Лекции по математическому анализу, 3 семестр

Тимошенко Иван, 24123

1 Дифференциирование функций

Опр. 1. Функция f(x) дифференциируема в точке $p \in U$, если:

- 1. f определена в некоторой окрестности точки $p\ (p\in Int(U))$
- 2. $\exists \lim_{\Delta h \to 0} \frac{f(p+\Delta h)-f(p)}{\Delta h} \in \mathbb{R}$ (и этот предел равен f'(p))

1.1 Экстремумы

Необходимое условие экстремума:

Пусть $f \in D(p)$ (дифференциируема в p). Если p - экстремум, то f'(p) = 0.

Замечание: НО например для $f(x) = x^3$ f'(0) = 0, но f(x) не дифференциируема в 0.

Замечание: Необходимое условие экстремума выполнено лишь для точек во внутренности области определения, точки на границе необходимо проверять отдельно.

Достаточное условие экстремума:

Пусть $f \in D^2(p)$ (дважды дифференциируема в p) и f'(p) = 0.В таком случае если

- f''(p) < 0 точка p является локальным максимумом и экстремумом.
- f''(p) > 0 точка p является локальным минимумом и экстремумом.

Пусть $f: U \in \mathbb{R}^n \to \mathbb{R}^k$, $p \in U$. Функция f дифференциируема в p, если:

- 1. $p \in Int(U) \quad (\exists \epsilon > 0 \quad B_{\epsilon}(p) \subset U)$
- 2. \exists дифференциал функции (линейное отображение) f в точке p $df(p): \mathbb{R}^n \to \mathbb{R}^k$ такое, что

$$f(x) = f(p) + df(p) < x - p > +\alpha(x) \quad (\alpha(x) \underset{x \to p}{=} o(x - p))$$

При сдвиге точки p на вектор h:

$$f(p+h) = f(p) + df(p) < h > +o(|h|)$$

1.2 Частные производные

Стандартный контекст в котором работаем:

$$f: U \subset \mathbb{R}^n \to \mathbb{R}^k, \quad p \in U, \quad p = (p_1, p_2, \dots, p_n)$$

Опр. 2. Частная производная по координате x_i это:

$$\frac{\partial f}{\partial x_i}(p) = \lim_{t \to 0} \frac{f(p_1, \dots, p_i + t, \dots, p_n) - f(p_1, \dots, p_n)}{t}$$

Пример для $f(x,y) = x^y$:

$$\frac{\partial f}{\partial x}(x,y) = yx^{y-1}; \quad \frac{\partial f}{\partial y}(x,y) = x^y \ln(x)$$

Опр. 3. Прозводная вдоль вектора v:

$$\frac{\partial f}{\partial v}(p) := \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}$$

Если
$$v=e_i=(0,\dots,0,\frac{1}{i},0,\dots,0),$$
 то $\frac{\partial f}{\partial v}=\frac{\partial f}{\partial x_i}=f'_{x_i}$

Пример:

$$f(x) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{при}(x, y) \neq (0, 0) \\ 0 & \text{при}(x, y) = (0, 0) \end{cases}$$

По любому вектору $v = (v_1, v_2)$ у функции есть производная в (0,0):

$$\lim_{t \to 0} \frac{f(tv) - f(0,0)}{t} = \frac{t^3 v_1^2 v^2}{t^5 v_1^4 + t^3 v_2^2} = \frac{v_1^2 v_2}{t^2 v_1^2 v_2^2} \underset{t \to 0}{=} \begin{cases} 0 & v_2 = 0 \\ \frac{v_1^2}{v_2} & v_2 \neq 0 \end{cases}$$

Утв. 1 Если f дифференциируема в p, то f - непрерына в p.

Доказательство.

$$f(p+h) - f(p) = df(p) < h >$$

Линейное отображение df(p)<> непрерывно, $o(h) \underset{h \to 0}{\to} 0$, т.е. $f(p+h) \underset{h \to 0}{\to} f(p)$.

Достаточный признак дифференциируемости:

Все частные производные непрерырвны в p ($f \in D(p)$).

Пример: $f(x,y) = x^y$ дифференциируема во всех точках (x_0,y_0) , где $x_0 > 0$.

$$\frac{\partial f}{\partial x} = yx^{y-1}$$
 $\frac{\partial f}{\partial y} = x^y \ln(x)$

Частные производные непрерывны, значит и функция непрерывна.

1.3 Матрица Якоби и градиент функции

Контекст в котором работаем:

$$f: U \subset \mathbb{R}^n \to \mathbb{R}^k, \quad p \in U$$

Опр. 4. Матрицей Якоби называют матрицу

$$D_f(p) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_n} \end{pmatrix}$$

В случае, если функция f отображает $\mathbb{R}^n \to \mathbb{R}$, то матрица Якоби принимает вид $1 \times n$ и называется градиентом функции.

Опр. 5. Градиентом функции называется вектор

$$D_f = \begin{pmatrix} \frac{\partial f}{\partial x_1}, & \dots, & \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Опр. 6. Функция дифференциируема в точке, если

- $f: U \to \mathbb{R}^k$ и $p \in Int(U)$
- $f(x) = f(p) + df(p)\langle x p \rangle + \alpha(x)$, где $\alpha(x) = o(x p)$.

Если k=1, то лин. отображение $df(p):\mathbb{R}^n\to\mathbb{R}$ можно задатьа как $df(p)\langle v\rangle=\langle \nabla f(p);v\rangle$ - скалярное произведение градиента функции на вектор, причем $\nabla f(p)=\left(\frac{\partial f}{\partial x_1}(p),\ldots,\frac{\partial f}{\partial x_n}(p)\right)$ - вектор частных производных в точке p.

Утв. 2 Градиент функции задает направление, при движении в котором функция растет быстрее всего.

$$\frac{f(p+tv)-f(p)}{t} \underset{t\to 0}{\to} \frac{\partial f}{\partial v} = df(p)\langle v \rangle = \langle \nabla f(p); v \rangle = |\nabla f(p)| \cdot |v| \cdot \cos(\varphi), \text{где } \varphi \text{ - угол между } \nabla f \text{ и } v.$$

Поскольку $|\nabla f(p) = const, |v| = 1$, то для максимизации надо выбрать такое φ , чтобы cos(varphi) был максимален, т.е. вектора v и ∇f параллельны и ∇f задает наибольшую скорость роста.

Утв. 3 $\nabla f(p)$ ортогонален поверхности уровня $\Omega = \{x | f(x) = c\}.$

Доказательство. Пусть $f(p) = c \ (p \in \Omega)$. Пусть $x_n \in \Omega$, покажем, что $cos(\nabla f(p), \overrightarrow{x_n - p}) \underset{n \to \infty}{\longrightarrow} 0$:

$$f(x_n) = f(p) = c \implies 0 = f(x_n) - f(p) = df(p)\langle x_n - p \rangle + o(x_n - p) = \langle \nabla f(p); x_n - p \rangle + o(x_n - p).$$

Значит $0 = \langle \nabla f(p); \frac{x_n-p}{|x_n-p|} \rangle + o(1)$, т.е. $\langle \nabla f(p); \frac{x_n-p}{|x_n-p|} \rangle \to 0$. Тогда:

$$\langle \nabla f(p); \frac{x_n - p}{|x_n - p|} \rangle = |\nabla f(p)| \cdot \left| \frac{x_n - p}{|x_n - p|} \right| \cdot \cos(\alpha) \to 0, \text{ r.e.} \alpha \underset{n \to \infty}{\to} \frac{\pi}{2}.$$

Опр. 7. Функция $f: \mathbb{R}^n \to \mathbb{R}^n$ называется векторным полем.

Опр. 8. Потенциалом векторного поля F (если он есть) называется **скалярная** функция $U:W\to \mathbb{R}$, такая, что $\nabla U=F$. Если потенциал существует, то F называется потенциальным полем.

Теорема: Пусть $f:U\subset\mathbb{R}^n\to\mathbb{R}^k,\ g:V\subset\mathbb{R}^k\to\mathbb{R}^m,\ f\in C^1(p),\ g\in C^1(q),\ q=f(p).$ Тогда $g\circ f\in C^1(p),\ dg\circ f=dg(f(p))\cdot df(p).$ В матрицах Якоби: $D_{g\circ f}(p)=D_g(f(p))\cdot D_f(p).$

Пример:

$$\begin{cases} f(x,y,z) = (xy,xz) : \mathbb{R}^3 \to \mathbb{R}^2 \\ g(a,b) = \cosh(ab) : \mathbb{R}^2 \to \mathbb{R} \end{cases} \qquad f = \begin{cases} f_1(x,y,z) = xy \\ f_2(x,y,z) = xz. \end{cases}$$

$$h = g(f(x, y, z)) = \cosh(xy \cdot xz) : \mathbf{R}^3 \to \mathbb{R}, \quad (x, y, z) \in \mathbb{R}^3 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}$$
$$\frac{\partial h}{\partial x} = \sinh(x^2 yz) \cdot 2xyz \quad \frac{\partial h}{\partial y} = \sinh(x^2 yz) \cdot x^2z \quad \frac{\partial h}{\partial z} = \sinh(x^2 yz) \cdot x^2y$$

$$D_f(x,y,z) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{pmatrix} = \begin{pmatrix} y & x & 0 \\ z & 0 & x \end{pmatrix}$$

$$D_f = (\sinh(ab) \cdot a \quad \sinh(ab) \cdot b)$$

$$D_g \cdot D_f = \left(\sinh(x^2yz) \cdot xz \quad \sinh(x^2yz) \cdot xy\right) \cdot \begin{pmatrix} y & x & 0 \\ z & 0 & x \end{pmatrix}$$

Досчитывать я это не буду, поверим Сторожуку на слово.

Правило дифференциирования обратного отображения: Если невырождено и \exists обратное отображение $g: V \to U$, непрерывное в точке q = f(p), тогда:

$$g \in D(q)$$
 и $dg(q) = (df(p))^{-1}$

1.4 Многократная дифференциируемость

Опр. 9. $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ k раз дифференциируема в точке p $(f\in D^k(p)),$ если:

- 1. f дифференции
руема во всех точках некоторой окрестности точки p;
- 2. Все частные производные $\frac{\partial f}{\partial x_1},\dots,\frac{\partial f}{\partial x_n}$ дифференциируемы k-1 раз в точке p.

Пример:

$$f \in D^2(p) \implies f \in D(x) \text{ M} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \in D(p)$$

Утв. Если
$$\begin{cases} f \in D^k(p) : \mathbb{R}^n \to \mathbb{R}^k \\ g \in D^k(p) : \mathbb{R}^n \to \mathbb{R}^k \end{cases}$$
тогда $h(x) = f(x) \cdot g(x) \in D^k(p)$

Доказательство.

$$\frac{\partial h}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x) \cdot g(x) + f(x) \cdot \frac{\partial g}{\partial x_i}$$

Так как $\frac{\partial f}{\partial x_i}(x) \in D^{k-1}(p), \ g(x) \in D^k(p), \ f(x) \in D^k(p), \ \frac{\partial g}{\partial x_i} \in D^{k-1}(p), \ \text{to} \ \frac{\partial h}{\partial x_i} \in D^{k-1}(p).$

Теорема 1 (о вторых производных): Пусть $f:U\subset\mathbb{R}^n\to\mathbb{R},\ f\in D^2(p)$. Тогда $\frac{\partial^2 f}{\partial x\partial u}=\frac{\partial^2 g}{\partial u\partial x}$

Доказательство. Можно считать, что n=2, так как при заданной функции $f(x_1,x_2,...)$ можно в качестве f рассмотреть сужение f на плоскость Ox_1x_2 , т.к. при дифференциировании по x_1 или x_2 остальные переменные не изменются.

$$f = f(x, y) \in D^2(p), \quad p = (x_0, y_0, \dots)$$

Считаем, что p=0 и что $\frac{\partial f}{\partial x}(0)=0, \ \frac{\partial f}{\partial y}(0)=0.$ Чтобы показать почему так можно считать введем f_1 :

$$f_1(x,y) := f(x,y) - f'_x(0,0) \cdot x - f'_y(0,0) \cdot y$$
$$\frac{\partial f_1}{\partial x}(0,0) = \frac{\partial f}{\partial x}(0,0) - f'_x(0,0)$$
$$\frac{\partial f_1}{\partial y}(0,0) = \frac{\partial f}{\partial y}(0,0) - f'_y(0,0)$$

Дальше считаем, что $f = f_1$ и f(0,0) = 0.

$$\frac{\partial f}{\partial x}(x,y) = f(0,0) + a_{11} \cdot x + a_{12} \cdot y + \alpha_1(x,y), \text{ где } \alpha_1(x,y) = o(x,y), \ (a_{11},a_{12}) = df(0,0) \langle x,y \rangle$$

По условию $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \in D(0)$, поэтому $a_{11} = f_{xx}(0), \ a_{12} = f_{xy}(0).$

$$\frac{\partial f}{\partial y}(x,y) = f(0,0) + a_{21} \cdot x + a_{22} \cdot y + \alpha_2(x,y), \ a_{21} = f_{yx}(0), \ a_{22} = f_{yy}(0)$$

 $II = f(s,s) - f(s,0) = \int_{s=0}^{s} \frac{\partial f}{\partial u}(s,t)dt = \int_{t=0}^{s} a_{21}s + a_{22}t + \alpha_{2}(s,t)dt = a_{21}s^{2} + \frac{a_{22}s^{2}}{2} + \varepsilon_{1}(s),$

причем $\varepsilon_1(s) = \int_{t=0}^s \alpha_2(s,t) dt$. Аналогично для I:

$$I = f(s,0) - f(0,0) = \int_{t=0}^{s} \frac{\partial f}{\partial x}(t,0)dt = \int_{t=0}^{s} a_{11}t + a_{12} \cdot 0 + \alpha_{1}(t)dt = \frac{a_{11}}{2}s^{2} + \varepsilon_{2}(s), \ \varepsilon_{2}(s) = \int_{t=0}^{s} \alpha_{1}(t,0)dt$$

Итого: $f(s,s)-f(0,0)= \mathrm{I}+\mathrm{II}=s^2\left(a_{21}+\frac{a_{11}}{2}+\frac{a_{22}}{2}+\frac{\varepsilon_1(s)+\varepsilon_2(s)}{s^2}\right)$, что на самом деле равно $\mathrm{III}+\mathrm{IV}=s^2\left(a_{12}+\frac{a_{11}}{2}+\frac{a_{22}}{2}+\frac{\varepsilon_3(s)+\varepsilon_4(s)}{s^2}\right)$

$$a_{21} + \frac{a_{11} + a_{22}}{2} + \frac{\varepsilon_1(s) + \varepsilon_2(s)}{s^2} = a_{12} + \frac{a_{22} + a_{11}}{2} + \frac{\varepsilon_3(s) + \varepsilon_4(s)}{s^2}$$
(1)

При малых s:

$$\varepsilon_3(s) = \int_{t=0}^s \alpha_2(0,t)dt, \quad \varepsilon_3(s) = \int_{t=0}^s \alpha_1(t,s)dt$$

Осталось показать, что $\varepsilon_{1,2,3,4} = o(s^2)$. Пусть $\varepsilon > 0$. Вспомним, что

$$\varepsilon_1(s) = \int_{t=0} \alpha_2(s,t)dt, \quad \alpha_2(x,y) \underset{x,y\to 0}{=} o(x,y)$$

То есть, в некотором круге V точки (0,0) выполнено $\forall (x,y) \in V$ $\alpha_2(x,y) \leq \varepsilon \cdot \sqrt{x^2 + y^2}$. Для s таких, что $(s,s) \in V$ $\alpha_2(x,y) \leq \varepsilon \cdot \sqrt{2} \cdot s$, при $|x| \leq s$, $|y| \leq s$. Тогда

$$|\varepsilon_1(s)| = \left| \int_{t=0}^s \alpha_2(s,t) dt \right| \le \int_{t=0}^s |\alpha_2(s,t)| dt \le \int_{t=0}^s \varepsilon \cdot s\sqrt{2} \cdot dt = \varepsilon s^2 \sqrt{2}$$

. Итак, мы доказали, что $\varepsilon_1(s) = o(s^2)$, аналогичным образом показываем для $\varepsilon_{2,3,4}$ Тогда в равенстве 1 $\frac{\varepsilon_1(s)+\varepsilon_2(s)}{s^2} \to 0$ и $\frac{\varepsilon_3(s)+\varepsilon_4(s)}{s^2} \to 0$, а значит $a_{21}=a_{12}$, то есть $f_{xy}(0)=f_{yx}(0)$.

Правило дифференциирования монома:

Пусть $f(x) = x_1^{i_1} \cdot x_2^{i_2} \cdot \dots \cdot x_m^{i_m}, \ x = (x_1, \dots, x_m)$. Тогда

$$\frac{\partial^{i_1+i_2+\cdots+i_m}f}{\partial x_1^{i_1}\dots\partial x_m^{i_m}}(0)=i_1!\cdot\dots\cdot i_m!$$

Любая другая производная любого порядка в точке 0 равна 0.

1.5 Мульти-индексы

Придумаем $\mu=(i_1,\ldots,i_m)$ - численный вектор, в котором $\forall j=\overline{1\ldots m}\ i_j\geq 0$ и назовем его мультииндексом.

Для мультииндексов определены операции:

$$\mu!:=i_1!\cdot\ldots\cdot i_m!$$
 $|\mu|=\sum_{j=1}^m i_j$ - порядок мультииндекса $x\in\mathbb{R}^m, x=(x_1,\ldots,x_m), \quad x^\mu=x_1^{i_1}\cdot\ldots\cdot x_m^{i_m}$ $C_k^\mu=rac{k!}{\mu!}=rac{k!}{i_1!\cdot\ldots\cdot i_m!},$ где $k=|\mu|$