

Benchmarking and Analysis of Deep Learning methods to classify EEG Motor Movement / Imagery signals

CSCI-566 - Deep Learning Project - Group 18

Objective

- Compare and benchmark the performance of current Deep Learning methods to classify
 EEG signals for Motor Movement / Imagery.
- Analyze robustness of models to noise

The study aims to offer insights to optimize EEG data classification for BCI applications.

Dataset - **BCI-Competition-IV-2a**

Dataset description

Subjects: 9

• Trials: 288 x 18 = 5184

• Channels: 22 EEG + 3 EOG

Sampling frequency: 250 Hz

Frequency range: 0.5 to 100 Hz

Format: GDF

Target classes

- Left hand
- Right hand
- Feet
- Tongue

Approach

Preprocessing

- Bandpass filtering: 4 38 Hz
- Exponential moving standardization
- Split into windows: 5184

Feature Extraction

- Wavelet Packet Decomposition
- Common Spatial Pattern
- Graph Embedding
- Train Test split
- Model Training
- Robustness to noise SNR 15

Models

- Raw Dataset
 - o MLP
 - Shallow ConvNet
 - Deep ConvNet
 - EEGNet
 - EEGConformer
 - ATCNet
 - EEGITNet

- WPD CSP
 - o MLP
 - CNN
 - o ConvLSTM
 - ShallowFBCSP

Models - EEGNet

Models - EEGConformer

Training curves

Preliminary Results

Models	Feature Extraction	Accuracy	F1	Acc-Noise	F1-Noise
MLP	Raw-filtered	0.2390	0.0922	0.2307	0.0865
EEGNet	Raw-filtered	0.6073	0.6040	0.5449	0.5365
Shallow ConvNet	Raw-filtered	0.5617	0.5632	0.5296	0.5317
Deep ConvNet	Raw-filtered	0.5990	0.5934	0.5764	0.5741
ATCNet	Raw-filtered	0.6658	0.6643	0.6034	0.6021
EEGConformer	Raw-filtered	0.4949	0.4922	0.4916	0.4901
ShallowFBCSPNet	FBCSP	0.5893	0.5885	0.5893	0.5879

Models	Feature Extraction	Accuracy	F1	Acc-Noise	F1-Noise
EEGNet-v1	Raw-filtered	0.5450	0.5420	0.5536	0.5416
Deep4Net	Raw-filtered	0.5347	0.5223	0.5302	0.5221
EEGITNet	Raw-filtered	0.5964	0.5842	0.5597	0.5508
MLP	CSP	0.3689	0.3285	0.2734	0.2564
CNN	CSP	0.3281	0.3177	0.2647	0.2556
Conv-LSTM	CSP	0.3463	0.3294	0.2960	0.2799

Future Steps

- Fine-tuning the models
- Other datasets Physionet
- Other models HybridConvNet, FusionNet
- Robustness Testing Synthetic Data, Saliency map attack, DeepFool attack

- D. Milanés Hermosilla et al., "Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications," IEEE Access, vol. 9, June 2021, doi: 10.1109/ACCESS.2021.3091399.
- N. Shajil, M. Sasikala, and A. M. Arunagiri, "Deep Learning Classification of two-class Motor Imagery EEG signals using Transfer Learning," in Proc. 8th IEEE International Conference on E-Health and Bio engineering (EHB), Grigore T. Popa University of Medicine and Pharmacy, Romania, Oct. 2020.
- D. Avola, M. Cascio, L. Cinque, A. Fagioli, G. L. Foresti, M. R. Marini, and D. Pannone, "Analyzing EEG Data with Machine and Deep Learning: A Benchmark," arXiv:2203.10009v1 [cs.LG], Mar. 2022.

Guided by: Yuehan Qin - TA

Team Members:

Jack Praveen Raj Ilango Jayanth Jayakumar Neranjhana Ramesh Pragatheeswaran Ravichandran Sathiya Murthi Sankaran Sriram Acharya

