Correction contrôle de mathématiques Jeudi 18 octobre 2012

Exercice 1

ROC 3 points

1) Soit donc une suite (u_n) croissante et non majorée.

 (u_n) n'est pas majorée, donc pour tout intervalle $]A; +\infty[$,

$$\exists N \in \mathbb{N}$$
 tel que : $u_N \in]A; +\infty[$

Comme (u_n) est croissante, on a :

$$\forall n > N$$
 alors $u_n > u_N$

Donc:

$$\forall n > N \quad \text{alors} \quad u_n \in]A; +\infty[$$

donc à partir d'un certain rang tous les termes de la suite sont dans l'intervalle A; $+\infty$ [. La suite (u_n) diverge vers $+\infty$.

2) Application:

a) $u_{n+1} - u_n = 2(n+1)$ et $\forall n \in \mathbb{N} \ 2(n+1) > 0$

donc $\forall n \in \mathbb{N}$, on a $u_{n+1} - u_n > 0$. La suite est donc strictement croissante.

b) Soit $\mathcal{P}: \forall n \in \mathbb{N}, u_n \geqslant n^2$

Initialisation : immédiat $u_0 = 0 \ge 0^2$. $\mathcal{P}(0)$ est vraie

Hérédité : On admet que $u_n \ge n^2$, montrons alors que $u_{n+1} \ge (n+1)^2$. On a d'après l'hypothèse de récurrence :

$$u_n + 2(n+1) \ge n^2 + 2n + 2$$

 $u_{n+1} \ge (n^2 + 2n + 1) + 1$
 $u_{n+1} \ge (n+1)^2$

La propostion \mathcal{P} est héréditaire.

Par initialisation et hérédité, la proposition ${\mathcal P}$ est vraie

c) La suite (u_n) est croissante et non majorée donc la suite (u_n) est divergente vers $+\infty$ et donc $\lim_{n\to+\infty} = +\infty$

Exercice 2

Récurrence 2 points

Soit
$$\mathcal{P}$$
: $\forall n \in \mathbb{N}$, $t_n = \frac{n}{n+1}$

Initialisation : $t_0 = 0$ et $\frac{0}{0+1} = 0$. $\mathcal{P}(0)$ est vraie

Hérédité : On admet que $t_n = \frac{n}{n+1}$, montrons alors que $t_{n+1} = \frac{n+1}{n+2}$. On a d'après l'hypothèse de récurrence :

$$t_n + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$t_{n+1} = \frac{n(n+2)+1}{(n+1)(n+2)}$$

$$t_{n+1} = \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$t_{n+1} = \frac{(n+1)^2}{(n+1)(n+2)}$$

$$t_{n+1} = \frac{n+1}{n+2}$$

La propostion \mathcal{P} est héréditaire.

Par initialisation et hérédité, la proposition \mathcal{P} est vraie.

Exercice 3

Limites de suites 3 points

1) Pour
$$n \ge 1$$
 on a: $u_n = n^2 \left(2 - \frac{1}{n}\right) + \frac{1}{\sqrt{n}}$

$$\lim_{n \to +\infty} n^2 = +\infty$$

$$\lim_{n \to +\infty} 2 - \frac{1}{n} = 2$$
Par produit
$$\lim_{n \to +\infty} 2 - \frac{1}{n} = 2$$
Par produit

De $\lim_{n\to+\infty} \frac{1}{\sqrt{n}} = 0$, par somme, on a : $\lim_{n\to+\infty} u_n = +\infty$

2) Pour
$$n \ge 1$$
 on a: $u_n = \frac{\sqrt{n}}{n\left(1 + \frac{2}{n}\right)} = \frac{1}{\sqrt{n}\left(1 + \frac{2}{n}\right)}$

$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$

$$\lim_{n \to +\infty} 1 + \frac{2}{n} = 1$$
Par produit
$$\lim_{n \to +\infty} \sqrt{n}\left(1 + \frac{2}{n}\right) = +\infty$$

Par quotient, on a : $\lim_{n\to+\infty} u_n = 0$

3) Pour
$$n \ge 1$$
, on a:
$$-1 \le \sin n \le 1$$
$$-\frac{1}{n^2} \le \frac{\sin n}{n^2} \le \frac{1}{n^2}$$
$$4 - \frac{1}{n^2} \le 4 + \frac{\sin n}{n^2} \le 4 + \frac{1}{n^2}$$

or
$$\lim_{n \to +\infty} 4 - \frac{1}{n^2} = \lim_{n \to +\infty} 4 + \frac{1}{n^2} = 4$$

D'après le théorème des gendarmes, on a $\lim_{n\to+\infty} u_n = 4$

Exercice 4

Vrai-Faux 4 points

1) **Faux** Pour s'en convaincre : soit la suite (u_n) définie sur \mathbb{N}^* par $u_n = \frac{1}{n}$.

Tous les termes de (u_n) sont non nuls et $\lim_{n\to+\infty} u_n = 0$. La suite (u_n) converge vers 0.

or
$$v_n = -\frac{2}{u_n} = -2n$$
, donc $\lim_{n \to +\infty} v_n = -\infty$. La suite (v_n) diverge.

2) **Vrai** Pour s'en convaincre : Si (u_n) est minorée par 2, on a :

$$u_n \geqslant 2 \quad \Leftrightarrow \quad \frac{1}{u_n} \leqslant \frac{1}{2} \quad \Leftrightarrow \quad -\frac{2}{u_n} \geqslant -1 \quad \Leftrightarrow \quad v_n \geqslant -1$$

 (v_n) est donc minorée par -1

3) Faux Pour s'en convaincre : si (u_n) est décroissante (sans changer de signe) on a

$$\forall n \in \mathbb{N} \quad u_{n+1} < u_n \quad \Leftrightarrow \quad \frac{1}{u_{n+1}} > \frac{1}{u_n} \quad \Leftrightarrow \quad -\frac{2}{u_{n+1}} < -\frac{2}{u_n} \quad \Leftrightarrow \quad v_{n+1} < v_n$$

La suite (v_n) est donc décroissante.

On peut reprendre le contre-exemple précédent : $u_n = \frac{1}{n}$ (décroissante) donc $v_n = -2n$ qui est aussi décroissante.

4) **Faux** Pour s'en convaincre, soit la suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n$.

Les termes de la suite u_n prennent donc alternativement les valeurs 1 et -1. La suite (u_n) est donc divergente.

or $v_n = -\frac{2}{u_n} = -\frac{2}{(-1)^n} = (-2)^{n+1}$. Les termes de la suite (v_n) prennent donc alternativement les valeurs -2 et 2. La suite (v_n) diverge

Exercice 5

D'après Pondichéry avril 2008

4 points

- 1) f est une fonction du second degré qui s'annule en 0 et 20, donc f admet un extremum au centre de 0 et 20 soit en x = 10. De plus le coefficient devant x^2 est $\frac{-1}{10}$, donc cet extremum est un maximum. On a donc :
 - Sur [0, 10] la fonction f est croissante
 - Sur [10, 20] la fonction f est décroissante.
 - f(10) = 10
- 2) Soit \mathcal{P} : $\forall n \in \mathbb{N}$, $0 \le u_n \le u_{n+1} \le 10$.

Initialisation : $u_0 = 1$ et $u_1 = 1, 9$, donc on a : $0 \le u_1 \le u_1 \le 10$. $\mathcal{P}(0)$ est vraie

Hérédité : On admet que $0 \le u_n \le u_{n+1} \le 10$, montrons alors que $0 \le u_{n+1} \le u_{n+2} \le 10$.

On a d'après l'hypothèse de récurrence :

$$0 \le u_n \le u_{n+1} \le 10$$

Comme la fonction f est croissante sur [0, 10], on a :

$$f(0) \le f(u_n) \le f(u_{n+1}) \le f(10)$$

 $0 \le u_{n+1} \le u_{n+2} \le 10$

La propostion \mathcal{P} est héréditaire.

Par initialisation et hérédité, la proposition $\mathcal P$ est vraie.

- 3) La suite (u_n) est croissante et majorée par 10, elle est donc convergente vers une limite ℓ .
- 4) La limite ℓ doit vérifier : $f(\ell) = \ell$. on a donc ($\ell \neq 0$ car $u_0 = 1$ et (u_n) croissante)

$$\frac{1}{10}\ell(20-\ell) = \ell \quad \Leftrightarrow \quad 20-\ell = 10 \quad \Leftrightarrow \quad \ell = 10$$

La suite (u_n) converge vers 10.

En 2015, n = 10 la suite sera très proche de sa limite $u_{10} \simeq 10$, il y aura donc 10 millions de foyers français équipés d'un téléviseur à écran plat.

Exercice 6

Algorithme 4 points

1) Le rôle de cet algoritme est de déterminer le naturel k tel que $u_k > A$, A étant un réel donné.

2) On trouve les résultats suivants (en rajoutant 1 000 très long avec la calculatrice) :

3) Les résultats infirme les affirmations de Paul, car pourvu que k soit suffisant grand, u_k dépasse 10, 50 et 100 (et 1000). On peut penser que la suite (u_n) n'est pas majorée et qu'elle diverge vers $+\infty$.

4) On a:
$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

Comme pour $1 \le k \le n$, on a $\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{n}}$, on a:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geqslant \underbrace{\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}}}_{n \text{ termes}}$$

soit
$$u_n \geqslant \frac{n}{\sqrt{n}} \iff u_n \geqslant \sqrt{n}$$

5) On sait que : $\lim_{n\to+\infty} \sqrt{n} = +\infty$ donc par comparaison on a : $\lim_{n\to+\infty} u_n = +\infty$