# Aim of the exporiment

- 1 To determine AFSIRFN (American Foundry Society brain Fineness Number) of two different sands (Rajmahal& feko)
- 2) To determine the screen number of both the sands. screennumber: - It is the number of consecutive serves having weight retained more than 10%.
- 3 To plot 1. weight retained vs seive number and cummulative weight retained vs seive number for both the sands.
- To predict AFSGFN of a mixture of Rajmahal & fek 4 (601. Rajmahal & 401. feko)

Sands (Raymahal & Feko), 1 set of 11 seems and the sieve Pan, sieve shaker, digital scale balance.

### Procedure

- 1 50 gm of dried (clay removed) sand (Rajmahal & feko) was placed on the topmost sieve of sieve no. 6.
- The assembly of the sieves was placed in Ro-Top shaking machine and was shaken for 15 minutes.
- 3) Sand retained in each sieve was weighed with the help of fx-300 electronic balance and each reading was noted.

- (1) Result obtained for each sieve was multiplied by multiplying factor of corresponding sieve (1. wt in sieve) × (Multiplier) = C
- B AFS GFN = ZC.1. wt in sieve)
- 6 braph between 1. wt retained in sieve vs seive number and cumulative weight in each sieve vs sieve number was plotted on the same graph paper.

DATE

SHEETNO

| and the same of th |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tal 10' - |
| pservanon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I WOIE    |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |

Sand: - Raj mahal

|         |                     |     |                     |           | ·               | 1       |
|---------|---------------------|-----|---------------------|-----------|-----------------|---------|
| Spine M | o. Aperture<br>(mm) |     | y Weight in<br>gram | weight in | Cum Wt<br>in gm | C = AxB |
| 6       | 3.327               | 3   | 0                   | 0         | 0               | 0       |
| 12      | 1.651               | 5   | 0.062               | 0.124     | 0.062           | 0.62    |
| 28      | 0.833               | 10  | 13.208              | 26.416    | 13-270          | 264.16  |
| 30      | 0.589               | 20  | 26.051              | 52.102    | 39.321          | 1042.04 |
| 40      | 0.414               | 30  | 6.737               | 13.474    | 46.058          | 404.22  |
| 50      | 0-295               | 40  | 2.058               | 4.116     | 48.116          | 164.64  |
| 70      | 0.208               | 50  | 0.077               | 0.154     | 48.193          | 7.70    |
| 100     | 0.147               | 70  | 0.200               | 0.400     | 48.393          | 28.00   |
| 140     | 0.104               | 100 | 0.451               | 0.902     | 48-844          | 90.20   |
| 200     | 0.074               | 140 | 0.013               | 0.026     | 48.857          | 3.64    |
| 270     | 0.053               | 200 | 0.012               | 0.024     | 48.869          | 4.80    |
| Pan     |                     | 300 | 0.005               | 0.010     | 48.874          | 3.00    |
| otal    |                     |     | 48.874              | 97.748    |                 | 2013.02 |

$$AFSGFN = \frac{EC}{EB} = 20.594$$
, Strein number = 3

DATE

SHEET NO.

Sand: - Feko

| Seive<br>No. | Aperture<br>(mm) | Multiplier<br>(A) | Weight in<br>grams | Weight in | am wt<br>ingm | C = AXB  |
|--------------|------------------|-------------------|--------------------|-----------|---------------|----------|
| 6            | 3.327            | 3                 | 0                  | O         | 0             | 0        |
| 12           | 1.651            | 5                 | O                  | O         | 0             | O        |
| 20           | 0.833            | 10                | 0.207              | 0.414     | 0.207         | 4.14     |
| 30           | 0.589            | 20                | 3.057              | 6.114     | 3.264         | 122.28   |
| 40           | 0.414            | 30                | 12.025             | 24.050    | 15.289        | 721 . 50 |
| 50           | 0.295            | 40                | 14.067             | 28.134    | 29.356        | 1125.36  |
| 70           | 0.208            | 50                | 7.509              | 15.018    | 36.865        | 750.90   |
| 100          | 0.147            | 70                | 6.516              | 13.032    | 43 · 381      | 312.24   |
| 140          | 0.104            | [00               | 4.025              | 8.050     | 47.406        | 805-00   |
| 200          | 0.074            | 140               | 0.338              | 0.676     | 47.744        | 34.64    |
| 270          | 0.053            | 200               | 0.106              | 0.212     | 47.850        | 42.40    |
| Pan          |                  | 300               | 0.06)              | 0.122     | 47.911        | 36.60    |
| Total        |                  |                   | 47.911             | 95.822    |               | 4615.06  |

$$AFSGFN = \frac{2C}{2B} = \frac{4615.06}{35.822} = 48.163$$

Screen number for Feko is 4

## INDIAN INSTITUTE OF TECHNOLOGY

SHEET NO DATE

Discussions -

1) With increase in AFSOIFN the sand grain size decrea-Sex. If the AFSGFN will be high the sand cample will have rifine grains.

since (AFSGFN) fero > (AFSGFN) Rajmahak

Feko & has more finer grains than Rajmahal.

- Example grain size will be more permeable, so the perm-eability of Rajmahal is more than feko.
- (b) Small grain size provides better surface finish. So, Feko will have a better surface finish.
- © small grain size provides higher strength, so, feko will be able to bear more strain than Raymahal.
- 3 Large steel casting requires the following properties of the sand
  - (1) High strongth (ii) Ability to bear high strain

These properties are shown by Feko sand. So, feko sand will be used for large steel casting.

(4) As seen from the experiment, Feko has scruen no. = 4 and Rajmahal has 3. Higher the screen number higher is uniformitty. So, feko has more uniformity.



## Results:-

| St. No. | Sand Name | AFSOFN | SCREEN NO |
|---------|-----------|--------|-----------|
| 1.      | Rajmahal  | 20.594 | 3         |
| 2.      | feko      | 48.163 | 4         |

# AFSGIFN of mixture

60% of Rajkamal and 401. of Feko

AFSGFN = 0.6x20.594 + 0.4x48.163

-12·3564 + 19·2652

= 31.6216