

Efficient Distributed Sensing using Adaptive Censoring-based Inference

Beipeng Mu, Girish Chowdhary, Jonathan P. How

Laboratory for Information and Decision Systems, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology

Distributed Information Fusion Under Uncertainty and Communication Constraints

- Important to maintain accurate situational awareness for a variety of cooperative multi-agent missions
- ▶ Key to many other decision making problems, e.g. distributed planning
- Challenging in dynamic, uncertain, communication-constrained environments
- Problem: How compute distributed parameter estimates in presence of uncertainties and communication constraints?
- What is correct? ⇒ centralized Bayesian estimate
- Various types of uncertainties
- Limited
- communication/computation
- resource Key featu

brief text

Key features needed: accurate, scalable, communication efficient

42 41 33 33 33 33 33 33 23 24

- Time

 For given V[⋆], comm. cost initially grows quickly then levels off

 Little known initially, so most new measurements declared informative
- ► Communication drops in later stages, error cannot be reduced further ⇒ dynamic trade-off between cost and accuracy
- ► How balance communication load between early/later stages?

Same Poisson arrival rate estimation on slide ??, $V^* \in [0.02, 0.5]$

Total Communication Cost

— Full Relay

Random

-VoIDS (V*=0.1)

-VoIDS (V*=0.5)

------HPC

Existing Methods

- ► All measurements are broadcast or relayed by all agents to all other agents ⇒ baseline Full-Relay (FR)
- Comparable to centralized Bayesian estimation
- Inefficient: communication cost very high (well known)
- Distributed inference with graphical models [????]
- Communication cost lower than FR, can work for arbitrary distributions
- Not easily scalable to cyclic graphs
- Can employ censoring
- Differentiate informative measurements from uninformative ones.
- Censor uninformative measurements/sensors
- Consensus based fusion
- Comm. cost lower than FR, but all agents communicate at all times
- ▶ Dynamic network topology can lead to bias ⇒ hard to censor agents
- Random Broadcast (random censoring of agents)
- Communication cost reduced by increasing probability of censoring.
- No bias since all agents have chance to communication
- Longer time to convergence since frequency of communication reduced

Our Method: Efficient Distributed Inference

- Value of Information realized Distributed Sensing (VoIDS)
- Sensors do not communicate measurements all the time
- Differentiate between informative and uninformative sensors
- Relax restrictions on network topologies
- ➤ Will show that this works well, but censoring threshold is somewhat arbitrary and impacts communication cost/performance
- Developed Adaptive VoIDS (A-VoIDS) [?]
- ▶ Better balance between communication cost and inference error

Bayesian Update

Simulation Results

Bayesian update

$$p(\theta|z,\omega) = \frac{p(z|\theta)p(\theta|\omega)}{\int p(z|\theta)p(\theta|\omega) d\theta}$$

- $\blacktriangleright \omega$: hyperparameters of the prior
- $\blacktriangleright \theta$: parameters to be estimated
- Posterior may not have closed form solution
- ➤ Approximate inference methods often used (e.g. Markov Chain Monte Carlo (MCMC) [?]), but still slow and costly
- In case of exponential family, closed from solution exists
 ⇒ efficient Bayesian inference

Exponential Family and Conjugate Prior

Exponential Family

$$p(\mathbf{x}|\theta) = \exp\left\{\theta^T T(\mathbf{x}) - A(\theta)\right\}$$

Cumulative cost

Cost-Error Summary

□ HPC

Random

+ VoIDS (V* 0.02~0.50)

Vo bDS

- under measurement $\mu(x)$
- ▶ $T(\mathbf{x})$: sufficient statistics; $A(\theta)$: log partition
- Conjugate prior

$$p(\theta|\omega,\nu) = \exp\left\{ [\omega,\nu]^T [\theta, -A(\theta)] - \Lambda(\omega,\nu) \right\}$$

- \blacktriangleright under measurement h(x)
- $ullet \omega$, ν : hyperparameters of the prior; Λ : log partition of conjugate prior

Adaptive Vol Realized Distributed Sensing (A-VolDS)

- ► Control frequency of communication by adjusting V^* in response to communication load
- > Much better utilization of available communication bandwidth
- If many nodes are informative, increase V^* to reduce communication load,
- If low communication load decrease V^* to increase accuracy

$$V^* = \begin{cases} \gamma_1 V^* \ \bar{C}[t-l+1:t] < c \\ \gamma_2 V^* \ \bar{C}[t-l+1:t] \ge c \end{cases}$$

$$\gamma_1 > 1, \quad 0 < \gamma_2 < 1$$

- $\bar{C}[t-l+1:t]$: average number of active agents during [t-l+1:t]
- ightharpoonup c: desired communication cost in a step, user-defined
- $ightharpoonup \gamma_1$: gaining rate of V^* , user-defined
- $ightharpoonup \gamma_2$: loosing rate of V^* , user-defined

Exponential Family and Conjugate Prior

Summary

brief text

Refs

Aerospace Controls Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139