PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Résumé

La théorie de la dérivation, découverte l'an dernier, est vaste. Deux thèmes majeurs en font partie : les primitives d'une fonction et les équations différentielles, des équations de fonctions dérivables qu'on souhaite naturellement résoudre.

1 Primitives

Définition | Primitive d'une fonction

Soit *f* une fonction définie sur un intervalle *I*.

On appelle **primitive** de f toute fonction F définie et dérivable sur I telle que :

$$\forall x \in I, F'(x) = f(x).$$

Remarque Si une telle primitive existe alors il en existe une **infinité** car G définie sur *I* par G(x) = F(x) + c où $c \in \mathbb{R}$ est encore une primitive de f.

Exemple Soit f définie sur **R** par $f(x) = 3x^2 - 4x$

La fonction F définie sur **R** par $F(x) = x^3 - 2x^2 + 5$ est une primitive de f car F est dérivable et pour tout $x \in \mathbb{R}$, $F'(x) = 3x^2 - 4x = f(x)$.

Théorème | Existence d'une primitive

Toute fonction continue sur un intervalle admet une primitive.

Propriétés | Récapitulatif des primitives usuelles

Dans le tableau suivant, *F* est une primitive de *f* et *C* une constante réelle.

f(x)	F(x)
x^n	$\frac{x^{n+1}}{n+1} + C \qquad (n \geqslant 0)$
$\frac{1}{x}$	$\ln x + C (x \neq 0)$
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}} + C (n \geqslant 2, x \neq 0)$
e^x	$e^x + C$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + C (x > 0)$

Exercice

Déterminer les primitives de f dans chacun des cas suivants, f étant définie sur

1.
$$f(x) = -2x^3 + 3$$
 et $I = \mathbf{R}$

3.
$$f(x) = e^{8x-1}$$
 et $I = \mathbf{R}$

2.
$$f(x) = \frac{1}{7}x^6 - \frac{2}{x}$$
 et $I = \mathbb{R}^*$

4.
$$f(x) = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$
 et $I = \mathbb{R}^*$

Propriétés | Primitives composées

Soient u une fonction dérivable sur un intervalle I et f une fonction définie sur

f	primitive F
2u'u	$u^2 + C$
$u'e^u$	$e^u + C$
$\frac{u'}{u^2}$	$-\frac{1}{u} + C (u \neq 0)$
$\frac{u'}{u}$	$\ln(u) + C (u > 0)$

Exercice

Déterminer les primitives de f dans chacun des cas suivants, f étant définie sur

1.
$$f(x) = \sqrt{x} \times \frac{1}{2\sqrt{x}}$$
 et $I = \mathbb{R}_+^*$ 3. $f(x) = \frac{3}{(3x^2+3)^2}$ et $I = \mathbb{R}$

3.
$$f(x) = \frac{3}{(3x^2+3)^2}$$
 et $I = \mathbf{R}$

2.
$$f(x) = (5x+2)e^{5x^2+2x-7}$$
 et $I = \mathbf{R}$ **4.** $f(x) = \frac{7x+3}{7x^2+3x+1}$ et $I = \mathbf{R}$

4.
$$f(x) = \frac{7x+3}{7x^2+3x+1}$$
 et $I = \mathbf{R}$

2 Équations différentielles

2.1 Première approche

Définition

On appelle **équation différentielle d'ordre 1** une équation d'inconnue y, une **fonction**, dans laquelle intervient y', sa dérivée.

Une **solution** f de cette équation différentielle est une fonction vérifiant l'égalité.

Remarques \blacktriangleright L'équation différentielle y' = y associée à la condition y(0) = 1 a une solution unique qui est la fonction exponentielle.

▶ Une primitive d'une fonction f est solution de l'équation différentielle y' = f.

Exemples \rightarrow y' + y = 0 est une équation différentielle d'ordre 1.

On définit sur **R** des fonctions f et g par $f(x) = 12 \exp(-x)$ et $g(x) = x^2 + 10$. On vérifie que pour tout $x \in \mathbf{R}$:

$$f'(x) + f(x) = -12 \exp(-x) + 12 \exp(-x) = 0$$
 donc $f' + f = 0$

mais

$$g'(x) + g(x) = 2x + x^2 + 10 = x^2 + 2x + 10 \neq 0$$
 donc $g' + g \neq 0$.

f est une solution de y' + y = 0 mais g n'en est pas une.

▶ $(y')^2 = 4y$ est aussi une équation différentielle d'ordre 1. La fonction f définie sur \mathbf{R} par $f(x) = x^2$ est une solution.

En effet, $(f'(x))^2 = (2x)^2 = 4x^2$ et $4f(x) = 4x^2$ pour tout $x \in \mathbf{R}$ donc $(f')^2 = 4f$.

Remarques \blacktriangleright On peut définir des équations différentielles d'ordres supérieurs. C'est-à-dire, des équations différentielles mettant en œuvre des dérivées de y d'ordres supérieurs comme la dérivée seconde y'' = (y')', la dérivée tierce y''' = (y'')' et les dérivées successives suivantes qu'on note $y^{(n)}$.

▶ Une équation différentielle peut s'écrire de différentes manières suivant le contexte ou le problème.

Ainsi, on peut écrire 4y' - 2y = 2 des manières suivantes.

 $\Rightarrow 4\frac{\mathrm{d}y}{\mathrm{d}t}(t) - 2y(t) = 2$ qui est utilisée quand y est une fonction de plusieurs variables : temps, espace, angle, ...

> 4y'(t) - 2y(t) = 2 utilisée généralement pour des problèmes en physique ou en chimie.

 \Rightarrow 4y'(x) - 2y(x) = 2 pour des exercices plutôt mathématiques.

Exemple Soit $\omega \in \mathbb{R}^*$.

 $y'' + \omega^2 y = 0$ est une équation différentielle d'ordre 2.

2.2 Équations différentielles de la forme y' = ay + b

Théorème

Soient $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$ des coefficients constants.

L'équation différentielle y' = ay + b admet comme uniques solutions définies sur **R**, les fonctions f sous la forme suivante où C est une constante réelle

$$f(x) = Ce^{ax} - \frac{b}{a}.$$

Exemples Les solutions f de y' = 5y + 10 sont définies sur **R** sous la forme $f(x) = Ce^{5x} - 2$. En effet, a = 5 et b = 10.

► On considère l'équation différentielle 6y' - 4y = 8y' + 8. Elle peut se réécrire :

$$6y' - 4y = 8y' + 8$$

$$\Leftrightarrow -2y' = 4y + 8$$

$$\Leftrightarrow y' = -2y - 4$$

Ainsi, les solutions f de 6y' - 4y = 8y' + 8 sont définies sur **R** sous la forme $f(x) = Ce^{5x} - 2$. En effet, a = 5 et b = 10.

Exercice

Résoudre les équations différentielles suivantes.

1.
$$y' = 3y$$

3.
$$4y' + 6y = 0$$

2.
$$y' = -2y + 1$$

4.
$$\frac{1}{3}y' - 12y - 2 = 0$$