GABARITO

EM •	Formação	Geral Bás	ica •	P2FGB1	• 2022	
Questão / Gabarito						
1	С	17	D		33	E
2	D	18	D		34	С
3	В	19	D		35	D
4	С	20	D		36	В
5	E	21	С		37	D
6	Α	22	E		38	D
7	D	23	В		39	Α
8	А	24	С		40	Α
9	В	25	В		41	В
10	D	26	Α		42	Е
11	D	27	Α		43	Е
12	В	28	E		44	E
13	В	29	В		45	В
14	А	30	D		46	В
15	В	31	С		47	С
16	E	32	D			

Prova Geral

P-2 – Formação Geral Básica

1ª série

RESOLUÇÕES E RESPOSTAS

BIOLOGIA

QUESTÃO 1: Resposta C

Os corredores ecológicos conectam as ilhas de mata, permitindo a circulação dos animais que encontram parceiros para a reprodução, gerando variabilidade e diminuindo os efeitos de borda e alterações microclimáticas das ilhas sobre a população.

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 2: Resposta D

Os locais habitados pelo organismo, seus hábitos alimentares, época de acasalamento, comportamentos de fuga e outras informações configuram seu nicho ecológico.

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 3: Resposta B

O cerrado é um ecossistema, formado pela comunidade (seres vivos) mais os fatores abióticos, como os descrito no número 2. A água é uma molécula indispensável à vida, e o item 4 configura uma comunidade, já que reúne diversas espécies de plantas e animais.

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 4: Resposta C

Para que ocorra uma intensificação do sequestro de carbono, é necessário o replantio da vegetação em áreas degradadas. Dessa maneira, os vegetais conseguirão retomar o processo de fotossíntese em áreas onde já não existem mais florestas nativas.

Semana: 2 Módulo: 2 Setor: A

QUESTÃO 5: Resposta E

Os consumidores primários são as aves granívoras, os esquilos, os coelhos, os veados e os camundongos, pois se alimentam dos produtores (seres autotróficos – que realizam fotossíntese).

Semana: 2 Módulo: 2 Setor: A

QUESTÃO 6: Resposta A

De acordo com o texto, a permanência sobre a superfície do solo de restos vegetais é uma forma de melhoria e manutenção da qualidade do solo. Analisando-se o gráfico, os restos de braquiária permaneceram mais tempo sem liberar os átomos de nitrogênio, portanto a decomposição é mais lenta e esses restos proporcionam benefícios ao solo por mais tempo.

Semana: 3 Módulo: 3 Setor: A

QUESTÃO 7: Resposta D

A pirâmide ecológica de energia sempre tem formato decrescente a partir de sua base. Em ecossistema aquático, o número de algas microscópicas do fitoplâncton é muito maior do que o de zooplâncton (microcrustáceos, por exemplo), que é maior do que o de peixes. No entanto, a quantidade de biomassa de fitoplâncton em um metro cúbico de água é menor do que a de zooplâncton, que é maior do que a de peixes.

Setor: A Semana: 3 Módulo: 3

QUESTÃO 8: Resposta A

A hipótese heterotrófica afirma que a primeira célula era procariótica e anaeróbica. Na panspermia, a vida veio do espaço por bactérias, seres unicelulares. A abiogênese afirma que a vida pode ser formada por geração espontânea, a partir da matéria não viva. A hipótese autotrófica postula o desenvolvimento de processos metabólicos antes do aparecimento da vida.

Semana: 2 Módulo: 1 Setor: B

QUESTÃO 9: Resposta B

A substância X é oxigênio, liberado pelo processo biológico da fotossíntese.

Semana: 1 Módulo: 1 Setor: B

QUESTÃO 10: Resposta D

João formulou uma hipótese para tentar explicar um fenômeno observado. Para testar sua falsidade, deve ser realizada uma experiência controlada, para possibilitar uma conclusão sobre a validade da hipótese.

Semana: 1 Módulo: 1 Setor: B

QUESTÃO 11: Resposta D

1 é a membrana plasmática, que é lipoproteica e semipermeável. 2 é o citosol, para preenchimento, sustentação e circulação de materiais e igualmente importante em células procarióticas e eucarióticas. 3 mostra os ribossomos, responsáveis pela síntese das proteínas. 4 é a cromatina, material genético responsável pela reprodução celular e que não é revestido por envoltório membranoso nas células procarióticas.

Semana: 3 Módulo: 2 Setor: B

FÍSICA

QUESTÃO 12: Resposta B

Aplicando a lei de Hooke:

 $F = K \cdot x \Rightarrow 400 = K \cdot 20$ \therefore K = 20 N/cm

Semana: 3 Módulo: 2 Setor: A

QUESTÃO 13: Resposta B

Como não há resistência do ar, a única força aplicada é o peso, sempre de direção vertical e para baixo.

Semana: 3 Módulo: 2 Setor: A

QUESTÃO 14: Resposta A

Há duas forças aplicadas no corpo. Uma delas é uma força de campo, que é o peso, de direção vertical e sentido para baixo. Como não há cargas elétricas ou ímãs, não há outras forças de campo. A outra força aplicada é de contato, que é devido ao único contato que o corpo apresenta, que é com o fio. Trata-se da tração, sempre de mesma direção do fio e no sentido do fio puxar o corpo, ou seja, para cima. Como não há outros contatos, não há outras forças de contato.

Semana: 3 Módulo: 2 Setor: A

QUESTÃO 15: Resposta B

Par ação e reação são forças trocadas por dois únicos corpos. O único par de forças que é trocada entre dois únicos corpos é \vec{F}_1 e \vec{F}_4 , que são forças que são aplicadas devido à interação entre o atleta e o haltere.

Módulo: 2 Semana: 3 Setor: A

QUESTÃO 16: Resposta E

Quando ocorre a interação entre o joelho e a barriga, há uma força aplicada na barriga; logo, de acordo com o princípio da ação e reação, há uma força aplicada no joelho. Tais forças são conhecidas como par ação e reação. As forças de ação e reação sempre apresentam mesma intensidade. No caso estudado, a força aplicada na barriga provoca efeitos mais intensos no lutador no qual ela está aplicada se comparado com a força aplicada no joelho, pois a barriga é uma região mais sensível que o joelho. Isso evidencia que os efeitos do par ação e reação não necessariamente são iguais, pois estão aplicados a corpos diferentes.

Módulo: 2 Semana: 3 Setor: A

QUESTÃO 17: Resposta D

A fase de criação de hipóteses é aquela em que se tem uma afirmação a respeito do problema proposto, mas ainda sem a busca de evidências ou de referências teóricas. Ela é descrita no trecho 2 "partiu da ideia de que o gás hélio era mais denso que o ar". Já a fase de tomada de conclusões é posterior ao acesso às evidências experimentais e contém a resposta à pergunta inicial. Ela está descrita no trecho 4 "reviu sua ideia inicial e concluiu que o gás hélio era menos denso que o ar".

Módulo: 1 Semana: 1 Setor: A

QUESTÃO 18: Resposta D

Considerando o gráfico, quando a intensidade da força aplicada é 20 N, sua deformação é 2 cm, logo:

 $F = k \cdot x \Rightarrow 20 = k \cdot 2 : k = 10 \text{ N/cm}$

Aplicando novamente a lei de Hooke:

 $F = k \cdot x \implies 400 = 10 \cdot x : x = 40 \text{ cm}$

Módulo: 2 Semana: 3 Setor: A

QUESTÃO 19: Resposta D

Para PH:

$$v_{PH} = \frac{\Delta S}{\Delta t_{PH}} \Rightarrow \Delta t_{PH} = \frac{6}{8}$$
$$\Rightarrow \Delta t_{PH} = 0.75 \text{ h}$$

Para JP:

$$\Delta t_{IP} = 0.8 \cdot \Delta t_{PH} = 0.8 \cdot 0.75$$

 $\Rightarrow \Delta t_{IP} = 0.6 \text{ h}$

Logo, a velocidade média de JP é:

$$v_{JP} = \frac{\Delta S}{\Delta t_{JP}} = \frac{6}{0.6}$$

$$\Rightarrow v_A = 10 \text{ km/h}$$

SOMOS EDUCAÇÃO

Setor: B Semana: 3 Módulo: 2

QUESTÃO 20: Resposta D

Por Pitágoras:

$$(AC)^2 = (AB)^2 + (BC)^2$$

 $100^2 = 60^2 + (BC)^2$
 $\Rightarrow BC = 80 \text{ m}$

Logo, o percurso de uma volta (ABCA) tem uma distância de 100 + 60 + 80 = 240 m.

Assim, o tempo de percurso em uma volta será de:

$$v_m = \frac{\Delta S}{\Delta t}$$
 Em que v_m = 9 km/h = 9 ÷ 3,6 = 2,5 m/s
$$2,5 \frac{m}{s} = \frac{240m}{\Delta t}$$
 ∴ $\Delta t = 96$ s

Semana: 3 Módulo: 2 Setor: B

QUESTÃO 21: Resposta C

Durante a subida, o movimento é retardado. Logo, a intensidade de v' é menor que a intensidade de v. Além disso, o vetor velocidade deve ser representado tangente à trajetória. Com essas informações, podemos concluir que o vetor velocidade em t₂ é:

Semana: 2 Módulo: 1 Setor: B

QUESTÃO 22: Resposta E

Velocidade da Karol:

$$v = \frac{1.5 \text{ passo}}{s} \cdot 0.5 \text{ m} = 0.75 \frac{m}{s}$$

Portanto, pela expressão da velocidade média:

$$\Delta t = \frac{\Delta s}{v} = \frac{21m}{0.75 \frac{m}{s}}$$
$$\therefore \Delta t = 28 s$$

Semana: 3 Módulo: 2 Setor: B

QUÍMICA

QUESTÃO 23: Resposta B

Distribuição eletrônica das espécies:

 $_{20} Ca^{+2}~1s^2~2s^2~2p^6~3s^2~3p^6 \rightarrow 8~e^{\text{-}}$ na camada de valência

 $_{26}$ Fe $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6 \rightarrow 2 e^-$ na camada de valência

 $_{8}O^{2-}$ $1s^2 \ 2s^2 \ 2p^6 \ \rightarrow 8 \ e^-$ na camada de valência $_{12}Mg$ $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ \rightarrow 2 \ e^-$ na camada de valência

₂He $1s^2 \rightarrow 2e^-$ na camada de valência

Semana: 3

Módulo: 3

Setor: A

QUESTÃO 24: Resposta C

Distribuição eletrônica do manganês:

 $_{25}$ Mn $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 \rightarrow 5 e^-$ no subnível mais energético

Semana: 3 Módulo: 3 Setor: A

QUESTÃO 25: Resposta B

Nessa figura representativa do modelo de Bohr, observa-se:

- Possui 4 camadas eletrônicas;
- Camada K possui 2 elétrons, L, 8 elétrons, M, 8 elétrons e N, 2 elétrons, totalizando 20 elétrons.

O elemento que possui essa distribuição eletrônica em camadas é o cálcio.

Ca:
$$1s^2 \underbrace{2s^2 2p^6}_{K} \underbrace{3s^2 3p^6}_{M} \underbrace{4s^2}_{N}$$

2 8 8 2

Semana: 3 Módulo: 3 Setor: A

QUESTÃO 26: Resposta A

A imagem representa os átomos por meio de "bolinhas", logo a representação utilizada na imagem está mais próxima do modelo de Dalton, conhecido pela analogia da "bola de bilhar".

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 27: Resposta A

O principal fato científico que o levou o modelo de Dalton a ser abandonado foram os experimentos com tubos de descarga feitos por Thomson. Nesses experimentos, ele analisou a natureza elétrica da matéria e observou que os raios catódicos eram constituídos por partículas com carga negativa, denominando-as de elétrons. Com isso, passou-se a ter a concepção de que o átomo seria divisível e, portanto, formado por partículas ainda menores.

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 28: Resposta E

$$\begin{split} &\text{ atomo } \frac{6x+8}{3x+3}A \begin{cases} p=3x+3 & \text{ fon } \frac{6x+8}{3x+3} \\ e=3x+3 \end{cases} & \text{ fon } \frac{6x+8}{3x+3}A^{+3} \begin{cases} p=3x+3 \\ e=3x \end{cases} \\ &\text{ atomo } \frac{3x+20}{2x+8}B \begin{cases} p=2x+8 \\ e=2x+8 \end{cases} & \text{ fon } \frac{3x+20}{2x+8}B^{-2} \begin{cases} p=2x+8 \\ e=2x+10 \end{cases} \end{split}$$

Como os íons são isoeletrônicos, tem-se:

$$3x = 2x + 10$$
$$x = 10$$

Substituindo x nas equações, tem-se:

átomo A
$$\begin{cases} n\text{\'u}mero de massa (A) = 6 \cdot 10 + 8 = 68 \\ n\text{\'u}mero atômico (Z) = 3 \cdot 10 + 3 = 33 \end{cases}$$

Número de nêutrons do átomo A = 68 - 33 = 35.

átomo B {número atômico (Z) = $2 \cdot 10 + 8 = 28$

Semana: 2 Módulo: 2 Setor: A

QUESTÃO 29: Resposta B

O processo de emissão de luz, de acordo com o modelo de Bohr, pode ser explicado pela excitação dos elétrons presentes nos átomos para níveis de maior energia. Esses elétrons, ao retornarem para seus níveis de energia iniciais, devolvem para o ambiente exatamente a mesma quantidade de energia que absorveram na forma de luz.

Semana: 3 Módulo: 3 Setor: A

QUESTÃO 30: Resposta D

Substâncias no estado líquido são aquelas em que a 25 °C, valor de temperatura em que elas se encontram, estão entre as respectivas temperaturas de fusão e ebulição. Dessa forma, as substâncias no estado líquido a 25 °C e 1 atm são: metanol, acetona, água e mercúrio.

Semana: 2 Módulo: 2 Setor: B

QUESTÃO 31: Resposta C

Os ovos detectados são aqueles menos densos que a solução (1,15 g mL⁻¹); são eles: Ancylostoma, A. lumbricoides e A. suum.

Semana: 3 Módulo: 2 Setor: B

QUESTÃO 32: Resposta D

- A) Incorreta. O sulfato de cálcio é formado por 3 elementos (cálcio, enxofre e oxigênio).
- B) Incorreta. O ácido sulfúrico é formado por 7 átomos no total (2 hidrogênios, 1 enxofre e 4 oxigênios).
- C) Incorreta. O hidróxido de cálcio é formado por 3 elementos (cálcio, hidrogênio e oxigênio).
- D) Correta. O hidróxido de cálcio é formado por 5 átomos (1 cálcio, 2 oxigênios e 2 hidrogênios).
- E) Incorreta. O índice 4 do sulfato de cálcio refere-se apenas ao oxigênio.

Semana: 1 Módulo: 1 Setor: B

QUESTÃO 33: Resposta E

As duas alterações citadas no texto são:

Solidificação - "[...] o alimento é resfriado até ocorrer a formação de gelo. [...]"

Sublimação – "Esse procedimento permite que a água congelada passe diretamente para o vapor [...]"

Semana: 2 Módulo: 2 Setor: B

MATEMÁTICA

QUESTÃO 34: Resposta C

Como são n pessoas doando esse mesmo valor, o total arrecadado é:

 $n \cdot (B - 2n) =$ $-2n^2 + Bn$ Semana: 3
Módulo: 3
Setor: A

QUESTÃO 35: Resposta D

A área do gramado é igual a 12,822 m² e a da horta, 2,182 m².

Dessa forma, a área do gramado exterior à horta é de:

 $12,82^2 - 2,18^2 = (12,82 - 2,18) \cdot (12,82 + 2,18)$

Semana: 3 Módulo: 3 Setor: A

QUESTÃO 36: Resposta B

Como um bilhão é igual a 10^9 , temos que um bilionésimo é igual a $\frac{1}{10^9}$. Logo, o valor do angstrom é de:

$$\frac{1}{10} \cdot \frac{1}{10^9} \text{ m} = \frac{1}{10^{10}} \text{ m} = 10^{-10} \text{ m} = 1.0 \cdot 10^{-10} \text{ m}$$

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 37: Resposta D

Como 64 < 70 < 81, temos que $\sqrt{70}$ é um número entre 8 e 9. Dessa forma, basta calcular os quadrados dos valores exibidos nas alternativas 8,2 e 8,5:

 $8,2^2 = 67,24$ $8,5^2 = 72,25$

Como 72,25 é mais próximo de 70 do que 67,24, temos que 8,5 é a melhor aproximação para $\sqrt{70}$.

Semana: 2 Módulo: 2 Setor: A

QUESTÃO 38: Resposta D

Como $0.7 \cdot 10^6 = 7 \cdot 10^5 = 7 \cdot 10^2 \cdot 10^3$, temos que o valor do algarismo corresponde a 7 centenas de milhar de quilômetros.

Semana: 1 Módulo: 1 Setor: A

QUESTÃO 39: Resposta A

Como
$$1 - \frac{1}{2} = \frac{1}{2}$$
, $1 - \frac{1}{3} = \frac{2}{3}$, $1 - \frac{1}{4} = \frac{3}{4}$, [...], $1 - \frac{1}{100} = \frac{99}{100}$, temos:

$$\sqrt{\left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{4}\right) \cdot \dots \cdot \left(1 - \frac{1}{100}\right)} = \sqrt{\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{99}{100}} = \sqrt{\frac{1}{100}} = \frac{1}{10}$$

Semana: 2 Módulo: 2 Setor: A

QUESTÃO 40: Resposta A

$$\sqrt{5} + \sqrt{3} = (\sqrt{5} + \sqrt{3}) \cdot \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3}) \cdot (\sqrt{5} - \sqrt{3})}{\sqrt{5} - \sqrt{3}} = \frac{(\sqrt{5})^2 - (\sqrt{3})^2}{\sqrt{5} - \sqrt{3}} = \frac{2}{\sqrt{5} - \sqrt{3}}$$

Semana: 3 Módulo: 3 Setor: A

QUESTÃO 41: Resposta B

Analisando os dados da tabela, a média aritmética dos valores recebidos pelo motorista é dada por:

$$\overline{X} = \frac{9,66 + 10,12 + 11,64 + 11,24 + 15,63 + 18,10}{6} \cong 12,73$$

Sendo assim, há 2 aplicativos que atendem às exigências de Carlos.

Semana: 1 Módulo: 1 Setor: B

SOMOS EDUCAÇÃO

QUESTÃO 42: Resposta E

Colocando os dados da tabela em ordem crescente, temos: 60, 64, 65, 68, 70, 70, 72, 74, 75, 82.

 α_1 é a moda, logo α_1 = 70, pois é o valor com maior frequência.

$$\alpha_2$$
 é a mediana, logo: $a_2 = \frac{70+70}{2} = 70$

$$\alpha_3$$
 é a média aritmética, logo: $\alpha_3 = \frac{60+64+65+68+70+70+72+74+75+82}{10} = 70$

Portanto, tem-se que $\alpha_1 = \alpha_2 = \alpha_3$.

Semana: 1 Módulo: 1 Setor: B

QUESTÃO 43: Resposta E

Com base nos dados da tabela e do enunciado, o produto escolhido deve ser o que possui maior regularidade, ou seja, o menor desvio padrão. Logo, o escolhido será o produto de número V.

Semana: 2 Módulo: 1 Setor: B

QUESTÃO 44: Resposta E

6 horas e 15 minutos equivalem a 6 horas + $\frac{1}{4}$ de hora = 6,25 horas.

Sendo Q, em mL, a quantidade que o paciente terá recebido, tem-se:

1000 mL _____ 8 horas
Q mL _____ 6,25 horas
Q =
$$\frac{6250}{8}$$
 = 781,25

Semana: 3 Módulo: 2 Setor: B

QUESTÃO 45: Resposta B

Sendo Vx e Vy os novos volumes das substâncias X e Y, respectivamente, tem-se:

$$\begin{split} \frac{V_x}{200} &= \frac{V_y}{200} = \frac{1\ 500}{1\ 200} \\ \frac{V_x}{200} &= \frac{V_y}{300} = \frac{15}{12} \end{split}$$

Logo, $V_x = 250 \text{ e } V_y = 375.$

A diferença $V_y - V_x = 375 - 250 = 125$.

Semana: 3 Módulo: 2 Setor: B

QUESTÃO 46: Resposta B

Escrevendo o rol, encontramos:

0,28%; 0,80%; 0,95%; 1,24%; 1,51%; 1,56%; 2,23%; 2,53%; 2,58%; 2,74%; 2,94%; 3,23%; 3,28%; 4,34%.

Como o número de observações é par, a mediana é a média aritmética dos termos centrais, ou seja, $\frac{2,23+2,53}{2} = 2,38\%$.

Semana: 1 Módulo: 1 Setor: B

QUESTÃO 47: Resposta C

De acordo com o enunciado, devemos ter: $\overline{x} = \frac{1 \cdot 6 + 2 \cdot 7,5 + 3 \cdot 4 + 4 \cdot 5 + 10 \cdot x}{20} = \ge 7,0$

Ou seja: $\overline{x} \ge 8,7$

Semana: 1 Módulo: 1 Setor: B