Logical Agents: Knowledge Representation

CS3243: Introduction to Artificial Intelligence – Lecture 8

13 March 2023

Contents

- 1. Administrative Matters
- 2. Knowledge-Based Agents
- 3. Wumpus World & Entailment
- 4. Inference Algorithms: Soundness & Completeness
- 5. Inference via Truth Table Enumeration

Administrative Matters

Upcoming...

- Deadlines
 - TA6 (released last week)
 - Due in your Week 9 tutorial session
 - Submit the a physical copy (more instructions on the Tutorial Worksheet)
 - Prepare for the tutorial!
 - Participation marks = 5%
 - Project 2 (released Week 6)
 - Due this Sunday (19 March), 2359 hrs
 - Project 3 (released this week)
 - Due Week 12 Sunday (9 April), 2359 hrs

Midterm Appeals

- Appeals → to your tutor
- Deadline = Day of your Week 9 Tutorial

A Problem with Problem-Solving Agents

Problem-Solving Agents

- Problem-solving agents try to find a solution via Search
- No real model of what the agent knows
 - Each state contains knowledge on state of entire environment
 - Knows actions and transition model
 - Implicit general facts about the environment
 - Route Finding Agent implicit knowledge that road lengths cannot be negative
 - 8-puzzle implicit knowledge that two number-tiles cannot occupy the same grid
 - Atomic representations limiting
 - Imagine a game of minesweeper where the environment is only partially observable;
 the agent would not know where all the mines actually were
 - A problem-solving agent would typically use a representation that includes all
 possible mine positions (with accompanying adjacent mine numbers) in an attempt
 to search for a viable solution from the current board

On to agents with generalised knowledge representations: Knowledge-Based Agents

Knowledge-Based Agents: Logical Agents

Knowledge-Based Agents

- Represent agent domain knowledge using logical formulas
- General idea
 - Make inferences on existing information
 - Use existing knowledge to infer new information
 - States similar to CSPs
 - Represented as assignments of values to variables
- Agent structure

Knowledge Base (KB)

- What is a knowledge base (KB)?
 - Set of sentences in a formal language
 - Sentences are expressive and parsable
 - Pre-populate with domain knowledge
 - Example: game rules, general rules/knowledge
- Declarative approach to problem-solving
 - TELL it what it needs to know
 - Update with percept/state/action information
 - ASK itself what to do
 - Make inferences that help determine what actions to take
 - Answers should follow from the KB

KB Agent Function

What happened?

function KB-AGENT(percept) **returns** an action **persistent**: KB, a knowledge base t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))

 $action \leftarrow Ask(KB, Make-Action-Query(t))$

What did I perceive at time *t*?

What did I do?

Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t + 1$ return action

What is the best action at time *t*?

- Agent must be able to
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representation of environment
 - Deduce hidden environment properties, and deduce actions

An Example: The Wumpus Dungeon

About Wumpus World

Performance Measure

- Optimise score
 - Obtain Gold: +1000Death: -1000
 - Each Action: -1
 - Fire Arrow: -10

Environment

- 4×4 grid of rooms
 - Agent
 - Wump
 - Gold

Actuators

- Turn left/right
- Move forward
- Fire arrow (kills Wumpus if facing it; uses up arrow)
- Grab gold
- Exit Wumpus dungeon (by climbing out at (1,1))

Sensors

- Rooms adjacent to Wumpus are SMELLY
- Rooms adjacent to Pit are BREEZY
- Gold glitters (can detect it if in same room)
- Bump into walls
- Hear scream if Wumpus killed

Properties of Wumpus World

- Not fully observable
 - Only local perception
 - Don't know what is in unexplored rooms
- Deterministic
- Sequential
- Static
- Discrete
- Single Agent

1,4		2,4	3,4	4,4
1,3		2,3	3,3	4,3
1,2 OK		2,2 P ?	3,2	4,2
1,1 OK	A V	2,1 A B OK	3,1 P ?	4,1

A = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

S = Stench

V = Visited

W = Wumpus

Start at (1,1); Infer that (1,2) and (2,1) are OK (i.e., safe)

Iteration 1: Move to (2,1)

Iteration 2: Move back to (1,1)

1		T	T
1,4	2,4	3,4	4,4
,	'	'	,
1.0		0.0	4.0
1,3	2,3	3,3	4,3
1,2 A	2.2	3,2	4,2
$\int_{0}^{\infty} S^{1}$		-,_	-,_
3	P ?		
OK			
1		0.4	1 1
	2,1	3,1	4,1
	2,1 R		4,
	В	P?	4,1
	 	0.4	1 1

A = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

s = Stench

V = Visited

W = Wumpus

Start at (1,1); Infer that (1,2) and (2,1) are OK (i.e., safe)

Iteration 1: Move to (2,1)

Iteration 2: Move back to (1,1)

Iteration 3: Move to (1,2)

	1,4	2,4	3,4	4,4
7.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1				
	1,3	2,3	3,3	4,3
No Breeze at (1,2)	W !			
	1,2 A	2,2	3,2	4,2
7 2.70 24 43.70 00 0	S	P ?		
	OK	OK		
No Stench	1,1	2,1	3,1	4,1
at (2,1)		B	P ?	
	OK V	OK V		

A = Agent
B = Breeze
G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

s = Stench

V = Visited

W = Wumpus

Start at (1,1); Infer that (1,2) and (2,1) are OK (i.e., safe)

Iteration 1: Move to (2,1)

Iteration 2: Move back to (1,1)

Iteration 3: Move to (1,2)

Iteration 4: Move to (2,2)

1,4	2,4	3,4	4,4
1,3 W !	2,3 OK	3,3	4,3
1,2 S OK V	2,2 A OK	3,2 OK	4,2
1,1 OK V	2,1 B OK V	3,1 P !	4,1

A = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

s = Stench

V = Visited

W = Wumpus

Start at (1,1); Infer that (1,2) and (2,1) are OK (i.e., safe)

Iteration 1: Move to (2,1)

Iteration 2: Move back to (1,1)

Iteration 3: Move to (1,2)

Iteration 4: Move to (2,2)

1,4	2,4	3,4	4,4
1,3 W !	2,3 A SBG OK	3,3	4,3
1,2 S		3,2	4,2
OK V	OK V	OK	
1,1	2,1	3,1	4,1
	В	P !	
OK V	OK V		

A = Agent

 \mathbf{B} = Breeze

G = Glitter, Gold

OK = Safe Square

 \mathbf{P} = Pit

S = Stench

V = Visited

W = Wumpus

Start at (1,1); Infer that (1,2) and (2,1) are OK (i.e., safe)

Iteration 1: Move to (2,1)

Iteration 2: Move back to (1,1)

Iteration 3: Move to (1,2)

Iteration 4: Move to (2,2)

Iteration 5: Move to (2,3)

Logic

Review of Logic

Logic

- Formal language for knowledge representation (KR)
- Allows the inference of conclusions about environment

Syntax

- Defines sentences in the language
- Semantics
 - Defines meaning of sentences
- Truth value
 - Statement result given observed values
 - Defines validity of a sentence within the environment
 - i.e., given value assignments that hold in the environment

Review of Logic

- Example of KR: language of arithmetic
 - Syntax
 - $x + 2 \ge y$ is a sentence
 - x2y +> is not a sentence
 - Truth values
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1
 - $x + 2 \ge y$ is false in a world where x = 0, y = 6

Entailment

Entailment

- Modelling
 - v models α if α is true under v
 - v corresponds to one set of value assignments (applied to sentences α)
 - v corresponds to one instance of the environment (known part of a state)
 - For example
 - $\alpha = (q \in \mathbb{Z}_+) \land (\forall n, m \in \mathbb{Z}_+ : q = nm \Rightarrow n \lor m = 1)$
 - For which values of q will α be true?
- Let $M(\alpha)$ be the set of all models for α
- Entailment (⊨) means that one thing follows from the another
 - $-\alpha \models \beta$ or equivalently $M(\alpha) \subseteq M(\beta)$
 - Example:
 - $[\alpha = (q \text{ is prime})] \models [\beta = (q \text{ is odd}) \lor (q = 2)]$

Situation:

- Detected Nothing at (1,1)
- Moved Right to (2,1)
- Detected Breeze at (2,1)

Consider possible models for KB with pits

- 3 Boolean choices ⇒ 8 possible models
 - Pit or No Pit at: (1,2), (2,2), (3,1)
 - All $(2^3 = 8)$ permutations for the above (each a possible model)

Within this example, we will only deal with pits only; we ignore the Wumpus.

Possible 8 models

- KB = rules + percepts
- Percepts
 - No Breeze at (1,1)
 - Breeze at (2,1)
- Relevant rules
 - No Pit at (1,1)
 - No Pit at (1,2)
 - No Pit at (2,1)
 - Breeze ⇒Pit in Adjacent Room

- KB = rules + percepts
- Let $\alpha_1 = (1,2)$ is Safe
- We observe that: $M(KB) \subseteq M(\alpha_1)$
- Or rather: $KB \models \alpha_1$
- We may thus infer that it is safe for the agent to move to (1,2)

- KB = rules + percepts
- Let $\alpha_2 = (2,2)$ is Safe
- We observe that: KB $\not\models \alpha_2$
- Since: $M(KB) \nsubseteq M(\alpha_1)$
- May NOT infer that it is safe for the to move to (2,2)
 - Exist some models where KB is True but α_2 is False
 - For entailment, we want all α_2 True when KB True
- Also, cannot infer unsafe!

Questions about the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Ask on Archipelago
 - Specify a question
 - Upvote someone else's question

Invitation Link (Use NUS Email --- starts with E) https://archipelago.rocks/app/resend-invite/12166893023

Propositional Logic

Review of Propositional Logic: Syntax

- A simple language for logic illustrates basic ideas
- Defines allowable sentences
- Sentences are represented by symbols e.g., s₁, s₂
 - Formed over basic variables
- Logical connectives for constructing complex sentences from simpler ones
 - If s is a sentence, ¬s is a sentence (negation)
 - If s₁ and s₂ are sentences:
 - s₁ ∧ s₂ is a sentence (conjunction)
 - s₁ v s₂ is a sentence (disjunction)
 - $s_1 \Rightarrow s_2$ is a sentence (implication)
 - $s_1 \Leftrightarrow s_2$ is a sentence (biconditional *iff*.)

Review of Propositional Logic: Semantics

- A model
 - Truth assignment to the given basic variables
 - Given n variables, 2ⁿ truth assignments
- All other sentences' truth value are derived according to logical rules
 - Example
 - Given x_1 = True; x_2 = False; x_3 = True
 - What is the truth value for $(x_1 \land \neg x_2) \Rightarrow \neg (x_3 \lor (\neg x_1 \land x_2))$?
 - Recall that $X \Rightarrow Y$ is true if X false, or X true and Y true

Wumpus World KB

Notation

- P_{ij} = True \Leftrightarrow Pit at (i, j)
- B_{ij} = True \Leftrightarrow Breeze at (i, j)

- Given

- $R_1: \neg P_{1,1}$
- $R_2: \neg B_{1,1}$
- $R_3: B_{2,1}$
- Rules: "Pits cause a breeze in adjacent squares"
 - $-R_4: B_{1,1} \Leftrightarrow \overline{(P_{1,2} \vee P_{2,1})} \text{i.e.}, \neg B_{1,1} \Leftrightarrow \overline{\neg (P_{1,2} \vee P_{2,1})}$
 - $R_5: B_{2,1} \Leftrightarrow \left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$

Within this example, again, we will only deal with pits only; we ignore the Wumpus.

KB is true iff $\Lambda_{k=1,...,5} R_k$ is true

Inference: Objectives & Application

- Given a KB, infer something non-obvious about the environment
- Mimic logical human reasoning
- After exploring 3 squares, we have some understanding of the Wumpus World
- Inference ⇒ Deriving knowledge out of percepts

Given KB and α , we want to know if KB $\models \alpha$

What α ?

Based on domain: e.g., is (1,2) safe?

Properties of Inference Algorithms

Soundness & Completeness

- KB ⊢_A α
 - Means: "sentence α is derived (i.e., inferred) from KB by inference algorithm \mathcal{A} "
- Soundness
 - \mathcal{A} is sound if KB $\vdash_{\mathcal{A}} \alpha$ implies KB $\vDash \alpha$
 - This means that A will not infer nonsense
 - For all sentences inferred from the KB by A, S
 - The KB will entail each α in S
- Completeness
 - \mathcal{A} is complete if KB $\models \alpha$ implies KB $\vdash_{\mathcal{A}} \alpha$
- This means that A can infer any sentence that the KB entails
 - If KB entails a sentence (any sentence describing a superset of the KB)
 - A can infer that sentence

Determine if an inference algorithm is complete and sound

Soundness & Completeness

More on completeness

- If A is incomplete
- A cannot reach all possible conclusions

Given

- Y = all possible sentences entailed by KB
- X = all sentences derived from KB using A

Then

- X = Y: sound, complete
- X ⊂ Y: sound, not complete
- Y ⊂ X: not sound, complete
- X ⊄ Y, Y ⊄ X, X ≠ Y: not sound, not complete

Truth Table Enumeration

Truth Table Enumeration Example: Wumpus World

Can we infer that (1,2) is safe from pits?

$$\alpha_1 = \neg P_{1,2}$$

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

$$R_1: \neg P_{1,1}$$
 $R_2: \neg B_{1,1}$
 $R_3: B_{2,1}$
 $R_4: \neg B_{1,1} \Leftrightarrow \neg (P_{1,2} \lor P_{2,1})$
 $R_5: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

KB true

KB is true iff $\Lambda_{k=1,...,5} R_k$ is true

Recall that a truth table contains every possible truth assignment (2⁷ models in this example)

Does \overline{KB} entail α_1 ? (Whenever KB true, α_1 true?)

Truth Table Enumeration

function TT-ENTAILS?(KB, α) **returns** true or false

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-True?(KB, model) then return PL-True?(\alpha, model)
      else return true
                             // when KB is false, always return true
  else
      P \leftarrow FIRST(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \})
```

inputs: KB, the knowledge base, a sentence in propositional logic

 α , the query, a sentence in propositional logic

Checks all 2^n truth assignments to verify KB entails α

Depth-first enumeration

Recursive step generates the 2ⁿ possible assignments to the n symbols

O(2ⁿ) time complexity O(n) space complexity

Implements definition of entailment directly

(guarantees soundness)

Finite models to check (guarantees completeness)

Questions about the Lecture?

- Was anything unclear?
- Do you need to clarify anything?

- Ask on Archipelago
 - Specify a question
 - Upvote someone else's question

Invitation Link (Use NUS Email --- starts with E) https://archipelago.rocks/app/resend-invite/12166893023