432 Class 21 Slides

github.com/THOMASELOVE/2020-432

2020-04-09

Preliminaries

Working with Time-to-Event Data

- The brca trial of three treatments for Breast Cancer
- Cox Proportional Hazards Regression with coxph
- Diagnostics for Cox Proportional Hazards Regression
- Using cph from the rms package to fit a Cox model

The brca trial

The brca trial

The brca data describes a parallel randomized trial of three treatments, adjuvant to surgery in the treatment of patients with stage-2 carcinoma of the breast. The three treatment groups are:

- S_CT = Surgery plus one year of chemotherapy
- S_IT = Surgery plus one year of immunotherapy
- ullet S_Both = Surgery plus one year of chemotherapy and immunotherapy

The measure of efficacy were "time to death" in weeks. In addition to treat, our variables are:

- trial_weeks: time in the study, in weeks, to death or censoring
- last_alive: 1 if alive at last follow-up (and thus censored), 0 if dead
- age: age in years at the start of the trial

brca tibble (note big problem: n = 31!)

Source: Chen and Peace (2011) Clinical Trial Data Analysis Using R, CRC Press, section 5.1

```
# A tibble: 31 \times 5
  subject treat trial_weeks last_alive
                                       age
  <fct> <fct>
                      <int>
                                <int> <int>
1 A01 S_CT
                        102
                                        55
2 A02 S IT
                        192
                                    0
                                        62
3 A03 S_Both
                        73
                                        72
4 A04 S CT
                        58
                                        48
5 A05
         S CT
                        48
                                        26
6 A06
         S IT
                        182
                                        52
7 A07
         S IT
                        196
                                        50
         S CT
                                        49
8 A08
                        177
                                        62
9 A09
         S IT
                        191
10 A10
                        36
                                        60
         S Both
# ... with 21 more rows
```

Analytic Objectives

This is a typical right-censored survival data set with interest in the comparative analysis of the three treatments.

- Does immunotherapy added to surgery plus chemotherapy improve survival? (Comparing S_Both to S_CT)
- ② Does chemotherapy add efficacy to surgery plus immunotherapy? (S_Both vs. S_IT)
- What is the effect of age on survival?

Create survival object

- trial_weeks: time in the study, in weeks, to death or censoring
- last_alive: 1 if alive at last follow-up (and thus censored), 0 if dead

So last_alive = 0 if the event (death) occurs.

What's next?

Create survival object

- trial_weeks: time in the study, in weeks, to death or censoring
- last_alive: 1 if alive at last follow-up (and thus censored), 0 if dead

So last_alive = 0 if the event (death) occurs.

```
brca$S <- with(brca, Surv(trial_weeks, last_alive == 0))
head(brca$S)</pre>
```

```
[1] 102 192 73 58+ 48+ 182+
```

Build Kaplan-Meier Estimator

```
kmfit <- survfit(S ~ treat, dat = brca)</pre>
print(kmfit, print.rmean = TRUE)
Call: survfit(formula = S ~ treat, data = brca)
           n events *rmean *se(rmean) median 0.95LCL
treat=S Both 10
             4 188
                              23.7
                                     NA
                                           139
treat=S_CT 11 6 153 21.1 144
                                           102
treat=S IT 10 5 188 17.9 192 144
          0.95UCL
treat=S Both
              NΑ
treat=S_CT NA
treat=S IT NA
   * restricted mean with upper limit = 242
```

```
> summarv(kmfit)
Call: survfit(formula = S ~ treat, data = brca)
              treat=S Both
time n.risk n.event survival std.err lower 95% CI upper 95% CI
                      0.900
                            0.0949
                                         0.732
  36
         10
                 1
  73
                 1
                      0.800 0.1265
                                         0.587
 139
                      0.700 0.1449
                                        0.467
 185
          6
                 1
                      0.583 0.1610
                                         0.340
              treat=S_CT
time n.risk n.event survival std.err lower 95% CI upper 95% CI
                      0.900 0.0949
                                         0.732
  55
         10
                 1
                                                     1.000
          8
  63
                      0.787 0.1340
                                         0.564
                                                     1.000
                 1
                     0.675 0.1551
                                                     1.000
 102
                                         0.430
          6
                 1 0.562 0.1651
 133
                                         0.316
                                                     1.000
          5
 144
                 1
                     0.450 0.1660
                                         0.218
                                                     0.927
 217
                      0.000
                               NaN
                                            NA
                                                        NA
              treat=S_IT
 <u>time n.risk n.ev</u>ent survival std.err lower 95% CI upper 95% CI
 102
         10
                 1
                       0.90 0.0949
                                         0.732
                                                     1.000
 105
                       0.80 0.1265
                                         0.587
                                                     1.000
          8
                 1
 144
                       0.70 0.1449
                                         0.467
                                                     1.000
 151
                 1
                       0.60 0.1549
                                         0.362
                                                     0.995
 192
          4
                       0.45
                            0.1743
                                         0.211
                                                     0.961
```

2020-04-09

K-M Plot via survminer

K-M Plot via survminer (code)

Testing the difference between curves

```
survdiff(S ~ treat, dat = brca)
Call:
```

```
survdiff(formula = S ~ treat, data = brca)
```

Chisq= 1.9 on 2 degrees of freedom, p=0.4

What do we conclude?

A Cox Model for Treatment

Fit Cox Model mod_T: Treatment alone

```
mod T <- coxph(S ~ treat, data = brca)
mod T
Call:
coxph(formula = S ~ treat, data = brca)
           coef exp(coef) se(coef) z p
treatS CT 0.8313 2.2963 0.6547 1.270 0.204
treatS IT 0.2481 1.2816 0.6740 0.368 0.713
Likelihood ratio test=1.75 on 2 df, p=0.4164
n= 31, number of events= 15
```

```
> summary(mod_T)
Call:
coxph(formula = S ~ treat, data = brca)
 n= 31, number of events= 15
        coef exp(coef) se(coef) z Pr(>|z|)
exp(coef) exp(-coef) lower .95 upper .95
treatS_CT 2.296 0.4355 0.6364 8.286
Concordance= 0.577 (se = 0.083)
Likelihood ratio test= 1.75 on 2 df, p=0.4
Wald test = 1.82 on 2 df, p=0.4
Score (logrank) test = 1.89 on 2 \frac{df}{df}, p=0.4
```

Interpreting the Summaries

```
tidy(mod_T, exponentiate = TRUE) %>%
    select(term, estimate, std.error, conf.low, conf.high) %>%
    kable(digits = 3)
```

term	estimate std.error		conf.low	conf.high	
treatS_CT	2.296	0.655	0.636	8.286	
$treatS_IT$	1.282	0.674	0.342	4.803	

- A subject treated with S_CT is estimated to have 2.296 times the hazard (95% CI: 0.636, 8.286) of a subject treated with S_Both (the baseline).
- A subject treated with S_IT is estimated to have 1.282 times the hazard (95% CI 0.342, 4.803) of a subject treated with S_Both.

ggforest(mod_T, data = brca)

Summarizing mod_T

All of this comes from glance(mod_T)

- n = 31 cases, with nevent = 15 events (so 16 censored)
- log rank test statistic = 1.752, p = 0.416
- Score test statistic = 1.895, p = 0.388
- Wald test statistic = 1.820, p = 0.403
 - Each tests H_0 : Treatment adds no value
- \bullet (Cox-Snell) R-Squared = 0.055, Maximum Pseudo R-Square = 0.944
 - Cox and Snell's pseudo- R^2 reflects the improvement of this model over the model with the intercept alone, with higher values indicating more substantial improvement over an intercept-only model.
 - Not really a percentage of anything: often the maximum value here is less than 1.

Summarizing mod_T

Again, all of this comes from glance(mod_T) - see next slide

- Concordance = 0.577 (standard error = 0.083)
 - Really only appropriate when we have at least one quantitative predictor in the Cox model
 - Assesses probability of agreement between survival time and the risk score generated by the predictors
 - 1 indicates perfect agreement, 0.5 indicates no better than chance
- log Likelihood = -43.886, AIC = 91.773, BIC = 93.189
 - Usual summaries, used to compare models, mostly

glance(mod_T) Fit Quality Summaries (edited)

31.000
15.000
1.752
0.416
1.895
0.388
1.820
0.403
0.055
0.944
0.577
0.083
-43.886
91.773
93.189

Checking the Proportional Hazards Assumption

- If the proportional hazards assumption is appropriate, we should see a slope of essentially zero in the residuals that are plotted against time on the next slide.
- If we see a slope that seriously different from zero, that will suggest a violation of the proportional hazards assumption.
- A hypothesis test is also performed, where a significant result also indicates a potential problem with the assumption.

If we did see a violation of assumptions, we could either add a non-linear predictor term or use a different kind of survival model.

Graphical PH Check ggcoxzph(cox.zph(mod_T)) Global Schoenfeld Test p: 0.4691

·

A Two-Predictor Cox Model (Age + Treatment)

Fit Cox Model mod_AT: Age + Treatment

```
mod_AT <- coxph(S ~ age + treat, data = brca)
mod_AT

Call:
coxph(formula = S ~ age + treat, data = brca)</pre>
```

```
coef exp(coef) se(coef) z p
age 0.07807 1.08119 0.03672 2.126 0.0335
treatS_CT 0.59960 1.82139 0.65741 0.912 0.3617
treatS_IT 0.28799 1.33375 0.68566 0.420 0.6745
```

Likelihood ratio test=6.99 on 3 df, p=0.07224 n= 31, number of events= 15

```
Call:
 coxph(formula = S \sim age + treat, data = brca)
  n= 31, number of events= 15
            coef exp(coef) se(coef) z Pr(>|z|)
 age 0.07807 1.08119 0.03672 2.126 0.0335 *
 treatS_CT 0.59960    1.82139    0.65741    0.912    0.3617
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         exp(coef) exp(-coef) lower .95 upper .95
 age 1.081 0.9249 1.0061 1.162
 treatS_CT 1.821 0.5490 0.5021 6.607
 treatS_IT 1.334 0.7498 0.3479 5.113
 Concordance= 0.701 (se = 0.065)
 Likelihood ratio test= 6.99 on 3 df, p=0.07
 Wald test = 5.85 on 3 df, p=0.1
 Score (logrank) test = 6.15 on 3 df, p=0.1
github.com/THOMASELOVE/2020-432
                        432 Class 21 Slides
                                              2020-04-09
                                                     27 / 53
```

> summary(mod_AT)

Interpreting the Coefficients of mod_AT

```
tidy(mod_AT, exponentiate = TRUE) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate std.error		conf.low	conf.high	
age	1.08	0.04	1.01	1.16	
$treatS_CT$	1.82	0.66	0.50	6.61	
$treatS_IT$	1.33	0.69	0.35	5.11	

• If Harry and Sally receive the same treat but Harry is one year older, the model estimates Harry will have 1.08 times the hazard of Sally (95% CI 1.01, 1.16).

Interpreting the Coefficients of mod_AT

```
tidy(mod_AT, exponentiate = TRUE) %>%
  select(term, estimate, std.error, conf.low, conf.high) %>%
  kable(digits = 2)
```

term	estimate std.error		conf.low	conf.high	
age	1.08	0.04	1.01	1.16	
treatS_CT	1.82	0.66	0.50	6.61	
$treatS_IT$	1.33	0.69	0.35	5.11	

- If Harry receives S_CT and Sally receives S_Both, and they are the same age, the model estimates Harry will have 1.82 times the hazard of Sally (95% CI 0.50, 6.61).
- If Cyrus receives S_IT and Sally receives S_Both, and they are the same age, the model estimates Cyrus will have 1.33 times the hazard of Sally (95% CI 0.33, 5.11).

ggforest(mod_AT, data = brca)

Comparing the Two Models

```
n = 31, nevent = 15 for each model.
```

model	p.value.log	concordance	r.squared	max_r2	AIC	BIC
mod_T	0.416	0.577	0.055	0.944	91.8	93.2
mod_AT	0.072	0.701	0.202	0.944	88.5	90.7

What do the glance results indicate?

Significance Test via Likelihood Ratio ANOVA

```
anova (mod AT, mod T)
Analysis of Deviance Table
Cox model: response is S
Model 1: ~ age + treat
Model 2: ~ treat
  loglik Chisq Df P(>|Chi|)
1 - 41.268
2 -43.886 5.237 1 0.02211 *
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Graphical PH Check ggcoxzph(cox.zph(mod_AT)) Global Schoenfeld Test p: 0.4817

Back to the Analytic Objectives

- Does immunotherapy added to surgery plus chemotherapy improve survival? (Comparing S_Both to S_CT)
- ② Does chemotherapy add efficacy to surgery plus immunotherapy? (S_Both vs. S_IT)
- 3 What is the effect of age on survival?

So ... what do you think?

Building a Cox Model with cph from the rms package

Using rms::cph to fit a fancier AxT

cph_AxT (and see next slide)

Cox Proportional Hazards Model

```
cph(formula = S ~ rcs(age, 4) + treat + age %ia% treat, data
x = TRUE, y = TRUE, surv = TRUE)
```

		Model Tests		Discrimination Indexes	
Obs	31	LR chi2	11.66	R2	0.332
Events	15	d.f.	7	Dxy	0.488
Center	14.2906	Pr(> chi2)	0.1123	g	1.980
		Score chi2	11.89	gr	7.245
		Pr(> chi2)	0.1042		

	Coef	S.E.	Wald Z	Pr(> Z)
age	0.3011	0.2330	1.29	0.1963
age'	-1.2521	0.7528	-1.66	0.0963
age''	2.7316	1.5490	1.76	0.0778

```
> cph_AxT
Cox Proportional Hazards Model
```

cph(formula =
$$S \sim rcs(age, 4) + treat + age %ia% treat, data = brca, x = TRUE, y = TRUE, surv = TRUE)$$

Coef S.E. Wald Z Pr(>|Z|)

		Model Tests		Discrimination	
				Indexes	
0bs	31	LR chi2	11.66	R2	0.332
Events	15	d.f.	7	Dxy	0.488
Center	14.2906	Pr(> chi2)	0.1123	g	1.980
		Score chi2	11.89	gr	7.245
		Pr(> chi2)	0.1042		

ag-	0.5011	0.2330		0.1303
age'	-1.2521	0.7528	-1.66	0.0963
age''	2.7316	1.5490	1.76	0.0778
treat=S_CT	-4.9327	6.6650	-0.74	0.4592
treat=S_IT	0.1210	4.8180	0.03	0.9800
age * treat=S_CT	0.1006	0.1157	0.87	0.3846
* ++ C TT	0.000	0.0025	0.01	0.0040

age

summary(cph AxT)

Effects Response : S

```
Factor
                Low High Diff. Effect S.E.
                49.5 61.5 12 0.48200 0.99998
age
Hazard Ratio 49.5 61.5 12
                               1.61930
                                          NΑ
treat - S_Both:S_CT 2.0 1.0 NA -0.49745 0.80805
Hazard Ratio 2.0 1.0 NA 0.60808 NA
treat - S_IT:S_CT 2.0 3.0 NA -0.40504 0.78888
Hazard Ratio 2.0 3.0 NA 0.66695
                                          NΑ
Lower 0.95 Upper 0.95
-1.47790 2.4419
0.22811 11.4950
-2.08120 1.0863
0.12478 2.9633
-1.95120 1.1411
0.14210 3.1303
```

plot(summary(cph_AxT))


```
set.seed(432)
validate(cph_AxT)
```

Warning in fitter(..., strata = strata, rownames = rownames, offset = offset, : Ran out of iterations and did not converge

Divergence or singularity in 1 samples

	ind	ex.orig	training	test	optimism	index.corrected
Dxy		0.4883	0.5965	0.3693	0.2273	0.2610
R2		0.3320	0.4741	0.2061	0.2680	0.0640
Slope		1.0000	1.0000	0.3819	0.6181	0.3819
D		0.1191	0.2078	0.0650	0.1428	-0.0237
U		-0.0223	-0.0226	1.0971	-1.1196	1.0973
Q		0.1414	0.2303	-1.0321	1.2624	-1.1210
g		1.9803	4.2315	1.2169	3.0145	-1.0342
	n					
Dxy	39					

ANOVA for cph_AxT model

> anova(cph_AxT)			
Wald Statistics	Response: S		
Factor	Chi-Squar	e d.f.	P
age (Factor+Higher Order Factors)	7.71	5	0.1727
All Interactions	0.96	2	0.6175
Nonlinear	3.73	2	0.1548
treat (Factor+Higher Order Factors)	2.58	4	0.6297
All Interactions	0.96	2	0.6175
age * treat (Factor+Higher Order Factor	s) 0.96	2	0.6175
TOTAL NONLINEAR + INTERACTION	3.74	4	0.4423
TOTAL	8.55	7	0.2868

survplot in rms (code)

For age comparison:

For treat comparison:

survplot in rms (Result)

survplot for treat in rms (Result)

Adjusted to: age=54

Plotting age effect implied by cph_AxT model

ggplot(Predict(cph_AxT, age))

Plotting treat effect implied by cph_AxT model

ggplot(Predict(cph_AxT, treat))

cph_AxT nomogram (code)

cph_AxT nomogram (Results)

Checking the Proportional Hazards Assumption

```
rcs(age, 4) 1.98 3 0.576
treat 4.38 2 0.112
age %ia% treat 5.73 2 0.057
GLOBAL 10.67 7 0.154
```

ggcoxzph(cox.zph(cph_AxT))

Global Schoenfeld Test p: 0.1537

Additional Diagnostic Plots for your Cox model?

- survminer has a function called ggcoxdiagnostics() which plots different types of residuals as a function of time, linear predictor or observation id.
- The type of residual can be "martingale", "deviance", "score", "schoenfeld", "dfbeta", "dfbetas", or "scaledsch".

What to do if the PH assumption is violated

- If the PH assumption fails on a categorical predictor, fit a Cox model stratified by that predictor (use strata(var) rather than var in the specification of the coxph model.)
- If the PH assumption is violated, this means the hazard isn't constant over time, so we could fit separate Cox models for a series of time intervals.
- Use an extension of the Cox model that permits covariates to vary over time.

Visit

https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf for details on building the relevant data sets and models, with examples.