0: Rolling Dice

For both parts, we use the definition that two events A and B are independent if and only if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B).

(a) By the construction of RollDie(6), we can say that $Pr(D_1) = Pr(D_2) = \frac{1}{6}$. By the law of product, $Pr(D_1 \cap D_2) = \frac{1}{6} * \frac{1}{6} = \frac{1}{36}$. We now perform the following calculations.

$$Pr(D_1|D_2) = \frac{Pr(D_1 \cap D_2)}{Pr(D_2)}$$
 [definition of $Pr(A|B)$]
$$= \frac{1/36}{1/6}$$

$$= \frac{1}{6}$$

$$= Pr(D_2)$$

Using the commutativity \cap , a similar calculation is performed to show that $\Pr(D_2|D_1) = \Pr(D_1)$. Therefore, by the definition of independence, D_1 and D_2 are independent.

(b) There are 36 possible outcomes for die1 + die2 (by law of product), and only 4 of those outcomes result in 5, i.e. $|S_5| = |\{(1,4),(2,3),(3,2),(4,1)\}| = 4$, so $\Pr(S_5) = \frac{4}{36} = \frac{1}{9}$. By looking at all the possibilities of S_5 , we see that there is only one outcome where die1 = 1, so $\Pr(D_1 \cap S_5) = \frac{1}{36}$.

$$Pr(D_1|S_5) = \frac{Pr(D_1 \cap S_5)}{Pr(S_5)}$$
 [definition of $Pr(A|B)$]
$$= \frac{1/36}{1/9}$$

$$= \frac{1}{4}$$

$$\neq Pr(S_5)$$

Since $\Pr(D_1|S_5) \neq \Pr(S_5)$, by the definition of independence, D_1 and S_5 are not independent and therefore dependent.