Chapter 4 notes

Diego R.R.

October 16, 2023

Chapter 1

Algorithms Ch

1.1 Algorithms

1.1.1 Problem Section (book)

```
Exercise 1. 49
```

```
Exercise 2. 51
  function BINARY_INSERTION_SORT((a_1, a_2, \ldots, a_n): list of numbers)
       left := 1
       right := n
       while left_i dx < right_i dx do mid := \lfloor \frac{left + right}{2} \rfloor
           if a_{mid} < a_{mid+1} then
               left_i dx := mid
           else
               right_i dx := mid_i dx
       insert\_idx := left_idx
       insert\_val := a_{insert\_idx}
       idx := insert\_idx - 1
       while idx \ge 1 and a_{idx} > insert\_val do
           a_{idx+1} := a_{idx}
           idx := idx - 1
       a_{idx+1} := insert\_val
       return (a_1, a_2, \ldots, a_n)
```

Chapter 2

Divisibility and Modular Arithmetic

Definition 1. Let a and b be integers with $a \neq 0$. We say that a **divides** b if there exists an integer c such that b = ac (or equivalently, if $\frac{b}{a}$ is an integer). IWhen a divides b we say that a is a **factor** or **divisor** of b, and that b is a **multiple** of a. The notation $a \mid b$ denotes that a divides b. We write $a \nmid b$ to denote that a does not divide b.

Theorem 1. Let a, b, and c be integers. Where $a \neq 0$. Then

- (j) if $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.
- (j) if $a \mid b$, then $a \mid (bc)$ for all integers c.
- (j) if $a \mid b$ and $b \mid c$, then $a \mid c$.

Corollary 1. If a, b, and c are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid (mb+nc)$ whenever m and n are integers.

Theorem 2 (Division Algorithm). Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

Definition 2. From the division algorithm, d is the *divisor* and a is the *dividend*, q is called the *quotient* and r is called the *remainder*. This notation is used to express the quotient and remainder:

$$q = a \operatorname{\mathbf{div}} d, \quad r = a \operatorname{\mathbf{mod}} d$$

Definition 3. If a and b are integers and m is a positive integer, then a is congruent to b module a if a divides a - b. We write $a \equiv b \pmod{m}$ to denote that a is congruent to b modulo a. We say that $a \equiv b \pmod{m}$ is a **congruence** and a is its **modulus** (plural **moduli**). If a and a are not congruent modulo a, we write $a \not\equiv b \pmod{m}$.

Theorem 3. Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \pmod{m} = b \pmod{m}$.

Theorem 4. Let m be a positive integer. The Integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Theorem 5. Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

$$a + c \equiv b + d \pmod{m}$$
 $ac \equiv bd \pmod{m}$.

Corollary 2. Let m be a positive integer and let a, b be integers. Then

$$(a+b) \pmod{m} = ((a \pmod{m}) + (b \pmod{m})) \pmod{m}$$

and

$$(ab) \pmod{m} = ((a \pmod{m})(b \pmod{m})) \pmod{m}$$

2.1 Integer Representations and Algorithms

Theorem 1. Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

where k is a nonnegative integer, a_0, a_1, \ldots, a_k are nonnegative integers less than b, and $a_k \neq 0$.

Algorithm 1. function BASE B EXPANSION(n, b): positive integers with b > 1

```
\begin{aligned} q &:= n \\ k &:= 0 \\ \textbf{while } q \neq 0 \textbf{ do} \\ a_k &:= q \text{ (mod b)} \\ q &:= q \text{ (div b)} \\ k &:= k+1 \end{aligned}
```

```
return (a_{k-1}a_{k-2}\cdots a_1a_0)
```

```
Algorithm 2. function ADD(a, b): nonnegative integers, where a = (a_{n-1}a_{n-2}\cdots a_1a_0)_2 and b = (b_{n-1}b_{n-2}\cdots b_1b_0)_2) c := 0 for j := 0 to n-1 do d := \lfloor (a_i + b_i + c)/2 \rfloor s_i := (a_i + b_i + c) - 2d c := d s_n := c return (s_n s_{n-1} \cdots s_1 s_0)_2
```

```
Algorithm 3. function MULTIPLY (a,b): nonnegative integers, where a=(a_{n-1}a_{n-2}\cdots a_1a_0)_2 and b=(b_{n-1}b_{n-2}\cdots b_1b_0)_2) for j:=0 to n-1 do

if b_i=1 then

c:=a\ll j

else

c:=0

p:=0

for j:=0 to n-1 do

p:=add(p,c_j)

return p
```

```
Algorithm 4. function DIVIDE(a: integer, d positive integer)
q := 0
r := |a|
while r \ge d do
r := r - d
q := q + 1
if a < 0 and r > 0 then
r := d - r
q := -(q + 1)
\triangleright \{q, r\} \ q = a \ (\text{div d}), \ r = a \ (\text{mod d})
return (q, r)
```

```
Algorithm 5. function MODULAR EXPONENTIATION(b: integer, n=(a_{k-1},a_{k-2},\ldots,a_1,a_0)_2, m: positive integer) x:=1 power:=b \pmod m for i:=0 to k-1 do
```

```
 \begin{aligned} & \textbf{if} \ \ a_i = 1 \ \textbf{then} \\ & x := (x \cdot power) \ (\text{mod m}) \\ & power := (power \cdot power) \ (\text{mod m}) \\ & \textbf{return} \ x \end{aligned}
```

Chapter 3

Counting

3.1 The Basics of Counting

Definition 1. If a procedure can be broken into 2 different tasks, and for each there are n_1 and n_2 ways to do it respectively, then there are n_1n_2 ways to do the procedure.

3.1.1 Problem Section (book)

Exercise 1. Just use of the two rules.

- 1. use product rule
- 2. use sum rule

Exercise 2. For each 27 floor there are 37 offices. If you were to assign a person in a office there would be 27×37 ways to do it.

Exercise 3. There are 10 problems and 4 choices for each problem.

- 1. the student has 4 choices for each 10 question, then there are 4^{10} ways to do it.
- 2. the student has 5 choices for each 10 question, then there are 5^{10} ways to do it.

Exercise 4. Use extended product rule, there would be 12 colors, 2 female or male and 3 sizes. So there would be $12 \times 2 \times 3$ types of shirts.

Exercise 5. There would be 6×7 pairs of airlines.

Exercise 6. Same as 5. 4×5 auto routes.

Exercise 7. By extended product rule there would be $26 \times 26 \times 26$ ways to do it or 26^3 .

Exercise 8. Each time one letter is chosen it substract 1 to the following choices to account for no repetition, then we would have $26 \times (26-1) \times (24-1-1)$ ways three consecutive non-repeated letters can be constructed.

Exercise 9. The same as 8 but with two letters, there would be $25 \times (25 - 1)$ ways to do it. **ASK PROF** it should be 676 and I get 600.

Exercise 10. There are 2^8 bit strings of length 8.

Exercise 11. There are 2^8 bit strings of length 10 that ends with both begin and end with a 1.

Exercise 12. There are $2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2 = 2^7 - 1$ bit strings of length 6 or less.

Exercise 13. There are n bit strings of 1s not exeding n. Not counting the empty string.

Exercise 14. There are 2^{n-2} bit strings of length n that begin and end with 1. Not counting the empty string.

Exercise 15. There are $26^4 + 26^3 + 26^2 + 26^1$ strings with lowercase letters of length 4 or less (not counting the empty string).

Exercise 16. There are $4 * 26^3 + 3 * 26^2 + 2 * 26^1 + 1$ strings. **ASK PROF**.