광주인공지능사관학교 | 실전 역량 프로젝트

빅데이터 분석 정의서

새싹삼 농가를 위한 3세대 스마트팜 구축 **AUTO FARMING**

Team. 심많이봤다

NH-Arm

비전 시스템과 6축 로봇팔을 활용한 묘삼 자동 식재 장치 개발

01 개요

1. 아이디어 주제

: 비전시스템과 6축 로봇팔을 활용한 묘삼 자동식재장치 개발

2. 개발 목표

: 인건비 감소를 위해 노동자 없이 자동으로 식재 수확하는 시스템 구축

3. 개발 내용

 : 객체 탐지 모델로 묘삼의 개수 파악 후 수평 컨베이어 벨트 제어 객체 탐지 된 묘삼의 뭉침 정도를 파악하여 피더 동작 제어 로봇팔에 가장 가까운 단일 객체에 대한 좌표 및 각도 도출 삽목된 묘삼을 샘플링하여 생육 상태 추적 후 수확 가능 여부 분류

02 기능별 빅데이터 분석 명세서

기능명	수평 컨베이어 제어, 피더 제어, 좌표 및 각도 도출 알고리즘 구현	
1. 데이터 준비		
데이터 정의	1년근 묘삼의 사진 데이터	
데이터 획득 방법	약 60cm 높이에서 묘삼을 직접 촬영하여 데이터 확보	
2. 전처리		
전처리 과정	Roboflow를 활용하여 데이터 라벨링 및 이미지 3배 증식	
3. 모델 생성 및 학습		
모델링 목표	묘삼에 대한 다중 객체 탐지 후 데이터 처리	
모델링 가능 알고리즘	묘삼 및 뇌두 수 파악 : YOLO V5 모델 사용 뇌두 좌표 파악 : YOLO V5 모델 응용 뇌두 잡기 좋은 각도 도출 : YOLO + 유클리드 거리 활용 알고리즘	
학습	YOLO V5s 모델에 전이 학습	
4. 검증		
모델링 검증	학습 시, Data Set을 Train data와 Test data 7:3 비율로 나누고 mAP50, mAP50-90 지수를 통해 성능 파악	
모델링 평과 결과	mAP50:0.98 / mAP50-90:0.58로 높은 성능을 보임. (의도한 대로 과적합 되도록 함.)	

기능명	생육 상태 확인	
1. 데이터 준비		
데이터 정의	새싹삼의 생육 사진 이미지 데이터	
데이터 획득 방법	새싹삼의 잎 밑에 검정 판을 대고 직접 촬영하여 데이터 확보 (다 자란 잎 데이터와 덜 자란 잎 데이터를 구분하여 수집)	
2. 전처리		
전처리 과정	Roboflow를 활용하여 데이터 라벨링 및 이미지 3배 증식	
3. 모델 생성 및 학습		
모델링 목표	새싹삼의 생육 상태를 확인	
모델링 가능 알고리즘	작물의 생육 상태 수확 가능 / 불가능 이진 분류 : YOLO V5	
학습	YOLO V5s 모델에 전이 학습	
4. 검증		
모델링 검증	학습 시, Data Set을 Train data와 Test data 7:3 비율로 나누고 mAP 지수를 통해 성능 파악	
모델링 평과 결과	mAP 90.0% 확인	
	jin/3 90.0% 82.8% 91.2% mAP precision recall	