0.1 Homework 1

0.1.1	Hermitian	operators

1.	Prove theorem 1: If A is Hermitian operator, then all its eigenvalues are real numbers, and the eigenvectors corresponding
	to different eigenvalues are orthogonal.

2. Prove theorem 2: If A is Hermitian operator, then it can be always diagonalized by unitary transformation.

3. Prove theorem 3: Two diagonalizable operators A and B can be simultaneously diagonalized if, and only if, $[A,$	B] = 0.

0.1.2 Matrix diagonalization and unitary transformation

1. Diagonalizing a matrix L corresponds to finding a unitary transformation V such that $L = V\Lambda V^\dagger$, where Λ is a diagonal matrix whose diagonal elements are eigenvalues, V is an unitary matrix whose column vectors are the corresponding eigenstates. Find a unitary matrix V that can diagonalize the Pauli matrix $\sigma^x_{(z)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and find the eigenvalues of $\sigma^x_{(z)}$.

2. The three components of the spin angular momentum operator \vec{S} for spin-1/2 are S^x , S^y , and S^z . If we use the S^z representation, their matrix representations are given by $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, where the three components of $\vec{\sigma}$ are the Pauli matrices σ^x , σ^y , and σ^z .

Now consider using the S^x representation. Please list the order of basis vectors you have chosen in the S^x representation, and calculate the matrix representations of the three components of the operator \vec{S} in this representation.