٨	/la	th	231	-	WI-	4

Name:	KEY		
-------	-----	--	--

Epp 2nd Ed. 2.3 2, 5 – 9, 11 – 14, 20, 21, 22, 26, 28.

(2) If an integer n equals 2k and $k \in \mathbb{Z}$, then n is even.

 $0 = 2 \cdot 0$ and 0 is an integer.

.. O is even

(5) All healthy people eat an apple a day.

Harry does not eat an apple a day.

.. Harry is not healthy

(6) If a program is correct, then compilation does not produce error messages.

Compilation of this program produces error messages.

.. the program is not correct.

		Valid or Invalid?	Justify your answer! Summarize the argument using symbols.	 If the argument is valid, say if it is by the conditional or the contrapositive. If it's invalid, say if it is the inverse error or the converse error.
(7)	All healthy people eat on apple a day. Helen eats an apple a day. ∴ Helen is a healthy person.	invalid	Let H(x): healthy, and A(x): eats apples. H(x) ⇒ A(x) A (Helen) ∴ H (Helen)	Converse errop!
(8)	All freshmen take writing. Caroline is a freshman. Caroline must take writing.	valid	Let $F(x)$: is a freshman, and $W(x)$: takes writing. $F(x) \implies W(x)$ $F(Carolyn)$ $\therefore W(Carolyn)$	conditional
(9)	All healthy people eat on apple a day. Herbert is not a healthy person Herbert does not eat an apple a day.	bilavni	Let H(x): healthy, and A(x): eats apples. H(x) \Rightarrow A(x) H (Herbert) A (Herbert)	inverse error!

(11)	All cheaters sit in the back row. George sits in the back row. George is a cheater.	invalia	Let $C(x)$: is cheater, and $B(x)$: sits in back row. $C(x) \Rightarrow B(x)$ $B(George)$ $C(George)$	Converse error.
(12)	All honest people pay their taxes. Darth is not honest. ∴ Darth does not pay his taxes.	invalid	Let $H(x)$: honest, and $T(x)$: pays taxes $H(x) \Longrightarrow T(x)$ $\sim H(Darth)$ $\therefore \sim T(Darth)$	inverse
(13)	For all students x, if x studies discrete math, then x is good at logic. Dawn studies discrete math. Dawn is good at logic.	valid	Let $D(x)$: discrete math, and $G(x)$: good at logic $D(x) \Rightarrow G(x)$ $D(Dawn)$ $\therefore G(Dawn)$	Conditional
(14)	If compilation produces error messages, then the program is not correct. Compilation of this program did not produce error messages. ∴ Program is correct.	invalid	Let $E(x)$: errors, and $C(x)$: correct. $E(x) \Longrightarrow C(x)$ $\sim E(\text{this program})$ $\sim C(\text{this program})$	inverse

		Valid or Invalid?	Justify your answer!Summarize the argument by drawing a diagram.	If the argument is invalid, explain why.
(20a)	All dogs are carnivorous. Felix is not a dog. ∴ Felix is not carnivorous.	invalid	cornivores dags F?	We're not some where Felix is (inverse error)
(20b)	$\forall x$, if P(x), then Q(x). $\sim P(a)$ for a particular a. $\therefore \sim Q(a)$.	juralist	P(x) ~ P(a)?	where p(a) is! (inverse error)

(21)	All people are mice. All mice are mortal. All people are mortal.	valid	mortal m: co People
(22)	All discrete math students can tell valid from invalid. All thoughtful people can tell valid from invalid. All discrete math students are thoughtful.	invalid	we're vot sure of the relationship between discrete and Thoughtful.
(26)	Nothing intelligible ever puzzles me. Logic puzzles me. ∴ Logic is unintelligible.	Valid	Pusation I pusation

this is one way to draw the picture -See last page for others. Now do problem 28. Write down the clues in order, and write down your intermediate conclusions.

- (2) The arguments in these examples are not arranged in the regular order that I am used to.
- (4) I can't understand examples if the arguments are not arranged in regular order like the ones I'm Used to.

I can't understand these examples!

- (1) When F work a logic example without grambling, you may be some toot it is one I understand.

 +ranslation: If I do not gramble; then I understand.
 - : These examples make me grumble (by contrapositive)
- (5) I never grumble at an example unless it gives me a headache.
 - The examples give me a headache.
- (3) No easy examples make my head ache.
 Thanslation: if easy, then no headache.
 - .. these examples are not easy. (by contrapositive)

Nothing intelligible ever puzzles me. Logic puzzles me.

... Logic is onintelligible.

