Session 5:

Python plotting

Andreas Bjerre-Nielsen

Starting Jupyter in another folder

Check out <u>this question on GitHub issues (https://github.com/abjer/sds2019/issues/3)</u> - it points to a great answer on StackExchange

Repeating a quote by Hadley Wickham

The bad news is that when ever you learn a new skill you're going to suck. It's going to be frustrating. The good news is that is typical and happens to everyone and **it is only temporary**. You can't go from knowing nothing to becoming an expert without going through a period of great frustration and great suckiness.

Recap

What have we learned about basic Python and Pandas? (e.g. form, operators, methods, IO)

_

• How do we store numeric variables?

•

Agenda

- 1. Background on plotting
- 2. The Python toolbox for plotting
- 3. Plots for one variable (Series)
- 4. Plots for two or more variables (DataFrame):
 - <u>numeric</u> data
 - mixed numeric and categorical data
- 5. Advanced exploratory plotting

Understanding plotting

Why we plot

An English adage

A picture is worth a thousand words

Is that always the case?

What values do A,B,C,D have?

3D Column Charts in Excel are Awesome

The shocking answer

Why are you plotting?

Who's the audience?

Others

• **Explanatory** plots: polished figures to convey your message

You / your team:

• Exploratory plots: fast for understanding data - minimal polishing.

How should you plot (1)

What are some tips for making **explanatory** plots in a report? (**Exam relevant!**)

- 1. Clear narratives should convey key point(s)
 - If you to show difference between groups in data make sure it is easy to distinguish them.
- 2. Self explanatory
 - Contain axis label, title, footnotes in text containing relevant information.
- 3. Nice appereance
 - Choose the right plot type.
 - Make sure font type, size, colors, line width.
- 4. Keep simplicity.
 - Anything unnecessary should be removed, see <u>this post</u> (<u>https://www.darkhorseanalytics.com/blog/data-looks-better-naked/</u>).

How should you plot (2)

What is some practical advice on making **explanatory** plots?

- 1. Try out a few plot types, using exploratory analysis use what works.
- 2. Apply the "layered grammer of graphics".
 - Start with an empty canvas
 - Fill the necessary things (axis, ticks, bars/lines, labels)

How should you plot (3)

What are some guidelines on making plots in **general**?

Be aware of what you plot

- numerical vs. non-numeric (categorical)
- raw data vs. model results

Python plotting

Packages for Python plotting (1)

What is the fundamental tool for making plots in Python?

Matplotlib is the fundamental plotting module

- Can make almost any 2d plot.
- Can build publication ready figures.
- Caveat:
 - requires time consuming customization;
 - requires practice.

```
In [1]: import matplotlib.pyplot as plt
# allow printing in notebook
%matplotlib inline
```

Packages for Python plotting (2)

What are good tools for fast, exploratory plots?

seaborn has built-in capabilities to make plots

- Analyzing data, e.g. splitting by subsets
- Make interpolation of data to smooth out noise.

pandas can easily convert Series and DataFrames to plots

```
In [2]: import numpy as np
import pandas as pd
import seaborn as sns # high level plotting library
```

Packages for Python plotting (3)

Seaborn comes with some illustrative datasets. We load tips.

```
In [3]:
       tips = sns.load dataset('tips')
        print('Number of rows:',len(tips),'\n')
        print(tips.head(3))
        Number of rows: 244
          total bill tip
                              sex smoker
                                               time size
                                         day
               16.99 1.01 Female
                                     No Sun Dinner
               10.34 1.66
                             Male
                                     No Sun Dinner
               21.01 3.50 Male
                                     No Sun Dinner
```

Plotting one variable

Plot one numeric variable (1)

How did we count categorical data?

• Using value_counts.

Can we do something similar with numeric data?

Plot one numeric variable (2)

How do we plot the distribution of numerical variables?

We often use the histogram.

- Bins data and counts observations (made from cutting data)
- Example of tips:

In [7]: histplot

Out[7]:

Matplotlib and the grammar of graphics (1)

Where do I start with making a plot?

We will begin with the fundamental and flexible way. We start with our plotting canvas.

```
In [8]: fig, ax = plt.subplots(figsize = (6, 2.5)) # create placeholder for plot
```


- ax contains most of the chart content as objects:
 - grid axes, labels, shapes we draw etc.
- fig the actual plot which is displayed (export to pdf etc.)

Matplotlib and the grammar of graphics (2)

We can modify our canvas, e.g the axis scaling:

```
In [9]: fig, ax = plt.subplots(figsize = (10, 4.5))
    ax.set_xlim([0, 60]) # x-axis cutoffs
    ax.set_ylim([0, 80]) # y-axis cutoffs
```

Out[9]: (0, 80)

Matplotlib and the grammar of graphics (3)

We can draw plots on the canvas

Matplotlib and the grammar of graphics (4)

What might we change about our plot?

• We will try customization in the exercises today.

Matplotlib and the grammar of graphics (5)

Can we change matplotlib defaults?

Yes, this may be very useful. For instance plot size.

```
In [40]: plt.style.use('default') # set style (colors, background, size, gridlines etc.)
    plt.rcParams['figure.figsize'] = 10, 3 # set default size of plots
    plt.rcParams.update({'font.size': 18})
```

Plotting with pandas

Pandas has a quick and dirty implemention. Let's try the code below.

```
In [41]: tb.plot.hist()
```

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x28432964b00>

Plotting with Seaborn (1)

The module Seaborn is great for fast plots that look good.

```
In [42]: sns.distplot(tb, kde=False) # histogram for seaborn, what is KDE?
```

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x2843358e438>

Plotting with Seaborn (2)

How can we use Seaborn for cumulative plots?

Yes, we just need some arguments.

```
In [43]:
         sns.distplot(tb, hist_kws={'cumulative': True}, kde_kws={'cumulative': True})
```

<matplotlib.axes. subplots.AxesSubplot at 0x28432928978> Out[43]:

Summing up

How did our tools perform?

_

-

Plotting one categorical variable

What is categorical data?

Categorical is non-numeric data (this afternoon).

Plotting one categorical variable (2)

How can we plot categorical data? Pie chart is ugly..

```
In [44]: sns.countplot(x='sex', data=tips)
```

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x28432af9f98>

Plots of two numeric variables

Two numeric variables (1)

How do we plot two numeric variables?

If we have little data we can make a point cloud, i.e. a scatter plot.

```
In [46]: plt.scatter(x=tips['total_bill'], y=tips['tip'])
```

Out[46]: <matplotlib.collections.PathCollection at 0x28432a7ec88>

Two numeric variables (2)

Quiz: How might we alter the scatter plot?

We can interpolate the data:

In [47]: sns.jointplot(x='total_bill', y='tip', data=tips, kind='kde', size=5) # hex

Out[47]: <seaborn.axisgrid.JointGrid at 0x28432a7ec18>

Two numeric variables (3)

What if we want to see the linear relationship?

We use the linear model plot:

```
In [51]: sns.lmplot(x='total_bill', y='tip', data=tips, size=3, aspect=2.5)
```

Out[51]: <seaborn.axisgrid.FacetGrid at 0x28434f5a780>

Plots with mixed variables

Table format

How did we define a tidy/long table?

One row for each observation

Mixed types - numeric, categorical (1)

How might we use categorical variables?

• We can split data and make plots based on subsets of data!

Mixed types - numeric, categorical (2)

Let's make a plot the mean tips - distinguish by weekday:

```
In [22]: f = sns.barplot(x='day', y='tip', data=tips) # hue='sex'
```


Mixed types - numeric, categorical (3)

Let's make a plot the tip quartiles - distinguish by sex:

```
In [23]: f = sns.boxplot(x='sex', y='tip', data=tips)
```


Mixed types - numeric, categorical (4)

Let's make a linear model plot the - distinguish slope by sex:

In [26]: sns.lmplot('total_bill', 'tip',hue='day',data=tips)

Out[26]: <seaborn.axisgrid.FacetGrid at 0x284309fbc50>

Advanced exploratory plotting

Plot grids (1)

How can we plot the relationship for more than two variables?

```
In [27]: sns.pairplot(tips, height=2.3) # make hist and scatter for all
```

Out[27]: <seaborn.axisgrid.PairGrid at 0x28430a51c88>

Plot grids (2)

Can we split the data to investigate heterogeneous relationships?

```
In [32]: g = sns.FacetGrid(tips, col='smoker', height=3.2, aspect=1.3) #row='sex'
g = g.map(sns.regplot, 'total_bill', 'tip')
```


Can we say anything about smokers tipping behavior?

The end

Return to Agenda