Esame Scritto di Teoria dei Sistemi (Modulo A) del 21/06/2021: Soluzioni

Esercizio 1 [4 pti].

- 1. La matrice $F \ earrow 3 \times 3$, quindi per calcolare la forma di Jordan di $F \ earrow 5$ sufficiente calcolare gli autovalori di $F \ earrow 5$ e le molteplicità algebriche/geometriche di questi autovalori.
 - (i) <u>Calcolo autovalori di F</u>: F è triangolare a blocchi e il secondo blocco diagonale è a sua volta triangolare, quindi gli autovalori di F sono gli elementi sulla diagonale di F: $\lambda(F) = \{2-\alpha, \alpha, 0\}$. Distinguiamo ora i casi:
 - $\underline{\alpha} = 0$: gli autovalori di F sono $\lambda_1 = 0$ con molteplicità algebrica $\nu_1 = 2$ e molteplicità geometrica da calcolare, $\lambda_2 = 2$ con molteplicità algebrica e geometrica $\nu_2 = g_2 = 1$.
 - $\underline{\alpha} = \underline{2}$: gli autovalori di F sono $\lambda_1 = 0$ con molteplicità algebrica $\nu_1 = 2$ e molteplicità geometrica da calcolare, $\lambda_2 = 2$ con molteplicità algebrica e geometrica $\nu_2 = g_2 = 1$.
 - $\underline{\alpha = 1}$: gli autovalori di F sono $\lambda_1 = 0$ con molteplicità algebrica e geometrica $\nu_1 = g_1 = 1$, $\lambda_2 = 1$ con molteplicità algebrica $\nu_2 = 2$ e molteplicità geometrica da calcolare.
 - $\underline{\alpha} \in \mathbb{R} \setminus \{0, 1, 2\}$: gli autovalori di F sono $\lambda_1 = 2 \alpha$, $\lambda_2 = \alpha$, $\lambda_3 = 0$, tutti con molteplicità algebrica e geometrica pari a uno, $\nu_i = g_i = 1$, i = 1, 2, 3.
 - (ii) <u>Calcolo molteplicità geometriche degli autovalori di F</u>: Le molteplicità geometriche mancanti sono date da:
 - $\underline{\alpha} = \underline{0}$: $g_1 = 3 \text{rank}(\lambda_1 I F) = 3 \text{rank}\begin{bmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} = 3 2 = 1$.
 - $\underline{\alpha = 2}$: $g_1 = 3 \text{rank}(\lambda_1 I F) = 3 \text{rank}\begin{bmatrix} 0 & 0 & -2 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} = 3 2 = 1.$
 - $\underline{\alpha = 1}$: $g_2 = 3 \text{rank}(\lambda_2 I F) = 3 \text{rank}\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 3 1 = 2.$
 - (iii) Calcolo della forma di Jordan di F, modi elementari del sistema e loro carattere: Utilizzando le informazioni trovate ai punti (i) e (ii), possiamo concludere:
 - $\underline{\alpha} = 0, \underline{2}$: La forma di Jordan di F è (a meno di una permutazione dei blocchi diagonali):

$$F_J = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

I modi elementari sono: $\delta(t)$, $\delta(t-1)$ (convergenti in tempo finito), 2^t (divergente).

• $\alpha \in \mathbb{R} \setminus \{0,2\}$: La matrice è diagonalizzabile e quindi forma di Jordan di F è (a meno di una permutazione degli elementi diagonali):

$$F_J = \begin{bmatrix} 2 - \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

I modi elementari sono: $(2 - \alpha)^t$ (convergente se $1 < \alpha < 3$, limitato se $\alpha = 1, 3$, divergente altrimenti), α^t (convergente se $-1 < \alpha < 1$, limitato se $\alpha = \pm 1$, divergente altrimenti), $\delta(t)$ (convergente in tempo finito).

2. L'ingresso richiesto esiste se e solo se lo stato x(3) è raggiungibile in t=3 passi, cioè se e solo se

$$x(3) \in X_R(3) = X_R = \operatorname{im}(\mathcal{R}). \tag{1}$$

La matrice di raggiungibilità del sistema è

$$\mathcal{R} = \begin{bmatrix} G & FG & F^2G \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 4 \\ 0 & -1 & -2 \end{bmatrix},$$

la quale ha rango pieno (rank(\mathcal{R}) = 3). Quindi $X_R = \mathbb{R}^3$ (il sistema è raggiungibile) e di conseguenza l'ingresso richiesto esiste. L'ingresso richiesto si può trovare risolvendo il seguente sistema di equazioni lineari nell'incognita $u_3 = \begin{bmatrix} u(2) & u(1) & u(0) \end{bmatrix}^{\top}$

$$x(3) = \mathcal{R}u_3 \implies \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2\\1 & 2 & 4\\0 & -1 & -2 \end{bmatrix} \begin{bmatrix} u(2)\\u(1)\\u(0) \end{bmatrix} \implies \begin{cases} -2u(0) = 1\\u(2) + 2u(1) + 4u(2) = 0\\-u(1) - 2u(0) = 0 \end{cases}$$

la cui soluzione è data da $u(0)=-\frac{1}{2}, u(1)=1, u(2)=0.$

3. Per $\alpha = 0$, la matrice F diventa diagonale a blocchi:

$$F = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} F_{11} & 0 \\ 0 & F_{22} \end{bmatrix}.$$

Sia $x(0) = \begin{bmatrix} x_{0,1} & x_{0,2} & x_{0,3} \end{bmatrix}^{\top}$, $x_{0,i} \in \mathbb{R}$, l'evoluzione libera dello stato è data da:

$$x_{\ell}(t) = F^{t}x(0) = \begin{bmatrix} F_{11}^{t} & 0 \\ 0 & F_{22}^{t} \end{bmatrix} \begin{bmatrix} x_{0,1} \\ x_{0,2} \\ x_{0,3} \end{bmatrix} = \begin{bmatrix} F_{11}^{t}x_{0,1} \\ F_{22}^{t} \begin{bmatrix} x_{0,2} \\ x_{0,3} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2^{t}x_{0,1} \\ F_{22}^{t} \begin{bmatrix} x_{0,2} \\ x_{0,3} \end{bmatrix} \end{bmatrix}.$$
 (2)

Poiché F_{22} ha solo autovalori in zero, $F_{22}^t \begin{bmatrix} x_{0,2} & x_{0,3} \end{bmatrix}^\top$ contiene solo modi convergenti (in tempo finito). Quindi l'unica possibilità per avere un'evoluzione libera divergente nel tempo è prendere $x_{0,1} \neq 0$. Da questo fatto segue che tutte e sole le condizioni iniziali che generano un'evoluzione libera dello stato divergente nel tempo sono $x(0) = \begin{bmatrix} x_{0,1} & x_{0,2} & x_{0,3} \end{bmatrix}^\top$ con $x_{0,1} \neq 0$ e $x_{0,2}, x_{0,3} \in \mathbb{R}$ scalari reali arbitrari.

Esercizio 2 [4 pti].

1. $\bar{x} = (\bar{x}_1, \bar{x}_2)$ è un punto di equilibrio del sistema se e solo se

$$\begin{cases}
0 = -\bar{x}_1 \bar{x}_2 \\
0 = \bar{x}_1^2 - \alpha \bar{x}_2
\end{cases}$$
(3)

Dalla seconda equazione in (3) abbiamo: (i) $\bar{x}_2 = \bar{x}_1^2/\alpha$ se $\alpha \neq 0$, (ii) $\bar{x}_1^2 = 0$ se $\alpha = 0$. Sostituendo queste condizioni nella prima equazione in (3), si conclude che (i) il sistema ammette un unico equilibrio nell'origine $\bar{x} = (0,0)$ se $\alpha \neq 0$, (ii) il sistema ammette infiniti equilibri della forma $\bar{x} = (0,\beta)$, $\beta \in \mathbb{R}$, se $\alpha = 0$.

2. Per $\alpha \neq 0$, il sistema ammette un unico equilibrio nell'origine $\bar{x} = (0,0)$. La matrice Jacobiana del sistema è:

$$J_f(x) = \begin{bmatrix} -x_2 & -x_1 \\ -2x_1 & -\alpha \end{bmatrix}.$$

Valutando la matrice Jacobiana nel punto di equilibrio \bar{x} , otteniamo:

$$J_f(\bar{x}) = \begin{bmatrix} 0 & 0 \\ 0 & -\alpha \end{bmatrix}.$$

Gli autovalori di questa matrice sono $\lambda(J_f(\bar{x}^{(1)})) = \{0, -\alpha\}$. Quindi per il teorema di linearizzazione concludiamo che \bar{x} è un equilibrio instabile se $\alpha < 0$. Se $\alpha > 0$, siamo nel caso critico della linearizzazione.

3. I casi critici della linearizzazione del punto 2. riguardano l'equilibrio $\bar{x} = (0,0)$ e i valori $\alpha > 0$. Osserviamo innanzitutto che $V(x_1, x_2) = x_1^2 + x_2^2$ è una funzione definita positiva in un intorno di \bar{x} . Calcoliamo $\dot{V}(x_1, x_2)$:

$$\dot{V}(x_1, x_2) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2$$

$$= -2x_1^2x_2 + 2x_2(x_1^2 - \alpha x_2)$$

$$= -2\alpha x_2^2$$

Osserviamo che $\dot{V}(x_1, x_2)$ è sempre semidefinita negativa se $\alpha > 0$. Per il teorema di Lyapunov, concludiamo quindi che $\bar{x} = (0,0)$ è (almeno) semplicemente stabile se $\alpha > 0$. Verifichiamo ora se abbiamo solo stabilità semplice oppure anche stabilità asintotica, usando il teorema di Krasowskii. Abbiamo

$$\mathcal{N} = \{(x_1, x_2) : \dot{V}(x_1, x_2) = 0\} = \{(x_1, x_2) : x_1 \in \mathbb{R}, x_2 = 0\}.$$

Affinché una traiettoria $x(t) = (x_1(t), x_2(t))$ sia interamente contenuta in \mathcal{N} , deve essere $x_2(t) = 0$ per ogni t, il che implica $\dot{x}_2(t) = 0$ per ogni t. Sostituendo questa condizione nelle equazioni della dinamica:

$$\begin{cases} \dot{x}_1(t) = 0\\ 0 = x_1^2(t) \end{cases} \tag{4}$$

La seconda equazione di (4) implica $x_1(t) = 0$ per ogni t. Concludiamo che l'unica traiettoria contenuta in \mathcal{N} coincide con l'equilibrio \bar{x} e quindi, per Krasowskii, \bar{x} è asintoticamente stabile se $\alpha > 0$.

Esercizio 3 [4 pti].

1. Osserviamo che la matrice F è triangolare a blocchi

$$F = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} F_{11} & 0 \\ F_{21} & F_{22} \end{bmatrix},$$

e gli autovalori del blocco F_{22} sono $\lambda(F_{22}) = \{\pm i\}$. Quindi gli autovalori di F sono l'unione degli autovalori dei blocchi diagonali, $\lambda(F) = \lambda(F_{11}) \cup \lambda(F_{22}) = \{1, \pm i\}$. Essendo la parte reale degli autovalori maggiore o uguale a zero, il sistema è stabilizzabile se e solo se è raggiungibile. La matrice di raggiungibilità del sistema è

$$\mathcal{R} = \begin{bmatrix} G & FG & F^2G \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

che ha rango pieno. Il sistema è pertanto raggiungibile e quindi stabilizzabile.

Come per la stabilizzabilità, essendo la parte reale degli autovalori di F maggiore o uguale a zero, il sistema è rivelabile se e solo se è osservabile. Possiamo osservare che, partizionando la matrice d'uscita come $H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} H_1 & 0 \end{bmatrix}$, il sistema è in forma di Kalman di osservabilità essendo (H_1, F_{11}) osservabile. Il sistema quindi non è osservabile e, pertanto, nemmeno rivelabile.

2. L'esistenza del controllore richiesto è garantita dal fatto che il sistema è raggiungibile (vedi punto 1.). Per il calcolo del controllore richiesto usiamo il "metodo diretto". Il polinomio caratteristico desiderato è $p(\lambda) = (\lambda + 1)^3 = \lambda^3 + 3\lambda^2 + 3\lambda + 1$. Sia $K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$, con $k_1, k_2, k_3 \in \mathbb{R}$ e imponiamo

$$\Delta_{F+GK}(\lambda) = \det(\lambda I - F - GK) = \det\begin{bmatrix} \lambda - 1 - k_1 & -k_2 & -k_3 \\ -1 & \lambda & 1 \\ 0 & -1 & \lambda \end{bmatrix}$$
$$= \lambda^2 (\lambda - 1 - k_1) - k_3 - k_2 \lambda + \lambda - 1 - k_1$$
$$= \lambda^3 + (-1 - k_1)\lambda^2 + (1 - k_2)\lambda - 1 - k_1 - k_3 \stackrel{!}{=} \lambda^3 + 3\lambda^2 + 3\lambda + 1.$$

Dall'ultima equazione otteniamo il sistema di equazioni lineari

$$\begin{cases}
-1 - k_1 = 3 \\
1 - k_2 = 3 \\
-1 - k_1 - k_3 = 1
\end{cases}$$

che ha soluzione $k_1 = -4$, $k_2 = -2$, $k_3 = 2$. Quindi il controllore richiesto ha matrice di retroazione della forma:

$$K = \begin{bmatrix} -4 & -2 & 2 \end{bmatrix}$$
.

3. La matrice F ha autovalori in $1 e \pm i$. Per avere uno stimatore in catena chiusa la cui dinamica dell'errore di stima abbia modi elementari limitati nel tempo¹, dobbiamo trovare un guadagno dello stimatore L in modo che F + LH abbia autovalori con parte reale minore o uguale a zero e, in aggiunta, gli eventuali autovalori a parte reale nulla devono avere molteplicità geometrica pari a quella algebrica. Osserviamo che il sistema non è osservabile ed è in forma di Kalman di osservabilità (vedi punto 1.). Gli autovalori non osservabili sono dati da $\lambda(F_{22}) = \{\pm i\}$, quindi sono distinti e a parte reale nulla. Per ottenere lo stimatore desiderato è sufficiente modificare l'unico autovalore (reale e pari ad 1) del sottosistema osservabile (F_{11}, H_1) , rendendolo minore o uguale a zero. Precisamente, si osserva che ogni guadagno della forma $L = \begin{bmatrix} \ell_1 & \ell_2 & \ell_3 \end{bmatrix}^{\mathsf{T}}$, con $\ell_1 \leq -1$ e ℓ_2 , ℓ_3 scalari reali arbitrari, rende gli autovalori della matrice

$$F + LH = \left[\begin{array}{ccc} 1 + \ell_1 & 0 & 0 \\ 1 + \ell_2 & 0 & -1 \\ + \ell_3 & 1 & 0 \end{array} \right].$$

distinti e a parte reale minore o uguale a zero. Un qualsiasi guadagno di questa forma soddisfa dunque quanto richiesto.

¹Si noti che un modo elementare convergente (associato ad un autovalore a parte reale strettamente negativa) è limitato nel tempo.