

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Fachbereich Elektrotechnik und Informatik Labor für Informationstechnik Praktikum Mikroprozessortechnik

Aufgabe 1 Exercise	Digitalvoltmeter Digital Voltmeter		
Semester / Gruppe Semester / Group	<u>)</u>		Protokollführer Chairperson
Semester, Group			Chair person
Versuchstag Day of Exercise			Versuchsteilnehmer Participants
Professor Professor			1 di vespenin

Die Aufgabe ist in 3 Versuche unterteilt. Wenn es nicht anders vereinbart wird, sind alle drei Aufgaben zu programmieren und zu testen.

The exercise consists of 3 experiments. Unless otherwise stated, all three experiments are be programmed and tested.

_

¹ Thl, Snd, Pnr 6.05, Ltl 11.13, Pro 01/2018

Einführung

Bild 1 zeigt PC-Entwicklungssystem und Texas Instruments TM4C1294-Board.

- Die Bausteine des Digitalvoltmeters sind mit dem Input/Output-Board zu verbinden.
- Mit Editor, Compiler oder Assembler und Linker ist die Steuerungssoftware für die Analog-Digital-Umsetzungsver-

Versuche:

Externer D/A-Umsetzer

Das Übertragungsverhalten des externen D/A-Umsetzers ist in Tabelle 1 zu finden. Bild 2 zeigt die Schaltung. Triggerpuls erzeugt einen Flankenwechsel am Beginn eines Umsetzungszylus kann zur Triggerung des Oszilloskops verwendet werden.

Tabelle 1 Übertragungsverhalten des externen D/A-Umsetzers

PC Development System

TM4C1294 Board

Input / Output Board

Digital input	Analog output
0000 0000	0V
0000 0001	OV + 1 U_{LSB}
0000 0010	OV + 2 U_{LSB}
• • •	• • •
1111 1110	5V - 2 U_{LSB}
1111 1111	5V - 1 U_{LSB}

Voltage step: $U_{LSB} = 5V/256 = 19.53125mV$ Analog output: $U_{out} = (Digital input) \cdot U_{LSB}$

Aufgabe 1: Treppenverfahren

Über Port K legt man dual ansteigende Eingangswerte an den D/A-Umsetzer (0000 0000, 0000 0001, ..., 1111 1111). Bild 2 zeigt die Schaltung. Der Umsetzer wandelt diese Werte gemäß Tabelle 1 in eine treppenförmige Ausgangsspannung U_{out} . Wenn U_{out} größer als die zu messende Eingangsspannung U_E wird, schaltet der Komparator. Der letzte digitale Eingangswert ist zur Eingangsspannung U_E proportional. Die gemessene Spannung ist dreistellig über die Ports L und M auszugeben. Hinweis: Wenn der Eingangswert des D/A-Umsetzers geändert wird, vergehen etwa 30 μ s bis das Ausgangssignal des Komparators stabil an PD(0) anliegt.

Entwerfen Sie Stuktogramme oder Flussdiagramme für das Treppenverfahren. Durch Aktivierung des Tastersignals "Stop" an PD(1) soll die AD-Umsetzung solange ausgesetzt werden, bis der Taster wieder losgelasen wird.

Schreiben Sie ein C-Programm.

<u>Aufgabe 2: Wägeverfahren (Sukzessive Approximation)</u>

Über Port K in Bild 2 wird zuerst eine Dualzahl ausgegeben, bei der nur das MSB gesetzt ist (1000 0000). Ist die zugehörige Ausgangsspannung U_{out} kleiner als die Eingangsspannung U_E , schaltet der Komparator nicht. Andernfalls schaltet er den an PD(0) anliegenden Spannungspegel auf 0V. Auf diese Weise kann entschieden werden, ob das MSB gesetzt bleiben muss oder ob es wieder wegzunehmen ist. Das beschriebene Verfahren wird sinngemäß für alle anderen Bitstellen wiederholt. Man erhält als Ergebnis eine zur Eingangsspannung U_E proportionale Dualzahl. Die gemessene Spannung ist dreistellig über die Ports L und M auszugeben. Hinweis: Wenn der Eingangswert des D/A-Umsetzers geändert wird, vergehen etwa 30 μ s bis das Ausgangssignal des Komparators stabil an PD(0) anliegt.

Entwerfen Sie Stuktogramme oder Flussdiagramme für das Wägeverfahren. Durch Aktivierung des Tastersignals "Stop" an PD(1) soll die AD-Umsetzung solange ausgesetzt werden, bis der Taster wieder losgelasen wird.

Schreiben Sie ein C-Programm.

Aufgabe 3: Interner A/D-Umsetzer

Das Übertragungsverhalten des internen 12 bit A/D-Umsetzers ist in Tabelle 2 zu finden.

Tabelle 2 Übertragungsverhalten des internen A/D-Umsetzers

Analog input \emph{U}_{E}	Digital output D			
$0 \leq U_E < 1/2 U_{LSB}$	0000 0000 0000			
$1/2 \ U_{LSB} \le U_{E} < 3/2 \ U_{LSB}$	0000 0000 0001			
$3/2~U_{LSB} \leq U_{E} < 5/2~U_{LSB}$	0000 0000 0010			
•••	• • •			
5V - 3/2 $U_{LSB} \le U_{E} <$ 5V - 1/2 U_{LSB}	1111 1111 1111			
Voltage step: U_{LSB} = 5V/4096 = 1.220703 mV				
Digital output: $D = (int) (U_E/U_{LSB} + 0.5)$				

Bild 3 zeigt die Schaltung. Der A/D-Umsetzer wandelt die an PE(0) (= AIN3) angeschlossene analoge Eingangsspannung U_E in den zugehörigen Digitalwert. Man erhält als Ergebnis eine zu U_E proportionale Dualzahl. Die gemessene Spannung ist vierstellig über die Ports L und M auszugeben.

Entwerfen Sie Stuktogramme oder Flussdiagramme für das Steuerungsprogramm. Durch Aktivierung des Tastersignals "Stop" an PD(1) soll die AD-

Bild 3 Schaltung

Umsetzung solange ausgesetzt werden, bis der Taster wieder losgelassen wird.

Schreiben Sie ein C-Programm.

Versuchsdurchführung

Geben Sie Ihr jeweiliges Steuerungsprogramm in das PC-Entwicklungssystem ein, übersetzen und binden Sie es. Beseitigen Sie gegebenenfalls vom Compiler, vom Assembler oder vom Linker gemeldete Fehler. Schließen Sie dann die externe Hardware an das Input/Output-Board an und übertragen Sie das Steuerungsprogramm in das TM4C1294-Board. Überprüfen Sie die Arbeitsweise und beseitigen Sie Fehler, falls dies erforderlich ist.

- Schließen Sie an U_E zusätzlich ein professionelles Digitalvoltmeter an. Notieren und vergleichen Sie die angezeigten Spannungswerte. Untersuchen Sie Abweichungen und diskutieren Sie die Gründe dafür.
- Nur Versuche 2.1.1 bis 2.1.3: Verbinden Sie PL(2) (vgl. Bild 2) mit einem Kanal des Oszilloskops und benutzen ihn als Triggerquelle. Stellen Sie die Ausgangsspannung des D/A-Umsetzers, das Komparatorsignal und das Eingangssignal dar. Ermitteln Sie aus diesen Oszillogrammen die Umsetzungszeit.
- Ermitteln Sie die Umsetzzeiten des Treppen- und Wägeverfahrens.
 Diskutieren Sie im Protokoll die Auswirkungen auf die Umsetzungs bzw. Abtastrate als Kenngröße des Analog Digital- Umsetzers.

Anhang

A/D-Umsetzer mit einem D/A-Umsetzer in der Rückführung

Bild 4 zeigt die Struktur eines A/D-Umsetzer mit einem D/A-Umsetzer in der Rückführung.

Bild 4 D/A-Umsetzer mit einem A/D-Umsetzer in der Rückführung

Das Steuerungsprogramm erzeugt nach einer geeigneten Strategie digitale Werte x_D . Die daraus abgeleitete Spannung U_{out} wird mit der analogen Eingangsspannung U_E verglichen. Wenn die beiden Spannungen "gleich" sind, wird die Umsetzung beendet. Das Steuerungsprogramm gibt dann das digitale Ergebnis E_D aus. E_D wird während der nächsten Umsetzung konstant gehalten und kann sich von x_D zusätzlich in der Codierung unterscheiden.

Beim Treppenverfahren gibt das Steuerungsprogramm am Anfang der Umsetzung $x_D = 0$ aus und zählt x_D dann in Einer-Schritten hoch. Als Folge steigt U_{out} treppenförmig an. Wenn U_{out} größer als U_E wird, ändert sich der Ausgangspegel des Komparators und zeigt damit dem Steuerungsprogramm an, dass die Ausgabe von Treppenstufen zu beenden ist. Das Treppenverfahren ist einfach, aber langsam. Die Umsetzungszeit hängt von der Höhe der Eingangsspannung U_E ab.

Das Wägeverfahren arbeitet nach dem gleichen Prinzip wie eine Balkenwaage mit einem Gewichtssatz von Max/2, Max/4, Max/8, usw. Zuerst wird das schwerste Gewicht Max/2

aufgelegt. Ist Max/2 zu leicht, dann wird Max/4 dazugelegt. Ist Max/2 zu schwer, dann wird es wieder entfernt und durch Max/4 ersetzt. Diese Vorgehensweise wird sinngemäß solange wiederholt, bis auch das leichteste Gewicht verglichen worden ist.

Bild 5 zeigt den Verlauf von U_{out} bei einer A/D-Umsetzung nach dem Wägeverfahren. Da stets acht Schritte erforderlich sind, ist die Umsetzungszeit hier von der Höhe der Eingangsspannung U_E weitgehend unabhängig.

Bild 5 Spannungsverlauf beim Wägeverfahren

Introduction

Figure 1 shows the PC system for developent and the TM4C1294 board.

- The components of the digital voltmeter have to be wired with the input/output board.
- Use editor, compiler or assembler, and linker of the PC system for developing the control software for the analog-todigital conversion programs.

- Then transfer the control software to the TM4C1294 board for test.

Explanations about analog-to-digital conversion methods with a D/A converter feedback loop can be found in the appendix.

Experiments

External D/A converter

The transfer characteristics of the external D/A converter may be found in table 1. Figure 2 shows the circuit diagram. The trigger pulse signal generates a rising edge at the start of a conversion cycle and is used to trigger the oscilloscope.

Digital input	Analog output
0000 0000	0V
0000 0001	OV + 1 U_{LSB}
0000 0010	0V + 2 U_{LSB}
• • •	• • •
1111 1110	5V - 2 <i>U_{LSB}</i>
1111 1111	5V - 1 U_{LSB}

Voltage step: $U_{LSB} = 5 \text{V}/256 = 19.53125 \text{mV}$ Analog output: $U_{OUt} = \text{(Digital input)} \cdot U_{LSB}$

Table 1 Transfer characteristics of the external D/A Converter

Figure 2 Circuit Diagram

Exercise 1: Staircase method

Using port K increasing binary numbers are fed to the D/A converter (0000 0000, 0000 0001, ..., 1111 1111). Figure 2 shows the circuit diagram. The converter generates a staircase output voltage U_{out} according to the transfer characteristics in table 1. When U_{out} becomes greater than the input voltage to measure U_E , the comparator switches to low. The according digital input value is proportional to the input voltage U_E . The voltage has to be output with three digits using ports L and M. Hint: When the digital input is changed, there is a delay of about 30 μ s until the comparator output is stable.

Describe your program by Nassi-Shneiderman diagrams for the staircase conversion method. When signal PD(1) is asserted by pushing a button, the AD conversion is paused until the button is released again.

Write a C program.

Exercise 2: Weighting conversion method (sucessive approximation)

At port K in figure 2 first a binary number is output with only MSB set (1000 0000). If the corresponding output voltage U_{Out} is less than the input voltage U_E , the comparator puts out a high level, else the voltage level at PD(0) is switched to low. In this way the decision is possible, whether the MSB has to stay set or whether it has to be cleared. This procedure is repeated for all other bit positions. The resulting binary number is proportional to U_E . The voltage has to be output with three digits using ports L and M. Hint: When the digital input is changed, there is a delay of about 30 µs until the comparator output is stable.

Describe your program by Nassi-Shneiderman diagrams for the weighting conversion method. When signal PD(1) is asserted by pushing a button, the AD conversion is paused until the button is released again.

2.1.3 Write a C program.

Exercise 3: Internal A/D converter

The transfer characteristics of the internal 12 bit A/D converter may be found in table 2.

Figure 3 Circuit Diagram

21 BCD

Write a C program.

Experimental Setup

Design your programs with the PC development system, compile or assemble and link them. Correct compiler, assembler, and linker errors if necessary. Connect the external hardware to the input/output board and transfer the control program to the LM3S9B92 board. Test your program and correct errors if required.

- Measure U_E with a professional digital voltmeter. Note and compare the voltage levels, analyze and discuss differences.
- Experiments 2.1.1 to 2.1.3 only: Connect PL(2) (see figure 2) to the channel of an oscilloscope and use him as trigger source. Display the output voltages of D/A converter, comparator and analog input voltage. Find the period of a conversion cycle.
- Determine the conversion time of the Staircase and Weighting conversion method (sucessive approximation).
 - Discuss the effects of the conversion ate as parameter of the ADC.

Appendix

A/D converter with D/A converter in feedback loop

Figure 4 shows the structure of an A/D converter with D/A converter in feedback loop.

Figure 4 A/D converter with D/A Converter in Feedback Loop

The control program generates digital numbers x_D using a suitable strategy. The resulting voltage U_{out} is compared with the analog input voltage U_E . When both voltages are equal, the conversion is finished. The control program then puts out the digital value E_D . E_D is kept constant during the next conversion and may be different from x_D by coding.

For the staircase conversion method the control program puts out $x_D = 0$ at the beginning and then counts up x_D in steps of one. As a result U_{out} is increasing in stairs. When U_{out} is getting greater than U_E , the changing output level of the comparator is a signal for the control program to stop the output of stairs. The staircase method is easy but slow. The conversion time depends on the value of the input voltage U_E .

The weighting conversion method works on the principle of beam scales with a set of weights of Max/2, Max/4, Max/8, and so on. The biggest weight is taken first. If Max/2 is too light, Max/4 is added; otherwise Max/2 is removed and replaced by Max/4. This procedure is repeated logically, until the lightest weight is compared.

Figure 5 shows the characteristic of U_{out} during an A/D conversion cycle using the weighting method. The conversion time is obviously independent of the size of the input voltage U_E .

Figure 5 Voltage Course of Weighting Method Conversion