Шанаурина Е.Г. ИУ5Ц-84Б 25 + 4 = 29 вариант РК-1 Номер задачи -4, номер набора данных -5.

Для студентов группы ИУ5-64Б, ИУ5Ц-84Б - для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".

Задача №4.

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков?

Используемый набор данных: Heart Disease Dataset | Kaggle

Подгружаем необходимые библиотеки и датасет:

```
In [1]:
```

```
#Подключение библиотек
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV
from sklearn.neighbors import KNeighborsRegressor
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from warnings import simplefilter
simplefilter('ignore')
```

In [2]:

```
#Подгружаем DataSet
heart_dataset = pd.read_csv('heart.csv', encoding='latin-1')
```

In [3]:

heart dataset

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0
			•••											
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

1025 rows × 14 columns

Выводим информацию о столбцах датасета:

In [4]:

```
heart_dataset.info()
```

```
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
# Column Non-Null Count Dtype
            -----
            1025 non-null int64
1025 non-null int64
0 age
1
   sex
2
   ср
            1025 non-null int64
                          int64
3
   trestbps 1025 non-null
                          int64
  chol 1025 non-null
```

<class 'pandas.core.frame.DataFrame'>

```
1025 non-null
   fbs
                            int64
 6 restecg 1025 non-null int64
            1025 non-null int64
   thalach
   exang 1025 non-null int64 oldpeak 1025 non-null float64
              1025 non-null
10 slope
             1025 non-null int64
11 ca
              1025 non-null int64
12 thal
             1025 non-null int64
13 target 1025 non-null int64
dtypes: float64(1), int64(13)
memory usage: 112.2 KB
```

In [6]:

```
#категоральный признаков в датасете слишком много, они будут мешать делать масштабировани е данных.

#Оставим только те столбцы, с которопыми потом будем работать heart_dataset_new = heart_dataset[['sex', 'age', 'trestbps', "chol", "thalach", "oldpeak ", "slope", "thal"]].copy()
heart_dataset_new
```

Out[6]:

	sex	age	trestbps	chol	thalach	oldpeak	slope	thal
0	1	52	125	212	168	1.0	2	3
1	1	53	140	203	155	3.1	0	3
2	1	70	145	174	125	2.6	0	3
3	1	61	148	203	161	0.0	2	3
4	0	62	138	294	106	1.9	1	2
1020	1	59	140	221	164	0.0	2	2
1021	1	60	125	258	141	2.8	1	3
1022	1	47	110	275	118	1.0	1	2
1023	0	50	110	254	159	0.0	2	2
1024	1	54	120	188	113	1.4	1	3

1025 rows × 8 columns

Кодируем категориальные признаки

In [7]:

```
#Кодирование категориальных признаков
heart_dataset_new["trestbps"].value_counts()
heart_dataset_new["trestbps"] = heart_dataset_new["trestbps"].astype('category')
heart_dataset_new["chol"] = heart_dataset_new["chol"].astype('category')
heart_dataset_new["thalach"] = heart_dataset_new["thalach"].astype('category')
heart_dataset_new["oldpeak"] = heart_dataset_new["oldpeak"].astype('category')

#Hashaчить закодированную переменную новосу столбцу с помощью метода доступа
heart_dataset_new["trestbps_cat"] = heart_dataset_new["trestbps"].cat.codes
heart_dataset_new["chol_cat"] = heart_dataset_new["chol"].cat.codes
heart_dataset_new["thalach_cat"] = heart_dataset_new["thalach"].cat.codes
heart_dataset_new["oldpeak_cat"] = heart_dataset_new["oldpeak"].cat.codes
heart_dataset_cat = heart_dataset_new.drop(['trestbps', 'chol', 'thalach', 'oldpeak'], a
xis=1, inplace=True)
heart_dataset_new
Out[7]:
```

	sex	age	slope	thal	trestbps_cat	chol_cat	thalach_cat	oldpeak_cat
0	1	52	2	3	18	43	67	10
1	1	53	0	3	28	34	54	29
2	1	70	0	3	31	12	25	25
3	1	61	2	3	33	34	60	0
4	0	62	1	2	27	116	9	18
1020	1	59	2	2	28	52	63	0
1021	1	60	1	3	18	87	40	26
1022	1	47	1	2	8	103	19	10
1023	0	50	2	2	8	83	58	0
1024	1	54	1	3	14	24	14	14

1025 rows × 8 columns

Разделяем выборки

In [8]:

```
#разделение выборки
from sklearn.model_selection import train_test_split
y = heart_dataset_new['age']
X = heart_dataset_new.drop('age', axis=1)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=3)
x_train
```

Out[8]:

0 10 19
19
0
16
0
14
14
29
0

717 rows × 7 columns

In [9]:

```
y_train
```

Out[9]:

/30	44
549	68
518	49
617	41

261 54

659 59

```
789 62
256 35
968 53
952 54
Name: age, Length: 717, dtype: int64
```

Масштабирование данных

```
In [10]:
```

```
#Масштбирование данных from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler().fit(x_train) x_train = pd.DataFrame(scaler.transform(x_train), columns = x_train.columns) x_test = pd.DataFrame(scaler.transform(x_test), columns = x_train.columns) x_train.describe()
```

Out[10]:

	sex	slope	thal	trestbps_cat	chol_cat	thalach_cat	oldpeak_cat
count	717.000000	717.000000	717.000000	717.000000	717.000000	717.000000	717.000000
mean	0.695955	0.682706	0.776383	0.453278	0.478205	0.540586	0.263777
std	0.460323	0.312821	0.208569	0.218063	0.260037	0.235252	0.268882
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.500000	0.666667	0.291667	0.260000	0.366667	0.000000
50%	1.000000	0.500000	0.666667	0.458333	0.453333	0.566667	0.205128
75%	1.000000	1.000000	1.000000	0.583333	0.686667	0.722222	0.435897
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Обучение KNN с производным k

In [11]:

```
#Обучение KNN с производным k
simplefilter('ignore')
def print metrics(y test, y pred):
   print(f"R^2: {r2_score(y_test, y_pred)}")
   print(f"MSE: {mean_squared_error(y_test, y_pred)}")
   print(f"MAE: {mean_absolute_error(y_test, y_pred)}")
def print_cv_result(cv_model, x_test, y_test):
    print(f'Оптимизация метрики {cv model.scoring}: {cv model.best score }')
    print(f'Лучший параметр: {cv model.best params }')
   print('Метрики на тестовом наборе')
   print metrics(y test, cv model.predict(x test))
   print()
base k = 7
base knn = KNeighborsRegressor(n neighbors=base k)
base knn.fit(x train, y train)
y pred base = base knn.predict(x test)
print(f'Test metrics for KNN with k={base k}\n')
print metrics(y test, y pred base)
```

Test metrics for KNN with k=7

R^2: 0.4400118414555648 MSE: 44.78028094354626 MAE: 5.355287569573284

Кросс-валидация

```
In [12]:
#Кросс валидация
metrics = ['r2', 'neg_mean_squared_error', 'neg_mean_absolute_error']
cv_values = [5, 10]
for cv in cv values:
   print(f'Результаты кросс-валидации при cv=\{cv\}\n')
    for metric in metrics:
        params = {'n neighbors': range(1, 30)}
        knn cv = GridSearchCV(KNeighborsRegressor(), params, cv=cv, scoring=metric, n_jo
bs=-1)
        knn cv.fit(x train, y train)
        print cv result(knn cv, x test, y test)
Результаты кросс-валидации при cv=5
Оптимизация метрики r2: 0.8414599182336975
Лучший параметр: {'n neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9501820473138464
MSE: 3.9837662337662336
MAE: 0.41883116883116883
Оптимизация метрики neg_mean_squared_error: -12.75434149184149
Лучший параметр: {'n_neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9501820473138464
MSE: 3.9837662337662336
MAE: 0.41883116883116883
Оптимизация метрики neg mean absolute error: -0.9810508935508937
Лучший параметр: {'n neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9501820473138464
MSE: 3.9837662337662336
MAE: 0.41883116883116883
Результаты кросс-валидации при cv=10
Оптимизация метрики r2: 0.8947027785180053
Лучший параметр: {'n neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9501820473138464
MSE: 3.9837662337662336
MAE: 0.41883116883116883
Оптимизация метрики neg mean squared error: -8.46725352112676
Лучший параметр: {'n neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9501820473138464
MSE: 3.9837662337662336
MAE: 0.41883116883116883
Оптимизация метрики neg_mean absolute error: -0.6595070422535211
```

In [13]:

```
best\_k = 9 \\ y\_pred\_best = KNeighborsRegressor(n\_neighbors=best\_k).fit(x\_train, y\_train).predict(x\_test)
```

In [14]:

#Сравнение исходной и оптимальной модели

Лучший параметр: {'n neighbors': 1}

Метрики на тестовом наборе R^2: 0.9501820473138464 MSE: 3.9837662337662336 MAE: 0.41883116883116883

```
print('Исходная модель\n')
print_metrics(y_test, y_pred_base)
print('\nОптимальная модель\n')
print_metrics(y_test, y_pred_best)
```

Исходная модель

R^2: 0.4400118414555648 MSE: 44.78028094354626 MAE: 5.355287569573284

Оптимальная модель

R^2: 0.39001366302838936 MSE: 48.77845919512586 MAE: 5.6273448773448775

In [15]:

```
#Визуализация результатов
res = pd.DataFrame({'y_test': y_test, 'y_pred_best': y_pred_best}).sort_values(by='y_test')
res.head()
```

Out[15]:

y_test y_pred_best

118	29	44.222222
64	29	44.222222
143	34	37.555556
201	34	37.555556
846	35	42.333333

Скрипичная диаграмма по столбцу "age"

In [16]:

```
sns.violinplot(x=heart_dataset_new['age'])
```

Out[16]:

<AxesSubplot:xlabel='age'>

In []: