KNOWLEDGE ACQUISITION THROUGH NATURAL LANGUAGE CONVERSATION AND CROWDSOURCING

Luka Bradeško

Doctoral Dissertation Jožef Stefan International Postgraduate School Ljubljana, Slovenia

Supervisor: Doc. Dunja Mladenić, Jožef Stefan Institute, Ljubljana, Slovenia

Evaluation Board:

Dr. Michael Witbrock, Chair, IBM, New York, New York

Prof. Erjavec, Member, Jožef Stefan Institute, Ljubljana, Slovenia

Prof. Iztok Savnik, Member, Univerza v Novi Gorici, Nova Gorica, Slovenia

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA JOŽEF STEFAN INTERNATIONAL POSTGRADUATE SCHOOL

Luka Bradeško

KNOWLEDGE ACQUISITION THROUGH NATURAL LANGUAGE CONVERSATION AND CROWDSOURCING

Doctoral Dissertation

PRIDOBIVANJE STRUKTURIRANEGA ZNANJA SKOZI POGOVOR TER S POMOČJO MNOŽIČENJA

Doktorska disertacija

Supervisor: Doc. Dunja Mladenić

Acknowledgments

Thank everyone who contributed to the thesis: - EU Projects - Cyc - Dave - $\operatorname{Michael}$ - $\operatorname{Vanessa}$ - Dunja - $\operatorname{Coworkers}$

Abstract

The English abstract should not take up more than one page.

Povzetek

Povzetek v slovenščini naj ne bo daljši od ene strani.

Contents

Li	ist of Figures	$\mathbf{x}\mathbf{v}$
\mathbf{Li}	ist of Tables	xvii
Li	ist of Algorithms	xix
\mathbf{A}	Abbreviations	xxi
Sy	ymbols	xxiii
\mathbf{G}	Glossary	xxv
1	Introduction 1.1 Scientific Contributions	1 2 2 2
2	Background and Related Work 2.1 Labour Acquisition	5 5 6 6 6 6 6 6 6
3	Knowledge Acquisition Approach 3.1 Architecture	7 . 7
4	Real World Knowledge Acquisition Implementation 4.1 Cyc	11
5	Evaluation	13
6	Conclusions	15

XIV	(or	ıter	nts

Appendix A Proofs of Theorems A.1 Proof of the Pythagorean Theorem	17 17
References	19
Bibliography	19
Biography	21

List of Figures

Figure 3.1:	General Architecture of the KA system, with a simple interaction loop.	8
Figure A.1:	Similar triangles used in the proof of the Pythagorean theorem.	17

List of Tables

Table 2.1:	Structured	overview	of related	KA	systems.															4
------------	------------	----------	------------	----	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

List of Algorithms

Abbreviations

CC ... Curious Cat (a name of the knowledge acquisition application and platform that is a side result of this thesis)

CYC ... An AI system (Inference Engine and Ontology), developed by Cycorp Inc.

CycKB. . Cyc Knowledge Base (Ontology part of Cyc system)

CycL . . . Cyc Lanugage

JSI \dots Jožef Stefan Institute KA \dots Knowledge Acquisition

KDML.. Knowledge SDatabase Mark-up Language

NL ... Natural Language

Symbols

 j^{\star} ... black-body irradiance σ ... Stefan's (or Stefan-Boltzmann) constant

Glossary

Glossary of terms, dada, bada

Chapter 1

Introduction

An intelligent being or machine solving any kind of a problem needs knowledge to which it can apply its intelligence while coming up with an appropriate solution. This is especially true for the knowledge-driven AI systems which constitute a significant fraction of general AI research. For these applications, getting and formalizing the right amount of knowledge is crucial. This knowledge is acquired by some sort of Knowledge Acquisition (KA) process, which can be manual, automatic or semi-automatic. Knowledge acquisition, using an appropriate representation and subsequent knowledge maintenance are two of the fundamental and as-yet unsolved challenges of AI. Knowledge is still expensive to retrieve and to maintain. This is becoming increasingly obvious, with the rise of chat-bots and other conversational agents and AI assistants. The most developed of these (Siri, Cortana, Google Now, Alexa), are backed by huge financial support from their producing companies, and the lesser-known ones still result from 7 or more person-years of effort by individuals Finish

Knowledge acquisition and subsequent knowledge maintenance, are two of the fundamental and as-yet not-completely-solved challenges of Artificial Intelligence (AI).

We propose and implement novel approach to automated knowledge acquisition using the user context obtained from a mobile device and knowledge based conversational crowdsourcing. The resulting system named Curious Cat has a multi objective goal, where KA is the primary goal, while having an intelligent assistant and a conversational agent as secondary goals. The aim is to perform KA effortlessly and accurately while having a conversation about concepts which have some connection to the user, allowing the system (or the user) to follow the links in the conversation to other connected topics. We also allow to lead the conversation off topic and to other domains for a while and possibly gather additional, unexpected knowledge. For illustration see the example conversation sketch in Table I, where topic changes from a specific restaurant to a type of dish. In this example case, the conversation is started by the system when user stays at the same location for 5 minutes.

1.1 Scientific Contributions

This section gives an overview of scientific and other contributions of this thesis to the knowledge acquisition approaches.

1.1.1 Novel Approach Towards Knowledge Acquisition

Traditionally KA (knowledge acquisition) approach focuses on one type of acquisition process, which can be either Labor, Interaction, Mining or Reasoning(**Zang2013**). In

this thesis we propose a novel, previously untried approach that intervenes all aforementioned types with current user context and crowdsourcing into a coherent, collaborative and autonomous KA system. It uses existing knowledge and user context, to automatically deduce and detect missing or unconfirmed knowledge(reasoning) and uses this info to generate crowdsourcing tasks for the right audience at the right time(labor). These tasks are presented to users in natural language (NL) as part of the contextual conversation (interaction) and the answers parsed (mining) and placed into the KB after consistency checks(reasoning). The approach contribution can be summed up as a) definition of the framework for autonomous and collaborative knowledge acquisition with the help of contextual knowledge (chapter X), and b) demonstrate and evaluate the contributions of contextual knowledge and approach in general chapter X.

1.1.2 Knowledge Acquisition Platform Implementation as Technical Contribution

Implementation of the KA framework as a working real-world prototype which shows the feasibility of the approach and a way to connect many independent and complex subsystems. Sensor data, natural language, inference engine, huge pre-existing knowledge base (Cyc)CycRef, textual patterns and crowdsourcing mechanisms are connected and interlinked into a coherent interactive application (Chapter X).

1.1.3 A Shift From NL Patterns to Logical Knowledge Representation in Conversational Agents

Besides the main contributions presented above, one aspect of the approach introduces a shift in the way how conversational agents are being developed. Normally the approach is to use textual patterns and corresponding textual responses, sometimes based on some variables, and thus encode the rules fro conversation. As a consequence of natural language interaction, the proposed KA framework is in some sense a conversational agent which is driven by the knowledge and inference rules and uses patterns only for conversion from NL to logic. This shows promise as an alternative approach to building non scripted conversational engines (Chapter X).

1.2 Thesis structure

The rest of the thesis is structured in to chapters covering specific topics. Chapter X nintroduces

Chapter 2

Background and Related Work

In this chapter we will give an overview of approaches and related works on broader knowledge acquisition research field, information extraction, crowdsourcing and geo-spatial context mining.

Knowledge Acquisition has been addressed from different perspectives by many researchers in Artificial Intelligence over decades, starting already in 1970 as a sub-discipline of AI research (Feigenbaum-economicPhd), and since then resulting in a big number of types and implementations of approaches and technologies/algorithms. In more recent survey of KA approaches (Zang2013), authors categorize all of the KA approaches into four main groups, regarding the source of the data and the way knowledge is acquired:

- Labour Acquisition. This approach uses human minds as the knowledge source. This usually involves human (expert) ontologists manually entering and encoding the knowledge.
- Interaction Acquisition. As in Labour Acquisition, the source of the knowledge is coming from humans, but in this case the KA is wrapped in a facilitated interaction with the system, and is sometimes implicit rather than explicit.
- Reasoning Acquisition. In this approach, new knowledge is automatically inferred from the existing knowledge using logical rules and machine inference.
- *Mining Acquisition*. In this approach, the knowledge is extracted from some large textual corpus or corpora.

We believe this categorization most accurately reflects the current state of machine (computer) based knowledge acquisition, and we decided to use the same classification when structuring our related work, focusing more on closely related approaches and extending where necessary. According to this classification, our work presented in this thesis, fits into a hybrid approach combining all four groups, with main focus on interaction and reasoning. We address the problem by combining the labour and interaction acquisition (users answering questions as part of NL interaction aimed at some higher level goal, such as helping the user with various tasks), adding unique features of using user context and existing knowledge in combination with reasoning to produce a practically unlimited number of potential interaction acquisition tasks, going into the field of crowd-sourcing by sending these generated tasks to many users simultaneously.

Previous works that can compares to our solution is divided into the systems that exploit existing knowledge (generated anew during acquisition or pre-existing from before in other sources) (Singh2002a; Witbrock2003; Forbus2007; Kvo2010; Sharma2010; Mitchel2015), reasoning (Witbrock2003; Speer2007; Speer2008; Kuo2010), crowd-sourcing (Singh2002; Speer2009; Kuo2010; Pedro2012a; Pedro2013), acquisition

Fix this, refet to chapters it to specifici w through interaction (Speer2009; Pedro2012; Pedro2013), acquisition through labour(add, probably rather refer to subsections) () and natural language conversation(Pedro2012; Speer2007; Speer2009; Witbrock2003; Kuo2010).

Test referencing table (see Table 2.1).

Ref. Cat. Source PK System Repr. Cyc project (Cycorp) (Lenat1995) Labour K. Exp. CycLThoughtTrasure(Signiform) (Mueller2003) Labour LAGS K. Exp. HowNet (Keen.) **KDML** (Dong2010)Labour K. Exp. OMCS (MIT) (Singh2002) Labour G. Public ?

Table 2.1: Structured overview of related KA systems

2.1 Labour Acquisition

This category consists of KA approaches which rely on explicit human work to collect the knowledge. A number of expert (or also untrained) ontologists or knowledge engineers is employed to codify the knowledge by hand into the given knowledge representation (formal language). Labour acquisition is the most expensive acquisition type, but it gives a high quality knowledge. It is often a crucial initial step in other KA types as well, since it can help to have some pre-existing knowledge to be able to check the consistency of the newly acquired knowledge. Labour Acquisition is often present in other KA types, even if not explicitly mentioned, since it is implicitly done when defining internal workings and structures of other KA processes. While we checked other well known systems that are result of Labour Acquisition, Cyc (mentioned below) is the most comprehensive of them and was picked as a starting point and main background knowledge and implementation base for this work.

Cyc. The most famous and also most comprehensive and expensive knowledge acquired this way, is Cyc KB, which is part of Cyc AI system (Lenat1995). It started in 1984 as a research project, with a premise that in order to be able to think like humans do, the computer needs to have knowledge about the world and the language like humans do, and there is no other way than to teach them, one concept at a time, by hand. Since 1994, the project continued through Cycorp Inc. company, which is still continuing the effort. Through the years Cyc Inc. employed computer scientists, knowledge engineers, philosophers, ontologists, linguists and domain experts, to codify the knowledge in the formal higher order logic language CycL (Cyc Language). As of 2006 (Matuszek2006), the effort of making Cyc was 900 non-crowdsourced human years which resulted in 7 million assertions connecting 500,000 terms and 17,000 predicates/relations (Zang2013), structured into consistent sub-theories (Microtheories) and connected to the Cyc Inference engine and Natural Language generation. Since the implementation of our approach is based on Cyc, we give a more detailed description of the KB and its connected systems in section 4.1 on page 11. Cyc Project is still work in progress and continues to live and expand through various research and commercial projects.

ThoughtTreasure. Approximately at the same time(1994) as Cyc Inc. company was formed, Eric Mueller started to work on a similar system, which was inspired by Cyc and is similar in having a combination of common sense knowledge concepts connected to their natural language presentations. The main differentiator from Cyc is, that it tries to use simpler representation compared to first-order logic as is used in Cyc. Additionally, some parts of ThoughtTreasure knowledge can be presented also with finite automata, grids and

scripts (Mueller1999; Mueller2003). In 2003 the knowledge of this system consisted of 25,000 concepts and 50,000 assertions. ThoughtTreasure was not so successfull as Cyc and ceased all developments in 2000 and was open-sourced on Github in 2015.

HowNet started in 1999 and is an on-line common-sense knowledge base unveiling inter-conceptual relationships and inter-attribute relationships of concepts as connoting in lexicons of the Chinese and their English equivalents. As of 2010 it had 115,278 concepts annotated with Chinese representation, 121,262 concepts with English representation, and 662,877 knowledge base records including other concepts and attributes (**Dong2010**). HowNet knowledge is stored in the form of concept relationships and attribute relationships and is formally structured in KDML (Knowledge Database Mark-up Language), consisting of concepts (called semens in KDML) and their semantic roles.

Open Mind Common Sense (OMCS) is a crowdsourcing knowledge acquisition project that started in 1999 at the MIT Media Lab. Together with initial seed and example knowledge, the system was put online with a knowledge entry interface, so the knowledge entry was crowd-sourced and anyone interested could enter and codify the knowledge. OMCS supported collecting knowledge in multiple languages. It's main difference from the systems described above (Cyc, HowNet, ThoughtTreasure) is, that it used deliberate crowdsourcing and that it's knowledge base and representation is not strictly formal logic, but rather inter-connected pieces of natural language statements. As of 2013 (Zang2013), OMCS produced second biggest KB after Cyc, consisting of English (1,040,067 statements), Chinese (356,277), Portuguese (233,514), Korean (14,955), Japanese (14,546), Dutch (5,066), etc. Initial collection was done by specifying 25 human activities, where each activity got it's own user interface for free form natural language entry and also pre-defined patterns like "A hammer is for ", where participants can enter the knowledge. Although OMCS started to build KB from scratch it shares a similarity to our CC system in a sense that it is using crowd-sourcing and also natural language patterns with empty slots to fill in missing parts. OMCS was later used in many other KA approaches as a prior knowledge, similar way as we use Cyc. After a few versions, OMCS was taken from public access and merged with multiple KBs and KA approaches into an ConceptNet KB¹ (Speer2016), which is now (in 2017) part of Linked Open Data (LOD) and maintained as open-source project.

2.2 Interaction Acquisition

Similarly as with Labour KA, interaction Acquisition gets the knowledge from human minds, but in this case the acquisition is an intended side effect, while users are interacting with the software as part of some other activity/task, or as part of a motivation scheme, such as knowledge acquisition games. Besides games, the interaction could be some other user interface for solving specific tasks, or a Natural Language Conversation. This type of acquisition is most strongly correlated with the approach described in this thesis, since Curious Cat uses points (gaming), to motivate users and it interacts with user in NL, while discussing various topics (concepts). It uses the conversation to set up the context and acquire (remember) user's responses and places them properly in to the KB. Sometimes the acquired knowledge is paraphrased and presented back to user to show the 'understanding'. This had been tried to some extent in Z (Singh2002b).

2.2.1 Games

adada

¹http://conceptnet.io/

2.2.2 Interactive User Interfaces

adada

2.2.3 Interactive Natural Language Conversation

dada

2.3 Reasoning Acquisition

adad dada

2.4 Mining Acquisition

adad

2.5 Acquisition with the help of existing knowledge

adad

2.6 Crowdourcing Acquisition

adad

2.7 Acquistion of Geospatial Context

adad

Chapter 3

Knowledge Acquisition Approach

This chapter introduces the terms, defines formal structure and steps that form our proposed KA approach. First it introduces the general architecture and steps involved in the process(ref to chapter). In the second part, it formalizes the upper ontology and logical constructs required for the KA approach (ref to chapter). After that, each of the crucial steps is described in more detail through examples and additions to the base logical structure defined earlier.

3.1 Architecture

In this section we present the general architecture and workflow of the proposed system depicted also on 3.1, where arrows represent the workflow, squared boxes separate logical sub-systems and different colors representing functionality groups (see the figure legend).

We can see that the system and its user interaction loop are built around the knowledge base in the center (marked in purple and letter A in Figure 3.1). Around the KB, is an integrated Inference engine that can perform inference over the knowledge from the KB. This is represented with the red color and letter B. Tightly connected to the knowledge base and inference engine is a crowdsourcing module, which adds and removes knowledge from the KB based on its consistency among multiple users (Green color and letter F). At the entry and exit point of the systems workflow, there are natural language/logic converters, which are used for communication with the users (blue letter E). Besides the NL endpoints, the system also have a functional endpoint and support, which is used to be able to bring in additional language independent states, such as locations, structured knowledge, etc. In addition to this, the functional part of the application also brings in additional machine learning algorithms and support, and also serves as a glue for all the components, taking care of the interaction between submodules.

3.1.1 Knowledge Base

Internally KB has three components. The main part, which should in any real implementation of the system also be the biggest, is the common-sense knowledge and its upper ontology over which we operate. This part of the system contributes the most to the ability to check the answers for consistency. The more knowledge already exists, the easier becomes to assess the answers. The second part is the user Context KB, which stores the contextual knowledge about the user. This covers the knowledge that the user has provided about himself (section 4.4.2) and the knowledge obtained by mining raw mobile sensors (section 4.4.1). This is represented as the orange arrow, pointing into the context part of the KB. The sensor based context allows the system to proactively target the right users

at the right time and thus improve the efficiency and accuracy and also stickiness of the KA process. The third KB part, is the meta-knowledge and KA rules that drive the dialog and knowledge acquisition process (section 4.3.3). Although in our implementation we used Cyc KB and tested Umko KB, the approach is not fixed to any particular knowledge base. But it needs to be expressive enough to be able to cover the intended knowledge acquisition tasks and meta-knowledge needed for the system?s internal workings. After the KB, the second most important part of the architecture is an inference engine (in Fig. 2 marked in red and letter B), which is tightly connected to the knowledge base. The inference engine needs to be able to operate with the concepts, assertions and rules from the KB and should also be capable of meta-reasoning about the knowledge base?s internal knowledge structures. As the individual components (indicated with red color in Fig. 2) suggest, the inference engine is used for: ? Checking the consistency of the users? answers (e.g., can you order a car in a restaurant if it?s not food?). ? Placement of new knowledge inside the KB.? Querying the KB to answer possible questions.? Using knowledge and meta-rules to produce responses based on the user and her/his context input (similar in function to the scripts in script-based conversational agents).

Figure 3.1: General Architecture of the KA system, with a simple interaction loop.

3.1. Architecture 9

Fig. 2. General Architecture of the KA system, with a simple interaction loop At both ends of the stacked chain in Fig. 2, there are natural language processing components (marked in blue and with letter E), which are responsible for logic-to-language and language-to-logic conversion (sections 2.4 and 4.5). These are crucial if we want to interact with users in a natural way and thus avoid the need for users to be experts in first order logic. This module and its components are described in more detail in section 4.5. Besides the main interaction loop, which implicitly uses crowdsourcing while it interacts with the users, there is an additional component (marked in green and with letter F). This ?crowdsourcing and voting? component handles and decides, which elements of knowledge (logical assertions) can be safely asserted and made ?visible? to all the users and which are questionable and should stay visible only to the authors of the knowledge. If the piece of knowledge is questionable, the system marks it as such and then the question formulation process will check with other users whether it?s true or not. This is described in more detail in section 4.7. In addition to logic-based components presented above, there is a functional driver system (marked in orange), which glues everything together, forwards the results of inference to the NL converters, accepts and asserts the context into the KB, handles the synchronization between the instances of the systems, etc.

Chapter 4

Real World Knowledge Acquisition Implementation

4.1 Cyc

TBW

Chapter 5

Evaluation

TBW

Chapter 6

Conclusions

We came to the following conclusions . . .

Appendix A

Proofs of Theorems

A.1 Proof of the Pythagorean Theorem

Let us prove the Pythagorean Theorem from page ??.

Proof. This proof is based on the proportionality of the sides of two similar triangles, that is, upon the fact that the ratio of any two corresponding sides of similar triangles is the same regardless of the size of the triangles.

Let ABC represent a right triangle, with the right angle located at C, as shown in Figure A.1. We draw the altitude from point C, and call H its intersection with the hypotenuse AB. Point H divides the length of the hypotenuse into two parts.

Figure A.1: Similar triangles used in the proof of the Pythagorean theorem.

The new triangle ACH is similar to triangle ABC, because they both have a right angle (by definition of the altitude), and they share the angle at A, meaning that the third angle will be the same in both triangles as well, marked as θ in Figure A.1. By a similar reasoning, the triangle CBH is also similar to ABC.

Similarity of the triangles leads to the equality of ratios of corresponding sides:

$$\frac{BC}{AB} = \frac{BH}{BC}$$
 and $\frac{AC}{AB} = \frac{AH}{AC}$. (A.1)

The first result equates $\cos \theta$ and the second result equates $\sin \theta$.

These ratios can be written as:

$$BC^2 = AB \times BH \text{ and } AC^2 = AB \times AH.$$
 (A.2)

Summing these two equalities, we obtain:

$$BC^{2} + AC^{2} = AB \times BH + AB \times AH = AB \times (AH + BH) = AB^{2}, \tag{A.3}$$

which, tidying up, is the Pythagorean theorem:

$$BC^2 + AC^2 = AB^2. (A.4)$$

Bibliography

Publications Related to the Thesis

All publications related to the thesis should be referenced in the text.

Other Publications (optional)

. . .

Biography

The author of this thesis \dots