

REAL SUBSPACE REPRESENTATIONS

Why

How should we represent a subspace computationally?

Definition

Given a subspace $S \in \mathbf{R}^n$, since it is finite dimensional, there exists a finite basis for the space. This basis can be made orthonormal. Therefore every subspace S has an orthonormal basis q_1, \ldots, q_k , where k is the dimension of the subspace. We can stack these as a matrix. Define $Q \in \mathbf{R}^{n \times k}$ by

$$Q = \left[\begin{array}{cccc} q_1 & q_2 & \cdots & q_k \end{array} \right].$$

For every $x \in S$, there exists unique coefficients $z \in \mathbf{R}^k$ so that

$$x = Qz$$
.

Therefore we have a one-to-one correspondence between vectors $x \in S$ and their coordinates $z \in \mathbf{R}^k$.

