1. TITLE OF THE INVENTION

METHOD AND DEVICE FOR CHARGING LIQUID CRYSTAL

2. Scope of Claims

- (1) A method for charging liquid crystal, characterized in that: a glass plate coated with an adhesive and having a desired orientation film pattern is fixed and positioned, quantified liquid crystal is dripped on the top surface of the glass plate in the atmosphere, another glass plate having a desired orientation film pattern is patterned to the glass plate, a glass substrate is obtained by applying a load around the perimeters of both of the glass plates except for one side thereof so that both glass plates may be bonded to each other, and air in a fine gap of the glass substrate gathers using vacuum while applying the load to the perimeters of both of the glass plates except for one side thereof, and the air in the fine gap is discharged by applying pressure to the glass substrate having the load applied to the perimeters of both of the glass plates except for one side thereof so that the central part thereof may be pulled.
- (2) The method of claim 1, characterized in that: the air in the gap is discharged by applying pressure to the glass substrate having the load applied to the perimeters of both of the glass plates except for one side thereof so that the central part thereof may be pulled in the atmosphere.
- (3) The method of claim 1, characterized in that: the air in the gap is discharged by applying pressure to the glass substrate having the load applied to the perimeters of

both of the glass plates except for one side thereof so that the central part thereof may be pulled in vacuum.

- (4) A device for charging liquid crystal, which charges liquid crystal into a gap of a glass plate formed by bonding two or more glass plates, characterized in that: a liquid crystal dripping means for quantitatively dripping liquid crystal is provided, liquid crystal is quantitatively dripped on the top surface of a glass plate in a lower jig for fixing and positioning the glass plate with an adhesive attached thereto, a glass substrate is constructed so that another glass plate is patterned to the glass plate and overlapped thereto, and there are provided with a station for loading an upper jig applying a load to the perimeters of the glass substrate except for one side thereof along with the lower jig and a station having an air discharge means serving as a vacuum chamber for receiving the glass substrate along with both jigs, connected to a vacuum pump for making the inside of the chamber vacuum, and for applying pressure so as to pull the center of the glass substrate and an opening means for opening the vacuum chamber to the atmosphere.
- (5) The device of claim 4, characterized in that: the lower jig has a cross sectional U-shape and is provided with a projection inside, and the upper jig has a cross sectional angular shape and is provided with an inner projection combined with the projection and for applying a load to the perimeters of the glass substrate except for one side thereof.
- (6) The device of claim 4, wherein the air discharge means is a roller which is rolled by a cylinder.

(7) The device of claim 4, wherein the air discharge means is an air discharge member of a spatula shape which is driven by the cylinder.

3. Detailed Description of the Invention

The present invention relates to a method and device for charging liquid crystal, and more particularly, to a method and device for charging liquid crystal which charges liquid crystal in fine gaps $(8\sim10\mu)$ of a glass substrate constituting a part of a liquid crystal display device.

Conventionally, liquid crystal is charged by inserting a glass substrate into a chamber and evacuating the inside of the chamber. That is, liquid crystal is charged in the glass substrate by a pressure difference between the inside of the chamber and the inside of the glass substrate by evacuating the inside of the chamber, for example, evacuating the inside of fine gaps of the glass substrate formed of two sheets of soda glass substrates bonded to each other, putting this evacuated glass substrate in liquid crystal and returning the inside of the chamber to an atmospheric pressure. However, as liquid crystal is charged, the degree of vacuum in the glass substrate gets worse, a pressure difference between the inside of the chamber and the inside of the glass substrate becomes smaller, and the charging speed of liquid crystal becomes lower. Especially, a large glass substrate, e.g., a glass substrate of about a size of 300 mm x 150 mm has a big problem that it takes no less than about 90 minutes of charging time.

It is an object of the present invention to eliminate the conventional problems and provide a method and device for charging liquid crystal at a high speed into fine gaps of a glass substrate of a liquid crystal display device.

Accordingly, there is provided a method for charging liquid crystal according to the present invention, characterized in that: a glass plate coated with an adhesive and having a desired orientation film pattern is fixed and positioned, quantified liquid crystal is dripped on the top surface of the glass plate in the atmosphere, another glass plate having a desired orientation film pattern is patterned to the glass plate, a glass substrate is obtained by applying a load around the perimeters of both of the glass plates except for one side thereof so that both glass plates may be bonded to each other, and air in a fine gap of the glass substrate gathers using vacuum while applying the load, and the air in the fine gap is discharged by applying pressure to the glass substrate so that the central part thereof may be pulled.

As a device for implementing the above method for charging liquid crystal, there is provided a device for charging liquid crystal, characterized in that: there are provided with a liquid crystal dripping means and lower and upper jigs for enabling it to fix and position a glass plate, overlap the same with another glass plate by patterning and apply a load to the perimeters of a glass substrate of these glass plates to the perimeters of the glass substrate except for one side thereof, and there is provided an air discharge means as a vacuum chamber for receiving the glass substrate along with both jigs.

a liquid crystal dripping means for quantitatively dripping liquid crystal is provided, liquid crystal is quantitatively dripped on the top surface of a glass plate in a lower jig for fixing and positioning the glass plate with an adhesive attached thereto, a glass substrate is constructed so that another glass plate is patterned to the glass plate and overlapped thereto, and there are provided with a station for loading an upper jig applying a load to the perimeters of the glass substrate except for one side thereof along with the lower jig and a station having an air discharge means serving as a vacuum chamber for receiving the glass substrate along with both jigs, connected to a vacuum pump for making the inside of the chamber vacuum, and for applying pressure so as to pull the center of the glass substrate and an opening means for opening the vacuum chamber to the atmosphere.

Hereinafter, the charging method according to one embodiment of the present invention will be described with reference to FIG.1.

In the process as shown in FIG.1(A), a lower soda glass plate 1a having a desired orientation film pattern (not shown) at a portion coated with an adhesive 1c, for instance, epoxy resin, for bonding two sheets of soda glass plates 1a and 1b by screen printing is fixed and positioned at a U-shaped cross sectional lower jig 2 having a projection 2a. Further, a necessary amount plus 10-20% of liquid crystal 4 is dripped quantitatively on a lower soda glass plate 1a at a set position inside the adhesive 1c at atmospheric pressure from above. Thereafter, a spacer (not shown) is coated and the orientation film pattern is disposed. An upper soda glass plate 1b is inserted into a lower jig 2 and then orientation film patterns of both glass plates 1a and 1b are matched with

each other automatically. Then, in the process as shown in FIG.1(B), a cross sectional upper jig 3 is fitted into the lower jig 2, whereby an inner projection 3a of the jig 3 faces the projection 2a of the lower jig 2 and presses the layer of the adhesive 1c. At this point, the liquid crystal 4 and air are mixed with each other.

Further, the upper jig 3 also serves as a weight for applying a load to the perimeters of both glass plates 1a and 1b so that a predetermined load is applied to the adhesive 1c. Next, in the process as shown in FIG.1(C), the soda glass plates 1a and 1b and the jigs 2 and 3 which are in the state of the process as shown in FIG.1(B) are put in a vacuum chamber 5, which is evacuated, so that the two soda glass plates la and lb curve around the layer of the adhesive 1c as a fulcrum as shown in the figure because the degree of vacuum in the soda glass plates 1a and 1b and the vacuum chamber 5 is good. The gap at the center part of the soda glass plates 1a and 1b becomes large, so the liquid crystal 4 moves to the adhesive 1c by surface tension and the air 6 in the gap gathers in the center of the soda glass plates 1a and 1b. Next, in the process as shown in FIG.1(D), the pressure in the vacuum chamber 5 is returned to the atmospheric pressure. A slight amount of the air 6 may be left a little on the center part. In the process as shown in FIG.1(E), for instance, if a roller 7 manufactured of natural rubber or the like is loaded and rolled on the top surface of the soda glass plates la and 1b to apply pressure, the air 6 in the glass substrate 1 consisting of both of the glass plates 1a and 1b moves to one open side 1d and is discharged.

Next, the construction of the charging device for implementing the aforementioned charging method will be described with reference to FIG.2. An air-

operated liquid crystal steady flow valve 8 is attached to a vertically movable cylinder 9. An openable and closeable cover 19 is disposed on the vacuum chamber 5. Further, a receiving jig 11 for positioning jigs 2 and 3 in the vacuum chamber 5 is disposed, this receiving jig 11 is attached to the vertically movable cylinder 12, this cylinder 12 is attached to the vacuum chamber 5, and a cylinder shaft 12a is vacuum sealed by an Oring 13.

When the cylinder 12 is raised up to a rising end, a load is applied to the soda glass plate 1b by the roller 7. The roller 7 is loaded by a spring 14, attached to an oscillating member 15, and driven by the cylinder 16. This cylinder 16 is attached to the vacuum member 5, and a cylinder shaft 16a is vacuum sealed by an O-ring 17. A vacuum pump 18 is connected to the vacuum chamber 5 by a vacuum pipe 19, and an atmosphere open valve 20 for opening the vacuum chamber 5 to the atmosphere is attached to the chamber 5.

As an example for the operation performed by the above-described construction, the case of using a soda glass plate having a size of 3000mm × 150mm will be described. First, the cover 10 of the chamber 5 is opened to a horizontal position by a cylinder (not shown). The lower jig 2 is positioned and loaded at an upper side of the cover 10, and the lower soda glass plate 1a is set in the lower jig 2. Next, the cylinder 9 is lowered, whereby the nozzle of the liquid crystal steady flow valve 8 is lowered to a position about 5mm from the top surface of the lower soda glass plate 1a, and a necessary amount of about 0.3cc plus 10-20% of liquid crystal 4 is dripped. After dripping, the cylinder 9 is raised, and the upper soda glass plate 1b is inserted into the

lower jig 2 to fit the upper jig 3 thereinto. The weight of the upper jig 3 is set to 5~10kg, and these jigs 2 and 3 are positioned and set in the receiving jig 11 in the vacuum chamber 5. The cover 10 is closed to roll the vacuum pump 5 and make the inside of the vacuum chamber 5 vacuum. The degree of vacuum is preferably $10^{-1} \sim 20^{-2}$ Torr. By making the inside of the vacuum chamber 5 vacuum, the soda glass plates 1a and 1b curve around the layer of the adhesive 1c as a fulcrum, the liquid crystal 4 moves in the direction of the adhesive 1c and the air 6 in the gap gathers in the center of the soda glass plates 1a and 1b. Moreover, the gap of the layer of the adhesive 1c is about 10µ, so the liquid crystal 4 moves to the layer of the adhesive 1c by surface tension. And, the air 6 gathers in the center of the soda glass plates 1a and 1b. When the atmosphere open valve 20 is opened by stopping the vacuum pump 18, the curved soda glass plates 1a and 1b are planarized. Even in this state, the air 6 partially remains in the center. Then, when the cylinder 12 is moved to a rising end, the roller 7 is contacted with the surface of the soda glass plate 1b in the jigs 2 and 3, and a load of 0.3~1kg is applied to the surface of the soda glass plate 1b by the roller 7. Next, the cylinder 16 is pressed so as to be moved forward and pulled at a speed of less than 5mm/sec, the air 6 in the soda glass plates 1a and 1b are moved to one side 1d and the air 6 is discharged. Afterwards, the cover 10 is opened, the jigs 2 and 3 are extracted, the glass substrate 1 is removed from the jigs 2 and 3, a load of 30~50kg is applied to the glass substrate 1 and the glass substrate 1 is put in a hot air circulation furnace, and the adhesive 1c is hardened, thereby making the glass substrate have a gap of 1 8~10µ. The injection of the liquid

`.....

crystal 4, discharge of the air 6, and extraction of the jigs 2 and 3 can be done within about four minutes in the set of the soda glass plates 1a and 1b.

Moreover, in the first embodiment, the air 6 gathers in the center of the soda glass plates 1a and 1b in the vacuum chamber 5, the vacuum chamber 5 is opened to the atmosphere, and the air 6 in the glass substrate 1 is discharged by the roller 7. However, the same effect can be attained even if the air 6 is discharged by rolling the roller 7 in vacuum.

Although the roller 7 is used as means for discharging the air 6 in the first embodiment, an air discharge member of a spatula shape may be used in the present invention. Besides, although soda glass is used in the first embodiment, lead glass, borosilicate glass, etc. can be used.

As described above, in the method of the present invention, liquid crystal is dripped on a glass plate, another glass plate is bonded thereto and disposed in vacuum, air in the liquid crystal gathers in the center of both glass plates, and the air is discharged by the air discharging means, whereby a necessary charging time which is about 90min conventionally is shortened to about 4 minutes, thereby ensuring the discharge of the air and completing the charging of liquid crystal. Accordingly, acceleration of more than about 20 times can be achieved. Moreover, in the method for discharging liquid crystal, liquid crystal of an amount 50% higher than a required amount is attached to the outer circumference of a glass substrate in order to insert the glass substrate in the remaining liquid crystal, and the attached liquid crystal is wiped, so an expensive liquid crystal has been used unnecessarily. However, in the present

S60-111221

invention only a required amount of liquid crystal is dripped, thus an excellent effect of

lowering the product cost can be attained.

Further, due to the above-described construction, the device of the present

invention can implement the method of the present invention in an efficient way, and

provide the excellent effect that the construction is rational and simple.

4. Brief Description of the Drawings

FIG.1 is a perspective view for explaining a method of the present invention;

and

FIG.2 is a cross sectional view of a device for implementing the method of the

present invention.

la: upper soda glass plate 1b: lower soda glass plate

1: glass substrate

2: lower jig 2a: projection

3: upper jig 3a: inner projection

4: liquid crystal 5: vacuum chamber

6: air 7: roller

8: liquid crystal steady flow valve 9: cylinder

12, 16: cylinder 18: vacuum pump

⑩日本国特許庁(JP)

⑩特許出願公開

母公開特許公報(A) 昭60-111221

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和60年(1985)6月17日

G 02 F 1/13 G 09 F 9/00 101

7448-2H 6731-5C

審査請求 未請求 発明の数 2 (全 5 頁)

❷発明の名称 液晶充塡方法および装置

②特 顧 昭58-218340

❷出 顧 昭58(1983)11月19日

砂発 明 者 木 正徳 69発明者 坂 井 田 教資 砂発 明 者 楽 B 忠彦 の発明 明 者 侘 美 光 傑 砂発 明 者 山本 典 4 切出 願 人 日本電装株式会社 の代 理 弁理士 後藤 勇作

刈谷市昭和町1丁目1番地 日本電装株式会社内 刈谷市昭和町1丁目1番地 日本電装株式会社内

刈谷市昭和町1丁目1番地 日本電装株式会社内

刈谷市昭和町1丁目1番地 日本電装株式会社内 刈谷市昭和町1丁目1番地 日本電装株式会社内

刈谷市昭和町1丁目1番地

昭 和 章

1発明の名称

液晶充填方法かよび装置

2 特許関求の範囲

(2)一辺を除く厚級に改竄が印加された的記がラス基板を、大気中で、中央部分をしどくように加

加圧するととにより前記空順内のエフを抜くとと を特徴とする第1項記載の液晶充填方法。

(3) 一辺を除く周縁に荷重が印加された前記ガラス基板を、真空中で、中央部分をしどくように加圧することにより前記空版内のエアを抜くことを特徴とする第1項記載の液晶充填方法。

特開昭 60-111221 (2)

どくように加圧するエフ抜き手段、及び町配真空 チャンパを大気に開放する開放手段を備えるステーションとを具仰することを特徴とする液晶充填 彼趾。

(5) 的記下治具が、断両コ字形をなすとともに、 その内部に突起を鍛えてかり、かつ附配上治具が 、断面角状をなすとともに、その内部に前配突起 と組合されて前配ガラス基板の前配一辺を除く周 球に荷度を印加する内部突起を輸えることを特殊 とする第4項記載の液晶光度装置。

(6) 附配エア独自手段が、シリンダにより転動されるローフよりなることを特徴とする第4項配数 の液晶充填設體。

(7)的記ェア抜き手段が、シリンダにより駆動されるへら形状のエア抜き部材であることを特徴とする第4項記載の液晶充筑装置。

3 発明の詳細な説明

本発明は、液晶充填方法及び充填装置に関し、 更に詳しくは液晶表示素子部品であるガラス基板 の微細な空隙(8~10ヶ)に液晶を充填する液晶 の充填方法及び充填装置に関する。

従来、液晶表示素子に低晶を充填するのは、チ ヤンパ内にガラス基板を排入し、チャンパ内を真 空排気するととによって行なわれていた。即ち、 チャンパ内を真空排気することにより、例えば2 枚のソーダガラス板を強り合せたガラス基板の機 細な空頂内を真空排気し、次にこの真空排気され たガラス基板を液晶中に入れ、チャンパ内を大気 圧に戻すてとにより、チャンパ内とガラス基板内 の圧力差で液晶をガラス基板内に光填している。 しかしながら、液晶の充填の進行に従って、ガラ ス基板内の真空度が悪くなり、チャンパ内とガラ ス基板内との圧力差が小さくなり、液晶の充填速 皮が遅くなる。特に大きなガラス基板、例えば 300m×150m 程度の大きさのガラス 基板の場合 には充填時間が約90分もかかるという大きな問題 があった。

本発明は、かかる従来技術の問題を排除し、例 えば液晶表示案子のガラス基板の疑細を空隙に、 液晶を高速で充填する方法及び装置を提供すると

とを目的とする。

パであって、エア抜き手段を備えることを主要点 とする液晶充填接置が提供される。

以下本発明の一実施例について第1図に基づき、充填方法を説明する。

男1図(A) に示す工程では2枚のソーダガラス板 18.10を接着させる接着材1C、例えばエポキシ樹 脳等をスクリーン印刷で遊布したところの、図示 しない所显の配向談パターンを持つ下ソーダガラ ス板18を、突起28を有する断岡コ字状の下筒具2 に固定位は決めする。 さらに、下ソーダガラス板 18. の上から必要量プラス10. 56程度の液晶 4 を接着 材10の内側の設定位置に大気中で定量滴下する。 その後、図示してないスペーサが盘布してあり足 向膜パターンが設けてある。 上ソーダガラス 板10 を下沿共2内に挿入することにより、匈ガラス板 14. 10の配向膜パターンが自動的に合う。次に、 第1図印に示す工程では断面角形状の上治具3を 下沿具2K篏合させることにより、上沿具3の内 部次起38は下治共2の突起28に相対し、かつ疫療 対10層部分を押える。との時点では液晶 4 とエア

6とが混在している。

なお、上胎具3は疫腫材1cK所定初選がかかるよ うに両ガラス板18, 1Dの周線に荷取を印加するゥ エイトも乗ねている。次に、第1図(c)に示す工程 では第1 図回図示工程の状態のソーダガラス板 18 ・10と治具2.3を真空チャンパラ内に挿入し、 真空排気するとソーダガラス板18,1D内と、真空 チャンパ5内の真空度は真空チャンパ5内の方が 良い為、2枚のソーダガラス板18,1Dは接層材1c 脚を支点に図の如く烤曲する。ソーダガラス板18 , 1Dの中央部の空隙が大になる為、液晶4は表面 扱力により接触材1c個へ移動し、空筋内のエア 6 はソーダガラス板18,1Dの中央に集まる。次に、 第 1 図D) に示す工程では真空チャンパ 5 内を大気 圧に戻す。エア6は中央部にわずか残るものもあ る。従って、次の第1図四に示す工程では例えば 天然ゴム等で製作したローラフに荷重をかけてソ ーダガラス板18,1Dの上面を転動させしどくよう に加圧すると、両ガラス板18,1Dよりなるガラス 基板 1 中のエア 6 が開放した一辺1d の方へ移動し、 エア抜きができる。

次に、上記充填方法を実施する充填装置の構成について第2図について説明する。エア作動による 液晶定法量弁8を上下動可能なシリング9に取り 付ける。真空チャンパ5には開閉可能な整10を設 ける。さらに、治具2、3を真空チャンパ5内に 位置決めてきる受け治具11を設け、との受け治 11を上下動可能なシリンダ12に取り付け、との リンダ12は真空チャンパ5に取り付けてあり、シ リンダンヤフト12&は0~リング13で真空シール してある。

前記シリング12を上昇端位置まで上げると、ローラフによりソーグガラス板10に荷置が加わる構成となっている。ローラフはスプリング14によって荷度が加わり、揺動部材15に取り付けてあり、シリング16にて駆動する。このシリング16に乗空チャンパ5に取り付けてあり、シリングシャフト16なは 0-リング17で実空シールしてある。実空チャンパ5に乗空ポンプ18が真空配管19にて接続しまるり、さらに実空チャンパ5内を大気開放できる

大 気明 放弁20がチャンパ 5 に取り付けてある。

上記の解放になる作動について一例としてソー ダガラス板サイズ 300m×150m を使用した場合 について説明する。まず、真空チャンパ5の登10 を図示してないシリンダで水平位置まで開く。敷 10の上側に下治具.2を位置決めして収せ、下ソー ダガラス板はを下沿具2内にセットする。次に、 シリンダ9を下降させて、下ソーダガラス板18. F. 面より約5mの位置まで、液晶定量弁8のソズル を下降させ、必要液晶量約03ccプラス10%の液晶 4を以下する。胸下後シリング9を上昇させ、上 ソーダガラス板1Dを下台具2K挿入し、上台具3 を吹合させる。上抬具3の庶世は5~カルとし、 これらの治具2、3を真空チャンパ5内の受け治 具11内に位置決めセットする。登10を閉にして、 真空ポンプ18を選転して真空チャンパ5内を真空 ドナる。との時の真空以はを~10°TOrr程度が良 い。真空チャンパ5内を真空にすることにより、 狡瘡材 ICを文点としてソーダガラス板車。1D が得 曲し、液晶4は接着材で方向に移動し、エア6は

ソーダガラス14,10の中央部に集まる。たか、按 潜材1C層の空膜は約10≠程度である為、液晶4は 表面扱力により接着材1C層側に移動する。そして 、エア 6 はソーダガラス板1a, 1bの中央部に換ま る。真空ポンプ18を停止させて、大気開放弁20を 朗にすると、湾曲していたソーダガラス板18;10 は平根になる。との状態でもエフ6は中央部に一 部残留している。そして、シリンダ12を上昇端ま! で移動させると、治共 2 、 3 内のソーダガラス板 10面にローファが按触し、ローファにより、ソー ダガラス板1b面に 0.3~ 1 4 程度の荷置がかかる 。 次に、 シリンダ16を 5 ^m/_{th} 以下の速度で前進さ せしどくように加圧すると、ソーダガラス板IB。 10内のエア6は一辺10個に移動し、エア6抜きが 完了する。との後登10を開き、治兵2.3を取り 出し、さらにガラス基板1を治具2.3から抜き 出して、ガラス蒸板1に20~50%の荷缸をかけて 然風預環紀に入れ、接着材1Cを硬化させるとガラ ス 基板 1 の空段 は 8 ~10 μ に することができる。 ソーダガラス板10.10セットから液晶4注入、エ

特局昭60-111221(4)

76抜き、冶具2,3取り出しまで約4分で製造 することができた。

なお、上記一実施例では真空チャンパ5内でエア 6 をソーグガラス板1&、1b中央部に集め、真空チャンパ5内を大気関放してから、ローラフによりガラス 基板 1 内のエア 6 を抜いたが、真空中でローラフを転動させてエア 6 を抜いても同様の効果が得られる。

さられ、エア6抜き手段として、ローラフを使用した一段施例で説明したが、本発明はヘラ形状-のエア抜き部材を使用しても良い。また、上記一 実施例ではソーダガラスを用いているが、その他 の鉛ガラス、ほうほ酸ガラスでも良い。

以上説明したように、本発明方法では、液晶をガラス板の上に満下し、もう一方のガラス板を張り合せ、真空中に設置し、液晶中のエアを両ガラス板の中央に集合させ、エア抜き手段にてエア抜きを行なうととにより、従来約90分程度必要であった充填時間が約4分でエア抜きが確実にでき、

夜晶充填が完了する。従って、約20倍以上の高速

化が可能になった。更に、従来の液晶充収方法では磁晶剤や中にガラス法級を挿入する為、ガラス 蒸板の外周に必要型の約50 分増の液晶が付加し、 その付用した液晶を与きとっていたため、高値な 液晶が無駄に使用されていたが、本発明ではほぼ 必要量の液晶しか薄下しない為、製品コストも安 くできるという優れた効果が得られる。

更に、本発明鉄路は上記の构成を有するから、 上記の本発明方法を良好に実施することができる とともに、構成が合理的かつ簡潔であるなどの優れた効果がある。

4 図面の簡単な説明

第1.図は本発明の方法を説明するための斜視図、第2図は本発明方法を実施する設置の断面図である。

18. - 上ソーダガラス板、10. - 下ソーダガラス板、1c. - 接着材、1. - ガラス基板、2. - 下柏具、22. - 突起、3. - 上冶具、38. - 内部突起、4. - 液晶、5. - 真空チャンパ、6. - エア、7. - ローラ、8. - 液晶定改量弁、9. - シリンダ、12、16. - シリンダ、

18- 真空ポンプ。

代理人弁理士 後艇手

特別昭60-111221(5)

