LIGHT UNFLAVORED MESONS (S=C=B=0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57039\pm0.00018$$
 MeV (S = 1.8) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a]

$$F_V = 0.0254 \pm 0.0017$$

$$F_A = 0.0119 \pm 0.0001$$

 F_V slope parameter $a = 0.10 \pm 0.06$ $R = 0.059^{+0.009}_{-0.008}$

$$R = 0.059^{+0.009}_{-0.008}$$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES	Fraction (F.	/ ୮)	Confidence level	p (MeV/c)
	· 1			
$\mu^{ op} u_{\mu}$	[<i>b</i>] (99.98770	± 0.0000	4) %	30
$\mu^+ \nu_{\mu}$ $\mu^+ \nu_{\mu} \gamma$ $e^+ \nu_{e}$	[c] (2.00	± 0.25	$) \times 10^{-4}$	30
$e^+ u_e$	[b] (1.230		,	70
$e^+ u_e \gamma$	[c] (7.39	±0.05	$) \times 10^{-7}$	70
$e^+ \nu_e \pi^0$	(1.036	±0.006	$) \times 10^{-8}$	4
$e^{+} \nu_{e} e^{+} e^{-}$	(3.2	± 0.5	$) \times 10^{-9}$	70
$\mu^+ u_{\mu} u\overline{ u}$	< 9		$\times 10^{-6} 90\%$	30
$e^+ \nu_e \nu \overline{\nu}$	< 1.6		$\times 10^{-7} 90\%$	70
Lepton Family number (LF) or Lepton nur	nber (<i>L</i>) violating mod	des
$u^{+}\overline{\nu}_{\bullet}$	[d] < 15		× 10 ⁻³ 90%	30

$\mu^+ \overline{\nu}_e$	L	[d] < 1.5	$\times 10^{-3} 90\%$	30
$\mu^+ \nu_e$	LF	[d] < 8.0	$\times 10^{-3} 90\%$	
$\mu^-e^+e^+\nu$	LF	< 1.6	$\times 10^{-6} 90\%$	30

$$\pi^{0}$$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass
$$m=134.9768\pm0.0005$$
 MeV (S $=1.1$) $m_{\pi^\pm}-m_{\pi^0}=4.5936\pm0.0005$ MeV Mean life $\tau=(8.43\pm0.13)\times10^{-17}$ s (S $=1.2$) $c\tau=25.3$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ dence level	•
2γ	(98.823 ± 0.03)	4) %	S=1.5	67
$e^+e^-\gamma$	(1.174 ± 0.03)	5) %	S=1.5	67
γ positronium	(1.82 ± 0.29	$) \times 10^{-9}$		67
$e^{+}e^{+}e^{-}e^{-}$	(3.34 ± 0.16)	$) \times 10^{-5}$		67
e^+e^-	(6.46 ± 0.33)	$) \times 10^{-8}$		67
4 γ	< 2	$\times 10^{-8}$	CL=90%	67
invisible	< 4.4	$\times 10^{-9}$	CL=90%	_
$ u_{\mathbf{e}} \overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6}$	CL=90%	67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6}$	CL=90%	67
$ u_{\mathcal{T}} \overline{\overline{ u}}_{\mathcal{T}}$	< 2.1	$\times 10^{-6}$	CL=90%	67
$\gamma u \overline{ u}$	< 1.9	$\times 10^{-7}$	CL=90%	67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times10^{-8}$ CL=90%	67
μ^+ e $^-$	LF	< 3.8	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.2	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 3.6	$\times10^{-10}\text{CL}{=}90\%$	26

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

Mass
$$m=547.862\pm0.017$$
 MeV
Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02 \pm 0.07 \quad (\text{S} = 1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

HTTP://PDG.LBL.GOV

Page 2

Other decay parameters

 $\pi^0\pi^0\pi^0$ Dalitz plot $\alpha=-0.0296\pm0.0016$ (S = 1.7) Parameter Λ in $\eta\to~\ell^+\ell^-\gamma$ decay = 0.716 \pm 0.011 GeV/ c^2

η DECAY MODES		Fraction (Γ_i)		cale factor/ idence level	
	NI.				
neutral modes	IVE	eutral modes (71.96 ± 0.3)	30) %	S=1.3	_
2γ		$(39.36 \pm 0.1$	•	S=1.1	274
$3\pi^0$		(32.57±0.2	,	S=1.2	179
$\pi^0 2\gamma$		(2.55±0.2	· ·		257
$2\pi^0 2\gamma$		< 1.2	$\times 10^{-3}$	CL=90%	238
4 γ		< 2.8	$\times 10^{-4}$	CL=90%	274
invisible		< 1.0	\times 10 ⁻⁴	CL=90%	_
	Ch	arged modes			
charged modes		$(28.04\pm0.3$	80) %	S=1.3	_
$\pi^+\pi^-\pi^0$		$(23.02\pm0.2$	25) %	S=1.2	174
$\pi^+\pi^-\gamma$		$(4.28\pm0.0$,	S=1.1	236
$e^+e^-\gamma$		(6.9 ± 0.4)	· .	S=1.2	274
$\mu^+\mu^-\gamma$		(3.1 ± 0.4)			253
e^+e^-		< 7	\times 10 ⁻⁷	CL=90%	274
$\mu^+\mu^-$		(5.8 ± 0.8)	· _		253
$2e^{+}2e^{-}$		(2.40 ± 0.2)	,		274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$		(2.68±0.1		5 . 5.0 /	235
$e^{+}e^{-}\mu^{+}\mu^{-}$		< 1.6	$\times 10^{-4}$	CL=90%	253
$2\mu^{+}2\mu^{-}$		(5.0 ± 1.3)		CI 000/	161
$\mu^{+}\mu^{-}\pi^{+}\pi^{-}$		< 3.6		CL=90%	113
$\pi^+e^-\overline{ u}_e^{}+$ c.c. $\pi^+\pi^-2\gamma$		< 1.7 < 2.1		CL=90%	256
$\pi^+\pi^-\pi^0\gamma$		< 6	× 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10	CL=90%	236 174
$\pi^0 \mu^+ \mu^- \gamma$		< 3	\times 10 \times 10 ⁻⁶	CL=90% CL=90%	210
	_			CL—9070	210
	-	gation (C) , Parity	• • •		
		$gation imes Parity$ $Imber(\mathit{LF})$ $viol$		96	
$\pi^0\gamma$	C C	[e] < 9	× 10 ⁻⁵	CL=90%	257
$\pi^+\pi^-$	P,CP		× 10 × 10 −6	CL=90%	236
$2\pi^0$	P,CP		× 10 × 10 ⁻⁴	CL=90%	238
$2\pi^0\gamma$	C	< 5	× 10 × 10 ⁻⁴	CL=90%	238
$3\pi^0\gamma$	C	< 6	× 10 ⁻⁵	CL=90%	179
3γ	C	< 1.6	× 10 ⁻⁵		274
$4\pi^0$	P,CP		× 10 ⁻⁷		40
$\pi^{0} e^{+} e^{-}$	C	[f] < 8	× 10 ⁻⁶	CL=90%	257
HTTP://PDG.LBL.GOV		Page 3	Created:	4/24/202	5 13:07

$$f_0(500)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

also known as σ ; was $f_0(600)$, $f_0(400-1200)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (400–550)-i(200–350) MeV Mass (Breit-Wigner) = 400 to 800 MeV

Full width (Breit-Wigner) = 100 to 800 MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	_
$\gamma\gamma$	seen	_

ρ (770)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole
$$\sqrt{s}=(761\text{--}765)-i~(71\text{--}74)~\text{MeV}$$
 $\rho^0~\text{mass}~(\text{Breit-Wigner})=775.26\pm0.23~\text{MeV}~[g]$ $\rho^0~\text{full width}~(\text{Breit-Wigner})=147.4\pm0.8~\text{MeV}~[g]~~(\text{S}=2.0)$

(==a) D=GAY(140D=6			Scale factor/	p
ρ (770) DECAY MODES	Fraction (Γ_i/Γ)		Confidence level	(MeV/ <i>c</i>)
$\pi\pi$	$\sim~100$	%		363
	$ ho$ (770) $^\pm$ de	ecays		
$\pi^{\pm}\gamma$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	\times 10 ⁻³	CL=84%	152
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	254
	$ ho$ (770) 0 de	cays		
$\pi^+\pi^-\gamma$	($9.9~\pm1.6$	$) \times 10^{-3}$		362
$\pi^{0} \gamma$	(4.7 ± 0.8	$) \times 10^{-4}$	S=1.7	376
$\eta\gamma$	$(3.00\pm0.21$) × 10 ⁻⁴		194
$\pi^0\pi^0\gamma$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[h] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	[h] (4.72 ± 0.05)	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}$	$\pm 0.34) \times 10^{-4}$		323
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	$) \times 10^{-5}$		257
$\pi^{0} e^{+} e^{-}$	< 1.2	× 10 ⁻⁵	CL=90%	376

$$\omega$$
(782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.66\pm0.13~{\rm MeV}~{\rm (S}=2.0)$ Full width $\Gamma=8.68\pm0.13~{\rm MeV}$

		Scale factor/	-
ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$\pi^+\pi^-\pi^0$	(89.2 \pm 0.7) %		327
$\pi^{0}\gamma$	$(8.35\pm0.27)\%$	S=2.2	380
$\pi^+\pi^-$	(1.53 ± 0.12) %	S=1.2	366
neutrals (excluding $\pi^0 \gamma$)	$(7 {}^{+8}_{-4}) \times $	10^{-3} S=1.1	_
$\eta \gamma \over \pi^0 e^+ e^-$	(4.5 \pm 0.4) $ imes$ 1	10^{-4} S=1.1	200
	(7.7 \pm 0.6) \times 3	10^{-4}	380
$\pi^{0} \mu^{+} \mu^{-}$	$(1.34\pm0.18) \times 1$	10^{-4} S=1.5	349
e^+e^-	$(7.38\pm0.22)\times1$	10^{-5} S=1.9	391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	< 2 × 3	10^{-4} CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6 × 3	10^{-3} CL=95%	366
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 × 3	10^{-3} CL=90%	256
$\pi^0\pi^0\gamma$	(6.7 ± 1.1) \times 3	10^{-5}	367
$\eta\pi^0\gamma$	< 3.3 × 3	10^{-5} CL=90%	162
$\mu^+\mu^-$	$(7.4 \pm 1.8) \times 3$	10^{-5}	377
3γ	< 1.9 × 3	10^{-4} CL=95%	391
Charge conjugation	on (C) violating m	nodes	
$\eta\pi^0$	< 2.1 × 3	10^{-4} CL=90%	162
. 0	< 2.2 × 3	10^{-4} CL=90%	367
$3\pi^0$	< 2.3 × 3	10^{-4} CL=90%	330
invisible		10^{-5} CL=90%	_

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.188\pm0.006~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	(42.5 ±0.5) %	232
$ ho^{f 0}\gamma$ (including non-resonant	(29.5 \pm 0.4) %	165
$\pi^+ \pi^- \gamma$)		
$\pi^{0}\pi^{0}\eta$	(22.4 \pm 0.5) %	239
$\omega\gamma$	(2.52 ± 0.07) %	159
$\omega e^+ e^-$	$(2.0 \pm 0.4) \times 10^{-4}$	159
$\gamma\gamma$	$(2.307\pm0.033)\%$	479
$3\pi^{0}$	$(2.50 \pm 0.17) \times 10^{-3}$	430

HTTP://PDG.LBL.GOV

Page 5

1			
$\mu^+\mu^-\gamma$	$(1.13 \pm 0.28) \times 10^{-4}$		467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	$(1.9 \pm 0.4) \times 10^{-5}$		401
$\pi^+\pi^-\pi^0$	$(3.61 \pm 0.17) \times 10^{-3}$		428
$(\pi^+\pi^-\pi^0)$ S-wave	$(3.8 \pm 0.5) \times 10^{-3}$		428
$\pi^{\mp} ho^{\pm}$	$(7.4 \pm 2.3) \times 10^{-4}$		106
$2(\pi^{+}\pi^{-})$	$(8.3 \pm 0.9) \times 10^{-5}$		372
$\pi^{+}\pi^{-}2\pi^{0}$	$(1.8 \pm 0.4) \times 10^{-4}$		376
$2(\pi^+\pi^-)$ neutrals	< 1 %	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	$< 1.8 \times 10^{-3}$	90%	298
$2(\pi^+\pi^-)2\pi^0$	< 1 %	95%	197
$3(\pi^{+}\pi^{-})$	$< 3.1 \times 10^{-5}$	90%	189
$\mathcal{K}^{\pm}\pi^{\mp}$	$<$ 4 \times 10 ⁻⁵	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	$(2.42 \pm 0.10) \times 10^{-3}$		458
$\pi^+e^- u_e$ + c.c.	$< 2.1 \times 10^{-4}$	90%	469
$\gamma e^+ e^-$	$(4.91 \pm 0.27) \times 10^{-4}$		479
$\pi^{0} \gamma \gamma$	$(3.20 \pm 0.24) \times 10^{-3}$		469
$\pi^0 \gamma \gamma$ (non resonant)	$(6.2 \pm 0.9) \times 10^{-4}$		_
$\eta\gamma\gamma$	$< 1.33 \times 10^{-4}$	90%	322
$4\pi^0$	$< 4.94 \times 10^{-5}$	90%	380
e^+e^-	$< 5.6 \times 10^{-9}$	90%	479
$e^{+}e^{-}e^{+}e^{-}$	$(4.5 \pm 1.1) \times 10^{-6}$		479
invisible	$< 6 \times 10^{-4}$	90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

	-	• •	_		
$\pi^+\pi^-$	P,CP	< 1.8	$\times10^{-5}$	90%	458
$\pi^0\pi^0$	P,CP	< 4	\times 10 ⁻⁴	90%	459
$\pi^0e^+e^-$	С	[f] < 1.4	$\times10^{-3}$	90%	469
$\pi^0 ho^0$	C	< 4	%	90%	111
ηe^+e^-	C	[f] < 2.4	$\times10^{-3}$	90%	322
3γ	C	< 1.0	\times 10 ⁻⁴	90%	479
$\mu^+\mu^-\pi^0$	C	[f] < 6.0	$\times10^{-5}$	90%	445
$\mu^+\mu^-\eta$	C	[f] < 1.5	$\times10^{-5}$	90%	273
$e\mu$	LF	< 4.7	\times 10 ⁻⁴	90%	473

$f_0(980)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 4/24/2025 13:07

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s}=(980\text{--}1010)-i~(20\text{--}35)~\text{MeV}^{[i]}$ Mass (Breit-Wigner) = 990 \pm 20 MeV $^{[i]}$ Full width (Breit-Wigner) = 10 to 100 MeV $^{[i]}$

f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi \pi$	seen	476
$K\overline{K}$	seen	36
$\gamma\gamma$	seen	495

$$a_0(980)$$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s}=(970\text{--}1020)-i~(30\text{--}70)~\text{MeV}^{[i]}$ Mass $m=980\pm20~\text{MeV}^{[i]}$ Full width $\Gamma=50~\text{to}~100~\text{MeV}^{[i]}$

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	seen	319
$K\overline{K}$	seen	†
$\eta'\pi$	seen	†
$ ho\pi$	not seen	137
$\gamma \gamma$	seen	490

$\phi(1020)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

Mass $m=1019.461\pm0.016$ MeV Full width $\Gamma=4.249\pm0.013$ MeV (S =1.1)

.4			factor/	-
ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)	Confidenc	e level	(MeV/ <i>c</i>)
K^+K^-	(49.1 ± 0.5)) %	S=1.3	127
$K_L^0 K_S^0$	(33.9 ± 0.4)) %	S=1.2	110
$\rho\pi + \pi^+\pi^-\pi^0$	(15.4 ± 0.4)) %	S=1.2	_
$\eta \gamma$	$(1.301\pm0.024$	ł) %	S=1.2	363
$\pi^0\gamma$	(1.32 ± 0.05	$) \times 10^{-3}$		501
$\ell^+\ell^-$				510
e^+e^-	(2.979 ± 0.033)	$(8) \times 10^{-4}$	S=1.2	510
$\mu^+\mu^-$	(2.85 ± 0.22	$) \times 10^{-4}$	S=1.2	499
$\eta e^+ e^-$	(1.08 ± 0.04	$) \times 10^{-4}$		363
$\pi^+\pi^-$	(7.3 ± 1.3	$) \times 10^{-5}$		490
$\omega\pi^0$	(4.7 ± 0.5	$) \times 10^{-5}$		171
$\omega\gamma$	< 5	% CL	=84%	209
$ ho \gamma$	< 1.2	$ imes$ 10 $^{-5}$ CL	=90%	215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3	$) \times 10^{-5}$		490
$f_0(980)\gamma$	(3.22 ± 0.19	$) \times 10^{-4}$	S=1.1	29

HTTP://PDG.LBL.GOV

Page 7

$\pi^0\pi^0\gamma$	(1.12 ± 0.06) $\times 10^{-4}$	492
$\pi^+\pi^-\pi^+\pi^-$	$(3.9 {}^{+2.8}_{-2.2}) \times 10^{-6}$	410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	$< 4.6 \times 10^{-6} \text{ CL}=90\%$	342
$\pi^0 e^+ e^-$	($1.33 \ ^{+0.07}_{-0.10}$) $ imes 10^{-5}$	501
$\pi^{0}\eta\gamma$	$(7.27 \pm 0.30) \times 10^{-5}$ S=1.5	346
$a_0(980)\gamma$	$(7.6 \pm 0.6) \times 10^{-5}$	39
$K^0\overline{K}{}^0\gamma$	$< 1.9 \times 10^{-8} \text{ CL}=90\%$	110
$\eta'(958)\gamma$	$(6.21 \pm 0.20) \times 10^{-5}$	60
$\eta\pi^0\pi^0\gamma$	$< 2 \times 10^{-5} \text{ CL}=90\%$	293
$\mu^+\mu^-\gamma$	$(1.4 \pm 0.5) \times 10^{-5}$	499
$ ho\gamma\gamma$	$< 1.2 \times 10^{-4} \text{ CL}=90\%$	215
$\eta\pi^+\pi^-$	$< 1.8 \times 10^{-5} \text{ CL}=90\%$	288
$\eta \mu^+ \mu^-$	$< 9.4 \times 10^{-6} \text{ CL}=90\%$	321
$\etaU ightarrow \etae^+e^-$	$< 1 \times 10^{-6} \text{ CL}=90\%$	_
invisible	$< 1.7 \times 10^{-4} \text{ CL} = 90\%$	-

Lepton Family number (LF) violating modes

 $e^{\pm}\,\mu^{\mp}$ LF < 2 imes 10⁻⁶ CL=90% 504

h₁(1170)

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1166\pm 6~{\rm MeV}$ Full width $\Gamma=375\pm 35~{\rm MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $ho\pi$ seen 305

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

 $\begin{array}{ll} \text{Mass } m = 1229.5 \pm 3.2 \; \text{MeV} & \text{(S} = 1.6) \\ \text{Full width } \Gamma = 142 \pm 9 \; \text{MeV} & \text{(S} = 1.2) \end{array}$

b ₁ (1235) DECAY MODES	Fraction (Γ	_i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega\pi$ [D/S amplitude ratio $= 0.277$	$\overset{\text{seen}}{\pm 0.027]}$			348
$\pi^{\pm}\gamma$	$(1.6\pm0$	$.4) \times 10^{-}$	-3	607
ηho	seen			†
$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	< 50	%	84%	535
K^* (892) $^\pm$ K^\mp	seen			†
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K_S^0 K_L^0 \pi^\pm$	< 6	%	90%	235

HTTP://PDG.LBL.GOV

Page 8

$$K_S^0 K_S^0 \pi^{\pm}$$
 < 2 % 90% 235 $\phi \pi$ < 1.5 % 84% 147

a₁(1260) ^[j]

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

T-Matrix Pole $\sqrt{s} = (1209^{+13}_{-10}) - i(288^{+45}_{-12})$ MeV Mass (Breit-Wigner) = 1230 ± 40 MeV $^{[i]}$ Full width (Breit-Wigner) = 250 to 600 MeV $^{[i]}$

a ₁ (1260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
3π	seen	577
$(ho\pi)_{S-wave},\;\; ho o\;\pi\pi$	seen	353
$(ho\pi)_{D-wave},\;\; ho o\;\pi\pi$	seen	353
$(ho(1450)\pi)_{S-wave},~ ho o~\pi\pi$	seen	†
$(ho(1450)\pi)_{D-wave}$, $ ho ightarrow \ \pi \pi$	seen	†
$\mathit{f}_{0}(500)\pi$, $\mathit{f}_{0} ightarrow\pi\pi$	seen	_
$\mathit{f}_{0}(980)\pi$, $\mathit{f}_{0} ightarrow \pi\pi$	seen	179
$\mathit{f}_{0}(1370)\pi$, $\mathit{f}_{0} ightarrow \pi\pi$	seen	†
$f_2(1270)\pi$, $f_2 \rightarrow \pi\pi$	seen	†
$\pi^{+}\pi^{-}\pi^{0}$	seen	576
$\pi^{0}\pi^{0}\pi^{0}$	not seen	577
$KK\pi$	seen	250
$K^*(892)K$	seen	†
$\pi\gamma$	seen	608

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 4/24/2025 13:07

T-Matrix Pole $\sqrt{s}=(1260\text{--}1283)-i~(90\text{--}110)~\text{MeV}$ Mass (Breit-Wigner) = $1275.4\pm0.8~\text{MeV}~(\text{S}=1.1)$ Full width (Breit-Wigner) = $186.6^{+2.8}_{-2.2}~\text{MeV}~(\text{S}=1.5)$

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	$(84.3 \ ^{+2.8}_{-1.0}) \%$	S=1.2	623
$\pi^{+}\pi^{-}2\pi^{0}$	$(7.7 \ ^{+1.2}_{-3.1}) \%$	S=1.2	563
$K\overline{K}$	(4.6 \pm 0.4) %	S=2.7	404
$2\pi^{+}2\pi^{-}$	(2.8 ± 0.4) %	S=1.2	559
$\eta\eta_{_}$	(4.0 \pm 0.8) $ imes$ 1	0^{-3} S=2.1	326
$\eta \eta$ 4π 0	(3.0 ± 1.0) \times 1	0-3	565
$\gamma \gamma$	$(1.42\pm0.24)\times1$	0^{-5} S=1.4	638

$f_1(1285)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.8\pm0.5$ MeV (S = 1.7) Full width $\Gamma=23.0\pm1.1$ MeV (S = 1.6)

f (1995) DECAY MODES	Function (F /F)	Scale factor/	-
f ₁ (1285) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(IVIEV/C)
4π	$(32.7 \pm 1.8) \%$	S=1.2	568
$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	$(21.8 \pm 1.2) \%$	S=1.2	566
$2\pi^{+}2\pi^{-}$	$(10.9 \pm 0.6) \%$	S=1.2	563
$\rho^{0} \pi^{+} \pi^{-}$	$(10.9 \pm 0.6) \%$	S=1.2	336
$\rho^0 \rho^0$	seen		†
$4\pi^0$	< 7 × 10	$^{-4}$ CL=90%	568
$\eta \pi^+ \pi^-$	(35 \pm 15)%		479
$\eta\pi\pi$	$(52.2 \pm 1.9) \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow \mathcal{K}\overline{\mathcal{K}}]$	(38 ± 4) %		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(14 \pm 4)\%$		482
$K\overline{K}\pi$	$(9.0 \pm 0.4)\%$	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^{+}\pi^{-}\pi^{0}$	$(3.0\pm~0.9)\times10$	₎ –3	603
$\rho^{\pm}\pi^{\mp}$	< 3.1 × 10	$^{-3}$ CL=95%	390
γho^{0}	($6.1\pm~1.0$) %	S=1.7	406
$\phi\gamma$	$(7.4\pm\ 2.6) \times 10^{-2}$	₎ —4	235
e^+e^-	< 9.4 × 10	o ⁻⁹ CL=90%	641

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=1294\pm 4$ MeV (S =1.6) Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^+\pi^-$	seen	487
$a_0(980)\pi$	seen	248
$\eta \pi^0 \pi^0$	seen	490
$\eta(\pi\pi)_{S ext{-}wave}$	seen	_
$\sigma\eta$	seen	_

HTTP://PDG.LBL.GOV

Page 10

 $K\overline{K}\pi$ seen 320

 $\pi(1300)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-})$$

Mass $m=1300\pm 100$ MeV $^{[i]}$ Full width $\Gamma=200$ to 600 MeV $^{[i]}$

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\rho\pi$	seen	404
$\pi(\pi\pi)_{S ext{-wave}}$	seen	_

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1305\text{--}1321)-i(52\text{--}58)$ MeV Mass (Breit-Wigner) = 1318.2 ± 0.6 MeV (S = 1.2) Full width $\Gamma=107\pm5$ MeV

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	$(70.1 \pm 2.7)\%$	S=1.2	624
$\eta\pi$	(14.5 \pm 1.2) %		535
$\omega\pi\pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi \ \pi^{\pm}\gamma$	(5.5 ± 0.9) $ imes$ 1	.0-3	288
$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times1$.0-3	652
$\gamma\gamma$	(9.4 \pm 0.7) $ imes$ 1	.0 ⁻⁶	659
e^+e^-	< 5 × 1	0^{-9} CL=90%	659

 $f_0(1370)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances." T-Matrix Pole $\sqrt{s}=(1250\text{-}1440)-i~(60\text{-}300)~\text{MeV}$ Mass (Breit-Wigner) = 1200 to 1500 MeV

Full width (Breit-Wigner) = 200 to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^{+}2\pi^{-}$	seen	612
$\pi^+\pi^-2\pi^0$	seen	615
ho ho	seen	†

HTTP://PDG.LBL.GOV

Page 11

$2(\pi\pi)_{S ext{-wave}}$	seen	_
π (1300) π	seen	†
$a_1(1260)\pi$	seen	35
$\eta\eta$	seen	411
$K\overline{K}$	seen	475
$K\overline{K}n\pi$	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†
$\gamma \gamma$	seen	685
e^+e^-	not seen	685

$\eta(1405)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1475)$.

Mass
$$m=1408.7^{+2.0}_{-1.2}~{
m MeV}~{
m (S}=2.2)$$

Full width $\Gamma=50.3\pm2.5~{
m MeV}~{
m (S}=1.6)$

$\eta(1405)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		344
$\eta(\pi\pi)_{S}$ -wave $f_0(980)\pi^0 ightarrow \pi^+\pi^-\pi^0$	seen		_
$f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$	not seen		_
$f_0(980)\eta$	seen		†
4π	seen		638
$ ho^{ ho}_{\gamma}^{ ho}$	<58 %	99.85%	†
$ ho^{0}\gamma$	seen		491
$K^*(892)K$	seen		122

$h_1(1415)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=1409^{+9}_{-8}~{\rm MeV}~{\rm (S}=1.9)$ Full width $\Gamma=78\pm11~{\rm MeV}$

$f_1(1420)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Created: 4/24/2025 13:07

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m=1428.4^{+1.5}_{-1.3}$$
 MeV (S = 1.8)
Full width $\Gamma=56.7\pm3.3$ MeV (S = 1.3)

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	440
$K\overline{K}^*$ (892) $+$ c.c.	seen	167
$\eta\pi\pi$	possibly seen	574
$\phi \gamma$	seen	350

ω (1420) [k]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1410\pm 60$ MeV $^{[i]}$ Full width $\Gamma=290\pm 190$ MeV $^{[i]}$

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	480
$\omega\pi\pi$	seen	437
$b_1(1235)\pi$	seen	112
e^+e^-	seen	705

a₀(1450)

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole $\sqrt{s}=(1290\text{--}1500)-i~(30\text{--}140)~\text{MeV}$ Mass (Breit-Wigner) = 1439 \pm 34 MeV (S = 1.8) Full width (Breit-Wigner) = 258 \pm 14 MeV

Branching fractions are given relative to the one **DEFINED AS 1**.

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi \eta$	0.093 ± 0.020	607
$\pi \eta'(958)$ $K\overline{K}$	0.033 ± 0.017	384
$K\overline{K}$	0.082 ± 0.028	523
$\omega\pi\pi$	DEFINED AS 1	458
$a_0(980)\pi\pi$	seen	310
$\gamma \gamma$	seen	719

$\rho(1450)$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=1465\pm25~{\rm MeV}^{[i]}$ Full width $\Gamma=400\pm60~{\rm MeV}^{[i]}$

HTTP://PDG.LBL.GOV

Page 13

ρ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
$\pi^+\pi^-$	seen	719
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	55
$K\overline{K}$	seen	541
K^+K^-	seen	541
$K\overline{K}^*(892) + \text{c.c.}$	possibly seen	229
$\pi^0 \gamma$	seen	726
$\eta \gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

$\eta(1475)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-})$$

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1405)$.

Mass
$$m=1476\pm 4$$
 MeV (S = 1.4) Full width $\Gamma=96\pm 9$ MeV (S = 1.7)

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	477
$K\overline{K}^*$ (892) $+$ c.c.	seen	245
$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738
$K_{\mathcal{S}}^{0}K_{\mathcal{S}}^{0}\eta$	possibly seen	†
$\gamma \phi$ (1020)	possibly seen	386

$f_0(1500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Created: 4/24/2025 13:07

See the review on "Spectroscopy of Light Meson Resonances." T-Matrix Pole $\sqrt{s}=(1430\text{--}1530)-i~(40\text{--}90)~\text{MeV}$

Mass (Breit-Wigner) $= 1522 \pm 25$ MeV

Full width (Breit-Wigner) $= 108 \pm 33 \; \text{MeV}$

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
		1.2	
$\pi\pi$	$(34.5\pm2.2)\%$	1.2	749
$\pi^+\pi^-$	seen		748
$2\pi^0$	seen		749
4π	(48.9 ± 3.3) %	1.2	700
$4\pi^0$	seen		700
$2\pi^+2\pi^-$	seen		696
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
$\pi(1300)\pi$	seen		163
$a_1(1260)\pi$	seen		234
$\eta\eta$	$(6.0\pm0.9)\%$	1.1	528
$\eta \eta'(958)$	$(2.2\pm0.8)\%$	1.4	107
$K\overline{K}$	$(8.5\pm1.0)\%$	1.1	579
$\gamma\gamma$	not seen		761

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass
$$m=1517.3\pm2.4~{\rm MeV}~{\rm (S=2.8)}$$
 Full width $\Gamma=72^{+7}_{-6}~{\rm MeV}$

f ₂ (1525) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	(88.8 \pm 2.2) %	576
$\eta \eta$	(10.3 \pm 2.2) %	525
$\pi\pi$	$(8.2 \pm 1.5) \times 10^{-3}$	747
$\gamma\gamma$	$(1.12\pm0.15)\times10^{-6}$	759

$$f_2(1565)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole $\sqrt{s} = (1495-1560) - i (40-110) \text{ MeV}$

 $\mathsf{Mass}\;(\mathsf{Breit\text{-}Wigner}) = 1571 \pm 13\;\mathsf{MeV}$

Full width (Breit-Wigner) = 132 ± 23 MeV (S = 1.1)

f ₂ (1565) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	774
$\pi^+\pi^-$	seen	773
$\pi^0\pi^0$	seen	774
$ ho^0 ho^0$	seen	125

HTTP://PDG.LBL.GOV

Page 15

$2\pi^{+}2\pi^{-}$	seen	722
$\eta\eta$	seen	563
$\omega \omega = K \overline{K}$	seen	64
$K\overline{K}$	seen	611
$\gamma \gamma$	seen	785

$$\pi_1(1600)$$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass (T-Matrix Pole \sqrt{s}) = (1480–1680) -i (150–300) MeV Mass (Breit-Wigner, $\eta\pi$ mode) = 1354 \pm 25 MeV (S = 1.8) Mass (Breit-Wigner, non- $\eta\pi$ mode) = 1645 $^{+40}_{-17}$ MeV (S = 1.3) Full width (Breit-Wigner, $\eta\pi$ mode) = 330 \pm 35 MeV Full width (Breit-Wigner, non- $\eta\pi$ mode) = 370 $^{+50}_{-60}$ MeV

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	795
$ ho^0\pi^-$	seen	631
$f_2(1270)\pi^-$	not seen	304
$b_1(1235)\pi$	seen	343
$\eta^{\prime}(958)\pi^{-}$	seen	532
$\eta\pi$	seen	725
$f_1(1285)\pi$	seen	300

a₁(1640)

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

Created: 4/24/2025 13:07

Mass $m=1655\pm16$ MeV (S =1.2) Full width $\Gamma=250\pm40$ MeV (S =1.8)

a ₁ (1640) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	800
$f_2(1270)\pi$	seen	314
$\sigma\pi$	seen	_
$ ho\pi_{S-wave}$	seen	638
$ ho\pi_{D-wave}$	seen	638
$\omega\pi\pi$	seen	607
$f_1(1285)\pi$	seen	309
$a_1(1260)\eta$	not seen	†

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-+})$$

Mass $m=1617\pm 5~{
m MeV}$ Full width $\Gamma=181\pm11~\text{MeV}$

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω (1650) [/]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 1670 \pm 30 \text{ MeV}^{[i]}$ Full width $\Gamma=315\pm35$ MeV ^[i]

ω (1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	647
$ ho$ (1450) π	seen	145
$\omega \pi \pi$	seen	617
$\omega \eta$	seen	500
$\begin{array}{c} \omega \eta \\ e^+ e^- \end{array}$	seen	835
$\pi^0 \gamma$	not seen	830

$\omega_{3}(1670)$

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{
m MeV}$ Full width $\Gamma=168\pm10~\text{MeV}$

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-}+)$$

Mass $m=1670.6^{+2.9}_{-1.2}~{
m MeV}~{
m (S}=1.3)$ Full width $\Gamma=258^{+8}_{-9}~{
m MeV}~{
m (S}=1.2)$

HTTP://PDG.LBL.GOV

Page 17 Created: 4/24/2025 13:07

π_2 (1670) DECAY MODES	Fraction (Γ	$_i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	(95.8±1	.4) %		808
$f_2(1270)\pi$	(56.3 ± 3)	.2) %		327
$ ho\pi$	(31 ± 4)) %		647
$\sigma\pi$	(10 ± 4)) %		_
$\pi(\pi\pi)_{S}$ -wave	(8.7±3	.4) %		_
$\pi^{\pm}\pi^{+}\pi^{-}$	(53 ± 4)) %		806
$K\overline{K}^{*}(892) + \text{c.c.}$	(4.2 ± 1)	.4) %		453
$\frac{\omega \rho}{\pi^{\pm} \gamma}$	(2.7 ± 1)	.1) %		302
$\pi^{\pm}\gamma$	(7.0 ± 1	.2) × 10	4	829
$\gamma \gamma$	< 2.8	× 10	7 90%	835
$\eta\pi$	< 5	%		739
$\pi^{\pm}2\pi^{+}2\pi^{-}$	< 5	%		735
$ ho$ (1450) π	< 3.6	× 10	3 97.7%	145
$b_1(1235)\pi$	< 1.9	× 10	3 97.7%	364
$f_1(1285)\pi$	possibly	seen		322
$a_2(1320)\pi$	not seer	1		291

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm 20$ MeV $^{[i]}$ Full width $\Gamma=150\pm 50$ MeV $^{[i]}$

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K\overline{K}^*(892)}$ + c.c.	seen	462
$K^0_{\underline{S}}K\pi$	seen	621
KK	seen	680
e^+e^-	seen	840
$\omega\pi\pi$	not seen	623
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-$	seen	544
$\eta\phi$	seen	290
$\eta\gamma$	seen	751
$f_2'(1525)\gamma$	not seen	155

$\rho_{3}(1690)$

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

$$\label{eq:mass_m} \begin{split} \text{Mass } m = 1688.8 \pm 2.1 \text{ MeV} \\ \text{Full width } \Gamma = 161 \pm 10 \text{ MeV} \quad \text{(S} = 1.5) \end{split}$$

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
4π	$(71.1 \pm 1.9)\%$	790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$	787
$\omega \pi$	$(16\pm6)\%$	655
$\pi\pi$	(23.6 \pm 1.3) %	834
$K\overline{K}\pi$	(3.8 ± 1.2) %	629
$K\overline{K}$	($1.58\pm~0.26$) %	1.2 685
$\eta \pi^+ \pi^-$	seen	727
$ ho$ (770) η	seen	520
$\pi\pi ho$	seen	633
$a_2(1320)\pi$	seen	307
ho ho	seen	335

$$\rho(1700)$$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances." Mass $m=1720\pm20$ MeV $^{[i]}$ ($\eta\rho^0$ and $\pi^+\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV $^{[i]}$ ($\eta\rho^0$ and $\pi^+\pi^-$ modes)

ho(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	seen	803
$ ho\pi\pi$	seen	653
$ ho^0 \pi^+ \pi^-$	seen	651
$ ho^{\pm}\pi^{\mp}\pi^{0}$	seen	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	450
π (1300) π	seen	349
ho ho	seen	372
$\pi^+\pi^-$	seen	849
$\pi \pi$	seen	849
$K\overline{K}^*(892)+$ c.c.	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	334
$K\overline{K}$	seen	704
e^+e^-	seen	860
$\pi^0 \omega$	seen	674
$\pi^{0} \gamma$	not seen	855
$f_0(1500)\gamma$	not seen	187

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1630\text{--}1780)-i~(60\text{--}250)~\text{MeV}$ Mass $m=1706\pm14~\text{MeV}~(\text{S}=1.2)$ Full width $\Gamma=380^{+60}_{-50}~\text{MeV}~(\text{S}=3.9)$

a ₂ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	(2.5±0.6) %	758
$\eta' \pi$	seen	574
$\gamma\gamma$	$(7.9\pm1.7)\times10^{-7}$	853
$ ho\pi$	seen	669
$f_2(1270)\pi$	seen	357
$K\overline{K}$	$(1.3\pm0.8)~\%$	695
$\omega \pi^- \pi^0$	seen	639
ωho	seen	347

f₀(1710)

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-matrix pole $\sqrt{s}=(1680-1820)-i~(50-180)~{\rm MeV}$ Mass (Breit-Wigner) = $1733^{+8}_{-7}~{\rm MeV}~(S=1.5)$ Full width (Breit-Wigner) = $150^{+12}_{-10}~{\rm MeV}~(S=1.3)$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	712
seen	671
not seen	417
seen	856
seen	866
seen	372
	seen seen not seen seen seen

$$\pi(1800)$$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Created: 4/24/2025 13:07

See the review on "Spectroscopy of Light Meson Resonances."

Mass $m=1810^{+~9}_{-11}~{\rm MeV}~{\rm (S=2.2)}$ Full width $\Gamma=215^{+7}_{-8}~{\rm MeV}$

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	878
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	624
$f_0(1370)\pi^-$	seen	366
$f_0(1500)\pi^-$	not seen	232
$ ho\pi^-$	not seen	731
$\eta\eta\pi^-$	seen	660
$a_0(980)\eta$	seen	471
$a_2(1320) \eta$	not seen	†
$f_2(1270)\pi$	not seen	441
$f_0(1370)\pi^-$	not seen	366
$f_0(1500)\pi^-$	seen	232
$\eta \eta'(958)\pi^-$	seen	373
$K_0^*(1430)K^-$	seen	†
K*(892) K ⁻	not seen	568

ϕ_3 (1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~({
m S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	785
$K\overline{K}^*$ (892) $+$ c.c.	seen	602

$\eta_2(\overline{1870})$

$$I^{G}(J^{PC}) = 0^{+}(2^{-+})$$

Created: 4/24/2025 13:07

Mass $m=1842\pm 8~{\rm MeV}$ Full width $\Gamma=225\pm 14~{\rm MeV}$

η_2 (1870) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi\pi$	seen	816
$a_2(1320)\pi$	seen	434
$f_2(1270)\eta$	seen	119
$a_0(980)\pi$	seen	651
$\gamma \gamma$	seen	921

$$\pi_2(1880)$$

$$I^{G}(J^{PC}) = 1^{-}(2^{-})$$

Mass $m=1874^{+26}_{-5}$ MeV (S = 1.6) Full width $\Gamma=237^{+33}_{-30}$ MeV (S = 1.2)

Fraction (Γ_i/Γ)	p (MeV/c)
seen	702
seen	528
seen	76
seen	294
seen	485
seen	744
	seen seen seen seen

$f_2(1950)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1830\text{--}2020)-i~(110\text{--}220)~\text{MeV}$ Mass (Breit-Wigner) = $1936\pm12~\text{MeV}~(\text{S}=1.3)$ Full width (Breit-Wigner) = $464\pm24~\text{MeV}$

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\overline{K}^*(892)$	seen	377
$\pi^+\pi^-$	seen	958
$\pi^{0}\pi^{0}$	seen	959
4π	seen	921
$\eta \eta_{_}$	seen	798
$K\overline{K}$	seen	833
$\gamma \gamma$	seen	968
<i>p</i> p	seen	238

a₄(1970)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

Created: 4/24/2025 13:07

Mass $m=1967\pm16$ MeV (S = 2.1) Full width $\Gamma=324^{+15}_{-18}$ MeV

a ₄ (1970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	851
$\pi^+\pi^-\pi^0$	seen	959
$ ho\pi$	seen	825
$f_{2}(1270)\pi$	seen	559

$\omega \pi^- \pi^0$	seen	801
ωho	seen	601
$\eta\pi$	seen	902
$\eta'(958)\pi$	seen	743

$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2010^{+60}_{-80}~{
m MeV}$ Full width $\Gamma=200\pm60~{
m MeV}$

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\phi\phi}$	seen	†
$K\overline{K}$	seen	876

$f_0(2020)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

T-Matrix Pole $\sqrt{s}=(1870-2080)-i~(120-240)~{\rm MeV}$ Mass (Breit-Wigner) = $1982^{+54.1}_{-3.0}~{\rm MeV}$ Full width (Breit-Wigner) = $440\pm50~{\rm MeV}$

f ₀ (2020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi\pi$	seen	814
$ \rho \pi \pi $ $ \pi^0 \pi^0 $	seen	982
ho ho	seen	617
$\omega \omega$	seen	608
$\eta\eta$	seen	826
$\eta'\eta'$	seen	254

f₄(2050)

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Created: 4/24/2025 13:07

Mass $m=2018\pm11$ MeV (S = 2.1) Full width $\Gamma=237\pm18$ MeV (S = 1.9)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega\omega$	seen	637
$\pi\pi$	$(17.0\pm1.5)~\%$	1000
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880
$\eta\eta$	$(2.1\pm0.8)\times10^{-3}$	848
$\eta \eta \over 4\pi^0$	< 1.2 %	964

$\gamma \gamma$	seen	1009
$a_2(1320)\pi$	seen	567

ϕ (2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=2164\pm 6$ MeV Full width $\Gamma=106^{+24}_{-18}$ MeV (S = 2.0)

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	seen	1082
$\phi\eta$	seen	728
$\omega\eta$	seen	848
$\phi\eta'$	seen	440
$\phi\pi\pi$	seen	815
$\phi f_0(980)$	seen	402
$K^+K^-\mathit{f}_0(980) ightarrow$	seen	_
$K^{+}K^{-}\pi^{+}\pi^{-}$ $K^{+}K^{-}f_{0}(980) \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}$	seen	_
$K^{*0} K^{\pm} \pi^{\mp}$	not seen	762
$K^*(892)^0\overline{K}^*(892)^0$	not seen	613

$f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=150\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi \phi$	seen	529
$K\overline{K}$	seen	1037
$rac{\gamma}{\Lambda \overline{\Lambda}}$	seen	1149
$\Lambda \overline{\Lambda}$	seen	273

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 4/24/2025 13:07

Mass $m = 2346^{+21}_{-10} \text{ MeV}$ Full width $\Gamma = 331^{+27}_{-18} \text{ MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	580
$\eta \eta$	seen	1037
$\eta'\eta'$	seen	677

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=493.677\pm0.015$$
 MeV $^{[n]}$ (S = 2.8)
Mean life $\tau=(1.2380\pm0.0020)\times10^{-8}$ s (S = 1.8) $c\tau=3.711$ m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \to \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[o]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_\mu$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$
 $K^+ \to \mu^+ \nu_\mu \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$
 $K^+ \to \pi^0 \mu^+ \nu_\mu$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $\mathbf{g}^{[p]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} g = -0.21134 \pm 0.00017$$

$$(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$$
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} g = 0.626 \pm 0.007$

$$(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$$

K^{\pm} decay form factors [a,q]

Assuming $\mu\text{-}e$ universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e3}^{+}) = (2.959 \pm 0.025) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.76 \pm 0.25) \times 10^{-2} \quad (S = 2.7)$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.956 \pm 0.025) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu3}^{+}) = (3.09 \pm 0.25) \times 10^{-2} \quad (S = 1.5)$
 $\lambda_{0}(K_{\mu3}^{+}) = (1.73 \pm 0.27) \times 10^{-2} \quad (S = 2.6)$

 K_{e3} form factor quadratic fit

$$\lambda'_+~(K_{e3}^\pm)$$
 linear coeff. = $(2.59\pm0.04)\times10^{-2}$ $\lambda''_+(K_{e3}^\pm)$ quadratic coeff. = $(0.186\pm0.021)\times10^{-2}$

$$\lambda'_+$$
 (LINEAR $K_{\mu 3}^{\pm}$ FORM FACTOR FROM QUADRATIC FIT)
= $(24 \pm 4) \times 10^{-3}$

$$\lambda''_+$$
 (QUADRATIC $K_{\mu3}^\pm$ FORM FACTOR) $= (1.8 \pm 1.5) imes 10^{-3}$

$$M_V$$
 (VECTOR POLE MASS FOR $K_{
m e3}^{\pm}$ DECAY) $= 890.3 \pm 2.8$ MeV

$$M_V$$
 (VECTOR POLE MASS FOR $K_{\mu 3}^\pm$ DECAY) $= 878 \pm 12$ MeV

$$M_S$$
 (SCALAR POLE MASS FOR $K_{\mu3}^\pm$ DECAY) $= 1210\,\pm\,50$ MeV

$$\Lambda_+$$
 (DISPERSIVE VECTOR FORM FACTOR IN K_{e3}^\pm DECAY) $=$ $(2.460 \pm 0.017) imes 10^{-2}$

$$\Lambda_+$$
 (DISPERSIVE VECTOR FORM FACTOR IN $K_{\mu 3}^\pm$ DECAY) = $(25.4 \pm 0.9) \times 10^{-3}$

In(C) (DISPERSIVE SCALAR FORM FACTOR in
$$K_{\mu 3}^{\pm}$$
 decays) = $(182 \pm 16) \times 10^{-3}$

$$K_{e3}^+$$
 $|f_S/f_+| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2}$

$$K_{e3}^+$$
 $|f_T/f_+| = (-1.2^{+1.3}_{-1.1}) \times 10^{-2}$

$$K_{u3}^{+}$$
 $|f_S/f_+| = (0.2 \pm 0.6) \times 10^{-2}$

$$K_{\mu 3}^{+} |f_T/f_+| = (-0.1 \pm 0.7) \times 10^{-2}$$

$$K^{+} \rightarrow e^{+} \nu_{e} \gamma |F_{A} + F_{V}| = 0.133 \pm 0.008 \text{ (S = 1.3)}$$

$$K^+ \rightarrow \mu^+ \nu_\mu \gamma |F_A + F_V| = 0.165 \pm 0.013$$

$$K^{+} \rightarrow \mu^{+} \nu_{\mu} \gamma \quad |F_{A} + F_{V}| = 0.165 \pm 0.013$$

 $K^{+} \rightarrow e^{+} \nu_{e} \gamma \quad |F_{A} - F_{V}| < 0.49, \text{ CL} = 90\%$

$$K^+ \rightarrow \mu^+ \nu_\mu \gamma \left| F_A - F_V \right| = -0.153 \pm 0.033 \quad (S = 1.1)$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry

$$\mathsf{A}_{FB}(K_{\pi\mu\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\mu}) > 0) - \Gamma(\cos(\theta_{K\mu}) < 0)}{\Gamma(\cos(\theta_{K\mu}) > 0) + \Gamma(\cos(\theta_{K\mu}) < 0)} < 0.9 \times 10^{-2}, \; \mathsf{CL}$$
= 90%

 ${\it K}^-$ modes are charge conjugates of the modes below.

κ+ DECAY MODES	Fraction (Γ_i/Γ)		cale factor/ dence level(N	
Leptoni	c and semileptonic m	odes		
$e^+ \nu_e$	-	$07) \times 10^{-5}$		247
$\mu^+ \nu_{\mu}$	(63.56 ± 0.1)	1)%	S=1.2	236
$\pi^0 e^+ u_e$	(5.07 ± 0.0	4)%	S=2.1	228
Called K_{e3}^+ .	,	,		
$\pi^0\mu^+ u_\mu$	(3.352±0.0	34) %	S=1.9	215
Called $K_{\mu 3}^+$.	`	,		
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.55 ± 0.0	4) $\times 10^{-5}$	S=1.1	206
$\pi^{+}\pi^{-}e^{+}\nu_{e}$	•	$(24) \times 10^{-5}$		203
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	•	$) \times 10^{-5}$		151
$\pi^{0} \pi^{0} \pi^{0} e^{+\nu_{e}}$	< 3.5	$\times 10^{-6}$	CL=90%	135
	Hadronic modes			
$\pi^+\pi^0$	(20.67 ± 0.0)	8)%	S=1.2	205
$\pi^+\pi^0\pi^0$	(1.760±0.0	,	S=1.1	133
$\pi^+\pi^+\pi^-$	(5.583 ± 0.0	24) %		125
Leptonic and s	semileptonic modes w	ith photon	S	
$\mu^+ u_\mu\gamma$	$[r,s]$ (6.2 \pm 0.8	$) \times 10^{-3}$		236
$\mu^+ \stackrel{'}{ u_\mu} \gamma(SD^+)$	[a,t] (1.33 \pm 0.2	$2) \times 10^{-5}$		_
$\mu^+ \nu_\mu \gamma (SD^+ INT)$	[a,t] < 2.7	$\times10^{-5}$	CL=90%	_
, <i>F</i>	[a,t] < 2.6	$\times10^{-4}$	CL=90%	_
$e^+ \nu_e \gamma$	(1.03 ± 0.1	4) \times 10 ⁻⁵		247
$\pi^0 e^+ \nu_e \gamma$	$[r,s]$ (2.698 ± 0.0	$33) \times 10^{-4}$		228
$\pi^0 e^+ \nu_e \gamma(SD)$	[a,t] < 5.3	$\times10^{-5}$	CL=90%	228
$\pi^0 \mu^+ u_\mu \gamma$	$[r,s]$ (1.25 \pm 0.2	$5) \times 10^{-5}$		215
$\pi^0\pi^0\mathrm{e}^+ u_\mathrm{e}\gamma$	< 5	$\times 10^{-6}$	CL=90%	206
Hadronic modes with photons or $\ell \overline{\ell}$ pairs				
$\pi^+\pi^0\gamma(INT)$	(-4.2 ± 0.9)			_
$\pi^+\pi^0\gamma(DE)$		$) \times 10^{-6}$		205
$\pi^{+} \pi^{0} e^{+} e^{-}$	(4.24 ± 0.1	4) \times 10 ⁻⁶		205
$\pi^+\pi^0\pi^0\gamma$	$[r,s]$ (7.6 $^{+6.0}_{-3.0}$	$) \times 10^{-6}$		133
$\pi^+\pi^+\pi^-\gamma$	$[r,s]$ (7.1 ± 0.5	$) \times 10^{-6}$		125
$\pi^+ \gamma \gamma$	$[r]$ (1.01 \pm 0.0	6) \times 10 ⁻⁶		227
π^+ 3 γ	[r] < 1.0	\times 10 ⁻⁴	CL=90%	227
$\pi^+ e^+ e^- \gamma$	(1.19 ± 0.1	$3) \times 10^{-8}$		227

Leptonic modes with $\ell \overline{\ell}$ pairs

$e^+ u_e u \overline{ u}$	<	6	$\times 10^{-5}$	CL=90%	247
$\mu^+ u_{\mu} u \overline{ u}$	<	1.0	$\times 10^{-6}$	CL=90%	236
$e^{+} \nu_{e} e^{+} e^{-}$	(2.48 ± 0.20	$) \times 10^{-8}$		247
$\mu^+ u_\mu\mathrm{e}^+\mathrm{e}^-$	($7.06\ \pm0.31$	$) \times 10^{-8}$		236
$e^+ \nu_e \mu^+ \mu^-$	(1.7 ± 0.5	$) \times 10^{-8}$		223
$\mu^+ u_\mu \mu^+ \mu^-$	<	4.1	$\times 10^{-7}$	CL=90%	185

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

· · ·				•	,	
$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+e^+e^-$	<i>S</i> 1	(3.00 ± 0.09	$) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	S1	(9.17 ± 0.14		S=1.8	172
$\pi^{+} e^{+} e^{-} e^{+} e^{-}$		<	1.4	$\times 10^{-8}$	CL=90%	227
$\pi^+ u \overline{ u}$	<i>S</i> 1	($1.14 \begin{array}{l} +0.40 \\ -0.33 \end{array}$	$) \times 10^{-10}$		227
$\pi^+\pi^0 u\overline{ u}$	S1	<	4.3		CL=90%	205
$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	8.1	$\times 10^{-11}$	CL=90%	236
$\mu^+ u_e$	LF	[d]	4	$\times 10^{-3}$	CL=90%	236
$\pi^+\mu^+e^-$	LF	<	1.3	$\times 10^{-11}$	CL=90%	214
$\pi^+\mu^-\mathrm{e}^+$	LF	<	6.6		CL=90%	214
$\pi^-\mu^+\mathrm{e}^+$	L	<	4.2		CL=90%	214
$\pi^{-}e^{+}e^{+}$	L	<	5.3	$\times 10^{-11}$	CL=90%	227
$\pi^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-11}$	CL=90%	172
$\pi^{-}\pi^{0}e^{+}e^{+}$	L	<	8.5	$\times 10^{-10}$	CL=90%	205
$\mu_{\perp}^{+}\overline{\nu}_{e}$	L	[d]	3.3	$\times 10^{-3}$	CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	<	3	$\times 10^{-3}$	CL=90%	228
$\pi^+\gamma$		[v] <	2.3	$\times 10^{-9}$	CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 4/24/2025 13:07

$$50\%~K_S,~50\%~K_L$$

Mass
$$m=497.611\pm0.013$$
 MeV (S = 1.2) $m_{K^0}-m_{K^\pm}=3.934\pm0.020$ MeV (S = 1.6)

Mean square charge radius

$$\left\langle \textit{r}^{2}\right\rangle = -0.077\,\pm\,0.010\,\,\text{fm}^{2}$$

$extit{T-violation parameters in K^0-\overline{K}^0 mixing $[q]$}$

Asymmetry A_T in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$$Re(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$$

CPT-violation parameters [q]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [x]
 $\left(\Gamma_{K^0} - \Gamma_{\overline{K}^0} \right) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

Re(x₊), K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $au = (0.8954 \pm 0.0004) \times 10^{-10}$ s (S = 1.1) Assuming *CPT*Mean life $au = (0.89564 \pm 0.00033) \times 10^{-10}$ s Not assuming

Wean life $au = (0.89564 \pm 0.00033) imes 10^{-10}$ s . Not assuming $extit{CPT}$

 $c\tau = 2.6844$ cm Assuming *CPT*

CP-violation parameters [y]

$$\begin{array}{ll} \text{Im}(\eta_{+-0}) &= -0.002 \pm 0.009 \\ \text{Im}(\eta_{000}) &= -0.001 \pm 0.016 \\ \left|\eta_{000}\right| = \left|A(K_S^0 \to \ 3\pi^0)/A(K_L^0 \to \ 3\pi^0)\right| \ < \ 0.0088, \ \text{CL} = \end{array}$$

CP asymmetry *A* in $\pi^+\pi^-e^+e^- = (-0.4 \pm 0.8)\%$

κ⁰_S DECAY MODES

Fraction	(Γ_i/Γ)

Scale factor/	р
Confidence level	(MeV/c)

Created: 4/24/2025 13:07

	Hadronic modes	
$\pi^0\pi^0$	$(30.69 \pm 0.05) \%$	209
$\pi^+\pi^-$	(69.20±0.05) %	206
$\pi^+\pi^-\pi^0$	$(3.5 \begin{array}{c} +1.1 \\ -0.9 \end{array}) \times 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [aa] $(7.14 \pm 0.06) \times 10^{-4}$ 229

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

$3\pi^0$	CP	< 2.6	$\times10^{-8}$	CL=90%	139
$\mu^+\mu^-$	S1	< 2.1	$\times 10^{-10}$	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	$\times 10^{-9}$	CL=90%	249
$\pi^0 e^+ e^-$	<i>S</i> 1	$[z]$ (3.0 $^{+1.5}_{-1.2}$	$) \times 10^{-9}$		230
$\pi^0\mu^+\mu^-$	S1	$(2.9 \begin{array}{c} +1.5 \\ -1.2 \end{array}$	$) \times 10^{-9}$		177

K_L⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} \textit{m}_{\textit{K}_{\textit{L}}} - \textit{m}_{\textit{K}_{\textit{S}}} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad (\text{S} = 1.3) \quad \text{Assuming } \textit{CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; \text{MeV} \quad \text{Assuming } \textit{CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; \text{s}^{-1} \quad \text{Not assuming } \textit{CPT} \\ \text{Mean life } \tau = (5.116 \pm 0.021) \times 10^{-8} \; \text{s} \quad (\text{S} = 1.1) \\ \textit{c}\tau = 15.34 \; \text{m} \end{array}$$

Slope parameters [p]

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+ \pi^- \pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$: $h = 0.076 \pm 0.006$
 $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$: $k = 0.0099 \pm 0.0015$
 $K_L^0 \rightarrow \pi^0 \pi^0 \pi^0$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [q]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$
 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming $\mu\text{-}e$ universality

$$\lambda'_{+}(K^{0}_{\mu3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda''_{+}(K^{0}_{\mu3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$$

$$\lambda_{0}(K^{0}_{\mu3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$$

Pole parametrization assuming $\mu\text{-}e$ universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e 3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\begin{split} \Lambda_{+} &= (2.51 \pm 0.06) \times 10^{-2} \quad (S = 1.5) \\ &\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0) \\ K_{e3}^{0} \quad \left| f_{S}/f_{+} \right| &= (1.5^{+1.4}_{-1.6}) \times 10^{-2} \\ K_{e3}^{0} \quad \left| f_{T}/f_{+} \right| &= (5^{+4}_{-5}) \times 10^{-2} \\ K_{\mu 3}^{0} \quad \left| f_{T}/f_{+} \right| &= (12 \pm 12) \times 10^{-2} \\ K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{K^{*}} = -0.205 \pm 0.022 \quad (S = 1.8) \\ K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-} \colon \alpha_{DIP} = -1.69 \pm 0.08 \quad (S = 1.7) \\ K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-} \colon a_{1}/a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2} \\ K_{L} \rightarrow \pi^{0}2\gamma \colon a_{V} = -0.43 \pm 0.06 \quad (S = 1.5) \end{split}$$

CP-violation parameters [y]

$$A_L = (0.332 \pm 0.006)\%$$
 $|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\eta_{00}/\eta_{+-}| = 0.9950 \pm 0.0007 \,^{[bb]} \quad (S = 1.6)$
 $Re(\epsilon'/\epsilon) = (1.66 \pm 0.23) \times 10^{-3} \,^{[bb]} \quad (S = 1.6)$

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.04)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} \ - \ \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

$$\phi_{+-} = (43.4 \pm 0.5)^{\circ} \quad (S = 1.2)$$
 $\phi_{00} = (43.7 \pm 0.6)^{\circ} \quad (S = 1.2)$
 $\phi_{\epsilon} = (43.5 \pm 0.5)^{\circ} \quad (S = 1.3)$

CP asymmetry *A* in
$$K_L^0 \to \pi^+\pi^-e^+e^- = (13.7 \pm 1.5)\%$$
 β_{CP} from $K_L^0 \to e^+e^-e^+e^- = -0.19 \pm 0.07$ γ_{CP} from $K_L^0 \to e^+e^-e^+e^- = 0.01 \pm 0.11$ (S = 1.6) j for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008$ f for $K_L^0 \to \pi^+\pi^-\pi^0 = 0.004 \pm 0.006$

$$\begin{split} \left| \eta_{+-\gamma} \right| &= (2.35 \pm 0.07) \times 10^{-3} \\ \phi_{+-\gamma} &= (44 \pm 4)^{\circ} \\ \left| \epsilon_{+-\gamma}^{'} \right| / \epsilon \; < \; 0.3, \; \text{CL} = 90\% \\ \left| \mathsf{g}_{E1} \right| \; \text{for} \; \mathcal{K}_{L}^{0} \to \; \pi^{+} \pi^{-} \gamma < \; 0.21, \; \text{CL} = 90\% \end{split}$$

T-violation parameters

$${\sf Im}(\xi) \ {\sf in} \ {\cal K}^0_{\mu 3} = -0.007 \pm 0.026$$

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

$\Delta S = -\Delta Q$ in $K_{\ell 3}^0$ decay

Re $x = -0.002 \pm 0.006$ Im $x = 0.0012 \pm 0.0021$

κ ⁰ DECAY MODES		Fraction (Γ_i/Γ)	Scale factor/ Confidence level(<i>p</i> MeV/ <i>c</i>)	
	Semiler	otonic modes			
$\pi^{\pm}e^{\mp} u_{e}$ Called K_{e3}^{0} .	•	(40.55 \pm 0.11) %	S=1.7	229	
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called $K_{\mu3}^{0}$.	[<i>aa</i>]	(27.04 ±0.07)%	S=1.1	216	
$(\pi\mu$ atom $) u$		(1.05 ± 0.11) \times 10	₎ –7	188	
$\pi^0\pi^{\pm}e^{\mp}\nu$		(5.20 ± 0.11) \times 10		207	
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	[<i>aa</i>]	(1.26 ± 0.04) \times 10	₎ –5	229	
Hadronic modes, includi	ng Charge co	onjugation×Parity \	/iolating (<i>CPV</i>)	modes	
$3\pi^0$		$(19.52 \pm 0.12)\%$	S=1.6	139	
$\pi^+\pi^-\pi^0$		$(12.54 \pm 0.05)\%$		133	
$\pi^+\pi^-$	CPV [cc]	$(1.967\pm0.010)\times10$	S=1.5	206	
$\pi^0\pi^0$	CPV	(8.64 ± 0.06) \times 10	S=1.8	209	
S	emileptonic r	nodes with photons	;		
$\pi^{\pm} e^{\mp} \nu_{\mathbf{e}} \gamma$	[s,aa,dd]	$(3.79 \pm 0.06) \times 10^{-2}$	₎ -3	229	
$\pi^{\pm} \mu^{\mp} \nu_{\mu} \gamma$		(5.65 ± 0.23) \times 10	0-4	216	
Hadronic modes with photons or $\ell \overline{\ell}$ pairs					
$\pi^{0}\pi^{0}\gamma$		< 2.43 × 10		209	
$\pi^+\pi^-\gamma$	[s,dd]	(4.15 ± 0.15) \times 10	S=2.8	206	
$\pi^+\pi^-\gamma$ (DE)		(2.84 ± 0.11) \times 10		206	
$\pi^0 2\gamma$	[<i>dd</i>]	$(1.273\pm0.033)\times10^{-2}$		230	
$\pi^0 \gamma e^+ e^-$		$(1.62 \pm 0.17) \times 10^{-1}$)-8	230	

Other modes with photons or $\ell \overline{\ell}$ pairs

2γ	(5.47 ± 0.0	$(94) \times 10^{-4}$	S=1.1	249
3γ	< 7.4	$\times 10^{-8}$	CL=90%	249
$e^+e^-\gamma$	(9.4 ± 0.4)	$\times 10^{-6}$	S=2.0	249
$\mu^+\mu^-\gamma$	(3.59 ± 0.1	1.1×10^{-7}	S=1.3	225
$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	< 2.3	$\times 10^{-9}$	CL=90%	119
$e^+e^-\gamma\gamma$	[dd] (5.95 \pm 0.3	$33) \times 10^{-7}$		249
$\mu^+\mu^-\gamma\gamma$	$[dd]$ (1.0 $^{+0.8}_{-0.6}$	$(3) \times 10^{-8}$		225

Charge conjugation \times Parity (*CP*) or Lepton Family number (*LF*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

		(0-)
$\mu^+\mu^-$	51 (6.84 \pm 0.11) \times 1	1.0^{-9} 225
e^+e^-	$(9 \begin{array}{cc} +6 \\ -4 \end{array}) \times 3$	10^{-12} 249
$\pi^{+}\pi^{-}e^{+}e^{-}$	$S1 [dd] (3.11 \pm 0.19) \times 10^{-1}$	10^{-7} 206
$\pi^0 \pi^0 e^+ e^-$	<i>S1</i> < 6.6 × 1	10^{-9} CL=90% 209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	S1 < 9.2 × 1	10^{-11} CL=90% 57
$\mu^{+}\mu^{-}e^{+}e^{-}$	51 (2.69 ± 0.27) $\times 1$	1.0^{-9} 225
$e^{+} e^{-} e^{+} e^{-}$	51 (3.56 \pm 0.21) \times 1	10^{-8} 249
$\pi^{0}\mu^{+}\mu^{-}$	CP , $S1$ [ee] $<$ 3.8 \times 1	10^{-10} CL=90% 177
$\pi^0 e^+ e^-$	CP , $S1$ [ee] $<$ 2.8 \times 1	10^{-10} CL=90% 230
$\pi^0 u \overline{ u}$	$CP,S1$ [ff] $< 3.0 \times 1$	10^{-9} CL=90% 230
$\pi^0\pi^0 u\overline{ u}$	<i>S1</i> < 8.1 × 1	10^{-7} CL=90% 209
$e^{\pm}\mu^{\mp}$	LF [aa] $<$ 4.7 \times 1	10^{-12} CL=90% 238
$e^\pme^\pm\mu^\mp\mu^\mp$	LF [aa] $<$ 4.12 \times 1	10^{-11} CL=90% 225
$\pi^0 \mu^\pm e^\mp$	LF [aa] $<$ 7.6 \times 1	10^{-11} CL=90% 217
$\pi^{0} \pi^{0} \mu^{\pm} e^{\mp}$	<i>LF</i> < 1.7 × 1	10^{-10} CL=90% 159
•		

Lorentz invariance violating modes

$$\pi^0 \gamma$$
 < 1.7 $\times 10^{-7}$ CL=90% 230

$K_0^*(700)$

$$I(J^P) = \frac{1}{2}(0^+)$$

Created: 4/24/2025 13:07

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (630–730) -i (260–340) MeV Mass (Breit-Wigner) = 845 \pm 17 MeV

Full width (Breit-Wigner) = 468 \pm 30 MeV

K*(700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	100 %	256

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass (T-Matrix Pole \sqrt{s}) = (890 \pm 14) -i (26 \pm 6) MeV $K^*(892)^\pm$ hadroproduced mass $m=891.67\pm0.26$ MeV $K^*(892)^\pm$ in τ decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S = 1.7) $K^*(892)^\pm$ hadroproduced full width $\Gamma=51.4\pm0.8$ MeV $K^*(892)^\pm$ in τ decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.3\pm0.5$ MeV (S = 2.0)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\pi$	~ 100	%	289
$K^0\gamma$	(2.46 ± 0.21)	$\times 10^{-3}$	307
$\mathcal{K}^{\pm}\gamma$	(9.8 ± 0.9)		309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1253\pm7$ MeV (S = 2.2) Full width $\Gamma=90\pm20$ MeV $^{[i]}$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	(38 ±13) %	2.2	†
$K_0^*(1430)\pi$	$(28 \pm 4)\%$		†
$K^{*}(892)\pi$	$(21 \pm 10)\%$	2.2	286
$K\omega$	$(11.0 \pm \ 2.0) \%$		†
$K f_0(1370)$	($3.0\pm~2.0)$ %		†
γK^{0}	seen		528

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7$ MeV Full width $\Gamma=174\pm13$ MeV (S=1.6)

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0±3.0) %	293
$K f_0(1370)$	(2.0±2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
$K_0^*(1430)\pi$	not seen	†

HTTP://PDG.LBL.GOV

Page 34

$\gamma \mathcal{K}^{0}$	seen	613
$K\phi$	seen	†

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

K*(1410) DECAY MODES	Fraction (ſ	- _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6 ± 1	3) %		612
$K \rho \gamma K^0$	< 7	%	95%	305
$\gamma \mathcal{K}^0$	< 2.3	× 10	90%	619
$K\phi$	seen			†

K*(1430)

$$I(J^P) = \frac{1}{2}(0^+)$$

T-matrix pole $\sqrt{s}=(1431\pm 6)-i~(110\pm 19)~{\rm MeV}$ Mass $m=1425\pm 50~{\rm MeV}~^{[i]}$ Full width $\Gamma=270\pm 80~{\rm MeV}~^{[i]}$

K ₀ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93 ± 10)%	619
$K\eta$	$(8.6^{+}_{-}$ $\overset{2.7}{3.4})$ %	486
$K \eta'(958)$	seen	†

K₂*(1430)

$$I(J^P) = \frac{1}{2}(2^+)$$

T-matrix pole $\sqrt{s}=(1424\pm 4)-i~(66\pm 2)~{\rm MeV}$ $K_2^*(1430)^\pm$ mass $m=1427.3\pm 1.5~{\rm MeV}~(S=1.3)$ $K_2^*(1430)^0~{\rm mass}~m=1432.4\pm 1.3~{\rm MeV}$ $K_2^*(1430)^\pm$ full width $\Gamma=100.0\pm 2.2~{\rm MeV}~(S=1.1)$ $K_2^*(1430)^0~{\rm full}$ width $\Gamma=109\pm 5~{\rm MeV}~(S=1.9)$

K*(1430) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	•
$K\pi$	(49.9±1.2) %		620
$\mathcal{K}^*(892)\pi$	$(24.7 \pm 1.5) \%$		420
$K^*(892)\pi\pi$	$(13.4\pm2.2)~\%$		373

HTTP://PDG.LBL.GOV

Page 35

$K \rho$	(8.7±0.8) %	S=1.2	320
$K\omega$	$(2.9\pm0.8)\%$		313
$K^+\gamma$	$(2.4\pm0.5)\times10^{-3}$	S=1.1	628
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 10^{-3}$	S=1.3	488
$K\omega\pi$ $K^0\gamma$	$< 7.2 \times 10^{-4} < 9 \times 10^{-4}$	CL=95% CL=90%	106 627

K(1460)

$$I(J^P) = \frac{1}{2}(0^-)$$

K(1460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	seen	_
$K \rho$	seen	_
$K_0^*(1430)\pi$	seen	-
$\mathcal{K}\phi$	seen	_

$K_1(1650)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1650\pm 50~{
m MeV}$ Full width $\Gamma=150\pm 50~{
m MeV}$

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18~{
m MeV}$ Full width $\Gamma=320\pm110~{
m MeV}~({
m S}=4.2)$

K* (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K\rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})$ %	618
$K\phi$	seen	387
$K\eta$	$(1.4^{+1.0}_{-0.8})\%$	683

K₂(1770) [gg]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{\rm MeV}$ Full width $\Gamma=186\pm 14~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 36

K ₂ (1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κππ		794
$K_2^*(1430)\pi$	seen	287
$K^{\overline{*}}(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$K f_0(980)$	possibly seen	466
$K\phi$	seen	441
$K\omega$	seen	607

K₃(1780)

$$I(J^P) = \frac{1}{2}(3^-)$$

T-matrix pole $\sqrt{s}=(1754\pm13)-i~(119\pm14)~{\rm MeV}$ Mass $m=1779\pm8~{\rm MeV}~({\rm S}=1.2)$ Full width $\Gamma=161\pm17~{\rm MeV}~({\rm S}=1.1)$

K*(1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	$(31 \pm 9)\%$		616
$K^*(892)\pi$	$(20 \pm 5)\%$		657
$K\pi$	$(18.8 \pm \ 1.0) \%$		815
$K\eta$	$(30 \pm 13)\%$		721
$K_2^*(1430)\pi$	< 16 %	95%	292

K₂(1820) [gg]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

K ₂ (1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$	seen	819
$K_2^*(1430)\pi$	seen	328
$K^*(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

$K_0^*(1950)$

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1957\pm14~{\rm MeV}$ Full width $\Gamma=170\pm50~{\rm MeV}~(S=2.2)$

HTTP://PDG.LBL.GOV

Page 37

K*(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^-\pi^+$	(52±14) %	911

K₂*(1980)

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass $m=1990^{+60}_{-50}$ MeV (S = 2.8) Full width $\Gamma=348^{+50}_{-30}$ MeV (S = 1.3)

K [*] ₂ (1980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	possibly seen	791
$K \rho$	possibly seen	762
$K f_2(1270)$	possibly seen	424
$K\phi$	seen	627
$K\eta$	seen	850

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m=2048^{+8}_{-9}$ MeV (S = 1.1) Full width $\Gamma=199^{+27}_{-19}$ MeV

K *(2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(9.9±1.2) %	960
$K^*(892)\pi\pi$	$(9$ ± 5 $) \%$	804
$K^*(892)\pi\pi\pi$	(7 ±5)%	770
$ ho$ K π	(5.7±3.2) %	744
ω K π	(5.0±3.0) %	740
ϕ K π	$(2.8\pm1.4)~\%$	597
ϕ K*(892)	(1.4 ± 0.7) %	368

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

 \mathcal{D}^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.66\pm0.05$ MeV Mean life $\tau=(1033\pm5)\times10^{-15}$ s $c\tau=309.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.096 \pm 0.004 \, ^{[hh]}$ $\Gamma(c \to D^*(2010)^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

 $A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$ $A_{CP}(K_I^0 e^{\pm} \nu) = (-0.6 \pm 1.6)\%$ $A_{CP}(K_S^{\bar{0}}\pi^{\pm}) = (-0.41 \pm 0.09)\%$ $A_{CP}(K_I^0 K^{\pm})$ in $D^{\pm} \rightarrow K_I^0 K^{\pm} = (-4.2 \pm 3.4) \times 10^{-2}$ $A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$ $A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$ $A_{CP}(K_S^0 \pi^{\pm} \pi^0) = (-0.1 \pm 0.7)\%$ $A_{CP}(K_S^0 \pi^{\pm} \eta) \text{ in } D^{\pm} \rightarrow K_S^0 \pi^{\pm} \eta = (-0.9 \pm 3.1) \times 10^{-2}$ $A_{CP}(K_{S}^{0}\pi^{\pm}\pi^{+}\pi^{-}) = (0.0 \pm 1.2)\%$ $A_{CP}(K^{\pm}\pi^{+}\pi^{-}\pi^{0})$ in $D^{\pm}\to K^{\pm}\pi^{+}\pi^{-}\pi^{0}=-0.04\pm0.06$ $A_{CP}(\pi^{\pm}\pi^{0}) = (0.4 \pm 1.3)\%$ (S = 1.7) $A_{CP}(\pi^{\pm}\eta) = (0.3 \pm 0.5)\%$ $A_{CP}(\pi^{\pm}\pi^{0}\eta)$ in $D^{\pm}\to \pi^{\pm}\pi^{0}\eta = (-6\pm7)\times 10^{-2}$ $A_{CP}(\pi^{\pm}\eta\eta) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta\eta = (8 \pm 9) \times 10^{-2}$ $A_{CP}(\pi^{\pm}\eta'(958)) = (0.41 \pm 0.23)\%$ (S = 1.2) $A_{CP}(\overline{K}^0/K^0K^{\pm}) = (0.11 \pm 0.17)\%$ $A_{CP}(K_S^0K^{\pm}) = (-0.01 \pm 0.07)\%$ $A_{CP}(K_S^0 K^{\pm} \pi^0)$ in $D^{\pm} \to K_S^0 K^{\pm} \pi^0 = (1 \pm 4) \times 10^{-2}$ $A_{CP}(K_L^0 K^{\pm} \pi^0)$ in $D^{\pm} \to K_L^0 K^{\pm} \pi^0 = (-1 \pm 4) \times 10^{-2}$ $A_{CP}(K^+K^-\pi^{\pm}) = (0.37 \pm 0.29)\%$ $A_{CP}(K^{\pm}K^{*0}) = (-0.3 \pm 0.4)\%$ $A_{CP}(\phi \pi^{\pm}) = (0.01 \pm 0.09)\%$ (S = 1.8) $A_{CP}(K^{\pm}K_0^*(1430)^0) = (8^{+7}_{-6})\%$ $A_{CP}(K^{\pm}K_{2}^{*}(1430)^{0}) = (43_{-26}^{+20})\%$ $A_{CP}(K^{\pm}K_0^*(700)) = (-12^{+18}_{-13})\%$

$$A_{CP}(a_0(1450)^0\pi^{\pm}) = (-19^{+14}_{-16})\%$$

$$A_{CP}(\phi(1680)\pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(\pi^{\pm}2\pi^0) \text{ in } D^{\pm} \to \pi^{\pm}2\pi^0 = (5.6 \pm 2.7)\%$$

$$A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) = (0.5 \pm 2.0)\%$$

$$A_{CP}(2\pi^{\pm}\pi^{\mp}\pi^0) \text{ in } D^{\pm} \to 2\pi^{\pm}\pi^{\mp}\pi^0 = (0.3 \pm 2.0)\%$$

$$A_{CP}(2\pi^{\pm}\pi^{\mp}2\pi^0) \text{ in } D^{\pm} \to 2\pi^{\pm}\pi^{\mp}2\pi^0 = (-4 \pm 4)\%$$

$$A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}\eta) \text{ in } D^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}\eta = (3 \pm 5) \times 10^{-2}$$

$$A_{CP}(K_S^0 K^{\pm}\pi^{+}\pi^{-}) = (-4 \pm 7)\%$$

$$A_{CP}(K^{\pm}\pi^0) = (-3 \pm 5)\%$$

$$A_{CP}(K^{\pm}\eta) \text{ in } D^{\pm} \to K^{\pm}\eta = (-6 \pm 11) \times 10^{-2}$$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$
Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}K^{\pm} = 31.6\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-3 \pm 8) \times 10^{-3} [ii]$$
 (S = 1.1)
 $A_{Tviol}(K^+ K^- K_S^0 \pi^{\pm})$ in $D^{\pm} \to K^+ K^- K_S^0 \pi^{\pm} = (-3.3 \pm 2.7)\%$

D⁺ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K^0} \ell^+ \nu_\ell = 0.719 \pm 0.011 \quad (S=1.6) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -2.13 \pm 0.14 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K^0} \ell^+ \nu_\ell = -3 \pm 12 \quad (S=1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \ell^+ \nu_\ell = 0.1407 \pm 0.0025 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -2.00 \pm 0.13 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \ell^+ \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \ell^+ \nu_\ell \ (\ell = e \text{ or } \nu) = (8.4 \pm 0.4) \times 10^{-2} \\ r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow \eta e^+ \nu_e = -5.3 \pm 2.7 \quad (S=1.9) \\ r_{\nu} \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \omega e^+ \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho e^+ \nu_e = 1.64 \pm 0.10 \quad (S=1.2) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho e^+ \nu_e = 0.84 \pm 0.06 \\ r_{\nu} \equiv V(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \ell^+ \nu_\ell = 1.49 \pm 0.05 \quad (S=2.1) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \ell^+ \nu_\ell = 0.802 \pm 0.021 \\ r_3 \equiv A_3(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \ell^+ \nu_\ell = 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T \text{ in } \overline{K}^*(892)^0 \ell^+ \nu_\ell = 1.13 \pm 0.08 \\ \Gamma_+/\Gamma_- \text{ in } \overline{K}^*(892)^0 \ell^+ \nu_\ell = 0.22 \pm 0.06 \quad (S=1.6) \\ \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed

and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\,\Gamma(K^0_S)=\Gamma(\overline{K}^0).$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(/ /
$\begin{array}{c} \mu^{+} \operatorname{anything} & (17.6 \ \pm 3.2 \) \% & -\\ K^{-} \operatorname{anything} & (25.7 \ \pm 1.4 \) \% & -\\ K^{0}_{8} \operatorname{anything} & (33.1 \ \pm 0.4 \) \% & -\\ K^{0}_{8} \operatorname{anything} & (5.9 \ \pm 0.8 \) \% & -\\ K^{+} (892)^{-} \operatorname{anything} & (6 \ \pm 5 \) \% & -\\ \overline{K}^{+} (892)^{0} \operatorname{anything} & (23 \ \pm 5 \) \% & -\\ \overline{K}^{+} (892)^{0} \operatorname{anything} & (6.3 \ \pm 0.7 \) \% & -\\ \eta \operatorname{anything} & (6.3 \ \pm 0.7 \) \% & -\\ \eta \operatorname{anything} & (1.04 \ \pm 0.18 \) \% & -\\ \psi \operatorname{anything} & (1.04 \ \pm 0.18 \) \% & -\\ \psi \operatorname{anything} & (1.12 \ \pm 0.04 \) \% & -\\ \pi^{+} \pi^{+} \pi^{-} \operatorname{anything} & (15.25 \ \pm 0.20 \) \% & -\\ \hline \textbf{Leptonic and semileptonic modes} \\ e^{+} \nu_{e} & (8.8 \ \times 10^{-6} \mathrm{CL} = 90\% \ 935 \\ \gamma e^{+} \nu_{e} & (3.74 \ \pm 0.17 \) \times 10^{-4} & 932 \\ \pi^{+} \nu_{\mu} & (3.74 \ \pm 0.17 \) \times 10^{-4} & 932 \\ \overline{K}^{+} 0 e^{+} \nu_{e} & (8.72 \ \pm 0.09 \) \% & 869 \\ \overline{K}^{0} \mu^{+} \nu_{\mu} & (8.76 \ \pm 0.19 \) \% & 865 \\ K^{-} \pi^{+} e^{+} \nu_{e} & (4.02 \ \pm 0.18 \) \% & S = 3.2 & 864 \\ \overline{K}^{*} (892)^{0} e^{+} \nu_{e}, \ \overline{K}^{*} (892)^{0} \rightarrow & (3.77 \ \pm 0.17 \) \% & 5 = 3.2 \\ \overline{K}^{*} (1410)^{0} e^{+} \nu_{e}, & (5.40 \ \pm 0.11 \) \times 10^{-3} & -\\ \overline{K}^{*} (1430)^{0} e^{+} \nu_{e}, & (5.40 \ \pm 0.10 \) \% & S = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 851 \\ \overline{K}^{*} (892)^{0} \mu^{+} \nu_{\mu}, & (3.52 \ \pm 0.10 \) \% & S = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 851 \\ \overline{K}^{*} (892)^{0} \mu^{+} \nu_{\mu}, & (3.52 \ \pm 0.10 \) \% & S = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 851 \\ \overline{K}^{*} (892)^{0} \mu^{+} \nu_{\mu}, & (3.52 \ \pm 0.10 \) \% & S = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 851 \\ \overline{K}^{*} (892)^{0} \mu^{+} \nu_{\mu}, & (3.52 \ \pm 0.10 \) \% & S = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 851 \\ \overline{K}^{*} (892)^{0} \mu^{+} \nu_{\mu}, & (3.52 \ \pm 0.10 \) \% & S = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 851 \\ \overline{K}^{*} (892)^{0} \mu^{+} \nu_{\mu}, & (3.52 \ \pm 0.10 \) \% & 5 = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm 0.34 \) \% & 5 = 1.1 & 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} & (3.65 \ \pm$			1 %	_
$\begin{array}{c} K^- \text{ anything } & (25.7 \ \pm 1.4 \) \% & -K_S^0 \text{ anything } \\ K^0 \text{ anything } & (33.1 \ \pm 0.4 \) \% & -K_S^0 \text{ anything } \\ K^+ (892)^- \text{ anything } & (5.9 \ \pm 0.8 \) \% & -K_S^0 (892)^0 \text{ anything } \\ K^- (892)^0 \text{ anything } & (23 \ \pm 5 \) \% & -K_S^0 (892)^0 \text{ anything } \\ N^- (892)^0 \text{ anything } & (6.6 \ \pm 5 \) \% & -K_S^0 (892)^0 \text{ anything } \\ N^- (6.3 \ \pm 0.7 \) \% & -K_S^0 (892)^0 \text{ anything } \\ N^- (6.3 \ \pm 0.7 \) \% & -K_S^0 (892)^0 & -K_S^0 (892)^0 \\ N^- (1.04 \ \pm 0.18 \) \% & -K_S^0 (892)^0 \\ N^- (1.04 \ \pm 0.18 \) \% & -K_S^0 (892)^0 \\ N^- (1.04 \ \pm 0.18 \) \% & -K_S^0 (892)^0 \\ N^- (1.04 \ \pm 0.18 \) \% & -K_S^0 (892)^0 \\ N^- (1.04 \ \pm 0.18 \) \% & -K_S^0 (892)^0 \\ N^- (1.04 \ \pm 0.17 \) \times (10.4 \ \pm 0.$	· · · · · · · · · · · · · · · · · · ·	` '		_
$\begin{array}{c} \mathcal{K}_{S}^{0} \text{ anything} & (33.1 \pm 0.4) \% & -\\ \mathcal{K}^{+} \text{ anything} & (5.9 \pm 0.8) \% & -\\ \mathcal{K}^{+} \text{ (892)}^{-} \text{ anything} & (6 \pm 5) \% & -\\ \mathcal{K}^{+} \text{ (892)}^{0} \text{ anything} & (6 \pm 5) \% & -\\ \mathcal{K}^{+} \text{ (892)}^{0} \text{ anything} & (6.3 \pm 0.7) \% & -\\ \eta \text{ anything} & (1.04 \pm 0.18) \% & -\\ \eta' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \eta' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.12 \pm 0.04) \% & -\\ \psi' \text{ anything} & (1.04 \pm 0.18)$	-	,		_
$\begin{array}{c} K^+ \text{ anything} & (\ 5.9 \ \pm 0.8 \) \ \% & - \\ K^+ (892)^- \text{ anything} & (\ 6 \ \pm 5 \) \ \% & - \\ \overline{K}^* (892)^0 \text{ anything} & (\ 6 \ \pm 5 \) \ \% & - \\ \overline{K}^* (892)^0 \text{ anything} & (\ 6.3 \ \pm 5 \) \ \% & - \\ N^- \text{ anything} & (\ 6.3 \ \pm 0.7 \) \ \% & - \\ N^- \text{ anything} & (\ 6.3 \ \pm 0.7 \) \ \% & - \\ N^- \text{ anything} & (\ 1.04 \ \pm 0.18 \) \ \% & - \\ N^- \text{ anything} & (\ 1.12 \ \pm 0.04 \) \ \% & - \\ N^- \text{ anything} & (\ 1.12 \ \pm 0.10 \) \ \% & - \\ N^- \text{ anything} & (\ 1.12 \ \pm 0.10 \) \$				_
$\begin{array}{c} K^*(892)^- \text{ anything } & (6 \pm 5) \% & -\frac{1}{K^*(892)^0} \text{ anything } & (23 \pm 5) \% & -\frac{1}{K^*(892)^0} \text{ anything } & (6.6 - \% - \text{CL} = 90\% - \frac{1}{N^0}) \text{ anything } & (6.3 \pm 0.7) \% & -\frac{1}{N^0} \text{ anything } & (1.04 \pm 0.18) \% & -\frac{1}{N^0} \text{ anything } & (1.04 \pm 0.18) \% & -\frac{1}{N^0} \text{ anything } & (1.12 \pm 0.04) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.20) \% & -\frac{1}{N^0} \text{ anything } & (1.5.25 \pm 0.10) \% & -\frac{1}{N^0} \text{ anything }$	•			_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •	•		_
$\begin{array}{llllllllllllllllllllllllllllllllllll$				_
$\begin{array}{llllllllllllllllllllllllllllllllllll$				_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(6.3 ± 0.7)) %	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	η' anything	(1.04 ± 0.18)) %	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ϕ anything			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\pi^+\pi^+\pi^-$ anything	(15.25 ± 0.20)) %	_
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Leptonic and	semileptonic mode	es	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e^+ u_e$	< 8.8	\times 10 ⁻⁶ CL=90%	935
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\gamma e^+ \nu_e$	< 3.0	\times 10 ⁻⁵ CL=90%	935
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\mu^+ u_{\mu}$	(3.74 ± 0.17)	$) \times 10^{-4}$	932
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ au^+ u_ au^-$	(1.20 ± 0.27)	1×10^{-3}	90
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\overline{K}^0 e^+ \nu_e$	(8.72 ± 0.09)) %	869
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\overline{K}{}^0\mu^+ u_\mu$	(8.76 ± 0.19)) %	865
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(4.02 ± 0.18)	S=3.2	864
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{K}^*(892)^0 e^+ u_e$, $\overline{K}^*(892)^0 ightarrow$	(3.77 ± 0.17)) %	722
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(K^{-}\pi^{+})_{[0.8-1.0]\text{GeV}} e^{+} \nu_{e}$	(3.39 ± 0.09)) %	864
$\overline{K}^*(1410)^0 e^+ \nu_e, \qquad < 6 \qquad \times 10^{-3} \text{CL} = 90\% \qquad - \\ \overline{K}^*(1410)^0 \to K^- \pi^+ \qquad < 5 \qquad \times 10^{-4} \text{CL} = 90\% \qquad - \\ \overline{K}^*_2(1430)^0 e^+ \nu_e, \qquad < 5 \qquad \times 10^{-4} \text{CL} = 90\% \qquad - \\ \overline{K}^*_2(1430)^0 \to K^- \pi^+ \qquad < 7 \qquad \times 10^{-3} \text{CL} = 90\% \qquad 864 \\ \overline{K}^*(892)^0 e^+ \nu_e \qquad \qquad (5.40 \pm 0.10)\% \qquad S = 1.1 \qquad 722 \\ K^- \pi^+ \mu^+ \nu_\mu \qquad \qquad (3.65 \pm 0.34)\% \qquad 851 \\ \overline{K}^*(892)^0 \mu^+ \nu_\mu, \qquad \qquad (3.52 \pm 0.10)\% \qquad 717 \\ \overline{K}^*(892)^0 \to K^- \pi^+ \qquad \qquad (1.9 \pm 0.5)\times 10^{-3} \qquad 851 \\ \overline{K}^*(892)^0 \mu^+ \nu_\mu \qquad \qquad (5.27 \pm 0.15)\% \qquad 717$	$(K^-\pi^+)_{S-wave}^{r}e^+\nu_e$	(2.28 ± 0.11)	$) \times 10^{-3}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{K}$ * $(1410)^0 e^+ \nu_e$,	< 6	$\times 10^{-3}$ CL=90%	_
$\overline{K}_{2}^{*}(1430)^{0} e^{+} \nu_{e}, \qquad < 5 \qquad \times 10^{-4} \text{CL} = 90\% \qquad - \\ \overline{K}_{2}^{*}(1430)^{0} \rightarrow K^{-} \pi^{+} \qquad < 7 \qquad \times 10^{-3} \text{CL} = 90\% \qquad 864 \\ \overline{K}^{*}(892)^{0} e^{+} \nu_{e} \qquad \qquad (5.40 \pm 0.10)\% \qquad S = 1.1 \qquad 722 \\ K^{-} \pi^{+} \mu^{+} \nu_{\mu} \qquad \qquad (3.65 \pm 0.34)\% \qquad 851 \\ \overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu}, \qquad \qquad (3.52 \pm 0.10)\% \qquad 717 \\ \overline{K}^{*}(892)^{0} \rightarrow K^{-} \pi^{+} \qquad \qquad (1.9 \pm 0.5)\times 10^{-3} \qquad 851 \\ \overline{K}^{*}(892)^{0} \mu^{+} \nu_{\mu} \qquad \qquad (5.27 \pm 0.15)\% \qquad 717 $				
$\overline{K}_{2}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$ $K^{-}\pi^{+}e^{+}\nu_{e} \text{ nonresonant} \qquad < 7 \qquad \times 10^{-3}\text{CL}=90\% \qquad 864$ $\overline{K}^{*}(892)^{0}e^{+}\nu_{e} \qquad \qquad (5.40 \pm 0.10 \)\% \qquad S=1.1 \qquad 722$ $K^{-}\pi^{+}\mu^{+}\nu_{\mu} \qquad \qquad (3.65 \pm 0.34 \)\% \qquad 851$ $\overline{K}^{*}(892)^{0}\mu^{+}\nu_{\mu}, \qquad \qquad (3.52 \pm 0.10 \)\% \qquad 717$ $\overline{K}^{*}(892)^{0} \rightarrow K^{-}\pi^{+}$ $K^{-}\pi^{+}\mu^{+}\nu_{\mu} \text{ nonresonant} \qquad (1.9 \pm 0.5 \)\times 10^{-3} \qquad 851$ $\overline{K}^{*}(892)^{0}\mu^{+}\nu_{\mu} \qquad (5.27 \pm 0.15 \)\% \qquad 717$		< 5	$\times 10^{-4}$ CL=90%	_
$\begin{array}{llll} \overline{K}^*(892)^0e^+\nu_e & (\ 5.40\ \pm\ 0.10\)\ \% & S=1.1 & 722 \\ K^-\pi^+\mu^+\nu_\mu & (\ 3.65\ \pm\ 0.34\)\ \% & 851 \\ \overline{K}^*(892)^0\mu^+\nu_\mu, & (\ 3.52\ \pm\ 0.10\)\ \% & 717 \\ \overline{K}^*(892)^0\toK^-\pi^+ & \\ K^-\pi^+\mu^+\nu_\mu & \text{nonresonant} & (\ 1.9\ \pm\ 0.5\)\ \times\ 10^{-3} & 851 \\ \overline{K}^*(892)^0\mu^+\nu_\mu & (\ 5.27\ \pm\ 0.15\)\ \% & 717 \end{array}$	-			
$K^-\pi^+\mu^+\nu_\mu$ (3.65 ± 0.34)% 851 $\overline{K}^*(892)^0\mu^+\nu_\mu$, (3.52 ± 0.10)% 717 $\overline{K}^*(892)^0 \to K^-\pi^+$ $K^-\pi^+\mu^+\nu_\mu$ nonresonant (1.9 ± 0.5)×10 ⁻³ 851 $\overline{K}^*(892)^0\mu^+\nu_\mu$ (5.27 ± 0.15)% 717		< 7	$\times 10^{-3}$ CL=90%	864
$\overline{K}^*(892)^0 \mu^+ \nu_\mu$, (3.52 ± 0.10)% 717 $\overline{K}^*(892)^0 \to K^- \pi^+$ $K^- \pi^+ \mu^+ \nu_\mu$ nonresonant (1.9 ± 0.5) × 10 ⁻³ 851 $\overline{K}^*(892)^0 \mu^+ \nu_\mu$ (5.27 ± 0.15)% 717		(5.40 ± 0.10)) % S=1.1	722
$\overline{K}^*(892)^0 \to K^-\pi^+$ $K^-\pi^+\mu^+\nu_\mu$ nonresonant (1.9 ± 0.5)×10 ⁻³ 851 $\overline{K}^*(892)^0\mu^+\nu_\mu$ (5.27 ± 0.15)% 717		(3.65 ± 0.34)) %	851
$K^-\pi^+\mu^+\nu_\mu$ nonresonant (1.9 \pm 0.5) \times 10 ⁻³ 851 $\overline{K}^*(892)^0\mu^+\nu_\mu$ (5.27 \pm 0.15) % 717	$\overline{\mathit{K}}^{*}(892)^{0}\mu^{+} u_{\mu}$,	(3.52 ± 0.10)) %	717
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$ (5.27 ± 0.15)%	$\overline{K}^*(892)^0 \rightarrow K^-\pi^+$			
	${\cal K}^-\pi^+\mu^+ u_\mu$ nonresonant	(1.9 ± 0.5)	1×10^{-3}	851
	$\overline{K}^*(892)^0 \mu^+ \dot{\nu_{\mu}}$	(5.27 ± 0.15)) %	717
				825

$\overline{K}_1(1270)^0 e^+ \nu_e, \ \overline{K}_1^0 \rightarrow$		(1.06	± 0.1	5) × 10	₁ –3	_
$\frac{K^-\pi^+\pi^0}{K_0^*(1430)^0\mu^+\nu_\mu}$		< 2.3		× 10	⁻⁴ CL=90%	380
$\frac{K_0(1.88)}{K^*(1680)^0} \mu^+ \nu_{\mu}$		< 1.5			-3CL=90%	105
$\pi^0 e^+ \nu_e$				7) × 10		930
$\pi^{0} \mu^{+} \nu_{\mu}$				5) × 10	_	927
$\eta e^+ \nu_e$		(1.11	± 0.0	7) × 10	₁ –3	855
$\eta \mu^+ u_{\mu}$		•		1) × 10		851
$\pi^-\pi^+e^+\nu_e$					$^{-3}$ S=1.2	924
$f_0(500)^0 e^+ \nu_e$, $f_0(500)^0 \rightarrow$		(6.4	± 0.6) × 10	₁ —4	_
$ ho^0 e^+ rac{\pi^+ \pi^-}{ u_e}$		(1.90	± 0.10	0)×10	-3 S=1.2	774
$\rho^{0}\mu^{+}\nu_{\mu}$) × 10	_	770
$\omega e^+ \nu_e^-$		(1.69	± 0.1	1)×10	₁ –3	771
$\omega \mu^+ u_{\mu}$		(1.77	± 0.2	1) × 10	₁ –3	767
$\eta'(958)e^+\nu_e$		(2.0	± 0.4) × 10	_4	690
$a(980)^0 e^+ \nu_e$, $a(980)^0 \to \eta \pi^0$		(1.7	+ 0.8 - 0.7) × 10	₎ —4	-
$b_1(1235)^0 e^+ \nu_e, \ b_1^0 o \ \omega \pi^0$		< 1.75			⁻⁴ CL=90%	_
$\phi e^+ \nu_e$		< 1.3			$^{-5}$ CL=90%	657
$D^0 e^+ \nu_e$		< 1.0		× 10	0 ⁻⁴ CL=90%	5
Hadronic m				7		
1 ladionic in	oaes	with a I	K or K	KKK		
$K_S^0\pi^+$	odes	(1.562	2± 0.03	31) %	S=1.7	863
$egin{array}{c} \mathcal{K}_{\mathcal{S}}^{0} \pi^{+} \ \mathcal{K}_{L}^{0} \pi^{+} \end{array}$		(1.562 (1.46	2 ± 0.03 ± 0.03	31) % 5) %		863
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$	[jj]	(1.562 (1.46 (9.38	2 ± 0.03 ± 0.03 ± 0.10	31) % 5) % 6) %	S=1.7 S=1.6	863 846
$egin{array}{l} \mathcal{K}_{\mathcal{S}}^0\pi^+ \ \mathcal{K}_{\mathcal{L}}^0\pi^+ \ \mathcal{K}^-2\pi^+ \ (\mathcal{K}^-\pi^+)_{\mathcal{S}-wave}\pi^+ \end{array}$	[<i>ji</i>]	(1.562 (1.46 (9.38 (7.52	$\begin{array}{ccc} 2 \pm & 0.03 \\ \pm & 0.03 \\ \pm & 0.10 \\ \pm & 0.17 \end{array}$	31) % 5) % 6) % 7) %		863 846 846
$egin{aligned} \mathcal{K}_{\mathcal{S}}^{0}\pi^{+} & & & & & & & & & & & & & & & & & & &$		(1.562 (1.46 (9.38 (7.52	$\begin{array}{ccc} 2 \pm & 0.03 \\ \pm & 0.03 \\ \pm & 0.10 \\ \pm & 0.17 \end{array}$	31) % 5) % 6) % 7) %		863 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$	[<i>ji</i>]	(1.562 (1.46 (9.38 (7.52 (1.25	± 0.00 ± 0.00 ± 0.10 ± 0.1 ± 0.00	31) % 5) % 5) % 7) % 5) %		863 846 846 382
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$,	[<i>ji</i>]	(1.562 (1.46 (9.38 (7.52	± 0.00 ± 0.00 ± 0.10 ± 0.1 ± 0.00	31) % 5) % 5) % 7) % 5) %		863 846 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$	[<i>ji</i>]	(1.562 (1.46 (9.38 (7.52 (1.25	2 ± 0.00 ± 0.00 ± 0.10 ± 0.11 ± 0.00 ± 0.10	31) % 5) % 5) % 7) % 5) %		863 846 846 382
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$	[<i>ii</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04	2 ± 0.00 ± 0.00 ± 0.10 ± 0.10 ± 0.10 ± 0.10	31) % 5) % 6) % 7) % 6) %	S=1.6	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1430)^{0}\pi^{+}$,	[<i>ii</i>]	(1.562 (1.46 (9.38 (7.52 (1.25	2 ± 0.00 ± 0.00 ± 0.10 ± 0.10 ± 0.10 ± 0.10	31) % 5) % 6) % 7) % 6) %	S=1.6	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$	[<i>ii</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04 not se	2 ± 0.03 ± 0.09 ± 0.10 ± 0.12 ± 0.12	31) % 5) % 6) % 7) % 6) % 2) %	S=1.6	863 846 846 382 714 381 371
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$,	[<i>ii</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04	2 ± 0.03 ± 0.09 ± 0.10 ± 0.12 ± 0.12	31) % 5) % 6) % 7) % 6) % 2) %	S=1.6	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	[<i>ii</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04 not se	2 ± 0.03 ± 0.03 ± 0.10 ± 0.12 ± 0.12 ± 0.13 ± 0.13	31) % 5) % 6) % 7) % 6) % 2) % $) \times 10$ $) \times 10$	S=1.6	863 846 846 382 714 381 371
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	[<i>ji</i>] [<i>kk</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04 not se (2.3	2 ± 0.00 ± 0.00 ± 0.10 ± 0.10 ± 0.12	31) % 5) % 6) % 7) % 6) % 2) % $) \times 10$ $) \times 10$ $5) %$	S=1.6	863 846 846 382 714 381 371
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	[<i>ji</i>] [<i>kk</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04 not se (2.3 (2.2 (1.45	2 ± 0.03 ± 0.03 ± 0.10 ± 0.12 ± 0.12 ± 0.13 ± 0.13 ± 0.13 ± 0.14 ± 0.14 ± 0.14 ± 0.14 ± 0.14 ± 0.14	31) % 5) % 5) % 6) % 7) % 6) % 2) % $) \times 10$ $) \times 10$ $) % 6) % 7) %$	S=1.6	863 846 846 382 714 381 371 58
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(892)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	[<i>ji</i>] [<i>kk</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04 not se (2.3 (2.2 (1.45 (7.36 (6.14	2 ± 0.03 ± 0.03 ± 0.11 ± 0.04 ± 0.12 ± 0.13 en ± 0.7 ± 1.1 ± 0.24 ± 0.24 ± 0.24 ± 0.33	31) % 5) % 5) % 6) % 7) % 6) % 2) % $) \times 10$ $) \times 10$ $) % 6) % 7) %$	S=1.6	863 846 846 382 714 381 371 58 - 845
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(892)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$,	[<i>ji</i>] [<i>kk</i>] [<i>kk</i>]	(1.562 (1.46 (9.38 (7.52 (1.25 (1.04 not se (2.3 (2.2 (1.45 (7.36 (6.14 (1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31) % 5) % 6) % 7) % 6) % 2) %	S=1.6	863 846 846 382 714 381 371 58 - 845

$$\begin{array}{c} \overline{K}_0^*(1430)^0\pi^+, \ \overline{K}_0^{*0} \to \\ K_0^S\pi^0 \end{array} \\ \hline K_0^*(1680)^0\pi^+, \ \overline{K}_0^{*0} \to \\ K_0^S\pi^0 \end{array} \\ \hline K_0^*(1680)^0\pi^+, \ \overline{K}_0^{*0} \to \\ K_0^S\pi^0 \end{array} \\ \hline K_0^*\pi^+, \ \overline{K}^0 \to K_0^S\pi^0 \\ \hline K_0^0\pi^+, \ \overline{K}^0 \to K_0^S\pi^0 \\ \hline K_0^S\pi^+\pi^0 \text{ nonresonant } \\ K_0^S\pi^+\pi^0 \text{ nonresonant and } \\ \hline K_0^S\pi^+\pi^0 \text{ nonresonant and } \\ \hline K_0^S\pi^+\pi^0 \end{array} \\ \begin{array}{c} (1.37 \ ^+0.21)^{\circ} \% \\ K_0^S\pi^+\pi^0 \\ \hline (1.31 \ ^+0.21)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.27 \ ^+0.27)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_0^S\pi^+ \oplus \\ \hline (1.31 \ ^+0.05)^{\circ} \% \\ \hline K_1(1260)^+, \ a_1^+ \to \\ \rho(770)^+\pi^0 \\ \hline K_0^Sa_1(1260)^+, \ a_1^+ \to \\ \rho(770)^+\pi^0 \\ \hline K_0^Sa_1(1260)^+, \ a_1^+ \to \\ \hline K_0^Sa_1(1260)^+, \ a_1^+ \to \\ \hline K_0^S\pi^0 \\ \hline K_1(1400)^0\pi^+, \ \overline{K}^0 \to K_0^S\pi^0 \\ \hline K_1(1400)^0$$

·						, ,	
$\overline{K}^*(892)^0 K^+, \overline{K}^{*0} \rightarrow K^0 \pi^0$	(5.2	±	1.4) × 10	4	613
$K_{S}^{0}\pi^{0}$ $K_{I}^{0}K^{+}\pi^{0}$	(5.24	\pm	0.31) × 10 ⁻³	3	744
		•			$) \times 10^{-3}$	_	744
$\frac{K^{+}\overline{K}^{*}(892)^{0}}{\overline{K}^{*}(892)^{0}} \rightarrow K^{-}\pi^{+}$	(2.49	+	0.08 0.13) × 10 ⁻	3	613
$K^+rac{\stackrel{ op}{K}_0^*}{K_0^*}(1430)^0$, $\overline{K}_0^*(1430)^0 ightarrow K^-\pi^+$	(1.82	±	0.35) × 10 ⁻³	3	-
$K^+ \overline{K}_2^* (1430)^0$, $\overline{K}_2^* \rightarrow K^- \pi^+$	(1.6	+	1.2 0.8) × 10 ⁻	4	-
$K^{+}\overline{K}_{0}^{*}(700), \ \overline{K}_{0}^{*} \rightarrow K^{-}\pi^{+}$	(6.8	+	3.5 2.1) × 10	4	_
$a_0(1450)^0\pi^+, \ a_0^0 \rightarrow$	(4.5	+	7.0 1.8) × 10	4	_
$K^+K^- \ \phi(1680)\pi^+, \ \phi \rightarrow K^+K^-$	(4.9	+	4.0 1.9) × 10 ⁻	5	_
$\phi\pi^+$, ϕo K $^+$ K $^-$	(2.69	+	0.07 0.08) × 10 ⁻	3	647
$\phi\pi^+$	(5.70	\pm	0.14) × 10 ⁻¹	3	647
$K^+K^-\pi^+\pi^0$	(6.62	\pm	0.32	$) \times 10^{-3}$	3	682
$K_S^0 K_S^0 \pi^+$	(2.70	\pm	0.13	$) \times 10^{-3}$	3	741
$K_S^0 K_S^0 \pi^+ K_S^0 K_S^0 \pi^+ \pi^0$	(1.34	\pm	0.21	$) \times 10^{-3}$	3	679
$K_S^{\vec{0}}K^{+}\eta$	(1.8	\pm	0.5) × 10	4	516
$K^+K^0_S\pi^+\pi^-$	(1.89	\pm	0.13	$) \times 10^{-3}$	3	678
$K_S^0 K^{+} \pi^0 \pi^0$	(5.8	\pm	1.3) × 10	4	683
$K_S^{0}K^{-}2\pi^{+}$	(2.27	\pm	0.13	$) \times 10^{-3}$	3	678
$K^+K^-2\pi^+\pi^-$	(2.3	\pm	1.2) × 10	4	601
A few poorly measured branchir	ng frac	tions:					
$\phi \pi^+ \pi^0$	(2.3	\pm	1.0) %		619
ϕho^+	<	1.5			%	CL=90%	260
$\kappa + \kappa - \pi + \pi^0$ non ϕ	,	1 5	+	0.7) 0/		600

Doubly Cabibbo-suppressed modes

	y		
$K^+\pi^0$	$(2.08 \pm 0.21) \times 10^{-4}$	S=1.4	864
$K^+\eta$	$(1.25 \pm 0.16) \times 10^{-4}$	S=1.1	776
$K^+ \eta'(958)$	$(1.85 \pm 0.20) \times 10^{-4}$		571
$K^{+} 2\pi^{0}$	$(2.1 \pm 0.4) \times 10^{-4}$		847
$K^*(892)^+\pi^0$	$(3.4 \pm 1.4) \times 10^{-4}$		714
$K^+\pi^+\pi^-$	$(4.91 \pm 0.09) \times 10^{-4}$		846
$\mathcal{K}^+ ho^0$	$(1.9 \pm 0.5) \times 10^{-4}$		679
$K^+\eta\pi^0$	$(2.1 \pm 0.5) \times 10^{-4}$		726
$K^*(892)^+ \eta$	$(\begin{array}{ccc} 4.4 & + \begin{array}{cc} 1.8 \\ - & 1.5 \end{array}) imes 10^{-4}$		586

HTTP://PDG.LBL.GOV

Page 45

$K^*(892)^0\pi^+$, $K^*(892)^0 o$	$(2.3 \pm 0.4) \times 10^{-4}$	714
$K^{+}\pi^{-}$ $K^{+}f_{0}(980)$, $f_{0}(980) ightarrow$	(4.4 \pm 2.6) \times 10 ⁻⁵	_
$K_2^+\pi^ K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0 o$	(3.9 ± 2.7) \times 10^{-5}	_
$K^+\pi^-$ $K^+\pi^+\pi^-$ nonresonant	not seen	846
$K^{+}\pi^{+}\pi^{-}\pi^{0}$	$(1.21 \pm 0.09) \times 10^{-3}$	817
$K^+\pi^+\pi^-\pi^0$ nonresonant	$(1.10 \pm 0.07) \times 10^{-3}$	817
$K^+\omega$	$(5.7 \begin{array}{cc} + 2.5 \\ - 2.1 \end{array}) \times 10^{-5}$	675
$2K^{+}K^{-}$	(6.14 ± 0.11) $\times 10^{-5}$	550
$\phi(1020)^0 K^+$	$< 2.1 \times 10^{-5} CL = 90\%$	_
$K^+ \phi$ (1020), $\phi \rightarrow K^+ K^-$	$(4.4 \pm 0.6) \times 10^{-6}$	_
$K^+(K^+K^-)$ s_{-wave}	$(5.77 \pm 0.12) \times 10^{-5}$	550

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

•	• •	•	•	,	
$\pi^+e^+e^-$	C1	< 1.1		$\times 10^{-6}$ CL=90%	930
$\pi^{+}\pi^{0}e^{+}e^{-}$		< 1.4		\times 10 ⁻⁵ CL=90%	925
$\pi^+\phi$, ϕo $\mathrm{e}^+\mathrm{e}^-$		[oo] (1.7	$^{+}$ 1.4 $^{-}$ 0.9	$) \times 10^{-6}$	_
$\pi^+\mu^+\mu^-$	C1	< 6.7		\times 10 ⁻⁸ CL=90%	918
$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		[oo] (1.8	\pm 0.8	$) \times 10^{-6}$	_
$\rho^+\mu^+\mu^-$	C1	< 5.6		\times 10 ⁻⁴ CL=90%	757
$K^{+}e^{+}e^{-}$		[pp] < 8.5		$\times 10^{-7} CL = 90\%$	870
$K^{+}\pi^{0}e^{+}e^{-}$		< 1.5		$\times 10^{-5}$ CL=90%	864
$K_S^0 \pi^+ e^+ e^-$		< 2.6		\times 10 ⁻⁵ CL=90%	_
$K_{S}^{0}K^{+}e^{+}e^{-}$		< 1.1		\times 10 ⁻⁵ CL=90%	792
$K^+\mu^+\mu^-$		[pp] < 5.4		\times 10 ⁻⁸ CL=90%	856
$\pi^+e^+\mu^-$	LF	< 2.1		\times 10 ⁻⁷ CL=90%	927
$\pi^+e^-\mu^+$	LF	< 2.2		$\times 10^{-7}$ CL=90%	927
$K^+e^+\mu^-$	LF	< 7.5		$\times 10^{-8}$ CL=90%	866
$K^+e^-\mu^+$	LF	< 1.0		\times 10 ⁻⁷ CL=90%	866
$\pi^{-}2e^{+}$	L	< 5.3		$\times 10^{-7}$ CL=90%	930
$\pi^{-}2\mu^{+}$	L	< 1.4		$\times 10^{-8}$ CL=90%	918
π^- e ⁺ μ^+	L	< 1.3		$\times 10^{-7} CL = 90\%$	927
$\rho^{-}2\mu^{+}$	L	< 5.6		$\times 10^{-4}$ CL=90%	757
$K^{-}2e^{+}$	L	< 9		\times 10 ⁻⁷ CL=90%	870
$K_S^0 \pi^- 2e^+$		< 3.3		\times 10 ⁻⁶ CL=90%	863
$\kappa^{-}\pi^{0}2e^{+}$		< 8.5		\times 10 ⁻⁶ CL=90%	864
$\mathcal{K}^-2\mu^+$	L	< 1.0		$\times 10^{-5}$ CL=90%	856
$\mathcal{K}^-e^+\mu^+$	L	< 1.9		\times 10 ⁻⁶ CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5		\times 10 ⁻⁴ CL=90%	703
Λe^{+}	L,B	< 1.1		\times 10 ⁻⁶ CL=90%	602

$\overline{\Lambda}e^+$	L.B	. 6 F	$\times 10^{-7}$ CL=90%	602
	L,D	< 6.5	× 10 · CL=90%	002
Σ^0e^+	L,B	< 1.7	$\times 10^{-6}$ CL=90%	554
$\overline{\Sigma}{}^0 e^+$	L,B	< 1.3	$\times 10^{-6}$ CL=90%	554
$\overline{n}e^+$		< 1.43	$\times 10^{-5}$ CL=90%	699
ne ⁺		< 2.91	$\times 10^{-5}$ CL=90%	699

D^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1864.84\pm0.05~{
m MeV}$$
 $m_{D^\pm}-m_{D^0}=4.822\pm0.015~{
m MeV}$ Mean life $\tau=(410.3\pm1.0)\times10^{-15}~{
m s}$ $c au=123.01~{
m \mu m}$

Mixing and related parameters

$$\begin{split} &|m_{D_1^0} - m_{D_2^0}| = (0.997 \pm 0.116) \times 10^{10} \ \hbar \ \text{s}^{-1} \\ &(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma = 2y = (1.394 \pm 0.056) \times 10^{-2} \\ &|q/p| = 0.995 \pm 0.016 \\ &A_{\Gamma} = (0.089 \pm 0.113) \times 10^{-3} \\ &\phi^{K_S^0 \pi \pi} = 0.02^{+0.04}_{-0.05} \\ &K^+ \pi^- \ \text{relative strong phase: } \cos \delta = 0.990 \pm 0.025 \\ &K^- \pi^+ \pi^0 \ \text{coherence factor } R_{K\pi\pi^0} = 0.792 \pm 0.033 \\ &K^- \pi^+ \pi^0 \ \text{average relative strong phase } \delta^{K\pi\pi^0} = (198 \pm 10)^\circ \\ &K^- \pi^- 2\pi^+ \ \text{coherence factor } R_{K3\pi} = 0.52^{+0.10}_{-0.09} \\ &K^- \pi^- 2\pi^+ \ \text{average relative strong phase } \delta^{K3\pi} = \\ &(149^{+26}_{-16})^\circ \quad (S = 1.4) \\ &D^0 \to K^- \pi^- 2\pi^+, \ R_{K3\pi} \ (\text{y} \cos \delta^{K3\pi} - \text{x} \sin \delta^{K3\pi}) = (-3.0 \pm 0.7) \times 10^{-3} \ \text{TeV}^{-1} \\ &K_S^0 K^+ \pi^- \ \text{coherence factor } R_{K_S^0 K\pi}^0 = 0.70 \pm 0.08 \\ &K_S^0 K^+ \pi^- \ \text{average relative strong phase } \delta^{K_S^0 K\pi} = (0 \pm 16)^\circ \\ &K^* K \ \text{coherence factor } R_{K^* K} = 0.94 \pm 0.12 \\ &K^* K \ \text{average relative strong phase } \delta^{K^* K} = (-17 \pm 18)^\circ \end{split}$$

CP-even fractions (labeled by the D^0 decay)

CP-even fraction in $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ decays = $(23.6 \pm 0.9)\%$ CP-even fraction in $D^0 \to \pi^+ \pi^- \pi^0$ decays = $(97.3 \pm 1.7)\%$ CP-even fraction in $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ decays = $(74.6 \pm 1.6)\%$ (S = 1.2) CP-even fraction in $D^0 \to \pi^+ \pi^- 2\pi^0$ decays = 0.68 ± 0.08 CP-even fraction in $D^0 \to 2\pi^+ 2\pi^- \pi^0$ decays = 0.44 ± 0.10 CP-even fraction in $D^0 \to \pi^+ \pi^- 3\pi^0$ decays = $0.52^{+0.34}_{-0.27}$

CP-even fraction in $D^0 \rightarrow 2\pi^+ 2\pi^- 2\pi^0$ decays = 0.79 \pm 0.26 CP-even fraction in $D^0 \rightarrow K^+ K^- \pi^0$ decays = (73 \pm 6)% CP-even fraction in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays = (74.1 \pm 3.0)%

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$\begin{split} &A_{CP}(K^+K^-) = (4\pm 5)\times 10^{-4} \\ &A_{CP}(2K_S^0) = (-1.9\pm 1.1)\% \quad (S=1.1) \\ &A_{CP}(\pi^+\pi^-) = (0.13\pm 0.14)\% \\ &A_{CP}(\pi^0\pi^0) = (0.0\pm 0.6)\% \\ &A_{CP}(\rho\gamma) = (6\pm 15)\times 10^{-2} \\ &A_{CP}(\overline{K}^*(892)^0\gamma) = (-0.3\pm 2.0)\times 10^{-2} \\ &A_{CP}(\pi^+\pi^-\pi^0) = (0.4\pm 0.4)\% \\ &A_{CP}(\eta\pi^+\pi^-) \text{ in } D^0, \overline{D}^0 \to \eta\pi^+\pi^- = (0.9\pm 1.3)\times 10^{-2} \\ &A_{CP}(\rho(770)^+\pi^- \to \pi^+\pi^-\pi^0) = (1.2\pm 0.9)\% \quad [qq] \\ &A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1\pm 3.0)\% \quad [qq] \\ &A_{CP}(\rho(770)^-\pi^+ \to \pi^+\pi^-\pi^0) = (-1.0\pm 1.7)\% \quad [qq] \\ &A_{CP}(\rho(1450)^+\pi^- \to \pi^+\pi^-\pi^0) = (-20\pm 40)\% \quad [qq] \\ &A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (6\pm 9)\% \quad [qq] \\ &A_{CP}(\rho(1450)^-\pi^+ \to \pi^+\pi^-\pi^0) = (6\pm 9)\% \quad [qq] \\ &A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (13\pm 9)\% \quad [qq] \\ &A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (8\pm 11)\% \quad [qq] \\ &A_{CP}(\rho(1700)^-\pi^+ \to \pi^+\pi^-\pi^0) = (8\pm 11)\% \quad [qq] \\ &A_{CP}(f_0(1370)^0\pi^0 \to \pi^+\pi^-\pi^0) = (0\pm 35)\% \quad [qq] \\ &A_{CP}(f_0(1370)\pi^0 \to \pi^+\pi^-\pi^0) = (0\pm 38)\% \quad [qq] \\ &A_{CP}(f_0(1500)\pi^0 \to \pi^+\pi^-\pi^0) = (0\pm 24)\% \quad [qq] \\ &A_{CP}(f_2(1270)\pi^0 \to \pi^+\pi^-\pi^0) = (6\pm 8)\% \quad [qq] \\ &A_{CP}(f_2(1270)\pi^0 \to \pi^+\pi^-\pi^0) = (6\pm 8)\% \quad [qq] \\ &A_{CP}(\pi^+\pi^-2\pi^0) \text{ in } D^0, \ \overline{D}^0 \to \pi^+\pi^-2\pi^0 = (-2.5\pm 2.0)\% \\ &A_{CP}(\pi(1300)^+\pi^- \to 2\pi^+2\pi^-) = (5\pm 6)\% \\ &A_{CP}(\pi(1300)^+\pi^- \to 2\pi^+2\pi^-) = (5\pm 6)\% \\ &A_{CP}(\pi(1300)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 30)\% \\ &A_{CP}(\pi(1300)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 30)\% \\ &A_{CP}(\pi_1(1260)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 30)\% \\ &A_{CP}(\pi_1(1300)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 30)\% \\ &A_{CP}(\pi_2(1670)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 30)\% \\ &A_{CP}(\pi_2(1670)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 3)\% \\ &A_{CP}(\pi_2(1670)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 3)\% \\ &A_{CP}(\pi_2(1670)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 6)\% \\ &A_{CP}(\pi_2(1670)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 6)\% \\ &A_{CP}(\pi_2(1670)^+\pi^- \to 2\pi^+2\pi^-) = (-6\pm 6)\% \\ &A_{CP}(2\rho(770)^0 \to 2\pi^+2\pi^-) = (-28\pm 24)\% \\ \end{aligned}$$

```
A_{CP}(\pi^+\pi^-\pi^0\eta) in D^0, \overline{D}{}^0 \to \pi^+\pi^-\pi^0\eta = (-6 \pm 6) \times 10^{-2}
A_{CP}(K^+K^-\pi^0) = (-1.0 \pm 1.7)\%
A_{CP}(K^*(892)^+K^- \to K^+K^-\pi^0) = (-0.9 \pm 1.3)\%^{[qq]}
A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\%^{[qq]}
A_{CP}((K^+\pi^0)_{S-wave}K^- \to K^+K^-\pi^0) = (7 \pm 15)\%^{[qq]}
A_{CP}(\phi(1020)\pi^0 \to K^+K^-\pi^0) = (1.1 \pm 2.2)\%^{[qq]}
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\%^{[qq]}
A_{CP}(a_0(980)^0\pi^0 \to K^+K^-\pi^0) = (-5 \pm 16)\%^{[qq]}
A_{CP}(f_2'(1525)\pi^0 \to K^+K^-\pi^0) = (0 \pm 160)\%^{[qq]}
A_{CP}(\bar{K}^*(892)^-K^+ \to K^+K^-\pi^0) = (-5 \pm 4)\%^{[qq]}
A_{CP}(K^*(1410)^-K^+ \rightarrow K^+K^-\pi^0) = (-17 \pm 29)\%^{[qq]}
A_{CP}((K^-\pi^0)_{S-wave}K^+ \to K^+K^-\pi^0) = (-10 \pm 40)\%^{[qq]}
A_{CP}(K^+K^-\eta) in D^0, \overline{D}{}^0 \to K^+K^-\eta = (-1.4 \pm 3.5) \times 10^{-2}
A_{CP}(\phi(1020)\eta \to K^+K^-\eta) \text{ in } D^0, \overline{D}{}^0 \to \phi(1020)\eta = (-2 \pm 1000)\eta
     4) \times 10<sup>-2</sup>
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_S^0\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_S^{0}\eta') = (1.0 \pm 0.7)\%
A_{CP}(K_{S}^{0}\phi) = (-3 \pm 9)\%
A_{CP}(K^-\pi^+) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-) = (-0.9 \pm 1.4)\%
A_{CP}(D_{CP(+1)} \rightarrow K^{\mp}\pi^{\pm}) = (13.1 \pm 1.0)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^{\mp}\pi^{\pm}\eta) in D^0, \overline{D}{}^0 \rightarrow K^{\mp}\pi^{\pm}\eta = (-1.9 \pm 1.6) \times 10^{-2}
A_{CP}(K_S^0\pi^0\eta) in D^0, \overline{D}{}^0 \to K_S^0\pi^0\eta = (-3.9 \pm 3.3) \times 10^{-2}
A_{CP}(K^{\mp}\pi^{\pm}\pi^{0}\eta) in D^{0}, \overline{D}{}^{0} \rightarrow K^{\mp}\pi^{\pm}\pi^{0}\eta = (-8 \pm 5) \times 10^{-2}
A_{CP}(K^*(892)^-\pi^+ \to K_S^0\pi^+\pi^-) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
A_{CP}(\overline{K}^0 \rho^0 \to K_S^0 \pi^+ \pi^-) = (-0.1 \pm 0.5)\%
A_{CP}(\overline{K}^0\omega \rightarrow K_S^0\pi^+\pi^-) = (-13 \pm 7)\%
A_{CP}(\overline{K}^0 f_0(980) \rightarrow K_S^0 \pi^+ \pi^-) = (-0.4 \pm 2.7)\%
A_{CP}(\overline{K}^0 f_2(1270) \rightarrow \overline{K}_S^0 \pi^+ \pi^-) = (-4 \pm 5)\%
A_{CP}(\overline{K}^0 f_0(1370) \to K_S^{0} \pi^+ \pi^-) = (-1 \pm 9)\%
A_{CP}(\overline{K}^0 \rho^0(1450) \to \overline{K}_S^0 \pi^+ \pi^-) = (-4 \pm 10)\%
A_{CP}(\overline{K}^0 f_0(600) \to K_S^0 \pi^+ \pi^-) = (-3 \pm 5)\%
A_{CP}(K^*(1410)^-\pi^+ \rightarrow K_S^0\pi^+\pi^-) = (-2 \pm 9)\%
A_{CP}(K_0^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (4 \pm 4)\%

A_{CP}(K_0^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%
A_{CP}(K_2^*(1430)^-\pi^+ \to K_5^0\pi^+\pi^-) = (3 \pm 6)\%
A_{CP}(K_2^*(1430)^+\pi^- \to K_5^0\pi^+\pi^-) = (-10 \pm 32)\%
```

$$A_{CP}(K^-\pi^+\pi^+\pi^-) = (0.2 \pm 0.5)\%$$

$$A_{CP}(K^+\pi^-\pi^+\pi^-) = (-2 \pm 4)\%$$

$$A_{CP}(K^+K^-\pi^+\pi^-) = (1.3 \pm 1.7)\%$$

$$A_{CP}(2K_S^0\pi^+\pi^-) \text{ in } D^0, \ \overline{D}^0 \to 2K_S^0\pi^+\pi^- = (-2.5 \pm 1.4) \times 10^{-2}$$

$$A_{CP}(K_1^*(1270)^+K^- \to K^+K^-\pi^+\pi^-) = (-2.3 \pm 1.7)\%$$

$$A_{CP}(K_1^*(1270)^+K^- \to K^{*0}\pi^+K^-) = (-1 \pm 10)\%$$

$$A_{CP}(K_1^*(1270)^-K^+ \to \overline{K^{*0}}\pi^-K^+) = (-10 \pm 32)\%$$

$$A_{CP}(K_1^*(1270)^-K^+ \to K^+K^-\pi^+\pi^-) = (1.7 \pm 3.5)\%$$

$$A_{CP}(K_1^*(1270)^-K^+ \to \rho^0K^-K^+) = (-7 \pm 17)\%$$

$$A_{CP}(K_1^*(1270)^-K^+ \to \rho^0K^-K^+) = (10 \pm 13)\%$$

$$A_{CP}(K_1^*(1400)^+K^- \to K^+K^-\pi^+\pi^-) = (-4.4 \pm 2.1)\%$$

$$A_{CP}(K^*(1410)^+K^- \to K^{*0}\pi^+K^-) = (-20 \pm 17)\%$$

$$A_{CP}(K^*(1680)^+K^- \to K^+K^-\pi^+\pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^*(1680)^+K^- \to K^+K^-\pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^*(170)^-K^- \to K^-K^-\pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^*(170)^-K^- \to K^-K^-\pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^*(170)^-K^- \to K^-K^-\pi^$$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.154 \pm 0.029)\%$$

χ^2 tests of *CP*-violation (*CPV*) p-values

Local
$$CPV$$
 in D^0 , $\overline{D}{}^0 \to \pi^+\pi^-\pi^0 = 10.6\%$
Local CPV in D^0 , $\overline{D}{}^0 \to \pi^+\pi^-\pi^+\pi^- = (0.6 \pm 0.2)\%$
Local CPV in D^0 , $\overline{D}{}^0 \to K_S^0\pi^+\pi^- = 96\%$
Local CPV in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^0 = 16.6\%$
Local CPV in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_{T}(K^{+}K^{-}\pi^{+}\pi^{-}) = (2.9 \pm 2.2) \times 10^{-3}$$
 [ii]
 $A_{Tviol}(2K_{S}^{0}\pi^{+}\pi^{-})$ in D^{0} , $\overline{D}^{0} \rightarrow 2K_{S}^{0}\pi^{+}\pi^{-} = (-1.9 \pm 1.4) \times 10^{-2}$
 $A_{Tviol}(K_{S}^{0}\pi^{+}\pi^{-}\pi^{0})$ in D^{0} , $\overline{D}^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}\pi^{0} = (-0.3^{+1.4}_{-1.6}) \times 10^{-3}$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES	Fracti	on (Γ _i /Γ)	Scale factor/ Confidence leve(•
	Topological	modes		
0-prongs	[rr] (15	± 6)	%	_
2-prongs	(71	± 6)	%	_
4-prongs	[ss] (14)	6 ± 0.5)	%	_
6-prongs	[tt] (6	5 ± 1.3)	$\times 10^{-4}$	_
	Inclusive m	odes		
e^+ anything	[<i>uu</i>] (6	49 ± 0.11)	%	_
μ^+ anything	(6	8 ± 0.6)	%	_
K^- anything	(54.	7 ± 2.8)	% S=1.3	_
K_S^0 anything	(20	75 ± 0.23)	%	_
K^{+} anything	(3.	4 ± 0.4)	%	_
$K^*(892)^-$ anything	(15	± 9) °	%	_
$\overline{K}^*(892)^0$ anything	(9	± 4) °	%	_
$K^*(892)^+$ anything	< 3.	6	% CL=90%	_
$K^*(892)^0$ anything	(2.	8 ± 1.3)	%	_
η anything	(9.	5 ± 0.9) °	%	_
η' anything	(2.	48 ± 0.27)	%	_
ϕ anything	(1.	08 ± 0.04)	%	_
$\pi^+\pi^+\pi^-$ anything	(17.	60 ± 0.25)	%	_
invisibles	< 9.	4	$\times 10^{-5}$ CL=90%	_
HTTP://PDG.LBL.GOV	Page 51	. Cre	ated: 4/24/2025	13:07

Semileptonic modes

$K^-e^+ u_e$	(3.549 ± 0.026) %	S=1.2	867
$\mathcal{K}^-\mu^+ u_\mu$	(3.41 \pm 0.04) %		864
$K^*(892)^- e^+ \nu_e$	($2.15~\pm~0.16$) %		719
$K^*(892)^- \mu^+ u_{\mu}$	(1.89 \pm 0.24) %		714
$K^-\pi^0e^+\nu_e$	$\left(\begin{array}{cc} 1.6 & + \begin{array}{cc} 1.3 \\ - \end{array}\right)\%$		861
$\overline{K}^0\pi^-e^+\nu_e$	(1.44 \pm 0.04) %		860
$(\overline{K}{}^0\pi^-)$ s-wave $\mathrm{e}^+\nu_{\mathrm{e}}$	$(7.9 \pm 1.7) \times 10^{-4}$		860
$K^-\pi^+\pi^-e^+\nu_e$	$(2.8 + 1.4 \ -1.1) \times 10^{-4}$		843
$K_1(1270)^- e^+ u_e$	(1.01 ± 0.18) $\times 10^{-3}$		511
$\mathcal{K}^-\pi^+\pi^-\mu^+ u_\mu$	$< 1.3 \times 10^{-3}$	CL=90%	821
$(\overline{\mathit{K}}^*(892)\pi)^-\mu^+ u_\mu$	$< 1.5 \times 10^{-3}$	CL=90%	692
$\pi^-e^+ u_e$	$(2.91 \pm 0.04) \times 10^{-3}$		927
$\pi^-\mu^+ u_\mu$	$(2.67 \pm 0.12) \times 10^{-3}$	S=1.3	924
$\pi^-\pi^0_{\cdot}e^+ u_e$	$(1.45 \pm 0.07) \times 10^{-3}$		922
$ ho^- e^+ u_e$	$(1.50 \pm 0.12) \times 10^{-3}$	S=1.9	771
$ ho^-\mu^+ u_\mu$	$(1.35 \pm 0.13) \times 10^{-3}$		767
$a(980)^- e^+ \nu_e$, $a^- \rightarrow \eta \pi^-$	(1.33 $^{+}_{-}$ 0.34) \times 10 ⁻⁴		-
$b_1(1235)^- e^+ \nu_e, \ b_1^- \to \ \omega \pi^-$	$< 1.12 \times 10^{-4}$	CL=90%	_

Hadronic modes with one \overline{K}

i laulolli	C 1110	ACS WILL ONC A	
$K^-\pi^+$		(3.947± 0.030) % S=1.2	861
$K_S^0 \pi^0$		($1.240\pm\ 0.022$) %	860
$K_{S}^{0}\pi^{0}$ $K_{L}^{0}\pi^{0}$ $K_{L}^{0}\eta$		$(9.76 \pm 0.32) \times 10^{-3}$	860
$K_L^0 \eta$		$(4.34 \pm 0.16) \times 10^{-3}$	772
$K_I^0 \eta'$		$(8.12 \pm 0.35) \times 10^{-3}$ S=1.3	565
$\mathcal{K}_L^{ar{0}}\omega$		(1.16 ± 0.04) %	670
$K_S^{ar{0}}\pi^+\pi^-$	[<i>jj</i>]	(2.80 ± 0.18) % S=1.1	. 842
$K_S^0 ho^0$		$(6.3 \begin{array}{cc} + 0.6 \\ - 0.8 \end{array}) \times 10^{-3}$	674
$K^0_S\omega$, $\omega o\pi^+\pi^-$		$(2.0 \pm 0.6) \times 10^{-4}$	670
$\mathcal{K}_{\mathcal{S}}^{ar{0}}(\pi^+\pi^-)_{\mathcal{S}-wave}$		$(3.3 \pm 0.8) \times 10^{-3}$	842
$K_S^0 f_0(980), f_0 \to \pi^+ \pi^-$		(1.20 $^{+}_{-}$ 0.40) \times 10 ⁻³	549
$K_S^0 f_0(1370), f_0 \to \pi^+ \pi^-$		$(2.8 \ \stackrel{+}{-} \stackrel{0.9}{1.3} \) \times 10^{-3}$	†
$K_S^0 f_2(1270), f_2 \to \pi^+ \pi^-$		$(9 {}^{+10}_{-6}) \times 10^{-5}$	262
$K^*(892)^-\pi^+$, $K^{*-} ightarrow$		$(1.64 \ ^{+} \ ^{0.14} \) \%$	711
$egin{align*} \mathcal{K}_0^*(1430)^-\pi^+, & \mathcal{K}_0^{*-} & ightarrow \ \mathcal{K}_S^0\pi^- & \end{array}$		$(2.67 \ ^{+} \ ^{0.40}_{-} \) \times 10^{-3}$	378

$$\begin{array}{c} K_2^*(1430)^-\pi^+, \quad K_2^{*-} \to \\ K_0^S\pi^- \\ K^*(1680)^-\pi^+, \quad K^{*+} \to \\ K_0^S\pi^- \\ K^*(1680)^+\pi^-, \quad K^{*+} \to \\ K_0^S\pi^+ \\ K^*(392)^+\pi^-, \quad K^{*+} \to \\ K_0^*(1430)^+\pi^-, \quad K_0^{*+} \to \\ K_0^S\pi^+ \\ K_0^*(1430)^+\pi^-, \quad K_0^{*+} \to \\ K_0^S\pi^+ \\ K_0^*(1430)^+\pi^-, \quad K_0^{*+} \to \\ K_0^S\pi^+ \\ K_0^S\pi^+ \\ K_1^S\pi^+ \\ K_2^S\pi^+ \\ K_2^S\pi$$

$\overline{K}^*(892)^0 \rho^0$ transverse,		(1.2	±	0.4) %		417
$K^{-}a_{1}^{-}(1260)^{+}, a_{1}^{+} \rightarrow$		(4.32	±	0.32) %		327
$ ho^0\pi^+ \ K_1(1270)^-\pi^+, \ K_1^- ightarrow$		(3.9	±	0.4) × 10 ⁻³		_
$K^-\pi^+\pi^-$ total $K_1(1270)^-\pi^+,~K_1^- ightarrow$) × 10 ⁻⁴		484
$\overline{K}^*(892)^0\pi^-$, $\overline{K}^{*0} o$		(0.0	工	2.3) × 10		404
$K^-\pi^+ \ K^-2\pi^+\pi^-$ nonresonant		,	1 01		0.07	\ 0/		010
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	[xx]		1.81 5.2					813 813
$K_S^0 \eta, \eta \rightarrow \pi^+ \pi^- \pi^0$	[^^]					$) \times 10^{-3}$		772
$K_S^0\omega$, $\omega \to \pi^+\pi^-\pi^0$		•				$) \times 10^{-3}$		670
$K^{-}\pi^{+}2\pi^{0}$		•	8.86			*		815
$K^{-}\pi^{+}3\pi^{0}$		•				$) \times 10^{-3}$		774
$K_{S}^{0}\pi^{+}\pi^{-}2\pi^{0}$			1.27					771
$K^{-}2\pi^{+}\pi^{-}\pi^{0}$		(4.3	\pm	0.4) %		771
$\overline{K}^*(892)^0\pi^+\pi^-\pi^0$, $\overline{K}^{*0}\to$		(1.3	\pm	0.6) %		643
$\overline{K}^{+}\pi^{+}$ $\overline{K}^{*}(892)^{0}\omega, \overline{K}^{*0} \rightarrow K^{-}\pi^{+}, \omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$		(6.5	±	3.0	$) \times 10^{-3}$		410
$K^-\pi^+\omega$		(3.39	+	0.10) %		605
$\overline{K}^*(892)^0\omega$			1.1					410
$K_{S}^{0}\pi^{0}\omega$						$) \times 10^{-3}$		605
$\kappa_{S}^{0}\eta\pi^{0}$			1.01					721
$K_{S}^{0} a_{0}(980), a_{0} \rightarrow \eta \pi^{0}$		(1.20	\pm	0.28) %		_
$\overline{K}^*(892)^0 \eta, \ \overline{K}^{*0} \to \ K_S^0 \pi^0$		(2.9	\pm	0.7	$) \times 10^{-3}$		_
$K^-\pi^+\eta$		(1.88	\pm	0.05) %	S=1.4	721
$K^*(892)^0 \eta$, $K^{*0} \to K^- \pi^+$		(8.9	+	0.8 0.6	$) \times 10^{-3}$		_
$a_0(980)^+{\cal K}^-,\ a_0^+ o\ \eta\pi^+$		(7.4	+	0.9 0.7	$)\times10^{-3}$		_
$K_2^*(1980)^-\pi^+, \ K_2^{*-} \to K^-\eta$		(2.2	+	1.7 1.9) × 10 ⁻⁴		-
$K^-\pi^+\pi^0\eta$		(4.49	+	0.27) × 10 ⁻³		656
$K_{S}^{0}\pi^{+}\pi^{-}\eta$						$) \times 10^{-3}$		651
$K_{S}^{0} 2\pi^{0} \eta$						$) \times 10^{-3}$		656
$K_{S}^{0}2\pi^{+}2\pi^{-}$						$) \times 10^{-3}$		768
$K_{S}^{0} \rho^{0} \pi^{+} \pi^{-}$, no $K^{*}(892)^{-}$						$) \times 10^{-3}$		_
$K^*(892)^-2\pi^+\pi^-$,						$) \times 10^{-4}$		642
$K^*(892)^- ightarrow~K^0_S\pi^-$, no $ ho^0$,						
$K^*(892)^- \rho^0 \pi^+$,		ſ	1 6	+	0.6) × 10 ⁻³		230
$K^*(892)^- \rightarrow K_S^0 \pi^-$,	0		0.0	, ^ =0		_50

$$K_S^0 2\pi^+ 2\pi^-$$
 nonresonant $< 1.2 \times 10^{-3} \text{ CL} = 90\%$ 768 $K^- 3\pi^+ 2\pi^ (2.2 \pm 0.6) \times 10^{-4}$ 713

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.

$K_{S}^{0}\eta$	(5.09 ± 0.1	$3) \times 10^{-3}$		772
$K_S^0\omega$	(1.11 ± 0.0	6)%		670
$K_S^{\bar{0}} \eta'(958)$	(9.49 ± 0.3	$2) \times 10^{-3}$		565
$\overline{K}^*(892)^0 \pi^+ \pi^- \pi^0$	(1.9 ± 0.9) %		643
$\overline{K}^*(892)^0 \eta$	(1.41 ± 0.1	2)%		583
$K^-\pi^+\eta'(958)$	(6.43 ± 0.3	4) \times 10 ⁻³		479
$K_S^0 \eta'(958) \pi^0$	(2.52 ± 0.2	7) \times 10 ⁻³		479
$\overline{K}^*(892)^0 \eta'(958)$	< 1.0	$\times 10^{-3}$	CL=90%	119

Hadronic modes with three K's

Pionic modes

$\pi^+\pi^-$	$(1.454\pm\ 0.024)\times 10^{-3}$	S=1.4	922
$2\pi^0$	(8.26 ± 0.25) $\times 10^{-4}$		923
$\pi^{+}\pi^{-}\pi^{0}$	($1.49~\pm~0.07$) %	S=2.3	907
$\rho^+\pi^-$	(1.01 ± 0.05) %		764
$ ho^{0}\pi^{0}$	$(3.86 \pm 0.24) \times 10^{-3}$		764
$ ho^-\pi^+$	$(5.15 \pm 0.26) \times 10^{-3}$		764
$ ho$ (1450) $^+\pi^-$, $ ho^+ ightarrow~\pi^+\pi^0$	$(1.6 \pm 2.1) \times 10^{-5}$		_

$\begin{array}{c} \rho(1450)^{0}\pi^{0}, \ \rho^{0} \rightarrow \pi^{+}\pi^{-} \\ \rho(1450)^{-}\pi^{+}, \ \rho^{-} \rightarrow \pi^{-}\pi^{0} \\ \rho(1700)^{+}\pi^{-}, \ \rho^{+} \rightarrow \pi^{+}\pi^{0} \\ \rho(1700)^{0}\pi^{0}, \ \rho^{0} \rightarrow \pi^{+}\pi^{-} \\ \rho(1700)^{-}\pi^{+}, \ \rho^{-} \rightarrow \pi^{-}\pi^{0} \\ f_{0}(980)\pi^{0}, \ f_{0} \rightarrow \pi^{+}\pi^{-} \\ f_{0}(500)\pi^{0}, \ f_{0} \rightarrow \pi^{+}\pi^{-} \\ f_{0}(1370)\pi^{0}, \ f_{0} \rightarrow \pi^{+}\pi^{-} \\ f_{0}(1710)\pi^{0}, \ f_{0} \rightarrow \pi^{+}\pi^{-} \\ f_{0}(1710)\pi^{0}, \ f_{0} \rightarrow \pi^{+}\pi^{-} \\ f_{2}(1270)\pi^{0}, \ f_{2} \rightarrow \pi^{+}\pi^{-} \\ \pi^{+}\pi^{-}\pi^{0} \text{ nonresonant} \\ 3\pi^{0} \\ 2\pi^{+}2\pi^{-} \\ a_{1}(1260)^{+}\pi^{-}, \ a_{1}^{+} \rightarrow \end{array}$		2.7 6.1 7.4 4.8 3.7 1.22 5.5 5.8 4.6 1.97 1.3 2.0 7.56	$\begin{smallmatrix}\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&\pm&$	0.4 1.5 1.8 1.1 0.9 0.22 2.1 1.6 0.21 0.4 0.5 0.20	$\begin{array}{c})\times 10^{-5} \\)\times 10^{-4} \\)\times 10^{-4} \\)\times 10^{-4} \\)\times 10^{-5} \\)\times 10^{-4} \\)\times 10^{-4} \\)\times 10^{-4} \\)\times 10^{-3} \\)\times 10^{-3} \end{array}$	- - - - - - - - 907 908 880
$2\pi^+\pi^-$ total $a_1(1260)^+\pi^-$, $a_1^+ ightarrow$ $ ho^0\pi^+$ <i>S</i> -wave	(3.13	±	0.21) × 10 ⁻³	_
$a_1(1260)^+\pi^-,~~a_1^+ ightarrow ho^0\pi^+$ D -wave	(1.9	\pm	0.5) × 10 ⁻⁴	_
$a_1(1260)^+\pi^-,~a_1^+ ightarrow \sigma\pi^+$	(6.4	\pm	0.7	$) \times 10^{-4}$	_
$a_1(1260)^-\pi^+,~~a_1^- ightarrow ho^0\pi^-S$ -wave	(2.3	±	0.9) × 10 ⁻⁴	-
$a_1(1260)^-\pi^+, a_1^- \rightarrow \sigma\pi^-$	(6.0	\pm	3.4	$) \times 10^{-5}$	_
$\pi(1300)^{+}\pi^{-}, \ \pi(1300)^{+} \rightarrow$) × 10 ⁻⁴	_
$\sigma\pi^+$ $\pi(1300)^-\pi^+$, $\pi(1300)^- o$) × 10 ⁻⁴	_
$\sigma\pi^-$	(۷.5	_	۷.۷	, ^ 10	
$a_1(1640)^+\pi^-$, $a_1^+ ightarrow ho^0\pi^+$ <i>D</i> -wave	(3.2	\pm	1.6	$) \times 10^{-4}$	_
$a_1(1640)^+\pi^-$, $a_1^+ o \sigma\pi^+$	1	1 0	_	1 /) × 10 ⁻⁴	_
$\pi_1(1640)^+\pi^-, \ \pi_2^+ \rightarrow$						_
$f_2(1070)^+\pi^-$, $f_2^0 ightarrow \pi^+\pi^-$	(∠.U	±	0.9) × 10 ⁻⁴	_
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \to \ \sigma\pi^+$	(2.6	\pm	1.0	$) \times 10^{-4}$	_
$2\rho^0$ total) × 10 ⁻³	518
$2 ho^0$, parallel helicities					$) \times 10^{-5}$	_
$2 ho^0$, perpendicular helici-					$) \times 10^{-4}$	_
ties	`				,	
$2 ho^0$, longitudinal helicities					$) \times 10^{-3}$	_
$2\rho(770)^{0}$, <i>S</i> -wave					$) \times 10^{-4}$	_
$2\rho(770)^{0}$, <i>P</i> -wave					$) \times 10^{-4}$	_
$2\rho(770)^0$, <i>D</i> -wave	(6.2	\pm	3.0	$) \times 10^{-4}$	-

Resonant
$$(\pi^+\pi^-)\pi^+\pi^-$$
 (1.51 ± 0.12) × 10^{-3}
3-body total
 $\sigma\pi^+\pi^-$ (6.2 ± 0.9) × 10^{-4}
 $\sigma\rho(770)^0$ (5.0 ± 2.5) × 10^{-4}
 $f_0(980)\pi^+\pi^-$, $f_0 \rightarrow$ (1.8 ± 0.5) × 10^{-4}
 $\pi^+\pi^ f_2(1270)\pi^+\pi^-$, $f_2 \rightarrow$ (3.7 ± 0.6) × 10^{-4}
 $\pi^+\pi^ 2f_2(1270)$, $f_2 \rightarrow \pi^+\pi^-$ (1.6 ± 1.8) × 10^{-4}
 $f_0(1370)\sigma$, $f_0 \rightarrow$ (1.5 ± 0.5) × 10^{-3}

 $\pi^+\pi^-2\pi^0$ (1.002± 0.031)%
882
 $4\pi^0$ (7.6 ± 1.1) × 10^{-4}
 $4\pi^0$ (7.6 ± 1.1) × 10^{-4}
 $4\pi^0$ (1.98 ± 0.18) × 10^{-3}
 $\pi^+\pi^-3\pi^0$ (1.98 ± 0.18) × 10^{-3}
 $\pi^+\pi^-3\pi^0$ (1.53 ± 0.21) × 10^{-3}
 $\pi^+\pi^-3\pi^0$ (1.53 ± 0.21) × 10^{-3}
 $\pi^+\pi^-3\pi^0$ (1.53 ± 0.21) × 10^{-3}
 $\pi^+\pi^-\pi^-$ [yy] (1.16 ± 0.07) × 10^{-3}
 $\pi^+\pi^-\pi^-$ [yy] (1.33 ± 0.20) × 10^{-3}
 $\pi^0\pi^0\pi^0$ (3.8 ± 1.3) × 10^{-4}
 $\pi^0\pi^0\pi^0$ (3.9 ± 1.0) × 10^{-3}
 $\pi^0\pi^0\pi^0$ (3.9 ± 1.0) × 10^{-4}
 $\pi^0\pi^0\pi^0$ (4.9 ± 1.0) × 10^{-4}
 $\pi^0\pi^0\pi^0$ (5.0 ± 1.0

$K^*(1410)^+K^-,\;\;K^{*+} ightarrow K^0_S\pi^+$	(3.2	±	1.9	$) \times 10^{-4}$		_
$(K^-\pi^+)_{S-wave}K_S^0$	(6.0	\pm	2.9) × 10 ⁻⁴		739
$(\kappa_S^0\pi^+)_{S-wave}\kappa^-$) × 10 ⁻⁴		739
$a_0(980)^-\pi^+, a_0^- \to K_S^0K^-$) × 10 ⁻⁴		_
$a_0(1450)^-\pi^+, a_0^- \rightarrow$					$) \times 10^{-5}$		_
$K_{S}^{0}K^{-}$	`				•		
$a_2(1320)^-\pi^+$, $a_2^- o$	(5	\pm	5	$) \times 10^{-6}$		_
$K_{S}^{0}K^{-}$	`				•		
$\rho(1450)^{-}\pi^{+}, \ \rho^{-} \rightarrow \ K_{S}^{0}K^{-}$	(4.6	\pm	2.5	$) \times 10^{-5}$		_
$K_S^0 K^+ \pi^-$					$) \times 10^{-3}$	S=1.1	739
$K^*(892)^0 K_S^0, K^{*0} \rightarrow$					$) \times 10^{-4}$		608
$\mathcal{K}^+\pi^-$							
$K^*(892)^-K^+, K^{*-} \rightarrow$	(6.2	\pm	1.1	$) \times 10^{-4}$		_
$K_S^0\pi^-$							
$K^*(1410)^0 K_S^0, K^{*0} \rightarrow$	(5	±	8	$) \times 10^{-5}$		_
$K^{+}\pi^{+}$ $K^{*}(1410)^{-}K^{+}$, $K^{*-} ightarrow$	(2.6	+	2.0) × 10 ⁻⁴		_
$\kappa_0^0 \pi^-$	(2.0	_	2.0) × 10		
$(K^+\pi^-)_{S-wave}K_S^0$	(3.7	±	1.9) × 10 ⁻⁴		739
$(K_S^0\pi^-)_{S-wave}K^+$) × 10 ⁻⁴		739
$a_0(980)^+\pi^-, a_0^+ \rightarrow K_S^0K^+$) × 10 ⁻⁴		_
$a_0(1450)^+\pi^-$, $a_0^+\to$) × 10 ⁻⁵		_
$K_{\mathcal{S}}^{0}K^{+}$	`				•		
$\rho(1700)^{+}\pi^{-}, \ \rho^{+} \rightarrow \ K_{S}^{0}K^{+}$	(1.1	\pm	0.6	$) \times 10^{-5}$		_
$K^+K^-\pi^0$					$) \times 10^{-3}$		743
$K^*(892)^+ K^-$, $K^*(892)^+ o$					$) \times 10^{-3}$		_
$K^{+}\pi^{0}$,						
$K^*(892)^-K^+$, $K^*(892)^- o$	(5.4	±	0.4) × 10 ⁻⁴		_
$(K^+\pi^0)^{\pi^0}_{S-wave}K^-$	(2.43	±	0.18	$) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}^{S-wave}K^+$) × 10 ⁻⁴		743
$f_0(980)\pi^0$, $f_0 \to K^+K^-$					$) \times 10^{-4}$		_
$\phi\pi^0$, $\phi \rightarrow K^+K^-$	(6.6	\pm		$) \times 10^{-4}$		_
$2K_S^0\pi^0$		1.45			\times 10 ⁻⁴	CL=90%	740
$K^+K^-\eta$					$) \times 10^{-5}$		514
$\phi(1020)\eta$,				$) \times 10^{-4}$		489
$K^+K^-\eta$ nonresonant	(9.9	+	0.9 0.8	$) \times 10^{-5}$		514
$2K_S^0\eta$					$) \times 10^{-4}$		508
$K^+K^-\pi^0\pi^0$					$) \times 10^{-4}$		681
$K^+K^-\pi^+\pi^-$	(2.47	\pm	0.11	$) \times 10^{-3}$		677

Other $K\overline{K}X$ modes. They include all decay modes of the ϕ , η , and ω .

Radiative modes

$$ho^0 \gamma$$
 (1.82 \pm 0.32) $imes$ 10⁻⁵

$\omega \gamma$	< 2.4	$\times 10^{-4}$	CL=90%	768
$\phi\gamma$	(2.81 ± 0.1	19 $) \times 10^{-5}$		654
K^* (892) ⁰ γ	(4.1 ± 0.7	7) \times 10 ⁻⁴		719

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

		C V.G		(02111) 1110000		
$\mathit{K}^+\ell^-\overline{ u}_\ell$ via $\overline{\mathit{D}}{}^0$		[zz] <	2.2	$\times 10^{-5}$	CL=90%	_
K^{+} or $K^{*}(892)^{+}e^{-}\overline{\nu}_{e}$ via	1	<	6	$\times 10^{-5}$	CL=90%	_
$ \overline{D}{}^0 $						
$K^+\pi^-$	DC	($1.50 \pm$	$0.07) \times 10^{-4}$	S=3.0	861
$K^+\pi^-$ via DCS		($1.363\pm$	$0.025) \times 10^{-4}$		_
$\mathcal{K}^+\pi^-$ via $\overline{D}{}^0$		<	1.6	$\times 10^{-5}$	CL=95%	861
$K_S^0 \pi^+ \pi^- \text{in } D^0 o \overline{D}{}^0$		<	1.8	$\times 10^{-4}$	CL=95%	_
$K^*(892)^+\pi^-, K^{*+} \rightarrow K^0_S\pi^+$	DC	(1.13 +	$_{0.34}^{0.60} \text{)} \times 10^{-4}$		711
$K_0^*(1430)^+\pi^-, K_0^{*+} \rightarrow K_S^0\pi^+$		<	1.4	× 10 ⁻⁵		-
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow K_5^0\pi^+$	DC	<	3.4	× 10 ⁻⁵		_
$K^+\pi^-\pi^0$	DC	($3.06 \pm$	$0.16) \times 10^{-4}$	S=1.4	844
$K^+\pi^-\pi^0$ via $\overline{D}{}^0$		(7.6 +	$_{0.6}^{0.5}$) $\times 10^{-4}$		_
$K^{+}\pi^{-}2\pi^{0}$		<	3.6	$\times 10^{-4}$	CL=90%	815
$K^+\pi^+2\pi^-$ via DCS		($2.49~\pm$	$0.07) \times 10^{-4}$		_
$K^{+}\pi^{+}2\pi^{-}$	DC	($2.65 \pm$	$0.06) \times 10^{-4}$		813
$\mathcal{K}^+\pi^+2\pi^-$ via $\overline{D}{}^0$				$3.0) \times 10^{-6}$		812
μ^- anything via $\overline{D}{}^0$		<		× 10 ⁻⁴	CL=90%	-

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

•	` '	_		
C1	< 8.5	\times 10 ⁻⁷	CL=90%	932
C1	< 7.9	$\times 10^{-8}$	CL=90%	932
C1	< 3.1	\times 10 ⁻⁹	CL=90%	926
C1	< 4	\times 10 ⁻⁶	CL=90%	928
C1	< 1.8	\times 10 ⁻⁴	CL=90%	915
	< 2.1	\times 10 ⁻⁴	CL=90%	928
C1	< 3	\times 10 ⁻⁶	CL=90%	852
C1	< 5.3	\times 10 ⁻⁴	CL=90%	838
C1	< 7	\times 10 ⁻⁶	CL=90%	922
C1	< 1.0	\times 10 ⁻⁴	CL=90%	771
C1	(9.6 \pm	1.2) \times 10 ⁻⁷		894
	< 5.5	\times 10 ⁻⁷	CL=90%	_
C1	< 2.2	$\times10^{-5}$	CL=90%	754
C1	< 6	\times 10 ⁻⁶	CL=90%	768
	C1 C1 C1 C1 C1 C1 C1 C1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

HTTP://PDG.LBL.GOV Page 60

, ,+	C1		0.3			v. 10=	4 _	I 000/	751
$\omega \mu^+ \mu^ K^- K^+ e^+ e^-$	C1		8.3			× 10 ⁻¹		L=90%	751 701
	C1		1.1			× 10 ⁻		L=90%	791
$\phi e^{+}e^{-}$	C1		5.2			× 10 ⁻¹		L=90%	654
$K^{-}K^{+}\mu^{+}\mu^{-}$	C1			士	0.32) × 10 ⁻			710
$K^-K^+\mu^+\mu^-$ (non-res)			3.3			× 10 ⁻		L=90%	_
$\underline{\phi}\mu^{+}\mu^{-}$	C1		3.1			× 10 ⁻		L=90%	631
$\overline{K}^0 e^+ e^-$		[pp]	2.4			× 10	_	L=90%	866
$\overline{\mathcal{K}}^0 \mu^+ \mu^-$		[pp]	2.6			\times 10 ⁻⁷	⁴ C	L=90%	852
$\mathit{K}^-\pi^+e^+e^-$, 675 $<$		(4.0	\pm	0.5) × 10 ⁻¹	6		_
$m_{ee}~<$ 875 MeV									
$\mathit{K}^-\pi^+e^+e^-$, $1.005<$		<	5			× 10 ⁻	⁷ с	L=90%	_
$m_{ee} < 1.035 \text{ GeV}$									
$\overline{K}^*(892)^0 e^+ e^-$		[pp]	4.7			\times 10 ⁻¹		L=90%	719
$\mathcal{K}^-\pi^+\mu^+\mu^-$	C1	<	3.59			\times 10	⁴ с	L=90%	829
${\it K}^-\pi^+\mu^+\mu^-$, 675 $<$		(4.2	\pm	0.4) × 10 ⁻¹			_
$m_{\mu\mu}~<$ 875 MeV									
$\overline{K}^*(892)^0 \mu^+ \mu^-$		[pp]	2.4			\times 10 ⁻¹	⁵ с	L=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1		8.1			× 10	4 с	L=90%	863
$\mu^\pm\mathrm{e}^\mp$	LF	[aa] <	1.3			\times 10 ⁻¹		L=90%	929
$\pi^0\mathrm{e}^\pm\mu^\mp$	LF	[aa] <				× 10 ⁻¹		L=90%	924
$\eta e^{\pm} \mu^{\mp}$	LF	[aa] <				× 10 ⁻¹		L=90%	848
$\pi^+\pi^-e^{\pm}\mu^{\mp}$	LF	[aa] <				× 10 ⁻¹		L=90%	911
$\rho^0 e^{\pm} \mu^{\mp}$	LF	[aa] <				× 10 ⁻¹		L=90%	767
$\omega e^{\pm} \mu^{\mp}$	LF	[aa] <				× 10 ⁻		L=90%	764
$K^-K^+e^{\pm}\mu^{\mp}$	LF	[aa] <				× 10 ⁻¹		L=90%	754
$\phi e^{\pm} \mu^{\mp}$	LF	[aa] <				× 10	7 C	L=90%	648
$\frac{\varphi}{K^0} e^{\pm} \mu^{\mp}$	LF	[aa] <				× 10 × 10 ×		L=90%	863
$K^-\pi^+e^\pm\mu^\mp$	LF	[aa] <				× 10 × 10 -		L=90%	848
$\frac{K}{K}$ *(892) ⁰ $e^{\pm}\mu^{\mp}$						× 10 × 10 -		L=90%	
$2\pi^{-}2e^{+}$	LF L	[aa] <				× 10 × 10		L=90% L=90%	714
			9.1						922
$2\pi^{-}2\mu^{+}$	L		1.52			× 10 ⁻¹		L=90%	894
$K^{-}\pi^{-}2e^{+}$	L		5.0			× 10 ⁻		L=90%	861
$K^{-}\pi^{-}2\mu^{+}$	L		5.3			× 10 ⁻		L=90%	829
$2K^-2e^+$	L		3.4			× 10 ⁻		L=90%	791
$2K^{-}2\mu^{+}$	L	<	1.0			× 10 ⁻¹		L=90%	710
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	L	<	3.06			× 10 ⁻¹		L=90%	911
$K^-\pi^-e^+\mu^+$	L	<	2.10			× 10		L=90%	848
$2K^{-}e^{+}\mu^{+}$	L	<	5.8			× 10 ⁻	⁷ с	L=90%	754
pe ⁻	L,B	<	2.2			× 10	6 с	L=90%	696
$\overline{p}e^+$	L,B	<	1.2			× 10		L=90%	696

$$D^*(2007)^0$$

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=2006.85\pm0.05$ MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.014\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

D*(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^0\pi^0$	$(64.7 \pm 0.9)\%$	1	43
$D^0\gamma$	(35.3 \pm 0.9) %	1	137
$D^0 e^+ e^-$	($3.91\pm0.33)$ $ imes$	10^{-3}	137
$\mu^+\mu^-$	< 2.5 ×	10^{-8} 90%	998
e^+e^-	< 1.7 ×	10 ⁻⁶ 90%	1003

$D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=2010.26\pm0.05$ MeV $m_{D^*(2010)^+}-m_{D^+}=140.603\pm0.015$ MeV $m_{D^*(2010)^+}-m_{D^0}=145.4258\pm0.0017$ MeV Full width $\Gamma=83.4\pm1.8$ keV

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

<i>D</i> *(2010) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	$(30.7 \pm 0.5) \%$	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

$D_0^*(2300)$

$$I(J^P) = \frac{1}{2}(0^+)$$

Created: 4/24/2025 13:07

was $D_0^*(2400)$

Mass
$$m=2343\pm 10$$
 MeV (S = 1.5)
Full width $\Gamma=229\pm 16$ MeV

D *(2300) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D\pi^{\pm}$	seen	411

D₁(2420)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=2422.1\pm0.6$ MeV (S = 1.7) $m_{D_1(2420)^0}-m_{D^{*+}}=411.8\pm0.6$ MeV (S = 1.7) $m_{D_1(2420)^\pm}-m_{D_1(2420)^0}=4\pm4$ MeV Full width $\Gamma=31.3\pm1.9$ MeV (S = 2.8)

 $\overline{D}_1(2420)$ modes are charge conjugates of modes below.

D ₁ (2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2007)^0\pi$	seen	359

 $D_1(2430)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=2412\pm 9~\text{MeV}$ Full width $\Gamma=314\pm 29~\text{MeV}$

$D_1(2430)^0$	DECAY	MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $D^*(2010)^+\pi^-$

seen

345

D₂*(2460)

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=2461.1\pm0.8$$
 MeV (S = 6.3) $m_{D_2^*(2460)^0}-m_{D^+}=591.5\pm0.8$ MeV (S = 6.0) $m_{D_2^*(2460)^0}-m_{D^{*+}}=450.9\pm0.8$ MeV (S = 6.0) $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7$ MeV Full width $\Gamma=47.3\pm0.8$ MeV (S = 1.5)

 $\overline{D}_2^*(2460)$ modes are charge conjugates of modes below.

<i>D</i> ₂ *(2460) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D\pi^-$	seen	509
$D^*(2010)\pi^-$	seen	389

 $D_3^*(2750)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass
$$m=2763.1\pm3.2~{\rm MeV}~{\rm (S}=2.1)$$

Full width $\Gamma=66\pm5~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 63

D ₃ *(2750) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$D\pi$	seen	743
$D^+\pi^-$	seen	739
$D^0\pi^\pm$	seen	743
$D^*\pi$	seen	639
$D^{*+}\pi^-$	seen	639

CHARMED, STRANGE MESONS $(C = \pm 1, S = \pm 1)$ (including possibly non- $q\overline{q}$ states)

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

D_s^{\pm}

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.35\pm0.07$$
 MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(501.2\pm2.2)\times10^{-15}$ s $~(S=1.3)$ $c au=150.3~\mu{\rm m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (-0.2 \pm 2.5)\%$$

$$A_{CP}(\tau^{\pm}\nu) \text{ in } D_{s}^{+} \to \tau^{+}\nu_{\tau}, D_{s}^{-} \to \tau^{-}\overline{\nu}_{\tau} = (3 \pm 5)\%$$

$$A_{CP}(K^{\pm}K_{s}^{0}) = (0.09 \pm 0.26)\%$$

$$A_{CP}(K^{\pm}K_{l}^{0}) \text{ in } D_{s}^{\pm} \to K^{\pm}K_{l}^{0} = (-1.1 \pm 2.7) \times 10^{-2}$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(\phi\pi^{\pm}) = (-0.38 \pm 0.27)\%$$

$$A_{CP}(K^{\pm}K_{s}^{0}\pi^{0}) = (-2 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_{s}^{0}\pi^{\pm}) = (3 \pm 5)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}\pi^{0}) = (0.0 \pm 3.0)\%$$

$$A_{CP}(K^{\pm}K_{s}^{0}\pi^{+}\pi^{-}) = (-6 \pm 5)\%$$

$$A_{CP}(K_{s}^{0}K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$$

$$A_{CP}(\pi^{+}\pi^{-}\pi^{\pm}) = (-0.7 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (0.32 \pm 0.31)\%$$

$$A_{CP}(\pi^{\pm}\eta') = (-0.06 \pm 0.22)\% \quad (S = 1.6)$$

$$A_{CP}(\eta\pi^{\pm}\pi^{0}) = (-1 \pm 4)\%$$

$$A_{CP}(\eta'\pi^{\pm}\pi^{0}) = (0 \pm 8)\%$$

$$A_{CP}(K^{\pm}\pi^{0}) = (2 \pm 4)\% \quad (S = 1.2)$$

$$A_{CP}(\overline{K}^{0}/K^{0}\pi^{\pm}) = (0.4 \pm 0.5)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}) = (0.20 \pm 0.18)\%$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (3.7 \pm 2.7)\%$$

$$A_{CP}(K_{S}^{0}\pi^{+}\pi^{0}) \text{ in } D_{s}^{\pm} \to K_{S}^{0}\pi^{\pm}\pi^{0} = (3 \pm 6)\%$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}\pi^{0}) \text{ in } D_{s}^{\pm} \to K^{\pm}\pi^{+}\pi^{-}\pi^{0} = (7 \pm 5) \times 10^{-2}$$

$$A_{CP}(K^{\pm}\eta) = (1.8 \pm 1.9)\%$$

$$A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$$

CP violating asymmetries of P-odd (T-odd) moments

Local *CPV* in
$$D_s^{\pm} \rightarrow K^+ K^- K^{\pm} = 0.133$$
 $A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-8 \pm 6) \times 10^{-3}$ [ii]

$D_s^+ \to \phi \ell^+ \nu_\ell$ form factors

$$\begin{array}{lll} r_2 = 0.83 \pm 0.08 & (\mathsf{S} = 1.8) \\ r_v = 1.76 \pm 0.07 & (\mathsf{S} = 1.1) \\ \Gamma_L/\Gamma_T = 0.72 \pm 0.18 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta \, e^+ \, \nu_e = 0.452 \pm 0.010 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta' \, e^+ \, \nu_e = 0.525 \pm 0.026 \\ f_+(0) \left| V_{cd} \right| \text{ in } D_s^+ \rightarrow \ K^0 \, e^+ \, \nu_e = 0.162 \pm 0.019 \\ r_v \equiv V(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \, \nu_e = 1.7 \pm 0.4 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \, \nu_e = 0.77 \pm 0.29 \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \mu^+ \, \nu_\mu = 241.8 \pm 3.3 \text{ MeV} \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \tau^+ \, \nu_\tau = 246.6 \pm 2.5 \text{ MeV} \end{array}$$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

1	Inclusive	modes	}			
e^+ semileptonic	[aaa] (6.33	±0.15) %		_
π^+ anything	(119.3	± 1.4) %		_
π^- anything	(43.2	± 0.9) %		_
$\pi^{f 0}$ anything	(123	± 7) %		_
K^- anything	(18.7	±0.5) %		_
K^+ anything	(28.9	±0.7) %		_
K_S^0 anything	(19.0	±1.1) %		_
η anything	[bbb] (29.9	± 2.8) %		_
ω anything	(6.1	± 1.4) %		_
η' anything	[ccc] (10.3	± 1.4) %	S=1.1	_
$\mathit{f}_0(980)$ anything, $\mathit{f}_0 ightarrow \ \pi^+ \pi^-$	<	1.3		%	CL=90%	_

HTTP://PDG.LBL.GOV

Page 65

ϕ anything	(15.7 ± 1.0) %	_
K^+K^- anything	(15.8 ± 0.7) %	_
$K_S^0 K^+$ anything	(5.8 \pm 0.5)%	_
$K_S^0 K^-$ anything	(1.9 ± 0.4) %	_
$2K_S^0$ anything	($1.70~\pm0.32$)%	_
$2K^{+}$ anything	$< 2.6 \times 10^{-3} \text{CL} = 90\%$	_
$2K^-$ anything	$<$ 6 $\times 10^{-4}$ CL=90%	_
$2\pi^+\pi^-+$ anything	(32.8 ± 0.7) %	_

Leptonic and semileptonic modes

· · · · · · · · · · · · · · · · · · ·		•		
$e^+ \nu_e$	<	8.3	$\times 10^{-5}$ CL=90%	984
$\mu^+ u_{\mu}$	(5.35 ± 0.12	$) \times 10^{-3}$	981
$ au^+ u_ au$	(5.36 ± 0.10) %	182
$\gamma e^+ \nu_e$	<	1.3	$\times 10^{-4} CL = 90\%$	984
$K^+K^-e^+ u_e$		_		851
$K_S^0 K_S^0 e^+ \nu_e$	<	3.8	$\times 10^{-4} CL = 90\%$	849
$\phi e^+ \nu_e$		2.39 ± 0.16		720
$K_1(1270)^0 e^+ \nu_e$	<	4.1	$\times 10^{-4}$ CL=90%	585
$b_1(1235)^0 e^+ \nu_e, \ b_1^0 o \ \omega \pi^0$	<	6.4	$\times 10^{-4} CL = 90\%$	_
$\phi \mu^+ u_{\mu}$	(2.24 ± 0.11) %	715
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	[ddd] (3.03 ± 0.24) %	_
$\eta{ m e}^+ u_{ m e}$	[ddd] ($2.26\ \pm0.06$) %	908
$\eta'(958)e^+\nu_e$	[ddd] (8.0 ± 0.4	$) \times 10^{-3}$	751
$\eta \mu^+ u_{\mu}$	(2.4 ± 0.5) %	905
$\eta'(958)\mu^+\nu_{\mu}$	(1.1 ± 0.5) %	747
$\omega e^+ \nu_e$	[eee] <	2.0	\times 10 ⁻³ CL=90%	829
$K^0 e^+ \nu_e$	(3.4 ± 0.4	$) \times 10^{-3}$	921
$K^*(892)^0 e^+ \nu_e$	[ddd] (2.15 ± 0.28	$) \times 10^{-3}$ S=1.1	782
$f_0(500)e^+\nu_e$, $f_0 \to \pi^0\pi^0$	<	7.3	\times 10 ⁻⁴ CL=90%	_
$f_0(980)e^+\nu_e$, $f_0\to \pi^0\pi^0$	(7.9 ± 1.5	$) \times 10^{-4}$	_
$f_0(980)\mu^+\nu_\mu$, $f_0 o K^+K^-$			$\times 10^{-4}$ CL=90%	_
$a_0(980)^0e^+ u_e^{'},\;\;a_0^0 ightarrow\;\pi^0\eta$		1.2	$\times 10^{-4} CL = 90\%$	_
$\pi^0 e^+ \nu_e$	<	6.4	\times 10 ⁻⁵ CL=90%	980

Hadronic modes with a $K\overline{K}$ pair

K ⁺ K ⁰ ₅ K ⁺ K ⁰ ₁		(1.450±0.035) %	850
L		(1.49 ± 0.06)%	850
$K^+\overline{K}^0$		(2.95 ± 0.14)%	850
$K^+K^-\pi^+$	[<i>jj</i>]	(5.37 \pm 0.10)% S=1.1	805
$\phi\pi^+$	[ddd,fff]	(4.5 ± 0.4) %	712
$\phi\pi^+$, ϕo K $^+$ K $^-$	[fff]	(2.21 ± 0.06)%	712
$K^{+}\overline{K}^{*}(892)^{0}$		$(\begin{array}{cc} 12.7 & +4.0 \\ -3.1 \end{array})\%$	685
$K^+\overline{K}^*(892)^0$, $\overline{K}^{*0} ightarrow$		(2.58 ± 0.06)%	416
$\mathcal{K}^-\pi^+$			

HTTP://PDG.LBL.GOV Page 66

$K^+ \overline{K}^* (892)^0, \ \overline{K}^{*0} ightarrow K_S^0 \pi^0$		(4.8	± 0.5	$) \times 10^{-3}$		-
$f_0(980)\pi^+$, $f_0 \to K^+K^-$		(1.11	±0.19) %		732
$f_0(1370)\pi^+, f_0 \rightarrow K^+K^-$		() × 10 ⁻⁴		_
$f_0(1710)\pi^+, f_0 \to K^+K^-$		() × 10 ⁻⁴		198
$a_0(980)^+\pi^0$, $a_0^+\to K^+K_S^0$		($) \times 10^{-3}$		_
$a_0(1710)^+\pi^0, a_0^+ \rightarrow$		($) \times 10^{-3}$		_
$K^+K_S^0$		`			,		
$K^+\overline{K}_0^*(1430)^0$, $\overline{K}_0^* ightarrow$		(1.76	±0.25	$) \times 10^{-3}$		218
$K^+rac{K^-}{K^*}\pi^+$ (1410) 0 , $\overline{K}_0^* ightarrow$		(0.0	120) v 10 ⁻⁴		
		(0.0	±2.0) × 10 ⁻⁴		_
$K_S^0 \pi^0$,					
$K^{+}K_{S}^{0}\pi^{0}$		(±0.07	_		805
$K^*(892)^+ K_S^0, K^{*+} \rightarrow$		(2.04	± 0.33	$) \times 10^{-3}$		_
$2K_{S}^{0}\pi^{+}$		(7 1	104	\ \ 10 ⁻³	C 12	900
$f(000) = + f \times 10^{9} \text{ k}^{0}$					$) \times 10^{-3}$		802
$f_0(980)\pi^+, f_0 \rightarrow K_S^0 K_S^0$		<			$\times 10^{-4}$ C	L=90%	_
$f_0(1710)\pi^+, f_0 \to K_S^0 K_S^0$					$) \times 10^{-3}$		_
$K^*(892)^+ K_S^0, K^{*+} \rightarrow$		(3.09	± 0.33	$) \times 10^{-3}$		683
${\kappa^0 \overline{\kappa}^0 \pi^+} $							
12() 12()							
			-	_			802
$K^*(892)^+\overline{K}{}^0$	[ddd]	(5.4	±1.2) %		802 683
$K^*(892)^+\overline{K}{}^0 \ K^+K^-\pi^+\pi^0$		(5.50	± 0.24) %	S=1.3	
$K^*(892)^+\overline{K}^0 \ K^+K^-\pi^+\pi^0 \ \phi \rho^+$		(5.50 5.59	$\pm 0.24 \\ \pm 0.34$) %) %	S=1.3	683
$K^*(892)^+\overline{K}^0 \ K^+K^-\pi^+\pi^0 \ \frac{\phi\rho^+}{\overline{K}_1(1270)^0K^+},$		(5.50 5.59	$\pm 0.24 \\ \pm 0.34$) %	S=1.3	683 748
$K^*(892)^+ \overline{K}^0$ $K^+ K^- \pi^+ \pi^0$ $\frac{\phi \rho^+}{\overline{K}_1 (1270)^0 K^+},$ $\overline{K}_1 (1270)^0 \to K^- \rho^+$		(5.50 5.59 5.7	$\pm 0.24 \\ \pm 0.34 \\ \pm 0.6$) %) %) × 10 ⁻³	S=1.3	683 748
$K^*(892)^+\overline{K}^0$ $K^+K^-\pi^+\pi^0$ $\frac{\phi\rho^+}{\overline{K}_1(1270)^0K^+},$ $\frac{\overline{K}_1(1270)^0 \to K^-\rho^+}{\overline{K}_1(1270)^0K^+},$	[ddd]	(5.50 5.59 5.7	$\pm 0.24 \\ \pm 0.34$) %) %) × 10 ⁻³	S=1.3	683 748
$ \begin{array}{c} K^{*}(892)^{+}\overline{K}^{0} \\ K^{+}K^{-}\pi^{+}\pi^{0} \\ \frac{\phi\rho^{+}}{K_{1}(1270)^{0}K^{+}}, \\ \overline{K}_{1}(1270)^{0} \to K^{-}\rho^{+} \\ \overline{K}_{1}(1270)^{0}K^{+}, \\ \overline{K}_{1}(1270)^{0} \to K^{*}(892)\pi \end{array} $	[ddd]	(5.50 5.59 5.7 1.31	± 0.24 ± 0.34 ± 0.6 ± 0.25) %) %) × 10 ⁻³	S=1.3	683 748
$ \begin{array}{c} K^*(892)^+ \overline{K}^0 \\ K^+ K^- \pi^+ \pi^0 \\ & \frac{\phi \rho^+}{\overline{K}_1 (1270)^0 K^+}, \\ & \overline{K}_1 (1270)^0 \to K^- \rho^+ \\ & \overline{K}_1 (1270)^0 K^+, \\ & \overline{K}_1 (1270)^0 \to K^*(892) \pi \\ & \overline{K}_1 (1400)^0 K^+, \end{array} $	[ddd]	(5.50 5.59 5.7 1.31	$\pm 0.24 \\ \pm 0.34 \\ \pm 0.6$) %) %) × 10 ⁻³	S=1.3	683 748
$\begin{array}{c} K^{*}(892)^{+}\overline{K}^{0} \\ K^{+}K^{-}\pi^{+}\pi^{0} \\ \frac{\phi\rho^{+}}{\overline{K}_{1}(1270)^{0}}K^{+}, \\ \overline{K}_{1}(1270)^{0} \to K^{-}\rho^{+} \\ \overline{K}_{1}(1270)^{0}K^{+}, \\ \overline{K}_{1}(1270)^{0} \to K^{*}(892)\pi \\ \overline{K}_{1}(1400)^{0}K^{+}, \\ \overline{K}_{1}(1400)^{0} \to K^{*}(892)\pi \end{array}$	[ddd]	(5.50 5.59 5.7 1.31 2.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4) %) %) × 10 ⁻³) %	S=1.3	683 748
$\begin{array}{c} K^*(892)^+ \overline{K}{}^0 \\ K^+ K^- \pi^+ \pi^0 \\ \hline \phi \rho^+ \\ \overline{K}_1(1270)^0 K^+, \\ \overline{K}_1(1270)^0 \to K^- \rho^+ \\ \overline{K}_1(1270)^0 K^+, \\ \overline{K}_1(1270)^0 \to K^*(892) \pi \\ \overline{K}_1(1400)^0 K^+, \\ \overline{K}_1(1400)^0 \to K^*(892) \pi \\ a_0(980)^0 \rho^+, \ a_0^0 \to K^+ K^- \end{array}$	[ddd]		5.50 5.59 5.7 1.31 2.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4) %) %) × 10 ⁻³) %) %	S=1.3	683 748
$\begin{array}{c} K^{*}(892)^{+}\overline{K}^{0} \\ K^{+}K^{-}\pi^{+}\pi^{0} \\ \frac{\phi\rho^{+}}{\overline{K}_{1}(1270)^{0}}K^{+}, \\ \overline{K}_{1}(1270)^{0} \to K^{-}\rho^{+} \\ \overline{K}_{1}(1270)^{0}K^{+}, \\ \overline{K}_{1}(1270)^{0} \to K^{*}(892)\pi \\ \overline{K}_{1}(1400)^{0}K^{+}, \\ \overline{K}_{1}(1400)^{0} \to K^{*}(892)\pi \end{array}$	[ddd]		5.50 5.59 5.7 1.31 2.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4) %) %) × 10 ⁻³) %	S=1.3	683 748
$\begin{array}{c} K^*(892)^+\overline{K}^0 \\ K^+K^-\pi^+\pi^0 \\ \frac{\phi\rho^+}{\overline{K}_1(1270)^0K^+}, \\ \overline{K}_1(1270)^0 \to K^-\rho^+ \\ \overline{K}_1(1270)^0K^+, \\ \overline{K}_1(1270)^0 \to K^*(892)\pi \\ \overline{K}_1(1400)^0K^+, \\ \overline{K}_1(1400)^0 \to K^*(892)\pi \\ a_0(980)^0\rho^+, \ a_0^0 \to K^+K^- \\ f_1(1420)^0\pi^+, \ f_1(1420)^0 \to K^*(892)^\mp K^\pm \end{array}$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.4 ± 0.7) %) %) × 10 ⁻³) %) %) × 10 ⁻³) × 10 ⁻³	S=1.3	683 748
$\begin{array}{c} K^*(892)^+ \overline{K}{}^0 \\ K^+ K^- \pi^+ \pi^0 \\ \frac{\phi \rho^+}{\overline{K}_1 (1270)^0 K^+}, \\ \overline{K}_1 (1270)^0 \to K^- \rho^+ \\ \overline{K}_1 (1270)^0 K^+, \\ \overline{K}_1 (1270)^0 \to K^*(892) \pi \\ \overline{K}_1 (1400)^0 K^+, \\ \overline{K}_1 (1400)^0 \to K^*(892) \pi \\ a_0 (980)^0 \rho^+, \ a_0^0 \to K^+ K^- \\ f_1 (1420)^0 \pi^+, \ f_1 (1420)^0 \to K^+ K^- \end{array}$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.4 ± 0.7) %) %) × 10 ⁻³) %) %	S=1.3	683 748
$K^*(892)^+\overline{K}^0$ $K^+K^-\pi^+\pi^0$ $\phi\rho^+$ $\overline{K}_1(1270)^0K^+$, $\overline{K}_1(1270)^0 \to K^-\rho^+$ $\overline{K}_1(1270)^0K^+$, $\overline{K}_1(1270)^0 \to K^*(892)\pi$ $\overline{K}_1(1400)^0K^+$, $\overline{K}_1(1400)^0 \to K^*(892)\pi$ $a_0(980)^0\rho^+$, $a_0^0 \to K^+K^ f_1(1420)^0\pi^+$, $f_1(1420)^0 \to K^*(892)^\mp K^\pm$ $f_1(1420)^0\pi^+$, $f_1(1420)^0 \to A_0(980)^0\pi^+$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9 4.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.7 ± 1.4) %) %) × 10 ⁻³) %) × 10 ⁻³) × 10 ⁻³) × 10 ⁻⁴	S=1.3	683 748
$K^*(892)^+\overline{K}^0$ $K^+K^-\pi^+\pi^0$ $\frac{\phi}{K_1}(1270)^0K^+,$ $\overline{K_1}(1270)^0 \to K^-\rho^+$ $\overline{K_1}(1270)^0 \to K^*(892)\pi$ $\overline{K_1}(1400)^0K^+,$ $\overline{K_1}(1400)^0 \to K^*(892)\pi$ $a_0(980)^0\rho^+, a_0^0 \to K^+K^ f_1(1420)^0\pi^+, f_1(1420)^0 \to K^*(892)^{\mp}K^{\pm}$ $f_1(1420)^0\pi^+, f_1(1420)^0 \to K^*(892)^{\mp}K^{\pm}$ $f_1(1420)^0\pi^+, f_1(1420)^0 \to A_0(980)^0\pi^0, a_0(980)^0 \to K^+K^ g_1(1475)\pi^+, g_1(1475) \to K^+K^-$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9 4.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.7 ± 1.4) %) %) × 10 ⁻³) %) %) × 10 ⁻³) × 10 ⁻³	S=1.3	683 748
$\begin{array}{c} K^*(892)^+\overline{K}^0 \\ K^+K^-\pi^+\pi^0 \\ \frac{\phi\rho^+}{\overline{K}_1(1270)^0K^+,} \\ \overline{K}_1(1270)^0K^+, \\ \overline{K}_1(1270)^0K^+, \\ \overline{K}_1(1270)^0\toK^*(892)\pi \\ \overline{K}_1(1400)^0K^+, \\ \overline{K}_1(1400)^0\toK^*(892)\pi \\ a_0(980)^0\rho^+, \ a_0^0\toK^+K^- \\ f_1(1420)^0\pi^+, \ f_1(1420)^0\to \\ K^*(892)^\mpK^\pm \\ f_1(1420)^0\pi^+, \ f_1(1420)^0\to \\ a_0(980)^0\pi^0, \ a_0(980)^0\to \\ K^+K^- \\ \eta(1475)\pi^+, \ \eta(1475)\to \\ a_0(980)^0\pi^0, \ a_0(980)^0\to \\ a_0(980)^0\pi^0, \ a_0(980)^0\to \\ \end{array}$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9 4.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.7 ± 1.4) %) %) × 10 ⁻³) %) × 10 ⁻³) × 10 ⁻³) × 10 ⁻⁴	S=1.3	683 748
$K^*(892)^+\overline{K}^0$ $K^+K^-\pi^+\pi^0$ $\frac{\phi \rho^+}{K_1(1270)^0}K^+,$ $\overline{K}_1(1270)^0 \to K^-\rho^+$ $\overline{K}_1(1270)^0 \to K^*(892)\pi$ $\overline{K}_1(1400)^0 \to K^*(892)\pi$ $\overline{K}_1(1400)^0 \to K^*(892)\pi$ $a_0(980)^0 \rho^+, a_0^0 \to K^+K^ f_1(1420)^0 \pi^+, f_1(1420)^0 \to K^*(892)^\mp K^\pm$ $f_1(1420)^0 \pi^+, f_1(1420)^0 \to K^*(892)^\mp K^\pm$ $f_1(1420)^0 \pi^+, f_1(1420)^0 \to a_0(980)^0 \pi^0, a_0(980)^0 \to K^+K^ \eta(1475)\pi^+, \eta(1475) \to a_0(980)^0 \pi^0, a_0(980)^0 \to K^+K^-$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9 4.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.7 ± 1.4 ± 2.8) %) %) × 10 ⁻³) %) × 10 ⁻³) × 10 ⁻³) × 10 ⁻⁴) × 10 ⁻⁴		683 748 401 — — — — —
$\begin{array}{c} K^*(892)^+\overline{K}^0 \\ K^+K^-\pi^+\pi^0 \\ \frac{\phi}{K_1}(1270)^0K^+, \\ \overline{K_1}(1270)^0 \to K^-\rho^+ \\ \overline{K_1}(1270)^0 \to K^*(892)\pi \\ \overline{K_1}(1400)^0K^+, \\ \overline{K_1}(1400)^0 \to K^*(892)\pi \\ a_0(980)^0\rho^+, \ a_0^0 \to K^+K^- \\ f_1(1420)^0\pi^+, \ f_1(1420)^0 \to K^*(892)^\mp K^\pm \\ f_1(1420)^0\pi^+, \ f_1(1420)^0 \to K^*(892)^\mp K^\pm \\ f_1(1420)^0\pi^+, \ f_1(1420)^0 \to K^+K^- \\ a_0(980)^0\pi^0, \ a_0(980)^0 \to K^+K^- \\ \eta(1475)\pi^+, \ \eta(1475) \to a_0(980)^0 \to K^+K^- \\ K_S^0K^-2\pi^+ \end{array}$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9 4.0 7.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.7 ± 1.4 ± 2.8 ± 0.08) %) %) × 10 ⁻³) %) × 10 ⁻³) × 10 ⁻³) × 10 ⁻⁴) × 10 ⁻⁴	S=1.3	683 748 401 — — — — — — — 744
$K^*(892)^+\overline{K}^0$ $K^+K^-\pi^+\pi^0$ $\frac{\phi \rho^+}{K_1(1270)^0}K^+,$ $\overline{K}_1(1270)^0 \to K^-\rho^+$ $\overline{K}_1(1270)^0 \to K^*(892)\pi$ $\overline{K}_1(1400)^0 \to K^*(892)\pi$ $\overline{K}_1(1400)^0 \to K^*(892)\pi$ $a_0(980)^0 \rho^+, a_0^0 \to K^+K^ f_1(1420)^0 \pi^+, f_1(1420)^0 \to K^*(892)^\mp K^\pm$ $f_1(1420)^0 \pi^+, f_1(1420)^0 \to K^*(892)^\mp K^\pm$ $f_1(1420)^0 \pi^+, f_1(1420)^0 \to a_0(980)^0 \pi^0, a_0(980)^0 \to K^+K^ \eta(1475)\pi^+, \eta(1475) \to a_0(980)^0 \pi^0, a_0(980)^0 \to K^+K^-$	[ddd]		5.50 5.59 5.7 1.31 2.0 1.9 3.9 4.0 7.0	± 0.24 ± 0.34 ± 0.6 ± 0.25 ± 0.4 ± 0.7 ± 1.4 ± 2.8 ± 0.08) %) %) × 10 ⁻³) %) × 10 ⁻³) × 10 ⁻³) × 10 ⁻⁴) × 10 ⁻⁴		683 748 401 — — — — —

```
\eta \rho^+
                                             [ddd] ( 8.9 \pm0.8 )%
                                                                                                         724
   \eta \pi^+ \pi^0
                                                          9.5 \pm 0.5 ) %
                                                                                                         885
   \eta(\pi^+\pi^0)_{P-wave}
a_0(980)^{+0}\pi^{0+},
                                                           5.1 \pm 3.1 ) \times 10^{-3}
                                                                                                         885
                                                           2.2 \pm 0.4 ) %
        a_0(980)^{+0} \rightarrow \eta \pi^{+0}
   \omega \pi^+ \pi^0
                                             [ddd]
                                                      (2.8 \pm 0.7)\%
                                                                                                         802
2\pi^+\pi^-\eta
                                                       ( 3.12 \pm 0.16 )%
                                                                                                         855
   a_1(1260)^+ \eta, a_1^+ \to
                                                       ( 1.73 \pm 0.16 )%

ho(770)^0\pi^+, \rho^0 \rightarrow
   a_1(1260)^+ \eta, a_1^+ \to
                                                      (2.5 \pm 0.9) \times 10^{-3}
        f_0(500)\pi^+, f_0 \to \pi^+\pi^-
   a_0(980)^+ \rho(770)^0, a_0^+ \rightarrow
                                                      (2.1 \pm 0.9) \times 10^{-3}
        \eta \pi^+
   \eta(1405)\pi^{+}, \ \eta(1405) \rightarrow
                                                      (2.2 \pm 0.7) \times 10^{-4}
        a_0(980)^-\pi^+, a_0^- \rightarrow
        \eta \pi^-
   \eta(1405)\pi^{+}, \ \eta(1405) \rightarrow
                                                       (2.2 \pm 0.7) \times 10^{-4}
        a_0(980)^+\pi^-, a_0^+ \rightarrow
        \eta \pi^+
   f_1(1420)\pi^+, f_1 \rightarrow
                                                       (5.9 \pm 1.8) \times 10^{-4}
        a_0(980)^-\pi^+, a_0^-\to
        \eta \pi^-
   f_1(1420)\pi^+, f_1 \rightarrow
                                                       (5.3 \pm 1.8) \times 10^{-4}
        a_0(980)^+\pi^-, a_0^+\to
        \eta \pi^+
3\pi^{+}2\pi^{-}\pi^{0}
                                                       (4.9 \pm 3.2)\%
                                                                                                         856
   \omega 2\pi^+\pi^-
                                             [ddd] ( 1.6 \pm 0.5 ) %
                                                                                                         766
   \eta'(958)\pi^+
                                         [ccc,ddd] ( 3.94 \pm 0.25 )%
                                                                                                         743
3\pi^{+}2\pi^{-}2\pi^{0}
                                                                                                         803
   \omega \eta \pi^+
                                                           5.4 \pm 1.3 ) \times 10^{-3}
                                                                                                         654
                                             [ddd]
   \eta'(958) \rho^+
                                         [ccc,ddd]
                                                          5.8 \pm 1.5 ) %
                                                                                                         465
   \eta'(958)\pi^+\pi^0
                                                           6.08 \pm 0.29 ) %
                                                                                                         720
      \eta'(958)\pi^+\pi^0 nonresonant
                                                           5.1
                                                                             %
                                                                                      CL=90%
                                                                                                         720
                                  Modes with one or three K's
K^+\pi^0
                                                       (7.4 \pm 0.5) \times 10^{-4}
                                                                                                         917
K_S^0 \pi^+
                                                       (1.09 \pm 0.05) \times 10^{-3}
                                                                                                         916
K^+\eta
                                             [ddd] ( 1.73 \pm 0.08 ) \times 10<sup>-3</sup>
                                                                                                         835
K^+\omega
                                             [ddd] ( 9.9 \pm 1.5 ) \times 10^{-4}
                                                                                                         741
K^+ \eta'(958)
                                             [ddd] ( 2.64 \pm 0.24 ) \times 10^{-3}
                                                                                                         646
K^+\pi^+\pi^-
                                                       ( 6.20~\pm0.19~)\times10^{-3}
                                                                                                         900
   K^+ \rho^0
                                                       (2.17 \pm 0.25) \times 10^{-3}
                                                                                                         745
```

				4	
$K^+ ho(1450)^0$, $ ho^0 ightarrow~\pi^+\pi^-$	($) \times 10^{-4}$	_
$K^+ f_0(500), f_0 \rightarrow \pi^+ \pi^-$	(4.5	± 3.0	$) \times 10^{-4}$	_
$K^+ f_0(980), f_0 \rightarrow \pi^+ \pi^-$	($) \times 10^{-4}$	_
$K^{+} f_{0}(1370), f_{0} \rightarrow \pi^{+} \pi^{-}$	Ì) × 10 ⁻³	_
$K^*(892)^0\pi^+, K^{*0} \rightarrow$	() × 10 ⁻³	775
κ^+ π^-	(1.07	±0.20) × 10	113
$K^+\pi^- \ K^*(1410)^0\pi^+$, $K^{*0} ightarrow$	(6	+4	$) \times 10^{-4}$	_
$K^+\pi^-$	(Ü) / 10	
$K^*(1430)^0\pi^+,\;\;K^{*0} o$	(9.3	+31	$) \times 10^{-4}$	_
$K^+\pi^-$	(3.0) / 10	
$K^+\pi^+\pi^-$ nonresonant	(9.9	+3.2	$) \times 10^{-4}$	900
$K_S^0 \pi^+ \pi^0$) × 10 ⁻³	899
					033
$K_S^0 \rho(770)^+, \ \rho^+ \to \pi^+ \pi^0$	($) \times 10^{-3}$	_
$K_{S}^{0} \rho(1450)^{+}, \ \rho^{+} \rightarrow \ \pi^{+} \pi^{0}$	($) \times 10^{-3}$	_
$K^{*}(892)^{0}\pi^{+}$, $K^{*0} ightarrow$	(4.5	± 1.3	$) \times 10^{-4}$	_
$K_S^0\pi^0$					
$K^*(892)^+\pi^0$, $K^{*+}\to$	(2.5	+0.8	$) \times 10^{-4}$	_
$\kappa_{\rm S}^0\pi^+$	() / L=0	
	,	1.0		10-4	
$K^*(1410)^0\pi^+, K^{*0} \rightarrow$	(1.8	±0.9	$) \times 10^{-4}$	_
$\kappa_{S}^{0}\pi^{0}$					
$K_{S}^{0} 2\pi^{+}\pi^{-}$	(2.8	± 1.0	$) \times 10^{-3}$	870
$K^+\pi^+\pi^-\pi^0$	(9.7	± 0.6	$) \times 10^{-3}$	873
$K^*(892)^0 ho^+$, $K^{*0} ightarrow$	(3.9		$) \times 10^{-3}$	_
	`			,	
$K^{+}\pi^{-}$ $K^{*}(892)^{+}\rho^{0}$, $K^{*+}\to$	(4.2	± 1.2	$) \times 10^{-4}$	_
$K^+\pi^0$					
$K_1(1270)^0\pi^+$, $K_1^0 o$	(3.9	± 1.3	$) \times 10^{-4}$	†
$\mathcal{K}^+ ho^-$					
$K_1(1400)^0\pi^+, K_1^0 \rightarrow$	(5 4	+09	$) \times 10^{-4}$	_
$K^*(890)^+\pi^-, K^{*+} \rightarrow$	(0.1	±0.5) / 10	
$K^+\pi^0$					
$K_1(1400)^0\pi^+,\ K_1^0 o$	(ΕO	110) × 10 ⁻⁴	
	(5.9	± 1.0) × 10	_
$K^*(890)^0\pi^0$, $K^{*0} o$					
$K^{+}\pi^{-}$. 4	
$K^{+} a_{1}(1260)^{0}, a_{1} \rightarrow \rho^{+} \pi^{-}$	($) \times 10^{-4}$	_
$K^{+} a_{1}(1260)^{0}, a_{1} \rightarrow \rho^{-} \pi^{+}$	() × 10 ⁻⁴	_
$K^+\pi^+\pi^-\pi^0$ nonresonant	(9.2	± 2.4	$) \times 10^{-4}$	873
$(K^{+}\pi^{0})_{P-wave}\rho^{0}$				$) \times 10^{-3}$	688
$K^+\omega\pi^0$	[ddd] <	8.2		$\times 10^{-3}$ CL=90%	684
$K^+\omega\pi^+\pi^-$	[ddd] <			$\times 10^{-3}$ CL=90%	603
$K^+\omega\eta$	[ddd] <			_	366
2K+K-				$) \times 10^{-4}$	628
$\phi K^+, \ \phi \rightarrow K^+ K^-$	(020
$\psi \wedge \cdot , \ \psi \rightarrow \ \wedge \cdot \wedge$	(۵.8	±2.0	$) \times 10^{-5}$	_

Doubly Cabibbo-suppressed modes

$$2K^{+}\pi^{-}$$
 (1.274±0.031) × 10⁻⁴ 805
 $K^{+}K^{*}(892)^{0}$, $K^{*0} \rightarrow$ (6.0 ±3.4) × 10⁻⁵ –

Baryon-antibaryon mode

$$p\overline{n}$$
 (1.22 ±0.11)×10⁻³ 295
 $p\overline{p}e^{+}\nu_{e}$ < 2.0 ×10⁻⁴CL=90% 296

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

•		` ,		•		
$\pi^+ e^+ e^-$		[pp] <	5.5		\times 10 ⁻⁶ CL=90%	979
$\pi^+\phi$, ϕo e^+e^-		[00] (6	$^{+8}_{-4}$	$) \times 10^{-6}$	_
$\pi^+\mu^+\mu^-$		[pp] <	1.8		\times 10 ⁻⁷ CL=90%	968
$K^+e^+e^-$	C1	<	3.7		$\times 10^{-6}$ CL=90%	922
$K^+\mu^+\mu^-$	C1	<	1.4		$\times 10^{-7}$ CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4		$\times 10^{-3}$ CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.1		$\times 10^{-6}$ CL=90%	976
$\pi^+e^-\mu^+$	LF	<	9.4		$\times 10^{-7}$ CL=90%	976
$K^+e^+\mu^-$	LF	<	7.9		$\times 10^{-7}$ CL=90%	919
$K^+e^-\mu^+$	LF	<	5.6		$\times 10^{-7}$ CL=90%	919
$\pi^{-}2e^{+}$	L	<	1.4		$\times 10^{-6}$ CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	8.6		$\times 10^{-8}$ CL=90%	968
$\pi^-e^+\mu^+$	L	<	6.3		$\times 10^{-7}$ CL=90%	976
K^-2e^+	L	<	7.7		$\times 10^{-7}$ CL=90%	922
$K^-2\mu^+$	L	<	2.6		$\times 10^{-8}$ CL=90%	909
$K^-e^+\mu^+$	L	<	2.6		$\times 10^{-7}$ CL=90%	919
$K^*(892)^- 2\mu^+$	L	<	1.4		$\times 10^{-3}$ CL=90%	765

$$D_{\mathrm{s}}^{*\pm}$$

$$I(J^P) = 0(1^-)$$

Mass
$$m=2112.2\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 $D_{\rm S}^{*-}$ modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{D_s^+\gamma}$	(93.6 \pm 0.4) %	139
$D_s^+ \gamma D_s^+ \pi^0$	(5.77±0.35) %	48
$D_{s}^{+}e^{+}e^{-}$	$(6.7 \pm 1.6) \times 10^{-3}$	139

HTTP://PDG.LBL.GOV

Page 71

$$e^+ \nu_e$$

(
$$2.1 \begin{tabular}{c} +1.2 \\ -0.9 \end{tabular}$$
) $\times\,10^{-5}$

1056

$$D_{s0}^*(2317)^{\pm}$$

$$I(J^P) = 0(0^+)$$

J, P need confirmation.

 ${\it J}^{\it P}$ is natural, low mass consistent with 0 $^+$.

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m = 2317.8 \pm 0.5 \text{ MeV}$$

$$m_{D_{s0}^*(2317)^\pm} - m_{D_s^\pm} = 349.4 \pm 0.5 \; {
m MeV}$$
 Full width $\Gamma \; < \; 3.8 \; {
m MeV}, \; {
m CL} = 95\%$

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

D* _{\$0} (2317) [±] DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D_s^+\pi^0$	(100 ⁺ ₋₂	0 20) %		298
$D_s^+ \gamma$	< 5	%	90%	323
$D_{s}^{*}(2112)^{+}\gamma$	< 6	%	90%	_
$D_s^+ \gamma \gamma$	< 18	%	95%	323
$D_s^+ \gamma \gamma \ D_s^* (2112)^+ \pi^0$	< 11	%	90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$ $D_{s}^{+}\pi^{0}\pi^{0}$	< 4	$\times 10^{-3}$	90%	194
$D_s^+ \pi^0 \pi^0$	not see	en		205

$D_{s1}(2460)^{\pm}$

$$I(J^P) = 0(1^+)$$

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass $m = 2459.5 \pm 0.6 \text{ MeV}$ (S = 1.1)

$$m_{D_{c1}(2460)^{\pm}} - m_{D^{*\pm}} = 347.3 \pm 0.7 \text{ MeV} \quad (S = 1.2)$$

$$m_{D_{s1}(2460)^{\pm}} - m_{D_{s}^{*\pm}} = 347.3 \pm 0.7 \text{ MeV} \quad (S = 1.2)$$

 $m_{D_{s1}(2460)^{\pm}} - m_{D_{s}^{\pm}} = 491.1 \pm 0.6 \text{ MeV} \quad (S = 1.1)$

Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^-$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$D_{s}^{*+}\pi^{0}$ $D_{s}^{+}\gamma$ $D_{s}^{+}\pi^{+}\pi^{-}$ $D_{s}^{*+}\gamma$	(48 ±11)%		297
$D_s^+ \gamma$	(18 \pm 4) %		442
$D_s^+ \pi^+ \pi^-$	$(4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	(3.7 + 5.0 / 2.4) %		138

$$D_{s1}(2536)^{\pm}$$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass $m=2535.11\pm0.06$ MeV $m_{D_{s1}(2536)^{\pm}}-m_{D_{s}^{*}(2111)}=422.9\pm0.4$ MeV $m_{D_{s1}(2536)^{\pm}}-m_{D^{*}(2010)^{\pm}}=524.85\pm0.04$ MeV $m_{D_{s1}(2536)^{\pm}}-m_{D^{*}(2007)^{0}}=528.26\pm0.05$ MeV (S = 1.1) Full width $\Gamma=0.92\pm0.05$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**. $D_{\rm S1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ± 0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$K_S^0 D^*(2010)^+$	$0.48\ \pm0.07$		149
$D^+\pi^-K^+$	$0.028 \!\pm\! 0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_{s}^{*+}\gamma$	possibly seen		388
$D_s^+\pi^+\pi^-$	seen		437

$D_{s2}^*(2573)$

$$I(J^P) = 0(2^+)$$

Mass
$$m=2569.1\pm0.8~{\rm MeV}~{\rm (S}=2.4)$$
 $m_{D_{s2}^*(2573)}-m_{D^0}=704\pm3.2~{\rm MeV}$ Full width $\Gamma=16.9\pm0.7~{\rm MeV}$

 $D_{\rm c2}^*(2573)^-$ modes are charge conjugates of the modes below.

<i>D</i> * _{<i>\$</i>2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238
$D^{+}K_{S}^{0}$ $D^{*+}K_{S}^{0}$	seen	422
$D^{*+}K_S^0$	seen	225

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Mass
$$m=2714\pm 5~{\rm MeV}~{\rm (S}=1.5)$$
 Full width $\Gamma=122\pm 10~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 73

D_{s1}^* (2700) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^0K^+	seen	579
$D^{+}K^{0}_{S} \ D^{*0}K^{+}$	seen	573
	seen	438
$D^{*+}K^0_S$	seen	431

$$D_{s3}^*(2860)^{\pm}$$

$$I(J^P) = 0(3^-)$$

Mass $m=2860\pm7~{\rm MeV}$ Full width $\Gamma=53\pm10~{\rm MeV}$

$D_{s3}^*(2860)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^0K^+	seen	710
$D^{+} K^{0}_{S} \ D^{*0} K^{+}$	seen	704
	seen	589
$D^{*+}K^0_S$	seen	584

BOTTOM MESONS $(B=\pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_B at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in

the B^{\pm} , B^{0} , and B^{\pm} B^{0} Admixture sections. *b*-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

• B[±]

mass, mean life, CP violation, branching fractions

- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures

 CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions
- B^* , $B_1(5721)$, $B_2^*(5747)$, $B_J(5970)$ mass, width
- B_s^0 mass, mean life, B_s^0 - \overline{B}_s^0 mixing, CP violation, branching fractions
- B_s^* , $B_{s1}(5830)^0$, $B_{s2}^*(5840)^0$ mass. width
- B_c^{\pm} mass, mean life, branching fractions
- $B_c(2S)^{\pm}$ mass

At the end of Baryon Listings:

- ullet Λ_b mass, mean life, branching fractions
- $\Lambda_b(5912)^0$, $\Lambda_b(5920)^0$, $\Lambda_b(6070)^0$, $\Lambda_b(6146)^0$, $\Lambda_b(6152)^0$ mass, width
- Σ_b
- \bullet Σ_b^* , $\Sigma_b(6097)^+$, $\Sigma_b(6097)^-$ mass, width
- $\bullet \equiv_b^0, \equiv_b^-$

mass, mean life, branching fractions

- $\Xi_b'(5935)^-$, $\Xi_b(5945)^0$, $\Xi_b(5955)^-$, $\Xi_b(6100)^-$, $\Xi_b(6227)^-$, $\Xi_b(6227)^0$, $\Xi_b(6327)^0$, $\Xi_b(6333)^0$ mass. width
- Ω_b^- mass, mean life, branching fractions
- $\Omega_b(6316)^-$, $\Omega_b(6330)^-$, $\Omega_b(6340)^-$, $\Omega_b(6350)^-$ mass
- b-baryon Admixture mean life, branching fractions

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.41\pm0.07$$
 MeV Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)K^{+}) = (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow J/\psi(1S)\pi^{+}) = (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3)$$

$$A_{CP}(B^{+} \rightarrow J/\psi \rho^{+}) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow J/\psi K^{*}(892)^{+}) = -0.048 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \eta_{c}K^{+}) = 0.01 \pm 0.07 \quad (S = 2.2)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)\pi^{+}) = 0.03 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}) = 0.012 \pm 0.020 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \psi(2S)K^{*}(892)^{+}) = 0.08 \pm 0.21$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}(1P)\pi^{+}) = 0.07 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{+}) = -0.20 \pm 0.18 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}) = -0.009 \pm 0.033$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow \chi_{c1}K^{*}(892)^{+}) = 0.5 \pm 0.5$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}$$

$$A_{CP}(B^{+} \rightarrow D^{0}\ell^{+}\nu_{\ell}) = (-3 \pm 5) \times 10^{-3}$$

$$A_{CP}(B^{+} \rightarrow D_{CP(+1)}\pi^{+}) = -0.0080 \pm 0.0024$$

$$A_{CP}(B^{+} \rightarrow D_{CP(-1)}\pi^{+}) = 0.017 \pm 0.026$$

$$A_{CP}([K^{+}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+}) = 0.070 \pm 0.020$$

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{+}\pi^{-}\pi^{-}]_{D}K^{*}) = 0.061 \pm 0.013$$

$$A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{*}) = 0.02 \pm 0.11$$

```
A_{CP}(B^+ \to [K^+ K^- \pi^+ \pi^-]_D K^+) = 0.095 \pm 0.023
A_{CP}(B^+ \to [K^+ K^- \pi^+ \pi^-]_D \pi^+) = -0.009 \pm 0.006
A_{CP}(B^+ \to \overline{D}^0 K^+) = -0.017 \pm 0.005
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+}) = -0.32 \pm 0.04
A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D \pi^+) = (-8.2 \pm 3.2) \times 10^{-3}
A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21
A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+) = -0.27 \pm 0.27 \quad (S = 2.4)
A_{CP}(B^+ \to [K^+\pi^-\pi^0]_D K^+) = -0.024 \pm 0.013
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+) = 0.07 \pm 0.07
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.11 \pm 0.04
A_{CP}(B^+ \to \overline{D}{}^0 K^*(892)^+) = -0.007 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.75 \pm 0.16
A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.45 \pm 0.25
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09
A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D \pi^+) = 0.08 \pm 0.09
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+) = -0.001 \pm 0.019
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+) = 0.001 \pm 0.010
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+) = -0.09 \pm 0.27
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}\pi^+) = -0.7 \pm 0.6
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}K^+) = 0.8 \pm 0.4
A_{CP}(B^+ \to [K^- \pi^+]_{(D\gamma)} K^+) = 0.4 \pm 1.0
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+) = 0.00 \pm 0.09 \quad (S = 1.4)
A_{CP}(B^+ \to [K_S^{0}K^-\pi^+]_DK^+) = 0.00 \pm 0.07
A_{CP}(B^+ \to [K_S^{0}K^-\pi^+]_D\pi^+) = -0.003 \pm 0.014
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+) = -0.016 \pm 0.025 \quad (S = 1.5)
A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+) = 0.08 \pm 0.05
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+) = 0.07 \pm 0.09
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+) = 0.007 \pm 0.016
A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+) = -0.013 \pm
    0.020 \quad (S = 1.9)
A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+) = 0.132 \pm 0.015 \quad (S = 1.8)
A_{ADS}(B^+ \to DK^+) = -0.451 \pm 0.026
A_{ADS}(B^+ \rightarrow D\pi^+) = 0.129 \pm 0.014
A_{ADS}(B^+ \to D^*(D\gamma)K^+) = -0.6 \pm 1.3
A_{ADS}(B^+ \to D^*(D\pi^0)K^+) = 0.72 \pm 0.29
A_{ADS}(B^+ \to D^*(D\gamma)\pi^+) = 0.08 \pm 0.13
A_{ADS}(B^+ \to D^*(D\pi^0)\pi^+) = -0.14 \pm 0.06
A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+) = -0.33 \pm 0.35
A_{ADS}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+) = -0.01 \pm 0.09
A_{CP}(B^+ \to D_{CP(-1)}K^+) = -0.10 \pm 0.07
```

$$\begin{split} &A_{CP}(B^{+}\to [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.04 \pm 0.06 \\ &A_{CP}(B^{+}\to [\pi^{+}\pi^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.05 \pm 0.10 \\ &A_{CP}(B^{+}\to [K^{-}\pi^{+}]_{D}K^{+}\pi^{-}\pi^{+}) = 0.013 \pm 0.023 \\ &A_{CP}(B^{+}\to [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.019 \pm 0.015 \\ &A_{CP}(B^{+}\to [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.019 \\ &A_{CP}(B^{+}\to [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.011 \\ &A_{CP}(B^{+}\to D^{*0}_{0}\pi^{+}) = -0.0004 \pm 0.0021 \quad (S=1.1) \\ &A_{CP}(B^{+}\to D^{*0}_{CP(-1)}\pi^{+}) = -0.010 \pm 0.007 \\ &A_{CP}(B^{+}\to D^{*0}_{CP(-1)}\pi^{+}) = -0.09 \pm 0.05 \\ &A_{CP}(B^{+}\to D^{*0}_{CP(-1)}K^{+}) = -0.09 \pm 0.05 \quad (S=2.6) \\ &A_{CP}(B^{+}\to D^{*0}_{CP(-1)}K^{+}) = -0.09 \pm 0.05 \quad (S=2.6) \\ &A_{CP}(B^{+}\to D^{*0}_{CP(-1)}K^{+}) = 0.07 \pm 0.10 \\ &A_{CP}(B^{+}\to D^{*0}_{CP(-1)}K^{*}(892)^{+}) = -0.23 \pm 0.22 \\ &A_{CP}(B^{+}\to D^{*0}_{S}\bar{D}^{0}) = (0.5 \pm 0.6)\% \\ &A_{CP}(B^{+}\to D^{*0}_{S}\bar{D}^{0}) = (0.5 \pm 0.6)\% \\ &A_{CP}(B^{+}\to D^{*0}_{S}\bar{D}^{0}) = (0.5 \pm 1.5) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{*0}_{S}\bar{D}^{0}) = (1.1 \pm 1.1) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{*0}_{S}\bar{D}^{0}) = (3.1 \pm 1.7) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{+}\bar{D}^{0}) = (3.1 \pm 1.7) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{+}\bar{D}^{0}) = (2.4 \pm 1.1) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{+}\bar{D}^{0}) = (0.0 \pm 2.4) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{+}\bar{D}^{0}) = (0.0 \pm 2.4) \times 10^{-2} \\ &A_{CP}(B^{+}\to D^{+}\bar{D}^{0}) = 0.027 \pm 0.012 \\ &A_{CP}(B^{+}\to \eta'K^{*}_{S}(1430)^{+}) = 0.06 \pm 0.20 \\ &A_{CP}(B^{+}\to \eta'K^{*}_{S}(1430)^{+}) = 0.15 \pm 0.13 \\ &A_{CP}(B^{+}\to \eta'K^{*}_{S}(1430)^{+}) = 0.05 \pm 0.13 \\ &A_{CP}(B^{+}\to \eta K^{*}_{S}(1430)^{+}) = 0.05 \pm 0.13 \\ &A_{CP}(B^{+}\to \eta K^{*}_{S}(1430)^{+}) = 0.15 \pm 0.30 \\ &A_{CP}(B^{+}\to \eta K^{*}_{S}(1430)^{+}) = 0.14 \pm 0.15 \\ &A_{CP}(B^{+}\to \kappa^{*}_{S}(1430)^{+}) = 0.15 \pm 0.006 \quad (S=1.4) \\ &A_{CP}(B^{+}\to \kappa^{*}_{S}(1430)^{+}) = 0.15 \pm 0.006 \quad (S=1.6) \\ &A_{CP}(B^{+}\to \kappa^{*}_{S}(1+1) = 0.0015 \pm 0.006 \quad (S=1.6) \\ &A_{$$

```
A_{CP}(B^+ \to f(980)^0 K^+) = -0.08 \pm 0.09
A_{CP}(B^+ \rightarrow f_2(1270)K^+) = -0.68^{+0.19}_{-0.17}
A_{CP}(B^+ \rightarrow f_0(1500)K^+) = 0.28 \pm 0.30
A_{CP}(B^+ \to f_2'(1525)^0 K^+) = -0.08^{+0.05}_{-0.04}
A_{CP}(B^+ \rightarrow \rho^0 K^+) = 0.160 \pm 0.021
A_{CP}(B^+ \to K^0 \pi^+ \pi^0) = 0.07 \pm 0.06
A_{CP}(B^+ \to K_0^*(1430)^0\pi^+) = 0.061 \pm 0.032
A_{CP}(B^+ \to K_0^*(1430)^+\pi^0) = 0.26^{+0.18}_{-0.14}
A_{CP}(B^+ \to K_2^*(1430)^0 \pi^+) = 0.05^{+0.29}_{-0.24}
A_{CP}(B^+ \to K^+ \pi^0 \pi^0) = -0.06 \pm 0.07
A_{CP}(B^+ \to K^0 \rho^+) = -0.03 \pm 0.15
A_{CP}(B^+ \to K^{*+}\pi^+\pi^-) = 0.07 \pm 0.08
A_{CP}(B^+ \to \rho^0 K^*(892)^+) = 0.31 \pm 0.13
A_{CP}(B^+ \to K^*(892)^+ f_0(980)) = -0.15 \pm 0.12
A_{CP}(B^+ \rightarrow a_1^+ K^0) = 0.12 \pm 0.11
A_{CP}(B^+ \rightarrow b_1^+ K^0) = -0.03 \pm 0.15
A_{CP}(B^+ \to \bar{K}^*(892)^0 \rho^+) = -0.01 \pm 0.16
A_{CP}(B^+ \rightarrow b_1^0 K^+) = -0.46 \pm 0.20
A_{CP}(B^+ \to \bar{K^0}K^+) = 0.04 \pm 0.14
A_{CP}(B^+ \to K_S^0 K^+) = -0.21 \pm 0.14
A_{CP}(B^+ \to K^+ K_S^0 K_S^0) = 0.025 \pm 0.031
A_{CP}(B^+ \rightarrow K^+K^-\pi^+) = -0.115 \pm 0.008
A_{CP}(B^+ \rightarrow K^+K^-\pi^+ \text{ nonresonant}) = -0.11 \pm 0.06
A_{CP}(B^+ 
ightarrow \ \pi^+ \, K^+ \, K^- , m_{K^+ \, K^-} \, < 1.1 \; {
m GeV}) = -0.17 \pm 0.07
A_{CP}(B^+ \to K^+ \overline{K}^* (892)^0) = 0.04 \pm 0.05
A_{CP}(B^+ \to K^+ \overline{K}_0^* (1430)^0) = 0.10 \pm 0.17
A_{CP}(B^+ \to \phi \pi^+) = 0.1 \pm 0.5
A_{CP}(B^+ \to \pi^+ (K^+ K^-)_{S-wave}) = -0.66 \pm 0.04
A_{CP}(B^+ \rightarrow K^+K^-K^+) = -0.036 \pm 0.004
A_{CP}(B^+ \to \phi K^+) = 0.017 \pm 0.017 (S = 1.8)
A_{CP}(B^+ \to X_0(1550)K^+) = -0.04 \pm 0.07
A_{CP}(B^+ \to K^{*+}K^+K^-) = 0.11 \pm 0.09
A_{CP}(B^+ \to \phi K^*(892)^+) = -0.01 \pm 0.08
A_{CP}(B^+ \to \phi(K\pi)_0^{*+}) = 0.04 \pm 0.16
A_{CP}(B^+ \to \phi K_1(1270)^+) = 0.15 \pm 0.20
A_{CP}(B^+ \to \phi K_2^*(1430)^+) = -0.23 \pm 0.20
A_{CP}(B^+ \to K^+ \phi \phi) = -0.08 \pm 0.07
A_{CP}(B^+ \to K^+[\phi \phi]_{\eta_c}) = 0.10 \pm 0.08
A_{CP}(B^+ \to K^*(892)^+ \gamma) = 0.014 \pm 0.018
A_{CP}(B^+ \to X_s \gamma) = 0.028 \pm 0.019
A_{CP}(B^+ \to \eta K^+ \gamma) = -0.12 \pm 0.07
```

$$A_{CP}(B^{+} \rightarrow \phi K^{+} \gamma) = -0.13 \pm 0.11 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow \rho^{+} \gamma) = -0.11 \pm 0.33$$

$$A_{CP}(B^{+} \rightarrow \pi^{+} \pi^{0}) = -0.01 \pm 0.04 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}) = 0.076 \pm 0.008 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}) = 0.003 \pm 0.014$$

$$A_{CP}(B^{+} \rightarrow \rho^{0} \pi^{+}) = 0.003 \pm 0.014$$

$$A_{CP}(B^{+} \rightarrow \rho^{0} (1450) \pi^{+}) = -0.11 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \rho_{3} (1690) \pi^{+}) = 0.80 \pm 0.28$$

$$A_{CP}(B^{+} \rightarrow \rho_{3} (1690) \pi^{+}) = 0.72 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \text{ nonresonant}) = -0.14^{+0.23}_{-0.16}$$

$$A_{CP}(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \text{ nonresonant}) = -0.14^{+0.23}_{-0.16}$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \pi^{0}) = 0.03 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \pi^{0}) = 0.03 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \pi^{0}) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \mu^{0}) = -0.05 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \mu^{0}) = -0.04 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \mu^{-}) = -0.04 \pm 0.07 \quad (S = 1.4)$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \mu^{+}) = 0.06 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \mu^{+} \mu^{-}) = 0.26 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{+}) = 0.05 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{+}) = 0.05 \pm 0.16$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{-}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{-}) = 0.01 \pm 0.12$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{-}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{-}) = 0.01 \pm 0.17$$

$$A_{CP}(B^{+} \rightarrow \mu^{-} \mu^{-}) = 0.01 \pm 0.10$$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B+ DECAY MODES	Era	ction (I	□./I	-)		ale factor/ dence level(=
B. DECAT MODES	Ha	ction (i	i/1)	Conn	defice lever(ivie v/c)
Semileptonic	and	lepto	nic	mod	les		
•	<u>)</u> (10.99	\pm	0.28) %		_
$e^+ \nu_e X_c$	(10.8	\pm	0.4) %		_
	<u>)</u> (1.65	\pm	0.21	$) \times 10^{-3}$		_
$\underline{D}\ell^+ u_\ell X$ [hhh	<u>)</u> (9.5	\pm	0.7) %		_
$\overline{D}{}^0\ell^+ u_\ell$ [hhh	• `	2.21			· _		2310
$\overline{D}{}^0\tau^+ u_{ au}$	(7.7	\pm	2.5	$) \times 10^{-3}$		1911
$\overline{D}^*(2007)^0_0\ell^+\nu_\ell$ [hhh	<u>)</u> (5.53	\pm	0.22) %		2258
$\overline{D}_{\tau}^{*}(2007)^{0} \tau^{+} \nu_{\tau}$	(1.88	\pm	0.20) %		1839
$D^{(*)}$ n $\pi \ell^+ u_\ell$ (n ≥ 1) [hhh	- `				<i>'</i>		_
					$) \times 10^{-3}$		2306
2 ()	o] (1.59	\pm	0.10	$) \times 10^{-3}$		2065
$\overline{D}_2^{*0} ightarrow D^- \pi^+$							
$\overline{D}_0^*(2\overline{4}20)^0\ell^+ u_\ell$, [hhh	o] (9	\pm	5	$) \times 10^{-4}$	S=2.6	_
$\overline{D}_0^{*0} \rightarrow D^- \pi^+$							
	o] (5.42	\pm	0.28	$) \times 10^{-3}$		2254
\overline{D}_1 $(2420)^{\widetilde{0}}\ell^+ u_\ell$, $\overline{D}_1^0 ightarrow [hhh$] (2.84	\pm	0.17	$) \times 10^{-3}$	S=1.1	2084
$D^{*-}\pi^{+}$							
$\overline{D}_1'(2430)^0\ell^+ u_\ell$, $\overline{D}_1'^0$ —{hhh	o] (1.7	\pm	0.6	$) \times 10^{-3}$	S=1.8	_
$D^{*-}\pi^{+}$							
$\overline{D}_2^*(2460)^0\ell^+ u_\ell$, [hhh	<u>)</u> (1.06	\pm	0.18	$) \times 10^{-3}$	S=1.7	2065
$\overline{D}_2^{*0} ightarrow D^{*-}\pi^+$							
$\overline{D}{}^0\pi^+\pi^-\ell^+ u_\ell$ [hhh	o] (1.73	\pm	0.19	$) \times 10^{-3}$		2301
$\overline{D}_1(2420)^0\widetilde{\ell}^+ u_\ell$, $\overline{D}_1^0 ightarrow [hhh$							_
	- `				,		
$\overline{D}{}^{*0}\pi^{+}\pi^{-} \over D^{*0}\pi^{+}\pi^{-}\ell^{+} u_{\ell}$ [hhh	o] (7.0	\pm	1.7	$) \times 10^{-4}$		2248

()									
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$	[hhh]	(6.1	\pm	1.0) ×	10^{-4}		_
$D_s^- K^+ \ell^+ u_\ell$	[hhh]	(3.0	+	1.4 1.2) ×	10-4		2242
$D_s^{*-}K^+\ell^+ u_\ell$	[hhh]	(2.9	\pm	1.9) ×	10^{-4}		2185
$\pi^0\ell^+ u_\ell$			7.80						2638
$\eta \ell^+ u_\ell$			3.5						2611
$\eta'\ell^+ u_\ell$			2.4						2553
$\omega \ell^+ \nu_\ell$			1.19						2582
$ ho^0\ell^+ u_\ell \ \pi^+\pi^-\ell^+ u_\ell$			1.58 2.3						2583 2636
$ \rho \overline{\rho} \ell^+ \nu_{\ell} $	[nhh]		5.8						2467
$p \overline{p} \mu^+ u_{\mu}$		(10-6		2446
$p\overline{p}e^+\nu_e$		(8.2	+	0.0		10-6		2467
$e^+ \nu_e$		<						CL=90%	2640
$\mu^+ u_\mu$		<						CL=90%	2639
$\tau^+ u_{ au}$	F 1			土	0.24			S=1.2	2341
$\ell^+ u_\ell\gamma \ { m e}^+ u_e\gamma$	[hhh]		3.0 4.3					CL=90% CL=90%	
$\mu^+ u_{ m e}\gamma$			3.4					CL=90%	
$\mu^{+}\mu^{-}\mu^{+}\nu_{\mu}$		<	1.6					CL=95%	2634
Γ Γ μ									
,									
, D0 V	Inclus	ive	mode		0.7	١. ٥.	/		
D ⁰ X D ⁰ x	Inclus	(8.6	\pm	0.7	,			_
$D^0 X$ $\overline{D}{}^0 X$ $D^+ X$	Inclus	(8.6 79	± ±	4) %	o o		- - -
$\overline{D}^0 X$	Inclus	(8.6 79 2.5	± ± ±) %	(o (o		- - -
$\frac{\overline{D}^0 X}{D^+ X}$	Inclus	(8.6 79 2.5 9.9	± ± ±	4 0.5) %	/0 /0 /0		- - - -
D ⁰ X D ⁺ X D ⁻ X	Inclus	((8.6 79 2.5 9.9 7.9	± ± ± + -	4 0.5 1.2) %) %) %	6 6 6		- - - -
$ \frac{\overline{D}^{0} X}{D^{+} X} $ $ D^{-} X$ $ D_{s}^{+} X $	Inclus	(((8.6 79 2.5 9.9 7.9	± ± ± + - + -	4 0.5 1.2 1.4 1.3 0.40 0.32) %) %) %	6 6 6 6		- - - - -
$ \frac{\overline{D}^{0} X}{\overline{D}^{0} X} $ $ D^{+} X$ $ D^{-} X$ $ D_{s}^{+} X$ $ D_{s}^{-} X$ $ \Lambda_{c}^{+} X$ $ \overline{\Lambda}_{c}^{-} X$	Inclus	((((((((((((((((((((8.6 79 2.5 9.9 7.9 1.10 2.1	± ± ± + - + - + -	4 0.5 1.2 1.4 1.3 0.40 0.32) %) %) %) %) %	66666666666666666666666666666666666666		- - - - -
$ \frac{D^{0} X}{D^{0} X} $ $ D^{+} X$ $ D^{-} X$ $ D_{s}^{+} X$ $ D_{s}^{-} X$ $ \Lambda_{c}^{+} X$	Inclus		8.6 79 2.5 9.9 7.9 1.10 2.1 2.8	± ± ± ± + + + + + + + + ±	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4) %) %) %) %) %	66666666666666666666666666666666666666		- - - - -
$ \frac{\overline{D}^{0} X}{\overline{D}^{0} X} $ $ D^{+} X$ $ D^{-} X$ $ D_{s}^{+} X$ $ D_{s}^{-} X$ $ \Lambda_{c}^{+} X$ $ \overline{\Lambda}_{c}^{-} X$	Inclus		8.6 79 2.5 9.9 7.9 1.10 2.1	± ± ± ± + + + + + + + + ±	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4) %) %) %) %) %	66666666666666666666666666666666666666		- - - - -
$ \frac{\overline{D}^{0} X}{\overline{D}^{0} X} $ $ D^{+} X$ $ D^{-} X$ $ D^{+}_{s} X$ $ D^{-}_{s} X$ $ \Lambda^{+}_{c} X$ $ \overline{\Lambda}^{-}_{c} X$ $ \overline{c} X$	Inclus		8.6 79 2.5 9.9 7.9 1.10 2.1 2.8	± ± ± ± + - + - + - + - ± + -	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4 2.2 1.8) %) %) %) %) %) %) %) %) %) %	66666666666666666666666666666666666666		- - - - - -
$ \frac{D}{D^0} X $ $ D^+ X $ $ D^- X $ $ D_s^+ X $ $ D_s^- X $ $ \Lambda_c^+ X $ $ \overline{\Lambda}_c^- X $ $ \overline{c} X $ $ c X $			8.6 79 2.5 9.9 7.9 1.10 2.1 2.8 97 23.4	± ± ± ± + - + - + - + - ± + - ±	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4 2.2 1.8 6) %) %) %) %) %) %) %) %) %) %	66666666666666666666666666666666666666		- - - - -
$ \frac{D}{D^0} X $ $ D^+ X $ $ D^- X $ $ D_s^+ X $ $ D_s^- X $ $ \Lambda_c^+ X $ $ \overline{\Lambda}_c^- X $ $ \overline{c} X $ $ c X $	Inclus D, D*,	(((((((((((((((((((8.6 79 2.5 9.9 7.9 1.10 2.1 2.8 97 23.4 120	± ± ± + + + + + + + ± + + ± + ± •de	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4 2.2 1.8 6) %) %) %) %) %) %) %) %	66666666666666666666666666666666666666		- - - - - - - - 2308
$ \overline{D}^{0} X D^{+} X D^{-} X D^{+}_{s} X D^{-}_{s} X \Lambda^{+}_{c} X \overline{\Lambda}^{-}_{c} X \overline{c} X c X c / \overline{c} X \overline{D}^{0} \pi^{+} $		() () () () () () () () () ()	8.6 79 2.5 9.9 7.9 1.10 2.1 2.8 97 23.4	± ± ± + - + - + - + - ± + - ± de ±	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4 2.2 1.8 6) %) %) %) %) %) %) %) %) %) %	66666666666666666666666666666666666666		- - - - - - - - 2308
$ \overline{D}^{0} X D^{+} X D^{-} X D^{+} X D^{-} X \Lambda^{+} X \overline{\Lambda}^{-} X \overline{c} X c X c / \overline{c} X \overline{D}^{0} \pi^{+} D_{CP(+1)} \pi^{+} $	D, D*,	() () () () () () () () ()	8.6 79 2.5 9.9 7.9 1.10 2.1 2.8 97 23.4 120 D_s mo	± ± ± ± + - + - + - + - ± + - ± ede ± ±	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4 2.2 1.8 6) %) %) %) %) %) %) %) %) %) %	66666666666666666666666666666666666666		- - - - - - - 2308
$ \overline{D}^{0} X D^{+} X D^{-} X D^{+}_{s} X D^{-}_{s} X \Lambda^{+}_{c} X \overline{\Lambda}^{-}_{c} X \overline{c} X c X c / \overline{c} X \overline{D}^{0} \pi^{+} $	D, D*,	() () () () () () () () ()	8.6 79 2.5 9.9 7.9 1.10 2.1 2.8 97 23.4 120 D _s mc 4.61 2.03 2.0	± ± ± ± + - + - + - + - ± + - ± ede ± ± ±	4 0.5 1.2 1.4 1.3 0.40 0.32 0.9 0.6 1.1 0.9 4 2.2 1.8 6) %) %) %) %) %) %) ×) ×) ×	66666666666666666666666666666666666666		- - - - - - - 2308 - - 2237

$D_{CP(+1)}K^+$	[iii]	(1.80	\pm	0.08	$) \times 10^{-4}$		_
$D_{CP(-1)}K^+$	[iii]	(1.96	\pm	0.18	$) \times 10^{-4}$		_
D^0K^+		(3.60	\pm	0.24	$) \times 10^{-6}$		2281
$[K^-\pi^+]_D K^+$	[jjj]	<					CL=90%	_
$[K^{+}\pi^{-}]_{D}K^{+}$	[jjj]	<	2.0			$\times 10^{-5}$	CL=90%	_
$[K^-\pi^+\pi^0]_DK^+$		Se	een					- - - - - - - - -
$[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$		se	een					_
$[K^-\pi^+\pi^+\pi^-]_DK^+$		se	een					_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$			een			7		_
$[K^-\pi^+]_D\pi^+$	[jjj]					$) \times 10^{-7}$		_
$[K^{+}\pi^{-}]_{D}\pi^{+}$		(1.7	±	0.4	$) \times 10^{-4}$		_
$[K^{-}\pi^{+}\pi^{0}]_{D}\pi^{+}$		Se	een					_
$[K^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}$		Se	een					_
$[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}\pi^{+}$			een					_
$[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$			een		0.0	\10 - 6		_
$[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$ $[K_{5}^{0}K^{+}\pi^{-}]_{D}K^{+}$				土	0.9) × 10 ⁻⁶		_
$[K_{S}^{0}K^{-}\pi^{+}]_{D}K^{+}$			een					
- -			een					_
$[K^*(892)^+K^-]_DK^+$			een					_
$[K_S^0 K^- \pi^+]_D \pi^+$			een					_
$[K^*(892)^+K^-]_D\pi^+$ $[K_5^0K^+\pi^-]_D\pi^+$			een					_
$[K^*(892)^-K^+]_D\pi^+$			een					_
$\overline{D}^0 K^*(892)^+$			een		0.4) × 10 ⁻⁴		2213
$D_{CP(-1)}K^*(892)^+$	[iii]					$) \times 10^{-4}$		2213
						$) \times 10^{-4}$		
$D_{CP(+1)}K^*(892)^+$	[iii]	(
$D^0 K^*(892)^+$		($) \times 10^{-6}$		2213
$\overline{D}^{0}K^{+}\pi^{+}\pi^{-}$		($) \times 10^{-4}$		2237
$\overline{D}^0 K^+ \overline{K}^0$		($) \times 10^{-4}$		2189
$\overline{D}{}^{0}K^{+}\overline{K}^{*}(892)^{0}$ $\overline{D}{}^{0}\pi^{+}\pi^{+}\pi^{-}$		($) \times 10^{-4}$		2072
		(5.5	±	2.0	$) \times 10^{-3}$	S=3.6	2289
$\overline{D}{}^0\pi^+\pi^+\pi^-$ nonresonant $\overline{D}{}^0\pi^+ ho^0$		(5	土	4	$) \times 10^{-3}$		2289
$\frac{D^{-\eta}}{D^0} a_1(1260)^+$		(4.2	±	3.0	$) \times 10^{-3}$		2208
$\overline{D}^0 \omega \pi^+$		(4 11	土	4	$) \times 10^{-3}$ $) \times 10^{-3}$		2123 2206
$D^*(2010)^-\pi^+\pi^+$		($) \times 10^{-3}$		2247
$D^*(2010)^- K^+ \pi^+$		(8.2	+	1 4	$) \times 10^{-5}$		2206
$\overline{D}_1(2420)^0\pi^+, \ \overline{D}_1^0 \rightarrow$		($) \times 10^{-4}$		2081
$D^*(2010)^-\pi^+$		(0.1		1.0	, ^ 10		_001
$D^{-}\pi^{+}\pi^{+}$		(1.07	\pm	0.05	$) \times 10^{-3}$		2299
$D^-K^+\pi^+$		() × 10 ⁻⁵		2260

$D_0^*(2300)^0 K^+, \ D_0^{*0} \rightarrow$		(6.1	±	2.4	$) \times 10^{-6}$		_
$D^-\pi^+ D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow$		(2.32	±	0.23	$)\times 10^{-5}$		_
$D^{-}\pi^{+}$ $D_{1}^{*}(2760)^{0}K^{+}, D_{1}^{*0} \rightarrow$		(3.6	±	1.2	$) \times 10^{-6}$		_
$D_{1}(2700) K , D_{1} \rightarrow D_{1} \rightarrow D_{1} K^{0}$ $D_{1}^{+} K^{0}$		<	2			× 10 ⁻⁶	CL=90%	2278
$D^+ K^+ \pi^-$		(5.6	\pm	1.1	$) \times 10^{-6}$		2260
$D^+ \eta$		<	1.2				CL=90%	2272
$D_2^*(2460)^0K^+,\ D_2^{*0} \to$		<	6.3				CL=90%	_
$D^{+} K^{*0}$		<	4.9			× 10 ⁻⁷	CL=90%	2211
$D^+ \overline{K}^{*0}$		<				× 10 ⁻⁶		2211
$\overline{D}^*(2007)^0\pi^+$						$) \times 10^{-3}$	CL=90/0	2256
$\overline{D}*0$ π^+	[kkk]	•	2.9			$) \times 10^{-3}$		
$\overline{D}_{CP(+1)}^{*0}\pi^{+}$ $D_{CP(-1)}^{*0}\pi^{+}$	[kkk]	($) \times 10^{-3}$		_
CP(-1)"	[KKK]	(
$\overline{D}^*(2007)^0 \omega \pi^+$		($) \times 10^{-3}$		2149
$\overline{D}^*(2007)^0 \rho^+$		() × 10 ⁻³		2182
$\overline{D}^*(2007)^0 K^+$		(4.19	+	0.31	$) \times 10^{-4}$		2227
$\overline{\it D}^{*0}_{CP(+1)}\it K^+$	[kkk]	(2.75	\pm	0.35	$) \times 10^{-4}$		_
$\overline{D}_{CP(-1)}^{*0}K^+$	[kkk]	(2.31	\pm	0.31	$) \times 10^{-4}$		_
$D^*(2007)^0K^+$		(4.5	\pm	1.2	$) \times 10^{-6}$		2227
$\overline{D}^*(2007)^0 K^*(892)^+$		() × 10 ⁻⁴		2156
$\overline{D}^*(2007)^0 K^+ \overline{K}^0$		<				× 10 ⁻³	CL=90%	2132
$\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0$		($) \times 10^{-3}$		2009
$\overline{D}^*(2007)^0 \pi^+ \pi^+ \pi^-$		(0.12			2236
$\overline{D}^*(2007)^0 a_1(1260)^+$		(1.9		0.5	•		2063
$\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0$		(0.4	,		2219
$\overline{D}^{*0}3\pi^{+2}\pi^{-}$		() × 10 ⁻³		2196
$D^*(2010)^+\pi^0$		<	3.6			$\times 10^{-6}$		2255
$D^*(2010)^+ K^0$		<	9.0			$\times 10^{-6}$	CL=90%	2225
$D^*(2010) - \pi^+ \pi^+ \pi^0$		(\pm	0.7			2235
$D^*(2010)^-\pi^+\pi^+\pi^+\pi^-$		($) \times 10^{-3}$		2217
$\overline{D}^{**0}\pi^{+}$	[///]	($) \times 10^{-3}$		_
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+}$		($) \times 10^{-3}$	S=1.3	2081
$\overline{D}_1(2420)^0\pi^+ \times \ B(\overline{D}_1^0 \to$		(2.5	+	1.6 1.4	$) \times 10^{-4}$	S=3.8	2081
$\overline{D}{}^0\pi^+\pi^-)$								
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to$		(2.2	\pm	0.9	$) \times 10^{-4}$		2081
		`				-		
$\overline{D}^0 \pi^+ \pi^-$ (nonresonant)) $\overline{D}_1(2430)^0 \pi^+$, $\overline{D}_1^0 \to$		(3.5	\pm	0.6) × 10 ⁻⁴		2079
$D^*(2010)^-\pi^+$		•				,		

$\overline{D}(2550)^{0}\pi^{+}, \ \overline{D}^{0} \rightarrow$	(7.2	±	1.4	$)\times10^{-5}$		_
$D^*(2010)^-\pi^+$ $\overline{D}_J^*(2600)^0\pi^+$, $\overline{D}_J^{*0} o$	(6.8	土	1.3	$) \times 10^{-5}$		_
$D^*(2010)^-\pi^+$ $\overline{D}_2^*(2462)^0\pi^+, \ \overline{D}_2^{*0} \to D^-\pi^+$	(3.56	±	0.24) × 10 ⁻⁴		_
$\overline{D}_2^{*}(2462)^0\pi^+$, $\overline{D}_2^{*0} o$	() × 10 ⁻⁴		-
$\overline{D}^{0}\pi^{-}\pi^{+}$ $\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{D}_{2}^{*0} \rightarrow$	<	1.6			$\times10^{-4}$	CL=90%	-
$\overline{D}^0 \pi^- \pi^+$ (nonresonant) $\overline{D}_2^* (2462)^0 \pi^+, \ \overline{D}_2^{*0} \rightarrow$	(2.1	±	1.0) × 10 ⁻⁴		_
$D^*(2010)^-\pi^+$ $\overline{D}_0^*(2400)^0\pi^+$) × 10 ⁻⁴		2136
\times B $(\overline{D}_0^*(2400)^0 \rightarrow D^-\pi^+)$	(0.4	_	1.4) × 10		2130
$\overline{D}_1(2421)^0\pi^+$, $\overline{D}_1^0 o D^{*-}\pi^+$	(7.4	\pm	1.0	$) \times 10^{-4}$		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{D}_{2}^{*0} \rightarrow $ $D^{*-}\pi^{+}$	() × 10 ⁻⁴		_
$D_1'(2427)^0\pi^+, \ D_1'^0\to$	(3.5	\pm	0.9	$)\times 10^{-4}$	S=1.5	-
$\overline{D}_1(2420)^0\pi^+ imes B(\overline{D}_1^0 o$	<	6			$\times10^{-6}$	CL=90%	2081
$\overline{D}^{*0}\pi^{+}\pi^{-}$					2		
$\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	1.4				CL=90%	1996
$\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$	<	1.3			$\times 10^{-3}$	CL=90%	2063
$\overline{D}_2^*(2460)^0\pi^+ imes B(\overline{D}_2^{*0} o \overline{D}^{*0}\pi^+\pi^-)$	<	2.2			× 10 ⁻⁵	CL=90%	2063
$\overline{D}_{1}^{*}(2680)^{0}\pi^{+}$, $\overline{D}_{1}^{*}(2680)^{0} ightarrow$	(8.4	±	2.1	$) \times 10^{-5}$		-
$\overline{D}(2740)^0\pi^+, \ \overline{D}^0 \rightarrow$	(3.3	土	1.5	$) \times 10^{-5}$		_
$D^*(2010)^-\pi^+ \over \overline{D}_3^*(2750)^0\pi^+, \ \overline{D}_3^{*0} \rightarrow$	(1.10	土	0.32) × 10 ⁻⁵		1913
$D^*(2010)^-\pi^+$							
$\overline{D}_3^*(2760)^0\pi^+,$	(1.00	\pm	0.22	$) \times 10^{-5}$		_
$\overline{D}_3^*(2760)^0 \pi^+ \to D^- \pi^+ $ $\overline{D}_2^*(3000)^0 \pi^+,$	(2.0	+	1.4) × 10 ⁻⁶		_
$\overline{D}_{2}^{*}(3000)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}$	(_		, // =0		
$\overline{D}_{2}^{*}(2460)^{0}\rho^{+}$	<	4.7			$\times10^{-3}$	CL=90%	1977
$\overline{D}^{0}D_{c}^{+}$	(0.9) × 10 ⁻³		1815
$D_{s0}^{*}(2317)^{+}\overline{D}{}^{0}, D_{s0}^{*+} \rightarrow$	() × 10 ⁻⁴		1605
$D_s^+ \pi^0$					4 a — A	GL 222/	100=
$D_{s0}(2317)^{+}\overline{D}^{0} \times $	<	7.6			× 10 ⁻⁴	CL=90%	1605
$B(D_{s0}(2317)^+ \to D_s^{*+}\gamma)$							

$D_s^{(*)+}\overline{D}^{**0}$	(2.7	土	1.2) %		_
$\overline{D}^*(2007)^0 D^*(2010)^+$	() × 10 ⁻⁴		1713
$\overline{D}{}^{0}D^{*}(2010)^{+}+$	<	1.30				CL=90%	1792
$\overline{D}^*(2007)^0 D^+$							
$\overline{D}{}^{0} D^{*}(2010)^{+}$	(3.9	+	0.5	$) \times 10^{-4}$		1792
$\overline{D}^0 D^+$	($) \times 10^{-4}$		1866
$\overline{D}{}^0D^+K^0$	() × 10 ⁻³		1571
$D^{+}\overline{D}^{*}(2007)^{0}$	(6.3) × 10 ⁻⁴		1791
$\overline{D}^*(2007)^0 D^+ K^0$	(2.1			$) \times 10^{-3}$		1475
$\overline{D}{}^{0}D^{*}(2010)^{+}K^{0}$	(3.8) × 10 ⁻³		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	(9.2			$) \times 10^{-3}$		1362
$\overline{D}^0 D^0 K^+$	($) \times 10^{-3}$	S=2.6	1577
$\overline{D}^*(2007)^0 D^0 K^+$	() × 10 ⁻³		1481
$\overline{D}{}^{0}D^{*}(2007)^{0}K^{+}$	(6.3			$) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(0.13			1368
$D^{-}D^{+}K^{+}$	($) \times 10^{-4}$		1571
$T^*_{cs0}(2870)^0D^+,\ T^{*0}_{cs0} ightarrow$	($) \times 10^{-5}$		_
D^-K^+	(
$T^*_{cs1}(2900)^0D^+,\;\;T^{*0}_{cs1} ightarrow$	(6.7	\pm	2.3	$) \times 10^{-5}$		_
D^-K^+	`				,		
$D^-D^+K^+$ nonresonant	(5.3	\pm	1.8	$) \times 10^{-5}$		1571
$D^-D^*(2010)^+K^+$	($) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	(6.0			$) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+$	(1.32			$) \times 10^{-3}$		1363
$(\overline{D}+\overline{D}^*)(D+D^*)K$	(0.30			_
$D_s^- D_s^+ K^+$	(1.2			$) \times 10^{-4}$		1429
$D_{s}^{+}\pi^{0}$	(1.6) × 10 ⁻⁵		2270
$D_{s}^{s+}\pi^{0}$	<	2.6				CL=90%	2215
5+	<	1.4			$\times 10^{-5}$	CL=90%	2235
$D^{*+}n$	<	1.7				CL=90%	2178
D^+_{0}	<	3.0				CL=90%	2197
$D_s \rho$	<	3.0 4				CL=90%	
$D_s \rho$							2138
$D_s^+\omega$	<	4				CL=90%	2195
$D_{s}^{++}\omega$	<	6				CL=90%	2136
$D_s^+ a_1 (1260)^0$	<	1.8				CL=90%	2080
$D_s^{*+} a_1 (1260)^0$	<	1.3			$\times 10^{-3}$	CL=90%	2015
$D_{s}^{+}K^{+}K^{-}$	(7.2	\pm	1.1	$) \times 10^{-6}$		2149
$D_s^+\phi$	<	4.2			$\times 10^{-7}$	CL=90%	2141
$D_s^{*+}\phi$	<	1.2			$\times10^{-5}$	CL=90%	2079
$D^{+}\overline{K}^{0}$	<	3			$\times 10^{-6}$	CL=90%	2242
$D^{s+}\overline{K}^{0}$	<	6				CL=90%	2185
$D + \frac{1}{K} * (892)^0$	<	4.4				CL=90%	2172
$D_{s}^{+} \eta$ $D_{s}^{+} \rho^{0}$ $D_{s}^{+} \rho^{0}$ $D_{s}^{+} \omega$ $D_{s}^{+} \omega$ $D_{s}^{+} a_{1}(1260)^{0}$ $D_{s}^{+} a_{1}(1260)^{0}$ $D_{s}^{+} K^{+} K^{-}$ $D_{s}^{+} \phi$ $D_{s}^{+} \overline{K}^{0}$ $D_{s}^{+} \overline{K}^{0}$ $D_{s}^{+} \overline{K}^{0}$ $D_{s}^{+} \overline{K}^{0}$	_	⊤. ≒			^ 10	CL—90/0	2112

$D_{s}^{+} K^{*0}$ $D_{s}^{*+} \overline{K}^{*} (892)^{0}$ $D_{s}^{-} \pi^{+} K^{+}$ $D_{s}^{*-} \pi^{+} K^{+}$ $D_{s}^{-} \pi^{+} K^{*} (892)^{+}$	< (3.5 1.80 1.45	± ±	0.22 0.24	$\times 10^{-6}$ $\times 10^{-4}$) $\times 10^{-4}$) $\times 10^{-4}$ $\times 10^{-3}$	CL=90%	2172 2112 2222 2164 2138
$D_s^{*-}\pi^+K^*(892)^+$ $D_s^-K^+K^+$	<	7			$\times 10^{-3}$ $\times 10^{-6}$		2076 2149
$D_s^{*-}K^+K^+$	<	1.5			× 10 ⁻⁵	CL=90%	2088
Charme					. 2		
$\eta_c K^+$	() × 10 ⁻³	S=1.1	1751
$\eta_c K^*(892)^+$	(1.2	+	0.5	$) \times 10^{-3}$		1646
$\eta_c K^+ \pi^+ \pi^-$	<				$\times 10^{-4}$		1684
$\eta_c K^+ \omega(782)$					× 10 ⁻⁴		1475
$\eta_c K^+ \eta_c$					\times 10 ⁻⁴		1588
$\eta_c K^+ \pi^0$					$\times 10^{-5}$	CL=90%	1723
$\eta_c(2S)K^+$	($) \times 10^{-4}$		1320
$\eta_{c}(2S)K^{+}, \; \eta_{c} ightarrow \; p\overline{p}$	($) \times 10^{-8}$		_
$\eta_{m{c}}(2S) K^+, \ \eta_{m{c}} ightarrow \ K^0_S K^\mp \pi^\pm$	(3.4	+	2.3 1.6) × 10 ⁻⁶		_
$\eta_c(2S)K^+$, $\eta_c o p\overline{p}\pi^+\pi^-$	(1.12	\pm	0.18	$) \times 10^{-6}$		_
$h_c(1P)K^+$, $h_c \rightarrow J/\psi \pi^+\pi^-$	<				\times 10 ⁻⁶		1401
$X(3730)^{0} K^{+}, X^{0} \rightarrow \eta_{c} \eta$	<				\times 10 ⁻⁵		_
$X(3730)^0 K^+, X^0 \to \eta_c \pi^0$					\times 10 ⁻⁶		_
$\eta_{c2}(1D)K^+, \ \eta_{c2} \rightarrow h_c\gamma$	<				\times 10 ⁻⁵		_
$\eta_{c2}(1D)\pi^+K_S^0$, $\eta_{c2}\to h_c\gamma$	<				× 10 ⁻⁴	CL=90%	- - -
ψ_2 (3823) K^+ , $\psi_2 \rightarrow J/\psi \pi^+ \pi^-$	(2.8	±	0.6) × 10 ⁻⁷		_
ψ_2 (3823) K^+ , $\psi_2 \rightarrow J/\psi \eta$	(1.2	+	0.7 0.5	$) \times 10^{-6}$		_
$\psi_{3}(3842)K^{+}$, $\psi_{3} ightarrow\;J/\psi\eta$	<	6.1			$\times 10^{-7}$	CL=90%	_
$\chi_{c1}(3872)K^+$	(1.9	\pm	0.6	$) \times 10^{-4}$		1141
$\chi_{c0}(3915)K^{+}$	<	2.8			$\times 10^{-4}$	CL=90%	1100
$\chi_{c0}(3915)K^{+}, \ \chi_{c0} \rightarrow D^{+}D^{-}$	(8.1	\pm	3.3	$) \times 10^{-6}$		_
$\chi_{c0}(3915)K^+, \chi_{c0} \rightarrow \eta_c \eta_c$	<	4.7				CL=90%	_
$\chi_{c0}(3915)K^{+}, \ \chi_{c0} \rightarrow \eta_{c}\pi^{0}$ $X(4014)^{0}K^{+}, \ X^{0} \rightarrow \eta_{c}\eta$	<	1.7				CL=90%	_
$X(4014)^{0}K^{+}, X^{0} \rightarrow \eta_{c}\eta_{c}$	<	3.9				CL=90%	_
$X(4014)^0 K^+, X^0 \to \eta_c \pi^0$	<	1.2				CL=90%	- - -
$T_{c\overline{c}1}(3900)^0 K^+, T^0_{c\overline{c}1} ightarrow \eta_c \pi^+ \pi^-$	<	4.7			× 10 ⁻⁵	CL=90%	_
$T_{c\overline{c}1}(3900)^0 K^+, T^0_{c\overline{c}1} \rightarrow J/\psi \eta$	<	4.3			× 10 ⁻⁷	CL=90%	_

$T_{c\overline{c}}(4020)^0K^+,\;\;T^0_{c\overline{c}} ightarrow$		<	1.6		$\times 10^{-5}$	CL=90%	_
$\eta_c \pi^+ \pi^- \chi_{c1}(3872) K^*(892)^+$		<	5		× 10 ⁻⁴	CL=90%	940
$\chi_{c1}(3872)^+ K^0, \chi_{c1}^+ \rightarrow$	[nnn]	<	6.1		$\times10^{-6}$	CL=90%	_
$J/\psi(1S)\pi^+\pi^0$							
$\chi_{c1}(3872)K^0\pi^+$		(2.4	\pm 1.1	$) \times 10^{-4}$		1085
$T_{c\overline{c}1}(4430)^+ K^0, T_{c\overline{c}1}^+ \rightarrow$					× 10 ⁻⁵		_
$J/\psi \pi^+$							
$T_{c\overline{c}1}(4430)^+ K^0$, $T_{c\overline{c}1}^+ \rightarrow$		<	4.7		× 10 ⁻⁵	CL=95%	_
ψ (2S) π^+							
$T_{c\overline{c}1}(4430)^0 K^+, T^0_{c\overline{c}1} \rightarrow J/\psi \eta$		<	1.27		× 10 ⁻⁶	CL=90%	_
$\psi(4230)^0 K^+, \ \psi^0 \to$			1 56		v 10-5	CL=95%	
$J/\psi \pi^+ \pi^-$		<	1.56		× 10 °	CL=95%	_
ψ (4230) K^+ , $\psi \rightarrow J/\psi \eta$		<	3.9		$\times10^{-7}$	CL=90%	_
$\psi(4360)K^+, \ \psi \rightarrow J/\psi \eta$		<	1.24		$\times10^{-6}$	CL=90%	_
ψ (4390) K^+ , $\psi o J/\psi \eta$		<	2.41		$\times 10^{-6}$	CL=90%	_
$\chi_{c0}(3915)K^+$, $\chi_{c0} \rightarrow J/\psi \gamma$		<	1.4		$\times 10^{-5}$	CL=90%	_
$\chi_{c0}(3915) K^+$, $\chi_{c0} ightarrow$		<	3.8		$\times 10^{-5}$	CL=90%	_
$\chi_{c1}(1P)\pi^{0}$							
$X(3930)^0 K^+, X^0 \to J/\psi \gamma$		<	2.5		$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)K^+$		(1.020	0.01	9) \times 10 ⁻³		1684
$J/\psi(1S) K^0 \pi^+$		(1.14	\pm 0.11	$) \times 10^{-3}$		1651
$J/\psi(1S) K^+ \pi^+ \pi^-$		(8.1	\pm 1.3	$) \times 10^{-4}$	S=2.5	1612
$J/\psi(1S)K^+K^-K^+$		(3.37	± 0.29	$) \times 10^{-5}$		1252
$\chi_{c0}(3915)K^+, \chi_{c0} \rightarrow p\overline{p}$		<	7.1		$\times 10^{-8}$	CL=95%	_
$J/\psi(1S) K^*(892)^+$		(1.43	± 0.08	$) \times 10^{-3}$		1571
$J/\psi(1S)K(1270)^+$		(1.8	\pm 0.5	$) \times 10^{-3}$		1402
$J/\psi(1S) K(1400)^+$					$\times 10^{-4}$	CL=90%	1308
$J/\psi(1S)\etaK^+$		(1.24	± 0.14	$) \times 10^{-4}$		1510
$\chi_{c1-odd}(3872)K^+,$		<	3.8		× 10 ⁻⁶	CL=90%	_
$\chi_{c1-odd} \rightarrow J/\psi \eta$			0.7		v 10-7	CL=90%	
ψ (4160) K^+ , $\psi \rightarrow J/\psi \eta$ $J/\psi(1S)\eta'K^+$		<				CL=90%	1072
$J/\psi(1S)\eta$ K $^+$			5.1	± 0.4	$) \times 10^{-5}$		1273
		() × 10 ⁻⁵		1227
$J/\psi(1S) K_1(1650), K_1 \rightarrow \phi K^+$		(6	+ 10 - 6	$)\times10^{-6}$		_
$J/\psi(1S)K^*(1680)^+,\;\;K^* ightarrow \phiK^+$		(3.4	+ 1.9 - 2.2	$)\times10^{-6}$		_
$J/\psi(1S)K_2^*(1980),\;\;K_2^* ightarrow \phiK^+$		(1.5	+ 0.9 - 0.5	$) \times 10^{-6}$		-

$J/\psi(1S) K(1830)^+, \ K(1830)^+ o \phi K^+$	(1.3	+	1.3 1.1	$)\times10^{-6}$		-
$\chi_{c1}(4140)K^+, \chi_{c1} \rightarrow J/\psi(1S)\phi$	(10	±	4	$)\times10^{-6}$		_
$\chi_{c1}(4274)K^+, \chi_{c1} \rightarrow J/\psi(1S)\phi$	(3.6	+	2.2 1.8	$)\times10^{-6}$		-
$\chi_{c0}(4500)K^+$, $\chi_{c0} ightarrow J/\psi(1S)\phi$	(3.3	+	2.1 1.7	$) \times 10^{-6}$		-
$\chi_{c0}(4700)K^+, \chi_{c0} \rightarrow J/\psi(1S)\phi$	(6	+	5 4	$)\times10^{-6}$		-
$J/\psi(1S)\omegaK^+$	(3.20	+	0.60 0.32	$)\times10^{-4}$		1388
$\chi_{c0}(3915)K^+,~\chi_{c0} ightarrow J/\psi \omega$	(3.0	+	0.9 0.7	$)\times10^{-5}$		1103
$J/\psi(1S)\pi^+$	(3.92	\pm	0.09	$) \times 10^{-5}$		1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(1.17	\pm	0.13	$) \times 10^{-5}$		1635
$\psi(2S)\pi^+\pi^+\pi^-$	(1.9	\pm	0.4	$) \times 10^{-5}$		1304
$J/\psi(1S) \rho^+$	(4.1	\pm	0.5	$) \times 10^{-5}$	S=1.4	1612
$J/\psi(1S)\pi^+\pi^0$ nonresonant	<	7.3			$\times 10^{-6}$	CL=90%	1717
$J/\psi(1S)a_1(1260)^+$	<				$\times 10^{-3}$		1415
$J/\psi(1S) \rho \overline{\rho} \pi^+$	<	5.0			\times 10 ⁻⁷	CL=90%	644
$J/\psi(1S) p \overline{\Lambda}$	($) \times 10^{-5}$		568
$J/\psi(1S)\overline{\Sigma}{}^0 p$	<	1.1			$\times 10^{-5}$	CL=90%	_
$J/\psi(1S)D^+$	<				$\times 10^{-4}$		871
$J/\psi(1S)\overline{D}{}^0\pi^+$	<	2.5			$\times 10^{-5}$	CL=90%	665
$\psi(2S)\pi^+$	(2.44	\pm	0.30	$) \times 10^{-5}$		1348
$\psi(2S)K^+$	(6.24	\pm	0.21	$) \times 10^{-4}$		1284
$\psi(2S)K^*(892)^+$	(6.7	\pm	1.4	$) \times 10^{-4}$	S=1.3	1116
$\psi(2S)K^{+}\pi^{+}\pi^{-}$	(4.3	\pm	0.5	$) \times 10^{-4}$		1179
$\psi(2S)\phi(1020)K^{+}$	(4.0	\pm	0.7	$) \times 10^{-6}$		418
ψ (3770) K^{+}	(4.3	\pm	1.1	$) \times 10^{-4}$		1218
$\psi(3770)K+,\psi \rightarrow D^0\overline{D}^0$	(1.5	\pm	0.5	$) \times 10^{-4}$	S=1.4	1218
ψ (3770) $K+,\psi ightarrow D^+D^-$	(9.4	\pm	3.5	$) \times 10^{-5}$		1218
ψ (3770) K^+ , $\psi o p\overline{p}$	<	2			$\times 10^{-7}$	CL=95%	_
ψ (3770) K^+ , $\psi o J/\psi \eta$	<	4.6			$\times 10^{-7}$	CL=90%	_
ψ (4040) K^{+}	(1.6	\pm	0.5	$) \times 10^{-3}$		1002
ψ (4040) K^+ , $\psi ightarrow D^+D^-$	(1.1	\pm	0.5	$) \times 10^{-5}$		_
ψ (4160) K^+	(5.1	\pm	2.7	$) \times 10^{-4}$		869
ψ (4160) K^+ , $\psi ightarrow \overline{D}{}^0 D^0$	(8	\pm	5	$) \times 10^{-5}$		_
ψ (4160) K^+ , $\psi o D^+D^-$	(1.5	\pm	0.6	$) \times 10^{-5}$		_
ψ (4415) K^+ , $\psi o D^+D^-$	(2.0	\pm	8.0	$) \times 10^{-5}$		_
ψ (4415) K^+ , $\psi o J/\psi \eta$	<	9.6				CL=90%	_
$\chi_{c0}\pi^+$, $\chi_{c0} \rightarrow \pi^+\pi^-$	<	1			$\times 10^{-7}$	CL=90%	1531

$\chi_{c0}\pi^+$, $\chi_{c0} \rightarrow \pi^0\pi^0$	<	5		$\times 10^{-7}$	CL=90%	_				
$\chi_{c0} K^+$	(1.51	+ 0.15 - 0.13	$) \times 10^{-4}$		1478				
$\chi_{c0} K^0 \pi^+$				$) \times 10^{-3}$		1439				
$\chi_{c0} K^*(892)^+$	<				CL=90%	1341				
$\chi_{c1}(1P)\pi^{+}$	($) \times 10^{-5}$		1468				
$\chi_{c1}(1P)K^{+}$				$) \times 10^{-4}$		1412				
$\chi_{c1}(1P)K^*(892)^+$	(3.0	⊢ 0.6	$) \times 10^{-4}$	S=1.1	1265				
$\chi_{c1}(1P) K^{0} \pi^{+}$	(5.8	⊢ 0.4	$) \times 10^{-4}$		1370				
$\chi_{c1}(1P) K^+ \pi^0$	(3.29 =	⊢ 0.35	$) \times 10^{-4}$		1373				
$\chi_{c1}(1P) K^+ \pi^+ \pi^-$	(3.74 =	± 0.30	$) \times 10^{-4}$		1319				
$\chi_{c1}(2P) {\cal K}^+$, $\chi_{c1}(2P) ightarrow$	<	1.1		$\times 10^{-5}$	CL=90%	_				
$\pi^{+}\pi^{-}\chi_{c1}(1P)$										
$\chi_{c2}\pi^+$, $\chi_{c2} \rightarrow \pi^0\pi^0$	<				CL=90%	_				
$\chi_{c2}K^+$	($) \times 10^{-5}$		1379				
$\chi_{c2}K^+$, $\chi_{c2} \rightarrow p\overline{p}\pi^+\pi^-$	<			\times 10 ⁻⁷		_				
$\chi_{c2} K^*(892)^+$				_	CL=90%	1228				
$\chi_{c2}K^0\pi^+$	($) \times 10^{-4}$		1336				
$\chi_{c2}K^+\pi^0$	<				CL=90%	1339				
$\chi_{c2}K^+\pi^+\pi^-$	($) \times 10^{-4}$		1284				
$\chi_{c2}(3930) K^+, \ \chi_{c2} \rightarrow D^+ D^-$	($) \times 10^{-5}$		_				
$\chi_{c2}(3930)\pi^{+}, \ \chi_{c2} \rightarrow \pi^{+}\pi^{-}$	<				CL=90%	1437				
$h_c(1P)K^+$				$) \times 10^{-5}$		1401				
$h_c(1P)K^+$, $h_c o p\overline{p}$	<	6.4		× 10 ⁻⁶	CL=95%	_				
K or K* modes										
$K^0\pi^+ \ K^+\pi^0$				$) \times 10^{-5}$		2614				
				$) \times 10^{-5}$		2615				
$\eta' K^+$	($) \times 10^{-5}$		2528				
$\eta' K^* (892)^+$	(4.8	+ 1.8 - 1.6	$) \times 10^{-6}$		2472				
$\eta' K_0^* (1430)^+$	(5.2	≥ 2.1	$) \times 10^{-6}$		-				
$\eta' K_2^*(1430)^+$	(2.8 =	⊢ 0.5	$) \times 10^{-5}$		2346				
$\eta K^{ar{+}}$	(2.4	⊢ 0.4	$) \times 10^{-6}$	S=1.7	2588				
$\eta K^*(892)^+$	(1.93 =	⊢ 0.16	$) \times 10^{-5}$		2534				
$\eta K_0^*(1430)^+$	(1.8 =	⊢ 0.4	$) \times 10^{-5}$		_				
$\eta K_2^*(1430)^+$	(9.1	± 3.0	$) \times 10^{-6}$		2414				
$\eta(1295){ m extsf{K}}^+ imes{ m B}(\eta(1295) ightarrow \ \eta\pi\pi)$	(2.9	⊢ 0.8 − 0.7) × 10 ⁻⁶		2455				
$\eta(1405)K^+ \times B(\eta(1405) \to$	<	1.3		× 10 ⁻⁶	CL=90%	2425				
$\eta\pi\pi) \ \eta(1405) K^+ imes B(\eta(1405) ightarrow \ K^* K)$	<	1.2		× 10 ⁻⁶	CL=90%	2425				
(1475) //+ D/ (1475)										
$\eta(1475) {\mathcal K}^+ imes {\mathsf B}(\eta(1475) ightarrow \ {\mathcal K}^* {\mathcal K})$	(1.38	⊢ 0.21 − 0.18) × 10 ⁻⁵		2406				

HTTP://PDG.LBL.GOV Page 91

Page 91 Created: 4/24/2025 13:07

$f_1(1285)K^+$	<	2.0			\times 10 ⁻⁶	CL=90%	2458
$f_1(1420)K^+ imesB(f_1(1420) o$	<	2.9			$\times 10^{-6}$	CL=90%	2420
$\eta \pi \pi$)					6		
$f_1(1420)K^+ \times B(f_1(1420) \rightarrow K^*K)$	<	4.1			× 10 ⁻⁶	CL=90%	2420
$K^*K) \ \phi(1680)K^+ imes B(\phi(1680) o$	<	3.4			× 10-6	CL=90%	2344
$(6000)K \times B(\phi(1000) \rightarrow K^*K)$	<	3.4			× 10 °	CL=90%	2344
$f_0(1500)K^+$	(3.7	± 2.	.2	$) \times 10^{-6}$		2393
ωK^+	(6.5			$) \times 10^{-6}$		2558
$\omega K^*(892)^+$	<					CL=90%	2503
$\omega(K\pi)_0^{*+}$	(2.8	± 0.	.4	$) \times 10^{-5}$		-
$\omega K_0^* (1430)^+$	(2.4	± 0.	.5	$) \times 10^{-5}$		-
$\omega K_2^*(1430)^+$	(2.1	± 0.	.4	$) \times 10^{-5}$		2379
$a_0(980)^+ K^0 \times B(a_0(980)^+ \to$	<	3.9			$\times 10^{-6}$	CL=90%	_
$\eta \pi^+$)					6		
$a_0(980)^0 K^+ \times {\sf B}(a_0(980)^0 \to$	<	2.5			× 10 ⁻⁶	CL=90%	_
$\eta\pi^0) \ \mathcal{K}^*(892)^0\pi^+$	(1 01	_ _ 0	00) × 10 ⁻⁵		2562
$K^*(892)^+\pi^0$	($) \times 10$ $) \times 10^{-6}$		2563
$K^+\pi^-\pi^+$	($) \times 10^{-5}$		2609
$K^+\pi^-\pi^+$ nonresonant	() × 10 ⁻⁵		2609
ω (782) K^+	($) \times 10^{-6}$		
	(6					2558
$K^+f_0(980) \times B(f_0(980) o$	(9.4	- 1.	.2	$) \times 10^{-6}$		2522
$\pi^+\pi^-) \ f_2(1270)^0K^+$	(1 07	± 0	27) × 10 ⁻⁶		_
$f_0(1370)^0 K^+ \times$	<				,	CL=90%	_
$B(f_0(1370)^0 \to \pi^+\pi^-)$		1.01			× 10	CL-3070	
ρ (14500) $K^+ \times$	<	1.17			$\times 10^{-5}$	CL=90%	_
$B(\rho(1450)^0 \to \pi^+\pi^-)$							
$f_2'(1525) K^+ imes$	<	3.4			\times 10 ⁻⁶	CL=90%	2394
$B(f_2'(1525) \to \pi^+\pi^-)$							
$\mathcal{K}^+ ho^0$	(3.7	± 0.	.5	$) \times 10^{-6}$		2559
$K_0^*(1430)^0\pi^+$	(3.9	+ 0. - 0.	.6 .5	$) \times 10^{-5}$	S=1.4	2445
$K_2^*(1430)^0\pi^+$	(5.6	+ 2. - 1	.2) × 10 ⁻⁶		2445
$\overset{-}{ extstyle K^*}(1410)^0\pi^+$	<	4.5			$\times 10^{-5}$	CL=90%	2448
$K^*(1680)^0\pi^+$	<	1.2				CL=90%	2358
$K^+\pi^0\pi^0$	(1.62	± 0.	.19	$) \times 10^{-5}$		2610
$f_0(980)K^+ \times B(f_0 \to \pi^0\pi^0)$	(± 0.	.8	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	4.6				CL=90%	2609
$K^-\pi^+\pi^+$ nonresonant	<	5.6				CL=90%	2609
$K_1(1270)^0 \pi^+$	<	4.0			\times 10 ⁻⁵	CL=90%	2489

K (1400)0 +		2.2	10-5	CI 000/	0.454
$K_1(1400)^0\pi^+ \ K^0\pi^+\pi^0$	<	3.9		CL=90%	2451
	<	6.6		CL=90%	2609
$K_0^*(1430)^+\pi^0$	($^{.20}_{.23}$) × 10 ⁻⁵		_
$\mathcal{K}^0 ho^+$	(7.3 $\begin{array}{ccc} + & 1 \\ - & 1 \end{array}$	$^{.0}_{.2}$) × 10 ⁻⁶		2558
$K^*(892)^+\pi^+\pi^-$	($.0) \times 10^{-5}$		2557
$\dot{K}^*(892)^+ \rho^0$	($(1) \times 10^{-6}$		2504
$K^*(892)^+ f_0(980)$	($.7) \times 10^{-6}$		2466
$a_1^+ K^0$	($.7) \times 10^{-5}$		_
$b_1^+ {\mathcal K}^0 imes {\mathsf B}(b_1^+ o \ \omega \pi^+)$	($.9) \times 10^{-6}$		_
$K^*(892)^0 \rho^+$	($.5) \times 10^{-6}$		2504
$K_1(1400)^+ \rho^0$	<	7.8		CL=90%	2388
$K_2^{1}(1430)^{+}\rho^{0}$	<		$\times10^{-3}$		2381
$b_1^{02}K^+ \times B(b_1^0 \rightarrow \omega \pi^0)$	(0.0×10^{-6}		_
$b_1^+ K^{*0} \times B(b_1^+ \to \omega \pi^+)$	<		× 10 ⁻⁶	CI =90%	_
$b_0^1 K^{*+} \times B(b_0^0 \to \omega \pi^0)$	<		× 10 ⁻⁶		_
$K^+\overline{K}^0$	(10^{-10} .17) \times 10 ⁻⁶		2593
$\frac{\kappa}{\kappa^0} \frac{\kappa}{\kappa^+ \pi^0}$	<	2.4		S=1.2 CL=90%	2578
$K^+ K_S^0 K_S^0$	($0.04) \times 10^{-5}$	CL-90/0	2521
$f_0(980)K^+, f_0 \rightarrow K_S^0K_S^0$	($.33) \times 10^{-5}$		2521
	(
$f_0(1710)K^+$, $f_0 o K_S^0K_S^0$	($\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{.0}_{.6}$) × 10 ⁻⁷		_
$K^+K^0_SK^0_S$ nonresonant	(2.0 \pm 0	$.4) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}\pi^{+}$	<	5.1	\times 10 ⁻⁷	CL=90%	2577
$K^+K^-\pi^+$	(5.2 ± 0	$.4) \times 10^{-6}$		2578
$\mathit{K}^{+}\mathit{K}^{-}\pi^{+}$ nonresonant	($.26) \times 10^{-6}$		2578
$K^{+}\overline{K}^{*}(892)^{0}$	(.8) \times 10 ⁻⁷		2540
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	($.3) \times 10^{-7}$		2421
$\pi^+(K^+K^-)$ _{S-wave}	($.9) \times 10^{-7}$		2578
$\pi^{+} K^{+} K^{-}$, $m_{K^{+} K^{-}} < 1.1$	($.5) \times 10^{-6}$		_
GeV $K^+K^+\pi^-$					
			× 10 ⁻⁸		
$K^+K^+\pi^-$ nonresonant			$\times 10^{-5}$		
$f_2'(1525)K^+$			$.5) \times 10^{-6}$		2394
$K^{*+}\pi^{+}K^{-}$	<		$\times 10^{-5}$	CL=90%	2524
$K^*(892)^+ K^*(892)^0$			$.9) \times 10^{-7}$		2485
$K^{*+}K^{+}\pi^{-}$			$\times 10^{-6}$		2524
$K^+K^-K^+$	($.14) \times 10^{-5}$		2523
$\mathcal{K}^+\phi$	($8.8 + 0 \\ - 0$	$^{.7}_{.6}$) × 10 ⁻⁶	S=1.1	2516
$f_0(980)\mathcal{K}^+ imesB(f_0(980) ightarrow \ \mathcal{K}^+\mathcal{K}^-)$	(9.4 ± 3	$.2) \times 10^{-6}$		2522
$a_2(1320) \dot{K^+} imes$	<	1.1	$\times10^{-6}$	CL=90%	2449
$B(a_2(1320) \to K^+K^-)$					

$X_0(1550) K^+ \times \\ {\sf B}(X_0(1550) o \ K^+ K^-)$	(4.3	±	0.7	$)\times 10^{-6}$		-
$\phi(1680)K^+ imes B(\phi(1680) o K^+K^-)$	<	8			× 10 ⁻⁷	CL=90%	2344
$f_0(1710)K^+ \times B(f_0(1710) \rightarrow K^+K^-)$	(1.1	±	0.6	$) \times 10^{-6}$		2327
$K^+K^-K^+$ nonresonant	(2.38	+	0.28 0.50	$) \times 10^{-5}$		2523
$K^*(892)^+ K^+ K^-$	(3.6	\pm	0.5	$) \times 10^{-5}$		2466
$K^*(892)^+ \phi$	() × 10 ⁻⁶	S=1.7	2460
$K^0 K^+ K^- \pi^+$) × 10 ⁻⁴		2494
J/\psiK^+ , $J/\psi o K^0K^-\pi^+$					$) \times 10^{-6}$		_
$\chi_{c1}K^+, \chi_{c1} \rightarrow K^0K^-\pi^+$) × 10 ⁻⁶		_
$\eta_c K^+, \ \eta_c \rightarrow K^0 K^- \pi^+$					$) \times 10^{-5}$		_
$\eta_c(2S)K^+, \ \eta_c(2S) ightarrow K^0K^-\pi^+$	() × 10 ⁻⁶		-
$K^0K^+K^+\pi^-$	(2.80	\pm	0.30	$) \times 10^{-4}$		2494
J/\psiK^+ , $J/\psi o K^0K^+\pi^-$) × 10 ⁻⁶		_
$\chi_{c1}K^+, \chi_{c1} \rightarrow K^0K^+\pi^-$) × 10 ⁻⁶		_
$\eta_c K^+, \ \eta_c \rightarrow K^0 K^+ \pi^-$	($) \times 10^{-5}$		_
$\eta_c(2S)K^+, \ \eta_c(2S) ightarrow K^0K^+\pi^-$	() × 10 ⁻⁶		-
$\phi(\kappa\pi)_0^{*+}$	(8.3	±	1.6	$) \times 10^{-6}$		_
$\phi K_1(1270)^+$	(6.1	\pm	1.9	$) \times 10^{-6}$		2380
$\phi K_1(1400)^+$	<				$\times 10^{-6}$		2339
$\phi K^*(1410)^+$	<	4.3			$\times 10^{-6}$	CL=90%	_
$\phi K_0^* (1430)^+$	(7.0	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_2^*(1430)^+$	(8.4	\pm	2.1	$) \times 10^{-6}$		2332
$\phi K_2^{-}(1770)^+$	<	1.50			$\times10^{-5}$	CL=90%	_
$\phi K_2^{*}(1820)^{+}$	<	1.63			$\times10^{-5}$	CL=90%	_
$a_1^+ K^{*0}$	<	3.6			\times 10 ⁻⁶	CL=90%	_
$\mathcal{K}^+\phi\phi$	($) \times 10^{-6}$		2306
$\eta'\eta'\overset{'}{\mathcal{K}}^{+}$	<					CL=90%	2339
$\omega \phi K^+$	<					CL=90%	2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$	<	3.2				CL=90%	_
$K^*(892)^+\gamma$	(3.92	\pm	0.22	$) \times 10^{-5}$	S=1.7	2564
$K_1(1270)^+\gamma$	() × 10 ⁻⁵		2491
$\eta K^+ \gamma$	(7.9	\pm	0.9	$) \times 10^{-6}$		2588
$\eta' K^+ \gamma$	() × 10 ⁻⁶		2528
$\phi K^+ \gamma$	(2.7	\pm	0.4	$) \times 10^{-6}$	S=1.2	2516
$K + \pi^{-}\pi^{+}\gamma$	() × 10 ⁻⁵	S=1.3	2609
$K^*(892)^{0}\pi^+\gamma$	($) \times 10^{-5}$		2562
$K^{+}\rho^{0}\gamma^{\prime}$	() × 10 ⁻⁶		2559

$(K^+\pi^-)_{NR}\pi^+\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6	\pm	0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	(10	+	5 4	$) \times 10^{-6}$		2453
$K^*(1410)^+\gamma$	(2.7	+	0.8 0.6	$)\times 10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26 0.32	$) \times 10^{-6}$		2445
$K_2^*(1430)^+ \gamma$	(1.4	\pm	0.4	$) \times 10^{-5}$		2447
$K^*(1680)^+\gamma$	(6.7	+	1.7 1.4	$)\times 10^{-5}$		2360
$K_3^*(1780)^+ \gamma$	<	3.9			$\times10^{-5}$	CL=90%	2340
$\kappa_{4}^{*}(2045)^{+}\gamma$	<	9.9			\times 10 ⁻³	CL=90%	2242

Light unflavored meson modes

Light unhavored meson modes											
$\rho^+\gamma$	($) \times 10^{-7}$		2583				
$\pi^+\pi^0$	($) \times 10^{-6}$		2636				
$\pi^+\pi^+\pi^-$	($) \times 10^{-5}$		2630				
$ ho^0\pi^+$	(8.3	\pm		$) \times 10^{-6}$		2581				
$\pi^+ f_0(980), f_0 \to \pi^+ \pi^-$	<	1.5			\times 10 ⁻⁶	CL=90%	2545				
$\pi^+ f_2(1270)$	(2.2	+	0.7 0.4	$) \times 10^{-6}$		2484				
$\rho(1450)^0\pi^+, \ \rho^0 \to \ \pi^+\pi^-$	(1.4	+	0.6 0.9	$)\times10^{-6}$		2434				
$ ho$ (1450) $^0\pi^+$, $ ho^0 o~K^+K^-$	(1.60	\pm	0.14	$) \times 10^{-6}$		_				
$f_0(1370)\pi^+$, $f_0 \to \pi^+\pi^-$	<	4.0			$\times 10^{-6}$	CL=90%	2460				
$f_0(1370)\pi^+$, $f_0 \to \pi^0\pi^0$	<	1.1			$\times 10^{-6}$	CL=90%	_				
$f_0(500)\pi^+$, $f_0 o \pi^+\pi^-$	<	4.1			$\times 10^{-6}$	CL=90%	_				
$\pi^+\pi^-\pi^+$ nonresonant	(5.3	+	1.5 1.1	$) \times 10^{-6}$		2630				
$\pi^+\pi^0\pi^0$	(1.90	\pm	0.21	$) \times 10^{-5}$		2631				
$ ho^+\pi^0$	(1.06	+	0.12 0.13	$)\times10^{-5}$		2581				
$\rho(1450)^{+}\pi^{0}, \ \rho^{+} \rightarrow \pi^{+}\pi^{0}$	(1.2	\pm	0.6	$) \times 10^{-6}$		-				
$\pi^+\pi^0\pi^0$ nonresonant	<	6				CL=90%	2631				
$Xpi+,X \rightarrow \pi^0\pi^0$	(6.9	\pm	1.1	$) \times 10^{-6}$		_				
$\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	<	4.0				CL=90%	2622				
$ ho^+_{\cdot} ho^0_{\cdot}$	(2.40			$) \times 10^{-5}$		2523				
$\rho^{+} f_{0}(980), f_{0} \rightarrow \pi^{+} \pi^{-}$	<	2.0			$\times 10^{-6}$	CL=90%	2486				
$a_1(1260)^+\pi^0$	($) \times 10^{-5}$		2494				
$a_1(1260)^0\pi^+$	(2.0			$) \times 10^{-5}$		2494				
$\omega \pi^+$	(6.9			$) \times 10^{-6}$		2580				
$\omega \rho^+$	($) \times 10^{-5}$		2522				
$\eta\pi^+$	(4.02			$) \times 10^{-6}$		2609				
$\eta \rho^+$	(7.0			$) \times 10^{-6}$	S=2.8	2553				
$\eta'\pi^+$	(2.7			$) \times 10^{-6}$	S=1.9	2551				
$\eta' ho^+$	(9.7	± :	2.2	$) \times 10^{-6}$		2492				

(3.2	± 1.5	$) \times 10^{-8}$		2539
<	3.0		\times 10 ⁻⁶	CL=90%	2480
<	5.8		$\times 10^{-6}$	CL=90%	_
<	1.4		\times 10 ⁻⁶	CL=90%	_
<	8.6		\times 10 ⁻⁴	CL=90%	2608
<	6.2		\times 10 ⁻⁴	CL=90%	2433
<	7.2		\times 10 ⁻⁴	CL=90%	2410
(6.7	\pm 2.0	$) \times 10^{-6}$		_
<	3.3		$\times 10^{-6}$	CL=90%	_
<	6.3		$\times 10^{-3}$	CL=90%	2592
<	5.2		$\times 10^{-6}$	CL=90%	_
<	1.3		%	CL=90%	2336
<	3.3		\times 10 ⁻⁶	CL=90%	_
< < < < <		(3.2	 3.0 5.8 1.4 8.6 6.2 7.2 6.7 ± 2.0 3.3 6.3 5.2 1.3 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Charged particle (h^{\pm}) modes

$$h^{\pm}=K^{\pm}$$
 or π^{\pm}

$h^+\pi^0 $		$\begin{array}{cccc} 1.6 & + & 0 \\ - & 0 \end{array}$	$^{.7}_{.6}$) \times 10 ⁻⁵		2636
ωh^+	, .	$1.38 \begin{array}{c} + & 0 \\ - & 0 \end{array}$	$^{.27}_{.24}$) × 10 ⁻⁵		2580
\ /	4	4.9	$\times10^{-5}$	CL=90%	_
$K^+ \dot{X}^0$, $X^0 \rightarrow \mu^+ \mu^-$		1	\times 10 ⁻⁷	CL=95%	_

Baryon modes

Baryon modes											
$ ho \overline{ ho} \pi^+$	(1.62	± 0.20	$) \times 10^{-6}$		2439					
$p \overline{p} \pi^+$ nonresonant	<	5.3		$\times 10^{-5}$	CL=90%	2439					
$ ho \overline{ ho} \pi^+ \pi^0$	(4.6	\pm 1.3	$) \times 10^{-6}$		2407					
$p\overline{p}K^+$	(5.9	\pm 0.5	$) \times 10^{-6}$	S=1.5	2348					
$\Theta(1710)^{++}\overline{ ho},~~\Theta^{++} ightarrow ho$ $ ho$ K^+	[000] <	9.1		× 10 ⁻⁸	CL=90%	-					
$f_J(2220)K^+$, $f_J o p\overline{p}$	[ooo] <	4.1		$\times 10^{-7}$	CL=90%	2135					
$ ho \overline{n} \pi^0$	<	6.3		$\times 10^{-6}$	CL=90%	2440					
p √(1520)	($) \times 10^{-7}$		2322					
$p\overline{p}K^+$ nonresonant	<	8.9		$\times 10^{-5}$	CL=90%	2348					
$p\overline{p}K^*(892)^+$	(3.6	+ 0.8 - 0.7	$) \times 10^{-6}$		2215					
$f_J(2220)K^{*+}, f_J \rightarrow p\overline{p}$	<	7.7		\times 10 ⁻⁷	CL=90%	2059					
pΛ	(2.4	$^{+}$ 1.0 $^{-}$ 0.9	$) \times 10^{-7}$		2430					
$p\overline{\Lambda}\gamma$	(2.4	$^{+}$ 0.5 $^{-}$ 0.4	$)\times10^{-6}$		2430					
$ \rho \overline{\Lambda} \pi^0 $	(3.0	$^{+}$ 0.7 $^{-}$ 0.6	$) \times 10^{-6}$		2402					
$p\overline{\Sigma}(1385)^0$	<	4.7		$\times 10^{-7}$	CL=90%	2362					
$\Delta^+\overline{\Lambda}$	<	8.2		$\times 10^{-7}$	CL=90%	_					
$ otan \overline{\Sigma} \gamma $	<	4.6		\times 10 ⁻⁶	CL=90%	2413					

HTTP://PDG.LBL.GOV

Page 96

$ ho \overline{\Lambda} \pi^+ \pi^-$	(1.13	\pm	0.13	$) \times 10^{-5}$		2368
$p \overline{\Lambda} \pi^+ \pi^-$ nonresonant	(5.9	\pm	1.1	$) \times 10^{-6}$		2368
$ ho \overline{\Lambda} ho^0$, $ ho^0 ightarrow \ \pi^+ \pi^-$	(4.8	\pm	0.9	$) \times 10^{-6}$		2214
$ ho \overline{\Lambda} f_2(1270)$, $f_2 ightarrow \ \pi^+ \pi^-$	(2.0	\pm	8.0	$) \times 10^{-6}$		2026
$p\overline{\Lambda}K^+K^-$	(4.1	\pm	0.7	$) \times 10^{-6}$		2132
$ ho \overline{\Lambda} \phi$	(8.0	\pm	2.2	$) \times 10^{-7}$		2119
$\overline{p}\Lambda K^+ K^-$	(3.7	\pm	0.6	$) \times 10^{-6}$		2132
$\Lambda \overline{\Lambda} \pi^+$	<	9.4				CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(3.4	\pm	0.6	$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$	(2.2	+	1.2 0.9	$) \times 10^{-6}$		2098
$\Lambda(1520)\overline{\Lambda}K^{+}$	(2.2	\pm	0.7	$) \times 10^{-6}$		2126
$\Lambda \overline{\Lambda}(1520) K^+$	<	2.08			$\times 10^{-6}$		2126
$\overline{\Delta}^{0}p$	<	1.38			$\times10^{-6}$	CL=90%	2403
$\Delta^{++}\overline{p}$	<	1.4			$\times10^{-7}$	CL=90%	2403
$D^+ p \overline{\overline{p}}$	<	1.5			$\times10^{-5}$	CL=90%	1860
$D^*(2010)^+ p \overline{p}$	<	1.5			$\times10^{-5}$	CL=90%	1786
$\overline{D}{}^0 p \overline{p} \pi^+$	(3.72	\pm	0.27	$) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	($) \times 10^{-4}$		1709
$D^-p\overline{p}\pi^+\pi^-$	(1.66	\pm	0.30	$) \times 10^{-4}$		1705
$D^{*-}\overline{p}\overline{p}\pi^{+}\pi^{-}$	($) \times 10^{-4}$		1621
$p\overline{\Lambda}{}^{0}\overline{D}{}^{0}$	(1.43	\pm	0.32	$) \times 10^{-5}$		_
$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$	<	5				CL=90%	_
$\frac{1}{\Lambda_c} p \pi^+$	(2.3	\pm	0.4	$) \times 10^{-4}$	S=2.4	1980
$\overline{\Lambda}_{c}^{-}\Delta(1232)^{++}$	<	1.9				CL=90%	1928
$\overline{\Lambda}_c^c \Delta_X^c (1600)^{++}$	(4.7	\pm	1.0	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^c \Delta_X^c(2420)^{++}$	() × 10 ⁻⁵		_
$(\overline{\Lambda}_c^- p)_s \pi^+$ [ppp	p] () × 10 ⁻⁵		_
$\frac{\overline{\Sigma}_c}{\Sigma_c}(2520)^0_{\ p}$	<	3				CL=90%	1904
$\frac{\Sigma_c(2800)^p}{\Sigma_c(2800)^0}$	(+	0.9	$) \times 10^{-5}$	GE 3070	_
$\frac{1}{\Lambda_c} p \pi^+ \pi^0$,				$) \times 10^{-3}$		1935
$\frac{\Lambda_c}{\Lambda_c} p \pi^+ \pi^+ \pi^-$					$) \times 10^{-3}$		1880
$\frac{\Lambda_c}{\Lambda_c} p \pi^+ \pi^+ \pi^- \pi^0$					%	CL 000/	
L ·	<	1.34				CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$) × 10 ⁻⁴		739
$\Xi_c(2930)\Lambda_c^+, \ \Xi_c \rightarrow \ K^+\Lambda_c^-$	($) \times 10^{-4}$		_
$\overline{\Sigma}_c(2455)^0 p$	($) \times 10^{-5}$		1938
$\overline{\Sigma}_c(2455)^0 p \pi^0$	($) \times 10^{-4}$		1896
$\overline{\Sigma}_c(2455)^0 p \pi^- \pi^+$	($) \times 10^{-4}$		1845
$\overline{\Sigma}_c(2455)^{}p\pi^+\pi^+$	($) \times 10^{-4}$		1845
$ \frac{\overline{\Lambda}_{c}(2593)^{-}}{\overline{\Lambda}_{c}(2625)^{-}}\rho\pi^{+} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}^{+}\pi^{-} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+}\pi^{-} $	<	1.9			× 10 ⁻⁴	CL=90%	_
$\equiv_c^0 \Lambda_c^+$	(9.5	\pm	2.3	$) \times 10^{-4}$		1144
$\overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}_{c}^{+}\pi^{-}$	(1.76	\pm	0.29	$) \times 10^{-5}$		1144
$\overline{\Xi}_{0}^{0}\Lambda_{0}^{+}, \ \overline{\Xi}_{0}^{0} \rightarrow \Lambda K^{+}\pi^{-}$) × 10 ⁻⁵		1144
	`			•	,		

```
\overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{0} \rightarrow p K^{-} K^{-} \pi^{+} \qquad (5.5 \pm 1.9) \times 10^{-6} \qquad - \Lambda_{c}^{+} \overline{\Xi}_{c}^{\prime 0} \qquad (5.5 \pm 1.9) \times 10^{-6} \qquad - \Lambda_{c}^{+} \overline{\Xi}_{c}^{\prime 0} \qquad (5.5 \pm 1.9) \times 10^{-6} \qquad - \Lambda_{c}^{+} \overline{\Xi}_{c}^{\prime 0} (2645)^{0} \qquad (7.9 \times 10^{-4} \text{ CL} = 90\% - 1023) \qquad - \Lambda_{c}^{+} \overline{\Xi}_{c}^{\prime 0} (2790)^{0} \qquad (1.1 \pm 0.4) \times 10^{-3} \qquad - N_{c}^{+} \overline{\Xi}_{c}^{\prime 0} (2790)^{0}
```

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

violating inodes, or/a	iiu Z	D - 1 W	ak ilcutiai cuii	CITE (D	i j illoucs	
$\pi^+\ell^+\ell^-$	В1	[hhh] <	4.9	$\times 10^{-8}$	CL=90%	2638
$\pi^{+} e^{+} e^{-}$	В1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	(1.78 ± 0.23):	$\times 10^{-8}$		2634
$\pi^+ u \overline{ u}$	B1	<			CL=90%	2638
$K^+\ell^+\ell^-$	B1	[hhh] (4.7 ± 0.5):	$\times 10^{-7}$	S=2.3	2617
$K^{+} e^{+} e^{-}$	B1	(5.6 ± 0.6):	$\times 10^{-7}$		2617
$K^+\mu^+\mu^-$	B1	(4.53 ± 0.35):		S=1.8	2612
$K^+\mu^+\mu^-$ nonresonant	B1	(4.37 ± 0.27):			2612
$K^+ \tau^+ \tau^-$	B1	<			CL=90%	1687
$K^+ \overline{\nu} \nu$	B1	<			CL=90%	2617
$\rho^+ u \overline{ u}$	B1	<			CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[hhh] (1.01 ± 0.11):	\times 10 ⁻⁶	S=1.1	2564
$K^*(892)^+ e^+ e^-$	В1	($1.55 \ ^{+}_{-} \ 0.40 \)$	× 10 ⁻⁶		2564
$K^*(892)^+ \mu^+ \mu^-$	В1	(9.6 ± 1.0):	$\times 10^{-7}$		2560
$K^*(892)^+ \nu \overline{\nu}$	В1	<	4.0	\times 10 ⁻⁵	CL=90%	2564
$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	(4.3 ± 0.4)	$\times 10^{-7}$		2593
$\phi K^+ \mu^+ \mu^-$	B1	($7.9 \begin{array}{c} + & 2.1 \\ - & 1.7 \end{array}$	× 10 ⁻⁸		2490
$\overline{\Lambda} p \nu \overline{\nu}$	В1	<			CL=90%	2430
$\pi^+\mathrm{e}^+\mu^-$	LF	<			CL=90%	2637
$\pi^+e^-\mu^+$	LF	<	6.4	$\times 10^{-3}$	CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<			CL=90%	2637
$\pi^+e^+\tau^-$	LF	<			CL=90%	2338
$\pi^+e^-\tau^+$	LF	<			CL=90%	2338
$\pi^+\mathrm{e}^\pm au^\mp$	LF	<			CL=90%	2338
$\pi^+\mu^+\tau^-$	LF	<			CL=90%	2334
$\pi^{+}\mu^{-}\tau^{+}$	LF	<			CL=90%	2334
$\pi^+\mu^{\pm}\tau^{\mp}$	LF	<			CL=90%	2334
$K^+e^+\mu^-$	LF	<			CL=90%	2616
$K^+e^-\mu^+$	LF	<			CL=90%	2616
$K^+e^\pm\mu^\mp$	LF	<			CL=90%	2616
$K^+e^+ au^-$	LF	<			CL=90%	2312
$K^+e^- au^+$	LF	<			CL=90%	2312
$K^+ e^{\pm} au^{\mp}$	LF	<			CL=90%	2312
$K^+\mu^+\tau^-$	LF	<			CL=90%	2298
$K^+\mu^-\tau^+$	LF	<			CL=90%	2298
$K^+\mu^{\pm}\tau^{\mp}$	LF	<	4.8	$\times 10^{-5}$	CL=90%	2298

$K^*(892)^+ e^+ \mu^-$	LF	<	1.3	_	CL=90%	2563
$K^*(892)^+e^-\mu^+$	LF	<	9.9	$\times 10^{-7}$	CL=90%	2563
$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4	$\times 10^{-6}$	CL=90%	2563
$\pi^{-}e^{+}e^{+}$	L	<	2.3	$\times 10^{-8}$	CL=90%	2638
$\pi^-\mu^+\mu^+$	L	<	4.0	$\times 10^{-9}$	CL=95%	2634
$\pi^-e^+\mu^+$	L	<	1.5	$\times 10^{-7}$	CL=90%	2637
$ ho^-e^+e^+$	L	<	1.7	$\times 10^{-7}$	CL=90%	2583
$\rho^{-}\mu^{+}\mu^{+}$	L	<	4.2	$\times 10^{-7}$	CL=90%	2578
$ ho^-e^+\mu^+$	L	<	4.7	$\times 10^{-7}$	CL=90%	2582
$K^-e^+e^+$	L	<	3.0	$\times 10^{-8}$	CL=90%	2617
$\mathcal{K}^-\mu^+\mu^+$	L	<	4.1	$\times 10^{-8}$	CL=90%	2612
$\mathcal{K}^-e^+\mu^+$	L	<	1.6	$\times 10^{-7}$	CL=90%	2616
$K^*(892)^-e^+e^+$	L	<	4.0	$\times 10^{-7}$	CL=90%	2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	$\times 10^{-7}$	CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0	$\times10^{-7}$	CL=90%	2563
$D^{-}e^{+}e^{+}$	L	<	2.6	$\times 10^{-6}$	CL=90%	2309
$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6}$	CL=90%	2307
$D^{-}\mu^{+}\mu^{+}$	L	<	6.9	$\times 10^{-7}$	CL=95%	2303
$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4	$\times 10^{-6}$	CL=95%	2251
$D_{s}^{-}\mu^{+}\mu^{+}$	L	<	5.8	$\times 10^{-7}$	CL=95%	2267
$\overline{D}^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	$\times 10^{-6}$	CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6		CL=90%	_
$\Lambda^0 e^+$	_,_ L,B	<	3.2		CL=90%	_
$\frac{1}{\sqrt{10}} \frac{1}{\mu^+}$	_, <i>B</i>	<	6		CL=90%	_
$\frac{7}{10}e^{+}$	L,B	<	8		CL=90%	_
	_, _	`	· ·		JE 30/0	

 B^0

$$I(J^P) = \frac{1}{2}(0^-)$$

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.72\pm0.08$$
 MeV $m_{B^0}-m_{B^\pm}=0.31\pm0.05$ MeV Mean life $\tau_{B^0}=(1.517\pm0.004)\times10^{-12}$ s $c\tau=454.8~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004$ (direct measurements)

$B^0 - \overline{B}{}^0$ mixing parameters

$$\begin{array}{l} \chi_d \; (B^0\text{-}\overline{B}{}^0 \; \text{mixing probability}) = 0.1860 \pm 0.0011 \\ \Delta m_{B^0} = m_{B^0_H} - m_{B^0_L} = (0.5069 \pm 0.0019) \times 10^{12} \; \hbar \; \text{s}^{-1} \\ & = (3.336 \pm 0.013) \times 10^{-10} \; \text{MeV} \\ \chi_d = \Delta m_{B^0}/\Gamma_{B^0} = 0.7697 \pm 0.0035 \\ \text{Re}(\lambda_{CP} \; / \; |\lambda_{CP}|) \; \text{Re}(\textbf{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \text{Re}(\textbf{z}) = -0.007 \pm 0.004 \; \text{ps}^{-1} \\ \text{Re}(\textbf{z}) = (-4 \pm 4) \times 10^{-2} \quad (\textbf{S} = 1.4) \\ \text{Im}(\textbf{z}) = (-0.8 \pm 0.4) \times 10^{-2} \end{array}$$

CP violation parameters

$$\begin{aligned} &\text{Re}(\epsilon_{B^0})/(1+|\epsilon_{B^0}|^2) = (-0.5 \pm 0.4) \times 10^{-3} \\ &A_{T/CP}(B^0 \leftrightarrow \overline{B^0}) = 0.005 \pm 0.018 \\ &A_{CP}(B^0 \to D^*(2010)^+ D^-) = 0.013 \pm 0.014 \\ &A_{CP}(B^0 \to \overline{D^0}\pi^0) = (0.4 \pm 2.4) \times 10^{-2} \\ &A_{CP}(B^0 \to [K^+K^-]_D K^*(892)^0) = -0.05 \pm 0.10 \\ &A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0) = 0.047 \pm 0.029 \\ &A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0) = 0.037 \pm 0.034 \\ &A_{CP}(B^0 \to [K^-\pi^+]_D K^*(892)^0) = 0.19 \pm 0.19 \\ &A_{CP}(B^0 \to [K^-\pi^+]_D K^*(892)^0) = -0.01 \pm 0.24 \\ &R_d^+ = \Gamma(B^0 \to [\pi^+K^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+]_D K^{*0}) = \\ &0.064 \pm 0.021 \\ &R_d^- = \Gamma(\overline{B^0} \to [\pi^+K^-]_D K^*(892)^0) = -0.18 \pm 0.14 \\ &A_{CP}(B^0 \to [\pi^+\pi^-]_D K^*(892)^0) = -0.03 \pm 0.15 \\ &R_d^+ = \Gamma(B^0 \to [\pi^+K^-\pi^+\pi^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+\pi^+\pi^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^-K^+\pi^+\pi^-]_D K^{*0}) = 0.074 \pm 0.026 \\ &R_d^- = \Gamma(\overline{B^0} \to [\pi^-K^+\pi^+\pi^-]_D K^{*0}) / \Gamma(\overline{B^0} \to [\pi^+K^-\pi^+\pi^-]_D K^{*0}) / \Gamma(\overline{B^0} \to [\pi^+K^-\pi^+\pi^-]_D K^{*0}) = 0.072 \pm 0.025 \\ &A_{CP}(B^0 \to K^+\pi^-) = -0.0831 \pm 0.0031 \\ &A_{CP}(B^0 \to \eta' K^*(892)^0) = -0.19 \pm 0.17 \\ &A_{CP}(B^0 \to \eta' K^*(892)^0) = 0.19 \pm 0.18 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = 0.14 \pm 0.18 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = 0.19 \pm 0.05 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = 0.06 \pm 0.13 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = 0.06 \pm 0.13 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{CP}(B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ &A_{C$$

```
A_{CP}(B^0 \to \omega K_2^*(1430)^0) = -0.37 \pm 0.17
A_{CP}(B^0 \to K^+\pi^-\pi^0) = (0 \pm 6) \times 10^{-2}
A_{CP}(B^0 \rightarrow \rho^- K^+) = 0.20 \pm 0.11
A_{CP}(B^0 \rightarrow \rho(1450)^- K^+) = -0.10 \pm 0.33
A_{CP}(B^0 \to \rho(1700)^- K^+) = -0.4 \pm 0.6
A_{CP}(B^0 \rightarrow K^+\pi^-\pi^0 \text{ nonresonant}) = 0.10 \pm 0.18
A_{CP}(B^0 \to K^0 \pi^+ \pi^-) = -0.01 \pm 0.05
A_{CP}(B^0 \rightarrow K^*(892)^+\pi^-) = -0.27 \pm 0.04
A_{CP}(B^0 \to (K\pi)_0^{*+}\pi^-) = 0.02 \pm 0.04
A_{CP}(B^0 \to K_2^*(1430)^+\pi^-) = -0.29 \pm 0.24
A_{CP}(B^0 \to K^{*}(1680)^{+}\pi^{-}) = -0.07 \pm 0.14
A_{CP}(B^0 \rightarrow f_0(980)K_S^0) = 0.28 \pm 0.31
A_{CP}(B^0 \to (K\pi)_0^{*0}\pi^0) = -0.15 \pm 0.11
A_{CP}(B^0 \to K^{*0}\pi^0) = -0.15 \pm 0.13
A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05
A_{CP}(B^0 \to K^*(892)^0 \rho^0) = -0.06 \pm 0.09
A_{CP}(B^0 \to K^{*0} f_0(980)) = 0.07 \pm 0.10
A_{CP}(B^0 \to K^{*+}\rho^-) = 0.21 \pm 0.15
A_{CP}(B^0 \to K^*(892)^0 K^+ K^-) = 0.01 \pm 0.05
A_{CP}(B^0 \rightarrow a_1^- K^+) = -0.16 \pm 0.12
A_{CP}(B^0 \to \bar{K^0}K^0) = -0.6 \pm 0.7
A_{CP}(B^0 \to K^*(892)^0 \phi) = 0.00 \pm 0.04
A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+) = 0.2 \pm 0.4
A_{CP}(B^0 \to \phi(K\pi)_0^{*0}) = 0.12 \pm 0.08
A_{CP}(B^0 \to \phi K_2^*(1430)^0) = -0.11 \pm 0.10
A_{CP}(B^0 \to K^*(892)^0 \gamma) = -0.006 \pm 0.011
A_{CP}(B^0 \to K_2^*(1430)^0 \gamma) = -0.08 \pm 0.15
A_{CP}(B^0 \to X_s \gamma) = -0.009 \pm 0.018
A_{CP}(B^0 \to \rho^+ \pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)
A_{CP}(B^0 \to \rho^- \pi^+) = -0.08 \pm 0.08
A_{CP}(B^0 \to a_1(1260)^{\pm}\pi^{\mp}) = -0.07 \pm 0.06
A_{CP}(B^0 \rightarrow b_1^- \pi^+) = -0.05 \pm 0.10
A_{CP}(B^0 \to p\overline{p}K^*(892)^0) = 0.05 \pm 0.12
A_{CP}(B^0 \to p \overline{\Lambda} \pi^-) = 0.04 \pm 0.07
A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-) = -0.05 \pm 0.10
A_{CP}(B^0 \to K^{*0} e^+ e^-) = -0.21 \pm 0.19
A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.034 \pm 0.024
C_{D^{*-}D^{+}}(B^{0} \rightarrow D^{*}(2010)^{-}D^{+}) = -0.02 \pm 0.08
S_{D^{*-}D^{+}}(B^{0} \rightarrow D^{*}(2010)^{-}D^{+}) = -0.83 \pm 0.09
C_{D^{*+}D^{-}}^{-}(B^0 \to D^*(2010)^+D^-) = -0.03 \pm 0.09 \quad (S = 1.1)
S_{D^{*+}D^{-}}(B^{0} \rightarrow D^{*}(2010)^{+}D^{-}) = -0.80 \pm 0.09
C_{D^{*+}D^{*-}}^{-} (B^0 \to D^{*+}D^{*-}) = 0.01 \pm 0.09 (S = 1.6)
```

$$\begin{split} & S_{D^{*+}D^{*-}} = (B^{0} \rightarrow D^{*+}D^{*-}) = -0.59 \pm 0.14 \quad (S = 1.8) \\ & C_{+} (B^{0} \rightarrow D^{*+}D^{*-}) = 0.00 \pm 0.10 \quad (S = 1.6) \\ & S_{+} (B^{0} \rightarrow D^{*+}D^{*-}) = -0.73 \pm 0.09 \\ & C_{-} (B^{0} \rightarrow D^{*+}D^{*-}) = 0.19 \pm 0.31 \\ & S_{-} (B^{0} \rightarrow D^{*+}D^{*-}) = 0.1 \pm 1.6 \quad (S = 3.5) \\ & C (B^{0} \rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{S}^{0}) = 0.01 \pm 0.29 \\ & S (B^{0} \rightarrow D^{*}(2010)^{+}D^{*}(2010)^{-}K_{S}^{0}) = 0.1 \pm 0.4 \\ & C_{D^{+}D^{-}} (B^{0} \rightarrow D^{+}D^{-}) = -0.22 \pm 0.24 \quad (S = 2.5) \\ & S_{D^{+}D^{-}} (B^{0} \rightarrow D^{+}D^{-}) = -0.76^{+0.15}_{-0.13} \quad (S = 1.2) \\ & C_{J/\psi(1S)\pi^{0}} (B^{0} \rightarrow J/\psi(1S)\pi^{0}) = 0.03 \pm 0.17 \quad (S = 1.5) \\ & S_{J/\psi(1S)\pi^{0}} (B^{0} \rightarrow J/\psi(1S)\pi^{0}) = -0.08 \pm 0.32 \quad (S = 2.2) \\ & C (B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.06 \pm 0.06 \\ & S (B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.06 \pm 0.06 \\ & S (B^{0} \rightarrow J/\psi(1S)\rho^{0}) = -0.06 \pm 0.08 \\ & S_{C_{CP}h^{0}} (B^{0} \rightarrow D_{CP}^{(*)}h^{0}) = -0.02 \pm 0.08 \\ & S_{C_{CP}h^{0}} (B^{0} \rightarrow K^{0}\pi^{0}) = 0.00 \pm 0.08 \\ & S_{K^{0}\pi^{0}} (B^{0} \rightarrow K^{0}\pi^{0}) = 0.04 \pm 0.13 \\ & C_{\gamma'(958)K_{S}^{0}} (B^{0} \rightarrow \gamma'(958)K_{S}^{0}) = -0.04 \pm 0.20 \quad (S = 2.5) \\ & S_{\gamma'(958)K_{S}^{0}} (B^{0} \rightarrow \gamma'K^{0}) = -0.06 \pm 0.04 \\ & S_{\gamma'(958)K_{S}^{0}} (B^{0} \rightarrow \gamma'K^{0}) = -0.06 \pm 0.04 \\ & S_{\gamma'(958)K_{S}^{0}} (B^{0} \rightarrow K_{S}^{0}\pi^{0}) = 0.63 \pm 0.06 \\ & C_{\omega K_{S}^{0}} (B^{0} \rightarrow K_{S}^{0}\pi^{0}) = 0.21 \pm 0.20 \\ & S (B^{0} \rightarrow K_{S}^{0}\pi^{0}\pi^{0}) = 0.89^{+0.27}_{-0.37} \\ & C_{\rho^{0}K_{S}^{0}} (B^{0} \rightarrow \rho^{0}K_{S}^{0}) = 0.39^{+0.27}_{-0.37} \\ & C_{\rho^{0}K_{S}^{0}} (B^{0} \rightarrow \rho^{0}K_{S}^{0}) = 0.50^{+0.17}_{-0.21} \\ & C_{f_{S}^{0}K_{S}^{0}} (B^{0} \rightarrow f_{0}(980)K_{S}^{0}) = 0.29 \pm 0.20 \\ & S_{f_{S}^{0}K_{S}^{0}} (B^{0} \rightarrow f_{0}(980)K_{S}^{0}) = -0.5 \pm 0.5 \\ & C_{f_{S}^{0}K_{S}^{0}} (B^{0} \rightarrow f_{\infty}(1300)K_{S}^{0}) = 0.3 \pm 0.4 \\ & S_{f_{S}^{0}K_{S}^{0}} (B^{0} \rightarrow f_{\infty}(1300)K_{S}^{0}) = 0.23 \pm 0.5 \\ & C_{f_{S}^{0}K_{S}^{0}} (B^{0} \rightarrow f_{\infty}(1300)K_{S}^{0}) = 0.3 \pm 0.4 \\ & S_{f_{S}^{0}K_{S}^{0}} (B^{0} \rightarrow f_{\infty}(1300)K_{S}^{0}) = 0.13 \pm 0.35 \\ & S_{K^{0}\pi^{+}\pi^{-}} (B^{0} \rightarrow K^{0}\pi^{+}\pi^{-} \text{nonresonant}) = -0.01 \pm 0.33 \\ & S_{K^{0$$

$$\begin{array}{l} C_{K^0\pi^+\pi^-}(B^0\to K^0\pi^+\pi^- \, {\rm nonresonant}) = 0.01 \pm 0.26 \\ C_{K^0S}^0K^0S}(B^0\to K^0S_0K^0S_0) = 0.0 \pm 0.4 \quad (S=1.4) \\ S_{K^0S}^0K^0S}(B^0\to K^0S_0K^0S_0) = -0.8 \pm 0.5 \\ C_{K^+K^-K^0S}(B^0\to K^+K^-K^0S_0 \, {\rm nonresonant}) = 0.06 \pm 0.08 \\ S_{K^+K^-K^0S}(B^0\to K^+K^-K^0S_0 \, {\rm nonresonant}) = -0.66 \pm 0.11 \\ C_{K^+K^-K^0S}(B^0\to K^+K^-K^0S_0 \, {\rm inclusive}) = 0.01 \pm 0.09 \\ S_{K^+K^-K^0S}(B^0\to K^+K^-K^0S_0 \, {\rm inclusive}) = -0.65 \pm 0.12 \\ C_{\phi K^0S}(B^0\to \phi K^0S_0) = -0.09 \pm 0.12 \\ S_{\phi K^0S}(B^0\to \phi K^0S_0) = 0.58 \pm 0.12 \\ C_{K_SK_SK_S}(B^0\to K_SK_SK_S) = -0.14 \pm 0.12 \\ S_{K_SK_SK_S}(B^0\to K_SK_SK_S) = -0.14 \pm 0.12 \\ S_{K_SK_SK_S}(B^0\to K_SK_SK_S) = -0.82 \pm 0.17 \\ C_{K^0S_0\pi^0}(B^0\to K^0S_0\pi^0\gamma) = 0.36 \pm 0.33 \\ S_{K^0S_0\pi^0}(B^0\to K^0S_0\pi^0\gamma) = -0.8 \pm 0.6 \\ C_{K^0S_0\pi^+\pi^-\gamma}(B^0\to K^0S_0\pi^+\pi^-\gamma) = 0.14 \pm 0.25 \\ C_{K^0S_0\gamma}(B^0\to K^*(892)^0\gamma) = -0.04 \pm 0.16 \quad (S=1.2) \\ S_{K^0S_0\gamma}(B^0\to K^0S_0\gamma) = 0.1 \pm 0.4 \quad (S=1.4) \\ S_{\eta K^0\gamma}(B^0\to \eta K^0\gamma) = 0.1 \pm 0.4 \quad (S=1.4) \\ S_{\eta K^0\gamma}(B^0\to K^0S_0\gamma) = -0.5 \pm 0.5 \quad (S=1.2) \\ C_{K^0S_0\gamma}(B^0\to K^0S_0\gamma) = -0.3 \pm 0.6 \\ S_{K^0S_0\gamma}(B^0\to K^0S_0\gamma) = -0.05 \pm 0.19 \\ S(B^0\to K^0S_0\gamma) = -0.04 \pm 0.23 \\ C(B^0\to K^0S_0\gamma) = -0.08 \pm 0.7 \\ C_{\pi\pi}(B^0\to \pi^+\pi^-) = -0.314 \pm 0.030 \\ S_{\pi\pi}(B^0\to \pi^+\pi^-) = -0.314 \pm 0.030 \\ S_{\pi\pi}(B^0\to \pi^+\pi^-) = -0.314 \pm 0.030 \\ C_{\pi^0\pi}(B^0\to \pi^+\pi^-) = -0.03 \pm 0.07 \quad (S=1.2) \\ S_{\rho\pi}(B^0\to \rho^+\pi^-) = 0.05 \pm 0.07 \\ \Delta C_{\rho\pi}(B^0\to \rho^+\pi^-) = 0.05 \pm 0.07 \\ \Delta C_{\rho\pi}(B^0\to \rho^+\pi^-) = 0.01 \pm 0.08 \\ C_{\rho^0\pi^0}(B^0\to \rho^0\pi^0) = 0.27 \pm 0.24 \\ S_{\rho^0\pi^0}(B^0\to \rho^0\pi^0) = 0.27 \pm 0.24 \\ S_{\rho^0\pi^0}(B^0\to \rho^0\pi^0) = -0.23 \pm 0.34 \\ C_{\alpha\alpha}(B^0\to \rho^0\pi^0) = -0.23 \pm 0.34 \\ C_{\alpha\alpha}(B^0\to \rho^0\pi^0) = -0.23 \pm 0.34 \\ C_{\alpha\alpha}(B^0\to \rho^0\pi^0) = -0.25 \pm 0.11 \\ C_{\alpha\alpha}(B^0\to$$

$$\begin{split} S_{a_1\pi} & (B^0 \to a_1(1260)^+\pi^-) = -0.2 \pm 0.4 \quad (S = 3.2) \\ \Delta C_{a_1\pi} & (B^0 \to a_1(1260)^+\pi^-) = 0.43 \pm 0.14 \quad (S = 1.3) \\ \Delta S_{a_1\pi} & (B^0 \to a_1(1260)^+\pi^-) = -0.11 \pm 0.12 \\ C & (B^0 \to b_1^-\kappa^+) = -0.22 \pm 0.24 \\ \Delta C & (B^0 \to b_1^-\kappa^+) = -1.04 \pm 0.24 \\ C_{\rho^0\rho^0} & (B^0 \to \rho^0\rho^0) = 0.2 \pm 0.9 \\ S_{\rho^0\rho^0} & (B^0 \to \rho^0\rho^0) = 0.3 \pm 0.7 \\ C_{\rho\rho} & (B^0 \to \rho^+\rho^-) = -0.04 \pm 0.13 \\ |\lambda| & (B^0 \to J/\psi \, K^*(892)^0) < 0.25, \, \text{CL} = 95\% \\ \cos 2\beta & (B^0 \to J/\psi \, K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi \, K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi \, K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi \, K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi \, K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ \cos 2\beta & (B^0 \to J/\psi \, K^*(892)^0) = 0.91 \pm 0.25 \\ (S_+ + S_-)/2 & (B^0 \to D^{*-}\pi^+) = -0.039 \pm 0.011 \\ (S_- - S_+)/2 & (B^0 \to D^{*-}\pi^+) = -0.099 \pm 0.015 \\ (S_+ + S_-)/2 & (B^0 \to D^{-}\pi^+) = -0.046 \pm 0.023 \\ (S_- - S_+)/2 & (B^0 \to D^{-}\pi^+) = -0.022 \pm 0.021 \\ S_+ & (B^0 \to D^-\pi^+) = 0.038 \pm 0.021 \\ (S_+ + S_-)/2 & (B^0 \to D^-\rho^+) = -0.024 \pm 0.032 \\ (S_- - S_+)/2 & (B^0 \to D^-\rho^+) = -0.10 \pm 0.06 \\ C_{\eta_c \, K_0^S} & (B^0 \to \eta_c \, K_0^S) = 0.93 \pm 0.17 \\ C_{c_{\overline{c}} \, K^0} & (B^0 \to \eta_c \, K_0^S) = 0.93 \pm 0.17 \\ C_{c_{\overline{c}} \, K^0} & (B^0 \to \eta_c \, K_0^S) = 0.93 \pm 0.17 \\ C_{J/\psi \, (nS)} \, K^0 & (B^0 \to J/\psi \, (nS) \, K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ \sin(2\beta) & 0.709 \pm 0.011 \\ C_{J/\psi \, (nS)} \, K^0 & (B^0 \to J/\psi \, K^{*0}) = 0.03 \pm 0.10 \\ S_{J/\psi \, K^{*0}} & (B^0 \to \chi_{c_1} \, K_0^S) = -0.3^{+0.5}_{-0.4} \\ S_{\chi_{c_1} \, K_0^S} & (B^0 \to \chi_{c_1} \, K_0^S) = -0.3^{+0.5}_{-0.4} \\ S_{\chi_{c_1} \, K_0^S} & (B^0 \to \chi_{c_1} \, K_0^S) = 0.06 \pm 0.07 \\ S_{\chi_{c_1} \, K_0^S} & (B^0 \to \chi_{c_1} \, K_0^S) = 0.06 \pm 0.07 \\ S_{\chi_{c_1} \, K_0^S} & (B^0 \to \chi_{c_1} \, K_0^S) = 0.03 \pm 0.10 \\ \sin(2\beta_{eff}) & (B^0 \to K^+ \, K^- \, K_0^S) = 0.77^{+0.13}_{-0.12} \\ \sin(2\beta_{eff}) & (B^0 \to K^+ \, K^- \, K_0^S) = 0.77^{+0.13}_{-0.12} \\ \sin(2\beta_{eff}) & (B^0 \to K^+ \, K^- \, K_0^S) = 0.77^{+0.13}_{-0.12} \\ \sin(2\beta_{eff}) & (B^0 \to K^+ \, K^-)_{-0} &$$

$$\begin{array}{l} 2\beta_{\rm eff}(B^0\to J/\psi\,\rho^0) = (42^{+10}_{-11})^\circ \\ |\lambda| \; (B^0\to [K^0_S\pi^+\pi^-]_{D^{(*)}} \; h^0) = 1.01 \pm 0.08 \\ |\sin(2\beta+\gamma)| > 0.40, \; {\rm CL} = 90\% \\ 2\; \beta + \gamma = (80\pm 60)^\circ \\ \pmb{\alpha} = (84.1^{+4.5}_{-3.8})^\circ \\ x_+(B^0\to D\,K^{*0}) = 0.04 \pm 0.17 \\ x_-(B^0\to D\,K^{*0}) = -0.16 \pm 0.14 \\ y_+(B^0\to D\,K^{*0}) = -0.68 \pm 0.22 \\ y_-(B^0\to D\,K^{*0}) = 0.20 \pm 0.25 \quad ({\rm S} = 1.2) \\ \pmb{r_{B^0}}(B^0\to D\,K^{*0}) = 0.257^{+0.021}_{-0.023} \\ \pmb{\delta_{B^0}}(B^0\to D\,K^{*0}) = (194.1^{+9.6}_{-8.8})^\circ \\ a_{CP}(B^0\to p\,\overline{p}\,K^+\pi^-) = (0.5 \pm 0.9)\% \\ a_{P}(B^0\to p\,\overline{p}\,K^+\pi^-) = (1.5 \pm 0.9)\% \end{array}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES	Fraction (Γ_i/Γ)		Scale fact Confidence I	tor/ p evel (MeV/ c)
$\ell^+ u_\ell X$	[hhh]	(10.33± 0.28)	%	_
$e^{+}\nu_{e}X_{c}$		(10.1 ± 0.4)	%	_
$\ell^+ u_\ell X_u$	[hhh]	$(1.51\pm\ 0.19)$	$\times 10^{-3}$	_
$D\ell^+ u_\ell X$	[hhh]	$(9.1\ \pm\ 0.8\)$	%	_
$D^-\ell^+ u_\ell$	[hhh]	$(2.12\pm\ 0.06)$	%	2309
$D^- au^+ u_ au$		(9.9 ± 2.1)	$\times 10^{-3}$	1909
$D^*(2010)^-\ell^+ u_\ell$	[hhh]	(4.90± 0.12)	%	2257
$rac{D^*(2010)^- au^+ u_ au}{\overline{D}^{(*)}n\pi\ell^+ u_\ell(n~\geq~1)$		$(1.45\pm\ 0.10)$	% S=	=1.3 1838
$\overline{\it D}^{(*)}$ n $\pi \ell^+ u_\ell$ (n $ \geq 1$)	[hhh]	(2.3 ± 0.5)	%	_
$\overline{D}{}^0\pi^-\ell^+ u_\ell$	[hhh]	(3.64 ± 0.20)	$\times 10^{-3}$	2308

Citation. 3. Navas et al. (Farticle Data Group), Filys. Nev. D 110, 030001 (2024)							
0 ' '	[hhh]	<	4.4	$\times10^{-4}$	CL=90%	_	
$D_0^{*-} ightarrow \; \overline{D}{}^0\pi^-$							
$D_2^*(2460)^- \ell^+ \nu_\ell$,	[hhh]	($1.41\pm$	$0.20) \times 10^{-3}$	S=1.7	2065	
$D_2^{*-} ightarrow \overline{D}{}^0 \pi^-$							
$\overline{D}^{*0}\pi^{-\stackrel{2}{\ell}+}\nu_{\ell}$	[<i>hhh</i>]	(5.44±	$0.28) \times 10^{-3}$		2256	
$D_1(2420)^{-\ell} + \nu_{\ell}, D_1^- \rightarrow$		•				_	
$\overline{D}^{*0}\pi^-$		`		,			
$D_1(2420)^-\ell^+\nu_\ell, \ D_1^- \to$	[<i>hhh</i>]	($1.02\pm$	$0.16)\times10^{-3}$		_	
$D^{-}\pi^{+}\pi^{-}$							
$D_1'(2430)^-\ell^+\nu_\ell, \ D_1'^- \to$	[hhh]	($2.5 \pm$	$0.6) \times 10^{-3}$		_	
$\overline{D}^{*0}\pi^{-}$				4			
$D_2^*(2460)^-\ell^+\nu_\ell, \ D_2^{*-} \to$	[hhh]	($6.6 \pm$	$1.1) \times 10^{-4}$		2065	
$D^{+0}\pi^{-}$	F	,					
$D^{-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		•		$0.22) \times 10^{-3}$		2299	
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		•		$2.3) \times 10^{-4}$		2247	
$\rho^-\ell^+\nu_\ell$		•		$0.21) \times 10^{-4}$		2583	
$\pi^-\ell^+ u_\ell$				$0.06) \times 10^{-4}$	CI 000/	2638	
$\pi^- \tau^+ \nu_{\tau}$	•	<	2.5	× 10 ⁻⁴	CL=90%	2339	
Inclusive modes							
*± X		(78 ±	8)%		_	
⁰ X		($8.1~\pm$	1.5) %		_	
⁰ X		(4	47.4 ±	2.8) %		_	
+ X		<	3.9	%	CL=90%	_	

$(78 \pm 8)\%$		_
(8.1 ± 1.5) %		_
(47.4 ± 2.8) %		_
< 3.9 %	CL=90%	_
(36.9 ± 3.3) %		_
($10.3 \begin{array}{c} + & 2.1 \\ - & 1.8 \end{array}$) %		-
< 2.6 %	CL=90%	_
< 3.1 %	CL=90%	_
($5.0 \stackrel{+}{-} \stackrel{2.1}{1.5}$) %		_
$(95\pm5)\%$		_
(24.6 ± 3.1) %		_
$(119\pm6)\ \%$		_
	$(8.1 \pm 1.5)\%$ $(47.4 \pm 2.8)\%$ $< 3.9 %$ $(36.9 \pm 3.3)\%$ $(10.3 + 2.1 / 1.8)\%$ $< 2.6 %$ $< 3.1 %$ $(5.0 + 2.1 / 1.5)\%$ $(95 \pm 5)\%$ $(24.6 \pm 3.1)\%$	$(8.1 \pm 1.5)\%$ $(47.4 \pm 2.8)\%$ $< 3.9 \%$ $(36.9 \pm 3.3)\%$ $(10.3 + 2.1 / 1.8)\%$ $< 2.6 \%$ $< 3.1 \%$ $(5.0 + 2.1 / 1.5)\%$ $(95 \pm 5)\%$ $(24.6 \pm 3.1)\%$

D, D^* , or D_s modes

_ 1	•		
$D^-\pi^+$	($2.51\pm 0.08) \times 10^{-3}$	2306
$D^-\rho^+$	($7.6 \pm 1.2 \times 10^{-3}$	2235
$D^-K^0\pi^+$	($4.9 \pm 0.9 \times 10^{-4}$	2259
$D^-K^*(892)^+$	($4.5 \pm 0.7 \times 10^{-4}$	2211
$D^-\omega\pi^+$	($2.8 \pm 0.6 \times 10^{-3}$	2204
D^-K^+	($2.05 \pm 0.08) \times 10^{-4}$	2279
$D^{-}K^{+}\pi^{+}\pi^{-}$	($3.5 \pm 0.8 \times 10^{-4}$	2236
$D^-K^+\overline{K}^0$	<	$3.1 \times 10^{-4} \text{ CL}=90\%$	2188
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	($8.8 \pm 1.9 \times 10^{-4}$	2070

$\overline{D}{}^0\pi^+\pi^-$	(88 +	$0.5) \times 10^{-4}$		2301
$D^*(2010)^-\pi^+$	($0.07) \times 10^{-3}$		2255
$\overline{D}^0 K^+ K^-$	($0.5) \times 10^{-5}$		2191
$D^-\pi^+\pi^+\pi^-$	($0.6) \times 10^{-3}$		2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	(1.9 $) \times 10^{-3}$		2287
$D^-\pi^+\rho^0$	Ì		$1.0^{\circ}) \times 10^{-3}$		2206
$D^{-}a_{1}(1260)^{+}$	($3.3) \times 10^{-3}$		2121
$D^*(2010)^{-}\pi^+\pi^0$	(0.5)%		2248
$\hat{D}^*(2010)^- \rho^+$	(6.8 ±	0.9×10^{-3}		2180
$D^*(2010)^{-}K^{+}$			$0.08) \times 10^{-4}$		2226
$D^*(2010)^- K^0 \pi^+$	($3.0 \pm$	$0.8\)\times 10^{-4}$		2205
$D^*(2010)^- K_{\underline{}}^*(892)^+$	($0.6\)\times 10^{-4}$		2155
$D^*(2010)^- K^+ \overline{K}{}^0$	<	4.7	\times 10 ⁻⁴	CL=90%	2131
$D^*(2010)^- K^+ \overline{K}^*(892)^0$	($1.29\pm$	$0.33) \times 10^{-3}$		2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	($0.29) \times 10^{-3}$		2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0~\pm$	$2.5) \times 10^{-3}$		2235
resonant			. 2		
$D^*(2010)^-\pi^+\rho^0$			$3.2) \times 10^{-3}$		2150
$D^*(2010)^- a_1(1260)^+$	(0.27) %		2061
$\overline{D}_1(2420)^0\pi^-\pi^+, \ \overline{D}_1^0 \rightarrow$	($1.47\pm$	$0.35) \times 10^{-4}$		_
D*-π ⁺	,	4.7	0.4.) 10-4		0101
$D^*(2010)^- K^+ \pi^- \pi^+$			$0.4) \times 10^{-4}$		2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$ $D^{*-}3\pi^+2\pi^-$	•		0.27) %		2218
$D^*(2010)^-\omega\pi^+$	•		0.9×10^{-3} 0.18×10^{-3}	S=1.2	2195
, ,	`		,	3=1.2	2148
$\overline{D}_1(2430)^0\omega$, $\overline{D}_1^0\to$	(2.7 +	$_{0.4}^{0.8}$) × 10 ⁻⁴		1992
$D^{*-}\pi^+$					
$D^{*-} ho (1450)^+$, $ ho^+ ightarrow \ \omega \pi^+$	(1.07^{+}_{-}	$^{0.40}_{0.34}) \times 10^{-3}$		_
$\overline{D}_1(2420)^0 \omega$, $\overline{D}_1^0 \rightarrow$	($2.2) \times 10^{-5}$		1995
D*- +	`		,		
$\overline{D}_2^*(2460)^0\omega, \ \overline{D}_2^0 ightarrow$	(4.0 ±	$1.4\)\times 10^{-5}$		1975
$D^{*-}\pi^{+}$					
$D^{*-}\pi^+ \ D^{*-}b_1(1235)^+, \ b_1^+ ightarrow$	<	7	\times 10 ⁻⁵	CL=90%	_
$\overline{D}^{**-}\frac{\omega\pi^+}{\pi^+}$					
$\overline{D}^{**-}\pi^+$	[///] ($1.9~\pm$	$0.9) \times 10^{-3}$		_
$D_1(2420)^-\pi^+,\ D_1^- o$	(9.9 +	$^{2.0}_{2.5}$) × 10 ⁻⁵		_
$D^{-}\pi^{+}\pi^{-}$	•	_	2.5 /		
$D_1(2420)^-\pi^+, D_1^- \rightarrow$	<	3.3	$\times10^{-5}$	CL=90%	_
$D^{*-}\pi^{+}\pi^{-}$					
$\overline{D}_{2}^{*}(2460)^{-}\pi^{+}, D_{2}^{*-}\rightarrow$	($2.38\pm$	$0.16) \times 10^{-4}$		2062
$D^0\pi^-$					
$\overline{D}_0^*(2400)^-\pi^+$, $D_0^{*-} o$	($7.6~\pm$	$0.8\)\times 10^{-5}$		2090
$D^0\pi^-$					

$D_2^*(2460)^-\pi^+, D_2^{*-} \rightarrow$	<	2.4	$\times 10^{-5}$	CL=90%	-
$\frac{D^{*-}\pi^{+}\pi^{-}}{\overline{D}_{2}^{*}(2460)^{-}\rho^{+}}$	<	4.9	$\times 10^{-3}$	CL=90%	1974
$D^{0}\overline{D}^{0}$			$0.7) \times 10^{-5}$		1868
$D^{*0}\overline{D}{}^{0}$	•		× 10 ⁻⁴	CL=90%	1794
D^-D^+			$0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}$ (CP -averaged)			$0.6) \times 10^{-4}$		_
$D^-D_s^+$	($7.2~\pm$	$0.8) \times 10^{-3}$		1812
$D^*(2010)^- D_s^+$	(8.0 ±	$1.1) \times 10^{-3}$		1735
$D^{-}D_{s}^{*+}$	(7.4 ±	$1.6) \times 10^{-3}$		1732
$D^*(2010)^- D_s^{*+}$	($1.77\pm$	0.14) %		1649
$D_{s0}(2317)^- \ddot{K}^+, \ D_{s0}^- \rightarrow$	(4.2 ±	$1.4) \times 10^{-5}$		2097
$D_s^-\pi^0$					
$D_{s0}(2317)^-\pi^+,\ D_{s0}^- o$	<	2.5	$\times 10^{-5}$	CL=90%	2128
$D_s^-\pi^0$					
$D_{sJ}(2457)^- K^+, \ D_{sJ}^- o$	<	9.4	\times 10 ⁻⁶	CL=90%	_
$D_s^-\pi^0$					
$D_{sJ}(2457)^-\pi^+$, $D_{sJ}^- o$	<	4.0	× 10 ⁻⁶	CL=90%	_
$D_{s_{\cdot}}^{-}\pi^{0}$					
$D_s^- D_s^+$	<	3.6	\times 10 ⁻⁵	CL=90%	1759
$D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*-}D_{s}^{*+}$	<	1.3	× 10 ⁻⁴	CL=90%	1675
	<	2.4	$\times 10^{-4}$	CL=90%	1584
$D_{s0}^{*}(2317)^{+}D^{-}$, D_{s0}^{*+} $ ightarrow$	($1.06\pm$	$0.16) \times 10^{-3}$	S=1.1	1602
$D_s^+\pi^0$					
$D_{s0}(2317)^{+}D^{-},~D_{s0}^{+} ightarrow$	<	9.5	$\times 10^{-4}$	CL=90%	_
$D_s^{*+}\gamma$					
$D_{s0}(2317)^+ D^*(2010)^-$,	(1.5 ±	0.6) \times 10 ⁻³		1509
$D_{s0}^+ ightarrow D_s^+ \pi^0$					
$D_{sJ}(2457)^+D^-$	(3.5 ±	$1.1\)\times 10^{-3}$		_
$D_{sJ}(2457)^{+}D^{-},~D_{sJ}^{+} ightarrow$	(6.5 +	$\frac{1.7}{1.4}$) × 10 ⁻⁴		_
$D_s^+ \gamma$	•	_	1.4		
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$	<	6.0	× 10 ⁻⁴	CL=90%	_
$D_s^{*+}\gamma$					
$D_{sJ}(2457)^+D^-, D_{sJ}^+ \rightarrow$	<	2.0	× 10 ⁻⁴	CL=90%	_
$D_s^+\pi^+\pi^-$			/\ 0	0_ 00/0	
$D_{sJ}(2457)^{+}D^{-}, D_{sJ}^{+} \rightarrow$	_	3.6	_{∨ 10} −4	CL=90%	_
$D_s J(2+31) D$, D_{sJ}		5.0	× 10	CL-30/0	
D_s^* $D^*(2010)^- D_{sJ}(2457)^+$	(03 —	$2.2) \times 10^{-3}$		_
$D_{SJ}(2731)$	(<i>5.</i> 5 ⊥	2.2 / ^ 10		

$D_{sJ}(2457)^+ D^*(2010), \ D_{sJ}^+ \rightarrow$	($2.3 \ ^{+}_{-} \ ^{0.9}_{0.7} \) \times 10^{-3}$	-
$D_s^+ \gamma \ D^- D_{s1}(2536)^+, \ D_{s1}^+ \to$	($2.8 \pm 0.7) \times 10^{-4}$	1444
$D^{*0}K^+ + D^{*+}K^0 \ D^-D_{s1}(2536)^+, \ D^+_{s1} o$	($1.7 \pm 0.6) \times 10^{-4}$	1444
$D^{*0} K^+ \ D^- D_{s1}(2536)^+, \ D_{s1}^+ ightarrow$	($2.6 \pm 1.1) \times 10^{-4}$	1444
$D^{*+} K^0$ $D^*(2010)^- D_{s1}(2536)^+$,	($5.0 \pm 1.4) \times 10^{-4}$	1336
$D_{s1}^+ ightarrow D^{*0} K^+ + D^{*+} K^0 \ D^* (2010)^- D_{s1} (2536)^+,$	($3.3 \pm 1.1) \times 10^{-4}$	1336
$D_{s1}^+ ightarrow D^{*0} K^+$			1006
$D^{*-}D_{s1}(2536)^{+}, \ D^{+}_{s1} ightarrow D^{*+}K^{0}$	($5.0 \pm 1.7 \times 10^{-4}$	1336
$D^{-}D_{sJ}^{-}(2573)^{+}, \ D_{sJ}^{+} \rightarrow D^{0}K^{+}$	($3.4 \pm 1.8) \times 10^{-5}$	1414
$D^*(2010)^- D_{sJ}(2573)^+$,	<	$2 \times 10^{-4} \text{ CL}=90\%$	1304
$D_{sJ}^{+} ightarrow D^{0} K^{+} \ D^{-} D_{sJ} (2700)^{+}, \ D_{sJ}^{+} ightarrow$	($7.1 \pm 1.2) \times 10^{-4}$	_
$D^0 K^+ \ D^+ \pi^-$	($7.3 \pm 1.2) \times 10^{-7}$	2306
		$2.03 \pm 0.18) \times 10^{-5}$	2271
$D_{s}^{+}\pi^{-} \\ D_{s}^{*+}\pi^{-} \\ D_{s}^{+}\rho^{-}$		$2.1 \pm 0.4 \times 10^{-5}$ S=1.4	2215
$D^+ \rho^-$	<	· _	2197
$D^{s}^{+}\rho^{-}$		$4.1 \pm 1.3 \times 10^{-5}$	2138
$D_{s}^{*+}\rho^{-}$ $D_{s}^{+}a_{0}^{-}$		1.9 $\times 10^{-5}$ CL=90%	
$D_{s}^{s+0} = a_{0}^{-1}$		$3.6 \times 10^{-5} \text{ CL}=90\%$	_
D_s^{s+0} $a_1(1260)^-$		$2.1 \times 10^{-3} \text{ CL}=90\%$	2080
$D_{\rm s}^{\frac{3}{4}+} a_1(1260)^-$	<	1.7 $\times 10^{-3} \text{ CL}=90\%$	2015
$D_{s}^{+}a_{2}^{-}$	<	1.9 $\times 10^{-4} \text{ CL}=90\%$	_
$D_{s}^{3+} a_{2}^{-}$	<	$2.0 \times 10^{-4} \text{ CL}=90\%$	_
$D_s^- K^+$	(2.7 ± 0.5) $\times 10^{-5}$ S=2.7	2242
$D_s^{*-}K^+$	($2.19\pm\ 0.30)\times 10^{-5}$	2185
$D_{s1}(2536)^{\mp}{\cal K}^{\pm},\;\;D_{s1}^{-} ightarrow \overline{D}^{*}(2007)^{0}{\cal K}^{-}$	($5.1 \pm 0.6) \times 10^{-6}$	_
$D^{-}(892)^{+}$	($3.5 \pm 1.0) \times 10^{-5}$	2172
$D_s^{*-} K^*(892)^+$		$3.2 + 1.5 \times 10^{-5}$	2112
$D_s^-\pi^+K^0$		-1.3 / 9.7 ± 1.4) $\times 10^{-5}$	2222
$D_s^{*-}\pi^+K^0$	<	4	2164
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$		1.7 ± 0.5) $\times 10^{-4}$	2198
Sinn	(1 ± 0.0 / \ 10	2190

$D_s^- \pi^+ K^* (892)^0$	<	3.0×10^{-3}	CL=90%	2138
$\frac{D_s^{*-}\pi^+K^*(892)^0}{\overline{D}^0K^0}$	<	1.6×10^{-3}	CL=90%	2076
\overline{D}^{0} K^{0}	($5.5 \pm 0.4) \times 10^{-5}$		2280
$\overline{D}{}^0{\mathcal K}^+\pi^-$		$8.8 \pm 1.7 \times 10^{-5}$		2262
$\overline{D}{}^{0}K^{*}(892)^{0}$	($4.5 \pm 0.6 \times 10^{-5}$		2213
$\overline{D}{}^{0}K^{*}(1410)^{0}$	<	_		2062
$\overline{D}{}^{0}K_{0}^{*}(1430)^{0}$	($7 \pm 7) \times 10^{-6}$		2058
$\overline{D}^0 K_2^{\circ}(1430)^0$	($2.1 \pm 0.9 \times 10^{-5}$		2057
$D_0^*(2300)^- \overset{.}{K}^+, \ D_0^{*-} \rightarrow$	($1.9 \pm 0.9 \times 10^{-5}$		_
$\overline{D}^0\pi^-$	(
$D_2^*(2460)^- K^+, \ D_2^{*-} \to$	($2.03\pm\ 0.35)\times10^{-5}$		2029
$\frac{2}{\overline{D}^0}\pi^-$	`			
$D_3^*(2760)^-K^+, D_3^{*-} \rightarrow$	<	1.0×10^{-6}	CL=90%	_
$\sqrt[3]{\overline{D}^0}\pi^-$				
$\overline{D}{}^0 \overline{K}{}^+ \pi^-$ nonresonant	<	3.7×10^{-5}	CL=90%	2262
$[K^+K^-]_D K^*(892)^0$	($4.2 \pm 0.7 \times 10^{-5}$		_
$[\pi^{+}\pi^{-}]_{D}^{1}K^{*}(892)^{0}$	($6.0 \pm 1.1 \times 10^{-5}$		_
$[\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{*0}$	($4.6 \pm 0.9 \times 10^{-5}$		_
$\overline{D}^0 \pi^0$	($2.67\pm\ 0.09)\times10^{-4}$		2308
$\overline{D}{}^0 \rho^0$	($3.21\pm\ 0.21)\times10^{-4}$		2237
$\overline{D}^0 f_2$		$1.56\pm\ 0.21)\times10^{-4}$		_
$\overline{D}{}^0\eta$		$2.56 \pm 0.12) \times 10^{-4}$		2274
$\overline{D}{}^0\eta'$		$1.38 \pm 0.16) \times 10^{-4}$		2198
$\overline{D}{}^0\omega$		$2.54 \pm 0.16) \times 10^{-4}$		2235
$\overline{D}{}^0 \phi$		$7.7 \pm 2.3 \times 10^{-7}$		2183
$D^0K^+\pi^-$	(_		2262
$D^0 K^*(892)^0$	($3.0 \pm 0.6) \times 10^{-6}$		2213
$\overline{D}^{*0}\gamma$	<	_		2258
$\overline{D}^*(2007)^0\pi^0$	($2.2 \pm 0.6) \times 10^{-4}$	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<	5.1×10^{-4}		2182
$\overline{D}^*(2007)^0 \eta$	($2.3 \pm 0.6) \times 10^{-4}$	S=2.8	2220
$\overline{D}^*(2007)^0 \eta'$	($1.40 \pm 0.22) \times 10^{-4}$		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($6.2 \pm 2.2) \times 10^{-4}$		2249
$\overline{D}^*(2007)^0 K^+ \pi^-$	($5.2 \pm 1.9 \times 10^{-5}$		2207
$\overline{D}^*(2007)^0 K^0$	($3.6 \pm 1.2 \times 10^{-5}$		2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<	6.9×10^{-5}	CL=90%	2157
$\overline{D}^*(2007)^0 \phi$	($2.2 \pm 0.6) \times 10^{-6}$		2125
$D^*(2007)^0 K^*(892)^0$	<	_		2157
$D^*(2007)^0\pi^+\pi^+\pi^-\pi^-$	($2.7 \pm 0.5 \times 10^{-3}$		2219
$D^*(2010)^+ D^*(2010)^-$	(8.0 ± 0.6) $\times 10^{-4}$		1711
$\overline{D}^*(2007)^0 \omega$	($3.6 \pm 1.1 \times 10^{-4}$	S=3.1	2180
$D^*(2010)^+D^-$	(6.1 ± 1.5) $\times 10^{-4}$		1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	<		CL=90%	1715
$D^{-}D^{0}K^{+}$	($1.07 \pm 0.11) \times 10^{-3}$		1574
	`	,		

$D^- D^* (2007)^0 K^+$	($3.5 \pm 0.4) \times 10^{-3}$	1478
$D^*(2010)^- D^0 K^+$		$2.47 \pm 0.21) \times 10^{-3}$	1479
$D^*(2010)^- D^*(2007)^0 K^+$		1.06± 0.09) %	1366
$D^{-}D^{+}K^{0}$	($7.5 \pm 1.7) \times 10^{-4}$	1568
$D^*(2010)^- D^+ K^0 +$	($6.4 \pm 0.5 \times 10^{-3}$	1473
$D^-D^*(2010)^+K^0$		2	
$D^*(2010)^- D^*(2010)^+ K^0$,	$8.1 \pm 0.7 \times 10^{-3}$	1360
$D^{*-}D_{s1}(2536)^+, D_{s1}^+ \rightarrow$	($8.0 \pm 2.4 \times 10^{-4}$	1336
$\overline{D}{}^0D^0K^0$	($2.7 \pm 1.1) \times 10^{-4}$	1575
$D^{0} \overline{D}{}^{0} K^{+} \pi^{-}$		$3.5 \pm 0.5 \times 10^{-4}$	1476
$\overline{D}{}^{0} D^{*}(2007)^{0} K^{0} +$	($1.1 \pm 0.5 \times 10^{-3}$	1478
$\overline{D}^*(2007)^0 D^0 K^0$	`	,	
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	($2.4 \pm 0.9) \times 10^{-3}$	1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.68 ± 0.26) %	_
Charmo	onium	n modes	
$\eta_c K^0$		$9.0 \pm 1.1 \times 10^{-4}$	1751
$\eta_c(1S) K^+ \pi^-$	($6.5 \pm 0.7) \times 10^{-4}$	1722
$\eta_c(1S) K^+ \pi^-(NR)$	($6.7 \pm 1.4 \times 10^{-5}$	_
$T_{c\overline{c}}(4100)^-K^+$, $T_{c\overline{c}}^- ightarrow$	($2.2 \pm 1.1 \times 10^{-5}$	_
$\eta_c \pi^-$		4	
$\eta_c(1S) K^* (1410)^0$		2.1 ± 1.6) $\times 10^{-4}$	1395
$\eta_c(1S) K_0^*(1430)^0$		$1.8 \pm 0.4 \times 10^{-4}$	1387
$\eta_c(1S) K_2^* (1430)^0$	($5.4 \begin{array}{c} + & 2.4 \\ - & 2.9 \end{array}) \times 10^{-5}$	1386
$\eta_c(1S) K^*(1680)^0$	(4 \pm 4) \times 10 ⁻⁵	1166
$\eta_c(1S)K_0^*(1950)^0$	(4.8	_
$\eta_c K^*(892)^0$	($5.3 \begin{array}{c} + & 0.8 \\ - & 0.9 \end{array}$) × 10 ⁻⁴ S=1.7	1646
_		0.3	
$\eta_c(2S)K_S^0, \ \eta_c \to p\overline{p}\pi^+\pi^-$	($4.2 + 1.4 \atop - 1.2 \times 10^{-7}$	_
$\eta_c(2S)K^{*0}$	<	$3.9 \times 10^{-4} \text{ CL} = 90\%$	1159
$h_c(1P)K_S^0$	<	1.4×10^{-5}	1401
$h_c(1P) \overset{\circ}{K^{*0}} J/\psi(1S) \overset{\circ}{K^0}$	<	4 $\times 10^{-4}$ CL=90%	1253
$J/\psi(1S)K^+\pi^-$		$8.91\pm 0.21) \times 10^{-4}$ $1.15\pm 0.05) \times 10^{-3}$	1683 1652
$J/\psi(1S)K^*(892)^0$		1.13 ± 0.05) × 10^{-3}	1572
$J/\psi(1S)\eta K_S^0$		$5.4 \pm 0.9 \times 10^{-5}$	1508
$J/\psi(1S)\eta'K_S^0$	<	E	1271
$J/\psi(1S)\phi K^0$		$4.9 \pm 1.0 \times 10^{-5}$ S=1.3	1224
$J/\psi(1S)\omega K^0$		2.3 ± 0.4) $\times 10^{-4}$	1386
χ_{c0} (3915), $\chi_{c0} ightarrow J/\psi \omega$		$2.1 \pm 0.9 \times 10^{-5}$	1102
$J/\psi(1S) K(1270)^0$		$1.3 \pm 0.5) \times 10^{-3}$	1402
$J/\psi(1S)\pi^0$	($1.66 \pm 0.10) \times 10^{-5}$	1728

$J/\psi(1S)\eta \ J/\psi(1S)\pi^+\pi^-$			$0.23) \times 10^{-5}$ $0.15) \times 10^{-5}$	S=1.5	1673 1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<		$\times 10^{-5}$	CI =90%	1716
$J/\psi(1S) f_0(500), f_0 \rightarrow \pi \pi$			$\frac{1.2}{1.6}$) × 10 ⁻⁶	GE 3070	_
$J/\psi(1S) f_2$	(3.3 +	$_{0.6}^{0.5}$) $\times 10^{-6}$	S=1.5	_
$J/\psi(1S) ho^0$	(2.55 ⁺ _	$^{0.18}_{0.16})\times 10^{-5}$		1612
$J/\psi(1S) f_0(980), f_0 \rightarrow \pi^+ \pi^-$	<	1.1	× 10 ⁻⁶	CL=90%	-
$J/\psi(1S) ho(1450)^0, \;\; ho^0 o$	(2.9 +	$^{1.6}_{0.7}$) \times 10 ⁻⁶		-
$J/\psi ho (1700)^0$, $ ho^0 o \pi^+ \pi^-$	(2.0 ±	$1.3) \times 10^{-6}$		_
$J/\psi(1S)\omega$	(1.8 +	$_{0.5}^{0.7}$) × 10 ⁻⁵		1609
$J/\psi(1S)K^+K^-$	(2.53±	$0.35) \times 10^{-6}$		1534
$J/\psi(1S) a_0(980), \ a_0 \rightarrow K^+ K^-$	($3.4) \times 10^{-7}$		_
$J/\psi(1S)\phi$	<	1.1	$\times 10^{-7}$	CL=90%	1520
$J/\psi(1S)\eta'(958)$	($2.4) \times 10^{-6}$		1546
$J/\psi(1S)K^{0}\pi^{+}\pi^{-}$	($0.4) \times 10^{-4}$		1611
$J/\psi(1S) K^0 K^- \pi^+ + \text{c.c.}$	<		$\times 10^{-5}$		1468
$J/\psi(1S) K^0 K^+ K^-$			$0.7) \times 10^{-5}$	S=1.8	1249
$J/\psi(1S)K^{0}\rho^{0}$			3.0) \times 10 ⁻⁴		1390
$J/\psi(1S) K^*(892)^+ \pi^-$	(4) \times 10 ⁻⁴		1515
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	($0.12) \times 10^{-5}$		1670
$J/\psi(1S) f_1(1285) \ J/\psi(1S) K^*(892)^0 \pi^+ \pi^-$			$2.1) \times 10^{-6}$ $2.2) \times 10^{-4}$		1385 1447
$\eta_{c2}(1D)K_S^0, \ \eta_{c2} \rightarrow h_c \gamma$	<		× 10 ⁻⁵	CI90%	1447
$\eta_{c2}(1D)\pi^-K^+, \ \eta_{c2} \rightarrow h_c \gamma$	<			CL=90%	_
$\chi_{c1}(3872)^{-}K^{+}$	<		× 10 ⁻⁴		_
$\chi_{c1}(3872)^{-}K^{+}$			× 10 ⁻⁶		_
$\chi_{c1}(3872)^- ightarrow J/\psi(1S)\pi^-\pi^0$	[,,,,,]		× 10	GL 3070	
$\chi_{c1}(3872) K^0$	($1.10\pm$	$0.35) \times 10^{-4}$		1140
$\chi_{c1}(3872)K^*(892)^0$	`		5) $\times 10^{-5}$		940
$\chi_{c1}(3872)K^{+}\pi^{-}$			$0.7) \times 10^{-4}$		1087
$\chi_{c1}(3872)\gamma$			$\times 10^{-5}$	CL=90%	1220
$T_{c\overline{c}1}(4430)^{\pm} K^{\mp}, T_{c\overline{c}1}^{\pm} \rightarrow \psi(2S)\pi^{\pm}$	(6.0 +	$^{3.0}_{2.4}$) × 10 ⁻⁵		583
$T_{c\overline{c}1}(4430)^{\pm} K^{\mp}, T^{\pm}_{c\overline{c}1} \rightarrow$	(5.4 +	$^{4.0}_{1.2}$) \times 10 ⁻⁶		583
$J/\psi \pi^{\pm}$ $T_{c\overline{c}1}(3900)^{\pm} K^{\mp}, T_{c\overline{c}1}^{\pm} \rightarrow$	<	9	$\times 10^{-7}$		_
$J/\psi \pi^\pm$					

$T_{c\overline{c}1}(4200)^{\pm}K^{\mp},\;\;T^{\pm}_{c\overline{c}1} ightarrow J/\psi\pi^{\pm}$	($2.2 \ ^{+}_{-} \ ^{1.3}_{0.8} \) \times 10^{-5}$	j	_
$J/\psi(1S) p \overline{p}$	($4.5 \pm 0.6) \times 10^{-7}$,	862
$J/\psi(1S)\rho\rho$ $J/\psi(1S)\gamma$		1.5×10^{-6}		1732
$J/\psi \mu^+ \mu^-, J/\psi \rightarrow \mu^+ \mu^-$			CL=95%	1132
$J/\psi(1S)\overline{D}^0$			CL=90%	877
$\psi(2S)\pi^0$	(-		1348
$\psi(2S)K^0$	($5.8 \pm 0.5 \times 10^{-4}$		1283
$\psi(2S)K^{0}\pi^{+}\pi^{-}$	(1177
$\psi(3770)K^0, \ \psi \rightarrow \overline{D}{}^0D^0$	<	1.23×10^{-4}		1217
$\psi(3770)K^{0}, \ \psi \rightarrow D^{-}D^{+}$		1.88×10^{-4}		1217
$\psi(SNO)\pi^+\pi^-$		$2.24 \pm 0.35) \times 10^{-5}$		1332
$\psi(2S)K^+\pi^-$		$5.8 \pm 0.4 \times 10^{-4}$		1239
$\psi(2S)K^*(892)^0$	(•		
$\psi(23)K(692)$	($5.9 \pm 0.4 \times 10^{-4}$ $1.9 \pm 0.4 \times 10^{-4}$		1116
$\chi_{c0} K^0$		_		1478 1342
$\chi_{c0} K^* (892)^0$		$1.7 \pm 0.4 \times 10^{-4}$		
$\chi_{c1}\pi^0$		$1.12 \pm 0.28) \times 10^{-5}$ $3.95 \pm 0.27) \times 10^{-4}$		1468 1411
$\chi_{c1} K^0$		$4.97\pm 0.30 \times 10^{-4}$		
$\chi_{c1}\pi^{-}K^{+} \chi_{c1}K^{*}(892)^{0}$	•	$2.38\pm 0.19) \times 10^{-4}$		1372 1265
,	•	ŕ		1205
$T_{c\overline{c}}(4050)^- K^+, T_{c\overline{c}}^- \rightarrow \chi_{c1} \pi^-$	($3.0 {}^{+}_{-} {}^{4.0}_{1.8}) \times 10^{-5}$	•	_
	(4.0. +20.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$T_{c\overline{c}}(4250)^- K^+, T_{c\overline{c}}^- \rightarrow$	($4.0 \begin{array}{c} +20.0 \\ -1.0 \end{array}) \times 10^{-5}$		_
$\chi_{c1}\pi^{-}$,			
$\chi_{c1} \pi^{+} \pi^{-} K^{0}$		3.2 ± 0.5) $\times 10^{-4}$		1318
$\chi_{c1} \pi^{-} \pi^{0} K^{+}$		$3.5 \pm 0.6 \times 10^{-4}$		1321
$\chi_{c2} K^0$	<	1.5×10^{-5}		1379
$\chi_{c2} K^*(892)^0$		$4.9 \pm 1.2 \times 10^{-5}$		1228
$\chi_{c2}\pi^{-}K^{+}$ $\chi_{c2}\pi^{+}\pi^{-}K^{0}$		$7.2 \pm 1.0 \times 10^{-5}$ 1.70×10^{-4}		1338
$\chi_{c2}\pi^+\pi^-\kappa^0$ $\chi_{c2}\pi^-\pi^0K^+$	<	_	CL=90%	1282
$\chi_{c2}\pi^{-}\pi^{-}\kappa^{-}$			CL=90% CL=90%	1286
$\psi(4660)K^{0}, \ \psi \rightarrow \Lambda_{c}^{+}\Lambda_{c}^{-}$				_
$\psi(4230)^{0}K^{0}, \ \psi^{0} \rightarrow$	<	1.7×10^{-5}	CL=90%	_
$J/\psi \pi^+ \pi^-$				
	K or K* r	nodes		
$K^+\pi^-$	($2.00\pm\ 0.04)\times10^{-5}$		2615
$K^0\pi^0$		$1.01\pm 0.04) \times 10^{-5}$		2615
$\eta' K^0$		$6.6 \pm 0.4 \times 10^{-5}$		2528
$\eta' K^* (892)^0$	($2.8 \pm 0.6) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^0$		$6.3 \pm 1.6 \times 10^{-6}$		2346
$\eta' K_2^* (1430)^0$	($1.37 \pm 0.32) \times 10^{-5}$		2346
ηK^0	(1.23^{+}_{-} $\begin{array}{c} 0.27\\ 0.24 \end{array}$ $) \times 10^{-6}$		2587
		V.2 I		

HTTP://PDG.LBL.GOV

Page 113

			-		
$\eta K^*(892)^0$	($1.59\pm$	$0.10) \times 10^{-5}$		2534
$\eta K_0^* (1430)^0$	($1.10\pm$	$0.22) \times 10^{-5}$		2415
$\eta K_2^*(1430)^0$	(9.6 ±	$2.1\)\times 10^{-6}$		2414
ωK^{0}	($0.4) \times 10^{-6}$		2557
$a_0(980)^0 K^0$, $a_0^0 \to \eta \pi^0$	<		× 10 ⁻⁶	CI =90%	_
$b_1^0 K^0$, $b_1^0 \rightarrow \omega \pi^0$	<		× 10 ⁻⁶		_
$a_0(980)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$	<		× 10 ⁻⁶	CL=90%	_
$b_{\underline{1}}^{-}K^{+}, b_{\underline{1}}^{-} \rightarrow \omega\pi^{-}$	($7.4 \pm$	$1.4) \times 10^{-6}$		_
$b_1^0 {\mathcal K}^{*0}$, $b_1^0 ightarrow \omega \pi^0$	<	8.0	\times 10 ⁻⁶	CL=90%	_
$b_1^- K^{*+}$, $b_1^- ightarrow \ \omega \pi^-$	<	5.0	$\times 10^{-6}$	CL=90%	_
$a_0(1450)^\pm K^\mp$, $a_0^\pm ightarrow ~\eta \pi^\pm$	<	3.1	\times 10 ⁻⁶	CL=90%	_
$K_S^0 X^0$ (Familon)	<	5.3	$\times10^{-5}$	CL=90%	_
$\omega K^*(892)^0$	(2.0 ±	$0.5) \times 10^{-6}$		2503
$\omega(\kappa\pi)_0^{*0}$	•		$0.25) \times 10^{-5}$		_
$\omega K_0^* (1430)^0$	($0.34) \times 10^{-5}$		2380
$\omega K_0^*(1430)^0$			$0.34) \times 10^{-5}$		2380
$\omega K_2^{(1430)}$ $\omega K^+ \pi^-$ nonresonant	(
$K^+\pi^-\pi^0$			$1.0) \times 10^{-6}$		2542
	($0.32) \times 10^{-5}$		2610
$K^{+}\rho^{-}$	($0.9) \times 10^{-6}$		2559
$K^{+} \rho (1450)^{-}$	(1.2) \times 10 ⁻⁶		_
$K^{+}\rho(1700)^{-}$	(7) $\times 10^{-7}$		_
$(K^+\pi^-\pi^0)$ nonresonant	($0.6) \times 10^{-6}$		2610
$(K\pi)_0^{*+}\pi^-$, $(K\pi)_0^{*+}\to$	(3.4 ±	$0.5) \times 10^{-5}$		_
$\stackrel{{\cal K}^+\pi^0}{({\cal K}\pi)^{*0}_0\pi^0},\;\;({\cal K}\pi)^{*0}_0 o$,		6		
	($8.6 \pm$	$1.7) \times 10^{-6}$		_
$K^{+}\pi^{-}$			6	GL 000/	
$K_2^*(1430)^0\pi^0$	<		× 10 ⁻⁶		2445
$K^{*}(1680)^{0}\pi^{0}$	<		$\times 10^{-6}$	CL=90%	2358
$K_{\chi}^{*0}\pi^{0}$	[999] ($1.6) \times 10^{-6}$		_
$K^0\pi^+\pi^-$	($4.97\pm$	$0.18) \times 10^{-5}$		2609
$K^0\pi^+\pi^-$ nonresonant	(1.39 +	$^{0.26}_{0.18})\times 10^{-5}$	S=1.6	2609
$K^0 \rho^0$			$1.1) \times 10^{-6}$	S=2.3	2558
$K^*(892)^+\pi^-$,		$0.4) \times 10^{-6}$	0 1.0	2563
$K_0^*(1430)^+\pi^-$			0.7×10^{-5}	S=2.0	_
0				3-2.0	
$K_{X}^{*+}\pi^{-}$			$1.6) \times 10^{-6}$		_
$\stackrel{\hat{K^*}(1410)^+\pi^-,\ K^{*+} o}{K^0\pi^+}$	<	3.8	× 10 ⁻⁶	CL=90%	_
$(K\pi)_0^{*+}\pi^-, (K\pi)_0^{*+} \to$	(1 62 +	$0.13) \times 10^{-5}$		_
$\kappa^0\pi^+$	(1.02 ±	0.13) × 10		
$f_0(980)K^0$, $f_0 \to \pi^+\pi^-$	(8.1 ±	$0.8) \times 10^{-6}$	S=1.3	2522
$K^0 f_0(500)$,		$^{2.5}_{1.6}$) × 10 ⁻⁷		_
			1.0		
$K^0 f_0(1500)$	($1.3 \pm$	$0.8) \times 10^{-6}$		2393

HTTP://PDG.LBL.GOV

Page 114

$f_2(1270) K^0$	($2.7 \ ^{+}_{-} \ ^{1.3}_{1.2} \) \times 10^{-6}$		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$	($1.8 \pm 0.7 \times 10^{-6}$		_
$K^*(892)^0 \pi^0$	($3.3 \pm 0.6 \times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$	($3.65\pm 0.34) \times 10^{-6}$		2445
$K^*(1680)^+\pi^-$	($1.41\pm 0.10) \times 10^{-5}$		2358
$K^{+}\pi^{-}\pi^{+}\pi^{-}$	[rrr] <	2.3×10^{-4}	CL=90%	2600
$ ho^0$ K ⁺ π^-	($2.8 \pm 0.7 \times 10^{-6}$		2543
$f_0(980) K^+ \pi^-, f_0 \to \pi \pi$	($1.4 {}^{+}_{-} {}^{0.5}_{0.6}) \times 10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<	2.1×10^{-6}	CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$	($5.5 \pm 0.5 \times 10^{-5}$		2557
$K^*(892)^0 ho^0$	($3.9 \pm 1.3 \times 10^{-6}$	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \to \pi \pi$	($3.9 {}^{+}_{-} {}^{2.1}_{1.8}) \times 10^{-6}$	S=3.9	2466
$K_1(1270)^+\pi^-$	<	3.0×10^{-5}		2489
$K_1(1400)^+\pi^-$	<	2.7×10^{-5}	CL=90%	2451
$a_1(1260)^- K^+$	[<i>rrr</i>] ($1.6 \pm 0.4 \times 10^{-5}$		2471
$K^*(892)^+ \rho^-$	($1.03\pm 0.26) \times 10^{-5}$		2504
$K_0^*(1430)^+ \rho^-$	($2.8 \pm 1.2 \times 10^{-5}$		_
$K_1(1400)^0 \rho^0$	<	3.0×10^{-3}	CL=90%	2388
$K_0^*(1430)^0 \rho^0$	($2.7 \pm 0.6) \times 10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($2.7 \pm 0.9 \times 10^{-6}$		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($8.6 \pm 2.0 \times 10^{-6}$		_
K^+K^-	($7.8 \pm 1.5 \times 10^{-8}$		2593
$K^0\overline{K}^0$	(2593
$K^{0}K^{-}\pi^{+}$	($6.7 \pm 0.5 \times 10^{-6}$		2578
$\frac{K^*(892)^{\pm} K^{\mp}}{\overline{K}^{*0} K^0 + K^{*0} \overline{K}^0}$	<	4×10^{-7}		2540
$K^{+0}K^{0} + K^{+0}K^{0}$ $K^{+}K^{-}\pi^{0}$	<		CL=90%	_
$K \cdot K = \pi^{\circ}$	($2.2 \pm 0.6 \times 10^{-6}$	CI 000/	2579
$\kappa_{\tilde{s}}\kappa_{\tilde{s}}\pi^{\tilde{s}}$	<	9 $\times 10^{-7}$		2578
$K_S^0 K_S^0 \pi^0$ $K_S^0 K_S^0 \eta$ $K_S^0 K_S^0 \eta'$		1.0×10^{-6}		2516
$K_S^0 K_S^+ K^-$	<		CL=90%	2453
$K^{\circ}K^{+}K$		$2.68 \pm 0.11) \times 10^{-5}$		2522
,		$7.3 \pm 0.7 \times 10^{-6}$		2516
$f_0(980) K^0, f_0 \to K^+ K^-$		$7.0 ^{+}_{-} ^{3.5}_{3.0}) \times 10^{-6}$		_
$f_0(1500) K^0$	($1.3 {}^{+}_{-} {}^{0.7}_{0.5}) \times 10^{-5}$		2393
$f_2'(1525)^0 K^0$	($\begin{array}{ccc} 3 & + & 5 \\ - & 4 \end{array}) \times 10^{-7}$		_
$f_0(1710)K^0$, $f_0 ightarrow~K^+K^-$		4.4 \pm 0.9) $\times10^{-6}$		_
$K^0K^+K^-$ nonresonant	($3.3 \pm 1.0 \times 10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$	($6.0~\pm~0.5~)\times10^{-6}$	S=1.1	2521
$f_0(980)K^0, f_0 \to K_S^0K_S^0$	($2.7 \pm 1.8) \times 10^{-6}$		_

$f_0(1710) K^0$, $f_0 ightarrow K^0_S K^0_S$	($5.0 \begin{array}{c} + & 5.0 \\ - & 2.6 \end{array}$	\times 10 ⁻⁷		_
$\mathit{f}_{2}(2010)\mathit{K}^{0}$, $\mathit{f}_{2} ightarrow \mathit{K}^{0}_{\mathit{S}}\mathit{K}^{0}_{\mathit{S}}$	(5 ± 6)	$\times10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	(1.33± 0.31)	\times 10 ⁻⁵		2521
$K_{S}^{0}\tilde{K}_{S}^{0}\tilde{K}_{I}^{0}$	<			CL=90%	2521
$K^*(892)^0K^+K^-$	(2.75± 0.26)	_		2467
$\hat{K}^*(892)^0 \phi$	(1.00± 0.05)			2460
$K^+K^-\pi^+\pi^-$ nonresonant	<	7.17	_	CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5 ~\pm~ 1.3~)$	$\times10^{-6}$		2524
$K^*(892)^0 \overline{K}^*(892)^0$	(8.3 ± 2.4)	_	S=1.5	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<	6.0	\times 10 ⁻⁶	CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<	2.2	\times 10 ⁻⁶	CL=90%	2524
$K^*(892)^0 K^*(892)^0$	<	2		CL=90%	2485
$K^*(892)^+K^*(892)^-$	<	2.0		CL=90%	2485
$K_1(1400)^0 \phi$	<	5.0		CL=90%	2340
$\phi(K\pi)_0^{*0}$	($4.3~\pm~0.4~)$	\times 10 ⁻⁶		_
$\phi(K\pi)_0^{*0} (1.60 < m_{K\pi} < 2.15)$ [sss]	<	1.7	\times 10 ⁻⁶	CL=90%	_
$K_0^*(1430)^{0} K^- \pi^+$	<	3.18	$\times 10^{-5}$	CL=90%	2404
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3	$\times10^{-6}$	CL=90%	2360
$K_0^*(1430)^0 \overline{K}_0^*(1430)^0$	<	8.4	$\times 10^{-6}$	CL=90%	2222
$K_0^*(1430)^0 \phi$	(3.9 ± 0.8)	\times 10 ⁻⁶		2333
$K_0^{0}(1430)^0 K^*(892)^0$	<	1.7		CL=90%	2360
$K_0^{\circ}(1430)^0 K_0^{\circ}(1430)^0$	<	4.7	$\times 10^{-6}$	CL=90%	2222
$K^*(1680)^0 \phi$	<	3.5		CL=90%	2238
$K^*(1780)^0 \phi$	<	2.7		CL=90%	_
$K^*(2045)^0 \phi$	<	1.53		CL=90%	_
$K_2^*(1430)^0 \rho^0$	<	1.1	\times 10 $^{-3}$	CL=90%	2381
$K_2^{2}(1430)^{0}\phi$	(6.8 ± 0.9)	\times 10 ⁻⁶	S=1.2	2332
$\mathcal{K}^{0}\phi\phi$	(3.7 ± 0.7			2305
$\eta' \eta' K^0$	<	3.1			2338
$\eta K^0 \gamma$	(7.6 ± 1.8)			2587
$\eta' K^0 \gamma$	<	6.4	$\times10^{-6}$	CL=90%	2528
$K^0 \phi \gamma$	(2.7 ± 0.7)			2516
$K^+\pi^-\gamma$	(4.6 ± 1.4			2615
$K^*(892)^0 \gamma$	(4.18± 0.25)	$\times 10^{-5}$	S=2.1	2565
$K^*(1410)\gamma$	<	1.3	$\times10^{-4}$	CL=90%	2451
$K^+\pi^-\gamma$ nonresonant	<	2.6		CL=90%	2615
	<	2.26	\times 10 ⁻⁸	CL=90%	_
$\kappa^0 \pi^+ \pi^- \gamma$			_		
$K^{\circ}\pi^{+}\pi^{-}\gamma$	(1.99 ± 0.18)	_		2609
$K^{+}\pi^{-}\pi^{0}\gamma$	($4.1 \pm 0.4)$	_		2610
$K_1(1270)^0 \gamma$	<	5.8		CL=90%	2491
$K_1(1400)^0 \gamma$	<	1.2	\times 10 ⁻⁵	CL=90%	2454

$K_2^*(1430)^0 \gamma \ K^*(1680)^0 \gamma$	•	$0.24) \times 10^{-5}$ $\times 10^{-3}$ CL=90%	2447				
	< 2.0		2360				
$K_3^*(1780)^0_2 \gamma$	< 8.3	$\times 10^{-5} \text{ CL} = 90\%$	2340				
$K_4^*(2045)^0\gamma$	< 4.3	$\times 10^{-3} \text{ CL}=90\%$	2243				
Light unflavored meson modes							
$ ho^{0} \gamma$	(8.6 \pm	$1.5) \times 10^{-7}$	2583				
$ ho^0 X(214), \ X o \ \mu^+ \mu^-$	[ttt] < 1.73	$\times 10^{-8}$ CL=90%	_				

7.2

 $2.0 \pm 0.5 \times 10^{-6}$

 $\times\,10^{-4}$ CL=90%

Created: 4/24/2025 13:07

2631

2581

A (
$\Delta(1232)^{+} \overline{p} + \Delta(1232)^{-} p$	<	1.6	\times 10 ⁻⁶		_
$\Delta_{\overline{\Lambda}}^{0}\overline{\Lambda}$	<	9.3		CL=90%	2364
p <u>Λ</u> K ⁻	<	8.2		CL=90%	2308
$p\overline{\Lambda}D^-$			$0.4) \times 10^{-5}$		1765
$p\overline{\Lambda}D^{*-}$	($0.8) \times 10^{-5}$		1685
$\frac{p}{\Lambda} \frac{\overline{\Sigma}^0}{\Lambda} \pi^-$	($0.4) \times 10^{-6}$		2383
	<		$\times 10^{-7}$	CL=90%	2393
$\overline{\Lambda}\Lambda K^0$	(4.8 +	$^{1.0}_{0.9}$) \times 10 ⁻⁶		2250
$\overline{\Lambda}\Lambda K^{*0}$	(2.5 +	$^{0.9}_{0.8}$) \times 10 ⁻⁶		2098
$\overline{\Lambda}\Lambda D^0$	(1.00^{+}_{-}	$^{0.30}_{0.26})\times 10^{-5}$		1662
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<	3.1	$\times10^{-5}$	CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$	<	1.5	$\times10^{-3}$	CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$ $\overline{D}^0p\overline{p}$	<	1.1	$\times10^{-4}$	CL=90%	2335
$\overline{D}{}^0 p \overline{p}$	($1.04\pm$	$0.07) \times 10^{-4}$		1863
$D_s^- \overline{\Lambda} p$	($2.8~\pm$	$0.9) \times 10^{-5}$		1710
$\overline{D}^*(2007)^0 \rho \overline{\rho}$	(9.9 ±	$1.1) \times 10^{-5}$		1788
$D^*(2010)^- p \overline{n}$	($1.4~\pm$	$0.4) \times 10^{-3}$		1785
$D^- ho \overline{ ho} \pi^+$	($3.32\pm$	$0.31) \times 10^{-4}$		1786
$D^*(2010)^- \rho \overline{\rho} \pi^+$	($4.7~\pm$	$0.5) \times 10^{-4}$	S=1.2	1708
$\overline{D}{}^0 p \overline{p} \pi^+ \pi^-$	($3.0~\pm$	$0.5) \times 10^{-4}$		1708
$\overline{D}^{*0} p \overline{p} \pi^+ \pi^-$	($1.9~\pm$	$0.5) \times 10^{-4}$		1623
$\Theta_c\overline{p}\pi^+$, $\Theta_c oD^-p$	<	9		CL=90%	_
$\frac{\Theta_c}{\overline{\Sigma}_c^{}} \Delta^{++}$, $\Theta_c \rightarrow D^{*-} p$	<	1.4		CL=90%	_
$\Sigma_c^{}\Delta^{++}$	<	8	× 10 ⁻⁴	CL=90%	1839
$ \frac{\overline{\Lambda}_{c}^{c} \rho \pi^{+} \pi^{-}}{\overline{\Lambda}_{c}^{-} \rho \pi^{0}} $	($0.14) \times 10^{-3}$	S=1.3	1934
$\overline{\Lambda}_c^- p$	($1.55\pm$	$0.17) \times 10^{-5}$		2021
$\overline{\Lambda}_{c}^{-} p \pi^{0}$	($1.55\pm$	$0.18) \times 10^{-4}$		1982
$\Sigma_{c}(2455)^{-}p$	<	2.4	$\times10^{-5}$		_
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{0}$	<	5.07	$\times 10^{-3}$	CL=90%	1883
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	<	2.74	$\times 10^{-3}$	CL=90%	1821
$\overline{\Lambda}_{c}^{-} p \pi^{+} \pi^{-}$ (nonresonant)	(5.5 ±	$1.0) \times 10^{-4}$	S=1.3	1934
$\frac{c}{\Sigma_c}$ (2520) $^{}$ $p\pi^+$			$0.18) \times 10^{-4}$		1860
$\overline{\Sigma}_{c}(2520)^{0} p \pi^{-}$	•	3.1		CL=90%	1860
$\overline{\Sigma}_{c}^{c}(2455)^{0}p\pi^{-}$			$0.09) \times 10^{-4}$		1895
$\Sigma_c(2455)^0 N^0, N^0 \rightarrow$			$1.7) \times 10^{-5}$		_
$p\pi^-$	·		ŕ		
$\overline{\Sigma}_c(2455)^{}p\pi^+$			$0.15) \times 10^{-4}$		1895
$\Lambda_c^- p K^+ \pi^-$			$0.7) \times 10^{-5}$		1786
$\overline{\Sigma}_c(2455)^{} p K^+, \ \overline{\Sigma}_c^{} ightarrow$	(8.9 ±	$2.6) \times 10^{-6}$		1754
$\overline{\Lambda}_c^-\pi^-$					

$\Lambda_c^- p K^* (892)^0$	<	2.42	× 10 ⁻⁵	CL=90%	1647
$\Lambda_c^- p K^+ K^-$	($2.0~\pm$	$0.4) \times 10^{-5}$	5	1588
$\Lambda_c^- p \phi$	<	1.0	× 10 ⁻⁵	CL=90%	1567
$\Lambda_c^- p \overline{p} p$	<	2.8	× 10 ⁻⁶	ō	677
$\overline{\Lambda}_c^- \Lambda K^+$	(4.8 ±	$1.1) \times 10^{-5}$	5	1767
$\overline{\Lambda}_c^- \Lambda_c^+$	<	1.6	× 10 ⁻⁵	CL=95%	1319
$\overline{\Lambda}_{c}(2593)^{-} / \overline{\Lambda}_{c}(2625)^{-} p$	<	1.1	\times 10 ⁻²	L=90%	_
$ \overline{\Xi}_{c}^{-} \Lambda_{c}^{+} $ $ \overline{\Xi}_{c}^{-} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{-} \to \overline{\Xi}_{c}^{+} \pi^{-} \pi^{-} $ $ \overline{\Xi}_{c}^{-} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{-} \to \overline{p} K^{+} \pi^{-} $	($1.2~\pm$	$0.8) \times 10^{-3}$	3	1147
$\overline{\Xi}_c^- \Lambda_c^+, \ \overline{\Xi}_c^- o \ \overline{\Xi}^+ \pi^- \pi^-$	($2.4~\pm$	$1.1) \times 10^{-5}$	S=1.8	1147
$\overline{\Xi}_c^- \Lambda_c^+, \ \overline{\Xi}_c^- o \ \overline{p} K^+ \pi^-$	($5.3~\pm$	$1.7) \times 10^{-6}$	5	_
$\Lambda_c^+ \Lambda_c^- K^0$	(4.0 ±	$0.9) \times 10^{-2}$	1	732
$\overline{\Lambda}_c(2910)^- p, \ \overline{\Lambda}_c^- ightarrow$	($1.2~\pm$	$0.4) \times 10^{-5}$	5	_
$\overline{\Sigma}_c(2455)^{\pi^+}$					
$\overline{\varLambda}_c(2910)^- ho, \ \overline{\varLambda}_c^- ightarrow$	(10 ±	4) \times 10 ⁻⁶	5	_
$\overline{\Sigma}_c(2455)^0\pi^-$					
$\overline{\Xi}_c(2930)^- \Lambda_c^+, \ \overline{\Xi}_c^- \to \Lambda_c^- K^0$			$0.6) \times 10^{-2}$	1	_
$\Lambda\psi_{DS}$	[vvv] <	0.13–5.2	$\times 10^{-5}$		_

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

. , . , .	_			,	
$\gamma \gamma$	B1	<	3.2	$\times 10^{-7} \text{ CL}=90\%$	2640
e^+e^-	B1	<	2.5	$\times 10^{-9}$ CL=90%	2640
$e^+e^-\gamma$	B1	<	1.2	$\times 10^{-7}$ CL=90%	2640
$\mu^+\mu^-$	B1	<	1.5	$\times10^{-10}$ CL=90%	2638
$\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	B1	<	1.8	$\times10^{-10}$ CL=95%	2629
SP, S $ ightarrow$ $\mu^+\mu^-$,	B1	[xxx] <	6.0	$\times10^{-10}$ CL=95%	_
$ extstyle P ightarrow \ \mu^+ \mu^-$ aa, a $ ightarrow \ \mu^+ \mu^-$					
aa, a $ ightarrow$ $\mu^+\mu^-$	B1	<	2.3	$\times10^{-10}$ CL=95%	_
$ au^+ au^-$	B1	<	2.1	$\times 10^{-3}$ CL=95%	1952
$\pi^0 \ell^+ \ell^-$	B1	[hhh] <	5.3	$\times10^{-8}$ CL=90%	2638
$\pi^0 e^+ e^-$	B1	<	8.4	$\times10^{-8}$ CL=90%	2638
$\pi^0 \mu^+ \mu^-$	B1	<	6.9	$\times10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$	B1	[hhh] <	6.4	$\times10^{-8}$ CL=90%	2611
$\eta e^+ e^-$	B1	<	1.08	$\times10^{-7}$ CL=90%	2611
$\eta \mu^+ \mu^-$	B1	<	1.12	$\times10^{-7}$ CL=90%	2607
$\pi^0 u \overline{ u}$	B1	<	9	$\times10^{-6}$ CL=90%	2638
$K^0\ell^+\ell^-$	В1	[hhh] ($3.3\ \pm\ 0.6$	$) \times 10^{-7}$	2616
$K^0 e^+ e^-$	В1	($2.5 \begin{array}{c} + & 1.1 \\ - & 0.9 \end{array}$	$) \times 10^{-7}$ S=1.3	2616
$K^0\mu^+\mu^-$	В1	(3.39± 0.35	$(5) \times 10^{-7}$ S=1.1	2612
$K^0 u \overline{ u}$	B1	<	2.6	$\times 10^{-5}$ CL=90%	2616
$ ho^{0} \nu \overline{ u}$	B1	<	4.0	$\times10^{-5}$ CL=90%	2583
$K^*(892)^0 \ell^+ \ell^-$	В1	[hhh] ($9.9 \ + \ 1.2 \ - \ 1.1$	$) \times 10^{-7}$	2565

$K^*(892)^0 e^+ e^-$	B1	(1.03^{+}_{-} 0.19	$(7) \times 10^{-6}$	2565
$K^*(892)^0 \mu^+ \mu^-$	B1	(9.4 ± 0.5	$) \times 10^{-7}$	2560
$K^*(892)^0 \tau^+ \tau^-$	B1	<	3.1	$\times 10^{-3}$ CL=90%	1404
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	($2.1\ \pm\ 0.5$	$) \times 10^{-8}$	2626
$K^*(892)^0 \nu \overline{\nu}$	B1	<	1.8	$\times10^{-5}$ CL=90%	2565
invisible	B1	<	2.4	$\times10^{-5}$ CL=90%	_
$ u \overline{ u} \gamma$	B1	<	1.6	$\times10^{-5}$ CL=90%	2640
$\phi \mu^+ \mu^-$	B1	<	3.2	$\times 10^{-9}$ CL=90%	2537
$\phi u \overline{ u}$	B1	<	1.27	$\times 10^{-4}$ CL=90%	2541
$e^{\pm}\mu^{\mp}$	LF	[aa] <	1.0	$\times10^{-9}$ CL=90%	2639
$\pi^0e^\pm\mu^\mp$	LF	<	1.4	$\times10^{-7}$ CL=90%	2637
$\mathcal{K}^0e^\pm\mu^\mp$	LF	<	3.8	$\times 10^{-8}$ CL=90%	2615
$K^*(892)^0 e^+ \mu^-$	LF	<	6.8	$\times 10^{-9}$ CL=90%	2563
$K^*(892)^0 e^- \mu^+$	LF	<	5.7	$\times 10^{-9}$ CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$	LF	<	1.01	$\times10^{-8}$ CL=90%	2563
$K^*(892)^0 au^+ \mu^-$	LF	<	1.0	$\times10^{-5}$ CL=90%	2221
$K^*(892)^0 \tau^- \mu^+$	LF	<	8.2	$\times10^{-6}$ CL=90%	2221
$e^{\pm} au^{\mp}$	LF	[aa] <	1.6	$\times10^{-5}$ CL=90%	2341
$\mu^{\pm} au^{\mp}$	LF	[aa] <	1.4	$\times10^{-5}$ CL=95%	2340
$p\mu^-$	L,B	<	2.6	$\times10^{-9}$ CL=90%	2555
$\Lambda_c^+ \mu^-$	L,B	<	1.4	$\times10^{-6}$ CL=90%	2143
$\Lambda_c^+e^-$	L,B	<	4	$\times10^{-6}$ CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$\begin{split} &A_{CP}(B \to K^*(892)\gamma) = -0.003 \pm 0.011 \\ &A_{CP}(B \to s\gamma) = 0.015 \pm 0.011 \\ &A_{CP}(B \to (s+d)\gamma) = 0.010 \pm 0.031 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) = 0.04 \pm 0.11 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) \left(1.0 < \mathsf{q}^2 < 6.0 \text{ GeV}^2/\mathsf{c}^4\right) = -0.06 \pm 0.22 \\ &A_{CP}(B \to X_s \ell^+ \ell^-) \left(10.1 < \mathsf{q}^2 < 12.9 \text{ or } \mathsf{q}^2 > 14.2 \text{ GeV}^2/\mathsf{c}^4\right) \\ &= 0.19 \pm 0.18 \\ &A_{CP}(B \to K^* e^+ e^-) = -0.18 \pm 0.15 \\ &A_{CP}(B \to K^* \mu^+ \mu^-) = -0.03 \pm 0.13 \\ &A_{CP}(B \to K^* \ell^+ \ell^-) = -0.04 \pm 0.07 \\ &A_{CP}(B \to \eta \text{ anything}) = -0.13^{+0.04}_{-0.05} \\ &\Delta A_{CP}(X_s \gamma) = A_{CP}(B^\pm \to X_s \gamma) - A_{CP}(B^0 \to X_s \gamma) = \\ &0.041 \pm 0.023 \\ &\overline{A}_{CP}(B \to X_s \gamma) = (A_{CP}(B^+ \to X_s \gamma) + A_{CP}(B^0 \to X_s \gamma))/2 = 0.009 \pm 0.012 \end{split}$$

$$\Delta A_{CP}(B \to K^* \gamma) = A_{CP}(B^+ \to K^{*+} \gamma) - A_{CP}(B^0 \to K^{*0} \gamma) = 0.024 \pm 0.028$$
 $\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to K^{*+} \gamma) + A_{CP}(B^0 \to K^{*0} \gamma))/2 = -0.001 \pm 0.014$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that $B(\Upsilon(4S) \to B\overline{B}) = 100\%$.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

		Scale factor/	p
B DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (Me	eV/c)

Semileptonic and leptonic modes $\ell^+ \nu_\ell$ anything [hhh,yyy] 10.82 ± 0.15)% $D^-\ell^+\nu_\ell$ anything \pm 0.5) % [hhh] $\overline{D}{}^0 \ell^+ \nu_{\ell}$ anything [hhh] 7.2 ± 1.5) % $\overline{D}\ell^+\nu_\ell$ 2.41 ± 0.12) % 2311 $D^{*-}\ell^{+}\nu_{\ell}$ anything 6.7 \pm 1.3) \times 10⁻³ [zzz] $\overline{D}^* \ell^+ \nu_{\ell}$ 4.95 ± 0.11)% [aaaa] 2257 $\overline{D}^{**}\ell^+\nu_{\ell}$ 2.7 ± 0.7) % [hhh,bbaa] $\overline{D}_1(2420)\ell^+\nu_\ell$ anything $3.8 \pm 1.3 \times 10^{-3}$ S = 2.4 $\overline{D}\pi\ell^+\nu_\ell$ anything + \pm 0.5)% S=1.5 $\overline{D}^*\pi\ell^+\nu_\ell$ anything $\overline{D}\pi\ell^+\nu_\ell$ anything \pm 0.6) % $\overline{D}^*\pi\ell^+\nu_\ell$ anything 1.9 ± 0.4) % $\overline{D}_{2}^{*}(2460)\ell^{+}\nu_{\ell}$ anything $4.4 \pm 1.6 \times 10^{-3}$ $D^{\pm} \pi^+ \ell^+ \nu_{\ell}$ anything 1.00 ± 0.34)% $\overline{D}\pi^+\pi^-\ell^+\nu_\ell$ $1.62 \pm 0.32 \times 10^{-3}$ 2301 $\overline{D}^*\pi^+\pi^-\ell^+\nu_\ell$ $9.4 \pm 3.2 \times 10^{-4}$ 2247 $D_s^- \ell^+ \nu_\ell$ anything $\times 10^{-3}$ CL=90% 7 [hhh] < $D_{\varepsilon}^{-}\ell^{+}\nu_{\ell}K^{+}$ anything [hhh] < $\times 10^{-3}$ CL=90%

```
D_s^- \ell^+ \nu_\ell K^0 anything
                                                                                  \times 10^{-3} CL=90%
                                            [hhh] <
   X_c \ell^{+} \nu_{\ell}
                                                            10.63 \pm 0.15 ) %
   X_{\mu}\ell^{+}\nu_{\ell}
                                                             1.88 \pm 0.27 \times 10^{-3}
       X_u e^+ \nu_e
                                                             1.57 \pm 0.19 \times 10^{-3}
       X_u^{\mu} + \nu_{\mu}
                                                             1.62 \pm 0.21 \times 10^{-3}
   K^+ \ell^+ \nu_\ell anything
                                                             6.3 \pm 0.5 ) %
                                            [hhh]
   K^-\ell^+\nu_\ell anything
                                                                     \pm 4
                                                                               ) \times 10^{-3}
                                            [hhh]
   K^0/\overline{K}^0\ell^+\nu_\ell anything
                                                             4.6 \pm 0.5 ) %
                                            [hhh]
\overline{D}\tau^+\nu_{\tau}
                                                             8.6 \pm 0.8 \times 10^{-3}
                                                                                                             1911
\overline{D}^* \tau^+ \nu_{\tau}
                                                             1.40 \pm 0.07)%
                                                                                                             1838
                                          D, D^*, or D_s modes
D^{\pm} anything
                                                            23.1 \pm 1.2 ) %
D^0/\overline{D}^0 anything
                                                            64.6 \pm 2.1 ) %
                                                                                                 S = 1.5
D^*(2010)^{\pm} anything
                                                            22.5 \pm 1.5 ) %
\overline{D}^*(2007)^0 anything
                                                            26.0
                                                                    \pm 2.7 ) %
D_s^{\pm} anything
                                                            10.6
                                                                   \pm 0.6 ) %
                                                                                                 S=1.7
                                              [aa]
D_s^{*\pm} anything
                                                                    \pm 1.0 ) %
                                                             6.3
D_s^{*\pm}\overline{D}^{(*)}
                                                                    \pm 0.6 )%
                                                             3.4
\overline{D} D_{s0}(2317)
                                                                                                             1605
                                                          seen
DD_{s,J}(2457)
                                                          seen
D^{(*)} \overline{D}^{(*)} K^0 +
                                                                    + 2.7
- 1.7
                                        [aa,ccaa]
                                                             7.1
     D^{(*)}\overline{D}^{(*)}K^{\pm}
b \rightarrow c \overline{c} s
                                                            22
                                                                     \pm 4
                                                                               ) %
D_s^{(*)}\overline{D}^{(*)}
                                                                    ± 0.4
                                        [aa,ccaa]
                                                             5.0
                                                                             ) %
D^*D^*(2010)^{\pm}
                                                                                 \times 10^{-3} CL=90%
                                                             5.9
                                              [aa] <
                                                                                                             1711
DD^*(2010)^{\pm} + D^*D^{\pm}
                                                                                 \times 10^{-3} CL=90%
                                              [aa] <
DD^{\pm}
                                                                                 \times 10^{-3} CL=90%
                                              [aa] <
                                                                                                             1866
D_{s}^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})
                                        [aa,ccaa]
                                                                               ) %
\overline{D}^*(2010)\gamma
                                                                                 \times 10^{-3} CL=90%
                                                             1.1
                                                                                                             2257
D_s^+\pi^-, D_s^{*+}\pi^-, D_s^+\rho^-,
                                                                                 \times 10^{-4} CL=90%
                                                             4
                                              [aa] <
     D_s^{*+} \rho^-, D_s^+ \pi^0, D_s^{*+} \pi^0, D_s^{*+} \pi^0, D_s^+ \eta, D_s^+ \rho^0,
     D_s^{*+}\rho^0, D_s^+\omega, D_s^{*+}\omega
                                                                                 \times 10^{-3} \text{ CL} = 90\%
D_{s1}(2536)^{+} anything
                                                    <
                                                             9.5
                                           Charmonium modes
J/\psi(1S) anything
                                                             1.094 \pm 0.032) \%
                                                                                                 S=1.1
   J/\psi(1S) (direct) anything
                                                             7.8 \pm 0.4 \times 10^{-3}
                                                                                                 S=1.1
                                                             3.07 \pm 0.21 \times 10^{-3}
\psi(2S) anything
\chi_{c1}(1P) anything
                                                             3.55 \pm 0.27 \times 10^{-3}
                                                                                                 S=1.3
                                                             3.08 \pm 0.19 \times 10^{-3}
   \chi_{c1}(1P) (direct) anything
```

```
\chi_{c2}(1P) anything
                                                                \pm 1.7 ) \times 10^{-4}
                                                         9.9
                                                                                           S = 1.6
   \chi_{c2}(1P) (direct) anything
                                                               \pm 1.1 ) \times 10^{-4}
                                                         7.5
\eta_c(1S) anything
                                                                            \times 10^{-3} CL=90%
                                                         9
                                                                \pm 0.8 ) \times 10^{-4}
K\chi_{c1}(3872)
                                                   (
                                                         2.0
                                                                                                      1141
KX(3940), X \to D^{*0}D^0
                                                         6.7
                                                                            \times 10^{-5} CL=90%
                                                 <
                                                                                                      1084
K\chi_{c0}(3915), \chi_{c0} 
ightarrow \ \omega J/\psi [	ext{ddaa}] (
                                                         7.1 \pm 3.4 \times 10^{-5}
                                                                                                      1103
                                           K or K* modes
K^{\pm} anything
                                                                \pm 2.5
                                                                          ) %
   K^+ anything
                                                                ± 5
                                                                          ) %
                                                        66
   K^- anything
                                                                          ) %
                                                        13
K^0/\overline{K}^0 anything
                                           [aa]
                                                                \pm 4
                                                                          ) %
K^*(892)^{\pm} anything
                                                                \pm 6
                                                                          ) %
                                                        18
K^*(892)^0 / \overline{K}^*(892)^0 anything [aa]
                                                        14.6 \pm 2.6 ) %
K^*(892)\gamma
                                                         4.2 \pm 0.6 \times 10^{-5}
                                                                                                      2565
                                                                + 1.8 \\ - 1.6
                                                                          ) \times 10^{-6}
\eta K \gamma
                                                   (
                                                                                                      2588
K_1(1400)\gamma
                                                                            \times 10^{-4} CL=90%
                                                         1.27
                                                                                                      2454
                                                 <
K_2^*(1430)\gamma
                                                                          ) \times 10^{-5}
                                                   (
                                                                                                      2447
K_2(1770)\gamma
                                                                            \times 10^{-3} CL=90%
                                                                                                      2342
                                                 <
                                                                            \times 10^{-5} CL=90%
K_3^*(1780)\gamma
                                                 <
                                                         3.7
                                                                                                      2340
                                                                            \times 10^{-3} CL=90%
K_{4}^{*}(2045)\gamma
                                                 <
                                                                                                      2243
K \eta'(958)
                                                         8.3 \pm 1.1 \times 10^{-5}
                                                                                                      2528
K^*(892)\eta'(958)
                                                   (
                                                         4.1
                                                               \pm 1.1 ) \times 10^{-6}
                                                                                                      2472
                                                                            \times 10^{-6} CL=90%
K\eta
                                                         5.2
                                                 <
                                                                                                      2588
K^*(892)\eta
                                                         1.8 \pm 0.5 \times 10^{-5}
                                                                                                      2534
K\phi\phi
                                                         2.3
                                                                \pm 0.9 ) \times 10^{-6}
                                                                                                      2306
b \rightarrow \overline{s}\gamma
                                                         3.49 \pm 0.19 \times 10^{-4}
\overline{b} \rightarrow \overline{d} \gamma
                                                                \pm 3.0
                                                                        ) \times 10^{-6}
                                                         9.2
\overline{b} \rightarrow \overline{s} gluon
                                                         6.8
                                                                            %
                                                                                       CL=90%
                                                                ^{+} 0.5 ^{-} 0.8
                                                                          ) \times 10^{-4}
   \eta anything
                                                   (
                                                         2.6
   \eta' anything
                                                                ± 0.9
                                                                        ) \times 10^{-4}
                                                   (
                                                         4.2
   K^+ gluon (charmless)
                                                                            \times 10^{-4} CL=90%
                                                         1.87
                                                 <
   K^0 gluon (charmless)
                                                         1.9 \pm 0.7 \times 10^{-4}
                                Light unflavored meson modes
                                                         1.39 \pm 0.25 \times 10^{-6}
                                                                                          S = 1.2
                                                                                                      2583
\rho\gamma
                                                         1.30 \pm 0.23 \times 10^{-6}
                                                                                          S=1.2
\rho/\omega\gamma
\pi^{\pm} anything
                                                                ± 7
                                                                          ) %
                                     [aa,eeaa]
                                                      358
\pi^0 anything
                                                      235
                                                                \pm 11
                                                                          ) %
\eta anything
                                                        17.6 \pm 1.6 ) %
\rho^0 anything
                                                        21
                                                                \pm 5
                                                                          ) %
```

ω anything	<	81		%	CL=90%	_
ϕ anything	($3.43 \pm$	0.12) %		_
ϕK^* (892)	<	2.2		$\times 10^{-5}$	CL=90%	2460
π^+ gluon (charmless)	($3.7 \pm$	0.8	$) \times 10^{-4}$		_
	Baryon	modes				
$\Lambda_c^+ / \overline{\Lambda}_c^-$ anything	(3.6 ±	0.4) %		_
Λ_c^+ anything	<	1.3		%	CL=90%	_
$\frac{\overline{\Lambda}_{c}^{c}}{\Lambda_{c}}$ anything	<	7		%	CL=90%	_
$\overline{\Lambda}_{c}^{c}\ell^{+}$ anything	<	9		$\times10^{-4}$	CL=90%	_
$\overline{\Lambda}_{c}^{-}e^{+}$ anything	<	1.8		$\times 10^{-3}$	CL=90%	_
$\overline{\Lambda}_{c}^{c}\mu^{+}$ anything	< -	1.4		$\times 10^{-3}$	³ CL=90%	_
$\overline{\Lambda}_{c}^{-}$ p anything	(2.06 ±	0.33) %		_
$\overline{\Lambda}_{c}^{-} p e^{+} \nu_{e}$	<	8		$\times10^{-4}$	CL=90%	2021
$\frac{\overline{\Sigma}^{-}}{\overline{\Sigma}^{c}}$ anything	(3.4 ±	1.7	$)\times 10^{-3}$		_
$\overline{\Sigma}_{c}^{c}$ anything	<	8		$\times10^{-3}$	CL=90%	_
$\frac{\overline{\Sigma}_{c}^{c}}{\overline{\Sigma}_{c}^{0}}$ anything $\frac{\overline{\Sigma}_{c}^{0}}{\overline{\Sigma}_{c}^{0}}$	($3.7 \pm$	1.7	$) \times 10^{-3}$		_
$\Sigma_c^0 N(N = p \text{ or } n)$	<	1.2		$\times 10^{-3}$	CL=90%	1938
Ξ_c^0 anything, $\Xi_c^0 ightarrow \Xi^- \pi^+$	($1.93 \pm$	0.30	$) \times 10^{-4}$	S=1.1	_
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	(4.5 +	- 1.3 - 1.2	$)\times 10^{-4}$		_
p/\overline{p} anything	[aa] (8.0 ±	0.4) %		_
p/\overline{p} (direct) anything	[aa] (,		_
$\overline{p}e^+\nu_e$ anything				\times 10 ⁻⁴	CL=90%	_
Λ/Λ anything	[aa] (4.0 ±	0.5) %		_
$\frac{\Lambda}{4}$ anything		seen				_
$\overline{\Lambda}$ anything $\overline{\Xi}^-/\overline{\Xi}^+$ anything		seen	0.6	\ 10 - 3		_
baryons anything	[aa] ($2.7 \pm 6.8 \pm$				_
$p\overline{p}$ anything		2.47 ±				_
$\Lambda \overline{p}/\overline{\Lambda} p$ anything	([aa] (,		_
$\Lambda \overline{\Lambda}$ anything		5			CL=90%	_
Lepton Family number (<i>LF</i>) violating modes or						
$\Delta B = 1$ wea	_	-				
se^+e^- B1				$) \times 10^{-6}$	S-2 0	_
su+u- B1	() × 10-6	J—2.0	

				•	-			
se^+e^-	B1	(6.7	± :	1.7	$) \times 10^{-6}$	S=2.0	_
$s\mu^+\mu^-$	B1	(4.3	± :	1.0	$) \times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[hhh] (5.8	± :	1.3	$) \times 10^{-6}$	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9			$\times 10^{-8}$	CL=90%	2638
πe^+e^-	B1	<	1.10	١		$\times 10^{-7}$	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0			$\times 10^{-8}$	CL=90%	2634
$K e^+ e^-$	B1	(4.4	\pm (0.6	$) \times 10^{-7}$		2617
$K^*(892)e^+e^-$	B1	(1.19	± (0.20	$) \times 10^{-6}$	S=1.2	2565
$K\mu^+\mu^-$	B1	(4.4	\pm (0.4	$) \times 10^{-7}$		2612

$K^*(892)\mu^+\mu^-$	B1	(1.06 ±	$0.09) \times 10^{-6}$		2560
$K\ell^+\ell^-$	B1	(4.8 ±	$(0.4) \times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	(1.05 \pm	$0.10) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.6	\times 10 ⁻⁵	CL=90%	2617
$K^* \nu \overline{\nu}$	B1	<	2.7	\times 10 ⁻⁵	CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8	\times 10 ⁻⁶	CL=90%	2638
$\rho \nu \overline{\nu}$	B1	<	2.8	$\times 10^{-5}$	CL=90%	2583
$se^{\pm}\mu^{\mp}$	LF	[aa] <	2.2	\times 10 ⁻⁵	CL=90%	_
$\pie^\pm\mu^\mp$	LF	<	9.2	× 10 ⁻⁸	CL=90%	2637
$ hoe^\pm\mu^\mp$	LF	<	3.2	\times 10 ⁻⁶	CL=90%	2582
K $e^{\pm}\mu^{\mp}$	LF	<	3.8	$\times 10^{-8}$	CL=90%	2616
K^* (892) $e^{\pm}\mu^{\mp}$	LF	<	5.1	× 10 ⁻⁷	CL=90%	2563

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

the LHC, LEP, and at the Tevatron.

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life $au=(1.5673\pm0.0029)\times10^{-12}$ s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged *b*-hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral *b*-hadron ad-

mixture $\begin{aligned} \tau_{\rm charged\ b-hadron}/\tau_{\rm neutral\ b-hadron} &= 1.09\pm0.13\\ \left|\Delta\tau_{\ b}\right|/\tau_{\ b.\overline{b}} &= -0.001\pm0.014 \end{aligned}$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

b DECAY MODES

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p_{\overline{p}}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to B^+) = \mathsf{B}(\overline{b}\to B^0) \\ \mathsf{B}(\overline{b}\to B^+) + \mathsf{B}(\overline{b}\to B^0) + \mathsf{B}(\overline{b}\to B^0_s) + \mathsf{B}(b\to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

cor(
$$B_s^0$$
, b-baryon) = 0.064
 $cor(B_s^0$, $B^{\pm} = B^0$) = -0.633
 $cor(b$ -baryon, $B^{\pm} = B^0$) = -0.813.

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	(40.8 ± 0.7) %	_
B^0	(40.8 ± 0.7) %	_
B_s^0	(10.0 ± 0.8) %	_
<i>b</i> -baryon	(8.4 ± 1.1) %	_

DECAY MODES

Semileptonic and leptonic modes

u anything		(23.1 ± 1.5) %		_
$\ell^+ u_\ell$ anything	[hhh]	($10.69\pm~0.22$) %		_
$e^+ u_e$ anything		($10.86\pm~0.35)~\%$		_
$\mu^+ u_\mu$ anything		$(\ 10.95 {+\atop -}\ 0.29 {0.25})\ \%$		_
$D^-\ell^+ u_\ell$ anything	[hhh]	(2.2 ± 0.4)%	S=1.9	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$		_
$D^-\pi^-\ell^+ u_\ell$ anything		$(2.6 \pm 1.6) \times 10^{-3}$		_

HTTP://PDG.LBL.GOV

Page 127

```
\overline{D}{}^0 \ell^+ \nu_{\ell} anything
                                             [hhh]
                                                       (6.79 \pm 0.34)\%
   \overline{D}{}^0\pi^-\ell^+\nu_\ell anything
                                                       (1.07 \pm 0.27)\%
   \overline{D}{}^0\pi^+\ell^+\nu_\ell anything
                                                       (2.3 \pm 1.6) \times 10^{-3}
D^{*-}\ell^+\nu_\ell anything
                                             [hhh] ( 2.75 ± 0.19) %
   D^{*-}\pi^-\ell^+\nu_\ell anything
                                                       (6 \pm 7) \times 10^{-4}
   D^{*-}\pi^+\ell^+\nu_\ell anything
                                                       (4.8 \pm 1.0) \times 10^{-3}
      \overline{D}_{i}^{0}\ell^{+}\nu_{\ell} anything \times
                                        [hhh,ffaa] ( 2.6 \pm 0.9 ) \times 10^{-3}
            B(\overline{D}_i^0 \rightarrow D^{*+}\pi^-)
                                       [hhh,ffaa] ( 7.0 \pm 2.3 ) \times 10^{-3}
      D_i^- \ell^+ \nu_\ell anything \times
            B(D_i^- \rightarrow D^0 \pi^-)
      \overline{D}_2^*(2460)^0\ell^+\nu_\ell anything
                                                     < 1.4 \times 10^{-3} CL=90%
            \times B(\overline{D}_2^*(2460)^0 \rightarrow
                                             (4.2 + 1.5) \times 10^{-3}
      D_2^*(2460)^- \ell^+ \nu_{\ell} anything
            \times B(D_2^*(2460)^- \rightarrow
            D^{0}\pi^{-}
      \overline{D}_2^*(2460)^{\acute{0}}\ell^+\nu_\ell anything
                                               (1.6 \pm 0.8) \times 10^{-3}
            \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow
                                             [hhh] ( 1.7 \pm 0.5 ) × 10^{-3}
charmless \ell \overline{\nu}_{\ell}
                                                       (2.41\pm\ 0.23)\%
	au^+ 
u_{	au} anything
   D^{*-} \tau \nu_{\tau} anything
                                                       (9 \pm 4) \times 10^{-3}
\overline{c} \rightarrow \ell^- \overline{\nu}_\ell anything
                                             [hhh] ( 8.02 \pm 0.19) %
c \rightarrow \ell^+ \nu anything
                                                       (1.6 + 0.4)
                              Charmed meson and baryon modes
\overline{D}^0 anything
                                                       (58.7 \pm 2.8)\%
                                               [aa] (9.1 + 4.0 \\ -2.8)\%
D^0 D_s^{\pm} anything
D^{\mp}D_{\epsilon}^{\pm} anything
                                               [aa] (4.0 + 2.3 - 1.8)
\overline{D}^0 D^0 anything
                                               [aa] (5.1 + 2.0 \\ -1.8) %
D^0 D^{\pm} anything
                                               [aa] (2.7 + 1.8 )\%
D^{\pm}D^{\mp} anything
                                                                          \times 10^{-3} CL=90%
                                               [aa] <
D^- anything
                                                       (22.7 \pm 1.6)\%
D^*(2010)^+ anything
                                                       (17.3 \pm 2.0)\%
D_1(2420)^0 anything
                                                       (5.0 \pm 1.5)\%
D^*(2010)^{\mp}D_s^{\pm} anything
                                             [aa] (3.3 + 1.6 )\%
D^0 D^* (2010)^{\pm} anything
                                               [aa] (3.0 + 1.1 \atop -0.9)\%
D^*(2010)^{\pm}D^{\mp} anything
                                               [aa] (2.5 + 1.2)\%
HTTP://PDG.LBL.GOV
                                               Page 128
                                                                 Created: 4/24/2025 13:07
```

```
D^*(2010)^{\pm} D^*(2010)^{\mp} anything [aa] ( 1.2 ± 0.4 )%
\overline{D}D anything
                                                                                                                ( 10
D_2^*(2460)^0 anything
                                                                                                                (4.7 \pm 2.7)\%
D_s^- anything
                                                                                                                (14.7 \pm 2.1)\%
D_s^+ anything
                                                                                                                (10.1 \pm 3.1)\%
\Lambda_c^+ anything
                                                                                                                (7.8 \pm 1.1)\%
                                                                                           [eeaa] (116.2 \pm 3.2 ) %
\overline{c}/c anything
                                                                                   Charmonium modes
J/\psi(1S) anything
                                                                                                                (1.16\pm\ 0.10)\%
\psi(2S) anything
                                                                                                                 (3.06\pm 0.30) \times 10^{-3}
\chi_{c0}(1P) anything
                                                                                                                ( 1.4 \pm 0.5)%
\chi_{c1}(1P) anything
                                                                                                                (1.4 \pm 0.4)\%
                                                                                                             (5.5 \pm 2.4) \times 10^{-3}
\chi_{c2}(1P) anything
\chi_c(2P) anything, \chi_c \to \phi \phi
                                                                                                            < 2.8 \times 10^{-7} CL=95%
\eta_c(1S) anything
                                                                                                            (5.6 \pm 0.9) \times 10^{-3}
\eta_c(2S) anything, \eta_c \rightarrow \phi \phi
                                                                                                              (4.1 \pm 1.7) \times 10^{-7}
                                                                                                                         4.5 \times 10^{-7} \text{ CL}=95\%
\chi_{c1}(3872) anything, \chi_{c1} \rightarrow
                                                                                                                                                  \times 10^{-7} CL=95%
\chi_{c0}(3915) anything, \chi_{c0} \rightarrow
                                                                                                                         3.1
                                                                                         K or K* modes
                                                                                                                (3.1 \pm 1.1) \times 10^{-4}
\overline{s}\gamma
\overline{s}\overline{\nu}\nu
                                                                                                                                                        \times 10^{-4} CL=90%
                                                                                B1
K^{\pm} anything
                                                                                                                 (74 \pm 6)\%
K_S^0 anything
                                                                                                                 (29.0 \pm 2.9)\%
                                                                                               Pion modes
\pi^{\pm} anything
                                                                                                                 (397
                                                                                                                                    \pm 21 )%
\pi^0 anything
                                                                                            [eeaa] (280
                                                                                                                                 \pm 60 ) %
\phi anything
                                                                                                                 (2.82 \pm 0.23)\%
                                                                                            Baryon modes
p/\overline{p} anything
                                                                                                                 ( 13.1 \pm 1.1 ) %
\Lambda/\Lambdaanything
                                                                                                                 (5.9 \pm 0.6)\%
b-baryon anything
                                                                                                                 ( 10.2 \pm 2.8 ) %
                                                                                             Other modes
charged anything
                                                                                            [eeaa] (497 \pm 7)%
                                                                                                                ( 1.7 \buildrel + 1.0 \build
hadron<sup>+</sup> hadron<sup>-</sup>
                                                                                                                                   \pm 21 ) × 10<sup>-3</sup>
charmless
                                                   \Delta B = 1 weak neutral current (B1) modes
\mu^+\mu^- anything
                                                                                                                                                          \times 10^{-4} CL=90%
                                                                                 B1
                                                                                                                         3.2
```

B*

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*} = 5324.75 \pm 0.20$$
 MeV $m_{B^*} - m_B = 45.18 \pm 0.20$ MeV $m_{B^{*+}} - m_{B^+} = 45.34 \pm 0.20$ MeV

B* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $B\gamma$

seen

45

 $B_1(5721)$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^+$$
 mass $= 5726.0^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeV $B_1(5721)^0$ mass $= 5726.1 \pm 1.2$ MeV $(S = 1.2)$ $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.2$ MeV $(S = 1.2)$ $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV $(S = 1.2)$ Full width $\Gamma(B_1(5721)^+) = 31 \pm 6$ MeV $(S = 1.1)$ Full width $\Gamma(B_1(5721)^0) = 27.5 \pm 3.4$ MeV $(S = 1.1)$

B₁ (5721) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $B^*\pi$

seen

365

B*(5747)

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^+$$
 mass $= 5737.3 \pm 0.7$ MeV $m_{B_2^{*+}} - m_{B^0} = 457.5 \pm 0.7$ MeV $B_2^*(5747)^0$ mass $= 5739.6 \pm 0.7$ MeV $(S = 1.4)$ $m_{B_2^{*0}} - m_{B_1^0} = 13.5 \pm 1.4$ MeV $(S = 1.3)$ $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV $(S = 1.4)$ Full width $\Gamma(B_2^*(5747)^+) = 20 \pm 5$ MeV $(S = 2.2)$ Full width $\Gamma(B_2^*(5747)^0) = 24.2 \pm 1.7$ MeV

B *2(5747) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B\pi$	seen	420
$B^*\pi$	seen	376

$B_{J}(5970)$

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

$$B_J(5970)^+$$
 mass $m=5965\pm 5$ MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm 5$ MeV $B_J(5970)^0$ mass $m=5971\pm 5$ MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm 5$ MeV $B_J(5970)^+$ full width $\Gamma=62\pm 20$ MeV $B_J(5970)^0$ full width $\Gamma=81\pm 12$ MeV

B _J (5970) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B\pi$	possibly seen	633
$B^*\pi$	seen	592

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.93\pm0.10$$
 MeV $m_{B_s^0}-m_B=87.37\pm0.12$ MeV Mean life $\tau=(1.520\pm0.005)\times10^{-12}$ s $c\tau=455.7~\mu\mathrm{m}$ $\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.083\pm0.005)\times10^{12}~\mathrm{s}^{-1}$ (S = 1.8)

$B_{\epsilon}^0 - \overline{B}_{\epsilon}^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (1.1693 \pm 0.0004) \times 10^{-8} \ \text{MeV}$$

$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.99 \pm 0.09$$

$$\chi_s \ (B_s^0 - \overline{B}_s^0 \ \text{mixing parameter}) = 0.499318 \pm 0.000005$$

CP violation parameters in B_s^0

$$\text{Re}(\epsilon_{B_s^0}) \ / \ (1 + \left|\epsilon_{B_s^0}\right|^2) = (-0.15 \pm 0.70) \times 10^{-3}$$

HTTP://PDG.LBL.GOV

Page 131

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction ${\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ is not a pure measurement since the measured product branching fraction ${\sf B}(\overline{b}\to B_s^0)\times {\sf B}(B_s^0\to D_s^-\ell^+\nu_\ell \,{\sf anything})$ was used to determine ${\sf B}(\overline{b}\to B_s^0)$, as described in the note on " B^0 - \overline{B}^0 Mixing"

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B _s ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
D_s^- anything	(62 ± 6) %		_
D_{ε}^{\pm} anything	$(92 \pm 11)\%$		_
D^{0}/\overline{D}^{0} anything	$(38 \pm 10)\%$		_
$\ell u_{\ell} X$	$(9.6 \pm 0.8)\%$		_
$e^+ \nu X^-$	(9.1 \pm 0.8) %		_
$\mu^+ \nu X^-$	(10.2 \pm 1.0) %		_
$D_s^-\ell^+ u_\ell$ anything	[ggaa] ($8.1~\pm~1.3$) %		_
$D_s^{*-}\ell^+ u_\ell$ anything	(5.4 \pm 1.1) %		_
$D_s^-\mu^+ u_\mu$	($2.31\pm~0.21)~\%$		2321
$D_s^{*-}\mu^+ u_\mu$	(5.2 \pm 0.5) %		2266
$D_{s1}(2536)^- \mu^+ \nu_{\mu}, \ D_{s1}^- \rightarrow D^{*-} K_s^0$	(2.7 ± 0.7) \times 3	10 ⁻³	_
$D_{s1}(2536)^{-} X \mu^{+} \nu, D_{s1}^{-} \rightarrow \overline{D}^{0} K^{+}$	(4.4 \pm 1.3) \times	10-3	-
$D_{s2}(2573)^{-} X \mu^{+} \nu, D_{s2}^{-} \rightarrow \overline{D}^{0} K^{+}$	(2.7 ± 1.0) \times	10 ⁻³	_
$\kappa^-\mu^+ u_\mu$	$(1.06\pm\ 0.09) \times 1$	10^{-4}	2660
$D_s^-\pi^+$	(2.98± 0.14) × 1	₁₀ -3	2320
$D_s^- \rho^+$	$(6.8 \pm 1.4) \times 1$	₁₀ -3	2249
$D_{s}^{3}\pi^{+}\pi^{+}\pi^{-}$	$(6.1 \pm 1.0) \times 1$	₁₀ -3	2301
$D_{c1}(2536)^{-}\pi^{+}$, $D_{-1}^{-} \rightarrow$	(2.4 ± 0.8) \times		-
$D_{s}^{-}\pi^{+}\pi^{-}$ $D_{s}^{\mp}K^{\pm}$	(2.25± 0.12) × 1	10^{-4}	2293
$D_{s1}^{s}(2536)^{\mp}K^{\pm},\ D_{s1}^{-} ightarrow$	$(2.48\pm 0.28) \times 1$	_	_
$\overline{D}^*(2007)^0 K^-$	(= = = , , , ,		
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	$(3.2 \pm 0.6) \times 1$	10 ⁻⁴	2249
$D_s^+ D_s^-$	$(4.4 \pm 0.5) \times 1$		1824
$D_s^{s}D_+^{t}$	$(2.8 \pm 0.5) \times 1$	_	1875
$D^{\stackrel{s}{+}}D^{-}$	$(2.2 \pm 0.6) \times 1$	_	1925
$D^{*+}D^{*-}$	$(2.14\pm 0.32) \times 1$		1778
$D^0 \overline{D}{}^0$	$(1.9 \pm 0.5) \times 1$	_	1930
$D_s^{*-}\pi^+$	(1.9 $^+$ 0.5) $ imes$	10 ⁻³	2265
$D_{s}^{*\mp} \mathcal{K}^{\pm}$	$(\ 1.32^{+}_{-}\ 0.40_{-}) imes$	10^{-4}	_
$D_s^{*-}\rho^+$	(9.5 ± 2.0) \times 3	10 ⁻³	2191
$D_{s}^{*+}D_{s}^{-}+D_{s}^{*-}D_{s}^{+}$	(1.39 ± 0.17) %		1742
$D_{s}^{s+}D_{s}^{s-}$	(1.44± 0.21) %	S=1.1	1655

$D_s^{(*)+}D_s^{(*)-}$	(4.5 \pm 1.4) %		_
$\frac{D^*-D^+}{\overline{D}^{*0}\overline{K}^0}$	$(3.9 \pm 0.8) \times 10^{-4}$		1801
	$(2.8 \pm 1.1) \times 10^{-4}$		2278
$\overline{D}^0 \overline{K}^0$	(4.3 \pm 0.9) \times 10 ⁻⁴		2330
$\overline{D}{}^0 K^- \pi^+$	$(1.04\pm 0.13) \times 10^{-3}$		2312
$\overline{D}^*(2007)^0 K^- \pi^+$	$(7.3 \pm 2.6) \times 10^{-4}$		2259
$\overline{D}{}^{0}\overline{K}^{*}(892)^{0}$	$(4.4 \pm 0.6) \times 10^{-4}$		2264
$\overline{D}{}^{0}\overline{K}^{*}(1410)$	$(3.9 \pm 3.5) \times 10^{-4}$		2117
$\overline{D}{}^{0}\overline{K}_{0}^{*}(1430)$	$(3.0 \pm 0.7) \times 10^{-4}$		2113
$\overline{D}^0 \overline{K}_2^* (1430)$	$(1.1 \pm 0.4) \times 10^{-4}$		2112
$\overline{D}{}^{0}\overline{K}^{*}(1680)$	$< 7.8 \times 10^{-5}$		1997
$\overline{D}{}^0\overline{K}_0^*(1950)$	$< 1.1 \times 10^{-4}$		1884
$\overline{D}{}^{0}\overline{K}_{3}^{*}(1780)$	$< 2.6 \times 10^{-5}$		1970
$\overline{D}^{0}_{3} \overline{K}_{4}^{*}(2045)$	$< 3.1 \times 10^{-5}$	CL=90%	1835
$\overline{D}{}^0{\it K}^-\pi^+$ (non-resonant)	$(2.1 \pm 0.8) \times 10^{-4}$		2312
$D_{s2}^*(2573)^-\pi^+$, $D_{s2}^* ightarrow$	$(2.6 \pm 0.4) \times 10^{-4}$		_
$\overline{D}^0 K^-$			
$D_{s1}^*(2700)^-\pi^+, \ D_{s1}^* \to$	$(1.6 \pm 0.8) \times 10^{-5}$		_
$\overline{D}{}^{0}K^{-}$	(5		
$D_{s1}^*(2860)^-\pi^+, D_{s1}^* \rightarrow$	$(5 \pm 4) \times 10^{-5}$		_
$\overline{D}{}^0$ $K^ D_{s3}^*(2860)^-\pi^+$, $D_{s3}^* o$	(2.2 \pm 0.6) \times 10 ⁻⁵		_
$\overline{D}^0 K^-$	(2.2 ± 0.0) × 10		
$\overline{D}^0 K^+ K^-$	$(5.6 \pm 0.9) \times 10^{-5}$		2243
$\overline{D}^0 f_0(980)$	$< 3.1 \times 10^{-6}$	CL=90%	2242
$\overline{D}{}^0 \phi$	$(2.30\pm\ 0.25)\times10^{-5}$		2235
$\overline{D}^{*0}\phi$	$(3.2 \pm 0.4) \times 10^{-5}$		2178
$D^{*\mp}\pi^{\pm}$	$< 6.1 \times 10^{-6}$	CL=90%	_
$\eta_{c} \phi$	(5.0 \pm 0.9) \times 10 ⁻⁴		1663
$\eta_c \pi^+ \pi^-$	$(1.8 \pm 0.7) \times 10^{-4}$		1840
$J/\psi(1S)\phi$	$(1.04\pm 0.04) \times 10^{-3}$		1588
$J/\psi(1S)\phi\phi$	$(1.20^{+}_{-})^{0.14}_{0.16} \times 10^{-5}$		764
$J/\psi(1S)\pi^0$	$< 1.2 \times 10^{-3}$	CI =90%	1787
$J/\psi(1S)\eta$	$(4.0 \pm 0.7) \times 10^{-4}$	S=1.4	1733
$J/\psi(1S)K_S^0$	$(1.92\pm 0.14) \times 10^{-5}$	U 2	1743
$J/\psi(1S)K^*(892)^0$	$(4.1 \pm 0.4) \times 10^{-5}$		1637
$J/\psi(1S)\eta'$	$(3.3 \pm 0.4) \times 10^{-4}$		1612
$J/\psi(1S)\pi^+\pi^-$	$(2.02\pm 0.17) \times 10^{-4}$	S=1.7	1775
$J/\psi(1S) f_0(500), f_0 \to$	$< 4 \times 10^{-6}$		_
$\pi^+\pi^-$			
$J/\psi(1S)\rho$, $\rho \to \pi^+\pi^-$	$< 3.4 \times 10^{-6}$		_
$J/\psi(1S) f_0(980), f_0 \to$	$(1.24\pm 0.15) \times 10^{-4}$	S=2.1	_
$\pi^+\pi^-$			

$J/\psi(1S) f_2(1270), f_2 \to$	(1.0 \pm 0.4) $\times10^{-6}$		_
$J/\psi(1S) f_2(1270)_0, f_2 \rightarrow$	$(7.3 \pm 1.7) \times 10^{-7}$		_
$J/\psi(1S) f_2(1270)_{\parallel}, \;\; f_2 ightarrow$	$(1.05\pm~0.33)\times10^{-6}$		_
$J/\psi(1S) f_2(1270)_{\perp}, f_2 \rightarrow$	(1.3 ± 0.7) $\times 10^{-6}$		_
$\pi^{+}\pi^{-}$ $J/\psi(1S) f_0(1370), f_0 \rightarrow$	(4.4 $^{+}_{-}$ $^{0.6}_{4.0}$) $ imes$ 10 ⁻⁵		_
$\pi^{+}\pi^{-}$ $J/\psi(1S) f_0(1500), f_0 \rightarrow$	$(2.04^{+}_{-0.24}) \times 10^{-5}$		_
$J/\psi(1S)f_2'(1525)_0, \ f_2' \rightarrow$	$(1.03\pm~0.22)\times10^{-6}$		_
$\pi^{+}\pi^{-}$ $J/\psi(1S)f'_{2}(1525)_{\parallel}, f'_{2} \rightarrow$	(1.2 $^{+}_{-}$ $^{2.6}_{0.8}$) \times 10 ⁻⁷		_
$J/\psi(1S)f_2'(1525)_{\perp}, \ f_2' \rightarrow$	$(5 \pm 4) \times 10^{-7}$		_
$\pi^{+}\pi^{-}$ $J/\psi(1S)f_{0}(1790), f_{0} \rightarrow$	(4.9 $^{+10.0}_{-1.0}$) \times 10 ⁻⁶		_
$\pi^+\pi^ J/\psi(1S)\pi^+\pi^-$ (nonresonant)	$(1.74^{+}_{-0.34}) \times 10^{-5}$		1775
$J/\psi(1S)\overline{K}{}^0\pi^+\pi^-$	$< 4.4 \times 10^{-5}$	CL=90%	1675
$J/\psi(1S)K^+K^-$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$J/\psi(1S)K^{0}K^{-}\pi^{+}$ + c.c.	$(9.5 \pm 1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}{}^0K^+K^-$	$< 1.2 \times 10^{-5}$	CL=90%	1333
$J/\psi K^*(892)^0 \overline{K}^*(892)^0$	$(1.10\pm\ 0.09) \times 10^{-4}$		1083
$J/\psi(1S) f_2'(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1310
$J/\psi(1S) p \overline{p}$	$(3.6 \pm 0.4) \times 10^{-6}$		982
$J/\psi(1S)\gamma$	$< 7.3 \times 10^{-6}$	CL=90%	1790
$J/\psi \mu^+ \mu^-$, $J/\psi \rightarrow \mu^+ \mu^-$	$< 2.6 \times 10^{-9}$	CL=95%	_
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(7.5 \pm 0.8) \times 10^{-5}$		1731
$J/\psi(1S) f_1(1285)$	$(7.2 \pm 1.4) \times 10^{-5}$		1460
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\eta'$	$(1.29\pm0.35)\times10^{-4}$		1158
$\psi(2S)\pi^{+}\pi^{-}$	$(6.9 \pm 1.2) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.3 \pm 0.4) \times 10^{-4}$		1120
$\psi(2S)K^0$	$(1.9 \pm 0.5) \times 10^{-5}$		1352
$\psi(2S)K^-\pi^+$	$(3.1 \pm 0.4) \times 10^{-5}$		1310
$\psi(2S)\overline{K}^*(892)^0$	$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\chi_{c1}\phi$	$(1.97\pm\ 0.25)\times10^{-4}$		1275
$\chi_{c1}(3872)\phi$	$(9.9 \pm 3.3) \times 10^{-5}$		936
$\chi_{c1}(3872)(K^+K^-)_{non-\phi}$	$(7.6 \pm 3.0) \times 10^{-5}$		961
$\chi_{c1}(3872)\pi^{+}\pi^{-}$	$(3.7 \pm 1.5) \times 10^{-5}$		1264

$\pi^+\pi^-$	$(7.2 \pm 1.0) \times 10^{-7}$	268	0
$\pi^0\pi^0$	$< 7.7 \times 10^{-6}$	CL=90% 268	
$\eta \pi^0$	$< 1.0 \times 10^{-3}$	CL=90% 265	4
$\overset{\cdot}{\eta}\eta$	$< 1.43 \times 10^{-4}$	CL=90% 262	
$\rho^0 \rho^0$	$< 3.20 \times 10^{-4}$	CL=90% 256	9
$\eta' K_S^0$	$< 8.16 \times 10^{-6}$	CL=90% 257	3
$\eta'\eta$	$< 6.5 \times 10^{-5}$	CL=90% 256	8
$\eta'\eta'$	$(3.3 \pm 0.7) \times 10^{-5}$	250	7
$\eta' \phi$	$< 8.2 \times 10^{-7}$	CL=90% 249	5
$\phi f_0(980), f_0(980) \rightarrow \pi^+ \pi^-$	$(1.12\pm 0.21) \times 10^{-6}$		-
$\phi f_2(1270), \;\; f_2(1270) ightarrow \ \pi^+ \pi^-$	$(6.1 \ ^{+}_{-} \ ^{1.8}_{1.5} \) \times 10^{-7}$		-
$\phi \rho^0$	$(2.7 \pm 0.8) \times 10^{-7}$	252	:6
$\phi \pi^+ \pi^-$	$(3.5 \pm 0.5) \times 10^{-6}$	257	
$\phi \phi^{'}$	$(1.85\pm 0.14) \times 10^{-5}$	248	
$\phi\phi\phi$	$(2.2 \pm 0.6) \times 10^{-6}$	216	5
$\pi^+ K^-$	$(5.9 \pm 0.7) \times 10^{-6}$	265	9
K^+K^-	$(2.72\pm\ 0.23)\times10^{-5}$	263	8
$K^0\overline{K}^0$	$(1.76\pm0.31)\times10^{-5}$	263	7
$K^{0}\pi^{+}\pi^{-}$	$(9.5 \pm 2.1) \times 10^{-6}$	265	3
$K^0 K^{\pm} \pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$	262	
$K^*(892)^-\pi^+$	$(2.9 \pm 1.1) \times 10^{-6}$	260	
$K^*(892)^{\pm}K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$	258	5
$K_0^*(1430)^{\pm}K^{\mp}$	$(3.1 \pm 2.5) \times 10^{-5}$		_
$K_{2}^{*}(1430)^{\pm}K^{\mp}$	$(1.0 \pm 1.7) \times 10^{-5}$		_
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(2.0 \pm 0.6) \times 10^{-5}$	258	5
$K_0^*(1430)\overline{K}^0 + \text{c.c.}$	$(3.3 \pm 1.0) \times 10^{-5}$	246	8
$K_{\frac{3}{2}}^{*}(1430)^{0}\overline{K}^{0}+\text{c.c.}$	$(1.7 \pm 2.2) \times 10^{-5}$	246	7
$K_{S}^{0}\overline{K}^{*}(892)^{0}+\text{c.c.}$	$(1.6 \pm 0.4) \times 10^{-5}$	258	5
$K^{0}K^{+}K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$	256	8
$\overline{K}^*(892)^0 \rho^0$	$< 7.67 \times 10^{-4}$	CL=90% 255	0
$\overline{K}^*(892)^0 K^*(892)^0$	$(1.11\pm 0.27) \times 10^{-5}$	253	
$\phi K^* (892)^0$	$(1.14\pm 0.30) \times 10^{-6}$	250	
$p\overline{p}$	$< 4.4 \times 10^{-9}$	CL=90% 251	
$p\overline{p}K^+K^-$	$(4.5 \pm 0.5) \times 10^{-6}$	223	
$p\overline{p}K^{+}\pi^{-}$	$(1.39 \pm 0.26) \times 10^{-6}$	235	
$ \rho \overline{\rho} \pi^+ \pi^- $	$(4.3 \pm 2.0) \times 10^{-7}$	245	
$p\overline{p}p\overline{p}$ $p\overline{\Lambda}K^- + c.c.$	$(2.3 \pm 1.0) \times 10^{-8}$	179	
	$(5.5 \pm 1.0) \times 10^{-6}$	235	
$\Lambda_c^- \Lambda \pi^+$	$(3.6 \pm 1.6) \times 10^{-4}$	197	
$\Lambda_c^- \Lambda_c^+$	$< 8.0 \times 10^{-5}$	CL=95% 140	5

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

 B_s^*

$$I(J^P)=0(1^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m = 5415.4 \pm 1.4$$
 MeV (S = 2.6) $m_{B_s^*} - m_{B_s} = 48.5 \pm 1.4$ MeV (S = 2.6)

B* DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

(MeV/*c*)

$$B_{\rm S} \gamma$$
 seen 48

 $B_{s1}(5830)^0$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.73\pm0.20~{
m MeV}$$
 $m_{B^0_{s1}}-m_{B^{*+}}=503.98\pm0.17~{
m MeV}$ Full width $\Gamma=0.5\pm0.4~{
m MeV}$

$B_{s1}(5830)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c	
B*+ K-	seen	97	

$$B_{s2}^*(5840)^0$$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.88\pm0.12~{\rm MeV}$$
 $m_{B_{s2}^{*0}}-m_{B^{+}}=560.48\pm0.12~{\rm MeV}$ Full width $\Gamma=1.49\pm0.27~{\rm MeV}$

Branching fractions are given relative to the one **DEFINED AS 1**.

B_{s2}^* (5840) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
B^+K^-	DEFINED AS 1	252
$B^{*+}K^-$	0.093 ± 0.018	141
$B^0 K_S^0 = B^{*0} K_S^0$	0.43 ± 0.11	245
$B^{*0}K_S^0$	0.04 ± 0.04	-

BOTTOM, CHARMED MESONS $(B = C = \pm 1)$

$$B_c^+ = c \overline{b}, B_c^- = \overline{c} b,$$
 similarly for B_c^* 's

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m=6274.47\pm0.32$$
 MeV $m_{B_c^+}-m_{B_s^0}=907.8\pm0.5$ MeV Mean life $\tau=(0.510\pm0.009)\times10^{-12}$ s

The following quantities are not pure branching ratios; rather the fractions $\Gamma_i/\Gamma \times B(\overline{b} \to B_c)$. B_c^- modes are charge conjugates of the modes below.

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\ell^+ u_\ell$ anything $J/\psi(1S)\mu^+ u_\mu$	seen seen		2372
HTTP://PDG.LBL.GOV	Page 138	Created: 4/24/202	5 13:07

1/ ₂ / ₂ (1C) _+				1000
$J/\psi(1S) \tau^{+} \nu_{\tau}$	seen			1932
$J/\psi(1S)\pi^{+}$	seen			2370
$J/\psi(1S) K^+ \ J/\psi(1S) \pi^+ \pi^+ \pi^-$	seen			2341
	seen			2350
$J/\psi(1S)a_1(1260) \ J/\psi(1S){\cal K}^+{\cal K}^-\pi^+$	not see	en		2169
	seen			2203
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen			2309
$\psi(2S)\pi^+ \ J/\psi(1S)D^0K^+$	seen			2051
$J/\psi(15)D^*K$	seen			1539
$J/\psi(1S) D^*(2007)^0 K^+$	seen			1411
$J/\psi(1S)D^*(2010)^+K^{*0}$	seen			919
$J/\psi(1S) D^{+} K^{*0}$	seen			1122
$J/\psi(1S)D_s^+$	seen			1821
$J/\psi(1S)D_s^{*+}$	seen			1727
$J/\psi(1S) ho \overline{\overline{ ho}} \pi^+$	seen			1791
$\chi_{c0}\pi^+$	$(2.4^{+0}_{-0}$	$^{.9}_{.8}) \times 10^{-5}$		2205
$ ho \overline{ ho} \pi^+$	not see	en		2970
D^0K^+	seen			2837
$D^0\pi^+$	not see	en		2858
$D^{*0}\pi^{+}$	not see	en		2814
$D^{*0}K^{+}$	not see	en		2792
$D_s^+ \overline{D}^0$ $D_s^+ D^0$ $D^+ \overline{D}^0$	< 7.2	\times 10 ⁻⁴	90%	2483
$D_{s}^{+}D^{0}$	< 3.0	$\times10^{-4}$	90%	2483
$D^{+}\overline{D}^{0}$	< 1.9	$\times 10^{-4}$	90%	2521
$D^{+}D^{0}$	< 1.4	$\times 10^{-4}$	90%	2521
$D_{s}^{*+}\overline{D}^{0}$	< 5.3	$\times 10^{-4}$	90%	2425
$D^{+}\overline{D}^{*}(2007)^{0}$	< 4.6	$\times10^{-4}$	90%	2427
$D^{*+}D^{0}$	< 9	$\times 10^{-4}$	90%	2425
$D_{s}^{*+} \overline{D}^{0}$ $D_{s}^{+} \overline{D}^{*} (2007)^{0}$ $D_{s}^{*+} D^{0}$ $D_{s}^{+} D^{*} (2007)^{0}$	< 6.6	× 10 ⁻⁴	90%	2427
$D_s^*(2010) + \overline{D}^0$				
$D^*(2010)^+ \overline{D}{}^0$ $D^*(2010)^+ \overline{D}{}^0$, $D^{*+} \rightarrow$	< 3.8	× 10 ⁻⁴	90%	2467
$D^+\pi^0/\gamma$	not see	en		_
$D^{+}\overline{D}^{*}(2007)^{0}$. 6 F	10-4	000/	2466
$D^*(2007)^+$ D^0	< 6.5	$\times 10^{-4}$	90%	2466
$D^*(2010)^+ D^0$, $D^{*+} \rightarrow$	< 2.0	× 10 ⁻⁴	90%	2467
$D^+\pi^0/\gamma$	not see	en		2467
$D^+D^*(2007)^0$	< 3.7	$\times10^{-4}$	90%	2466
$D_s^{*+} \overline{D}^{*} (2007)^0$	< 1.3	$\times10^{-3}$	90%	2366
$D_{s}^{s+}D^{*}(2007)^{0}$	< 1.3	2	90%	2366
$D^*(2010)^+ \overline{D}^*(2007)^0$	< 1.0	× 10 ⁻³	90%	2410
$D^*(2010) + D^*(2007)^0$	< 7.7	× 10 ⁻⁴	90%	2410
D^+K^{*0}	not see		3070	2783
	1101 300	-II		2103

$D^+\overline{K}^{*0}$	not seen	2783
$D_s^+ K^{*0}$	not seen	2751
$D_{s}^{+} \overset{K^{*0}}{K^{*0}}$ $D_{s}^{+} \overset{K^{*0}}{K^{*0}}$	not seen	2751
$D_s^+ \phi$ $K^+ K^0$	not seen	2727
	not seen	3098
$B_s^0\pi^+/\ {\sf B}(\overline b o\ B_s)$	seen	_

$$B_c(2S)^{\pm}$$

$$I(J^P) = 0(0^-)$$

Mass
$$m = 6871.2 \pm 1.0 \text{ MeV}$$

The following quantities are not pure branching ratios; rather the fractions $\Gamma_i/\Gamma \times B(\overline{b} \to B_C(2S))$.

 $B_c(2S)^{\pm}$ DECAY MODES \times B($\overline{b} \rightarrow B_c(2S)$) Fraction (Γ_i/Γ) p (MeV/c) $B_c^+ \pi^+ \pi^-$ seen 504

$c\overline{c}$ MESONS (including possibly non- $q\overline{q}$ states)

$\eta_c(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=2984.1\pm0.4$ MeV (S =1.2) Full width $\Gamma=30.5\pm0.5$ MeV (S =1.2)

$\eta_{c}(15)$	DECAY	MODES
----------------	--------------	--------------

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Decays involving hadronic resonances

$\eta'(958)\pi\pi$	($2.0~\pm0.4$) %	S=1.4	1323
$\eta'(958)K\overline{K}$	$(1.73\pm0.35)\%$		1131
$\eta'(958)\eta\eta$	$(3.4 \pm 0.6) \times 10^{-3}$		1081
ho ho	($1.8~\pm0.4$) %		1275
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	($1.8~\pm0.5$) %		1278
$K^*(892)\overline{K}^*(892)$	$(7.0 \pm 1.2) \times 10^{-3}$		1196
$K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^-$	(1.4 \pm 0.6)%		1074
$\phi K^+ K^-$	$(3.3 \begin{array}{c} +1.2 \\ -1.1 \end{array}) \times 10^{-3}$		1104
$\phi \phi$	$(1.8 \pm 0.4) \times 10^{-3}$	S=2.3	1089
$\phi 2(\pi^{+}\pi^{-})$	$<$ 4 \times 10 ⁻³	CL=90%	1251
$a_0(980)\pi$	seen		1327

HTTP://PDG.LBL.GOV

Page 140

- (1200) -			1100
$a_2(1320)\pi$	seen		1196
$K^*(892)\overline{K} + \text{c.c.}$	< 1.28 %	CL=90%	1310
$f_2(1270)\eta$	seen		1145
$f_2(1270)\eta'$	seen		984
$\omega \omega$	$(2.7 \pm 0.9) \times 10^{-3}$	S=2.1	1270
$\omega \phi$	$< 2.5 \times 10^{-4}$	CL=90%	1185
$f_2(1270) f_2(1270)$	$(1.08\pm0.27)\%$		774
$f_2(1270) f_2'(1525)$	$(9.7 \pm 3.2) \times 10^{-3}$		524
$f_0(500)\eta$	seen		_
$f_0(500)\eta'$	seen		_
$f_0(980)\eta$	seen		1265
$f_0(980)\eta'$	seen		1130
$f_0(1500)\eta$	seen		1016
$f_0(1710)\eta'$	seen		623
$f_0(2100)\eta'$	seen		†
$f_0(2200)\eta$	seen		498
$a_0(1320)\pi$	seen		_
$a_0(1450)\pi$	seen		1140
$a_2(1700)\pi$	seen		999
$a_0(1710)\pi$	seen		994
$a_0(1950)\pi$	seen		860
$K_0^*(1430)\overline{K}+$ c.c.	seen		1086
$K_2^*(1430)\overline{K} + \text{c.c.}$	seen		1084
$K_0^{*}(1950)\overline{K} + \text{c.c.}$	seen		742
$K_0^*(2600)\overline{K} + \text{c.c.}$	seen		_
-			

Decays into stable hadrons

	Decays into stable hadrons		
$K\overline{K}\pi$	($7.1~\pm0.4$) %	S=1.1	1381
$K\overline{K}\eta$	(1.32±0.15) %		1265
$\eta \pi^+ \pi^-$	(1.6 ± 0.4) %		1428
$\eta 2(\pi^+\pi^-)$	(4.3 ± 1.3) %		1386
$K^+K^-\pi^+\pi^-$	$(8.3 \pm 1.8) \times 10^{-3}$	S=1.9	1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.4 \pm 0.6) %		1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.4 ± 1.5) %		1302
$K^+K^-2(\pi^+\pi^-)$	$(8.4 \pm 2.4) \times 10^{-3}$		1254
$2(K^+K^-)$	$(1.4 \pm 0.4) \times 10^{-3}$	S=1.4	1056
$\pi^+\pi^-\pi^0$	$<$ 4 \times 10 ⁻⁴	CL=90%	1476
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.6 ± 1.0) %		1461
$2(\pi^{+}\pi^{-})$	$(9.6 \pm 1.5) \times 10^{-3}$	S=1.4	1459
$2(\pi^+\pi^-\pi^0)$	(15.9 ± 2.0) %		1409
$3(\pi^+\pi^-)$	(1.89±0.34) %		1407
р <u></u>	$(1.33\pm0.11)\times10^{-3}$	S=1.1	1160
$ ho \overline{ ho} \pi^0$	$(3.4 \pm 1.3) \times 10^{-3}$		1101
$p\overline{p}\pi^+\pi^-$	$(3.7 \pm 0.5) \times 10^{-3}$		1027

$(1.10\pm0.28)\times10^{-3}$	S=1.5	991
$(2.5 \pm 0.4) \times 10^{-3}$		773
$(3.0 \pm 1.3) \times 10^{-3}$		694
$(2.6 \pm 0.5) \times 10^{-3}$		901
$(1.07\pm0.24)\times10^{-3}$		692
	$(2.5 \pm 0.4) \times 10^{-3}$ $(3.0 \pm 1.3) \times 10^{-3}$ $(2.6 \pm 0.5) \times 10^{-3}$	$(2.5 \pm 0.4) \times 10^{-3}$ $(3.0 \pm 1.3) \times 10^{-3}$ $(2.6 \pm 0.5) \times 10^{-3}$

Radiative decays

 $\gamma\gamma$ ($1.66\pm0.13)\times10^{-4}$ S=1.2 1492

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

J/ψ (1S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.6\pm1.7$ keV (S =1.1)

$J/\psi(1S)$ DECAY MODES	Fraction (ſ	- _i /Γ)	Scale factor/ p Confidence level (MeV/ c)
hadrons	(87.7	± 0.5) %	_
virtual $\gamma ightarrow $ hadrons	(13.46	± 0.07) %	_
ggg	(64.1	± 1.0) %	_
γgg	(8.8)	± 1.1) %	_
e^+e^-	(5.971 =	± 0.032) %	1548
$e^+e^-\gamma$	[hhaa] (8.8 =	± 1.4) × 1	1548
$\mu^+\mu^-$	(5.961	± 0.033) %	1545

Decays involving hadronic resonances

	,	
$ ho\pi$	$(1.88 \pm 0.12)\%$	S=2.6 1448
$ ho^{0}\pi^{0}$	$(6.2 \pm 0.6) \times 10^{-3}$	1448
$a_2(1320)^0\pi^+\pi^- o$	$(2.8 \pm 0.6) \times 10^{-3}$	_
$(2(\pi^{+}\pi^{-})\pi^{0})$		
$a_2(1320)^+\pi^-\pi^0+{ m c.c} o$	$(3.7 \pm 0.7) \times 10^{-3}$	_
$2(\pi^{+}\pi^{-})\pi^{0}$		
$a_2(1320) \rho$	(1.09 ± 0.22) %	1123
$\eta \pi^+ \pi^-$	$(3.8 \pm 0.7) \times 10^{-4}$	1487
ηho	$(1.93 \pm 0.23) \times 10^{-4}$	1396
$\eta \pi^+ \pi^- \pi^0$	(1.17 ± 0.20) %	1470
$\eta \pi^{+} \pi^{-} 3\pi^{0}$	$(4.9 \pm 1.0) \times 10^{-3}$	1419
$\eta \phi(2170) ightarrow \eta \phi f_0(980) ightarrow$	$(1.2 \pm 0.4) \times 10^{-4}$	628
$\eta \phi \pi^+ \pi^-$		

HTTP://PDG.LBL.GOV

Page 142

$\eta \phi(2170) \rightarrow \psi(2170) \rightarrow \psi(2170) $		<	2.52			× 10 ⁻⁴	CL=90%	_
$\eta K^*(892)^0 \overline{K}^*(892)^0$								
$\eta K^+ K^-$						$) \times 10^{-4}$		1331
$\eta K^{\pm} K_S^0 \pi^{\mp}$	[aa]					$) \times 10^{-3}$		1278
$\eta K^*(892)^0 \overline{K}^*(892)^0$						$) \times 10^{-3}$		1003
$\rho \eta'(958)$		(8.1	\pm	8.0	$) \times 10^{-5}$	S=1.6	1281
$\rho^{\pm} \pi^{\mp} \pi^{+} \pi^{-} 2\pi^{0}$		(8.0	•		1364
$\rho^{+}\rho^{-}\pi^{+}\pi^{-}\pi^{0}$						$) \times 10^{-3}$		1186
$\rho^{+} K^{+} K^{-} \pi^{-} + \text{c.c} \rightarrow$		(3.5	\pm	8.0	$) \times 10^{-3}$		_
$ \rho^{\mp} \overset{K^{+}}{K^{\pm}} \overset{K^{-}}{K^{0}} \overset{\pi^{+}}{K^{-}} \pi^{-} \pi^{0} $		(1.9	±	0.4) × 10 ⁻³		1269
ρ (1450) π			seen					1197
$\rho(1450)\pi \to \pi^{+}\pi^{-}\pi^{0}$		(2.2	\pm	1.1	$) \times 10^{-4}$		_
$\rho(1450)^{\pm}\pi^{\mp} \to K_{5}^{0}K^{\pm}\pi^{\mp}$) × 10 ⁻⁴		_
$\rho(1450)^0 \pi^0 \to K^+ K^- \pi^0$) × 10 ⁻⁴		_
$\rho(1450)\eta'(958) \rightarrow$) × 10 ⁻⁶		_
$\pi^{+}\pi^{-}\eta'(958)$		`				, , , ,		
$\rho(1700)\pi$:	seen					1065
$\rho(1700)\pi \to \pi^{+}\pi^{-}\pi^{0}$		(1.6	\pm	1.1	$) \times 10^{-4}$		_
$\rho(2150)\pi$			seen			•		790
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$		(10	± 4	40	$) \times 10^{-6}$		_
$\omega\pi^0$		(4.5			$) \times 10^{-4}$	S=1.4	1446
$\omega \pi^0 ightarrow \pi^+ \pi^- \pi^0$		($) \times 10^{-5}$		_
$\omega \pi^+ \pi^-$		(8.5	\pm	1.0	$) \times 10^{-3}$	S=1.3	1435
$\omega \pi^0 \pi^0$		($) \times 10^{-3}$		1436
$\omega 3\pi^0$		(1.9	\pm	0.6	$) \times 10^{-3}$		1419
$\omega f_2(1270)$		(4.3	\pm	0.6	$) \times 10^{-3}$		1142
$\omega\eta$		(1.74	\pm	0.20	$) \times 10^{-3}$	S=1.6	1394
$\omega \pi^+ \pi^- \pi^0$		($) \times 10^{-3}$		1418
$\omega \pi^{0} \eta$		(3.4	\pm	1.7	$) \times 10^{-4}$		1363
$\omega \pi^+ \pi^+ \pi^- \pi^-$						$) \times 10^{-3}$		1392
$\omega \pi^+ \pi^- 2\pi^0$			3.3					1394
$\omega \eta' \pi^+ \pi^-$		(1.12	\pm	0.13	$) \times 10^{-3}$		1173
$\omega \eta'(958)$		(1.89	\pm	0.18	$) \times 10^{-4}$		1279
$\omega f_0(980)$		(1.4	\pm	0.5	$) \times 10^{-4}$		1267
$\omega f_0(1710) \rightarrow \omega K \overline{K}$		(4.8	\pm	1.1	$) \times 10^{-4}$		878
$\omega f_1(1420)$		(6.8	\pm	2.4	$) \times 10^{-4}$		1060
$\omega f_2'(1525)$		<	2.2			$\times 10^{-4}$	CL=90%	1007
$\omega X(1835) \rightarrow \omega p \overline{p}$		<	3.9			$\times 10^{-6}$	CL=95%	_
$\omega X(1835)$, $X \rightarrow \eta' \pi^+ \pi^-$		<	6.2			$\times 10^{-5}$		_
$\omega K^+ K^-$		(1.52	\pm	0.31	$) \times 10^{-3}$		1268
$\omega K^{\pm} K^0_S \pi^{\mp}$	[aa]					$) \times 10^{-3}$		1210
$\omega K \overline{K}$		($) \times 10^{-3}$		1268
$\omega K^*(892)\overline{K} + \text{c.c.}$		($) \times 10^{-3}$		1097
` '		,						

$\eta' K^{*\pm} K^{\mp}$			$3) \times 10^{-3}$		_
$\eta' K^{*0} \overline{K}^0 + \text{c.c.}$			$\times 10^{-3}$		1000
$\eta' h_1(1415) \rightarrow \eta' K^* \overline{K} + \text{c.c.}$			$\times 10^{-4}$		_
$\eta' h_1(1415) ightarrow \; \eta' K^{*\pm} K^{\mp}$	(1.51	\pm 0.23	$3) \times 10^{-4}$		_
$\underline{\eta'}h_1(1415) ightarrow \gamma \eta' \eta'$	(4.7	+ 1.1 - 2.0	$) \times 10^{-7}$		_
$\overline{K} \underline{K}^*(892) + \text{c.c.}$	seen				1373
$\overline{K} K^*(892) + ext{c.c.} ightarrow K^0_S K^\pm \pi^\mp$	(4.8	± 0.5) × 10 ⁻³		_
$K^+K^*(892)^- + \text{c.c.}$	(6.0	+ 0.8 - 1.0	$) \times 10^{-3}$	S=2.9	1373
$K^+K^*(892)^- + ext{c.c.} ightarrow K^+K^-\pi^0$	(2.69	+ 0.13 - 0.20	3×10^{-3}		_
$K^{+}K^{*}(892)^{-}$ + c.c. \rightarrow	(3.0	± 0.4) × 10 ⁻³		_
$K^{0}K^{\pm}\pi^{\mp}$ + c.c. $K^{0}K^{*}(892)^{0}$ + c.c.	(4 2	. 0.4	\ \ 10-3		1272
$K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.} \rightarrow$			$) \times 10^{-3}$		1373
$K^{0}K^{\pm}\pi^{\mp}+\text{c.c.} \rightarrow$	(3.2	± 0.4	$) \times 10^{-3}$		_
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$	(57	+ 0.8) × 10 ⁻³		1343
$K^*(892)^{\pm} K^{\mp} \pi^0$	(J.7 (<u>J</u> 1	± 0.0 ± 1.3	$) \times 10^{-3}$		1344
$K^*(892)^+ K_S^0 \pi^- + \text{c.c.}$	(2.0	+ 0.5	$) \times 10^{-3}$		1342
$K^*(892)^+ K_5^0 \pi^- + \text{c.c.} \rightarrow$			$) \times 10^{-4}$		_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	(0.7	⊥ 2.2) ^ 10		
$K^*(892)^0 K^- \pi^+ + \text{c.c.} \rightarrow$	(3.8	± 0.5) × 10 ⁻³		_
$K^+K^-\pi^+\pi^-$					
$K^*(892)^0 K_S^0 \to \gamma K_S^0 K_S^0$	(6.3	+ 0.6 - 0.5	$) \times 10^{-6}$		_
$K^*(892)^0 K_S^0 \pi^0$			$) \times 10^{-4}$		1343
$K^*(892)^{\pm}K^*(700)^{\mp}$	(1.1	$+\ 1.0$ $-\ 0.6$	$) \times 10^{-3}$		_
$K^*(892)^0 \overline{K}^*(892)^0$			$) \times 10^{-4}$		1266
$K^*(892)^{\pm} K^*(892)^{\mp}$	(1.00	+ 0.22 - 0.40	3×10^{-3}		1266
$K_1(1400)^{\pm}K^{\mp}$	(3.8	± 1.4	$) \times 10^{-3}$		1170
$K^*(1410)\overline{K}$ +c.c.	seen				1165
$K^*(1410)\overline{K}+ ext{c.c} ightarrow K^\pm K^\mp \pi^0$	(7	± 4) × 10 ⁻⁵		_
$K^+K^+\pi^+$ $K^*(1410)\overline{K}+ ext{c.c.} ightarrow$ $K^0_SK^\pm\pi^\mp$	(8	± 5) × 10 ⁻⁵		-
$K_2^*(1430)\overline{K} + \text{c.c.}$	seen				1158
$K_2^*(1430)\overline{K} + \text{c.c.} \rightarrow$		± 0.5	$) \times 10^{-4}$		_
$\kappa^{\pm} \kappa^{\mp} \pi^0$			ē		
$K_2^*(1430)\overline{K}+ ext{c.c.} ightarrow \ K_2^0K^\pm\pi^\mp$	(3.8	± 1.0) × 10 ⁻⁴		_
$\overline{K}_{2}^{*}(1430)K + \text{c.c.}$	< 4.0		× 10 ⁻³	CL=90%	1158

$K_2^*(1430)^+ K^- + \text{c.c.} \rightarrow$	(2.69	+	0.25 0.19	$)\times10^{-4}$		-
$K^{+}K^{-}\pi^{0}$ $K_{2}^{*}(1430)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow$	(2.6	\pm	0.9) × 10 ⁻³		_
$K^+K^-\pi^+\pi^-$ $K_2^*(1430)^+K_5^0\pi^-+\text{c.c.}$	(3.6	\pm	1.8) × 10 ⁻³		1116
$\overline{K}_{2}^{2}(1430)^{0}K^{*}(892)^{0}+\text{c.c.}$) × 10 ⁻³		1011
$K_2^*(1430)^- K^*(892)^+ + \text{c.c.}$					$) \times 10^{-3}$		1011
$K_2^*(1430)^- K^*(892)^+ +$					$) \times 10^{-4}$		_
$\kappa_2(1130) \rightarrow \kappa_2(1130) \rightarrow \kappa_2($	(7	_	7) \ 10		
$K^*(892)^+ K_S^0 \pi^- + \text{c.c.}$							
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	<	2.9			\times 10 ⁻³	CL=90%	601
$\overline{K}_2(1770)^0 K^*(892)^0 + \text{c.c.} \rightarrow$) × 10 ⁻⁴		_
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$,				, = .		
$K_2^*(1980)^+K^- + \text{c.c.} \rightarrow$	(1 10	+	0.60	$) \times 10^{-5}$		_
$K^{+}K^{-}\pi^{0}$	(1.10	_	0.14) \ 10		
$K_4^*(2045)^+K^- + \text{c.c.} \rightarrow$	(6.0	+	2.9) v 10=6		
$K_4(2045)^+K^-\pi^0$	(0.2	<u>.</u>	1.6) × 10 ⁻⁶		_
$K_1(1270)^{\pm}K^{\mp}$	_	3.0			\times 10 ⁻³	CL=90%	1240
$K_1(1270)K_S^0 \rightarrow \gamma K_S^0 K_S^0$					$) \times 10^{-7}$	CL-3070	-
$a_2(1320)^{\pm}\pi^{\mp}$					× 10 ⁻³	CL=90%	1263
$\phi \pi^0$				1 × 1		GE 3070	1377
$\phi\pi^+\pi^-$) × 10 ⁻⁴	S=1.7	1365
$\phi \pi^0 \pi^0$	() × 10 ⁻⁴		1366
$\phi^{2}(\pi^{+}\pi^{-})$	($) \times 10^{-3}$		1318
$\phi\eta$					$) \times 10^{-4}$	S=1.2	1320
$\phi \eta'(958)$					$) \times 10^{-4}$	S=2.2	1192
$\phi\eta\eta'$					$) \times 10^{-4}$		885
$\phi f_0(980)$					$) \times 10^{-4}$	S=1.9	1178
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$					$) \times 10^{-4}$		-
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$					$) \times 10^{-4}$		_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^-$					$) \times 10^{-6}$		1045
$\phi \pi^{0} f_{0}(980) \rightarrow \phi \pi^{0} p^{0} \pi^{0}$ $\phi f_{0}(980) \eta \rightarrow \eta \phi \pi^{+} \pi^{-}$	(1.7	土	0.6	$) \times 10^{-6}$		1045
$\phi a_0(980)^0 \rightarrow \eta \phi \pi^0$	(3.Z 1.1	エ	1.0	$) \times 10^{-4}$ $) \times 10^{-6}$		
$\phi f_2(1270) \rightarrow \psi \eta \pi$					$) \times 10^{-4}$		1036
$\phi f_1(1285)$					$) \times 10^{-4}$		1030
$\phi f_1(1285) \rightarrow$					$) \times 10^{-7}$		952
$\phi \pi^0 f_0(980) ightarrow \phi \pi^0 \pi^+ \pi^-$	(J	_) / L = 0		302
$ \phi f_1(1285) \rightarrow \\ \phi \pi^0 f_0(980) \rightarrow \phi 3\pi^0 $	(2.1	\pm	2.2) × 10 ⁻⁷		955
$\phi \eta (1405) \rightarrow \phi \eta \pi^+ \pi^-$	(2.0	\pm	1.0	$) \times 10^{-5}$		946
$\phi f_2'(1525)$					$) \times 10^{-4}$	S=2.7	877

$\phi X(1835) \rightarrow \phi p \overline{p}$	<	2.1			\times 10 ⁻⁷	CL=90%	_
$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$	<	2.8			$\times 10^{-4}$	CL=90%	578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$	<	6.13			$\times10^{-5}$	CL=90%	_
$\phi K \overline{K}$	(1.77	\pm	0.16	$) \times 10^{-3}$	S=1.3	1179
$\phi f_0(1710) \rightarrow \phi K \overline{K}$	(3.6	\pm	0.6	$) \times 10^{-4}$		875
$\phi K^+ K^-$	(8.3	\pm	1.1	$) \times 10^{-4}$		1179
$\phi K_S^0 K_S^0$	(5.9	\pm	1.5	$) \times 10^{-4}$		1176
$\phi K^{\pm} K_{S}^{0} \pi^{\mp}$					$) \times 10^{-4}$		1114
$\phi K^*(892)\overline{K} + \text{c.c.}$					$) \times 10^{-3}$		969
$b_1(1235)^{\pm}\pi^{\mp}$					$) \times 10^{-3}$		1300
$b_1(1235)^0\pi^0$					$) \times 10^{-3}$		1300
$f_2^{7}(1525)K^+K^-$					$) \times 10^{-3}$		897
$\Delta(1232)^{+}\overline{p}$					$\times 10^{-4}$	CL=90%	1100
$\Delta(1232)^{++} \overline{p} \pi^-$					$) \times 10^{-3}$		1030
$\Delta(1232)^{++} \overline{\Delta}(1232)^{}$					$) \times 10^{-3}$		938
$\overline{\Sigma}(1385)^0 p K^{-}$					$) \times 10^{-4}$		646
$\Sigma(1385)^{0}\overline{\Lambda}$ + c.c.		8.2			$\times 10^{-6}$	CL=90%	911
$\Sigma(1385)^{-}\overline{\Sigma}^{+}+\text{c.c.}$	[aa] (3.0			$) \times 10^{-4}$		855
$\Sigma(1385)^+\overline{\Sigma}^-+$ c.c.					$) \times 10^{-4}$		861
$\Sigma(1385)^-\overline{\Sigma}(1385)^++$ c.c.	[aa] (1.08	\pm	0.06	$) \times 10^{-3}$		697
$\Sigma(1385)^{+}\overline{\Sigma}(1385)^{-}+{ m c.c.}$	(1.25	\pm	0.07	$) \times 10^{-3}$		697
$\Sigma(1385)^{0}\overline{\Sigma}(1385)^{0}$	(1.07	\pm	0.08	$) \times 10^{-3}$		697
$\Lambda(1520)\overline{\Lambda}+ ext{c.c.} ightarrow \ \gamma \Lambda \overline{\Lambda}$	<	4.1			$\times 10^{-6}$	CL=90%	_
$\overline{\Lambda}(1520)\Lambda$ + c.c.	<	1.80			$\times 10^{-3}$	CL=90%	807
=0=0	(1.17	\pm	0.04	$) \times 10^{-3}$		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$ + c.c.	(3.18	\pm	0.08	$) \times 10^{-4}$		600
$\Xi(1530)^0\overline{\Xi}^0$	($) \times 10^{-4}$		608
$\Theta(1540)\overline{\Theta}(1540) ightarrow$	[iiaa] <	1.1			$\times 10^{-5}$	CL=90%	_
$K_S^0 p K^- \overline{n} + \text{c.c.}$							
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	[iiaa] <	2.1			$\times 10^{-5}$	CL=90%	_
$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^0 \overline{p} K^+ n$	[iiaa] <	1.6			$\times 10^{-5}$	CL=90%	-
$\overline{\Theta}(1540)K^{+}n \rightarrow K^{0}_{S}\overline{p}K^{+}n$	[iiaa] <	5.6			$\times10^{-5}$	CL=90%	_
$\overline{\Theta}(1540)K_{S}^{0}p \rightarrow K_{S}^{0}pK^{-}\overline{n}$	[iiaa] <	1.1			$\times10^{-5}$	CL=90%	_ _
	ys into s						
$2(\pi^{+}\pi^{-})\pi^{0}$,	4.2			•	S=2.1	1496
$3(\pi^{+}\pi^{-})\pi^{0}$		2.9					1433
$\pi^{+}\pi^{-}3\pi^{0}$,	1.9			,		1497
$\rho^{\pm} \pi^{\mp} \pi^{0} \pi^{0}$,	1.41			•		1421
$\rho^{+}\rho^{-}\pi^{0}$ $\pi^{+}\pi^{-}4\pi^{0}$					$) \times 10^{-3}$		1298
$\pi^+\pi^-4\pi^0$ $\pi^+\pi^-\pi^0$,				$) \times 10^{-3}$	6 0 0	1470
$\pi + \pi - \pi^{\circ}$ $2(\pi^{+}\pi^{-}\pi^{0})$,	2.00			•	S=2.0	1533
$2(\pi^{+}\pi^{-}\pi^{0})$ $\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$,	1.61			•	C 1 :	1468
π ' π " π " κ ' κ	(1.52	土	0.27) %	S=1.4	1368

	4	
$\pi^+\pi^-$	$(1.47 \pm 0.14) \times 10^{-4}$	1542
$2(\pi^+\pi^-)$	$(3.20 \pm 0.25) \times 10^{-3}$	S=1.2 1517
$3(\pi^{+}\pi^{-})$	$(4.3 \pm 0.4) \times 10^{-3}$	1466
$2(\pi^{+}\pi^{-})3\pi^{0}$	$(6.2 \pm 0.9)\%$	1435
$4(\pi^{+}\pi^{-})\pi^{0}$	$(9.0 \pm 3.0) \times 10^{-3}$	1345
$2(\pi^+\pi^-)\eta$	$(2.29 \pm 0.28) \times 10^{-3}$	1446
$3(\pi^{+}\pi^{-})\eta$	$(7.2 \pm 1.5) \times 10^{-4}$	1379
$2(\pi^{+}\pi^{-}\pi^{0})\eta$	$(1.6 \pm 0.5) \times 10^{-3}$	1381
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$	$(2.4 \pm 0.5) \times 10^{-3}$	1448
$ ho^{\pm}\pi^{\mp}\pi^{f 0}\eta$	$(1.9 \pm 0.8) \times 10^{-3}$	1326
K^+K^-	$(2.86 \pm 0.21) \times 10^{-4}$	1468
$K_S^0 K_I^0$	$(1.95 \pm 0.11) \times 10^{-4}$	S=2.4 1466
$K_{S}^{0}K_{L}^{0}$ $K_{S}^{0}K_{S}^{0}$	$< 1.4 \times 10^{-8}$	CL=95% 1466
$K\overline{K}\pi$	$(6.1\pm1.0)\times10^{-3}$	1442
$\mathcal{K}^+\mathcal{K}^-\pi^0$	$(2.88 \pm 0.12) \times 10^{-3}$	1442
$K^0_S K^\pm \pi^\mp$	$(5.3 \pm 0.5) \times 10^{-3}$	1440
$\kappa_{S}^{0} \kappa_{L}^{0} \pi^{0}$	$(2.06 \pm 0.26) \times 10^{-3}$	1440
$K^*(892)^0\overline{K}^0+\text{c.c.} \rightarrow$	$(1.21 \pm 0.18) \times 10^{-3}$	
$K_S^0 K_I^0 \pi^0$	(1.21 ± 0.10) × 10	
$K_2^*(1430)^{0}\overline{K}{}^{0}+ ext{c.c.} ightarrow$	$(4.3 \pm 1.3) \times 10^{-4}$	_
$\kappa_S^0 \kappa_L^0 \pi^0$		
$K^+K^-\pi^+\pi^-$	$(7.0 \pm 1.0) \times 10^{-3}$	1407
$\mathcal{K}^+\mathcal{K}^-\pi^0\pi^0$	$(2.13 \pm 0.22) \times 10^{-3}$	1410
$K^{+}K^{-}\pi^{0}\pi^{0}\pi^{0}$	(1.61 \pm 0.29) \times 10 ⁻³	1371
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$(5.3 \pm 0.7) \times 10^{-3}$	1369
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(6.3\pm0.4)\times10^{-3}$	1366
$K_{S}^{0}K^{\pm}\rho(770)^{\pm}\pi^{0}$	$(2.9 \pm 0.8) \times 10^{-3}$	_
$K_{0}^{0}K_{0}^{0}\pi^{+}\pi^{-}$	$(3.8 \pm 0.6) \times 10^{-3}$	1406
$K_S^0 K_I^0 \pi^0 \pi^0$	$(1.9 \pm 0.4)\times 10^{-3}$	1408
$K_{0}^{0}K_{0}^{0}n$	$(1.45 \pm 0.33) \times 10^{-3}$	1328
$K_{0}^{0}K_{0}^{0}\pi^{+}\pi^{-}$	$(1.68 \pm 0.19) \times 10^{-3}$	1406
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$ $K^{\mp}K_{S}^{0}\pi^{\pm}\pi^{0}$	$(5.7 \pm 0.5) \times 10^{-3}$	1408
$K_{S}^{0}K^{\pm}\pi^{\mp}\rho(770)^{0}$		1400
•	$(3.1 \pm 0.5) \times 10^{-3}$	1000
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(3.1 \pm 1.3) \times 10^{-3}$	1320
$K^{+}K^{-}\pi^{+}\pi^{-}\eta$	$(4.7 \pm 0.7) \times 10^{-3}$	1221
$2(K^+K^-)$	$(7.2 \pm 0.8) \times 10^{-4}$	1131
$K^+K^-K^0_SK^0_S$	$(4.2 \pm 0.7) \times 10^{-4}$	1127
$K_0^0 K^* (892)^0 \pi^+ \pi^-$	$(1.7 \pm 0.6) \times 10^{-3}$	1304
$K_{S}^{0}K^{*}(892)^{0}\pi^{0}\pi^{0}$	$(1.01 \pm 0.18) \times 10^{-3}$	1306
$K^{\mp} K^* (892)^{\pm} \pi^+ \pi^-$	$(3.4 \pm 1.2) \times 10^{-3}$	1305
$K^*(892)^{\pm}K^*(892)^0\pi^{\mp}$	$(4.8 \pm 1.0) \times 10^{-3}$	1213
$K^{\mp} K^* (892)^{\pm} \pi^0 \pi^0$	$(1.57 \pm 0.32) \times 10^{-3}$	1308

101/0202 101/0202 0			
$K^*(892)^+ K^*(892)^- \pi^0$		$(1.12 \pm 0.23)\%$	1214
$p\overline{p}$		$(2.120 \pm 0.029) \times 10^{-3}$	1232
$ ho \overline{ ho} \pi^0$		$(1.19 \pm 0.08) \times 10^{-3}$ S=1.1	1176
$ ho \overline{ ho} \pi^+ \pi^-$		$(6.0 \pm 0.5) \times 10^{-3}$ S=1.3	1107
$p \overline{p} \pi^+ \pi^- \pi^0$	[jjaa]	$(2.3 \pm 0.9) \times 10^{-3}$ S=1.9	1033
$p\overline{p}\eta$		$(2.00 \pm 0.12) \times 10^{-3}$	948
$p\overline{p}\rho$		$< 3.1 \times 10^{-4} CL=90\%$	774
$p\overline{p}\omega$		$(9.8 \pm 1.0) \times 10^{-4}$ S=1.3	768
$p\overline{p}\eta'(958)$		$(1.29 \pm 0.14) \times 10^{-4}$ S=2.0	596
$p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta$		$(6.8 \pm 1.8) \times 10^{-5}$	_
$p\overline{p}\phi$		$(5.19 \pm 0.33) \times 10^{-5}$	527
$p\overline{n}\pi^-$		$(2.12 \pm 0.09) \times 10^{-3}$	1174
n n		$(2.09 \pm 0.16) \times 10^{-3}$	1231
$n\overline{n}\pi^+\pi^-$		$(4 \pm 4) \times 10^{-3}$	1106
nN(1440)		seen	978
n N (1520)		seen	928
n N(1535)		seen	917
$A\overline{A}$		$(1.88 \pm 0.08) \times 10^{-3}$ S=2.6	1074
$\Lambda \overline{\Lambda} \pi^0$		$(3.8 \pm 0.4) \times 10^{-5}$	998
$\Lambda \overline{\Lambda} \pi^+ \pi^-$		$(4.3 \pm 1.0) \times 10^{-3}$	903
$\Lambda \overline{\Lambda} \eta$		$(1.62 \pm 0.17) \times 10^{-4}$	672
$\Lambda \overline{\Sigma}^{-} \pi^{+} + \text{c.c.}$	[aa]	$(1.26 \pm 0.05) \times 10^{-3}$ S=1.2	950
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$	[]	$(1.21 \pm 0.07) \times 10^{-3}$ S=1.8	945
$pK^{-}\overline{\Lambda}$ +c.c.		$(8.6 \pm 1.1) \times 10^{-4}$	876
$pK^{-}\overline{\Sigma}^{0}$		$(2.9 \pm 0.8) \times 10^{-4}$	819
$\frac{r}{\Lambda}nK_S^0$ + c.c.		$(6.5 \pm 1.1) \times 10^{-4}$	872
$\Lambda \overline{\Sigma} + \text{c.c.}$		$(2.83 \pm 0.23) \times 10^{-5}$	1034
$\Sigma + \overline{\Sigma} -$		$(1.07 \pm 0.04) \times 10^{-3}$	992
$\sum_{0}^{\infty} \frac{Z}{\sum_{0}^{\infty}}$		$(1.172 \pm 0.032) \times 10^{-3}$ S=1.4	988
$\Sigma + \overline{\Sigma} - \eta$		$(6.3 \pm 0.4) \times 10^{-5}$	498
<u>=</u> -=+		$(9.7 \pm 0.8) \times 10^{-4}$ S=1.4	807
		(9.7 ± 0.0) × 10 3=1.4	007
	Radia	tive decays	
$\gamma \eta_c(1S)$		(1.41 ± 0.14) % S=1.3	111
$\gamma \eta_{\it c}(1S) ightarrow 3 \gamma$		seen	_
$\gamma \eta_c(1S) o \ \gamma \eta \eta \eta'$		seen	_
3γ		$(1.16 \pm 0.22) \times 10^{-5}$	1548
4 γ		$< 9 \times 10^{-6} CL=90\%$	1548
5γ		$< 1.5 \times 10^{-5} CL=90\%$	1548
$\gamma \pi^0$		$(3.39 \pm 0.08) \times 10^{-5}$	1546
$\gamma \pi^0 \pi^0$		$(1.15 \pm 0.05) \times 10^{-3}$	1543
$\gamma 2\pi^+ 2\pi^-$		$(2.8 \pm 0.5) \times 10^{-3}$ S=1.9	1517
$\gamma f_2(1270) f_2(1270)$		$(9.5 \pm 1.7) \times 10^{-4}$	878
$\gamma f_2(1270) f_2(1270)$ (non reso) -	$(8.2 \pm 1.9) \times 10^{-4}$	_
nant)		·	
•			

$\gamma \pi^{+} \pi^{-} 2\pi^{0}$	(8.3 ± 3.1) \times		1518
$\gamma K_S^0 K_S^0$	(8.1 \pm 0.4) \times		L466
$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$			L442
$\gamma K^+ K^- \pi^+ \pi^-$	(2.1 \pm 0.6) $ imes$		L407
$\gamma K^*(892)\overline{K}^*(892)$	(4.0 \pm 1.3) \times		1266
$\gamma\eta$	(1.090± 0.013) ×		L500
$\gamma \eta \pi^0$	(2.14 ± 0.31) \times		L497
$\gamma a_0(980)^0 \rightarrow \gamma \eta \pi^0$		10^{-6} CL=95%	_
$\gamma a_2 (1320)^0 \rightarrow \gamma \eta \pi^0$		10^{-6} CL=95%	-
$\gamma \eta \pi \pi$	$(6.1 \pm 1.0) \times$		L487
$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-
$\gamma \eta'(958)$	$(5.28 \pm 0.00) \times $ $(4.5 \pm 0.8) \times $		L400 L340
$\gamma ho ho \ \gamma ho \omega$		4	1338
$\gamma \rho \phi$		_	1258
$\gamma\omega\omega$	$(1.61 \pm 0.33) \times$		1336
$\gamma \phi \phi$	$(4.0 \pm 1.2) \times$		1166
$\gamma \eta (1405/1475) \rightarrow \gamma K \overline{K} \pi$	$(2.8 \pm 0.6) \times$	_	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0$	$(7.8 \pm 2.0) \times$		1223
$\gamma \eta (1405/1475) \rightarrow \gamma \eta \pi^+ \pi^-$		10-4	_
$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$	$(1.7 \pm 0.4) \times$	10^{-3} S=1.3 1	1223
$\gamma \eta (1405/1475) ightarrow \gamma \gamma \phi$		10^{-5} CL=95%	_
$\gamma \eta$ (1405) $ ightarrow \gamma \gamma \gamma$		10^{-6} CL=90%	_
$\gamma \eta (1475) \rightarrow \gamma \gamma \gamma$	< 1.86 ×	10^{-6} CL=90%	_
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$	(1.3 \pm 0.9) \times		L048
$\gamma\eta(1760) \rightarrow \gamma\omega\omega$	(1.98 \pm 0.33) \times		-
$\gamma \eta(1760) ightarrow \gamma \gamma \gamma$	< 4.80 ×	10^{-6} CL=90%	_
$\gamma \eta$ (2225)	(3.14 $^+$ 0.50) $ imes$	10^{-4}	752
$\gamma f_2(1270)$	(1.63 \pm 0.12) \times	10^{-3} S=1.3 1	1286
$\gamma f_2(1270) \rightarrow \gamma K_S^0 K_S^0$	(2.58 $^+$ 0.60) $ imes$	10^{-5}	_
$\gamma f_1(1285)$	(6.1 ± 0.8) \times	10-4	1283
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$	(4.2 \pm 1.5) \times		_
$\gamma f_0(1370) \rightarrow \gamma K_S^0 K_S^0$	(1.1 \pm 0.4) \times		_
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$	(7.9 \pm 1.3) \times	10^{-4}	1220
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	(1.09 \pm 0.24) \times		1183
$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	($1.7 {+} 0.6 \\ - 1.4) \times$	10 ⁻⁵	_
$\gamma f_0(1500) \rightarrow \gamma K_S^0 K_S^0$	$(1.59 \ ^{+} \ 0.24 \) imes$	10-5	_
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	(4.5 ± 1.2) ×	_	_
$\gamma f_2'(1525)$	$(5.7 + 0.8) \times $		L177
$\gamma f_2'(1525) \rightarrow \gamma K_S^0 K_S^0$	(8.0 + 0.7) ×		_

$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$	(3.4 \pm 1.4) \times 10	-5 _
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	$(2.8 \pm 1.8) \times 10^{-1}$	_
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	$(3.8 \pm 0.5) \times 10^{-1}$	
$\gamma f_0(1710) \rightarrow \gamma K K$	$(9.5 + 1.0 \\ -0.5) \times 10^{-1}$	
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	$(3.1 \pm 1.0) \times 10^{-1}$	
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	$(2.4 + 1.2 - 0.7) \times 10^{-1}$	
$\gamma f_0(1710) \rightarrow \gamma \omega \phi$	$(2.5 \pm 0.6) \times 10^{-1}$	
$\gamma f_0(1770) \rightarrow \gamma K_S^0 K_S^0$	$(1.11 \ ^{+}_{-} \ 0.33 \) \times 10^{-}$	-5 _
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	$(5.4 + 3.5 \ -2.4) \times 10^{-2}$	-5 _
$\gamma \eta_1(1855) \rightarrow \gamma \eta \eta'$	$(\begin{array}{ccc} 2.7 & + & 0.4 \\ - & 0.5 \end{array}) \times 10^{-1}$	-6 _
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	(2.0 \pm 1.4) \times 10^{-}	
$ \gamma f_2(1950) \rightarrow \\ \gamma K^*(892) \overline{K}^*(892) $	$(7.0 \pm 2.2) \times 10^{-1}$	-4 _
$\gamma f_0(2020) \rightarrow \gamma \eta' \eta'$	$(2.63 \ ^{+}_{-}\ 0.32 \) imes 10^{-}$	
$\gamma f_4(2050)$	$(2.7 \pm 0.7) \times 10^{-1}$	_
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	$(1.13 \ ^{+} \ 0.60 \) imes 10^{-}$	_4 _
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	$(6.2 \pm 1.0) \times 10^{-1}$	
$\gamma f_0(2200)$	seen	776
$\gamma f_0(2200) \rightarrow \gamma K K$	$(5.9 \pm 1.3) \times 10^{-1}$	
$\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0$	$(2.72 \ ^{+} \ 0.19 \) imes 10^{-}$	
$\gamma f_J(2220)$	seen	745
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	< 3.9 × 10	
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$ $\gamma f_J(2220) \rightarrow \gamma \rho \overline{\rho}$	$<$ 4.1 \times 10 ⁻¹ (1.5 \pm 0.8) \times 10 ⁻¹	
$\gamma f_0(2330) \rightarrow \gamma \rho \rho$ $\gamma f_0(2330) \rightarrow \gamma K_S^0 K_S^0$	$(1.5 \pm 0.8) \times 10^{-1}$ $(4.9 \pm 0.7) \times 10^{-1}$	
$\gamma f_0(2330) \rightarrow \gamma \eta' \eta'$ $\gamma f_0(2330) \rightarrow \gamma \eta' \eta'$	$(6.1 + 4.0 \times 10^{-1}) \times 10^{-1}$	
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	$(5.6 + 2.4 - 2.2) \times 10^{-1}$	
$\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0$	$(5.5 + 4.0 \ -1.5) \times 10^{-1}$	-5 _
$\gamma f_2(2340) \rightarrow \gamma \eta' \eta'$	$(8.7 + 0.9 - 1.8) \times 10^{-3}$	_6 _
$\gamma f_0(2470) \rightarrow \gamma \eta' \eta'$	$(8.2 + 4.0 \ -2.8) \times 10^{-2}$	-7 _
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	$(2.7 \begin{array}{cc} + & 0.6 \\ - & 0.8 \end{array}) \times 10^{-5}$	-4 S=1.6 1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	$(7.7 {+} 1.5 \\ {-} 0.9) \times 10^{-}$	-5 _
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	$(3.3 + 2.0 \ -1.3) \times 10^{-2}$	
$\gamma X(1835) \rightarrow \gamma \gamma \gamma$	< 3.56 × 10 ⁻¹	-6 CL=90% -

$\gamma X(1835) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4	+	0.7 0.8	$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma K^+ K^- \eta'$		1.8			$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma K_S^0 K_S^0 \eta'$,	1.2			$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma \eta \eta \eta'$,	9.2			× 10 ⁻⁶	CL=90%	_
$\gamma p \overline{p}$			+	1.0	$) \times 10^{-4}$	02 00,0	1232
$\gamma p \overline{p} \pi^+ \pi^-$		7.9			× 10 ⁻⁴	CL=90%	1107
$\gamma \Lambda \overline{\Lambda}$	<	1.3			$\times 10^{-4}$	CL=90%	1074
$\gamma A^0 \rightarrow \gamma$ invisible	[kkaa] <	1.7			\times 10 ⁻⁶	CL=90%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[<i>Ilaa</i>] <	7.8			\times 10 ⁻⁷	CL=90%	_
	Dalitz	decav	/S				
$\pi^0e^+e^-$		-		1.4	$) \times 10^{-7}$		1546
$\eta e^+ e^-$					$) \times 10^{-5}$		1500
$\eta'(958) e^+ e^-$,				$) \times 10^{-5}$		1400
$X(1835) e^+ e^-, X \rightarrow$) × 10 ⁻⁶		_
$\pi^+\pi^-\eta'$	`				,		
$X(2120)e^+e^-$, $X o$	(8.2	\pm	1.3	$) \times 10^{-7}$		_
$\pi^+\pi^-\eta'$					6		
$X(2370)e^+e^-, X \rightarrow$	(1.08	\pm	0.17	$) \times 10^{-6}$		_
$\pi^+\pi^-\eta'$					7		
$\eta U \rightarrow \eta e^+ e^-$	[nnaa] <				$\times 10^{-7}$	CL=90%	_
$\eta'(958) U \rightarrow \eta'(958) e^+ e^-$	[nnaa] <				$\times 10^{-7}$	CL=90%	_
$\phi e^+ e^-$	<	1.2			× 10 ⁻⁷	CL=90%	1381
	Weak	decay	/S				
$D^{-}e^{+}\nu_{e}+$ c.c.	<	7.1			\times 10 ⁻⁸	CL=90%	984
$\overline{D}^0 e^+ e^- + \text{c.c.}$	<	8.5			$\times 10^{-8}$	CL=90%	987
$D_s^- e^+ u_e + { m c.c.}$	<	1.3			\times 10 ⁻⁶	CL=90%	923
$D_s^{*-} e^+ \nu_e + \text{c.c.}$	<	1.8			\times 10 ⁻⁶	CL=90%	828
$D^{-}\pi^{+}$ + c.c.	<	7.5			$\times 10^{-5}$	CL=90%	977
$\overline{D}^0\overline{K}^0$ + c.c.	<	1.7			\times 10 ⁻⁴	CL=90%	898
$\overline{D}{}^0\overline{K}^{*0}+ ext{c.c.}$	<	2.5				CL=90%	670
$D_s^- \pi^+ + \text{c.c.}$	<	1.3			\times 10 ⁻⁴	CL=90%	915
$D_s^- \rho^+ + \text{c.c.}$	<	1.3			\times 10 ⁻⁵	CL=90%	663
Charge (conjugatio	n (<i>C</i> `). I	Parity	v (P).		
Lepton Fami							
$\gamma\gamma$ C	_	2.7	-		\times 10 ⁻⁷		1548

$\gamma \gamma$	С	< 2.7	\times 10 ⁻⁷	CL=90%	1548
$\gamma\phi$	С	< 1.4	\times 10 ⁻⁶	CL=90%	1381
$e^{\pm}\mu^{\mp}$	LF	< 1.6	\times 10 ⁻⁷	CL=90%	1547
$e^{\pm} au^{\mp}$	LF	< 7.5	\times 10 ⁻⁸	CL=90%	1039
$\mu^{\pm} \tau^{\mp}$	LF	< 2.0	\times 10 ⁻⁶	CL=90%	1035
$\Lambda_c^+ e^- + \text{c.c.}$		< 6.9	$\times 10^{-8}$	CL=90%	704

Other decays

invisible $< 7 \times 10^{-4} \text{ CL} = 90\%$

 $\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.71\pm0.30~{\rm MeV}$ Full width $\Gamma=10.7\pm0.6~{\rm MeV}~({\rm S}=1.1)$

			cale factor/	p
$\chi_{c0}(1P)$ DECAY MODES	Fraction $(\Gamma_i/\Gamma$) Conf	idence level	(MeV/ <i>c</i>)
Ha	adronic decays			
$2(\pi^{+}\pi^{-})$	(2.3 ± 0.4)	%	S=2.0	1679
$\rho^0 \pi^+ \pi^-$	(9.1 ± 3.1)	$\times 10^{-3}$	S=1.1	1607
$f_0(980) f_0(980)$	(6.7 ± 2.1)	$\times 10^{-4}$		1391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(3.3 ± 0.4)	%		1680
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	(2.9 ± 0.4)	%		1607
$4\pi^0$	(3.3 ± 0.4)	$\times 10^{-3}$		1681
$\pi^+\pi^-$ K $^+$ K $^-$	(1.82 ± 0.16)	%	S=1.2	1580
${m egin{array}{c} {m ar K}_0^* (1430)^0 \overline{m K}_0^* (1430)^0 ightarrow \ {m \pi}^+ {m \pi}^- {m K}^+ {m K}^- \end{array}}$	$(9.9 \begin{array}{c} +4.0 \\ -2.8 \end{array})$	\times 10 ⁻⁴		_
$K_0^*(1430)^0\overline{K}_2^*(1430)^0 + \text{c.c.}$	\rightarrow (8.0 $^{+2.0}_{-2.4}$)	\times 10 ⁻⁴		_
$\pi^+\pi^ K^+$ $K^ K_1(1270)^+$ $K^ +$ c.c. $ ightarrow$ $\pi^+\pi^ K^+$ K^-	(6.3 ± 1.9)	$\times 10^{-3}$		_
$\kappa_1^+\pi^-\kappa^+\kappa^-$ $\kappa_1^-(1400)^+\kappa^-+$ c.c. \rightarrow $\kappa_1^+\pi^-\kappa^+\kappa^-$	< 2.7	$\times 10^{-3}$	CL=90%	_
$f_0(980) f_0(980)$	$(1.6 \begin{array}{c} +1.0 \\ -0.9 \end{array})$	\times 10 ⁻⁴		1391
$f_0(980) f_0(2200)$	$(7.9 \begin{array}{c} +2.0 \\ -2.5 \end{array})$	\times 10 ⁻⁴		586
$f_0(1370) f_0(1370)$	< 2.7	$\times 10^{-4}$	CL=90%	1019
$f_0(1370) f_0(1500)$	< 1.7	$\times 10^{-4}$	CL=90%	907
$f_0(1370) f_0(1710)$	$(6.7 \begin{array}{c} +3.5 \\ -2.3 \end{array})$	\times 10 ⁻⁴		709
$f_0(1500) f_0(1370)$	< 1.3	$\times 10^{-4}$	CL=90%	907
$f_0(1500) f_0(1500)$	< 5	$\times10^{-5}$	CL=90%	774
$f_0(1500) f_0(1710)$	< 7	$\times 10^{-5}$	CL=90%	515
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(8.6 ± 0.9)	$\times 10^{-3}$		1545
$K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$	(4.2 ± 0.4)			1543
$K^+K^-\pi^0\pi^0$	(5.6 ± 0.9)	$\times 10^{-3}$		1582
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}+\text{c.c.}$	(2.49 ± 0.33)			1581
$ ho^{+} K^{-} K^{0} + \text{c.c.}$	(1.21 ± 0.21)			1458
$K^*(892)^- K^+ \pi^0 \rightarrow$	(4.6 ± 1.2)	$\times 10^{-3}$		_
$K^{+}_{S}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$ $K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}$	(5.7 ± 1.1)	× 10 ⁻³		1579
HTTP://PDG.LBL.GOV	Page 152	Created:	4/24/2025	5 13:07

<i>v</i> + <i>v</i> - 0	(3		
$K^+K^-\eta\pi^0$	$(3.0 \pm 0.7) \times 10^{-3}$		1468
$3(\pi^{+}\pi^{-})$	$(1.95\pm0.22)\%$	S=3.3	1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(7.5 \pm 1.6) \times 10^{-3}$		1523
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-3}$		1456
$\pi\pi$	$(8.5 \pm 0.4) \times 10^{-3}$	S=1.2	1702
$\pi^{0}\eta$	$< 1.8 \times 10^{-4}$		1661
$\pi^0 \eta'$	$< 1.1 \times 10^{-3}$		1570
$\pi^0 \stackrel{\cdot}{\eta_c}$	$< 1.6 \times 10^{-3}$	CL=90%	383
$\eta\eta$	$(3.01\pm0.25)\times10^{-3}$	S=1.3	1617
$\eta \eta'$	$(9.1 \pm 1.1) \times 10^{-5}$		1521
$\eta'\eta'$	$(2.17\pm0.12)\times10^{-3}$		1413
$\omega\omega$	$(9.7 \pm 1.1) \times 10^{-4}$		1517
$\omega \phi$	$(1.42\pm0.13)\times10^{-4}$		1447
$\overset{\omega}{\omega}\overset{\varphi}{K^{+}}K^{-}$	$(1.94\pm0.21)\times10^{-3}$		1457
K+ K-	$(6.07\pm0.33)\times10^{-3}$	S=1.1	1634
$K_S^0 K_S^0$	$(0.07 \pm 0.33) \times 10$ $(3.17 \pm 0.19) \times 10^{-3}$	S=1.1	
			1633
$\pi^{+}\pi^{-}\eta_{+}$	$< 2.0 \times 10^{-4}$	CL=90%	1651
$\pi^+\pi^-\eta'$	< 4	CL=90%	1560
$\overline{K}^{0}K^{+}\pi^{-} + \text{c.c.}$	$< 9 \times 10^{-5}$	CL=90%	1610
$K^+K^-\pi^0$	$< 6 \times 10^{-5}$	CL=90%	1611
$K^+K^-\eta$	$< 2.3 \times 10^{-4}$	CL=90%	1512
$K^+K^-K^0_SK^0_S$	$(1.4 \pm 0.5) \times 10^{-3}$		1331
$K_S^0 K_S^0 K_S^{0} K_S^{0}$	$(5.8 \pm 0.5) \times 10^{-4}$		1327
$K^+K^-K^+K^-$	$(2.8 \pm 0.4) \times 10^{-3}$	S=1.5	1333
$K^+K^-\phi$	$(9.7 \pm 2.5) \times 10^{-4}$		1381
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^+K^-\pi^0\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^+ \pi^- \pi^{0'}$	$(1.18\pm0.15)\times10^{-3}$		1525
$\stackrel{'}{\phi}\phi$	$(8.48\pm0.31)\times10^{-4}$		1370
$\phi \phi \eta$	$(8.4 \pm 1.0) \times 10^{-4}$		1100
$p\overline{p}$	$(2.21\pm0.14)\times10^{-4}$	S=1.6	1426
$p \overline{p} \pi^0$	$(7.0 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-4}$	0 1.0	1187
$p\overline{p}\omega$	$(5.3 \pm 0.6) \times 10^{-4}$		1043
$p\overline{p}\phi$	$(6.0 \pm 1.4) \times 10^{-5}$		876
$p \overline{p} \pi^+ \pi^-$	$(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	1320
$p \overline{p} \pi^0 \pi^0$	$(1.04\pm0.28)\times10^{-3}$	5—1.4	1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.04\pm0.26)\times10^{-4}$ $(1.22\pm0.26)\times10^{-4}$		890
pp K K (non-resonant)	4	CL=90%	
$p\overline{p}K_S^0K_S^0$		CL=90%	884
<i>p</i> n π − +	$(1.27\pm0.11)\times10^{-3}$		1376
$\frac{\overline{p}n\pi^+}{\overline{n}} = 0$	$(1.37\pm0.12)\times10^{-3}$		1376
$\frac{p}{p} \overline{n} \pi^- \pi^0$	$(2.34\pm0.21)\times10^{-3}$		1321
$\frac{\overline{p}}{n}\pi^{+}\pi^{0}$	$(2.21\pm0.19)\times10^{-3}$	_	1321
$\Lambda \overline{\Lambda}$	$(3.60\pm0.17)\times10^{-4}$	S=1.1	1292

_ .				
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(1.18 ± 0.13)			1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	< 5	× 10 ⁻⁴	CL=90%	1153
$\Sigma(1385)^+\overline{\Lambda}\pi^-+$ c.c.	< 5	$\times 10^{-4}$	CL=90%	1083
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.}$	< 5	$\times 10^{-4}$	CL=90%	1083
$A\overline{A}\eta$	(2.3 ± 0.4)			979
$K^+ \overline{p} \Lambda + \text{c.c.}$	$(1.25\pm0.12$	$(2) \times 10^{-3}$	S=1.3	1132
$nK_S^0\overline{\Lambda} + \text{c.c.}$	(6.7 ± 0.5)	$) \times 10^{-4}$		1129
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	(4.8 ± 0.9)	$) \times 10^{-4}$		845
$K^+ \overline{p} \Lambda(1520) + \text{c.c.}$	(3.0 ± 0.8)	$) \times 10^{-4}$		859
$\Lambda(1520)\overline{\Lambda}(1520)$	(3.1 ± 1.2)	$) \times 10^{-4}$		780
$\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j$	(4.69 ± 0.32)	$(2) \times 10^{-4}$		1222
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	(3.53 ± 0.2)	$7) \times 10^{-4}$		1089
$\Sigma^0 \overline{p} K^{+} + \text{c.c.}$	(3.04 ± 0.20)	$0) \times 10^{-4}$		1090
$\Sigma^{+}\overline{\Sigma}^{-}$	(4.7 ± 0.8)		S=2.6	1225
$\Sigma - \overline{\Sigma} +$	(5.1 ± 0.5)	$) \times 10^{-4}$		1217
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(1.6 ± 0.6)	$) \times 10^{-4}$		1001
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	(2.3 ± 0.7)			1001
$K \stackrel{\frown}{=} \Lambda \overline{\Xi}^{+} + \text{c.c.}$	(1.95 ± 0.39)	$5) \times 10^{-4}$		873
$\equiv 0 \equiv 0$	(4.5 ± 0.5)	$) \times 10^{-4}$	S=1.7	1089
<u>=</u> − = +	(4.47 ± 0.20)	$(0) \times 10^{-4}$		1081
$\Omega^{-}\overline{\Omega}{}^{+}$	(3.5 ± 0.6)	$) \times 10^{-5}$		343
$\eta_c \pi^+ \pi^-$	< 7	$\times 10^{-4}$	CL=90%	307
	Radiative decays			
$\gamma J/\psi(1S)$	$(1.41\pm0.09$	9) %	S=1.7	303
$\gamma \rho^0$	< 9	× 10 ⁻⁶	CL=90%	1619
$\gamma \omega$	< 8	$\times 10^{-6}$	CL=90%	1618
$\gamma \phi$	< 6	$\times 10^{-6}$	CL=90%	1555
$\gamma \gamma$	(2.04 ± 0.10)		S=1.1	1707
$e^{+}e^{-}J/\psi(1S)$	(1.34 ± 0.30)			303
$\mu^+\mu^-J/\psi(1S)$	•	× 10 ⁻⁵	CL=90%	226
, , , , , , , , , , , , , , , , , , ,				

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})^{+}$$

Mass $m=3510.67\pm0.05$ MeV (S = 1.2) Full width $\Gamma=0.84\pm0.04$ MeV (S = 1.1)

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
e^+e^-	($1.4 \begin{array}{c} +1.5 \\ -1.0 \end{array}$) $ imes$ 10	- 7	1755
	Hadronic decays		
$3(\pi^+\pi^-) \ 2(\pi^+\pi^-)$	$(1.04\pm0.16)\%$	S=4.6	1683
$2(\pi^+\pi^-)$	(7.6 ± 2.6) \times 10	-3	1728

HTTP://PDG.LBL.GOV

Page 154

$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.19 ± 0.01)	15) %		1729
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	(1.45 ± 0.6)	24) %		1658
$\rho^{0} \pi^{+} \pi^{-}$	$(3.9 \pm 3.$	$(5) \times 10^{-3}$		1657
$4\pi^0$	(5.4 ± 0	$8) \times 10^{-4}$		1729
$\pi^+\pi^-$ K $^+$ K $^-$	(4.5 ± 1	$0) \times 10^{-3}$		1632
$K^+K^-\pi^0\pi^0$	(1.12 ± 0.12)	$(27) \times 10^{-3}$		1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.15 ± 0.1)	13) %		1598
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	(7.5 ± 0.0)	$8) \times 10^{-3}$		1596
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.		$4) \times 10^{-3}$		1632
$ ho^- K^+ \overline{K}{}^0 + \text{c.c.}$		$(2) \times 10^{-3}$		1514
$K^*(892)^0 \overline{K}{}^0 \pi^0 \rightarrow$		$(6) \times 10^{-3}$		_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	(=== ===	, , , ,		
$K^+K^-\eta\pi^0$	(1.12±0	$(34) \times 10^{-3}$		1523
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$		$(9) \times 10^{-4}$		1630
$K^+K^-\eta$		$0) \times 10^{-4}$		1566
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$		$6) \times 10^{-3}$	S=1.1	1661
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$		$(15) \times 10^{-3}$	0 1.1	1602
$K^*(892)^+K^- + \text{c.c.}$		$(23) \times 10^{-3}$		1602
$K_1^*(1430)^0 \overline{K}^0 + \text{c.c.} \rightarrow$	< 8	$\times 10^{-4}$	CL=90%	1002
5 ·	\ 0	× 10	CL—9070	
$K_S^0 K^+ \pi^- + \text{c.c.}$	• •	3	GL 000/	
$K_J^*(1430)^+ K^- + \text{c.c.} \rightarrow$	< 2.1	$\times 10^{-3}$	CL=90%	_
$K_{S}^{0}K^{+}\pi^{-}$ + c.c.		_		
$K^+K^-\pi^0$	(1.81 ± 0.6)	$(24) \times 10^{-3}$		1662
$\eta \pi^+ \pi^-$	•	$(24) \times 10^{-3}$		1701
$a_0(980)^+\pi^- + { m c.c.} o \ \eta \pi^+\pi^-$	(3.2 ± 0.0)	$(4) \times 10^{-3}$	S=2.1	_
$a_2(1320)^+\pi^- + { m c.c.} o \eta \pi^+\pi^-$	(1.76 ± 0.6)	$(24) \times 10^{-4}$		_
$a_2(1700)^+\pi^- + { m c.c.} o \eta \pi^+\pi^-$	(4.6 ± 0	$(7) \times 10^{-5}$		_
$f_2(1270)\eta ightarrow \eta \pi^+ \pi^-$	(3.5 ± 0	$6) \times 10^{-4}$		_
$f_4(2050)\eta \rightarrow \eta \pi^+ \pi^-$	(2.5 ± 0.0)	9) $\times 10^{-5}$		_
$\pi_1(1400)^+\pi^- + \text{c.c.} \rightarrow$	< 5	$\times 10^{-5}$	CL=90%	_
$\eta \pi^+ \pi^-$				
$\pi_1(1600)^+\pi^- + \text{c.c.} \rightarrow$	< 1.5	$\times 10^{-5}$	CL=90%	_
$\eta \pi^+ \pi^-$				
$\pi_1(2015)^+\pi^- + {\rm c.c.} \rightarrow$	< 8	\times 10 ⁻⁶	CL=90%	_
$\eta \pi^+ \pi^-$				
$f_2(1270)\eta$	(6.7 ± 1)	$1) \times 10^{-4}$		1467
$\pi^+\pi^-\eta^{\prime}$	(2.2 ± 0.00)	$4) \times 10^{-3}$		1612
$K^{+}K^{-}\eta'(958)$		$9) \times 10^{-4}$		1461
$K_0^*(1430)^+K^- + \text{c.c.}$		$\frac{2}{8}$) × 10 ⁻⁴		_
$N_0(1730)$ N_1 c.c.		2 / ^ 10		
v	(= 2.	.0		
$f_0(980)\eta'(958)$		⁴ ₇) × 10 ⁻⁴		1460
	$(1.6 \begin{array}{c} +1.\\ -0. \end{array}$	$\binom{4}{7}$) × 10 ⁻⁴		1460 1100
$f_0(980)\eta'(958)$ $f_0(1710)\eta'(958)$ $f_2'(1525)\eta'(958)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

$K_2^*(1430)^+ K^- + \text{c.c.}$	$(1.61\pm0.31)\times10^{-3}$		1416
$K_2^{*}(1430)\overline{K}^0 + \text{c.c.}$	$(1.17\pm0.20)\times10^{-3}$		1416
$\pi^{0}f_{0}(980) \rightarrow \pi^{0}\pi^{+}\pi^{-}$	$(3.5 \pm 0.9) \times 10^{-7}$		_
$K^{+} \frac{1}{K} * (892)^{0} \pi^{-} + \text{c.c.}$	$(3.2 \pm 2.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.4 \pm 0.4) \times 10^{-3}$		1512
$K^{+}K^{-}K_{5}^{0}K_{5}^{0}$	< 4 × 10 ⁻⁴	CL=90%	1390
$K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$	$(3.5 \pm 1.0) \times 10^{-5}$		1387
$K^+K^-K^+K^-$	$(5.4 \pm 1.1) \times 10^{-4}$		1393
$K^+K^-\phi$	$(3.4 \pm 1.1) \times 10^{-4}$		1440
$\frac{K}{K^0} \frac{\varphi}{K^+ \pi^- \phi} + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1387
$K^+K^-\pi^0\phi$	$(3.5 \pm 0.3) \times 10^{-3}$		1390
$\phi \pi^+ \pi^- \pi^0$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega \omega$	$(7.3 \pm 1.0) \times 10$ $(5.7 \pm 0.7) \times 10^{-4}$		1571
$\omega \omega \omega K^+ K^-$	$(5.7 \pm 0.7) \times 10^{-4}$		1513
$\omega \kappa$ κ $\omega \phi$	$(7.8 \pm 0.9) \times 10^{-5}$		1503
$\phi \phi$	$(2.7 \pm 0.4) \times 10^{-4}$ $(4.26 \pm 0.21) \times 10^{-4}$		1429
$\phi \phi \phi \eta$	$(3.0 \pm 0.5) \times 10^{-4}$		1172
$p\overline{p}$	$(7.6 \pm 0.4) \times 10^{-5}$	S=1.2	1484
$p \overline{p} \pi^0$	$(7.5 \pm 0.18) \times 10^{-4}$	3—1.2	1438
$p\overline{p}\eta$	$(1.35\pm0.16) \times 10^{-4}$		1254
$p\overline{p}\omega$	$(2.12\pm0.31)\times10^{-4}$		1117
$p\overline{p}\phi$	$< 1.7 \times 10^{-5}$	CL=90%	962
$ \rho \overline{\rho} \pi^+ \pi^- $	$(5.0 \pm 1.9) \times 10^{-4}$	CL=9070	1381
$p \overline{p} \pi^0 \pi^0$	$< 5.0 \pm 1.9 \times 10^{-4}$	CL=90%	1385
$p\overline{p}K^+K^-$ (non-resonant)	$(1.27\pm0.22)\times10^{-4}$	CL-3070	974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^-$	$(3.8 \pm 0.5) \times 10^{-4}$	CL-3070	1435
$\frac{\overline{p}}{\overline{p}}n\pi^+$	$(3.8 \pm 0.5) \times 10^{-4}$		1435
$p \overline{n} \pi^- \pi^0$	$(3.9 \pm 0.3) \times 10$ $(1.03 \pm 0.12) \times 10^{-3}$		1383
$\frac{p}{p}n\pi^{+}\pi^{0}$	$(1.03\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.01\pm0.12) \times 10$ $(1.27\pm0.09) \times 10^{-4}$	S=1.1	1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(2.9 \pm 0.5) \times 10^{-4}$	5—1.1	1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(2.9 \pm 0.3) \times 10^{-4}$		1223
$\Sigma(1385)^+\overline{\Lambda}\pi^- + \text{c.c.}$	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}$ + c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Lambda \overline{\Lambda} \eta$	$(5.9 \pm 1.5) \times 10^{-5}$	CL-9070	1059
$K^+ \overline{p} \Lambda + \text{c.c.}$	$(3.9 \pm 1.3) \times 10^{-4}$	S=1.2	1203
$nK_0^0\overline{\Lambda} + c.c.$	$(1.66\pm0.17)\times10^{-4}$	3—1.2	1200
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	$(4.9 \pm 0.7) \times 10^{-4}$		
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	$(4.9 \pm 0.7) \times 10$ $(1.7 \pm 0.4) \times 10^{-4}$		935
$\Lambda(1520) + \text{c.c.}$ $\Lambda(1520) \overline{\Lambda}(1520)$		CL=90%	951
$\sum_{0} \sum_{0} 0$		CL=90%	880
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	$(4.2 \pm 0.6) \times 10^{-5}$ $(1.53\pm 0.12) \times 10^{-4}$		1288
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$			1163
$\angle p \mathbf{N} + \mathbf{c.c.}$	$(1.46\pm0.10)\times10^{-4}$		1163

- · -				
$\Sigma + \overline{\Sigma} -$	(3.6 ± 0.7	$) \times 10^{-5}$		1291
$\Sigma - \overline{\Sigma} +$	($5.7~\pm1.5$	$) \times 10^{-5}$		1283
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 9	$\times 10^{-5}$	CL=90%	1081
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	< 5	$\times 10^{-5}$	CL=90%	1081
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	(1.35 ± 0.24	,		963
$\underline{\underline{=}}^0 \underline{\underline{=}}^0$	(7.5 ± 1.3	$) \times 10^{-5}$		1163
<u> </u>	($6.0~\pm0.6$	$) \times 10^{-5}$		1155
$\Omega^{-}\overline{\Omega}{}^{+}$	(1.49 ± 0.2)	$5) \times 10^{-5}$		533
$\pi^{+}\pi^{-} + K^{+}K^{-}$	< 2.1	$\times 10^{-3}$		_
$K_S^0 K_S^0$	< 6	$\times 10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	< 3.2	$\times 10^{-3}$	CL=90%	413
	Radiative decays			

	_		
$\gamma J/\psi(1S)$	(34.3 ± 1.3) %	S=1.3	389
$\gamma \rho^0$	$(2.16\pm0.17)\times10^{-4}$		1670
$\gamma \omega$	$(6.8 \pm 0.8) \times 10^{-5}$		1668
$\gamma\phi$	$(2.4 \pm 0.5) \times 10^{-5}$		1607
$\gamma \gamma$	$< 6.3 \times 10^{-6}$	CL=90%	1755
$e^+e^-J/\psi(1S)$	$(3.46\pm0.24)\times10^{-3}$		389
$\mu^+\mu^ J/\psi(1S)$	$(2.33\pm0.29)\times10^{-4}$		335

$h_c(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=3525.37\pm0.14$ MeV (S = 1.2) Full width $\Gamma=0.78\pm0.28$ MeV

$h_c(1P)$ DECAY MODES	Fraction (Γ_{i}	/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^0$	< 5	× 10	4 90%	382
$J/\psi(1S)\pi\pi$	not seen			312
$J/\psi(1S)\pi^+\pi^-$	< 2.7	× 10	3 90%	305
$p\overline{p}$	< 1.7	× 10	4 90%	1492
$ ho \overline{ ho} \pi^0$	< 8	\times 10 $^{-}$	4 90%	1447
$ ho \overline{ ho} \pi^+ \pi^-$	(3.3 ± 0.6)	$5) \times 10^{-}$	3	1390
$ \rho \overline{\rho} \pi^0 \pi^0 $	< 6	× 10	4 90%	1394
$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	(4.4 ± 1.3)	3) × 10	3	1331
$p\overline{p}\eta$	(7.4 ± 2.2)	$(2) \times 10^{-1}$	4	1264
$\pi^{+}\pi^{-}\pi^{0}$	$(1.9\pm0.5$	$5) \times 10^{-1}$	3	1749
$\pi^+\pi^-\pi^0\eta$	(8.3 ± 2.4)	4) × 10 ⁻	3	1695
$2\pi^{+}2\pi^{-}\pi^{0}$	$(9.4\pm1.7$	') × 10	3	1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 1.0	%	90%	1661
$K^+K^-\pi^+\pi^-$	< 7	× 10	4 90%	1640
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.8±0.8	3) × 10	3	1606
$K^+K^-\pi^+\pi^-\eta$	< 2.7	× 10	3 90%	1480

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 157

$K^+K^-\pi^0$	< 6	$\times 10^{-4}$	90%	1670
$K^+K^-\pi^0\eta$	< 2.4	$\times 10^{-3}$	90%	1532
$K^+K^-\eta$	< 1.0	$\times10^{-3}$	90%	1574
$2K^{+}2K^{-}\pi^{0}$	< 2.8	$\times 10^{-4}$	90%	1339
$K^0_S K^\pm \pi^\mp$	< 6	$\times 10^{-4}$	90%	1668
$K_{S}^{0}K^{\pm}\pi^{\mp} \ K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	(3.2 ± 1.0	$) \times 10^{-3}$		1604
	Radiative decays			
$\gamma \eta$	(4.7 ± 2.1)	$) \times 10^{-4}$		1720
$\gamma \eta'$ (958)	(1.5 ± 0.4)	$) \times 10^{-3}$		1633
$\gamma \eta_c(1S)$	(60 ±4) %		500

$\chi_{c2}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3556.17\pm0.07$ MeV Full width $\Gamma=1.98\pm0.09$ MeV (S =1.1)

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	$(1.00\pm0.13)\%$	S=1.4	1751
$\pi + \pi - \pi \circ \pi^0$	$(1.86\pm0.24)\%$		1752
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}$ + c.c. $4\pi^{0}$	(2.22 ± 0.35) %		1682
	(1.13 ± 0.15) $ imes$	10 ⁻³	1752
$K^+K^-\pi^0\pi^0$	(2.1 \pm 0.4) $ imes$	10-3	1658
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}$ + c.c.	$(1.41\pm0.20)\%$		1657
$\rho^- K^+ \overline{K}{}^0 + \text{c.c.}$	(4.2 ± 1.3) $ imes$	10-3	1540
$K^*(892)^0 K^- \pi^+ \to$	(3.0 \pm 0.8) $ imes$	10^{-3}	_
$K^{-}\pi^{+}K^{0}\pi^{0}$ + c.c. $K^{*}(892)^{0}\overline{K}^{0}\pi^{0} \to$	(3.9 \pm 0.9) $ imes$	10-3	_
$K^+\pi^-\overline{K}^0\pi^0$ + c.c. $K^*(892)^-K^+\pi^0 \rightarrow$	(3.8 ±0.8)×		_
$K^+\pi^-\overline{K}^0\pi^0+ ext{c.c.} \ K^*(892)^+\overline{K}^0\pi^- o \ K^+\pi^-\overline{K}^0\pi^0+ ext{c.c.}$	(3.0 \pm 0.8) \times		-
$\mathit{K^{+}K^{-}\eta\pi^{0}}$	($1.3~\pm0.4$) $ imes$		1549
$K^+K^-\pi^+\pi^-$	($8.3~\pm1.1$) $ imes$	10^{-3} S=1.2	1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.17\pm0.13)\%$		1623
$K_{\mathcal{S}}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	(7.3 \pm 0.8) $ imes$	10^{-3}	1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+$ c.c.	($2.1~\pm1.0$) $ imes$	10^{-3}	1602
$K^*(892)^0 \overline{K}^*(892)^0$	(2.2 \pm 0.9) $ imes$	10^{-3} S=2.3	1538
$3(\pi^{+}\pi^{-})$	$(1.53\pm0.19)\%$	S=3.8	1707
$\phi\phi$	$(1.23\pm0.07) imes$	10^{-3} S=1.9	1457
$\phi\phi\eta$	(5.4 ± 0.7) \times	10^{-4}	1206

HTTP://PDG.LBL.GOV

Page 158

$\omega\omega$	$(8.6 \pm 1.0) \times 10^{-4}$		1597
$\omega K^+ K^-$	$(7.3 \pm 0.9) \times 10^{-4}$		1540
$\omega\phi$	(9.7 ± 2.8) $ imes 10^{-6}$		1529
$\pi\pi$	$(2.27\pm0.10)\times10^{-3}$		1773
$ ho^0 \pi^+ \pi^-$	$(3.6 \pm 1.5) \times 10^{-3}$		1682
$\pi^+\pi^-\pi^0$ (non-resonant)	$(2.0 \pm 0.4) \times 10^{-5}$		1765
$\rho(770)^{\pm} \stackrel{\frown}{\pi^{\mp}}$	$(6 \pm 4) \times 10^{-6}$		_
$\pi^+\pi^-\eta$	$(4.9 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.1 \pm 1.9) \times 10^{-4}$		1636
$\eta\eta$	$(5.5 \pm 0.5) \times 10^{-4}$		1692
κ ⁺ κ ⁻	$(1.02\pm0.15)\times10^{-3}$	S=2.3	1708
$K_{5}^{0}K_{5}^{0}$	$(5.3 \pm 0.4) \times 10^{-4}$		1707
$K^*(892)^{\pm}K^{\mp}$	$(1.46\pm0.21)\times10^{-4}$		1627
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.27\pm0.27)\times10^{-4}$		1627
$K_2^*(1430)^{\pm}K^{\mp}$	$(1.51\pm0.13)\times10^{-3}$		
$K_2^*(1430)^0 \overline{K}^0 + \text{c.c.}$	$(1.27\pm0.17)\times10^{-3}$		1443
$K_3^*(1780)^{\pm}K^{\mp}$	$(5.3 \pm 0.8) \times 10^{-4}$		_
$K_3^*(1780)^0 \overline{K}^0 + \text{c.c.}$	$(5.7 \pm 2.1) \times 10^{-4}$		1074
$a_3(1700)^0 \pi^0$			1274
$a_2(1320)^+\pi^-$	$(1.31\pm0.35)\times10^{-3}$		-
$\frac{a_2(1320)^{\pm}\pi^{\mp}}{K^0K^+\pi^- + \text{c.c.}}$	$(1.8 \pm 0.6) \times 10^{-3}$		1530
$K^{+}K^{-}\pi^{-} + \text{c.c.}$	$(1.30\pm0.19)\times10^{-3}$		1685
	$(3.1 \pm 0.8) \times 10^{-4}$	GL 000/	1686
$K^{+}K^{-}\eta$	$< 3.3 \times 10^{-4}$	CL=90%	1592
$K^{+}_{'}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta \eta'$	$(2.2 \pm 0.5) \times 10^{-5}$		1600
$\eta'\eta'$	$(4.6 \pm 0.6) \times 10^{-5}$		1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.2 \pm 0.5) \times 10^{-3}$		1655
$K^{+}K^{-}K^{0}_{5}K^{0}_{5}$	$< 4 \times 10^{-4}$	CL=90%	1418
$K_S^0 K_S^0 K_S^0 K_S^0$	$(1.15\pm0.18)\times10^{-4}$		1415
$K^+K^-K^+K^-$	$(1.67\pm0.22)\times10^{-3}$	S=1.1	1421
$K^+K^-\phi$	$(1.45\pm0.30)\times10^{-3}$		1468
$\overline{K}^0K^+\pi^-\phi+\text{c.c.}$	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi\pi^+\pi^-\pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
$p\overline{p}$	$(7.3 \pm 0.4) \times 10^{-5}$	S=1.1	1510
$ \rho \overline{\rho} \pi^0 $	$(4.7 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.77\pm0.25)\times10^{-4}$		1285
$p \overline{p} \omega$	$(3.7 \pm 0.4) \times 10^{-4}$		1152
$ ho \overline{ ho} \phi$	$(2.8 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^+\pi^-$	$(1.32\pm0.34)\times10^{-3}$		1410
$p\overline{p}\pi^0\pi^0$	$(8.0 \pm 2.4) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(1.94\pm0.33)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	$< 7.9 \times 10^{-4}$	CL=90%	1007

$p\overline{n}\pi^-$	(8.7 ± 1.0	$) \times 10^{-4}$		1463
$\frac{1}{\overline{p}}n\pi^+$	(9.1 ± 0.8)			1463
$p\overline{n}\pi^-\pi^0$	(2.21±0.18			1411
$\frac{1}{p}n\pi^+\pi^0$	(2.15±0.19			1411
$\Lambda \overline{\Lambda}$	(1.86 ± 0.16)			1384
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.28\pm0.16$			1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	(6.7 ± 1.5			1255
$\Sigma(1385)^+ \overline{\Lambda} \pi^- + \text{c.c.}$	< 4	$\times 10^{-4}$	CL=90%	1192
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.}$	< 6	$\times 10^{-4}$	CL=90%	1192
$\Lambda \overline{\Lambda} \eta$	$(1.07\pm0.26$	$(5) \times 10^{-4}$		1096
$K^+\overline{p}\Lambda$ + c.c.	(7.9 ± 0.6			1236
$nK_{S}^{0}\overline{\Lambda}$ + c.c.	(3.64 ± 0.29)	$9) \times 10^{-4}$		1233
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	(8.3 ± 1.2	$) \times 10^{-4}$		976
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	(2.9 ± 0.7)			992
$\Lambda(1520)\overline{\Lambda}(1520)$	(4.7 ± 1.5			924
$\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j$	(3.7 ± 0.6)			1319
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	(8.4 ± 1.0)			1197
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$ $\Sigma^+ \overline{\Sigma}^-$	(9.3 ± 0.8			1197
$\Sigma^{+}\overline{\Sigma}^{-}$	(3.4 ± 0.7)			1322
$\Sigma - \overline{\Sigma} +$	(4.5 ± 1.8)			1314
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	$\times 10^{-4}$	CL=90%	1118
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	< 8	$\times10^{-5}$	CL=90%	1118
$K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$	(1.80 ± 0.32)	$(2) \times 10^{-4}$		1004
=0 $=0$	(1.86 ± 0.22)			1197
$K^{-}\Lambda \overline{\Xi}^{+} + \text{c.c.}$ $\Xi^{0} \overline{\Xi}^{0}$ $\Xi^{-}\overline{\Xi}^{+}$	(1.46 ± 0.12)	$(2) \times 10^{-4}$		1189
$\Omega^- \overline{\Omega}{}^+$	(4.52 ± 0.30)	$(0) \times 10^{-5}$		604
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5	%	CL=90%	185
$\pi^0 \eta_c$	< 3.2	$\times 10^{-3}$	CL=90%	511
$\eta_c(1S)\pi^+\pi^-$	< 5.4	$\times 10^{-3}$	CL=90%	459
F	Radiative decays			
$\gamma J/\psi(1S)$	(19.5 ± 0.8)) %	S=1.5	430
$\gamma \rho^0$	< 1.9	× 10 ⁻⁵	CL=90%	1694
$\gamma \omega$	< 6	$\times 10^{-6}$	CL=90%	1692
$\gamma \phi$	< 8	× 10 ⁻⁶	CL=90%	1632
$\gamma \gamma$	(2.92±0.12		S=1.3	1778
$e^{+}e^{-}J/\psi(1S)$	(2.20 ± 0.15)			430
$\mu^+\mu^-J/\psi(1S)$	(2.07 ± 0.34)			381
	, ======	, -		

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Quantum numbers are quark model predictions.

Mass
$$m=3637.7\pm0.9$$
 MeV (S $=1.2$) Full width $\Gamma=11.8\pm1.6$ MeV

HTTP://PDG.LBL.GOV

Page 160

Created: 4/24/2025 13:07

$\eta_c(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1729
$K\overline{K}\eta$	$(5 \pm 4) \times 10$)-3	1637
$2\pi^{+}2\pi^{-}$	< 2.1 %	90%	1792
$ ho^{0} ho^{0}$	< 1.9 × 10	90%	1645
$3\pi^{+}3\pi^{-}$	$(1.3\pm0.9)\%$		1749
$K^{+}K^{-}\pi^{+}\pi^{-}$	< 1.4 %	90%	1700
$K^{*0}\overline{K}^{*0}$	< 2.9 × 10	90%	1585
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0)\%$		1668
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	< 1.4 %	90%	1627
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	$(1.0\pm0.8)\%$		1666
$2K^{+}2K^{-}$	< 1.3 × 10		1470
$\phi\phi$	< 1.1 × 10	_	1506
ρ p	$<$ 2.0 \times 10	90%	1558
$ ho \overline{ ho} \pi^+ \pi^-$	seen		1461
$\gamma\gamma$	$(1.8\pm1.2)\times10$) ⁻⁴	1819
$\gamma J/\psi(1S)$	< 1.4 %	90%	501
$\pi^+\pi^-\eta$	$(4.3\pm3.2)\times10^{-2}$		1766
$\pi^+\pi^-\eta'$	$(2.6\pm1.9)\times10^{-2}$)-3	1680
$K_2^*(1430)\overline{K}$ + c.c.	seen		1493
$K_0^*(1950)\overline{K}+ ext{ c.c.}$	seen		1231
$a_0(1710)\pi$	seen		1412
$a_0(1450)\pi$	seen		1531
$a_2(1700)\pi_{_}$	seen		1415
$K_0^*(2600)\overline{K} + { m c.c.}$	seen		_
$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%	537

 ψ (2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.097\pm0.011$ MeV ~(S=1.1) Full width $\Gamma=293\pm9$ keV ~(S=1.2)

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
hadrons	(97.85 ± 0.13)	%	
virtual $\gamma o ext{ hadrons}$	(1.79 ± 0.04)	%	_
ggg	(10.6 ± 1.6)	%	_
γ gg	(1.03 ± 0.29) $^{\circ}$	%	_
light hadrons	(15.4 ± 1.5)	%	_
K^0_S anything	(16.0 ± 1.1)	%	_
e^+e^-	(7.94 ± 0.22)	$\times 10^{-3}$ S=1.3	1843

HTTP://PDG.LBL.GOV

Page 161

			_		
$\mu^+\mu^-$			$) \times 10^{-3}$		1840
$ au^+ au^-$	(3.1	± 0.4	$) \times 10^{-3}$		489
Decays into J/v	<i>þ</i> (1 <i>S</i>) ar	nd anyt	thing		
$J/\psi(1S)$ anything		±0.7		S=1.3	_
$J/\psi(1S)$ neutrals	•	± 0.5	,	S=1.6	_
$J/\psi(1S)\pi^+\pi^-$	(34.69	± 0.34) %	S=1.1	477
$J/\psi(1S)\pi^0\pi^0$	(18.2	± 0.5) %	S=1.6	481
$J/\psi(1S)\eta$	`	± 0.06	,	S=1.2	199
$J/\psi(1S)\pi^0$	(1.268	8 ± 0.032	$(2) \times 10^{-3}$		528
Hadro	nic deca	VS			
$\pi^+\pi^-$		•) × 10 ⁻⁶		1838
$\pi^+\pi^-\pi^0$) × 10 ⁻⁴	S=1.7	1830
$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$			$) \times 10^{-5}$	S=1.8	_
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$	(1.9	$^{+1.2}_{-0.4}$) × 10 ⁻⁴		_
$2(\pi^{+}\pi^{-})$	(2.4	± 0.6	$) \times 10^{-4}$	S=2.2	1817
$\rho^0 \pi^+ \pi^-$	•		$) \times 10^{-4}$	S=1.4	1750
$2(\pi^{+}\pi^{-})\pi^{0}$			$) \times 10^{-3}$	S=4.7	1799
$\rho a_2(1320) \atop \pi^+ \pi^- \pi^0 \pi^0 \pi^0$	(2.6	± 0.9	$) \times 10^{-4}$		1500
	(5.3	±1.0	$) \times 10^{-3}$		1800
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$			$\times 10^{-3}$	CL=90%	1737
$\pi^{+}\pi^{-}4\pi^{0}$	(1.4	± 1.0	$) \times 10^{-3}$		1778
$3(\pi^{+}\pi^{-})$	•		$) \times 10^{-4}$	S=2.8	1774
$2(\pi^{+}\pi^{-}\pi^{0})$	•		$) \times 10^{-3}$		1776
$3(\pi^{+}\pi^{-})\pi^{0}$	(3.5		$) \times 10^{-3}$		1746
$2(\pi^{+}\pi^{-})3\pi^{0}$	`	± 0.31	,		1748
$\eta \pi^{+} \pi^{-}$	< 1.6			CL=90%	1791
$\eta \pi^{+} \pi^{-} \pi^{0}$			$) \times 10^{-4}$		1778
$\eta^{2(\pi^{+}\pi^{-})}$		± 0.6	$) \times 10^{-3}$		1758
$ \eta \pi^{+} \pi^{-} \pi^{0} \pi^{0} $ $ \eta \pi^{+} \pi^{-} 3\pi^{0} $	< 4			CL=90%	1760
$\eta \pi^+ \pi^- 3\pi^0$ $\eta 2(\pi^+ \pi^- \pi^0)$	< 2.1			CL=90% CL=90%	1736
	< 2.1	106			1705
$\frac{\rho\eta}{\eta'\pi^+\pi^-\pi^0}$			$) \times 10^{-5}$	S=1.1	1717
			$) \times 10^{-4}$		1692
$\eta' \rho$	(1.9		$) \times 10^{-5}$		1625
$\omega\pi^0$			$) \times 10^{-5}$		1757
$\omega \pi^+ \pi^-$			$) \times 10^{-4}$	S=2.1	1748
$\omega \pi^{+} \pi^{-} 2\pi^{0}$		± 2.4	$) \times 10^{-3}$		1715
$b_1^\pm \pi^\mp$	`		$) \times 10^{-4}$	S=1.1	1635
$\omega f_2(1270)$	`		$) \times 10^{-4}$		1515
$\omega \pi^0 \pi^0$	(1.11	± 0.35	$) \times 10^{-3}$		1749
$(1,3\pi^0)$	/ Q		∨ 1n−4	CI = 0.0%	1736

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

 $\omega^{3}\pi^{0}$ $b_{1}^{0}\pi^{0}$

Page 162

< 8

(2.4 ± 0.6) $\times\,10^{-4}$

1736

 $\times\,10^{-4}$ CL=90%

$\omega \eta$	<	1.1		×	10 ⁻⁵	CL=90%	1715
$\omega \eta'$	(3.2	+2.5) ×	10 ⁻⁵		1623
$\phi\pi^{0}$	<	4		×	10-7	CL=90%	1699
$\phi \pi^+ \pi^-$	(1.18	± 0.26) ×	10-4	S=1.5	1690
$\phi f_0(980) \rightarrow \pi^+ \pi^-$			± 3.3			S=1.6	_
$\phi\eta$	(3.10	±0.31) ×	10^{-5}		1654
$\eta\phi(2170),\;\;\phi(2170) ightarrow$	<	2.2		×	10^{-6}	CL=90%	_
$\phi f_0(980), f_0 \to \pi^+\pi^-$					F		
$\phi \eta'$			±0.20				1555
$\phi f_1(1285)$	•		± 1.3				1436
$\phi \eta (1405) \rightarrow \phi \pi^+ \pi^- \eta$			±1.7		_		1005
$\phi f'_2(1525)$	•		±1.6	•			1325
$K^{+}K^{-}$ $K^{+}K^{-}\pi^{+}\pi^{-}$			±0.5				1776
$K + K - \pi^0$			±0.5				1726
$K_S^0 K_S^0$	•	4.07	± 0.31		10^{-6}		1754
$K_{S}^{0}K_{I}^{0}$			1022		_		1775
$K_{S}^{0}K_{I}^{0}\pi^{0}$			±0.33			CL 000/	1775
$K + K - \pi^0 \pi^0$						CL=90%	1753
$K + K = \pi^0 \pi^0$ $K + K = \pi^0 \pi^0 \pi^0$			± 1.3 ± 2.8		_		1728
$K_{c}^{\dagger}K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	•		± 2.8 ± 0.6				1696 1694
$K_{c}^{c}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$					10-3		1692
$K + K - \pi + \pi - \pi^0$							
$\omega f_0(1710) \rightarrow \omega K^+ K^-$		5.9	$\pm 0.09 \\ \pm 2.2$		10 5		1694
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{c.c.}$	`		± 2.2	,			_
$K^*(892)^+K^-\pi^+\pi^- + \text{c.c.}$	`	9.6			10-4		_
$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	`	7.3			10^{-4}		_
$K^*(892)^0 K^- \rho^+ + \text{c.c.}$	`	6.1		,	10-4		_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	`				10-4		1724
$K_{S}^{0}K_{L}^{0}\pi^{0}\pi^{0}$	(1.3	± 0.6				1726
$K_{S}^{0}K^{k}(892)^{0}\pi^{0}\pi^{0}$	(± 1.3				1645
$K_{S}^{0}K^{\pm}\rho(770)^{\mp}\pi^{0}$		7				CL=90%	_
$K_{S}^{0}K^{\pm}\pi^{\mp}\rho(770)^{0}$		7				CL=90%	_
$K^{\mp} K^* (892)^{\pm} \pi^0 \pi^0$			± 2.9		_		1646
$K^*(892)^+ K^*(892)^- \pi^0$	(± 1.8				1573
$K_{S}^{0}K_{I}^{0}\eta$	(±0.5				1661
$K^+K^-\rho^0$			± 0.4				1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$			±0.5				1417
$K^+K^-\pi^+\pi^-\eta$			± 0.7				1574
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	(1.9	± 0.9) ×	10-3		1654
$K^+K^-2(\pi^+\pi^-)\pi^0$	(1.00	± 0.31) ×	10^{-3}		1611
$K^+ K^* (892)^- + \text{c.c.}$	(2.9	± 0.4) ×	10 ⁻⁵	S=1.2	1698

$2(K^+K^-)$	$(6.3 \pm 1.3) \times 10^{-5}$	1499
$2(K^{+}K^{-})\pi^{0}$	$(1.10 \pm 0.28) \times 10^{-4}$	1440
$K^+K^-\phi$	$(7.0 \pm 1.6) \times 10^{-5}$	1546
$K_S^0 K_S^0 \phi$	$(3.53 \pm 0.29) \times 10^{-5}$	1543
$K_1(1270)^{\pm}K^{\mp}$	$(1.00 \pm 0.28) \times 10^{-3}$	1588
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + \text{c.c.}$	$(6.7 \pm 2.5) \times 10^{-4}$	1674
$\eta {\sf K}^+ {\sf K}^-$, no $\eta \phi$ $\eta {\sf K}^+ {\sf K}^-$	$(3.49 \pm 0.17) \times 10^{-5} $ $< 2.6 \times 10^{-4} CL=90\%$	1664 1664
$X(1750)\eta \rightarrow K^+K^-\eta$	$(4.8 \pm 2.8) \times 10^{-6}$	1004
$K_1(1400)^{\pm} K^{\mp}$	$< 3.1 \times 10^{-4} \text{ CL} = 90\%$	1532
$K_2^*(1430)^{\pm}K^{\mp}$	$(7.1 \begin{array}{cc} +1.3 \\ -0.9 \end{array}) \times 10^{-5}$	_
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.09 \pm 0.20) \times 10^{-4}$	1697
$\omega K^+ K^-$	$(1.62 \pm 0.11) \times 10^{-4}$ S=1.1	1614
$\omega K_S^0 K_S^0$	$(7.0 \pm 0.5) \times 10^{-5}$	1612
$\omega K^*(892)^+ K^- + \text{c.c.}$	$(2.07 \pm 0.26) \times 10^{-4}$	1482
$\omega K_2^* (1430)^+ K^- + \text{c.c.}$	$(6.1 \pm 1.2) \times 10^{-5}$	1252
$\omega \overline{K}^*(892)^0 K^0$	$(1.68 \pm 0.30) \times 10^{-4}$	1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	$(5.8 \pm 2.2) \times 10^{-5}$	1250
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	$(1.6 \pm 0.4) \times 10^{-5}$	_
$\omega X(1440) ightarrow \omega K^+ K^- \pi^0$	$(~1.09~\pm 0.26~) \times 10^{-5}$	_
$\omega f_1(1285) \rightarrow \omega K_5^0 K^- \pi^+ +$	$(3.0 \pm 1.0) \times 10^{-6}$	_
C.C.	(==== ,==	
$\omega f_1(1285) \rightarrow \omega K^+ K^- \pi^0$	$(1.2 \pm 0.7) \times 10^{-6}$	_
$p\overline{p}$	$(2.94 \pm 0.09) \times 10^{-4}$ S=1.3	1586
n <u>n</u> — 0	$(3.06 \pm 0.15) \times 10^{-4}$	1586
$p\overline{p}\pi^0$	$(1.53 \pm 0.07) \times 10^{-4}$	1543
$N(940)\overline{p}+ ext{c.c.} ightarrow p\overline{p}\pi^0$	$(6.4 {+1.8 \atop -1.3}) \times 10^{-5}$	_
$N(1440)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\pi^0$	$(7.3 \begin{array}{cc} +1.7 \\ -1.5 \end{array}) \times 10^{-5} S=2.5$	_
$N(1520)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\pi^0$	$(6.4 \begin{array}{cc} +2.3 \\ -1.8 \end{array}) \times 10^{-6}$	_
$N(1535)\overline{p}+ { m c.c.} ightarrow p\overline{p}\pi^0$	$(2.5 \pm 1.0) \times 10^{-5}$	_
$N(1650)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(3.8 \begin{array}{c} +1.4 \\ -1.7 \end{array}) \times 10^{-5}$	_
$N(1720)\overline{p}+{ m c.c.} ightarrow \ p\overline{p}\pi^0$	$(1.79 \begin{array}{c} +0.26 \\ -0.70 \end{array}) \times 10^{-5}$	_
$N(2300)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$\begin{pmatrix} -0.70 \end{pmatrix}$ $\begin{pmatrix} 2.6 & +1.2 \\ -0.7 & \end{pmatrix} \times 10^{-5}$	_
•	5	
$N(2570)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	$(2.13 \begin{array}{c} +0.40 \\ -0.31 \end{array}) \times 10^{-5}$	_
$p\overline{p}\pi^+\pi^-$	$(6.0 \pm 0.4) \times 10^{-4}$	1491
$p\overline{p}K^+K^-$	$(2.7 \pm 0.7) \times 10^{-5}$	1118
$p\overline{p}\eta$	$(6.0 \pm 0.4) \times 10^{-5}$	1373
$N(1535)\overline{p}+ \text{c.c.} o p\overline{p}\eta$	$(4.5 \begin{array}{c} +0.7 \\ -0.6 \end{array}) \times 10^{-5}$	_

$ ho \overline{ ho} \pi^+ \pi^- \pi^0$, -	- -		10-4		1.405
				$) \times 10^{-4}$		1435
$ \rho \overline{\overline{\rho}} \rho^0 $				$) \times 10^{-5}$		1252
$p\overline{p}\omega$				$) \times 10^{-5}$		1247
$p\overline{p}\eta'$				$) \times 10^{-5}$		1141
$p\overline{p}\phi$	((6.1	± 0.6	$) \times 10^{-6}$		1109
$\phi X(1835) o p \overline{p} \phi$		1.82			CL=90%	_
$p\overline{n}\pi^-$ or c.c.	(2	2.48	±0.17	$) \times 10^{-4}$		_
$p\overline{n}\pi^-\pi^0$	(:	3.2	±0.7	$) \times 10^{-4}$		1492
$\Lambda \overline{\Lambda}$	(3	3.81	±0.13	$) \times 10^{-4}$	S=1.4	1467
$\Lambda \overline{\Lambda} \pi^0$	(1.4	± 0.7	$) \times 10^{-6}$		1412
$\Lambda \overline{\Lambda} \eta$				$) \times 10^{-5}$		1197
$\Lambda(1670)\overline{\Lambda} \to \Lambda\overline{\Lambda}\eta$	•) × 10 ⁻⁵		_
$\Lambda \overline{\Lambda} \overline{\eta}'$) × 10 ⁻⁶		892
$\Lambda \overline{\Lambda} \omega (782)$				$) \times 10^{-5}$		1037
$\Lambda \overline{\Lambda} \pi^+ \pi^-$				$) \times 10^{-4}$		1346
$\Lambda \overline{p} K^+$	•			$) \times 10^{-4}$		1327
$\Lambda \overline{p} K^* (892)^+ + \text{c.c.}$						
$\Lambda \overline{p} K^+ \pi^+ \pi^-$				$) \times 10^{-5}$		1087
				$) \times 10^{-4}$		1167
$\overline{\Lambda}nK_{S}^{0}$ + c.c.	`			$) \times 10^{-5}$		1324
$\Delta^{++}\overline{\Delta}^{}$				$) \times 10^{-4}$		1371
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$				$) \times 10^{-4}$		1376
$\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$				$) \times 10^{-4}$		1379
$\Lambda \overline{\Sigma}^0 + \text{c.c.}$	(:	1.6	±0.7	$) \times 10^{-6}$		1437
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$	(:	1.67	± 0.18	$) \times 10^{-5}$		1291
$\Sigma^{+}\overline{\Sigma}^{-}$	(2	2.43	±0.10	$) \times 10^{-4}$	S=1.4	1408
$\Sigma^0 \overline{\Sigma}{}^0$	(2	2.35	± 0.09	$) \times 10^{-4}$	S=1.1	1405
$\Sigma^{-}\overline{\Sigma}^{+}$	()	2.82	± 0.09	$) \times 10^{-4}$		1401
$\Sigma^+ \overline{\Sigma}{}^- \eta$	(9	9.6	± 2.4	$) \times 10^{-6}$		1108
$\Sigma^{+} \overline{\Sigma}^{-} \dot{\omega}$				$) \times 10^{-5}$		926
$\Sigma^{+}\overline{\Sigma}^{-}\phi$) × 10 ⁻⁶		686
$\Sigma(1385)^{+}\overline{\Sigma}(1385)^{-}$) × 10 ⁻⁵		1218
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$				$) \times 10^{-5}$		1218
$\Sigma(1385)^0 \overline{\Sigma}(1385)^0$				$) \times 10^{-5}$		1218
				$) \times 10^{-4}$	S=1.1	1210
<u>=-=</u> + =0=0						
$=$ $=$ $(1530)^0 = (1530)^0$				$) \times 10^{-4}$	3=4.2	1291
				$) \times 10^{-5}$		1025
$A = K^{-} + c.c.$				$) \times 10^{-5}$		1114
$\Xi(1690)^-\overline{\Xi}^+ o \ \mathcal{K}^- \Lambda \overline{\Xi}^+ +$	(;	5.2	± 1.6	$) \times 10^{-6}$		_
Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$	(:	1.20	±0.32	$)\times10^{-5}$		_
$\Xi(1530)^{-} \overline{\Xi}(1530)^{+}$	(-	1 1 5	+0.07	$) \times 10^{-4}$		1025
$\Xi(1530) - \Xi(1530)$ $\Xi(1530) - \Xi^+$				$) \times 10^{-6}$		
$\Xi(1530)^0 \overline{\Xi}^0$						1165
$\Sigma^0 \overline{\Xi}^+ K^- + \text{c.c.}$				$) \times 10^{-6}$		1169
$\angle = \Lambda + C.C.$	(:	3.7	± 0.4	$) \times 10^{-5}$		1060

$\Omega^{-}\overline{\Omega}{}^{+}$		(5.66	±0.30) ×	₁₀ -5	S=1.3	774
$\eta_c \pi^+ \pi^- \pi^0$							CL=90%	512
$h_c(1P)\pi^0$		(7.4	±0.5) ×	10^{-4}		85
$\Lambda_c^+ \overline{p} e^+ e^- + \text{c.c.}$		<	1.7		×	10^{-6}	CL=90%	830
$\Theta(1540)\overline{\Theta}(1540) ightarrow$	[iiaa]	<	8.8		×	10^{-6}	CL=90%	_
$K_S^0 p K^{-} \overline{n} + \text{c.c.}$								
	[iiaa]	<	1.0		×	10^{-5}	CL=90%	_
	[iiaa]				×	10^{-6}	CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{0}^{0}\overline{p}K^{+}n$	[iiaa]						CL=90%	_
<u>—</u> · · · · · ·	[iiaa]						CL=90%	_
-							CL 3070	
Radiative decays $\gamma \chi_{c0}(1P)$ (9.77 \pm 0.23) % S=1.1							061	
$\gamma \chi_{c0}(1P)$		•			•			261
$\gamma \chi_{c1}(1P)$		•		±0.27	,		S=1.1	171
$\gamma \chi_{c2}(1P)$		•		±0.23	•		S=1.2	128
$\gamma \eta_c(1S)$				±0.5			S=1.3	635
$\gamma \eta_c(2S) \\ \gamma \pi^0$		•		±5	,		C 1 /	48
$\gamma \sim \gamma \sim$				$\pm 0.22 \\ \pm 0.6$		_	S=1.4	1841
$\gamma 3(\pi^+\pi^-)$		•			•		CL=90%	1817 1774
$\gamma \eta'(958)$	·			±0.04		_	CL—90/0	1714
		•						
$\gamma f_2(1270)$				+0.29 -0.25			S=1.8	1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$				± 1.7				1588
$\gamma f_0(1500)$				± 1.9				1529
$\gamma f_2'(1525)$		(3.3	± 0.8) ×	10-5		1531
$\gamma f_0(1710)$			seen			_		1436
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$		(3.5	± 0.6) ×	10-5		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$				±0.7				_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$		•		± 1.0				1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$				± 1.0				1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$			5.8				CL=90%	1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$			9.5				CL=90%	1168
$\gamma \eta$ + -				± 1.8				1802
$\gamma \eta \pi^+ \pi^-$				± 2.1) ×	10 ,		1791
$\gamma \eta (1405) \ \gamma \eta (1405) ightarrow \gamma K \overline{K} \pi$			seen			10-5	CL=90%	1574
$\gamma \eta (1405) \rightarrow \gamma \kappa \kappa \pi$ $\gamma \eta (1405) \rightarrow \gamma \eta \pi^+ \pi^-$		< ,		LOF			CL=90%	1569
$\gamma \eta (1405) \rightarrow \gamma \eta \pi \gamma \pi $ $\gamma \eta (1405) \rightarrow \gamma f_0(980) \pi^0 \rightarrow$			5.0	± 2.5			CL=90%	_
$\gamma \eta(1403) \rightarrow \gamma \eta_0(900) \pi^* \rightarrow \gamma \pi^+ \pi^- \pi^0$		_	5.0		X	10 .	CL=90%	_
$\gamma \eta (1475)$			seen					1548
$\gamma \eta (1475) \rightarrow \gamma K \overline{K} \pi$			1.4		×	10-4	CL=90%	1340
$\gamma \eta (1475) \rightarrow \gamma \eta \pi^+ \pi^-$			8.8				CL=90%	_
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$				± 0.9			55-30/0	1674
,		(5.1	0.5	, ^	-0		101-4

invisible	< 1.6	%	CL=90%	_		
	Other decays					
$\Lambda_c^+ \overline{\Sigma}^- + \text{c.c.}$	< 1.4	$\times 10^{-5}$	CL=90%	586		
$D^0 e^+ e^- + \text{c.c.}$	< 1.4	\times 10 ⁻⁷	CL=90%	1371		
Weak decays						
$e^+ e^- \chi_{c2}(1P)$	(6.8 ± 0.8	$) \times 10^{-4}$		128		
$e^{+}e^{-}\chi_{c1}(1P)$	(8.5 ±0.7	_		171		
$e^+e^-\chi_{c0}(1P)$	(3.0 ± 0.4)			261		
$e^+e^-\eta' \ e^+e^-\eta_c(1S)$	(1.90 ± 0.26) (3.8 ± 0.4)	•		1719 635		
	1.2			•		
$\gamma \gamma J/\psi$	$(3.1 + 1.0 \\ -1.2$			542		
$\gamma \rho \rho \pi \cdot \pi$ $\gamma \gamma$	(2.8 ± 1.4) < 1.5	•	CI =90%	1843		
$\gamma X \rightarrow \gamma p \overline{p} $ $\gamma p \overline{p} \pi^+ \pi^-$	$[ooaa] < 2$ (2.8 ± 1.4		CL=90%	- 1491		
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	$(4.6 \begin{array}{c} +1.8 \\ -4.0 \end{array}$			_		
$\gamma f_2(2150) \rightarrow \gamma p \overline{p}$	(7.2 ± 1.8)			_		
$\gamma f_2(1950) \rightarrow \gamma p \overline{p}$	(1.20 ± 0.22)	,		_		
$\gamma p \overline{p}$	(3.9 ± 0.5	· _	S=2.0	1586		
$\gamma^2(K^+K^-)$	< 4			1499		
$\gamma K^+ K^- 2(\pi^+ \pi^-)$	< 2.2			1654		
$\gamma K^+ K^- \pi^+ \pi^-$	(1.9 ± 0.5)	•		1726		
$\gamma K^0 K^+ \pi^- + \text{c.c.}$	(2.4 ± 0.7)			1753		
$\gamma K^{*0} \overline{K}^{*0}$	(2.4 ±0.7	$) \times 10^{-4}$		1613		

ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3773.7\pm0.7~{\rm MeV}~{\rm (S=2.3)}$ Full width $\Gamma=27.2\pm1.0~{\rm MeV}$

ψ (3770) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$D\overline{D}$	(93 +8) %	S=2.0	287
$D^0 \overline{D}{}^0$	$(52 {}^{+4}_{-5}) \%$	S=2.0	287
D^+D^-	$(41 \pm 4)\%$	S=2.0	254
$J/\psi X$	($5.0~\pm 2.2~) imes 10$	₎ –3	_
$J/\psi\pi^+\pi^-$	$(1.93\pm0.28)\times10$	₎ –3	561
$J/\psi \pi^0 \pi^0$	($8.0~\pm3.0~) imes 10$	₎ —4	565
$J/\psi\eta$.	($8.7~\pm1.2$) $ imes~10$	₎ —4	361
$J/\psi \pi^0$	< 2.8 × 10	$^{-4}$ CL=90%	604
e^+e^-	(9.6 \pm 0.7) $ imes$ 10	S=1.3	1887

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 167

Decays to light hadrons

	Decays to light i	iaurons		
$b_1(1235)\pi$	< 1.4		CL=90%	1684
$\phi \eta'$	< 2.3		CL=90%	1607
$\omega \eta'$	< 4	$\times10^{-4}$	CL=90%	1672
$ ho^{0}\eta'$	< 6	$\times10^{-4}$	CL=90%	1674
$\phi \eta$	(3.1	$1 \pm 0.7 \times 10^{-4}$		1703
$\omega \eta$	< 1.4	$\times 10^{-5}$	CL=90%	1762
$ ho^{0} \eta$	< 5	$\times 10^{-4}$	CL=90%	1764
$\phi \pi^0$	< 3	$\times 10^{-5}$	CL=90%	1746
$\omega\pi^0$	< 6	$\times 10^{-4}$	CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5	$\times 10^{-6}$	CL=90%	1874
$ ho\pi$	< 5	$\times 10^{-6}$	CL=90%	1805
K^+K^-	not	seen		1821
$K^*(892)^+ K^- + \text{c.c.}$	< 1.4	$\times 10^{-5}$	CL=90%	1745
$K^*(892)^0 \overline{K}{}^0 + \text{c.c.}$	< 1.2	$\times 10^{-3}$	CL=90%	1745
$K_S^0 K_I^0$	< 1.2	$\times 10^{-5}$	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.1	12×10^{-3}	CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.0	•	CL=90%	1844
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.8		CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0		CL=90%	1794
$3(\pi^{+}\pi^{-})$	< 9.1	2	CL=90%	1820
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.3		CL=90%	1792
$3(\pi^{+}\pi^{-})2\pi^{0}$	< 11.7		CL=90%	1760
$\eta \pi^+ \pi^-$	< 1.2	•		1836
$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9	_		1862
$ ho^{0} \pi^{+} \pi^{-}$	< 6.9	•	CL=90%	1796
$\eta 3\pi$	< 1.3	2	CL=90%	1824
$\eta^{2}(\pi^{+}\pi^{-})$	< 2.4		CL=90%	1804
$\eta \rho^0 \pi^+ \pi^-$	< 1.4		CL=90%	1708
$\eta' 3\pi$	< 2.4	•		1741
$K^{+}K^{-}\pi^{+}\pi^{-}$	< 9.0	_	CL=90%	1773
$\phi \pi^+ \pi^-$	< 4.1	4	CL=90%	1737
$K^{+}K^{-}2\pi^{0}$	< 4.2	2	CL=90%	1774
$4(\pi^{+}\pi^{-})$	< 1.6		CL=90%	1757
$4(\pi^{+}\pi^{-})\pi^{0}$	< 3.0		CL=90%	1720
$\phi f_0(980)$	< 4.5	4	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	< 2.3	2		1741
$\mathcal{K}^+\mathcal{K}^- ho^0\pi^0$	< 8	$\times 10^{-4}$		1624
$K^{+}K^{-}\rho^{+}\pi^{-}$	< 1.4		CL=90%	1623
$\omega K^+ K^-$	< 3.4			1664
$\phi \pi^+ \pi^- \pi^0$	< 3.8	•		1723
$K^{*0}K^{-}\pi^{+}\pi^{0}+\text{c.c.}$	< 1.6		CL=90%	1694
$K^{*+}K^{-}\pi^{+}\pi^{-}+\text{c.c.}$	< 3.2		CL=90%	1693
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	< 2.6		CL=90%	1705
	` 2.0	/ 0	5_ 55/0	1.00

$K^+K^-2(\pi^+\pi^-)$	< 1.03	%	CL=90%	1702
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	< 3.60	%	CL=90%	1661
$\eta K^+ K^-$	< 4.1	× 10 ⁻⁴	CL=90%	1712
$\eta K^{+}K^{-}\pi^{+}\pi^{-}$	< 1.24	%	CL=90%	1624
$\rho^{0} K^{+} K^{-}$	< 5.0	\times 10 ⁻³	CL=90%	1666
$2(K^{+}K^{-})$	< 6.0	$\times 10^{-4}$	CL=90%	1552
$\phi K^+ K^-$	< 7.5	$\times 10^{-4}$	CL=90%	1598
$2(K^{+}K^{-})\pi^{0}$	< 2.9	$\times 10^{-4}$	CL=90%	1494
$2(K^{+}K^{-})\pi^{+}\pi^{-}$	< 3.2	$\times10^{-3}$	CL=90%	1426
$K_S^0 K^- \pi^+$	< 3.2	$\times 10^{-3}$	CL=90%	1799
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	< 1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	< 6.6	$\times10^{-3}$	CL=90%	1665
$K_{S}^{0}K^{-2}\pi^{+}\pi^{-}$	< 8.7	\times 10 ⁻³	CL=90%	1740
$K_{S}^{0}K^{-}\pi^{+}\rho^{0}$	< 1.6	%	CL=90%	1621
$K_0^{0}K^{-}\pi^{+}\eta$	< 1.3	%	CL=90%	1670
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$	< 4.18	%	CL=90%	1703
$K_0^0 K^- 2\pi^+ \pi^- \eta$	< 4.8	%	CL=90%	1570
$K_{5}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$	< 1.22	%	CL=90%	1658
$K_0^0 K^- \pi^+ 2\pi^0$	< 2.65	%	CL=90%	
$K_0^0 K^- K^+ K^- \pi^+$		× 10 ⁻³	CL=90% CL=90%	1742
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$	< 4.9			1491
3	< 3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$	< 2.2	%	CL=90%	1214
<i>5</i>				
$K^{*0}K^{-}\pi^{+}$ + c.c.	< 9.7	\times 10 ⁻³	CL=90%	1722
$K^{*0}K^{-}\pi^{+}$ + c.c.	< 9.7 not seen	× 10 ⁻³	CL=90%	1722 1637
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$	< 9.7 not seen < 4	$\times 10^{-3}$ $\times 10^{-5}$	CL=90% CL=90%	1722 1637 1595
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$	< 9.7 not seen < 4 < 5.8	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$	CL=90% CL=90% CL=90%	1722 1637 1595 1544
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$	< 9.7 not seen < 4 < 5.8 < 1.2	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$ $\times 10^{-4}$	CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-3}$	CL=90% CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522 1490
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-3}$ $\times 10^{-4}$	CL=90% CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522 1490 1310
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-3}$ $\times 10^{-4}$ $\times 10^{-5}$	CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522 1490 1310 1469
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-3}$ $\times 10^{-4}$ $\times 10^{-5}$ $\times 10^{-3}$	CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522 1490 1310 1469
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-4}$ $\times 10^{-4}$ $\times 10^{-3}$ $\times 10^{-4}$ $\times 10^{-5}$ $\times 10^{-3}$ $\times 10^{-4}$	CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3	$ \begin{array}{c} \times 10^{-5} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \end{array} $	CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90% CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7	$\begin{array}{c} \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-3} \end{array}$	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2	$ \begin{array}{c} \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-4} \end{array} $	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7	$\begin{array}{c} \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-3} \end{array}$	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2 < 6.9	$\begin{array}{c} \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-3} \end{array}$	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314 1186 737
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2 < 6.9 < 1.2	$ \begin{array}{c} \times 10^{-3} \\ \times 10^{-5} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-5} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-4} \\ \times 10^{-3} \end{array} $	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314 1186 737 1094
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega \underline{p}\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\Lambda\overline{\Lambda}\pi^{+}\pi^{-}$ $\Lambda\overline{p}K^{+}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2 < 6.9 < 1.2 < 1.3	× 10 ⁻³ × 10 ⁻⁵ × 10 ⁻⁴ × 10 ⁻⁴ × 10 ⁻³ × 10 ⁻⁴ × 10 ⁻³ × 10 ⁻⁴ × 10 ⁻³ × 10 ⁻⁴ × 10 ⁻⁴ × 10 ⁻⁴ × 10 ⁻⁴	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314 1186 737 1094 1178
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\phi p\overline{p}$ $\Lambda\overline{\Lambda}\pi^{+}\pi^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2 < 6.9 < 1.2 < 1.3 < 2.5	× 10 ⁻³ × 10 ⁻⁵ × 10 ⁻⁴ × 10 ⁻⁴ × 10 ⁻³ × 10 ⁻⁴	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314 1186 737 1094 1178
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda \overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\Lambda\overline{p}K^{+}$ $\Lambda\overline{p}K^{+}\pi^{-}$ $\Lambda\overline{n}K^{+}\pi^{-}$ $\Lambda\overline{n}K^{+}\pi^{-}$	<pre>< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2 < 6.9 < 1.2 < 1.3 < 2.5 < 2.8</pre>	× 10 ⁻³ × 10 ⁻⁵ × 10 ⁻⁴ × 10 ⁻⁴ × 10 ⁻³ × 10 ⁻⁴	CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314 1186 737 1094 1178 1405 1387
$K^{*0}K^{-}\pi^{+} + \text{c.c.}$ $p\overline{p}$ $p\overline{p}\pi^{0}$ $p\overline{p}\pi^{+}\pi^{-}$ $\Lambda\overline{\Lambda}$ $p\overline{p}\pi^{+}\pi^{-}\pi^{0}$ $\omega p\overline{p}$ $\Lambda \overline{\Lambda}\pi^{0}$ $p\overline{p}2(\pi^{+}\pi^{-})$ $\eta p\overline{p}$ $\eta p\overline{p}\pi^{+}\pi^{-}$ $\rho^{0}p\overline{p}$ $p\overline{p}K^{+}K^{-}$ $\eta p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\pi^{0}p\overline{p}K^{+}K^{-}$ $\Lambda\overline{p}K^{+}$ $\Lambda\overline{p}K^{+}\pi^{+}\pi^{-}$	< 9.7 not seen < 4 < 5.8 < 1.2 < 1.85 < 2.9 < 7 < 2.6 < 5.4 < 3.3 < 1.7 < 3.2 < 6.9 < 1.2 < 1.3 < 2.5 < 2.8 < 6.3	× 10 ⁻³ × 10 ⁻⁵ × 10 ⁻⁴ × 10 ⁻⁴ × 10 ⁻³ × 10 ⁻⁴	CL=90% CL=90%	1722 1637 1595 1544 1522 1490 1310 1469 1426 1431 1284 1314 1186 737 1094 1178 1405 1387 1234

$\sum_{i=0}^{n} \overline{\sum_{i=0}^{n}} 0$	< 4	$\times10^{-5}$	CL=90%	1462
<u>=+=</u> -	< 1.5	$\times 10^{-4}$	CL=90%	1347
$\underline{\underline{=}}^0 \underline{\underline{=}}^0$	< 1.4	$\times 10^{-4}$	CL=90%	1353
<u>=-</u> =+	(1.4 ± 0.4	$) \times 10^{-4}$		1347
	Radiative decays			
$\gamma \chi_{c2}$	< 6.4	$\times 10^{-4}$	CL=90%	211
$\gamma \chi_{c1}$	$(2.49\pm0.2$	$3) \times 10^{-3}$		254
$\gamma \chi_{c0}$	(6.9 ± 0.6	$) \times 10^{-3}$		342
$\gamma \eta_{c}$	< 7	$\times 10^{-4}$	CL=90%	707
$\gamma \eta_c(2S)$	< 9	\times 10 ⁻⁴	CL=90%	133
$\gamma \eta'$	< 1.8	\times 10 ⁻⁴	CL=90%	1765
$\gamma\eta$	< 1.5	$\times 10^{-4}$	CL=90%	1847
$\gamma \pi^{0}$	< 2	$\times 10^{-4}$	CL=90%	1884

ψ_{2} (3823)

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

was $\psi(3823)$, X(3823)

Mass
$$m=3823.51\pm0.34~{\rm MeV}$$

Full width $\Gamma~<~2.9~{\rm MeV},~{\rm CL}=90\%$

Branching fractions are given relative to the one **DEFINED AS 1**.

ψ_2 (3823) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^+\pi^-$	< 0.06	90%	607
$J/\psi(1S)\pi^0\pi^0$	< 0.11	90%	610
$J/\psi(1S)\pi^0$	< 0.030	90%	646
$J/\psi(1\mathcal{S})\eta$	< 0.14	90%	431
$\chi_{c0}\gamma$	< 0.24	90%	387
$\chi_{c1}\gamma$	DEFINED AS 1		300
$\chi_{c2}\gamma$	$0.28 \begin{array}{l} +0.14 \\ -0.11 \end{array}$		258

$$\psi_{3}(3842)$$

$$I^G(J^{PC}) = 0^-(3^{--})$$

J, P need confirmation.

Created: 4/24/2025 13:07

Seen by a single experiment only.

Mass
$$m=3842.71\pm0.20$$
 MeV
Full width $\Gamma=2.8\pm0.6$ MeV

ψ_3 (3842) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^+D^-	seen	443
$D^0 \overline{D}{}^0$	seen	463

$$\chi_{c1}(3872)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)

Mass
$$m=3871.64\pm0.06~{
m MeV}$$
 $m_{\chi_{c1}(3872)}-m_{J/\psi}=775\pm4~{
m MeV}$ Full width $\Gamma=1.19\pm0.21~{
m MeV}~{
m (S}=1.1)$

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i/Γ_i)) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	< 2.7	$\times 10^{-7}$	90%	1936
$\pi^+\pi^-\pi^0$	< 1.0	%	90%	1924
$\pi^{+}\pi^{-}J/\psi(1S)$	(4.3± 1.4)) %		650
$\pi^{+}\pi^{-}\pi^{0}J/\psi(1S)$	not seen			588
$\omega \eta_c(1S)$	< 40	%	90%	368
$ ho(770)^0 J/\psi(1S)$	$(3.4\pm\ 1.1)$) %		_
$\omega J/\psi(1S)$	$(5.0\pm\ 1.9)$) %		†
$\phi \phi$	not seen			1646
$D^0 \overline{D}{}^0 \pi^0$	` ') %		116
$\overline{D}^{*0}D^0$	(42 ± 16)			†
$\begin{array}{c} \gamma \gamma \\ D^0 \overline{D}{}^0 \end{array}$	< 13	%	90%	1936
	< 32	%	90%	519
$D^{+}_{0}D^{-}$	< 22	%	90%	502
$\pi^0 \chi_{c2}$	< 5	%	90%	273
$\pi^0 \chi_{c1}$	$(3.8^{+}_{-})^{1.9}$) %		319
$\pi^0 \chi_{c0}$	< 16	%	90%	411
$\pi^+\pi^-\eta_c(1S)$	< 16	%	90%	745
$\pi^0\pi^0\chi_{c0}$	< 7	%	90%	347
$\pi^+\pi^-\chi_{c0}$	< 2.4	%	90%	340
$\pi^+\pi^-\chi_{c1}$	< 8	\times 10 ⁻³		218
$p\overline{p}$	< 2.7	\times 10 ⁻⁵	95%	1693
	Radiative decays			
$\gamma D^+ D^-$	< 4	%	90%	502
$\gamma \overline{D}{}^0 D^0$	< 7	%	90%	519
$\gamma J/\psi$	(10 ± 4)	$) \times 10^{-3}$		697
$\gamma \chi_{c1}$	< 1.0	%	90%	344
$\gamma \chi_{c2}$	< 4	%	90%	303
$\gamma \psi$ (2S)	possibly see	en		181
	C-violating decays			
$\eta J/\psi$	< 2.1	%	90%	491

$$\chi_{c0}(3915)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

was X(3915)

Mass
$$m=3922.1\pm1.8$$
 MeV (S = 1.5)
Full width $\Gamma=20\pm4$ MeV (S = 1.1)

χ_{c0} (3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{\omegaJ/\psi}{\overline{D}^{*0}D^0}$	seen	232
	not seen	313
D^+D^-	seen	592
$D_{s}^{+}D_{s}^{-}$ $\pi^{+}\pi^{-}\eta_{c}(1S)$	seen	†
$\pi^+\pi^-\eta_c(1S)$	not seen	788
$\eta_c \eta_c$	not seen	668
$\frac{\eta_c \eta}{\eta_c \pi^0}$	not seen	817
$K\overline{K}$	not seen	1898
$\gamma \gamma$	seen	1961
$\gamma \psi(2S) \ \pi^0 \chi_{c1}$	not seen	229
$\pi^0 \chi_{c1}$	not seen	368

$\chi_{c2}(3930)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3922.5\pm1.0$ MeV (S =1.7) Full width $\Gamma=35.2\pm2.2$ MeV (S =1.2)

χ_{c2} (3930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\gamma\gamma}$	seen	1961
$K\overline{K}\pi$	not seen	1878
$K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$	not seen	1822
$D\overline{D}$	seen	607
D^+D^-	seen	592
$D^0 \overline{D}{}^0$	seen	607
$\pi^{+}\pi^{-}\eta_{c}(1S)$	not seen	788
$K\overline{K}$	not seen	1898

ψ (4040) $^{[ppaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

Mass $m=4040\pm4~{\rm MeV}$ Full width $\Gamma=84\pm12~{\rm MeV}$ Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ_i/I)	Г) С	onfidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(1.02 \pm 0.17$	$(1) \times 10^{-5}$		2020
$D\overline{D}$	seen	•		776
$D^0 \overline{D}{}^0$	seen			776
D^+D^-	seen			764
$D^*\overline{D}$ + c.c.	seen			570
$D^*(2007)^0 \overline{D}{}^0 + {\sf c.c.}$	seen			576
$D^*(2010)^+ D^- + \text{c.c.}$	seen			562
$D^*\overline{D}^*$	seen			196
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen			228
$D^*(2010)^+ D^*(2010)^-$	seen			196
$D\overline{D}\pi$ (excl. $D^*\overline{D}$)	not seen			_
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2010)^+D^- + c.c.$				
$D\overline{D}^*\underline{\pi}(\text{excl. }D^*\overline{D}^*)$	not seen			_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	seen			453
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	seen			1979
$J/\psi(1S)$ hadrons	seen			_
$J/\psi \pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	795
$J/\psi \pi^0 \pi^0$	< 2	$\times 10^{-3}$	90%	797
$J/\psi \eta$	(5.2 ± 0.7)	$) \times 10^{-3}$		676
$J/\psi \pi^0$	< 2.8	$\times 10^{-4}$	90%	824
$J/\psi \pi^+\pi^-\pi^0$	< 2	$\times 10^{-3}$	90%	747
$\chi_{c1}\gamma$	< 3.4	$\times 10^{-3}$		494
$\chi_{c2}\gamma$	< 5	$\times 10^{-3}$	90%	455
$\chi_{c1}\pi^{+}\pi^{-}\pi^{0}$	< 1.1	%	90%	307
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 3.2	%	90%	234
$h_c(1P)\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	404
$\phi \pi^+ \pi^-$	< 3	$\times 10^{-3}$		1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	× 10 ⁻⁴	90%	1579
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$	90%	1636
$\Lambda \overline{\Lambda} \eta$	< 3.0	× 10 ⁻⁴	90%	1452
<u> </u>	< 6	$\times 10^{-6}$		1684
$ \Sigma^{+} \overline{\Sigma}^{-} $ $ \Xi^{+} \overline{\Xi}^{-} $	< 1.3	$\times 10^{-4}$	90%	1632
Σ · Σ · · · =	< 7	\times 10 ⁻⁵		1630
<u>=</u> + <u>=</u> -	< 1.6	$\times 10^{-4}$	90%	1527

<u>=</u> 0 <u>=</u> 0	< 1.8	$\times 10^{-4}$	90%	1533
<u>=</u> - <u>=</u> +	< 6	$\times 10^{-5}$	90%	1527
$\mu^+\mu^-$	(9 ± 6)	$) \times 10^{-6}$		2017

$$\chi_{c1}(4140)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4140)

Mass
$$m=4146.5\pm3.0~{\rm MeV}~{\rm (S=1.3)}$$
 Full width $\Gamma=19^{+7}_{-5}~{\rm MeV}$

χ_{c1} (4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	216
$\gamma\gamma$	not seen	2073

ψ (4160) $^{[ppaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4191\pm 5~{
m MeV}$ Full width $\Gamma=69\pm 10~{
m MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(6.9 \pm 3.3) \times 10^{-2}$	-6	2096
$\mu^+\underline{\mu}^-$	seen		2093
DD	seen		956
$D^0 \overline{D}{}^0$	seen		956
$\underline{D}^+ D^-$	seen		947
$D^*\overline{D}$ + c.c.	seen		798
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		802
$D^*(2010)^+ D^- + \text{c.c.}$	seen		792
$D^*\overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		604
$D^*(2010)^+ D^*(2010)^-$	seen		592
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen		_
$D^*(2010)^+ D^- + c.c.)$			
$D\overline{D}^*\pi + \text{c.c.} (\text{excl. } D^*\overline{D}^*)$	seen		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl. $D^*(2010)^+ D^*(2010)^-$)	not seen		_

HTTP://PDG.LBL.GOV

Page 174

$D_s^+ D_s^-$	not seen			719
$D_{s}^{3+}D_{s}^{-}+\text{c.c.}$	seen			478
$J/\psi \pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	919
$J/\psi \pi^{0} \pi^{0}$	< 3	$\times10^{-3}$	90%	921
$J/\psi K^+ K^-$	< 2	$\times 10^{-3}$	90%	407
$J/\psi\eta$	< 8	$\times 10^{-3}$	90%	821
$J/\psi \pi^0$	< 1	$\times 10^{-3}$	90%	944
$J/\psi \eta'$	< 5	$\times 10^{-3}$	90%	456
$J/\psi \pi^{+} \pi^{-} \pi^{0}$	< 1	$\times 10^{-3}$	90%	879
$\psi(2S)\pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	395
$\chi_{c1}\gamma$	< 5	$\times 10^{-3}$	90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 2	$\times 10^{-3}$	90%	496
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	< 8	$\times 10^{-3}$	90%	444
$h_c(1P)\pi^+\pi^-$	< 5	$\times 10^{-3}$	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	$\times 10^{-3}$	90%	560
$h_c(1P)\eta$	< 2	$\times 10^{-3}$	90%	348
$h_c(1P)\pi^0$	< 4	\times 10 ⁻⁴	90%	600
$\omega \pi^+ \pi^-$	seen			2013
$\phi\pi^+\pi^-$	< 2	\times 10 ⁻³	90%	1961
$\gamma \chi_{c1}(3872)$	< 1.6	\times 10 ⁻³	90%	307
$\gamma \chi_{c0}(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	× 10 ⁻⁴	90%	_
$\gamma X(3940) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	\times 10 ⁻⁴	90%	_
$\gamma \chi_{c0}(3915) \rightarrow \gamma \gamma J/\psi$	< 1.26	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma \gamma J/\psi$	< 8.8	\times 10 ⁻⁵	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	\times 10 ⁻⁴	90%	_
$\omega \pi^0$	not seen			2020
$\omega\eta$	not seen			1984
K ⁺ K ⁻	not seen			2037
$K^0_S K^\pm \pi^\mp$	seen			2017
ρ <u>ρ</u> ρ <u>ρ</u> Λ <u>Λ</u>	not seen			834
	< 1.5	$\times 10^{-6}$	90%	1774
<u>=-=+</u>	< 8	$\times 10^{-5}$	90%	1626
$pK^{-}\overline{\Lambda}$ + c.c.	< 6	\times 10 ⁻⁶	90%	1659

ψ (4230)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

also known as Y(4230); was $\psi(4260)$

Mass
$$m=4222.1\pm2.3$$
 MeV (S = 1.7) Full width $\Gamma=49\pm7$ MeV (S = 3.4)

ψ (4230) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\mu^+\mu^-}$	$(3.1\pm2.8)\times10^{-5}$	2107
$\eta_c(1S)\pi^+\pi^-$	not seen	1027
$\eta_c(1S)\pi^+\pi^-\pi^0$	seen	992
$J/\psi \pi^+\pi^-$	seen	942
$J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-$	seen	_
$T_{c\overline{c}1}(3900)^{\pm}\pi^{\mp}, T_{c\overline{c}1}^{\pm} \rightarrow$	seen	_
$J/\psi\pi^\pm$		
$J/\psi \pi^0 \pi^0$	seen	944
$J/\psi K^+ K^-$	seen	460
$J/\psi K_S^0 K_S^0$	not seen	447
$J/\psi \eta$	seen	848
$J/\psi \pi^0$	not seen	966
$J/\psi \eta'$	seen	504
$J/\psi \pi^+\pi^-\pi^0$	not seen	904
$J/\psi \eta \pi^0$	not seen	770
$J/\psi\eta\eta$	not seen	211
$\psi(2S)\pi^+\pi^-$	seen	426
$\psi(2S)\eta$	not seen	†
$\chi_{c0}\omega$	seen	171
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	not seen	527
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$	not seen	477
$h_c(1P)\pi^+\pi^-$	seen	583
$\phi \pi^+ \pi^-$	not seen	1976
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$	not seen	_
$\phi K^+ K^-$	not seen	1856
$\phi K_S^0 K_S^0$	not seen	1854
$\phi \eta$	not seen	1947
$\phi \eta'$	not seen	1864
DD $D^0 \overline{D}^0$	not seen	987
D^+D^-	not seen	987
$D^*\overline{D}$ +c.c.	not seen	978
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	835
$D^*(2010)^+D^-+c.c.$	not seen	839
$D^*\overline{D}^*$	not seen	829 641
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	652
$D^*(2010)^+ D^*(2010)^-$	not seen not seen	641
$D\overline{D}\pi$ +c.c.	not seen	847
$D^{0}D^{-}\pi^{+}$ +c.c. (excl.	not seen	04 <i>1</i>
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$	not seen	
$D^*(2010)^+D^-$ +c.c.)		

D = (D D D D		
$D\overline{D}^*\pi + \text{c.c.} \text{ (excl. } D^*\overline{D}^*)$	not seen	723
$D^0 D^* (2010)^- \pi^+ + \text{c.c.}$	seen	650
$D_1(2420)D + \text{c.c.}$	not seen	†
$D^*\overline{D}^*\pi$	seen	367
$D^{*0}D^{*-}\pi^{+}$	seen	364
$D_s^+D_s^-$	not seen	760
$D_{s}^{*+}D_{s}^{-}+\text{c.c.}$	not seen	538
$D_s^{*+}D_s^{-}+c.c.$ $D_s^{*+}D_s^{*-}$ $p\overline{p}$ $p\overline{p}\pi^0$	not seen	†
$p\overline{p}$	not seen	1890
$ ho \overline{ ho} \pi^0$	not seen	1854
$p\overline{p}\eta$	not seen	1712
$\omega \pi^+ \pi^-$	seen	2028
<i>p</i> p ω <u>=</u> − = +	not seen	1610
	not seen	1645
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	not seen	2087
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	not seen	2071
$\omega \pi^0$	not seen	2035
$\omega \eta$	not seen	1999
$K_{S}^{0}K^{\pm}\pi^{\mp} \ K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{0}$	not seen	2032
	not seen	2009
$K_{\mathcal{S}}^{0}K^{\pm}\pi^{\mp}\eta$	not seen	1917
$K^+K^-\pi^0$	not seen	2033
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen	2008
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	not seen	1981
$K^+K^+K^-K^-$	not seen	1813
$K^+K^+K^-K^-\pi^0$	not seen	1762
$p\overline{p}\pi^+\pi^-$	not seen	1810
$p\overline{p}\pi^+\pi^-\pi^0$	not seen	1764
ρ <u>ρ</u> ρ <u></u> ρ	not seen	864
$\Lambda \overline{\Lambda}$	not seen	1791
Radia	tive decays	
$\eta_c(1S)\gamma$	possibly seen	1055
$\eta_c(1S)\pi^0\gamma$	not seen	1048
$\chi_{c1}\gamma$	not seen	650
$\chi_{c2}\gamma$	not seen	612
$\chi_{c1}(3872)\gamma$	seen	334

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4274)

Mass
$$m=4286^{+8}_{-9}~{\rm MeV}~{\rm (S=1.7)}$$
 Full width $\Gamma=51\pm7~{\rm MeV}$

χ_{c1} (4274) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	522

$$\psi$$
(4360)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4360); was X(4360)

Mass
$$m=4374\pm7$$
 MeV (S = 2.4)
Full width $\Gamma=118\pm12$ MeV (S = 2.1)

ψ (4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	seen	2187
$h_c \pi^+ \pi^-$	seen	723
$J/\psi \pi^+ \pi^-$	seen	1064
$\psi(2S)\pi^+\pi^-$	seen	579
ψ (3770) $\pi^{+}\pi^{-}$	possibly seen	495
$\psi_2(3823)\pi^+\pi^-$	seen	444
$J/\psi\eta$	seen	983
$D^0 D^{*-} \pi^+$	not seen	868
$D^+D^-\pi^+\pi^-$	seen	862
$D_1(2420)\overline{D}+ ext{c.c.}$	possibly seen	431
$\phi\eta$	not seen	2030
$\omega\pi^0$	not seen	2115
$\omega \eta$	not seen	2080
$ ho \overline{ ho} \eta$	not seen	1806
$p \overline{p} \omega$	not seen	1708
$\chi_{c1}\gamma$	not seen	778
$\begin{array}{c} \chi_{c2} \underline{\gamma} \\ \underline{=} - \underline{\overline{=}} + \end{array}$	not seen	741
	not seen	1742
$pK^{-}\overline{\Lambda}+$ c.c.	not seen	1773

ψ (4415) $^{[ppaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

Mass
$$m=4415\pm 5~{\rm MeV}$$

Full width $\Gamma=110\pm 22~{\rm MeV}~~(S=2.3)$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	seen		1181
$D^0 \overline{D}{}^0$	seen		1181
D^+D^-	seen		1173
$D^*\overline{D}$ + c.c.	seen		1057
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	seen		1060
$D^*(2010)^+ D^- + \text{c.c.}$	seen		1053
$D^*\overline{D}^*$	seen		912
$D^*(2007)^0\overline{D}^*(2007)^0+$ c.c.	seen		919
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		912
$D^0 D^- \pi^+ (\text{excl. } D^*(2010)^+ D^-$	< 2.3 %	90%	_
$D_{\overline{D}_{2}^{*}(2460)}^{+\text{c.c.}} \rightarrow D^{0}D^{-}\pi^{+}+\text{c.c.}$	(10 ±4)%		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$	< 19 %	90%	918
$D_1(2420)\overline{D}+ ext{c.c.}$	possibly seen		524
$D_s^+ D_s^-$	not seen		999
$\omega \chi_{c2}$	possibly seen		317
$D_{s}^{*+}D_{s}^{-}+c.c.$	seen		842
$D_s^{*+}D_s^- + \text{c.c.}$ $D_s^{*+}D_s^{*-}$	seen		641
$\psi_2(3823)\pi^+\pi^-$	possibly seen		486
$\psi(3770)\pi^{+}\pi^{-}$	possibly seen		535
$J/\psi \eta$	< 6 × 1	0^{-3} 90%	1017
$\chi_{c1}\gamma$	< 8 × 1	0^{-4} 90%	812
$\chi_{\underline{c2}}\gamma$	< 4 × 1	0^{-3} 90%	775
$\Lambda\Lambda$	< 3.1 × 1	0^{-6} 90%	1905
<u>=-=</u> +	< 4 × 1	0^{-5} 90%	1768
$pK^{-}\overline{\Lambda}$ + c.c.	< 6 × 1	0^{-6} 90%	1798
$\omega \pi^0$	not seen		2136
$\omega\eta$	not seen		2102
e^+e^-	$(5.3\pm1.2)\times1$		2207
$\mu^{+}\mu^{-}$	$(1.1\pm0.5) \times 1$	0-5	2205

ψ (4660)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4660); was X(4660)

Mass
$$m=4641\pm 10$$
 MeV (S = 2.7)
Full width $\Gamma=73^{+13}_{-11}$ MeV (S = 1.7)

ψ (4660) DECAY MODES	Fraction (Γ	p (MeV/c)
e^+e^-	not seen	2321
$\psi(2S)\pi^+\pi^-$	seen	819
HTTP://PDG.LBL.GOV	Page 179	Created: 4/24/2025 13:07

11.1		1001
$J/\psi \eta$	not seen	1201
$D^0D^{st-}\pi^+$	not seen	1165
$D^{*0} D^{*-} \pi^+$	seen	1032
$\psi_2(3823)\pi^+\pi^-$	seen	701
$\chi_{c1}\gamma$	not seen	993
$\chi_{c1}\phi$	not seen	426
$\chi_{c2}\gamma$	not seen	958
$\chi_{c2}\phi$	not seen	326
$\Lambda_c^+ \Lambda_c^-$	seen	397
$D_s^+ D_{s1}(2536)^-$	seen	557
$D_s^+ D_{s2}^* (2573)^-$	seen	_
$\omega\pi^{0}$	not seen	2253
$\omega\eta$	not seen	2220
<i>=-=</i> <u>+</u>	not seen	1908
$pK^{-}\overline{\Lambda}$ + c.c.	not seen	1935

$b\overline{b}$ MESONS (including possibly non- $q\overline{q}$ states)

$\eta_b(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=9398.7\pm2.0~{\rm MeV}~{\rm (S}=1.5)$ Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4672
$2h^{+}2h^{-}$	not seen		4689
$4h^{+}4h^{-}$	not seen		4648
$\gamma\gamma$	not seen		4699
$\gamma \gamma \atop \mu^+ \mu^- \atop \tau^+ \tau^-$	$< 9 \times 10^{-3}$	90%	4698
$ au^+ au^-$	<8 %	90%	4350

T(15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=9460.40\pm0.10$ MeV Full width $\Gamma=54.02\pm1.25$ keV

T(1S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$ au^+ au^-$	(2.60 ± 0.10)) %	4384
e^+e^-	(2.39 ± 0.08) %	4730
$\mu^+\mu^-$	(2.48 ± 0.04) %	4729
Had	Ironic decays		
ggg	(81.7 ± 0.7)		_
γgg	•) %	_
$\eta'(958)$ anything	(2.94 ± 0.24)	<i>'</i>	_
$J/\psi(1S)$ anything	,	$) \times 10^{-4}$ S=1.4	4223
$J/\psi(1S)\eta_c$	< 2.2	$\times 10^{-6}$ CL=90%	3623
$J/\psi(1S)\chi_{c0}$	< 3.4	$\times 10^{-6}$ CL=90%	3429
$J/\psi(1S)\chi_{c1}$	(3.9 ± 1.2)		3382
$J/\psi(1S)\chi_{c2}$	< 1.4	$\times 10^{-6}$ CL=90%	3359
$J/\psi(1S)\eta_c(2S)$	< 2.2	$\times 10^{-6}$ CL=90%	3317
$J/\psi(1S)X(3940)$	< 5.4	$\times 10^{-6}$ CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4	$\times 10^{-6}$ CL=90%	3020
$X(4350)$ anything, $X \rightarrow$	< 8.1	$\times 10^{-6}$ CL=90%	_
$J/\psi(1S)\phi \ T_{c\overline{c}1}(3900)^\pm$ anything, $T_{c\overline{c}1} o J/\psi(1S)\pi^\pm$	< 1.3	$\times10^{-5}$ CL=90%	-
$T_{c\overline{c}1}(4200)^\pm$ anything, $Z_c ightarrow J/\psi(1S) \pi^\pm$	< 6.0	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}1}(4430)^{\pm}$ anything, $T_{c\overline{c}1} ightarrow J/\psi(1S) \pi^{\pm}$	< 4.9	$\times10^{-5}$ CL=90%	-
X_{cs}^{\pm} anything, $X ightarrow$	< 5.7	$\times 10^{-6}$ CL=90%	_
ψ (4230) anything, $\psi ightarrow$ $J/\psi(1S)\pi^+\pi^-$	< 3.8	$\times10^{-5}$ CL=90%	-
ψ (4230) anything, $\psi \rightarrow J/\psi(1S)K^+K^-$	< 7.5	$\times10^{-6}~\text{CL}{=}90\%$	_
$\chi_{c1}(4140)$ anything, $\chi_{c1} ightarrow J/\psi(1S)\phi$	< 5.2	$\times 10^{-6}$ CL=90%	-
χ_{c0} anything	< 4	$\times 10^{-3} \text{ CL} = 90\%$	_
χ_{c1} anything	(1.90 ± 0.35)		_
$\chi_{c1}(1P)X_{tetra}$		$\times 10^{-5}$ CL=90%	_
χ_{c2} anything	(2.8 ± 0.8)		_
$\psi(2S)$ anything	(1.23 ± 0.20)	,	_
$\psi(2S)\eta_c$	< 3.6	$\times 10^{-6}$ CL=90%	3345
$\psi(2S)\chi_{c0}$	< 6.5	$\times 10^{-6}$ CL=90%	3124
$\psi(2S)\chi_{c1}$	< 4.5	$\times 10^{-6}$ CL=90%	3070
$\psi(2S)\chi_{c2}$	< 2.1	$\times 10^{-6} \text{ CL} = 90\%$	3043
$\psi(2S)\eta_c(2S)$	< 3.2	$\times 10^{-6}$ CL=90%	2994

$\psi(2S)X(3940)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	2797
$\psi(2S)X(4160)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	2645
ψ (4230) anything, $\psi ightarrow$	< 7.9	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^+\pi^-$			
ψ (4360) anything, $\psi ightarrow$	< 5.2	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^+\pi^-$			
ψ (4660) anything, $\psi ightarrow$	< 2.2	$\times 10^{-5} \text{ CL} = 90\%$	_
$\psi(2S)\pi^+\pi^-$			
$T_{c\overline{c}}(4050)^{\pm}$ anything, $X ightarrow$	< 8.8	$\times 10^{-5} \text{ CL} = 90\%$	_
$\psi(2S)\pi^{\pm}$		_	
$T_{c\overline{c}1}(4430)^{\pm}$ anything,	< 6.7	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}1} ightarrow \psi(2S)\pi^{\pm}$		4	
$\chi_{c1}(3872)$ anything	< 2.2	$\times 10^{-4}$ CL=90%	_
$T_{c\overline{c}1}(4200)^{+} T_{c\overline{c}1}(4200)^{-}$	< 2.23	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}1}(3900)^{\pm} T_{c\overline{c}1}(4200)^{\mp}$	< 8.1	$\times 10^{-6}$ CL=90%	_
$T_{c\overline{c}1}(3900)^+ T_{c\overline{c}1}(3900)^-$	< 1.8	$\times 10^{-6}$ CL=90%	_
$T_{c\overline{c}}(4050)^+ T_{c\overline{c}}(4050)^-$	< 1.58	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}}(4250)^{+} T_{c\overline{c}}(4250)^{-}$	< 2.66	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}}(4050)^{\pm}T_{c\overline{c}}(4250)^{\mp}$	< 4.42	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}1}(4430)^{+} T_{c\overline{c}1}(4430)^{-}$	< 2.03	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}}(4055)^{\pm} T_{c\overline{c}}(4055)^{\mp}$	< 2.33	$\times 10^{-5}$ CL=90%	_
$T_{c\overline{c}}(4055)^{\pm} T_{c\overline{c}1}(4430)^{\mp}$	< 4.55	$\times 10^{-5}$ CL=90%	_
$ ho\pi$	< 3.68	$\times 10^{-6}$ CL=90%	4697
$\omega \pi^0$	< 3.90	$\times 10^{-6}$ CL=90%	4697
$\pi^+\pi^-$	< 5	$\times 10^{-4}$ CL=90%	4728
$K_{-}^{+}K_{-}^{-}$	< 5	$\times 10^{-4}$ CL=90%	4704
$p\overline{p}$	< 5	$\times 10^{-4} \text{ CL}=90\%$	4636
$\pi^+\pi^-\pi^0$,	± 0.8) $\times 10^{-6}$	4725
$\phi K^+ K^-$	•	$(-0.5) \times 10^{-6}$	4623
$\omega \pi^{+} \pi^{-}$	•	$(-1.0) \times 10^{-6}$	4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	•	$(-0.8) \times 10^{-6}$	4667
$\phi f_2'(1525)$	< 1.63		4551
$\omega f_2(1270)$	< 1.79	$\times 10^{-6}$ CL=90%	4611
$\rho(770) a_2(1320)$		$\times 10^{-6} \text{ CL}=90\%$	4605
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	•	$(-0.8) \times 10^{-6}$	4579
$K_1(1270)^{\pm} \bar{K}^{\mp}$	< 2.41		4634
$K_1(1400)^{\pm} K^{\mp}$	•	$(0.4) \times 10^{-6}$	4613
$b_1(1235)^{\pm}\pi^{\mp}$	< 1.25		4649
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$		$(0.30) \times 10^{-5}$	4720
$K_{5}^{0}K^{+}\pi^{-}+\text{c.c.}$	•	$(0.4) \times 10^{-6}$	4696
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	•	$(0.9) \times 10^{-6}$	4675
$K^*(892)^- K^+ + \text{c.c.}$		$\times 10^{-6}$ CL=90%	4675
$f_1(1285)$ anything		$=3.1) \times 10^{-3}$	_
$D^*(2010)^\pm$ anything	($2.52 \pm$	0.20) %	_

$f_1(1285)X_{tetra}$	$< 6.24 \times 10^{-5} \text{ CL} = 90\%$	⁄о
$\overline{^2H}$ anything	$(2.85 \pm 0.25) \times 10^{-5}$	_
Sum of 100 exclusive modes	$(1.200\pm0.017)\%$	_

Radiative decays

	Radiative deca	ys	
$\gamma \pi^+ \pi^-$	(6.3	± 1.8) $\times 10^{-5}$	4728
$\gamma \pi^0 \pi^0$	(1.7	± 0.7) $\times 10^{-5}$	4728
$\gamma\pi\pi(S ext{-wave})$	(4.6	± 0.7) $\times 10^{-5}$	4728
$\gamma \pi^{0} \eta$	< 2.4	$\times 10^{-6} \text{ CL} = 90\%$	4713
γ K $^+$ K $^-$	[qqaa] (1.14	± 0.13) $\times 10^{-5}$	4704
$\gamma p \overline{p}$	[<i>rraa</i>] < 6	$\times 10^{-6} \text{ CL} = 90\%$	4636
$\gamma 2h^+2h^-$	(7.0	± 1.5) × 10 ⁻⁴	4720
γ 3 h^+ 3 h^-	(5.4	± 2.0) × 10 ⁻⁴	4703
γ 4 h +4 h -	(7.4	± 3.5) $\times 10^{-4}$	4679
$\gamma \pi^+ \pi^- K^+ K^-$	(2.9	± 0.9) $\times 10^{-4}$	4686
$\gamma 2\pi^+ 2\pi^-$	(2.5	± 0.9) $\times 10^{-4}$	4720
γ 3 π^+ 3 π^-	(2.5	± 1.2) $\times 10^{-4}$	4703
γ 2 π^+ 2 π^- K $^+$ K $^-$	(2.4	± 1.2) $\times 10^{-4}$	4659
$\gamma \pi^+ \pi^- p \overline{p}$	(1.5	± 0.6) $\times 10^{-4}$	4604
$\gamma 2\pi^+ 2\pi^- p \overline{p}$	(4	± 6) × 10 ⁻⁵	4563
γ 2K $^+$ 2K $^-$	(2.0	± 2.0) × 10 ⁻⁵	4601
$\gamma \eta'$ (958)	< 1.9	$\times 10^{-6}$ CL=90%	4682
$\gamma\eta$	< 1.0	$\times 10^{-6}$ CL=90%	4714
$\gamma f_0(980)$	< 3	$\times 10^{-5} \text{ CL} = 90\%$	4678
$\gamma f_2'(1525)$	(2.9	± 0.6) $\times 10^{-5}$	4609
$\gamma f_2(1270)$	(1.01	± 0.06) $ imes 10^{-4}$	4644
$\gamma \eta$ (1405)	< 8.2	$\times 10^{-5}$ CL=90%	4625
$\gamma f_0(1500)$	< 1.5	$\times 10^{-5}$ CL=90%	4608
$\gamma f_0(1500) \rightarrow \gamma K^+ K^-$	(1.0	± 0.4) $\times 10^{-5}$	_
$\gamma f_0(1710)$	< 2.6	$\times 10^{-4} \text{ CL} = 90\%$	4571
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	(1.01	$\pm 0.32\) \times 10^{-5}$	_
$\gamma f_0(1710) \rightarrow \gamma \pi^+ \pi^-$	(5.3	± 2.0) $\times 10^{-6}$	_
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	< 1.4	$\times 10^{-6} \text{ CL} = 90\%$	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	< 1.8	$\times 10^{-6} \text{ CL} = 90\%$	_
$\gamma f_4(2050)$	< 5.3	$\times 10^{-5}$ CL=90%	4515
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	< 2	$\times 10^{-4} \text{ CL} = 90\%$	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	< 8	$\times 10^{-7} \text{ CL}=90\%$	4469
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	< 6	$\times 10^{-7} \text{ CL}=90\%$	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	< 1.1	$\times 10^{-6} \text{ CL} = 90\%$	_
$\gamma \eta$ (2225) $ ightarrow \gamma \phi \phi$	< 3	$\times 10^{-3} \text{ CL} = 90\%$	4469
$\gamma \eta_c(1S)$	< 2.9	$\times10^{-5}$ CL=90%	4260
$\gamma \eta_c(2S)$	< 4	$\times10^{-4}$ CL=90%	4031
$\gamma \chi_{c0}$	< 6.6	$\times 10^{-5}$ CL=90%	4114
$\gamma \chi_{c1}$	(4.7	$^{+2.4}_{-1.9}$) \times 10 ⁻⁵	4079

$\gamma \chi_{c2}$	<	7.6	$\times10^{-6}$ CL=90%	4062		
$\gamma \chi_{c1}(3872)$	<	4	$\times10^{-5}$ CL=90%	3938		
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$	<	2.8	$\times10^{-6}$ CL=90%	_		
$\pi^+\pi^-\pi^0 J/\psi$						
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	3.0	$\times 10^{-6}$ CL=90%	_		
$\gamma \chi_{c1}$ (4140) $\rightarrow \phi J/\psi$	<	2.2	$\times 10^{-6}$ CL=90%	_		
$\gamma X \overline{X} (m_X < 3.1 \text{ GeV})$	[ssaa] <	1	$\times 10^{-3}$ CL=90%	_		
$\gamma X \overline{X} (m_X <$ 4.5 GeV)	[ttaa]<	2.4	$\times 10^{-4}$ CL=90%	_		
$\gamma X \rightarrow \gamma + \geq$ 4 prongs	[uuaa] <	1.78	$\times 10^{-4}$ CL=95%	_		
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[<i>vvaa</i>] <	9	$\times 10^{-6}$ CL=90%	_		
$\gamma A^0 \rightarrow \gamma \tau^+ \tau^-$	[qqaa]<	1.30	$\times 10^{-4}$ CL=90%	_		
$\gamma A^0 \rightarrow \gamma g g$	[xxaa] <	1	% CL=90%	_		
$\gamma A^0 o \gamma s \overline{s}$	[xxaa] <	1	$\times 10^{-3} \text{ CL}=90\%$	_		
Lanton Family number (1.5) violating modes						

Lepton Family number (LF) violating modes

$e^{\pm}\mu^{\mp}$	LF	< 3.9	$\times10^{-7}$ CL=90%	4730
$\mu^{\pm} au^{\mp}$	LF	< 2.7	$\times 10^{-6}$ CL=90%	4563
$e^{\pm} au^{\mp}$	LF	< 2.7	$\times 10^{-6}$ CL=90%	4563
$\gamma e^{\pm} \mu^{\mp}$	LF	< 4.2	$\times 10^{-7}$ CL=90%	4730
$\gamma \mu^{\pm} \tau^{\mp}$	LF	< 6.1	$\times 10^{-6}$ CL=90%	4563
$\gammae^{\pm} au^{\mp}$	LF	< 6.5	$\times10^{-6}$ CL=90%	4563

Other decays

invisible	< 3.0		$\times 10^{-4}$ CL=90%	_
hadrons	(96	± 4) %	-

$\chi_{b0}(1P)^{[yyaa]}$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \; \text{MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ	_i /Γ) (Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma \gamma (1S)$	(1.94±0	0.27) %		391
D^0X	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 1.6	\times 10 $^{-}$	-4 90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	× 10 ⁻	-5 90%	4875
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 5	× 10 ⁻	-4 90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	× 10 ⁻	-4 90%	4905
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	($1.1~\pm 0$	0.6) × 10 ⁻¹	-4	4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	\times 10 $^{-}$	-4 90%	4846
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 5	\times 10 $^{-}$	-4 90%	4828
$3\pi^{+}2\pi^{-}K^{-}K_{S}^{0}\pi^{0}$	< 1.6	\times 10 $^{-}$	-4 90%	4827
$3\pi^{+}3\pi^{-}$	< 8	× 10 ⁻	-5 90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	× 10 ⁻	-4 90%	4881

HTTP://PDG.LBL.GOV

Page 184

$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2	2.4 ±1.2)	$\times 10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1	0	\times 10 ⁻³	90%	4808
$4\pi^{+}4\pi^{-}$	< 8	}	$\times 10^{-5}$	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2	.1	\times 10 ⁻³	90%	4850
$J/\psiJ/\psi$	< 7	•	\times 10 ⁻⁵	90%	3836
$J/\psi\psi(2S)$	< 1		\times 10 ⁻⁴	90%	3571
$\psi(2S)\psi(2S)$	< 3	3.1	\times 10 ⁻⁵	90%	3273
$J/\psi(1S)$ anything	< 2	1.3	\times 10 ⁻³	90%	_

 $\chi_{b1}(1P)^{[yyaa]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \; \text{MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction	(Γ_i/Γ)	Confidence level	p (MeV/ c)
$\gamma \gamma \gamma (1S)$	(35.2	±2.0) %		423
$D^0 X$	(12.6	\pm 2.2) %		_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	(2.0	$\pm 0.6) \times 1$	0^{-4}	4892
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}$	(1.3	\pm 0.5) $ imes$ 1	0^{-4}	4892
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 6	\times 1	0^{-4} 90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	(8.0	$\pm 2.5) \times 1$	0^{-4}	4921
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(1.5	\pm 0.5) $ imes$ 1	0^{-4}	4878
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	(3.5	\pm 1.2) $ imes$ 1	0^{-4}	4863
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	(8.6	\pm 3.2) \times 1	0^{-4}	4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	(9.3	\pm 3.3) \times 1	0^{-4}	4844
$3\pi^{+}3\pi^{-}$	(1.9	\pm 0.6) \times 1	0^{-4}	4921
$3\pi^{+}3\pi^{-}2\pi^{0}$		$\pm 0.5) \times 1$		4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.6	$\pm 0.8) \times 1$	0^{-4}	4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(7.5	$\pm 2.6) \times 1$	0^{-4}	4825
$4\pi^+4\pi^-$	(2.6	\pm 0.9) \times 1	0^{-4}	4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.4	$\pm 0.6) \times 1$	0^{-3}	4867
ω anything	(4.9	$\pm 1.4)$ %		_
ωX_{tetra}	< 4.44	\times 1	0^{-4} 90%	_
$J/\psiJ/\psi$	< 2.7	\times 1	0^{-5} 90%	3857
$J/\psi \psi(2S)$	< 1.7	\times 1	0^{-5} 90%	3594
$\psi(2S)\psi(2S)$	< 6	\times 1	0^{-5} 90%	3298
$J/\psi(1S)$ anything	< 1.1	\times 1	0^{-3} 90%	_
$J/\psi(1S)X_{tetra}$	< 2.27	× 1	0 ⁻⁴ 90%	

$$h_b(1P)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m=9899.3\pm0.8~\mathrm{MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta_b(1S)\gamma$	(52 ⁺⁶ ₋₅) %	488

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \; \text{MeV}$

x _{b2} (1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	(18.0 ± 1.0) %		442
$D^0 X$	< 7.9 %	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	$(8 \pm 5) \times 10$	₎ —5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10	90%	4901
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10$)-4	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10$)-4	4931
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(1.1\pm0.4)\times10$)-4	4888
$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(2.1\pm0.9)\times10$)-4	4872
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(3.9\pm1.8)\times10$)-4	4855
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 5 × 10	90%	4854
$3\pi^+3\pi^-$	$(7.0\pm3.1)\times10$	₎ —5	4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10$	₎ –3	4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 8 × 10	o ⁻⁵ 90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.6\pm1.5)\times10$)-4	4835
$4\pi^+4\pi^-$	$(8 \pm 4) \times 10$	₎ —5	4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10$	₎ —3	4877
$J/\psiJ/\psi$	< 4 × 10	90%	3869
$J/\psi\psi(2S)$	< 5 × 10	₀ -5 90%	3608
$\psi(2S)\psi(2S)$	< 1.6 × 10	90%	3313
$J/\psi(1S)$ anything	$(1.5\pm0.4)\times10$	₎ –3	

T(2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

Mass $m=10023.4\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=31.98\pm2.63$ keV

T(2S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor Confidence leve	
$\Upsilon(1S)\pi^+\pi^-$	(17.85 ± 0.26) %	ı	475
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4) %		480
$\tau^+\tau^-$	$(2.00\pm~0.21)~\%$	1	4686
$\mu^+\mu^-$	$(1.93\pm~0.17)~\%$	S=2.	2 5011
e^+e^-	($1.91\pm~0.16$) %		5012
$\Upsilon(1S)\pi^0$	< 4 ×	10^{-5} CL=90%	6 531
$\Upsilon(1S)\eta$	(2.9 \pm 0.4) \times		126
$J/\psi(1\mathcal{S})$ anything		10^{-3} CL=90%	6 4533
$J/\psi(1S)\eta_{m c}$		10^{-6} CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4 ×	10^{-6} CL=90%	6 3808
$J/\psi(1S)\chi_{c1}$		10^{-6} CL=90%	3765
$J/\psi(1S)\chi_{c2}$		10^{-6} CL=90%	3745
$J/\psi(1S)\eta_c(2S)$		10^{-6} CL=90%	6 3707
$J/\psi(1S)X(3940)$		10^{-6} CL=90%	3555
$J/\psi(1S)X(4160)$		10^{-6} CL=90%	₆ 3442
χ_{c1} anything	(2.2 \pm 0.5) \times		_
$\chi_{c1}(1P)^0 X_{tetra}$		10^{-5} CL=90%	б —
χ_{c2} anything	(2.3 \pm 0.8) \times	_	_
$\psi(2S)\eta_c$		10^{-6} CL=90%	
$\psi(2S)\chi_{c0}$		10^{-6} CL=90%	3536
$\psi(2S)\chi_{c1}$		10^{-6} CL=90%	
$\psi(2S)\chi_{c2}$		10^{-6} CL=90%	
$\psi(2S)\eta_c(2S)$		10^{-6} CL=90%	
$\psi(2S)X(3940)$		10^{-6} CL=90%	
$\psi(2S)X(4160)$		10^{-6} CL=90%	
$T_{c\overline{c}1}(3900)^+ T_{c\overline{c}1}(3900)^-$		10^{-6} CL=90%	
$T_{c\overline{c}1}(4200)^+ T_{c\overline{c}1}(4200)^-$		10^{-5} CL=90%	
$T_{c\overline{c}1}(3900)^{\pm} T_{c\overline{c}1}(4200)^{\mp}$		10^{-6} CL=90%	
$T_{c\overline{c}}(4050)^+ T_{c\overline{c}}(4050)^-$		10^{-5} CL=90%	
$T_{c\overline{c}}(4250)^+ T_{c\overline{c}}(4250)^-$		10^{-5} CL=90%	
$T_{c\overline{c}}(4050)^{\pm}T_{c\overline{c}}(4250)^{\mp}$	< 2.72 ×		
$T_{c\overline{c}1}(4430)^+ T_{c\overline{c}1}(4430)^-$		10^{-5} CL=90%	
$T_{c\overline{c}}(4055)^{\pm} T_{c\overline{c}}(4055)^{\mp}$	< 1.11 ×		
$T_{c\overline{c}}(4055)^{\pm} T_{c\overline{c}1}(4430)^{\mp}$	< 2.11 ×		
2H anything	$(2.78^{+}_{-0.26}) \times$		2 –
hadrons	(94 ± 11) %		_
ggg	$(58.8 \pm 1.2)\%$		_
γgg	(1.87 ± 0.28) %	_	_
$\phi K^+ K^-$	(1.6 \pm 0.4) \times	_	4910
$\omega \pi^+ \pi^-$	< 2.58 ×	_	
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.3 \pm 0.7) \times	10-0	4952

$\phi f_2'(1525)$	< 1.33	$\times10^{-6}$	CL=90%	4843	
$\omega \bar{f_2}(1270)$	< 5.7	$\times10^{-7}$	CL=90%	4899	
$\rho(770) a_2(1320)$	< 8.8	\times 10 ⁻⁷	CL=90%	4894	
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	(1.5 ± 0	$0.6) \times 10^{-6}$		4869	
$K_1(1270)^{\pm} \bar{K}^{\mp}$	< 3.22	\times 10 ⁻⁶	CL=90%	4921	
$K_1(1400)^{\pm} K^{\mp}$	< 8.3	\times 10 ⁻⁷	CL=90%	4901	
$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	\times 10 ⁻⁷	CL=90%	4935	
$\rho\pi$	< 1.16	\times 10 ⁻⁶	CL=90%	4981	
$\pi^{+}\pi^{-}\pi^{0}$	< 8.0	$\times 10^{-7}$	CL=90%	5007	
$\omega \pi^0$	< 1.63	$\times 10^{-6}$	CL=90%	4980	
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$		$(0.28) \times 10^{-5}$		5002	
$K_{5}^{0}K^{+}\pi^{-}+\text{c.c.}$	•	$(0.33) \times 10^{-6}$		4979	
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$		$\times 10^{-6}$	CL=90%	4959	
$K^*(892)^- K^+ + \text{c.c.}$		$\times 10^{-6}$	CL=90%	4960	
$f_1(1285)$ anything		1.6) \times 10 ⁻³		_	
$f_1(1285)X_{tetra}$		$\times 10^{-5}$	CL=90%	_	
$D_s^+ D_{s1}(2536)^-$, $D_{s1}^- \to$	(1.6 ± 0)	$0.4) \times 10^{-5}$		_	
$K^-D^*(2007)^0$					
$D_s^+ D_{s1}(2536)^-, \ D_{s1}^- o$	(8.4 ± 2)	$2.3) \times 10^{-6}$		_	
$K_S^0 D^*(2010)^-$					
$D_{s}^{*+}D_{s1}(2536)^{-}, D_{s1}^{-} \rightarrow$	(1.4 \pm ($0.4) \times 10^{-5}$		_	
$K^-D^*(2007)^0$					
$D_s^{*+}D_{s1}(2536)^{-}, D_{s1}^{-} \rightarrow$	(8.2 ± 3)	$3.1) \times 10^{-6}$		_	
$K_S^0 D^* (2010)^-$					
$D_s^+ D_{s2}^{*}(2573)^-, D_{s2}^{*-} \rightarrow$	(1.4 + ($0.4) \times 10^{-5}$		_	
$K^{-}D^{0}$	(2 ± (5.1) A 10			
$D_{s}^{+}D_{s2}^{*}(2573)^{-}, \ D_{s2}^{*-} ightarrow$	(6.9 ± 3	$3.0) \times 10^{-6}$		_	
$\kappa_{S}^{0}D^{-}$	(,			
$D_s^{*+}D_{s2}^*(2573)^-, D_{s2}^{*-} \rightarrow$	(O + F	$5) \times 10^{-6}$		_	
$S_s D_{s2}(2515)$, D_{s2}	(9) / 10			
$K^-D^0 \ D_s^{*+}D_{s2}^*(2573)^-, \ D_{s2}^{*-} o$	(5 + 6	$5) \times 10^{-6}$		_	
$K_S^0 D^-$	(0 ± 0	, , , 10			
Sum of 100 exclusive modes	(2.00 ± ($(0.30) \times 10^{-3}$		_	
Julii OI 100 EXCIUSIVE IIIOUES	(∠.90± (J.30) × 10		_	
Radiative decays					
$\gamma \chi_{b1}(1P)$	(6.9 ± 0	0.4) %		130	
$\gamma \chi_{b2}(1P)$	(7.15± (0.35) %		111	

$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4) %		130
$\gamma \chi_{b2}(1P)$	(7.15 ± 0.35	6) %		111
$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4) %		163
$\gamma f_0(1710)$	< 5.9	$\times 10^{-4}$	CL=90%	4862
$\gamma f_2'(1525)$	< 5.3	$\times 10^{-4}$	CL=90%	4897
$\gamma f_2(1270)$	< 2.41	$\times 10^{-4}$	CL=90%	4931
$\gamma \eta_c(1S)$	< 2.7	$\times 10^{-5}$	CL=90%	4568
$\gamma \chi_{c0}$	< 1.0	$\times 10^{-4}$	CL=90%	4430

HTTP://PDG.LBL.GOV

Page 188

$\gamma \chi_{c1}$	<	3.6	$\times 10^{-6}$	CL=90%	4397
$\gamma \chi_{c2}$	<	1.5	$\times 10^{-5}$	CL=90%	4381
$\gamma \chi_{c1}(3872)$	<	1.8	$\times 10^{-5}$	CL=90%	4264
$\gamma \chi_{c1}$ (3872), $\chi_{c1} ightarrow$	<	2.4	$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-\pi^0$ J/ ψ					
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	2.8	$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$	<	1.2	$\times 10^{-6}$	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	<	1.3	\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	($5.5 \begin{array}{c} + & 1.1 \\ - & 0.9 \end{array}$	$) \times 10^{-4}$	S=1.2	605
$\gamma \eta_{\it b}(1S) ightarrow \gamma$ Sum of 26 exclu-	<	3.7	$\times 10^{-6}$	CL=90%	_
sive modes			6		
$\gamma X_{b\overline{b}} \rightarrow \gamma Sum of 26 exclusive$	<	4.9	$\times 10^{-6}$	CL=90%	_
modes			1		
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$ [zzaa]	<	1.95		CL=95%	_
$\gamma A^0 ightarrow \gamma$ hadrons	<	8	$\times 10^{-5}$	CL=90%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	<	8.3	\times 10 ⁻⁶	CL=90%	_
Lepton Family number (LF) violating modes					

$$e^{\pm}\, au^{\mp}$$
 LF $<$ 3.2 \times 10⁻⁶ CL=90% 4854 $\mu^{\pm}\, au^{\mp}$ LF $<$ 3.3 \times 10⁻⁶ CL=90% 4854

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

was $\Upsilon(1D)$

Mass $m = 10163.7 \pm 1.4 \; \text{MeV} \quad (S = 1.7)$

$ au_2$ (1 D) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \Upsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 10232.5 \pm 0.4 \pm 0.5 \; \text{MeV}$

$\chi_{b0}(2P)$ DECAY MODES	Fraction (Γ_{j})	·/Γ) Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \ \varUpsilon(2S)$	$(1.38\pm0.$	30) %		207
$\gamma \ \varUpsilon(1S)$	$(3.8 \pm 1.$	7) \times 10 ⁻³		743
$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	< 3.4	\times 10 ⁻⁵	90%	5064
HTTP://PDG.LBL.GOV	Page 189	Created:	4/24/2025	5 13:07

$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻⁵	90%	5063
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10 ⁻⁴	90%	5092
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	< 1.5	\times 10 ⁻⁴	90%	5050
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5035
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	$\times 10^{-3}$	90%	5019
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	5018
$3\pi^{+}3\pi^{-}$	< 7	$\times 10^{-5}$	90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	$\times 10^{-3}$	90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	$\times 10^{-4}$	90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	$\times 10^{-4}$	90%	4999
$4\pi^+4\pi^-$	< 1.7	$\times 10^{-4}$	90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	\times 10 ⁻⁴	90%	5039

$$\chi_{b1}(2P)^{[yyaa]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m=10255.46\pm0.22\pm0.50$$
 MeV $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0$ MeV

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \Upsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$	134
$\gamma \ \varUpsilon(2S)$	(18.1 \pm 1.9) %	229
$\gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$	238
$D^0 X$	(8.8 ± 1.7) %	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$	5104
$2\pi^{+}2\pi^{-}$ K $^{+}$ K $^{-}$	$(10 \pm 4) \times 10^{-5}$	5062
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	$(5.5 \pm 1.8) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$	5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}$	(1.2 \pm 0.4) $ imes$ 10 ⁻⁴	5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$	5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$	5011
$4\pi^{+}4\pi^{-}$	$(1.7 \pm 0.6) \times 10^{-4}$	5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$	5051

$$h_b(2P)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

Mass $m = 10259.8 \pm 1.2 \text{ MeV}$

h _b (2P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
hadrons	not seen	_
$\eta_b(1S)\gamma$	(22 ± 5) %	825
$\eta_b(2S)\gamma$	(48±13) %	257

$\chi_{b2}(2P)^{[yyaa]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

$\chi_{b2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)) Confid	ence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \Upsilon(1S)$	$(1.10^{+0.34}_{-0.30})$	%		194
$\gamma \ \varUpsilon(2S)$	(8.9 ± 1.2)	%		242
$\gamma \ \varUpsilon(1S)$	(6.6 ± 0.8)	%		776
$\pi \pi \chi_{b2}(1P)$	(5.1 ± 0.9)	$\times 10^{-3}$		229
$D^0 X$	< 2.4	%	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.1	$\times 10^{-4}$	90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	$\times 10^{-5}$	90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	$\times10^{-4}$	90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1.6)	$\times10^{-4}$		5110
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(9 ± 4)	$\times 10^{-5}$		5068
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	(2.4 ± 1.1)	$\times 10^{-4}$		5054
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	(4.7 ± 2.3)	$\times 10^{-4}$		5037
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 4	$\times 10^{-4}$	90%	5036
$3\pi^{+}3\pi^{-}$	(9 ± 4)	$\times 10^{-5}$		5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 ± 0.4)	$\times 10^{-3}$		5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 ± 0.7)	$\times 10^{-4}$		5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2 ± 1.7)	$\times 10^{-4}$		5017
$4\pi^{+}4\pi^{-}$	(9 ±5)	$\times 10^{-5}$		5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 ± 0.5)			5058

T(35)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.1\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=20.32\pm1.85$ keV

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 191

au(3S) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level		
$\gamma(2S)$ anything	(10.6 ± 0.8) %		296	
$\Upsilon(2S)\pi^+\pi^-$	(2.82± 0.18) %	S=1.6	176	
$\Upsilon(2S)\pi^0\pi^0$	(1.85 ± 0.14) %		190	
$\Upsilon(2S)\gamma\gamma$	$(5.0 \pm 0.7)\%$		326	
$\Upsilon(2\dot{S})\pi^{0}$	< 5.1 ×	10 ⁻⁴ CL=90%	298	
$\Upsilon(1S)\pi^+\pi^-$	(4.37 ± 0.08) %		813	
$\Upsilon(1S)\pi^0\pi^0$	($2.20\pm~0.13)~\%$		816	
$\Upsilon(1S)\eta$		10 ⁻⁴ CL=90%	677	
$\Upsilon(1S)\pi^0$	< 7 ×	10^{-5} CL=90%	846	
$h_b(1P)\pi^0$	< 1.2 ×	10^{-3} CL=90%	426	
$h_b(1P)\pi^0 o \gamma \eta_b(1S)\pi^0$	(4.3 \pm 1.4) \times		_	
$h_b(1P)\pi^+\pi^-$	< 1.2 ×	10 ⁻⁴ CL=90%	352	
$\tau^+\tau^-$	$(2.29\pm~0.30)~\%$		4863	
$\mu^+\mu^-$	$(2.18\pm\ 0.21)\%$	S=2.1	5176	
e^+e^-	(2.18± 0.20) %		5178	
hadrons	$(93 \pm 12)\%$		_	
ggg	$(35.7 \pm 2.6)\%$	2	_	
$\frac{\gamma g}{2\pi}g$	(9.7 \pm 1.8) \times	_	_	
$\overline{^2H}$ anything	($2.33\pm~0.33)$ $ imes$	10-5	_	
R	adiative decays			
$\gamma \chi_{b2}(2P)$	(13.1 \pm 1.6) %	S=3.4	86	
$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) %	S=2.4	99	
$\gamma \chi_{b0}(2P)$	(5.9 ± 0.6) %	S=1.4	122	
$\gamma \chi_{b2}(1P)$	(10.0 \pm 1.0) \times	10^{-3} S=1.7	433	
$\gamma \chi_{b1}(1P)$	$(9 \pm 5) \times$		452	
$\gamma \chi_{b0}(1P)$	(2.7 \pm 0.4) \times	10^{-3}	484	
$\gamma \eta_b(2S)$	< 6.2 ×		350	
$\gamma \eta_b(1S)$	(5.1 ± 0.7) $ imes$		912	
$\gamma A^0 \rightarrow \gamma$ hadrons		10^{-5} CL=90%	_	
		10^{-4} CL=95%	_	
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$		10^{-6} CL=90%	_	
$\gamma A^0 \rightarrow \gamma \tau^+ \tau^-$	$[bbbb] < 1.6 \times$	10^{-4} CL=90%	_	
Lepton Family number (LF) violating modes				
$e^{\pm} au^{\mp}$ LF	< 4.2 ×	10 ⁻⁶ CL=90%	5025	
	< 3.6 ×	10 ⁻⁷ CL=90%	5177	
$\mu^{\pm} \tau^{\mp}$ LF	< 3.1 ×	10 ⁻⁶ CL=90%	5025	

$$\chi_{b1}(3P)^{[yyaa]}$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

J needs confirmation.

Mass $m=10513.4\pm0.7~\mathrm{MeV}$

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma(1S)\gamma$	seen	1000
Υ (2 S) γ	seen	479
$\Upsilon(3S)\gamma$	seen	157

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

J needs confirmation.

Mass $m = 10524.0 \pm 0.8 \text{ MeV}$

$\chi_{b2}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(3S)\gamma$	seen	168

T(45)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

also known as $\Upsilon(10580)$

Mass $m=10579.4\pm1.2~\mathrm{MeV}$

Full width $\Gamma=20.5\pm2.5~\text{MeV}$

au(4 s) DECAY MODES	Fraction (Γ_i/Γ)	Confiden	ce level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	(51.4 ± 0.6)) %		331
D_s^+ anything $+$ c.c.	(17.8 ± 2.6)) %		_
$B^0\overline{B}{}^0$	(48.6 ± 0.6)) %		326
$J/\psi K_S^0 + (J/\psi, \eta_c) K_S^0$	< 4	\times 10 ⁻⁷	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	(1.57 ± 0.08	$) \times 10^{-5}$		5290
$ ho^+ ho^-$	< 5.7	\times 10 ⁻⁶	90%	5233
$K^*(892)^0 \overline{K}{}^0$	< 2.0	$\times 10^{-6}$	90%	5240
$J/\psi(1S)$ anything	< 1.9	\times 10 ⁻⁴	95%	_
D^{*+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0.6) %		5240
$\phi \eta$	< 1.8	\times 10 ⁻⁶	90%	5226
$\phi \eta'$	< 4.3	\times 10 ⁻⁶	90%	5196

$ ho\eta$	< 1.3	\times 10 ⁻⁶	90%	5247
$ ho\eta'$	< 2.5	$\times 10^{-6}$	90%	5217
$\varUpsilon(1S)$ anything	< 4	$\times10^{-3}$	90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	(8.2 ±0.	4) \times 10 ⁻⁵		1026
$\varUpsilon(1S)\eta$	(1.81±0.	$18) \times 10^{-4}$		924
$\Upsilon(1S)\eta'$	($3.4 \pm 0.$	9) $\times 10^{-5}$		_
\varUpsilon (2 S) $\pi^+\pi^-$	(8.2 ±0.	8) $\times 10^{-5}$		468
$h_b(1P)\pi^+\pi^-$	not seen			600
$h_b(1P)\eta$	(2.18±0.	$21) \times 10^{-3}$		390
$\eta_b(1S)\omega$	< 1.8	\times 10 ⁻⁴	90%	_
$\overline{^2H}$ anything	< 1.3	\times 10 ⁻⁵	90%	_
D	ouble Radiative Dec	ays		
$\gamma \gamma \Upsilon(D) \rightarrow \gamma \gamma \eta \Upsilon(1S)$	< 2.3	\times 10 ⁻⁵	90%	_

T(10860)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10885.2^{+2.6}_{-1.6}$ MeV Full width $\Gamma=37\pm4$ MeV

au(10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})\%$,)	_
$B\overline{B}$	(5.5 ± 1.0) %		1322
$B\overline{B}^* + \text{c.c.}$	$(13.7 \pm 1.6)\%$)	_
$B^*\overline{B}^*$	(38.1 ± 3.4) %)	1127
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	1015
$B\overline{B}\pi$	(0.0 ± 1.2) %)	1015
$B^* \overline{B} \pi + B \overline{B}^* \pi$	$(7.3 \pm 2.3)\%$)	_
$B^*\overline{B}^*\pi$	(1.0 ± 1.4) %))	739
$B\overline{B}\pi\pi$	< 8.9 %	90%	550
$B_s^{(*)} \overline{B}_s^{(*)} $ $B_s \overline{B}_s$	(20.1 ± 3.1) %)	904
$B_s \overline{B}_s$	$(5 \pm 5) \times$	10^{-3}	904
$B_s \overline{B}_s^* + \text{c.c.}$	$(1.35\pm0.32)\%$)	_
$B_s^*\overline{B}_s^*$	(17.6 ± 2.7) %	•	543
no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array})\%$		_
e^+e^-	(8.3 ± 2.1) \times	10^{-6}	5443
$K^*(892)^0\overline{K}^0$	< 1.0 ×	10^{-5} 90%	5395
\varUpsilon (1S) $\pi^+\pi^-$	(5.3 \pm 0.6) $ imes$	10^{-3}	1306
$\Upsilon(1S)\eta$	(8.5 ± 1.7) $ imes$	10^{-4}	1229
$\Upsilon(1S)\eta'$	< 6.9 ×	10^{-5} 90%	985
$\varUpsilon(2S)\pi^+\pi^-$	(7.8 ± 1.3) $ imes$		783
$\Upsilon(2S)\eta$	(4.1 ± 0.6) $ imes$	10 ⁻³	639

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 194

Υ (3 S) $\pi^+\pi^-$	($4.8 \begin{array}{c} +1.9 \\ -1.7 \end{array}$	$(7) \times 10^{-3}$		440
$\Upsilon(1S) K^+ K^-$	(6.1 ±1.8	$3) \times 10^{-4}$		959
$\eta \Upsilon_J(1D)$	(4.8 ±1.1	$1) \times 10^{-3}$		_
$h_b(1P)\pi^+\pi^-$	($3.5 \begin{array}{c} +1.0 \\ -1.3 \end{array}$	$(3) \times 10^{-3}$		903
$h_b(2P)\pi^+\pi^-$	($5.7 \begin{array}{c} +1.7 \\ -2.1 \end{array}$	$(1) \times 10^{-3}$		544
$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	(2.5 ± 2.3	$3) \times 10^{-3}$		894
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	<	6.3	$\times 10^{-3}$	90%	894
$\chi_{b0}(1P)\omega$	<	3.9	$\times 10^{-3}$	90%	631
$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	<	4.8	$\times 10^{-3}$	90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.85 ± 0.3	$(33) \times 10^{-3}$		861
$\chi_{b1}(1P)\omega$	(1.57 ± 0.3	$30) \times 10^{-3}$		582
$\chi_{b1}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	(5.2 ± 1.9	$9) \times 10^{-4}$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.17 ± 0.3	$30) \times 10^{-3}$		841
$\chi_{b2}(1P)\omega$	(6.0 ± 2.7	7) $\times 10^{-4}$		552
$\chi_{b2}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	(6 ± 4	$) \times 10^{-4}$		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	<	3.8	$\times10^{-5}$	90%	_
$\eta_b(1S)\omega$	<	1.3	$\times10^{-3}$	90%	1177
$\eta_b(2S)\omega$	<	5.6	$\times 10^{-3}$	90%	399

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

ϕ anything	$(13.8 \begin{array}{c} +2.4 \\ -1.7 \end{array})\%$
D^0 anything $+$ c.c.	(112 ± 6) %
D_s anything $+$ c.c.	(44.7 ±2.6) % —
J/ψ anything	(2.06±0.21) % –
B^0 anything $+$ c.c.	(77 ±8) % —
B^+ anything $+$ c.c.	(72 ±6) % -

γ(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 4/24/2025 13:07

Mass $m=11000\pm 4$ MeV Full width $\Gamma=24^{+8}_{-6}$ MeV

τ (11020) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
e^+e^-	$(5.4^{+1.9}_{-2.1}) \times 10^{-6}$	5500
$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	$(9 \begin{array}{c} +9 \\ -8 \end{array}) \times 10^{-3}$	1007
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	975
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	956

OTHER MESONS

 $T_{c\overline{c}1}(3900)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

was $Z_c(3900)$, X(3900)

Mass
$$m=3887.1\pm2.6$$
 MeV (S = 1.7) Full width $\Gamma=28.4\pm2.6$ MeV

$T_{c\overline{c}1}$ (3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\pi$	seen	699
$h_c \pi^{\pm}$	not seen	318
$\eta_c \pi^+ \pi^-$	not seen	758
$\eta_c(1S) \rho(770)^{\pm}$	seen	_
$(D\overline{D}_{\cdot}^{*})^{\pm}$	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	152
$D^{-}D^{*0}$ + c.c.	seen	143
$\omega \pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	510
$D^{+}D^{*-}$ + c.c	seen	_
$D^0\overline{D}^{*0}+$ c.c	seen	_

 $T_{c\overline{c}}(4020)$

$$I^{G}(J^{PC}) = 1^{+}(?^{?-})$$

was X(4020)

Mass
$$m=4024.1\pm1.9~\text{MeV}$$

Full width $\Gamma=13\pm5~\text{MeV}~(S=1.7)$

$T_{c\overline{c}}$ (4020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$ $D^*\overline{D}^*$	seen	450
$D^*\overline{D}^*$	seen	85
$D\overline{D}^*+$ c.c.	not seen	542
$\eta_c \pi^+ \pi^-$	not seen	872
$J/\psi(1S)\pi^\pm$	not seen	811

 $T_{c\overline{c}1}(4430)^+$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

G, C need confirmation.

was $Z_c(4430)$, $X(4430)^{\pm}$

Quantum numbers not established.

Mass $m=4478^{+15}_{-18}~{\rm MeV}$ Full width $\Gamma=181\pm31~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 196

$T_{c\overline{c}1}$ (4430) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

$T_{b\overline{b}1}(10610)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

was $Z_b(10610)$, X(10610)

Mass $m=10607.2\pm2.0~{
m MeV}$ Mass $m=10609\pm6~{
m MeV}$ Full width $\Gamma=18.4\pm2.4~{
m MeV}$

$T_{b\overline{b}1}$ (10610) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Upsilon(1S)\pi^+$	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
$\Upsilon(1S)\pi^0$	not seen	1077
$\Upsilon(2S)\pi^+$	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(2S)\pi^0$	seen	552
$\Upsilon(3S)\pi^+$	$(2.1^{+0.8}_{-0.6})\%$	207
$\Upsilon(3S)\pi^0$	seen	210
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^+ \overline{B}{}^0$	not seen	504
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^{0}$	$(85.6^{+2.1}_{-2.9})$ %	_

$T_{b\overline{b}1}(10650)^{+}$

$$I^G(J^{PC}) = 1^+(1^+)$$

I, G, C need confirmation.

was $Z_b(10650)$, $X(10650)^{\pm}$

Mass $m=10652.2\pm1.5~{\rm MeV}$ Full width $\Gamma=11.5\pm2.2~{\rm MeV}$

 $T_{b\overline{b}1}(10650)^-$ decay modes are charge conjugates of the modes below.

$T_{b\overline{b}1}$ (10650) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
\varUpsilon (1S) π^+	$(1.7^{+0.8}_{-0.6}) \times 10^{-3}$	1117
$\Upsilon(2S)\pi^+$	$(1.4^{+0.6}_{-0.4})\%$	595
HTTP·//PDG I BL GOV	Page 197 Creat	ed: 4/24/2025 13:07

$\Upsilon(3S)\pi^+$	$(1.6^{+0.7}_{-0.5})\%$	259
$h_b(1P)\pi^+$	$(8.4^{+2.9}_{-2.4})\%$	714
$h_b(2P)\pi^+$	(15 ±4) %	360
$B^+ \overline{B}{}^0$	not seen	703
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^0$	not seen	_
$B^{*+}\overline{B}^{*0}$	$(74 \begin{array}{cc} +4 \\ -6 \end{array})\%$	120

NOTES

- [a] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^\pm Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Forbidden by angular momentum conservation.
- [f] C parity forbids this to occur as a single-photon process.
- [g] As measured in $e^+e^- \rightarrow \rho^0$.
- [h] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [i] Our estimate. See the Particle Listings for details.
- [j] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [k] See also the $\omega(1650)$.
- [/] See also the $\omega(1420)$.
- [n] See the note in the K^{\pm} Particle Listings.
- [o] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [p] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [q] For more details and definitions of parameters see the Particle Listings.
- [r] See the K^{\pm} Particle Listings for the energy limits used in this measurement.
- [s] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [t] Structure-dependent part.
- [u] Direct-emission branching fraction.
- [v] Violates angular-momentum conservation.
- [x] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [y] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= \left| \eta_{+-} \right| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon \; + \; \epsilon' \\ \eta_{00} &= \left| \eta_{00} \right| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon \; - \; 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \; , \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \; \mathrm{viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \; , \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \; . \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $Re(\eta_{+-0}) \simeq 0$ and $Re(\eta_{000}) \simeq 0$.

- [z] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [aa] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [bb] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [cc] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_L^0 \to \pi^+\pi^-\gamma({\sf DE})$.
- [dd] See the K_L^0 Particle Listings for the energy limits used in this measurement.

- [ee] Allowed by higher-order electroweak interactions.
- [ff] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [gg] See our minireview under the $K_2(1770)$ in the 2004 edition of this Review.
- [hh] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [ii] See the Particle Listings for the (complicated) definition of this quantity.
- [jj] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [kk] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [//] See the listings under " $D \to K\pi\pi\pi$ partial wave analyses" and our 2008 Review (Physics Letters **B667** 1 (2008)) for measurements of submodes of this mode.
- [nn] The unseen decay modes of the resonances are included.
- [oo] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [pp] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [qq] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [rr] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [ss] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [tt] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [uu] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.17 \pm 0.17 %.
- [vv] This is a doubly Cabibbo-suppressed mode.
- [xx] Submodes of the $D^0 oup K^0_S \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.

- [yy] This branching fraction includes all the decay modes of the resonance in the final state.
- [zz] This limit assumes the average of B($D^0 \to K^- e^+ \nu_e$) and B($D^0 \to K^- \mu^+ \nu_\mu$) for the B($D^0 \to K^- \ell^+ \nu_\ell$) value.
- [aaa] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an $\eta,~\eta',~\phi,~K^0$, or K^{*0} is 5.99 \pm 0.31 %.
- [bbb] This fraction includes η from η' decays.
- [ccc] The sum of our exclusive η' fractions $\eta' e^+ \nu_e$, $\eta' \mu^+ \nu_\mu$, $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ is $11.8 \pm 1.6\%$.
- [ddd] This branching fraction includes all the decay modes of the final-state resonance.
- [eee] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [fff] We decouple the $D_s^+ o \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ o \phi \pi^+$, $\phi o K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ o K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi o K^+ K^-$ branching fraction 0.491.
- [ggg] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [hhh] An ℓ indicates an e or a μ mode, not a sum over these modes.
 - [iii] An $CP(\pm 1)$ indicates the $CP{=}{+}1$ and $CP{=}{-}1$ eigenstates of the $D^0{-}\overline{D}{}^0$ system.
 - [jjj] D denotes D^0 or \overline{D}^0 .
- [kkk] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
 - [III] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [nnn] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- [ooo] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [ppp] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [qqq] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- [rrr] B^0 and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.

- [sss] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [ttt] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)
- $[uuu] \Theta(1540)^+$ denotes a possible narrow pentaguark state.
- [vvv] ψ_{DS} is a GeV-scale dark sector antibaryon (mass range 1–4 GeV/c²).
- [xxx] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [yyy] These values are model dependent.
- [zzz] Here "anything" means at least one particle observed.
- [aaaa] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [bbaa] D^{**} stands for the sum of the $D(1\,{}^{1}\!P_{1})$, $D(1\,{}^{3}\!P_{0})$, $D(1\,{}^{3}\!P_{1})$, $D(1\,{}^{3}\!P_{2})$, $D(2\,{}^{1}\!S_{0})$, and $D(2\,{}^{1}\!S_{1})$ resonances.
- [ccaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [ddaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [eeaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [ffaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [ggaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [hhaa] For $E_{\gamma} > 100$ MeV.
- [iiaa] $\Theta(1540)$ is a hypothetical pentaquark state of 1.54 GeV/c² mass and a width of less than 25 MeV/c².
- [jjaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [kkaa] For a narrow state A with mass less than 960 MeV.
 - [IIaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [nnaa] For a dark photon U with mass between 100 and 2100 MeV.
- [ooaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [ppaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

[qqaa]
$$2m_ au < \mathsf{M}(au^+ au^-) < 9.2~\mathsf{GeV}$$

[rraa] 2 GeV
$$< m_{K^+K^-} < 3$$
 GeV

[ssaa]
$$X\overline{X} = \text{vectors with } m < 3.1 \text{ GeV}$$

[ttaa]
$$X$$
 and $\overline{X} = \text{zero spin with } m < 4.5 \text{ GeV}$

[uuaa] 1.5 GeV
$$< m_X <$$
 5.0 GeV

$$[vvaa] \ 201 \ {
m MeV} < {
m M}(\mu^+\mu^-) < 3565 \ {
m MeV}$$

[xxaa] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.

[yyaa] Spectroscopic labeling for these states is theoretical, pending experimental information.

[zzaa]
$$1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$$

[aabb] 1.5 GeV
$$< m_X <$$
 5.0 GeV

[bbbb] For $m_{\tau^+\,\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.