Alignment and Marginal Inference with SCFGs

April 12, 2014

Forced decoding

- Other names
 - Forced alignment
 - Alignment
 - Synchronous parsing
 - Three-way composition
- Why?
 - Compute expectations of

Wu, 1997

Items [X, s, t, u, v]

Axioms

$$\overline{[X,s,s+1,u,u+1]} \quad X \to \langle f_s, e_u \rangle \in G$$

$$\overline{[X,s,s+1,u,u]} \quad X \to \langle f_s,\varepsilon \rangle \in G$$

$$\overline{[X, s, s, u, u + 1]} \quad X \to \langle \varepsilon, e_u \rangle \in G$$

Wu, 1997

$$\frac{[X,s,j,k,v] \ [Y,j,t,u,k]}{[Z,s,t,u,v]} \quad Z \to \langle X \ Y, \ [2] \ [1] \rangle \in G$$

$$[S, 1, 1, m + 1, n + 1]$$

$$NP \rightarrow \langle NN JJ, 2 1 \rangle$$
 $NN \rightarrow \langle bruja, witch \rangle$
 $JJ \rightarrow \langle verde, green \rangle$

Items

$$NP \rightarrow \langle NN JJ, 2 1 \rangle$$
 $NN \rightarrow \langle bruja, witch \rangle$
 $JJ \rightarrow \langle verde, green \rangle$

Items

[NN, 0, 1, 1, 2]

$$NP \rightarrow \langle NN \ JJ, \boxed{1} \rangle$$
 $NN \rightarrow \langle bruja, witch \rangle$
 $JJ \rightarrow \langle verde, green \rangle$

Items

[NN, 0, 1, 1, 2]

[JJ, 1, 2, 0, 1]

$$NP \rightarrow \langle NN JJ, 2 1 \rangle$$
 $NN \rightarrow \langle bruja, witch \rangle$
 $JJ \rightarrow \langle verde, green \rangle$

Items

$$\frac{[X,s,\textbf{j},\textbf{k},v] \ [Y,\textbf{j},t,u,\textbf{k}]}{[Z,s,t,u,v]} \quad Z \to \langle X \ Y, \textbf{2} \ \textbf{1} \rangle \in G$$

$$Z \to \langle X Y, \boxed{1} \rangle \in G$$

$$NP \rightarrow \langle NN JJ, 2 1 \rangle$$
 $NN \rightarrow \langle bruja, witch \rangle$
 $JJ \rightarrow \langle verde, green \rangle$

Items

[NN, 0, 1, 1, 2]

[JJ, 1, 2, 0, 1]

[NP, 0, 2, 0, 2]

Wu, 1997 - Analysis

Rules

$$\begin{array}{c|c} [X,s,j,k,v] & [Y,j,t,u,k] \\ \hline & & \\$$

Run-time: $O(n^6)$

Can we do better?

Hypergraph review

Hypergraph review

Substitution sites / variables / non-terminals

Hypergraphs as Grammars

- Claim: A hypergraph is isomorphic to a (synchronous) CFG
- LM integration can be understood as the intersection of an regular and CF language
- Cube pruning approximates this intersection

Two-Parse Algorithm (Dyer, 2010)

With thanks and apologies to Zhifei Li.

With thanks and apologies to Zhifei Li.

Isomorphic CFG

 $[X34] \rightarrow a cat$

Isomorphic CFG

 $[X34] \rightarrow a cat$

 $[X02] \rightarrow the mat$


```
[X34] \rightarrow a \ cat
[X02] \rightarrow the \ mat
[X04a] \rightarrow [X34] \ on [X02]
[X04a] \rightarrow [X34] \ of [X02]
[X04b] \rightarrow [X02] \ 's [X34]
[X04b] \rightarrow [X02] \ [X34]
```



```
[X34] → a cat

[X02] → the mat

[X04a] → [X34] on [X02]

[X04a] → [X34] of [X02]

[X04b] → [X02] 's [X34]

[X04b] → [X02] [X34]

[S] → [X04a]

[S] → [X04b]
```

Isomorphic CFG

```
[X34] → a cat

[X02] → the mat

[X04a] → [X34] on [X02]

[X04a] → [X34] of [X02]

[X04b] → [X02] 's [X34]

[X04b] → [X02] [X34]

[S] → [X04a]

[S] → [X04b]
```

a cat on the mat

```
[X34] → a cat

[X02] → the mat

[X04a] → [X34] on [X02]

[X04a] → [X34] of [X02]

[X04b] → [X02] 's [X34]

[X04b] → [X02] [X34]

[S] → [X04a]

[S] → [X04b]
```



```
[X34] → a cat

[X02] → the mat

[X04a] → [X34] on [X02]

[X04a] → [X34] of [X02]

[X04b] → [X02] 's [X34]

[X04b] → [X02] [X34]

[S] → [X04a]

[S] → [X04b]
```



```
[X34] → a cat

[X02] → the mat

[X04a] → [X34] on [X02]

[X04a] → [X34] of [X02]

[X04b] → [X02] 's [X34]

[X04b] → [X02] [X34]

[S] → [X04a]

[S] → [X04b]
```



```
[X34] → a cat

[X02] → the mat

[X04a] → [X34] on [X02]

[X04a] → [X34] of [X02]

[X04b] → [X02] 's [X34]

[X04b] → [X02] [X34]

[S] → [X04a]

[S] → [X04b]
```


Two Algorithms

- ITG algorithm (Wu, 1997)
 - Jointly parse both source and target
 - Only works for binary ITGs (although generalizable)
 - Runs in $\Theta(n^6)$
- Two-parse algorithm (Dyer, 2010)
 - Parse source, then parse target
 - Works with any SCFG
 - For binary ITGs runs in $O(n^6)$

