EXERCICE 1

Parmi les équations suivantes, quelles sont celles qui sont des équations de droites? Justifier.

$$4x - y - 1 = 0$$
 ; $x - xy = 2$; $x + 2y - 1 = 0$
 $x + y = 3$; $x(x - 1) = x^2 - 2y$.

EXERCICE 2

1. Voici quelques droites et leur équation. Parmi ces droites, quelles sont celles qui sont sécantes, parallèles ou confondues? Justifier.

$$(d_1): 2x + 10y = 0$$
 ; $(d_2): 2x + 10y = 1$; $(d_3): x + 5y = 0$
 $(d_4): 2x - 3y = 2$; $(d_5): x - 2y = 8$.

2. En vous aidant de la question précédente, déterminer, en justifiant, le nombre de solutions de chacun des systèmes suivants :

$$(S_1): \left\{ \begin{array}{rclcr} 2x+10y & = & 1 \\ x+5y & = & 0 \end{array} \right. ; \quad (S_2): \left\{ \begin{array}{rclcr} 2x-3y & = & 2 \\ x-2y & = & 8 \end{array} \right. ; \quad (S_3): \left\{ \begin{array}{rclcr} 2x+10y & = & 0 \\ x+5y & = & 0 \end{array} \right.$$

- 3. En utilisant une méthode différente, retrouver le nombre de solutions de chacun des systèmes précédents.
- 4. Résoudre le système (S_2) par substitution.

EXERCICE 3

Résoudre le système suivant par combinaison linéaire après avoir déterminé son nombre de solutions :

$$(S): \begin{cases} 12x + 7y = 41 \\ 4x - 15y = 239 \end{cases}$$

EXERCICE 4

Dans un parc zoologique, la visite coûte $6 \in$ pour les adultes et $5 \in$ pour les enfants. À la fin de la journée, on sait que 630 personnes ont visité le zoo et que la recette du jour est de $3\,270 \in$.

Parmi les personnes qui ont visité le zoo ce jour-là, quel est le nombre d'enfants? Quel est le nombre d'adultes?