Algebras of amenable representation type and (dimensional) expansion

Sebastian Eckert

Bielefeld University

FD seminar

25th March 2021

Graph Theory and Expansion

Hyperfiniteness

- Hyperfiniteness and Amenability
- The 2-Kronecker quiver and beyond
- 3 Some graph theory and dimension expanders
- Wild algebras

Wild algebras

Hyperfiniteness and Amenability

Definition

Let k be a field, A be a finite dimensional k-algebra and let \mathcal{M} be a set of A-modules. \mathcal{M} is called **hyperfinite** provided for every $\varepsilon > 0$ there exists $L_{\varepsilon} > 0$ such that for every $M \in \mathcal{M}$ there exists a submodule $P \subseteq M$ such that

$$\dim_k P \ge (1 - \varepsilon) \dim_k M, \tag{1}$$

and modules $N_1, N_2, \dots N_t \in \text{mod } A$, with $\dim_k N_i \leq L_{\epsilon_i}$, such that $P \cong \bigoplus_{i=1}^t N_i$.

Hyperfiniteness and Amenability

Definition

Hyperfiniteness

Let k be a field, A be a finite dimensional k-algebra and let \mathcal{M} be a set of A-modules. \mathcal{M} is called **hyperfinite** provided for every $\varepsilon > 0$ there exists $L_{\varepsilon} > 0$ such that for every $M \in \mathcal{M}$ there exists a submodule $P \subseteq M$ such that

$$\dim_k P \ge (1-\varepsilon)\dim_k M,\tag{1}$$

and modules $N_1, N_2, \dots N_t \in \text{mod } A$, with $\dim_k N_i \leq L_{\varepsilon}$, such that $P \cong \bigoplus_{i=1}^t N_i$.

The k-algebra A is said to be of amenable representation type provided the set of all finite dimensional A-modules (or more specific, a set which meets any isomorphism class of finite dimensional A-modules) is hyperfinite.

Motivation

Hyperfiniteness

Conjecture (Elek '17)

Let k be a countable algebraically closed field and A be a finite dimensional algebra of infinite representation type over k. Then A is of tame representation type if and only if A is of amenable representation type.

Some (non-)examples

Hyperfiniteness

Example (finite representation type)

An algebra A of finite representation type is amenable.

Some (non-)examples

Hyperfiniteness

Example (finite representation type)

An algebra A of finite representation type is amenable.

Theorem (Elek '17)

Let k be a countable field. Any string algebra R is of amenable representation type.

Some (non-)examples

Hyperfiniteness

Example (finite representation type)

An algebra A of finite representation type is amenable.

Theorem (Elek '17)

Let k be a countable field. Any string algebra R is of amenable representation type.

Theorem (Elek '17)

The wild Kronecker quiver algebras are not of amenable representation type.

Some observations

Remark

Hyperfiniteness

It is enough to check for hyperfiniteness on indecomposable modules.

Some observations

Remark

It is enough to check for hyperfiniteness on indecomposable modules

Graph Theory and Expansion

Proposition

A family of modules having submodules of globally bounded codimension in a hyperfinite family is hyperfinite.

Some observations

Remark

Hyperfiniteness

It is enough to check for hyperfiniteness on indecomposable modules.

Proposition

A family of modules having submodules of globally bounded codimension in a hyperfinite family is hyperfinite.

Proposition

Left-exact functors with bounds on dimensions of the image preserve hyperfiniteness.

The 2-Kronecker quiver

Let us look at an example to see how one may prove amenable representation type.

Example

$$1 \stackrel{a}{\Longrightarrow} 2$$

Let k be any field. Then the path algebra of the 2-Kronecker quiver is of amenable representation type.

Representations of the Kronecker guiver

Question

Given any ε , can we find L_{ε} such that for all finite dimensional Kronecker-modules M there is a submodule P with $\dim P \geq (1 - \varepsilon) \dim M$ which decomposes into summands of dimension bounded by L_{ε} ?

Graph Theory and Expansion

Representations of the Kronecker guiver

Question

Given any ε , can we find L_{ε} such that for all finite dimensional Kronecker-modules M there is a submodule P with $\dim P \geq (1 - \varepsilon) \dim M$ which decomposes into summands of dimension bounded by L_{ε} ?

Well-known classification of indecomposable Kronecker-modules:

where $\forall n \in \mathbb{N}$ either

- $\phi = id$ and ψ is companion matrix of power of monic irreducible over k, or
- $\psi = \mathrm{id}$ and ϕ is given by companion matrix of polynomial λ^m .

• For preprojective P_n :

• For preprojective P_n :

Do this by considering submodule generated by subspace at source with basis all but every $\left\lceil \frac{1}{2\varepsilon} \right\rceil + 1$ -th basis element.

• For preprojective P_n :

Do this by considering submodule generated by subspace at source with basis all but every $\left\lceil \frac{1}{2\varepsilon} \right\rceil + 1$ -th basis element. Leaves us with submodule decomposing into summands of dimension bounded by $\frac{1}{\varepsilon} + 3$.

• For preprojective P_n :

Do this by considering submodule generated by subspace at source with basis all but every $\left\lceil \frac{1}{2\varepsilon} \right\rceil + 1$ -th basis element.

Leaves us with submodule decomposing into summands of dimension bounded by $\frac{1}{\varepsilon} + 3$.

But: have removed less than $\varepsilon \dim P_n$ basis elements, so dimension of submodule is nearly as big as dim P_n .

• For preprojective P_n :

Do this by considering submodule generated by subspace at source with basis all but every $\left\lceil \frac{1}{2\varepsilon} \right\rceil + 1$ -th basis element.

Leaves us with submodule decomposing into summands of dimension bounded by $\frac{1}{6} + 3$.

But: have removed less than $\varepsilon \dim P_n$ basis elements, so dimension of submodule is nearly as big as dim P_n .

Recall

A amenable $\iff \forall \varepsilon > 0 \; \exists L_{\varepsilon} > 0 : \forall M \in \text{mod } A \; \exists N \subseteq M$: $\dim N \ge (1 - \varepsilon) \dim M \wedge \forall S \mid N : \dim S \le L_{\varepsilon}.$

 For the regular modules, consider the submodule generated by deleting the last basis element in vector space at source: it is

preprojective, since
$$\psi = \begin{bmatrix} 0 & 0 & \dots & 0 & * \\ 1 & 0 & \dots & 0 & * \\ 0 & 1 & \dots & 0 & * \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{bmatrix}$$
 is replaced by $\begin{bmatrix} 0 \\ \mathrm{id} \end{bmatrix}$.

 For the regular modules, consider the submodule generated by deleting the last basis element in vector space at source: it is

preprojective, since
$$\psi = \begin{bmatrix} 0 & 0 & \dots & 0 & * \\ 1 & 0 & \dots & 0 & * \\ 0 & 1 & \dots & 0 & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 1 & * \end{bmatrix}$$
 is replaced by $\begin{bmatrix} 0 \\ \text{id} \end{bmatrix}$.

- For the regular modules, consider the submodule generated by deleting the last basis element in vector space at source: it is
 - preprojective, since $\psi = \begin{bmatrix} \begin{smallmatrix} 0 & 0 & \dots & 0 & * \\ 1 & 0 & \dots & 0 & * \\ 0 & 1 & \dots & 0 & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{bmatrix}$ is replaced by $\begin{bmatrix} 0 \\ \mathrm{id} \end{bmatrix}$.
- For the postinjective indecomposables, use the surjective map to the simple injective to find a submodule without postinjective summands.

Tame hereditary path algebras

Proposition

Hyperfiniteness

Let Q be a quiver of tubular type (p, q, r), where p > 1. Let all extended Dynkin quivers of type (p-1,q,r) be amenable. If T is an inhomogeneous simple regular module belonging to a tube of rank p in Γ_{kO} , then T^{\perp} is hyperfinite.

Theorem

Let Q be an acyclic quiver of extended Dynkin type. Let k be any field. Then the path algebra kQ of Q is of amenable representation type.

Pick a tube \mathbb{T} of rank $p \geq 2$ (or maximal rank)

• Preprojective X either is in S^{\perp} for regular simple $S \in \mathbb{T}$ or $\exists Y$ with $0 \to Y \to X \to T \to 0$ exact and $Y \in S^{\perp}$ for regular simples $S, T \in \mathbb{T}$.

Hyperfiniteness

Pick a tube \mathbb{T} of rank $p \geq 2$ (or maximal rank)

• Preprojective X either is in S^{\perp} for regular simple $S \in \mathbb{T}$ or $\exists Y$ with $0 \to Y \to X \to T \to 0$ exact and $Y \in S^{\perp}$ for regular simples $S, T \in \mathbb{T}$.

Hyperfiniteness

Pick a tube \mathbb{T} of rank $p \geq 2$ (or maximal rank)

- Preprojective X either is in S^{\perp} for regular simple $S \in \mathbb{T}$ or $\exists Y$ with $0 \to Y \to X \to T \to 0$ exact and $Y \in S^{\perp}$ for regular simples $S, T \in \mathbb{T}$.
- Indecomposable regular modules: either in S^{\perp} (via orthogonality) or have submodule in T^{\perp} for some regular-simple $T \in \mathbb{T}$.

Hyperfiniteness

Pick a tube \mathbb{T} of rank $p \geq 2$ (or maximal rank)

- Preprojective X either is in S^{\perp} for regular simple $S \in \mathbb{T}$ or $\exists Y$ with $0 \to Y \to X \to T \to 0$ exact and $Y \in S^{\perp}$ for regular simples $S, T \in \mathbb{T}$.
- Indecomposable regular modules: either in S^{\perp} (via orthogonality) or have submodule in T^{\perp} for some regular-simple $T \in \mathbb{T}$.
- For indecomposable postinjectives: induction on the defect, showing hyperfiniteness of $\mathcal{N}_d := \{ \text{indecomposable modules of defect } \leq d \}.$

Going further

Hyperfiniteness

With similar methods, we show the analogue result for all finite dimensional, tame hereditary algebras.

- Tame concealed works okay.
- There are partial results for tubular canonical algebras: preprojective, postinjective and integral slope modules (using classification of [DMM14])
- One might do it for clannish algebras, as Elek did it for string algebras.

Input from graph theory

Problem

How to approach the wild/non-amenable part of the conjecture?

Graph Theory and Expansion

•0000000

Input from graph theory

Problem

How to approach the wild/non-amenable part of the conjecture?

Graph Theory and Expansion

Hyperfiniteness for modules based on notion from graph theory:

Definition (Elek)

Collection \mathcal{G} of finite graphs is **hyperfinite** if $\forall \varepsilon > 0 \ \exists K_{\varepsilon}$ finite s.t. $\forall G \in \mathcal{G} \ \exists S \subset E(G) \ \text{s.t.} \ |S| \leq \varepsilon |V(G)| \ \text{and every connected}$ component of $G \setminus S$ has at most K_{ε} vertices.

Problem

How to approach the wild/non-amenable part of the conjecture?

Hyperfiniteness for modules based on notion from graph theory:

Definition (Elek)

Collection $\mathcal G$ of finite graphs is **hyperfinite** if $\forall \varepsilon > 0 \ \exists K_{\varepsilon}$ finite s.t. $\forall G \in \mathcal G \ \exists S \subset E(G) \ \text{s.t.} \ |S| \leq \varepsilon |V(G)|$ and every connected component of $G \setminus S$ has at most K_{ε} vertices.

Remark

Related notion of fragmentability ([EM94]) can be used to show that preprojective and postinjective component of wild Kronecker quivers are hyperfinite.

Expander Graphs

Definition

$$G=(V,E)$$
, k -regular is an ε -expander if $\forall A\subset V$ with $|A|\leq \frac{|V|}{2}$,

0000000

$$|N(A)| \ge (1+\varepsilon)|A|$$
, where $N(A) = \{y \in V : distance(y,A) \le 1\}$.

Expander Graphs

Definition

$$G = (V, E)$$
, k-regular is an ε -expander if $\forall A \subset V$ with $|A| \leq \frac{|V|}{2}$,

$$|N(A)| \ge (1+\varepsilon)|A|$$
, where $N(A) = \{y \in V : distance(y,A) \le 1\}$.

Example

The complete graph K_n on n > 2vertices is a 1-expander.

Expander Graphs

Hyperfiniteness

Given a group G and S a finite, symmetric set of generators of G, the Cayley graph Cay(G, S) is the graph with vertex set G and edges connecting x to sx for $s \in S$, thus each vertex $x \in G$ is connected to the |S| elements sx, so Cay(G, S) is a regular graph. Now, the above condition becomes

$$|N(A)| = |A \cup \bigcup_{i=1}^k s_i A| \ge (1+\varepsilon)|A|.$$

Dimension expanders and non-hyperfinite families

Definition (Barak-Impagliazzo-Shpilka-Wigderson)

k a field, $d \in \mathbb{N}$, $\alpha > 0$, V k-vector space, and T_1, \ldots, T_d k-linear endomorphisms of V. The pair $(V, \{T_i\}_{i=1}^d)$ is an α -dimension **expander of degree** d if $\forall W \subset V$ with dim $W \leq \frac{\dim_k V}{2}$, we have

Graph Theory and Expansion

$$\dim_k \left(W + \sum_{i=1}^d T_i(W)\right) \ge (1+\alpha)\dim_k W.$$

Dimension expanders and non-hyperfinite families

Definition (Barak-Impagliazzo-Shpilka-Wigderson)

k a field, $d \in \mathbb{N}$, $\alpha > 0$, V k-vector space, and T_1, \ldots, T_d k-linear endomorphisms of V. The pair $(V, \{T_i\}_{i=1}^d)$ is an α -dimension **expander of degree** d if $\forall W \subset V$ with dim $W \leq \frac{\dim_k V}{2}$, we have $\dim_k \left(W + \sum_{i=1}^d T_i(W)\right) \ge (1+\alpha) \dim_k W.$

Graph Theory and Expansion

Proposition

k be a field, $d \in \mathbb{N}$ and $\alpha > 0$. If $\{(V_i, \{T_i^{(i)}\}_{i=1}^d)\}_{i \in I}$ is a sequence of α -dimension expanders of degree d s.t. dim V_i is unbounded, then the induced family of $k\Theta(d+1)$ -modules $M_i = ((V_i, V_i), (\mathrm{id}, T_1^{(i)}, \dots, T_d^{(i)}))$ is not hyperfinite.

Graph Theory and Expansion

00000000

All small summands of M, say $W_l \stackrel{\longrightarrow}{\Longrightarrow} Z_l$, must have $\dim Z_I \leq (1+\alpha) \dim W_I$. But in the source vertex, we also need $\sum_{l} W_{l} > (1 - 2\varepsilon) \dim V$. A contradiction.

Constructing an example

Hyperfiniteness

Problem (Wigderson '04)

For fixed field k, fixed d, fixed α , find α -dim. expanders of degree d of arbitrarily large dimension.

Constructing an example

Problem (Wigderson '04)

For fixed field k, fixed d, fixed α , find α -dim. expanders of degree d of arbitrarily large dimension.

Graph Theory and Expansion

00000000

Solutions

- Lubotzky–Zelmanov '08 for char k=0
- for general k, reduction of Dvir-Shpilka '08/'11 shows that result of Bourgain '09/'13 on "monotone transformations with expansion property" solves it

Constructing an example

Problem (Wigderson '04)

For fixed field k, fixed d, fixed α , find α -dim. expanders of degree d of arbitrarily large dimension.

Graph Theory and Expansion

00000000

Solutions

- Lubotzky–Zelmanov '08 for char k = 0
- for general k, reduction of Dvir-Shpilka '08/'11 shows that result of Bourgain '09/'13 on "monotone transformations with expansion property" solves it

Corollary

Let k a field, char k = 0. Then the wild Kronecker algebra $K\Theta(3)$ is not of amenable representation type.

A construction

Proposition

If $\rho \colon \Gamma \to U_n(\mathbb{C})$ is an irreducible unitary representation, then $(\mathbb{C}^n, \rho(S))$ is an α -dimension expander of degree |S| where $\alpha = \frac{\kappa^2}{12}$, $\kappa = K_r^S(S\ell_n(\mathbb{C}), \operatorname{adj} \rho)$, where $S\ell_n(\mathbb{C})$ denotes the subspace of all linear transformations of zero trace, and adj ρ is the adjoint representation on $\operatorname{End}(\mathbb{C}^n)$ induced by conjugation.

A construction

Proposition

If $\rho \colon \Gamma \to U_n(\mathbb{C})$ is an irreducible unitary representation, then $(\mathbb{C}^n, \rho(S))$ is an α -dimension expander of degree |S| where $\alpha = \frac{\kappa^2}{12}$, $\kappa = K_{\Gamma}^{S}(S\ell_{n}(\mathbb{C}), \operatorname{adj} \rho)$, where $S\ell_{n}(\mathbb{C})$ denotes the subspace of all linear transformations of zero trace, and adj ρ is the adjoint representation on $\operatorname{End}(\mathbb{C}^n)$ induced by conjugation.

Now.

- find representations of SL(2, p) of arbitrarily large dimension (Steinberg)
- $SL(2,\mathbb{Z})$ has property (τ) (inspired by property (T))
- proved via an application of Selberg's $\frac{3}{16}$ Theorem

An example

 $\{((k^p, k^p), (\mathrm{id}, T_p, S_p))\}_{p \in \mathbb{P}}$, where

$$T_{\rho} = \begin{pmatrix} 0 & \dots & 0 & -1 & -1 \\ 1 & & & -1 & -1 \\ & \ddots & & \vdots & \vdots \\ & & 1 & -1 & -1 \\ 0 & \dots & 0 & 0 & 1 \end{pmatrix} \in \mathsf{GL}_{\rho}(\mathbb{Q}),$$

$$S_3 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}, S_5 = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix},$$

Strictly wild algebras are not amenable

Definition

A f.d. k-algebra. A is **strictly wild** if \exists orthogonal pair (X, Y) of f.d., f.p. modules, s.t. $\operatorname{End}(X)$, $\operatorname{End}(Y)$ are division rings and

$$p = \dim_{\operatorname{End}_A(Y)} \operatorname{Ext}^1_A(X, Y) \cdot \dim_{\operatorname{End}_A(X)} \operatorname{Ext}^1_A(X, Y) \ge 5.$$

Strictly wild algebras are not amenable

Definition

Hyperfiniteness

A f.d. k-algebra. A is **strictly wild** if \exists orthogonal pair (X, Y) of f.d., f.p. modules, s.t. $\operatorname{End}(X)$, $\operatorname{End}(Y)$ are division rings and

$$p=\mathsf{dim}_{\mathrm{End}_A(Y)}\operatorname{Ext}^1_A(X,Y)\cdot\mathsf{dim}_{\mathrm{End}_A(X)}\operatorname{Ext}^1_A(X,Y)\geq 5.$$

Theorem

Let A be a finite dimensional k-algebra. If A is strictly wild, then A is not of amenable representation type.

Tools

Proposition

 $\{M_i\}_{i\in I}\subseteq \text{mod }A \text{ non-hyperfinite family of modules. Let}$ $K_1, K_2 > 0$. Functors F_i : mod $A \to \text{mod } B$, G_i : mod $B \to \text{mod } A$ s.t.

- $G_iF_i(M_i)\cong M_i$ for all $i\in I$,
- all G_i are left exact.
- $K_1 \dim_k F_i(M_i) \leq \dim_L G_i F_i(M_i)$ for all $i \in I$,
- $\dim_L G_i(X) \leq K_2 \dim_k X$ for all $X \in \text{mod } B$ and $i \in I$, preserve these counterexamples to hyperfiniteness.

Tools

Hyperfiniteness

Proposition

 $\{M_i\}_{i\in I}\subseteq \text{mod }A \text{ non-hyperfinite family of modules. Let}$ $K_1, K_2 > 0$. Functors F_i : mod $A \to \text{mod } B$, G_i : mod $B \to \text{mod } A$ s.t.

- $G_iF_i(M_i)\cong M_i$ for all $i\in I$,
- all G_i are left exact.
- $K_1 \dim_k F_i(M_i) \leq \dim_L G_i F_i(M_i)$ for all $i \in I$,
- $\dim_I G_i(X) \leq K_2 \dim_k X$ for all $X \in \text{mod } B$ and $i \in I$,

preserve these counterexamples to hyperfiniteness.

Idea

Use suitable tensor product functor mod $L\Theta(d) \to \text{mod } A$ for F_i s.

A locally wild example

Theorem

The local wild algebra $A = k \langle x_1, x_2, x_3 \rangle / M_2$, where M_2 is the ideal generated by all monomials of degree two, is not of amenable representation type.

A locally wild example

Theorem

The local wild algebra $A = k \langle x_1, x_2, x_3 \rangle / M_2$, where M_2 is the ideal generated by all monomials of degree two, is not of amenable representation type.

Proof.

The functor $F : \operatorname{mod} A \to \operatorname{mod} k\Theta(3)$, with

 $F(M) = {}_{top\,M} \xrightarrow{\stackrel{x_1 \cdot -}{\longrightarrow} {}_{rad\,M,}} {}_{rad\,M,}$ is exact and preserves monomorphisms if we ignore simple modules.

A problem?

Here, we use that A is a radical square zero algebra. What functor should one use in general? If the (restricted) functor is not left exact, can we preserve submodules?

Modify the definition

Definition

k a field, A f.d. k-algebra, $\mathcal{M} \subseteq \operatorname{mod} A$ a family of f.d.

A-modules. \mathcal{M} is weakly hyperfinite if $\forall \varepsilon > 0 \exists L_{\varepsilon} > 0$ s.t.

 $\forall M \in \mathcal{M} \exists \theta \colon N \to M \text{ for some } N \in \text{mod } A \text{ s.t.}$

$$\dim_k \ker \theta \le \varepsilon \dim M$$
, $\dim_k \operatorname{coker} \theta \le \varepsilon \dim M$, (2)

and $\exists N_1, \ldots, N_t \in \text{mod } A$ with $\dim_k N_i \leq L_{\varepsilon}$ s.t. $N \cong \bigoplus_{i=1}^t N_i$.

Modify the definition

Definition

Hyperfiniteness

k a field, A f.d. k-algebra, $\mathcal{M} \subseteq \operatorname{mod} A$ a family of f.d.

A-modules. \mathcal{M} is weakly hyperfinite if $\forall \varepsilon > 0 \exists L_{\varepsilon} > 0$ s.t.

 $\forall M \in \mathcal{M} \exists \theta \colon N \to M \text{ for some } N \in \text{mod } A \text{ s.t.}$

$$\dim_k \ker \theta \le \varepsilon \dim M, \quad \dim_k \operatorname{coker} \theta \le \varepsilon \dim M, \tag{2}$$

and $\exists N_1, \ldots, N_t \in \text{mod } A \text{ with } \dim_k N_i \leq L_{\varepsilon} \text{ s.t. } N \cong \bigoplus_{i=1}^t N_i$. A k-algebra A has weak amenable representation type if mod A itself is a weakly hyperfinite family.

Modify the definition

Definition

Hyperfiniteness

k a field, A f.d. k-algebra, $\mathcal{M} \subseteq \operatorname{mod} A$ a family of f.d. A-modules. \mathcal{M} is weakly hyperfinite if $\forall \varepsilon > 0 \exists L_{\varepsilon} > 0$ s.t. $\forall M \in \mathcal{M} \exists \theta \colon N \to M \text{ for some } N \in \text{mod } A \text{ s.t.}$

$$\dim_k \ker \theta \le \varepsilon \dim M, \quad \dim_k \operatorname{coker} \theta \le \varepsilon \dim M, \tag{2}$$

and $\exists N_1, \ldots, N_t \in \text{mod } A \text{ with } \dim_k N_i \leq L_{\varepsilon} \text{ s.t. } N \cong \bigoplus_{i=1}^t N_i$. A k-algebra A has weak amenable representation type if mod A itself is a weakly hyperfinite family.

Remarks

- hyperfinite ⇒ weakly hyperfinite
- Kronecker representations induced by dimension expanders are not even weakly hyperfinite

Finitely controlled wild algebras are not amenable

Let k be alg. closed.

Definition (Ringel)

An algebra A is (finitely) controlled wild if for any f.d. algebra B $\exists F : \mathsf{mod}\, B \to \mathsf{mod}\, A \text{ faithful exact and } C \in \mathsf{mod}\, A \text{ s.t.}$

- 2 $\operatorname{Hom}_A(FM, FN)_{\operatorname{add} C} \subseteq \operatorname{rad} \operatorname{End}_A(FM)$.

Finitely controlled wild algebras are not amenable

Let k be alg. closed.

Hyperfiniteness

Definition (Ringel)

An algebra A is (finitely) controlled wild if for any f.d. algebra B $\exists F : \mathsf{mod}\, B \to \mathsf{mod}\, A \text{ faithful exact and } C \in \mathsf{mod}\, A \text{ s.t.}$

- \bigcirc Hom_A $(FM, FN)_{add, C} \subseteq rad \operatorname{End}_A(FM).$

Theorem

Let A be a finite dimensional k-algebra. If A is finitely controlled wild, then A is not of weakly amenable representation type.

Sketch of proof

Hyperfiniteness

Proof.

Use the functor $F \colon \operatorname{\mathsf{mod}} k\Theta(d) \to A$ from the definition of controlled wildness. By [GP16, Theorem 4.2], $\exists G \colon \mathsf{mod}\, A \to \mathsf{mod}\, k\Theta(d) \text{ s.t. } (G \circ F)(M) \cong M \text{ for all }$ $M \in \text{mod } k\Theta(d)$. Indeed, on objecs this functor is given by

$$G(X) = \frac{\operatorname{Hom}_A(F(K), X)}{\operatorname{Hom}_A(F(K), X)_{\mathcal{C}}},$$

where $\operatorname{Hom}_A(X,Y)_{\mathcal{C}} = \{A\text{-homs } X \to Y \text{ factoring through } \mathcal{C}\}.$ Remains to check estimates on dimensions.

Thank you!

Bibliography I

[Eck18]	.Tame hereditary path algebras and amenability. Aug. 2018. arXiv: 1808.02092 [math.RT].
[Eck20]	.(Extended) Kronecker quivers and amenability. 2020. arXiv: 2011.02040 [math.RT].
[DMM14]	Piotr Dowbor, Hagen Meltzer and Andrzej Mróz. "Parametrizations for integral slope homogeneous modules over tubular canonical algebras". In: <i>Algebr. Represent. Theory</i> 17.1 (2014), pp. 321–356. ISSN: 1386-923X. DOI: 10.1007/s10468-012-9386-7.
[Ele07]	Gábor Elek. "The combinatoral cost". In: <i>Enseign. Math. (2)</i> 53.3-4 (2007), pp. 225–235. ISSN: 0013-8584; 2309-4672/e.
[Ele17]	Gábor Elek. "Infinite dimensional representations of finite dimensional algebras and amenability". In: $Math.~Ann.~369.1~(2017)$, pp. 397–439. ISSN: 0025-5831. DOI: 10.1007/s00208-017-1552-0.
[EM94]	Keith Edwards and Colin McDiarmid. "New upper bounds on harmonious colorings". In: <i>J. Graph Theory</i> 18.3 (1994), pp. 257–267. ISSN: 0364-9024. DOI: 10.1002/jgt.3190180305.
[GP16]	Lorna Gregory and Mike Prest. "Representation embeddings, interpretation functors and controlled wild algebras". In: <i>J. Lond.</i>

Math. Soc. (2) 94.3 (2016), pp. 747–766. ISSN: 0024-6107. DOI:

10.1112/jlms/jdw055.

Bibliography II

[LZ08] Alexander Lubotzky and Efim Zelmanov. "Dimension expanders". In: J. Algebra 319.2 (2008), pp. 730–738. ISSN: 0021-8693. DOI: 10.1016/j.jalgebra.2005.12.033.