LP 12 Rayonnement d'équilibre thermique, corps noir

Naïmo Davier

Agrégation 2019

Contents

1	Ray	vonnement thermique
	1.1	Transport d'énergie, définitions
	1.2	Rayonnement d'équilibre thermique
	1.3	Corps noir
2	Ray	vonnement de corps noir
	2.1	Relier $e_i(\nu)$ à $u(\nu)$
	2.2	Pression de radiation
	2.3	Loi de Planck
	2.4	Stefan Boltzmann
	2.5	Application
	2.6	Démonstration de la loi de Planck

Niveau L3

En introduction manip : transfert de chaleur par rayonnement : on fait chauffer une thermopile avec une lampe à quartz.

donner la formule de Planck au milieu de la leçon, la discuter puis la démontrer à la fin.

1 Rayonnement thermique

1.1 Transport d'énergie, définitions

Lien avec l'électromag : $\vec{E}(\vec{k}, \vec{\alpha}) = \vec{\alpha} e^{i(\vec{k}.\vec{r} - \omega t)}$: il y a deux polarisations transverses.

On définit les grandeurs \vec{k} , c, ω , λ .

Energie transmise par le rayonnement, emittance radiative : quantité d'énergie mesurée par unité de temps et de surface.

$$\varepsilon = \int e(\nu)d\nu \tag{1}$$

avec $e(\nu)$ l'emittance spectrale.

$$E_{tot} = \int dS \int_0^{\tau} dt \varepsilon \tag{2}$$

1.2 Rayonnement d'équilibre thermique

corps en équilibre avec le rayonnement dans la cavile

Corps quelconque : puissance émise par le corps = puissance absorbée. Luminance :

$$e_e(-\vec{k}, \vec{\alpha}) = a(\vec{k}, \vec{\alpha})e_i(\vec{k}, \vec{\alpha})$$
(3)

 $a(\vec{k}, \vec{\alpha})$ facteur d'absorption. $e_i(\vec{k}, \vec{\alpha})$: luminance incidente, indépendant du corps mais dépend de T.

1.3 Corps noir

C'est un cas particulier tel que $a(\vec{k}, \vec{\alpha}) = 1 \ \forall \vec{k}$ et $\forall \vec{\alpha}$, attention le quel que soit k signifie qu'on le voit noir dans tous les domaines, ceux qui nous apparaissent noir à nous on seulement $a(\vec{k}, \vec{\alpha}) = 1$ dans le visible : "corps gris".

2 Rayonnement de corps noir

Physique statistique de B. Diu chap VI partie III p818, Physique statistique de Couture et Zitoun cahp 7 p195.

2.1 Relier $e_i(\nu)$ à $u(\nu)$

 $u(\nu)$ est la densité spectrale d'énergie.

$$U = \int dV \int d\nu \ u(\nu) \tag{4}$$

On fait le calcul de l'intégrale... on trouve $e(\nu) = \frac{c}{4}u(\nu)$

2.2 Pression de radiation

on calcule la pression de radiation (v livre de thermo).

On trouve

$$pV = \frac{U}{3} \tag{5}$$

On calcule ensuite

$$\left(\frac{\partial U}{\partial V}\right)_T = l - p = T\left(\frac{\partial p}{\partial T}\right)_V - p = p^3 \tag{6}$$

$$\Rightarrow p \propto T^4 \tag{7}$$

2.3 Loi de Planck

$$u(\nu) = \frac{8\pi h}{c^3} \frac{\nu}{e^{h\nu/kT} - 1}$$
 (8)

La tracer. Commenter avec le fait qu'un four demeure noir tant qu'on ne dépasse pas une certaine température, au delà de cette température (environ 500°C) on voit apparaître du rouge puis du orange (1200°C).

2.4 Stefan Boltzmann

On intègre $u(\nu)$

$$\longrightarrow \varepsilon = \frac{c}{4} \int u(\nu) d\nu = \sigma T^4 \tag{9}$$

très bien vérifié expérimentalement. Faire le lien avec le T^4 obtenu avant.

2.5 Application

On peut faire

Thermodynamique de B. Diu p286.

Le soleil : photosphère à 5950 K. La puissance émise est $P=4\pi R_{sol}^2\varepsilon$ et la puissance reçue sur terre à une distance d sur une surface S est

$$p = P \frac{S}{4\pi d^2} = S \left(\frac{R_{sol}}{d}\right)^2 \sigma T_{sol}^4 \tag{10}$$

on en déduit la température sur terre

$$T_T = T_{sol} \sqrt{\frac{R_{sol}}{2d}} \tag{11}$$

ou sinon on peut faire le fond diffus cosmologique, plus dur et risqué, fait dans le Diu et le Zitoun.

2.6 Démonstration de la loi de Planck

$$d^3N = 2\frac{d^3\vec{r}d^3\vec{p}}{h^3} \frac{1}{e^{\beta E} - 1} \tag{12}$$

avec le facteur 2 pour les deux polarisations, et le facteur de Bose à droite. $\mu=0$ car nombre de photons conservés.

$$E = pc = h\nu \tag{13}$$

$$\int d^3 \vec{r} = V \tag{14}$$

$$\int d\theta \sin\theta d\phi \to dN_{\nu} = \frac{8\pi V}{c^3} \frac{\nu^2 d\nu}{e^{\beta\hbar\nu} - 1} \tag{15}$$