Příklad (4.1)

Dokažte, že polynom $6x^5 + 27x^3 - 18$ je ireducibilní prvek $\mathbb{Q}[x]$.

 $D\mathring{u}kaz$

Nechť $f_1 \in \mathbb{Q}[x]$ dělí $6x^5 + 27x^3 - 18 \mid\mid 2x^5 + 9x^3 - 6$. Potom můžeme f_1 vynásobit nejmenším společným násobkem jmenovatelů a vydělit největším společným dělitelem čitatelů, čímž dostaneme $f_2 \in \mathbb{Z}[x]$, který je primitivní a v $\mathbb{Q}[x]$ stále dělí $g_2 := 2x^5 + 9x^3 - 6$, což je taktéž primitivní polynome v $\mathbb{Z}[x]$. Ale tudíž (podle tvrzení / lemmatu o dělitelnosti v oboru vs. podílovém tělese) je $f_2|_{g_2}$.

Víme, že 3 je prvočíslo a $(3 \nmid 2), (3 \mid 9), (3 \mid -6), (9 \nmid -6)$, tedy máme splněny všechny předpoklady Einsteinova kritéria, tedy $g_2 \in \mathbb{Z}[x]$ je ireducibilní. Tudíž $f_2 \mid\mid 1$ nebo $f_2 \mid\mid g_2$ v $\mathbb{Z}[x]$, a tedy i v $\mathbb{Q}[x]$, tudíž $6x^5 + 27x^3 - 18$ je ireducibilní.

Příklad (4.2)

Najděte všechny polynomy $f \in \mathbb{Z}_3[x]$, pro které zároveň platí

$$f \equiv x + 2 \pmod{x^2 + 1}$$

a

$$f \equiv 1 \pmod{x^2 + x + 1}.$$

Řešení

Z Eulerovy věty je $x^2 \equiv 1 \pmod{3}$ pro $x \neq 0$ a $x^2 \equiv 0 \pmod{3}$ pro x = 0. Tedy $x^2 + 1$ je ireducibilní v $\mathbb{Z}_3[x]$ (jelikož je řádu 2 a vlastní dělitel by musel být řádu 1, tj. existoval by kořen). Jelikož $x^2 + 1$ nedělí $x^2 + x + 1$ (ani opačně), tak jsou tyto dva polynomy nesoudělné a můžeme použít Čínskou zbytkovou větu pro polynomy.

Polynom $(x^2+1)\cdot(x^2+x+1)$ je řádu 4, tedy hledáme polynom stupně 3. Řešíme vlastně rovnici

$$x + 2 + (\alpha_1 x + \alpha_0)(x^2 + 1) = (\alpha_1)x^3 + (\alpha_0)x^2 + (\alpha_1 + 1)x + (\alpha_0 + 2) =$$

$$= 1 + (\beta_1 x + \beta_0)(x^2 + x + 1) = (\beta_1)x^3 + (\beta_1 + \beta_0)x^2 + (\beta_1 + \beta_0)x + (\beta_0 + 1).$$

Porovnáním koeficientů dostaneme $\beta_0=1,\ \alpha_0=0,\ \alpha_1=\beta_1=2,$ tedy hledaný polynom je:

$$x + 2 + (2x + 0)(x^{2} + 1) = 2x^{3} + 2.$$

Řešením je tedy

$$2x^3 + 2 + (x^2 + 1)(x^2 + x + 1) \cdot f$$
, kde $f \in \mathbb{Z}_3[x]$.

Příklad (4.3)

V tělese $\mathbb{Z}_2[\alpha]/(\alpha^2+\alpha+1)$ spočtěte řešení soustavy lineárních rovnic zadané maticí

$$\left(\begin{array}{cc|c} \alpha & 1 & \alpha+1 \\ \alpha+1 & \alpha+1 & \alpha \end{array}\right).$$

Řešení

Jelikož pracujeme v tělese, můžeme provést klasickou Gaussovu-Jordanovu eliminaci. (S tím, že nemusíme dělit, protože první úpravu tipneme (přičíst α -násobek prvního řádku k druhému), druhá je naprosto zřejmá (přičtení 2. řádku do 1.) a pokud $\alpha \cdot x_1 = 0$, pak $x_1 = 0$):

$$\left(\begin{array}{cc|c} \alpha & 1 & \alpha+1 \\ \alpha+1 & \alpha+1 & \alpha \end{array}\right) \sim \left(\begin{array}{cc|c} \alpha & 1 & \alpha+1 \\ 0 & 1 & \alpha^2 \end{array}\right) \sim \left(\begin{array}{cc|c} \alpha & 0 & 0 \\ 0 & 1 & \alpha^2 \end{array}\right).$$

Tudíž $x_1 = 0$ a $x_2 = \alpha^2$.

Příklad (4.4)

Popište rozkladové nadtěleso polynomu x^4-1 nad \mathbb{Z}_3 a rozložte v něm daný polynom na lineární členy.

 $D\mathring{u}kaz$

 $x^4-1=(x-1)(x+1)(x^2+1)$ (protože 1 a -1 jsou kořeny, nebo prostě z vzorce na rozdíl čtverců). Kořenové těleso (podle důkazu věty o něm), které potřebujeme je tedy $\mathbb{Z}_3[\alpha]/(\alpha^2+1)$ (x^2+1 je nerozložitelné už bylo dokázáno v řešení 4.2). V tomto tělese má (x^2+1) zřejmě kořeny α a $2\cdot\alpha$, tj. rozklad v něm (a tudíž i důkaz, že je to zároveň rozkladové těleso) je $(x-1)(x+1)(x-\alpha)(x-2\alpha)$.