Automata and Grammars (BIE-AAG)

10. Properties of regular languages

Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

© Jan Holub, 2011

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 1/22

Pumping lemma - problem statement

Let the automaton A read a sequence O^k . While reading this sequence, the automaton must go through the following states:

 ε p_0

 $0 \quad p$

00 p

... .

That is, $\exists i < j : p_i = p_j$ (pigeonhole principle). Let us denote such state by q.

Pumping lemma - problem statement

Let us assume that language $L = \{0^n 1^n : n >= 1\}$ is regular.

In such case language L is accepted by a finite automaton A with k states.

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 2/3

Pumping lemma - problem resolution

Let us furthemore assume that reading an input sequence 1^i makes the automaton go from state q to state r. It holds that:

- If state r is a final state, then the automaton accepts string $0^{j}1^{i}$, which is unwanted.
- If state r is not a final state, then the automaton does not accept string 0^i1^i , which is unwanted as well.

By contradiction, language $L = \{0^n 1^n : n >= 1\}$ cannot be regular.

Pumping lemma formally

Let L be a regular language. Then for language L there exists a constant p>=1 such that for every sentence $w\in L$ it holds that:

If $|w| \ge p$, then w has form w = xyz such that:

- $y \neq \varepsilon$ (same as saying that $|y| \geq 1$),
- $|xy| \le p$,
- **●** $\forall i \geq 0$ it holds that sentence $xy^iz \in L$.

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 5/22

Using PL for proving that L is not reg.

Proof that language $L = \{0^n 1^n : n >= 1\}$ is not regular

Let us assume that L is regular. Then by pumping lemma it must hold that there is a constant $p \ge 1$ such that for every sentence $w \in L$ it holds that:

If $|w| \ge p$, then w has form w = xyz such that:

- $y \neq \varepsilon$ (same as saying that $|y| \ge 1$),
- $|xy| \leq p$,
- $\forall i > 0$ it holds that sentence $xy^iz \in L$.

Let us assume a sentence $w=0^p1^p\in L$ that is longer than p and therefore must meet the PL's requirements. To prove L is not regular, we now try all possible partitionings of w into xyz. We must prove that pumping lemma holds for none of them.

Pumping lemma formally

See the informal explanation above. For regular language L there exists a finite automaton that contains a loop. This loop reads a non-empty substring y. It holds that this loop can "pump"any number of times. If $xyz \in L$, then also for every i-fold "pumping"for $i \geq 0$ it holds that sentence $xy^iz \in L$.

RIE-AAG (2011/2012) – J. Holub: 10. Properties of regular languages – p. 6

Using PL for proving that L is not reg.

Proof that language $L = \{0^n 1^n : n >= 1\}$ is not regular

According to the two first conditions it must hold that:

- xy is a non-empty sequence of zeroes
- y is non-empty sequence of zeroes
- z contains all the ones.

But then xy^0z (that is, we remove y from w=xyz) does not belong to L (because the number of zeroes in xy^0z is surely less than the number of ones)!

Therefore pumping lemma does not hold for L and L is not regular.

Using PL for proving that L is not reg.

Proof that language $L = \{1^m : m \text{ is prime } \}$ is not regular

Let us assume that L is regular. Then by the pumping lemma it must hold that there exists a constant $p \ge 1$ such that ... (see Pumping lemma).

Let us assume sentence $w = 1^m$ for prime $m \ge p + 2$.

Now let us assume partitioning w=xyz and a "pumped"sentence $w_1=xy^{m-|y|}z$. We show that w_1 is not in L, which contradicts Pumping lemma.

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 9/22

Using PL for proving that L is not reg.

Proof that language $L = \{1^m : m \text{ is prime } \}$ is not regular

- $(1 + |y|) \neq 1$, because $|y| \geq 1$.
- m >= p + 2, $|y| \le |xy| \le p$, therefore $m |y| \ge p + 2 p = 2$.

Therefore, pumping lemma does not hold for L. For an arbitrary partitioning of $w=xyz\in L$ by the first two conditions of PL it holds that $xy^{m-|y|}z$ is not in L.

Therefore, L is not regular.

Using PL for proving that L is not reg.

Proof that language $L = \{1^m : m \text{ is prime } \}$ **is not regular**

Let us consider the length of the sentence $w_1 = xy^{m-|y|}z$. It holds that

$$|xy^{m-|y|}z| = |xz| + (m - |y|) * |y| = (m - |y|) + (m - |y|) * |y| = (m - |y|) * (1 + |y|) =.$$

 w_1 would be a prime only if either (m-|y|) or (1+|y|) were equal to 1.

IE-AAG (2011/2012) – J. Holub: 10. Properties of regular languages – p. 10/2

A question to check your comprehension

How big is the constant p in Pumping lemma for a *finite* regular language?

(Note: Every finite regular language is regular, therefore pumping lemma must hold for it.)

Myhill-Nerode theorem: motivation

- It characterizes fundamental relationships between finite automata over alphabet T and certain equivalence relations over strings in T*,
- it describes some of the necessary and sufficient conditions for a language to be regular (used often for proving that a language is not regular),
- it provides a formal basis for an elegant proof of existence of a unique (with respect to isomorphism) minimal DFA for a given regular language.

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 13/22

Right congruence and prefix equivalence

Definition

Let Σ be an alphabet and \sim is an equivalence on Σ^* . Equivalence \sim is a *right congruence*, if for every $u,v,w\in\Sigma^*$ it holds that:

$$u \sim v \Rightarrow uw \sim vw$$

Definition

Let L be an arbitrary (not necessarily regular) language over alphabet Σ . We define *prefix equivalence* for L, a relation \sim_L on set Σ^* like this:

$$u \sim_L v \Leftrightarrow \forall w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$$

Right congruence and prefix equivalence

Definition

Equivalence \sim is a binary relation that is *reflexive*, *symmetric* and *transitive*.

Definition

Equivalence class of an element a in set X is the subset of all elements in X that are equivalent to a.

Definition

The set of all equivalence classes in X is called the *quotient set* of X by \sim and is denoted by X/\sim .

Definition

Index of equivalence \sim is the number of equivalence classes in the quotient set Σ/\sim . If there are infinitely many equivalence classes, the index is defined to be ∞ .

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 14/2

Myhill-Nerode theorem

Definition

Let L be a language over $\Sigma.$ Then the following statements are equivalent:

- 1. L is a language accepted by a finite automaton.
- 2. L is a union of certain equivalence classes of the quotient set of Σ^* by the right congruence on Σ^* with a finite index.
- 3. Relation \sim_L has a finite index.

Proof. We prove the following implications:

- $1 \Rightarrow 2.$
- $2 \Rightarrow 3.$
- $3 \Rightarrow 1.$

The theorem is then implied by propositional calculus.

Myhill-Nerode theorem: $1 \Rightarrow 2$

If L is accepted by a DFA, then L is a union of some classes of the quotient set by the right congruence on Σ^* with a finite index.

Let us introduce a general transition function $\hat{\delta}$ for DFA $M=(Q,\Sigma,\delta,q_0,F)$.

 $\hat{\delta}:Q\times\Sigma^*\to Q$ such that

 $\forall q_1, q_2 \in Q, w \in \Sigma^* : \hat{\delta}(q_1, w) = q_2 \Leftrightarrow (q_1, w) \vdash_M^* (q_2, \varepsilon).$

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 17/22

Myhill-Nerode theorem: $2 \Rightarrow 3$

If there is a relation \sim that satisfies condition 2, then \sim_L has a finite index.

Proof.

- For all $u, v \in \Sigma$ such that $u \sim v$, it holds that $u \sim_L v$:
 - Let $u \sim v$. We will show that also $u \sim_L v$, that is $\forall w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$.
 - We know that $uw \sim vw$ and because L is a union of some classes of the quotioent set Σ^*/\sim , it also holds that $uw \in L \Leftrightarrow vw \in L$.
- **●** We therefore know that $\sim \subseteq \sim_L$ (that is, \sim_L is the largest right congruence with the given properties).
- Every class of \sim is contained in some class of \sim_L .
- **●** Index of \sim_L cannot be greater than index of \sim .
- ullet \sim has a finite index and therefore even \sim_L has a finite index.

Myhill-Nerode theorem: $1 \Rightarrow 2$

Proof. For a given L accepted by DFAM we construct \sim with the necessary properties:

- Let $M = (Q, \Sigma, \delta, q_0, F)$ and δ is total.
- We set \sim as a binary relation on Σ^* such that $u \sim v \Leftrightarrow \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.
- ullet We show that \sim has the necessary properties:
 - ightharpoonup is an equivalence: it is reflexive, transitive and symmetric.
 - $\, \bullet \,$ \sim has a finite index: the equivalence classes correspond to the automaton states.
 - \sim is a right congruence: Let $u \sim v$ and $a \in \Sigma$. Then $\hat{\delta}(q0,ua) = \delta(\hat{\delta}(q0,u),a) = \delta(\hat{\delta}(q0,v),a) = \hat{\delta}(q0,va)$ and therefore $ua \sim va$.
 - L is a union of some equivalence classes of Σ^*/\sim those that correspond to F.

Myhill-Nerode theorem: $3 \Rightarrow 1$

If \sim_L has a finite index, then L is accepted by some finite automaton.

Proof.

- **●** We create $M = (Q, \Sigma, \delta, q_0, F)$ accepting L:
 - $Q = \Sigma^* / \sim_L$ (states are the classes of the quotient set),
 - $\forall u \in \Sigma^*, a \in \Sigma : \delta([u], a) = [ua],$
 - $q_0 = [\varepsilon],$
 - $F = \{[x] | x \in L\}.$
- The shown construction is correct, that is L = L(M):
- We show by induction over the length of word v that $\forall v \in \Sigma^* : \hat{\delta}([\varepsilon], v) = [v].$
- \bullet $v \in L \Leftrightarrow [v] \in F \Leftrightarrow \hat{\delta}([\varepsilon], v) \in F.$

Proof of irregularity using M-N

Prove that language $L = \{0^n 1^n : n >= 1\}$ is not regular. Proof.

- No strings $\varepsilon, 0, 0^2, 0^3, \dots$ are \sim_L -equivalent, because $0^i 1^i \in L$, but $0^i 1^j \notin L$ for $i \neq j$.
- L therefore has infinitely many classes (or infinite index).
- ullet According to Myhill-Nerode theorem L cannot be accepted by a finite automaton. \Box

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 21/22

M-N theorem and DFA minimality

Theorem (second version of M-N theorem)

Number of states of any minimal DFA accepting L is equal to index of \sim_L . (Such a DFA exists if and only if the index is finite.) *Proof.*

- Every DFA (one can consider DFAs without unreachable states) defines a certain right congruence with a finite index and vice versa.
- If L is regular, \sim_L is the greatest right congruence with a finite index such that L is the union of certain classes of the appropriate quotient set.
- **●** Finite automaton that corresponds to \sim_L (see proof of $3 \Rightarrow 1$ of M-N), is therefore a minimal DFA accepting L. \square

BIE-AAG (2011/2012) - J. Holub: 10. Properties of regular languages - p. 22/2