Computational MRI

Fourier Image Reconstruction Basics

Based on a lecture by Ricardo Otazo

Interaction with gradient fields G

Plewes 2012

$$B(y) = B_0 + G_y y$$

Interaction with gradient fields G

Fourier transform

$$S(k) = \int_{-\infty}^{\infty} s(r) e^{-i2\pi kr} dr \qquad \text{(forward)}$$

$$s(r) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(k) e^{i2\pi kr} dk$$
 (inverse)

1D example

A4 (440Hz)

Fourier transform properties

Linearity:
$$F\{as_1(r) + bs_2(r)\} = aS_1(k) + bS_2(k)$$

Shifting:
$$F\{s(r-r_0)\} = e^{-i2\pi k r_0} S(k)$$

Modulation:
$$F\{e^{i2\pi k_0 r}s(r)\}=S(k-k_0)$$

Conjugate symmetry:
$$s(r)real \Rightarrow S(-k) = S^*(k)$$

Scaling:
$$F\{s(ar)\} = \frac{1}{|a|}S(\frac{k}{a})$$

Fourier transform properties

Parseval's formula:

$$\int S_1(r)S_2(r) dr = \int S_1(k)S_2(k) dk$$

assumption: orthonormality

Convolution & multiplication

$$F\{s_1(r) * s_2(r)\} = S_1(k)S_2(k)$$

$$F\{s_1(r)s_2(r)\} = S_1(k) * S_2(k)$$

Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

Source: Wikipedia

Fourier transform of basic functions

Multidimensional Fourier transform

$$S(\mathbf{k}) = \int_{-\infty}^{\infty} s(\mathbf{r}) e^{-i2\pi \mathbf{k} \cdot \mathbf{r}} d\mathbf{r} \qquad \text{(forward)}$$

$$s(\mathbf{r}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\mathbf{k}) e^{i2\pi \mathbf{k} \cdot \mathbf{r}} d\mathbf{k} \quad \text{(inverse)}$$

$$\mathbf{S}(k_x.k_y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} s(x,y) e^{-i2\pi(k_xx+k_yy)} dxdy$$

$$\mathbf{k} = (k_x,k_y)$$

$$s(x,y) = \frac{4}{\pi^2} \int_{-\infty-\infty}^{\infty} S(k_x,k_y) e^{i2\pi(k_xx+k_yy)} dk_x dk_y$$

The multidimensional Fourier transform is separable

K-space

128x128

256x256

gibbs ringing artifacts: generated from side lobs

64x64 128x128 256x256

Sampling of continuous signals

- Nyquist/Shannon theorem
 - A signal with bandwidth B can be reconstructed from its samples if they are taken regularly with a period no larger than 1/2B

Nyquist rate :
$$\Delta t = \frac{1}{2B}$$

Sampling of continuous signals

Nyquist/Shannon theorem

$$\Delta t \le \frac{1}{2B} \implies \text{no aliasing}$$

$$\Delta t > \frac{1}{2R} \implies \text{aliasing}$$

Sampling of MRI signals

Where do we sample?

- How do we apply the sampling theorem?
 - bandwidth: image
 - sampling rate: k-space

Cartesian sampling of k-space

Nyquist rate:

$$\Delta k_x = \frac{1}{W_x}; \quad \Delta k_y = \frac{1}{W_y}$$

Radial sampling of k-space

Nyquist rate (approximate):
$$N_{radial} = \frac{\pi}{2} N_{Cartesian}$$

Aliasing examples

Cartesian

$$\Delta \phi = 2 \Delta \phi_{Nyquist}$$

Radial

$$\Delta k_{y} = \frac{4}{W_{y}}$$

$$\Delta \phi = 4 \Delta \phi_{Nyquist}$$

Discrete Fourier transform (DFT)

- Discrete signals (sequence of numbers)
- Fast implementation: FFT

$$S(k) = \sum_{n=0}^{N-1} s(n)e^{-i\frac{2\pi}{N}nk}$$
 (forward)

$$s(n) = \frac{1}{N} \sum_{k=0}^{N-1} S(k) e^{i\frac{2\pi}{N}nk}$$
 (inverse)

Python (NumPy)

S=np.fft(s)

s=np.ifft(S)

• S(k) is known at $k=n\Delta k$ $\left(-\frac{N}{2} \le n \le \frac{N}{2}\right)$

• S(k) is known at $k=n\Delta k$ $\left(-\frac{N}{2} \le n \le \frac{N}{2}\right)$

- Zero-padding in k-space (Fourier interpolation)
 - Decreases the pixel size but does not increase resolution

Original 128x128

 $p_{x} = \frac{W_{x}}{N_{x,padded}}; p_{y} = \frac{W_{y}}{N_{y,padded}}$

- Gibbs ringing
 - Spurious ringing around sharp edges
 - Caused by k-space truncation
 - Gets stronger for decreasing N)

- k-space filtering or windowing
 - Reduce Gibbs ringing at the expense of resolution loss

$$S_W(k) = S(k)W(k)$$

Hamming filter

$$W(k) = 0.54 + 0.46 \cos\left(\frac{2\pi n}{N}\right)$$

$$PSF = \frac{Boxcar}{-Hamming}$$

Signal-to-noise ratio (SNR) (simplified)

$$SNR \propto V \sqrt{T}$$

V: voxel volume

T: cumulated readout duration

Signal-to-noise ratio (SNR)

$$SNR = \frac{S}{N} = \frac{\text{Pixel signal amplitude}}{\text{Standard deviation of background}}$$

Simplification: Not entirely correct for many real-world measurements!