Econometrics: Multiple Regression and Applications ECON4004: LAB 4

Duong Trinh

University of Glasgow

February 28, 2024

Intro

- Duong Trinh
 - PhD Student in Economics (Bayesian Microeconometrics)
 - Email: Duong.Trinh@glasgow.ac.uk
- ECON4004-LB01
 - Wednesday 10am -12 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357
- ♦ ECON4004-LB02
 - Wednesday 12-2 pm
 - 5 sessions (7-Feb, 14-Feb, 21-Feb, 28-Feb, 6-March)
 - ST ANDREWS:357

Record Attendance

Plan for LAB 4

- ♦ Exercise 1: based on Stock & Watson, E10.1
- ♦ Exercise 2: based on Stock & Watson, E10.2
- We will focus on "Panel Data Fixed Effects Regressions"

Panel Data - What it looks like...

Panel data is a dataset in which the behavior of entities (i) are observed across time (t).

$$(X_{it}, Y_{it}),$$

 $i = 1, ..., n; t = 1, ..., T$

These entities could be countries, states, companies, households, individuals, etc.¹

Entity	Year	Y	X1	X2	ХЗ	
1	1	#	#	#	#	
1	2	#	#	#	#	
1	3	#	#	#	#	
:	:	:	:	:	:	:
2	1	#	#	#	#	
2	2	#	#	#	#	
2	3	#	#	#	#	
:	:	:	:	:	:	:
3	1	#	#	#	#	
3	2	#	#	#	#	
3	3	#	#	#	#	

¹Rich resource: https://ukdataservice.ac.uk/find-data/browse/

Panel Data - The Long Form

Preparing data into panel data format:
Entity and Time in rows.

& Variables in columns.

Entity	Year	Y	X1	X2	ХЗ	
1	1	#	#	#	#	
1	2	#	#	#	#	
1	3	#	#	#	#	
:	:	:	:	:	:	:
2	1	#	#	#	#	
2	2	#	#	#	#	
2	3	#	#	#	#	
:	:	:	:	:	:	:
3	1	#	#	#	#	
3	2	#	#	#	#	
3	3	#	#	#	#	

Balanced Panel

All entities are observed across all times.

51 states \times 23 years

= 1173 observations

Unbalanced Panel

Some entities are not observed in some time periods.

[SN] STATA command for Setting Data as Panel

Once the data is in long form, we need to set it as panel so we can use Stata's panel data xt commands.

```
*xtset entityid timeid

//'entityid' and 'timeid' have to be in numeric format

. use "Guns.dta", clear

. xtset stateid year

Panel variable: stateid (strongly balanced)
Time variable: year, 77 to 99

Delta: 1 unit

*xtset code year

Panel variable: code (unbalanced)
Time variable: year, 1960 to 2000, but with gaps

Delta: 1 unit
```

Note: id means unique identifiers for entity (entityid) or for time period (timeid)

[SN] STATA command for Visualizing Panel Data

Once the data is set as panel, we can use a series of xt commands to analyze it.

For visualization

```
*xtline varname_of_inteterest
//graphs by entities
```

```
*xtline varname_of_inteterest, overlay legend(off)
//all entities in one graph
```

Fixed Effects Regressions - General Form

For i = 1, ..., n and t = 1, ..., T

$$Y_{it} = \beta_1 X_{1,it} + \beta_2 X_{2,it} + \dots + \beta_k X_{k,it} + \underbrace{\alpha_i}_{\substack{\text{entity} \\ \text{fixed effects}}} + \underbrace{\lambda_t}_{\substack{\text{time} \\ \text{fixed effects}}} + u_{it}$$

(3) Both E&T Fixed Effects:
$$Y_{it} = \beta_1 X_{it} + \alpha_i + \lambda_t + u_{it}$$
 entity time fixed effects fixed effects

(1) Entity Fixed Effects:
$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it}$$

(2) Time Fixed Effects:
$$Y_{it} = \beta_1 X_{it} + \lambda_t + u_{it}$$

(1) Entity Fixed Effects (Time-invariant)

$$Y_{it} = \beta_1 X_{it} + \bigcap_{\substack{intercepts \\ intercepts}}^{n \text{ entity-specific intercepts}} + u_{it}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \underbrace{\gamma_2 D2_i + \gamma_3 D3_i + \ldots + \gamma_n Dn_i}_{\text{with n-1 entity binary indicators}} + u_{it}$$

Entity 1:
$$\alpha_1 = \beta_0$$

Entity 2:
$$\alpha_2 = \beta_0 + \gamma_2$$

Entity 3:
$$\alpha_3 = \beta_0 + \gamma_3$$

:

Entity **n**:
$$\alpha_n = \beta_0 + \gamma_n$$

Note: This form suggests estimating regression model with n-1 binary indicators by OLS, but we can also use "entity-demeaned" OLS algorithm.

(2) Time Fixed Effects (Entity-invariant)

$$Y_{it} = \beta_1 X_{it} + \underbrace{\lambda_t}_{\text{intercepts}} + u_{it}$$

$$\downarrow \downarrow$$

$$Y_{it} = \underbrace{\beta_0}_{\text{an intercept}} + \beta_1 X_{it} + \underbrace{\delta_2 B 2_t + \delta_3 B 3_t + \ldots + \delta_T B T_t}_{\text{with n-1 time binary indicators}} + u_{it}$$

Time period **1**: $\lambda_1 = \beta_0$

Time period **2**: $\lambda_2 = \beta_0 + \delta_2$

Time period **3**: $\lambda_3 = \beta_0 + \delta_3$

.

Time period **T**: $\lambda_T = \beta_0 + \delta_T$

Note: This form suggests estimating regression model with T-1 binary indicators by OLS, but we can also use "time-demeaned" OLS algorithm.

(3) Both Entity and Time (Two-way) Fixed Effects

$$Y_{it} = \beta_1 X_{it} + \underbrace{ \begin{array}{c} \text{entity} \\ \text{fixed effects} \end{array}}_{\text{fixed effects}} + \underbrace{ \begin{array}{c} \text{time} \\ \text{fixed effects} \end{array}}_{\text{fixed effects}} \\ \downarrow \\ Y_{it} = \underbrace{ \begin{array}{c} \beta_0 \\ \text{an intercept} \end{array}}_{\text{an intercept}} + \underbrace{ \begin{array}{c} \beta_1 X_{it} + \underbrace{ \gamma_2 D2_i + \gamma_3 D3_i + \ldots + \gamma_n Dn_i} \\ \text{with n-1 entity binary indicators} \end{array}}_{\text{with n-1 time binary indicators}} + \underbrace{ \begin{array}{c} \delta_2 B2_t + \delta_3 B3_t + \ldots + \delta_T BT_t + u_{it} \\ \text{with n-1 time binary indicators} \end{array}}_{\text{with n-1 time binary indicators}}$$

Note: This form suggests estimating regression model with n-1 entity binary indicators and T-1 time binary indicators by OLS, but we can also combine with "demeaned" OLS algorithm.

[SN] STATA syntax for Fixed Effects Regressions

(1) Entity Fixed Effects

```
*xtreg yvar xvar, fe vce(cluster entityid)
```

(2) Time Fixed Effects

```
*regress yvar xvar i.timeid, fe vce(cluster entityid)
```

(3) Both Entity & Time Fixed Effects

```
*xtreg yvar xvar i.timeid, fe vce(cluster entityid)
```

Note: id means unique identifiers for entity (entityid) or for time period (timeid)

Clustered Standard Errors

- ♦ Sampling are i.i.d across entities.
- ⋄ But if the omitted factors comprising the error term uit are serially correlated, then uit is serially correlated aka autocorrelated that is, correlated over time within an entity.

Standard errors need to allow both for this autocorrelation and for potential heteroskedasticity \rightarrow use **clustered standard errors**.

```
*[, vce(cluster entityid)]
//add this option at the end of STATA regressions
```

Excercise 1: based on Stock & Watson, E10.1

Excercise 1: based on Stock & Watson, E10.1

- ♦ **Objective:** Analyze effects of *concealed weapons laws* on *violent crimes*.
 - [Proponents:] More people carry concealed weapons, crime will decline because criminals will be deterred from attacking other people.
 - [Opponents:] Crime will increase because of accidental or spontaneous use of the weapons.

Dataset: Guns.dta

 A balanced panel of data from the 50 U.S. states plus the District of Columbia for 23 years (1977-1999).

Key variables:

- \diamond stateid: ID number of states (Alabama = 1, Alaska = 2, etc.)
- year: year (1977-1999)
- shall: = 1 if the state has a shall-carry law in effect in that year = 0 otherwise
- vio: violent crime rate.

Variable Description

Variable	Definition		
vio	violent crime rate (incidents per 100,000 members of the population)		
rob	robbery rate (incidents per 100,000)		
mur	murder rate (incidents per 100,000)		
shall	= 1 if the state has a shall-carry law in effect in that year		
	= 0 otherwise		
incarc rate	incarceration rate in the state in the previous year (sentenced		
	prisoners per 100,000 residents; value for the previous year)		
density	population per square mile of land area, divided by 1000		
avginc	real per capita personal income in the state, in thousands of dollars		
pop	state population, in millions of people		
pm1029	percent of state population that is male, ages 10 to 29		
pw1064	percent of state population that is white, ages 10 to 64		
pb1064	percent of state population that is black, ages 10 to 64		
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)		
year	Year (1977-1999)		

Source: Ayres, I. and Donohue, J.J., 2002. Shooting down the more guns, less crime hypothesis.

. xtset stateid year

Panel variable: stateid (strongly balanced)

Time variable: year, 77 to 99

Delta: 1 unit

. xtline stateid, overlay legend(off)

Questions

- (a) Estimate a linear regression model of:
 - ♦ (M1) ln(vio) against shall.
 - (M2) ln(vio) against shall, incarc_rate, density, avginc, pop, pb1064, pw1064 and pm1029.
 - i. Interpret the coefficient on shall in (M2).

 Is this estimate large or small in a real-world sense?
 - ii. Does adding the control variables in (M2) change the estimated effect of a shall-issue law in (M1) as measured by statistical significance? As measured by the real-world significance of the estimated coefficient?
- iii. Suggest a variable that varies across states but plausibly varies little or not at all over time and that could cause omitted variable bias in (M2).

Questions

- (b) Do the results change when you add *state fixed effects*? If so, which set of regression results is more credible, and why?
- (c) Do the results change when you add time fixed effects? If so, which set of regression results is more credible, and why?
- (d) Repeat the analysis using ln(rob) and ln(mur) in place of ln(vio).

(a-i,ii) Estimate linear regression models (M1) and (M2)

From OLS estimation results for (M1) (»stata) and (M2) (»stata)

- \diamond The coefficient is -0.368, which suggests that shall-issue laws reduce violent crime by 36%. This is a large effect.
- \diamond The coefficient in (1) is -0.443; in (2) it is -0.368. Both are highly statistically significant. Adding the control variables results in a small drop in the coefficient.

(a-iii) Suggest a variable that varies across states but plausibly varies little or not at all over time and that could cause omitted variable bias in (M2).

There are several examples:

- Residents' attitudes towards guns and crime, these are typically slow to change.
- Quality of police and other crime-prevention programs.
- For historical reasons, cities can have very different crime rates.
- Geographic features.
- etc.

⇒ These factors constitute an *unobserved state effect/ state fixed effect/ unobserved state heterogeneity*. If they and the variable of interest (shall) are correlated, omitting such variables results in OVB (heterogeneity bias).

Good news: These time-invariant factors can be effectively captured by the state fixed effect α_i ! (»review)

(b) Do the results change when you add state fixed effects?

*xtreg yvar xvar, fe vce(cluster entityid)

. xtreg lvio shall \$basevars, fe vce(cluster stateid)

_cons

3.866017

```
Fixed-effects (within) regression
                                                                          1.173
                                                 Number of obs
Group variable: stateid
                                                 Number of groups =
                                                                             51
R-squared:
                                                 Obs per group:
     Within = 0.2178
                                                                             23
                                                               min =
     Between = 0.0033
                                                                           23.0
                                                               avg =
    Overall = 0.0001
                                                               max =
                                                                             23
                                                 F(8, 50)
                                                                          34.10
                                                 Prob > F
corr(u_i, Xb) = -0.3687
                                                                          0.0000
                               (Std. err. adjusted for 51 clusters in stateid)
```

lvio	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall	0461415	.0417616	-1.10	0.275	1300223	.0377392
incarc_rate	000071	.0002504	-0.28	0.778	0005739	.0004318
density	1722901	.1376129	-1.25	0.216	4486936	.1041135
avginc	0092037	.0129649	-0.71	0.481	0352445	.016837
pop	.0115247	.014224	0.81	0.422	0170452	.0400945
pb1064	.1042804	.0326849	3.19	0.002	.0386308	.1699301
pw1064	.0408611	.0134585	3.04	0.004	.0138289	.0678932
pm1029	0502725	.0206949	-2.43	0.019	0918394	0087057

5.02

0.000

2.319214

5.412819

.7701057

(b) Do the results change when you add state fixed effects?

- \diamond In (M3) the coefficient on shall falls to -0.046, a large reduction in the coefficient from (M2). The estimate is not statistically significantly different from zero.
- ♦ Evidently there was important omitted variable bias leading to a spurious effect in (M2).
- The constant reported in xtreg, fe results implies the estimated average fixed effect.

Like experiments \rightarrow Let's compare:

reg lvio shall i.stateid

xtreg lvio shall, fe

(c) Do the results change when you add time fixed effects?

*xtreg yvar xvar i.timeid, fe vce(cluster entityid)

. xtreg lvio shall \$basevars i.year, fe vce(cluster stateid)

```
Fixed-effects (within) regression
                                                 Number of obs
                                                                          1.173
Group variable: stateid
                                                 Number of groups =
                                                                             51
R-squared:
                                                 Obs per group:
     Within = 0.4180
                                                               min =
                                                                             23
     Between = 0.0419
                                                                           23.0
                                                               avg =
     0verall = 0.0009
                                                                             23
                                                               max =
                                                 F(30, 50)
                                                                          56.86
corr(u i, Xb) = -0.2929
                                                 Prob > F
                                                                         0.0000
                               (Std. err. adjusted for 51 clusters in stateid)
```

lvio	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall	0279935	.0407168	-0.69	0.495	1097757	.0537886
incarc_rate	.000076	.0002079	0.37	0.716	0003416	.0004935
density	091555	.1238622	-0.74	0.463	3403396	.1572296
avginc	.0009587	.0164931	0.06	0.954	0321688	.0340861
pop	0047544	.0152294	-0.31	0.756	0353436	.0258347
pb1064	.0291862	.0495407	0.59	0.558	0703192	.1286916
pw1064	.0092501	.0237564	0.39	0.699	0384659	.0569662
pm1029	.0733254	.0524733	1.40	0.168	0320704	.1787211
year						
78	.0585261	.0161556	3.62	0.001	.0260767	.0909755
79	.1639486	.0244579	6.70	0.000	.1148233	.2130738

(c) Do the results change when you add time fixed effects?

```
. quiet xtreq lvio shall $basevars i.vear. fe vce(cluster stateid)
. ms extract varlist i.year
test `r(varlist)'
      77b.year = 0
      78.vear = 0
(3) 79.vear = 0
      80.vear = 0
      81.year = 0
      82.year = 0
(7) 83.vear = 0
      84.vear = 0
(9) 85.vear = 0
(10) 86.year = 0
(11) 87.year = 0
(12) 88.year = 0
(13) 89.vear = 0
(14) 90.year = 0
(15) 91.year = 0
(16) 92.vear = 0
(17) 93.vear = 0
      94.year = 0
(19) 95.year = 0
(20) 96.year = 0
 (21) 97.vear = 0
 (22) 98.vear = 0
(23) 99.vear = 0
      Constraint 1 dropped
      F( 22.
                50) =
                        21.62
           Prob > F =
```

(c) Do the results change when you add time fixed effects?

- \diamond The coefficient falls further to -0.028. The coefficient is insignificantly different from zero.
- ♦ The time effects are jointly statistically significant, so this regression seems better specified than (M3).

Table of Results - Exercise 1

Regressor	Models						
Regressor	(M1)	(M2)	(M3)	(M4)			
	-0.443***	-0.368***	-0.0461	-0.0280			
shall	(0.157)	(0.114)	(0.042)	(0.041)			
	[-0.76, -0.13]	[-0.60, -0.14]	[-0.13, 0.04]	[-0.11, 0.05]			
Controls	No	Yes	Yes	Yes			
State effects	No	No	Yes	Yes			
Time effects	No	No	No	Yes			

Notes: Clustered standard errors shown in parentheses and 95% confidence intervals are shown in brackets; ***p < 0.01,**p < 0.05,*p < 0.1.

Excercise 2: based on Stock & Watson, E10.2

Picture the Scenario

- Objective: Do citizens demand more democracy and political freedom as their incomes grow? That is, is democracy a normal good?
- ♦ Dataset: Income-Democracy.dta
 - \diamond a panel data set from 195 countries for the years 1960, 1965, . . . , 2000.
- Key variables: For each country in each year
 - Dem_ind: an index of political freedom/democracy.
 - ⋄ Log_GDPPC: per capita income.
 - various demographic controls.

Variable Description

Variable Name	Description	
country	country name	
year	year	
dem_ind	index of democracy	
log_gdppc	logarithm of real GDP per capita	
log pop	logarithm of population	
age 1	fraction of the population age 0-14	
age 2	fraction of the population age 15-29	
age_3	fraction of the population age 30-44	
age_4	fraction of the population age 45-59	
age 5	fraction of the population age 60 and older	
educ	average years of education for adults (25 years and older)	
age median	median age	
code	country code	

Source: Acemoglu, Daron, Simon Johnson, James A. Robinson, and Pierre Yared. 2008. "Income and Democracy." American Economic Review, 98 (3): 808-42.

Notes: The income and demographic variable are lagged five years.

. xtset code year

Panel variable: code (unbalanced)

Time variable: year, 1960 to 2000, but with gaps

Delta: 1 unit

. xtline code, overlay legend(off)

Questions

- (a) Is the data set a balanced panel? Explain.
- (b) The logarithm of per capita income is labeled Log_GDPPC. Regress Dem_ind on Log_GDPPC. Use standard errors that are clustered by country.
 - i. How large is the estimated coefficient on Log_GDPPC? Is the coefficient statistically significant?
 - ii. If per capita income in a country increases by 20%, by how much is Dem_ind predicted to increase? What is a 95% confidence interval for the prediction? Is the predicted increase in Dem_ind large or small? (Explain what you mean by large or small.)
- iii. Why is it important to use clustered standard errors for the regression? Do the results change if you do not use clustered standard errors?

Questions

- (c) Estimate the regression in (b), allowing for country fixed effects. How do your answers to (b-i) change?
- (d) Estimate the regression in (b), allowing for time and country fixed effects. How do your answers to (b-i) change?
- (e) There are additional demographic controls in the data set. Should these variables be included in the regression? If so, how do the results change when they are included?

(a) Is the data set a balanced panel? Explain.

- ♦ The dataset is unbalanced because data are available over different years for different countries. For example, data on Dem_ind are available
 - for Andorra during 1970, 1995, and 2000;
 - ⋄ for Afghanistan during 1960, 1965, . . . , 2000.

(b) Regress Dem_ind on Log_GDPPC using standard errors clustered by country.

. reg dem_ind log_gdppc, vce(cluster code) //using clustered standard errors

(Std. err. adjusted for 150 clusters in code)

dem_ind	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
log_gdppc	.2356731	.011837	19.91	0.000	.212283	.2590632
_cons	-1.354828	.1004215	-13.49	0.000	-1.553262	-1.156394

(b-i) How large is the estimated coefficient on Log_GDPPC?

$$\widehat{\underline{\textit{Dem_ind}}} = -1.35 + .236 \cdot \textit{Log_GDPPC}$$
 (clustered se) (.100) (.012)

The coefficient is 0.236 with a standard error of 0.012. The 95% confidence interval is 0.212 to 0.259. The coefficient is statistically significant.

(b-ii) If per capita income in a country increases by 20%, by how much is Dem_ind predicted to increase?

Hint: Review Regression models with functional forms involving logarithms; 20% is a big leap for approximation though.

- ♦ A 20% increase in GDP per capita implies that Log_GDPPC increases by approximately 0.20, so that Dem_ind is predicted to increase by approximately 0.20 × 0.236 = 0.0472, or about 1/8 of the standard deviation in the dataset.
- \diamond The 95% confidence for the effect is (approximately) 0.20 \times 0.212 to 0.20 \times 0.259 = 0.0472 or 0.0424 to 0.0518.

(b-iii) Why is it important to use clustered standard errors for the regression?

Compare two models with vs without clustered standard errors (»review)

								log_gdppc, ro						
inear regres	sion			Number o	of obs =	958								
				F(1, 149) =	396.40	Linear regres	sion			Number of	fobs	=	958
				Prob > F		0.0000					F(1, 956))	= 110	00.57
				R-square	ed =	0.4385					Prob > F		= 0.	. 0000
				Root MSE		.2719					R-squarec	d	= 0.	4385
				Root MSE	-	.2719					R-squared Root MSE	d		
		(Std	. err. ad		= 150 cluste							d 		
		(Std	. err. ad						Robust			d 		. 4385 . 2719
dem_ind	Coefficient				- 150 cluste		dem_ind	Coefficient		t				. 2719
dem_ind	Coefficient	Robust		justed for	- 150 cluste	rs in code)	dem_ind	Coefficient		t 33.17	Root MSE		=	. 2719

(b-iii) Why is it important to use clustered standard errors for the regression?

- Clustered standard errors are needed because of country-specific omitted factors in the regressions.
- ⋄ The clustered standard error for Dem_ind is 0.012; the unclustered standard error is smaller (0.007) because it ignores the positive within-country autocorrelation of the errors.

(c) Estimate the regression in (b), allowing for country fixed effects.

Estimation result (»stata)

The estimated coefficient falls by a factor of 3, to 0.083 with a standard error of 0.032. The estimated effect, while significantly smaller is still statistically significant at the 1% significance level.

(d) Estimate the regression in (b), allowing for time and country fixed effects.

Estimation and test results (»stata)

The estimated coefficient falls further to 0.054, approximately 1/5 of the value that omits time and country fixed effects. The estimate is not statistically significant at the 10% level.

(e) Include additional demographic controls in the regression

Estimation and test results (»stata)

When age, population, and education are included, the estimated coefficient on Log_GDPPC falls further to 0.025 with a standard error of 0.054. Jointly, these variables are not statistically significant in the regression, although the age variables are significant at the 10% level.

Table of Results - Exercise 2

Regressor			Models		
Regressor	(M1)	(M2)	(M3)	(M4)	(M5)
	0.236***	0.235***	0.083***	0.054	0.025
Log_GDPPC	(0.012)	(0.012)	(0.031)	(0.042)	(0.054)
	[0.212, 0.259]	[0.211, 0.259]	[0.021, 0.146]	[-0.030, 0.137]	[-0.057, 0.120]
Controls	No	No	No	No	Yes
Country effects	No	No	Yes	Yes	Yes
Time effects	No	Yes	No	Yes	Yes
F	-statistics and _I	o-values testing	exclusion of gr	oups of variable	S
Time effects		9.31		5.73	4.61
Time enects		(0.000)		(0.00)	(0.000)
Age					2.12
variables					(80.0)
Age, educ, pop					1.44
variables					(0.21)

Notes: Clustered standard errors shown in parentheses and 95% confidence intervals are shown in brackets; ****p < 0.01,**p < 0.05,*p < 0.1.

Exercise 1(a-i) (»back(1a))

. regress lvio shall, vce(cluster stateid)

Linear regression	Number of obs	=	1,173
	F(1, 50)	=	7.96
	Prob > F	=	0.0068
	R-squared	=	0.0866
	Root MSE	=	.61735

(Std. err. adjusted for 51 clusters in stateid)

lvio	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall	4429646	.1570184	-2.82	0.007	7583452	1275839
_cons	6.134919	.0790269	77.63	0.000	5.976189	6.293649

Exercise 1(a-ii) (»back(1a))

- . global basevars "incarc_rate density avginc pop pb1064 pw1064 pm1029"
- . reg lvio shall \$basevars, vce(cluster stateid)

Linear regression	Number of obs	=	1,173
	F(8, 50)	=	62.13
	Prob > F	=	0.0000
	R-squared	=	0.5643
	Root MSE	=	. 42769

(Std. err. adjusted for 51 clusters in stateid)

lvio	Coefficient	Robust std. err.	t	P> t	[95% conf.	. interval]
shall	3683869	.113937	-3.23	0.002	5972361	1395378
incarc_rate	.0016126	.0005999	2.69	0.010	.0004076	.0028177
density	.0266885	.0414909	0.64	0.523	0566485	.1100255
avginc	.0012051	.0240808	0.05	0.960	0471626	.0495728
рор	.0427098	.011729	3.64	0.001	.0191515	.0662681
pb1064	.0808526	.0713875	1.13	0.263	0625334	.2242386
pw1064	.0312005	.03409	0.92	0.364	0372713	.0996723
pm1029	.0088709	.0340964	0.26	0.796	0596137	.0773554
_cons	2.981738	2.166513	1.38	0.175	-1.369831	7.333307

Exercise 1(b-i)

pm1029

cons

-.0502725

3.866017

*xtreg yvar xvar, fe vce(cluster entityid)

. xtreg lvio shall \$basevars, fe vce(cluster stateid)

```
Fixed-effects (within) regression
                                                Number of obs
                                                                         1.173
Group variable: stateid
                                                Number of groups =
                                                                            51
R-squared:
                                                Obs per group:
    Within = 0.2178
                                                                            23
                                                              min =
    Between = 0.0033
                                                              avg =
                                                                          23.0
    Overall = 0.0001
                                                              max =
                                                                            23
                                                F(8, 50)
                                                                         34.10
corr(u_i, Xb) = -0.3687
                                                Prob > F
                                                                        0.0000
                               (Std. err. adjusted for 51 clusters in stateid)
```

	lvio	Coefficient	std. err.	t	P> t	[95% conf.	interval]
	shall	0461415	.0417616	-1.10	0.275	1300223	.0377392
inca	rc_rate	000071	.0002504	-0.28	0.778	0005739	.0004318
	density	1722901	.1376129	-1.25	0.216	4486936	.1041135
	avginc	0092037	.0129649	-0.71	0.481	0352445	.016837
	pop	.0115247	.014224	0.81	0.422	0170452	.0400945
	pb1064	.1042804	.0326849	3.19	0.002	.0386308	.1699301
	pw1064	.0408611	.0134585	3.04	0.004	.0138289	.0678932

-2.43

5.02

0.019

0.000

-.0918394

2.319214

-.0087057

5.412819

Dobust

.0206949

.7701057

Exercise 1(b-ii-l)

*xtreg yvar xvar i.timeid, fe vce(cluster entityid)

. xtreg lvio shall \$basevars i.year, fe vce(cluster stateid)

Fixed-effects (within) regression Number of obs = 1,173 Group variable: stateid Number of groups = 51

Alternative.

- . quiet tabulate year, generate(yr)
- . xtreg lvio shall \$basevars yr*, fe vce(cluster stateid) note: yr23 omitted because of collinearity.

Fixed-effects (within) regression Number of obs = 1,173 Group variable: stateid Number of groups = 51

Alternative.

- . quiet tabulate year, generate(yr)
- . global yr_vars "yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 yr11 yr12 yr13 yr14 yr15 yr16 yr17 yr18 yr19 yr20 yr21 yr22 yr23"
- . xtreg lvio shall \$basevars \$yr_vars, fe vce(cluster stateid)

Fixed-effects (within) regression Number of obs = 1,173 Group variable: stateid Number of groups = 51

Exercise 1(b-ii-II)

- . quiet tabulate year, generate(yr)
- . global yr_vars "yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 yr11 yr12 yr13 yr14 yr15 yr16 yr17 yr18 yr19 yr20 yr21 yr22 yr23"
- . xtreg lvio shall \$basevars \$yr_vars, fe vce(cluster stateid)

Fixed-effects (within) regression	Number of obs =	1,173
Group variable: stateid	Number of groups =	51
R-squared:	Obs per group:	
Within = 0.4180	min =	23
Between = 0.0419	avg =	23.0
Overall = 0.0009	max =	23
	F(30, 50) =	56.86
corr(u_i, Xb) = -0.2929	Prob > F =	0.0000
COTT(U_1, AD) = -0.2929	P100 > P =	0.0000

(Std. err. adjusted for 51 clusters in stateid)

lvio	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
shall	0279935	.0407168	-0.69	0.495	1097757	. 0537886
incarc_rate	.000076	.0002079	0.37	0.716	0003416	.0004935
density	091555	.1238622	-0.74	0.463	3403396	. 1572296
avginc	.0009587	.0164931	0.06	0.954	0321688	.0340861
pop	0047544	.0152294	-0.31	0.756	0353436	.0258347
pb1064	.0291862	.0495407	0.59	0.558	0703192	.1286916
pw1064	.0092501	.0237564	0.39	0.699	0384659	.0569662
pm1029	.0733254	.0524733	1.40	0.168	0320704	.1787211

Exercise 1(b-iii)

. quiet xtreg lvio shall \$basevars \$yr_vars, fe vce(cluster stateid)

```
. test $yr_vars
```

```
(1)
     vr2 = 0
(2)
     vr3 = 0
(3)
     vr4 = 0
(4)
     vr5 = 0
(5)
     vr6 = 0
(6)
     vr7 = 0
(7)
     vr8 = 0
(8)
     vr9 = 0
(9)
     yr10 = 0
     yr11 = 0
(10)
(11)
     yr12 = 0
(12)
     yr13 = 0
(13)
     yr14 = 0
(14)
     yr15 = 0
(15)
     yr16 = 0
(16)
     yr17 = 0
(17)
     yr18 = 0
(18)
     yr19 = 0
(19)
     yr20 = 0
(20)
     yr21 = 0
     yr22 = 0
(21)
(22) yr23 = 0
     F( 22,
               50) =
                       21.62
          Prob > F =
                        0.0000
```

Exercise 2(b-I)

. reg dem_ind log_gdppc, vce(cluster code) //using clustered standard errors

Linear regression	Number of obs	=	958
	F(1, 149)	=	396.40
	Prob > F	=	0.0000
	R-squared	=	0.4385
	Root MSE	=	.2719

(Std. err. adjusted for 150 clusters in code)

dem_ind	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
log_gdppc	.2356731	.011837	19.91	0.000	.212283	. 2590632
			-13.49	0.000	-1.553262	-1.156394

Exercise 2(b-II)

. reg dem_ind log_gdppc, robust //without clustering

Linear regression	Number of obs	=	958
	F(1, 956)	=	1100.57
	Prob > F	=	0.0000
	R-squared	=	0.4385
	Root MSE	=	.2719

dem_ind	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
log_gdppc	.2356731	.007104	33.17	0.000	. 221732	.2496143
_cons	-1.354828	.0607549	-22.30	0.000	-1.474056	-1.2356

Exercise 2(c) (»back(2c))

Exercise 2(d-1) (»back(2d))

Exercise 2(e-II) (»back(2e))