Домашнее задание по алгебре и теории чисел

Захаров Дмитрий, МП-11, 1 академическая группа

Задание. Пользуясь алгоритмом Евклида, подобрать полиномы $M_1(x)$ и $M_2(x)$ так, чтобы $f_1(x)M_2(x)+f_2(x)M_1(x)=\delta(x)$, где $\delta(x)=\gcd(f_1(x),f_2(x))$.

(a)
$$f_1(x) = x^4 + 2x^3 - x^2 - 4x - 2$$
, $f_2(x) = x^4 + x^3 - x^2 - 2x - 2$

(b)
$$f_1(x) = x^5 + 3x^4 + x^3 + x^2 + 3x + 1$$
, $f_2(x) = x^4 + 2x^3 + x + 2$

(c)
$$f_1(x) = x^6 - 4x^5 + 11x^4 - 27x^3 + 37x^2 - 35x + 35$$
, $f_2(x) = x^5 - 3x^4 + 7x^3 - 20x^2 + 10x - 25$

Решение.

а) Для начала разделим $f_1(x)$ на $f_2(x)$. Получим 1 и остаток $R_1(x) = x^3 - 2x$:

$$f_1(x) = f_2(x) + R_1(x), R_1(x) = x^3 - 2x$$

Далее разделим $f_2(x)$ на $R_1(x)$. Получим, что:

$$f_2(x) = (x+1)R_1(x) + R_2(x), R_2(x) = x^2 - 2$$

Теперь заметим, что $R_1(x) = xR_2(x)$, а поэтому $\gcd(f_1(x), f_2(x)) = R_2(x)$. Тогда выразим $R_1(x)$:

$$R_1(x) = \frac{f_2(x) - (x^2 - 2)}{x + 1}$$

Подставив в первое преобразование, получим:

$$f_1(x) = f_2(x) + \frac{f_2(x) - (x^2 - 2)}{x + 1}$$

Преобразовав, получим:

$$(x+2)f_2(x) - (x+1)f_1(x) = x^2 - 2$$

Таким образом:

$$M_1(x) = x + 2$$
, $M_2(x) = -(x+1)$, $\delta(x) = x^2 - 2$

b) Разделив $f_1(x)$ на $f_2(x)$, получим:

$$f_1(x) = (x+1)f_2(x) + R_1(x), R_1(x) = -x^3 - 1$$

Разделив $f_2(x)$ на $R_1(x)$, получим:

$$f_2(x) = (-x - 2)R_1(x)$$

Таким образом, $gcd(f_1(x), f_2(x)) = R_1(x)$. Тогда из самого первого уравнения:

$$f_1(x) - (x+1)f_2(x) = -x^3 - 1$$

Ответом будет:

$$M_1(x) = -(x+1), M_2(x) = 1, \delta(x) = -x^3 - 1$$

c) Разделив $f_1(x)$ на $f_2(x)$, получим:

$$f_1(x) = xf_2(x) + R_1(x), R_1(x) = -x^5 + 4x^4 - 7x^3 + 27x^2 - 10x + 35$$

Далее разделив $f_2(x)$ на $R_1(x)$:

$$f_2(x) = -R_1(x) + R_2(x), R_2(x) = x^4 + 7x^2 + 10$$

Далее $R_1(x)$ на $R_2(x)$:

$$R_1(x) = (-x+4)R_2(x) + R_3(x), R_3(x) = (-x^2-5)$$

Наконец, видим, что:

$$R_2(x) = (-x^2 - 2)R_3(x)$$

Таким образом, $\delta(x) = R_3(x) = -x^2 - 5$

Теперь идём в обратном направлении. Сперва выразим $R_2(x)$:

$$R_2(x) = \frac{R_1(x) + x^2 + 5}{-x + 4}$$

Далее подставим это в уравнение выше:

$$-R_1(x) + \frac{R_1(x) + x^2 + 5}{-x + 4} = f_2(x)$$

Отсюда достаём $R_1(x)$:

$$R_1(x) = \frac{f_2(x)(-x+4) - x^2 - 5}{x - 3}$$

Наконец, подставив в первое уравнение, получим:

$$f_1(x) = xf_2(x) + \frac{(-x+4)f_2(x) - x^2 - 5}{x - 3}$$

Отсюда, наконец:

$$(x-3)f_1(x) - (x-2)^2 f_2(x) = -x^2 - 5$$

Окончательный ответ:

$$M_1(x) = -(x-2)^2$$
, $M_2(x) = x-3$, $\delta(x) = -x^2-5$