Manuel Ojeda Aciego

Universidad de Málaga Dpto. de Matemática Aplicada

Curso 2015-2016

Introducción

Fijada una base \mathcal{B} en \mathbb{R}^n , cada endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ tiene asociada una matriz A respecto de \mathcal{B} . Si consideramos otra base \mathcal{B}' , la matriz asociada a φ será una matriz B **semejante** a A.

Es decir, tendremos

$$\begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}_{\mathcal{B}'} = P^{-1} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}_{\mathcal{B}} = P^{-1} A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{B}} = P^{-1} A P \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}_{\mathcal{B}'}$$

Introducción

- La diagonalización de un endomorfismo φ consiste en realizar un cambio de base tal que la matriz asociada a φ respecto a $\mathcal B$ sea precisamente una matriz diagonal D.
- Si la matriz asociada a φ es A, entonces tendremos que $D = P^{-1}AP$, donde P es la matriz del cambio de base.
- ullet Como consecuencia de que arphi se pueda expresar en términos de una matriz

$$D = \left(\begin{array}{cccc} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{array} \right)$$

diagonal, se obtiene que para todo vector $\vec{v_i}$ de la nueva base $\mathcal B$ se cumple que

$$\varphi(\vec{v}_i) = d_i \vec{v}_i, \quad j:1,\ldots,n$$

Introducción

Ejemplo

Consideremos el endomorfismo $\varphi\colon\mathbb{R}^2\to\mathbb{R}^2$ dado por $\begin{pmatrix} x_1\\x_2\end{pmatrix}\mapsto\begin{pmatrix} 2x_1\\x_1+3x_2\end{pmatrix}$ y expresémoslo en la siguiente base $\mathcal{B}=\{\begin{pmatrix}1\\-1\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\}$ de \mathbb{R}^2 .

Basta considerar las imágenes de los elementos de \mathcal{B} , esto es

$$\varphi\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}2\\-2\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}_{\mathcal{B}} \qquad y \qquad \varphi\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}0\\3\end{pmatrix} = \begin{pmatrix}0\\3\end{pmatrix}_{\mathcal{B}}$$

La matriz asociada a φ respecto de la base \mathcal{B} es $D=\left(egin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right)$

Definición (Valor y vector propio)

Sea $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo. Se dice que un vector $\vec{0} \neq \vec{v} \in \mathbb{R}^n$ es un vector propio de φ si verifica que

$$\varphi(\vec{v}) = \lambda \vec{v}$$
, para algún $\lambda \in \mathbb{R}$

Este escalar λ se llama valor propio asociado al vector propio \vec{v} .

Ejemplo

En el endomorfismo φ dado por $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 \\ x_1 + 3x_2 \end{pmatrix}$

- $\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ cumple que $\varphi(\vec{v}_1) = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, luego es un vector propio asociado al valor propio $\lambda_1 = 2$.
- $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ cumple que $\varphi(\vec{v}_2) = \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 3 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, luego es un vector propio asociado al valor propio $\lambda_2 = 3$.

Valores y vectores propios de un endomorfismo

Propiedades

- Todo vector propio debe ser no nulo, pero puede haber valores propios nulos.
- Si \vec{v} es un vector propio, entonces existe un **único** valor propio asociado a \vec{v} .
- Si \vec{v} es un vector propio asociado al valor propio λ , entonces $\alpha \vec{v}$ también es un vector propio asociado a λ , para todo $\alpha \in \mathbb{R}$.

Teorema

Dado un endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$. El conjunto \mathcal{U}_{λ} de vectores propios asociados a un mismo valor propio λ junto con el vector $\vec{0}$ es un subespacio vectorial de \mathbb{R}^n .

El espacio \mathcal{U}_{λ} se llama **subespacio propio** asociado al valor propio λ . También se llama **subespacio invariante** ya que $\varphi(\mathcal{U}_{\lambda}) \subseteq \mathcal{U}_{\lambda}$.

Se cumple que

$$\mathcal{U}_{\lambda} = \{\vec{x} \in \mathbb{R}^n \mid \varphi(\vec{x}) = \lambda \vec{x}\} = \ker(\varphi - \lambda i d_{\mathbb{R}^n})$$

Valores y vectores propios de un endomorfismo

Ejemplo

En el endomorfismo

$$\varphi \colon \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}^2$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad \mapsto \quad \begin{pmatrix} 2x_1 \\ x_1 + 3x_2 \end{pmatrix}$$

los valores propios son $\lambda_1=2$ y $\lambda_2=3$ y los subespacios propios son

$$\mathcal{U}_{\lambda_1} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \alpha \in \mathbb{R} \right\}$$

$$\mathcal{U}_{\lambda_2} = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \alpha \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \alpha \in \mathbb{R} \right\}$$

Cálculo de valores y vectores propios de un endomorfismo

Teorema

Sea $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo y sea A la matriz asociada a φ respecto de la base $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$. Entonces:

- **1** Un vector $\vec{0} \neq \vec{v} \in \mathbb{R}^n$ es un vector propio de φ con valor propio asociado λ si y solo si $A\vec{v} = \lambda \vec{v}$. Y esto es cierto si y solo si $(A \lambda I)\vec{v} = \vec{0}$.
- ② λ es un valor propio de φ si y solo si λ es una raíz de la ecuación $|A \lambda I| = 0$.

Ejemplo

Sea el endomorfismo
$$\varphi\colon \mathbb{R}^2 \to \mathbb{R}^2$$
 dado por $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 3x_1 + 2x_2 \\ x_1 + 2x_2 \end{pmatrix}$.

Calculemos sus valores y vectores propios.

Cálculo de valores y vectores propios de un endomorfismo

Ya que,
$$\varphi \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 y $\varphi \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ sabemos que la matriz de φ respecto a la base canónica $\mathcal C$ es $A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$

Los valores propios λ surgen de calcular $\ker(\varphi - \lambda id_{\mathbb{R}^2})$, luego hemos de resolver el siguiente sistema homogéneo:

$$\begin{bmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 3 - \lambda & 2 \\ 1 & 2 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

que tiene solución distinta de la trivial si y solo si $\begin{vmatrix} 3-\lambda & 2\\ 1 & 2-\lambda \end{vmatrix} = 0.$

Resolviendo la ecuación obtenemos dos valores propios: $\lambda_1=4$ y $\lambda_2=1$.

Cálculo de valores y vectores propios de un endomorfismo

• Para
$$\lambda_1 = 4$$
, tenemos que $\mathcal{U}_4 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid (A - 4\mathbf{I}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$

$$(A - 4\mathbf{I}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 - 4 & 2 \\ 1 & 2 - 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{U}_4 \iff \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ 2x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 2x_2 \end{pmatrix} \implies \mathcal{U}_4 = \mathcal{C} \begin{pmatrix} 2 \\ 2x_2 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{U}_4 \iff \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} \implies \mathcal{U}_4 = \mathcal{L} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

• Para
$$\lambda_2 = 1$$
, tenemos $\mathcal{U}_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid (A - \mathbb{I}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$

$$(A - \mathbb{I}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 - 1 & 2 \\ 1 & 2 - 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{U}_1 \iff \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_2 \end{pmatrix} = x_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} \implies \mathcal{U}_1 = \mathcal{L} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Valores y vectores propios de una matriz cuadrada. Polinomio característico

Definición

- Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz cuadrada. Se dice que un vector $\vec{0} \neq \vec{v} \in \mathbb{R}^n$ es un vector propio de A si se cumple que $A\vec{v} = \lambda \vec{v}$, con $\lambda \in \mathbb{R}$.
- Este escalar λ se llama valor propio asociado al vector propio \vec{v} .

Ejemplo

$$\vec{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 es un vector propio de la matriz $A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$

ya que

$$A\vec{v}_1 = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} = 4 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Valores y vectores propios de una matriz cuadrada. Polinomio característico

Teorema

Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz cuadrada.

- **1** Un escalar λ es un valor propio de A si y solo si $|A \lambda I| = 0$
- **2** Los vectores propios de A asociados al valor propio λ son las soluciones no nulas de $(A \lambda I)\vec{x} = \vec{0}$.

Definición

Sea A una matriz cuadrada. El polinomio $p(\lambda) = |A - \lambda I|$ se llama polinomio característico de A y la ecuación $|A - \lambda I| = 0$ se llama ecuación característica de A.

Valores y vectores propios de una matriz cuadrada. Polinomio característico

Ejemplo

Calculemos los valores y vectores propios de la matriz $A = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$

Solución: La ecuación característica es $p(\lambda) = |A - \lambda I| = 0$

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ 1 & 1 - \lambda & -1 \\ 1 & -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)^2 = 0$$

Por tanto, los valores propios son $\lambda_1=1$ y $\lambda_2=2$

Valores y vectores propios de una matriz cuadrada. Polinomio característico

• Los vectores propios asociados al valor propio $\lambda_1=1$ son las soluciones no nulas del sistema homogéneo $(A-1)\vec{x}=\vec{0}$

$$(A-I) = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{array} \right) \ \sim \ \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & -1 \end{array} \right) \ \Longrightarrow \ \begin{array}{c} x_1 = x_3 \\ x_2 = x_3 \\ x_3 = x_3 \end{array} \right\}$$

• Los vectores propios asociados al valor propio $\lambda_2=2$ son las soluciones no nulas del sistema homogéneo $(A-2\mathbb{I})\vec{x}=\vec{0}$

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
 es base de \mathcal{U}_1 y $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$ es base de \mathcal{U}_2 .

Valores y vectores propios de una matriz cuadrada. Polinomio característico

Teorema

Si A y B son dos representaciones matriciales de un endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$, entonces A y B tienen el mismo polinomio característico.

Definición

El polinomio característico de un endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ es el polinomio de cualquiera de las representaciones matriciales de φ .

Ejemplo

El recíproco del teorema no es cierto. Por ejemplo, las matrices siguientes

$$A = \left(\begin{array}{ccc} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right) \quad \text{y} \quad B = \left(\begin{array}{ccc} 1 & 3 & 5 \\ 0 & 0 & 7 \\ 0 & 0 & 1 \end{array}\right)$$

tienen el mismo polinomio característico, pero representan a distintos endomorfismos.

Valores y vectores propios de una matriz cuadrada. Polinomio característico

Teorema

Sean A y B matrices semejantes, con $B = P^{-1}AP$. Si \vec{v} y \vec{w} son, respectivamente, vectores propios de A y B correspondientes al mismo valor propio λ , entonces $\vec{v} = P\vec{w}$

Teorema

Los valores propios de una matriz triangular A son los elementos de la diagonal principal.

Ejemplo

$$A = \left(\begin{array}{cccc} 1 & 3 & 7 & 11 \\ 0 & -1 & 3 & 8 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

$$p(\lambda) = |A - \lambda \mathbf{I}| = (1 - \lambda)(-1 - \lambda)(-2 - \lambda)(2 - \lambda)$$

Criterios de diagonabilidad

Definición

Se dice que un endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ es diagonalizable si existe una base $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ tal que la representación matricial de φ respecto a la base \mathcal{B} es una matriz D diagonal.

Ejemplo

El endomorfismo
$$\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$$
 dado por $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 \\ x_1 + 3x_2 \end{pmatrix}$

es diagonalizable, ya que respecto a la base $\mathcal{B}=\left\{egin{pmatrix}1\\-1\end{pmatrix}, \begin{pmatrix}0\\1\end{pmatrix}\right\}$

su matriz asociada es

$$D = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right)$$

Criterios de diagonabilidad

Ejemplo

El endomorfismo $\varphi:\mathbb{R}^3 \to \mathbb{R}^3$ dado por

$$\varphi\left(\begin{array}{c}-1\\1\\4\end{array}\right)=\left(\begin{array}{c}-3\\3\\12\end{array}\right),\quad \varphi\left(\begin{array}{c}6\\-4\\1\end{array}\right)=\left(\begin{array}{c}12\\-8\\2\end{array}\right),\quad \varphi\left(\begin{array}{c}-1\\1\\2\end{array}\right)=\left(\begin{array}{c}-1\\1\\2\end{array}\right)$$

es diagonalizable, ya que respecto de la base

$$\mathcal{B} = \left\{ \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 6 \\ -4 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$$

su matriz asociada es

$$D = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Criterios de diagonabilidad

Teorema

Un endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ es diagonalizable si y solo si existe una base $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ de vectores propios.

En otras palabras,

- La matriz asociada al endomorfismo $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ respecto de la base $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ es diagonal si y solo si cada uno de los vectores de la base \mathcal{B} es un vector propio de φ .
- ② Si D es una matriz diagonal asociada al endomorfismo φ respecto a la base \mathcal{B} , entonces cada d_j es el valor propio asociado al vector propio \vec{v}_j , para $j=1,\ldots,n$.

Criterios de diagonabilidad

Definición

Sea $A \in \mathcal{M}_n(\mathbb{R})$ una matriz cuadrada. Se dice que A es diagonalizable si es semejante a una matriz diagonal D. Es decir, A es diagonalizable si existe una matriz invertible P tal que $P^{-1}AP = D$

- En general, un endomorfismo $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ puede no tener una representación matricial diagonal.
- Análogamente, una matriz A puede que no sea semejante a una matriz diagonal.
- A continuación, estudiamos las condiciones que se deben verificar para que un endomorfismo o una matriz sean diagonalizables.

Lema

Sean $\lambda_1, \ldots, \lambda_m$ valores propios de un endomorfismo $\varphi : \mathbb{R}^n \to \mathbb{R}^n$, tales que $\lambda_i \neq \lambda_j$. Si $\vec{v}_1, \ldots, \vec{v}_m$ son vectores propios asociados a los valores $\lambda_1, \ldots, \lambda_m$ respectivamente, entonces $\{\vec{v}_1, \ldots, \vec{v}_m\}$ es linealmente independiente.

Teorema

 $Si \varphi : \mathbb{R}^n \to \mathbb{R}^n$ tiene n valores propios distintos, entonces es diagonalizable.

Corolario

Si $A \in \mathcal{M}_n$ tiene una ecuación característica $|A - \lambda I| = 0$ con n raíces distintas, entonces es semejante a una matriz diagonal D, donde las componentes de la diagonal son las raíces de la ecuación característica. Esto es, existe una matriz

invertible P tal que
$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Criterios de diagonabilidad

¿Qué ocurre si las raíces de la ecuación característica se repiten?

Definición

- Decimos que un valor propio λ_j tiene **multiplicidad algebraica** α_j si $(\lambda \lambda_j)^{\alpha_j}$ es un factor del polinomio característico $p(\lambda)$, pero $(\lambda \lambda_j)^{\alpha_j+1}$ no lo es.
- Se llama multiplicidad geométrica del valor propio λ_j a la dimensión del subespacio propio \mathcal{U}_{λ_i}

El polinomio característico se expresará:

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{\alpha_1} (\lambda - \lambda_2)^{\alpha_2} \dots (\lambda - \lambda_r)^{\alpha_r}$$

Criterios de diagonabilidad

Lema

Sea $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo. Si λ_j es un valor propio con multiplicidad α_j , entonces $1 \le \dim \mathcal{U}_{\lambda_i} \le \alpha_j$

Teorema

El endomorfismo $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ es diagonalizable si y solo si dim $\mathcal{U}_{\lambda_j} = \alpha_j$ para todo $j = 1, \dots, r$.

Corolario

Sea $A \in \mathcal{M}_n(\mathbb{R})$ con polinomio característico

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{\alpha_1} (\lambda - \lambda_2)^{\alpha_2} \dots (\lambda - \lambda_r)^{\alpha_r}$$

A es diagonalizable si y solo si rango $(A - \lambda_j I) = n - \alpha_j$ para todo $j = 1, \dots, r$

Criterios de diagonabilidad

Ejemplo

$$\varphi \colon \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \quad \mapsto \quad \begin{pmatrix} 3x_1 + 2x_2 + 4x_3 \\ 2x_1 + 2x_3 \\ 4x_1 + 2x_2 + 3x_3 \end{pmatrix}$$

Sus valores propios son $\lambda_1=-1,\ \alpha_1=2$ y $\lambda_2=8,\ \alpha_2=1.$ Sus subespacios propios son

$$\mathcal{U}_{\lambda_1} = \mathcal{L}igg(egin{pmatrix} -1 \ 2 \ 0 \end{pmatrix}, egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}igg), \quad \mathcal{U}_{\lambda_2} = \mathcal{L}egin{pmatrix} 2 \ 1 \ 2 \end{pmatrix}$$

Por lo tanto, φ es diagonalizable.

Criterios de diagonabilidad

Ejemplo

Sea la matriz
$$A = \begin{pmatrix} 0 & -1 & -1 \\ -2 & 1 & -1 \\ -2 & 2 & 2 \end{pmatrix}$$
.

Su polinomio característico es $p(\lambda) = -(\lambda-2)^2(\lambda+1)$

Sus valores propios son

$$\lambda_1=2,\ \alpha_1=2\quad \text{ y}\quad \lambda_2=-1,\ \alpha_2=1$$

$$rango(A-2I) = rango\left(egin{array}{ccc} -2 & -1 & -1 \ -2 & -1 & -1 \ -2 & 2 & 0 \end{array}
ight) = 2
eq 1 = 3-2$$

Por ser $rango(A - 2I) \neq 1$, la matriz A no es diagonalizable.

Teorema de Cayley-Hamilton

Teorema (Cayley-Hamilton)

Sea la matriz $A \in \mathcal{M}_n(\mathbb{R})$ con polinomio característico $p(\lambda) = |A - \lambda I|$ Entonces p(A) = 0.

Ejemplo

Sea la matriz

$$A = \left(\begin{array}{rrr} 0 & -1 & -1 \\ -2 & 1 & -1 \\ -2 & 2 & 2 \end{array}\right)$$

Calculemos el polinomio característico de *A* para comprobar el teorema de Cayley-Hamilton.

Teorema de Cayley-Hamilton

Solución:

$$A = \left(egin{array}{ccc} 0 & -1 & -1 \ -2 & 1 & -1 \ -2 & 2 & 2 \end{array}
ight) \qquad p(\lambda) = -(\lambda-2)^2(\lambda+1)$$

$$p(A) = -(A-2I)^2(A+I)$$

$$= -\left(\begin{array}{rrr} -2 & -1 & -1 \\ -2 & -1 & -1 \\ -2 & 2 & 0 \end{array}\right)^{2} \cdot \left(\begin{array}{rrr} 1 & -1 & -1 \\ -2 & 2 & -1 \\ -2 & 2 & 3 \end{array}\right)$$

$$= -\begin{pmatrix} 8 & 1 & 3 \\ 8 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -2 & 2 & -1 \\ -2 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Aplicaciones del Teorema de Cayley-Hamilton

Ejemplo

Determine si existe la inversa de $A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$ y exprésela como un polinomio en A de grado menor que 2.

$$p(A) = A^{2} + 3A + 2I = 0$$

$$A^{2} + 3A + 2I = 0 \implies A^{2} + 3A = -2I$$

$$A(A + 3I) = -2I$$

$$A[-\frac{1}{2}(\mathbf{A} + 3I)] = I$$

Por lo tanto,

$$A^{-1}=-\frac{1}{2}(\mathbf{A}+\mathbf{3I})$$

Aplicaciones del Teorema de Cayley-Hamilton

Ejemplo

Exprese la potencia A^5 en términos de un polinomio en A de grado menor que la dimensión de A.

$$p(A) = A^{2} + 3A + 2I = 0 \implies A^{2} = -3A - 2I$$

$$A^{5} = A^{2} \cdot A^{2} \cdot A$$

$$= (-3A - 2I) \cdot (-3A - 2I) \cdot A$$

$$= (9A^{2} - 12A + 4I) \cdot A$$

$$= [9(-3A - 2I) - 12A + 4I] \cdot A$$

$$= (-15A - 14I) \cdot A$$

$$= -15A^{2} - 14A = -15(-3A - 2I) - 14A$$

$$= 31A + 30I$$

Por lo tanto,

$$A^5 = 31A + 30I = 31\begin{pmatrix} 1 & -2 \ 3 & -4 \end{pmatrix} + 30\begin{pmatrix} 1 & -2 \ 3 & -4 \end{pmatrix} = \begin{pmatrix} 61 & -62 \ 93 & -94 \end{pmatrix}$$