

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low R_{DS(ON)}

Product Summary

BVDSS	RDSON	ID
100V	2.4 mΩ	260A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO&* ' Pin Configuration

Absolute Maximum Ratings (T_A = 25°C, unless otherwise noted)

Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	±20	٧	
Continuous Dusin Comment	T _C =25°C		260	А	
Continuous Drain Current	T _C =100°C	l _D	163		
Pulsed Drain Current ¹		Ірм	1028	Α	
Single Pulse Avalanche Energy ²		EAS	583	mJ	
Total Power Dissipation	T _C =25°C	P _D	379	W	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ³	R _{0JA}	59	°C/W

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics	Static Characteristics						
Drain-Source Breakdown Voltage		V _{(BR)DSS}	V _{GS} = 0V, I _D = 250μA	100	-	-	V
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
Zero Gate Voltage Drain	TJ=25°C	l	V _{DS} =100V, V _{GS} = 0V	-	-	1	μА
Current	T _J =100°C	IDSS		-	-	100	
Gate-Threshold Voltage		V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2	3	4	٧
Drain-Source on-Resistance ⁴		R _{DS(on)}	V _{GS} = 10V, I _D = 20A	-	2.4	2.8	mΩ
Forward Transconductance ⁴		g fs	V _{DS} =10V, I _D =20A	-	76	-	S
Dynamic Characteristics ⁵	;						
Input Capacitance		C _{iss}		-	9030	-	
Output Capacitance Reverse Transfer Capacitance		Coss	V _{DS} = 50V, V _{GS} =0V, f =1MHz	-	1505	-	pF
		C _{rss}		-	40	ı	
Gate Resistance		Rg	f=1MHz	ı	2.3	ı	Ω
Switching Characteristics	5 ⁵	_					
Total Gate Charge		Qg		-	150	-	nC
Gate-Source Charge		Q _{gs}	$V_{GS} = 10V, V_{DS} = 50V,$ $I_{D}=20A$	-	32.5	-	
Gate-Drain Charge		Q _{gd}		-	49	-	
Turn-on Delay Time		t _{d(on)}		-	27	-	
Rise Time		t _r	$V_{GS} = 10V, V_{DD} = 50V,$ $R_{G} = 3\Omega, I_{D} = 20A$	-	78.5	-	ns
Turn-off Delay Time		t _{d(off)}		-	110	-	
Fall Time		t _f		-	86	-	
Body Diode Reverse Recovery Time		t _{rr}	1 - 20 A 41/44 400 A /··-	-	88	-	ns
Body Diode Reverse Recovery Charge		Qrr	l _F = 20A, dl/dt=100A/μs	-	220	-	nC
Drain-Source Body Diode Characteristics							
Diode Forward Voltage ⁴		V _{SD}	I _D = 20A, V _{GS} = 0V	-	-	1.2	V
Continuous Source Current	T _C =25°C	Is	-	-	-	260	Α

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2. The EAS data shows Max. rating . The test condition is V_{DD} =50V, V_{GS} =10V, L=0.4mH, I_{AS} =54A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Characteristics

Test Circuit

N-Ch 100V Fast Switching MOSFETs

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Mechanical Dimensions for TO-263

COMMON DIMENSIONS

	MM		
SYMBOL	MIN	MAX	
Α	4.37	4.89	
A1	1.17	1.42	
A2	2.20	2.90	
A3	0.00	0.25	
b	0.70	0.96	
b1	1.17	1.47	
С	0.28	0.60	
D1	8.45	9.30	
D4	6.60	-	
E	9.80	10.40	
E5	7.06	-	
е	2.54BSC		
Н	14.70	15.70	
H2	1.07	1.47	
L	2.00	2.80	
L1	- 1.75		
L4	0.254BSC		
θ	0°	9°	