Organic Chemistry Concepts LOKT.09.051

Organic reactions

What can we observe?

Change of molecular structure!

In some cases visual effects can be observed:

- Flashes
- Gase release, smell etc
- Precipitation

But this is not essential

What is important to know?

- Which bonds are breaking and which bonds are formed?
- In which order they are breaking and forming?
- What is the energy balance of this process?
- How fast these changes take place?

Direction of chemical changes

$$-\frac{1}{c} - \frac{0}{c} - \frac{K}{c} - \frac{1}{c} - \frac{1}{c}$$
Ketone
Enole

Direction of chemical changes

$$-\frac{1}{c} - \frac{0}{c} - \frac{\kappa}{c} \qquad c = c$$

C-H 96 kcal/mol C-C 83 kcal/mol

C=O 173 kcal/mol

352 kcal/mol

C=C 146 kcal/mol

C-O 85 kcal/mol

O-H 110 kcal/mol

341 kcal/mol

$$-\frac{1}{c} - \frac{1}{c} - \frac{1}{c} - \frac{1}{c} = \frac{1}{c}$$

 ΔH = -352 kcal/mol ΔH = -341 kcal/mol

$$-\frac{1}{c} - \frac{1}{c} - \frac{1$$

$$\Delta H = -352 \text{ kcal/mol}$$

 $\Delta H = -352 \text{ kcal/mol}$ $\Delta H = -341 \text{ kcal/mol}$

Thermodynamic aspect: reaction energy

Kinetic aspect: activation energy

 $A \longrightarrow B$

Reaction types

Substitution

$$A-B + C-D \rightarrow A-C + B-D$$

Addition

$$A + B \rightarrow A-B$$

Elimination

$$A-B \rightarrow A+B$$

Rearrangement

$$A \rightarrow B$$

Transition state (TS)

Reaction:

$$A \rightarrow B$$

Hypothesis: there is a transition state

between A and B

$$A \stackrel{K}{\hookrightarrow} A^{\neq} \rightarrow B$$

$$k = 6 \ 10^{12} \ 1/s$$

$$A \stackrel{k}{\rightarrow} B$$
$$v = k [A]$$

$$K^{\neq}$$
 K^{\neq} A^{\neq} A^{\neq

$$\begin{array}{ccccc} & K^{\neq} & k^{\neq} \\ A & \rightleftharpoons & A^{\neq} & \rightarrow & B \end{array}$$

$$k = k^{1} K^{1}$$

$$\ln \mathbf{k} = \ln \mathbf{k}^{1} + \ln \mathbf{K}^{1}$$

$$\Delta G^{\neq} = RT \ln k^{\neq} - RT \ln k = const - RT \ln k$$

Reaction Coordinate

http://etc.usf.edu/clipart/30600/30634/mountain_30634.htm

Elementary reactions

Molecularity

$A \rightarrow Products$	Mono	v = k[A]
--------------------------	------	----------

$$2A \rightarrow Products$$
 Bi $v = k[A]^2$

$$A + B \rightarrow Products$$
 Bi $v = k[A][B]$

$$2A + B \rightarrow Products$$
 Ter $v = k[A]^2[B]$

Reaction kinetic mechanism

2A + B
$$\rightarrow$$
 E + F

Steps

A + B \rightarrow C

C + A \rightarrow D

D \rightarrow E + F

A + B + \not A + \not B \rightarrow E + F

2A + B \rightarrow E + F

C and D are intermediates

Reaction Coordinate

The key questions in organic chemistry

Intermediates and their structure
Transition states and their structure
Rate of elementary step (fast vs slow)

Radical formation

Molecular mechanisms

Bond heterolysis

https://commons.wikimedia.org/w/index.php?curid=11940651

Radical stability increases in the order methyl < primary < secondary < tertiary

Methyl radical Least stable Primary radical

Secondary radical

Tertiary radical Most stable

Hyperconjugation

$$H H H H H H H H$$
 $| H H H H H$
 $| H H H H H$

Hyperconjugation

Redistribution of electrons stabilizes molecules

HOMEWORK

CHAPTER 5

ROOS, G, ROOS, C, ORGANIC CHEMISTRY CONCEPTS, ACADEMIC PRESS 2015,