吉林大学

$2012\sim 2013$ 学年第二学期《高等数学AII》试卷

2013 年 6月 27日

_	=	三	四	总分

得 分 一、单项选择题(共 6 道小题,每小题 3 分,满分 18 分)

1. 曲线 $y=\sqrt{x}$ 与 y=1, x=4 所围成平面图形的面积 S=().

(A)
$$\frac{14}{3}$$
; (B) $\frac{5}{3}$; (C) $\frac{10}{3}$; (D) $\frac{16}{3}$.

2. 设直线 $L_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 与 $L_2: \left\{ \begin{array}{l} x-y=6, \\ 2y+z=3. \end{array} \right.$ 则 L_1 与

 L_2 的夹角为(

(A)
$$\frac{\pi}{6}$$
; (B) $\frac{\pi}{4}$; (C) $\frac{\pi}{3}$; (D) $\frac{\pi}{2}$.

- 3. 由方程 $x^2 + \frac{y^2}{2} + \frac{z^2}{3} = 1$ 所表示的二次曲面为().
- (A) 椭球面; (B) 椭圆锥面; (C) 椭圆柱面; (D) 椭圆抛物面.

4.
$$\lim_{(x,y)\to(0,0)} \frac{3xy}{x^2 + y^2} = ($$
).

(A)
$$\frac{3}{2}$$
; (B) 0; (C) $\frac{6}{5}$; (D) 不存在.

- 5. 如果 f(x,y) 在点 (x_0,y_0) 处的两个偏导数都存在,则().
 - (A) f(x,y) 在点 (x_0,y_0) 的某个邻域内有界;
 - (B) f(x,y) 在点 (x_0,y_0) 的某个邻域内可微;
 - (C) $f(x, y_0)$ 在点 x_0 处连续, $f(x_0, y)$ 在点 y_0 处连续;
 - (D) f(x,y) 在点 (x_0,y_0) 处连续.

(共6页第1页)

6. 设 $I_1 = \iint (x+y)^2 d\sigma$, $I_2 = \iint (x+y)^3 d\sigma$. 其中区域 D 是由 x 轴、y 轴 及直线 x+y=1 所围成的闭区域.则 I_1 与 I_2 的大小关系为().

(A) $I_1 > I_2$; (B) $I_1 < I_2$; (C) $I_1 = I_2$; (D) 根据所给条件不能确定.

得 分 二、填空题(共 6 道小题,每小题 3 分,满分 18 分)

1.
$$\int_0^1 \frac{\mathrm{d}x}{(2-x)\sqrt{1-x}} = \underline{\qquad}.$$

- 2. 设向量 $a = (3, 2, \lambda), b = (-1, 4, -5), 且 a \perp b, 则常数 \lambda =$
- 3. 在 Oxz 面上的抛物线 $z^2 = 5x$ 绕 x 轴旋转一周所生成的旋转曲面的 方程为_____.
- 4. 由方程 $xy yz + zx = e^z$ 所确定的隐函数 z = z(x, y) 在点 (1, 1) 处的
- 5.如果曲面 $z = \frac{x^2}{2} + y^2$ 的切平面与平面 2x + 2y z = 0 平行,则切点的 坐标为

6.
$$\int_0^1 x^2 dx \int_x^1 e^{-y^2} dy = \underline{\qquad}$$

三、按要求解答下列各题(共 4 道小题,每小题 8 分,满分 32 分)

1. 当 k 为何值时,反常积分 $\int_{2}^{+\infty} \frac{\mathrm{d}x}{x(\ln x)^{k}}$ 收敛?

$$2. \ \ \mathcal{U} \ f, \varphi \ \mathbb{E}\mathbf{C}^{(2)} \ \mathbb{Z}$$
 类函数, $z = y f\left(\frac{x}{y}\right) + x \varphi\left(\frac{y}{x}\right), \ \ \vec{\mathbf{x}}: (1) \ \frac{\partial z}{\partial y}; \quad (2) \ x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y}.$

3. 计算
$$I = \iint_D (xy + |x^2 + y^2 - 2|) d\sigma$$
, 其中区域 $D = \{(x, y) | x^2 + y^2 \leq 3\}$.

4. 设函数
$$f(x,y,z)$$
 连续,且 $f(x,y,z)=\sqrt{x^2+y^2}+z$ $\iiint_{\Omega}f(x,y,z)\mathrm{d}V$, 其中区域 $\Omega=\{(x,y,z)|\sqrt{x^2+y^2}\leqslant z\leqslant 1\},$ 求 $f(x,y,z)$ 的表达式.

得 分

四、按要求解答下列各题(共 4 道小题,每小题 8 分,满分 32 分)

1.求摆线
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t) \end{cases} (0 \leqslant t \leqslant 2\pi)$$
的全长.

2. 在曲线 $y=x^2(x\geq 0)$ 上某点 A 处作一切线,使之与曲线及 x 轴所围图 形 D 的面积为 $\frac{1}{12}$, 试求:(1) 切点 A 的坐标; (2) 由上述平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.

3. 求函数 $f(x,y)=x^2+y^2-xy-3y$ 在闭区域 $D=\{(x,y)|0\leqslant y\leqslant 4-x,0\leqslant x\leqslant 4\}$ 上的最大值和最小值.

4. 设函数 $f(x,y,z)=xy^2-xyz+z^3$. 求:(1)函数在点 (1,1,2) 处的梯度;(2) 在点 (1,1,2) 处沿方向 $\boldsymbol{l}=\left(\frac{1}{2},\frac{\sqrt{2}}{2},\frac{1}{2}\right)$ 的方向导数.