Banjercito

Diplomado en Ciencia de Datos

Tarea 502

Módulo V — Semana 1

Alan Badillo Salas

Noviembre 2024

Introducción

El Diplomado en Ciencia de Datos ha llegado a su quinto módulo titulado "Deep Learning". En este módulo revisaremos a profundidad las redes neuronales generales, recurrentes y convolutivas para resolver problemas generales y particulares de forma automática, mejorando así la predicción y pronóstico en los análisis y casos de estudio relacionados.

En la semana 1 hemos hecho un repaso sobre los temas más importantes de los módulos anteriores, partiendo del uso de Python, Numpy y Pandas, así como la probabilidad y estadística bayesiana y de los modelos de Regresión y Clasificación de Machine Learning. También se introdujo el concepto de *Perceptrón* y su aplicación para predecir un objetivo a través de sus características.

En esta tarea se reforzarán las habilidades para hacer un análisis probabilístico y estadístico con Excel y Python.

Tarea 502 — Probabilidad y Estadística de Deuda

Una financiera posee una lista de 30 créditos no completados que fueron otorgados a clientes de diferente edad, escolaridad, años de servicio y si eran casados. La financiera requiere entender algunas probabilidades y estadísticos descriptivos de los datos.

Genera una hoja de Excel que contenga los siguientes datos sobre los 30 créditos otorgados y la deuda total de cada cliente:

Cliente	Crédito	Deuda	Edad	Escolaridad	Años	Casado
1	\$5,000.00	\$800.00	25	Preparatoria	1	0
2	\$6,000.00	\$200.00	25	Licenciatura	2	0
3	\$8,000.00	\$3,500.00	27	Preparatoria	1	0
4	\$9,000.00	\$3,000.00	28	Licenciatura	3	1
5	\$10,000.00	\$2,500.00	29	Preparatoria	2	0
6	\$12,000.00	\$6,000.00	26	Preparatoria	1	1
7	\$12,000.00	\$3,000.00	24	Preparatoria	3	0
8	\$13,000.00	\$2,500.00	26	Licenciatura	2	0
9	\$15,000.00	\$4,000.00	31	Preparatoria	1	0
10	\$15,000.00	\$500.00	33	Licenciatura	2	1
11	\$16,000.00	\$3,000.00	34	Licenciatura	2	0
12	\$17,000.00	\$1,500.00	40	Licenciatura	5	0
13	\$19,000.00	\$800.00	36	Licenciatura	5	1
14	\$19,000.00	\$1,200.00	34	Maestría	3	0
15	\$20,000.00	\$900.00	42	Licenciatura	7	1
16	\$23,000.00	\$6,000.00	48	Maestría	5	0
17	\$23,000.00	\$13,000.00	52	Licenciatura	12	0
18	\$23,000.00	\$4,000.00	54	Licenciatura	5	1
19	\$25,000.00	\$5,000.00	36	Maestría	8	0
20	\$25,000.00	\$9,000.00	39	Licenciatura	5	0
21	\$26,000.00	\$8,000.00	41	Licenciatura	2	1
22	\$27,000.00	\$14,000.00	56	Licenciatura	24	0
23	\$28,000.00	\$6,000.00	54	Maestría	5	1
24	\$28,000.00	\$8,000.00	28	Licenciatura	3	1
25	\$30,000.00	\$6,000.00	31	Licenciatura	6	1
26	\$34,000.00	\$7,000.00	58	Licenciatura	12	0
27	\$34,000.00	\$8,000.00	64	Preparatoria	24	1
28	\$35,000.00	\$8,000.00	66	Maestría	40	0
29	\$35,000.00	\$6,000.00	56	Preparatoria	36	1
30	\$35,000.00	\$12,000.00	58	Licenciatura	28	1

Table 1: Datos de clientes

Calcula los conteos siguientes:

- Número total de clientes que están casados
- Número de clientes menores o iguales a 30 años
- Número de clientes entre 31 y 39 años
- Número de clientes entre 40 y 55 años
- Número de clientes mayores o iguales a 56 años
- Número de clientes con Preparatoria
- Número de clientes con Licenciatura
- Número de clientes con Maestría
- Número de clientes con 1 o 2 años de servicio
- Número de clientes con 3 a 5 años de servicio
- Número de clientes con 6 o más años de servicio

Calcula las siguientes probabilidades (porcentaje de que ocurra):

- Probabilidad que un cliente esté casado
- Probabilidad que un cliente tenga hasta 30 años
- Probabilidad que un cliente tenga entre 31 y 39 años
- Probabilidad que un cliente tenga entre 40 y 55 años
- Probabilidad que un cliente tenga al menos 56 años
- Probabilidad que un cliente tenga Preparatoria
- Probabilidad que un cliente tenga Licenciatura
- Probabilidad que un cliente tenga Maestría
- Probabilidad que un cliente tenga 1 o 2 años de servicio
- Probabilidad que un cliente tenga de 3 a 5 años de servicio
- Probabilidad que un cliente tenga 6 o más años de servicio

Calcula los siguientes estadísticos:

- Suma de la deuda en crétidos entre \$5,000 y \$10,000
- Suma de la deuda en crétidos entre \$11,000 y \$15,000

- Suma de la deuda en crétidos entre \$16,000 y \$20,000
- Suma de la deuda en crétidos entre \$21,000 y \$25,000
- Suma de la deuda en crétidos entre \$26,000 y \$30,000
- Suma de la deuda en crétidos entre \$31,000 y \$35,000
- La deuda menor en crétidos entre \$5,000 y \$10,000
- La deuda menor en crétidos entre \$11,000 y \$15,000
- La deuda menor en crétidos entre \$16,000 y \$20,000
- La deuda menor en crétidos entre \$21,000 y \$25,000
- La deuda menor en crétidos entre \$26,000 y \$30,000
- La deuda menor en crétidos entre \$31,000 y \$35,000
- La deuda mayor en crétidos entre \$5,000 y \$10,000
- La deuda mayor en crétidos entre \$11,000 y \$15,000
- La deuda mayor en crétidos entre \$16,000 y \$20,000
- La deuda mayor en crétidos entre \$21,000 y \$25,000
- La deuda mayor en crétidos entre \$26,000 y \$30,000
- La deuda mayor en crétidos entre \$31,000 y \$35,000
- Promedio de la deuda en crétidos entre \$5,000 y \$10,000
- Promedio de la deuda en crétidos entre \$11,000 y \$15,000
- Promedio de la deuda en crétidos entre \$16,000 y \$20,000
- Promedio de la deuda en crétidos entre \$21,000 y \$25,000
- Promedio de la deuda en crétidos entre \$26,000 y \$30,000
- Promedio de la deuda en crétidos entre \$31,000 y \$35,000
- Desviación estándar de la deuda en crétidos entre \$5,000 y \$10,000
- \bullet Desviación estándar de la deuda en crétidos entre \$11,000 y \$15,000
- $\bullet\,$ Desviación estándar de la deuda en crétidos entre \$16,000 y \$20,000
- Desviación estándar de la deuda en crétidos entre \$21,000 y \$25,000
- Desviación estándar de la deuda en crétidos entre \$26,000 y \$30,000
- Desviación estándar de la deuda en crétidos entre \$31,000 y \$35,000

Calcula las siguientes probabilidades conjuntas:

- Probabilidad que un cliente tenga hasta 30 años y esté casado
- Probabilidad que un cliente tenga hasta 30 años y tenga Preparatoria
- Probabilidad que un cliente tenga hasta 30 años y tenga Licenciatura
- Probabilidad que un cliente tenga hasta 30 años y tenga Maestría
- Probabilidad que un cliente tenga entre 31 y 39 años y esté casado
- Probabilidad que un cliente tenga entre 31 y 39 años y tenga Preparatoria
- Probabilidad que un cliente tenga entre 31 y 39 años y tenga Licenciatura
- Probabilidad que un cliente tenga entre 31 y 39 años y tenga Maestría
- Probabilidad que un cliente tenga entre 40 y 55 años y esté casado
- Probabilidad que un cliente tenga entre 40 y 55 años y tenga Preparatoria
- Probabilidad que un cliente tenga entre 40 y 55 años y tenga Licenciatura
- Probabilidad que un cliente tenga entre 40 y 55 años y tenga Maestría
- Probabilidad que un cliente tenga al menos 56 años y esté casado
- Probabilidad que un cliente tenga al menos 56 años y tenga Preparatoria
- Probabilidad que un cliente tenga al menos 56 años y tenga Licenciatura
- Probabilidad que un cliente tenga al menos 56 años y tenga Maestría

Calcula las siguientes probabilidades condicionales:

- Probabilidad que un cliente casado tenga hasta 30 años
- Probabilidad que un cliente casado tenga entre 31 y 39 años
- $\bullet\,$ Probabilidad que un cliente casado tenga entre 40 y 55 años
- Probabilidad que un cliente casado tenga al menos 56 años
- Probabilidad que un cliente casado tenga Preparatoria
- Probabilidad que un cliente casado tenga Licenciatura
- Probabilidad que un cliente casado tenga Maestría
- Probabilidad que un cliente con Preparatoria esté casado
- Probabilidad que un cliente con Licenciatura esté casado
- Probabilidad que un cliente con Maestría esté casado

Calcula las siguientes probabilidades condicionales sobre la deuda relativa, es decir, la deuda entre el crédito, por ejemplo, para una deuda de \$800, y un crédito de \$5,000 la deuda relativa es 800/5000 = 0.16 = 16%:

- \bullet Cliente casado que tenga una deuda relativa de hasta 20%
- Cliente casado que tenga una deuda relativa de entre 20% y 40%
- Cliente casado que tenga una deuda relativa de entre 40% y 60%
- \bullet Cliente casado que tenga una deuda relativa de entre 60% y 80%
- Cliente casado que tenga una deuda relativa mayor a 80%
- \bullet Cliente con Preparatoria que tenga una deuda relativa de hasta 20%
- Cliente con Preparatoria que tenga una deuda relativa de entre 20% y 40%
- Cliente con Preparatoria que tenga una deuda relativa de entre 40% y 60%
- Cliente con Preparatoria que tenga una deuda relativa de entre 60% y 80%
- \bullet Cliente con Preparatoria que tenga una deuda relativa mayor a 80%
- Cliente con Licenciatura que tenga una deuda relativa de hasta 20%
- Cliente con Licenciatura que tenga una deuda relativa de entre 20% y 40%
- Cliente con Licenciatura que tenga una deuda relativa de entre 40% y 60%
- $\bullet\,$ Cliente con Licenciatura que tenga una deuda relativa de entre 60% y 80%
- Cliente con Licenciatura que tenga una deuda relativa mayor a 80%
- Cliente con Maestría que tenga una deuda relativa de hasta 20%
- \bullet Cliente con Maestría que tenga una deuda relativa de entre 20% y 40%
- Cliente con Maestría que tenga una deuda relativa de entre 40% y 60%
- \bullet Cliente con Maestría que tenga una deuda relativa de entre 60% y 80%
- Cliente con Maestría que tenga una deuda relativa mayor a 80%

Sigue los pasos del *script* para generar distintos reportes sobre las probabilidades conjuntas de estar casado por escolaridad y el porcentaje de deuda relativa por escolaridad.

Carga los datos de los créditos con Pandas:

```
import pandas
creditos = pandas.read_excel("/content/p502.xlsx")
creditos
```

Pregunta: ¿Cuál es la deuda máxima de los clientes con Preparatoria?

Calula la columna de deuda relativa (deuda entre crédito):

```
creditos["Deuda Rel"] = 100 * \
    creditos["Deuda"] / creditos["Crédito"]
creditos
```

Pregunta: ¿Cuáles son las dos deudas relativas más grandes, qué escolaridad tienen y en qué rango de edad están?

Crea un DataFrame para reportar las probabilidades condicionales de que dado que el cliente tiene cierta escolaridad y esté o no casado:

```
import numpy
reporteCasadoEscolaridad = pandas.DataFrame(
    numpy.zeros((3, 2)),
    index=["Preparatoria", "Licenciatura", "Maestria"],
    columns=["Casado", "No casado"])
reporteCasadoEscolaridad
```

Pregunta: ¿Por qué se usa numpy.zeros((3,2))?

Llena el Data Frame con los conteos usando dos filtros, el primero indicará cual es la escolaridad y el segundo si está casado, se usará la probabilidad condicional P(B|A) = P(B,A)/P(A):

```
for escolaridad in ["Preparatoria", "Licenciatura", "Maestria"]:
  for casado, columna in [(1, "Casado"), (0, "No casado")]:
    filtro1 = creditos["Escolaridad"] == escolaridad
    filtro2 = creditos["Casado"] == casado
    proba = len(creditos[filtro1 & filtro2]) / \
        len(creditos[filtro1])
    reporteCasadoEscolaridad.loc[escolaridad, columna] = \
        proba * 100
```

Pregunta: ¿Cuál es la probabilidad de que un cliente que tiene maestría, no esté casado?

Grafica en un pastel para cada escolaridad la probabilidad de estar o no casado:

```
import matplotlib.pyplot as pyplot
```

En la Figura 1 observamos las gráficas de pastel que comparar la probabilidad de estar casado por escolaridad.

Figura 1: Probabilidad de estar casado en clientes por escolaridad

Pregunta: ¿Qué escolaridad tienen mayor probabilidad de que un cliente no esté casado y cuál de que si lo esté?

Haz un análisis similar para la probabilidad condicional por escolaridad pero ahora para el porcentaje de deuda relativa:

```
filtro2 = creditos["Deuda Rel"] > lim_inf
filtro3 = creditos["Deuda Rel"] <= lim_sup
proba = len(creditos[filtro1 & filtro2 & filtro3]) / \
  len(creditos[filtro1])
reporteDeudaEscolaridad.loc[escolaridad, columna] = \
  proba * 100</pre>
```

reporteDeudaEscolaridad

Pregunta: ¿Cuál es la probabilidad de tener una deuda entre 20% y 30% dado que el cliente tiene Maestría y cuál dado que el cliente tiene Preparatoria?

Genera una gráfica de mapa de calor sobre los datos del reporte (escolaridad y porcentaje de deuda relativa):

```
import seaborn
seaborn.heatmap(reporteDeudaEscolaridad)
pyplot.savefig("escolaridad_deuda_heatmap.png")
```

En la Figura 2 se muestra el mapa de calor de la probabilidad de tener cierto porcentaje de deuda relativa por escolaridad:

Figura 2: Mapa de calor con la escolaridad contra el porcentaje de deuda

Pregunta: ¿Cómo se interpreta esta gráfica, dónde concentra el mayor porcentaje de deduda relativa cada escolaridad?

Finalmente, crea una representación en gráfica de barras de los mismos datos:

```
import matplotlib.pyplot as pyplot
pyplot.bar(
   numpy.arange(len(reporteDeudaEscolaridad.columns)) + 0,
    reporteDeudaEscolaridad.loc["Preparatoria"],
   label="Preparatoria",
    width=0.2)
pyplot.bar(
   numpy.arange(len(reporteDeudaEscolaridad.columns)) + 0.2,
    reporteDeudaEscolaridad.loc["Licenciatura"],
    label="Licenciatura",
   width=0.2)
pyplot.bar(
    numpy.arange(len(reporteDeudaEscolaridad.columns)) + 0.4,
    reporteDeudaEscolaridad.loc["Maestria"],
    label="Maestria",
   width=0.2)
pyplot.xticks(
   numpy.arange(len(reporteDeudaEscolaridad.columns)) + 0.2,
   reporteDeudaEscolaridad.columns)
pyplot.title("Deuda Relativa por Escolaridad")
pyplot.xlabel("Deuda Relativa")
pyplot.ylabel("% Créditos")
pyplot.legend()
pyplot.savefig("escolaridad_deuda_bar.png")
pyplot.show()
```

En la Figura 3 se muestra las barras agrupadas de la probabilidad de tener cierto porcentaje de deuda relativa por escolaridad:

Figura 3: Barras agrupadas con la escolaridad contra el porcentaje de deuda

Pregunta: ¿Cómo se interpreta esta gráfica, dónde concentra el mayor porcentaje de deduda relativa cada escolaridad?

Escribe tus conclusiones y piensa en cómo se haría un análisis por edad en lugar de escolaridad.