Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações Curso Superior em Engenharia de Telecomunicações

Atividade: Projeto Final Data: 05/12/2016

Disciplina: MIC29004 Microprocessadores **Prof.:** Clayrton Henrique

Aluno(a):_____ Fase: 4^a

Equipe D

= = = Controle de Vazão = = =

IFSC

Pedido: deseja-se um projeto para controle de uma planta industrial que realiza o processamento de óleo reciclado acumulado proveniente do tanque de coleta. O proprietário resolveu realizar o controle: da viscosidade do óleo V_1 e V_2 (a partir dos valores de referências V_{IN} e V_{OUT}); da vazão de escoamento quando da liberação das válvulas de fluxo (F_1 , F_2 e F_3) e, ainda, da inserção de produtos para compensação da viscosidade (C_1 e C_2). Para isso, o sistema **recebe** as informações de: sensores de níveis (N_1 e N_2) com quatro níveis iguais em volume e distintos em posição (vide figura); a leitura da viscosidade do óleo, em qualquer ponto de medição deve variar de 0 a 100%. O sistema **envia** as seguintes informações: habilitar/desabilitar as válvulas de fluxo (F_1 , F_2 e F_3) de modo que o óleo saia de um tanque para outro; os controladores de fluxo C_1 e C_2 permitem a entrada de reagentes distintos de modo que o primeiro têm a finalidade de aumentar em uma unidade a viscosidade (liberação por 10s), enquanto o segundo reduz em uma unidade (liberação por 10s) de acordo com o valor desejado em V_{OUT} .

Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações IFSC Curso Superior em Engenharia de Telecomunicações Atividade: Projeto Final Data: 05/12/2016 Prof.: Clayrton Henrique Fase: 4ª Equipe D

= = = Controle de Vazão = = =

Critérios:

O tempo de acionamento das válvulas F_1 , F_2 e F_3 de trinta segundos permite vazão suficiente para o preenchimento de um nível do tanque (1/4). Os sensores de níveis (N_1 e N_2) são números compostos por um barramento de quatro bits, conforme figura, que serão lidos para analisar o nível do reservatório de modo que o sistema não permita seu transbordamento e nem mesmo o tanque chegue a ficar vazio. A leitura da viscosidade do óleo V_{IN} é um valor formado pela junção de vários tipos de óleos usados para as diversas finalidades (fora do padrão) e dado em porcentagem que varia de 0 a 100%, enquanto o valor de V_{OUT} é o valor desejado após ser processado pela planta de reciclagem, o qual deve ser definido pela equipe. Não se deve permitir que qualquer um dos tanques atinja o primeiro nível (1/4) devido a redução da vazão do óleo e por ocorrer abaixo desse nível decantação e consequente fixação de resíduos no fundo.

Funcionamento: A cada liberação de F_1 , F_2 e F_3 por 30s, escoa uma vazão referente a 1/4 do tanque anterior para o próximo. O valor de \mathbf{V}_{OUT} deve ser atingido apenas pelo controle de \mathbf{C}_1 e \mathbf{C}_2 , partindo-se do valor inicial \mathbf{V}_{IN} . Espera-se a cada ciclo de processamento que, pelo menos, 1/4 de tanque seja processado e liberado em \mathbf{F}_3 .