

ECHO: Enhanced Collaboration for Human-Robot Operations

Team members: Gianni Bautista, Ian Richards, Samuel Sarzaba, Ekta Shethna | Faculty advisors: Dr. Tamer Nadeem, Shawn Brixey

Problem Overview

Robots are an essential integration in laboratories, hospitals, and creative studios, traditional safety systems are proving insufficient.

Current collaborative robots (cobots) face an obvious challenge – poor sensory precision for close human interaction leads to disruptive work stoppages and reduced efficiency.

ECHO transforms these limitations into seamless human-robot collaboration, enhancing both human creativity and robotic precision - driving safer, more intuitive automation across healthcare, manufacturing, and creative sectors.

Building on Success

- Phase 1 established virtual choreography of robotic movements
- Phase 2 introduced basic proximity detection with "go/no-go" zones
- Phase 3 demonstrates enhanced human detection and arm rerouting functionality

Technical Specifications

Component	Specifications	Function
ABB Gofa	5kg payload, 950mm reach	Collaborative robot execution
Unity	Real-time simulation	Virtual environment & control logic
RealSense D455	1280×720 @ 90fps, 0.6-6m range	Spatial data acquisition
Nuitrack	30fps tracking rate	Human detection middleware

- Communication Protocol: Wireless UDP for real-time Unity-GoFa interaction with under 30ms latency
- **Digital Twin Synchronization:** Unity maintains virtual representation with position accuracy of ±0.5mm
- Human Detection: RealSense camera captures spatial data processed through Nuitrack with <2% depth error at 4m
- Safety Features: Multiple proximity zones trigger adaptive robot behaviors with collision prevention

Potential Challenges and Limitations

When designing a potential solution for a safe human-robot collaboration setting, there are some challenges that appear:

- Latency in Response Time
- Human Behavior Prediction
- Balancing Safety and Efficiency
- Environmental Variability
- Maintenance and Sensor Degradation
- Dynamic Obstacle Recognition

Citations

- [1] Intel RealSense D455 Technical Documentation (2024)
- [2] Previous VCU Capstone Projects (2022-2023) Phases 1 & 2