The bread and butter ML in HEP

Aishik Ghosh and Elham E Khoda

ML4HEP ICTS

31 August, 2023

ML for HEP

The plan

Today: Typical ML for signal vs background classification in HEP analysis, not trivial when you think about the gory details

Tomorrow: Neural simulation-based inference (SBI), which is ML for statistics (parameter inference, unfolding, uncertainties)

Monday: More on SBI, Generative models

Thu, 31, Aug	Tommaso Dorigo	Tea Break	Sanmay Ganguly	Lunch Break	Elham E Khoda, Aishik Ghosh	Tea Break	Elham E Khoda, Aishik Ghosh	(Colloquium) Jan Kieseler*
Fri, 01, Sep	Tommaso Dorigo	Tea Break	Sanmay Ganguly	Lunch Break	Elham E Khoda, Aishik Ghosh	Tea Break	Elham E Khoda, Aishik Ghosh	(Colloquium) Jia Liu*
Mon, 04, Sep	Elham E Khoda, Aishik Ghosh	Tea Break	Elham E Khoda, Aishik Ghosh	Lunch Break	Elham E Khoda, Aishik Ghosh	Tea Break	Elham E Khoda, Aishik Ghosh	(Colloquium) Michael Kagan*

All concepts will be complementary to what you have learnt about architectures (MLPs, CNNs, GNNs, transformers). Tutorials with simplified data and architectures to focus on concepts and allow fast training

Decision Trees

Decision trees are simple programs consisting of a nested sequence of "if-else" decisions based on the features (splitting rules).

- Decision tree algorithm falls under the category of supervised learning
- They can be used to solve both **regression** and **classification** problems

An overly simplified example:

Do I go to the beach or do I stay at home and watch movies?

Well, the answer almost always depends on what the weather is like on the day

Structure of a Decision Tree

Tree -like graphs

Nodes: A place where we pick an attribute and ask a question

• Data is split at each node

Leaves: Terminal nodes

- Represent a class label or probability
- Continuous outcome: "regression tree"

Decision Tree: Learning

A decision tree takes a set of input features and splits input data recursively based on the conditions on those features.

How to choose the root node?

- Entropy/ Gini impurity
- Information gain

Entropy and Gini impurity measures the purity of split

Lower the entropy/Gini impurity → the better

Entropy Formula

Entropy =
$$-\sum_{i=1}^{n} p_i \log_2(p_i)$$

n = total number of classes p_i is the probability of a certain classification i

Gini / Entropy = 0

When all training instances belong to the same class

Gini Impurity Formula

$$Gini = 1 - \sum_{i=1}^{n} (p_i)^2$$

Decision Tree: Learning

$$\operatorname{Gain} \ (S,A) = H(S) - \sum_{v \in \operatorname{values}(A)} rac{|S_v|}{|S|} H(S_v)$$

$$Gain(S, f_1) =$$

$$=$$

$$H(S) - \sum_{v \in \text{values}(f_1)} \frac{|S_v|}{|S|} H(S_v)$$

$$H(S) - \frac{8}{14} H(f_2) - \frac{6}{14} H(f_3)$$

$$0.98 - \frac{8}{14} \times 0.81 - \frac{6}{14} \times 1$$

$$H(S) = -\frac{8}{14} \times \log_2(\frac{8}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14})$$

Decision Trees are nonlinear models

No linear model can achieve 0 error

Simple decision tree can achieve 0 error

slide from Javier Duarte

Decision Trees are Axis-aligned

Decision Trees are axis-aligned

Cannot easily model diagonal boundaries

Ensemble Techniques

Aggregate the predictions of a group of predictors (ex. classifier)

→ Often get better predictions than with the best individual predictor

A group of predictors is called an ensemble

- Simple Techniques:
 - Max voting, Averaging, Weighted Averaging
- Advanced Techniques:
 - Stacking, Blending, Bagging, Boosting

Link to an animation: Random Forest

Image: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Boosting (the "B" of BDT)

Boosting combines several weak learners into a strong learner

• Sequential process → train predictors sequentially, each trying to correct its predecessor

Some popular boosting algorithms:

- Adaptive Boosting (AdaBoost)
- Gradient Boosting (GBM)
- Extreme Gradient Boosting (XGBoost)
- Light Gradient Boosting (LGBM)

Image source

Gradient Boosting

We are building a weighted sum of weak learners

"Boosting" or improving a single weak model by combining is with a number of other weak models

- → generate a collectively strong model
- → Reduces bias of weak learners

- Iteratively train an ensemble of shallow decision trees
- With each iteration using the error residuals of the previous model to fit the next model
- The final prediction is a weighted sum of all of the tree predictions

BDTs are efficient for tabular data

Tabular data: Use physics use physics knowledge to preprocess event information into a set of high-level features

BDTs are still effective for tabular data

Example: Jet classification

• Substructure variable, jet mass, energy correlation function $N_2^{\beta=1}={}_2e_3^{\beta=1}/({}_1e_3^{\beta=1})^2$

Application: MiniBooNE

MiniBooNE detector

Signal region

Veto region

BDTs in the Wild

- One of the winners of Kaggle Higgs Boson Machine
 Learning Challenge [kaggle.com/competitions/higgs-boson]
 - And many other uses at LHC, e.g. in Higgs boson discovery [10.1038/s41586-018-0361-2]
- Predicting critical temperature of a superconductor
 [10.1016/j.commatsci.2018.07.052]
- MiniBooNE neutrino event classification
 [10.1016/j.nima.2004.12.018]
- Observation of single top quark production at D0 [10.1103/PhysRevLett.103.092001]

BDT output

Common BDT Packages

XGBoost

- Shot to fame as one of the winners of the HiggsML challenge
- Engineered for speed, parallelisation, includes regularization tricks
- Cannot handle negative weighted events

LightGBM

- Open source, backed by Microsoft
- Even faster, scales to massive datasets, inbuilt clever pre-processing
- Can handle negative weights, categorical variables (Eg. "ggF region", "VBF region")

CatBoost

- Yandex backed
- Best for categorical variables

LightGBM

BDT Hyperparameters

- Learning rate
- Bin size for histogramming
- Treatment of categorical variables
- Bagging faction & feature fraction
- Min events per leaf
- Number of estimators / trees
- Max Depth
- Pruning
-

Guide to HPO for LightGBM:

https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html

For Better Accuracy

- Use large max_bin (may be slower)
- Use small learning_rate with large num_iterations
- Use large num_leaves (may cause over-fitting)
- · Use bigger training data
- Try dart

Deal with Over-fitting

- Use small max bin
- Use small num_leaves
- Use min_data_in_leaf and min_sum_hessian_in_leaf
- Use bagging by set bagging_fraction and bagging_freq
- Use feature sub-sampling by set feature fraction
- · Use bigger training data
- Try lambda_l1 , lambda_l2 and min_gain_to_split for regularization
- Try max_depth to avoid growing deep tree
- Try extra_trees
- Try increasing path_smooth

'Permutation importance' - A more relevant metric

Take a **trained classifier** and test its response on a test set by **shuffling the values (between events) of one feature** (variable) at a time.

Retain the marginal distribution but break all correlations with the events

See how the performance deteriorates.

- Define your own performance metric, such as significance (Z)
- Works also for Neural Networks

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10	
182	1 55	 20	
175	147	 10	
	/ \	 	
156	142	 8	
153	130	 24	

Warning: All feature importance methods have certain weaknesses, like when variables are correlated

Let's practice!

We will train a classifier to discriminate Higgs (\rightarrow WW) signals from other Standard Model backgrounds

There are two notebooks:

Learn the concepts with the BDT notebook:
 https://github.com/ml4hep-India/icts-2023/blob/main/higgs_classification/HEPML_HandsOn_BDT.i
 pynb

More interactive for the NN notebook:
 https://github.com/ml4hep-India/icts-2023/blob/main/higgs_classification/HEPML_HandsOn_NN.ip
 ynb

Some Notes

- Decision Trees require very little data preparation: feature scaling or centering is not required
- Scikit-Learn uses the CART algorithm, which produces only binary trees
- other algorithms such as ID3 can produce Decision Trees with nodes that have more than two children