CHAPTER 3

Atomic and Ionic arrangements

Atomic and Ionic arrangements

- No Order: Monoatomic gases (Noble gases)
- Amorphous: Short range order. Kinetics of the process by which the material was made did not allow for the formation of periodic arrangements.
- Crystalline: Long-range order. Atoms are situated in a repeating or periodic array over large atomic distances

Crystalline Materials

- Single crystal: One large crystal (optoelectronics). Absence of defects
- Polycrystal: Union of various small crystals (grains). Boundaries between grains are important.
- Liquids crystals: Polymers that due to external stimulus go from "normal" liquids to organized liquids.

Crystalline structure

- Lattice: Collection of points in a periodic patter where, where the surrounding of each point is identical.
- Basis: Repetition of a lattice point.

 Unit cell: A repetitive pattern of a small groups of atoms form. Simplest and smallest repeating unit in a crystal.

Crystal Systems

Cubic

$$\alpha = \beta = \gamma = 90^{\circ}$$
$$V = a^{3}$$

$$a \neq b \neq c$$

$$c \quad \alpha = \beta = \gamma = 90^{\circ}$$

$$V = abc$$

Hexagonal

$$a = b \neq c$$

$$\alpha = 120^{\circ}$$

$$\beta = 60^{\circ}$$

$$\gamma = 90^{\circ}$$

$$V = a^{2}c$$

Lattice points

Number of lattices per cube

$$\frac{lattice\ points}{unit\ cell} = (\#\ of\ corners) \times \frac{1}{8} + (\#\ of\ faces) \times \frac{1}{2} + (\#\ of\ bodies) \times 1$$

8 corners

Cubic unit cells

Simple cubic

Body-centered cubic

Face-centered cubic

Problem

• Calculate the number of lattice points per cubic unit cell:

Simple cubic (SC)

Body centered cubic (BCC)

Face centered cubic (FCC)

Number of lattice points: SC

$$\frac{lattice\ points}{unit\ cell} = (\#\ of\ corners) \times \frac{1}{8} + (\#\ of\ faces) \times \frac{1}{2} + (\#\ of\ bodies) \times 1$$

Number of lattice points: BCC

$$\frac{lattice\ points}{unit\ cell} = (\#\ of\ corners) \times \frac{1}{8} + (\#\ of\ faces) \times \frac{1}{2} + (\#\ of\ bodies) \times 1$$

Number of lattice points: FCC

$$\frac{lattice\ points}{unit\ cell} = (\#\ of\ corners) \times \frac{1}{8} + (\#\ of\ faces) \times \frac{1}{2} + (\#\ of\ bodies) \times 1$$

Atomic radius and lattice parameter

 a_0

$$a_0 = 2r$$

SC

$$a_0$$

$$a_0 = \frac{4r}{\sqrt{3}}$$

BCC

$$a_0 = \frac{4r}{\sqrt{2}}$$

FCC

Calculate the radius of aluminum (Al) and iron (Fe)

radius of aluminum (Al)

Table 3-2 Askeland Table 3.1 Callister eClass

radius of iron (Fe)

Coordination number and packing factor

- Coordination number: number of nearest-neighbor or touching atoms.
- Packing factor: fraction of volume occupied by atoms in a unit cell.

$$PF = \frac{\left(\#\frac{atoms}{unit\ cell}\right)(volume\ of\ atom)}{volume\ unit\ cell}$$

Calculate the packing factor of silver (Ag)

PF of Ag

Table 3-2 Askeland Table 3.1 Callister

Density

Atomic mass

Avogadro's number $(6.0\overline{23} \times 10^{23} atoms/mol)$

• Determine the unit cell structure of indium (In). FCC, BCC or SC?

Tetragonal
$$a_0 = 0.3252 nm$$

$$c_0 = 0.4946 nm$$

$$Ar(ln)= 114.82 \frac{g}{mol}$$

$$\rho = 7.286 \frac{g}{cm^3}$$

Unit cell structure of In

Tetragonal $a_0 = 3.252 \times 10^{-8} \ cm$ $c_0 = 4.946 \times 10^{-8} \ cm$ Ar(ln)= $114.82 \frac{g}{mol}$ $\rho = 7.286 \frac{g}{cm^3}$

Crystallographic Points, Directions, and Planes

Points: atomic positions

Directions: Vector

Planes: cut section that modifies the interaction with

defects

Points

	Point coordinates		
point	X(a)	X(b)	X(c)
	1	0	0
	1	1	1
	0	1/2	1
<u> </u>	1/2	1	1/2

Miller indices: DIRECTIONS

- 1. Determine the coordinates of 2 points
- 2. Find vector connecting 2 points
- Clear fractions
- 4. Enclose values in [], no commas, no minuses

• Determine the Miller indices or crystallography direction of the following systems

Miller indices: PLANES

- identify plane intercepts x,y,z
- 2. take reciprocals of x,y,z
- clear fractions
- 4. enclose values in (), commas

• Determine the plane Miller indices of the following systems

Recap: Miler's indices

Directions	Planes
Determine the coordinates of 2 points (Head and tail)	Identify plane intercepts x,y,z (Where they cut the axis)
Find vector connecting 2 points: Subtract the head from the tail	Take reciprocals of x,y,z (1/x,1/y,1/z)
Clear fractions	Clear fractions
Enclose values in [], no commas, no minuses	Enclose values in () or ()* if it is a family of planes, commas, minuses

Hexagonal structure

3 coordinate system:

$$h' = a_1$$
; $k' = a_2$; $l' = c$

4 coordinate system:

$$h' = a_1$$
; $k' = a_2$; $i' = a_3$; $l' = c$

$$h = \frac{1}{3}(2h' - k')$$

$$k = \frac{1}{3}(2k' - h')$$

$$i = -\frac{1}{3}(h' + k')$$

$$l = l'$$

Hexagonal coordinates

i.
$$a_1 = 1$$
 $a_2 = -\frac{1}{2}$ $a_3 = -\frac{1}{2}$
ii. $a_1 = \frac{1}{2}$ $a_2 = \frac{1}{2}$ $a_3 = -1$
iii. $a_1 = -\frac{1}{2}$ $a_2 = 1$ $a_3 = -\frac{1}{2}$
iv. $a_1 = -1$ $a_2 = \frac{1}{2}$ $a_3 = \frac{1}{2}$
v. $a_1 = -\frac{1}{2}$ $a_2 = -\frac{1}{2}$ $a_3 = 1$
vi. $a_1 = \frac{1}{2}$ $a_2 = -1$ $a_3 = \frac{1}{2}$

Determine the plane Miller indices

Interplanar Spacing for Cubic System and Tetragonal Systems

The spacing between planes in a family $\stackrel{*}{\sim}$ with the Miller indices h, k and l is denoted by \mathbf{d}_{hkl} .

A formula relating this distance to the Miller indices and the lattice constant (a_0) exists for each crystal system. The equation for a cubic system is:

$$d_{hkl} = \frac{a_0}{\sqrt{h^2 + k^2 + l^2}}$$

$$\#d_{hkl} = \frac{D(distance\ between\ coordinate\ points)}{d_{hkl}}$$

• Determine the number of interplanar spacings in copper (Cu) if the miller indices are [111]

$\#d_{hkl}$ of $\mathsf{C}\mathsf{U}$

$$a_0 = 3.61 \times 10^{-8} cm$$
 FCC h=1 k=1 l=1

Crystal structure of ionic materials

Closed packed structures of anions with cations filling interstitial sites.

Anions radii > Cations radii

$$Radius\ ratio = \frac{r^+}{r^-}$$

Coordination number

Crystal structure of ionic materials: What does the coordination number tell us?

Radius ratio	Coordination number	Type of structure (Coordination)
< 0.155	2	linear
0.155-0.225	3	triangular
0.225-0.414	4	Tetragonal
0.414-0.732	6	octahedral
0.732-1.0	8	Cubic (SC, BCC, FCC)
>1.0	12	Cubic Closest packed (CCP) Hexagonal closest packed (HCCP)

Crystal structure of ionic materials: Group table

Structure	FCC	FCC	FCC
# ion/uc	4 Per Ion	4 per ion	4 Cation +8 Anions
Lattice parameter	$a_0 = 2r_C^+ + 2r_A^-$	$a_0 = \sqrt{\frac{4}{3}} \ (r_C^+ + r_A^-)$	$a_0 = \frac{4(r_C^+ + r_A^-)}{\sqrt{3}}$
Principal example	NaCl	ZnS	CaF2
Most common	MgO	GaAs	ΰ ₀₂ -2
Other Examples	FeO	III-V Semiconductors	ThO2, CeO2, ZrO2

- For NiO and UO2, determine (do not assume cubic):
- a) Lattice parameter
- b) Packing factor
- c) Density

NiO

Appendix B (Askeland) $r_{Ni}^{+2} = 0.069 \text{ nm}$ $r_{0}^{-2} = 0.132 \text{ } nm$ Table from eClass

Radius ratio	Coordination number	Type of structure (Coordination)
< 0.155	2	linear
0.155-0.225	3	triangular
0.225-0.414	4	Tetragonal
0.414-0.732	6	octahedral
0.732-1.0	8	Cubic (SC, BCC, FCC)
>1.0	12	Cubic Closest packed (CCP) Hexagonal closest packed (HCCP)

NiO

$$Appendix B (Askeland)$$

$$r_{Ni}^{+2} = 0.069 \text{ nm}$$

$$r_{0}^{-2} = 0.132 \text{ } nm$$

$$Ar(Ni) = 57.71 \frac{g}{mol}$$

$$Ar(O) = 16.0 \frac{g}{mol}$$
Table from eClass

Diffraction Techniques for crystal structures

Bragg's Law: The secondary waves interfere with each other to produce the diffracted beam.

$$\lambda = 2dsin\theta$$

$$sin\theta = \frac{\lambda}{2d_{hkl}}$$

$$sin\theta = \left(\frac{\lambda}{2a_0}\right)\sqrt{h^2 + k^2 + l^2}$$

• Diffracted x-ray beam is observed from (2, 2, 0) planes of iron at 2θ angle of 99.1° when x-rays of 0.15418nm. Calculate lattice parameter of iron

a_0 of Fe

$$\lambda = 0.15418 \, nm$$
 $2\theta = 99.1^{\circ}$
Plane (2, 2, 0)