

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5

«Работа с эмулятором CPU580»

по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы	Перов И.А.
ИКБО-15-23	
Принял кафедры ВТ	Морозов В. А.
Практическая работа выполнена	«» октября 2024 г.
«Зачтено»	«» октября 2024 г.

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ И ПЕРСОНАЛЬНЫЙ ВАРИАНТ	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ЗАДАНИЯ	3
2.1 Реализация примера	3
2.2 Реализация индивидуального задания	5
3 ВЫВОДЫ	7
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	8

1 ПОСТАНОВКА ЗАДАЧИ И ПЕРСОНАЛЬНЫЙ ВАРИАНТ

Постройте сумму натурального ряда первых n значений в соответствии c вариантом. Личный вариант 20 (5) - 60 значений.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ЗАДАНИЯ

2.1 Реализация примера

При изучении данной темы, была разобрана такая задача. Требуется найти сумму натурального ряда первых 50 целочисленных элементов начиная с «1».

Сначала решим задачу самостоятельно: S = (50 * (50 + 1)) / 2 = 1275

Переведем в шестнадцатеричную систему счисления: $1275_{10} = 04FB_{16}$

Теперь разберемся как это будет выглядеть в эмуляторе. Составим таблицу команд для выполнения этой задачи (таблица 1):

Таблица 1 – Таблица с разобранным примером

Ячейка ОЗУ	Код команды	Расшифровка команды	Комментарий
0000	1E	MV1 E, d8	Загружаем в регистр Е
			число 32 ₁₆
0001	32		Операнд $50_{10} = 32_{16}$
0002	19	DAD D	Сложение конкатенаций пар регистров DE и HL
0003	1D	DCR E	Уменьшить содержимое регистра Е на 1
0004	C2	JNZ adr	Перейти к началу цикла, если содержимое регистра Е не 0
0005	02		Младший байт адреса перехода
0006	00		Старший байт адреса перехода
0007	76	HLT	Остановка

Рисунок 1 – Реализация разобранной задачи в эмуляторе

Заполнив необходимые ячейки ОЗУ, мы нажимаем на кнопку «Выполнить», после этого эмулятор выполняет действия, необходимые для решения задачи. Ответ будет представлен как шестнадцатеричное число, у которого 2 старших байта содержатся в регистре H, а 2 младших в регистре L.

2.2 Реализация индивидуального задания

Требуется построить сумму натурального ряда первых 60 значений.

Сначала решим задачу самостоятельно: S = (60 * (60 + 1)) / 2 = 1830

Переведем в шестнадцатеричную систему счисления: $1830_{10} = 0726_{16}$

Теперь разберемся как это будет выглядеть в эмуляторе. Составим таблицу команд для выполнения этой задачи (таблица 2):

Таблица 2 – Таблица с разобранным личным вариантом

Ячейка ОЗУ	Код команды	Расшифровка команды	Комментарий
0000	1E	MV1 E, d8	Загружаем в регистр Е
			число 32 ₁₆
0001	3C		Операнд $60_{10} = 3C_{16}$
0002	19	DAD D	Сложение конкатенаций пар регистров DE и HL
0003	1D	DCR E	Уменьшить содержимое регистра Е на 1
0004	C2	JNZ adr	Перейти к началу цикла, если содержимое регистра Е не 0
0005	02		Младший байт адреса перехода
0006	00		Старший байт адреса перехода
0007	76	HLT	Остановка

Рисунок 2 — Реализация личного варианта в эмуляторе

Заполнив необходимые ячейки ОЗУ, мы нажимаем на кнопку «Выполнить», после этого эмулятор выполняет действия, необходимые для решения задачи. Ответ будет представлен как шестнадцатеричное число, у которого 2 старших байта содержатся в регистре H, а 2 младших в регистре L. Так, в регистре H содержится 07_{16} , а в регистре L -26_{16} . Записав старшие и младшие байты друг за другом получим число 0726_{16} , что и является нашим ответом, полученным ранее.

3 ВЫВОДЫ

В ходе данной практической работы, мы разработали получили знания о работе с эмулятором счетчик на Т-триггерах. Для построения счетчика на Т-триггерах использовали таблицу истинности счетчика на базе D-триггера, и Т-триггеры

В качестве исходных данных использовали таблицу с личным вариантом.

Протестировали работу схем и убедились в их корректности, а также составили отчет о проделанной работе.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 1. Мусихин А.Г. Архитектура вычислительных машин и систем [Электронный ресурс]: Учебное пособие / Мусихин А.Г., Смирнов Н.А. М.: МИРЭА Российский технологический университет, 2021. 279 с URL: https://onlineedu.mirea.ru/pluginfile.php/964862/mod_resource/content/2/Apхитктур а ВМиС Учебное пособие.pdf/ (дата обращения: 17.09.2024)
- 2. Эмулятор работы микропроцессора [Электронный ресурс] URL: https://online-edu.mirea.ru/pluginfile.php/1616154/mod_folder/content/0/CPU% 20580%20Emulator%288%29.7z?forcedownload=1 (дата обращения: 22.10.2024)