Herbst 13 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Welche der folgenden Aussagen sind richtig, welche falsch? Begründen Sie Ihre Antwort.

- a) Sei $f \in C^2(\mathbb{R}^2; \mathbb{R})$, und in $x_0 \in \mathbb{R}^2$ gelte $\nabla f(x_0) = 0$ und $D^2 f(x_0) = 0$. Dann hat f kein lokales Extremum in x_0 .
- b) Betrachten Sie das Vektorfeld $F(x) = (e^{x_1}, e^{x_2}, e^{x_3})^T$ auf \mathbb{R}^3 . Das Kurvenintegral über F ist wegunabhängig.
- c) Die holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ sei beschränkt längs der Geraden $\{z \in \mathbb{C} \mid z = t(1+i), t \in \mathbb{R}\}$. Dann ist f konstant.

Lösungsvorschlag:

- a) Diese Aussage ist falsch. Für jedes $c \in \mathbb{R}$ und jedes $x_0 \in \mathbb{R}^2$ erfüllt die konstante Funktion $f \equiv c \nabla f(x_0) = 0$ und $D^2 f(x_0) = 0$ und x_0 ist sowohl ein lokales als auch ein globales Minimum und Maximum. (Für ein striktes Optimum kann man auch $f(x,y) = \pm (x^4 + y^4)$ betrachten.)
- b) Diese Aussage ist wahr. Wegen $\nabla F = \nabla F$ ist F ein Gradientenfeld. Kurvenintegrale über Gradientenfelder hängen nur von den Endpunkten, nicht aber vom Weg ab.
- c) Diese Aussage ist falsch. Die Funktion $f: \mathbb{C} \to \mathbb{C}, f(z) = \cos(\frac{z}{1+i})$ ist holomorph und nicht konstant (wegen $f(0) = 1 \neq \cos 1 = f(1+i)$); für $z = t(1+i), t \in \mathbb{R}$ gilt aber $|f(z)| = |\cos(t)| \leq 1$, weshalb f auf der Geraden beschränkt ist.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$