SQL and RA

Gary KL Tam

Department of Computer Science Swansea University

RA => SQL Natural Join

SQL: Natural Join

SQL: Division

PROF

т	יבדי	Λ.	α	CT
	$^{\circ}$ E.	А	U.	п

pid	name	\mathbf{dept}	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	$_{ m EE}$	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p_5	Emily	EE	asso	8500

pid	\mathbf{cid}	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

$PROF \bowtie TEACH$ returns:

pid	name	dept	rank	sal	cid	year
p1	Adam	CS	asst	6000	<i>c</i> ₁	2011
p2	Bob	EE	asso	8000	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	<i>c</i> ₂	2012

How many attributes / columns are there?

In general:

Natural Join

$$T_1 \bowtie T_2 = \Pi_S \Big(\sigma_{T_1.A_1 = T_2.A_2 \wedge \ldots \wedge T_1.A_d = T_2.A_d} (T_1 \times T_2) \Big)$$

where

$$S = (S_1 - S_2) \cup \{T_1.A_1, ..., T_1.A_d\} \cup (S_2 - S_1)$$

where S_1 and S_2 are the schemas of T_1 and T_2 respectively, and $A_1, ..., A_d$ are the common attributes of T_1 and T_2 .

$\operatorname{pid} \mid \operatorname{name} \mid \operatorname{dept} \mid \operatorname{rank} \mid \operatorname{sal} \qquad \qquad \operatorname{pid} \mid \operatorname{cid} \mid$			PROF				TEACI	\mathbf{H}
	pid	name	dept	rank	sal	pid	cid	У

$PROF \bowtie TEACH$

A: pig 31-32. Harrie, dept, rank, sai 32-31. Ciu, yea	A: pid	S1-S2: name, dept, rank, sal	S2-S1: cid, year
---	--------	------------------------------	------------------

pid	name	dept	rank	sal	cid	year
<i>p</i> 1	Adam	CS	asst	6000	<i>c</i> ₁	2011
p2	Bob	EE	asso	8000	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	<i>c</i> ₂	2012

year

PROF

$\operatorname{\mathbf{pid}}$	name	\mathbf{dept}	rank	sal
p1	Adam	CS	asst	6000
p2	Bob	EE	asso	8000
p3	Calvin	CS	full	10000
p4	Dorothy	EE	asst	5000
p5	Emily	EE	asso	8500

TEACH

pid	\mathbf{cid}	year
p1	c1	2011
p2	c2	2012
p1	c2	2012

select distinct PROF.pid, name, dept, rank, sal, cid, year from PROF, TEACH where PROF.pid = TEACH.pid

 $\Pi_{\text{PROF.pid}, \text{ name, dept, rank, sal, cid, year}}(\sigma_{\text{PROF.pid}=\text{TEACH.pid}}(\text{PROF}\times \text{TEACH}))$

 $PROF \bowtie TEACH$

pid	name	dept	rank	sal	cid	year
p1	Adam	CS	asst	6000	<i>c</i> ₁	2011
p2	Bob	EE	asso	8000	<i>c</i> ₂	2012
p1	Adam	CS	asst	6000	<i>c</i> ₂	2012

RA => SQL Natural Join

SQL: Join Condition, Inner Join, Natural Join

SQL: Division

Phone codes

areaCode	cityCode	cityName
40	01792	Swansea
86	10	Beijing
1	416	Toronto
1	212	NewYork

areaCode	areaName
40	United Kingdom
852	Hong Kong
1	North America
86	China

City

select areaCode, cityCode, cityName, areaName from City, Area

Where City.areaCode = Area.areaCode

Explicit Join Condition

areaCode	cityCode	cityName	areaName
40	01792	Swansea	United Kingdom
86	10	Beijing	China
1	416	Toronto	North America
1	212	NewYork	North America

Phone codes

areaCode	cityCode	cityName
40	01792	Swansea
86	10	Beijing
1	416	Toronto
1	212	NewYork

areaCode	areaName
40	United Kingdom
852	Hong Kong
1	North America
86	China

Area

City

select areaCode, cityCode, cityName, areaName
from City inner join Area
on City.areaCode = Area.areaCode

areaCode	cityCode	cityName	areaName
40	01792	Swansea	United Kingdom
86	10	Beijing	China
1	416	Toronto	North America
1	212	NewYork	North America

Phone codes

areaCode	cityCode	cityName
40	01792	Swansea
86	10	Beijing
1	416	Toronto
1	212	NewYork

areaCode	areaName
40	United Kingdom
852	Hong Kong
1	North America
86	China

City

In the past some students gave me this, which I did not teach before.

select *
from City natural join Area

areaCode	cityCode	cityName	areaName
40	01792	Swansea	United Kingdom
86	10	Beijing	China
1	416	Toronto	North America
1	212	NewYork	North America

One day, a guy added a column

areaCode	cityCode	cityName	lastupdate
40	01792	Swansea	1990
86	10	Beijing	1988
1	416	Toronto	1975
1	212	NewYork	1971

areaCode	areaName	lastupdate
40	United Kingdom	1980
852	Hong Kong	1978
1	North America	1979
86	China	1987

City

Area

select areaCode, cityCode, cityName, areaName from City, Area Where City.areaCode = Area.areaCode select areaCode, cityCode, cityName, areaName from City inner join Area on City.areaCode = Area.areaCode

areaCode	cityCode	cityName	areaName
40	01792	Swansea	United Kingdom
86	10	Beijing	China
1	416	Toronto	North America
1	212	NewYork	North America

One day, a guy added a column

areaCode	cityCode	cityName	lastupdate
40	01792	Swansea	1990
86	10	Beijing	1988
1	416	Toronto	1975
1	212	NewYork	1971

areaCode	areaName	lastupdate
40	United Kingdom	1980
852	Hong Kong	1978
1	North America	1979
86	China	1987

City

select *
from City natural join Area

areaCode	cityCode	cityName	areaName	lastupdate		
empty						

Natural Join breaks the whole system!

One day, the guy change the schema, by mistake...

cityCode	cityName
01792	Swansea
10	Beijing
416	Toronto
212	NewYork

City

areaCode	areaName
40	United Kingdom
852	Hong Kong
1	North America
86	China

Area

select areaCode, cityCode, cityName, areaName
from City, Area
where City.areaCode = Area.areaCode

select areaCode, cityCode, cityName, areaName from City inner join Area

on City.areaCode = Area.areaCode

SQL Warning: No areaCode select *
from City natural join Area

Cartesian Product!

No warning.
But it breaks the system!

Lesson learnt

- aka, compile-time warning in
- Database related codes may not update for decades. Java / C / C++. Spot mistakes early.
- If something wrong, you need some warnings reminders.
- Old School Wisdom
 - Use join with explicit join condition in SQL
 - Never use Natural Join Keyword in SQL

In theory, theory and practice are the same. In practice, they are not.

— Albert Einstein —

- Natural join in Relational Algebra is fine.
 - The *concept* is fine.
 - Part of the theory, designed for easy manipulation.
- But <u>practically</u>, treat <u>Natural Join</u> <u>keyword</u> in <u>SQL</u>
 as if it never exists, avoids it likes a plague.

- In CW2 & Exam, if you use natural join keyword in SQL, no marks.
 - Learn the correct way of translating concept of natural join from RA to SQL.

http://www.dba-oracle.com/oracle_news/2004_2_19_rittman.htm
http://blog.mclaughlinsoftware.com/2008/05/24/unnatural-outcome-of-natural-joins
http://www.postgresqltutorial.com/postgresql-natural-join
https://stackoverflow.com/questions/1599050/ansi-vs-non-ansi-sql-join-syntax

In CS-250: Natural join in SQL (I repeat)

$PROF \bowtie TEACH$

select distinct PROF.pid, name, dept, rank, sal, cid, year from PROF, TEACH where PROF.pid = TEACH.pid

Or using inner join + "on PROF.pid = TEACH.pid"

select *
from PROF natural join TEACH

No marks in CS-250.

Gary does not want to see "natural join" keyword in SQL in CWs or exam.

RA => SQL Natural Join

SQL: Natural Join

SQL: Division

Division

RA: Division was a bit confusing and to

understand

 $T_1 \div T_2$

$$\begin{array}{c|cccc} {\bf pid} & {\bf cid} \\ \hline p1 & c1 \\ \hline p1 & c2 \\ \hline p1 & c3 \\ \hline p2 & c2 \\ \hline p2 & c3 \\ \hline p3 & c1 \\ \hline p4 & c1 \\ \hline \end{array}$$

c2

c3

 T_1

$$\begin{array}{c}
cid \\
c1 \\
c2 \\
c3
\end{array}$$

 T_2

Results:

p1

p4

$$\Pi_{S_1-S_2}(T_1) - \Pi_{S_1-S_2}(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1) = T_1 \div T_2$$

p4

p4

```
(select pid from T_1)
minus
select pid from (
(select * from (select pid from T_1), T_2)
minus
(select * from T_1))
```

$$\Pi_{S_1-S_2}(T_1) - \Pi_{S_1-S_2}(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1) = T_1 \div T_2$$

(select pid from T_1)

$$\Pi_{S_1-S_2}(T_1)$$

(select * from (select pid from T_1), T_2)

$$\Pi_{S_1-S_2}(T_1)\times T_2$$

```
(select * from (select pid from T_1), T_2) minus (select * from T_1)
```

$$\left(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1 \right)$$

SQL and Natural Join

```
select pid from (

(select * from (select pid from T_1), T_2)

minus

(select * from T_1))
```

$$\Pi_{S_1-S_2}\Big(\Pi_{S_1-S_2}(T_1)\times T_2-T_1\Big)$$

SQL and Natural Join

```
(select pid from T_1)

select pid from (
(select * from (select pid from T_1), T_2)

minus
(select * from T_1))
```

$$\Pi_{S_1-S_2}(T_1) = \Pi_{S_1-S_2}(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1)$$

```
(select pid from T_1)
minus
select pid from (
(select * from (select pid from T_1), T_2)
minus
(select * from T_1))
```

$$\Pi_{S_1-S_2}(T_1) - \Pi_{S_1-S_2}(\Pi_{S_1-S_2}(T_1) \times T_2 - T_1) = T_1 \div T_2$$