MATH 222 Assignment 4

Sterling Laird - V00834995 February 25, 2019 1.

2. Consider n distinguishable elements and n-2 indistinguishable boxes. Count the number of ways to divide the elements into the boxes such that no box is empty for $n \ge 4$.

Clearly there are S(n, n-2) such ways.

There are 2 possible cases for any such distribution as follows:

- (a) There are 3 elements that share a single box. There are $\binom{n}{3}$ ways to pick the 3 elements and since all other indistinguishable boxes must have only 1 element, there are $\binom{n}{3}$ ways total to arrange the elements in this case.
- (b) There are 2 boxes which each contain 2 elements. There are $\binom{n}{4}$ ways to choose the elements and $\frac{\binom{4}{2}}{2}=3$ ways to distribute the chosen elements into a box for a total of $3\binom{n}{4}$ ways to arrange the elements in this case.

This makes a total number of ways to distribute the elements of $\binom{n}{3}+3\binom{n}{4}$

 $: \dot{S}(n, n-2) = \binom{n}{3} + 3\binom{n}{4} \text{ for } n \ge 4.$

3. We can use a generating function to get our result. Consider the generating function in which the sum of coefficients of x^i with $i \leq 35$ is our result:

$$g(x) = (x^{0} + x^{1} + x^{2}...)^{6}$$

$$= \frac{1}{(1-x)^{6}}$$
(1)

If we multiply g(x) by $\frac{1}{1-x} = 1 + x + x^2 + ...$, the coefficient of x^{35} is our result since the new g(x) has coefficients which are cumulative of

the old g(x) coefficients. So:

$$g(x) = \frac{1}{(1-x)^6} \cdot \frac{1}{1-x}$$

$$= \frac{1}{(1-x)^7}$$

$$= \sum_{i=0}^{\infty} {i+7-1 \choose 7-1} x^i$$

$$= \sum_{i=0}^{\infty} {i+6 \choose 6} x^i$$
(2)

Clearly then, the coefficient of x^{35} , the number is of integers between 0 and 999999 with digits that sum to no more than 35, is $\binom{41}{6} = 4496388$

4. Consider a hexagonal shaped room with the 6 walls labeled 0,1,2,3,4,5 in order around the room.

Let c_i be the condition that the walls i and $i+1 \mod 5$ are the same color for $0 \le i \le 5$.

$$N = 10^{6}$$

$$N(c_{i}) = 10^{5}$$

$$N(c_{i}c_{j}) = 10^{4}$$

$$N(c_{i}c_{j}c_{k}) = 10^{3}$$

$$N(c_{i}c_{j}c_{k}c_{q}) = 10^{2}$$

$$N(c_{i}c_{j}c_{k}c_{q}c_{r}) = 10$$

$$N(c_{0}c_{1}c_{2}c_{3}c_{4}c_{5}) = 10$$

$$\overline{N} = 10^{6} - \binom{6}{1} \cdot 10^{5} + \binom{6}{2} \cdot 10^{4} - \binom{6}{3} \cdot 10^{3} + \binom{6}{4} \cdot 10^{2} - \binom{6}{5} \cdot 10 + \binom{6}{6} \cdot 10$$

$$\overline{N} = 528450$$

5. a For R to be an equivalence relation, it must be reflexive, symmetric, and transitive.

Reflexive:

Since for all $x \in S, x^2 > 0$, xRx so R is reflexive.

Symmetric:

Since multiplication is commutative, xy = yx so $xRy \implies yRx \forall x, y \in S$ so R is symmetric.

Transitive:

For $x, y, z \in S$, if xy > 0 then both x and y must have the same sign. Similarly, if yz > 0 then both y and z must have the same sign.

Since x, y, z all have the same sign, yz > 0 and hence if xRy and yRz, xRz so R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation. A partition of R would be the following equivalence classes:

$$[1] = \{x \in S | x > 0\}$$
$$[-1] = \{x \in S | x \le 0\}$$

- b A reason why R_2 is not an equivalence relation because it is not reflexive. For example $(-1, -1) \notin R$ since $-1^2 = 1 \nleq 0$
- 6. a For $R \cap S$ to be a partial order on A it must be reflexive, antisymmetric, and transitive.

Reflexive:

Since R and S are reflexive, $\forall x \in A, (x, x) \in R$ and $(x, x) \in S$ so by the definition of set intersection, $(x, x) \in R \cap S$ so $R \cap S$ is reflexive.

Anti-Symmetric:

For some $x, y \in A$, if $(x, y) \in R \cap S$ and $(y, x) \in R \cap S$ then $(x, y) \in R$ and $(x, y) \in S$

Similarly $(y, x) \in R$ and $(y, x) \in S$

Since R and S are anti-symmetric, x = y so if $(x, y) \in R \cap S$ and $(y, x) \in R \cap S$ then x = y so $R \cap S$ is anti-symmetric.

Transitive:

Suppose $(x,y) \in R \cap S$ and $(y,z) \in R \cap S$ for some $x,y,z \in A$. So $(x,y) \in R, (y,z) \in R, (x,y) \in S, (y,z) \in S$ and since R,S are transitive $(x,z) \in R$ and $(x,z) \in S$.

So by the definition of set intersection $(x, z) \in R \cap S$

Since $R \cap S$ is reflexive, anti-symmetric, and transitive, it is a partial order.

b Consider a relation R on A that is both symmetric and antisymmetric.

Since the relation is symmetric $xRy \implies yRx$ for some $x, y \in A$. Since the relation is anti-symmetric $xRy \land yRx \implies x = y$ Using both definitions we can say $xRy \implies x = x$

Therefore R must be the relation $\{(x,), x \in B, B \subset A\}$ Since B can be any subset of A, there can be many relations on A that

c If R is symmetric and transitive, then R may not be reflexive.

As a counter-example consider $R = \{\}$ which is symmetric and transitive but not reflexive.

7. a

b

c Since a total order most have either xRy or yRx for every $x,y\in A$, and there are 2 of these occurrences in R, between 1 and 2, and 2 and 4.

For each of these pairs there are 2 choices for our total ordering, one for each pair being ordered "after" the other for a total of $2^2 = 4$ total orders that contain the given partial order.

8. The number of equivalence relations on S with exactly 3 equivalence classes is the same as the number of ways to distribute 8 distinguishable elements between 3 indistinguishable boxes.

This number is S(8,3) = 966