Сегментация

Tatiana Gaintseva

План

- Задача сегментации
- Идеи решения
- Архитектуры и трюки

Задача сегментации

Object Detection

Semantic Segmentation

Instance Segmentation

Задача сегментации

... или только определенные объекты

Задача сегментации

[0, 00, 0.01, 0.003, 0.67, 0.31, 0.097]

- 0. Unknown
- l. Person
- 2. Bag
- 3. Grass
- 4. Road
- 5. Building

Loss: Pixel-wise Softmax

Идея решения: Sliding Window

Идея решения: Sliding Window

Недостатки:

- Computationally expensive: нужно совершить несколько (много!)
 вызовов сети для классификации
- Sliding windows не шарят между собой информацию о частях картинки

Идея решения: Fully-conv network

Идея решения: Fully-conv network

Недостатки:

• Computationally expensive: огромное количество параметров

Идея решения: Fully-conv network

Недостатки:

• Computationally expensive: огромное количество параметров

А значит, нам нужно сжимать информацию о картинке перед построением карты сегментации.

Input: 2 x 2 Output: 4 x 4 VGG, ResNet, Inception... whatever upsampling 256 pooling Max pooling Stride of 4

FCN: недостатки

Ну, кажется, сегментация будет не очень...

- Upsampling плохо восстанавливает информацию
- Downsampling и большой stride разрушают пространственную информацию
- Scale Variability

Сегментация сверточной сетью

Segmentation Approaches

FCN: недостатки

- Upsampling плохо восстанавливает информацию
- Downsampling и большой stride разрушают пространственную информацию
- Scale Variability

FCN: недостатки

- Upsampling плохо восстанавливает информацию
- Downsampling и большой stride разрушают пространственную информацию
- Scale Variability

DeConvNet

Transposed Convolution*

*также известный как deconvolution в литературе

kernel

Χ

3 1 2 2 0 0 5 4 7

0	4	0
18	127	57
0	8	0

upsampling

convolution

Transposed Convolution*


```
CLASS torch.nn.ConvTranspose2d(in_channels: int, out_channels: int, kernel_size:

Union[T, Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T,

Tuple[T, T]] = 0, output_padding: Union[T, Tuple[T, T]] = 0, groups: int =

1, bias: bool = True, dilation: int = 1, padding_mode: str = 'zeros')
```

Transposed Convolu


```
CLASS torch.nn.ConvTranspose2d(in_channels: int, out_channels: int, kernel_size:

Union[T, Tuple[T, T]], stride: Union[T, Tuple[T, T]] = 1, padding: Union[T,

Tuple[T, T]] = 0, output_padding: Union[T, Tuple[T, T]] = 0, groups: int =

1, bias: bool = True, dilation: int = 1, padding_mode: str = 'zeros')
```

Upsampling

Nearest Neighbours

Upsampling

Bed of Nails

Upsampling

Bilinear

Max-Unpooling

Max-Unpooling

DeConvNet

FCN: недостатки

- Upsampling плохо восстанавливает информацию
- Downsampling и большой stride разрушают пространственную информацию
- Scale Variability

Dilated Convolutions

(Atrous convolution) (algorithme a` trous)

$$y[i] = \sum_{k=1}^{K} x[i + r \cdot k]w[k].$$

Dilated Convolutions

У Dilated convolution больший receptive field

Dilated Convolutions

FCN: недостатки

- Upsampling плохо восстанавливает информацию
- Downsampling и большой stride разрушают пространственную информацию
- Scale Variability

Multi-scale Context Aggregator

Dilated Convolutions разных размеров могут выделять информацию об объектах разных размеров

Multi-scale Context Aggregator

Pyramid Pooling Network

Segmentation tricks

- 1. Deconvolution
- 2. Dilated Convolutions
- 3. Multi-scale Context Aggregator
- 4. Pyramid Pooling Network
- 5. CRF (Conditional Random Field, postprocessing)

Segmentation tricks

- Deconvolution
- 2. Dilated Convolutions
- 3. Multi-scale Context Aggregator
- 4. Pyramid Pooling Network
- 5. CRF (Conditional Random Field, postprocessing)

Segmentation Architectures

- SegNet (1)
- DeepLab v1 (2, 5)
- DeepLab v2 (2, 3, 5)
- DeepLab v3 (1, 2, 3, 5)
- DeepLab v4 (1, 2, 3, 5)
- PSPNet (1, 2, 4)

Unet

Операция свертки

Информация об этом пикселе содержится содержится только тут

Overlap-tile strategy

Т.к. В UNet используются conv без паддингов, сегментация на выходе может быть получена только для внутренней области изображения

Overlap-tile strategy

Т.к. В UNet используются conv без паддингов, сегментация на выходе может быть получена только для внутренней области изображения

Unet: Loss

Unet uses pixel-wise Softmax loss ...

Input

Ground-truth

Network output (what we wanna get)

Unet: Loss

Unet uses pixel-wise Softmax loss ... with weights

Input

Ground-truth

Network output (what we wanna get)

Segmentation tricks

- 1. Deconvolution
- Dilated Convolutions
- Multi-scale Context Aggregator
- 4. Pyramid Pooling Network
- 5. CRF (Conditional Random Field, postprocessing)
- 6. Skip-connection

Segmentation Architectures

- SegNet (1)
- DeepLab v1 (2, 5)
- DeepLab v2 (2, 3, 5)
- DeepLab v3 (1, 2, 3, 5)
- DeepLab v4 (1, 2, 3, 5)
- PSPNet (1, 2, 4)
- UNet (1, 6)

Other Approaches

Mask R-CNN (https://arxiv.org/pdf/1703.06870.pdf)

https://www.youtube.com/watch?v=ATIcEDSPWXY

https://www.youtube.com/watch?v=QYIQbfnS9jA&feature=youtu.be&t=127