Probabilistic Approach to Mean Field Games

Andrea Angiuli Jean-François Chassagneux François Delarue Christy Graves Houzhi Li

CEMRACS August 2017

Outline

- Mean Field Games
- Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- Benchmark Examples
 - Toy Example
 - Trader Problem

• Search for analogue of Nash equilibrium for a continuum of players.

- Search for analogue of Nash equilibrium for a continuum of players.
- Strategy:

- Search for analogue of Nash equilibrium for a continuum of players.
- Strategy:
 - For a fixed deterministic flow of probability measures $\mu = (\mu_t)_{0 \le t \le T}$ on the state space, solve the stochastic control problem:

$$\inf_{\alpha} J^{\mu}(\alpha) = \mathbb{E}\left[\int_{0}^{T} f(t, X_{t}^{\alpha}, \mu_{t}, \alpha_{t}) dt + g(X_{t}^{\alpha}, \mu_{T})\right]$$
(1)

subject to

$$dX_t^{\alpha} = b(t, X_t^{\alpha}, \mu_t, \alpha_t)dt + \sigma(t, X_t^{\alpha}, \mu_t, \alpha_t)dW_t$$

$$X_0 = \xi$$
(2)

- Search for analogue of Nash equilibrium for a continuum of players.
- Strategy:
 - **①** For a fixed deterministic flow of probability measures $\mu = (\mu_t)_{0 \le t \le T}$ on the state space, solve the stochastic control problem:

$$\inf_{\alpha} J^{\mu}(\alpha) = \mathbb{E}\left[\int_{0}^{T} f(t, X_{t}^{\alpha}, \mu_{t}, \alpha_{t}) dt + g(X_{t}^{\alpha}, \mu_{T})\right]$$
(1)

subject to

$$dX_t^{\alpha} = b(t, X_t^{\alpha}, \mu_t, \alpha_t)dt + \sigma(t, X_t^{\alpha}, \mu_t, \alpha_t)dW_t$$

$$X_0 = \xi$$
(2)

② Find the fixed point, μ , such that $\mathcal{L}(X_t^{\alpha}) = \mu_t$ for all $0 \le t \le T$.

Weak Approach:

• Let u(t,x) denote the value function.

Weak Approach:

- Let u(t,x) denote the value function.
- Let $Y_t = u(t, X_t)$.

Weak Approach:

- Let u(t,x) denote the value function.
- Let $Y_t = u(t, X_t)$.

$$dX_{t} = b\left(t, X_{t}, \mathcal{L}(X_{t}), \hat{\alpha}\left(t, X_{t}, \mathcal{L}(X_{t}), \frac{Z_{t}}{\sigma}\right)\right) dt + \sigma dW_{t}$$

$$X_{0} = \xi$$

$$dY_{t} = -f\left(t, X_{t}, \mathcal{L}(X_{t}), \hat{\alpha}\left(t, X_{t}, \mathcal{L}(X_{t}), \frac{Z_{t}}{\sigma}\right)\right) dt + Z_{t} dW_{t}$$

$$Y_{T} = g(X_{T}, \mathcal{L}(X_{T}))$$
(3)

Pontryagin Stochastic Maximum Principle Approach:

• Let u(t,x) denote the value function.

Pontryagin Stochastic Maximum Principle Approach:

- Let u(t,x) denote the value function.
- Let $Y_t = \partial_X u(t, X_t)$.

Pontryagin Stochastic Maximum Principle Approach:

- Let u(t,x) denote the value function.
- Let $Y_t = \partial_X u(t, X_t)$. $dX_t = b(t, X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t)) dt + \sigma dW_t$ $X_0 = \xi$ $dY_t = -\left[\partial_X b((t, X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t)))Y_t + \partial_X f(t, X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t))\right] dt + Z_t dW_t$ $Y_T = \partial_X g(X_T, \mathcal{L}(X_T))$ (4)

General System

General form of coupled FBSDEs:

General System

General form of coupled FBSDEs:

$$dX_{t} = B(t, X_{t}, Y_{t}, Z_{t}, \mathcal{L}(X_{t}, Y_{t}, Z_{t}))dt + \sigma dW_{t}$$

$$X_{0} = \xi$$

$$dY_{t} = -F(t, X_{t}, Y_{t}, Z_{t}, \mathcal{L}(X_{t}, Y_{t}, Z_{t}))dt + Z_{t}dW_{t},$$

$$Y_{T} = G(X_{T}, \mathcal{L}(X_{T}))$$
(5)

Outline

- Mean Field Games
- Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- Benchmark Examples
 - Toy Example
 - Trader Problem

Discretization and Picard iteration for FBSDE

• Time horizon [0, T] with fixed time mesh $t_i = ih, i = 1, ..., N_t$.

Discretization and Picard iteration for FBSDE

- Time horizon [0, T] with fixed time mesh $t_i = ih, i = 1, ..., N_t$.
- The initial law ξ of the forward process X has a discretized distribution which has a finite support:

$$\mathbf{P}[\xi = x_m] = p_m, \quad \sum_{m=1}^{M} p_m = 1, \quad m = 1, ..., M$$

Discretization and Picard iteration for FBSDE

- Time horizon [0, T] with fixed time mesh $t_i = ih, i = 1, ..., N_t$.
- The initial law ξ of the forward process X has a discretized distribution which has a finite support:

$$\mathbf{P}[\xi = x_m] = p_m, \quad \sum_{m=1}^{M} p_m = 1, \quad m = 1, ..., M$$

The decoupled forward-backward scheme is:

$$\begin{aligned} Y_{t_i}^j &= \mathbb{E}_{t_i}[Y_{t_{i+1}}^j + h \cdot F(t_i, X_{t_i}^{j-1}, Y_{t_i}^{j-1}, Z_{t_i}^{j-1}, \mathcal{L}(X_{t_i}^{j-1}, Y_{t_i}^{j-1}, Z_{t_i}^{j-1}))] \\ Y_T^j &= g(X_T^{j-1}, \mathcal{L}(X_T^{j-1})) \\ X_{t_{i+1}}^j &= X_{t_i}^j + h \cdot B(t_i, X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j, \mathcal{L}(X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j)) + \sigma \Delta W_i \\ X_0^j &= \xi \end{aligned}$$

• Initialize (X^0, Y^0, Z^0) , then do Picard iteration j = 1, ..., J.

Picard iteration mapping Φ is defined by:

$$\Phi: (X^{j}, Y^{j}, Z^{j}, \mathcal{L}(X^{j}, Y^{j}, Z^{j}))
\mapsto (X^{j+1}, Y^{j+1}, Z^{j+1}, \mathcal{L}(X^{j+1}, Y^{j+1}, Z^{j+1}))$$
(6)

Picard iteration mapping Φ is defined by:

$$\Phi: (X^{j}, Y^{j}, Z^{j}, \mathcal{L}(X^{j}, Y^{j}, Z^{j}))
\mapsto (X^{j+1}, Y^{j+1}, Z^{j+1}, \mathcal{L}(X^{j+1}, Y^{j+1}, Z^{j+1}))$$
(6)

• The Lipschitz coefficient K_{Φ} is an increasing function of ρ and T, where ρ is the coupling coefficient between the forward and backward processes and T is the time horizon.

• Picard iteration mapping Φ is defined by:

$$\Phi: (X^{j}, Y^{j}, Z^{j}, \mathcal{L}(X^{j}, Y^{j}, Z^{j}))
\mapsto (X^{j+1}, Y^{j+1}, Z^{j+1}, \mathcal{L}(X^{j+1}, Y^{j+1}, Z^{j+1}))$$
(6)

- The Lipschitz coefficient K_{Φ} is an increasing function of ρ and T, where ρ is the coupling coefficient between the forward and backward processes and T is the time horizon.
- $K_{\Phi} < 1 \Rightarrow \Phi$ is a contraction \Rightarrow Picard iteration converges.

Picard iteration mapping Φ is defined by:

$$\Phi: (X^{j}, Y^{j}, Z^{j}, \mathcal{L}(X^{j}, Y^{j}, Z^{j}))
\mapsto (X^{j+1}, Y^{j+1}, Z^{j+1}, \mathcal{L}(X^{j+1}, Y^{j+1}, Z^{j+1}))$$
(6)

- The Lipschitz coefficient K_{Φ} is an increasing function of ρ and T, where ρ is the coupling coefficient between the forward and backward processes and T is the time horizon.
- $K_{\Phi} < 1 \Rightarrow \Phi$ is a contraction \Rightarrow Picard iteration converges.
- Picard iteration convergence only guaranteed when ρ and T are not too large.

Bifurcation

Outline

- Mean Field Games
- Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- Benchmark Examples
 - Toy Example
 - Trader Problem

ullet Divide the time horizon [0, T] into N levels:

$$0=\mathit{T}_{1}\leq \mathit{T}_{2},...,\mathit{T}_{N-1}\leq \mathit{T}_{N}=\mathit{T}.$$

- Divide the time horizon [0, T] into N levels: $0 = T_1 < T_2, ..., T_{N-1} < T_N = T$.
- Let *picard* be the solver that applies the Picard iteration for level k:

$$(X_t, Y_t, Z_t)_{T_k \le t \le T_{k+1}} = picard(X, Y_{T_{k+1}}, Z_{T_{k+1}})$$
 (7)

- Divide the time horizon [0, T] into N levels: $0 = T_1 < T_2, ..., T_{N-1} < T_N = T$.
- Let *picard* be the solver that applies the Picard iteration for level *k*:

$$(X_t, Y_t, Z_t)_{T_k \le t \le T_{k+1}} = picard(X, Y_{T_{k+1}}, Z_{T_{k+1}})$$
 (7)

• Define global *solver* recursively: $solver[k](X_{T_k})$:

- Divide the time horizon [0, T] into N levels: $0 = T_1 < T_2, ..., T_{N-1} < T_N = T$.
- Let *picard* be the solver that applies the Picard iteration for level k:

$$(X_t, Y_t, Z_t)_{T_k \le t \le T_{k+1}} = picard(X, Y_{T_{k+1}}, Z_{T_{k+1}})$$
 (7)

- Define global *solver* recursively: $solver[k](X_{T_k})$:
 - Initialize (X,Y,Z)
 - - **1** $Y_{T_{k+1}} = solver[k+1](X_{T_{k+1}})$
 - $(X, Y, Z) = picard(X, Y_{T_{k+1}}, Z_{T_{k+1}})$
 - \odot return Y_{T_k} .

where $solver[N] = g(X_T)$.

- Divide the time horizon [0, T] into N levels: $0 = T_1 < T_2, ..., T_{N-1} < T_N = T$.
- Let *picard* be the solver that applies the Picard iteration for level k:

$$(X_t, Y_t, Z_t)_{T_k \le t \le T_{k+1}} = picard(X, Y_{T_{k+1}}, Z_{T_{k+1}})$$
 (7)

- Define global *solver* recursively: $solver[k](X_{T_k})$:
 - Initialize (X,Y,Z)
 - - $Y_{T_{k+1}} = solver[k+1](X_{T_{k+1}})$
 - $(X, Y, Z) = picard(X, Y_{T_{k+1}}, Z_{T_{k+1}})$
 - \odot return Y_{T_k} .
 - where $solver[N] = g(X_T)$.
- Then $Y_0 = solver[0](\xi)$.

Outline

- Mean Field Games
- Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- Benchmark Examples
 - Toy Example
 - Trader Problem

Binomial approximation of Brownian increments:

$$\uparrow \downarrow X_{t_{i+1}}^j = X_{t_i}^j + h \cdot B(t_i, X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j, \mathcal{L}(X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j) \pm \sigma \sqrt{h}$$
 (8)

Binomial approximation of Brownian increments:

$$\uparrow\downarrow X_{t_{i+1}}^j = X_{t_i}^j + h \cdot B(t_i, X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j, \mathcal{L}(X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j) \pm \sigma \sqrt{h}$$
 (8)

• For each starting value x_m of X_0 we create a binomial tree with depth equal to the number of time steps.

Binomial approximation of Brownian increments:

$$\uparrow \downarrow X_{t_{i+1}}^j = X_{t_i}^j + h \cdot B(t_i, X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j, \mathcal{L}(X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j) \pm \sigma \sqrt{h}$$
 (8)

- For each starting value x_m of X_0 we create a binomial tree with depth equal to the number of time steps.
- Each node has a value for (X, Y, Z). To get the distribution of $(X_{t_i}, Y_{t_i}, Z_{t_i})$, we look at the values on the nodes at depth i.

Binomial approximation of Brownian increments:

$$\uparrow \downarrow X_{t_{i+1}}^j = X_{t_i}^j + h \cdot B(t_i, X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j, \mathcal{L}(X_{t_i}^j, Y_{t_i}^j, Z_{t_i}^j) \pm \sigma \sqrt{h}$$
 (8)

- For each starting value x_m of X_0 we create a binomial tree with depth equal to the number of time steps.
- Each node has a value for (X, Y, Z). To get the distribution of $(X_{t_i}, Y_{t_i}, Z_{t_i})$, we look at the values on the nodes at depth i.
- The backward scheme is easily calculated on the tree: the expectation conditional to the filtration of time t_i is given by the average of the value of "up" and "down" branches at time t_{i+1} from the node Y_{t_i} .

Outline

- Mean Field Games
- 2 Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- Benchmark Examples
 - Toy Example
 - Trader Problem

Grid for Discretized Distribution

• The uniform spatial grid of parameter $(\Delta x, x_{\min}, x_{\max})$ for the forward process is defined by:

$$\chi = \{x_{min} = x_1 < \dots < x_{N_x} = x_{max}\}
= \{x_{min} + k\Delta x, k = 0, \dots N_x - 1\}$$
(9)

Grid for Discretized Distribution

• The uniform spatial grid of parameter $(\Delta x, x_{\min}, x_{\max})$ for the forward process is defined by:

$$\chi = \{x_{min} = x_1 < \dots < x_{N_x} = x_{max}\}
= \{x_{min} + k\Delta x, k = 0, \dots N_x - 1\}$$
(9)

• The distribution of X_{t_i} is defined by the distribution of its projection on the grid χ :

$$\mathcal{L}(X_{t_i}) \approx \mathcal{L}(\Pi(X_{t_i})) = \{ p_k | p_k = \mathbb{P}(\Pi(X_{t_i}) = x_k), k = 1, ..., N_x \} \\ \approx \{ p_k | p_k = \mathbb{P}(X_{t_i} \in B(x_k, \Delta x/2), k = 1, ..., N_x \}$$
 (10)

 $B(x, \Delta x/2)$ the closed ball centered at x of radius $\Delta x/2$.

Scheme of Forward Process

• As before, the forward process is given by the Euler scheme with binomial approximation of Brownian increments:

$$\uparrow \downarrow \bar{X}_{t_{i+1}}^{t_i,x} = x + h \cdot b(x,\mu_i, Y_{t_i}, Z_{t_i}, \mathcal{L}(Y_{t_i}, Z_{t_i})) \pm \sigma \sqrt{h}$$
 (11)

Scheme of Forward Process

 As before, the forward process is given by the Euler scheme with binomial approximation of Brownian increments:

$$\uparrow \downarrow \bar{X}_{t_{i+1}}^{t_i,x} = x + h \cdot b(x,\mu_i, Y_{t_i}, Z_{t_i}, \mathcal{L}(Y_{t_i}, Z_{t_i})) \pm \sigma \sqrt{h}$$
 (11)

• For $x \in \chi$, the distribution of $X_{t_{i+1}}$ conditional to $\{X_{t_i} = x\}$ is approximated by $\mathcal{L}(\Pi(\bar{X}_{t_{i+1}}^{t_{i,X}}))$. Starting from the initial distribution $\mu^0 = \xi$, the sequence $(\mu^i)_{i=1,\dots,N_t}$ of discretized probability distributions is defined recursively as:

$$\mu^{i+1} = \mathcal{L}(\Pi(\bar{X}_{t_{i+1}}^{t_i,x})|\mathcal{L}(x) = \mu^i)$$
(12)

Forward Distribution on the Grid

• For $I = 1, ..., N_x$:

$$\mathbb{P}_{t_{i}}[X_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{l}, \Delta x/2)]
\approx \mathbb{P}_{t_{i}}[\Pi(\bar{X}_{t_{i+1}}^{t_{i},x_{k}}) = x_{l}] = \mathbb{P}_{t_{i}}[\bar{X}_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{l}, \Delta x/2)]
\approx 1/2 \cdot [\mathbf{1}^{\uparrow}\bar{X}_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{l}, \Delta x/2)\} + \mathbf{1}^{\downarrow}\bar{X}_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{l}, \Delta x/2)\}]$$
(13)

Forward Distribution on the Grid

• For $I = 1, ..., N_x$:

$$\mathbb{P}_{t_{i}}[X_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{I},\Delta x/2)]
\approx \mathbb{P}_{t_{i}}[\Pi(\bar{X}_{t_{i+1}}^{t_{i},x_{k}}) = x_{I}] = \mathbb{P}_{t_{i}}[\bar{X}_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{I},\Delta x/2)]
\approx 1/2 \cdot [\mathbf{1}\{\uparrow \bar{X}_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{I},\Delta x/2)\} + \mathbf{1}\{\downarrow \bar{X}_{t_{i+1}}^{t_{i},x_{k}} \in B(x_{I},\Delta x/2)\}]$$
(13)

• To get the probability distribution $\mu_{i+1} = \{p_1^{i+1},...,p_{N_x}^{i+1}\}$ at time t_{i+1} , we sum over k with respect to p_k^i :

$$p_{l}^{i+1} = \sum_{k=1}^{N_{x}} \frac{p_{k}^{i}}{2} \left[\mathbf{1} \{ \uparrow \bar{X}_{t_{i+1}}^{t_{i}, x_{k}} \in B(x_{l}, \Delta x/2) \} + \mathbf{1} \{ \downarrow \bar{X}_{t_{i+1}}^{t_{i}, x_{k}} \in B(x_{l}, \Delta x/2) \} \right]$$
(14)

Scheme of Backward Process

• We suppose there exist functions *u* and *v* such that:

$$(Y_t, Z_t) = (u, v)(t, X_t, \mathcal{L}(X_t))$$

Scheme of Backward Process

• We suppose there exist functions *u* and *v* such that:

$$(Y_t, Z_t) = (u, v)(t, X_t, \mathcal{L}(X_t))$$

• For each time step t_i , we compute values of $(u, v)(t_i, x, \mu^i)$ for $x \in \chi$ and $supp(\mu^i) = \chi$. The values of (Y_{t_i}, Z_{t_i}) are approximated as following:

$$(Y_{t_i}, Z_{t_i}) \approx (u, v)(t_i, x, \mu^i)$$
 for $\Pi(X_{t_i}) = x$ and $\mathcal{L}(\Pi(X_{t_i})) = \mu^i$ (15)

Scheme of Backward Process

• We suppose there exist functions *u* and *v* such that:

$$(Y_t, Z_t) = (u, v)(t, X_t, \mathcal{L}(X_t))$$

• For each time step t_i , we compute values of $(u, v)(t_i, x, \mu^i)$ for $x \in \chi$ and $supp(\mu^i) = \chi$. The values of (Y_{t_i}, Z_{t_i}) are approximated as following:

$$(Y_{t_i}, Z_{t_i}) \approx (u, v)(t_i, x, \mu^i) \text{ for } \Pi(X_{t_i}) = x \text{ and } \mathcal{L}(\Pi(X_{t_i})) = \mu^i$$
 (15)

• The backward scheme then becomes:

$$u(t_{i}, x, \mu_{i}) \approx \frac{1}{2} [u(t_{i+1}, \Pi(\uparrow \bar{X}_{t_{i+1}}^{t_{i}, x}), \mu_{i+1}) + u(t_{i+1}, \Pi(\downarrow \bar{X}_{t_{i+1}}^{t_{i}, x}), \mu_{i+1})]$$

$$+ h \cdot f(X_{t_{i}}, Y_{t_{i}}, Z_{t_{i}}, \mathcal{L}(X_{t_{i}}, Y_{t_{i}}, Z_{t_{i}}))$$

$$v(t_{i}, x, \mu_{i}) \approx \frac{1}{2} h^{-1/2} [u(t_{i+1}, \Pi(\uparrow \bar{X}_{t_{i+1}}^{t_{i}, x}), \mu_{i+1}) - u(t_{i+1}, \Pi(\downarrow \bar{X}_{t_{i+1}}^{t_{i}, x}), \mu_{i+1})]$$

$$(16)$$

Outline

- Mean Field Games
- 2 Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- 3 Benchmark Examples
 - Toy Example
 - Trader Problem

Toy Example

$$dX_{t} = -\rho Y_{t}dt + \sigma dW_{t}$$

$$X_{0} = x_{0} = 2$$

$$dY_{t} = \arctan(\mathbb{E}(X_{t})) dt + Z_{t}dW_{t}$$

$$Y_{T} = \arctan(X_{T})$$
(17)

Toy Example: Continuation in Time

Toy Example: Effect of σ

Outline

- Mean Field Games
- 2 Algorithms for solving FBSDEs
 - Picard Iteration
 - Continuation in Time
 - Tree Algorithm
 - Grid Algorithm
- Benchmark Examples
 - Toy Example
 - Trader Problem

• X_t represents the number of shares owned at time t:

$$dX_t = \alpha_t dt + \sigma dW_t, \quad t \in [0, T]. \tag{18}$$

• X_t represents the number of shares owned at time t:

$$dX_t = \alpha_t dt + \sigma dW_t, \quad t \in [0, T]. \tag{18}$$

• The trader controls his/her trading velocity, α_t , to minimize the cost:

$$J(\alpha) = \mathbb{E}\left[\int_0^T \left(\frac{c_\alpha}{2}\alpha_t^2 + \frac{c_X}{2}X_t^2 - \bar{h}\mathbb{E}(\alpha_t)X_t\right)dt + \frac{c_g}{2}X_T^2\right]$$
(19)

• X_t represents the number of shares owned at time t:

$$dX_t = \alpha_t dt + \sigma dW_t, \quad t \in [0, T]. \tag{18}$$

• The trader controls his/her trading velocity, α_t , to minimize the cost:

$$J(\alpha) = \mathbb{E}\left[\int_0^T \left(\frac{c_\alpha}{2}\alpha_t^2 + \frac{c_X}{2}X_t^2 - \bar{h}\mathbb{E}(\alpha_t)X_t\right)dt + \frac{c_g}{2}X_T^2\right]$$
(19)

 The stock price is influenced by the average trading velocity of all of the players. Thus, the players interact through the empirical distribution of their controls.

• X_t represents the number of shares owned at time t:

$$dX_t = \alpha_t dt + \sigma dW_t, \quad t \in [0, T]. \tag{18}$$

• The trader controls his/her trading velocity, α_t , to minimize the cost:

$$J(\alpha) = \mathbb{E}\left[\int_0^T \left(\frac{c_\alpha}{2}\alpha_t^2 + \frac{c_X}{2}X_t^2 - \bar{h}\mathbb{E}(\alpha_t)X_t\right)dt + \frac{c_g}{2}X_T^2\right]$$
(19)

- The stock price is influenced by the average trading velocity of all of the players. Thus, the players interact through the empirical distribution of their controls.
- This is an example of an Extended Mean Field Game.

Trader Example: Two Formulations

• Weak Formulation:

$$dX_{t} = -\frac{1}{c_{\alpha}} \frac{Z_{t}}{\sigma} dt + \sigma dW_{t}, X_{0} = x_{0}$$

$$dY_{t} = -\left[\frac{c_{X}}{2} X_{t}^{2} + \frac{\bar{h}}{c_{\alpha}} \frac{\mathbb{E}[Z_{t}]}{\sigma} X_{t} + \frac{1}{2c_{\alpha}} \left(\frac{Z_{t}}{\sigma}\right)^{2}\right] dt + Z_{t} dW_{t}, Y_{T} = c_{g} \frac{X_{T}^{2}}{2}$$
(20)

Pontryagin Formulation:

$$dX_{t} = -\frac{1}{c_{\alpha}}Y_{t}dt + \sigma dW_{t}, X_{0} = x_{0}$$

$$dY_{t} = -(c_{X}X_{t} + \frac{\bar{h}}{c_{\alpha}}\mathbb{E}[Y_{t}])dt + Z_{t}dW_{t}, Y_{T} = c_{g}X_{T}$$
(21)

Trader Example: W_2 Distance

Trader Example: Continuation in Time

Advantages of tree algorithm:

- Advantages of tree algorithm:
 - ① No error of discretization or truncation. No need to choose grid parameters, as the stability condition that links Δx and h is unknown and the a priori bounds x_{\min} and x_{\max} are difficult to estimate in practice.

- Advantages of tree algorithm:
 - **1** No error of discretization or truncation. No need to choose grid parameters, as the stability condition that links Δx and h is unknown and the a priori bounds x_{\min} and x_{\max} are difficult to estimate in practice.
 - The process defined on the tree is pathwise, extendable to mean field games with common noise.

- Advantages of tree algorithm:
 - ① No error of discretization or truncation. No need to choose grid parameters, as the stability condition that links Δx and h is unknown and the a priori bounds x_{\min} and x_{\max} are difficult to estimate in practice.
 - The process defined on the tree is pathwise, extendable to mean field games with common noise.
- Advantages of grid algorithm:

- Advantages of tree algorithm:
 - ① No error of discretization or truncation. No need to choose grid parameters, as the stability condition that links Δx and h is unknown and the a priori bounds x_{\min} and x_{\max} are difficult to estimate in practice.
 - The process defined on the tree is pathwise, extendable to mean field games with common noise.
- Advantages of grid algorithm:
 - For a given computational capacity, it is much easier to have a large number of time steps in grid algorithm than in tree algorithm where the complexity grows exponentially with number of time steps.

• Implemented two algorithms (*tree* and *grid*) to solve FBSDEs using a Picard iteration.

- Implemented two algorithms (*tree* and *grid*) to solve FBSDEs using a Picard iteration.
- Extended these algorithms via continuation in time.

- Implemented two algorithms (*tree* and *grid*) to solve FBSDEs using a Picard iteration.
- Extended these algorithms via continuation in time.
- Tested the algorithms on a variety of benchmark examples.

- Implemented two algorithms (*tree* and *grid*) to solve FBSDEs using a Picard iteration.
- Extended these algorithms via continuation in time.
- Tested the algorithms on a variety of benchmark examples.
- Future Work:
 - Error analysis of two algorithms
 - 2 Estimation of grid parameters $(\Delta x, x_{\min}, x_{\max})$
 - **1** Investigate the effect of σ in the convergence of Picard iteration
 - Application of tree algorithm to Mean Field Games with common noise

References

- R. Carmona, and F. Delarue. Probabilistic approach to mean field games, Volume 1. *Springer*, to appear in 2017.
- J.F. Chassagneux, D. Crisan, and F. Delarue Numerical Method for FBSDEs of McKean-Vlasov Type. Arxiv.
- F. Delarue and S. Menozzi (2006) A forward-backward stochastic algorithm for quasi-linear PDEs *Ann. Appl. Probab.*, 16 (1), pp 140-184.

Questions?