PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2023

MAT1107 – Introducción al Cálculo

Solución Examen

1. Sea $\lambda \in \mathbb{R}$. Considere la función definida por $f(x) = 8x^2 + \lambda x + \lambda^2$. Escriba f en su formal normal, determine el valor que debe tomar λ de forma que f alcance su mínimo en x = -2 y encuentre el valor de mínimo de la función para tal λ .

Solución. Escribamos primero f en su forma normal. Tenemos

$$f(x) = 8\left(x^2 + \frac{\lambda}{8}\right) + \lambda^2 = 8\left(x + \frac{\lambda}{16}\right)^2 - \frac{8\lambda^2}{16^2} + \lambda^2.$$

Para que f alcance su mínimo en x = -2, necesariamente

$$\frac{\lambda}{16} = 2 \iff \lambda = 32.$$

Luego, el valor de mínimo de la función para $\lambda = 32$ es

$$\frac{-8\lambda^2}{16^2} + \lambda^2 = -32 + 32^2 = 32(32 - 1) = 32 \cdot 31 = 992.$$

Puntaje Pregunta 1.

■ 2 puntos por escribir f en forma normal, 2 puntos por determinar $\lambda = 32$ y 2 puntos por encontrar el valor de mínimo 992 (no descontar puntaje si escriben $32 \cdot 31$).

- 2. Considere la función $f(x) = \sqrt{1 \frac{2}{1+x}}$.
 - a) Encuentre el dominio de la función f.
 - b) Encuentre el recorrido de la función f.

Solución. Notemos que

$$f(x) = \sqrt{1 - \frac{2}{1+x}} = \sqrt{\frac{x-1}{x+1}}$$

a) Se tiene que

$$x \in \text{Dom}(f) \iff \left(\frac{x-1}{x+1} \geqslant 0\right) \land (x \neq -1)$$
$$\iff ((x-1)(x+1) \geqslant 0) \land (x \neq -1)$$
$$\iff x \in (-\infty, -1) \cup [1, \infty)$$

Por lo tanto, $A = \text{Dom}(f) = (-\infty, -1) \cup [1, \infty)$.

b) Tenemos que

$$y \in \operatorname{Rec}(f) \iff (\exists x \in A)(y = f(x))$$

$$\iff (\exists x \in A) \left(y = \sqrt{\frac{x-1}{x+1}} \right)$$

$$\iff (\exists x \in A) \left(y^2 = \frac{x-1}{x+1} \right) \land (y \geqslant 0)$$

$$\iff (\exists x \in A)(xy^2 + y^2 = x - 1) \land (y \geqslant 0)$$

$$\iff (\exists x \in A)(x(y^2 - 1) = -1 - y^2) \land (y \geqslant 0)$$

$$\iff (\exists x \in A) \left(x = \frac{1+y^2}{1-y^2} \right) \land (y \geqslant 0)$$

$$\iff (y \neq 1) \land (y \geqslant 0)$$

$$\iff y \in [0, 1) \cup (1, \infty)$$

Entonces $B = \text{Rec}(f) = [0, 1) \cup (1, \infty)$.

Puntaje Pregunta 2.

- 3 puntos por calcular el dominio.
- \blacksquare 3 puntos por determinar el recorrido de f.

- 3. Considere la función racional $r(x) = \frac{2x^2 + 7x 4}{x^2 + x 2}$.
 - a) Determine los ceros, signos y la intersección con el eye Y de la función r.
 - b) Determine las asíntotas verticales y horizontales (si es que existen) de r.
 - c) Trace la gráfica de r.

Solución.

a) Los ceros de r satisfacen

$$r(x) = 0 \iff 2x^2 + 7x - 4 = 0 \iff (2x - 1)(x + 4) = 0 \iff \left(x = \frac{1}{2}\right) \lor (x = -4)$$
.

Luego, r tiene dos ceros en x=-4 y en x=1/2. Factorizando el numerador y el denominador se obtiene

$$r(x) = \frac{2x^2 + 7x - 4}{x^2 + x - 2} = \frac{(2x - 1)(x + 4)}{(x - 1)(x + 2)}.$$

Realizando la tabla de signos se obtiene los signos de la función:

_	∞ - 	-4 – I	-2 1,	$^{\prime 2}$	1 o
2x-1	_	_	_	+	+
x+4	_	+	+	+	+
x-1	_	_	_	_	+
x+2	_	_	+	+	+
	+	_	+	_	+

La intersección con el eje Y ocurre cuando $x=0 \Longrightarrow y=r(0)=2$, entonces la curva y=r(x) corta al eje Y en (0,2).

- b) El grado del numerador de r(x) es igual al grado del denominador, luego por el teorema de las asíntotas horizontales, $y=\frac{2}{1}=2$ es una asíntota horizontal. Notemos que el denominador es cero cuando x=1 y x=-2, luego las rectas x=1 y x=-2 son asíntotal verticales de r.
- c) El gráfico de la función r se muestra a continuación

Puntaje Pregunta 3.

- 1 punto por realizar la tabla de signos.
- lacksquare 1 punto por hallar los ceros y la intersección con el eje Y.
- 1 punto por determinar las asíntotas verticales.
- 1 punto por determinar las asíntotas horizontales.
- 2 puntos por trazar la gráfica.

4. Encuentre el valor de las siguiente suma $\sum_{k=1}^{n} \ln \left(1 + \frac{1}{k}\right)$.

Solución. Considere la sucesión $c_k = \log(k)$ entonces vemos que

$$\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) = \sum_{k=1}^{n} \ln\left(\frac{k+1}{k}\right)$$

$$= \sum_{k=1}^{n} \ln(k+1) - \ln(k)$$

$$= \sum_{k=1}^{n} c_{k+1} - c_{k}$$

$$= c_{n+1} - c_{1}$$

$$= \ln(n+1) - \ln(1) = \ln(n+1).$$

Puntaje Pregunta 4.

- \blacksquare 3 puntos por obtener la igualdad $\sum_{k=1}^n \ln \left(1+\frac{1}{k}\right) = \sum_{k=1}^n \ln(k+1) \ln(k)$
- 3 puntos por usar la propiedad telescópica.

5. Considere la sucesión definida mediante la recurrencia

$$s_1 = 2, \quad s_{n+1} = \frac{s_n + \frac{2}{s_n}}{2} \quad n \in \mathbb{N}.$$

Sabiendo que $\sqrt{2} < s_n$ para todo $n \in \mathbb{N}$ (lo que **no debe probar**), haga lo siguiente:

- (a) (2.5pts) Pruebe que $s_{n+1}-s_n < 0$ para todo $n \in \mathbb{N}$, es decir, que $(s_n)_n$ es estrictamente decreciente. Deduzca además que $(s_n)_n$ es acotada.
- (b) (3.5pts) Deduzca que $(s_n)_n$ converge y calcule su límite.

Solución.

(a) Tenemos

$$s_{n+1} - s_n = \frac{s_n^2 + 2 - 2s_n^2}{2s_n} = \frac{(\sqrt{2} + s_n)(\sqrt{2} - s_n)}{2s_n} < 0,$$

donde la última desigualdad se deduce del hecho que $s_n > \sqrt{2}$.

Lo anterior significa que $(s_n)_n$ es estrictamente decreciente, y por lo tanto $s_n < s_1 = 2$ para todo $n \in \mathbb{N}$, n > 1, lo que combinado con $\sqrt{2} < s_n$ para todo $n \in \mathbb{N}$ nos permite concluir que $(s_n)_n$ es acotada.

(b) De la parte (a) tenemos que $(s_n)_n$ es monótona y acotada, por lo que converge. Llamemos L al límite. De $\sqrt{2} < s_n$ para todo $n \in \mathbb{N}$, deducimos que $\sqrt{2} \le L$. Usando la relación de recurrencia, concluimos que

$$L = \lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} \frac{s_n + \frac{2}{s_n}}{2} = \frac{L + \frac{2}{L}}{2},$$

donde usamos álgebra de límites y el hecho de que $(s_{n+1})_n$ es una subsucesión de $(s_n)_n$, por lo que converge a L. Luego,

$$\frac{(\sqrt{2}+L)(\sqrt{2}-L)}{2L} = 0 \iff L = \sqrt{2},$$

ya que $L \ge \sqrt{2}$.

Puntaje Pregunta 5.

- (a) 1 punto por calcular $s_{n+1} s_n$ factorizando el nominador, 1 punto por deducir que $s_{n+1} s_n < 0$ y 0.5 puntos por deducir que $(s_n)_n$ es acotada.
- (b) 0.5 puntos por deducir que $(s_n)_n$ converge a L, 0.5 puntos por probar que $\sqrt{2} \le L$, 0.5 puntos por indicar que $(s_{n+1})_n$ converge a L al ser subsucesión de $(s_n)_n$, 1 punto por utilizar correctamente álgebra de límites para obtener la relación satisfecha por L, 0.5 puntos por factorizar la relación, es decir, obtener $\frac{(\sqrt{2}+L)(\sqrt{2}-L)}{2L} = 0$ y 0.5 puntos por deducir que $L = \sqrt{2}$.

6. Demuestre que

$$\lim_{n \to \infty} \left\lceil \sqrt[n]{n} \left(\frac{1 + (-1)^n}{n^2} \right) \right\rceil = 0.$$

Solución. Definimos

$$s_n = \sqrt[n]{n} \left(\frac{1 + (-1)^n}{n^2} \right).$$

Notemos que

$$0 \le s_n \le 2\sqrt[n]{n} \frac{1}{n^2}.$$

Por álgebra de límites, tenemos que

$$\lim_{n\to\infty}\left[2\sqrt[n]{n}\frac{1}{n^2}\right]=2\lim_{n\to\infty}\sqrt[n]{n}\lim_{n\to\infty}\frac{1}{n^2}=2\cdot1\cdot0=0.$$

Finalmente, por el teorema del sandwich, concluimos que

$$\lim_{n \to \infty} s_n = 0.$$

Puntaje Pregunta 6.

■ 2 puntos por probar que $0 \le s_n \le 2\sqrt[n]{n}\frac{1}{n^2}$, 0.5 puntos por indicar que $\sqrt[n]{n} \to 1$, 0.5 puntos por indicar que $\frac{1}{n^2} \to 0$, 1 punto por deducir con álgebra de límites que lím $_{n\to\infty} \left[2\sqrt[n]{n}\frac{1}{n^2}\right] = 0$, y 2 puntos por concluir por el teorema del Sandiwch que $s_n \to 0$.