CSE 330: Spring 2024 Assignment-2 [CO4] Total Marks: 30

1. Consider the following table of data points/nodal points:

Time t (sec)	Velocity (ms^-1) v(t)
2	10
4	20
6	25

- a. [4+1 marks] Find an interpolating polynomial of velocity that goes through the above data points by using Vandermonde Matrix method. Also compute an approximate value of acceleration at Time, t=7 sec.
- **b. [4 marks]** Find an interpolating polynomial of velocity that goes through the above data points by using **Lagrange** method.
- c. [2 marks] If a new data point is added in the above scenario, which method should you use in finding a new interpolating polynomial? Also what will be the degree of that new polynomial?

2. Read the following and answer accordingly:

- a. (4 marks) Consider the nodes $[-\pi/2, 0, \pi/2]$. Find an interpolating polynomial of appropriate degree by using Newton's divided-difference method for $f(x) = x \sin(x)$.
- b. (2 marks) Use the interpolating polynomial to find an approximate value at $\pi/4$, and compute the percentage relative error at $\pi/4$.
- c. (4 marks) Add a new node π to the above nodes, and find the interpolating polynomial of appropriate degree.
- 3. An interpolating polynomial, $p_1(x) = 1.648(x 1)$ is derived for the function $f(x) = x \ln x$ at the nodes $(x_0 = 1, x_1 = 3)$ using the Lagrange method. Answer the following keeping up to 4 significant figures.
 - a. (1 marks) Explain what you need to do to obtain a degree 3 interpolating polynomial for the same function f(x) and for the same nodal points $(x_0 = 1, x_1 = 3)$.
 - b. (6 marks) Calculate the bases of the degree 3 polynomial.
 - c. (2 marks) Find the hermite polynomial using the bases found in (b).