第6章 时序逻辑电路

- 6.1 时序逻辑电路简介
- 6.2 同步时序电路分析
- 6.3 同步时序电路设计
- 6.4 计数器
- 6.5 寄存器

第6章 时序逻辑电路

§ 6.1 时序逻辑电路简介

时序电路

输出 输出 前一个状态 触发器电路 基本单元: 触发器(门+反馈线)

逻辑电路 制发器在CLK的相同边沿触发导步

时序电路结构:

组合电路+触发器电路

W: 触发器控制输入信号-- J, K, D, T

Q: 触发器的状态

外部输入X外部输出Z 激励输入W状态Q

关系:

输出方程

激励方程

状态方程

$$Z = F(X, Q^n)$$

$$W = H(X, Q^n)$$

$$Q^{n+1} = G(W, Q^n)$$

§ 6.2 同步时序电路分析

分析: 给定一个电路, 描述它的运算和功能。

例1: 分析同步时序电路的逻辑功能

1) 输入 X 控制输入 J_0, K_0, J_1, K_1 输出 Z 状态 Q_1 (MSB), Q_0

2) 方程组

输出方程

$$Z = (X \oplus Q_1^n) \cdot Q_0^n$$

激励方程

$$Z = (X \oplus Q_1^n) \cdot \overline{Q_0^n}$$

$$\begin{cases} J_0 = X \oplus \overline{Q_1^n} \\ K_0 = 1 \end{cases} \begin{cases} J_1 = X \oplus Q_0^n \\ K_1 = 1 \end{cases}$$

状态方程

$$\begin{cases} Q_0^{n+1} = J_0 Q_0^n + \overline{K_0} Q_0^n = (X \oplus Q_1^n) \cdot Q_0^n \\ Q_1^{n+1} = J_1 \overline{Q_1^n} + \overline{K_1} Q_1^n = (X \oplus Q_0^n) \cdot \overline{Q_1^n} \end{cases}$$

3) 状态表和状态图

给定:输入 X, Q^n

求出:输出 Z, Qn+1

状态表

$$X = 0 \begin{cases} X & Q_1^n & Q_0^n & Q_1^{n+1} & Q_0^{n+1} & Z \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{cases}$$

$$X=1 \begin{cases} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{cases}$$

$$Q_{1}^{n+1} = (X \oplus Q_{0}^{n}) \cdot \overline{Q_{1}^{n}}$$

$$Q_{0}^{n+1} = (X \oplus \overline{Q_{1}^{n}}) \overline{Q_{0}^{n}}$$

$$Z = (X \oplus Q_{1}^{n}) \cdot \overline{Q_{0}^{n}}$$

$$\begin{cases} Q_{1}^{n+1} = Q_{0}^{n} \cdot \overline{Q_{1}^{n}} \\ Q_{0}^{n+1} = \overline{Q_{1}^{n}} \cdot \overline{Q_{0}^{n}} \end{cases}$$

$$X=0 \begin{cases} Q_{1}^{n+1} = Q_{0}^{n} \cdot \overline{Q_{1}^{n}} \\ Q_{0}^{n+1} = \overline{Q_{1}^{n}} \cdot \overline{Q_{0}^{n}} \end{cases}$$

$$Z = Q_{1}^{n} \cdot \overline{Q_{0}^{n}}$$

$$X=1 \begin{cases} Q_{1}^{n+1} = \overline{Q_{1}^{n}} \cdot \overline{Q_{0}^{n}} \\ Q_{0}^{n+1} = \overline{Q_{1}^{n}} \cdot \overline{Q_{0}^{n}} \end{cases}$$

1/0

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	\boldsymbol{Z}
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	0	0	0

 \longrightarrow 对应一个CLK

0/1

1/1

10

每条转换线对应真值表中的一行

1/0

0/0

4) 电路功能

状态图的主要环路:

模3加减法可逆计数器

X=0, M-3 加法计数器: Z=1, 进位输出

X=1, M-3 减法计数器: Z=1, 借位输出

例2. 分析下面的时序电路

没有外部输入,没有外部输出

$$\begin{cases} J_{3} = Q_{2}^{n} & \begin{cases} J_{2} = Q_{1}^{n} & \begin{cases} J_{1} = Q_{2}^{n} + Q_{3}^{n} \\ K_{3} = \overline{Q_{2}^{n} \oplus Q_{1}^{n}} \end{cases} & \begin{cases} K_{1} = \overline{Q_{2}^{n}} + \overline{Q_{3}^{n}} \\ K_{1} = \overline{Q_{2}^{n}} + \overline{Q_{3}^{n}} = \overline{Q_{2}^{n}Q_{3}^{n}} \end{cases}$$

$$Q_{3}^{n+1} = J_{3}\overline{Q_{3}^{n}} + \overline{K}_{3}Q_{3}^{n} = Q_{2}^{n}\overline{Q_{3}^{n}} + (Q_{2}^{n} \oplus Q_{1}^{n})Q_{3}^{n}$$

$$Q_{2}^{n+1} = J_{2}\overline{Q_{2}^{n}} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}\overline{Q_{2}^{n}} + Q_{3}^{n}Q_{2}^{n}$$

$$Q_{1}^{n+1} = J_{1}\overline{Q_{1}^{n}} + \overline{K}_{1}Q_{1}^{n} = (Q_{2}^{n} + Q_{3}^{n})\overline{Q_{1}^{n}} + Q_{2}^{n}Q_{3}^{n}Q_{1}^{n}$$

Q_3'	$^{n}Q_{2}$	$_{2}^{n}Q_{1}^{n}$	Q_3^{n+1}	Q_2^{n+}	$-1Q_1^{n+1}$
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1

$$Q_{3}^{n+1} \begin{cases} Q_{2}^{n} & Q_{3}^{n} = 0, \\ Q_{2}^{n} \oplus Q_{1}^{n} & Q_{3}^{n} = 1, \end{cases}$$

$$Q_{2}^{n+1} \begin{cases} Q_{1}^{n} & Q_{2}^{n} = 0, \\ Q_{3}^{n} & Q_{2}^{n} = 1, \end{cases}$$

$$Q_{2}^{n+1} \begin{cases} Q_{2}^{n} + Q_{3}^{n} & Q_{1}^{n} = 0, \\ Q_{2}^{n} Q_{3}^{n} & Q_{1}^{n} = 1, \end{cases}$$

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	1	1

000是孤立的状态

§ 6.3 同步时序逻辑电路的设计方法

已知 → 功能图或状态图

问题 → 逻辑电路

设计步骤:

- 1) 根据设计要求,设定状态,画出状态转换图
- 2) 状态化简
- 3) 状态分配,列出状态转换编码表
- 4) 选择触发器的类型
- 5) 求出状态方程、驱动方程、输出方程
- 6) 画电路图
- 7) 检查电路能否自启动

例1. 设计5进制同步加法计数器 (例6.4)

方法1

1) 根据设计要求,设定状态,画出状态转换图 模5计数器,5种状态: S₀,S₁,S₂,S₃,S₄

在计数脉冲CLK作用下,一个计数周期有5种状态,在状态 S_4 时Y=1。

2) 状态化简

M-5,5 状态.不须再化简

3) 状态分配,列出状态转换编码表。

2ⁿ⁻¹ ≤ 状态数 ≤ 2ⁿ n位二进制

3位

状态表

$Q_2^n Q_1^n Q_0^n Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$	I
	0
	0
	0
	0
	1

- 4) 选择触发器 利用 JK-FFs
- 5) 求出状态方程、驱动方程、输出方程

状态表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+}	Q_1^{n-1}	$^{+1}Q_0^{n+1}$	Y
$ _{0}$	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK触发器激励表

Q^n	$\rightarrow Q^{n+1}$	J K
0	0	0 ×
0	1	1 ×
1	0	× 1
1	1	\times 0

$$Q_2^n \Rightarrow Q_2^{n+1} J_2$$

0	0	0
U	U	U

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$X \quad X \quad X$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

得到 $2^{\#}$ -FF 驱动输入 J_2 驱动卡诺图

状态表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+}	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

JK触发器激励表

Q^n	$\rightarrow Q^{n+1}$	J K
0	0	0 ×
0	1	1 ×
1	0	\times 1
1	1	\times 0

$$Q_1^n \Rightarrow Q_1^{n+1} K_1$$

$$0 \quad 0 \quad X$$

$$0 \quad 0 \quad X$$

$$X \quad X \quad X$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$X \quad X \quad X$$

得到 $1^{\#}$ -FF 驱动输入 K_1 驱动卡诺图

得到 各个触发器控制输入 驱动卡诺图

控制输入

1	Q_0^n	01	11	10
Q_2^n	0	1	\times	×
1	0	L×_	×	×

$J_0 g_1^n$	Q_0^n	01	11	10
Q_2^n	1	×	×	1
1	0	×	×	×

$$J_2 = Q_1^n Q_0^n$$

$$J_1 = Q_0^n$$

$$J_0 = \overline{Q_2^n}$$

(K_0) p_1^n	Q_0^n	01	11	10
Q_2^n 0	\times	1	1	\times
1	×	×	×	×

$$K_2 = 1$$

$$K_1 = Q_0^n$$

$$K_0 = 1$$

输出卡诺图

YQ_1	${0 \choose 1} {Q \choose 0}^n$	01	11	10
Q_2^n 0	0	0	0	0
1	1	X	X	\times

$$J_2 = Q_1^i Q_0^i$$

 $K_2 = 1$

状态表

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	$^{1}Q_{\mathrm{l}}^{n+}$	Q_0^{n+1}	Y
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0		0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

$$\begin{cases}
J_2 = Q_1^n Q_0^n \\
K_2 = 1
\end{cases}
\begin{cases}
J_1 = Q_0^n \\
K_1 = Q_0^n
\end{cases}
\begin{cases}
J_0 = \overline{Q_2^n} \\
K_0 = 1
\end{cases}$$

方法 2: 先不确定用哪种 FF

$$5 < 2^3$$
 3 \uparrow FF

$$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$$
Z

直接填入卡诺图

Q_3^{n+1}	Q_3^{n}	01	11	10
$\begin{bmatrix} \mathbf{z}_1 \\ 0 \end{bmatrix}$	0	0	Ф	0
1	0	1	Ф	Ф

Q_2^{n+1}	$0^{n}Q_{0}^{n}$	01	11	10
0	0	1	Ф	0
1	1	0	Ф	Ф

1				<u> </u>
Q_1^{n+1}				
Q_1	${}^{\mathrm{n}}\mathcal{Q}_{00}^{\mathrm{n}}$	01	11	10
$\begin{bmatrix} \mathbf{z}_1 \\ 0 \end{bmatrix}$	1	1	Ф	0
1	•	Λ	Ф	Ф

Q_1^{n+1} Q_1^{n}	$Q_3^{n}Q_2^{n}$	1 01	11	10
0	1	1	Ф	0
1	0	0	Ф	Ф

$$Q_3^{n+1} = Q_2^n Q_1^n$$

$$= D_3$$

$$D_3 = Q_2^n Q_1^n$$

$$Q_2^{n+1} = Q_1^n \overline{Q}_2^{n} + \overline{Q}_1^n Q_2^n \qquad Q_1^{n+1} = \overline{Q}_3^n \overline{Q}_1^n$$

$$= Q_1^n \oplus Q_2^n \qquad = D_1$$

$$= T_2 \oplus Q_2^n \qquad \qquad \downarrow J_1 = \overline{Q}_3^n$$

$$Q_1^{n+1} = Q_3^n Q_1^n$$

$$= D_1$$

$$\int J_1 = \overline{Q}_3^n$$

$$Z$$
 $Q_1^{n}Q_2^{n}Q_2^{n}$
 $Q_1^{n}Q_2^{n}Q_2^{n}Q_2^{n}$
 $Q_1^{n}Q_2^{n}Q_2^{n}Q_2^{n}Q_2^{n}$
 $Q_1^{n}Q_2^$

$$Z = Q_3^n$$

 $T_2 = Q_1^n$

$$D_3 = Q_2^{n} Q_1^{n} \qquad T_2 = Q_1^{n} \qquad \begin{cases} J_1 = \overline{Q}_3^{n} \\ K_1 = 1 \end{cases} \qquad Z = Q_3^{n}$$

电路图

例 2.

设计一个串行数据检测器。该检测器有一个输入端X。电路的功能是对输入信号进行检测。当连续输入三个1(以及三个以上1)时,该电路输出Y=1,否则输出Y=0。 (例6.5)

1)根据设计要求,设定状态,画出状态转换图。

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

X=1. 接收一个"1"

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1(以及三个以上1)后的状态。

2) 状态化简

状态化简: 合并等效状态

等效状态:

在相同的输入条件下,输出相同、次态也相同的状态。

 S_2 和 S_3 是等效状态,将 S_2 和 S_3 合并为 S_2

3) 状态分配,列出状态转换编码表

设定
$$S_0 = 00$$

 $S_1 = 01$
 $S_2 = 11$

编码后的状态图

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	$\overset{\circ}{0}$	$\overset{\circ}{0}$	$\ddot{0}$
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Φ	Φ	Φ
1	1	1	1	1	1

4) 选择触发器类型、确定控制输入

$$Q_1^{n+1} = XQ_0^n = D_1$$
 $D_1 = XQ_0^n$

Q_0^{n+1} Q_0^{n}	$Q_1^{n}00$	01	11	10
0	0	Ф	Ф	1
1	0	0	1	1

$$Q_0^{n+1} = X = D_0 \qquad D_0 = X$$

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	$\overset{\circ}{0}$	$\ddot{0}$	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Ф	Φ	Φ
1	1	1	1	1	1

$Y X_{Q}$	2^{n}_{100}	01	11	10
\mathcal{Q}_0	0	Ф	$\overline{\Phi}$	0
1	0	0	1	0

$$Y = XQ_1^n$$

5) 电路图

2个 D 触发器 $D_1 = XQ_0^n D_0 = X$ $Y = XQ_1^n$

6) 自启动

电路的状态图

自启动

$$Q_1^{n+1} = XQ_0^n$$

$$Q_0^{n+1} = X$$

$$Y = XQ_1^n$$

例3. 根据下面的状态图设计同步电路 (例6.6)

根据设计要求,设定状态,列出 状态转换图

状态数 ⇒ 触发器数

n 个触发器 $\rightarrow 2^n$ 个状态

2ⁿ⁻¹ ≤状态数 ≤ 2ⁿ → *n*个触发器

3 < 22 需要 2 个 触发器

状态表 (从状态图得到)

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	ф	ф	ф
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	ф	ф	ф
1	1	0	1	1	0
1	1	1	0	0	1

选择触发器(卡诺图,圈1)

2# 触发器

$$Q_2^{n+1} = \overline{X}Q_2^n + X\overline{Q_1}^n$$

用JK触发器

$$Q_2^{n+1} = J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n$$

不能按上面方法圈, 必须圈成

$$Q_{2}^{n+1}$$
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{3}^{n}
 Q_{4}^{n}
 Q_{5}^{n}
 Q_{1}^{n}
 Q_{5}^{n}
 $Q_$

找到
$$J_2 = ?$$
 $K_2 = ?$

$$Q_2^{n+1} = Q_2^{n} + Q_2^{n}$$

$$Q_{2}^{n+1} = X \overline{Q}_{2}^{n} + (\overline{X} + \overline{Q}_{1}^{n}) Q_{2}^{n}$$
$$= X \overline{Q}_{2}^{n} + \overline{X} \overline{Q}_{1}^{n} Q_{2}^{n}$$

$$\therefore \begin{cases} J_2 = X \\ K_2 = XQ_1^n \end{cases}$$

能找到系数(控制变量)时尽量化简; 找不到系数时,牺牲化简也要找到系数。

1#触发器

JK-FF

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n$$
$$= X Q_2^n \overline{Q}_1^n + \overline{X} Q_1^n$$

$$\therefore \begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

输出 Z

$$Z = XQ_1^n$$

逻辑电路

$$\begin{cases} J_2 = X \\ K_2 = XQ_1^n \end{cases}$$

$$\begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

讨论: 状态 01

分析卡诺图

$$XQ_2^nQ_1^n = 001$$
, ($Z=0$)
次态 $Q_2^{n+1}Q_1^{n+1} = 01$,
 $XQ_2^nQ_1^n = 101$ 时,($Z=1$)
次态 $Q_2^{n+1}Q_1^{n+1} = 10$,

实现自启动

Z XQ	2^{n}_{200}	01	11	10
\mathcal{Q}_1	0	0	0	0
1	0	0	(1	1

例 4

设计一个自动售饮料机的逻辑电路。它的投币口每次只能投 入一枚五角或一元的硬币。投入一元五角钱硬币后,机器会自 动给出一杯饮料; 投入两元(两个一元)硬币后, 在给出饮料 的同时找回一枚五角硬币。

状态: S_0 : 初始状态 (没有放入硬币) S_1 : 放入 ¥ 0.5, S_2 : 放入 ¥ 1.0 (一个¥ 1.0 或两个¥ 0.5 硬币)

再次放入¥0.5 硬币,回到状态 S_0 ,输出 Y=1,Z=0; 如果放入¥1.0 硬币,回到状态 S_0 ,输出 Y=1, Z=1 (找回¥0.5硬币)

3个状态

AB/YZ

A:¥1.0硬币

B:¥0.5硬币

Y: 饮料

Z:找零

 S_0 :初始状态

S₁:已接收¥0.5

S2:已接收 ¥1.0

 S_0 : 放入¥0.5 硬币, S_1

 S_0 : 放入¥1.0 硬币, S_2

S₁: 放入¥0.5 硬币, S₂

S₁: 放入¥1.0 硬币, S₀ 饮料

S₂: 放入¥0.5 硬币, S₀ 饮料

 S_2 : 放入 ¥ 1.0 硬币, S_0 饮料和找零

$Q_1^n Q_0^n$ $\begin{cases} \mathbf{S_0} \to \mathbf{00} \\ \mathbf{S_1} \to \mathbf{01} \\ \mathbf{S_2} \to \mathbf{10} \end{cases}$ AB/YZ01/00 00/0000/00 **10/10** 01 10/00 01/10 01/00

10

00/00

10/11

状态表

A	В	Q_1^n	Q_0^n	$Q_1^{n+1}Q_0^{n+1} Y Z$
0	0	0	0	0 0 0 0
0	0	0	1	0 1 0 0
0	0	1	0	1 0 0 0
0	0	1	1	ФФФФ
0	1	0	0	0 1 0 0
0	1	0	1	1 0 0 0
0	1	1	0	0 0 1 0
0	1	1	1	ФФФФ
1	0	0	0	1 0 0 0
1	0	0	1	0 0 1 0
1	0	1	0	0 0 1 1
1	0	1	1	ФФФФ
1	1	0	0	ФФФФ
1	1	0	1	ФФФФ
1	1	1	0	ФФФФ
1	1	1	1	ФФФФ

$$Q_1^{n+1} = BQ_0 + AQ_1Q_0 + \overline{A} \cdot \overline{B}Q_1$$

$$Y = AQ_0 + AQ_1 + BQ_1$$

$$Q_0^{n+1} = B\overline{Q}_1 \cdot \overline{Q}_0 + \overline{A} \cdot \overline{B}Q_0$$

$$Z = AQ_1$$

使用D触发器

$$D_{1} = BQ_{0} + AQ_{1}Q_{0} + \overline{A} \cdot \overline{B}Q_{1}$$

$$D_{0} = B\overline{Q}_{1} \cdot \overline{Q}_{0} + \overline{A} \cdot \overline{B}Q_{0}$$

$$Y = AQ_0 + AQ_1 + BQ_1$$

$$Z = AQ_1$$

从电路得到的状态图

如果电路状态为"11",

如果 AB = 00 (没有输入), $Q_1Q_0 = 11$, 电路不能自启动;

如果 AB = 01 或者 10, 电路能够自启动,但是收费系统出错;

因此在电路启动时,R_D 必须设置为逻辑低电平, 电路状态从"00"开始。

§ 6.4 计数器

计数器是用于统计输入脉冲CLK个数的电路。

6.4.1 4位集成计数器 74161 (M-16)

74161是二进制同步模16加法计数器,异步清0

电路图 p.132

符号

TEEE

输出 $Q_3Q_2Q_1Q_0$

数据输入 $D_3 D_2 D_1 D_0$

异步清零 \overline{CLR}

使能控制 $ENT(CT_T)$, $ENP(CT_P)$

预置 *LOAD* 进位 *RCO* (CO)

74161 功能表

CLR	ĪD	ENT E	ENP (ZLK	$D_0D_1D_2D_3$	功能
0	×	×	×	X	××××	异步置0
1	0	×	×	†	$D_0D_1D_2D_3$	同步预置
1	1	0	X	×	$\times \times \times \times$	数据保持 <i>RCO</i> =0
1	1	X	0	×	$\times \times \times \times$	<i>RCO</i> =0
1	1	1	1	1	$\times \times \times \times$	M-16计数器

$$RCO = ENT \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0$$

计数时, $ENT = 1$,
当 $Q_3Q_2Q_1Q_0 = 1111$ 时,(M-16)
 $RCO = 1$.
其他时刻, $RCO = 0$

$$Q_3Q_2Q_1Q_0 = 0000$$
$$Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0$$

例1: (例6.7) 利用 74161 实现模11计数器

方法1: 利用 LD 清零 (预置归 0 法)

$$ENT = ENP = 1$$
, $\overline{CLR} = 1$, $D_3D_2D_1D_0 = 0000$

最大状态 1010 最大状态中 1 端连入一个与非门

輸出 $\rightarrow LD$ $0 \rightarrow 9$, 与非门 = 1 (LD=1), 计数 10^{th} CLK 到来, $Q_3Q_2Q_1Q_0=1010$, $\overline{LD}=0$ 下一个 CLK (11th) 到来, $Q_3Q_2Q_1Q_0=D_3D_2D_1D_0=0000$

状态图

波形图

方法2: 预置补数法

0000 ~ 1111

5 (0101) ~ 15 (1111)

16 种状态

11 种状态

练习接 3~13

方法3: 利用 CLR 清零 (反馈归 0 法)

$$ENT = ENP = \overline{LD} = 1$$

$$D_3D_2D_1D_0 = \Phi \Phi \Phi \Phi$$

$$Q_3Q_2Q_1Q_0 = 1011$$

状态图

波形图

例2: 利用74161 设计模24计数器

最大状态 23 (10111) 两个 74161

例 3: 确定下列电路图的模数

末态: 01010100 = 84

初态: 01001010 = 74

M = 84 - 74 + 1 = 11

6.4.2 集成计数器 74160 (M-10) 8421BCD码同步加法计数器

模10, 其它功能与74161相同。 异步清0

$$RCO = ENT \cdot Q_3 \cdot Q_0$$

当 $Q_3Q_2Q_1Q_0 = 1001$ 时,
 $RCO = 1$

例: 利用74160设计一个60秒计数器

6.4.3 集成计数器 74163 (M-16)

同步清0, 其他功能和74161相同(模16)

同步清零: 当 \overline{CLR} =0 并且下一时钟来临 $Q_3Q_2Q_1Q_0$ =0000

图中: 5CT=0 在5端有效时清0

例:

利用74163的清零功能(CLR)设计一个模11同步计数器。

最大状态 1010

用 LD 端, 与74161相同

6.4.4 二-五-十进制异步加法计数器74290

1.74290 功能

模 - 2 - 5 - 10 异步计数器 (异步)

两个独立的下降沿FF

模 2 计数器,输出 Q_0

模 5 计数器,输出 $Q_3Q_2Q_1$

符号

异步输入

功能

(1) 异步清0

当
$$\begin{cases} S_{9(1)} \cdot S_{9(2)} = 0 \text{ (低)} \\ R_{0(1)} = R_{0(2)} = 1 \text{ (高)} \end{cases}$$

$$Q_3 Q_2 Q_1 Q_0 = 00000$$

(2) 异步置9
当
$$S_{9(1)} = S_{9(2)} = 1$$

 $Q_3 Q_2 Q_1 Q_0 = 1001$

同时满足, CLK下降沿实现计数

2.74290应用

(1) 模2计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

从 CLK_A 输入CLK, Q_0 输出,实现模2

(2) 模5计数器

$$\begin{cases} S_{9(1)} \bullet S_{9(2)} = 0 \\ R_{0(1)} \bullet R_{0(2)} = 0 \end{cases}$$

从 CLK_B 输入CLK, $Q_3Q_2Q_1$ 输出, 实现模5

两种用法完全独立。构成更大模数时,需外接线连接

(3) 8421BCD码模10计数器

$$S_{9(1)} \bullet S_{9(2)} = 0$$
, $R_{0(1)} \bullet R_{0(2)} = 0$ 从 CLK_A 输 入 CLK , $Q_0 \longrightarrow CLK_B$

在 Q_0 的负边沿(CLK_B 从1 改变到 0),模 5 计数。

$$CLK_{A}$$
 CLK_{B}

触发模5计数器

输出的权值

 $Q_3Q_2Q_1Q_0: 8421$

(4) 8421的BCD码模 γ 计数器

利用"直接清零 R_0 "

例:模7计数器

- ① $CLK \rightarrow CLK_A$
- ② 连接: 8421 BCD码

$$Q_0 \rightarrow CLK_B$$

- ③ $S_{9(1)} = S_{9(2)} = 0$
- ④ 输出 *Q*₃*Q*₂*Q*₁*Q*₀ = 0111 → 与门
- ⑤ 与门 $\rightarrow R_0$ (直接清零)

当 $Q_3Q_2Q_1Q_0=0111$ 时,立即清0,0111只是一闪,出现毛刺

主循环7个状态: 0000~0110

(5) 8421 BCD 级联计数器

如果 模>10

74290 级联

例:

利用74290设计一 个8421BCD码模46 计数器。(例6.9)

8421 十进制

个位: 6 (0110) 十位: 4 (0100)

或

注意: 进位输出

波形图

利用 Q_3 第10个CLK下降沿触发十位片的 CLK_A (不用连 Q_0Q_3)

§ 6.5 寄存器

6.5.1 寄存器分类

1. 并行输入/并行输出寄存器

4个D触发器构成一个寄存器

74LS175

在时钟的上升沿,4输入数据并入 并且状态 $Q_3Q_2Q_1Q_0 = D_3D_2D_1D_0$ 并出

2. 左移串入/串出寄存器

串行数据输出

一个时钟到来, 左移1位

例

 $Q_3Q_2Q_1Q_0=1001$ 初值

串入: 1011 (D_{SL})

CLK	串出	$Q_3Q_2Q_1Q_0$ 串入
1	1	1 0 0 1 1 0 1 1 0 0 1 1
2	0	0 1 1 0
3	1	1 1 0 1
4	1	1 0 1 1

4个CLK后, Q₃Q₂Q₁Q₀=1011

3. 左移串入/并出寄存器

并出

4. 左移环形寄存器

串行输出接回串行输入

各触发器输出端接彩灯

当输出是 0001, 高电平输出的彩灯变亮。

取四位中只有一个1的状态为主循环

环形寄存器也叫"环形计数器"

注:n个触发器 → n个状态 → 模n

波形图

5. 左移扭环寄存器

6. 串入/串出右移寄存器

7. 串入/并出右移寄存器

8. 右移环形寄存器

环形计数器

9. 右移扭环寄存器

扭环计数器

6.5.3 集成寄存器 74194

多功能寄存器 四位并行存取双向移位寄存器

电路 P.139

符号

IEEE

 $Q_3Q_2Q_1Q_0$ 数据输出 $D_3D_2D_1D_0$ 数据输入 D_{SR} D_{SL} 串行输入 $M_1 M_0$ 控制输入

CLR=0,直接清零时钟上升沿触发

74194 功能

$M_1 M_0$	功能
0 0	状态不变
0 1	右移
1 0	左移
1 1	并行输入

 $\begin{array}{c|c}
Q_0 Q_1 Q_2 Q_3 \\
\uparrow & \uparrow & \uparrow \\
D_0 D_1 D_2 D_3
\end{array}$

1→ 右移

2← 左移

实现前面9种功能

(1) 并行输入/输出

(2)串行输入/输出左移

串行输入 左移

(3) 串入/并出左移

(4) 左移环形寄存器

$$Q_0 \to D_{\rm SL}$$

首先设置 $M_1 = 1$, $M_0 = 1$ 在时钟上升沿并入, $Q_0Q_1Q_2Q_3 = D_0D_1D_2D_3 = 0001$

然后设置 M_0 =0, CLK到来 → 左移 → 模4 计数器

(5) 左移扭环寄存器

$$M_1$$
= 1, M_0 = $\begin{cases} 1, 并行输入 & Q_0Q_1Q_2Q_3 = D_0D_1D_2D_3 & 0, 扭环 \end{cases}$

 $\overline{Q_0}$ 连接 D_{SL} $D_0D_1D_2D_3$ 接 Φ ,都可以构成扭环

(6) 串入/串出 右移寄存器

(7) 串入/并出 右移寄存器

(8) 右移环形寄存器

$$Q_3
ightarrow \mathbf{D}_{\mathrm{SR}}$$
 $M_0 = 1$
 $M_1 = \left\{ egin{array}{ll} \mathbf{1}, \mathit{CLK} \, \mathfrak{A} & \mathbf{R} \\ Q_0 Q_1 Q_2 Q_3 & = D_0 D_1 D_2 D_3 \\ \mathbf{0}, \mathit{CLK} \, \mathfrak{A} & \mathbf{R} \\ \hbar \mathbf{6} & \mathbf{5} & \mathbf{5} \end{array} \right.$

模 4计数器

(9) 右移扭环寄存器

注意:从并入的 D₀D₁D₂D₃ 开始循环

例1. 利用74194设计一个的模6环形计数器

例2. 利用74194设计的模6扭环计数器, 并且画出状态图。

3个触发器 左移

101

小结

- ■同步时序电路的分析
- ■同步时序电路的设计
- 集成计数器74161,74160,74163,

74290

- 符号、真值表、功能
- 构成任意进制计数器
- ■多功能寄存器74194
 - 符号、真值表、功能及应用

作业:

6.1, 6.3, 6.5,

6.8, 6.9 (用JK触发器), 6.12,

6.14, 6.15, 6.19.