

LAB GROUP - 3 Team ID - 305

QUERIES

1. Counting the number of employees in each gender category.

> SELECT Gender, COUNT(*) AS Count FROM Employee GROUP BY Gender;

2. List of all employees whose experience is more than 25.

> SELECT Employee.*,((CURRENT_DATE - hire_date)/365) AS exp_year FROM Employee WHERE ((CURRENT_DATE - hire_date)/365) >= 7;

- 3. Find the maximum salary for the employee's name with maximum salary.
 - > SELECT f_name, salary AS Max_Salary FROM Employee where salary in (select max(salary) from Employee);

- 4. List all details of the Employees they hired between 1990 to 2016.
 - > SELECT * FROM Employee WHERE EXTRACT(YEAR FROM Hire_Date) >= 1990 AND EXTRACT(YEAR FROM Hire_Date) <= 2016;

- 5. Count the total number of branches.
 - SELECT COUNT(*) AS Total_Branches FROM Branch;

- 6. Count branches in a specific city.
 - SELECT City, COUNT(*) AS Num_Branches FROM Branch GROUP BY City;

7. Select employees who have more than one email.

SELECT Eid, COUNT(*) AS email_count FROM Emp_Email GROUP BY Eid HAVING COUNT(*) > 1;

- 8. Select employee IDs along with their degrees and institute names sorted by year of passing in ascending order.
 - SELECT Eid, Degree, Institute_name FROM Emp_Education ORDER BY Year_of_passing ASC;

- 9. Select employees who graduated in or after the year 2017.
 - SELECT Eid, Institute_name, Year_of_passing FROM Emp_Education WHERE Year_of_passing >= 2017;

- 10. Select employees who obtained degrees from IITs
 - SELECT Eid, Institute_name, Year_of_passing, Degree FROM Emp_Education WHERE Institute_name LIKE '%IIT%';

- 11. Select the institute names along with the count of employees who obtained degrees from each institute.
 - > SELECT Institute_name, COUNT(DISTINCT Eid) AS employee_count FROM Emp_Education GROUP BY Institute_name;

- 12. Select the top 5 most common degrees obtained by employees.
 - ➤ SELECT Degree, COUNT(*) AS degree_count FROM Emp_Education GROUP BY Degree ORDER BY degree_count DESC LIMIT 5;

- 13. Select visitors who visited in the year 2023.
 - > SELECT * FROM Visitors WHERE Date_of_visit >= '2023-01-01' AND Date of visit <= '2023-12-31';

- 14. Select visitors from an Organization = 'SpaceTech Inc.'
 - > SELECT * FROM Visitors WHERE Organization = 'SpaceTech Inc.';

- 15. Select the total number of visitors for each branch.
 - SELECT Branch_id, COUNT(*) AS total_visitors FROM Visitors GROUP BY Branch_id;

- 16. Select students who met the criteria for 'Problem Solving' but not for 'Communication'.
 - ➤ SELECT * FROM Eligibility WHERE c_name = 'Problem Solving' AND student_id NOT IN (SELECT student_id FROM Eligibility WHERE c_name = 'Communication');

- 17. Select students who met the criteria for at least 5 different categories.
 - SELECT student_id FROM (SELECT student_id, COUNT(*) AS num_criteria FROM Eligibility GROUP BY student_id) AS subquery WHERE num_criteria >= 5;

- 18. Select the average marks for each criteria.
 - ➤ SELECT c_name, AVG(apt_marks) AS avg_marks FROM Eligibility GROUP BY c_name;

19. Select students who met the criteria for at least 2 categories with marks greater than 90.

20. Select project names and their results for projects that are ongoing

SELECT p_name, Result FROM Projects WHERE Result = 'Ongoing';

- 21. Select project names, start dates, and estimated end dates for projects that have estimated end dates later than their actual end dates
 - SELECT p_name, Start_date, Estimated_End_Date FROM Projects

WHERE Estimated_End_Date > End_Date;

- 22. Select project names and their department IDs for projects that ended in success.
 - SELECT p_name, Dept_id FROM Projects WHERE Result = 'Success';

- 23. Select project names, start dates, and end dates for projects that lasted for more than 1500 days.
 - SELECT p_name, Start_date, End_Date
 FROM Projects
 WHERE End_Date Start_date > 1500;

- 24. Select project names and their department IDs for projects that started before Chandrayaan-2 and ended after Mangalyaan.
 - ➤ SELECT p_name, Dept_id

FROM Projects

WHERE Start_date < (SELECT Start_date FROM Projects WHERE p_name

= 'Chandrayaan-2')

AND End_Date > (SELECT End_Date FROM Projects WHERE p_name = 'Mangalyaan');

- 25. Calculate the total government funding received by all departments.
 - SELECT SUM(Gov_amount) AS Avg_Government_Funding FROM Funding;

26. Find the total government funding received by all departments for research grants.

SELECT SUM(Gov_amount) AS Total_Research_Grant_Funding FROM Funding

WHERE Funding_type = 'Research Grant';

- 27. Find departments that received more than 500,000/- in total funding (government + private)
 - SELECT Dept_id, Total_Funding
 FROM (
 SELECT Dept_id, SUM(Gov_amount + Pvt_amount) AS Total_Funding
 FROM Funding
 GROUP BY Dept_id
) AS Total_Funding

- 28. Retrieve the project names along with their respective departments.
 - SELECT p.p_name, d.Dept_name, pm.Project_manager_name FROM Projects p
 JOIN Project_manager pm ON p.Dept_id = pm.Dept_id
 JOIN Department d ON p.Dept_id = d.Dept_id;

- 29. Calculate the total government funding received by each department along with the number of projects managed by the respective project manager.
 - SELECT f.Dept_id, SUM(f.Gov_amount) AS Total_Government_Funding,pm.No_of_Project_managed FROM Funding f JOIN Project_manager pm ON f.Dept_id = pm.Dept_id GROUP BY f.Dept_id;

- 30. Find the ongoing projects (i.e., Result is 'Ongoing') along with the corresponding department names.
 - SELECT p.p_name, d.Dept_name FROM Projects p JOIN Department d ON p.Dept_id = d.Dept_id WHERE p.Result = 'Ongoing';

- 31. Find the branch with the highest number of visitors along with the count of visitors
 - ➤ SELECT b.Branch_id, b.B_name, COUNT(v.Visitor_name) AS Visitor_Count FROM Branch b

LEFT JOIN Visitors v ON b.Branch_id = v.Branch_id GROUP BY b.Branch_id, b.B_name ORDER BY Visitor_Count DESC

- 32. Calculate the total number of expositions.
 - SELECT COUNT(*) AS Total_Expositions FROM Exposition;

- 33. Find the latest exposition held.
 - ➤ SELECT * FROM Exposition ORDER BY Date DESC LIMIT 1;

- 34. Select departments with the highest number of enrolled students.
 - SELECT Dept_id, COUNT(student_id) AS student_count FROM Human_resources GROUP BY Dept_id HAVING COUNT(student_id) = (

- 35. Select departments where no student is enrolled for any criteria.
 - SELECT Dept_id FROM Human_resources GROUP BY Dept_id HAVING COUNT(student_id) = 0;

- 36. Find the project manager(s) managing the maximum number of projects and their department names
 - SELECT pm.Dept_id, d.Dept_name, pm.No_of_project_managed FROM Project_manager pm INNER JOIN Department d ON pm.Dept_id = d.Dept_id WHERE pm.No_of_project_managed = (SELECT MAX(No_of_project_managed) FROM Project_manager);

- 37. Retrieve the exposition titles and the corresponding public communication types for expositions held after a certain date
 - SELECT e.Title, pc.c_type FROM Exposition e INNER JOIN Connect_by cb ON e.Expo_id = cb.Expo_id INNER JOIN Public_communication pc ON cb.Dept_id = pc.Dept_id

WHERE e.Date > '2022-01-01';

- 38. Retrieve the total food service shifts.
 - ➤ SELECT COUNT(*) AS TOTAL_AVL_SHIFTS from food_service;

- 39. Retrieve the names of all security roles along with the department names they belong to.
 - SELECT D.Dept_name, S.Role FROM Security S JOIN Department D ON S.Dept_id = D.Dept_id;

- 40. Fetch the human resource skills along with the department names.
 - SELECT D.Dept_name, H.c_name FROM Human_resources H JOIN Department D ON H.Dept_id = D.Dept_id;

- 41. Fetch the number of projects involved by each researcher along with their technical skills and their respective departments:
 - SELECT r.No_of_Projects_involved, t.Tech_skill, d.Dept_name FROM Researcher r INNER JOIN Department d ON r.Dept_id = d.Dept_id INNER JOIN Technician t ON r.Dept_id = t.Dept_id;

- 42. Find employees who are not managers but earn more than their managers.
 - SELECT e.Eid, e.F_name, e.L_name, e.Salary AS Employee_Salary, m.Eid AS Manager_ID, m.F_name AS Manager_FirstName, m.L_name AS Manager_LastName, m.Salary AS Manager_Salar FROM Employee
 - JOIN Employee m ON e.super_eno = m.Eid
 - WHERE e.Salary >= m.Salary
 - AND e.Eid NOT IN (SELECT manager_id FROM DEPARTMENT);

43. Find employees who are not managers but report to other employees (Super_enos).

SELECT eid,f_name FROM Employee WHERE eid NOT IN (SELECT MANAGER_ID FROM DEPARTMENT) AND eid IN (SELECT super_eno FROM EMPLOYEE WHERE super_eno IS NOT NULL);

