Advanced Methods in Biostatistics

STAT 438 Winter 2022 (1221)¹

Cameron Roopnarine²

Yeying Zhu³

6th January 2022

¹Online Course until January 27th, 2022 ²™EXer

³Instructor

Contents

1	Introduction						
	1.1	Experi	mental Studies	3			
	1.2	Observ	rational Studies	3			
		1.2.1	Cross-sectional Studies	4			
		1.2.2	Cohort Studies	4			
		1.2.3	Case-control Studies	5			

Chapter 1

Introduction

WEEK 1
5th to 7th January

About this Course

Three topics covered in this course:

- · Causal Inference.
- Missing Data.
- Measurement Error.

Basics in Biostatistics

Review:

- Experimental Studies vs. Observational Studies.
- Statistics of Interest.
- Using Regression Models.
- Association vs. Causation.

Research Questions

Questions to ask when studying a disease:

- Which factors are associated with a given disease? These so-called <u>risk factors</u> are sometimes referred to as predictors, explanatory variables, covariates, independent variables, or exposure variables, etc.
- Which factors are associated with the duration of a given disease?
- Correlation (Association) does not imply causation.
- Ultimately, we want to ask: which factors cause the disease, or which factors determine the duration of the disease?

Types of Studies

- Experimental studies.
- · Observational studies.

1.1 Experimental Studies

- In an experimental study, the investigator can manipulate the main (risk) factor of interest, while controlling for other factors.
- In a randomized experimental study, such as a clinical trial, eligible people are randomly assigned to one of two or more groups. One group receives the treatment (such as a new drug) while the control group receives nothing or an inactive placebo.
- Due to randomization, the investigator can control for both known and unknown factors, while investigating, typically, a treatment comparison.

Randomization and Causal Inference:

- Randomization is the perfect/golden design for causal inference.
- Random assignment of treatment (exposure) ensures balance across study arms with respect to observed and unobserved risk factors.
- Direct comparisons between treatment groups can be made.
- Any difference can be attributed to the causal effect of treatment.
- Randomization is not always feasible due to ethical/economic reasons.
- Even the treatment is randomized, the participant may not comply with the assigned treatment: compliance issue.

1.2 Observational Studies

- These studies are typically based on sampling populations with subsequent measurement of various factors
 of interest. In this setting, we cannot even take advantage of a naturally occurring experiment that changed
 risk factor status conveniently.
- It is sometimes useful to use these studies to look at the natural history of a disease, but any attempt to identify causality between a risk factor and outcome must be done with great caution.
- There is no experimental setting, as study participants typically self-reflect their exposure categories. Nevertheless, in large part due to ethics, such studies are most often to what we have access in Biostatistics.

Examples of Observational Studies

1. - Risk factor: cigarette smoking.

- Outcome: bladder cancer.

2. - Risk factor: distance of home from hazardous waste site.

- Outcome: respiratory disease.

• Three most popular observational studies:

- 1. Cross-sectional studies.
- 2. Cohort studies.
- 3. Case-control studies.
- No control over which subjects have the exposure and which do not.
- Exposed and Unexposed groups may be quite different with respect to other subject characteristics.
- Differences in the outcome are not only due to the (risk) factor of interest, but also because of the masking effect of other covariates (confounders).

Confounding Issue

Another Example of Confounding

1.2.1 Cross-sectional Studies

- Individuals are selected from the target population and their status with respect to the risk factor and the disease status is ascertained at the same time.
- The data represents a snapshot view of the relation between the risk factor and the event occurrence.
- Surveys are often cross-section in nature where associations are of interest and less priority is given to establishing causation.
- Advantage: cross-sectional studies are typically short.
- Disadvantage: a serious problem with such cross-sectional studies is the inability to determine whether the disease outcome or the risk factor occurred first, again this makes causal inferences more problematic or almost impossible.

1.2.2 Cohort Studies

- Cohort studies typically include obtaining two groups from a pre-determined # of individuals, one possessing and the other not possessing a risk factor of interest. Subsequent counts of cases (and non-cases) of a disease of interest are then recorded.
- Much more often than not, cohort studies are prospective, but there are retrospective (or historical) cohort studies as well.

Table representing simple cohort study with sampling based on risk-factor status:

	Dis		
Risk Factor	Present (D)	Absent (D^c)	Total
Present (E)	a	b	n_1
Absent (E^c)	c	d	n_2

- $a \sim BIN(n_1, \mathbb{P}(D \mid E))$.
- $c \sim \text{BIN}(n_2, \mathbb{P}(D \mid E^c))$.

1.2.3 Case-control Studies

- In case-control studies, the direction of sampling differs from that of cohort studies. Specifically, the investigator selects a pre-determined # of disease cases and non-cases (i.e., controls), then looks retrospectively to see the # of individuals with and without the risk factor in each group.
- Case-control studies are retrospective studies.

Table representing simple case-control study with sampling based on disease status:

	Disease	
Risk Factor	Present	Absent
Present Absent	a c	b d
Total	n_1	n_2

- $a \sim \text{BIN}(n_1, \mathbb{P}(E \mid D))$.
- $b \sim \text{BIN}(n_2, \mathbb{P}(E \mid D^c))$.