

Model Development Phase Template

Date	15 July 2024	
Team ID	739737	
Project Title	Crop Prediction using machine learning	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix	
1. K Nearest Neighbors Model	The second of the second	0.98579	mothbears 0,93 0,93 0,93 mughean 1,00 1,00 1,00 1,00 muskmelon 1,00 1,00 1,00 1,00 orange 1,00 1,00 0,93 0,97 pigeoropas 1,00 0,93 0,97 pigeoropas 1,00 0,93 0,97 price 0,93 0,74 0,82 watermelon 1,00 1,00 1,00 cracuracy accuracy 0,97 0,97 4,97 4,97 4,97 4,97 4,97 4,97 4,97 4	23 20 21 22 20 20 20 18 19 25 20 17 14 12 19 19 11 17 14 18 18 19 19 17 17 17 17 17 17 17 17 17 17 17 17 17

2. SVM Model	Section Control Contro	0.97784	svm=sVc() svm_sVc() sv
3.Decision Tree Model	Processor of the control of the	0.7613	### Operation Company Company
4. Random Forest Model	** Application of the second control of the	0.9954	● rfclassifie—tendemorestilassifier() rfclassifie—tendemorestilassifier() rpcdrclassifier(tt(trans,troid)) predcision recall f1-score support apple 1.00 1.00 1.00 23 banana 1.00 1.00 1.00 20 blackgram 1.00 1.00 1.00 20 chickpea 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 22 coconut 1.00 1.00 1.00 20 grapes 1.00 1.00 1.00 20 maize 1.00 1.00 1.00 25 maize 1.00 1.00 1.00 1.00 1.00 29 mango 1.00 1.00 1.00 1.00 25 maize 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0