Reducing CO in Turbine Output

Group 7

Mitchell Cappel Christopher Cebra Kashyap Ava Kris Png

Client: Man Fung Leung

Background

- Gas turbines are useful energy sources, but emit harmful emissions
- CO is a major pollutant, being produced at an average rate of 2.081 mg/m³
- The data includes hourly records of turbine data, ambient variables, and CO emissions from a power plant in Turkey
- Original data retrieved from the UCI Machine Learning Repository

Data

- A dataset with 7,158 hourly turbine measures from a Turkish power plant
- 5 Controllable Variables:
 - o AFDP, GTEP, TIT, TAT, CDP
- 4 Environmental:
 - o TEY, AT, AP, AH
- Response Variable: CO

Variable	Abbr.	Unit
Ambient temperature	AT	$^{\circ}\mathrm{C}$
Ambient pressure	AP	mbar
Ambient humidity	\mathbf{AH}	(%)
Air filter difference pressure	AFDP	mbar
Gas turbine exhaust pressure	GTEP	mbar
Turbine inlet temperature	TIT	$^{\circ}\mathrm{C}$
Turbine after temperature	TAT	$^{\circ}\mathrm{C}$
Compressor discharge pressure	CDP	mbar
Turbine energy yield	TEY	MWH
Carbon monoxide	CO	$ m mg/m^3$
Nitrogen oxides	NO_x	$ m mg/m^3$

Data Cleaning

- Initial data contained 25 sequential, evenly-spaced values for CO we referred to as "the line".
- Discussed in mid-project meeting, concluded this was likely due to a problem with the sampling equipment.
- Removed "the line" from all of our analysis going forward.

CO vs TEY in our dataset

CO vs Predicted CO in the source paper.

Objective and Methodology

- Find which controllable variables the engineers can alter to lead to a decreased CO output for their turbine.
- We will test different modelling techniques to gain insights and offer our suggestions to the scientists in Turkey
- Our objective is to find the best model for these three datasets:
 - Overall: all TEY values
 - Medium: 130-136 MWH
 - High: >160 MWH

Data Cleaning

- Outliers can skew the data distribution and negatively impact the performance of predictive models.
- **Removed 72 observations** with CO values greater than the 99th quantile.
- Then the dataset was then split into overall, medium, and high data.

Density plot of CO. All observations greater than the red dotted line are removed.

Modeling Techniques

- Linear Regression
 - Baseline model
- LASSO Regression
 - For feature selection and increased interpretability
- Decision Tree
 - Ideal for clear and interpretable recommendations on controllables
- Random Forest
 - Ensemble of decision trees for enhanced prediction and robustness

Model Evaluation

- Train and Test Data:
 - 80:20, randomized split with seed 443
- Metrics used for evaluation:
 - **R-squared:** amount of variation explained by the model
 - RMSE (Root Mean Squared Error)
 - MAE (Mean Absolute Error)
- Interpretability vs Complexity:
 - Linear methods (LASSO, Linear Regression) are more interpretable, which helps create actionable recommendations
 - Complex methods may fit the data better, but are relatively less interpretable

Test Statistics for Overall Data

	Linear Regression	LASSO	Decision Tree	Random Forest
RMSE	0.721	0.719	0.603	0.504
R-Squared	0.618	0.619	0.732	0.813
MAE	0.493	0.491	0.374	0.313

Linear Model Assumptions (Overall)

- Non-normality of errors and association among residuals
- For overall data, these assumptions are not met
 - o Performed a Box-Cox transformation to attempt linearization

LASSO Model (Overall)

Out of the controllable variables:

- **TAT** is the most significant variable with coefficient **-0.27**.
- **AFDP** is the second most significant variable with coefficient **+0.2**.
- **GTEP** is the third most significant variable with coefficient **-0.1**.

Pruned Decision Tree (Overall)

Random Forest - Overall

Out of the controllable variables:

- CDP is the most important variable
- TIT is the 2nd most important variables
- AFDP, TAT and GTEP are less important

A Closer Look (Overall)

- As CDP increases, predicted CO decreases
- As TIT increases, predicted CO increases

Test Statistics for Medium Yield Data

	Linear Regression	LASSO	Decision Tree	Random Forest
RMSE	0.393	0.391	0.398	0.357
R-Squared	0.099	0.113	0.074	0.252
MAE	0.263	0.263	0.275	0.241

Linear Model Assumptions (Medium)

- Non-normality of errors and association among residuals
- For medium data, these assumptions are not met
 - High leverage and high residual points were observed

LASSO Model (Medium)

95% Confidence Intervals for the predictors

Out of the controllable variables:

- TAT and GTEP are the most significant variables with coefficients ≅ -0.25.
- All other variables have confidence intervals including 0.

Decision tree (Medium Yield)

Random Forest - Medium Yield

Out of the controllable variables:

- AFDP is the most important variable
- TIT & GTEP are 2nd most important variables
- TAT and CDP are less important

A Closer Look (Medium)

- As AFDP increases, predicted CO initially increases then decreases
- As TIT increases, predicted CO initially increases then decreases at the end
- As GTEP increases, predicted CO increases at the end

Test Statistics for High Yield Data

	Linear Regression	Lasso	Decision trees	Random Forest
RMSE	0.648	0.639	0.711	0.549
R-Squared	0.091	0.113	-0.094	0.346
MAE	0.476	0.478	0.567	0.433

Linear Model Assumptions (High)

- Normality of errors but association among residuals
- For high data, the second assumption is not met
 - Non-linear trends in residuals were observed.

LASSO Model (High)

95% Confidence Intervals for the predictors

Out of the controllable variables:

- **GTEP** is the most significant variable with coefficients ≅ **0.2**.
- **TAT** is also significant, with coefficient < **0.05**.
- All other variables have confidence intervals including 0.

Decision tree (High Yield)

Random Forest - High Yield

Out of the controllable variables:

- AFDP is the most important variable
- **GTEP** is the 2nd most important variable
- TAT, CDP and TIT are less important

A Closer Look (High)

- As AFDP increases, CO initially increases and then decreases
- As GTEP increases, CO initially decreases then increases

Summary: Modeling

- Random Forest performed the best at overall, medium and high yields
- Model results can be used to generate actionable suggestions to lower CO
- Model performance is low for medium and high yield
 - Low number of data points for model training
 - Limited range of CO values for these data sets

Conclusion: Overall

Suggestions for Reducing CO – Overall

- CDP & TIT are the most important features according to RF
 - o Recommended values of CDP: **12.5 mbar** and higher
 - Recommended values of TIT: 1085 C and higher

Conclusion: Medium Yield

Suggestions for Reducing CO – Medium Yield

- AFDP, TIT & GTEP are the most important features according to RF
 - Recommended values of AFDP: **3.6 mbar** and lower
 - Recommended values of TIT: 1088 C and higher
 - Recommended values of GTEP: around 25 mbar

Conclusion: High Yield

Suggestions for Reducing CO – High Yield

- AFDP & GTEP are the most important features according to our RF
 - Recommended values of AFDP: 4.4 4.5 mbar
 - Recommended values of GTEP: 33.5 mbar

Thank You

Questions?