Math Review for Microeconomic

April 2, 2008

Joosung Lee

Department of economics, ${\rm SNU}$

Contents

1	Matrix Algebra					
	1.1	Termi	inologies and operations	1		
		1.1.1	Basic Matrix Operations	1		
		1.1.2	Transpose	2		
		1.1.3	Inverse	2		
		1.1.4	Determinants	3		
		1.1.5	trace	4		
	1.2	Vecto	r Space	4		
		1.2.1	vector space and subspace	4		
		1.2.2	Inner product	5		
		1.2.3	linearly dependency and dimension	6		
	1.3	System	ms of linear equations	6		
		1.3.1	Existence and Uniqueness of solutions	6		
		1.3.2	Cramer's rule	7		
	1.4	Eigen	value, Eigenvector and Diagonalization	7		
		1.4.1	eigenvalue and eigenvector	7		
		1.4.2	diagonalization	7		
	1.5	Quad	ratic forms and Definite matrices	8		
		1.5.1	quadratic form	8		
		1.5.2	definite matrices	8		
		1.5.3	definite matrices on the linear constraint	9		
2	Set,	Func	tion and Correspondence	11		
	2.1	Set .		11		
		2.1.1	open set and closed set	11		
		2.1.2		12		
		2.1.3		12		
	2.2	Funct	ion	12		
		2.2.1		12		
		2.2.2		13		
		2.2.3	linearity	13		
		2.2.4		14		
		2.2.5		14		
	2.3	Corre	spondence	15		
		2.3.1		15		
		2.3.2		15		
		2.3.3		16		
	2.4	Fixed		16		

CONTENTS 2

3	Diff	al Calculus	17			
	3.1	Functi	ions from \mathbb{R} to \mathbb{R}	17		
	3.2	2 Functions from \mathbb{R}^n to \mathbb{R}^m				
		3.2.1	partial derivative and Jacobian matrix	18		
		3.2.2	total derivative	18		
	3.3					
		3.3.1	gradient vector	19		
		3.3.2	Hessian matrix	20		
		3.3.3	Implicit function theorem	21		
	3.4					
		3.4.1	concavity and convexity for C^1 or C^2 function	21		
		3.4.2	quasi-concavity and quasi-convexity for \mathcal{C}^1 or \mathcal{C}^2 function	22		
4	1 Optimization					
	4.1	variate optimization	23			
		4.1.1	First-order and second-order conditions	23		
		4.1.2	Envelope theorem	23		
	4.2					
		4.2.1	Lagrangian multiplier method	25		
		4.2.2	Envelope theorem with linear constraints	25		
			±	_		

Chapter 1

Matrix Algebra

1.1 Terminologies and operations

1.1.1 Basic Matrix Operations

Definition 1.1.1 (Matrix and Vector). An $m \times n$ matrix A is a rectangular array of real numbers with m rows and n columns.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

- $m \times n$ is called the dimension or order of A. If m = n, the matrix is the square of order n.
- A short hand notation is $A = (a_{ij}), i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$.
- A vector is a special case of a matrix. A row vector is $1 \times n$ matrix and a column vector is $m \times 1$ matrix.

Check 1.1.1. Basic Matrix Operations

- Equality
- Addition and subtraction
- Scalar multiplication
- Matrix multiplication

Check 1.1.2. Laws of Matrix Operations

- Commutative law of addition
- Associative law of addition
- Associative law of multiplication
- Distributive law

Remark. The commutative law of multiplication is not applicable

Check 1.1.3. Definitions of Some Basic Matrices

- identity (or unit) matrix
- null matrix
- diagonal matrix
- (upper and lower) triangular matrix

1.1.2 Transpose

Definition 1.1.2. We say that $B = (b_{ij})_{n \times m}$ is the *transpose* of $A = (a_{ij})_{m \times n}$ if $a_{ji} = b_{ij}$ for all $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$. We notate B, the transpose of A, as A' or A^T .

Check 1.1.4. Properties of Transpose

- (A')' = A
- $\bullet \ (A+B)' = A' + B'$
- (kA)' = kA', where k is a scalar
- (AB)' = B'A'

Definition 1.1.3. Special transpose matrices

- If A' = A, A is called symmetric.
- If A'A = I, A is called orthogonal.
- If A = A' and AA = A, A is called idempotent.

1.1.3 Inverse

Definition 1.1.4. An $n \times n$ matrix A is nonsingular if there exists an $n \times n$ matrix B such AB = BA = I. The Matrix B is called the *inverse* of A and denoted by A^{-1} .

Check 1.1.5. Properties of Inverse

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A')^{-1} = (A^{-1})'$
- If $D = diag(d_1, \dots, d_n)$, then $D^{-1} = diag(d_1^{-1}, \dots, d_n^{-1})$

Check 1.1.6. Elementary row operation

- Type 1 interchanging any two rows of A
- Type 2 multiplying any row of A non-zero scalar

• Type 3 adding any scalar multiple of a row A to another row

Check 1.1.7 (Gauss elimination method). Algorithm for finding the inverse of a square matrix A:

- i. Write the augmented matrix (A|I).
- ii. Try to convert A into I by the elementary operations where the rows are from (A|I).
- iii. If it is possible to convert A into I then the augmented matrix takes the form $(A|I^{-1})$.

Example 1.1.1. Find the inverses of following matrices, if it exists.

$$\begin{array}{cccc}
(1) & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{pmatrix}$$

$$(2) \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 5 & 4 \end{pmatrix}$$

Further Study 1.1.1. Partitioned matrix and its inverse

1.1.4 Determinants

Definition 1.1.5. Let A be an $n \times n$ matrix.

- i. if n = 1, so that $A = (a_{11})$, we define the determinant of A to be $|A| = a_{11}$.
- ii. if $n \geq 2$, the determinant of A is defined to be

$$|A| = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} |A_{1j}|,$$

where A_{ij} is the $(n-1) \times (n-1)$ submatrix obtained by deleting row i and column j from A.

Remark. The determinant can be evaluated by cofactor expansion along any row or column.

Check 1.1.8. Properties of determinant 1

- If B is a matrix obtained by interchanging any two rows of A, then |B| = -|A|.
- If B is a matrix obtained by adding a multiple of one row of A to another row of A, then |B| = |A|.
- If B is a matrix obtained by multiplying a row of A by a non-zero scalar k, then |B| = k|A|.
- If A is a triangular matrix, then $|A| = \prod_{i=1}^{n} a_{ii}$

Example 1.1.2. Find the determinants of following matrices, if it exists.

$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}$$

(2)
$$\begin{pmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{pmatrix}$$

Check 1.1.9. Properties of determinant 2

- |A'| = |A|.
- $\bullet ||AB| = |A||B|.$

1.1.5 trace

Definition 1.1.6 (Trace). Let $A = (a_{ij})$ be an $n \times n$ matrix. The *trace* of A, denoted tr(A), is the sum of the diagonal entries of A, that is,

$$tr(A) = \sum_{i=1}^{n} a_{ii}.$$

Check 1.1.10. Properties of trace

- tr(A+B) = tr(A) + tr(B).
- tr(A') = tr(A).
- tr(AB) = tr(BA), for an $m \times n$ matrix A and an $n \times m$ matrix B.

1.2 Vector Space

1.2.1 vector space and subspace

Definition 1.2.1. A (real) *vector space* is a nonempty set V of objects together with an additive operation $+: V \times V \to V$, +(u,v) = u+v and a scalar multiplicative operation $\cdot: \mathbb{R} \times V \to V, \cdot (a,u) = au$ which satisfies the following axioms for any $u,v,w \in V$ and any $a,b \in \mathbb{R}$:

V1.
$$(u+v) + w = u + (v+w)$$

$$V2. \ u + v = v + u$$

V3.
$$0 + u = u$$

V4.
$$u + (-u) = 0$$

V5.
$$a(u+v) = au + av$$

V6.
$$(a+b)u = au + bu$$

V7.
$$a(bu) = (ab)u$$

V8.
$$1u = u$$
.

Remark. Some additional definitions

- The objects of a vector space V are called vectors
- \bullet The operations + and \times are called vector addition and scalar multiplication, respectively.
- The element $0 \in V$ is the zero vector and -v is the additive inverse of V.
- The *n*-dimensional vector space $\mathbb{R}^n = \{(u_1, u_2, \cdots, u_n)' | u_i \in \mathbb{R}, i = 1, \cdots, n\}.$

Definition 1.2.2. A subset W of a vector space V is called a *subspace* if W is a vector space.

Example 1.2.1.

- x-axis is a subspace of \mathbb{R}^2
- $\{(x,y)|y=x,\ x,y\in\mathbb{R}\}$ is a subspace of \mathbb{R}^2
- $\{(x,y)|y=x+1,\ x,y\in\mathbb{R}\}$ is not a subspace of \mathbb{R}^2
- xy-plane is a subspace of \mathbb{R}^3

1.2.2 Inner product

Definition 1.2.3. Let V be a vector space. An *inner product* or *scalar product* in V is a function $s: V \times V \to \mathbb{R}$, $s(u,v) = u \cdot v$ which satisfies the following properties:

- $\bullet \ u \cdot v = v \cdot u$
- $u \cdot (v + w) = u \cdot v + u \cdot w$
- $a(u \cdot v) = (au) \cdot v = u \cdot (av)$
- $u \cdot u > 0$ if $u \neq 0$

Remark. Let $u, v \in \mathbb{R}^n$. $u \cdot v = u'v = v'u$

Remark. Let $v \in \mathbb{R}^n$. The norm of v is defined as $||v|| = \sqrt{v \cdot v}$

Remark. Let $u, v \in \mathbb{R}^n$. u and v are orthogonal if $u \cdot v = 0$

Check 1.2.1 (Properties of inner product). Let x,y and z are in \mathbb{R}^n and t be a scalar.

- $\bullet \ x \cdot y = y \cdot x$
- $\bullet \ (x+y) \cdot z = x \cdot z + y \cdot z$
- $z \cdot (x+y) = z \cdot x + z \cdot y$
- $x \cdot (ty) = t(x \cdot y) = (tx) \cdot y$
- $||x|| \ge 0$ for all $x \in \mathbb{R}^n$
- $||x|| = 0 \Rightarrow x = \mathbf{0}$
- $(x+y) \cdot (x+y) = ||x||^2 + 2(x \cdot y) + ||y||^2$

1.2.3 linearly dependency and dimension

Definition 1.2.4. Let S be a non-empty subset of vectors in \mathbb{R}^n . The *span* of S is defined by $span(S) = \{ \sum_i a_i v_i | v_i \in S \text{ and } a_i \in \mathbb{R} \}.$

Remark. The span of S is a set consisting of all linear combinations of the vectors in S.

Definition 1.2.5. Let $\{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n . Consider the equation $a_1v_1 + a_2v_2 + \dots + a_kv_k = 0$. If the only solution to this equation is $a_1 = a_2 = \dots = a_k = 0$, then the elements v_1, v_2, \dots, v_k are linearly independent. Otherwise, they are linearly dependent.

Definition 1.2.6. A set $B = \{v_1, v_2, \dots, v_k\}$ of vectors in \mathbb{R}^n is a *basis* of a subspace V of \mathbb{R}^n if span(B) = V and all vectors in S are linearly independent.

Remark. Let V be a subspace of \mathbb{R}^n . Then every basis for V contains the same number of vectors

Definition 1.2.7. The unique number of vectors in each basis is called the dimension of V and is denoted by dim(V).

Example 1.2.2.

- $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ is a basis of \mathbb{R}^2 .
- $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ is also a basis of \mathbb{R}^2 .
- $dim(\mathbb{R}^2) = 2$

1.3 Systems of linear equations

1.3.1 Existence and Uniqueness of solutions

Definition 1.3.1. For a system of n linear equations for n unknowns Ax = b, if $b = \mathbf{O}$ then the system is *homogeneous*.

Check 1.3.1. Homogeneous case

- If $|A| \neq 0$ then the system has a unique trivial(zero) solution.
- If |A| = 0 then the system has a infinite number of solutions.

Definition 1.3.2. For a system of n linear equations for n unknowns Ax = b, if $b \neq \mathbf{O}$ then the system is non-homogeneous.

Check 1.3.2. Non-homogeneous case

- If $|A| \neq 0$ then the system has a unique solution.
- If |A| = 0 and
 - If $\operatorname{rank}(A) = \operatorname{rank}(\tilde{A})$ then the system has a infinite number of solutions.

- If $rank(A) \neq rank(\tilde{A})$ then the system is inconsistent.

Here \tilde{A} is a so-called augmented matrix,

$$\tilde{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{pmatrix}$$

Check 1.3.3. How to solve the system of linear equations, if $b \neq \mathbf{O}$ and $|A| \neq 0$:

- The inverse matrix method
- Gauss method
- Cramer's rule

1.3.2 Cramer's rule

Theorem 1.3.1 (Cramer's rule). Let A be an $n \times n$ non-singular matrix. Let $x^* = (x_1^*, \dots, x_n^*)$ be the unique solution of Ax = b. Then $x_i^* = \frac{|A^i|}{|A|}$, where A^i is the matrix A with b replacing the i'th column of A.

Example 1.3.1.
$$A = \begin{pmatrix} 5 & 1 & -1 \\ -2 & 5 & -1 \\ -1 & -1 & 7 \end{pmatrix}, b = \begin{pmatrix} 9 \\ 3 \\ 17 \end{pmatrix}$$
. Solve x .

1.4 Eigenvalue, Eigenvector and Diagonalization

1.4.1 eigenvalue and eigenvector

Definition 1.4.1. For an $n \times n$ matrix A, a non-zero vector x is called *eigenvector* of A if there exists a scalar λ such that $Ax = \lambda x$. The scalar λ is called *eigenvalue* corresponding to the eigenvector x.

Check 1.4.1. How to find the eigenvalues and the eigenvectors of a matrix A.

- Find the solutions of $|A \lambda I| = 0$, then The solutions λ^* are the eigenvalues
- Find the solution vectors of $(A \lambda^* I)x = \mathbf{0}$, then the vectors are the eigenvectors corresponding to the eigenvalue λ^* .

Remark. $|A - \lambda I|$ is called the *characteristic polynomial* of A.

1.4.2 diagonalization

Definition 1.4.2. An $n \times n$ matric A is diagonalizable if there exists a nonsingular P such that $P^{-1}AP = D$ for a diagonal matrix D.

Remark. An $n \times n$ matric A is diagonalizable if and only if it has a set of n linearly independent eigenvectors.

Remark. Let A be an $n \times n$ symmetric matrix. Then A has n orthogonal eigenvectors and it can be diagonalized as P'AP = D form.

Example 1.4.1. Diagonalize following matrices.

1)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$

$$2) \ A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

$$3) \ A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

4)
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{pmatrix}$$

1.5 Quadratic forms and Definite matrices

1.5.1 quadratic form

Definition 1.5.1. A quadratic form on \mathbb{R}^n is a real-valued function of the form

$$Q(x_1, \cdots, x_n) = \sum_{i \le j} a_{ij} x_i x_j,$$

in which each term is of degree two.

Remark. A quadratic form on \mathbb{R}^n can be represented by an $n \times n$ matrix A and a vector x in \mathbb{R}^n as x'Ax.

Check 1.5.1. Check the condition for followings:

- 1) for all $x \in \mathbb{R}$, $ax^2 + 2bx + c \ge 0$
- 2) for all $x, y \in \mathbb{R}$, $ax^2 + 2bxy + cy^2 \ge 0$

1.5.2 definite matrices

Definition 1.5.2. A quadratic form $Q(x_1, \dots, c_n) = \sum_{i \leq j} a_{ij} x_i x_j$ is called

- i. positive definite, if Q(x) > 0 for all $x \neq 0$.
- ii. negative definite, if Q(x) < 0 for all $x \neq 0$.
- iii. positive semidefinite, if $Q(x) \ge 0$ for all x.
- iv. negative semidefinite, if $Q(x) \leq 0$ for all x.
- v. indefinite, otherwise.

Check 1.5.2.
$$Q = x^2 + y^2$$
 is PD, $Q = (x + y)^2$ is PSD, $Q = x^2 - y^2$ is ID.

Definition 1.5.3. Let A be an $n \times n$ matrix. A $k \times k$ submatrix of A obtained by deleting n-k columns, say columns i_1, i_2, \dots, i_{n-k} and the same n-k rows, say rows i^1, i^2, \dots, i^{n-k} , from A is called a kth order principal submatrix of A. The determinant of a $k \times k$ principal submatrix is called a kth order principal minor of A.

Definition 1.5.4. The kth order leading principal submatrix of A, denoted A_k is the matrix obtained by deleting the last n-k rows and columns from A. The kth order leading principal minor of A is $|A_k|$.

Theorem 1.5.1. Let A be an $n \times n$ symmetric matrix. Then

- i. A is PD iff $|A_1| > 0, |A_2| > 0, \dots, |A_n| > 0$
- ii. A is ND iff $|A_1| < 0, |A_2| > 0, \dots, (-1)^n |A_n| > 0$
- iii. A is PSD iff (not only leading principal minors but) every principal minors of A is non-negative.
- iv. A is NSD iff (not only leading principal minors but) every principal minors of odd order A is non-positive and every principal minors of even order A is non-negative.
- v. A is ID, otherwise.

Example 1.5.1. Consider the quadratic form $Q(x, y, z) = 3x^2 + 3y^2 + 5z^2 - 2xy$.

Theorem 1.5.2. Let A be an $n \times n$ symmetric matrix. Then

- i. A is PD iff all the eigenvalues of A are positive.
- ii. A is ND iff all the eigenvalues of A are negative.
- iii. A is PSD iff all the eigenvalues of A are non-negative.
- iv. A is NSD iff all the eigenvalues of A are non-positive.
- v. A is ID, otherwise.

1.5.3 definite matrices on the linear constraint

Check 1.5.3. Consider the quadratic form $Q(x,y) = x^2 - y^2$. See Figure 1.1

- Q on \mathbb{R}^2 is ID.
- Q on the x-axis is PD.
- Q on the y-axis is ND.
- Q on the line x 2y = 0 is PD.

Theorem 1.5.3. Let A be an $n \times n$ symmetric matrix and B be an $m \times n$ matrix. Construct the $(n+m) \times (n+m)$ the bodered matrix $\bar{H} = \begin{pmatrix} \mathbf{0} & B \\ B' & A \end{pmatrix}$.

i. If $|\bar{H}|$ and these last n-m leading principal minors all have the same sign as $(-1)^m$, then A is PD on the linear constraint $Bx = \mathbf{0}$.

Figure 1.1: $Q(x, y) = x^2 - y^2$

ii. If $|\bar{H}|$ has the same sign as $(-1)^n$ and if these last n-m leading principal minors alternate in sign, then A is ND on the linear constraint $Bx = \mathbf{0}$.

Remark. A is PD on the linear constraint $Bx = \mathbf{0}$ iff $(-1)^m |\bar{H}_{m+n}| > 0, (-1)^m |\bar{H}_{m+n-1}| > 0, \cdots, (-1)^m |\bar{H}_{(m+n)-(n-m-1)}| > 0.$

Remark. A is ND on the linear constraint $Bx = \mathbf{0}$ iff $(-1)^n |\bar{H}_{m+n}| > 0, (-1)^{n-1} |\bar{H}_{m+n-1}| > 0, \cdots, (-1)^{m+1} |\bar{H}_{(m+n)-(n-m-1)}| > 0.$

Example 1.5.2. Chech the definiteness of $Q(x_1, x_2, x_3, x_4) = x_1^2 - x_2^2 + x_3^2 + x_4^2 + 4x_2x_3 - 2x_1x_4$ on the constraint set $x_2 + x_3 + x_4 = 0, x_1 - 9x_2 + x_4 = 0$

Chapter 2

Set, Function and Correspondence

2.1 Set

2.1.1 open set and closed set

Definition 2.1.1. Let $x \in \mathbb{R}^n$ and $\epsilon > 0$. The ϵ -ball of x, denoted $B_{\epsilon}(x)$, is defined to be $B_{\epsilon}(x) = \{y \in \mathbb{R}^n | ||x - y|| < \epsilon\}$.

Definition 2.1.2. A set $A \subset \mathbb{R}^n$ is said to be *open* if, for each $x \in A$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset A$.

Definition 2.1.3. A set $A \subset \mathbb{R}^n$ is said to be *closed* if $\mathbb{R} \setminus A$ is open.

Example 2.1.1.

- 1) $\{(x_1, x_2) \in \mathbb{R}^2 | x_1^2 + x_2^2 < 1\}$ is open.
- 2) $\{(x_1, x_2) \in \mathbb{R}^2 | x_1^2 + x_2^2 \le 1\}$ is closed.

Check 2.1.1. Properties of open set

- \mathbb{R}^n and \emptyset are open.
- The finite intersection of open sets is open.
- Any union of open sets is open.

Check 2.1.2. Properties of closed set

- \mathbb{R}^n and \emptyset are closed.
- Any intersection of closed sets is closed.
- The finite union of closed sets is closed.

Definition 2.1.4. Let $\{x^k\}$ be a sequence of points in \mathbb{R}^n . We say that $\{x^k\}$ converges to $x \in \mathbb{R}^n$, denoted $x^k \to x$, if, for all $\epsilon > 0$, there exists N such that $||x - x^m|| < \epsilon$ for m > N.

Remark. $x^k \to x$ iff $\left[x_i^k \to x_i, \ \forall i = 1, 2, \cdots, n \right]$

Theorem 2.1.1. A set $A \subset \mathbb{R}^n$ is closed iff, for every sequence $\{x^k\} \subset A$ such that $x^k \to x$, $x \in A$.

2.2 Function 12

2.1.2 bounded set and compact set

Definition 2.1.5. A set $S \subset \mathbb{R}^n$ is bounded if there exists a number B such that $||x|| \leq B$ for all $x \in S$, that is, if S is contained in some ball in \mathbb{R}^n .

Definition 2.1.6. Let J be any index set.

- Given a set A, a collection $\{U_{\alpha}\}_{{\alpha}\in J}$ of sets whose union contains A is called a *cover* of A.
- It is an open cover if each U_{α} is open.
- A subcover of a given cover is merely a subcollection of it whose union also contains A.
- It is a *finite subcover* if the subcover contains only a finite number of sets.

Definition 2.1.7. A set $A \subset \mathbb{R}^n$ is *compact* if every open cover $\{U_\alpha\}_{\alpha \in J}$ of A has a finite subcover $\{U_i\}_{i=1}^m$.

Example 2.1.2. Let A = (0,1]. Find an open cover with no finite subcover.

Theorem 2.1.2. A set $A \subset \mathbb{R}^n$ is compact iff A is closed and bounded.

Example 2.1.3.

- $(-\infty, b]$ is closed but not compact.
- (a,b) is bounded but not compact.
- [a, b] is compact.

2.1.3 convex set and hyperplane

Definition 2.1.8. A set $X \subset \mathbb{R}^n$ is *convex* if for each $x_1, x_2 \in X$ and each $\alpha \in (0,1), \alpha x_1 + (1-\alpha)x_2 \in X$.

Definition 2.1.9. Let $p \in \mathbb{R}^n$ with $p \neq 0$ and c be a real number. The set $H = \{x \in \mathbb{R}^n | p \cdot x = c\}$ is called a *hyperplane* in \mathbb{R}^n with respect to p and c.

Remark. For all $x, x' \in H$, $p \cdot x = p \cdot x'$. Thus $p \cdot (x - x') = 0$. This means that the normal vector p is orthogonal to H.

Theorem 2.1.3 (Minkowski's separating hyperplane theorem). Let X and Y be nonempty, convex and disjoint sets in \mathbb{R}^n . Then there exists $p \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and a real number c such that $p \cdot x \geq c \geq p \cdot y$ for all $x \in X$ and $y \in Y$.

2.2 Function

2.2.1 continuity

Definition 2.2.1. Let $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}^n$, and $x^0 \in A$. f is continuous at x^0 if, for any $\epsilon > 0$, there exists $\delta > 0$ such that $||x - x^0|| < \delta$ implies $||f(x) - f(x^0)|| < \epsilon$. f is continuous if f is continuous as x^0 for all $x^0 \in A$.

2.2 Function 13

Theorem 2.2.1. $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous iff for any open set $O \in \mathbb{R}^m$, $f^{-1}(O)$ is open in \mathbb{R}^n .

Theorem 2.2.2. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function. If a subset $K \in \mathbb{R}^n$ is compact, then f(K) is compact in \mathbb{R}^m .

Theorem 2.2.3 (Weierstrass Theorem). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function and $K \in \mathbb{R}^n$ be a compact set. Then there exist $M, m \in K$ such that $f(M) = \max_{x \in K} f(x)$ and $f(m) = \min_{x \in K} f(x)$.

2.2.2 monotonicity

Definition 2.2.2. A function $f: \mathbb{R} \to \mathbb{R}$ is called *monotonic* (also monotonically increasing, increasing, or non-decreasing), if for all x and y such that $x \leq y$ one has $f(x) \leq f(y)$, so f preserves the order.

Definition 2.2.3. A function $f: \mathbb{R} \to \mathbb{R}$ is called *monotonically decreasing* (also decreasing, non-increasing), if for all x and y such that $x \leq y$ one has $f(x) \geq f(y)$, so f reverses the order.

Remark. If the order \leq in the definition of monotonicity is replaced by the strict order <, then one obtains a stronger requirement. A function with this property is called *strictly increasing*. Again, by inverting the order symbol, one finds a corresponding concept called *strictly decreasing*.

Remark. Functions that are strictly increasing or decreasing are one-to-one.

2.2.3 linearity

Definition 2.2.4. For any scalar k, a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called homogeneous of degree k, if $f(\alpha x) = \alpha^k f(x)$ and all $\alpha > 0$.

Check 2.2.1. If q = f(x) is a production function which is

- homogeneous of degree one, then such a firm said to exhibit constant returns to scale.
- homogeneous of degree k > 1, then such a firm said to exhibit increasing returns to scale.
- homogeneous of degree k < 1, then such a firm said to exhibit decreasing returns to scale.

Definition 2.2.5. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called *linear*, if it satisfies the following two properties: for $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$,

- Additivity property (or superposition property): f(x+y) = f(x) + f(y).
- Homogeneity property: $f(\alpha x) = \alpha f(x)$ for all α .

Remark. A linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ could be written y = Ax, where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ and A is a $m \times n$ matrix.

Definition 2.2.6. A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is called an *affine* function if it is a polynomial of degree one.

2.2 Function 14

Remark. An affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ could be written y = Ax + b, where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, A is some $m \times n$ matrix and b is some m-vector.

Definition 2.2.7. A (utility) function $U : \mathbb{R}^n \to \mathbb{R}$ is called *quasilinear*, if it is linear in one argument, generally the numeraire.

Remark. A quasilinear (utility) function could be written $U(x_1, x_2, \dots, x_{n-1}, y) = u(x_1, x_2, \dots, x_{n-1}) + by$, where $u : \mathbb{R}^{n-1} \to \mathbb{R}$ and b is a positive constant.

2.2.4 concavity and convexity

Definition 2.2.8. Let $f: X \to \mathbb{R}$ be a function where $X \subset \mathbb{R}^n$ is a convex set. For all $x_1, x_2 \in X$, and $\alpha \in (0, 1)$,

- f is called *concave*, if $f(\alpha x_1 + (1 \alpha)x_2) \ge \alpha f(x_1) + (1 \alpha)f(x_2)$.
- f is called strictly concave, if $f(\alpha x_1 + (1 \alpha)x_2) > \alpha f(x_1) + (1 \alpha)f(x_2)$.
- f is called *convex*, if $f(\alpha x_1 + (1 \alpha)x_2) \le \alpha f(x_1) + (1 \alpha)f(x_2)$.
- f is called strictly convex, if $f(\alpha x_1 + (1 \alpha)x_2) < \alpha f(x_1) + (1 \alpha)f(x_2)$.

Check 2.2.2. Geographical properties

- $[f \text{ is concave}] \Leftrightarrow [(\text{height of line segment}) \leq (\text{height of arc})]$
- f is convex \Leftrightarrow $(\text{height of line segment}) \ge (\text{height of arc})$
- $[f \text{ is strictly concave}] \Leftrightarrow [(\text{height of line segment}) < (\text{height of arc})]$
- $[f \text{ is strictly convex}] \Leftrightarrow [(\text{height of line segment}) > (\text{height of arc})]$

2.2.5 quasi-concavity and quasi-convexity

Definition 2.2.9. Let $f: X \to \mathbb{R}$ be a function where $X \subset \mathbb{R}^n$ is a convex set.

- f is called quasi-concave if, for all $k \in \mathbb{R}$, the set $\{x \in X | f(x) \ge k\}$ is convex.
- f is called quasi-convex if, for all $k \in \mathbb{R}$, the set $\{x \in X | f(x) \leq k\}$ is convex

Remark. $\{x \in X | f(x) \ge k\}$ is called upper contour set and $\{x \in X | f(x) \le k\}$ is called lower contour set.

Check 2.2.3.

- If f is concave, it is quasi-concave.
- If f is convex, it is quasi-convex.

Theorem 2.2.4. Let $f: X \to \mathbb{R}$ be a function where $X \subset \mathbb{R}^n$ is a convex set. For all $x_1, x_2 \in X$, and $\alpha \in (0, 1)$,

• f is quasi-concave iff $f(\alpha x_1 + (1 - \alpha)x_2) \ge \min\{f(x_1), f(x_2)\}.$

• f is quasi-convex iff $f(\alpha x_1 + (1 - \alpha)x_2) \le \max\{f(x_1), f(x_2)\}.$

Definition 2.2.10. Let $f: X \to \mathbb{R}$ be a function where $X \subset \mathbb{R}^n$ is a convex set. For all $x_1, x_2 \in X$, and $\alpha \in (0, 1)$,

- f is strictly quasi-concave if, $f(\alpha x_1 + (1 \alpha)x_2) > \min\{f(x_1), f(x_2)\}.$
- f is strictly quasi-convex if, $f(\alpha x_1 + (1 \alpha)x_2) < \max\{f(x_1), f(x_2)\}.$

Check 2.2.4. We do not define strictly quasi-concave and strictly quasi-convex with the set $\{x \in X | f(x) > k\}$. Why?

Check 2.2.5. For all $x_1, x_2 \in X$, and $\alpha \in (0, 1)$,

- [f is quasi-concave] $\Leftrightarrow [f(x_1) \le f(x_2) \text{ implies } f(\alpha x_1 + (1 - \alpha)x_2) \ge f(x_1)]$
- [f is quasi-convex] $\Leftrightarrow [f(x_1) \le f(x_2) \text{ implies } f(\alpha x_1 + (1 - \alpha)x_2) \le f(x_2)]$
- [f is strictly quasi-concave] $\Leftrightarrow [f(x_1) \le f(x_2) \text{ implies } f(\alpha x_1 + (1 - \alpha)x_2) > f(x_1)]$
- [f is strictly quasi-convex] $\Leftrightarrow [f(x_1) \le f(x_2) \text{ implies } f(\alpha x_1 + (1 - \alpha)x_2) < f(x_2)]$

2.3 Correspondence

2.3.1 correspondence and graph

Definition 2.3.1. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$. A correspondence $\Phi : X \rightrightarrows Y$ associates a subset $\Phi(x) \subset Y$ with each $x \in X$.

Remark. A correspondence $\Phi: X \rightrightarrows Y$ may be seen as a function $\Phi: X \to 2^Y$ where 2^Y is the power set of Y.

Definition 2.3.2. The *graph* of a correspondence $\Phi: X \rightrightarrows Y$ is defined to be $G(\Phi) = \{(x,y) \in X \times Y | y \in \Phi(x)\}.$

Definition 2.3.3. A correspondence $\Phi: X \rightrightarrows Y$ has a *closed graph* if, for every sequence $\{(x^n, y^n)\} \subset G(\Phi)$ with $(x^n, y^n) \to (x, y)$, we have $(x, y) \in G(\Phi)$.

2.3.2 continuity

Definition 2.3.4. A correspondence $\Phi: X \rightrightarrows Y$ is called *upper hemicontinuous*(u.h.c.) if it has a closed graph and the images of compact sets are bounded, that is, for each compact set $B \subset X$, $\Phi(B)$ is bounded, where $\Phi(B) = \{y \in Y | y \in \Phi(x) \text{ for some } x \in B\}.$

Definition 2.3.5. A correspondence $\Phi: X \rightrightarrows Y$ is called *lower hemicontin-uous(l.h.c.)* if, for every sequence $\{x^n\} \subset X$ with $x^n \to x \in X$ and every $y \in \Phi(x)$, we can find a sequence $\{y^n\}$ and an integer N such that, for all n > N, $y^n \in \Phi(x^n)$ and $y^n \to y$.

Definition 2.3.6. A correspondence $\Phi: X \rightrightarrows Y$ is *continuous* if it is u.h.c. and l.h.c.

Theorem 2.3.1. Let $\Phi: X \rightrightarrows Y$ be a single valued correspondence.

- If Φ is u.h.c., it is a continuous function $X \to Y$.
- If Φ is l.h.c., it is a continuous function $X \to Y$.

2.3.3 Berge's Maximum Theorem

Theorem 2.3.2. Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$, and $f: X \times Y \to \mathbb{R}$. Let $\Phi: X \rightrightarrows Y$ be a continuous correspondence with nonempty and compact values. Then

- The correspondence $y^*: X \rightrightarrows Y$ defined by $y^*(x) \equiv \operatorname{argmax}_{y \in \Phi(x)} f(x, y)$ is u, h, c
- The function $f^*: X \to \mathbb{R}$ defined by $f^*(x) \equiv \max_{y \in \Phi(x)} f(x, y)$ is continuous.

2.4 Fixed Point Theorem

Definition 2.4.1.

- Let $X \subset \mathbb{R}^n$ and $f: X \to X$. Then $x \in X$ is called a *fixed point* of f if x = f(x).
- Let $X \subset \mathbb{R}^n$ and $\Phi : X \rightrightarrows X$. Then $x \in X$ is called a *fixed point* of Φ if $x \in \Phi(x)$.

Theorem 2.4.1 (Brouwer's Fixed Point Theorem). Let $X \in \mathbb{R}^n$ be nonempty, compact and convex set and $f: X \to X$ is a continuous function. Then f has a fixed point.

Theorem 2.4.2 (Kakutani's Fixed Point Theorem). Let $X \in \mathbb{R}^n$ be nonempty, compact and convex set and $\Phi: X \rightrightarrows X$ is upper hemicontinuous and convex-valued correspondence. Then Φ has a fixed point.

Chapter 3

Differential Calculus

3.1 Functions from \mathbb{R} to \mathbb{R}

Definition 3.1.1. Let $X,Y\in\mathbb{R}$ be open sets. Let $f:X\to Y$. Then the derivative of f at $x^0\in X$ is defined to be

$$\frac{df}{dx}(x^0) \equiv \lim_{h \to 0} \frac{f(x^0 + h) - f(x^0)}{h}$$

if this limit exists.

Remark. We also denote the derivative of f at x^0 by $\{f(x^0)\}'$ or $f'(x^0)$.

Check 3.1.1. Derivative rules

- i. $\{f(x) + g(x)\}' = f'(x) + g'(x)$.
- ii. $\{f(x)g(x)\}' = f'(x)g(x) + f(x)g'(x)$.
- iii. $\left\{ \frac{f(x)}{g(x)} \right\}' = \frac{f'(x)g(x) f(x)g'(x)}{\{g(x)\}^2}$.
- iv. $\{f(g(x))\}' = f'(g(x))g'(x)$.
- v. If f is invertible and $f'(x^0) \neq 0$ then $\left\{f^{-1}(y^0)\right\}' = \left\{f'(x^0)\right\}^{-1}$ where $y^0 = f(x^0)$.

Check 3.1.2. Properties of exponential function

Definition 3.1.2. For a > 0, the inverse function of $y = a^x$ is called the base a logarithm and is denoted by $\log_a y$. And the base e logarithm is called the natural logarithm and is written as $\log y$ or $\ln y$.

Remark. We denote as $e \equiv \lim_{n\to\infty} \left\{1 + \frac{1}{n}\right\}^n = 2.7182...$

Remark.
$$e = \sum_{i=0}^{\infty} (i!)^{-1} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \cdots$$

Check 3.1.3. Properties of the logarithm

Check 3.1.4. Derivative of exponential function and logarithm.

i.
$$(e^x)' = e^x$$
.

ii.
$$(a^x)' = a^x \ln a$$
.

iii.
$$(\ln x)' = \frac{1}{x}$$
.

iv.
$$(\ln f(x))' = \frac{f'(x)}{f(x)}$$
.

3.2 Functions from \mathbb{R}^n to \mathbb{R}^m

3.2.1 partial derivative and Jacobian matrix

Definition 3.2.1. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open sets. Let $f: X \to Y$, so that

$$y_1 = f^1(x_1, \dots, x_n)$$

$$y_2 = f^2(x_1, \dots, x_n)$$

$$\vdots$$

$$y_m = f^m(x_1, \dots, x_n).$$

Then the partial derivative of f^i with respect to x_j at $x^0 \in X$ is defined to be:

$$\frac{\partial f^i}{\partial x_j}(x^0) \equiv \lim_{h_j \to 0} \frac{f(x_1^0, \dots, x_j^0 + h_j, \dots, x_n^0) - f(x^0)}{h_j}$$

if this limit exists.

Remark. $\frac{\partial f^i}{\partial x_j}(x^0)$ is denoted as $f_j^i(x^0)$.

Definition 3.2.2. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open sets.Let h be a n-vector. Let $f: X \to Y$. Then f is called differentiable at $x^0 \in X$ if there exists an $m \times n$ matrix A such that

$$\lim_{h \to 0} \frac{\left\| f(x^0 + h) - [f(x^0) + Ah] \right\|}{\|h\|} = 0.$$

The matrix A is called the *derivative* of or the *Jacobian derivative* of f at x^0 . Remark. The derivative of f at x^0 is denoted $Df(x^0)$

3.2.2 total derivative

Theorem 3.2.1. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open sets. Let $f: X \to Y$. Suppose that f is differentiable at $x^0 \in X$. Then

- i. For each i and j, the partial derivative of f^i with respect to x_j at $x^0 \in X$, $f^i_j(x^0)$, exists.
- ii. The derivative of f at x^0 is equal to $m \times n$ matrix whose entries are the partial derivatives of f at x^0 , that is,

$$Df(x^{0}) = \begin{pmatrix} f_{1}^{1}(x^{0}) & f_{2}^{1}(x^{0}) & \cdots & f_{n}^{1}(x^{0}) \\ f_{2}^{2}(x^{0}) & f_{2}^{2}(x^{0}) & \cdots & f_{n}^{2}(x^{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}^{m}(x^{0}) & f_{2}^{m}(x^{0}) & \cdots & f_{n}^{m}(x^{0}) \end{pmatrix}.$$

Theorem 3.2.2. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open sets. Let $f: X \to Y$. If for each i and j, $f_j^i(x^0)$ exists and f_j^i is continuous in the neighborhood of $x^0 \in X$ then f is differentiable at x^0 .

Definition 3.2.3. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open sets. Let $f: X \to Y$. Then the expression $dy = Df(x^0)dx$ is called the *total differential* of f at x^0 .

Theorem 3.2.3 (Chain Rule). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^p \to \mathbb{R}^n$. Let $w^0 \in \mathbb{R}^p$ and $x^0 = g(w^0) \in \mathbb{R}^n$. Suppose that f and g are differentiable at x^0 and w^0 , respectively. Then $D(f \circ g)(x^0) = Df(x^0)Dg(w^0)$.

Example 3.2.1. Let $z = x^2 + 3xy + y^3$, x = 1 + t, $y = t^2$. find $\frac{dz}{dt}$.

3.3 Functions from \mathbb{R}^n to \mathbb{R}

3.3.1 gradient vector

Definition 3.3.1. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued function. The *gradient* vector of f at x^0 is defined to be the column vector

$$\nabla f(x^0) \equiv \begin{pmatrix} f_1(x^0) \\ f_2(x^0) \\ \vdots \\ f_n(x^0) \end{pmatrix}.$$

Remark. The derivative of f at x^0 is the row vector, that is,

$$Df(x^0) = (f_1(x^0) \quad f_2(x^0) \quad \cdots \quad f_n(x^0)).$$

Definition 3.3.2. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued function. The derivative of f at x^0 in the direction v, denoted $\frac{\partial f}{\partial v}(x^0)$, is defined to be

$$\frac{\partial f}{\partial v}(x^0) \equiv \lim_{t \to 0} \frac{f(x^0 + tv) - f(x^0)}{t}.$$

Theorem 3.3.1. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued differentiable function at $x^0 \in X$. Then $\frac{\partial f}{\partial v}(x^0) = Df(x^0)v$.

Theorem 3.3.2. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued C^1 function. Then, for all $x^0 \in X$ at which $\nabla f(x^0) \neq \mathbf{0}$, the gradient vector $\nabla f(x^0)$ points at x into the direction in which f increases most rapidly.

Check 3.3.1. If f is k times continuously differentiable, we say that f is C^k .

Example 3.3.1. Find $\nabla f(1,1)$ and $\nabla f(1,-1)$, where $f(x,y) = e^{-x^2-y^2}$. And check the directions. See Figure 3.1.

Example 3.3.2. Find the tangent plane at (1,1,2) on the graph $z=x^2+y^2$. See Figure 3.2.

Figure 3.1: Graphics for Example 3.3.1

Figure 3.2: $z = x^2 + y^2$

3.3.2 Hessian matrix

Definition 3.3.3. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued function. The $x_i x_j$ -second order partial derivative of f at x^0 , denoted $\frac{\partial^2 f}{\partial x_j \partial x_i}(x^0)$, is defined to be $\frac{\partial^2 f}{\partial x_j \partial x_i}(x^0) \equiv \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}(x)\right)\Big|_{x=x^0}$.

 ${\it Remark}.$ Other frequently used notation for second order partial derivatives includes

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = f_{x_i x_j} = f_{ij} = D_{ij} f.$$

Theorem 3.3.3 (Young's Theorem). Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued C^2 function. Then, for all $x \in X$ and for each pair i and j, $f_{ij}(x) = f_{ji}(x)$.

Definition 3.3.4. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}$ be open sets. Let $f: X \to Y$ be a real-valued C^2 function. The Hessian matrix of f at $x^0 \in X$, denoted $D^2 f(x^0)$,

is defined to be:

$$D^{2}f(x^{0}) \equiv \begin{pmatrix} f_{11}(x^{0}) & f_{12}(x^{0}) & \cdots & f_{1n}(x^{0}) \\ f_{21}(x^{0}) & f_{22}(x^{0}) & \cdots & f_{2n}(x^{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1}(x^{0}) & f_{n2}(x^{0}) & \cdots & f_{nn}(x^{0}) \end{pmatrix} = (f_{ij}(x^{0})).$$

3.3.3 Implicit function theorem

Theorem 3.3.4. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be open sets. Let $F: X \times Y \to \mathbb{R}^m$ be C^1 function. Consider $F(y,x) = \mathbf{0}$ as possibly defining y as an implicit function of x. Suppose that $F(y^0,x^0) = \mathbf{0}$ and $|D_uF(y^0,x^0)| \neq 0$. Then

- i. There exist C^1 function y = f(x) and a neighborhood $B_{\epsilon}(x^0)$ of x^0 such that $F(f(x), x) = \mathbf{0}$ for all $x \in B_{\epsilon}(x^0)$ and $y^0 = f(x^0)$.
- ii. The derivative of f at x^0 can be computed as

$$Df(x^0) = -\{D_y F(y^0, x^0)\}^{-1} D_x F(y^0, x^0).$$

Example 3.3.3. For $F(x,y) = x^2 + y^2 - 4$.

- 1) Find y = f(x) such that F(f(x), x) = 0
- 2) Find $\frac{df(x^0)}{dx}$ at $(x^0, y^0) = (2, 2)$.

Example 3.3.4. Consider a system of equations

$$x^3 + uy^3 = 1, \qquad xy = v.$$

Let its solution (x^0, y^0) be a function of u and v. Find $\frac{\partial x^0}{\partial u}$ and $\frac{\partial x^0}{\partial u}$.

3.4 Forms of Differentiable Function

3.4.1 concavity and convexity for C^1 or C^2 function

Theorem 3.4.1. Let $f: X \to \mathbb{R}$ be a C^1 function. For all $x^0 \in X$, $x^0 \neq x$,

- $\left[f \text{ is concave}\right] \Leftrightarrow \left[f(x) \leq f(x^0) + Df(x^0)(x x^0)\right]$
- $\left[f \text{ is convex}\right] \Leftrightarrow \left[f(x) \ge f(x^0) + Df(x^0)(x x^0)\right]$
- $\left[f \text{ is strictly concave} \right] \Leftrightarrow \left[f(x) < f(x^0) + Df(x^0)(x x^0) \right]$
- $\left[f \text{ is strictly convex}\right] \Leftrightarrow \left[f(x) > f(x^0) + Df(x^0)(x x^0)\right]$

Theorem 3.4.2. Let $f: X \to \mathbb{R}$ be a C^2 function. For all $x^0 \in X$,

- $[f \text{ is concave}] \Leftrightarrow [D^2 f(x^0) \text{ is N.S.D}]$
- $\left[f \text{ is convex}\right] \Leftrightarrow \left[D^2 f(x^0) \text{ is P.S.D}\right]$
- $\left[f \text{ is strictly concave}\right] \Leftrightarrow \left[D^2 f(x^0) \text{ is N.D.}\right]$
- $\left[f \text{ is strictly convex}\right] \Leftrightarrow \left[D^2 f(x^0) \text{ is } P.D\right]$

3.4.2 quasi-concavity and quasi-convexity for C^1 or C^2 function

Theorem 3.4.3. Let $f: X \to \mathbb{R}$ be a C^1 function. For all $x_1, x_2 \in X$,

- $\left[f \text{ is quasi-concave}\right] \Leftrightarrow \left[f(x_1) \leq f(x_2) \text{ implies } Df(x^1)(x_2 x_1) \geq 0\right]$
- $\left[f \text{ is quasi-convex}\right] \Leftrightarrow \left[f(x_1) \leq f(x_2) \text{ implies } Df(x^1)(x_2 x_1) \leq 0\right]$

Theorem 3.4.4. Let $f: X \to \mathbb{R}$ be a C^2 function where $X \subset \mathbb{R}^n$. Consider the bodered Hessian B defined as

$$B \equiv \begin{pmatrix} 0 & f_1 & f_2 & \cdots & f_n \\ f_1 & f_{11} & f_{12} & \cdots & f_{1n} \\ f_2 & f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_n & f_{n1} & f_{n2} & \cdots & f_{nn} \end{pmatrix}.$$

- If the largest (n-1) leading principal minors of B alternate in sign, for all $x \in X$, with the smallest of these the third order leading principal minor positive, then f is strictly quasi-concave.
- If these largest (n-1) leading principal minors are all negative for all $x \in X$, then f is strictly quasi-convex.

Example 3.4.1. Consider $f(x,y) = x^{\alpha}y^{\beta}$ $(\alpha, \beta > 0)$ defined on \mathbb{R}^2_{++} . Solve the bordered Hessian matrix and Check its quasi-concavity.

Further Study 3.4.1. Pseudoconcave function: see Simon and Blume (p527)

Chapter 4

Optimization

In this chapter we consider a function $f: \mathbb{R}^n \to \mathbb{R}$.

4.1 Multivariate optimization

4.1.1 First-order and second-order conditions

Theorem 4.1.1 (F.O.C). Suppose that $f \in C^1$ and that $x^0 \in \mathbb{R}^n$ is a local maximizer or local minimizer of f. Then $\nabla f(x^0) = \mathbf{0}$.

Theorem 4.1.2 (S.O.C). Suppose that $f \in C^2$ and that $\nabla f(x^0) = \mathbf{0}$.

- i. Local maximizer
 - If $x^0 \in \mathbb{R}^n$ is a local maximizer, then the (symmetric) $n \times n$ matrix $D^2 f(x^0)$ is N.S.D.
 - If $D^2 f(x^0)$ is N.D., then x^0 is a local maximizer.
- ii. Local minimizer
 - If $x^0 \in \mathbb{R}^n$ is a local minimizer, then the (symmetric) $n \times n$ matrix $D^2 f(x^0)$ is P.S.D.
 - If $D^2 f(x^0)$ is P.D., then x^0 is a local minimizer.

Example 4.1.1. For f(x,y) = xy, find the maximum or minimum, if it exists. See Figure 4.1.

4.1.2 Envelope theorem

Theorem 4.1.3 (Envelope Theorem). For $x \in \mathbb{R}^s$ and $q \in \mathbb{R}^t$, consider the maximization problem $\max_x f(x;q)$ and define the optimal value function $F(q) \equiv f(x(q);q)$. Then

$$\frac{dF(q)}{dq} = \frac{\partial f(x(q);q)}{\partial q} \equiv \frac{\partial f(x;q)}{\partial q} \Big|_{x=x(q)}.$$

Remark. We usually consider x as endogenous variable and q as exogenous variable.

Figure 4.1: z = xy

Remark. x(q) is called as the optimal choice function.

Example 4.1.2. Consider $f(x;q) = -2x^2 + 8qx + q^2$.

- 1) Find $x^0(q)$ such that maximize f(x;q).
- 2) Find maximized f(x), that is, $F(q) \equiv f(x^0(q); q)$.
- 3) Find $\frac{d}{dq}F(q)$ and $\frac{\partial}{\partial q}f(x^0(q);q)$. Compare.
- 4) Explain the envelope theorem with the Figure 4.2

Figure 4.2: $f = -2x^2 + 8qx + q^2$ and $F = 9q^2$ on q-f or q-F plane

4.2 Constrained maximization

4.2.1 Lagrangian multiplier method

Definition 4.2.1. Let f, h_i, h_2, \dots, h_m be real-valued \mathcal{C}^1 functions. For $x \in \mathbb{R}^s$ and $q \in \mathbb{R}^t$, consider the following maximization problem:

$$\max_{x} f(x;q) \quad \text{s.t.} \qquad h_{1}(x;q) = \bar{b}_{1}$$

$$\vdots$$

$$h_{m}(x;q) = \bar{b}_{m}$$

The Lagrangian function is defined as $\mathcal{L}(x,\lambda;q) \equiv f(x;q) + \sum_{i=1}^{m} \lambda_i (h_i(x;q) - \bar{b}_i)$.

Theorem 4.2.1 (F.O.C). Let $h(x;q) \equiv [h_1(x;q), \dots, h_m(x;q)]'$. Suppose that x^0 is a local maximizer of the problem such that $|D_x h(x^0)| \neq 0$. Then there exists $\lambda^0 \equiv [\lambda_1^0, \dots, \lambda_m^0]'$ which satisfies the following first-order condition

$$D_{(\lambda,x)}\mathcal{L}(x^0,\lambda^0;q) = \mathbf{0}.$$

Theorem 4.2.2 (S.O.C). Suppose that x^0 and λ^0 satisfies the F.O.C.. If the Hessian matrix $D_x^2 \mathcal{L}(x^0, \lambda^0; q)$ is N.D. on the linear constraint $D_x h(x^0; q)v = 0$, then x^0 is a strict local maximizer of the maximization problem.

Remark. For (x^0, λ^0) satisfying the first-order condition of a maximization problem, let us construct the Bordered Hessian matrix

$$\bar{H} \equiv \begin{pmatrix} \mathbf{0} & D_x h(x^0;q) \\ D_x h(x^0;q)' & D_x^2 \mathcal{L}(x^0,\lambda^0;q) \end{pmatrix} = D_{(\lambda,x)}^2 \mathcal{L}(x^0,\lambda^0;q).$$

If $(-1)^s |\bar{H}_{m+s}| > 0$, $(-1)^{s-1} |\bar{H}_{m+s-1}| > 0$, \cdots , $(-1)^{m+1} |\bar{H}_{(m+s)-(s-m-1)}| > 0$ then x^0 is a strict local maximizer of the maximization problem.

Example 4.2.1. Solve a following maximization problem:

$$\max_{x,y} f(x,y) = x^2 y$$
 s.t. $2x^2 + y^2 = 3$

See Figure 4.3.

4.2.2 Envelope theorem with linear constraints

Theorem 4.2.3. Let x(q) be the solution of the maximization problem given q. Then

$$\frac{df(x(q);q)}{dq_k}\Big|_{dq_j=0,\forall j\neq k} = \frac{\partial \mathcal{L}}{\partial q_k}(x(q),\lambda(q),q)
= \frac{\partial f}{\partial q_k}(x(q);q) + \sum_{i=1}^m \lambda_i(q) \frac{\partial h_i}{\partial q_k}(x(q),q).$$

Further Study 4.2.1. Comparative statistics: see Varian (ch.27)

Further Study 4.2.2. Kuhn-Tucker theorem: see Varian (ch.27)

Figure 4.3: Graphics for Example 4.2.1