Two Strata Case

Ravjot Singh Kohli

Apr 2023

1 Kähler Reduction on \mathbb{C}^n

The simplest example of Kähler reduction with an isolated singular point is a linear action. Let (z^1, \ldots, z^n) be holomorphic coordinates on \mathbb{C}^n . The standard Kähler form on \mathbb{C}^n is given by,

$$(\omega_{std})_z = \sum_{k=1}^n \frac{i}{2} dz^k \wedge d\bar{z}^k \tag{1}$$

The complex structure in these coordinates is given by

$$J_{std}\left(\frac{\partial}{\partial z^j}\right) = i\frac{\partial}{\partial z^j}, \qquad J_{std}\left(\frac{\partial}{\partial \bar{z}^j}\right) = -i\frac{\partial}{\partial \bar{z}^j}$$
 (2)

The standard Riemannian metric on \mathbb{C}^n and the Hermitian metric, respectively, are given by

$$g_{std}(z) = \omega_{std}(-, J_{std}-) = \sum_{k=1}^{n} dz^{k} \odot d\bar{z}^{k}$$

$$h_{std}(z) = \sum_{k=1}^{n} dz^{k} \otimes d\bar{z}^{k}$$
(3)

Note that this hermitian structure corresponds to the standard hermitian inner product on the vector space \mathbb{C}^n .

Recall that $\mathbb{C}^n \setminus \{0\} \simeq (0, \infty) \times S^{2n-1}$ with coordinates on the right given by polar coordinates (r, θ) . Here r = |z| and θ denotes the coordinates on S^{2n-1} . The standard metric in these coordinates takes the form

$$g_{std}(r,\theta) = dr^2 + r^2 g_{S^{2n-1}}(\theta)$$
 (4)

Let $G \subset U(n)$ be a compact Lie group acting on \mathbb{C}^n via unitary matrices. Since the action of U(n) is Hamiltonian, the moment map is given by

$$\Phi_{std}(z)(A) = (\omega_{std})_z(A_{\mathbb{C}^n}(z), z)$$

where $A \in \mathfrak{g} \subset \mathfrak{u}(n)$ is a skew-Hermitian matrix and $A_{\mathbb{C}^n}$ is the vector field generated by the group action.

We assume that apart from the fixed point set, the G-action is free. Hence we have two strata given by the orbit types, $(\mathbb{C}^n)_G$ of orbit type (G) and $(\mathbb{C}^n)_e = (\mathbb{C}^n) \setminus (\mathbb{C}^n)_G$ of orbit type (e) where $e \in G$ is the identity element.

Note that $(\mathbb{C}^n)_G$ is a linear symplectic subspace. Let $W := ((\mathbb{C}^n)_G)^{\perp}$ denote the perpendicular subspace with respect to the standard hermitian inner product on \mathbb{C}^n . Then W is a symplectic subspace as well. The following is a symplectic, orthogonal, and G-invariant decomposition of \mathbb{C}^n

Lemma 1.1. The subspaces $(\mathbb{C}^n)_G$ and W are symplectic and complex subspaces of \mathbb{C}^n find simple argument

$$\mathbb{C}^n = (\mathbb{C}^n)_G \oplus W \tag{5}$$

The moment map also decomposes as

$$\Phi_{std} = \Phi_{(\mathbb{C}^n)_G} + \Phi_W \tag{6}$$

where the maps on the right are the restriction of Φ_{std} to the respective subspaces.

We can write the stratum $(\mathbb{C}^n)_e$ as the product

$$(\mathbb{C}^n)_e = (\mathbb{C}^n)_G \times (W \setminus \{0\}) \tag{7}$$

For a point $z=(u,w)\in(\mathbb{C}^n)_e$, the Riemannian metric is given

$$g_{std}(u,w) = \sum_{k=1}^{m} du^k \odot d\bar{u}^k + \sum_{k=1}^{l} dw^k \odot d\bar{w}^k$$
 (8)

Let $A \in \mathfrak{g} \subset \mathfrak{u}(n)$. The vector field generated on \mathbb{C}^n by the group action, denoted $A_{\mathbb{C}^n}$, is given by

$$A_{\mathbb{C}^n}(z) = \frac{d}{dt}\Big|_{t=0} \exp(tA) \cdot z = \begin{cases} 0 & z \in (\mathbb{C}^n)_G \\ A \cdot z & z \in (\mathbb{C}^n)_e \end{cases}$$
(9)

Lemma 1.2. The zero level set $Z_{std} := \Phi_{std}^{-1}(0)$ is a cone, i.e., $Z_{std} \simeq [0, \infty) \times L$ where $L = Z_{std} \cap S^{2n-1}$

Proof. Let $p \in Z_{std}$. Consider the scalar multiplication of \mathbb{R}^+ on \mathbb{C}^n denoted by $t \cdot p$. Then we have

$$\Phi_{std}(t \cdot p)(A) = (\omega_{std})_{t \cdot p}(A_{\mathbb{C}^n}(t \cdot p), t \cdot p)
= (\omega_{std})_p(t \cdot A_{\mathbb{C}^n}(p), t \cdot p)
= t^2 \Phi_{std}(p)(A)
= 0$$

where we have used that $(\omega_{std})_p$ is independent of the point $p \in \mathbb{C}^n$ and that scalar multiplication on \mathbb{C}^n is linear and commutes with the action of $\mathfrak{u}(n)$.

Note that $0 \in Z_{std} \subset \mathbb{C}^n$ is the only singular point and $Z_{std} \setminus \{0\}$ is a smooth manifold. The reduced space defined as the quotient $\pi: Z_{std} \to Z_{std}/G =: (\mathbb{C}^n)_0$ has two strata, the point $\pi(0)$ and the rest. Hence outside the point $\pi(0)$, we can talk about the symplectic form $(\omega_{std})_0$ and the Riemannian metric $(g_{std})_0$ on the manifold $(\mathbb{C}^n)_0 \setminus \{\pi(0)\}$ coming from smooth Kähler reduction.

Note that the G-action on $Z_{std}\setminus\{0\}\simeq(0,\infty)\times L$ acts only on the link L and so

$$(\mathbb{C}^n)_0 \setminus \{\pi(0)\} \simeq (0, \infty) \times (L/G) \tag{10}$$

Now combining ??, ??, and the above decomposition, we get that the metric on the reduced space can be written as

$$(g_{std})_0(r,\phi) = dr^2 + r^2 g_{L/G}(\phi)$$
 (11)

where $g_{L/G}$ is the quotient metric on manifold L/G (with coordinates (ϕ)).

2 Ideal Metric

Let (M, ω) be a symplectic manifold with a Hamiltonian action by a compact Lie group G with moment map Φ_M . Let $H := G_x$ for a point $x \in M$. The symplectic slice to the point x is defined as

$$V := (T_x(G \cdot x))^{\omega} / (T_x(G \cdot x)) \tag{12}$$

This is a symplectic subspace of T_xM . We denote the quotient vector space $\mathfrak{m} := \mathfrak{g}/\mathfrak{h}$.

Theorem 2.1 (Prop 2.5, SL). A neighbourhood of the orbit $G \cdot x$ in M is G-equivariantly symplectormorphic to a neighbourhood of the zero section of the associated bundle $G \times_H (\mathfrak{m}^* \times V)$ with the moment map given by

$$\Phi: G \times_H (\mathfrak{m}^* \times V) \to \mathfrak{g}^*$$

$$[(g, \mu, v)] \mapsto Ad^*(g)(\mu + \Phi_V(v))$$
(13)

where Φ_V is the moment map on the symplectic vector space V.

The zero level set is given by

$$Z := \Phi^{-1}(0) = G \times_H (\{0\} \times \Phi_V^{-1}(0))$$
(14)