

STUDENT ID NO									
			'						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2016/2017

DET5058 – DIGITAL ELECTRONICS (All Groups)

12 OCTOBER 2016 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTION TO STUDENT

- 1. This question paper consist of 6 pages (5 pages for questions and 1 page for appendix).
- 2. Answer ALL question.
- 3. Please write all your answers in the answer booklet provided.

QUESTION 1 [25 MARKS]

a) Explain analog representation and digital representation as the ways to represent the numerical values of quantities.

[2 marks]

b) State two disadvantages of digital systems.

[2 marks]

- c) Convert the following numbers.
 - i. 1387₁₀ to binary

[2 marks]

ii. 5478 to hexadecimal

[2 marks]

iii. 703D₁₆ to octal

[2 marks]

- d) Solve the following signed number calculation in the 2's complement form.
 - i. $10001100_2 \times 00111001_2$

[5 marks]

ii. $25_{10} \div -5_{10}$

[5 marks]

iii. $23_{16} + (-1A)_{16}$

[5 mark]

QUESTION 2 [25 MARKS]

a) State the Boolean expression for output X for each circuit in Figure 1.

Figure 1

[4 marks]

- b) Given $\overline{A \oplus B + B} + AC + (A + D)$.
 - i. Draw the logic circuits.

[5 marks]

ii. Complete the truth table in Table 1 below.

[8 marks]

A	В	C	D	$\overline{A \oplus B + B}$	AC	(A+D)	OUTPUT
0	0	1	0				
0	1	0	1				
				(2 m x2)	(1m x2)	(1m x2)	(1m x2)

Table 1

- c) Simplify the following Boolean expressions using Boolean simplification, then draw the circuit of simplified expression:
 - i. $(A+C)(AD+A\overline{D})+AC+C$

[4 marks]

ii. $\overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$

[4 marks]

Continued...

QUESTION 3 [25 MARKS]

a) Draw the logic circuit for AB+C using NAND gate only.

[4 marks]

- b) Given $\overline{ABC} + AB + \overline{ABC}$:
 - i. Find the standard SOP.

[2 marks]

ii. Draw the truth table from this standard SOP.

[2 marks]

iii. Write the equivalent POS.

[2 marks]

iv. Draw the Karnaugh map for the expression.

[3 marks]

v. Find the minimum SOP.

[3 marks]

c) Given truth table as Table 2. Find the minimum SOP using K-Map.

[9 marks]

A	В	С	D	OUTPUT
0	0	0	0	0
0	0	0	1	1
0	0	1	0	X
0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	0
0	1	1	1	11
1	0	0	0	l
1	0	0	1	1
1	0	i	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Table 2

Continued...

QUESTION 4 [25 MARKS]

a. Define decoder.

[2 marks]

b. Design a decoder that can decode input 1111 into LOW output with limitation using only a unit of NOT gate and a unit of AND gate.

[5 marks]

c. How to make the design in question 4(b) produce HIGH input if you are only allowed to change one gate only?

[2 marks]

d. Construct the truth table for 4 data input multiplexer with 2 data selector.

[4 marks]

e. Draw the logic circuit for half-adder with 2 inputs. Given to you the half adder truth table as in Table 3

A	В	C_{OUT}	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Table 3

[5 marks]

f. Determine the sum and output carry for a full-adder with $C_{in} = 0$, A = 1 and B = 0.

[3 marks]

g. Complete the truth table for active-High S-R latch.

[2 marks]

S	R	Q	\overline{Q}
0	0	i.	NC
0	1	ii.	iii.
1	0	1	0
1	1	iv.	1

Table 4

h. State one of the applications of flip-flops.

[2 marks]

End of Page.

APPENDIX: RULES OF BOOLEAN ALGEBRA

$$1. \qquad A+0=A$$

2.
$$A+1=1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

$$5. \qquad A+A=A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A+B)(A+C) = A+BC$$