

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14120100603

FCC REPORT (BLE)

Applicant: Verykool USA Inc

Address of Applicant: 3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: s4002

Trade mark: verykool

FCC ID: WA6S4002

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Dec., 2014

Date of Test: 01 Dec., to 08 Dec., 2014

Date of report issued: 10 Dec., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Dec., 2014	Original

Prepared by: Date: 10 Dec., 2014

Report Clerk

Reviewed by: Date: 10 Dec., 2014

Project Engineer

3 Contents

			Page					
1	cov	ER PAGE	1					
2	VER	VERSION						
3		TENTS						
4		Т SUMMARY						
5	GEN	ERAL INFORMATION	5					
	5.1	CLIENT INFORMATION	5					
	5.2	GENERAL DESCRIPTION OF E.U.T	5					
	5.3	TEST ENVIRONMENT AND MODE						
	5.4	DESCRIPTION OF SUPPORT UNITS	7					
	5.5	LABORATORY FACILITY						
	5.6	LABORATORY LOCATION						
	5.7	TEST INSTRUMENTS LIST	8					
6	TES	T RESULTS AND MEASUREMENT DATA	9					
	6.1	ANTENNA REQUIREMENT:	9					
	6.2	CONDUCTED EMISSION	_					
	6.3	CONDUCTED OUTPUT POWER	13					
	6.4	OCCUPY BANDWIDTH						
	6.5	POWER SPECTRAL DENSITY						
	6.6	BAND EDGE	20					
	6.6.1							
	6.6.2							
	6.7	Spurious Emission						
	6.7.1							
	6.7.2							
7	TES	T SETUP PHOTO	35					
8	FIIT	CONSTRUCTIONAL DETAILS	36					

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Verykool USA Inc
Address of Applicant:	3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA
Manufacturer:	Verykool Wireless Technology Ltd.
Address of Manufacturer:	Room 802, Fangda Building, Science Park, Nanshan District, Shenzhen City, P.R.China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	s4002
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.76 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1450mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.15A Output:5V DC MAX 700mA

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS14120100603

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	03-31-2015			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015			
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015			
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015				
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.76 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:		Limit (c	dBuV)					
	Frequency range (MHz) Quasi-peak Average							
	0.15-0.5	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46					
	5-30	60	50					
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators a line impedance stabilizes 500hm/50uH coupling important and properties through a LISN that properties with 500hm termination. It test setup and photograph and photograph are setup and	s are connected to the zation network (L.I.S.I pedance for the measure also connected ovides a 50ohm/50uH (Please refer to the hs). e are checked for a find the maximum of and all of the interfer.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative					
Test setup:	LISN 40cm		er — AC power					
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data

Neutral:

Trace: 17 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Job No. : 1006RF EUT : Mobile Phone : s4002 Model Test Mode : BLE Mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

	Freq	Read Level	LISN Factor		Level	Limit Line		Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.150	38.59	0.25	10.78	49.62	66.00	-16.38	QP
2	0.154	23.40	0.25	10.78	34.43	55.78	-21.35	Average
3	0.166	38.03	0.25	10.77	49.05	65.16	-16.11	QP
3 4 5	0.211	30.92	0.25	10.76	41.93	63.18	-21.25	QP
5	0.234	13.72	0.25	10.75	24.72	52.30	-27.58	Average
6	0.294	13.31	0.26	10.74	24.31	50.41	-26.10	Average
7 8 9	0.410	27.92	0.25	10.72	38.89	57.64	-18.75	QP
8	0.410	11.02	0.25	10.72	21.99	47.64	-25.65	Average
9	0.474	11.27	0.28	10.75	22.30	46.45	-24.15	Average
10	0.494	27.73	0.29	10.76	38.78	56.10	-17.32	QP
11	0.535	10.34	0.27	10.76	21.37	46.00	-24.63	Average
12	0.686	27.62	0.19	10.77	38.58	56.00	-17.42	QP

Trace: 15 Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 1006RF Condition

Job No. : Mobile Phone EUT Model : s4002 Test Mode : BLE Mode

Power Rating: AC120V/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

est	Freq	Read	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu₹	<u>dB</u>	ā	dBu₹	—dBu₹	<u>d</u> B		
1	0.150	39.64	0.27	10.78	50.69	66.00	-15.31	QP	
1 2 3 4 5 6 7 8 9	0.150	24.42	0.27	10.78	35.47	56.00	-20.53	Average	
3	0.162	38.34	0.27	10.77	49.38	65.34	-15.96	QP	
4	0.174	36.91	0.27	10.77	47.95	64.77	-16.82	QP	
5	0.174	15.69	0.27	10.77	26.73	54.77	-28.04	Average	
6	0.214	13.34	0.28	10.76	24.38	53.05	-28.67	Average	
7	0.219	30.79	0.28	10.76	41.83	62.88	-21.05	QP	
8	0.234	12.78	0.27	10.75	23.80	52.30	-28.50	Average	
9	0.286	28.26	0.26	10.74	39.26	60.63	-21.37	QP	
10	0.299	11.91	0.26	10.74	22.91	50.28	-27.37	Average	
11	0.330	28.66			39.66	59.44	-19.78	QP	
12	0.330	12.66	0.27	10.73	23.66	49.44	-25.78	Average	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2			

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.98		
Middle	-6.19	30.00	Pass
Highest	-6.88		

Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.76		
Middle	0.76	>500	Pass
Highest	0.77		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.05			
Middle	1.05	N/A	N/A	
Highest	1.04			

Test plot as follows:

Highest channel

3.DEC.2014 13:18:13

Date:

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-6.95		
Middle	-6.50	8.00	Pass
Highest	-6.71		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Tost F	Test Requirement: FCC Part 15 C Section 15.209 and 15.205					
	•			9 and 15.205		
	Method:	ANSI C63.4: 20				
	Frequency Range:	2.3GHz to 2.5G				
Test s	site:	Measurement D	istance: 3m			
	iver setup:	Frequency Detector RBW VBW Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz A Frequency Limit (dBuV/m @3m)				Remark Peak Value Average Value
Limit:		Freque	ncv	Limit (dRuV/	/m @3m)	Remark
		Above 1GHz 54.00 74.00				Average Value Peak Value
Test F	Procedure:	the ground to determin 2. The EUT wantenna, wantenna, watower. 3. The antennate ground Both horizon make the make the make the maters and to find the material f	at a 3 meter case the position ras set 3 meter hich was mount a height is varied to determine to that and vertical and vertical and vertical and vertical and vertical easurement. Uspected emisted the rota table maximum read ceiver system and width with sion level of the ecified, then the would be reposed margin would	the top of a recamber. The too of the highests away from the don the too on the too on the maximum cal polarization was turned fling. Was set to Polarization was turned fling.	ctating table table was restracted. The interfer op of a variate meter to for a value of the arm of	e 0.8 meters above otated 360 degrees ence-receiving able-height antenna our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees
Tests	setup:	1.		Antenna Horn Ante Spectrum Analyzer	enna	
Test I	nstruments:	Refer to section 5.7 for details				
Test r	mode:	Refer to section	5.3 for details	i		
Test r	esults:	Passed				

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Pro 1006RF EUT : Mobile Phone Model : s4002
Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

3.HUILU	8 131		Antenna Factor						Remark
-	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000								

Test channel: Lowest

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 1006RF Condition

Pro

EUT : Mobile Phone Model : s4002 Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

	8	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	dB	dB	dBu√/m	dBu√/m	dB	
1	2390.000	22.82	27.58	5.67	0.00	56.07	74.00	-17.93	Peak
	2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 1006RF Pro EUT : Mobile Phone Model : s4002 Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

Liuna	i ii	Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor							
-	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBu√/m	dB		
1	2483.500	24.05	27.52	5.70	0.00	57.27	74.00	-16.73	Peak	
2	2483.500	12.11	27.52	5.70	0.00	45.33	54.00	-8.67	Average	

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Pro EUT 1006RF

: Mobile Phone

Model : s4002
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

1 2

_	ш.	Fred		Antenna Factor			Limit			
			WARRANT CO.		100000000000000000000000000000000000000			720000000000000000000000000000000000000		
				27.52 27.52		0.00 0.00			Peak Average	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 3.DEC.2014 18:49:38

30MHz~25GHz

Middle channel

Date: 3.DEC.2014 18:48:55

30MHz~25GHz

Date: 3.DEC.2014 18:50:28

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.20	9 and 15.205					
Test Method:	ANSI C63.4:200)3						
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
·	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	7150VC 10112	Peak	1MHz	10Hz	Average Value			
Limit:								
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz 216MHz-960MH		43.5 46.0		Quasi-peak Value Quasi-peak Value			
	960MHz-1GHz	2	54.0		Quasi-peak Value			
			54.0		Average Value			
	Above 1GHz		74.0		Peak Value			
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	at a 3 meter e the position was set 3 m hich was month and ver easurement. Suspected enter the anterest expected enter the anterest expected enter the anterest expected enter the system of the color of the ecified, then the would be rest margin would	camber. The nof the highest eters away funted on the training of the maximutical polarizations was turned ding. In Maximum Highesting could be ported. Others do not the maximum december to the could be re-tested.	table was at radiation. From the interpretation of a variance meter to the common of t	ele 0.8 meters above rotated 360 degrees aterference-receiving lable-height antenna of four meters above of the field strength. I antenna are set to arranged to its worst as from 1 meter to 4 rees to 360 degrees retect Function and las 10 dB lower than and the peak values missions that did not e using peak, quasing reported in a data			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Pro 1006RF EUT : Mobile Phone : s4002 Model Test mode : BLEmode

Power Rating: AC 120V/60Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: Carey
REMARK:

123456

9KK	:									
	Erec		Antenna Factor				Limit	Over	Romark	
	rred	rever	ractor	F022	ractor	rever	Line	TIMIT	Kemark	
-	MHz	dBu∀	dB/m	₫B	d₿	dBuV/m	dBu∜/m	d₿		
	49.533	28.42	13.28	0.61	29.82	12.49	40.00	-27.51	QP	
	94.760	28.10	12.84	0.93	29.55	12.32	43.50	-31.18	QP	
	359.186	27.98	14.40	1.97	28.60	15.75	46.00	-30.25	QP	
	444.851	28.93	15.57	2.24	28.86	17.88	46.00	-28.12	QP	
	633.907	28.72	18.58	2.74	28.83	21.21	46.00	-24.79	QP	
	869.130	28.46	20.78	3.29	27.95	24.58	46.00	-21.42	QP	

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Pro : 1006RF : Mobile Phone EUT . s4002
Test mode : BLEmode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

r_{III}									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBu√/m	dB	
1	32.634	34.24	12.31	0.46	29.96	17.05	40.00	-22.95	QP
2	44.120	33.72	13.56	0.55	29.87	17.96	40.00	-22.04	QP
2	83.230	37.05	9.72	0.87	29.61	18.03	40.00	-21.97	QP
4	88.342	40.86	11.47	0.90	29.58	23.65	43.50	-19.85	QP
5	110.569	35.52	12.15	1.05	29.45	19.27	43.50	-24.23	QP
6	148.441	36.64	8.25	1.31	29.23	16.97	43.50	-26.53	QP

Above 1GHz

Т	Test channel:			Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	43.86	31.53	8.90	40.24	44.05	74.00	-29.95	Vertical	
4804.00	44.42	31.53	8.90	40.24	44.61	74.00	-29.39	Horizontal	

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	33.88	31.53	8.90	40.24	34.07	54.00	-19.93	Vertical
4804.00	34.41	31.53	8.90	40.24	34.60	54.00	-19.40	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.98	31.58	8.98	40.15	46.39	74.00	-27.61	Vertical
4884.00	45.98	31.58	8.98	40.15	46.39	74.00	-27.61	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	35.27	31.58	8.98	40.15	35.68	54.00	-18.32	Vertical
4884.00	35.26	31.58	8.98	40.15	35.67	54.00	-18.33	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.38	31.69	9.08	40.03	45.12	74.00	-28.88	Vertical
4960.00	43.30	31.69	9.08	40.03	44.04	74.00	-29.96	Horizontal

Т	Test channel:			Highest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	34.84	31.69	9.08	40.03	35.58	54.00	-18.42	Vertical
4960.00	33.72	31.69	9.08	40.03	34.46	54.00	-19.54	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366