Домашнее задание по алгебре №2

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

Найдите все левые смежные классы и все правые смежные классы группы A_4 по подгруппе $H = \langle \sigma \rangle$, где $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$. Является ли подгруппа H нормальной в группе A_4 ?

Решение. $\sigma = \tau_{12} \cdot \tau_{34} \in A_4$. Заметим, что $\langle \sigma \rangle = \{id, \sigma\}$, т.к. $\begin{cases} \sigma^{2k} = id \\ \sigma^{2k+1} = \sigma \end{cases}$

Для начала найдем все элементы группы A_4 (их $\frac{4!}{2}=12$):

$$a_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, a_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}, a_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} a_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix},$$

$$a_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, a_{6} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, a_{7} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, a_{8} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix},$$

$$a_{9} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, a_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, a_{11} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, a_{12} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix},$$

 $|H|=2\Rightarrow |L_i|=|R_i|=2$ для всех $i=\{1,...,12\}$, где L_i – левый, а R_i – правый смежные классы i-ого элемента A_4 .

1.
$$L_1 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \right\}; R_1 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \right\}$$

2.
$$L_2 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \right\}; R_2 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \right\};$$

3.
$$L_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \right\}; R_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \right\};$$

4.
$$L_4 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \right\}; R_4 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \right\};$$

5.
$$L_5 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \right\}; R_5 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \right\};$$

6.
$$L_6 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \right\}; R_6 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \right\};$$

7.
$$L_7 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \right\}; R_7 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} \right\};$$

8.
$$L_8 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} \right\}; R_8 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} \right\};$$

9.
$$L_9 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \right\}; R_9 = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \right\};$$

10.
$$L_{10} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \right\}; R_{10} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \right\};$$

11.
$$L_{11} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \right\}; R_{11} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \right\};$$

12.
$$L_{12} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \right\}; R_{12} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \right\};$$

Заметим, что существуют такие a_i для которых $a_iH \neq Ha_i \Rightarrow$ подгруппа H – ненормальна.

Задание 2.

Пусть SL_2 – группа всех целочисленных (2×2) -матриц с определителем 1. Докажите, что множество

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \pmod{3}; \ b \equiv c \equiv 0 \pmod{3} \right\}$$

является нормальной группой в $SL_2(\mathbb{Z})$.

Решение. Обозначим нашу группу за G. Рассмотрим произвольную матрицу из $G: g = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. Так как G – группа, то там лежит и обратная матрица:

 $g^{-1}=inom{x_4-x_2}{-x_3-x_1}$. По определению нашей группы определители обоих матриц равны 1: $x_1x_4-x_2x_3=1$. Покажем, что $gHg^{-1}\subseteq H$, где H – подгруппа из условия. Рассмотрим произвольный элемент из H: $h=inom{a}{c}$ d Таким образом:

$$ghg^{-1} = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x_4 & -x_2 \\ -x_3 & x_1 \end{pmatrix} = \begin{pmatrix} x_1a + x_2c & x_1b + x_2d \\ x_3a + x_4c & x_3b + x_4d \end{pmatrix} \cdot \begin{pmatrix} x_4 & -x_2 \\ -x_3 & x_1 \end{pmatrix}$$

Используя определения нашей группы и ее подгруппы:

- 1. $(x_1a + x_2c)x_4 (x_1b + x_2d)x_3 = x_1x_4a + x_2x_4c x_1x_3b x_2x_3d \equiv x_1x_4a x_2x_3d \equiv (1 + x_2x_3)a x_2x_3d \equiv a + x_2x_3(a d) \equiv a \equiv 1 \pmod{3}$
- 2. $-(x_1a+x_2c)x_2+(x_1b+x_2d)x_1 = -x_1x_2a-x_2x_2c+x_1x_1b+x_2x_1d \equiv x_1^2b-x_2^2c \equiv 0 \pmod{3}$
- 3. Нижняя строка получившейся матрицы тоже удовлетворяет свойствам выше. Проверяется аналогично двум случаям выше заменой соответствующих индексов.

Получили, что подгруппа H нормальна по одной из формулировок нормальности(их несколько).

Задание 3.

 $Haй\partial ume$ все гомоморфизмы из группы \mathbb{Z}_{12} в группу \mathbb{Z}_{16} .

<u>Решение.</u> Заметим, что если мы будем знать $\varphi(1)$, то мы сможем вычислить $\varphi(x) = x\varphi(1)$. Довольно очевидно, что 0 перейдет в 0. Но в \mathbb{Z}_{12} $12 = 0 \Rightarrow \varphi(0) = \varphi(12) = 12\varphi(1) = 0 \pmod{16}$. Различных $\varphi(1)$ по модулю 16 немного, а именно: $\{0; 4; 8; 12\}$. В силу первого предложения можно сказать, что мы нашли все гомоморфизмы.

Задание 4.

Перечислите все с точностью до изоморфизма группы, каждая из которых изоморфна любой своей неедининой подгруппе.

Решение. Заметим, что группа – не конечна (разные мощности – нет биекции). Пусть наша группа G. Тогда рассмотрим ее подгруппу, порожденную элементом g: $H = \langle g \rangle$. H циклична и бесконечна. Но по условию $G \simeq H$. Следовательно, G тоже циклична и бесконечна. Как мы знаем все бесконечные циклические группы изоморфны $\mathbb{Z}(k\mathbb{Z})$.