3 Séries numériques

I- Convergence

1 - Définitions

Définition 3.1 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On appelle **série de terme général** u_n la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k.$$

La série de terme général u_n est notée $\sum_{n\geqslant 0}u_n$ ou parfois simplement $\sum u_n$.

Le réel $S_n = \sum_{k=0}^n u_k$ est appelé **somme partielle d'indice** n de la série $\sum_{n\geqslant 0} u_n$.

Remarque 3.2 – Si la suite $(u_n)_{n \ge n_0}$ n'est définie qu'à partir d'un certain rang n_0 , la série de terme général u_n n'est également définie qu'à partir de n_0 , ce que l'on note $\sum_{n \ge n_0} u_n$.

La suite des **sommes partielles** est alors notée $(S_n)_{n\geqslant n_0}$, avec $S_n=\sum_{k=n_0}^n u_k$.

Exemple 3.3 -

1. On considère la série $\sum_{n\geqslant 0} n$. Son **terme général** est donné par $u_n=n$.

Les premières sommes partielles sont données par

$$S_0 = 0$$
, $S_1 = 0 + 1 = 1$, $S_2 = 0 + 1 + 2 = 3$, $S_3 = 0 + 1 + 2 + 3 = 6$, etc.

De manière générale, je peux montrer par récurrence sur $n \in \mathbb{N}$ que

$$\forall n \in \mathbb{N}, \quad S_n = \sum_{k=0}^n k = \frac{n(n+1)}{2}.$$

2. La série $\sum_{n\geqslant 1}\frac{1}{n}$ est appelée la **série harmonique**. Son terme général est donné par $u_n=\frac{1}{n}$. Les premières sommes partielles sont données par

$$S_1 = 1$$
, $S_2 = 1 + \frac{1}{2} = \frac{3}{2}$, $S_3 = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$, $S_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$, etc.

Il n'existe pas de formule simple pour exprimer la somme partielle S_n d'indice n.

2 - Séries convergentes

La série $\sum_{n\geq 0}u_n$ est en réalité une suite. On peut donc s'intéresser à sa convergence.

Définition 3.4 – Soient $\sum_{n\geqslant 0}u_n$ une série numérique et S_n sa somme partielle d'indice n.

• Si la suite $(S_n)_{n\in\mathbb{N}}$ converge, on dit que la série $\sum_{n\geqslant 0}u_n$ est **convergente**. La limite S de la suite $(S_n)_{n\in\mathbb{N}}$ est alors appelée **somme de la série** $\sum_{n\geqslant 0}u_n$ et on note

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \left(\sum_{k=0}^n u_k \right) = \sum_{k=0}^{+\infty} u_k.$$

- Si la suite $(S_n)_{n\in\mathbb{N}}$ diverge, on dit que la série $\sum_{n\geq 0}u_n$ est **divergente**.
- Déterminer la **nature** d'une série consiste à déterminer si celle-ci est convergente ou divergente.

Remarque 3.5 -

- L'écriture $\sum_{k=0}^{+\infty} u_k$ n'a de sens que si la série **converge**! Alors que l'écriture $\sum_{n\geqslant 0} u_n$ a toujours un sens, puisque celle-ci désigne une suite.
- Tout comme on ne confond pas la suite $(u_n)_{n\in\mathbb{N}}$, le terme u_n d'indice n de cette suite et sa limite éventuelle ℓ , il convient de ne pas confondre la série $\sum\limits_{n\geqslant 0}u_n$, la somme partielle $S_n=\sum\limits_{k=0}^nu_k$ d'indice n et la somme éventuelle $S=\sum\limits_{k=0}^{+\infty}u_k$ de la série.
- Les sommes infinies ne se manipulent pas comme les sommes finies (puisqu'en réalité ce sont des limites, il faut donc toujours s'assurer de la convergence). C'est pourquoi on calcule *(presque)* toujours les sommes partielles, qui sont des sommes finies, avant de passer à la limite.

Exemple 3.6 -

• Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_n=0$. Alors la somme partielle d'indice n est donnée par

$$S_n = \sum_{k=0}^n 0 = 0.$$

La suite $(S_n)_{n\in\mathbb{N}}$ est donc clairement convergente et sa limite vaut 0.

Donc la série
$$\sum_{n\geqslant 0} 0$$
 converge et $\sum_{k=0}^{+\infty} 0 = 0$.

• Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_n=1$. Alors la somme partielle d'indice n est donnée par

$$S_n = \sum_{k=0}^n 1 = n + 1.$$

La suite $(S_n)_{n\in\mathbb{N}}$ diverge, donc la série $\sum_{n\geq 0}1$ diverge.

3 - Premiers exemples

1. On considère la série $\sum_{n \ge 0} \left(\frac{1}{2}\right)^n$. Son terme général est donné par $u_n = \left(\frac{1}{2}\right)^n$.

La **somme partielle d'indice** n est

$$S_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2 \times \left(1 - \left(\frac{1}{2}\right)^{n+1}\right) = 2 - 2 \times \frac{1}{2} \times \left(\frac{1}{2}\right)^n = 2 - \left(\frac{1}{2}\right)^n.$$

La série $\sum_{n>0} \left(\frac{1}{2}\right)^n$ est donc la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad S_n = 2 - \left(\frac{1}{2}\right)^n = 2 - \frac{1}{2^n}.$$

$$\operatorname{Or} \frac{1}{2} \in \left] -1, 1\right[\quad \operatorname{donc} \quad \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0 \quad \text{ et } \quad \lim_{n \to +\infty} S_n = 2.$$

La série $\sum_{n\geqslant 0} \left(\frac{1}{2}\right)^n$ est donc **convergente** et $\sum_{k=0}^{+\infty} \left(\frac{1}{2}\right)^k = 2$.

2. On considère la série $\sum_{n\geqslant 1} \frac{1}{n(n+1)}$.

Son terme général est donné par $u_n = \frac{1}{n(n+1)}$. Pour la somme partielle d'indice n, je commence par remarquer que $\frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{(k+1)}{k(k+1)} - \frac{k}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. Alors par télescopage,

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \cdots + \frac{1}{n} - \frac{1}{n-1} = 1 - \frac{1}{n+1}.$$

La série $\sum_{n\geq 1} \frac{1}{n(n+1)}$ est donc la suite $(S_n)_{n\geqslant 1}$ définie par

$$\forall n \in \mathbb{N}^*, \quad S_n = 1 - \frac{1}{n+1}.$$

Or $\lim_{n \to +\infty} \frac{1}{n+1} = 0$ donc $\lim_{n \to +\infty} S_n = 1$.

La série $\sum_{n\geqslant 1}\frac{1}{n(n+1)}$ est donc convergente et $\sum_{k=1}^{+\infty}\left(\frac{1}{k(k+1)}\right)=1$.

3. La série harmonique $\sum_{n>1} \frac{1}{n}$ diverge.

Il s'agit d'une preuve élégante publiée par Nicole Oresme en 1360. L'idée est de minorer la série harmonique par une série qui diverge vers $+\infty$, en remplaçant tous les termes $\frac{1}{n}$ de la somme par la puissance de $\frac{1}{2}$ qui lui est immédiatement inférieure. Alors

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \cdots$$

$$\geqslant 1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{=\frac{1}{2}} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{=\frac{1}{2}} + \frac{1}{16} + \cdots \geqslant 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

En effet il y a 2 termes égaux à $\frac{1}{4}$, qui additionnés donnent $\frac{1}{2}$, $4 \times \frac{1}{8} = \frac{1}{2}$, $8 \times \frac{1}{16} = \frac{1}{2}$, et ainsi de suite. En ajoutant une infinité de fois le terme $\frac{1}{2}$, la divergence de la somme est évidente.

Et puisque la série harmonique est plus grande, alors elle diverge.

II - Sommes de séries

1 – Opérations sur les séries

Les opérations sur les sommes finies se transposent, sous certaines conditions, aux séries.

Théorème 3.7

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles et λ un réel non nul.

• Les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}\lambda u_n$ sont de même nature (c'est-à-dire qu'elles sont ou bien toutes les deux convergentes, ou bien toutes les deux divergentes). Si elles sont convergentes, alors

$$\sum_{k=0}^{+\infty} (\lambda \times u_k) = \lambda \times \left(\sum_{k=0}^{+\infty} u_k\right).$$

• Si les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ sont toutes les deux convergentes, alors la série $\sum_{n\geqslant 0}(u_n+v_n)$ est également convergente et

$$\sum_{k=0}^{+\infty} \left(u_k + v_k\right) = \sum_{k=0}^{+\infty} u_k + \sum_{k=0}^{+\infty} v_k.$$

ATTENTION! La réciproque du second point n'est pas vraie! La convergence de la série $\sum_{n\geqslant 0} (u_n+v_n)$ n'assure pas <u>du tout</u> la convergence des séries $\sum_{n\geqslant 0} u_n$ et $\sum_{n\geqslant 0} v_n$.

Exemple 3.8 – Si l'on pose pour tout $n \ge 1$, $u_n = \frac{1}{n}$ et $v_n = -\frac{1}{n}$, alors la série $\sum_{n \ge 0} (u_n + v_n)$ converge alors que ni $\sum_{n \ge 0} u_n$ ni $\sum_{n \ge 0} v_n$ ne convergent (voir les exemples précédents).

2 - Suites et séries

Théorème 3.9

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Alors la suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série $\sum_{n\geqslant 0} (u_{n+1}-u_n)$ converge. Dès lors, si $(u_n)_{n\in\mathbb{N}}$ converge, en notant ℓ sa limite, alors

$$\sum_{k=0}^{+\infty} (u_{k+1} - u_k) = \ell - u_0.$$

Théorème 3.10 – Condition nécessaire de convergence 💳

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Si la série $\sum_{n\geqslant 0}u_n$ converge, alors $\lim_{n\to +\infty}u_n=0$.

ATTENTION! On peut très bien avoir $\lim_{n \to +\infty} u_n = 0$ sans que $\sum_{n \ge 0} u_n$ ne converge!

Par exemple, $\lim_{n\to +\infty}\frac{1}{n}=0$ et la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge.

Corollaire 3.11

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Si la suite $(u_n)_{n\in\mathbb{N}}$ ne converge pas vers 0, alors la série $\sum_{n\geqslant 0}u_n$ diverge.

Exemple 3.12 – Les séries
$$\sum_{n\geqslant 0} (-1)^n$$
, $\sum_{n\geqslant 0} \frac{n^2}{n+1}$ et $\sum_{n\geqslant 0} \frac{3^n}{2^n-3^n}$ sont divergentes.

3 - Séries géométriques

Définition 3.13 – Pour tout réel q, la série $\sum_{n\geq 0} q^n$ s'appelle la **série géométrique** de raison q.

On a montré précédemment que la série géométrique de raison $\frac{1}{2}$ converge et que sa somme vaut 2. Plus généralement, on a le résultat suivant :

Théorème 3.14

Soit $q \in \mathbb{R}$ un réel. La série $\sum_{n \geqslant 0} q^n$ est convergente si et seulement si |q| < 1, *i.e.* $q \in]-1,1[$. Dans ce cas,

$$\sum_{k=0}^{+\infty} q^k = \frac{1}{1-q}.$$

Exemple 3.15 – Déterminer si les séries $\sum_{n\geqslant 0} \left(\frac{5}{4}\right)^n$ et $\sum_{n\geqslant 0} \left(\frac{4}{5}\right)^n$ convergent et le cas échéant, donner la somme de la série.

- Pour $\sum_{n\geqslant 0} \left(\frac{5}{4}\right)^n$, il s'agit d'une série géométrique de raison $q=\frac{5}{4}$. Or $\frac{5}{4}>1$ donc $\lim_{n\to +\infty} \left(\frac{5}{4}\right)^n=+\infty$ et comme le terme général diverge, alors nécessairement, la série $\sum_{n\geqslant 0} \left(\frac{5}{4}\right)^n$ est divergente.
- Pour $\sum_{n\geqslant 0} \left(\frac{4}{5}\right)^n$, il s'agit d'une série géométrique de raison $q=\frac{4}{5}$. Or $\left|\frac{4}{5}\right|<1$ donc la série $\sum_{n\geqslant 0} \left(\frac{4}{5}\right)^n$ est convergente sa somme est donnée par $\sum_{n=0}^{+\infty} \left(\frac{4}{5}\right)^n = \frac{1}{1-\frac{4}{5}} = \frac{1}{\frac{1}{5}} = 5$.

Méthode 3.16 – Étudier la nature d'une série $\sum\limits_{n\geqslant 0}u_n$ et/ou calculer sa somme éventuelle

- 1. On regarde si le terme général tend vers 0 :
 - Si la réponse est **non**, la série est **divergente**.
 - Si la réponse est oui, on ne peut pas conclure, il faut poursuivre l'étude.
- 2. On essaie d'exprimer la série à l'aide d'une série géométrique.
- 3. Si ce n'est pas possible, on poursuit l'étude en écrivant la somme partielle $S_n = \sum_{k=0}^n u_k$. On regarde si on peut simplifier S_n , en utilisant un changement d'indice, une mise en facteur ou un "télescopage des termes". Puis on conclut à l'aide des résultats de convergence des suites.