Folgen

Def: 2.2 - Grenzwert einer reellen Folge

- $a \in \mathbb{R}$ Grenzwert von $(a_n) \Leftrightarrow \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}$ $\forall n \geq n_0 : |a_n - a| < \epsilon$
- Existiert $a \in \mathbb{R}$ Grenzwert $\Rightarrow (a_n)$ konvergent, sonst (a_n) divergent

 $\begin{array}{ll} \textbf{Satz 2.3 - Rechenregeln für Grenzwerte} & (a_n)_{n \in \mathbb{N}}, \\ (b_n)_{n \in \mathbb{N}} \text{ reelle Folgen}, \lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b \end{array}$

- Folge $(a_n + b_n)$ konvergiert gegen a + b
- Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen $\frac{a}{b}$
- $a_n < b_n$ für fast alle $n \in \mathbb{N} \to a < b$
- Einschließungskriterium a = b, c reelle Folge und $a_n \le c_n \le b_n$ für fast alle $n \in \mathbb{N} \Rightarrow$ $(c_n)_{n \in \mathbb{N}}$ konvergiert gegen a

 $Spezialfall \ des \ Einschließungskriteriums: \\ (x_n)_{n\in \mathbb{N}} Folge, x \in R, (y_n)_{n\in \mathbb{N}} \ \text{Nullfolge, sodass} \\ |x_n-x| \leq y_n \ \text{für fast alle} \ n \Rightarrow (x_n)_{n\in \mathbb{N}} \ \text{konvergiert gegen} \ x$

Satz 2.4 - Eigenschaften konvergenter Folgen $\,$ Sei $\,a_n\,$ konvergente reelle Folge

- (a_n) beschränkt
- (a_n) besitzt genau einen Grenzwert

Def: 2.5 - Uneigentliche Konvergenz $(a_n)_{a\in\mathbb{N}}$ konvergiert uneigentlich gegen $\infty \Leftrightarrow \forall K>0 \exists n_0\in\mathbb{N} \forall n\geq n_0: a_n>K$ $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $-\infty \Leftrightarrow (-a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞

Satz 2.6 - Rechenregeln für uneigentliche Konvergenz $(b_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim_{n\to\infty}(b_n)_{n\in\mathbb{N}}=\infty, \ (a_n)_{n\in\mathbb{N}}$ reelle Folge, $\lim_{n\to\infty}a_n=a, a\in\mathbb{R}\cup\{\infty,-\infty\}$

- $a \neq -\infty \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich gegen ∞
- $a \neq 0 \Rightarrow (a_n + b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich
- $a > 0 \Rightarrow \lim_{n \to \infty} a_n b_n = \infty$
- $a < 0 \Rightarrow \lim_{n \to \infty} a_n b_n = -\infty$
- $a \notin \{\infty, -\infty\} \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen 0

Def 2.7 - Monotone Folgen $(a_n)_{n\in\mathbb{N}}$ reelle Folge heißt

- monoton wachsend, falls $a_{n+1} \geq a_n \forall n \in \mathbb{N}$
- streng monoton wachsend, falls $a_{n+1} > a_n \forall n \in \mathbb{N}$
- monoton fallend, falls $a_{n+1} \leq a_n \forall n \in \mathbb{N}$
- streng monoton fallend, falls $a_{n+1} < a_n \forall n \in \mathbb{N}$

Satz 2.8 - Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ reelle Folge, wachsend und nach oben beschränkt $\Rightarrow (a_n)_{n\in\mathbb{N}}$ konvergent und $\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n := \sup_n \{a_n : n\in\mathbb{N}\}$

Def 2.9 Häufungspunkt $a \in \mathbb{R}$ Häufungspunkt $\Leftrightarrow \exists (a_{n_k})_{k \in \mathbb{N}}$ Teilfolge von $(a_n)_{n \in \mathbb{N}}$, die gegen a konvergiert

 $\begin{array}{ll} \textbf{Satz von Bolzano-Weierstra} & \text{Jede beschränkte reelle} \\ \text{Folge } (an)_{n\in\mathbb{N}} & \text{besitzt eine konvergente Teilfolge} \\ \text{und hat also mindestens einen Häufungspunkt.} \\ \end{array}$

Def 2.11 - Limes superior, limes inferior $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschänkt \Rightarrow größter (kleinster) Häufungspunkt: Limes superior (inferior)

Komplexe und mehrdimensionale Folgen

 $\begin{array}{ll} \textbf{Def 3.1 Grenzwert komplexer Folgen} & z & \mathrm{GW} & \mathrm{von} \\ (z_n) \Leftrightarrow \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : |z_n - z| < \epsilon \\ \exists GW \Leftarrow z_n \text{ konvergent} \end{array}$

 $\begin{array}{lll} {\rm Konvergenz} & (z_n)_{n\in\mathbb{N}} = a_n + ib_n : \lim_{n\to\infty} z_n = \lim_{n\to\infty} a_n + i\lim_{n\to\infty} b_n \end{array}$

 $\text{Grenzwert} \quad \lim_{n \to \infty} v_n = v \Leftrightarrow \lim_{n \to \infty} ||v_n - v||_2 = 0$

Reihen

 $\begin{array}{ll} \textbf{Def 2.2 - Folgen Grenzwert in } \mathbb{R} & a \text{ Grenzwert von} \\ (a_n) \Leftrightarrow \forall \epsilon > 0 \\ \exists n_0 \in \mathbb{N} \\ \forall b \geq n_0 : |a_n-a| < \epsilon \end{array}$

Nullfolge $\lim_{n\to\infty}(a_n)\to 0$

Rechenregeln Grenzwerte

- $(a_n + b_n) \rightarrow a + b$
- $(a_n \cdot b_n) \to a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n}) \rightarrow \frac{a}{b}$
- Einschließungskriterium: $a=b \wedge a_n \le c_n \le b_n$ für fast alle $n \in \mathbb{N} \Rightarrow c_n \to a$

Eigenschaften konvergenter Folgen (a_n) beschränkt $\Rightarrow \{a_n : n \in \mathbb{N}\} beschrnkt \land \exists ! \text{ ein GW}$

 $\begin{array}{ll} \textbf{Uneigentliche} & \textbf{Konvergenz} & (a_n)_{n\in\mathbb{N}} & \text{divergent} \\ (a_n)_{n\in\mathbb{N}} & \text{konvergiert uneig. gg.} & \infty \Leftrightarrow \forall K>0 \\ \exists n_0 \in \mathbb{N} \\ \forall n\geq n_0: a_n>K \end{array}$

Rechenregeln uneig. Konvergenz

- $a \neq -\inf \Rightarrow (a_n + b_n)_{n \in \mathbb{N}} \to \infty$
- $a \neq 0 \Rightarrow (a_n \cdot b_n)_{n \in \mathbb{N}}$ konvergiert
- $a \notin \{-\infty, \infty\} \lor (a_n)_{n \in \mathbb{N}}$ beschränkt $\Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}} \to 0$

Monotone Folge (a_n) monoton wachsend, falls $a_{n+1} > a_n \forall n \in \mathbb{N}$. (Äquivalent für >, <, <)

Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ monoton wachsend \wedge nach oben beschränkt $\Rightarrow \lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n = \sup\{a_n : n\in\mathbb{N}\}$

Teilfolge, Häufungspunkte $(a_n)_{a\in\mathbb{N}}$ reelle Folge:

- $(n_k)_{k\in\mathbb{N}}$ streng monoton wachsend in $\mathbb{N} \Rightarrow (a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$
- $a \in \mathbb{R}$ Häufungspunkt von $(a_n)_{n \in \mathbb{N}} \Leftrightarrow \exists$ Teilfolge, die gg. a konvergiert

Satz v. Bozano-Weierstraß Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und hat min. einen Häufungspunkt

Limes superior, Limes inferior $(a_n)_{a\in\mathbb{N}}$ reelle Folge: $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschränkt \to Bez. größter (kleinster) Häufungspunkt: Limes superior (inferior)