

JOURNAL SYNTAX IDEA

p-ISSN: 2723-4339 e-ISSN: 2548-1398

Vol. 6, No. 2, February 2024

Deteksi Email Spam dan Non-Spam Berdasarkan Isi Konten Menggunakan Metode K-Nearest Neighbor dan Support Vector Machine

Ade Andryani^{1*}, Axel Natanael Salim², Tata Sutabri³

^{1*23} Magister Teknik Informatika, Universitas Bina Darma, Palembang, Indonesia Email: ^{1*}adeanri84@gmail.com, ²axelsanti610@gmail.com, ³tata.sutabri@gmail.com

Abstrak

Terhadap banyaknya kasus penyalahgunaan email yang berpotensi merugikan orang lain. Email yang disalahgunakan ini biasa dikenal sebagai email spam yang mana email tersebut berisikan iklan, scam, bahkan malware. Penelitian ini bertujuan untuk mendeteksi email spam dan non-spam berdasarkan isi konten menggunakan metode K-Nearest Neighbor dan Support Vector Machine nilai terbaik dari algoritma K-Nearest Neighbor dengan pengukuran jarak Euclidean Distance. Support Vector Machine dan K-Nearest Neighbor dapat mengklasifikasi dan mendeteksi spam email atau non-spam email, K-Nearest Neighbor menggunakan perhitungan jarak Euclidean Distance dengan nilai K = 1,3, dan 5. Hasil evaluasi menggunakan *confusion matrix* yang menghasilkan bahwa motode K-Nearest Neighbor dengan nilai k=3 mendapatkan tingkat akurasi sebesar 92%, tingkat presisi sebesar 91%, recall sebesar 100%, dan fl_score sebesar 95%. Metode Support Vector Machine mendapatkan nilai akurasi sebesar 97% dengan tingkat akurasi sebesar 97%, recall sebesar 100%, dan fl_score sebesar 98%. Hal ini menjadikan metode Support Vector Machine lebih unggal dibandingkan metode K-Nearest Neighbor dalam penelitian ini. Selain itu model yang dibangun juga sudah dapat digunakan untuk memprediksi *spam* dan *non spam* dari isi konten email baru.

Kata Kunci: Confusion Matrix, Email, KNN, Spam, SVM

Abstract

Facing many email problems that have the potential to harm others. This abused email is commonly known as spam email, where the email contains advertisements, scams, and even malware. This study aims to detect spam and non-spam emails based on content using the K-Nearest Neighbor method and the Support Vector Machine. The best value of the K-Nearest Neighbor algorithm is determined using Euclidean Distance measurements. Both Support Vector Machine and K-Nearest Neighbor can classify and detect spam emails or non-spam emails. K-Nearest Neighbor uses Euclidean Distance calculations with values K=1, 3, and 5. The evaluation results use a confusion matrix, which shows that the K-Nearest Neighbor method with a value of k=3 achieves an accuracy rate of 92%, a precision level of 91%, a recall of 100%, and an F1-score of 95%. On the other hand, the Support Vector Machine method achieves an accuracy value of 97%, along with a recall of 100% and an F1-score of 98%. This makes the Support Vector Machine method superior to the K-Nearest Neighbor method in this study. In addition, the model built can also be used to predict spam and non-spam from the contents of new e-mail content.

How to cite: Ade Andryani, Axel Natanael Salim, Tata Sutabri (2024) Deteksi Email Spam dan Non-Spam Berdasarkan Isi

Konten Menggunakan Metode K-Nearest Neighbor dan Support Vector Machine, (6) 2, DOI 10.46799/syntax-

E-ISSN: 2684-883X Published by: Ridwan Institute Keywords: Confusion Matrix, Email, KNN, Sam, SVM

PENDAHULUAN

Perkembangan teknologi internet sekarang bekembang sangat pesat, banyak manfaat yang dirasakan oleh pengguna dengan perkembangan teknologi internet, tetapi banyak pula kejahatan yang dilakukan menggunakan teknologi internet (Laksono et al., 2020). Bentuk kejahatan siber berupa penyerangan terhadap pengguna e-mail dengan cara mengirimkan *spam*. Pesan *spam* pada email ini mengirimkan salinan pesan-pesan yang sama untuk memaksa agar pesan-pesan tersebut sampai kepada pemakai yang tidak mau menerima e-mail tersebut, akibatnya banyak pengguna merasa terganggu oleh banyaknya waktu yang dihabiskan untuk menghapus pesan *spam*, dan besarnya bandwidth jaringan (Sulaeman et al., 2022).

Dalam mengatasi masalah tersebut, diperlukan upaya untuk menyaring konten yang masuk ke e-mail pengguna. Penanganan terkait *spam* e-mail telah dilakukan pada penelitian terdahulu. Penelitian yang dilakukan oleh Laksono, dkk dengan judul "Optimasi Nilai K pada Algoritma KNN untuk Klasifikasi Spam dan Ham Email" bertujuan untuk mengetahui pengklasifikasian spam dan ham pada email menggunakan metode KNN untuk mengurangi jumlah spam dengan cara melakukan pengecekan menggunakan pendekatan nilai K yang berbeda. Hasil dari penelitian ini diketahui bahwa evaluasi klasifikasi menggunakan confusion matrix menggunakan KNN dengan nilai K = 1 memiliki nilai akurasi paling tinggi sebesar 91.4%, dengan menggunakan distribusi frekuensi clustering menghasilkan akurasi yang tinggi sebesar 100%, sedangkan k-means clustering mengahasilkan akurasi sebesar 99% (Laksono et al., 2020). Adapula penelitian yang dilakukan oleh (Hengki & Wahyudi, 2020) dengan judul "Klasifikasi Algoritma Naïve Bayes dan SVM Berbasis PSO Dalam Memprediksi Spam Email Pada Hotline-Sapto". Dalam penelitian ini dilakukan pengujian model dengan menggunakan Support Vector Machine (SVM) dan Support Vector Machine (SVM) berbasis Particle Swarm Optimazation (PSO) serta Naïve Bayes dan Naïve bayes berbasis Particle Swarm Optimization (PSO), dari model SVM menghasilkan tingkat accuracy sebesar 84.59% dengan nilai AUC 0.792, untuk pengujian model SVM berbasis PSO menghasilkan tingkat akurasi sebesar 85.25% dengan nilai AUC 0.892, sedangkan pengujian model Naïve Bayes menghasilkan tingkat akurasi sebesar 80.59% dengan nilai AUC 0.942, untuk pengujian model Naïve Bayes berbasis PSO menghasilkan tingkat akurasi sebesar 81.24% dengan nilai AUC sebesar 0.892. Sehingga dapat disimpulkan bahwa model SVM berbasis PSO lebih baik dari pada model lainnya (Hengki & Wahyudi, 2020).

Pengunaan metode yang berbeda membuat hasil yang berbeda pula. Oleh karena itu, penelitian ini melakukan perbandingan metode *Support Vector Machine* (SVM) dengan *K-Nearest Neighbor* (KNN) untuk mencari metode yang optimal dalam membedakan *spam* dan *non spam* pada e-mail. Metode yang digunakan adalah *K-Nearest Neighbor* (KNN) dengan perhitungan jarak *Euclidean* dengan percobaan K = 1,3 dan 5. Kedua metode yang digunakan menggunakan *confusion matrix* untuk evaluasi nilai hasil.

METODE PENELITIAN

Bagian ini akan membahas mengenai langkah-langkah yang digunakan dalam penelitin ini. Langkah pertama yaitu pengumpulan data, lalu *preprocessing*, pembobotan kata, penerapan metode, setelah itu evaluasi, dan terakhir deteksi konten. Gambar 1 merupakan ilustrasi tentang alur yang dilakukan pada penelitian ini.

Gambar 1. Flowchart Metodologi Penelitian

1. Pengumpulan Data

Adapun teknik pengumpulan data merupakan sutau cara yang dilakukan oleh peneliti untuk memperoleh data-data yang diperlukan. Sumber data pada penelitian ini menggunakan data sekunder dimana data penelitian ini menggunakan dataset spam dan non spam yang berasal dari https://www.kaggle.com/ yang diakses pada tanggal 01 Agustus 2023. Dataset yang digunakan terdapat 5572 data spam maupun ham (non spam), data dapat dilihat pada tabel 1 sebagai berikut:

Tabel 1. Dataset Spam Email

No	Komentar	Class
1	U 447801259231 have a secret admirer who is looking 2 make contact with U-find out who they R*reveal who thinks UR so special-call on 09058094597	Spam
2	Oh ki'm watching here :)	Ham
3	URGENT! You have won a 1 week FREE membership in our	Spam
4	SMS SERVICES. for your inclusive text credits, pls goto www.comuk.net login= 3qxj9 unsubscribe with STOP, no extra charge. help 08702840625.COMUK. 220-CM2 9AE	Spam
	•••	
5570	You are a great role model. You are giving so much and i really wish each day for a miracle but God as a reason for everything and i must say i wish i knew why but i dont. I've looked up to you since i was young and i still do. Have a great day.	Ham
5571	You are awarded a SiPix Digital Camera! call 09061221061 from landline. Delivery within 28days. T Cs Box177. M221BP. 2yr warranty. 150ppm. 16 . p p3.99	Spam
5572	Yes princess! I want to please you every night. Your wish is my command	Ham
5573	Marvel Mobile Play the official Ultimate Spider-man game (�4.50) on ur mobile right now. Text SPIDER to 83338 for the game & we ll send u a FREE 8Ball wallpaper	Spam

2. Text Preprocessing

Text Processing adalah proses dalam membersihkan data sebelum diolah (Afdhal et al., 2022). Pada tahapan ini terdapat 4 proses yaitu:

a. *Case Folding*, pada tahap ini dilakukan penyeragaman teks menjadi huruf kecil, proses *case folding* dapat dilihat pada tabel 2.

Sebelum Case	Free entry in 2 a wkly comp to Win FA final tkts 21st May 2005 Text FA to 87121 to
Folding	receive entry questionstd txt rateTCs apply 08452810075over18s
Sesudah Case	free entry in 2 a wkly comp to win fa final tkts 21st may 2005 text fa to 87121 to
Folding	receive entry questionstd txt ratetcs apply 08452810075over18s

b. *Tokenizing*, pada tahap ini dilakukan pemecahan kata pada kalimat, proses *tokenizing* dapat dilihat pada tabel 3.

Tabel 3. Contoh Proses *Tokenizing*

Sebelum	free entry in 2 a wkly comp to win fa final tkts 21st may 2005 text fa to 87121 to
Tokenizing	receive entry questionstd txt ratetcs apply 08452810075over18s
Sesudah	[free, entry, in, 2, a, wkly, comp, to, win, fa, cup, final, tkts, 21st, may, 2005, text, fa,
Tokenizing	to, 87121, to, receive, entry, questionstd, txt, ratetcs, apply, 0845810075over18s]

c. *Stopword Removal*, pada tahap ini dilakukan penghilangan kata yang termasuk kedalam kategori *stopword*, *stopword* merupakan kata yang sering muncul namun dianggap tidak memiliki arti, proses *stopword removal* dapat dilihat pada tabel 4.

Tabel 4. Contoh Proses Stopword Removal

Sebelum	[free, entry, in, 2, a, wkly, comp, to, win, fa, cup, final, tkts, 21st, may, 2005, text,
Stopword	fa, to, 87121, to, receive, entry, questionstd, txt, ratetcs, apply,
Removal	0845810075over18s]
Sesudah	[free, entry, 2, wkly, comp, win, fa, cup, final, tkts, 21st, may, 2005, text, fa,
Stopword	87121, receive, entry, questionstd, txt, ratetcs, apply, 0845810075over18s]
Removal	

d. *Stemming*, pada tahap ini dilakukan untuk menemukan kata dasar dengan menghilangkan semua kata imbuhan atau kata penghubung, proses *stemming* dapat dilihat pada tabel 5.

Tabel 5. Contoh Proses Stemming

Sebelum	[free, entry, 2, wkly, comp, win, fa, cup, final, tkts, 21st, may, 2005, text, fa, 87121,
Stemming	receive, entry, questionstd, txt, ratetcs, apply, 0845810075over18s]
Sesudah	[free, entri, 2, wkli, comp, win, fa, cup, final, tkt, 21st, may, 2005, text, fa, 87121,
Stemming	receiv, entri, questionstd, txt, ratetcs, appli, 0845810075over18]

3. Support Vector Machine

Support Vector Machine adalah satu dari banyaknya metode regresi atau pengklasifikasi data yang menggunakan data dari data-data sebelumnya dan pemodelannya disuprevisi terlebih dahulu. Support Vector Machine menggunakan batas kemampuan yang akan menentukan klasifikasi dari data latih sehingga terbentuk sebuah model linear yang paling optimal dalam mengklasifikasi data. Dalam menyelesaikan permasalahan non-linear digunakan konsep kernel pada ruang kerja berdimensi tinggi, dengan mencari hyperplane yang dapat memaksimalkan margin antar kelas data (Mutawalli et al., 2019). Gambar 2 merupakan gambaran pengklasifikasian menggunakan Support Vector machine model linear. Penggunaan metode Support Vector Machine

betujuan untuk klasifikasi teks dengan menggunakan bobot indeks *term* sebagai fitur (Athira Luqyana et al., 2018).

Gambar 2. Support Vector Machine Model Linear

2.1. K-Nearest Neighbor

K-Nearest Neighbor merupakan salah satu pendekatan yang sederhana untuk diimplmentasikan dan merupakan metode lama yang digunakan dalam pengkasifikasian. K-Nearest Neighbor mempunyai tingkat efisiensi yang tinggi dalam beberapa kasus menunjukkan tingkat akurasi yang tinggi dalam hal pengkasifikasian (Asiyah & Fithriasari, 2016). Performa klaksifikasi K-Nearest Neighbor dapat dipengaruhi oleh beberapa hal, seperti pemilihan nilai K, pemilihan ukuran jarak, dan sebagainya (Zhang et al., 2017). Dekat atau jauhnya bisa dihutung dengan besaran jarak, dalam penelitian ini menggunakan jarak Euclidean. Euclidean adalah besarnya jarak suatu garis lurus yang menghubungkan antara objek. Jarak Euclidean digunakan karena data teks yang ada sudah mengalami perubahan menjadi angka pada saat preprocessing (Laksono et al., 2020). Rumus jarak Euclidean dapat dilihat pada persamaan 1 sebagai berikut:

$$d(x_{i,}x_{j}) = \sqrt{\sum_{n=1}^{P} (x_{ip} - x_{jp})^{2}}$$
 (1)

Dengan:

 x_{ip} = Data testing ke-i pada variabel

ke-p

.. = Data training ke-j pada variabel

 x_{jp} ke-p

 $d(x_i, x_i) = \text{Jarak } euclidean$

P = Dimensi data variabel bebas

4. Evaluasi Model

Evaluasi pada pembelajaran mesin ini digunakan untuk mengukur performa model klasifikasi pada *dataset* yang sudah diketahui labelnya yang dikenal dengan *Confusion Matrix*. Menurut (Aldean et al., 2022) *Confusion Matrix* merupakan cara untuk menunjukkan seberapa baik model yang digunakan dapat mengklasifikasi setiap label yang ada pada *dataset*. Ilustrasi dari *confusion matrix* dapat dilihat pada tabel 6 sebagai berikut.

Tabel 6. Tabel *Confusion Matrix*

		Predicted Class		
		(1)	(0)	
		Positive	Negative	
Actual Class	(1) Positive	TP (True Positive)	FN (False Negative)	
	(0) Negative	FP (False Positive)	TN (True Negative)	

Sumber: (Afdhal et al., 2022)

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN} x 100\%$$
 (2)

Precission
$$=\frac{TP}{TP+FP}$$
 (3)

Recall
$$=\frac{TP}{TP+FN}$$
 (4)

F1-Score
$$= \frac{2 xRecall \times Precission}{Recall + Precission}$$
 (5)

Confusion matrix terdiri dari empat kotak yaitu True Positive (TP), False Positive (FP), True Negative (TN), dan False Negative (FN). Dari empat kotak tersebut, dapat dihitung berapa matrik seperti tingkat akurasi (accuracy), presisi (precision), recall (sensitivity), dan f1-score. Akurasi adalah presentase jumlah prediksi yang benar dari total data, presisi adalah presentase data positif yang benar diklasifikasikan, recall adalah presentase data positif yang terdeteksi benar oleh model, dan f1-score adalah rata-rata harmonik antara presisi dan recall (Santoso et al., 2023).

5. Implementasi dan Pengujian

Implementasi yang dilakukan pada penelitian ini menggunakan Google Colab dengan bahasa pemrograman Python. Tahap pengujian dilakukan untuk menguji kinerja dari mesin yang telah dibangun, untuk menghitung akurasi dan mengidentifikasi algoritma *K-Nearset Neighbor* dan *Support Vector Machine* yang menggunakan *confusion matrix* untuk menghitung tingkat akurasi, tingkat presisi, *recall*, dan *f1-Score*.

HASIL DAN PEMBAHASAN

Dari data yang digunakan, terdapat 5572 konten spam email yang terdiri dari 4825 email yang termasuk *non spam* dan 747 email yang termasuk email *spam*, sebagaimana yang ditampilkan pada gambar 3.

Gambar 3. Perbandingan Class Pada Dataset

Pada gambar 4 hingga gambar 7 merupakan tampilan visualisasi hasil dari klasifikasi dalam bentuk *heatmap* untuk mempermudah dalam melihat pola TP (*True Positive*), FP (*False Positive*), TN (*True Negative*), TF (*True Negative*) (Sutabri et al., 2018) dari data testing.

Gambar 4. *Confusion matrix* menggunakan Euclidean dengan k=3

Gambar 5. *Confusion matrix* menggunakan *Euclidean* dengan k=5

Gambar 6. *Confusion matrix* menggunakan *Euclidean* dengan k=7

Gambar 7. *Confusion matrix* dengan metode SVM

Setelah didapatkan TP (*True Positive*), FP (*False Positive*), TN (*True Negative*), TF (*True Negative*) dari visualisasi diatas, selanjutnya akan dilakukan perhitungan performa dari metode *Support Vector Machine* dan *K*-Nearest *Neighbor* menggunakan pengukuran jarak *Euclidean* dengan k = 3,5, dan 7. Adapun hasil dari pengujian akan mendapatkan nilai *accuracy*, *precission*, *recall*, dan *f1_score* nya. Tabel 7 menunjukkan hasil pengujian dengan detail nilai *accuracy*, *precision*, *recall*, dan *f1_score* sebagai berikut.

Tabel 7. Tabel Pengujian Data Testing

No.		Metode	_	Accuracy	Precision	Recall	F1- Score
1	K-Nearest Euclidean Neighbor	3	92%	91%	100%	95%	
		Euclidean	5	91%	90%	100%	95%
		7	90%	89%	100%	94%	
2	Support Vector Machine			97%	97%	100%	98%

Berdasarkan tabel diatas dapat dilihat performa dari metode *K-Nearest Neighbor* dengan pengukuran jarak *Euclidean Distance* dimana k=3 mendapatkan tingkat akurasi sebesar 92%, tingkat presisi sebesar 91%, *recall* sebesar 100%, dan *f1_score* sebesar 95%. Untuk k=5 mendapatkan tingkat akurasi sebesar 91%, tingkat presisi sebesar 90%, *recall* sebesar 100%, dan *f1_score* sebesar 95%. Untuk k=7 mendapatkan tingkat akurasi sebesar 90%, tingkat presisi sebesar 96%, *recall* sebesar 100%, dan *f1_score* sebesar 94%. Metode *Support Vector Machine* mendapatkan nilai akurasi sebesar 97% dengan tingkat akurasi sebesar 97%, *recall* sebesar 100%, dan *f1_score* sebesar 98%. Hal ini menjadikan metode *Support Vector Machine* lebih unggal dibandingkan metode *K-Nearest Neighbor* dalam penelitian ini.

Tingkat akurasi yang tunjukkan oleh metode Support Vector Machine ini lebih tinggi dibandingkan dengan K-Nearest Neighbor yaitu sebesar 97%, yang artinya metode Support Vector Machine ini mampu memprediksi dengan benar terhadap isi konten dengan class pada semua data yang digunakan Selanjutnya metode Support Vector Machine juga mendapatkan tingkat precision yang lebih tinggi dari pada metode K-Nearest Neighbor yaitu sebesar 97%, hal ini menunjukkan bahwa metode Support Vector Machine mampu memprediksi label yang sebenarnya dengan benar. Kedua metode yang digunakan menunjukkan persentase recall yang sangat baik yaitu 100%, yang artinya kedua metode tersebut sudah sangat baik dalam mengklasifikasi data baik data isi konten email span maupun isi konten email non spam. F1_score pada metode Support Vector Machine juga memiliki tingkat persentase yang lebih tinggi dari K-Nearest Neighbor sehingga metode Support Vector Machine lebih baik dalam menggabungkan kemampuan precision dan recall nya. Selanjutnya akan dilakukan pengujian dari data testing yang akan menggunakan kedua metode tersebut, hasil dari pengujian data testing dapat dilihat pada tabel 8.

Tabel 8. Hasil Pengujian Data Testing

No.	Email		Pred	
			KNN	SVM
1	U 447801259231 have a secret admirer who is looking 2 make contact with U-find out who they R*reveal who thinks UR so special-call on 09058094597	Spam	Spam	Spam
2	Oh ki'm watching here:)	Ham	Ham	Ham
3	URGENT! You have won a 1 week FREE membership in our	Spam	Spam	Spam
4	SMS SERVICES. for your inclusive text credits, pls goto www.comuk.net login= 3qxj9 unsubscribe with STOP, no extra charge. help 08702840625.COMUK. 220-CM2 9AE	Spam	Spam	Spam
		•••		
5570	You are a great role model. You are giving so much and i really wish each day for a miracle but God as a reason for everything and i must say i wish i knew why but i dont. I've looked up to you since i was young and i still do. Have a great day.	Ham	Ham	Ham
5571	You are awarded a SiPix Digital Camera! call 09061221061 from landline. Delivery within 28days. T Cs Box177. M221BP. 2yr warranty. 150ppm. 16 . p p3.99	Spam	Spam	Spam
5572	Yes princess! I want to please you every night. Your wish is my command	Ham	Ham	Ham
5573	Marvel Mobile Play the official Ultimate Spider-man game (�4.50) on ur mobile right now. Text SPIDER to 83338 for the game & we ll send u a FREE 8Ball wallpaper	Spam	Spam	Spam

Selanjutnya dilakukan pengecekan terhadap isi konten email baru yang akan dideteksi, apakah isi konten email tersebut termasuk ke dalam email *spam* atau termasuk ke email *non spam* sebagai tahap akhir penelitian yang dapat dilihat pada gambar 8 sebagai berikut:

```
Masukkan Data: GENT! We are trying to contact you. Last weekends draw shows that you won a ◆1000 prize GUARANTEED Prediksi KNN - ['spam']

Prediksi SVM = ['spam']

Masukkan Data: New Theory: Argument wins d SITUATION, but loses the PERSON. So don't argue with ur friends just.... kick them Prediksi KNN - ['ham']

Prediksi SVM - ['ham']
```

Gambar 8. Hasil Deteksi Isi Konten Spam dan Non-Spam

Dapat dilihat pada gambar diatas, metode yang digunakan baik *K-Nearest Neighbor* maupun *Support Vector Machine* sudah mampu mendeteksi mana isi konten email yang termasuk *spam* maupun isi konten email yang termasuk *spam* dengan baik.

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan dan dipaparkan pada hasil dan pembahasan dapat ditarik kesimpulan, yaitu nilai terbaik dari algoritma *K-Nearest Neighbor* dengan pengukuran jarak *Euclidean Distance* dimana k=3 mendapatkan tingkat akurasi sebesar 92%, tingkat presisi sebesar 91%, *recall* sebesar 100%, dan *f1_score* sebesar 95%. Metode *Support Vector Machine* mendapatkan nilai akurasi sebesar 97% dengan tingkat akurasi sebesar 97%, *recall* sebesar 100%, dan *f1_score* sebesar 98%. Hal ini menjadikan metode *Support Vector Machine* lebih unggal dibandingkan metode *K-Nearest Neighbor* dalam penelitian ini. Selain itu model yang dibangun juga sudah dapat digunakan untuk memprediksi *spam* dan *non spam* dari isi konten email baru.

BIBLIOGRAFI

- Afdhal, I., Kurniawan, R., Iskandar, I., Salambue, R., Budianita, E., & Syafria, F. (2022). Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia. *Jurnal Nasional Komputasi Dan Teknologi Informasi*, 5(1), 49–54.
- Aldean, M. Y., Paradise, P., & Setya Nugraha, N. A. (2022). Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac). *Journal of Informatics, Information System, Software Engineering and Applications (INISTA)*, 4(2), 64–72. https://doi.org/10.20895/inista.v4i2.575
- Asiyah, S. N., & Fithriasari, K. (2016). Klasifikasi Berita Online Menggunakan Metode Support Vector Machine dan K- Nearest Neighbor. *Jurnal Sains Dan Seni ITS*, 5(2), 317–322.
- Athira Luqyana, W., Cholissodin, I., & Perdana, R. S. (2018). Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine. *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer*, 2(11), 4704–4713.
- Hengki, M., & Wahyudi, M. (2020). Klasifikasi Algoritma Naïve Bayes dan SVM Berbasis PSO Dalam Memprediksi Spam Email Pada Hotline-Sapto. *Paradigma Jurnal Komputer Dan Informatika*, 22(1), 61–67. https://doi.org/10.31294/p.v22i1.7842
- Laksono, E. P., Basuki, A. d, & Abdurrachman Bachtiar, F. (2020). Optimasi Nilai K pada Algoritma KNN untuk klasifikasi Spam dan Ham Email. *Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi)*, 4(2), 377–383.
- Mutawalli, L., Zaen, M. T. A., & Bagye, W. (2019). Klasifikasi Teks Sosial Media Twitter Menggunakan Support Vector Machine (Studi Kasus Penusukan Wiranto). *Jurnal Informatika Dan Rekayasa Elektronik*, 2(2), 43. https://doi.org/10.36595/jire.v2i2.117
- Santoso, H., Putri, R. A., & Sahbandi. (2023). Deteksi Komentar Cyberbullying pada Media Sosial Instagram Menggunakan Algoritma Random Forest Cyberbullying Comment Detection on Instagram Social Media Using Random Forest Algorithm. *Jurnal Manajemen Informatika (JAMIKA)*, 13(April), 62–72.
- Sulaeman, Nana Suarna, Abdul Ajiz, Agus Bahtiar, & Fathurrohman. (2022). Perbandingan Kinerja Algoritma Naïve Bayes Dan C.45 Dalam Klasifikasi Spam Email. *KOPERTIP : Jurnal Ilmiah Manajemen Informatika Dan Komputer*, 6(1), 8–14. https://doi.org/10.32485/kopertip.v6i1.130
- Sutabri, T., Suryatno, A., Setiadi, D., & Negara, E. S. (2018). Improving naïve bayes in sentiment analysis for hotel industry in Indonesia. *Proceedings of the 3rd International Conference on Informatics and Computing, ICIC 2018*, 1–6. https://doi.org/10.1109/IAC.2018.8780444
- Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. *ACM Transactions on Intelligent Systems and Technology*, 8(3). https://doi.org/10.1145/2990508

Copyright holder:

Ade Andryani, Axel Natanael Salim, Tata Sutabri (2024)

First publication right:

Syntax Idea

This article is licensed under:

