Beyond Labels: Fine-Grained Detection and Explainable AI for Toxicity in Intimate Dialogues

Nicolò Resta

University of Bari, Aldo Moro

September 17, 2025

Outline

- Introduction & Motivation
- Dataset Preparation
- Seriments
- Results
- **5** Conclusion & Future Work

The Challenge: Toxicity in Private Conversations

The Problem

Detecting toxicity (harassment, abuse) is a critical NLP task for online safety. However, most research focuses on **public platforms** (e.g., Twitter, Reddit, Facebook, Instagram, Youtube).

Key Gaps in Private Dialogues

- Data Scarcity: Sensitive, private nature makes data acquisition nearly impossible.
- Context is Paramount: Toxicity is subtle, dyadic, and depends on relational history.
- Explainability is Crucial: Simply flagging a chat as "toxic" is insufficient for trust and intervention. We need to answer questions like *how much?* and *why?*

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes human-readable narrative explanations for chat dynamics.

A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation

A Rigorous Comparative Analysis

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes human-readable narrative explanations for chat dynamics.
- A Comprehensive Empirical Study
 We conducted experiments across three distinct task
 - Chat-Level Classification (Binary & Multiclass)
 - Message-Level Regression
 - Abstractive Explanation Generation
- A Rigorous Comparative Analysis

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes *human-readable narrative explanations* for chat dynamics.

A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation

A Rigorous Comparative Analysis

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes human-readable narrative explanations for chat dynamics.
- A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation
- A Rigorous Comparative Analysis

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes human-readable narrative explanations for chat dynamics.

A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation

A Rigorous Comparative Analysis

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes *human-readable narrative explanations* for chat dynamics.

A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation

A Rigorous Comparative Analysis

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits (OCEAN), Attachment styles, Emotional triggers, Personal history, Motivations, Defensive Mechanisms and so on ...

Phase 2, Chat Generation

- Simulates chats across 7 relationship stages (e.g., initiation, exploration ...).
- Controlled toxicity by targeting specific mean and std. dev. for message scores.
- Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits (OCEAN), Attachment styles, Emotional triggers, Personal history, Motivations, Defensive Mechanisms and so on ...

Phase 2. Chat Generation:

- Simulates chats across 7 relationship stages (e.g., initiation, exploration ...).
- Controlled toxicity by targeting specific **mean** and **std. dev.** for message scores.
- Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits (OCEAN), Attachment styles, Emotional triggers, Personal history, Motivations, Defensive Mechanisms and so on ...

Phase 2, Chat Generation:

- Simulates chats across 7 relationship stages (e.g., initiation, exploration ...).
- Controlled toxicity by targeting specific **mean** and **std. dev.** for message scores.
- Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits (OCEAN), Attachment styles, Emotional triggers, Personal history, Motivations, Defensive Mechanisms and so on ...

Phase 2, Chat Generation:

- Simulates chats across 7 relationship stages (e.g., initiation, exploration ...).
- Controlled toxicity by targeting specific **mean** and **std. dev.** for message scores.
- ullet Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Preparing the Final Dataset for Experiments

Filtering and Cleaning

After regex-parsing, filtering (e.g., max length 512 tokens) and cleaning (e.g. converting emojis to text), we obtained **1809** conversations.

Labeling Scheme for Classification

- Aggregation: Chat label is determined by the class of the minimum user-average score.
- Multiclass:
 - Toxic: [-1, -0.35)
 - Neutral: [-0.35, 0.35]
 - Healthy: (0.35,1]
- **Binary:** Toxic vs. Non-Toxic (Neutral + Healthy).

Dataset Structures

- Classification: Each sample consists of a textual chat + chat-level label (binary/multiclass).
- Regression: Each sample consists of a target message, its message-level score and the full chat as context.

Preparing the Final Dataset for Experiments

Filtering and Cleaning

After regex-parsing, filtering (e.g., max length 512 tokens) and cleaning (e.g. converting emojis to text), we obtained **1809** conversations.

Labeling Scheme for Classification

- Aggregation: Chat label is determined by the class of the minimum user-average score.
- Multiclass:
 - Toxic: [-1, -0.35)
 - Neutral: [-0.35, 0.35]
 - Healthy: (0.35, 1]
- Binary: Toxic vs. Non-Toxic (Neutral + Healthy).

Dataset Structures

- Classification: Each sample consists of a textual chat + chat-level label (binary/multiclass).
- Regression: Each sample consists of a target message, its message-level score and the full chat as context.

Preparing the Final Dataset for Experiments

Filtering and Cleaning

After regex-parsing, filtering (e.g., max length 512 tokens) and cleaning (e.g. converting emojis to text), we obtained **1809** conversations.

Labeling Scheme for Classification

- Aggregation: Chat label is determined by the class of the minimum user-average score.
- Multiclass:
 - Toxic: [-1, -0.35)
 - Neutral: [-0.35, 0.35]
 - Healthy: (0.35, 1]
- Binary: Toxic vs. Non-Toxic (Neutral + Healthy).

Dataset Structures

- Classification: Each sample consists of a textual chat + chat-level label (binary/multiclass).
- Regression: Each sample consists of a target message, its message-level score and the full chat as context.

Dataset Distribution

All Models Used

Classic Machine Learning Models

For classification task:

- Tokenization
- POS filtering: Keep only NOUNs, VERBs, ADJs, ADVs, PRONs, AUXs and INTJs.
- NER-based anonymization: Replace PERSON, ORG and LOC.
- Normalization: Stemming vs. Lemmatization.
- Vectorization + Models: CountVectorizer (NB) and TfidfVectorizer (LR, SVC).

Transformer Models

- BERT: dbmdz/bert-base-italian-cased for both classification and regression tasks
- BART: morenolq/bart-it for explanation task

All Models Used

Classic Machine Learning Models

For classification task:

- Tokenization
- POS filtering: Keep only NOUNs, VERBs, ADJs, ADVs, PRONs, AUXs and INTJs.
- NER-based anonymization: Replace PERSON, ORG and LOC.
- Normalization: Stemming vs. Lemmatization.
- Vectorization + Models: CountVectorizer (NB) and TfidfVectorizer (LR, SVC).

Transformer Models

- BERT: dbmdz/bert-base-italian-cased for both classification and regression tasks
- BART: morenolg/bart-it for explanation task

Cost-Sensitive Prediction Model Variants

- Logistic Regression and Naive Bayes were also wrapped in a CostSensitiveClassifier to make lowest-cost predictions.
- These models were trained and evaluated as standalone models for comparisons.
- Cost matrix was defined based on the psychological severity of misclassifications:

$$M = \begin{bmatrix} 0 & 8 & 16 \\ 8 & 0 & 1 \\ 16 & 4 & 0 \end{bmatrix}$$

BERT Input Formatting Variants for Chat-Level Classification

BERT Input (Simple Concatenation):

	[CLS]	User	A:	msg1	User	В:	msg2	User	A:	msg3	
--	-------	------	----	------	------	----	------	------	----	------	--

BERT-ST Input (Structured with Speaker Information):

[CLS]	User	A:	msg1	[SEP]	User	В:	msg2	[SEP]	User	A:	msg3	[SEP]
	Token-type IDs:											
0	0	0	0	0	1	1	1	1	0	0	0	0

Token-Type IDs

- Token-type IDs distinguish messages from different users.
- Each user's messages are separated by special tokens ([SEP]).

BERT Input Formatting Variants for Message-Level Regression 1/2

BERT-M Input (Target Message Highlighted):

[CLS]	User	A:	msg1	[SEP]	User	В:	msg2	[SEP]	User	A:	msg3	User	В:	msg4
	Token-type IDs:													
1	0	0	0	1	1	1	1	1	0	0	0	0	0	0

Token-Type IDs

- Token-type IDs distinguish target and contextual tokens.
- The target message is isolated between two special tokens ([SEP]).

BERT Input Formatting Variants for Message-Level Regression 2/2

BERT-MU Input (With Learned User Embeddings):

[CLS]	User	A:	msg1	[SEP]	User	В:	msg2	[SEP]	User	A:	msg3	User	В:	msg4
	Token-type IDs:													
1	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	User-type IDs:													
0	1	1	1	0	0	0	0	0	1	1	1	0	0	0

User-Type IDs

- Each token also receives a learned user embedding.
- This allows the model to capture user-specific communication styles and patterns.

Rigorous Evaluation Protocol for Classification/Regression

Nested Cross-Validation

To get an unbiased performance estimate and tune hyperparameters simultaneously.

- Outer Loop (5-fold): For robust performance estimation.
- Inner Loop (3-fold): For hyperparameter tuning (GridSearchCV) (only for ML models).

Preventing Data Leakage

GroupKFold was used in both loops, ensuring all chats from the same couple remain in the same fold. This is crucial for valid results.

Statistical Analysis

We computed **means**, **std. dev.**, **95% confidence intervals**, and conducted **paired t-tests** on the outer fold scores to determine if performance differences were statistically significant.

Classification

- Accuracy: Ratio of correct predictions
- Precision: Accuracy of positive predictions
- Recall: Ability to find all positives
- **F1-Score**: Harmonic mean of precision/recall
- Misclassification Cost: Custom penalty based on psychological severity (multiclass only)

Regression

- MAE: Average absolute error, outlier-robust
- RMSE MSE: Root mean squared error, penalizes large errors
- Correlation: Linear relationship strength
- R-MAE/R-RMSE/R-MSE: Relative to naive baseline

Explanation Generation

- ROUGE-1/2: N-gram overlap (unigrams/bigrams)
- ROUGE-L: Longest common subsequence
- BLEU: N-gram precision-focused
- BERTScore: Semantic similarity using BERT embeddings. Provides P/R/F1 for robust semantic evaluation

Hyperparameters Space

Component	Hyperparameter	Values
Count/Tfidf	ngram_range	(1, 1), (1, 2), (1, 3)
Vectorizer	min_df	3, 8, 20
	max_df	0.9, 0.95, 0.99
Multinomial NB	alpha	0.1, 0.5, 1.0, 2.0
Logistic Regression	C	0.1, 1.0, 10.0
	max_iter	1000, 2000
BERT	n. Max. Epochs	20
	Learning Rate	3e-5
	Batch Size	32
	Grad. Accum. Steps	4
	Weight Decay	0.001
	Warmup Percentage	0.1
	Early Stopping	Patience: 4
	LR Scheduler	Reduce on Plateau
	(Factor: 0.5,	Patience: 2)
	Warmup Percentage Early Stopping LR Scheduler	0.1 Patience: 4 Reduce on Plat

Component	Hyperparameter	Values
BART	n. Max. Epochs	20
	Learning Rate	3e-5
	Batch Size	4
	Grad. Accum. Steps	8
	Weight Decay	0.01
	Warmup Percentage	0.1
	LR Scheduler	Linear with Warmup

Best Model Selection Criteria

Chat-Level Classification Tasks

- Binary: Maximize Weighted F1-score.
- Multiclass: Minimize Chat-Level Misclassification Cost of chat-level predictions.

Message-Level Regression Task

Minimize Message-Level Misclassification Cost of aggregated message-level predictions.

Explanation Generation Task

Maximize **BERTScore F1** between generated and reference explanations.

Finding 1: A Performance Plateau in Classification (Multiclass)

Model	Weighted F1	Cost
BERT-M	$0.78 \pm 0.04 [0.72, 0.83]$	0.10 ± 0.02 [0.07, 0.12]
BERT	$0.77 \pm 0.03 [0.72, 0.81]$	0.10 ± 0.02 [0.07, 0.13]
BERT-MU	$0.77 \pm 0.05 [0.71, 0.84]$	0.10 ± 0.02 [0.07, 0.13]
PosNerStem-SVC	$0.77 \pm 0.03 [0.73, 0.80]$	0.11 ± 0.01 [0.09, 0.13]
PosNerLemma-SVC	$0.77 \pm 0.03 [0.73, 0.80]$	0.11 ± 0.01 [0.09, 0.13]
PosNerStem-LR	$0.76 \pm 0.02 [0.73, 0.79]$	0.11 ± 0.01 [0.09, 0.12]
PosNerLemma-LR	$0.76 \pm 0.02 [0.73, 0.79]$	0.11 ± 0.01 [0.09, 0.12]
BERT-ST	$0.76 \pm 0.04 [0.70, 0.81]$	$0.11 \pm 0.02 [0.08, 0.14]$
PosNerStem-CS_NB	$0.75 \pm 0.03 [0.70, 0.79]$	$0.12 \pm 0.02 [0.10, 0.15]$
PosNerStem-NB	$0.75 \pm 0.04 [0.70, 0.80]$	$0.12 \pm 0.02 [0.09, 0.15]$
PosNerLemma-CS_NB	$0.75 \pm 0.03 [0.70, 0.79]$	0.12 ± 0.02 [0.10, 0.15]
PosNerLemma-NB	$0.75 \pm 0.04 [0.70, 0.80]$	0.12 ± 0.02 [0.09, 0.15]
PosNerStem-CS_LR	$0.73 \pm 0.03 [0.68, 0.77]$	$0.12 \pm 0.02 [0.09, 0.15]$
PosNerLemma-CS_LR	$0.73 \pm 0.03 [0.68, 0.77]$	$0.12 \pm 0.02 [0.09, 0.15]$

Interpretation

The task's and labeling scheme's inherent **subjectivity and ambiguity** may have challenged all models equally limiting performances.

Finding 1: A Performance Plateau in Classification (Binary)

Model	Weighted F1
SVC	$0.87 \pm 0.03 [0.83, 0.91]$
BERT	$0.87 \pm 0.02 [0.84, 0.90]$
BERT-M	$0.87 \pm 0.02 [0.84, 0.90]$
LR	$0.86 \pm 0.02 [0.83, 0.90]$
BERT-ST	$0.86 \pm 0.02 [0.82, 0.89]$
BERT-MU	0.86 ± 0.03 [0.82, 0.89]
NB	$0.84 \pm 0.03 [0.81, 0.88]$

Interpretation

Mistakenly introduced dataset latent biases may be learnable up to a certain point, beyond which further complex models yields diminishing returns.

Finding 2: Regression is a Viable Alternative

BERT-M	BERT-MU
$0.1367 \pm 0.0168 \; [0.1159, 0.1576]$	$0.1423 \pm 0.0194 \; [0.1182, 0.1664]$
$0.2656 \pm 0.0216 \ [0.2388, 0.2925]$	$0.2695 \pm 0.0223 [0.2419, 0.2972]$
$0.3692 \pm 0.0225 [0.3413, 0.3972]$	$0.3765 \pm 0.0257 [0.3446, 0.4085]$
$0.8335 \pm 0.0264 \ [0.8007, 0.8663]$	$0.8254 \pm 0.0266 [0.7923, 0.8584]$
$0.3205 \pm 0.0391 \ [0.2720, 0.3691]$	$0.3338 \pm 0.0467 \ [0.2758, 0.3918]$
$0.4618 \pm 0.0372 [0.4156, 0.5080]$	$0.4687 \pm 0.0390 \ [0.4203, 0.5171]$
$0.5653 \pm 0.0342 \ [0.5229, 0.6078]$	$0.5766 \pm 0.0406 \ [0.5261, 0.6270]$
$0.84 \pm 0.02 [0.82, 0.86]$	$0.83 \pm 0.02 [0.80, 0.86]$
$0.72 \pm 0.03 [0.68, 0.76]$	$0.71 \pm 0.03 [0.67, 0.75]$
$0.13 \pm 0.02 [0.10, 0.15]$	$0.13 \pm 0.02 [0.11, 0.15]$
	$\begin{array}{c} 0.1367 \pm 0.0168 \; [0.1159, 0.1576] \\ 0.2656 \pm 0.0216 \; [0.2388, 0.2925] \\ 0.3692 \pm 0.0225 \; [0.3413, 0.3972] \\ 0.8335 \pm 0.0264 \; [0.8007, 0.8663] \\ 0.3205 \pm 0.0391 \; [0.2720, 0.3691] \\ 0.4618 \pm 0.0372 \; [0.4156, 0.5080] \\ 0.5653 \pm 0.0342 \; [0.5229, 0.6078] \\ 0.84 \pm 0.02 \; [0.82, 0.86] \\ 0.72 \pm 0.03 \; [0.68, 0.76] \end{array}$

Interpretation

Models are effective at capturing the nuances of toxicity in messages. They also achieved competitive classification performances, validating the fine-grained approach.

Finding 3: Promising Results in Explainability

Metric	Value
BERTScore (F1)	0.77
BERTScore (Precision)	0.77
BERTScore (Recall)	0.76
ROUGE-1	0.56
ROUGE-2	0.21
ROUGE-L	0.25
BLEU	0.20

Interpretation

- **High BERTScore F1 (0.77)** indicates strong semantic similarity between generated and reference explanations. The model captures the correct meaning.
- Lower n-gram scores (ROUGE-2, BLEU) are expected in abstractive tasks with high linguistic variability.

Considerations

Overall the model can generate coherent and contextually relevant rationales, a crucial step towards trustworthy AI.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the task's inherent ambiguity and data characteristics, rather than model complexity.
- The fine-grained regression approach demonstrated promising competitively performances on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating **semantically relevant explanations**, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the task's inherent ambiguity and data characteristics, rather than model complexity.
- The fine-grained regression approach demonstrated promising competitively performances on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the **task's inherent ambiguity** and data characteristics, rather than model complexity.
- The fine-grained regression approach demonstrated promising competitively performances on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the **task's inherent ambiguity** and data characteristics, rather than model complexity.
- The fine-grained regression approach demonstrated promising competitively performances on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the **task's inherent ambiguity** and data characteristics, rather than model complexity.
- The fine-grained regression approach demonstrated promising competitively performances on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating **semantically relevant explanations**, paving the way for more transparent systems.

Future Work

Our ongoing research focuses on four key areas:

- Enhancing Data Generation & Quality Assessment Refining the pipeline with automated quality metrics and exploring multi-agent (e.g., critic/generator) frameworks to improve realism.
- Interdisciplinary Collaboration Integrating professional psychologists into the research team to improve psychological fidelity and validate model behaviors.
- Real-World Validation Deploying a public demo to collect user feedback, bridging the "sim-to-real" gap and testing model generalization.
- Multi-Task Learning for Enhanced Explainability
 Training a single BART-based model for both regression and explanation generation,
 using explanation as a form of regularization to learn more robust representations.

Thank You!

Nicolò Resta

nicolo.resta@studenti.uniba.it University of Bari, Aldo Moro