

PERSONAL ASSISTANCE FOR SENIORS WHO ARE SELF-RELIANT

NALAIYA THIRAN PROJECT BASED LEARNING

on

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

A PROJECT REPORT

CHIDELLA ASRITHA	(720819104022)
DUNGALA MOHANA PRIYANKA	(720819104029)
KOLA PRAVALLIKA	(720819104058)
KURAPATI GOWTHAMI	(720819104060)

BACHELOR OF ENGINEERING IN COMPUTER SCIENCE AND ENGINEERING

HINDUSTHAN INSTITUTE OF TECHOLOGY

Approved by AICTE, New Delhi, Accredited with 'A' Grade by NAAC (An Autonomous Institution, Affiliated to Anna University, Chennai)

COIMBATORE – 641 032

November 2022

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	
1	INTRODUCTION	1
2	OBJECTIVE	2
3	IDEATION PHASE	
	3.1 Literature Survey	3
	3.2 Empathy Map	6
	3.3 Ideation	7
	3.4 Problem Statement	9
4	PROJECT DESIGN PHASE 1	
	4.1 Proposed Solution	10
	4.2 Problem Solution Fit	11
	4.3 Solution Architecture	12
5	PROJECT DESIGN PHASE 2	
	5.1 Customer Journey Map	13
	5.2 Solution Requirements	13
	5.3 Data Flow Diagrams	14
	5.4 Technology Stack	16
6	PROJECT PLANNING PHASE	
	6.1 Prepare Milestone and Activity List	18
	6.2 Sprint Delivery	19
7	PROJECT DEVELOPMENT PHASE	
	7.1 Project Development – Delivery of Sprint 1	20
	7.2 Project Development – Delivery of Sprint 2	23
	7.3 Project Development – Delivery of Sprint 3	25
	7.4 Project Development – Delivery of Sprint 4	26
8	CONCLUSION	27
Q	REFERENCES	28

ABSTRACT

In today's fast paced life, keeping track of all the events which has travel schedules is a tedious task. Though there are number of event reminder and calendar applications available for android, none of them supports dynamic reminders based on user's current location. All the current available applications give an event reminder before a fixed amount of time from the event start time. Also, in the current available apps, a user has to separately feed information about all the events with travel plans for which he/she wants to get reminders. A user can set a fixed time for notifications to be sent before the event occurs. This requires estimation of the time required for travel to reach the destination location from a fixed start location and accordingly set the notification time to avoid delays reaching the destination. This estimation goes wrong if user starts travelling from different start location. This could lead to delays or even completely missing the event. With my "Remind My Schedule" android application I am proposing a solution to the above problem. This application will send dynamic notifications based on user's current location, mode of travel, and importance of the schedule. App will automatically sync only those events which have travel information and send dynamic notifications. Notification will also include travel route information for users to start navigation. "Remind My Schedule" also provides the event specific location sharing among selected group of members to keep track of each other's whereabouts. The application has been implemented using Android and its services for the front end.

INTRODUCTION

There are bunch of schedule reminder android applications available today on play store providing static notification to user before a specified interval of time. The static notifications will not be proven to be useful when travel time for user is considerably large with respect to reminder set for fixed time. Also this could cause delays in arriving at event location or even missing an event. Remind My Schedule is a solution to the above problem. This is a location based reminder application which dynamically notifies user so that they can be on or before time for an event. The application extracts event details from Google calendar. The event details are assumed to be pre-entered by user in Google calendar, and then application synchronizes the data with Google calendar. It will run in background to access the user's current location and calculate travel time with respect to mode of travel selected by user. The application allows user to edit/modify each schedule to set the importance as well as mode of travel. Also user can do profiling for location access and reminder settings. Based on the provided details and policies set by user the application will intelligently notify user about the scheduled event. The notification sent to user also includes the travel information to start navigation. Remind My Schedule also has a very useful feature of location sharing among group of friends when they have common event. By using this feature a user can find out where their friends are with respect event location. Also it does not require texting or calling just to find out exactly where your friend is while they are driving or doing some other work

.

OBJECTIVE

The Objectives of the Project are: Sometimes elderly people forget to take their medicine at the correct time. They also forget which medicine He / She should take at that particular time. And it is difficult for doctors/caretakers to monitor the patients around the clock. To avoid this problem, this medicine reminder system is developed. An app is built for the user (caretaker) which enables him to set the desired time and medicine. These details will be stored in the IBM Cloudant DB. If the medicine time arrives the web application will send the medicine name to the IoT Device through the IBM IoT platform. The device will receive the medicine name and notify the user with voice commands.

CHAPTER-3 IDEATION PHASE

3.1 LITERATURE SURVEY

Ilkko et al4 proposed UbiPILL A Medicine Dose Controller of Ubiquitous Home Environment (2009), Home automation and wireless sensor network which have enhancing the quality of life by providing security, information and comfort. Here had discuss a centric home server with three main roles: use of existing Interfaces on registered systems for remote monitoring and Control, serving the surrounding system as a data gateway and Providing content adaptive user interfaces enhanced by Belongings of end-user client devices, the ubipill device had implemented to remind people for elder and for monitoring purposes ubipill and home server have been design to reliably monitor the medicine box activity by web browser. Kliem et al5 proposed Security and communication architecture for networked medical devices in mobilityaware eHealth environments (2012), Telemedicine concept is cost efficient and location autonomous monitoring system, the suitable and secured medical data can be transferred with different devices with attention towards security and privacy issue. Emergency situations need on the flutter network integration and data transmission fluctuating from domains like patients home, medical practices, ambulances and, hospitals, where each domain may parallel to a different authority so, mobility aware approach allowing out of the box medical device integration and authentication, and simultaneously fulfilling the typical security and privacy requirements of e-health environments. Parida et al3 proposed Application of RFID Technology for In-House Drug Management System (2012), RFID based technology have used to make drug management system, in this tracking of medicine can be done including emergency or regular medicine with or without RFID tag .the HF tag have assigning the user and by employing RFID reader along with camera and web based system to track the user. This system can be beneficial for the old age, less educated people. Clifton et al2 A Self-powering

Wireless Environment Monitoring System Using Soil Energy, proposed A largescale clinical validation of an integrated monitoring system in the emergency department (2013), In the integrated patient monitoring which include electronic patient data which generally have more amount challenges to acquire cope with artefact data with the help of algorithm, analyzing and communicating the resultant data for reporting to clinician, here in this demonstrated the machine learning technology embedded within healthcare information system which provide clinical benefits for improving patient outcomes in busy environments. Hamida et al6 proposed towards efficient and secure in-home wearable insomnia monitoring and diagnosis system (2013), Due to the evolution in technology it is now possible to specific timing monitoring here delivers an experimental estimation of communication and security protocols that can be used in in-home sleep monitoring and health care and highlights the most proper protocol in terms of security and overhead. Design Procedures are then derived for the distribution of effective in-home patients monitoring systems Ray et al7 proposed Home Health Hub Internet of Things (H3IoT)(2014), Health is vital part of life and it is quite necessary to give priority health related issue in which digitization helpful by using number of devices through the concept of IOT but due to heterogeneity and interoperability the concept of digitization for health care is neglected, here in this the best focus given to architecture framework for human health hub which have envision of usage of real life implementation. Shivakumar et al8 proposed Design of vital sign monitor based on wireless sensor networks and telemedicine technology(2014), Vital sign monitor can be implemented with Bluetooth technology which is embedded with sensor, the transmitter will include the application oriented smart phone enable with 3G or IEEE 802.11 i.e. wi fi based transmission. The data from transmitter will be sending to cloud for centralized monitoring takes place; the expert in remote place can view all patient data and in case of emergency can take appropriate action. Ajmal Sawand et al1 proposed Multidisciplinary approaches to achieving efficient and trustworthy eHealth monitoring systems(2014), The technological merging between IOT, wireless body area network and cloud computing have vital contribution in e health care which improve the quality of

medical care, basically patient centric monitoring play a role in e health care services which involve medical data collection, aggregation, data transmission and data analysis here entire monitoring lifecycle and essential services component have discus as well as design challenges in designing the quality and patient centric monitoring scheme along with potential solution. Huang et al8 proposed the intelligent pill box—Design and implementation (2014), the implementation of pill box has proposed by keeping the problems of old age people in mind to provide full medication safety. The pill box will remind the patient about timing by doing this drug abusing can be controlled. Al-Majed et al 10 proposed Home tele health by Internet of Things (IoT) (2015), The real time monitoring can be possible through IOT which helps in development of low cost medical sensing, communication and analytic devices which make quality of life, in case of density of messages there is fear of information degradation but by using proper algorithm we can resolve the problem and can make the low cost imaging, sensing and human computer interaction technology. Lin et al9 proposed A Self powering Wireless Environment Monitoring System Using Soil Energy (2015), The monitoring system can uses the selfpowering wireless environment with the help of renewable energy which can be beneficial in remote places where the power problem in wide manner, in this the system have demonstrated which will uses soil energy with carbon, zink electrodes. Moga et al11 proposed Embedded platform for Web-based monitoring and control of a smart home (2015), Present the low cost embedded platform for web based monitoring and controlling and the platform consist of distributed sensing and control network and touch screen to easy use interface to the user and remote web based access.

3.2 EMPATHY MAP

Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.3 IDEATION

Brainstorm & Idea Prioritization Template:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Problem Statement

A medicine reminder app designed for people who frequently forget to take their medications. You may also keep track of your appointments. Its parental feature distinguishes it from other apps on the market, allowing you to keep track of and remotely assist your loved ones who find it difficult to utilize such an app with their reminders.

Step-2: Brainstorm, Idea Listing and Grouping 1: BRAINSTORM

2: GROUP IDEAS

- >It should be implemented in smart watches or other wearable devices.
- >Set medication reminders once and it should be up to date.
- >Medicine name, Strength, dose should be displayed.
- >It should operated in offline mode also
- >Application should alert to refill the medicine

Step-2: Idea Prioritization

3.4 PROBLEM STATEMENT

A medicine reminder app designed for people who frequently forget to take their medications. You may also keep track of your appointments. Its parental feature distinguishes it from other apps on the market, allowing you to keep track of and remotely assist your loved ones who find it difficult to utilize such an app with their reminders

CUSTOMER PROBLEM STATEMENT:

>> I am shankar,

Age-48

I have low sugar and high blood pressure.

>> I am trying to:

remind to take injectable glucagon for low sugar And enalapril, lisinopril, perindopril and ramipril for high blood pressure

>>But:

lifestyle challenges, patient incompatibility, forgetting of medicine use, and nonexpert advice.

>>Because: Due to patient Forgot, it will risk health of patient.

>>Which makes me feel:

Worry about patients health for careless of taking medicine due to forgotten .

PROJECT DESIGN PHASE-1

4.1 PROPOSED SOLUTION

S.NO	Parameter	Description		
1	Problem Statement	Sometimes the elderly forgets to take their		
	(Problem to be solved)	medication at the appropriate time. They also		
		forget which medication He or she should		
		take at that time. It is also difficult for doctors		
		and caregivers to monitor patients around the		
		clock. This medicine reminder system was		
		created to address this issue. A user		
		(caretaker) app is created that allows him to		
		set the desired time and medicine.		
2	Idea / Solution	We present a smart Internet of Things-based		
	description	medication reminder system. The suggested		
		plan was specifically designed for the		
		Android operating system. We use a reminder		
		system for our system, which sounds an alarm		
		when it's time to take your medication.		
		Additionally, the user can set their medication		
		time using an android application. There will		
		be some features in the application that allow		
		the user to learn more specifics about their		
		medication. It keeps track of the medications,		
		allowing the user to adjust how much		
		medication to take within the application.		
3	Novelty / Uniqueness	It is an easy-to-use app that reminds users to		
		take their medications and get them refilled,		
		warns about drug interactions, and assists		
		caregivers in managing prescriptions for		
		loved ones.		
4	Social Impact /	I constructed these proto-personas, or names,		

	Customer Satisfaction	based on the research findings from the user
		interview. They would be crucial to the rest
		of the design process. All design decisions
		may be assessed and reevaluated using these
		personas, keeping the user and their
		perspective in mind.
5	Business Model	There is no one-size-fits-all answer when it
	(Revenue Model)	comes to business. The model you select will
		depend on your target market, business object
6	Scalability of the	where the user can set the time for their
	Solution	medication. There will be some features in
		the application that allow the user to learn
		more specifics about their medication. It
		keeps track of the medications, allowing the
		user to adjust how much medication to take
		within the application.

4.2 PROBLEM SOLUTION FIT

4.3 SOLUTION ARCHITECTURE

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- ❖ Medicine Remainders serve as good way to stay on track and uphold appropriate schedule.
- ❖ It helps in decreasing medication dispensing errors and wrong dosages.
- ❖ It is used to organize your medication doses for a certain length of time.

Solution Architecture Diagram:

PROJECT DESIGN PHASE-2

5.1 CUSTOMER JOURNEY MAP

Customer Journey Medicine Reminder ENTICE ENTER ENGAGE EXIT STEPS The surger to how fine customer experience. How do you want your business to reach users? ENTER ENGAGE EXIT The surger to how fine and included in the surger fine and included in the su

5.2 SOLUTION REQUIREMENTS

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- ➤ Medicine Remainders serve as good way to stay on track and uphold appropriate schedule.
- > It helps in decreasing medication dispensing errors and wrong dosages.
- > It is used to organize your medication doses for a certain length of time.

Solution Architecture Diagram:

5.3 DATA FLOW DIAGRAMS

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

User Stories

Use the below template to list all the user stories for the product

User Type	Functional Requireme nt(Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Senior citizen)	Caretaker	USN-1	As a user, I want to take Medicines on time and monitor my health	I want to Take Medicines On time	High	Sprint-1
Customer (Alzheime r patient)	Smart medicine box	USN-2	As a user, I want to take my tablets on time by voice command	I want to take my tabletson time by voice command	High	Sprint-1
Customer (Alzheime r patient)	Caretaker	USN-3	As a user, my patient needs to take medicines on time and monitoring the activity	My patient needs to take medicines on time	Medium	Sprint-2
Custome r (Mentally idled patient)	Caretaker	USN-4	As a user, my patient medication time and prescription should load in database for upcoming week	My patient medication time and prescription should be in database	Low	Sprint-4
Custome r (Disable d people's)	Smart medicine box	USN-5	As a user, I need to take my medicine in nearby places with light notification	I need to take my medicine in nearby places with light notification	Medium	Sprint-3

5.4 TECHNOLOGY STACK

TECHNICAL ARCHITECTURE:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Mobile App	HTML, CSS, JavaScript
			,Python
2.	Application Logic-1	Mobile App to enter the Medicine Details	HTML, CSS, JavaScript
		weekly	,Python
3.	Application Logic-2	Gets the medication data from database	IBM Watson IoT API
			Call data
4.	Application Logic-3	Converts the text to speech to	IBM Watson Assistant
		pronunciation for the user	
5.	Database	Medication time and tablets name on daily	MySQL
		and	
6.	Cloud database	Call the data IBM Cloudant is used and	IBM DB2, IBM Cloudant
		user login credentials	
7.	File Storage	App code and IoT credentials are stored	IBM Block Storage
		and API keys	
8.	External API-1	To get the medicine box status Open or not	IBM box status API
9.	External API-2	To get the login credentials in IBM DB2	Username and Password
			API
10.	Machine Learning Model	To convert the text into speech for voice	Text to speech
		commandthe tablet details	
11.	Infrastructure (Server /	To host the server and application	Cloud Foundry, Node Red
	Cloud)		

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology		
1.	Open-Source Frameworks	To develop the application interface, we use MIT App Inventor	MIT APP INVENTOR		
2.	Security Implementations	To secure the users login credentials and personal information	SHA-256, OWASP		
3.	Scalable Architecture	To scale the application database	IBM Auto scaling		
4.	Availability	To make use the application and data are available 24/7	IBM Cloud load balancer		
5.	Performance	To increase the performance the application inhosted in the highperformance instance	IBM instance		

PROJECT PLANNING PHASE

6.1 Prepare Milestone and Activity List

Product Backlog, Sprint Schedule, and Estimation

Use the below template to create product backlog and sprint schedule

Sprint	print Functional User Story User Story / Task Requirement (Epic) Number		Story Points	y Points Priority	Team Members	
Sprint-1	Set Alarm	USN-1	As a user, I can set an alarm to alerting a medicine through medicine remainder system	10	High	Ch Asritha
Sprint-1		USN-2	As a user, I can Activate 10 High and Deactivate the alarm		High	D.M.Priyanka
Sprint-2	Notification	USN-3	As a user once I can the set the alarm then I gets the notification	10	High	K.Pravallika
Sprint-2		USN-4	As a user, If I requires this system then a notification will be sent into his device.	10	High	K.Gowthami
Sprint-3	Medication Detail	USN-5	As a user, I have multiple medications each day, I can put each pill in the box for the corresponding day		High	Ch.Asritha
Sprint-3	Dashboard	USN-6	As a user, between setting alarm and using a pillbox, I'll able to stay on top of the list and follow medications		Low	D.m.Priyanka
Sprint-3		USN-7	As a user, I can store the name of the medicine with its description	10	High	K.Pravallika
Sprint-4	GPS Tracking	USN-8	As a user they can also help large hospitals and clinics manage their inventory more effectively.	5	Low	K.Gowthami
	Sensor	USN-9	As a user, they used for keeping the record in the medical details the remaining the medical schedule of medicine. We have used the IoT enabled Adrino device for monitoring the system.	10	High	Ch.Asritha, D.M.Priyanka K.Pravallika, K.Gowthami

6.2 Sprint Delivery Plan

Project Tracker, Velocity & Burndown Chart:

	Total Story Points	Duration	_	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	8 Days	29 Oct 2022	5 Nov 2022	20	4 Nov 2022
Sprint-2	10	8 Days	7 Nov 2022	14 Nov 2022	10	13 Nov 2022
Sprint-3	20	8 Days	16 Nov 2022	23 Nov 2022	20	23 Nov 2022
Sprint-4	10	8 Days	23 Nov 2022	30 Nov 2022	10	30 Nov 2022

Velocity:

Let's calculate the team's average velocity (AV) per iteration unit (story points per day).

$$AV = Velocity / Sprint Duration$$

= 20 / 8
= 2.5
 $AV = 10 / 8$
= 1.25

PROJECT DEPLOYMENY PHASE

7.1 Project Development - Delivery of Sprint – 1

Urls.py:

```
urlpatterns = [ path("", views.college, name="college"),
path("notice/<int:myid>/", views.notice, name="notice"),
path("application form/", views.application form, name="application form"),
path("edit application/", views.edit application, name="edit application"),
path("status/", views.status, name="status"),
# Authentication path("register/", views.register,
name="register"), path("login/", views.loggedin,
name="login"), path("logout/", views.loggedout,
name="logout"),
# Admin path("handle admin/", views.handle admin, name="handle admin"),
path("users/",
views.users, name="users"), path("student application/<int:myid>/",
views.student application,
name="student application"), path("application status/<int:pk>/",
UpdatePostView.as view(),
name="application status"), path("approved applications/", views.approved applications,
name="approved applications"), path("pending applications/",
views.pending applications,
name="pending applications"), path("rejected applications/", views.rejected applications,
name="rejected applications"),
```

Code Explanation:

It is considered to be a good practice to create a separate urls file for each app. The urls are into three

parts 1) For users 2) User Authentication 3) For admin

Models.py:

```
from django.db import models from
django.contrib.auth.models import User from
django.utils.timezone import now
from django.urls import reverse
class Application(models.Model):
COURSES = (
('Computer Science Engineering', 'Computer Science Engineering'),
('Information Technology Engineering', 'Information Technology Engineering'),
('Electronics and Telecommunication Engineering', 'Electronics and Telecommunication
Engineering'),
('Electronics Engineering', 'Electronics Engineering'),
STATUS = (
('Approved', 'Approved'),
('Pending', 'Pending'),
('Rejected', 'Rejected'),
user = models.OneToOneField(User, on delete=models.CASCADE, blank=True, null=True)
course = models.CharField(max length=100, choices= COURSES) name =
models.CharField(max_length=200) email = models.CharField(max_length=200)
phone no = models.CharField(max length=200) address =
models.TextField(max length=200) student profile =
models.ImageField(upload to="images") ssc percentage =
models.DecimalField(max digits=4, decimal places=2, null=True) ssc marksheet =
models.ImageField(upload_to="images", null=True) ssc_passing_certificate =
models.ImageField(upload to="images", null=True) ssc leaving certificate =
models.ImageField(upload to="images", null=True) hsc percentage =
models.DecimalField(max digits=4, decimal places=2, null=True) hsc marksheet =
models.ImageField(upload_to="images", null=True) hsc_passing_certificate =
models.ImageField(upload to="images", null=True) hsc leaving certificate =
models.ImageField(upload to="images", null=True) cet percentile =
models.DecimalField(max digits=5, decimal places=3, null=True) cet scorecard =
models.ImageField(upload to="images", null=True) jee percentile =
models.DecimalField(max_digits=5, decimal_places=3, null=True) jee_scorecard =
models.ImageField(upload to="images", null=True)
Application Status = models.TextField(max length=100, choices=STATUS,
default="Pending")
message = models.TextField(max length=100, default="")
def str(self):
```

```
return self.name

def get_absolute_url(self):

return reverse('users')

class Notice(models.Model):

title = models.CharField(max_length=200)

def str(self):

return self.title

class Detail(models.Model):

title = models.ForeignKey(Notice, on_delete=models.CASCADE) notice

= models.CharField(max_length=200)

def str(self):

return self.notice
```

Code Explanation:

The most important model of python college admission system is the Application model. It stores all the details of the students personal and educational details. The student while filling the application form gives all these details. The status and message are edited by the admin. Notice and Detail model stores the notice for first, second, third, and fourth year students. It is possible to add any notice forany category of students.

```
1. For the home page, all the notice for different year students will be shown (college.html):
<div class="container mt-4">
<h1>Important Notice</h1>
<div class="row mt-4">
{% for i in notice %}
<div class="col-sm-6">
<div class="card">
<div class="card-body">
<h5 class="card-title">{{i.title}}</h5>
<a href="/notice/{{i.id}}/">View all recent updates.</a>
</div>
</div>
</div>
{% endfor %}
</div>
</div>
```

Views.py:

```
def college(request):
notice = Notice.objects.all() return render(request,
"college.html", {'notice':notice})
```

Code Explanation:

On the first page of the project all the notices will be displayed by using the for loop from the Notice model. Students can see the notice by clicking on the title regarding their year or branch

7.2 Project Development - Delivery of Sprint - 2

7.3 Project Development - Delivery of Sprint - 3

1. After login the student can fill the application form and if the student has already filled the

```
application form, then the student can view and edit the form. (application_form.html):
{% if hide.exists %}
<div class="container mt-4">
<div class="row">
<h1 style="text-align: center;">Personal Details</h1>
<hr>
<div class="col-md-4">
<div class="profile-img">
{% if user.application.student profile.url %}
<img src="{{user.application.student_profile.url}}" alt="" width="310px" height="270px">
{% endif %}
</div>
</div>
<div class="col-md-8">
<div class="profile-tab">
<div class="tab-pane">
<br><br><
<div class="row">
<div class="col-md-6">
<label>Course :</label>
</
<div class="col-md-6">
{{user.application.course}}
</div>
</div>
<div class="row">
```

7.4 Project Development - Delivery of Sprint - 4

```
1. Admin's home page (handle admin.html):
<div class="box">
<h2><a href="/users/"> All Users ({{users}}) </a></h2>
</div>
<div class="box">
<h2><a href="/approved applications/"> Approved Applications ({{approve}}) </a></h2>
</div>
<div class="box">
<h2><a href="/pending applications/"> Pending Applications ({{pending}}) </a></h2>
</div>
<div class="box">
<h2><a href="/rejected_applications/"> Rejected Applications ({{reject}}) </a></h2>
</div>
Views.py:
def handle admin(request):
if not request.user.is superuser: return redirect("/login") users =
User.objects.all().count approve =
Application.objects.filter(Application Status='Approved').count reject =
Application.objects.filter(Application Status='Rejected').count pending =
Application.objects.filter(Application Status='Pending').count
return render(request, "handle admin.html", {'approve':approve, 'reject':reject,
'pending':pending,
'users':users})
Code Explanation:
On the admin's home page four options are created to view all the applications, the
pending
applications, the approved applications and the rejected applications respectively. The
admin can
```

basically check all the pending applications and then approve or reject it.

CONCLUSION

With the continuously increasing utilization of internet in this point in time, this assignment paintings has been engaged to execute a framework depending on web innovation which could discuss through internet for health checking of patients and for giving assist to vintage people. This paper provides shape and operating of an IOT based totally Personal Assistance Device which is a helpful device using low force Atmega328 microcontroller and ESP8266. In this paintings, accelerometer is utilized to apprehend the development of patient even though heart beat sensor module supply pulse of patient that is ship to microcontroller unit which sends this statistics to everything communicate producer to reveal the readings using ESP8266 Wi-Fi conference. During the crisis situations, a caution might be raised over the internet level telling the expert/overseer by way of the patient simply by squeezing a seize in the helpful machine. This offers a trustworthy framework which can screen the well-being reputation continuously of a patient or an vintage individual. Throughout the planet, the technical movement to link thousands of devices has never seen before. The IoT is a revolutionary concept that enriches our daily existence and aims to bring about dramatic improvements and a huge impact on american healthcare while making for a more customized, efficient and integrated medical network. We-Care, a framework of IoT healthcare intended to track and collect critical data on elderly persons, was introduced in this article. In case of emergencies, the device will sense crashes and the lack of vital signs, causing warnings. The wearable system, which is integrated into a plain, detached and convenient band, provides the best option for all elderly people at home. The software application built gathers all the data that the wristband sends to the server and is also capable of alerting carers or medical staff remotely in the track of an emergency. The collected datawill subsequently be used for research to track the progress of their patients by medical personnel.

REFERENCES

- 1 Abdulrazak, B., Malik, Y., Arab, F., Reid, S., PhonAge: Adapted SmartPhone for Aging Population. 27–35 (2013)
- 2 Abdulrazak, B., Roy, P., Gouin-Vallerand, C., Belala, Y., Giroux, S.: Micro Context-Awareness for Autonomic Pervasive Computing. Global Journal of Business Data Communications and Networking (IJBDCN), 7(2) 2011: pp. 49-sixty nine.
- 3 Abdulrazak, B., Yared, R., Tessier, T., Mabilleau, P., 2015. Toward unavoidable figuring framework to enhance wellbeing of maturing people in savvy kitchen. Int. Gathering of Information and Communication Technologies for Aging Well and eHealth.
- 4 Acampora, G., Cook, D.J., Rashidi, P., Vasilakos, A. V, A Survey on Ambient Intelligence in Health Care. Proc. IEEE. Inst. Electr. Electron. Eng., a hundred and one (12), 2470–2494 (2013)
- 5 Beauvais, B.S., Rialle, V. Sablier, J. MyVigi: An Android Application to Detect Fall and Wandering. (c), 156–160 (2012).
- 6 Bilandzic, M. Menkens, C. Sussmann, J., Kleine-Albers, D. Bittner, E. Golpaygani, A. Mehl, B., Huckestein, J., Khelil, O., SociCare: Towards a placing aware flexible network crisis framework. Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng., forty eight LNICST 338–352 (2010).
- 7 Bottazzi, D., Corradi, A. Montanari, R., Context-aware middleware answers for on every occasion and wherever crisis help to vintage individuals. IEEE Commun. Mag., forty four (4), eighty two–ninety (2006)

TEAM ID: PNT2022TMID10355

TEAM DETAILS: 1.CHIDELLA ASRITHA
2.D.MOHANA PRIYANKA
3.KOLA.PRAVALLIKA
4.KURAPATI.GOWTHAMI

GIT HUB LINK: https://github.com/IBM-EPBL/IBM-Project-35813-1660288904