Devoir surveillé n° 07

Durée : 3 heures, calculatrices et documents interdits

N'attaquez l'exercice III qu'après avoir traité les autres : il est difficile!

I. Vu en TD.

Soit $F = \left\{ f \in \mathcal{C}([-1,1],\mathbb{C}) \mid \int_{-1}^{1} f(t) \, \mathrm{d}t = 0 \right\}$ et $G = \left\{ f \in \mathcal{C}([-1,1],\mathbb{C}) \mid f \text{ constante} \right\}$. Montrer que F et G sont des sous-espaces vectoriels supplémentaires de $\mathcal{C}([-1,1],\mathbb{C})$.

II. Étude d'un endomorphisme.

On note $E = \mathscr{C}^0(]-1, +\infty[)$ l'espace vectoriel des fonctions continues sur $I =]-1, +\infty[$. Étant donné un élément f de E, on désigne par T(f) l'application de I vers \mathbb{R} définie par :

$$\forall x \in I, \ T(f)(x) = \int_0^x \frac{f(t)}{1+t} dt.$$

Partie 1 — Quelques exemples.

- 1) Déterminer l'application T(f) lorsque f est l'application f_1 constante égale à $a \in \mathbb{R}$.
- 2) Déterminer l'application T(f) lorsque f est l'application $f_2: I \to \mathbb{R}$. $t \mapsto \ln(t+1)$
- 3) a) Déterminer l'application T(f) lorsque f est l'application $f_3: I \to \mathbb{R}$. $t \mapsto \frac{t}{(t+2)^2}$
 - b) Rappeler sans démonstration les développements limités à l'ordre 2 en 0 de $h\mapsto \ln(1+h)$ et $h\mapsto \frac{1}{1+h}$.
 - c) Donner un développement asymptotique à la précision o $\left(\frac{1}{x^2}\right)$ de $T(f_3)(x)$ au voisinage de $+\infty$.
- 4) Déterminer l'application T(f) lorsque f est l'application $f_4: I \to \mathbb{R}$. $t \mapsto \frac{t^2}{(t^2+1)^2}$ puis, pour tout x > -1, établir une relation entre $J_1(x) = \int_0^x \frac{1}{t^2+1} dt$ et $J_2(x) = \int_0^x \frac{1}{(t^2+1)^2} dt$.
- 5) Pour tout entier n non nul, on définit l'élément g_n de E par $g_n : t \mapsto t^n$. Fixons $x \in I$. Trouver une relation entre $T(g_{n+1})(x)$ et $T(g_n)(x)$ et en déduire l'expression de $T(g_n)(x)$ à l'aide d'une somme que l'on ne cherchera pas à calculer.

Partie 2 — Propriétés algébriques élémentaires de T.

- **6)** a) Vérifier que T définit un endormorphisme de E.
 - b) Déterminer le noyau de T.
 - c) Déterminer l'image de T.

Partie 3 — Étude d'un exemple.

Cette partie est consacrée à l'étude de la fonction T(f) lorsque $f: I \to \mathbb{R}$. $t \mapsto e^{-t}$

Ainsi, pour tout $x \in I$, $T(f)(x) = \int_0^x \frac{e^{-t}}{t+1} dt$. On ne cherchera pas à calculer cette intégrale.

- 7) Déterminer le sens des variations de la fonction T(f).
- 8) Trouver le développement limité de T(f) à l'ordre 3 au voisinage de 0. Utiliser ce calcul pour en déduire l'allure locale de la courbe représentative de T(f) au voisinage de 0.
- 9) Montrer que la fonction T(f) admet une limite finie ℓ lorsque $x \to +\infty$. On ne cherchera pas à calculer cette limite.
- **10)** Déterminer la limite de T(f) lorsque $x \longrightarrow -1^+$.
- 11) Donner l'allure de la représentation graphique de T(f) en faisant apparaître sur le dessin des résultats des questions précédentes.

Partie 4 — Comportement à l'infini.

On considère un élément $f \in E$ et on suppose que f admet une limite $\ell \in \mathbb{R}$ lorsque $t \to +\infty$. Nous allons étudier le comportement de la fonction T(f) en $+\infty$.

- 12) On suppose dans cette question que $\ell = 0$.
 - a) Montrer que la fonction f est bornée sur l'intervalle $J=[0,+\infty[$. On notera $M=\sup_{t\in[0,+\infty[}|f(t)|.$
 - **b)** Pour $x \ge 1$, on pose $\alpha(x) = \sup\{|f(t)|, \ln(x) \le t \le x\}$. Montrer que $\alpha(x) \xrightarrow[x \to +\infty]{} 0$.
 - c) Montrer que pour tout $x \ge 1$:

$$|T(f)(x)| \leqslant M \int_0^{\ln x} \frac{\mathrm{d}t}{1+t} + \alpha(x) \int_{\ln(x)}^x \frac{\mathrm{d}t}{1+t}.$$

- **d)** En déduire que $T(f)(x) = o(\ln x)$
- 13) On suppose dans cette question que $\ell \in \mathbb{R}^*$. Trouver un équivalent simple de T(f)(x) lorsque $x \to +\infty$.
- **14)** On suppose dans cette question que $\ell = +\infty$. Montrer que $T(f)(x) \xrightarrow[x \to +\infty]{} +\infty$.
- 15) On considère dans cette question l'élément $f:t\mapsto \mathrm{e}^t$ et donc, pour tout $x\in I$:

$$T(f)(x) = \int_0^x \frac{e^t}{t+1} dt.$$

On ne cherchera pas à calculer cette intégrale. On note, pour $n \ge 2$:

$$F_n(x) = \int_0^x \frac{e^t}{(t+1)^n} dt.$$

a) En écrivant pour $n \ge 2$ et $x \ge 0$ que $F_n(x) = \int_0^{\frac{x}{2}} \frac{e^t}{(t+1)^n} dt + \int_{\frac{x}{2}}^x \frac{e^t}{(t+1)^n} dt$, montrer que :

$$F_n(x) \underset{x \to +\infty}{=} o\left(\frac{e^x}{x^{n-2}}\right)$$

- **b)** En intégrant $F_n(x)$ par parties, montrer que $F_n(x) = o\left(\frac{e^x}{x^{n-1}}\right)$.
- c) Trouver trois constantes a, b, c réelles telles qu'au voisinage de $+\infty$:

$$T(f)(x) \underset{x \to +\infty}{=} a \frac{e^x}{x} + b \frac{e^x}{x^2} + c \frac{e^x}{x^3} + o \left(\frac{e^x}{x^3}\right).$$

III. Fonctions à variation bornée.

Une application $f:[a,b] \to \mathbb{R}$ est dite à variation bornée sur [a,b] s'il existe $M \in \mathbb{R}$ tel que, pour toute subdivision σ de [a,b] (i.e. une famille $\sigma = (x_0, \ldots, x_n)$ avec $a = x_0 < x_1 < \ldots x_{n-1} < x_n = b$), on a

$$V_{\sigma}(f) = \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)| \le M.$$

On note alors

$$V(a,b) = \sup \{ V_{\sigma}(f) \mid \sigma \text{ est une subdivision de } [a,b] \}.$$

Soit $f:[a,b]\to\mathbb{R}$ à variation bornée sur [a,b].

- 1) Soit $x \leq x'$ dans [a, b], montrer que $f_{|[x, x']}$ est à variation bornée sur [x, x'].
- 2) Soit $g:[a,b]\to\mathbb{R}, x\mapsto V(a,x)$. Montrer que g est croissante.
- 3) Montrer que toute fonction à variation bornée est la différence de deux fonctions croissantes. Indice : on pourra s'intéresser à g f.
- 4) Montrer que toute fonction à variation bornée admet des limites à gauche et à droite en tout point de]a, b[.
- 5) Une application continue sur [a, b] est-elle toujours à variation bornée?

