

Charged Higgs Analysis in CMS

XXX Reunión Anual de la División de Partículas y Campos de la SMF

Jan Eysermans & Isabel Pedraza Benemérita Universidad Autónoma de Puebla (BUAP)

Outline

- Theory of Charged Higgs
- Production modes
- Decay modes
- 8 TeV results
- $H^{\pm} \rightarrow \tau \nu$ and $H^{\pm} \rightarrow tb$ decay modes
- Other decay modes
- Charged Higgs @ BUAP

Theory of Charged Higgs

• Standard Model: W and Z gauge bosons acquire mass through symmetry breaking of a Higgs doublet field ϕ in a Mexican hat shaped potential:

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad V(\phi) = \mu^2 \phi^{\dagger} \phi - \lambda (\phi^{\dagger} \phi)^2$$

Expand $V(\phi)$ around vacuum results in one massive neutral scalar particle: the (SM) Higgs boson

• Simple extension (2DHM): add second Higgs doublet ϕ_1, ϕ_2

Expanding $V(\phi_1, \phi_2)$ around vacuum expectation values (v_1, v_2) results in 5 physical Higgs bosons:

- Two neutral CP-even scalars: h (SM Higgs) and H ("heavy Higgs")
- Two charged Higgs bosons H[±]
- One neutral CP-odd pseudoscalar A

- Free parameters of the model:
 - Mass of the other Higgs bosons (H, H[±], or A)
 - Value of $tan(\beta) = v_2/v_1$ (ratio of VEVs)
- Different types of 2DHM according to Yukawa fermion coupling:

Model	Type I	Type II	Lepton-specific	Flipped	
Φ_1	-	d,ℓ	ℓ	d	
Φ_2	u,d,ℓ	u	u,d	u,ℓ	
MSSM			u ~ cot(β)		
			d, I ~ tan(β)		

MSSM (minimal supersymmetric SM) is Type 2 2DHM

- Production mode depends on mass of the charged Higgs
- "Light" charged Higgs $m_H < m_t$: production via top decay in tt production
- "Heavy" charged Higgs $m_H > m_t$: fusion of bottom-top quarks (4FS or 5FS)

We mainly focus on "heavy" Higgs searches exceeding top mass

- Decay modes depends mainly on H[±] mass, to a lesser extent on the parameter tan(β)
- $H^{\pm} \rightarrow tb$ dominant in high-mass region, $H^{\pm} \rightarrow \tau \nu$ also contributing
- SUSY channels (?)

- 8 TeV results on arXiv:1508.07774
- Recorded data: 19.7 fb⁻¹
- Analysis sensitive for $H^{\pm} \rightarrow tb$ and $H^{\pm} \rightarrow tv$
- No signal observed in 95% confidence level \rightarrow upper limits on σ

- Results $\sigma(pp \rightarrow t(b)H^{\pm})$
- Assumption: BR(H[±] → tb) = 1
- Upper limit tb: $\sigma = 2.0-0.13$ pb in mass region 180–600 GeV

8 TeV results

- Results $\sigma(pp \rightarrow t(b)H^{\pm})BR(H^{\pm} \rightarrow \tau \nu)$
- Model independent
- Upper limit: $\sigma = 0.38-0.025$ pb in mass region 180–600 GeV
- Local excess of data around m_H = 250 GeV
- Significance 1.7σ, p-value 0.046

- ATLAS results (arXiv:1412.6663), 8 TeV, 19.7 fb⁻¹
- Upper limit $\sigma(pp \to t(b)H^{\pm})BR(H^{\pm} \to \tau \nu) = 0.8-0.004~pb$ in mass range 180-1000 GeV

- $pp \rightarrow \bar{t}(b)H^+ \rightarrow \bar{t}(b)\tau v$
- Top decays to W and b
- Different final states possible:
 - τ_h + jets (τ and W decays hadronically)
 - μτ_h (τ hadronically, W leptonically)
 - Dilepton ee/eμ/μμ (τ and W decays leptonically)
- Main backgrounds: EWK (ZZ, WZ, WW, W+jets), QCD, Top
- If fully hadronic state $(\tau_h + jets)$: all MET neutrinos from H+ decay:
 - Construct transverse mass $m_{\tau}(\tau_h, MET)$
 - Shape analysis on transverse mass distribution

- Analysis strategy based on 8 TeV experience
- Event selection: cut flow analysis
 - Trigger: 1 τ + MET (> 50-120 GeV)
 - 1 τ, decaying hadronically, $p_T > 50$ GeV
 - No isolated leptons
 - Large MET
 - At least 3 jets, where at least one b-jet
 - Angular cuts for multijet suppression
- Optimize cuts:
 - w.r.t. S/sqrt(B) ratio
 - Categorization of events (e.g. b-jets)

 After cut: calculate m_τ on remaining events based on leading τ (highest p_τ) and MET:

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\tau_{\mathrm{h}}}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\tau_{\mathrm{h}}},\vec{p}_{\mathrm{T}}^{\mathrm{miss}}))}$$

- Background measurements
 - QCD (multijet background): τ_h misidentification rate technique in binned τ_h p_T
 - EWK+tt (τ_h): embedded technique
 - EWK+tt (no τ_h): from simulation

- Continuing analysis on 2015 data
- Event selection optimization: categorization of events based on e.g. b-jets
- Preparing for 2016 data run (port to CMSSW 8.X)
- Generating (centrally) MC samples 500–1000 GeV mass range
- Other search strategies based on MVA analysis
- Systematics analysis

H[±] → tb overview

- Semi-final state: tt(b)b
- Final states:
 - At least 3 b-jets
 - 2 W bosons, each decaying leptonically (lv) or hadronically (qq)

- Distinguish between single lepton and dilepton final states
- Main backgrounds (grouped, important):
 - EWK: W+jets, Z+jets, γ*+jets, dibosons (ZZ, WZ, WW)
 - TOP: tt̄, single t, tt̄+W/Z (neglected)
 - QCD
- Shape analysis on jet and b-jet multiplicity (higher than SM processes) or with H_⊤ distribution

- Single lepton event selection:
 - Trigger: single electron, single muon
 - P_{τ} lepton > 40 GeV, $|\eta|$ < 2.5
 - MET > 60 GeV
 - 3 jets, each $p_{\tau} > 30$ GeV, $|\eta| < 2.4$
- Selection regions (both e and μ):

- Control region (# jet <= 3): used for background normalization from data
- Signal region (# jet > 3, # b-jet > 1): used to make discovery or to set limits
- Optimization of cuts: permutations of cut boundaries: $P_T(lep)$, MET, $P_T(j1)$, $P_T(j2)$, $P_T(j3)$, # jets
- For each permutation, calculate expected limits on cross section based on H_T distribution

$H^{\pm} \rightarrow tb H_{T} distribution$

- After cut selection, plot H_⊤ histogram in signal region
- All background samples from MC, but normalized:
 - tt̄, W+jets (dominant):
 normalization obtained with
 MC+data fit to obtain best
 yields in control and signal
 regions
 - Others: normalizations directly from MC
 - Normalizations carried out for electron/muons separately

Can be modified for 13 TeV

H[±] → tb next steps...

- Continuing analysis on 2015 data based on experience 8 TeV analysis
- Event selection optimization: refine permutations on cuts
- Preparing for 2016 data run (port to CMSSW 8.X)
- Generating (centrally) MC samples for entire mass range
- Systematics analysis

H[±] → other

- $H^{\pm} \rightarrow cs, cb$
 - Important for light charged Higgs (m_H < m_t)
 - Charged Higgs production via tt production
 - Dominant background: tt

- $H^{\pm} \rightarrow hW^{\pm}$
 - Higgs reconstruction: h → bb → jets (BR = 58 %)
 - W reconstruction: W → qq' → jets (BR = 67 %)
 - Charged Higgs reconstruction based on reconstruction h and W
 - Complicated final state: lot of jets → combinatorics
- H[±] → SUSY: can become dominant for heavy charged Higgs

- We will concentrate on the tb channel
- In collaboration with MIT group
- Single or dilepton final state → to be decided yet
- Do the analysis for the 2015 data
- Start preparation for the 2016 data
- MC sample production requested in mass range 100-1000 GeV

Others...

- Added 2015 data to analysis
- Tried to scale the cutflow histogram to be in accordance with results of Andrea
- Scaled Higgs signals with factors:
 - 100 (200 GeV) 1000 (500 GeV) → the same factor as applied by Andrea
 - 2.3 → according to 2.3 fb-1 data taking
 - 1000 → conversion pb ↔ fb
- Higgs signals almost in exact agreement with Andrea's plots
- Scaled other signals too: small(er) differences → working on it

$H^{\pm} \rightarrow \tau \nu \ m_{\tau} \ distribution$

MC scaled to fit with data

• Remaining events after cut procedure: calculate $m_{\scriptscriptstyle T}$ on leading

τ (highest p_T) and MET: $m_T(\tau_h, MET)$

H[±] → tb jet discrepancies

- Data/MC discrepancies observed at high $p_{\scriptscriptstyle T}$
- Correction factors must be applied
- Obtain correction factors by fitting data/MC on sample
 - Single lepton, 3 low pT jets
 - Low MET
 - $M_{T}(lep, MET) = 50-150 GeV$
 - 0 b-tag (no tt) and
 - 2+ b-tag fitting (tt + signal)
- Fitting piecewise linear function over p_⊤ spectrum

$$SF_{jet} = p_0 + p_1 p_T$$

$$w = \prod_{jets} SF_{jet}$$

Example: muon final state

Plotted H_⊤ in two signal regions

Reweighting not yet applied!

- From H_T distributions, calculate limits
- Reweighting not yet applied!
- Systematic uncertainties included (but more work needed)