LAPORAN PRAKTIKUM

MODUL 2

PENGENALAN BAHASA C++ (BAGIAN KEDUA)

Disusun Oleh:

Muhammad Ikhsan Al Hakim (2311104064)

S1SE-07-02

Dosen:

Wahyu Andi Saputra, S.Pd., M.Eng

PROGRAM STUDI S1 SOFTWARE ENGINEERING FAKULTAS INFORMATIKA TELKOM UNIVERSITY PURWOKERTO

2024

I. TUJUAN

• Memahami penggunaan *pointer* dan alamat memori. • Mengimplementasikan fungsi dan prosedur dalam program.

II. LANDASAN TEORI

2.1 Array

Array adalah sebuah struktur data yang digunakan untuk menyimpan kumpulan data dengan tipe yang sama dalam satu variabel.

2.1.1 Array Satu Dimensi

Adalah *array* yang hanya terdiri dari satu larik data saja. Cara pendeklarasian *array* satu dimensi:

tipe_data nama_var[ukuran] Keterangan:

Tipe_data → menyatakan jenis elemen *array* (int, char, float, dll). Ukuran → menyatakan jumlah maksimum *array*.

2.1.2 Array Dua Dimensi

Bentuk *array* dua dimensi ini mirip seperti tabel. Jadi *array* dua dimensi bisa digunakan untuk menyimpan data dalam bentuk tabel. Terbagi menjadi dua bagian, dimensi pertama dan dimensi kedua. Cara akses, deklarasi, inisialisasi, dan menampilkan data sama dengan *array* satu dimensi, hanya saja indeks yang digunakan ada dua.

2.1.3 Array Berdimensi Banyak

Merupakan *array* yang mempunyai indeks banyak, lebih dari dua. Indeks inilah yang menyatakan dimensi *array*. *Array* berdimensi banyak lebih susah dibayangkan, sejalan dengan jumlah dimensi dalam *array*.

Cara deklarasi:

tipe data nama var[ukuran1][ukuran2]...[ukuran-N];

Contoh: int

data rumit[4][6][6];

Array sebenarnya masih banyak pengembangannya untuk penyimpanan berbagai betuk data, pengembangan *array* misalnya untuk *array* tak berukuran.

2.2 Pointer

2.2.1 Data dan Memori

Semua data yang ada digunakan oleh program komputer disimpan di dalam memori (RAM) komputer. Memori dapat digambarkan sebagai sebuah *array* 1 dimensi yang berukuran sangat besar. Seperti layaknya *array*, setiap *cell memory* memiliki "indeks" atau "alamat" unik yang berguna untuk identitas yang biasa kita sebut sebagai "*address*"

Saat program berjalan, Sistem Operasi (OS) akan mengalokasikan *space memory* untuk setiap variabel, objek, atau *array* yang kita buat. Lokasi pengalokasian memori bisa sangat teracak sesuai proses yang ada di dalam OS masing-masing.

2.2.2 Pointer dan Alamat

Variabel *pointer* merupakan dasar tipe variabel yang berisi *integer* dalam format heksadesimal. *Pointer* digunakan untuk menyimpan alamat memori variabel lain sehingga *pointer* dapat mengakses nilai dari variabel yang alamatnya ditunjuk.

Cara pendeklarasian variabel pointer adalah sebagai berikut:

```
type *nama variabel;
```

2.2.3 Pointer dan Array

Ada keterhubungan yang kuat antara *array* dan *pointer*. Banyak operasi yang bisa dilakukan dengan *array* juga bisa dilakukan dengan *pointer*. Pendeklarasian *array*: int a[10];

2.2.4 Pointer dan String

A. String

String merupakan bentuk data yang sering digunakan dalam bahasa pemrograman untuk mengolah data teks atau kalimat. Dalam bahasa C pada dasarnya string merupakan kumpulan dari karakter atau array dari karakter.

```
Deklarasi variabel string: char
nama[50];
50 → menyatakan jumlah maksimal karakter dalam string.
Memasukkan data string dari keyboard:
```

```
gets(nama);
jika menggunakan cin(): contoh:
```

cin>>nama;

gets(nama array); contoh:

```
\label{eq:charman} \begin{array}{lll} \mbox{Inisialisasi} & \textit{string}: & \mbox{char} & \mbox{nama}[] = \\ & \{\mbox{`s','t','r','u','k','d','a','t','\0'}\}; \end{array}
```

Merupakan variabel nama dengan isi data string "strukdat".

```
Bentuk inisialisasi yang lebih singkat: char nama[]="strukdat";
Menampilkan string bisa nggunakan puts() atau cout(): puts(nama);
```

cout << nama;

Untuk mengakses data *string* sepertihalnya mengakses data pada *array*, pengaksesan dilakukan perkarakter sesuai dengan indeks setiap karakter dalam *string*.

III. GUIDED

1. Fungsi penjumlahan: Menampilkan Hasil Penjumlahan dan Nama Sapaan

Code:

```
int penjumlahan(int a, int b){
    return a + b;
}

void greet(string name){
    cout << "Hello, " << name << "!" << endl;
}

int main(){
    int hasil = penjumlahan(5, 3);

cout << "hasil " << hasil << endl;

greet("alice");</pre>
```

Output:

5

Hello, alice!

2. Array 1 Dimensi dan 2 Dimensi Code:

```
int main(){
        int nilai[5]={1,2,3,4,5};
        cout << nilai[0]<< endl;</pre>
        cout << nilai[1]<< endl;</pre>
        cout << nilai[2]<< endl;</pre>
        cout << nilai[3]<< endl;</pre>
        cout << nilai[4]<< endl;</pre>
       int nilai[5]={1,2,3,4,5};
       for(int i=0; i<5;i++){
            cout<<nilai[i]<<endl;</pre>
       int nilai[3][4]={
            {1,2,3,4},
            {5,6,7,8},
            {9,10,11,12}
       for(int i=0; i<3; i++){
            for(int j=0; j<4; j++){
                cout<<nilai[i][j]<<""<<endl;</pre>
       cout<<endl;</pre>
```

Output:

3. Pointer Code:

```
int x,y;
int *px;
x=87;
px=&x;
y=*px;
cout<<"Alamat x = "<<&x<<endl;
cout<<"Isi px = "<<px<<endl;
cout<<"Isi x = "<<x<<endl;
cout<<"Nilai yang ditunjuk px = "<<*px<<endl;
cout<<"nilai y = "<<y<<endl;
return 0;
return 0;
}</pre>
```

Output:

```
Alamat x = 0x7fffd226401c

Isi px = 0x7fffd226401c

Isi x = 87

Nilai yang ditunjuk px = 87 nilai y = 87
```

IV. UNGUIDED

1. Buatlah program untuk menampilkan Output seperti berikut dengan data yang diinputkan oleh user!

```
Data Array : 1 2 3 4 5 6 7 8 9 10
Nomor Genap : 2, 4, 6, 8, 10,
Nomor Ganjil : 1, 3, 5, 7, 9,
```

Code:

```
int main() {
       int arr[n];
       cout << "Masukkan elemen array: ";</pre>
       for (int i = 0; i < n; ++i) {
           cin >> arr[i];
           cout << arr[i] << " ";
       for (int i = 0; i < n; ++i) {
           if (arr[i] % 2 == 0) {
               cout << arr[i] << " ";
       cout << "\nNomor Ganjil: ";</pre>
       for (int i = 0; i < n; ++i) {
           if (arr[i] % 2 != 0) {
               cout << arr[i] << " ";
```

Output:

Masukkan jumlah elemen array: 10 Masukkan

elemen array: 1 2 3 4 5 6 7 8 9 10 Data Array: 1 2 3 4 5 6 7 8 9 10

Nomor Genap: 2 4 6 8 10 Nomor Ganjil: 1 3 5 7 9

2. Buatlah program Input array tiga dimensi tetapi jumlah atau ukuran elemennya diinputkan oleh user!

Jawaban:

Code:

```
include <lostream>
    using namespace std;

int main() {
    int diml, dim2, dim3;

    cout << "Masukkan ukuran dimensi 1: ";
    cin >> dim1;
    cout << "Masukkan ukuran dimensi 2: ";
    cin >> dim2;
    cout << "Masukkan ukuran dimensi 3: ";
    cin >> dim3;

int arr[dim1][dim2][dim3];

// Input nilai untuk setiap elemen array (sesuaikan dengan kebutuhan)
for (int i = 0; i < dim1; ++i) {
    for (int j = 0; j < dim2; ++j) {
        cout << "Masukkan ukuran dimensi 3: ";
    cin >> arr[i][j][k];
        for (int i = 0; i < dim2; ++j) {
        cout << "Masukkan nilai untuk arr[" << i << "][" << j << "][" << k << "]: ";
        cin >> arr[i][j][k];
    }
}

// Output nilai array (sesuaikan dengan format yang diinginkan)
for (int i = 0; i < dim1; ++i) {
    for (int i = 0; i < dim2; ++j) {
        for (int i = 0; i < dim2; ++j) {
            cout << arr[i][j][k] << " ";
        }
        cout << end1;
    }

cout << end1;
}
cout << end1;
}
return 0;
}</pre>
```

Output:

Masukkan ukuran dimensi 1: 2

Masukkan ukuran dimensi 2: 2

Masukkan ukuran dimensi 3: 2

Masukkan nilai untuk arr[0][0][0]: 1

Masukkan nilai untuk arr[0][0][1]: 2

Masukkan nilai untuk arr[0][1][0]: 3

Masukkan nilai untuk arr[0][1][1]: 4

Masukkan nilai untuk arr[1][0][0]: 5

Masukkan nilai untuk arr[1][0][1]: 6

Masukkan nilai untuk arr[1][1][0]: 7

Masukkan nilai untuk arr[1][1][1]: 8

Array yang telah Anda buat:

12

3 4

56

78

3. Buatlah program menu untuk mencari nilai Maksimum, Minimum dan Nilai rata – rata dari suatu array dengan input yang dimasukan oleh user!

Jawaban:

Code:

```
#include <iostream>
 using namespace std;
 int main() {
     cout << "Masukkan jumlah elemen array: ";</pre>
     cin >> n;
     int arr[n];
     cout << "Masukkan elemen array: ";</pre>
     for (int i = 0; i < n; ++i) {
          cin >> arr[i];
     int max = arr[0], min = arr[0], sum = 0;
     for (int i = 1; i < n; ++i) {
          if (arr[i] > max) {
              max = arr[i];
         if (arr[i] < min) {</pre>
              min = arr[i];
          sum += arr[i];
     double rataRata = (double)sum / n;
     cout << "Nilai maksimum: " << max << endl;</pre>
     cout << "Nilai minimum: " << min << endl;</pre>
     cout << "Nilai rata-rata: " << rataRata << endl;</pre>
     return 0;
```

Output:

Masukkan jumlah elemen array: 5 Masukkan elemen array: 10 5 15 20 8

Nilai maksimum: 20 Nilai minimum: 5 Nilai rata-rata: 11.6