The class P is closed under union, concatenation, and complement

Class P: P is the class of languages that are decidable in polynomial time on a deterministic single - tape Turing machine.

That is,
$$P = \bigcup_{k} TIME(n^{k})$$

Now we have to show that P is closed under union, concatenation and complement.

Union:

Assume two languages $P_1 \in P$ and $P_2 \in P$

The Turing machine M that accepts $P_1 \cup P_2$ works as follows:

M = "On input w:

- 1. Check if $w \in P_1$
- 2. if not then check if $w \in P_2$
- 3. Accept w if and only if P_1 or P_2 accepts.
- 4. If both reject then rejects the input w''.

Since each membership check requires polynomial time the overall time is polynomial.

Concatenation:

Assume two languages $P_1 \in P$ and $P_2 \in P$.

The Turing machine M that accepts $P_1.P_2$ works as follows

M = "On input w of length n:

- 1. w can be split into two strings in n different ways
- 2. For each split,
- (a) Check if the first substring belongs to P_{I}
- (b) check if second substring belongs to P_2
- 3. If any split succeeds, then accept".

Clearly the overall time is polynomial.

Complement:

Assume a language $P_1 \in P$

The Turing machine M that accepts \overline{P}_1 works as follows

M = "On input w:

- 1. Check if $w \in P_1$
- 2. If $w \in P_1$ then reject.
- 3. If $w \not\in P_1$, then accept"

Clearly the overall time is polynomial.

浙ICP备16034203号-2

Therefore, the class P is closed under union, concatenation, and complement.