Análisis teórico de la degradación de COVs del aire en película delgada de nano TiO2.

Llano M. Luisa F^a, Yánez R. Daniela ^b, Murillo M. María I. ^c

a, b Ingeniería en Nanotecnología, Escuela de ingenierías, Universidad Pontificia Bolivariana, Medellín-Colombia, (luisa.llano@upb.edu.co), (daniela.yanezr@upb.edu.co)

c Ingeniería Química, Escuela de ingenierías, Universidad Pontificia Bolivariana, Medellín-Colombia, (maría.murillom@upb.edu.co)

Palabras clave: Degradación de contaminantes, TiO₂, Modelo matemático, placa delgada, luz UV.

1. Planteamiento del problema:

A medida que las poblaciones urbanas continúan expandiéndose y las actividades industriales aumentan, la calidad del aire en las áreas metropolitanas se deteriora significativamente.

La contaminación atmosférica no solo afecta la salud humana al provocar enfermedades respiratorias y cardiovasculares, sino que también tiene un impacto negativo en el entorno natural y la calidad de vida en general. Esta problemática se agrava por la emisión de contaminantes como partículas finas (PM2.5), dióxido de nitrógeno (NO2), dióxido de azufre (SO2) y compuestos orgánicos volátiles (COVs) por parte de vehículos, industrias y otras fuentes. [1]

Según cifras de la Organización Mundial de la Salud, la contaminación del aire está relacionada con una de cada ocho muertes a nivel mundial. A nivel nacional, durante el año 2015, se estimó que los efectos de este fenómeno estuvieron asociados a 10.527 muertes y 67,8 millones de síntomas y enfermedades. [2]

El proceso fotocatalítico emerge como una tecnología prometedora para la oxidación/degradación de contaminantes

orgánicos en el control ambiental. En este proceso, un semiconductor activado por radiación ultravioleta (UV) se utiliza como catalizador para destruir los contaminantes orgánicos. [3] Por lo anterior, la implementación del dióxido de titanio (TiO₂) se presenta como una estrategia innovadora y sostenible para reducir la contaminación del aire en áreas urbanas. La Figura 1 explica el mecanismo de fotocatálisis de las partículas de dióxido de titanio, cuyo proceso consiste en la generación de radicales libres por la acción fotocatalítica posteriormente y la conversión contaminantes de en compuestos inofensivos.

Fig 1. Mecanismo de reacción foto catalítica de partículas de TiO_2 . (Tomado de [4])

El TiO₂ se destaca entre otros fotocatalizadores debido a sus características interesantes: (a) es de bajo costo, seguro y muy estable, mostrando

una alta eficiencia fotocatalítica; (b) promueve la oxidación a temperatura ambiente de las principales clases de contaminantes del aire; (c) se puede lograr la degradación completa de una amplia gama de contaminantes bajo ciertas condiciones de funcionamiento; (d) no se necesitan aditivos químicos. [5]

En literatura, se reportan investigaciones con enfoques en diferentes campos de aplicación, en donde por ejemplo se analiza la viabilidad en sistemas al interior de vehículos con concentraciones bajas de COVs, evidenciando eficiencias cercas del 100% [6]. En materiales de construcción como el hormigón, usando nanopartículas de TiO2, mostrando una tasa de 73,82% de degradación para el naranja de metilo [7] o como recubrimiento nanostructurado en carreteras, donde se reflejó una capacidad de purificación de la emisión de 500 vehículos por día [8].

Para mejorar su aplicación, se han desarrollado técnicas para inmovilizar el TiO2 en un soporte sólido, destacando la técnica de película delgada como la más prometedora. [3] Sin embargo, la técnica de película delgada introduce variables que pueden limitar potencialmente la velocidad de reacción fotocatalítica en una película delgada. Por ejemplo, la difusión de las moléculas orgánicas dentro de la película delgada puede ser tan lenta que no hay suficientes moléculas disponibles dentro del catalizador para la degradación, o la intensidad de la luz ultravioleta puede ser atenuada por el catalizador de tal manera que la degradación fotocatalítica dentro de un catalizador grueso puede verse muy limitada. Los efectos de estas variables no están bien comprendidos, lo que lleva a la necesidad de implementar un modelo confiable que permita investigar cómo diferentes variables del proceso afectan la degradación de las moléculas orgánicas. [3]

El objetivo es comprender mejor el proceso fotocatalítico y cómo optimizarlo para una mayor eficiencia en la degradación de contaminantes orgánicos.

2. Pregunta a resolver:

¿Cómo puede optimizarse el proceso fotocatalítico utilizando TiO₂ para la degradación de contaminantes en áreas urbanas, considerando variables clave como la difusión de moléculas orgánicas en la película delgada de TiO₂ y la atenuación de la luz UV?

3. Formulación del modelo matemático:

Para desarrollar los modelos matemáticos se tendrá en cuenta un conjunto película delgada-portador como los mostrados en

Fig 2. Fotografías película delgada de TiO₂ (a) vista superior y (b) sección transversal (Tomado de [9])

Fig 3. Modelo conceptual para la reacción fotocatalítica en catalizador TiO₂: configuración del sistema (Tomado de [5])

Los rayos UV se atenúan a medida que penetran la capa fotocatalítica. Las moléculas orgánicas (COVs) migran de la superficie al interior en donde ocurre su degradación. Por lo anterior, se pueden establecer tanto perfiles para la irradiación UV así como para la concentración de los contaminantes [3] [5] como se grafica en la figura 4 y 5.

Fig 4. Modelo conceptual 1 para la reacción fotocatalítica en catalizador TiO₂: Perfiles y coordenadas (Tomado de [5])

Fig 5. Modelo conceptual 2 para reacción fotocatalítica en catalizador de película delgada: perfiles y sistema de coordenadas (Tomado de [3])

Por simplicidad, se tendrá en cuenta solo el transporte, adsorción y reacción fotocatalítica [3] [5]. La desorción y transporte de subproductos ciertamente afectan el comportamiento del proceso, no obstante, su impacto está más allá del alcance de este estudio [3] [5].

3.1. Modelo 1.

En este modelo, el catalizador de película delgada puede considerarse como un tipo de medio poroso compuesto por nano-TiO₂ y el politetrafluoroetileno (PTFE) actúa como sustrato [5]. El contaminante a tratar será el formaldehído [5]. El modelo, sistema de coordenadas y parámetros de muestran en la figura 4 [5].

A partir de la consideración de un fluido incompresible debido a la baja presión y flujo unidimensional, la ecuación gobernante para la reacción fotocatalítica de COV en una película delgada de TiO₂ se puede expresar como [5]:

$$\frac{\partial C}{\partial \tau} + \mu \frac{\partial C}{\partial x} = D_t \frac{\partial^2 C}{\partial \tau^2} + F_p$$

Donde C es la concentración (mg/g), τ el tiempo (s), x la coordenada (m), D_t la difusividad efectiva (m²/s) y F_p es el valor fuente igual a la tasa de degradación fotocatalítica de COVs, el cual a su vez de acuerdo a experimentos reportados en literatura se reporta como [5]:

$$F_p = -KIC$$

Donde K es el coeficiente de reacción fotocatalítica (cm2/ μ Ws) e I (μ m/cm 2) intensidad de luz UV [5].

A su vez, a esta ecuación se le ligan las siguientes ecuaciones, justificadas por el

perfil de intensidad y el hecho de que el modelo debe acoplarse a un modelo de reactor (figura 6), respectivamente [5]:

$$I = I_0 * 10^{-\varepsilon x}$$

$$\frac{dQ_a}{d\tau} = -\frac{A}{V} k_f (Q_a - Q_w)$$

A esto, se le suman las condiciones de frontera derivadas de las consideraciones del sistema [5], las cuales se plasman en la tabla 1.

Tabla 1. Condiciones de frontera (tomado de [5])

/	
Condición	Explicación
$\rho_p D_t \frac{\partial c}{\partial x_{x=0}} = k_f (Q_a - Q_w)$	Transferencia másica entre
$\int_{0}^{\infty} dx dx = 0$	fluido y superficie igual en
$k_f(Q_a-Q_w)$	todo el TiO ₂
	Con Q_w concentración de
	COVs en la superficie de la
	película
$C_{x=0}$	Adsorción de moléculas COVs
$= C_{max} k Q_w$	en la superficie del catalizador
	(Isoterma de Langmuir-
	Hinshelwood)
$-D_t \frac{\partial C(H,\tau)}{\partial x} = 0$	Interfaz entre catalizador y
	sustrato (x=H)

Fig 6. Diagrama esquemático de modelo de reactor para la reacción fotocatalítica (Tomado de [6])

De igual modo, se consideran dos condiciones iniciales, la primera para la concentración inicial de COVs en la película delgada de TiO₂, mientras que la segunda corresponde al valor de la misma en el reactor [5]:

1.
$$C(x,0) = C_0 = 0$$

2.
$$Q_a = Q_0$$

Finalmente, la masa de COVs degradada por la fotocatálisis (M_p) se manifiesta como [5]:

$$M_p = V(Q_0 - Q_a) - A\rho_p \int_0^H C \, dx$$

Los parámetros utilizados en literatura durante la modelación computacional se muestran en la tabla 2. I_0 , H y μ pasarán a ser variables para realizar los respectivos análisis.

Tabla 2. Parámetros usados en la modelación computacional (tomado de [5])

[2])	D	X 7 - 1
Sím	Descripción del parámetro	Valor
bolo		
ε	Coeficiente de atenuación de la	0.1
	luz UV en el catalizador de TiO ₂	μm^{-1}
k	Coeficiente de isoterma de	0.0042
	Langmuir-Hinshelwood	m^3/mg
D_{t}	Difusividad efectiva en	1.0 x
	catalizador de TiO ₂	10 ⁻⁸ m ⁻² /s
I_0	Intensidad de la luz ultravioleta	m = /s 250
		μW/cm
K	Coeficiente de reacción	0.12
	fotocatalítica	cm^2/μ W s
Н	Espesor de la película del catalizador de TiO ₂	1 μm
и	Caudal a través del catalizador de	0.0768
	TiO_2	m/s
Q_{a}	Concentración de formaldehído	1.17
	en el reactor	mg/m ³
C_{\max}	Capacidad de adsorción de la	0.742
	isoterma de Langmuir- Hinshelwood	mg/g
$ ho_{ m p}$	Densidad del catalizador de TiO ₂	3.2
<i>,</i> r		g/cm ³

V	Volumen de gas en el reactor	6.258
A	Área de superficie de la película catalizadora de TiO ₂	m ³ 0.8 m ²
k_{f}	Coeficiente de transferencia de masa convectiva entre fluido y película delgada de TiO ₂	16.6 m/s

3.2. Modelo 2.

En este contexto, el conjunto película delgada-portador de sumerge en una solución que contiene moléculas orgánicas y se establece un modelo conceptual mostrado en figura 5, con su respectivo sistema coordenado y parámetros [3].

La ecuación gobernante para $0 \le z \ge H$, se describe del siguiente modo [3]:

$$\frac{\partial q}{\partial t} = D_s \frac{\partial^2 q}{\partial z^2} - k I^m q^n$$

Donde q es la concentración absorbida en el catalizador (mg/g), D_s la difusividad efectiva (cm²/día), k es la constante de velocidad de la reacción fotocatalítica, I es la intensidad de UV en el catalizador (W/cm²), H el espesor del catalizador (cm), z la distancia desde la superficie al soporte (cm), t el tiempo (s) y m, n son constantes de orden de reacción [3].

Adicionalmente se le acoplan dos ecuaciones sustentadas desde el perfil de intensidad y el ajuste a un modelo de reactor respectivamente [3]:

$$I = I_0 * 10^{-\alpha(H-z)}$$

$$\frac{dS_b}{dt} = -AVk_f(S_b - S_w)$$

Las condiciones de frontera para este modelo se plasman en la tabla 3.

Tabla 3. Condiciones de frontera (tomado de [3])

Condición	Explicación
$q_{z=H} =$	Adsorción de moléculas COVs
$q_{max}bS_w1 +$	en la superficie del catalizador
bS_w	(Isoterma de Langmuir- Hinshelwood)
$\frac{\partial q}{\partial z_{z=0}} = 0$ $\rho_p D_s \frac{\partial q}{\partial z_{z=H}} = k_f (S_b - S_w)$	

De igual modo se pueden establecer dos condiciones iniciales para t=0 [3]:

$$S_b = S_0$$
$$q = q_0$$

Por último, los parámetros reportados en literatura usados durante modelaciones computacionales se muestran en la tabla 4, en donde algunos de ellos pasarán a ser variables para poder realizar un análisis.

Tabla 4. Parámetros usados en la modelación computacional (tomado de [5])

Símbol	Descripción	Valor
0	del	
	parámetro	
а	Área superficial específica del catalizador	0.011 cm $^{-1}$
α	Coeficiente de atenuación UV en el catalizador	20μ m $^{-1}$
Ds	Difusividad efectiva en catalizador de película delgada	9.5×10^{-5} cm 2 /día
I_0	Intensidad de los rayos UV incidentes	114 W/cm ²
k	Constante de velocidad para la	$cm^{_{2m}}g^{_{n-1}}\!/W^{_{-m}}mg^{_{n-1}} \ day$

	fotodegradaci ón	
$k_{ m f}$	Coeficiente de transferencia de película líquida	700 cm/día
Н	Espesor de la película del catalizador de TiO ₂	1 μm
m	Orden de la reacción respecto a la intensidad UV	1.0
n	Orden de la reacción respecto a la concentración de la fase sólida	1.0
q_0	Concentració n inicial de componentes orgánicos en el catalizador	0.0 mg/g
q_{max}	Coeficiente de la isoterma Langmuir- Hinshelwood	0.215 mg/g
$ ho_{ m p}$	Densidad del catalizador	3.2 g/cm^3
S_0	Concentració n inicial de 4- Cp	12.85 mg/L
V	Volumen liquido del	2000 mL

4. Resultados esperados:

reactor

A partir de la resolución del modelo matemático se espera obtener aproximaciones como las siguientes para su posterior análisis. En donde la figura 7

corresponde al modelo 1 y la figura 8 al modelo 2.

Fig 7. Efecto de la intensidad de luz UV, grosor de la película, flujo de aire y tiempo en la cantidad de degradación (Tomado de [5])

Fig 8. Efecto de la intensidad de luz UV y grosor de la película en la cantidad de degradación (Tomado de [3])

De igual modo, se comparará con datos experimentales reportados en trabajos anteriores, figura 9, con parámetros: Q_a de 280 ppmv, I_0 de 1.0 mW/cm², V de 500 c

 m^3 , H de 1.7 µm y A de 9 cm² [10].

Fig 9. Concentración versus tiempo de radiación para degradación de formaldehído fotocatalizado por película de TiO₂ (Tomado de [10])

5. Referencias:

- [1] Principales contaminantes del aire. (s.f.). Intendencia de Montevideo. [en línea]. Disponible en: https://montevideo.gub.uy/areas-tematicas/ambiente/calidad-del-aire/principales-contaminantes-del-aire
- [2] CALIDAD DEL AIRE IDEAM. (s.f.). IDEAM IDEAM. [en línea]. Disponible en: http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/calidad-del-aire
- [3] H. Chang, N. Wu & F. Zhu, "A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO₂ catalyst", Water Res., vol. 34, n. ° 2, pp. 407–416, febrero de 2000.
- [4] C. Liu, J. Bai, S. Zhang, Z. Yang & M. Luo, "Application and Advances in TiO₂

- Based Photocatalytic Building Materials", Journal Of Physics, 012049, 2021.
- [5] H. Yu, H. Zhang y C. Rossi, "Theoretical study on photocatalytic oxidation of VOCs using nano- TiO₂ photocatalyst", J. Photochemistry Photobiol. A: Chemistry, vol. 188, n.° 1, pp. 65–73, abril de 2007.
- [6] W. Jo, J. Park & H. Chun, "Photocatalytic destruction of VOCs for in-vehicle air cleaning", J. Photochemistry Photobiol. A: Chemestry, Vol. 148, pp. 109-119, 2002
- [7] Z. Guo, C. Huang & Y. chen, "Experimental study on photocatalytic degradation efficiency of mixed crystal nano-TiO2 concrete", Nanotechnology Reviews, Vol. 9, no. 1, pp. 219-229, 2020.
- [8] I, Pei, Y. Wang, C. Zhu, et al, "Research progress on automobile exhaust pavement purification materials", China Journal of Highway and Transport, Vol. 21, no. 4, 92-104, 2019.
- [9] S. B. Kim & S. C. Hong, "Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst", Applied Catalysis B: Environmental, Vol. 25, no. 4, pp. 305-315, 2002.
- [10] T. Noguchi & A. Fujishima, "Photocatalytic degradation of gaseous formaldehyde using TiO2 film", Environmental science & technology, Vol. 32, no. 23, pp. 3831-3833, 1998.