Probleme propuse * Setul 4

31. (combinatorică) Fie $f: D \to \mathbb{R}$, $f(x) = C_{3x+7}^{6x+2}$, unde D este domeniul maxim de definiție. Fie $M = \max_{x \in D} f(x)$.

a)
$$M = 21$$
; b) $M = 84$; c) $M = 45$; d) $M = 72$; e) $M = 210$; f) $M = 60$.

32. (combinatorică) Dacă $A_x^7 + 3A_x^5 = 45A_x^5$, atunci

a)
$$x = 8$$
; b) $x = 7$; c) $x = 12$; d) $x \in \{-1, 12\}$; e) $x = 13$; f) $x = 0$.

33. (combinatorică) Se consideră suma $S = \frac{C_n^0}{1} + \frac{C_n^1}{2} + \frac{C_n^2}{3} + \cdots + \frac{C_n^n}{n+1}$. Avem

a)
$$S = 2^{n+1}$$
; b) $S = \frac{2^n - 1}{n}$; c) $S = \frac{2^{n+1} - 1}{n+1}$; d) $S = \frac{2^n - 1}{n+1}$; e) $S = \frac{2^{n+1} - 1}{n}$; f) $n \cdot 2^{n+1}$.

34. (şiruri) Limita x a şirului $x_n = \frac{1^2}{n^3 + 1^2} + \frac{2^2}{n^3 + 2^2} + \dots + \frac{n^2}{n^3 + n^2}$ este

a)
$$x = 2$$
; b) $x = \frac{1}{2}$; c) $x = \frac{1}{3}$; d) $x = 0$; e) $x = e$; f) $x = \infty$

35. (limite de funcții) Calculați $\lim_{x\to\infty} x (\pi - 2 \arctan x)$. a) 1; b) 3; c) π ; d) 2; e) $\frac{1}{\pi}$; f) $-\pi$.

a) 1; b) 3; c)
$$\pi$$
; d) 2; e) $\frac{1}{\pi}$; f) $-\pi$.

36. (limite de funcții) Să se determine numărul real c pentru care funcția $f:(0,2]\to\mathbb{R}$,

$$f(x) = \begin{cases} \sqrt{x^2 - 2cx \ln(ex) + c^2}, & x \in (0, 1) \\ c + 3x, & x \in [1, 2] \end{cases}$$

are limită în x = 1.

a) 3; b) -1; c) 1 şi 2; d) $\frac{1}{3}$; e) $\frac{1}{2}$; f) radicalul nu este definit pe (0,1).

37. (continuitate) Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^3 - 2x & \text{dacă} & x \in \mathbb{Q} \\ x^2 - 2 & \text{dacă} & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$. Determinați mulțimea punctelor în care funcția f este continuă.

a)
$$\{-\sqrt{2}, 0\}$$
; b) $\{-\sqrt{3}, 1, \sqrt{3}\}$; c) $\{0, \sqrt{2}\}$; d) $\{0, 1, \sqrt{2}\}$; e) $\{-\sqrt{2}, 0, 1, \sqrt{2}\}$; f) $\{-\sqrt{2}, 1, \sqrt{2}\}$.

38. (funcții trigonometrice) Fie $E = \sin 15^o + \sin 75^o + \cos 105^o + \cos 165^o$. Atunci

a)
$$E = \frac{\sqrt{6}}{2}$$
; b) $E = \sqrt{6}$; c) $E = 2\sqrt{6}$; d) $E = 0$; e) $E = 4\sqrt{6}$; f) $E = 2$.

39. (ecuații trigonometrice) Mulțimea soluțiilor ecuației $\frac{\sin^2 x - \tan^2 x}{\cos^2 x - \cot^2 x} = \tan^6 x$ este

a)
$$\left\{\frac{\pi}{4} + k\pi | k \in \mathbb{Z}\right\}$$
; b) $\left\{k\pi | k \in \mathbb{Z}\right\}$; c) \emptyset ; d) \mathbb{R} ; e) $\mathbb{R} \setminus \left\{\frac{k\pi}{2} | k \in \mathbb{Z}\right\}$; f) $\left\{\frac{k\pi}{2} | k \in \mathbb{Z}\right\}$.

40. (aplicațiile trigonometriei în algebră) Suma $S = \cos x + C_n^1 \cos 2x + C_n^2 \cos 3x + \dots + C_n^n \cos(n+1)x$ este

a)
$$S = 2^n \cos^n \frac{x}{2} \cos \frac{n+2}{2} x$$
; b) $S = 2^n \sin^n \frac{x}{2} \cos \frac{n+2}{2} x$; c) $S = 2^n \sin^n \frac{x}{2} \cos \frac{n+2}{2} x$; d) $S = 2^n \cos^n \frac{x}{2} \cos \frac{nx}{2}$; e) $S = 2^n \cos^n \frac{x}{2} \sin \frac{nx}{2}$; f) afirmaţiile precedente sunt false.