ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "ВЫСШАЯ ШКОЛА ЭКОНОМИКИ"

Факультет компьютерных наук

Образовательная программа бакалавриата "Программная инженерия"

Домашнее задание 4 по дисциплине "Архитектура вычислительных систем"

Пояснительная записка

Выполнил Студент группы БПИ191 Дадугин Егор Артемович

Оглавление

1. B	ведение	. 3
1.1	Текст задания	. 3
1.2	Алгоритм программы	. 3
2. B	ходные и выходные данные	. 4
2.1	Входные данные	. 4
2.2	Выходные данные	. 4
3. To	естирование программы	. 5
3.1	Ввод 3 потоков на массиве из 10 элементов для наглядности	
рабо	ОТЫ	. 5
3.2	Ввод 3 потоков на случайно сгенерированном массиве из 1000	
элем	иентов	. 5
3.3	Ввод 10 потоков на случайно сгенерированном массиве из 1000	
элем	иентов	. 6
4. C	писок использованных источников	. 7
ПРИЛОЖЕНИЕ 1		. 8
TEL	ССТ ПРОГРАММЫ	Q

1. Введение

1.1 Текст задания

Определить индексы i, j, для которых существует наиболее длинная последовательность A[i] < A[i+1] < A[i+2] < A[i+3] < ... < A[j]. Входные данные: массив чисел A, произвольной длины большей 1000. Количество потоков является входным параметром.

1.2 Алгоритм программы

Работа выполнена с помощью библиотеки ОрепМР.

Выполнение программы осуществлено с помощью итеративного подхода. В ходе выполнения происходит распараллеливание на потоки. Наибольшая возрастающая последовательность находится посредством заполнения вспомогательного массива, в котором для каждого элемента хранится длина возрастающей последовательности, заканчивающаяся на данном элементе.

2. Входные и выходные данные

2.1 Входные данные

На вход программа получает целое число больше - количество потоков.

2.2 Выходные данные

На выходе программа выводит начальный и конечный индексы наибольшей возрастающей последовательности.

3. Тестирование программы

3.1 Ввод 3 потоков на массиве из 10 элементов для наглядности работы

```
Enter the number of threads: 3

8

10

14

19

11

13

5

19

4

10

Start index: 5

End index: 8
```

Программа выводит начальный и конечный индексы наибольшей возрастающей последовательности.

3.2 Ввод 3 потоков на случайно сгенерированном массиве из 1000 элементов

```
18
10
7
11
12
13
4
13
2
12
11
Start index: 406
End index: 425
```

Программа выводит начальный и конечный индексы наибольшей возрастающей последовательности.

3.3 Ввод 10 потоков на случайно сгенерированном массиве из 1000 элементов

```
8
10
7
1
2
3
4
3
2
2
1
Start index: 111
End index: 120
```

Программа выводит начальный и конечный индексы наибольшей возрастающей последовательности.

4. Список использованных источников

1) Habr [Электронный ресурс] URL: https://habr.com/ru/post/71296/ (Режим доступа: свободный)

ПРИЛОЖЕНИЕ 1

ТЕКСТ ПРОГРАММЫ

```
#pragma opm parallel num_threads(treadsNumber){
#pragma omp for
        std::cout << array[i] << std::endl;</pre>
    std::cout << "End index: " << endIndex;</pre>
```