## Introducción a la Teoría de Categorías

José Ramírez-Gómez

Mentor: Mateo Torres Ruiz

Pares Ordenados

2024

#### Motivación

#### La teoría de categorías:

- Usualmente se le llama "la matemática de la matemática".
- También se dice que es un "sinsentido abstracto"
- Proporciona una "vista aérea de la matemática".
- Permite unificar conceptos que, a primera vista, parecen diferentes.
- Proporciona un lenguaje para desarrollar teorías generales que pueden aplicarse en múltiples contextos.

### Definition (Categoría)

Una categoría C está compuesta de:

- Una colección de objetos, Obj(C), que denotaremos con las letras A, B, C, etc.
- Una colección de flechas o morfismos, Mor(C), que denotaremos con las letras f, g, h, etc.
- Dos mapeos, dom, cod : Mor(C) → Obj(C), que asignan a cada flecha f su dominio dom(f) y codominio cod(f). Para una flecha f con dominio A y codominio B escribiremos f : A → B. Y para cada par de objetos A, B definimos el conjunto

$$C(A, B) := \{ f \in Mor(C) \mid f : A \to B \}$$

al que llamaremos Hom-set y también escribiremos como  $Hom_{\mathcal{C}}(A, B)$ .

### Definition (Categoría)

• Para cualquier terna de objetos A, B, C, la composición de morfismos,

$$C_{A,B,C}: \mathcal{C}(A,B) \times \mathcal{C}(B,C) \rightarrow \mathcal{C}(A,C).$$

Dados  $f \in \mathcal{C}(A, B)$ ,  $g \in \mathcal{C}(B, C)$ , escribiremos  $g \circ f$  para denotar  $\mathcal{C}_{A,B,C}(f,g)$ .



• Para cada objeto A, una flecha identidad,  $\mathbf{1}_A : A \to A$ .

### Definition (Categoría)

Tales que se satisfagan los siguientes axiomas:

• Asociatividad: para cualesquiera morfismos  $f:A\to B$ ,  $g:B\to C$ ,  $h:C\to D$ , se cumple que

$$h \circ (g \circ f) = (h \circ g) \circ f$$



### Definition (Categoría)

• Identidades: para cualquier morfismo  $f: A \rightarrow B$  se cumple que

$$f \circ \mathbf{1}_A = f = \mathbf{1}_B \circ f$$
.



#### Example

- Set: Los objetos son conjuntos y los morfismos son funciones entre conjuntos.
- Pos: Los objetos son conjuntos parcialmente ordenados y los morfismos son funciones monótonas.
- Top: Los objetos son espacios topológicos y los morfismos son los mapeos continuos.
- Grp: Los objetos son grupos y morfismos son homomorfismos de grupos.

### ¿Qué es un functor?

### Definition (Functor)

Un functor  $F: \mathcal{C} \to \mathcal{D}$  está dado por:

- Un mapeo de objetos, que asigna un objeto F(A) en  $\mathcal{D}$  a cada objeto A de  $\mathcal{C}$ .
- Un mapeo de flechas que asigna un morfismo F(f): F(A) → F(B) en D a cada morfismo f: A → B en C de tal forma que se preserven las identidades y composiciones, es decir: F(g ∘ f) = F(g) ∘ F(f) y F(1<sub>A</sub>) = 1<sub>F(A)</sub>.

### Un ejemplo

### Example

En Set podemos definir el (endo)functor potencia  $\mathcal{P}: \mathsf{Set} \to \mathsf{Set}$  cuyo mapeo de objetos envía un objeto X a su conjunto potencia  $\mathcal{P}X$  y el mapeo de morfismos envía una función  $f: X \to Y$  a la imagen directa  $\mathcal{P}f: \mathcal{P}X \to \mathcal{P}Y$ .



#### Conclusiones

- La teoría de categorías no solo es una herramienta teórica poderosa sino que también tiene aplicaciones prácticas en diversas disciplinas.
- Su capacidad para unificar y generalizar conceptos facilita la comprensión y el desarrollo de nuevas teorías.
- Estudiar teoría de categorías amplía la perspectiva y profundiza la comprensión de las matemáticas.
- Pares Ordenados es una iniciativa que fomenta el conocimiento matemático y la investigación.

#### Referencias



S. Abramsky and N. Tzevelekos.

Introduction to Categories and Categorical Logic, page 3–94.

Springer Berlin Heidelberg, 2010.

ISBN 9783642128219.

doi: 10.1007/978-3-642-12821-9\_1.

URL http://dx.doi.org/10.1007/978-3-642-12821-9\_1.



S. Awodey.

Category Theory.

Oxford Logic Guides. OUP Oxford, 2010.

ISBN 9780191612558.



Tom Leinster.

Basic category theory, 2016.