ТРЕТ МЕМОРИЈАЛЕН МАТЕМАТИЧКИ НАТПРЕВАР

Александар Блажевски - Цане

ДЕН 2: КАТЕГОРИЈА СЕНИОРИ

РЕШЕНИЈА И РАСПРЕДЕЛБА НА ПОЕНИ

Задача 4. Нека ABC е остроаголен триаголник со впишана кружница ω и A-припишана кружница ω_a . Нека I е центарот на ω . Кружниците ω и ω_a ја допираат страната BC во точките X и Y, соодветно. Нека Z е онаа пресечна точка на правата AY со ω што е поблиску до A. Точката H е подножје на висината спуштена од A. Докажете дека правите HZ, IY и AX имаат заедничка точка.

Решение. Прво ќе докажеме дека точките X, I и Z се колинеарни. Правите AB и AC се заеднички тангенти на ω и ω_a , па хомотетијата \mathcal{H} со центар A и коефициент $k=\frac{AI}{AI_a}$ ја пресликува ω_a во ω . Бидејќи $Y\in\omega_a\cap AY$, сликата $\mathcal{H}(Y)$ е истовремено на кружницата $\mathcal{H}(\omega_a)=\omega$ и $\mathcal{H}(AY)=AY$, па затоа $\mathcal{H}(Y)=Z$. Од друга страна, тангентата на ω_a во $Y\in BC$, па тангентата на ω во Z е паралелна со BC. Тоа значи дека $IZ\perp BC$, што заедно со $IX\perp BC$ ни кажува дека XZ е дијаметар во ω и дека точките X,I и Z се колинеарни. (3 поени)

Правата AH е нормална на BC, па $AH \parallel XZ$. Бидејќи I е средина на XZ и $AH \parallel XZ$, правата IY минува низ средината S од AH. (2 поени) Ако ја примениме Талесовата теорема на паралелните прави AH и XZ добиваме

$$\frac{YZ}{ZA} = \frac{YX}{XH}.$$

Оттука,

$$\frac{AS}{SH} \cdot \frac{HX}{XY} \cdot \frac{YZ}{ZA} = \frac{HX}{XY} \cdot \frac{YX}{XH} = 1.$$

Сега од теоремата на Чева, правите YS, HZ и AX се конкурентни, па заклучокот следи од тоа што точката I е на правата YS. (1 поен)

Забелешка. За првиот дел (точките X, I и Z се колинеарни) нема можност за парцијални поени. Слично, за вториот дел (AHXZ е трапез во кој правата IY ги преполовува основите AH и ZX) нема можност за парцијални поени. Последните 2 поени од решението може да се заработат и со повикување на теоремата на Штајнер (без доказ).

Задача 5. За позитивен цел број n велиме дека е маркантен доколку неговата бинарна репрезентација содржи повеќе единици одошто нули. (На пример, бројот 25 е маркантен бидејќи бинарната репрезентација $25 = (11001)_2$ содржи 3 единици и 2 нули). Дали постојат бесконечно многу маркантни броеви кои се полни квадрати? (Одговорот да се образложи.)

Решение. Одговор: Постојат бесконечно многу маркантни полни квадрати. Ќе дадеме два конструктивни докази и еден доказ со контрадикција.

Конструкција 1: Ќе докажеме дека за секој цел број k > 1 бројот

$$\frac{2^{k \cdot (2^k - 1)} - 1}{2^k - 1} = \sum_{i=0}^{2^k - 2} 2^{i \cdot k}$$

е таков што неговиот квадрат

$$a_k = \left(\frac{2^{k \cdot (2^k - 1) - 1}}{2^k - 1}\right)^2 = \left(\sum_{i=0}^{2^k - 2} 2^{i \cdot k}\right)^2 = \sum_{i=1}^{2^k - 1} i \cdot 2^{(i-1) \cdot k} + \sum_{i=1}^{2^k - 2} (2^k - i - 1) \cdot 2^{(2^k + i - 2) \cdot k}$$

е маркантен.

Бидејќи коефициентите пред секој степен на двојка во формулата погоре се помали од 2^k , сите се раздвоени во бинарната репрезентација. На пример, кога k=3, имаме

$$(\underbrace{1}_{1}\underbrace{010}_{2}\underbrace{011}_{3}\underbrace{100}_{4}\underbrace{101}_{5}\underbrace{110}_{6}\underbrace{111}_{2^{3}-1}\underbrace{110}_{6}\underbrace{101}_{5}\underbrace{100}_{4}\underbrace{011}_{3}\underbrace{010}_{2}\underbrace{001}_{1})_{2}.$$

Исто така, бидејќи

$$1 + (2^k - 2) = 2 + (2^k - 3) = \dots = (2^{k-1} - 1) + 2^{k-1} = 2^k - 1$$

е број со k единици, секој од паровите $(1,2^k-2),\dots,(2^{k-1}-1,2^{k-1}),$ како и бројот 2^k-1 имаат точно k единици.

Сега можеме да го пресметаме бројот на единици во бинарната репрезентација на $a_k - k \cdot (2^k - 1)$, па бидејќи бројот на неговите цифри во бинарната репрезентација е $2k \cdot (2^k - 2) + 1 < 2 (k \cdot (2^k - 1))$, бројот a_k е маркантен за секој k > 1.

Конструкција 2: Ќе докажеме дека квадратот на бројот $n = (\underbrace{1010...101}_{6k+5})_2$ има повеќе единици отколку нули во бинарната репрезентација за секој природен број k > 0.

Нека P е функција која што на секој позитивен цел број запишан во основа 2 му го доделува бројот на единици во неговата бинарна репрезентација. Нека Q е функција која што на секој позитивен цел број запишан во основа 2 му го доделува бројот на нули во истата репрезентација.

Во следните пресметки, ги изоставуваме заградите што означуваат бинарен запис кога работиме со броевите во бинарна репрезентација заради поедноставно претставување.

За секој ваков n имаме

$$n = (\underbrace{1010...101}_{6k+5})_2 = 2^0 + 2^2 + ... + 2^{6k+4} = \frac{2^{6k+6} - 1}{2^2 - 1} = \frac{2^{6k+6} - 1}{3}.$$

Следствено, добиваме

Гледаме дека n^2 се состои од k блокови од облик 111000_2 (да ги наречеме овие блокови a), k блокови од облик 011100_2 (да ги наречеме овие блокови b), еден блок од облик 11011100_2 (да го наречеме блок c) и од 1_2 како најдесна цифра во записот. Но, a блоковите и b блоковите имаат својство дека P(a) = Q(a), P(b) = Q(b), додека за блокот c важи P(c) = Q(c) + 2. Значи $P(n^2) = k \cdot P(a) + k \cdot P(b) + P(c) + 1 = k \cdot Q(a) + k \cdot Q(b) + Q(c) + 2 + 1 = Q(n^2) + 3 > Q(n^2)$, па бројот $n^2 = (\underbrace{1010...101}_{6k+5})^2$ е маркантен полн квадрат за секој $k \ge 0$.

Распределба на поени. Секое конструктивно решение се вреднува согласно следново:

(а) Конструкција на бесконечно многу маркантни полни квадрати без доказ. (3 поени)

Парцијални поени: Конструкција *со доказ* на бесконечно многу полни квадрати кои имаат подеднакво многу единици и нули во бинарната репрезентација. (1 поен)

(б) Доказ дека конструкцијата од делот (а) е валидна. (4 поени)

Забелешка: Маркинг шемата дозволува **0**, **1**, **3** или **7 поени** за контструктивно решение на оваа задача. Доколку натпреварувачот даде точна конструкција на бесконечно многу маркантни полни квадрати, но не докаже валидност на конструкцијата, тогаш заработува **3 поени**.

Единствен начин да се заработи **1 поен** е со конструирање на бесконечно многу полни квадрати кои се скоро маркантни (во смисла дека имаат не помалку единици одошто нули во бинарната репрезентација. Ова е многу едноставна конструкција.

Тврдењето дека постојат бесконечно многу маркантни полни квадрати само по себе (без конструкција и без доказ) се вреднува со **0 поени**.

Доказ со контрадикција: Да претпоставиме дека постојат само конечно многу маркантни полни квадрати. Нека $m^2 = a_1 a_2 \dots a_{k-1}$ е најголемиот таков број, и нека тој има точно k-1 цифри во бинарната репрезентација. (1 поен)

Го разгледуваме $s = m \cdot (2^k + 1)$. Така

$$s^{2} = m^{2}(2^{2k} + 2^{k+1} + 1) = a_{1}a_{2} \dots a_{k-1}a_{1}a_{2} \dots a_{k-1}00a_{1}a_{2} \dots a_{k-1}.$$

Да забележиме дека s^2 е маркантен, што е посакуваната противречност. Имено, постојат барем $\frac{k}{2}$ единици меѓу цифрите a_i , што повлекува дека постојат барем $\frac{3k}{2}$ единици меѓу вкупно (3k-1) бинарни цифри на s^2 . (5 поени) Бројот 1 потврдува дека множеството маркантни полни квадрати е непразно. (1 поен)

Забелешка: Последниот поен се доделува само за комплетно решение со контрадикција.

Задача 6. За цел број $n \geq 1$, разгледуваме множество P_{2n} од 2n точки што се рамномерно распределени на кружница. Секое совршено спарување на овие точки се состои од n отсечки чии краеви го сочинуваат P_{2n} . Нека \mathcal{M}_n е множеството од несамопресекувачки совршени спарувања на P_{2n} . За $M \in \mathcal{M}_n$ велиме дека е централно-симетрично доколку е инваријантно при симетрија во однос на центарот на кружницата. Одредете го (како фунција од n) вкупниот број на централно-симетрични совршени спарувања во \mathcal{M}_n .

Решение. Нека $C_n = \frac{1}{n+1} {2n \choose n}$ го означува n-тиот Каталанов број, и $S_n \subseteq \mathcal{M}_n$ е множеството од централно-симетрични совршени спарувања. Ќе докажеме дека за кардиналноста (бројот на елементи) на S_n важи:

$$|\mathcal{S}_n| = \begin{cases} 1 & \text{ако } n = 1; \\ n \cdot C_{(n-1)/2} & \text{ако } n \geq 3 \text{ е непарен}; \\ \binom{n}{n/2} & \text{ако } n \text{ е парен}. \end{cases}$$

Случајот n=1 е тривијален, и тогаш $S_n=\mathcal{M}_n$ се состои од еден дијаметар на кружницата. Пред да преминеме на нетривијалните случаи (за непарен $n\geq 3$ и за парен $n\geq 2$), воведуваме малку терминологија и нотација. За точка P велиме дека е затскриена позади тетива e која не е дијаметар на кружницата, доколку P не е крајна точна на e и радиусот од центарот на кружницата до P ја пресекува e. Нека σ е ознака за рефлексијата (централната симетрија) во однос на центарот на кружницата.

Да го разгледаме случајот $n \geq 3$. Започнуваме забележувајќи дека секое спарување $M \in \mathcal{S}_n$ содржи точно еден дијаметар на кружницата. Навистина, бидејќи $e \in M$ повлекува $\sigma(e) \in M$, од $4 \nmid 2n$ следува дека постои отсечка $e \in M$ за која важи $e = \sigma(e)$, т.е., која е дијаметар.

Од друга страна, јасно е дека во $M \in \mathcal{M}_n$ не може да има повеќе дијаметри на кружницата (поради барањето спарувањето M да не е самопресекувачко). (1 поен)

Има n дијаметри со краеви во P_{2n} . Откако еден од овие дијаметри е избран, да го означиме со d, ги поминуваме точките од P_{2n} кои лежат на една избрана страна од d и ги именуваме редоследно со $1,2,\ldots,n-1$. Очигледно, за било кое $M\in\mathcal{S}_n$ што го содржи d важи следново: секоја отсечка $e\in M$ има два или нуту еден крај меѓу точките $1,2,\ldots,n-1$. Следствено, централната симетричност на елементите на \mathcal{S}_n повлекува дека $|\mathcal{S}_n|/n$ е еднаков на бројот на несамопресекувачки совршени спарувања на точките $1,2,\ldots,n-1$. (1 поен)

Ќе покажеме дека овој број изнесува $C_{(n-1)/2}$. За оваа цел ќе конструираме биекција помеѓу множеството од такви спарувања и множеството од бинарни стрингови со точно (n-1)/2 нули и исто толку единици кои ја имаат следнава $npe \phi u \kappa c$ особина: во секој почетен сегмент од таквиот (n-1)-стринг бројот на нули не го надминува бројот на единици. (Добро е познато дека за $m \geq 1$ вкупниот број на такви 2m-стрингови е еднаков на m-тиот Каталанов број $C_m = \frac{1}{m+1} {2m \choose m}$. Основната идеја на вообичаениот доказ на ова тврдење е т.н. npunuun на $pe \phi ne \kappa c u ja$ на А. D. André.) За даден $M \in \mathcal{S}_n$, ги поминуваме точките $1, 2, \ldots, n-1$ во тој редослед, и покрај секоја точка која ја сретнуваме запишуваме 0-бит или 1-бит согласно следново правило: за секоја отсечка (ребро) чии два краја се меѓу $1, 2, \ldots, n-1$ запишуваме 1 при средбата со првиот крај, и запишуваме 0 при средбата со вториот крај. Обратно, за даден бинарен стринг со (n-1)/2 нули и исто толку единици кој ја поседува префикс особината, да ги означиме точките $1, 2, \ldots, n-1$ со битовите од овој (n-1)-стринг. Потоа последователно спаруваме точка означена со бит 1 и точка означена со бит 0, водејќи сметка сите точки кои се затскриени зад така добиеното ребро да се веќе спарени. Очигледно е дека опишаните две пресликувања се заемно инверзни. (1 поен)

За да ја потврдиме формулата во случајот кога n е парен, воспоставуваме биекција помеѓу множеството S_n и колекцијата од сите бинарни стрингови со точно n/2 нули и исто толку единици. За ова користиме означување $1,2,\ldots,2n$ на точките во фиксиран кружен редослед. За произволно дадено спарување $M \in S_n$, поминуваме низ првата половина од точките, т.е. од точката 1 до точката n. За секоја точка што ја сретнуваме, регистрираме еден 0-бит или 1-бит согласно следново правило: за секоја отсечка (ребро) чии два краја се меѓу точките $1,2,\ldots,n$ запишуваме 1 при средбата со првиот крај, и запишуваме 0 при средбата со вториот крај. За секое ребро e кое има точно еден крај меѓу точките $1,2,\ldots,n$, и реброто $\sigma(e)$ ја има истата особина, па тогаш запишуваме 0 при средбата со првата од овие две точки и запишуваме 1 при средбата со втората од овие две точки. Оваа постапка очигледно продуцира бинарен стринг со точно n/2 нули и исто толку единици.

Обратно, за произволно даден бинарен стринг со должина n сочинет од точно n/2 нули и исто толку единици, надоврзуваме една после друга две копии од овој стринг, што ни дава стринг со должина 2n. Ги запишуваме покрај точките $1,2,\ldots,2n$ долж кружницата битовите од вака добиениот стринг. Потоа последователно спаруваме точка покрај која стои бит 1 со точка покрај која стои бит 0, водејќи сметка сите точки кои се затскриени зад така добиеното ребро да се веќе спарени. Бидејќи има точно n точки со бит 0 и n точки со бит 1, оваа постапка резултира со совршено спарување. Притоа, според конструкцијата, секој пар дијаметрално-спротивни точки го имаат покрај себе истиот бит, што повлекува дека секое ребро e е придружено од неговата рефлексија $\sigma(e)$, т.е., навистина добиваме елемент од \mathcal{S}_n .

Очигледно е дека опишаните две пресликувања се заемно инверзни. (4 поени)

Забелешки. Парцијални поени не се доделуваат за:

- (1) случајот n = 1 или за било која друга мала вредност на n;
- (2) споменување на Каталановите броеви или наведување на формулата за n-тиот Каталанов број;
- (3) нецелосно решавање на случајот кога n е парен.