IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Ryuji NAKAGAWA, Norikazu OTOYAMA and Daisuke NOHARA

Serial No. : 10/518629

PCT Filed : June 19, 2003

PCT No. : PCT/JP03/07800

For RUBBER COMPOSITION FOR TIRE AND TIRE MADE THEREFROM

Art Unit & Examiner: 1796, Ms. Alicia M. Toscano

DECLARATION UNDER 37 CFR 1.132

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

Sir:

- I, Seiichi KATO, in care of 3-1-1, Ogawahigashi-cho Kodaira-shi, Tokyo, Japan, declare that:
- 1. I graduated from The University of Tokyo and received my master's degree in graduate school of Science specialized in chemistry in March 2002, and joined BRIDGESTONE CORPORATION in April 2002. Then, I have been engaged in the research and development of ingredients for rubber compositions in Material-Development Department up to the present.
- I am familiar with the subject matter disclosed in the present U.S. Patent Application as identified above and the following experiments were carried out by me.

3. Experiment

The Examiner states "Regarding Tables 1 and 2, the data is not sufficient to

show unexpected results for the inclusion of a tackifier because there is no comparative example of just Resin A and Resin B."

Accordingly, Comparative Examples A to J which contain no Aromatic oil were conducted. Comparative Examples A and B contain just (A) copolymer and (B) copolymer but not Aromatic oil. Comparative C to J contains just (A) copolymer.

(B) copolymer and a Resin disclosed in Nakamura (US6414073) or Sasaka (US6186204) but not Aromatic oil.

Procedure and Test Methods of the Experiment

The rubber compositions of Comparative Examples A to J are prepared in the procedure shown in the specification. The test method for hysteresis loss, dry gripping property and wet gripping property and processability in production plants are also shown in the specification.

The Formulation 1 was used for the preparations of the rubber compositions of Comparative Examples B to J.

Table 3 in the specification

Mixing stage	Components of mixing	Formulation 1
	SBR#1500	_
Photos and	styrenc-butadiene copolymer rubber (a)	100
First stage	hydrogenated styrene-butadiene copolymer rubber (b)	80
	aromatic oil	_
•	SAF carbon black	80
	zinc oxide	1.5
	stearic acid	2
	antioxidant 6C*20	1.5
	paraffin wax	1.5
	resin (shown in Tables 4, 7 and 8)	40
	zinc oxide	1.5
Second stage	vulcanization accelerator DM*22	1.5
	vulcanization accelerator CZ*24	2.5
	sulfur	1.5

[Note]

^{*20:} N-1,3-Dimethylbutyl-N'-phenyl-p-phenylenediamine.

*22: Dibenzothiazyl disulfide.

*24: N Cyclohexyl 2-benzothiazolylsulfenamide.

The resins used in the rubber compositions of Comparative Examples C to J are as follows:

	Res	ins disclosed in Nakamura (US6414073)
Comparative Example C	a	terpene phenol resin "YS Polystar T115" manufactured by YASUHARA CHEMICAL CO., LTD.
Comperative Bample D	þ	terpene resin "YS Resin Px1250" manufactured by YASUHARA CHEMICAL CO., LTD.
Comperative Example E	c	terpene resin "YS Resin Px1150" manufactured by YASUHARA CHEMICAL CO., LTD.
Comparativo Example F	d	maleic anhydride-modified C5 rosin "Quintone C200L" manufactured by NIPPON ZEON CO., LTD.
Comparative Example G	е	maleic anhydride-modified C5, C9 resin "Quintone D200" manufactured by NIPPON ZEON CO., LTD.
Comparative Example H	f	aliphatic-based hydrocarbon resin "HILETS R500" manufactured by MITSUI CHEMICAL CO. LTD.,

	Res	ins disclosed in Sasaka (US6186204)
Comparative Example I	m	dicyclopentadiene resin "ESCOREZ 8180" manufactured by EXXON Company
Comparative Exemple J	n	aromatic hydrocarbon resin "NISSEKI NEOPOLYMER 80" manufactured by NIPPON OIL Co., Ltd.

Result

The results obtained are shown in the following Tables.

The data of Comparative Example A is shown with those of Examples 1 to 9 and Comparative Examples 1 and 2. The data of Comparative Examples B to J are shown with those of Examples 25 to 29 and Comparative Example 13.

0	Table 1-1 and 2 in which Comparative Example A is added	Comp	arativ(Bxan	ple A	is edd	8						
					-	Example	ره ا				S	parati	Comparative Example
		-	8	က	4	9	9	1	8	6	1	2	⋖
Component (A)	SBR*1 (part by mass)	8	90	150	8	8	92	100	100	100	100	8	100
Component (B)	hydrogenated SBR*2 (pert by mass)	40	\$	40	\$	40	40	40	40	8	40	1	9
	C5/C9 ccpolymer resin*3	40	ı	1	ı	1	ı	I	ı	١	ī	ī	. 1
	phenolresin A**	_	40	1	1	-	1	1	ı	1	ī	ī	-
C)	phenol resin B*5	ī	1	8	ı	1	ı	ı	ı	ı	1	1	-
_	DCPD resin*6	1	-		40	1	ı	ı	1	1	ī	ı	
	C5-based resin*1	-		-	ı	40	ı	ı	ı	ī	ī	ī	ı
_	C9-based aromatic resin A*8	-	1	ı	_	ı	9	ī	ı	ı	ı	ī	1
Co by meass)	C9-based aronatic resin B**	_	_	=	_	١	ī	8	ı	ī	ı	ī	
	counarone-indene resin A*10	_	_	1	1	ı	ı	1	40	ī	ı	1	1
	coumarone-indene resin B*11	1	1	ı	ı	ı	Ī	ı	1	40	ī	ı	ì
Aromatic oil*18 (part by mass.)	part by mass)	ı	1	Ι,	_	1	1	1	ı	ī	40	8	1
Carbon black A*	Carbon black A*19 (part by mass)	8	8	8	80	80	80	68	90	8	88	8	8
Steeric acid (part by mass,	t by mass)	2	2	2	2	2	2	2	2	2	2	2	8
Zinc exide (part by mass)	by mass)	3	3	3	က	ဗ	3	က	60	8	3	3	69
Antioxidant*20 (part by mass)	part by mass)	1	1	-	-	-	-	-	-		-	-	-
Vulcanization accelerator A*21	elerator A*21 (part by mass)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	6.4	0.4	4.0	0.4
Vulcanization accelerator B*22	celerator B*22 (part by mass)	1	-	1	1	1	1	1	-		-	-	_
Sulfur (part by mass)	ass)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Hysteresis loss	32	120	118	113	113	116	121	119	118	119	100	87	35
Dry gr.pping property	property	115	112	109	108	111	114	113	113	114	100	90	32
Wet gripping property	property	109	106	105	104	106	Π	109	105	107	901	88	98

[Note]

*1: A styrene-butadiene copolymer having a weight average molecular weight of 1.0×10^6 as expressed by the molecular weight of the corresponding polystyrene,

- a content of the bound styrene of 30% by mass and a content of the vinyl unit in the butadiene portion of 50% by mass,
- *2: A hydrogenated liquid styrene butadiene copolymer having a weight average molecular weight of 1.0×10⁴ as expressed by the molecular weight of the corresponding polystyrene, a content of the bound styrene of 40% by mass and a fraction of hydrogenated double bond in the butadiene portion of 90%. The weight average molecular weight is expressed as the molecular weight of the corresponding polystyrene.
- *3: "STRUKTOL TS30"; manufactured by SCHILL & SEILACHER Company.
- *4: "KORESIN"; manufactured by BASF Company,
- *5: "HITANOL 1502"; a novolak type alkylphenol resin; manufactured by HITACHI KASEI KOGYO Co., Ltd.
- *6: "ESCOREZ 8180", a dicyclopentadiene based resin; manufactured by EXXON OHEMICAL Company.
- *7: "HI-REZ T500X"; manufactured by MITSUI KAGAKU Co., Ltd.
- *8: "FTR0120"; manufactured by MITSUI KAGAKU Co., Ltd.
- *9: "NEOPOLYMER 140"; manufactured by SHIN NIPPON SEKIYU KAGAKU Co., Ltd.
- *10: "ESCURON V120"; manufactured by SHIN NITTETSU KAGAKU Co., Ltd.
- *11: "ESCURON L-20"; manufactured by OUCHI SHINKO KAGAKU KOGYO Co.,
 Ltd.
- *18: "AROMACS #3"; manufactured by FUJI KOSAN Co., Ltd.
- *19: The outer surface area in accordance with the CTAB adsorption method: 148 m²/g; 24M4 DBP absorption: 102 ml/100 g.
- *20: N-1,3-Dimethylbutyl-N-phenyl-p-phenylenediamine.
- *21: 1,3-Diphenylguanidine.
- *22: Dibenzothiazyl disulfide.

Table 4 in which Comparative Examples B to J are added

		-	Example						Ç	nparativ	Comparative Example	ą			
	22	38	1/3	83	ន	13	Э	ပ	۵	凹	Œ	υ	Ξ		ſ
Petroloum resin (amount, part by mass)	ş	40	8	9	Q\$	1	ı	9	8	9	\$	40	ş	9	8
Aromatic oil (part by mass)	ı	_	1	1	1	40	-	ı	1	1	-	ı	ı	1	١
Petroleum rezin	A**	B	C.3	D*21	а*Э	1	-	а	٩	3	P	. 0	J	u	Ę
Softening point (°C)	145	110	128	125	165	1	_	ı	_	-	-	_	_	-	1
Material monomer	ර	G. (a- methyl: styrene)	Ç	ਹੈ	ර	ı	I	terpene phenol	terpene terpene	terpene	ඊ	C, and small amout ofC,	රී	oyclo. penta- diene	ឋ
Modifier	_	1	DCDP	DCDP phenol	maleio acid	-	1	-	1	1	maleic maleic acid acid	maleic acid	1	-	ı
Hysteresis loss	104	102	108	.601	115	06	007	102	101	66	102	102	102	101	101
Dry gripping property	104	103	106	101	110	16	100	86	26	96	100	101	. 96	101	102
Wet gripping property	102	103	103	105	103	98	100	104	104	106	86	97	104	102	98
Processability in production plants	0	c	0	0~0	0	0	٥	0	0	0	◁	۵	0	0	0

A*9: NEOPOLYMER 140"

B*E: 'W110'; manufactured by CRAY VALLEY Company

C*'18. *NEOPOLYMER 130S'; manufactured by SHIN NIPPON SEKFYU KAGAKU Co., Ltd.

D***: "NEOPOLYMER E-130"; manufactured by SHIN NIPPON SEKIYU KAGAKU Co., Ltd.

E**: 'NEOPOLYMER 160'; manufactured by SHIN NIPPON SEKRYU KAGAKU Co., LAd.

4. I declare further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dato: Lepten ber. 30. 200 8

Seiichi KATO