(19)日本国特許庁(JP)

(i2)公開特許公報 (A)

(11)特許出願公開番号

(P2001-299684A)

(43)公開日 平成13年10月30日(2001.10.30)

(51)Int.Cl. 7	識別記号	FI			テーマコート	(参考)
A61B 1/00	320	A61B 1/00	320	A	4C061	
A61M 25/00	306 '	A61M 25/00	306	В		

審査請求 未請求 請求項の数5 (全3頁)

(21)出願番号	特願2000-161224(P2000-161224)	(71)出願人	391016705
	·		クリエートメディック株式会社
(22)出願日	平成12年4月21日(2000.4.21)		神奈川県横浜市都筑区茅ヶ崎南2丁目5番
	•		25号
•		(72)発明者	朝比奈巧
			神奈川県横浜市都筑区茅ヶ崎南2丁目5番
			25号
		(74)代理人	100074952
			弁理士 小川 修
		Fターム(参考) 4C061 GG24 HH56 JJ01 JJ06	
•	•		
		1	

(54)【発明の名称】内視鏡用チューブ

(57)【要約】

【課題】 主として消化管に係る内視鏡を用いて行う各 種術式において、処置具等の複数挿通を可能とし、か つ、その長さを効果的に利用できるカテーテルを提案す るにある。

【解決手段】 カテーテルのチューブ管腔を複数設け、 内視鏡を挿通するメインルーメン2と、これより径の小 であるザブルーメン3を設け、処置具を比較的多く使用 する術式においても、該処置具を挿通し、使用できるよ うにした。また、チューブ1の管壁等に施術の際ルーメ ンが潰れないようその防止手段を講じ、更に、チューブ 1の基端部に内視鏡テーパー部を挿通可能に構成した。

【特許請求の範囲】

【請求項1】 ゴム又は合成樹脂を用い、内視鏡を挿通 する単数のメインルーメン(2)と、処置具を挿通する 単数又は複数のサブルーメン(3)とを設けて管(1) を形成したことを特徴とする内視鏡用チューブ

【請求項2】 前記管(1)の管壁又は/並びに前記メ インルーメン(2)及びサブルーメン(3)の内腔に硬 質かつ弾性ある合成樹脂製の管(4)を埋設もしくは付 設したことを特徴とする請求項1の内視鏡用チューブ

【請求項3】 前記管(1)の管壁又は/並びに前記メ 10 インルーメン(2)及びサブルーメン(3)の内腔に硬 質かつ弾性ある材質の線(5)を埋設もしくは付設した ことを特徴とする請求項1の内視鏡用チューブ

【請求項4】 前記管(1)の基端部軸方向に単数又は 複数のスリット(6)を設けたことを特徴とする請求項 1~3の内視鏡用チューブ・

【請求項5】 前記管(1)の軸方向に摺動可能なスラ イドチューブ(7)を管(1)に嵌装したことを特徴と する請求項4の内視鏡用チューブ

【発明の詳細な説明】

[0001].

【発明の属する技術分野】 本発明は、主として消化管 に係る内視鏡を用いて行う各種術式において、内視鏡と ともに人体に挿入するガイドチューブに関するものであ る。

[0002]

内視鏡を用いて行う各種術式に際して 【従来の技術】 は、例えば単腔のチューブや、実公平7-31791に 示すような形状のガイドチューブを用いることが、しば しばある。しかしながら、前記チューブは、単腔のため 30 患者への侵襲も大となることを併せ考慮すると、管 内視鏡以外の各種処置具を使用する必要があるとき、内 視鏡に設けられている挿入孔によるしか、これらの処置 具の挿入手段がない。一般的な内視鏡を用いる場合、同 時に使用できる処置具は2種類、内視鏡の処置具挿入腔 が2個あるものを用いても3種類に止まる。そこで、例 えば切除部位を3点で固定し、鉗子等で切除したい場合 など、同時に使用できる処置具が限られることによっ て、治療が不能となるおそれがある。このように、処置 方法が限定されることは、十分な医療効果をあげること を困難にする。のみならず、内視鏡の処置具挿入孔が2 40 個あるものは一般的ではなく、どの医療施設にも備えら れているとは言い得ない。また、内視鏡の外径が太くな り、チューブの外径もその分だけ太くなってしまうこと から、患者に与える影響も大きくなってしまう。従来の チューブでもう一つの問題は、チューブの長さに関す る。ガイドチューブが長いと内視鏡の操作をしにくくす る。そこで、できるだけ短いチューブを使用する傾向に なるが、深い患部の処置には、勿論不適当である。

[0003]

限定されず、十分な医療効果をあげることができるよ う、処置具挿入手段の改良及び必要な長さのガイドチュ ーブを用いても、これに挿通した内視鏡の有効長を相対 的に長くすることができる内視鏡用チューブを提案する ものである。

[0004]

【課題を解決するための技術手段】 上記課題を解決す るため鋭意研究した結果、まず処置具挿入手段として、 チューブ管腔を複数とし、内視鏡を挿通するメインルー メンの外にサブルーメンを設けることで解決した。ま た、チューブを人体に挿入する際、ルーメンが潰れ、処 置具等の挿通に支障を生じないよう、その防止手段を講 じた。次に、チューブの基端部管壁にスリットを設け、 内視鏡テーバー部を挿通可能に構成し、チューブに挿通 した内視鏡の有効長を相対的に長くできるようにした。 [0005]

【発明の実施の形態】 本発明に係る内視鏡用チューブ の実施例を図を用いて説明する。図1は、実施例の側面 図、図2は図1のA-A線断面図である。管(1)は、 20 内視鏡を挿通する単数のメインルーメン(2)とこれよ り小径の処置具を挿通する単数又は複数のサブルーメン (3)を設けて形成されている。サブルーメン(3)の 数は、医療の術式によって、適宜選択されるが、管 (1)は、柔軟性に富む材質のもの、例えばシリコーン ゴム、各種エラストマー等を用いることが好ましい。メ インルーメン(2)の内径は一般的に用いられている内 視鏡の径を考慮すると13mm前後が適当である。ま た、サブルーメン(3)の内径は3mm程度が望まし い。これらの点と管(1)の外径を大きくすることは、 (1)の外径は20mmまでとするのが好ましい。

[0006]

内視鏡用チューブを体内に挿入すると 【実施例2】 き、例えばサブルーメン(3)の内腔が潰れ、鉗子など が挿通できない不具合を生ずるおそれがある。そこで、 実施例2として、図3に示すように、管(1)に用いる 材質より硬質かつ弾性ある材質の合成樹脂製の管(4) を管壁やメインルーメン (2)、サブルーメン (3) に 埋設ないし付設した。

[0007]

【実施例3】 前記理由により、内腔の潰れを回避する ため、実施例3として、図4に示すように、管(1)に 用いる材質より硬質かつ弾性ある材質の線(5)を管壁 やメインルーメン (2)、サブルーメン (3) に埋設な いし付設した。前記線(5)は合成樹脂製又は金属製の ものを、例えば直線状にして単数もしくは複数用いる か、螺旋状にして用いるか選択できる。

[0008]

【実施例4】 内視鏡を人体へ挿入するに用いるガイド 【発明が解決しようとする課題】 そこで、処置方法が 50 チューブが長いと、内視鏡操作を難しくすることにな

る。しかし、他方、チューブが短いと深い患部の処置を 行うことができない。従って、必要な長さのチューブを 用いても、内視鏡の操作が困難にならなければ、それだ け治療を効果的に実施できることになる。従来のガイド チューブは単腔であり、一般的な内視鏡の手元操作部即 ちテーパー部はチューブに挿入できない。そこで、本発 明は、管(1)の基端部管壁に単数又は複数のスリット (6)を設け、基端部管壁が外へ広がり、従来のチュー ブ基端部では挿入できなかった内視鏡テーパー部(手元 操作部)を挿入できるようにした。このようにすれば、 長いチューブを用いても、実質的には挿入可能になった 長さだけ短いチューブを使用した場合と異ならないこと になる。例えば、大腸内視鏡にチューブを装着したと き、内視鏡の有効長からチューブ全長を差し引いた長さ がより長ければ内視鏡の操作が容易となるが、一般的な 大腸内視鏡の有効長及びチューブの長さは、それぞれ 1,330mm、250mmであるから、その差1,0 80mm以上の長さを確保すれば、まず問題がない。ま た、内視鏡の手元操作部にあるテーパー部の長さは一般 的なもので、100mmほどである。従って、本発明で 20 2・・メインルーメン はこれを効果的に活用することになる。

[0009]

内視鏡を操作し、各種術式に従って処置 【実施例5】 具を用い施術する場合、前記スリット(6)は内視鏡に チューブを固定する手段に活用することができる。即 ち、管(1)の軸方向に摺動可能なスライドチューブ

(7)を嵌挿し、スリット(6)方向へ摺動させて管

(1)を内視鏡に繋止し、また先端方向へ摺動して繋止 を解除する。このようにすれば、施術を容易にし、医療 効果をあげることができる。

[0010]

【発明の効果】 本発明によれば、内視鏡を用いて行う 各種術式に際し、必要な処置具の挿入を可能にし、管 (1)の体内挿入時にメインルーメン(2)及びサブル ... ーメン(3)の腔を潰すことが避けられるので処置具挿 入を容易にし、管(1)の長さにもかかわらず、内視鏡 操作に支障を生ぜず、また必要に応じ、管(1)を内視 鏡に繋止することができる。

【図面の簡単な説明】

【図1】 実施例の概要を示す側面図

【図2】 図1のA-A線における断面図

【図3】 第2の実施例の説明断面図

【図4】 第3の実施例の説明断面図

【符号の説明】

1・・管

3・・サブルーメン

4・・管

5・・線

6・・スリット

7・・スライドチューブ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-299684

(43) Date of publication of application: 30.10.2001

(51)Int.CI.

A61B 1/00 A61M 25/00

(21)Application number : 2000-161224

(71)Applicant : CREATE MEDIC CO LTD

(22)Date of filing:

21.04.2000

(72)Inventor: ASAHINA TAKUMI

(54) ENDOSCOPIC TUBE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a catheter allowing plural treatment instruments to be inserted and allowing the effective use of the length of the catheter in various operations using an endoscope mainly related to the digestive tracts.

SOLUTION: Plural tube lumens are formed in the catheter, a main lumen 2 for inserting the endoscope and a sub-lumen 3 whose diameter is smaller than that of the main lumen. Thereby, the catheter can be used with treatment instruments inserted into the lumens even in an operation in which relatively many treatment instruments are used. In addition, a means for preventing the lumens from being broken when the catheter is used in an operation is mounted on the wall of a tube 1 etc., and a tapered part of the endoscope can be inserted into the base end part of the tube 1.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The tube for endoscopes characterized by having prepared the Maine lumen (2) of the unit which inserts in an endoscope, and the unit or two or more sublumens (3) which insert in a treatment implement using rubber or synthetic resin, and forming tubing (1) [claim 2] The tube for endoscopes [claim 3] of claim 1 characterized by laying underground or attaching tubing made of hard and elastic **** synthetic resin (4) at the lumen of said Maine lumen (2) and a sublumen (3) at the tube wall or /list of said tubing (1) The tube for endoscopes [claim 4] of claim 1 characterized by laying underground or attaching the line (5) of hard and the elastic **** quality of the material at the lumen of said Maine lumen (2) and a sublumen (3) at the tube wall or /list of said tubing (1) The tube for endoscopes [claim 5] of claims 1–3 characterized by preparing an unit or two or more slits (6) in the end face section shaft orientations of said tubing (1) The tube for endoscopes of claim 4 characterized by fitting in tubing (1) the slide tube (7) which can slide on the shaft orientations of said tubing (1)

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the guide tube inserted in the body with an endoscope in the various technique held using the endoscope applied mainly to an alimentary canal.

[0002]

[Description of the Prior Art] On the occasion of the various technique held using an endoscope, the tube of a single cavity and the guide tube of a configuration as shown in JP,7-31791,Y are often used, for example. However, said tube has the insertion means of these treatment implements only according to the insertion hole prepared in the endoscope, when it is necessary to use various treatment implements other than an endoscope for a single cavity. When using a common endoscope, even if the treatment implement which can be used for coincidence uses a thing with two kinds and two treatment implement insertion cavities of an endoscope, it stops at three kinds. There is a possibility that a therapy may become impossible there, by restricting the treatment implement which can be used for coincidence to fix for example, an excision part by three points, and excise with forceps etc. Thus, that the treatment approach is limited makes it difficult to obtain sufficient medical effectiveness. It cannot be said that what does not come to accept it but has two treatment implement insertion holes of an endoscope is not common, and every medical facilities are equipped with it. Moreover, the outer diameter of an endoscope will become thick and the outer diameter of a tube and the effect which it has on a patient since only the part becomes thick will become large. Another problem is related with the die length of a tube by the conventional tube. When a guide tube is long, an endoscope is made hard to operate it. Then, although it becomes the inclination which uses the shortest possible tube, of course to the treatment of the deep affected part, it is unsuitable. [0003]

[Problem(s) to be Solved by the Invention] Then, the treatment approach is not limited, but even if it uses amelioration of a treatment implement insertion means, and the guide tube of required die length so that sufficient medical effectiveness can be obtained, the tube for endoscopes which can lengthen relatively effective length of the endoscope inserted in this is proposed. [0004]

[The technical means for solving a technical problem] In order to solve the above-mentioned technical problem, as a result of inquiring wholeheartedly, first, as a treatment implement insertion means, the tube lumen was made into plurality and it solved by preparing a sublumen out of the Maine lumen which inserts in an endoscope. Moreover, when inserting a tube in the body, the lumen was crushed, and the prevention means was provided so that trouble might not be produced in insertion of a treatment implement etc. Next, a slit is prepared in the end face section tube wall of a tube, and it constitutes possible [insertion of the endoscope taper section], and could be made to lengthen effective length of the endoscope inserted in the tube relatively.

[0005]

[Embodiment of the Invention] The example of the tube for endoscopes concerning this

invention is explained using drawing. <u>Drawing 1</u> is the side elevation of an example and <u>drawing 2</u> is the A-A line sectional view of <u>drawing 1</u>. From the Maine lumen (2) of the unit which inserts in an endoscope, and this, tubing (1) prepares the unit or two or more sublumens (3) which insert in the treatment implement of a minor diameter, and is formed. Although the number of sublumens (3) is suitably chosen by the medical technique, as for tubing (1), it is desirable to use the thing of the quality of the material which is rich in flexibility, for example, silicone rubber, various elastomers, etc. If the path of the endoscope generally used is taken into consideration, 13mm order is suitable for the bore of the Maine lumen (2). Moreover, the bore of a sublumen (3) has about 3 desirablemm. It is desirable that the outer diameter of tubing (1) will carry out to to 20mm if the invasion to a patient also combines and takes to become size into consideration to enlarge the outer diameter of these points and tubing (1). [0006]

[Example 2] When inserting the tube for endoscopes in the inside of the body, the lumen of a sublumen (3) is crushed and there is a possibility of producing the fault which cannot insert in forceps etc. Then, as an example 2, as shown in <u>drawing 3</u>, tubing made of the synthetic resin of hard and the elastic **** quality of the material (4) was laid underground thru/or attached to the tube wall, the Maine lumen (2), and the sublumen (3) from the quality of the material used for tubing (1).

[0007]

[Example 3] For said reason, in order to avoid crushing of a lumen, as shown in <u>drawing 4</u>, the line (5) of hard and the elastic **** quality of the material was laid underground thru/or attached to the tube wall, the Maine lumen (2), and the sublumen (3) from the quality of the material used for tubing (1) as an example 3. Said line (5) makes the thing of the product made of synthetic resin, or metal the shape for example, of a straight line, and can choose [an unit or] whether more than one are used, or it is made spiral and uses.

[0008]

[Example 4] Endoscope actuation will be made difficult when the guide tube which uses an endoscope for inserting in the body is long. However, if another side and a tube are short, it cannot deal with the deep affected part. Therefore, if actuation of an endoscope does not become difficult even if it uses the tube of required die length, it can treat effectively so much. The conventional guide tube is a single cavity and it cannot insert in a tube, the hand control unit, i.e., the taper section, of a common endoscope. Then, this invention prepares an unit or two or more slits (6) in the end face section tube wall of tubing (1), and enabled it to insert the endoscope taper section (hand control unit) which a end face section tube wall was not able to insert in breadth and the conventional tube end face section outside. If it does in this way, even if it uses a long tube, it will not differ from the case where a tube only with the short die length whose insertion was attained substantially is used. For example, since general effective length of a large intestine endoscope and die length of a tube are 1,330mm and 250mm, respectively, if the die length of 1,080mm or more of the difference is secured, they will be satisfactory [when a large intestine endoscope is equipped with a tube, if the die length which deducted the tube overall length from the effective length of an endoscope excels more, actuation of an endoscope will become easy, but] first. Moreover, the die length of the taper section in the hand control unit of an endoscope is common, and is about 100mm. Therefore, in this invention, this will be utilized effectively.

[0009]

[Example 5] When operating an endoscope and ****ing using a treatment implement according to various technique, said slit (6) can be utilized for a means to fix a tube to an endoscope. That is, the slide tube (7) which can slide on the shaft orientations of tubing (1) is fitted in, it is made to slide in the direction of a slit (6), and tubing (1) is fastened on to an endoscope, and it slides in the direction of a tip, and fastening is canceled. If it does in this way, an operation can be performed easy and the medical effectiveness can be obtained.

[0010]

[Effect of the Invention] According to this invention, on the occasion of the various technique held using an endoscope, insertion of a required treatment implement is enabled, since crushing

the cavity of the Maine lumen (2) and a sublumen (3) at the time of insertion of tubing (1) in the living body is avoided, treatment implement insertion is made easy, trouble is not produced in endoscope actuation in spite of the die length of tubing (1), and tubing (1) can be fastened on to an endoscope if needed.

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The side elevation showing the outline of an example

[Drawing 2] The sectional view in the A-A line of drawing 1

[Drawing 3] The explanation sectional view of the 2nd example

[Drawing 4] The explanation sectional view of the 3rd example

[Description of Notations]

- 1.. Tubing
- 2 .. Maine lumen
- 3 .. Sublumen
- 4.. Tubing
- 5 .. Line
- 6 .. Slit
- 7.. Slide tube

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 3]

[Drawing 4]

