Amarfii.Adrian 31/10/2022 **REPORT TASK**

L'esercizio di oggi verte sui meccanismi di pianificazione dell'utilizzo della CPU (o processore). In ottica di ottimizzazione della gestione dei processi, abbiamo visto come lo scheduler si sia evoluto nel tempo per passare da approccio mono-tasking ad approcci multi-tasking.

Traccia:

Si considerino 4 processi, che chiameremo P1,P2,P3,P4, con i tempi di esecuzione e di attesa input/output dati in tabella. I processi arrivano alle CPU in ordine P1,P2,P3,P4. Individuare il modo più efficace per la gestione e l'esecuzione dei processi, tra i metodi visti nella lezione teorica. Abbozzare un diagramma che abbia sulle ascisse il tempo passato da un instante «0» e sulle ordinate il Processo.

Processo	Tempo di esecuzione	Tempo di attesa	Tempo di esecuzione dopo attesa
P1	3 secondi	2 secondi	1 secondo
P2	2 secondi	1 secondo	-
P3	1 secondi	-	-
P4	4 secondi	1 secondo	2 secondi

In questo esercitazione ci viene chiesto di rappresentare i tempi di esecuzione di attesa e dopo attesa in 3 diagrammi studiato nella stessa giornata .I 3 metodi (diagrammi)sono :Mono-tasking,Multi-tasking,Time-sharing. Proviamo a trovare quelle delle seguenti metodi sia più veloci .

1)Mono-tasking:

PROCESSI

Tempo totale=17sec.

2)Multi-tasking:

PROCESSI

Tempo totale =13sec.

3)Time-sharing

PROCESSI

Tempo totale=15sec

Secondo i schemi ci vieni opportuno scegliere il metodo multi-tasking in quanto ci impiega il minor tempo .