Задача 1 (*)

Доказать, что множество вектор-столбцов размера $n \times 1$, у которых сумма всех элементов равна нулю, образует линейное подпространство пространства R_n , найти его размерность и базис.

Ответ:

- 1. Данное множество вектор-столбцов является линейным подпространством линейного пространства R_n , т.к. любая линейная комбинация вектор-столбцов из данного множества образует вектор-столбец, принадлежащий этому же множеству.
- 2. Размерность линейного подпространства равна n-1.
- 3. Координаты любого вектор-столбца, принадлежащего данному линейному подпространству, удовлетворяют однородной системе линейных уравнений $\xi_1 + \xi_2 + \xi_3 + ... + \xi_n = 0$.

В качестве базисных вектор-столбцов линейного подпространства можно взять, например, столбцы фундаментальной матрицы

$$F = \begin{bmatrix} -1 & -1 & \dots & -1 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Задача 2 (*)

Даны векторы $x_1 = \{1, 2, 3\}, x_2 = \{2, 2, -1\}$ и $x_3 = \{3, 4, 2\}.$

Требуется:

- 1. Найти размерность и базис линейной оболочки векторов.
- 2. Записать однородную систему линейных уравнений, которой удовлетворяют координаты векторов, принадлежащих этой линейной оболочке.

Ответ:

- 1. $\dim(L(x_1, x_2, x_3)) = 2$; в качестве базисных можно взять, например, векторы x_1 и x_2 .
- 2. Система линейных уравнений, описывающая линейную оболочку, имеет вид $8\xi_1 7\xi_2 + 2\xi_3 = 0$.

Задача 3 (*)

Даны две совокупности векторов $A = \{a_1, a_2, a_3\}$ и $B = \{b_1, b_2, b_3\}$, где $a_1 = \{-2, -5, -5\}$, $a_2 = \{-1, -6, 1\}$, $a_3 = \{1, -1, 6\}$, $b_1 = \{-1, 0, -1\}$, $b_2 = \{-1, -1, -2\}$ и $b_3 = \{1, -1, 0\}$.

Найти размерность, базис и записать однородную систему уравнений для следующих линейных подпространств: L(A), L(B), L(A) + L(B) и $L(A) \cap L(B)$.

Ответ:

- 1. $\dim(L(A)) = 2$, базис $\{a_2, a_3\}$, система состоит из одного уравнения $5\xi_1 \xi_2 \xi_3 = 0$.
- 2. $\dim(L(B)) = 2$, базис $\{b_1, b_2\}$, система состоит из одного уравнения $\xi_1 + \xi_2 \xi_3 = 0$.
- 3. $\dim(L(A)+L(B))=3$, базис $\{a_3,b_2,b_3\}$, системы нет (т.е. $\xi_1,\ \xi_2,\ \xi_3$ произвольные).

4.
$$\dim(L(A) \cap L(B)) = 1$$
, базис – вектор $\{1, 2, 3\}$, системы нег (1.e. $\xi_1, \xi_2, \xi_3 = 0$) $\{\xi_1 + \xi_2 - \xi_3 = 0\}$

Задача 4 (*)

Доказать, что всякая квадратная матрица A размера 2×2 может быть единственным образом представлена в виде суммы симметричной и кососимметричной матриц, т.е. $A = A_1 + A_2$, где $A_1^{\rm T} = A_1$, и $A_2^{\rm T} = -A_2$.

11.03.2018 20:20:51 стр. 1 из 1