Микроэкономика-І

Павел Андреянов, PhD

9 февраля 2022 г.

В первой части мы фокусировались на минимизации издержек, однако, это накладывало определенные ограничения, поскольку описать технологию просто можно одним из двух способов:

$$x = G(\vec{y}), \quad F(\vec{x}) = y,$$

то есть либо один фактор, либо один конечный товар. Нам хотелось бы описать более сложные технологии, в которых есть много факторов и много конечных товаров.

Оказывается, что удобнее всего отказаться от разделения между факторами и товарами и думать о них одинаково, а наша технология будет описывать как можно одни товары превращать в другие.

Пусть есть n товаров, которые можно произвести в количествах, описываемых точкой в \mathbb{R}^n (не в \mathbb{R}^n_+), поскольку какие-то товары окажутся факторами, потраченными при производстве других.

Одна технология это одна точка. Множество всех допустимых технологий это область в \mathbb{R}^n , то есть **технологическое множество**. Эффективное производство (то, что раньше описывалось F или G) теперь описывается границей этого множества, то есть **технологической границей**, см. иллюстрацию ниже.

Формально технологическая граница состоит из точек $y \in Y$ таких, что не существует $y' \in Y$, так что $y_i' \geqslant y_i$ по всем координатам i и $y_j' > y_j$ по хотя бы одной координате j.

Lemma 1

Технологическая граница ищется как все точки $z \in Y$ т.ч.

$$z \in argmax \ \vec{q} \cdot \vec{y}, \quad \vec{y} \in Y,$$

для хотя бы одного вектора цен $\vec{q}\geqslant 0, \vec{q}\neq 0.$

Фирма воспринимает технологическое множество и максимизирует прибыль:

$$\vec{q} \cdot y \to \max, \quad \vec{y} \in Y.$$

Чтобы задача была выпуклой, нам понадобятся некоторые аксиомы.

Definition 2

Аксиомы технологического множества У:

- A1: Y содержит $\vec{0}$ - A2: свобода расходования

$$y \in Y, y' < y \implies y' \in Y$$

- А3: невозрастающая отдача от масштаба:

$$y \in Y \Rightarrow \lambda Y \in Y, \quad \forall \lambda \in (0,1)$$

- А4: непусто, замкнуто
- А5: отсутствие рога изобилия: $Y \cap \mathbb{R}^n_+ = \emptyset$.

7

Все эти аксиомы нужны, чтобы вывести из них свойства задачи максимизации полезности, которые нам хорошо известны наперед: непрерывность и выпуклость. Гладкость тоже желательна, но, на самом деле, можно обойтись выпуклостью Y, поскольку выпуклые функции почти всюду дифференцируемы.

Theorem 3 (БЖЦ)

Если выполнены аксиомы A1-A5, то технологическое множество выпукло. Более того, если производится один товар, то функция F, описывающая технологическую границу, непрерывна и вогнута.

В такой абстрактной постановке удобно анализировать задачу максимизации полезности:

$$\pi(q, y) = \vec{q} \cdot \vec{y} \to \max, \quad y \in Y$$

Как обычно, нас интересуют два объекта:

- ullet координаты оптимума $y^*(ec{q})$ это функция предложения
- ullet значение целевой функции $\pi^*(ec{q}) = \pi(ec{q}, y^*(ec{q})))$

В такой абстрактной постановке удобно анализировать задачу максимизации полезности:

$$\pi(q, y) = \vec{q} \cdot \vec{y} \rightarrow \max, \quad y \in Y$$

Как обычно, нас интересуют два объекта:

- ullet координаты оптимума $y^*(ec{q})$ это функция предложения
- ullet значение целевой функции $\pi^*(ec{q}) = \pi(ec{q}, y^*(ec{q})))$

Поскольку тут происходит огибание в пространстве \vec{q} , постарайтесь ответить на следующие два вопроса:

Вопрос: Чему равен градиент $\pi^*(\vec{q})$?

Вопрос: Какова форма функции $\pi^*(\vec{q})$?

Сложение технологических

множеств

Предположим, что у нас есть два завода. Первый обладает технологией Y_1 , второй обладает технологией Y_2 . Теперь представим себе, что компания владеет этими двумя заводами и может свободно перемещать товары с одного завода на другой и комбинировать любые технологические цепочки.

Как описать технологическое множество Y_1+Y_2 , соответствующее этой компании?

Definition 4

Для двух множества A и B, их **евклидова сумма** A+B определяется как:

$$A + B = \{a + b \mid a \in A, b \in b\}.$$

Действительно, компания может «сложить», в векторном смысле, любые два вектора из множеств A, B.

Первый вектор $a \in A$ означает, что партия товаров была произведена на первом заводе и была отправлена на склад. Второй вектор $b \in B$ означает, что партия товаров была произведена на втором заводе и тоже отправлена на склад.

На складе партии будут объеденены и суммарный обьем будет соответствовать вектору a+b.

Lemma 5

Арифметическая сумма двух выпуклых множеств выпукла.

Любая взвешенная сумма двух векторов из A+B представляется как сумма двух взвешенных пар векторов из A и B, с теми же весами.

$$\alpha(a+b) + (1-\alpha)(a'+b') = [\alpha a + (1-\alpha)a'] + [\alpha b + (1-\alpha)b']$$

Соответственно, она тоже лежит в A + B.

Сложение технологических

границ

Предположим далее, что Y_1 описывается производственной функцией F_1 , а Y_2 описывается производственной функцией F_2 . Как будет выглядеть производственная функция для $Y_1 + Y_2$?

Какие есть кандидаты?

-
$$F_1 + F_2$$
 - $\max(F_1 + F_2)$ - $\nabla F_1 = \nabla F_2$

Легко видеть, что производственная функция F множества Y_1+Y_2 определяется как верхняя огибающая семейства опорных функций:

$$F(x_1,...,x_n) := \max_{\hat{x}} (F_1(\hat{x}_1,...,\hat{x}_n) + F_2(x_1 - \hat{x}_1,...,x_n - \hat{x}_n)),$$

то есть, мы сначала решаем сколько произвести на первом заводе, а потом производим остальное на втором заводе. Что нам говорит Теорема об Огибающей?

Наклон огибающей равен наклону опорной функции в точке касания:

$$\nabla F = \nabla F_2$$
.

С другой стороны, можно сказать, что

$$F(x_1,...,x_n) := \max_{\hat{x}} (F_2(\hat{x}_1,...,\hat{x}_n) + F_1(x_1 - \hat{x}_1,...,x_n - \hat{x}_n)),$$

то есть, мы сначала решаем сколько произвести на первом заводе, а потом производим остальное на втором заводе

И снова, Теорема об Огибающей:

$$\nabla F = \nabla F_1$$
.

Получается, что необходимым условием для того, чтобы точка лежала на границе объединенного технологического множества $\vec{y} \in Y_1 + Y_2$ является то, что, при разложении $\vec{y} = \vec{y_1} + \vec{y_2}$ этой точки на вектор $\vec{y_1} \in Y_1$ и вектор $\vec{y_2} \in Y_2$:

$$\nabla F_1(\vec{y}_1) = \nabla F_2(\vec{y}_2).$$

С другой стороны, очевидно, что при разложении $\vec{y}=\vec{y_1}+\vec{y_2}$ этой точки, $\vec{y_1}$ на границе Y_1 , а $\vec{y_2}$ лежит на границе Y_2 .

Таким образом, для того, чтобы описать суммарную технологическую границу, надо сложить только те пары точек $y_1=F_1(\vec{x_1})$ и $y_2\in F_2(\vec{x_2})$, в которых наклоны равны, и сосчитать $(\vec{x_1}+\vec{x_2},y_1+y_2)$.

Конец