

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of Science in Applied Sciences

First Year - Semester I Examination - July/August 2023

MAT 1201 - MATHEMATICAL METHODS I

Time allowed: Two (2) hours

Answer ALL (04) questions

1. a) If the position vectors of points A and B are $2\mathbf{i} - 9\mathbf{j} - 4\mathbf{k}$ and $6\mathbf{i} - 3\mathbf{j} + 8\mathbf{k}$, respectively, find \overrightarrow{AB} and a unit vector in the same direction as \overrightarrow{AB} .

(20 marks)

b) Let \overrightarrow{ABCD} be a parallelogram and P and Q be the mid-points of \overrightarrow{BC} and \overrightarrow{CD} , respectively. If $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{AD} = \mathbf{b}$, find, in terms of \mathbf{a} and \mathbf{b} , \overrightarrow{BD} , \overrightarrow{AP} , \overrightarrow{AQ} , \overrightarrow{PQ} , and \overrightarrow{PD} .

(35 marks)

c) Determine whether the following vectors are linearly independent or not:

i.
$$4\mathbf{i} - 8\mathbf{j}$$
, $-6\mathbf{i} + 12\mathbf{j}$ in \mathbb{R}^2

ii.
$$\mathbf{i} + \mathbf{j}$$
, \mathbf{j} , $2\mathbf{i} + \mathbf{j}$ in \mathbb{R}^2

iii.
$$\mathbf{i} + \mathbf{j} + \mathbf{k}$$
, $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{i} + \mathbf{j}$ in \mathbb{R}^3

Determine which of the above vector sets form a basis for the given space.

(45 marks)

2. a) If $\mathbf{a} = 4\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, find $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})$.

(20 marks)

b) Determine the scalar m such that the vector $2\mathbf{i} + \mathbf{j} - m\mathbf{k}$ is perpendicular to the sum of the vectors $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$.

(20 marks)

- c) If $\mathbf{u_1}$ and $\mathbf{u_2}$ are unit vectors making an angle $\frac{\pi}{3}$ with each other, find $|\mathbf{u_1} \mathbf{u_2}|$. (20 marks)
- d) Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{b} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$. Determine the vector \mathbf{r} and the scalar λ such that $\mathbf{a} \times \mathbf{r} = \mathbf{b} + \lambda \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{r} = 3$.

(40 marks)

- 3. a) Consider the line (L) through the points (1, 1, -3) and (4, 7, 1).
 - i. Find a vector equation, parametric equations, and symmetric equations for L.
 - ii. Show that the line L is parallel to the line (M) which is given by $\mathbf{r} = \mathbf{i} \mathbf{k} + \lambda \left(\frac{3}{2}\mathbf{i} + 3\mathbf{j} + 2\mathbf{k} \right)$.
 - iii. Find the coordinates of the point where M crosses the xy-plane.
 - iv. Find the distance between L and M.

(60 marks)

b) Find the point of intersection of the given lines $\mathbf{r} = \mathbf{a} - 2\mathbf{b} + t(\mathbf{b} + 2\mathbf{a})$ and $\mathbf{r} = 2\mathbf{a} - \mathbf{b} + u(\mathbf{a} + 2\mathbf{b})$, where \mathbf{a} and \mathbf{b} are linearly independent vectors and t and u are scalar parameters. Obtain an expression for the angle between the lines.

(40 marks)

4.	a) Find the Cartesian equation of the plane containing the point $(4, -1, 3)$ with the
	normal vector $\mathbf{n} = 2\mathbf{i} + 8\mathbf{j} - 5\mathbf{k}$.

(20 marks)

b) Find the equation of the plane passing through the point (1, 3, -6) that is perpendicular to the line given by:

$$\frac{x-1}{4} = \frac{y}{5} = \frac{z+5}{6}.$$

(25 marks)

c) Show that the plane with vector equation $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 3$ contains the line given by $\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} + 4\mathbf{k})$, where λ is a scalar parameter.

(30 marks)

d) Find the vector equation of the line passing through the point (3, 1, 2) and perpendicular to the plane $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 4$.

(25 marks)

..... END