ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 10

1. Pensiamo \mathbb{R}^2 come spazio di Hilbert con il prodotto scalare euclideo, e identifichiamo gli operatori lineari su \mathbb{R}^2 con le matrici associate. Sia $A \in \mathcal{B}(\mathbb{R}^2)$ dato da

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

- (a) Determinare se A è un operatore autoaggiunto, unitario o normale.
- (b) Dimostrare che $\sigma(A) = \emptyset$.
- (c) Come cambia la soluzione dei punti precedenti se si considera invece la matrice A come operatore lineare su \mathbb{C}^2 ? (Qui \mathbb{C}^2 è pensato come spazio di Hilbert complesso con il prodotto scalare euclideo.)
- 2. Per ogni $x \in \mathbb{R}$, sia $T_x : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ l'operatore di traslazione definito da

$$T_x f(t) = f(t - x)$$

per ogni $f \in L^2(\mathbb{R})$ e $t \in \mathbb{R}$.

- (a) Dimostrare che $T_x \in \mathcal{B}(L^2(\mathbb{R}))$ per ogni $x \in \mathbb{R}$, e calcolarne la norma operatoriale.
- (b) Dimostrare che $T_{x+y} = T_x T_y$ per ogni $x, y \in \mathbb{R}$ e che $T_0 = \mathrm{id}_{L^2(\mathbb{R})}$.
- (c) Sia $x \in \mathbb{R}$. Calcolare l'aggiunto T_x^* , e determinare se T_x è un operatore autoaggiunto, unitario o normale. Ricordiamo che, se $f: \mathbb{R} \to \mathbb{F}$ è continua, il supporto di f è l'insieme

$$\operatorname{supp} f = \overline{\{t \in \mathbb{R} : f(t) \neq 0\}},$$

cioè la chiusura dell'insieme dei punti dove f non si annulla. Inoltre $C_c(\mathbb{R})$ denota l'insieme delle funzioni continue a supporto compatto su \mathbb{R} (vedi esercitazione 2, esercizio 11).

(d) Sia $x \in \mathbb{R} \setminus \{0\}$. Dimostrare che, se $f \in C_c(\mathbb{R})$ e supp $f \subseteq (-|x|/2, |x|/2)$, allora

$$||T_x f - f||_2 = \sqrt{2} ||f||_2.$$

- (e) Dimostrare che $||T_x T_y||_{\text{op}} \ge \sqrt{2}$ per ogni $x, y \in \mathbb{R}$ con $x \ne y$.
- (f) Dimostrare che la mappa $x \mapsto T_x$ non è continua da \mathbb{R} a $\mathcal{B}(L^2(\mathbb{R}))$.
- 3. Siano $I, J \subseteq \mathbb{R}$ intervalli di misura di Lebesgue positiva. Ricordiamo che, per ogni $K \in L^2(I \times J)$, denotiamo con $T_K: L^2(J) \to L^2(I)$ l'operatore integrale con nucleo integrale K, dato da

$$T_K f(x) = \int_I K(x, y) f(y) dy$$

per ogni $f \in L^2(J)$ e quasi ogni $x \in I$.

- (a) Dimostrare che la mappa $K \mapsto T_K$ è un operatore limitato da $L^2(I \times J)$ a $\mathcal{B}(L^2(J), L^2(I))$. (b) Dimostrare che $T_K = 0$ se e solo se $K \perp \{f \otimes g : f \in L^2(I), g \in L^2(J)\}$ in $L^2(I \times J)$, dove $f \otimes g(x, y) = f(x)g(y)$.
- (c) Dimostrare che la mappa $K \mapsto T_K$ del punto (a) è iniettiva. [Suggerimento: scegliere un'opportuna base ortonormale di $L^2(I \times J)$.]
- 4. Sia $A: L^2(0,1) \to L^2(0,1)$ definito da $Af(t) = \int_0^t f(s) ds$ per ogni $f \in L^2(0,1)$ e $t \in (0,1)$.
 - (a) Verificare che $A \in \mathcal{B}(L^2(0,1))$.
 - (b) Determinare l'aggiunto A^* di A.
 - (c) Determinare se A è un operatore autoaggiunto, unitario, o normale.
- 5. Sia $T:\ell^2\to\ell^2$ definito da

$$(T\underline{x})_k = \begin{cases} 0 & \text{se } k = 0, \\ 4x_{k-1} & \text{se } k > 0, \ k \text{ pari}, \\ -2x_{k-1} & \text{se } k > 0, \ k \text{ dispari}. \end{cases}$$

per ogni $k \in \mathbb{N}$ e $\underline{x} \in \ell^2$.

- (a) Verificare che $T \in \mathcal{B}(\ell^2)$.
- (b) Determinare l'aggiunto T^* di T.
- (c) Determinare se T è un operatore autoaggiunto, unitario, o normale.
- (d) Determinare $\sigma_p(T)$ e $\sigma_r(T^*)$.
- (e) Determinare $\sigma_p(T^*)$ e $\sigma_r(T)$.

- 6. Siano H uno spazio di Hilbert. Poniamo $I = id_H$.
 - (a) Dimostrare che, se $T \in \mathcal{B}(H)$ è autoaggiunto, allora

$$4\Re \mathfrak{c}\langle Tx,y\rangle = \langle T(x+y), x+y\rangle - \langle T(x-y), (x-y)\rangle$$

e, se $\mathbb{F} = \mathbb{C}$,

$$4\Im(Tx,y) = \langle T(x+iy), x+iy \rangle - \langle T(x-iy), (x-iy) \rangle$$

per ogni $x, y \in H$.

(b) Dimostrare che, se $T, S \in \mathcal{B}(H)$ sono autoaggiunti, allora T = S se e solo se

$$\langle Tx, x \rangle = \langle Sx, x \rangle \qquad \forall x \in H$$

(in altre parole, gli operatori autoaggiunti sono univocamente determinati dai valori sulla diagonale delle associate forme sesquilineari).

(c) Dimostrare che $T \in \mathcal{B}(H)$ è un operatore normale se e solo se

$$||Tx||_H = ||T^*x||_H \qquad \forall x \in H.$$

[Suggerimento: applicare (b) agli operatori $T^{\ast}T$ e $TT^{\ast}.]$

(d) Dimostrare che, per ogni $T \in \mathcal{B}(H)$ e $\alpha \geq 0$,

$$||(T^*T + \alpha I)x||_H \ge \alpha ||x||_H \quad \forall x \in H.$$

- (e) Dimostrare che $\sigma(T^*T) \subseteq [0, ||T||_{\text{op}}^2]$ per ogni $T \in \mathcal{B}(H)$.
- 7. Sia H uno spazio di Hilbert. Poniamo $I = \mathrm{id}_H$. Sia $P \in \mathcal{B}(H)$ una proiezione ortogonale.
 - (a) Dimostrare che Ker P e Im P sono sottospazi vettoriali chiusi di H e che sono l'uno il complemento ortogonale dell'altro.

Poniamo Q = I - P.

(b) Dimostrare che Q è una proiezione ortogonale, con Ker $Q = \operatorname{Im} P$ e $\operatorname{Im} Q = \operatorname{Ker} P$, e che inoltre PQ = QP = 0. [Q è detta la proiezione ortogonale complementare a P.]

Per $a, b \in \mathbb{F}$, poniamo $S_{a,b} = aP + bQ$.

- (c) Dimostrare che $S_{a,b}S_{c,d}=S_{ac,bd}$ per ogni $a,b,c,d\in\mathbb{F}$, e che $S_{1,1}=I$.
- (d) Dimostrare che $P \lambda I = S_{1-\lambda, -\lambda}$ per ogni $\lambda \in \mathbb{F}$.
- (e) Supponiamo che $0 \neq P \neq I$. Dimostrare che $\sigma(P) = \sigma_p(P) = \{0, 1\}$.
- 8. Sia $I \subseteq \mathbb{R}$ un intervallo di misura di Lebesgue positiva. Sia $Y \subseteq L^2(I)$ un sottospazio vettoriale di dimensione finita.
 - (a) Dimostrare che la proiezione ortogonale $P_Y \in \mathcal{B}(L^2(I))$ sul sottospazio Y è un operatore integrale e trovare una formula per il corrispondente nucleo integrale $K_Y \in L^2(I \times I)$.

[Suggerimento: fissare una base ortonormale di Y.]

(b) Dimostrare che $||K_Y||_2 = \sqrt{\dim Y}$.

Come nell'esercizio 3., denotiamo con $T_K \in \mathcal{B}(L^2(I))$ l'operatore integrale con nucleo integrale $K \in L^2(I \times I)$.

- (c) Dimostrare che la mappa $K \mapsto T_K$ non è un'isometria lineare da $L^2(I \times I)$ a $\mathcal{B}(L^2(I))$, e non è nemmeno coerciva in norma.
- (d) Determinare se la mappa $K \mapsto T_K$ da $L^2(I \times I)$ a $\mathcal{B}(L^2(I))$ è suriettiva. [Suggerimento: teorema dell'isomorfismo di Banach.]
- (e) Determinare se la mappa $K \mapsto T_K$ da $L^2(I \times I)$ a $\mathcal{B}(L^2(I))$ ha immagine chiusa in $\mathcal{B}(L^2(I))$.
- 9. Sia H uno spazio di Hilbert e poniamo $I=\mathrm{id}_H$. Ricordiamo che, per ogni $T\in\mathcal{B}(H)$ e per ogni polinomio $p(z)=\sum_{j=0}^n a_j z^j\in\mathbb{F}[z],$ si definisce l'operatore $p(T)=\sum_{j=0}^n a_j T^j\in\mathcal{B}(H).$
 - (a) Dimostrare che, se $T \in \mathcal{B}(H)$ è normale, allora p(T) è normale per ogni polinomio $p \in \mathbb{F}[z]$.
 - (b) Dimostrare che, se $T \in \mathcal{B}(H)$ è autoaggiunto e il polinomio p è a coefficienti reali, allora p(T) è autoaggiunto. Ricordiamo (vedi esercitazione 7, esercizio 9) che, per ogni operatore $T \in \mathcal{B}(H)$, è definito l'esponenziale $\exp(T) = \sum_{n=0}^{\infty} T^n/n! \in \mathcal{B}(H)$.
 - (c) Dimostrare che se $T \in \mathcal{B}(H)$ è normale allora $\exp(T)$ è normale, e che se T è autoaggiunto allora lo è anche $\exp(T)$.
 - (d) Dimostrare che se $T \in \mathcal{B}(H)$ è antiautoaggiunto (cioè $T^* = -T$) allora $\exp(T)$ è unitario.
 - (e) Dimostrare che, se $\mathbb{F} = \mathbb{C}$ e $T \in \mathcal{B}(H)$ è autoaggiunto, allora $\exp(iT)$ è unitario.
 - (f) Nel caso $H = \mathbb{R}^2$, detta A la matrice dell'esercizio 1., dimostrare che

$$\exp(tA) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \qquad \forall t \in \mathbb{R}.$$

[Suggerimento: calcolare A^n per ogni $n \in \mathbb{N}$.]

10. Sia H uno spazio di Hilbert su \mathbb{C} . Per ogni $T \in \mathcal{B}(H)$, definiamo

$$\Re \, \mathbf{r} T = (T + T^*)/2, \qquad \Im \, \mathbf{m} \, T = (T - T^*)/(2i).$$

- (a) Dimostrare che $\Re T$, $\Im T \in \mathcal{B}(H)$ sono operatori autoaggiunti di norma non superiore a $||T||_{\text{op}}$.
- (b) Dimostrare che $T = \Re e T + i \Im m T$ e $T^* = \Re e T i \Im m T$.
- (c) Dimostrare che T è normale se e solo se $\Re T$ e $\Im T$ commutano.
- (d) Dimostrare che T è autoaggiunto se e solo se $\mathfrak{Im} T = 0$.