La transformée de GELFAND Lien avec la physique, et théorie des algèbres de Banach

Fabien Delhomme 1

3 mai 2018

Sommaire

- 1 Introduction formelle des algèbres de Banach
 - Premières définitions
 - Spectres et homomorphismes
 - Théorème de GELFAND-MAZUR
 - Homomorphismes et caractérisation des inversibles
 - Application : lemme de Wiener
 - Transformée de Gelfand et propriétés
- 2 Petite excursion en physique
- Retour sur la théorie de Gelfand
- 4 Conclusion

Qu'est-ce qu'une algèbre de Banach?

Définition

Une algèbre de Banach A est un espace vectoriel complexe normé complet, tel que :

$$x(yz) = (xy)z$$

$$(x + y)z = xz + yz$$

$$x(y + z) = xy + yz$$

$$\alpha(xy) = (\alpha x)y = x(\alpha y)$$

Et munit d'une norme d'algèbre :

$$\forall x, y \in A \quad ||xy|| \le ||x|| ||y||$$

Exemples

Exemple

Quelques exemples d'algèbres de Banach :

- L'espace des matrices complexes muni de la multiplication usuelle et d'une norme subordonnée.
- L'ensemble des fonctions L¹ munies de la convolution. On voit en particulier qu'on ne demande pas l'existence d'un élément neutre pour la loi multiplicative.

Ajout d'une unité

On peut toujours ajouter une unité dans une algèbre de Banach. Soit A une telle Algèbre. On pose : $\hat{A} = \{(x, \alpha) \mid x \in A, \alpha \in \mathbb{C}\}$. On définit :

$$(x,\alpha)(y,\beta) = (xy + \alpha y + \beta x, \alpha \beta)$$

et

$$\|(\mathbf{x},\alpha)\| = \|\mathbf{x}\| + |\alpha|$$

Finalement, on pose e = (0, 1)

Theorème

 \hat{A} est une algèbre de Banach munit d'un élément neutre, et isomorphe à A par l'application $x \to (x,0)$.

Spectres, et premières propriétés

Définition

Le spectre d'un élément $x \in A$ est défini par :

$$\sigma(x) := \{ \lambda \in \mathbb{C} \mid \lambda e - x \text{ n'est pas inversible} \}$$

On définit aussi $\rho(x) := \sup\{|\lambda|, \lambda \in \sigma(x)\}$ On a les premières propriétés :

Theorème

- Le spectre est compact et non vide.
- $\rho(x) = \lim_{n \to \infty} \|x^n\|^{\frac{1}{n}} = \inf_{n \ge 1} \|x^n\|^{\frac{1}{n}}$

Donc en particulier $\rho(x) \leq ||x||$.

Théorème de Gelfand-Mazur

Que peut-on dire d'une algèbre où tous les éléments non nulles sont inversibles ?

Theorème (Gelfand-Mazur)

Si A est une algèbre de Banach, telle que tous les éléments non nulles sont inversibles, alors A est isomorphe à \mathbb{C} . De plus, l'isomorphisme est une isométrie.

Définition (Homomorphisme)

Un homomorphisme $h:A\longrightarrow \mathbb{C}$ est une application linéaire, non nulle, et multiplicative, c'est à dire :

$$h(x * y) = h(x) * h(y) \quad \forall x, y \in A$$

Définition

On notera Δ l'ensemble des homomorphismes de A.

Les idéaux

Définition (Idéal)

Soit $J \subset A$ un sous espace vectoriel de A. J est un idéal de A si

$$\forall x, y \in A * J \quad x * y \in J$$

Si $J \neq A$ et $J \neq \{0\}$ alors J est un idéal propre de A. Les idéaux maximaux sont des idéaux propres qui ne sont contenus dans aucun autre idéal propre.

9/33

Voici l'outil fondamental de la théorie des Algèbres de Banach commutative.

Theorème (Caractérisation des inversibles)

Notons Δ l'ensemble des homomorphismes de A. Alors :

 Tout idéal maximal est le noyau d'un homomorphismes de Δ, et vice versa.

Voici l'outil fondamental de la théorie des Algèbres de Banach commutative.

Theorème (Caractérisation des inversibles)

Notons Δ l'ensemble des homomorphismes de A. Alors :

- Tout idéal maximal est le noyau d'un homomorphismes de Δ , et vice versa.
- $x \in A$ est inversible si et seulement si $h(x) \neq 0$ pour tout $h \in \Delta$

Voici l'outil fondamental de la théorie des Algèbres de Banach commutative.

Theorème (Caractérisation des inversibles)

Notons Δ l'ensemble des homomorphismes de A. Alors :

- Tout idéal maximal est le noyau d'un homomorphismes de Δ , et vice versa.
- $x \in A$ est inversible si et seulement si $h(x) \neq 0$ pour tout $h \in \Delta$
- x ∈ A est inversible si et seulement si x n'appartient à aucun idéal propre de A.

Voici l'outil fondamental de la théorie des Algèbres de Banach commutative.

Theorème (Caractérisation des inversibles)

Notons Δ l'ensemble des homomorphismes de A. Alors :

- Tout idéal maximal est le noyau d'un homomorphismes de Δ , et vice versa.
- $x \in A$ est inversible si et seulement si $h(x) \neq 0$ pour tout $h \in \Delta$
- x ∈ A est inversible si et seulement si x n'appartient à aucun idéal propre de A.
- $\lambda \in \sigma(x)$ si et seulement si $h(x) = \lambda$ pour un $h \in \Delta$

Lemme de Wiener - Énoncé

Theorème

Soit f une fonction de \mathbb{R}^n , et soit $(a_m)_{m\in\mathbb{Z}}\in\mathbb{R}^\mathbb{Z}$ telle que

$$f(x) = \sum_{m \in \mathbb{Z}} a_m e^{im*x}$$
 , $\sum_{m \in \mathbb{Z}} |a_m| < \infty$

Si f ne s'annule jamais sur \mathbb{R}^n , alors il existe $(b_m)_{m\in\mathbb{Z}}$ telle que :

$$\frac{1}{f(x)} = \sum_{m \in \mathbb{Z}} b_m e^{im*x}$$
 , $\sum_{m \in \mathbb{Z}} |b_m| < \infty$

Lemme de Wiener - Preuve

Theorème

Soit f une fonction de \mathbb{R}^n , et soit $(a_m)_{m\in\mathbb{Z}}\in\mathbb{R}^\mathbb{Z}$ telle que

$$f(x) = \sum_{m \in \mathbb{Z}} a_m e^{im*x}$$
 , $\sum_{m \in \mathbb{Z}} |a_m| < \infty$

Si f ne s'annule jamais sur \mathbb{R}^n , alors il existe $(b_m)_{m\in\mathbb{Z}}$ telle que :

$$\frac{1}{f(x)} = \sum_{m \in \mathbb{Z}} b_m e^{im*x}$$
 , $\sum_{m \in \mathbb{Z}} |b_m| < \infty$

La transformée de Gelfand

On définit la transformée de Gelfand par :

Définition

$$\hat{x}:h\in\Delta\longrightarrow h(x)\in\mathbb{C}$$

Et on note
$$\hat{A} = \{\hat{x} \mid x \in A\}$$

Theorème

Propriétés de la transformée de GELFAND

- La transformée de GELFAND est un homomorphisme de A vers Â, de noyau le radical de A.
- La transformée de GELFAND est donc un isomorphisme si A est semi simple!
- On a aussi la comparaison :

$$\|\hat{x}\|_{\infty} = \rho(x) \le \|x\|$$

• Et $\rho(x) = 0 \iff x \in \operatorname{rad}(A)$

Avec:

Définition

$$\|\hat{x}\|_{\infty} = \sup_{h \in \Delta} |\hat{x}(h)|$$

Sommaire

- Introduction formelle des algèbres de Banach
- 2 Petite excursion en physique
 - Présentation des (quelques) physiciens à l'origine de la physique quantique
 - Formalisation du monde microscopique
- 3 Retour sur la théorie de Gelfand
- 4 Conclusion

On doit les fondations de la physique quantique, à partir de 1925, à :

Formaliser le monde microscopique

Définition

Un système physique S est la collection d'ensembles Σ d'états ω obtenus après une préparation adéquate.

Une observable $A \in S$ est définie par les protocoles expérimentaux qui la mesure.

La moyenne des mesures d'une observable A dans un état ω est appelée l'espérance $\omega(A)$

On note O l'ensemble des observables.

Relation d'équivalence

Theorème

Deux états ω_1, ω_2 tel que :

$$\omega_1(A) = \omega_2(A) \quad \forall A \in \mathcal{O}$$

Ne peuvent pas être différenciés, et sont donc identifiés.

De même, si la mesure de deux observables A_1 et A_2 sont identiques quelque soit les états, c'est-à-dire :

$$\omega(A_1) = \omega(A_2) \quad \forall \omega \in \Sigma$$

Alors $A_1 = A_2$.

Opérations sur les observables

Opérations

On peut toujours définir :

$$\lambda * A^n \in \mathcal{O} \quad \forall A \in \mathcal{O}, n \in \mathbb{N}$$

On a donc toujours l'existence d'une algèbre commutative formée de polynôme en A.

On peut définir l'identité de \mathcal{O} par $A^0=1_A$. Et cette identité coïncide avec l'identité de \mathcal{O} .

On a automatiquement une involution sur ${\mathcal O}$:

Définition

$$(\alpha A + \mu B)^* = \overline{\alpha} A + \overline{\mu} B \quad \lambda, \mu \in \mathbb{C}$$

Interprétation des homomorphismes

Les homomorphismes ...

L'application $A \longrightarrow m^{\omega}(A) \in \mathbb{C}$ est un homomorphisme

On définit donc la norme

Définition

$$||A|| = \sup_{\omega \in \Sigma} |\omega(A)|$$

En effet, les mesures d'une observables sont toujours bornées.

Propriétés de la norme

Theorème

On a les propriétés voulues de la norme définie précédemment :

$$\begin{split} \|A+B\| &\leq \|A\| + \|B\| \\ \|A^*\| &= \|A\| \\ \|AA^*\| &\geq \|A\|^2 \quad \textit{Avec \'egalit\'e si A est hermitien} \\ \|AB\| &\leq \|A\| \|B\| \\ \|A\| &= 0 \implies A = 0 \end{split}$$

Retour sur la positivité

Nous avons étendu les observables dans un espace vectoriel complexe.

Theorème

Les propositions suivantes sont équivalentes :

- Le spectre de A est contenu dans \mathbb{R}^+
- Il existe $B \in \mathcal{O}$ telle que $B = AA^*$ (et on a vu qu'on pouvait demander $A = A^*$.
- Pour tout ω , $\omega(A) \geq 0$

Passage de la commutativité à la non commutativité

Limitations de cette description classique

Plusieurs limitations:

• Il est très difficile de préparer $A \in \mathcal{O}$ de façon identique pour le mesurer

On perd donc la notion de commutativité!

Passage de la commutativité à la non commutativité

Limitations de cette description classique

Plusieurs limitations:

- Il est très difficile de préparer $A \in \mathcal{O}$ de façon identique pour le mesurer
- Les mesures ont forcément un écart type non nul.

On perd donc la notion de commutativité!

Passage de la commutativité à la non commutativité

Limitations de cette description classique

Plusieurs limitations:

- Il est très difficile de préparer $A \in \mathcal{O}$ de façon identique pour le mesurer
- Les mesures ont forcément un écart type non nul.
- En physique quantique, mesurer une observable va perturber la prochaine mesure.

On perd donc la notion de commutativité!

Sommaire

- Introduction formelle des algèbres de Banach
- 2 Petite excursion en physique
- Retour sur la théorie de Gelfand
 - Involutions et C^* -algèbres
 - Racine carrée et excursion dans les algèbres non commutatives
 - Pour aller plus loin : Construction GNS
- 4 Conclusion

Involution

Définition (Involution)

Une involution est une fonction $x \in A \longrightarrow x^* \in A$ qui a les propriétés suivantes :

$$(x + y)^* = x^* + y^*$$
$$(\lambda x)^* = \overline{\lambda} * x^*$$
$$(x * y)^* = y^* * x^*$$
$$(x^*)^* = x$$

Et l'algèbre A n'a pas besoin d'être commutative dans cette définition. On dit que $x \in A$ est hermitien si et seulement si $x^* = x$.

Les \mathcal{C}^* -algèbres

Définition (Les C^* -algèbres)

Une C^* -algèbre est une algèbre de Banach munie d'une involution telle que :

$$||x^* * x|| = ||x||^2 \quad \forall x \in A$$

Cela implique aussi que :

$$||x^*|| = ||x||$$

Et ainsi :

$$||xx^*|| = ||x|| ||x^*||$$

Théorème de Gelfand-Naimark

Theorème (Théorème de GELFAND-NAIMARK)

Si A est une C^* -algèbre commutative, et en notant Δ un idéal maximum , alors la transformée de Gelfand est une isométrie de A vers $\mathcal{C}(\Delta)$ avec la propriété :

$$h(x^*) = \overline{h(x)}$$

En particulier : x est hermitien si et seulement si \hat{x} est une fonction réelle.

Théorème de Gelfand-Naimark

Theorème (Théorème de GELFAND-NAIMARK)

Si A est une C^* -algèbre commutative, et en notant Δ un idéal maximum , alors la transformée de Gelfand est une isométrie de A vers $\mathcal{C}(\Delta)$ avec la propriété :

$$h(x^*) = \overline{h(x)}$$

En particulier : x est hermitien si et seulement si \hat{x} est une fonction réelle.

Preuve!

Équivalent de la racine carrée

Theorème

Si A est une algèbre de Banach commutative avec une involution, alors si $x = x^*$, et $\sigma(x)$ ne contient aucun réel négatif, alors il existe $y \in A$ tel que $y = y^*$ et $y^2 = x$.

Équivalent de la racine carrée

Theorème

Si A est une algèbre de Banach commutative avec une involution, alors si $x = x^*$, et $\sigma(x)$ ne contient aucun réel négatif, alors il existe $y \in A$ tel que $y = y^*$ et $y^2 = x$.

La puissance de l'involution

On peut en fait se passer de l'hypothèse de commutativité!

Définition

Un élément $x \in A$ est dit normal si et seulement si $xx^* = x^*x$. Un ensemble $S \subset A$ est dit normal si S commute et si $x^* \in S$ dès que $x \in S$.

Theorème

Soit B un ensemble normal qui n'est contenu dans aucun autre plus grand. Alors :

- B est une sous algèbre de A, fermée et commutative
- On a l'égalité des spectres : $\sigma_B(x) = \sigma_A(x)$ pour tout $x \in B$.

On peut alors généraliser les théorèmes avec la remarque suivante :

Remarque

On prend la plus grande sous algèbre normale qui contient x et on applique le théorème ci-dessus.

Pour aller plus loin

Theorème (Construction de Gelfand-Naimark-Segal)

Toute \mathcal{C}^* -algèbre A est isomorphe à une sous algèbre de $\mathcal{B}(H)$, avec de plus, pour tout $x \in A$ et $X \in \mathcal{B}(H)$ avec X l'image par l'isomorphisme de x:

$$||x|| = ||X||$$

Sommaire

- 1 Introduction formelle des algèbres de Banach
- Petite excursion en physique
- Retour sur la théorie de Gelfand
- 4 Conclusion

Récapitulatif de la traduction physique mathématique

On obtient le tableau de correspondances suivant :

Tableau récapitulatif

Mathématique	Physique
Espace vectoriel munit de propriétés, A	Ensemble des observables, ${\cal O}$
Tous les homomorphismes de $A,\ h\in\Delta$	L'ensemble des états, $\omega \in \Sigma$
Commutativité	Physique classique
Non commutativité	Physique quantique
Transformée de Gelfand	Mesure d'une observable

On the imbedding of normed rings into the ring of operators in Hilbert space.

Mat. Sb., Nov. Ser., 12:197-213, 1943.

Izrail Moiseevich Gelfand, Dimitiri AM Raikov, and Georgi E Shilov. Commutative Normed Rings.

Chelsea, 1964.

Functional Analysis. International Series in Pure and Applied Mathematics.

McGraw-Hill, Inc., New York, 1991.

An Introduction to the Mathematical Structure of Quantum Mechanics: a Short Course for Mathematicians, volume 28. World Scientific, 2008.