Fixed Linear Effects Models

Peter von Rohr

24.02.2020

Background

- Given a population of N animals
- ▶ Each animal has information on genotypes at loci *G*, *H* and *I*
- Each animal has an observation for one quantitative trait of interest y
- ► **Goal**: Predict genomic breeding values

Data

Two Types Of Models

- 1. **Genetic** Model: How can we decompose the phenotype into genetic part and non-genetic environmental part
- 2. **Statistical** Model: How to estimate unknown parameters from a dataset

Goals:

- 1. Use genetic model to show how observations and genetic information can be used to predict breeding values.
- 2. Use statistical techniques to do the prediction

Genetic Model

- simple model from quantitative genetics to split phenotypic observation into
 - genetic part g and
 - environmental part e

$$y = g + e$$

- environment: split into
 - known environmental factors: herd, year, ... (β)
 - ightharpoonup unknown random error (ϵ)
- polygenic model: use a finite number of loci to model genetic part of phenotypic observation

Genetic Model (II)

Phenotype

Polygenic Model

Component g can be decomposed into contributions g_j of single loci

$$g = \sum_{j=1}^k g_j$$

- Assume that loci are additive, hence genotypic values g_j depends on a_i with $d_i = 0$
- ▶ Genotypic values at locus j can either be $-a_j$, 0 or a_j
- Breeding values based on locus j depends on aj.

Genotypic Value

ightharpoonup Genotypic value g_i for animal i over all loci

$$g_i = M_i \cdot a$$

where M_i is a row vector with elements -1, 0 and 1 and a is the vector of all genotypic values of the positive homozygous genotypes of all loci.

Phenotypic Value

ightharpoonup Collecting all components for an observation y_i for animal i

$$y_i = W_i \cdot \beta + M_i \cdot a + \epsilon_i$$

▶ all animals in the population

$$y = W \cdot \beta + M \cdot a + \epsilon$$

ightharpoonup combining $b^T = [\beta \ a]$ and $X = [W \ M]$

$$y = X \cdot b + \epsilon$$

Statistical Model

- genetic model from statistics point of view
- phenotypic observation as response y
- vector b (known environment and genotypic values) as unknown parameter
- fixed predictor variales in matrix X
- \triangleright vector ϵ as random error terms
- → Fixed Linear Effects Model

Parameter Estimation

- use regression model
- regression means both response and predictors are continuous
- example dataset: body weight on breast circumference

Regression Dataset

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Regression Model

- response *y*: body weight
- predictor x: breast circumference
- model for observation y_i

$$y_i = x_i * b + \epsilon_i$$

- ▶ meaning of *b*: change x_i by one unit y_i changes on average by *b* units.
- use case: measure x_{N+1} for animal N+1 with unknown weight and use b to predict y_{N+1}

Least Squares

- How to find b such that y is best approximated by x
- ightharpoonup Residuals $r_i = y_i x_i * \hat{b}$
- Minimization of sum of squared residuals (LS)
- ▶ Use \hat{b} at minimal LS as estimate

LSQ Diagram

Sum of squared residuals

$$LS = \sum_{i=1}^{n} r_i^2$$

- In matrix-vector notation with r denoting the vector of all residuals

$$LS = ||r||^2 = r^T r$$

where ||.|| stands for the norm ("length in 2D") of a vector

▶ Replacing r with $r = y - X\hat{b}$

$$LS = (y - X\hat{b})^{T}(y - X\hat{b}) = y^{T}y - y^{T}X\hat{b} - \hat{b}^{T}X^{T}y + \hat{b}^{T}X^{T}X\hat{b}$$

Minimization

Set partial derivative of LS with respect to \hat{b} to 0

$$\frac{\partial LS}{\partial \hat{b}} = -y^T X - y^T X + 2\hat{b}^T X^T X = 0$$

lacktriangle Take the \hat{b} that satisfies the above equation as the least squares estimate \hat{b}_{LS}

$$X^T X \hat{b}_{LS} = X^T y$$

Solution

$$\hat{b}_{LS} = (X^T X)^{-1} X^T y$$

Variance of Error Terms

- ▶ Least Squares Procedure does not yield an estimate for σ^2
- ► The estimator based on the residuals

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{n=1}^{n} r_i^2$$

Different Types of Regressions

► Regression through the origin

$$y_i = x_i * b + e_i$$

- Regression with intercept

$$y_i = b_0 + x_i * b + e_i$$

Predictions

- ▶ One of the use-cases for regression is **prediction**
- Prediction means that given a regression model with estimated regression coefficients based on a data set, values of responses are to be predicted for new predictor values (x_{new})

$$\hat{y} = x_{new} * \hat{b}$$

No predictions outside of the range of x used to estimate \hat{b}

Multiple Linear Regression

- Use more than one predictor variable
- Example: Conformation traits BCS and HEI besides BC
- ► New model:

$$y_i = b_0 + BC_i * b_1 + BCS_i * b_2 + HEI_i * b_3 + e_i$$

In matrix vector notation:

$$y = Xb + e$$

with
$$b^T = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix}$$

New data set

Table 2: Dataset for Multiple Linear Regression

Animal	Breast Circumference	Body Weight	BCS	HEI
1	176	471	5.0	161
2	177	463	4.2	121
3	178	481	4.9	157
4	179	470	3.0	165
5	179	496	6.8	136
6	180	491	4.9	123
7	181	518	4.4	163
8	182	511	4.4	149
9	183	510	3.5	143
10	184	541	4.7	130

Goal

- Find solution for \hat{b}_{LS}
- ► Same principle of least squares as with simple linear regression
- ▶ Different dimensions for *X* and *b*
- \rightarrow Problem 1 in Exercise 2

Regression on Dummy Variables

- ► What happens when predictor variables *X* are no longer continuous
- Examples: SNP-Genotypes
- lacksquare X can only take a few discrete values, e.g., 0,1 or $-1,0,1,\ldots$
- ightarrow regression on dummy variables or just general fixed linear model.

Example: SNP-Data

Goal

- Same as in linear regression: fit line through points such that least squares criterion holds
- ▶ Interpretation: Difference between effect levels
- ► For SNP-data: differences correspond to marker effects

Dummy Regression Line

Problem

- ▶ In many datasets X does not have full column-rank
- ▶ That means some columns of *X* show linear dependence
- \triangleright As a consequence of that (X^TX) cannot be inverted

Solution

- ▶ Use a generalised inverse $(X^TX)^-$ to get a solution \hat{b}_{LS} for least squares normal equations
- ▶ Use estimable functions of \hat{b}_{LS} which are independent of the choice of $(X^TX)^-$
- One example for estimable functions are differences between effect levels
- ► For example of SNP-data these correspond to marker effects.