VISUAL VIGNETTES EXAMPLES OF R GRAPHICS IN DEMOGRAPHY

Maja Založnik

OXFORD 12^{th} March 2015

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

- Introduction
- Good Practice
- Visualising Categorical Data
- Interactive R graphics
- Creating bespoke graphical solutions
- Borrowing Google Charts

Source: Guttmacher Institute 2013

PREGNANCIES

No contraception	
Inconsistent use	
Consistent use	

EDWARD TUFTE

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- $\bullet \ \ {\rm Reproducible} \ {\rm Research} {\it Christopher} \ {\it Gandrud}$

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- $\bullet \ \ {\rm Reproducible} \ {\rm Research} {\it Christopher} \ {\it Gandrud}$

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- $\bullet \ \ {\rm Reproducible} \ {\rm Research} {\it Christopher} \ {\it Gandrud}$

Reproducible Research

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- $\bullet \ \ {\rm Reproducible} \ {\rm Research} {\it Christopher} \ {\it Gandrud}$

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- $\bullet \ \ {\rm Reproducible} \ {\rm Research} {\it Christopher} \ {\it Gandrud}$

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- $\bullet \ \ {\bf Reproducible} \ \ {\bf Research} {\it Christopher} \ {\it Gandrud}$

- RStudio
- RStudio server
- git & github
- knitr & Rpubs
- Reproducible Research Christopher Gandrud
- ##comment or die!

Illiteracy and Nativity in US 1930 Census

	For eign	Native	Total
	born	born	Total
Illiterate	1,306,084	2,557,026	3,863,110
Literate	11,964,722	$79,\!852,\!667$	91,817,389
Total	13,270,806	82,409,693	95,680,499

Illiteracy and Nativity in US 1930 Census

	$For eign\\born$	$egin{aligned} Native \ born \end{aligned}$	Total
Illiterate	1,306,084	2,557,026	3,863,110
Literate	11,964,722	$79,\!852,\!667$	91,817,389
Total	13,270,806	82,409,693	95,680,499

ROBINSON'S REVERSAL OF CORRELATIONS

correlation = -0.567

Illiteracy and Nativity in US 1930 Census

Painstaking

Painstaking

VISUALISING CATEGORICAL DATA

Painstaking

VISUALISING CATEGORICAL DATA

Painstaking

VISUALISING CATEGORICAL DATA

LIBRARY(VDCEXTRA)

Interactive graphics with R

SHINY

FIGURE: Areas of rice planted (left) and other crops (right) on individual farms for each province (in ha) (data: VHLSS 2012)

INTERACTIVE GRAPHICS WITH R

Shiny - Server.R

```
g server.R × g ui.R ×
65 R Q /- R
  1 library(shiny)
  2 load("data/VHLSS.all.area.df")
  3 source("scripts/RandomFunctions.R")
  4 source("scripts/helpers.R")
  5 source("scripts/maps.R")
  7 - shinyServer(function(input,output) {
  9
 10 +
       outputSpyramid <- renderPlot({
         FunExtractPlot(provinces[inputSprovince], inputSxaxis, inputSrank)
 11
 12
 13
 14 -
       outputSmap <- renderPlot({
 15
         FunVNMap(which(provinces==provinces[inputSprovince]))
 16
 17
       outputSlegend <- renderPlot({
 18 +
 19
         FunLegend()
       1)
 20
 21
      (Top Level) $
```

FIGURE: Content of server.R file for VHLSS shiny app

INTERACTIVE GRAPHICS WITH R

SHINY - UI.R

```
@ server.R × @ ui.R ×
1 library(shiny)
    load("data/VHLSS.all.area.df")
     source("scripts/helpers.R")
     shinyUI(fluidPage(
       titlePanel("VHLSS: Rice and other crop production in Norhtern Vietnam").
       fluidRow/
  9
         column(12.
 10
                "Individual farm cropland area planted with rice or other annual crops", br(),
                "[Data: The Vietnam Household Living Standard Survey 2010]", br(), br(), br())).
 11
 12
       fluidRow/
         column(3.
 14
 15
                selectInput("province", em("Select a province from the menu:"),
                            choices = province.names).
 16
 17
                selectInput("rank", em("Sort farms by size of:"),
                            choices = c("Total cropland", "Rice area", "Other crops area")),
 18
 19
                checkboxInput("xaxis", em("Keep constant x-axis?"), TRUE),
                plotOutput("map", height="180px"),br(),
 20
                plotOutput("legend", height="110px")),
 21
 22
 23
         column(9.
 24
                plotOutput("pyramid", height="450px"))))
 25
      (Top Level) $
```

FIGURE: Content of ui.R file for VHLSS shiny app

INTERACTIVE GRAPHICS WITH R

SHINY & SHINYAPPS

- Tutorials, examples, documenation etc:
 - http://shiny.rstudio.com/
- Online hosting of shiny apps (up to 5 for free):
 - https://www.shinyapps.io/

Lexis maps - Death rates in Scotland 1888 - 2011

Lexis maps - Logged Death Rates in Scotland 1888 - 2011

Lexis maps - Logged Death Rates in Scotland 1888 - 2011

Lexis maps - Logged death rates 14 European countries 1900 ->

HUNTING DEMOGRAPHIC GHOSTS

FIGURE: Logged death rate for 14 EU countries 1970 to 2011
VISUAL VIGNETTES

Hunting Demographic Ghosts

FIGURE: Possible proportional count error (per 1000) for 14 EU countries 1970 to 2011

VISUAL VIGNETTES

HUNTING DEMOGRAPHIC GHOSTS

CREATING BESPOKE GRAPHICAL SOLUTIONS 3D BATHTUBS

FIGURE: rgl renderring of Lexis surface
VISUAL VIGNETTES

VISUALISING SPATIAL AUTOCORRELATION - LISA MAPS

 $\ensuremath{\mathrm{FIGURE}}$: Standard example of LISA map - autocorrelation of car crashes in Mashhad, Iran (from Matkan et al (2013

VISUALISING SPATIAL AUTOCORRELATION - LISA MAPS

VISUALISING SPATIAL AUTOCORRELATION - LISA MAPS

Borrowing Google Charts

• Hans Rosling

THE END

?