Springboard #4

Summary

#1 Importing the info

```
: # Let's import the pandas, numpy libra
import pandas as pd
import numpy as np

# Load the pyplot collection of functa
import matplotlib.pyplot as plt
```

First import the necessary tools to work w/

	City of London	Barking & Dagenham	Barnet	Bexley	Brent
	E09000001	E09000002	E090 0003	E09000004	E09000005
Jan-95	91,449	50,400	/-3,235	64,958	71,307
Feb-95	82,203	51 786	93,19	64,788	72,022
Mar-95	79,121	51 ,269	92,248	64,367	72,016
Apr-95	77,101	53,134	90,763	64,278	72,966
May-95	84-409	53,042	90,258	63,997	73,704
Jun-95	54,901	53,700	90,107	64,252	74,310
Jul-95	110 125	52,113	91,441	63,723	74,127
Aug-9 5	112,329	52,232	92,361	64,433	73,547
Sep-95	104,473	51,472	93,273	64,510	73,790
Oct-95	108,038	51,514	92,567	64,530	73,264
Nov-95	117,636	50,849	90,883	63,846	72,782
Dec-95	127,232	50,945	91,134	63,817	72,524
Jan-96	108,999	50,828	91,111	63,996	72,806
Feb-96	93,357	51,441	92,430	64,504	73,084
Mar-96	93,707	51,907	91,410	64,788	72,780
Apr-96	120,543	51,724	92,394	65,286	72,370
May 96	112 050	51 726	۵1 ۸۵۵	८ ६ ೧ ೪1	72 005

The information came from the web. It needed some work

To begin the Borough's needed to become the index While the dates the columns

	index	0	1	2	3	4	
0	Unnamed: 0	NaT	1995- 01-01 00:00:00	1995- 02-01 00:00:00	1995- 03-01 00:00:00	1995- 04-01 00:00:00	00
1	City of London	E09000001	91449	82202.8	79120.7	77101.2	8.
2	Barking & Dagenham	E09000002	50460.2	51085.8	51269	53133.5	5
3	Barnet	E09000003	93284.5	93190.2	92247.5	90762.9	
4	Bexley	E09000004	64958.1	64787.9	64367.5	64277.7	6

When moved, the first Row became what you wanted the columns to be.

Thus, the below was required to bring it up top & clear it for the Borough's.

E rouge y 244 columns

properties_adjusted = properties.T
properties_adjusted = properties_adjusted.reset_index()
properties_adjusted.columns = properties_adjusted.iloc[0]
properties_adjusted = properties_adjusted.drop(0)

	Unnamed: 0	NaN	1995-01- 01 00:00:00	1995-02- 01 00:00:00	1995-03- 01 00:00:00	1995-04- 01 00:00:00	1995-05- 01 00:00:00	1995-06- 01 00:00:00	(e the infrastruc	ture is set	up, need	to clean ບ
1	City of London	E09000001	91449	82202.8	79120.7	77101.2	84409.1	94900.5	d.rename(col	umns = { 'Unnamed: 0	':'London Bord	ough', nd.Na	T : 'TD' })
2	Barking & Dagenham	E09000002	50460.2	51085 pr	operties_ operties_ operties_	adjusted.	columns	res_uujuse	arr chame (amis = (omiamea, o	. zonaon_bore	ough , putili	. 10))
3	Barnet	E09000003	93284.5	93190.2	92247.5	90762.9	90258	90107.2						
4	Bexley	E09000004	64958.1	64787.9	64367.5	64277.7	63997.1	64252.3			London_Borough	ID	1995-01- 01	1995-02- 1 01
5	Brent	E09000005	71306.6	72022.3	72015.8	72965.6	73704	74310.5		Zondon_Borougn			00:00:00	00:00:00
										1	City of London	E09000001	91449	82202.8
										2	Barking & Dagenham	E09000002	50460.2	51085.8
										3	Barnet	E09000003	93284.5	93190.2
										4	Bexley	E09000004	64958.1	64787.9
										5	Brent	E09000005	71306.6	72022.3

```
cleaned = pd.melt(properties_adjusted, id_vars = [ 'London_Borough', 'ID' ])
cleaned = cleaned.rename( columns = { 0 : 'Month', 'value' : 'Average_price' } )
cleaned.head()
```

	London_Borough	ID	Month	Average_price
0	City of London	E09000001	1995-01-01	91449
1	Barking & Dagenham	E09000002	1995-01-01	50460.2
2	Barnet	E09000003	1995-01-01	93284.5
3	Bexley	E09000004	1995-01-01	64958.1
4	Brent	E09000005	1995-01-01	71306.6

You then 'melt' all the dates into one column. This is similar to what you must do in Tableau Prep.

Basically, each month is arranged & shows all the Boroughs before moving to the next month

```
cleaned['Average price'] = pd.to numeric(cleaned['Average price'])
cleaned.dtypes
 London_Borough
                           object
                           object
 Month
                  datetime64[ns]
Average price
                          float64
dtype: object
n1 = cleaned[cleaned['Average price'].isna()]
n2 = cleaned.dropna()
nonBoroughs = ['Inner London', 'Outer London',
               'NORTH EAST', 'NORTH WEST', 'YORKS & THE HUMBER',
               'EAST MIDLANDS', 'WEST MIDLANDS',
              'EAST OF ENGLAND', 'LONDON', 'SOUTH EAST',
              'SOUTH WEST', 'England']
n2[n2.London Borough.isin(nonBoroughs)]
n2[~n2.London_Borough.isin(nonBoroughs)]
n2 = n2[~n2.London Borough.isin(nonBoroughs)]
df = n2
df.head()
```

	London_Borough	ID	Month	Average_price
0	City of London	E09000001	1995-01-01	91448.98487
1	Barking & Dagenham	E09000002	1995-01-01	50460.22660
2	Barnet	E09000003	1995-01-01	93284.51832
3	Bexley	E09000004	1995-01-01	64958.09036
4	Brent	E09000005	1995-01-01	71306.56698

You then notice 2 things:

- 1. The average price column is NOT a # so you need to change it to a #
- 2. There appears to be a noticeable differential between the # of rows for each column alluding to the idea that there are null values
- 3. We decided to just remove the null values.

```
hackney_prices = df[df['London_Borough'] == 'Hackney']
hack = hackney_prices.plot(kind='line', x='Month', y='Average_price')
hack.set_ylabel('Average Prices')
```

Text(0, 0.5, 'Average Prices')

To double check to see if it's okay to move to the next round, one of the borough's was chosen & shown.

```
df['Year'] = df['Month'].apply(lambda t: t.year)
df.tail()
```

	London_Borough	ID	Month	Average_price	Year
14812	Sutton	E09000029	2020-09-01	386214.0222	2020
14813	Tower Hamlets	E09000030	2020-09-01	437574.0254	2020
14814	Waltham Forest	E09000031	2020-09-01	461726.9731	2020
14815	Wandsworth	E09000032	2020-09-01	615802.8152	2020
14816	Westminster	E09000033	2020-09-01	925003.9220	2020

The previous worked & thus for future modeling, Annual Data was added on top of the Monthly data.

```
dfg = df.groupby(by=['London_Borough', 'Year']).mean()
dfg.sample(10)
```

Average_price

London_Borough	Year	
Merton	2010	299999.358992
Brent	2015	440951.665383
Havering	2008	231473.737725
Hounslow	2000	136624.857775
Redbridge	1999	102940.450633
Croydon	2009	203706.368500
Redbridge	2014	304162.470942
Haringey	2014	435807.737383
Southwark	2009	261151.042333
Greenwich	2007	228861.968033

```
dfg = dfg.reset_index()
dfg.head()
```

÷

	London_Borough	Year	Average_price
0	Barking & Dagenham	1995	51817.969390
1	Barking & Dagenham	1996	51718.192690
2	Barking & Dagenham	1997	55974.262309
3	Barking & Dagenham	1998	60285.821083
4	Barking & Dagenham	1999	65320.934441

Since we want to look at average prices per year, the Borough's were grouped by their year(s) & indexed accordingly.

#3 Modeling

```
def price_ratio(d):
    y1998 = float(d['Average_price'][d['Year']==1998])
    y2018 = float(d['Average_price'][d['Year']==2018])
    ratio = [ y2018 / y1998 ]
    return ratio
```

```
final = {}
for bor in dfg['London_Borough'].unique():
   borough = dfg[dfg['London_Borough'] == bor]
   final[bor] = price_ratio(borough)
```

Since we want to see the price appreciation between 1998 & 2018, we built a function (above) that a Loop (below) could be sent through.

We also built an empty dictionary (Final) to receive what the Loop produces.

#3 Modeling

```
df_ratios = pd.DataFrame(final)

df_ratios_T = df_ratios.T
    df_ratios = df_ratios_T.reset_index()

df_ratios.rename(columns={'index':'Borough', 0:'2018'}, inplace=True)
    df_ratios.head()
```

	Borough	2018
0	Barking & Dagenham	4.896619
1	Barnet	4.358196
2	Bexley	4.248977
3	Brent	4.894554
4	Bromley	4.094785

That information through the Loop was sent to a new variable (df_ratios) which was then pivoted (similar to what was previously done on Slide 4) to a clean set that we can work with.

#3 Modeling

```
top20 = df_ratios.sort_values(by='2018', ascending=False).head(20)
top20_chart = top20[['Borough','2018']].plot(kind='bar')
top20_chart.set_xticklabels(top20.Borough)
```


Now that we can work with it, we establish the infrastructure to see what we originally wanted to see (Top 20 Boroughs by price appreciation).

We made sure to tell the variable we want to see the sorted rows in descending order in a Box Plot.

#4 Conclusion

Property prices in the top 20 boroughs in London witnessed a ~500% increase in price between 1998 & 2018 representing appreciation of ~8.46% per annum. The greatest appreciation was seen in Hackney & Watham Forest. I have never been to London & thus I am, at this time, not in a position to comment as to why these saw the greatest appreciation.