Imatge Sintètica Ray Tracing for Realistic Image Synthesis

Ricardo Marques (ricardo.marques@upf.edu)

Group de Tecnologies Interactives (GTI)
Departament de Tecnologies de la Informació i les Comunicacions (DTIC)
Universitat Pompeu Fabra (UPF)

Edifici Tanger - Office 55.106

Lecture 2 - Camera Rays and Ray-Sphere Intersection 2017/2018

Class Outline

Lecture 2 - Camera Rays and Ray-Sphere Intersection

Last Class Summary

Simple Ray Tracing
Coordinate Spaces
Camera Models
Camera Rays
Ray-Sphere Intersection

Next Classes

Section 1

Last Class Summary

Last Class Summary

- We have seen:
 - ▶ 3D points, 3D vectors and normals and other useful 3D entities
 - Simple vector and matrix operations
 - Common 3D transformations
 - How to transform points, vectors and normals
 - ▶ The notion of image
- This gives us the basic tools to learn ray tracing!

Section 2

Simple Ray Tracing

Recall: The Ray Tracing Principle

- Use rays to compute the light that arrives at each image pixel
 - ► Simulate the light propagation from light sources
 - Model the light interaction with the scene materials

Recall: 3D Frame

- ► To represent points and vectors in a 3D space we need a 3D frame
- ► A 3D frame is a coordinate system represented by an origin and three base vectors
- World frame
 - Specifies the world space coordinates
 - Origin (x, y, z) = (0, 0, 0)
 - ▶ Base vectors (1,0,0), (0,1,0) and (0,0,1)
- ► In this course we will use a *left-handed* coordinate system
- All other frames (e.g., object's or camera's local frames) must be defined with respect to the world frame

Lett hand

[Image from George H. Otto]

Subsection 1

Coordinate Spaces

World Space and Object Space

- ▶ A stand alone object is expressed in object space
 - ▶ The origin of the object frame is usually the object center
- Placing that object in a scene consists of specifying how to pass from object space to world space

[Image from Misha Kazhdan]

► All objects have *objectToWorld* and *worldToObject* matrices

World Space and Camera Space

- Camera space
 - Coordinate system based upon the viewpoint of the observer

[Image from Misha Kazhdan]

 All cameras have cameraToWorld and worldToCamera matrices

Camera Space

Camera Up

- ▶ Camera space $((x, y, z) \in \mathbb{R}^3)$
 - Expresses directions and locations relatively to the cameranera Righ position
 - Handy space to generate rays (more details later) a Front
- Assumptions of the camera space

Camera Coordinates

- ▶ The camera is looking toward the *z*-axis
- ► The *x*-axis gives the camera right direction
- ▶ The *y*-axis gives the camera up direction
- ▶ The camera position in camera coordinates is (0,0,0)

Image Space and NDC

- ▶ Image space $((x,y) \in [0, W-1] \times [0, H-1])$
 - \blacktriangleright (x, y) are pixel coordinates
- ▶ NDC space $((x, y) \in [0, 1]^2)$
 - Similar to Image Space
 - Also defined in the image plan
 - ▶ (0,0) is the upper-left corner

Summary Coordinate Spaces

- World space: main frame
- ► Object space: expresses object components with respect to the object (local) frame
- Camera space: expresses directions and locations with respect to the camera position and orientation
- ► Image space and NDC space

Subsection 2

Camera Models

Cameras

- Camera: specifies how the scene is "seen"
- Project a 3D region of the scene onto a 2D image plane
- Examples: orthographic and perspective cameras
 - Two different ways of projecting

[Image from Loren K. Rhodes, http://jcsites.juniata.edu/faculty/rhodes/]

Orthographic Camera

- Extremely simple camera model
 - Handy for early development stages and debugging
- Mapping from camera space to image space amounts to projecting along an axis (usually the z-axis)
 - Parallel lines in the 3D scene remain parallel in the 2D image
 - Preserves the relative distance between objects
 - No foreshortening effect (distant objects do not look smaller)

Perspective Camera

- Slightly more complex than the orthographic camera
 - Includes the foreshortening effect (distant objects are seen smaller)
 - Does not preserve distances between objects
 - Parallel lines do not remain parallel in the image
 - More realistic camera model

Orthografic VS Perspective Camera

Orthographic Camera

Perspective Camera

Subsection 3

Camera Rays

3D Ray

- ▶ A ray is a semi-infinite line
 - ► A point specifies the origin (o)
 - A vector specifies its direction (d)

▶ The parametric representation of a ray is given by:

$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}$$
, with $0 \le t < \infty$

Camera Rays

- Camera rays are generated by the camera
 - Determine the visible objects from the viewer's position

- ▶ The camera ray generation depends on the used camera model
- ► For simplicity, rays are **generated in the camera space** and then transformed to world space

Camera Rays from Orthographic Camera

$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d} \,, 0 \le t < \infty$$

Camera Coordinates

- ▶ All rays have the same direction $\mathbf{d} = (0, 0, 1)$
- ▶ All ray origins lie on the image plane (z = 0)
 - $\mathbf{o} = (x, y, 0)$
 - x and y depend on the pixel coordinates
 - ▶ If xRes = yRes, then $x, y \in [-1, 1] \times [-1, 1]$

Camera Rays from Perspective Camera

$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d} \,, 0 \le t < \infty$$

- ▶ All rays have origin in the same point $(\mathbf{o} = (0,0,0))$
- ► Given a point **p** on the image plane (in camera coordinates), the direction **d** of the camera ray **r** passing through **p** is

$$d = p - o$$

Camera Rays from Perspective Camera

Subsection 4

Ray-Sphere Intersection

Intersecting Rays

- In the following examples, the intersection is computed in object coordinates
 - ▶ In object coordinates, the sphere center is always (0,0,0)
 - Simplifies computations
 - Rays must thus be transformed from world space to object space before computing the intersection

- Let us consider a sphere of radius r centered at point $\mathbf{p}_c = (0,0,0)$
- Recall the expression of a 3D sphere centered at zero

$$x^2 + y^2 + z^2 = r^2$$

Recall the expression of a ray

$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d} \,, \quad 0 \le t < \infty$$

$$= (o_x, o_y, o_z) + t \, (d_x, d_y, d_z)$$

$$= (o_x + t \, d_x, o_y + t \, d_y, o_z + t \, d_z)$$

- ► Intersecting a ray with a sphere amounts to finding the points along the ray **r** which belong to the sphere
 - ▶ **Objective:** find the values of *t*, which satisfy both equations

Substituting the ray expression on the sphere expression, yields

$$(o_x + t d_x)^2 + (o_y + t d_y)^2 + (o_z + t d_z)^2 = r^2$$

► It can be shown that developing and rearranging the terms, the above Eq. is written as:

$$at^2 + bt + c = 0$$

▶ The solutions t_{hit} (if any) give us the intersection points

- ▶ The discriminant $\Delta = b^2 4ac$ of the ray-sphere intersection equation tells us the number of solutions
 - If $\Delta < 0$ then there are no real solutions (no intersection!)
 - ▶ If $\Delta > 0$ then there are two intersection points (we are interested on the closest one!)

$$t_{hit} = rac{-b \pm \sqrt{\Delta}}{2a}$$

• If $\Delta = 0$ then there is a single intersection point (rare case)

$$t_{hit} = -\frac{b}{2a}$$

▶ If the ray direction **d** is normalized (i.e., $\|\mathbf{d}\| = 1$) then t_{hit} gives the intersection distance along the ray

Simple Ray Tracing Algorithm

Exercice: What Does It Do?

```
for (line = 0; line \le height - 1; line++)
    for (col = 0; col \leq width - 1; col++)
          ray ← camera.generateRay(line, col);
          if(object.intersect(ray))
               image(col, line) = red;
          else
               image(col, line) = black;
```

Simple Ray Tracing Algorithm

Lecture Summary

- ▶ We have seen basic ray tracing concepts such as:
 - Commonly used coordinate spaces
 - World space, object space, camera space
 - ► Image space, NDC
 - How to define a ray
 - The orthographic and perspective camera models
 - ▶ How to generate camera rays using these camera models
 - ▶ How to compute ray-sphere intersections
- Now we can launch rays!

Next Classes at a Glance

- Next Seminar and Practical Class
 - Consolidate notions learned in this Lecture (Assignment 2)
- Next Lecture: direct illumination without shadows
 - ▶ The concept of diffuse point light source
 - Diffuse and specular reflections
 - Materials