

XPS Thin Film Transistor (TFT) Controller (v2.01a)

DS695 May 03, 2010 **Product Specification**

Introduction

The XPS Thin Film Transistor (TFT) controller is a hardware display controller IP core capable of displaying 256k colors. The XPS TFT controller connects as a master on the PLB V4.6 (Processor Local Bus with Xilinx simplification) and reads the video pixel data from PLB attached video memory. This core also connects as a slave to the PLB or DCR (Device Control Register) bus for the register access. This core is capable of configuring Chrontel CH-7301 DVI Transmitter Chip through I2C interface.

Features

- Connects as 64-bit master on PLB V4.6 bus of 64 or 128 bits data width
- Connects as a 32-bit Slave on the DCR V2.9 bus or PLB V4.6 bus of 32, 64 and 128 bits data width
- Supports DCR daisy chain protocol
- Parameterizable TFT interface for 18-bit VGA or 24-bit DVI
- Supports 25 Mhz TFT clock for display resolution of 640x480 pixels at 60 Hz refresh rate
- Supports configuration of external Chrontel DVI Transmitter Chip through I2C interface
- Supports separate clock domain for PLB interface and TFT interface
- Supports Vsync Interrupt and Status

LogiCORE™ Facts					
Core Specifics					
Supported Device Family	Virtex-4®, Virtex-4Q, Virtex-4QV, Virtex-5, Virtex-5FX, Virtex-6, Virtex-6CX, Spartan®-3E, Automotive Spartan-3E, Spartan-3, Automotive Spartan-3, Spartan-3A, Automotive Spartan-3A, Spartan-3A DSP, Automotive Spartan-3A DSP, Spartan-6				
Version of core	xps_tft	v2.01a			
Re	esources Used				
	Min	Max			
SLICES					
LUTs	Refer to the Table 1 Table 16, Table 1				
FFs					
Block RAMs	1				
Special Features	N/A				
Pro	vided with Core				
Documentation	Product Specifica	ation			
Design File Formats	Mixed				
Constraints File	N/A				
Verification	N/A				
Instantiation Template	N/A				
Design	Tool Requiremen	nts			
Xilinx Implementation Tools	ISE® 11.4 or late	r			
Verification	Mentor Graphics ModelSim v6.4b or later				
Simulation	Mentor Graphics ModelSim v6.4b or later				
Synthesis XST 11.4 or later					
	Support				
Provided by Xilinx, Inc.					

© 2008-2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All other trademarks are the property of their respective

Functional Description

The XPS TFT controller is a hardware display controller for a 640x480 resolution display screen. This core is capable of displaying up to 256K colors through VGA or DVI interface. The design contains PLB master interface that reads video data from a PLB attached memory device and displays the data onto the TFT screen. The design also contains parameterizable DCR and PLB slave interface. If the parameter C_DCR_SPLB_SLAVE_IF is set to 1, the controller can be configured using PLB slave interface, else it can be configured through DCR slave interface. This controller also provide I2C interface to configure Chrontel CH7301C video encoder chip when the DVI interface is selected. The XPS TFT controller block diagram is shown in Figure 1.

- 1. PLB Slave Interface is included in the design if the parameter C_DCR_SPLB_SLAVE_IF = 1.
- DCR slave interface is part of Slave Regiter Logic and included in the design if the parameter C_DCR_SPLB_SLAVE_IF = 0.
- 3. DVI interface is included in the design if the parameter C_TFT_INTERFACE = 1.
- 4. VGA interface is included in the design if the parameter C_TFT_INTERFACE = 0.
- 5. This logic is included in the design if C _TFT_INTERFACE = 1.

DS695_01_020509

Figure 1: XPS TFT Controller Block Diagram

The major modules of XPS TFT controller are described in subsequent sections.

These modules are:

- PLB Master Interface Module
- PLB Slave Interface Module
- Slave Register Logic
- TFT Control Logic
- Line Buffer
- HSYNC VSYNC Control
- TFT Interface Logic

PLB Master Interface Module

The PLB Master Interface Module provides master interface between TFT controller and the PLB. TFT controller reads pixel data from an external PLB memory device through PLB Master Interface Module. This module takes care of bus interface signals, bus protocol and other interface issues. The master interface native data width is fixed to 64-bits. The C_MPLB_SMALLEST_SLAVE size should be same as the PLB attached memory data width.

PLB Slave Interface Module

The PLB Slave Interface Module provides interface between Slave Register Logic and PLB bus. This interface is included in the design if parameter C_DCR_SPLB_SLAVE_IF is set to 1. The XPS TFT controller registers can be accessed through PLB using this interface. The XPS TFT controller core only supports 1:1 and 1:2 clock ratio for SPLB to MPLB clocks.

Slave Register Logic

The Slave Register Logic module consists of Address Register (AR), Control Register (CR) and logic to provide the access to these registers using either PLB or DCR interface. The DCR slave interface logic is included in the design if the parameter C_DCR_SPLB_SLAVE_IF is set to 0. The Address Register allows user to change the base address of video memory to be read from. This allows video frames to be fetched from other memory locations without being seen on the display. The user can change the video memory base address to display a different frame when it is ready. The Control Register allows the display to be rotated by 180 degrees or turned off by configuring the control bits.

TFT Control Logic

The TFT Control Logic module generates read request to PLB Master Interface Module to get pixel data from an external PLB memory device. This module synchronizes the signals crossing the different clock domains. The TFT control logic generates master read request, address for the video memory and reads the pixel data for each display line using a series of 16-double word burst transactions. The pixel data is stored in an internal line buffer and then sent out to TFT display with the necessary timing to correctly display the image. This process repeats continuously over every line and frame to be displayed on the 640x480 TFT screen. The data flow diagram from PLB to TFT is shown in Figure 2. When the display is turned off by clearing the display enable bit in the Control Register, the TFT controller issues reset to all the counters and stops requesting data from the video memory by applying reset to the Master Interface Module. In the reset state, the controller sets the Hsync and Vsync to their default value causing the display to enter in sleep mode.

Figure 2: Data Flow Diagram

Line Buffer

The XPS TFT controller allows PLB clock and TFT video clock to be asynchronous to each other. The line buffer module includes synchronization logic to allow control signals to be passed between asynchronous PLB and TFT clock domains. This module consists of a dual port BRAM of size 1KB x 18 bit which is used as the line buffer to pass video data between the two clock domains. Out of 64-bit PLB data, the 36-bit of RGB data gets written to the BRAM.

HSYNC/VSYNC Control

This module generates the necessary timing of all the video synchronization signals including back porch and front porch timing for Hsync and Vsync. See Video TimingVideo Timing section for more information.

TFT Interface Logic

The TFT interface logic driving the TFT display operates in the same clock domain as the video clock. It reads out the pixel data from the dual port line buffer and transmits it to the TFT. This module consists of logic to transmit the pixel data in either VGA or DVI format based on the parameter C TFT INTERFACE and the logic to configure the Chrontel CH-7301 video encoder chip. The Hsync, Vsync and DE signals are common for both the interfaces. The VGA, DVI and Chrontel I2C interfaces are described below.

VGA Interface

The VGA interface logic is included in the design if the parameter C_TFT_INTERFACE is set to 0. The 18-bit RGB pixel data is transmitted to the VGA ports and logic '0' is transmitted to all DVI ports.

DVI Interface

4

The DVI interface logic is included in the design if the parameter C_TFT_INTERFACE is set to 1. The 18-bit RGB data is converted into 24-bit pixel data by padding zeros in between the RGB data. This 24-bit pixel data is transmitted to the 12-bit DVI data port by clocking the data on both edges using

double data rate registers as shown in Figure 3. The 18-bit RGB pixel data translation to 24-bit DVI data is shown in Table 1.

Figure 3: RGB to DVI data

Table 1: RGB to DVI data conversion

DVI Data	Data A	Data B
TFT_DVI_DATA[0]	G[2]	0
TFT_DVI_DATA[1]	G[3]	0
TFT_DVI_DATA[2]	G[4]	B[0]
TFT_DVI_DATA[3]	G[5]	B[1]
TFT_DVI_DATA[4]	0	B[2]
TFT_DVI_DATA[5]	0	B[3]
TFT_DVI_DATA[6]	R[0]	B[4]
TFT_DVI_DATA[7]	R[1]	B[5]
TFT_DVI_DATA[8]	R[2]	0
TFT_DVI_DATA[9]	R[3]	0
TFT_DVI_DATA[10]	R[4]	G[0]
TFT_DVI_DATA[11]	R[5]	G[1]

Chrontel I2C Interface

The Chrontel I2C interface logic is included in the design if the parameter C_TFT_INTERFACE is set to 1. This module consists of logic to configure the Chrontel CH-7301 video encoder chip. The configuration sequence logic is hard coded in this module and the data is sent over I2C interface. This core configures only the basic registers of the CH-7301 chip for DVI interface. The XPS TFT controller remains in the reset state till the controller completes configuration of the Chrontel chip. The description of these registers address and the configuration data is shown in Table 2. If the user wants different configuration for the Chrontel chip, user can configure the chip using Chrontel Chip Configuration Register (CCR). For more information on the Chrontel DVI transmitter, please refer the Chrontel CH7301 DVI Transmitter Device Specification.

Table 2: Chrontel CH-7301 Configuration Register Description

Register Address (hex)	Register Name	Configuration Data (hex)	Access	Description
49	PM	C0	Write	Power Management Register
21	DC	09	Write	DAC Control Register
33	TPCP	08	Write	PLL Charge Pump Control Register
34	TPD	16	Write	PLL Divider Register
36	TPF	60	Write	PLL Filter Register

Video Timing

The signal timings for 640x480 display using a 25 MHz pixel clock are shown in Table 3. The XPS TFT controller takes 16.8 ms to display each 640x480 display frame at 60 Hz refresh rate on the TFT. Hence, to display the complete frame on the TFT, user should not update the video memory start address (AR) before this time frame.

Table 3: 640x480 Mode Display Timing

Symbol	Parameter	,	Vertical Sync	Horizontal Sync		
	Parameter	Time	Clocks	Lines	Time	Clocks
T _{PULSE}	Sync pulse time	16.8 ms	420000	525	32 μs	800
T _{Disp}	Display time	15.4 ms	384000	480	25.6 μs	640
T _{PW}	Pulse width time	64 μs	1600	2	3.84 µs	96
T _{BP}	Back porch time	992 μs	24800	31	1.92 µs	48
T _{FP}	Front porch time	384 μs	9600	12	640 ns	16

Hsync Timing

The Hsync is active low signal and the complete time period of the Hsync is 800 TFT clocks. Out of the 800 TFT clock period, the active pixel data qualified by the active high DE signal is of 640 TFT clocks. The Hsync pulse period is of 96 TFT clocks. The time period between the Hsync pulse and start of active data is called as back porch which is of 48 TFT clocks. The time period between the end of active data and start of new Hsync pulse is called as front porch which is of 16 TFT clocks. The Hsync timing with respect to the TFT clock is shown in Figure 4.

Figure 4: Horizontal Data

Vsync Timing

The Vsync is active low signal and the complete time period of the Vsync is of 525 h_syncs. Out of the 525 h_syncs, the Vsync pulse period is of 2 h_syncs, the active display period is of 480 h_syncs, the back porch period is of 31 h_syncs and the front porch period is of 12 h_syncs. The Vsync timing with respect to the Hsync is shown in Figure 5.

Figure 5: Vertical Data

Video Memory

8

It is important to design the system so that there is a sufficient bandwidth available between the XPS TFT controller and the PLB memory device to meet the video bandwidth requirements of the TFT. Furthermore, there must be enough bandwidth available for rest of the system. If the bandwidth requirement of rest of the system is more, the TFT clock frequency can be reduced. However, reducing the TFT clock frequency also lowers the refresh rate of the screen. This may lead to a noticeable flicker on the screen if the TFT clock is too slow. The PLB master interface logic has the ability to skip reading a line of data if it fails to finish reading data from a previous line because of shortage of PLB bandwidth. This prevents the XPS TFT controller losing synchronization between the PLB and TFT interface logic. Note that extreme shortage of available bandwidth for the XPS TFT controller may cause the screen to appear unstable as stale lines of video data are displayed on the screen.

The video memory is expected to be arranged so that each RGB pixel is represented by a 32-bit word in memory. The video memory should be stored in a 2 MB region of memory consisting of 1024 data

words (1 word = 32 bits) per line by 512 lines per frame. Out of this 1024×512 memory space, only the first 640 columns and 480 rows are displayed on the screen.

For a given row (0 to 479) and column (0 to 639), the pixel color information is encoded as shown in Table 4.

Table 4: Pixel Color Encoding

Pixel Address	Bits	Description
	[0:7]	Undefined
	[8:13]	Red Pixel Data: 000000 = darkest → 111111 = brightest
	[14:15]	Undefined
TFT Base Address + (4096 * row) + (4 * column)	[16:21]	Green Pixel Data: 000000 = darkest → 111111 = brightest
,	[22:23]	Undefined
	[24:29]	Blue Pixel Data: 000000 = darkest → 111111 = brightest
	[30:31]	Undefined

XPS TFT Controller I/O Signals

The XPS TFT controller I/O signals are listed and described in Table 5.

Table 5: XPS TFT Controller I/O Signal Description

Port	Signal Name	Interface	I/O	Initial State	Description			
System Signals								
P1	P1 MPLB_Clk System I - PLB master clc							
P2	MPLB_Rst	System	I	-	PLB master reset			
P3	SPLB_CIk ⁽¹⁾	System	I	-	PLB slave clock			
P4	SPLB_Rst	System	1	-	PLB slave reset			
P5	MD_error	System	0	0	Master error detection indicator (active high)			
P6	IP2INTC_Irpt	System	0	0	Vysnc Pulse Interrupt			
	Р	LB Master In	terface Sig	gnals				
P7	M_request	PLB	0	0	Master bus request			
P8	M_priority	PLB	0	0	Master bus request priority			
P9	M_buslock	PLB	0	0	Master bus lock			
P10	M_RNW	PLB	0	0	Master read not write			
P11	M_BE(0:[C_MPLB_DWIDTH/8]- 1)	PLB	0	0	Master byte enables			
P12	M_Msize(0:1)	PLB	0	0	Master data bus size			

Table 5: XPS TFT Controller I/O Signal Description (Cont.)

Port	Signal Name	Interface	I/O	Initial State	Description
P13	M_size(0:3)	PLB	0	0	Master transfer size
P14	M_type(0:2)	PLB	0	0	Master transfer type
P15	M_ABus(0:31)	PLB	0	0	Master address bus
P16	M_wrBurst	PLB	0	0	Master burst write transfer indicator
P17	M_rdBurst	PLB	0	0	Master read write transfer indicator
P18	M_wrDBus(0:C_MPLB_DWIDT H-1)	PLB	0	0	Master write data bus
P19	PLB_MSize(0:1)	PLB	ı	-	PLB master slave data bus port width
P20	PLB_MaddrAck	PLB	ı	-	PLB master address acknowledge
P21	PLB_Mrearbitrate	PLB	I	-	PLB master bus rearbitrate indicator
P22	PLB_MTimeout	PLB	I	-	PLB master bus time out
P23	PLB_MRdErr	PLB	I	-	PLB master slave read error indicator
P24	PLB_MWrErr	PLB	1	-	PLB master slave write error indicator
P25	PLB_MRdDBus(0:C_MPLB_D WIDTH-1)	PLB	I	-	PLB master read data bus
P26	PLB_MRdDAck	PLB	I	-	PLB master read data acknowledge
P27	PLB_MWrDAck	PLB	1	-	PLB master write data acknowledge
P28	PLB_RdBTerm	PLB	ı	-	PLB master terminate read burst indicator
P29	PLB_MWrBTerm	PLB	ı	-	PLB master terminate write burst indicator
	Unus	ed PLB Mast	er Interfac	e Signals	
P30	M_TAttribute(0 to 15)	PLB	0	0	Master transfer attribute
P31	M_lockerr	PLB	0	0	Master lock error indicator
P32	M_abort	PLB	0	0	Master abort bus request indicator
P33	M_UABus(0:31))	PLB	0	0	Master upper address
P34	PLB_MBusy	PLB	I	-	PLB master busy signal
P35	PLB_MIRQ	PLB	I	-	PLB master interrupt indicator
P36	PLB_RdWdAddr(0:3)	PLB	I	-	PLB master read word address

Table 5: XPS TFT Controller I/O Signal Description (Cont.)

Port	Signal Name	Interface	I/O	Initial State	Description
	F	PLB Slave Int	erface Sig	nals	
P37	PLB_ABus[0: C_SPLB_AWIDTH - 1]	PLB	1	-	PLB address bus
P38	PLB_PAValid	PLB	I	-	PLB primary address valid
P39	PLB_masterID[0: C_SPLB_MID_WIDTH - 1]	PLB	I	-	PLB current master identifier
P40	PLB_RNW	PLB	I	-	PLB read not write
P41	PLB_BE[0: (C_SPLB_DWIDTH/8) - 1]	PLB	1	-	PLB byte enables
P42	PLB_size[0:3]	PLB	I	-	PLB size of requested transfer
P43	PLB_type[0:2]	PLB	I	-	PLB transfer type
P44	PLB_wrDBus[0: C_SPLB_DWIDTH - 1]	PLB	I	-	PLB write data bus
P45	SI_addrAck	PLB	0	0	Slave address acknowledge
P46	SI_SSize[0:1]	PLB	0	0	Slave data bus size
P47	SI_wait	PLB	0	0	Slave wait
P48	SI_rearbitrate	PLB	0	0	Slave bus rearbitrate
P49	SI_wrDAck	PLB	0	0	Slave write data acknowledge
P50	SI_wrComp	PLB	0	0	Slave write transfer complete
P51	SI_rdDBus[0: C_SPLB_DWIDTH - 1]	PLB	0	0	Slave read data bus
P52	SI_rdDAck	PLB	0	0	Slave read data acknowledge
P53	SI_rdComp	PLB	0	0	Slave read transfer complete
P54	SI_MBusy[0: C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave busy
P55	SI_MWrErr[0: C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave write error
P56	SI_MRdErr[0: C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave read error
	Unus	ed PLB Slav	e Interface	Signals	
P57	PLB_UABus[0: 31]	PLB	I	-	PLB upper address bits
P58	PLB_SAValid	PLB	I	-	PLB secondary address valid
P59	PLB_rdPrim	PLB	I	-	PLB secondary to primary read request indicator
P60	PLB_wrPrim	PLB	I	-	PLB secondary to primary write request indicator
P61	PLB_abort	PLB	I	-	PLB abort bus request

Table 5: XPS TFT Controller I/O Signal Description (Cont.)

Port	Signal Name	Interface	I/O	Initial State	Description
P62	PLB_busLock	PLB	I	-	PLB bus lock
P63	PLB_MSize	PLB	I	-	PLB data bus width indicator
P64	PLB_lockErr	PLB	I	-	PLB lock error
P65	PLB_wrBurst	PLB	I	-	PLB burst write transfer
P66	PLB_rdBurst	PLB	I	-	PLB burst read transfer
P67	PLB_wrPendReq	PLB	I	-	PLB pending bus write request
P68	PLB_rdPendReq	PLB	I	-	PLB pending bus read request
P69	PLB_wrPendPri[0:1]	PLB	I	-	PLB pending write request priority
P70	PLB_rdPendPri[0:1]	PLB	I	-	PLB pending read request priority
P71	PLB_reqPri[0:1]	PLB	I	-	PLB current request priority
P72	PLB_TAttribute[0:15]	PLB	I	-	PLB transfer attribute
P73	SI_wrBTerm	PLB	0	0	Slave terminate write burst transfer
P74	SI_rdWdAddr[0:3]	PLB	0	0	Slave read word address
P75	SI_rdBTerm	PLB	0	0	Slave terminate read burst transfer
P76	SI_MIRQ[0: C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Master interrupt request
	Γ	OCR Slave In	terface Sig	ınals	,
P77	DCR_Clk ⁽¹⁾	DCR	1	-	DCR clock
P78	DCR_Rst	DCR	1	-	DCR reset
P79	DCR_Read	DCR	I	-	DCR read request from DCR master
P80	DCR_Write	DCR	1	-	DCR write request from DCR master
P81	DCR_ABus[0 : C_SDCR_AWIDTH-1]	DCR	I	-	DCR address bus from DCR master
P82	DCR_SI_DBus[0 : C_SDCR_DWIDTH-1]	DCR	1	-	DCR slave data bus from DCR master
P83	SI_DCR_DBusout[0 : C_SDCR_DWIDTH-1]	DCR	0	0	Slave DCR data bus out
P84	SI_dcrAck	DCR	0	0	Slave DCR acknowledge
		TFT Interfa	ace Signal	s	
P85	SYS_TFT_Clk	TFT	1	-	TFT clock input
P86	TFT_HSYNC	TFT	0	1	Horizontal Sync (Active Low)

www.xilinx.com

Table 5: XPS TFT Controller I/O Signal Description (Cont.)

Port	Signal Name	Interface	I/O	Initial State	Description
P87	TFT_VSYNC	TFT	0	1	Vertical Sync (Active Low)
P88	TFT_DE	TFT	0	0	Data enable
P89	TFT_DPS	TFT	0	0	TFT Display scan
P90	TFT_VGA_CLK	TFT-VGA	0	0	TFT VGA clock ⁽²⁾
P91	TFT_VGA_R[5:0]	TFT-VGA	0	0	TFT VGA Red pixel data ⁽²⁾
P92	TFT_VGA_G[5:0]	TFT-VGA	0	0	TFT VGA Green pixel data ⁽²⁾
P93	TFT_VGA_B[5:0]	TFT-VGA	0	0	TFT VGA Blue pixel data ⁽²⁾
P94	TFT_DVI_CLK_P	TFT-DVI	0	0	Differential TFT DVI clock ⁽³⁾
P95	TFT_DVI_CLK_N	TFT-DVI	0	0	Differential TFT DVI clock ⁽³⁾
P96	TFT_DVI_DATA[11:0]	TFT-DVI	0	0	TFT DVI data ⁽³⁾
P97	TFT_IIC_SCL_O	TFT-DVI	0	0	I2C output clock to Chrontel chip ⁽⁴⁾
P98	TFT_IIC_SCL_I	TFT-DVI	I	-	I2C input clock from Chrontel chip ⁽⁴⁾
P99	TFT_IIC_SCL_T	TFT-DVI	0	1	3-state control for I2C clock(4)
P100	TFT_IIC_SDA_O	TFT-DVI	0	0	I2C output data to Chrontel chip ⁽⁴⁾
P101	TFT_IIC_SDA_I	TFT-DVI	I	-	I2C input data from Chrontel chip ⁽⁴⁾
P102	TFT_IIC_SDA_T	TFT-DVI	0	1	3-state control for I2C data ⁽⁴⁾

Notes:

- 1. This controller supports clock ratio of 1:1 or 1:2 only for slave interface clock(SPLB_Clk/DCR_Clk) and master interface clock(MPLB_Clk).
- 2. VGA interface signals.
- 3. DVI interface signals.
- 4. I2C signals are used to configure Chrontel Video Encoder chip. These ports are active when DVI interface is selected.

XPS TFT Controller Design Parameters

To allow the user to create a XPS TFT controller that is uniquely tailored for the user's system, certain features are parameterizable in the XPS TFT controller design. This allows the user to have a design that utilizes only the resources required by the system and runs at the best possible performance. The features that are parameterizable in the XPS TFT controller core are shown in Table 6.

Table 6: XPS TFT Controller Design Parameters

Generic	Feature/Descripti on	Parameter Name	Allowable Values	Default Value	VHDL Type				
	XPS TFT Controller Parameter								
G1	Target FPGA family	C_FAMILY	spartan3a, aspartan3a, spartan3, aspartan3e, aspartan3e, aspartan3adsp, aspartan3adsp, spartan6, virtex4, qvirtex4, qvirtex4, virtex5, virtex5fx, virtex6, virtex6cx	virtex5	string				
G2	Base address of PLB attached Video memory	C_DEFAULT_TFT_ BASE_ADDR ⁽¹⁾	valid address	0xF0000000	std_logic_vector				
G3	Controller Register access interface	C_DCR_SPLB_SL AVE_IF	0 = DCR slave interface 1= PLB slave interface	1	integer				
G4	TFT interface selection	C_TFT_INTERFAC E	0 = VGA interface 1 = DVI interface	1	integer				
G5	I2C Slave address of external Chrontel DVI transmitter	C_I2C_SLAVE_AD DR	Valid 7 bit I2C slave address	"1110110"	std_logic_vector				
		DCR Interface	Parameters						
G6	DCR Slave Base Address	C_DCR_BASEAD DR	Valid Address	Valid 10-bit address	std_logic_vector				
G 7	DCR Slave High Address	C_DCR_HIGHADD R	Valid Address	Valid 10-bit address	std_logic_vector				
		PLB Master Interf	ace Parameters						
G8	Address bus width of PLB	C_MPLB_AWIDTH	32	32	integer				
G9	Data bus width of the PLB	C_MPLB_DWIDTH	64, 128	64	integer				

Table 6: XPS TFT Controller Design Parameters (Cont.)

Generic	Feature/Descripti on	Parameter Name	Allowable Values	Default Value	VHDL Type
G10	Data width of the PLB attached video memory	C_MPLB_SMALLE ST_SLAVE	32, 64, 128	64	integer
G11	Internal native data width of master interface	C_MPLB_NATIVE_ DWIDTH	64	64	integer
		PLB Slave Interfa	ace Parameters	1	
G12	XPS TFT controller Base Address	C_SPLB_BASEAD DR	Valid Address ⁽³⁾	None ⁽²⁾	std_logic_vector
G13	XPS TFT controller High Address	C_SPLB_HIGHAD DR	Valid Address ⁽³⁾	None ⁽²⁾	std_logic_vector
G14	PLB slave interface address width	C_SPLB_AWIDTH	32	32	integer
G15	PLB slave interface data width	C_SPLB_DWIDTH	32, 64, 128	32	integer
G16	Selects point-to-point or shared PLB topology	C_SPLB_P2P	0 = Shared Bus Topology	0	integer
G17	PLB Master ID bus width	C_SPLB_MID_WI DTH	log ₂ (C_SPLB_ NUM_MASTERS) with a minimum value of 1	1	integer
G18	Number of PLB Masters	C_SPLB_NUM_M ASTERS	1 - 16	1	integer
G19	Width of the internal slave data bus	C_SPLB_NATIVE_ DWIDTH	32	32	integer

Notes:

- C_DEFAULT_TFT_BASE_ADDR specifies the base address of PLB attached video memory. This base
 address of video memory must be aligned on a 2MB boundary (i.e. only upper 11 bits are valid, the remaining
 address bits must be always '0'). The controller will only use 11 MSB of this base address to read data from the
 video memory.
- 2. No default value will be specified to insure that the actual value is set, i.e., if the value is not set, a compiler error will be generated.
- 3. C_SPLB_BASEADDR must be a multiple of the range size, where the range size is C_SPLB_HIGHADDR C_SPLB_BASEADDR + 1 and must be a power of two. The range size must be large enough to accommodate all of the registers.

Allowable Parameter Combinations

The address-range size specified by C_SPLB_BASEADDR and C_SPLB_HIGHADDR must be a power of 2, and must be at least 0x10.

The address specified by C_DEFAULT_TFT_BASE_ADDR must be aligned on a 2MB boundary. Only 11 MSB bits should have valid address, the remaining address bits must be always '0'.

The PLB slave interface is only included in the design if C_DCR_SPLB_SLAVE_IF is set to 1. When C_DCR_SPLB_SLAVE_IF = 0, DCR slave interface is included in the design and all the PLB ports are unused.

Optimal System Settings

It is recommended to have separate buses for the video memory access from the core and the rest of the system. This will have sufficient bandwidth available between XPS TFT controller and PLB memory device.

The native data width of XPS TFT controller is fixed to 64-bits. Optimal performance will be achieved when the video memory interface width is greater than or equal to native data width of PLB master interface (C_MPLB_SMALLEST_SLAVE \geq C_MPLB_NATIVE_DWIDTH).

XPS TFT Controller Parameter - Port Dependencies

The dependencies between the XPS TFT controller core design parameters and I/O signals are described in Table 7. In addition, when certain features are parameterized out of the design, the related logic will no longer be a part of the design. The unused input signals and related output signals are set to a specified value.

Table 7: XPS TFT Controller Design Parameter - Port Dependencies

Generic or Port	Name	Affects	Depends	Relationship Description
		Design P	arameters	
G3	C_DCR_SPLB_SLAVE_IF	P36 - P83	-	Affect DCR/PLB interface ports. If C_DCR_SPLB_SLAVE_IF = 1, all DCR ports are inactive. If C_DCR_SPLB_SLAVE_IF = 0, all PLB ports are inactive.
G4	C_TFT_INTERFACE	P89 - P101	-	Affects TFT interface ports. If C_TFT_INTERFACE = 1, all VGA ports are tied to '0'. If C_TFT_INTERFACE = 0, all DVI ports are tied to '0'.
G5	C_I2C_SLAVE_ADDR	-	G4	Depends on C_TFT_INTERFACE. Required only when DVI interface is selected.
G9	C_MPLB_DWIDTH	P10, P17, P24	-	Affects the number of bits in PLB master data bus
G13	C_SPLB_AWIDTH	P36	-	Affects number of bits in address bus
G14	C_SPLB_DWIDTH	P40, P43, P50	-	Affects number of bits in slave data bus
G16	C_SPLB_MID_WIDTH	P38	G18	Affects the width of current master identifier signals and depends on log ₂ (C_SPLB_NUM_MASTERS) with a minimum value of 1
G17	C_SPLB_NUM_MASTERS	P53, P54, P55, P75	-	Affects the width of busy and error signals
		I/O S	ignals	
P10	M_BE[0: (C_MPLB_DWIDTH/8) - 1]	-	G9	Width varies with the size of the PLB master data bus
P17	M_wrDBus[0: C_MPLB_DWIDTH - 1]	-	G9	Width varies with the size of the PLB master data bus

Table 7: XPS TFT Controller Design Parameter - Port Dependencies (Cont.)

Generic or Port	Name	Affects	Depends	Relationship Description
P24	PLB_MRdDBus[0: C_MPLB_DWIDTH - 1]	-	G9	Width varies with the size of the PLB master data bus
P36	PLB_ABus[0: C_SPLB_AWIDTH - 1]	-	G14	Width varies with the size of the PLB address bus
P38	PLB_masterID[0: C_SPLB_MID_WIDTH - 1]	-	G17	Width varies with the size of the PLB master identifier bus
P40	PLB_BE[0: (C_SPLB_DWIDTH/8)-1]	-	G15	Width varies with the size of the PLB slave data bus
P43	PLB_wrDBus[0: C_SPLB_DWIDTH - 1]	-	G15	Width varies with the size of the PLB slave data bus
P50	SI_rdDBus[0: C_SPLB_DWIDTH - 1]	-	G15	Width varies with the size of the PLB slave data bus
P53	SI_MBusy[0: C_SPLB_NUM_MASTERS - 1]	-	G18	Width varies with the number of PLB masters
P54	SI_MWrErr[0: C_SPLB_NUM_MASTERS - 1]	-	G18	Width varies with the number of PLB masters
P55	SI_MRdErr[0: C_SPLB_NUM_MASTERS - 1]	-	G18	Width varies with the number of PLB masters
P75	SI_MIRQ[0: C_SPLB_NUM_MASTERS - 1]	-	G18	Width varies with the number of PLB masters
P36 - P75	PLB Slave Interface ports		G3	Ports are unused when C_DCR_SPLB_SLAVE_IF = 0
P76 - P82	DCR Interface ports		G3	Ports are unused when C_DCR_SPLB_SLAVE_IF = 1
P88	TFT_VGA_CLK	-	G4	Port tied to '0' when C_TFT_INTERFACE = 1
P89	TFT_VGA_R	-	G4	Ports tied to '0' when C_TFT_INTERFACE = 1
P90	TFT_VGA_G	-	G4	Ports tied to '0' when C_TFT_INTERFACE = 1
P91	TFT_VGA_B	-	G4	Ports tied to '0' when C_TFT_INTERFACE = 1
P92	TFT_DVI_CLK_P	-	G4	Port tied to '0' when C_TFT_INTERFACE = 0
P93	TFT_DVI_CLK_N	-	G4	Port tied to '0' when C_TFT_INTERFACE = 0
P94	TFT_DVI_DATA	-	G4	Ports tied to '0' when C_TFT_INTERFACE = 0

Table 7: XPS TFT Controller Design Parameter - Port Dependencies (Cont.)

Generic or Port	Name	Affects	Depends	Relationship Description
P95	TFT_IIC_SCL_O	-	G4 Port tied to '0' when C_TFT_INTERFACE = 0	
P96	TFT_IIC_SCL_I	-	G4 Port is un-used when C_TFT_INTERFACE = 0	
P97	TFT_IIC_SCL_T	-	G4	Port tied to '0' when C_TFT_INTERFACE = 0
P98	TFT_IIC_SDA_O	-	G4	Port tied to '0' when C_TFT_INTERFACE = 0
P99	TFT_IIC_SDA_I	-	G4	Port is un-used when C_TFT_INTERFACE = 0
P100	TFT_IIC_SDA_T	-	G4	Port tied to '0' when C_TFT_INTERFACE = 0

XPS TFT Controller Register Description

There are four internal registers available in the XPS TFT controller design. These registers can be accessed through either PLB slave interface or DCR slave interface based on the parameter setting C_DCR_SPLB_SLAVE_IF. The memory map of the XPS TFT controller design is determined by setting the C_SPLB_BASEADDR/C_DCR_BASEADDR parameter. The internal registers of the XPS TFT controller are at a fixed offset from the base address on 32-bit boundary. Writing into the reserved registers has no effect. Reading from the reserved registers returns zero. All registers are defined for 32-bit access only. When the PLB slave interface is selected, any partial word write access (byte, half-word) has no effect on the registers and any partial word read access (byte, half-word) returns zero. All the partial access to the core register returns bus error. The XPS TFT controller internal registers and their offset for the PLB interface and the DCR interface are listed in Table 8 and Table 9.

Table 8: XPS TFT Controller Internal Registers access through PLB

Base Address + Offset (hex)	Register Name	Access	Default Value (hex)	Description
C_SPLB_BASEADDR + 0	AR	Read/Write	C_DEFAULT_TFT_ BASE_ADDR	TFT address register which specifies the base address of the video memory from which the controller fetches the data
C_SPLB_BASEADDR + 4	CR	Read/Write	0x1	TFT control register
C_SPLB_BASEADDR + 8	IESR	Read/Write	0x0	Vsync interrupt enable and status register.
C_SPLB_BASEADDR + C	CCR	Read/Write	0x0	Chrontel configuration register

Base Address + Offset (hex)	Register Name	Access	Default Value (hex)	Description
C_DCR_BASEADDR + 0	AR	Read/Write	C_DEFAULT_TFT_ BASE_ADDR	TFT address register which specifies the base address of the video memory from which the controller fetches the data
C_DCR_BASEADDR + 1	CR	Read/Write	0x1	TFT control register
C_DCR_BASEADDR + 2	IESR	Read/Write	0x0	Vsync interrupt enable and status register.
C_DCR_BASEADDR + 3	CCR	Read/Write	0x0	Chrontel configuration register

Table 9: XPS TFT Controller Internal Registers access through DCR

Address Register (AR)

TFT Base Address Register specifies the upper 11-bits of base address of the video memory. This is the address of PLB accessible memory device that acts as a video memory. This address must be aligned on a 2MB boundary (i.e. only upper 11 bits are writable, the remaining address bits are always '0') as shown in Figure 6 and described in Table 10.

Figure 6: Address Register

Table 10: Address Register Description

Bits	Name	Core Access	Reset Value	Description
[0:10]	TFT base address	R/W	C_DEFAULT_TFT_BASE_ ADDR[0:10]	Specifies the base address of the video memory from which the controller fetched the data
[11:31]	Reserved	N/A	N/A	Reserved

Control Register (CR)

TFT Control Register contains the control bits to configure the controller for TFT scanning mode and TFT display on/off. Writing '0' in TFT display enable bit resets the TFT controller. In the reset state, controller stops requesting data from the video memory by applying reset to the Master Interface

Module and set the Hsync and Vsync to their default value causing the display to enter in sleep mode. The bit assignment in the TFT control register is shown in Figure 7 and described in Table 11.

Figure 7: Control Register

Table 11: Control Register description

Bits	Name	Core Access	Reset Value	Description
[0:29]	Reserved	N/A	N/A	Reserved
[30]	DPS	R/W	0	Display Scan Control Bit 0 = Set DPS output bit to 0. This sets the display to use normal scan direction. 1 = Set DPS output bit to 1. This sets the display to use reverse scan direction (rotates screen 180 degrees).
[31]	TDE	R/W	1	TFT Display Enable Bit 0 = Disable TFT display. This resets the TFT controller and stops Vsync/Hsync signals causing display to go in sleep mode. 1 = Enable TFT display. This causes the TFT controller to operate normally.

Interrupt Enable and Status Register (IESR)

TFT Interrupt Enable and Status register is a 32-bit read/write register. This register contains Vsync interrupt enable bit and the status bit. If Vsync interrupt is enabled, core generates interrupt for Vsyn pulse every frame. For every rising edge of Vsync pulse, core set status bit to indicate that core has displayed the current frame completely and accepted the new address from the AR. This status bit gets cleared for every write access to the AR. The bit assignment in the IESR is shown in Figure 8 and described in Table 12.

Figure 8: Interrupt Enable and Status Register

Bits	Name	Core Access	Reset Value	Description
[0:27]	Reserved	N/A	N/A	Reserved
[28]	Interrupt Enable	R/W	0	Vsync Interrupt Enable 0 = Disable Vsync pulse interrupt. 1 = Enable Vsync pulse interrupt.
[29:30]	Reserved	N/A	N/A	Reserved
[31]	Status	R/W	0	Vsync and address latch status bit 0 = Core is displaying current frame. 1 = Vsync pulse is active. Also indicate that previous frame is displayed completely and core has accepted new address from the AR.

Table 12: Interrupt Enable and Status Register description

Chrontel Chip configuration Register (CCR)

The Chrontel Chip Configuration register is a 32-bit read/write register. This register contains IIC transmission start bit, Chrontel chip register address and Chrontel chip register data. This register enables user to configure the chrontel chip register on the fly. Setting bit '0' of the this register will initiate the IIC transmission to the Chrontel chip. This bit will be cleared when the IIC transmission is complete. The bit assignment in the CCR is shown in Figure 9 and described in Table 13.

DS695_09_020509

Figure 9: Chrontel Chip COnfiguration Register

Table 13: Chrontel Chip Configuration Register description

Bits	Name	Core Access	Reset Value	Description	
[0]	Start	R/W	0	Setting this bit will start IIC data transmission to the Chrontel Chip.	
[1:15]	Reserved	N/A	N/A	Reserved	
[16:23]	ADDR	R/W	0	8-bit Chrontel chip register address	
[24:31]	DATA	R/W	0	8-bit Chrontel chip register data	

XPS TFT Controller Timing Diagrams

XPS TFT Master Burst Read on PLB attached Memory

The XPS TFT burst read transaction on PLB are shown in Figure 10.

Figure 10: XPS TFT Burst Read Transaction on PLB

XPS TFT Register Read/Write through PLB slave interface

Figure 11 shows XPS TFT controller register access through PLB slave interface.

Figure 11: XPS TFT Register Read/Write Through PLB Slave Interface

XPS TFT Register Read/Write through DCR slave interface

Figure 12 shows XPS TFT controller register access through DCR slave interface.

Figure 12: XPS TFT Register Read/Write Through DCR Slave Interface

XPS TFT Use Cases

The XPS TFT controller system can be build for different use cases based on the processor interface and the core slave interface. Following are the uses cases for XPS TFT controller.

- Standard PowerPC® processor system with PLB slave interface (Figure 13)
- Standard PowerPC processor system with DCR slave interface (Figure 14)
- MicroblazeTM processor system with DCR slave interface (Figure 15)
- PowerPC processor system with separate PLB bus for XPS TFT master and slave interface (Figure 16).

Figure 13: XPS TFT PowerPC Processor System with PLB Slave Interface

Figure 14: XPS TFT PowerPC Processor System with DCR Slave Interface

23

Figure 15: Microblaze System with DCR Slave Interface

Figure 16: PowerPC Processor System with Separate PLB Buses for XPS TFT Master and Slave Interface

Design Implementation

Target Technology

The target technology is an FPGA listed in the Supported Device Family field of the LogiCORE Facts Table.

Device Utilization and Performance Benchmarks

Since the XPS TFT controller core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When the XPS TFT controller core is combined with other designs in the system, the utilization of FPGA resources and timing of the XPS TFT controller design will vary from the results reported here.

The XPS TFT controller resource utilization for various parameter combinations measured with Virtex-4 FPGA as the target device are detailed in Table 14.

Table 14: Performance and Resource Utilization Benchmarks on the Virtex-4 FPGA (xc4vlx25-ff668-10)

Parameter	Device Resources			Performance	
C_DCR_SPLB_SLAVE_IF	C_TFT_INTERFACE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	0	410	414	544	143
0	1	611	498	660	139
1	0	514	464	543	139
1	1	628	546	660	140

The XPS TFT controller resource utilization for various parameter combinations measured with Virtex-5 as the target device are detailed in Table 15.

Table 15: Performance and Resource Utilization Benchmarks on Virtex-5 FPGA (xc5vfx70-ff1136-1)

Parameter	Dev	vice Resource	Performance		
C_DCR_SPLB_SLAVE_IF	C_TFT_INTERFACE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	0	276	414	479	154
0	1	389	498	598	152
1	0	364	462	478	153
1	1	412	546	596	152

The XPS TFT controller resource utilization for various parameter combinations measured with the Spartan-3 FPGA as the target device are detailed in Table 16.

Table 16: Performance and Resource Utilization Benchmarks on the Spartan-3 FPGA (xc3sd1800a-fg676-4)

Parameter	De	Performance			
C_DCR_SPLB_SLAVE_IF	C_TFT_INTERFACE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	0	521	411	504	102
0	1	591	495	609	102
1	0	495	459	504	102
1	1	617	543	609	102

The XPS TFT controller resource utilization for various parameter combinations measured with the Virtex-6 FPGA as the target device are detailed in Table 17.

Table 17: Performance and Resource Utilization Benchmarks on Virtex-6 FPGA (xc6vlx130ft-ff1154-1)

Parameter Values		Device Resources			Performance
C_DCR_SPLB_SLAVE_IF	C_TFT_INTERFACE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	0	215	445	473	160
0	1	253	533	562	160
1	0	216	509	504	160
1	1	239	597	606	160

The XPS TFT controller resource utilization for various parameter combinations measured with the Spartan-6 FPGA as the target device are detailed in Table 18.

Table 18: Performance and Resource Utilization Benchmarks on the Spartan-6 FPGA (xc6slx45t-fgg484-2)

Parameter Values		Device Resources			Performance
C_DCR_SPLB_SLAVE_IF	C_TFT_INTERFACE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	0	221	447	471	100
0	1	269	533	562	100
1	0	216	509	504	100
1	1	239	597	606	100

Specification Exceptions

This core is capable of configuring Chrontel CH-7301 chip only. If the system has video encoder chip other than Chrontel CH-7301, user must take care of configuring the chip.

Support

26

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Reference Documents

- 1. <u>DS402</u> Xilinx Device Control Register Bus Design Specification
- 2. DS561 Xilinx PLBV46 Slave Single Design Specification
- 3. DS565 Xilinx PLBV46 Master Burst Design Specification
- 4. IBM CoreConnect 128-Bit Processor Local Bus, Architectural Specification (v4.6)
- 5. IBM CoreConnect 32-Bit Device Control Register Bus: Architecture Specification, ver 2.9
- 6. Chrontel CH-7301C DVI Transmitter Specification, ver 1.32
- 7. I2C bus specification, ver 2.1

Revision History

Date	Version	Revision
07/07/08	1.0	Initial Xilinx release.
7/21/08	1.1	Added QPro Virtex-4 Hi-Rel and QPro Virtex-4 Rad Tolerant support.
4/24/09	1.2	Replaced references to supported device families and tool name(s) with hyperlink to PDF file.
9/16/09	1.3	Updated to v2.00.a; added Performance and Resource Utilization table for Virtex-6 and Spartan-6; updated images.
12/02/09	1.4	Updated to v2.01.a. Added Chrontel Chip Configuration register.
05/03/10	1.5	Updated V6/S6 resource utilization table.

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.