

Compléments sur les anneaux

ours		
1	Produ	uit d'anneaux
2		x d'un anneau commutatif
	2.1	Définition
	2.2	Idéaux de \mathbb{Z} , PGCD d'entiers
	2.3	Idéaux de $\mathbb{K}[X]$
	2.4	Divisibilité dans un anneau, idéal engendré par un élément
3	Algèb	· · · · · · · · · · · · · · · · · · ·
	3.1	Définition
	3.2	Exemples de référence
	3.3	Sous-algèbre
	3.4	Morphisme d'algèbre
ercice	es	
Exe	rcices e	t résultats classiques à connaître
		tence
Exe		
		lèmes d'entrainement

Je me souviens

- 1. Donner la définition d'anneau.
- 2. Donner des exemples d'anneaux
- 3. Qu'est-ce que le groupe des inversibles?
- 4. Qu'est-ce qu'un corps?
- 5. Quand dit-on qu'un anneau est intègre?
- $6. \ \ Qu'est-ce \ qu'un \ sous-anneau \,?$
- 7. Quelles sont les règles de calcul dans un anneau?
 - $a \times 0_A =$
 - $a \times (-1_A) =$
 - $a \times \left(\sum_{i=1}^{n} b_i\right) =$
 - $(a+b)^n =$
 - $a^n b^n =$
 - $(1_A a) \left(\sum_{k=0}^n a_k \right) =$.
- 8. Qu'est-ce qu'un morphisme d'anneaux ?
- 9. Et un isomorphisme d'anneaux?

1 Produit d'anneaux

Définition. Soit A, B deux anneaux. On munit $A \times B$ des lois internes :

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \times (x_2, y_2) = (x_1 \times x_2, y_1 \times y_2)$

pour tout $(x_1, y_1), (x_2, y_2) \in A \times B$.

Muni de ces lois, $(A \times B, +, \times)$ est un anneau appelé **anneau produit** de A et B.

Remarque.

- Cette définition se prolonge au cas d'un nombre fini d'anneaux.
- Un anneau produit n'est pas, en général, intègre.

Exemple. Soit A et B deux anneaux. Quels sont les inversibles de $A \times B$?

2 Idéaux d'un anneau commutatif

2.1 Définition

Remarque. Si $f:A\to B$ est un morphisme d'anneaux, son image $\mathrm{Im}\, f$ est un sous-anneau de B, mais son noyau $\mathrm{Ker}\, f$ n'est pas en général un sous-anneau de A.

Définition. Soit $(A, +, \times)$ un anneau commutatif. Une partie I de A est un idéal de A lorsque :

- I est un sous-groupe de A.
- I est absorbant, i.e. :

$$\forall a \in A, \ \forall x \in I, \ a \times x \in I$$

Théorème.

Si $f:A\to B$ est un morphisme d'anneaux commutatifs. Alors son noyau Ker f est un idéal de A.

Proposition. Si $a \in A$, alors aA est un idéal de A, qu'on appelle idéal engendré par a.

Remarque.

- On peut utiliser la notation (a) pour désigner aA, idéal engendré par a.
- Un idéal I pour lequel il existe a tel que I=aA est parfois qualifié de principal. Si tous les idéaux de A sont principaux, on qualifie l'anneau de principal. Ce vocabulaire n'est pas dans le programme officiel.

Exemple. Que dire d'un idéal qui contient 1_A ?

Exemple. Quels sont les idéaux d'un corps?

2.2 Idéaux de Z, PGCD d'entiers

Proposition. Les idéaux de $(\mathbb{Z}, +, \times)$ sont les $n\mathbb{Z}$, avec $n \in \mathbb{N}$.

Proposition. Soit $a, b \in \mathbb{Z}$. Alors :

$$(a) + (b) = a\mathbb{Z} + b\mathbb{Z} = \{au + bv, \ u, v \in \mathbb{Z}\}\$$

est un idéal de \mathbb{Z} .

Définition. Soit $a, b \in \mathbb{Z}$, non tous les deux nuls. Alors il existe un unique entier $d \in \mathbb{N}$, appelé **PGCD** de a et b, tel que :

$$(a) + (b) = (d)$$
 i.e. $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$

Notation.

- On note $a \wedge b$ le PGCD de a et b.
- La relation $au + bv = a \wedge b$ s'appelle **relation de Bézout**.

Proposition. Soit $a, b \in \mathbb{Z}$ deux entiers non nuls. Les diviseurs communs à a et b sont les diviseurs de $a \wedge b$.

Remarque. On retrouve la définition de première année : $a \wedge b$ est le plus grand (au sens de l'ordre naturel, au sens de la divisibilité) entier naturel qui divise à la fois A et B.

Définition. Soit $a_1, \ldots, a_n \in \mathbb{Z}$, non tous nuls. On appelle **PGCD** de a_1, \ldots, a_n l'unique $d \in \mathbb{N}$ tel que :

$$a_1\mathbb{Z} + \cdots + a_n\mathbb{Z} = d\mathbb{Z}$$

2.3 Idéaux de $\mathbb{K}[X]$

Proposition. Les idéaux de $(\mathbb{K}[X], +, \times)$ sont les $P\mathbb{K}[X] = \{PQ, Q \in \mathbb{K}[X]\}$, avec $P \in \mathbb{K}[X]$.

2.4 Divisibilité dans un anneau, idéal engendré par un élément

Définition. Soit $(A, +, \times)$ un anneau commutatif, $a, b \in A$. On dit que a divise b, et on note $a \mid b$, lorsqu'il existe $c \in A$ tel que b = ac, i.e. b est un multiple de a.

Remarque. $a \mid b \iff bA \subset aA$

<u>Définition.</u> Dans $(A, +, \times)$ anneau commutatif, pour $a, b \in A$, on dit que a et b sont **associés** si et seulement si $a \mid b$ et $b \mid a$, c'est-à-dire aA = bA.

Proposition.

- La relation $\hat{e}tre$ associés est une relation d'équivalence sur A.
- Lorsque A est intègre, a et b sont associés si et seulement s'il existe u inversible tel que a = ub.

3 Algèbre

3.1 Définition

Définition. Soit \mathbb{K} un corps. On dit que $(A, +, \times, \cdot)$ est une algèbre sur \mathbb{K} , ou \mathbb{K} -algèbre, lorsque :

- $(A, +, \times)$ est un anneau
- $(A, +, \cdot)$ est un K-espace vectoriel
- $\forall \lambda \in K, \ \forall a, b \in A, \ \lambda \cdot (a \times b) = (\lambda \cdot a) \times b = a \times (\lambda \cdot b).$

L'algèbre est **commutative** si \times l'est, **intègre** si l'anneau $(A, +, \times)$ l'est, **de dimension finie** si l'espace vectoriel $(A, +, \cdot)$ l'est.

3.2 Exemples de référence

Exemple.

- \mathbb{K}^n , muni de sa structure produit, est une algèbre sur \mathbb{K} .
- $\mathbb{K}[X]$, muni de ses lois usuelles, est une algèbre.
- $(\mathcal{M}_n(\mathbb{K}), +, \times, \cdot)$ est une algèbre.
- Pour E espace vectoriel sur \mathbb{K} , $(\mathcal{L}(E), +, \circ, \cdot)$ est une algèbre.
- Pour X ensemble quelconque, $\mathcal{F}(X,\mathbb{K}) = \mathbb{K}^X$, muni de ses opérations usuelles, est une algèbre.

3.3 Sous-algèbre

Définition. Soit $(A, +, \times, \cdot)$ une algèbre. Alors B est une sous-algèbre de A si et seulement si :

- B est un sous-anneau de $(A, +, \times)$
- B est un sous-espace vectoriel de $(A, +, \cdot)$

Proposition. B est une sous-algèbre de $(A, +, \times, \cdot)$ lorsque :

- $B \subset A$
- B stable par +
- \bullet B stable par passage à l'opposé
- $1_A \in B$
- B stable par \times
- ullet B stable par combinaisons linéaires

Exemple. L'ensemble $\mathcal{D}_n(\mathbb{K})$ des matrices diagonales est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$.

Exemple. L'ensemble $\mathcal{T}_n^s(\mathbb{K})$ des matrices triangulaires supérieures est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$.

3.4 Morphisme d'algèbre

<u>Définition</u>. Soit $(A, +, \times, \cdot), (B, +, \times, \cdot)$ deux algèbres sur \mathbb{K} et $f: A \to B$. On dit que f est un **morphisme** d'algèbres lorsque :

- f est un morphismes d'anneaux
- f est linéaire

Remarque. Pour vérifier que f est un morphisme d'algèbre, on vérifie que :

- $f(\lambda a + \mu b) = \lambda f(a) + \mu f(b)$
- $f(a \times b) = f(a) \times f(b)$
- $f(1_A) = 1_B$

Exemple. Soit $t \in \mathbb{K}$ fixé. L'application $P \mapsto P(t)$ est un morphisme d'algèbres entre $\mathbb{K}[X]$ et \mathbb{K} muni de leurs lois usuelles.

Remarque. On pourrait définir noyau et image d'un morphisme d'algèbres $A \to B$. L'image est une sous-algèbre de B, le noyau est un sous-espace vectoriel et un idéal de A, mais pas en général une sous-algèbre.

Exercices et résultats classiques à connaître

Nilpotence

12.1

Soit $(A, +, \times)$ un anneau. On dit que $x \in A$ est **nilpotent** lorsqu'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0_A$. On considère $x, y \in A$.

- (a) Montrer que, si x est nilpotent et que x et y commutent, alors xy est nilpotent.
- (b) Montrer que, si xy ets nilpotent, alors yx est nilpotent.
- (c) Montrer que, si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- (d) Montrer que, si x est nilpotent, alors $1_A x$ est inversible et préciser $(1_A x)^{-1}$.

$$\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, \ a, b \in \mathbb{Z}\}\$$

- (a) Montrer que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau.
- (b) On définit, pour $a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$:

$$N(a+b\sqrt{2}) = a^2 - 2b^2$$

Montrer que N est bien définie, à valeurs dans \mathbb{R} .

- (c) Montrer que, pour tout $x, y \in \mathbb{Z}[\sqrt{2}], N(xy) = N(x)N(y)$.
- (d) En déduire les inversibles de $\mathbb{Z}[\sqrt{2}]$.

12.3

On note:

$$\mathcal{D} = \left\{ \frac{n}{10^k} \text{ où } n \in \mathbb{Z} \text{ et } k \in \mathbb{N} \right\}$$

l'ensemble des nombres décimaux.

Montrer que \mathcal{D} est un sous-anneau de $(\mathbb{Q}, +, \times)$.

12.4

On note \mathcal{P} l'ensemble des nombres premiers. On se propose d'établir l'existence d'une correspondance bijective entre l'ensemble des sous-anneaux de $(\mathbb{Q}, +, \times)$ et l'ensemble des parties de \mathcal{P} .

Pour A un sous-anneau de \mathbb{Q} , on note :

$$P(A) = \left\{ p \in \mathcal{P} \text{ t.q. } \frac{1}{p} \in A \right\}$$

(a) Soit A, B deux sous-anneaux de \mathbb{Q} . Établir :

$$P(A) = P(B) \implies A = B$$

(b) Soit P un sous-ensemble de $\mathcal{P}.$ Déterminer un sous-anneau A de $\mathbb Q$ vérifiant :

$$P(A) = P$$

(c) Conclure.

12.5

Soit $(A,+,\times)$ un anneau commutatif. On note N(A) l'ensemble des éléments nilpotents de A, c'est-à-dire l'ensemble des $x\in A$ tels qu'il existe $n\in \mathbb{N}$, $x^n=0$. Montrer que N(A) est un idéal de A.

12.6

Soit A et B deux anneaux commutatifs, $f:A\to B$ un morphisme d'anneaux, et I un idéal de A. Est-ce que f(I) est un idéal?

Petits problèmes d'entrainement

12.7

- (a) Soit $A \subset \mathbb{C}$. Montrer qu'il existe un plus petit sous-corps de \mathbb{C} qui contient \mathbb{Q} et A. On le note $\mathbb{Q}(A)$.
- (b) Décrire le sous-corps $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Montrer que c'est un \mathbb{Q} -espace vectoriel de dimension 4.

12.8

Soit $(A, +, \times)$ un anneau commutatif, et I un idéal de cet anneau. On pose :

$$\sqrt{I} = \{ a \in A, \exists n \in \mathbb{N}, a^n \in I \}$$

- (a) Montrer que \sqrt{I} est un idéal de A.
- (b) Justifier que, pour tout I idéal de A, $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (c) Pour tout p premier et $\alpha \in \mathbb{N}^*$, montrer que $\sqrt{p^{\alpha}\mathbb{Z}} = p\mathbb{Z}$.
- (d) Plus généralement, si $n\geqslant 2$ se décompose en facteurs premiers sous la forme $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$, montrer que :

$$\sqrt{n\mathbb{Z}} = p_1 \dots p_k \mathbb{Z}$$

Compléments sur les anneaux

$$\forall x, y \in A, \ xy \in I \implies x \in I \text{ ou } y \in I$$

- (a) Donner un exemple d'idéal premier dans $\mathbb{Z}.$
- (b) Soit $P\in\mathbb{K}[X]$ un polynôme irréductible. Montrer que $P\cdot\mathbb{K}[X]$ est premier.
- (c) Soit J et K deux idéaux de A et I un idéal premier. Montrer que :

$$J \cap K = I \implies (J = I \text{ ou } K = I)$$

(d) Soit $(A, +, \times)$ un anneau commutatif dont tout idéal est premier. Établir que A est intègre puis que A est un corps.

Soit \mathcal{A} l'ensemble $\mathcal{C}^0([0,1],\mathbb{R})$.

- (a) Montrer que \mathcal{A} est un anneau pour les opérations usuelles. Est-il commutatif? Est-il intègre?
- (b) Soit $J \subset [0,1]$ et

$$\mathcal{A}_J = \{ f \in \mathcal{A} \text{ t.q. } \forall x \in J, \ f(x) = 0 \}$$

Montrer que A_J est un idéal de A.

Montrer que si $J=\{a\}$ est un singleton, cet idéal est maximal, c'est-àdire qu'il n'est inclus strictement dans aucun autre idéal strict de \mathcal{A} .