1 Correctness of Recursive Algorithms

Consider an algorithm of integer multiplication (multiply an m-bit number a and an n-bit number b).

Preconditions:

- \bullet m, n are positive integers
- $-2^m < a < 2^m$ and $-2^n < b < 2^n$ for any $a, b \in \mathbb{Z}$.

Postconditions: return $a \times b$.

Suppose that n and m are even.

Let a', a'' be such that $a = a' \times 2^{m/2} + a''$.

Similarly, let b', b'' be such that $b = b' \times 2^{n/2} + b''$.

Let T(m,n) be the worst case time to perform this algorithm.

Then $a \times b = (a' \times 2^{m/2} + a'') \times (b' \times 2^{n/2} + b'')$, and hence T(m, n) = 4T(m/2, n/2) + c(m+n) for some constant c.

When m = n, we obtain that T(n, n) = 4T(n/2, n/2) + 2cn.

By Master Theorem, $T(n/2, n/2) \in \Omega(n^2)$.

Consider now another algorithm:

F(a, b, m, n)

if n = 1

```
then if b=0 then return 0 b=-1 \text{ then return } -a else return a fi fi if m=1
```

```
then if a=0 then return 0 a=-1 \text{ then ret} else return b fi fi n' \leftarrow n \div 2 a' \leftarrow a \div 2^{n'} a'' \leftarrow a \mod 2^{n'} m' \leftarrow m \div 2
```

```
e \leftarrow F(a' - a'', b')
return c \times 2^{n'+m'}
```

Let $P(m,n) = \text{``} \forall a \in \mathbb{Z} \forall b \in \mathbb{Z} \text{ if } -2^n < a < 2^n \text{ and } -2^m < b < 2^m \text{ then } F(a,b,m,n)$ halts and returns $a \times b$ ".

Proof:

Let $(m,n) \in \mathbb{Z}^m \times \mathbb{Z}^n$ be arbitrary. Assume P(u,v) is true for all $(u,v) \in \mathbb{Z} \times \mathbb{Z}$ such that u < m and v < n.

If n = 1, then b is a *-bit integer, $b \in$

If b = 0, then $a \times b = 0$ which is return on line 2. If b = -1 then $a \times b = -a$, which is returned on line 3.

If b = 1, then $a \times b = a$, which is returned on line 4.

When m = 1, there is a similar argument. Therefore, P(1, 1) is satisfied.

Suppose m, n > 1.

Then $1 \le \lfloor n/2 \rfloor \le \lceil n/2 \rceil < n \text{ and } 1 \le \lfloor m2 \rfloor \le m2 < m$.

Note that $n' = \lfloor n/2 \rfloor$ and $m - m' = \lfloor m/2 \rfloor$, so P(m', n') and P(m'', n'') are true.

Let a, b be arbitrary integers with $-2^m < a < 2^m$ and $-2^n < b < 2^n$.

Then $a = a' \times 2^{m'} + a''$ and $b = b' \times 2^{n'} + b''$, while $-2^{m'} < a'' < 2^{m'}$ and $-2^{n'} < b' < 2^{n'}$.

Similarly, we obtain that $-2^{m-m'} < a' < 2^{n-m'}$ and $-2^{n-n'} < b' < 2^{n-n'}$.

Thus, $-2^{m-m'} < a' - a'' < 2^{m-m'}$ and $-2^{n-n'} < b' - b'' < 2^{n-n'}$.

Then c = a'b' by P(m - m', n - n') and line 15 and $d = a'' \times b''$ by P(m', n') and line 16.

We also have $e = (a' - a'') \times (b' - b'')$ by P(m - m', n - n') and line 17.

Exercise: Continue the proof.