Forma normale di Chomsky Ogni linguaggio context free senza $\varepsilon-produzioni~(A\to\varepsilon)$ è generato da una grammatica dove tutte le produzioni sono della forma

$$A \to BC$$
 $A \to a$

dimostrazione

Costruiamo un algoritmo in grado di generare questa nuova grammatica. Prendiamo una grammatica $G=\langle V,T,P,S\rangle$ senza ε -produzioni, simboli inutili e produzioni unitarie, ed eseguiamo il seguente algoritmo:

while new $P \neq \text{old } P$ do $\forall A \rightarrow X_1 \dots X_m \in P$ case:

- m=1 and $X_1 \in T$ (perché non ci sono produzioni unitarie): continue
- m=1 and $X_1 \in V$: impossibile
- $m \ge 2 \land X_i \in T$: $V = V \cup B_i$, $P = (P \setminus \{A \to X_1 \dots X_m\}) \cup \{A \to Y_1 \dots Y_m, B_i \to X_i\}$ dove $Y_i = X_i$ se $X_i \in V$ altrimenti $Y_i = B_i$ se $X_i \in T$
- $m \ge 2 \land X_i \in V$: $P = (P \setminus \{A \to X_1 \dots X_m\}) \cup B \to X_1 X_2, A \to B X_3 \dots X_m$

end while

Pumping lemma per grammatiche context free

Sia L un linguaggio context-free. Allora $\exists n \in \mathbb{N}$ dove $\forall z \in \mathfrak{L}$ con $|z| \geq n$ esistono $u, v, w, x, y \in T^*$ tali che:

- z = uvwxy
- |vx| > 1
- $|vwx| \le n$
- $\forall i \in \mathbb{N}.uv^iwx^iy \in L$

dimostrazione

Sia G=< V,T,P,S> una grammatica in forma normale di Chomsky che genera $L\setminus \varepsilon$. Possiamo assumere questo senza perdita di generalità in quanto è sempre possibile costruire una grammatica G' con un simbolo $S'\to S|\varepsilon$.

Per induzione su $i \geq 1$ si dimostra che se un albero di derivazione per una stringa $z \in T^*$ ha tutti i cammini di lunghezza minore o uguale ad i allora $|z| \leq 2^{i-1}$

Sia |V|=k (k>0) e sia $n=2^k$. Se $z\in L$ e $|z|\geq n$ allora ogni albero di derivazione per z deve avere un cammino lungo almeno k+1. Pertanto, all'interno di questo cammino deve esistere un simbolo non terminale $A\in V$ che si ripete due volte. Siano allora v_1 e v_2 due vertici tali che:

- entrambi corrispondono allo stesso simbolo non terminale A
- v_1 è più vicino alla radice di v_2
- poiché $n \ge 2$ a v_1 è associata una produzione del tipo $A \to BC$
- da v_1 alla foglia la lunghezza è al più k+1

Sia z_1 la stringa lunga al più 2^k generata dal sottoalbero T_1 con radice in v_1 . Sia w la stringa generata dal sottoalbero T_2 con radice in v_2 . Possiamo scrivere $z_1 = vwx$. Notiamo che almeno una delle due stringa z o x deve essere non vuota in quanto a v_1 è associata una produzione del tipo $A \to BC$ e T_2 corrisponde quindi a B o C.

Allora abbiamo che:

$$A \to^* vAx \ e \ A \to^* w$$

con $|vwx| \le 2^k = n$. Quindi possiamo applicare i volte la prima regola e otteniamo:

$$A \to^* v^i w x^i$$

per ogni $i \geq 0$. Ponendo u e y pari alle stringhe tali che z = uvwxy abbiamo dimostrato il pumping lemma.