Spotify 2023 Data Analysis

Shahrukh Rahman 2025-03-31

Introduction This report analyzes the **Spotify 2023 dataset**, performing various data manipulation, visualization, and statistical computations in R.

```
1. Load and View Dataset
```

spotify_2023_Copy <- read_excel("spotify-2023 - Copy.xls")</pre> View(spotify_2023_Copy)

tibble [953 \times 24] (S3: tbl_df/tbl/data.frame)

2. List the variables in your dataset str(spotify_2023_Copy) # Check structure of dataset

```
## $ track_name : chr [1:953] "Seven (feat. Latto) (Explicit Ver.)" "LALA" "vampire" "Cruel Summer" ...
## $ in_spotify_playlists: num [1:953] 553 1474 1397 7858 3133 ...
## $ in_spotify_charts : num [1:953] 147 48 113 100 50 91 50 43 83 44 ...
## $ streams : chr [1:953] "141381703" "133716286" "140003974" "800840817" ...
## $ in_apple_playlists : num [1:953] 43 48 94 116 84 67 34 25 60 49 ...
## $ in_apple_charts : num [1:953] 263 126 207 207 133 213 222 89 210 110 ...
## $ in_deezer_playlists : num [1:953] 45 58 91 125 87 88 43 30 48 66 ...
## $ in_deezer_charts : num [1:953] 10 14 14 12 15 17 13 13 11 13 ...
## $ in_shazam_charts : num [1:953] 826 382 949 548 425 946 418 194 953 339 ...
## $ liveness_% : num [1:953] 8 10 31 11 11 8 8 11 28 8 ...
## $ speechiness_% : num [1:953] 4 4 6 15 6 24 3 4 9 33 ...
```

colnames(spotify_2023_Copy) # Display column names ## [1] "track_name" "artist(s)_name"
[4] "released_year" "released_month" "artist_count" "released_day" ## [7] "in_spotify_playlists" "in_spotify_charts" "streams" ## [10] "in_apple_playlists" "in_apple_charts" "in_deezer_playlists" ## [13] "in_deezer_charts" "in_shazam_charts" "bpm"

[16] "key" "mode" "danceability_%"

[19] "valence_%" "energy_%" "acousticness_%"

[22] "instrumentalness_%" "liveness_%" "speechiness_%"

3.Top 15 rows of your dataset head(spotify_2023_Copy, 15) # Display first 15 rows ## # A tibble: 15 × 24

```
## # i 19 more variables: released_day <dbl>, in_spotify_playlists <dbl>,
 ## # in_spotify_charts <dbl>, streams <chr>, in_apple_playlists <dbl>,
 ## # in_apple_charts <dbl>, in_deezer_playlists <dbl>, in_deezer_charts <dbl>,
 ## # in_shazam_charts <dbl>, bpm <dbl>, key <chr>, mode <chr>,
 ## # `danceability_%` <dbl>, `valence_%` <dbl>, `energy_%` <dbl>,
 ## # `acousticness_%` <dbl>, `instrumentalness_%` <dbl>, `liveness_%` <dbl>,
 ## # `speechiness_%` <dbl>
4. User defined function
Categorize Streams
 categorize_streams <- function(streams) {</pre>
  if (streams >= 1000000) {
   return("High Stream")
  } else {
   return("Low Stream")
```

head(spotify_2023_Copy) ## # A tibble: 6 × 25

5. Filtering Recent Songs


```
## 1 Seven (feat. Latto... Latto, Jung Kook 2 2023
## 2 LALA Myke Towers 1 2023
## 3 vampire Olivia Rodrigo 1 2023
## 4 Cruel Summer Taylor Swift 1 2019
## 5 WHERE SHE GOES Bad Bunny 1 2023
## 6 Sprinter Dave, Central C... 2 2023
## # i 20 more variables: released_day <dbl>, in_spotify_playlists <dbl>,
## # in_spotify_charts <dbl>, streams <chr>, in_apple_playlists <dbl>,
## # in_apple_charts <dbl>, in_deezer_playlists <dbl>, in_deezer_charts <dbl>,
## # in_shazam_charts <dbl>, bpm <dbl>, key <chr>, mode <chr>,
## # `danceability_%` <dbl>, `valence_%` <dbl>, `energy_%` <dbl>,
## # `acousticness_%` <dbl>, `instrumentalness_%` <dbl>, `liveness_%` <dbl>,
## # `speechiness_%` <dbl>, Stream_Category <chr>
```

spotify_2023_Copy\$Stream_Category <- sapply(spotify_2023_Copy\$streams, categorize_streams)</pre>

recent_songs <- spotify_2023_Copy %>% filter(released_year > 2020) head(recent songs) ## # A tibble: 6 × 25 ## 1 Seven (feat. Latto... Latto, Jung Kook 2 2023
2 LALA Myke Towers 1 2023
3 vampire Olivia Rodrigo 1 2023
4 WHERE SHE GOES Bad Bunny 1 2023
5 Sprinter Dave, Central C... 2 2023
6 Ella Baila Sola Eslabon Armado,... 2 2023 ## # i 20 more variables: released_day <dbl>, in_spotify_playlists <dbl>, ## # in_spotify_charts <dbl>, streams <chr>, in_apple_playlists <dbl>,

in_apple_charts <dbl>, in_deezer_playlists <dbl>, in_deezer_charts <dbl>,

`acousticness_%` <dbl>, `instrumentalness_%` <dbl>, `liveness_%` <dbl>,

1 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 141381703 bpm 125 ## 2 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 141381703 danceabi... 80 ## 3 Seven (feat. Latto) (Explicit Ver.) Latto, Jung Kook 141381703 energy_% 83

in_shazam_charts <dbl>, bpm <dbl>, key <chr>, mode <chr>, ## # `danceability_%` <dbl>, `valence_%` <dbl>, `energy_%` <dbl>,

`speechiness_%` <dbl>, Stream_Category <chr>

6. Reshape Data spotify_2023_Copy <- spotify_2023_Copy %>% rename(artist_name = `artist(s)_name`) %>% # Rename artist column select(track_name, artist_name, streams, bpm, `danceability_%`, `energy_%`) %>% # Select columns pivot_longer(cols = c(bpm, `danceability_%`, `energy_%`), # Use backticks for special names names_to = "Feature", values_to = "Value" head(spotify_2023_Copy) ## # A tibble: 6 × 5

> artist_name streams Feature Value <chr> <chr> <chr> <chr> <chr>

Myke Towers 133716286 danceabi... 71 Myke Towers 133716286 energy_% 74

Myke Towers 133716286 bpm

[1] 0 8. Remove Duplicated Rows duplicated_rows <- spotify_2023_Copy %>% filter(duplicated(spotify_2023_Copy)) unique_df <- spotify_2023_Copy %>% distinct() 9. Reorder Rows in Descending Order

artist_name streams Feature Value <chr> <chr> <chr> <chr>

Taylor Swift 999748277 bpm 97

Taylor Swift 999748277 dancea... 64
Taylor Swift 999748277 energy... 63

"Value"

A tibble: 6 × 5 ## track_name ## <chr> ## 1 Love Grows (Where My Rosemary Goes) Edison Lighthouse BPM110Key... bpm 110

10. Data Transformation

spotify_2023_Copy <- spotify_2023_Copy %>%

nrow(test_set) # Check test set size

summary(spotify_2023_Copy)

track_name

Value ## Min. : 9.0 ## 1st Qu.: 62.0 ## Median : 78.0

[1] 290833204

[1] 156338624

Now pivot the data

Check the result head(spotify_wide)

A tibble: 6 × 6

3 0.4409722222222221

Scatter Plot of BPM vs Energy

Bar Plot of Feature vs Total Streams

track_name

<chr>

100

Energy Percentage

25

1.2e+13

9.0e+12

6.0e+12

get_mode <- function(v) {</pre> uniqv <- unique(v)

get_mode(spotify_2023_Copy\$streams)

[1] 2.762000e+03 1.105376e+13

13. Summary Statistics

artis_name

Length:2859 Length:2859 Length:2859

Class :character Class :character Class :character Class :character Mode :character Mode :character Mode :character Mode :character

[1] 572

##

[1] "track_name" "artis_name" "streams" "Feature"

mutate(Value = ifelse(Feature == "bpm", as.numeric(Value) * 2, Value))

head(sorted_df)

4 Anti-Hero

5 Anti-Hero ## 6 Anti-Hero

track_name

7. Data Cleaning

Remove Missing Values

cleaned_df <- spotify_2023_Copy %>% drop_na()

sum(is.na(cleaned_df)) # Check if missing values are removed

sorted_df <- spotify_2023_Copy %>% arrange(desc(streams))

2 Love Grows (Where My Rosemary Goes) Edison Lighthouse BPM110Key... dancea... 53 ## 3 Love Grows (Where My Rosemary Goes) Edison Lighthouse BPM110Key... energy... 69

<chr>

4 LALA

5 LALA

6 LALA

Renaming Column Name spotify_2023_Copy <- spotify_2023_Copy %>% rename(artis_name = `artist_name`) colnames(spotify_2023_Copy)

11. Creating a New Variable Using Mathematical Function

12. Create a Training Set set.seed(123) train_index <- sample(1:nrow(spotify_2023_Copy), 0.8 * nrow(spotify_2023_Copy))</pre> train_set <- spotify_2023_Copy[train_index,]</pre> test_set <- spotify_2023_Copy[-train_index,]</pre> nrow(train_set) # Check training set size ## [1] 2287

Mean :125.4 ## 3rd Qu.:199.0 Max. :412.0 14. Statistical Functions spotify_2023_Copy <- spotify_2023_Copy %>% mutate(streams = gsub("[^0-9]", "", streams), # Remove non-numeric characters streams = as.numeric(streams)) # Convert to numeric mean(spotify_2023_Copy\$streams, na.rm = TRUE) ## [1] 12112503461

streams

Feature

15. Data Visualization Scatter Plot (BPM vs Energy)

spotify_summarized <- spotify_2023_Copy %>%

spotify_wide <- spotify_summarized %>%

Convert necessary columns to numeric

spotify_wide <- spotify_wide %>%

Summarize duplicates by averaging the Value column

group_by(track_name, artis_name, streams, Feature) %>%

pivot_wider(names_from = Feature, values_from = Value)

1 'Till I Collapse Eminem, N... 1.70e9 342

4 10 Things I Hate About Y... Leah Kate 1.86e8 308

2 (It Goes Like) Nanana - ... Peggy Gou 5.79e7 260

summarise(Value = mean(Value, na.rm = TRUE), .groups = "drop")

mutate(bpm = as.numeric(bpm), `energy_%` = as.numeric(`energy_%`))

<chr> <dbl> <dbl>

Tiï;½ï;½s... 3.26e8 240

range(spotify_2023_Copy\$streams, na.rm = TRUE)

median(spotify_2023_Copy\$streams, na.rm = TRUE)

uniqv[which.max(tabulate(match(v, uniqv)))]

5 2 Be Loved (Am I Ready) Lizzo 2.48e8 312 72 77 Sleepy ha... 6.25e8 322 ## 6 2055 $ggplot(spotify_wide, aes(x = bpm, y = `energy_%`)) +$ geom_point(color = "blue") + labs(title = "Scatter Plot of BPM vs Energy", x = "Beats Per Minute (BPM)", y = "Energy Percentage") + theme_minimal()

88

79

54

```
200
                                 Beats Per Minute (BPM)
16. Bar Plot (Released Year vs Spotify Playlists)
 spotify_summary <- spotify_2023_Copy %>%
   group_by(Feature) %>% # Grouping by the 'Feature' column
   summarise(total_streams = sum(streams, na.rm = TRUE), .groups = "drop")
 ggplot(spotify_summary, aes(x = Feature, y = total_streams)) +
   geom_bar(stat = "identity", fill = "skyblue") +
   labs(title = "Bar Plot of Feature vs Total Streams",
       x = "Feature",
       y = "Total Streams") +
   theme_minimal()
```

Total Streams 3.0e+12 0.0e+00 danceability_% bpm energy_% Feature 17. Correlation Analysis library(dplyr) library(tidyr) # Summarize duplicates by calculating the mean for each combination spotify_filtered <- spotify_2023_Copy %>% filter(Feature %in% c("bpm", "energy_%")) %>% group_by(track_name, artis_name, streams, Feature) %>% summarise(Value = mean(Value, na.rm = TRUE), .groups = "drop") %>%

pivot_wider(names_from = Feature, values_from = Value)

head(spotify_filtered)

A tibble: 6 × 5

print(correlation_value)

Saving the session in the specified directory

Loading the session from the specified directory

Check the data to ensure bpm and energy_% are in separate columns

# 1 'Till I Collapse	Eminem, Nate Dogg		342	85	
	a - Edit Peggy Gou	57876440	260	88	
# 3 0.4409722222222221	Ti��sto, Tate	M 325592432	240	79	
# 4 10 Things I Hate Abou	ıt You Leah Kate	185550869	308	79	
# 5 2 Be Loved (Am I Read	ly) Lizzo	247689123	312	77	
# 6 2055	Sleepy hallow	624515457	322	52	
<u> </u>	.numeric(spotify_filtereds		ıv %`)		

correlation_value <- cor(spotify_filtered\$bpm, spotify_filtered\$`energy_%`, use = "complete.obs", method = "pears"</pre>

[1] 0.02610044 9. Save and Load Session

save.image("C:/Users/anjal/Downloads/Spotify v2/Spotify_Session.RData")

load("C:/Users/anjal/Downloads/Spotify v2/Spotify_Session.RData")