Homework 3

- 1. (Exercise 6.2, page 54 from B&T) Show that two vector bundles on a manifold M are isomorphic if and only if their cocycles are equivalent (relative to some open cover).
- 2. (Exercise 6.43, page 65 from B&T) Let $\pi\colon E\to M$ be a rank two bundle. Then there is an isomorphism $H^*(M)\to H^{*+2}_{cv}(E)$ given by the wedge product with the Thom class Φ . It follows that any class $\omega\in H^{*+2}_{cv}(E)$ can be written $\Phi\wedge\pi^*u$ where $u\in H^*(M)$.

Give a nice description of the class u so that $\Phi \wedge \pi^* u = \Phi \wedge \Phi$.

3. (Exercise 6.45, page 77 from B&T) There is a special bundle on $\mathbb{C}P^n$ called the tautological line bundle (or "universal subbundle" in Bott and Tu). Recall that $\mathbb{C}P^n$ can be thought of as the space of <u>complex</u> lines in \mathbb{C}^{n+1} . Consider the product bundle $\mathbb{C}P^n \times \mathbb{C}^{n+1}$. An element of this space is a pair (ℓ, z) where ℓ is a line in \mathbb{C}^{n+1} and z is a point in \mathbb{C}^{n+1} . The tautological bundle is defined as the set

$$L^n = \{(\ell, z) : z \in \ell\}.$$

Compute the Euler class of L^1 by writing down transition functions for L^1 .

- 4. (Exercise 6.46, abbreviated)
 - (a) Let $i \colon S^n \to S^n$ be the antipodal map. An invariant differential form is a form ω so that $i^*\omega = \omega$. The space of such forms is closed under addition, wedge product, and exterior differentiation, so there is an invariant cohomology $H^*(S^n)^I$. Show that $H^*(\mathbb{R}P^n) \cong H^*(S^n)^I$.
 - (b) It turns out that the natural map $H^*(S^n)^I \to H^*(S^n)$ is injective, but you don't need to prove that.
 - (c) Show that i is orientation-preserving if and only if n is odd. Use this to conclude that, if $[\sigma]$ generates $H^n(S^n)$, then $[\sigma]$ is invariant if and only if n is odd.
 - (d) Compute the de Rham cohomology of $\mathbb{R}P^n$:

$$H^q(\mathbb{R}P^n)\cong egin{cases} \mathbb{R} & q=0 \ \mathbb{R} & q=n ext{ and } n ext{ odd} \ 0 & ext{otherwise}. \end{cases}$$

5. A division algebra D is a non-necessarily-associative algebra over a field with the property that, for $a, b, x \in D$ and $b \neq 0$, if

$$a = bx$$

then there is an element y so that

$$a = yb$$
.

Suppose that we have some multiplication rule on \mathbb{R}^n which makes it into a division algebra. Write e_i for the point $(0, \dots, 0, \underbrace{1}_i, 0, \dots, 0) \in \mathbb{R}^n$.

- (a) Let $p \in S^{n-1} \subset \mathbb{R}^n$. Show that there is a unique $a \in \mathbb{R}^n$ so that $p = ae_1$.
- (b) Let $b \in \mathbb{R}^n$ be non-zero. Show that be_1, \dots, be_n are linearly independent in \mathbb{R}^n .
- (c) Let $p = ae_1$ as in the first bit. You can project ae_2, \ldots, ae_n to $T_p(S^{n-1})$. Describe this projection and verify that the projections of ae_2, \ldots, ae_n are still linearly independent.
- (d) You may assume that multiplication by a fixed a is a continuous map. (But you are welcome to prove it.) Show that, if \mathbb{R}^n can be given the structure of a division algebra, then TS^{n-1} is trivial. Conclude that \mathbb{R}^3 cannot have the structure of a division algebra.