Galerkin Discretizations of the Boltzmann Equation

Alex Alekseenko, California State University Northridge

Collaborators: Prof. A. Wood, Dr. S. Gimelshein. Students: T. Nguven, J. Limbacher, A. Grandilli

Support Acknowledged: NSF DMS-1620497, AFIT/AFOSR MOU, AFIT COE

CSUN, January 28, 2019

Mathematical Background of Galerkin Approximation

Vector Spaces

A vector space over a field *F* is a set *V* whose elements called vectors that is closed with respect to two operations:

- Associativity of addition: + : V × V → V, that is, for each v, w ∈ V the vector v + w is defined and belongs to V;
- multiplication by a scalar: $\cdot : R \times V \to V$, that is, for any $a \in F$ and $\mathbf{v} \in V$ the element $a\mathbf{v}$ is defined and belongs to V.

Also, the operations + and \cdot satisfy the following axioms:

- Associativity of addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- Commutativity of addition: u + v = v + u
- Identity element of addition: ∃0 ∈ V, such that u + 0 = u
- Compatibility of scalar multiplication: $a(b\mathbf{u}) = (ab)\mathbf{u}$
- Identity of scalar multiplication: 1u = u where 1 is the multiplicative identity of F
- Distributivity, vector addition: a(u + v) = au + av
- Distributivity, field addition: (a + b)u = au + bu

Examples of Vector Spaces, \mathbb{R}^n

Finitely dimensional: \mathbb{R}^n , $\mathbf{x} = (x_1, \dots, x_n)$.

Linear Independence: A set of vectors $\mathbf{e}_1, \dots, \mathbf{e}_n$ is linearly independent if the only possibility to have

$$a_1\mathbf{e}_1+\ldots+a_n\mathbf{e}_n=0$$

is all a_1, \ldots, a_n are equal to zero.

Basis of the Vector Space: A set of vectors $\mathbf{e}_1, \dots, \mathbf{e}_n$ that is linearly independent and any other vector \mathbf{u} can be expressed as

$$\mathbf{u} = a_1 \mathbf{e}_1 + \ldots + a_n \mathbf{e}_n$$

for some scalars $a_1, \ldots, a_n \in \mathbb{R}$.

Standard basis in \mathbb{R}^n :

$$\boldsymbol{e}_1 = (1,0,0,\dots,0)$$

$$\mathbf{e}_2 = (0, 1, 0, \dots, 0)$$

$$\mathbf{e}_n = (0, 0, 0, \dots, n)$$

Vector Norms

Norm of a Vector. Let V be a real linear space (e.g., \mathbb{R}^n). It is normed if there is a function $\|\cdot\|:V\to\mathbb{R}$, which we call a norm, satisfying all of the following:

- $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0;
- $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$, for any $\alpha \in \mathbb{R}$;
- $||x + y|| \le ||x|| + ||y||$ (the triangle inequality).

Some norms frequently used to measure vectors of \mathbb{R}^n :

$$\|x\|_p = \Big(\sum_i |x_i|^p\Big)^{1/p}, \quad 1 \le p \le \infty, \quad \text{in particular} \quad \|x\|_2 = \sqrt{\sum_i |x_i|^2}$$

and infinity norm

$$||x||_{\infty} = max_i|x_i|$$

Dot Product

Inner Product. Let V be a real vector space. Function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is an inner product if all of the following apply :

- $\langle x, x \rangle > 0$, and $\langle x, x \rangle = 0$ if and only if x = 0.

Example. Inner product on \mathbb{R}^n ,

$$\langle x, y \rangle = y^T x = \sum_i x_i y_i.$$

Orthogonal Vectors. x and y are orthogonal if $\langle x, y \rangle = 0$.

Norms Induced by the Inner Product. An inner product is often used to define the subordinate norm:

$$\|x\| = \sqrt{\langle x,y\rangle}$$

Ortogonal Projection.

Direct Sum of Spaces. Let V and W be subspaces of \mathbb{R}^n . The direct sum of V and W, denotes by $V \oplus W$ is the set of all vectors $\mathbf{v} + \mathbf{w}$, where $\mathbf{v} \in V$ and $\mathbf{w} \in W$.

Orthogonality of Spaces. Let V and W be subspaces of \mathbb{R}^n . We say that $V \perp W$ if $\mathbf{v} \perp \mathbf{w}$ for all $\mathbf{v} \in V$ and $\mathbf{w} \in W$.

Orthogonal Projections. Let V be a subspace of \mathbb{R}^n , then there is a unique subspace V^\perp of \mathbb{R}^n such that $V \perp V^\perp$ and $\mathbb{R}^n = V \oplus V^\perp$, that is, for any vector $\mathbf{u} \in \mathbb{R}^n$ there exists $\mathbf{v} \in V$ and $\mathbf{w} \in V^\perp$, such that

$$\mathbf{u} = \mathbf{v} + \mathbf{w}$$
 where $\mathbf{v} \perp \mathbf{w}$

The space V^{\perp} and vectors **v** and **w** are unique.

 ${\bf v}$ is called the orthogonal projection of ${\bf u}$ onto ${\bf V}$ ${\bf w}$ is the orthogonal compliment.

If ||w|| is small, then **v** is an approximation of **u** and **w** is the error of the approximation.

Vector Spaces of Functions.

Space of Functions. Consider the set of all functions defined on an interval [a,b]. Let $f(x),g(x):[a,b]\to\mathbb{R}$ and let $m\in\mathbb{R}$. It is straightforward to define

$$(f+g)(x) = f(x)_+ g(x),$$
 and $(mf)(x) = mf(x).$

It is straightforward to check that with these definitions, functions on [a, b] make a vector field over \mathbb{R} .

Example. C[a, b] is the space of all continuous functions, $C^n[a, b]$ is the space of all functions whose n^{th} derivative is continuous.

Question. In what sense two functions are orthogonal?

Example. Consider set of all functions that are square-integrable on [a,b] (in sense of Lebesgue), that is all $f(x):[a,b]\to\mathbb{R}$

$$\int_{a}^{b} f^{2}(x) dx$$
 is bounded

These functions form a vector space, $L^2[a, b]$.

Inner Product for Spaces of Functions.

Inner Product. Let $f(x), g(x) : [a, b] \to \mathbb{R}$. Define

$$\langle f(x), g(x) \rangle = \int_a^b f(x)g(x) dx.$$

This definition is well-posed for $L^2[a, b]$.

Orthogonality. $f(x) \in L^2[a,b]$ is orthogonal to $g(x) \in L^2[a,b]$ if and only if

$$\langle f(x), g(x) \rangle = \int_a^b f(x)g(x) dx = 0.$$

Norm. Let $f(x) \in L^2[a,b]$, define

$$||f(x)||_2 = \sqrt{\int_a^b f^2(x) dx}.$$

Orthogonal Projections. Let V be a subspace of $L^2[a,b]$, then there is a unique subspace V^{\perp} of $L^2[a,b]$ such that $L^2[a,b] = V \oplus V^{\perp}$, that is, for any function $f(x) \in L^2[a,b]$ there exists $g(x) \in V$ and $h(x) \in V^{\perp}$, such that f(x) = g(x) + h(x). The space V^{\perp} and functions g(x) and h(x) are unique.

Bases of Spaces of Functions.

Dimensionality of $L^2[a, b]$. Dimensionality of $L^2[a, b]$ is infinite. Notice that polynomials $p(x) = c_n x^n + \ldots + c_1 x + c_0$ also form a space P

It is straightforward to check that space P[a, b] of polynomials on interval [a, b] is a subset of $L^2[a, b]$.

P[a,b] is spanned by $1,x,x^2,\ldots,x^n,\ldots$ (countably many basis vectors). Monomials x^i are linearly independent. This implies that $L^2[a,b]$ has infinitely many dimensions.

Bases for $L^2[a, b]$. One can show that x^i form a basis for $L^2[a, b]$. Also, other polynomial families can be used, e.g., Legendre polynomials, Chebyshev polynomials.

Fourier basis on [-1, 1],

$$\phi_n = \exp(\imath \pi n x)$$

or use

$$sin(\pi nx)$$
 and $cos(\pi nx)$.

Galerkin Approximation of Functions.

Galerkin Solution Space. Let $\phi_1(x), \ldots, \phi_n(x)$ be linearly independent functions from $L^2[a,b]$. We consider the vector space $V = \operatorname{Span}(\phi_1(x), \ldots, \phi_n(x))$, which is the set of all linear combinations of $\phi_i(x)$.

V is called the Galerkin solution space, $\phi_i(x)$ are called basis functions.

Let $f \in L^2[a, b]$. Let us consider the orthogonal projection of f(x) onto V:

$$f(x) = g(x) + h(x), \quad g(x) \in V, \quad h(x) \perp V.$$

Since $V = \operatorname{Span}(\phi_1(x), \dots, \phi_n(x))$, we can represent

$$g(x) = \sum_{i=1}^n a_i \phi_i(x)$$

That is,

$$f(x) = \sum_{i=1}^{n} a_i \phi_i(x) + h(x), \quad h(x) \perp V.$$

Galerkin Approximation of Functions.

$$f(x) = \sum_{i=1}^{n} a_i \phi_i(x) + h(x), \quad h(x) \perp V.$$

Multiplying both sides by $\phi_j(x)$ and integrating over [a,b], we have

$$\int_a^b f(x)\phi_j(x)\,dx = \int_a^b \left(\sum_{i=1}^n a_i\phi_i(x)\right)\phi_j(x)\,dx + \int_a^b h(x)\phi_j(x)\,dx, \quad h(x)\perp V.$$

The last integral is zero, since $h(x) \perp V$. Rearranging terms,

$$\int_a^b f(x)\phi_j(x)\,dx = \sum_{i=1}^n a_i \int_a^b \phi_i(x)\phi_j(x)\,dx$$

Define vector $f_j = \int_a^b f(x)\phi_j(x) dx$ and matrix $M_{jj} = \int_a^b \phi_j(x)\phi_j(x) dx$. The above equation is a linear system:

$$f = Ma$$

M is called the Mass matrix of the basis $\phi_i(x)$. If $\phi_i(x)$ are linearly independent, then M is invertible and