

Lecture 04: Approximate Q-learning, DQN

Radoslav Neychev

References

These slides are almost the exact copy of Practical RL course week 4 slides. Special thanks to YSDA team for making them publicly available.

Original slides link: week04 approx rl

MDP

Basic definitions

$$G_{t} = \sum_{t'=t}^{T} \gamma^{(t'-t)} r_{t'}$$

$$Q^{\pi}(s, a) = E_{\pi}[G_{t}|s_{t} = s, a_{t} = a]$$

$$V^{\pi}(s) = E_{\pi}[G_{t}|s_{t} = s]$$

Recurrent relations

$$Q^{\pi}(s, a) = E_{s_{t+1}}[r_t + \gamma V^{\pi}(s_{t+1})]$$

$$Q^{\pi}(s, a) = E_{s_{t+1}, a_{t+1} \sim \pi}[r_t + \gamma Q^{\pi}(s_{t+1}, a_{t+1})]$$

Optimal policy

For all
$$\pi, s, a$$
: $Q^{\pi^*}(s, a) \geq Q^{\pi}(s, a)$
$$\pi^*(s) = argmax_a Q^{\pi^*}(s, a)$$

Bellman optimality equation

$$Q^*(s_t, a) = E_{s_{t+1}}[r_t + \max_{a'} Q^*(s_{t+1}, a')]$$

Q-learning

Training step

$$Q(s_t, a_t) \longleftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

Q-learning as MSE minimization

$$L = (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))^2$$

$$\nabla L = 2 \cdot (r_t + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$$

What's wrong here?

Real world

How many states are there? approximately

$$|S| = 2^{210 \cdot 160 \cdot 8 \cdot 3}$$

1

Q-learning: make it continuous

For now states and actions are discrete. What if states are **not**?

Minimize loss given <s, a, r, s'>

$$L = [Q(s_t, a_t) - Q^{true}(s_t, a_t)]^2$$

$$L \approx [Q(s_t, a_t) - (r_t + \gamma \cdot max_{a'}Q(s_{t+1}, a'))]^2$$

Approximate Q-learning

Possible architectures

Continuous control or large number of actions

Given **(s,a)** Predict Q(s,a) Given **s** predict all q-values Q(s,a0), Q(s,a1), Q(s,a2)

Approximate Q-learning

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} \hat{Q}(s_{t+1}, a')$$

$$L = (Q(s_t, a_t) - [r + \gamma \cdot max_{a'}Q(s_{t+1}, a')])^2$$

Consider const

$$w_{t+1} = w_t - \alpha \cdot \frac{\delta L}{\delta w}$$

Approximate Q-learning

Objective:

$$L = (Q(s_t, a_t) - \hat{Q}(s_t, a_t))^2$$
consider const

Q-learning:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot max_{a'} Q(s_{t+1}, a')$$

SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot Q(s_{t+1}, a_{t+1})$$

Expected Value SARSA:

$$\hat{Q}(s_t, a_t) = r + \gamma \cdot \sum_{a' \sim \pi(a|s)} Q(s_{t+1}, a')$$

What kind of network digests images well?

Basic deep Q-learning

How bad it is if agent spends next 1000 ticks under the left rock? (while training)

Problem

- Training samples are not "i.i.d",
- Model forgets parts of environment it hasn't visited for some time
- Drops on learning curve
- · Any ideas?

Idea: Throw in several agents with shared W.

- Chances are, they will be exploring different parts of the environment
- More stable training
- Requires a lot of interaction

Question: your agent is a real robot car. Will there be any problems?

Idea:

Store several past interactions <*s*,*a*,*r*,*s*'>

Train on random subsamples

Training curriculum:

- Play 1 step and record it
- Pick N random transitions to train

Profit:

you don't need to revisit same (s,a) many times to learn it.

Experience replay

Experience replay

- Atari DQN > 10⁵ interactions
- Closer to i.i.d.
 pool contains several sessions
- Older interactions were obtained under weaker policy

Experience replay

- You approximate Q(s, a) with a neural network
- You use experience replay when training

Question: which of those algorithms will fail?

- Q-learning
- SARSA
- CEM
- Expected Value SARSA

Experience replay

- You approximate Q(s, a) with a neural network
- You use experience replay when training

Agent trains off-policy on an older version of himself

Question: which of those algorithms will fail?

Off-policy methods work, On-policy methods are super slow (fail)

- Q-learning
- SARSA
- CEM
- Expected Value SARSA

When training with on-policy methods,

- use no (or small) experience replay
- compensate with parallel game sessions

Left or right?

N-gram trick

Idea:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

e.g. ball movement in breakout

· One frame

· Several frames 48

N-gram trick

- · Nth-order markov assumption
- Works for velocity/timers
- · Fails for anything longer that N frames
- Impractical for large N

Autocorrelation

Target is based on prediction

Q(s, a) correlates with Q(s', a)

Target network

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$
 where Θ^{-} is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

Target network

Idea: use network with frozen weights to compute the target

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$
 where Θ^{-} is the frozen weights

Hard target network:

Update Θ^- every **n** steps and set its weights as Θ

Soft target network:

Update Θ^- every step:

$$\Theta^{-} = (1 - \alpha)\Theta^{-} + \alpha\Theta$$

Playing Atari with Deep Reinforcement Learning

(2013, Deepmind)

4 last frames as input

Update weights using:

$$L(\Theta) = E_{s \sim S, a \sim A}[(Q(s, a, \Theta) - (r + \gamma \max_{a'} Q(s', a', \Theta^{-})))^{2}]$$

Update Θ^- every 5000 train steps

106 last transitions

Outro

- Q-learning can be applied to solve the environments with continuous states as well
- But we haven't said anything about continuous actions!
- Remember what Q(s, a) and V(s) functions do, we will need them even outside the Q-learning
- Remember about the i.i.d. property!
 - RL algorithms usually affect the environment, hence the distribution of the data they are trained on

Backlog

We use "max" operator to compute the target

$$L(s, a) = (Q(s, a) - (r + \gamma \max_{a'} Q(s', a')))^{2}$$

We have a problem

(although we want $E_{s \sim S, a \sim A}[L(s, a)]$ to be equal zero)

Normal distribution 3*10⁶ samples

mean: ~0.0004

Normal distribution 3*10° x 3 samples Then take maximum of every tuple mean: ~0.8467

Normal distribution
3*10⁶ x 10 samples
Then take maximum of every tuple
mean: ~1.538

Problem of overestimation

Suppose true Q(s', a') are equal to **0** for all a'

But we have an approximation (or other) error $\,\sim N(0,\sigma^2)$

So Q(s, a) should be equal to **0**

Problem of overestimation

But if we update Q(s,a) towards $r + \gamma \max_{a'} Q(s',a')$ we will have overestimated $Q(s,a) > \mathbf{0}$ because

$$E[\max_{a'} Q(s', a')] > = \max_{a'} E[Q(s', a')]$$

Double Q-learning (NIPS 2010)

$$y = r + \gamma \max_{a'} Q(s', a')$$

Q-learning target

$$y = r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a'))$$

- Rewritten Q-learning target

Idea: use two estimators of q-values: Q^A, Q^B They should compensate mistakes of each other because they will be independent Let's get argmax from another estimator!

$$y = r + \gamma Q^A(s', \operatorname{argmax}_a Q^B(s', a'))$$
 - Double Q-learning target

Double Q-learning (NIPS 2010)

Algorithm 1 Double Q-learning

```
1: Initialize Q^A, Q^B, s
 2: repeat
       Choose a, based on Q^A(s,\cdot) and Q^B(s,\cdot), observe r, s'
 3:
       Choose (e.g. random) either UPDATE(A) or UPDATE(B)
 4:
 5:
       if UPDATE(A) then
         Define a^* = \arg \max_a Q^A(s', a)
 6:
         Q^A(s,a) \leftarrow Q^A(s,a) + \alpha(s,a) \left(r + \gamma Q^B(s',a^*) - Q^A(s,a)\right)
 8:
       else if UPDATE(B) then
         Define b^* = \arg \max_a Q^B(s', a)
 9:
         Q^B(s,a) \leftarrow Q^B(s,a) + \alpha(s,a)(r + \gamma Q^A(s',b^*) - Q^B(s,a))
10:
       end if
11:
     s \leftarrow s'
12:
13: until end
```

Deep RL with Double Q-learning

(Deepmind, 2015)

Idea: use main network to choose action!

$$y_{dqn} = r + \gamma \max_{a'} Q(s', a', \Theta^{-})$$

$$y_{ddqn} = r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s', a', \Theta), \Theta^{-})$$

	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

Double Q-learning visualization

Experience Replay

State	Action	Reward	Next state
s_0	a_0	0	s_1
s_1	a_1	0	s_2
s_(n-1)	a_(n-1)	0	s_n
s_n	a_n	100	s_(n+1)
s_(n+1)	a_(n+1)	0	s_(n+2)

(2016, Deepmind)

Idea: change the network's architecture.

Recall:

Advantage Function A(s,a) = Q(s,a) - V(s)

So, Q(s,a) = A(s,a) + V(s)

Do you see the problem?

(2016, Deepmind)

Here is one extra freedom degree!

Example:

Which one is good?

(2016, Deepmind)

Here is one extra freedom degree!

Example:

No one

(2016, Deepmind)

Solution: require $\max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha)$ to be equal to zero!

So the **Q-function** is computed as:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha) \right)$$

(2016, Deepmind)

Solution: require $\max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha)$ to be equal to zero!

So the **Q-function** is computed as:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |\mathcal{A}|} A(s, a'; \theta, \alpha) \right)$$

Authors of this papers also introduced this way to compute Q-values:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$

They wrote that this variant increases stability of the optimization (The fact that this loses the original semantics of Q doesn't matter)

Asynchronous Methods for Deep RL

(2016, Deepmind)

Rainbow

(2017, Deepmind)

Double DQN

Prioritized DQN

Dueling DQN

Distributional DQN

Noisy DQN

multi-step DQN

DQN

Algorithm	Median	
DQN	79.5%	
Double DQN	117%	
Rainbow	223%	

R2D2 (2018, Deepmind)

Reward re-scaling

Dueling DQN

Median performance: 1920% of human performance!

Prioritized Experience Replay

(2016, Deepmind)

Idea: sample transitions from xp-replay cleverly

We want to set probability for every transition. Let's use the absolute value of TD-error of transition as a probability!

$$\begin{split} & \text{TD-error } \delta = Q(s,a) - (r + \gamma Q(s', \operatorname{argmax}_{a'} Q(s',a',\Theta), \Theta^-)) \\ & p = |\delta| \\ & P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha} \text{ where } \alpha \text{ is the priority parameter (when } \alpha \text{ is 0 it's the uniform case)} \end{split}$$

Do you see the problem?

Transitions become non i.i.d. and therefore we introduce the bias.

Prioritized Experience Replay

(2016, Deepmind)

Solution: we can correct the bias by using importance-sampling weights

$$w_i = \left(\frac{1}{N} \cdot \frac{1}{P(i)}\right)^{\beta}$$
 where β is the parameter

So we sample using
$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$
 and multiply error by w_i

Prioritized Experience Replay

(2016, Deepmind)

Additional details

We also normalize weights by $1/\max_i w_i$ (here is no mathematical reason)

When we put transition into experience replay, we set maximal priority $p_t = \max_{i < t} p_i$