- 1. (10 points) Consider the function $f(x,y) = x^3 + 3y^2x^2$ and the point A(1,1).
 - (a) Calculate the gradient of the function f at the point A.
 - (b) Find the second order Taylor approximation in the neighborhood of A.
- 2. (10 points) Consider the equation $3x^3 + 5y^5 + z^3 + z = 10$.
 - (a) Check whether the equation defines the function z(x, y) at a point A(1, 1, 1).
 - (b) Find dz at the point A.
- 3. (10 points) Find all local extrema of the function $f(x,y) = x^2y 3xy^2 + 5xy + 2$ such that $x \neq 0$ and $y \neq 0$. Classify them.
- 4. (10 points) Find all local constrained extrema of the function f(x,y,z)=x+2y+3z subject to $\ln x + \ln y + \ln z = 0$. Do not forget to classify extrema.
- 5. (10 points) Consider the function $f(x,y) = h(x)g(y) + ax^3$, where h and g are twice differentiable and g is a parameter. Let's denote the maximum point by $x^*(a)$ and $y^*(a)$ and assume that second order conditions for maximization are met.

Find the sign of dx^*/da .

6. (10 points) The level curves of the function f(x,y) are given by the equation $y-x^2=c$. Draw two level curves of the function g(x,y)=f(x-2,|y|+1).

Variant μ Good luck!

7. Consider a problem

$$\begin{cases} xyz \to \max \\ \text{s.t. } x + y + z = c \\ x, y, z > 0 \end{cases}$$

where c is a parameter and c > 0.

- (a) (15 points) Solve this problem using first-order conditions. Use bordered Hessian for sufficiency.
- (b) (5 points) Use the result of part a) to show that arithmetic mean (x+y+z)/3 is no less than the geometric mean $(xyz)^{1/3}$.
- 8. (a) (10 points) Consider a utility maximization problem

$$\begin{cases} u(x,y) \to \max \\ \text{s.t. } p_x x + p_y y = I \\ x, y > 0 \end{cases},$$

where $u \in C^1$ and parameters p_x , p_y and I are positive. Let (x^*, y^*) be the solution of this problem. Form the value function $V(p_x, p_y, I) = u(x^*, y^*)$.

Using appropriate envelope theorem show that

$$x^* = -\frac{\partial V}{\partial p_x} / \frac{\partial V}{\partial I}, \quad y^* = -\frac{\partial V}{\partial p_y} / \frac{\partial V}{\partial I}.$$

(b) (10 points) Let F(x,y) be a function such that $F\in C^2$ and $F_y'\neq 0$. The equation F(x,y)=0 defines the implicit function y(x).

Find the expression for d^2y/dx^2 .

The expression should include only derivatives of F(x, y).