Table of Contents

Τà	Table of Contents				
1	Review of Terms, Proofs, and Probability				
	1.1	Review of Proofs and Proof Techniques	1		
		Induction	2		
	1.2	Graphs	3		
		Trees	4		
		Eulerian and Hamiltonian Graphs	5		
	1.3	Probability	6		
	1.4	Linearity of Expectation	8		
	1.5	Probability Distributions	9		
		The Geometric Distribution	10		
		Binomial Distributions	11		
		Examples	13		
2	Gal	le-Shapley Stable Matching	15		
	2.1	Background and Intuition	15		
	2.2	Formulating the Problem	15		
	2.3	Examples	17		
	2.4	Designing an Algorithm	18		
	2.5	Runtime of the GS Algorithm	19		
	2.6	Correctness of the GS Algorithm	19		
	2.7	Extensions	21		
3	Greatest Common Divisor				
	3.1	Definitions	24		
	3.2	Calculating the GCD	24		
	3.3	Correctness of Euclid's Algorithm	26		
	3.4	Runtime of Euclid's Algorithm	27		
4	Insertion Sort				
	4.1	Insertion Sort	29		
	4.2	Correctness of Insertion Sort	30		
	4.3	Running Time of Insertion Sort	30		
5	Running Time and Growth Functions 32				
	5.1	Measuring Running Time of Algorithms	32		
	5.2	RAM Model of Computation	32		
	5.3	Average Case and Worst Case	32		

	5.4 5.5	Order of Growth	33 33 37
6		alyzing Runtime of Code Snippets	38
7	Divi	ide & Conquer and Recurrence Relations	41
	7.1	Computing Powers of Two	41
	7.2	Linear Search and Binary Search	43
	7.3	MergeSort	43
	7.4	More Recurrence Practice	46
	7.5	Simplified Master Theorem	48
8	Qui	cksort	49
	8.1	Deterministic Quicksort	49
	8.2	Randomized Quicksort	50
9	Cou	enting Inversions	52
	9.1	Introduction and Problem Description	52
	9.2	Designing an Algorithm	53
	9.3	Runtime	55
10		ection Problem	56
		Introduction to Problem	56
	10.2	Selection in Worst-Case Linear Time	56
11		sest Pair	59
		Closest Pair	59
		Divide and Conquer Algorithm	60
	11.3	Closest Pair Between the Sets	61
12		eger Multiplication	63
		Introduction and Problem Statement	63
		Designing the Algorithm	63
	12.3	Runtime	65
13		cks and Queues	66
	13.1	The Stack ADT	66
	13.2	Queues	69
14	Bina	ary Heaps and Heapsort	70
	14.1	Definitions and Implementation	70
		Maintaining the Heap Property	71
	14.3	Building a Heap	72
		Correctness	73

		Runtime	73
	14.4	Heapsort	75
	14.5	Priority Queues	75
15	Huf	fman Coding	79
		-	79
			79
	10.2		80
			80
	15.3	•	81
	10.0	· · · · · · · · · · · · · · · · · · ·	81
		· ·	34
			3 4 85
			35 86
		· · · · · · · · · · · · · · · · · · ·	30 87
	15 /		
	15.4	Extensions	88
16	Gra	ph Traversals: BFS and DFS	90
	16.1	Graphs and Graph Representations	90
		Graph Representations	90
	16.2	Connectivity	91
	16.3	Breadth-First Search (BFS)	91
		BFS Properties	93
		Runtime of BFS	94
	16.4	Depth-First Search (DFS)	94
		Runtime of DFS	96
			97
		Classifying Edges	99
1 =		l'art CDEC D'arti	0.1
Ι (1	01
		Definitions and Properties	
		Algorithm	
	17.3	Analysis	J1
18	DA	Gs and Topological Sorting 10	03
	18.1	DAGs	03
	18.2	Topological Sorting)3
	18.3	Kahn's Algorithm)4
		Tarjan's Algorithm	06
10	Stro	ongly Connected Components 10	07
τIJ		Introduction and Definitions	
		Kosaraju's Algorithm	
	19.2		
		Proof of Correctness	IJ

20	Shor	rtest Path	112
	20.1	The Shortest Path Problem	112
	20.2	Dijkstra's Algorithm	112
		Analyzing the Algorithm	113
		Implementation and Running Time	115
	20.3	Shortest Path in DAGs	115
21	Min	imum Spanning Trees	118
		Introduction and Background	118
		MST Algorithms	119
		Prim's Algorithm	119
		Kruskal's Algorithm	120
		Reverse-Delete	121
	21.3	Correctness of Prim's, Kruskal's, and Reverse-Delete	122
		Prim's Algorithm: Correctness	124
		Kruskal's Algorithm: Correctness	124
		Reverse-Delete Algorithm: Correctness	124
	21.4	Eliminating the Assumption that All Edge Weights are Distinct	124
าา	IIn:	on Find	126
44		Introduction	126
		Union by Rank	126
		·	120 129
	22.3	Path Compression	129
2 3	Has		132
	23.1	Direct-Address Tables	132
	23.2	Hash Tables	133
		Collision Resolution by Chaining	134
		Analysis of Hashing with Chaining	134
	23.3	Hash Functions	136
		What makes a good hash function?	136
		Interpreting Keys as Natural Numbers	136
		The Division Method	137
		The Multiplication Method	137
	23.4	Open Addressing	137
		Linear Probing	138
		Quadratic Probing	139
		Double Hashing	139
		Analysis of Open-Address Hashing	140
24	Trie	S S	142
		Introduction	142
		Standard Tries	142
		Compressed Tries	144
	<u>_ 1.0</u>	Compressed 11100	1 11

24.4 Suffix Tries	146 147 147
Using a Suffix Trie	147
25 Balanced BSTs: AVL Trees 25.1 Review: Binary Search Tree	148 148
25.2 Definition of an AVL Tree	148 150
Insertion	150 153
Advanced Topics	155
26 Skip Lists 26.1 Skip Lists 26.2 Analysis	156 156 158
27 Bloom Filters 27.1 Bloom Filters	162 162
28 Balanced BSTs: Red-Black Trees 28.1 Properties of Red-Black Trees	164 164
29 Minimum Cut 29.1 The Minimum Cut Problem	166 166 166 167
30 2-SAT 30.1 Introduction to the 2-SAT Problem	169 169 169 170
APPENDIX	173
A Common Running Times	174

1.1 Review of Proofs and Proof Techniques

The *unique factorization theorem* states that every positive number can be uniquely represented as a product of primes. More formally, it can be stated as follows.

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k , and positive integers e_1, e_2, \ldots, e_k such that

$$n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}$$

and any other expression of n as a product of primes is identical to this except, perhaps, for the order in which the factors are written.

Example. Prove that $\sqrt{2}$ is irrational using the unique factorization theorem.

Solution. Assume for the purpose of contradiction that $\sqrt{2}$ is rational. Then there are numbers a and b $(b \neq 0)$ such that

$$\sqrt{2} = \frac{a}{b}$$

Squaring both sides of the above equation gives

$$2 = \frac{a^2}{b^2}$$
$$a^2 = 2b^2$$

Let S(m) be the sum of the number of times each prime factor occurs in the unique factorization of m. Note that $S(a^2)$ and $S(b^2)$ is even. Why? Because the number of times that each prime factor appears in the prime factorization of a^2 and b^2 is exactly twice the number of times that it appears in the prime factorization of a and b. Then, $S(2b^2)$ must be odd. This is a contradiction as $S(a^2)$ is even and the prime factorization of a positive integer is unique.

Example. Prove or disprove that the sum of two irrational numbers is irrational.

Solution. The above statement is false. Consider the two irrational numbers, $\sqrt{2}$ and $-\sqrt{2}$. Their sum is 0 = 0/1, a rational number.

Example. Show that there exist irrational numbers x and y such that x^y is rational.

Solution. We know that $\sqrt{2}$ is an irrational number. Consider $\sqrt{2}^{\sqrt{2}}$.

Case I: $\sqrt{2}^{\sqrt{2}}$ is rational.

In this case we are done by setting $x = y = \sqrt{2}$.