CONSTRAINT
PROPAGATION:
INFERENCE IN
CSPS

PATH CONSISTENCY

Arc Consistent: YES Path Consistent: NO

- Path consistency tightens the binary constraints by using implicit constraints that are inferred by looking at triples of variables.
- A two-variable set $\{X_i, X_j\}$ is path-consistent with respect to a third variable X_m if, for every assignment $\{X_i = a, X_j = b\}$ consistent with the constraints (if any) on $\{X_i, X_j\}$, there is an assignment to X_m that satisfies the constraints on $\{X_i, X_m\}$ and $\{X_m, X_i\}$.
- The name refers to the overall consistency of the path from X_i to X_j with X_m in the middle.

K-CONSISTENCY

• A CSP is k-consistent if, for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.

BACKTRACKING SEARCH FOR CSP

return failure

return BACKTRACK(csp, { }) **function** BACKTRACK(*csp*, *assignment*) **returns** a solution or *failure* if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp, assignment)$ for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do if value is consistent with assignment then add $\{var = value\}$ to assignment $inferences \leftarrow Inference(csp, var, assignment)$ **if** *inferences* \neq *failure* **then** add inferences to csp $result \leftarrow BACKTRACK(csp, assignment)$ if $result \neq failure$ then return resultremove inferences from csp remove $\{var = value\}$ from assignment

BACKTRACKING SEARCH FOR CSP

- Which variable should be assigned next (SELECT-UNASSIGNED-VARIABLE) and in which order should its values be tried (ORDER-DOMAIN-VALUES)?
- What inferences should be performed at each step in the search (INFERENCE)?
- Can we BACKTRACK more than one step when appropriate?
- Can we save and reuse partial results from the search?

VARIABLE AND VALUE ORDERING

- · Defined order!
- Random order!
- Minimum-remaining-values (MRV) heuristic: Picks a variable that is most likely to cause a failure soon.
- Degree heuristic: Picks a variable that is involved in the largest number of constraints on other unassigned variables.
 - · Useful as a tie-breaker.
- Least-constraining-value heuristic: It prefers the value that rules out the fewest choices for the neighboring variables in the constraint graph.
- Variable selection is fail-first, but value selection is fail-last!

