1 Proposition Let $\varphi(x,y) \in L(M)$ have NIP. Then for every tuple c there are a model $N \supseteq M$ such that $N \downarrow_M^u c$ and a formula $\psi(x) \in L(N)$ such that $\varphi(N,c) = \psi(N)$.

We say that N is C-saturated if it realizes every type p(x) over N, C that has < |N| parameters from N and is finitely consistent in N. Here x is a tuple of length $\le |N|$.

- **2 Lemma** If $B \downarrow_M^u C$ then there is a C-saturate model $N \supseteq M, B$ and $N \downarrow_M^u C$.
- ${\bf 3} \;\; {\bf Lemma} \;\; {\rm If} \; N \downarrow_M^u C$ and N is C-saturated then for every type .