

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΣΚΗΣΕΙΣ

1) Να βρείτε το πεδίο ορισμού των συναρτήσεων:

$$f(x) = \frac{x-3}{x^2 - 6x + 9}$$
, $g(x) = \frac{x-2}{e^x - 1}$, $h(x) = \frac{2x-5}{x^2 + 1}$, $k(x) = \frac{e^x + 1}{\sqrt{x-2}}$

2) Να βρείτε το πεδίο ορισμού των συναρτήσεων:

$$f(x) = \sqrt{x^2 + 1} + \sqrt{x^2 - 1}$$
, $g(x) = \sqrt{e^x - 1}$, $h(x) = \frac{2x}{\sqrt{9 - x^2}}$, $k(x) = \frac{\sqrt{e^x - 1}}{\sqrt{2 - x}}$

3) Να βρείτε το πεδίο ορισμού των συναρτήσεων:

$$f(x) = \sqrt{x^2 + 1} + \ln(x - 2)$$
, $g(x) = \sqrt{\ln x - 1}$, $h(x) = \frac{\ln(e^x - 1)}{\sqrt{9 - x^2}}$, $k(x) = \frac{2x}{\ln^2 x - \ln x}$

- **4)** Δίνεται η συνάρτηση $f(x) = \frac{\sigma v x}{1 e^x}$.
 - i) Να βρεθεί το πεδίο ορισμού της συνάρτησης.
 - ii) Αποδείξτε ότι $f(x) + f(-x) = \sigma \upsilon v x$, για κάθε $x \in A_f$.
- **5)** Δίνεται η συνάρτηση $f(x) = \frac{x^2 1}{\ln x}$.
 - i) Να βρεθεί το πεδίο ορισμού της συνάρτησης.
 - ii) Αποδείξτε ότι η γραφική παράσταση της f βρίσκεται πάνω από τον άξονα x'x .

- 6) Δίνεται η συνάρτηση $f(x) = \ln x^2 1$.
 - i) Να βρεθεί το πεδίο ορισμού της f.
 - **ii)** Αποδείξτε ότι η γραφική παράσταση της f , διέρχεται από τα σημεία A(1,-1) και B(-1,-1) .
 - iii) Να βρεθούν τα σημεία τομής της γραφικής παράστασης της f με τον άξονα x'x .
 - iv) Για ποιες τιμές του x η γραφική παράσταση της f , βρίσκεται κάτω από τον άξονα των x ;

Όριο - Συνέχεια Συνάρτησης

7) Να αποδείξετε ότι:

i)
$$\lim_{x \to 1} (2e^x - 2\ln x) = 2e$$

ii)
$$\lim_{x\to 0} \frac{\ln(x+1)+2}{x+2}=1$$

iii)
$$\lim_{x\to 1} \frac{x^2-1}{x^2-x} = 2$$

iv)
$$\lim_{x \to -2} \frac{x^3 + 8}{3x^2 - 12} = -1$$

v)
$$\lim_{x \to -1} \frac{3x^2 + 5x + 2}{x^3 - x} = -\frac{1}{2}$$

vi)
$$\lim_{x \to 2} \frac{x^3 - 7x + 6}{x^2 - 5x + 6} = -5$$

vii)
$$\lim_{x\to 0} \frac{xe^x - e^x - x + 1}{e^x - 1} = -1$$

viii)
$$\lim_{x \to -1} \frac{3x^3 - 2x^2 - 7x - 2}{x^2 + x} = -6$$

8) Να αποδείξετε ότι:

i)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \frac{1}{2}$$

ii)
$$\lim_{x\to 2} \frac{x^2-2x}{2-\sqrt{3x}-2} = -\frac{8}{3}$$

iii)
$$\lim_{x \to -1} \frac{\sqrt{1 - 3x} + 2x}{x^2 - 1} = -\frac{5}{8}$$

iv)
$$\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2x}}{x^2 - x} = -\frac{\sqrt{2}}{4}$$

v)
$$\lim_{x \to -1} \frac{x+1}{\sqrt{x+1}} = 0$$

vi)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \frac{1}{2}$$

- 9) Δίνεται η συνάρτηση $f(x) = x^2 3x$. Να αποδείξετε ότι:
- i) $\lim_{x\to 3} \frac{f(x)}{x^2-9} = \frac{1}{2}$ ii) $\lim_{x\to 0} \frac{f(x)-f(0)}{2-\sqrt{x+4}} = 12$ iii) $\lim_{h\to 0} \frac{f(h+2)-f(2)}{h} = 1$
- **10)** Δίνεται η συνάρτηση $f(x) = \alpha x^3 + \beta x^2 + 1$, $\alpha, \beta \in R$. Θεωρούμε ότι η γραφική παράσταση της f τέμνει τον άξονα x'x στο $x_0 = \frac{1}{2}$ και διέργεται από το σημείο A(-1,-6).
 - i) Να υπολογίσετε τα $\alpha, \beta \in R$.
 - ii) Aν $\alpha = 2$ και $\beta = -5$, να αποδείξετε ότι $\lim_{x \to \frac{1}{2}} \frac{f(x)}{2x^2 + x 1} = -\frac{7}{6}$.
- 11) Δίνεται η συνάρτηση $f(x) = \begin{cases} \frac{5x^2 3x 2}{x 1} &, x \neq 1 \\ 7 &, x = 1 \end{cases}$. Να αποδείξετε ότι η συνάρτηση f είναι συνεχής στο $x_0 = 1$.
- **12)** Δίνεται η συνάρτηση $f(x) = \begin{cases} \frac{1 \sqrt{3}x 2}{x 1} &, x > 1 \\ \frac{2\alpha + 1}{x 1} &, x = 1 \end{cases}$. Να βρείτε τον πραγματικό αριθμό α , ώστε η συνάρτηση $\ f$ να είναι συνεχής στο $\ x_0=1$.
- 13) Δίνεται η συνάρτηση $f(x) = \begin{cases} \frac{x \ln x \ln x^2}{x^2 4}, & 0 < x \neq 2 \\ \frac{1}{4}, & x = 2 \end{cases}$
 - i) Na breite to $\lim_{x\to 2} f(x)$
 - ii) Να εξετάσετε αν η συνάρτηση f είναι συνεχής στο 2.

- **14)** Δίνεται η συνάρτηση $f(x) = \sqrt{1 \ln(x 1)}$.
 - i) Να βρείτε το πεδίο ορισμού της f.
 - ii) Να βρείτε την τιμή του πραγματικού αριθμού κ, ώστε το σημείο A(2,κ) να ανήκει στη γραφική παράσταση της συνάρτησης f.
 - iii) Να αποδείξετε ότι $\lim_{x\to 2} \frac{(x-2)f(x)}{x^2-4} = \frac{1}{4}$.
 - iv) Να αποδείξετε ότι $f(e^{2x-x^2}+1) = x-1$.
- **15)** Έστω συνάρτηση f συνεχής στο R, της οποίας η γραφική παράσταση διέρχεται από το σημείο A(1,2). Να αποδείξετε ότι:

i)
$$\lim_{x \to 1} \frac{f(x)(x-1)}{x^2 - 3x + 2} = -2$$

ii)
$$\lim_{x\to 1} \frac{f(x)(x^2-x)}{2-\sqrt{x+3}} = -8$$

i)
$$\lim_{x \to 1} \frac{f(x)(x-1)}{x^2 - 3x + 2} = -2$$
 ii) $\lim_{x \to 1} \frac{f(x)(x^2 - x)}{2 - \sqrt{x+3}} = -8$ iii) $\lim_{x \to 1} \frac{f^2(x) - 2f(x)}{f^2(x) - 3f(x) + 2} = 2$

Παράγωγος συνάρτησης

16) Στη πρώτη στήλη είναι ο τύπος της συνάρτησης f . Με την προϋπόθεση ότι ορίζεται να βρείτε τη παράγωγό της. (η απάντηση βρίσκεται στη δεύτερη στήλη).

Στήλη Α	Στήλη Β
1) $f(x) = x^3 - 2x + 4$	1) $f'(x) = 3x^2 - 2$
2) $f(x) = x^{-3} + x$	$2) f'(x) = -3x^{-4} + 1$
$3) f(x) = \sqrt{x} + \sqrt[3]{x}$	3) $f'(x) = \frac{1}{2\sqrt{x}} + \frac{1}{3\sqrt[3]{x^2}}$
4) $f(x) = x^{\frac{2}{3}} + \sqrt[5]{x}$	4) $f'(x) = \frac{2}{3\sqrt[3]{x}} + \frac{1}{5\sqrt[5]{x^4}}$
$5) f(x) = \eta \mu x - 2\sigma \upsilon v x$	5) $f'(x) = \sigma v x + 2\eta \mu x$

$$6) \quad f(x) = \sqrt{x - x^3} - \sigma v v x$$

$$7) \quad f(x) = xe^x + \ln x$$

8)
$$f(x) = x^2 \eta \mu x - 5$$

9)
$$f(x) = \frac{x^3}{x^2 + 1}$$

$$10) f(x) = \frac{e^x}{x+1}$$

$$11) f(x) = \frac{\ln x}{e^x + 1}$$

$$12) f(x) = \frac{\eta \mu x}{e^x}$$

$$13) \ f(x) = \frac{xe^x}{\ln x}$$

14)
$$f(x) = \frac{x - \ln x}{x + \ln x}$$

15)
$$f(x) = \frac{2\eta\mu x}{\eta\mu x + \sigma \upsilon v x}$$

16)
$$f(x) = 2^x x^3$$

17)
$$f(x) = 2^x + 3^x$$

18)
$$f(x) = \varepsilon \phi x - \sigma \phi x$$

19)
$$f(x) = (1 - e^x)(\ln x + 1)$$

20)
$$f(x) = xe^x \ln x$$

6)
$$f'(x) = \frac{1}{2\sqrt{x}} - 3x^2 + \eta \mu x$$

7)
$$f'(x) = e^x + xe^x + \frac{1}{x}$$

8)
$$f'(x) = 2x\eta\mu x + x^2\sigma\upsilon\nu x$$

9)
$$f'(x) = \frac{x^4 + 3x^2}{(x^2 + 1)^2}$$

10)
$$f'(x) = \frac{xe^x}{(x+1)^2}$$

11)
$$f'(x) = \frac{\frac{1}{x}(e^x + 1) - e^x \ln x}{(e^x + 1)^2}$$

12)
$$f'(x) = \frac{\sigma v x - \eta \mu x}{e^x}$$

13)
$$f'(x) = \frac{(e^x + xe^x)\ln x - e^x}{\ln^2 x}$$

14)
$$f'(x) = \frac{2 \ln x - 2}{(x + \ln x)^2}$$

15)
$$f'(x) = \frac{2}{(\eta \mu x + \sigma v v x)^2}$$

16)
$$f'(x) = 2^x x^2 (x \ln 2 + 3)$$

17)
$$f'(x) = 2^x \ln 2 + 3^x \ln 3$$

18)
$$f'(x) = \frac{1}{\sigma v v^2 x \, n u^2 x}$$

19)
$$f'(x) = -e^x(\ln x + 1) + \frac{1}{x}(1 - e^x)$$

20)
$$f'(x) = e^x(\ln x + 1 + x \ln x)$$

21)
$$f(x) = x^{-3} + e^{-x}$$

22)
$$f(x) = (x^3 + 1)^5$$

23)
$$f(x) = \sqrt{x^2 + 1}$$

24)
$$f(x) = \ln(x^4 + 1)$$

25)
$$f(x) = \eta \mu (x^3 + \frac{\pi}{6})$$

26)
$$f(x) = \eta \mu^5 x$$

27)
$$f(x) = \eta \mu x^5$$

28)
$$f(x) = e^{x^2+1}$$

29)
$$f(x) = \ln(\ln x)$$

30)
$$f(x) = \ln(\sigma \upsilon v x)$$

31)
$$f(x) = \eta \mu(\ln x)$$

$$32) \ f(x) = \sqrt{\ln x}$$

33)
$$f(x) = e^{\sqrt{x+1}}$$

34)
$$f(x) = e^{\sqrt{x^2+1}}$$

$$35) \ f(x) = \eta \mu^2 \sqrt{x}$$

21)
$$f'(x) = -3x^{-4} - e^{-x}$$

22)
$$f'(x) = 15x^2(x^3+1)^4$$

23)
$$f'(x) = \frac{x}{\sqrt{x^2 + 1}}$$

24)
$$f'(x) = \frac{4x^3}{x^4 + 1}$$

25)
$$f'(x) = 3x^2 \sigma v v(x^3 + \frac{\pi}{6})$$

26)
$$f'(x) = 5\eta \mu^4 x \sigma v x$$

$$27) \quad f'(x) = 5x^4 \sigma \upsilon v x^5$$

28)
$$f'(x) = 2xe^{x^2+1}$$

$$29) \quad f'(x) = \frac{1}{x \ln x}$$

30)
$$f'(x) = -\varepsilon \phi x$$

31)
$$f'(x) = \frac{\sigma \upsilon \nu (\ln x)}{x}$$

32)
$$f'(x) = \frac{1}{2x\sqrt{\ln x}}$$

33)
$$f'(x) = \frac{e^{\sqrt{x+1}}}{2\sqrt{x}}$$

34)
$$f'(x) = e^{\sqrt{x^2+1}} \frac{x}{\sqrt{x^2+1}}$$

$$35) \quad f'(x) = \frac{\eta \mu 2\sqrt{x}}{2\sqrt{x}}$$

17) Αν θεωρήσουμε ότι η συνάρτηση *f* είναι παραγωγίσιμη, να βρείτε την παράγωγο των συναρτήσεων:

i)
$$g(x) = f(\eta \mu x)$$
 ii)

ii)
$$h(x) = f(1+3^{\sqrt{x}})$$

i)
$$g(x) = f(\eta \mu x)$$
 ii) $h(x) = f(1+3^{\sqrt{x}})$ iii) $\phi(x) = e^{f(x)} + \eta \mu(f(x))$

- **18) i)** Δίνεται η συνάρτηση h(x) = f(g(x)), όπου f, g συναρτήσεις παραγωγίσιμες στο R. Αν είναι g(3) = 6, g'(3) = 4 και f'(6) = 8, να αποδείξετε ότι h'(3) = 32.
 - Δίνεται η συνάρτηση h(x) = f(g(x)), όπου f, g συναρτήσεις παραγωγίσιμες ii) στο R. Αν είναι g(2) = 3, g'(2) = 4 και f'(3) = 5, να αποδείξετε ότι h'(2) = 20.
 - iii) Έστω f μια παραγωγίσιμη συνάρτηση ορισμένη στο R, για την οποία ισχύει f'(2) = 5. Αν είναι $g(x) = f(x^3 + 3x + 2)$, να αποδείξετε ότι g'(0) = 15.
- **19) i)** Δίνεται η συνάρτηση $f(x) = xe^{-x}$, $x \in R$. Να αποδείξετε ότι: f(x) + 2f'(x) + f''(x) = 0, για κάθε $x \in R$.
 - ii) Δίνεται η συνάρτηση $f(x) = -x^2 + e^x$, $x \in R$. Να αποδείξετε ότι: $f''(x) - f(x) + 2 = x^2$ για κάθε $x \in R$.
 - iii) Δίνεται η συνάρτηση $f(x) = e^x \eta \mu x$, $x \in R$. Να αποδείξετε ότι: $(f''(x))^2 + (2f(x))^2 = 4e^{2x}$ για κάθε $x \in R$.
 - iv) Δίνεται η συνάρτηση $f(x) = \ln x$, $x \in (0, +\infty)$. Να αποδείξετε ότι: f(f'(x)) + f(x) = 0 για κάθε $x \in (0, +\infty)$
- **20)** Δίνεται η συνάρτηση $f(x) = 2x x^2$, $x \in R$. Να αποδείξετε ότι: (1-x)f''(x)+f'(x)=0 για κάθε $x \in R$.
- **21)** Δίνεται η συνάρτηση $f(x) = e^{-x} \eta \mu x$, $x \in R$. Να αποδείξετε ότι: f''(x) + 2f'(x) + 2f(x) = 0 για κάθε $x \in R$.
- **22)** Δίνεται η συνάρτηση $f(x) = x\eta\mu(\ln x)$, x > 0. Να αποδείξετε ότι: $x^2 f''(x) - x f'(x) + 2 f(x) = 0$ για κάθε x > 0.

- **23) i)** Δίνεται η συνάρτηση $f(x) = e^{-x} \eta \mu 2x$, $x \in R$. Να αποδείξετε ότι: f''(x) + 2f'(x) + 5f(x) = 0 για κάθε $x \in R$.
 - ii) Δίνεται η συνάρτηση $f(x) = \frac{\eta \mu x + \sigma \upsilon \nu x}{\eta \mu x \sigma \upsilon \nu x}$, $x \neq \kappa \pi + \frac{\pi}{4}$, $\kappa \in \mathbb{Z}$.

Να αποδείξετε ότι:

- α) $f'(x) + f^2(x) + 1 = 0$ β) Αν f''(x) = 0, τότε f(x) = 0.
- **24)** Δίνεται η συνάρτηση $f(x) = e^{\lambda x} + x$, $x \in R$. Να βρείτε τον πραγματικό αριθμό λ ώστε να ισχύει f''(x) - 2f'(x) + 2 = 0 για κάθε $x \in R$.
- **25)** Δίνεται η συνάρτηση $f(x) = (x+a)e^{x+\beta}$, $x \in R$ και α, β τυχαίοι πραγματικοί αριθμοί. Να αποδείξετε ότι οι αριθμοί $f(\kappa)$, $f'(\kappa)$, $f''(\kappa)$ είναι διαδοχικοί όροι αριθμητικής προόδου για οποιονδήποτε πραγματικό αριθμό κ.

Εξίσωση εφαπτομένης

- 26) Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης:
 - i) $f(x) = 2\sqrt{x}$ στο σημείο A(4, f(4)).
 - ii) $f(x) = x^3 + x^2 3x + 1$ στο σημείο A(2, f(2)).
 - iii) $f(x) = e^{-x}$ στο σημείο με τεταγμένη e.
 - iv) $f(x) = x(x^2 + 1)$ στο σημείο με τετμημένη 3.
- 27) Να βρείτε τη γωνία που σχηματίζει με τον άξονα χ'χ η εφαπτομένη της γραφικής παράστασης της συνάρτησης $f(x) = (x+2)(x^2+x)$ στο σημείο με τετμημένη -1.
- **28)** Δίνεται η συνάρτηση $f(x) = \frac{x^2}{2} x + 2$. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f, η οποία
 - i) έχει συντελεστή διεύθυνσης 2.
 - ii) σχηματίζει με τον άξονα x'x γωνία 45°.
 - iii) είναι παράλληλη στην ευθεία με εξίσωση 3x + y 1 = 0
 - iv) είναι παράλληλη στον άξονα x'x.

- **29) i)** Θεωρούμε τη συνάρτηση $f(x) = 2x^2 ax + \beta$, $a, \beta \in R$. Να υπολογίσετε τα $a, \beta \in \mathbb{R}$, ώστε η ευθεία με εξίσωση y = 3x - 1 να είναι εφαπτομένη της γραφικής παράστασης της f στο σημείο με τετμημένη ίση με 2.
 - ii) Θεωρούμε τη συνάρτηση $f(x) = -ax^2 + \beta x 1$, $a, \beta \in R$. Να υπολογίσετε τα $a, \beta \in R$, ώστε η ευθεία με εξίσωση y = -2x - 1 να είναι εφαπτομένη της γραφικής παράστασης της f στο σημείο της A(-1, 1).
- **30) i)** Δίνεται η συνάρτηση $f(x) = x \ln x$. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f, η οποία είναι παράλληλη στη διχοτόμο της γωνίας $x'\hat{O}y$.
 - ii) Δίνεται η συνάρτηση $f(x) = \frac{x^2}{x-1}$. Να αποδείξετε ότι δεν υπάρχει εφαπτομένη της γραφικής παράστασης της f, η οποία είναι παράλληλη στην ευθεία με εξίσωση v = 2x - 5
 - iii) Δίνεται η συνάρτηση $f(x) = e^{-2x}(x^2 + 5)$. Να αποδείξετε ότι δεν υπάργει εφαπτομένη της γραφικής παράστασης της f, η οποία είναι παράλληλη στον άξονα x'x.
- **31)** Δίνεται η συνάρτηση $f(x) = x^2$. Να βρείτε τις εξισώσεις των εφαπτομένων της γραφικής παράστασης της f, οι οποίες διέρχονται από το σημείο A(-1,-3).

Μονοτονία συνάρτησης

- 32) Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις συναρτήσεις:
- i) $f(x) = x^2 2x + 5$ ii) $f(x) = -x^3 + 3x 12$ iii) $f(x) = \frac{1}{5}x^5 \frac{4}{3}x^3 + 1$

- **iv)** $f(x) = x^3 e^{2x}$ **v)** $f(x) = \frac{\ln x}{x}$ **vi)** $f(x) = e^x (x-1)^2$ **vii)** $f(x) = e^{x^2 4x + 3}$

- 33) Να αποδείξετε ότι οι παρακάτω συναρτήσεις δεν έχουν ακρότατα.
- i) $f(x) = x^3 + 2x + 5$ ii) $f(x) = -x^3 3x 12$ iii) $f(x) = \frac{1}{5}x^5 + \frac{4}{3}x^3 + 1$

- **iv)** $f(x) = e^{x^3 + 4x + 3}$ **v)** $f(x) = \frac{1}{2}x^2 + \ln x$ **vi)** $f(x) = e^x + (x 1)^3$
- **vii)** $f(x) = \sqrt{x^5 + x}$, x > 0 **viii)** $f(x) = 2\eta \mu x x\sigma v x$, $x \in \left(0, \frac{\pi}{2}\right)$
- **34)** Δίνεται η συνάρτηση $f(x) = 2x^2 4 \ln x 2$, x > 0
 - i) Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα.
 - ii) Να αποδείξετε ότι $x^2 1 \ge 2 \ln x$ για κάθε $x \in (0, +\infty)$.
- **35)** Δίνεται η συνάρτηση $f(x) = (1-a)x^2 + a(1-x)^2$, $a \in R$
 - i) Να αποδείξετε ότι η f παρουσιάζει ελάχιστο για x = a.
 - ii) Να βρείτε την τιμή του $a \in R$, για την οποία η ελάχιστη τιμή της συνάρτησης γίνεται μέγιστη.
- **36)** Δίνεται η συνάρτηση $f(x) = 3x^5 + x^3 + 2$. Να βρείτε το σημείο της γραφικής παράστασης της f στο οποίο η εφαπτομένη έχει την ελάχιστη κλίση.

Ρυθμός Μεταβολής

- **37)** Από όλα τα ορθογώνια παραλληλόγραμμα με εμβαδόν 100 m², να βρείτε εκείνο που έχει τη μικρότερη περίμετρο.
- **38)** Δίνεται η συνάρτηση $f(x) = x^3 + 3x^2 2x 1$. Να βρείτε πότε ο ρυθμός μεταβολής της συνάρτησης f γίνεται ελάχιστος και ποιά είναι η ελάχιστη τιμή του.
- **39)** Δίνονται τα σημεία $A(0\;,\;x+1)\;$ και $B(\sqrt{x}\;,0)$. Να βρείτε το ρυθμό μεταβολής
 - i) της απόστασης των σημείων A και B ως προς x, όταν είναι x=1.
 - ii) του εμβαδού του τριγώνου OAB, όπου O η αρχή των αξόνων, ως προς x, όταν είναι x = 1.

- **40)** Δίνεται η συνάρτηση $f(x) = x \ln x$ και το σημείο της γραφικής της παράστασης M(a, f(a)). Να βρείτε:
 - i) Την εξίσωση (ως συνάρτηση του α) της εφαπτομένης της C_f στο M.
 - ii) Τα σημεία τομής A, B της εφαπτομένης με τους άξονες x'x και y'y.
 - **iii)** Το ρυθμό μεταβολής του εμβαδού του τριγώνου OAB , όπου O η αρχή των αξόνων, ως προς a , όταν $\mathit{a} = \mathit{e}$

Θέματα σε όλο το κεφάλαιο

- **41)** Δίνεται η συνάρτηση $f(x) = \eta \mu x + \sigma \nu v x$
 - i) Να αποδείξετε ότι f(x) + f''(x) = 0
 - ii) Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο A(0,1).
 - iii) Να βρείτε την τιμή του πραγματικού αριθμού λ , για την οποία ισχύει $\lambda f^{'}\!\!\left(\frac{\pi}{2}\right)\!\!-\!2f\!\!\left(\frac{\pi}{2}\right)\!\!=\!2\,.$ (Θέμα 2001)
- **42)** Δίνεται η συνάρτηση $f(x) = \frac{\eta \mu x}{1 + \sigma \nu y x}$.
 - i) Να βρείτε το πεδίο ορισμού της f .
 - ii) Να αποδείξετε ότι $f'(x) = \frac{1}{1 + \sigma v x}$
 - iii) Να αποδείξετε $f'(\frac{\pi}{2}) + f''(0) = 1$
 - iv) Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο $A\left(\frac{\pi}{2},1\right)$.
 - ν) Να βρείτε το εμβαδόν του τριγώνου που σχηματίζει η προηγούμενη εφαπτομένη με τους άξονες x'x και y'y.

- **43**) Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 1}$.
 - i) Να βρείτε το πεδίο ορισμού της f.
 - ii) Να εξετάσετε αν υπάρχει σημείο της γραφικής παράστασης της f, ώστε η εφαπτομένη σε αυτό να είναι παράλληλη στον άξονα x'x.
 - **iii)** Να αποδείξετε ότι ο ρυθμός μεταβολής της f για x = 2 είναι $\frac{2\sqrt{3}}{3}$.
 - iv) Θεωρούμε τη συνάρτηση $h(x) = \frac{f(x) \sqrt{3}}{x 2}$. Να αποδείξετε ότι $\lim_{x \to 2} h(x) = \frac{2\sqrt{3}}{3}$.
- **44)** Δίνεται η συνάρτηση f, η οποία είναι δυο φορές παραγωγίσιμη και η γραφική της παράσταση διέρχεται από το σημείο A(1,2). Θεωρούμε επίσης τη συνάρτηση $g(x) = f(x^2 + 1)$, $x \in R$.
 - i) Να αποδείξετε ότι η γραφική παράσταση της g διέρχεται από το σημείο B(0,2).
 - ii) Να βρείτε την g'(x).
 - iii) Να αποδείξετε ότι $g''(x) = 4x^2 f''(x^2 + 1) + \frac{g'(x)}{x}$, $x \neq 0$.
 - iv) Αν η γραφική παράσταση της f, έχει στο σημείο A εφαπτομένη παράλληλη προς την ευθεία 2y = x + 5, να βρεθεί το $g^{\prime\prime}(0)$.
- **45)** Δίνεται η συνάρτηση $f(x) = \alpha e^x \beta x + 5$, $x \in R$, $\alpha, \beta \in R$, της οποίας η γραφική παράσταση διέρχεται από το σημείο A(0,7).
 - **A)** Αν η εφαπτομένη της C_f στο A είναι κάθετη στην ευθεία με εξίσωση y=1-x, να βρείτε τους πραγματικούς αριθμούς α, β .
 - **B)** Av $\alpha = 2$ $\kappa \alpha \iota \beta = 1$
 - i) Να αποδείξετε ότι $f''(x) f'(x) = 1, x \in R$.
 - ii) Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα.
 - iii) Να αποδείξετε ότι υπάρχει ένα σημείο της γραφικής παράστασης της f, στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα x'x.
 - iv) Να αποδείξετε ότι $\lim_{x\to 5} \frac{f(x)-2e^x}{x^2-25} = -\frac{1}{10}$.

- **46)** Δίνεται η συνάρτηση $f(x) = \ln(1 e^x)$
 - i) Να βρείτε το πεδίο ορισμού της f
 - ii) Να αποδείξετε ότι η f δεν έχει ακρότατα.
 - iii) Να αποδείξετε ότι $(f'(x))^2 + e^x f''(x) = 0$.
- 47) Ένα κατάστημα ανοίγει στις 8 π.μ. και παραμένει ανοικτό συνεχώς μέχρι τις 6 μ.μ. Οι εισπράξεις του καταστήματος σε εκατοντάδες \in δίνονται από τις τιμές της συνάρτησης $f(t) = \frac{20t}{t^2 + 36}$, όπου ο χρόνος t μετριέται σε ώρες και η μέτρηση αρχίζει αμέσως με το άνοιγμα του καταστήματος.
 - i) Να βρείτε το πεδίο ορισμού της f .
 - ii) Να αποδείξετε ότι οι εισπράξεις του καταστήματος στις 10 π.μ. είναι 100 €.
 - iii) Να βρείτε ποια ώρα το κατάστημα πραγματοποιεί τις περισσότερες εισπράξεις και πόσες είναι αυτές.
 - iv) Να βρείτε το ρυθμό μεταβολής των εισπράξεων του καταστήματος στις 4 μ.μ.
- **48)** Η τιμή ενός προϊόντος είναι $\left(1000 \frac{x}{4}\right)$ € ανά τόνο. Το κόστος παραγωγής είναι 500 € ανά τόνο και τα έξοδα ασφάλισης του προϊόντος είναι συνολικά 12000 € για όλη τη παραγωγή.
 - i) Να αποδείξετε ότι η συνάρτηση που δίνει το κέρδος από την πώληση x τόνων του προϊόντος έχει τύπο $P(x) = -\frac{x^2}{4} + 500x 12000$.
 - ii) Να βρείτε την παραγωγή που πρέπει να έχουμε, ώστε ο ρυθμός μεταβολής του κέρδους να είναι 200 ευρώ.
 - iii) Να βρείτε την ποσότητα που πρέπει να παράγουμε, ώστε να επιτύχουμε το μέγιστο κέρδος.
 - iv) Να βρείτε το μέγιστο κέρδος.

- **49)** Δίνεται η συνάρτηση $f(x) = x^2 \ln \frac{1}{x}$.
 - i) Να βρείτε το πεδίο ορισμού της f.
 - ii) Να αποδείξετε ότι η γραφική παράσταση της f διέρχεται από το σημείο A(1,0).
 - iii) Να αποδείξετε ότι η εφαπτομένη της C_f στο σημείο Α σχηματίζει με τον άξονα x'x γωνία 135°.
 - iv) Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα.
 - ν) Να αποδείξετε ότι:

a)
$$\lim_{x \to 1} \frac{f(x) + \ln x}{x - 1} = 0$$

a)
$$\lim_{x \to 1} \frac{f(x) + \ln x}{x - 1} = 0$$

 b) $\lim_{x \to 3} \frac{f''(x) + 2\ln x + x}{x^2 - 9} = \frac{1}{6}$.

- vi) Να βρείτε την εξίσωση της εφαπτομένης της C_f στο σημείο M(e,f(e)) .
- **50)** Δίνεται η συνάρτηση f ορισμένη και δυο φορές παραγωγίσιμη στο R, για την οποία ισχύει $2f(x) - f(2-x) = x^3 - 1$ για κάθε $x \in R$.
 - i) Να αποδείξετε ότι f'(1) = 1.
 - ii) Να βρείτε την εξίσωση της εφαπτομένης της C_f στο σημείο A(1,f(1)).
 - **iii)** Να υπολογίσετε τα όρια:

$$\mathbf{a)} \lim_{h \to 0} \frac{f(1+h)}{h}$$

$$β$$
) $\lim_{h\to 0} \frac{f'(1+h)-1}{h}$

- **51)** Δίνεται η συνάρτηση $f(x) = \sqrt{x-2} + 3$.
 - i) Να βρείτε το πεδίο ορισμού της f.
 - ii) Να αποδείξετε ότι $\lim_{x\to 6} \frac{f(x)-5}{x^2-36} = \frac{1}{48}$.
 - iii) Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία.
 - iv) Να βρείτε την εξίσωση της εφαπτομένης της C_f στο A(6,f(6)).
 - ν) Να βρείτε το εμβαδόν του τριγώνου που σχηματίζει η εφαπτομένη με τους άξονες χ'χ και y'y.

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ

$$A_f = R - \{3\}$$

$$A_f = (-\infty, -1] \cup [1, +\infty)$$

$$A_f = (2, +\infty)$$

1)
$$A_g = I$$

$$A_h = R$$

$$A_{i} = (0.3)$$

$$A_h = (0,3)$$

$$A_k = (0,1) \cup (1,e) \cup (e,+\infty)$$

4)
$$A_f = R^*$$

- **5) i)** $A_f = (0,1) \cup (1,+\infty)$ **ii)** Να αποδείξετε ότι f(x) > 0, για κάθε $x \in A_f$.

6) i)
$$D_f = R^*$$

6) i)
$$D_f = R^*$$
 , **iii)** $M(\sqrt{e}, 0)$, $N(-\sqrt{e}, 0)$, **iv)** $x \in (-\sqrt{e}, 0) \cup (0, \sqrt{e})$

iv)
$$x \in (-\sqrt{e}, 0) \cup (0, \sqrt{e})$$

12)
$$\alpha = -5/4$$

13) i)
$$\frac{\ln 2}{4}$$
 , ii) oxt

14) i)
$$D_f = (1, e+1]$$
 , **ii)** $\kappa = 1$.

17) i)
$$g'(x) = f'(\eta \mu x) \sigma \nu v x$$

ii)
$$h'(x) = f'(1+3^{\sqrt{x}}) \frac{3^{\sqrt{x}} \ln 3}{2\sqrt{x}}$$

17) i)
$$g'(x) = f'(\eta \mu x) \sigma \upsilon v x$$
 ii) $h'(x) = f'(1+3^{\sqrt{x}}) \frac{3^{\sqrt{x}} \ln 3}{2\sqrt{x}}$ iii) $\phi'(x) = f'(x)e^{f(x)} + \sigma \upsilon v(f(x))f'(x)$

24)
$$\lambda = 0$$
 $\dot{\eta}$ $\lambda = 2$.

26) i)
$$y = \frac{1}{2}x + 2$$
 ii) $y = 13x - 19$ iii) $y = -ex$ iv) $y = 28x - 54$

ii)
$$y = 13x - 19$$

iii)
$$y = -ex$$

iv)
$$y = 28x - 54$$

27)
$$\frac{3\pi}{4}$$

28) i)
$$y = 2x - \frac{5}{2}$$
 ii) $y = x$ iii) $y = -3x$ iv) $y = \frac{3}{2}$

ii)
$$y = x$$

iii)
$$y = -3x$$

iv)
$$y = \frac{3}{2}$$

29) i)
$$\alpha = 5$$
, $\beta = 7$. ii) $\alpha = 0$, $\beta = -2$.

ii)
$$\alpha = 0$$
 $\beta = -2$

30) i)
$$y = -x + \frac{3}{e^2}$$

31)
$$\varepsilon_1 : y = 2x - 1$$
 , $\varepsilon_2 : y = -6x - 9$

- 32) i) γνησίως φθίνουσα στο διάστημα $(-\infty,1]$ και γνησίως αύξουσα στο διάστημα $[1,+\infty)$, έχει ελάχιστο το f(1) = 4.
 - **ii)** γνησίως φθίνουσα σε καθένα από τα διαστήματα $(-\infty, -1]$ και $[1, +\infty)$, γνησίως αύξουσα στο διάστημα [-1,1], έχει ελάχιστο το f(-1) = -14 και μέγιστο το f(1) = -10.
 - iii) γνησίως φθίνουσα στο διάστημα [-2,2], γνησίως αύξουσα σε καθένα από τα διαστήματα $(-\infty, -2]$ και $[2, +\infty)$, έχει ελάχιστο το f(2) και μέγιστο το f(-2).
 - \mathbf{vi}) γνησίως φθίνουσα στο διάστημα $(-\infty, -\frac{3}{2}]$ και γνησίως αύξουσα στο διάστημα $[-\frac{3}{2}, +\infty)$, έχει μέγιστο το $f(-\frac{3}{2}) = -\frac{27}{8a^3}$.

- ν) γνησίως φθίνουσα στο διάστημα $[e,+\infty)$ και γνησίως αύξουσα στο διάστημα (0,e], έχει μέγιστο το $f(e)=\frac{1}{e}$.
- **vi)** γνησίως φθίνουσα στο διάστημα [-1,1] και γνησίως αύξουσα σε καθένα από τα διαστήματα $(-\infty,-1]$ και $[1,+\infty)$, έχει μέγιστο το $f(-1)=\frac{4}{\rho}$ και ελάχιστο το f(1)=0.
- vii) γνησίως φθίνουσα στο διάστημα $(-\infty,2]$ και γνησίως αύξουσα στο διάστημα $[2,+\infty)$, έχει ελάχιστο το $f(2)=e^{-1}$
- 33) Η συνάρτηση (ii) είναι γνησίως φθίνουσα, οι άλλες είναι γνησίως αύξουσες
- 34) ελάγιστο στο 1.
- **35)** ii) $\alpha = 1/2$
- **36)** στο (0,2)
- 37) Το τετράγωνο
- **38)** A (-1.3)

39) i)
$$d'(1) = \frac{\sqrt{5}}{2}$$
 ii) $E'(1) = 1$

40) i)
$$y = (\ln a + 1)x - a$$
 ii) $A(\frac{a}{\ln a + 1}, 0)$, $B(0, -a)$ iii) $\frac{3e}{8}$

41) ii)
$$y = x + 1$$
, iii) $\lambda = -4$

42) i)
$$x \neq 2\kappa\pi \pm \pi$$
, $\kappa \in \mathbb{Z}$. iv) $y = x + 1 - \frac{\pi}{2}$, v) $E = \frac{1}{2} \left(\frac{\pi}{2} - 1\right)^2$

- 43) i) $(-\infty, -1] \cup [1, +\infty)$, ii) όχι
- 44) iv) g''(0) = 1.
- **45)** ελάχιστο στο $x_0 = -\ln 2$
- **46)** i) $(-\infty, 0)$
- **47)** i) $t \in (0,10)$, ii) f(2) = 1, iii) t = 6 ápa stic $2 \mu.\mu.$, iv) f'(8)
- **48)** ii) x = 600 tóvot, iii) x = 1000 tóvot, iv) P(1000)
- **49) i)** $(0,+\infty)$, **iii)** f'(1) = -1 , **iv)** μέγιστο στο $x_0 = \frac{1}{\sqrt{e}}$, **vi)** $y = -3ex + 2e^2$
- **50)** ii) y = x 1, iii) ...= f'(1) = 1, ...= f''(1) = 6
- **51)** iii) γνησίως αύξουσα στο $[2, +\infty)$, iv) $y = \frac{1}{4}x + \frac{7}{2}$, v) $E = \frac{49}{2}$ τ. μ.