

Presented to: Dr. Wessam El Behaidy & Eng. Salma Doma

COVER SHEET

FACULTY NAME: FACULTY OF COMPUTERS AND ARTIFICIAL INTELLIGENCE

COURSE NAME: SELECTED TOPICS IN COMPUTER SCIENCE-2

TEAM NUMBER: 14

Name	ID	Role
1) Mohammed Aly Ebrahim Hanafy	201900710	Team Leader
2) Mohammed Emam Salama Rizq	201900640	Member
3) Omar Emad El Dosoki Ebrahim	201900521	Member
4) Abdelrehim tareq Abdelrehim Khalifa	201900445	Member
5) Ahmed Tarek Esmail Mohammed	201900047	Member
6) Hesham Ahmed Sayed Moawad	201900939	Member
7) Mahmoud Islam Mohammed Yossef	201900759	Member
8) Mohammed Shaaban Hashem Ahmed	201900689	Member

PROJECT IDEA

There is no doubt that Covid-19 is one of the most brutal diseases in 21 century, because of that 6,259,593 person die. So it's important to help the world to git rid of this crisis, even if with a little help. So, our main goal is to implement covid-19 image classifier which can predict whether the patient has covid, viral pneumonia, or he is a normal person.

22 Covid-19 Classifier

05			PAPER DETAILS
	09		GENERAL INFORMTAION ABOUT CHOSEN DATASET
		12	——————————————————————————————————————
			21 RESULT DETAILS AND PERFORMANCE OF OUR MODE

TABLE OF CONTENTS

Paper Details

PAPER CITATION

PAPER NAME

Classification Of Image Using Convolutional Neural Network(CNN)

AUTHOR NAME

Md. Anwar Hossain & Md. Shahriar Alam Sajib

PUBLISHER NAME & YEAR OF PUBLICATION

Global Journals Volume 19 Issue 2 Version 1.0 Year 2019

PAPER DATASET

CIFAR-10 dataset

2022 Covid-19 Classifier

```
model = Sequential()
model.add(Conv2d(32, kernel_size=5, activation='relu', input_shape=(32, 32, 3)))
model.add(MaxPooling2d((2, 2), strides=2))
model.add(Conv2d(32, kernel_size=5, activation='relu'))
model.add(AveragePooling2d((2, 2), strides=2))
model.add(Conv2d(64, kernel_size=5, activation='relu'))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))
```

IMPLEMENTED MODEL IN PYTHON

MODEL RESULTS

Batch Size	No. Of Epochs	Testing accuracy
100	250	76.82%
70	300	82.28%
60	300	93.47%
Final Accuracy	300	93.47%

INFORMATION ABOUT OUR DATASET

COVID-19
DATASET

DATASET NAME

Covid-19 Image Dataset

kaggle DATASET LINK

https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset

TOTAL NUMBER OF SAMPLES

Total number: 317

DIMENSIONS OF IMAGES

It's not constant

NUMBER OF CLASSES AND THEIR LABELS

We have 3 classes: (Covid – Viral Pneumonia – Normal)

2022 Covid-19 Classifier 10

COVID-19 DATASET

TRAINING SET ~ (80%)

Number of images: 251

- Covid: 111

- Normal: 70

- Viral Pneumonia: 70

TESTING SET ~ (20%)

Number of images: 66

- Covid: 26

- Normal: 20

- Viral Pneumonia: 20

IMPLEMENTATION OF OUR MODEL

PROJECT WORKFLOW

IMPORT PACKAGES

IMAGE EXPLORATION

```
train_image_path = "Covid19-dataset/train"
test_image_path = "Covid19-dataset/test"
img = plt.imread(os.path.join(train_image_path, "Covid/01.jpeg"))
plt.imshow(img)
plt.title('Covid')
print('size of image (h x w x d)', height, width, dim)
plt.show()
img = plt.imread(os.path.join(train_image_path, "Viral Pneoumonia/01.jpeg"))
plt.imshow(img)
plt.title('Viral Pneumonia')
print('size of image (h x w x d)', height, width, dim)
plt.show()
img = plt.imread(os.path.join(train_image_path, "Normal/01.jpeg"))
plt.imshow(img)
plt.title('Normal')
print('size of image (h x w x d)', height, width, dim)
plt.show()
```

IMAGE EXPLORATION OUTPUT

IMAGE AUGMENTATION

```
train = ImageDataGenerator(
  rescale=1. / 255,
  rotation_range=20,
  horizontal_flip=True,
  shear_range=0.2,
  fill_mode='nearest')
train_dataset = train.flow_from_directory(
  train_image_path,
  target_size=(150, 150),
  batch_size=32,
  class_mode='categorical',
  shuffle=True)
test = ImageDataGenerator(
  rescale=1. / 255)
test_dataset = test.flow_from_directory(
  test_image_path,
  target_size=(150, 150),
  batch_size=32,
  shuffle=False)
```


MODEL BUILDING

MODEL COMPILING

```
steps_per_epoch = np.math.ceil(train_dataset.samples /
train_dataset.batch_size)
epochs = 100
history = model.fit_generator(
   train_dataset,
   steps_per_epoch=steps_per_epoch,
   epochs=epochs,
   validation_data=test_dataset
```

MODEL TRAINING(FITTING)

MODEL TESTING AND PLOT RESULTS

PLOTTING RESULTS

```
pd.DataFrame(history.history)[['loss', 'val_loss']].plot()
plt.title('Training Vs. Validation Loss')
plt.xlabel('epochs')
plt.ylabel('Loss')
plt.show()
pd.DataFrame(history.history)[['accuracy', 'val_accuracy']].plot()
plt.title('Training Vs. Validation Accuracy')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.show()
true_classes = test_dataset.classes
class_labels = list(test_dataset.class_indices.keys())
print("Classification Report: ")
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)
conf_matrix = confusion_matrix(true_classes, predicted_classes)
plt.figure(figsize=(7, 7))
sns.heatmap(conf_matrix, annot=True)
plt.show()
```

PLOTTING RESULTS OUTPUT

PLOTTING RESULTS OUTPUT CLASSIFICATION REPORT

MODEL TESTING

```
Import cv2 as cv
classes = ["Covid", "Normal", "Viral Pneumonia"]
def prepareImage(imagePath):
   image_size = 150
   img_array = cv.imread(imagePath)
   img_array = cv.cvtColor(img_array, cv.COLOR_BGR2RGB)
   new_array = cv.resize(img_array, (image_size, image_size))
   plt.imshow(new_array)
   return new_array.reshape(-1, image_size, image_size, 3)
image = prepareImage("F:/normal.jpg")
prediction = model.predict(image)
index = np.argmax(prediction)
print(f"Prediction is {classes[index]}")
plt.show()
```


THANK YOU

GitHub Link: https://github.com/MohammedAly22/Covid-

19_Image_Classification