AI使能网络自动驾驶 AI building Autonomous driving network

heyubao@huawei.com

我们面临一个新时代

$OPEX = (3~4) \times CAPEX$

降低设备开销仍不能改变运营商的投入成本

- 庞大而复杂的网络已超出运维人 员的能力
- 70%<mark>的严重问题</mark>都是人因错误

OTT挑战

- 高效率 & 低成本
- 拥有技术创新与大胆尝试的土壤

我们面对的网络结构.....

Home Connection

我们面对的场景

产品生命周期

业界的解决方案: AlOps

高校研究

无人运维 基于AIOps的无人运维 侧重于通过AI服务于运维目标

互联网

AlOps: Algorithmic IT Operations 算法替代人为规则 侧重算法,强调学件 Metis 智能运维学件平台

Gartner

通过AI增强IT运维能力 利用大数据、机器学习和其他分析技术,通过预防预测、个性化和动态分析,直接和间接增强IT业务的相关技术能力,实现所维护产品或服务的更高质量、合理成本及高效支撑。

Source: Gartner Report IT Operations Analytics Must Be Placed Within an AlOps Context.

面对挑战,华为发布网络自动驾驶成熟度定义

基于场景,逐步由系统代替"手(操作),眼(监控),脑(决策),心(意图)",最终实现"网络自动驾驶"

	层级定义	L0: Manual Management	L1: Assisted Automation	L2: Partial Autonomous Network	L3: Conditional Autonomous Network	L4: Highly Autonomous Network	L5: Full Autonomous Network
场景	经 系统特征	定义:人工管理 网络 能力:无自动化, 无辅助系统	定义:离散点的工具 辅助支撑 能力:工具辅助,规 则和专家经验固化	定义:面向任务自 动化 能力:基于策略自 动化,解放手	定义:基于场景自闭 环能力,责任是人 能力:可感知环境变 化,解放手和眼	定义:单场景自治, 责任为系统 能力:基于预测的 自治,解放手,眼 和脑	定义:全场景闭环自治能力:意图驱动,人力全解放
规划设计	意图(心)			₽			
维护优化	设 决策(脑)		P	₽			
业务发放	③ 监控(眼)	\Quad \tau \tau \tau \tau \tau \tau \tau \tau	₽				
部署	操作(手)	•					

AI使能的网络自动驾驶.....

Smart sensors and data collection

with real-time awareness

capabilities

提升网络利用率: 30%->80%

预测性维护: 系统亚健康类故障实现分钟级恢复与自愈

精准告警:告警数量减少95.9%,准确率97.2%

- 告警的可压缩的种类包括:闪断/震荡类冗余告警,已知关联衍生告警抑制、外部共因告警抑制和未知告警,不同类型采用不同算法。
- 实现某运营商95.9%告警压缩率

基于频繁项挖掘和随机森林的告警根因诊断

关键算法: 基于频繁项挖掘的告警相关性挖掘

关键算法:基于随机森林的告警根因挖掘

基于已知告警关系推断对象类型关系和告警类型关系,进一步利用随机森林得到告警之间的根因关系

愿景和使命

把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界

Vision and Mission

Bring digital to every person, home and organization for a fully connected, intelligent world

