Computer Architecture

Course Administrative Details

Course Title	Computer Architecture		
Instructor(s)	Nikolaos Mavridis	Instructor's e-mail	nmavrid@gmail.com
Course #	???	Course Type	Core
Faculty	Computer Science and Engineering	Major	Computer science
Academic year	2016-2017	Semester Offered	Fall
No. of Credits	6 ECTS	Total workload on average	12 hrs. per week inc. 8 hrs. of self-study
Lecture Hours	2 per week	Lab Hours	2 per week
Language	English	Frequency	Weekly
Target Audience	Bachelors	Anticipated Enrollment	129 students
Studying year	1		
Grading Mode	A, B, C, D	Keywords	Architecture, Microprocessor, Assembly Language, Digital Systems, Cache Memory etc

Course outline

[Short description of the course. Example: This is an introductory course in computer architecture. After a general introduction, we adopt a bottom-up approach, starting from fundamentals of digital systems, moving from combinatorial to sequential to higher-level components, all the describing the building blocks of a modern CPU. We also quickly cover an introduction to VHDL for hardware description. Then, we move to the assembly-language level, and we consider the basic concepts of it as well as its relation to higher-level languages, and quickly introduce fundamentals of parallelism, pipelines, and cache memories.

Course Delivery

In general, almost every Wednesday, there will be one 2-hour lecture (all students) together with one 2-hour lab (in sections of 33 students)

Prerequisite courses

This is a First year's bachelors course, without pre-requisite courses

Required background knowledge

[Example: Basic understanding of iuniversity-entrance-level mathematics, physics, as well as programming

Course structure

[Example: IA - Individual Assignment, RQ - reading questions, GA - group assignment etc.]

Week#/	Торіс	Assignments
Date	•	
Week1/Aug2	Introduction to DS	
4		
Week2/Aug31	Binary Arithmetic and Logic Gates	
Week3/Sep7	Combinatorial 1 and 2 (No Glitches) (Ch2)	
Week4/Sep1 4	Combin + Sequential (Basic FSM, no timing) (Ch3)	
Week5/Sep2 1	Basic Intro to VERILOG (Ch4)	Lab on Verilog
Week6/Sep2 8	Building Blocks + FP Arithmetic (Ch5)	
Week7/Oct5	MidTerm	
Week8/Oct1	Intro to MIPS Assembly (Ch6) PartA	Lab on MIPS
2	•	Assembly 1
Week9/Oct1	Intro to MIPS Assembly (Ch6) PartB	Lab on MIPS
9		Assembly 1
Week10/Oct 26	Data Paths & Pipelines (Ch7) PartA	
Week11/Nov 2	Data Paths & Pipelines (Ch7) PartB	
Week12/Nov 9	Caches & Memory (Ch8) PartA	
Week13/Nov 16	Caches & Memory (Ch8) PartB	
Week14/Nov 26	Review + Projects	
Finals Dec1- 12	Finals	

Textbook(s)

B1) Digital Design and Computer Architecture, Second Edition, D. Harris and S. Harris (2012) [Primary TextBook!]

B2) Computer Organization and Design, Revised Fourth Edtion: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design), 2012

Reference Materials

As extra reading, you might want to visit the ARM processors versions of the books, as well as:

Computer Architecture, Fifth Edition: A Quantitative Approach (The Morgan Kaufmann Series in Computer Architecture and Design)

Computer Resources

Students should have Laptops with installed the MIPS and Verilog Simulators

Laboratory Exercises

- 1. Verilog Exercises
- 2. MIPS Assembly Part 1
- 3. MPIS Assembly Part2

Laboratory Resources

MIPS + Verilog Simulators (TBD)

Grading criteria

Assignments/Projects (30%), Midterm (30%), and Final Exam (40%)

Late Submission Policy

This policy will be strictly applied in this course. If a personal emergency should arise that affects your ability to turn in an assignment in a timely fashion, you must contact the course instructor BEFORE the deadline to get a "Special Late Submission Approval" from the course instructor. Without the "Special Late Submission Approval" submissions will be still accepted up to 48 hours late, but with a 50% penalty. No "Special Late Submission Approval" will be granted after the deadline. All late submissions should be submitted by email directly to the instructors

Cooperation Policy and Quotations

We encourage vigorous discussion and cooperation in this class. You should feel free to discuss any aspects of the class with any classmates. However, we insist that any written material that is not specifically designated as a Team Deliverable be done by you alone. This includes answers to reading questions, individual reports associated with assignments, and labs. We also insist that if you include verbatim text from any source, you clearly indicate it using standard conventions of quotation or indentation and a note to indicate the source.

Additional information