Методы оптимизации. Отчет по лабораторной работе №2

Работа выполнена группой:

Дзюба Мария M3235 Карасева Екатерина M3235 Рындина Валерия M3235 Цель работы: Изучить и реализовать градиентные методы, провести анализ их работы и сравнение.

Задача 1.

а. Постановка задачи:

Реализовать алгоритмы:

- метод градиентного спуска;
- метод наискорейшего спуска;
- метод сопряженных градиентов.

Оцените, как меняется скорость сходимости, если для поиска величины шага использовать различные методы одномерного поиска.

- b. Решение задачи:
 - Вычислительная схема методов:
 - f(x) дифференцируема в E_n , $x^{k+1} = x^k + a_k p^k$, $k \in N$, где p^k определяется с учетом информации о частных производных, величина $a_k > 0$ такова, что: $f(x^{k+1}) < f(x^k)$.

Остановка итерационного процесса: $\|\nabla f(x^k)\| < \epsilon$

- Метод градиентного спуска:
 - і. Вычислительная схема данного метода: Предполагаем, что $p^k = -\nabla f(x^k)$, тогда если $\nabla f(x^k) \neq 0$, то $(\nabla f(x^k), p^k) < 0$, и, следовательно, p^k направление убывания f(x), таким образом, найдутся такие $a_k > 0$, что выполнится условие: $f(x^{k+1}) < f(x^k)$
 - ії. Задача минимизации: $f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 7^*x_1 + 3^*x_2 + 2$ a = 1.0 $\epsilon = 0.001$
 - ііі. Численный результат решения:минимум функции: -0,862481вектор минимума: [0,175976, -1,500425]
 - iv. Итерации поиска решения в виде таблицы приведены в **Приложении 1.**

- Метод наискорейшего спуска:
 - і. Вычислительная схема данного метода:

$$p^k = -\nabla f(x^k)$$
, a_k — находится из решения задачи одномерной минимизации:

$$\Phi_k(a) \rightarrow \min, \Phi_k(a) = f(x^k - a^*\nabla f(x^k)), a > 0$$

іі. Задача минимизации:

$$f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 - 7^*x_1 + 3^*x_2 + 2$$

 $\epsilon = 0.001$

ііі. Численный результат решения: минимум функции: -0,862500

вектор минимума: [0,174947, -1,499543]

- iv. Итерации поиска решения в виде таблицы приведены в **Приложении 2**
- v. Здесь нужно что-то исследовать про другие методы одномерного поиска
- Метод сопряженных градиентов.
 - і. Вычислительная схема данного метода:

$$p^0 = -\nabla f(x^0), x^0 \in E_n$$

для квадратичной функции:

$$\begin{aligned} \mathbf{Q}_{k} &= -\frac{(\nabla f(\mathbf{x}_{k}), \ \mathbf{p}_{k})}{(Ap_{k}, \ p_{k})};\\ \mathbf{p}^{k+1} &= -\nabla f(\mathbf{x}^{k+1}) + \mathbf{b}_{k}\mathbf{p}^{k};\\ \mathbf{b}_{k} &= -\frac{(A\nabla f(\mathbf{x}_{k+1}), \ \mathbf{p}_{k})}{(Ap_{k}, \ p_{k})} \end{aligned}$$

іі. Задача минимизации:

$$f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 - 7^*x_1 + 3^*x_2 + 2$$

 $\epsilon = 0.001$

ііі. Численный результат решения:

минимум функции: -0,862481

вектор минимума: [0,175976, -1,500425]

iv. Итерации поиска решения в виде таблицы приведены в **Приложении 3**

• Сравнение времени поиска минимума методом наискорейшего спуска в зависимости от используемого метода одномерной минимизации: $f(x_1, x_2) = 20^*(x_1)^2 + (x_2)^2 - 7^*x_1 + 3^*x_2 + 2$

Метод	Время (наносекунды)
Дихотомия	203.709498
Фибоначчи	199.781086
Золотое сечение	203.130228
Параболы	208.442307
Брент	205.629247

Вывод: Рассмотрев полученные данные, можно еще раз убедиться в правильности выводов первой лабораторной работы. Чем быстрее сходился метод одномерной оптимизации - тем быстрее сходится метод градиентного спуска, основанный на этой одномерной оптимизации

Задача 2.

а. Постановка задачи:

Проанализируйте траектории методов для нескольких квадратичных функций: придумайте две-три квадратичные двумерные функции, на которых работа каждого из методов будет отличаться. Нарисуйте графики с линиями уровня функций и траекториями методов.

b. Решение задачи:

$$f(x_1, x_2) = 2^*(x_1)^2 - 2^*x_1^*x_2 + (x_2)^2 + 3^*x_1 + 6^*x_2 + 1$$

даже на одной функции все методы работают по разному и имеют кардинально разные траектории.

$$f(x_1, x_2) = (x_1)^2 + 2 x_1 x_2 + 2 (x_2)^2 - x_1 - x_2 + 1$$

Стандартный градиентный спуск имеет зигзагообразный вид. Очень хорошо видно, что последовательность точек сходится к минимуму линейно.

По изображениям, видно, что наискорейший спуск выбирает почти оптимальный путь и, что находит минимум он намного быстрее, чем простой градиентный спуск. По изображениям видно, что метод накапливает информацию, делая не очень точные шаги, затем делает точный шаг и сбрасывает память, после чего все повторяется.

Задача 3.

а. Постановка задачи:

Исследуйте, как зависит число итераций, необходимое методам для сходимости, от следующих двух параметров:

- і. числа обусловленности $k \ge 1$ оптимизируемой функции;
- ii. размерности пространства n оптимизируемых переменных.

Для этого для заданных параметров n и k сгенерируйте случайным образом квадратичную задачу размера n с числом обусловленности k и запустите на ней методы с некоторой заданной точностью. Замерьте число итераций T(n,k), которое потребовалось сделать методу до сходимости.

b. Решение задачи

Задача 4.

Юаеьржвь

Nº	Вектор минимума	Значение	Nº	Вектор минимума	Значение
		минимума			минимума
0	[0,000000, 0,000000]	2,000000	39	[0,175964, -1,502835]	-0,862473
1	[0,229786, -0,098480]	1,161789	40	[0,174032, -1,502551]	-0,862475
2	[0,075807, -0,295432]	0,785270	41	[0,175968, -1,502296]	-0,862476
3	[0,289500, -0,425183]	0,554936	42	[0,174029, -1,502066]	-0,862477
4	[0,063188, -0,531403]	0,325720	43	[0,175971, -1,501860]	-0,862478
5	[0,292593, -0,630767]	0,169629	44	[0,174027, -1,501673]	-0,862478
6	[0,058097, -0,717435]	0,023236	45	[0,175973, -1,501506]	-0,862479
7	[0,295170, -0,796785]	-0,079173	46	[0,174025, -1,501355]	-0,862479
8	[0,055229, -0,866990]	-0,174898	47	[0,175974, -1,501220]	-0,862480
9	[0,296932, -0,930862]	-0,241231	48	[0,174025, -1,501098]	-0,862480
10	[0,053475, -0,987681]	-0,304661	49	[0,175975, -1,500988]	-0,862480
11	[0,298099, -1,039244]	-0,347135	50	[0,174024, -1,500889]	-0,862480

12	[0,052366, -1,085233]	-0,389685	51	[0,175975, -1,500800]	-0,862480
13	[0,298866, -1,126918]	-0,416455	52	[0,174024, -1,500720]	-0,862480
14	[0,051654, -1,164148]	-0,445416	53	[0,175975, -1,500648]	-0,862481
15	[0,299368, -1,197872]	-0,461869	54	[0,174023, -1,500583]	-0,862481
16	[0,051193, -1,228017]	-0,481959	55	[0,175976, -1,500525]	-0,862481
17	[0,299698, -1,255313]	-0,491637	56	[0,174023, -1,500473]	-0,862481
18	[0,050893, -1,279724]	-0,505925	57	[0,175976, -1,500425]	-0,862481
19	[0,299914, -1,301823]	-0,511156			
20	[0,050697, -1,321592]	-0,521645			
21	[0,300055, -1,339487]	-0,523958			
22	[0,050569, -1,355498]	-0,531956			
23	[0,300148, -1,369990]	-0,532355			
24	[0,050485, -1,382958]	-0,538721			
25	[0,175347, -1,388827]	-0,850138			
26	[0,167558, -1,513584]	-0,861208			
27	[0,175338, -1,512874]	-0,862332			
28	[0,173523, -1,509415]	-0,862368			
29	[0,175384, -1,508822]	-0,862419			
30	[0,174102, -1,507348]	-0,862430			
31	[0,175910, -1,506608]	-0,862440			
32	[0,174074, -1,505942]	-0,862448			
33	[0,175934, -1,505345]	-0,862454			
34	[0,174056, -1,504808]	-0,862459			
35	[0,175949, -1,504326]	-0,862463			
36	[0,174044, -1,503891]	-0,862467			
37	[0,175958, -1,503502]	-0,862469			
38	[0,174037, -1,503151]	-0,862472			

Nº	Вектор минимума	Значение	Nº	Вектор минимума	Значение
		минимума			минимума
0	[0,00000, 0,000000]	2,000000	39	[0,175038, -1,498240]	-0,862497
1	[0,205291, -0,087982]	1,149646	40	[0,174847, -1,498685]	-0,862498
2	[0,052069, -0,445102]	0,552552	41	[0,175027, -1,498762]	-0,862498
3	[0,196308, -0,506989]	0,132651	42	[0,174892, -1,499075]	-0,862499
4	[0,088561, -0,758055]	-0,162584	43	[0,175019, -1,499130]	-0,862499
5	[0,189983, -0,801582]	-0,370223	44	[0,174924, -1,499350]	-0,862499
6	[0,114196, -0,978222]	-0,516306	45	[0,175013, -1,499388]	-0,862500
7	[0,185539, -1,008833]	-0,619034	46	[0,174947, -1,499543]	-0,862500
8	[0,132243, -1,133022]	-0,691265			
9	[0,182411, -1,154551]	-0,742067			
10	[0,144926, -1,241914]	-0,777803			

11	[0,180213, -1,257055]	-0,802934	
12	[0,153851, -1,318487]	-0,820607	
13	[0,178666, -1,329136]	-0,833037	
14	[0,160125, -1,372344]	-0,841779	
15	[0,177578, -1,379834]	-0,847927	
16	[0,164539, -1,410219]	-0,852251	
17	[0,176813, -1,415486]	-0,855292	
18	[0,167643, -1,436859]	-0,857431	
19	[0,176275, -1,440563]	-0,858935	
20	[0,169826, -1,455592]	-0,859993	
21	[0,175897, -1,458198]	-0,860736	
22	[0,171361, -1,468769]	-0,861260	
23	[0,175631, -1,470601]	-0,861628	
24	[0,172441, -1,478035]	-0,861887	
25	[0,175444, -1,479323]	-0,862069	
26	[0,173200, -1,484553]	-0,862197	
27	[0,175312, -1,485459]	-0,862287	
28	[0,173734, -1,489135]	-0,862350	
29	[0,175219, -1,489773]	-0,862394	
30	[0,174110, -1,492359]	-0,862426	
31	[0,175154, -1,492808]	-0,862448	
32	[0,174374, -1,494626]	-0,862463	
33	[0,175109, -1,494941]	-0,862474	
34	[0,174560, -1,496221]	-0,862482	
35	[0,175076, -1,496443]	-0,862487	
36	[0,174690, -1,497342]	-0,862491	
37	[0,175054, -1,497498]	-0,862494	
38	[0,174782, -1,498131]	-0,862496	

N.L.	Dayman	2	NI-	D = 17 = 12	2
Nº	Вектор минимума	Значение	Nº	Вектор минимума	Значение
		минимума			минимума
0	[0,000000, 0,000000]	2,000000	43	[0,170345, -1,326559]	-0,831985
1	[0,205258, -0,087968]	1,149646	44	[0,159392, -1,332438]	-0,829551
2	[0,307887, -0,131951]	1,362235	45	[0,179212, -1,343077]	-0,837520
3	[0,141988, -0,217346]	0,804496	46	[0,189121, -1,348397]	-0,835528
4	[0,059039, -0,260044]	0,943930	47	[0,171189, -1,358022]	-0,842052
5	[0,206046, -0,338640]	0,505533	48	[0,162223, -1,362835]	-0,840421
6	[0,279549, -0,377938]	0,615133	49	[0,178448, -1,371544]	-0,845761
7	[0,146805, -0,449171]	0,257640	50	[0,186560, -1,375898]	-0,844426
8	[0,080433, -0,484788]	0,347013	51	[0,171881, -1,383778]	-0,848798
9	[0,200517, -0,549245]	0,054457	52	[0,164541, -1,387717]	-0,847705
10	[0,260559, -0,581474]	0,127596	53	[0,177822, -1,394847]	-0,851283
11	[0,151913, -0,639793]	-0,111883	54	[0,184463, -1,398411]	-0,850389

12	[0,097590, -0,668952]	-0,052013	55	[0,172447, -1,404861]	-0,853318
13	[0,195888, -0,721717]	-0,248049	56	[0,166438, -1,408086]	-0,852586
14	[0,245038, -0,748100]	-0,199040	57	[0,177310, -1,413922]	-0,854984
15	[0,156101, -0,795839]	-0,359514	58	[0,182746, -1,416840]	-0,854384
16	[0,111633, -0,819709]	-0,319396	59	[0,172910, -1,422120]	-0,856347
17	[0,192099, -0,862902]	-0,450759	60	[0,167992, -1,424760]	-0,855857
18	[0,232332, -0,884499]	-0,417918	61	[0,176891, -1,429537]	-0,857463
19	[0,159529, -0,923578]	-0,525451	62	[0,181341, -1,431926]	-0,857062
20	[0,123128, -0,943118]	-0,498568	63	[0,173289, -1,436248]	-0,858377
21	[0,188997, -0,978476]	-0,586594	64	[0,169263, -1,438409]	-0,858048
22	[0,221932, -0,996154]	-0,564587	65	[0,176548, -1,442319]	-0,859125
23	[0,162336, -1,028145]	-0,636645	66	[0,180191, -1,444275]	-0,858856
24	[0,132538, -1,044140]	-0,618630	67	[0,173599, -1,447813]	-0,859737
				•	
25	[0,186458, -1,073083]	-0,677616	68	[0,170304, -1,449582]	-0,859517
26	[0,213418, -1,087555]	-0,662870	69	[0,176267, -1,452783]	-0,860238
27	[0,164633, -1,113742]	-0,711155	70	[0,179249, -1,454384]	-0,860058
28	[0,140241, -1,126835]	-0,699084	71	[0,173853, -1,457280]	-0,860649
29	[0,184380, -1,150528]	-0,738610	72	[0,171156, -1,458728]	-0,860501
30	[0,206449, -1,162375]	-0,728729	73	[0,176037, -1,461348]	-0,860985
31	[0,166514, -1,183811]	-0,761084	74	[0,178478, -1,462659]	-0,860864
32	[0,146546, -1,194530]	-0,752995	75	[0,174061, -1,465030]	-0,861259
33	[0,182678, -1,213925]	-0,779482	76	[0,171853, -1,466215]	-0,861161
34	[0,200744, -1,223622]	-0,772860	77	[0,175849, -1,468360]	-0,861484
35	[0,168053, -1,241170]	-0,794542	78	[0,177847, -1,469433]	-0,861403
36	[0,151708, -1,249944]	-0,789121	79	[0,174232, -1,471373]	-0,861669
37	[0,181285, -1,265820]	-0,806870	80	[0,172424, -1,472344]	-0,861602
38	[0,196074, -1,273759]	-0,802433	81	[0,175695, -1,474100]	-0,861820
39	[0,169313, -1,288123]	-0,816961	82	[0,177331, -1,474978]	-0,861765
40	[0,155933, -1,295305]	-0,813329	83	[0,174371, -1,476566]	-0,861943
41	[0,180145, -1,308302]	-0,825222	84	[0,172891, -1,477361]	-0,861899
42	[0,192251, -1,314800]	-0,822249	85	[0,175569, -1,478798]	-0,862044
86	[0,176908, -1,479517]	-0,862008	133	[0,175052, -1,498080]	-0,862496
87	[0,174485, -1,480817]	-0,862127	134	[0,175173, -1,498146]	-0,862496
88	[0,173274, -1,481468]	-0,862097	135	[0,174953, -1,498263]	-0,862497
89	[0,175466, -1,482644]	-0,862194	136	[0,174844, -1,498322]	-0,862497
90	[0,176562, -1,483233]	-0,862170	137	[0,175042, -1,498429]	-0,862497
91	[0,174579, -1,484297]	-0,862250	138	[0,175141, -1,498482]	-0,862497
92	[0,173587, -1,484830]	-0,862230	139	[0,174962, -1,498578]	-0,862498
93	[0,175381, -1,485793]	-0,862295	140	[0,174872, -1,498627]	-0,862498
94	[0,176279, -1,486274]	-0,862279	141	[0,175035, -1,498714]	-0,862498
95	[0,174655, -1,487146]	-0,862332	142	[0,175116, -1,498757]	-0,862498
96	[0,173843, -1,487582]	-0,862319	143	[0,174969, -1,498836]	-0,862499
97	[0,175312, -1,488370]	-0,862363	144	[0,174895, -1,498876]	-0,862499
98	[0,176047, -1,488764]	-0,862352	145	[0,175028, -1,498947]	-0,862499
99	[0,174718, -1,489478]	-0,862388	146	[0,175095, -1,498983]	-0,862499
100	[0,174713,-1,489834]	-0,862379	147	[0,174974, -1,499047]	-0,862499
101	[0,175256, -1,490480]	-0,862408	148	[0,174914, -1,499080]	-0,862477
101	[0,170200, -1,470400]	0,002400	170	[[0,1/=/14,-1,4//000]	0,002477

		T			1
102	[0,175857, -1,490803]	-0,862401	149	[0,175023, -1,499138]	-0,862499
103	[0,174769, -1,491386]	-0,862425	150	[0,175078, -1,499167]	-0,862499
104	[0,174225, -1,491678]	-0,862419	151	[0,174979, -1,499220]	-0,862499
105	[0,175209, -1,492207]	-0,862438	152	[0,174930, -1,499247]	-0,862499
106	[0,175701, -1,492471]	-0,862433	153	[0,175019, -1,499294]	-0,862499
107	[0,174811, -1,492949]	-0,862450	154	[0,175063, -1,499318]	-0,862499
108	[0,174365, -1,493188]	-0,862446	155	[0,174983, -1,499362]	-0,862500
109	[0,175171, -1,493621]	-0,862459	156	[0,174943, -1,499383]	-0,862500
110	[0,175574, -1,493837]	-0,862455	157	[0,175016, -1,499422]	-0,862500
111	[0,174845, -1,494228]	-0,862466	158	[0,175052, -1,499442]	-0,862500
112	[0,174481, -1,494424]	-0,862464	159	[0,174986, -1,499477]	-0,862500
113	[0,175140, -1,494778]	-0,862472	160	[0,174953, -1,499495]	-0,862500
114	[0,175470, -1,494955]	-0,862470	161	[0,175013, -1,499527]	-0,862500
115	[0,174873, -1,495275]	-0,862477	162	[0,175043, -1,499543]	-0,862500
116	[0,174575, -1,495435]	-0,862476	163	[0,174989, -1,499572]	-0,862500
117	[0,175115, -1,495725]	-0,862481	164	[0,174962, -1,499587]	-0,862500
118	[0,175385, -1,495870]	-0,862480	165	[0,175010, -1,499613]	-0,862500
119	[0,174896, -1,496132]	-0,862485	166	[0,175035, -1,499626]	-0,862500
120	[0,174652, -1,496263]	-0,862484	167	[0,174991, -1,499650]	-0,862500
121	[0,175094, -1,496501]	-0,862488	168	[0,174968, -1,499662]	-0,862500
122	[0,175315, -1,496619]	-0,862487	169	[0,175009, -1,499683]	-0,862500
123	[0,174915, -1,496834]	-0,862490	170	[0,175029, -1,499694]	-0,862500
124	[0,174715, -1,496941]	-0,862489	171	[0,174992, -1,499713]	-0,862500
125	[0,175077, -1,497135]	-0,862492	172	[0,174974, -1,499723]	-0,862500
126	[0,175258, -1,497233]	-0,862491	173	[0,175007, -1,499741]	-0,862500
127	[0,174930, -1,497408]	-0,862493	174	[0,175023, -1,499749]	-0,862500
128	[0,174767, -1,497496]	-0,862493	175	[0,174994, -1,499765]	-0,862500
129	[0,175063, -1,497655]	-0,862494	176	[0,174979, -1,499773]	-0,862500
130	[0,175211, -1,497735]	-0,862494			
131	[0,174943, -1,497878]	-0,862495			
132	[0,174809, -1,497950]	-0,862495			
	П 4				