

## Exercice 1 - Mouvement T - \*

C2-09 Pas de corrigé pour cet exercice.

**Question 1** Quelle est la vitesse maximale que l'axe peut atteindre en  $ms^{-1}$ .

$$V = \frac{50}{60} = 0.83 \,\mathrm{m \, s^{-1}}.$$

**Question 2** Combien de temps l'axe met-il pour atteindre la vitesse maximale?

$$T_a = 0.83/9.8 = 0.08 \,\mathrm{s}.$$

**Question 3** *Quelle distance l'axe parcourt-il pour atteindre la vitesse maximale?* 

Si on trace le profil de vitesse en fonction du temps, la distance parcourue correpond à « l'aire sous la courbe ».

On a donc 
$$D_a = \frac{1}{2} T_a V \simeq 0.03 \,\mathrm{m}$$
.

**Question 4** Quelle est la longueur minimale à commander pour que l'axe puisse atteindre la vitesse maximale?

Pour atteindre la vitesse maximale, il faut donc commander une distance supérieure à 0,06 m.

**Question 5** Tracer le profil de la position, de la vitesse et de l'accélération pour parcourir une distance de 50 cm. On cherchera à atteindre les performances maximales de l'axe.

**Question 6** Déterminer le couple à fournir par la poulie pour déplacer la charge lorsque l'accélération est au maximum.

Exercice 2 - Calcul de moment\*

**B2-14** Pas de corrigé pour cet exercice.

**Question 1** Déterminer  $\mathcal{M}(B,F)$ .

**Question 2** Déterminer  $\mathcal{M}(A, F)$ .

Exercice 3 - Calcul de moment\*

**B2-14** Pas de corrigé pour cet exercice.

**Question 1** Déterminer  $\mathcal{M}(B, \overrightarrow{F})$ 

**Question 2** Déterminer  $\mathcal{M}(O, \overrightarrow{F})$ 

Exercice 4 - Circuit électrique\*

Pas de corrigé pour cet exercice.

**Question 1** Sur le circuit suivant, déterminer les courants dans chacune des branches et la tension aux bornes de tous les dipôles en fonction de E et des différentes résistances  $R_i$ .



Exercice 5 - Mouvement R \*

C2-09 Pas de corrigé pour cet exercice.

**Question 1** Calculer l'accélération du moteur pendant le démarrage.

**Question 2** Calculer le temps mis pour atteindre la fréquence nominale.

Exercice 6 - Calcul de moment\*

**B2-14** Pas de corrigé pour cet exercice.

**Question 1** Déterminer  $\mathcal{M}(B, \overrightarrow{F})$ .

**Question 2** Déterminer  $\mathcal{M}(A, \overrightarrow{F})$ 

Exercice 7 - Calcul de moment\*

**B2-14** Pas de corrigé pour cet exercice.

**Question** 1 Déterminer  $\mathcal{M}(A, \overrightarrow{F})$ 

**Question 2** Déterminer  $\mathcal{M}(B, \overrightarrow{F})$ 

Exercice 8 – Résistance équivalente \*
Pas de corrigé pour cet exercice.

**Question** 1 Déterminer la résistance équivalente du dipole suivant.

Exercice 9 – Résistance équivalente \*
Pas de corrigé pour cet exercice.

**Question** 1 Déterminer la résistance équivalente du dipole suivant.

**Question 2** Déterminer le courant et la tension dans chacune des branches.





Exercice 10 - Barrière Sympact \*

C2-09 Pas de corrigé pour cet exercice.

**Question 1** Donner **l'allure** des lois d'accélération, vitesse et position angulaires. Vous indiquerez toutes les valeurs utiles (sous forme littérale).

**Question 2** Donner l'expression littérale du temps total.

**Question 3** Donner l'expression littérale de la vitesse angulaire en fin de phase d'accélération.

**Question 4** Donner l'expression littérale de l'angle total parcouru.

**Question 5** Déterminer la durée de l'accélération ainsi que la vitesse angulaire maximale atteinte.

Exercice 11 - Calcul de moment\*

B2-14 Pas de corrigé pour cet exercice.

**Question 1** Déterminer  $\mathcal{M}(B, \overrightarrow{F})$ .

**Question 2** Déterminer  $\mathcal{M}(O, \overrightarrow{F})$ 

Exercice 12 - Calcul de moment\*

B2-14 Pas de corrigé pour cet exercice.

**Question** 1 Déterminer  $\mathcal{M}(G, \overrightarrow{R})$ .

**Question 2** Déterminer  $\mathcal{M}(A, \overrightarrow{R})$ 

Exercice 13 – Circuit électrique \*

Pas de corrigé pour cet exercice.

**Question** 1 Sur le circuit suivant, déterminer les courants dans chacune des branches et la tension aux bornes de tous les dipôles en fonction de E et des différentes résistances  $R_i$ .