138 088 138

Machine Learning in Intelligent Transportation

Team: TNT_000

1.618

滴滴一下 美好出行

129

130

3.5

Contents

- 1. Team Members
- 2. Scenario & Solution
- 3. Feature Engineering
- 4. Model in Deep learning & XGBoost
- 5. Improved XGB with Boosting
- 6. Achievement Roadmap

Team Members

Scenario

Datasets: The training and testing data of two seasons.

Solution for Intelligent Transportation

Data Visualization about Trending

Trending during Season 2

Trending during 2.21-3.17 at district 8

Workday vs Weekend

Friday

Higher gap from 7am-9am at workday

Saturday

Higher gap from 12am-7pm on Saturday

Feature Engineering

Feature Engineering

Deep Learning in Intelligent Transportation

RNN Encoder

- 1. Abstract features of 20 minutes splitted by 5 minutes of four.
- 2. By using GRU model, we encoded time series feature as fixed-length feature vector.

GRU Model

Performance of GRU is same as LSTM, but computing speed of GRU is more faster.

$$r_{t} = \operatorname{sigm}(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r})$$

$$z_{t} = \operatorname{sigm}(W_{xz}x_{t} + W_{hz}h_{t-1} + b_{z})$$

$$\tilde{h}_{t} = \tanh(W_{xh}x_{t} + W_{hh}(r_{t} \odot h_{t-1}) + b_{h})$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z_{t}) \odot \tilde{h}_{t}$$

An Empirical Exploration of Recurrent Network Architectures

XGBoost & LR with Boosting way

XGB learn the trainning data by default weights equally, but not consider some instances that are hard to learn. So we adjust the weights of instances by the boosting way.

Paper: Big Error Margin Boosting Algorithm Feely, 2000

Paper: AdaBoost+: An Ensemble Learning Approach for Estimating

Achievement Roadmap

Not yet...

Transfer Learning

Multi-Task Learning

Lifelong Machine Learning

Thank you for your listening.

滴滴Di-Tech算法大赛