NSUCRYPTO23 Problems

December 26, 2023

Problem 11.

Answer: $C' = (x_1 \lor x_9) \land (\neg x_1 \lor \neg x_9) \land (x_2 \lor \neg x_{10}) \land (\neg x_2 \lor x_{10})$ We denote $C(x_1, x_2, x_3, \dots, x_{10}) = (x_1 \lor x_2 \lor x_9) \land (\neg x_1 \lor \neg x_2 \neg x_9) \land (x_1 \lor \neg x_2 \lor x_9) \land (\neg x_1 \lor x_2 \lor \neg x_9) \land (x_1 \lor x_2 \lor x_3) \land (\neg x_9 \lor \neg x_{10} \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_4) \land (\neg x_9 \lor x_{10} \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor x_5) \land (x_9 \lor \neg x_{10} \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_6) \land (\neg x_6 \lor x_9 \lor x_{10}) \text{ (or } C) \text{ to be the original CNF and } C' \text{ to be the new CNF. According to the problem, by equivalent it is meant that for each pair of plaintext, the same ciphertext is derived from the equation,$ **thus in the new CNF C' we may only need to care and use the plaintext and ciphertext variables.**Now we need to find a new CNF C' that**only depends on** $<math>x_1, x_2, x_9, x_{10}$ satisfying the following properties:

- 1. For each pair $(x_1, x_2, x_3, \dots, x_8, x_9, x_{10})$ satisfying C=True, then (x_1, x_2, x_9, x_{10}) also satisfies C'=True.
- 2. For each pair (x_1, x_2, x_9, x_{10}) satisfying C'=True, then there exists (x_3, x_4, \ldots, x_8) such that $(x_1, x_2, x_3, \ldots, x_8, x_9, x_{10})$ satisfies C=True.

In other words, let

$$S = \{(x_1, x_2, x_9, x_{10}) \in \mathbb{Z}_2^4 \mid \exists (x_3, x_4, \dots, x_8) \in \mathbb{Z}_2^6 \text{ s.t C} = True \}$$

Then we need to find a new CNF C' such that C'=True if and only if $(x_1, x_2, x_9, x_{10}) \in \mathcal{S}$. Let $A = (x_1 \lor x_2 \lor x_9) \land (\neg x_1 \lor \neg x_2 \neg x_9) \land (x_1 \lor \neg x_2 \lor x_9) \land (\neg x_1 \lor x_2 \lor \neg x_9)$, we see that **if** C=True, **then it holds that** A=True **as well**, thus we are interested in determining (x_1, x_2, x_9) so that A=True. We see that, for each pair (x_1, x_2) , we can uniquely determine x_9 so that A=True as follows:

- If $(x_1, x_2) = (0, 0)$, then from $(x_1 \lor x_2 \lor x_9)$ we have $x_9 = 1$.
- If $(x_1, x_2) = (0, 1)$, then from $(x_1 \vee \neg x_2 \vee x_9)$ we have $x_9 = 1$.
- If $(x_1, x_2) = (1, 0)$, then from $(\neg x_1 \lor x_2 \lor \neg x_9)$ we have $x_9 = 0$.
- If $(x_1, x_2) = (1, 1)$, then from $(\neg x_1 \lor \neg x_2 \neg x_9)$ we have $x_9 = 0$.

From above, it holds that A=True if and only if $x_9 = \neg x_1$. From this, for C=True, we must have $x_9 = \neg x_1$, but it is not sufficient. Next, for each (x_1, x_2) , given $x_9 = \neg x_1$, we need to determine x_{10} so that C=True for some (x_3, x_4, \ldots, x_8) . By trying all possible cases of (x_1, x_2) , we see that x_{10} can be determined as follows:

- If $(x_1, x_2) = (0, 0)$, then from $(x_1 \lor x_2 \lor x_3) \land (\neg x_9 \lor \neg x_{10} \lor \neg x_3)$ we have $x_9 = 1, x_3 = 1$ and $x_{10} = 0$.
- If $(x_1, x_2) = (0, 1)$, then from $(x_1 \vee \neg x_2 \vee x_4) \wedge (\neg x_9 \vee x_{10} \vee \neg x_4)$ we have $x_9 = 1$, $x_4 = 1$ and $x_{10} = 1$.
- If $(x_1, x_2) = (1, 0)$, then from $(\neg x_1 \lor x_2 \lor x_5) \land (x_9 \lor \neg x_{10} \lor \neg x_5)$ we have $x_9 = 0, x_5 = 1$ and $x_{10} = 0$.
- If $(x_1, x_2) = (1, 1)$, then from $(\neg x_1 \lor \neg x_2 \lor x_6) \land (\neg x_6 \lor x_9 \lor x_{10})$ we have $x_9 = 0$, $x_6 = 1$ and $x_{10} = 1$.

From above, we can actually determine x_{10} uniquely just from x_1 and x_2 . More specifically, we can easily check that $x_{10} = x_2$. Thus, from the equation C=True, the ciphertext (x_9, x_{10}) can be derived from the plaintext (x_1, x_2) with the relation $x_9 = \neg x_1$ and $x_{10} = x_2$. For the other direction, for any (x_1, x_2, x_9, x_{10}) satisfying $x_9 = \neg x_1$ and $x_{10} = x_2$, we can choose (x_3, x_4, \ldots, x_8) so that C=True as follows

1. If
$$(x_1, x_2, x_9, x_{10}) = (0, 0, 1, 0)$$
, we choose $x_3 = 1, x_4 = 0, x_7 = 0, x_8 = 0$

2. If
$$(x_1, x_2, x_9, x_{10}) = (0, 1, 1, 1)$$
, we choose $x_3 = 0, x_4 = 1, x_7 = 0, x_8 = 0$

3. If
$$(x_1, x_2, x_9, x_{10}) = (1, 0, 1, 0)$$
, we choose $x_5 = 1, x_6 = 0, x_7 = 0, x_8 = 0$

4. If
$$(x_1, x_2, x_9, x_{10}) = (1, 1, 0, 1)$$
, we choose $x_5 = 0, x_6 = 1, x_7 = 0, x_8 = 0$

From above, we conclude that the set S can be rewritten as follows:

$$S = \{(x_1, x_2, x_9, x_{10}) \in \mathbb{Z}_2^4 \mid x_1 = \neg x_9 \land x_2 = x_{10}\}$$

Now, recall that our goal is to find a new CNF C' such that C'=True if and only if $(x_1, x_2, x_9, x_{10}) \in \mathcal{S}$. Because C'=True if and only if $x_1 = \neg x_9$ and $x_2 = x_{10}$, we can write $C' = X \wedge Y$, where X and Y are CNFs such that X=True if and only if $x_1 = \neg x_9$ and Y=True if and only if $x_2 = x_{10}$.

It is well known that $x_1 = \neg x_9$ if and only if $(x_1 \lor x_9) \land (\neg x_1 \lor \neg x_9) = True$, hence it holds that $X = (x_1 \lor x_9) \land (\neg x_1 \lor \neg x_9)$ and $Y = (x_2 \lor \neg x_{10}) \land (\neg x_2 \lor x_{10})$.

Thus we can write our new C' as C'= $(x_1 \lor x_9) \land (\neg x_1 \lor \neg x_9) \land (x_2 \lor \neg x_{10}) \land (\neg x_2 \lor x_{10})$, concluding the problem.