

T. Perel
D. Buttin
A. Boudet
O. Auscher
G. Malgorn
A. Le Calvez
B. Niescierewicz

Un drone au bout des doigts!

4SRC 20 mai 2016

Introduction

- ★ Projet pluridisciplinaire, 4e année SRC : piloter un drone avec la main
 - 1er semestre : élaboration du cahier des charges
 - 2e semestre : réalisation du prototype
- ★ Intérêts du projet :
 - o asseoir les compétences théoriques et pratiques vues en cours
 - auto-formation sur des notions non abordées
 - avant-goût de notre futur métier d'ingénieur :
 - travail en équipe
 - sujet technique et innovant
 - de la conception à la réalisation
 - respect des contraintes budgétaires et de temps

Présentation du plan

- I. Présentation du projet
- II. Mains
 - A. Reconnaissance des gestes
 - B. Prototype
- III. Drone
 - A. Principe général
 - B. Prototype du récepteur
- IV. Bilan
- V. Démonstration

Présentation du concept

★ Un nouveau concept

★ Piloter un drone avec les mains

★ Ludique et intuitif

Etat de l'art

- ★ Drone utilisé dans diverses applications
 - Militaires
 - Civiles

- ★ Création d'un nouveau système de pilotage
 - Système comparable à une télécommande

Etat de l'art

- ★ Projets universitaires
 - Danse avec les drones
 - Télécommande de Wii (Wiimote)

★ MultiWii

- Contrôle de multicoptères
- Code open source modifiable
- Interface de réglage intuitive

Projet "Danse avec les Drones"

Projet Wiimote

Multiwii

Description du système

Principe et objectifs

3 informations à acquérir et à transmettre au drone :

★ Throttle - Gaz = Puissance des moteurs

★ Pitch - Tangage = Orientation avant/arrière

★ Roll - Roulis = Orientation gauche/droite

Le Yaw (Lacet) n'est pas transmis : Mode Headless

Acquisition des données

3 angles = 3 informations

Solution technique:

★ 2 capteurs de type gyroscope
 Récupération des angles

★ 2 microcontrôleurs Traitement des données

Acquisition des données

3 angles = 3 informations

Solution technique:

★ 2 MPU6050

★ 2 Arduinos nano

Acquisition des données

Récupération du triplet sur le même Arduino ?

Acquisition des données

La main 1 récupère le throttle

Le throttle module le duty cycle d'un signal PWM

L'Arduino de la main 2 récupère le triplet

Transmission du triplet?

Transmission des données

Module d'émission NRF24L01 2.4GHz

Acquisition des données

Transmission des données

Prototype

Étapes:

- ★ Tests sur breadboards
- ★ Conception et réalisation des circuits imprimés
- ★ Tests finaux
- ★ Intégration des cartes dans les boîtiers
- ★ Liaison entre les boîtiers

Principe général

Drone en kit

Contrôleur Multiwii

- ★ Drone open source et facilement configurable
- ★ Coût raisonnable
- ★ Réutilisable pour les années suivantes

- ★ Environnement de programmation Arduino
- ★ Interface graphique facile d'utilisation
- ★ Capteurs (magnétomètre, baromètre...)

Réglages du quadcopter

* Réglages des PID

★ Choix du mode de vol

★ Intégration de fonctions complémentaires

Drone

Prototype du récepteur

- ★ Signal attendu par le contrôleur de vol
- ★ Conversion des angles des mains en impulsions de durée variable

Commande des moteurs progressive Pilotage du drone précis

Bilan

Bilan technique

- **★** Prototype fonctionnel
- ★ Produit fini

Améliorations possibles

Software	Hardware ★ Ajout d'un sonar ★ Déplacement de la diode d'amorçage ★ Miniaturisation des cartes	
 ★ Amélioration de la latence ★ Ajout d'options ★ Ajout de fonctions de sécurité 		

Gestion du projet

Répartition des tâches

- ★ Globalement bien réparties
- ★ Une tâche par binôme
- ★ Aide entre binômes si besoin

Organisation

- ★ Google Drive : plateforme de partage, accès à tous les documents, à tout moment
- * Réunions régulières : au moins une fois par semaine
- ★ Bonne communication et bonne entente au sein du groupe

Bilan

Budget

Nom composant	Fournisseur	Prix
Kit drone + Contrôleur MultiWii	HobbyKing	170€
Module transmission RF + Arduino (x2)	Bangood	10,44€
Capteur MPU	Amazon	9,21 €
Sonar + 3e Arduino	Bangood	4,45 €
Batterie + connecteurs + hélices de rechange	Bangood	14,88€
Boitiers de protection + Connecteurs RJ9	Atlantique Composants	11,83€
Fournitures diverses + frais de port		8,57 €
TOTAL:	59€	

Pris en charge par le département SRC

Fournisseurs hors liste : composants moins chers et prêts à l'emploi

Montant prévisionnel : 37,84 €

- + options sécurité
- + composants de rechange
- + 2e Arduino + boitiers

Contrainte budgétaire respectée

Diagramme de Gantt

- ★ Etat d'avancement :
 - Dans les temps, pas de retard
 - Gantt mis à jour régulièrement
- ★ Changement par rapport au Gantt prévisionnel :
 - Absence de Gilles Picoult, 2 semaines en mars : routage des cartes avancé
 - Soutenance avancée de cinq jours : prévenus à l'avance, pas d'impact majeur
 - o Premier vol du drone : 23 mars, trois semaines avant la date prévue

Contrainte temporelle respectée

Brevetabilité

Rencontre avec Mr GUILHAIRE, Ouest Valorisation

- ★ Plusieurs critères de protection :
 - Nouveauté
 - Non-évidence, inventivité
 - Application industrielle
- ★ Conclusion de l'entretien :
 - Non validation des critères de nouveauté et d'inventivité
 - Regard extérieur et qualifié : apporte une finalité au projet

- Notre projet :
 - Système comparable : smartphone
 - Différences :
 - Usage des deux mains
 - Throttle sous forme d'angle

Démonstration

T. Perel
D. Buttin
A. Boudet
O. Auscher
G. Malgorn
A. Le Calvez
B. Niescierewicz

Merci pour votre attention Des questions ?

4SRC 20 mai 2016