Student Number: 20053722 Name: Bryan Hoang

4. Answer:

Let P(n, m) be the probability of interest. It has the following immediate properties based on the experiment:

•
$$\forall (n,m) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} : n < m, P(n,m) = 0$$

•
$$\forall n \in \mathbb{Z}_{\geq 1}, P(n,0) = 1$$

Then by using conditional probability,

$$P(n,m) = \frac{n}{n+m} P(n-1,m) + \frac{m}{n+m} P(n,m-1)$$

$$\Rightarrow P(1,1) = \frac{1}{2}$$

$$\Rightarrow P(1,1) = \frac{1}{3} \left(2 \cdot \frac{1}{2} + 1 \right) = \frac{2}{3}$$

$$\Rightarrow P(2,2) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$$
(1)

Table 1: The distribution of $P(\cdot, \cdot)$

n	0	1	2	•••
0	N/A	0	0	0
1	1	$\frac{1}{2}$	0	0
2	1	$\frac{2}{3}$	$\frac{1}{3}$	
:	1	÷	÷	٠

Student Number: 20053722 Name: Bryan Hoang

Claim: $P(n,m) = \frac{n-m+1}{n+1}$

Proof. It is sufficient to show that the proposed probability satisfies (1).

$$P(n,m) = \frac{n}{n+m} P(n-1,m) + \frac{m}{n+m} P(n,m-1)$$

$$= \frac{n}{n+m} \cdot \frac{(n-1)-m+1}{(n-1)+1} + \frac{m}{n+m} \cdot \frac{n-(m-1)+1}{n+1}$$

$$= \frac{\mathcal{M}}{n+m} \cdot \frac{n-m}{\mathcal{M}} + \frac{m}{n+m} \cdot \frac{n-m+2}{n+1}$$

$$= \frac{(n-m)(n+1)+m(n-m+2)}{(n+m)(n+1)}$$

$$= \frac{n^2+n-nm-m+nm-m+nm-m^2+2m}{(n+m)(n+1)}$$

$$= \frac{(n+m)(n-m+1)}{(n+m)(n+1)}$$

$$= \frac{n-m+1}{n+1}$$