TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree ${\it degree}$

1st Semester A.Y. 2025-2026

by

Nmae

```
knitr::opts_chunk$set(
echo = FALSE,
message = FALSE,
warning = FALSE
)
```

Abstract

Contents

\mathbf{A}	ostra	ct	2		
1	Met	chodology	4		
	1.1	Parametric bootstrap	4		
	1.2	Nonrank-based method	5		
	1.3	Results	6		
2	Intr	roduction	10		
	2.1	Background of the Study	10		
	2.2	Statement of the Problem	10		
	2.3	Objective of the Study	10		
	2.4	Study Hypothesis	10		
	2.5	Significance of the Study	10		
	2.6	Scope and Limitation	10		
	2.7	Definition of Terms	10		
3	Bac	ckground			
Re	efere	nces	10		
$\mathbf{A}_{]}$	ppen	dices	10		
	Cod	es for algorithm 1	10		
	Cod	es for algorithm 2	14		
	Cod	es for simulation	20		

1 Methodology

Let $\theta_1, \theta_2, \dots, \theta_K$ be the true parameter values and $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be the estimates obtained.

1.1 Parametric bootstrap

Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K$ be independent but not identically distributed estimates. For this study, it is assumed that $\hat{\theta}_k \sim N\left(\theta_k, \sigma_k^2\right), \ k = 1, 2, \dots, K$, where σ_k^2 is known. Denote the corresponding ordered values by $\hat{\theta}_{(1)}, \hat{\theta}_{(2)}, \dots, \hat{\theta}_{(K)}$.

Algorithm 1 Computation of Joint Confidence Region via Parametric Bootstrap

1: **for** $b = 1, 2, \dots, B$ **do**

2: Generate $\hat{\theta}_{bk}^* \sim N\left(\hat{\theta}_k, \sigma_k^2\right)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

varies				
	k=1	k=2		k = K
b=1	$\hat{ heta}_{1(1)}^*$	$\hat{\theta}_{1(2)}^*$		$\hat{ heta}_{1(K)}^*$
b=2	$\hat{ heta}_{2(1)}^*$	$\hat{ heta}_{2(2)}^*$		$\hat{ heta}_{2(K)}^*$
:	:	:		:
b = B	$\hat{ heta}_{B(1)}^*$	$\hat{ heta}_{B(2)}^*$		$\hat{\theta}_{B(K)}^*$

3: Compute

$$\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^{*2}}$$

4: Compute
$$t_b^* = \max_{1 \le k \le K} \left| \frac{\hat{\theta}_{b(k)}^* - \hat{\theta}_k^*}{\sigma_{b(k)}^*} \right|$$

5: end for

- 6: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 7: The joint confidence region of $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_{(1)} \pm \hat{t} \times \hat{\sigma}_{(1)}\right] \times \left[\hat{\theta}_{(2)} \pm \hat{t} \times \hat{\sigma}_{(2)}\right] \times \cdots \times \left[\hat{\theta}_{(K)} \pm \hat{t} \times \hat{\sigma}_{(K)}\right]$$

where $\hat{\sigma}_{(k)}$ is computed as

$$\hat{\sigma}_{(k)} = \sqrt{\text{kth ordered value among } \left\{ \hat{\theta}_1^2 + \sigma_1^2, \hat{\theta}_2^2 + \sigma_2^2, \dots, \hat{\theta}_K^2 + \sigma_K^2 \right\} - \hat{\theta}_{(k)}^2}$$

4

Algorithm 2 Computation of Coverage Probability for Parametric Bootstrap

For given values of $\theta_1, \theta_2, \dots, \theta_K$ and thus $\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}$

- 1: for replications = $1, 2, \dots, 5000$ do
- 2: Generate $\hat{\theta}_k \sim N(\theta_k, \sigma_k^2)$, for $k = 1, 2, \dots, K$
- 3: Compute the rectangular confidence region \Re using Algorithm 1.
- 4: Check if $\left(\theta_{(1)}, \theta_{(2)}, \dots, \theta_{(K)}\right) \in \mathfrak{R}$ and compute $T_1 = \frac{1}{K} \sum_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_2 = \prod_{k=1}^K \left| \Lambda_{Ok} \right|$ $T_3 = 1 \frac{K + \sum_{k=1}^K \left| \Lambda_{Ok} \right|}{K^2}$
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

1.2 Nonrank-based method

The nonrank-based method assumes that $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_K) \sim N(\boldsymbol{\theta}, \boldsymbol{\Sigma})$. It accounts for potential correlation among items being ranked. For this case, an exchangeable correlation, $\boldsymbol{\rho}$ (See Equation 1.1.), is assumed and used in the calculation of the variance covariance matrix (See Equation 1.2.).

$$\boldsymbol{\rho} = (1 - \rho) \mathbf{I}_K + \rho \mathbf{1}_K \mathbf{1}_K' \tag{1.1}$$

$$\Sigma = \Delta^{1/2} \rho \Delta^{1/2} \tag{1.2}$$

where $\Delta = \text{diag}\{\sigma_1^2, \sigma_2^2, \dots, \sigma_K^2\}$, with known σ_k 's and ρ is studied for 0.1, 0.5, 0.9.

Algorithm 3 Computation of Joint Confidence Region via Nonrank-based Method

Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

- 1: **for** $b = 1, 2, \dots, B$ **do**
- 2: Generate $\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$ and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$
- 3: Compute $t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* \hat{\theta}_j^*}{\sigma_j} \right|$
- 4: end for
- 5: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by

$$\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \cdots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$$

Algorithm 4 Computation of Coverage Probability for Nonrank-based Method

For given values of $\theta_1, \theta_2, \ldots, \theta_K$ and Σ

- 1: **for** replications = 1, 2, ..., 5000 **do**
- 2: Generate $\hat{\boldsymbol{\theta}} \sim N_K(\boldsymbol{\theta}, \boldsymbol{\Sigma})$
- 3: Compute the rectangular confidence region \mathfrak{R} using Algorithm 3.
- 4: Check if $(\theta_1, \theta_2, \dots, \theta_K) \in \mathfrak{R}$ and compute T_1, T_2 , and T_3 .
- 5: end for
- 6: Compute the proportion of times that the condition in step 4 is satisfied and the average of T_1, T_2 , and T_3 .

1.3 Results

For the simulation studies, α is fixed at 0.1, while the true standard deviations are varied (sd = 2.0, 3.6, 6.0) along with the number of items to be ranked (K = 5, 10, 20, 30, 40, 51). Table 1 shows that when the correlation is zero, the nonrank-based, independent, and Bonferroni CI methodology exhibit similar coverage values regardless of K and S in contrast, the parametric approach generally yields lower coverage for smaller S while showing comparable variability across different values of S.

Table 1: Simulation results for coverage probabilities when correlation is zero.

		Coverage			
K	sd	Parametric	Non-rankbased	Independent	Bonferroni
	2.0	0.9198	0.8970	0.9000	0.9042
5	3.6	0.8534	0.8970	0.9000	0.9042
	6.0	0.8034	0.8970	0.9000	0.9042
	2.0	0.8900	0.8962	0.8984	0.9034
10	3.6	0.8830	0.8962	0.8984	0.9034
	6.0	0.8212	0.8962	0.8984	0.9034
	2.0	0.8842	0.9070	0.9096	0.9134
20	3.6	0.8952	0.9070	0.9096	0.9134
	6.0	0.8264	0.9070	0.9096	0.9134
	2.0	0.8786	0.9026	0.9048	0.9088
30	3.6	0.8594	0.9026	0.9048	0.9088
	6.0	0.8458	0.9026	0.9048	0.9088
	2.0	0.8820	0.8958	0.8972	0.9020
40	3.6	0.8804	0.8958	0.8972	0.9020
	6.0	0.8474	0.8958	0.8972	0.9020
	2.0	0.9442	0.9010	0.9008	0.9054
51	3.6	0.9128	0.9010	0.9008	0.9054
	6.0	0.9124	0.9010	0.9008	0.9054

The case is different in terms of T_1 (See Table 2.) as it increases with decreasing sd and increasing K. The CIs are wider for the parametric approach compared to the remaining approaches whose T_1 only vary by a small margin, with nonrank-based method having the smallest T_1 and Bonferroni, the largest one. The same behavior is observed for T_2 and T_3 .

Table 2: Simulation results for coverage probabilities.

		T_1				
K	sd	Parametric	Non-rankbased	Independent	Bonferroni	
	2.0	2.212960	2.127360	2.128560	2.130800	
5	3.6	1.983280	1.834720	1.835600	1.842240	
	6.0	1.622000	1.462560	1.462560	1.465520	
	2.0	4.002280	3.243800	3.246320	3.259040	
10	3.6	2.710680	2.307480	2.308680	2.317680	
	6.0	1.924080	1.731200	1.733320	1.736840	
	2.0	7.022060	5.333380	5.336680	5.361700	
20	3.6	4.207100	3.448120	3.451680	3.465240	
	6.0	2.787040	2.453000	2.454920	2.462440	
	2.0	11.830987	9.538733	9.547507	9.591387	
30	3.6	7.653613	5.802093	5.806080	5.833933	
	6.0	4.764387	3.778320	3.781573	3.797987	
	2.0	15.153140	12.100160	12.108990	12.160730	
40	3.6	10.392030	7.201310	7.205910	7.241320	
	6.0	6.508180	4.483520	4.485920	4.506070	
	2.0	20.446533	15.607796	15.614745	15.685914	
51	3.6	13.206918	9.098996	9.103490	9.143977	
	6.0	8.598722	5.786298	5.789153	5.814400	

As the correlation increases, the coverage of both independent and Bonferroni CIs exceed the nominal value while that of nonrank-based method remains close to it. This holds regardless of K and sd. See Table 3.

Table 3: Simulation results for coverage probabilities when correlation is nonzero.

corr	K	Non-rankbased	Independent	Bonferroni
	5	0.8984	0.9008	0.9046
	10	0.8996	0.9016	0.9060
0.1	20	0.8988	0.9026	0.9082
0.1	30	0.9000	0.9036	0.9088
	40	0.8916	0.8968	0.9012
	51	0.8944	0.8994	0.9048
	5	0.9042	0.9218	0.9260
	10	0.9038	0.9322	0.9346
0.5	20	0.9032	0.9378	0.9408
0.5	30	0.8910	0.9312	0.9338
	40	0.8920	0.9328	0.9358
	51	0.9086	0.9492	0.9516
	5	0.9032	0.9574	0.9586
	10	0.8962	0.9682	0.9690
0.0	20	0.8980	0.9758	0.9766
0.9	30	0.8960	0.9802	0.9806
	40	0.8996	0.9862	0.9870
	51	0.8928	0.9866	0.9868

2 Introduction

- 2.1 Background of the Study
- 2.2 Statement of the Problem
- 2.3 Objective of the Study
- 2.4 Study Hypothesis
- 2.5 Significance of the Study
- 2.6 Scope and Limitation
- 2.7 Definition of Terms

3 Background

THIS IS Rizzo (2008) and Klein et al. (2020)

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices

Codes for algorithm 1

```
K <- length(theta_hat)
 gamma = \frac{1}{(1-alpha)}(\frac{1}{K})
 z = qnorm(1-gamma/2)
 ci_lower < - theta_hat - z*S
 ci\_upper <- theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
  ci\_upper = ci\_upper
 ))
}
get_bonferroni_ci <- function(theta_hat,
                      S,
                      alpha){
 K <- length(theta_hat)
 z = qnorm(1-(alpha/K)/2)
 ci_lower < - theta_hat - z*S
 ci\_upper < - theta\_hat + z*S
 return(list(
  ci_lower = ci_lower,
   ci\_upper = ci\_upper
 ))
}
get_parametric_ci <- function(B,
                      theta_hat,
                      S,
                      alpha) {
 K <- length(theta_hat)
```

```
thetahat_star <- sapply(seq_len(K), function(i) {
 rnorm(B, mean = theta\_hat[i], sd = S[i])
})
colnames(thetahat star) <- paste0("thetahat star",
                 sprintf("%02d", 1:K))
sorted_thetahat_star <- t(apply(thetahat_star, 1, sort))
colnames(sorted_thetahat_star) <- paste0("sorted_thetahat_star",
                     sprintf("%02d", 1:K))
variance vector <- S^2
minuend \leftarrow thetahat_star^2 + rep(
 variance\_vector, each = nrow(thetahat\_star))
sigma_hat_star <- sqrt(
 t(apply(minuend, 1, sort)) - sorted_thetahat_star^2)
sorted_theta_hat <- sort(theta_hat)
t_star <- apply(
 abs(
   sorted thetahat star - rep(
    sorted theta hat,
    each = nrow(sorted thetahat star)
   )/sigma_hat_star
  ),
 1,
 max)
```

```
t_hat <- quantile(t_star, probs = 1 - alpha)
sigma_hat <- sqrt(
 sort(theta_hat^2 + variance_vector) - sorted_theta_hat^2)
ci_lower <- sorted_theta_hat - t_hat*sigma_hat
ci_upper <- sorted_theta_hat + t_hat*sigma_hat
return(list(
 ci_lower = ci_lower,
 ci\_upper = ci\_upper
))
get_nonrankbased_ci <- function(B,
              theta hat,
              alpha,
              varcovar_matrix) {
K <- length(theta_hat)
generate_data <- function(){MASS::mvrnorm(n = 1,
                 mu = theta hat,
                 Sigma = varcovar matrix)
thetahat_star <- t(replicate(B, generate_data()))
t_star <- apply(thetahat_star,
        function(x) max(abs((x - theta_hat) / sqrt(
         diag(varcovar_matrix)))))
```

Codes for algorithm 2

```
source("../../R/compute_ci.R")
library("doRNG")

get_ranks <- function(k, tuple_list){
    Lambda_lk <- which(
        tuple_list[,2]<=tuple_list[k,1])
    Lambda_lk <- Lambda_lk[Lambda_lk != k]
    Lambda_Ok <- which(
        tuple_list[,2]>tuple_list[k,1] & tuple_list[k,2] > tuple_list[,1])
    Lambda_Ok <- Lambda_Ok[Lambda_Ok != k]
    ranks <- seq(
    length(unique(Lambda_lk)) + 1,
    length(unique(Lambda_lk)) + length(unique(Lambda_Ok)) + 1,
    1
    )
    return(list(
    ranks = ranks,</pre>
```

```
Lambda_Ok = Lambda_Ok
 ))
}
get_t1 <- function(v) mean(v)
get_t2 \leftarrow function(v) \operatorname{prod}(v)^(1/\operatorname{length}(v))
get_t3 <- function(v) {
 \frac{1}{2} - ((\operatorname{length}(v) + \operatorname{sum}(v)) / (\operatorname{length}(v)^2))
}
get_coverage <- function(ci_lower,
                     ci_upper,
                     true_theta) {
 return(all(ci_lower<=true_theta) & all(true_theta<=ci_upper))
}
algo2_nonrankbased <- function(
   true_theta,
   Κ,
   reps = 5, \# step 4
   B = 100,
   alpha = 0.10,
   varcovar_matrix){
  foreach(iter = 1:reps,
        .combine = rbind,
        .packages = c("foreach", "arrow", "MASS"),
        . \\ export = c("get\_nonrankbased\_ci", "get\_independent\_ci", \\
```

```
"get_bonferroni_ci", "get_ranks", "get_coverage",
              "get_t1", "get_t2", "get_t3")
) %dorng% {
 # step 1 ======
 theta_hat <- mvrnorm(n = 1,
                mu = true\_theta,
                Sigma = varcovar\_matrix
 # step 2 ======
 S <- sqrt(diag(varcovar_matrix))
 ci_methods <- list(
  nonrankbased = function() get_nonrankbased_ci(B, theta_hat, alpha,
                                   varcovar_matrix),
  independent = function() get_independent_ci(theta_hat, S, alpha),
  bonferroni = function() get_bonferroni_ci(theta_hat, S, alpha)
 )
 ci_results <- lapply(ci_methods, function(f) f())
 coverages <- lapply(ci_results, function(res) {
  get_coverage(
    ci_lower = res$ci_lower,
    ci\_upper = res$ci\_upper,
    true theta = true theta
 })
```

```
process_ci_result <- function(result, K) {
 tuple_list <- t(apply(
  data.frame(
    ci_lower = result$ci_lower,
    ci upper = result$ci upper
  ),
  1,
  function(row) as.numeric(row)
 ))
 rank_range_length <- sapply(1:K, function(x)
  length(get_ranks(x, tuple_list)$ranks)
 list(
  t1 = get_t1(rank_range_length),
  t2 = get_t2(rank_range_length),
  t3 = get_t3(rank_range_length)
}
processed <- lapply(ci_results, process_ci_result, K = K)
data.frame(
 t1_nonrankbased = processed$nonrankbased$t1,
 t2_nonrankbased = processed$nonrankbased$t2,
 t3_nonrankbased = processed$nonrankbased$t3,
 coverage_nonrankbased = coverages$nonrankbased,
 t1_independent = processed$independent$t1,
```

```
t2_independent = processed$independent$t2,
    t3_independent = processed$independent$t3,
    coverage_independent = coverages$independent,
    t1_bonferroni = processed$bonferroni$t1,
    t2 bonferroni = processed$bonferroni$t2,
    t3_bonferroni = processed$bonferroni$t3,
    coverage_bonferroni = coverages$bonferroni
    )
 }
}
algo2_parametric <- function(
  true_theta,
  Κ,
  reps = 5, # step 4
  B = 100,
  alpha = 0.10,
  S){}
 foreach(iter = 1:reps,
       .combine = rbind,
       .packages = c("foreach", "arrow", "MASS"),
       .export = c("get_parametric_ci", "get_ranks", "get_coverage",
               "get_t1", "get_t2", "get_t3")
 ) %dorng% {
  # step 1 ======
  theta_hat <- rnorm(
    n = K
```

```
mean = true_theta,
 sd = S
# step 2 ======
result <- get_parametric_ci(B,
                   theta_hat,
                   S,
                   alpha)
# step 3 ======
sorted_true_theta <- sort(true_theta)
coverage <- get_coverage(ci_lower = result$ci_lower,
                 ci_upper = result$ci_upper,
                 true_theta = sorted_true_theta)
tuple\_list <- t(apply(
 data.frame(ci_lower = result$ci_lower,
         ci_upper = result$ci_upper), 1, function(row) as.numeric(row)))
rank_range_length <- sapply(1:K, function(x) length(
 get_ranks(x, tuple_list)$ranks))
t1 <- get_t1(rank_range_length)
t2 <- get_t2(rank_range_length)
t3 <- get_t3(rank_range_length)
data.frame(
 t1_parametric = t1,
 t2_parametric = t2,
 t3_parametric = t3,
```

```
coverage_parametric = coverage
)
}
```

Codes for simulation

```
#3:37PM
source("../../R/implement_algo2.R")
mean <-23.8
df <- readRDS("../../data/mean_travel_time_ranking_2011.rds")
cl=parallel::makeCluster(15)
registerDoParallel(cl)
sds < -c(2, 3.6, 6)
Ks <- c(51, 40, 30, 20, 10, 5)
corrs < c(0.1, 0.5, 0.9)
alphas <- c(0.1)#c(0.05, 0.1, 0.15, 0.2)
for (sd in sds) {
 for (K in Ks) {
   set.seed(123974)
   true_theta <- rnorm(K, mean, sd)
   true\_sds <- df$S[1:K]
   for (alpha in alphas) {
```

```
tic("Running parametric...")
coverage_parametric_df <- algo2_parametric(true_theta,
                                    Κ,
                                    reps = 5000,
                                    B = 500,
                                    alpha= alpha,
                                    S=true sds)
toc()
saveRDS(coverage_parametric_df, paste0("output/coverage_parametric_",
                                 K,"__", sd, "__", alpha, ".rds"))
for (corr in corrs) {
 \operatorname{corr}_{\operatorname{matrix}} <- (1 - \operatorname{corr}) * \operatorname{diag}(K) + \operatorname{corr} * \operatorname{matrix}(1, K, K)
 variance_vector <- true_sds^2
 delta <- diag(variance_vector)
 varcovar_matrix <- delta^{(1/2)} \% \% corr_matrix \% \% delta^{(1/2)}
 tic("Running nonrankbased...")
 coverage\_output\_df <- \ algo 2\_nonrank based (
   true_theta,
   Κ,
   reps = 5000,
   B = 500,
   alpha=alpha,
   varcovar_matrix = varcovar_matrix)
 toc()
 saveRDS(coverage_output_df, paste0("output/coverage_probability_",
                               K,"_", sd, "_", corr, "_",
                               alpha, ".rds"))
```

```
}
   }
stopCluster(cl)
param\_grid \leftarrow expand.grid(K = Ks, sd = sds, corr = corrs, alpha = alphas)
results <- do.call(rbind, lapply(seq_len(nrow(param_grid)), function(i) {
 K <- param_grid$K[i]
 sd <- param_grid$sd[i]
 corr <- param_grid$corr[i]
 alpha <- param_grid$alpha[i]
 a <- readRDS(paste0("output/coverage_probability_",
               K, "_", sd, "_", corr, "_", alpha, ".rds"))
 data.frame(
   K = K,sd = sd,corr = corr,alpha = alpha,
   Cov_nonrankbased = mean(a$coverage_nonrankbased),
   Cov\_independent = mean(a\$coverage\_independent),
   Cov_bonferroni = mean(a$coverage_bonferroni),
   T1_nonrankbased = mean(a$t1_nonrankbased),
   T1_independent = mean(a$t1_independent),
   T1_bonferroni = mean(a$t1_bonferroni),
   T2_nonrank = mean(a$t2_nonrankbased),
   T2_independent = mean(a$t2_independent),
   T2_bonferroni = mean(a$t2_bonferroni),
```

```
T3_independent = mean(a$t3_independent),
   T3_nonrankbased = mean(a$t3_nonrankbased),
   T3_bonferroni = mean(a$t3_bonferroni)
 )
}))
param\_grid \leftarrow expand.grid(K = Ks, sd = sds, alpha = alphas)
results1 <- do.call(rbind, lapply(seq_len(nrow(param_grid)), function(i) {
 K <- param_grid$K[i]
 sd <- param_grid$sd[i]
 alpha <- param_grid$alpha[i]
 a <- readRDS(paste0("output/coverage_parametric_",
               K, "_", sd, "_", alpha, ".rds"))
 data.frame(
   K = K
  sd = sd,
   alpha = alpha,
   Cov_parametric = mean(a$coverage_parametric),
   T1_parametric = mean(a$t1_parametric),
   T2_parametric = mean(a$t2_parametric),
   T3_parametric = mean(a$t3_parametric)
 )
}))
save(results, results1, file = "simulation_results.RData")
```