TRIGONOMETRY

Chapter 01

SISTEMA DE MEDICIÓN ANGULAR I

HELICO MOTIVATION

¿ Quién inventó la Trigonometría ?

En cuanto a su origen, es difícil establecer quién o cual cultura dio origen a la Trigonometría.

Se considera a Hiparco de Nicea (astrónomo, matemático y geógrafo griego), como el "Padre de la Trigonometría".

ÁNGULO TRIGONOMÉTRICO

Es aquel ángulo que se genera por la rotación de un rayo alrededor de un punto fijo llamado vértice, desde una posición inicial hasta otra final.

- Al punto O se le denomina vértice.
- Al rayo en posición inicial se le denomina lado inicial.
- Al rayo en posición final se le denomina lado final.

CARACTERÍSTICAS DEL ÁNGULO TRIGONOMÉTRICO

Su medida es positiva si el giro se efectúa en sentido anti horario ($\alpha > 0$)

Su medida es negativa si el giro se efectúa en sentido horario (β < 0)

SISTEMAS DE MEDICIÓN ANGULAR

· SISTEMA SEXAGESIMAL (INGLÉS)

Unidades de medida:

GRADO: O MINUTO:

SEGUNDO:

Equivalencias:

$$1^{\circ} = 60'$$

$$1' = 60''$$

$$1^{\circ} = 3600''$$

Nota:

$$\mathbf{a}^{\circ}\mathbf{b}'\mathbf{c}'' = \mathbf{a}^{\circ} + \mathbf{b}' + \mathbf{c}''$$

Donde: b, c < 60

$$180^{\circ} = 179^{\circ} + 59' + 60''$$

REGLAS DE CONVERSIÓN

Para convertir medidas angulares sexagesimales de una unidad a otra, se utiliza :

En las siguientes proposiciones, escriba verdadero (V) ó falso (F), según corresponda.

A) m
$$\preceq$$
 1 vuelta $<>$ 360° (\lor)

B)
$$1^{\circ} < > 60^{\circ}$$

C)
$$1' < > 60'$$
 (F)

Resolución

- A) En el sistema sexagesimal, la medida de una vuelta es 360°, por lo tanto es Verdadero.
- B) 1° equivale a 60', por lo tanto es Falso.
- C) 1' equivale 60", por lo tanto es Falso.

∴ Rpta : VFF

Convierta los ángulos pares a minutos sexagesimales y los ángulos impares a segundos sexagesimales :

I) 2° II) 3° III) 4° IV) 5°

¡ Genial!

Convierte los siguientes segundos sexagesimales a grados sexagesimales :

- I) 28 800"
- II) 39 600"
- III) 46 800"

i Interesante!

Efectúe 16° 18' + 27° 21' - 33° 18'.

Recordar: Debemos operar entre sí las medidas angulares que están expresadas en una misma unidad y en un mismo sistema de medición angular.

Es decir : Operamos por separado los grados y los minutos sexagesimales .

Calcule M + N si:

$$M = \frac{2^{\circ} 2^{'}}{2^{'}}$$
 y $N = \frac{5^{\circ} 20^{'}}{40^{'}}$

RECUERDA:

Resolución

$$M = \frac{2(60') + 2'}{2'}$$

$$M = \frac{120' + 2'}{2'}$$

$$M = \frac{122}{2}$$

$$M = 61$$

$$N = \frac{5(60') + 20'}{40'}$$

$$N = \frac{300' + 20'}{40'}$$

$$N = \frac{320^{\circ}}{40^{\circ}}$$

$$N = 8$$

$$M + N = 61 + 8 = 69$$

El profesor Fernando planteó el siguiente acertijo a sus estudiantes: "Exprese el ángulo trigonométrico cuyo número de grados sexagesimales es el menor número par de dos cifras diferentes y presenta como número de minutos sexagesimales al menor número impar de dos cifras diferentes". Dé como respuesta el ángulo en minutos sexagesimales.

RECUERDA:

$$1^{\circ} = 60$$
'

Número de grados sexagesimales: 10°

Número de minutos sexagesimales: 13'

$$10^{\circ} 13' = 10^{\circ} + 13'$$

= $10(60') + 13'$
= $600' + 13'$

En el fútbol hay una técnica conocida como "triangulación".

Si en la figura observamos a tres jugadores practicando dicha técnica; halle en grados sexagesimales el valor del ángulo del jugador ubicado en el punto C.

$$y^{\circ} = 1500'$$

$$\mathbf{y^0} = \left(\frac{1500}{60}\right)$$

$$y^0 = 25^0$$

Rpta: m∢C = 25°

¡ Nos encantó!

