Note for Algebra I

lumi

General Term

Definition 1. Let A be some algebraic structure.

A is *simple* if there is no proper non-trivial normal substructure.

Module Theory

Lemma 1. If R is commutative, $\operatorname{Hom}_R(M,N)$ is an R-module.

Definition 2. $\operatorname{End}_R(M) = \operatorname{Hom}_R(M, M)$ is an endomorphism ring.

Definition 3. Annihilator $ann(m) = \{r \in R \mid rm = 0\}$

Lemma 2. $R/\operatorname{ann}(m) \simeq Rm$

Theorem 1. There is an abelian group denoted by $M \otimes_R N$ with an R-balanced map $\iota: M \times N \to M \otimes_R N$ with the following universal property: for any R-balanced map $\varphi: M \times N \to L$ for some $L \in (Ab)$, there is a unique group homomorphism $\tilde{\varphi}: M \otimes_R N \to L$ such that

commutes

Theorem 2. $M \otimes_R N \simeq M \times N/Q$ such that Q is generated by

- $(m_1 + m_2, n) (m_1, n) (m_2, n)$
- $(m, n_1 + n_2) (m, n_1) (m, n_2)$
- (mr, n) (m, rn)

Example. $R/I \otimes_R R/J = R/(I+j)$

Example. $R[t_1, \dots, t_r] = R \otimes_k k[t_1, \dots, t_r]$

Example. $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$

Theorem 3. For a commutative rings with unity, the tensor product is a push-out such that:

$$R \longrightarrow R_1$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_2 \longrightarrow R_1 \otimes_R R_2$$

Theorem 4. For $\phi: M \to M'$ and $\psi: N \to N'$, there is a unique homomorphism (of groups)

$$\phi \otimes \psi : M \otimes_R N \to M' \otimes_R N'$$

such that $(\phi \otimes \psi)(m \otimes n) = \phi(m) \otimes \psi(n)$.

Theorem 5. There is a natural isomorphism:

$$(M \otimes_R N) \otimes_T L \simeq M \otimes_R (N \otimes_T L)$$

Theorem 6.

$$(\bigoplus_i M_i) \otimes_R N \simeq \bigoplus_i (M_i \otimes_R N)$$

Theorem 7. Given an R-algebra $R \to S$,

$$S \otimes_R R^{\otimes n} \simeq S^{\oplus n}$$

Theorem 8.

$$R^m \otimes_R R^n = R^{mn}$$

Definition 4. Let R be a ring with unity, and M be a non-zero R-module.

- 1. M is irreducible (or simple), if there are no proper non-trivial submodule of M. Otherwise, M is reducible.
- 2. M is indecomposable if M is not of the form $M_1 \oplus M_2$ for non-zero submodules $M_1, M_2 \subseteq M$. Otherwise, M is called decomposable.
- 3. M is completely reducible if M is a direct sum of irreducible submodules.
- 4. Each direct summand of irreducible decomposition of M is called a constituent of M.

Theorem 9. If M is irreducible, it's indecomposable and completely reducible.

Homology

Definition 5. $A \xrightarrow{\varphi} B \xrightarrow{\psi} C$ of *R*-modules is called exact at *B* if $\ker \psi = \operatorname{im} \varphi$.

Definition 6. $A_{i+1} \xrightarrow{\varphi_{i+1}} A_i \xrightarrow{\varphi_i} A_{i-1}$ is called a complex of R-modules, if $\varphi_i \circ \varphi_{i+1} = 0$. The i-th homology is $H_i(A_{\bullet}) = \ker \varphi_i / \operatorname{im} \varphi_{i+1}$. A_{\bullet} is exact if all homology is zero.

Theorem 10. $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$ is (1) exact at A iff φ is injective, (2) exact at B iff ψ is surjective.

Definition 7. For $C \simeq A \oplus B$,

$$0 \to A \to C \to B \to 0$$

is a short exact sequence.

Theorem 11. For $0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$, TFAE: (1) it's split; (2) there is a homomorphism $s: C \to B$ such that $\psi \circ s = \mathrm{Id}_C$; (3) there is a homomorphism $p: B \to A$ such that $p \circ \varphi = \mathrm{Id}_A$;

Theorem 12. (Short Five Lemma) For a commutative diagram with exact rows:

If f and h are injective/surjective/isomorphisms, then so is g.

Theorem 13. (Horseshoe Lemma for Projective Resolution) For given s.e.s $0 \to M' \to M \to M''$, projective resolutions $P'_{\bullet} \to M'$ and $P''_{\bullet} \to M''$, there is a projective resolution $P_{\bullet} \to M$ and a double complex

$$0 \to P'_{\bullet} \to P_{\bullet} \to P''_{\bullet} \to 0$$

such that each rows and columns are exact.

Theorem 14. (Horseshoe Lemma for InjectiveResolution) For given s.e.s $0 \to M' \to M \to M''$, projective resolutions $M' \to I'^{\bullet}$ and $M'' \to I''^{\bullet}$, there is a projective resolution $M \to I^{\bullet}$ and a double complex

$$0 \to I'^{\bullet} \to I^{\bullet} \to I''^{\bullet} \to 0$$

such that each rows and columns are exact.

Theorem 15. (Snake Lemma) Suppose we have a commutative diagram with exact rows:

Then, there is a natural homomorphism ∂ and an exact sequence

$$\ker f \to \ker g \to \ker h \xrightarrow{\partial} \operatorname{coker} f \to \operatorname{coker} g \to \operatorname{coker} h$$

If α is injective, so is $\ker f \to \ker g$. If δ is injective, so is $\operatorname{coker} g \to \operatorname{coker} h$.

Theorem 16. Let $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ be a s.e.s of complexes of R-modules. Then there is a long exact sequence

$$\cdots \longrightarrow H_n(A) \longrightarrow H_n(B) \longrightarrow H_n(C)$$

$$H_{n-1}(A) \stackrel{\partial}{\longleftrightarrow} H_{n-1}(B) \longrightarrow H_{n-1}(C) \longrightarrow \cdots$$

Theorem 17. $\operatorname{Hom}_R(D,-)$ and $\operatorname{Hom}_R(-,D)$ are left exact.

Example. Hom_R(D, -) is not exact, because of $0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}/n \to 0$.

Theorem 18. For a ring R and an R-module P, TFAE,

- $\operatorname{Hom}_R(P, -)$ is exact,
- P is a projective R-module,

- For every s.e.s $0 \to L \to M \to P \to 0$, this splits,
- P is a direct summand of a free R-module.

Definition 8. For projective P_{\bullet} , exact $P_{\bullet} \stackrel{\epsilon}{\to} M$ is a projective resolution of M.

Theorem 19. For a ring R and an R-module Q, TFAE,

- $\operatorname{Hom}_R(-,Q)$ is exact,
- Q is an injective R-module,
- For any s.e.s $0 \to Q \to M \to N \to 0$ is split.

Theorem 20. (Theorem (B)) Let Q be an R-module. Then there is an injective homomorphism $Q \rightarrow I$ such that I is an injective R-module.

Theorem 21. (Theorem (C)) $\prod_i Q_i$ is injective iff each Q_i is injective.

Theorem 22. (Baer Criterion) Q is injective, iff, for all each ideal $I \subseteq R$ and each R-module homomorphism $G: I \to Q$, it extends to $\tilde{g}: R \to Q$.

Corollary 1. Let R be a PID. Then Q is injective iff for each $r \in R \setminus \{0\}$, we have rQ = Q.

Lemma 3. Let J be an abelian group and R be a ring with unity. Then, $\operatorname{Hom}_{\mathbb{Z}}(R,J)$ is a left R-module.

Theorem 23. (Theorem (D)) Let J be a divisible abelian group, and R be a ring with unity. Then, $\operatorname{Hom}_{\mathbb{Z}}(R,J)$ is an injective R-module.

Theorem 24. A tensor functor, $D \otimes_R -$, is right exact. In the same sense, $- \otimes_R D$ is right exact.

Example. A tensor product is not exact, because for $D = \mathbb{Z}/n$, and $0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}/n \to 0$.

Definition 9. D is flat right R-module, if a tensor functor $D \otimes_R -$ is exact.

D is flat left R-module, if a tensor functor $-\otimes_R D$ is exact.

Theorem 25. (Adjunction) Let R, S be rings with unity, A be a right R-module, B be (R, S)-bimodule, C be a right S-module. Then, there is a natural isomorphism of abelian groups:

$$\operatorname{Hom}_S(A \otimes_R B, C) \to \operatorname{Hom}_R(A, \operatorname{Hom}_S(B, C))$$

where $A \otimes_R B$ is seen as a right S-module and $Hom_S(B,C)$ which is a right R-module.

Note. $\varphi: A \otimes_R B \to C$ induces $\psi: A \to \operatorname{Hom}_S(B,C)$ such that $\psi(a) = \psi_a$ and $\psi_a = \varphi(a \otimes -)$.

Note. $\psi: A \to \operatorname{Hom}_S(B, C)$ defines $\varphi \in \operatorname{Hom}_S(A \otimes_R B, C)$ given by $\varphi(a \otimes b) = \psi(a)(b)$.

Theorem 26. For a commutative ring with unity R, in R - Mod,

$$Free \Rightarrow Projective \Rightarrow Flat \Rightarrow Torsion\text{-}Free$$

Example. 0 is free. Thus, it's projective, flat, and torsion-free.

Theorem 27. For a commutative ring R with unity, P,Q are projective R-modules, then $P \otimes_R Q$ is also projective.

Theorem 28. R-modules are enough projective and enough injective.

Theorem 29. For complexes of R-modules A_{\bullet} and B_{\bullet} , $f_{\bullet}: A_{\bullet} \to B_{\bullet}$ is a chain map such that the following diagram commutes:

$$\cdots \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow A_{n-1} \longrightarrow \cdots$$

$$\downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}$$

$$\cdots \longrightarrow B_{n+1} \longrightarrow B_n \longrightarrow B_{n-1} \longrightarrow \cdots$$

Theorem 30. f_n induces an induced homomorphism $f_n: H_n(A_{\bullet}) \to H_n(B_{\bullet})$.

Definition 10. f_{\bullet} is a quasi isomorphism if induced f_{\bullet} into homologies is isomorphisms.

Definition 11. For two complexes A_{\bullet} and B_{\bullet} , they are *quasi-isomorphic*, if there is a zig-zag of complexes and quasi-isomorphism $A_{\bullet} \leftarrow C^0 \rightarrow C^1 \leftarrow C^2 \rightarrow \cdots \rightarrow B_{\bullet}$.

Definition 12. Kom(R) is the category of all complexes of R-modules, where objects are complexes and morphisms are chain maps. Kom $^+(R)$ is bounded below, Kom $^-(R)$ is bounded below, and Kom $^b(R)$ is bounded below.

Definition 13. Let R be a ring with unity, $f_{\bullet}, g_{\bullet}: A_{\bullet} \to B_{\bullet}$ be two chain maps. If there are R-module homomorphisms $s = \{s_n \mid A_n \to B_{n+1}\}$ such that f - g = sd + ds.

If there is a (chain) homotopy between f and g, they are (chain) homotopic. $f \sim^s g$.

Theorem 31. If f, g are chain homotopic, then, f_n, g_n induced into homologies are equal.

Definition 14. If chain map is homotopic to the zero map, f is null homotopic.

Definition 15. f is a chain homotopy equivalence if there is a chain map g such that $g \circ f$ and $f \circ g$ are identity maps.

Theorem 32. If f is a chain homotomy equivalence, it's a quasi-isomorphism.

Theorem 33. If $f_1, f_2 : A_{\bullet} \to B_{\bullet}$ and $g_1, g_2 : B_{\bullet} \to C_{\bullet}$ are chain homotopic chain maps, $g_1 \circ f_1$ and $g_2 \circ f_2$ are chain homotopic.

Definition 16. K(R) is the category such that: Ob(K(R)) is the complexes of R-modules, Hom(K(R)) is $Hom_{K(R)}(A_{\bullet}, B_{\bullet}) = Hom_{Kom(R)}(A_{\bullet}, B_{\bullet}) / \sim$, where \sim is the chain homotopy.

Definition 17. D(R) is the *derived category* such that: Ob(K(R)) is the complexes of R-modules, Hom(K(R)) is $Hom_{D(R)}(A_{\bullet}, B_{\bullet}) = Hom_{Kom(R)}(A_{\bullet}, B_{\bullet}) / \sim_{q.iso}$, where \sim is the chain homotopy.

Theorem 34. (Pseudo-universal Property) Let R be a ring with unity, M, N be R-modules. Let $P_{\bullet} \to M$ and $Q_{\bullet} \to N$ be projective resolutions, and let $f_{-1}: M \to N$ be any R-module homomorphism. Then, there is a chain map $f_{\bullet}: P_{\bullet} \to Q_{\bullet}$ which lifts f_{-1} . f_{\bullet} is unique up to chain homotopy.

Theorem 35. (Pseudo-universal Property) Two projective resolutions of R-module M are unique un to chain homotopy equivalence.

Definition 18. Projective resolution of M_{\bullet} is a projective chain complex P_{\bullet} if there is a quasi-isomorphism between M_{\bullet} and P_{\bullet} .

Theorem 36. (HW5-Problem 2, 5) For bounded above complex M_{\bullet} , there is a projective resolution of M_{\bullet} .

For bounded below complex M^{\bullet} , there is an injective resolution of M^{\bullet} .

Definition 19. Let $P_{\bullet} \to M$ be a projective resolution. $\operatorname{Tor}_{i}^{R}(N, M) := H_{i}(N \otimes_{R} P_{\bullet})$. Let $N \to I^{\bullet}$ be a projective resolution. $\operatorname{tor}_{i}^{R}(N, M) := H^{i}(I^{\bullet} \otimes_{R} M)$.

Lemma 4. $\operatorname{Tor}_{i}^{R}(N,M)$ is independent of the choice of a projective resolution $P_{\bullet} \to M$ up to isomorphism. $\operatorname{tor}_{i}^{R}(N,M)$ is independent of the choice of a injective resolution $N \to I^{\bullet}$ up to isomorphism.

Theorem 37. If N, M are projective, Tor_i^R are 0 for $i \geq 1$. In the same way, if N, M are injective, tor_i^R are 0 for $i \geq 1$.

Theorem 38. $\operatorname{Tor}_{i}^{R}(N,M) \simeq \operatorname{tor}_{i}^{R}(N,M)$

Definition 20. Let A_{\bullet} and B_{\bullet} be complexes. $\text{Tor}(A \otimes B) = T_{\bullet} = \{T_n\}$ is a total complex of A and B where $T_n = \bigoplus_{i+j=n} A_i \otimes B_j$.

Theorem 39. (HW5-P6) For a projective resolution $Q_{\bullet} \to N$ and $P_{\bullet} \to M$, there is a natural quasi-isomorphism $\text{Tot}(P \otimes Q)_{\bullet} \to Q_{\bullet} \otimes_R M$.

Theorem 40. Let $0 \to N_1 \to N_2 \to N_3 \to 0$ be a s.e.s of R-modules, and $M \in Ob(R - Mod)$. Then, there is a long exact sequence

$$\cdots \longrightarrow \operatorname{tor}_{n}(N_{1}, M) \longrightarrow \operatorname{tor}_{n}(N_{2}, M) \longrightarrow \operatorname{tor}_{n}(N_{3}, M)$$

$$tor_{n-1}(N_{1}, M) \longrightarrow \operatorname{tor}_{n-1}(N_{2}, M) \longrightarrow \operatorname{tor}_{n-1}(N_{3}, M) \longrightarrow \cdots$$

Definition 21. Let R be a ring with unity, M, N be left R-modules. Let $N \to I^{\bullet}$ be an injective resolution. $\operatorname{Ext}_R^n(M, N) = H^n(\operatorname{Hom}_R(M, I^{\bullet}))$.

Let $I_{\bullet} \to M$ be a projective resolution. $\operatorname{ext}_R^n(M,N) = H^n(\operatorname{Hom}_R(P_{\bullet},N))$.

Theorem 41. Extⁿ_R is independent of the choice of an injective resolution up to isomorphism. extⁿ_R is independent of the choice of a projective resolution up to isomorphism.

Theorem 42. $\operatorname{Ext}_R^0(M,N) \simeq \operatorname{Hom}_R(M,N) \simeq \operatorname{ext}_R^0(M,N)$.

Theorem 43. If N is injective and n > 0, then $\operatorname{Ext}_R^n(M, N) = 0$. If M is projective and n > 0, then $\operatorname{ext}_R^n(M, N) = 0$.

Theorem 44. Let $0 \to N_1 \to N_2 \to N_3 \to 0$ be a s.e.s of R-modules, and $M \in Ob(R - Mod)$. Then, there is a long exact sequence

Theorem 45. Let $0 \to M_1 \to M_2 \to M_3 \to 0$ be a s.e.s of R-modules, and $M \in Ob(R - Mod)$. Then, there is a long exact sequence

$$\cdots \longrightarrow \operatorname{ext}^{n}(M_{3}, N) \longrightarrow \operatorname{ext}^{n}(M_{2}, N) \longrightarrow \operatorname{ext}^{n}(M_{1}, N)$$

$$ext^{n+1}(M_{3}, N) \xrightarrow{\partial} \operatorname{ext}^{n+1}(M_{2}, N) \longrightarrow \operatorname{ext}^{n+1}(M_{1}, N) \longrightarrow \cdots$$

Theorem 46. $\operatorname{Ext}_R^n(M,N) \simeq \operatorname{ext}_R^n(M,N)$.

Definition 22. An extension of M by N is a s.e.s of R-modules

$$0 \to N \to T \to M \to 0$$

. If the s.e.s splits, it's the trivial extension.

Definition 23. If T_1, T_2 are two extensions of M by N and there is a homomorphism $T_1 \to T_2$, it's an isomorphism by the Short Five Lemma, and T_1 and T_2 are said to be *equivalent*.

Definition 24. $\operatorname{Ext}_R(M,N)$ be the set of equivalence classes of extensions of M by N.

Lemma 5. Let $e := [0 \to N \to T \to M \to 0] \in \operatorname{Ext}_R(M, N)$. Then there is a well-defined class $\delta(e) \in \operatorname{Ext}_R^1(M, N)$.

Lemma 6. Let $e = [0 \to N \to T \to M \to 0] \in \operatorname{Ext}_R(M, N)$. e is a split exact sequence iff $\delta(e) = 0$.

Theorem 47. The map $\delta : \operatorname{Ext}_R(M,N) \to \operatorname{Ext}_R^1(M,N)$ is bijective.

Definition 25. Let $e_i: 0 \to N \to T_i \to M \to 0$ for i=1,2. Consider the pull-back T' of $T_1 \to M \leftarrow T_2$, i.e. $T' \subseteq T_1 \times T_2$ consisting of (t_1,t_2) whose images in M coincide. Let $D \subseteq T'$ be generated by (-n,n) for $n \in N$, and let T:=T'/D. This gies a s.e.s $e: 0 \to N \to T \to M \to 0$, which is called the Baer sum of e_1 and e_2 .

Theorem 48. $\operatorname{Ext}_R(M,N)$ and the Baer Sum give a group structure. Furthermore, $\delta : \operatorname{Ext}_R(M,N) \to \operatorname{Ext}_R^1(M,N)$ is a group homomorphism.

Definition 26. An n-extension of M by N is an exact sequence of the form

$$0 \to N \to T_n \to \cdots \to T_1 \to M$$

Definition 27. If there is chain map f_{\bullet} between extension T_{\bullet} , T'_{\bullet} of M by N, it's an equivalence. Also, the class of this equivalence give $\operatorname{Ext}_{R}^{(n)}(M,N)$, which is called the Yoneda n-Extension

Theorem 49. The Yoneda n-Extension with a higher Baer sum is isomorphic to Ext_R^n .

Definition 28. Let $P_{\bullet} \to M$ be a projective resolution.

Then, if there is some $N \geq 0$ such that $P_n = 0$ for every n > N, the length of the projective resolution is less or equal to N.

If no such N, the length is infinite.

The projective dimension $pd_R M$ is the smallest length of such projective resolutions.

Theorem 50. (HW8-P1)

- $\operatorname{pd}_k V = 0$ for a field k.
- $\operatorname{pd}_R M \leq 1$ for PID R and a finitely generated R-module M.

Tensor Algebra

Definition 29. Let $T_R^0(M) := R$ and for $k \ge 1$, let

$$T_R^k(M) = T^k(M) := M \otimes_R \cdots \otimes_R M$$

Let $T_R(M) = T(M) := \bigoplus_{k \geq 0} T^k(M)$. We have the associative $\otimes : T^r(M) \otimes_R T^s(M) \to T^{r+s}(M)$. This $(T_R(M), +, \otimes, \cdot)$ is called the tensor algebra of M over R. **Theorem 51.** (Universal Property of Tensor Algebra) Let R be a commutative ring with 1, A be any R-algebra with a given $\varphi: M \to A$ where A is an R-module homomorphism. Then, there exists a unique R-algebra homomorphism ψ such that the diagram

where $\mathrm{Id}:M\to M=T^1(M)$ is the identity.

Definition 30. R: comm. ring with 1, M: R-module, T(M): tensor algebra. Let $C(M) \subseteq T(M)$ be the two sided ideal generated by elements of the form $m_1 \otimes m_2 - m_2 \otimes m_1$. Let

$$S(M) = \operatorname{Sym}(M) := T(M)/C(M)$$

Let $S^k(M) = \operatorname{Sym}^k(M)$ be the image of $T^k(M)$.

Sym(M) is called the symmetric algebra of M over R.

Example. For $M = \mathbb{R}^n$, the free \mathbb{R} -module of rank n, $\operatorname{Sym}(M) \simeq \mathbb{R}[t_1, \dots, t_n]$ where $\operatorname{Sym}^k(M)$ as an \mathbb{R} -module is spanned by th emonomials of degree k, and free of rank $\binom{k+n-1}{n-1}$.

Theorem 52. Sym(M) satisfies the universal property for commutative R-algebra A.

Definition 31. R: comm. ring with 1, M: R-module, T(M): tensor algebra. Let $A(M) \subseteq T(M)$ be the two sided ideal generated by elements of the form $m \otimes m$. Let

$$\wedge(M) = T(M)/A(M)$$

Let $\wedge^k(M)$ be the image of $T^k(M)$.

 $\wedge(M)$ is called the exterior algebra of M over R.

Lemma 7. When $m, m' \in M$, $m \wedge m' = -m' \wedge m$.

Theorem 53. $\wedge^k(M)$ satisfies the universal property with the alternating R-multilinear $\varphi: M \times \cdots \times M \to N$.

Example. Let M be a free r-module of rank n. Then $\wedge^k(M)$ is free of rank $\binom{n}{k}$. In particular, $\wedge(M)$ is in fact "bounded above" in that

$$\wedge(M) = \bigoplus_{k=0}^{n} \wedge^{k}(M)$$

Definition 32. (Lie Algebra) An *F*-vector space *L* is called a *Lie algebra*, if there is an alternating ([x, x] = 0) bilinear map

$$[-,-]:L\times L\to L$$

satisfying the Jacobi identity:

$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0$$

Example. Let L be an F-algebra. Take [x,y] = xy - yx. Then, L gives a Lie algebra.

Theorem 54. (Universal Envelopping Algebra) Let L be a Lie algebra over F and let A be an associative F-algebra with the induced Lie algebra structure. Let $\phi: L \to A$ be a Lie algebra homomorphism, i.e. $\phi([x,y]) = \phi(x)\phi(y) - \phi(y)\phi(x)$ for $x,y \in L$.

Then there is an F-algebra U(L) together with an F-linear map $i: L \to U(L)$ such that there is a unique F-algebra homomorphism $\psi: U(L) \to A$ such that the following commutes:

This is constructed by taking the two-sided ideal I(L) generated by elements of the form $x \otimes y - y \otimes x - [x, y]$, and take U(L) = T(L)/I(L).

Theorem 55. (Poincaré-Birkhoff-Witt) Let F be a field, L be an F-Lie algebra with a basis \mathcal{B} . Give a well-ordering on \mathcal{B} .

A canonical monomial over \mathcal{B} is a sequence (x_1, \dots, x_r) with $x_1 \leq \dots \leq x_r$, $x_i \in \mathcal{B}$. For the natural map $i: L \to U(L)$, define $i(x_1, \dots, x_r) := i(x_1) \cdots i(x_r)$.

Then i is injective on the set of all canonical monomials, and the images form an F-basis of U(L).

Corollary 2. $i: L \to U(L)$ is injective.

Linear Algebra

Definition 33. Let R be an integral domain, M be an R-module. The rank of M over R is the maximum cardinality of R-linearly independent elements of M.

Theorem 56. (A) Let R be a PID, M be a free R-module of rank n, and $N \subseteq M$. Then (1) N is free of rank $m \le n$; (2) We can find a basis $y_1, \dots, y_n \in M$ such that for some $a_1 \mid a_2 \mid \dots \mid a_m, a_1y_1, \dots, a_my_m \in N$ and they form a basis of N.

Theorem 57. (Fundamental Theorem for Finitely Generated Modules over PID) Let R be a PID, M be a finitely generated R-modules. Then,

$$M \simeq R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_m)$$

for some $a_i \in R$ such that $a_1 \mid a_2 \mid \cdots \mid a_m$. The number r is unique and a_1, \cdots, a_m are uniquely decided up to units in R.

Corollary 3. Fundamental Theorem of Finitely Generated Abelian Group holds.

Corollary 4. For R = k[t], FTFGMPID gives the Cyclic Decomposition Theorem.

Representation

Definition 34. Let G be a group, F be a field, V be an F-vector space.

- 1. A (linear) representation of G (over F) is a group homomorphism $\varphi: G \to \mathrm{GL}(V)$. The degree of the representation if $\dim_F(V)$.
- 2. A matrix representation of G is a homomorphism $G \to \operatorname{GL}_m(V)$. When $\dim_F V = m$, we have $\operatorname{GL}(V) \simeq \operatorname{GL}_m(V)$, so we generally do not distinguish these two, unless we have reason to do so.

3. A representation $G \to GL(V)$ is faithful if it is injective.

Definition 35. Let G be a group and R be a ring. RG is the group ring, where (1) each element is in a form of $\sum_{g \in G} \alpha_g \cdot g$; (2) addition is sum term-by-term; (3) multiplication is sum of multiplication of mult. of coefficients and mult. of G-terms.

Lemma 8. Let V be a set. V is an FG-module iff V is an F-vector space and there is a group homomorphism $\phi: G \to GL(V)$.

Definition 36. Let V, W be representations of G over F. A morphism of representation G, ϕ : $V \to W$, is an FG-module homomorphism. Two representations V, W are equivalent if they are isomorphic as FG-modules.

Corollary 5. The representations of G over F form a category G - Rep/F and there is a natural equivalence of categories:

$$FG - \text{Mod} \Leftrightarrow G - \text{Rep}/F$$

Definition 37. Let G be a group. Let V = FG with the left FG-module structure.

The induced representation $\phi: G \to \operatorname{GL}(FG)$ is called the regular representation of G.

Theorem 58. Regular representations are faithful.

Theorem 59. (Maschke) Let G be a finite group, F be a field such that char(F) = 0 or char(F) = p > 0 with $p \nmid |G|$.

Let V be an FG-module and $U \subseteq V$ be any FG-submodule. Then there is an FG-submodule $W \subseteq V$ such that

$$V \simeq U \oplus W$$

 $as\ FG$ -modules.

Theorem 60. (Wedderburn-Artin) Let R be a ring with 1. Then, TFAE

- 1. R is a semi-simple ring.
- 2. R is Artinian and its Jacobson radical is zero.
- 3. Every R-module is projective.
- 4. Every R-module is injective.
- $5.\ Every\ R\text{-}module\ is\ completely\ reducible.$
- 6. The ring R considered as a left R-module is a direct sum $R = L_1 \oplus \cdots \oplus L_n$ of simple R-modules L_i , with $L_i = Re_i$, such that $e_i e_j = \delta_{ij} e_i$ and $\sum e_i = 1$.
- 7. As rings, R is isomorphic to $R_1 \times \cdots \times R_r$ where $R_j = M_{n_j}(D_j)$, for some division ring D_j . The integer r, n_j and the ring D_j are unique.

Note, semi-simple ring are Artinian and Noetherian.

Corollary 6. (Corollary of Maschke's) F, G, FG be as before, and M be a finitely generated FGmodule. Then, M is completely reducible. i.e. the group ring FG is a semi-simple ring.

Theorem 61. (Schur's Lemma) Let R be a non-zero ring with 1. Let M, N be simple R-modules. Let $\varphi: M \to N$ be an R-module homomorphism. Then, either φ is 0 or an isomorphism.

Corollary 7. (Special Case of Schur's Lemma) If M is a simple R-module, then $\operatorname{Hom}_R(M,M) = \operatorname{End}_R(M)$ is a division ring.

Theorem 62. Let D be a division ring and $R = M_n(D)$. Then R is a simple ring, i.e. the only two-sided ideals of R are 0 and R.

Theorem 63. Let D be a division ring and $R = M_n(D)$. Then Z(R), the center of R is $\{\alpha I_n \mid \alpha \in Z(D)\}$, where I_n is the n-by-n identity matrix.

Theorem 64. Let D be a division ring and $R = M_n(D)$. Let $e_i = E_{ii}$. Then,

- $e_i e_j = \delta_{ij} e_i$ and $\sum e_i = 1$.
- Let $L_i = Re_i$. Then they are simple left R-modules.
- Every simple left R-module is isomorphic to L_1 .
- As a left R-module, $R = L_1 \oplus \cdots \oplus L_n$.

Theorem 65. Let D be a division ring, which is a finite dimension vector space over a field F with $F \subseteq Z(D)$, and $F = \overline{F}$. Then, D = F.

Theorem 66. Let G be a finite group. Then for some n_1, \dots, n_r and $r \ge 1$, we have

$$\mathbb{C}G \simeq M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$$

Corollary 8. $|G| = \sum_{i=1}^r n_i^2$

Theorem 67. $\mathbb{C}G$ has exactly r distinct isomorphism types of irreducible modules, i.e. there are exactly r non-equivalent irreducible representations of G. Here, each $M_{n_i}(\mathbb{C})$ decomposes into a direct sum of n_i isomorphic irreducible modules.

Theorem 68. Let G be a finite group. In the decomposition

$$\mathbb{C}G \simeq M_{n_1}(\mathbb{C}) \times M_{n_r}(\mathbb{C})$$

into simple rings, the number r is equal to the number of conjugacy classes of G.

Corollary 9. When A is a finite abelian group, every irreducible representation over \mathbb{C} is of degree 1 (or 1-dimensional), and A has exactly |A| inequivalent irreducible representations.

Theorem 69. Let G be a finite group. Then the number of inequivalent irreducible representations of degree 1 is |G/[G,G]|.

Definition 38. Let G be a group and F be a fixed field.

A class function $\varphi: G \to F$ is a set-function, constant on conjugacy classes. i.e. $\varphi(gxg^{-1}) = \varphi(x)$ for every $g, x \in G$.

Given a representation $\varphi: G \to \operatorname{GL}(V)$, the *character of* φ is the set-function $\chi: G \to F$ such that $\chi(g) = \operatorname{Tr} \varphi(g)$.

Definition 39. Let G be a group, F be a fixed field, $\varphi : G \to GL(V)$ be a representation, and $\chi = \text{Tr } \varphi$ be the character of φ .

 χ is irreducible if φ is an irreducible representation.

 χ is reducible if φ is an reducible representation.

Definition 40. The character of the trivial representation is the *principal character*.

Theorem 70. For a representation $\varphi: G \to GL(V)$ and $\chi = \text{Tr } \varphi$, χ is a class function.

Lemma 9. For a representation $\varphi: G \to GL(V)$ and $\chi = \operatorname{Tr} \varphi$, $\chi(1_G) = \dim_F V = \deg \varphi$.

Theorem 71. Every character of linear representation of group, $\chi: G \to F$, can be extended F-linearly to $\chi: FG \to F$.

Theorem 72. For irreducible modules M_i with the irreducible character χ_i and

$$M \simeq M_1^{\bigoplus a_1} \oplus \cdots \oplus M_r^{\bigoplus a_r}$$

then, the character χ of M is

$$\chi = \sum_{i} a_i \chi_i$$

Theorem 73. Let G be a finite group. Let M, N be two finite dimensional representations of G. Let χ, ψ be their characters. Then, $M \simeq N$ as $\mathbb{C}G$ -modules iff $\chi = \psi$.

Corollary 10. For a given finite group G,

- Irrducible characters χ_i completely determine all finite dimensional representations of G up to equivalence.
- Irreducible characters completely determine all finitely generated CG-modules up to isomorphism.
- There is an one-to-one correspondence between each set of irreducible characters and each irreducible CG-module.

Definition 41. Let \mathcal{F} be the vector space of \mathbb{C} -valued class functions on G.

Definition 42. s_i is a step function such that

$$s_i(K_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Proposition 1. Irreducible characters χ_i are in \mathcal{F} . e_i are also in \mathcal{F} . Since e_i are linearly independent and span \mathcal{F} , $\dim_{\mathbb{C}} \mathcal{F} = r$. where r is the number of distinct irreducible characters.

Theorem 74. The irreducible characters $\chi_1, \dots, \chi_r \in \mathcal{F}$ are linearly independent. In particular χ_1, \dots, χ_r form a basis for \mathcal{F} .

Definition 43. Define a hermitian inner product on \mathcal{F} as follows: for $\theta, \psi \in \mathcal{F}$, define

$$(\theta, \psi) := \frac{1}{|G|} \sum_{g \in G} \theta(g) \overline{\psi(g)}$$

Theorem 75. (1st Schur Orthogonality Theorem) Let G be a finite group, and χ_1, \dots, χ_r be irreducible characters of G. Then $(\chi_i, \chi_j) = \delta_{ij}$.

i.e. $\{\chi_i\}_i$ is an orthonormal basis of the space of class functions \mathcal{F} .

In particular, for $\theta \in \mathcal{F}$,

$$\theta = \sum_{i=1}^{r} (\theta, \chi_i) \chi_i$$

Lemma 10. In $\mathbb{C}G$, we have

$$e_i = \frac{\chi_i(1)}{|G|} \sum_{g \in G} \chi_i(g^{-1})g$$

Lemma 11. Let $\psi: G \to \mathbb{C}$ be any character. Then,

- $\psi(x)$ is a sum of roots of unity.
- $\psi(x^{-1}) = \overline{\psi(x)}$ for all $x \in G$.

Theorem 76. Let $\varphi: G \to \operatorname{GL}(V)$ be a representation for a finite dimensional vector space V. Let $\{v_1, \dots, v_n\}$ be a basis of V and let $\{v_1^*, \dots, v_n^*\}$ be its dual basis.

Then
$$\operatorname{Tr} \varphi(g) = \sum_{i=1}^{n} v_i^*(g \cdot v_i)$$
.

Definition 44. Let V be a representation of G. We can define the dual representation of V as follows.

First let V^* be the dual vector space of V. We need to define an action of G. Here, one important thing is taht for $g \in G$ and $f \in V^*$, we take

$$(g \cdot f)(v) := f(g^{-1}v)$$

for $v \in V$, using the inverse of g.

Theorem 77. Let ψ_1, ψ_2 be characters of G. Then so is $\psi_1 \psi_2$. In particular, \mathcal{F} is closed under the product of class functions.

More precisely, if $\psi_i = \operatorname{Tr} \varphi_i$ for representations φ_i , then $\psi_1 \psi_2 = \operatorname{Tr} \varphi_1 \otimes \varphi_2$.

Theorem 78. For a representation V of G, let χ be its character.

Then the character for the dual representation V^* is the complex conjugate $\overline{\chi}$.

Corollary 11. \mathcal{F} is closed under sum, product and complex conjugation.

Applications of Representation

Definition 45. Let G be a finite group. The *character table* of G means a table of the following form is

	$1 = K_1$	K_2		K_r
	$1 = d_1$	d_2		d_r
χ_1	1	1		1
χ_2	*	*	• • •	*
÷	:	÷	٠.	:
χ_r	*	*		*

where K_1, \dots, K_r are the conjugacy classes, d_1, \dots, d_r are the sizes of the orbits, χ_1, \dots, χ_r are the irreducible characters.

The values are $\chi(g_i)$ where $g_i \in K_i$.

Theorem 79. (1st Schur Orthogonality Theorem for Character Table)

$$(\chi_i, \chi_j) = \frac{1}{|G|} \sum_{k=1}^r d_k \chi_i(g_k) \overline{\chi_j(g_k)} = \delta_{ij}$$

i.e. the weighted rows of the character table are orthogonal.

Theorem 80. (2nd Schur Orthogonality Theorem for Character Table) For $x, y \in G$,

$$\sum_{i=1}^{r} \chi_i(x) \overline{\chi_j(y)} = \begin{cases} |C_G(x)| & \text{if } x, y \text{ conjugate,} \\ 0 & \text{otherwise.} \end{cases}$$

i.e. the columns of the character table are orthogonal

Let $F(G, \mathbb{C}) = \text{Mor}(G, \mathbb{C})$ be the set of all set-functions from G to \mathbb{C} .

Definition 46. For two functions $f_1, f_2 : G \to \mathbb{C}$, define the *convolution* to be a function $f_1 * f_2 : G \to \mathbb{C}$ given by

$$(f_1 * f_2)(g) = \sum_{h \in G} f_1(gh^{-1}) f_2(h)$$

Corollary 12. Consider the ring $(F(G, \mathbb{C}), +, *)$ with the coordinatewise sum and the convolution as the product. Then, the natural map $\mathbb{C}G \to (F(G, \mathbb{C}), +, *)$ is a ring isomorphism.

Definition 47. Let $f \in F(G, \mathbb{C})$ and let $\varphi : G \to GL(V)$ be a representation. Then the Fourier transform of f at φ is defined to be

$$\widehat{f}(\varphi) := \sum_{g \in G} f(g)\varphi(g)$$

Theorem 81. (Peter-Weyl) For simple ring decomposition:

$$\mathbb{C}G \simeq M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$$

, we can write it as

$$\mathbb{C}G \simeq \bigoplus_{i=1}^r \operatorname{End}(M_i)$$

Definition 48. Let F be a field, G be a group, $H \leq G$ be a subgroup. For a representation $\varphi: G \to \operatorname{GL}(M)$ of G, denote by $\operatorname{Res}_H^G M$ be the representation of H given by $H \to G \xrightarrow{\varphi} \operatorname{GL}(M)$. This is called the *restriction to* H.

Definition 49. Let F, G, H be as before. Let $\varphi : H \to GL(L)$ be a representation. The induced representation $\operatorname{Ind}_H^G L$ is the representation of G given by $FG \otimes_{FH} L$. This is called the *induction* to G.

Theorem 82. Ind_H^G and Res_H^G are adjoint functors.

Theorem 83. (Frobenius Reciprocity for Group Representation) Let M be a representation of H, N be a representation of G. Then we have a natural bijection

$$\operatorname{Hom}_{FG}(\operatorname{Ind}_H^G M, N) \simeq \operatorname{Hom}_{FH}(M, \operatorname{Res}_H^G N)$$

This can be proved by the Adjunction Theorem.