Écritures fractionnaires

1) Égalité de quotients

A) Simplification de quotient

Règle: Si on multiplie ou si on divise le numérateur et le dénominateur d'un quotient par un même nombre non nul alors on obtient un quotient égal.

Pour tous nombres a, b et k où b et k sont non nuls :

$$\frac{a \cdot k}{b \cdot k} = \frac{a}{b}$$
 et $\frac{a \div k}{b \div k} = \frac{a}{b}$

Exemple 1: Simplifie le quotient $\frac{42}{-140}$

$$\frac{42}{-140} = -\frac{42}{140}$$

→ On détermine le signe du quotient.

$$\frac{42}{-140} = -\frac{3 \cdot 2 \cdot 7}{10 \cdot 7 \cdot 2}$$

 $\frac{42}{-140} = -\frac{3 \cdot 2 \cdot 7}{10 \cdot 7 \cdot 2}$ \rightarrow On cherche les facteurs communs à 42 et 140.

$$\frac{42}{-140} = -\frac{3}{10}$$

→ On simplifie le quotient.

Exemple 2: Détermine le nombre manquant dans l'égalité $\frac{-1,2}{6} = \frac{...}{18}$

$$\frac{-1,2}{6} = \frac{\dots}{18}$$

 \rightarrow Pour passer de 6 à 18, on multiplie par 3.

donc
$$\frac{-1,2}{6} = \frac{-3,6}{18}$$

→ Ainsi, pour trouver le nombre manquant,

- 1 -

on multiplie -1,2 par 3, ce qui donne -3,6.

B) Réduction de quotients au même dénominateur

Exemple 3: Réduis les quotients $\frac{2}{9}$ et $\frac{5}{12}$ au même dénominateur.

Multiple de 9: 9, 18, 27, 36, 45, 54, ...

Multiple de 12 : 12, 24, 36, 48, 60, ...

→ On cherche un multiple commun non nul aux dénominateurs (le plus petit possible).

Un multiple commun de 9 et 12 est 36. C'est aussi le plus petit.

$$\frac{2}{9} = \frac{2 \cdot 4}{9 \cdot 4} = \frac{8}{36} \text{ et } \frac{5}{12} = \frac{5 \cdot 3}{12 \cdot 3} = \frac{15}{36} \rightarrow \text{On détermine les écritures fractionnaires}$$

$$\text{ayant 36 pour dénominateur.}$$

Exemple 4: Compare les quotients $\frac{2}{7}$ et $\frac{3}{8}$

Les dénominateurs 7 et 8 n'ont aucun diviseur commun autre que 1.

Le plus petit multiple commun est $7 \cdot 8 = 56$, donc $\frac{2 \cdot 8}{7 \cdot 8} = \frac{16}{56}$ et $\frac{3 \cdot 7}{8 \cdot 7} = \frac{21}{56}$

Or
$$\frac{16}{56} < \frac{21}{56}$$

Donc
$$\frac{2}{7} < \frac{3}{8}$$

C) Produit en croix

<u>Propriétés</u>:

- Si deux nombres en écriture fractionnaire sont égaux alors leurs produits en croix sont égaux.
- Réciproquement, si les produits en croix de deux nombres en écriture fractionnaire sont égaux alors ces deux nombres sont égaux.

Pour tous nombres a, b, c et d où b et d sont non nuls :

$$\frac{a}{b} = \frac{c}{d}$$
 équivaut à $a \cdot d = b \cdot c$

<u>Remarque</u>: En particulier, pour démontrer que deux nombres en écriture fractionnaire ne sont pas égaux, il suffit de démontrer que leurs produits en croix ne sont pas égaux.

Exemple 5: Les nombres $\frac{2,1}{3,5} = \frac{4,1}{6,9}$ sont-ils égaux ? Justifie.

 $2,1\cdot 6,9=14,49$ et $3,5\cdot 4,1=14,35$ \rightarrow On calcule les produits en croix.

→ On les compare.

Donc
$$\frac{2,1}{3,5} \neq \frac{4,1}{6,9}$$

 \rightarrow Les produits en croix ne sont pas égaux

donc les nombres ne sont pas égaux.

Exemple 6 : Détermine le nombre manquant dans l'égalité $\frac{-1,2}{6} = \frac{...}{7}$

$$-1.2 \cdot 7 = 6 \cdot ?$$

→ On écrit l'égalité des produits en croix.

$$2 = -\frac{8.4}{6} = -1.4$$

ightarrow On trouve le nombre manquant.

2) Addition ou soustraction

<u>Règle</u>: Pour additionner (ou soustraire) des nombres en écriture fractionnaire ayant le même dénominateur, on additionne (ou on soustrait) les numérateurs et on garde le dénominateur commun.

Pour tous nombres a, b et c où b est non nul :

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

Exemple 7: Calcule l'expression $\frac{3}{5} + \frac{12}{5}$

<u>Remarque</u>: Si les nombres en écriture fractionnaire n'ont pas le même dénominateur, il faut les réduire au même dénominateur.

Exemple 8: Calcule l'expression
$$A = -1 + \frac{13}{30} - \frac{-11}{12}$$

Multiple de 30 : 30, 60, 90, 120, ...

→ On cherche le plus multiple commun non nul à

Multiple de 12: 12, 24, 36, 48, **60**, 72, ...

30 et 12.

$$A = \frac{-1 \cdot 60}{1 \cdot 60} + \frac{13 \cdot 2}{30 \cdot 2} + \frac{11 \cdot 5}{12 \cdot 5}$$

 $A = \frac{-1.60}{1.60} + \frac{13.2}{30.2} + \frac{11.5}{12.5}$ \rightarrow On détermine le signe de chaque quotient et on

réduit les quotients au même dénominateur 60.

$$A = \frac{-60}{60} + \frac{26}{60} + \frac{55}{60} = \frac{-60 + 26 + 55}{60}$$
 \rightarrow On additionne les numérateurs et on

garde le dénominateur.

$$A = \frac{21}{60} = \frac{7 \cdot 3}{20 \cdot 3} = \frac{7}{20}$$

→ On simplifie si possible.

3) Multiplication

Règle: Pour multiplier des nombres en écriture fractionnaire, on multiplie les numérateurs entre eux et les dénominateurs entre eux.

Pour tous nombres a, b, c et d où b et d sont non nuls :

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

Remarque: Si b=1, la formule devient $a \cdot \frac{c}{d} = \frac{a \cdot c}{d}$.

Exemple 9: Calcule l'expression $B = \frac{-35}{33} \cdot \frac{-39}{-80}$.

$$B = -\frac{35}{33} \cdot \frac{39}{80}$$

→ On détermine le signe du résultat.

$$B = -\frac{7 \cdot 5 \cdot 13 \cdot 3}{11 \cdot 3 \cdot 2 \cdot 5 \cdot 8}$$

 \rightarrow On cherche des facteurs communs.

$$B = -\frac{7 \cdot 13}{11 \cdot 2 \cdot 8}$$

→ On simplifie.

$$B = -\frac{91}{176}$$

→ On calcule.

4) Division de deux quotients

A) Inverse d'un nombre non nul

<u>Définition</u>: Deux nombres sont inverses l'un de l'autre si leur produit est égal à 1.

<u>Propriétés</u>:

- Tout nombre c non nul admet un inverse qui est le nombre $\frac{1}{c}$
- Tout nombre en écriture fractionnaire $\frac{a}{b}$ ($a \ne 0$ et $b \ne 0$) admet un inverse qui est le nombre $\frac{b}{a}$.

Remarques:

- Un nombre et son inverse ont toujours le même signe. En effet, leur produit (égal à 1)
 est positif et seul le produit de deux nombres de même signe est positif.
- Zéro est le seul nombre qui n'admet pas d'inverse. En effet, tout nombre multiplié par
 0 donne 0 et ne donnera jamais 1.

Exemple 10: Quels sont les inverses des nombres 3 et $\frac{-7}{3}$?

L'inverse de 3 est
$$\frac{1}{3}$$
. L'inverse de $\frac{-7}{3}$ est $\frac{1}{\frac{-7}{3}} = \frac{3}{-7} = \frac{-3}{7}$.

B) Diviser des quotients

 $\underline{\text{R\`egle}:} \ \textbf{Diviser} \ \textbf{par} \ \textbf{un nombre non nul} \ \text{revient \`a multiplier par l'inverse de ce nombre}.$

Pour tous nombres a, b, c et d où b, c et d sont non nuls :

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} \qquad \text{ou} \qquad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c}$$

Exemple 11: Calcule $C = \frac{-8}{7} \div \frac{5}{-3}$

 $C = +\left(\frac{8}{7} \div \frac{5}{3}\right)$

ightarrow On détermine le signe du résultat.

 $C = \frac{8}{7} \cdot \frac{3}{5}$

 \rightarrow On multiplie par l'inverse du 2 $^{\grave{e}^{me}}$ quotient.

 $C = \frac{8 \cdot 3}{7 \cdot 5}$

 \rightarrow On multiplie les fractions.

 $C = \frac{24}{35}$

→ On calcule.

Exemple 12 : Calcule D = $\frac{\frac{-32}{21}}{\frac{-48}{-35}}$ et donne le résultat en le simplifiant le plus possible.

 $D = -\frac{\frac{32}{21}}{\frac{48}{35}}$

→ On détermine le signe du résultat.

 $D = -\frac{32}{21} \cdot \frac{35}{48}$

ightarrow On multiplie par l'inverse du 2 $^{\grave{e}me}$ quotient.

 $D = -\frac{8 \cdot 2 \cdot 2 \cdot 7 \cdot 5}{7 \cdot 3 \cdot 3 \cdot 2 \cdot 8}$

 $\ensuremath{\rightarrow}$ On cherche des facteurs communs.

5) Priorités

Les règles des priorités s'appliquent aux calculs comportant des fractions.

Exemple 13:

 $E = \frac{4}{5} - \left(\frac{1}{2} + \frac{5}{2} \cdot \frac{1}{4}\right)$

ightarrow Lorsque le calcul comporte des parenthèses, on effectue

d'abord les calculs entre parenthèses en veillant aux priorités.

$$E = \frac{4}{5} - \left(\frac{1}{2} + \frac{5}{8}\right)$$

$$E = \frac{4}{5} - \frac{9}{8}$$

→ Lorsque le calcul ne comporte pas de parenthèses, on effectue en priorité divisions et multiplications puis les additions et soustractions.

$$E = -\frac{13}{40}$$

<u>Remarque</u>: On effectue d'abord les calculs au numérateur et au dénominateur avant de diviser.

Exemple 14:

F=