Compsci 367 A2 Report

Table of Results

Method	# of queens	Probability of Solving (%)	Average time to solve (mean ± sd)	Average # of nodes expanded (mean ± sd)
hill climbing	10	16.4	0.008 ± 0.003	4 ± 0.9
hill climbing with sideways moves	10	43.2	0.191 ± 0.164	86.8 ± 74.2
random restart hill climbing	10	99.6	0.057 ± 0.052	26.6 ± 24.6
hill climbing	11	14.8	0.015 ± 0.004	4.5 ± 1
hill climbing with sideways moves	11	44.8	0.291 ± 0.257	84.5 ± 74.3
random restart hill climbing	11	99.0	0.102 ± 0.091	30.3 ± 27.3
hill climbing	12	8.6	0.025 ± 0.006	5 ± 1
hill climbing with sideways moves	12	27.2	0.585 ± 0.348	113.1 ± 67.1
random restart hill climbing	12	87.4	0.333 ± 0.246	66.4 ± 49.1

Parameters for algorithms:

Random Restarts = 30 Max number of sideways moves = 150 Number of iterations run per problem = 500

Discussion of Results

How you think the number of expanded nodes, the amount of time, and the probability will change as the number of queens increased?

Overall, as the number of queens increases, the amount of time to solve increases, the probability of solving decreases and the number of nodes expanded increases.

As the number of queens increases, the number of possible board states increases. Therefore, as there are more board states to search through and each algorithm on average expands more nodes. Furthermore, a consequence of having searched through more nodes, the average solve time of the algorithms increases. Finally, as the number of board states increases, there is a greater chance of getting stuck in a local optimum and hence the probability of success decreases.

When comparing the 3 algorithms using the results table above, Random Restart Hill Climbing vastly outperforms both Hill Climbing with sideways moves and normal Hill Climbing.

How you determined the number of queens to run?

I initially tried a few different numbers of queens to get a feel for how quickly the algorithms ran and what the results looked like. In the end I decided using 10 to 12 queens. This is because the statistics provided show an apparent pattern and that didn't take a very long time to run.

How you determined the number of problems you need to run for each of them?

I selected 500 runs for each combination of method and number of queens. This number was decided as it provided consistent results and was the largest number of iterations, I could run that didn't take too long with my computing power.