

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคการเรียนที่ 1 ปีการศึกษา 2553

วิชา ENE 231 Digital Circuit and Logic Design สอบวันพฤหัสบดีที่ 22 กรกฎาคม 2553 วิศวกรรมอิเล็กฯ ปีที่ 2 เวลา 09.00-12.00 น.

คำสั่ง

- 1. ข้อสอบมีทั้งหมค 9 ข้อ 8 หน้า (รวมใบปะหน้า) คะแนนรวม 130 คะแนน
- 2. ให้ทำข้อสอบทุกข้อลงในข้อสอบ
- 3. <u>ห้าม</u>นำเอกสารใค ๆ เข้าห้องสอบ
- 4. <u>ไม่</u>อนุญาตให้นำเครื่องคำนวณใด ๆ เข้าห้องสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบอาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

	เลขที่นั่งสอบ
ชื่อ-สกุลรหัสนักศึกษา	

(ผศ. คร. พินิจ กำหอม)

ผู้ออกข้อสอบ

Ins. 0-2470-9075

ข้อสอบนี้ได้ผ่านการประเมินจาก

ภาควิชาวิสวกรรมอิเล็กทรอนิกส์และ โทรคมนาคมแล้ว

(ผศ.คร. วุฒิชัย อัศวินชัย โชคิ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และ โทรคมนาคม

ข้อที่	1	2	3	4	5	6	7	8	9	รวม
คะแนนเต็ม	10	5	20	10	10	10	20	30	15	130
คะแนนที่ได้										

- 1. [สารสนเทศของโจทย์] (10 คะแนน) ค้องการใช้ระบบคิจิทัลในการควบคุมอุณหภูมิในรถยนต์ ซึ่งใช้งานอยู่ในภูมิ ประเทศที่มีอุณภูมิในช่วง $-12^{\circ}C$ ถึง $45^{\circ}C$ โดยใช้เครื่องปรับอากาศที่สามารถให้ทั้งความร้อนและความเย็น กำหนดให้อุณหภูมิมีความละเอียด $1^{\circ}C$ ตัวควบคุมมีเอ้าท์พุท 2 ตัวเพื่อไปเปิด-ปิดเครื่องทำความร้อน และเครื่องทำความเย็น ผู้ใช้จะตั้งอุณหภูมิที่ต้องการไว้สมมุติว่าเป็น T_s ถ้าอุณหภูมิเกินอุณหภูมิที่ตั้งไว้ไป $1^{\circ}C$ หรืออุณหภูมิที่ตั้งไว้ไป T_s ถ้าอุณหภูมิเกินอุณหภูมิที่ตั้งไว้ไป T_s หรืออุณหภูมิที่ตั้งไว้ไป T_s หรืออุณหภูมิที่ตั้งไว้ไป T_s หรืออุณหภูมิอยู่ที่ (T_s 5) ตัวควบคุมจะเช็ตท์เอ้าท์พุทที่ไปควบคุมเครื่องทำความเอ็น ให้ทำงาน ถ้าอุณหภูมิอยู่ที่ (T_s 5) ถึง (T_s + 1) ระบบจะปิดทั้งเครื่องทำความร้อนและเครื่องทำความเย็น จงวิเคราะห์ว่า 1.1 มีสารสนเทศอะไรบ้างที่ต้องใช้ในการสร้างระบบควบคุม
 - 1.2 แต่ละสารสนเทศเป็นชนิดใด
 - 1.3 ถ้าเป็นตัวเลขให้บอกว่าเป็นตัวเลขชนิดใด ช่วงใด และมีความละเอียดเท่าไร และ
- 1.4 ให้บอกว่าค้องใช้สัญญาณคิจิทัลกี่บิทจึงจะเพียงพอในการแทนสารสนเทศ คำตอบ

2 [สัญญาณคิจิทัล] (5 คะแนน) ให้ตีความหมายสัญญาณแรงคันไฟฟ้า x(t) ข้างล่างนี้เป็นสัญญาณคิจิทัล โดยกำหนดให้ แรงคันช่วง 0-0.7 มีค่าเป็นลอจิก 0 แรงคันช่วง 3.0-5.0 มีค่าเป็นลอจิก 1 แรงคันช่วงมากกว่า 0.7 น้อยกว่า 3.0 ไม่สามารถตีความหมายได้ (บางครั้งเป็น 0 บางครั้งเป็น 1) ให้แทนด้วย x

สัญญาณคิจิทัล x:

ว่าต้องใช้สัญญาณคิจิทัลกี่บิท และให้ใช้การเข้ารหัสที่	คะแนน) ให้เข้ารหัสสารสนเทศที่กำหนดให้ต่อไปนี้ โดยให้ห กำหนดให้ เพื่อแสดงผลของการเข้ารหัสสารสนเทศตัวอย่าง
กำหนดให้ (แสดงวิธีที่ได้คำตอบมา)	
	มท์ขนาด 120cm x 60cm โดยบอกหน่วยเป็นเซนติเมตร และใ
ใช้การบอกตำแหน่งแบบไม่มีตำแหน่งที่เป็นลบ ให้เ	ข้ารหัสสารสนเทศตัวอย่างคือ ตำแหน่ง (82,45) เซนติเมตรคัว
binary code	
<u>คำตอบ</u>	
	บิท
	บิท
แปลง 82 และ 45 เป็น binary code ด้วยวิธี	คังนี้
ปลง x= 82 ₁₀ เป็นสัญญาณคิจิทัลเข้ารหัสเป็นรหัสใบนารี	แปลง y = 45 ₁₀ เป็นสัญญาณคิจิทัลเข้ารหัสเป็นรหัสไบนารี
คังนั้น จุค (x,y) = (82, 45) แทนคัวยสัญญาณคิจิทัล	เข้ารหัสเป็นรหัสไบนารีได้เป็น
	เข้ารหัสเป็นรหัสไบนารีได้เป็น ะ <i>y</i> =
x= และ	z <i>y</i> =
x=	ะ <i>y=</i> เซียส ด้วยความละเอียด เ องศา สารสนเทศตัวอย่างคือ -1:
x=	ะ <i>y</i> = เซียส ด้วยความละเอียด 1 องศา สารสนเทศตัวอย่างคือ -1
x=	ะ <i>y=</i> เซียส ค้วยความละเอียค 1 องศา สารสนเทศตัวอย่างคือ -1: nent
x=	ะ <i>y=</i> เซียส ค้วยความละเอียค 1 องศา สารสนเทศตัวอย่างคือ -1: nent
 x=	ะ y=
x=	ะ <i>y=</i> เซียส ด้วยความละเอียค 1 องศา สารสนเทศตัวอย่างคือ -1 nent
 x=	ะ <i>y=</i>
 x=	ะ <i>y=</i>
 x=	ะ <i>y=</i>
 x=	ะ y=
 x=	ะ y=
 x=	ะ y=

<u>กำตอบ</u>	
	คิ้ม คือ <i>n</i> =บิท
	คือ $m=$ บิท
แปลง -2.23 ₁₀ เป็นเลข two's con	
<u>ำคอบ</u>	
	ค่าของสัญญาณเมื่อเข้ารหัสตามที่กำหนคในวงเลี่บ
สัญญาณคิจิทัล	ค่าของสัญญาณเมื่อเข้ารหัสตามที่กำหนคในวงเลี่บ 4.1a (รหัสไบนารี) :
สัญญาณคิจิทัล	
สัญญาณคิจิทัล	4.1a (รหัส ใบนารี) : 4.1b (รหัส two's complement):
สัญญาณคิจิทัล	4.1a (รหัส ใบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement):
สัญญาณคิจิทัล	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก)
สัญญาณคิจิทัล	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก)
สัญญาณคิจิทัล .1) (12 บิท) 100110000101 .2) (32 บิท)	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก) 4.2a (รหัส IEEE floating point):
สัญญาณคิจิทัล	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก)
สัญญาณคิจิทัล .1) (12 บิท) 100110000101 .2) (32 บิท)	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก) 4.2a (รหัส IEEE floating point):
สัญญาณคิจิทัล .1) (12 บิท) 100110000101 .2) (32 บิท)	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก) 4.2a (รหัส IEEE floating point):
สัญญาณคิจิทัล .1) (12 บิท) 100110000101 .2) (32 บิท)	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก) 4.2a (รหัส IEEE floating point):
สัญญาณคิจิทัล (12 บิท) 100110000101	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก) 4.2a (รหัส IEEE floating point): แสดงวิธี
สัญญาณคิจิทัล 4.1) (12 บิท) 100110000101 4.2) (32 บิท)	4.1a (รหัสไบนารี) : 4.1b (รหัส two's complement): 4.1c(รหัส one's complement): 4.1d(รหัส sign-magnitude): 4.1e(รหัส BCD 3 หลัก) 4.2a (รหัส IEEE floating point):

ชื่อ-สกุล.....รหัสนักศึกษา......รหัสนักศึกษา.....

5. [ระบบเลขฐาน] (10 คะแนน) หาค่าของเลขที่กำหนดให้ในฐานต่าง ๆ ตามที่กำหนด

ฐานสอง	ฐานแปด	ฐานสิบหก	ฐานสิบ
1011001012			
	512 ₈		9
		A16 ₁₆	
			10110

6. [Switching Algebra] (10 คะแนน) เขียนตารางความจริงและสัญลักษณ์ของ logic operators ที่กำหนดให้

Input a b	AND $z = a \cdot b$	OR $z = a + b$	NAND $z = \overline{a \cdot b}$	$z = \overline{a+b}$	$z = a \oplus b$
0 0					
0 1					
1 0					
1 1					
สัญ- ลักษณ์					

- 7. [Combinational Circuit Analysis] (20 คะแนน) ให้วิเคราะห์วงจรค่อไปนี้ตามวิธีที่กำหนด
 - 7.1 ใช้การวิเคราะห์แบบ literal analysis ในการวิเคราะห์วงจรข้างล่าง โดยใส่อินพุทตามที่กำหนดให้ในรูป ให้แสดง วิธีการวิเคราะห์ (10 คะแนน)

ABCDEH	F	ABCDEH	F
00000		100000	
000011		010000	
000111		100000	

ชื่อ-สกุล	รหัสนักศึกษารหัสนักศึกษา

7.2 ใช้การวิเคราะห์แบบ symbolic analysis เพื่อหา Logic Expression ของ F และตารางความจริงของวงจร (10 คะแนน)

ตารางความจริงของ F

XYZ			F
000			
001			
010			
0 1 1			_
100			
101			
110			
111			

- 8. จากตารางความจริง (truth table) ที่กำหนดให้ในหน้า 7 (30 คะแนน)
 - 8.1 ให้เขียน canonical sum-of-product (SOP) expression ของ F(A,B,C,D) ในรูปของ (ให้เขียนทั้งแบบย่อและแบบเค็ม) (4 คะแนน)
 - 8.2 ให้เขียน canonical product-of-sum (POS) logic expression ของ F(A,B,C,D) ในรูปของ (ให้เขียนทั้งแบบย่อและแบบเต็ม) (4 คะแนน)
 - 8.3 ให้ใช้เทคนิคการลครูปด้วย Karnaugh's Map เพื่อหา Minimal SOP โดยแสดง prime implicants, essential prime implicants และ secondary prime implicants ที่เลือกด้วย (10 คะแนน)
 - 8.4 ให้ใช้เทคนิกการลครูปด้วย Karnaugh's Map เพื่อหา Minimal POS โดยแสดง prime implicants, essential prime implicants และ secondary prime implicants ที่เลือกด้วย (10 กะแนน)
 - 8.5 ให้เปรียบ Complexity ของ minimal SOP และ minimal POS (2 คะแนน)

Row#	Inputs	Output	8.1 Canonical SOP
	a b c d	F	F = (
0	0000	I	
1	0001	0	=(แบบเดิ่ม)
2	0010	1	
3	0011	0	
4	0100	0	
5	0101	0	
6	0110	1	
7	0111	1	
8	1000	1	8.2 Canonical POS
9	1 0 0 1	0	F =
10	1010	1	((וועטוו)(וועטוו)(וועטוו)
11	1011	1	=(แบบเตี้ ม)
12	1100	0	
13	1101	0	
14	1110	0	
15	1111	1	

ชื่อ-สกุล.....รหัสนักศึกษา.....

8.3 ใช้ Karnaugh Map ลครูปให้ใค้ minimal SOP

8.4 ใช้ Karnaugh Map ลครูปให้ใค้ minimal POS

d	വ വ ഷ
ชื่อ-สกุล	รหัสนักศึกษา

9. จาก list ของ minterms และ don't care terms ของ F ข้างล่างนี้ ให้ใช้ Quine-McCluskey Minimization Technique ใน การลครูปให้อยู่ในรูปของ minimal SOP (15 คะแนน)

$$F(A,B,C,D) = \sum m(5,6,9,10,12) + d(0,1,2,13,14,15)$$

- 9.1 แสดง Implicant tables ในการหา prime implicants ทั้งหมด
- 9.2 แสคง Covering tables ในการหา essential prime implicants ทั้งหมด
- 9.3 ถ้าจำเป็นให้แสคง Reduced covering table ในการหาเลือก secondary prime implicants