```
Started on Wednesday, 14 May 2025, 9:17 AM

State Finished

Completed on Wednesday, 14 May 2025, 12:13 PM

Time taken 2 hours 56 mins

Overdue 56 mins 56 secs

Grade 80.00 out of 100.00
```

Question **1**Correct
Mark 20.00 out of 20.00

Write a python program to implement pattern matching on the given string using Brute Force algorithm.

For example:

Test	Input	Result
BF(a1,a2)	abcaaaabbbbcccabcbabdbcsbbbbnnn ccabcba	12

Answer: (penalty regime: 0 %)

Reset answer

```
1 def BF(s1,s2):
         i=len(s1)
 2
 3
         j=len(s2)
         while i<len(s1) and j<len(s2):</pre>
 4 ▼
 5 ₹
             if s1[i]==s2[j]:
                 i+=1
 6
 7
                 j+=1
 8 🔻
             else:
 9
                 i=i-j+1
10
                 j=<mark>0</mark>
11 🔻
         if j>=len(s2):
12
             return j+5
13 🔻
         else:
14
             return 0
15
16
17 | if __name__ == "__main__":
18
         a1=input()
19
         a2=input()
         b=BF(a1,a2)
20
21
         print(b)
```

	Test Input		Expected	Got	
~	BF(a1,a2)	abcaaaabbbbcccabcbabdbcsbbbbnnn ccabcba	12	12	~

Passed all tests! ✓

Question **2**Correct

Mark 20.00 out of 20.00

Write a python program to check whether Hamiltonian path exits in the given graph.

For example:

Test	Result
Hamiltonian_path(adj, N)	YES

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1 

def Hamiltonian_path(adj, N):
2
3
        dp = [[False for i in range(1 << N)] for j in range(N)]</pre>
4
        for i in range(N):
 5
6
             dp[i][1 << i] = True
        for i in range(1 << N):</pre>
7 1
8 ,
            for j in range(N):
                 if ((i & (1 << j)) != 0):</pre>
9
10
11
                     for k in range(N):
12
                         if ((i & (1 << k)) != 0 and
                                   adj[k][j] == 1 and
13
                                      j != k and
14
                                dp[k][i ^ (1 << j)]):
15
16
                              dp[j][i] = True
17
                              break
18 🔻
        for i in range(N):
19 🔻
            if (dp[i][(1 << N) - 1]):</pre>
                 return True
20
21
        return False
22
```

```
Test Expected Got

✓ Hamiltonian_path(adj, N) YES YES ✓
```

Passed all tests! 🗸

Correct

Question **3**Correct
Mark 20.00 out of 20.00

Write a python program to implement KMP (Knuth Morris Pratt).

For example:

Input	Result					
ABABDABACDABABCABAB ABABCABAB	Found pattern at index 10					

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1 def KMPSearch(pat, txt):
2
3
        M=len(pat)
        N=len(txt)
4
 5
         lps=[<mark>0</mark>]*M
6
         j=<mark>0</mark>
7
         computeLPSArray(pat,M,lps)
8
9
         while(N-i)>=(M-j):
10 🔻
             if pat[j]==txt[i]:
                 i+=1
11
12
                 j+=1
13 🔻
             if j==M:
                 print("Found pattern at index",str(i-j))
14
15
                 j=lps[j-1]
             elif i<N and pat[j]!=txt[i]:</pre>
16 🔻
                 if j!=0:
17 🔻
18
                      j=lps[j-1]
19
                 else:
20
                      i+=1
21
22 def computeLPSArray(pat, M, lps):
```

	Input	Expected	Got	
~	ABABDABACDABABCABAB ABABCABAB	Found pattern at index 10	Found pattern at index 10	~
~	SAVEETHAENGINEERING VEETHA	Found pattern at index 2	Found pattern at index 2	~

Passed all tests! ✓

Question **4**Correct

Mark 20.00 out of 20.00

Write a python program to implement knight tour problem using warnsdorff's algorithm

For example:

Test	Input	Result
a.warnsdroff((x,y))	8 8 3 3	board: [21, 32, 17, 30, 39, 36, 15, 42] [18, 29, 20, 35, 16, 41, 54, 37] [33, 22, 31, 40, 53, 38, 43, 14] [28, 19, 34, 1, 44, 49, 60, 55] [23, 2, 27, 52, 61, 56, 13, 50] [8, 5, 24, 45, 48, 51, 62, 59] [3, 26, 7, 10, 57, 64, 47, 12]
		[6, 9, 4, 25, 46, 11, 58, 63]

Answer: (penalty regime: 0 %)

Reset answer

```
KNIGHT_MOVES = [(2, 1), (1, 2), (-1, 2), (-2, 1), (-2, -1), (-1, -2), (1, -2), (2, -1)]
1
 2 🔻
    class KnightTour:
        def __init__(self, board_size):
3 ₹
            self.board_size = board_size # tuple
4
 5
            self.board = []
            for i in range(board_size[0]):
 6
7
                temp = []
                for j in range(board_size[1]):
8
9
                    temp.append(0)
                self.board.append(temp) # empty cell
10
            self.move = 1
11
12
        def print_board(self):
13 1
            print('board:')
14
            for i in range(self.board_size[0]):
15
                print(self.board[i])
16
17
        def warnsdroff(self, start_pos, GUI=False):
18
19
            x_pos,y_pos=start_pos
20
            self.board[x_pos][y_pos]=self.move
21 🔻
            if not GUI:
22 🔻
                while self.move<=self.board_size[0]*self.board_size[1]:</pre>
```

	Test	Input	Expected	Got	
*	a.warnsdroff((x,y))	8 8 3 3	[18, 29, 20, 35, 16, 41, 54, 37] [33, 22, 31, 40, 53, 38, 43, 14] [28, 19, 34, 1, 44, 49, 60, 55] [23, 2, 27, 52, 61, 56, 13, 50] [8, 5, 24, 45, 48, 51, 62, 59]	[33, 22, 31, 40, 53, 38, 43, 14] [28, 19, 34, 1, 44, 49, 60, 55]	*

Passed all tests! 🗸

Question **5**Not answered Mark 0.00 out of 20.00

Write a python program using quick sort to sort the second half of the given list of values.

For example:

Input	Result						
7	[2,	1,	3,	5,	7,	8, 9	9]
5							
1							
3							
9							
8							
2							
7							
7	[2,	6,	7,	14,	8,	9,	30]
2							
6							
30							
14							
8							
9							
7							

Answer: (penalty regime: 0 %)

1	