GOOGLE AI OPEN IMAGES CLASSIFICATION

DATS 6203 – Machine Learning II
George Washington University
12/04/2018
Group 8

OUTLINE

- Background
- Data Augmentation
- Convolutional Neural Network
- Activation Function
- Results
- Conclusions

DATA DESCRIPTION

- Google AI Open images dataset open image dataset V4
- Dataset is built for the purpose of object detection and segmentation
- Consists of natural images images that reflect everyday scene
- 10 classes with total 35,000 images- includes wide range of images - 12 GB
- Images are:
 - High resolution (1024x760)
 - Various sizes and shapes
 - Channel grayscale and RGB

ISSUES WITH DATASET

- Many images with no class name
- Missing imageID in labels data
- Mixture of grey and color images
- Images are not in same shape

DATA AUGMENTATION

- Resize the images into 60 X 60
- Considered only color images
- Remove grey scale images

CONVOLUTIONAL NEURAL NETWORK

- One or more convolutional layer
- Has many built-in functions
- Resulting in easy to train networks with many fewer parameters

ARCHITECTURE FOR LEARNING TASK

RESULTS

Frameworks		Accuracy	Layers	Kernel size	Epochs
Tensorflow	No Batch Normalization	35%	4	5x5	200
Keras	No Batch Normalization	40%	4	5x5	20
Keras	With Batch Normalization	45%	6	5x5	20
Keras	K-fold cross validation	50%	6	5x5	20

CONCLUSION

- With batch normalization, we got better results
- Accuracy from our small dataset is low
- Challenge faced in this project is the size of the data
- Data augmentation: rotating images and adding more training dataset

LIMITATION

- Can be done better by adding more training data -Memory use
- Trying with different parameters kernel size, epochs, optimizers might give us better performance
- Classes are equally not distributed
 High Person/food-stuff
 Low Building, Furniture

REFERENCES

https://storage.googleapis.com/openimages/web/index.html

http://www.kaggle.com/c/dogs-vs-cat

https://github.com/amir-jafari