

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

Date		September 2023	Maximum Marks	50
Course Code		21CS43	Duration	90 Min
	Sem IV Semester Improvement Test)	
	Sem	DESIGN AND ANALYSIS	1	
Sl. No.		Questions		М
Sl. No. 1a.	ALGORITHM $Prim(G)$ //Prim's algorithm for co //Input: A weighted conn //Output: E_T , the set of e $V_T \leftarrow \{v_0\}$ //the set of to $E_T \leftarrow \varnothing$ for $i \leftarrow 1$ to $ V - 1$ do	to find minimum spanning tree instructing a minimum spanning tree sected graph $G = \{V, E\}$ indiges composing a minimum spanning tree of G ree vertices can be initialized with any vertex ght edge $e^* = (v^*, u^*)$ among all the edges (v, u)		M 4
b	Solve the following instances of the single-source shortest-paths problem with vertex v_I as the source: Trace - 4M $V1(\cdot, -) \qquad V2(V1,9), V3(V1,4), V4(\cdot, \infty), V5(\cdot, \infty), V6(\cdot, \infty)$ $V3(V1,4) \qquad V2(V3,6), V4(V3,5), V5(V3,10), V6(\cdot, \infty)$ $V4(V3,5) \qquad V2(V3,6) \qquad V5(V4,9), V6(V4,13)$ $V2(V3,6) \qquad V5(V4,9), V6(V4,13)$ $V5(V4,9) \qquad V6(V5,11)$ Shortest Path & Cost- 1+1 $V1-V3-V2=6$ $V1-V3-V4=5$ $V1-V3-V4-V5-9$ $V1-V3-V4-V5-V6=11$			as 6
2.a	With the help of stat State space tree – 5M Solution -1M		problem using Backtracking approac	ch 6

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

With the help of a state space tree. Solve the Travelling Salesman Problem for the following graph using branch and bound concept. Find the number of promising and non-promising nodes. Use vertex 'd' as starting node.

No of promising node -5 No ofnon- promising node -10 -----2M

Solution node-1 -----

Solution- d->b->a->c->e->d cost 16 1M

State space tree -7M

10

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi