Parishram (2025)

Physical Chemistry

Electrochemistry

DPP: 3

Q1 The cell reaction of a cell is: $\mathrm{Mg}(s) + \mathrm{Cu}^{2+}$ $(aq.) \rightleftharpoons Cu(s) + Mg^{2+}$ (aq.) If the standard reduction potentials of ${
m Mg}$ and Cu are $-2.37\,\mathrm{V}$ and $+0.34\,\mathrm{V}$ respectively.

The standard EMF of the cell is

- (A) $2.03~{
 m V}$
- (B) -2.03 V
- (C) +2.71 V
- (D) -2.71 V
- **Q2** The standard EMF for the cell reaction: $Zn(s) + Cu^{2+}$ $(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ is 1.10 volts at $25^{\circ}\mathrm{C}$. The EMF of the cell reaction when $0.1 \mathrm{MCu}^{2+}$ and $0.1 \mathrm{M~Zn}^{2+}$ solutions are used at $25^{\circ}\mathrm{C}$ is
 - (A) 1.10 V
 - (B) $1.041~{
 m V}$
 - (C) -1.10 V
 - (D) -1.041 V
- **Q3** For the cell: $Ni \left| Ni^{2+} \right| Cu^{2+} \left| Cu; E^{\circ} \right| = 0.77 \ V.$ By which of the following activity, $E_{
 m cell}$ will

increase?

- (A) On decreasing $[\mathrm{Ni}^{+2}]$
- (B) On decreasing $\lceil \mathrm{Cu}^{+2}
 ceil$
- (C) On increasing mass of Ni electrode
- (D) On increasing mass of Cu electrode
- Q4 At equilibrium:

(A)
$$\mathrm{E^{\circ}}_{\mathrm{cell}} \, = 0, \Delta \mathrm{G^{\circ}} = 0$$

- (B) $E_{cell} = 0, \Delta G = 0$
- (C) Both are correct
- (D) None is correct
- Q5 For a cell reaction involving a two-electron change, the standard EMF of the cell is found to be 0.295 V at 25°C. The equilibrium constant of the reaction at $25^{\circ}\mathrm{C}$ will be
 - (A) 1×10^{10}
 - (B) $1 imes 10^{-10}$
 - (C) 29.5×10^{-2}
 - (D) $2 imes 10^{10}$

Answer H	Cey
-----------------	------------

(B)

(A)

Q1 (C) Q4 Q2 (A) Q5

Q3 (A)

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

