DIY Fotovoltaico > 350 Wp

Anche in caso di autoconsumo al 100%, un sistema **plug-and-play da 350 Wp** produce un risparmio relativamente basso (11,4 % - 8,4 %) rispetto al consumo annuo di una famiglia di due persone (2000-2700 kWh/anno).

Aumentando la potenza del sistema sorgono nuovi problemi per l'installazione dei pannelli (ora fissi) che richiedono almeno 5 m² per ogni kWp, con la stessa esposizione e senza ombre, occorre quindi fare <u>ulteriori considerazioni</u>.

Anche il collegamento con la rete si complica rispetto al caso plug-and-play, che è mobile per definizione. Con maggiori potenze si hanno anche più <u>strategie utilizzabili</u> nella gestione della energia prodotta:

- 1 Impianti collegati alla rete ('grid tie' or 'on grid'). Soggetti a vincoli che variano a seconda della nazione e del gestore. Usabili con qualsisi carico: l'energia necessaria può essere sempre fornita dalla rete. Importante: non funzionano se manca la rete:
 - 1.1 L'energia extra, oltre l'auto-consumo, è persa, sia nel caso che non sia immessa in rete (inverter *senza immissione*) sia nel caso che venga immessa (e.g. plug-and-play).
 - 1.2 L'energia extra, oltre l'auto-consumo, è immessa in rete e viene remunerata in vario modo dal gestore.
 - 1.3 L'energia extra, oltre l'auto-consumo, è immagazzinata in uno storage locale, per essere utilizzata nelle ore senza produzione. (In *Italia: l'energia solare è disponibile, semplificando, 6 ore in estate, 4 ore in inverno*).
- 2 Impianti UPS, usualmente 'a isola', possono sostituire la rete in caso di blackout. Il carico è però limitato dalla potenza dell'inverter.
 - 2.1 Gli inverter UPS gestiscono tre fonti di energia Solare, Rete, Batteria con varie strategie. L'energia solare extra è accumulata in batteria o persa.
- 3 Impianti autonomi, non collegati alle rete ('off grid'), sempre con carichi limitati alla potenza dell'inverter:
 - 3.1 Senza storage: l'energia prodotta è usata subito: esempio irrigazione di colture
 - 3.2 Con storage, per garantire i servizi 24/7: esempio illuminazione stradale, case isolate.

Ci occuperemo soprattutto di impianti on grid e UPS

Per gli impianti autonomi diciamo solo che hanno il vantaggio, pur nel rispetto delle norme, di non essere sottoposti ai vincoli del distributore, perché non connessi alla rete, ma devono essere dimensionati per i picchi di potenza ed è opportuno prevedere altre fonti di energia e di backup, per esempio una turbina eolica e/o un gruppo elettrogeno a combustibile, non potendo ricorrere alla rete in caso di scarsa produzione, per esempio cielo nuvolo per più giorni.

Nota: Le versione aggiornata di questo documento è in https://github.com/msillano/DIY-photovoltaic-smart

Criteri dei progetti

Questi progetti sono caratterizzati da scalabilità e modularità, oltre ad essere DIY a basso prezzo. Altre soluzioni sono ovviamente possibili ('inverter ibridi', 'inverter UPS', etc.), ma, in generale, si tratta di soluzioni meno flessibili e/o più costose.

In ogni caso valutate bene la convenienza del DIY: esistono KIT commerciali molto interessanti, ed installatori competenti. In ogni caso le informazioni qui raccolte possono aiutarvi a fare scelte più consapevoli.

Non derogate mai dalle norme di sicurezza in vigore localmente. L'elettricità può essere molto pericolosa, per sé e per gli altri, se non si hanno le competenze necessarie.

Nota sui prezzi

Ho cercato privilegiare fornitori internazionali per due motivi:

- La disponibilità globale, per poter realizzare questi progetti in ogni parte del mondo.
- Un buon rapporto qualità/prezzo.

Talora faccio riferimento a prodotti oppure alla situazione normativa italiana, che meglio conosco: solo a titolo di esempio, e comunque è sempre chiaramente evidenziato.

I prezzi indicati sono solo una guida: rappresentano l'importo da me trovato o pagato al fornitore indicato (tasse e spedizione comprese UE, salvo indicazione contraria - Agosto-Novembre 2022).

I prezzi possono ovviamente variare (soprattutto in questo periodo e nel settore fotovoltaico). Considerare che le agevolazioni statali hanno gonfiato i prezzi, almeno in Italia: i prezzi sono destinati a scendere con la fine dei contributi.

Talora un fornitore locale può offrire migliori occasioni o maggiori garanzie: non esitate. Prima di acquisti importanti selezionate accuratamente sia il prodotto che il fornitore.

Nota su automazione e controllo

Possiamo individuare tre livelli:

1. manuale

Tutti i dispositivi hanno la possibilità di un controllo locale manuale. Questo è per utenti occasionatali o come recovery in caso di guasto alla rete locale. Esempio: interruttore dello scaldabagno.

2. smart control

I dispositivi 'smart' possono essere controllati da remoto, utilizzando WiFi ed i servizi di un cloud tramite APP per smartphone o PC. Questo richiede un AP WiFi 24/7. Nella casa al mare uso un WiFi router con scheda SIM, YIZLOAO 4G WIFI Router LM321-2, naturalmente con alimentazione UPS.

Non voglio utilizzare cloud proprietari, e quindi neanche APP WiFi di controllo remoto, a parte <u>Tuva</u> e <u>smartLife</u>.

Già decidere di utilizzare Tuya ed il suo cloud come ambiente IOT di elezione (come base dello sviluppo di <u>TuyaDAEMON</u>, un framework IOT) è stata una decisione difficile,

giustificata dall'elevato livello di sicurezza dell'ecosistema Tuya, dalle ottime prestazioni, e dalla peculiare posizione commerciale di Tuya come fornitore di servizi a terzi, posizione che garantisce gli utenti finali – vedi, per approfondire, 'why TuyaDAEMON' (in italiano, 'perché TuyaDAEMON').

Questo comporta la preferenza per i dispositivi Tuya-compatibili nella scelte dei componenti smart.

Le operazioni base di controllo remoto e di automazione, per i dispositivi smart, sono quindi quelle native di Tuya e di smartLife, sufficienti nella gran parte dei casi.

3. integrazione IOT

Se si desiderano più elevate prestazioni, come integrazione con altri device, elaborazioni dei dati raccolti, logica avanzata ed user interface custom, allora si può usare <u>TuyaDAEMON</u>.

Occorre per questo un server 24/7. Una buona soluzione è usare un <u>TV top-box Android</u>.

Semplice e piccolo, alimentato con UPS.

Analisi

Nota Italia: scambio sul posto SSP

In Italia il 'Conto Energia' europeo (remunerazione da parte del gestore) è implementato tramite contratti di '<u>Scambio sul Posto</u>' (o SSP) con GSE.

Sembrerebbe che l'SSP possa sostituire lo storage, ma in realtà per l'utente non è esattamente così.

Semplifichiamo considerando lo SSP come una batteria virtuale, con il rendimento tra 99% e 60%, rendimento determinato essenzialmente dallo spread tra i prezzi di acquisto e di vendita (60% può essere considerato un caso limite: vedi <u>articolo</u>).

Consideriamo il giorno 8 Luglio, con un consumo di 5,8 kWh (<u>vedi oltre</u> per i dettagli), e il caso peggiore (60%) per evidenziare i problemi:

C) Impianto solare da 2 kWp con SSP, abbiamo:

Produzione solare: 8.0 kWh (pari a 138 %) Autoconsumo: 0,7 kWh (pari a 12 %)

Se cediamo alla rete l'energia non consumata (7,3 kWh) questa corrisponde (dai conteggi GSE) a 4,4 kWh (al 60%) di consumo:

In totale 2 kWp + SPP fornisce: 0.7 + 4.4 = 5.1 kWh (pari a 87 %)

Un grande vantaggi dell'SSP è che consente di immagazzinare il surplus estivo per utilizzarlo nel periodo invernale, cosa non possibile con lo storage locale.

Attenzione però:

- La bolletta elettrica sarà ridotta solo dell'autoconsumo: 5.8 0.7 = 5.1 kWh.
- La bolletta deve essere pagata subito per il totale (5,1 kWh) e sarà poi parzialmente rimborsata con un bonifico dal GSE.
- I rimborsi ripagheranno il valore di 4,4 kWh, ovvero, al netto paghiamo solo per 5,1-4,4=0,7 kWh.
- Paghiamo però per intero (cioè su 5,1 kWh) sia MTC (0,015 €/kWh) che le tasse: IVA (10%) e accise (0,022 €/kWh), compensati successivamente in parte dal <u>'corrispettivo unitario di scambio forfettario annuale'</u> (5,08 c€/kWh) calcolato nel SSP.
- Spesa gestione GSE: fino 3 kWp, gratuito; da 3 kWp a 20 kWp, 30€/anno.
- Spesa contatore di produzione: circa 20€/anno
- Gli eventuali kWh in eccedenza possono essere valorizzati da GSE per un valore prossimo al PUN (<u>Prezzo unico nazionale</u>, variabile: vedi <u>intro</u>), peraltro tassato Irpef <u>come 'altro reddito'</u>.

Si evince, anche nel caso SSP, quanto sia importante aumentare l'autoconsumo, ovvero come sia opportuno l'uso di storage.

Ma se si arriva a percentuali elevate di autoconsumo, allora l'SSP diventa superfluo..

Per rispettare i vincoli occorre inoltre:

Uso di dispositivi (tutti) certificati secondo le norme CEI 0-21 Un installatore qualificato per la posa Un progettista iscritto all'albo per la pratica di connessione alla rete nazionale

Importanza dello storage

Come dati di partenza consideriamo un impianto di 1 kWp: in condizioni ottimali produrrà 1500 kWh/anno (Roma, vedi simulazione) cioè in media 125 kWh/mese e 4,1 kWh/giorno.

Durante una giornata estiva quindi, dalle 9 alle 15 (6 ore), si hanno a disposizione, semplificando molto, 670 W (4.1/6). Per 2 kWp raddoppiamo questo valore.

Nella figura abbiamo in verde i consumi (**5,80 kWh**) del giorno 8 Luglio 2022, in giallo la produzione schematizzata. L'autoconsumo è rappresentato dall'area giallo+verde.

Esaminiamo vari scenari:

A) Impianto solare da 1 kWp

Solare: 4.0 kWh (pari a 69 %) Autoconsumo: 0,7 kWh (pari a 12 %)

Se una batteria immagazzina l'energia extra (gialla: 3,3 kWh) e la restituisce nelle 18 ore seguenti, con 80% di efficienza abbiamo 2,4 kWh.

In totale si ha

In totale: 0.7 + 2.4 = 3.1 kWh (53 %)

B) Impianto solare da 2 kWp (nella figura la banda gialla avrebbe altezza doppia):

Solare: 8.0 kWh (pari a 138 %) Autoconsumo: 0,7 kWh (pari a 12 %)

Se una batteria immagazzina l'energia non consumata (7,3 kWh) e la restituisce nelle 18 ore seguenti, con 80% di efficienza abbiamo 5,8 kWh.

In totale $0.7 + 5.8 = 6.5 \text{ kWh} \implies 100 \% + \text{residui } 0.7 \text{ kWh}$

nota: Non sono considerati nei conti i picchi di consumo superiori alla capacità dell'inverter (1000 o 2000 W) che assorbono sempre potenza dalla rete.

Conclusione:

Nella giornata in esame, la presenza di una batteria fa passare l'auto-consumo dal 12% al 53% (1 kWp) o 100 % (2 kWp).

Consumi reali in un intervallo di 4 mesi:

mese	kWh (mese)	media24	max24	min24	kWp (100%)
Giugno 2022	175,45	5,85	21,63	1,22	1,4
Luglio 2022	202,08	6,52	30,92	4,28	1,6
Agosto 2022	320,63	10,32	16,81	5,39	2,6
'Sett. 2022	170,33	5,67	7,6	2,58	1,4
media	217,1225	7,2			1,7

In tabella abbiamo:

kWh(mese): consumo nel mese, in kWh (da curve di carico di 'e-distribuzione' - gestore di rete) **media24**: consumo medio giornaliero = kWh(mese)/30(31)

max24: consumo massimo giornaliero nel mese (da curve di carico di 'e-distribuzione')

min24: consumo minimo giornaliero nel mese (da curve di carico di 'e-distribuzione')

kWp (100%): potenza di picco minima per impianto fotovoltaico (teorico): 1 kWp = 125 kWh/mese

Facciamo una simulazione più in dettaglio dell'autoconsumo con storage:

- 1. per ogni mese usiamo i dati PVGIS (kWh PVGIS/month) moltiplicati per 0.8 (rendimento batteria) per valutare l'energia solare giornaliera media disponibile (kWh PV/day)
- 2. dai consumi di ogni giorno (la APP 'e-distribuzione' consente l'esportazione csv dei dati) sottraiamo l'autoconsumo (PV/day). Quello che resta, sommato, è kWh pay/month che deve essere fornito dalla rete.
- 3. esaminiamo tre casi, 1kWp, 2kWp e 3kWp

month	energy grid	PVGIS/m	PV/d	pay/m	% saving	avg
impianto 1kWh						
Giugno 2022	175,45	170,85	4,53	78,67	55,2%	48,94%
Luglio 2022	202,08	186,41	4,8	135,22	33,1%	
Agosto 2022	320,64	178,25	4,59	188,3	41,3%	
Sett. 2922	170,33	145,06	3,86	57,52	66,2%	
impianto 2kWh						
Giugno 2022	175,45	341,7	9,06	36,74	79,1%	79,44%
Luglio 2022	202,08	372,82	9,6	76,72	62,0%	
Agosto 2022	320,64	356,5	9,18	74,76	76,7%	
Sett. 2922	170,33	290,12	7,72	0	100,0%	
impianto 3kWh						
Giugno 2022	175,45	512,55	13,59	13,83	92,1%	93,38%
Luglio 2022	202,08	559,23	14,4	34,09	83,1%	
Agosto 2022	320,64	534,75	13,77	5,54	98,3%	
Sett. 2922	170,33	435,18	11,58	0	100,0%	

Questi valori sono una stima ottimistica per varie ragioni:

- Il PVGIS considera le perdite dell'impianto pari al 14%. In un piccolo impianto possono essere maggiori.
- Si ipotizza che le batterie siano in grado di accumulare tutta l'energia giornaliera (3.86...13,77 kWh)
- Si sono trascurati i picchi di consumo, ovvero i consumi superiori a 1000/2000/3000 Watt, che sono sempre prelevati da rete.

La stima è invece pessimistica perché:

- I dati si riferiscono a consumi abitudinari, non ottimizzati per aumentare l'autoconsumo
- Ogni giorno è isolato, senza calcolare l'eventuale energia disponibile dal giorno precedente.

Si può notare come l'aumento da 1000 a 2000 Wp porti il risparmio da 50% a 80% (+ 30 %), mentre l'incremento da 2000 WP a 3000 Wp porta un vantaggio solo del 13%. Questo si riflette anche, <u>sull'ammortamento</u>: (ipotesi: consumi 2800 kWh/anno, costo PV+storage 2000 €/kWp, costo energia: 41,51 c€/kWh):

```
1000 \text{ W} (autoconsumo = 2800 * 49\% = 1370 \text{ kWh}) ammortamento 5 anni 5 mesi 2000 \text{ W} (autoconsumo = 2800 * 79\% = 2200 \text{ kWh}) ammortamento 6 anni 3 mesi 3000 \text{ W} (autoconsumo = 2800 * 93\% = 2600 \text{ kWh}) ammortamento 7 anni 9 mesi
```

Probabilmente 3 kWp è la giusta dimensione, soprattutto pensando alle esigenze invernali, ma ho scelto di realizzare un impianto di 2 kWp (in due step: 1 + 1 kWp) perché:

- ritengo che un'accurata gestione dei consumi possa aumentare notevolmente quel 79.44 %
- più importante: non ho spazio per i pannelli per 3 kWp!

Storage termico

Una interessante possibilità per aumentare l'autoconsumo è quella di utilizzare un preesistente scaldabagno elettrico ad accumulo (i più diffusi) come serbatoio di energia (termica):

- Prima regola è quella di utilizzare il più possibile energia fotovoltaica per scaldare l'acqua.
- Uno scaldabagno elettrico ha un consumo elevato (e.g. Ariston 80L, 1500W) per avere un riscaldamento rapido.
- Riducendo la potenza fornita (e.g. con un dimmer) si ottiene un periodo di riscaldamento più lungo, ma un maggiore autoconsumo dell'energia solare. Si può pensare anche ad una

modulazione dinamica della potenza, in base alle disponibilità di energia.

• Se gli altri elettrodomestici (lavapiatti, lavabiancheria...) utilizzano l'acqua calda dello scaldabagno invece di usare l'acqua fredda, si ha un ulteriore risparmio: l'elettrodomestico consuma meno elettricità per portare l'acqua alla temperatura richiesta, e così l'energia prodotta nelle ore di sole può essere utilizzata per ridurre i consumi in orario differito.

L'energia necessaria a scaldare uno scaldabagno da 80 litri, da 15° a 60° è pari a **4,2 kWh**, una frazione importante dei <u>consumi giornalieri</u>.

In formula: $E = \frac{L * \Delta T}{860}$ [kWh]

dove L sono i litri e ΔT la differenza di temperatura in °C.

- Questo vale ovviamente per scaldabagni ad accumulo standard, non per scaldabagni a pompa di calore o a gas.
- Se lo scaldabagno consuma 1300 W, impiegherà 3h:38m per scaldarsi
- E' opportuno dare bassa priorità allo scaldabagno, cioè accenderlo solo quando esiste energia fotovoltaica disponibile: esistono allo scopo varie soluzioni commerciali.
- Per un progetto di 'modding' DIY di uno scaldabagno ad accumulo standard per renderlo 'smart' con tuyaDAEMON vedi

Dimmer di potenza:

2000/4000W High Power Thyristor

2,71 / 6,86 €

File di Pannelli solari

Se i pannelli non sono complanari (caso del tetto a falda) e se i pannelli sono disposti su più file, sorge il problema delle ombre tra file e la necessità di distanziamento fa crescere la superficie occupata (fattore di riempimento).

Abbiamo - vedi figura con la vista schematica laterale di 2 file di pannelli fotoelettrici:

L: lunghezza pannello

 θ : angolo pannello (slope)

$$h = L \cdot \sin(\theta)$$

Per non avere ombre la distanza fra file (s) deve essere maggiore o uguale a d, con α : minima altezza del sole (freccia nella figura):

$$d = h \cdot \cot(\alpha) = \frac{h}{\tan(\alpha)}$$

montaggio dei pannelli solari

Anche in questi progetti utilizziamo i pannelli flessibili modello RG-MN-100.

- potenza 100 Wp,
- dimensioni 1050X530X2.5mm,
- peso 1,9 kg,
- tensione a circuito aperto 19,2 V,
- corrente cc 6,87 A
- cavi: 90 cm x 2.5 mm²

10 pannello collegati 5P2S forniscono i seguenti valori:

- tensione circuito aperto. 38,4 V
- corrente corto circuito: 34,35 A

Sono possibili diverse possibilità di collegamento, ma, con l'obiettivo di rendere le connessioni il più possibili corte ed omogenee, ho scelto il seguente schema:

Ogni pannello di una fila è in serie con il corrispondente pannello dell'altra fila usando i terminali dei pannelli.

5 prolunghe nere e 5 prolunghe rosse, di lunghezza variabile, da 2,5 mm².

Nei collegamenti positivi sono presenti 5 diodi di blocco da 10 A (i diodi di bypass sono già presenti nella junction box dei pannelli).

Le prolunghe terminano in due scatole stagne 2 x 6 montate sulla struttura dei pannelli da cui partono due cavi da più grossi per l'inverter.

Ovviamente conviene avere cavi più corti possibile.

Solo se i pannelli sono molto vicini all'inverter, si possono omettere le junction box e inviare direttamente i 10 cavi all'inverter.

١

Accessori montaggio pannelli

Per le 10 prolunghe

20 x connettori fotovoltaici

8,94€

Per ogni stringa di 2 pannelli, un diodo di blocco (opzionale):

5 x diodi 10A per PV

18,6€

I benefici apportati dai diodi di blocco in serie <u>sono discutibili</u>. Consigliabili in caso di ombre parziali.

Cavi per PV (e.g PV1-F)

- in rame stagnato (o alluminio per esterno)
- isolamento doppio in XLPE (no PVC)
- temperature $-40^{\circ}/+90^{\circ}$ (+120°)
- durata: 25 anni
- sezione > 0.25 mm2/A

PV Cable

Cavo per PV (PV1-F)

per le prolunghe dei pannello (corte, 7A): 1 x AWG13 – 2,5 mm², 10 m (nero)

1 x AWG13 – 2,5 mm², 10 m (nero) 17.65 € 1 x AWG13 – 2,5 mm², 5 m (rosso) 10.53 €

dalla giunzione all'inverter (7*5 = 35A max):

<u>Diametro da calcolare</u> caso per caso in funzione della distanza e della corrente. Usare:

- 40 V tensione,
- 1,25 coeff per le potenze (1250W-12500W).
- perdita < 1% (i.e.0,4V).

<u>AWG7 - 10 mm²</u>, 4 m (rosso + nero, indicativo) 45,13 €

AWG	Diam mm	Sect. mm²	Resist. ohm/m	AWG	Diam mm	Sect. mm²	Resist. ohm/m
0000	11.7	107,0	0.000161	19	0,91	0,6530	0.0264
000	10.4	85.0	0.000203	20	0,81	0,5190	0.0333
00	9.26	67.4	0.000256	21	0,72	0,4120	0.0420
0	8.25	53.5	0.000323	22	0,64	0,3250	0.0530
1	7,35	42,4	0.000407	23	0,57	0,2590	0.0668
2	6,54	33,6	0.000513	24	0,51	0,2050	0.0842
3	5,83	26,7	0.000647	25	0,45	0,1630	0.106
4	5,19	21,2	0.000815	26	0,40	0,1280	0.134
5	4,62	16,8	0.00103	27	0,36	0,1020	0.169
6	4,11	13,3	0.00130	28	0,32	0,0804	0.213
7	3,67	10,6	0.00163	29	0,29	0,0646	0.268
8	3,26	8,35	0.00206	30	0,25	0,0503	0.339
9	2,91	6,62	0.00260	31	0,23	0,0415	0.427
10	2,59	5,27	0.00328	32	0,20	0,0314	0.538
11	2,30	4,15	0.00413	33	0,18	0,0254	0.679
12	2,05	3,31	0.00521	34	0,16	0,0201	0.856
13	1,83	2,63	0.00657	35	0,14	0,0154	1.08
14	1,63	2,08	0.00829	36	0,13	0,0133	1.36
15	1,45	1,65	0.0104	37	0,11	0,0095	1.72
16	1,29	1,31	0.0132	38	0,10	0,0078	2.16
17	1,15	1,04	0.0166	39	0,09	0,0064	2.73
18	1,02	0,82	0.0210	40	0,08	0,0050	3.44

La soluzioni per le giunzioni:

- usare dei mammut o morsetti
- terminare i cavi con capicorda.

Morsetti DIN 2x7 $5 \times 5,3 \text{ mm} \Rightarrow 2.5...6 \text{ mm}^2$ $2 \times 7,5 \text{ mm} \Rightarrow 10...25 \text{ mm}^2$

Morsetto nudo 7 fori 2,37 €

 Capicorda (20 pz):
 1,50 €

 SC4-6 (12AWG)
 2,50 €

Se i cavi non raggiungono il box dell'inverter, usare sempre dei box di giunzione impermeabili:

2 x box giunzione 6 vie 10,32 €

Totale accessori montaggio 10 pannelli:

97€

nota: si può considerare come l'uso di mini-inverter (come quelli usati nel plug-and-play, oppure il modello <u>SG-1200W-Mobile WIFI</u>) richieda meno accessori, semplifichi il montaggio e riduca in definitiva i costi.

Purtroppo questi inverter non sono forniti della funzione 'LIMIT e quindi non sono adatti a questo progetto.

DIY: Supporti per pannelli

Un tetto a falde ben orientato rappresenta il caso più semplice. Esistono molti tipi di ferramenta per garantire, nei vari casi (tegole, ondulato etc.), un montaggio agevole dei pannelli solari in aderenza alla falda (*in Italia è richiesto dalle norme*) senza compromettere la tenuta del tetto.

Più complicato il caso di terrazze e tetti piani: io ho trovato lo spazio per i pannelli solari sfruttando il tetto piatto di un box (vedi immagine satellitare da PVWATTS, più goniometro). Non è ottimale (Azimuth 45°, ombre da palazzi) ma è il solo posto utilizzabile a disposizione. Data la bassa altezza del box non sono necessarie opere di sicurezza (ringhiere).

Occorre comunque una struttura per posizionare i pannelli solari con il giusto angolo, abbastanza robusta e stabile ai venti.

Il tipo di impianto condiziona il posizionamento dei pannelli.

Se l'energia *immessa in rete è remunerata* in qualche modo (*Italia: SSP*), l'obiettivo è quello di **massimizzare la produzione annua**, e PVGIS fornisce automaticamente i valori ottimali di 'slope' ed 'azimuth'.

Se viceversa l'energia *non è immessa in rete* (impianti 'senza immissione' o ad 'isola'), a causa dei limiti dello storage - l'energia estiva non può essere accumulata per essere consumata in inverno – l'obbiettivo è quello di **massimizzare la produzione invernale:** lo 'slope' ottimo deve essere trovato per tentativi con PVGIS.

Nel caso in esame l'azimuth è imposto dal tetto esistente (45°). Variando lo slope (1 kWp):

Clana	Year	•	July		Decem	ber	luly/Doo
Slope	kWh	%	kWh	%	kWh	%	July/Dec
0°	1372	91%	197,29	99%	41,31	26%	4,78
5°	1413	94%	198,43	100%	46,35	29%	4,28
10°	1446	96%	198,45	100%	51,1	33%	3,88
15°	1472	98%	197,79	100%	55,45	35%	3,57
20°	1491	99%	196,42	99%	59,35	38%	3,31
25°	1502	100%	193,89	98%	62,78	40%	3,09
30°	1507	100%	191,21	96%	65,76	42%	2,91
35°	1504	100%	187,63	95%	68,28	43%	2,75
40°	1492	99%	182,78	92%	70,35	45%	2,60
45°	1474	98%	177,25	89%	71,92	46%	2,46
50°	1451	96%	171,86	87%	73,01	46%	2,35
55°	1418	94%	164,87	83%	73,64	47%	2,24
60°	1376	91%	157,12	79%	73,79	47%	2,13
65°	1329	88%	148,83	75%	73,47	47%	2,03
70°	1274	85%	139,99	71%	72,7	46%	1,93
75°	1213	80%	130,42	66%	71,46	45%	1,83
80°	1146	76%	119,73	60%	69,77	44%	1,72
85°	1073	71%	109,24	55%	67,64	43%	1,62
90°	995	66%	98,6	50%	65,07	41%	1,52

Più immediato guardando un grafico:

Il sito <u>SunHeartTools</u> fornisce, per una data località, l'altezza del sole ad ogni orario.

- 21 Dicembre ore $12:00 = 25^{\circ}$.
- 21 Dicembre ore $14:00 = 20^{\circ}$.
- 21 Dicembre ore $15:00 = 12^{\circ}$.

Calcoliamo ora la distanza minima tra file, con altezza pannelli di 105 cm:

slope	h	d@Sun 20°	d@Sun 12°
40°	67,5	185,4	317,5
45°	74,2	204,0	349,3
50°	80,4	221,0	378,4
55°	86,0	236,3	404,6
60°	90,9	249,8	427,8

Le distanze tra file sono tutte superiori a 2 metri, veramente elevate. Sceglieremo 50°

Per verifica, questo è l'irraggiamento di un giorno (medio) di Dicembre, (da PVGIS, slope: 50°, Azimuth: 45°).

nota: Clear-sky è l'irraggiamento senza considerare l'atmosfera, che causa assorbimenti per nuvole e pulviscolo.

Soluzione A (senza immissione)

La struttura fissa per file di pannelli solari è composta di centine in ferro e di correnti trasversali a cui sono fissati i pannelli. Ogni centina ha un supporto per ogni fila di pannelli, con una gamba (opzionale) ancorabile secondo le esigenze.

I valori base, per un impianto senza immissione in rete, sono: 5x2 pannelli (1000 Wp), slope 50°, distanza file 225 cm, 3 centine.

Caratteristiche struttura 5x2 (1000 W):

- 1. La struttura è formata da centine di profilato a 'L', 35x35 mm forato profilati da scaffali facilmente reperibili ovunque.
- 2. Ogni centina è composta da due o più supporti collegati da distanziatori: l'angolo (slope) è definito in fase di progetto, la distanza tra file in fase di montaggio. I supporti sono interamente saldati per maggior robustezza.
- 3. Le centine sono collegate tra loro da 2 o 3 correnti (legno, alluminio, lamiera di acciaio zincata etc.) imbullonati in fase di montaggio.
- 4. Senza la gamba verticale (S_leg = 0) i supporti possono essere semplicemente poggiati sul pavimento o fissati in verticale su una parete (vedi <u>esempio</u>).
- 5. În fase di montaggio aggiungere sempre un sistema di sicurezza, e.g. ancoraggi laterali alle ringhiere o muri oppure cavi in acciaio, per evitare spostamenti e ribaltamenti.

Tutti i supporti sono stati calcolati con lo stesso progetto parametrico <u>OpenSCAD</u>: l'utente può cambiare nel file molti valori ed automaticamente vengono aggiornati sia i disegni che la lista parti.

(Il goniometro è MB-ruler).

L'intera struttura per 1000 W richiede 3 centine con 2 supporti ciascuna, 3 spacer e inoltre 3 correnti per ogni fila di 5 pannelli.

Il progetto parametrico OpenSCAD fornisce anche una completa lista parti con le dimensioni, e il totale (netto) di profilato a L necessario:

```
ECHO: "Panels 5X2, slope: 50°"
Parameters:
                           ECHO: "Footprint: 3702.43 x 2656 mm"
 string = 5x2
                           ECHO:
 PV panel = 1050x530 mm
                           ECHO: "6 x supports:"
                           ECHO: " base: 1052 mm"
 distance = 2250 \text{ mm}
                           ECHO: " Hbar: 720 mm"
  feet = 250 \text{ mm}
                           ECHO: " Vbar: 840 mm"
                           ECHO:
                           ECHO: "3 x spacer: "
                           ECHO: " length: 2411.86 mm"
                           ECHO:
                           ECHO: "6 x currents:"
                           ECHO: " length: 2656 mm"
                           ECHO:
                           ECHO: "8/12 x bolts M8x15 "
                           ECHO: "60 x wood screws M 4x30"
                           ECHO:
                           ECHO: "Total L: 22907.6 mm"
```

Soluzione B:(senza immissione

Alternativa alla soluzione A: i pannelli sono situati nello stesso piano.

I parametri sono simili: slope 50°, ma con 5x1 pannelli usando la misura (virtuale) 2100x530, 3 centine.

nota: date le dimensioni importanti si può irrobustire la struttura:

- accoppiando i profilati per formare una U.
- aggiungendo un elemento verticale intermedio

```
ECHO: "Panels 5X1, slope: 50°"
Parameters:
                          ECHO: "Footprint: 1451.14 x 2656 mm"
  string = 5x1
                          ECHO:
  PV panel = 2100x530 mm
                          ECHO: "3 x supports:"
                          ECHO: " base: 2102 mm"
           = 50°
  slope
                          ECHO: " Hbar: 1320 mm"
  feet
           = 0
                          ECHO: " Vbar: 1323.18 mm"
                          ECHO:
                          ECHO: "5 x currents:"
                          ECHO: " length: 2656 mm"
                          ECHO:
                          ECHO: "60 x wood screws M 4x30"
                          ECHO:
                          ECHO: "Total L: 14235.5 mm"
```

Soluzione C: (con immissione - SSP)

In questo caso è possibile usare uno slope molto piccolo (12°) con poche perdite rispetto al massimo annuale (97%) ottenendo una struttura compatta ed aderente al pavimento.

I valori base sono: 5x2 pannelli (1000 Wp), slope 12°, distanza file 70 cm, 2 centine.

```
ECHO: "Panels 5X2, slope: 12°"
                          ECHO: "Footprint: 2861.94 x 2662 mm"
Parameters:
 string = 5x2
                          ECHO: "4 x supports:"
 PV panel = 1050x530 mm
                          ECHO: " base: 1054 mm"
                          ECHO: " Hbar: 840 mm"
         = 12°
 slope
                          ECHO: " Vbar: 400 mm"
 distance = 700 mm
                          ECHO:
       = 250 \text{ mm}
 feet
                          ECHO: "2 x spacer: "
                          ECHO: " length: 1071.39 mm"
                          ECHO:
                          ECHO: "6 x currents:"
                          ECHO: " length: 2662 mm"
                          ECHO:
                          ECHO: "8/12 x bolts M8x15 "
                          ECHO: "60 x wood screws M 4x30"
                          ECHO:
                          ECHO: "Total L: 11318.8 mm"
```

Esempio D: plug-and.play 300W

Questo esempio mostra come, con gli opportuni parametri, il progetto OpenScad può definire anche un supporto orizzontale da fissare a parete con stop, slope 72° (S_slope = 18), Footprint: 507 x 3158

Note costruttive:

- Comunque si dispongono, resta sempre un gioco di 1 mm nella giuntura dei supporti: inserire uno spessore (rondella) prima di saldare.
- Usare 2/3 bulloni M8x15 per fissare gli spacer orizzontali.
- I pannelli flessibili possono essere direttamente fissati con viti se i correnti sono di legno o di alluminio.
- Con pannelli rigidi si può usare come corrente direttamente un robusto profilo in <u>alluminio</u> o <u>acciaio zincato per PV</u>.

- Se si hanno vincoli in altezza non usare le gambe (S_leg = 0) e zavorrare adeguatamente i profilati posati sulla pavimentazione (20/100 Kg/m²).
- Altrimenti (caso di terrazzo con balaustre) ogni centina può usare una base da ombrellone (7,50 €) zavorrata ad acqua o sabbia, a cui è imbullonato il sopporto verticale
- Fare attenzione alle pendenze ed evitare i ristagni d'acqua. Usare un fazzoletto isolante sotto i supporti.

Nota: per un esempio di supporti industriali con tutti i dettagli di montaggio vedi <u>Cosmogas</u>, <u>manuale di installazione pannelli solari</u>.

Messa a terra

In generalmente non occorre messa a terra dei pannelli e delle strutture di supporto.

Se viceversa temete i fulmini, esempio una casa isolata, provvedete un buon impianto antifulmine indipendente dai pannelli solari.

Non dimentichiamo la messa a terra delle parti metalliche del supporto dei pannelli e utilizziamo un adeguato dispersore a terra, se necessario.

Usare cavo nudo minimo 16 mm² (32 mm² se interrato).

Dispersore di massa da posizionare nel terreno (se necessario).

Materiali per supporto x 10 pannelli PV (1'000 W)

12 x Montante metallo 3,5 x 3,5x200 cm grigio / argento (7€)	84 €
6 x Legno 30x40 x 3000 mm (indicativo: 12 €)	72 €
oppure:	
6 x Alluminio 30x30x2 x 3000 (indicativo: 20 €)	120€
oppure:	
6 x Profilo zincato per PV 41x21 x 3000 (indicativo: 23 €)	138 €
Cavo nudo per messa a terra 16 mm², (indicativo: 2.11 €/m, 6 m)	12,66 €
Capicorda a occhiello (20 pz) SC16-6 (5AWG)	3,38 €
oppure	
3x Morsetto di massa per PV	8,18€

Dispersore di terra + pozzetto (opzionale - indicativo)

17€

Viti e bulloni, vernice, saldature, zavorra e/o ancoraggi, cavo acciaio di sicurezza con morsetti, stop a muro (indicativo) 30 €

Costo struttura per 10 pannelli PV:

200--280 €.

nota: molti di questi materiali sono ingombranti e pesanti: conviene comprarli sul posto. I prezzi e i link forniti sono solo un esempio. Trovate la migliore offerta locale equivalente.

Fotovoltaico oltre 350W

Esempio commerciale: 600W (800?) grid tie

4 x pannelli 200Wp 1140x700 mm (800 Wp!) inverter 600 W(!)

2,5 m cavo DC 2,5 mm²

5 m cavo AC

accessori di montaggio

Costo **869** €

Costo per kWp 1.448 €

Esempio commerciale italia: <u>KIT fotovoltaico Plug&Play 1,5kWp SENZA IMMISSIONE – INVERTER CEI 0-21</u>

- 4 * pannelli fotovoltaici monocristallini 380/375Wp HANOVER Solar / MUNCHEN Solar a seconda della disponibilità (Tedeschi) (1760 x 1006 x 35 mm)
- Inverter Zucchetti CEI 0-21 1100Wp ZCS 1100TL-V3
- 10mt cavo fotovoltaico rosso 4mmq
- 10mt cavo fotovoltaico nero 4mmq
- 2 coppie di connettori MC4
- Sensore di immissione per immissione ZERO

Costo: 1379 € + spedizione

Costo per kWp 919 €

Esempio commerciale italia: kit fotovoltaico KFV30, 3 kW

- Moduli Monocristallini da 410 Wp Hyundai HiE-S410VG; garanzia 25 anni sul prodotto e sulle prestazioni (numero ??)
- Inverter AZZURRO ZCS-3000TLM-WS da 3 kW
- Raccordi Amphenol maschio e femmina tipo MC4 - 4 mmq
- Strutture di sostegno e fissaggio

Costo: 4400 € con installazione e pratiche 7400 €

Costo per kWp: **1467** € (2470 €)

Esempio commerciale italia: Kit fotovoltaico da 2000 Wp installazione compresa

- 10* pannelli 200W CANADIAN
- Inverter AROS 2600 Wp (certificato)
- Quadro DC
- Quadro AC
- Supporti tetto inclinato (viteria, cavi)

redazione domanda 'conto energia'

Costo: **5148** €

Costo per kWh 2574 €

Esempio commerciale italia: <u>KIT fotovoltaico ibrido 1,5kWp con inverter 3kW 24V PWM e 2 batterie AGM 200Ah</u> (isola).

- 4 * pannelli fotovoltaici MUNCHEN Solar 375Wp
- 1 * inverter 3kW effettivi con regolatore di carica PWM
- 2 * batterie AGM lunga durata 12V 200Ah. Totale 4800Wh (utile 2400 Wh)

Costo: 2209 €

Costo per kWh 1472 €

nota: come base di partenza per una più ampia analisi dei kits fotovotaici disponibili sul mercato italiano vedi anche https://www.fotovoltaiconorditalia.it/idee/costo-kit-fotovoltaico-kilowatt.

DIY progetto B: modulo 800 / 1000 / 1200 Wp con immissione in rete

Dal punto di vista HW è analogo al plug-and-play, con la differenza che, superando una soglia (*Italia 350 W*), l'energia messa in rete sarà remunerata dal gestore, tramite i meccanismi di compensazione attivi nei vari paesi (*in Italia 'scambio sul posto' o SSP*).

L'energia prodotta o è consumato localmente (auto-consumo) o è immessa nella rete e contabilizzata da un contatore.

PRO:

- HW molto semplice (economico).
- Può ridurre molto le bollette (*Italia analisi SSP: vedi <u>sopra</u>*)
- Tipicamente fino alla potenza contrattuale (in Italia: 3,3 kW o 6,6 kW per le abitazioni).

CONTRO:

- mai così conveniente come l'auto-consumo (<u>analisi SSP</u>)
- <u>complessità burocratiche</u> e lungaggini per l'aggiornamento dei contatori (*italia: oltre 3 mesi*)
- numerosi vincoli sui materiali ed inverter (certificati) e sulla ditta installatrice (abilitata).

Questi progetti inviano l'energia extra in rete: devono quindi essere usati con un 'Conto energia' con il distributore. Devono soddisfare a tutte le specifiche richieste dalle norme in vigore e dalla controparte (variano al variare della nazione e della società di servizi), inoltre devono essere installati da ditte qualificate. Non <u>sembra molto adatta</u> per il DIY. Qui presentiamo tre ipotesi, sostanzialmente simili.

Per la sicurezza occorre, nel circuto DC:

- scaricatori a massa (per i fulmini)
- sezionatore pannelli. (se necessario)

nel circuto AC:

• un sezionatore con protezione per scollegare l'inverter dalla rete

Protezioni DC: tra i pannelli e l'inverter (v. schema)

CHYT <u>Scaricatore DC 20-40 KA 600V</u>
2 moduli DIN

Eventualmente possono essere posti dopo l'inverter.

CHTY <u>Scaricatore AC</u> 11,35 €

Centralina stagna DIN CHYT

2 moduli

8,04€

12€

Protezioni AC: tra inverter e il bus 220V (v. schema)

2P 63A TUYA APP WiFi Smart Energy Meter OPWT-63 € 33

Questo meter unisce funzioni di protezione con la misura della potenza. Può sostituire il salvavita nel quadro di casa.

Può fornire informazioni sull'energia prodotta dall'inverter.

Le misure sono accessibili via WiFi (Tuya compatibile).

2 moduli DIN.

Sezionatore per impianto solare

EARU breaker DZ47 2P 10A

7,07€

in alternativa al meter OPWT -63

Inverter on grid

Inverter SG-1200W-Mobile WIFI

Max input: 60V, startup 20 V (fino a 3 pannelli in serie)

Max input: 4*10A, 4*300W
Output: 1150 W (220V, 5A)
WiFi smartLife compatibile

Costo: 250.02 €

Molto compatto e di semplice montaggio, include la funzione WiFi Tuya compatibile.

Della stessa serie di quello usato per il progetto A2 plug-and-play.

Funziona sia con 4*2 pannelli (4P2S, 800W) che 4*3 pannelli (4P3S, 1200W)

Modulare, si possono connettere in serie fino ad 8 unità (9'600 W).

ZCS Zucchetti Azzurro 1Ph 1100TL-WS

Input 80V-450V. Max 10A (scheda tecnica) (10 pannelli in serie)

Output 1000 W

Con sezionatore e scaricatori MOV

WiFi custom (non compatibile SmartLife)

canale RS485

Certificato CEI0-21 (Italia): SI

Costo: 442,63 € + IVA + trasporto

Gli inverter della serie Azzurro Zucchetti sono usati da ENEL negli impianti fotovoltaici commerciali in Italia.

Questo inverter utilizza la connessione dei pannelli solari in serie, con risparmio di connettori e diodi, ma con alte tensioni continue e maggiore vulnerabilità alle ombre.

Riepilogo costi 800 / 1000 / 1200 Wp

itom	im	impianto PV [kWp]			
item	800	1000	1200		
8/10/12 pannelli solari RG-MN-100	692,8	866	1039,2		
inverter SG-1200W / ZCS 1100	250	480	250		
Meter WiFi OPWT 63 (opzionale)	33	33	33		
struttura per installazione (vedi oltre)	180	200	220		
Scaricatori + box	20	20	20		
Accessori montaggio, cavi (variabile)	50	40	50		
Costo	1225,8	1639	1612,2		
Costo per kWp	1532, 25	1639	1343,5		

impianti senza immissione

"It is in response to the overwhelming clamor from our customers for a product that can control the amount of power that the grid tie inverters (GTI) can generate so that the amount of excess power produced by the solar panels are reduced to insignificant levels, if not eliminated --- because in some countries, the producer pays for the excess power it gives to the distribution grid. This is because the electric power meters (the one provided by the electricity provider in the area) are not aware of the direction of power flow. In other words it only adds even if power is exported to the grid, thus, the consumers will be charged for power even if it is given to the grid, and this is the problem" (inverter GTN 1000 info).

Gli inverter 'senza immissione' producono solo per l'auto-consumo. L'energia in eccesso è persa, ma non è immessa in rete: semplicemente non viene prodotta.

DIY progetto C: modulo 1000W

Questo progetto è per moduli da 1000W, 'senza emissione', con batterie raggiungibili in un secondo tempo (v. oltre, progetto D-storage) ed espandibile fino a 10 kW usando più moduli. E' al solito un approccio modulare flessibile e graduale, sia in termini di prestazioni che di costo.

Abbiamo due elementi contigui: *quadro di casa* (esistente, modificato) e *sezionatore PV*, mentre gli *inverter* possono essere situati in un posizione remota, il più vicino possibile ai *pannelli solari*.

1 – centralina di casa

Nel quadro principale ho sostituito l'esistente interruttore generale-salvavita con il seguente

dispositivo:

2P 63A TUYA APP WiFi Smart Energy Meter OPWT-63 (https://www.aliexpress.com/item/1005002361164427.html, € 33)

Oltre alla funzioni di misura (V, I, W, kWh) visibili sul display, questo interruttore ha protezioni regolabili per:

- Leakage (10-100 mA) (salvavita)
- Overcurrent (1-63 A)
- Overvoltage (250-300 V) ritardo 0,5 s
- Undervoltage (150-190 V) ritardo 0,5 s

E' compatibile Tuya, quindi con l'APP SmartLife si può sia configurare che leggere i dati. In particolare questo Meter fornice l'energia scambiata con la rete (in bolletta) in tempo reale.

Nello schema il box tratteggiato rappresenta l'Energy Meter OPWT-63

Inoltre il collegamento diretto preesistente tra interruttore generale e sezionatori (in rosso nello schema) deve essere eliminato, per passare attraverso la centralina PV.

2 - sezionatore PV

La centralina CA consiste in due dispositivi - 5 moduli - che possono essere inseriti nel quadro di casa se esiste spazio disponibile, oppure possono trovare posto in una nuova centralina posta vicino al quadro esistente.

Centralina stagna esterna per 5 moduli DIN CHYT 5way Plastic Waterproof Distribution Box

€ 11,95

Questo interruttore manuale permette di scollegare completamente l'impianto solare CA 230V. (50 A => 10 kW) 2 moduli

EARU DZ47 2P 400V con protezione 50A

€ 6,03

Questo PowerMeter DIN è un accessorio incluso con <u>l'inverter scelto</u> e misura la potenza assorbita dai carichi tramite una sonda di corrente. Può controllare fino a 10 inverter tramite un collegamento RS485. 3 moduli.

2 - cavi di collegamento

Dalla centralina (vedi schema) due collegamenti raggiungono gli inverter, situati vicino ai pannelli solari:

- 220V bus, (3 poli), 5..50 A per collegare gli inverter
- collegamento RS485, tratteggiato nello schema, si può usare un doppino telefonico schermato fino a 100 m max.

Le caratteristiche dei cavi variano a seconda della distanza e delle potenze in gioco:

Cavo doppia guaina da esterno 3 poli

<u>Diametro da calcolare</u> caso per caso in funzione della distanza e della corrente. Usare, nel form del link:

- 230 V come tensione alternata
- 1,25 come coeff per le potenze (i.e. 1250 W 12500 W).
- perdita < 1% (i.e. 2 V).

Valori per brevi distanze (< 5 m, prezzi indicativi):

4 mm2 : 25A 5 €/m

6 mm2 : 32 A 6,50 €/m

Cavo per RS485

Per brevi distanze (< 10 m):

doppino telefonico

Per lunghe distanze (< 100 m)

doppino telefonico schermato

(prezzo indicativo) 0.50 €/m

Un unico box stagno contiene sia la centralina DC che l'inverter.

<u>Centralina da cantiere</u>, 8 moduli. 30,35 € + spedizione Richiede un pannello di chiusura anteriore.

Nota: per migliorare il raffreddamento si possono praticare aperture o aggiungere una ventola: in questi casi usare solo all'interno.

Protezioni DC: tra i pannelli e l'inverter (v. schema)

CHYT Scaricatore DC 20-40 KA 600V

12€

2 moduli

Per scollegare i pannelli solari:

EARU Interruttore DC EACBDC (1000V)

2P con protezione 40A

9,78 €

2 moduli

Protezioni AC: tra ogni inverter e il bus 220V (v. schema)

OP<u>2P 63A TUYA APP WiFi Smart Energy Meter</u>WT-63 € 33

Questo meter permette di connettere/disconnettere il singolo inverter e offre tutte le protezioni necessarie. Sostituisce un interruttore con protezione 10A altrimenti necessario.

Inoltre fornisce le misure utili per valutare le prestazioni di ogni inverter via WiFi (Tuya compatibile).

2 moduli

distributore di massa Morsetto nudo 7 fori

2,37 €

inverter senza immissione

Sono disponibili molti modelli di inverter con limitatore, purtroppo nessuno è WiFi compatibile con Tuya (per questo motivo uso uno Smart Energy Meter OP2P-63A in ogni modulo).

Per questo progetto ho scelto l'inverter <u>GTN-1000LIM24</u> (192,65 €). Non è un modello recente, ma ha un ottimo rapporto costo/prestazioni ed alcune caratteristiche interessanti.

Nota: dello stesso inverter esiste anche una versione senza display ma con WiFI, il modello <u>GTN-1000LIM24-W</u> (234 €) che usa un cloud ed un'applicazione proprie, non garantita compatibile con Tuya (non provato).

Caratteristiche:

Input power range: 200W-1100W

PV input range: 26 V – 45 V (pannelli 5P2S)

Max Input protection corrent: 40 A

Battery mode (24 V) power range: 90W-650W

Battery + limit mode max output: 700 W

Efficienza: 88%

La funzione LIMIT utilizza un sensore esterno e controlla, a catena aperta, la potenza AC in uscita, evitando ogni immissione di energia extra nella rete.

Questo inverter ha quattro modalità di funzionamento:

- 1) PV: funzione Inverter standard, con MPPT per pannelli solari
- 2) PV + LIMIT: Funzionamento con pannello solare e con limitazione di corrente: fornisce solo la potenza richiesta dai carichi.
- BATT: funzione Inverter da batteria tampone (da qualsiasi sorgente in continua).
- 4) BATT + LIMIT: con batteria e limitazione di corrente (max. 700 W).

In questo progetto interessa il modo 2: PV + LIMIT, e usando questo inverter il progetto è successivamente espandibile con batterie di storage.

Questo inverter può essere <u>controllato via RS485</u>, quindi è possibile studiare un'integrazione custom dell'inverter in tuyaDAEMON e l'utilizzo di strategie avanzate di gestione (vedi anche<u>esempio</u> di controllo remoto).

Modularità

Gli aspetti positivi di un approccio modulare sono:

- Possibilità di ottenere il dimensionamento ottimale e di adeguarsi ai cambiamenti.
- Riduzione delle conseguenze di un danno o guasto, sia in termini funzionali che di costi.
- Possibilità di modulare gli investimenti nel tempo.
- Test e controlli su piccola scala prima di maggiori investimenti.

Questi moduli sono espandibili semplicemente usando in parallelo gli inverter. Gli inverter (A,B,C) vanno collegati 'prima' della sonda (D), e i carichi domestici 'dopo' la sonda: quindi non si può usare una presa qualsiasi (caratteristica del 'plug-and.play') bensì bisogna ricavare un collegamento dedicato dal quadro di casa (vedi schema e sezionatore).

(from GTN-1000LIM24 documentation)

Ogni inverter può gestire pannelli solari da 200 a 1100 Wp, quindi anche il singolo modulo é scalabile. E' possibile quindi una strategia di upgrade *continua* dal **modulo plug-and-play** ad un **modulo** C da 200 Wp, e poi aumentare la potenza fino a 1 kWp aggiungendo coppie di pannelli.

E' consigliabile che i pannelli solari gestiti da un inverter MPPT abbiano tutti la stessa esposizione e nessuna ombra. Si possono quindi usare più moduli da 1 kWp sia per ottenere potenze maggiori, sia per gestire gruppi di pannelli con esposizioni differenti. (nota: altri modelli di inverter contengono più MPPT indipendenti proprio a questo scopo).

Inverter hub per TuyaDAEMON

Per ogni modulo abbiamo un problema di integrazione dei canali dati non Tuya compatibili:

- L'inverter usa RS485
- Il charger controller usa serial TTL con protocollo Modbus
- Il battery balancer usa un protocollo TTL.

Sarebbe semplice usare degli adattatori USB ed utilizzare questi segnali in un PC con node-red. Ma nel mio caso non si può: i moduli sono lontani dal box Android.

Una soluzione è convertire questi segnali nell'inverter stesso, inviandoli via WiFi a TuyaDaemon. Questo si può fare in due modi:

- usando una scheda Arduino-like con WiFi a bordo, e scrivendo il SW di decodifica e di comunicazione, ad esempio MQTT.
- utilizzando un TV-box come 'remote PC' ed utilizzare node-red, eventualmente anche con un nodo di TuyaDAEMON locale (meno HW e SW da sviluppare, sviluppo su PC).

Riepilogo costi progetto C – con limite

una tantum			
centralina di casa (modifica)*		33	
cantralina AC		18	
cavo 220+RS485 (5m)*		30	
,	costo		€ 81,00
ogni modulo (1000 Wp)			
centralina DC		85	
inverter		234	
10xpannelli solari		866	
•	costo		€ 1.185,00
installazione tetto piatto			
Struttura supporto*		200	
Accessori montaggio, cavi*		97	
	costo		€ 297,00

(*) opzionale o variabile

energy storage

Analisi: scelta batterie

Esistono varie tecnologie di batterie per lo storage fotovoltaico:

- *Batterie al piombo*: economiche (vari tipi: AGM, GEL, tubolare ...) nota: le batteria per automobile NON sono adatte ad applicazioni PV.
- Batterie al litio: In rapido sviluppo, anche per le richieste nel settore locomozione. (vari tipi: Lithium, LiFePO4...)
- Supercondensatori; Nuova tecnologia, fascia elevata.

Esempio (Faam, da https://www.iorisparmioenergia.com):

Tochologia	Dro	Cicli Tensione		Codice Capacità		Capacità utile prevista**			
Tecnologia	Pro	@DOD	nominale	Codice	nominale	12 V*	24 V*	48 V*	
GEL	Misure compatte Nessuna manutenzione	1000	12 V	FLG12-100	100 Ah	0,6 kWh	1,2 kWh	2,4 kWh	
GEL	Prezzi economici	@50%	12 V	FLG12-200	200 Ah	1,2 kWh	2,4 kWh	4,8 kWh	
Tubolare	Nessuna manutenzione Elevato nr. cicli di scarica	2000	12 V	FTG12-100	100 Ah	0,6 kWh	1,2 kWh	2,4 kWh	
GEL	• Lunga vita attesa	@50%	12 V	FTG12-150	150 Ah	0,9 kWh	1,8 kWh	3,6 kWh	
Litio Ferro	Elevata profondità di scarica	3000@80%	12 V	ULT12-100	100 Ah	0,9 kWh	1,8 kWh	3,6 kWh	
Fosfato	BMS integrato 48V Compatibili con inverter	6000 @80% 48 V	PYL-2.4	50 Ah			2,4 kWh		
	ibridi serie VM III e serie MAX		46 V	BAT-5KWH-W	86 Ah			5,0 kWh	
	 Vita attesa di oltre 40 anni Profondità di scarica al 99% 		12 V	SIR0.46-12	38 Ah	465 Wh			
Super	Compatibile con tutti i	Oltre	12 V	SIR1.00-12	83 Ah	1,0 kWh			
condesatore KiloWatt Labs	caricabatterie ed inverter • Altissima velocità di carica e	un milione	24 V	SIR3.00-24	125 Ah		3,0 kWh		
Sirius	scarica • T servizio da -30° a +80°C	@99%	48 V	SIR3.55-48	74 Ah			3,55 kWh	
	• Garanzia 10 anni		48 V	SIR7.10-48	148 Ah			7,10 kWh	

I parametri più importanti per una valutazione tecnico-economica dello storage sono:

- **Numero cicli**. Ovvero vita attesa della batteria, nelle applicazioni solari un ciclo equivale a un giorno. 1000 cicli == circa 3 anni Funzione anche del DOD.
- Profondità di carica (DOD): capacità utile rispetto alla nominale.
- Costi: analizzare il costo iniziale, il costo per kWh, il costo in 20 anni (vita dell'impianto).

Verificare sempre le specifiche del costruttore prima di scegliere una batteria.

Nota: attenzione alle truffe, soprattutto per corrispondenza, sono molto comuni con le batterie al Litio. Verificate sempre i commenti degli utenti, specie se trovate offerte a prezzi troppo bassi.

Quando si usano batterie (soprattutto acido ma anche litio) in serie per aumentare la tensione (esempio 12+12=24V) è opportuno usare un dispositivo che garantisca l'equilibrio:

Charge Battery Balancer 30,53 € senza Bluetooth

Analisi: dimensioni dello storage

Cerchiamo di stabilire dei criteri razionali per valutare lo storage richiesto.

Valutiamo l'energia solare (**E**_{solare}) prevista per il nostro impianto. Consideriamo **2 kWp** (slope 50°, azimut 45°): da PVGIS otteniamo (usiamo un fattore di 0.8 per le perdite dello storage)

```
2900 kWh — produzione media annua => 6,4 kWh/day (media annua)
146 kWh — produzione mese Dicembre => 3,8 kWh/day (Dicembre)
342 kWh — produzione mese Luglio => 8,8 kWh/day (Luglio)
```

Prendiamo in considerazione i consumi:

- *Costanti* abbiamo un plafond fisso dovuto alle apparecchiature sempre accese o in standby: antifurto, WiFi, TV etc...
- *Schedulabili*: sono i consumi che possono essere spostati nella fascia diurna (autoconsumo), o cambiando abitudini o, meglio, tramite automatismi. Esempi: Scaldabagno, Lavatrice, Lavapiatti, irrigazione etc.
- *Random*: sono i consumi che possono avvenire in qualunque momento del giorno e della nette e non possono, per loro natura, essere schedulati. Esempi: luci, forno ed elettrodomestici di cucina, frigorifero, aria condizionata/riscaldamento, ventilatori, PC etc.

La energia richiesta allo storage ($E_{from\text{-torage}}$) è, considerando una media di 5 ore di insolazione: $E_{from\text{-torage}} = 19/24~E_{costante} + 19/24~E_{random}$

La energia disponibile per lo storage ($E_{to\text{-storage}}$) è, considerando sempre 5 ore di insolazione ed indicando con E_{solare} l'energia prodotta in un giorno:

$$E_{to\text{-storage}} = E_{solare} - E_{schedulabile} - 5/24 \ E_{costante} - 5/24 \ E_{random}$$

Questi consumi possono essere valutati a priori, usando i dati di placca degli elettrodomestici e considerando le abitudini di uso. Per semplificare i calcoli si possono usare dei tool online, come il <u>Trojan Battery Renewable Energy Sizing Calculator</u>.

Oppure i consumi possono essere valutati sperimentalmente, misurando per un periodo (e.g. un mese, meglio se ripetuto: estate / inverno) i consumi effettivi ripartiti per tipologia.

A questo scopo ho comprato un certo numero di <u>prese smart</u> (8.82 €) per i principali elettrodomestici. Queste prese permettono di:

- conoscere i consumi istantanei e storici degli elettrodomestici
- valutare lo stato attuale ON/OFF dell'elettrodomestico
- sospendere/riprendere il funzionamento dell'elettrodomestico.
- in un secondo tempo saranno usate per la gestione automatica.

Equivalenti, ma con un <u>diverso fattore di forma</u> (14.73 €), questo meter è adatto ad un'installazione fissa all'interno delle prese esistenti.

In tutti i casi TuyaDAEMON salva i dati in un DB e possono essere agevolmente elaborati per ottenere le sintesi desiderate.

DIY progetto **D**: adding storage

1. Scelta batteria

Un veloce criterio alternativo per valutare il fabbisogno di storage prende in considerazione l'energia prodotta e la quota di autoconsumo, Dati di partenza: PV 1kWp, slope 50°, energy 1450 kWh/year. La produzione giornaliera media è di 3,9 kWh (December 2,4 kWh, July 5,5 kWh).

Questa tabella mostra l'energia extra (escluso l'autoconsumo) disponibile per lo storage:

autoconsumo		storage [kWh]					
autoconsumo	avg	Dicember	July				
0,00%	3,9	2,4	5,5				
10,00%	3,51	2,16	4,95				
20,00%	3,12	1,92	4,4				
30,00%	2,73	1,68	3,85				
40,00%	2,34	1,44	3,3				
50,00%	1,95	1,2	2,75				
60,00%	1,56	0,96	2,2				
70,00%	1,17	0,72	1,65				
80,00%	0,78	0,48	1,1				
90,00%	0,39	0,24	0,55				
100,00%	0	0	0				

Un valore ragionevole per l'autoconsumo è tra 50 e 70 percento, quindi resta energia disponibile per 1..2 kWh di storage (media). Ovviamente più storage si ha e meglio è, ma è sempre un investimento importante.

Io scelgo di cominciare con 1kWh di storage per ogni modulo (1000 Wp). Se non riesco a raggiungere il 70% di autoconsumo aumenterò lo storage in un secondo tempo: è quindi importante usare uno storage che consenta l'incremento aggiungendo batterie in parallelo.

Per avere 1 kWh di storage utile, la capacità della batteria varia a seconda della tecnologia (24 V è imposto dall'inverter scelto):

batterie al piompo (DOD 50%): 24V – 83 Ah batterie al Litio (DOD 80%): 24V – 52 Ah Supercondensatori (DOD 99%): 24V – 40 Ah

Esempi (alcuni prezzi sono netti perché l'IVA sulle batterie, in Italia, può essere 22% o 10%):

2x Batteria AGM Deep Cycle, 12 V 100Ah (SLC 100-12S)

295 € + tasse + trasporto

output current: max: 60A

10 ÷12 Years of expected lifetime

peso: 2x28 Kg

2x Batteria AGM Deep Cycle, 12 V 100Ah Prime

324 € + tasse + trasporto

cicli: 300 (100% DOD) 700 (50% DOD) 1600 (30%DOD)

peso: 2x33 Kg

Batteria <u>LiFePO4 24V 60 Ah</u> corrente scarica 40A (960 W) max 4 serie/parallelo (BMS limit), M8 cicli > 3000

peso: 14 Kg

Alimentatore rete incluso

519,63 €

Batteria <u>LiFePO4 24V 54 Ah</u> 690 € + tasse +trasporto

Corrente di carica consigliata/max: 10,8A / 27A

cicli > 3000 (DOD = 80%)

max 2 serie/parallelo (BMS limit), M8

Monitoraggio Bluetooth 4.0 tramite APP Android e IOS

peso: 14 Kg

2 x Accumulo a <u>supercondensatori Sirius</u> 500Wh 12V

1070 € + tasse + trasporto

Compatibile carica AGM carica/scarica max: 40A / 40A

DOD = 99%vita > 40 anni. peso: 2x11 Kg

La scelta è esclusivamente basata su considerazioni soggettive ed economiche. Sicuramente i supercondensatori sono alla lunga i più convenienti, ma sono anche la soluzione con il maggior costo iniziale. La previsione è una diminuzione dei costi nei prossimi anni.

Il processo di carica di una batteria è generalmente suddiviso in 3 fasi: rapida, a tensione costante, di mantenimento.

Nota: Equalizing charge è per le batterie al piombo, una volta al mese.

(from MC2440N10 documentation)

I valori che individuano ogni step dipendono dalla tensione e dalla tecnologia della batteria, ed in

genere sono modificabili dall'utente (verificare sempre i datasheet della batteria e del controller usati):

		L	ead-acid ba	ttery /BAT/ B1			
System Volt	12V s	system	24Vs	system	48Vs	48Vsystem	
Float charging Volt	Default 14.4V	Adjustable range 13-15V	Default 28.8V	Adjustable range 26-30V	Default 57.6V	Adjustable range 52-60V	
Discharge cut-off Volt	Default 10.7V	Adjustable range 9.5-11V	Default 21.4V	Adjustable range 19-22V	Default 42.8V	Adjustable range 38-44V	
Discharge recovery Volt	Default 12.6V	Adjustable range 11.5-13V	Default 25.2V	Adjustable range 23-26V	Default 50.4V	Adjustable range 46-52V	
		Ternary I	ithium batter	y /LIT1/ B2			
System Volt	12V system 3 strings		24V system 7 strings		48V system 13 strings		
Float charging Volt	Default 12.6V	Unadjustable	Default 29.4V	Unadjustable	Default 54.6V	Unadjustable	
Discharge cut-off Volt	Default 9V	Adjustable range 9-10.5V	Default 21V	Adjustable range 21-24.5V	Default 39V	Adjustable range 39-45.4V	
Discharge recovery Volt	Default 10.5V	Adjustable range 10.5-11.7V	Default 24.5V	Adjustable range 24.5-27.3V	Default 45.4V	Adjustable range 45.5-50.7V	
		Lithium iron	phosphate b	pattery /LIT2/	B3		
System Volt	12V syste	em 4 strings	24V system 8 strings		48V system	n 16 strings	
Float charging Volt	Default 14.6V	Unadjustable	Default 29.2V	Unadjustable	Default 58.4V	Unadjustable	
Discharge cut-off Volt	Default 11.8V	Adjustable range 11.8-12.5V	Default 23.6V	Adjustable range 23.6-25V	Default 47.2V	Adjustable range 47.2-50V	
Discharge recovery Volt	Default 12.5V	Adjustable range 12.5-13.5V	Default 25V	Adjustable range 25-27V	Default 50V	Adjustable range 50-54V	

(from <u>Demura controller</u>)

2. DIY storage

Occorre aggiungere al progetto C gli elementi in figura: il pacco batterie (con sezionatore e fusibile) ed il charge controller. L'inverter preesistente non è più collegato ai pannelli ma è collegato alla batteria.

Lo schema è sostanzialmente identico a quello proposto dal costruttore, a parte interruttori e protezioni (*spesso imposte dalle norme locali*).

(from GTN-1000LIM24 documentation)

MPPT solar controller

Questo modello è stato scelto, tra i vari controller disponibili, per il buon rapporto prezzo/prestazioni e per la sua interfaccia di comunicazione ben documentata.

Battery controller <u>SRNE MC2440N10</u>

MPPT: 26... 92 V battery 24V => 1100W Carica a 3 fasi

User manual.

TLL serial port, modbus protocol.

<u>12V-42V DC Circuit Breaker</u> Fusibile 100A 8,55 € Connessioni 6M

Capicorda (10 pz):

SC10-6	breaker (7AWG)	2,62 €
SC10-8	battery (7AWG)	2,93 €

Cavo controller/battery/inverter consigliato nel manuale del controller (10 mm2 - 7AWG)

<u>AWG7 - 10 mm²</u>, 2 m (rosso + nero, indicativo)

25,67€

103 €

Riepilogo costi progetto D – storage 1200 kWh (utile)

	658 €
35	
103	
520	
	103

(*) opzionale o variabile

https://www.aliexpress.com/item/1005004454549645.html

PV: 30-50 V 1440W 24 V 60A: 29,90 + 21,50

24 V, 60A, PV: 50 V, 1500 W

https://it.aliexpress.com/item/1005001967080814.html

https://it.aliexpress.com/item/1005004417112924.htm (wifi, 60A) 71 € batt: GEL Flooded Lithium

https://it.aliexpress.com/item/32628136007.html

Pb, Li battery balancer (12+12) + WiFi

 $\underline{https://it.aliexpress.com/item/1005002846785539.html}$

note sugli impianti ad isola

<u>Negli impianti 'a isola'</u> occorre che i carichi siano connessi all'inverter (e non alla rete). Quindi l'inverter deve essere dimensionato per il totale carico domestico. Oltre a complicare l'installazione, questo comporta l'impossibilità di semplici estensioni modulari.

Un vantaggio è che, essendo isolati dalla rete, non sono necessari contratti con il gestore.

La priorità, in molti inverter, è definibile dall'utente e determina il modo di funzionamento (nota: di solito batteria opzionale)

priorità solare, poi rete: batteria solo per backup. Funzionalità UPS priorità solare, poi batteria, poi rete: analogo a on grid, senza funzione UPS.

Esempio: inverter UPS 1000W Axpert VP-1000-12

off-grid UPS hybrid PWM inverter input Max 55V Max 50A Max 600W (PWM) 2P3S output 230VAC, 1000W battery: 12V charge Max 50A

UPS 10/20ms transfert time

Costo 240 €

Sistema commerciale: 1,5 kWp, 2.4 kWh storage, inverter 3kWh (off grid):

note:

- Questo sistema 'ad isola' usa un <u>inverter PWM 'ibrido'</u> (che include il carica batterie).
- Può funzionare come UPS (priorità rete) con 10/20 ms di intervento.
- I carichi CA sono connessi all'inverter e non possono superare la sua potenza (3 kW).
- 2 x <u>batterie AGM</u> 12V, 200A per 4,8 kWh (utili 2.4 kWh)
- L'inverter deve essere collegato alla centralina di casa da 2 cavi a 220 (AC in e AC out).
- Non parallelabile (non espandibile).

■ Costo: 2209 €

■ Costo per kWp AC/DC).
1472 € (+ supporto pannelli + cavi

Per progetti UPS DIY può essere utile questo deviatore manuale/automatico (8 ms):

commuta in caso di mancanza di tensione principale su backup.

2 poli, 230V, 60/100/125 A

28,07€

Strategia di ottimizzazione dei consumi

Alcuni consumi possono essere rinviati nel tempo ed essere eseguiti solo quando è disponibile dell'energia solare (ricarica batterie, lavastoviglie) altri no.

- 1) Dotiamo i maggiori elettrodomestici di plug-meter ad esempio il plug-meter già visto.
- 2) In queste condizioni un elettrodomestico può essere in 4 stati

Plug IOT	Switch	Status	Power (W)
OFF	OFF	disabled	0
OFF	ON	ready	0
ON	OFF	off	0
ON	ON	running	Χ

- 2) Dividiamo gli elettrodomestici in due categorie: 'interrompibili' e 'non_interrompibili' sia in base alle caratteristiche costruttive dei dispositivi che in base alle nostre esigenze: scaldabagno, lavapiatti sono interrompibili, forno, frigorifero sono 'non interrompibili'
- 3) Diamo un indice di interrompibilità, chimato 'costo' a tutti gli elettrodomestici: 0 per i non interrompibili, oppure un numero più elevato tanto più bassa è la loro priorità: lavapiatti 100; scaldabagno 500
- 4) Associamo anche ad ogni elettrodomestico un 'consumo', in WATT, pari al suo consumo medio (questo può essere definito 'una tantum' dall'utente o essere gestito in modo automatico e dinamico).
- 5) Esiste un indice 'disponibilità' memorizzato.

Algoritmo per un'ottimizzazione dinamica:

A1) Se la potenza (fotovoltaico_max – fotovoltaico_attuale) è maggiore del 'consumo' del dispositivo con costo immediatamente superiore alla 'disponibilità', allora la disponibilità cresce di uno step mettendo in ON tutte le prese IOT con costo < disponibilità

A2) Se la potenza assorbita da rete è maggiore dell'assorbimento dell'elettrodomestico 'running' con il costo più alto, allora la disponibilità decresce, mettendo in off tutte le prese IOT con costo > disponibilità

Gli elettrodomestici interrompibili commutano così tra 'ready' e 'running' ottimizzando i consumi.

Problemi:

- 1) possibilità di 'race'
- 2) alcuni elettrodomestici potrebbero non essere mai attivati (e.g. brutto tempo)
- 3) Un telecomando a pulsanti può essere usato per 'forzare' lo stato 'ON' degli switch IOT.

Riferimenti

http://www.cvsperoni.it/index.php/collegamento-dellimpianto-solare-alla-linea-elettrica/

https://www.electroyou.it/admin/wiki/schemi-fotovoltaici-in-bt

https://luce-gas.it/guida/rinnovabili/fotovoltaico-fai-da-te

 $\underline{https://www.ediltecnico.it/85611/come-calcolare-la-distanza-minima-di-installazione-di-file-di-pannelli-fotovoltaici/}$