Multipletes y Números Leptónicos

Diego Sarceño

201900109 Escuela de Ciencias Físicas y Matemáticas

11 de mayo de 2022

Generaciones

Existen 6 Leptones, llamados generaciones, estos se conocen en pares

$$\begin{pmatrix} \nu_{\rm e} \\ {\rm e}^- \end{pmatrix}, \qquad \qquad \begin{pmatrix} \nu_{\mu} \\ \mu^- \end{pmatrix}, \qquad \qquad \begin{pmatrix} \nu_{\tau} \\ \tau^- \end{pmatrix}.$$

Donde, dada la gran masa, el μ^- y τ^- son los inestables.

Decaimiento del μ

El muón decae por medio de procesos débiles en la siguiente forma

$$\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}; \qquad \qquad \mu^{-} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu}.$$

Con un tiempo de vida de $(2,197019 \pm 0,000021) \times 10^{-6}s$.

Decaimiento del au

Esta es una partícula parecida el muón, pero dada su gran masa, tiene decaimientos a muchos estados finales como leptones y hadrones. Un 35 % de sus decaimientos son puramente leptónicos. Como por ejemplo

$$au^+ o \mu^+ + \nu_\mu + \bar{\nu}_\tau; \qquad au^- o e^- + \bar{\nu}_e + \nu_\tau.$$

Con un tiempo de vida de $(2,906 \pm 0,011) \times 10^{-13} s$.

Números Leptónicos

$$L_e, L_\mu, L_ au$$

Su valor es 1 para su respectiva partícula y sabor de neutrino, -1 para antipartícula y 0 para cualquier otra partícula que no sea leptón. (Esto obviamente para 1 partícula) '

Números Leptónicos

Ejemplo:

Los decaimientos antes mostrados, ilustran una conservación en el número leptónico.

Números Leptónicos

Para interacciones electromagnéticas, lo anterior se reduce a $N(e^-,\mu^-,\tau^-)-N(e^+,\mu^+,\tau^+)$, interaccion en pares partícula-antipartícula. Por ejemplo

Figura: Interacción: $e^+ + e^- \rightarrow \mu^+ + \mu^-$

Conservación del Número Leptónico

Así como en la conservación de la carga, las interacciones que no conserven el número leptónico no se dan en la naturaleza.

Ejemplo:

$$u_{\mu} + n \rightarrow e^{-} + p$$

La cual viola L_e y L_μ , por lo que no es observada.

Estabilidad del Electrón

Todo lo anterior explica la estabilidad del electrón, es ligero y conserva la carga en todas las interacciones.

Tabla

Name and symbol	Mass	Q	L_e	L_{μ}	L_{τ}	Lifetime (s)	Major decays
Electron e ⁻	0.511	-1	1	0	0	Stable	None
Electron neutrino ν_e	$< 2 eV/c^2$	0	1	0	0	Stable	None
Muon (mu) μ^-	105.7	-1	0	1	0	2.197×10^{-6}	$e^- \bar{\nu}_e \nu_\mu \ (100\%)$
Muon neutrino ν_{μ}	< 0.19	0	0	1	0	Stable	None
Tauon (tau) τ^-	1777.0	-1	0	0	1	2.906×10^{-13}	$\mu^- \bar{\nu}_\mu \nu_\tau $ (17.4%) $e^- \bar{\nu}_e \nu_\tau $ (17.8%) $\nu_\tau + \text{hadrons} (\sim 64\%)$
Tauon neutrino ν_{τ}	<18.2	0	0	0	1	Stable	None

Figura: Tabla de datos de leptónes.

GRACIAS POR SU ATENCIÓN

LINK

https://youtu.be/yMd485WI_BY

