Para séries genéricas:

Teste	Pré-requisitos		Verificar que	Implica que	Melhor usada em
n-ésimo termo			$\lim_{n \to \infty} a_n \neq 0$	$\sum a_n$ diverge	Qualquer série
Comparação	$a_n, b_n \ge 0$	$a_n \le b_n$	$\sum b_n$ converge	$\sum a_n$ converge	
		$a_n \ge b_n$	$\sum b_n$ diverge	$\sum a_n$ diverge	
Comparação (limite)	$a_n, b_n \ge 0$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L$	L > 0	Ambas divergem ou convergem	Comparando com séries geométricas ou p-séries
			$L = 0 \text{ e } \sum b_n \text{ converge}$	$\sum a_n$ converge	
			$L = \infty$ e $\sum b_n$ diverge	$\sum a_n$ diverge	
Integral	$a_n = f(x) : (1, \infty] \to \mathbb{R}$ contínua, positiva e decrescente		$\int_{a}^{\infty} f(x)dx \text{ finito}$	$\sum a_n$ converge	
			$\int_{a}^{\infty} f(x)dx = \pm \infty$	$\sum a_n$ diverge	
	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$		L < 1	$\sum a_n$ converge abs	
Razão			L > 1	$\sum a_n$ diverge	$n!, a^n$
			L = 1	Nada se conclui	
Raiz	$\lim_{n \to \infty} \sqrt[n]{ a_n } = L$		L < 1	$\sum a_n$ converge abs	
			L > 1	$\sum a_n$ diverge	a^n
			L = 1	Nada se conclui	

Para séries específicas:

Série	Pré-requisitos	Verificar que	Implica que	Usada em
Geométrica	$\sum_{n=0}^{\infty} r^n$	r < 1	Converge para $\frac{1}{1-r}$	r^n
	n=0	$ r \ge 1$	Diverge	
p-série	$\sum_{i=1}^{\infty} \frac{1}{i}$	p > 1	Converge	$\frac{1}{n^p}$
	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	$p \le 1$	Diverge	
Alternadas "critério de Leibniz"	$\sum (-1)^n a_n a_n \ge 0 \text{ decrescente}$	$\lim_{n \to \infty} a_n = 0$	Converge	$(-1)^n$, $\cos(n\pi)$
Telescópica "termos encaixantes"	$\sum_{n=1}^{\infty} a_n - a_{n+k}$	$\lim_{n\to\infty} b_{n+k} \neq \pm \infty$	Converge	$a_n - a_{n+k}$

Convergência absoluta:

Se $\sum |a_n|$ converge, isso implica que $\sum a_n$ converge, $\sum a_n$ é chamado de absolutamente convergente Se $\sum |a_n|$ diverge mas $\sum a_n$ converge, $\sum a_n$ é chamado de condicionalmente convergente

Indeterminações:

$$\frac{\infty}{\infty}$$
, $\frac{0}{0}$, 0^0 , ∞^0 , 1^∞ , $\infty - \infty$, $0 \cdot \infty$

Limites fundamentais:

$$\begin{split} &\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \\ &\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{bn} = e^{ab} \\ &\lim_{n \to \infty} \sqrt[n]{n} = 1 \\ &\lim_{n \to \infty} \frac{\ln n}{n^p} = \lim_{n \to \infty} \frac{n^p}{r^n} = \lim_{n \to \infty} \frac{r^n}{n!} = \lim_{n \to \infty} \frac{n!}{n^n} = 0 \\ &\lim_{n \to \infty} \frac{n^p}{\ln n} = \lim_{n \to \infty} \frac{r^n}{n^p} = \lim_{n \to \infty} \frac{n!}{r^n} = \lim_{n \to \infty} \frac{n^n}{n!} = \infty \end{split}$$

$$Com p > 0 e r > 1$$