VLSI Desing Project 2 Matrix ALU

Apostolos Kontarinis axk220238 Athanasia Karanika axk230133

Dallas 2023

Contents

Code Changes	•
Matrix ALU Scale Code Changes	3
Testbench Code Changes	4
Waveform Comparison	5
Cell Report	6

Code Changes

Matrix ALU Scale Code Changes

The changes to the RTL code were minimal since the code was fully scallable. Thus there were changes only in the top module of the design $matrix_alu$. Regarding the scale of the module in order for it to be at least 3000 cells but not too much more than that, the only parameter changed was the $word_size$ to a value of 8 (marked with red in the code below). Apart from the scale of the module, there was an issue with its output. The module was designed to set its unused outputs at high impedance "z" something that could not be synthesized using GF60 because of the lack of tri-state buffers. For that reason there was a change (depicted in red in the code below) for the unused outputs to be turned to 0 instead from "z". There were no other changes to the other modules' RTL codes.

```
module matrix_alu #(parameter word_size = 8,
                     parameter Amatrixrownum = 2,
                     parameter Amatrixcolnum = 2,
                     parameter Bmatrixrownum = 2,
                     parameter Bmatrixcolnum = 2)(
input
        wire
                     clk,
input
        wire
                     resetn,
input
        wire
                     [(Amatrixcolnum * Amatrixrownum) * word_size -
    1 : 0]A,
input
        wire
                     [(Bmatrixcolnum * Bmatrixrownum) * word_size -
    1 : 0]B,
input
        wire
                     [1:0] op,
output
        wire
                     [(Amatrixcolnum * Amatrixrownum) * (
   Bmatrixcolnum * Bmatrixrownum) * word_size - 1 : 0] C
        [(Amatrixrownum * Bmatrixcolnum) * word_size - 1 : 0]
  m_add, m_sub, m_mul;
        [(Amatrixcolnum * Amatrixrownum) * (Bmatrixcolnum *
   Bmatrixrownum) * word_size - 1 : 0] m_kro;
        [(Amatrixcolnum * Amatrixrownum) * (Bmatrixcolnum *
   Bmatrixrownum) * word_size - 1 : 0] C_reg;
always@(posedge clk or negedge resetn)begin
    if (!resetn) begin
        C_reg = 'd0;
    end else begin
        if(op==2'b00) begin
            C_reg = {{(((Amatrixcolnum * Amatrixrownum) * (
               Bmatrixcolnum * Bmatrixrownum) - 1)* word_size - 1)
               {1'b0}},m_add};
        end else if (op==2'b01) begin
            C_reg = {{(((Amatrixcolnum * Amatrixrownum) * (
               Bmatrixcolnum * Bmatrixrownum) - 1)* word_size - 1)
               {1'b0}},m_sub};
        end else if (op==2'b10) begin
            C_reg = {{(((Amatrixcolnum * Amatrixrownum) * (
               Bmatrixcolnum * Bmatrixrownum) - 1)* word_size - 1)
               {1'b0}},m_mul};
        end else if (op==2'b11) begin
            C_{reg} = m_{kro};
        end
    end
end
assign C = C_reg;
matrix_add_sub #(.word_size(word_size),
                  . Amatrixrownum (Amatrixrownum),
                  .Amatrixcolnum(Amatrixcolnum),
                  .Bmatrixrownum (Bmatrixrownum),
                  .Bmatrixcolnum(Bmatrixcolnum))mat_add(
```

```
.op(1'b0),
.A(A),
.B(B),
.ASP(m_add)
matrix_add_sub #(.word_size(word_size),
                  . Amatrixrownum (Amatrixrownum),
                  . Amatrix colnum (Amatrix colnum),
                  .Bmatrixrownum (Bmatrixrownum),
                  .Bmatrixcolnum(Bmatrixcolnum))mat_sub(
.op(1'b1),
.A(A),
.B(B),
.ASP(m_sub)
matrix_mul #(.word_size(word_size),
                  .Amatrixrownum (Amatrixrownum),
                  .Amatrixcolnum(Amatrixcolnum),
                  .Bmatrixrownum (Bmatrixrownum),
                  .Bmatrixcolnum(Bmatrixcolnum))mat_mul(
.A(A),
.B(B),
.MP(m_mul)
);
matrix_kronecker #(.word_size(word_size),
                  . Amatrixrownum (Amatrixrownum),
                  .Amatrixcolnum(Amatrixcolnum),
                  .Bmatrixrownum(Bmatrixrownum),
                  .Bmatrixcolnum(Bmatrixcolnum))mat_kron(
.A(A),
.B(B),
.TP(m_kro)
);
endmodule
```

Testbench Code Changes

The following is the updated testbench for both the behavioral $matrix_alu$ module and its $matrix_alu_mapped$ netlist which was produced by the DC Compiler tool.

```
// testbench (matrix_alu_tb) for testing a matrix arithmetic logic
   unit (Matrix ALU) //
// Initialize parameters, clock and reset signals, input matrices
  A and B, and the
                    //
// operation code (op), and then connects these signals to the
  Matrix ALU module. //
// It toggles the clock signal, simulates a reset sequence, and
  then performs a
                       //
// sequence of operations on matrices A and B. The output result
  is captured in the //
// signal C
  //
module matrix_alu_tb();
// Parameter Definitions //
parameter word_size = 8; // Word size for matrix elements //
parameter Amatrixrownum = 2;
parameter Amatrixcolnum = 2;
parameter Bmatrixrownum = 2;
parameter Bmatrixcolnum = 2;
// Signal Declarations //
```

```
clk, resetn;
reg
        [(Amatrixcolnum * Amatrixrownum) * word_size - 1 : 0] A, B
reg
        [1:0] op;
reg
        [(Amatrixcolnum * Amatrixrownum) * (Bmatrixcolnum *
   Bmatrixrownum) * word_size - 1 : 0] C;
        [(Amatrixcolnum * Amatrixrownum) * (Bmatrixcolnum *
   Bmatrixrownum) * word_size - 1 : 0] C_net;
// Clock Generation //
always #10 clk = ~clk;
initial begin
clk = 1'b0;
resetn = 1'b1;
resetn = 1'b0;
resetn = 1'b1;
end
//Initial Block for Matrix and Operation Initialization //
initial begin
A={8'h01,8'h02,8'h03,8'h00};
B={8'h05,8'h06,8'h07,8'h08};
op = 2'b00;
#100
op = 2'b01;
#100
op = 2'b10;
#100
op = 2'b11;
end
// Module Instantiation //
matrix_alu #(.word_size(word_size),
             .Amatrixrownum (Amatrixrownum),
             .Amatrixcolnum(Amatrixcolnum),
             .Bmatrixrownum (Bmatrixrownum),
             .Bmatrixcolnum(Bmatrixcolnum)) alu (
.clk(clk),
.resetn(resetn),
.A(A),
.B(B),
.op(op),
.C(C)
);
matrix_alu_mapped alu_netlist (
.clk(clk),
.resetn(resetn),
.A(A),
.B(B),
.op(op),
.C(C_net)
);
endmodule
```

Waveform Comparison

Below circled with purple is the output of the behavioral code $(martix_alu)$ and circled with orange is the output of the netlist $(martix_alu_mapped)$. Circled with red are the different tests (the different operations the ALU performs).

Figure 1: $matrix_alu$ and $matrix_alu_netlist$ Output Comparison

Cell Report

As it can be seen at the end of the report the total number of cells is 5577.

```
************
```

Report : cell

Design : matrix_alu
Version: 0-2018.06-SP1

Date : Fri Sep 22 10:33:25 2023

Attributes:

b - black box (unknown)

d - dont_touch
h - hierarchical

n - noncombinational

r - removable

 ${\tt u - contains \ unmapped \ logic}$

Cell	Reference	Library	Area
Attributes			
C402	nand2	library	1.000000
C405	nand2	library	1.000000
C408	nand2	library	1.000000
C410	nand2	library	1.000000
C_reg_reg[0]	dff	library	7.000000
n			
C_reg_reg[1]	dff	library	7.000000
n			
C_reg_reg[2]	dff	library	7.000000
n			
C_reg_reg[3]	dff	library	7.000000
n			
C_reg_reg[4]	dff	library	7.000000
n			
C_reg_reg[5]	dff	library	7.000000
n			
C_reg_reg[6]	dff	library	7.000000
n			
C_reg_reg[7]	dff	library	7.000000
n saa			
C_reg_reg[8]	dff	library	7.000000
n			

C_reg_reg[9]	dff	library	7.00000
C_reg_reg[10]	dff	library	7.000000
C_reg_reg[11]	dff	library	7.00000
n C_reg_reg[12]	dff	library	7.00000
n C_reg_reg[13]	dff	library	7.000000
n C_reg_reg[14]	dff	library	7.000000
n C_reg_reg[15]	dff	library	7.000000
n C_reg_reg[16]	dff	library	7.000000
n C_reg_reg[17]	dff	library	7.000000
n C_reg_reg[18]	dff	library	7.000000
n C_reg_reg[19]	dff	library	7.00000
n C_reg_reg[20]	dff	library	7.000000
n C_reg_reg[21]	dff	library	7.000000
n C_reg_reg[22]	dff	library	7.000000
n C_reg_reg[23]	dff	library	7.000000
n C_reg_reg[24]	dff	library	7.000000
n C_reg_reg[25]	dff	library	7.000000
n C_reg_reg[26]	dff	library	7.000000
n C_reg_reg[27]	dff	library	7.000000
n C_reg_reg[28]	dff	library	7.000000
n C_reg_reg[29]	dff	library	7.00000
n C_reg_reg[30]	dff	library	7.000000
n C_reg_reg[31]	dff	library	7.000000
n C_reg_reg[32]	dff	library	7.000000
n C_reg_reg[33]	dff	library	7.00000
C_reg_reg[34]	dff	library	7.000000
n C_reg_reg[35]	dff	library	7.000000
n C_reg_reg[36]	dff	library	7.000000
n C_reg_reg[37]	dff	library	7.000000
n C_reg_reg[38]	dff	library	7.00000
n C_reg_reg[39]	dff	library	7.000000
n C_reg_reg[40]	dff	library	7.000000
n			

C_reg_reg[41]	dff	library	7.000000
C_reg_reg[42]	dff	library	7.000000
C_reg_reg[43]	dff	library	7.000000
n C_reg_reg[44]	dff	library	7.000000
n C_reg_reg[45]	dff	library	7.000000
n C_reg_reg[46]	dff	library	7.000000
n C_reg_reg[47]	dff	library	7.000000
n C_reg_reg[48]	dff	library	7.000000
n C_reg_reg[49] n	dff	library	7.000000
C_reg_reg[50]	dff	library	7.000000
C_reg_reg[51]	dff	library	7.000000
n C_reg_reg[52]	dff	library	7.000000
n C_reg_reg[53]	dff	library	7.000000
n C_reg_reg[54]	dff	library	7.000000
n C_reg_reg[55]	dff	library	7.000000
n C_reg_reg[56]	dff	library	7.000000
n C_reg_reg[57]	dff	library	7.000000
n C_reg_reg[58]	dff	library	7.000000
n C_reg_reg[59]	dff	library	7.000000
n C_reg_reg[60] n	dff	library	7.000000
C_reg_reg[61]	dff	library	7.000000
C_reg_reg[62]	dff	library	7.000000
C_reg_reg[63]	dff	library	7.000000
C_reg_reg[64]	dff	library	7.000000
C_reg_reg[65]	dff	library	7.000000
C_reg_reg[66]	dff	library	7.000000
n C_reg_reg[67]	dff	library	7.000000
n C_reg_reg[68]	dff	library	7.000000
n C_reg_reg[69]	dff	library	7.000000
C_reg_reg[70]	dff	library	7.000000
n C_reg_reg[71]	dff	library	7.000000
n C_reg_reg[72]	dff	library	7.000000
n			

C_reg_reg[73]	dff	library	7.000000
C_reg_reg[74]	dff	library	7.000000
C_reg_reg[75]	dff	library	7.000000
C_reg_reg[76]	dff	library	7.000000
n C_reg_reg[77] n	dff	library	7.000000
C_reg_reg[78]	dff	library	7.000000
C_reg_reg[79]	dff	library	7.000000
C_reg_reg[80]	dff	library	7.000000
C_reg_reg[81]	dff	library	7.000000
C_reg_reg[82]	dff	library	7.000000
C_reg_reg[83]	dff	library	7.000000
C_reg_reg[84]	dff	library	7.00000
n C_reg_reg[85] n	dff	library	7.00000
C_reg_reg[86]	dff	library	7.00000
C_reg_reg[87]	dff	library	7.00000
C_reg_reg[88]	dff	library	7.00000
n C_reg_reg[89] n	dff	library	7.00000
C_reg_reg[90]	dff	library	7.000000
C_reg_reg[91]	dff	library	7.000000
C_reg_reg[92]	dff	library	7.000000
C_reg_reg[93]	dff	library	7.000000
C_reg_reg[94]	dff	library	7.000000
C_reg_reg[95]	dff	library	7.00000
C_reg_reg[96]	dff	library	7.000000
C_reg_reg[97]	dff	library	7.000000
C_reg_reg[98]	dff	library	7.00000
C_reg_reg[99]	dff	library	7.00000
C_reg_reg[100]	dff	library	7.00000
n C_reg_reg[101]	dff	library	7.000000
C_reg_reg[102]	dff	library	7.000000
n C_reg_reg[103]	dff	library	7.000000
n C_reg_reg[104]	dff	library	7.000000
n			

C_reg_reg[105]	dff	library	7.000000
n			
C_reg_reg[106]	dff	library	7.000000
n C_reg_reg[107]	dff	library	7.000000
n		,	
C_reg_reg[108]	dff	library	7.000000
n C_reg_reg[109]	dff	libmome	7.000000
n n	dii	library	7.000000
C_reg_reg[110]	dff	library	7.000000
n .			T 00000
C_reg_reg[111] n	dff	library	7.000000
C_reg_reg[112]	dff	library	7.000000
n			
C_reg_reg[113]	dff	library	7.000000
n C_reg_reg[114]	dff	library	7.000000
n		•	
C_reg_reg [115]	dff	library	7.000000
n C_reg_reg[116]	dff	library	7.000000
n	dii	ribrary	7.00000
C_reg_reg[117]	dff	library	7.000000
n C_reg_reg[118]	dff	library	7.000000
n n	dii	library	7.000000
C_reg_reg[119]	dff	library	7.000000
n [400]	166	2.12	7 000000
C_reg_reg[120] n	dff	library	7.000000
C_reg_reg[121]	dff	library	7.000000
n			
C_reg_reg[122] n	dff	library	7.000000
C_reg_reg[123]	dff	library	7.000000
n		•	
C_reg_reg[124]	dff	library	7.000000
n C_reg_reg[125]	dff	library	7.000000
n		•	
C_reg_reg [126]	dff	library	7.000000
n C_reg_reg[127]	dff	library	7.000000
n	dii	ribrary	7.00000
I_0	inv	library	1.000000
I_1	inv	library	1.000000
I_2	inv	library	1.000000
I_4	inv	library	1.000000
• • •			
• • •			
mat_sub/U17	inv	library	1.000000
mat_sub/U19	inv	library	1.000000
mat_sub/U21	inv	library	1.000000
mat_sub/U23	inv	library	1.000000
mat_sub/U25	inv	library	1.000000
mat_sub/U27	inv	library	1.000000
mat_sub/U29 mat_sub/U31	inv	library	1.000000
mat_sub/U33	inv inv	library library	1.000000
mat_sub/U35	inv	library	1.000000
mat_sub/U37	inv	library	1.000000
	+- v	1101 a1 y	1.00000

mat_sub/U39	inv	library	1.000000
mat_sub/U41	inv	library	1.000000
mat_sub/U43	inv	library	1.000000
mat_sub/U45	inv	library	1.000000
mat_sub/U47	inv	library	1.000000
mat_sub/U49	inv	library	1.000000
mat_sub/U51	inv	library	1.000000
mat_sub/U53	inv	library	1.000000
mat_sub/U55	inv	library	1.000000
mat_sub/U57	inv	library	1.000000
mat_sub/U59	inv	library	1.000000
mat_sub/U61	inv	library	1.000000
mat_sub/U63	inv	library	1.000000
mat_sub/U65	inv	library	1.000000
mat_sub/U67	inv	library	1.000000
mat_sub/U69	inv	library	1.000000
mat_sub/U71	inv	library	1.000000
mat_sub/U73	inv	library	1.000000
mat_sub/U75	inv	library	1.000000
mat_sub/U77	inv	library	1.000000
mat_sub/U79	inv	library	1.000000

Total 5577 cells 9485.000000

1