DEEP LEARNING FOR COMPUTER VISION

TEAM 2 - Colorization with Conditional GANs

Itziar Sagastiberri João Ramos Mireia Gartzia

OVERVIEW

Objectives

Datasets

Architecture

Training

Results

Conclusions and Lessons Learned

OBJECTIVES

Understanding and testing Conditional GANs

Image colorization using Conditional GANs

Transfer learning on a new dataset

DATASETS

Facades: http://cmp.felk.cvut.cz/~tylecr1/facade/

training samples: 200

testing samples: 178

Cat_Dataset: https://www.kagqle.com/crawford/cat-dataset

training samples: 198

testing samples: 104

GANs (Generative Adversarial Networks).

Conditional GAN.

•Unlike an unconditional GAN, the generator has an input condition (image, label, ...)

Conditional GAN (Mirza & Osindero, 2014)

<u>Pix2pix - Image to Image Translation</u>

Example results on several image-to-image translation problems. In each case we use the same architecture and objective, simply training on different data.

- Our <u>Generator</u> has 6 blocks, each one composed by:
 - Convolutional Layer
 - Normalization Layer
 - ReLu Layer
- The <u>Discriminator</u> is composed by 3 layers:
 - Convolutional Layer
 - Normalization Layer
 - LeakyReLu Layer

Source code: https://github.com/mrzhu-cool/pix2pix-pytorch.git

Source code example: labels to facades

Label Facade

1. Colorization (from BW to color) train and test with <u>facades dataset</u>

epochs = 200, # learning rate = 0.0002 (default)

Original

Black and white

Generated

https://github.com/telecombcn-dl/2018-dlcv-team2

2. Colorization (from BW to color) test with <u>cat dataset</u>

3. Transfer Learning

epochs = 50, # learning rate = 0.0002 (default)

Original

Transfer

https://github.com/telecombcn-dl/2018-dlcv-team2

RESULTS

Colorization trained for 200 epochs, with 200 facades training

images:

Loss log:

RESULTS

 Transfer learning for cat dataset trained for 50 epochs, with 198 training images:

Loss log:

CONCLUSIONS AND LESSONS LEARNED

- Pix2pix gives overall good results in different image-to-image translation tasks
- Loss is a bit counter intuitive in GANs
- Transfer learning works better with similar datasets
- To improve the results of transfer learning → play with hyperparameters
- Imagenet, tiny imagenet: too long to train even with GPU

THANK YOU FOR YOUR ATTENTION!

Any questions?

https://github.com/telecombcn-dl/2018-dlcv-team2/blob/master/train.py