FORMULARIO FISICA 1

CINEMATICA

	·
Vettore posizione r (metri - m)	$\vec{\mathbf{r}} = \mathbf{x}\hat{\imath} + \mathbf{y}\hat{\jmath} + \mathbf{z}\hat{k}$
Spostamento ∆r (metri - m)	$\Delta \mathbf{r} = \vec{\mathbf{r}}_{finale} - \vec{\mathbf{r}}_{iniziale}$
Velocità media (v) (metri/secondo – m/s)	$\langle \mathbf{V} \rangle = \frac{\vec{\mathbf{r}}_{finale} - \vec{\mathbf{r}}_{iniziale}}{t_{finale} - t_{iniziale}} = \frac{\Delta r}{\Delta t}$
Velocità istantanea v_x (metri/secondo – m/s)	$\mathbf{v}_{\mathbf{x}} = \lim_{\Delta t \to 0} \langle \mathbf{v} \rangle$
Velocità v (metri/secondo – m/s)	$\mathbf{V} = \frac{d\vec{\mathbf{r}}}{dt}$
Modulo velocità v	$ \vec{v} = \frac{d\vec{r}}{dt} = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2}$
Accelerazione media (a) (metri/secondo² – m/s²)	$\langle \mathbf{a} \rangle = \frac{\overrightarrow{\mathbf{v}}_{finale} - \overrightarrow{\mathbf{v}}_{iniziale}}{t_{finale} - t_{iniziale}} = \frac{\Delta v}{\Delta t}$
Accelerazione \vec{a} (metri/second $o^2 - m/s^2$)	$\vec{a} = \frac{d\vec{v}}{dt}$
Legge oraria del moto con accelerazione costante	$\mathbf{x(t)} = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$
Legge oraria del moto di un oggeto in caduta libera	$y(t) = y_0 + v_{y0}t - \frac{1}{2}gt^2$ g= 9,8 $\frac{m}{s^2}$

Tempo di salita t_m (secondi – s)	$\boldsymbol{t_m} = \frac{v_0}{g}$
Altezza massima h _m (metri – m)	$h_m = \frac{{v_0}^2}{2g}$
La direzione del moto con 2 dimensioni	$ tan \theta = \frac{v_y}{v_x} ossia \theta = arctan(\frac{v_y}{v_x}) $ $ v_x = v^* cos \theta \qquad v_y = v^* sin \theta $
Modulo velocità con 2 dimensioni v	$ \mathbf{v} = \sqrt{v_x^2 + v_y^2}$
Componenti dell'accelerazione di un proiettile	$\mathbf{a}_{x} = 0$ $\mathbf{a}_{y} = -\mathbf{g}$ $\mathbf{v}_{x} = v_{0} \cos \theta_{0} \mathbf{v}_{y} = v_{0} \sin \theta_{0} - \mathbf{g}\mathbf{t}$ $\mathbf{x} = (v_{0} \cos \theta_{0})\mathbf{t} \mathbf{y} = (v_{0} \sin \theta_{0})\mathbf{t} - \frac{1}{2}\mathbf{g}t^{2}$
Traiettoria di un proiettile (metri – m)	$\mathbf{y} = (\tan \theta_0) \mathbf{x} - \frac{g}{2(v_0 \cos \theta_0)^2} x^2$
$\frac{\text{Tempo di salita}}{\text{(secondi - s)}} t_m$	$t_{m} = \frac{v_{0} sin\theta_{0}}{g}$
Altezza massima raggiunta da un proiettile h_m (metri – m)	$h_{m} = \frac{(v_0 \sin \theta_0)^2}{2g}$
Gittata di un proiettile R (metri – m)	$\mathbf{R} = \frac{v_0^2 \sin 2\theta_0}{g}$
Accelerazione centripeta a_c (metri/second $o^2 - m/s^2$)	$a_c = \frac{v^2}{R}$ R = raggio circonferenza

	2-
Velocità angolare ω	$\omega = \frac{2\pi}{T}$ T = periodo
(radiante/secondo – rad/s)	_
Velocità tangenziale v (metri/secondo – m/s)	$\mathbf{v} = \frac{2\pi r}{T}$
Frequenza f (Hertz – Hz)	$\mathbf{f} = \frac{1}{T}$
Legge oraria moto circolare uniforme s(t)	$\mathbf{s(t)} = v_0 T$
Legge oraria pendolo x(t)	$\mathbf{x(t)} = A \sin(\omega t)$ A = ampiezza ω =pulsazione($\frac{rad}{s}$)
Velocità pendolo v (metri/secondo – m/s)	$\mathbf{v} = A\omega\cos(\omega t)$
Accelerazione pendolo a (metri/secondo² – m/s²)	$\mathbf{a} = -\omega^2 x(t)$
Velocità di fuga v _{fuga}	$\mathbf{v}_{fuga} = \sqrt{\frac{2GMN}{R}}$

<u>DINAMICA DEL PUNTO MATERIALE</u>

Forza risultante $\sum \vec{F}$ (Newton – N = $\frac{kg m}{s^2}$)	$\sum \vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 \dots \qquad \text{U.M = Newton}$ $1 \text{N} = 1 \text{kg * } m/s^2$
Prima legge di Newton (principio di inerzia)	Se la forza risultante che agisce su un corpo è nulla ($\sum \vec{F}=0$), l'accelerazione del corpo è nulla ($\vec{a}=0$)

Primo principio della dinamica	Esistono infiniti sistemi di riferimento, detti sistemi inerziali, ciascuno in moto rettilineo e uniforme rispetto agli altri, nei quali un corpo non soggetto a forze si muove a velocità costante
Seconda legge di Newton	L'accelerazione di un corpo è proporzionale alla forza risultante esercitata sul corpo $\sum \vec{F} = m\vec{a}$
Secondo principio della dinamica	Se in un sistema di riferimento inerziale un corpo (considerato puntiforme) si muove di moto accelerato, esiste, indipendentemente dal fatto che la si possa misurare, almeno una forza responsabile di tale accelerazione.
Terza legge di Newton	A ogni azione corrisponde una reazione uguale e contraria: ossia, le mutue azioni di due corpi sono sempre uguali fra loro e dirette verso parti opposte $\vec{F}_{AB} = - \vec{F}_{BA}$
Quantità di moto \overrightarrow{p} $(kg \frac{m}{s})$	$\vec{p} = m\vec{v}$
<u>Lavoro forza costante</u> L (Joule – J = N m)	$\mathbf{L} = \vec{F} \bullet \vec{s} = \mathbf{F} \mathbf{s} \cos \theta$
Lavoro forza variabile L (Joule – J = N m)	$\mathbf{L} = \int_{A}^{B} F ds$
Lavoro forza peso L_{fp} (Joule –J = N m)	$L_{fp} = -m\vec{g}(y_f - y_i)$

Lavoro forza d'attrito L_{fA} (Joule – J = N m)	$L_{fA} = \int_{A}^{B} \mu_{d} R_{n} ds$
Lavoro forza elastica L_{fE} (Joule – J = N m)	$L_{fE} = \frac{1}{2} k(x_f^2 - x_i^2)$
Potenza P $(Watt - W = \frac{J}{s})$	$\mathbf{P} = \frac{dL}{dt} = \vec{F} \bullet \vec{v}$
Energia cinetica K (Joule - J = N m)	$\mathbf{K} = \frac{1}{2}mv^2$
Teorema energia cinetica K	$\mathbf{L} = K_f - K_i = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$
Forza conservativa	Una forza si dice conservativa se il lavoro da essa compiuta su un corpo che percorre un percorso chiuso è nullo.
Energia potenziale U (Joule – $J = N m$) solo forze conservative	$\Delta U = -L \rightarrow U_f - U_i = -\int_A^B F ds$
Energia potenziale gravitazionale U_{Fpeso} (Joule – J = N m)	$U_{Fpeso} = mgh$

Energia potenziale elastica $U_{Felastica}$ (Joule – J = N m)	$\mathbf{U}_{Felastica} = \frac{1}{2} kx^2$
Energia meccanica E_m (Joule – J = N m)	$\mathbf{E}_{m} = \mathbf{K} + \mathbf{U}$
Conservazione energia meccanica	In un sistema isolato in cui agiscono solo forze conservative l'energia meccanica si conserva $\mathbf{E}_{m \; iniziale} = \mathbf{E}_{m \; finale}$
Non conservazione energia meccanica	Lavoro forze non conservative = =variazione energia meccanica
$ \underline{\text{Impulso I}} $ (Newton secondi - N s = kg $\frac{m}{s}$)	$\mathbf{I} = \int_{t_i}^{t_f} \vec{F} \ dt = \Delta \mathbf{p} \text{ (teorema impulso)}$
Quantità di moto \overrightarrow{p} $(kg \frac{m}{s})$	$\vec{p} = m\vec{v}$
Conservazione della quantità di moto	$F_{ris} = 0 \rightarrow \vec{p} = \text{costante} \rightarrow \vec{p}_i = \vec{p}_f$
Urto elastico (urto in cui si conserva \overrightarrow{p} e K)	$\begin{cases} p_{1,i} + p_{2,i} = p_{1,f} + p_{2,f} \\ K_{1,i} + K_{2,i} = K_{1,f} + K_{2,f} \end{cases}$

$\frac{\text{Urto anelastico}}{\text{(urto in cui si conserva } \overrightarrow{p}\text{)}}$	$p_{1,i} + p_{2,i} = p_{1,f} + p_{2,f}$
Urto completamente anelastico (corpi restano attaccati dopo l'urto)	$m_1 v_{1,i} + m_2 v_{2,i} = (m_1 + m_2) v_f$
Momento rispetto ad un polo $\overline{M_o}$ (Newton metro – Nm = $kg \frac{m^2}{s^2}$)	$\overrightarrow{M_o} = \overrightarrow{r} \times \overrightarrow{F} = rF\sin\theta$
Momento rispetto ad un asse $\overline{M_a}$ (Newton metro – Nm = $kg \frac{m^2}{s^2}$)	$\overrightarrow{M_a} = \overrightarrow{M_o} \cdot \hat{a} = M_o \ a \cos \theta$
Centro di massa	$\begin{aligned} x_{cm} &= \frac{m_1 x_{1+} m_2 x_2}{m1 + m2} \text{ (vale anche per y e z)} \\ v_{cm} &= \frac{m_1 v_{1+} m_2 v_2}{m1 + m2} \\ a_{cm} &= \frac{m_1 a_{1+} m_2 a_2}{m1 + m2} \\ F_{tot} &= \text{M} \ a_{cm} \\ p_{tot} &= \text{M} \ v_{cm} \end{aligned}$
$\frac{\text{Densità}}{(\log m^3)}$	$p = \frac{M}{V}$
Momento angolare o della quantità di moto $(kg\frac{m^2}{s})$	$\vec{L}_{o} = \vec{r} \times \vec{p} = rp\sin\theta \qquad \text{(polo fisso)}$ $\vec{L}_{a} = \vec{L}_{o} \cdot \hat{a} = L_{0} a \cos\theta$
Impulso angolare $\frac{J}{s}$	$\mathbf{J} = \int_{t0}^{t1} \overrightarrow{L_0} dt$

Momento d'inerzia attorno ad un asse I_a (kg m^2)	$I_a = mr^2$
Momento d'inerzia attorno ad un corpo rigido I_c $(kg m^2)$	$I_c = \int_V r^2 dm$
Lavoro moto rotatorio forza costante L	$\mathbf{L} = \mathbf{M}(\theta_f - \theta_i)$
(Joule - J = N m)	
Lavoro moto rotatorio forza variabile L	$\mathbf{L} = \int_{\theta_i}^{\theta_f} M_z d\theta$
(Joule - J = N m)	
Energia cinetica rotazionale K_r (Joule – J = N m)	$K_r = \frac{1}{2} I \omega^2$
Teorema dell'energia cinetica rotazionale	$\mathbf{L} = K_f - K_i = \frac{1}{2} \operatorname{I} \omega^2_f - \frac{1}{2} \operatorname{I} \omega^2_i$
Energia cinetica moto rotolamento puro K_{rp} (Joule – J = N m)	$K_{rp} = \frac{1}{2} \operatorname{I} \omega^2 + = \frac{1}{2} \operatorname{m} v^2$
Momento angolare di un corpo rigido in rotazione L_r	L_r = I ω
Teorema del momento angolare	$M_{ris} = \frac{dL}{dt}$ variazione momento angolare variazione del tempo

Legge fondamentale della dinamica rotazionale	$M_{ris} = I \vec{a}$
Forza peso \vec{F}_t (Newton – N = $\frac{kg m}{s^2}$)	$\vec{F}_t = m\vec{g}$
Forza di attrito cinetico \vec{F}_k (Newton – N = $\frac{kg m}{s^2}$)	$\vec{F}_{k} = \mu_{k} \vec{F}_{N}$ $\vec{F}_{N} = \text{forza normale}(\text{m}\vec{g})$ $\mu_{k} = \text{coefficiente d'attrito cinetico}$
Forza di attrito statico $\vec{F}_{s,max}$ (Newton – N = $\frac{kg m}{s^2}$)	$\vec{F}_{s,max} = \mu_s \vec{F}_N$ μ_s = coefficiente d'attrito statico
Forza viscosa \vec{F}_{v} (forza d'attrito dei fluidi)	$\vec{F}_v = -\vec{b} \vec{v}$ b = costante di proporzionalità
Forza centripeta $\sum \vec{F}$ (Newton – N = $\frac{kg \ m}{s^2}$)	$ \sum \vec{F} = \frac{mv^2}{R}$
Piano inclinato (con attrito e corpo libero)	$F_{p} = \text{mg}$ $F_{a} = \mu F_{p} \cos\theta$ $F_{px} = F_{p} \sin\theta$ $F_{py} = F_{p} \cos\theta$ $F_{py} = F_{p} \cos\theta$ $F = F_{p} \tan\theta$

Carrucola (con attrito e corpo libero)	$ \begin{array}{c c} F_{\mathbf{A}} & 7 & 7 \\ \hline & 7 & F_{\mathbf{p}1} - T = m_1 a \\ T - F_a = m_2 a \end{array} $
Carrucola (con attrito e piano inclinato)	$ \begin{array}{c c} \hline \mathbf{F_{A}} & \mathbf{F_{p2}} \\ \hline \mathbf{I} \\ \hline \mathbf{F_{p1}} & T = m_1 a \\ T - F_{2p,x} - F_A = m_2 a \end{array} $
Forza elastica (legge di Hooke)	$\overrightarrow{F_e} = -k\Delta L$ k = costante elastica
Molle in parallelo	$\overrightarrow{F_e} = -k_p \Delta L$ $k_p = k_1 + k_2$
Molle in serie	$\overrightarrow{F_e} = -k_S \Delta L$ $k_S = \frac{1}{k_1} + \frac{1}{k_2}$

Oscillazioni libere di una molla in orizzontale	$\mathbf{x}(t) = \mathbf{A} + \cos(\omega_0 t + \varphi)$ $\mathbf{A} = \sqrt[2]{x_0^2 + \left(\frac{v_0}{\omega_0}\right)^2}$ $\mathbf{ampiezza}$ $\tan \varphi = \frac{v_0}{x_0 \omega_0} \mathbf{T} = 2\pi \sqrt{\frac{m}{K}}$
Oscillazioni libere di una molla in verticale	$y(t) = k \cos(\omega_0 t + \varphi)$
Pendolo semplice	$T = 2\pi^{2} \sqrt{\frac{L}{g}} \text{ periodo}$ $s(t) = L0\cos(\omega_{0}t + \varphi)$ $\omega = \sqrt[2]{\frac{g}{L}}$
Sistemi non inerziali	Sistema in cui non vale il principio d'inerzia (accelerazione assoluta != accelerazione relativa) $\Delta \mathbf{s} = \Delta s_{relativo} + \Delta s_{trascinamento}$ $v_0 = v_{relativo} + v_{trascinamento}$ $a_0 = a_{relativo} + a_{trascinamento}$ $\Sigma F = F_{reali} - F_{apparenti}$
Moto di trascinamento per pura rotazione	$F_{coriolis} = 2m\omega v$ $F_{centrifuga} = -m\omega^2 r$ $F_{tangenziale} = m\frac{dv}{dt} r$

valori momento di inerzia

Corpo rigido	Asse di rotazione	Momento di inerzia
Anello sottile di massa m e raggio r	Perpendicolare al piano dell'anello e passante per il centro	$I = Mr^2$
Anello sottile di massa M e raggio r	Complanare al piano dell'anello e passante per il centro	$I = \frac{1}{2}Mr^2$
Disco di massa M e raggio r	Perpendicolare al piano del disco e passante per il centro	$I = \frac{1}{2}Mr^2$
Cilindro pieno di massa M e raggio r	Coincidente con l'asse di simmetria del cilindro	$I = \frac{1}{2}Mr^2$
Cilindro cavo di massa M e raggio r	Coincidente con l'asse di simmetria del cilindro	$I = Mr^2$
Cilindro cavo di massa M distribuita tra R ₁ ed R ₂	Coincidente con l'asse di simmetria del cilindro	$I = \frac{1}{2}M(R_1^2 + R_2^2)$
Sfera di massa M e raggio r	Qualsiasi asse passante per il centro	$I = \frac{2}{5}Mr^2$
Guscio sferico	Qualsiasi asse passante per il centro	$I = \frac{2}{3}Mr^2$
Lastra rettangolare con lati a, b	Perpendicolare al piano e passante per il centro	$I = \frac{1}{12}M(a^2 + b^2)$
Sbarra rettangolare di massa M e lunghezza L	Perpendicolare alla lunghezza e passante per il centro	$I = \frac{1}{12}ML^2$
Sbarra rettangolare di massa M e lunghezza L	Perpendicolare alla lunghezza e passante per un estremo	$I = \frac{1}{3}ML^2$

ONDE E SUONI

Parametri base delle onde

Lunghezza d'onda (λ) = $\frac{V}{f}$ metri

periodo (T) =
$$\frac{1}{f}$$
 secondi $f = \frac{1}{T}$ Hertz

velocità in aria(v) = λf metri/secondo

vettore d'onda (k) =
$$\frac{2\pi}{\lambda}$$
 rad/metri

velocità su corda
$$(v_c) = \sqrt{\frac{T_c}{\mu}}$$
 metri/secondo

Tensione onda su corda (T_c)= μv_c^2 Newton

 $\mu = \text{coefficiente densità lineare } \frac{m}{l} \text{ kg/m}$

Funzione d'onda

$$A=A_0sin(\vec{k}\ \vec{r}\ \pm\ \omega t + \theta)\hat{n}$$

$$A_0 sin\left(\frac{2\pi}{\lambda} x \pm \frac{2\pi}{T} t + \theta\right) \hat{\imath}$$

Effetto Doppler

Sorgente ferma, ricevitore movimento

$$f = f_0 \frac{v_{sorgente} \mp v_{ricevitore}}{v_{sorgente}}$$
 + se si avvicina

Sorgente movimento, ricevitore fermo

$$f = f_0 \frac{v_{sorgente}}{v_{sorgente} \pm v_{ricevitore}}$$
 - se si avvicina

Entrambi in movimento

$$f = f_0 \frac{v_{sorgente} \mp v_{ricevitore}}{v_{sorgente} \pm v_{ricevitore}}$$

<u>Battimenti</u>	Frequenza battimenti $(f_b) = \frac{f_2 - f_1}{2}$ Hz
-------------------	---

Fluidostatica e fluidodinamica

Densità p (kg/m³)	$p = \frac{m}{V}$
Pressione P (Pascal-Pa)	$P = \frac{F_{\downarrow}}{S} (N/m^2)$
Legge di Stevino	La pressione esercitata da una colonna di fluido sul fondo è pari a $ {\color{red} {P_f}} = \delta gh \qquad \delta = \text{densità fluido (kg/m^3)} $ Se il contenitore è aperto ad essa si aggiunge la pressione atmosferica
Principio di Archimede Portata (m³/s)	Un corpo immerso in un fluido subisce una spinta verso l'alto pari al peso del volume di liquido spostato (Forza di Archimede)

Equazione di continuità	La portata volumetrica attraverso un tubo di sezione variabile resta costante $v_1S_1=v_2S_2$ (fluido ideale) $p_1v_1S_1=p_2v_2S_2$ (fluido reale)
Teorema Bernoulli	$P_1 + \frac{1}{2}pv_1^2 + ph_1g = P_2 + \frac{1}{2}pv_2^2 + ph_2g$
Teorema Torricelli	La velocità con cui l'acqua fuoriesce da un serbatoio è pari a: V=√2gh

Termodinamica

Calore (Joule – J) Q	$\mathbf{Q} = mc_{specifico} \Delta T \qquad c_{specifico} = \frac{J}{kg \ K}$
Calore nei passaggi di stato (Joule – J) Q	Fusione (solido -> liquido) $\mathbf{Q} = m \ \lambda_{fusione} \qquad \lambda_{f} = \text{calore latente}$ Vaporizzazione (liquido-> gas) $\mathbf{Q} = m \ \lambda_{vaporizzazione} \qquad \lambda_{v} = \text{calore latente}$
Dilatazione termica	Dilatazione lineare (1 dimensione) $\Delta L = \alpha L_0 \Delta T$ Dilatazione superficiale (2 dimensione) $\Delta L = \delta S_0 \Delta T \qquad \delta = 2 \ \alpha$ Dilatazione volumica (3 dimensione) $\Delta L = \beta V_0 \Delta T \qquad \beta = 3 \ \alpha \ o \ \frac{3}{2} \ \delta$

Capacità termica C	$C = mc_{specifico}$
Macchina termica	Legge calore e lavoro $W=Q_{assorbito}- Q_{ceduto} $ Rendimento macchina termica $\eta=rac{W}{Q_{assorbito}}$ (numero puro)
Ciclo di Carnot	1) espansione isoterma reversibile 2) espansione adiabatica reversibile 3) compressione isoterma reversibile 4) compressione adiabatica reversibile
Entropia ΔS $\left(\frac{Joule}{Kelvin} - \frac{J}{K}\right)$	$\Delta S = \frac{Q}{T}$
Entropia gas perfetto S $\left(\frac{Joule}{Kelvin} - \frac{J}{K}\right)$	$S = nR \left[\ln(\frac{V_f}{V_i}) + \frac{c_v}{R} \ln(\frac{T_f}{T_i}) \right]$
Prima legge Gay Lussac	$\frac{V_a}{T_a} = \frac{V_b}{T_b}$ (solo se trasformazione isobara)
Conduttori termici $\sigma_{Totale} = \text{conducibilità totale } \sigma = \frac{\varphi}{\Delta T} = \lambda \frac{S}{L}$	In serie $\sigma_{Totale} = \sigma_1 + \sigma_2 + \dots + \sigma_n$ In parallelo $\sigma_{Totale} = \frac{1}{\sigma_1} + \frac{1}{\sigma_2} + \dots + \frac{1}{\sigma_n}$

PREMO PRIM	CIPIO DELLA	AU = Q-L	
		CV = R = 8,31 5,	
MONDATON	100 3 R	512 513	
Вінтоніс		7-2 R 7-3	
CAS PERFETT			
		RT EQ. DI STAT	
	△U = m	CV AT EN INTE	ERMA
	Q		AU
SOCORA AV= O P= cost	mc AT	0	mc, AT
SOBARA AP=O Y=cost	m CP AT	PAV	mcvAT
SOTERMA AT=0 PV=cost	mRT en Ve	mRTPn Ve Vi	0
A DIABATICA	0	m CV AT	m CV AT
PER L'ADIABATE	cost	ANCHE: TV 8-1 = cost	
P1-8-8	cost	L= DU = 1 (Pe	Ve-PiVi)

MOTI DI TRASLAZIONE	de l'équelle del moti di rotazione.	
DI UN PUNTO MATERIALE	MOTI DI ROTAZIONE DI UN CORPO RIGIDO	
velocità v	momento di inerzia I	
	velocità angolare ω	
accelerazione à	accelerazione angolare α	
forza F	momento della forza M	
quantità di moto $\vec{p} = m\vec{v}$	momento angolare $L = I \omega$	
egge $\vec{F} = m\vec{a}$	legge $M = I\alpha$	
nergia cinetica $K_{\text{traslazione}} = \frac{1}{2} m v^2$	energia cinetica $K_{\text{rotazione}} = \frac{1}{2} I \omega^2$	

