1. Let a > 0, b > 0 and x and y are any real numbers. Fill out the table of **Laws of Exponents**

1.	$b^{x+y} = $) ²⁰ . 6%	3.	$(b^x)^y = $
2.	$b^{x-y} =$	Bx/By	4.	$(ab)^x = $

2. Use the table above to rewrite and simplify the expression. Write down the number of the rule that you are using to the side of your work.

a.
$$\sqrt[3]{x^{-2}} = x^{-2/3}$$

b.
$$b^{(n-1)}(3b^2)^n =$$

$$= b^{n-1} 3 \cdot b^2 n$$

$$= 3^n \cdot b^2 n + n - 1$$

$$= 3^n \cdot b^3 n - 1$$

c.
$$\frac{6x^2y}{\sqrt{4xy^3}} = 6x^2y \cdot (4xy^3)^{\frac{1}{2}} =$$

= $6x^2y \cdot \frac{1}{2} \cdot x^{-\frac{1}{2}} \cdot y^{-\frac{3}{2}}$
= $3 \cdot x^{\frac{3}{2}} \cdot y^{-\frac{1}{2}}$

 \mathfrak{C}

3. Are the following statements true or false? If the statement is false, provide a counterexample (using specific numbers) showing it is false.

a.
$$(a+b)^2 = a^2 + b^2$$
 False

a.
$$(a+b)^2 = a^2 + b^2$$
 False. $(a+b)^2 = a^2 + 2ab + b^2 \neq a^2 + b^2$

b.
$$\sqrt{x^2 + 4} = x + 2$$
 Folso.

b. $\sqrt{x^2+4}=x+2$ False. This rule is illegal for \bullet

$$c+a$$
 c a

c. $\frac{a+b}{c+d} = \frac{a}{c} + \frac{b}{d}$ False. This rule is illegal for rational functions

d.
$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

and y-intercepts. \mathbb{N}

4. On the axes below, graph $f(x) = 2^x$, $g(x) = 4^x$, $k(x) = \left(\frac{1}{2}\right)^x$ and $s(x) = \left(\frac{1}{4}\right)^x$. Label any x-

5. What is the domain and range of $f(x) = 4^x$? Horizontal and vertical asymptotes?

Dom(f(x1) = 1R y=0 is a horizontal asymptote. No vertical asymptotes

6. Sketch the graph of each function below, using what you know about transformations of functions. Determine its domain and range, and label any *x*- and *y*-intercepts (use exact numbers) and horizontal or vertical asymptotes.

