Université Paris Diderot

LABORATOIRE ASTROPARTICULES & COSMOLOGIE

DOCTORAL THESIS

Corrélations entre lentillage gravitationnel du fonds diffus cosmologique et traceurs de matière

Author:
Julien Tréguer

Supervisor:

Dr. Eric Aubourg

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

in the

Research Group Name Department or School Name

22 juillet 2015

Declaration of Authorship

I, Julien Tréguer, declare that this thesis titled, 'Corrélations entre lentillage gravitationnel du fonds diffus cosmologique et traceurs de matière' and the work presented in it are my own. I confirm that :

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

UNIVERSITY NAME (IN BLOCK CAPITALS)

Abstract

Faculty Name
Department or School Name

Doctor of Philosophy

Corrélations entre lentillage gravitationnel du fonds diffus cosmologique et traceurs de matière

by Julien Tréguer

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor...

Table des matières

D	eclar	ion of Authorship	i
A	bstra		iii
A	cknov	edgements	iv
C	onter	5	\mathbf{v}
Li	st of	igures	ix
Li	\mathbf{st} of	l'ables	x
\mathbf{A}	bbre	ations	xi
ΡI	hvsic	Constants	xii
	mbo		xiii
o)	/ IIIDU		XIII
In	trod	etion	1
1	Cos	ologie moderne	2
	1.1	Historique	. 2
		.1.1 Relativité générale	. 2
		.1.2 Principe cosmologique	. 2
		.1.3 Métrique FLRW	. 2
		.1.4 Hubble et la récession des galaxies	. 2
		.1.5 L'abondance des éléments	. 2
		.1.6 Le fond diffus cosmologique	. 2
		.1.7 Matière noire	. 3
		.1.8 Energie noire	. 3
	1.2	Théorie du Big Bang et modèle $\Lambda ext{-CDM}$. 3
		.2.1 Chronologie	. 3
		.2.2 Contenu énergétique de l'univers	
		1.2.2.1 Baryons	. 3
		1.2.2.2 Photons	. 3

Contents vi

			1.2.2.3	Matière noire	 	3
			1.2.2.4	Energie noire		3
			1.2.2.5	Neutrinos		3
		1.2.3	Limites	du modèle Λ-CDM		3
			1.2.3.1	Problème de l'horizon		3
			1.2.3.2	Problème de la courbure		3
			1.2.3.3	Problème des monopôles		3
		1.2.4		me de l'inflation		3
		1.2.1	1.2.4.1	Postulats		3
			1.2.4.2	Apports au modèle Λ-CDM		3
			1.2.4.3	Conséquences observationnelles		4
2	Len	tillage	gravitat	sionnel du fonds diffus cosmologique		5
	2.1	Fond d	liffus cosr	$egin{array}{cccccccccccccccccccccccccccccccccccc$	 	5
		2.1.1	Spectre	de puissance angulaire	 	5
	2.2	Lentill	age gravi	tationnel	 	5
		2.2.1		physique		5
		2.2.2				5
		2.2.3		ions		5
	2.3	Lentill	age du C	MB	 	6
		2.3.1	_			6
		2.3.2	Effets ob	oservationnels		6
3	Tra	ceurs d	le matiè	re		7
	3.1	Forma	tion des s	structures	 	7
	3.2	Galaxi	es		 	7
	3.3	Quasai	rs		 	7
	3.4	Amas	de galaxi	es	 	7
	3.5	Nuages	s d'hydro	gène neutre	 	7
		3.5.1	Forêt Ly	auman- $lpha$	 	7
		3.5.2	Raie à 2	1 cm	 	7
				Emissions à hautes énergies		7
4	Cor	rélatio	ns en co	osmologie		8
	4.1	Définit	ion			8
		4.1.1	Auto-cor	rrélation		8
		4.1.2	Corrélat	ion croisée		8
	4.2	Les me	esures de	corrélations en cosmologie \dots	 	8
		4.2.1	Fonction	à deux points	 	8
		4.2.2	Spectre	de puissance	 	8
		4.2.3	Fonction	de corrélation angulaire		8
		4.2.4	Spectre	de puissance angulaire		8
	4.3	Calcul	théorique			8
		4.3.1	Approxi	mation de Limber		8
		4.3.2		es de noyaux		8
	4.4	Avanta	_	a corrélation croisée		9
		4.4.1	_	e théorique		9

Contents vii

		4.4.2	Quelques résultats récents en cosmologie	9
5	Col	laborat	ions Planck et SDSS-III	10
	5.1	Missio	n Planck	10
		5.1.1	Technologies et déroulement de la mission	10
		5.1.2	Objectifs scientifiques	10
		5.1.3	Principaux résultats	
	5.2	Collab	oration SDSS-III	
		5.2.1	BOSS	
		5.2.2	Autres relevés	
0	D			
6				L1
	6.1		de convergence κ	
	6.2		s de galaxies	
		6.2.1		
		6.2.2	Lowz et CMASS	
	6.3	•	rs de BOSS	
	6.4		Lyman- α	
	6.5	(Source	es X)	11
7	Mét	hodolo	ogie 1	12
	7.1	Analys	ses	12
		7.1.1	Rotations de ciel	12
			7.1.1.1 Relevés de galaxies	12
		7.1.2	Stacking	
			7.1.2.1 Relevés de galaxies	
			7.1.2.2 Forêt Lyman- α	
		7.1.3	Spectres croisés de puissance angulaire	
	7.2	Valida		
	• • •	7.2.1	Simulations	
		7.2.2	Hypothèse nulle	
0	D.4-	ultats	_	13
8				
	8.1		0	13
		8.1.1	Lensing et relevés	
		8.1.2	Lensing et QSO	
		8.1.3	v v	13
	8.2		•	13
		8.2.1	Fit de spectres théoriques	
		8.2.2	Estimation de biais de galaxies	13
9	Con	clusio		L4
	9.1			14
	9.2	Prospe	ective	14
		9.2.1	LSS	14
		9.2.2	Euclid	14
		9.2.3	SKA	14
		9.2.4	WEAVE	14

Contents	viii
9.2.5 Statistiques d'ordre supérieur	14
A Appendix Title Here	15

Table des figures

Liste des tableaux

Abbreviations

LAH List Abbreviations Here

 ${f GR}$ General Relativity

Physical Constants

Speed of Light $c = 2.997 924 58 \times 10^8 \text{ ms}^{-8} \text{ (exact)}$

Symbols

a distance m

P power W (Js⁻¹)

 ω angular frequency rads⁻¹

For/Dedicated to/To my...

Introduction

History of religions, myths, works of arts offer countless examples of Humanity interrogations about the origin of the Universe.

Cosmologie moderne

"Use the Force, Luke"

— Master Yoda, Star Wars

1.1 Historique

- 1.1.1 Relativité générale
- 1.1.2 Principe cosmologique
- 1.1.3 Métrique FLRW
- 1.1.4 Hubble et la récession des galaxies
- 1.1.5 L'abondance des éléments

Alpher et Gamow 1948

1.1.6 Le fond diffus cosmologique

Harmoniques sphériques et SdPA

- 1.1.7 Matière noire
- 1.1.8 Energie noire

1.2 Théorie du Big Bang et modèle Λ -CDM

1.2.1 Chronologie

Histoire de l'univers depuis le Big Bang, les différentes phases : Inflation Nucléosynthèse Baryosynthèse Ere de la radiation -¿ matière Recombinaison Ages sombres Réionisation Expansion

- 1.2.2 Contenu énergétique de l'univers
- 1.2.2.1 Baryons
- 1.2.2.2 Photons
- 1.2.2.3 Matière noire
- 1.2.2.4 Energie noire
- 1.2.2.5 Neutrinos
- 1.2.3 Limites du modèle Λ -CDM
- 1.2.3.1 Problème de l'horizon
- 1.2.3.2 Problème de la courbure
- 1.2.3.3 Problème des monopôles
- 1.2.4 Paradigme de l'inflation
- 1.2.4.1 Postulats
- 1.2.4.2 Apports au modèle Λ -CDM

Résolution des problèmes Fluctuations qui deviennent des anisotropies

1.2.4.3 Conséquences observationnelles

Lentillage gravitationnel du fonds diffus cosmologique

- 2.1 Fond diffus cosmologique
- 2.1.1 Spectre de puissance angulaire
- 2.2 Lentillage gravitationnel

Définition, observations astrophysiques

- 2.2.1 Origine physique
- 2.2.2 Théorie

Cisaillement et magnification

2.2.3 Applications

Eddington et relativité générale Détermination de masses Détection de planètes

2.3 Lentillage du CMB

2.3.1 Théorie

Champ de déflection Convergence κ

2.3.2 Effets observationnels

Effet sur la carte du CMB Effet sur le spectre angulaire de température Effet sur la polarisation du CMB

Traceurs de matière

- 3.1 Formation des structures
- 3.2 Galaxies
- 3.3 Quasars
- 3.4 Amas de galaxies
- 3.5 Nuages d'hydrogène neutre
- 3.5.1 Forêt Lyman- α
- 3.5.2 Raie à 21 cm

Emissions à hautes énergies Gamma, X

Corrélations en cosmologie

4 -4	-	10		, .	
4.1		eπ	ını	1.1	on

- 4.1.1 Auto-corrélation
- 4.1.2 Corrélation croisée
- 4.2 Les mesures de corrélations en cosmologie
- 4.2.1 Fonction à deux points
- 4.2.2 Spectre de puissance
- 4.2.3 Fonction de corrélation angulaire
- 4.2.4 Spectre de puissance angulaire
- 4.3 Calcul théorique
- 4.3.1 Approximation de Limber
- 4.3.2 Exemples de noyaux

QSO-kappa QSO-Lyman QSO-kappa

4.4 Avantages de la corrélation croisée

Elimination des bruits non corrélés Amplification du signal

4.4.1 Exemple théorique

4.4.2 Quelques résultats récents en cosmologie

Collaborations Planck et SDSS-III

- 5.1 Mission Planck
- 5.1.1 Technologies et déroulement de la mission
- 5.1.2 Objectifs scientifiques
- 5.1.3 Principaux résultats
- 5.2 Collaboration SDSS-III
- 5.2.1 BOSS
- 5.2.2 Autres relevés

Données utilisées

- 6.1 Carte de convergence κ
- 6.2 Relevés de galaxies
- 6.2.1 NVSS
- 6.2.2 Lowz et CMASS
- 6.3 Quasars de BOSS
- **6.4** Forêts Lyman- α
- 6.5 (Sources X)

Méthodologie

7.1	Analyses
7.1	Analyses

7.1.1 Rotations de ciel

Fonction à un point

7.1.1.1 Relevés de galaxies

7.1.2 Stacking

- 7.1.2.1 Relevés de galaxies
- 7.1.2.2 Forêt Lyman- α
- 7.1.3 Spectres croisés de puissance angulaire

7.2 Validations

7.2.1 Simulations

Valide le pipeline

7.2.2 Hypothèse nulle

Résultats

- 8.1 Détection de signal
- 8.1.1 Lensing et relevés
- 8.1.2 Lensing et QSO
- 8.1.3 Lensing et forêts Lyman- α
- 8.2 Estimation de paramètres
- 8.2.1 Fit de spectres théoriques
- 8.2.2 Estimation de biais de galaxies

Conclusions

- 9.1 Récapitulatif
- 9.2 Prospective
- 9.2.1 LSS
- **9.2.2** Euclid
- 9.2.3 SKA
- 9.2.4 WEAVE
- 9.2.5 Statistiques d'ordre supérieur

Annexe A

Appendix Title Here

Write your Appendix content here.