The Last-Iterate Convergence Rate of Optimistic Mirror Descent in Stochastic VI

Waïss Azizian 1,3 , Franck lutzeler 2,3 , Jérôme Malick 2,3,4 , Panayotis Mertikopoulos 2,4,5

¹ ENS, Univ. PSL, ² Univ. Grenoble Alpes, ³ LJK, ⁴ CNRS, ⁵ LIG

Contributions

Interplay between geometry, algorithm and convergence

- Introduce the Legendre exponent to describe the local geometry of a Bregman divergence
- Characterize the convergence of the last-iterate of Optimistic Mirror Descent near the solution
- Derive consequences for the tuning of step-sizes

Variational Inequality

For
$$\mathcal{K} \subset \mathbb{R}^d$$
, $v: \mathcal{K} \to \mathbb{R}^d$, find $x^* \in \mathcal{K}$ s.t.
$$\langle v(x^*), x - x^* \rangle \ge 0 \text{ for all } x \in \mathcal{K}$$
 (VI)

Example (Minimization)

KKT points of
$$\min_{x \in \mathcal{K}} f(x) \iff$$
 (VI) with $v = \nabla f$

Example (Saddle-point)

Stationary points of min max
$$\Phi(x_1, x_2) \iff \text{(VI)}$$
 with $v = \begin{pmatrix} \nabla_{x_1} \Phi \\ -\nabla_{x_2} \Phi \end{pmatrix}$

Bregman divergences

Bregman divergence: For $h: \mathcal{K} \subset \mathbb{R}^d \to \mathbb{R}$ 1-strongly convex

$$D(p,x) = h(p) - h(x) - \langle \nabla h(x), p - x \rangle$$
, for all $p \in \mathcal{K}, x \in \mathcal{K}$

Prox-mapping: $P: \mathcal{K} \times \mathbb{R}^d \to \mathcal{K}$

$$P_X(y) = \underset{x' \in \mathcal{K}}{\operatorname{arg\,min}} \{ \langle y, x - x' \rangle + D(x', x) \}$$
 for all $x \in \mathcal{K}, y \in \mathbb{R}^d$.

Example: on $\mathcal{K} = [0, +\infty)$

	h(x)	D(p,x)	$P_{x}(y)$
Euclidean	$\frac{x^2}{2}$	$\frac{(p-x)^2}{2}$	$(x + y)_{+}$
Entropy	$x \log x$	$p \log \frac{p}{x} + p - x$	xe^y
Tsallis entropy, $q > 0$	$\frac{-x^q}{q(1-q)}$	$\frac{(1-q)x^{q}-p(x^{q-1}-p^{q-1})}{q(1-q)}$	

Optimistic Mirror Descent

$$X_{t+1/2} = P_{X_t}(-\gamma_t V_{t-1/2})$$
 $V_{t-1/2} = v(X_{t-1/2}) + \text{err}$
 $X_{t+1} = P_{X_t}(-\gamma_t V_{t+1/2})$ $V_{t+1/2} = v(X_{t+1/2}) + \text{err}$

Existing results:

(VI)	Convergence	Setting	Stochastic
Mon.	Ergodic	Bregman	$O(1/\sqrt{t})$ with $\gamma_t \propto 1/\sqrt{t}$
Strongly Mon.	Last-iterate	Only Euclidean	$O(1/t)$ with $\gamma_t \propto 1/t$
(Nemirovski, 2004), (Juditsky et al., 2011, Gidel et al., 2019), (Hsieh et al., 2019)			

What happens across divergences?

_Question

How can we explain those differences in last-iterate convergence between divergences?

The Bregman topology

- Strong convexity of h: for all $p \in \mathcal{K}, x \in \mathcal{K}$
 - $D(p, x) \ge \frac{1}{2} ||p x||^2$
- Reverse does not hold in general:

Example: on $\mathcal{K} = [0, +\infty)$

Our proposal: quantify the deficit of regularity

Legendre exponent of h at $p \in \mathcal{K}$: $\beta \in [0, 1)$ s.t., for some $\kappa \geq 0$ for all x close to p, $D(p, x) \leq \frac{1}{2}\kappa \|p - x\|^{2(1-\beta)}$

Example: on $\mathcal{K} = [0, +\infty)$

	p > 0 (interior)	p=0 (boundary
Euclidean reg.	0	0
Entropy	O	1/2
Tsallis entropy $q \le 2$	2 0	1 - q/2

Legendre exponent \(\beta \)

Assumptions and iterate stability

Oracle signal: $(U_t)_t$ zero-mean and with finite-variance,

Lipschitz continuity:

$$V_t = v(X_t) + U_t$$

$$||v(x') - v(x)||_* \le L||x' - x||$$
 for all $x, x' \in \mathcal{K}$.

Second-order sufficiency: there exists $\mu > 0$ s.t.,

$$\langle v(x), x - x^* \rangle \ge \mu \|x - x^*\|^2$$
 for all x close to x^* .

Proposition

Take a step-size of the form $\gamma_t = \gamma/(t+t_0)^{\eta}$ with $\eta \in (1/2, 1]$ and γ , $t_0 > 0$ and fix any confidence level $\delta > 0$,

For every neighborhood \mathcal{U} of x^* , if γ/t_0 is small enough and X_1 is close enough to x^* , then

$$\mathcal{E}_{\mathcal{U}} = \{X_t \in \mathcal{U} \text{ for all } t = 1, 2, \dots\}$$

happens with probability at least $1 - \delta$.

Last-iterate convergence

Legendre exponent: For all x close to x^* ,

$$D(x^*, x) \le \frac{1}{2}\kappa ||x^* - x||^{2(1-\beta)}$$

$.\mathsf{Theorem}_{.}$

If \mathcal{U} is small enough, with step-sizes of the form, $\gamma_t = \gamma/(t + t_0)^{\eta}$, $\mathbb{E}[D(x^*, X_t) \mid \mathcal{E}_{\mathcal{U}}]$ is bounded according to the following table:

Legendre exponent	Rate $(\eta = 1)$	Rate $(\frac{1}{2} < \eta < 1)$	Examples
$\beta = 0$	$\mathcal{O}(1/t)$	$\mathcal{O}(1/t^{\eta})$	Euclidean, Interior
Conditions:	γ large enough		Luchaeuri, iriterior
$\beta \in (0,1)$	$\mathcal{O}\left((\log t)^{-\frac{1-\beta}{\beta}}\right)$	$\mathcal{O}\left(t^{-rac{(1-\eta)(1-oldsymbol{eta})}{oldsymbol{eta}}}+t^{-\eta} ight)$	Entropy, Tsallis
Conditions:	γ sma	ll enough	

Optimal step-size:

Legendre exp.	$\boldsymbol{\eta}^*$	Rate
$\beta \in [0, 1/2)$	$1-\beta$	$\mathcal{O}\!\left(t^{-(1-oldsymbol{eta})} ight)$
$\beta \in [1/2, 1]$	$\approx 1/2$	$\mathcal{O}\left(t^{-\frac{1-\beta}{2\beta}}\right)$

Reduced bibliography

- G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A variational inequality perspective on generative adversarial networks. In *ICLR* '19, 2019.
- Y.-G. Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos. On the convergence of single-call stochastic extra-gradient methods. In *NeurIPS* '19, 2019.
- A. Juditsky, A. S. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm. *Stochastic Systems*, 2011.
- A. S. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 2004.