

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena-Poly[[tetraaqua- μ -aqua-bis(μ_4 -pyrimidine-2-carboxylato)tetralithium] dichloride]

Wojciech Starosta and Janusz Leciejewicz*

Institute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland

Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

Received 27 September 2012; accepted 7 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.044; wR factor = 0.147; data-to-parameter ratio = 18.5.

The asymmetric unit of the title compound, $[Li_4(C_5H_3N_2O_2)_2-(H_2O)_5]Cl_2$, contains two Li^I cations, one with a distorted trigonal–bipyramidal and the other with a distorted tetrahedral coordination geometry. Two symmetry-related asymmetric units constitute a building block of the structure, in which both ligand carboxylate O atoms are bidentate and bridge the metal ions, forming a divalent cation. Charge balance is maintained by two chloride anions. The building blocks, bridged by Li^I cations, form cationic ribbons with chloride anions in the space between them. The ribbons propagate in [010] and are held together by a network of weak $O-H\cdots O$ hydrogen bonds which operate in the space between adjacent ribbons.

Related literature

For the structure of a Li complex with pyrimidine-2-carboxylate and nitrate ligands, see: Starosta & Leciejewicz (2011). The structure of a Li^I complex with pyrimidine-4-carboxylate and water ligands was reported recently by Starosta & Leciejewicz (2012).

Experimental

Crystal data

[Li₄(C₅H₃N₂O₂)₂(H₂O)₅]Cl₂
$$V = 1924.1 (7) \text{ Å}^3$$
 $M_r = 434.93$ $Z = 4$ Monoclinic, $C2/c$ Mo $K\alpha$ radiation $\alpha = 22.084 (4) \text{ Å}$ $\mu = 0.39 \text{ mm}^{-1}$ $b = 8.0773 (16) \text{ Å}$ $T = 293 \text{ K}$ $c = 10.814 (2) \text{ Å}$ $0.37 \times 0.24 \times 0.18 \text{ mm}$ $\beta = 94.08 (3)^\circ$

Data collection

Kuma KM4 four-circle
diffractometer2819 independent reflectionsAbsorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2008)
 $T_{\min} = 0.917, T_{\max} = 0.935$
2964 measured reflections2819 independent reflections with $I > 2\sigma(I)$
3 standard reflections every 200
reflections
intensity decay: 2.3%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.147$ S = 1.022819 reflections 152 parameters 4 restraints H atoms treated by a mixture of independent and constrained refinement

Δα = 0.51 e Å⁻³

 $\Delta \rho_{\text{max}} = 0.51 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e Å}^{-3}$

Table 1 Selected bond lengths (Å).

Li1-O1	2.069 (3)	Li2-O21	2.140 (6)
Li1-N1	2.175 (4)	Li2-O22	1.915 (4)
Li1-O3	1.987 (4)	Li2-O2 ⁱⁱ	1.968 (4)
Li1-O2i	2.029 (4)	Li2-O1	1.993 (4)
Li1-N3i	2.221 (4)		` '

Symmetry codes: (i) $x, -y + 2, z + \frac{1}{2}$; (ii) $-x, y, -z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O22—H222···O3	0.89 (2)	2.16 (3)	2.841 (3)	133 (3)
O22-H221···Cl1 ⁱⁱⁱ	0.87(2)	2.36 (2)	3.212 (2)	167 (3)
O3-H31···Cl1	0.83 (4)	2.35 (4)	3.1381 (19)	158 (3)
O3-H32···Cl1 ^{iv}	0.86(4)	2.29 (4)	3.1429 (19)	168 (4)
O21—H211···Cl1 ^v	0.84 (3)	2.45 (3)	3.288 (2)	175 (3)

Symmetry codes: (iii) -x, y, $-z + \frac{3}{2}$; (iv) x, -y + 1, $z - \frac{1}{2}$; (v) -x, -y + 1, -z + 1.

metal-organic compounds

Data collection: *KM-4 Software* (Kuma, 1996); cell refinement: *KM-4 Software*; data reduction: *DATAPROC* (Kuma, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2084).

References

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland.
 Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland.
 Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd., Yarnton, England.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Starosta, W. & Leciejewicz, J. (2011). *Acta Cryst.* E**67**, m818. Starosta, W. & Leciejewicz, J. (2012). *Acta Cryst.* E**68**, m1065–m1066.

Acta Cryst. (2012). E68, m1369-m1370 [doi:10.1107/S1600536812041955]

catena-Poly[[tetraaqua- μ -aqua-bis(μ_4 -pyrimidine-2-carboxylato)tetralithium] dichloride]

Wojciech Starosta and Janusz Leciejewicz

Comment

The asymmetric cell of the title compound contains two symmetry independent Li¹ ions, one deprotonated pyramidine-2carboxylatato ligand molecule, three symmetry independent water molecules which are coordinated to metal ions and one chloride anion. The latter maintains charge balance in the cell. Two symmetry related cells form a molecular moiety which can be visualized as a building unit of the structure (Fig. 1). The ligand bridges Li ions in a μ_4 mode using both its carboxylate O atoms which act as bidentate. Ligand bonding groups N1,O1 and N3,O2 chelate Li1 and Liⁱⁱ ions; the O1 and O2 atoms are also bonded to Li2 and Li2 ions, respectively. Since the Li1 and Li1 ions are also coordinated by bonding groups from adjacent symmetry related ligands, a -Li1ⁱⁱ—O2—O1—Li1—O2ⁱⁱⁱO1ⁱⁱⁱ—Li1ⁱⁱⁱ— bridging pathway is formed. Apart from two N₀ bonding groups, Lil coordination is completed by an aqua O3 atom. On the other hand, pairs of adjacent symmetry related Li2 and Li2ⁱ ions are bridged by an aqua O21 atom while the other coordinated to them aqua O22 and O22ⁱ atoms are not bridging. Symmetry code: i -x, y, -z + 1/2; ii x, -y + 2, z - 1/2; iii x, -y + 2, z + 1/2. Adjacent moieties linked along the Li1 bridging pathway form a cationic ribbon propagating in the unit cell b direction (Fig. 2). Chloride anions are located in the space between adjacent ribbons. Fig. 1 shows, that a ribbon can be visualized as built of centro-symmetric molecular clusters in which Li ions form a tetrameric entities additionally connected by Li2 —O21—Li2ⁱ bridges, The Li1 ion exhibits a distorted trigonal bipyramidal coordination environment in which O1, O3 and N3iii atoms form an equatorial plane with a Li1 ion 0.0619 (2) Å out of it; N1 and O2iii atoms are at apical positions. The coordination of the Li2 ion is strongly distorted tetrahedral. The Li—O and Li—N bond distances (Table 1) are close to those reported in the structures of a Li complex with the title and nitrate ligands (Starosta & Leciejewicz, 2011) and pyrimidine-4-carboxylate and water ligands (Starosta & Leciejewicz, 2012). The pyrimidine ring is planar with r.m.s. of 0.0071 (1) Å; the C7/O1/O2 makes with it a dihedral angle of 5.8 (1)°. Weak hydrogen bonds in which water O atoms are as donors and chloride anions act as acceptors operate between adjacent ribbons (Table 2).

Experimental

1 mmol of methyl pyrimidine-2-carboxylate and ca2 mmol s of lithium hydroxide dissolved in 50 ml of hot, doubly distilled water were boiled under reflux with stirring for twenty hours. After evaporation to dryness at room temperature the polycrystalline material was dissolved in 50 ml of water. The solution was titrated with 1 N HCl until the pH reached 6.0 and then stirred for 3 h at ca 320 K. Left to crystallize at room temperature, colourless single-crystal blocks deposited after a week. They were washed with cold methanol and dried in the air.

Refinement

Hydrogen atoms belonging to water molecules were located in a difference map and refined isotropically, while three H atoms attached to pyrimidine C atoms were located at calculated positions and treated as riding on the parent atoms with

C—H=0.93 Å and $U_{iso}(H)=1.2U_{eq}(C)$.

Computing details

Data collection: *KM-4 Software* (Kuma, 1996); cell refinement: *KM-4 Software* (Kuma, 1996); data reduction: *DATAPROC* (Kuma, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1 A fragment of a cationic ribbon of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x, y, -z + 1/2; ii x, -y + 2, z - 1/2; iii x, -y + 2, z + 1/2; iv -x, -y + 2, z + 1.

Figure 2 The alignment of cationic ribbons and chloride anions in the structure of the title compound viewed along the unit cell b direction.

catena-Poly[[tetraaqua- μ -aqua-bis(μ_4 -pyrimidine-2-carboxylato)tetralithium] dichloride]

Crystal data

 $[Li_4(C_5H_3N_2O_2)_2(H_2O)_5]Cl_2$ F(000) = 888 $M_r = 434.93$ $D_{\rm x} = 1.501 \; {\rm Mg \; m^{-3}}$ Monoclinic, C2/c Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -C 2yc Cell parameters from 25 reflections a = 22.084 (4) Å $\theta = 6 - 15^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ b = 8.0773 (16) Å c = 10.814 (2) Å T = 293 K $\beta = 94.08 (3)^{\circ}$ Block, colourless $V = 1924.1 (7) \text{ Å}^3$ $0.37 \times 0.24 \times 0.18 \text{ mm}$

Data collection

Kuma KM4 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator profile data from $\omega/2\theta$ scans Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\min} = 0.917$, $T_{\max} = 0.935$ 2964 measured reflections

2819 independent reflections 1781 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$ $\theta_{\text{max}} = 30.1^{\circ}$, $\theta_{\text{min}} = 1.9^{\circ}$ $h = -31 \rightarrow 31$ $k = -11 \rightarrow 0$ $l = 0 \rightarrow 15$ 3 standard reflections every 200 reflections intensity decay: 2.3%

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.147$ S = 1.022819 reflections 152 parameters 4 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0879P)^2 + 1.2478P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.004$ $\Delta\rho_{\text{max}} = 0.51 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.36 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.08301 (6)	0.92604 (19)	0.37614 (11)	0.0321 (3)	
O2	0.08768 (6)	0.96441 (19)	0.17202 (11)	0.0319 (3)	
N3	0.20103 (7)	1.0854(2)	0.20733 (13)	0.0277 (3)	
N1	0.19897 (7)	1.0170(2)	0.42115 (13)	0.0277 (3)	
C6	0.25599 (9)	1.0720(3)	0.43984 (17)	0.0326 (4)	
H6	0.2752	1.0657	0.5191	0.039*	
C2	0.17410 (7)	1.0274(2)	0.30494 (14)	0.0232 (3)	
C4	0.25768 (9)	1.1411 (3)	0.22901 (18)	0.0332 (4)	
H4	0.2778	1.1836	0.1634	0.040*	
C5	0.28729 (9)	1.1378 (3)	0.3457 (2)	0.0353 (4)	
H5	0.3266	1.1781	0.3601	0.042*	
Li1	0.13426 (15)	0.9162 (5)	0.5437 (3)	0.0323 (7)	
O3	0.11355 (9)	0.6795 (2)	0.56747 (16)	0.0469 (4)	
C7	0.10916 (8)	0.9673 (2)	0.28238 (14)	0.0239 (3)	
O21	0.0000	0.6868 (4)	0.2500	0.0527 (6)	
Li2	-0.00573 (17)	0.8841 (8)	0.3807 (4)	0.0590 (13)	
C11	0.10829(3)	0.57231 (8)	0.84542 (5)	0.04391 (17)	
H211	-0.0286 (13)	0.622 (4)	0.230(3)	0.064 (10)*	
H32	0.1130 (18)	0.599 (5)	0.515 (4)	0.086 (12)*	
H31	0.1170 (14)	0.627 (4)	0.634(3)	0.065 (9)*	
O22	-0.00669 (8)	0.8066 (3)	0.54795 (18)	0.0618 (6)	
H221	-0.0386 (10)	0.754 (4)	0.570(3)	0.075 (10)*	
H222	0.0166 (14)	0.717 (4)	0.555 (3)	0.120 (17)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0302 (6)	0.0478 (8)	0.0185 (6)	-0.0032 (6)	0.0031 (5)	0.0039 (5)
O2	0.0313 (6)	0.0472 (8)	0.0164 (5)	-0.0051(6)	-0.0040(4)	0.0036 (5)
N3	0.0316 (7)	0.0335 (8)	0.0181 (6)	-0.0022(6)	0.0028 (5)	0.0009 (6)
N1	0.0312 (7)	0.0352(8)	0.0165 (6)	-0.0006(6)	-0.0012(5)	0.0012 (6)
C6	0.0330(8)	0.0390 (10)	0.0245 (8)	-0.0006(8)	-0.0062 (6)	-0.0016 (7)
C2	0.0291 (8)	0.0258 (8)	0.0148 (6)	0.0024 (6)	0.0012 (5)	0.0000 (6)
C4	0.0354 (9)	0.0361 (10)	0.0289 (9)	-0.0051(8)	0.0075 (7)	0.0008 (7)
C5	0.0289 (9)	0.0392 (10)	0.0373 (10)	-0.0036(8)	-0.0006(7)	-0.0014(8)
Li1	0.0376 (16)	0.0420 (18)	0.0173 (13)	0.0004 (14)	0.0020 (11)	-0.0006 (12)
O3	0.0754 (12)	0.0358 (8)	0.0277 (7)	0.0017 (8)	-0.0090(7)	0.0005 (7)
C7	0.0258 (7)	0.0285 (8)	0.0171 (7)	0.0017 (6)	0.0006 (5)	0.0009(6)
O21	0.0337 (11)	0.0675 (17)	0.0551 (15)	0.000	-0.0086 (10)	0.000
Li2	0.0301 (17)	0.116 (4)	0.0305 (18)	0.009(2)	0.0030 (14)	0.018(2)
C11	0.0420(3)	0.0553 (3)	0.0345 (3)	-0.0001 (2)	0.00346 (19)	0.0087(2)
O22	0.0349 (8)	0.0967 (16)	0.0550 (11)	0.0101 (10)	0.0123 (7)	0.0338 (11)

Geometric parameters (Å, °)

O1—C7	1.247 (2)	Li1—N3 ⁱⁱⁱ	2.221 (4)
Li1—01	2.069 (3)	Li1—Li2 ^{iv}	3.414 (6)
02—C7	` '		` '
	1.2528 (19)	O3—H32	0.86 (4)
O2—Li2 ⁱ	1.968 (4)	O3—H31	0.83 (4)
O2—Li1 ⁱⁱ	2.029 (4)	Li2—O21	2.140 (6)
N3—C2	1.333 (2)	O21—Li2 ⁱ	2.140 (6)
N3—C4	1.335 (2)	O21—H211	0.84 (3)
N3—Li1 ⁱⁱ	2.221 (4)	Li2—O22	1.915 (4)
N1—C6	1.337 (2)	Li2—O2 ⁱ	1.968 (4)
N1—C2	1.338 (2)	Li2—O1	1.993 (4)
Li1—N1	2.175 (4)	Li2—O22iv	2.623 (7)
C6—C5	1.377 (3)	Li2—Li2 ⁱ	2.856 (8)
С6—Н6	0.9300	Li2—Li2 ^{iv}	3.183 (11)
C2—C7	1.517 (2)	Li2—Li1 ^{iv}	3.414 (6)
C4—C5	1.379 (3)	Li2—H222	2.343 (18)
C4—H4	0.9300	O22—Li2iv	2.623 (7)
C5—H5	0.9300	O22—H221	0.868 (18)
Lil—O3	1.987 (4)	O22—H222	0.891 (18)
Li1—O2 ⁱⁱⁱ	2.029 (4)		· /
C7—O1—Li2	125.36 (16)	Li2—O21—Li2 ⁱ	83.7 (3)
C7—O1—Li1	117.79 (15)	Li2—O21—H211	124 (2)
Li2—O1—Li1	116.70 (16)	Li2 ⁱ —O21—H211	112 (2)
C7—O2—Li2 ⁱ	124.07 (17)	O22—Li2—O2 ⁱ	108.02 (19)
C7—O2—Li1 ⁱⁱ	117.82 (15)	O22—Li2—O1	98.98 (19)
Li2 ⁱ —O2—Li1 ⁱⁱ	117.32 (18)	O2 ⁱ —Li2—O1	145.3 (3)
C2—N3—C4	116.42 (15)	O22—Li2—O21	112.7 (3)
C2—N3—Li1 ⁱⁱ	108.69 (14)	O2 ⁱ —Li2—O21	98.6 (2)
C4—N3—Li1 ⁱⁱ	134.65 (15)	O1—Li2—O21	90.32 (18)

C6—N1—C2	116 14 (15)	O22—Li2—O22 ^{iv}	02.4.(2)
C6—N1—C2 C6—N1—Li1	116.14 (15) 133.22 (14)	O2i—Li2—O22iv	92.4 (2) 81.1 (2)
			* *
C2—N1—Li1	110.62 (14)	O1—Li2—O22iv	76.29 (19)
N1—C6—C5	122.22 (17)	O21—Li2—O22 ^{iv}	153.3 (2)
N1—C6—H6	118.9	O22—Li2—Li2 ⁱ	160.4 (2)
C5—C6—H6	118.9	O2 ⁱ —Li2—Li2 ⁱ	81.81 (19)
N3—C2—N1	126.11 (16)	O1—Li2—Li2 ⁱ	79.56 (18)
N3—C2—C7	117.06 (14)	O21—Li2—Li2 ⁱ	48.13 (14)
N1—C2—C7	116.82 (15)	O22iv—Li2—Li2i	106.04 (10)
N3—C4—C5	122.10 (17)	O22—Li2—Li2iv	55.42 (15)
N3—C4—H4	119.0	O2 ⁱ —Li2—Li2 ^{iv}	93.4 (2)
C5—C4—H4	119.0	O1—Li2—Li2 ^{iv}	84.2 (2)
C6—C5—C4	116.98 (18)	O21—Li2—Li2 ^{iv}	165.6 (3)
C6—C5—H5	121.5	O22 ^{iv} —Li2—Li2 ^{iv}	36.95 (15)
C4—C5—H5	121.5	Li2 ⁱ —Li2—Li2 ^{iv}	142.6 (2)
O3—Li1—O2 ⁱⁱⁱ	103.68 (16)	O22—Li2—Li1 ^{iv}	82.13 (16)
O3—Li1—O1	91.92 (15)	O2 ⁱ —Li2—Li1 ^{iv}	31.87 (10)
O2 ⁱⁱⁱ —Li1—O1	107.96 (16)	O1—Li2—Li1 ^{iv}	139.6 (3)
O3—Li1—N1	127.32 (18)	O21—Li2—Li1 ^{iv}	126.81 (17)
O2 ⁱⁱⁱ —Li1—N1	128.74 (19)	O22 ^{iv} —Li2—Li1 ^{iv}	63.32 (13)
O1—Li1—N1	78.11 (12)	Li2 ⁱ —Li2—Li1 ^{iv}	111.75 (17)
O3—Li1—N3 ⁱⁱⁱ	92.14 (15)	Li2 ^{iv} —Li2—Li1 ^{iv}	63.10 (15)
O2 ⁱⁱⁱ —Li1—N3 ⁱⁱⁱ	78.36 (12)	O22—Li2—H222	21.2 (6)
O1—Li1—N3 ⁱⁱⁱ	171.42 (18)	O2 ⁱ —Li2—H222	124.0 (7)
N1—Li1—N3 ⁱⁱⁱ	93.42 (14)	O1—Li2—H222	88.1 (8)
O3—Li1—Li2 ^{iv}	102.75 (17)	O21—Li2—H222	94.7 (9)
O2 ⁱⁱⁱ —Li1—Li2 ^{iv}	30.81 (10)	O22 ^{iv} —Li2—H222	107.6 (10)
O1—Li1—Li2 ^{iv}	77.24 (13)	Li2 ⁱ —Li2—H222	140.1 (7)
N1—Li1—Li2 ^{iv}	124.23 (17)	Li2iv—Li2—H222	71.8 (9)
N3 ⁱⁱⁱ —Li1—Li2 ^{iv}	109.16 (14)	Li1 ^{iv} —Li2—H222	102.2 (6)
Li1—O3—H32	129 (3)	Li2—O22—Li2 ^{iv}	87.6 (2)
Li1—O3—H31	126 (2)	Li2—O22—H221	119 (2)
H32—O3—H31	101 (3)	Li2 ^{iv} —O22—H221	117 (2)
O1—C7—O2	127.12 (16)	Li2—O22—H222	107.6 (17)
O1—C7—C2	116.22 (14)	Li2iv—O22—H222	135 (3)
O2—C7—C2	116.65 (15)	H221—O22—H222	93 (2)
	• /		

Symmetry codes: (i) -x, y, -z+1/2; (ii) x, -y+2, z-1/2; (iii) x, -y+2, z+1/2; (iv) -x, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
O22—H222···O3	0.89(2)	2.16 (3)	2.841 (3)	133 (3)
O22—H221···Cl1 ^v	0.87(2)	2.36 (2)	3.212(2)	167 (3)
O3—H31···C11	0.83 (4)	2.35 (4)	3.1381 (19)	158 (3)
O3—H32···C11 ^{vi}	0.86 (4)	2.29 (4)	3.1429 (19)	168 (4)
O21—H211···Cl1 ^{vii}	0.84(3)	2.45 (3)	3.288 (2)	175 (3)

Symmetry codes: (v) -x, y, -z+3/2; (vi) x, -y+1, z-1/2; (vii) -x, -y+1, -z+1.