

ENEE 4583/5583 Deep Learning
Dr. Alsamman

ENEE 6583

Improvement to Deep Learning

- Better activation functions
- Better weight initialization
- Better learning algorithms
- Better generalization algorithms

Deep Learning Problem: Gradient

- Learning slowdown
 - ➤ In early layers (close to input)
- Gradient instability
 - ➤ Vanishing gradient
 - Exploding Z

Backprop Problems: Activations

- ❖ No zero centered!
- Negative direction switches off output
- Convergence issues
- Gradient has a max of 0.25

Tanh(z)

Relationship to step function:

$$u(x) = \lim_{k \to \infty} \left(\frac{1 + \tanh kx}{2} \right)$$

Relationship to sigmoid:

$$\tanh(x) = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{2}{1 + e^{-2x}} - 1$$

♦ Derivative: $g'(z) = 1 - g^2(z)$

Backprop Problems: Activations

- Tanh is balanced
- Slope is twice steeper than sigmoid
- ❖ Pushes output to -1, 1 faster
- Solution: Lecun's optimized

$$1.7159 \tanh\left(\frac{2}{3}z\right)$$

Comparison

Functions

Sigmoid

Tanh Lecun's Tanh

Derivative

Sigmoid

Tanh Lecun's Tanh

ReLU

- Rectified linear unit activation function
 - > AKA max function
 - ➤ Max{0,Z}
- ❖ No learning slowdown
- ❖ Negative Z causes output to 0
- Simple to calculate the gradient
- Preforms better than tanh and sigmoid
- ❖ No real understanding of when/why RELU are preferable
- ❖ Eliminates the need of unsupervised "pre-training" phase ₃

ReLU Variants

Softplus:

 $a(z) = \ln(1 + e^z)$

Derivative is sigmoid

❖ Leaky ReLU:

 $a(z) = \begin{cases} z & \text{if } z > 0\\ \beta z & \text{otherwise} \end{cases}$

 $\triangleright \beta$ a fraction < 1.

❖ Noisy ReLU:

 $a(z) = \max(0, z + N(0, \sigma(z)))$

Exponential ReLU:

$$a(z) = \begin{cases} z & \text{if } z > 0\\ \beta(e^z - 1) & \text{otherwise} \end{cases}$$

- > mean activations closer to zero which speeds up learning
- $\triangleright \beta \ge 0$ is a tuning parameter

Deep Learning Problems: Initialization

- Initialization affects:
 - Convergence to local or global minima
 - > Speed of convergence
 - ➤ Generalization error
- Initialization similar to imposing a Gaussian prior, p(w)
- Modern schemes focus on heuristics and simplicity
- Spending time/computation power on initialization is sometime less costly than validation step
- Major Goal: "Break symmetry" between different units
 - > Symmetry leads to duplication of neurons

Unsupervised Pre-training

- ❖ Goals:
 - ➤ Independent neurons
 - > Avoid initialization that can be close to a local minima
- Scheme
 - Process all data without labels (unsupervised)
 - > Auto-encoder
- Problem: very lengthy

Conservation of Variance

- Goal 1: independent neurons
 - ➤ Heuristic approach
 - > Uses random initialization
 - \triangleright Normalized weights: $w \sim N(\mu = 0; \sigma = 1)$
- Goal 2: Conserve variance
 - \triangleright if a neuron has n_{in} weights: $Z = W^T X$: $Z \sim N(0, \sqrt{n_{in}})$
- Initialization Scheme:
 - Weight: $W \sim N(\mu = 0; \sigma = 1/\sqrt{n_{in}})$
 - \triangleright Biases: $B \sim N(\mu = 0; \sigma = 1)$
- Problem: Doesn't conserve variance between layers

Xavier Initialization

Goals:

- \triangleright Desire operation in the linear range, where gradients are the larges: |w| < 1
- \triangleright Conserve variance of back-propagated gradients from layer to layer: $\sigma^2 = 1/n_{in} + 1/n_{out}$
 - Reduces discrepancies between layers.

Normalized Initialization Scheme:

For sigmoid:
$$W \sim U \left[-\sqrt{\frac{6}{n_{in} + n_{out}}}, \sqrt{\frac{6}{n_{in} + n_{out}}} \right]$$
For tanh: $W \sim U \left[-4\sqrt{\frac{6}{n_{in} + n_{out}}}, 4\sqrt{\frac{6}{n_{in} + n_{out}}} \right]$

Problem: No recommendation for other AF

- Can't be used for ReLU
- Assumes network is a chain of matrix multiplications with no non-linearities
 - Real nets: non-linearity is applied after each layer

ReLU Initialization

- ReLU output is not symmetric with zero-mean
- *To make output symmetric: $\frac{1}{2}n_{in}\sigma_w^2=1$
- Scheme:

$$\gg W \sim U \left[-\sqrt{\frac{6}{n_{in}}}, \sqrt{\frac{6}{n_{in}}} \right]$$

Overfitting

- Overfitting: solution that works well during training but bad in real-scenarios
- Neural nets have MANY parameters
 - ➤ Modern deep nets have M's B's
 - ➤ High order
- Can't report accuracy on training data
- Must split data into training and testing
 - > Random split to avoid bias
 - ➤ Training typically 80%
 - > Testing 20%
 - Use testing dataset to report accuracy/error

Regularization

- Effort to prevent over fitting
- Underfitting is a problem of high bias
- ❖ Bias:
 - Making generalized assumptions about the data/model
 - > E.g. oversimplification of the model
 - ➤ Mathematically: average(model output) actual output
- Over-fitting is a problem of high variance
- Variance:
 - > Sensitivity of the results to the choice of data
 - Computed from the output of the model
 - Mathematically: average of squared differences from the Mean.

$$h = a(w_0 + w_1 x_1 + w_2 x_2)$$

$$h = a \begin{pmatrix} w_0 + w_1 x_1 + w_2 x_2 \\ + w_3 x_1^2 + w_4 x_2^2 \\ + w_5 x_1 x_2 \end{pmatrix}$$

$$h = a \begin{pmatrix} w_0 + w_1 x_1 + w_2 x_1^2 \\ + w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2 \\ + w_5 x_1^2 x_2^3 + w_6 x_1^3 x_2 + \cdots \end{pmatrix}$$

Generalization Techniques

- Larger training database
 - > Synthetically augmented training
- Validation training set
- Regularization parameters
 - ➤ L1 and L2 parameters
- Gradient clipping
- Dropout

Increasing Training Data

MNIST 10K vs 50K

ENEE 6583

ENEE 6583

Augmenting

- Problem with increasing training data: expensive or unavailable
- Solution: Artificial data expansion
 - > Aka augmenting existing data
 - Corrupt the existing data with noise or other effects and add it to training
 - ➤ Noise must mimic RW noise
 - For images: rotate, scale, drop pixels

Out[7]:

L2 Regularization Parameter

- Most popular in ML
- Force a weight decay
 - > Keep weights from increasing uncontrollably
 - ➤ Sigmoid-like functions: Large weights => zero gradients
- *Reformulate cost function:

$$C = \sum_{i} C_{i} + \frac{\lambda}{2m} \sum_{ijl} \left(w_{ij}^{(l)} \right)^{2}$$

- $\succ C_i$ is the cost function: cross-entropy/log-likelihood/loss or mean square error
- $\triangleright \lambda$: regularization parameter
- \triangleright Doesn't affect bias (aka w_{0i})
- Learning objective always to reduce cost (error)
 - $> w^2$ punishes large weights

Overfitting and Local Minima

- Another view of overfitting: system stuck in local minima
- Large weights
 - Make neuron sensitive to input
 - > cause diminishing gradient effect
 - > makes it difficult to explore weight space and find true minima
- Random initialization of weights
 - > Can cause system to get stuck in local minima
- Large bias doesn't make the neuron sensitive to input
 - > Allowing large biases gives our networks more flexibility in behavior.
- $*\lambda$ is small we prefer to minimize the original cost function
 - $\geq \lambda$ is large we prefer small weights

L2 Regularized Backprop

L2 regularized cost function

$$C = \sum_{i} C_{i} + \frac{\lambda}{2m} \sum_{ijl} \left(w_{ij}^{(l)} \right)^{2}$$

Gradient descent

$$w_{ij}^{(l)} = w_{ij}^{(l)} - \alpha \frac{\partial C_i}{\partial w_{ij}^{(l)}} - \alpha \frac{\lambda}{m} w_{ij}^{(l)} = \left(\mathbf{1} - \alpha \frac{\lambda}{m} \right) w_{ij}^{(l)} - \frac{\alpha}{m} \frac{\partial C_i}{\partial w_{ij}^{(l)}}$$

L1 Regularization

Penalizes large weights

$$C = \sum_{i} C_{i} + \frac{\lambda}{m} \sum_{ijl} \left| w_{ij}^{(l)} \right|$$

- > L2 rewards fractional weights, L1 doesn't
 - L2 reduces weights towards 1
 - L1 reduces weights towards 0
- > L2 small decrements in weights lead to great reduction in C.
 - L1 large decrements cause large reductions in C
- *L1 few weights survive. Most weights are close to 0.
 - > concentrate the weights in a relatively small number of connection

L1 Regularized Backprop

Learning:

$$w_{ij}^{(l)} = w_{ij}^{(l)} - \alpha \frac{\partial C_i}{\partial w_{ij}^{(l)}} + \alpha \frac{\lambda}{m} \operatorname{sgn}\left(w_{ij}^{(l)}\right) = w_{ij}^{(l)} - \frac{\alpha}{m} \frac{\partial C_i}{\partial w_{ij}^{(l)}} \pm \alpha \frac{\lambda}{m}$$

- ❖sgn() is the sign function
- Not defined at w = 0

Regularized vs Non-regularized Cost Function

Gradient Clipping

- Large gradient causes instability
- Set a max value (ceiling) for gradient

Dropout

- Applied to the network not backprop
 - > Easier on computation
- Strategy:
 - > Randomly delete a percentage of the hidden neurons in each epoch
 - Not input or output neurons
 - ➤ Learn weights and biases
 - Repeat
 - ➤ When done, decrease weights and biases by percentage
- Why does it work?
 - Averaging
 - > Reduction of co-dependence of neurons
 - > Similar to bagging: multiple classifiers, averaged output

Dropout Alternatives

- Zoneout
 - > RNN
 - > Randomly chosen units remain unchanged across a time transition
- Dropconnect
 - > Drop individual connections, instead of nodes
- Shakeout
 - > Scale up the weights of randomly selected weights
 - $w = \alpha w + (1 \alpha) c$
 - > Fix remaining weights to a negative constant
 - w = -c
- Whiteout
 - > Add or multiply weight-dependent Gaussian noise to the signal on each connection

Validation

- Aka cross-validation
- Randomly split data:
 - > Training (60%), Testing (20%), Validation (20%)
 - ➤ Validation size ~ test size
- Validate you models
 - > Use validation results to validate modeling choices
 - Check results of validation as part of your training
- Early stop:
 - ➤ Determine when learning is no longer beneficial

Deep Learning Problem: Non-Convex Cost

- In large networks, saddle points are far more common than local minima
- Gradient descent algorithms often get "stuck" in saddle points

Deep Learning Problem: Learning rate

$$w_{ij}^{(l)} = w_{ij}^{(l)} + \alpha \frac{\partial \mathbf{E}}{\partial w_{ij}^{(l)}}$$

Rate assumes slope is identical in all directions

Momentum Based GD

Introduce a velocity parameter, v, for each, w, such that:

$$w = w + v$$
$$v = \beta v - \alpha \nabla C$$

- β is friction, β =1 no friction (no slowing down)
 - > AKA momentum cooefficient
 - >>1 can causes overshoot
 - ><<1 dampens
- \bullet If the direction of ∇C doesn't change velocity builds up
 - > Faster converging

Momentum Learning

- Scheme:
 - \triangleright Initialize w, α, β
 - ➤ While not (stopping criterion):
 - Given $\{X, Y\}$ feedforward
 - Compute gradient
 - Compute velocity: $v = \beta v \alpha \nabla C$
 - Compute weights: w = w + v
- Twice as many parameters!

Alsamman

Nesterov Momentum

- Similar to mementum SDG
- Evaluate gradient AFTER applying velocity
 - > Correction to standard momentum
- Scheme:
 - \triangleright Initialize w, v, α , β
 - ➤ While not (stopping criterion):
 - Given $\{X, Y\}$ feedforward
 - Compute weights: w = w + v
 - Compute gradient
 - Compute velocity: $v = \beta v \alpha \nabla C$

Momentum

$$\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$$

Nestorov

$$\begin{split} W_{extend}^{(k)} &= W^{(k-1)} + \beta \Delta W^{(k-1)} \\ \Delta W^{(k)} &= \beta \Delta W^{(k-1)} - \eta \nabla_W Err\left(W_{extend}^{(k)}\right) \\ W^{(k)} &= W^{(k-1)} + \Delta W^{(k)} \end{split}$$

Adaptive Learning Rates

- Learning rate is most difficult to set
- Momentum helps but introduces new parameters
- Delta-bar-Delta (1988)
 - > Idea: aggressively explore gradient
 - > if gradient has the same sign (ie direction), then the learning rate should increase.
 - > If gradient changes sign, learning rate should decrease
 - > Can result in excessive increase in learning rate

AdaGrad (2011)

- Idea: explore gently sloped directions
- Weights with largest gradient: decrease their learning rate
 - > Weights with the smallest gradient: increase their learning rate.
- Performs well in convex settings
- Can result in a premature and excessive decrease in the effective learning
- Performs poorly in non-convex settings

Alsamman

AdaGrad Scheme

- •• Initialize w, α
- \bullet Initialize r = 0
- While not (stopping criterion):
 - \triangleright Feedforward $\{X,Y\}$, compute C
 - ightharpoonup Compute gradient, $g = \frac{\partial c}{\partial w}$
 - ightharpoonup Compute accumulated squared gradient, $r = r + g \odot g$
 - ► Update weights: $w = w \frac{\alpha}{\gamma + \sqrt{r}} \odot g$
 - γ is a stabilization constant

RMSProp (2012)

- Optimized learning
 - ➤ Improve AdaGrad
- Gradient accumulation into an exponentially(rms) weighted moving average.
 - ➤ Uses entire history to compute average
 - > Apply a rate of decay to history so that it doesn't overwhelm

Alsamman

RMSProp Scheme

- \bullet Initialize w, α, ρ
 - $\triangleright \rho$ is a rate of decay
- \bullet Initialize r = 0
- While not (stopping criterion):
 - \triangleright Feedforward $\{X,Y\}$, computer C
 - ightharpoonup Compute gradient, $g = \frac{\partial C}{\partial w}$
 - Compute accumulated squared gradient, $r = \rho r + (1 \rho)g \odot g$
 - ► Update weights: $w = w \frac{\alpha}{\sqrt{\gamma + r}} \odot g$
 - γ is a stabilization constant

Alsamman

Adam (2014)

- Adaptive moments
- Variant that combines RMSProp and momentum
- *RMS applied to first order momentum and second order momentum

Adam Scheme

- Set
 - $\geq \alpha$ (default = 0.001)
 - \triangleright decay for 1st and 2nd momentum, ρ_1 , ρ_2 (default 0.9, 0.999, suggested (0,1])
 - \triangleright stabilization γ (default 10^{-8})
- ❖ Initialize w
- Initialize 1st and 2nd momentum: s, r = 0
- While not (stop criterion):
 - \triangleright Feedforward $\{X,Y\}$, compute C
 - ightharpoonup Compute gradient: $g = \frac{\partial C}{\partial w}$

$$rac{rac{
ho_1 s + (1 -
ho_1)g}{1 -
ho_1}}$$

$$r = \frac{\rho_2 r + (1 - \rho_2) g \odot g}{1 - \rho_2}$$

$$> w = w - \alpha \frac{s}{\gamma + \sqrt{r}}$$

Hessian

- Alternative to gradient descent
 - > Second order
- Cost function redefined:

$$C(w + \Delta w) = C(w) + \sum_{i} \frac{\partial C}{\partial w_{i}} \Delta w_{i} + \frac{1}{2} \sum_{ij} \Delta w_{i} \frac{\partial^{2} C}{\partial w_{i} \partial w_{j}} \Delta w_{j} + \cdots$$

$$C(w + \Delta w) = C(w) + \nabla C \cdot \Delta W + \frac{1}{2} \Delta W \cdot H \cdot \Delta W + \cdots$$

$$\Delta W = -\alpha H^{-1} \nabla C$$

- Converges faster that gradient
- Computationally more challenging
- Initialization problems

Conjugate Gradients

- Second order
- Avoids calculating the Hessian
- Searches for a direction of descent that is conjugate to the previous direction

$$d_{t} = \nabla_{w}C(w_{t}) + \beta_{t}d_{t-1}$$
$$(d_{t})^{T}H d_{t-1} = 0$$

- $ightharpoonup \nabla_{\!\!\! w} C(w_t)$ is gradient at iteration t
- $\rightarrow d_t$ is the direction of descent at iteration t
- $\triangleright \beta_t$ is the correction coefficient
- Can calculate without the Hessian using 2 methods:

Fletcher-Reeves:
$$\beta_t = \frac{\left(\nabla_w C(w_t)\right)^T \nabla_w C(w_t)}{\left(\nabla_w C(w_{t-1})\right)^T \nabla_w C(w_{t-1})}$$

> Polak-Rebiere:
$$\beta_t = \frac{\left(\nabla_w C(w_t) - \nabla_w C(w_{t-1})\right)^T \nabla_w C(w_t)}{\left(\nabla_w C(w_{t-1})\right)^T \nabla_w C(w_{t-1})}$$

Conjugate Gradient Scheme

- ❖Initialize w
- *Set d_0 , $g_0 = 0$; t = 1
- While not (stop criterion)
 - \triangleright Feedforward, compute C_t
 - ightharpoonup Compute Gradient: $g_t = \frac{\partial C_t}{\partial w_t}$
 - \triangleright Compute β_t
 - \triangleright Compute d_t
 - \triangleright Search of α that minimizes $C(w_t + \alpha d_t)$
 - rightarrow t = t + 1

Nonlinear Conjugate Gradient

- Conjugate gradient works best for quadratic costs
 - > Line search w along conjugate directions
- For non-quadratic conjugate directions don't guarantee minimization of C
- Nonlinear conjugate gradient: occasional reset line search to pure gradient directions

$$\triangleright$$
 i.e. $\beta = 0$

BFGS

- Newton's second order method
- Hessian inverse is difficult to compute
 - ➤ Eigenvalues must be non-zero
 - ➤ Negative eigenvalues must be close to 0
- Broyden–Fletcher–Goldfarb–Shannon
 - > Iterative algorithm
 - > Approximates *H* using *M*

BFGS Scheme

- ❖Initialize w
- While not (stop criterion)
 - \triangleright Feedforward, compute C
 - ➤ Compute gradient: *g*
 - ➤ Approximate Hessian using BFGS: M
 - $\triangleright w = w M^{-1}g$

Convex

Non-Convex

Saddle Points

