Set Theory

1 Definition of Element l

Define Element l

l :=

 $\exists l$

 $l = \{l\}$

mathrewight
ntering

$$l = \{\} = \emptyset$$

2 Definition of Cardinality

Define Cardinalty of Element l

 $l \neq \emptyset$

|l| := 1

 $l = \emptyset$

$$|\emptyset| := 0$$

3 Definition of Union \cup

Define Union \cup

- 4 Definition of Intersection \cap
- 5 Definition of Deletion \
- 6 Definition of Set

7 Definition of Universal Set

Define Universal Set

$$\Omega := s_i \in \Omega, \forall i$$

8 Set Union U

Define \cup the union of two elements

8.1 Translation

 \cup is often read as "and"

8.2 Comma,

In set notation the comma "," denotes union \cup

$$l_1 \cup l_2 = \{l_1\} \cup \{l_2\} = \{l_1, l_2\}$$

9 Set Intersection \cap

Define \cap , the intersection of two elements

$$l_1 \cap l_2 = \{l_1\} \cap \{l_2\}$$

$$\cap [l_i, l_j] \to \{l_i\} \ i = j$$

$$\cap [l_i, l_j] \to \emptyset \ i \neq j$$

10 Set Subtraction \setminus

11 Sets

11.1 Definition

Define set S as an ordered union of elements s_i

$$S := s_1 \cup s_2 \cup \ldots \cup s_{n-1} \cup s_n = \{s_1, s_2, \ldots s_N\}$$

11.2 Alternate Notation

$$S := s_i \in S : i = 1, 2, ..., N - 1, N$$
$$S = \{s_1, s_2, ..., s_{N-1}, s_N\}$$

11.3 Magnitude of a Set

$$|S| = |\{x_1, ..., x_N\}| = N$$

11.4 Counting

$$1, 2, ..., N = 1:N$$

11.5 Definition Unordered Set

Set S is unordered if

$$S = \{x_1, x_2, ..x_n\} := x_i, x_j \in S; \ x_i = x_j; \ \forall i, j \neq i$$

11.6 Definition of Unique Set

$$a_i, a_j \in S$$
$$a_i \neq a_j \quad \forall i, j \neq i$$

11.7 Definition of Countable/Uncountable set

Potentially just a line?

11.8 Define line \mathbb{L}

Define line \mathbb{L}

$$\mathbb{L} := \{l_0, l_1, l_2, ..., l_{N-1}, l_N, l_{N+1}, ... \iff \exists l_i \in \mathbb{L} \ \forall i$$

12 Hierarchy of Elements to Sets

Every element is a set, but not all sets are elements

13 Containment

13.1 Contains

13.2 Equals =

Define set equivalence =

$$S_1 \subseteq S_2$$
; $S_2 \subseteq S_1 \iff S_1 = S_2$

- 13.3 Subset
- 13.4 Proper Subset Citation
- 13.5 Definition of Complement

$$S = \{s_1, s_2, ..., s_N\}$$

$$S^C :=$$

$$s_j : \{s_j \in \Omega\} \cap \{s_j \notin S\}; \ \forall j$$

13.6 Alternate Notation

Wikipedia definition of complement

$$S^C = U - S = \{x \in \Omega : x \notin S\}$$
https://en.wikipedia.org/wiki/Complement_(set_theory)

Appendix

14 Proofs and Properties

- 1. $\Omega \subset \emptyset$
- $2. \quad \Omega \cap \Omega = \Omega$
- 3. $\Omega \cup \Omega = \Omega$
- 4. $\Omega \cup \emptyset = \Omega$
- 5. $\Omega \cap \emptyset = \emptyset$
- 6. $\Omega \cap S = S$
- 7. $\Omega \cup S = \Omega$
- 8. $\varnothing \subseteq \Omega$
- 9. $\emptyset \cup \emptyset = \emptyset$
- 10. $\emptyset \cap \emptyset = \emptyset$
- 11. $\emptyset \cap S = \emptyset$
- 12. $\emptyset \cup S = S$
- 13. $\emptyset = \emptyset$
- 14. $\emptyset = \Omega^C$
- 15. $\Omega \subseteq S$