Gradient Descent, Regularization

Loss: compare fitted to true value

$$\ell(y, \hat{y}) = (y - \hat{y})^2$$

Loss: compare fitted to true value (w/ parameter)

$$\ell(y, X\beta) = (y - X\beta)^2$$

Loss: compare fitted to true value (over data)

$$\sum_{i=1}^{n} \ell(y_i, x_i \beta) = \sum_{i=1}^{n} (y_i - x_i \beta)^2$$

Optimization problem:

$$\hat{\beta} = \arg\min \sum_{i=1}^{\infty} (y_i - x_i \beta)^2$$

Gradient Descent

- Goal: minimize the loss
- Calculus approach to doing it:
 - Loss is a function of parameters
 - Take derivative (gradient) of that function (wrt parameters)
 - Set equal to zero
 - Use algebra to solve it

Gradient Descent

- Goal: minimize the loss
- (Approximate) calculus approach to doing it:
 - Loss is a function of parameters
 - Take derivative (gradient) of that function (wrt parameters)
 - Derivative tells you where to go to decrease function
 - Follow the path to the solution

When will Gradient Descent Work?

When will Gradient Descent Work?

When will Gradient Descent Work?

Gradient Descent

- Convex problems guaranteed to work
 - Can you roll a ball down the hill?
 - Will you end up in a unique spot if you do?

Do we only care about loss?

 What would happen if we are able to get the loss to zero on the training data? Is that good?

Do we only care about loss?

- Regularization lets us trade within sample fit and complexity.
 - Will a complex model generalize well?
 - Will a model that fits the training data perfectly generalize well?

Complexity penalties:

$$\hat{\beta} = \arg\min \sum_{i=1} (y_i - x_i \beta)^2 + \lambda \operatorname{penalty}(\beta)$$

What do we do to optimize this? When is this possible?

$$\hat{\beta} = \arg\min \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \operatorname{penalty}(\beta)$$

"Ridge" penalty
$$(\beta) = \sum_j \beta_j^2$$

"Lasso" penalty(
$$\beta$$
) = $\sum_{j} |\beta_{j}|$

"Ridge"
$$\operatorname{penalty}(\beta) = \sum_j \beta_j^2$$

"Lasso" penalty(
$$\beta$$
) = $\sum_{j} |\beta_{j}|$

How do these measure complexity?

"L-Zero" penalty(
$$\beta$$
) = $\sum_{j} I(\beta_{j} \neq 0)$

Why not use this penalty?

Other types of regularization

- Not going all the way in optimization
 - Stop before the optimum
 - Don't use all the data; e.g. Stochastic Gradient Descent (SGD)
 - Footnote on SGD: developed decades ago when machines were too weak to use all data, these days we find ourselves back in this situation with "Big Data"