Modeling Loss Severity II

A short course authored by the Actuarial Community

18 Jan 2021

Risk Retention – Deductibles and Limits

Risk Retention Framework

- Now consider the following framework:
 - Policyholder or insured suffers a loss of amount X
 - Under an insurance contract, the insurer is obligated to cover a portion of X, denoted as Y
 - Y represents the insurer's claim payment
- ▶ We introduce standard mechanisms that insurers use to reduce, or mitigate, their risk, including deductibles and policy limits
- ► Further, we examine how the distribution of the insurer's obligations depends on these mechanisms

Risk Retention Function

- Nown risk retention function $g(\cdot)$ maps the amount insured to the amount retained by the insurer, that is, Y = g(X)
- ► Special Case 1. Deductible (d)

$$g(x) = (x-d)_+ = \begin{cases} 0 & x \leq d \\ x-d & x > d. \end{cases}$$

Notation " $(\cdot)_+$ " means "Take the positive part of"

► Special Case 2. Limit (u)

$$g(x) = x \wedge u = \begin{cases} x & x \le u \\ u & x > u. \end{cases}$$

Notation "∧" means "take the minimum of"

▶ Special Case 3. Coinsurance. Define Y = g(X) = cX. Typically, 0 < c < 1, and so represents the proportion of claims retained by the insurer

Information Set for Deductibles

- Specify what type of information is available to the insurer
- Special Case 4. Policyholder Deductible. Define:

$$g_P(x) = \begin{cases} \text{undefined/not observed} & x \le d \\ x - d & x > d \end{cases}$$

- ▶ Insurance only pays amounts in excess of the deductible d. If a loss is less than the deductible, the insurer does not observe the loss.
 - ▶ Random variable $Y^P = g_P(X)$ is the claim that an insurer observes
 - "P" subscript indicates that the retained loss is on a per payment basis
 - For case where a claim of zero is observed for losses $X \le d$, terminology per loss is used.
 - Notation is $Y^L = (X d)_+$

Distributions of Retained Risks - Deductible

- Consider two types of ordinary deductible:
- Cost (amount of payment) per loss event

$$Y^{L} = (X - d)_{+} = \begin{cases} 0 & X \leq d \\ X - d & X > d \end{cases}$$

Cost (amount of payment) per payment event

$$Y^{P} = \begin{cases} undefined & X \leq d \\ X - d & X > d \end{cases}$$

Example. Exponential Distribution. Suppose that the loss X has cumulative distribution function $F(x) = 1 - \exp(-x/1000)$. Compute the cdf and pdf for Y^L and Y^P with d=250

Expectations of Retained Risks

Limited Expected Value

▶ Use a generic "u" for the upper limit. Expected value of limited loss variable ($X \wedge u$) is

$$E(X \wedge u) = \int_a^u (1 - F(x)) dx = \int_a^u S(x) dx.$$

Pareto Policy Limit. Recall

$$1 - F(x) = S(x) = \Pr(X > x) = \left(\frac{\theta}{x + \theta}\right)^{\alpha}$$

with mean $\mathrm{E}\left(X\right)=\frac{\theta}{\alpha-1}.$ Thus, the limited expected value is

$$E(X \wedge u) = \theta^{\alpha} \int_{0}^{u} (x+\theta)^{-\alpha} dx = \theta^{\alpha} \frac{(x+\theta)^{-\alpha+1}}{-\alpha+1} \Big|_{0}^{u}$$
$$= \theta^{\alpha} \left(\frac{\theta^{-\alpha+1} - (u+\theta)^{-\alpha+1}}{\alpha-1} \right)$$

$$= \frac{\theta}{\alpha - 1} \left\{ 1 - \left(\frac{\theta}{u + \theta} \right)^{\alpha - 1} \right\}.$$

Pareto Deductible

- ▶ Claim amount on a per loss basis is $Y^L = (X d)_+$ for a deductible d
- ▶ To calculate $E(X-d)_+$, use $X \wedge d + (X-d)_+ = X$
- ▶ For the Pareto distribution, recall $E(X) = \frac{\theta}{\alpha 1}$ and

$$E(X \wedge d) = \frac{\theta}{\alpha - 1} \left\{ 1 - \left(\frac{\theta}{d + \theta} \right)^{\alpha - 1} \right\}.$$

Thus,

$$E(X-d)_{+} = E(X) - E(X \wedge d) = \frac{\theta}{\alpha - 1} - \frac{\theta}{\alpha - 1} \left\{ 1 - \left(\frac{\theta}{d + \theta} \right)^{\alpha - 1} \right\}$$
$$= \frac{\theta}{\alpha - 1} \left\{ \left(\frac{\theta}{d + \theta} \right)^{\alpha - 1} \right\}.$$

Mean Excess Loss

 For the per payment random variable associated with the policyholder deductible case,

$$g_P(x) = \begin{cases} \text{undefined/not observed} & x \le d \\ x - d & x > d \end{cases}$$

we can calculate the expectation as

$$e_X(d) = e(d) = E(X - d|X > d)$$

 \triangleright $e_X(d)$ is the mean excess loss that We can write this as

$$e(d) = E(X - d|X > d)$$

$$= \frac{\int_{d}^{\infty} (x - d)f(x)dx}{S(d)}$$

$$= \frac{E(X - d)_{+}}{S(d)}$$

$$= \frac{\int_{d}^{\infty} S(x)dx}{S(d)}$$

Example. Exam M Fall 2005, Exercise 26

For an insurance:

Losses have the density function

$$f_X(x) = \begin{cases} 0.02x & 0 < x < 10 \\ 0 & \text{elsewhere} \end{cases}$$

- Insurance has an ordinary deductible of 4 per loss
- $ightharpoonup Y^P$ is the claim payment per payment random variable

Calculate $E[Y^P]$

Summary of Limited Loss Variables

Random Variable	Expectation
Excess loss random variable	$e_X(d) = E(Y) = E(X - d X > d)$
Y = X - d if $X > d$	mean excess loss function
left truncated	mean residual life function
	complete expectation of life
	$e_X^k(d) = E\left[\left(X - d\right)^k X > d\right]$
$(X-d)_{+} = \begin{cases} 0 & X \leq d \\ X-d & X > d \end{cases}$	$E(X-d)_{+}=e(d)S(d)$
left-censored and shifted variable	$E(X-d)_+^k = e^k(d)S(d)$
$min(X,d) = X \wedge d = \begin{cases} X & X \leq d \\ d & X > d \end{cases}$	$E(X \wedge d)$ – limited expected value
limited loss variable	right censored

Note that
$$(X-d)_{\perp}+(X\wedge d)=X$$
. Thus, $E(X-d)_{\perp}+E(X\wedge d)=E(X)$

For nonnegative, continuous random variables,

$$E(X \wedge d) = \int_0^d S(x) dx$$
 and $E(X - d)_+ = \int_d^\infty S(x) dx$

LER and More Risk Retention

Loss Elimination Ratio (LER)

- Consider an ordinary deductible, cost (amount of payment) per loss event
- Loss elimination ratio at deductible d is

$$LER = \frac{E(X \land d)}{E(X)}$$

$$= \frac{\text{limited exp value}}{\text{exp value}}$$

What fraction of the losses have been eliminated by introducing the deductible?

Example. Losses have a lognormal distribution with $\mu=6$ and $\sigma=2$. There is a deductible of 2,000

Determine the loss elimination ratio

Risk Retention Function II

 Combining three special cases of coverage modifications (deductible, limit, coinsurance) results in

$$g(x) = \begin{cases} 0 & x \le d \\ c(x-d) & d < x \le u \\ c(u-d) & x > u. \end{cases}$$

- Think about these as parameters in a contract between a policyholder and an insurer and so represent modifications of the underlying contract
- Note: $g(X) = c((X \wedge u) (X \wedge d))$