## Systems 3

#### Memory Management II

Marcel Waldvogel

(Handout)

Department of Computer and Information Science University of Konstanz

Winter 2019/2020

#### **Chapter Goals**

- Going beyond physical memory
- How to simplify memory management for the kernel?
- How can this be represented with the existing page table structure?
- How to select which pages to replace on memory pressure?
- What are the (logical) segments of a program?

#### Memory development



Swapping Entire process image to disk (*Partitioning*, ...). (**Demand**) Paging Pages not yet/recently needed on disk.

#### **Present Bit**

| Index | Present | Modified | Frame / Info         |
|-------|---------|----------|----------------------|
| 0     | 1       | 1        | 1234                 |
| 1     | 1       | 0        | 2600                 |
| 2     | 0       | -        | File #123, block 883 |
| 3     | 0       | -        | File #123, block 884 |
| 4     | 1       | 0        | 1536                 |
| 5     | 0       | -        | Really invalid       |
|       |         |          |                      |

### **Overcoming Memory Limits**

| Approach               | Mechanism |
|------------------------|-----------|
| Layout                 | Increase  |
| Static                 | Swapping  |
| Paged (virtual memory) | Paging    |

### Which page should be replaced?

The three most simple replacement algorithms are:

- Optimal replacement
- Not recently used (NRU) replacement
- First-in, first-out (FIFO) replacement

But there are more algorithms. See next slides.

### **Second Chance Replacement**



**Figure:** Operation of second chance. (a) Pages sorted in FIFO order. (b) Page list if a page fault occurs at time 20 and A has its R bit set. The numbers above the pages are their loading times. (Tannenbaum fig. 4-14)

#### **Clock Page Replacement**



Figure: The clock page replacement algorithm. (Tannenbaum fig. 4-15)

What is the difference between Second Chance and Clock Page Replacement?

### **Least Recently Used**

**Assumption**: Pages that have not been used for ages will probably remain unused for a long time.

Can be implemented in

- Hardware
- Software

Advantages? Disadvantages?

## Simulating LRU



**Figure:** LRU using a matrix when pages are referenced in order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3. (Tannenbaum fig. 4-16)

#### Simulating LRU



# Working set<sup>1</sup>



This locality results in a (slowly) growing working set. Memory areas, which have not been recently used are less likely to be accessed again soon and could be moved to slower memory.

<sup>&</sup>lt;sup>1</sup>Denning, Peter J. (1968). "The working set model for program behavior". Communications of the ACM. 11(5):323–333

#### Local vs. Global

| 1          | Age |      |
|------------|-----|------|
| A0         | 10  | A0   |
| A1         | 7   | A1   |
| A2         | 5   | A2   |
| A3         | 4   | A3   |
| A4         | 6   | A4   |
| <b>A</b> 5 | 3   | (A6) |
| В0         | 9   | B0   |
| B1         | 4   | B1   |
| B2         | 6   | B2   |
| B3         | 2 5 | B3   |
| B4         | 5   | B4   |
| B5         | 6   | B5   |
| В6         | 12  | B6   |
| C1         | 3   | C1   |
| C2         | 5   | C2   |
| C3         | 6   | C3   |
| (a)        |     | (b)  |

| <u> </u> |
|----------|
| A0       |
| A1       |
| A2       |
| A3       |
| A4       |
| A5       |
| В0       |
| B1       |
| B2       |
| (A6)     |
| B4       |
| B5       |
| B6       |
| C1       |
| C2       |
| C3       |
| (c)      |

**Figure:** Local vs. global page replacement. (a) Original configuration. (b) Local page replacement. (c) Global page replacement. (Tannenbaum fig. 4-19)

#### Page Fault Frequency



**Figure:** Page fault rate as a function of the number of page frames assigned. (Tannenbaum fig. 4-20)

#### Page size

#### Page size criteria

- What are arguments for large pages?
- What are arguments for small pages?
- What is a useful range?
- Are there applications with different criteria?

### Memory Layout of C Programs

high address stack heap uninitialized data (bss) initialized data code (text) illegal

command-line args, env vars, ...

low address