Introduction to Information Security 14-741/18-631 Fall 2021 Unit 3: Lecture 5:

Trusted Platform Module & Intel SGX & HW issues

Limin Jia liminjia@andrew

This Lecture's Agenda

Outline

- **▼** TCG
 - **▼**Trusted Computing Group
 - **▼**Trusted Platform Module
 - **▼**Examples: Bitlocker
- **■** Intel SGX

Objective

- Spark interest in a very current security topic
- Provide an application example of some of the security materials we've seen earlier
- ▼ Evidence the potential danger of trust assumptions on hardware

What is Trusted Computing?

- A technology to ensure the system (computer) is trusted to run only authorized programs
 - E.g., only "authentic" version of Windows can run
 - **▼** Trusted by whom?
 - **▼** Software vendor
 - **■** User
- Controversial topic
 - Advocates
 - **▼**Make computers safer
 - **▼**Protection against viruses and malware
 - **▼** Opponents
 - **▼**Too much power and control into software vendors

Trusted vs Trustworthy

- A <u>trusted</u> system or component is one whose failure can break the security policy
- A trustworthy system or component is one that will not fail
- Trusted Computing as used in the title of this lecture is really intended to mean "Towards Trustworthy Computing"

Why Trusted Computing?

- Computers are everywhere
 - **▼** Mobile devices, cars, ...
- Computing is distributed everywhere
 - Cloud
- How can we be sure that actions are carried out as specified?
 - Malicious software and hardware

Externally Verifiable?

■ Desirable property: Remotely verify trustworthy device operation

Outline

- OS challenge: we study problem of how a remote entity can establish trust in a software system
 - How can we (remotely) establish trust that correct OS and correct software is executing?
- Review of some current approaches for building secure (trustworthy) systems
- Commodity TPM-based attestation
 - Static Root of Trust (version 1.1b)

Adversary Model

- Axiom: Every system has at least one more flaw ^②
- We assume remote adversary who can launch network-based attacks
 - Adversary may control network communication
 - Adversary can compromise OS and/or applications
- We trust local hardware
 - ▼ local hardware attacks are even harder to defend against
- Practical model, as remote attacks constitute majority of threats against commodity systems

Security Properties to Consider

■ Trustworthy device operation

■ How can we trust operations that our devices perform?

Questions to consider

- How can we trust App1?
- What if App2 has a security vulnerability?
- What if Operating System has a security vulnerability?

Approaches to improve the trustworthiness of the execution environment

- Isolation: Virtual-machine-based isolation
- Fix what's running
 - ▼ Program code in ROM
 - **▼** Secure boot

- Evaluation metric: size of Trusted Computing Base (TCB)
- We visualize components in TCB in red:

Virtual-machine-based Isolation

Approach: Isolate applications by executing them inside different Virtual Machines

Advantages

- **▼** Smaller TCB
- Isolation between applications
- Eliminate worries about other applications

Disadvantages

- **▼** VMM is still large and part of TCB
- Relatively complex, not well suited for average user
- Verdict: Smaller TCB, step in right direction

Program Code in ROM

- Approach: keep entire program in ROM
- Advantages
 - **▼** Simplicity
 - Adversary cannot inject any additional software

Disadvantages

- Cannot update software (without exchanging ROM)
- Adversary can still use control-flow attack
- Entire system is in TCB, no isolation

Verdict

Impractical for current systems, ability to update code for enhancing features or fixing bugs is critical

"Secure" Boot via certification chain

- Each component of the boot process verifies following component to be loaded
 - Example: digital signature on each boot component; boot loader contains public key and verifies digital signature on OS, etc.
- Advantages
 - Only approved software can be loaded (assuming no vulnerabilities)
- Disadvantages
 - Adversary only needs to compromise single component
 - Entire system is in TCB, no isolation
- Verdict: Entire system is still part of TCB, Relatively weak security guarantee

Remote Attestation

- Attestation enables verifier to establish trust in untrusted device
 - Attestation tells verifier what code is executing on device
 - If intended code is executing on untrusted device, verifier can trust its operation

Hardware-based Attestation

- Leverages hardware support for attestation
- Why hardware?
 - Can be made tamper-resistant easily
- Trusted Computing Group (TCG) proposed Trusted Platform Module (TPM) chip
 - Already included in many platforms
 - Most newer Intel/AMD chips have TPM
 - Windows 11 "demand" TPM 2.0 support
- Modern microprocessors provide special instructions that interact with TPM chip
 - AMD SVM: SKINIT instruction
 - Intel TXT/LT: GETSEC[SENTER] instruction

Trusted Computing Group (TCG)

- Open organization to "develop, define, and promote open standards for hardware-enabled trusted computing and security technologies."
 - Desktops, laptops, servers, cell phones, PDAs, ...
 - Industry consortium by AMD, IBM, Intel, HP, Microsoft, ...
- These secure platform primitives include
 - Platform integrity measurements
 - Measurement attestation
 - Sealed storage
- Can enable
 - ▼ Trusted boot (not secure boot)
 - Attestation, which lets a remote verifier check integrity of software
- **■** Goals:
 - Ensure absence of malware
 - Detect spyware, viruses, worms, ...

Trusted Platform Module (TPM)

TPM Non-Volatile Memory

- Endorsement key (EK) (2048-bit RSA)
 - Public/private key pair
 - Unique to each chip, created at manufacturing time, cannot be changed
- Manufacturer certificate, e.g., {PubEK }_{K-1</sup>IBM}
- On-chip storage for Storage Root Key K⁻¹_{SRK} (2048-bit RSA)
 - ▼ Created using TPM_TakeOwnership(OwnerPassword, ...)
 - Can be cleared later with TPM ForceClear from BIOS
- OwnerPassword (160 bits)

Basic TPM Functions

Integrity measurement: PCRs store integrity measurement chain

- ▼ PCRs initialized to default value at boot time
- ▼ TPM_Extend(n, data)
 PCR[n]_{new} = SHA256(PCR[n]_{old}||SHA256(data))

Remote attestation (PCRs + AIK)

- Attestation Identity Keys (AIKs) for signing PCRs
- Attest to value of integrity measurements to remote party

Sealed storage (PCRs + SRK)

▼ Protected storage + unlock state under a particular integrity measurement (data portability concern)

Basic TCG-Style Attestation

BIOS calls TPM_Startup (ST_CLEAR) initialize PCRs to 0

Basic TCG-Style Attestation

Problem?

■ What would go wrong if TPM_Startup (ST_CLEAR) could be called at any time after boot?

Sealed Storage

- TPM_seal: encrypt files based on PCR values (into a blob)
- TPM_unseal: decrypt blob
 - Only succeed if the PCR values at the time of unseal is the same as the PCR values in the blob

- PCR values ensure that data can only be decrypted by "authorized" programs
 - If OS kernel (application) is changed, PCR values will not match

BitLocker

- A full disk encryption application included with Windows Vista and later
- Volume Master Key (VMK) encrypts disk volume key
- VMK is sealed (encrypted) under TPM SRK using PCR values
 - BIOS, extensions, and optional ROM (PCR o and 2)
 - Master boot record (MBR) (PCR 4)
 - NTFS Boot Sector and block (PCR 8 and 9)
 - NTFS Boot Manager (PCR 10), and –
 - BitLocker Access Control (PCR 11)

BitLocker—System Updates

- Measurement may change for legitimate reasons
 - **▼** BIOS updates
 - **▼** OS updates
- Have to suspend BitLocker protection before update
- Or use recovery key after updates
- Otherwise, suffer loss of data

Shortcomings of TCG-style Attestation

- Integrity measurements are done at load-time not at run-time
 - ▼ Time-of-check-time-of-use (TOCTOU) problem
 - Cannot detect any dynamic attacks!
- Coarse-grained, measures entire system
 - Accumulates hundreds of integrity measurements
 - Every host is different, different firmware versions, different drivers, different patches, different apps, different spyware, ...
 - What does a PCR mean in this context?
 - TCB includes entire system!
- No guarantee of execution
- Requires special hardware: TPM chip

Time of Check, Time of Use (TOCTOU)

Reset attack possible after read of log

Policy Issues

■ Can TPMs be used for malicious purposes?

- **▼** Could software vendor control all applications that are executed?
- **▼** Could content provider have total control over how we use data? Fair use?

■ TPMs can enhance security of computer systems

- Should government require use of TPMs?
- **▼** Other issues?

TCG Controversy

- TCG is considered very controversial because it potentially allows content providers to control clients (DRM enforcement)
- This takes away the freedom of the user to use the system as it sees fit (it can be used to lock-out GPL software)
- A privacy concern is that TCG can be used to track users
- Are these concerns valid?

DRM Example

- Downloading a music file
- Remote attestation
 - Refuse to play except on specific music player
 - **▼** Windows Media Player
 - Sealed storage prevent opening file from another player

More Benign Examples

■ Prevent cheating in online games

- Players modify game in order to cheat
- Remote attestation can verify all players connected to game server are running an unmodified copy

Virus and spyware

- Users identify applications modified by third parties that add spyware to software
 - Malicious version of Outlook that contains spyware

TCG Published Best Practices Document

- Design, Implementation, and Usage Principles for TPM-Based Platforms
 - **■** May 2005
 - ▼ Clearly states that
 - "Use of coercion to effectively force the use of the TPM capabilities is not an appropriate use of TCG technology"
 - Compliance is voluntary
 - **▼** Can government enforce compliance?

Arguments for TCG

- TCG designers were aware of such concerns and TPM focus is that machine owner is in full control (individual or enterprise). Neither service nor content provider control TPM
- TPM does not lock-out software, it merely measures it (if enabled)
- It does allow a service/content provider to not service the machine if attestation statement does not meet its requirements
- Is this very different from current mechanism where each browser sends browser name, OS, version to web server?

Intel SGX

Intel SGX

Intel Software Guard Extensions (SGX): extensions to Intel processes with additional instructions https://software.intel.com/en-us/sgx/details

■ Goal:

- ▼ Enclave: protect the secrecy and integrity of program and data
- ▼ Remote attestation: prove program is running in enclave

Applications:

- ▼ Keep secret key in enclave
- Running client's program in enclave in the cloud

Enclave

- Application is divided into trusted and untrusted parts
- Untrusted part create enclave and execute trusted parts in enclave
- Enclave has restricted entry and exit points
- Data written to memory is encrypted
- Only program in enclave can access data in the enclave

Hardware issues

Meltdown

- Meltdown uses out-of-order execution to read arbitrary-kernel memory (attack on Intel chips)
 - Speculative execution of following instructions

```
raise_exception();

// the line below is never reached

ccess(probe_array[data * 4096]);
```

Listing 1: A toy example to illustrate side-effects of outof-order execution.

Figure 4: Even if a memory location is only accessed during out-of-order execution, it remains cached. Iterating over the 256 pages of probe_array shows one cache hit, exactly on the page that was accessed during the out-of-order execution.

Meltdown Steps

- 1. Load inaccessible memory location into register
- Access cache line
- 3. Flush+Reload to determine accessed cache line

```
1 ; rcx = kernel address
2 ; rbx = probe array
3 retry:
4 mov al, byte [rcx]
5 shl rax, Oxc
6 jz retry
7 mov rbx, qword [rbx + rax]
```

Listing 2: The core instruction sequence of Meltdown. An inaccessible kernel address is moved to a register, raising an exception. The subsequent instructions are already executed out of order before the exception is raised, leaking the content of the kernel address through the indirect memory access.

Meltdown Why Does This Work?

■ The key is that Intel (but not ARM or AMD) don't squash under-privileged TLB (translation look-ahead buffer) hits. The load executes, and only actually faults when the faulting load tries to retire.

Spectre Attack

- Similar to Meltdown, but also for AMD and ARM processors
 - Utilizes branch prediction to achieve speculative execution
 - No privilege escalation vulnerability on Intel CPUs
- Mis-train CPU to get branch prediction wrong

```
if (x < array1_size)
  y = array2[array1[x] * 256];</pre>
```

Listing 1: Conditional Branch Example

Spectre Attack

```
if (x < array1_size)
    y = array2[array1[x] * 256];</pre>
```

Listing 1: Conditional Branch Example

- Value of x maliciously chosen so array1[x] is secret byte in victim's memory (also user mode program)
- Make sure array1_size isn't cached so speculatively try to read from array2
- Check cache and win!

Take Away Slide

- TPM aims to confirm integrity of the code running
 - Avoiding Trojans, malicious software
 - Making sure a remote party is behaving properly
 - Initially used for integrity of core hardware (BIOS, bootloaders)
 - Extended to applications
- Muddy waters from a policy standpoint
 - Can result in vendor lock-in?
 - Apple example
 - Entertainment industry very interested in using this for DRM
- TPM itself doesn't do any enforcement
- Hardware errors can cause serious security problems
 - Meltdown, Spectre