

SOLUTION OF EXERCISESHEET 8

Exercise 8-1

Given $\Pi_{MAC} = (\text{Gen, Enc, Ver})$

To prove by reduction as in Figure 1

Figure 1: Proof by Reduction

Lets assume contradiction i.e., the MAC construction is not secure \Rightarrow Probablity of forging this construction Π_{MAC} is a non negligible function. i.e.,

$$Pr[MacForge_{A,\Pi_{MAC}} = 1] \le \epsilon(\lambda)$$

where $\epsilon(\lambda)$ is a non negligible function.

That implies there exists an adversary, A, able to generate a new message and tag pair (m^*, t^*) such that $m^* \notin Q$, and $Ver_k(m^*, t^*) == 1$ with a probablity $\epsilon(\lambda)$.

Theresa, Celine, Prisca, Saibaba December 13, 2022

SOLUTION OF EXERCISESHEET 8

We now consider B attacking the MAC i.e., B runs A as subroutine. B choose two messages, lets say $\widetilde{m_0}$ and $\widetilde{m_1}$ as m^* and any other random message respectively. If B gets the tag a t^* , it corresponds to m^* otherwise it corresponds to random message. So here the success probablity of B is.

$$Pr[PrivK_{B,\Pi'}^{CCA}(\lambda) = 1] \le |(1 - \epsilon(\lambda))/2| \tag{1}$$

But given that Π is a CCA secure enryption scheme. So for CCA secure Adversary A',

$$Pr[PrivK_{A',\Pi}^{CCA}(\lambda) = 1] \le 1/2 + neg(\lambda)$$
(2)

where $neg(\lambda)$ is a negligible function.

Both equations (1) and (2) are valid only when unless $\epsilon(\lambda)$ is a negligible function which is contradiction to our assumption. Hence our assumption that such an Adversary exists is false. And the construction is secure.

Exercise 8-2

Exercise 8-3

Exercise 8-4

To show: $H(m): \{0,1\}^{2k} \to \{0,1\}^{k+n}, H(m):=m_0||H'(m_1) \text{ is still a collision-resistant hash function when } m=m_0||m_1,|m_0|=|m_1|=k \text{ and } k>n.$ $H'(m): \{0,1\}^* \to \{0,1\}^n \text{ is a collision-resistant hash function.}$

Proof by contradiction. We assume there is an adversary \mathcal{A} , who can break the collision-resistance of H(m) with non-negligible probability. We now build an adversary \mathcal{B} against the collision-resistance of H'(m) who invokes \mathcal{A} . When \mathcal{B} gets the hash value $s'=H'(m_1)$ he prepends m_0 , which he samples randomly. So he can give $s=m_0||s'=m_0||H'(m_1)$ to the adversary \mathcal{A} . \mathcal{A} then outputs two messages x_1,x_2 . \mathcal{B} computes his output by truncating the first half of x_1 and x_2 .

 \mathcal{B} is an efficient adversary because \mathcal{A} is efficient, so the message length is poly and the call to \mathcal{A} needs only poly time and sampling and prepend m_0 and truncating bit from x_1 and x_2 can also be done in polynomial time.

To analyse the success, we know, that with non-negligible probability \mathcal{A} outputs two messages x_1, x_2 with $x_1 \neq x_2$ and $H^s(x_1) = H^s(x_2)$. \mathcal{B} outputs only the second half of x_1 and x_2 which results in

 x_1', x_2' . The probability that these are equal is $\left(\frac{1}{2}\right)^k$, because for each position the probability that

the bits are equal is $\frac{1}{2}$. Therefore it holds that

$$Pr[HashColl_{\mathcal{B}}(\lambda)=1] = Pr[HashColl_{\mathcal{A}}(\lambda)=1] - Pr[x_1'==x_2'] = \texttt{non-negl.} - \left(\frac{1}{2}\right)^k = \texttt{non-negl.}$$

Because this is a contradiction to the collision-resistance of H'(m) such an adversary A cannot exist.

It follows that H(m) is a collision-resistant hash function.