Calibrated Surrogate Maximization of Linear-fractional Utility

07th Feb.

Han Bao (The University of Tokyo / RIKEN AIP)

Is accuracy appropriate?

Our focus: binary classification

accuracy: 0.8

accuracy: 0.8

May cause severe issues! (e.g. in medical diagnosis)

Is accuracy appropriate?

accuracy: 0.8

F-measure: 0.75

accuracy: 0.8

F-measure: 0

F-measure
$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$\mathsf{TP} = \mathbb{E}_{X,Y=+1}[1_{\{f(X)>0\}}]$$

$$\mathsf{FP} = \mathbb{E}_{X,Y=-1}[1_{\{f(X)>0\}}]$$

$$\mathsf{TN} = \mathbb{E}_{X,Y=-1}[1_{\{f(X)<0\}}]$$

$$FN = \mathbb{E}_{X,Y=+1}[1_{\{f(X)<0\}}]$$

Training and Evaluation

Usual empirical risk minimization (ERM)

training

minimizing 0/1-error

evaluation

$$Acc = TP + TN$$
$$= 1 - (0/1-risk)$$

Training with accuracy but evaluate with F₁

training

minimizing 0/1-error

evaluation

$$F_1 = \frac{2 \text{ IP}}{2 \text{TP} + \text{FP} + \text{FN}}$$

Direct Optimization Why not?

training

???

evaluation

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Fowlkes-Mallows index

$$\mathsf{FMI} = \frac{\mathsf{TP}}{\pi} \sqrt{\frac{1}{\mathsf{TP} + \mathsf{FP}}}$$

Weighted Accuracy

$$WAcc = \frac{w_1 TP + w_2 TN}{w_1 TP + w_2 TN + w_3 FP + w_4 FN}$$

F-measure

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

Wanna Unify!!

BER =
$$\frac{1}{\pi}$$
FN + $\frac{1}{1-\pi}$ FP

Jaccard ind

$$Jac = \frac{1}{TP + rP + FN}$$

Matthews Correlation Coefficient

$$\label{eq:mcc} \text{MCC} = \frac{\text{TP} \cdot \text{TN} - \text{FP} \cdot \text{FN}}{\sqrt{\pi (1 - \pi) (\text{TP} + \text{FP}) (\text{TN} + \text{FN})}}$$

Gower-Legendre index

$$GLI = \frac{TP + TN}{TP + \alpha(FP + FN) + TN}$$

Unification of Metrics

Actual Metrics

$$F_1 = \frac{2TP}{2TP + FP + FN}$$

$$Jac = \frac{TP}{TP + FP + FN}$$

 a_k, b_k, c_k : constants

Unification of Metrics

 $U(f) = \frac{a_0 \mathsf{TP} + b_0 \mathsf{FP} + c_0}{a_1 \mathsf{TP} + b_1 \mathsf{FP} + c_1} = \frac{a_0 \mathbb{E}_{\mathsf{P}} + b_0 \mathbb{E}_{\mathsf{N}}}{a_1 \mathbb{E}_{\mathsf{P}}} + b_1 \mathbb{E}_{\mathsf{N}} + c_1$

$$= \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

- \blacksquare TP, FP = expectation of 0/1-loss
 - e.g. $TP = \mathbb{P}(Y = +1, f(X) > 0) = \mathbb{E}_{X,Y=+1}[1_{\{f(X)>0\}}]$

Goal of This Talk

Given a metric (utility)
$$U(f) = \frac{a_0 \mathrm{TP} + b_0 \mathrm{FP} + c_0}{a_1 \mathrm{TP} + b_1 \mathrm{FP} + c_1}$$

Q. How to optimize U(f) directly?

without estimating class-posterior probability

labeled sample
$$\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$$
 metric U

classifier
$$f: \mathcal{X} \to \mathbb{R}$$

classifier
$$f: \mathcal{X} \to \mathbb{R}$$

s.t. $U(f) = \sup_{f'} U(f')$

Outline

Introduction

Preliminary

- Convex Risk Minimization
- ▶ Plug-in Principle vs. Cost-sensitive Learning
- Key Idea
 - Quasi-concave Surrogate
- Calibration Analysis & Experiments

Formulation of Classification

- Goal of classification: maximize accuracy
 - = minimize mis-classification rate

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[y_i \neq \text{sign}(f(x_i))]$$
$$= \frac{1}{n} \sum_{i=1}^{n} \ell(y_i f(x_i))$$

make 0/1 loss smoother

(Empirical) Surrogate Risk

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

convex in f!

Example of ϕ

- ▶ logistic loss
- ▶ hinge loss ⇒ SVM
- ▶ exponential loss ⇒ AdaBoost

3 Actors in Risk Minimization

Minimize <u>classification risk</u> (= 1 - Accuracy)

$$R(f) = \mathbb{E}[\underbrace{\ell(Yf(X))}]$$
0/1-loss prediction margin
0/1-loss represents if X is correctly classified by f

 Surrogate loss makes tractable differentiable upper bound of 0/1-loss (surrogate risk)

$$R_{\phi}(f) = \mathbb{E}[\ \underline{\phi}\ (Yf(X))]$$
 surrogate loss

Sample approximation (M-estimation)

(empirical (surrogate) risk)

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

what we actually minimize

Convexity & Statistical Property

tractable (convex)

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

intractable

Q. argmin R_{ϕ} = argmin R ?

A. Yes, w/ calibrated surrogate

Theorem.

[Bartlett+ 2006]

Assume ϕ : convex.

Then, $\operatorname{argmin}_f R_{\phi}(f) = \operatorname{argmin}_f R(f)$ iff $\phi'(0) < 0$.

(informal)

Related Work: Plug-in Rule

[Koyejo+ NIPS2014; Yan+ ICML2018]

Classifier based on class-posterior probability

O. O. Koyejo, N. Natarajan, P. K. Ravikumar, & I. S. Dhillon. Consistent binary classification with generalized performance metrics. In *NIPS*, 2014.

B. Yan, O. Koyejo, K. Zhong, & P. Ravikumar. Binary classification with Karmic, threshold-quasi-concave metrics. In *ICML*, 2018.

Outline

- Introduction
- Preliminary
 - Convex Risk Minimization
 - Plug-in Principle vs. Cost-sensitive Learning
- Key Idea
 - Quasi-concave Surrogate
- Calibration Analysis & Experiments

Convexity & Statistical Property

tractable (convex)

$$\hat{R}_{\phi}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i f(x_i))$$

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

intractable

Q. tractable & calibrated objective?

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

intractable

 $argmin R_{\phi} = argmin R$

Non-concave, but quasi-concave

Idea: concave / convex = quasi-concave

$$\frac{f(x)}{g(x)}$$
 is quasi-concave

if f: concave, g: convex,

 $f(x) \ge 0$ and g(x) > 0 for $\forall x$

(proof) Show $\{x \mid f/g \ge \alpha\}$ is convex.

$$\frac{f(x)}{g(x)} \ge \alpha \iff f(x) - \alpha g(x) \ge 0$$

NB: super-level set of concave func. is convex

 $\therefore \{x | f/g \ge \alpha\}$ is convex for $\forall \alpha \ge 0$

non-concave, but unimodal ⇒ efficiently optimized

- quasi-concave ⊇ concave
- super-levels are convex

Surrogate Utility

Idea: bound true utility from below

$$U(f) = \frac{a_0 \mathsf{TP} + b_0 \mathsf{FP} + c_0}{a_1 \mathsf{TP} + b_1 \mathsf{FP} + c_1} = \frac{a_0 \mathbb{E}_{\mathsf{P}} + b_0 \mathbb{E}_{\mathsf{N}} + c_0}{a_1 \mathbb{E}_{\mathsf{P}} + b_1 \mathbb{E}_{\mathsf{N}} + c_1}$$

non-negative sum of concave

⇒ concave

 $\geq \frac{a_0 \mathbb{E}_{\mathbf{P}} + b_0 \mathbb{E}_{\mathbf{N}}}{a_1 \mathbb{E}_{\mathbf{P}} + b_1 \mathbb{E}_{\mathbf{N}}}$

non-negative sum of convex

⇒ convex

denominator from above

numerator from below

 $+ c_{0}$

 $+ c_1$

Surrogate Utility

Idea: bound true utility from below

$$U(f) = \frac{a_0 \mathsf{TP} + b_0 \mathsf{FP} + c_0}{a_1 \mathsf{TP} + b_1 \mathsf{FP} + c_1} \ge \frac{a_0 \mathbb{E}_{\mathsf{P}}}{a_1 \mathbb{E}_{\mathsf{P}}} + b_0 \mathbb{E}_{\mathsf{N}} + c_0 + c_1$$

$$U_{\phi}(f) = \frac{a_0 \mathbb{E}_{P} [1 - \phi(f(X))] + b_0 \mathbb{E}_{N} [-\phi(-f(X))] + c_0}{a_1 \mathbb{E}_{P} [1 + \phi(f(X))] + b_1 \mathbb{E}_{N} [\phi(-f(X))] + c_1}$$

$$:= \frac{\mathbb{E}[W_{0,\phi}]}{\mathbb{E}[W_{1,\phi}]} : Surrogate Utility$$

Hybrid Optimization Strategy

- Note: numerator can be negative
 - $ightharpoonup U_{\phi}$ isn't quasi-concave if numerator < 0
 - maximize numerator first (concave), then maximize fractional form (quasi-concave)

Hybrid Optimization Strategy

```
Algorithm 1: Hybrid Optimization Algorithm
```

 $\begin{array}{c} \textbf{Input} & \textbf{:} \ \phi \ \text{convex loss,} \ \theta \ \text{initial classifier} \\ \text{parameter} \\ \end{array}$

repeat

$$\left|\begin{array}{l} g^{\mathbf{n}} \longleftarrow \nabla_{\theta} \widehat{\mathcal{U}}_{\phi}^{\mathbf{n}}(f_{\theta}) \\ \theta \longleftarrow \mathtt{gradient_based_update}(\theta, g^{\mathbf{n}}) \end{array}\right| \text{maximize numerator}$$

until $\widehat{\mathcal{U}}_{\phi}^{\mathrm{n}}(f_{\theta}) \leq 0$

repeat

$$g \longleftarrow
abla_{ heta} \widehat{\mathcal{U}}_{\phi}(f_{ heta}), \quad \widehat{g} = g/\|g\|$$
 $heta \longleftarrow \texttt{gradient_based_update}(heta, \widehat{g})$

maximize fraction

until stopping criterion is satisfied

Output: maximizer f_{θ}

normalized gradient for quasi-concave optimization

[Hazan+ NeurlPS2015]

Outline

- Introduction
- Preliminary
 - Convex Risk Minimization
 - ▶ Plug-in Principle vs. Cost-sensitive Learning
- Key Idea
 - Quasi-concave Surrogate
- Calibration Analysis & Experiments

Justify Surrogate Optimization

For classification risk

surrogate risk

$$R_{\phi}(f) = \mathbb{E}[\phi(Yf(X))]$$

classification risk

$$R(f) = \mathbb{E}[\ell(Yf(X))]$$

If ϕ is classification-calibrated loss,

[Bartlett+ 2006]

$$R_{\phi}(f_n) \stackrel{n \to \infty}{\to} 0 \Longrightarrow R(f_n) \stackrel{n \to \infty}{\to} 0 \quad \forall \{f_n\}$$

Note: informal

For fractional utility

surrogate utility

$$U_{\phi}(f) = \frac{\mathbb{E}_{X}[W_{0,\phi}(f(X))]}{\mathbb{E}_{X}[W_{1,\phi}(f(X))]}$$

true utility

$$U(f) = \frac{\mathbb{E}_X[W_0(f(X))]}{\mathbb{E}_X[W_1(f(X))]}$$

Q. What kind of conditions are needed for ϕ to satisfy

$$U_{\phi}(f_n) \stackrel{n \to \infty}{\to} 1 \Longrightarrow U(f_n) \stackrel{n \to \infty}{\to} 1 \quad \forall \{f_n\} ?$$

Special Case: F1-measure

Theorem

merely sufficient!

$$U_{\phi}(f_n) \stackrel{n \to \infty}{\to} 1 \Longrightarrow U(f_n) \stackrel{n \to \infty}{\to} 1 \quad \forall \{f_n\}$$

if ϕ satisfies

- ▶ $\exists c \in (0,1)$ s.t. $\sup_{f} U_{\phi}(f) \ge \frac{2c}{1-c}$, $\lim_{m \to +0} \phi'(m) \ge c \lim_{m \to -0} \phi'(m)$
- $\blacktriangleright \phi$ is non-increasing
- $\blacktriangleright \phi$ is convex

Note: informal

Example

$$\phi_{-1}(m) = \log(1 + e^{-m}) \phi(m)$$

$$\lim_{m \to +0} \phi'(m) = -\frac{c}{2},$$

$$\lim_{m \to -0} \phi'(m) = -\frac{1}{2}$$

$$\phi_{+1}(m) = \log(1 + e^{-cm})$$

non-differentiable at m=0

Experiment: F₁-measure

$(F_1$ -measure)	Proposed		Baselines		
Dataset	U-GD	U-BFGS	ERM	W-ERM	Plug-in
adult	0.617 (101)	0.660 (11)	0.639 (51)	0.676 (18)	0.681 (9)
australian	0.843(41)	0.844(45)	0.820(123)	0.814(116)	0.827(51)
breast-cancer	0.963(31)	0.960(32)	0.950(37)	0.948(44)	0.953(40)
$\operatorname{cod-rna}$	0.802(231)	0.594(4)	0.927(7)	0.927(6)	0.930(2)
diabetes	0.834(32)	0.828(31)	0.817(50)	0.821(40)	0.820(42)
fourclass	0.638(70)	0.638(64)	0.601(124)	0.591(212)	0.618(64)
german.numer	0.561 (102)	0.580(74)	0.492 (188)	0.560(107)	0.589(73)
heart	0.796(101)	0.802(99)	0.792(80)	0.764(151)	0.764(137)
ionosphere	0.908(49)	0.901(43)	0.883 (104)	0.842(217)	0.897(54)
madelon	0.666(19)	0.632(67)	0.491 (293)	0.639 (110)	0.663(24)
mushrooms	1.000(1)	0.997(7)	1.000(1)	1.000(2)	0.999(4)
phishing	0.937(29)	0.943(7)	0.944(8)	0.940(12)	0.944(8)
phoneme	0.648(27)	0.559(22)	0.530(201)	0.616(135)	0.633(35)
skin_nonskin	0.870(3)	0.856(4)	0.854(7)	0.877(8)	0.838(5)
sonar	0.735(95)	0.740(91)	0.706(121)	0.655(189)	0.721(113)
spambase	0.876(27)	0.756 (61)	0.887(42)	0.881(58)	0.903(18)
splice	0.785(49)	0.799(46)	0.785(55)	0.771(67)	0.801(45)
w8a	0.297 (80)	0.284 (96)	0.735 (35)	0.742(29)	0.745(26)

(F₁-measure is shown)

model: linear-in-parameter

surrogate loss: $\phi(m) = \max\{\log(1 + e^{-m}), \log(1 + e^{-\frac{m}{3}})\}$

Experiment: Jaccard index

(Jaccard index)	Proposed		Baselines		
Dataset	U-GD	U-BFGS	ERM	W-ERM	Plug-in
adult	0.499 (44)	0.498 (11)	0.471 (51)	0.510 (20)	0.516 (10)
australian	0.735(63)	0.733(59)	0.702(144)	0.693(143)	0.707(76)
breast-cancer	0.921(54)	0.918(55)	0.905(66)	0.903(78)	0.913(69)
$\operatorname{cod-rna}$	0.854(3)	0.785(8)	0.864(11)	0.865(9)	0.869(3)
diabetes	0.714(44)	0.702(50)	0.692(70)	0.698(56)	0.695(60)
fourclass	0.469(69)	0.457(68)	0.436(112)	0.434(171)	0.449(66)
german.numer	0.433(64)	0.429(69)	0.335(153)	0.391(98)	0.418(71)
heart	0.665 (135)	0.675(135)	0.664(102)	0.629(178)	0.626(163)
ionosphere	0.826 (76)	0.829(65)	0.796(134)	0.749(245)	0.815(87)
madelon	0.495(31)	0.459(69)	0.346(225)	0.474(100)	0.496(27)
$\operatorname{mushrooms}$	0.999(2)	0.995(4)	1.000(1)	0.999(4)	0.997(7)
phishing	0.883(43)	0.893(11)	0.894(14)	0.888(22)	0.894(15)
phoneme	0.435(51)	0.436 (24)	0.371(160)	0.450 (104)	0.461(34)
skin_nonskin	0.744(5)	0.751(5)	0.746(10)	0.780(13)	0.722(7)
sonar	0.600(125)	0.600(111)	0.552(147)	0.495(202)	0.572(134)
spambase	0.827(22)	0.708(22)	0.798(67)	0.790(86)	0.824(31)
splice	0.670(60)	0.672(56)	0.646(71)	0.629(84)	0.672(57)
w8a	0.496 (151)	0.452(28)	0.580 (44)	0.590(35)	0.595(33)

(Jaccard index is shown)

model: linear-in-parameter

surrogate loss: $\phi(m) = \max\{\log(1 + e^{-m}), \log(1 + e^{-\frac{3m}{4}})\}$

Goal

$$U(f) = \frac{a_0 \text{TP} + b_0 \text{FP} + c_0}{a_1 \text{TP} + b_1 \text{FP} + c_1}$$

maximize linear-fractional utility

Tractable Optimization

surrogate utility

quasi-concave optimization

Calibrated Surrogate

 $\operatorname{argmax}_{f} U_{\phi}(f) = \operatorname{argmax}_{f} U(f)$

Open Problems

- necessary and sufficient condition of calibration
- explicit convergence rate
- theoretical comparison with probability estimation