MA 515 Homework 5

Zheming Gao

October 30, 2017

Problem 1

Proof. Let $V = \text{span}\{v_1, \dots, v_n\}$, where v_1, \dots, v_n are linearly independent elements in V. Then there exists n linearly independent elements $x_1, \dots, x_n \in X$ such that $T(x_i) = v_i, i = 1, \dots, n$. The existence promised by the fact that T is a linear operator. Let $Y_0 = \text{span}\{x_1, \dots, x_n\}$. Hence, $\dim(Y_0) = \dim(V) = n$.

Also, $\ker(T) \cap Y_0 = \{0\}$. Indeed, if $\exists y \neq 0, y \in Y_0$ such that T(y) = 0. Let $y = \sum_{i=1}^n \beta_i x_i$. Then there exists $\beta_i \neq 0$. By linearity of T, $T(y) = \sum_{i=1}^n \beta_i T(x_i) = \sum_{i=1}^n \beta_i v_i \neq 0$ and it yields a contradiction.

Next, we will show $\ker(T)+Y_0=X$. Suppose not, for any $x\in X$, there exists $z\notin \ker(T)+Y_0, w\in \ker(T), r\in Y_0$ such that x=z+w+r. Let $r=\sum_{i=1}^n t_i x_i$, and $T(x)=\sum_{i=1}^n \alpha v_i$. Hence,

$$\sum_{i=1}^{n} \alpha_i v_i = T(x) = T(z) + T(w) + T(r) = T(z) + \sum_{i=1}^{n} t_i v_i.$$

, which implies that $T(z) = \sum_{i=1}^{n} (\alpha_i - t_i) v_i$.

However, $z \notin \ker(T) + Y_0$ and so $T(z) \notin \operatorname{span}\{v_1, \ldots, v_n\} \subset (\ker(T) + Y_0)$. Hence, it is a contradiction.

In conclusion, $\ker(T) + Y_0 = X$ and $\ker(T) \cap Y_0 = \{0\}$, and it implies that $X = \ker(T) \oplus Y_0$.

Problem 2

Proof. If T is continuous, then the preimage(i.e., ker(T)) of $\{0\}$ is closed since $\{0\}$ is closed. Also, ker(T) is a subspace due to the linearity of T.

If $\ker(T)$ is a closed subspace in X, we need to show that T is continuous, or equivalently, bounded. Since Y is a finite-dimensional space, from the result of problem 1, we know there exists a finite-dimensional subspace $Y_0 \subset X$ such that $X = \ker(T) \oplus Y_0$. Hence, for any $x \in X$, there exists $y \in \ker(T)$, $z \in Y_0$ such that x = y + z.

Consider the norm of T,

$$||T||_{\infty} = \sup_{\|x\| \le 1} ||T(x)|| \le \sup_{\|x\| \le 1y \in \ker}.$$

.....

Problem 3

Proof. Denote the graph of f as $G(f) := \{(x, f(x)) | x \in X\} \subset X \times Y$. Let $\{z_n\}_{n \in \mathbb{N}} = \{(x_n, f(x_n))\}_{n \in \mathbb{N}} \subset G(f)$ that converges to z = (x, y). It is enough to show that y = f(x). Indeed, $x = \lim_{n \to +\infty} x_n$ and so $\lim_{n \to +\infty} f(x_n) = f(x)$ due to the continuity of f. Also, $y = \lim_{n \to +\infty} f(x_n)$. Hence, y = f(x).

Question: Here we only need X, Y to be metric spaces. We didn't really need completeness. Is it correct?

Problem 4

(a) *Proof.* Prove by contradiction.

Suppose that f is not continuous on \mathbb{R} . Hence, there exists one sequence $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ that converges to x, such that a subsequence $\{x_{n_k}\}_{k\geqslant 1}\subset\{x_n\}_{n\geqslant 1}$, from which $\{f(x_{n_k})\}$ doesn't converge to f(x).

Since f is bounded, we know that $\{f(x_{n_k})\}$ must have a convergent subsequence, denote as $\{f(x_{n_{k_l}})\}_{l\geqslant 1} \to y$. Also, we know $\{x_{n_{k_l}}\} \to x$ and with closeness of G(f), we know y = f(x). This is equivalent to say that $\{f(x_{n_{k_l}})\}_{l\geqslant 1} \to f(x)$. It leads to a contradiction to the assumption that $\{f(x_{n_k})\}$ doesn't converge to f(x).

In conclusion, f is a continuous function.

(b) Let f be the following function,

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Problem 5