is a rational number in its **standard (simplest) form**, then it will have terminating decimal when the denominator must be in form of 10,100,1000.....so on. So prime factors of denominator(q) are only 2's & 5's e.g. $\frac{1}{8}$, $\frac{2}{25}$, $\frac{13}{20}$ all are terminating decimals because their denominator have only prime factors 2 or 5 or both, thus we can say that where denominator can be expressed in the form of $2^m \times 5^n$ then it is terminating decimal.

- 1. State whether following rational numbers will have a terminating decimals expansion or non-terminating repeating decimal expansion without using long division: i) $\frac{17}{8}$ ii) $\frac{33}{60}$ iii) $\frac{11}{28}$ iv) $\frac{151}{27}$ v) $\frac{111}{120}$
 - i) $\frac{17}{8}$

Sol:- i) $\frac{17}{8}$ here Denominator = 8 & 17, 8 are co-prime

Now $8 = 2^3$ So Prime factors of denominator is only 2's

- Rational Number $\frac{17}{8}$ has terminating decimal representation

ii) $\frac{33}{60} = \frac{11}{20}$ now Denominator=30 & 11, 30 are co-prime Now $20 = 2^2 \times 5$ Here prime factors of denominator is only in 2's and 5's So it is terminating decimal.

iii) $\frac{11}{28}$ here Denominator = 28; 11 & 28 are co-prime Now $28 = 2^2 \times 7$ Prime factors of denominator contains a factor other than 2's & 5's It has non-terminating decimal representation.

- iv) $\frac{151}{27}$ now Denominator=27 & 151, 27 are co-prime

Now $27 = 3^3$ Here prime factors of denominator is only in 2's and 5's So it is non-terminating decimal.

v)
$$\frac{111}{120} = \frac{37}{40}$$
 now Denominator=40 & 37, 40 are co-prime

Now $40 = 2^3 \times 5$ Here prime factors of denominator is only in 2's and 5's So it is terminating decimal.

2. Write the terminating decimal expansion of the following:

i)
$$\frac{17}{8}$$

ii)
$$\frac{33}{60}$$

iii)
$$\frac{11}{50}$$

i)
$$\frac{17}{8}$$
 ii) $\frac{33}{60}$ iii) $\frac{11}{50}$
Sol:- i) $\frac{17}{8} = \frac{17}{2^3} = \frac{17}{2^3} \times \frac{5^3}{5^3} = \frac{2125}{10^3} = 2.125$

{For decimal expansion, there is need of power of 10 in denominator. Here we've 2^3 so for power of 10, we need to multiply it with 5^3 }

ii)
$$\frac{33}{60} = \frac{11}{20} = \frac{11}{2^2 \times 5} = \frac{11}{2^2 \times 5} \times \frac{5}{5} = \frac{55}{10^2} = 0.55$$

{For decimal expansion, there is need of power of 10 in denominator. Here we've $2^2 \times 5$ so for power of 10, we need to reside the second to reside the se so for power of 10, we need to multiply it with 5}

iii)
$$\frac{11}{50} = \frac{11}{2 \times 5^2} = \frac{11}{2 \times 5^2} \times \frac{2}{2} = \frac{222}{10^2} = 2.22$$

{For decimal expansion, there is need of power of 10 in denominator. Here we've so for power of 10, we need to multiply it with 5}

Exercise

1. EXERCISE 1.4