If $\langle x_0, y \rangle = \rho e^{i\theta}$, with $\rho \geq 0$, then

$$|\langle e^{-i\theta}x_0, y\rangle| = |e^{-i\theta}\langle x_0, y\rangle| = |e^{-i\theta}\rho e^{i\theta}| = \rho,$$

so

$$||y||^D = \rho = \langle e^{-i\theta} x_0, y \rangle, \tag{*}$$

with $||e^{-i\theta}x_0|| = ||x_0|| = 1$. On the other hand,

$$\Re\langle x, y \rangle \le |\langle x, y \rangle|,$$

so by (*) we get

$$\|y\|^D = \sup_{\substack{x \in E \\ \|x\| = 1}} |\langle x, y \rangle| = \sup_{\substack{x \in E \\ \|x\| = 1}} \Re \langle x, y \rangle,$$

as claimed.

Proposition 14.29. For all $x, y \in E$, we have

$$|\langle x, y \rangle| \le ||x|| ||y||^D$$

 $|\langle x, y \rangle| \le ||x||^D ||y||.$

Proof. If x = 0, then $\langle x, y \rangle = 0$ and these inequalities are trivial. If $x \neq 0$, since ||x/||x||| = 1, by definition of $||y||^D$, we have

$$|\langle x/||x||, y\rangle| \le \sup_{\|z\|=1} |\langle z, y\rangle| = \|y\|^{D},$$

which yields

$$|\langle x, y \rangle| \le ||x|| \, ||y||^D.$$

The second inequality holds because $|\langle x, y \rangle| = |\langle y, x \rangle|$.

It is not hard to show that for all $y \in \mathbb{C}^n$,

$$\begin{aligned} \|y\|_1^D &= \|y\|_{\infty} \\ \|y\|_{\infty}^D &= \|y\|_1 \\ \|y\|_2^D &= \|y\|_2 \,. \end{aligned}$$

Thus, the Euclidean norm is autodual. More generally, the following proposition holds.

Proposition 14.30. If $p, q \ge 1$ and 1/p + 1/q = 1, or p = 1 and $q = \infty$, or $p = \infty$ and q = 1, then for all $y \in \mathbb{C}^n$, we have

$$||y||_p^D = ||y||_q$$
.