Universität Augsburg

Institut für Mathematik

Masterarbeit

Insert Title

von: Lukas Graf $\begin{array}{c} \textit{Betreut von:} \\ \textit{Prof. Dr. Tobias HARKS} \end{array}$

Inhaltsverzeichnis

1	Grundlagen			
	1.1	Spiele in strategischer Form	3	
	1.2	Abweichungspfade	4	
	1.3	Auslastungsspiele	6	
2	Pot	entiale	8	
	2.1	Definitionen	8	
	2.2	Anschauung		
	2.3	Erste Sätze		
	2.4	Charakterisierungen der Potentiale	11	
3	Mor	phismen	20	
	3.1	Definitionen	20	
	3.2	Erste Sätze		
4	Zus	ammenhänge von Auslastungs- und Potentialspielen	29	
		Von ungewichtet zu gewichtet	30	
		4.1.1 Gewichtete Auslastungsspiele		
		4.1.2 Lastgewichtete Auslastungsspiele		
		4.1.3 Kostengewichtete Auslastungsspiele		
	4.2	Überblick		
ı a	terati	Ir.	25	

1 Grundlagen

1.1 Spiele in strategischer Form

Definition 1.1. Ein (nichtkooperatives) Spiel in strategischer Form ist ein Tupel $\Gamma = (I, X = (X_i)_{i \in I}, (c_i)_{i \in I})$. Dabei ist

- I die Menge der Spieler,
- X_i die Menge der (reinen) Strategien von Spieler i,
- $c_i: X_i \to \mathbb{R}$ die Kostenfunktion von Spieler i.

Das eigentliche Spiel besteht nun daraus, dass jeder Spieler versucht durch die Wahl einer Strategie $x_i \in X_i$ aus seinem Strategieraum die eigenen Kosten $c_i((x_j)_{j\in I})$ zu minimieren. Das Tupel $x := (x_j)_{j\in I}$ bezeichnen wir dabei als *Strategieprofil*.

Wir nennen ein solches Spiel endlich, wenn der gesamte Strategieraum X endlich ist und N-Personenspiel, wenn $|I| = N \in \mathbb{N}$ gilt.

Beobachtung 1.2. Ist ein Spiel endlich, so können wir in der Regel ohne Einschränkung annehmen, dass auch die Menge der Spieler endlich ist. Denn die Menge $X = \prod_{i \in I} X_i$ kann nur endlich sein, wenn höchsten endliche viele X_i einelementig sind. Also haben in einem endlichen Spiel nur endlich viele Spieler mehr als eine Strategie. Für die Suche beispielsweise nach Nash-Gleichgewichten oder Verbesserungspfaden spielen aber nur solche Spieler eine Rolle.

Notation 1.3. Zu einem Strategieprofil $x \in X$ und einer einzelnen Strategie $\hat{x}_i \in X_i$ bezeichnen wir einer Konvention aus [Mil15] folgend mit $(x \mid \hat{x}_i)$ das Strategieprofil, das aus x entsteht, wenn Spieler i einseitig seine Strategie von x_i auf \hat{x}_i ändert.

Definition 1.4. Ein Strategieprofil $x \in X$ ist ein Nash-Gleichgewicht, wenn für jeden Spieler $i \in I$ und jede seiner Strategien \hat{x}_i gilt:

$$c_i(x \mid \hat{x}_i) \geq c_i(x)$$

Ein Nash-Gleichgewicht ist also ein Strategieprofil, aus dem heraus kein Spieler einen Anreiz für einen einseitigen Strategiewechsel hat.

In [Voo+99, Definition 2.2] definieren Voorneveld u. a. die folgenden beiden Spieltypen:

Definition 1.5. Ein Spiel $\Gamma = (I, X = (X_i)_{i \in I}, (c_i)_{i \in I})$ heißt

- Koordinationsspiel, wenn alle Spieler eine gemeinsame Kostenfunktion nutzen, wenn also gilt $c_i = c_j$ für alle Spieler $i, j \in I$.
- Dummyspiel, wenn die alleinige Abweichung eines einzelnen Spielers von einem gegebenen Strategieprofil nie zu einer Änderung seiner Kosten führt. D.h. wenn für alle $x \in X$, $i \in I$ und $\hat{x}_i \in X_i$ gilt $c_i(x) = c_i(x \mid \hat{x}_i)$.

Kann man diese Erkenntnis irgendwie mit Morphismen formalisieren (evtl. über Retrakte?)

1.2 Abweichungspfade

Aus [MS96b]/[Voo00]

Motivation/Anschauung

Definition 1.6. Eine Folge von Strategieprofilen $\gamma = (x^0, x^1, x^2, \dots) \in X^{\mathbb{N}}$ ist ein Pfad, wenn jeder Schritt aus der Abweichung eines einzelnen Spielers besteht. Das heißt wenn es für jeden Schritt k einen Spieler $i(k) \in I$ gibt, sodass das Profil x^{k+1} aus x^k durch alleinige Abweichung dieses Spielers entsteht, also $x^{k+1} = \left(x^k \middle| x_{i(k)}^{k+1}\right)$.

Ein solcher Pfad heißt

- Nichtverschlechterungspfad, wenn sich der abweichende Spieler jeweils nicht verschlechtert. Das heißt es gilt an jeder Stelle k: $c_{i(k)}(x^{k+1}) \leq c_{i(k)}(x^k)$.
- schwacher Verbesserungspfad, wenn er ein Nichtverschlechterungspfad ist und sich an mindestens einer Stelle der abweichende Spieler echt verbessert. Das heißt es gibt eine Stelle k mit $c_{i(k)}(x^{k+1}) < c_{i(k)}(x^k)$.
- Verbesserungspfad, wenn sich der abweichende Spieler jeweils echt verbessert. Das heißt es gilt an jeder Stelle k: $c_{i(k)}(x^{k+1}) < c_{i(k)}(x^k)$.
- Beste Antwort-Pfad, wenn der abweichende Spieler jeweils eine beste Alternativstrategie wählt, d.h. $c_{i(k)}(x^{k+1}) = \min_{\hat{x}_{i(k)} \in X_{i(k)}} c_{i(k)}(x^n \mid \hat{x}_i)$.
- schwacher Beste Antwort-Verbesserungspfad, wenn er ein schwacher Verbesserungspfad und ein Beste Antwort-Pfad ist.
- Beste Antwort-Verbesserungspfad, wenn er ein Verbesserungspfad und ein Beste Antwort-Pfad ist.

Für einen endlichen Pfad $\gamma = (x^0, \dots, x^n)$ ist

• die Gesamtänderung entlang des Pfades $\delta(\gamma)$ definiert als die Summe aller Änderungen für die jeweils abweichenden Spieler:

$$\delta(\gamma) := \sum_{k=0}^{n} \left(c_{i(k)}(x^{k+1}) - c_{i(k)}(x^k) \right)$$

- γ ein abgeschlossener Verbesserungspfad, wenn er ein Verbesserungspfad ist, der nicht mehr nach hinten verlängert werden kann, d.h. es keine Strategie \hat{x}_i gibt, mit $c_i(x^n \mid \hat{x}_i) < c_i(x^n)$.
- γ ein n-Zykel, wenn $x^0 = x^n$ gilt.
- $\stackrel{\leftarrow}{\gamma} := (x^n, x^{n-1}, \dots, x^0)$ der in die andere Richtung durchlaufende Pfad.

Ist zusätzlich $\mu = (y^0, y^1, \dots)$ ein beliebiger Pfad, so ist $\gamma \cdot \mu := (x^0, \dots, x^n, y^0, y^1, \dots)$ die Verknüpfung der beiden Pfade (und offensichtlich selbst wieder ein Pfad).

Beobachtung 1.7.

Ordnen/Aussortieren/Beweis

Schöner formulieren

Voorneveld nennt es beste Antwort-kompatibel

- Ein endlicher Nichtverschlechterungspfad γ ist genau dann ein schwacher Verbesserungspfad, wenn $\overleftarrow{\gamma}$ kein Nichtverschlechterungspfad ist.
- Zwei Pfade γ und μ von x nach y haben genau dann die gleiche Gesamtänderung, wenn $\gamma \cdot \stackrel{\leftarrow}{\mu}$ eine Gesamtänderung von 0 hat. Es gilt also:

$$\delta(\gamma) = \delta(\mu) \iff \delta(\gamma \cdot \stackrel{\leftarrow}{\mu}) = 0$$

• Jeder Beste Antwort-Pfad ist automatisch ein Nichtverschlechterungspfad.

Definition 1.8. Eine Teilmenge $Y \subseteq X$ des Strategieraumes bezeichnen wir als Pfadzu-sammenhangskomponente, wenn es für je zwei $x,y \in Y$ einen Pfad von x nach y in Y gibt. Zu einem gegebeenen Strategieprofil $x \in X$ ist $die\ Pfadzusammenhangskomponente\ von\ x$ die (bezüglich Inklusion) maximale Pfadzusammenhangskomponente $Y_x \subseteq X$, welche x enthält.

Beobachtung 1.9. Die Pfadzusammenhangskomponente eines Strategieprofils x besteht aus allen Strategieprofilen, die sich an höchstens endlich vielen Stellen von x unterscheiden, d.h.

$$Y_x = \{ y \in X \mid \exists J \subseteq I : |J| < \infty \text{ und } \forall i \in I \setminus J : x_i = y_i \}$$

Insbesondere ist also für N-Personenspiele der gesamte Strategieraum eine einzige Zusammenhangskomponente.

Definition 1.10. Ein Spiel Γ hat die *finite improvement property (FIP)*, wenn jeder Verbesserungspfad endlich ist.

Eine anschauliche Bedeutung der FIP ist, dass der natürliche Algorithmus zum Finden von Nash-Gleichgewichten immer terminiert: Dazu startet man mit einem beliebigen Strategieprofil und führt, solange dieses noch kein Nash-Gleichgewicht ist, einen der dann zur Auswahl stehenden Verbesserungsschritte durch. Im Laufe dieses Verfahrens beschreitet man gerade einen Verbesserungspfad und das Verfahren terminiert genau dann immer, wenn alle Verbesserungspfade endlich sind.

Beobachtung 1.11. Das Ende eines abgeschlossenen Verbesserungspfades ist immer ein Nash-Gleichgewicht. Denn wäre dem nicht so, dann gäbe es wenigstens einen Spieler, der sich durch Abweichen noch verbessern kann - was zu einer Verlängerung des Verbesserungspfades führen würde.

Umgekehrt ist offenkundig auch jedes Nash-Gleichgewicht Ende wenigstens eines abgeschlossenen Verbesserungspfades - nämlich des trivialen, nur aus diesem Strategieprofil bestehenden Verbesserungspfades.

Korollar 1.12. Ein Spiel Γ besitzt genau dann (mindestens) ein Nash-Gleichgewicht, wenn es (mindestens) einen endlichen, maximalen Verbesserungspfad besitzt. Ein Spiel mit FIP besitzt dementsprechend immer wenigstens ein Nash-Gleichgewicht.

Wohldefiniertheit? Evtl

nieren?

direkt mit Relationen defi-

Sollte eine Beobachtung wirklich ein Korrolar haben?

1.3 Auslastungsspiele

Definition 1.13. Ein Auslastungsmodell M ist gegeben durch ein Tupel $(I, R, (S_i)_{i \in I}, (g_r)_{r \in R})$. Dabei ist

- I die Menge der Spieler,
- R die Menge der zur Verfügung stehenden Ressourcen,
- $g_r: \mathbb{R}_{\geq 0} \to \mathbb{R}$ eine Funktion, welche die Kosten der Ressource $r \in R$ in Abhängigkeit von ihrer Auslastung beschreibt, und
- $S_i \subseteq \mathcal{P}(R)$ die Menge von Teilmengen der Ressourcenmenge, unter denen sich der Spieler i für eine Teilmenge entscheiden kann.

Definition 1.14. Ein Auslastungsmodell M induziert ein $Auslastungsspiel \Gamma(M) := (I, S = (S_i)_{i \in I}, (c_i)_{i \in I})$ durch die Kostenfunktion:

$$c_i: S \to K: s \mapsto \sum_{r \in R} g_r(l_r(s))$$

wobei $l_r: S \to \mathbb{N}: s \mapsto |\{i \in I \mid r \in s_i\}|$ die der Ressource ist, wenn alle c_i und alle L-r auf ganz S wohldefiniert sind (also die entsprechenden Summen für jedes $s \in S$ konvergieren).

Bemerkung 1.15. Eine Lastfunktion l_r ist automatisch wohldefiniert, wenn diese Ressource r von höchstens endlich vielen verschiedenen Spielen benutzt werden kann. Das heißt wenn gilt: $|\{i \in I | \exists s_i \in S_i : r \in s\}| < \infty$. Sind alle l_r bereits wohldefiniert, so ist eine hinreichende Bedingung für die Wohldefiniertheit von c_i , dass alle diesem Spieler zur Auswahl stehende Teilmengen von R endlich sind. Keine dieser Bedingungen ist aber notwendig.

Insbesondere induzieren Auslastungsmodelle mit endlicher Ressourcen- und Spielerzahl immer ein Auslastungsspiel.

Ist die Ressourcenmenge R endlich, so ist das induzierte Auslastungsspiel ein endliches Spiel (d.h. dessen Strategieraum ist endlich). Ist umgekehrt der Strategieraum endlich, so können wir ohne Einschränkung davon ausgehen, dass auch R endlich ist. Denn in diesem Fall tauchen nur endlich viele der Ressourcen in wenigstens einer Strategie wenigstens eines der Spieler auf - und alle anderen Ressourcen können für die Betrachtung des Spiels ignoriert werden.

Beispiel 1.16. Ein Beispiel für Auslastungsmodelle sind Netzwerkauslastungsmodelle. Diese sind gegeben durch einen (nicht notwendigerweise endlichen) Graphen G = (V, E), einer Kostenfunktion $c_e : \mathbb{R}_{\geq 0} \to \mathbb{R}$ für jede Kante $e \in E$ und für jeden Spieler $i \in I$ je ein ausgezeichneter Start- und Endknoten $s_i, t_i \in V$. Die Ressourcen sind dann die Kanten des Graphen, die Strategien von Spieler $i \in I$ entsprechen den endlichen s_i, t_i -Pfaden in G.

Zusätzlich ist es möglich bestimmte Kanten nur für einen Teil der Spieler zuzulassen. Dadurch wird dann der Strategieraum der anderen Spieler entsprechend eingeschränkt.

Definition 1.17. Zusammen mit einem Gewichtsvektor $(w_i)_{i \in I}$ induziert ein Auslastungsmodell M

• ein kostengewichtetes Auslastungsspiel $\Gamma_c(M, w) := (I, S, (c_i)_{i \in I})$ durch die Kostenfunktion:

$$c_i: S \to K: s \mapsto \sum_{r \in R} w_i \cdot g_r(l_r(s))$$

und die gleiche Lastfunktion wie im ungewichteten Fall.

- ein lastgewichtetes Auslastungsspiel $\Gamma_l(M, w) := (I, S, (c_i)_{i \in I})$ durch die Kostenfunktion wie im ungewichteten Fall und die Lastfunktion $l_r : S \to \mathbb{N} : s \mapsto \sum \{w_i \mid r \in s_i\}$.
- ein gewichtetes Auslastungsspiel $\Gamma(M, w) := (I, S, (c_i)_{i \in I})$ durch die Kostenfunktion:

$$c_i: S \to K: s \mapsto \sum_{r \in R} w_i \cdot g_r(l_r(s))$$

und die Lastfunktion $l_r: S \to \mathbb{N}: s \mapsto \sum \{w_i \mid r \in s_i\}.$

Beispiel 1.18.

gewichtetes Netzwerkauslastungsspiel

Definition 1.19. Zusammen mit einer Skalierungsfunktionen $(f_i: K \to K_i)_{i \in I}$ und verallgemeinerten Lastfunktionen $(h_r: X \to \mathbb{R})_{r \in R}$ induziert ein Auslastungsmodell M

Ist diese Definition wirklich sinnvoll?

• ein kostenskaliertes Auslastungsspiel $\Gamma_c(M, f_i) := (I, S, (K)_{i \in I}, (c_i)_{i \in I})$ durch die Kostenfunktion:

$$c_i: S \to K: s \mapsto \sum_{r \in R} f_i(g_r(l_r(s)))$$

und die gleiche Lastfunktion wie im ungewichteten Fall.

• ein lastskaliertes Auslastungsspiel $\Gamma_l(M, h_r) := (I, S, (K)_{i \in I}, (c_i)_{i \in I})$ durch die Kostenfunktion:

$$c_i:S \to K:s \mapsto \sum_{r \in R} g_r(h_r(s))$$

• ein verallgemeinertes gewichtetes Auslastungsspiel $\Gamma(M, f_i, h_r) := (I, S, (K)_{i \in I}, (c_i)_{i \in I})$ durch die Kostenfunktion:

$$c_i: S \to K: s \mapsto \sum_{r \in R} f_i(g_r(h_r(s))).$$

2 Potentiale

2.1 Definitionen

Definition 2.1. Zu einem Spiel $\Gamma = (I, X, (c_i)_{i \in I})$ heißt eine Funktion $P: X \to \mathbb{R}$

• verallgemeinertes Nash-Potential, wenn jedes Minimum von P ein Nash-Gleichgewicht in Γ ist, d.h. für alle $x \in X$ gilt:

$$P(x) = \min_{\hat{x} \in X} P(\hat{x}) \implies \forall i \in I, \hat{x}_i \in X_i : c_i(x) \le c_i(x \mid \hat{x}_i)$$

• Nash-Potential, wenn jedes Minimum von P ein Nash-Gleichgewicht in Γ ist und umgekehrt, d.h. für alle $x \in X$ gilt:

$$P(x) = \min_{\hat{x} \in X} P(\hat{x}) \iff \forall i \in I, \hat{x}_i \in X_i : c_i(x) \le c_i(x \mid \hat{x}_i)$$

• Beste Antwort-Potential, wenn für jeden Spieler i und alle Strategieprofile $x \in X$ gilt:

$$\arg\min_{\hat{x}_i \in X_i} c_i(x \mid \hat{x}_i) = \arg\min_{\hat{x}_i \in X_i} P(x \mid \hat{x}_i)$$

• verallgemeinertes ordinales Potential, wenn für jeden Spieler i und alle Strategieprofile $x \in X$ sowie $\hat{x}_i \in X_i$ gilt:

$$c_i(x) > c_i(x \mid \hat{x}_i) \implies P(x) > P(x \mid \hat{x}_i)$$

• ordinales Potential, wenn für jeden Spieler i und alle Strategieprofile $x \in X$ sowie $\hat{x}_i \in X_i$ gilt:

$$c_i(x) > c_i(x \mid \hat{x}_i) \iff P(x) > P(x \mid \hat{x}_i)$$

• skaliertes Potential, wenn es streng monotone Funktionen $f_i : \mathbb{R} \to \mathbb{R}$ gibt, die 0 auf 0 abbilden, sodass für jeden Spieler i und alle Strategieprofile $x \in X$ sowie $\hat{x}_i \in X_i$ gilt:

$$c_i(x) - c_i(x \mid \hat{x}_i) = f_i(P(x) - P(x \mid \hat{x}_i))$$

• gewichtetes Potential, wenn es einen Gewichtsvektor $(w_i)_{i\in I} \in \mathbb{R}^I_{>0}$ gibt, sodass für jeden Spieler i und alle Strategieprofile $x \in X$ sowie $\hat{x}_i \in X_i$ gilt:

$$c_i(x) - c_i(x \mid \hat{x}_i) = w_i \cdot (P(x) - P(x \mid \hat{x}_i))$$

• exaktes Potential, wenn für jeden Spieler i und alle Strategieprofile $x \in X$ sowie $\hat{x}_i \in X_i$ gilt:

$$c_i(x) - c_i(x \mid \hat{x}_i) = P(x) - P(x \mid \hat{x}_i)$$

Exakte, gewichtete, ordinale und verallgemeinerte ordinale Potentiale wurden erstmals in [MS96b] definiert, beste Antwort-Potentiale erstmals in [Voo00].

Kann man diese Definition irgendwie kompakter/übersichtlicher machen?

2.2 Anschauung

Eine leicht andere Sichtweise auf Potentiale ist, dass diese ein alternatives Koordinationsspiel auf dem Strategieraum des Ausgangsspiels definieren (mit der Potentialfunktion als gemeinsamer Kostenfunktion aller Spieler). In einem solchen Spiel ist es nun viel einfacher beispielsweise Gleichgewichts- oder Optimalitätspunkte zu finden (da hierzu nur eine einzige Funktion betrachtet werden muss). Eigenschaften, die beim Übergang zurück zum ursprünglichen Spiel erhalten bleiben, kann man dann in dem einfacheren Spiel überprüfen. Diesen Übergang werden wir später mit Hilfe von (Iso-)Morphismen formal fassen (siehe Abschnitt 3).

Hier wollen wir nun noch kurz darauf eingehen, wie sich die verschiedenen Potentialbegriffe anschaulich voneinander unterscheiden. Wir betrachten dazu (endliche) 2-Personenspiele. Deren Strategieraum kann man dann als Gitternetz in der Ebene auffassen, wobei jede Strategie von Spieler 1 einer senkrechten und jede Strategie von Spieler 2 einer waagerechten Gitterlinie entspricht. Kreuzungspunkte von zwei Gerade entsprechen dann gerade vollständige Strategieprofilen. Kostenfunktionen (ebenso wie Potentiale) sind dann "Reliefkarten", deren Höhe den jeweiligen Kosten entspricht.

Abbildung 1: Ein 2-Personenspiel mit exaktem Potential (grau): Spieler 1: rot, Spieler 2: blau

Ein exaktes Potential entspricht in diesem Bild einer gemeinsamen Reliefkarte für beide Spieler, die - im Falle eines exakten Potentials - "scheibenweise" bis auf eine additive Konstante mit der eigentlichen Kostenfunktion übereinstimmt. Anders formuliert: Wird die Strategie eines Spieler festgehalten, so kann der andere Spieler seine Kostenveränderungen bei der Wahl der verschiedenen ihm zur Verfügung stehenden Strategien auch anhand der Potentialfunktion ablesen.

Geht man nun über zu einem gewichteten Potential, so lesen die beiden Spieler das Potential sozusagen in verschiedenen Einheiten. Das heißt die Kostenveränderungen eines Spielers

eigentlich müssen verchiedene Einheiten nicht zwangsläufig proportional zueinander sein - für Längeneinheiten sollte es typischerweise aber stimmen

sind nur noch proportional zu den Potentialänderungen. Ein skaliertes Potential zeigt jedem Spieler noch an, welche der Kostenveränderungen eher groß und welche klein sind. Ordinale Potentiale zeigen nur noch die Richtung der Kostenveränderung an ("wird teurer"/ "wird billiger"/ "Kosten bleiben konstant") und verallgemeinerte ordinale Potentiale zeigen nur noch echte Steigungen korrekt an. Beste-Antwort-Potentiale schließlich zeigen immer die beste Antwort an.

Zusammenhänge (evtl. schon nächstes Kapitel?)

Eine Beobachtung aus [HKM11]:

Beobachtung 2.2. Ein Spiel $\Gamma = (I, (X_i)_{i \in I}, (c_i)_{i \in I})$ besitzt genau dann ein gewichtetes Potential (mit Gewichtsvektor $(w_i)_{i \in I}$), wenn $\Gamma' := (I, (X_i)_{i \in I}, (w_i \cdot c_i)_{i \in I})$ ein exaktes Potential besitzt.

Folgt auch aus einer allgemeineren Beobachtung in Abschnitt 3.

2.3 Erste Sätze

Zu einem gegebenen Strategieprofil $x \in X$ sei dessen Nachbarschaft die Menge aller durch höchstens eine Abweichung erreichbarer Strategieprofile, d.h. die Menge $\{(\hat{x}_i, x_{-i})|i \in N, \hat{x}_i \in X_i\}$. Wir nennen x dann ein lokales Minimum einer Funktion $f: X \to \mathbb{R}$, wenn es ein Minimum innerhalb seiner Nachbarschaft ist.

Satz 2.3. Sei Γ ein Spiel mit einem verallgemeinerten ordinalen Potential P. Dann ist jedes lokale Minimum von P ein Nash-Gleichgewicht von Γ . Ist P sogar ein ordinales Potential, so gilt auch die umgekehrte Richtung.

Diese Sätze hier evtl. nur erwähnen und erst später (nach der Definition von Morphismen) formalisieren (und beweisen)

Dieser Satz zeigt also, dass man Nash-Gleichgewichte allein durch Betrachten einer Potentialfunktion finden kann. Daraus folgt direkt die Existenz von Nash-Gleichgewichten in einer Vielzahl von Potentialspielen:

Korollar 2.4. Sei Γ ein Spiel mit einem kompakten Strategieraum und einer stetigen verallgemeinerten ordinalen Potentialfunktion. Dann hat Γ wenigstens ein Nash-Gleichgewicht.

Insbesondere also haben endliche Potentialspiele immer ein Nashgleichgewicht. Satz 2.3 folgt mit Hilfe von Korollar 1.12 direkt aus dem folgenden Satz:

Satz 2.5. Sei Γ ein Spiel mit einem verallgemeinerten ordinalen Potential P. Dann ist jeder Verbesserungspfad in Γ auch ein Verbesserungspfad bezüglich P. Ist P sogar ein ordinales Potential, so gilt auch die umgekehrte Richtung.

Streng genommen nicht wirklich, da das Korollar nur für Spiele gilt!? Beweis. .

Beweis

Was kann man über Beste-Antwort-Potentiale sagen (vermtl. Zusammenhang zu Beste-Antwort-Pfade?)

Für Spiele mit unendlicher Spielermenge erweist es sich als hilfreiche Beobachtung, dass wir Potentiale pfadzusammenhangskomponentenweise definieren können:

Beobachtung 2.6. Sei Γ ein beliebiges Spiel und $P:X\to\mathbb{R}$ eine Funktion. Erfüllt P dann die Bedingung eines exakten/gewichteten/skalierten/ordinalen/verallgemeinerten ordinalen Potentials für jede (maximale) Pfadzusammenhangskomponente, so ist P ein entsprechendes Potential für ganz Γ .

Beweis. Dies folgt direkt aus dem Umstand, dass die definierende Eigenschaft für alle aufgezählten Potentiale immer nur entlang eines Pfades (der Länge 1) und damit innerhalb einer Zusammenhangskomponente geprüft werden muss. \Box

2.4 Charakterisierungen der Potentiale

Satz 2.7. Ein Spiel besitzt genau dann ein exaktes Potential, wenn alle 4-Zykel im Strategieraum eine Gesamtänderung von 0 haben.

Beweis. Wir folgen dem Beweis aus [MS96b, Anhang A]. Dort wird der Satz zwar nur für N-Personenspiele gezeigt, mit Beobachtung 2.6 überträgt sich dieser Beweis aber direkt auch auf allgemeine Spiele.

Sei zunächst $\gamma := (x^0, x^1, x^2, x^3, x^4)$ ein beliebiger 4-Zykel in einem Spiel mit Potential P. Dann gilt für die Gesamtänderung:

$$\delta(\gamma) = \sum_{i=0}^{3} \left(c_{i(k)}(x^{k+1}) - c_{i(k)}(x^k) \right) = \sum_{k=0}^{3} \left(P(x^{k+1}) - P(x^k) \right) = P(x^4) - P(x^0) = 0$$

Ist umgekehrt Γ ein Spiel, in dem für alle 4-Zykel γ gilt $\delta(\gamma) = 0$, x ein beliebiges, aber festes Strategieprofil in Γ und Y_x dessen Pfadzusammenhangskomponente, dann definiere wie folgt eine Funktion P_x auf Y_x :

$$P: Y_x \to \mathbb{R}: y \mapsto \delta(\gamma), \gamma$$
 beliebiger Pfad von x nach y

Damit diese Funktion tatsächlich wohldefiniert ist, muss für je zwei Pfade γ und γ' von \hat{x} nach x gelten, dass die jeweiligen Gesamtänderungen gleich sind, d.h. $\delta(\gamma) = \delta(\gamma')$. Dies ist äquivalent dazu, dass der Zykel, den man durch Verknüpfen der beiden Pfade γ und γ'

erhält eine Gesamtänderung von 0 hat. Dazu zeigen wir nun mittels Induktion über deren Länge, dass für alle Zykel μ gilt $\delta(\mu) = 0$:

- **IA** $(|\mu| = 4)^1$ D.h. μ ist ein 4-Zykel und damit $\delta(\mu) = 0$ nach Voraussetzung.
- IS ($|\mu| =: n$) Vorausgesetzt es gibt einen Pfad $\mu' = (x'^0, \dots, x'^n)$ gleicher Länge und Gesamtänderung wie μ , sodass in den ersten beiden Schritten der gleiche Spieler seine Strategie wechselt, d.h. i(0) = i(1). Dann erhält man durch Weglassen des ersten Schrittes einen kürzeren Pfad $\mu'' := (x'^0, x'^2, \dots, x'^n)$ mit gleicher Gesamtänderung, welche dann nach Induktion bereits 0 ist. Indiesem Fall haben wir dann wie gewünscht $\delta(\mu) = \delta(\mu') = \delta(\mu'') = 0$.

Die Existenz eines solchen Pfades μ' zeigen wir nun mittels Induktion über $k := \min\{1 \le l < n \mid i(l) = i(0)\}$. Ein solches k existiert immer, da Spieler i(0) bereits im ersten Schritt seine Strategie wechselt und dies daher im Verlauf des Zykels noch mindestens ein weiteres Mal tun muss.

- **IA** (k = 1) Dann gilt bereits i(0) = i(1) und wir sind fertig mit $\mu' := \mu$.
- IS $(k-1 \to k)$ Wir ändern μ so ab, dass Spieler i(0) bereits im (k-1)-ten Schritt der abweichende Spieler ist. Dann sind wir fertig nach Induktionsvoraussetzung. Dazu ersetzen wir in μ das Strategieprofil x^k durch $(x^{k-1} \mid x_{i(0)}^{k+1})$, sodass also Spieler i(0) bereits einen Schritt früher (im (k-1)-ten) seine Strategie wechselt und der Spieler, der dies zuvor in diesem Schritt getan hat, einen Schritt später.

Bei dieser Anpassung bleibt die Gesamtänderung des Pfades μ gleich, denn wir ersetzen lediglich ein Pfadstück der Länge 2 durch ein anderes Pfadstück der Länge 2. Und da sich diese beiden Pfade zu einem 4-Zykel zusammensetzen lassen, haben diese nach Voraussetzung die gleiche Gesamtänderung.

Auf dieses abgeänderte μ können wir nun die Induktionsvoraussetzung anwenden und erhalten dadurch einen neuen Pfad μ' mit den gewünschten Eigenschaften.

Hiermit können wir auch den Induktionsschritt der äußeren Induktion und damit den Nachweis der Wohldefiniertheit von P abschließen.

Wählen wir nun für jede maximale Pfadzusammenhangskomponente ein einziges x in dieser und definieren wie oben eine Funktion P_x , so lassen sich alle diese Funktionen zu einer Funktion P auf ganz X zusammensetzen. Nach Definition erfüllt diese auf jeder Pfadzusammenhangskomponente die Bedingung eines exakten Potentials. Also ist nach Beobachtung 2.6 P ein exaktes Potential auf X.

Satz 2.8. Ein Spiel besitzt genau dann ein gewichtetes Potential, wenn ...

analoge Bedingung zu exaktem Potential (vgl [HKM11, Kapitel 3.2])

Beweis. .

mit Beobachtung 2.2?

Charakterisierung der Existenz eines skalierten Potentials?

Definition 2.9. Eine Menge X mit einer strikten Partialordnung \prec (irreflexiv und transitiv) heißt reell geordnet², wenn es eine strikt monotone Abbildung von X in die reellen Zahlen gib, also $f: X \to \mathbb{R}$ mit $x \prec x' \Longrightarrow f(x) < f(x')$.

Wir definieren nun eine Äquivalenzrelation auf dem Strategieraum:

 $x \approx y :\iff$ es gibt einen nicht-Verschlechterungspfad von x nach y und umgekehrt

Auf dem dadurch erzeugten Raum von Äquivalenzklassen $X/\approx := \{[x] \mid x \in X\}$ erhält man eine transitive Ordnung

$$[x] \prec_{\uparrow} [y] : \iff$$
 Es gibt einen schwachen Verbesserungspfad von y nach x

Sowohl Wohldefiniertheit als auch Transitivität dieser Relation ergeben sich aus der Beobachtung, dass die Verknüpfung eines nicht-Verschlechterungspfades mit einem schwachen Verbesserungspfad wieder einen schwachen Verbesserungspfad ergibt.

Damit zeigen Voorneveld und Norde in [VN97, Theorem 3.1] folgende Charakterisierung der Existenz von ordinalen Potentialen:

Satz 2.10. Ein Spiel besitzt genau dann ein ordinales Potential, wenn es keine schwachen Verbesserungszykel enthält und $(X/\approx, \prec_{\uparrow})$ reell geordnet ist.

Beweis. Sei zunächst $P: X \to \mathbb{R}$ ein ordinales Potential eines Spiels Γ . Dann gilt:

1. Γ enthält keine schwachen Verbesserungszykel. Denn angenommen $\gamma = (x^0, \dots, x^n)$ wäre ein schwacher Verbesserungszykel in Γ , so gilt für alle $0 \le k < n$: $c_{i(k)}(x^{k+1}) \le c_{i(k)}(x^k)$ und für ein solches k sogar $c_{i(k)}(x^{k+1}) < c_{i(k)}(x^k)$. Da ferner P ein ordinales Potential ist, folgt daraus:

$$P(x^0) \le P(x^1) \le \dots \le P(x^{k+1}) < P(x^k) \le \dots \le P(x^n) = P(x^0)$$

Dies ist jedoch ein Widerspruch. Also kann es keinen solchen Verbesserungszykel geben.

- 2. \prec_{\uparrow} ist eine strikte Partialordnung auf X/\approx . Denn die Relation ist immer transitiv und in der Abwesenheit von schwachen Verbesserungszykeln zudem irreflexiv. Gäbe es nämlich ein Strategieprofil mit $[x] \prec_{\uparrow} [x]$, so gäbe es einen schwachen Verbesserungspfad von x nach x, also einen schwachen Verbesserungszykel.
- 3. $(X/\approx, \prec_{\uparrow})$ ist reell geordnet. Definiere dazu die Abbildung $f: X/\approx \to \mathbb{R}: [x] \mapsto P(x)$. Diese ist wohldefiniert, denn ist $y \in [x]$, so gibt es also Nichtverschlechterungspfade von x nach y und umgekehrt. Zusammen bilden dieses einen Nichtverschlechterungszykel und da es keine schwachen Verbesserungszykel in Γ gibt, muss in die diesem Zykel (und

evtl. schon im Grundlagenkapitel gemeinsam mit Pfadzusammenhangskomponenten?

²Voorneveld und Norde bezeichnen solche Mengen in [VN97] als "properly ordered"

damit bereits in den beiden Pfaden) in jedem Schritt Gleichheit gelten. Insbesondere folgt damit P(x) = P(y).

Ferner ist diese Abbildung streng monoton, denn gilt $[x] \prec_{\uparrow} [y]$, so gibt es einen schwachen Verbesserungspfad γ von y nach x. Damit folgt analog zum ersten Punkt: P(x) < P(y)

Ist umgekehrt Γ ein Spiel ohne schwache Verbesserungszykel, so ist - wie bereits gezeigt - \prec_{\uparrow} eine strikte Partialordnung auf X/\approx . Sei nun $(X/\approx, \prec_{\uparrow})$ sogar reell-geordnet mit Abbildung $f: X/\approx \to \mathbb{R}$, so definiere $P: X \to \mathbb{R}: x \mapsto f([x])$. Dies ist ein ordinales Potential, denn es gilt:

- 1. Gilt $c_i(x) > c_i(x \mid \hat{x}_i)$, so ist $(x, (x \mid \hat{x}_i))$ ein schwacher Verbesserungspfad. Da es in Γ keine schwachen Verbesserungszykel gibt, kann es also keinen nicht-Verschlechterungspfad in die andere Richtung geben und es gilt: $[x] \succ [(x \mid \hat{x}_i)]$. Daraus wiederum folgt $P(x) = f([x]) > f([(x \mid \hat{x}_i)]) = P(x \mid \hat{x}_i)$.
- 2. Gilt $c_i(x) = c_i(x \mid \hat{x}_i)$, so sind sowohl $(x, (x \mid \hat{x}_i))$ als auch $((x \mid \hat{x}_i), x)$ nicht-Verschlechterungspfade, also $[x] = [(x \mid \hat{x}_i)]$ und damit $P(x) = f([x]) = f([(x \mid \hat{x}_i)]) = P(x \mid \hat{x}_i)$.

Bemerkung 2.11. Im Gegensatz zur Charakterisierung von exakten Potentialspielen in Satz 2.7 genügt es für die Existenz eines ordinalen Potentials nicht, nur Zykel der Länge 4 zu betrachten. Voorneveld und Norde geben dafür in [VN97, Beispiel 3.1] ein Gegenbeispiel mit zwei Spielern und je drei Strategien an.

Anlehnend an Satz 2.10 erhält man unter Verwendung der Relation

 $x < \uparrow y : \iff$ es gibt einen Verbesserungspfad der Länge ≥ 1 von y nach x

eine Charakterisierung der Existenz eines verallgemeinerten ordinalen Potentials:

Satz 2.12. Ein Spiel besitzt genau dann ein verallgemeinertes ordinales Potential, wenn $(X, <_{\uparrow})$ reell geordnet ist.

Beweis. $(X, <_{\uparrow})$ reell geordnet mit streng monotoner Abbildung $f: X \to \mathbb{R}$, so sieht man direkt, dass f auch ein verallgemeinertes Potential ist. Denn für $x \in X, \hat{x}_i \in X_i$ mit $c_i(x) > c_i(x \mid \hat{x}_i)$ ist $(x, (x \mid \hat{x}_i))$ ein Verbesserungspfad, also $(x \mid \hat{x}_i) <_{\uparrow} x$ und damit $f(x \mid \hat{x}_i) < f(x)$.

Haben wir hingegen ein Spiel Γ mit einem verallgemeinerten ordinalen Potential P, so ist $(X, <_{\uparrow})$ reell geordnet, denn

1. $<_{\uparrow}$ ist eine strikte Partialordnung auf X: Sie ist transitiv, da die Verknüpfung zweier Verbesserungspfade wieder ein Verbesserungspfad ist, und irreflexiv, da es in Γ keine Verbesserungszykel gibt. Angenommen nämlich Γ enthielte einen solchen Verbesserungszykel $\gamma = (x^0, \dots, x^n)$, d.h. für alle $0 \le k < n$ gilt $c_{i(k)}(x^{k+1}) < c_{i(k)}(x^k)$. Da P ein verallgemeinertes ordinales Potential ist, folgt daraus $P(x^0) > P(x^1) > \cdots >$

 $P(x^n)=P(x^0),$ ein Widerspruch. Also kann es keinen Verbesserungszykel geben und damit nie $x<_\uparrow x$ gelten.

In dieser Form ist dies noch eine wenig hilfreiche Charakterisierung, denn um zu zeigen, dass der Strategieraum reell geordnet ist, muss man effektiv bereits die Potentialfunktion angeben. Allerdings erhält man daraus mit Hilfe der folgenden Propositionen einfachere Charakterisierungen für gewisse Teilklassen von Spielen:

Proposition 2.13. Jede abzählbare Menge mit einer strikten Partialordnung ist bereits reell geordnet.

Ein Beweis dazu findet sich in [VN97, Lemma 2.2]. Noch allgemeiner zeigen Voorneveld und Norde, dass es sogar genügt, wenn die partiell geordnete Menge eine bezüglich dieser Ordnung dichte, abzählbare Teilmenge hat.

Proposition 2.14. Die Relation $<_{\uparrow}$ ist genau dann eine strikte Partialordnung, wenn Γ keine Verbesserungszykel enthält.

Beweis. Da die Verknüpfung eines Verbesserungspfades von z nach y mit einem von y nach x einen Verbesserungspfad von z nach z ergibt, ist $<_{\uparrow}$ automatisch immer transitiv.

Ferner ist $<_{\uparrow}$ genau dann irreflexiv, wenn für alle $x \in X$ gilt, dass $x \not<_{\uparrow} x$, es also keinen Verbesserungspfad von x nach x gibt. Und letzteres entspricht genau einem (bei x beginnenden) Verbesserungskreis.

Korollar 2.15. Ein Spiel mit abzählbarem Strategieraum besitzt genau dann ein verallgemeinertes ordinales Potential, wenn es keine Verbesserungskreise enthält.

Beweis. Nach Proposition 2.13 ist jede abzählbare Menge mit einer strikten Partialordnung bereits reell geordnet. Also macht $<_{\uparrow}$ einen abzählbaren Strategieraum genau dann zu einer reell geordneten Menge, wenn $<_{\uparrow}$ eine strikte Partialordnung ist. Und dies ist nach Proposition 2.14 genau dann der Fall, wenn das Spiel keine Verbesserungszykel enthält. \square

Laut Beobachtung 2.6 gilt diese Charakterisierung sogar für die größere Klasse der Spiele mit abzählbar großen Pfadzusammenhangskomponenten. Insbesondere gilt damit:

Korollar 2.16. Ein Spiel mit abzählbar vielen Spielern und abzählbar großen spielerspezifischen Strategieräumen besitzt genau dann ein verallgemeinertes ordinales Potential, wenn es keine Verbesserungskreise enthält. wirklich gezeigt wird es dort eigentlich nicht (sondern auf andere Quelle verwiesen) Beweis. Wir müssen zeigen, dass in einem solchen Spiel jede Pfadzusammenhangskomponente abzählbar groß ist. Seien dazu also $x \in X$ und $n \in \mathbb{N}^*$ beliebig. Dann ist

$$Y_x^n \coloneqq \{ y \in X \mid \exists \gamma \text{ Pfad der Länge } n \text{ von } x \text{ nach } y \},$$

die Menge aller von x aus durch Pfade der Länge n erreichbaren Strategieprofile, abzählbar. Denn es gilt induktiv:

IA (n=1) Es ist

$$Y_x^1 = \{ y \in X \mid \exists i \in I : y = (x \mid y_i) \} = \{ (x \mid y_i) \mid i \in I, y_i \in Y_i \} = \bigcup_{i \in I} \{ (x \mid y_i) \mid y_i \in Y_i \}$$

eine abzählbare Vereinigung (da die Spielermenge abzählbar ist) von abzählbar großen Mengen (den spielerspezifischen Strategieräumen), also selbst abzählbar groß.

IS
$$(\langle n \rightarrow n)$$
 Es ist

$$Y_x^n = \bigcup_{y \in Y_x^{n-1}} Y_y^1$$

eine (nach Induktionsvoraussetung) abzählbare Vereinigung abzählbar großer Mengen und daher selbst wieder abzählbar.

Folglich ist auch $Y_x = \bigcup_{n \in \mathbb{N}^*} Y_x^n$ abzählbar und besitzt folglich nach Korollar 2.15 ein verallgemeinertes ordinales Potential.

Beschränkt man sich hingegen auf die kleinere Klasse von endlichen Spielen, so erhält man die (auf anderem Wege) erstmals von Monderer und Shapley in [MS96b, Lemma 2.5] gezeigte Charakterisierung der Existenz von verallgemeinerten ordinalen Potentialen:

Korollar 2.17. Ein endliches Spiel besitzt genau dann ein verallgemeinertes ordinales Potential, wenn es die FIP besitzt.

Beweis. In einem Spiel mit endlichem Strategieraum sind unendliche Verbesserungspfade genau die Verbesserungskreise. Damit folgt die Aussage direkt aus Korollar 2.15.

Bemerkung 2.18. Möchte man in den oben beschriebenen Fällen eine konkrete Potentialfunktion angeben, so kann man dies analog zu einer alternativen, konstruktiven Beweisidee für endliche Spiele aus [Mil96, Abschnitt 5] tun:

Sei dazu Γ ein Spiel mit abzählbarem Strategieraum $X:=\{x^1,x^2,\dots\}$ und ohne Verbesserungszykel. Definiere die Funktion $h:X\to\mathbb{R}:x^k\mapsto 2^{-k}$ sowie für jedes Strategieprofil $x\in X$ die Menge $Y_{>x}:=\{y\in X\mid \exists \text{ Verbesserungspfad von }y\text{ nach }x\}$ und mit deren Hilfe

$$P: X \to \mathbb{R}: x \mapsto 1 - \sum_{y \in Y_{>x}} h(y)$$

Beweis. Diese Funktion ist wohldefiniert, da $\sum_{k=1}^{\infty} 2^{-k} = 1$ absolut konvergiert. Sie ist außerdem ein verallgemeinertes ordinales Potential, denn gilt $c_i(x) > c_i(x \mid \hat{x}_i)$ so ist $(x, (x \mid \hat{x}_i))$ ein Verbesserungspfad. Außerdem gilt $x \notin Y_{>x}$, da es in Γ keine Verbesserungszykel gibt. Damit folgt:

$$P(x) = 1 - \sum_{y \in Y_{>x}} h(y) > 1 - \sum_{y \in Y_{>x}} h(y) - h(x) = 1 - \sum_{y \in Y_{>(x\mid\hat{x}_i)}} h(y) = P(x\mid\hat{x}_i) \qquad \Box$$

Ebenfalls analog zur Charakterisierung für ordinale Potentiale zeigt Voorneveld in [Voo00, Theorem 3.1] eine solche für Beste Antwort-Potentiale. Dazu definiert man die Äquivalenzrelation:

 $x \approx^* y : \iff$ es gibt einen Beste Antwort-Pfad von x nach y und umgekehrt

und auf dem dadurch erzeugten Raum von Äquivalenzklassen $X/\approx^* := \{[x] \mid x \in X\}$ erhält man eine transitive Ordnung

 $[x] \prec^* [y] : \iff$ Es gibt einen schwachen Beste Antwort-Verbesserungspfad von ynach x

Satz 2.19. Ein Spiel besitzt genau dann ein beste Antwort-Potential, wenn es keine schwachen Beste Antwort-Verbesserungszykel enthält und $(X/\approx^*, \prec^*)$ reell geordnet ist.

Beweis. Sei zunächst $P:X\to\mathbb{R}$ ein beste Antwort-Potential eines Spiels Γ . Dann gilt:

1. Γ enthält keine schwachen Beste Antwort-Verbesserungszykel. Denn angenommen $\gamma = (x^0, \dots, x^n)$ wäre ein schwacher Beste Antwort-Verbesserungszykel in Γ , so gilt für alle $0 \le k < n$:

$$c_{i(k)}(x^{k+1}) = \min_{\hat{x}_{i(k)} \in X_{i(k)}} c_{i(k)}(x^k \mid \hat{x}_i) \le c_{i(k)}(x^k)$$

und, da P ein beste Antwort-Potential ist, ebenso

$$P(x^{k+1}) = \min_{\hat{x}_{i(k)} \in X_{i(k)}} P(x^k \mid \hat{x}_i) \le P(x^k).$$

Ferner gilt für ein solches k sogar $c_{i(k)}(x^{k+1}) < c_{i(k)}(x^k)$, also auch $P(x^{k+1}) < P(x^k)$ (da $x_{i(k)}^k$ keine beste Antwort auf x^k ist). Zusammen folgt daher

$$P(x^0) \le P(x^1) \le \dots \le P(x^{k+1}) < P(x^k) \le \dots \le P(x^n) = P(x^0).$$

Dies ist jedoch ein Widerspruch. Also kann es keinen solchen Verbesserungszykel geben.

2. \prec^* ist eine strikte Partialordnung auf X/\approx^* . Denn die Relation ist immer transitiv und in der Abwesenheit von schwachen Beste Antwort-Verbesserungszykeln zudem irreflexiv. Gäbe es nämlich ein Strategieprofil mit $[x] \prec^* [x]$, so gäbe es einen

schwachen Beste Antwort-Verbesserungspfad von x nach x, also einen schwachen Beste Antwort-Verbesserungszykel.

3. $(X/\approx^*, \prec^*)$ ist reell geordnet. Definiere dazu die Abbildung $f: X/\approx^* \to \mathbb{R}: [x] \mapsto P(x)$. Diese ist wohldefiniert, denn ist $y \in [x]$, so gibt es also Beste Antwort-Pfade von x nach y und umgekehrt. Zusammen bilden dieses einen Beste Antwort-Zykel und da es keine schwachen Beste Antwort-Verbesserungszykel in Γ gibt, muss in die diesem Zykel (und damit bereits in den beiden Pfaden) in jedem Schritt Gleichheit gelten. Insbesondere folgt damit P(x) = P(y).

Ferner ist diese Abbildung streng monoton, denn gilt $[x] \prec_{\uparrow} [y]$, so gibt es einen schwachen Beste Antwort-Verbesserungspfad γ von y nach x. Damit folgt analog zum ersten Punkt: P(x) < P(y)

Ist umgekehrt Γ ein Spiel ohne schwache Beste Antwort-Verbesserungszykel, so ist - wie bereits gezeigt - \prec^* eine strikte Partialordnung auf X/\approx^* . Sei nun $(X/\approx^*, \prec^*)$ sogar reell-geordnet mit Abbildung $f: X/\approx^* \to \mathbb{R}$, so definiere $P: X \to \mathbb{R}: x \mapsto f([x])$. Dies ist ein beste Antwort-Potential, denn es gilt arg $\min_{x_i' \in X_i} c_i(x \mid x_i') = \arg\min_{x_i' \in X_i} P(x \mid x_i')$:

- " \subseteq ": Ist $\hat{x}_i \in \arg\min_{\hat{x}_i \in X_i} c_i(x \mid \hat{x})$, so ist also \hat{x}_i insbesondere auch eine beste Antwort auf alle Strategieprofile $(x \mid x_i')$ für $x_i' \in X_i$.
 - **1. Fall:** Gilt $c_i(x \mid \hat{x}_i) < c_i(x \mid x_i')$, so ist $((x \mid x_i'), (x \mid \hat{x}_i))$ ein Beste Antwort-Verbesserungspfad, also $[(x \mid \hat{x}_i)] \prec^* [(x \mid x_i')]$ und damit $P(x \mid \hat{x}_i) = f([(x \mid \hat{x}_i)]) < f([(x \mid x_i')]) = P(x \mid x_i')$.
 - **2. Fall:** Gilt $c_i(x \mid \hat{x}_i) = c_i(x \mid x_i')$, so sind sowohl $((x \mid x_i'), (x \mid \hat{x}_i))$ als auch $((x \mid \hat{x}_i), (x \mid x_i'))$ Beste Antwort-Pfade und folglich $(x \mid x_i') \approx^* (x \mid \hat{x}_i)$. Somit folgt $P(x \mid \hat{x}_i) = f([(x \mid \hat{x}_i)]) = f([(x \mid x_i')]) = P(x \mid x_i')$.

Insgesamt gilt also für alle $x_i' \in X_i$, dass $P(x \mid \hat{x}_i) \leq P(x \mid x_i')$ und daher $\hat{x}_i \in \arg\min_{x_i' \in X_i} P(x \mid x_i')$.

"⊇": .

Funktioniert dieser Beweis an der Stelle überhaupt?

vgl. mit [Voo00], evtl. weglassen?

Die Existenz eines verallgemeinerten Nash-Potentials schließlich lässt sich für endliche Spiele trivialerweise dadurch charakterisieren, dass das entsprechende Spiel ein Nash-Gleichgewicht besitzt. Hat nämlich ein Spiel Γ mindestens ein Nash-Gleichgewicht, so ist die Funktion

$$P: X \to \mathbb{R}: x \mapsto \begin{cases} 0, & x \text{ ist ein Nash-Gleichgewicht} \\ 1, & x \text{ ist kein Nash-Gleichgewicht} \end{cases}$$

ein verallgemeinertes Nash-Potential (das sogar alle Nash-Gleichgewichte auszeichnet).

Umgekehrt kann ein endliches Spiel ohne Nash-Gleichgewichte nie ein verallgemeinertes Nash-Potential besitzen, da jede Funktion auf dem endlichen Strategieraum X mindestens ein Minimum besitzt (welches also einem Nash-Gleichgewicht entsprechen müsste).

Spiele mit unendlichem Strategieraum besitzen immer verallgemeinerte Nash-Potentiale, nämlich zumindest alle Funktionen, welche kein Minimum besitzen.

3 Morphismen und Isomorphismen von Spielen

Motivation: Warum betrachtet man überhaupt Morphismen von Spielen. Wie induzieren diese Isomorphismen?

Mögliche Motivationen:

- Jedes Potential definiert selbst wieder ein Spiel mit einer gemeinsamen Kostenfunktion für alle Spieler. Und in einem gewissen Sinne ist dieses Spiel "äquivalent" zum ursprünglichen Spiel (z.B. gleiche Gleichgewichtspunkte). Das Hin- und Herwechseln zwischen diesen beiden Versionen eines Spiels kann man durch Morphismen beschreiben und die Äquivalenz der beiden wird dann dadurch sichtbar, dass diese Morphismen Isomorphismen sind.
- Die Äquivalenz zwischen exakten Potentialspielen und Auslastungsspielen wird durch Morphismen beschrieben.
- Kategorientheoretische Sicht: Um eine Kategorie (hier: die der Spiele) zu verstehen, muss man ihre Morphismen kennen. Kennt man diese, so ergeben sich aus diesen auf natürliche Weise weitere Begriffe wie Isomorphismen von Spielen, Summen oder Produkte von Spielen.

Diese Punkte (insbesondere den letzten) näher ausführen?

3.1 Definitionen

Zu zwei gegebenen Spielen $\Gamma = (I, X, (c_i)_{i \in I})$ und $\Delta = (J, Y, (d_j)_{j \in J})$ kann man wie folgt eine Abbildung $(\sigma, \phi_j) : \Gamma \to \Delta$ zwischen diesen beiden definieren:

- Eine Abbildung $\sigma: J \to I$ zwischen den Spielermengen und
- für jeden Spieler $j \in J$ eine Abbildung $\phi_j: X_{\sigma(j)} \to Y_j$ seiner Strategien.

Diese Art und Weise Abbildungen zwischen zwei Spielen zu definieren ergibt sich aus dem noch deutlich allgemeineren - Ansatz hierzu von Lapitsky in [Lap99]. Hierbei orientieren wir uns vor allem an dem dort vorgestellten Morphismusbegriff für topologische Spiele (in denen die Spielermenge ein topologischer Raum und der Strategieraum eine Garbe über diesem ist).

Insbesondere ergibt sich daraus auf natürliche Weise, dass die Abbildungen zwischen den Spielermengen in die entgegengesetzte Richtung zu der zwischen den Strategieräumen verläuft. Eine andere, leichter einzusehende Motivation hierfür liefert aber auch die folgende Bemerkung:

eigentlich nicht?

3

Beachte, dass Lapitsky Morphismen genau dual definert

Bemerkung 3.1. Alle Strategieabbildungen ϕ_j zusammen induzieren eine Strategieprofilabbildung

$$\phi:X\to Y:x=(x_i)_{i\in I}\mapsto \phi(x):=\left(\phi_j(x_{\sigma(j)})\right)_{j\in J}$$

Würde die Abbildung σ zwischen den Spielermengen in die andere, "natürlichere" Richtung verlaufen (also von I nach J), so müsste man automatisch auch fordern, dass diese bijektiv ist, wenn man möchte, dass in der obigen Form Strategieprofile auf Strategieprofile abgebildet werden (vgl. etwa [Jim14]). Denn nur dann wäre $\phi(x) := (\phi_i(x_i))$ wieder ein vollständiges Strategieprofil in Y.

Bemerkung 3.2. Möchte man trotzdem Spieler- und Strategieabbildungen in die gleiche Richtung haben, so kann man einem alternativen Ansatz zur Definition von Morphismen von Spielen folgen, welcher von Vorob'ev in [Vor94] verwendet wird. Darin werden einzelne Strategien nicht zwangsläufig wieder auf einzelne Strategien abgebildet, sondern können gleich auf ganze Teilmengen des Bildstrategieraums abgebildet werden. Von diesem Morphismentyp werden dann verschiedene "approximativ kostenerhaltende" Varianten betrachtet und die sich dadurch ergebende Kategorie studiert.

Notation 3.3. In den meisten Fällen wird die Abbildung zwischen den Spielermengen bijektiv sein. In diesen Fällen werden wir zur Vereinfachung der Notation ohne Einschränkung davon ausgehen, dass bereits die Spielermengen beider an der Abbildung beteiligten Spiele gleich und geeignet permutiert sind, sodass σ die Identitätsabbildung ist. Damit kann diese dann in der Notation verschwinden und die Abbildung zwischen den Spielen besteht nur noch aus den Abbildungen $\phi_i: X_i \to Y_i$ zwischen den Strategieräumen.

Abbildungen der obigen Form nehmen noch keinerlei Rücksicht auf die Kostenfunktionen der jeweiligen Spiele. Da diese aber in der Regel die interessierenden Eigenschaften eines Spiels (wie beispielsweise Gleichgewichte) festlegen, werden derartige Abbildungen im Allgemeinen noch wenig Aussagen über die beteiligten Spiele ermöglichen. So besagt der durch diese Art Abbildungen induzierte Isomorphiebegriff bspw. nur, dass zwei Spiele Spieler- und Strategiemengen gleicher Kardinalität besitzen.

Echte Morphismen zwischen Spielen sollten folglich noch mehr der Struktur eines Spiels erhalten, insbesondere in irgendeiner Form "verträglich" mit den Kostenfunktionen sein. Je nach dem, welche Eigenschaften die Morphismen (und insbesondere die dadurch induzierten Isomorphismen) erhalten sollen, erhält man so unterschiedlich starke Einschränkungen daran, welche Abbildungen zwischen Spielen als *Morphismen zwischen Spielen* bezeichnet werden dürfen. Einige Möglichkeiten dafür werden wir nun kennenlernen.

Eine relative starke Forderung ist die, dass Morphismen kostenerhaltend sein müssen, wie sie in [Mil13] gestellt wird:

Definition 3.4. Ein Morphismus (σ, ϕ_j) von $\Gamma = (I, X, (c_i)_{i \in I})$ nach $\Delta = (J, Y, (d_j)_{j \in J})$ heißt kostenerhaltend, wenn für alle Strategieprofile $x \in X$ und jeden Spieler $j \in J$ gilt:

$$c_{\sigma(j)}(x) = d_j(\phi(x))$$

Genauer beschreiben..

Ist ein solcher Morphismus gleichzeitig ein Isomorphismus, so nennen wir Γ und Δ äquivalent.

Bemerkung 3.5. Zwei Spiele sind also genau dann äquivalent, wenn sie sich ausschließlich durch Umbenennung der Strategien ineinander überführen lassen. In [MS96b] (S. 133) wird dies als Isomorphie von Spielen bezeichnet.

Beispiel 3.6. Ein Spiel $\Delta = (J, Y, (d_j)_{j \in J})$ ist genau dann ein Koordinationsspiel, wenn es einen kostenerhaltenden Morphismus mit surjektiver Strategieprofilabbildung von einem 1-Personenspiel nach Δ gibt.

Ist nämlich Δ ein Koordinationsspiel, so definiert man ein 1-Personenspiel $K := (\{*\}, X, (c_*))$ mit $X = X_* := Y$ und $c_*(y) := d_j(y)$ für einen beliebigen, aber festen Spieler $\hat{j} \in J$. Ferner definiert man den folgenden Morphismus $(\sigma, \phi) : K \to \Delta$:

$$\sigma: J \to \{*\}: \qquad j \mapsto *$$

 $\phi_i: X_* \to Y_j: \qquad y \mapsto y_j$

Dieser ist kostenerhaltend, denn für jedes Strategieprofil $y \in X = Y$ und jeden Spieler $j \in J$ gilt:

$$c_{\sigma(j)}(y) = c_*(y) = d_{\hat{j}}(y) \stackrel{\Gamma \text{ Koord.spiel}}{=} d_j(y) = d_j(\phi(y))$$

Zudem ist offenbar die Strategieprofilabbildung ϕ surjektiv.

Sind umgekehrt ein 1-Personenspiel $K=(\{*\},X,(c_*))$ sowie ein kostenerhaltender Morphismus $(\sigma,\phi):K\to\Delta$ mit surjektiven Strategieabbildungen gegeben, dann ist Δ bereits ein Koordinationsspiel. Denn aufgrund der Surjektivität von ϕ gibt es zu jedem Strategieprofil $y\in Y$ ein Strategieprofil $x\in X$ mit $\phi(x)=y$. Da (σ,ϕ) außerdem kostenerhaltend ist, folgt dann für je zwei Spieler $j,\hat{j}\in J$:

$$d_{\hat{j}}(y) = d_{\hat{j}}(\phi(x)) = c_{\sigma(\hat{j})}(x) = c_{*}(x) = c_{\sigma(j)}(x) = d_{j}(\phi(x)) = d_{j}(y)$$

Also ist Γ tatsächlich ein Koordinationsspiel.

Dieses Beispiel formalisiert die Intuition, dass in einem Koordinationsspiel alle Spieler ein gemeinsames Ziel haben und daher zusammen "wie ein Spieler"spielen (d.h. das Koordinationsspiel kann durch ein 1-Personenspiel simuliert werden).

Stimmt das so?

Beispiel 3.7. Ein Spiel $\Gamma = (I, X, (c_i)_{i \in I})$ ist genau dann ein Dummyspiel, wenn es für jeden Spieler $\hat{i} \in I$ ein Spiel $D^{\hat{i}}$ und einen kostenerhaltenden Morphismus $(\sigma, \phi) : \Gamma \to D^{\hat{i}}$ gibt, sodass $\hat{i} \notin \sigma(J)$.

Ist nämlich Γ ein Dummyspiel, so definert man $D^{\hat{i}} := (I \setminus \{\hat{i}\}, Y, (d_j)_{j \in I \setminus \{\hat{i}\}})$ mit $Y_j := X_j$ und $d_j(y) := c_j(y, \hat{x}_i)$ für eine beliebige, aber feste Strategie $\hat{x}_{\hat{i}} \in X_{\hat{i}}$. Der Morphismus $(\sigma, \phi) : \Gamma \to D^{\hat{i}}$:

$$\begin{split} \sigma: I \setminus \{\hat{i}\} \to I: & i \mapsto i \\ \phi_i: X_i \to Y_i: & x_i \mapsto x_i, \text{ für } i \neq \hat{i} \end{split}$$

erfüllt dann offenbar $\hat{i} \notin \sigma(I \setminus \{\hat{i}\})$ und er ist kostenerhaltend, denn

Das funktioniert nicht (wäre nur Kostenerhaltend für Spieler \hat{i}) Evtl. anderen Morphismentyp (und/oder andere Richtung!) Probieren. Order einfach weglassen.

Eine auf das Untersuchen von Nash- und Polygleichgewichten zugeschnittene Form von Morphismen wird in [Mil15] wie folgt definiert:

Definition 3.8. Ein Morphismus ϕ von $\Gamma = (I, X, (c_i)_{i \in I})$ nach $\Delta = (J, Y, (d_j)_{j \in J})$ heißt rational, wenn für alle Strategieprofile $x \in X$, jeden Spieler $j \in J$ und jede Strategie $y_j \in Y_j$ gilt:

$$d_j(\phi(x)) \le d_j(\phi(x) \mid y_j)$$

[Mil15] bezeichnet derartige Abbildungen Strategieersetzungsvorschriften. Mehr dazu schreiben - oder erst später bei rationalen SEVs erwähnen?

Ist diese Definition sinnvoll/zielführend?

Definition 3.9. Zwei Spiele $\Gamma = (I, X, (K_i)_{i \in I}, (c_i)_{i \in I})$ und $\Gamma' = (I, X', (K'_i)_{i \in I}, (c'_i)_{i \in I})$ heißen *isomorph*, falls es bijektive Abbildungen $\phi_i : X_i \to X'_i$ sowie bijektive und monotone Abbildungen $\psi_i : K_i \to K'_i$ gibt, sodass alle Diagramme der folgenden Form kommutieren:

Anpassen! (evtl. auch erst als Morphismus definieren)

dort allerdings nur für Endomorphismen definiert

$$X \xrightarrow{\phi} X'$$

$$\downarrow^{c_i} \qquad \downarrow^{c'_i}$$

$$K_i \xrightarrow{\psi_i} K'_i$$

Bemerkung 3.10. Diese Definition ergibt sich aus der abstrakteren Definition für in [Lap99].

Auch auf Verallgemeinerung mit Garben hinweisen

Definition 3.11. Zwei im Sinne von Definition 3.9 isomorphe Spiele heißen *sozial isomorph*, wenn zusätzlich die Funktion

$$\sum \psi_i : \prod_{i \in I} K_i \to \prod_{i \in I} K_i'$$

monoton ist.

Beispiel 3.12. lineare Funktionen

Eine ganze Familie von Morphismen erhält man zudem aus den in Abschnitt 2 beschriebenen Potentialen: Milchtaich definiert in [Mil13] einen Isomorphismusbegriff der dazu führt, dass jedes exakte Potentialspiel isomorph zu einem Koordinationsspiel mit der Potentialfunktion als gemeinsamer Kostenfunktion ist. Analog hierzu lassen sich auch für die anderen Potentialbegriffe passende Begriffe eines Morphismus (und damit eines Isomorphismus) definieren:

Das macht natürlich nur Sinn, wenn auf den beiden Produkträumen auch totale (?) Ordnungen existieren **Definition 3.13.** Ein Morphismus (σ, ϕ) von $\Gamma = (I, X, (c_i)_{i \in I})$ nach $\Delta = (J, Y, (d_j)_{j \in J})$ heißt

• exakt, wenn für alle Strategieprofile $x \in X$, Spieler $j \in J$ und Strategien $\hat{x}_{\sigma(j)}$ gilt:

$$c_{\sigma(j)}(x) - c_{\sigma(j)}(x \mid \hat{x}_{\sigma(j)}) = d_j(\phi(x)) - d_j(\phi(x \mid \hat{x}_{\sigma(j)}))$$

• gewichtend, wenn es einen Vektor $(w_j)_{j\in J} \in \mathbb{R}^J_{\geq 0}$ gibt, sodass für alle Strategieprofile $x \in X$, Spieler $j \in J$ und Strategien $\hat{x}_{\sigma(j)}$ gilt:

$$c_{\sigma(j)}(x) - c_{\sigma(j)}(x \mid \hat{x}_{\sigma(j)}) = w_j \cdot \left(d_j(\phi(x)) - d_j(\phi(x \mid \hat{x}_{\sigma(j)})) \right)$$

• skalierend, wenn es streng monotone Funktionen f_j gibt, die 0 auf 0 abbilden, sodass für alle Strategieprofile $x \in X$, Spieler $j \in J$ und Strategien $\hat{x}_{\sigma(j)}$ gilt:

$$c_{\sigma(j)}(x) - c_{\sigma(j)}(x \mid \hat{x}_{\sigma(j)}) = f_j(d_j(\phi(x)) - d_j(\phi(x \mid \hat{x}_{\sigma(j)})))$$

• biordinal, wenn für alle Strategieprofile $x \in X$, Spieler $j \in J$ und Strategien $\hat{x}_{\sigma(j)}$ gilt:

$$c_{\sigma(j)}(x) \le c_{\sigma(j)}(x \mid \hat{x}_{\sigma(j)}) \iff d_j(\phi(x)) \le d_j(\phi(x \mid \hat{x}_{\sigma(j)}))$$

• ordinal, wenn für alle Strategieprofile $x \in X$, Spieler $j \in J$ und Strategien $\hat{x}_{\sigma(j)}$ gilt:

$$c_{\sigma(j)}(x) \le c_{\sigma(j)}(x \mid \hat{x}_{\sigma(j)}) \implies d_j(\phi(x)) \le d_j(\phi(x \mid \hat{x}_{\sigma(j)}))$$

• beste Antwort-erhaltend, wenn für alle Spieler $j \in J$ und Strategieprofile $x_{-\sigma(j)} \in X_{-\sigma(j)}$ gilt:

$$\phi(\arg\min_{x_{\sigma(j)} \in X_{\sigma(j)}} c_{\sigma(j)}(x)) \subseteq \arg\min_{y_j \in Y_j} d_j(\phi_{-\sigma(j)}(x \mid y_j))$$

Beobachtung 3.14. Ordinale Isomorphismen sind automatisch biordinal.

Beobachtung 3.15. Die Verknüpfung zweier $_$ -Morphismen ist nicht notwendigerweise wieder ein $_$ -Morphismus.

Beispiel!

Die Aussage gilt aber, wenn

einer der beiden/beide bijektiv auf ... sind?

Bemerkung 3.16. Umgekehrt könnte man nun auch ausgehend von diesen Morphismen-Begriffen definieren, wann ein Spiel ein Potentialspiel ist: Ein Spiel Δ ist nämlich genau dann ein exaktes/gewichtetes/ordinales/verallgemeinertes ordinales Potentialspiel, wenn es einen exakten/gewichteten/biordinalen/ordinalen Morphismus von einem Koordinationsspiel nach Δ gibt, wobei alle Abbildungen des Morphismuses bijektiv sind.

Beste Antwort?

Beweis?

Zu beste Antwort: vgl. [MS96a], [MU04]

Induzieren diese Morphismen jetzt wirklich die behaupteten Isomorphismen?

Beispiel 3.17.

Koprodukt von Spielen mit gleicher Spielermenge... Verweis auf entsprechende Konstruktion für Netzwerkauslastungsspiele

Beobachtung 3.18. Es gelten folgende Beziehungen zwischen den verschiedenen Morphismenbegriffen:

kostenerhaltend
$$\implies$$
 exakt \implies gewichtend \implies skalierend \implies ordinal rational \implies beste Antwort-erhaltend

weitere Zusammenhänge? Evtl. dann als Diagramm?

Beispiel 3.19. Ein Spiel Δ besitzt genau dann ein exaktes/gewichtetes/ordinales/verallgemeinertes ordinales Potential, wenn es einen exakten/gewichteten/biordinalen/ordinalen Morphismus mit surjektiver Strategieprofilabbildung von einem 1-Personenspiel nach Δ gibt.

Stimmt so noch nicht - präzisieren! Evtl. dafür auch gleich für q-Potentiale?

Beweis. Sei zunächst Δ ein Spiel mit einem _-Potential P.

Beweis einfügen

3.2 Erste Sätze

Proposition 3.20. Sei (σ, ϕ) : $\Gamma \to \Delta$ ein ordinaler Morphismus mit injektivem σ . Dann ist für jeden Verbesserungspfad x^0, x^1, \ldots in Γ auch $\phi(x^0), \phi(x^1), \ldots$ ein Verbesserungspfad in Δ . Ist der Pfad endlich und in Δ abgeschlossen, so auch in Γ .

Beweis. Da σ injektiv ist, bleibt die Eigenschaft un
ilateralen Abweichung erhalten. Die Ordinalität des Morphismus stellt ferner sicher, dass jeder Verbesserungsschritt ein Verbesserungsschritt bleibt.

Nehmen wir nun an $\phi(x^0), \ldots, \phi(x^n)$ wäre ein abgeschlossener Verbesserungspfad in Δ , aber x^0, \ldots, x^n nicht abgeschlossen in Γ . Dann gäbe es folglich ein Strategieprofil $x^{n+1} \in X$, welches diesen Pfad in Γ verlängert. Aber wie wir gerade gezeigt haben wäre dann auch $\phi(x^0), \ldots, \phi(x^n), \phi(x^{n+1})$ ein Verbesserungspfad in Δ , insbesondere also eine Verlängerung des ursprünglichen Pfades - im Widerspruch zu dessen vorausgesetzter Abgeschlossenheit.

Korollar 3.21. Ordinale Morphismen mit injektiver Spielerabbildung reflektieren Nash-Gleichgewichte. Das heißt, ist $x \in X$ ein Strategieprofil in Γ und (σ, ϕ) ein ordinaler Morphismus in ein Spiel Δ , sodass $\phi(x)$ ein Nash-Gleichgewicht in diesem ist, dann war bereits x ein Nash-Gleichgewicht von Γ .

Beweis. Es ist x ein trivialer Verbesserungspfad in Γ , dessen Bild $\phi(x)$ in Δ abgeschlossen ist. Daher ist mit Proposition 3.25 x in Γ abgeschlossen und folglich (vgl. Beobachtung 1.11) x ein Nash-Gleichgewicht in Γ .

Proposition 3.22. Sei (σ, ϕ) : $\Gamma \to \Delta$ eine biordinale Retraktion (d.h. ein biordinaler Morphismus, welcher ein Rechtsinverses besitzt). Dann ist ein Strategieprofil $x \in X$ genau dann ein Nash-Gleichgewicht in Γ , wenn $\phi(x)$ ein Nash-Gleichgewicht in Δ ist.

Beweis. Sei $(\tau, \psi): \Delta \to \Gamma$ ein Rechtsinverses von (σ, ϕ) , d.h. es gelte $(\sigma, \phi) \circ (\tau, \psi) = (\tau \circ \sigma, \phi \circ \psi) = (\mathrm{id}_J, id_Y)$. Damit ist σ offenbar injektiv und daher mit Korollar 3.21 die "wenn"-Richtung gezeigt.

Zu "dann": Sei also $x \in X$ ein Nash-Gleichgewicht und $y_j \in Y_j$. Wegen der Surjektivität von ϕ_j gibt es dann ein $\hat{x}_{\sigma(j)} \in X_{\sigma(j)}$ mit $\phi_j(\hat{x}_{\sigma(j)} = y_j)$. Da x ein Nash-Gleichgewicht ist, gilt nun

$$c_{\sigma(j)}(x) \le c_{\sigma(j)}(x \mid \hat{x}_{\sigma(j)})$$

und daher wegen Biordinalität von ϕ auch

$$d_j(\phi(x)) \le d_j(\phi(x \mid \hat{x}_{\sigma(j)})) \stackrel{*}{=} d_j(\phi(x) \mid \phi_j(\hat{x}_{\sigma(j)})) = d_j(\phi(x) \mid y_j)$$

wobei in * nochmal die Injektivität von σ eingeht.

In der Proposition explizit Surjektivität/Injektivität fordern - folgt die Retrakteigenschaft dann? In dem Fall also Bemerkung hinzufügen

Beispiel 3.23. Ordinale Isomorphismen haben insbesondere injektive Spieler- und Strate- gieabbildungen. Damit erfüllen sie die Voraussetzungen von Proposition 3.22, d.h. ordinal isomorphe Spiele haben die gleichen Nash-Gleichgewichte.

Beispiel 3.24. Spieler mit nur einer einzigen Strategie können immer entfernt werden ohne die Nash-Gleichgewichte zu verändern.

Beweis: Morphismus angeben und Eigenschaften zeigen

Proposition 3.25. Sei $\phi: \Gamma \to \Gamma'$ ein ordinaler Morphismus und x^0, x^1, \ldots ein Verbesserungspfad in Γ . Dann ist $\phi(x^0), \phi(x^1), \ldots$ ein Verbesserungspfad in Γ' . Ist der Pfad endlich und in Γ' abgeschlossen, so auch in Γ .

Formalisiert oBdA-Bemerkung aus Grundlagen

Beweis. Da Morphismen spielerweise definiert sind, erhalten sie die Eigenschaft der unilateralen Abweichung. Die Ordinalität des Morphismus stellt ferner sicher, dass jeder Verbesserungsschritt ein Verbesserungsschritt bleibt.

Nehmen wir nun an $\phi(x^0), \ldots, \phi(x^n)$ wäre ein abgeschlossener Verbesserungspfad in Γ' , aber x^0, \ldots, x^n nicht abgeschlossen in Γ . Dann gäbe es folglich ein Strategieprofil $x^{n+1} \in X$, welches diesen Pfad in Γ verlängert. Aber wie wir gerade gezeigt haben wäre dann auch $\phi(x^0), \ldots, \phi(x^n), \phi(x^{n+1})$ ein Verbesserungspfad in Γ' , insbesondere also eine Verlängerung des ursprünglichen Pfades - im Widerspruch zu dessen vorausgesetzter Abgeschlossenheit.

Korollar 3.26. Ordinale Morphismen reflektieren Nash-Gleichgewichte. Das heißt, ist $x \in X$ ein Strategieprofil in Γ und ϕ ein ordinaler Morphismus in ein Spiel Γ' , sodass $\phi(x)$ ein Nash-Gleichgewicht in diesem ist, dann war bereits x ein Nash-Gleichgewicht von Γ .

Beweis. Es ist x ein trivialer Verbesserungspfad in Γ , dessen Bild $\phi(x)$ in Γ' abgeschlossen ist. Daher ist mit Proposition 3.25 x in Γ abgeschlossen und folglich (vgl. Beobachtung 1.11) x ein Nash-Gleichgewicht in Γ .

Korollar 3.27. Seien Γ und Γ' zwei ordinal-isomorphe Spiele. Dann ist $x \in X$ genau dann ein Nash-Gleichgewicht von Γ , wenn $\phi(x) \in X'$ ein Nash-Gleichgewicht von Γ' ist.

Ordinal-isomorphe Spiele haben also die gleichen Nash-Gleichgewichte. Selbiges gilt auch für Verbesserungpfade, das heißt insbesondere, dass die FIP eines Spiels unter ordinaler Isomorphie erhalten bleibt.

Korollar 3.28. Seien Γ und Γ' zwei ordinal-isomorphe Spiele. Dann hat Γ genau dann die FIP, wenn Γ' diese besitzt.

Lemma 3.29. Seien Γ und Γ' zwei sozial isomorphe Spiele. Dann ist $x \in X$ genau dann ein soziales Optimum von Γ , wenn $\phi(x) \in X'$ ein soziales Optimum von Γ' ist.

Beweis. .

Folgt direkt mit Definitionen

Satz 3.30. Besitzt ein Spiel Γ ein ordinales Potential, so ist es ordinal-isomorph zu einem Auslastungsspiel.

Beweis. Analog zum Beweis der Äquivalenz von Spielen mit exaktem Potential und Auslastungsspielen in [MS96b], Beweis orientiert sich an [Mon06].

Beobachtung 3.31. Besitzt ein Spiel ein verallgemeinertes ordinales Potential, so gibt es einen ordinalen Morphismus in/von ein Auslastungsspiel.

Was von beidem?

Beweis. .

Proofmining in oberem Beweis

Beobachtung 3.32. Nach [MS96b] Lemma 2.5 hat jedes Spiel mit FIP ein verallgemeinertes Potential, also

in/von...

Eine Verallgemeinerung von Beobachtung 2.2 lautet

Proposition 3.33. Seien Γ und Δ zwei Spiele. Dann gibt es genau dann einen gewichteten Morphismus $\Gamma \to \Delta$, wenn es Gewichte $(w_i)_{i \in I}$ und einen exakten Morphismus $\Gamma \to w_i \cdot \Delta$ gibt.

Korollar 3.34. Zwei Spiele Γ und Δ sind genau dann gewichtet isomorph, wenn ...

4 Zusammenhänge von Auslastungs- und Potentialspielen

Welche Endlichkeitsvoraussetzungen benötigt man hier jeweils?

In [Ros73] führte Rosenthal Auslastungsspiele als Klasse von Spielen ein, welche immer ein exaktes Potential (und damit ein Nash-Gleichgewicht) besitzen. Später zeigten Monderer und Shapley in [MS96b, Theorem 3.2], dass diese Klasse bis auf (kostenerhaltende) Isomorphie bereits *alle* Spiele mit exaktem Potential umfasst. Zusammengefasst gilt also:

Satz 4.1. Jedes N-Personen-Auslastungsspiel besitzt ein exaktes Potential und jedes exakte N-Personen-Potentialspiel ist äquivalent zu einem Auslastungsspiel.

Beweis. Sei $\Gamma(M)$ ein beliebiges Auslastungsspiel. Dann definieren wir wie folgt die Rosenthal-Potentialfunktion:

$$P: S \to \mathbb{R}: s \mapsto \sum_{r \in R} \sum_{k=1}^{l_r(s)} g_r(k)$$

Die Funktion ist wohldefiniert, da die insgesamt N Spieler zusammen nur endlich viele Ressourcen nutzen können und daher beide Summen endlich sind. Sie ist ferner ein exaktes Potential, denn zu einem Strategieprofil $s \in S$ und einer weiteren Strategie \hat{s}_i von Spieler i gilt:

$$P(s) - P(s \mid \hat{s}_i) = \sum_{r \in R} \sum_{k=1}^{l_r(s)} g_r(k) - \sum_{r \in R} \sum_{k=1}^{l_r(s|\hat{s}_i)} g_r(k) = \sum_{r \in s_i \setminus \hat{s}_i} g_r(l_r(s)) - \sum_{r \in \hat{s}_i \setminus s_i} g_r(l_r(s) + 1) =$$

$$= \sum_{r \in s_i \setminus \hat{s}_i} g_r(l_r(s)) + \sum_{r \in s_i \cap \hat{s}_i} g_r(l_r(s)) - \sum_{r \in s_i \cap \hat{s}_i} g_r(l_r(s \mid \hat{s}_i)) - \sum_{r \in \hat{s}_i \setminus s_i} g_r(l_r(s \mid \hat{s}_i)) =$$

$$= \sum_{r \in s_i} g_r(l_r(s)) - \sum_{r \in \hat{s}_i} g_r(l_r(s \mid \hat{s}_i)) = c_i(s) - c_i(s \mid \hat{s}_i)$$

Für die umgekehrte Richtung orientieren wir uns an dem Beweis in [Mon06, Theorem 1]. Gegeben also ein Spiel $\Gamma = (I, X, (c_i)_{i \in i})$ mit einem exakten Potential P. Hierzu definieren wir folgendes Auslastungsmodell $M = (I, R, (S_i)_{i \in I}, (g_r)_{r \in R})$:

•
$$R := R_K \cup R_D \subseteq \prod_{i \in I} \mathcal{P}(X_i)$$
, wobei $R_K := \{ (\{x_i\})_{i \in I} \mid x_i \in X_i \}$ und $R_D := \{ (Y_i)_{i \in I} \mid \exists \hat{i} \in I : Y_{\hat{i}} = X_{\hat{i}}, \forall i \neq \hat{i} : |X_i \setminus Y_i| = 1 \}$.

$$g_r(k) \coloneqq \begin{cases} P(x), & r = (\{x_i\})_{i \in I} \in R_k \text{ und } k = N \\ c_{\hat{i}}(x) - P(x), & r = (X_i \setminus \{x_i\})_{i \in I \setminus \hat{i}} \times X_{\hat{i}} \in R_D \text{ und } k = 1 \\ 0, & \text{sonst} \end{cases}$$

Wohldefiniertheit!

•
$$S_i := \{ \{ r \in R \mid x_i \in r_i \} \mid x_i \in X_i \}$$

Die induzierten Lastfunktionen sind automatisch wohldefiniert, da die Spielermenge endlich ist, die Wohldefiniertheit der Kostenfunktionen d_i folgt dann aus dem Beweis der Äquivalenz der Spiele Γ und $\Gamma(M)$. Dazu betrachten wir den Morphismus $(\mathrm{id}, \phi) : \Gamma \to \Gamma(M)$, wobei $\phi_i(x) := s(x_i) := \{r \in R \mid x_i \in r_i\}$. Dieser ist offenbar bijektiv auf allen Mengen und zudem kostenerhaltend, denn es gilt:

$$\begin{split} d_{\hat{i}}(\phi(x)) &= \sum_{r \in \phi(x)_{\hat{i}} = \phi_{\hat{i}}(x_{\hat{i}})} g_r(l_r(\phi(x))) = \\ &= \sum_{r \in R_K : x_{\hat{i}} \in r_{\hat{i}}} g_r(\underbrace{l_r(\phi(x))}_{=N}) + \sum_{r \in R_D : x_{\hat{i}} \in r_i} g_r(\underbrace{l_r(\phi(x))}_{=1}) = \\ &= g_{(\{x_i\})_{i \in I}}(N) + g_{(X_i \setminus \{x_i\})_{i \in I \setminus \hat{i}} \times X_{\hat{i}}}(1) = \\ &= P(x) + c_{\hat{i}}(x) - P(x) = c_{\hat{i}}(x) \end{split}$$

Auslastungsspiele sind also nicht nur ein Beispiel für Spiele mit exaktem Potential, sondern in gewissem Sinne (nämlich bis auf Isomorphie) sogar das Beispiel für solche Spiele. Eine naheliegende Frage ist nun, ob es ähnliche Klassen von "auslastungsartigen" Spielen gibt, welche genau den Spielen mit allgemeineren Potentialen entsprechen. Im Folgenden werden wir versuchen eine zu gewichteten Potentialspielen passende Verallgemeinerung von Auslastungsspielen zu finden.

4.1 Von ungewichtet zu gewichtet

4.1.1 Gewichtete Auslastungsspiele

Für gewichtete Auslastungsspiele zeigen Harks, Klimm und Möhring in [HKM11, Theorem 3.9], dass die einzigen beiden Klassen stetiger Funktionen, die (als Kostenfunktionen verwendet) ausschließlich Spiele mit gewichtetem Potential erzeugen, affin lineare Funktionen bzw. exponentielle Funktionen (mit gemeinsamem Exponenten) sind:

Satz 4.2. Gegeben eine Menge von stetigen Funktionen C. Dann besitzt genau dann jedes gewichtete Auslastungsspiel, welches nur Funktionen aus C als Kostenfunktionen verwendet, ein gewichtetes Potential, wenn C

- entweder ausschließlich affin lineare Funktionen enthält
- oder ausschließlich Funktionen der Form $c(l) = a_c \cdot b^l + d_c$ enthält.

Fälle: Exaktes Potential/gewichtetes Potential unterscheiden

In [HK12, Theorem 5.1] zeigen Harks und Klimm weiter, dass diese beiden Klassen von Kostenfunktionen unter allen Klassen *stetiger* Funktionen gleichzeitig auch die einzigen sind, die die Existenz eines Nash-Gleichgewichtes garantieren.⁴

Da nun für endliche Spiele alle der in Abschnitt 2 definierten Potentiale die Existenz eines Nash-Gleichgewichtes garantieren, folgt hiermit direkt, dass es auch für die allgemeineren Potentialbegriffe keine größeren oder anderen Klassen von stetigen Funktionen gibt, die immer die Existenz eines entsprechenden Potentials sicher stellen.

Zusammen zeigen diese beiden Sätze bereits deutlich, dass der Schritt vom ungewichteten Fall zum gewichteten auf Seite der Auslastungsspiele erheblich größer ist als auf Seite der Potentiale. Tatsächlich zeigt Milchtaich in [Mil13], dass dieser Verallgemeinerungsschritt für Auslastungsspiele bereits der größtmögliche ist, denn es gilt:

Satz 4.3. Jedes Spiel ist äquivalent zu einem gewichteten Auslastungsspiel ._

(sogar Netzwerkauslastungsspiel mit ...)

Die Menge der gewichteten Auslastungsspiele umfasst also (bis auf kostenerhaltende Isomorphie) bereits *alle* (endlichen) Spiele in strategischer Form. Möchte man daher eine wirklich analoge Verallgemeinerung von Auslastungsspielen passend zu gewichteten Potentialspielen finden, muss man also andere Varianten betrachten Gewichte ins Spiel zu bringen. In Definition 1.17 hatten wir bereits zwei solche gesehen, welche wir nun näher untersuchen wollen:

4.1.2 Lastgewichtete Auslastungsspiele

Die erste alternative Klasse von Auslastungsspielen sind die lastgewichteten Auslastungsspiele. Harks, Klimm und Möhring beobachten in [HKM11], dass lastgewichtete Auslastungsspiele (die dort als normalisierte Auslastungsspiele bezeichnet werden) zwar nicht äquivalent, aber doch unter verschiedenen Aspekten sehr ähnlich zu allgemeinen gewichteten Auslastungsspielen sind. Dieser Zusammenhang lässt sich nun leicht durch einen passenden Isomorphiebegriff formalisieren - es gilt nämlich:

Lemma 4.4. Jedes lastgewichtete Auslastungsspiel ist gewichtet isomorph zu einem gewichteten Auslastungsspiel und umgekehrt. Die beiden Spiele basieren dabei jeweils auf dem gleichen Auslastungsmodell.

Beweis. Der Existenz eines solchen Isomorphismus folgt direkt aus der auch in [HKM11] gemachten Beobachtung ...

Hieraus ergeben sich dann direkt die in [HKM11] beobachteten Zusammenhänge zwischen gewichteten und lastgewichteten Auslastungsspielen:

⁴zudem sind es auch noch die einzigen Klassen, welche für jedes gewichtete Auslastungsspiel das Erfüllen der FIP sicherstellen.

Korollar 4.5.

Be obachtungen

Insbesondere sehen wir damit aber auch, dass lastgewichtete Auslastungsspiele ebenfalls eine zu starke Verallgemeinerung von ungewichteten Auslastungsspielen sind, um eine Entsprechung der gewichteten Potentialspiele sein zu können.

4.1.3 Kostengewichtete Auslastungsspiele

Wie sich herausstellt sind kostengewichtete Auslastungsspiele hingegen ein geeigneter Kandidat:

Satz 4.6. Jedes kostengewichtete Auslastungsspiel besitzt ein gewichtetes Potential und jedes Spiel mit einem gewichteten Potential ist äquivalent zu einem kostengewichteten Auslastungsspiel.

Nicht nur entspricht dieser Satz genau dem von Monderer und Shapley bewiesenen Satz für ungewichtete Auslastungsspiele und exakte Potentiale (Satz 4.1), auch der Beweis erfolgt völlig analog.

Beweis. Sei Γ ein kostengewichtetes Auslastungsspiel mit Gewichtsvektor $w := (w_i)_{i \in I}$. Dann ist die Rosenthal-Potentialfunktion (vgl. [Ros73]) $P(x) := \sum_{r \in R} \sum_{k=1}^{l_r(x)} g_r(k)$ ein w-Potential für Γ, denn es gilt:

Beweis!

Ist umgekehrt Γ ein Spiel mit einem gewichteten Potential P (mit Gewichtsvektor w), so definieren wir wie folgt ein kostengewichtetes Auslastungsspiel (wir folgen hier dem Beweis in [Mon06, Theorem 1]):

Definition kostengewichtetes Auslastungsspiel

Zum Beweis der Äquivalenz der beiden Spiele betrachte man folgenden kostenerhaltenden Isomorphismus:

Definition Iso

Zusammen mit Satz 4.2 wissen wir nun ...

Direkte Konstruktion eines ungewichteten Auslastungsspiels zu gew. mit affin-linearen Kosten (wie ähnlich ist diese zu dem Beweis der Existenz eines exakten Potentials von Fotakis et al?) Kann man irgendwas zu Spielen mit expontentiellen Kosten sagen?

Satz 4.7. Sei $\Gamma(M,w)$ ein gewichtetes Auslastungsspiel, indem alle Kostenfunktionen affin linear sind. Dann gibt es ein dazu äquivalentes (ungewichtetes) Auslastungsspiel $\Gamma(N)$.

Beweis. Seien also die Kostenfunktionen aus M von der Form $g_r(k) = a_r k + b_r$.

Definiere eine Ressourcenmenge $Q := \{ (r, \{i, i'\}) \mid r \in R, i, i' \in I \}$ mit Kostenfunktionen $h_{(r, \{i, i'\})}$ darauf so, dass gilt:

$$h_{(r,\{i,i'\})}(k) = \begin{cases} 0, & k = 1, i \neq i' \\ a_r w_i w_{i'}, & k = 2, i \neq i' \\ a_r w_i^2 + b_r w_i & k = 1, i = i' \end{cases}$$

Schließlich ist der Strategieraum von Spieler $i \in I$ gegeben durch $T_i := \{ \{ (r, \{i, i'\}) \mid r \in s_i, i' \in I \} \mid s_i \in S_i \}$. Dadurch erhalten wir das Auslastungsmodell $N := (I, Q, (T_i)_{i \in I}, (h_q)_{q \in Q})$.

Wir zeigen nun noch die Äquivalenz von $\Gamma(M,w)$ und $\Gamma(N)$. Dazu betrachten wir den folgenden Morphismus (id, ϕ): $\Gamma(M,w) \to \Gamma(N)$ zwischen den beiden Spielen:

Wohldefiniertheit von $\Gamma(N)$

$$\phi_i: S_i \to T_i: s_i \mapsto \{ (r, \{i, i'\}) \mid r \in s_i, i' \in I \}$$

Dieser Morphismus ist offensichtlich auf allen Mengen bijektiv und zudem kostenerhaltend, denn es gilt:

$$d_{i}(\phi(s)) = \sum_{q \in \phi(s)_{i} = \phi_{i}(s_{i})} h_{q}(l_{q}(\phi(s))) = \sum_{r \in s_{i}, i' \in I} h_{(r,\{i,i'\})}(l_{(r,\{i,i'\})}(\phi(s))) =$$

$$= \sum_{r \in s_{i}} \left(h_{(r,\{i\})}(\underbrace{l_{(r,\{i\})}\phi(s)}) + \sum_{i' \in I \setminus \{i\}} h_{(r,\{i,i'\})}(\underbrace{l_{(r,\{i,i'\})}(\phi(s))}) \right) =$$

$$= \sum_{r \in s_{i}} \left(a_{r}w_{i}^{2} + b_{r}w_{i} + \sum_{i' \in I \setminus \{i\}: r \in s_{i'}} a_{r}w_{i}w_{i'} \right) =$$

$$= \sum_{r \in s_{i}} w_{i} \left(b_{r} + a_{r} \sum_{i' \in I: r \in s_{i'}} w_{i'} \right) = \sum_{r \in s_{i}} w_{i} \left(b_{r} + a_{r}l_{r}(s) \right) =$$

$$= \sum_{r \in s_{i}} w_{i}g_{r}(l_{r}(s)) = c_{i}(s)$$

Bemerkung 4.8. Da immer nur an höchstens zwei Stellen Bedingungen an die Ressourcenkosten gestellt werden, lassen sich diese insbesondere immer als affin-lineare Funktionen umsetzen. Im Gegensatz dazu ist das bei dem Auslastungsspiel, welches man über den Umweg eines exakten Potentials und Satz 4.1 erhalten würde, im Allgemeinen nicht der Fall.

4.2 Überblick

Abbildung 2: Zusammenhänge zwischen den verschiedenen Spieleklassen für endliche Spiele

Literatur

- [FKS04] Dimitris Fotakis, Spyros Kontogiannis und Paul Spirakis. "Selfish Unsplittable Flows". In: Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings. Hrsg. von Josep Díaz u. a. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, S. 593–605. ISBN: 978-3-540-27836-8. DOI: 10.1007/978-3-540-27836-8_51. URL: http://dx.doi.org/10.1007/978-3-540-27836-8_51.
- [HK12] Tobias Harks und Max Klimm. "On the Existence of Pure Nash Equilibria in Weighted Congestion Games". In: *Mathematics of Operations Research* 37.3 (2012), S. 419–436. DOI: 10.1287/moor.1120.0543. eprint: http://dx.doi.org/10.1287/moor.1120.0543. URL: http://dx.doi.org/10.1287/moor.1120.0543.
- [HKM11] Tobias Harks, Max Klimm und Rolf H. Möhring. "Characterizing the Existence of Potential Functions in Weighted Congestion Games". In: *Theory of Computing Systems* 49.1 (2011), S. 46–70. ISSN: 1433-0490. DOI: 10.1007/s00224-011-9315-x. URL: http://dx.doi.org/10.1007/s00224-011-9315-x.
- [Jim14] Alfi Jiménez. Game Theory from the Category Theory Point of View. 2014. URL: https://www.gtcenter.org/Archive/2014/Conf/Jimenez1880.pdf (besucht am 15.01.2017).
- [Lap99] Victor Lapitsky. "On some Categories of Games and Corresponding Equilibria".
 In: International Game Theory Review 1.2 (1999), S. 169–185.
- [Mil13] Igal Milchtaich. "Representation of finite games as network congestion games". In: International Journal of Game Theory 42.4 (2013), S. 1085-1096. ISSN: 1432-1270. DOI: 10.1007/s00182-012-0363-5. URL: https://faculty.biu.ac.il/~milchti/papers/03.html.
- [Mil15] Igal Milchtaich. "Polyequilibrium". Bar-Ilan University, Department of Economics, 2015. URL: https://faculty.biu.ac.il/~milchti/papers/30.html. Working Paper.
- [Mil96] Igal Milchtaich. "Congestion Games with Player-Specific Payoff Functions". In: Games and Economic Behavior 13.1 (1996), S. 111—124. ISSN: 0899-8256. DOI: http://dx.doi.org/10.1006/game.1996.0027. URL: https://faculty.biu.ac.il/~milchti/papers/20.html.
- [Mon06] Dov Monderer. "Multipotential Games". In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. 2006. URL: https://web.iem.technion.ac.il/images/user-files/dov/image/bce0fb629a68f9b2e9bd487ebb73356d/multi_potential_games--monderer.pdf.

- [MS96a] Dov Monderer und Lloyd S. Shapley. "Fictitious Play Property for Games with Identical Interests". In: Journal of Economic Theory 68.1 (1996), S. 258 –265. ISSN: 0022-0531. DOI: http://dx.doi.org/10.1006/jeth.1996.0014. URL: https://www.researchgate.net/profile/Dov_Monderer/publication/4977154_Fictitious_Play_Property_for_Games_with_Identical_Interests/links/55b77cb408aed621de04635f.pdf.
- [MS96b] Dov Monderer und Lloyd S. Shapley. "Potential Games". In: Games and Economic Behaviour (1996), S. 124–143.
- [MU04] Stephen Morris und Takashi Ui. "Best response equivalence". In: Games and Economic Behavior 49.2 (2004), S. 260—287. ISSN: 0899-8256. DOI: http://dx.doi.org/10.1016/j.geb.2003.12.004. URL: https://www.princeton.edu/~smorris/pdfs/paper_40_Best_Response_Equivalence.pdf.
- [Ros73] Robert W. Rosenthal. "A class of games possessing pure-strategy Nash equilibria". In: *International Journal of Game Theory* 2.1 (1973), S. 65–67. ISSN: 1432-1270. DOI: 10.1007/BF01737559. URL: http://dx.doi.org/10.1007/BF01737559.
- [VN97] Mark Voorneveld und Henk Norde. "A Characterization of Ordinal Potential Games". In: Games and Economic Behavior 19.2 (1997), S. 235 –242. ISSN: 0899-8256. DOI: http://dx.doi.org/10.1006/game.1997.0554. URL: http://www.sciencedirect.com/science/article/pii/S0899825697905546.
- [Voo+99] Mark Voorneveld u.a. "Congestion games and potentials reconsidered". In: International Game Theory Review 1.03n04 (1999), S. 283-299. URL: http://www.worldscientific.com/doi/abs/10.1142/S0219198999000219.
- [Voo00] Mark Voorneveld. "Best-response potential games". In: *Economics Letters* 66.3 (2000), S. 289 –295. ISSN: 0165-1765. DOI: http://dx.doi.org/10.1016/S0165-1765(99)00196-2. URL: http//www.sciencedirect.com/science/article/pii/S0165176599001962.
- [Vor94] Nicolai N. Vorob'ev. Foundations of Game Theory. Noncooperative Games. Englisch. Übers. von Ralph P. Boas. Birkhäuser Basel, 1994. DOI: 10.1007/978-3-0348-8514-0.