Kernel trick

Victor Kitov v.v.kitov@yandex.ru

Yandex School of Data Analysis

Kernel trick

Perform feature transformation: $x \to \phi(x)$. Scalar product becomes $\langle x, x' \rangle \to \langle \phi(x), \phi(x') \rangle = K(x, x')$

Kernel trick

Define not the feature representation x but only scalar product function K(x,x')

Illustration

Kernelizable algorithms¹

- ridge regression:
- K-NN
- K-means
- PCA
- SVM
- etc...

¹Prove tht $x^T A x$ is a kernel for any $A \geq 0$.

Kernel trick use cases

- high-dimensional data
 - polynomial of order up to M
 - Gaussian kernel $K(x, x') = e^{-\frac{1}{2\sigma^2} ||x x'||^2}$ corresponds to infinite-dimensional feature space.
- hard to vectorize data
 - strings, sets, images, texts, graphs, 3D-structures, sequences, etc.
- natural scalar product exist
 - strings: number of co-occuring substrings
 - sets: size of intersection of sets
 - example: for sets S_1 and S_2 : $K(S_1, S_2) = 2^{|S_1 \cap S_2|}$ is a possible kernel
 - etc.
- scalar product can be computed efficiently

General motivation for kernel trick

- perform generalization of linear methods to non-linear case
 - we use efficiency of linear methods
 - local minimum is global minimum
 - no local optima=>less overfitting
- non-vectorial objects
 - hard to obtain vector representation

Polynomial kernel²

• Example 1: let D=2.

$$K(x,z) = (x^{T}z)^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2} =$$

$$= x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}z_{1}x_{2}z_{2}$$

$$= \phi^{T}(x)\phi(z)$$

for
$$\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

²What kind of feature transformation will correspond to $K(x,z) = (x^T z)^M$ for arbitrary M and D?

Polynomial kernel³

• Example 2: let D=2.

$$K(x,z) = (1+x^Tz)^2 = (1+x_1z_1+x_2z_2)^2 =$$

$$= 1+x_1^2z_1^2+x_2^2z_2^2+2x_1z_1+2x_2z_2+2x_1z_1x_2z_2$$

$$= \phi^T(x)\phi(z)$$
for $\phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$

³What kind of feature transformation will correspond to $K(x,z) = (1 + x^T z)^M$ kernels for arbitrary M and D?

Kernel properties

Theorem (Mercer): Function K(x, x') is a kernel is and only if

- it is symmetric: K(x, x') = K(x', x)
- it is non-negative definite:
 - ullet definition 1: for every function $g:X o\mathbb{R}$

$$\int_X \int_X K(x,x')g(x)g(x')dxdx' \ge 0$$

• definition 2 (equivalent): for every finite set $x_1, x_2, ... x_M$ Gramm matrix $\{K(x_i, x_i)\}_{i,i=1}^M \succeq 0$ (p.s.d.)

Kernel construction

- Kernel learning separate field of study.
- Hard to prove non-negative definitness of kernel in general.
- Kernels can be constructed from other kernels, for example from:
 - **1** scalar product $\langle x, x' \rangle$
 - **2** constant $K(x, x') \equiv 1$

Constructing kernels from other kernels

If $K_1(x,x')$, $K_2(x,x')$ are arbitrary kernels, c>0 is a constant, $q(\cdot)$ is a polynomial with non-negative coefficients, h(x) and $\varphi(x)$ are arbitrary functions $\mathcal{X} \to \mathbb{R}$ and $\mathcal{X} \to \mathbb{R}^M$ respectively, then these are valid kernels⁴:

- **1** $K(x,x') = cK_1(x,x')$
- $(x,x') = K_1(x,x')K_2(x,x')$
- $(x,x') = K_1(x,x') + K_2(x,x')$

- **6** $K(x, x') = e^{K_1(x, x')}$

⁴prove some of these statements

Commonly used kernels

Let x and x' be two objects and take any $\gamma > 0, r > 0, d > 0$.

Kernel	Mathematical form
linear	$\langle x, x' \rangle$
polynomial	$(\gamma\langle x,x'\rangle+r)^d$
RBF	$\exp(-\gamma \ x - x'\ ^2)$

• Standard transformation is also sigmoid=tangh($\gamma\langle x,y\rangle+r$) but its not a Mercer kernel.

Addition⁵

- Other kernelized algorithms: K-NN, K-means, K-medoids, nearest medoid, PCA, SVM, etc.
- Kernelization of distance:

Thow can we calculate scalar product between normalized (unit norm) vectors $\phi(x)$ and $\phi(x')$?

Addition⁵

- Other kernelized algorithms: K-NN, K-means, K-medoids, nearest medoid, PCA, SVM, etc.
- Kernelization of distance:

$$\rho(x,x')^{2} = \langle \phi(x) - \phi(x'), \phi(x) - \phi(x') \rangle$$

$$= \langle \phi(x), \phi(x) \rangle + \langle \phi(x'), \phi(x') \rangle - 2\langle \phi(x), \phi(x') \rangle$$

$$= K(x,x) + K(x',x') - 2K(x,x')$$

⁵How can we calculate scalar product between normalized (unit norm) vectors $\phi(x)$ and $\phi(x')$?

Kernel methods - Victor Kitov Kernel support vector machines

Table of Contents

Mernel support vector machines

Making predictions

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \rightarrow \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \leq \alpha_i \leq C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle x_i, x_j \rangle \right)$$

 \odot Make prediction for new x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

Making predictions

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x}_j \rangle \right)$$

3 Make prediction for new x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

• On all steps we don't need exact feature representations, only scalar products $\langle x,x'\rangle!$

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

2 Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(\mathbf{x}_i, \mathbf{x}_j) \right)$$

 \odot Make prediction for new x:

$$\hat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \frac{K(x_i, x_j)}{W(x_i, x_j)} + w_0]$$

• We replaced $\langle x, x' \rangle \to K(x, x')$ for $K(x, x') = \langle \phi(x), \phi(x') \rangle$ for some feature transformation $\phi(\cdot)$.

Kernel results

RBF kernel - variable C

RBF kernel - variable C

RBF kernel - variable C

