TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01A, 03 abr 2023
Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Quando um explosivo é detonado debaixo d'água, ele se converte quase que instantaneamente em gás. A pressão inicial do gás é p_0 . A explosão produz uma onda de choque esférica que se propaga (expandindo-se) pela água. Durante a propagação, o raio da R da esfera aumenta, e a pressão p do gás em seu interior diminui. A pressão p do gás durante a explosão depende das variáveis p_0 , R, p (massa específica da água, cujas dimensões são p0 kg. (compressibilidade isotérmica da água) e da massa p0 de explosivo. Note que p0 felinido por

$$\kappa_T \equiv \frac{1}{\rho} \left(\frac{\partial \rho}{\partial p} \right).$$

Há 3 dimensões fundamentais M, L e T, e 6 variáveis. Obtenha os 3 parâmetros adimensionais do problema, escolhendo **obrigatoriamente** p_0 , R e ρ como variáveis em comum (no máximo) para os mesmos.

SOLUÇÃO DA QUESTÃO:

A lista de variáveis e dimensões é

$$[\![p]\!] = M L^{-1} T^{-2},$$

 $[\![\kappa_T]\!] = M^{-1} L T^2$
 $[\![m]\!] = M,$
 $[\![p_0]\!] = M L^{-1} T^{-2},$
 $[\![R]\!] = L,$
 $[\![\rho]\!] = M L^{-3}.$

Os 3 grupos adimensionais são:

$$\Pi_{1} = p p_{0}^{a} R^{b} \rho^{c},$$

$$\llbracket \Pi_{1} \rrbracket = [M L^{-1} T^{-2}] [M L^{-1} T^{-2}]^{a} [L^{b}] [M L^{-3}]^{c}$$

$$1 = M^{0} L^{0} T^{0} = M^{1+a+c} L^{-1-a+b-3c} T^{-2-2a}.$$

O sistema de equações é

$$a+c = -1,$$

$$-a+b-3c = 1,$$

$$-2a = 2$$

donde a = -1, b = 0, c = 0 e

$$\Pi_1 = \frac{p}{p_0}$$
.

$$\begin{split} \Pi_2 &= \kappa_T p_0^a R^b \rho^c, \\ \llbracket \Pi_1 \rrbracket &= [\mathsf{M}^{-1} \, \mathsf{L} \, \mathsf{T}^2] [\mathsf{M} \, \mathsf{L}^{-1} \, \mathsf{T}^{-2}]^a [\mathsf{L}^b] [\mathsf{M} \, \mathsf{L}^{-3}]^c \\ 1 &= \mathsf{M}^0 \mathsf{L}^0 \mathsf{T}^0 = \mathsf{M}^{-1 + a + c} \mathsf{L}^{1 - a + b - 3c} \mathsf{T}^{2 - 2a} \end{split}$$

O sistema de equações é

$$a+c=1,$$

$$-a+b-3c=-1,$$

$$-2a=-2$$

donde a = 1, b = 0, c = 0 e

$$\Pi_2=\kappa_T p_0.$$

$$\Pi_{3} = mp_{0}^{a}R^{b}\rho^{c},$$

$$\llbracket \Pi_{1} \rrbracket = [M][ML^{-1}T^{-2}]^{a}[L^{b}][ML^{-3}]^{c}$$

$$1 = M^{0}L^{0}T^{0} = M^{1+a+c}L^{-a+b-3c}T^{-2a}$$

O sistema de equações é

$$a+c = -1$$
$$-a+b-3c = 0$$
$$-2a = 0$$

donde a = 0, b = -3, c = -1 e

$$\Pi_3 = mR^{-3}\rho^{-1} \blacksquare$$

 $\mathbf{2}$ [25] Escreva uma linha de Python que converte 7777 da base 10 para a base 2.

SOLUÇÃO DA QUESTÃO:

bin(7777) **•**

a) [05] Calcule a integral analítica

$$I = \int_{-\pi/2}^{+\pi/2} \cos(x) \, \mathrm{d}x.$$

- b) [10] Aproxime o $\cos(x)$ por uma parábola $f(x) = ax^2 + bx + c$ passando por $(-\pi/2, 0)$, (0, 1) e $(+\pi/2, 0)$ (ou seja: **encontre** $a, b \in c$).
- c) [10] Com a, b e c encontrados acima, obtenha o valor de

$$I_a = \int_{-\pi/2}^{+\pi/2} f(x) \, \mathrm{d}x.$$

Atenção: simplifique ao máximo o resultado para I_a e depois obtenha I_a **numericamente**, fazendo as contas à mão, com apenas 3 algarismos significativos: qual é a diferença relativa $|(I_a - I)/I|$?

SOLUÇÃO DA QUESTÃO:

a)

$$I = \int_{-\pi/2}^{+\pi/2} \cos(x) \, \mathrm{d}x = 2.$$

b)

$$a\left(-\frac{\pi}{2}\right)^2 + b\left(-\frac{\pi}{2}\right) + c = 0,$$

$$c = 1,$$

$$a\left(\frac{\pi}{2}\right)^2 + b\left(\frac{\pi}{2}\right) + c = 0,$$

donde

$$a\frac{\pi^2}{4} + 1 = 0,$$

$$a = -\frac{4}{\pi^2},$$

$$b = 0.$$

c)

$$f(x) = -\frac{4}{\pi^2}x^2 + 1;$$

$$\int_{-\pi/2}^{+\pi/2} f(x) \, dx = \frac{2\pi}{3} \approx 2,09;$$

$$\left| \frac{I_a - I}{I} \right| = \frac{2,09 - 2}{2} = \frac{0,09}{2} = 0,045 \blacksquare$$

4 [25] (**Anulada: resposta foi impressa na prova**) Traduza a função em Python abaixo em **apenas duas fórmulas** (no máximo) para o cálculo da integral numérica correspondente.

```
def simple(n,a,b,f):
    dx = (b-a)/n;
    I = 0.0;
    for i in range(1,n+1):
        xi = a + (i-0.5)*dx
        I += f(xi)*dx
    return I
```

SOLUÇÃO DA QUESTÃO:

$$\Delta x = (b - a)/n,$$

$$I = \sum_{i=1}^{n} f(a + (i - 1/2)\Delta x)\Delta x$$