[Mask classification Competition]

1

CV_9조

0.8007

82.8730

CV / 9조

부캠 전의 나

* 비전 그게 뭔데..... * MNIST는 해봤는데.....

목차

[1] 각 단계에서 관찰한 Insight와 Problem을 설명함

[2] 그에 대한 Approach를 설명하고자 함

차근차근 Step by step으로 이야기해보겠습니다!

Problem & Solution

Problem	Stage	Approach	Comment	
Model architecture	Domain Understanding	[1] Single-way[2] Three-way parallel[3] Three-way head	- 18개의 label을 어떻게 나누어 예측할 것인지에 대한 issue	
Data imbalance	EDA(Data Analysis)	[1] Sampler[2] Intra-class Cutmix[3] Data Augmentation	[1] Train/valid의 Data split에 관한 issue [2] CutMix 방법론 [3] 우리의 Data에 적합한 augmentation은?	
Face detection (Image Noise)	EDA(Data Analysis)	[1] MTCNN	- TTA 시에 큰 성능 향상을 가져다주었음	
Data mislabel	Data Preprocessing	[1] Hands-on correction	-되려 성능이 하락되었음 -직접 Annotate해보는 경험이 인상깊었음	
Model selection & Overfitting	Modeling	[1] EfficientB4 [2] <mark>Cutmix</mark>	- Big model과 Small model 중 무엇을 택할 것인가? - 오버피팅을 막아줄, 데이터셋에 적합한 augmentation	
Model-tuning	Training	[1] Val-training [2] Ensemble	- 성능 끌어올리기	

Step 1. Problem definition

Class Description:

마스크 착용여부, 성별, 나이를 기준으로 총 18개의 클래스가 있습니다.

Aa Class 1	Mask	Gender	Age
0	Wear	Male	< 30
1	Wear	Male	>= 30 and < 60
2	Wear	Male	>= 60
3	Wear	Female	< 30
4	Wear	Female	>= 30 and < 60
5	Wear	Female	>= 60
6	Incorrect	Male	< 30
7	Incorrect	Male	>= 30 and < 60
8	Incorrect	Male	>= 60
9	Incorrect	Female	< 30
10	Incorrect	Female	>= 30 and < 60
11	Incorrect	Female	>= 60
12	Not Wear	Male	< 30
13	Not Wear	Male	>= 30 and < 60
14	Not Wear	Male	>= 60
15	Not Wear	Female	< 30
16	Not Wear	Female	>= 30 and < 60
17	Not Wear	Female	>= 60

이미지와 메타데이터가 주어졌을 때, Mask / Gender / Age의 label을 예측하는, multi-label classifiaction

Comparison

Comparison: Feature correlated?

[Single model]

- 구현과 실험관리가 제일 편하다.

[Three-way head model]

- Correlation을 capture하는 것이 single과 다를 게 없다 생각하였으며, 실험과 구현의 복잡함(Sampler issue)로 인해 기각하였음

Comparison: Feature Independent?

[Three-way Model]

- 3개의 model이 <u>전부 옳게 예측해야</u> 실제 정답과 맞음
- (후일담) Age prediction이 이 접근의 bottleneck이었고, 나머지 것들은 90 후반의 정확도였으나 age 예측이 정확도가 많이 낮았다. 단일 age model을 개선시킬 방법을 찾지 못해 기각.

Closing Problem definition...

[1] 총 3개의 접근 중 <u>Single-model과 Three-way model</u>의 baseline을 구축하여 진행했다.

[2] 단일 Age-model의 개선책을 찾지 못해, 실험관리의 용이성과 시간 단축을 위해 single-model로 방향을 전환했다.

Step 2. Data Analysis

이미지 분포

• Some insights, and mask

데이터 분포

• Imbalance

• 경계값

데이터 품질

- Image noise
- Label noise

이미지 분포 – Some insights

[1] <u>마스크를 잘못 쓴 형태가 다양하게 분포해 있었다.</u>

- 코가 보이는 경우와 턱만 보이는 경우는 Incorrect와 normal 간의 분류가 어려울 것 같았다.

[2] <u>마스크의 종류도 다양했다.</u>

- 코와 입의 윤곽이 어느 정도 드러나 있는 비말 마스크부터,
- 그보다 얼굴을 더 완벽하게 가리는 KF마스크와 , 목까지 가리는 천 마스크도 있다.

boostcampaitech

1. class distinction

a. incorrect mask

올바르지 않은 방식으로 mask를 착용한 image를 분석했다.

- i. 입만 가린 image
- ii. 눈과 코를 가린 image
- iii. 콧잔등이 보이는 image
- iv. 코만 가리고, 입은 드러낸 image
- v. 아랫입술만 보이는 image
- vi. 턱만 가린 image
- vii. 입과 코를 모두 가렸으나 턱이 보이는 image

콧잔등이 보이는 경우와 턱만 가린 경우는 각각 correct mask, no mask와의 분류에 문제가 있을 수 있다고 분석했다.

이미지 분포 - Some insights

[3] 본 데이터셋은 대부분의 마스크가 색상이 있는 마스크였다.

- Mask 또한 불균형 데이터였지만, 마스크가 대부분 유색 마스크였기에 얼굴과 마스크 간의 Color 차이 정보를 모델이 학습하여 잘 분별할 수 있을 것으로 생각하였다.
- 실제로, 학습된 모델은 mask에서 오류율이 제일 적으며, Color 관련 Augmentation을 하면 LB score(리더보드 점수)가 줄어들었다.

In [72]: Image.open("image_example")

Out [72]:

In [71]: show_label("image_example")

Out [71]: 16

16은 Not-wear로 분류된다.

- 물론, 모든 투명마스크를 분류 못하는건 아니다.
- 흰색이 일부 섞인 투명마스크의 경우 잘 분류하는 모습을 보였다.

이미지 분포 – Some insights

[4] 하지만… 투명 마스크를 착용한 사람은 잘 탐지를 못할 것 같다는 생각이 들었다.

- 인터넷의 투명 마스크 착용 데이터를 모델에 입력하면,
 No mask로 분류하는 경우도 종종 있었다..
- <u>추후 Model의 Robustness를 높이려면, 이런 데이터도 필요하겠다는 내용을</u> 팀원과 토론할 수 있었다.

In [72]: Image.open("image_example")

Out [72]:

In [71]: show_label("image_example")

Out [71]: 16

16은 Not-wear로 분류된다.

- 물론, 모든 투명마스크를 분류 못하는건 아니다.
- 흰색이 일부 섞인 투명마스크의 경우 잘 분류하는 모습을 보였다.

Now, problem and solution begins...

Data Imbalance -> Modeling, Training에서 address 예정

[1] Gender: 여성이 남성보다 2배 가량 많다.

[2] Mask: Incorrect와 No mask는 1개씩 있는데, 촬영 시 Normal은 5개씩 있어 1: 1: 5의 비율 차이가 있다.

[3] Age: 60대 이상의 데이터가 현저하게 적다.

Q. Imbalance 된 데이터가 어떻게 학습에 악영향을 줄 수 있을까?

- A1. Train/ Valid에 Data가 고르게 분배되지 못할 수 있다.
- → Train에서 학습하지 못한, 확률적으로 드문 label이 Valid에서 나타날 수 있다.
- A2. Metric에 따라 Label을 biased된채로 학습할 수 있다.
- → 드문 label의 정보를 제대로 학습 못할 수 있다.

female data의 양이 male data 보다 약 두배 가까이 많고, 60대 이상의 data 양이 적은 것을 확인했다.

Data의 경계값 → 제거하거나, 다르게 넣어볼까?

[1] Age의 상한이 60이다.

[2] 57~59살 중 일부 데이터는 육안으로 보기에도, 60대 이상과 구분하기가 힘들었다.

[3] 따라서, 학습 시 57 ~ 59살을 제외하거나 / 특정 나이부터는 60대 이상으로 동일하게 취급하자는 이야기가 나왔다.

따라서, 학습의 용이성을 위해 경계값의 데이터를 제거하는 옵션을 Age_removal이라 하여

Age_removal 옵션이 True라면 27~ 29, 57 ~59의 데이터는 학습에서 제외하고자 하였다.

성별 별로 나이 분포를 확인해본 결과 남녀 모두 20대 이하, 50세 이상의 구간에 data가 편중되어 있었다.

데이터 품질 – Image noise

[1] 배경에 글자가 있거나, 다른 인물 사진이 있는 경우도 있었다.

[2] 사진에서 얼굴이 차지하는 비중이 다르다.

- 우측 상단의 사진처럼 크게 차지하는 얼굴도 있는가 하면
- 좌측, 우측 하단의 사진처럼 작거나 중간 사이즈의 얼굴도 있다.

따라서, Augmentation을 할 때 일반적인 Crop을 하면 모든 얼굴을 다 보지 못하거나 배경을 완벽히 제거하진 못하겠다는 생각이 들었다.

데이터 품질 - Label noise: 사람도 어렵다

Incorrect인데 normal로 분류되어있음

Male? Female?(GT는 Female)

50대 후반? 60대 이상?(GT는 50후반)

헷갈리는 사진이 많았으며, 잘못 label된 사진이 많았다..정도로 요약하겠습니다.

Quality problem: 다음 Preprocessing에서 다룰 것

Step 3. Data Preprocessing

Data Noise

Label Noise

Data Augmentation

Face detection : MTCNN

- NAVER API와 사람의 합작!
- Correction code

- Soft : Horizontal flip etc
- Hard : Cutmix

Face detection: MTCNN

Problem: Dynamic face size, Background noise

- 다른 face-detection 라이브러리 대비 시간이 적게 들고,
- 성능이 준수하다고 하여 이용하였음

Demo: 제법 괜찮았다.

MTCNN - Hindsight

[1] CenterCrop보단 훨씬 느리다.

[2] 예상과 다르게 나온 Face들: 학습이 제대로 진행 안되었을 것

- 눈, 코, 입 자체를 가린 마스크 이미지같은 noise data의 경우에는 MTCNN도 잘 작동하지 못했다.
- 하여, 최종 ensemble에서는 CenterCrop을 이용한 모델도 이용하여 noise를 줄이고자 했다.

https://www.kaggle.com/code/timesler/comparison-of-face-detection-packages/notebook

Label noise – API + Human learning

- 나이와 성별을 알려주는 네이버 API를 이용하여 mislabel을 추려냄
- 그중에 Gender 580건에 대하여, 이를 교정해주는 GUI 프로그램을 만듬
- 팀원들과 판단하에 이를 고쳐나갔음

Label noise - Hindsight

[1] Re- labeling 시킨 데이터의 비율이 낮아서인지, 적용 전후 성능 차이가 크게 없었음

[2] <u>Data-Centric Al의 중요성</u>에 대해 느낄 수 있었다. 데이터가 잘못되었다면 사람이 직접 Annotate를 해야하는 경우가 있겠다고 느꼈다.

[3] Annotation Tool을 손으로 직접 짜서 비효율적이었는데, 추후 필요하면 더 좋은 annotate 둘, 또는 Data fix tool을 찾아보고 싶다 느꼈다.

Data Augmentation

[1] 18900 장의 데이터는 정말 적은 편

- [2] 추후 모델링 부분에서 쓰겠지만, 어떤 모델을 가져다 쓰든 1 epoch 만에 Train이 90%에 가깝게 올라감
- → 오버피팅에 취약
- [3] Data Augmentation이 없다면, epochs이 반복될 때마다 모델이 같은 데이터를 여러 번 보게 되는 셈
- → 데이터를 사실상 암기하여 일반화 효과가 약해지며, 이는 특히 Few label(60대 이상)에 치명적
- → 모델의 Noise마저 학습할 수 있음.
- [4] 우리의 Dataset의 속성에 걸맞는 Augmentation 기법을 골라야 한다고 생각하였다.

Data Augmentation

Soft Augmentation

이미지의 원본을 손상시키지 않는 선에서 noise를 적용

Ex) Flip, Rotate

Hard Augmentation

이미지의 원본에 강하게 noise를 주는 기법 Ex) MixUp, CutMix

Data Augmentation에게 우리가 기대하는 것

- [1] Augmentation을 통해 데이터의 일반화 성능을 확보하면서 + Overfitting을 방지하는 효과를 거두어야 한다.
- [2] 데이터의 개수가 전반적으로 적기 때문에, Oversampling과 비슷한 효과를 내는 Hard Augmentation을 이용하면 좋을 것 같다.
- [3] 데이터셋의 속성을 고려한 Augmentation을 하여, TTA때도 일반화될 수 있는 방법론을 찾자.

Examples of augmentations to make a dataset denser

-(출처) 오태현 마스터님 CV이론 2강, P.9

Soft Augment 관련 실험

[1] ColorJitter의 경우 어떤 transforms와 조합해도 좋은 결과가 나왔다. 이때, ColorJitter의 값을 0이 아닌 최소로 주는 것이 좋은 결과를 낸다.

[2] 너무 많은 transform이 추가되자 모델의 성능이 매우 낮아졌다.

→ 실험군이 다 밝기 관련 변환 + Geometric 변환이었는데, 이런 변환 중 일부는 Data의 일반화 가능성을 떨어뜨리는 augment 기법이었기 때문으로 추정된다. Original imag

우리가 택한 Augmentation

종류	구현 여부	사용 여부	의의(우리에게 적합한지)
Horizontal Flip	0	0	적합하다. 카메라의 경우 좌우반전이 될 수 있고, 충분히 있을 법한 사진이라고 느꼈다.
CenterCrop(MTCNN)	0	0	필요하다. 이는 원활한 Inference를 위함이다.
ColorJitter	0	X	- 초기 실험에서는 성능을 높여줬지만, 대회 후반부에서는 사용하지 않기로 했다 ColorJitter는 유색 마스크와 인물 얼굴 간의 밝기차 정보를 어느정도 왜곡시킬 수 있다고 생각하였기 때문이다.
RandomErasing	0	0	불필요한 배경정보를 삭제해주거나, 경우에 따라 얼굴 정보를 삭제해 robust한 학습이 가능할 것이라 생각했다.
Intra-class CutMix	0	0	(설명) getitem 시에 <mark>, 같은 label 끼리 cutmix해서 data를 load</mark> (의의) 각 Data가 위치한 manifold를 조금 더 연속적으로 학습할 수 있을거라고 생각했다.
Age-transfer GAN	X	Χ	(설명) 젊은 사람들의 데이터에 StyleGAN을 적용시켜, 60대 이상의 데이터를 확보하고자 했음 (한계) 학습의 어려움 + 60살이 경계값인데 데이터를 오염시키는 행동일 것 같았다.
Scene Removal	X	X	(설명) 사람을 제외한 배경을 제거하여, 인물 사진만 남기는 방법 (한계) 시간 문제 상 구현하지 못하였으며, CenterCrop이 이를 해결해 줄 수 있을 것이라고 여겼다.

⁻ Geometric 변환은, <mark>좌우반전을 해주는 Horizontal Flip만이 적합하다고</mark> 생각했다. - 그 외의 Affine transformation이나 color 관련 transformation은 데이터셋의 특성에 적합하지 않다고 결론지었다. (ex. 데이터셋 수집 특성상, 사진이 회전된 채로 있을것같진 않았다.)

Step 4. Modeling

• Baseline : ResNet34 • Small model vs Large model Model • Choice : EfficientB4 selection • Data Augmentation • DataSet : sampler Data Part • Dataset : Intra-class CutMix • Config 설명 Model Config

Model selection - Baseline - Overfitting!!

(Baseline) ResNet18 & ResNet34

Baseline은 SOTA 모델보다는 , 단순한 모델부터 시작하는게 좋을 것 같아 ResNet18, ResNet34를 이용하였다.
→ 학습의 용이성 때문.

그러나 ResNet34에서도, Augmentation 없이 1 epoch만에 Train Acc이 90%를 넘어가 오버피팅이 생긴다고 생각했다.

Model selection - Small model & Big model

Small Model

Big Model

Model selection

[1] ResNet34로도 Train accuracy가 높다고 생각했기에, 모델이 주어진 데이터를 표현하기에는 표현력이 이미 충분하다고 생각했다.

[2] 파라미터 수가 ResNet34보다는 적어야 overfitting을 방지할 수 있을 거라고 생각하여,

ResNet34보다 파라미터 수가 적으면서 ImageNet 기준 Accuracy가 더 높은 모델을 고르기로 하였다.

[3] Efficient_v2_s와 Efficient_B4였고, torchvision의 버전 문제로 인해 Efficient_B4를 택하였다.

[4] ViT를 사용하려는 시도도 있었으나, 학습의 어려움과 시간문제로 포기하였다.

	Weight ▼	Acc@1	Acc@5 ✓ Params ✓	Numbers 🏋
V	EfficientNet_V2_S_Weights.IMAGENET1K_V1	84.228	96.878 21.5M	2,150,000
	EfficientNet_B4_Weights.IMAGENET1K_V1	83.384	96.594 19.3M	1,930,000
	EfficientNet_B3_Weights.IMAGENET1K_V1	82.008	96.054 12.2M	1,220,000
	RegNet_Y_3_2GF_Weights.IMAGENET1K_V2	81.982	95.972 19.4M	1,940,000

Data Part 1: Augmentation

- 얼굴 탐지 성공하면 그대로, 실패 시 centercrop
- Train에는 추가로 RandErase 적용
- Test때 valid와 동일한 augmentation을 적용시킬 수 있다(TTA)

Data Part 2: WeightedRandomSampler

[1] Sampler??

- DataLoader에서 데이터를 가져올 때, 그 기준이 되는 idx를 sampler로 조절 가능

[2] WeightedRandomSampler

- 가중치(확률)를 기반으로 주어진 data에서의 sample을 뽑아냄
- 가중치가 클수록 자주 뽑히고, 적을수록 적게 뽑힘
- 각 label 의 분포확률을 이용하면, 모든 label이 비슷한 비율로 뽑히게 조절할 수 있다.
- 많은 label은 더 적게, 적은 label은 더 많이 뽑히도록

```
{\tt CLASS} \ \ torch. utils. data. Weighted Random {\tt Sampler} (\textit{weights}, \textit{num\_samples}, \textit{replacement=True}, \textit{generator=None}) \ \ [{\tt SOURCE}]
```

Samples elements from [0,..,len(weights)-1] with given probabilities (weights).

Parameters:

- weights (sequence) a sequence of weights, not necessary summing up to one
- num_samples (int) number of samples to draw
- replacement (bool) if True, samples are drawn with replacement. If not, they are drawn without replacement, which
 means that when a sample index is drawn for a row, it cannot be drawn again for that row.
- generator (Generator) Generator used in sampling.

Example

```
>>> list(WeightedRandomSampler([0.1, 0.9, 0.4, 0.7, 3.0, 0.6], 5, replacement=True))
[4, 4, 1, 4, 5]
>>> list(WeightedRandomSampler([0.9, 0.4, 0.05, 0.2, 0.3, 0.1], 5, replacement=False))
[0, 1, 4, 3, 2]
```

Data Part 2: 진짜 고르게 뽑힐까? -> YES, but...

[1] 샘플링 결과 각 label이 700~800 개로 고르게 배분된 것을 알 수 있지만,

- Frequent label에서 뽑히지 않은 데이터가 있음
- Rare label에서 같은 데이터가 반복적으로 뽑혔음

이란 사실을 알 수 있다.

[2] Frequent label의 문제는 Epochs이 반복되면서 해결할 수 있겠지만, Rare label의 문제는 Data Augmentation이 필요하겠다고 생각했다.

각 Label이 700~800개로 고르게 배분된 것을 알 수 있음

- 달리 말하면, Frequent Label은 적게 뽑혔고, Rare label은 많게 뽑혔단 뜻
- Rare label은 epoch이 반복될수록 overfitting 가능성
- Frequent label은 epoch이 반복되면서, 그 전에 보지 못한 데이터를 볼 수 있다.
- 어느 형태든, Data의 다양성 측면에서 hard-augmentation이 필요하다고 생각했다.

```
#Loader 정의 train sampler
train loader = DataLoader(
   512. # batch size
   num workers=0.
   shuffle=False.
   drop_last=True.
   sampler = data.get_sampler("train") # WeightedRandomSampler
label_count = list(range(18))
for data, label in todm(train_loader):
   data = data.to(device)
   label = label.to(device)
   label = label.cpu().numpv()
   for i in label:
       label_count[i] += 1
print(label_count)
100%
[748, 759, 720, 740, 722, 781, 722, 757, 767, 700, 748, 747, 753, 754, 780, 736, 758, 773]
```

Data Part 3: Intra-class CutMix (SMOTE)

[1] SMOTE

 낮은 비율로 존재하는 클래스의 데이터를 kNN 알고리즘을 활용하여 새롭게 생성

[2] SMOTE를 이미지에서 구현하려면 어떻게 할 수 있을까?

- 동일한 Label의 이미지를 뽑아 MixUp 또는 CutMix 등을 하면
- 두 이미지 사이의 평균 데이터 포인트를 오버샘플링하는 것과 동일한 효과를 낸다고 생각했다.
- [3] Dataset에서 __getitem__을 통해 CutMix를 구현 가능하게끔 하였다.

1. SMOTE란

Synthetic Minority Oversampling Technique

SMOTE의 동작 방식은 데이터의 개수가 적은 클래스의 표본을 가져온 뒤 임의의 값을 추가하여 새로운 샘플을 만들어 데이터에 추가하는 오버샘플링방식이다.

Data Part: Hindsight

Intra-class Cutmix은 좋은 결과를 냈다.

구상모 _T4008 0.7786 → 0.7817

81.0159 → 80.9365

상세 보기 2022-11-02 01:05

- 다만, 최종 제출에서는 Intra-class Cutmix대신 기존의 Cutmix를 이용하였다.
- → (a) 성능이 더 잘나왔기 때문도 있고
- → (b) 오버샘플링보단 각 Label 간의 경계를 더 robust하게 학습하는 기존의 CutMix가 더 일반화 성능이 높을 것이라고 생각했기 때문이다.

Model Part :: Config Part 1

```
"dataset": "MaskSplitByProfileDataset",
"model": "EfficientB4",
"augmentation": "CustomAugmentation",
"optimizer": "Adam",
"criterion": "f1",
"seed": 7,
"epochs": 10,
"resize": [380, 380],
"batch size": 32,
"valid_batch_size": 256,
"lr": 0.0001,
"val ratio": 0.2,
"lr_decay_step": 5,
"log interval": 20,
"name": "exp",
"cutmix": "yes",
"cutmix prob": 0.7,
"cutmix lower": 0.46,
"cutmix_upper": 0.54,
"val train": "true",
"val epochs": 3,
"age_removal": true,
```

(설명)

[1] dataset : SOTA에 쓰인 것은, 결론적으로는 MaskSplitbyProfileDataset. CutMixDataset은 앙상블에 이용하지 않았다.

[2] Model: EfficientB4

[3] Augmentation : CustomAugmentation

[4] Resize : [380, 380]

→ EfficientB4가 이미지넷에서 학습되었던 데이터 사이즈인 [380,380]을 맞추어줬다.

[5] Batch_size: 32

→ 그 이상 64, 128을 넣으면 OOM이 일어났다.(이미지 해상도가 높아졌기 때문)

[6] age_removal : True

→ 경계값의 데이터를 제외하여 보다 뚜렷하게 구분할 수 있게끔 하였다.

Model Part :: Config Part 2

```
"dataset": "MaskSplitByProfileDataset",
"model": "EfficientB4",
"augmentation": "CustomAugmentation",
"optimizer": "Adam",
"criterion": "f1",
"seed": 7,
"epochs": 10,
"resize": [380, 380],
"batch size": 32,
"valid_batch_size": 256,
"lr": 0.0001,
"val ratio": 0.2,
"lr_decay_step": 5,
"log interval": 20,
"name": "exp",
"cutmix": "yes",
"cutmix prob": 0.7,
"cutmix lower": 0.46,
"cutmix_upper": 0.54,
"val train": "true",
"val epochs": 3,
"age_removal": true,
```

(설명)

[7] optimizer : Adam을 썼다.

TLDR: Adam makes it easy to converge quickly and on the first try. SGD+momentum takes more work to tune, but tends to reach better optima.

18.2K views · View 115 upvotes · View 4 shares · Answer requested by Brando Miranda

- 초기 실험은 SGD로 진행했는데, Adam이 hyopt에 상관없이 빠르게 수렴한다고 하여 Adam을 택했다.

[8] Ir: 0.0001로 진행하였다.

그 이상의 Ir에서는 Adam의 학습 속도가 너무 빨라, 이를 0.0001로 낮추었다.

(Train part에서 얘기하고자 하는 것들)

[9] loss: cross_entropy와 F1 loss를 동시에 진행하였는데, 최종 제출 모델은 F1 loss로 학습시켰음

[10] Cutmix : train 시에 cutmix를 적용하였으며, cutmix_lower ~ cutmix_upper를 통해 cutmix 되는 비율을 지정하였다.

[11] val_train: validation data도 학습에 이용하였다.

boostcamp aitech

https://www.quora.com/Why-do-the-state-of-the-art-deep-learning-models-like-ResNet-and-DenseNet-use-SGD-with-momentum-over-Adam-for-training

Step 5. Training

Train strategy

- Custom cutmix(세로 방향)
- Validation as training

Error case Analysis Hindsights on data; model debugging

Others

- Ensemble strategy & TTA etc...
- Metric learning

Training part - CutMix

Image	ResNet-50	Mixup [48]	Cutout [3]	Dog 0.6 Cat 0.4 78.6 (+2.3) 47.3 (+1.0)	
Label	Dog 1.0	Dog 0.5 Cat 0.5	Dog 1.0		
ImageNet Cls (%)	76.3 (+0.0)	77.4 (+1.1)	77.1 (+0.8)		
ImageNet Loc (%)	46.3 (+0.0)	45.8 (-0.5)	46.7 (+0.4)		
Pascal VOC Det (mAP)	75.6 (+0.0)	73.9 (-1.7)	75.1 (-0.5)	76.7 (+1.1)	

- 서로 다른 Label의 이미지 patch를 일부 섞는 기법
- 좌측의 예를 들면, 강아지를 0.6, 고양이를 0.4 섞었다고 알려주는 것

(본래의 구현)

- Random하게 patch를 섞어야 함
- 그런데, 랜덤하게 섞는 것이 우리의 데이터셋에 걸맞는 방법일까???
- 마스크라는 특수성으로 인해, patch를 정말 random하게 가져가면 label의 정보를 상당 부분 잃을 수 있다.

상단의 사람의 마스크착용 여부를 아시겠습니까? 또한, 하단의 사람의 성별과 나이를 아시겠습니까?

Training part - CutMix :: 절반에 가깝게 세로로

(우리의 구현)

따라서, 이미지의 46~ 54%를 세로 방향으로 CutMix하고자 하였다.

이렇게 CutMix를 하는 것이 random하게 이미지를 쪼개는 것보단

label의 정보를 보존하는 것이라고 생각했고,

이를 통해 모델 성능을 끌어올릴 수 있었다.

Validation data as Training

(우리의 구현)

학습이 끝난 후 Validation data를 Training 데이터로 사용하였다.

val_ratio가 20%이므로, 20%의 데이터에서 더 많은 표현을 학습할 수 있으리라고 생각했다.

대회의 후반부에서 사용하였다.

Model Debugging - wandb Table을 보면…

				+ Add Panel
able"]				\$
label	pred	Age	Gender	Mask
4	1	Age_GT:1,Age_pred:1	gender_GT:1, gender_pred:0	Mask_GT:0, Mask_pred:0
16	15	Age_GT:1,Age_pred:0	gender_GT:1, gender_pred:1	Mask_GT:2, Mask_pred:2
4	3	Age_GT:1,Age_pred:0	gender_GT:1, gender_pred:1	Mask_GT:0, Mask_pred:0
5	4	Age_GT:2,Age_pred:1	gender_GT:1, gender_pred:1	Mask_GT:0, Mask_pred:0
3	0	Age_GT:0,Age_pred:0	gender_GT:1, gender_pred:0	Mask_GT:0, Mask_pred:0
6	9	Age_GT:0,Age_pred:0	gender_GT:0, gender_pred:1	Mask_GT:1, Mask_pred:1
← 〈 _ 1:	3 - 18 of 34 → →		Export a	s CSV Columns Reset Table

- [1] Mask가 틀렸다면 대체로 face detection 탓이다 (17번 데이터의 경우)
- → 하여, ensemble 시 centercrop을 시킨 model도 포함시켰다.

[2] Age를 종종 틀린다.

- → 사람이 봐도 어렵다.
- → 이를 위해 metric-learning 등을 생각했지만 준수한 성능이 나오지 않아 관뒀다.

Others: Ensemble strategy and TTA

[1] Thresholding

lmageID ▼ best1	▼ best2	▼ m	y_best1 🔻 my	y_best2 ▼ my_val1 ▼ my_val2 ▼ similarity▼
c5dae7f9a9	1	0	2	0 1.2727816 1.0330424 true
71e1de7f2	2	1	2	1 1.4967771 0.4716686 false
482571b69	14	17	14	13 1.8219097 0.9414834 false
3ea8be82c	13	14	13	14 2.4922321 0.9524657 false
cad9b1b8e	2	1	2	1 1 3073969 1 238693 true
f381c7e47a	10	11	10	11 2.7999167 0.8872521 false
b87147080	10	11	10	11 2.4261386 1.0741038 false
e6efc6c416	1	0	4	1 1.3562051 1.2281513 true
e48be606f	5	4	2	1 1.1659666 1.1174465 true

- Top-2 model이 다른 label을 가질 경우, 예측 값의 차이가 threshold 이하인 label을 더 데이터가 많은 쪽의 label로 바꿔줬음.
- 모델의 나이 예측이 정확하지 않았기 때문
- F1 : 0.002, acc : 0.2로 약간의 상승이 있었음.

[2] Hard voting

- 최종 제출 시에는 Top-3를 hard-voting하였음.

[3] TTA

- test-time 때 MTCNN을 쓰니, F1-score가 0.1 상승했는데, face부분을 잘 crop해주었기 때문이라 생각합니다.

Others: Metric learning for age

(Metric learning)

- -일반적인 classification → Feature 간의 decision boundary를 찾도록 학습
- -Metric learning → 비유사한 Feature를 멀리 떨어지도록 학습

모델 디버깅 결과, 잘 구분이 안되는 age label 0, 1, 2에 대해 metric learning을 하면 어떨까?란 생각을 하였다.

그래서 Arcface를 도입시켰지만, 성능이 잘 나오지 않았다.

Recap: Overall Problem & Solution

Problem	Solution
Image noise: 배경 정보, 얼굴의 크기 차이	MTCNN을 통한 processing
Label noise : 잘못된 label	외부 API + human annotation
Data value : 경계값에 있던 데이터	Age-removal :: 경계값(27~29, 57~59) 제외 학습
Data imbalance : 60대가 너무 적었음	[1] Sampler를 통해 Label을 고르게 load [2] Intra-class cutmix를 통해 oversampling을 시도해봤음 [3] Training 시 cutmix를 통해 Label 간의 경계를 더 robust하게 학습했음
Model overfitting : 수렴이 너무 빠름	[1] 파라미터가 적은 EfficientB4 [2] Dataset의 특성에 적합한 Augmentation을 통해 overfitting 방지 - Soft : RandErase, HorizontalFlip(그 외 변환은 마스크 정보 등을 왜곡)
Techniques : 성능을 올리기	[1] Training CutMix[2] Use val data for training[3] Model Ensemble

Thank you.

로켓만큼 빠르게 성장하되, 뜻깊고 몸/마음이 건강한 부캠 기간을 보내시길. 들어주셔서 진심으로 감사합니다.

