ANN Report

Carson Fox

September, 2021

Problem 3

284xnx10

eta	n = 10	25	50
.5	.90	.92	.93
.25	.89	.91	.74
.125	.86	.80	.72

284x10xnx10

eta	n = 10	25	50
.5	.89	.91	.91
.25	.88	.89	.88
.125	.81	.86	.87

284 x 25 x n x 10

eta	n = 10	25	50
.5	.91	.92	.93
.25	.90	.90	.92
.125	.87	.89	.90

284x50xnx10

eta	n = 10	25	50
.5	.92	.93	.93
.25	.91	.91	.92
.125	.88	.89	.90

Observations

It seems a higher learning rate, unsuprisingly, causes the networks to learn faster. Much larger networks were not significantly more accurate when compared to anything bigger than about 10×10 , so it seems like 25×25 is a good choice. This makes sense, since that number of parameters is close to the number of parameters in the input.