文章编号: 0253-374X(2011)09-1377-06

DOI: 10.3969/j. issn. 0253-374x. 2011.09.023

曲线拟合的最小一乘法

顾乐民

(同济大学 材料科学与工程学院,上海 201804)

摘要:最小一乘法的解,由于存在着绝对值方程而不便于计算,成为困扰数理界 200 多年悬而未决的难题.基于对最小一乘准则下各种数学模型的大量计算和长期研究后发现,若存在最小一乘最佳参数 $a=a^*\in R_n$ 使绝对偏差值和为极小的最小一乘准则 $\sum_{i=1}^{m} |y_i-f(x_i,a^*)|=\min 成立,则拟合函数 <math>f(x,a^*)$ 的表征为:至少存在 n 个点 x_1,x_2,\cdots,x_n ,使 $y_i-f(x_i,a^*)=0,i=1,2,\cdots,n$ $(n\leq m)$ 成立,从而最小一乘解可以实现.

关键词:曲线拟合;最小一乘;逼近中图分类号:0241.5

文献标识码: A

Least Absolute Deviation Method of Curve Fitting

GU Lemin

(College of Material Science and Engineering, Tongji University, Shanghai 201804, China)

Abstract: The solution of least absolute deviation (LAD), a pending problem for more than 200 years in mathematics, is not easy to calculate because of the absolute value function. Based on a great deal of computing and long-term study of various mathematical models under LAD criteria, a conclusion is drawn that if there is a LAD parameter $\mathbf{a} = \mathbf{a}^* \in R_n$, and making the following LAD criterion tenable $\sum_{i=1}^m |y_i - f(x_i, \mathbf{a}^*)| = \min$, then the fitting function $f(x, \mathbf{a}^*)$ can be characterized that there are at least n points x_1, x_2, \dots, x_n , making $y_i - f(x_i, \mathbf{a}^*) = 0$, $i = 1, 2, \dots, n$ ($n \leq m$) valid, the problem of LAD solution can be achieved.

Key words: curve fitting; least absolute deviation; approximation

最小一乘法和最小二乘法是曲线拟合中常用的方法.但是,在近代关于数理统计中稳健性的研究发现,用最小二乘估计有时不很理想.例如某个异常数据会使回归方程有大的偏离^[1].于是,人们提出其他方法来克服这个缺点,比如使用最小一乘准则,就可

以得到更稳健的回归方程.

最小一乘准则是 1755—1757 年间数学家 Boscovitch 和 Laplace 在研究拟合直线时提出的,比最小二乘法早 40 多年. 但由于计算上的困难,最小一乘法的发展一直处于停滞状态. 1955 年, Charnes, Cooper 和 Ferguson 等人在研究一个特定的管理问题中使用了最小一乘法,他们通过将偏差表示为 2 个非负变量之差的形式,将其转化为线性规划问题来求解^[1],局面才有所改变. 1987 年 9 月瑞士召开了有关这个准则研究的国际会议. 目前,最小一乘法逐渐成为统计学研究领域的热点之一 [1-5].

设 ϕ 表示定义在某闭区间上所有实值连续函数构成的集合,或给定的某一函数类. 拟合函数 $f(x) \in \phi$ 在所定义的区间内光滑连续且 1 阶可导. 对于给定 m 组离散数据 (x_i,y_i) , $i=1,2,\cdots,m$, 取曲线拟合方程 y=f(x,a), 其中 $a=(a_1,a_2,\cdots,a_n)^{\mathsf{T}}(n \leq m)$.

最小二乘法 原名 least squares method,是依据使偏差平方和为极小的准则—— $\sum_{i=1}^{m} [y_i - f(x_i, a)]^2 = \min来选择参数值 a 而构成的一种曲线拟合法.$

最小一乘法 原名 least absolute deviation method,是依据使绝对偏差值和为极小的准则—— $\sum_{i=1}^{m} |y_i - f(x_i, a)| = \min来选择参数值 a 而构成的一种曲线拟合法.$

最小一乘法具有直观和理想的特点.但由于存在绝对值而不便于计算,使相应方法的建立受到了限制.为了去掉绝对值,引入以下一个定理.

定理 若存在 $a = a^* \in R_n$, 使目标函数

$$Q = Q(a^*) = \sum_{i=1}^{m} |y_i - f(x_i, a^*)| = \min$$
 (1)
成立. 则拟合函数 $f(x, a^*)$ 的表征为: 至少存在 n

收稿日期:2010-12-10

第一作者: 顾乐民(1952-),男,工程师,主要研究方向为最佳逼近理论、计算数学. E-mail: gulemin@tongji. edu.cn

个点 x_1, x_2, \dots, x_n , 使

 $y_i - f(x_i, a^*) = 0$ $i = 1, 2, \cdots, n$ (2) 成立,称这 n 个零偏差点为"0"点. 反之若式(2)构成的方程组不成立,则式(1)目标函数 Q 的极小化也不成立.

对于该定理说明以下几点.

- (1) 对于函数 f(x) = f(x,a)的类型不作明确的规定.对函数 f(x,a)是 a 的线性函数时的最小一乘问题,称之为"线性函数类最小一乘问题",例如多项式函数等.已有不少算法[1-5]等都是十分有效的.此时最佳逼近函数 f(x)并不一定唯一.例如在直线型方程中,有时可以找到多个 f(x),使目标函数 Q的极小化得以成立,但这不影响问题的讨论.对函数 f(x,a)是 a 的非线性函数时的最小一乘问题,称之为"非线性函数类最小一乘问题",例如 Logistic 方程、Morgan-Mercer-Flodin 方程等.
- (2) 定理中若令 m = n,则只能存在一个由式 (2)表示的方程组,如果这个方程组无解,则式(1)表示的目标函数极小化也不能存在. 如果有解,则目标函数 Q 必为零,最小一乘获得唯一最佳解;反之,其 逆向也是存在的,为使 Q 极小,则方程组必须有解. 这与函数 f(x,a)的类型(线性或非线性的)无关. 当 m > n 时可通过比较各基本解使目标函数 Q 极小 化,其过程在后文的"直接法"中介绍.
- (3)最小一乘解的具体实现和求解方式分为两个环节:①第一环节用解析方式作为寻优过程.通过建立一种近似关系,将不可微问题转化为解析的方式进行,解决了长期困扰数理界的因存在着绝对值方程而不便于计算的难点,并得到最小一乘逼近的近似解.②第二环节用解方程组方式获得最小一乘逼近的最佳解.通过由定理构成的方法,将近似解上升为最佳解.这两个环节是通过优化集判别法则来连接的.

这里的最佳解指的是一定精确度范围内的准确解.

1 最小一乘逼近问题的近似解

对于存在绝对值的式(1),不能直接用解析的方法得到最佳参数 a^* ,但给 a^* —个微偏离 $a^*=a+\Delta a$,当 Δa 充分小时,可建立以下近似关系:

$$\parallel y - f(x, a^*) \parallel_1 = \min_{a + \Delta a \in R_n} \parallel y - f(x, a + \Delta a) \parallel_1 \approx$$

$$\min_{\mathbf{a} + \Delta \mathbf{a} \in R_n} \left\| y - f(x, \mathbf{a}) - \frac{\partial f(x, \mathbf{a})}{\partial \mathbf{a}} \Delta \mathbf{a} \right\|_{1}$$

如此可化为用解析方式求 $a + \Delta a$ 并得到最小一乘逼近的近似解,这是为求最佳解 a^* 过程中的第一环节,称为"寻优"环节.

1.1 一般函数类

对于式(2),由多元函数求极值的必要条件 $\frac{\partial Q}{\partial a_1}$

$$=0, \frac{\partial Q}{\partial a_{2}} = 0, \cdots, \frac{\partial Q}{\partial a_{n}} = 0,$$
 可得方程组
$$\frac{\partial Q}{\partial a_{1}} = -\sum_{i=1}^{m} \frac{y_{i} - f(x_{i})}{|y_{i} - f(x_{i})|} \cdot \frac{\partial f}{\partial a_{1}} = 0$$

$$\frac{\partial Q}{\partial a_{2}} = -\sum_{i=1}^{m} \frac{y_{i} - f(x_{i})}{|y_{i} - f(x_{i})|} \cdot \frac{\partial f}{\partial a_{2}} = 0$$

$$\vdots$$

$$\frac{\partial Q}{\partial a_{n}} = -\sum_{i=1}^{m} \frac{y_{i} - f(x_{i})}{|y_{i} - f(x_{i})|} \cdot \frac{\partial f}{\partial a_{n}} = 0$$

$$(3a)$$

或

$$\sum_{i=1}^{m} \frac{r_{i}}{|r_{i}|} \cdot \frac{\partial f}{\partial a_{1}} = 0$$

$$\sum_{i=1}^{m} \frac{r_{i}}{|r_{i}|} \cdot \frac{\partial f}{\partial a_{2}} = 0$$

$$\vdots$$

$$\sum_{i=1}^{m} \frac{r_{i}}{|r_{i}|} \cdot \frac{\partial f}{\partial a_{n}} = 0$$
(3b)

式中, $r_i = y_i - f(x_i)$, $\frac{\partial f}{\partial a_j} = \frac{\partial f(x,a)}{\partial a_j}$, $j = 1,2,\cdots$,n. 函数 $f(x_i,a)$ 在点 $a^{(0)} = (a_1^{(0)}, a_2^{(0)}, \cdots, a_n^{(0)})^T$ 处 展成 1 阶 Taylor 多元表式

$$f(x,a) = f(x,a^{(0)}) + \varphi_1 \Delta a_1 + \varphi_2 \Delta a_2 + \cdots$$

$$+ \varphi_n \Delta a_n = f(x,a^{(0)}) + \sum_{j=1}^n \varphi_j \Delta a_j$$

$$r_i = r_i(a) = y_i - f(x_i,a) = y_i - f(x_i,a^{(0)}) - \sum_{j=1}^n \varphi_{i,j} \Delta a_j, \quad 1 \leqslant i \leqslant m$$
其中

$$\varphi_{j} = \frac{\partial f(x, a)}{\partial a_{j}} \Big|_{a=a^{(0)}}$$

$$\varphi_{i,j} = \frac{\partial f}{\partial a_{j}} = \frac{\partial f(x_{i}, a)}{\partial a_{j}} \Big|_{a=a^{(0)}}$$

$$j = 1, 2, \dots, n$$

$$\Delta a = a - a^{(0)} = (\Delta a_{1}, \Delta a_{2}, \dots, \Delta a_{n})^{T}$$

$$\Delta a_{1} = a_{1} - a_{1}^{(0)}$$

$$\Delta a_2 = a_2 - a_2^{(0)}, - \cdots, -\Delta a_n = a_n - a_n^{(0)}$$
 $r_i^{(0)} = y_i - f(x_i, a^{(0)}), \quad 1 \leqslant i \leqslant m$
代人式(3),消去分子项 r_i ,有

$$\begin{cases} \sum_{i=1}^{m} \frac{1}{|r_{i}|} \varphi_{1,i} (\varphi_{1,i} \Delta a_{1} + \varphi_{2,i} \Delta a_{2} +, \\ \dots, + \varphi_{n,i} \Delta a_{n}) \approx \sum_{i=1}^{m} \frac{r_{i}^{(0)}}{|r_{i}|} \varphi_{1,i} \\ \\ \sum_{i=1}^{m} \frac{1}{|r_{i}|} \varphi_{2,i} (\varphi_{1,i} \Delta a_{1} + \varphi_{2,i} \Delta a_{2} +, \\ \dots, + \varphi_{n,i} \Delta a_{n}) \approx \sum_{i=1}^{m} \frac{r_{i}^{(0)}}{|r_{i}|} \varphi_{2,i} \\ \vdots \\ \\ \sum_{i=1}^{m} \frac{1}{|r_{i}|} \varphi_{n,i} (\varphi_{1,i} \Delta a_{1} + \varphi_{2,i} \Delta a_{2} +, \\ \dots, + \varphi_{n,i} \Delta a_{n}) \approx \sum_{i=1}^{m} \frac{r_{i}^{(0)}}{|r_{i}|} \varphi_{n,i} \end{cases}$$

为方便书写,记 $\Sigma = \sum_{i=1}^{m}, \varphi_i = \varphi_{i,j}$;将"k"代替上 式中的"0", k 表示迭代次数, $k = 0, 1, \dots$; 用"="代 替"≈",则这个线性方程组可用矩阵表示

督
$$\sim$$
 ,则这个线性为性组引用矩阵表示
$$\begin{bmatrix} \sum \frac{\varphi_1 \ \varphi_1}{\mid r_i \mid} \ \sum \frac{\varphi_1 \ \varphi_2}{\mid r_i \mid} \ \cdots \ \sum \frac{\varphi_1 \ \varphi_n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i}{\mid r_i \mid} \ \sum \frac{x_i^2}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^n}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^n}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^n}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^n}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^n}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \sum \frac{x_i^{n-1}}{\mid r_i \mid} \ \cdots \ \sum \frac{x_i^n}{\mid r_i \mid} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix} = \begin{bmatrix} \Delta a_1 \\ \Delta a_2 \\ \vdots \\ \Delta a_n \end{bmatrix}$$

式中的 $\Delta a_1, \Delta a_2, \dots, \Delta a_n$ 作为迭代过程的微变量, 服从

$$a_1^{(k+1)} = a_1^{(k)} + \Delta a_1, \dots, a_n^{(k+1)} = a_n^{(k)} + \Delta a_n$$

$$k = 0, 1, \dots$$
(5)

作为 k=0 时的迭代初始值 $a_1^{(0)}$, $a_2^{(0)}$, ..., $a_n^{(0)}$, 可自行设定,也可取最小二乘解的结果.这也就是 说,可先进行最小二乘法计算,取得最小二乘估计 值,再进行最小一乘法的计算.

记

$$D[x_{1}, x_{2}, \dots, x_{n}] :=$$

$$\begin{vmatrix} \sum \frac{\varphi_{1} \varphi_{1}}{|r_{i}|} & \sum \frac{\varphi_{1} \varphi_{2}}{|r_{i}|} & \cdots & \sum \frac{\varphi_{1} \varphi_{n}}{|r_{i}|} \end{vmatrix}$$

$$\sum \frac{\varphi_{2} \varphi_{1}}{|r_{i}|} & \sum \frac{\varphi_{2} \varphi_{2}}{|r_{i}|} & \cdots & \sum \frac{\varphi_{2} \varphi_{n}}{|r_{i}|}$$

$$\vdots & \vdots & \vdots & \vdots$$

$$\sum \frac{\varphi_{n} \varphi_{1}}{|r_{i}|} & \sum \frac{\varphi_{n} \varphi_{2}}{|r_{i}|} & \cdots & \sum \frac{\varphi_{n} \varphi_{n}}{|r_{i}|} \end{vmatrix}$$

当 $\varphi_j = \frac{\partial f(x,a)}{\partial a_i}$ $(j=1,2,\dots,n)$ 线性无关, $r_i \neq 0$, $D[x_1, x_2, \cdots x_n, x_{n+1}] \neq 0$,式(4)有唯一解.从式 (5)中解出 $a_i^{(k+1)}$ ($i=1,2,\dots,n$), 直到精度符合要 求便停止.取

$$a_j \approx a_j^{(k+1)}, \quad j = 1, 2, \cdots, n$$
 (6)

1.2 线性函数类

如果拟合的曲线方程为多项式 $f(x) = a_1 + a_2$ $x + a_3 x^2 + \dots + a_n x^{n-1} = \sum_{j=1}^n a_j x^{j-1}$, 则式(4)有

$$egin{bmatrix} \sum rac{1}{\mid r_i \mid} & \sum rac{x_i}{\mid r_i \mid} & \cdots & \sum rac{x_i^{n-1}}{\mid r_i \mid} \ \sum rac{x_i}{\mid r_i \mid} & \sum rac{x_i^2}{\mid r_i \mid} & \cdots & \sum rac{x_i^n}{\mid r_i \mid} \ dots & dots & dots \ \sum rac{x_i^{n-1}}{\mid r_i \mid} & \sum rac{x_i^n}{\mid r_i \mid} & \cdots & \sum rac{x_i^{2n-2}}{\mid r_i \mid} \ \end{pmatrix} egin{bmatrix} \Delta a_1 \ \Delta a_2 \ dots \ \Delta a_n \ \end{pmatrix} =$$

$$\begin{bmatrix}
\sum \frac{r_i^{(k)}}{|r_i|} \\
\sum \frac{r_i^{(k)}}{|r_i|} x_i \\
\vdots \\
\sum \frac{r_i^{(k)}}{|r_i|} x_i^{n-1}
\end{bmatrix}, \quad r_i \neq 0 \tag{7}$$

式(4)、式(7)即为最小一乘逼近解的行列式表 示,由于分母不能为零,所以迭代只能有限 k 次进 行. 虽得到的是近似解,但为求得最佳解完成了必要 的"寻优"环节.

2 优化集判别法则和最小一乘逼近的 最佳解

2.1 直接法

由定理,通过解方程组式(2)获得最佳参数 a*,

从而使目标函数 Q 极小化得以实现的方法称为"最小一乘直接解法",简称直接法.

直接法考虑由 m 个方程中任意不重复地取出 n 个方程构成一个满足式(2)的方程组,从而获得1个基本解. 比较各基本解,其总数不超过 m! /[(m-n)! n!]个,必可找到一个最优解,该解即为最小一乘问题的最佳解. 显然,当 m=n 时,只存在1个方程组,如果这个方程组无解,则最小一乘逼近也不存在;如果有解,则目标函数 Q 必为零,最小一乘获得唯一最佳解.

当 m > n 时,虽仅用了 n 组数据,剩下的 m - n 组数据是否属于无用? 并非如此. 因为究竟用哪套 n 组数据,需要由全部的 m 组数据来决定,是由 m 组数据中选出最好的 n 组构成的.

只需且至少存在 1 个有解的方程组,而剩下的m-n 组数据只要能够服从该方程,就必然可使目标函数 Q 的极小化得以实现. 这与函数 f(x,a)的(线性或非线性的)类型无关,也为求解非线性函数类的最小一乘问题提供了解决的可行性.

这两种算法各有利弊. 直接法在理论上可行,但常因计算量太大而不实用,且在m!/[(m-n)!n!]个方程组中只要有1个无解,就可能造成整个计算的中断;近似解法采用了迭代方法使得连续计算成为可能,但由于分母不能为零的限制而无法获得最佳值,其解只是一种近似.

现考虑吸收这两种方法的各自长处:设法找到 直接法中最佳解所对应的"0"点,就获得问题的解 决,而寻优过程可用选代方式进行.这样计算的总成 本是有限次的迭代再加上解一个方程组.这是一个 比较经济的算法.

由此引出了一个判别法则,用以判别"寻优"过程结束、找到了"0"点、转向求最佳解的节点.它由优化集、优化区、优化集判别法则等内容构成.

2.2 优化集与优化区

对于曲线拟合方程 y = f(x,a),设 a^* 是逼近的 最佳参数,以 a^* 为核心, $a^* = a^* + \Delta a$ 为边界所构成 的区域称为"优化区",在优化区内,点 a 的全体构成 的集合称为"优化集",用符号 R_i 表示.

$$R_n^{\cdot} = \left\{ a^{\cdot} \max_{1 \leq i \leq n} \left| r_j(a^{\cdot}) \right| \leq \min_{n+1 \leq i \leq m} \left| r_i(a^{\cdot}) \right| \right\}$$

不讨论 R_i 的范围的大小等问题,而只需知道在优化集内的优化解 a^* 和最佳解 a^* 具有相同的特

征. 在迭代 k 次后,当参数 a 一旦进入了优化集 R_i 后,无须再在计算上花"成本",即没有必要继续迭代让 a 逐步趋于 a ,而是可以结束迭代,转向求解方程组得到 a ,并获得最小一乘法问题的最佳解.

2.3 优化集判别法则

在一定的 k 次迭代后,得到了 m 个绝对偏差值: $|r_1^{(k)}|,|r_2^{(k)}|,...,|r_n^{(k)}|,...,|r_m^{(k)}|$. 其中, $|r_1^{(k)}| \le |r_2^{(k)}| \le ... \le |r_n^{(k)}| \le ... \le |r_m^{(k)}|$,等号通常在 n=m 时成立.分为两组:第一组由 $|r_j^{(k)}|$ (j=1,2,...,n)组成,共有 n 个;第二组由余下的 m-n个 $|r_1^{(k)}|$ (i=n+1,...,m)组成.

继续迭代,当第一组中的最大绝对偏差 $\max |r_j|(j=1,2,\cdots,n)$ 始终不再大于第二组中最小绝对偏差 $\min |r_i|(i=n+1,\cdots,m)$,即 $\max_{1\leqslant j\leqslant n}|r_j(a^{(k)})|\leqslant \min_{n+1\leqslant i\leqslant m}|r_i(a^{(k)})|$,同时第一组所有的 (x_j,y_j) 也不会再到第二组里去,则称第一组所对应的 n 个点为"0"点,称参数 a 为进入优化集的优化解 a.

2.4 具体算法一

以上假设了一个优化集,在实际应用中,并不一定要确定优化集的临界范围.这是因为迭代过程只是"寻优"并不能求得最佳解,用小的计算成本达到目的是很有必要的.

初始工作:设定初始值 $a^{(0)}$,如可取最小二乘估计值.

- (1) 迭代足够多 k 次,得第 k 次迭代结果 $a^{(k)}$ 和 $r_{+}^{(k)}$,
- (2) 将总数为 m 个绝对偏差值作一由小至大的 排 列: $|r_1^{(k)}| \leq |r_2^{(k)}| \leq \cdots \leq |r_n^{(k)}| \leq \cdots \leq |r_n^{(k)}|$.
- (3) 取前 $1,2,\dots,n$ 共 n 个对应的 (x_j,y_j) 构成 1 个方程组,代人式(2)解出参数 a,并记为 a.
 - (4) 分别计算 $\sum_{i=1}^{m} |r_i(a^i)| \prod_{i=1}^{m} |r_i(a^{(k)})|$;
- (5) 比较大小. 若 $\sum_{i=1}^{m} |r_i(a^*)| \leq \sum_{i=1}^{m} |r_i(a^{(k)})|$ 成立,可以转(6)再进行多次验证;若始终成立,则打印 $a^* = a^*$,结束.
- (6) 否则,置 k:k+1,转最小一乘继续迭代. 在 获得新 $a^{(k)}$ 后再转(1)判别.

2.5 具体算法二

对于"具体算法一"中的(3),多取1组数据,即取前

 $1,2,\cdots,n+1$ 个对应的 (x_j,y_j) ,考虑由这 n+1 个方程中任意不重复地取出 n 个方程构成 1 个方程组,从而获得 1 个基本解,基本解的总数不超过 n+1 个. 比较各基本解,必可找到最小一乘问题的解.

例如,对于3参数方程,直接法确定的"0"点至少为n=3个,不妨就设定为3个.为防止假"0"点的出现(一种迭代次数不够多时有可能出现的情况),可以多取1组数据j=1,2,3,4,于是构成了n+1=4个基本解:j=1,2,3,j=1,2,4,j=1,3,4和j=2,3,4.比较各基本解,必可找到最小一乘问题的最佳解. 当然也可多取2组数据,而解必然在总数不超过(n+1)(n+2)/2个基本解中找到. 具体算法二增大了计算工作量,但对于最佳解的获得起到一定保证作用.

3 应用实例

例 1 求解 MMF 模型:
$$f(x) = \frac{a_1 a_2 + a_3 x^{a_4}}{a_2 + x^{a_4}}$$
.

MMF 模型含有 4 个参数的 S 形生长模型,求解有一定的难度. 为简化表达,这里只用 a_1 , a_2 , a_3 , a_4 , 4 个参数来表示,并略去对参数的具体介绍.

固结系数是反映土层固结特性的参数,在基础沉降计算中具有十分重要的意义. 表 1 第 2 列是文献[6]给出的某土体沉降 y 与时间 x 关系的 15 组原始数据,采用 MMF 方程对沉降变化进行描述,用最小一乘法对 MMF 方程加以拟合. 拟合值为 $f(x_i)$,相对误差为 r_i/y_i .

表 1 最小一乘准则下的 MMF 曲线拟合

Tab. 1 MMF curve fitting in the criterion of least absolute deviation

i	x_i/s	y_i/cm	$f(x_i)/\mathrm{cm}$	$(r_i/y_i)/\%$
1	15	0.018	0.018	0
2	30	0.023	0.0234	- 1.57
3	60	0.036	0.0323	10.19
4	120	0.049	0.046 7	4.75
5	240	0.068	0.068	0
6	540	0.100	0.1020	-2.00
7	960	0.128	0.1299	-1.45
8	1 500	0.151	0.151 5	-0.35
9	2 160	0.169	0.1682	0.49
10	2 940	0.181	0.181	0
11	3 600	0.190	0.1887	0.69
12	5 400	0.202	0.202 1	- 0.07
13	7 200	0.211	0.2101	0.41
14	12 600	0.222	0.2223	- 0.13
15	18 000	0.228	0.228	0

先作最小二乘法计算,得估计值并作为最小一乘 迭代的初始值. 迭代 12 次得 $a^{(12)}$,记 $a^{\cdot}=a^{(12)}$.继续 迭代 5 次作为检验,仍有 $a^{\cdot}=a^{(17)}$ 成立,即 a^{\cdot} 与 $k \ge 12$ 后的迭代无关,可用 $a^{\star}=a^{\cdot}$ 表示,并得 $f(x)=(0.010~8\times340.331~1+0.246~3~x^{0.835~9})/(340.331~1+x^{0.835~9})$.数据处理见第 3 列. 它获得偏差绝对值和 $\sum |r_i|=0.142$ 的极小化结果.

经计算知,曲线拟合误差 E_{map} = (1/15) × $\Sigma | r_i |$ × 100% = 1.47%,也要小于最小二乘法中 E_{map} = 2.06%的结果.

例2 求解 Logistic 模型:
$$f(x) = \frac{a_1}{1 + a_2 e^{-a_3 x}}$$
.

Logistic 模型是含有 3 个参数的 S 型增长模型,为简化表达,这里只用 $a_1, a_2, a_3, 3$ 个参数来表示.

表 2 摘自《中国人口统计年鉴》中的 1990 年至 2008 年的 19 组数据,运用最小一乘法对 Logistic 模型加以拟合,并预测 2009 年以及 2010 年的人口数 (已知 2009 年人口数为 133 474 万).

用最小二乘估计 $a^{(0)} = (141.7, 0.258, 0.07)$ 作为最小一乘迭代的初始值,由式(4)迭代 9 次得 $a^{(9)}$.由判别法则知, $a^{(9)}$ 已进入了优化区,可用 $a^{\cdot} = a^{(9)}$ 表示.将位于 i = 2,7,18 的 3 组数据代入方程组,得最佳解 $a^* = a^{\cdot}$ 及 Logistic 方程: f(x) = 142.3/(1+0.2619) 0.261 9 $e^{-0.068(x-1989)}$).数据处理结果见表 2 第 3 列,它获得了绝对偏差值和为 1 245 万的最小结果.

表 2 1990 年至 2008 年我国人口数及其拟合结果 Tab.2 Population in China (1990—2008) and their fitting results

i	x,/年	y _i /万	$f(x_i)/万$	$r_i/万$
1	1990	114 333	114 326	7
2	1991	115 823	115 823	0
3	1992	117 171	117 258	- 87
4	1993	118 517	118 631	- 114
5	1994	119 850	119 943	- 93
6	1995	121 121	121 195	- 74
7	1996	122 389	122 389	0
8	1997	123 626	123 526	100
9	1998	124 810	124 607	203
10	1999	125 909	125 634	275
11	2000	126 583	126 609	- 26
12	2001	127 627	127 534	93
13	2002	128 453	128 411	42
14	2003	129 227	129 240	- 13
15	2004	129 988	130 025	- 37
16	2005	130 756	130 767	- 11
17	2006	131 448	131 468	- 20
18	2007	132 129	132 129	0
19	2008	132 802	132 753	49

预测 2009 年人数.将 x = 2009 代人,得 f(x) = 133341.3万,与已知数 133474万相差"-132.7万",相对误差 0.0995%.

有两种途径可以预测 2010 年人数,一是令 x = 2010 代入式中,得 y = 133 895.7 万.

另一种是重新列表,计算 1990 年至 2009 年的 20 组数据,并推算 2010 年的预测值. 经过计算得到的方程为: $f(x) = 142.47/(1+0.263 3e^{-0.0674(x-1989)})$. 将x = 2010 代人,得预测值 f(x) = 133 908.1 万. 实际结果有待验证.

例3 求解带有绝对值的 Richards 方程 f(x) =

$$\frac{a_1}{|1+a_2e^{-a_3x}|^{1/a_4}}.$$

Richards 模型是含有 4 个参数的 S 型增长模型,为简化表达,这里只用 a_1 , a_2 , a_3 , a_4 , 4 个参数来表示.

这里给出 1 个将数值作为离散数据进行拟合的例子. 取 $x_i = 0,1,\cdots,9,$ 而 $y(x_i) = 10 000/|1-4$ $e^{0.2x_i}|^{1/0.5}$ 并且四舍五入取整数部分作为离散数据 y_i ,将 $(x_i,y_i)i=1,2,\cdots,10$ 作为原始数据列于表 3 第 2 列.

表 3 最小一乘准则下的 Richards 曲线拟合 Tab.3 Richards curve fitting in the criterion of least absolute deviation

i -	原始数据		拟合结果	
ı -	x_i	y _i	$f(x_i)$	$r(x_i)$
1	0	1 111	1 111	0
2	1	662	662	0
3	2	405	405.06	-0.06
4	3	253	252.72	0.28
5	4	160	160	0
6	5	103	102.43	0.57
7	6	66	66.15	-0.15
8	7	43	43	0
9	8	28	28.10	-0.10
10	9	19	18.44	0.56

用最小一乘法对 Richards 曲线方程拟合,初始 值取 $a = (10\ 000, -4, -0.2, 0.5)^{T}$.

经式(4) 迭代 20 次得 a⁽²⁰⁾. 由判别法则知,a⁽²⁰⁾已进

人了优化区,因为通过继续迭代,虽获得了 $a^{(30)}$, $a^{(40)}$,…,但位于 i=1,2,5,8 的 4 组数据为"0"点性质不改变,可用 $a^*=a^{(20)}$ 表示.将这些点组数据代人式(2)方程组,得最 佳 解 $a^*=a^*$ 及 Richards 方 程: $f(x_i)=\frac{9.541.615.84}{|1-4.127.42|e^{0.214.6x_i}|^{1/0.530.23}}$.数据处理结果见表 3 第 3 列,它获得了绝对偏差值和 $\Sigma |y_i-f(x_i)|=1.71$ 的最小结果.

4 结语

一个 200 多年未能完全解决的问题,不仅仅是 因为绝对值的存在而不可微,还涉及其他方面的一 些理论和方法.最小一乘法在过去实现不了,但在科 学高度发展的今日,应该且能够回归到它应有的位 置.这个过程需要有传统理论来补充、客观事实来验 证、创新理论来发展.在不断的探讨中,最小一乘法 的基本理论和方法一定能更好地为社会服务.

参考文献:

- [1] Charnes A, Cooper W G, Ferguson R O. Optimal estimation of executive compensation by linear programming [J]. Management Science, 1955(1):138.
- [2] 陈希儒. 最小一乘线性回归: 上[J]. 数理统计与管理, 1989. CHEN Xiru. Least absolute linear regression[J]. Application of Statistics and Management, 1989(5): 48.
- [3] Fisher W D. A note on curve fitting with minimum deviations by linear programming [J]. Journal of American Statistical Association, 1961, 56; 359.
- [4] Portnoy S, Koenker R. The Gaussian hare and the Laplacian tortoise, computability of squared-error versus absolute-error estimators[J]. Statistical Science, 1997, 12, 279.
- [5] 李仲来. 最小一乘法介绍[J]. 数学通报,1992(2):40. LI Zhonglai. Introduction to least absolute deviation method[J]. Bulletin of Maths,1992(2):40.
- [6] 戴紹. MMF 曲线拟合模型在固结系数计算中的应用[J]. 山西建筑,2010,24:127.

DAI Tao. The application of MMF curve fitting model for the consolidation coefficient evaluation [J]. Shanxi Archtecture, 2010,24:127.