Today's lecture

Simulation of dissipative quantum dynamics: Master equation

Measurement of Superconducting Qubits

- General properties of quantum measurements
- Circuit Quantum Electrodynamics and the Jaynes-Cummings Hamiltonian.
- Dispersive limit and readout of superconducting qubits.

4.5 General properties of quantum measurements

Desirable properties:

- Projective and Quantum non-demolition (QND)
 - Coupling to the meter does not change the state of the qubit $\left[H_Q,H_{int}\right]=0.$
 - Repeated measurement yields the same outcome.
- Good ON/OFF ratio
 - $[H_{int}, H_{meter}] = 0$ during "OFF"
 - $[H_{int}, H_{meter}] \neq 0$ during "ON"
- No spontaneous decay/excitation due to measurement apparatus
- Fast and high fidelity

4.6 Circuit QED

System Hamiltonian (compare chapter 2):

$$H_{\rm sys}/\hbar = \omega_r a^{\dagger} a + \omega_{ge} b^{\dagger} b - \frac{\alpha}{2} (b^{\dagger})^2 b^2 - g(a - a^{\dagger})(b - b^{\dagger})$$

$$= \omega_r a^{\dagger} a + \left[\frac{\omega_{ge}}{2} \sigma^z \right] + g(a^{\dagger} \sigma^- + a \sigma^+)$$
Resonator field qubit coupling

Jaynes-Cummings Hamiltonian

Two-level approximation

4.6 Circuit QED: Resonant case and dispersive limit

Jaynes-Cummings Hamiltonian:

$$H/\hbar = \omega_r a^\dagger a + \left[\frac{\omega_{ge}}{2} \sigma^z \right] + g(a^\dagger \sigma^- + a \sigma^+)$$
 quantized field qubit coupling

Strong coupling regime: $g>\gamma,\,\kappa$

What happens in the limit of large detuning?

$$|\Delta| = |\omega_{ge} - \omega_r| \gg g$$

- Limit of large detuning is referred to as the dispersive limit.
 No resonant exchange of excitations.
- In the dispersive regime coupling Hamiltonian commutes with qubit Hamiltonian.

Energy level diagram for resonant case $\omega_r = \omega_{qe}$:

4.7 Derivation of Dispersive Hamiltonian

4.7 Principle of Dispersive Qubit Measurement

 $A e^{i\phi} = I + i Q$ signal amplitude In-phase and

quadrature

components

In the limit of large detuning $\omega_{
m r}-\omega_{qe}\gg g$:

$$H/\hbar \approx (\omega_{\rm r} + \chi \sigma_z) a^{\dagger} a$$

,with
$$\chi \approx -\alpha \frac{g^2}{\Delta(\Delta - \alpha)}$$

A. Wallraff *et al., Phys. Rev. Lett.* 95, 060501 (2005). R. Vijay *et al., Phys. Rev. Lett.* 106, 110502 (2011).

Purcell decay and protection

What about decay of the qubit into the measurement line via the resonator?

- In the limit of large detuning we find $\gamma_{Purcell} \approx \kappa \frac{g^2}{\Lambda^2} \approx \kappa \frac{|\chi|}{\alpha}$
- Calculate e.g. using the methods discussed in chapter 4.4.
- BUT: Fast readout requires large κ and $|\chi|$.
- Solution: Include an additional filter, called "Purcell filter" to suppress qubit decay while allowing for large κ and $|\chi|$.
- Purcell filter can be realized e.g. as an an additional *LC* resonator (see schematic).
- In this case

 $\gamma_{Purcell} \propto 1/\Delta^4$ is strongly suppressed.

Transmon and Readout Circuit optimized for fast Readout

Walter et al., *Phys. Rev. Applied* **7**, 054020 (2017)

Readout Resonator Response

Transmission amplitude or readout resonator extracted through Purcell filter for qubit prepared in ground (g) or excited (e) state :

In ground/excited state:

Data measured after state prep. (*,*)
Fit to resonator response model (-)

Parameter fit (input-output model):

Purcell filter $\kappa_p/2\pi = 64 \text{ MHz}$

Readout resonator $\kappa_r/2\pi = 37.5 \text{ MHz}$

State dependent resonator shift $2\chi/2\pi \simeq -16$ MHz

Time Dependence of Measured Quadrature

Quantities:

- Single ground state (g) trace
- Average and Stdv of g traces
- Simulated dynamics (-)
- Single excited state (e) trace
- Average and Stdv of e traces
- Simulated dynamics (-)
- Integration time τ

Observations:

- Fast rise of measurement signal (< 50 ns) due large χ (and κ)
- Small decay of average excited state trace due to Purcell protected T₁
- Little increase of average ground state trace due to measurement induced mixing

Histograms of Integrated Quadrature Signals

- In ground/excited state:
- Data of 30k preparations each (*,*)
- Fitted Gaussian distribution (-,-)
- Constant threshold (---)

- Transmission quadrature integrated with opt. filter.
- Definition of errors and fidelities in ground/excited state:
 - Overlap error: $\varepsilon_{o,g/e}$
 - Transition, preparation (and other) errors: $\tilde{\epsilon}_{g/e}$
 - Total error $\varepsilon_{\rm g/e}$ = $\varepsilon_{o,g/e}$ + $\tilde{\varepsilon}_{g/e}$
- For measurement of unknown state:
 - Total error $\varepsilon = \varepsilon_g + \varepsilon_e$
 - Total fidelity $F = 1 \varepsilon$

Note:

• Alternative fidelity metric calculates the *average* probability of correct assignment. For a single qubit this probability is $1-\epsilon/2$.

Measurement Error vs. Integration Time

Discussion:

- Fast state discrimination with overlap error drop to 1 % in only < 50 ns
- Excited state error < 0.96 %
- Ground state error < 0.23 %
- Max. total fidelity > 98 % limited by qubit T₁

Improved Understanding:

- Power Dependency
 - overlap vs measurement induced errors
- Pulse Shaping (Two-Step)
- Improved measurement efficiency (36 dB gain)
- 99.2% total Fidelity reached
 - Knowledge for improvement