Projects: Model Acceleration, Compression, and Optimization

Score: 20% (+6% extra at maximum) [scoring criteria refer to Table-1]

Group members: 2 or 3 persons

Presentation day: Oct 7th, 2024 [W10]

Description: Compete to improve the model with better efficiency, effectiveness, robust, lightweight, and so on, according to the measurement criteria in Table I. This model is implemented with **non-labeled target data in learning scenarios**.

Model reference: MobileNetV3-large/small (<u>Labeled</u> source data) [Optional: Multiple or Single MBV3- $l \rightarrow MobileNetV3$ -small (<u>Unlabeled</u> target data) (<u>MBV3- $l \rightarrow MBV3$ -s</u>) [W4-2_Use SOTA model.ipynb]

Baseline Scenario in comparison with: MobileNetV3-small (Labeled target data)

Weight initialization: Pretrained weight from Torchvision (For both MBV3 large and small models)

Techniques (Guidelines):

➤ Modifying block layers or new creating sub-modules [W3-W4]

Ref1: https://github.com/VSainteuf/lightweight-temporal-attention-pytorch

Ref2: https://github.com/Nandan91/ULSAM

Ref3: https://github.com/Qrange-group/LSAS

Ref4: https://github.com/moskomule/senet.pytorch

- ➤ Inductive transfer learning [W5], such as
 - o Fine-tuning: MBV3-small (labeled source) → MBV3-small (non-labeled target)
- > Transductive transfer learning [W5], such as
 - Domain adaptation: MBV3-large/small (labeled source) → MBV3-small (non-labeled target) || Technique examples: Reweighting, DANN, CORAL, MMD/DDC, or newer.
 Ref: https://github.com/thuml/Transfer-Learning-Library/tree/master/tllib
- ➤ Model compression [W6-W7], such as
 - Knowledge distillation (KD): MBV3-large/small (labeled source) → MBV3-small (non-labeled target)
 - o Pruning (normal, iterative, etc.) on MBV3-small (non-labeled target)
 - o Quantization (PTDQ, PTSQ, QAT, etc.) on MBV3-small (non-labeled target)
 - Low-rank approximation (SVD, Higher-order SVD [CP, Tucker], etc.), or newer, on MBV3-small (non-labeled target)

Ref: https://github.com/juliagusak/model-compression-and-acceleration-progress/blob/master/README.md

- Reduce model precision [W7], i.e., applying XNOR convolution layer, mixed precision, etc.
- > Optimizing runtime [W7], i.e., through ONNXruntime/TensorRT library or any other packages

Dataset for scoring: *Office-31* [3 domains (~2,9xx images): *Amazon* (A), *Webcam* (W), *DSLR* (D)] (Reference: https://github.com/jindongwang/transferlearning/blob/master/data/dataset.md)

The number of iterations of the training source dataset: As you desired (If any pretraining)

The number of iterations of the training unlabeled target dataset for scoring: 30-50 rounds

The number of iterations of the training labeled target (baseline): Equal to unlabeled target task above

Table I. Scoring criteria

Evaluation topics	The performance is excellent, close to <i>MBV3-s</i> as per the comparative description below [From the lesson learned]	Scoring if good close to MBV3-s (labeled target)	Scoring if just only finished
Basic base			
Quantitative benchmarks	Accuracy, loss, precision, recall, F1-score, confusion matrix, NMI-RI score, etc. [W3-W4]		
Resource usage	Number of parameters, computational power (FLOPs), etc. [W3-W7]	9-10 %	4-5 %
Visualization	Plots of performance (accuracy & loss) from both training & validation rounds [W2-W3], t-SNE, Adistance [W5], etc.		
Acceleration	Higher FPS/frame rate [W7] - Require: FP16 Select: FP8 or INT8 - Tested on normal instances (Colab/others)	4.5-5 %	2-2.5 %
Source code	Source code in use for benchmarking: Optimizer, loss_fn, improvement techniques, etc. [Every week that passed]		
Report	Summarize everything from your projects (at least 2-5 pages)	4.5-5 %	2-2.5 %
Presentation	Presentation (just 5-15 mins) and demo recorded (submitting post-presentations)	•	
Extra base			
Extra points 1: The best of performance	Anyone who got the best performance closing at <i>MobileNetV3-small</i> (<i>MBV3-s</i>) for above overall benchmarks	Top-1: +3 % Top-2: +2 % Top-3: +1 %	-
Extra points 2: The lightest	Anyone who can optimize <i>MobileNetV3-small</i> (<i>MBV3-s</i>) become the lowest resource	Top-1: +3 %	
weight of the model	consumption, e.g., number of parameters (units) ↓, reduce model size (MB) ↓, reduce training-/inference time consumption (sec) ↓, etc.	Top-2: +2 % Top-3: +1 %	-
Total		18-20 % + (1-6 % extra)	8-10 %

Appendix A. Example of benchmarking performance (%acc) in transfer task of domain1 at $MBV3-l \rightarrow$ domain2 at MBV3-s

Method	$A \rightarrow W$	$D{\rightarrow}W$	$W{\to}D$	$A{\to}D$	$D{\to}A$	$W{\to}A$	Avg
AlexNet [50]	45.2	88.1	96.2	47.4	38.2	36.1	58.5
TCA [17]	61.0	93.2	95.2	60.8	51.6	50.9	68.8
GFK [51]	60.4	95.6	95.0	60.6	52.4	48.1	68.7
D-CORAL [4]	61.6	95.7	99.2	66.8	52.8	51.5	72.1
DAN [48]	68.5	96.0	99.0	67.0	54.0	53.1	72.9
DANN [34]	73.0	96.4	99.2	72.3	53.4	51.2	74.3
ADDA [7]	73.5	96.2	98.8	71.6	54.6	53.5	74.7
JAN [12]	74.9	96.6	99.5	71.8	58.3	55.0	76.0
CDAN [52]	77.9	96.9	100.0	74.6	55.1	57.5	77.0
ResNet-50 [13]	68.3	96.7	99.2	69.1	61.7	60.0	75.8
MobileDA	71.5	97.4	99.8	75.3	63.4	62.1	78.3

Remark Benchmark 3 results: 1. Source-Only (i.e., train source, predict target), 2. your techniques, and 3. full-labeled target training (Baseline) (i.e., train target, predict target)

Appendix B. t-SNE examples

IGURE 4. Feature visualization for embedding of digit datasets for idapting SVHN to MNIST using t-SNE algorithm. Source and target

Appendix C. MobileNetV3-small model

Input	Operator	exp size	#out	SE	NL	s
$224^{2} \times 3$	conv2d, 3x3	-	16	-	HS	2
$112^{2} \times 16$	bneck, 3x3	16	16	1	RE	2
$56^{2} \times 16$	bneck, 3x3	72	24	-	RE	2
$28^{2} \times 24$	bneck, 3x3	88	24	-	RE	1
$28^{2} \times 24$	bneck, 5x5	96	40	√	HS	2
$14^{2} \times 40$	bneck, 5x5	240	40	√	HS	1
$14^{2} \times 40$	bneck, 5x5	240	40	√	HS	1
$14^{2} \times 40$	bneck, 5x5	120	48	✓	HS	1
$14^{2} \times 48$	bneck, 5x5	144	48	✓	HS	1
$14^{2} \times 48$	bneck, 5x5	288	96	√	HS	2
$7^{2} \times 96$	bneck, 5x5	576	96	√	HS	1
$7^{2} \times 96$	bneck, 5x5	576	96	√	HS	1
$7^{2} \times 96$	conv2d, 1x1	_	576	√	HS	1
$7^2 \times 576$	pool, 7x7	-	-	-	-	1
$1^{2} \times 576$	conv2d 1x1, NBN	-	1024	-	HS	1
$1^2 \times 1024$	conv2d 1x1, NBN	-	k	-	-	1

Table 2. Specification for MobileNetV3-Small. See table 1 for notation.

Appendix D. MobileNetV3-large model

Input	Operator	exp size	#out	SE	NL	s
$224^{2} \times 3$	conv2d	-	16	-	HS	2
$112^{2} \times 16$	bneck, 3x3	16	16	-	RE	1
$112^{2} \times 16$	bneck, 3x3	64	24	-	RE	2
$56^{2} \times 24$	bneck, 3x3	72	24	-	RE	1
$56^{2} \times 24$	bneck, 5x5	72	40	✓	RE	2
$28^{2} \times 40$	bneck, 5x5	120	40	✓	RE	1
$28^{2} \times 40$	bneck, 5x5	120	40	✓	RE	1
$28^{2} \times 40$	bneck, 3x3	240	80	-	HS	2
$14^{2} \times 80$	bneck, 3x3	200	80	-	HS	1
$14^{2} \times 80$	bneck, 3x3	184	80	-	HS	1
$14^{2} \times 80$	bneck, 3x3	184	80	-	HS	1
$14^{2} \times 80$	bneck, 3x3	480	112	✓	HS	1
$14^{2} \times 112$	bneck, 3x3	672	112	✓	HS	1
$14^{2} \times 112$	bneck, 5x5	672	160	✓	HS	2
$7^2 \times 160$	bneck, 5x5	960	160	✓	HS	1
$7^2 \times 160$	bneck, 5x5	960	160	✓	HS	1
$7^2 \times 160$	conv2d, 1x1	-	960	-	HS	1
$7^{2} \times 960$	pool, 7x7	-	-	-	-	1
$1^{2} \times 960$	conv2d 1x1, NBN	-	1280	-	HS	1
$1^{2} \times 1280$	conv2d 1x1, NBN	_	k	-	-	1

Table 1. Specification for MobileNetV3-Large. SE denotes whether there is a Squeeze-And-Excite in that block. NL denotes the type of nonlinearity used. Here, HS denotes h-swish and RE denotes ReLU. NBN denotes no batch normalization. s denotes stride.

Appendix E. Office-31 Dataset Example (three-domain 31 classes)

