

EL2, Übung 10, Frequenzgang 3

1. Aufgabe

- a) Berechnen Sie die Übertragungsfunktion $H(\omega) = \frac{\underline{U}_2}{\underline{U}_1}$ zur untenstehenden Schaltung.
- b) Die Übertragungsfunktion kann in die Form $H(\Omega) = \frac{j\Omega_1}{1+j\Omega_0 \frac{1}{O} + (j\Omega_0)^2}$ gebracht werden

Was ergibt sich für den Gütefaktor Q, die Resonanzfrequenz ω_0 und die Frequenz ω_1 , bei der das Differentierglied im Zähler eine Dämpfung von 0 dB hat?

c) Direkt aus dem Schaltbild ist ersichtlich, dass der Gütefaktor Q mit grösserem Widerstandswert zunehmen muss. Erklären Sie, warum man dies direkt im Schaltbild erkennen kann.

2. Aufgabe

Gegeben sei der oben dargestellte Schwingkreis.

- a) Bestimmen Sie die Frequenzgangfunktion $\underline{U}_2/\underline{U}_1$ durch Benutzen der komplexen Wechselstromrechnung. Hinweis: Beginnen Sie mit der Spannung \underline{U}_2 und drücken Sie alle anderen Grössen (Stromstärken, Teilspannungen) der Schaltung in Funktion von U_2 aus.
- b) Bringen Sie die Frequenzgangfunktion in die folgende normierte Form:

$$\frac{\underline{U}_2}{\underline{U}_1} = k \frac{1}{1 + j \frac{\omega}{\omega_0} \cdot \frac{1}{Q} + (j \frac{\omega}{\omega_0})^2}$$

- c) Indentifizieren Sie die Parameter k, ω_0 und Q in Funktion der Grössen R_1 , R_2 , L und C.
- d) Skizzieren Sie das Bodediagramm des Frequenzgangs für die Annahmen k=2 und Q=4. Wieviele dB beträgt die Überhöhung des Frequenzganges? Markieren Sie die Überhöhung durch einen Punkt an entsprechender Stelle im Amplitudengang.
- e) Welche Änderungen ergeben sich bezüglich k, ω_0 und Q gegenüber dem Serieschwingkreis bei dem der Widerstand R_2 unendlich hoch ist?