Contrôle

Aucun document autorisé

Durée: 1 heure

Le barème est donné à titre indicatif

Question 1 (2 pts)

Dessiner l'arborescence syntaxique de la formule suivante :

$$\forall x ((\exists y p(x, y) \rightarrow q(x)) \land \exists z r(x, z))$$

Question 2 (8 pts)

Soit le langage du premier ordre $L=(\{a\}, \{p\})$ où a est une constante et p est un prédicat binaire.

On considère trois interprétations de ce langage : I1, I2 et I3.

Ces interprétations ont toutes le même domaine : $D1 = D2 = D3 = \{d1,d2\}$

La constante a est interprétée dans tous les cas par d1: I1(a) = I2(a) = I3(a) = d1

Seule l'interprétation de *p* diffère d'une interprétation à l'autre :

I1(p) = {(d2,d1), (d2,d2)}
I2(p) = {(d1,d1), (d2,d1), (d2,d2)}
I3(p) =
$$\emptyset$$

a- Donnez la valeur des formules suivantes, pour chacune des interprétations I1, I2 et I3 :

$$A = \exists x \ p(x,x) \land \forall y \neg p(a,y)$$

$$B = \forall x \exists y p(x,y)$$

$$C = \forall x \exists y p(x,y) \rightarrow \exists y \forall x p(x,y)$$

Présentez vos réponses dans un tableau ayant la forme ci-dessous.

On ne vous demande pas de justifier vos réponses.

Valeur de la formule	I1	12	13
pour l'interprétation			
Α			
В			
С			

b- La formule C est-elle valide ? Prouvez votre réponse.

Question 3 (6 pts)

a- Modélisez les trois phrases ci-dessous en logique du premier ordre en utilisant le langage ayant pour constante m et pour prédicats S (unaire) et A (binaire), avec la sémantique intuitive suivante :

S(x): x est une plaisanterie stupide A(x,y): x aime la plaisanterie y

m: « moi »

- 1) Personne n'aime les plaisanteries stupides
- 2) Je n'aime pas toutes les plaisanteries
- 3) Il existe des plaisanteries stupides
- c- A-t-on F1, F2 |= F3 (où F1, F2 et F3 sont les formules correspondant aux phrases 1, 2 et 3)? Prouvez votre réponse en vous appuyant sur la notion de modèle.

Question 4 (4 pts)

La formule suivante est-elle insatisfiable, contingente ou valide?

$$\forall x \exists y p(x, y) \rightarrow \neg (\forall y \exists x p(y, x))$$

Justifiez votre réponse.