Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Самостоятельная работа №5

по дисциплине «Сети и телекоммуникации»

Выполнил:Яровой В. Д.Группа:5130904/00104

Проверил: Медведев Б. М.

Содержание

1 Цель работы	3
2 Порядок выполнения работы	3
3 Основная часть	
3.1 Модель с независимыми ошибками	4
3.1.1 Вероянность 0.02	4
3.1.2 Вероянность 0.008	4
3.1.3 Вероянность 0.005	4
3.2 Модель Гильберта	5
3.2.1 Вероянность 0.001	5
3.2.2 Вероянность 0.003	
3.2.3 Вероянность 0.0005	5
4 Вывод	

1 Цель работы

Исследовать модель системы уровня линии передачи данных в режиме исправления ошибок, оценить эффективность кодирования и найти наиболее эффективный помехоустойчивый код для модели дискретного канала с независимыми ошибками и модели Гильберта.

2 Порядок выполнения работы

- 1. Для модели с независимыми ошибками исследование провести при 3 различных значениях вероятности ошибки в канале: $0.02,0.008,\,0.005$.
- 2. Для модели Гильберта исследование провести при 3 различных значениях вероятности перехода из «хорошего» состояния в «плохое»: 0.003, 0.001, 0.0005.

3 Основная часть

3.1 Модель с независимыми ошибками

Характеристика модели: средняя вероятность ошибки на каждый бит. Ошибки распределены равномерно в течение потока данных, а не появляются группами.

Исследование проведено при 3 различных значениях вероятности ошибки в канале: 0.02, 0.008, 0.005.

3.1.1 Вероянность 0.02

n	k	С кодированием	Без кодирования	Эффективность
7	4	485	118	4.1102
15	11	524	118	4.4407
15	7	451	118	3.822
15	5	333	118	2.822
31	26	482	118	4.0847
31	21	617	118	5.2288
31	16	513	118	4.3475
63	57	348	118	2.9492
63	51	584	118	4.9492

3.1.2 Вероянность 0.008

n	k	С кодированием	Без кодирования	Эффективность
7	4	556	438	1.2694
15	11	695	438	1.5868
15	7	466	438	1.0639
15	5	333	438	0.7603
31	26	759	438	1.7329
31	21	671	438	1.532
31	16	516	438	1.1781
63	57	732	438	1.6712
63	51	789	438	1.8014

3.1.3 Вероянность 0.005

n	k	С кодированием	Без кодирования	Эффективность
7	4	561	609	0.9212
15	11	710	609	1.1658
15	7	466	609	0.7652
15	5	333	609	0.5468
31	26	806	609	1.3235
31	21	676	609	1.11
31	16	516	609	0.8473
63	57	831	609	1.3645
63	51	800	609	1.3136

3.2 Модель Гильберта

Исследование проведено при 3 различных значениях вероятности перехода из «хорошего» состояния в «плохое»: $0.001,\,0.003,\,0.0005$

3.2.1 Вероянность 0.001

n	k	С кодированием	Без кодирования	Эффективность
7	4	511	914	0.5591
15	11	671	914	0.7341
15	7	418	914	0.4573
15	5	298	914	0.326
31	26	775	914	0.8479
31	21	622	914	0.6805
31	16	476	914	0.5208
63	57	832	914	0.9103
63	51	745	914	0.8151

3.2.2 Вероянность 0.003

n	k	С кодированием	Без кодирования	Эффективность
7	4	390	744	0.5242
15	11	537	744	0.7218
15	7	323	744	0.4341
15	5	223	744	0.2997
31	26	623	744	0.8374
31	21	508	744	0.6828
31	16	383	744	0.5148
63	57	681	744	0.9153
63	51	603	744	0.8105

3.2.3 Вероянность 0.0005

n	k	С кодированием	Без кодирования	Эффективность
7	4	530	944	0.5614
15	11	686	944	0.7267
15	7	432	944	0.4576
15	5	307	944	0.3252
31	26	790	944	0.8369
31	21	638	944	0.6758
31	16	488	944	0.5169
63	57	854	944	0.9047
63	51	767	944	0.8125

4 Вывод

В ходе исследования была рассмотрена структура системы передачи данных с возможностью коррекции ошибок. Была проведена оценка эффективности применяемых кодирований, а также определен наиболее подходящий код для обеспечения помехоустойчивости в моделях дискретного канала с независимыми ошибками и модели Гильберта.

Модель с независимыми ошибками: Рекомендуется внедрение помехоустойчивого кодирования с применением выявленного наиболее эффективного кода.

Модель Гильберта: Кодирования оказывается неэффективным, поскольку показатель эффективности оказывается меньше единицы при проведении измерений. Эффективность практически не изменяестя при изменении значения вероятности.