

Route optimization of garbage trucks to reduce traffic with A-Star

Kaz Erdos

Advisor: Dr. Kevin Crowthers

Garbage collection suffers from many flaws, creating adverse effects on the environment while wasting taxpayer money and causing

GAS CONSUMPTION arbage trucks get on average 3 vehicles on the road.

collection mandated by each town

Problem Statement

How do the routes of Garbage Trucks and their size affect traffic in the local area?

Research Objective

The goal of this project is to engineer a new system for garbage collection, which would be applied to the current routes of trucks used as well as smaller, less obtrusive vehicles.

Process GRAPHICAL ABSTRACT

GARBAGE TRUCKS A REROUTING PROCESS

Results

The Data Shows...

When A-Star was Adapted to account for all the heuristics, the mean total scores improved over the version of the algorithm only made to optimize waste bin covered by 21.91%. (p = 0.0001)

of Random Attempts

By recording the mean coverage rate and timing the run time of the algorithm over a varying number of random attempts, it was found that 1000 attempts struck the balance of effectiveness and efficiency (Shown in purple).

Conclusions:

- Optimized A-Star was shown to consistently outperform base A-Star
- Base Station variation has more real-world applicability
- Runtime of the algorithm is fast, averaging around 12 seconds
- Constant Random Road Networks allowed for more objective testing (avoiding bias)

Future Work:

- Utilize Google Maps API to enable real-world testing
- Port application to mobile or a website
- Allow for custom heuristics to be added for specific use
 - Update GUI with more information

VARIABLES

Coverage Score: % of Houses Covered

Overlap Score: # of Squares Overlapped

Fuel / Cost Score

Traffic Score: Probable Impact

Time Score

Distance Score

Road Score: # of Road Changes

Proof of Concept 1: A-Star Test Proof of Concept 2: Traffic/Random Test Version 1: A-Star + Random, Small Environmen Version 2: Added Large, Random Environments Version 3: Added Waste Bin Tracking Version 4: Added Base Station Routing Version 5: Added Full Traffic Model **Version 6: Added Probable Heuristics**

First Versus Final Version

References:

- Edelkamp, S., Jabbar, S., & Lluch-Lafuente, A. (2005). Cost-Algebraic Heuristic Search. Proceedings of the National Conference on Artificial Intelligence. 3. 1362-1367.
- Ghaffari, A. (2014). An Energy Efficient Routing Protocol for Wireless Sensor Networks using Astar Algorithm. Journal of Applied Research and Technology, 12(4). https://doi.org/10.1016/S1665-6423(14)70097-5
- Gunawan, D., Marzuki, I., & Candra, A. (2018). *J.* Phys.: Conf. Ser. 978 012122