Lab 1

Amir ElTabakh

11:59PM February 18, 2021

You should have RStudio installed to edit this file. You will write code in places marked "TO-DO" to complete the problems. Some of this will be a pure programming assignment. The tools for the solutions to these problems can be found in the class practice lectures. I want you to use the methods I taught you, not for you to google and come up with whatever works. You won't learn that way.

To "hand in" the homework, you should compile or publish this file into a PDF that includes output of your code. Once it's done, push by the deadline to your repository in a directory called "labs".

• Print out the numerical constant pi with ten digits after the decimal point using the internal constant pi.

```
options(digits=11)
x <- pi
x</pre>
```

[1] 3.1415926536

• Sum up the first 103 terms of the series $1 + 1/2 + 1/4 + 1/8 + \dots$

```
sum(1/(2^(0:102)))
```

[1] 2

• Find the product of the first 37 terms in the sequence 1/3, 1/6, 1/9 ...

```
prod(1/(3*(1:37)))
```

```
## [1] 1.613528728e-61
```

```
prod(1/seq(from=3, by=3, length.out=37))
```

```
## [1] 1.613528728e-61
```

• Find the product of the first 387 terms of 1 * 1/2 * 1/4 * 1/8 * ...

```
prod(1/(2<sup>(0:386))</sup>)
```

[1] 0

Is this answer *exactly* correct?

This answer is not exactly correct, the program is rounding to zero.

• Figure out a means to express the answer more exactly. Not compute exactly, but express more exactly.

```
sum(log(1/(2^{(0:386))}))
## [1] -51771.856063
-\log(2)*sum(0:386)
## [1] -51771.856063
   • Create the sequence x = [Inf, 20, 18, \ldots, -20].
x \leftarrow c(Inf, seq(from=20, to=-20, by=-2))
                       16
##
    [1] Inf
              20
                  18
                           14
                                12
                                    10
                                                                        -6
                                                                            -8 -10 -12 -14
## [20] -16 -18 -20
Create the sequence x = [log_3(Inf), log_3(100), log_3(98), ... log_3(-20)].
x \leftarrow c(Inf, seq(from=100, to=-20, by=-2))
x \leftarrow log(x, base=3)
## Warning: NaNs produced
log(100, 3)
```

[1] 4.1918065486

Comment on the appropriateness of the non-numeric values.

NAN occurs because you cannot take the log of a negative number. -Inf occurs when you take the log of 0.

• Create a vector of booleans where the entry is true if x[i] is positive and finite.

```
y = !is.nan(x) & is.finite(x) & x > 0
у
    [1] FALSE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                  TRUE
                                                                        TRUE
                                                                               TRUE
##
         TRUE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
                                                                  TRUE
                                                                        TRUE
                                                                               TRUE
   [13]
   [25]
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                      TRUE
                                                            TRUE
                                                                  TRUE
                                                                        TRUE
                                                                               TRUE
               TRUE
                      TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
                                                                  TRUE
                                                                        TRUE
                                                                               TRUE
   [37]
         TRUE
         TRUE
               TRUE
                      TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
   [61] FALSE FALSE
```

• Locate the indices of the non-real numbers in this vector. Hint: use the which function. Don't hesitate to use the documentation via ?which.

?which

starting httpd help server ... done

which(!y)

[1] 1 52 53 54 55 56 57 58 59 60 61 62

```
which(y == FALSE)
```

- **##** [1] 1 52 53 54 55 56 57 58 59 60 61 62
 - Locate the indices of the infinite quantities in this vector.

```
which(is.infinite(x))
```

[1] 1 52

Locate the indices of the min and max in this vector. Hint: use the which.min and which.max functions.

which.min(x)

[1] 52

which.max(x)

[1] 1

• Count the number of unique values in x.

length(unique(x))

[1] 53

• Cast x to a factor. Do the number of levels make sense?

as.factor(x)

```
## [1] Inf 4.19180654857877 4.1734172518943 4.15464876785729

## [5] 4.13548512895119 4.11590933734319 4.09590327428938 4.07544759935851

## [9] 4.05452163806914 4.03310325630434 4.01116871959141 3.98869253500376

## [13] 3.96564727304425 3.94200336638929 3.91772888178973 3.89278926071437

## [17] 3.86714702345081 3.84076143030548 3.81358809221559 3.78557852142874

## [21] 3.75667961082847 3.72683302786084 3.69597450568212 3.66403300987579

## [25] 3.63092975357146 3.59657702661571 3.56087679500731 3.52371901428583

## [29] 3.48497958377173 3.44451784578705 3.40217350273288 3.3577627814323
```

```
## [33] 3.31107361281783 3.26185950714291 3.20983167673402
                                                              3.15464876785729
## [37] 3.09590327428938
                         3.03310325630434 2.96564727304425
                                                              2.89278926071437
## [41] 2.8135880922156
                          2.72683302786084
                                           2.63092975357146
                                                              2.52371901428583
## [45] 2.40217350273288
                          2.26185950714291
                                            2.09590327428938
                                                              1.89278926071437
## [49] 1.63092975357146
                         1.26185950714291
                                            0.630929753571457 -Inf
## [53] NaN
                                                              NaN
                          NaN
                                            NaN
## [57] NaN
                          NaN
                                            NaN
                                                              NaN
## [61] NaN
                          NaN
## 53 Levels: -Inf 0.630929753571457 1.26185950714291 ... NaN
```

• Cast x to integers. What do we learn about R's infinity representation in the integer data type?

```
as.integer(x)
## Warning: NAs introduced by coercion to integer range
    [1] NA
                        4
                                  4
                                     4
                                        4
                                           3
                                              3
                                                 3
                                                    3
                                                       3
                                                           3
                                                              3
                                                                 3
                                                                    3
                                                                      3
                                                                          .3
            3
               3
                  3
                     3
                              3
                                  3
                                     3
                                        3
                                          3
                                                    2
## [26]
                        3
                           3
         O NA NA NA NA NA NA NA NA NA NA
## [51]
```

• Use x to create a new vector y containing only the real numbers in x.

```
y = x[!is.nan(x) & is.finite(x)]
y

## [1] 4.19180654858 4.17341725189 4.15464876786 4.13548512895 4.11590933734
## [6] 4.09590327429 4.07544759936 4.05452163807 4.03310325630 4.01116871959
## [11] 3.98869253500 3.96564727304 3.94200336639 3.91772888179 3.89278926071
## [16] 3.86714702345 3.84076143031 3.81358809222 3.78557852143 3.75667961083
## [21] 3.72683302786 3.69597450568 3.66403300988 3.63092975357 3.59657702662
## [26] 3.56087679501 3.52371901429 3.48497958377 3.44451784579 3.40217350273
## [31] 3.35776278143 3.31107361282 3.26185950714 3.20983167673 3.15464876786
## [36] 3.09590327429 3.03310325630 2.96564727304 2.89278926071 2.81358809222
## [41] 2.72683302786 2.63092975357 2.52371901429 2.40217350273 2.26185950714
## [46] 2.09590327429 1.89278926071 1.63092975357 1.26185950714 0.63092975357
```

• Use the left rectangle method to numerically integrate x^2 from 0 to 1 with rectangle width size 1e-6.

```
sum(seq(from=0, to=1-(1e-6), by=1e-6)^2)*1e-6
```

```
## [1] 0.33333283333
```

• Calculate the average of 100 realizations of standard Bernoullis in one line using the sample function.

```
sum(sample(c(0,1), size=100, replace=TRUE))/100
```

```
## [1] 0.45
```

 Calculate the average of 500 realizations of Bernoullis with p = 0.9 in one line using the sample and mean functions.

```
sum(sample(c(0,1), size=500, replace=TRUE, prob=c(0.1, 0.9)))/500
```

[1] 0.91

[31] none

##

• Calculate the average of 1000 realizations of Bernoullis with p = 0.9 in one line using rbinom.

```
?rbinom
rbinom(n=1000, size=1, p=0.9)
```

```
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
[815] 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
```

• In class we considered a variable x_3 which measured "criminality". We imagined L = 4 levels "none", "infraction", "misdimeanor" and "felony". Create a variable x_3 here with 100 random elements (equally probable). Create it as a nominal (i.e. unordered) factor.

```
x_3 = as.factor(sample(c("none", "infraction", "misdimeanor", "felony"), size=100, replace=TRUE))
x_3
##
     [1] infraction none
                                misdimeanor infraction
                                                       misdimeanor none
##
    [7] misdimeanor misdimeanor infraction none
                                                       misdimeanor none
    [13] felony
                    misdimeanor misdimeanor none
##
                                                       felony
                                                                   none
##
   [19] felony
                    felony
                                            felony
                                                       none
                                                                   none
                                none
   [25] infraction infraction infraction misdimeanor misdimeanor
```

none

none

felony

misdimeanor felony

```
[37] felony
                                infraction misdimeanor none
                    none
##
   [43] infraction none
                                felony
                                            infraction none
                                                                    infraction
   [49] infraction misdimeanor infraction
                                            felony
                                                        infraction
  [55] infraction misdimeanor none
                                            misdimeanor infraction infraction
   [61] infraction infraction misdimeanor infraction none
                                                                    infraction
##
  [67] misdimeanor felony
                                felony
                                            misdimeanor felony
  [73] infraction infraction
                                misdimeanor none
                                                        misdimeanor none
  [79] infraction felony
##
                                none
                                            felony
                                                        infraction infraction
   [85] infraction none
                                felony
                                            misdimeanor misdimeanor misdimeanor
## [91] misdimeanor misdimeanor infraction felony
                                                        misdimeanor felony
## [97] infraction misdimeanor felony
                                            infraction
## Levels: felony infraction misdimeanor none
```

• Use x_3 to create x_3_bin, a binary feature where 0 is no crime and 1 is any crime.

```
x_3_{in} = x_3 != "none"
x_3bin
                     TRUE
                          TRUE
                                 TRUE FALSE
                                                         TRUE FALSE TRUE FALSE
##
     [1]
         TRUE FALSE
                                             TRUE
                                                   TRUE
    [13]
              TRUE
                     TRUE FALSE
                                 TRUE FALSE
                                              TRUE
                                                    TRUE FALSE
                                                                TRUE FALSE FALSE
                           TRUE
                                                          TRUE FALSE FALSE TRUE
##
    [25]
         TRUE TRUE
                     TRUE
                                 TRUE TRUE FALSE
                                                   TRUE
    [37]
         TRUE FALSE
                     TRUE
                           TRUE FALSE FALSE
                                              TRUE FALSE
                                                          TRUE
                                                                TRUE FALSE
```

[49] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE [61] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE ## [73] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE [85] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[97] TRUE TRUE TRUE TRUE

• Use x_3 to create x_3_ord, an ordered factor variable. Ensure the proper ordinal ordering.

```
x_3_ord = factor(x_3, levels = c("none", "infraction", "misdimeanor", "felony"), order=TRUE)
x_3_ord
```

```
##
     [1] infraction none
                                misdimeanor infraction misdimeanor none
##
     [7] misdimeanor misdimeanor infraction none
                                                         misdimeanor none
   [13] felony
                    misdimeanor misdimeanor none
                                                         felony
                                                                     none
##
   [19] felony
                     felony
                                             felony
                                                         none
                                                                     none
                                 none
    [25] infraction
                    infraction infraction
                                            infraction
                                                        misdimeanor misdimeanor
##
   [31] none
                    misdimeanor felony
                                             none
                                                         none
                                                                     felony
   [37] felony
                    none
                                 infraction misdimeanor none
                                                                     none
   [43] infraction none
##
                                 felony
                                             infraction none
                                                                     infraction
   [49] infraction
                    misdimeanor infraction felony
                                                         infraction
                                                                    none
##
   [55] infraction misdimeanor none
                                            misdimeanor infraction
                                                                    infraction
   [61] infraction infraction misdimeanor infraction none
                                                                     infraction
   [67] misdimeanor felony
                                 felony
                                            misdimeanor felony
                                                                     none
   [73] infraction infraction misdimeanor none
                                                        misdimeanor none
  [79] infraction felony
                                 none
                                             felony
                                                         infraction infraction
                                            misdimeanor misdimeanor misdimeanor
  [85] infraction none
                                 felony
   [91] misdimeanor misdimeanor infraction felony
                                                         misdimeanor felony
## [97] infraction misdimeanor felony
                                             infraction
## Levels: none < infraction < misdimeanor < felony
```

• Convert this variable into three binary variables without any information loss and put them into a data matrix.

```
x_3_matrix = matrix(nrow = length(x_3), ncol = 3)
x_3_matrix[ ,1] = as.numeric(x_3 == "infraction")
x_3_matrix[ ,2] = as.numeric(x_3 == "felony")
x_3_matrix[ ,3] = as.numeric(x_3 == "misdimeanor")
colnames(x_3_matrix) = c("infraction", "felony", "is_misdimeanor")
x_3_matrix
```

##		infraction	felony	is_misdimeanor
##	[1,]	1	0	0
##	[2,]	0	0	0
##	[3,]	0	0	1
##	[4,]	1	0	0
##	[5,]	0	0	1
##	[6,]	0	0	0
##	[7,]	0	0	1
##	[8,]	0	0	1
##	[9,]	1	0	0
##	[10,]	0	0	0
##	[11,]	0	0	1
##	[12,]	0	0	0
##	[13,]	0	1	0
##	[14,]	0	0	1
##	[15,]	0	0	1
##	[16,]	0	0	0
##	[17,] [18,]	0	1 0	0
## ##	[19,]	0	1	0
##	[20,]	0	1	0
##	[20,]	0	0	0
##	[22,]	0	1	0
##	[23,]	0	0	0
##	[24,]	0	0	0
##	[25,]	1	0	0
##	[26,]	1	0	0
##	[27,]	1	0	0
##	[28,]	1	0	0
##	[29,]	0	0	1
##	[30,]	0	0	1
##	[31,]	0	0	0
##	[32,]	0	0	1
##	[33,]	0	1	0
##	[34,]	0	0	0
##	[35,]	0	0	0
##	[36,]	0	1	0
##	[37,]	0	1	0
##	[38,]	0	0	0
##	[39,]	1	0	0
##	[40,]	0	0	1
##	[41,]	0	0	0
##	[42,]	0	0	0
##	[43,]	1	0	0

##	[44,]	0	0	0
##	[45,]	0	1	0
##	[46,]	1	0	0
##	[47,]	0	0	0
##	[48,]	1	0	0
##	[49,]	1	0	0
##	[50,]	0	0	1
##	[51,]	1	0	0
##	[52,]	0	1	0
##	[53,]	1	0	0
##	[54,]	0	0	0
##	[55,]	1	0	0
##	[56,]	0	0	1
##	[57,]	0	0	0
##	[58,]	0	0	1
##	[59,]	1	0	0
##	[60,]	1	0	0
##	[61,]	1	0	0
##	[62,]	1	0	0
##	[63,]	0	0	1
##	[64,]	1	0	0
##	[65,]	0	0	0
##	[66,]	1	0	0
##	[67,]	0	0	1
##	[68,]	0	1	0
##	[69,]	0	1	0
##	[70,]	0	0	1
##	[71,]	0	1	0
##	[72,]	0	0	0
##	[73,]	1	0	0
##	[74,]	1	0	0
##	[75,]	0	0	1
##	[76,]	0	0	0
##	[77,]	0	0	1
##	[78,]	0	0	0
##	[79,]	1	0	0
##	[80,]	0	1	0
##	[81,]	0	0	0
##	[82,]	0	1	0
##	[83,]	1	0	0
##	[84,]	1	0	0
##	[85,]	1	0	0
##	[86,]	0	0	0
##	[87,]	0	1	0
##	[88,]	0	0	1
##	[89,]	0	0	1
##	[90,]	0	0	1
##	[91,]	0	0	1
##	[92,]	0	0	1
##	[93,]	1	0	0
##	[94,]	0	1	0
##	[95,]	0	0	1
##	[96,]	0	1	0
##	[97,]	1	0	0

```
## [98,] 0 0 1
## [99,] 0 1 0
## [100,] 1 0
```

• What should the sum of each row be (in English)?

The sum of each row should be 1 or 0. If the individual has a record of 'none', that will be captured by a row sum of zero.

Verify that.

```
rowSums(x_3_matrix)
```

• How should the column sum look (in English)?

We should expect for there to be about 25 values per column. This is assuming the sample() function uniformly distributes values.

Verify that.

```
colSums(x_3_matrix)
```

```
## infraction felony is_misdimeanor
## 30 19 26
```

• Generate a matrix with 100 rows where the first column is realization from a normal with mean 17 and variance 38, the second column is uniform between -10 and 10, the third column is poisson with mean 6, the fourth column in exponential with lambda of 9, the fifth column is binomial with n = 20 and p = 0.12 and the sixth column is a binary variable with exactly 24% 1's dispersed randomly. Name the rows the entries of the fake_first_names vector.

```
fake_first_names = c(
  "Sophia", "Emma", "Olivia", "Ava", "Mia", "Isabella", "Riley",
  "Aria", "Zoe", "Charlotte", "Lily", "Layla", "Amelia", "Emily",
  "Madelyn", "Aubrey", "Adalyn", "Madison", "Chloe", "Harper",
 "Abigail", "Aaliyah", "Avery", "Evelyn", "Kaylee", "Ella", "Ellie",
  "Scarlett", "Arianna", "Hailey", "Nora", "Addison", "Brooklyn",
  "Hannah", "Mila", "Leah", "Elizabeth", "Sarah", "Eliana", "Mackenzie",
  "Peyton", "Maria", "Grace", "Adeline", "Elena", "Anna", "Victoria",
  "Camilla", "Lillian", "Natalie", "Jackson", "Aiden", "Lucas",
  "Liam", "Noah", "Ethan", "Mason", "Caden", "Oliver", "Elijah",
  "Grayson", "Jacob", "Michael", "Benjamin", "Carter", "James",
  "Jayden", "Logan", "Alexander", "Caleb", "Ryan", "Luke", "Daniel",
  "Jack", "William", "Owen", "Gabriel", "Matthew", "Connor", "Jayce",
  "Isaac", "Sebastian", "Henry", "Muhammad", "Cameron", "Wyatt",
  "Dylan", "Nathan", "Nicholas", "Julian", "Eli", "Levi", "Isaiah",
  "Landon", "David", "Christian", "Andrew", "Brayden", "John",
  "Lincoln"
```

```
n <- 100
X <- matrix(nrow=n, ncol=6)
X[,1] <- rnorm(n=n, mean=17, sd=sqrt(38))
X[,2] <- runif(n=n, min=-10, max=10)
X[,3] <- rpois(n=n, lambda=6)
X[,4] <- rexp(n=n, rate=9)
X[,5] <- rbinom(n=n, size=20, p=0.12)
X[,6] <- sample(c(rep(1, n * 0.24), rep(0, n*0.76)))
rownames(X) = fake_first_names</pre>
X
```

```
##
                        [,1]
                                       [,2] [,3]
                                                             [,4] [,5] [,6]
             12.84946939261 -0.58213678654
## Sophia
                                               3 0.3466719764170
## Emma
             22.87138213175 -6.73858324066
                                               9 0.2578469893445
              8.64200422377 -5.68540420383
                                                                          0
## Olivia
                                               8 0.0874084959588
             18.19330318120 -3.71911915950
## Ava
                                               4 0.0077891223029
                                                                          0
## Mia
             19.98458855220 5.06731173489
                                               4 0.0358309194658
                                                                          0
## Isabella 24.37785862637 -7.84559329972
                                               8 0.0492374682799
                                                                     2
                                                                          0
## Riley
              8.18869294479 -1.91283767577
                                               7 0.0035663140492
                                                                     0
                                                                          1
## Aria
             11.72398337087
                             7.16554609593
                                               3 0.0247848507092
                                                                     5
                                                                          1
## Zoe
             10.43782464978 -0.66618061624
                                               2 0.0754204479874
                                                                     2
## Charlotte 26.08849416162 8.84524229914
                                               9 0.2982291498392
                                                                     3
                                                                          1
## Lily
             25.01287997671 -8.51415081881
                                               5 0.0413726230359
                                                                     3
                                                                          0
             16.31879383615 -5.18100079615
                                               4 0.2123605242622
                                                                     4
                                                                          0
## Layla
## Amelia
             17.87360647506 7.52640386578
                                               5 0.1389504207458
                                               5 0.0871518900985
## Emily
              7.46997549277
                             2.69683797378
                                                                     3
                                                                          0
## Madelyn
             20.85066661445
                             8.70442662854
                                               3 0.0061348921843
                                                                     3
                                                                          0
## Aubrey
             15.45637050741 -8.55509603862
                                               5 0.0571316878001
                                                                     3
                                                                          0
## Adalyn
              3.96329114865
                             5.08067370858
                                               8 0.0124225316880
## Madison
             27.87613249168 5.84748084657
                                               7 0.0531986615517
                                                                     0
                                                                          1
## Chloe
             15.63778893237 -4.48200718500
                                               8 0.0418247131424
                                                                     1
                                                                          0
                                                                          0
## Harper
             18.55194597847 -1.18813895155
                                               6 0.0149402913327
## Abigail
              9.72666222599
                             2.36825834494
                                               5 0.1477023146793
## Aaliyah
                             2.59715571068
                                               4 0.4645857287795
                                                                          0
             21.43562954658
                                                                     1
## Avery
             15.79139744523 -8.53405218571
                                               6 0.2340925991809
                                                                     4
                                                                          0
             22.96720045812 -8.58659403399
## Evelyn
                                               6 0.0023127490384
                                                                     3
## Kaylee
             12.58510890792 -1.05284747202
                                               6 0.1313257714066
                                                                     1
                                                                          1
## Ella
             15.68615479741 -5.15587121248
                                               7 0.2736892039851
                                                                     4
                                                                          0
## Ellie
             13.79598478330 -7.23977108952
                                              12 0.0166909433384
                                                                     3
                                                                          0
## Scarlett
             33.44004823591 5.05889962893
                                               4 0.0212657220869
                                                                          0
## Arianna
             13.89254312927
                             9.04717106838
                                               7 0.0383253271139
                                                                     2
                                                                          1
## Hailey
              0.18159500221 -1.22081816662
                                               5 0.1196179406464
                                                                     5
                                                                          0
## Nora
             10.50901788538 -0.88305893820
                                               7 0.1096577813958
                                                                     2
                                                                          0
## Addison
             12.90200235880
                            7.98380108085
                                               4 0.1443221213042
## Brooklyn 14.10395370141
                             4.43327783607
                                               4 0.0199074621002
                                                                     3
                                                                          0
## Hannah
             16.91375229817 -0.82757452037
                                               4 0.0214205104914
                                                                          0
## Mila
             16.54113658396 4.86942148767
                                               7 0.0074627007254
                                                                          0
## Leah
             26.93562976666
                             9.37141439412
                                               6 0.2932545879923
                                                                          0
## Elizabeth 21.07409603692 1.80317564402
                                               1 0.0417156040979
                                                                     2
                                                                          0
```

```
## Sarah
              16.68858034517 -4.22335284296
                                                 6 0.1628187017388
                                                                             0
                                                                             0
## Eliana
              17.06967723439
                              8.85791548993
                                                 5 0.5264992303866
                                                                       3
## Mackenzie
             5.27185856318
                              5.67550704349
                                                 2 0.0268813901995
                                                                       3
                                                                             0
  Peyton
                                                                       4
              14.73476249852
                              9.39039731864
                                                 7 0.3886244492890
                                                                             1
## Maria
               2.79411084729 -3.58047332615
                                                 6 0.0437377793865
                                                                       3
                                                                             0
## Grace
              20.88147865843
                              6.28757385071
                                                 6 0.1577311679044
                                                                       3
                                                                             1
## Adeline
              14.13909982447
                               9.78611567523
                                                 7 0.1154610078942
                                                                       3
                                                                             0
## Elena
              19.03354970925
                              6.90477185883
                                                 3 0.0811780651617
                                                                       4
                                                                             0
##
  Anna
              15.27384876743 -6.37555439956
                                                 8 0.0093894895030
                                                                       0
                                                                             1
## Victoria
             29.01776903945 -4.25056797918
                                                 7 0.0272804073886
                                                                       1
                                                                             1
   Camilla
              10.75800116973 -4.26694491878
                                                 3 0.0236301671825
                                                                       2
## Lillian
              17.77763108279 -2.08411830012
                                                 7 0.1023327338773
                                                                       5
                                                                             1
  Natalie
              27.46728431737 -4.56893206574
                                                 5 0.0179453205902
                                                                             0
                                                                       1
##
   Jackson
              23.52701504711 -6.20253883302
                                                 9 0.0609488280800
                                                                       2
                                                                             1
##
  Aiden
             20.18124594370 -4.77970073931
                                                 7 0.1153875015008
                                                                       1
                                                                             0
##
  Lucas
              11.77863353789 -8.73484955169
                                                   0.3636006944523
                                                                       4
                                                                             0
## Liam
              15.90594848276 -1.60900926217
                                                 8 0.3339537365382
                                                                       2
                                                                             0
## Noah
              12.70683045040
                              6.45552631002
                                                 7 0.0537400548616
## Ethan
             27.34444174351 -1.60391046200
                                                 4 0.0181349450205
                                                                             0
                                                                       1
## Mason
              11.25274709540 -2.85659778863
                                                 6 0.0038698400474
                                                                       3
                                                                             0
##
  Caden
              12.45304523166 -5.69167514332
                                                 7 0.0631250584912
                                                                       2
                                                                             O
  Oliver
              18.73665473365
                              1.77999509498
                                                 8 0.1553807796610
## Elijah
              11.16639382114
                              8.02946366835
                                                 5 0.1495478791655
                                                                       0
                                                                             0
##
  Grayson
              17.12574964196
                              5.75162889436
                                                 9 0.0663800898732
                                                                       2
                                                                             0
##
   Jacob
              11.97014832192 -7.79526878148
                                                 4 0.0530548625835
                                                                       0
                                                                             0
  Michael
              15.62122828086
                              4.14641950745
                                                 5 0.0150775237319
                                                                       3
                                                                             0
                              2.64584264718
  Benjamin
             19.76234688399
                                                 6 0.0174755747823
                                                                       1
                                                                             1
##
   Carter
              18.06941275654 -2.22610309254
                                                 4 0.0221305148840
                                                                       2
                                                                             1
                                                                             0
##
   James
               4.42186217510
                              8.36000327021
                                                 4 0.1000857325704
                                                                       0
              19.00018440827 -5.52513188682
                                                 6 0.0302933914139
                                                                             0
##
   Jayden
                                                                       1
   Logan
               8.54957405559
                               2.00444240123
                                                 7 0.2154902699828
                                                                       4
                                                                             0
   Alexander 10.08252049883
                               6.46264816169
                                                 7 0.1565911887495
                                                                       3
                                                                             0
   Caleb
              15.32175993893 -3.42509618960
                                                 4 0.3178239015009
                                                                       3
##
              25.80188098113
                              4.22011821065
                                                 6 0.0633581864337
                                                                             0
   Ryan
                                                                       1
              25.46993192005 -4.56943523139
                                                 5 0.1945496778842
                                                                       3
                                                                             0
##
   Luke
## Daniel
              14.35597882948 -1.72424705233
                                                 4 0.0757542039371
                                                                       4
                                                                             0
   Jack
              16.73921132592 -8.01363197155
                                                 3 0.0481714898100
## William
              14.62659628197 -7.27735414635
                                                 8 0.1327250141397
                                                                             0
                                                                       1
  Owen
             27.33996134340 -8.63035857212
                                                10 0.1999386418517
                                                                             0
##
                                                                       1
##
                                                                             0
  Gabriel
              19.96579324095 -2.41561606526
                                                 9 0.0027516179511
                                                                       3
  Matthew
              28.25071508275
                              1.64380362257
                                                 7 0.0138190271484
                                                                       4
##
   Connor
              18.99811501251 -3.39281672146
                                                 5 0.1137039923166
                                                                       5
                                                                             1
##
   Javce
               4.76799259908
                               2.14532485232
                                                 4 0.0863893395243
                                                                       5
                                                                             0
##
                                                                             0
   Isaac
               8.16609808842
                              5.08297048043
                                                 4 0.5704946238221
                                                                       1
   Sebastian 10.00889119762
                              7.91290930472
                                                 3 0.0058367986542
                                                                       2
                                                                             0
##
   Henry
              24.85121017537
                               0.22068820894
                                                 6 0.0871273854494
                                                                       3
                                                                             1
  Muhammad
             16.18872927574
                              7.47474992648
                                                 6 0.0559400024617
                                                                       4
                                                                             1
   Cameron
              13.37791054680
                               2.07234073430
                                                 7 0.0184241779593
                                                                       3
##
   Wyatt
              19.07238112836
                               0.93572266866
                                                 9 0.1053328754861
                                                                             1
                                                                       1
##
   Dylan
               9.66031039790
                              8.84244961664
                                                 5 0.0147127227703
                                                                       3
                                                                             0
   Nathan
              19.33476396296 -8.90152829234
                                                 5 0.3428815975599
                                                                       3
                                                                             0
## Nicholas
             12.63588878309
                               1.74513594713
                                                 7 0.1309365223426
                                                                       0
                                                                             0
## Julian
              11.37891234281 -4.47147683706
                                                 3 0.1009231765974
                                                                       2
                                                                             0
## Eli
              13.61672201114
                              9.57776588853
                                                 8 0.0135443440179
```

```
## Levi
             18.94067397505 -3.95152945071
                                               4 0.2620525622807
                                                                          1
             20.63510085436 7.92062323540
## Isaiah
                                               5 0.1252982006241
                                                                    2
             13.94045042577
## Landon
                             6.08900321182
                                               5 0.0644211712190
                                                                          1
## David
             17.18657404988 3.62102045212
                                               4 0.2390218932304
                                                                    2
                                                                         0
## Christian 14.18346497053 -2.36531571019
                                               7 0.1616241238504
                                                                          1
                                                                         0
## Andrew
             16.00433241448 -5.79329779837
                                               8 0.2501192172895
                                                                    1
             15.15998910232 -5.45019364450
                                               6 0.0012883581221
## Brayden
## John
              5.05845271978 4.82434041798
                                               4 0.0690127082893
                                                                    1
                                                                          0
## Lincoln
             23.74417003627 -6.06083723716
                                               5 0.2022582091617
                                                                    3
                                                                          0
```

Create a data frame of the same data as above except make the binary variable a factor "DOMESTIC" vs "FOREIGN" for 0 and 1 respectively. Use RStudio's View function to ensure this worked as desired.

```
df = data.frame(X)
df$X6 = factor(df$X6, levels = c(0, 1), labels = c("DOMESTIC", "FOREIGN"))
View(df, "Lab 1 DF")
```

• Print out a table of the binary variable. Then print out the proportions of "DOMESTIC" vs "FOR-EIGN".

```
##
## DOMESTIC FOREIGN
## 76 24
```

Print out a summary of the whole dataframe.

```
summary(df)
```

```
Х2
##
          Х1
                                                      ХЗ
##
           : 0.181595
                                :-8.90152829
                                                       : 1.00
    Min.
                         Min.
                                                Min.
##
    1st Qu.:12.332321
                         1st Qu.:-4.56905786
                                                1st Qu.: 4.00
   Median :15.848673
                         Median :-0.74687757
                                                Median: 6.00
##
##
   Mean
           :16.261976
                         Mean
                                : 0.23945416
                                                Mean
                                                       : 5.76
##
    3rd Qu.:19.970492
                         3rd Qu.: 5.23110462
                                                3rd Qu.: 7.00
                                                Max.
##
    Max.
           :33.440048
                         Max.
                                : 9.78611568
                                                       :12.00
##
          Х4
                                  Х5
                                                   Х6
##
   Min.
           :0.0012883581
                            Min.
                                   :0.00
                                           DOMESTIC:76
                                           FOREIGN:24
##
   1st Qu.:0.0232552541
                            1st Qu.:1.00
   Median :0.0755873260
                            Median:2.00
                                   :2.27
##
  Mean
           :0.1168763718
                            Mean
    3rd Qu.:0.1568761835
                            3rd Qu.:3.00
           :0.5704946238
                                   :5.00
## Max.
                            Max.
```

• Let n=50. Create a n x n matrix R of exactly 50% entries 0's, 25% 1's 25% 2's. These values should be in random locations.

```
n <- 50
R <- matrix(nrow=n, ncol=n, sample(c(rep(0, n*n*0.5), rep(1, n*n*0.25), rep(2, n*n*0.25))))
df <- data.frame(R)
df</pre>
```

```
## 6
          0
               0
                    0
                         0
                              0
                                   2
                                        1
                                             0
                                                  0
                                                       0
## 7
          0
               2
                    0
                         2
                              0
                                   2
                                        1
                                             1
                                                  2
                                                       0
               2
## 8
          0
                         0
                              1
                                   0
                                        1
                                             0
                                                  2
               0
## 9
                    2
                         0
                              2
                                   1
                                       0
                                             1
                                                       0
          1
                                                  1
## 10
          0
               0
                    2
                         0
                              0
                                   2
                                        2
                                            1
                                                  1
                                                       0
## 11
               2
                         0
                              2
                                   2
                                       0
                                             1
                                                  2
                                                       0
          1
                    1
## 12
          2
               0
                    0
                         0
                                   2
                                       0
                                            1
                                                       2
                              1
                                                  0
## 13
          0
               1
                    2
                         2
                              0
                                   1
                                        2
                                            0
                                                  1
                                                       1
## 14
          2
               0
                    0
                         1
                              0
                                   1
                                        2
                                             0
                                                  2
                                                       2
                                        0
                                             0
                                                  0
                                                       2
## 15
          0
               1
                    0
                         0
                              2
                                   1
##
   16
          0
               1
                    0
                         1
                              0
                                   0
                                       1
                                             1
                                                  2
                                                       0
               2
                    2
                         2
##
   17
          2
                                   0
                                       0
                                            0
                                                  0
                                                       0
                              1
                                   0
                                            0
##
   18
               1
                    1
                         0
                              0
                                       0
                                                 0
                                                       1
          1
                                        2
##
   19
               0
                    0
                              2
                                   0
                                             0
                                                  0
                                                       0
          0
                         1
## 20
          0
               0
                         0
                              2
                                        0
                                             1
                                                       0
                    1
                                   1
                                                  1
## 21
          1
               2
                    0
                         0
                              1
                                   0
                                        2
                                             0
                                                  0
                                                       2
##
   22
          2
               0
                         0
                              2
                                   0
                                        0
                                             0
                                                  2
                                                       0
                    1
   23
               2
##
          0
                         1
                              1
                                   0
                                        1
                                             2
                                                  0
##
   24
          2
               0
                    0
                         0
                              0
                                       0
                                            0
                                                 0
                                   1
                                                       1
                                                  2
##
   25
          1
               1
                    0
                         0
                              0
                                   1
                                       1
                                             1
                                                       0
##
   26
          1
               2
                    2
                         0
                              0
                                   0
                                       2
                                             1
                                                 2
                                                       1
## 27
          2
               0
                    2
                              2
                                   0
                                        0
                                             2
                                                  1
                                                       0
## 28
                    0
                         0
                                   0
                                       0
                                             0
                                                  0
                                                       0
          2
               1
                              1
##
   29
               0
                    2
                         0
                              0
                                   1
                                       0
                                             2
                                                  0
                                                       0
          1
               0
                    2
                         0
                                        2
                                                  0
                                                       0
## 30
          2
                              0
                                   1
                                             1
##
   31
          2
               0
                    0
                         2
                              2
                                   0
                                       0
                                             0
                                                  0
                                                       2
##
   32
          0
               2
                    0
                         2
                                   0
                                       0
                                             1
                                                       1
                              1
                                                  1
##
   33
          0
               0
                    1
                         0
                              0
                                            1
                                                       0
                                   1
                                       1
                                                 1
   34
                         2
                                        2
##
               1
                    1
                                   1
                                            0
                                                       0
          1
                              1
                                                  1
   35
##
          0
               0
                         0
                                   0
                                       0
                                            0
                                                  0
                                                       0
                    1
                              1
##
   36
          1
               0
                    0
                         0
                              2
                                   0
                                       0
                                             0
                                                  2
                                                       1
##
   37
          2
               0
                    1
                         0
                              0
                                   2
                                       0
                                            0
                                                  0
                                                       0
   38
               0
                                                  0
##
                         1
                                   1
                                        1
                                             1
##
   39
               0
                    0
                         0
                              0
                                   0
                                       0
                                            0
                                                       2
          0
                                                  1
                    2
                         2
                                   2
                                             2
##
   40
          0
               0
                              0
                                       0
                                                 1
                                                       1
##
   41
          2
               2
                    0
                         0
                                   0
                                       1
                                            0
                                                 1
                                                       0
                              1
## 42
          0
               0
                    0
                         2
                              2
                                   1
                                        2
                                             0
                                                 2
## 43
          2
               1
                         0
                              0
                                   2
                                            0
                                                 0
                                                       0
                    1
                                       1
##
   44
          0
               2
                    1
                         2
                              2
                                   1
                                       1
                                             2
                                                  0
                                                       0
   45
               0
                              2
                                   0
                                       0
                                            0
                                                 0
                                                       1
##
          0
                    1
                         1
##
   46
               1
                    2
                                   1
                                       1
                                                       2
          0
                         1
                              1
                                            1
                                                 1
##
   47
          2
               0
                    0
                         0
                              0
                                   0
                                       0
                                            0
                                                       2
                                                  1
               0
                    0
                         0
                                       0
                                                  0
##
   48
          1
                              0
                                   1
                                            1
                                                       1
               2
                                   0
                                        2
                                             2
                                                       2
##
   49
          0
                    0
                         1
                              2
                                                  0
## 50
                                        0
                                             1
                                                  2
```

• Randomly punch holes (i.e. NA) values in this matrix so that an each entry is missing with probability 30%.

```
n <- 50
R <- matrix(nrow=n, ncol=n, sample(c(rep(0, n*n*0.5), rep(1, n*n*0.25), rep(2, n*n*0.25))))
holes = matrix(nrow=n, ncol=n, sample(c(rep(0, n*n*0.7), rep(3, n*n*0.3))))</pre>
```

```
for(i in 1:n){
  for(j in 1:n){
    if(holes[i,j] == 3){
      R[i, j] = NA
    }
  }
}
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
    [1,]
##
             NA
                    0
                           0
                               NA
                                       2
                                            NA
                                                   2
                                                         2
                                                              NA
                                                                       0
                                                                              2
                                                                                    NA
                                                                                             0
     [2,]
              2
                    0
                           1
                                             1
                                                   0
                                                         1
                                                                              0
                                                                                      0
                                                                                             2
##
                               NA
                                      NA
                                                              NA
                                                                      NA
                                                                              2
                                                                                             0
##
    [3,]
             NA
                    0
                         NA
                                 0
                                       0
                                             0
                                                   0
                                                         1
                                                              NA
                                                                       0
                                                                                      0
                                       2
##
     [4,]
              2
                   NA
                         NA
                                 1
                                             0
                                                   0
                                                        NA
                                                               2
                                                                      NA
                                                                              0
                                                                                      0
                                                                                             1
##
     [5,]
              1
                    0
                           2
                                 0
                                      NA
                                             0
                                                   0
                                                         1
                                                               2
                                                                       2
                                                                             NA
                                                                                      2
                                                                                             0
##
     [6,]
              0
                    0
                         NA
                                NA
                                       0
                                            NA
                                                  NA
                                                         0
                                                               0
                                                                      NA
                                                                              0
                                                                                    NA
                                                                                            NA
##
    [7,]
              2
                   NA
                           1
                                 2
                                       0
                                             1
                                                   0
                                                        NA
                                                               2
                                                                       1
                                                                              2
                                                                                      0
                                                                                             0
##
    [8,]
             NA
                    0
                           2
                                 0
                                       1
                                             2
                                                   1
                                                               2
                                                                      NA
                                                                              1
                                                                                      2
                                                                                            NA
                                                         1
    [9,]
              0
                     0
                           2
                                             0
                                                               2
                                                                                      2
##
                                 0
                                       0
                                                   1
                                                        NA
                                                                       1
                                                                             NA
                                                                                            NA
##
   [10,]
              2
                     2
                           1
                                NA
                                       1
                                            NA
                                                   2
                                                        NA
                                                              NA
                                                                       2
                                                                              0
                                                                                      0
                                                                                             1
##
   [11,]
              1
                     0
                         NA
                                NA
                                       2
                                             0
                                                         0
                                                              NA
                                                                       0
                                                                             NA
                                                                                             0
                                                   1
                                                                                      1
## [12,]
              0
                     0
                          0
                                 2
                                       1
                                            NA
                                                   0
                                                         2
                                                              NA
                                                                       0
                                                                              0
                                                                                      1
                                                                                             1
## [13,]
                                       2
                                                                       0
                                                                                      0
             NA
                     1
                         NA
                                NA
                                            NA
                                                  NA
                                                              NA
                                                                             NA
                                                                                            NA
                                                        NA
   [14,]
              0
                     0
                                 2
                                             2
                                                               0
                                                                       0
                                                                              2
                                                                                             0
##
                         NA
                                      NA
                                                   0
                                                         1
                                                                                    NA
                     2
##
   [15,]
              0
                          0
                                       0
                                            NA
                                                         0
                                                              NA
                                                                       1
                                                                                    NA
                                                                                             1
                                NA
                                                  NA
                                                                             NA
   [16,]
##
              1
                     2
                         NA
                                 0
                                       0
                                             0
                                                   0
                                                         2
                                                               0
                                                                       2
                                                                              0
                                                                                     1
                                                                                            NA
## [17,]
             NA
                    0
                         NA
                                 1
                                       0
                                             1
                                                   0
                                                         0
                                                              NA
                                                                       0
                                                                             NA
                                                                                    NA
                                                                                            NA
## [18,]
              1
                     1
                           2
                                 1
                                       1
                                            NA
                                                  NA
                                                         0
                                                              NA
                                                                       0
                                                                             NA
                                                                                      0
                                                                                             0
              2
                                                         2
                                                                       2
                                                                                      2
                                                                                             2
## [19,]
                                                   2
                                                                             NA
                   NA
                         NA
                                 0
                                      NA
                                             1
                                                               1
## [20,]
              2
                   NA
                           0
                                 0
                                       1
                                            NA
                                                   1
                                                         2
                                                               2
                                                                       2
                                                                             NA
                                                                                      0
                                                                                             0
## [21,]
                           2
                                             2
                                                                                      0
             NA
                   NA
                                 0
                                       0
                                                  NA
                                                        NA
                                                              NA
                                                                      NA
                                                                              0
                                                                                            NA
## [22,]
              2
                    2
                           0
                                 2
                                       1
                                             2
                                                   0
                                                         0
                                                               0
                                                                       0
                                                                              0
                                                                                    NA
                                                                                             0
## [23,]
             NA
                     1
                           2
                                 0
                                      NA
                                             2
                                                   0
                                                         0
                                                               0
                                                                       2
                                                                             NA
                                                                                      0
                                                                                             2
## [24,]
                    2
                                             0
                                                   2
                                                         0
                                                                       0
                                                                              0
                                                                                      0
             NA
                                 0
                                       0
                                                               0
                                                                                             1
                           1
##
   [25,]
              0
                     0
                           2
                                 0
                                      NA
                                            NA
                                                   0
                                                        NA
                                                              NA
                                                                      NA
                                                                              2
                                                                                      0
                                                                                             1
## [26,]
                     0
                           2
                                 2
                                             2
                                                   0
                                                              NA
                                                                       2
                                                                              2
                                                                                    NA
             NA
                                      NA
                                                         1
                                                                                             1
## [27,]
             NA
                     2
                           1
                                 0
                                       0
                                            NA
                                                   1
                                                        NA
                                                               0
                                                                       0
                                                                              0
                                                                                      0
                                                                                             0
## [28,]
              2
                   NA
                           1
                                 0
                                      NA
                                             2
                                                  NA
                                                         1
                                                               1
                                                                       0
                                                                             NA
                                                                                      1
                                                                                             2
## [29,]
              0
                   NA
                           2
                                 0
                                      NA
                                             0
                                                  NA
                                                         0
                                                               0
                                                                       1
                                                                              2
                                                                                      0
                                                                                             2
## [30,]
                                             2
                                                                       2
                           0
                                                   0
                                                                              2
                                                                                            NA
             NA
                    1
                                NA
                                       1
                                                         1
                                                               1
                                                                                    NA
   [31,]
                    0
                           0
                                 2
                                             2
                                                         2
                                                                       0
                                                                              0
                                                                                      0
                                                                                             0
##
              0
                                       0
                                                   1
                                                              NA
              2
                                                   2
                                                                       2
                                                                              0
                                                                                             0
##
   [32,]
                     0
                           0
                                 0
                                       0
                                             0
                                                         0
                                                               0
                                                                                      0
##
   [33,]
              0
                     2
                         NA
                                 0
                                      NA
                                             2
                                                   0
                                                        NA
                                                               0
                                                                       1
                                                                             NA
                                                                                    NA
                                                                                             1
## [34,]
              0
                     2
                                                               2
                                                                       2
                                                                                      2
                                                                                             0
                           0
                                 1
                                       1
                                             1
                                                  NA
                                                         0
                                                                              0
              2
                                             2
                                                                       0
                                                                              2
## [35,]
                     0
                           1
                                       0
                                                   0
                                                         1
                                                               0
                                                                                      0
                                                                                            NA
                                 1
              2
                                                                       2
## [36,]
                    2
                                       2
                                            NA
                                                                              1
                                                                                      1
                                                                                            NA
                         NA
                                 1
                                                  NA
                                                        NA
                                                              NA
                                                                       2
                                                                              0
                                                                                             2
## [37,]
              2
                   NA
                         NA
                                 2
                                       0
                                            NA
                                                  NA
                                                         0
                                                              NA
                                                                                      0
## [38,]
             NA
                   NA
                         NA
                                 2
                                       2
                                            NA
                                                   0
                                                        NA
                                                               0
                                                                       0
                                                                              0
                                                                                      0
                                                                                             1
## [39,]
                    0
                                            NA
                                                   0
                                                         2
                                                                       1
                                                                                      0
              1
                           2
                               NA
                                      NA
                                                              NA
                                                                              1
                                                                                            NA
                           2
                                                         2
## [40,]
              1
                    2
                                NA
                                       0
                                             2
                                                   0
                                                              NA
                                                                       0
                                                                              1
                                                                                      0
                                                                                             1
## [41,]
              0
                    2
                           0
                                 2
                                                         2
                                                              NA
                                                                       0
                                                                                             0
                                       1
                                            NA
                                                  NA
                                                                             NA
                                                                                      1
## [42,]
              1
                   NA
                           0
                                 2
                                      NA
                                             1
                                                  NA
                                                         0
                                                               0
                                                                      NA
                                                                             NA
                                                                                      0
                                                                                             2
## [43,]
              0
                     2
                                 0
                                       0
                                                   0
                                                         2
                                                                                             2
                         NA
                                             1
                                                              NA
                                                                       1
                                                                              1
                                                                                      1
```

	[44,]	2	NA	NA	1 NA	NA	0	NA	NA	0	NA	NA	0
##	[45,]	0	NA		0 0	0	NA	2	NA	NA	1	1	0
##	[46,]	0	1	NA N.		0	2	NA	1	NA	1	1	NA
##	[47,]	1	0	O N.		2	NA	NA	2	1	NA	1	0
##	[48,]	1	1		2 0	NA	2	1	0	NA	0	0	1
##	[49,]	0	NA		0 0	2	1	1	NA	0	0	0	0
##	[50,]	0	1	1 N.		2	0	NA	NA	1	NA	NA	NA
##	5. 3	[,14]	[,15]			,18]	[,19]	[,20]	[,21]	[,22]	[,23]	[,24]	[,25]
##	[1,]	1	0	2	0	0	2	1	NA	0	2	NA	0
##	[2,]	0	0	NA	NA	NA	1	NA	NA	1	0	2	1
##	[3,]	0	NA	0	NA 1	NA	2	NA	1	2	1	1 NA	NA
## ##	[4,] [5,]	2 NA	NA 1	NA 2	1 N A	2 NA	0	O NA	0	1 1	0 1	NA O	NA
##	[6,]	NA O	1 1	NA	NA O	NA O	NA	0	0	0	1	NA	0 2
##	[7,]	NA	1	2	0	0	0	2	0	0	2	1	0
##	[8,]	2	0	NA	0	NA	NA	0	2	0	NA	NA	0
##	[9,]	1	0	1	NA	0	0	2	1	2	0	2	2
##	[10,]	0	1	0	NA	NA	2	2	NA	NA	NA	1	0
##	[11,]	2	NA	0	1	NA	0	0	1	2	0	0	0
##	[12,]	NA	1	0	0	0	2	0	0	0	NA	NA	NA
##	[13,]	NA	1	NA	NA	NA	NA	1	0	2	NA	1	0
##	[14,]	0	2	0	0	0	NA	0	0	1	2	1	NA
##	[15,]	1	NA	1	NA	2	1	NA	NA	0	0	1	0
##	[16,]	0	0	1	0	2	1	0	2	NA	0	0	0
##	[17,]	1	NA	2	0	0	0	0	NA	2	0	NA	0
##	[18,]	2	NA	2	NA	1	0	0	1	NA	NA	1	2
##	[19,]	2	0	0	NA	NA	0	1	2	0	0	NA	0
##	[20,]	0	NA	2	NA	NA	1	1	1	0	0	1	NA
##	[21,]	0	0	2	2	2	2	1	NA	NA	NA	NA	NA
##	[22,]	1	2	1	0	0	NA	NA	NA	2	1	2	0
##	[23,]	1	NA	NA	0	1	NA	0	2	0	NA	1	0
##	[24,]	0	0	NA	NA	1	0	0	0	0	NA	0	1
##	[25,]	NA	NA	NA	1	2	2	2	NA	0	NA	0	NA
##	[26,]	NA	NA	0	1	0	0	2	NA	NA	2	0	0
##	[27,]	NA	2	2	NA	2	NA	0	NA	1	1	NA	0
##	[28,]	NA	2	1	NA	2	NA	1	0	NA	1	1	NA
##	[29,]	NA	0	0	NA NA	1 N A	0	NA	0	0	NA	2	NA
	[30,]	NA O	NA 1	1 N A	NA O	NA O	NA O	0 2	NA 2	2 MA	0	1 NA	NA 1
	[31,] [32,]	1	NA	NA NA	NA	0	2	NA	NA	NA NA	0	1 1	NA
	[33,]	0	2		NA	NA	2	NA NA	1	NA	2	NA	0
##	[34,]	1	1	1	0	0	1	1	NA	2	NA	1	2
##	[35,]	0	0	2	NA	NA	0	1	NA	2	0	0	0
##	[36,]	0	0	0	1	0	NA	0	NA	NA	0	0	0
##	[37,]	NA	0	1	2	2	2	0	0	NA	0	NA	2
##	[38,]	NA	NA	0	2	0	0	2	0	NA	NA	NA	NA
##	[39,]	0	0	0	0	NA	NA	0	2	0	NA	1	0
##	[40,]	0	2	0	NA	0	NA	0	2	NA	0	2	0
##	[41,]	NA	NA	1	0	1	1	0	1	0	NA	NA	NA
##	[42,]	NA	NA	2	2	NA	2	1	2	NA	NA	0	1
	[43,]	0	2		0	NA	0	2	0	0	1	0	1
	[44,]	1	NA	1	0	1	2	1	1	1	1	0	0
##	[45,]	2	2	1	2	NA	NA	1	2	2	NA	0	2
##	[46,]	NA	2	0	NA	0	NA	2	2	NA	NA	2	2

##	[47,]	2	0	NA	0	1	NA	1	NA	1	0	0	0
##	[48,]	1	0	1	NA	NA	0	NA	2	0	1	0	2
##	[49,]	0	2	2	1	0	NA	NA	NA	0	1	NA	2
##	[50,]	0	NA	NA	2	NA	2	2	NA	NA	0	NA	1
##		[,26]	[,27]	[,28]	[,29]	[,30]		[,32]	[,33]		[,35]	[,36]	[,37]
##	[1,]	NA	1	1	0	NA	0	0	0	0	1	1	0
##	[2,]	1	0	NA	0	NA	1	NA	NA	1	NA	2	1
##	[3,]	1	0	NA	2	0	NA	NA	NA	0	NA	0	2
##	[4,]	0	NA	1	NA	2	NA	NA	NA	2	NA	1	2
## ##	[5,] [6,]	NA O	0	0 2	NA O	0	0	NA	0	NA 2	0 1	0	2 NA
##	[7,]	0	NA	NA	0	1	1 NA	NA NA	0	NA	0	0	0
##	[8,]	2	NA	2	NA	0	NA	NA NA	NA	0	1	1	2
##	[9,]	2	0	2	2	2	2	2	0	1	NA	1	0
##	[10,]	0	1	2	0	1	2	0	2	1	0	NA	0
##	[11,]	2	NA	1	NA	2	0	NA	NA	0	NA	0	2
##	[12,]	1	0	2	0	NA	0	0	1	0	0	NA	2
##	[13,]	0	1	NA	0	NA	0	0	1	0	0	0	0
##	[14,]	NA	0	0	NA	1	NA	0	0	NA	2	2	NA
##	[15,]	0	NA	2	2	0	2	NA	NA	1	NA	2	NA
##	[16,]	0	0	NA	0	1	1	NA	NA	1	NA	0	2
##	[17,]	1	0	0	0	0	1	NA	0	0	NA	1	0
##	[18,]	1	0	2	0	0	0	1	NA	1	0	1	NA
##	[19,]	0	NA	1	NA	2	NA	0	0	NA	1	2	0
##	[20,]	NA	NA	0	NA	NA	0	NA	1	0	0	0	0
##	[21,]	0	NA	NA	1	NA	0	NA	2	0	0	NA	0
##	[22,]	1	2	NA	1	2	2	0	0	NA	NA	1	NA
##	[23,]	1	0	NA	2	0	2	0	NA	2	0	1	NA
##	[24,]	0	0	NA	NA	1	1	0	2	1	0	1	2
##	[25,]	NA	0	2	NA	2	0	1	NA	1	NA	NA	NA
##	[26,]	2	NA	0	2	NA	NA	0	1	0	NA	2	NA
##	[27,]	1	0	0	2	2	1	1	2	0	1	1	0
## ##	[28,] [29,]	1 NA	NA	1 2	2	NA	O NA	1 NA	0	2 NA	2	O	2
##	[30,]	NA 1	0 2	0	NA O	O NA	NA NA	NA 2	0	NA O	0	NA 2	1
##	[31,]	0	0	2	0	0	2	NA	0	NA	NA	NA	0
##	[32,]	2	NA	2	0	NA	2	0	0	0	1	NA	0
	[33,]	0	NA	NA	1	0	0	1	2	1	NA	1	1
	[34,]	NA	1	NA	0	1	NA	2	0	0	0	NA	0
	[35,]	1	0	0	NA	0	0	1	0	1	2	NA	0
	[36,]	NA	2	NA	1	NA	2	NA	0	NA	NA	1	0
	[37,]	NA	NA	1	NA	0	NA	2	1	0	NA	2	1
##	[38,]	1	0	2	NA	NA	0	NA	1	NA	1	0	0
##	[39,]	0	NA	NA	NA	1	1	2	1	0	NA	NA	2
##	[40,]	0	0	0	1	NA	NA	0	0	2	0	NA	NA
##	[41,]	0	0	2	0	0	1	NA	2	2	0	0	0
##	[42,]	0	2	NA	2	0	1	NA	2	NA	NA	1	1
##	[43,]	NA	0	2	2	0	1	2	0	0	NA	NA	1
##	[44,]	1	NA	0	2	2	0	0	0	0	NA	2	NA
##	[45,]	1	1	NA	NA	0	2	0	NA	1	1	1	0
	[46,]	1	0	1	NA	NA	2	2	2	0	2	2	0
	[47,]	NA	NA	0	2	0	NA	NA	NA	2	NA	1	0
	[48,]	0	0	2	1 NA	NA	0	0	0	0	NA	1	NA NA
##	[49,]	NA	1	0	NA	2	0	0	0	0	0	2	NA

##	[50,]	2	0	1	1	0	0	NA	1	1	NA	1	NA
##		[,38]	[,39]	[,40]	[,41]	[,42]	[,43]	[,44]	[,45]	[,46]	[,47]	[,48]	[,49]
##	[1,]	0	0	0	0	NA	NA	0	1	1	NA	2	1
##	[2,]	2	0	NA 1	2	2	1	0	NA NA	NA	NA	2 2	0
## ##	[3,] [4,]	1 1	0	1 NA	NA O	1 NA	2 NA	1	NA NA	O NA	O NA	NA	0 2
##	[5,]	2	2	0	0	NA	NA	0	0	0	0	1	0
##	[6,]	2	0	NA	NA	2	0	0	NA	0	1	0	1
##	[7,]	NA	0	NA	0	0	NA	2	NA	0	2	0	0
##	[8,]	0	0	1	NA	0	0	NA	NA	0	NA	0	0
##	[9,]	0	NA	0	2	1	1	2	1	2	NA	0	0
##	[10,]	NA	NA	0	0	2	2	2	0	NA	NA	0	NA
##	[11,]	0	1	0	1	NA	0	NA	0	0	0	2	NA
##	[12,]	0	1	NA	0	2	0	2	NA	NA	NA	2	1
##	[13,]	0	0	NA	NA	1	0	NA	NA	NA	0	0	1
##	[14,]	NA	NA	0	0 2	NA	NA	0	1	0	NA	O	1
## ##	[15,] [16,]	NA O	1 2	2	NA	2 NA	1	NA 1	2 1	0	0	NA NA	0
##	[17,]	NA	0	2	1	NA NA	NA	2	NA	2	0	2	0
##	[18,]	0	NA	0	0	0	2	1	2	NA	1	NA	0
##	[19,]	NA	1	2	2	NA	NA	2	2	0	NA	0	0
##	[20,]	NA	0	0	2	0	NA	NA	NA	0	2	2	NA
##	[21,]	NA	NA	1	NA	2	2	NA	0	0	1	0	2
##	[22,]	0	0	1	1	2	NA	0	0	2	NA	1	1
##	[23,]	0	2	0	NA	NA	NA	NA	NA	NA	0	2	0
##	[24,]	NA	NA	0	NA	0	0	0	NA	2	2	0	0
##	[25,]	0	0	2	NA	0	0	1	NA	0	1	0	0
##	[26,]	NA	0	2	0	0	0	0	NA	1	0	0	0
##	[27,]	0	NA	1	0	2	2	NA	0	NA	0	2	NA
## ##	[28,]	O	0	O M A	2 2	O	2 2	NA O	1	0	2 2	1 NA	NA NA
##	[29,] [30,]	NA O	1 1	NA O	NA	NA 2	2	NA	NA	NA	0	N A 1	NA O
##	[31,]	1	1	2	1	0	0	0	1	NA	NA	0	1
##	[32,]	2	NA	0	0	0	NA	0	NA	NA	NA	NA	0
##	[33,]	1	0	2	NA	1	0	1	0	NA	NA	0	1
##	[34,]	2	1	NA	2	0	0	NA	2	0	2	1	NA
##	[35,]	1	NA	0	NA	0	0	NA	NA	NA	1	2	0
##	[36,]	NA	0	0	2	0	2	0	NA	NA	NA	NA	2
##	[37,]	2	0	0	NA	2	1	2	0	0	0	0	2
##	[38,]	0	NA	0	2	1	2	0	2	1	0	0	NA
	[39,]	0	NA	NA	0	1	0	NA	2	0	0	0	0
	[40,] [41,]	0	NA O	1 2	1 NA	1 NA	O	NA 2	1	2	NA 1	O	1
	[41,]	1	1	NA	NA 2	NA 1	NA O	NA	0 2	0	NA	NA O	1 0
	[43,]	0	2	1	0	0	2	NA	0	2	1	0	0
	[44,]	0	NA	NA	0	1	0	0	2	0	NA	0	0
	[45,]	0	2	0	NA	1	0	0	2	2	NA	NA	NA
	[46,]	0	0	NA	NA	NA	NA	NA	NA	0	NA	NA	NA
##	[47,]	NA	2	0	0	0	0	0	0	1	1	1	2
##	[48,]	NA	0	1	2	2	1	0	0	0	NA	NA	NA
##	[49,]	NA	1	1	0	0	1	0	NA	1	0	2	NA
##	[50,]	1	0	0	NA	0	NA	0	0	1	NA	NA	2
##	ר, י	[,50]											
##	[1,]	0											

```
[2,]
              0
##
##
    [3,]
              0
##
    [4,]
              0
##
    [5,]
             NA
##
    [6,]
              1
##
    [7,]
              0
##
    [8,]
             NA
    [9,]
##
             NA
## [10,]
             NA
## [11,]
              0
## [12,]
              2
## [13,]
              1
## [14,]
             NA
## [15,]
              0
## [16,]
             {\tt NA}
## [17,]
             NA
## [18,]
             NA
## [19,]
              2
## [20,]
             NA
## [21,]
             NA
## [22,]
              1
## [23,]
              0
## [24,]
              1
## [25,]
              1
## [26,]
              1
## [27,]
              0
## [28,]
             NA
## [29,]
              1
## [30,]
              0
## [31,]
              2
## [32,]
              2
## [33,]
             NA
## [34,]
              2
## [35,]
              1
## [36,]
              2
## [37,]
              1
## [38,]
             NA
## [39,]
              0
## [40,]
              0
## [41,]
              0
## [42,]
             NA
## [43,]
              0
## [44,]
              2
## [45,]
              0
## [46,]
              2
## [47,]
              0
## [48,]
              0
## [49,]
              2
## [50,]
              2
```

• Sort the rows in matrix R by the largest row sum to lowest. Be careful about the NA's!

```
order(rowSums(R, na.rm=TRUE), decreasing=TRUE)
```

```
## [1] 9 28 34 19 22 37 45 10 43 42 27 46 15 30 26 2 18 40 4 12 23 31 33 36 41
## [26] 48 1 8 47 49 50 7 21 35 44 3 16 20 25 5 11 38 24 29 32 14 39 17 6 13
```

• We will now learn the apply function. This is a handy function that saves writing for loops which should be eschewed in R. Use the apply function to compute a vector whose entries are the standard deviation of each row. Use the apply function to compute a vector whose entries are the standard deviation of each column. Be careful about the NA's! This should be one line.

```
row <- apply(R, MARGIN = 1, sd, na.rm=TRUE)
col <- apply(R, MARGIN = 2, sd, na.rm=TRUE)</pre>
```

• Use the apply function to compute a vector whose entries are the count of entries that are 1 or 2 in each column. This should be one line.

```
apply(R>0, MARGIN = 2, sum, na.rm=TRUE)
```

```
## [1] 22 19 21 18 16 22 14 22 12 21 16 15 19 17 18 23 12 15 18 22 19 17 15 20 15 ## [26] 21 10 23 18 16 20 13 17 19 13 28 16 13 17 17 17 21 17 13 16 13 14 17 16 19
```

• Use the split function to create a list whose keys are the column number and values are the vector of the columns. Look at the last example in the documentation ?split.

```
split(R, col(R))
```

```
## $'1'
    [1] NA
             2 NA
                   2
                              2
                                NA
                                    0
                                        2
                                           1
                                              O NA
                                                            1
                                                                  1
                                                                      2
                                                                         2 NA
##
   [26] NA NA
                2
                   O NA
                                    0
                                       2
                                           2
                                              2 NA
                                                     1
                                                        1
                                                               1
                          0
## $'2'
##
    [1]
             0
                O NA
                          O NA
                                 0
                                    0
                                       2
                                           0
                                              0
                                                 1
                                                     0
                                                        2
                                                           2
                                                               0
                                                                  1 NA NA NA
             2 NA NA
                                 2
                                    2
                                       0
                                           2 NA NA
                                                     0
                                                        2
                                                           2 NA
                                                                  2 NA NA
   [26]
                       1
                          0
                              0
##
## $'3'
    [1]
                                 2
                                       1 NA
                                              O NA NA
                                                        O NA NA
                                                                  2 NA
                                                                         0
                                                                            2
             1 NA NA
                       2 NA
                             1
                                    2
                                                                                0
                                                                                      1
##
   [26]
                              O NA
                                    0
                                       1 NA NA NA
                                                     2
                                                        2
                                                           0
                                                               O NA NA
##
## $'4'
                                              2 NA 2 NA
                                                                         0
    [1] NA NA
                0
                   1
                       O NA
                              2
                                 0
                                    O NA NA
                                                            0
                                                               1
                                                                  1
                                                                      0
                                                                           0
                                                                               2
                                                                                         0
##
   [26]
                                       1
                                           1
                                              2
                                                 2 NA NA
##
## $'5'
                                           2
                                                 2 NA
                                                               0
                                                                               1 NA
##
    [1]
         2 NA
                0
                   2 NA
                          0
                              0
                                    0
                                              1
                                                        0
                                                           0
                                                                  1 NA
                                                                            0
                                 1
                                       1
                                                                         1
             O NA NA
                                       0
                                           2
                                              0
                                                  2 NA
                                                        0
                                                            1 NA
                                                                   O NA
                          0
                              O NA
                                    1
##
## $'6'
    [1] NA
                0
                   0
                       O NA
                                 2
                                    O NA
                                          O NA NA 2 NA
                                                           0
                                                               1 NA
                                                                     1 NA
                                                                            2
             1
                              1
                                 2
                                       2 NA NA NA NA
                                                        2 NA
   [26]
          2 NA
                          2
                              0
                                   1
                                                               1
                                                                  1 NA
##
```

```
## $'7'
## [1] 2 0 0 0 0 NA 0 1 1 2 1 0 NA 0 NA 0 0 NA 2 1 NA 0 0 2 0
##
## $'8'
## [1] 2 1 1 NA 1 0 NA 1 NA NA 0 2 NA 1 0 2 0 0 2 2 NA 0 0 0 NA
## [26] 1 NA 1 0 1 2 0 NA 0 1 NA 0 NA 2 2 2 0 2 NA 2 NA NA 1 1 NA
##
## $'9'
## [1] NA NA NA 2 2 0 2 2 2 NA NA NA NA O NA O NA NA 1 2 NA O O O NA
## [26] NA O 1 O 1 NA O O 2 O NA NA O NA NA NA O NA NA NA 1 2 O NA NA
## $'10'
## [1] O NA O NA 2 NA 1 NA 1 2 O O O O 1 2 O O 2 2 NA O 2 O NA
## [26] 2 0 0 1 2 0 2 1 2 0 2 2 0 1 0 0 NA 1 0 NA NA 1 NA 0 1
##
## $'11'
## [1] 2 0 2 0 NA 0 2 1 NA 0 NA 0 NA 2 NA 0 NA NA NA NA 0 0 NA 0 2
## [26] 2 0 NA 2 2 0 0 NA 0 2 1 0 0 1 1 NA NA 1 NA 1 1 NA 0 0 NA
## $'12'
## [1] NA O O O 2 NA O 2 2 O 1 1 O NA NA 1 NA O 2 O O NA O O O
## [26] NA O 1 O NA O O NA 2 O 1 O O O 0 1 O 1 NA 1 1 1 O O NA
## $'13'
## [1] O 2 O 1 O NA O NA NA 1 O 1 NA O 1 NA NA O 2 O NA O 2 1 1
## [26] 1 0 2 2 NA 0 0 1 0 NA NA 2 1 NA 1 0 2 2 0 0 NA 0 1 0 NA
## $'14'
## [1] 1 0 0 2 NA 0 NA 2 1 0 2 NA NA 0 1 0 1 2 2 0 0 1 1 0 NA
## [26] NA NA NA NA NA O 1 O 1 O 0 NA NA O 0 NA NA O 1 2 NA 2 1 O 0
##
## $'15'
## [1] O O NA NA 1 1 1 0 O 1 NA 1 1 2 NA O NA NA O NA O 2 NA O NA
## [26] NA 2 2 0 NA 1 NA 2 1 0 0 0 NA 0 2 NA NA 2 NA 2 2 0 0 2 NA
## $'16'
## [1] 2 NA O NA 2 NA 2 NA 1 O O O NA O 1 1 2 2 O 2 2 1 NA NA NA
## [26] 0 2 1 0 1 NA NA 0 1 2 0 1 0 0 0 1 2 NA 1 1 0 NA 1 2 NA
##
## $'17'
## [26] 1 NA NA NA NA O NA NA O NA 1 2 2 O NA O 2 O O 2 NA O NA 1 2
##
## $'18'
## [1] O NA NA 2 NA O O NA O NA NA O NA O 2 2 O 1 NA NA 2 O 1 1 2
## [26] O 2 2 1 NA O O NA O NA O 2 O NA O 1 NA NA 1 NA O 1 NA O NA
##
## $'19'
## [1] 2 1 2 0 0 NA 0 NA 0 2 0 2 NA NA 1 1 0 0 0 1 2 NA NA 0 2
## [26] O NA NA O NA O 2 2 1 O NA 2 O NA NA 1 2 O 2 NA NA NA O NA 2
##
## $'20'
## [1] 1 NA NA O NA O 2 O 2 2 O O 1 O NA O O O 1 1 1 NA O O 2
```

```
## [26] 2 0 1 NA 0 2 NA NA 1 1 0 0 2 0 0 0 1 2 1 1 2 1 NA NA 2
##
## $'21'
## [1] NA NA 1 0 0 0 0 2 1 NA 1 0 0 0 NA 2 NA 1 2 1 NA NA 2 0 NA
## [26] NA NA O O NA 2 NA 1 NA NA NA O O 2 2 1 2 O 1 2 2 NA 2 NA NA
## $'22'
## [1] 0 1 2 1 1 0 0 0 2 NA 2 0 2 1 0 NA 2 NA 0 0 NA 2 0 0
## [26] NA 1 NA O 2 NA NA NA 2 2 NA NA NA O NA O 1 2 NA 1 O 0 NA
##
## $'23'
## [1] 2 0 1 0 1 1 2 NA 0 NA 0 NA NA 2 0 0 0 NA 0 0 NA 1 NA NA NA
## [26] 2 1 1 NA 0 0 0 2 NA 0 0 0 NA NA 0 NA NA 1 1 NA NA 0 1 1 0
##
## $'24'
## [1] NA 2 1 NA 0 NA 1 NA 2 1 0 NA 1 1 1 0 NA 1 NA 1 NA 2 1 0 0
## [26] O NA 1 2 1 NA 1 NA 1 O O NA NA 1 2 NA O O O 2 O O NA NA
##
## $'25'
## [1] O 1 NA NA O 2 O O 2 O O NA O NA O O O 2 O NA NA O O 1 NA
## [26] O O NA NA NA 1 NA O 2 O O 2 NA O O NA 1 1 O 2 2 O 2 2 1
## $'26'
## [1] NA 1 1 0 NA 0 0 2 2 0 2 1 0 NA 0 0 1 1 0 NA 0 1 1 0 NA
## [26] 2 1 1 NA 1 0 2 0 NA 1 NA NA 1 0 0 0 0 NA 1 1 1 NA 0 NA 2
## $'27'
## [1] 1 0 0 NA 0 0 NA NA 0 1 NA 0 1 0 NA 0 0 0 NA NA NA 2 0 0 0
## [26] NA O NA O 2 O NA NA 1 O 2 NA O NA O O 2 O NA 1 O NA O 1 O
##
## $'28'
## [1] 1 NA NA 1 O 2 NA 2 2 2 1 2 NA O 2 NA O 2 1 O NA NA NA NA 2
## [26] O O 1 2 O 2 2 NA NA O NA 1 2 NA O 2 NA 2 O NA 1 O 2 O 1
## $'29'
## [1] O O 2 NA NA O O NA 2 O NA O O NA 2 O O O NA NA 1 1 2 NA NA
## [26] 2 2 2 NA 0 0 0 1 0 NA 1 NA NA NA 1 0 2 2 2 NA NA 2 1 NA 1
##
## $'30'
## [1] NA NA O 2 O O 1 O 2 1 2 NA NA 1 O 1 O 0 2 NA NA 2 O 1 2
## [26] NA 2 NA O NA O NA O 1 O NA O NA 1 NA O O O 2 O NA O NA 2 O
##
## $'31'
## [1] O 1 NA NA O 1 NA NA 2 2 O O O NA 2 1 1 O NA O O 2 2 1 0
## [26] NA 1 0 NA NA 2 2 0 NA 0 2 NA 0 1 NA 1 1 1 0 2 2 NA 0 0
##
## $'32'
## [1] O NA NA NA NA NA NA NA 2 O NA O O O NA NA NA 1 O NA NA O O 0 1
## [26] O 1 1 NA 2 NA O 1 2 1 NA 2 NA 2 O NA NA 2 O O 2 NA O O NA
## $'33'
## [1] O NA NA NA O O O NA O 2 NA 1 1 O NA NA O NA O 1 2 O NA 2 NA
## [26] 1 2 0 1 0 0 0 2 0 0 0 1 1 1 0 2 2 0 0 NA 2 NA 0 0 1
##
```

```
## $'34'
## [1] O 1 O 2 NA 2 NA O 1 1 O O O NA 1 1 O 1 NA O O NA 2 1 1
## [26] O O 2 NA O NA O 1 O 1 NA O NA O 2 2 NA O O 1 O 2 O O 1
## $'35'
## [1] 1 NA NA NA O 1 O 1 NA O NA O O 2 NA NA NA O 1 O O NA O O NA
## [26] NA 1 2 0 1 NA 1 NA 0 2 NA NA 1 NA 0 0 NA NA NA 1 2 NA NA 0 NA
## $'36'
## [1] 1 2 0 1 0 1 0 1 1 NA 0 NA 0 2 2 0 1 1 2 0 NA 1 1 1 NA
## [26] 2 1 0 NA 2 NA NA 1 NA NA 1 2 0 NA NA 0 1 NA 2 1 2 1 1 2 1
##
## $'37'
## [1] O 1 2 2 2 NA O 2 O O 2 2 O NA NA 2 O NA O O O NA NA 2 NA
## [26] NA O 2 O 1 O O 1 O O 0 1 O 2 NA O 1 1 NA O O 0 NA NA NA
##
## $'38'
## [1] O 2 1 1 2 2 NA O O NA O O O NA NA O NA O NA NA NA O O NA O
## [26] NA O O NA O 1 2 1 2 1 NA 2 O O O 1 O O O O NA NA NA 1
## $'39'
## [1] 0 0 0 1 2 0 0 0 NA NA 1 1 0 NA 1 2 0 NA 1 0 NA 0 2 NA 0
## [26] O NA O 1 1 1 NA O 1 NA O O NA NA NA O 1 2 NA 2 O 2 O 1 O
## $'40'
## [1] ONA 1 NA ONA NA 1 O O ONA NA O 2 O 2 O 2 O 1 1 O O 2
## [26] 2 1 0 NA 0 2 0 2 NA 0 0 0 0 NA 1
                                           2 NA 1 NA 0 NA 0
## $'41'
## [1] O 2 NA O O NA O NA 2 O 1 O NA O 2 NA 1 O 2 2 NA 1 NA NA NA
## [26] O O 2 2 NA 1 O NA 2 NA 2 NA 2 O 1 NA 2 O 0 NA NA 0 2 O NA
##
## $'42'
## [1] NA 2 1 NA NA 2 0 0 1 2 NA 2 1 NA 2 NA NA 0 NA 0 2 2 NA 0 0
## [26] 0 2 0 NA 2 0 0 1 0 0 0 2 1 1 1 NA 1 0 1 1 NA 0 2 0 0
## $'43'
## [1] NA 1 2 NA NA 0 NA 0 1 2 0 0 0 NA 1 0 NA 2 NA NA 2 NA NA 0 0
## [26] 0 2 2 2 2 0 NA 0 0 0 2 1 2 0 0 NA 0 2 0 0 NA 0 1 1 NA
##
## $'44'
## [1] O O 1 O O O 2 NA 2 2 NA 2 NA O NA 1 2 1 2 NA NA O NA O 1
## [26] O NA NA O NA O O 1 NA NA O 2 O NA NA 2 NA NA O O NA O O O
##
## $'45'
## [1] 1 NA NA NA O NA NA NA 1 O O NA NA 1 2 1 NA 2 2 NA O O NA NA NA
## [26] NA O 1 O NA 1 NA O 2 NA NA O 2 2 1 O 2 O 2 2 NA O O NA O
##
## $'46'
## [1] 1 NA O NA O O O O 2 NA O NA NA O O O 2 NA O O O 2 NA 2 O
## [26] 1 NA O O NA NA NA NA O NA NA O 1 O 2 O O 2 O 2 O 1 O 1 1
##
## $'47'
## [1] NA NA O NA O 1 2 NA NA NA O NA O NA O 0 0 1 NA 2 1 NA O 2 1
```

```
## [26] O O 2 2 O NA NA NA 2 1 NA O O O NA 1 NA 1 NA NA NA 1 NA O NA
##
## $'48'
##
    [1]
         2
               2 NA
                           0
                              0
                                 0
                                    0
                                       2
                                          2
                                             0
                                                O NA NA
                                                         2 NA
                                                                   2
                                                                     0
                                    2 NA
##
   [26]
               1 NA
                        O NA
                                 1
                                          0
                                             0
                                                0
                                                   O NA
                                                         0
                                                                O NA NA
##
## $'49'
    [1]
##
         1 0 0
                  2
                     0
                        1
                           0
                              0
                                O NA NA
                                          1
                                             1
                                                1
                                                   0
                                                      0
                                                         0
                                                                O NA
## [26]
         O NA NA NA
                     0
                        1
                           0
                             1 NA
                                    0
                                       2
                                          2 NA
                                                   1
                                                      1
                                                             0
                                                               O NA NA
                                                                         2 NA NA
##
## $'50'
    [1]
##
               0
                  O NA
                           O NA NA NA
                                       0
                                          2
                                             1 NA
                                                   O NA NA NA
                                                               2 NA NA
                        1
                        2
                           2 NA
                                 2
                                    1
                                       2
                                          1 NA
                                                0
                                                   0
                                                      O NA
                                                                2
                                                                   0
                                                                      2
            O NA
                  1
                                                             0
```

• In one statement, use the lapply function to create a list whose keys are the column number and values are themselves a list with keys: "min" whose value is the minimum of the column, "max" whose value is the maximum of the column, "pct_missing" is the proportion of missingness in the column and "first_NA" whose value is the row number of the first time the NA appears.

lapply(split(R, col(R)), function(R)(c(min = min(R, na.rm = T), max = max(R, na.rm = T), pct_missing =

##	\$'1'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##	0	.00	2.00	0.24	1.00
##					
##	\$'2'				
##		min	max	<pre>pct_missing</pre>	
##	0	.00	2.00	0.26	4.00
##					
##	\$'3'				
##				<pre>pct_missing</pre>	
##	0	.00	2.00	0.34	3.00
##					
##	\$'4'				
##		min	${\tt max}$	<pre>pct_missing</pre>	
##	0	.00	2.00	0.26	1.00
##					
##	\$ '5'				
##				<pre>pct_missing</pre>	_
##	0	.00	2.00	0.26	2.00
##					
##	\$'6'				
##		min	${\tt max}$	<pre>pct_missing</pre>	$first_NA$
##	0	.00	2.00	0.34	1.00
##					
##	\$'7'				
##		min	max	<pre>pct_missing</pre>	first_NA
##	0	.00	2.00	0.28	6.00
##					
##	\$'8'				
##				<pre>pct_missing</pre>	$first_NA$
##		0.0	2.0	0.3	4.0
##					

##	\$ '9'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.48	1.00
##					
##	\$'10'				
##		min	max	pct_missing	first_NA
##		0.0	2.0	0.2	2.0
##					
##	\$'11'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.34	5.00
##					
##	\$'12'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.22	1.00
##					
##	\$'13'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.26	6.00
##					
##	\$'14'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.0	2.0	0.3	5.0
##					
##	\$'15'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.34	3.00
##					
##	\$'16'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.00	2.00	0.26	2.00
##					
##	\$'17'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.00	2.00	0.42	2.00
##					
##	\$'18'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.00	2.00	0.36	2.00
##					
##	\$'19'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.00	2.00	0.32	6.00
##					
##	\$'20'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.0	2.0	0.2	2.0
##					
##	\$'21'				
##		min		<pre>pct_missing</pre>	
##		0.00	2.00	0.36	1.00
##					
##	\$'22'				
##		min	max	<pre>pct_missing</pre>	first_NA

##		0.00	2.00	0.32	10.00
			2.00	0.02	20100
##	\$'23'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.34	8.00
##					
	\$'24'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.32	1.00
	\$'25'				
##		min	max	pct_missing	first NA
			2.00	0.26	3.00
##					
##	\$'26'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.24	1.00
##					
	\$'27'				
##		min		pct_missing	
##		0.00	2.00	0.32	4.00
	\$'28'				
##		min	max	pct_missing	first NA
		0.0		0.3	
##					
##	\$'29'				
		min		<pre>pct_missing</pre>	
##		0.00	2.00	0.34	4.00
##					
	\$'30'				
##		min		pct_missing	
## ##		0.0	2.0	0.3	1.0
	\$'31'				
##	-		max	pct_missing	first NA
##				0.26	
##					
##	\$'32'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.00	2.00	0.42	2.00
##					
	\$'33'				C
##		min		pct_missing	
## ##		0.00	2.00	0.24	2.00
	\$'34'				
##	ΨΟΨ	min	max	pct_missing	first NA
##		0.0	2.0	0.2	5.0
##			•		
##	\$'35'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.44	2.00
##					

	\$'36'				
##		min		<pre>pct_missing</pre>	
##		0.00	2.00	0.24	10.00
##	+ / /				
	\$'37'	_			
##		min		pct_missing	
##		0.00	2.00	0.26	6.00
##	Φ(20)				
##	\$'38'	min	mo	not missing	finat NA
##		min 0.0	max 2.0	pct_missing 0.3	
##		0.0	2.0	0.3	7.0
	\$'39'				
##	ΨΟυ	min	max	pct_missing	first NA
##		0.00	2.00	_	
##		0.00	2.00	0.20	0.00
	\$'40'				
##	4 0	min	max	pct_missing	first NA
		0.00	2.00	0.24	
##					
##	\$'41'				
##		min	max	<pre>pct_missing</pre>	first_NA
##		0.00	2.00	0.34	3.00
##					
##	\$ '42'				
##		min		<pre>pct_missing</pre>	
##		0.00	2.00	0.24	1.00
##	+ / /				
	\$'43'				6.1 . 37.4
##		min		pct_missing	
## ##		0.00	2.00	0.28	1.00
	\$'44'				
##	Ψ 44	min	mav	pct_missing	first NA
##		0.00	2.00	0.34	
##		0.00	2.00	0.01	0.00
##	\$ '45'				
##		min	max	pct_missing	$first_NA$
##		0.0	2.0	0.4	2.0
##					
##	\$'46'				
##		min	max	<pre>pct_missing</pre>	$first_NA$
##		0.00	2.00	0.28	2.00
##					
	\$'47'				
##		min		<pre>pct_missing</pre>	
##		0.00	2.00	0.42	1.00
##	Φ(40)				
	\$'48'			not missis	finat NA
## ##		min 0.00	max 2.00	pct_missing 0.24	
##		0.00	2.00	0.24	4.00
	\$'49'				
##		min	max	pct_missing	first_NA
				0	· -

```
##
           0.00
                         2.00
                                       0.24
                                                   10.00
##
##
   $'50'
##
            min
                          max pct_missing
                                                first_NA
##
           0.00
                         2.00
                                       0.28
                                                     5.00
```

• Set a seed and then create a vector v consisting of a sample of 1,000 iid normal realizations with mean -10 and variance 100.

```
sd = sqrt(var) var = sd^2
```

```
set.seed(5)
n <- 1000
v <- rnorm(n, mean=-10, sd = sqrt(100))</pre>
```

• Repeat this exercise by resetting the seed to ensure you obtain the same results.

```
set.seed(5)
n <- 1000
v <- rnorm(n, mean=-10, sd = sqrt(100))
v</pre>
```

```
##
      [1] -18.408554807863
                             3.843593434786 -22.554918626277
                                                               -9.298572335727
##
            7.114408727024 -16.029079814547 -14.721663851669 -16.353713125243
                                               2.276303438535 -18.017794546528
##
      [9] -12.857736348662
                           -8.618917751961
##
     [13] -20.803926000274 -11.575343561069 -20.717600398779 -11.389861405498
##
     [17] -15.973130947129 -31.839667600916
                                             -7.591827440633 -12.593554067343
##
     [21]
           -0.994880546667
                            -0.581306061323
                                               4.679619034197
                                                               -2.932389104421
##
     [25]
           -1.809910697378 -12.934818487025
                                               4.185890724859
                                                                4.987738274065
##
     [29] -16.570820944857 -18.527954400020
                                              -6.840849616385
                                                                1.096941676589
##
     [33]
           12.154605716780
                             2.171036389573
                                               4.792217866383
                                                               -0.484261675821
##
     [37] -20.095326459626 -30.004727386380 -27.621858724521 -11.426081259551
##
     [41]
            5.500603694831 -18.024231817148 -10.745789198827
                                                                8.956679547225
##
     [45] -14.565689409204 -4.377766373570 -18.870085115114 -14.602445761952
##
     [49] -17.243284860675 -10.692111558341
                                               4.632485629487
                                                               -8.122739025669
##
            0.220228613308 \ -15.918348329510 \ -11.122006550361 \ -19.249530858657
     [53]
##
     [57]
           -2.466952017045 -11.126090702030 -10.640909282198
                                                               -7.667247064542
##
     [61] -21.365828031485 -1.451695768715 -15.783704189619
                                                               -5.036384609698
##
         -17.600579306118 -13.413862703994 -31.023291204778 -13.017022813689
##
     [69] -22.723834421812 -12.796661098092 -12.040973208196 -12.256141855174
##
     [73]
           -6.529715479779
                           -9.676321574021
                                             -5.864687103282 -11.553484766254
##
     [77]
           -0.265146075170 -8.789098572265
                                              -8.108263085225 -15.628850698260
##
           -5.015838349987 -27.423024933631
                                              -0.244709027963 -10.240828727364
     [81]
##
     [85]
           -3.243155246859 -17.103096050534
                                              13.872326463774 -14.734320121965
##
     [89] -10.757725566668 -15.218400564783
                                              -0.739528654376 -20.624111716142
##
           -4.429661337020
                            -0.992694150878
                                             -0.100543163118
                                                               -6.163919124203
     [93]
##
     [97] -13.465838136987 -15.401892500044 -11.8255555932668 -10.592996499938
##
    [101] -29.953869678238
                             1.353112811710
                                                              -7.915167368927
                                             -3.242054342462
##
    [105] -10.578456420851
                            -1.061885858974 -12.288653807756 -29.656526496405
##
    [109] -17.535104458236
                             2.801516244401 -19.529049597422
                                                                6.223793930094
##
           16.001420201224
                            -8.603514948780 -23.507196731275 -2.010689820521
    [113]
    [117] -25.549958404453 -5.362799432060 -9.475704354268 -12.020318007205
```

```
[121]
           1.708564220070 -1.151551444280 -23.178886038772 -26.432509356051
           0.592503872462 -7.099164186113 -14.000334988939
##
    [125]
                                                            2.430957780647
    [129] -23.664105180054 -24.414133018132
                                           3.485490550278 -29.785283396939
    [133] -22.409505840471 -11.040391278101 -2.670270413566
                                                           -5.443203767402
##
##
    [137]
         -7.119204524570 -20.736909106763 -3.512574605363
                                                           -7.008377214495
    [141] -17.959949930363 -10.293533971599 11.802357011983
##
                                                           -0.425815313656
    [145] -13.050486348849 -14.184033388889
                                          -9.000459509964 -12.298096181618
##
    [149] -24.152148761828 -13.925988623094 -0.539114500504
                                                           -2.482291278866
##
    [153] -15.173768484891 -1.916640216054 -16.145352233324
                                                             2.382589282696
##
    [157] -13.380951424705
                          1.963663630902 -14.433183786245
                                                           -8.138851027497
    [161] -36.213448126526 12.462546198522 -9.065683189242
                                                             6.272800933659
     \begin{bmatrix} 165 \end{bmatrix} \ -15.109175491651 \ -16.593808376624 \ -10.401901602379 \ -11.186940017694 
##
##
    [169] -10.196568645371 -14.856784855791 -24.401475242738
                                                           -8.562311222607
##
    [173] -22.345866542670 -27.525012099284 -10.354962870507
                                                           -6.679650913982
##
           5.722882563282 -20.694705723933 -0.837134763853 -15.949928962835
    Γ177]
##
    [181]
          11.816466752786 -16.837732862980 -2.499407861985
                                                           -0.256173661449
    [185] -22.644734756613 -12.774214235846 -11.893986947641 -13.840249460645
##
##
         -2.594119768234 -21.683383911212 -3.324613018651
                                                           -6.337630503510
    [193] -15.149429938906 -5.494317600630 -11.877203797864
##
                                                            3.390693748472
##
    [197]
          -1.837808157221 -9.177982358526 -16.508627214281
                                                           -2.735909823588
##
    [201] -11.136781772556 -12.951008265406
                                          -0.108315308642 -17.751318058915
         -7.241017333831 -5.892183521632 -3.888168361215
                                                           -0.634292801086
##
    [209] -13.675417033988 -2.596232414025
                                           2.185330550575 -3.708655658655
##
##
    [213]
          -4.722536870171 -14.722553045383
                                           -1.762848438316 -14.277882453683
##
    [217] -11.426439273501
                           4.187830490975 -5.128660987114 -3.965585489255
    [221]
          -7.891671211629 -10.332992058426 10.251969893051 -13.707867497044
##
     \begin{bmatrix} 225 \end{bmatrix} \ -25.782344495676 \ -11.215719524032 \ -27.966768164354 \ -14.755915430807 
##
    [229] -18.841023211790 -44.980589839012 -13.819833688977
                                                           -0.223118749936
##
    [233] -15.580409458197 -16.264551466054 -15.304512253743
                                                           8.976215868765
##
    [237]
           3.955406776193 -17.460258735475 -13.055730759423
                                                            1.696781686167
##
    [241]
         -6.956128225256 -11.174982500921 -10.600855311923
                                                            4.709389470407
##
    ##
    [249] -21.588163079869 -5.909810824120 -12.582070558953 -12.668994392453
         -8.358440436223 -13.934589473704 -28.437372461671 -25.422882667314
##
    [253]
##
    [257] -15.862403595313 -18.521389093399
                                          -2.216754447079 -10.303170743814
    [261] -24.556575819274 -9.062150769358 -0.176507777429 -15.967101618036
##
##
         -9.251951493515 11.974294308226
                                          -2.049767877962 -15.389422121212
##
    [273] -17.311706433707
                           4.653240833851
                                            8.586153177076 -9.965029726201
##
    ##
    [281]
         -8.748456118685 -17.724341139642 -20.129661227175
                                                           -0.330803991241
    [285] -14.233273003100 -18.315994547729
                                           3.999572669764 -9.829860405126
##
##
    [289]
           8.474969533898 -16.863393849524 -12.187240343770 -3.174070937309
##
    [293]
         -4.758699754606 -9.194500215507
                                          -9.462144575981 -17.372589881192
##
    [297]
         -0.335619386235 -0.156931486725
                                          -8.127090591315
                                                           -7.270142466753
    [301]
           2.101460938081 -8.113428364998
                                            9.624986717112 -8.612880607715
##
##
    [305] -25.786273543722 -17.970212711606
                                            2.243538823335 -13.653335600032
##
    [309] -11.625902802538 -4.395208206223 -18.607256292097
                                                             2.386344918193
##
    [313]
         -2.325642508412 -20.874091058541 -9.324962273272
                                                             6.051405650204
##
    [317]
           2.322294300139 -13.791137947111 -23.498665837394
                                                           -6.350819003626
                           3.746533246060 -7.081042627373 -2.894082897278
##
    [321] -13.635949245998
##
    [325] -19.377609195422 -21.140631274282 -3.656280447981 -12.311929020707
##
    [329] -23.681942035459 -17.549074462007 -21.255966485424 -12.193592472707
    [333] -11.343079516958 -18.180206110392 -5.276658433326 -18.692561299721
```

```
[337] -23.322883414694 -9.294371302955 -5.359068136384 -7.108415007645
##
   [341] -38.849410829094 -33.346917752388 -27.308910466768 -1.749904136181
   [345] -20.450395511171 -18.771933739183 -14.003898421516 -22.681889722295
##
   [349]
         -8.614136094004
                           1.835716043282 -31.105550729875
                                                         -7.393238904631
##
##
   [353]
         -0.544331743063 -16.199606197857 -10.091007394904
                                                         -4.797745772504
           8.062587078908 -29.125198979201 -8.007179249277
                                                         -7.235150469618
##
   [357]
   [361] -18.362764273583 10.295974148845 -5.708940134388
                                                           0.639478660660
##
   [365] -16.058230530871
                           0.743730457831 -17.123476398959 -11.788601329005
##
    [369]
         -5.002399609665 -11.995711405747 -9.101051954721
                                                           0.049100582958
##
   [373] -28.729416725919 -4.752154635982 -15.146273370969
                                                           2.109325695922
   [377] -15.127953770998
                           0.906256520853 -5.081551042632 -12.426289716873
                           1.886395727893 -1.047388093109 -1.314593629308
##
   [381]
         11.160472476042
##
   [385]
           6.561779651733
                           4.456359922537 -2.553995728922 -16.901902180113
   [389] -17.914117612371 -12.620811906477 -14.079171078140 -7.986889443606
##
##
   ##
   [397] -15.921389104291
                         -4.954563028428 -25.226970811374 -13.588751976189
   ##
##
         -5.420249427183 -17.125024603128 -13.784383285681 10.068609330801
   [409] -15.501683536525 -29.807861661627
                                          0.345981307155 -18.448397163079
##
##
   [413] -20.169491169750 -3.252441711043 -10.332267760097 12.454914081593
##
   8.041417550316
                                         -5.553628752711 -21.909401000818
   [421] -10.704909153343
   [425]
          -7.517708971977 -11.189781601893 -3.130110198244 -24.077777917780
##
                         -3.622984696402 -19.481236861265 -25.155319715981
##
   [429]
          -4.246779592158
         -7.334618115042 -7.084677396126
##
   [433]
                                          7.089224384453 -5.232981523904
   [437]
           3.075518037927
                           8.060126857840
                                          0.353859900621 -4.834817028085
##
   3.613674698710 -12.886621289487
##
   [445]
         -2.701485474450 -6.512411273018
##
           8.884036638165 -10.173757697067 -4.589170876756 -15.400411124466
   [449]
   [453] -10.808493963617 -10.296339578320 -11.452504839541 -10.108625955321
    \begin{bmatrix} 457 \end{bmatrix} \ -23.787187646137 \ \ -3.284643234174 \ \ -21.542054532106 \ \ \ -5.774022139756 
##
##
   [461] -13.869897261469 -22.405259848862
                                         -5.430378549917 -24.107933534977
##
   [465]
           9.339075276119 -4.304393465940
                                         -0.672202481846 -25.453473369424
         -3.983816136527 -19.507661557502
                                          3.603659375568 -12.665235899918
##
   [469]
##
   [473] -40.349457705201 -12.388199142597 -12.721867185642
                                                          1.903968032762
##
         -9.488039073964 -6.689519660497 -4.683809026465
                                                         -3.859685312047
   [477]
##
         -9.232841104419 -12.608792564282 -19.218704062694 -8.823938405802
##
   [485] -31.384102186566 -13.194195953844 -17.406944129704 -19.257914272400
          -2.420662111009 -6.404397365376 -18.292356751149 -14.457521220096
##
   [489]
   [493] -16.709120468454 -18.009169023364
                                          6.109466994028 -9.814816657695
##
   [497] -20.833993411097
                           2.894497568155 -11.439127356760 -32.880088377612
   [501] -10.847168184642 -8.009401734633
                                         2.298258303962 -9.954474694292
##
                                          7.394819880705
##
   [505] -22.946076367869 -13.971613797066
                                                           0.230209548892
##
   [509] -15.275672523016 -1.540038205486
                                         -1.784506023688 -23.357693867781
           0.431180440569 -21.229909196730
                                         -3.090767069332 -6.313944280955
##
   [517]
         -3.514866383321 -14.398303143993 -18.664208547757 -1.346993973635
##
   [521] -15.098152029424 -17.587763236291
                                          24.018720316697 -14.504159899519
##
   [525]
           7.291981467503 -17.184882908888 -4.663804040837 -10.701869317107
##
   [529] -25.505635118521 -7.265724765598
                                          8.852349774653
                                                         -1.568010033199
##
   [533]
          -6.654660801656 -9.796145337848 -20.072915382416
                                                         -5.873060429184
##
   [537] -17.670323387486 -0.750081220333
                                         -6.908505524954
                                                           9.668453631162
##
   [541] -19.375378001780 -5.795260240591 -15.392022371085 -1.314061215243
           1.501575193629 -9.823040000481 -19.278443348991 -15.057319445379
##
   [545]
                           2.103777290379 -26.982737007954 -9.053036298059
##
   [549]
           2.257331789965
```

```
##
    [553]
          -2.378606599776 13.672035885614 -10.437028197029 -9.329019550200
##
          -8.447030792860 -15.328728859535 -28.289735439669 -3.994453735202
    [557]
##
    [561]
          -9.146599166658 -13.965735613055 -26.174143136255 -10.229052535902
    [565]
          -5.937189753921 -4.909541302577
                                            5.866710769106
##
                                                            0.463117755235
##
    [569] -20.479383075758 -17.906005273274 -5.327018087132 -4.461731387697
    [573] -16.809784054659 -37.949596029788 -20.845861259345 -16.570977988622
##
    [577] -19.692907479342 -5.872367980275 -19.154102857534 -14.483159992095
                                           0.149889224187 -16.515076853809
##
    [581] -17.985020115554 -20.172878560590
##
    [585]
          -9.617841505043 -8.159213331418 -5.482774136558
                                                          -6.921199352298
##
    [589]
          -7.151417669762 -3.354489605479 -13.309747880980
                                                            4.915981333650
    [593]
         -8.279097901407 -8.088397171910 -12.796150080915 -2.249804379654
    [597] -13.358452906988 -10.105294934623 -11.391350029848 -10.534659473403
##
##
    [601]
           3.294961651692 -0.102306204240
                                           6.645657872146 -31.198836484931
    [605]
##
          -8.585191830716 -11.778062027229 -7.021160701696
                                                           1.394333480514
##
    [609]
          -8.732624674773 -14.859502570436 -20.038316908649
                                                            7.842031984627
##
    ##
                           3.200887098622 -5.107263260285 -22.023802675740
    [617]
          -9.862263851585
##
    [621] -18.735571674674 -8.880459645784
                                          5.142313799774 -6.234401625474
           2.972814416908 15.623565618611 -20.020246553487 -1.993326717485
##
    [625]
##
    [629] -20.359881686346
                           3.658774887000 -12.292210542837 -12.678130939206
##
    [633]
         -6.263089631846 -0.194644468252 12.812914197663 -4.676750338048
         -5.011692111439 -8.458994996661 -9.172267479091 -25.859772889978
##
                           7.241555082112 -7.954306983572
##
    [641] -25.295554252722
                                                            2.378090102766
                                            2.824896504923 -7.107908373717
##
    [645]
          -7.570362678311
                           0.135436534164
##
    [649] -34.036859548940 12.685936883252 -16.110400290050 -14.634798238200
    [653] -24.817114469574 -13.041409548662 -6.867348179951 -12.650185419954
##
    ##
    [661]
         -7.927017802651 -22.766392792352 -15.156694473896 -10.788956438936
##
    [665]
         -3.616515260365 -1.870749719277 -18.931847810246 -14.015955760547
##
    [669]
         -1.758720501497 -23.040107074420
                                          -1.267338542956 -3.102947320004
    [673] -18.533944947608 -3.458335309875
##
                                            4.000088064126
                                                            0.024322885671
##
    [677] -40.421103237137 -12.422741267158
                                            8.518098938743 -26.767815973311
##
    [681] -16.280176392912 -7.466663787544 -10.251887858082 -11.866206920128
    [685] -12.333797335240 17.242070482879 -37.925930102362
##
                                                           6.514171340088
                                                           -4.481324074596
##
    [689]
          16.095467149863 -16.032468797240
                                          -5.895687967058
##
    [693] -31.221467182943 -11.138993973786 -12.736714669705
                                                           -7.916229463028
##
         13.648679663872
                           6.055654175159
                                           6.538888415793 12.142716243912
##
    [701] -14.411199113908 -4.366588265008
                                            1.800894369027 -19.337733255350
    [705] -10.220070940028 -12.332465623732 -22.241461178005
                                                           -4.356858566067
##
         -2.818783808814 -17.719933377236
##
                                          -5.657666674902 -7.038387659751
    [709]
    [713] -19.716477060758 -16.409021918934
                                          -0.770779019794 -20.862925740727
          -5.399093544114 -12.181479580269
                                           3.230110657514 -7.146972360587
##
    [717]
##
    [721] -18.944713662264 -10.177601131827
                                          -5.776970278089
                                                           -8.766292886752
##
    [725] -26.584772297735 -11.278652462568 -18.905803071974
                                                           -1.030145798301
##
           3.509293665721 -20.320529450626
                                          -4.863453356274 -6.602905652241
##
    [733] -12.641078638768 -5.548974845195
                                            3.680193322704 -18.215119775135
##
    [737]
          -8.086813615118
                          4.468181155409 -20.034287706975 -3.846267831978
          -7.554143380086 -17.053527344416 -25.612190303246 -17.577140980839
##
    [741]
##
    [745]
           5.420985101659 -10.646698990415 -19.665788418222 -6.241329850320
##
    [749] -30.208101704324 -7.552074038858
                                          -9.756425653812 -19.374108395415
##
          -9.901249334498 -22.189417559531
    [753]
                                          -3.093728894419 -5.389919279314
##
    [757]
          -4.341355090294 -10.423638812117
                                          -5.055078841773 -17.731818920097
##
    [761]
           5.808632570371 -28.251635806615 -6.731248085611 -12.806893456551
##
    [765]
         -1.019028262100 -16.415268103202 -8.587992346143 -26.545119305701
```

```
[769] -29.847284995526 -15.143258630465 -29.632814120709 -6.968309184765
##
           -3.862362760284 -2.513224422317 -10.257374865110 -2.830517352809
    [773]
            0.791183585726 -11.236028205475 -2.703615772258 -7.900544363708
##
    [777]
    [781]
           -0.126865971715 \ -25.164391932070 \ -10.183597847696 \ -15.893782774950
##
##
    [785]
           -7.937441086865 -5.478574360962 -3.339473776547 -15.269770880587
          -9.748715897331 -4.480045336666 -5.849951594067 -6.459733582585
##
    [789]
    [793] -17.645999604513 -15.090991700472 -27.974375427724 -12.999655915267
##
    [797] -14.502200448503 -0.736443778746 -24.013414444284
##
                                                               2.660777704727
##
    [801] -12.375659729331 -19.143035944637
                                              4.433643263402 -10.137015828307
##
    [805] -15.303973497967 -1.902002531225 -13.352266694509 -24.391453516803
    [809]
            8.612932681250 -9.468142390273
                                            -9.516362810552 -22.963058923234
    [813] -20.720001137308 -10.205322504318 -17.084907882769
##
                                                              0.239477921104
##
    [817]
            0.823540795377 -4.452318743184
                                             5.867799611694 -7.411390543521
                             1.552432200891
##
    [821]
            2.651924760247
                                              6.734298576686
                                                             -3.703427915653
##
    [825] -21.744450796905 -2.010780246827
                                              2.099617836449 -15.448536988467
##
    [829]
            1.828370377876 -15.561691196066
                                            -2.899575258112
                                                              10.743792051553
    [833] -10.826767368597 -21.914410199602 -36.047961091743
##
                                                              -5.821087811478
##
          -8.680307204318 -5.019925036336
                                            -7.829476394510
                                                              -9.462918613658
    [841] -10.635781108375 -17.322682002783
##
                                             5.000586002350 -13.028308593571
##
    [845]
           -1.463747951267 -14.017487565080 -17.135859132682 -31.314101565976
##
    [849]
          -4.547053749930 -7.825585383664 -8.448059062468
                                                               2.495368049536
           -5.031143817014 -13.090767527393 -15.492283577197 -6.424481457692
##
           0.833901863066 -1.588595251024 -12.644799240713 -18.447493446382
##
    [857]
    [861] -14.237137300021 -7.324035660125
##
                                            -6.862123852009
                                                              -0.315767770831
##
    [865] -15.208417915128 -10.057442968787 -0.471092510455
                                                             -2.842119975268
##
    [869] -15.214794118812 -13.472529387124 -21.936159279325
                                                             -4.870341331769
##
          -9.598631221377 -3.052657451894 -1.597482966325 -16.550403661603
    [873]
          -2.372743653998
##
    [877]
                            1.974678740014 -31.780074326623 -11.491097394422
##
          -7.549643593207 -12.109977115440 -6.934218098484 -7.832304721116
    Г881]
##
    [885] -16.667213928941 -19.637463942729 -22.925099460087 -3.099440567736
##
    [889]
           11.973152177280 -10.992650993574 -15.730250621238 -18.768324080494
##
    [893]
            1.075259612299 -19.133941201756
                                             2.256126445517 -21.532241350859
##
    [897] -18.020892644438 -23.012467276107 -15.441864938798 -1.375043120950
          -2.277471688496 -19.945219160078
##
    [901]
                                            -6.596628738195 -14.366415068312
##
    [905]
           -8.049476538734 -10.812179559896
                                             4.042550445102
                                                              -3.385818240079
##
          -4.700966514262
                             6.619893276999 -13.625181243840 -24.411371708217
    [909]
##
    [913]
            6.385781997361 -29.233654056437
                                            -6.902476781712 -1.712048612673
##
    [917] -24.619868114573 -11.034585241324
                                             1.319492290326 -16.055966719190
    [921] -14.539842757298 -10.976120225501 -13.370737212744
                                                              -7.498059291761
##
          -2.749034997568 -26.839391924638 -17.573406981580
##
                                                             -9.757758481836
    [925]
    [929] -29.311259936488 -6.685376591689 -13.760447098014 -2.640777495024
    [933] -18.332662690701 -14.801246394800 -34.066179953337 -5.871069210814
##
##
    [937] -21.743993170410 -8.592672372483 -19.623332012699 -15.041854334387
##
          -4.987227322622
                             0.300179946046 -17.782200085523
                                                             -3.945983970232
    Г941]
##
    [945] -21.992010695461 -25.587553720289 -6.746547644624
                                                              -4.571484309491
          -6.955760090322 -16.837510735254 -8.992992276882 -1.457139455632
##
    [949]
##
    [953] -13.813669822219 -15.751944010333 -19.159624772940 -17.027351387257
##
    [957]
           -6.687128070614
                             5.253743754699 -17.291469450897 12.357632396401
##
    [961]
           -5.261372414875
                             6.140322759885 - 7.748485990930 - 17.722730105545
##
    [965]
           -7.962098379411
                             0.974219721905 -12.683949861151 -24.533882678573
##
           -7.619204154395 -3.569402923712 -17.084300581899 -16.130426794882
    [969]
##
    [973]
           -8.616704547317 -3.287248252000 -4.395097094312
                                                               3.009143447609
##
    [977] -29.295576059374 -32.806828746086 -22.366465165706 -7.955842747390
##
    Г981Т
          -1.078687720968 -4.533541246811 -31.254993790641 -7.337477592592
```

```
## [985] -11.165343963540 -15.442772126946 -13.017272689548 -10.421837281536

## [989] -3.140296893955 -21.069152693408 11.744637367121 -13.122772252072

## [993] -6.066473565624 -13.943691879243 8.395464570109 -30.294484206949

## [997] -25.579031939248 5.155938158397 -20.100748519180 0.897216039149
```

 \bullet Find the average of v and the standard error of v.

```
avg_v <- mean(v)
avg_v
## [1] -9.82600541</pre>
```

```
se_v <- sd(v)/n
se_v</pre>
```

[1] 0.010120151595

• Find the 5%ile of v and use the qnorm function to compute what it theoretically should be. Is the estimate about what is expected by theory?

```
fifth_percentile <- quantile(v, probs = 0.05)
fifth_percentile

## 5%
## -26.593924482

qnorm(0.05, mean = -10, sd = sqrt(100))</pre>
```

```
## [1] -26.44853627
```

 \bullet What is the percentile of v that corresponds to the value 0? What should it be theoretically? Is the estimate about what is expected by theory?

```
ecdf(v)(0)
## [1] 0.84
pnorm(0, mean = -10, sd = sqrt(100))
```

[1] 0.84134474607