

Figure 3 | Synthesis of three-junction lateral heterostructures based on MoX₂–WX₂. $X_2 = S_{2(1-n)}Se_{2n}$. **a**, **b**, Optical images of three-junction heterostructures composed of MoS_{0.64}Se_{1.36}–WS_{0.68} Se_{1.32} (ALH1, **a**) and MoS_{1.04}Se_{0.96}–WS_{1.08}Se_{0.92} (ALH2, **b**). **c**, **d**, Corresponding composite photoluminescence maps of ALH1 at 1.61 eV and 1.71 eV (**c**) and ALH2 at 1.6 eV and 1.8 eV (**d**). **e**, Normalized photoluminescence colour contour plot for ALH2 along a direction perpendicular to the interfaces;

 $\lambda_{exc}\!=\!633$ nm. The inset shows a typical SEM image of ALH2; the width of the image corresponds to $24\,\mu\text{m}$. f, Atomic-resolution HAADF-STEM image of a $WS_{2(1-x)}Se_{2x}$ domain of ALH2. g, Electron intensity profile along the white line indicated in f. h, Magnified image of the region enclosed by the box in f, showing the different configurations of chalcogen sites. Scale bars, $10\,\mu\text{m}$ (a–d).

constant, with sharp discontinuities at the interfaces. TEM analysis confirms that the individual domains are ternary alloys of $MoS_{2(1-x)}Se_2$ or $WS_{2(1-x)}Se_2$. Figure 3f shows a Z-contrast TEM image from a $WS_{2(1-x)}Se_{2x}$ domain. The differences in scattered electron intensities (Fig. 3g) associated with the metal sites (tungsten in this case) and with three distinct combinations of the chalcogen atoms

(S₂, Se₂ or SSe) were used to identify the elemental configurations at the different atomic positions within the crystal²⁸ (Fig. 3h). The concentration (x) at each domain was calculated from the measured photoluminescence peak positions according to Vegard's law $E_{\rm g}({\rm MS}_{2(1-x)}{\rm Se}_{2x})=(1-x)E_{\rm g}({\rm MS}_2)+xE_{\rm g}({\rm MSe}_2)-bx(1-x)$; where M = Mo or W and considering bandgap bowing parameters of b=0.05

Figure 4 | Electrical characterization of the heterostructures. a, Micrograph of a MoSe₂-WSe₂ single junction grown by chemical vapour deposition, displaying the configuration of titanium and gold contacts used for the electrical characterization of the individual WSe₂ and MoSe₂ domains as well as the electrical transport across their junction. An exfoliated crystal of hexagonal boron nitride (h-BN) was transferred onto the lower edge of the junction to isolate contacts 1 and 5 from the WSe₂ edge, as these contacts are designed to probe only the MoSe₂ domain. The properties of the WSe2 domain are probed through contacts 2 and 3 or 3 and 4. **b**, Typical drain to source current I_{ds} as a function of the gate voltage V_{bg} for the WSe₂ (green) and the MoSe₂ (orange) domains. The WSe2 domain displays current mainly at negative gate voltages—that is, hole-doped-like transport—whereas the MoSe₂ domain displays an electron-doped-like response. The inset plots I_{ds} as a function of the bias voltage $V_{\rm ds}$, showing a nearly linear dependence on $V_{\rm ds}$ when $V_{\rm bg} = 0$ V. This indicates thermionic emission of charge carriers across the Schottky barriers located at the electrical contacts. c, I_{ds} as a function of V_{ds} across

the MoSe₂-WSe₂ interface, displaying a typical diode-like response which becomes more prominent under illumination ($V_{bg} = 0 \text{ V}$). The inset shows a sketch of the MoSe₂-WSe₂ domains, their interface, and respective band alignments. **d**, Photoinduced current $I_{ph} = I_{ds} - I_{dark}$, where I_{ds} is the current observed under illumination and I_{dark} is the current observed under dark conditions, as a function of the illumination power P. The red line is a linear fit, indicating a linear dependence of I_{ph} on P at high bias voltages. **e**, I_{ds} as a function of V_{bg} for a WS₂ (black) and a MoS₂ (brown) domain. Whereas WS2 behaves as a hole-doped compound, MoS2 displays ambipolar behaviour, albeit with a more pronounced electron-like response. The inset shows a micrograph of the MoS₂-WS₂ single junction device showing the configuration of contacts used to evaluate individual domains and their interface. f, I_{ds} as a function of V_{ds} across the MoS₂–WS₂ interface, showing the characteristic diode-like response. The inset shows a sketch of the MoS2-WS2 domains, their interface, and respective band alignments.