Serafín Ruiz Cabello

Young Workshop on Arithmetics and Combinatorics ICMAT

June 21, 2011

Joint work with Fernando Chamizo and Dulcinea Raboso

- Introduction
 - Rowland's Sequence
 - Auxiliary Sequences
 - Generalization
- 2 Conjectures
 - Conjectures
 - Relation between conjectures
- 3 Primes
 - Results
 - Rowland's Chains

- Introduction
 - Rowland's Sequence
 - Auxiliary Sequences
 - Generalization
- 2 Conjectures
 - Conjectures
 - Relation between conjectures
- 3 Primes
 - Results
 - Rowland's Chains

Rowland's Sequence

2008

$$\begin{cases} a_1 = 7 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); & k > 1 \end{cases}$$

Rowland's Sequence

2008

$$\begin{cases} a_1 = 7 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); & k > 1 \end{cases}$$

First terms

k	1	2	3	4	5	6	7	8	9	10	11	
a_k	7	8	9	10	15	18	19	20	21	22	33	

Rowland's Sequence

2008

$$\begin{cases} a_1 = 7 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); & k > 1 \end{cases}$$

First terms

k	1	2	3	4	5	6	7	8	9	10	11	
a_k	7	8	9	10	15	18	19	20	21	22	33	
$a_k - a_{k-1}$		1	1	1	5	3	1	1	1	1	11	

Rowland's Sequence

2008

$$\begin{cases} a_1 = 7 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); & k > 1 \end{cases}$$

First terms

k	1	2	3	4	5	6	7	8	9	10	11	
a_k	7	8	9	10	15	18	19	20	21	22	33	
$a_k - a_{k-1}$		1	1	1	5	3	1	1	1	1	11	

The sequence $\{a_k - a_{k-1}\}_{k>1}$ has a surprising property:

```
\{a_k - a_{k-1}\} =
1. 1. 1. 5. 3. 1. 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1,
1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
```

```
\{a_k - a_{k-1}\} =
1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1,
1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Every term distinct than 1 is a prime number.
```

Rowland's Sequence

2008

$$\begin{cases} a_1 = 7 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); & k > 1 \end{cases}$$

First terms

k	1	2	3	4	5	6	7	8	9	10	11	
a_k	7	8	9	10	15	18	19	20	21	22	33	
$a_k - a_{k-1}$		1	1	1	5	3	1	1	1	1	11	

Rowland's Sequence

2008

$$\begin{cases} a_1 = 7 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); & k > 1 \end{cases}$$

First terms

k	1	2	3	4	5	6	7	8	9	10	11	
a_k	7	8	9	10	15	18	19	20	21	22	33	
$a_k - a_{k-1}$		1	1	1	5	3	1	1	1	1	11	

Theorem

 $a_k - a_{k-1}$ is 1 or prime for k > 1.

We have an elementary proof for this theorem.

We have an elementary proof for this theorem.

Auxiliary sequences

$$\left\{ \begin{array}{l} c_1^* = 5 \\ c_n^* = c_{n-1}^* + \operatorname{lpf}(c_{n-1}^*) - 1, \; n > 1 \end{array} \right. ; \qquad r_n^* = \frac{c_n^* + 1}{2}, \; n \geq 1.$$

We have an elementary proof for this theorem.

Auxiliary sequences

$$\left\{ \begin{array}{l} c_1^* = 5 \\ c_n^* = c_{n-1}^* + \operatorname{lpf}(c_{n-1}^*) - 1, \ n > 1 \end{array} \right. ; \qquad r_n^* = \frac{c_n^* + 1}{2}, \ n \geq 1.$$

Here, $lpf(\cdot)$ is the least prime factor of an integer.

We have an elementary proof for this theorem.

Auxiliary sequences

$$\left\{ \begin{array}{l} c_1^* = 5 \\ c_n^* = c_{n-1}^* + \operatorname{lpf}(c_{n-1}^*) - 1, \; n > 1 \end{array} \right. ; \qquad r_n^* = \frac{c_n^* + 1}{2}, \; n \geq 1.$$

Here, $\mathsf{Ipf}(\cdot)$ is the least prime factor of an integer.

Proposition

$$a_k - a_{k-1} = \left\{ \begin{array}{ll} \operatorname{lpf}(c_{n-1}^*), & \text{if } k = r_n^* \text{ for some } n > 1. \\ 1, & \text{otherwise} \end{array} \right.$$

We have an elementary proof for this theorem.

Auxiliary sequences

$$\left\{ \begin{array}{l} c_1^* = 5 \\ c_n^* = c_{n-1}^* + \operatorname{lpf}(c_{n-1}^*) - 1, \; n > 1 \end{array} \right. ; \qquad r_n^* = \frac{c_n^* + 1}{2}, \; n \geq 1.$$

Here, $lpf(\cdot)$ is the least prime factor of an integer.

Proposition

$$a_k - a_{k-1} = \left\{ \begin{array}{ll} \operatorname{lpf}(c_{n-1}^*), & \text{if } k = r_n^* \text{ for some } n > 1. \\ 1, & \text{otherwise} \end{array} \right.$$

Using this proof, we obtain another amazing result:

We have an elementary proof for this theorem.

Auxiliary sequences

$$\left\{ \begin{array}{l} c_1^* = 5 \\ c_n^* = c_{n-1}^* + \operatorname{lpf}(c_{n-1}^*) - 1, \; n > 1 \end{array} \right. ; \qquad r_n^* = \frac{c_n^* + 1}{2}, \; n \geq 1.$$

Here, $lpf(\cdot)$ is the least prime factor of an integer.

Proposition

$$a_k - a_{k-1} = \left\{ \begin{array}{ll} \operatorname{lpf}(c_{n-1}^*), & \text{if } k = r_n^* \text{ for some } n > 1. \\ 1, & \text{otherwise} \end{array} \right.$$

Using this proof, we obtain another amazing result:

Proposition

 $\{a_k - a_{k-1}\}_{k>1}$ contains infinitely many primes.

We want to study a more general sequence replacing $a_1=7$ by any integer $a_1\geq 1$.

We want to study a more general sequence replacing $a_1=7$ by any integer $a_1\geq 1$.

$$\begin{cases} a_1 \in \mathbb{Z}^+ \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); \quad k > 1 \end{cases}$$

We want to study a more general sequence replacing $a_1=7$ by any integer $a_1\geq 1$.

Generalized Rowland's Sequence

$$\begin{cases} a_1 \in \mathbb{Z}^+ \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); \quad k > 1 \end{cases}$$

• We can discard any even a_1 , since $a_1=2A$ and $a_1=2A+1$ give the same a_2 .

We want to study a more general sequence replacing $a_1=7$ by any integer $a_1\geq 1$.

$$\begin{cases} a_1 \in \mathbb{Z}^+ \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); \quad k > 1 \end{cases}$$

- We can discard any even a_1 , since $a_1 = 2A$ and $a_1 = 2A + 1$ give the same a_2 .
- Also, $a_1=1$ and $a_1=3$ lead to the sequences $a_k=k$ and $a_k=k+2$, respectively.

We want to study a more general sequence replacing $a_1=7$ by any integer $a_1\geq 1$.

$$\left\{ \begin{array}{l} a_1 \in \mathbb{Z}^+, \, a_1 \operatorname{\sf odd}, a_1 > 3 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); \quad k > 1 \end{array} \right.$$

- We can discard any even a_1 , since $a_1 = 2A$ and $a_1 = 2A + 1$ give the same a_2 .
- Also, $a_1=1$ and $a_1=3$ lead to the sequences $a_k=k$ and $a_k=k+2$, respectively.

We want to study a more general sequence replacing $a_1=7$ by any integer $a_1\geq 1$.

$$\begin{cases} a_1 \in \mathbb{Z}^+, \ a_1 \text{ odd}, a_1 > 3 \\ a_k = a_{k-1} + \gcd(k, a_{k-1}); \quad k > 1 \end{cases}$$

- We can discard any even a_1 , since $a_1 = 2A$ and $a_1 = 2A + 1$ give the same a_2 .
- Also, $a_1 = 1$ and $a_1 = 3$ lead to the sequences $a_k = k$ and $a_k = k + 2$, respectively.
- Unfortunately, under these conditions, a_k-a_{k-1} is not necessarily prime. For instance, if $a_1=533$, then $a_{18}-a_{17}=9$.

The proof of the theorem suggests to introduce a general recurrence:

The proof of the theorem suggests to introduce a general recurrence:

$$\begin{cases} r_1 = 1 \\ r_{n+1} = \min\{p + p \lfloor r_n/p \rfloor : p | c_n\}, \ n \ge 1 \end{cases}$$

$$\begin{cases} c_1 = a_1 - 2 \\ c_{n+1} = c_n + \gcd(c_n, r_{n+1}) - 1, \ n \ge 1 \end{cases}$$

Equivalently, $r_{n+1} = \min\{k > r_n : (k, c_n) \neq 1\}.$

The proof of the theorem suggests to introduce a general recurrence:

$$\left\{ \begin{array}{l} r_1 = 1 \\ r_{n+1} = \min\{p + p \lfloor r_n/p \rfloor : p | c_n\}, \ n \geq 1 \\ c_1 = a_1 - 2 \\ c_{n+1} = c_n + \gcd(c_n, r_{n+1}) - 1, \ n \geq 1 \end{array} \right.$$

Equivalently, $r_{n+1} = \min\{k > r_n : (k, c_n) \neq 1\}.$

Proposition

For any odd $a_1 > 3$, the sequence $\{a_k\}$ satisfies $a_k = c_n + k + 1$, for $r_n \le k < r_{n+1}$. Moreover,

$$a_k - a_{k-1} = \begin{cases} \gcd(c_{n-1}, r_n), & \text{if } k = r_n \text{ for some } n > 1. \\ 1, & \text{otherwise.} \end{cases}$$

- Introduction
 - Rowland's Sequence
 - Auxiliary Sequences
 - Generalization
- 2 Conjectures
 - Conjectures
 - Relation between conjectures
- 3 Primes
 - Results
 - Rowland's Chains

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that $a_k - a_{k-1}$ is 1 or prime for every k > N.

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n.

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n. For instance, if $a_1=117$,

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n. For instance, if $a_1=117$,

n	1	2	3	4	5	6	7	8	9	10	
r_n	1										
c_n	115										

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n. For instance, if $a_1=117$,

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12						
c_n	115	119	125	129	131						

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n. For instance, if $a_1=117$, then $c_n=2r_n-1$ for the first time when n=6.

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131					
c_n	115	119	125	129	131	261					

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n. For instance, if $a_1=117$, then $c_n=2r_n-1$ for the first time when n=6. And, for every l>6,

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131					
c_n	115	119	125	129	131	261					

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

The proof of the first theorem may be applied when $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$. This implies $c_l=2r_l-1$ for l>n. For instance, if $a_1=117$, then $c_n=2r_n-1$ for the first time when n=6. And, for every l>6, all pairs (r_l,c_l) verify $c_l=2r_l-1$.

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

We have seen that for an arbitrary $a_1 > 3$, composite numbers appear. Nevertheless, counterexamples are hard to find. Computational tests suggest the following:

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

In this example, c_5 is the first prime term in the sequence $\{c_n\}$.

	1										
	1										
c_n	115	119	125	129	131	261	263	525	527	543	

We have seen that for an arbitrary $a_1 > 3$, composite numbers appear. Nevertheless, counterexamples are hard to find. Computational tests suggest the following:

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

In this example, c_5 is the first prime term in the sequence $\{c_n\}$.

Given n > 1, $r_n = c_{n-1}$ if and only if c_{n-1} is prime.

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

We have seen that for an arbitrary $a_1 > 3$, composite numbers appear. Nevertheless, counterexamples are hard to find. Computational tests suggest the following:

Conjecture (A)

For any Generalized Rowland's Sequence, there exists a positive integer N such that a_k-a_{k-1} is 1 or prime for every k>N.

In this example, c_5 is the first prime term in the sequence $\{c_n\}$.

Given
$$n > 1$$
, $r_n = c_{n-1}$ if and only if c_{n-1} is prime. If $r_n = c_{n-1}$, then $c_n = 2r_n - 1$.

n	1	2	3	4	5	6	7	8	9	10	
	1										
c_n	115	119	125	129	131	261	263	525	527	543	

Conjectures
Relation between conjectures

	1	l									
	1										
c_n	115	119	125	129	131	261	263	525	527	543	

Conjectures
Relation between conjectures

n											
r_n											
c_n	5	9	11	21	23	45	47	93	95	99	

										10	
										168	
c_n	33	35	39	41	81	83	165	167	333	335	

	1							8	9	10	11
r_n	1	7	11	17	18	20	21	29	30	35	587
c_n	511	517	527	543	545	549	551	579	581	587	1173

		1		3					l			
				7								
c_r	ı	115	119	125	129	131	261	263	525	527	543	

Conjecture (A) holds if $c_n=2r_n-1$ for some $n\in\mathbb{Z}^+$, or if c_m is prime for some $m\in\mathbb{Z}^+$. Computations suggest that this happens for any initial condition a_1 . Moreover, it seems that the minimal choices of m and n in these claims are always consecutive.

Conjecture (A) holds if $c_n = 2r_n - 1$ for some $n \in \mathbb{Z}^+$, or if c_m is prime for some $m \in \mathbb{Z}^+$. Computations suggest that this happens for any initial condition a_1 . Moreover, it seems that the minimal choices of m and n in these claims are always consecutive.

Conjecture (B)

For an odd $a_1 > 3$, we define (writing $\inf \emptyset = \infty$)

$$n_0 = \inf\{n \in \mathbb{Z}^+ : c_n = 2r_n - 1\},\ m_0 = \inf\{n \in \mathbb{Z}^+ : c_n \text{ is prime}\}.$$

Then

(i)
$$n_0 < \infty$$
, (ii) $m_0 < \infty$, (iii) $n_0 = m_0 + 1 < \infty$

Conjecture (A) holds if $c_n = 2r_n - 1$ for some $n \in \mathbb{Z}^+$, or if c_m is prime for some $m \in \mathbb{Z}^+$. Computations suggest that this happens for any initial condition a_1 . Moreover, it seems that the minimal choices of m and n in these claims are always consecutive.

Conjecture (B)

For an odd $a_1 > 3$, we define (writing $\inf \emptyset = \infty$)

$$n_0 = \inf\{n \in \mathbb{Z}^+ : c_n = 2r_n - 1\},\ m_0 = \inf\{n \in \mathbb{Z}^+ : c_n \text{ is prime}\}.$$

Then

(i)
$$n_0 < \infty$$
, (ii) $m_0 < \infty$, (iii) $n_0 = m_0 + 1 < \infty$

As we saw before, (ii) implies (i). Trivially, (iii) implies (ii) and (i).

Relation between the conjectures

If Conjecture (B) is true, then so it is Conjecture (A):

n	1		2	3	4	5	6	7	8	9	10	
r_r	, 1		5	7	10	12	131	132	263	264	272	
c_n	. 11	5	119	125	129	131	261	263	525	527	543	

Relation between the conjectures

If Conjecture (B) is true, then so it is Conjecture (A):

Proposition

Under (i), (ii) or (iii), Conjecture (A) is true. Moreover, $\{a_k-a_{k-1}\}_{k\geq 1}$ contains infinitely many primes.

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

Relation between the conjectures

If Conjecture (B) is true, then so it is Conjecture (A):

Proposition

Under (i), (ii) or (iii), Conjecture (A) is true. Moreover, $\{a_k-a_{k-1}\}_{k\geq 1}$ contains infinitely many primes.

Proposition

For any odd $a_1 > 3$, $r_n \le (c_n + 1)/2$, for every n > 1. Moreover, the equality occurs if and only if $\gcd(c_{n-1}, r_n)$ is prime p and $p \lfloor r_{n-1}/p \rfloor = (c_{n-1} - p)/2$.

		1		ı								
		1										
(c_n	115	119	125	129	131	261	263	525	527	543	

Proposition

If (i) holds and $\gcd(c_{n_0-1},r_{n_0})>r_{n_0-1}$, then (iii) is true.

Proposition

If (i) holds and $\gcd(c_{n_0-1},r_{n_0})>r_{n_0-1}$, then (iii) is true.

Proposition

Assume (i) and $(2+1/2500)r_n < c_n + 1$, for $n < n_0$. Then (iii) holds.

Proposition

If (i) holds and $gcd(c_{n_0-1}, r_{n_0}) > r_{n_0-1}$, then (iii) is true.

Proposition

Assume (i) and $(2+1/2500)r_n < c_n+1$, for $n < n_0$. Then (iii) holds.

Proposition

Under (iii), there exists a prime p such that

$$\frac{p+1}{2} = \inf\{k : a_k = 3k\},\$$

$$p = \inf\{k : a_k = 3k, a_k - a_{k-1} > 1\}.$$

- Introduction
 - Rowland's Sequence
 - Auxiliary Sequences
 - Generalization
- 2 Conjectures
 - Conjectures
 - Relation between conjectures
- 3 Primes
 - Results
 - Rowland's Chains

For a fixed a_1 , usually m_0 is *small*.

For a fixed a_1 , usually m_0 is *small*. In this example, $m_0 = 5$:

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

For a fixed a_1 , usually m_0 is *small*. In this example, $m_0 = 5$:

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

Anyway, given N, there exists a_1 such that $m_0 > N$. Hence:

For a fixed a_1 , usually m_0 is *small*. In this example, $m_0 = 5$:

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

Anyway, given N, there exists a_1 such that $m_0 > N$. Hence:

Proposition

 m_0 can be arbitrarily large.

For a fixed a_1 , usually m_0 is *small*. In this example, $m_0 = 5$:

n	1	2	3	4	5	6	7	8	9	10	
r_n	1	5	7	10	12	131	132	263	264	272	
c_n	115	119	125	129	131	261	263	525	527	543	

Anyway, given N, there exists a_1 such that $m_0 > N$. Hence:

Proposition

 m_0 can be arbitrarily large.

Given a_1 , with $m_0 < \infty$; and taking $a_1' = a_1 + c_{m_0}!$, it can be proved that $m_0' > m_0$.

We are interested on studying subsequences of primes appearing inside $\{a_k-a_{k-1}\}$.

We are interested on studying subsequences of primes appearing inside $\{a_k-a_{k-1}\}$. For instance, taking $a_1=7$,

We are interested on studying subsequences of primes appearing inside $\{a_k-a_{k-1}\}$. For instance, taking $a_1=7$, $\{a_k-a_{k-1}\}=$

We are interested on studying subsequences of primes appearing inside $\{a_k - a_{k-1}\}$. For instance, taking $a_1 = 7$, $\{a_k - a_{k-1}\} = 7$ 1. 1. 1. 5. 3. 1. 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1,

We are interested on studying subsequences of primes appearing inside $\{a_k - a_{k-1}\}$. For instance, taking $a_1 = 7$, $\{a_k - a_{k-1}\} = 7$ 1. 1. 1. 5. 3. 1. 1. 1. 1. 11. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 23. 3. 1. 1. Removing the ones, we obtain a sequence of primes:

```
We are interested on studying subsequences of primes appearing
inside \{a_k - a_{k-1}\}. For instance, taking a_1 = 7, \{a_k - a_{k-1}\} = 7
1. 1. 1. 5. 3. 1. 1. 1. 1. 11. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 23. 3. 1. 1.
Removing the ones, we obtain a sequence of primes:
5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3.
```

```
We are interested on studying subsequences of primes appearing
inside \{a_k - a_{k-1}\}. For instance, taking a_1 = 7, \{a_k - a_{k-1}\} = 7
1. 1. 1. 5. 3. 1. 1. 1. 1. 11. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 23. 3. 1. 1.
Removing the ones, we obtain a sequence of primes:
5, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3.
This sequence is a Rowland's Chain.
```

We are interested on studying subsequences of primes appearing inside $\{a_k - a_{k-1}\}$. For instance, taking $a_1 = 7$, $\{a_k - a_{k-1}\} = 7$ 1, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1, 1,

In general, a Rowland's Chain is any subsequence of concatenated primes inside a sequence $\{a_k-a_{k-1}\}_{k\geq n_0}$, for any odd $a_1>3$.

$$S(n) = \sum_{j < n} (p_j - 1), \quad S(1) = 0.$$

$$S(n) = \sum_{j < n} (p_j - 1), \quad S(1) = 0.$$

The following is a characterization of Rowland's chains:

$$S(n) = \sum_{j < n} (p_j - 1), \quad S(1) = 0.$$

The following is a characterization of Rowland's chains:

Proposition

 C_k is a Rowland's Chain if and only if it verifies these conditions:

- $S(m) \equiv S(n) \pmod{p_n}$, when $p_n = p_m$.
- $S(m) \not\equiv S(n) \pmod{p_n}$, when $p_n < p_m$.
- For any prime q, the set $\{S(j) \pmod{q} : p_j > q\}$ does not contain all residue classes modulo q.

$$S(n) = \sum_{j < n} (p_j - 1), \quad S(1) = 0.$$

The following is a characterization of Rowland's chains:

Proposition

 C_k is a Rowland's Chain if and only if it verifies these conditions:

- $S(m) \equiv S(n) \pmod{p_n}$, when $p_n = p_m$.
- $S(m) \not\equiv S(n) \pmod{p_n}$, when $p_n < p_m$.
- For any prime q, the set $\{S(j) \pmod{q} : p_j > q\}$ does not contain all residue classes modulo q.

There are lots of restrictions. For instance, $\{11,5,p\}$ is not a Rowland's chain for any p>3.

Corollary

If p_1,p_2,\ldots,p_k are distinct primes, then $C_{2k}=\{p_1,p_2,\ldots,p_k,p_1,p_2,\ldots,p_k\}$ is not a Rowland's chain.

Corollary

If p_1,p_2,\ldots,p_k are distinct primes, then $C_{2k}=\{p_1,p_2,\ldots,p_k,p_1,p_2,\ldots,p_k\}$ is not a Rowland's chain.

In spite of the last Corollary, large non-consecutive repetitions can be found. For instance,

$$C_{27} = \{3, 5, 3, 23, 3, 5, 3, 653, 3, 5, 3, 23, 3, 5, 3, 3603833, 3, 5, 3, 23, 3, 5, 3, 653, 3, 5, 3\}$$

has length 27 but just 5 primes. This Chain corresponds to $a_1=1550303031682205. \\$

References

- FERNANDO CHAMIZO, DULCINEA RABOSO AND SERAFÍN RUIZ-CABELLO. On Rowland's Sequence. The Electronic Journal of Combinatorics, 18(2): Article 10, 2011. http://www.combinatorics.org/Volume_18/PDF/ v18i2p10.pdf
- ERIC S. ROWLAND. A Natural Prime-generating Recurrence.
 J. Integer Seq., 11(2): Article 08.2.8, 13, 2008.
 http://www.cs.uwaterloo.ca/journals/JIS/VOL11/
 Rowland/rowland21.pdf