Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$.

A: \because for the running time to be $\Theta(g(n))$ the f(n) must satisfy :

$$c_1 g_1(n) \ge f(n) \ge c_2 g_2(n)$$
 (1)

 \because at the worst-case the f(n) satisfy :

$$f(n) \le c_1 g_1(n)$$
 Where $f(n) = O(g(n))$ (2)

 \because at the best-case the f(n) satisfy :

$$f(n) \ge c_2 g_2(n)$$
 Where $f(n) = \Omega(g(n))$ (3)

from (1), (2), (3):-

 \therefore the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$ #