ECSE-415

Software for Computer vision

Introduction to OpenCV and Python

What is OpenCV?

- OpenCV is an open source library for developing computer vision applications
- Cross-platform:
 - C++, C, Python and Java interfaces
 - Supports Windows, Linux, Mac OS, iOS and Android
- Strong focus on real-time applications
 - Multi-core processing
 - Supports hardware acceleration: IPP, OpenCL, CUDA
- Under a BSD license, it can be freely used, distributed and adapted in both academic and commercial apps

OpenCV Python Interface

- Python is a high level general purpose programming language
 - simplicity and code readability
 - compared to C/C++, Python is slower
- It is possible to create a Python wrapper for a C/C++ code
 - The C/C++ code is running without any performance penalty
 - We can benefit from easy coding in Python
- This is how OpenCV-Python works, it is a Python wrapper around original C++ implementation
- We can also benefit from other highly optimized Python libraries
 - Numpy, SciPy, Matplotlib etc

Installing Python + Packages

Linux

- Most linux distributions has pre-installed python
- Type command 'python --version' in the terminal
- Will display current version of installed python

```
raghav@raghav-XPS-13-9360:~$ python --version
Python 2.7.15+
```

Python3 may or may not be installed

```
raghav@raghav-XPS-13-9360:~$ sudo apt-get install python3
[sudo] password for raghav:
```

MacOS

All MacOS comes with pre-installed python2.x

```
-mbp:~ $ python --version
Python 2.7.10
```

Install <u>python3</u>

Windows

• Install Anaconda for windows. Follow <u>these</u> instructions. Download python3.7 installer from <u>here</u>.

VirtualEnv for python2.x

Linux

```
raghav@raghav-XPS-13-9360:~$ sudo apt-get install virtualenv
[sudo] password for raghav:
```

- MacOS
 - brew install virtualenv

VirtualEnv for python3.x

Linux or MacOS

```
raghav@raghav-XPS-13-9360:~$ python3 -m venv venv
```

- Windows
 - conda create --name venv python=3.7

Pip -- install python package

Activate virtualenv "venv" in Linux or MacOS

```
raghav@raghav-XPS-13-9360:~/Downloads/ECSE_415$ source venv/bin/activate
```

- Activate virtualenv "venv" in Windows (conda)
 - activate venv

- install 'python package'
 - Command: pip install 'python package'

(venv) raghav@raghav-XPS-13-9360:~/Downloads/ECSE_415\$ pip install numpy scipy matplotlib jupyter opencv-python==3.4.3.18

Check if everything is install correctly

Read an image and display

```
## import required python package
import numpy as np
import cv2
## read the image
img = cv2.imread('Lenna_image.png')
## check shape of image
img.shape
## display image
cv2.imshow('image',img)
## infinitely wait for a user keypress
cv2.waitKey(0)
## close all windows
cv2.destroyAllWindows()
```


Jupyter notebook

- The Jupyter Notebook is an open-source web application that allows you to create and share
 documents that contain live code, equations, visualizations and narrative text. Uses include: data
 cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine
 learning, and much more
- (venv) raghav@raghav-XPS-13-9360:~/Downloads/ECSE_415/Tutorial_1\$ ls
 Lenna_image.png Tutorial_1_slides.pdf
 (venv) raghav@raghav-XPS-13-9360:~/Downloads/ECSE_415/Tutorial_1\$ jupyter notebook

Jupyter Notebook

Open new notebook

Why Jupyter notebook

Easy to visualize output

Better organization of code ("code") and written observations ("markdown")

about output

Google Colab (colab.research.google.com)

- Online version of Jupyter notebook by google
- Use of google server for computational and store requirement
- Connected with your google drive
- Easily accessible from any computer with internet
- No need to install anything locally

Uploading local Jupyter Notebook to Google colab

Uploading local Jupyter Notebook to Google colab

Mount your google drive

Lenna_image.png Tutorial 1_example.ipynb Tutorial 1 slides.pdf

Google colab

Import required python packages

▼ read the image

```
[ ] datapath = 'gdrive/My Drive/ECSE_415/Tutorial_1/'
[ ] img = cv2.imread(datapath+"Lenna_image.png")
```

check shape of image

```
[ ] img.shape
```

(512, 512, 3)

Shortcut keys for Jupyter and Colab

Jupyter Notebook

- Tab: Autocomplete function name or suggest function name
- Shift + Tab: Display expected arguments for a function

Google Colab

- Ctrl + space: Autocomplete function name or suggest function name
- Tab: Display expected arguments for a function