

Basalt fibre prodn.

Patent Number: EP0705799, A4

Publication date: 1996-04-10

Inventor(s): KIBOL VIKTOR FEDOROVICH (RU)

Applicant(s): KIBOL VIKTOR F (RU)

Requested Patent: RU2018491

Application Number: EP19930909440 19930311

Priority Number(s): WO1993RU00063 19930311; SU19925031919 19920312

IPC Classification: C03B37/00 ; C03B37/02

EC Classification: C03B37/02, C03B37/08

Equivalents: JP9500080T, SK108794, WO9317975

Abstract

Basalt fibre is mfd. by: melting basalt rock at 1500-1600 deg.C; feeding the melt to a homogenising zone where a melt of viscosity above 100 poise is formed; and feeding the melt to a fibre forming zone where fibre is drawn at a rate of more than 3500m/min.

Data supplied from the esp@cenet database - I2

(19) RU (11) 2018491 (13) C1
(51) S_C 03 В 37/00

Комитет Российской Федерации
по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ к патенту Российской Федерации

1
(21) 5031919/33
(22) 1203.92
(46) 300894 Бол № 16
(76) Кубоп Виктор Седорович
(56) 1 Авторское свидетельство СССР N
461909, кл С 03В 37/00, 1962
2 Драгирс Д.Д. и др. Производство базальтового непрерывного волокна - Строительные материалы и конструкции 1986 N 3.
с11-12
(54) СПОСОБ ПОЛУЧЕНИЯ БАЗАЛЬТОВОГО ВОЛОКНА

2
(57) Использование чаготовление высокотемпературных фильтров в нефтехимической, металлургической отрасли промышленности в радиоэлектронной промышленности для производства плащ в композиционных материалах. Сущность изобретения в способе получения базальтового волокна базальтовую породу нагревают до 1500 - 1600°C и вытягивают волокно со скоростью 3500 - 4500 м/мин из расплава с вязкостью 110 - 500 П. Характеристики волокна диаметр волокна 10 - 35 мкм 1 г/мл

RU 2018491

C1

Изобретение относится к технологии получения минеральных волокон из расплавов горных пород, а более точно к способу получения базальтового волокна.

Наиболее успешно изобретение может быть использовано для изготовления высокотемпературных фильтров в нефтехимической, металлургической отраслях промышленности, в радиоэлектронной промышленности для производства плат, в композиционных материалах, которые должны обладать высокой исходной прочностью, стойкостью к агрессивным средам, долговечностью.

Рост объемов производства стеклянных волокон за последнее время сдерживается возрастающим дефицитом исходного сырья, в частности кварцевых песков, соды, сульфата бора.

С целью похорония дефицита в исходном сырье с одновременным увеличением химической стойкости, температуростойкости и модуля упругости волокон был разработан способ получения волокон из горных пород типа базальтов, которые широко распространены в природе. Базальтовые волокна по ряду основных свойств превосходят стеклянные по щелочестойкости, кислотостойкости. Так, устойчивость базальтового волокна после кипячения в соляной кислоте составляет 82%, в люмбурсиликатного лишь 54%. Модуль упругости базальтового непрерывного волокна также приблизительно в 1,5 раза выше чем у стеклянного. Термостойкость базальтового непрерывного волокна на 250°C больше чем у алюмосиликатного. При пребывании в 100% относительной влажности в течение 64 сут прочность базальтового непрерывного волокна практически не меняется, тогда как волокна алюмоборосиликатного состава теряют 30% прочности.

Известен способ изготовления волокна из расплава горных пород, по которому волокно получают при температуре расплава 1200-1300°C и его вязкости 100 ПЗ. Полученные волокна обладают низкой термостойкостью и большим средним диаметром элементарной нити выше 14 мкм, получаемой из этих волокон, что не позволяет ее использовать для изготовления высокотемпературных фильтров, применяемых для очищивания цветных или других металлов в отходящих газах [1].

Наиболее близким по технической сущности и достигаемому эффекту является способ получения волокна из расплава горных пород типа базальтов [2].

Известный способ заключается в следующем:

Базальтовую породу подают в зону плавления плавильной печи, где поддерживают температуру $1450 \pm 10^{\circ}\text{C}$, и получают расплав, который поступает в зону гомогенизации печи. В указанной зоне поддерживают температуру 1200°C , превышающую температуру кристаллизации полученного расплава. Затем расплав из зоны гомогенизации подают в зону формирования волокна, и вытягивание волокон ведут со скоростью 2135-3200 м/мин при вязкости расплава в зоне формирования волокна менее 100 ПЗ.

Недостатком данного способа является большой диаметр получаемой компактной нити, превышающий 11 мкм, из-за относительно низкой скорости ее вытягивания 3200 м/мин. Увеличение скорости вытягивания приводит к ее отрыву.

Цель изобретения - получение базальтового волокна с улучшенными физико-механическими свойствами.

Цель достигается тем, что в способе получения волокна, включающем подачу базальтовой породы в зону плавления, нагрев ее до температуры плавления и получения расплава, подачу полученного расплава в зону гомогенизации, в которой поддерживают температуру, превышающую температуру кристаллизации расплава, подачу гомогенизированного расплава в зону формирования волокна, вытягивание из расплава непрерывных волокон, нагрев базальтовой породы ведут при $1500-1600^{\circ}\text{C}$, вытягивание непрерывных волокон ведут со скоростью 3500-4500 м/мин при вязкости расплава 110-500 ПЗ.

Реализация способа получения волокна обеспечивает получение непрерывного базальтового волокна диаметром менее 7 мкм. При этом достигается повышение термостойкости непрерывных базальтовых волокон, изделия из которых могут быть применены при температуре, превышающей 700°C .

Способ осуществляют следующим образом.

Пример. Базальтовую породу подают в зону плавления плавильной печи, где происходит нагрев породы до $1500-1600^{\circ}\text{C}$ и получение расплава. Полученный расплав выдерживают некоторое время с целью его гомогенизации. А затем гомогенизированный расплав подают в зону формирования волокна, которая сформирована питателем с фильтрами, в которых поддерживают температуру, превышающую температуру кристаллизации полученного расплава. Из фильтров расплав выходит в виде капель, образуя лужички, которые увеличиваются в

массе, отрываются от фильтра, образя пучок волокон. Сначала эти волокна собирают непрерывным вытягиванием вручную, и полученный пучок заводят в канавку ролика нитесборника, быстро вытягивая под углом 60–80°. Вытягивание волокном осуществляют без остановок и замедлений со скоростью 3500–4500 м/мин при вязкости расплава более 100 ПЗ, так как в противном случае на волокнах образуются медленно застывающие утолщения, которые вызывают ожог и повреждают ролик нитесборника. При достижении пучка волокон требуемой тонкости обрывают его конец, вручную наматывают нить на торец бобины и включают при этом наматывающий механизм. В результате за счет вращения бобины на нее наматываются непрерывные базальтовые

волокна. Для предупреждения взаимного трения в пучке непрерывных волокон, их взаимного склеивания, а также предохранения наружной поверхности волокон от воздействия внешней среды и разрушения их в процессе переработки поверхности волокна покрывают замасливателем. Бобины с намотанными на них непрерывными волокнами снимают с бобинодержателя и передают на переработку.

Базальтовые непрерывные волокна, полученные по предложенному способу, имеют средний диаметр элементарного волокна менее 7 мкм при скорости вытяжки 3500 м/мин и температура вытяжки 1500°C.

Конкретные примеры осуществления способа представлены в таблице.

Наименование параметра	Значение параметра		
Температура расплава, °С	1500	1550	1600
Скорость вытяжки, м/мин	3500	4000	4500
Вязкость, ПЗ	500	260	110
Средний диаметр элементарных волокон, мкм	5.5	4.8	4.0

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ БАЗАЛЬТОВОГО ВОЛОКНА путем подачи базальтовой породы, нагрева ее до температуры плавления, гомогенизации расплава и вытяги-

вания непрерывных волокон, отличающийся тем, что нагрев базальтовой породы ведут до 1500–1600°C, а волокно вытягивают со скоростью 3500–4500 м/мин из расплава с вязкостью 110–500 П.

Годограф С. Кулакова

Заказ 618

Составитель Т. Никульникова
Текущий М. Моргентал

Тираж
НПО "Поиск" Роспатента
113035, Москва, Ж-35, Раушская наб., 4/5

Корректор Л. Ливринц

Подписьное