GEORGII OBLAPENKO

georgii.oblapenko@austin.utexas.edu knstmrd.github.io

Ph.D. (Mechanics of Fluid, Gas and Plasma) \diamond Postdoctoral Research Fellow

University of Texas at Austin \diamond Oden Institute for Computational Engineering and Sciences

EDUCATION

Saint-Petersburg State University

September 2015 — April 2017

Ph.D. degree (in Physical and Mathematical Sciences) Area of research: Mechanics of Fluids, Gases and Plasma

Department of Hydroaeromechanics

Research supervisor: Prof. Kustova E.V.

Saint-Petersburg State University

September 2013 — June 2015

Masters degree (with excellence) in Mechanics and Mathematical Modelling

Area of specialization: Molecular Kinetic Theory of Fluids and Gases

 $\label{thm:prop} \mbox{Department of Hydroaeromechanics}$

Research supervisor: Prof. Kustova E.V.

Saint-Petersburg State University

September 2009 — June 2013

Bachelors degree in Mathematics and Mechanics

Department of Hydroaeromechanics

Research supervisor: Prof. Kustova E.V.

WORK EXPERIENCE

University of Texas at Austin

January 2019 – Present

Postdoctoral Research Fellow

Oden Institute for Computational Engineering and Sciences

Development of a hybrid Discrete Velocity Method/Direct Simulation Monte Carlo code for modelling of ionized rarefied gas flows.

University of Texas at Austin

July 2018 – January 2019

Scientific Consultant

Oden Institute for Computational Engineering and Sciences

Development of a hybrid Discrete Velocity Method/Direct Simulation Monte Carlo code.

Saint-Petersburg State University

September 2015 – December 2017

Assistant engineer

Department of Hydroaeromechanics

Lead developer of a C++ library aimed at kinetic theory computations. Implementation of state-to-state models in Direct Simulation Monte Carlo (DSMC) codes, development of simplified models for vibrational relaxation rates, and numerical modelling of reaction rates in viscous gas flows.

Saint-Petersburg State University

April 2013 – September 2015

Assistant researcher

Department of Hydroaeromechanics

Development of theoretical models of reaction rates in viscous gas flows and their numerical modelling.

Internships

- · DLR, Göttingen, Germany (November 2017–January 2018). Implementation of new model for vibrational relaxation rates of nitrogen and oxygen in the DLR-TAU solver.
- The Federal University of Parana, Curitiba, Brazil (October 2016). Study of the influence of variable diameters of vibrationally excited molecules on relaxation processes.
- · Khristianovich Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia (February 2016). Implementation of state-to-state models of non-equilibrium processes in DSMC code.

TECHNICAL SKILLS

Rarefied gas dynamics Programming languages Other

Numerical modelling, DSMC, DVM, Chapman–Enskog method Python, Fortran, C++, Julia, MATLAB, Javascript

Machine learning, digital signal processing

ACADEMIC ACHIEVEMENTS

Author and co-author of 22 publications in SCOPUS/Web of Science-indexed peer-reviewed journals and conference proceedings. Participant of 13 international and and 7 all-Russian conferences.

Reviewer for Computers and Fluids, Acta Astronautica, Computer Methods in Applied Mechanics and Engineering, Physics of Fluids.

Seminar talks/lectures:

- 1. Center for Computational Engineering Science, Mathematics Division, RWTH Aachen, 2019 (Aachen, Germany)
- 2. Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 2019 (Austin, TX, USA)
- 3. Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, 2019 (Austin, TX, USA)

Research and travel grants:

Personal grants:

- 1. Humboldt postdoctoral research fellowship (DLR, Göttingen, Germany), 2021–2023.
- 2. Research project "Improvements of the thermo-chemical relaxation model used by the DLR-TAU code" jointly sponsored by the DAAD and Saint-Petersburg State University, 2017
- 3. Research project "Influence of variable diameters of vibrationally excited molecules on relaxation processes in strongly non-equilibrium gas flows" jointly sponsored by the Santander Bank and Saint-Petersburg State University, 2016
- 4. Research project "Implementation of models of vibrational transitions in direct simulation methods", sponsored by the Russian Foundation for Basic Research, 2015
- 5. Saint-Petersburg State University travel grants (2013, 2014, 2017)

2015–2016: Participant of the ESA research project "Exploring angular-momentum phenomenology in aerothermodynamics and MHD".

2013–2017: Participant of 3 Saint-Petersburg University grants, 1 Russian Science Foundation grant and 3 Russian Foundation for Basic Research grants (not including personal grants).

Stipends and awards:

- Stipend of the Russian President for students and PhD students studying disciplines corresponding to the prioritized areas of modernization of Russian economics (2017)
- Stipend of the Russian Government for students and PhD students studying disciplines corresponding to the prioritized areas of modernization of Russian economics (2016)
- Stipend of the Russian Government for students and PhD students (2016)
- Winner of the Saint-Petersburg Government Grant Competition for Students and Graduate Students (2013)

A) Peer-reviewed publications:

- Sarna N., Oblapenko G., Torrilhon M. (2021): Moment Method for the Boltzmann Equation of Reactive Quaternary Gaseous Mixture. Accepted in: Physica A: Statistical Mechanics and its Applications.
- 2. Oblapenko G., Goldstein D., Varghese P., Moore C. (2021): Velocity-space Hybridization of DSMC and a Quasi-Particle Boltzmann Solver. Accepted in: Journal of Thermophysics and Heat Transfer.
- 3. Oblapenko G., Kustova E.V. (2020): Influence of angular momentum on transport coefficients in rarefied gases. In: Physica A: Statistical Mechanics and its Applications, Vol. 553, p. 124673.
- 4. Oblapenko G., Goldstein D., Varghese P., Moore C. (2020): A velocity space hybridization-based Boltzmann equation solver. In: Journal of Computational Physics, Vol. 408, p. 109302.
- 5. Campoli L., Oblapenko G.P., Kustova E.V. (2019): Overview and perspectives of KAPPA library. In: AIP Conference Proceedings, Vol. 2132, No. 1, p. 150005.
- 6. Oblapenko G.P., Kustova E.V., Hannemann K., Hannemann. V. (2019): Assessment of recent thermo-chemical relaxation models using the DLR-TAU code. In: AIP Conference Proceedings, Vol. 2132, No. 1, p. 140006.
- 7. Oblapenko G.P. (2018): Calculation of Vibrational Relaxation Times Using a Kinetic Theory Approach. In: The Journal of Physical Chemistry A, Vol. 122, No. 50, pp. 9615-9625.
- 8. Campoli L., Oblapenko G.P., Kustova E.V. (2018): KAPPA: Kinetic approach to physical processes in atmospheres library in C++. In: Computer Physics Communications, Vol. 236, pp. 244-267.
- 9. Istomin V.A., Oblapenko G.P. (2018): Transport coefficients in high-temperature ionized air flows with electronic excitation. In: Physics of Plasmas, Vol. 25, No. 1, p. 013514.
- 10. Kremer G.M., Kunova O.V., Kustova E.V., Oblapenko G.P. (2018): The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases. In: Physica A: Statistical Mechanics and its Applications, Vol. 490, pp. 92-113.
- 11. Shoev G., Oblapenko G., Kunova O., Mekhonoshina M., Kustova E. (2018): Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows. In: Acta Astronautica, Vol. 144, pp. 147-159.
- 12. Kustova E.V., Mekhonoshina M.A., Oblapenko G.P. (2017): On the applicability of simplified state-to-state models of transport coefficients. In: Chemical Physics Letters, Vol. 686, pp. 161-166.
- 13. Oblapenko G.P., Kashkovsky A.V., Bondar Ye.A. (2017): State-to-state models of vibrational relaxation in Direct Simulation Monte Carlo (DSMC). In: Journal of Physics: Conference Series, Vol. 815, No. 1, p. 012011.
- 14. Kustova E.V., Oblapenko G.P. (2016): Vibration-dissociation Coupling in Multi-Temperature Viscous Gas Flows. In: AIP Conference Proceedings, Vol. 1786, No. 1, p. 150004.
- 15. Baikov B.S., Bayalina D.K., Kustova E.V., Oblapenko G.P. (2016): Inverse Laplace Transform as a Tool for Calculation of State-specific Cross Sections of Inelastic Collisions. In: AIP Conference Proceedings, Vol. 1786, No. 1, p. 090005.
- 16. Shoev G.V., Bondar Ye.A., Oblapenko G.P., and Kustova E.V. (2016): Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluent. In: Thermophysics and Aeromechanics, Vol. 23, No. 2, pp. 151-163.
- 17. Kustova E.V., Oblapenko G.P. (2016): Mutual effect of vibrational relaxation and chemical reactions in viscous multitemperature flows. In: Physical Review E Statistical, Nonlinear, and Soft Matter

- Physics, Vol 93, No. 3, p. 033127.
- 18. Kustova E.V., Nagnibeda E.A., Oblapenko G.P., Savelev A.S., Sharafutdinov I.Z. (2016): Advanced models for vibrational–chemical coupling in multi-temperature flows. In: Chemical Physics, Vol. 464, pp. 1-13.
- 19. Kustova E.V., Oblapenko G.P. (2015): Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows. In: Physics of Fluids, Vol. 27, No. 1, p. 016102.
- 20. Kustova E.V., Oblapenko G.P. (2014): Rates of VT Transitions and Dissociation and Normal Mean Stress in a Non-equilibrium Viscous Multitemperature N_2/N Flow. In: AIP Conference Proceedings, Vol. 1628, No. 1, pp. 602-609.
- 21. Kustova E.V., Oblapenko G.P. (2013): Normal mean stress and rates of slow process in chemically and vibrationally non-equilibrium multi-temperature gas flows. In: Vestnik of the Saint-Petersburg University, Vol. 2, p. 111-120. (In Russian).

C) Publications without peer-review process:

- 1. Oblapenko G.P., Goldstein D., Varghese P., Moore C. (2021): Modeling of Ionized Gas Flows with a Velocity-space Hybrid Boltzmann Solver. In: Proceedings of the AIAA Scitech Forum.
- 2. Oblapenko G.P., Goldstein D., Varghese P., Moore C. (2020): Velocity-space Hybridization of DSMC and a Boltzmann Solver. In: Proceedings of the AIAA Scitech Forum, Orlando, Florida.
- 3. Hannemann K., Schramm J. M., Riedl P., Hannemann V., Oblapenko G. (2018): Thermal Non-equilibrium Effects on Spherically Blunted Cone Flows. In: Proceedings of the 12th International Workshop on Shock Tunnel Technology.
- 4. Istomin V.A., Kustova E.V., Oblapenko G.P. (2017): State-resolved transport properties of electronically excited high-temperature flows behind strong shock waves. In: Proceedings of the 31st International Symposium on Shock Waves, Nagoya, Japan.
- 5. Oblapenko G.P., Kashkovsky A.V., Bondar Y.A. (2017): State-to-state models of physico-chemical processes in direct simulation Monte Carlo (DSMC) computations of 2-dimensional flows. In: Proceedings of the European Conference for Aeronautics and Space Sciences (EUCASS), Milan, Italy.
- 6. Kustova E.V., Oblapenko G.P., Sharafutdinov I.Z. (2015): Vibrational relaxation models for non-equilibrium multi-temperature flows. In: Physico-chemical Kinetics in Gas Dynamics, p. 1-10. (In Russian).
- 7. Kustova E.V., Oblapenko G.P. (2014): Vibrational relaxation rates in multi-temperature gas flows. In: Physico-chemical Kinetics in Gas Dynamics, p. 1-4. (In Russian).