Отчёт по лабораторной работе \mathbb{N}^2

Группа Б9120-01.03.02миопд Агличеев Александр

7 мая 2022 г.

Содержание

Введение	2
Вадание 1	3
Постановка задачи	3
Решение	3
Вадание 2	8
Постановка задачи	8
Решение	
Вадание 3	11
Постановка задачи	11
Решение	
Заключение	11

Введение

В данной лабораторной работе мне нужно найти общее решение и построить векторное после с помощью программ компьютерной математики, решить задачу Коши и проверить решение задачи Коши.

Задание 1

Постановка задачи

Для следующих дифференциальных уравнений определить тип, найти общее решение и построить векторное поле с помощью программ компьютерной математики:

- 1. $\sinh x \cdot \cosh x + y 1 = (\sinh y \cdot \cosh y) \cdot y'$
- 2. $xy' 4\tan y = 2x^2 \cdot \cos x^2 \cdot \sec y$
- 3. $y' \sin x y \cot x = \cot x \cdot \sin x$
- 4. $\sec^2 xy \cdot \tan xy \cdot (xy' + y) + \operatorname{sech}^2 x y' \cos y = 1$
- 5. $y' \cdot \cos^2 x = \sec y \cdot \ln \sin y$

Решение

Поиск решения и построение векторного поля будет проводиться в системе компьютерной математики Wolfram Mathematica.

1. $\sinh x \cdot \cosh x + y - 1 = (\sinh y \cdot \cosh y - x - 1) \cdot y'$

Тип уравнения: Уравнение в полных дифференциалах

Omsem: $\sinh^2 y - \sinh^2 x + 2x - 2xy - 2y = C$

Рис. 1: Векторное поле $\sinh x \cdot \cosh x + y - 1 = (\sinh y \cdot \cosh y) \cdot y'$

$$2. xy' - 4\tan y = 2x^2 \cdot \cos x^2 \cdot \sec y$$

 $Tun\ ypaвнения:$ Линейное неоднородное неприведенное уравнение первого порядка с постоянными коэффициентами относительно переменной $u=\sin y$

Omsem:
$$\sin y = Cx^4 + x^2 \cdot (x^2 \operatorname{Si}(x^2) + \cos x^2)$$

Рис. 2: Векторное поле $xy' - 4\tan y = 2x^2 \cdot \cos x^2 \cdot \sec y$

3. $y' \sin x - y \cot x = \cot x \cdot \sin x$

 $Tun\ ypaвнения:$ Линейное неоднородное неприведенное уравнение первого порядка с постоянными коэффициентами относильное переменной y

Omeem:
$$y = e^{-\csc x} \cdot (C - \operatorname{Ei}(\csc x))$$

Рис. 3: Векторное поле $y' \sin x - y \cot x = \cot x \cdot \sin x$

4. $\sec^2 xy \cdot \tan xy \cdot (xy'+y) + \operatorname{sech}^2 x - y' \cos y = 1$ Тип уравнения: Уравнение в полных дифференциалах Ответ: $\operatorname{tg}^2 xy + 2 \tanh x - 2 \sinh y - 2x = C$

Рис. 4: Векторное поле $\sec^2 xy \cdot \tan xy \cdot \left(xy'+y\right) + \operatorname{sech}^2 x - y' \cos y = 1$

5. $y' \cdot \cos^2 x = \sec y \cdot \ln \sin y$

 $Tun\ ypaвнения:$ Уpавнение с paзделяющимся переменными $Omsem: \mathrm{li}\,(\sin y) - \tan x = C$

Рис. 5: Векторное поле $y' \cdot \cos^2 x = \sec y \cdot \ln \sin y$

Задание 2

Постановка задачи

Решить задачу Коши, построить график решения:

1.
$$y' = e^{-x^2} - 2xy$$
; $y(0) = 1$

2.
$$(\cos x - \sin x \cdot \tan y) \cdot y' = \sin x + (\cos x + \sin x) \tan y - \cos x;$$

$$y(0) = \frac{\pi}{2}$$

Решение

1.
$$\begin{cases} y' = e^{-x^2} - 2xy; \\ y(0) = 1; \end{cases}$$

 Tun уравнения: Линейное уравнение первого порядка относительно переменной y

Общее решение: $y = e^{-x^2}(C+x)$

 $Задача Коши: y = e^{-x^2}(1+x)$

Рис. 6: График $y = e^{-x^2}(1+x)$

Рис. 7: Векторное поле $y' = e^{-x^2} - 2xy$

2. $\begin{cases} (\cos x - \sin x \cdot \tan y) \cdot y' = \sin x + (\cos x + \sin x) \tan y - \cos x; \\ y(0) = \frac{\pi}{2}; \end{cases}$

Тип уравнения: Однородное уравнение

Общее решение: $\sin(x+y) = Ce^x$

 $3a\partial a$ ча Kouu: $\sin(x+y) = e^x$

Рис. 8: График $\sin(x+y) = e^x$

Рис. 9: Векторное поле $(\cos x - \sin x \cdot \tan y) \cdot y' = \sin x + (\cos x + \sin x) \tan y - \cos x$

Задание 3

Постановка задачи

Проверить, является ли, представленная неявная функция решением следующей задачи Коши:

$$2xy = 2\sin((x+y)y' - y\sqrt{1-y^2-x^2}(1+y'), y\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}; \sin((x+y)) = y^2 - x^2$$

Решение

Проверим начальное условие $y\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}$:

$$\sin\left(\frac{\pi}{2} - \frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi}{2}\right)^2$$
$$\sin 0 = 0$$
$$0 = 0$$

Начальное условие выполняется

$$y' = \frac{2x + \cos(x + y)}{2y - \cos(x + y)}$$

Подставим в уравнение и проверим получится ли верное равенство:

$$2xy = 2\sin(x+y) \cdot \left(\frac{2x + \cos(x+y)}{2y - \cos(x+y)}\right) - y\sqrt{1 - y^2 - x^2} \left(1 + \frac{2x + \cos(x+y)}{2y - \cos(x+y)}\right)$$

Неявная функция $\sin{(x+y)} = y^2 - x^2$ не является решением задачи Коши.

Заключение

Я решил задачи Коши, проверил задачу Коши и с помощью Wolfram Mathematica решил 5 дифференциальных уравнений. Оформлял отчёт по работе в «TeX Live».