	٠
2/1/	¥

-	nten	fc.

10	■ Elec	etrodynamics	366
	10.1	Static Charges 366	
	10.2	Electric Fields 366	
	10.3	Electric Field Lines 370	
	10.4	Electric Potential 376	
	10.5	Numerical Solutions of Boundary Value Problems 378	
	10.6		
	*10.7	Fields Due to Moving Charges 390	
	*10.8	Maxwell's Equations 398	
	10.9	Projects 407	
		Appendix 10A: Plotting Vector Fields 408	
11	■ Nun	nerical and Monte Carlo Methods	412
	11.1	Numerical Integration Methods in One Dimension 412	
	11.2	Simple Monte Carlo Evaluation of Integrals 421	-
	11.3	Multidimensional Integrals 424	
	11.4	Monte Carlo Error Analysis 426	
	11.5	Nonuniform Probability Distributions 429	
	11.6	Importance Sampling 433	
	11.7	Metropolis Algorithm 435	
	*11.8	Neutron Transport 438	
		Appendix 11A: Error Estimates for Numerical Integration 441	
		Appendix 11B: The Standard Deviation of the Mean 442	
		Appendix 11C: The Acceptance-Rejection Method 444	
		Appendix 11D: Polynomials and Interpolation 444	
12	■ Perc	olation	452
	12.1	Introduction 452	
	12.2	The Percolation Threshold 454	
	12.3	Finding Clusters 463	
	12.4	Critical Exponents and Finite Size Scaling 471	
	12.5	The Renormalization Group 475	
	12.6	Projects 482	
13	■ Frac	tals and Kinetic Growth Models	491
	13.1	The Fractal Dimension 491	
	13.2	Regular Fractals 499	
	13.3	Kinetic Growth Processes 502	
	13.4	Fractals and Chaos 520	
	13.5	Many Dimensions 522	
	13.6	Projects 523	

	Conte	nts ,	xvi
4 1	■ Com	plex Systems	530
	14.1	Cellular Automata 530	
	14.2	Self-Organized Critical Phenomena 543	
	14.3	The Hopfield Model and Neural Networks 551	
		Growing Networks 555	
		Genetic Algorithms 561	
		Lattice Gas Models of Fluid Flow 568	
	14.7	Overview and Projects 579	
15 I	■ Mon	te Carlo Simulations of Thermal Systems	590
	15.1	Introduction 590	
	15.2	The Microcanonical Ensemble 590	
	15.3	The Demon Algorithm 592	
		The Demon as a Thermometer 596	
		The Ising Model 598	
		The Metropolis Algorithm 603	
		Simulation of the Ising Model 609	
		The Ising Phase Transition 618	
		Other Applications of the Ising Model 623	
		Simulation of Classical Fluids 627	
		Optimized Monte Carlo Data Analysis 633	
		Other Ensembles 638	
	15.13	More Applications 643	
		Projects 645	
			665
		Appendix 15B: Fluctuations in the Canonical Ensemble 666	
		Appendix 15C: Exact Enumeration of the 2 × 2 Ising Model 667	
16 I	■ Qua	ntum Systems	67 3
	16.1	Introduction 673	
	16.2	Review of Quantum Theory 674	
	16.3	Bound State Solutions 679	
	16.4	Time Development of Eigenstate Superpositions 684	
	16.5	The Time-Dependent Schrödinger Equation 689	
	16.6	Fourier Transformations and Momentum Space 695	
	16.7	Variational Methods 698	
	16.8	Random Walk Solutions of the Schrödinger Equation 701	
	16.9	Diffusion Quantum Monte Carlo 707	
		Path Integral Quantum Monte Carlo 711	
		Projects 714	

Appendix 16A: Visualizing Complex Functions 716