Second Order Pseudolikelihood Learning in Relational Domain

Krishna Kumar Tiwari Under the guidance of Dr.V. Vijaya Saradhi

> Department of Computer Science Indian Institute Of Technology Guwahati k.tiwari@iitg.ernet.in

> > Dec 14, 2019

- Introduction
- 2 Graphical Models
- Approximation Methods
- Relational Dependency Networks
- Second Order PL in RDN
- 6 Second Order RBC
- Experimental Results
- 8 Conclusion and Future Work

Traditional Vs. Relational Learning

Traditional Domain

- Instances follows *i.i.d* assumption.
- Homogeneous objects.

Statistical Relational Learning

- Violates i.i.d assumption.
- Heterogeneous objects and links.

Real World Data

- Structured, Semi structured, Unstructured.
- Heterogeneous objects and links.

Citation Database

Examples

citation database (HEP), Movie database (IMDB), Hypertext classification database (ProxWebKB)

Relational Learning Opportunities

- **Object Classification** Example, in citation database, predicting the topic of a paper.
- **Object Type Prediction** Predict whether a set of pages belong to conference paper, master's thesis or technical report.
- **Link Type Prediction** Predicting a paper is published in journal, conference or workshop.
- Predicting Link Existence— Given two papers are related or not.
- Link Cardinality Estimation— Predicting the number of citations of a paper.
- **Group Detection** In movie database, identifying groups of same type of movies.

Challenges

How to model relational data?

- Represent as graphs.
- Represent in multiple tables.
- Represent in terms of fist order logic statements.

Individual vs. Collective classification

- Individual classifiers assumes class label of related entities are independent.
- Collection classification uses related entities class label along with other attribute.

Logical vs. Statistical dependencies

- Logical : $A \rightarrow B$
- Statistical : Correlation(A, B) = 0.6

Graphical Models

Directed Models

- Does not allow cyclic dependencies among the attributes.
- Simple parameter estimation and structure learning technique.
- Relational Bayesian Networks.

Bayesian Networks

Graphical Models

Undirected Models

- Represent cyclic dependencies.
- Requires known network structure.
- Parameter estimation requires repeated inference over large values.
- Relational Markov Networks.

Markov Networks Smoking Cancer Asthma Cough

Relational Dependency Networks

- Approximate model.
- First model to learn autocorrelation.
- Simple structure learning and parameter estimation.

Approximation Methods

Assume data contains n samples of m dimensional vectors following *i.i.d*, sampled from a distribution p_{θ_0} with $\theta_0 \in \Theta \subset R^r$,

$$D = (X^1, X^n), X^i \in R^m,$$

Maximum likelihood estimator

MLF is defined as:

$$I_n(\theta;D) = \sum_{i=1}^n p_{\theta}(X^i) \qquad (1)$$

$$\widehat{\theta}_n^{ml} = \arg\max_{\theta_0 \in \theta} I_n(\theta; D)$$

Pseudolikelihood

PL is defined as:

$$pl_n(\theta; D) = \sum_{i=1}^{n} \sum_{j=1}^{m} log p_{\theta}(X_j^i | X_{-j}^i).$$
(2)

Where subscript represents dimension and $X_{-i}^{i} = \{X_{k}^{i} : k \neq j\}$.

Approximation Methods

Composite Likelihood

- Composite likelihood is a generalization of pseudolikelihood function.
- Composite likelihood function is defined as :

$$cl_n = \sum_{i=1}^{n} \sum_{j=1}^{k} logp_{\theta}(X_{A_j}^i | X_{B_j}^i).$$
 (3)

 $A \neq \emptyset = A \cap B$, where A and B represents the dimension set of the instance X.

- If $|A_i| = 1$ then composite likelihood represents pseudolikelihood.
- Dillon extended composite likelihood by introducing component weight and selection probabilities to make it stochastic composite likelihood.
- Variance of the model is minimum in case of full likelihood and maximum in pseudolikelihood.

Relational Dependency Networks

Data Graph $G_D = (V_D, E_D)$. V_D represents objects in the data graph and E_D represents relationship between these objects.

Figure: Data Graph

RDN represents a joint distribution over the values of the attributes in the data graph,

$$x = \left\{ \left\{ X_{v_i}^{t_{v_i}} : v_i \in V \text{ s.t. } T(v_i) = t_{v_i} \right\} \cup \left\{ X_{e_j}^{t_{e_j}} : e_j \in E \text{ s.t. } T(e_j) = t_{e_j} \right\} \right\}$$

Approximation of p(x) is done by pseudolikelihood to learn the parameters.

$$PL(G_D; \theta) = \prod_{t \in T} \prod_{X_i^t \in X^t} \prod_{v: T(v) = t} p(x_{v_i}^t | pa_{X_{v_i}^t}; \theta) \prod_{e: T(e) = t} p(x_{e_i}^t | pa_{X_{e_i}^t}; \theta)$$
(4)

Model Graph $G_M = (V_M, E_M)$ represents probabilistic relationship between the attributes.

Figure: Model Graph

RDN uses relational learners to learn CPDs.

- Relational Bayesian Classifier (RBC)
- Relational Probability Tree (RPT)

Relational Bayesian Classifier

- Treats heterogeneous subgraphs as a homogeneous set of attributes multisets.
- Deals with multisets of different sizes. Ex. In case of citation database, considering publication dates of cited papers form multisets of varying size (e.g. {2002,2002,2006,2009}, {2004,2007,2009}).

Relational data representation

Homogeneous attribute representation

published	cited paper year	Author name	cited papers journal name	Number of pages
Yes	1988,2002,2004	Jennifer, David Jenson	JMLR, KDD	10
No	2001,2001,2000	D Koller, B Tasker	JMLR, JSTOR	6
Yes	1986,2000	Taskar, Abbele, Dephne	SIGCOM, ICDM, ILP, JMLR	11
No	1995,2002,2004, 2006,2009	Scuse, David	JAM, JSTOR	9
Yes	2009,2010	Stephne, koller	JMLR, JSTOR	12

Independent assumption among the values of set performs best.

Second Order PL in RDN

Motivation

- Choice of different order of likelihood object gives us different ways to approximate joint distribution p(x).
- In highly correlated environment it is better to deal with appropriate combination of attribute.

We define composite likelihood in RDN as :

$$cl(G_D; \theta) = \prod_{t \in T} \prod_{X_{A_i}^t \in X^t} \prod_{v: T(v) = t} p(X_{v_{A_i}}^t | p_{A_{x_{B_i}}^t}) \prod_{e: T(e) = t} p(X_{e_{A_i}}^t | p_{A_{x_{e_{B_i}}}^t})$$
(5)

Subject to the constraint:

$$A_i \neq \emptyset = A_i \cap B_i$$

Where A_i and B_i represents set of dimensions.

Second Order PL in RDN

We are denoting second order pseudolikelihood as $pl_2(G_D; \theta)$.

$$pl_{2}(G_{D};\theta) = \sum_{t \in \mathcal{T}} \sum_{X_{\{p,q\}}^{t} \in X^{t}}^{k} \sum_{v: \mathcal{T}(v) = t} p(X_{v_{A_{i}}}^{t} | pa_{X_{v_{B_{i}}}}^{t}) \sum_{e: \mathcal{T}(e) = t} p(X_{e_{A_{i}}}^{t} | pa_{X_{e_{B_{i}}}}^{t})$$
 (6)

Comparison with PL

- Generalization of PL in the context of RDN.
- Second order PL deals with pair of attributes.

Second Order Relational Learners?

Second Order RBC

- Initially we have set of attributes denoted as $A = \{X_1, X_2, \cdots, X_m\}$.
- Second order RBC makes all possible pair of attributes and denoted as P.

$$P = \{\{X_1, X_2\}, \{X_1, X_3\}, \cdots, \{X_{m-1}, X_m\}\}$$

 Second order RBC select elements from P which lead to the full likelihood denoted as set S.

Definition of set S

$$S = \{s_i : s_i \in P\} \tag{7}$$

Subject to the constraints:

$$\forall s_i, s_i \in S \ s_i \cap s_i = \emptyset \tag{7.a}$$

$$\cup_{i=1}^{|S|} s_i = A \tag{7.b}$$

Construction of set S

Exhaustive Search

Choose the subset from P which maximize the likelihood of the class.

$$S \equiv \underset{p \subseteq P}{\operatorname{arg \, max}} \ P(C|p) \tag{8}$$

Greedy Approach

• Assign score to all elements of set P.

$$score(p_i) = logP(C|p_i \in P) \equiv logP(C|\{X_i, X_i\})$$
 (9)

 Add maximum score elements of P to S by maintaining the constraints of equation (7).

Second Order PL in RBC

Second Order PL in RBC

According to modified second order PL,

$$P(C|\{a_1, a_2, a_m\}) \propto P(A|C) * P(C)$$

$$\equiv P(S|C) * P(C) = \prod_{i=1}^{|S|} P(s_i|C) * P(C)$$
(10)

Complexity Analysis

Second order RBC learning has three major components.

- Assignment of score to all elements of set P, it takes $O(|P| \times N)$, where N is number of subgraphs.
- Sorting of the scores, it takes $O(|P| \times log(|P|))$.
- Construction of set S takes $O(|P|^2)$

Overall asymptotic complexity of second order RBC is $O(|P| \times N)$.

Accuracy Comparison

Likelihood Comparison

Accuracy Comparison

Likelihood Comparison

Effect of Correlation

Accuracy vs. Correlation

Likelihood vs. Correlation

Our model performs better than existing RBC in highly correlated environment in both likelihood estimation as well as accuracy.

Effect of Autocorrelation

Accuracy vs. Autocorrelation

Likelihood vs. Autocorrelation

- Performs better in low to moderate autocorrelation and comparable in high autocorrelation environment.
- In high autocorrelation scenarios prediction is biased.

• Effect of Training Size

Accuracy vs. Training Size

Likelihood vs. Training Size

- Second order RBC takes more training data to learn the high correlation present in the data.
- Performs better than existing RBC in highly correlated environment in both likelihood estimation as well as accuracy.

Real World Data Results

Experiments on three real world data sets

- HEP Predict the topic of paper given paper attributes, author names and publisher.
- MSN Predict time stamp of mote to mote connections.
- **ProxWebKB** Predict the category of a web page given it's linked page categories.

HEP Data Set Result

Task

We want to predict the "acceptability" of a paper which is formed using paper citation degree and journal name.

Accuracy vs. Training Size

Likelihood vs. Training Size

Conclusion and Future Work

Conclusion

- We demonstrated the use of second order pseudolikelihood in the RDN learning.
- Extended RBC to second order setting.
- Shown improvements in highly correlated data sets both in parameter estimation and classification accuracy.

Future Work

- Making score function which will observe characteristic of test subgraphs.
- Selective models for Second order PL.
- Bias-variance analysis of the model

DMAP 2019!!

Thank You!