Ecuaciones Diferenciales y Planos Tangentes

Juan Pablo Guerrero Escudero

04 abril, 2024

Ecuaciones Diferenciales

Las ecuaciones diferenciales son ecuaciones que contienen derivadas dentro de ellas. Es decir, son funciones que relacionan una función con sus derivadas. Éstas nos ayudan, entre otras cosas, a describir cómo cambian las cosas con el tiempo. Se pueden clasificar de dos tipos:

- 1. Ecuaciones diferenciales ordinarias: Son aquellas que contienen derivadas no parciales.
- 2. Ecuaciones diferenciales no ordinarias: Son aquellas que contienen derivadas parciales.

En clase, se realizó el ejercicio de verificar si una función satisface o no la Ecuación Diferencial Parcial (EDP) de Laplace en la forma $(D_{xx}U + D_{yy}U = 0)$. Si satisface lo anterior, se dice que U es armónica. A continuación se muestra el procedimiento de algunos ejercicios:

1.
$$u(x_n) = x^3 + 3xy^2$$
:

$$D_{xx}u = 6x$$
$$D_{yy}u = 6x$$
$$6x + 6x \neq 0$$

Y por lo tanto no cumple con la EDP de Laplace.

2.
$$u(x,y) = Ln(\sqrt{x^2 + y^2})$$
:

$$D_{xx}u = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
$$D_{yy}u = \frac{x^2 + y^2}{(x^2 + y^2)^2}$$
$$\frac{y^2 - x^2}{(x^2 + y^2)^2} - \frac{x^2 + y^2}{(x^2 + y^2)^2} = \frac{0}{(x^2 + y^2)^2}$$

Y por lo tanto sí cumple con la EDP de Laplace.

3.
$$u(x,y) = e^{-x}cos(y) - e^{-y}cos(x)$$

$$D_{xx}u = e^{-y}cos(x) + e^{-x}cos(y)$$

$$D_{yy}u = -e^{-y}cos(x) - e^{-x}cos(y)D_{xx}u + D_{yy}u = 0$$

Por lo tanto, sí se cumple la ecuación diferencial de Laplace.

Observación: Hay muchas ecuaciónes diferenciales en el mundo de las matemáticas, y la mayoría de ellas son muy difíciles de resolver analíticamente, por lo que muchas veces se resuelven por métodos numéricos o de aproximación.

Planos Tangentes

Los planos tangentes son las aproximaciones lineales a las superficies. También, se puede ver como el plano que contiene a las rectas tangentes a las trazas verticales de una superficie. Entonces, Se le puede dar a $D_x f(x_0, y_0)$ la interpretación de pendiente de la recta tangente a la traza en $y = y_0$, y análogamente, $D_y f(x_0, y_0)$ la pendiente de la recta tangente a la traza en $x = x_0$.

Si $z_0 = f(x_0, y_0)$, entonces las rectas tangentes son:

$$RT_x = z = f(x_0, y_0) + D_x f(x_0, y_0)[x - x_0]$$
(1)

$$RT_{y} = z = f(x_{0}, y_{0}) + D_{y}f(x_{0}, y_{0})[y - y_{0}]$$
(2)

Entonces, la ecuación del plano tangente es:

$$z = f(x_0, y_0) + D_x f(x_0, y_0)[x - x_0] + D_y f(x_0, y_0)[y - y_0]$$
(3)

En donde z siempre contiene a ambas rectas tangentes, se puede ver como el punto inicial $f(x_0, y_0)$ más la Razón de cambio de x, $(D_x f(x_0, y_0)[x - x_0])$ más la razón de cambio en y $(D_y f(x_0, y_0)[y - y_0])$.

La ecuación del plano tangente también se puede ver como una aproximación lineal, que dice que si te acercas lo suficiente, los valores de la recta tangente se parecen a los de la superficie. Y por lo tanto, la ecuación de la aprox. lineal de una función es:

$$L(x,y) = f(x_0, y_0) + D_x f(x_0, y_0)[x - x_0] + D_y f(x_0, y_0)[y - y_0]$$
(4)

A continuación, se muestra el ejemplo del cálculo de la ecuación del plano tangente: **Ejemplo 1**: Determina el plano tangente a $x^2 + y^2 + z - 9 = 0$ en el punto (1, 2, 4)1.

- 1. En primer lugar, se puede reescribir la ecuación en términos de z como $z = 9 x^2 + y^2$. Ésto con el fin de hacerla en la forma de la ecuación del plano tangente z = f(x, y).
- 2. En segundo lugar, se determinan las derivadas parciales $D_x Z$ y $D_y Z$.

$$D_x Z = -2x$$
$$D_y Z = -2y$$

3. Después, se escribe la aproximación lineal de la función, o el plano tangente (es lo mismo).

$$L(1,2) = f(1,2) - 2(1)[x-1] - 2(2)[y-2]$$

$$L(1,2) = 4 - 2x + 2 - 4y + 8$$

$$L(1,2) = -2x - 4y + 14$$

$$z = -2x - 4y + 14$$

La cuál es la ecuación del plano tangente a la ecuación.

Ejercicio de práctica: La ecuación del plano tangente a una superficie es: $P_{tangente} = D_x f(x_0, y_0, z_0)(x - x_0) + D_y f(x_0, y_0, z_0)(y - y_0) + D_z f(x_0, y_0, z_0)(z - z_0) = 0.$

1. $z = f(x,y,z) = \frac{x^2}{a^2} - \frac{y^2}{b^2} + h$. En éste caso se usa la fórmula de plano tangente a una función f(x,y):