Индивидуальные задачи к лабораторной работе № 7

Итерационные циклические вычислительные процессы.

Решить нелинейное уравнение методом Ньютона.

№	Вычислить	№	Вычислить
1	$4(1-x^2)-e^x=0$ на отрезке от 0 до 1 с точностью 10^{-6}	36	$2x^2 - 0.5^x - 3 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}
2	$f(x) := x^3 - \cos(x) + 1$ на отрезке от -10 до 10 с точностью 10^{-6}	37	$x \lg(x+1) = 1$ на отрезке от 0 до 10 с точностью 10^{-6}
3	$x^4 - 1 - \cos x = 0$ на отрезке от -15 до 15с точностью 10^{-6}	38	$2arcctgx - x + 3 = 0$ на отрезке от -2π до 2π с точностью 10^{-6}
4	$x^3 + 2x - 6 = 0$ на отрезке от -20 до 20 с точностью 10^{-6}	39	$3x^4 - 8x^3 - 18x^2 + 2 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}
5	$x^4 - 4x - 4 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}	40	$2\sin(x+\frac{\pi}{3}) = 0.5x^2 - 1$ на отрезке от -2π до 2π с точностью 10^{-6}
6	$(10)^x + x^2 - 2 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}	41	$2\lg x - \frac{x}{2} + 1 = 0$ на отрезке от 0 до 10 с точностью 10^{-6}
7	$f(x) := x^2 - 3 \cdot x + 3.25 - 5 \cdot \cos(x)$ на отрезке от -10 до 10 с точностью 10^{-6}	42	$2arctgx - 3x + 2 = 0$ на отрезке от - 2π до 2π с точностью 10^{-6}
8	$f(x) := \frac{x-1.3}{(x-1.3)^2+1}$ на отрезке от -5 до 5	43	$2x^4 + 8x^3 + 8x^2 - 1 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}
	с точностью 10 ⁻⁶		
9	$y = x^2 + 4\sin(x)$ на отрезке от -10 до 10 с точностью 10^{-6}	44	$((\log_2(x+2))(x-1)=1$ на отрезке от 0 до 10 с точностью 10^{-6}
10	$y = e^x + \ln(x) - 10x$ на отрезке от -10 до 10 с точностью 10^{-6}	45	$\sin(x-0.5) - x + 0.8 = 0$ на отрезке от -2π до 2π с точностью 10^{-6}
11	$Ln(x) = Sin(x)$ на отрезке от 1 до 3 с точностью 10^{-6}	46	$2e^x + 3x + 1 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}
12	$Tg(x) = 1/x^2$ на отрезке от 0 до $\pi/2$ с точностью 10^{-6}	47	$3x^4 + 4x^3 - 12x^2 - 5 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}
13	$Ln(1+x)/x = 2/\pi$ на отрезке от 0 до 10 с точностью 10^{-6}	48	$x\log_3(x+1) = 2$ на отрезке от 0 до 10 с точностью 10^{-6}
14	$(x-2)\cos x = 1$ на отрезке от -2π до 2π с точностью 10^{-6}	49	$\cos(x+0.3) = x^2$ на отрезке от -2π до 2π с точностью 10^{-6}
15	$3^x + 2x - 2 = 0$ на отрезке от -10 до 10 с точностью 10^{-6}	50	$arctgx - \frac{1}{3x^3} = 0$ на отрезке от -2π до 2π с точностью 10^{-6}
	$2x^4 - 8x^3 + 8x^2 - 1 = 0$ на отрезке от -10 до		$(x-1)^2 2^x = 1$ на отрезке от -10 до 10

16	10 с точностью 10 ⁻⁶	51	с точностью 10^{-6}
	$((x-2)^2-1)2^x=1$ на отрезке от -10 до 10 с		$tg^3x = x - 1$ на отрезке от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$
17	точностью 10^{-6}	52	$\frac{18}{2}$ $x = x = 1$ Ha of peake of $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
			с точностью 10 ⁻⁶
10	$x^4 - 4x^3 - 8x^2 + 1 = 0$ на отрезке от -10 до 10	50	$0.5^x + 1 = (x-2)^2$ на отрезке от -10
18	с точностью 10^{-6}	53	до 10 с точностью 10 ⁻⁶
10	$x^2 - 3 + 0.5^x = 0$ на отрезке от -10 до 10 с		$(x-3)\cos x = 1$ на отрезке от -2π до
19	точностью 10^{-6}	54	2π с точностью 10^{-6}
20	$(x-2)^2 \lg(x+11) = 1$ на отрезке от 0 до 10 с		$(x-1)^2 \lg(x+11) = 1$ на отрезке от 0
20	точностью 10^{-6}	55	до 10 с точностью 10 ⁻⁶
2.1	$3^{x-1} - 4 - x = 0$ на отрезке от -10 до 10 с		$(x-4)^2 \log_{0.5}(x-3) = -1$ на отрезке
21	точностью 10^{-6}	56	от 0 до 10 с точностью 10^{-6}
	$2x^3 - 9x^2 - 60x + 1 = 0$ на отрезке от -10 до		$5\sin x = x$ на отрезке от -2π до 2π с
22	$10 \ \mathrm{c}$ точностью 10^{-6}	57	точностью 10^{-6}
	$(x-3)^2 \log_{0.5}(x-2) = -1$ на отрезке от 0 до		$e^{-2x} - 2x + 1 = 0$ на отрезке от -10 до
23	10 с точностью 10 ⁻⁶	58	10 с точностью 10 ⁻⁶
	$5\sin x = x - 1$ на отрезке от -2π до 2π с		$0.5^x - 1 = (x+2)^2$ на отрезке от -10
24	точностью 10^{-6}	59	до 10 с точностью 10 ⁻⁶
	аксист — 0 на отразка от 2π но 2π с		$x^2 \cos 2x = -1$ на отрезке от -2π до
25	$arcrct - \frac{1}{3x^3} = 0$ на отрезке от -2π до 2π с	60	2π с точностью 10^{-6}
	точностью 10^{-6}		
26	$2x^3 - 9x^2 - 60x + 1 = 0$ на отрезке от -10 до	<i>c</i> 1	arctg(x-1) + 2x = 0 на отрезке от -
26	10 с точностью 10 ⁻⁶	61	2π до 2π с точностью 10^{-6}
27	$(\log_2(-x))(x+2) = -1$ на отрезке от 0 до 10	62	на отрезке от -10 до 10 с
21	с точностью 10 ⁻⁶	02	точностью 10 ⁻⁶
28	$\sin(x + \frac{\pi}{2}) - 0.5x = 0$ на отрезке от -2π до 2π	63	$(x-2)^2 2^x = 1$ на отрезке от -10 до
20	3	03	10 с точностью 10 ⁻⁶
	c точностью 10^{-6} $2e^x = 5x^3 + 2$ на отрезке от -10 до 10 c		² 20 : 0 we omnerve on 2π ve
29	$2e = 3x + 2$ на отрезке от -10 до 10 с точностью 10^{-6}	64	$x^2 - 20\sin x = 0$ на отрезке от -2π до 2π с точностью 10^{-6}
	$x\log_3(x+1)=1$ на отрезке от 0 до 10 с		$2^{x} + 5x - 3 = 0$ на отрезке от -10 до
30	$x \log_3(x+1)^{-1}$ на отреже от о до то с точностью 10^{-6}	65	10 с точностью 10 ⁻⁶
	$\cos(x+0.5) = x^3$ на отрезке от -2 π до 2 π с		$3x^4 + 4x^3 - 12x^2 - 5 = 0$ на отрезке
31	$\cos(x + 0.5) = x$ на отреже от -2 π до 2 π с точностью 10^{-6}	66	от -10 до 10 с точностью 10^{-6}
	1		$0.5^{x} + 1 = (x - 2)^{2}$ на отрезке от -10
32	$2arctgx - \frac{1}{2x^3} = 0$ на отрезке от -2π до 2π с	67	до 10 с точностью 10 ⁻⁶
	точностью 10 ⁻⁶		до то с точностью то
	$x^4 - 18x^2 + 6 = 0$ на отрезке от -10 до 10 с		$(x-3)\cos x = 1$ на отрезке от -2π до
33	точностью 10^{-6}	68	2π с точностью 10^{-6}
			$e^x + x + 1 = 0$ на отрезке от -10 до 10
34	$tgx = x + 1$ на отрезке от $-\frac{\pi}{2}$ до $\frac{\pi}{2}$ с	69	с точностью 10^{-6}
	точностью 10^{-6}		
	$5^x - 6x - 3 = 0$ на отрезке от -10 до 10 с	.	$2x^4 - x^2 - 10 = 0$ на отрезке от -10
35		70	

$r_0 = 10^{-6}$	
точностью 10 ° до 10 с точностью 10 °	