§4.4 Coordinate Systems

Let $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars $c_1, ..., c_n$ such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

Suppose $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ is a basis for a vector space V and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights $c_1, ..., c_n$ such that $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

If $c_1, ..., c_n$ are the \mathcal{B} -coordinates of \mathbf{x} , then the vector in $\mathbb{R}^n [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ is the coordinate vector of \mathbf{x} (relative to \mathcal{B}), or the \mathcal{B} -coordinate vector of \mathbf{x} .

Given a basis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$ let $\mathcal{P}_{\mathcal{B}} = [\mathbf{b}_1 \ \cdots \ \mathbf{b}_n]$. Then the vector equation $\mathbf{x} = c_1\mathbf{b}_1 + \cdots + c_n\mathbf{b}_n$ is equivalent to $\mathbf{x} = \mathcal{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$. We call $\mathcal{P}_{\mathcal{B}}$ the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n . Since the columns of $\mathcal{P}_{\mathcal{B}}$ form a basis for \mathbb{R}^n , $\mathcal{P}_{\mathcal{B}}$ is invertible. Hence $\mathcal{P}_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$.