Scott Dolan Sean Pavlik Lab 12 HW 11/18/19

1. Table 1

Waveform	Sampling Frequency (Hz)	1st FFT Freq	2nd FFT Freq	3rd FFT Freq
FFT_Lab_Signal_1	5000	50	120	490
FFT_Lab_Signal_2	5000	350	440	N/A
FFT_Lab_Signal_3	5000	200	2000	2450
FFT_Lab_Signal_3	10000	200	2550	3000
FFT_Lab_Signal_3	20000	200	2550	3000
FFT_Lab_Bench_x_Signal_1	5000	770	1477	N/A

- **2.** Why are the FFT frequencies different when FFT_Lab_Signal_3 is sampled at 5000 Hz and 10000 Hz? There are aliases present and the true signal component frequencies are higher than the Nyquist frequency for this sampling.
- **3.** Why are the FFT frequencies the same when FFT_Lab_Signal_3 is sampled at 10000 Hz and 20000 Hz? The sampling was done at a high enough frequency that the Nyquist frequency was higher than all true signal component frequencies which eliminated any aliasing that could of happened at a sampling frequency below 5100.
- 4. The FFT plot of the mystery waveform for your bench.

- **5. State which frequencies are present in the FFT plot for your mystery waveform.** There is a frequency components of 770 Hz and 1477 Hz in the mystery waveform.
- **6. State which DTMF number is represented by the frequencies in your mystery waveform.** The DTMF number represented by the mystery waveform frequencies is 6.