Lecture 2, September 25th, 2025

1. Bayesian inference: general formulation + examples

2. Monte Caulo algorithms

Bayesian inference (generic setup)

Jy - vector of

In 0 - sector of puts $p(y|\theta)$ - density/prob defined by

P(D) - density of the

Output : p(D 14) =

In practice, we use the following summaries of the posterior distribution:

1) point estimation:

For example,

 $\widehat{\mathcal{Q}}$ =

There is no formula for grantiles, so these calcu-

lations m	mst be a	lone		
Example	: nueltiple	linear reg	ression	
data:	$\begin{cases} y_2 \\ x_2 \\ \vdots \\ x_n \end{cases}$	χ ₁ ρ	cosarcates/	predictors,
7	yn xn,	Xnp	them	not model
4 sector	emple size	number of covaria	ites,	
Data generat	n ting model:			
0	0			
parame ters				
Lokelihood:				
priors: ma	my choices,	, but let's	use somethin	g simple:
posterior di	istribution/	dense ty:		

Bad news: Good news: Monte Carlo Integration

First, let's veriew the concept of mathematical expectation: I) for discrete random variable X $E\left[g\left(x\right)\right] = E\left[g\left(x\right)\right] P\left(x = x_{L}\right)$ V = I1st moment: g(x)=x2nd moment $g(x)=x^2$ 2) for (absolutely) continuous random variable X: $E\left[g(x)\right] = \int_{-\infty}^{\infty} g(x) f(x) dx$ Example: exponential vandom savicable $f(x) = \lambda e^{-\lambda x} 1_{2x \ge 0}$, where $\lambda > 0$ -vate parameter $X \sim E \times p(\lambda) = (x) =$ Strong Lan of Large Numbers (SLLN) Let X1, X2,... be independent and identically

distributed (icd) random variables with

$$\mu = E(X,) < \infty$$
 Then

Monte Carlo Integration

Objective: E[h(x)] = Sh(x)f(x)dx, where X is a random variable with probability density function f(x) or $E(h(x)) = \sum_{K = i}^{\infty} h(X_K) p_K$, where X is a discrete random variable with prob. mass function p_1, p_2, \ldots

Example: second moment of the Beta distribution

Recall that in our estimating proportions

example, one setting had:

D~ 13eta (2,20) y=10, n=100

0 ly ~ Beta (12, 110) Objective: E(02/y) - second moment Un this case we can derive a formula: XN Beta (1,13) => This result tells us that Let's see if we can get to the same number using Monte Carlo integration. Our game plan: computer demo here