AC – Aprendizagem Computacional / Machine Learning

P1 – Introduction

Jorge Henriques

jh@dei.uc.pt

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia

Contents

- 1 | Languages / Tools
- 2 | Objectives
- 3 | Dataset
- 4 | Tasks

1 | Objectives

▼Languages / Tools

Python

Matlab

▼Numpy / Pandas / Matplotlib

- Python
 - It is assumed that students are familiar with Python and libraries
- NumPy
 - Functionalities for scientific computing
 - Arrays, Vectors and Matrices, Matrix operations
 - Numerical calculus

- Data Access
- Data manipulation, operations

Visualization

1 | Objectives

▼Scikit-Learning

- Traditional Machine Learning models
 - Uses NumPy, SciPy, Matplotlib, Pandas
 - Data-science related tasks
 - Training/test split
 - Greater level of abstraction for ML algorithms
 - Learning without hardware (GPU) acceleration
 - Works well work relatively small datasets

▼ Keras/TensorFlow

- Deep learning libraries
- Keras
 - High-level deep learning library
 - Runs on top of Tensorflow
- TensorFlow
 - Low-level deep-learning
 - Development of deep learning methos with hardware acceleration

Practical works

One work – two classes

- 1. Introduction to ML
- 2. Clustering techniques
- 3. Decision Trees
- 4. Neural Networks
- 5. Advanced NN (Deep)
- 6. Fuzzy systems

Part A

Part B

Contents

- 1 | Languages / Tools
- 2 | Objectives
- 3 | Dataset
- 4 | Tasks

▼ Review Numpy / Pandas

- Load a data set (tabular)
- Perform some operations on the data (pre-processing)
- Build a simple model (classification)
- Evaluate the performance of the model (classifier)

▼Goal

- To develop a risk model, applicable to artery coronary syndrome (ACS) patients
- Patients have been admitted to the emergency unit with an episode of myocardial infarction (MI)
- The model should be able to predict if a new event rehospitalization will occur in the next 30 days

 $\{0, 1\} = \{No, Yes\}$

Contents

- 1 | Languages / Tools
- 2 | Objectives
- 3 | Dataset
- 4 | Tasks

▼ Risk assessment of a new event

Heart rate Blood pressure ST segment deviation

Creatinine Guidelines

New event?

 $\{0, 1\} = \{No, Yes\}$

▼ Risk assessment of a new event

X-INPUTS

- 1 | Historical
 - AG | Age

[33..90]

• **GD** | Gender

{ female, male } = { 0, 1 }

Dataset

Risk assessment of a new event

X - INPUTS

2 | Measurements

SBP Systolic blood pressure [60 .. 221]

HR Heart rate [41.. 151]

ST segment deviation (ECG) {0,1} ST

Dataset

Risk assessment of a new event

X - INPUTS

- 3 | Exams/diagnosis
 - Creatinine CT

[0.6 .. 11.5]

CT - Blood test - measure how well your kidneys are working.

4 | Guidelines

Clinical guidelines

If CT>=1.3 AND ST=1 event=1

▼ Model

Historical, measurements, clinical knowledge (guidelines)

DATASET: cardiacRisk.csv {'Gender', 'Age', 'SBP', 'HR', 'ST', 'CRT', 'EVENT' }

■ **X1** *Gender* {0,1} = { Female, Male}

X2 Age [31, 91]

X3 Systolic Blood pressure [60, 221]

• **X4** *Heart rate* [41, 151]

■ **X5** *ST deviation* {0, 1} = { No, YES}

X6 *Creatinine* [0.6, 11.5]

■ T *Target=event* {0,1} = { No event, Event }

Contents

- 1 | Languages / Tools
- 2 | Objectives
- 3 | Dataset
- 4 | Tasks

Tasks

- 1 Load the data file
- 2 | Data pre-processing
- 3 | Data analysis / visualization
- 4 | Build a classification model
- 5 | Evaluate the performance of the classifier
- 6 ??other improvements

1 Load the data file

```
df = pd.read_csv('cardiacRisk.csv')
D = df.values
X = D[:,0:6]  # inputs
T = D[:,6]  # Target
N = X.shape[0]  # number of patients
```


3 | Tasks

2 | Pre-processing data

- For some patients, the value of Age is missing
- The value (-1) is used to represent a missing value
- Replace missing values by the average of the others (with a valid Age)

3 | Tasks

- 3 | Analyse data / visualization
 - Data characteristics

print(df.describe())

	Gender	Age	HR	 ST	CRT	Event
count	457.000000	457.000000	457.000000	457.000000	457.000000	457.000000
mean	0.787746	64.693654	131.783370	 0.531729	1.379431	0.391685
std	0.409352	11.198284	26.692102	 0.499539	1.266251	0.488662
min	0.000000	33.000000	60.000000	0.000000	0.600000	0.000000
25%	1.000000	56.000000	112.000000	0.000000	1.000000	0.000000
50%	1.000000	65.000000	132.000000	1.000000	1.100000	0.000000
75%	1.000000	74.000000	148.000000	 1.000000	1.300000	1.000000
max	1.000000	91.000000	221.000000	 1.000000	11.500000	1.000000

- 3 | Analyse data / visualization
 - Data analysis

df.plot(kind='box', subplots=True, layout=(2,4),
sharex=False,sharey=False)

- 3 | Analyse data / visualization
 - Plot (age, heart rate), (age, sbp)
 - For patients NO event (+) / Event (●)

- 3 | Analyse data / visualization
 - Any other idea ??

4 | Build a classification model

- C0 Virtual patient (no event) mean of patients with attributes {T=0}
- C1 Virtual patient (event) mean of patients with attributes {T=1}

d0 < d1 then **NO event**

d0 > d1 then event

d0=distance(Pi, C0)

d1=distance(Pi, C1)

- 5 | Evaluate the classifier's performance
 - Compute sensitivity (SE)
 - Compute specificity (SP)

		Target / Actual		
		Event = 0	Event =1	
Model	Event = 0	TN	FN	
Estimates	Event = 1	FP	TP	

$$SE = \frac{TP}{TP + FN}$$
 $SP = \frac{TN}{TN + FP}$

3 | Tasks

- 6 | Conclusions
 - Use of numPy and/or Pandas
 - Read a tabular data (*.csv)
 - Access to a specific data subset
 - Perform some data operations / visualization
 - Introduction to machine learning:
 - Pré-processing
 - Classification model
 - Evaluation

- Improvements ?
 - ?? Any other idea ?