Lecture 4. Learning Theory.

- · Bias / Variance trade-off:
 - (1) generalization error

model - apply to other data.

- (2) bias: failed to capture structure. (simple)

 Varience: don't reflect wider pattern (complex)
- · Preliminary:
 - (1) Questions:
 - O formalize bias-variance trade-off.
 - O relationship between training error & generalization.
 - O standard of learning alogrithm.
 - (2) Two useful lemmas:
 - O Union Dound. P(A,UA≥·· UAn) ≤P(A,)+P(Az)+·· P(An)
 - 2 Hoeffding inequality:

Z. Zz. Zm ~ i.i.d. Bernoulli ()
$\widehat{\Phi} = \frac{1}{m} \stackrel{\widetilde{\Sigma}}{\geq_1} Z; (mean)$
$P(\underline{\Phi} - \hat{\underline{\Phi}} > Y) \leq 2 e \chi P(-2 \gamma^2 m)$
\star : estimate of $\hat{\mathfrak{L}}$: $m \rightarrow arge $ converge exp.
X: another understanding: estimating biased coin.
(3) empirical error:
$\hat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1(h(x_i) \neq y_i)$
generalization error,
$\xi(h) = P(x,y) \sim D (h(X) \neq y)$
*: probability of misclassifying new data
(4) PAC assumption:
Otraining / testing on Same distribution
@ independently drawn from training example.
hypothesis class It.
x: probably approximately correct.
· The case of finite H:
C1) H= Sh1. h2 " h & y.
$\chi \rightarrow f D, 1 f$.
(2) Strategy:
ο ε(h) reliable for all h
Θŝ(h) upper bound.

(3)
$$Z_j = 1 \ln(x_j) + y_j$$

$$\widehat{z}(h_i) = \frac{1}{m} \sum_{j=1}^{m} Z_j$$
 $Z_j : drawn i.i.d.$

for a fixed index j :

$$P(1 \le (h_0) - \widehat{z}(h_0) | > \delta) \le 2 \exp(-2 \delta^2 m)$$

(4) for all $h \in H$:

$$A_i : | \underbrace{S(h_i) - \widehat{z}(h_i)}| > \delta$$

$$P(\exists h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\exists h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\exists h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| < \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S(h_0) - \widehat{z}(h_0)}| > \delta$$

$$P(\forall h \in H : | \underbrace{S$$

We can get the theorem: $\mathcal{E}(\hat{h}) \leq \mathcal{E}(h^*) + 2 \int_{2m}^{L} \log^{2k} \frac{1}{8}$ * bias - variance trade-off. larger hypothesis space: ε(h*) ↓ bias ↓ 2 Jam log 2k Variance · The case of infinite H: (n parameterized by real numbers (d) IEEE double-precision -> 64 bits. $K=2^{b4d} \Rightarrow O(\log k) = O(d) \Rightarrow linear$ (2) finite: relies on parameterization of H. (3) Definition: VC-dimension zero training error. H shatters S (realizing any label) VC(H): largest size of S. \mathbf{X}_2 \mathbf{X}_{2} \mathbf{X}_{2} \mathbf{X}_{2} \mathbf{X}_{2}

 \mathbf{X}_1

X: Prove VC (H) = d:
O∃lsol=d. H can shatter
@ VISI>d. H can't shatter.
(4) Theorem: d=VCCH) probability 1-8
$ \mathcal{E}(h) - \widehat{\mathcal{E}}(h) \leq O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$