

$$G_p = \frac{Ke^{-\theta s}}{\tau s + 1}, G_p = \frac{Kde^{-\theta ds}}{\tau ds + 1}$$

We need to design a PID controller with the integral time $\tau_{\rm I}$ = τ and the derivative time, $\tau_{\rm D}$, adjusted to maximise K_C, where we have to choose K_C for a maximum closed-loop log modulus (L_{CL}^{MAX}) of 2dB.

Given:
$$K = 2$$
 $\tau = 1 \text{ min}$
 $\theta = 5 \text{ min}$
 $K_d = -2$
 $\tau_d = 2 \text{min}$
 $\theta_d = 8 \text{ min}$

Then we need to obtain K_C and τ_D and Plot the variation in K_C with τ_D to clearly show the maximum in K_C and the corresponding τ_D value. We also need to plot L_{CL} vs $log(\omega)$ to show the LCLMAX peak clearly.

Finally, we need to plot the servo and regulator unit step responses using the PID controller and compare them with a PI controller with $\tau_{\rm I}$ = τ and K_C adjusted for L_{CL}^{MAX} = 2dB.

For PID control

We first need to assume K_C and then go about iterating in a loop with varying ω . For each iteration, we check if the value of $20log_{10}(G_{CL})$ is equal to two. If yes, we break the loop and report the corresponding K_C . If no, we shift our K_C to positive/negative according to the value of L_{CL} obtained and run another iteration and do as done above.

The optimal K_C obtained can be checked while drawing K_C vs τ_D , and τ_D will be at maximum K_C .

After running the iterations, we obtain K_C = 2.1981 and τ_D = 0.35. We will use these results for further simulations.

Following are the plots of K_C vs τ_D and L_{CL} vs $log(\omega)$ for PID control.

For PI control

We use the same algorithm as described above. The only difference will be in G_{OL} as we don't have to account for τ_D . After running the iterations, we obtain K_C = 1.7527. We will use this result for further simulations.

Following is the plot of L_{CL} vs $log(\omega)$ for PI control.

Servo & Regulator response for PID & PI control

We first need to design our simulation model.

We run this simulation for servo and regulator response using the values in the following table,

	PID	PI
Kc	2.1981	1.7527
$ au_{l}$	5 min	5 min
$ au_{D}$	0.35 min	0 min

CONCLUSION

- For this particular setup, servo response works better than regulator response, and it achieves its setpoint faster than regulator response.
- We find a maximum in the plot of K_C vs τ_D , which indicate that there is only one optimal value of K_C for the PID setup. We use this K_C and corresponding τ_D for our simulations.