



# datasheet

PRODUCT SPECIFICATION

1/4" color CMOS 5 megapixel (2592 x 1944) image sensor with improved OmniBSI-2™ technology

# Copyright @2013 OmniVision Technologies, Inc. All rights reserved.

This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

OmniVision Technologies, Inc. and all its affiliates disclaim all liability, including liability for infringement of any proprietary rights, relating to the use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

The information contained in this document is considered proprietary to OmniVision Technologies, Inc. and all its affiliates. This information may be distributed to individuals or organizations authorized by OmniVision Technologies, Inc. to receive said information. Individuals and/or organizations are not allowed to re-distribute said information.

#### Trademark Information

OmniVision and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. OmniBSI-2 is a trademark of OmniVision Technologies, Inc.

All other trademarks used herein are the property of their respective owners.

#### color CMOS 5 megapixel (2592 x 1944) image sensor with OmniBSI-2™ technology

datasheet (COB)
PRODUCT SPECIFICATION

version 2.21 june 2013

To learn more about OmniVision Technologies, visit www.ovt.com.

OmniVision Technologies is publicly traded on NASDAQ under the symbol OVTI.

# applications

- cellular and mobile phones
- digital still cameras (DSC)
- digital video camcorders (DVC)
- PC multimedia
- 3D camera

## ordering information

- **OV05693-G06H-3A** (color, chip probing, 180 µm backgrinding, reconstructed 8" wafer with good die)
- OV05693-G36H-3A (color, chip probing, 180 μm backgrinding, reconstructed 12" wafer with good die)

## features

- automatic black level calibration (ABLC)
- programmable controls for frame rate, mirror and flip, cropping, windowing, and scaling
- image quality controls: lens correction and defective pixel canceling
- supports output formats: 10-bit RAW RGB (MIPI)
- supports horizontal and vertical subsampling
- supports images sizes: 5 Mpixel, EIS1080p, 1080p, 720p, VGA, QVGA
- fast mode switching
- supports 3D applications

- support 2x2 binning, full scalar
- standard serial SCCB interface
- up to 2-lane MIPI serial output interface
- embedded 512 bytes one-time programmable (OTP) memory for part identification, etc.
- two on-chip phase lock loop (PLL)
- programmable I/O drive capability
- built-in 1.2V regulator for core
- built-in temperature sensor
- supports alternate row HDR timing

# key specifications (typical)

active array size: 2592 x 1944

power supply:

core: 1.16 ~ 1.32V analog: 2.6 ~ 3.0V I/O: 1.7 ~ 3.0V

power requirements:

active: 278 mW XSHUTDN: 1 µW

temperature range:

operating: -30°C to 70°C junction temperature (see table 8-2)

stable image: 0°C to 50°C junction temperature (see table 8-2)

output formats: 10-bit RGB RAW

lens size: 1/4"

■ input clock frequency: 6~27 MHz

 lens chief ray angle: 29.7° non-linear (see figure 10-2)

max S/N ratio: 37.1 dB

dynamic range: 68.0 dB @ 8x gain

maximum image transfer rate:

5 Mpixel: 30 fps (see table 2-1) EIS1080p: 30 fps (see table 2-1) 1080p: 30 fps (see table 2-1)

sensitivity: 1000 mV/Lux-sec

scan mode: progressivepixel size: 1.4 μm x 1.4 μm

■ dark current: 3.3 mV/sec @ 60°C junction temp

• image area: 3673.6 μm x 2738.4 μm

die dimensions: 5350 μm x 4800 μm (COB),
 5400 μm x 4850 μm (RW) (see section 9 for details)



note COB refers to whole wafers with known good die and RW refers to singulated good die on a reconstructed wafer. Die size differs between COB and RW.







# table of contents

| 1 signal descriptions                           | 1-1  |
|-------------------------------------------------|------|
| 2 system level description                      | 2-1  |
| 2.1 overview                                    | 2-1  |
| 2.2 architecture                                | 2-1  |
| 2.3 format and frame                            | 2-2  |
| 2.4 I/O control                                 | 2-4  |
| 2.5 MIPI interface                              | 2-6  |
| 2.6 VSYNC timing                                | 2-9  |
| 2.6.1 VSYNC modes                               | 2-9  |
| 2.6.2 VSYNC control                             | 2-10 |
| 2.7 external interface                          | 2-10 |
| 2.7.1 external components                       | 2-10 |
| 2.8 power management                            | 2-11 |
| 2.8.1 power up sequence                         | 2-11 |
| 2.8.2 power down sequence                       | 2-17 |
| 2.9 reset                                       | 2-24 |
| 2.9.1 power ON reset generation                 | 2-24 |
| 2.10 hardware and software standby              | 2-24 |
| 2.10.1 hardware standby                         | 2-24 |
| 2.10.2 software standby                         | 2-24 |
| 2.11 system clock control                       | 2-25 |
| 2.11.1 PLL configuration                        | 2-25 |
| 2.12 serial camera control bus (SCCB) interface | 2-26 |
| 2.12.1 data transfer protocol                   | 2-26 |
| 2.12.2 message format                           | 2-26 |
| 2.12.3 read / write operation                   | 2-27 |
| 2.12.4 SCCB timing                              | 2-30 |
| 2.12.5 group write                              | 2-31 |
| 3 block level description                       | 3-1  |
| 3.1 pixel array structure                       | 3-1  |
| 3.2 subsampling                                 | 3-2  |
| 3.3 alternate row HDR                           | 3-3  |



| 4 | imag | ge sensor core digital functions                  | 4-1  |
|---|------|---------------------------------------------------|------|
|   | 4.1  | mirror and flip                                   | 4-1  |
|   | 4.2  | image windowing                                   | 4-2  |
|   | 4.3  | test pattern                                      | 4-3  |
|   |      | 4.3.1 general color bar                           | 4-3  |
|   |      | 4.3.2 test pattern I and II (16 bar)              | 4-3  |
|   |      | 4.3.3 test pattern III and IV (horizontal fading) | 4-4  |
|   | 4.4  | black level calibration (BLC)                     | 4-4  |
|   | 4.5  | one time programmable (OTP) memory                | 4-5  |
|   |      | 4.5.1 OTP read/write timing requirements          | 4-5  |
|   | 4.6  | temperature sensor                                | 4-6  |
|   | 4.7  | strobe flash and frame exposure                   | 4-7  |
|   |      | 4.7.1 strobe flash control                        | 4-7  |
|   |      | 4.7.2 frame exposure (FREX) mode                  | 4-11 |
|   | 4.8  | 3D application capability                         | 4-17 |
|   | 4.9  | illumination control functions                    | 4-18 |
| 5 | imag | ge sensor processor digital functions             | 5-1  |
|   | 5.1  | ISP general controls                              | 5-1  |
|   | 5.2  | LENC                                              | 5-3  |
|   | 5.3  | defect pixel cancellation (DPC)                   | 5-8  |
|   | 5.4  | scalar                                            | 5-9  |
|   | 5.5  | white balance, exposure and gain control          | 5-11 |
|   |      | 5.5.1 manual white balance (MWB)                  | 5-11 |
|   |      | 5.5.2 manual exposure control (MEC)               | 5-12 |
|   |      | 5.5.3 manual gain control (MGC)                   | 5-13 |
|   | 5.6  | AVG                                               | 5-14 |
| 6 | syst | em control                                        | 6-1  |
|   | 6 1  | mobile industry processor interface (MIDI)        | 6-4  |



| 7 | register tables                                                               | 7-1  |
|---|-------------------------------------------------------------------------------|------|
|   | 7.1 system control [0x3001 - 0x303F]                                          | 7-1  |
|   | 7.2 PLL control [0x3080 - 0x30B6]                                             | 7-4  |
|   | 7.3 SCCB control [0x3100 - 0x3106]                                            | 7-6  |
|   | 7.4 group hold [0x3200 - 0x320F]                                              | 7-6  |
|   | 7.5 manual white balance (MWB) control [0x3400 - 0x3406]                      | 7-8  |
|   | 7.6 manual exposure control (MEC)/manual gain control (MGC) [0x3500 - 0x350B] | 7-9  |
|   | 7.7 ADC and analog [0x3600 - 0x3684]                                          | 7-10 |
|   | 7.8 sensor control [0x3700 - 0x377F]                                          | 7-11 |
|   | 7.9 PSRAM control [0x3780 - 0x37A3]                                           | 7-11 |
|   | 7.10 FREX control [0x37C5 - 0x37DF]                                           | 7-11 |
|   | 7.11 timing control [0x3800 - 0x382F]                                         | 7-13 |
|   | 7.12 strobe control [0x3B00 - 0x3B05]                                         | 7-16 |
|   | 7.13 illumination PWM control [0x3B40 - 0x3B51]                               | 7-16 |
|   | 7.14 OTP control [0x3D80 - 0x3D87]                                            | 7-18 |
|   | 7.15 BLC control [0x4000 - 0x4057]                                            | 7-19 |
|   | 7.16 frame control [0x4200 - 0x4202]                                          | 7-24 |
|   | 7.17 format control [0x4300 - 0x4316]                                         | 7-24 |
|   | 7.18 VFIFO control [0x4600 - 0x460D]                                          | 7-26 |
|   | 7.19 MIPI control [0x4800 - 0x4867]                                           | 7-27 |
|   | 7.20 temperature monitor [0x4D00 - 0x4D21]                                    | 7-36 |
|   | 7.21 ISP top [0x5000 - 0x5061]                                                | 7-36 |
|   | 7.22 scale control [0x5041, 0x5600 - 0x5608]                                  | 7-39 |
|   | 7.23 average control [0x5680 - 0x5688]                                        | 7-40 |
|   | 7.24 DPC control [0x5780 - 0x5791]                                            | 7-41 |
|   | 7.25 LENC [0x5800 - 0x5849]                                                   | 7-44 |
|   | 7.26 window control [0x5A00 - 0x5A0C]                                         | 7-47 |
|   | 7.27 gain format [0x5D00 - 0x5D01]                                            | 7-48 |
|   | 7.28 color bar/scalar control [0x5E00 - 0x5E24]                               | 7-49 |
| В | operating specifications                                                      | 8-1  |
|   | 8.1 absolute maximum ratings                                                  | 8-1  |
|   | 8.2 functional temperature                                                    | 8-1  |
|   | 8.3 DC characteristics                                                        | 8-2  |
|   | 8.4 timing characteristics                                                    | 8-3  |



| 9 mechanical specifications                          |      |  |  |  |  |
|------------------------------------------------------|------|--|--|--|--|
| 9.1 COB physical specifications                      | 9-1  |  |  |  |  |
| 9.2 reconstructed wafer (RW) physical specifications | 9-5  |  |  |  |  |
| 9.2.1 8" RW specifications                           | 9-5  |  |  |  |  |
| 9.2.2 12" RW specifications                          | 9-7  |  |  |  |  |
| 10 optical specifications                            | 10-1 |  |  |  |  |
| 10.1 sensor array center                             | 10-1 |  |  |  |  |
| 10.2 lens chief ray angle (CRA)                      | 10-2 |  |  |  |  |
| appendix A handling of RW devices                    | A-1  |  |  |  |  |
| A.1 ESD /EOS prevention                              | A-1  |  |  |  |  |
| A.2 particles and cleanliness of environment         | A-1  |  |  |  |  |
| A.3 other requirements                               | A-1  |  |  |  |  |



# list of figures

| figure 1-1  | pad diagram                                |      |  |  |  |  |
|-------------|--------------------------------------------|------|--|--|--|--|
| figure 2-1  | OV5693 block diagram                       |      |  |  |  |  |
| figure 2-2  | exposure/gain latch points                 | 2-3  |  |  |  |  |
| figure 2-3  | MIPI timing                                | 2-6  |  |  |  |  |
| figure 2-4  | VSYNC timing in mode 1                     | 2-9  |  |  |  |  |
| figure 2-5  | VSYNC timing in mode 2                     | 2-9  |  |  |  |  |
| figure 2-6  | VSYNC timing in mode 3                     | 2-9  |  |  |  |  |
| figure 2-7  | power up sequence (case 1)                 | 2-13 |  |  |  |  |
| figure 2-8  | power up sequence (case 2)                 | 2-14 |  |  |  |  |
| figure 2-9  | power up sequence (case 3)                 | 2-15 |  |  |  |  |
| figure 2-10 | power up sequence (case 4)                 | 2-16 |  |  |  |  |
| figure 2-11 | power down sequence (case 1)               | 2-19 |  |  |  |  |
| figure 2-12 | power down sequence (case 2)               | 2-20 |  |  |  |  |
| figure 2-13 | power down sequence (case 3)               | 2-21 |  |  |  |  |
| figure 2-14 | power down sequence (case 4)               | 2-22 |  |  |  |  |
| figure 2-15 | standby timing (case 1)                    | 2-23 |  |  |  |  |
| figure 2-16 | standby timing (case 2)                    | 2-23 |  |  |  |  |
| figure 2-17 | OV5693 PLL1 and PLL2 clock diagram         | 2-25 |  |  |  |  |
| figure 2-18 | message type                               | 2-26 |  |  |  |  |
| figure 2-19 | SCCB single read from random location      | 2-27 |  |  |  |  |
| figure 2-20 | SCCB single read from current location     | 2-27 |  |  |  |  |
| figure 2-21 | SCCB sequential read from random location  | 2-28 |  |  |  |  |
| figure 2-22 | SCCB sequential read from current location | 2-28 |  |  |  |  |
| figure 2-23 | SCCB single write to random location       | 2-29 |  |  |  |  |
| figure 2-24 | SCCB sequential write to random location   | 2-29 |  |  |  |  |
| figure 2-25 | SCCB interface timing                      | 2-30 |  |  |  |  |
| figure 3-1  | sensor array region color filter layout    | 3-1  |  |  |  |  |
| figure 3-2  | example of 2x2 binning 3-2                 |      |  |  |  |  |
| figure 3-3  | alternate row HDR 3-3                      |      |  |  |  |  |
| figure 3-4  | HDR output timing                          | 3-3  |  |  |  |  |
| figure 4-1  | mirror and flip samples                    | 4-1  |  |  |  |  |
| figure 4-2  | image windowing                            |      |  |  |  |  |



|      | figure 4-3  | test pattern                                   | 4-3  |
|------|-------------|------------------------------------------------|------|
|      | figure 4-4  | xenon flash mode                               | 4-7  |
|      | figure 4-5  | LED 1 & 2 mode - one pulse output              | 4-8  |
|      | figure 4-6  | LED 1 & 2 mode - multiple pulse output         | 4-9  |
|      | figure 4-7  | LED 3 mode                                     | 4-9  |
|      | figure 4-8  | LED 4 mode                                     | 4-10 |
|      | figure 4-9  | FREX mode 1                                    | 4-11 |
|      | figure 4-10 | FREX mode 2                                    | 4-11 |
|      | figure 4-11 | FREX mode 1 timing diagram                     | 4-12 |
|      | figure 4-12 | FREX mode 2 (shutter delay = 0) timing diagram | 4-12 |
|      | figure 4-13 | block diagram of 3D applications               | 4-17 |
|      | figure 5-1  | control points of luminance and color channels | 5-3  |
|      | figure 5-2  | luminance compensation level calculation       | 5-4  |
|      | figure 5-3  | scaling function                               | 5-9  |
|      | figure 9-1  | COB die specifications                         | 9-1  |
|      | figure 9-2  | OV56938" RW physical diagram                   | 9-6  |
|      | figure 9-3  | OV5693 12" RW physical diagram                 | 9-8  |
|      | figure 10-1 | sensor array center                            | 10-1 |
|      | figure 10-2 | chief ray angle (CRA)                          | 10-2 |
|      |             |                                                |      |
|      |             |                                                |      |
|      |             |                                                |      |
|      |             |                                                |      |
|      |             |                                                |      |
|      |             |                                                |      |
|      |             |                                                |      |
|      |             |                                                |      |
| -18, |             |                                                |      |
| 10.  |             |                                                |      |



# list of tables

| table 1-1  | signal descriptions                                                     | 1-1  |
|------------|-------------------------------------------------------------------------|------|
| table 1-2  | configuration under various conditions                                  | 1-3  |
| table 1-3  | pad symbol and equivalent circuit                                       | 1-5  |
| table 2-1  | MIPI supported frame and frame rate                                     | 2-2  |
| table 2-2  | MIPI supported format and frame (using 2 lanes, 900 Mbps max data rate) | 2-3  |
| table 2-3  | I/O control registers                                                   | 2-4  |
| table 2-4  | MIPI timing specifications                                              | 2-6  |
| table 2-5  | VSYNC control registers                                                 | 2-10 |
| table 2-6  | power up sequence                                                       | 2-11 |
| table 2-7  | power up sequence timing constraints                                    | 2-12 |
| table 2-8  | power down sequence                                                     | 2-17 |
| table 2-9  | power down sequence timing constraints                                  | 2-18 |
| table 2-10 | sample PLL configuration                                                | 2-25 |
| table 2-11 | SCCB interface timing specifications                                    | 2-30 |
| table 2-12 | context switching control                                               | 2-31 |
| table 3-1  | binning-related registers                                               | 3-2  |
| table 3-2  | HDR control registers                                                   | 3-3  |
| table 4-1  | mirror and flip registers                                               | 4-1  |
| table 4-2  | image windowing control functions                                       | 4-2  |
| table 4-3  | general color bar selection control                                     | 4-3  |
| table 4-4  | test pattern I and II selection control                                 | 4-3  |
| table 4-5  | test pattern III and IV selection control                               | 4-4  |
| table 4-6  | BLC control functions                                                   | 4-4  |
| table 4-7  | OTP control functions                                                   | 4-5  |
| table 4-8  | temperature sensor functions                                            | 4-6  |
| table 4-9  | flashlight modes                                                        | 4-7  |
| table 4-10 | LED strobe control registers                                            | 4-13 |
| table 4-11 | FREX strobe control registers                                           | 4-14 |
| table 4-12 | vertical signal synchronize control registers                           | 4-17 |
| table 4-13 | illumination control functions                                          | 4-18 |
| table 5-1  | ISP top registers                                                       | 5-1  |
| table 5-2  | LENC registers                                                          | 5-4  |



|     | table 5-3  | DPC register                  | 5-8  |
|-----|------------|-------------------------------|------|
|     | table 5-4  | scalar control registers      | 5-9  |
|     | table 5-5  | MWB control registers         | 5-11 |
|     | table 5-6  | MEC control registers         | 5-12 |
|     | table 5-7  | MGC control registers         | 5-13 |
|     | table 5-8  | AVG control registers         | 5-14 |
|     | table 6-1  | system control registers      | 6-1  |
|     | table 6-2  | MIPI control registers        | 6-4  |
|     | table 7-1  | system control registers      | 7-1  |
|     | table 7-2  | PLL registers                 | 7-4  |
|     | table 7-3  | SCCB registers                | 7-6  |
|     | table 7-4  | group hold registers          | 7-6  |
|     | table 7-5  | MWB control registers         | 7-8  |
|     | table 7-6  | MEC/MGC registers             | 7-9  |
|     | table 7-7  | ADC and analog registers      | 7-10 |
|     | table 7-8  | sensor control registers      | 7-11 |
|     | table 7-9  | PSRAM control registers       | 7-11 |
|     | table 7-10 | FREX control registers        | 7-11 |
|     | table 7-11 | timing control registers      | 7-13 |
|     | table 7-12 | strobe control registers      | 7-16 |
| 6.0 | table 7-13 | illumination PWM registers    | 7-16 |
|     | table 7-14 | OTP control registers         | 7-18 |
|     | table 7-15 | BLC control registers         | 7-19 |
|     | table 7-16 | frame control registers       | 7-24 |
|     | table 7-17 | format control registers      | 7-24 |
|     | table 7-18 | VFIFO control registers       | 7-26 |
|     | table 7-19 | MIPI control registers        | 7-27 |
| IP  | table 7-20 | temperature monitor registers | 7-36 |
| D.  | table 7-21 | ISP top registers             | 7-36 |
|     | table 7-22 | scale control registers       | 7-39 |
|     | table 7-23 | average control registers     | 7-40 |
|     | table 7-24 | DPC control registers         | 7-41 |
|     | table 7-25 | LENC registers                | 7-44 |
|     | table 7-26 | window control registers      | 7-47 |
|     | table 7-27 | gain format registers         | 7-48 |



| table 7-28 | color bar/scalar control registers     | 7-49 |
|------------|----------------------------------------|------|
| table 8-1  | absolute maximum ratings               | 8-1  |
| table 8-2  | functional temperature                 | 8-1  |
| table 8-3  | DC characteristics (-30°C < TJ < 70°C) | 8-2  |
| table 8-4  | timing characteristics                 | 8-3  |
| table 9-1  | pad location coordinates               | 9-2  |
| table 9-2  | 8" RW physical dimensions              | 9-5  |
| table 9-3  | 12" RW physical dimensions             | 9-7  |
| table 10-1 | CRA versus image height plot           | 10-2 |







# signal descriptions

table 1-1 lists the signal descriptions and their corresponding pad numbers for the OV5693 image sensor. The die information is shown in section 9.

signal descriptions (sheet 1 of 3) table 1-1

| pad<br>number | signal name | pad<br>type | description                                                   |
|---------------|-------------|-------------|---------------------------------------------------------------|
| 01            | SID         | input       | SCCB address selection (0x6C if SID = 0, and 0x20 if SID = 1) |
| 02            | DOGND       | ground      | I/O ground                                                    |
| 03            | DVDD        | power       | digital circuit power                                         |
| 04            | PVDD        | power       | PLL analog power                                              |
| 05            | AVDD        | power       | analog power                                                  |
| 06            | AGND        | ground      | analog ground                                                 |
| 07            | DOGND       | ground      | I/O ground                                                    |
| 08            | PWDNB       | input       | power down (active low)                                       |
| 09            | DVDD        | power       | digital circuit power                                         |
| 10            | XSHUTDN     | input       | reset and power down (active low with pull down resistor)     |
| 11            | RGPD        | input       | power down regulator (active high with pull down resistor)    |
| 12            | SIOC        | input       | SCCB interface input clock                                    |
| 13            | SIOD        | I/O         | SCCB interface data pin                                       |
| 14            | NC          | _           | no connect                                                    |
| 15            | FSIN        | I/O         | frame sync                                                    |
| 16            | FREX        | I/O         | frame exposure input / mechanical shutter output              |
| 17            | GPIO        | I/O         | general purpose I/O                                           |
| 18            | NC          | _           | no connect                                                    |
| 19            | NC          | _           | no connect                                                    |
| 20            | NC          | _           | no connect                                                    |
| 21            | NC          | _           | no connect                                                    |
| 22            | DOVDD       | power       | I/O power                                                     |
| 23            | DOVDD       | power       | I/O power                                                     |
| 24            | DOGND       | ground      | I/O ground                                                    |
| 25            | DOGND       | ground      | I/O ground                                                    |
|               |             |             |                                                               |



table 1-1 signal descriptions (sheet 2 of 3)

|       | table I I     | signal descrip | rttoris (sileet 2 | .013)                                           |
|-------|---------------|----------------|-------------------|-------------------------------------------------|
|       | pad<br>number | signal name    | pad<br>type       | description                                     |
|       | 26            | DVDD           | power             | digital circuit power                           |
|       | 27            | NC             | _                 | no connect                                      |
|       | 28            | NC             | _                 | no connect                                      |
|       | 29            | ATEST          | I/O               | analog test pin                                 |
|       | 30            | AGND           | ground            | analog ground                                   |
|       | 31            | AVDD           | power             | analog power                                    |
|       | 32            | AGND           | ground            | analog ground                                   |
|       | 33            | AVDD           | power             | analog power                                    |
|       | 34            | DOGND          | ground            | I/O ground                                      |
|       | 35            | DVDD           | power             | digital circuit power                           |
|       | 36            | TM             | input             | test mode (active high with pull down resistor) |
|       | 37            | MDN1           | output            | MIPI data negative output 1                     |
|       | 38            | MDP1           | output            | MIPI data positive output 1                     |
|       | 39            | EVDD           | power             | MIPI power                                      |
|       | 40            | EGND           | ground            | MIPI ground                                     |
| 4     | 41            | MCN            | output            | MIPI clock negative output                      |
|       | 42            | MCP            | output            | MIPI clock positive output                      |
|       | 43            | MDN0           | output            | MIPI data negative output 0                     |
|       | 44            | MDP0           | output            | MIPI data positive output 0                     |
|       | 45            | EGND           | ground            | MIPI ground                                     |
|       | 46            | PVDD           | power             | PLL analog power                                |
|       | 47            | DOGND          | ground            | I/O ground                                      |
| 0     | 48            | XVCLK          | input             | system clock input                              |
| " Oly | 49            | VSYNC          | I/O               | video output vertical signal                    |
|       | 50            | HREF           | I/O               | video output horizontal signal                  |
|       | 51            | ILPWM          | output            | mechanical shutter output indicator             |
|       | 52            | DVDD           | power             | digital circuit power                           |
|       | 53            | DVDD           | power             | digital circuit power                           |
|       | 54            | DVDD           | power             | digital circuit power                           |
|       | 55            | DOVDD          | power             | I/O power                                       |



signal descriptions (sheet 3 of 3) table 1-1

|               |             | •           |                                 |
|---------------|-------------|-------------|---------------------------------|
| pad<br>number | signal name | pad<br>type | description                     |
| 56            | DOVDD       | power       | I/O power                       |
| 57            | DOVDD       | power       | I/O power                       |
| 58            | STROBE      | output      | frame exposure output indicator |
| 59            | DOGND       | ground      | I/O ground                      |
| 60            | AVDD        | power       | analog power                    |
| 61            | AGND        | ground      | analog ground                   |
| 62            | AVDD        | power       | analog power                    |
| 63            | AGND        | ground      | analog ground                   |
| 64            | VH          | reference   | internal reference              |
| 65            | VN1         | reference   | internal reference              |
| 66            | VN0         | reference   | internal reference              |
|               |             |             |                                 |

configuration under various conditions (sheet 1 of 2) table 1-2

| pad<br>number | signal name | RESET <sup>a</sup> | after RESET<br>release <sup>b</sup> | software standby <sup>c</sup>       | hardware standby <sup>d</sup><br>(PWDNB = 0) |
|---------------|-------------|--------------------|-------------------------------------|-------------------------------------|----------------------------------------------|
| 01            | SID         | input              | input                               | input                               | input                                        |
| 08            | PWDNB       | input              | input                               | input                               | input                                        |
| 10            | XSHUTDN     | input              | input                               | input                               | input                                        |
| 11            | RGPD        | input              | input                               | input                               | input                                        |
| 12            | SIOC        | high-z             | input                               | input                               | high-z                                       |
| 13            | SIOD        | high-z             | open drain                          | open drain                          | high-z                                       |
| 15            | FSIN        | high-z             | high-z                              | high-z by default<br>(configurable) | high-z by default<br>(configurable)          |
| 16            | FREX        | high-z             | high-z                              | high-z by default<br>(configurable) | high-z by default<br>(configurable)          |
| 17            | GPIO        | high-z             | high-z                              | high-z by default<br>(configurable) | high-z by default<br>(configurable)          |
| 29            | ATEST       | high-z             | high-z                              | high-z                              | high-z                                       |
| 36            | TM          | input              | input                               | input                               | input                                        |



table 1-2 configuration under various conditions (sheet 2 of 2)

|              |               | offer DECET        |                                     |                                     | la cuali vicus cata malla           |
|--------------|---------------|--------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| pad<br>numbe | r signal name | RESET <sup>a</sup> | after RESET<br>release <sup>b</sup> | software standby <sup>c</sup>       | hardware stand<br>(PWDNB = 0)       |
| 37           | MDN1          | high-z             | LP0                                 | LP1 by default (configurable)       | LP1 by default (configurable)       |
| 38           | MDP1          | high-z             | LP0                                 | LP1 by default (configurable)       | LP1 by default (configurable)       |
| 41           | MCN           | high-z             | high-z                              | LP1 by default (configurable)       | LP1 by default (configurable)       |
| 42           | MCP           | high-z             | high-z                              | LP1 by default (configurable)       | LP1 by default (configurable)       |
| 43           | MDN0          | high-z             | LP0                                 | LP1 by default (configurable)       | LP1 by default (configurable)       |
| 44           | MDP0          | high-z             | LP0                                 | LP1 by default (configurable)       | LP1 by default (configurable)       |
| 48           | XVCLK         | input              | input                               | input                               | high-z                              |
|              | VSYNC         | high-z             | high-z                              | high-z by default<br>(configurable) | high-z by default<br>(configurable) |
| 50           | HREF          | high-z             | high-z                              | high-z by default (configurable)    | high-z by default<br>(configurable) |
| 51           | ILPWM         | high-z             | LP0                                 | LP0 by default (configurable)       | LP0 by default (configurable)       |
| 58           | STROBE        | high-z             | LP0                                 | LP0 by default (configurable)       | LP0 by default (configurable)       |
| 64           | VH            | high-z             | high-z                              | high-z                              | high-z                              |
| 04           |               |                    |                                     | high =                              | high-z                              |
| 65           | VN1           | high-z             | high-z                              | high-z                              | nign-z                              |



after RESET release means all power including digital core are up

d. hardware standby occurs after sensor streaming

figure 1-1 pad diagram



table 1-3 pad symbol and equivalent circuit (sheet 1 of 2)





table 1-3 pad symbol and equivalent circuit (sheet 2 of 2)

|      | pad symbol and eq                                      | uivalent circuit (sneet 2 of 2) |
|------|--------------------------------------------------------|---------------------------------|
|      | symbol                                                 | equivalent circuit              |
|      | VSYNC, HREF, STROBE, ILPWM,<br>FREX, FSIN, GPIO        | DOVDD PAD PAD DOGND PD DIN      |
|      | AVDD, EVDD, DOVDD, DVDD,<br>PVDD                       | DOGND DOGND                     |
|      | PWDNB                                                  | DOVDD DOVDD  PAD  DOGND         |
| Ċ    | SID, TM, RGPD, XSHUTDN                                 | DOGND DOGND                     |
|      | VN1, VN0, VH                                           | PAD DOGND DOGND                 |
| C    | MCP, MCN, MDP0, MDN0, MDP1,<br>MDN1, EGND, AGND, DOGND | DOGND DOGND                     |
| "Olk |                                                        |                                 |



# 2 system level description

#### 2.1 overview

The OV5693 RAW RGB image sensor is a low voltage, high performance 1/4-inch 5 megapixel CMOS image sensor that provides the functionality of a single 5 megapixel (2592x1944) camera using improved OmniBSI-2™ technology. It provides full-frame, sub-sampled, windowed, and scaled 10-bit MIPI images in various formats via the control of the Serial Camera Control Bus (SCCB) interface.

The OV5693 has an image array capable of operating at up to 30 frames per second (fps) in 10-bit 5 Mpixel resolution with complete user control over image quality, formatting and output data transfer. All required image processing functions, including exposure control, white balance, defective pixel canceling, etc., are programmable through the SCCB interface.

In addition, OmniVision image sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, etc., to produce a clean, fully stable, color image.

For customized information purposes, the OV5693 includes one-time programmable (OTP) memory. The OV5693 has two lanes of MIPI interface.

#### 2.2 architecture

The OV5693 sensor core generates streaming pixel data at a constant frame rate. **figure 2-1** shows the functional block diagram of the OV5693 image sensor.

The timing generator outputs clocks to access the rows of the imaging array, precharging and sampling the rows of the array sequentially. In the time between precharging and sampling a row, the charge in the pixels decrease with exposure to incident light. This is the exposure time in rolling shutter architecture.

The exposure time is controlled by adjusting the time interval between precharging and sampling. After the data of the pixels in the row has been sampled, it is processed through analog circuitry to correct the offset and multiply the data with corresponding gain. Following analog processing is the ADC which outputs 10-bit data for each pixel in the array.





**figure 2-1** OV5693 block diagram

# 2.3 format and frame

The OV5693 supports RAW RGB output with 1/2 lane MIPI interface.

table 2-1 MIPI supported frame and frame rate

| format          | resolution | max frame rate with MIPI | methodology                  |
|-----------------|------------|--------------------------|------------------------------|
| full resolution | 2592x1944  | 30 fps                   | full                         |
| EIS1080p        | 2112x1188  | 30 fps                   | cropping + scaling           |
| 1080p           | 1920x1080  | 30 fps                   | cropping + scaling           |
| 1536x864        | 1536x864   | 30 fps                   | cropping + scaling           |
| 720p            | 1280x720   | 60 fps / 120 fps         | cropping + binning           |
| VGA             | 640x480    | 90 fps / 120 fps         | cropping + binning + scaling |
| QVGA            | 320x240    | 200 fps                  | cropping + binning + scaling |



table 2-2 MIPI supported format and frame (using 2 lanes, 900 Mbps max data rate)

| resolution                        | frame rate | description                 |
|-----------------------------------|------------|-----------------------------|
| 4:3 full resolution (5 megapixel) | 30 fps     | full frame                  |
| 16:9 full resolution (cropped)    | 30 fps     | crop+scale 1.23 (2592x1458) |
| 16:9 1080p using scalar           | 30 fps     | crop+scale (2592x1458)      |
| 16:9 720p using scalar            | 60 fps     | crop+scale (2592x1458)      |

figure 2-2 exposure/gain latch points



 $\textbf{note 1} \quad \text{VTS = total vertical size in units of lines (refer to registers 0x380E, 0x380F)}$ 

**note 2** VH = vertical endpoint (refer to registers 0x3806, 0x3807)

5690\_5693\_DS\_2\_2



# 2.4 I/O control

table 2-3 I/O control registers (sheet 1 of 2)

|    | function                        | register | descriptio | n                                                                                                          |
|----|---------------------------------|----------|------------|------------------------------------------------------------------------------------------------------------|
|    | output drive capability control | 0x3001   | Bit[6:5]:  | pad I/O drive capability 00: 1x 01: 2x 10: 3x 11: 4x                                                       |
|    | VSYNC I/O control               | 0x3002   | Bit[7]:    | input/output control for VSYNC pad 0: input 1: output                                                      |
|    | VSYNC output select             | 0x3024   | Bit[7]:    | output selection for VSYNC pad 0: normal data path (vertical sync signal) 1: register control value        |
|    | VSYNC output value              | 0x3006   | Bit[7]:    | VSYNC output value                                                                                         |
|    | ILPWM I/O control               | 0x3002   | Bit[1]:    | input/output control for ILPWM pad 0: input 1: output                                                      |
|    | ILPWM output select             | 0x3024   | Bit[1]:    | output selection for ILPWM pad 0: normal data path (illumination control signal) 1: register control value |
|    | ILPWM output value              | 0x3006   | Bit[1]:    | ILPWM output value                                                                                         |
| K  | FREX I/O control                | 0x3002   | Bit[4]:    | input/output control for FREX pad 0: input 1: output                                                       |
|    | FREX output select              | 0x3024   | Bit[4]:    | output selection for FREX pad 0: normal data path 1: register control value                                |
|    | FREX output value               | 0x3006   | Bit[4]:    | FREX output value                                                                                          |
|    | STROBE I/O control              | 0x3002   | Bit[3]:    | input/output control for STROBE pad 0: input 1: output                                                     |
| U. | STROBE output select            | 0x3024   | Bit[3]:    | output selection for STROBE pad 0: normal data path 1: register control value                              |
|    | STROBE output value             | 0x3006   | Bit[3]:    | STROBE output value                                                                                        |
|    | HREF I/O control                | 0x3002   | Bit[6]:    | input/output control for HREF pad 0: input 1: output                                                       |



I/O control registers (sheet 2 of 2) table 2-3

| function           | register | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
|--------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| HREF output select | 0x3024   | Bit[6]: output selection for HREF pad<br>0: normal data path (horizontal sync signs of the second selection for HREF pad the selection for the selecti | gnal)      |
| HREF output value  | 0x3006   | Bit[6]: HREF output value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| FSIN I/O control   | 0x3002   | Bit[2]: input/output control for FSIN pad<br>0: input<br>1: output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| FSIN output select | 0x3024   | Bit[2]: output selection for FSIN pad 0: normal data path (illumination control 1: register control value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ol signal) |
| FSIN output value  | 0x3006   | Bit[2]: FSIN output value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| GPIO I/O control   | 0x3002   | Bit[0]: input/output control for GPIO pad<br>0: input<br>1: output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| GPIO output select | 0x3024   | Bit[0]: output selection for GPIO pad 0: normal data path 1: register control value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| GPIO output value  | 0x3006   | Bit[0]: GPIO output value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |



## 2.5 MIPI interface

The OV5693 supports one and two lane MIPI transmitter interface with up to 900 Mbps per lane MIPI interface.

figure 2-3 MIPI timing



table 2-4 MIPI timing specifications (sheet 1 of 3)

| mode        | timing                      |
|-------------|-----------------------------|
|             | (1) 3325350tp<br>(2) 1219tp |
|             | (3) 23561tp                 |
|             | (4) 1678tp                  |
| 5 Megapixel | (5) 42001tp                 |
| 2592x1944   | (6) 1532tp                  |
| 30 fps      | (7) 34tp                    |
|             | (8) -203tp                  |
|             | (9) 46tp                    |
|             | where tp = Tsclk            |



MIPI timing specifications (sheet 2 of 3) table 2-4

| mode                                                      | timing                                                                                                                                 |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| EIS1080p<br>2592x1944 => 2112x1188 (crop+scale)<br>30 fps | (1) 3325350tp<br>(2) 1219tp<br>(3) 11829tp<br>(4) 1676tp or 3352tp<br>(5) 870488tp<br>(6) 1355tp<br>(7) 34tp<br>(8) -203tp<br>(9) 46tp |
|                                                           | where tp = Tsclk                                                                                                                       |
| 1080p<br>2592x1944 => 1920x1080 (crop+scale)<br>30 fps    | (1) 3325350tp<br>(2) 1219tp<br>(3) 11833tp<br>(4) 1676tp or 3352tp<br>(5) 880tp<br>(6) 1235tp<br>(7) 34tp<br>(8) -203tp<br>(9) 46tp    |
|                                                           | (1) 3328360tp                                                                                                                          |
| 1536x864<br>2592x1944 => 1536x864 (crop+scale)<br>30 fps  | (2) 1219tp<br>(3) 15636tp<br>(4) 2220tp or 4440tp<br>(5) 64171tp<br>(6) 995tp<br>(7) 34tp<br>(8) -203tp<br>(9) 46tp                    |
|                                                           | where tp = Tsclk                                                                                                                       |
| 720p<br>2592x1944 => 1280x720 (crop+binningx2)<br>60 fps  | (1) 1664655tp (2) 1219tp (3) 29988tp (4) 2190tp (5) 57682tp (6) 835tp (7) 34tp (8) -203tp (9) 46tp                                     |
| 2592x1944 => 1280x720 (crop+binningx2)                    | (2) 1219tp<br>(3) 29988tp<br>(4) 2190tp<br>(5) 57682tp<br>(6) 835tp<br>(7) 34tp<br>(8) -203tp                                          |



table 2-4 MIPI timing specifications (sheet 3 of 3)

| mode                                                   | timing                                                                                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| VGA<br>1280x960 => 640x480 (crop+bin+skip)<br>90 fps   | (1) 83214tp<br>(2) 1219tp<br>(3) 11885tp<br>(4) 1620tp<br>(5) 43044tp<br>(6) 435tp<br>(7) 34tp<br>(8) -203tp<br>(9) 46tp |
|                                                        | where tp = Tsclk                                                                                                         |
| QVGA<br>1280x960 => 320x240 (crop+bin+skip)<br>200 fps | (1) 83214tp (2) 1219tp (3) 11892tp (4) 3238tp (5) 39998tp (6) 235tp (7) 34tp (8) -203tp (9) 46tp                         |
|                                                        | where tp = Tsclk                                                                                                         |



# 2.6 VSYNC timing

#### 2.6.1 VSYNC modes

The VSYNC rising edge delay is controlled by register vsync\_delay ({0x4314, 0x4315, 0x4316}) in all three VSYNC modes. VSYNC width is controlled by register vsync\_width\_pixel ({0x4311, 0x4312}) for VSYNC modes 1 and 2.

Note that VSYNC timing in mode 3 is a long VSYNC mode. The register vsync\_width\_pixel ({0x4311, 0x4312}) controls VSYNC falling edge differently.

#### 2.6.1.1 VSYNC mode 1

In mode 1, VSYNC is generated by the internal start of frame (SOF) signal (see figure 2-4).

figure 2-4 VSYNC timing in mode 1



#### 2.6.1.2 VSYNC mode 2

In mode 2, VSYNC is generated by the internal end of frame (EOF) signal (see figure 2-5).

VSYNC timing in mode 2 figure 2-5



### 2.6.1.3 VSYNC mode 3

In mode 3, VSYNC is generated by EOF and SOF (see figure 2-6).

VSYNC timing in mode 3





#### 2.6.2 VSYNC control

There are two registers used to control VSYNC width. They are organized as follows: {0x4311, 0x4312} which controls the VSYNC width in units of pixel cycles.

For example, if registers {0x4311, 0x4312} = 0x08, VSYNC width is 8 pixel cycles in full size mode.

## 2.6.2.1 adjusting VSYNC position

There are three registers used to control the VSYNC position in reference to EOF/SOF. They are 0x4314, 0x4315, and 0x4316. These registers control the latency between EOF/SOF and VSYNC.

VSYNC control registers table 2-5

| address | register name | default<br>value | R/W | description                                                                                                                              |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4311  | VSYNC_WIDTH_H | 0x04             | RW  | Bit[7:0]: VSYNC width[15:8] (in terms of pixel numbers) high byte                                                                        |
| 0x4312  | VSYNC_WIDTH_L | 0x00             | RW  | Bit[7:0]: VSYNC width[7:0] (in terms of pixel numbers) low byte                                                                          |
| 0x4313  | VSYNC_CTRL    | 0x00             | RW  | Bit[4]: VSYNC polarity Bit[3:2]: VSYNC output select 00: VSYNC output 11: Bypass EOF to output Bit[1]: VSYNC mode 3 Bit[0]: VSYNC mode 2 |
| 0x4314  | VSYNC_DELAY1  | 0x00             | RW  | Bit[7:0]: VSYNC trigger signal to VSYNC output delay[23:16]                                                                              |
| 0x4315  | VSYNC_DELAY2  | 0x01             | RW  | Bit[7:0]: VSYNC trigger signal to VSYNC output delay[15:8]                                                                               |
| 0x4316  | VSYNC_DELAY3  | 0x00             | RW  | Bit[7:0]: VSYNC trigger signal to VSYNC output delay[7:0]                                                                                |

# 2.7 external interface

## 2.7.1 external components

Image sensor power is provided from a 2.8V (typical) power circuit from the system power supply. An internal regulator provides 1.2V for core logic from I/O power (DOVDD). A typical I/O pad power supports 1.8V.



# 2.8 power management

#### 2.8.1 power up sequence

The OV5693 can use either the internal regulator or an external power supply to provide digital core 1.2V DVDD. When an external 1.2V is used to provide DVDD power, RGPD must be pulled to DOVDD which is used to disable the internal regulator to avoid any unstable conflict between the external DVDD and output of the internal regulator. At the same time, the internal regulator must be turned off by a control register.

To avoid any glitch from a strong external noise source, OmniVision recommends controlling XSHUTDN or PWDNB by GPIO and tying the other pin to DOVDD.

Whether or not XSHUTDN is controlled by GPIO, the XSHUTDN rising cannot occur before AVDD or DOVDD.

table 2-6 power up sequence

| case | DVDD     | RGPD  | XSHUTDN | PWDNB | power up sequence requirement                                                                                                                                                                          |
|------|----------|-------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | internal | DGND  | GPIO    | DOVDD | Refer to figure 2-7  1. AVDD rising can occur before or after DOVDD rising as long as they are before XSHUTDN rising 2. XSHUTDN is pulled up after AVDD and DOVDD are stable                           |
| 2    | internal | DGND  | DOVDD   | GPIO  | Refer to figure 2-8  1. AVDD rising occurs before DOVDD rising 2. PWDNB rising occurs after DOVDD rising                                                                                               |
| 3    | external | DOVDD | GPIO    | DOVDD | Refer to figure 2-9  1. DOVDD rising must occur before external DVDD rising  2. AVDD rising can occur before or after DOVDD rising  3. XSHUTDN rising must occur after AVDD, DOVDD and DVDD are stable |
| 4    | external | DOVDD | DOVDD   | GPIO  | Refer to figure 2-10  1. AVDD rising occurs before DOVDD rising 2. DOVDD rising occurs before DVDD 3. PWDNB rising occurs after DVDD rising                                                            |



table 2-7 power up sequence timing constraints

| constraint                                                           | label           | min                              | max | unit         |
|----------------------------------------------------------------------|-----------------|----------------------------------|-----|--------------|
| AVDD rising – DOVDD rising                                           | t0              | 0                                | ∞   | ns           |
| DOVDD rising – AVDD rising                                           | t1              |                                  |     | ns           |
| AVDD or DOVDD rising, whichever is last – XSHUTDN rising             | t2              | 0.0                              |     | ns           |
| XSHUTDN rising – first CCI transaction                               | t3 <sup>a</sup> | 8192                             |     | XVCLK cycles |
| minimum number of XVCLK cycles prior to the first CCI transaction    | t4              | 8192                             |     | XVCLK cycles |
| PLL start up/lock time                                               | t5              |                                  | 0.2 | ms           |
| entering streaming mode – first<br>frame start sequence (fixed part) | t6              |                                  | 10  | ms           |
| entering streaming mode – first frame start sequence (variable part) | t7              | delay is the exposure time value |     | lines        |

a. when using the internal DVDD, an additional 1ms must be added to t3 to wait for SCCB to become stable





figure 2-7 power up sequence (case 1)



5693 DS 2 7

proprietary to OmniVision Technologies

06.12.2013

hardware **STATE** power off software standby streaming (active) standby DOVDD **XSHUTDN** (connect to DOVDD) t0 AVDD - t6 (fixed) (AVDD rising first) t2 **PWDNB** (variable) t3 (free running) **XVCLK** (gated) XVCLK may either be free running or gated. the requirement is that XVCLK must be active for time t4 prior to the first SCCB transaction. SIOD **←** t5 SIOC LP+11 high-z  $\mathcal{M}$ MCP/MCN MIPI high-z LP-11 <del>յուլիոսիոսիոս</del> LP-01 MDP/MDN LP-00 frame counter 0xFF 0x00 register 5693\_DS\_2\_8

figure 2-8 power up sequence (case 2)











figure 2-10 power up sequence (case 4)



### 2.8.2 power down sequence

The digital and analog supply voltages can be powered down in any order (e.g. DOVDD, then AVDD or AVDD, then DOVDD). Similar to the power up sequence, the XVCLK input clock may be either gated or continuous. If the SCCB command to exit streaming is received while a frame of MIPI data is being output, then the sensor must wait to the MIPI frame end code before entering software standby mode.

If the SCCB command to exit streaming mode is received during the inter frame time, then the sensor must enter software standby mode immediately.

Power down cases 1~4 corresponds to power up sequences 1~4, respectively.

table 2-8 power down sequence

| case | DVDD     | XSHUTDN | PWDNB | power down sequence requirement                                                                                                                                                                                                                                |
|------|----------|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | internal | GPIO    | DOVDD | Refer to figure 2-11 1. software standby recommended 2. pull XSHUTDN low for minimum power consumption 3. AVDD and DOVDD may fall in any order                                                                                                                 |
| 2    | internal | DOVDD   | GPIO  | Refer to figure 2-12 1. software standby recommended 2. pull PWDNB low for low power consumption 3. pull DOVDD low for minimum power consumption or power off (XSHUTDN is connected to DOVDD) 4. pull AVDD low                                                 |
| 3    | external | GPIO    | DOVDD | Refer to figure 2-13  1. software standby recommended  2. pull XSHUTDN low for low power consumption  3. cut off DVDD, then it will be in hardware standby state for minimum power consumption  4. pull AVDD and DOVDD low in any order                        |
| 4    | external | DOVDD   | GPIO  | Refer to figure 2-14  1. software standby recommended  2. pull PWDNB low for low power consumption  3. cut off DVDD, then it will be in hardware standby mode with minimum power consumption  4. pull DOVDD low (XSHUTDN connected to DOVDD)  5. pull AVDD low |



table 2-9 power down sequence timing constraints

| constraint                                                                | label  | min                                                                                                                                                                          | max | unit         |
|---------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|
| enter software standby SCCB command device in software standby mode       |        | when a frame of MIPI data is output,<br>wait for the MIPI end code before<br>entering the software for standby;<br>otherwise, enter the software<br>standby mode immediately |     |              |
| minimum of XVCLK cycles after the last SCCB transaction or MIPI frame end | 11 517 |                                                                                                                                                                              |     | XVCLK cycles |
| last SCCB transaction or MIPI frame end, XSHUTDN falling                  | t2     | 512                                                                                                                                                                          |     | XVCLK cycles |
| XSHUTDN falling - AVDD falling or DOVDD falling whichever is first        |        | 0.0                                                                                                                                                                          |     | ns           |
| AVDD falling - DOVDD falling                                              | t4     | AVDD and DOVDD may fall in any                                                                                                                                               |     | ns           |
| DOVDD falling - AVDD falling t5                                           |        | order, the falling se<br>from 0 ns to infinity                                                                                                                               |     | ns           |
| PWDNB falling - DOVDD falling t6                                          |        | 0.0                                                                                                                                                                          |     | ns           |



figure 2-11 power down sequence (case 1)



 $\textbf{note 1} \ \ \text{with minimum power consumption}$ 

immediately.

5690\_5693\_DS\_2\_11



hardware STATE streaming (active) software standby power off standby DOVDD AVDD (AVDD falling first) (DOVDD falling first) VDIG and VANA may fall in any order. **XSHUTDN** XVCLK may either be free running or gated. the requirement is that XVCLKmust be active for time t1 after the last SCCB transaction or after the MIPI frame end short packet, whichever is the later event. t0 SIOC if SCCB command received during the readout of the frame then the sensor must wait after the MIPI frame end short packet before entering sleep mode. if the SCCB command is received during the interframe time the sensor must enter sleep mode immediately. LP-11 high-z LP-11 high-z frame count 0xFF

figure 2-12 power down sequence (case 2)



5690\_5693\_DS\_2\_12

figure 2-13 power down sequence (case 3)



**note 1** with low power consumption

**note 2** with minimum power consumption

5690\_5693\_DS\_2\_13



immediately.

figure 2-14 power down sequence (case 4)



enter if SCCB command received during the readout of the frame then the sensor must wait sleep after the MIPI frame end short packet before entering sleep mode. if the SCCB command is received during the inter frame time the sensor must enter sleep mode immediately.

 $\textbf{note 1} \ \ \text{with low power consumption}$ 

 $\textbf{note 2} \ \ \text{with minimum power consumption}$ 

5690\_5693\_DS\_2\_14



figure 2-15 standby timing (case 1)



figure 2-16 standby timing (case 2)





## 2.9 reset

The OV5693 sensor includes a **XSHUTDN** pad (pad **10**) that forces a complete hardware reset when it is pulled low (GND). The OV5693 clears all registers and resets them to their default values when a hardware reset occurs. Reset requires ~2ms settling time.

### 2.9.1 power ON reset generation

The power on reset can be controlled from external pin. However, inside this chip, a power on reset is generated after core power becomes stable.

## 2.10 hardware and software standby

Two suspend modes are available for the OV5693:

- · hardware standby
- · software standby

### 2.10.1 hardware standby

To initiate a hardware standby, the **PWDNB** pad (pad **08**) must be tied to low. When this occurs, the OV5693 internal device clock is halted and all internal counters are reset and registers are maintained. Majority of the digital circuitry will remain in the power-cut state.

### 2.10.2 software standby

Executing a software standby through the SCCB interface suspends internal circuit activity but does not halt the device clock. All register content is maintained in standby mode.



# 2.11 system clock control

The OV5693 has two on-chip PLLs which generate the MIPI and system clock with 6~27 MHz input clock. A programmable clock divider is provided to generate different frequencies for the system.

## 2.11.1 PLL configuration

figure 2-17 OV5693 PLL1 and PLL2 clock diagram





table 2-10 sample PLL configuration<sup>a</sup> (sheet 1 of 2)

|                 |         |        | input clo | ock (XVCLK) |       |
|-----------------|---------|--------|-----------|-------------|-------|
| name            | address | 24 MHz | 27 MHz    | 13.33 MHZ   | 6 MHz |
| PLL1_multi_h    | 0x30B2  | 0x00   | 0x00      | 0x00        | 0x00  |
| PLL1_multi_I    | 0x30B3  | 0x64   | 0x59      | 0x79        | 0x86  |
| PLL1_prediv     | 0x30B4  | 0x03   | 0x03      | 0x02        | 0x01  |
| PLL1_op_pix_div | 0x30B5  | 0x04   | 0x04      | 0x04        | 0x04  |
| PLL1_op_sys_div | 0x30B6  | 0x01   | 0x01      | 0x01        | 0x01  |
| PLL1_divr       | 0x3080  | 0x01   | 0x01      | 0x01        | 0x01  |
| PLL3_prediv     | 0x3098  | 0x03   | 0x03      | 0x03        | 0x00  |
| PLL3_multiplier | 0x3099  | 0x1E   | 0x1B      | 0x12        | 0x14  |
| PLL3_rdiv       | 0x309C  | 0x00   | 0x00      | 0x01        | 0x01  |
| PLL3_sys_div    | 0x309A  | 0x02   | 0x02      | 0x02        | 0x02  |
| PLL3_div        | 0x309B  | 0x01   | 0x01      | 0x01        | 0x01  |
| HTS high byte   | 0x380C  | 0x0A   | 0x0A      | 0x0A        | 0x0A  |
| HTS low byte    | 0x380D  | 0x80   | 0xA2      | 0x80        | 0x80  |
| VTS high byte   | 0x380E  | 0x07   | 0x07      | 0x07        | 0x07  |



table 2-10 sample PLL configuration<sup>a</sup> (sheet 2 of 2)

|              |         | input clock (XVCLK) |         |           |         |  |
|--------------|---------|---------------------|---------|-----------|---------|--|
| name         | address | 24 MHz              | 27 MHz  | 13.33 MHZ | 6 MHz   |  |
| VTS low byte | 0x380F  | 0xC0                | 0xC0    | 0xC0      | 0xC0    |  |
| SCLK         |         | 160 MHz             | 162 MHz | 160 MHz   | 160 MHz |  |
| MIPI_SCLK    |         | 800 MHz             | 801 MHz | 800 MHz   | 800 MHz |  |
| MIPI_PCLK    |         | 100 MHz             | 100 MHz | 100 MHz   | 100 MHz |  |

a. PLL control for 5 Mpixel @30 fps with 2-lane, 10-bit output

# 2.12 serial camera control bus (SCCB) interface

The Serial Camera Control Bus (SCCB) interface controls the image sensor operation. Refer to the *OmniVision Technologies Serial Camera Control Bus (SCCB) Specification* for detailed usage of the serial control port.

In the OV5693, the SCCB ID is controlled by the SID pin, and can be programmable. If SID is low, the sensor's SCCB address comes from register 0x300C which has a default value of 0x6C. If SID is high, the sensor's SCCB address comes from register 0x3661 which has a default value of 0x20.

## 2.12.1 data transfer protocol

The data transfer of the OV5693 follows the SCCB protocol.

### 2.12.2 message format

The OV5693 supports the message format shown in figure 2-18. The repeated START (Sr) condition is not shown in figure 2-19, but is shown in figure 2-20 and figure 2-21.

## figure 2-18 message type

 $message\ type:\ 16-bit\ sub-address,\ 8-bit\ data,\ and\ 7-bit\ slave\ address$ 





## 2.12.3 read / write operation

The OV5693 supports four different read operations and two different write operations:

- · a single read from random locations
- · a sequential read from random locations
- · a single read from current location
- · a sequential read from current location
- single write to random locations
- · sequential write starting from random location

The sub-address in the sensor automatically increases by one after each read/write operation.

In a single read from random locations, the master does a dummy write operation to desired sub-address, issues a repeated start condition and then addresses the camera again with a read operation. After acknowledging its slave address, the camera starts to output data onto the SIOD line as shown in **figure 2-19**. The master terminates the read operation by setting a negative acknowledge and stop condition.

**figure 2-19** SCCB single read from random location



If the host addresses the camera with read operation directly without the dummy write operation, the camera responds by setting the data from last used sub-address to the SIOD line as shown in **figure 2-20**. The master terminates the read operation by setting a negative acknowledge and stop condition.

**figure 2-20** SCCB single read from current location





The sequential read from a random location is illustrated in figure 2-21. The master does a dummy write to the desired sub-address, issues a repeated start condition after acknowledge from slave and addresses the slave again with read operation. If a master issues an acknowledge after receiving data, it acts as a signal to the slave that the read operation shall continue from the next sub-address. When master has read the last data byte, it issues a negative acknowledge and stop condition.

**figure 2-21** SCCB sequential read from random location



The sequential read from current location is similar to a sequential read from a random location. The only exception is that there is no dummy write operation. as shown in figure 2-22. The master terminates the read operation by setting a negative acknowledge and stop condition.

**figure 2-22** SCCB sequential read from current location





The write operation to a random location is illustrated in **figure 2-23**. The master issues a write operation to the slave, sets the sub-address and data correspondingly after the slave has acknowledged. The write operation is terminated with a stop condition from the master.

**figure 2-23** SCCB single write to random location



The sequential write is illustrated in **figure 2-24**. The slave automatically increments the sub-address after each data byte. The sequential write operation is terminated with stop condition from the master.

**figure 2-24** SCCB sequential write to random location





## 2.12.4 SCCB timing

figure 2-25 SCCB interface timing



table 2-11 SCCB interface timing specifications ab

| symbol                          | parameter                                       | min  | typ | max | unit |
|---------------------------------|-------------------------------------------------|------|-----|-----|------|
| f <sub>SIOC</sub>               | clock frequency                                 |      |     | 400 | kHz  |
| t <sub>LOW</sub>                | clock low period                                | 1.3  |     |     | μs   |
| t <sub>HIGH</sub>               | clock high period                               | 0.6  |     |     | μs   |
| t <sub>AA</sub>                 | SIOC low to data out valid                      | 0.1  |     | 0.9 | μs   |
| t <sub>BUF</sub>                | t <sub>BUF</sub> bus free time before new start |      |     |     | μs   |
| t <sub>HD:STA</sub>             | t <sub>HD:STA</sub> start condition hold time   |      |     |     | μs   |
| t <sub>SU:STA</sub>             | start condition setup time                      | 0.6  |     |     | μs   |
| t <sub>HD:DAT</sub>             | data in hold time                               | 0    |     |     | μs   |
| t <sub>SU:DAT</sub>             | data in setup time                              | 0.1  |     |     | μs   |
| t <sub>SU:STO</sub>             | stop condition setup time                       | 0.6  |     |     | μs   |
| t <sub>R</sub> , t <sub>F</sub> | SCCB rise/fall times                            |      |     | 0.3 | μs   |
| t <sub>DH</sub>                 | data out hold time                              | 0.05 |     |     | μs   |

a. SCCB timing is based on 400kHz mode



b. timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 30%, timing measurement shown in the middle of the rising/falling edge signifies 50%, timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 70%

## 2.12.5 group write

The OV5693 supports four groups. The maximum setting size of each group is 63 registers.

table 2-12 context switching control

| address | register name  | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|----------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3208  | GROUP ACCESS   |                  | W   | Group Access  Bit[7:4]: group_ctrl 0000: Group hold start 0001: Group hold end 0110: Group launch at line blank 1010: Group launch at vertical blank 1110: Group launch immediately Others: Reserved  Bit[3:0]: group_id 0000: Group bank 0, default start from address 0x00 0001: Group bank 1, default start from address 0x40 0010: Group bank 2, default start from address 0x80 0011: Group bank 3, default start from address 0xB0 Others: Reserved |
| 0x3209  | GRP0_PERIOD    | 0x00             | RW  | Frames For Staying in Group 0                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0x320A  | GRP1_PERIOD    | 0x00             | RW  | Frames For Staying in Group 1                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0x320B  | GRP_SWCTRL     | 0x01             | RW  | Bit[5]: grp0_start_opt Bit[4]: frame_cnt_trig Bit[3]: group_switch_repeat Bit[2]: context_en Bit[1:0]: Second group selection                                                                                                                                                                                                                                                                                                                             |
| 0x320D  | GRP_ACT        | -                | R   | Indicates Which Group is Active                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x320E  | FRAME_CNT_GRP0 |                  | R   | frame_cnt_grp0                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x320F  | FRAME_CNT_GRP1 | _                | R   | frame_cnt_grp1                                                                                                                                                                                                                                                                                                                                                                                                                                            |







# 3 block level description

## 3.1 pixel array structure

The OV5693 sensor has an image array of 2624 columns by 1956 rows (5,132,544 pixels). **figure 3-1** shows a cross-section of the image sensor array.

The color filters are arranged in a Bayer pattern. The primary color BG/GR array is arranged in line-alternating fashion. Of the 5,132,544 pixels, 5,032,848 (2592x1944) are active pixels and can be output.

The sensor array design is based on a field integration readout system with line-by-line transfer and an electronic shutter with a synchronous pixel readout scheme.

figure 3-1 sensor array region color filter layout





## 3.2 subsampling

The OV5693 supports a binning mode to provide a lower resolution output while maintaining the field of view. With binning mode ON, the voltage levels of adjacent pixels (of the same color) are averaged before being sent to the ADC. Skip mode alone is not supported. The OV5693 supports 2x2 binning, which is illustrated in **figure 3-2**, where the voltage levels of two horizontal (2x1) adjacent same-color pixels are averaged. See **table 3-1** for horizontal and vertical binning registers.

**figure 3-2** example of 2x2 binning



table 3-1 binning-related registers

| address | register name     | default<br>value | R/W | descriptio | าก                                        |
|---------|-------------------|------------------|-----|------------|-------------------------------------------|
| 0x3820  | TIMING_FORMAT1    | 0x10             | RW  | Bit[0]:    | Vertical binning                          |
| 0x3821  | TIMING_FORMAT2    | 80x0             | RW  | Bit[0]:    | Horizontal binning                        |
| 0x4512  | INPUT_SWAP_MAN_EN | 0x01             | RW  | Bit[0]:    | Vertical binning option 0: Sum 1: Average |



## 3.3 alternate row HDR

In HDR mode, the exposure is still controlled by a rolling shutter. However, the frame data is separated into "long exposure" and "short exposure" in every two rows, shown in **figure 3-3**. Long exposure time is controlled by registers 0x3500, 0x3501, and 0x3502. The short exposure time is controlled by registers 0x3506, 0x3507, and 0x3508. Two exposure areas share the single gain (0x350A and 0x350B). The MIPI output sequence in HDR mode is similar to normal mode. The output timing of long and short exposure lines is shown in **figure 3-4**.

figure 3-3 alternate row HDR



figure 3-4 HDR output timing



table 3-2 HDR control registers (sheet 1 of 2)

| address | register name  | default<br>value | R/W | description                                                     |
|---------|----------------|------------------|-----|-----------------------------------------------------------------|
| 0x3821  | TIMING_FORMAT2 | 0x18             | RW  | HDR Enable Bit[7]: hdr_en 0: Disable 1: Enable                  |
| 0x3500  | MEC LONG EXPO  | 0x00             | RW  | Long Exposure Bit[7:4]: Not used Bit[3:0]: Long exposure[19:16] |
| 0x3501  | MEC LONG EXPO  | 0x02             | RW  | Long Exposure<br>Bit[7:0]: Long exposure[15:8]                  |



table 3-2 HDR control registers (sheet 2 of 2)

| address | register name  | default<br>value | R/W | description                                                                                                              |
|---------|----------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------|
| 0x3502  | MEC LONG EXPO  | 0x00             | RW  | Long Exposure Bit[7:0]: Long exposure[7:0] Low 4 bits are fraction bits which are not supported and should always be 0   |
| 0x3506  | MEC SHORT EXPO | 0x00             | RW  | Short Exposure Bit[7:4]: Not used Bit[3:0]: Short exposure[19:16]                                                        |
| 0x3507  | MEC SHORT EXPO | 0x02             | RW  | Short Exposure<br>Bit[7:0]: Short exposure[15:8]                                                                         |
| 0x3508  | MEC SHORT EXPO | 0X00             | RW  | Short Exposure Bit[7:0]: Short exposure[7:0] Low 4 bits are fraction bits which are not supported and should always be 0 |



# image sensor core digital functions

# 4.1 mirror and flip

The OV5693 provides mirror and flip readout modes, which respectively reverse the sensor data readout order horizontally and vertically (see figure 4-1).

figure 4-1 mirror and flip samples



5690\_5693\_DS\_4\_1

mirror and flip registers table 4-1

| address | register name | default<br>value | R/W | description                                                                                 |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------------------------|
| 0x3820  | TIMING_REG20  | 0x10             | RW  | Timing Control Register Bit[2:1]: Vertical flip enable 00: Normal 11: Vertical flip         |
| 0x3821  | TIMING_REG21  | 0x18             | RW  | Timing Control Register Bit[2:1]: Horizontal mirror enable 00: Normal 11: Horizontal mirror |



# 4.2 image windowing

An image windowing area is defined by four parameters, horizontal start (HS), horizontal end (HE), vertical start (VS), and vertical end (VE). By properly setting the parameters, any portion within the sensor array size can output as a visible area. Windowing is achieved by simply masking off the pixels outside of the window; thus, the original timing is not affected.

figure 4-2 image windowing



table 4-2 image windowing control functions

| function         | register         | R/W | description                           |
|------------------|------------------|-----|---------------------------------------|
| horizontal start | {0x3800, 0x3801} | RW  | HS[12:8] = 0x3800<br>HS[7:0] = 0x3801 |
| vertical start   | {0x3802, 0x3803} | RW  | VS[11:8] = 0x3802<br>VS[7:0] = 0x3803 |
| horizontal end   | {0x3804, 0x3805} | RW  | HW[12:8] = 0x3804<br>HW[7:0] = 0x3805 |
| vertical end     | {0x3806, 0x3807} | RW  | VH[11:8] = 0x3806<br>VH[7:0] = 0x3807 |



# 4.3 test pattern

For testing purposes, the OV5693 offers five types of test patterns:

- · general color bar
- test pattern I and II (16 bar)
- test pattern III and IV (horizontal fading)

## 4.3.1 general color bar

figure 4-3 test pattern



general color bar selection control table 4-3

| function             | register | default value | R/W | description                                                                                                                         |
|----------------------|----------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| general<br>color bar | 0x5E00   | 0x00          | RW  | Bit[7]: test_enable Bit[3:2]: color_bar style 00: horizontal bar 01: vertical fading bar 10: horizontal fading bar 11: vertical bar |

# 4.3.2 test pattern I and II (16 bar)

test pattern I and II selection control

| function                 | register | default value | R/W | description                                                                                                              |
|--------------------------|----------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------|
| test pattern I<br>& & II | 0x4303   | 0x00          | RW  | Bit[4]: 16 color bar inverse 0: normal 1: inverse Bit[3]: 16 color bar enable 0: 16 color bar OFF 1: 16 color bar enable |



## 4.3.3 test pattern III and IV (horizontal fading)

table 4-5 test pattern III and IV selection control

| function                   | register | default value | R/W | description                                                                                       |
|----------------------------|----------|---------------|-----|---------------------------------------------------------------------------------------------------|
| test pattern<br>III & & IV | 0x4303   | 0x00          | RW  | Bit[7]: fading enable 0: disable 1: enable Bit[6]: horizontal fading inverse 0: normal 1: inverse |

# 4.4 black level calibration (BLC)

The pixel array contains several optically shielded (black) lines. These lines are used as reference for black level calibration.

There are two main functions of the BLC:

- adjusting all normal pixel values based on the values of the black levels
- applying multiplication to all pixel values based on digital gain

table 4-6 BLC control functions

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                  |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4000  | BLC CTRL00    | 0x10             | RW  | Bit[7]: BLC bypass enable 0: Disable BLC bypass (BLC enabled) 1: Enable BLC bypass (no BLC)                                                                                                                                                                                  |
| 0x4002  | BLC CRTL02    | 0x45             | RW  | Bit[7]: Format change enable BLC will redo after format change Bit[6]: BLC auto enable 0: BLC offset from manual register 1: BLC offset from auto statistics Bit[5:0]: Reset frame number[5:0]                                                                               |
| 0x4003  | BLC_FREEZE    | 0x08             | RW  | Bit[7]: BLC redo enable  0: Normal  1: Force BLC to redo N frames (where N=0x4003[5:0] when this bit is set)  Bit[6]: Freeze enable  0: Normal  1: BLC black level will not update.  Priority lower than always update  Bit[5:0]: Manual frame number  BLC redo frame number |
| 0x4009  | BLC_TARGET    | 0x10             | RW  | Bit[7:0]: Black target level[7:0]                                                                                                                                                                                                                                            |



## 4.5 one time programmable (OTP) memory

The OV5693 supports a maximum of 512 bytes bits of one-time programmable (OTP) memory to store chip identification and manufacturing information. It can be controlled through the SCCB and OTP control functions (see **table 4-7**). The 512 bytes of OTP are divided into 32 banks, each bank containing 16 bytes of memory. Register 0x3D84 is a bank setting register. After setting the bank and sending load request (0x3D81), the data can be load from/to 0x3D00 - 0x3D0F through SCCB interface. Bank0 and Bank28 ~ Bank31 are reserved for OmniVision, while Bank1 ~ Bank27 are reserved for customers.

### 4.5.1 OTP read/write timing requirements

The OTP has program pulse and read pulse requirements. Registers 0x3D82 and 0x3D83 control program and read pulse widths in units of system clock (SCLK). Default values of these two registers are set for the sensor running full size at full speed. In other words, if these registers are in their default values, the SCLK requires being in a certain range in order to meet the OTP read/write pulse requirement.

#### 4.5.1.1 program pulse

The OTP program pulse is controlled by register 0x3D82 and Tsclk, and must be in the range of  $4000ns\sim6000ns$ . The program pulse width = register  $0x3D82 \times 8 \times Tsclk$ . With a default value of 0x38 for register 0x3D82, the SCLK is required to be in the range of  $74.67MHz\sim112MHz$ . The SCLK required range is equivalent to the sensor running full size @ 23fps or higher. If the SCLK is running lower, the user must change register 0x3D82 accordingly.

#### 4.5.1.2 read pulse

The OTP read pulse is controlled by register 0x3D83 and Tsclk, and must be greater than 35ns. Based on the SCLK range allowed by the sensor design, the read pulse should have no problems under the current default value (0x04) of register 0x3D83.

### table 4-7 OTP control functions

| function              | register        | description                                                                                                                                          |
|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| OTP program           | 0x3D80          | Bit[0]: program OTP                                                                                                                                  |
| OTP load/dump         | 0x3D81          | Bit[0]: load / dump OTP                                                                                                                              |
| OTP program pulse     | 0x3D82          | Bit[7:0]: control program strobe pulse, by 8 × Tsclk                                                                                                 |
| OTP read pulse        | 0x3D83          | Bit[3:0]: control read strobe pulse, by Tsclk                                                                                                        |
| OTP bank select       | 0x3D84          | Bit[7]: program_dis 0: Enable 1: Disable Bit[6]: memory bank enable 0: Auto memory bank mode 1: Manual memory bank mode Bit[5:0]: memory bank select |
| OTP start address     | 0x3D85          | Bit[3:0]: start byte index for the 16 bytes in memory bank                                                                                           |
| OTP end address       | 0x3D86          | Bit[3:0]: end byte index for the 16 bytes in memory bank                                                                                             |
| dump / program data n | 0x3D00 ~ 0x3D0F | Bit[7:0]: data dumped or programmed                                                                                                                  |



Sensor mode must be in stream mode (0x100 = 0x01) when read/write OTP.



### Example of setting data:

```
6C 3D80 00; clean OTP register (0x3D00 - 0x3D0F)
6C 3D84 40; set bank0
6C 3D00 01; OTP write data1
6C 3D01 02; OTP write data2
....
6C 3D0F 0F; OTP write data16
6C 3D80 01; OTP write enable
```

#### Example of getting data:

```
6C 3D84 CO; set bank0
6C 3D81 O1; OTP read enable
6D 3D00; read data1
6D 3D01; read data1
....
6D 3D0F; read data 16
```

## 4.6 temperature sensor

The OV5693 supports an on-chip temperature sensor that covers -40~192°C with an error range of 5°C. It can be controlled through the SCCB interface (see table 4-8). When the readout data is lower than 0xC0, the temperature is a positive value.

If the readout data is higher than 0xC0, the temperature is lower than 0°C and the readout data is twos complement code.

table 4-8 temperature sensor functions

| function           | register | R/W | description                                                          |  |  |
|--------------------|----------|-----|----------------------------------------------------------------------|--|--|
| TPM trigger / read | 0x4D0B   | RW  | Bit[7]: temperature sensor trigger<br>Bit[6:0]: measured temperature |  |  |



# 4.7 strobe flash and frame exposure

### 4.7.1 strobe flash control

The strobe signal is programmable. It supports both LED and Xenon modes. The polarity of the pulse can be changed. The strobe signal is enabled (turned high/low depending on the pulse's polarity) by requesting the signal via the SCCB interface. Flash modules are triggered by the rising edge by default or by the falling edge if the signal polarity is changed. The OV5693 supports the following flashlight modes (see table 4-9).

table 4-9 flashlight modes

| mode  | output     | additional exposure lines |
|-------|------------|---------------------------|
| xenon | one-pulse  | yes                       |
| LED 1 | one-pulse  | yes                       |
| LED 2 | continuous | yes                       |
| LED3  | continuous | no                        |
| LED4  | one-pulse  | yes                       |

#### 4.7.1.1 xenon flash control

After a strobe request is submitted, the strobe pulse will be activated at the beginning of the third frame (see **figure 4-4**). The third frame will be correctly exposed. The pulse width can be changed in Xenon mode between 1H and 4H, where H is one row period.

figure 4-4 xenon flash mode





#### 4.7.1.2 LED 1 & 2 mode

In LED 1 & 2 modes, the strobe pulse is active two frames after the strobe request is submitted and the third frame or the frame after the strobe is correctly exposed. The strobe pulse will be activated only one time if the strobe end request is set as shown in **figure 4-5**. If end request has not been sent, the strobe signal is activated intermittently until the strobe end request is set (see **figure 4-6**). The strobe width is programmable.

figure 4-5 LED 1 & 2 mode - one pulse output



The strobe width is controlled by registers 0x3B02 and 0x3B03. Inserted dummy lines are additional exposure lines added to 0x3500~0x3503. The maximum lines of 0x3B02 and 0x3B03 is calculated by 0x7FFF0 – (0x3500, 0x3501, 0x3502).

### Example of LED 1 & 2 mode:

```
6c 3b00 01 ;Select led 1 mode
6c 3b02 00 ;Set strobe width
6c 3b03 3f ;Set strobe width
6c 3002 88 ;Set the Vsync & Strobe pin output
6c 3b00 81 ;Request on
;delay 100; if using LED 2 mode
6c 3b00 00 ;Request off
```





figure 4-6 LED 1 & 2 mode - multiple pulse output

4.7.1.3 LED 3 mode

In LED 3 mode, the strobe signal stays active until the strobe end request is sent (see figure 4-7).







### 4.7.1.4 LED 4 mode

In LED 4 mode, the strobe signal width is controlled by register 0x3B05 (see figure 4-8). Strobe width =  $256 \times (2^{**}0x3B05[1:0]) \times (0x3B05[7:2] + 1) \times sclk_period$ . The maximum value of 0x3B05[7:2] is 6'b111110.

figure 4-8 LED 4 mode





## 4.7.2 frame exposure (FREX) mode

In FREX mode, all pixels in the frame start integration at the same time, rather than integrating row by row. After a user-defined exposure time, the mechanical shutter should be closed, preventing further integration, and then the image begins to read out. After the readout finishes, the shutter opens again and the sensor resumes normal mode, waiting for the next FREX request.

The OV5693 supports two modes of FREX (see figure 4-9 and figure 4-10):

figure 4-9 FREX mode 1



figure 4-10 FREX mode 2



In mode 1, the FREX pin is configured as an input while it is configured as an output in mode 2. In both mode 1 and mode 2, the strobe output is irrelevant with the rolling strobe function. When in rolling shutter mode, the strobe function and this FREX/shutter control function do not work at the same time.

The timing diagram for mode 1 is shown in figure 4-11.



VSYNC

FREX in

STROBE out

shutter

FREX mode 1: pad trigger

Tpchg

Texp

5690,5693,DS,4,11

**figure 4-11** FREX mode 1 timing diagram

In mode 1, the host asserts FREX at any time in preview mode (mechanical shutter is open at this time). The sensor will trigger STROBE to indicate the start of exposure time. Exposure time is calculated from the STROBE rising edge to when the mechanical shutter closes. The host will control when to close the mechanical shutter (shutter delay is handled by the host). The host can re-open the shutter after receiving the entire image data or the next VSYNC signal.

The timing diagram for mode 2 is shown in figure 4-12.



**figure 4-12** FREX mode 2 (shutter delay = 0) timing diagram

Before using mode 2, the host needs to program exposure time at (frex\_exp), shutter delay (registers 0x37CC, 0x37CD), strobe width, and data output delay. The host triggers this mode via the SCCB interface at any time in preview mode (mechanical shutter is open at this time). The sensor can either start frame exposure right away (since the current data packet is broken, the receiver may get a packet error) or wait for the current frame to finish (controlled by register). The



sensor will trigger STROBE to indicate the start of exposure time. Exposure time is calculated from STROBE rising edge to when the mechanical shutter closes. The host can control the sensor to start sending image data after a certain delay (registers 0x37D0, 0x37D1) after FREX goes low. The host can re-open the shutter after receiving the entire image data or the next VSYNC signal.

LED strobe control registers table 4-10

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                         |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3B00  | STROBE CTRL   | 0x00             | RW  | Bit[7]: Strobe ON/OFF Bit[6]: Strobe polarity 0: Active high 1: Active low Bit[5:4]: width_in_xenon Bit[3]: Reserved Bit[2:0]: Mode 000: Xenon 001: LED1 010: LED2 011: LED3 100: LED4                                                                                              |
| 0x3B02  | STROBE DMY H  | 0x00             | RW  | Dummy Lines Added in Strobe Mode, MSB                                                                                                                                                                                                                                               |
| 0x3B03  | STROBE DMY L  | 0x00             | RW  | Dummy Lines Added in Strobe Mode, LSB                                                                                                                                                                                                                                               |
| 0x3B04  | STROBE CTRL01 | 0x00             | RW  | Bit[3]: start_point_sel Bit[2]: Strobe repeat enable Bit[1:0]: Strobe latency 00: Strobe generated at next frame 01: Delay one frame, strobe generated 2 frames later 10: Delay two frames, strobe generated 3 frames later 11: Delay three frames, strobe generated 4 frames later |
| 0x3B05  | STROBE CTRL02 | 0x00             | RW  | Bit[7:2]: Strobe pulse width step Bit[1:0]: Strobe pulse width gain Strobe pulse width = 256 × (2**gain) × (step+1) × sclk_period                                                                                                                                                   |



table 4-11 FREX strobe control registers (sheet 1 of 2)

|  |         |               | O                | •   | ,           |                                                                                                                                                           |
|--|---------|---------------|------------------|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | address | register name | default<br>value | R/W | description | n                                                                                                                                                         |
|  | 0x37C5  | FREX CTRL 00  | 0x00             | RW  | Bit[7:0]:   | frex_exp[23:16] MSB of frame exposure time in mode 2. Exposure time is in units of 256 clock cycles. See 0x37C6 and 0x37C7.                               |
|  | 0x37C6  | FREX CTRL 01  | 0x00             | RW  | Bit[7:0]:   | frex_exp[15:8] Middle byte of frame exposure time in mode 2. See <b>0x37C5</b> and <b>0x37C7</b> .                                                        |
|  | 0x37C7  | FREX CTRL 02  | 0x00             | RW  | Bit[7:0]:   | frex_exp[7:0] LSB of frame exposure time in mode 2. See 0x37C5 and 0x37C6.                                                                                |
|  | 0x37C9  | FREX CTRL 04  | 0x00             | RW  | Bit[3:0]:   | strobe_width[19:16] MSB of strobe width in mode 2. Strobe width is in units of 2 clock cycles. See registers 0x37CA and 0x37CB.                           |
|  | 0x37CA  | FREX CTRL 05  | 0x00             | RW  | Bit[7:0]:   | strobe_width[15:8] Middle byte of strobe width in mode 2. See registers 0x37C9 and 0x37CB.                                                                |
|  | 0x37CB  | FREX CTRL 06  | 0x00             | RW  | Bit[7:0]:   | strobe_width[7:0] LSB of strobe width in mode 2. See registers 0x37C9 and 0x37CA.                                                                         |
|  | 0x37CC  | FREX CTRL 07  | 0x00             | RW  | Bit[4:0]:   | shutter_dly[12:8] MSB of shutter delay in mode 2. Shutter delay is in units of 256 clock cycles. See register 0x37CD.                                     |
|  | 0x37CD  | FREX CTRL 08  | 0x00             | RW  | Bit[7:0]:   | shutter_dly[7:0]<br>LSB of shutter delay in mode 2.<br>Shutter delay is in units of 256 clock<br>cycles. See register <b>0x37CC</b> .                     |
|  | 0x37CE  | FREX CTRL 09  | 0x01             | RW  | Bit[7:0]:   | frex_pchg_width[15:8] MSB of sensor precharge in mode 2. Sensor precharge is in units of 2 system clock cycles (see section 2.11.1). See register 0x37CF. |
|  | 0x37CF  | FREX CTRL 0A  | 0x00             | RW  | Bit[7:0]:   | frex_pchg_width[7:0] LSB of sensor precharge in mode 2. Sensor precharge is in units of 2 system clock cycles (see section 2.11.1). See register 0x37CE.  |



FREX strobe control registers (sheet 2 of 2) table 4-11

| address | register name         | default<br>value | R/W | descriptio                                                      | n                                                                                                                                                                                       |
|---------|-----------------------|------------------|-----|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x37D0  | FREX CTRL 0B          | 0x00             | RW  | Bit[7:0]:                                                       | datout_dly[15:8] LSB of readout delay time in mode 2. Readout delay time is in units of 256 clock cycles. See register 0x37D1.                                                          |
| 0x37D1  | FREX CTRL 0C          | 0x00             | RW  | Bit[7:0]:                                                       | datout_dly[7:0]<br>LSB of readout delay time in mode<br>2. Readout delay time is in units of<br>256 clock cycles. See register<br>0x37D0.                                               |
| 0x37D2  | SENSOR_STROBE_<br>DLY | 0x00             | RW  | Bit[7:5]:<br>Bit[4:0]:                                          | Reserved sensor_strobe_dly[12:8] MSB of strobe delay time in mode 2. Strobe delay time is in units of 128 clock cycles.                                                                 |
| 0x37D3  | SENSOR_STROBE_<br>DLY | 0x00             | RW  | Bit[7:0]:                                                       | sensor_strobe_dly[7:0]<br>LSB of strobe delay time in mode 2                                                                                                                            |
| 0x37DF  | SENSOR_FREX_REQ       | 0x00             | RW  | Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]: | frex_i2c_req (self clearing) frex_i2c_req_repeat (debug) frex_strobe_out_sel frex_nopchg frex_strobe polarity frex_shutter polarity frex_i from pad in no_latch at SOF for frex_i2c_req |

## 4.7.2.1 exposure time control

Registers: r\_frame\_exp = {0x37C5, 0x37C6, 0x37C7}, 24 bits, 1 step = 256 clock cycles.

Minimum exposure time: 0x37C5 = 0x00, 0x37C6 = 0x00, 0x37C7 = 0x00.

If OV5693 works at 168 MHz, the minimum exposure time is 0 and minimum step is 1.52  $\mu s.\,$ 

Maximum exposure time: 0x37C5 = 0xFF, 0x37C6 = 0xFF, 0x37C7 = 0xFF.

If OV5693 works at 168 MHz, the maximum exposure time is 25.56 sec.

### 4.7.2.2 shutter delay control

 $Registers: r\_shutter\_dly = \{0x37CC[4:0], 0x37CD[7:0]\}, \ 13 \ bits, \ 1 \ step = 256 \ clock \ cycles.$ 

Minimum shutter delay time: 0x37CC = 0x00, 0x37CD = 0x00.

Minimum step is 1.52 μs.

Maximum shutter delay time: 0x37CC = 0x1F, 0x37CD = 0xFF.

If OV5693 works at 168 MHz, the maximum shutter delay time is 12.48 ms.



### 4.7.2.3 sensor precharge control

Registers: r\_frex\_pchg = {0x37CE[7:0], 0x37CF[7:0]}, 16 bits, 1 step = 2 system clock cycles (refer to section 2.11).

These registers affect sensor performance. It is for internal use and not recommended for customer to change. Time requirement: 10 µs, for example.

#### 4.7.2.4 strobe control

Registers: r\_strobe\_width = {0x37C9[3:0], 0x37CA[7:0], 0x37CB[7:0]}, 20 bits, 1 step = 2 clock cycles.

These registers control the strobe signal output width.

### 4.7.2.5 strobe delay control

Registers: r\_shutter\_dly = {0x37D2[4:0], 0x37D3[7:0]}, 13 bits, 1 step = 256 clock cycles.

Minimum strobe delay time: 0x37D2=0x00, 0x37D3=0x00.

Minimum step is 1.52 μs.

Maximum strobe delay time: 0x37D2=0x1F, 0x37D3=0xFF.

If OV5693 works at 168 MHz, the maximum strobe delay time is 12.48 ms.

### 4.7.2.6 data out delay

Registers:  $r_{dataout_dly} = \{0x37D0[7:0], 0x37D1[7:0]\}, 16 \text{ bits}, 1 \text{ step} = 256 \text{ clock cycles}.$ 

Minimum step is 1.52 μs.

Maximum data delay time: 0x37D0 = 0xFF, 0x37D1 = 0xFF.

If OV5693 works at 168 MHz, the maximum data out delay time is 99.86 ms.



501

### 4.8 3D application capability

In 3D camera application, controlling two sensors' rolling shutters at the same timing is important, especially using LED or flash in capturing image. The OV5693 supports 3D camera application design. The block diagram for 3D applications is shown in **figure 4-13**. A hardware pin (SID) is configured for two different SCCB device addresses. FSIN pin is used to synchronize the VSYNC signal from the other sensor.

The OV5693 offers register 0x3823 = 0x50 to set slave into VSYNC mode. Registers 0x3826 and 0x3827 control slave sensor row reset timing and match master sensor. Registers 0x3824 and 3825 control column reset timing. The sensor must have a fixed 0x3824~0x3827 value to match the VSYNC from the other sensor in each video format (size, frame rate, exposure...).

figure 4-13 block diagram of 3D applications



table 4-12 vertical signal synchronize control registers

| address | register name      | default<br>value | R/W | description                                                                                                                                                                              |
|---------|--------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3823  | TIMING_REG23       | 0x00             | RW  | Bit[7]: ext_vs_re Reverse FSIN input  Bit[6]: ext_vs_en External FSIN enable 0: Disable 1: Enable Bit[4]: r_init_man Row count initial 0: Initial from VTS 1: Initial from 0x3824~0x3827 |
| 0x3824  | TIMING_CS_RST_FSIN | 0x00             | RW  | CS Reset Value High Byte at vs_ext                                                                                                                                                       |
| 0x3825  | TIMING_CS_RST_FSIN | 0x00             | RW  | CS Reset Value Low Byte at vs_ext                                                                                                                                                        |
| 0x3826  | TIMING_RST_FSIN    | 0x00             | RW  | R Reset Value High Byte at vs_ext                                                                                                                                                        |
| 0x3827  | TIMING_RST_FSIN    | 0x00             | RW  | R Reset Value Low Byte at vs_ext                                                                                                                                                         |



#### 4.9 illumination control functions

The OV5693 supports illumination control. It can be controlled through the SCCB interface. The PWM duration and duty cycle are programmable. The gap between the two PWMs is number of frames, which can be programmable from 0 to 255, with zero as the default. Duration is programmable from 0 to 15 frames with 4-bit resolution. Each step is a frame.

In the case where the delay + duration results in the illumination ending prior to the end of a frame, the number of frames starts at the next full frame. If the repeat bit (0x3B4E[0]) is set, the waveform will repeat until cleared. After clearing the repeat bit, the waveform will finish one full cycle before taking effect. This means that Duration 4 should be completed in its entirety before the cycle is ended.

table 4-13 illumination control functions

|      | function                 | register | descriptio                    | n                                                                   |
|------|--------------------------|----------|-------------------------------|---------------------------------------------------------------------|
|      | PWM 1 delay              | 0x3B40   | Bit[4:0]:                     | First pulse PWM1 delay 0~31<br>0x00: -0.5<br>0x1F: 0.5 frame        |
|      | PWM 2 delay              | 0x3B41   | Bit[4:0]:                     | Second pulse PWM2 delay 0~31<br>0x00: -0.5<br>0x1F: 0.5 frame       |
|      | PWM 3 delay              | 0x3B42   | Bit[4:0]:                     | Third pulse PWM3 delay 0~31<br>0x00: -0.5<br>0x1F: 0.5 frame        |
|      | PWM 4 delay              | 0x3B43   | Bit[4:0]:                     | Fourth pulse PWM4 delay 0~31<br>0x00: -0.5<br>0x1F: 0.5 frame       |
|      | duration control 0       | 0x3B44   | Bit[7:4]:<br>Bit[3:0]:        | PWM2 duration width (0~15 frames) PWM1 duration width (0~15 frames) |
|      | duration control 1       | 0x3B45   | Bit[7:4]:<br>Bit[3:0]:        | ,                                                                   |
|      | PWM 1 duty cycle control | 0x3B46   | Bit[4:0]:                     | PWM1 duty cycle 0~31                                                |
|      | PWM 2 duty cycle control | 0x3B47   | Bit[4:0]:                     | PWM2 duty cycle increase step 0~31                                  |
|      | PWM 3 duty cycle control | 0x3B48   | Bit[4:0]:                     | PWM3 duty cycle 0~31                                                |
| all. | PWM 4 duty cycle control | 0x3B49   | Bit[4:0]:                     | PWM4 duty cycle decrease step 0~31                                  |
| 11.  | gap1 control             | 0x3B4A   | Bit[7:0]:                     | Gap between PWM1 and PWM2 (0~255 frames)                            |
|      | gap2 control             | 0x3B4B   | Bit[7:0]:                     | Gap between PWM2 and PWM3                                           |
|      | gap3 control             | 0x3B4C   | Bit[7:0]:                     | Gap between PWM3 and PWM4                                           |
|      | gap4 control             | 0x3B4D   | Bit[7:0]:                     | Gap between PWM4 and PWM1 when repeat is ON                         |
|      | illum_ctrl               | 0x3B4E   | Bit[7]:<br>Bit[5]:<br>Bit[0]: | pwm_request<br>illum_sel<br>repeat_en                               |



# image sensor processor digital functions

## 5.1 ISP general controls

The ISP module provides image processor functions, including lens correction, defect pixel cancellation, and full RAW scalar.

table 5-1 ISP top registers (sheet 1 of 3)

| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                       |
|-------------------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5000            | ISP CTRL0     | 0x06             | RW  | Bit[7]: LENC correction enable 0: Disable 1: Enable Bit[6:3]: Not used Bit[2]: Black pixel cancellation enable 0: Disable 1: Enable Bit[1]: White pixel cancellation enable 0: Disable 1: Enable Bit[0]: Not used |
| 0x5001            | ISP CTRL1     | 0x01             | RW  | Bit[7:1]: Not used Bit[0]: Manual white balance (MWB) enable 0: Disable 1: Enable                                                                                                                                 |
| 0x5002            | ISP CTRL2     | 0x00             | RW  | Bit[7]: Scale enable 0: Disable 1: Enable Bit[6:0]: Reserved                                                                                                                                                      |
| 0x5003~<br>0x5004 | RSVD          | -                | -   | Reserved                                                                                                                                                                                                          |
| 0x5005            | ISP BIAS CTRL | 0x1C             | RW  | Bit[7:5]: Not used Bit[4]: MWB bias on This will subtract the BLC target before MWB gain, and add the target back after MWB 0: Disable 1: Enable Bit[3:0]: Not used                                               |
| 0x5006~<br>0x5011 | RSVD          | -                | -   | Reserved                                                                                                                                                                                                          |
| 0x5012            | ISP CTRL 12   | 0x2A             | RW  | Bit[7:6]: Reserved Bit[5:4]: Scale SRAM0 test Bit[3:2]: Scale SRAM1 test Bit[1:0]: Scale SRAM2 test                                                                                                               |



table 5-1 ISP top registers (sheet 2 of 3)

|        |                   | isi top register. | 3 (36612 6.      | <b>-</b> / |                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-------------------|-------------------|------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | address           | register name     | default<br>value | R/W        | description                                                                                                                                                                                                                                                                                                                                                                          |
|        | 0x5013            | ISP CTRL 13       | 0x04             | RW         | Bit[7:3]: Reserved Bit[2]: LSB enable Bit[1:0]: Reserved                                                                                                                                                                                                                                                                                                                             |
|        | 0x501F            | ISP BYPASS        | 0x00             | RW         | Bit[7:6]: Not used Bit[5]: Bypass ISP Bypasses all ISP modules except window and pre-ISP Bit[4:0]: Reserved                                                                                                                                                                                                                                                                          |
|        | 0x5025            | ISP AVG SEL       | 0x00             | RW         | Bit[7:4]: Reserved Bit[3:2]: Not used Bit[1:0]: Average select 00: Use sensor raw to calculate average data 01: Use the data after LENC to calculate average data 10: Use the data after MWB_gain to calculate average data                                                                                                                                                          |
|        | 0x502A~<br>0x5040 | RSVD              | -                | -          | Reserved                                                                                                                                                                                                                                                                                                                                                                             |
| Column | 0x5041            | ISP CTRL41        | 0x04             | RW         | Bit[7]: Scale auto select  0: Enable, scale is manually enabled or disabled, depending on register 0x5002[7]  1: Disable, scale is auto enabled when the output size is less than the input size  Bit[6]: Not used  Bit[5]: Reserved  Bit[4]: Post binning filter enable  0: Disable  1: Enable  Bit[3]: Not used  Bit[2]: Average enable  0: Disable  1: Enable  Bit[1:0]: Not used |
|        | 0x5042~<br>0x5045 | RSVD              | -                | -          | Reserved                                                                                                                                                                                                                                                                                                                                                                             |
|        | 0x5046            | ISP SOF SEL       | 0x0A             | RW         | Bit[7:6]: ISP SOF select  00: Auto mode, ISP output the SOF automatic  01: VSYNC  10: TC_SOF  11: PRE SOF  Bit[5:0]: Reserved                                                                                                                                                                                                                                                        |



table 5-1 ISP top registers (sheet 3 of 3)

| address           | register name | default<br>value | R/W | description               |
|-------------------|---------------|------------------|-----|---------------------------|
| 0x5047~<br>0x505F | RSVD          | _                | _   | Reserved                  |
| 0x5061            | DEBUG         | -                | _   | Debug Register            |
| 0x5E0A            | PRE ISP Y OFF | 0x00             | RW  | Y Manual Offset High Byte |
| 0x5E0B            | PRE ISP Y OFF | 0x01             | RW  | Y Manual Offset Low Byte  |
| 0x5E10            | RSVD          | -                | -   | Reserved                  |
| 0x5E11~<br>0x5E24 | DEBUG         | -                | _   | Debug Registers           |

#### 5.2 LENC

The lens correction (LENC) algorithm compensates for the illumination drop off in the corners due to the lens. Based on the radius of each pixel to the lens, the algorithm calculates a gain for each pixel and then corrects each pixel with the calculated gain to compensate for the light distribution due to the lens curvature. The LENC correcting curve is automatically calculated based on sensor gain so that LENC adapts with sensor gain. Additionally, LENC supports subsampling in both horizontal and vertical directions. LENC is performed in the RGB domain.

Luminance channel consists of 36 control points while each color channel consists of 25 control points.

figure 5-1 control points of luminance and color channels







LENC gain

SensorGainThreshold1

SensorGainThreshold2

sensor gain

figure 5-2 luminance compensation level calculation



### note

There is a lens calibration tool that can be used for calibrating these settings required for a specific module. Contact your local OmniVision FAE for generating these settings.

table 5-2 LENC registers (sheet 1 of 4)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                 |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5000  | ISP CTRL0     | 0x06             | RW  | Bit[7]: LENC correction enable  0: Disable  1: Enable  Bit[6:3]: Not used  Bit[2]: Black pixel cancellation enable  0: Disable  1: Enable  Bit[1]: White pixel cancellation enable  0: Disable  1: Enable  Bit[0]: Not used |
| 0x5800  | LENC G00      | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G00 for luminance compensation                                                                                                                                                   |
| 0x5801  | LENC G01      | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G01 for luminance compensation                                                                                                                                                   |
| 0x5802  | LENC G02      | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G02 for luminance compensation                                                                                                                                                   |
| 0x5803  | LENC G03      | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G03 for luminance compensation                                                                                                                                                   |



5690\_5693\_DS\_5\_2

table 5-2 LENC registers (sheet 2 of 4)

| address           | register name         | default<br>value | R/W | description                                                                                                        |
|-------------------|-----------------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------|
| 0x5804            | LENC G04              | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G04 for luminance compensation                                          |
| 0x5805            | LENC G05              | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G05 for luminance compensation                                          |
| 0x5806            | LENC G10              | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G10 for luminance compensation                                          |
| 0x5807            | LENC G11              | 0x08             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G11 for luminance compensation                                          |
| 0x5808            | LENC G12              | 0x08             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G12 for luminance compensation                                          |
| 0x5809            | LENC G13              | 0x08             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G13 for luminance compensation                                          |
| 0x580A~<br>0x5821 | LENC G14~<br>LENC G53 | 7                | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G14~G53 for luminance compensation                                      |
| 0x5822            | LENC G54              | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G54 for luminance compensation                                          |
| 0x5823            | LENC G55              | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G55 for luminance compensation                                          |
| 0x5824            | LENC BR00             | 0xAA             | RW  | Bit[7:4]: Control point B00 for blue channel compensation Bit[3:0]: Control point R00 for red channel compensation |
| 0x5825            | LENC BR01             | 0xAA             | RW  | Bit[7:4]: Control point B01 for blue channel compensation Bit[3:0]: Control point R01 for red channel compensation |
| 0x5826            | LENC BR02             | 0xAA             | RW  | Bit[7:4]: Control point B02 for blue channel compensation Bit[3:0]: Control point R02 for red channel compensation |



table 5-2 LENC registers (sheet 3 of 4)

|      |                   |                                  | (3661.6          | • / |                        |                                                                                                                                                                                                                           |
|------|-------------------|----------------------------------|------------------|-----|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | address           | register name                    | default<br>value | R/W | descriptio             | n                                                                                                                                                                                                                         |
|      | 0x5827            | LENC BR03                        | 0xAA             | RW  | Bit[7:4]:<br>Bit[3:0]: | Control point B03 for blue channel compensation Control point R03 for red channel compensation                                                                                                                            |
|      | 0x5828            | LENC BR04                        | 0xAA             | RW  | Bit[7:4]:<br>Bit[3:0]: | compensation                                                                                                                                                                                                              |
|      | 0x5829            | LENC BR10                        | 0xAA             | RW  | Bit[7:4]:<br>Bit[3:0]: | compensation                                                                                                                                                                                                              |
|      | 0x582A~<br>0x583B | LENC BR11~<br>LENC BR43          | -                | RW  | Bit[7:4]:<br>Bit[3:0]: | channels compensation                                                                                                                                                                                                     |
|      | 0x583C            | LENC BR44                        | 0xAA             | RW  | Bit[7:4]:<br>Bit[3:0]: | compensation                                                                                                                                                                                                              |
|      | 0x583D            | LENC BROFFSET                    | 0x88             | RW  | Bit[7:4]:<br>Bit[3:0]: | points                                                                                                                                                                                                                    |
| -01/ | 0x583E            | LENC<br>SENSORGAIN<br>THRESHOLD1 | 0x40             | RW  | Bit[7:0]:              | If AutoLensSwitchEnable is true and sensor gain is larger than this threshold, luminance compensation amplitude will be the minimum value (min LENC gain). Register value is 16 times sensor gain.                        |
| ONE  | 0x583F            | LENC<br>SENSORGAIN<br>THRESHOLD2 | 0x20             | RW  | Bit[7:0]:              | If AutoLensSwitchEnable is true and sensor gain is larger than this threshold, luminance compensation amplitude will start to decrease; otherwise, the amplitude will not change. Register value is 16 times sensor gain. |
|      | 0x5840            | MIN LENC GAIN                    | 0x18             | RW  | Bit[7]:<br>Bit[6:0]:   | Reserved This value indicates the minimum amplitude which luminance channel compensates when AutoLensSwitchEnable is true. Value should be in the range [0~64]                                                            |
|      |                   |                                  |                  |     |                        |                                                                                                                                                                                                                           |



table 5-2 LENC registers (sheet 4 of 4)

|         |               |                  | •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x5841  | LENC CTRL     | 0x0D             | RW  | Bit[7:4]: Reserved Bit[3]: Add BLC target  0: Do not add BLC target after applying compensation  1: Add BLC target after applying compensation  Bit[2]: Subtract BLC target  0: Do not subtract BLC target after applying compensation  1: Subtract BLC target after applying compensation  1: Subtract BLC target after applying compensation  Bit[1]: Reserved  Bit[0]: AutoLensSwitchEnable  0: Luminance compensation amplitude does not change with sensor gain  1: Luminance compensation amplitude changes with sensor gain |
| 0x5842  | LENC BRHSCALE | 0x00             | RW  | For horizontal color gain calculation, this value indicates the step between two connected horizontal pixels.  Bit[7:3]: Reserved Bit[2:0]: br_Hscale[10:8]                                                                                                                                                                                                                                                                                                                                                                        |
| 0x5843  | LENC BRHSCALE | 0xEF             | RW  | Bit[7:0]: br_Hscale[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x5844  | LENC BRVSCALE | 0x01             | RW  | For vertical color gain calculation, this value indicates the step between two connected vertical pixels.  Bit[7:3]: Reserved Bit[2:0]: br_Vscale[10:8]                                                                                                                                                                                                                                                                                                                                                                            |
| 0x5845  | LENC BRVSCALE | 0x3E             | RW  | Bit[7:0]: br_Vscale[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x5846  | LENC GHSCALE  | 0x01             | RW  | For horizontal luminance gain calculation, this value indicates the step between two connected horizontal pixels.  Bit[7:3]: Reserved Bit[2:0]: g_Hscale[10:8]                                                                                                                                                                                                                                                                                                                                                                     |
| 0x5847  | LENC GHSCALE  | 0x3E             | RW  | Bit[7:0]: g_Hscale[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x5848  | LENC GVSCALE  | 0x00             | RW  | For vertical luminance gain calculation, this value indicates the step between two connected horizontal pixels.  Bit[7:3]: Reserved Bit[2:0]: g_Vscale[10:8]                                                                                                                                                                                                                                                                                                                                                                       |
| 0x5849  | LENC GVSCALE  | 0xD4             | RW  | Bit[7:0]: g_Vscale[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



### 5.3 defect pixel cancellation (DPC)

Primarily due to process anomalies, pixel defects in the sensor array will occur, generating incorrect pixel levels and color values. The purpose of the DPC is to remove the effects caused by defective pixels.

table 5-3 DPC register

| address | register name | default<br>value | R/W | description        | on                                                                                            |
|---------|---------------|------------------|-----|--------------------|-----------------------------------------------------------------------------------------------|
| 0x5000  | ISP CTRL00    | 0x06             | RW  | Bit[2]:<br>Bit[1]: | Remove black defect pixel 0: Disable 1: Enable Remove white defect pixel 0: Disable 1: Enable |



#### 5.4 scalar

The OV5693 includes a scalar function that allows the user to arbitrarily set an output image size (width and height) that is smaller than the designated array size. The scalar module outputs the specified image size and maintains the field-of-view as the input image to the scalar. Note that the frame rate will not change in scaling mode.

figure 5-3 scaling function



table 5-4 scalar control registers (sheet 1 of 2)

| address | register name        | default<br>value | R/W | description                            |
|---------|----------------------|------------------|-----|----------------------------------------|
| 0x3800  | TIMING_X_ADDR_START  | 0x00             | RW  | Array Horizontal Start Point High Byte |
| 0x3801  | TIMING_X_ADDR_START  | 0x00             | RW  | Array Horizontal Start Point Low Byte  |
| 0x3802  | TIMING_Y_ADDR_START  | 0x00             | RW  | Array Vertical Start Point High Byte   |
| 0x3803  | TIMING_Y_ADDR_START  | 0x00             | RW  | Array Vertical Start Point Low Byte    |
| 0x3804  | TIMING_X_ADDR_END    | 0x0A             | RW  | Array Horizontal End Point High Byte   |
| 0x3805  | TIMING_X_ADDR_END    | 0x3F             | RW  | Array Horizontal End Point Low Byte    |
| 0x3806  | TIMING_Y_ADDR_END    | 0x07             | RW  | Array Vertical End Point High Byte     |
| 0x3807  | TIMING_Y_ADDR_END    | 0xA3             | RW  | Array Vertical End Point Low Byte      |
| 0x3808  | TIMING_X_OUTPUT_SIZE | 0x0A             | RW  | ISP Horizontal Output Width High Byte  |



table 5-4 scalar control registers (sheet 2 of 2)

| address | register name        | default<br>value | R/W | description                                                                                                                                                                                                                                                      |
|---------|----------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3809  | TIMING_X_OUTPUT_SIZE | 0x20             | RW  | ISP Horizontal Output Width Low Byte                                                                                                                                                                                                                             |
| 0x380A  | TIMING_Y_OUTPUT_SIZE | 0x07             | RW  | ISP Vertical Output Height High Byte                                                                                                                                                                                                                             |
| 0x380B  | TIMING_Y_OUTPUT_SIZE | 0x98             | RW  | ISP Vertical Output Height Low Byte                                                                                                                                                                                                                              |
| 0x3810  | TIMING_ISP_X_WIN     | 0x00             | RW  | ISP Horizontal Windowing Offset High Byt                                                                                                                                                                                                                         |
| 0x3811  | TIMING_ISP_X_WIN     | 0x02             | RW  | ISP Horizontal Windowing Offset Low Byt                                                                                                                                                                                                                          |
| 0x3812  | TIMING_ISP_Y_WIN     | 0x00             | RW  | ISP Vertical Windowing Offset High Byte                                                                                                                                                                                                                          |
| 0x3813  | TIMING_ISP_Y_WIN     | 0x02             | RW  | ISP Vertical Windowing Offset Low Byte                                                                                                                                                                                                                           |
| 0x5041  | ISP CTRL41           | 0x0C             | RW  | Bit[7]: Scale auto select  0: Enable, scaling is manually enabled or disabled, depending on register 0x5002[7]  1: Disable, scaling is auto enabled when the outpusize is less than the inpusize  Bit[5]: Manual scale enable  0: Scale disable  1: Scale enable |
| 0x5600  | SCALE HFACTOR        | 0x00             | RW  | Bit[1:0]: Scale horizontal factor[9:8]                                                                                                                                                                                                                           |
| 0x5601  | SCALE HFACTOR        | 0x80             | RW  | Bit[7:0]: Scale horizontal factor[7:0]                                                                                                                                                                                                                           |
| 0x5602  | SCALE VFACTOR        | 0x00             | RW  | Bit[1:0]: Scale vertical factor[9:8]                                                                                                                                                                                                                             |
| 0x5603  | SCALE VFACTOR        | 0x80             | RW  | Bit[7:0]: Scale vertical factor[7:0]                                                                                                                                                                                                                             |
| 0x5068  | SCALE H INVT         | 0x00             | RW  | Bit[7:6]: Horizontal MSB<br>Bit[4:0]: Horizontal inverse                                                                                                                                                                                                         |
| 0x506A  | SCALE V INVT         | 0x00             | RW  | Bit[7:6]: Vertical MSB Bit[4:0]: Vertical inverse                                                                                                                                                                                                                |



# $5.5\,$ white balance, exposure and gain control

#### 5.5.1 manual white balance (MWB)

The manual white balance (MWB) provides digital gain for R, G, and B channels. Each channel gain is 12-bit. 0x400 is 1x gain.

table 5-5 MWB control registers

|         |               | _                |     |                                                                                                                           |
|---------|---------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W | description                                                                                                               |
| 0x3400  | MWB GAIN00    | 0x04             | RW  | Bit[7:4]: Reserved Bit[3:0]: MWB red gain[11:8] Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400         |
| 0x3401  | MWB GAIN01    | 0x00             | RW  | Bit[7:0]: MWB red gain[7:0] Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400                             |
| 0x3402  | MWB GAIN02    | 0x04             | RW  | Bit[7:4]: Reserved Bit[3:0]: MWB green gain[11:8] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x400 |
| 0x3403  | MWB GAIN03    | 0x00             | RW  | Bit[7:0]: MWB green gain[7:0] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x400                     |
| 0x3404  | MWB GAIN04    | 0x04             | RW  | Bit[7:4]: Reserved Bit[3:0]: MWB blue gain[11:8] Digital gain in blue channel Blue gain = MWB blue gain[11:0] / 0x400     |
| 0x3405  | MWB GAIN05    | 0x00             | RW  | Bit[7:0]: MWB blue gain[7:0] Digital gain in blue channel Blue gain = MWB blue gain[11:0] / 0x400                         |
| 0x3406  | MWB GAIN06    | 0x00             | RW  | Bit[0]: MWB gain enable<br>0: Disable<br>1: Enable                                                                        |



#### 5.5.2 manual exposure control (MEC)

Manual exposure provides exposure time settings. The exposure value in register 0x3500~0x3502 is in units of 1/16 line.

table 5-6 MEC control registers

|     |         | 9              |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|---------|----------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | address | register name  | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0x3500  | AEC LONG EXPO  | 0x00             | RW  | Long Exposure<br>Bit[2:0]: Long exposure[18:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 0x3501  | AEC LONG EXPO  | 0x02             | RW  | Long Exposure<br>Bit[7:0]: Long exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0x3502  | AEC LONG EXPO  | 0x00             | RW  | Long Exposure Bit[7:0]: Long exposure[7:0] Low 4 bits are fraction bits which are not supported and should always be 0.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 0x3503  | AEC MANUAL     | 0x03             | RW  | AEC Manual Mode Control Bit[5:4]: Gain delay option 00: Delay one frame latch Others: Next frame latch  Bit[2]: VTS manual enable There is no auto module in this device so this bit should always be 1 1: Manual enable Bit[1]: AGC manual enable There is no auto module in this device so this bit should always be 1 1: Manual enable Bit[0]: AEC manual enable There is no auto module in this device so this bit should always be 1 1: Manual enable There is no auto module in this device so this bit should always be 1 1: Manual enable |
|     | 0x3504  | MAN SNR GAIN   | 0x00             | RW  | Manual Sensor Gain<br>Bit[1:0]: Manual sensor gain[9:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 0x3505  | MAN SNR GAIN   | 0x00             | RW  | Manual Sensor Gain<br>Bit[7:0]: Manual sensor gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WEI | 0x3506  | AEC SHORT EXPO | 0x00             | RW  | Short Exposure Bit[3:0]: Short exposure[19:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 0x3507  | AEC SHORT EXPO | 0x02             | RW  | Short Exposure<br>Bit[7:0]: Short exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 0x3508  | AEC SHORT EXPO | 0x00             | RW  | Short Exposure Bit[7:0]: Short exposure[7:0] Low 4 bits are fraction bits which are not supported and should always be 0.                                                                                                                                                                                                                                                                                                                                                                                                                         |



#### 5.5.3 manual gain control (MGC)

Manual gain provides analog gain settings. The OV5693 has a maximum 16x analog gain.

table 5-7 MGC control registers

| address | register name       | default<br>value | R/W | description                                                                                                                                                                                                                                                                     |
|---------|---------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3509  | AEC GAIN<br>CONVERT | 0x10             | RW  | AEC Manual Mode Control  Bit[4:3]: Sensor gain convert enable  01: Use sensor gain {0x350A,0x350B} as sensor gain  10: Use real gain {0x350A,0x350B} as real gain                                                                                                               |
| 0x350A  | AEC AGC ADJ         | 0x00             | RW  | Gain Output to Sensor<br>Bit[2:0]: Gain[10:8]                                                                                                                                                                                                                                   |
| 0x350B  | AEC AGC ADJ         | 0x10             | RW  | Gain Output to Sensor  Bit[7:0]: Gain[7:0]  When 0x3509[4:3]= 01, this gain is sensor gain. Real gain = 2^n(16+x)/16  where N is number of 1 in bits gain[6:4] and X is the low bits gain[3:0]  When 0x3509[4:3] = 10, this gain is real gain. The low 4 bits are fraction bits |



#### 5.6 AVG

The main function of AVG is to average the data channel value using special filters.

table 5-8 AVG control registers

|   | tubic 5 0 | 71V d controttre   | 5(3(6)3          |     |                                 |                                                                                                                                                                                                                                                             |
|---|-----------|--------------------|------------------|-----|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | address   | register name      | default<br>value | R/W | descriptio                      | n                                                                                                                                                                                                                                                           |
|   | 0x5041    | ISP CTRL2          | 0x0C             | RW  | Bit[7]:<br>Bit[6]:<br>Bit[5]:   | Scale manually select  0: Disable, scale is auto enable when the output size is less than the input size  1: Enable, scale is manually enable or disable, depending on register 0x5041[5]  Not used  Manual scale enable  0: Scale disable  1: Scale enable |
|   |           | NIO                |                  |     | Bit[4]:  Bit[3]:  Bit[2]:       | Post binning filter enable 0: Disable 1: Enable Not used Average enable 0: Disable 1: Enable Not used                                                                                                                                                       |
|   | XK        |                    |                  |     |                                 | Not used                                                                                                                                                                                                                                                    |
|   | 0x5680    | AVG X START        | 0x00             | RW  |                                 | X start offset[11:8]                                                                                                                                                                                                                                        |
|   | 0x5681    | AVG X START        | 0x00             | RW  | Bit[7:0]:                       | X start offset[7:0]                                                                                                                                                                                                                                         |
|   | 0x5682    | AVG Y START        | 0x00             | RW  |                                 | Not used<br>Y start offset[11:8]                                                                                                                                                                                                                            |
|   | 0x5683    | AVG Y START        | 0x00             | RW  | Bit[7:0]:                       | Y start offset[7:0]                                                                                                                                                                                                                                         |
|   | 0x5684    | AVG WIN WIDTH      | 0x0C             | RW  |                                 | Not used<br>Window width[11:8]                                                                                                                                                                                                                              |
|   | 0x5685    | AVG WIN WIDTH      | 0xC0             | RW  | Bit[7:0]:                       | Window width[7:0]                                                                                                                                                                                                                                           |
| M | 0x5686    | AVG WIN HEIGHT     | 0x09             | RW  |                                 | Not used<br>Window height[11:8]                                                                                                                                                                                                                             |
|   | 0x5687    | AVG WIN HEIGHT     | 0x90             | RW  | Bit[7:0]:                       | Window height[7:0]                                                                                                                                                                                                                                          |
|   | 0x5688    | AVG MANUAL<br>CTRL | 0x02             | RW  | Bit[7:2]:<br>Bit[1]:<br>Bit[0]: | Not used Average option Average size manual 0: Disable 1: Enable                                                                                                                                                                                            |
|   | 0x568A    | AVG READ OUT       | 0x00             | R   | Bit[7:0]:                       | Average read out                                                                                                                                                                                                                                            |
|   |           |                    |                  |     |                                 |                                                                                                                                                                                                                                                             |



# system control

System control registers include clock, reset control, and PLL configuration. Individual modules can be reset or clock gated by setting the appropriate registers. For system control registers, see table 6-1.

system control registers (sheet 1 of 4) table 6-1

| address           | register name | default<br>value | R/W | description                                                                                                                                                       |
|-------------------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0100            | MODE_SELECT   | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: Mode select 0: software_standby 1: Streaming                                                                                           |
| 0x0102            | FAST_STANDBY  | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: fast_standby_enable                                                                                                                    |
| 0x0103            | SOFTWARE_RST  | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: software_reset                                                                                                                         |
| 0x3001            | SC_PAD_CTRL   | 0x0A             | RW  | Bit[7]: pd_data_o_en Bit[6:5]: iP2X3v Bit[4:3]: Reserved Bit[2]: FSIN input disable Bit[1]: FREX input disable Bit[0]: Reserved                                   |
| 0x3002            | SC_PAD_OEN0   | 0x00             | RW  | Bit[7]: io_vsync_oen Bit[6]: io_href_oen Bit[5]: Reserved Bit[4]: io_frex_oen Bit[3]: io_strobe_oen Bit[2]: io_fsin_oen Bit[1]: io_ilpwm_oen Bit[0]: io_gpio0_oen |
| 0x3004~<br>0x3005 | RSVD          | _                | _   | Reserved                                                                                                                                                          |
| 0x3006            | SC_PAD_OUT2   | 0x00             | RW  | Bit[7]: io_vsync_o Bit[6]: io_href_o Bit[5]: Reserved Bit[4]: io_frex_o Bit[3]: io_strobe_o Bit[2]: io_fsin_o Bit[1]: io_ilpwm_o Bit[0]: io_gpio0_o               |
| 0x3008~<br>0x3009 | RSVD          | -                | _   | Reserved                                                                                                                                                          |
| 0x300A            | SC_CHIP_ID    | 0x56             | R   | Chip ID High Byte                                                                                                                                                 |
| 0x300B            | SC_CHIP_ID    | 0x90             | R   | Chip ID Low Byte                                                                                                                                                  |



table 6-1 system control registers (sheet 2 of 4)

|   |                   | 7/212111 20111 2011 2011 |                  | ,   |                                                                                                                                                                |
|---|-------------------|--------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | address           | register name            | default<br>value | R/W | description                                                                                                                                                    |
|   | 0x300C            | SC_SCCB_ID               | 0x6C             | RW  | SCCB ID                                                                                                                                                        |
| - | 0x302A            | SC_CHIP_REVISION         | 0xB2             | R   | Chip Revision ID                                                                                                                                               |
|   | 0x3011            | SC_MIPI_SC_CTRL0         | 0x21             | RW  | Bit[7:4]: lane_num 0001: 1 lane 0010: 2 lane Bit[3]: mipi_phy_rst_o Bit[2]: r_phy_pd_mipi 1: Power down PHY TX Bit[1]: Reserved Bit[0]: mipi_en 1: MIPI enable |
| - | 0x3012            | SC_MIPI_PHY              | 0x09             | RW  | Bit[7:4: Reserved Bit[3]: mipi_pad Bit[2]: pgm_bp_hs_en_lat Bypass the latch of hs_enable Bit[1:0]: MIPI pixel bit count 00: 8-bit 01: 10-bit                  |
|   | 0x3013            | SC_MIPI_PHY              | 0x10             | RW  | Bit[7:6]: pgm_vcm[1:0] High speed common mode voltage Bit[5:4]: pgm_lptx[1:0] 01: Driving strength of low speed transmitter Bit[3:0]: Reserved                 |
|   | 0x3014            | SC_MIPI_SC_CTRL1         | 0x00             | RW  | Bit[7:4]: Reserved<br>Bit[3:2]: mipi_d2_skew<br>Bit[1:0]: mipi_d1_skew                                                                                         |
|   | 0x3015            | SC_MIPI_SC_CTRL2         | 0x08             | RW  | Bit[7:6]: Reserved Bit[5]: mipi_lane_dis2 Bit[4]: mipi_lane_dis1 Bit[3]: phy_mode 0: not used 1: MIPI Bit[2]: mipi_ck_lane_dis Bit[1:0]: mipi_ck_skew_o        |
| - | 0x3016~<br>0x301A | DEBUG MODE               | -                | -   | Debug Mode                                                                                                                                                     |



table 6-1 system control registers (sheet 3 of 4)

| address           | register name         | default<br>value | R/W | descriptio                                                      | n                                                                                                                                                                                                                               |
|-------------------|-----------------------|------------------|-----|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x301B            | SC_CLKRST5            | 0xB4             | RW  | Bit[7]:  Bit[6]:  Bit[5]:  Bit[4]:  Bit[3]:  Bit[2]:  Bit[0]:   | snr_timing_dac_clk_sel 0: Use dac_clk 1: Use dac_clk_div2 snr_timing_clk_opt 0: From dac_clk 1: From sclk sclk_bist20 sclk_snr_sync Reserved dac_clk_enable For sensor_ctrl and psram_ctrl rst_bist20 rst_snr_sync              |
| 0x301D            | SC_FREX_RST_<br>MASK0 | 0x02             | RW  | Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]: | frex_mask_aec frex_mask_tpm frex_mask_isp frex_mask_dvp frex_mask_mipi frex_mask_vfifo&format frex_mask_arb frex_mask_mipi_phy                                                                                                  |
| 0x301E            | SC_CLOCK_SEL          | 0x00             | RW  | Bit[7:4]:<br>Bit[3]:<br>Bit[2:0]:                               | pclk_sel 0: Select p_pclk_i 1: Select p_pclk_div2                                                                                                                                                                               |
| 0x301F            | RSVD                  | -                | -   | Reserved                                                        |                                                                                                                                                                                                                                 |
| 0x3020            | SC_A_PWC_PK_O         | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]:                                          |                                                                                                                                                                                                                                 |
| 0x3021            | SC_A_PWC_O            | 0x00             | RW  | Bit[5]:                                                         | Internal regulator 0: Use 1: Bypass                                                                                                                                                                                             |
| 0x3021~<br>0x3022 | DEBUG MODE            | -                | -   | Debug Mod                                                       | de                                                                                                                                                                                                                              |
| 0x3023            | SC_LOW_PWR_CTR        | 0x00             | RW  | Bit[6]: Bit[5]: Bit[4]:  Bit[3]: Bit[2]: Bit[1]: Bit[0]:        | phy_pd_mipi_pwdn_dis phy_pd_lprx_pwdn_dis stb_rst_dis 0: Reset all blocks at software standby mode 1: TC, sensor_control, ISP are reset, others not pd_ana_dis pd_big_regulator_dis phy_pd_mipi_slppd_dis phy_pd_lprx_slppd_dis |



table 6-1 system control registers (sheet 4 of 4)

| address | register name | default<br>value | R/W | description                                                                                                                                                       |
|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3024  | SC_PAD_SEL2   | 0x00             | RW  | Bit[7]: io_vsync_sel Bit[6]: io_href_sel Bit[5]: Reserved Bit[4]: io_frex_sel Bit[3]: io_strobe_sel Bit[2]: io_fsin_sel Bit[1]: io_ilpwm_sel Bit[0]: io_gpio0_sel |

### 6.1 mobile industry processor interface (MIPI)

MIPI provides a single uni-directional clock lane and single or dual bi-directional data lane solution for communication links between components inside a mobile device. Each data lane has full support for high speed (HS). Contact your local OmniVision FAE for more details.

table 6-2 MIPI control registers (sheet 1 of 10)

|       | address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|---------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colli | 0x4800  | MIPI CTRL 00  | 0x00             | RW  | MIPI Control 00  Bit[7]: mipi_hs_only 1: MIPI always in high speed mode  Bit[6]: Reserved  Bit[5]: Clock lane gate enable 0: Clock lane is free running 1: Gate clock lane when there is no packet to transmit  Bit[4]: Line sync enable 0: Do not send line short packet for each line 1: Send line short packet for each line Bit[3]: Reserved Bit[2]: Idle status 0: MIPI bus will be LP00 when there is no packet to transmit 1: MIPI bus will be LP11 when there is no packet to transmit Bit[1:0]: Reserved |



MIPI control registers (sheet 2 of 10) table 6-2

| address | register name | default<br>value | R/W | description                                                    |
|---------|---------------|------------------|-----|----------------------------------------------------------------|
|         |               |                  |     | MIPI Control 01                                                |
|         |               |                  |     | Bit[7]: Long packet data type manual enable                    |
|         |               |                  |     | 0: Use mipi_dt                                                 |
|         |               |                  |     | 1: Use dt_man_o as long packet data (see register 0x4814[5:0]) |
|         |               |                  |     | Bit[6]: Short packet data type manual enable                   |
|         |               |                  |     | 1: Use dt_spkt as short packet data (see register 0x4815[5:0]) |
|         |               |                  |     | Bit[5]: first_bit                                              |
|         |               |                  |     | Change clk_lane first bit                                      |
|         |               |                  |     | 0: Output 0x05                                                 |
|         |               |                  |     | 1: Output 0xAA                                                 |
| 0x4801  | MIPI CTRL 01  | 0x0D             | RW  | Bit[4]: PH bit order for ECC                                   |
|         |               |                  |     | 0: {DI[7:0],WC[7:0],WC[15:8]}<br>1: {DI[0:71,WC[0:71,WC[8:15]} |
|         |               |                  |     | 1: {DI[0:7],WC[0:7],WC[8:15]} Bit[3]: PH byte order for ECC    |
|         |               |                  |     | 0: {DI,WC_I,WC_h}                                              |
|         |               |                  |     | 1: {DI,WC_I,WC_I}                                              |
|         |               |                  | /   | Bit[2]: PH byte order2 for ECC                                 |
|         |               | - W.             |     | 0: {DI,WC}                                                     |
|         |               |                  |     | 1: {WC,DI}                                                     |
|         |               |                  |     | Bit[1]: LPX select for pclk domain                             |
|         |               |                  |     | 0: Auto calculate t_lpx_p, unit pclk2x                         |
|         |               | 2/2              |     | cycle<br>1: Use lpx_p_min[7:0]                                 |
|         |               |                  |     | Bit[0]: Reserved                                               |



table 6-2 MIPI control registers (sheet 3 of 10)

|             | table 0 2 | table 0 2 Mill reductive gisters (sheet 5 of 10) |                  |     |                                                                                                                       |  |
|-------------|-----------|--------------------------------------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------|--|
|             | address   | register name                                    | default<br>value | R/W | description                                                                                                           |  |
|             |           |                                                  |                  |     | MIPI Control 02 Bit[7]: hs_prepare_sel 0: Auto calculate T_hs_prepare, unit                                           |  |
|             |           |                                                  |                  |     | pclk2x 1: Use hs_prepare_min_o[7:0] Bit[6]: clk_prepare_sel 0: Auto calculate T_clk_prepare, unit                     |  |
|             |           |                                                  |                  |     | pclk2x 1: Use clk_prepare_min_o[7:0] Bit[5]: clk_post_sel 0: Auto calculate T_clk_post, unit pclk2x                   |  |
|             |           |                                                  | K(C)             |     | 1: Use clk_post_min_o[7:0]  Bit[4]: clk_trail_sel  0: Auto calculate T_clk_trail, unit pclk2x                         |  |
|             | 0x4802    | MIPI CTRL 02                                     | 0x00             | RW  | 1: Use clk_trail_min_o[7:0]  Bit[3]: hs_exit_sel  0: Auto calculate T_hs_exit, unit pclk2x                            |  |
|             |           |                                                  |                  |     | 1: Use hs_exit_min_o[7:0] Bit[2]: hs_zero_sel 0: Auto calculate T_hs_zero, unit pclk2x                                |  |
|             |           | 5                                                |                  |     | 1: Use hs_zero_min_o[7:0] Bit[1]: hs_trail_sel 0: Auto calculate T_hs_trail, unit pclk2x                              |  |
|             |           |                                                  |                  |     | 1: Use hs_trail.min_o[7:0] Bit[0]: clk_zero_sel 0: Auto calculate T_clk_zero, unit pclk2x 1: Use clk_zero_min_o[7:0]  |  |
|             | -         |                                                  |                  |     | MIPI Control 03                                                                                                       |  |
| $G_{\cdot}$ | 0x4803    | MIPI CTRL 03                                     | 0x00             | RW  | Bit[7:4]: Reserved Bit[3]: manu_ofset_o t_period manual offset                                                        |  |
| MP          |           |                                                  |                  |     | Bit[2]: r_manual_half2one<br>t_period half to 1<br>Bit[1:0]: Reserved                                                 |  |
|             | 0x4804    | MIPI CTRL 04                                     | 0x00             | RW  | MIPI Control 04 Bit[7:6]: Reserved Bit[5]: PRBS enable Bit[4]: Lane number manual enable Bit[3:0]: Manual lane number |  |



MIPI control registers (sheet 4 of 10) table 6-2

|         |                         | •                |     | <u> </u>                                                                                                                                                                                                   |
|---------|-------------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name           | default<br>value | R/W | description                                                                                                                                                                                                |
| 0x4805  | MIPI CTRL 05            | 0x01             | RW  | MIPI Control 05 Bit[7:6]: Reserved Bit[5]: mipi_ul_tx_en Bit[4]: tx_lsb_first Bit[3:0]: sw_t_lpx                                                                                                           |
| 0x4806  | MIPI REG R/W CTRL       | 0x00             | RW  | Bit[7:4]: Reserved Bit[3]: lpda_retim_manu_o Bit[2]: lpda_retim_sel_o                                                                                                                                      |
| 0x4810  | MIPI MAX FRAME<br>COUNT | 0xFF             | RW  | High Byte of Maximum Frame Count of Frame Sync Short Packet                                                                                                                                                |
| 0x4811  | MIPI MAX FRAME<br>COUNT | 0xFF             | RW  | Low Byte of Maximum Frame Count of Frame Sync<br>Short Packet                                                                                                                                              |
| 0x4813  | MIPI CTRL13             | 0x00             | RW  | MIPI Control 143  Bit[7:3]: Reserved  Bit[2]: vc_sel  Input vc or reg vc  Bit[1:0]: vc  Virtual channel of MIPI                                                                                            |
| 0x4814  | MIPI CTRL14             | 0x2A             | RW  | MIPI Control 14 Bit[7:6]: Reserved Bit[5:0]: Data type in manual mode                                                                                                                                      |
| 0x4815  | MIPI_DT_SPKT            | 0x00             | RW  | Bit[7]: Reserved Bit[6]: pclk_div 0: Use falling edge of mipi_pclk_o to generate MIPI bus to PHY 1: Use rising edge of mipi_pclk_o to generate MIPI bus to PHY Bit[5:0]: Manual data type for short packet |
| 0x4816  | EMB_DT_SEL              | 0x52             | RW  | emb_dt_sel Bit[7]: Reserved Bit[6]: emb_line_sel 1: Use emb_dt as data in first emb_line_nu Bit[5:0]: emb_dt Manually set embedded data type                                                               |
| 0x4818  | HS_ZERO_MIN             | 0x00             | RW  | High Byte of Minimum Value for hs_zero, unit ns                                                                                                                                                            |
| 0x4819  | HS_ZERO_MIN             | 0x70             | RW  | Low Byte of Minimum Value for hs_zero, unit ns<br>hs_zero_real = hs_zero_min_o +<br>Tui*ui_hs_zero_min_o                                                                                                   |



table 6-2 MIPI control registers (sheet 5 of 10)

|   |         | 0               | `                |     | ,                                                                                                                              |
|---|---------|-----------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
|   | address | register name   | default<br>value | R/W | description                                                                                                                    |
|   | 0x481A  | HS_TRAIL_MIN    | 0x00             | RW  | High Byte of Minimum Value for hs_trail, unit ns                                                                               |
|   | 0x481B  | HS_TRAIL_MIN    | 0x3C             | RW  | Low Byte of Minimum Value for hs_trail, unit ns<br>hs_trail_real = hs_trail_min_o +<br>Tui*ui_hs_trail_min_o                   |
|   | 0x481C  | CLK_ZERO_MIN    | 0x01             | RW  | High Byte of Minimum Value for clk_zero, unit ns                                                                               |
|   | 0x481D  | CLK_ZERO_MIN    | 0x06             | RW  | Low Byte of Minimum Value for clk_zero, unit ns clk_zero_real = clk_zero_min_o + Tui*ui_clk_zero_min_o                         |
|   | 0x481E  | CLK_PREPARE_MAX | 0x5F             | RW  | clk_prepare_max<br>Maximum Value of clk_prepare, unit ns                                                                       |
|   | 0x481F  | CLK_PREPARE_MIN | 0x26             | RW  | Minimum Value for clk_prepare clk_prepare_real = clk_prepare_min_o + Tui*ui_clk_prepare_min_o                                  |
|   | 0x4820  | CLK_POST_MIN    | 0x00             | RW  | High Byte of Minimum Value for clk_post, unit ns<br>Bit[1:0]: clk_post_min[9:8]                                                |
|   | 0x4821  | CLK_POST_MIN    | 0x3C             | RW  | Low Byte of Minimum Value for clk_post clk_post_real = clk_post_min_o + Tui*ui_clk_post_min_o Bit[7:0]: clk_post_min[7:0]      |
|   | 0x4822  | CLK_TRAIL_MIN   | 0x00             | RW  | High Byte of Minimum Value for clk_trail, unit ns<br>Bit[1:0]: clk_trail_min[9:8]                                              |
| S | 0x4823  | CLK_TRAIL_MIN   | 0x3C             | RW  | Low Byte of Minimum Value for clk_trail clk_trail_real = clk_trail_min_o + Tui*ui_clk_trail_min_o Bit[7:0]: clk_trail_min[7:0] |
|   | 0x4824  | LPX_P_MIN       | 0x00             | RW  | High Byte of Minimum Value for lpx_p, unit ns<br>Bit[1:0]: lpx_p_min[9:8]                                                      |
|   | 0x4825  | LPX_P_MIN       | 0x32             | RW  | Low Byte of Minimum Value for lpx_p lpx_p_real = lpx_p_min_o + Tui*ui_lpx_p_min_o Bit[7:0]: lpx_p_min[7:0]                     |
|   | 0x4826  | HS_PREPARE_MIN  | 0x28             | RW  | hs_prepare_min<br>Minimum Value of hs_prepare, unit ns                                                                         |
|   | 0x4827  | HS_PREPARE_MAX  | 0x55             | RW  | Maximum Value for hs_prepare hs_prepare_real = hs_prepare_min_o + Tui*ui_hs_prepare_min_o                                      |
|   | 0x4828  | HS_EXIT_MIN     | 0x00             | RW  | High Byte of Minimum Value for hs_exit, unit ns<br>Bit[1:0]: hs_exit_min[9:8]                                                  |
|   |         |                 |                  |     |                                                                                                                                |



MIPI control registers (sheet 6 of 10) table 6-2

| address | register name     | default<br>value | R/W | description                                                                                                                                                         |
|---------|-------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4829  | HS_EXIT_MIN       | 0x64             | RW  | Low Byte of Minimum Value for hs_exit hs_exit_real = hs_exit_min_o + Tui*ui_hs_exit_min_o Bit[7:0]: hs_exit_min[7:0]                                                |
| 0x482A  | UI_HS_ZERO_MIN    | 0x06             | RW  | Minimum UI Value of hs_zero, unit UI                                                                                                                                |
| 0x482B  | UI_HS_TRAIL_MIN   | 0x04             | RW  | Minimum UI Value of hs_trail, unit UI                                                                                                                               |
| 0x482C  | UI_CLK_ZERO_MIN   | 0x00             | RW  | Minimum UI Value of clk_zero, unit UI                                                                                                                               |
| 0x482D  | UI_CLK_PREPARE    | 0x00             | RW  | ui_clk_prepare_min_ctrl Bit[7:4]: ui_clk_prepare_max Maximum UI value of clk_prepare, unit UI Bit[3:0]: ui_clk_prepare_min Minimum UI value of clk_prepare, unit UI |
| 0x482E  | UI_CLK_POST_MIN   | 0x34             | RW  | Minimum UI Value of clk_post, unit UI                                                                                                                               |
| 0x482F  | UI_CLK_TRAIL_MIN  | 0x00             | RW  | Minimum UI Value of clk_trail, unit UI                                                                                                                              |
| 0x4830  | UI_LPX_P_MIN      | 0x00             | RW  | Minimum UI Value of lpx_p, unit UI                                                                                                                                  |
| 0x4831  | UI_HS_PREPARE_MIN | 0x64             | RW  | ui_hs_prepare Bit[7:4]: ui_hs_prepare_max Maximum UI value of hs_prepare, unit UI Bit[3:0]: ui_hs_prepare_min Minimum UI value of hs_prepare, unit UI               |
| 0x4832  | UI_HS_EXIT_MIN    | 0x00             | RW  | Minimum UI Value of hs_exit, unit UI                                                                                                                                |
| 0x4836  | GLB_MODE_SEL      | 0x00             | RW  | glb_mode_sel Bit[7:1]: Reserved Bit[0]: timing_cal_en 0: Use period to calculate 1: Use bit rate to calculate                                                       |
| 0x4837  | PCLK_PERIOD       | 0x14             | RW  | Period of pclk2x, pclk_div = 1, and 1-bit decimal                                                                                                                   |



table 6-2 MIPI control registers (sheet 7 of 10)

| address | register name | default<br>value | R/W | description |
|---------|---------------|------------------|-----|-------------|
| 0x4838  | MIPI_LP_GPI00 | 0x00             | RW  | Bit[7]:     |
| 0x4839  | MIPI_LP_GPIO1 | 0x00             | RW  | Bit[7]:     |



table 6-2 MIPI control registers (sheet 8 of 10)

| address | register name | default<br>value | R/W | description                                               |
|---------|---------------|------------------|-----|-----------------------------------------------------------|
| 0x483A  | MIPI_LP_GPIO2 | 0x00             | RW  | Bit[7]:                                                   |
| 0x483B  | MIPI_LP_GPIO3 | 0x00             | RW  | Bit[7]:                                                   |
| 0x483C  | MIPI_CTRL3C   | 0x42             | RW  | Bit[7:4]: Reserved Bit[3:0]: t_clk_pre Unit: pclk2x cycle |



table 6-2 MIPI control registers (sheet 9 of 10)

| table 0 2 | Me 0 2 Mill reduction registers (sheet 5 of 1 |                  |     | 110)                                                                                                                                                                                                                                                    |  |  |
|-----------|-----------------------------------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| address   | register name                                 | default<br>value | R/W | description                                                                                                                                                                                                                                             |  |  |
| 0x483D    | MIPI_LP_GPIO4                                 | 0x00             | RW  | Bit[7]:    p_ck_se 0                                                                                                                                                                                                                                    |  |  |
| 0x4840    | START_OFFSET                                  | 0x00             | RW  | High Byte of start_offset                                                                                                                                                                                                                               |  |  |
| 0x4841    | START_OFFSET                                  | 0x00             | RW  | Low Byte of start_offset                                                                                                                                                                                                                                |  |  |
| 0x4842    | START_MODE                                    | 0x01             | RW  | Bit[7:2]: Reserved Bit[1:0]: Delay mode select 00: Delay one line mode 01: Old mode, delay about 100 Tp 10: VHREF manual mode 11: Reserved                                                                                                              |  |  |
| 0x484A    | SEL_MIPI_CTRL4A                               | 0x07             | RW  | Bit[7:3]: Reserved Bit[2]: mipi_slp_man_st                                                                                                                                                                                                              |  |  |
| 0x484B    | SEL_MIPI_CTRL4B                               | 0x07             | RW  | Bit[7:3]: Reserved Bit[2]: line_st_sel_0 0: Line start after HREF 1: Line start after fifo_st Bit[1]: clk_start_sel_0 0: Clock starts after SOF 1: Clock starts after reset Bit[0]: sof_sel_0 0: Frame start after HREF occurs 1: Frame start after SOF |  |  |



MIPI control registers (sheet 10 of 10) table 6-2

| address | register name           | default<br>value | R/W | description                                                                                                                                                                                                                                                                                     |
|---------|-------------------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x484C  | SEL_MIPI_CTRL4C         | 0x02             | RW  | Bit[7:6]: Reserved Bit[5]: frame count_i select Bit[4]: MIPI high speed only test mode enable Bit[3]: Set frame count to inactive mode (keep 0) Bit[2]: Vsub select 0: Valid from behind 1: Valid in front Bit[1:0]: Input data valid (e.g., for RAW) 01: Valid = 1 10: Valid = 2 11: Valid = 3 |
| 0x484D  | TEST_PATTEN_DATA        | 0xB6             | RW  | Data Lane Test Pattern                                                                                                                                                                                                                                                                          |
| 0x484E  | FE_DLY                  | 0x10             | RW  | Last Packet to Frame End Delay / 2                                                                                                                                                                                                                                                              |
| 0x484F  | TEST_PATTEN_CK_<br>DATA | 0x55             | RW  | clk_test_patten_reg                                                                                                                                                                                                                                                                             |
| 0x4864  | MIPI_LCNT               | -                | R   | Bit[7:0]: mipi_lcnt[15:8]                                                                                                                                                                                                                                                                       |
| 0x4865  | MIPI_LCNT               |                  | R   | Bit[7:0]: mipi_lcnt[7:0]                                                                                                                                                                                                                                                                        |
| 0x4866  | T_GLB_TIM_H             | -                | R   | Bit[7]: VHREF ahead of flag<br>Must delay VHREF<br>Bit[6:0]: vhref_delay_h                                                                                                                                                                                                                      |
| 0x4867  | T_GLB_TIM_L             | _                | R   | vhref_delay_l                                                                                                                                                                                                                                                                                   |







# 7 register tables

The following tables provide descriptions of the device control registers contained in the OV5693. For all register enable/disable bits, ENABLE = 1 and DISABLE = 0.

## 7.1 system control [0x3001 - 0x303F]

system control registers (sheet 1 of 4) table 7-1

| address           | register name | default<br>value | R/W | description                                                                                                                                                      |
|-------------------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0100            | MODE_SELECT   | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: Mode select 0: software_standby 1: Streaming                                                                                          |
| 0x0102            | FAST_STANDBY  | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: fast_standby_enable                                                                                                                   |
| 0x0103            | SOFTWARE_RST  | 0x00             | RW  | Bit[7:1]: Not used Bit[0]: software_reset                                                                                                                        |
| 0x3001            | SC_PAD_CTRL   | 0x0A             | RW  | Bit[7]: pd_data_o_en Bit[6:5]: iP2X3v Bit[4:3]: Reserved Bit[2]: FSIN input disable Bit[1]: FREX input disable Bit[0]: Reserved                                  |
| 0x3002            | SC_PAD_OEN0   | 0x00             | RW  | Bit[7]: io_vsync_oen Bit[6]: io_href_oen Bit[5]: Reserved Bit[4]: io_frex_oen Bit[3]: io_strobe_oen Bit[2]: io_fsin_oen Bit[0]: io_ipwm_oen Bit[0]: io_gpio0_oen |
| 0x3004~<br>0x3005 | RSVD          | -                | _   | Reserved                                                                                                                                                         |
| 0x3006            | SC_PAD_OUT2   | 0x00             | RW  | Bit[7]: io_vsync_o Bit[6]: io_href_o Bit[5]: Reserved Bit[4]: io_frex_o Bit[3]: io_strobe_o Bit[2]: io_fsin_o Bit[1]: io_ilpwm_o Bit[0]: io_gpio0_o              |
| 0x3008~<br>0x3009 | RSVD          | -                | _   | Reserved                                                                                                                                                         |



table 7-1 system control registers (sheet 2 of 4)

|  | tuble / I         | system controllegisters (sheet 2 or 1) |                  |     |                                                                                                                                                                |
|--|-------------------|----------------------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | address           | register name                          | default<br>value | R/W | description                                                                                                                                                    |
|  | 0x300A            | SC_CHIP_ID                             | 0x56             | R   | Chip ID High Byte                                                                                                                                              |
|  | 0x300B            | SC_CHIP_ID                             | 0x90             | R   | Chip ID Low Byte                                                                                                                                               |
|  | 0x300C            | SC_SCCB_ID                             | 0x6C             | RW  | SCCB ID                                                                                                                                                        |
|  | 0x300F~<br>0x3010 | RSVD                                   | -                | _   | Reserved                                                                                                                                                       |
|  | 0x3011            | SC_MIPI_SC_CTRL0                       | 0x21             | RW  | Bit[7:4]: lane_num 0001: 1 lane 0010: 2 lane Bit[3]: mipi_phy_rst_o Bit[2]: r_phy_pd_mipi 1: Power down PHY TX Bit[1]: Reserved Bit[0]: mipi_en 1: MIPI enable |
|  | 0x3012            | SC_MIPI_PHY                            | 0x09             | RW  | Bit[7:4: Reserved Bit[3]: mipi_pad Bit[2]: pgm_bp_hs_en_lat Bypass the latch of hs_enable Bit[1:0]: MIPI pixel bit count 00: 8-bit 01: 10-bit                  |
|  | 0x3013            | SC_MIPI_PHY                            | 0x10             | RW  | Bit[7:6]: pgm_vcm[1:0] High speed common mode voltage Bit[5:4]: pgm_lptx[1:0] 01: Driving strength of low speed transmitter Bit[3:0]: Reserved                 |
|  | 0x3014            | SC_MIPI_SC_CTRL1                       | 0x00             | RW  | Bit[7:4]: Reserved Bit[3:2]: mipi_d2_skew Bit[1:0]: mipi_d1_skew                                                                                               |
|  | 0x3015            | SC_MIPI_SC_CTRL2                       | 0x08             | RW  | Bit[7:6]: Reserved Bit[5]: mipi_lane_dis2 Bit[4]: mipi_lane_dis1 Bit[3]: phy_mode                                                                              |
|  | 0x3016~<br>0x301A | DEBUG MODE                             | -                | -   | Debug Mode                                                                                                                                                     |



system control registers (sheet 3 of 4) table 7-1

| address | register name         | default<br>value | R/W | description                                                     | n                                                                                                                                                                                                                  |
|---------|-----------------------|------------------|-----|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x301B  | SC_CLKRST5            | 0xB4             | RW  | Bit[7]:  Bit[6]:  Bit[5]:  Bit[4]:  Bit[3]:  Bit[2]:  Bit[0]:   | snr_timing_dac_clk_sel 0: Use dac_clk 1: Use dac_clk_div2 snr_timing_clk_opt 0: From dac_clk 1: From sclk sclk_bist20 sclk_snr_sync Reserved dac_clk_enable For sensor_ctrl and psram_ctrl rst_bist20 rst_snr_sync |
| 0x301D  | SC_FREX_RST_<br>MASK0 | 0x02             | RW  | Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]: | frex_mask_aec frex_mask_tpm frex_mask_isp frex_mask_dvp frex_mask_mipi frex_mask_vfifo&format frex_mask_arb frex_mask_mipi_phy                                                                                     |
| 0x301E  | SC_CLOCK_SEL          | 0x00             | RW  | Bit[7:4]:<br>Bit[3]:<br>Bit[2:0]:                               | Reserved pclk_sel 0: Select p_pclk_i 1: Select p_pclk_div2 Reserved                                                                                                                                                |
| 0x301F  | RSVD                  | _                | _   | Reserved                                                        |                                                                                                                                                                                                                    |
| 0x3020  | SC_A_PWC_PK_O         | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]:                                          | Reserved<br>Internal reference option                                                                                                                                                                              |
| 0x3021  | SC_A_PWC_PK_O         | 0x00             | RW  | Bit[7:6]:<br>Bit[5]:<br>Bit[4:0]:                               | Analog control Internal regulator 0: Use 1: Bypass Analog control                                                                                                                                                  |
| 0x3022  | SC_A_PWC_PK_O         | 0x00             | RW  | Bit[7:0]:                                                       | Analog control                                                                                                                                                                                                     |



table 7-1 system control registers (sheet 4 of 4)

| address           | register name    | default<br>value | R/W | description                                                                                                                                                                                                                                                                            |
|-------------------|------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3023            | SC_LOW_PWR_CTR   | 0x00             | RW  | Bit[6]: phy_pd_mipi_pwdn_dis Bit[5]: phy_pd_lprx_pwdn_dis Bit[4]: stb_rst_dis 0: Reset all block at software standby mode 1: TC, sensor_control, ISP are reset, others not Bit[3]: pd_nad_dis Bit[2]: pd_big_regulator_dis Bit[1]: phy_pd_mipi_slppd_dis Bit[0]: phy_pd_lprx_slppd_dis |
| 0x3024            | SC_PAD_SEL2      | 0x00             | RW  | Bit[7]: io_vsync_sel Bit[6]: io_href_sel Bit[5]: Reserved Bit[4]: io_frex_sel Bit[3]: io_strobe_sel Bit[2]: io_fsin_sel Bit[1]: io_ilpwm_sel Bit[0]: io_gpio0_sel                                                                                                                      |
| 0x302A            | SC_CHIP_REVISION | 0xB2             | RW  | Chip Revision ID                                                                                                                                                                                                                                                                       |
| 0x3026~<br>0x303F | RSVD             | -                | _   | Reserved                                                                                                                                                                                                                                                                               |

## 7.2 PLL control [0x3080 - 0x30B6]

table 7-2 PLL registers (sheet 1 of 2)

| address           | register name | default<br>value | R/W | description                                      |
|-------------------|---------------|------------------|-----|--------------------------------------------------|
| 0x3080            | PLL_PLL0      | 0x01             | RW  | Bit[7:1]: Reserved Bit[0]: pll1_op_2lane_clk_div |
| 0x3081            | RSVD          | _                | _   | Reserved                                         |
| 0x3082            | PLL_PLL2      | 0x01             | RW  | Bit[2:0]: assign pll1_cp[2:0]                    |
| 0x3083~<br>0x3084 | RSVD          | -                | -   | Reserved                                         |
| 0x3085~<br>0x308F | NOT USED      | -                | -   | Not Used                                         |
| 0x3090            | PLL_PLL10     | 0x02             | RW  | Bit[7:3]: Reserved<br>Bit[2:0]: pll2_prediv[2:0] |



table 7-2 PLL registers (sheet 2 of 2)

| address           | register name               | default<br>value | R/W | descriptio             | n                                                                                              |
|-------------------|-----------------------------|------------------|-----|------------------------|------------------------------------------------------------------------------------------------|
| 0x3091            | PLL_PLL11                   | 0x0E             | RW  |                        | Reserved pll2_multiplier[5:0]                                                                  |
| 0x3092            | PLL_PLL12                   | 0x00             | RW  |                        | Reserved pll2_divs[3:0]                                                                        |
| 0x3093            | PLL_PLL13                   | 0x00             | RW  |                        | Reserved<br>pll2_seld5[1:0]<br>00: /1<br>01: /1<br>10: /2<br>11: /2.5                          |
| 0x3094~<br>0x30A0 | RSVD                        | -                | RW  | PLL Debug              | Mode                                                                                           |
| 0x30A1            | PLL_PLL21                   | 0xC0             | RW  | Bit[7:0]:              | ext_clk_freq_x8[7:0]; //'d24*8                                                                 |
| 0x30A2            | RSVD                        | (                | 2-1 | Reserved               |                                                                                                |
| 0x30A3~<br>0x30AF | NOT USED                    | 7.1              | O   | Not Used               |                                                                                                |
| 0x30B0~<br>0x30B2 | RSVD                        | -                | _   | Reserved               |                                                                                                |
| 0x30B3            | PLL_MULTIPLIER              | 0x64             | RW  | Bit[7:0]:              | pll1_multiplier[7:0]                                                                           |
| 0x30B4            | PLL_PLL1_PRE_<br>PLL_DIV    | 0x03             | RW  |                        | Reserved pll_prediv[2:0] 001: /1 010: /2 011: /3 100: /4 Others: Not allowed                   |
| 0x30B5            | PLL_PLL1_OP_PIX<br>_CLK_DIV | 0x04             | RW  | Bit[7:4]:<br>Bit[3:0]: | Reserved pll1_op_pix_div[3:0] 0x4: /8 0x5: /10 Others: Not allowed                             |
| 0x30B6            | PLL_PLL1_OP_SYS<br>_CLK_DIV | 0x01             | RW  | Bit[7:4]:<br>Bit[3:0]: | Reserved pll1_op_sys_div[3:0] 0001: /1 0010: /2 0100: /4 0110: /6 1000: /8 Others: Not allowed |



## 7.3 SCCB control [0x3100 - 0x3106]

table 7-3 SCCB registers

| address | register name             | value | R/W | description                                                                                  |
|---------|---------------------------|-------|-----|----------------------------------------------------------------------------------------------|
| 0x3100  | SB_SCCB_CTRL              | 0x00  | RW  | Bit[7:4]: Reserved Bit[3]: r_sda_dly_en Bit[2:0]: r_sda_dly                                  |
| 0x3101  | SB_SCCB_OPT               | 0x12  | RW  | Bit[7:5]: Reserved Bit[4]: en_ss_addr_inc Bit[3:0]: Debug mode                               |
| 0x3102  | DEBUG MODE                | -     | 1-  | Debug Mode                                                                                   |
| 0x3103  | SB_SCCB_<br>SYSREG        | 0x00  | RW  | Bit[7]: Debug mode Bit[6]: ctrl_rst_mipisc Bit[5:1]: Debug mode Bit[0]: ctrl_pll_rst_o       |
| 0x3104  | SB_PWUP_DIS               | 0xA1  | RW  | Bit[7]: sclk_sw2pll2 0: Sclk comes from dac_pll 1: Sclk comes from pll2 Bit[6:0]: Debug mode |
| 0x3105  | SB_PADCLK_DIV             | 0x01  | RW  | Bit[7:6]: Reserved<br>Bit[5:0]: padclk_div_r                                                 |
| 0x3106  | SB_SRB_HOST_<br>INPUT_DIS | 0x01  | RW  | Bit[7:3]: Reserved Bit[2]: pad_clk_switch                                                    |

group hold registers (sheet 1 of 2)

| address | register name | default<br>value | R/W | description                                                           |  |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------|--|
| 0x3200  | GROUP ADR0    | 0x00             | RW  | Group0 Start Address in SRAM<br>Actual address is {0x3200[3:0], 4'h0} |  |
| 0x3201  | GROUP ADR1    | 0x10             | RW  | Group1 Start Address in SRAM<br>Actual address is {0x3201[3:0], 4'h0} |  |



group hold registers (sheet 2 of 2) table 7-4

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                            |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3202  | GROUP ADR2    | 0x20             | RW  | Group2 Start Address in SRAM Actual address is {0x3202[3:0], 4'h0}                                                                                                                                                                                                                                     |
| 0x3203  | GROUP ADR3    | 0x30             | RW  | Group3 Start Address in SRAM<br>Actual address is {0x3203[3:0], 4'h0}                                                                                                                                                                                                                                  |
| 0x3204  | GROUP LEN0    | _                | R   | Length of Group0                                                                                                                                                                                                                                                                                       |
| 0x3205  | GROUP LEN1    | -                | R   | Length of Group1                                                                                                                                                                                                                                                                                       |
| 0x3206  | GROUP LEN0    | -                | R   | Length of Group2                                                                                                                                                                                                                                                                                       |
| 0x3207  | GROUP LEN1    | _                | R   | Length of Group3                                                                                                                                                                                                                                                                                       |
| 0x3208  | GROUP ACCESS  |                  | W   | Bit[7:4]: group_ctrl 0000: Group hold start 0001: Group hold end 0110: Group launch at line blank 1010: Group launch at vertical blank 1110: Group launch immediately Others: Reserved Bit[3:0]: Group ID 0000: Group bank 0 0001: Group bank 1 0010: Group bank 2 0011: Group bank 3 Others: Reserved |
| 0x3209  | GROUP0 PERIOD | 0x00             | RW  | Number of Frames to Stay in Group0                                                                                                                                                                                                                                                                     |
| 0x320A  | GROUP1 PERIOD | 0x00             | RW  | Number of Frames to Stay in Group1                                                                                                                                                                                                                                                                     |
| 0x320B  | GRP_SW_CTRL   | 0x01             | RW  | Bit[7:6]: Reserved Bit[5]: grp0_start_opt Bit[4]: frame_cnt_trig Bit[3]: group_switch_repeat Bit[2]: context_en Bit[1:0]: Second group select                                                                                                                                                          |
| 0x320C  | SRAM TEST     | 0x02             | RW  | Bit[7:5]: Reserved Bit[4]: Group hold SRAM test enable Bit[3:0]: Group hold SRAM RM[3:0]                                                                                                                                                                                                               |
| 0x320D  | GRP_ACT       | _                | R   | Active Group Indicator                                                                                                                                                                                                                                                                                 |
| 0x320E  | FM_CNT_GRP0   | -                | R   | Group0 Frame Count                                                                                                                                                                                                                                                                                     |
| 0x320F  | FM_CNT_GRP1   | _                | R   | Group 1 Frame Count                                                                                                                                                                                                                                                                                    |



# 7.5 manual white balance (MWB) control [0x3400 - 0x3406]

table 7-5 MWB control registers

| address         register name         default value         R/W         description           0x3400         MWB GAIN00         0x04         RW         Bit[7:4]: Reserved Bit[3:0]: MWB red gain[11:8] Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400           0x3401         MWB GAIN01         0x00         RW         Bit[7:0]: MWB red gain[7:0] Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400           0x3402         MWB GAIN02         0x04         RW         Bit[7:4]: Reserved Bit[3:0]: MWB green gain[11:8] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x40           0x3403         MWB GAIN03         0x00         RW         Bit[7:0]: MWB green gain[7:0] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x40           0x3404         MWB GAIN04         0x04         RW         Bit[7:4]: Reserved Bit[3:0]: MWB blue gain[11:8] Bit[3:0]: MWB blue gain[11:8] Bit[3:0]: MWB blue gain[11:8] Bit[3:0]: MWB blue gain[11:8] |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3400         MWB GAIN00         0x04         RW         Bit[3:0]: MWB red gain[11:8] Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400           0x3401         MWB GAIN01         0x00         RW         Bit[7:0]: MWB red gain[7:0] Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400           0x3402         MWB GAIN02         0x04         RW         Bit[7:4]: Reserved Bit[3:0]: MWB green gain[11:8] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x40           0x3403         MWB GAIN03         0x00         RW         Bit[7:0]: MWB green gain[7:0] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x40           0x3404         MWB CAIN04         0x04         RW         Bit[7:4]: Reserved Bit[3:0]: MWB blue gain[11:8]                                                                                                                                                                                                            |
| 0x3401         MWB GAIN01         0x00         RW         Digital gain in red channel Red gain = MWB red gain[11:0] / 0x400           0x3402         MWB GAIN02         0x04         RW         Bit[7:4]: Reserved Bit[3:0]: MWB green gain[11:8] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x40           0x3403         MWB GAIN03         0x00         RW         Bit[7:0]: MWB green gain[7:0] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x40           0x3404         MWB CAIN04         0x04         BW         Bit[7:4]: Reserved Bit[3:0]: MWB blue gain[11:8]                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x3402         MWB GAIN02         0x04         RW         Bit[3:0]: MWB green gain[11:8] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x4l           0x3403         MWB GAIN03         0x00         RW         Bit[7:0]: MWB green gain[7:0] Digital gain in green channel Green gain = MWB green gain[11:0] / 0x4l           0x3404         MWB GAIN04         0x04         BW         Bit[7:4]: Reserved Bit[3:0]: MWB blue gain[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x3403 MWB GAIN03 0x00 RW Digital gain in green channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ox2404 MWB CAINI04 Ox04 PW Bit[3:0]: MWB blue gain[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Digital gain in blue channel  Blue gain = MWB blue gain[11:0] / 0x400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x3405 MWB GAIN05 0x00 RW Bit[7:0]: MWB blue gain[7:0]  Digital gain in blue channel Blue gain = MWB blue gain[11:0] / 0x400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



### 7.6 manual exposure control (MEC)/manual gain control (MGC) [0x3500 -0x350B]

table 7-6 MEC/MGC registers (sheet 1 of 2)

| address | register name  | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|----------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3500  | MEC LONG EXPO  | 0x00             | RW  | Long Exposure Bit[7:3]: Not used Bit[2:0]: Long exposure[18:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0x3501  | MEC LONG EXPO  | 0x02             | RW  | Long Exposure<br>Bit[7:0]: Long exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0x3502  | MEC LONG EXPO  | 0x00             | RW  | Long Exposure Bit[7:0]: Long exposure[7:0] Low 4 bits are fraction bits which are not supported and should always be 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0x3503  | MEC MANUAL     | 0x03             | RW  | AEC Manual Mode Control  Bit[7:6]: Not used  Bit[5:4]: Gain delay option  00: Delay one frame latch  Others: Next frame latch  Bit[3]: Not used  Bit[2]: VTS manual enable  There is no auto module in this device  so this bit should always be 1  1: Manual enable  Bit[1]: AGC manual enable  There is no auto module in this device  so this bit should always be 1  1: Manual enable  Bit[0]: AEC manual enable  There is no auto module in this device  so this bit should always be 1  1: Manual enable  There is no auto module in this device  so this bit should always be 1  1: Manual enable |
| 0x3504  | MAN SNR GAIN   | 0x00             | RW  | Manual Sensor Gain<br>Bit[7:2]: Reserved<br>Bit[1:0]: Manual sensor gain[9:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x3505  | MAN SNR GAIN   | 0x00             | RW  | Manual Sensor Gain<br>Bit[7:0]: Manual sensor gain[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0x3506  | MEC SHORT EXPO | 0x00             | RW  | Short Exposure Bit[7:4]: Not used Bit[3:0]: Short exposure[19:16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0x3507  | MEC SHORT EXPO | 0x02             | RW  | Short Exposure Bit[7:0]: Short exposure[15:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



table 7-6 MEC/MGC registers (sheet 2 of 2)

|         |                  | default |     |                                                                                                                                                                                                                                                                                  |
|---------|------------------|---------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name    | value   | R/W | description                                                                                                                                                                                                                                                                      |
| 0x3508  | MEC SHORT EXPO   | 0x00    | RW  | Short Exposure Bit[7:0]: Short exposure[7:0] Low 4 bits are fraction bits which are not supported and should always be 0.                                                                                                                                                        |
| 0x3509  | AEC GAIN CONVERT | 0x10    | RW  | AEC Manual Mode Control  Bit[7:5]: Not used  Bit[4:3]: Sensor gain convert enable  01: Use sensor gain  {0x350A,0x350B} as sensor gain  10: Use real gain {0x350A,0x350B}  as real gain  Bit[2:0]: Not used                                                                      |
| 0x350A  | MEC AGC ADJ      | 0x00    | RW  | Gain Output to Sensor Bit[7:3]: Not used Bit[2:0]: Gain[10:8]                                                                                                                                                                                                                    |
| 0x350B  | MEC AGC ADJ      | 0x10    | RW  | Gain Output to Sensor  Bit[7:0]: Gain[7:0]  When 0x3509[4:3]= 01, this gain is sensor gain. Real gain = 2^n(16+x)/16 where N is number of 1 in bits gain[6:4] and X is the low bits gain[3:0].  When 0x3509[4:3] = 10, this gain is real gain. The low 4 bits are fraction bits. |

# 7.7 ADC and analog [0x3600 - 0x3684]

table 7-7 ADC and analog registers

| address           | register name  | default<br>value | R/W | description                                                          |
|-------------------|----------------|------------------|-----|----------------------------------------------------------------------|
| 0x3600~<br>0x3684 | ANALOG CONTROL | -                | -   | Analog Control Registers Changing these registers is not recommended |



#### 7.8 sensor control [0x3700 - 0x377F]

table 7-8 sensor control registers

| address           | register name         | default<br>value | R/W | description                                                                    |
|-------------------|-----------------------|------------------|-----|--------------------------------------------------------------------------------|
| 0x3700~<br>0x377F | SENSOR TIMING CONTROL | -                | RW  | Sensor Timing Control Registers<br>Changing these registers is not recommended |

#### 7.9 PSRAM control [0x3780 - 0x37A3]

PSRAM control registers table 7-9

| address           | register name | default<br>value | R/W | description                                                            |
|-------------------|---------------|------------------|-----|------------------------------------------------------------------------|
| 0x3780~<br>0x37A3 | PSRAM CONTROL | -                | -0  | PSRAM Control Registers<br>Changing these registers is not recommended |

# 7.10 FREX control [0x37C5 - 0x37DF]

FREX control registers (sheet 1 of 2) table 7-10

| address | register name           | default<br>value | R/W | description                                                                                                                       |
|---------|-------------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|
| 0x37C5  | SENSOR_FREX_EXP         | 0x00             | RW  | Bit[7:0]: sensor_frex_exp[23:16]  MSB of frame exposure time in mode  2. Exposure time is in units of 128 clock cycles.           |
| 0x37C6  | SENSOR_FREX_EXP         | 0x00             | RW  | Bit[7:0]: sensor_frex_exp[15:8]  Middle byte of frame exposure time in mode 2.                                                    |
| 0x37C7  | SENSOR_FREX_EXP         | 0x00             | RW  | Bit[7:0]: sensor_frex_exp[7:0] LSB of frame exposure time in mode 2.                                                              |
| 0x37C9  | SENSOR_STROBE_<br>WIDTH | 0x00             | RW  | Bit[7:4]: Reserved Bit[3:0]: sensor_strobe_width[19:16] MSB of strobe width in mode 2. Strobe width is in units of 1 clock cycle. |



table 7-10 FREX control registers (sheet 2 of 2)

|    | (45,67, 20 | THE A CONTROLLEGIS         | (3),60           | (20, 2) |                                                                 |                                                                                                                                                                                    |
|----|------------|----------------------------|------------------|---------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | address    | register name              | default<br>value | R/W     | description                                                     | n                                                                                                                                                                                  |
|    | 0x37CA     | SENSOR_STROBE_<br>WIDTH    | 0x00             | RW      | Bit[7:0]:                                                       | sensor_strobe_width[15:8]<br>Middle byte of strobe width in mode 2.                                                                                                                |
|    | 0x37CB     | SENSOR_STROBE_<br>WIDTH    | 0x00             | RW      | Bit[7:0]:                                                       | sensor_strobe_width[7:0]<br>LSB of strobe width in mode 2.                                                                                                                         |
|    | 0x37CC     | SENSOR_SHUTTER_<br>DLY     | 0x00             | RW      | Bit[7:5]:<br>Bit[4:0]:                                          | Reserved<br>sensor_shutter_dly[12:8]<br>MSB of shutter delay in mode 2.<br>Shutter delay is in units of 128 clock<br>cycles.                                                       |
|    | 0x37CD     | SENSOR_SHUTTER_<br>DLY     | 0x00             | RW      | Bit[7:0]:                                                       | sensor_shutter_dly[7:0]<br>LSB of shutter delay in mode 2.                                                                                                                         |
|    | 0x37CE     | SENSOR_FREX_PCHG<br>_WIDTH | 0x01             | RW      | Bit[7:0]:                                                       | sensor_frex_pchg_width[15:8] MSB of sensor precharge in mode 2. Sensor precharge is in units of 1 clock cycle.                                                                     |
|    | 0x37CF     | SENSOR_FREX_PCHG<br>_WIDTH | 0x00             | RW      | Bit[7:0]:                                                       | sensor_frex_pchg_width[7:0] LSB of sensor precharge in mode 2.                                                                                                                     |
|    | 0x37D0     | SENSOR_DATOUT_<br>DLY      | 0x00             | RW      | Bit[7:0]:                                                       | sensor_datout_dly[15:8] MSB of readout delay time in mode 2. Readout delay time is in units of 128 clock cycles.                                                                   |
|    | 0x37D1     | SENSOR_DATOUT_<br>DLY      | 0x00             | RW      | Bit[7:0]:                                                       | sensor_datout_dly[7:0] LSB of readout delay time in mode 2.                                                                                                                        |
|    | 0x37D2     | SENSOR_STROBE_<br>DLY      | 0x00             | RW      | Bit[7:5]:<br>Bit[4:0]:                                          | Reserved sensor_strobe_dly[12:8] MSB of strobe delay time in mode 2. Strobe delay time is in units of 128 clock cycles.                                                            |
|    | 0x37D3     | SENSOR_STROBE_<br>DLY      | 0x00             | RW      | Bit[7:0]:                                                       | sensor_strobe_dly[7:0] LSB of strobe delay time in mode 2.                                                                                                                         |
| RI | 0x37DE     | SENSOR_FREX_1E             | 0x00             | RW      | Bit[7:1]:<br>Bit[0]:                                            | Reserved frex_i2c_req_repeat_trig_sel 0: SOF 1: EOF                                                                                                                                |
|    | 0x37DF     | SENSOR_FREX_REQ            | 0x00             | RW      | Bit[7]: Bit[6]: Bit[5]: Bit[4]: Bit[3]: Bit[2]: Bit[1]: Bit[0]: | frex_i2c_req, self clear frex_i2c_req_repeat, debug frex_strobe_out_sel frex_nopchg frex_strobe polarity frex_shutter polarity frex_i from pad in no_latch at SOF for frex_i2c_req |



proprietary to OmniVision Technologies

# 7.11 timing control [0x3800 - 0x382F]

timing control registers (sheet 1 of 3) table 7-11

| address | register name        | default<br>value | R/W | description                                 |
|---------|----------------------|------------------|-----|---------------------------------------------|
| 0x3800  | TIMING_X_ADDR_START  | 0x00             | RW  | Array Horizontal Start Point High Byte      |
| 0x3801  | TIMING_X_ADDR_START  | 0x00             | RW  | Array Horizontal Start Point Low Byte       |
| 0x3802  | TIMING_Y_ADDR_START  | 0x00             | RW  | Array Vertical Start Point High Byte        |
| 0x3803  | TIMING_Y_ADDR_START  | 0x00             | RW  | Array Vertical Start Point Low Byte         |
| 0x3804  | TIMING_X_ADDR_END    | 0x0A             | RW  | Array Horizontal End Point High Byte        |
| 0x3805  | TIMING_X_ADDR_END    | 0x3F             | RW  | Array Horizontal End Point Low Byte         |
| 0x3806  | TIMING_Y_ADDR_END    | 0x07             | RW  | Array Vertical End Point High Byte          |
| 0x3807  | TIMING_Y_ADDR_END    | 0xA3             | RW  | Array Vertical End Point Low Byte           |
| 0x3808  | TIMING_X_OUTPUT_SIZE | 0x0A             | RW  | ISP Horizontal Output Width High Byte       |
| 0x3809  | TIMING_X_OUTPUT_SIZE | 0x20             | RW  | ISP Horizontal Output Width Low Byte        |
| 0x380A  | TIMING_Y_OUTPUT_SIZE | 0x07             | RW  | ISP Vertical Output Height High Byte        |
| 0x380B  | TIMING_Y_OUTPUT_SIZE | 0x98             | RW  | ISP Vertical Output Height Low Byte         |
| 0x380C  | TIMING_HTS           | 0x0B             | RW  | Total Horizontal Timing Size High Byte      |
| 0x380D  | TIMING_HTS           | 0x10             | RW  | Total Horizontal Timing Size Low Byte       |
| 0x380E  | TIMING_VTS           | 0x07             | RW  | Total Vertical Timing Size High Byte        |
| 0x380F  | TIMING_VTS           | 0xB8             | RW  | Total Vertical Timing Size Low Byte         |
| 0x3810  | TIMING_ISP_X_WIN     | 0x00             | RW  | ISP Horizontal Windowing Offset High Byte   |
| 0x3811  | TIMING_ISP_X_WIN     | 0x02             | RW  | ISP Horizontal Windowing Offset Low Byte    |
| 0x3812  | TIMING_ISP_Y_WIN     | 0x00             | RW  | ISP Vertical Windowing Offset High Byte     |
| 0x3813  | TIMING_ISP_Y_WIN     | 0x02             | RW  | ISP Vertical Windowing Offset Low Byte      |
| 0x3814  | TIMING_X_INC         | 0x11             | RW  | Bit[7:4]: x_odd_inc<br>Bit[3:0]: x_even_inc |
| 0x3815  | TIMING_Y_INC         | 0x11             | RW  | Bit[7:4]: y_odd_inc<br>Bit[3:0]: y_even_inc |
| 0x3816  | TIMING_HSYNC_START   | 0x00             | RW  | HSYNC Start Point High Byte                 |
| 0x3817  | TIMING_HSYNC_START   | 0x20             | RW  | HSYNC Start Point Low Byte                  |
| 0x3818  | TIMING_HSYNC_END     | 0x02             | RW  | HSYNC End Point High Byte                   |
| 0x3819  | TIMING_HSYNC_END     | 0x00             | RW  | HSYNC End Point Low Byte                    |



table 7-11 timing control registers (sheet 2 of 3)

| address | register name                | default<br>value | R/W | description                                                                                                                                |
|---------|------------------------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0x381A  | TIMING_HSYNC_FIRST           | 0x00             | RW  | HSYNC First Active Row Start Position<br>High Byte                                                                                         |
| 0x381B  | TIMING_HSYNC_FIRST           | 0x00             | RW  | HSYNC First Active Row Start Position Low<br>Byte                                                                                          |
| 0x381C  | TIMING_THN_X_OUTPUT_<br>SIZE | 0x00             | RW  | Thumbnail Horizontal Output Width High<br>Byte                                                                                             |
| 0x381D  | TIMING_THN_X_OUTPUT_<br>SIZE | 0x00             | RW  | Thumbnail Horizontal Output Width Low<br>Byte                                                                                              |
| 0x381E  | TIMING_THN_Y_OUTPUT_<br>SIZE | 0x00             | RW  | Thumbnail Vertical Output Height High Byte                                                                                                 |
| 0x381F  | TIMING_THN_Y_OUTPUT_<br>SIZE | 0x00             | RW  | Thumbnail Vertical Output Height Low Byte                                                                                                  |
| 0x3820  | TIMING_FORMAT1               | 0x10             | RW  | Bit[7]: vsub48_blc Bit[6]: vflip_blc Bit[5]: Reserved Bit[4]: halfrow_en Bit[3]: byp_isp_o Bit[2]: fast_bin Bit[1]: vflip_arr Bit[0]: vbin |
| 0x3821  | TIMING_FORMAT2               | 0x18             | RW  | Bit[7]: hdr_en Bit[6]: dpcm_en Bit[5]: jpeg_en Bit[4]: hsync_en_o Bit[3]: skip_priority Bit[2]: mirr_dig Bit[1]: mirr_arr Bit[0]: hbin     |
| 0x3822  | TIMING_REG22                 | 0x48             | RW  | Bit[7:5]: addr0_num[3:1]<br>Bit[4:0]: ablc_num[5:1]                                                                                        |



timing control registers (sheet 3 of 3) table 7-11

| address           | register name               | default<br>value | R/W | description                                                                                                                                                                                                                                                                 |
|-------------------|-----------------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3823            | TIMING_REG23                | 0x00             | RW  | Bit[7]: ext_vs_re Reverse FSIN input  Bit[6]: ext_vs_en External FSIN enable 0: Disable 1: Enable  Bit[4]: r_init_man Row count initial 0: Initial from VTS 1: Initial from 0x3824~0x3827  Bit[3]: asp_start_sel 0: Use sync output 1: Use sensor output Bit[2:0]: ablc_adj |
| 0x3824            | TIMING_CS_RST_FSIN          | 0x00             | RW  | CS Reset Value High Byte at vs_ext                                                                                                                                                                                                                                          |
| 0x3825            | TIMING_CS_RST_FSIN          | 0x00             | RW  | CS Reset Value Low Byte at vs_ext                                                                                                                                                                                                                                           |
| 0x3826            | TIMING_RST_FSIN             | 0x00             | RW  | R Reset Value High Byte at vs_ext                                                                                                                                                                                                                                           |
| 0x3827            | TIMING_RST_FSIN             | 0x00             | RW  | R Reset Value Low Byte at vs_ext                                                                                                                                                                                                                                            |
| 0x3828            | TIMING_REG28                | 0xA1             | RW  | Bit[7:2]: Reserved<br>Bit[1:0]: href_w                                                                                                                                                                                                                                      |
| 0x3829            | TIMING_EMBEDDED_<br>LINE_ST | 0x0B             | RW  | Bit[7]: emb_start_man Bit[6:0]: emb_start_line                                                                                                                                                                                                                              |
| 0x382A            | TIMING_REG2A                | 0x04             | RW  | Bit[7:4]: Reserved Bit[3:0]: gap_pchg2ppchg                                                                                                                                                                                                                                 |
| 0x382B            | TIMING_REG2B                | 0x6A             | RW  | Bit[7:4]: grp_wr_start Bit[3:2]: zero_line_dly Bit[1:0]: zero_line_num                                                                                                                                                                                                      |
| 0x382C~<br>0x382D | RSVD                        | -                | -   | Reserved                                                                                                                                                                                                                                                                    |
| 0x382E            | TIMING_LINE_CNT             | _                | R   | Line Count High Byte                                                                                                                                                                                                                                                        |
| 0x382F            | TIMING_LINE_CNT             | _                | R   | Line Count Low Byte                                                                                                                                                                                                                                                         |



#### 7.12 strobe control [0x3B00 - 0x3B05]

table 7-12 strobe control registers

| table / 12 | Strobe control | 1 0 8 (3 (0 ) 3  |     |                                                                                                                                                                                                                                                 |
|------------|----------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address    | register name  | default<br>value | R/W | description                                                                                                                                                                                                                                     |
| 0x3B00     | STROBE CTRL    | 0x00             | RW  | Bit[7]: Strobe ON/OFF Bit[6]: Strobe polarity 0: Active high 1: Active low Bit[5:4]: width_in_xenon Bit[3]: Reserved Bit[2:0]: Mode 000: Xenon 001: LED1 010: LED2 011: LED3 100: LED4                                                          |
| 0x3B01     | RSVD           | -                | -   | Reserved                                                                                                                                                                                                                                        |
| 0x3B02     | STROBE DMY H   | 0x00             | RW  | Dummy Lines Added in Strobe Mode, MSB                                                                                                                                                                                                           |
| 0x3B03     | STROBE DMY L   | 0x00             | RW  | Dummy Lines Added in Strobe Mode, LSB                                                                                                                                                                                                           |
| 0x3B04     | STROBE CTRL    | 0x00             | RW  | Bit[7:4]: Reserved Bit[3]: start_point_sel Bit[2]: Strobe repeat enable Bit[1:0]: Strobe latency 00: Strobe generated at next frame 01: Strobe generated 2 frames later 10: Strobe generated 3 frames later 11: Strobe generated 4 frames later |
| 0x3B05     | STROBE WIDTH   | 0x00             | RW  | Bit[7:2]: Strobe pulse width step Bit[1:0]: Strobe pulse width gain Strobe_pulse_width = 256 × (2**gain) × (step+1) × Tsclk                                                                                                                     |

### 7.13 illumination PWM control [0x3B40 - 0x3B51]

table 7-13 illumination PWM registers (sheet 1 of 2)

| address | register name | default<br>value | R/W | description                                                                    |
|---------|---------------|------------------|-----|--------------------------------------------------------------------------------|
| 0x3B40  | PULSE1 DELAY  | 0x10             | RW  | Bit[7:0]: First pulse PWM1 delay (0~31)<br>0x00: -0.5 frame<br>0x1F: 0.5 frame |



illumination PWM registers (sheet 2 of 2) table 7-13

| address | register name       | default<br>value | R/W | description                                                                                                                                                                                                  |
|---------|---------------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3B41  | PULSE2 DELAY        | 0x10             | RW  | Bit[7:0]: Second PWM2 pulse delay (0~31)<br>0x00: -0.5 frame<br>0x1F: 0.5 frame                                                                                                                              |
| 0x3B42  | PULSE3 DELAY        | 0x10             | RW  | Bit[7:0]: Third pulse PWM3 delay (0~31)<br>0x00: -0.5 frame<br>0x1F: 0.5 frame                                                                                                                               |
| 0x3B43  | PULSE4 DELAY        | 0x10             | RW  | Bit[7:0]: Fourth pulse PWM4 delay (0~31)<br>0x00: -0.5 frame<br>0x1F: 0.5 frame                                                                                                                              |
| 0x3B44  | DURATION CTRL0      | 0x11             | RW  | Bit[7:4]: Second pulse PWM2 duration (0~15 frames)  Bit[3:0]: First pulse PWM1 duration (0~15 frames)                                                                                                        |
| 0C3B45  | DURATION CTRL1      | 0x11             | RW  | Bit[7:4]: Fourth pulse PWM4 duration (0~15 frames)  Bit[3:0]: Third pulse PWM3 duration (0~15 frames)                                                                                                        |
| 0x3B46  | PULSE1 DUTY         | 0x1F             | RW  | Bit[7:0]: First pulse PWM1 duty cycle (0~31)                                                                                                                                                                 |
| 0x3B47  | PULSE2 DUTY         | 0x1F             | RW  | Bit[7:0]: Second pulse PWM2 duty cycle (0~31)                                                                                                                                                                |
| 0x3B48  | PULSE3 DUTY         | 0x1F             | RW  | Bit[7:0]: Third pulse PWM3 duty cycle (0~31)                                                                                                                                                                 |
| 0x3B49  | PULSE4 DUTY         | 0x1F             | RW  | Bit[7:0]: Fourth pulse PWM4 duty cycle (0~31)                                                                                                                                                                |
| 0x3B4A  | GAP1                | 0x00             | RW  | Gap B/W Pulse 1 and Pulse 2 (0~255 frames)                                                                                                                                                                   |
| 0x3B4B  | GAP2                | 0x00             | RW  | Gap B/W Pulse 2 and Pulse 3 (0~255 frames)                                                                                                                                                                   |
| 0x3B4C  | GAP3                | 0x00             | RW  | Gap B/W Pulse 3 and Pulse 4 (0~255 frames)                                                                                                                                                                   |
| 0x3B4D  | GAP4                | 0x00             | RW  | Gap B/W Pulse 4 and Pulse 1 (0~255 frames)                                                                                                                                                                   |
| 0x3B4E  | PWM CTRL            | 0x00             | RW  | Bit[7]: pwm_req_r (read only) Bit[6]: Delay option Bit[5]: illum_sel Bit[4]: duty_no_map Bit[3]: no_gap Bit[2]: sel_slot_out Bit[1]: Manually set duty cycle for duration1 and duration 3 Bit[0]: pwm_repeat |
| 0x3B4F  | SLOT WIDTH          | 0x02             | RW  | Slot Width                                                                                                                                                                                                   |
| 0x3B50  | PULSE2 DUTY<br>STEP | 0x01             | RW  | Bit[7:0]: ramp2_xstep<br>Second pulse duty cycle step                                                                                                                                                        |
| 0x3B51  | PULSE4 DUTY<br>STEP | 0x01             | RW  | Bit[7:0]: ramp4_xstep Fourth pulse duty cycle step                                                                                                                                                           |



### 7.14 OTP control [0x3D80 - 0x3D87]

table 7-14 OTP control registers

|         | _                 |                  |     |                                 |                                                                                                      |
|---------|-------------------|------------------|-----|---------------------------------|------------------------------------------------------------------------------------------------------|
| address | register name     | default<br>value | R/W | descriptio                      | n                                                                                                    |
| 0x3D80  | OTP PROGRAM CTRL  | 0x00             | RW  | Bit[7]:<br>Bit[6:1]:<br>Bit[0]: | otp_pgenb_o 1: Program on going Reserved Program OTP To start program, write 1'b1 to bit[0]          |
| 0x3D81  | OTP LOAD CTRL     | 0,               | R   | Bit[7]:<br>Bit[6:1]:<br>Bit[0]: | opt_load_o 1: Load on going Reserved Load / dump OTP Writing to this register will star loading data |
| 0x3D82  | OTP PROGRAM PULSE | 0x40             | RW  | Bit[7:0]:                       | Control program strobe pulse by 8 × Tsclk                                                            |
| 0x3D83  | OTP LOAD PULSE    | 0x05             | RW  | Bit[3:0]:                       | Control load strobe pulse by Tsclk                                                                   |
| 0x3D84  | OPT MODE CTRL     | 0x00             | RW  | Bit[7]:  Bit[6]:  Bit[5:0]:     | program_dis 0: Enable 1: Disable mode_select 0: Auto mode 1: Manual mode Memory select               |
| 0x3D85  | OTP START ADDR    | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]:          | Reserved<br>Start address for manual mode                                                            |
| 0x3D86  | OTP END ADDR      | 0x0F             | RW  |                                 | Reserved<br>End address for manual mode                                                              |
| 0x3D87  | OTP PS2CS         | 0x08             | RW  |                                 | Reserved<br>PS to CSB time control by sclk                                                           |



# 7.15 BLC control [0x4000 - 0x4057]

BLC control registers (sheet 1 of 5) table 7-15

|         | Bee controllegisti |                  |     |                                                                                                                                                                                                                                                                                                                                                |
|---------|--------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name      | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                    |
| 0x4000  | BLC BYPASS         | 0x10             | RW  | Bit[7]: BLC bypass enable  0: Disable  1: Enable  Bit[6:4]: Reserved  Bit[3]: Not used  Bit[2]: Apply to black line  This will subtract the black level from the black lines.  0: Disable  1: Enable  Bit[1]: Black line average frame  Average the current black level with the previous frame  0: Disable  1: Enable  Bit[0]: blc_hdr_enable |
| 0x4001  | BLC START LN       | 0x06             | RW  | Bit[7:6]: Not used<br>Bit[5:0]: BLC start line (0,2,4,6)                                                                                                                                                                                                                                                                                       |
| 0x4002  | BLC AUTO           | 0x45             | RW  | Bit[7]: Format change enable  0: BLC keep same after format change  1: BLC will redo after format change  Bit[6]: BLC auto enable  0: Get the black level from manual register  1: Calculate the black level from auto statistics  Bit[5:0]: Reset frame number[5:0]  Frames BLC continue to do after reset                                    |
| 0x4003  | BLC FREEZE         | 0x08             | RW  | Bit[7]: BLC redo enable  0: Normal  1: BLC will redo N frames (N = bit[5:0]) when this bit is set  Bit[6]: Freeze enable  0: Normal  1: BLC black level will not update, priority lower than always update  Bit[5:0]: Manual frame number  BLC redo frame number                                                                               |



table 7-15 BLC control registers (sheet 2 of 5)

|   | address | register name | default<br>value | R/W | descriptio                      | n                                                                                                                                                                                                                                                |
|---|---------|---------------|------------------|-----|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 0x4004  | BLC BLC NUM   | 0x04             | RW  |                                 | Not used<br>Number of black lines used                                                                                                                                                                                                           |
|   |         |               |                  |     | Bit[7:6]:<br>Bit[5]:<br>Bit[4]: | One line BLC mode (only for debug) Do not output black line 0: Output black line                                                                                                                                                                 |
|   |         | C             |                  | ,   | Bit[3]:                         | 1: No black line output<br>blc_man_1_en<br>Apply one channel offset (0x400C,<br>0x400D) to all manual BLC<br>channels                                                                                                                            |
|   | 0x4005  | BLC MAN CTRL  | 0x18             | RW  | Bit[2]:<br>Bit[1]:              | Reserved blc_always_up_en 0: BLC will keep doing several frames after reset, after that, it will keep no change until gain change (controlled by bit[0]) or format change (controlled by register 0x4002[7]) 1: BLC always update in every frame |
|   |         |               |                  |     | Bit[0]:                         | agc_change_from_sys 0: agc_change generated by BLC pre 1: agc_change from system                                                                                                                                                                 |
| X | 0x4006  | ZLINE COEF    | 0x40             | RW  | Bit[7:0]:                       | Coefficient for zero line and black line difference                                                                                                                                                                                              |



table 7-15 BLC control registers (sheet 3 of 5)

| address           | register name  | default<br>value | R/W | descriptio                           | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|----------------|------------------|-----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4007            | BLC WIN        | 0x80             | RW  | Bit[7]:  Bit[6]:  Bit[5]:  Bit[4:3]: | Black line median filter enable 0: Disable median filter 1: Enable median filter horizontal swap 0: No horizontal swap 1: Swap odd and even column Rblue reverse 0: Normal 1: Reverse red/blue line indicator Window selection 00: Full image 01: Windows do not contain the first 16 pixels and the end 16 pixels 10: Windows do not contain the first 1/16 image and the end 1/16 image 11: Windows do not contain the first 1/8 image and the end 1/8 image Bypass mode 000: Bypass data_i after limit bits 001: Bypass data_i[12:1] 010: Bypass debug data bbrr 100: Bypass debug data gggg 101~111: Not used |
| 0x4008            | BLC FLIP REG   | 0x00             | RW  | Bit[7:2]:<br>Bit[1]:<br>Bit[0]:      | Not used<br>Manual flip enable register<br>Flip value register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x4009            | BLC TARGET     | 0x10             | RW  | Bit[7:0]:                            | Black level target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0x400A~<br>0x400B | NOT USED       | _                |     | Not Used                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x400C            | BLC MAN LEVEL0 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x400D            | BLC MAN LEVEL0 | 0x00             | RW  | Bit[7:0]:                            | BLC manual level channel0[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x400E            | BLC MAN LEVEL1 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]:               | Not used<br>BLC manual level channel 1[11:8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0x400F            | BLC MAN LEVEL1 | 0x00             | RW  | Bit[7:0]:                            | BLC manual level channel 1[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x4010            | BLC MAN LEVEL2 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0x4011            | BLC MAN LEVEL2 | 0x00             | RW  | Bit[7:0]:                            | BLC manual level channel 2[7:0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



table 7-15 BLC control registers (sheet 4 of 5)

|                   |         | 9                       | •                | •   |                                                                     |
|-------------------|---------|-------------------------|------------------|-----|---------------------------------------------------------------------|
|                   | address | register name           | default<br>value | R/W | description                                                         |
|                   | 0x4012  | BLC MAN LEVEL3          | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: BLC manual level channel 3[11:8]       |
|                   | 0x4013  | BLC MAN LEVEL3          | 0x00             | RW  | Bit[7:0]: BLC manual level channel 3[7:0]                           |
|                   | 0x4014  | SHORT BLC MAN<br>LEVEL0 | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Short BLC manual level channel 0[11:8] |
|                   | 0x4015  | SHORT BLC MAN<br>LEVEL0 | 0x00             | RW  | Bit[7:0]: Short BLC manual level channel 0[7:0]                     |
|                   | 0x4016  | SHORT BLC MAN<br>LEVEL1 | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Short BLC manual level channel 1[11:8] |
|                   | 0x4017  | SHORT BLC MAN<br>LEVEL1 | 0x00             | RW  | Bit[7:0]: Short BLC manual level channel 1[7:0]                     |
|                   | 0x4018  | SHORT BLC MAN<br>LEVEL2 | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Short BLC manual level channel 2[11:8] |
|                   | 0x4019  | SHORT BLC MAN<br>LEVEL2 | 0x00             | RW  | Bit[7:0]: Short BLC manual level channel 2[7:0]                     |
|                   | 0x401A  | SHORT BLC MAN<br>LEVEL3 | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Short BLC manual level channel 3[11:8] |
| Ç.                | 0x401B  | SHORT BLC MAN<br>LEVEL3 | 0x00             | RW  | Bit[7:0]: Short BLC manual level channel 3[7:0]                     |
|                   | 0x401C  | ZLINE MAN LEVEL0        | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Zero line manual level channel 0[11:8] |
| C.O.              | 0x401D  | ZLINE MAN LEVEL0        | 0x00             | RW  | Bit[7:0]: Zero line manual level channel 0[7:0]                     |
| O <sub>IR</sub> I | 0x401E  | ZLINE MAN LEVEL1        | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Zero line manual level channel 1[11:8] |
| 14                | 0x401F  | ZLINE MAN LEVEL1        | 0x00             | RW  | Bit[7:0]: Zero line manual level channel 1[7:0]                     |
|                   | 0x4020  | ZLINE MAN LEVEL2        | 0x00             | RW  | Bit[:4]: Not used Bit[3:0]: Zero line manual level channel 2[11:8]  |
|                   | 0x4021  | ZLINE MAN LEVEL2        | 0x00             | RW  | Bit[7:0]: Zero line manual level channel 2[7:0]                     |



table 7-15 BLC control registers (sheet 5 of 5)

|         |                         | `                |     |                        |                                                       |
|---------|-------------------------|------------------|-----|------------------------|-------------------------------------------------------|
| address | register name           | default<br>value | R/W | description            | 1                                                     |
| 0x4022  | ZLINE MAN LEVEL3        | 0x00             | RW  | Bit[:4]:<br>Bit[3:0]:  | Not used<br>Zero line manual level<br>channel 3[11:8] |
| 0x4023  | ZLINE MAN LEVEL3        | 0x00             | RW  | Bit[7:0]:              | Zero line manual level channel 3[7:0]                 |
| 0x4024  | FIRST BLC MAN<br>LEVEL0 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]: |                                                       |
| 0x4025  | FIRST BLC MAN<br>LEVEL0 | 0x00             | RW  | Bit[7:0]:              | First BLC manual level channel 0[7:0]                 |
| 0x4026  | FIRST BLC MAN<br>LEVEL1 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]: |                                                       |
| 0x4027  | FIRST BLC MAN<br>LEVEL1 | 0x00             | RW  | Bit[7:0]:              | First BLC manual level channel 1[7:0]                 |
| 0x4028  | FIRST BLC MAN<br>LEVEL2 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]: |                                                       |
| 0x4029  | FIRST BLC MAN<br>LEVEL2 | 0x00             | RW  | Bit[7:0]:              | First BLC manual level channel 2[7:0]                 |
| 0x402A  | FIRST BLC MAN<br>LEVEL3 | 0x00             | RW  | Bit[7:4]:<br>Bit[3:0]: |                                                       |
| 0x402B  | FIRST BLC MAN<br>LEVEL3 | 0x00             | RW  | Bit[7:0]:              | First BLC manual level channel 3[7:0]                 |
| 0x402C  | BLC LEVEL 0             | -                | R   | Bit[7:6]:<br>Bit[5:0]: |                                                       |
| 0x402D  | BLC LEVEL 0             | -                | R   | Bit[7:0]:              | Black level channel 0[7:0]                            |
| 0x402E  | BLC LEVEL 1             | -                | R   | Bit[7:6]:<br>Bit[5:0]: | Not used<br>Black level channel 1[13:8]               |
| 0x402F  | BLC LEVEL 1             | -                | R   | Bit[7:0]:              | Black level channel 1[7:0]                            |
| 0x4030  | BLC LEVEL 2             | _                | R   | Bit[7:6]:<br>Bit[5:0]: | Not used<br>Black level channel 2[13:8]               |
| 0x4031  | BLC LEVEL 2             | _                | R   | Bit[7:0]:              | Black level channel 2[7:0]                            |
| 0x4032  | BLC LEVEL 3             | -                | R   | Bit[7:6]:<br>Bit[5:0]: | Not used<br>Black level channel 3[13:8]               |
| 0x4033  | BLC LEVEL 3             | -                | R   | Bit[7:0]:              | Black level channel 3[7:0]                            |
|         |                         |                  |     |                        |                                                       |



#### 7.16 frame control [0x4200 - 0x4202]

table 7-16 frame control registers

| address | register name    | default<br>value | R/W | description                                      |
|---------|------------------|------------------|-----|--------------------------------------------------|
| 0x4200  | FRAME CTRL0      | 0x00             | RW  | Bit[7:0]: Debug mode                             |
| 0x4201  | FRAME ON NUMBER  | 0x00             | RW  | Bit[7:4]: Reserved<br>Bit[3:0]: Frame ON number  |
| 0x4202  | FRAME OFF NUMBER | 0x00             | RW  | Bit[7:4]: Reserved<br>Bit[3:0]: Frame OFF number |

### 7.17 format control [0x4300 - 0x4316]

table 7-17 format control registers (sheet 1 of 2)

|       | address | register name | default<br>value | R/W | description                                                                                                                                                |
|-------|---------|---------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0x4300  | DATA_MAX H    | 0xFF             | RW  | Bit[7:0]: Data max[9:2]                                                                                                                                    |
|       | 0x4301  | DATA_MIN H    | 0x00             | RW  | Bit[7:0]: Data min[9:2]                                                                                                                                    |
| C.    | 0x4302  | CLIP L        | 0x0C             | RW  | Bit[7:4]: Reserved Bit[3:2]: Data max[1:0] Bit[1:0]: Data min[1:0]                                                                                         |
| Colum | 0x4303  | FORMAT CTRL3  | 0x00             | RW  | Bit[7]: r_inc_en Bit[6]: r_inc_pattern Bit[5]: r_pad_lsb Bit[4]: r_bar_mux Bit[3]: r_bar_en Bit[2]: r_moto_tst_en Bit[1]: r_tst_bit8 Bit[0]: r_moto_tst_md |
|       | 0x4304  | FORMAT CTRL4  | 0x08             | RW  | Bit[7]: Reserved Bit[6:4]: data_bit_swap Bit[3]: tst_full_win Bit[2:0]: bar_pad                                                                            |
|       | 0x4305  | PAD LOW1      | 0x40             | RW  | Bit[7:6]: pad99<br>Bit[5:4]: pad66<br>Bit[3:2]: pad33<br>Bit[1:0]: pad00                                                                                   |



format control registers (sheet 2 of 2) table 7-17

| address | register name  | default<br>value | R/W | description                                                                                                                                       |
|---------|----------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4306  | PAD LOW2       | 0x0E             | RW  | Bit[7:4]: Reserved<br>Bit[3:2]: padff<br>Bit[1:0]: padcc                                                                                          |
| 0x4307  | EMBED CTRL     | 0x30             | RW  | Bit[7:4]: embed_line_st Bit[3]: embed_start_man Bit[2]: dpc_threshold_opt 0: For white pixel 1: For black pixel Bit[1]: embed_byte_order embed_en |
| 0x4308  | TST_X_START_H  | 0x00             | RW  | Bit[7:3]: Reserved Bit[2:0]: Test window X start address[10:8]                                                                                    |
| 0x4309  | TST_X_START_L  | 0x00             | RW  | Bit[7:0]: Test window X start address[7:0]                                                                                                        |
| 0x430A  | TST_Y_START_H  | 0x00             | RW  | Bit[7:3]: Reserved Bit[2:0]: Test window Y start address[10:8]                                                                                    |
| 0x430B  | TST_Y_START_L  | 0x00             | RW  | Bit[7:0]: Test window Y start address[7:0]                                                                                                        |
| 0x430C  | TST_WIDTH_H    | 0x00             | RW  | Bit[3:0]: Test window width[11:8]                                                                                                                 |
| 0x430D  | TST_WIDTH_L    | 0x00             | RW  | Bit[7:0]: Test window width[7:0]                                                                                                                  |
| 0x430E  | TST_HIGHT_H    | 0x00             | RW  | Bit[7:4]: Reserved<br>Bit[3:0]: Test window height[11:8]                                                                                          |
| 0x430D  | TST_HIGHT_L    | 0x00             | RW  | Bit[7:0]: Test window height[7:0]                                                                                                                 |
| 0x4310  | RSVD           | -                | -   | Reserved                                                                                                                                          |
| 0x4311  | VSYNC_WIDTH_H  | 0x04             | RW  | Bit[7:0]: VSYNC width[15:8] (in terms of pixel numbers)                                                                                           |
| 0x4312  | VSYNC_WIDTH_L/ | 0x00             | RW  | Bit[7:0]: VSYNC width[7:0] (in terms of pixel numbers)                                                                                            |
| 0x4313  | VSYNC_CTRL     | 0x00             | RW  | Bit[7:5]: Reserved Bit[4]: VSYNC polarity Bit[3:2]: VSYNC output select Bit[1]: VSYNC mode 3 Bit[0]: VSYNC mode 2                                 |
| 0x4314  | VSYNC_DELAY1   | 0x00             | RW  | Bit[7:0]: VSYNC trigger signal to VSYNC output delay[23:16]                                                                                       |
| 0x4315  | VSYNC_DELAY2   | 0x01             | RW  | Bit[7:0]: VSYNC trigger signal to VSYNC output delay[15:8]                                                                                        |
| 0x4316  | VSYNC_DELAY3   | 0x00             | RW  | Bit[7:0]: VSYNC trigger signal to VSYNC output delay[7:0]                                                                                         |



#### 7.18 VFIFO control [0x4600 - 0x460D]

table 7-18 VFIFO control registers

|       | address           | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|-------------------|---------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 0x4600            | VFIFO_R0      | 0x00             | RW  | Bit[7]: Reserved Bit[6]: SOF reset for FIFO inpuenable for frame error VFIFO debug Bit[5]: Vblanking signal select One option for generate LVDS vblanking ready Bit[4]: SRAM R/W mode 0: Toggle control (default working mode) 1: Read priority (used for consequently read or write) Bit[3]: Manual set line length Bit[2]: Reserved Bit[1]: SRAM bypass enable Bit[0]: Reset VFIFO every fram |
| Š.    | 0x4601~<br>0x460F | DEBUG MODE    | -                | -   | Debug Mode                                                                                                                                                                                                                                                                                                                                                                                      |
| John, |                   |               |                  |     |                                                                                                                                                                                                                                                                                                                                                                                                 |



# 7.19 MIPI control [0x4800 - 0x4867]

MIPI control registers (sheet 1 of 9) table 7-19

| Bit[3]: Reserved   Bit[2]:   Idle status   O: MIPI bus will be LP00 when there is no packet to transmit   1: MIPI bus will be LP11 when there is no packet to transmit   Bit[1:0]: Reserved |         | _             |      |     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|------|-----|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit[7]: mipi_hs_only                                                                                                                                                                        | address | register name |      | R/W | descriptio                                           | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bit[7]: Long packet data type manual enable                                                                                                                                                 | 0x4800  | MIPI CTRL 00  | 0x00 | RW  | Bit[7]:  Bit[6]:  Bit[5]:  Bit[4]:  Bit[3]:  Bit[2]: | mipi_hs_only 1: MIPI always in high speed mode Reserved Clock lane gate enable 0: Clock lane is free running 1: Gate clock lane when there is no packet to transmit Line sync enable 0: Do not send line short packet for each line 1: Send line short packet for each line Reserved Idle status 0: MIPI bus will be LP00 when there is no packet to transmit 1: MIPI bus will be LP11 when there is no packet to transmit                                                                                                                                                                                        |
| 1: Use lpx_p_min[7:0] Bit[0]: Reserved                                                                                                                                                      | 0x4801  | MIPI CTRL 01  | 0x0D | RW  | Bit[7]:  Bit[6]:  Bit[5]:  Bit[3]:  Bit[2]:  Bit[1]: | Long packet data type manual enable  0: Use mipi_dt  1: Use dt_man_o as long packet data (see register 0x4814[5:0])  Short packet data type manual enable  1: Use dt_spkt as short packet data (see register 0x4815[5:0])  first_bit  Change clk_lane first bit  0: Output 0x05  1: Output 0x05  1: Output 0xAA  PH bit order for ECC  0: {DI[7:0],WC[7:0],WC[15:8]}  1: {DI[0:7],WC[0:7],WC[8:15]}  PH byte order for ECC  0: {DI,WC_I,WC_h}  1: {DI,WC_h,WC_I}  PH byte order2 for ECC  0: {DI,WC}  1: {WC,DI}  LPX select for pclk domain  0: Auto calculate t_lpx_p, unit pclk2x cycle  1: Use lpx_p_min[7:0] |



table 7-19 MIPI control registers (sheet 2 of 9)

|     | table 7-19 | MIPI Control regis | iters (sile      | etZuis | 7)                                                                |                                                                                   |
|-----|------------|--------------------|------------------|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|     | address    | register name      | default<br>value | R/W    | descriptio                                                        | n                                                                                 |
|     | 0x4802     | MIPI CTRL 02       | 0x00             | RW     | MIPI Contr<br>Bit[7]:<br>Bit[6]:<br>Bit[5]:<br>Bit[4]:<br>Bit[2]: |                                                                                   |
|     |            |                    |                  |        | Bit[0]:                                                           | clk_zero_sel 0: Auto calculate T_clk_zero, unit pclk2x 1: Use clk_zero_min_o[7:0] |
| CO. | 0x4803     | MIPI CTRL 03       | 0x00             | RW     | Bit[3]:<br>Bit[2]:                                                | Reserved manu_ofset_o t_period manual offset r_manual_half2one t_period half to 1 |
| 110 | 0x4804     | MIPI CTRL 04       | 0x00             | RW     | MIPI Contr<br>Bit[7:6]:<br>Bit[5]:<br>Bit[4]:                     | Reserved ol 04 Reserved PRBS enable Lane number manual enable Manual lane number  |



table 7-19 MIPI control registers (sheet 3 of 9)

|         |                         | •                |     | •                                                                                                                                                                                                          |
|---------|-------------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name           | default<br>value | R/W | description                                                                                                                                                                                                |
| 0x4805  | MIPI CTRL 05            | 0x01             | RW  | MIPI Control 05 Bit[7:6]: Reserved Bit[5]: mipi_ul_tx_en Bit[4]: tx_lsb_first Bit[3:0]: sw_t_lpx                                                                                                           |
| 0x4806  | MIPI REG R/W CTRL       | 0x00             | RW  | Bit[7:4]: Reserved Bit[3]: lpda_retim_manu_o Bit[2]: lpda_retim_sel_o                                                                                                                                      |
| 0x4810  | MIPI MAX FRAME<br>COUNT | 0xFF             | RW  | High Byte of Maximum Frame Count of Frame Sync Short Packet                                                                                                                                                |
| 0x4811  | MIPI MAX FRAME<br>COUNT | 0xFF             | RW  | Low Byte of Maximum Frame Count of Frame Sync<br>Short Packet                                                                                                                                              |
| 0x4813  | MIPI CTRL13             | 0x00             | RW  | MIPI Control 13  Bit[7:3]: Reserved Bit[2]: vc_sel Input vc or reg vc Bit[1:0]: vc Virtual channel of MIPI                                                                                                 |
| 0x4814  | MIPI CTRL14             | 0x2A             | RW  | MIPI Control 14 Bit[7:6]: Reserved Bit[5:0]: Data type in manual mode                                                                                                                                      |
| 0x4815  | MIPI_DT_SPKT            | 0x00             | RW  | Bit[7]: Reserved Bit[6]: pclk_div 0: Use falling edge of mipi_pclk_o to generate MIPI bus to PHY 1: Use rising edge of mipi_pclk_o to generate MIPI bus to PHY Bit[5:0]: Manual data type for short packet |
| 0x4816  | EMB_DT_SEL              | 0x52             | RW  | emb_dt_sel Bit[7]: Reserved Bit[6]: emb_line_sel 1: Use emb_dt as data in first emb_line_nu Bit[5:0]: emb_dt Manually set embedded data type                                                               |
| 0x4818  | HS_ZERO_MIN             | 0x00             | RW  | High Byte of Minimum Value for hs_zero, unit ns                                                                                                                                                            |
| 0x4819  | HS_ZERO_MIN             | 0x70             | RW  | Low Byte of Minimum Value for hs_zero, unit ns hs_zero_real = hs_zero_min_o + Tui*ui_hs_zero_min_o                                                                                                         |



table 7-19 MIPI control registers (sheet 4 of 9)

| address | register name   | default<br>value | R/W | description                                                                                                                    |
|---------|-----------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 0x481A  | HS_TRAIL_MIN    | 0x00             | RW  | High Byte of Minimum Value for hs_trail, unit ns                                                                               |
| 0x481B  | HS_TRAIL_MIN    | 0x3C             | RW  | Low Byte of Minimum Value for hs_trail, unit ns<br>hs_trail_real = hs_trail_min_o +<br>Tui*ui_hs_trail_min_o                   |
| 0x481C  | CLK_ZERO_MIN    | 0x01             | RW  | High Byte of Minimum Value for clk_zero, unit ns                                                                               |
| 0x481D  | CLK_ZERO_MIN    | 0x06             | RW  | Low Byte of Minimum Value for clk_zero, unit ns clk_zero_real = clk_zero_min_o + Tui*ui_clk_zero_min_o                         |
| 0x481E  | CLK_PREPARE_MAX | 0x5F             | RW  | clk_prepare_max<br>Maximum Value of clk_prepare, unit ns                                                                       |
| 0x481F  | CLK_PREPARE_MIN | 0x26             | RW  | Minimum Value for clk_prepare<br>clk_prepare_real = clk_prepare_min_o +<br>Tui*ui_clk_prepare_min_o                            |
| 0x4820  | CLK_POST_MIN    | 0x00             | RW  | High Byte of Minimum Value for clk_post, unit ns<br>Bit[1:0]: clk_post_min[9:8]                                                |
| 0x4821  | CLK_POST_MIN    | 0x3C             | RW  | Low Byte of Minimum Value for clk_post clk_post_real = clk_post_min_o + Tui*ui_clk_post_min_o Bit[7:0]: clk_post_min[7:0]      |
| 0x4822  | CLK_TRAIL_MIN   | 0x00             | RW  | High Byte of Minimum Value for clk_trail, unit ns<br>Bit[1:0]: clk_trail_min[9:8]                                              |
| 0x4823  | CLK_TRAIL_MIN   | 0x3C             | RW  | Low Byte of Minimum Value for clk_trail clk_trail_real = clk_trail_min_o + Tui*ui_clk_trail_min_o Bit[7:0]: clk_trail_min[7:0] |
| 0x4824  | LPX_P_MIN       | 0x00             | RW  | High Byte of Minimum Value for lpx_p, unit ns<br>Bit[1:0]: lpx_p_min[9:8]                                                      |
| 0x4825  | LPX_P_MIN       | 0x32             | RW  | Low Byte of Minimum Value for lpx_p lpx_p_real = lpx_p_min_o + Tui*ui_lpx_p_min_o Bit[7:0]: lpx_p_min[7:0]                     |
| 0x4826  | HS_PREPARE_MIN  | 0x28             | RW  | hs_prepare_min<br>Minimum Value of hs_prepare, unit ns                                                                         |
| 0x4827  | HS_PREPARE_MAX  | 0x55             | RW  | Maximum Value for hs_prepare<br>hs_prepare_real = hs_prepare_min_o +<br>Tui*ui_hs_prepare_min_o                                |
| 0x4828  | HS_EXIT_MIN     | 0x00             | RW  | High Byte of Minimum Value for hs_exit, unit ns<br>Bit[1:0]: hs_exit_min[9:8]                                                  |



MIPI control registers (sheet 5 of 9) table 7-19

| address | register name     | default<br>value | R/W | description                                                                                                                                                         |
|---------|-------------------|------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4829  | HS_EXIT_MIN       | 0x64             | RW  | Low Byte of Minimum Value for hs_exit hs_exit_real = hs_exit_min_o + Tui*ui_hs_exit_min_o Bit[7:0]: hs_exit_min[7:0]                                                |
| 0x482A  | UI_HS_ZERO_MIN    | 0x06             | RW  | Minimum UI Value of hs_zero, unit UI                                                                                                                                |
| 0x482B  | UI_HS_TRAIL_MIN   | 0x04             | RW  | Minimum UI Value of hs_trail, unit UI                                                                                                                               |
| 0x482C  | UI_CLK_ZERO_MIN   | 0x00             | RW  | Minimum UI Value of clk_zero, unit UI                                                                                                                               |
| 0x482D  | UI_CLK_PREPARE    | 0x00             | RW  | ui_clk_prepare_min_ctrl Bit[7:4]: ui_clk_prepare_max Maximum UI value of clk_prepare, unit UI Bit[3:0]: ui_clk_prepare_min Minimum UI value of clk_prepare, unit UI |
| 0x482E  | UI_CLK_POST_MIN   | 0x34             | RW  | Minimum UI Value of clk_post, unit UI                                                                                                                               |
| 0x482F  | UI_CLK_TRAIL_MIN  | 0x00             | RW  | Minimum UI Value of clk_trail, unit UI                                                                                                                              |
| 0x4830  | UI_LPX_P_MIN      | 0x00             | RW  | Minimum UI Value of lpx_p, unit UI                                                                                                                                  |
| 0x4831  | UI_HS_PREPARE_MIN | 0x64             | RW  | ui_hs_prepare Bit[7:4]: ui_hs_prepare_max                                                                                                                           |
| 0x4832  | UI_HS_EXIT_MIN    | 0x00             | RW  | Minimum UI Value of hs_exit, unit UI                                                                                                                                |
| 0x4836  | GLB_MODE_SEL      | 0x00             | RW  | glb_mode_sel Bit[7:1]: Reserved Bit[0]: timing_cal_en 0: Use period to calculate 1: Use bit rate to calculate                                                       |
| 0x4837  | PCLK_PERIOD       | 0x14             | RW  | Period of pclk2x, pclk_div = 1, and 1-bit decimal                                                                                                                   |



table 7-19 MIPI control registers (sheet 6 of 9)

| ado | dress | register name | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                       |
|-----|-------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4 | 838   | MIPI_LP_GPIO0 | 0x00             | RW  | Bit[7]:                                                                                                                                                                                                                                                                                                                           |
| 0x4 | 839   | MIPI_LP_GPIO1 | 0x00             | RW  | Bit[7]: lp_sel2 0: Auto generate mipi_lp_dir2_o 1: Use lp_dir_man2 to be mipi_lp_dir2_o  Bit[6]: lp_dir_man2 0: lnput 1: Output  Bit[5]: lp_p2_o Bit[4]: lp_n2_o Bit[3]: lp_sel3 0: Auto generate mipi_lp_dir3_o 1: Use lp_dir_man3 to be mipi_lp_dir3_o  Bit[2]: lp_dir_man3 0: lnput 1: Output  Bit[1]: lp_p3_o Bit[0]: lp_n3_o |



table 7-19 MIPI control registers (sheet 7 of 9)

| address | register name | default<br>value | R/W | description                                               |
|---------|---------------|------------------|-----|-----------------------------------------------------------|
| 0x483A  | MIPI_LP_GPIO2 | 0x00             | RW  | Bit[7]:                                                   |
| 0x483B  | MIPI_LP_GPIO3 | 0x00             | RW  | Bit[7]:                                                   |
| 0x483C  | MIPI_CTRL3C   | 0x42             | RW  | Bit[7:4]: Reserved Bit[3:0]: t_clk_pre Unit: pclk2x cycle |



table 7-19 MIPI control registers (sheet 8 of 9)

| table 7-1 | MIPTCOILLOTTEG  | .5(015)(3116     |     |                                                                                                                                                                                                                                                             |
|-----------|-----------------|------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address   | register name   | default<br>value | R/W | description                                                                                                                                                                                                                                                 |
| 0x483D    | MIPI_LP_GPIO4   | 0x00             | RW  | Bit[7]:                                                                                                                                                                                                                                                     |
| 0x4840    | START_OFFSET    | 0x00             | RW  | High Byte of start_offset                                                                                                                                                                                                                                   |
| 0x4841    | START_OFFSET    | 0x00             | RW  | Low Byte of start_offset                                                                                                                                                                                                                                    |
| 0x4842    | START_MODE      | 0x01             | RW  | Bit[7:2]: Reserved Bit[1:0]: Delay mode select 00: Delay one line mode 01: Old mode, delay about 100 Tp 10: VHREF manual mode 11: Reserved                                                                                                                  |
| 0x484A    | SEL_MIPI_CTRL4A | 0x07             | RW  | Bit[7:3]: Reserved Bit[2]: mipi_slp_man_st                                                                                                                                                                                                                  |
| 0x484B    | SEL_MIPI_CTRL4B | 0x07             | RW  | Bit[7:3]: Reserved Bit[2]: line_st_sel_o 0: Line starts after HREF 1: Line starts after fifo_st Bit[1]: clk_start_sel_o 0: Clock starts after SOF 1: Clock starts after reset Bit[0]: sof_sel_o 0: Frame starts after HREF occurs 1: Frame starts after SOF |



MIPI control registers (sheet 9 of 9) table 7-19

|                   | <u> </u>                | •                |     |                                                                                                                                                                                                                                                                                                    |
|-------------------|-------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address           | register name           | default<br>value | R/W | description                                                                                                                                                                                                                                                                                        |
| 0x484C            | SEL_MIPI_CTRL4C         | 0x02             | RW  | Bit[7:6]: Reserved Bit[5]: frame count_i select Bit[4]: MIPI high speed only test mode enable Bit[3]: Set frame count to inactive mode (keep 0) Bit[2]: Vsub select 0: Valid from behind 1: Valid in front Bit[1:0]: Input data valid (e.g., for YUV420) 01: Valid = 1 10: Valid = 2 11: Valid = 3 |
| 0x484D            | TEST_PATTEN_DATA        | 0xB6             | RW  | Data Lane Test Pattern                                                                                                                                                                                                                                                                             |
| 0x484E            | FE_DLY                  | 0x10             | RW  | Last Packet to Frame End Delay / 2                                                                                                                                                                                                                                                                 |
| 0x484F            | TEST_PATTEN_CK_<br>DATA | 0x55             | RW  | clk_test_patten_reg                                                                                                                                                                                                                                                                                |
| 0x4864~<br>0x4867 | DEBUG MODE              | - X              | 10  | Debug Mode                                                                                                                                                                                                                                                                                         |



#### 7.20 temperature monitor [0x4D00 - 0x4D21]

table 7-20 temperature monitor registers

|                    | _                                                |                                                                                          |                                                                                                                                                                                            |
|--------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| register name      | default<br>value                                 | R/W                                                                                      | description                                                                                                                                                                                |
| DEBUG              | _                                                | _                                                                                        | Debug Registers                                                                                                                                                                            |
| TPM_CTRL0          | 0x78                                             | RW                                                                                       | Bit[7]: Reserved<br>Bit[6:4]: cnt_bit<br>Bit[1:0]: Div                                                                                                                                     |
| TPM_CTRL_OPT       | 0x00                                             | RW                                                                                       | Bit[7:3]: Reserved Bit[2]: otp_reg_ctrl_en Bit[1]: result_shift_en Bit[0]: Stall                                                                                                           |
| TPM_CTRL1          | 0x05                                             | RW                                                                                       | Bit[7]: mul_div_sel Bit[6]: div_sel Bit[5]: pd_tmp_snr Bit[4:0]: shift_bit                                                                                                                 |
| DEBUG              | -                                                | _                                                                                        | Debug Registers                                                                                                                                                                            |
| TPM trigger / read |                                                  | RW                                                                                       | Bit[7]: Temperature sensor trigger<br>Bit[6:0]: Measured temperature                                                                                                                       |
|                    | DEBUG  TPM_CTRL0  TPM_CTRL_OPT  TPM_CTRL1  DEBUG | register name value  DEBUG -  TPM_CTRL0 0x78  TPM_CTRL_OPT 0x00  TPM_CTRL1 0x05  DEBUG - | register name     default value     R/W       DEBUG     -     -       TPM_CTRL0     0x78     RW       TPM_CTRL_OPT     0x00     RW       TPM_CTRL1     0x05     RW       DEBUG     -     - |

# 7.21 ISP top [0x5000 - 0x5061]

table 7-21 ISP top registers (sheet 1 of 3)

| address | register name | default<br>value | R/W | description                                                                                                                                                                                                           |
|---------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5000  | ISP CTRL0     | 0x06             | RW  | Bit[7]: LENC correction enable 0: Disable 1: Enable  Bit[6:3]: Not used  Bit[2]: Black pixel cancellation enable 0: Disable 1: Enable  Bit[1]: White pixel cancellation enable 0: Disable 1: Enable  Bit[0]: Not used |



table 7-21 ISP top registers (sheet 2 of 3)

| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                                 |
|-------------------|---------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5001            | ISP CTRL1     | 0x01             | RW  | Bit[7:1]: Not used Bit[0]: Manual white balance (MWB) enable 0: Disable 1: Enable                                                                                                                                           |
| 0x5002            | ISP CTRL2     | 0x00             | RW  | Bit[7]: Scale enable 0: Disable 1: Enable Bit[6:0]: Reserved                                                                                                                                                                |
| 0x5003~<br>0x5004 | RSVD          | -                | -   | Reserved                                                                                                                                                                                                                    |
| 0x5005            | ISP BIAS CTRL | 0x1C             | RW  | Bit[7:5]: Not used Bit[4]: MWB bias on This will subtract the BLC target before MWB gain, and add the target back after MWB 0: Disable 1: Enable Bit[3:0]: Not used                                                         |
| 0x5006~<br>0x5011 | RSVD          |                  | -   | Reserved                                                                                                                                                                                                                    |
| 0x5012            | ISP CTRL 12   | 0x2A             | RW  | Bit[7:6]: Reserved Bit[5:4]: Scale SRAM0 test Bit[3:2]: Scale SRAM1 test Bit[1:0]: Scale SRAM2 test                                                                                                                         |
| 0x5013            | ISP CTRL 13   | 0x04             | RW  | Bit[7:3]: Reserved Bit[2]: LSB enable Bit[1:0]: Reserved                                                                                                                                                                    |
| 0x501F            | ISP BYPASS    | 0x00             | RW  | Bit[7:6]: Not used Bit[5]: Bypass ISP Bypasses all ISP modules except window and pre-ISP Bit[4:0]: Reserved                                                                                                                 |
| 0x5025            | ISP AVG SEL   | 0x00             | RW  | Bit[7:4]: Reserved Bit[3:2]: Not used Bit[1:0]: Average select 00: Use sensor raw to calculate average data 01: Use the data after LENC to calculate average data 10: Use the data after MWB_gain to calculate average data |



table 7-21 ISP top registers (sheet 3 of 3)

| address           | register name | default<br>value | R/W | description                                                                                                                                                                                                        |
|-------------------|---------------|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x502A~<br>0x5040 | RSVD          | -                | -   | Reserved                                                                                                                                                                                                           |
| 0x5041            | ISP CTRL41    | 0x04             | RW  | Bit[7]: Scale auto select  0: Enable, scale is manually enabled or disabled, depending on register 0x5002[7]  1: Disable, scale is auto enabled when the output size is less than the input size  Bit[6]: Not used |
|                   | ,             |                  |     | Bit[5]: Reserved Bit[4]: Post binning filter enable 0: Disable 1: Enable                                                                                                                                           |
|                   | 40,           |                  |     | Bit[3]: Not used Bit[2]: Average enable 0: Disable 1: Enable                                                                                                                                                       |
|                   | V A.          |                  |     | Bit[1:0]: Not used                                                                                                                                                                                                 |
| 0x5042~<br>0x5045 | RSVD          | -                | -   | Reserved                                                                                                                                                                                                           |
| 9                 |               |                  |     | Bit[7:6]: ISP SOF select<br>00: Auto mode, ISP outputs<br>SOF automatically                                                                                                                                        |
| 0x5046            | ISP SOF SEL   | 0x0A             | RW  | 01: VSYNC<br>10: TC_SOF<br>11: Pre SOF<br>Bit[5:0]: Reserved                                                                                                                                                       |
| 0x5047~<br>0x505F | RSVD          | -                | -   | Reserved                                                                                                                                                                                                           |
| 0x5061            | DEBUG         | _                | _   | Debug Register                                                                                                                                                                                                     |



#### 7.22 scale control [0x5041, 0x5600 - 0x5608]

table 7-22 scale control registers (sheet 1 of 2)

|                   |               | ·                |     |                                             |                                                                                                                                                                                                                                                                                                                     |
|-------------------|---------------|------------------|-----|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address           | register name | default<br>value | R/W | description                                 | n                                                                                                                                                                                                                                                                                                                   |
| 0x5041            | ISP CTRL2     | 0x0C             | RW  | Bit[7]:  Bit[6:5]: Bit[4]:  Bit[3]: Bit[2]: | Scale auto select  0: Enable, scale is manually enable or disable, depend on register 0x5002[7]  1: Disable, scale is auto enable when the output size is less than the input size  Not used Post binning filter enable  0: Disable  1: Enable  Not used  Average enable  0: Disable  1: Enable  Not used  Not used |
| 0x5600            | SCALE HFACTOR | 0x00             | RW  | Bit[7:2]:<br>Bit[1:0]:                      |                                                                                                                                                                                                                                                                                                                     |
| 0x5601            | SCALE HFACTOR | 0x80             | RW  | Bit[7:0]:                                   | Scale horizontal factor[7:0]                                                                                                                                                                                                                                                                                        |
| 0x5602            | SCALE VFACTOR | 0x00             | RW  | Bit[7:2]:<br>Bit[1:0]:                      | Not used<br>Scale vertical factor[9:8]                                                                                                                                                                                                                                                                              |
| 0x5603            | SCALE VFACTOR | 0x80             | RW  | Bit[7:0]:                                   | Scale vertical factor[7:0]                                                                                                                                                                                                                                                                                          |
| 0x5604            | SCALE AUTO    | 0x01             | RW  | Bit[7:1]:<br>Bit[0]:                        | Reserved Scale auto enable 0: Use manual scale factor from registers 0x5600~0x5603 1: Calculate the scale factor from the input size and the output size set in registers 0x3800~0x380B                                                                                                                             |
| 0x5605~<br>0x5608 | DEBUG         | -                | -   | Debug Reg                                   | isters                                                                                                                                                                                                                                                                                                              |
| 0x5068            | SCALE H INVT  | 0x00             | RW  | Bit[7:6]:<br>Bit[5]:<br>Bit[4:0]:           | Not used                                                                                                                                                                                                                                                                                                            |
| 0x506A            | SCALE V INVT  | 0x00             | RW  | Bit[7:6]:<br>Bit[5]:<br>Bit[4:0]:           | Vertical MSB<br>Not used<br>Vertical inverse                                                                                                                                                                                                                                                                        |
| 0x5605            | SCALE HFACTOR | _                | R   | Bit[7:0]:                                   | Horizontal scale factor[15:8]                                                                                                                                                                                                                                                                                       |
| 0x5606            | SCALE HFACTOR | -                | R   | Bit[7:0]:                                   | Horizontal scale factor[7:0]                                                                                                                                                                                                                                                                                        |



table 7-22 scale control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                                     |
|---------|---------------|------------------|-----|-----------------------------------------------------------------|
| 0x5607  | SCALE VFACTOR | _                | R   | Bit[7:5]: Reserved Bit[4:0]: Inverse vertical scale factor[4:0] |
| 0x5608  | SCALE VFACTOR | _                | R   | Bit[4:0]: Inverse horizontal scale factor[4:0]                  |

#### 7.23 average control [0x5680 - 0x5688]

table 7-23 average control registers

| address | register name      | default<br>value | R/W | description                                                                                |
|---------|--------------------|------------------|-----|--------------------------------------------------------------------------------------------|
| 0x5680  | AVG X START        | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: X start offset[11:8]                                          |
| 0x5681  | AVG X START        | 0x00             | RW  | Bit[7:0]: X start offset[7:0]                                                              |
| 0x5682  | AVG Y START        | 0x00             | RW  | Bit[7:4]: Not used Bit[3:0]: Y start offset[11:8]                                          |
| 0x5683  | AVG Y START        | 0x00             | RW  | Bit[7:0]: Y start offset[7:0]                                                              |
| 0x5684  | AVG WIN WIDTH      | 0x0C             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Window width[11:8]                                         |
| 0x5685  | AVG WIN WIDTH      | 0xC0             | RW  | Bit[7:0]: Window width[7:0]                                                                |
| 0x5686  | AVG WIN HEIGHT     | 0x09             | RW  | Bit[7:4]: Not used<br>Bit[3:0]: Window height[11:8]                                        |
| 0x5687  | AVG WIN HEIGHT     | 0x90             | RW  | Bit[7:0]: Window height[7:0]                                                               |
| 0x5688  | AVG MANUAL<br>CTRL | 0x02             | RW  | Bit[7:2]: Not used Bit[1]: Average option Bit[0]: Average size manual 0: Disable 1: Enable |



# 7.24 DPC control [0x5780 - 0x5791]

table 7-24 DPC control registers (sheet 1 of 3)

|         |               | . 68.316.3       | `    | <i>'</i>           |                                                                                                                                                                                                          |
|---------|---------------|------------------|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | default<br>value | R/W  | descriptio         | n                                                                                                                                                                                                        |
| 0x5000  | ISP CTRL0     | 0x06             | RW   | Bit[2]:<br>Bit[1]: | Black pixel cancellation enable 0: Disable 1: Enable White pixel cancellation enable 0: Disable 1: Enable                                                                                                |
| 0x5003  | DPC CTRL      | 0x20             | RW   | Bit[0]:            | T type cross cluster correction enable Works only when cross cluster correction is enabled 0: Disable 1: Enable                                                                                          |
|         |               |                  | ×\   | Bit[7]:            | Tail type cross cluster correction enable Works cross cluster correction is enabled 0: Disable 1: Enable                                                                                                 |
|         |               | 0                |      | Bit[6]:            | Saturation type cross cluster correction enable Works only when cross cluster correction is enabled 0: Disable                                                                                           |
|         |               |                  |      | Bit[5]:            | <ol> <li>Enable</li> <li>Cross cluster correction enable</li> <li>Disable</li> <li>Enable</li> </ol>                                                                                                     |
| 05700   | DDC CTDI      | 040              | D)A/ | Bit[4]:            | Horizontal same channel couplet correction enable  0: Disable                                                                                                                                            |
| 0x5780  | DPC CTRL      | 0x1C             | RW   | Bit[3]:            | Enable     Horizontal couplet correction enable     Disable     Enable                                                                                                                                   |
| U       | JP1           |                  |      | Bit[2]:            | Smoothen enable in recovery  0: Less correction with more details remaining  1: More correction with less details remaining                                                                              |
|         |               |                  |      | Bit[1]:<br>Bit[0]: | Reserved  Manual threshold mode  0: Auto mode in which defect pixel threshold is automatically adjusted based on analog gain  1: Manual mode in which defect pixel threshold is set manually by register |



table 7-24 DPC control registers (sheet 2 of 3)

|      | address | register name            | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|---------|--------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 0x5781  | DPC BOUNDARY             | 0x13             | RW  | Bit[7:6]: Reserved Bit[5]: Remove two vertical black defect pixels when 0x5782[1:0] > 0 0: Disable 1: Enable Bit[4]: Keep vertical line of two-pixel width 0: Disable 1: Enable Bit[3:2]: Reserved Bit[1:0]: Image boundary process option 00: Padding zero to remove white pixel 01: Padding max value to remove black pixel 10: Use half of the max value for padding 11: Duplicate the adjacent same channel data for padding |
|      | 0x5782  | DPC VLINE                | 0x03             | RW  | Bit[7:2]: Reserved Bit[1:0]: Vertically connected defect pixel correction option 00: Not allowed 01: Remove two vertical pixels 10: Remove three or less vertical pixels 11: Remove four or less vertical pixels                                                                                                                                                                                                                 |
| Š.   | 0x5783  | DPC_WHREM/<br>DPC_GTHRE1 | 0x08             | RW  | Bit[7]: Reserved Bit[6:0]: Threshold value for detecting white pixels in manual mode. More white pixels will be removed with smaller threshold.  Gain threshold 1 for defect pixel threshold calculation in auto mode                                                                                                                                                                                                            |
| Coll | 0x5784  | DPC_BHREM/<br>DPC_GTHRE1 | 0x0C             | RW  | Bit[7]: Reserved Bit[6:0]: Threshold value for detecting black pixels in manual mode. More black pixels will be removed with smaller threshold.  Gain threshold 2 for defect pixel threshold calculation in auto mode                                                                                                                                                                                                            |
| Mr.  | 0x5785  | DPC_SFTHRE               | 0x10             | RW  | Bit[7]: Reserved Bit[6:0]: Threshold value used in recovery of defect pixel. The bigger the value, the better the recovery quality (more details kept), but the less chance of recovering defects.                                                                                                                                                                                                                               |
|      | 0x5786  | DPC_DPTHRE               | 0x20             | RW  | Bit[7]: Reserved Bit[6:0]: Threshold for registering defect pixel to detect cross cluster. The greater the threshold, the more defect pixels will be removed.                                                                                                                                                                                                                                                                    |



table 7-24 DPC control registers (sheet 3 of 3)

| addrage | rogistor name | default | D/M/ | docoriotica              |                                                                                                                                                                        |
|---------|---------------|---------|------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| address | register name | value   | R/W  | description              |                                                                                                                                                                        |
| 0x5787  | DPC_HFTHRE    | 0x10    | RW   | Bit[6:0]: Tr<br>wl<br>gr | eserved hreshold to determine high frequency area here the DPC will keep fine details. The reater the threshold, the more details will be emoved by DPC.               |
| 0x5788  | DPC_CLTHRE    | 0x18    | RW   | Bit[6:0]: Th             | eserved hreshold for detecting horizontal couplets. his threshold should be greater than the breshold for single white/black pixels.                                   |
| 0x5789  | DPC_WTHRE0    | 0x08    | RW   | [ · ] · · · ·            | eserved<br>/hite pixel threshold 0 in auto mode                                                                                                                        |
| 0x578A  | DPC_WTHRE1    | 0x04    | RW   |                          | eserved<br>/hite pixel threshold 1 in auto mode                                                                                                                        |
| 0x578B  | DPC_WTHRE2    | 0x02    | RW   |                          | eserved<br>/hite pixel threshold 2 in auto mode                                                                                                                        |
| 0x578C  | DPC_WTHRE3    | 0x02    | RW   |                          | eserved<br>/hite pixel threshold 3 in auto mode                                                                                                                        |
| 0x578D  | DPC_BTHRE0    | 0x0C    | RW   | - 14[1]                  | eserved<br>lack pixel threshold 0 in auto mode                                                                                                                         |
| 0x578E  | DPC_BTHRE1    | 0x06    | RW   |                          | eserved<br>lack pixel threshold 1 in auto mode                                                                                                                         |
| 0x578F  | DPC_BTHRE2    | 0x02    | RW   |                          | eserved<br>lack pixel threshold 2 in auto mode                                                                                                                         |
| 0x5790  | DPC_BTHRE3    | 0x02    | RW   | - 14[1]                  | eserved<br>lack pixel threshold 3 in auto mode                                                                                                                         |
| 0x5791  | DPC SATURATE  | 0xFF    | RW   | of<br>cr                 | hreshold of the center pixel for saturation type of cross cluster. To qualify a saturation type of coss cluster, the center pixel must be greater than this threshold. |



# 7.25 LENC [0x5800 - 0x5849]

table 7-25 LENC registers (sheet 1 of 4)

| ta | DIE / ZJ | LLIVE TERISTETS (3 | neet 1 01 4      | )   |                                     |                                                                                                                                                                                   |
|----|----------|--------------------|------------------|-----|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | address  | register name      | default<br>value | R/W | description                         | 1                                                                                                                                                                                 |
|    | 0x5000   | ISP CTRL0          | 0x06             | RW  | Bit[7]:  Bit[6:3]: Bit[2]:  Bit[1]: | LENC correction enable  0: Disable  1: Enable  Not used  Black pixel cancellation enable  0: Disable  1: Enable  White pixel cancellation enable  0: Disable  1: Enable  Not used |
| -  | 0x5800   | LENC G00           | 0x10             | RW  | Bit[7:6]:<br>Bit[5:0]:              |                                                                                                                                                                                   |
|    | 0x5801   | LENC G01           | 0x10             | RW  |                                     | Reserved<br>Control point G01 for luminance<br>compensation                                                                                                                       |
|    | 0x5802   | LENC G02           | 0x10             | RW  |                                     | Reserved<br>Control point G02 for luminance<br>compensation                                                                                                                       |
|    | 0x5803   | LENC G03           | 0x10             | RW  | Bit[7:6]:<br>Bit[5:0]:              | Reserved<br>Control point G03 for luminance<br>compensation                                                                                                                       |
|    | 0x5804   | LENC G04           | 0x10             | RW  | Bit[7:6]:<br>Bit[5:0]:              | Reserved<br>Control point G04 for luminance<br>compensation                                                                                                                       |
|    | 0x5805   | LENC G05           | 0x10             | RW  | Bit[7:6]:<br>Bit[5:0]:              |                                                                                                                                                                                   |
|    | 0x5806   | LENC G10           | 0x10             | RW  |                                     | Reserved<br>Control point G10 for luminance<br>compensation                                                                                                                       |
|    | 0x5807   | LENC G11           | 0x08             | RW  | Bit[7:6]:<br>Bit[5:0]:              | Reserved<br>Control point G11 for luminance<br>compensation                                                                                                                       |
|    | 0x5808   | LENC G12           | 0x08             | RW  | Bit[7:6]:<br>Bit[5:0]:              | Reserved<br>Control point G12 for luminance<br>compensation                                                                                                                       |
|    |          |                    |                  |     |                                     |                                                                                                                                                                                   |



table 7-25 LENC registers (sheet 2 of 4)

| address           | register name           | default<br>value | R/W | description                                                                                                                  |
|-------------------|-------------------------|------------------|-----|------------------------------------------------------------------------------------------------------------------------------|
| 0x5809            | LENC G13                | 0x08             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G13 for luminance compensation                                                    |
| 0x580A~<br>0x5821 | LENC G14~<br>LENC G53   | -                | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G14~G53 for luminance compensation                                                |
| 0x5822            | LENC G54                | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G54 for luminance compensation                                                    |
| 0x5823            | LENC G55                | 0x10             | RW  | Bit[7:6]: Reserved Bit[5:0]: Control point G55 for luminance compensation                                                    |
| 0x5824            | LENC BR00               | 0xAA             | RW  | Bit[7:4]: Control point B00 for blue channel compensation Bit[3:0]: Control point R00 for red channel compensation           |
| 0x5825            | LENC BR01               | 0xAA             | RW  | Bit[7:4]: Control point B01 for blue channel compensation Bit[3:0]: Control point R01 for red channel compensation           |
| 0x5826            | LENC BR02               | 0xAA             | RW  | Bit[7:4]: Control point B02 for blue channel compensation Bit[3:0]: Control point R02 for red channel compensation           |
| 0x5827            | LENC BR03               | 0xAA             | RW  | Bit[7:4]: Control point B03 for blue channel compensation Bit[3:0]: Control point R03 for red channel compensation           |
| 0x5828            | LENC BR04               | 0xAA             | RW  | Bit[7:4]: Control point B04 for blue channel compensation Bit[3:0]: Control point R04 for red channel compensation           |
| 0x5829            | LENC BR10               | 0xAA             | RW  | Bit[7:4]: Control point B10 for blue channel compensation Bit[3:0]: Control point R10 for red channel compensation           |
| 0x582A~<br>0x583B | LENC BR11~<br>LENC BR43 | -                | RW  | Bit[7:4]: Control point B11~B43 for blue channels compensation Bit[3:0]: Control point R11~R43 for red channels compensation |



table 7-25 LENC registers (sheet 3 of 4)

|        | table 7-25 | LENC registers                   | (Sileet 5 of     | 4)  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------------|----------------------------------|------------------|-----|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | address    | register name                    | default<br>value | R/W | descriptio                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 0x583C     | LENC BR44                        | 0xAA             | RW  | Bit[7:4]:<br>Bit[3:0]:                      | Control point B44 for blue channel compensation Control point R44 for red channel compensation                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 0x583D     | LENC BROFFSET                    | 0x88             | RW  | Bit[7:4]:<br>Bit[3:0]:                      | Base value for all blue channel control points Base value for all red channel control points                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 0x583E     | LENC<br>SENSORGAIN<br>THRESHOLD1 | 0x40             | RW  | Bit[7:0]:                                   | If AutoLensSwitchEnable is true and sensor gain is larger than this threshold, luminance compensation amplitude will be the minimum value (min LENC gain). Register value is 16 times sensor gain.                                                                                                                                                                                                                                                                             |
|        | 0x583F     | LENC<br>SENSORGAIN<br>THRESHOLD2 | 0x20             | RW  | Bit[7:0]:                                   | If AutoLensSwitchEnable is true and sensor gain is larger than this threshold, luminance compensation amplitude will start to decrease; otherwise, the amplitude will not change. Register value is 16 times sensor gain.                                                                                                                                                                                                                                                      |
| Š.     | 0x5840     | MIN LENC GAIN                    | 0x18             | RW  | Bit[7]:<br>Bit[6:0]:                        | Reserved This value indicates the minimum amplitude which luminance channel compensates when AutoLensSwitchEnable is true. Value should be in the range [0~64]                                                                                                                                                                                                                                                                                                                 |
| Collin | 0x5841     | LENC CTRL                        | 0x0D             | RW  | Bit[7:4]: Bit[3]:  Bit[2]:  Bit[1]: Bit[0]: | Reserved Add BLC target 0: Do not add BLC target after applying compensation 1: Add BLC target after applying compensation Subtract BLC target 0: Do not subtract BLC target after applying compensation 1: Subtract BLC target after applying compensation 1: Subtract BLC target after applying compensation Reserved AutoLensSwitchEnable 0: Luminance compensation amplitude does not change with sensor gain 1: Luminance compensation amplitude changes with sensor gain |



LENC registers (sheet 4 of 4) table 7-25

| address | register name | default<br>value | R/W | description                                                                                                                                                    |
|---------|---------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5842  | LENC BRHSCALE | 0x00             | RW  | For horizontal color gain calculation, this value indicates the step between two connected horizontal pixels.  Bit[7:3]: Reserved Bit[2:0]: br_Hscale[10:8]    |
| 0x5843  | LENC BRHSCALE | 0xEF             | RW  | Bit[7:0]: br_Hscale[7:0]                                                                                                                                       |
| 0x5844  | LENC BRVSCALE | 0x01             | RW  | For vertical color gain calculation, this value indicates the step between two connected vertical pixels.  Bit[7:3]: Reserved Bit[2:0]: br_Vscale[10:8]        |
| 0x5845  | LENC BRVSCALE | 0x3E             | RW  | Bit[7:0]: br_Vscale[7:0]                                                                                                                                       |
| 0x5846  | LENC GHSCALE  | 0x01             | RW  | For horizontal luminance gain calculation, this value indicates the step between two connected horizontal pixels.  Bit[7:3]: Reserved Bit[2:0]: g_Hscale[10:8] |
| 0x5847  | LENC GHSCALE  | 0x3E             | RW  | Bit[7:0]: g_Hscale[7:0]                                                                                                                                        |
| 0x5848  | LENC GVSCALE  | 0x00             | RW  | For vertical luminance gain calculation, this value indicates the step between two connected horizontal pixels.  Bit[7:3]: Reserved Bit[2:0]: g_Vscale[10:8]   |
| 0x5849  | LENC GVSCALE  | 0xD4             | RW  | Bit[7:0]: g_Vscale[7:0]                                                                                                                                        |

# 7.26 window control [0x5A00 - 0x5A0C]

window control registers (sheet 1 of 2) table 7-26

| address | register name  | default<br>value | R/W | description                                          |
|---------|----------------|------------------|-----|------------------------------------------------------|
| 0x5A00  | WIN XSTART_OFF | 0x00             | RW  | Bit[7:5]: Reserved<br>Bit[4:0]: X start offset[12:8] |
| 0x5A01  | WIN XSTART_OFF | 0x00             | RW  | Bit[7:0]: X start offset[7:0]                        |
| 0x5A02  | WIN YSTART_OFF | 0x00             | RW  | Bit[7:4]: Reserved<br>Bit[3:0]: Y start offset[11:8] |
| 0x5A03  | WIN YSTART_OFF | 0x00             | RW  | Bit[7:0]: Y start offset[7:0]                        |



table 7-26 window control registers (sheet 2 of 2)

| address | register name | default<br>value | R/W | description                                                        |
|---------|---------------|------------------|-----|--------------------------------------------------------------------|
| 0x5A04  | WIN WIDTH     | 0x10             | RW  | Bit[7:5]: Reserved<br>Bit[4:0]: Window width[12:8]                 |
| 0x5A05  | WIN WIDTH     | 0xA0             | RW  | Bit[7:0]: Window width[7:0]                                        |
| 0x5A06  | WIN HEIGHT    | 0x0C             | RW  | Bit[7:4]: Reserved Bit[3:0]: Window height[11:8]                   |
| 0x5A07  | WIN HEIGHT    | 0x78             | RW  | Bit[7:0]: Window height[7:0]                                       |
| 0x5A08  | WIN MAN       | 0x02             | RW  | Bit[7:1]: Reserved Bit[0]: Window size manual 0: Disable 1: Enable |
| 0x5A09  | WIN PX_CNT    |                  | R   | Bit[7:5]: Reserved<br>Bit[4:0]: Pixel counter[12:8]                |
| 0x5A0A  | WIN PX_CNT    | _                | R   | Bit[7:0]: Pixel counter[7:0]                                       |
| 0x5A0B  | WIN LN_CNT    | -                | R   | Bit[7:4]: Reserved<br>Bit[3:0]: Line counter[11:8]                 |
| 0x5A0C  | WIN LN_CNT    | _                | R   | Bit[7:0]: Line counter[7:0]                                        |

# 7.27 gain format [0x5D00 - 0x5D01]

table 7-27 gain format registers

| address | register name  | default<br>value | R/W | description                                       |
|---------|----------------|------------------|-----|---------------------------------------------------|
| 0x5D00  | GAINFMT CTRL00 | 0x07             | RW  | Bit[7:4]: Reserved<br>Bit[3:0]: ana_bit_num[3:0]  |
| 0x5D01  | GAINFMT CTRL01 | 0x00             | RW  | Bit[7:4]: Reserved<br>Bit[3:0]: Digital gain[3:0] |



# 7.28 color bar/scalar control [0x5E00 - 0x5E24]

color bar/scalar control registers (sheet 1 of 2) table 7-28

| address           | register name        | default<br>value | R/W | description                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|----------------------|------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x5E00            | PRE ISP TEST<br>CTRL | 0x00             | RW  | Bit[7]: test_enable Bit[6]: Rolling enable (rolling bar in test mode) Bit[5]: Transparent image + normal image enable Bit[4]: Square black white enable Bit[3:2]: color_bar style 00: Horizontal bar 01: Vertical fading bar 10: Horizontal fading bar 11: Vertical bar Bit[1:0]: Test selection 00: Color bar 01: Random data 10: Square black white 11: Black |
| 0x5E01            | PRE ISP WIN          | 0x41             | RW  | Bit[7]: Not used Bit[6]: Window cut enable Bit[5]: ISP test, low bits to 0 Bit[4]: Random Random data reset Bit[3:0]: Random seed                                                                                                                                                                                                                               |
| 0x5E02~<br>0x5E03 | RSVD                 | _                | -   | Reserved                                                                                                                                                                                                                                                                                                                                                        |
| 0x5E04            | PRE ISP SCALE X      | 0x00             | RW  | High Byte of Scale X Input Manual Size                                                                                                                                                                                                                                                                                                                          |
| 0x5E05            | PRE ISP SCALE X      | 0x00             | RW  | Low Byte of Scale X Input Manual Size                                                                                                                                                                                                                                                                                                                           |
| 0x5E06            | PRE ISP SCALE Y      | 0x01             | RW  | High Byte of Scale Y Input Manual Size                                                                                                                                                                                                                                                                                                                          |
| 0x5E07            | PRE ISP SCALE Y      | 0x00             | RW  | Low Byte of Scale Y Input Manual Size                                                                                                                                                                                                                                                                                                                           |
| 0x5E08            | PRE ISP X OFF        | 0x00             | RW  | High Byte of X Manual Offset                                                                                                                                                                                                                                                                                                                                    |
| 0x5E09            | PRE ISP X OFF        | 0x00             | RW  | Low Byte of X Manual Offset                                                                                                                                                                                                                                                                                                                                     |
| 0x5E0A            | PRE ISP Y OFF        | 0x00             | RW  | High Byte of Y Manual Offset                                                                                                                                                                                                                                                                                                                                    |
| 0x5E0B            | PRE ISP Y OFF        | 0x01             | RW  | Low Byte of Y Manual Offset                                                                                                                                                                                                                                                                                                                                     |
| 0x5E10            | RSVD                 | -                | _   | Reserved                                                                                                                                                                                                                                                                                                                                                        |
| 0x5E0C            | PRE ISP PIX NUM      | _                | R   | High Byte of pixel_number                                                                                                                                                                                                                                                                                                                                       |
| 0x5E0D            | PRE ISP PIX NUM      | _                | R   | Low Byte of pixel_number                                                                                                                                                                                                                                                                                                                                        |
| 0x5E0E            | PRE ISP LN NUM       | -                | R   | High Byte of line_number                                                                                                                                                                                                                                                                                                                                        |
| 0x5E0F            | PRE ISP LN NUM       | _                | R   | Low Byte of line_number                                                                                                                                                                                                                                                                                                                                         |



table 7-28 color bar/scalar control registers (sheet 2 of 2)

|     | table / 20 | cotor bar/scatar control registers (sheet 2 |                  | (2012) |                                                                                                                                                                                  |
|-----|------------|---------------------------------------------|------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | address    | register name                               | default<br>value | R/W    | description                                                                                                                                                                      |
|     | 0x5E11     | PRE ISP DUMMY                               | 0x30             | RW     | Bit[7]: dummy_man_en     Line manual mode  Bit[6:4]: dummy_ln     Line number  Bit[3]: dummy_half     Line blanking half  Bit[2:0]: dummy_ratio     Line clock/data manual ratio |
|     | 0x5E12     | PRE ISP DUM LN                              | -                | R      | High Byte of dummy_line Clock Number                                                                                                                                             |
|     | 0x5E13     | PRE ISP DUM LN                              |                  | R      | Low Byte of dummy_line Clock Number                                                                                                                                              |
|     | 0x5E14     | PRE ISP DUM LN                              | O.               | R      | High Byte of dummy_line Blanking Clock<br>Number                                                                                                                                 |
|     | 0x5E15     | PRE ISP DUM LN                              | _                | R      | Low Byte of dummy_line Blanking Clock<br>Number                                                                                                                                  |
|     | 0x5E16     | PRE ISP DUM ERR                             | -                | R      | Bit[7:5]: Not used Bit[4]: dummy_error Bit[3]: Not used Bit[2:0]: auto_ratio Clock/data ratio                                                                                    |
|     | 0x5E17     | PRE ISP XY INC                              | -                | R      | Bit[7:4]: x_odd_inc<br>Bit[3:0]: y_odd_inc                                                                                                                                       |
|     | 0x5E18     | PRE ISP X OFF R                             | _                | R      | High Byte of x_offset                                                                                                                                                            |
| C.  | 0x5E19     | PRE ISP X OFF R                             | _                | R      | Low Byte of x_offset                                                                                                                                                             |
|     | 0x5E1A     | PRE ISP Y OFF R                             | _                | R      | High Byte of y_offset                                                                                                                                                            |
|     | 0x5E1B     | PRE ISP Y OFF R                             | _                | R      | Low Byte of y_offset                                                                                                                                                             |
|     | 0x5E1C     | PRE ISP WIN X OFF                           | _                | R      | High Byte of win_x_offset                                                                                                                                                        |
|     | 0x5E1D     | PRE ISP WIN X OFF                           | _                | R      | Low Byte of win_x_offset                                                                                                                                                         |
|     | 0x5E1E     | PRE ISP WIN Y OFF                           | _                | R      | High Byte of win_y_offset                                                                                                                                                        |
| 10. | 0x5E1F     | PRE ISP WIN Y OFF                           | _                | R      | Low Byte of win_y_offset                                                                                                                                                         |
| U,  | 0x5E20     | PRE ISP WIN X OUT                           | _                | R      | High Byte of win_x_output Size                                                                                                                                                   |
|     | 0x5E21     | PRE ISP WIN X OUT                           | _                | R      | Low Byte of win_x_output Size                                                                                                                                                    |
|     | 0x5E22     | PRE ISP WIN Y OUT                           | _                | R      | High Byte of win_y_output Size                                                                                                                                                   |
|     | 0x5E23     | PRE ISP WIN Y OUT                           | -                | R      | Low Byte of win_y_output Size                                                                                                                                                    |
|     | 0x5E24     | PRE ISP SKIP                                | -                | R      | Bit[7:6]: Not used Bit[5:4]: x_skip Bit[3:2]: Not used Bit[1:0]: y_skip                                                                                                          |



# 8 operating specifications

## 8.1 absolute maximum ratings

table 8-1 absolute maximum ratings

| parameter                                          |                   | absolute maximum rating <sup>a</sup> |
|----------------------------------------------------|-------------------|--------------------------------------|
| ambient storage temperature                        |                   | -40°C to +125°C                      |
|                                                    | V <sub>DD-A</sub> | 4.5V                                 |
| supply voltage (with respect to ground)            | $V_{DD-D}$        | 3V                                   |
|                                                    | $V_{DD-IO}$       | 4.5V                                 |
| algetra etatio dispharas (ECD)                     | human body model  | 2000V                                |
| electro-static discharge (ESD)                     | machine model     | 200V                                 |
| all input/output voltages (with respect to ground) |                   | -0.3V to V <sub>DD-IO</sub> + 1V     |
| I/O current on any input or output pin             | .0                | ± 200 mA                             |

exceeding the absolute maximum ratings shown above invalidates all AC and DC electrical specifications and may
result in permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods
may affect device reliability.

## 8.2 functional temperature

table 8-2 functional temperature

| parameter                             | range                               |
|---------------------------------------|-------------------------------------|
| operating temperature <sup>a</sup>    | -30°C to +70°C junction temperature |
| stable image temperature <sup>b</sup> | 0°C to +50°C junction temperature   |

a. sensor functions but image quality may be noticeably different at temperatures outside of stable image range



b. image quality remains stable throughout this temperature range

### 8.3 DC characteristics

table 8-3 DC characteristics (-30°C < T<sub>J</sub> < 70°C)

| symbol                         | parameter                           | min       | typ          | max        | unit |
|--------------------------------|-------------------------------------|-----------|--------------|------------|------|
| supply                         |                                     |           |              |            |      |
| V <sub>DD-A</sub>              | supply voltage (analog)             | 2.6       | 2.8          | 3.0        | V    |
| V <sub>DD-D</sub> <sup>a</sup> | supply voltage (digital core)       | 1.16      | 1.2          | 1.3        | V    |
| $V_{DD-IO}$                    | supply voltage (digital I/O)        | 1.7       | 1.8          | 3.0        | V    |
| I <sub>DD-A</sub>              |                                     |           | 54           | 70         | mA   |
| I <sub>DD-D</sub> <sup>b</sup> | active (operating) current          |           | 57           | 78         | mA   |
| I <sub>DD-IO</sub> b           | 6()                                 |           | 10.5         | 15         | mA   |
| I <sub>DDS-SCCB</sub>          | standby current <sup>c</sup>        |           | 300          | 3000       | μΑ   |
| I <sub>DDX-A</sub>             |                                     |           | 0.20         | 5          | μΑ   |
| I <sub>DDX-D</sub> b, d        | XSHUTDN current                     |           | 38.2         | 2000       | μΑ   |
| I <sub>DDX-IO</sub> b          |                                     |           | 1.6          | 5          | μΑ   |
| digital inputs (typical        | conditions: AVDD = 2.8V, DVDD = 1.2 | 2V, DOVDE | ) = 1.8V, EV | DD = 1.2V) |      |
| V <sub>IL</sub>                | input voltage LOW                   |           |              | 0.54       | V    |
| V <sub>IH</sub>                | input voltage HIGH                  | 1.26      |              |            | V    |
| C <sub>IN</sub>                | input capacitor                     |           |              | 10         | pF   |
| digital outputs (stand         | dard loading 25 pF)                 |           |              |            |      |
| V <sub>OH</sub>                | output voltage HIGH                 | 1.62      |              |            | V    |
| V <sub>OL</sub>                | output voltage LOW                  |           |              | 0.18       | V    |
| serial interface input         | S                                   |           |              |            |      |
| V <sub>IL</sub> e              | SIOC and SIOD                       | -0.5      | 0            | 0.54       | V    |
| V <sub>IH</sub>                | SIOC and SIOD                       | 1.28      | 1.8          | 3.0        | V    |



b. using external DVDD



c. standby current is measured at room temperature

d. it is necessary to cut off external DVDD from outside sensor for lowest leakage condition

e. based on DOVDD = 1.8V

# 8.4 timing characteristics

table 8-4 timing characteristics

| symbol                          | parameter                      | min | typ | max                  | unit |
|---------------------------------|--------------------------------|-----|-----|----------------------|------|
| oscillator a                    | nd clock input                 |     |     |                      |      |
| f <sub>OSC</sub>                | frequency (XVCLK) <sup>a</sup> | 6   | 24  | 27                   | MHz  |
| t <sub>r</sub> , t <sub>f</sub> | clock input rise/fall time     |     |     | 5 (10 <sup>b</sup> ) | ns   |

a. for input clock range 6~27MHz, the OV5693 can tolerate input clock period jitter up to 600ps peak-to-peak



b. if using internal PLL





# 9 mechanical specifications

# 9.1 COB physical specifications

figure 9-1 COB die specifications



 $\textbf{note 1} \quad \text{all dimensions and coordinates are in } \mu m \text{ unless otherwise specified}$ 

note 2 bonding outside the defined bonding area is prohibited as it may cause failure in reliability or functionality

5693\_COB\_DS\_9\_1



table 9-1 pad location coordinates (sheet 1 of 3)

|           |          | <b>\</b>     | ,            |                   |
|-----------|----------|--------------|--------------|-------------------|
| pad numbe | pad name | x coordinate | y coordinate | bonding area size |
| 01        | SID      | 2400         | 2325         | 86x85             |
| 02        | DOGND    | 2250         | 2325         | 86x85             |
| 03        | DVDD     | 2100         | 2325         | 86x85             |
| 04        | PVDD     | 1950         | 2325         | 86x85             |
| 05        | AVDD     | 1800         | 2325         | 86x85             |
| 06        | AGND     | 1650         | 2325         | 86x85             |
| 07        | DOGND    | 1500         | 2325         | 86x85             |
| 08        | PWDNB    | 1350         | 2325         | 86x85             |
| 09        | DVDD     | 1200         | 2325         | 86x85             |
| 10        | XSHUTDN  | 1050         | 2325         | 86x85             |
| 11        | RGPD     | 900          | 2325         | 86x85             |
| 12        | SIOC     | 750          | 2325         | 86x85             |
| 13        | SIOD     | 600          | 2325         | 86x85             |
| 14        | NC       | 450          | 2325         | 86x85             |
| 15        | FSIN     | 300          | 2325         | 86x85             |
| 16        | FREX     | 150          | 2325         | 86x85             |
| 17        | GPIO     | 0            | 2325         | 86x85             |
| 18        | NC       | -150         | 2325         | 86x85             |
| 19        | NC       | -300         | 2325         | 86x85             |
| 20        | NC       | -450         | 2325         | 86x85             |
| 21        | NC       | -600         | 2325         | 86x85             |
| 22        | DOVDD    | -750         | 2325         | 86x85             |
| 23        | DOVDD    | -900         | 2325         | 86x85             |
| 24        | DOGND    | -1050        | 2325         | 86x85             |
| 25        | DOGND    | -1200        | 2325         | 86x85             |
| 26        | DVDD     | -1350        | 2325         | 86x85             |
| 27        | NC       | -1500        | 2325         | 86x85             |
| 28        | NC       | -1650        | 2325         | 86x85             |
| 29        | ATEST    | -1800        | 2325         | 86x85             |
| 30        | AGND     | -1950        | 2325         | 86x85             |
| -         |          |              |              |                   |



pad location coordinates (sheet 2 of 3) table 9-1

| pad number | pad name | x coordinate | y coordinate | bonding area size |
|------------|----------|--------------|--------------|-------------------|
| 31         | AVDD     | -2100        | 2325         | 86x85             |
| 32         | AGND     | -2250        | 2325         | 86x85             |
| 33         | AVDD     | -2400        | 2325         | 86x85             |
| 34         | DOGND    | 2400         | -2325        | 86x85             |
| 35         | DVDD     | 2250         | -2325        | 86x85             |
| 36         | TM       | 2100         | -2325        | 86x85             |
| 37         | MDN1     | 1950         | -2325        | 86x85             |
| 38         | MDP1     | 1800         | -2325        | 86x85             |
| 39         | EVDD     | 1650         | -2325        | 86x85             |
| 40         | EGND     | 1500         | -2325        | 86x85             |
| 41         | MCN      | 1350         | -2325        | 86x85             |
| 42         | MCP      | 1200         | -2325        | 86x85             |
| 43         | MDN0     | 1050         | -2325        | 86x85             |
| 44         | MDP0     | 900          | -2325        | 86x85             |
| 45         | EGND     | 750          | -2325        | 86x85             |
| 46         | PVDD     | 600          | -2325        | 86x85             |
| 47         | DOGND    | 450          | -2325        | 86x85             |
| 48         | XVCLK    | 300          | -2325        | 86x85             |
| 49         | VSYNC    | 150          | -2325        | 86x85             |
| 50         | HREF     | 0            | -2325        | 86x85             |
| 51         | ILPWM    | -150         | -2325        | 86x85             |
| 52         | DVDD     | -300         | -2325        | 86x85             |
| 53         | DVDD     | -450         | -2325        | 86x85             |
| 54         | DVDD     | -600         | -2325        | 86x85             |
| 55         | DOVDD    | -750         | -2325        | 86x85             |
| 56         | DOVDD    | -900         | -2325        | 86x85             |
| 57         | DOVDD    | -1050        | -2325        | 86x85             |
| 58         | STROBE   | -1200        | -2325        | 86x85             |
| 59         | DOGND    | -1350        | -2325        | 86x85             |
| 60         | AVDD     | -1500        | -2325        | 86x85             |
|            |          |              |              |                   |



table 9-1 pad location coordinates (sheet 3 of 3)

| pad number | pad name | x coordinate | y coordinate | bonding area size |
|------------|----------|--------------|--------------|-------------------|
| 61         | AGND     | -1650        | -2325        | 86x85             |
| 62         | AVDD     | -1800        | -2325        | 86x85             |
| 63         | AGND     | -1950        | -2325        | 86x85             |
| 64         | VH       | -2100        | -2325        | 86x85             |
| 65         | VN1      | -2250        | -2325        | 86x85             |
| 66         | VN0      | -2400        | -2325        | 86x85             |



# 9.2 reconstructed wafer (RW) physical specifications

### 9.2.1 8" RW specifications

836 maximum total die count: film frame: Disco Adwill D-175 dicing tape:

#### table 9-2 8" RW physical dimensions

| feature                                     | dimensions                                          |
|---------------------------------------------|-----------------------------------------------------|
| RW physical dimensions                      | 8" RW on 12" frame                                  |
| wafer thickness (OVXXXXX-ABCD)              | 4.0                                                 |
| C=6                                         | 180 $\mu$ m $\pm$ 7 $\mu$ m (7.1 mil $\pm$ 0.3 mil) |
| reconstructed wafer street width            | 0.762 mm (30 mil) ± 0.05 mm                         |
| placement accuracy x, y, theta              | ± 50 µm (± 2 mil), <1.0 degree                      |
| singulated die size                         |                                                     |
| width                                       | 5400 μm ± 10 μm (212.6 mil ± 0.4 mil)               |
| length                                      | 4850 μm ± 10 μm (190.9 mil ± 0.4 mil)               |
| bond pad size                               | 104 μm × 85 μm (4.1 mil × 3.3 mil)                  |
| minimum bond pad pitch                      | 150 μm (5.9 mil)                                    |
| bonding area size                           | 86 μm × 85 μm (3.4 mil × 3.3 mil)                   |
| optical array                               | •                                                   |
| die center                                  | (0, 0)                                              |
| optical center from die center <sup>a</sup> | -175 μm, -281 μm (-6.9 mil, -11.1 mil)              |





Actual die count varies and the absent die may be less than 10% of the maximum total die count (excluding the last frame of the wafer lot).





figure 9-2 OV5693 8" RW physical diagram

note 1 bonding outside the defined bonding area is prohibited, it may potentially induce reliablity issues or functionality failure
note 2 keep-out-of-contact areas are highlighted in red color for related process fixtures/tools (e.g., nozzle, collets, etc.)
5693\_COB\_DS\_9\_2



### 9.2.2 12" RW specifications

maximum total die count: 1772 film frame: Disco Adwill D-175 dicing tape:

#### table 9-3 12" RW physical dimensions

| feature                                     | dimensions                                  |
|---------------------------------------------|---------------------------------------------|
| RW physical dimensions                      | 12" RW on 16" frame                         |
| wafer thickness (OVXXXXX-ABCD)              | 4                                           |
| C=6                                         | 180 $\mu$ m ± 7 $\mu$ m (7.1 mil ± 0.3 mil) |
| reconstructed wafer street width            | 0.762 mm (30 mil) ± 0.05 mm                 |
| placement accuracy x, y, theta              | ± 50 μm (± 2 mil), <1.0 degree              |
| singulated die size                         |                                             |
| width                                       | 5400 μm ± 10 μm (212.6 mil ± 0.4 mil)       |
| length                                      | 4850 μm ± 10 μm (190.9 mil ± 0.4 mil)       |
| bond pad size                               | 104 μm × 85 μm (4.1 mil × 3.3 mil)          |
| minimum bond pad pitch                      | 150 µm (5.9 mil)                            |
| bonding area size                           | 86 μm × 85 μm (3.4 mil × 3.3 mil)           |
| optical array                               |                                             |
| die center                                  | (0, 0)                                      |
| optical center from die center <sup>a</sup> | -175 μm, -281 μm (-6.9 mil, -11.1 mil)      |





Actual die count varies and the absent die may be less than 10% of the maximum total die count (excluding the last frame of the wafer lot).





**figure 9-3** OV5693 12" RW physical diagram

note 1 bonding outside the defined bonding area is prohibited, it may potentially induce reliablity issues or functionality failure
note 2 keep-out-of-contact areas are highlighted in red color for related process fixtures/tools (e.g., nozzle, collets, etc.)
5693\_COB\_DS\_9.3



# 10 optical specifications

## 10.1 sensor array center

figure 10-1 sensor array center



## top view

**note 1** this drawing is not to scale and is for reference only.

 $\begin{tabular}{ll} \textbf{note 2} as most optical assemblies invert and mirror the image, the chip is \\ & typically mounted with pad 1 oriented down on the PCB. \\ \end{tabular}$ 

5693\_COB\_DS\_10\_1



# 10.2 lens chief ray angle (CRA)

figure 10-2 chief ray angle (CRA)



table 10-1 CRA versus image height plot

| field (%) | image height (mm) | CRA (degrees) |
|-----------|-------------------|---------------|
| 0.00      | 0.000             | 0.0           |
| 0.10      | 0.227             | 5.1           |
| 0.20      | 0.454             | 10.2          |
| 0.30      | 0.680             | 15.0          |
| 0.40      | 0.907             | 19.4          |
| 0.50      | 1.134             | 23.2          |
| 0.60      | 1.361             | 26.1          |
| 0.70      | 1.588             | 28.2          |
| 0.80      | 1.814             | 29.3          |
| 0.90      | 2.041             | 29.7          |
| 1.00      | 2.268             | 29.7          |



# appendix A handling of RW devices

## A.1 ESD/EOS prevention

- 1. Ensure that there is 500V ESD control in all work areas.
- 2. Use ESD safety shoes, ground strap, and static control smocks in test areas.
- 3. Use grounded work carts and tables in inspection areas.
- 4. OmniVision recommends the use of ionized air in all work areas.

### A.2 particles and cleanliness of environment

- 1. All production, inspection and packaging areas should meet Class10 environment requirements.
- 2. Use optical microscopes with 50X and 100X magnifications for particle inspection.
- 3. Ensure that there is good cassette sealing for particle protection during storage.
- 4. OmniVision recommends air blowing to remove removable particles.
- RW die should be stored in nitrogen gas purged cabinets with temperature less than 30°C and relative humidity of 60% before assembly.

## A.3 other requirements

- Reliability assurance of RW or COB bare die is certified by product reliability of the bare die in a CLCC, CSP or QFP package form factor. Precautions should be taken if the packaging form factor of the bare die is other than these specified.
- Avoid exposure to strong sunlight for extended periods of time as the color filter of the image sensor may become discolored.
- Avoid direct exposure of the sensor bare die to high temperature and/or humidity environment as sensor characteristics will be affected. Extra precautions should be exercised if the bare die experiences temperatures exceeding 260°C for more than 75 seconds.







## revision history

#### version 1.0 10.02.2012

initial release

#### version 1.1 10.16.2012

- in section 4.5, changed last sentence of first paragraph to "Bank0 and Bank28 ~ Bank31...reserved for OmniVision, while Bank1 ~ Bank27 are reserved for customers."
- changed pad structure in figure 9-1 and added note 2
- changed name of fifth column from "bond pad opening size" to "bonding area size" and changed all data in fifth column to "86x85"

#### version 2.0 12.13.2012

- · changed datasheet from Preliminary Specification to Product Specification
- in key specifications, changed active power requirements from TBD to 278 mW, deleted standby active power requirements and added XSHUTDN power requirements, changed max S/N ratio from 36.6 dB to 37.1 dB, changed dynamic range from 69.3 dB @ 8x gain to 68.0 dB @ 8x gain, changed sensitivity from 940 mV/Lux-sec to 1000 mV/Lux-sec, and changed dark current from 3mV/sec @ 60°C junction temperature to 3.3 mV/sec @ 60°C junction temp
- in key specifications, removed side bar note

#### version 2.1 03.21.2013

- in table 2-11, changed table footnote b to "timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 30%, timing measurement shown in the middle of the rising/falling edge signifies 50%, timing measurement shown at the beginning of the rising edge and/or of the falling edge signifies 70%"
- in table 5-1, changed default value of register 0x5012 to 0x2A
- in table 5-2, changed default value of register 0x5000 to 0x06, default values of registers 0x5800~0x5806 to 0x10, default values of registers 0x5807~0x5809 to 0x08, default values of registers 0x5822~0x5823 to 0x10, default values of registers 0x5824~0x5829 to 0xAA, default value of register 0x583C to 0xAA
  - in table 5-4, changed default value of register 0x3801 to 0x00, default value of register 0x3803 to 0x00, default value of register 0x3804 to 0x0A, default value of register 0x3805 to 0x3F, default value of register 0x3806 to 0x07, default value of register 0x3808 to 0x0A, default value of register 0x3809 to 0x20, default value of register 0x380A to 0x07, default value of register 0x380B to 0x98
- in table 6-1, changed default value of register 0x302A to 0xB2
- in table 6-2, changed default value of register 0x4800 to 0x00, default value of register 0x4801 to 0x0D, default value of register 0x4803 to 0x00, default value of register 0x4804 to 0x00, default value of register 0x4805 to 0x01, default value of register 0x4806 to 0x00, default value of register 0x4813 to 0x00, default value of register 0x4816 to 0x52, default value of register 0x4819 to 0x70, default value of register 0x481D to 0x06, default value of register 0x4821 to 0x3C, default value of register 0x482A to 0x06, default value of register 0x4837 to 0x14, default value of register 0x483C



to 0x42, default value of register 0x4842 to 0x01, default value of register 0x484A to 0x07, default value of register 0x484B to 0x07, default value of register 0x484C to 0x02, default value of register 0x484D to 0xB6, default value of register 0x484E to 0x10, default value of register 0x484F to 0x55

- in table 7-1, changed default value of register 0x302A to 0xB2
- in table 7-2, changed default value of register 0x3091 to 0x0E, default value of register 0x30A1 to 0xC0, default value of register 0x30B3 to 0x64, default value of register 0x30B4 to 0x03
- in table 7-4, changed default value of register 0x320C to 0x02
- in table 7-11, changed default value of register 0x3801 to 0x00, default value of register 0x3803 to 0x00, default value of register 0x3804 to 0x0A, default value of register 0x3805 to 0x3F, default value of register 0x3806 to 0x07, default value of register 0x3808 to 0x0A, default value of register 0x3809 to 0x20, default value of register 0x380A to 0x07, default value of register 0x380B to 0x98, default value of register 0x380C to 0x0B, default value of register 0x380D to 0x10, default value of register 0x380E to 0x07, default value of register 0x380F to 0x88, default value of register 0x3817 to 0x20, default value of register 0x3818 to 0x02, default value of register 0x3828 to 0xA1
- in table 7-17, changed default value of register 0x4307 to 0x30
- in table 7-19, changed default value of register 0x4800 to 0x00, default value of register 0x4801 to 0x0D, default value of register 0x4803 to 0x00, default value of register 0x4804 to 0x00, default value of register 0x4805 to 0x01, default value of register 0x4806 to 0x00, default value of register 0x4813 to 0x00, default value of register 0x4816 to 0x52, default value of register 0x4819 to 0x70, default value of register 0x481D to 0x06, default value of register 0x4821 to 0x3C, default value of register 0x482A to 0x06, default value of register 0x4837 to 0x14, default value of register 0x483C to 0x42, default value of register 0x4842 to 0x01, default value of register 0x484A to 0x07, default value of register 0x484B to 0x07, default value of register 0x484C to 0x02, default value of register 0x484D to 0x86, default value of register 0x484E to 0x10, default value of register 0x484F to 0x55
- in table 7-21, changed default value of register 0x5012 to 0x2A
- in table 7-24, changed default value of register 0x5000 to 0x06, default value of register 0x5786 to 0x20, default value of register 0x5788 to 0x18
- in table 7-25, changed default value of register 0x5000 to 0x06, default values of registers 0x5800~0x5806 to 0x10, default values of registers 0x5807~0x5809 to 0x08, default values of registers 0x5822~0x5823 to 0x10, default values of registers 0x5824~0x5829 to 0xAA, default value of register 0x583C to 0xAA
- in table 7-26, changed default value of register 0x5A08 to 0x02
- in table 7-28, changed default value of register 0x5E11 to 0x30

#### version 2.2 05.02.2013

- in key specifications, changed die dimensions to 5350  $\mu$ m x 4800  $\mu$ m (COB), 5400  $\mu$ m x 4850  $\mu$ m (RW)
- In key specifications, added a sidebar note explaining the difference between COB and RW
- in chapter 9, added section 9.2

#### version 2.21 06.12.2013

• updated table 10-1 by changing image height and CRA values



# defining the future of digital imaging™

## OmniVision Technologies, Inc.

### **UNITED STATES**

4275 Burton Drive Santa Clara, CA 95054

tel: + 1 408 567 3000 fax: + 1 408 567 3001 email: salesamerican@ovt.com

### UNITED KINGDOM

Hampshire + 44 1256 744 610

**GERMANY** 

Munich +49 89 63 81 99 88

#### INDIA

Bangalore +91 988 008 0140

#### **CHINA**

Beijing + 86 10 6580 1690 Shanghai + 86 21 6175 9888 Shenzhen + 86 755 8384 9733 Hong Kong + 852 2403 4011

### JAPAN

Yokohama +81 45 478 7977 Osaka +81 6 4964 2606

## KOREA

**Seoul** + 82 2 3478 2812

**SINGAPORE** +65 6220 1335

#### **TAIWAN**

**Taipei** +886 2 2657 9800 Hsinchu +886 3 6110933