Critic on Galerkin-Wavelet Solution to Strum-Louisville

Daniel Beatty

September 18, 2003

Example ODE Strum-Louisville

$$Lu(t) = -\frac{d}{dt}(a(t)\frac{du}{dt})b(t)u(t) = f(t) \ \forall t \in [0,1]$$

Dirichlet Conditions of u(0) = u(1) = 0

Properties:

- 1. "a" is a continuous species
- 2. L may be variable coefficient differential operator.
- 3. L is uniformly elliptic
- 4. Finite Constant C_1 , C_2 and C_3 exists such that $0 \le C_1 \le a(t) \le C_2$ and $0 \le b(t) \le C_3$.

For Galerkin method we suppose that $\{v_j\}_j$ is a complete orthonormal system for $L^2[(0,1)]$ and that every v_j is C^2 on [(0,1)] and satisfies $v_j(0) = v_j(1) = 0$

- There is a finite set Λ of indices j
- Subspace $S = \text{span } \{v_i : j \in \Lambda\}$

The goal is to find the approximation to the solution u of Lu(t) in the form $u_s = \sum_{k \in \Lambda} x_k v_k \in S$ such that x_k is a scalar and is chosen such that u_s behaves as a true solution on S.

1 Galerkin Method

Definition: The Galerkin method supposes that a complete orthonormal system $\{v_j\}_j$ is defined on $L^2([0,1])$ and every v_j is C^2 on [0,1]. The boundary conditions of the v_j is typically defined as well. The solution approximation is then defined on the span of this orthonormal system. Example:

 $u_s = \sum_{k \in \Lambda} (x_k v_k) \in S$ such that S is a span of $v_j : j \in \Lambda$, and x_j is a scalar. The catch is that u_s should behave as true solution a system of linear equations. The linear equations are is the implicit set of equations for solving a PDE or ODE.

Frazier takes this one step further to show a parallel from Galerkin to a conventional implicit form. First he shows:

- $\langle Lu_s, v_j \rangle = \langle f, v_j \rangle \ \forall j \in \Lambda \text{ such that } \langle f, g \rangle = \int_0^1 f(t)g(t)dt$
- Furthermore: $\langle L(\sum_{k\in\Lambda} x_k v_k), v_j \rangle = \langle f, v_j \rangle \ \forall j \in \Lambda$ leading to
- $\sum_{k \in \Lambda} \langle Lv_k, v_j \rangle x_k = \langle f, v_j \rangle \ \forall j \in \Lambda$

The final connection is that each element of a matrix A defined $A = (a_{j,k})_{j,k \in \Lambda}$ is a scalar defined by $\langle Lv_k, v_j \rangle$.

- x is a vector $(x_k)_{k \in \Lambda}$
- y is a vector $(y_k)_{k\in\Lambda}$
- A is a matrix with rows and columns indexed by Λ such that $A = (a_{j,k})_{j,k \in \Lambda} = \langle Lv_k, v_j \rangle$

With Galerkin, for all subsets in Λ we obtain an approximation $u_s \in S \to u$. This is done by solving Ax = y and using x to determine u_s .

Wavelets are chosen as a basis to ensure that the condition number is near unity and the matrix A becomes sparse.

- 1. Frazier modified wavelet system for $L^2(R)$ which is also complete orthonormal system $\{\psi_{j,k}\}$ such that $(j,k) \in \Gamma$ and Γ is a certain subset of $Z \times Z$ that we do not specify.
- 2. Scale of $\psi_{j,k}$ is 2^{-j} , and concentration is at or near $2^{-j}k$ and 0 elsewhere.
- 3. Near boundary points are substantially modified. $\forall (j,k) \in \Lambda, \ \psi_{j,k} \in \mathbb{C}^2$ and satisfies:
 - Boundary conditions: $\psi_{j,k}(0) = \psi_{j,k}(1) = 0$
 - Key Estimate $g = \sum_{jk} c_{jk} \psi_{jk}$
 - Norm Equivalence: $C_4 \sum_{ik} 2^{2j} |c_{j,k}|^2 \le \int_0^1 |g'(t)|^2 dt \le C_5 \sum_{ik} 2^2 |c_{ij}|^2$
- 4. Standard Scale and Translation Rule $\psi_{j,k}(t) = 2^{j/2}\psi(2^{j}t k)$
- 5. Chain Rule Applies to the Standard Scale and Translation rule: $\psi'_{j,k}(t) = 2^j 2^{j/2} \psi'(2^j k) = 2^j (\psi')_{j,k}$
- 6. Modest convincing of derivative identity of $\psi = \psi'$ and Norm Equivalence.
- 7. Equivalent wavelet form

•
$$u_s = \sum_{k \in \Lambda} x_k v_k \in S$$

•
$$u_s = \sum_{(j,k)\in\Lambda} x_k \psi_{j,k} \in S$$

•
$$\sum_{(j,k)\in\Lambda} \langle L\psi_{j,k}, \psi_{l,m} \rangle = \langle f, \psi_{l,m} \rangle \ \forall (l,m) \in \Lambda$$

•
$$A = [a_{l,m;j,k}]_{(l,m)(j,k)\in\Lambda} = \langle L\psi_{j,k}, \psi_{l,m} \rangle$$

Let L be uniformly elliptic Strum-Liouville operator (i.e. an operator as defined in equation "a" satisfying relation "b". Suppose $g \in L^2([0,1])$ is C^2 on [0,1] and satisfies g(0) = g(1) = 0, then $C_1 \int_0^1 |g'(t)|^2 df \le \langle Lg,g \rangle \le (C_2 + C_3) \int_0^1 |g'(t)|^2 dt$ where C_1 , C_2 and C_3 are the constants in the relation "b".

"a"
$$Lu(t) = \frac{d}{dt}(a(t)\frac{df}{dt}) + b(t)u(t) = f(t)$$
 s.t. $u(0) = u(1) = 0$

"b"
$$0 \le C_1 \le a(t) \le C_2$$
 and $0 \le b(t) \le C_2$

"c"
$$M = D^{-1}AD^{-1}$$
 such that $D = [d_{lm,j,k}]_{(l,m)(j,k)\in\Delta}$ and

$$d_{l,m,j,k} =$$

"d"
$$C_4 \sum_{ik} 2^{2j} |c_{j,k}|^2 \le \int_0^1 |g'(t)|^2 dt \le C_5 \sum_{jk} 2^2 |c_{ij}|^2$$

Let L be a uniformly elliptic Strum-Liouville operator. Let $\{\psi_{j,k}\}_{(j,k)\in\Gamma}$ be a complete orthonormal system for $L^2([0,1])$ such that each $\psi_{j,k}$ is C^2 , satisfies $\psi_{j,k}(0) = \psi_{j,k}(1) = 0$, and such that the norm equivalence holds. Let Λ be a finte subset of Γ . Let M be the matrix defined "c". Then the condition number of M satisfies:

$$C_{\#}(M) \le \frac{(C_2 + C_3)C_5}{C_1C_4}$$

for any finite-set Λ , where C_1 , C_2 , and C_3 are the constants in relation "b" and C_4 and C_5 are the constants in relation "d".

References

[1] Michael W. Frazier An Introduction to Wavelets to Wavelets Through Linear Algebra copyright 1999 by the Springer-Verlag New York, Inc