Selv-balanserende søketrær

Georgy Maksimovich Adelson-Velsky

Evgenii Mikhailovich Landis

Søketrær og effektivitet

O(log n) effektivitet av binære søketrær kan ikke garanteres

- Treet til venstre har høyde lik log n
- Treet til høyre har høyde lik n

Selv-balanserende søketrær

- Implementerer innsetting og fjerning av verdier slik at ubalanse i treet automatisk rettes opp hvis nødvendig
- Har alltid O(log n) effektivitet
- Krever mer komplisert programkode med mye «pekerfikling»
- Noen varianter av selv-balanserende trær:
 - AVL-tre
 - Red-black tree (Java Collections, læreboken)
 - Splay-tree
 - Scapegoat tree

AVL-trær

- Første publiserte selv-balanserende binære søketre, oppkalt etter de to oppfinnerne *
- Er sortert på samme måte som et søketre
- Krav til balanse:
 - For alle noder i treet skal forskjellen i høyde på nodens venstre og høyre subtre maksimalt være lik 1
- Kan bevises at høyden av et AVL-tre alltid er O(log n)

^{*} Georgy M. Adelson-Velsky.; Evgenii M. Landis: "An algorithm for the organization of information", *Proceedings of the USSR Academy of Sciences*, 1962

- Treet til venstre er et AVL-tre, alle nodene er i balanse
- Treet til høyre er ikke et AVL-tre, de to mørke nodene bryter med balansekravet
- Eksempel som tester om et søketre også er et AVL-tre:

Javakode med testprogram

Balansefaktorer

- Hver node i et AVL-tre lagrer et heltall som kalles en balansefaktor, i tillegg til data og de to pekerne til høyre og venstre subtre
- Balansefaktoren er forskjellen i høyde mellom nodens venstre og høyre subtre:
 - Lik 0: Subtrærne er like høye
 - Negativ: Venstre subtre er høyest
 - Positiv: Høyre subtre er høyest

AVL-tre med balansefaktorer

Alle nodene i et AVL-tre skal ha balansefaktor lik -1, 0 eller 1

Søking, innsetting og fjerning i AVL-tre

- Søking i et AVL-tre gjøres på samme måte som søking i et vanlig binært søketre
- Innsetting og fjerning i AVL-tre:
 - Gjøres først på samme måte som innsetting og fjerning i et vanlig binære søketre
 - Retter deretter opp evt. ubalanse i treet som kan ha oppstått ved innsetting/fjerning av en node
- Vi skal bare se på hvorledes innsetting i AVL-tre gjøres

Innsetting i AVL-tre

- Sett inn ny node som i et vanlig søketre
- Justér balansefaktoren i alle nodene på søkeveien fra roten ned til ny node, slik at den fortsatt er korrekt etter innsetting
- Hvis en node får balansefaktor lik -2 eller 2, er treet kommet i ubalanse etter innsettingen
- Ved ubalanse flyttes noder rundt i treet slik at balansen gjenopprettes

Innsetting i AVL-tre: Pivotnoden

Pivotnode:

- Siste node på veien ned til ny node som har balansefaktor som ikke er lik 0
- Ved ubalanse er det alltid tilstrekkelig at vi bare justerer balansen i subtreet som har rot i pivotnoden
- Justeringen gjøres ved å flytte noder i treet med rotasjoner rundt pivotnoden
- Flere ulike tilfeller som må behandles separat

Tilfelle 1: Det finnes ingen pivotnode

- Alle noder på søkeveien ned til den nye noden som er satt inn har balansefaktor lik 0
- Innsettingen kan ikke forårsake ubalanse, ingen flytting av noder er nødvendig
- Trenger bare å justere balansefaktoren for alle nodene som ligger på søkeveien

Tilfelle 2: Ny node i pivotnodes minste subtre

- Det finnes en pivotnode på veien ned til ny node
- Ny node er satt inn i pivotnodens korteste subtre
- Kan ikke forårsake ubalanse i treet, trenger ikke flytte noder
- Justerer balansefaktor for alle noder fra og med pivotnoden og ned til den nye noden som er satt inn

Tilfelle 3: Ny node i pivotnodes høyeste subtre

- Det finnes en pivotnode på veien ned til ny node
- Ny node er satt inn i pivotnodens høyeste subtre
- Pivotnoden blir ubalansert
- Treet må omstruktureres for å opprettholde AVLegenskapene
- To (fire) tilfeller av omstrukturering:
 - Enkel rotasjon (to symmetriske tilfeller)
 - <u>Dobbel rotasjon</u> (to symmetriske tilfeller)

Eksempel som krever enkel rotasjon

• Ny node settes inn i *venstre* subtre til pivotnodens *etterfølger* på søkestien:

Enkel rotasjon

(symmetrisk for noden p3 til høyre)

Enkel rotasjon: Eksempel

Eksempel som krever dobbel rotasjon

 Ny node settes inn i høyre subtre til pivotnodens etterfølger på søkestien:

Dobbel rotasjon

(symmetrisk for noden p3 til høyre)

Dobbel rotasjon: Eksempel

AVL-trær: Implementasjon og effektivitet

- Innsetting i AVL-trær krever relativt «fiklete» kode
- Fjerning med rebalansering er enda verre...
- Men: Rebalansering er i verste fall en O(log n) operasjon
- AVL-trær garanterer derfor alltid O(log n) effektivitet for søking, innsetting og fjerning
- Hvis vi vet at dataene kommer i random rekkefølge (som f.eks. i oblig. 4), er det tilstrekkelig å bruke vanlig binært søketre

Test: Selvbalanserende vs.vanlig binært søketre

- Test av vanlig søketre:
 - Innsetting av opp til ti millioner tall
 - Setter først inn i tilfeldig rekkefølge og deretter sortert
 - Bruker et egenprogrammert søketre med heltallsdata
 - Java-kode: testBSTRandomSorted.java
- Test av selvbalanserende søketre:
 - Tester på samme måte som for det vanlige søketreet, med først random og deretter sortert input
 - Bruker Java-klassen TreeMap som implementerer selvbalanserende red-black trær
 - Java-kode: testBalancedBSTRandomSorted.java