What is claimed is:

1. A compound having the formula:

$$Z_1$$
 X_1 X_2 X_3 X_4 X_4

5 wherein:

10

15

 Y_{1-3} are independently O, S or NR_1 ;

 Z_1 and Z_2 are independently selected substituted or unsubstituted aromatic hydrocarbons or substituted or unsubstituted heterocyclic aromatic groups containing an aldehyde or protecting group, and

 R_1 is selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxys, phenoxys and C_{1-6} heteroalkoxys.

2. The compound of claim 1, wherein

 Z_1 is

$$X_1$$
 R_2 and

Z₂ is

20

wherein:

 X_1 and X_2 are independently selected from the group consisting of

-CHO,

$$-NO_2$$
,

 $\begin{pmatrix} R_7 \\ C \\ R_6 \end{pmatrix}_p$ OH

R₂₂ R₂₃ CH

wherein

10

15

5

R₂₋₇ and R₂₁ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxys, phenoxys and C₁₋₆ heteroalkoxys;

 R_{22} and R_{23} are selected from the same group which defines R_2 and optionally together form a heterocyclic group; and

p is a positive integer.

- 3. The compound of claim 2 wherein, Y_{1-3} are each O, R_{3-6} are independently one of hydrogen or a C_{1-6} alkyl, and Z_2 is the same as Z_1 .
 - 4. The compound of claim 1 having the formula:

5. The compound of claim 1 having the formula:

6. The compound of claim 1 having the formula:

7. The compound of claim 1 having the formula:

8. The compound of claim 1 having the formula:

15

5

9. The compound of claim 1 having the formula:

- 10. A method of preparing an activated nucleophile, comprising:
 - a) reacting a compound having the formula:

$$Z_1$$
— Y_3 — C — Y_2 — Z_2

wherein:

5

15

 Y_{1-3} are independently O, S or NR₁;

10 Z₁ and Z₂ are independently selected substituted or unsubstituted aromatic hydrocarbons or substituted or unsubstituted heterocyclic aromatic groups containing an aldehyde or protecting group; and

 R_1 is selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxys, phenoxys and C_{1-6} heteroalkoxys;

with a strong nucleophile under conditions sufficient to form a compound of formula (II):

$$R_8$$
 Y_4 III Y_1 III

wherein:

R₈ is a residue of a strong nucleophile;

Y₄ is NR₂₀, O or S;

 Y_{1-2} are independently O, S or NR_1 ;

 Z_2 is a substituted or unsubstituted aromatic hydrocarbon or substituted or unsubstituted heterocyclic aromatic group containing an aldehyde or protecting group; and

 R_1 and R_{20} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxys, phenoxys and C_{1-6} heteroalkoxys.

10

5

11. The method of claim 10, wherein Z_2 is:

wherein:

R₄₋₅ are independently selected from the group consisting of hydrogen,

C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls,

C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls,

substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxys, phenoxys and C₁₋₆ heteroalkoxys; and

X₂ is an aldehyde or protecting group.

20

- 12. The method of claim 11, wherein X_2 is CHO.
- 13. The method of claim 11, wherein X_2 is

The method of claim 10, further comprising converting X_2 to an alcohol and thereby forming a compound of the formula:

$$R_8 - Y_4 - C - Y_2 - Z_5$$

wherein Z_3 is substituted or unsubstituted aromatic hydrocarbon or substituted or unsubstituted heterocyclic aromatic group substituted with

$$\begin{pmatrix} R_{15} \\ C \\ R_{16} \end{pmatrix}_{W}$$

wherein

R₁₅₋₁₆ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxys, phenoxys and C₁₋₆ heteroalkoxys; and w is a positive integer.

- 15. The method of claim 14, wherein p is 1.
- The method of claim 14, further comprising reacting said compound
 of formula (III) with a moiety containing a leaving group under conditions
 sufficient to form an activated polymer of the formula:

$$R_8$$
 Y_4 C Y_2 Z_4

wherein

10

20

R₈ is a residue of a strong nucleophile;

Y₄ is NR₂₀, O or S;

 Y_{1-2} are independently O, S or NR_1 ;

 R_1 and R_{20} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} hetero-

alkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxys, phenoxys and C_{1-6} heteroalkoxys; and

Z₄ is a leaving group.

- 5 17. The method of claim 16, wherein said moiety containing a leaving group is selected from the group consisting of disuccinimidyl carbonate and *N*-hydroxypthalamide.
- 18. The method of claim 10, wherein R₈ comprises a polyalkylene oxide
 - 19. The method of claim 18, wherein R_8 is a polyethylene glycol residue.
 - 15 20. The method of claim 18, wherein R₈ comprises -O-(CH₂CH₂O)_x and x is the degree of polymerization.
 - 21. The method of claim 18, wherein R₈ has a weight average molecular weight of from about 20,000 to about 100,000.
 - 22. The method of claim 10, wherein R₈ has a weight average molecular weight of from about 25,000 to about 60,000.
 - 23. The method of claim 16, further comprising reacting the activatedpolymer of formula IV with a biologically active compound to form a polymer conjugate.
 - 24. A method of preparing an activated nucleophile, comprising:
 - a) reacting a compound having the formula:

wherein:

30

20

 Y_{1-3} are independently O, S or NR_1 ;

 Z_5 and Z_6 are independently selected substituted or unsubstituted aromatic hydrocarbons or substituted or unsubstituted heterocyclic aromatic groups, substituted with

$$\begin{pmatrix}
R_7 \\
C \\
R_6
\end{pmatrix}$$
 p

wherein

5

20

 R_1 and R_{6-7} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls,

 C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxys, phenoxys and C_{1-6} heteroalkoxys;

p is a positive integer; and

with a nucleophile under conditions sufficient to form a compound of Formula (IIa):

$$R_8'$$
 $C - Y_2 - Z_2$

wherein:

R₈' is a nucleophile residue;

L₁ is a bifunctional linker

 Y_{1-2} are independently O, S or NR_1 ;

Z₆ is a substituted or unsubstituted aromatic hydrocarbon or substituted or unsubstituted heterocyclic aromatic group, substituted with

$$\begin{pmatrix} R_7 \\ C \\ R_6 \end{pmatrix}_p$$
 and

 R_1 , R_{6-7} and R_{20} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted

alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxys, phenoxys and C_{1-6} heteroalkoxys.