Contents

1	Reg	ression	1
	1.1	Warmup	1
	1.2	Rank	1
	1.3	Eigenvalue Decomposition	2
	1.4	Least Squares Regression with Gradient Descent	2

1 Regression

1.1 Warmup

- An n x d matrix is one that has n rows and d columns
- Vector Norms:
 - $$\begin{split} &-l_p \ norm: \ ||x||_p = (\sum_i \ |x_i|^p)^{1/p} \\ &-l_2 \ norm \ (Euclidean \ Norm): \ ||x||_2 = (\sum_i \ x_i^2)^{1/2} \\ &-l_\infty \ norm: \ ||x||_\infty = max_i|x_i| \end{split}$$

- The ℓ_2 -distance (Euclidean distance): $\left| |\mathbf{a} \mathbf{b}| \right|_2$ (green line)
- The ℓ_1 -distance (Manhattan distance): $\left| |\mathbf{a} \mathbf{b}| \right|_1$ (red, blue, yellow lines)

Figure 1: Norm distances

1.2 Rank

- Rank: The number of linearly independent rows (or columns).
- \bullet Full Rank: a square matrix is full rank if the rank equals to #columns.

1.3 Eigenvalue Decomposition

- \bullet let be any \times symmetric matrix.
- \bullet Eigenvalue decomposition: $A = \sum_{i=1}^n \, \lambda_i v_i v_i^T$
- Eigenvalues satisfy $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|$
- Eigenvectors satisfy $v_i^Tv_j=0$ for all $i\neq j$
- $\bullet\,$ $\,$ A is a full rank iff all the eigenvalues are nonzero

1.4 Least Squares Regression with Gradient Descent

1. Least squares regression model: $x\{\}$