For convenience, we can introduce a binary random variable X_i which takes the value 1 if and only if $h_{\pi_i}(C_1) = h_{\pi_i}(C_2)$, and 0 otherwise.

It has been demonstrated in class that the similarity between sets C_1 and C_2 , denoted as $J(C_1,C_2)$, is equivalent to the probability of $h_{\pi_i}(C_1) = h_{\pi_i}(C_2)$, or $X_i = 1$, represented by p. The estimated similarity $\hat{J}(C_1,C_2)$ is calculated by determining the proportion of matches under k different permutations of the hash function, expressed as

$$\hat{J}(C_1,C_2) = rac{1}{k} \sum_{i=1}^k \mathbf{1}[h_{\pi_i}(C_1) = h_{\pi_i}(C_2)] = rac{X_1 + X_2 + \dots + X_k}{k}$$

Given that X_i follows a Bernoulli distribution, we can derive that the expectation of $\hat{J}(C_1,C_2)$, $\mathbb{E}(\hat{J}(C_1,C_2))$, equals $p=J(C_1,C_2)$, and its variance is $D=D(\hat{J}(C_1,C_2))=\frac{p(1-p)}{k}$. Utilizing Chebyshev's Inequality, we obtain

$$\Pr(|\mathbb{E}(\hat{J}) - \hat{J}| \leq \lambda \sqrt{D}) \geq 1 - rac{1}{\lambda^2}$$

Let $\delta=\frac{1}{\lambda^2},\lambda\sqrt{D}=\epsilon$, then $\delta=\frac{p(1-p)}{k\epsilon^2}$, which meets the condition $k=O\left(\frac{1}{\epsilon^2\delta}\right)$, that is

$$\Pr(|J - \hat{J}| \leq \epsilon) \geq 1 - \delta$$

QED.