AN EMBEDDED TEMPORAL EXPERT

FOR CONTROL OF A TANDEM ACCELERATOR

By

BRADFORD J. RODRIGUEZ, B.S., M.S.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

© Copyright by Bradford J. Rodriguez, June 1997

DOCTOR OF PHILOSOPHY (1997) (Electrical Engineering)

TITLE: An Embedded Temporal Expert for Control of a Tandem Accelerator.

AUTHOR: Bradford J. Rodriguez, B.S., M.S. (Bradley University)

SUPERVISOR: Dr. W. F. S. Poehlman, Department of Computer Science and Systems

NUMBER OF PAGES: x, 136

ABSTRACT

Many process control applications are best solved by heuristic, or rule-based, control.

Unfortunately, conventional expert systems are generally large and slow, centralized on workstation computers, and incapable of continuous operation. Furthermore, few expert systems are able to process time-varying data, or to reason about temporal relationships. Thus they are ill-suited to process-control, which is inherently a continuous and temporal problem, and which increasingly relies upon distributed networks of small embedded processors.

A new expert system has been developed to overcome these limitations. This system achieves extremely high inferencing performance on "low end" microcontrollers, and requires very little memory.

A new "cooperative/advisory" model of distributed problem solving allows networks of processors to cooperate on a problem, while remaining able to work independently on distinct subproblems.

Knowledge, in the form of facts or rules, may freely migrate around the network. The system incorporates a new algebra for time-valued data, and a formal temporal logic for reasoning about this data.

The capabilities of this system were demonstrated by automating, for the first time, the terminal charging subsystem of a model FN Tandem particle accelerator: a problem which is resistant to an analytic solution. Using the expert system, cooperating 68HC16 microprocessors have successfully operated the accelerator, performing as well as, or better than, an experienced human operator. During the course of these experiments, new techniques for technology insertion were devised, and a new local-area network for microcontrollers was invented.

ACKNOWLEDGMENTS

First and foremost, I thank my wife, Wendy, without whom this work would not have been possible. For encouraging me to enter the graduate program, for moral support through crisis after crisis, for paying the bills, for making it possible for me to devote my full attention to the project, for reviewing my manuscripts, for unflagging support and devotion throughout the whole program: "thanks" is too mild a word.

Second, I thank my supervisor, Dr. "Skip" Poehlman, who navigated me through the tortuous maze of a doctoral program, who facilitated my wishes and fought for my project, and whose patience, advice, and support sustained me through many a rough time.

I also thank my committee members, Dr. Dan McCrackin and Dr. Bill Garland, for their enlightened guidance, and for their frequent suggestions and helpful ideas, and particularly for telling me to "down tools" and start writing.

This work depended on much patient help and cooperation from the staff of the McMaster

Tandem Accelerator Laboratory. I am particularly grateful to Jim Stark, Gary Mulligan, and Winston

Williams, for countless days of their time and assistance.

Special thanks go to my two "unofficial" advisors, Dr. Nicholas Solntseff and Dr. Glen B. Haydon, who kept me "on track" and kept pushing me to finish the project!

Some of the hardware used in this project was funded by the Natural Science and Engineering Research Council of Canada.

Finally, I must express my gratitude to my close friend and fellow student, Robert Duffield. We started this journey together, and he has sustained me through some difficult times.

TABLE OF CONTENTS

ABSTI	RACT		iii
ACKNOWLEDGMENTS			iv
TABLE OF CONTENTS		v	
LIST OF FIGURES			ix
1.	INTRO	ODUCTION	
	1.1	Introduction	1
	1.2	High Performance Inferencing	2
	1.3	Distributed Inferencing	2
	1.4	Temporal Logic	3
	1.5	Control Requirements of the Tandem Accelerator	3
	1.6	Research Objectives	5
2.	LITER	RATURE REVIEW	
	2.1	Real-Time Expert Systems	7
	2.2	Expert Systems in Control	12
	2.3	Distributed Expert Systems	13
	2.4	Temporal Reasoning	17
	2.5	Accelerator Control Systems	18
3.	AN EMBEDDED TEMPORAL EXPERT SYSTEM		
	3.1	Objectives	23
	3.2	Efficient Inference Engines	24
	3.3	Backward Chaining	25
	3.4	Forward Chaining	20

	3.5	Time-Valued Data	31
	3.6	Temporal Logic	33
	3.7	Distributed Facts	34
	3.8	Distributed Rules	35
	3.9	Implementation	36
	3.10	Future Work	37
4.	CONTR	ROLLING THE FN ACCELERATOR	
	4.1	Description of the Problem	39
	4.2	Basic Operating Sequence	41
	4.3	The Terminal Charging Subsystem	41
	4.4	The Distributed Processor Hardware	42
	4.5	I/O Processing Software	45
	4.6	Operator Interface	46
	4.7	The Terminal Control Strategy	46
5.	EXPER	AT SYSTEM PERFORMANCE	
	5.1	The Benchmark Program	48
	5.2	Uniprocessor Performance	48
	5.3	Distributed Performance	51
	5.4	Comparison to Other Systems	54
	5.5	Observations	55
6.	ACCEI	LERATOR CONTROL PERFORMANCE	
	6.1	Performance Criteria	57
	6.2	Manual Operation	57
	6.3	Control Strategy #1	60
	6.4	Control Strategy #2	61

6.3	5 Control Strategy #3	64
6.0	6 Discussion of Results	65
6.	7 Observations	68
7. SU	UMMARY AND CONCLUSIONS	
7.	1 Summary	70
7.2	2 Conclusions	71
7.3	3 Future Work	72
BIBLIOGRAPHY		
APPENDIX	X A. INSTRUMENTING THE FN ACCELERATOR	
A.	Passive, Fail-Safe, Retrofit Interface Techniques	87
A.	2 Isolated Meter Repeater	87
A.	3 Solid State Variac	91
A.	.4 Repeating Picoammeter	95
A.	.5 Beam Profile Monitor Tap	98
A.	.6 Programmable Resistor	100
APPENDIX	X B. ASYNCHRONOUS TOKEN RING COMMUNICATIONS	
В.	Design Criteria for the Local Area Network	102
В.	2 Physical Topology	102
B.	The Token Ring Using Asynchronous Communications	104
В.	4 Error Handling and Ring Supervision	109
В.	5 Broadcast Protocols	111
В.	6 Message Interpretation	112
B.	7 Future Work	113
APPENDIX	X C. TOWARD A DISTRIBUTED, OBJECT-BASED FORTH	
C.	1 Objectives	115

C.2	Implementation	116
C.3	Syntax	117
C.4	Further Work	119
APPENDIX D.	THE INFERENCING TOKEN LANGUAGE	120
APPENDIX E.	ACCELERATOR CONTROL PROGRAM	122
APPENDIX F.	TOWERS OF HANOI BENCHMARK	
F.1	Towers of Hanoi in CLIPS	130
F.2	Towers of Hanoi in TEXMEX 3	131
APPENDIX G.	GLOSSARY OF ABBREVIATIONS	136

LIST OF ILLUSTRATIONS

Figure 1-1	Multiprocessor Topologies	2
Figure 1-2	The Model FN Tandem Accelerator	4
Figure 3-1	Flowchart of the Inference Engine	30
Figure 3-2	Truth Tables for Temporal Boolean Algebra	32
Figure 3-3	Definition of a Rule Object	36
Figure 4-1	Schematic of the FN Accelerator	40
Figure 4-2	Terminal Charging Mechanism	42
Figure 4-3	The Distributed Processor Hardware	43
Figure 4-4	Terminal Charging Model	45
Figure 4-5	Terminal Charging Heuristic	46
Figure 5-1	Towers of Hanoi Solution Times, one processor	49
Figure 5-2	Towers of Hanoi Solution Times, three processors	52
Figure 5-3	Comparison of Expert Systems	54
Figure 6-1	Manual Operation	58
Figure 6-2	Manual Operation, Enlarged	59
Figure 6-3	Control Strategy #1 Heuristic	60
Figure 6-4	Strategy #1 Oscillation	62
Figure 6-5	Strategy #1, Improved	63
Figure 6-6	Control Strategy #3 Heuristic	64
Figure 6-7	Strategy #3	66
Figure 6-8	Summary of Terminal Control Trials	67
Figure A-1	Isolated Meter Repeater	89

Figure A-2	Solid State Variac	92
Figure A-3	Generation of Triac Firing Signal	93
Figure A-4	Inline Picoammeter	96
Figure A-5	Beam Profile Monitor Tap	99
Figure A-6	Programmable Resistor Characteristic	100
Figure A-7	Programmable Resistor	101
Figure B-1	Token Ring Frame Formats	104
Figure B-2	Receive State Machine	106
Figure B-3	Transmit State Machine	107
Figure B-4	Verify State Machine	108
Figure C-1	Object Data Structures	116