

Data Mining CSE2525

Nergis Tomen 09.01.2025

Overview

- Recommender systems
 - Collaborative filtering & the utility matrix
 - NMF for data imputation
 - Cross-validation
 - Performance metrics
 - Privacy
 - Alternatives to NMF

Consider a streaming service:

Simple picture → 4 subscribers, 5 movies... technically can recommend all movies to all subscribers.

Consider a streaming service:

Real picture → 200 million subscribers, 10,000 movies.

5

Recommender systems: Data imputation

How to find the missing values? (a.k.a. the 'data imputation' problem.)

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U1	1	?		5		2
U ₂		5			4	
U ₃	5	3		1		
U ₄		?	3		?	4
U ₅	?			3	5	
U ₆	5		4			?

(a) Ratings-based utility

The aim of a recommender system is to **provide suggestions** for items that are most likely to be interesting to a user.

The aim of a recommender system is to provide suggestions for items that are most likely to be interesting to a user.

Providers:

- have thousands/millions of items on offer

Users:

- have limited time
- have limited budget
- cannot watch, buy, eat everything
- may want to discover something new

What are some examples of recommender systems you know?

Used for recommending, for example:

- Movies, shows, music in streaming services
- **Products** to purchase in e-commerce

Used for recommending, for example:

- Movies, shows, music in streaming services
- **Products** to purchase in e-commerce
- Articles to read in online news sites
- Content in social media
- Books to buy or audiobooks to listen to

Items

Used for recommending, for example:

- Movies, shows, music in streaming services
- Products to purchase in e-commerce
- Articles to read in online news sites
- Content in social media
- Books to buy or audiobooks to listen to
- Restaurants in a user's vicinity
- Potential dates in online dating
- etc...

Items

Used for recommending, for example:

- **Movies**, shows, **music** in streaming services
- **Products** to purchase in e-
- Articles to read in online nev
- Content in social media
- Books to buy or audiobooks
- Restaurants in a user's vicinity
- Potential dates in online dating
- etc...

2 popular approaches:

- Collaborative filtering
- Content-based filtering

Collaborative filtering

"Collaborative filtering, is the leveraging of user preferences in the form of ratings or buying behavior in a "collaborative" way, ... to determine either relevant users for specific items, or relevant items for specific users in the recommendation process."

Data Mining the Textbook, Chapter 18.5

Collaborative filtering

watched by both users "Collaborative filtering, is the leveraging of SUEEPLESS user preferences in the buying behavior in a "collat This is what NMF does! determine either relevant items, or relevant items for similar users Remember linear dependence? recommendatio the watched recommended by her to him Data Mining the Textbook, Chapter 18.5

Content-based filtering

"Users and items are both associated with feature-based descriptions. For example, ... the text of the item description (meta-data). A user might also have explicitly specified their interests in their profile (knowledge-based)... or can be inferred from their buying or browsing behavior."

Data Mining the Textbook, Chapter 18.5

Often the two approaches are combined.

Questions?

Long-tail phenomenon of online recommender systems

Figure 9.2: The long tail: physical institutions can only provide what is popular, while on-line institutions can make everything available

Long-tail phenomenon of online recommender systems

Figure 9.2: The long tail: physical institutions can only provide what is popular, while on-line institutions can make everything available

Online services collect an increasingly large amount of information about user behaviour!

There are 2 main types of utility matrices.

There are 2 main types of utility matrices.

There are 2 main types of utility matrices.

There are 2 main types of utility matrices.

Which one do you think is better?

There are 2 main types of utility matrices.

(b) Positive-preference utility

GOODFELLAS

1

1

SPARTACUS

SCARFACE

1 1

There are 2 main types of utility matrices.

SPARTACUS
2
4

Might be harder to collect

(a) Ratings-based utility

(b) Positive-preference utility

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U1	1			1		1
U ₂		1			1	
U ₃	1	1		1		
U ₄			1			1
U ₅				1	1	
U ₆	1		1			

Might be harder to work with

watched by user

Collaborative filtering

Genres:

- Comedy
- Romance

Cast:

- Tom Hanks
- Meg Ryan

Advantages:

- **Doesn't rely on** hand-crafted or machine-extracted (e.g. from text) **'content'** (both prone to errors)

Collaborative filtering

Advantages:

- **Doesn't rely on** hand-crafted or machine-extracted (e.g. from text) **'content'** (both prone to errors)
- Can work with **implicitly** collected data (e.g. user watched a movie)
- Can work with **explicitly** collected data (e.g. user rated a movie)

Collaborative filtering

Advantages:

- Doesn't rely on hand-crafted or machine-extracted (e.g. from text) 'content' (both prone to errors)
- Can work with **implicitly** collected data (e.g. user watched a movie)
- Can work with **explicitly** collected data (e.g. user rated a movie)

Disadvantages:

- Needs many non-unique (e.g. similar, linearly dependent) users which interact with many different items.
- **Cold start:** Hard to find recommendations for 'new' items or users with little past information or activity.
- **Scalability:** Big data needs big processing power.
- **Sparsity:** Thousands of items, each user interacts with only a few.

Questions?

Collaborative filtering using NMF

Question: How to find the missing values? (a.k.a. the 'data imputation' problem.)

(a) Ratings-based utility

Missing values?

How is it computed?

Algorithm: Multiplicative update in steps (lab assignment).

1) Initialize W and H randomly (all W_{ij} and H_{ij} drawn from a uniform distribution in the interval (0,1)).

Compute the reconstruction error $E = ||V-WH||^2$. (treat missing values as "unknown" \rightarrow no loss contribution!)

2) Individually update W and H to minimize ||V-WH||² using (treat missing values like 0s→no contribution to matmul!)

$$W_{ij} \leftarrow W_{ij} (VH^T)_{ij} / ((WHH^T)_{ij} + \epsilon)$$

$$\boldsymbol{H}_{ij} \leftarrow \boldsymbol{H}_{ij} \left(\boldsymbol{W}^T \boldsymbol{V} \right)_{ij} / \left(\left(\boldsymbol{W}^T \boldsymbol{W} \boldsymbol{H} \right)_{ij} + \boldsymbol{\epsilon} \right)$$

Make sure there is no division by 0 (can use an ϵ term).

- 3) Compute the new reconstruction error $E_{\text{new}} = ||\mathbf{V} \mathbf{W} \mathbf{H}||^2$ (treat missing values as "unknown" \rightarrow no loss contribution!)
- **4)** Stop updating and end optimization if E E_{new} < a predefined error tolerance.
- **5)** While $(E E_{new})$ isn't small enough, repeat steps 2-4 for a predefined number of maximum iterations.

How is it computed?

Changes to "standard" NMF:

- 1) Compute the reconstruction error $E = ||V-WH||^2$. (treat missing values as "unknown" \rightarrow no loss contribution!)
- 2) Individually update W and H (treat missing values as unknown/0s→no contribution to matrix multiplication!)
- **Recommended solution** (also for computing the loss):

Use the numpy masked array module (np.ma):

NMF example from last time

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Total reconstruction error: 5.33e-10

prediction 3.02 0.86 0.68 3.02 0.77 0.63 1.73 3.56 0.63 2.65 0.97 0.09 3.00000 1.00000 1.00001 3.00000 0.99999 **orediction** 0.10 1 10 1.00001 2.00000 3.99999 1.00001 3.00001 0.97 0.09 3.00000 1.00000 1.00001 3.00000 0.99999 1.08 1.20 4.00000 3.00000 5.00000 4.00000 4.00000

Reconstruction

Example 1, 1 missing value

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 6.29e-07 Reconstruction error missing data: 1.67e-06

prediction

			3.48	0.86	0.50	3.48	0.68
			0.61	1.34	2.70	0.61	2.02
prediction	0.82	0.219	3.00004	0.99979	1.00035	3.00005	0.99960
	0.03	1.48	0.99997	2.00012	3.99976	0.99997	3.00024
	0.82	0.22	2.99993	1.00020	1.00129	2.99993	1.00028
	0.85	1.70	4.00003	2.99992	5.00012	4.00003	3.99984

Reconstruction

Example 2, 3 missing values

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 2.76e-08 Reconstruction error missing data: **12.15**

prediction

			3.15	0.58	2.32	3.15	0.30
			0.72	1.70	3.34	0.72	2.57
prediction	0.89	0.29	3.00000	0.99994	3.01226	3.00000	1.00006
	0.09	1.16	1.00006	2.00005	4.00000	1.00005	2.99993
	0.89	0.29	3.00000	0.99994	3.01226	3.00000	1.00006
	0.94	1.45	3.99999	3.00001	7.01226	3.99998	4.00002

Reconstruction

Example 2, 3 missing values

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 2.76e-08 Reconstruction error missing data: **12.15**

NaN NaN NaN

				þ	redictio	n	
Sparsity pro	3.15	0.58	2.32	3.15	0.30		
pparaity problem			0.72	1.70	3.34	0.72	2.57
	0.89	0.29	3.00000	0.99994	3.01226	3.00000	1.00006
prediction	0.09	1.16	1.00006	2.00005	4.00000	1.00005	2.99993
predi	0.89	0.29	3.00000	0.99994	3.01226	3.00000	1.00006
	0.94	1.45	3.99999	3.00001	7.01226	3.99998	4.00002

Reconstruction

neadiation

Example 3, missing column

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 3.23e-08 Reconstruction error missing data: **43.00**

prediction

			3.38	0.61	0.00	3.38	0.30
			0.75	1.55	0.00	0.75	2.33
	0.82	0.33	3.00000	0.99996	0.00	3.00000	1.00004
prediction	0.01	1.29	1.00009	2.00002	0.00	1.00008	2.99992
predi	0.82	0.33	3.00000	0.99996	0.00	3.00000	1.00004
	0.83	1.61	3.99997	3.00001	0.00	3.99997	4.00004

Reconstruction

Example 3, missing column

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 3.23e-08 Reconstruction error missing data: **43.00**

Reconstruction

Example 3, missing column

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Example 4, sparse data

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 2.08e-07 Reconstruction error missing data: **41.24**

prediction

			2.88	0.58	0.95	2.88	0.58
			0.87	1.52	1.36	0.87	1.51
	0.24	0.57	1.18	1.00	1.00	1.18	1.00
prediction	1.26	1.50	4.92	3.00	3.23	4.92	3.00
predi	0.95	0.29	3.00	1.00	1.30	3.00	1.00
	0.67	2.38	4.00	4.00	3.88	4.00	4.00

Reconstruction

Questions?

Recommendations

So far, we only considered reconstruction...

Question?

How do we build a recommender system?

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization:

Reconstruction error known data: 2.08e-07 Reconstruction error missing data: **41.24**

Reconstruction

Recommendations

Threshold the elements of the reconstruction **V'=WH**:

$$g(V'_{ij}) \in \{0, \, 1\}$$

where

$$g(x) = \begin{cases} 0 & \text{if } x < \theta \\ 1 & \text{if } x \ge \theta \end{cases}$$

and 1 means recommend, 0 means don't recommend...

Recommendations

Recommendation accuracy

Accuracy is the percentage of correct recommendations.

	/A //1	\ /	2	
a	V). t	7=2	′.ວ

0	0	0	0	0
1	1	1	1	1
1	0	0	1	0
1	1	1	1	1

Binarized reconstruction

In this case $4/9 \approx 44.4\%$.

Ground truth

1	0	0	1	0
0	0	1	0	1
1	0	<u>0</u>	1	0
1	1	1	1	1

Questions?

From last time...

Perform cross-validation!

NMF using **multiplicative update** algorithm, random initialization in (0,1), no normalization.

Effect of using different number of components (features "k"):

	Total reconstruction error
1 component	15.24
2 components	5.33e-10
3 components	2.76e-08
4 components	7.56e-05

Perform cross-validation!

Assume we evaluate NMF performance using the recommendation accuracy.

We optimize **W** and **H** on a training dataset, evaluate on an independent test set.

Assume we evaluate NMF performance using the recommendation accuracy.

We don't want to overfit our model parameters/design choices to the test set.

Use an independent validation set!

Available Data				
Training	Validation	Testing		
	(validation	(testing		
	holdout sample)	holdout sample)		

NaN	Validation	1	NaN	1
NaN	NaN	NaN	NaN	3
3	1	NaN	3	1
4	NaN	NaN	4	4

1st fold

NaN	1	Validation	NaN	1
NaN	NaN	NaN	NaN	3
3	1	NaN	3	1
4	NaN	NaN	4	4

2nd fold

NaN	1	1	NaN	Validation
NaN	NaN	NaN	NaN	3
3	1	NaN	3	1
4	NaN	NaN	4	4

3rd fold

NaN	1	1	NaN	1
NaN	NaN	NaN	NaN	Validation
3	1	NaN	3	1
4	NaN	NaN	4	4

4th fold

NaN	1	1	NaN	1
NaN	NaN	NaN	NaN	3
Validation	1	NaN	3	1
4	NaN	NaN	4	4

5th fold, etc...

k-fold cross-validation (mask out mutually exclusive subsets of entries in **V** for training)

For many tasks, our **data matrix** is an *n*-by-*d* matrix which has *n* samples, and *d* features.

d features

sepal :	length	sepal	width	petal	length	petal	width
	5.1		3.5		1.4		0.2
	4.9		3		1.4		0.2
	6.5		3.2		5.1		2
	6.4		2.7		5.3		1.9
	6.8		3		5.5		2.1
	6.7		3.1		4.4		1.4
	5.6		3		4.5		1.5
	5.8		2.7		4.1		1

For many tasks, we can pick **whole 'samples' (rows)** as a holdout validation set (e.g. remember PCA).

d features

sepal	length	sepal	width	petal	length	petal	width
	5.1		3.5		1.4		0.2
	4.9		3		1.4		0.2
	6.5		3.2		5.1		2
	6.4		2.7		5.3		1.9
	6.8		3		5.5		2.1
	6.7		3.1		4.4		1.4
	5.6		3		4.5		1.5
	5.8		2.7		4.1		1

1st fold

For many tasks, we can pick **whole 'samples' (rows)** as a holdout validation set (e.g. remember PCA).

d features

sepal length	sepal width	petal length	petal width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
6.5	3.2	5.1	2
6.4	2.7	5.3	1.9
6.8	3	5.5	2.1
6.7	3.1	4.4	1.4
5.6	3	4.5	1.5
5.8	2.7	4.1	1

2nd fold

For many tasks, we can pick **whole 'samples' (rows)** as a holdout validation set (e.g. remember PCA).

d features

sepal length	sepal width	petal length	petal width
5.1	3.5	1.4	0.2
4.9	3	1.4	0.2
6.5	3.2	5.1	2
6.4	2.7	5.3	1.9
6.8	3	5.5	2.1
6.7	3.1	4.4	1.4
5.6	3	4.5	1.5
5.8	2.7	4.1	1

3rd fold

For many tasks, we can pick **whole 'samples' (rows)** as a holdout validation set (e.g. remember PCA).

d features

sepal	length	sepal	width	petal	length	petal	width
	5.1		3.5		1.4		0.2
	4.9		3		1.4		0.2
	6.5		3.2		5.1		2
3	6.4		2.7		5.3		1.9
	6.8		3		5.5		2.1
	6.7		3.1		4.4		1.4
	5.6		3		4.5		1.5
	5.8		2.7		4.1		1

4th fold

How do we pick the cross-validation folds for NMF?

n babies

n babies

3	1	1	3	1
1	2	4	1	3
3	1	1	3	1
4	3	5	4	4

For multiplicative update algorithm, we cannot mask whole rows!

Remember: We cannot have whole row/column missing for the multiplicative update algorithm...

$$W_{ij} \leftarrow W_{ij} (VH^T)_{ij} / ((WHH^T)_{ij} + \epsilon)$$
 entries update to zero if missing **row** in V
$$H_{ij} \leftarrow H_{ij} (W^TV)_{ij} / ((W^TWH)_{ij} + \epsilon)$$
 entries update to zero if missing **column** in V

For multiplicative update algorithm, we cannot mask whole rows!

n babies

3	1	1	3	1
1	2	4	1	3
3	1	1	3	1
4	3	5	4	4

cannot perform
collaborative
filtering if we don't
have any
information about a
user/item.

n babies

We can pick mutually exclusive cross-validation folds from different rows/columns.

k-fold cross-validation (mask out mutually exclusive subsets of entries in **V** for training)

Be careful not to mask out **all entries** in a row/column!

(Multiplicative update will set values to zero!)

Cross-validation - Recommender systems

Data is large → - leave-one-out: computationally expensive

Data is sparse → - k-fold with small k: training data might be too small, not informative

Cross-validation - Recommender systems

Data is large → - leave-one-out: computationally expensive

Data is sparse → - **k-fold with small k**: training data might be too small not informative

If it's computationally too expensive to use large number of folds, we can also use one independent validation set and one independent test set (e.g. lab assignment).

Questions?

- Evaluation metrics for **predictions**
 - Reconstruction error: Mean squared error (1/N * ||V-WH||²),
 root mean squared error
- Evaluation metrics for recommendations
 - Recommendation accuracy: Percentage of correct recommendations.

How do we evaluate NMF performance?

- Further evaluation metrics for **recommendations**
 - True positive/false positive rates

- Further evaluation metrics for recommendations
 - True positive/false positive rates

$$ext{- Precision} = rac{tp}{tp+fp} \ ext{Recall} = rac{tp}{tp+fn} \ ext{}$$

- Further evaluation metrics for **recommendations**
 - True positive/false positive rates

$$ext{- Precision} = rac{tp}{tp+fp} \ ext{Recall} = rac{tp}{tp+fn} \ ext{.}$$

- F1-score:

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

- **Online** evaluation: User's online reactions, e.g. the clicks or views a recommendation gets, etc.
 - A/B testing

- Ranking based recommendations:

So far we only performed naive thresholding to get recommendations

1.18	1.00	1.00	1.28	1.00
4.92	3.00	3.23	4.82	3.00
3.00	1.00	1.30	3.00	1.00
4.00	4.00	3.88	4.00	4.00

0	0	0	0	0
1	1	1	1	1
1	0	0	1	0
1	1	1	1	1

Reconstruction V'

- Ranking based recommendations:

If we want to recommend *k* items to each user, we have to consider rankings!

1.18	1.00	1.00	1.28	1.00
4.92	3.00	3.23	4.82	3.00
3.00	1.00	1.30	3.00	1.00
4.00	4.00	3.88	4.00	4.00

2	-	-	1	-
1	4	3	2	-
-	-	1	-	-
-	1	2	-	-

Reconstruction V'

- Ranking based evaluation metrics include
 - Spearman's rank correlation:
 Pearson's correlation between predicted ranks and ground truths
 - Hit rate at K: Percentage of users for which at least one hit takes place for the top K recommendations.

2	-	-	1	-
1	4	3	2	-
-	-	1	-	-
-	1	2	-	-

Other considerations

- **Diversity** (exploration) Users tend to be more satisfied if recommendations are <u>diverse</u>.
- Recommender persistence It can be more effective to <u>re-show</u> recommendations than showing new items.

Other considerations

- Diversity (exploration) Users tend to be more satisfied if recommendations are <u>diverse</u>.
- **Recommender persistence** It can be more effective to <u>re-show</u> recommendations than showing new items.
- **Robustness** What if two users are using the same account? How to deal with <u>unreliable data</u>?
- **Serendipity** Serendipity is a measure of "how surprising the recommendations are". If you're an e-commerce dairy farm, milk is not a <u>surprising recommendation</u>, but biscuits might be.

Other considerations

- Diversity (exploration) Users tend to be more satisfied if recommendations are <u>diverse</u>.
- **Recommender persistence** It can be more effective to <u>re-show</u> recommendations than showing new items.
- **Robustness** What if two users are using the same account? How to deal with <u>unreliable data</u>?
- **Serendipity** Serendipity is a measure of "how surprising the recommendations are". If you're an e-commerce dairy farm, milk is not a <u>surprising recommendation</u>, but biscuits might be.
- Privacy Recommender systems usually have to deal with privacy concerns because users might have to
 reveal <u>sensitive and personally identifying information</u>. Building user profiles using collaborative filtering can be
 problematic from a privacy point of view.

Questions?

Summary

- Recommender systems are **ubiquitous**
- There are multiple possible approaches (collaborative, content-based, hybrid)
- Different **types of utility matrices** (ranking-based, preference-based, dense, sparse, etc.)

Summary

- Recommender systems are **ubiquitous**
- There are multiple possible approaches (collaborative, content-based, hybrid)
- Different **types of utility matrices** (ranking-based, preference-based, dense, sparse, etc.)
- Important to think about cross-validation when picking methods and making design choices

Summary

- Recommender systems are **ubiquitous**
- There are multiple possible approaches (collaborative, content-based, hybrid)

- Different **types of utility matrices** (ranking-based, preference-based, dense, sparse, etc.)
- Important to think about **cross-validation** when picking methods and making design choices

Next time:

- Privacy is important to consider when dealing with (big) user data
- Alternatives to NMF provide different methods for CF