mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Joybien Batman BM201 mmWave EVM Kit is a Texas Instruments (TI) IWR6843 ASIC based millimeter-wave (mmWave) Kit with Frequency-Modulated Continuous Wave (FMCW) radar technology capable of operation in the 60GHz to 64GHz band with up to 4 GHz continuous chirp, using 3 Transmission Antennas and 4 Receiving Antennas, for sensing target object's range, velocity, and angle parameters.

Batman BM201 mmWave EVM Kit is with a small and compact mmWave Module (with low-power, self-monitored, ultra-accurate, and lighting condition independent versatilities), along with a Pi-Hat Board for simple and direct connectivity to a Raspberry Pi or NVIDIA Jetson Nano computer, suitable for various applications including: Education, Engineering, Science, Industrial, Medical, and Business & Consumer.

Applications

- Education's Practical Radar Introduction
- Engineering & Science's Motion Detection, Displacement, etc.
- Industrial sensor for Displacement & Safe Guard, Factory Automation, Robotics, etc.
- Building Automation sensor for Occupancy Detection, Proximity & Position sensing, People Counting, Security and Surveillance
- Business' Traffic Monitoring, and Proximity Advertisement

Features

Operating Frequency: 60GHz ~ 64GHz coverage

with 4GHz continuous bandwidth

•Antenna: 3 Tx and 4 Rx Antennas on Module, with:

TX Power: 10 dBm

RX Noise Figure: 14 dB

Processors: ARM R4F based MCU and C674x DSP

for advanced signal processing

•On-Chip Memory: 1.75MB

Internal Memories With ECC

Integrated Peripherals

•Input Power:3.3Vdc, 2.1A

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Specification

(BM201-LPD) Long-Range People Detection	For a contactless and wearableless Long-Range People Detection (LPD) of 1 meter ~ 50 meters (about 3 ~ 164 feet), for various applications that require people sensing or counting without privacy invasion.	
(BM201-PC3) People Counting & Detection	For a wireless People Counting & Detection in 6 x 6 meter or 36 square meter area (or about 387.5 square feet), for various applications that require people sensing, people counting, or people occupancy density estimation without privacy invasion.	
(BM201-VOD) Vehicle Occupancy Detection	For plotting a Range-Azimuth-Heatmap with a 64 x 48 Grid Matrix covering: Range of 3 meter / 64 row (approx. 0.047 meter per row) x Azimuth of 108 degree / 48 column (approx. 2.3 degree /column). Subsequently a programmer may write code to group the Grid(s) into Zone(s) for detecting whether the particular Zone(s) is occupied by Target(s); suitable for vehicle occupancy detection or for occupancy detection for an area of around 3 meter x 3 meter.	
(BM201-TMD) Traffic Monitoring Detection	For detecting moving objects (such as vehicles) in 5m ~ 50m with FOV of approx. +/- 54 degrees with Position X&Y, Velocity X&Y info. And based on the detected data, a programmer may write a program to define virtual Zones, for mapping objects (vehicles) moving in and out of certain Zones for traffic monitoring applications.	
(BM201-VSD) Vital Signs Detection	For a contactless and wearableless human Vital Signs Detection (VSD) with real-time Heartbeat Rate & Respiration Rate data, for range of 30cm ~ 90cm (about 1~3 feet); along with Status Indicator for sensing the presence of a person, as well as the measurement stability, and whether the person is present but without Vital Signs.	
(BM201-HAM) High Accuracy Measurement	For a wireless High Accuracy Measurement (HAM) of an object distance with range of 30cm ~ 3 meters (about 1~10 feet), having millimeter measurement resolution.	

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Packing List: mmWave Module, Raspberry Pi-Hat Board, Python SDK

• Make sure you are using the correct power supply of 5 V, >2.0 A with a Micro USB connection

Note: Raspberry Pi, Jetson Nano, or Linux/Mac/Windows computer not included.

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Selection: Key Data Mode or Raw Data Mode Application

(B) Key Data Mode

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman BM201 Module J3 Pin Assignment Note

PINHEADER J3 PIN12_GPIO_0 High: Raw Data Baud Rate 921600/8/n/1 selection for PIN23_TX1 PINHEADER J3 PIN12_GPIO_0 Low: Key Data Baud Rate 115200/8/n/1 selection for PIN23_TX1

Alert: All GPIO Pins base on 3.3V System. Pin23_TX1 is DC 3.3V system.

Batman BM201 EVM Kit + External Microprocessor

Wire connections for external microprocessor access on the HAT-Board Note: EM110 Emulator not included within this EVM Kit.

Please contact Joybien for purchasing info.

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman Kit + EM110 Emulator for PC Computer Connection

Batman BM201 EVM Kit + EM110 Emulator+PC

Wire connections for external EM110 Emulator on the HAT-Board

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

BM201 EVM Kit Installation on Desktop Computer

On Software side, please download & install EM110 USB to UART Bridge Virtual COM Port (VCP) drivers for your Computer (Windows, Mac, or Linux) at:

to enable the UART communication between BM201 EVM Kit and Computer.

Please make sure that you have installed Python on your Computer at:

https://www.python.org/downloads/

Note: You must enable "Add Python to PATH" upon installation.

You may download GEANY as your Python code editor at:

https://www.geany.org/download/releases/

At this point, you may download and execute the corresponding BM201 EVM Kit's Python SDK examples at: https://github.com/bigheadG/mmWave

Note: Please follow the Python example to install relevant Libraries for proper execution.

To enable UART port on Computer, you will need to enable proper PORT setting within the Python Code. As an example, for Window PC having UART running at 921600 bps, please enable:

```
port = serial.Serial("COM#",baudrate = 921600, timeout = 0.5)
```

where the "#" of the COM# should correspond to the XDS110 Class Auxiliary Data Port dynamically assigned by Windows Device Manager's Ports (COM & LPT) after the USB cable is properly connected on the both ends. As an example, in the picture below, the COM port used is the EM110's XDS110 Class Auxiliary Data Port assigned, and in this case, it is COM54; so you will need to enable your Python Code to include:

port = serial.Serial("COM54",baudrate = 921600, timeout = 0.5)

Please follow similar process for Mac or Linux Computer for the UART communication port used.

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman BM201 EVM Kit + UART USB for PC Computer Connection

Batman BM201 EVM Kit + UART

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman Kit + NVIDIA Jetson Nano / Batman Kit + Raspberry Pi

Please make sure that the JUMPER SETTING is for Raw Data Mode

Batman BM201 EVM Kit + Jetson Nano

Batman BM201 EVM Kit + Raspberry Pi

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Specifications

mmWave Sensor Evaluation Module

mmWave ASIC	TI IWR6843 Single Chip mmWave Sensor		
FMCW Transceiver	Integrated PLL, Transmitter, Receiver, Baseband, and A2D		
	60GHz to 64GHz Coverage With 4GHz Continuous Bandwidth		
	Four Receive Channels		
	Three Transmit Channels		
	Ultra-Accurate Chirp Engine Based on Fractional-N PLL		
	TX Power: 10 dBm		
	RX Noise Figure: 14 dB		
	● Phase Noise at 1 MHz: –92 dBc/Hz		
	Antenna Type : ISK Antenna		
Built-in Calibration	ARM® Cortex® -R4F-Based Radio Control System		
and Self-Test	Built-in Firmware (ROM)		
(Monitoring)	Self-calibrating System Across Frequency and Temperature		
DSP	C674x DSP for Advanced Signal Processing		
On-Chip Memory	● 1.75MB		
MCU	ARM R4F Microcontroller for Object Detection, and Interface Control		
	Joybien mmWave Protocol (Per configuration)		
1/0	Up to 6 ADC Channels (low sample rate monitoring)		
	Up to 2 SPI Ports		
	• Up to 2 UARTs		
	• I2C – GPIOs		
Power Management	Built-in LDO Network for Enhanced PSRR		
	● I/Os Support Dual Voltage 3.3 V/1.8 V		
Clock Source	40MHz		
Antenna Orientation	4 receive(RX) 3 transmit (TX) antenna with 108° azimuth field of view (FoV) and 44° elevation FoV		
Input Power	3.3VDC, 2.1A source		
Operating Temperature	0°C ~ 40°C		
& Humidity	10% ~ 85% Non-Condensing		
Dimensions & Weight	t 67mm x 46mm x 2mm ; 15 grams net		

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Raspberry Pi-Hat Board /

Jetson Nano carrier board

Connector	 Matching mmWave Module Female Connector Matching Raspberry Pi GPIO Female Connector Micro USB Power Connector Jumpers for Bluetooth Tx/Rx or Raspberry Pi Tx/Rx Selection Jumper for mmWave Raw Data or Key Data Selection 	
Bluetooth (optional)	Joybien JBT24M Bluetooth Low Energy Module	
Micro USB Input Power	5VDC, 2Amp. (Note: Power Adapter and Micro USB Cable NOT included)	
Operating Temperature Operating Humidity		
Dimensions & Weight	• 65.3mm x 56.3mm 23 grams	

Python SDK

Python SDK

 Available on GitHub Note: Please refer to README.md file first for proper configuration

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Pin Assignment

J3 Pin Assignment

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

J3 Pin Assignment

Pin No	Name		
04		Pin Type	Function Description
	D3V3	ı	POWER DC 3V3 Input
02	D3V3	ı	POWER DC 3V3 Input
03	D3V3	ı	POWER DC 3V3 Input
04	SDA	10	I2C Pin
05	GND	GROUND	Digital ground
06	SCL	10	I2C Pin
07	RS232 RX0	ı	UART A Receive
08	SYNC IN JBRX1	ı	Low frequency Synchronization signal input, UART B Receive
09	RS232 TX0	0	UART A Transmit
10	GND	GROUND	Digital ground
11 1	nRST	1	Power on reset for chip. Active low
12 (GPIO 0	1	Select KeyData or RawData
13	GND	GROUND	Digital ground
14 (GPIO 1	1	Reserved
15	DP0	10	GPIO Pin
16	CS1	10	SPI Channel A - chip Select
17	DP1	10	GPIO Pin
18 ;	3V3	0	For meaurement only
19 (GND	GROUND	Digital ground
20	MOSI 1	10	SPI Channel A - Master Out Slave In
21	BSS LOGGER	10	BSS LOGGER
22	MISO 1	10	SPI Channel A - Master In Slave Out
23	MSS LOGGER JBTX1	0	UART B Transmit
24	SPICLK 1	10	SPI Channel A - Clock
25	SOP2	1	SOP2
26	GND	GROUND	Digital ground
27	SOP1	1	SOP1
28	nERRIN	_	Failsafe input to the device. Nerror output from any other device can be concentrated in the error signaling monitor module inside the device and appropriate action can be taken by Firmware.
29	GND	GROUND	Mistake Proofing Pin
30	nERROUT	0	Open drain fail safe output signal. Connected to PMIC/Processor/MCU to indicate that some severe criticatlity fault has happened. Recovery would be through reset.
31	WARMRST	Ю	Open drain fail safe warm reset signal. Can be driven from PMIC for diagnostic or can be used as status signal that the device is going through reset.
32	GPIO2	0	LED Indicator

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Raspberry Pi Hat Pin Assignment

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Product Dimensions

Copyright ©2023, Joybien Technologies Co., Ltd.

Joybien reserves the right to make changes without further notice to and products herein. Joybien makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Joybien assume any liability arising out of the application or use of any product or circuit. Joybien's products are not to be used in life support devices or systems, if a failure of an Joybien's product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

> For the latest version of this document, visit our website: www.joybien.com

Note:

Texas Instruments TI UNIFLASH, Silicon Labs are trademarks of the respective companies.

NVIDIA logo, and Jetson Nano are trademarks and/or registered trademarks of NVIDIA Corporation.

Raspberry Pi logo and Raspberry Pi 4 are trademarks and/or registered trademarks of Raspberry Pi Foundation.

"Python" is a registered trademark of the PSF.

This EVM Kit does not include Raspberry Pi computer, nor NVIDIA Jetson Nano computer.