Separation of Variables in Spherical Coordinates (Jackson 3.1 - 3.3) Now we will follow the same procedure in Spherical coordinates. The Laplacian operator reads
Now we will follow the same procedure in Spherical coordinates. The Laplacian operator reads
reads
reads
$-\Delta_5 = -1 $
$-\Delta_5 = -1 \frac{2r}{9} \frac{2r}{r_5} + \frac{r_5}{r_5}$
Where L2 is (without the th2) the squared
angular momentum operator in Quantum Mechanics
$L^{2} = -1 2 \sin \theta \partial \theta -1 \partial^{2}$ $\sin \theta \partial \theta \partial \theta \sin^{2}\theta \partial \phi^{2}$
sine de de sine de
Thus, in Spherical coordinates the separation
of variables will involve the eigen-function
Yam (O, A) (spherical harmonics) of the L2 operator
12 Y = l(l+1) Y em
The boundary conditions are specifie'd on the Θ,φ surface. These constitute the //
on the O, & surface. These constitute the /
directions, while the
radial directions constitute
the perpendicular directions

Charged Shell Pg. 1

	Shell
· Given	a charged sphere of radius ro charge per solid angle $S(\theta, \phi)$ ine the potential everywhere
with	charge per solid angle S(0,0)
determ	ine the potential everywhere
	J
	·S(0,4)
	Q = ?
Plan;	
· Sepo	crate variables solve inside + outside
	trate variables solve inside + outside
integ	wate across the shell to match the
integ	grate across the shell to match the
integ	grate across the shell to match the
integ	grate across the shell to match the
integ insid Solution:	grate across the shell to match the 'e and outside:
integ insid Solution:	grate across the shell to match the
integ insid Solution:	grate across the shell to match the 'e and outside:
integ insid Solution:	grate across the shell to match the e and outside: Liowe r <r:< td=""></r:<>
integ insid Solution:	grate across the shell to match the e and outside: Liowe r <r:< td=""></r:<>
integranding inside	grate across the shell to match the e and outside: - $\nabla^2 \varphi = 0$ + hat If $\Psi = R(r) Y(0, \varphi)$
integranding inside	grate across the shell to match the e and outside: - $\nabla^2 \varphi = 0$

Charged Shell pg. 2

Then we compute:
$\frac{-r^2}{\varphi} = \frac{\sqrt{2} \varphi}{\sqrt{2} \varphi} = \frac{-1}{\sqrt{2} \varphi} = \frac{1}{\sqrt{2} \varphi} = $
- And Find
$-\frac{1}{R}\frac{2}{3}\frac{2}{7}\frac{2}{7}\frac{R}{7} + -\frac{1}{2}\frac{2}{7}\frac{2}{7}\frac{1}{2}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}\frac{1}{7}\frac{2}{7}\frac{1}{7}$
Thus we are led to consider the eigenvalue equantion
$L^{2}Y = \lambda Y \qquad \qquad \lambda_{n} = l(l+1)$
We know this eigenvalule problem the operator is hermitian and the eigenfens are complete to orthogon.
Thus at each r we can expand the solution
$V(r) = \sum_{lm} R_{lm}(r) Y_{lm}(\theta, \varphi)$
And adjust the Pam(r) to match the solution accross the shell

Charged Shell pg. 4
Now.
for T->0 want a regular solution
Bin = 0
for r > 00 want a regular solution
Aout = 0
So for the remaining two conditions
Ain Bout em em
we demand continuity of 4, and relquire that in each surface element
$\vec{n} \cdot \vec{E}_{out} - \vec{n} \cdot \vec{E}_{in} = \vec{\sigma}$
this is derived
by integrating the poisson equation from R-E to R+E
R-E to R+E
It is simplest to use $\vec{n} \cdot (\vec{E}_{out} - \vec{E}_{in}) = \vec{\sigma}$ directly.
But to show the procedure, we will integrate
the poisson equation

Changed Shell pg.7 This gives the potential for any source specified by $S(\Theta, \Psi) = \sum_{Q} S_{lm} Y_{lm}(\Theta, \Phi)$ For $S = Y^*(\Theta, \Phi)$, this a point charge (see overview) $\varphi(r) = \frac{1}{4\pi |\vec{r} - \vec{r}_0|} = \frac{\sum_{n} (r_0) \frac{1}{r} Y_n(\theta, \phi_0) Y_n(\theta, \phi_0)}{\sum_{n} (r_0) \frac{1}{r} Y_n(\theta, \phi_0)} \frac{1}{r} \frac{$ Important Points (1) Identify coords 1 (i.e.r) and parallel (0,4) to Surface where b.c. are specified 2) Solve eigenvalue eqn for parallel directions these are complete & orthogonal Expand Solution in these eigen-fors and Solve for I direction general homogeneous solution P = 5 (Alm rl + Bem) Y (O, 0)

Adjust coefficients so boundary are satisfied.

Integrate across & fors with second order egs
to determine jump conditions