CONTROLLER FOR ENGINE

Patent number:

JP2002147287

Publication date:

2002-05-22

Inventor:

MIYAMOTO KATSUHIKO

Applicant:

MITSUBISHI MOTORS CORP

Classification:

- international:

F02M25/07; B60K6/02; F02D21/08; F02D41/02;

F02D41/12; F02D43/00

- european:

Application number: JP20000348334 20001115 Priority number(s): JP20000348334 20001115

Report a data error here

Abstract of JP2002147287

problem to be solved: To reduce pumping loss of an engine during deceleration and to prevent deterioration of combustion of the engine during re-acceleration in regard to a controller for the engine. Solution: When stopping fuel feed to the engine 2 during deceleration of a vehicle 1, an EGR device 15 is driven in a direction returning exhaust gas to the engine 2 and the exhaust gas generated by the engine 2 is returned again to an intake side of the engine 2. Then, when it is detected that a brake 7 is in a non-operated state, the EGR device 15 is driven in a direction suppressing return of the exhaust gas to the engine 2.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-147287 (P2002-147287A)

(43)公開日 平成14年5月22日(2002.5.22)

(51) Int.Cl. ⁷		識別記号		FΙ			รั	-7]-ド(参考)
F 0 2 M	25/07	5 5 0		F 0	2 M 25/07		550K	3G062
							5 5 0 R	3G084
B 6 0 K	6/02	ZHV		F0	2 D 21/08		301C	3 G 0 9 2
F02D	21/08	3 0 1			41/02		330E	3 G 3 O 1
	41/02	3 3 0			41/12		330M	
			審査請求	未請求	請求項の数1	OL	(全 8 頁)	最終頁に続く

(21)出願番号 特願2000-348334(P2000-348334)

(22)出願日 平成12年11月15日(2000.11.15)

(71) 出願人 000006286

三菱自動車工業株式会社

東京都港区芝五丁目33番8号

(72)発明者 宮本 勝彦

東京都港区芝五丁目33番8号 三菱自動車

工業株式会社内

(74)代理人 100092978

弁理士 真田 有

最終頁に続く

(54) 【発明の名称】 エンジンの制御装置

(57)【要約】

【課題】 本発明は、エンジンの制御装置に関し、減速時におけるエンジンのポンプ損失を低減するとともに再加速時におけるエンジンの燃焼の悪化も防止できるようにする。

【解決手段】 車両1の減速時にエンジン2への燃料供給を停止するときには、エンジン2に排気ガスを還流させる方向にEGR装置15を駆動してエンジン2で発生した排気ガスを再びエンジン2の吸気側へ還流させ、その後、プレーキ7が非作動状態であることが検出されたときには、エンジン2への排気ガスの還流を抑制する方向にEGR装置15を駆動する。

【特許請求の範囲】

【請求項1】 エンジンで発生した排気ガスを再び該エンジンの吸気側へ還流させるEGR装置を有するエンジンの制御装置において、

ブレーキの作動状態を検出するブレーキ検出手段と、 車両の減速時に該エンジンへの燃料供給を停止する燃料 供給制御手段と、

該燃料供給制御手段による燃料供給の停止時に該エンジンに排気ガスを還流させる方向に該EGR装置を駆動し、その後、該ブレーキ検出手段により該ブレーキが非作動状態であることが検出されると該エンジンへの排気ガスの還流を抑制する方向に該EGR装置を駆動するEGR制御手段とを備えたことを特徴とする、エンジンの制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両の減速時におけるエンジンの制御技術に関し、特に、駆動源としてエンジン及びモータを組み合わせたハイブリッド車両に用いて好適の制御技術に関する。

[0002]

【従来の技術】近年、エンジンにモータを組み合わせ、エンジン出力及び/又はモータ出力により走行可能としたハイブリッド車両が実用化されている。この種のハイブリッド車両では、発電機として作動しうるモータを備えており、車両の減速状態ではモータを発電機として作動させ、車両の余剰エネルギを電気エネルギとして回収することが可能である。モータの電気エネルギとして回収することが可能である。モータの電気エネルギの回収量、即ち、回生量を増やすためには、車両の余剰エネルギが他の部分で消費されるのを抑える必要があるが、通常、車両の減速時にはスロットル弁が閉じられるため、エンジンはその吸入工程において負圧を吸引することになる。このため、車両の減速時にはエンジンのポンプ損失が発生し、このポンプ損失が車両の余剰エネルギを消費してしまう。

【0003】車両の減速時におけるエンジンのポンプ損失を低減させてモータの回生量を向上させる技術としては、例えば、特開平8-100689号公報、特開平9-329060号公報及び特開平11-93723号公報に開示された技術が知られている。特開平8-100689号公報及び特開平11-93723号公報に開示された技術では、スロットル弁の開閉に連動させてEGR弁を開閉制御することにより、エンジンに排気ガスを還流させ、車両の減速時におけるエンジンのポンプ損失を低減させている。また、特開平9-329060号公報に開示された技術では、燃料カットに連動させてEGR弁を開閉制御している。

[0004]

【発明が解決しようとする課題】しかしながら、上記の 各従来技術のようにスロットル弁の開閉や燃料供給に連 動させてEGR弁を開閉制御する場合、再加速時にエンジンの燃焼が悪化してしまうという課題がある。即ち、再加速時には、排気ガス還流量をカット或いは減少させて燃料噴射量に応じた新気をエンジンに導入する必要があるが、EGR弁が閉じられてから実際にエンジンへの排気ガスの還流量が減少するまでには時間遅れがある。このため、上記のようにスロットル弁の開閉や燃料を出た。このため、上記のようにスロットル弁の開閉や燃料を出た。で連動させてEGR弁を開閉させた場合には、アクセルが踏まれてエンジンへの燃料噴射が再開されたにもかかわらず大量の排気ガスがエンジンに還流してしまい、燃料供給量に対する新気の不足によりエンジンの燃焼が悪化してしまうのである。このようなエンジンの燃焼の悪化し、運転フィーリングや排ガス性能の悪化を招いてしまう。

【0005】本発明は、このような課題に鑑み創案されたもので、減速時におけるエンジンのポンプ損失を低減するとともに再加速時におけるエンジンの燃焼の悪化も防止できるようにした、エンジンの制御装置を提供することを目的とする。

[0006]

【課題を解決するための手段】上記目的を達成するため に、本発明のエンジンの制御装置は、車両の減速時に燃 料供給制御手段によりエンジンへの燃料供給を停止する ときには、EGR制御手段によって該エンジンに排気ガ スを還流させる方向にEGR装置を駆動して該エンジン で発生した排気ガスを再び該エンジンの吸気側へ還流さ せ、その後、ブレーキ検出手段により該ブレーキが非作 動状態であることが検出されたときには、該EGR制御 手段によって該エンジンへの排気ガスの還流を抑制する 方向に該EGR装置を駆動することを特徴としている。 【0007】好ましくは、スロットル弁の開度を制御す るスロットル制御手段を備え、該燃料供給制御手段によ りエンジンへの燃料供給を停止して車両を減速させてい る時には、該スロットル制御手段により該スロットル弁 を開くようにする。これにより、該エンジンのポンプ損 失をさらに低減することが可能になる。また、燃料供給 が停止されている時に該ブレーキ検出手段により該ブレ ーキが作動状態であることが検出されたら、該エンジン に排気ガスを還流させる方向に該EGR装置を駆動する ことも好ましい。このように該EGR装置の駆動を該ブ レーキの操作に連動させることで、制御をより簡単に且 つ確実にすることが可能になる。

[0008]

【発明の実施の形態】以下、図面を参照しながら本発明の実施の形態を説明する。図1~図3は本発明の一実施 形態としてのエンジンの制御装置を示すもので、ここで は、パラレル式のハイブッド車に本発明のエンジンの制 御装置を適用した場合について示している。

【0009】図1の全体構成図に示すように、本実施形態にかかるハイブリッド車両1の駆動系は、エンジン

2, モータ3及びCVT4を組み合わせて構成されている。エンジン2は、その出力軸2aをクラッチ5を介してCVT4の入力軸4aに連結され、CVT4を介して左右の駆動輪8,8~駆動力を伝達できるようになっている。

【0010】エンジン2は一般的な内燃機関として構成され、各気筒毎に燃料噴射弁12を備えるとともに、その吸気管10には吸入空気量を制御するスロットル弁13を備え、排気管11には排気ガス浄化のための触媒14を備えている。また、エンジン2は、エンジン2で発生した排気ガスを再びエンジン2の吸気側に還流させるためのEGR装置(排気ガス再循環装置)15を備えている。このEGR装置15は、排気管10と吸気管11とを結ぶEGR通路15aと、EGR通路15aを開閉して排気ガスの還流量を制御するEGR弁15bとから構成されている。EGR装置15は、本制御のための専用装置でもよく、排気ガス中のNOxを低減させるための装置と兼用してもよい。

【0011】モータ3は、電力供給を受けると電動機として作動し、回転駆動力を受けると発電機として作動しうる電動機兼発電機として構成されている。モータ3はその出力軸をCVT4の入力軸(プライマリ軸)4aと共用しており、電動機として作動したときには入力軸4aを介してエンジン2及びCVT4を直接回転駆動し、発電機として作動したときには入力軸4aから回転駆動力を入力されるようになっている。なお、モータ3が発生した電力は図示しないバッテリに蓄えられるようになっており、モータ3の駆動力が必要とされる場合にはこのバッテリに蓄えられた電力がモータ3へ供給されるようになっている。

【0012】一方、車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM, RAM等),中央処理装置(CPU)及びタイマカウンタ等を備えたコントローラ(制御装置)20が設置されている。コントローラ20の入力側には、少なくともアクセル(アクセルペダル)6の開度を検出するアクセル開度センサ30,ブレーキ(ブレーキペダル)7が踏まれているか否かを検出するブレーキスイッチ(検出手段)31,エンジン2の回転速度(プライマリ軸の回転速度)を検出するエンジン回転速度センサ32等の各種センサ及びスイッチが接続されている。コントローラ20では、これら各種センサ及びスイッチからの検出情報や予め記憶された制御マップ等に基づいて、エンジン2及びモータ3からなるパワーユニット全体を総合制御している。

【0013】次に、本発明の要部について説明すると、本制御装置は、減速時におけるエンジン2のポンプ損失を低減するとともに再加速時におけるエンジン2の燃焼の悪化も防止するべく構成されたものである。このため、本制御装置にかかるコントローラ20は、車両1の

減速時にモータ3を発電機として回生作動させる機能に加えて、さらにその機能要素として、燃料噴射弁12を制御してエンジン2への燃料供給量を制御する燃料供給制御部(燃料供給制御手段)21,スロットル弁13を制御してエンジン2への吸入空気量を制御するスロットル制御部(スロットル制御手段)22、及び、EGR弁15bを制御してエンジン2への排気ガスの還流量を制御するEGR制御部(EGR制御手段)23を備えている。

【0014】以下、図2に示すフローチャート及び図3に示すタイムチャートを用いて車両の減速時及び再加速時にコントローラ20が行う制御について具体的に説明する。まず、車両の減速時には、コントローラ20は、アクセル開度センサ30の出力に基づきアクセル開度が全閉か否かを判定する(ステップS10)。アクセル開度が所定値未満か否かで判定し、アクセル開度が所定値以上の場合には全閉ではないと判断する。この場合、コントローラ20のスロットル制御部22、EGR制御部23は、アクセル開度及びエンジン回転速度により決まるスロットル弁開度或いはEGR弁開度になるように、それぞれスロットル弁13、EGR弁目5bの通常制御を行う(区間tto:ステップS60)。

【0015】一方、ステップS10でアクセル開度が全閉(即ち、アクセル開度が所定値未満)と判定された場合には(時点t₁)、コントローラ20は、次に燃料噴射弁12から燃料が噴射されているか否か、即ち、燃料カット中か否かを判定する(ステップS20)。燃料供給制御部21は、アクセル開度が全閉になった場合でも急激なエンジントルクの変動を防止するため突然には燃料供給を停止(カット)せず、燃料カットに向けて供給量を次第に減少させていく。そして、このように燃料供給が完全にカットされるまでの間は、スロットル制御部22、EGR制御部23は、それぞれスロットル弁13、EGR弁15bの通常制御を行い、スロットル弁開度、EGR弁開度ともに全閉とする(区間tt₁:ステップS60)。

【0016】そして、燃料供給制御部21により燃料供給が完全にカットされた時点(時点 t_2)で、まず、スロットル制御部22は、全閉状態から閉状態へ向けてスロットル弁13を制御する(ステップS30)。このようにスロットル開度が大きくされることによってエンジン2には吸気管10から新気が導入され、エンジン2は負圧を吸引することなく、エンジン2のポンプ損失が低減される。ところが、燃料カット時にスロットル閉度を大きくすると、燃焼していない低温の空気〔図3(c)の触媒入口温度参照〕が図3(b)中に2点鎖線で示すように大量に触媒14に流入することになるため、このままでは図3(a)中に2点鎖線で示すように触媒温度が下がり触媒14の浄化性能が低下してしまう。

【0017】そこで、EGR制御部23は、ブレーキスイッチ31の出力に基づきブレーキ7が作動状態か否かを判定し(ステップ840)、ブレーキ7が作動状態と判定された場合(即ち、ブレーキスイッチ31がオンのとき)には、全閉状態から開状態へ向けてEGR#15 bを制御する(時点 $t_3:$ ステップ850)。このようにEGR#15 に度 R#15 に R#15 に EGR#15 に

(a) 中に実線で示すように触媒温度の低下も抑制される。なお、ブレーキ7が作動状態にある間は、車両は依然として減速状態にあり、この間、コントローラ20はステップS10~S50の処理を周期的に繰り返し、スロットル制御部22, EGR制御部23は上述のようにスロットル弁13, EGR弁15bをそれぞれ開状態に維持する(区間tt₂)。

【0018】車両が減速状態から再加速状態(定速走行状態を含む)へ移行する場合には、まず、ドライバによりブレーキ7が非作動状態(ブレーキスイッチ31はオフ)とされ(時点 t_4)、続いてアクセル6が踏み込まれる(時点 t_5)。前記した従来技術では、アクセル6が踏み込まれて実際に再加速状態へ移行した後(時点 t_5)、EGR+15bの制御を通常制御に切り換えてEGR+1 月間であるようにしていた。しかしながら、コントローラ20のEGR制御部23は、ブレーキ7が非作動状態になったことが検出された時点(時点 t_4)で、EGR+1 月度を抑制するべくEGR+1 5bの制御を通常制御に切り換える(ステップS70)。つまり、コントローラ20の制御によれば、従来技術に比較して図4中に区間 t_3 で示す時間だけEGR+1 5bの応答性が高められる。

【0019】このように、本発明の一実施形態としての エンジンの制御装置によれば、車両が減速状態から加速 状態へ移行する際に、アクセル開度ではなくブレーキの 作動状態に基づきEGR弁15bを閉側に制御している ので、燃料噴射弁12からの燃料供給に先行してエンジ ン2への排気ガスの還流量を抑制することが可能にな る。したがって、本制御装置によれば、車両の減速時に は、スロットル弁13及びEGR弁15bを開くことに よりエンジン2に新気或いは還流ガスを導入してエンジ ン2のポンプ損失を低減することができ、モータ3によ る電気エネルギの回生量を増大させることができる。ま た、再加速時には、EGR弁15bの閉じ遅れにより余 分な還流ガスがエンジン2に還流されるのを防止するこ とができるので、エンジン2の燃焼の悪化を防止して運 転フィーリングや排ガス性能を向上させることもでき る。

【0020】以上、本発明の実施の形態について説明したが、本発明は上述の実施形態に限定されるものではな

く、本発明の趣旨を逸脱しない範囲で種々変更して実施 しうるものである。例えば、上述の実施形態では、エン ジン2のポンプ損失を低減するにあたりスロットル弁1 3とEGR弁15bとを開いているが、スロットル弁1 3は閉じたままでEGR弁15bのみを開くようにして もよい。この場合でもエンジン2の吸気側に排気ガスが 還流されるので、エンジン2が負圧を吸引することが防 止され、エンジン2のポンプ損失は低減される。ただ し、この場合、エンジン2に吸入される空気は吸気管1 0. エンジン2, 排気管11及びEGR通路15aから なる循環経路内を循環することになるが、EGR通路1 5 a は比較的細いため内部での圧力損失は大きく、エン ジン2にはこの圧力損失分だけ排気ガスを吸引するため の負荷が加わることになる。 したがって、エンジン2に 加わる負荷を低減してポンプ損失をより低減するために は、上述の実施形態のようにスロットル弁13を開いて エンジン2に新気を導入する方が有利である。

【0021】また、上述の実施形態では、車両の減速時、加速時におけるEGR弁15bの開閉制御タイミングをブレーキ7の作動状態に連動させているが、少なくともEGR弁15bを閉側に制御するタイミングはブレーキ7が非作動状態になるタイミングに連動していればよい。即ち、EGR弁15bを開くタイミングについたは、車両の燃料カットによる減速時であればよく、の内に連動させることも可能である。また、ブレーキ7の作動状態を判定する手段としては、上述のブレーキスイッチ31に限定されず、ブレーキ7の踏み込み量を検出するブレーキポジションセンサを用いてもよい。この場合、ブレーキ開度が所定値を越えた場合にブレーキ7が作動状態であると判定することができる。

【0022】さらに、本発明のエンジンの制御装置は、エンジンとモータとを駆動源とするハイブリッド車両にのみ適用が限定されるものではなく、エンジンのみを駆動源とする一般車両にも適用することができる。この場合でも、減速時におけるエンジンのポンプ損失の低減と再加速時におけるエンジンの燃焼悪化の防止とが可能になる。また、本発明が適用されるエンジンは、エンジンで発生した排気ガスを再びエンジンの吸気側へ還流させるEGR装置を有するものであれば、ガソリンエンジンでもよくディーゼルエンジンでもよい。

[0023]

【発明の効果】以上詳述したように、本発明のエンジンの制御装置によれば、エンジンへの燃料供給を停止して車両を減速させている時には、エンジンに排気ガスを還流させる方向にEGR装置を駆動してエンジンで発生した排気ガスを再びエンジンの吸気側へ還流させるので、減速時におけるエンジンのポンプ損失を低減することができという効果がある。また、その後の再加速時には、ブレーキが非作動状態であることが検出されるた時にエ

【図面の簡単な説明】

【図1】本発明の一実施形態にかかるハイブリッド車両の全体構成を示す概略図である。

【図2】本発明の一実施形態にかかる制御装置のスロットル弁及びEGR弁の開閉制御の流れを示すフローチャートである。

【図3】本発明の一実施形態にかかる制御装置のスロットル弁及びEGR弁の開閉制御の流れを示すタイムチャートであり、(a) は触媒温度の時間変化を示す図、

(b) は触媒に流入する排気ガスの流入量の時間変化を示す図、(c) は触媒入口温度の時間変化を示す図、

(d) はEGR弁開度の時間変化を示す図、(e) はブレーキ開度の時間変化を示す図、(f) はエンジントルクの時間変化を示す図、(g) はスロットル弁開度の時間変化を示す図、(h) は燃料噴射量の時間変化を示す図、(i) はアクセル開度の時間変化を示す図である。

【符号の説明】

- 1 ハイブリッド車両
- 2 エンジン
- 3 モータ
- 4 CVT
- 6 アクセル
- 7 ブレーキ
- 10 吸気管
- 11 排気管
- 12 燃料噴射弁
- 13 スロットル弁
- 14 触媒
- 15 EGR装置
- 15a EGR通路
- 15b EGR弁
- 20 コントローラ (制御装置)
- 21 燃料供給制御部 (燃料供給制御手段)
- 22 スロットル制御部 (スロットル制御手段)
- 23 EGR制御部(EGR制御手段)
- 30 アクセル開度センサ
- 31 ブレーキスイッチ (ブレーキ検出手段)

【図1】

時間

(51) Int. Cl. 7	識別記号	FΙ	テーマコード(参考)
F 0 2 D 41/12	3 3 0	F O 2 D 43/00	301H

フロントページの続き

F 0 2 D 41/12 3 3 0 F 0 2 D 43/00 3 0 1 H 43/00 3 0 1 N

B 6 0 K 9/00 ZHVC

F 夕一 ム (参考) 3G062 AA03 BA04 BA06 CA04 CA05 DA01 DA02 EA10 ED01 ED04 FA02 FA05 FA06 FA23 GA04 GA06 GA28 SG084 AA03 BA05 BA13 BA20 CA04 CA06 DA05 DA15 EA04 EA11 EC01 EC03 FA06 FA10 FA33 AG092 AA05 AA13 AA17 AC02 BB01 BB10 DC03 DC09 DC10 DE015 DG07 EA01 EA02 EA11 EA28 EA29 EB05 FA03 FA34 GA12 GA13 HA06Z HE01Z HF26Z AG301 HA06 HA13 JA03 KA12 KA16 LA03 LB02 LC03 MA11 MA24 NA08 NE01 NE06 PA11Z

PE01Z PF05Z