Test 2^*

Partie 1

Soit $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices carrées 3×3 à coefficients réels, et soit F le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ défini par :

$$F = \{ M(a, b, c) = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix}, \ a, b, c \in \mathbb{R} \}.$$

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Donner une base de F. Quelle est la dimension de F?
- 3. Donner, en fonction des valeurs de a, b et c, le rang de M(a, b, c).
- 4. Donner les conditions nécessaires et suffisantes pour que M(a, b, c) soit inversible.

Partie 2

Soit E un espace vectoriel de dimension 3 et $\mathcal{B} = \{e_1, e_2, e_3\}$ une base de E. On considère la famille $\mathcal{S} = \{u, v, w\}$ de E avec $u = e_1 - e_3$, $v = -e_2$ et $w = e_1 + e_3$. Soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est donnée par :

$$A = [f]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}.$$

- 1. Montrer que S est une base de E.
- 2. Calculer le déterminant de A. La matrice A est-elle inversible?
- 3. Calculer f(u), f(v) et f(w) en fonction de u, v et w et en déduire la matrice $D = [f]_{\mathcal{S}}$ de f dans \mathcal{S} .
- 4. Donner la matrice de passage P de la base \mathcal{B} vers \mathcal{S} et calculer son inverse P^{-1} .
- 5. Calculer A^n pour $n \in \mathbb{Z}$.

^{*}SMA-MIP