Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2010

Concours Mathématiques et Physique Corrigé de l'Epreuve de Mathématiques II

I - Norme matricielle

Soit

$$S = \{X \in \mathbb{R}^n; \text{ tel que } ||X||_2 = 1\}$$

On note $||A||_2 = \sup_{X \in S} (||AX||_2)$

- 1. Soit $X \in \mathbb{R}^n \{0\}$ alors $Y = \frac{X}{\|X\|_2} \in S$. Donc $\frac{\|MX\|_2}{\|X\|_2} = \|MY\|_2 \le \|M\|_2$. D'où $\|MX\|_2 \le \|M\|_2 \|X\|_2$ pour tout $X \in \mathbb{R}^n$ et pour tout $M \in \mathcal{M}_n(\mathbb{R})$.
- 2. $\|\cdot\|_2$ définit une norme sur $\mathcal{M}_n(\mathbb{R})$:
 - (a) $||A||_2 = 0$ ca implique que $||AX||_2 = 0$ pour tout $X \in \mathbb{R}^n$. D'où AX = 0 pour tout $X \in \mathbb{R}^n$ car $||\cdot||_2$ est une norme. Donc A = 0
 - (b) $\|\lambda A\|_2 = \sup_{X \in S} (\|\lambda AX\|_2) = |\lambda| \sup_{X \in S} (\|AX\|_2)$ car $\|\cdot\|_2$ est une norme. D'où $\|\lambda A\|_2 = \|\lambda| \|A\|_2$
 - (c) $||A + B||_2 = \sup_{X \in S} (||AX + BX||_2) \le \sup_{X \in S} (||AX||_2) + \sup_{X \in S} (||BX||_2) = ||A||_2 + ||B||_2$

3.

$$\begin{aligned} \|A \cdot B\|_2 &= \sup_{X \in S} (\|A \cdot BX\|_2) \\ &= \sup_{X \in S} (\frac{\|A \cdot BX\|_2}{\|BX\|_2} \|BX\|_2) \\ &\leq \sup_{Y \in S} (\|AY\|_2) \sup_{X \in S} (\|BX\|_2) \\ &\leq \|A\|_2 \|B\|_2. \end{aligned}$$

4. Soit $U \in \mathcal{O}(n)$.

$$\begin{aligned} \|MU\|_2 &= \sup_{X \in S} (\|M \cdot UX\|_2) \\ &= \sup_{Y \in S} (\|MY\|_2) = \|M\|_2 \end{aligned}$$

 $\operatorname{car} \|UX\|_2 = \|Y\|_2 = 1$

$$\begin{split} \|UM\|_2 &= \sup_{X \in S} (\|U \cdot MX\|_2) \\ &= \sup_{X \in S} (\|MX\|_2) = \|M\|_2 \end{split}$$

car $||U \cdot MX||_2 = ||MX||_2$.

5. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Soit λ telle que $|\lambda| = \rho(A)$ et V le vecteur propre unitaire associé. On a alors

$$||A||_2 = \sup_{X \in S} (||AX||_2) \ge |\lambda|$$

- 6. Soit $B \in \mathcal{M}_n(\mathbb{R})$ tel que $||B||_2 = r < 1$. Soit $S_N = \sum_{k=0}^n B^k$.
 - (a) Montrer que S_N est une suite de cauchy dans $\mathcal{M}_n(\mathbb{R})$ munie de la norme $\|\cdot\|_2$.

$$\forall \, N, \, \forall \, M, \, \, N > M, \qquad \| S_N - S_M \|_2 = \| \sum_{k=M+1}^N B^k \|_2 \leq \sum_{k=M+1}^N \| B \|_2^k$$

et que ||B|| < 1 (une suite géométrique de raison strictement inférieure à 1 est de Cauchy).

- (b) La suite S_N est convergente dans $(\mathcal{M}_n(\mathbf{C}), \|\cdot\|)^1$, puisqu'elle est de cauchy. Notons S la limite de S_N .
- (c) Calculer $S_N(I-B)$ et $(I-B)S_N$.

$$S_N(I-B) = \sum_{k=0}^N B^k - \sum_{k=0}^N B^{k+1} = I - B^{N+1}$$
 (1)

De même, on a

$$(I - B)S_N = I - B^{N+1} (2)$$

(d) On a

$$\|S_N\|_2 \leq \sum_{k=0}^N \|B\|_2^k = \frac{1 - \|B\|_2^{N+1}}{1 - \|B\|_2}$$

En passant à la limite, lorsque $N \to +\infty$, on obtient

$$S(I-B) = (I-B)S = I$$

Ainsi, I - B est inversible et

$$(I-B)^{-1} = S = \sum_{k=0}^{+\infty} B^k$$

7. Si I-B est non inversible, alors 1 est une valeur propre de B, et par suite on a $||B||_2 \ge 1$, puisque $\varrho(B) \ge 1$ et d'après la question 5. on a $||B||_2 \ge \varrho(B)$.

II - Propriétées des matrices symétriques positives

Soit $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice symétrique positive.

1. Puisque $A \in \mathcal{M}_n(\mathbb{R})$ est une matrice symétrique alors il existe n valeurs propres comptées avec leur ordre de multiplicité et une base de vecteurs propres orthonormales et A est diagonalisable avec la diagonale formé par les valeurs propres de A. La matrice P représente la matrice de passage de la base canonique à la base $(V_1, V_2, ..., V_n)$.

 $^{^{1}(\}mathcal{M}_{n}(\mathbf{C}), \| \cdot \|)$ est un espace vectoriel normé.

- 2. Comme A est positive alors les valeurs propres sont positives.
- 3. Soient $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ les valeurs propres de A rangées suivants l'ordre croissant et (V_1, \ldots, V_n) les vecteurs propres orthogonaux qui leur sont associés. On pose

$$q_A(X) = (AX, X), \quad \forall X \in \mathbb{R}^n$$

(a) On décompose X dans la base $(V_1,....,V_n)$. $X=\sum_{i=1}^n x_iV_i$. D'où $AX=\sum_{i=1}^n \lambda_ix_iV_i$

$$q_A(X) = (AX, X) = \sum_{i=1}^n \lambda_i x_i^2 ||V_i||_2^2$$

Comme $\lambda_i \leq \lambda_n$ on trouve $q_A(X) \leq \lambda_n ||X||_2^2$ pour tout $X \in \mathbb{R}^n$.

- (b) Comme $\lambda_i \geq \lambda_1$ on trouve $q_A(X) \geq \lambda_1 ||X||_2^2$ pour tout $X \in \mathbb{R}^n$.
- (c) Comme $||X||_2^2 = 1$ sur S ca implique $\lambda_1 \leq q_A(X) \leq \lambda_n$ sur S.
- $\begin{array}{l} \text{(d)} \;\; \text{Si} \;\; AX = \lambda_n X \;\; \text{alors} \;\; (AX,X) = \lambda_n \|X\|_2^2. \;\; \text{Si} \;\; (AX,X) = \lambda_n \|X\|_2^2 \;\; \text{comme} \;\; (AX,X) = \\ \sum_{i=1}^n \lambda_i x_i^2 \|V_i\|_2^2 = \lambda_n \sum_{i=1}^n x_i^2 \|V_i\|_2^2. \;\; \text{D'où} \;\; \sum_{i=1}^n (\lambda_n \lambda_i) x_i^2 \|V_i\|_2^2 = 0. \;\; \text{Comme} \;\; (\lambda_n \lambda_i) \geq 0 \\ \text{ca implique} \;\; x_i = 0 \;\; \text{pour} \;\; i \neq n. \;\; . \;\; \text{D'où} \;\; AX = \lambda_n X. \end{array}$
- (e) Si $X = V_n$ on trouve $q_A(V_n) = \lambda_n ||V_n||_2^2$ et si $X = V_1$ on trouve $q_A(V_1) = \lambda_1 ||V_1||_2^2$ d'où $\inf_{X \in S} q_A(X) = \lambda_1$ et $\sup_{X \in S} q_A(X) = \lambda_n$.
- 4. On décompose X dans la base $(V_1,, V_n)$. $X = \sum_{i=1}^n x_i V_i$. D'où $||AX||_2^2 = \sum_{i=1}^n \lambda_i^2 x_i^2 ||V_i||_2^2$ d'où $||A||_2 \le \lambda_n$ et comme $||A||_2 \ge \lambda_n$ on trouve $||A||_2 = \lambda_n$.
- 5. (a) (a) \Longrightarrow (b) Cette implication est immédiate puisque l'on a

$$||A^k v||_2 \le ||A^k||_2 ||v||_2$$

pour tout v dans \mathbb{R}^n et $k \in \mathbb{N}$.

(b) (b) \Longrightarrow (c) Montrons cette implication par l'absurde. Supposons que $\rho(A) \ge 1$, cela entraine qu'ils existent $\lambda \in \mathbb{R}$ tel que $|\lambda| \ge 1$ et $p \in \mathbb{R}^n \setminus \{0\}$ pour lesquels on a

$$Ap = \lambda p$$

d'où

$$||A^k p||_2 = |\lambda|^k ||p||_2 \ge ||p||_2 > 0$$

par conséquent

$$\lim_{k \to +\infty} \|A^k p\|_2 \neq 0$$

et la propriété ii) ne serait pas vérifiée.

- (c) (c) \Longrightarrow (d)) trivial
- (d) $(d) \Longrightarrow (a)$

On a

$$0 \le ||A^k||_2 \le ||A||_2^k$$

On en déduit puisque $||A||_2 < 1$, que

$$\lim_{k \to +\infty} ||A^k||_2 = 0$$

c'est-à-dire A^k que tend vers 0, quand k tend vers $+\infty$.

- 6. Soit $\gamma \in \mathbb{R}^+$ et $B(\gamma) = I \gamma A$.
 - (a) les valeurs propres de $B(\gamma)$ sont $\mu_i(\gamma) = 1 \gamma \lambda_i$ de $1 \le i \le n$, en fonction de γ et des $\lambda_i, 1 \le i \le n$.
 - (b) On définit

$$f_i(\gamma) = |1 - \gamma \lambda_i|, \quad \forall \gamma \in \mathbb{R}^+$$

et

$$f(\gamma) = \max_{1 \le i \le n} (f_i(\gamma), \quad \forall \gamma \in \mathbb{R}^+$$

- i. on a $\lambda_1 \leq \lambda_i \leq \lambda_n$. d'où $1 \gamma \lambda_n \leq 1 \gamma \lambda_i \leq 1 \gamma \lambda_1$. Donc si $0 \leq 1 \gamma \lambda_i \leq 1 \gamma \lambda_1$ sinon $1 \gamma \lambda_n \leq 1 \gamma \lambda_i \leq 0$ d'où $0 \leq |1 \gamma \lambda_i| \leq |1 \gamma \lambda_n|$ Donc $f(\gamma) = \max(f_1(\gamma), f_n(\gamma))$.
- ii. Soit D_1 la courbe d'équation $y_1(\gamma) = |1 \gamma \lambda_1|$ et D_2 la courbe d'équation $y_2(\gamma) = |1 \gamma \lambda_n|$ donc $f(\gamma) = \max(y_1(\gamma), y_2(\gamma))$ d'où γ^* est telle que $y_1(\gamma^*) = y_2(\gamma^*)$. Donc $\gamma^* > 0$ tel que

$$f(\gamma) = \begin{cases} f_1(\gamma) & \text{si} \quad 0 \le \gamma \le \gamma^*, \\ f_n(\gamma) & \text{si} \quad \gamma^* \le \gamma \end{cases}$$

- iii. Comme $\frac{1}{\lambda_n} \leq \gamma^* \leq \frac{1}{\lambda_1}$ on a $y_1(\gamma) = 1 \gamma \lambda_1$ et $y_2(\gamma) = \gamma \lambda_n 1$. D'où $1 \gamma^* \lambda_1 = \gamma^* \lambda_n 1$. On trouve $\gamma^* = \frac{2}{\lambda_1 + \lambda_n}$.
- (c) En déduire que

$$\rho(B(\gamma)) = \left\{ \begin{array}{lll} 1 - \lambda_1 \gamma & \mathrm{si} & 0 \leq \gamma \leq \gamma^*, \\ \lambda_n \gamma - 1 & \mathrm{si} & \gamma \geq \gamma^*. \end{array} \right.$$

(d) $\rho(B(\gamma))$ est décroissante sur $[0, \gamma^*]$ puis croissante sur $[\gamma^*, +\infty[$. Donc $\rho(B(\gamma))$ atteint son minimum en γ^* et On a:

$$\rho(\gamma^*) = \min_{\gamma > 0} \rho(B(\gamma)) = 1 - \gamma^* \lambda_1 = 1 - \frac{2}{\lambda_1 + \lambda_n} \lambda_1 = \frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}.$$

III - Valeurs singulières d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. ${}^t({}^tAA)={}^tA({}^t({}^tA))={}^tAA$ est une matrice symétrique. $(tAAX,X)=(AX,AX)=\|AX\|_2^2\geq 0$. D'où tAA est positive.
- 2. D'après la partie II, Comme tAA est symétrique il existe une matrice $P \in \mathcal{O}_n(\mathbb{R})$ et une matrice D une matrice diagonale telles que

$${}^{t}AA = {}^{t}PDP$$

avec $D = diag(\lambda_1, ..., \lambda_n)$ et où les λ_i sont les valeurs propres de tAA . On appelle valeurs singulières de A le nombre $\sigma_i = \sqrt{\lambda_i}$.

3. On a

$$||AX||_2^2 = (AX, AX) = (tAAX, X) = q_{tAA}(X)$$

d'où

$$\sigma_{max} = \sup_{X \in S} (\|AX\|_2) = \sup_{X \in S} (\sqrt{q_{tAA}(X)}) = \sqrt{\lambda_n}$$

de même pour

$$\sigma_{min} = \inf_{X \in S} (\|AX\|_2) = \sqrt{\lambda_1}$$

où $\sigma_{max} = \max_{1 \le i \le n} \sigma_i$ et $\sigma_{min} = \min_{1 \le i \le n} \sigma_i$.

IV Convergence d'une méthode itérative

Soit $\alpha > 0$ un nombre réel et A une matrice de $\mathcal{M}_n(\mathbb{R})$. On considère le système linéaire :

$$\begin{pmatrix} I & A \\ {}^{t}A & -\alpha I \end{pmatrix} \begin{pmatrix} Z \\ X \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix} \tag{3}$$

1. Si le vecteur $(Z, X) \in \mathbb{R}^{2n}$ est solution du système (3) alors

$$\begin{cases} Z + AX = b \\ {}^{t}AZ - \alpha X = 0 \end{cases}$$

La première équation nous donne

$$Z = -AX + b$$

En remplacant dans la deuxième équation nous trouvons:

$${}^t A(-AX+b) - \alpha X = 0$$

D'où le vecteur $X \in \mathbb{R}^n$ est solution de

$$(^{t}AA + \alpha I)x = {}^{t}Ab \tag{4}$$

- 2. Comme la matrice ${}^tAA \in \mathcal{M}_n(\mathbb{R})$ est symétrique positive alors la matrice $({}^tAA + \alpha I)$ est symétrique définies positive donc inversible. D'où il existe un unique $X \in \mathbb{R}^n$ solution de (4). D'où Z = -AX + b est unique.
- 3. Puisque le système (3) admet une solution unique ca implique que la matrice du système (3) est inversible.
- 4. Soit $\gamma \in \mathbb{R}^*$ et soit la matrice $B(\gamma) \in \mathcal{M}_n(\mathbb{R})$ définie par

$$B(\gamma) = I - \gamma({}^tAA + \alpha I)$$

- (a) Si $({}^tAA + \alpha I)X = {}^tAb$ alors en multipliant cette équation par γ et en retranchant X des deux côtés on trouve $X \gamma({}^tAA + \alpha I)X = X \gamma{}^tAb$ alors $X = B(\gamma)X + \gamma{}^tAb$. De même pour l'autre sens.
- (b) Soit la méthode itérative:

$$\begin{cases} X^0 \in \mathbb{R}^n & \text{quelconque,} \\ X^{k+1} = B(\gamma)X^k + \gamma^t Ab. \end{cases}$$
 (3.1)

i. Si la suite $(X^k)_{k\in\mathbb{N}}$ converge vers X^*

$$X^* = B(\gamma)X^* + \gamma^t Ab$$

d'après le 4.a) X^* est solution du système (4)

ii. Supposons que $\rho(B(\gamma)) < 1$. On a

$$B(\gamma) = I - \gamma({}^{t}AA + \alpha I) = {}^{t}P(I - \gamma(D + \alpha))P$$

où $D = diag(\lambda_1,, \lambda_n)$ avec les λ_i sont les valeurs propres de tAA . En utilisant le I.4 on obtient

$$|\!|\!|B(\gamma)|\!|\!|_2 = |\!|\!|(I-\gamma(D+\alpha))|\!|\!|_2 = \max_{1 \leq i \leq n} |I-\gamma(\lambda_i+\alpha)| = \rho(B(\gamma))$$

d'où $||B(\gamma)||_2 < 1$. Pour tout entier k > 1, on a:

$$X^{k} - X^{*} = B(\gamma)X^{k} + \gamma^{t}Ab - (B(\gamma)X^{*} + \gamma^{t}Ab) = B(\gamma)(X^{k-1} - X^{*})$$

d'où

$$\begin{split} X^k - X^* &= B(\gamma)(X^{k-1} - X^*) = \dots = B(\gamma)^k(X^0 - X^*) \\ \|X^k - X^*\|_2 &\leq \|B(\gamma))^k\|_2 \|X^0 - X^*\|_2. \end{split}$$

Comme $||B(\gamma)||_2 < 1$, on obtient

$$\lim_{k \to +\infty} (X^k - X^*) = 0$$

pour tout choix $X^0 \in \mathbb{R}^n$. Réciproquement, si la suite (X^k) converge pour tout choix X^0 vers X^* solution de(4), le même raisonnement entraîne que

$$\forall X^0 \in \mathbb{R}^n$$

$$\lim_{k \to +\infty} B^k(\gamma)(X^0 - X^*) = 0$$

autrement dit

$$\forall v \in \mathbb{R}^n \qquad \lim_{k \to +\infty} B^k(\gamma)v = 0$$

On en déduit en utilisant le même raisonnement que II .5 que $\rho(B(\gamma)) < 1$.

- iii. Donner les valeurs de γ en fonction de α et les valeurs singulières de A pour que la méthode itérative (4) soit convergente.
 - A. Si $\gamma < 0$ alors $\rho(B(\gamma)) > 1$. D'où, d'après la question précédente, la méthode est divergence .
 - B. On a

$$\rho(B(\gamma)) \left\{ \begin{array}{lll} 1 - (\sigma_{\min}^2 + \alpha) \gamma & \text{si} & 0 < \gamma \leq \gamma^*, \\ (\sigma_{\max}^2 + \alpha) \gamma - 1 & \text{si} & \gamma \geq \gamma^*. \end{array} \right.$$

avec $\gamma^* = \frac{2}{\sigma_{min}^2 + \sigma_{max}^2 + 2\alpha}.$ Comme $\rho(B(\gamma)) < 1$ on doit avoir

$$1 - (\sigma_{min}^2 + \alpha)\gamma < 1$$

qui est vérifié si $\gamma \geq 0$.

$$(\sigma_{max}^2 + \alpha)\gamma - 1 < 1$$

d'où

$$\gamma < \frac{2}{(\sigma_{max}^2 + \alpha)}$$

Donc $\gamma \in]0, \frac{2}{(\sigma_{max}^2 + \alpha)}[$

iv. γ^* qui minimise $\rho(B(\gamma))$ est $\gamma^* = \frac{2}{\sigma_{min}^2 + \sigma_{max}^2 + 2\alpha}$.

Fin de l'épreuve