1. When we use Principal Components Regression we need to use all Principal Components of design matrix $\mathbf X$.

```
() True (X) False <u>Justification:</u> In PCR, it is not necessary to use all the principal components of the design matrix. We either use a screeplot or the percent of variation explained by the PCs to decide how many we want to keep.
```

2. The following output is obtained after calculating the principal components of the circumference measurements of the fat data set from the faraway library:

```
## Importance of components:
##
                            PC1
                                    PC2
                                            PC3
                                                    PC4
                                                            PC5
## Standard deviation 15.990 4.06584 2.96596 2.00044 1.69408 1.49881 1.30322
## Proportion of Variance 0.867 0.05605 0.02983 0.01357 0.00973 0.00762 0.00576
## Cumulative Proportion 0.867 0.92304 0.95287 0.96644 0.97617 0.98378 0.98954
                             PC8
                                     PC9
                                            PC10
## Standard deviation
                      1.25478 1.10955 0.52737
## Proportion of Variance 0.00534 0.00417 0.00094
## Cumulative Proportion 0.99488 0.99906 1.00000
```

According to this output the first 3 Principal Components explain 95.287 % of the total data variation (use 3 decimal places for your response).

Justification: We look at the cumulative proportion.

3. Based on the scree plot below, how many components would you choose?

We choose 4 components.

<u>Justification:</u> From the 5th component and on the scree plot begins to flatter. So, we choose 4 components, which is where we have the "elbow"

4.	In Lasso regression, the value of t in the constraint $\sum_j \beta_j \le t$ can be found using one of the following methods:
	() Maximum Likelihood () Least-Squares
	() Weighted Least-Squares
	(X) Cross-Validation
	$\underline{\textit{Justification:}}\ t$ is a tuning parameter, and its value is obtained using Cross-Validation.
5.	Shall we re-scale the original variables X_1, \ldots, X_p before performing Principal Component Analysis?
	(X) Yes () No
	$\underline{\textit{Justification:}} \ \text{We prefer to re-scale the original variables, specially when the magnitude of the different variables in the model is very different.}$
6.	What will happen when you apply very large penalty in case of Lasso?
	(X) Some of the coefficient will become zero.
	() Some of the coefficient will be approaching to zero but not absolute zero
	() Both A and B depending on the situation () None of these
	<u>Justification:</u> If the penalty is very high, then we choose models with less parameters which in
	other words mean that we force more coefficients to become zero.