## Object Detection

### Object Detection and Localization

• Object detection aims for detecting, locating and classifying objects in an image





## Object Detection and Localization

- Widely used in computer vision tasks such as:
  - Vehicle detection
  - People counting
  - Number plate recognition
  - Autonomous driving
- Techniques for object detection are generally machine learning or deep learning based

#### Recent Research

- Region Based Convolutional Network [Girshick et al. 2014]:
  - Used the sliding window approach with Selective Search
  - Still feeds a limited part of the image to the classifier
  - Drawbacks: Large pipeline, slow, too many false positives
- Fast and Faster R-CNN [Gavrilescu et al. 2018]:
  - Optimized parts of pipeline
  - Drawbacks: loses accuracy

#### R-CNN

- Comprised of three modules:
- Region Proposal: Generate and extract category independent region proposals, e.g. candidate bounding boxes
  - Propose candidate regions or bounding boxes of potential objects in image called "selective search"
  - Look at image through windows of different sizes and for each size, group together adjacent pixels by texture, colour, intensity to identify objects
- Feature Extractor: Extract feature from each candidate region, e.g. using a deep CNN like a pre-trained AlexNet
  - Output of CNN was a 4,096 element vector
- Classifier: Classify features as one of known class, e.g. linear SVM classifier

#### R-CNN: Regions with CNN features

warped region



1. Input image



Extract regio

2. Extract region proposals (~2k)



4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

## YOLO – You Look Only Once

- First described by Joseph Redmon, et al. in the 2015
- State-of-art for real-time object detection algorithm
- Goal: perform object detection with speed and high accuracy
- Looks at whole image at test time: predictions influenced by global context in image
- Applies a single neural network to image:
  - Network divides image into regions and predicts bounding boxes and probabilities for each region
  - Bounding boxes weighted by predicted probabilities



## **YOLO** Timeline



## Comparison with State-of-art

| Previous Approaches                                                                                    | YOLO algorithm                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Separate models for generating bounding boxes and for classification (more complicated model pipeline) | A single neural network for localization and for classification (less complicated pipeline)                    |  |
| Need to run classification many times (expensive computation)                                          | Need to inference only once (efficient computation)                                                            |  |
| Looks at limited part of the image (lacks contextual information for detection)                        | Looks at the entire image each time leading to less false positives (has contextual information for detection) |  |

## Algorithm

- Algorithm works on following four approaches:
  - Residual blocks
  - Bounding box regression
  - Intersection Over Unions (IOU)
  - Non-Maximum Suppression

#### Residual Blocks

- Divide original image into S\*S grid cells of equal shape
- Each cell in grid responsible for localizing and predicting class of object it covers, along with the probability/confidence value
  - If center of an object falls into a grid cell, that grid cell is responsible for detecting that object



## Bounding-box Regression

- Determine bounding boxes correspond to rectangles highlighting all objects in image
- For each grid square, generate B bounding boxes
- For each bounding box, following predictions are made:
  - pc: Confidence score Probability that bounding box has an object
  - bx, by: center coordinates of bounding box w.r.t. enveloping grid cell
  - bw, bh: width and height of bounding box w.r.t. enveloping grid cell
  - c1, c2: class of object in bounding box
- YOLO determines attributes of bounding boxes using a single regression module: Y is final vector representation for each bounding box

$$Y = [pc, bx, by, bh, bw, c1, c2]$$



Ex., all grids in red will have a probability score higher than zero. Image on right is simplified version since probability of each yellow cell is zero (insignificant)



c1, c2: correspond to two classes Player and Ball; Can have as many classes as your use case requires

# 

Labels for training for each grid cell:





## Intersection Over Unions (IoU)

- Used to describe extent of overlap of two boxes
  - Greater the region of overlap, greater the IoU
- Due to varying parameters of model, a complete and total match between predicted and ground-truth bounding boxes is unrealistic
- Need to define an evaluation metric that rewards predicted bounding boxes for heavily overlapping with the ground-truth





Predicted bounding boxes that heavily overlap with ground-truth bounding boxes have higher scores than those with less overlap; Makes IoU an excellent metric for evaluating custom object detector



## Non-Max Suppression (NMS)

- An object can have multiple boxes with IOU beyond threshold
  - These may overlap or be located at different positions, but all represent same object
  - Leaving all those boxes might include noise
- NMS used to identify and remove redundant or incorrect bounding boxes and to output a single bounding box for each object in image
  - Keep only boxes with highest probability score of detection
- To remove duplicates:
  - Select the box with highest probability and output that as a prediction
  - Eliminate any bounding box with IoU > 0.5 (or any threshold value) with the predicted output

## Non-Max Suppression (NMS)

- Helps to remove duplicate bounding boxes for same object
  - Sort all predictions/objects in descending order of their confidence
  - If two bounding boxes are pointing to same object, their IoU would be high
  - In this case, choose box with higher confidence
  - If IoU is very low, this would possibly mean that the two boxes point to different objects of same class
- While training model, can choose a suitable minimum IoU score needed for a predicted box to be regarded as an accurate positive detection



#### YOLO

- YOLO is a regression algorithm
- Trained on PASCAL VOC dataset
  - Can detect 20 different classes
- Input X an image of width \* height \* RGB values
- Y is a tensor of size S \* S \* (B \* (5 + C))
  - B\*(5+C) represents the 5 predictions and predicted class distribution for each bounding box of a grid block
- Ex.: Image size 416\*416\*3 as input
  - Parameters: S = 19, B = 3, C = 80
  - Output is S\*S\*(B\*(5+C)) = 19 \* 19 \* (3 \* (5 + 80)) = 19 \* 19 \* 255

#### YOLO Architecture



Overall 24 convolutional layers, four max-pooling layers, and two fully connected layers

#### YOLO: Architecture

- First 20 convolution layers of model pre-trained using ImageNet by plugging in a temporary average pooling and fully connected layer
- This pre-trained model converted to perform detection
  - Adding convolution and connected layers to a pre-trained network improves performance
- Final fully connected layer predicts both class probabilities and bounding box coordinates

#### YOLO Architecture

- Resizes input image into 448\*448 before going through convolutional network
- A 1\*1 convolution is first applied to reduce number of channels, followed by a 3x3 convolution to generate a cuboidal output
- Activation function under the hood is ReLU, except for final layer, which uses a linear activation function
- Some additional techniques, such as batch normalization and dropout, respectively regularize the model and prevent it from overfitting

#### **YOLO:** Limitations

- Requires data to be labeled with bounding boxes, hard to collect for many classes
- May not be ideal for using niche models where large datasets can be hard to obtain

#### Models:

- YOLO v2: introduced in 2016
  - Uses a different CNN backbone called Darknet-19 variant of VGGNet architecture
- Main improvements:
  - Use of anchor boxes set of predefined bounding boxes of different aspect ratios and scales
  - Use of batch normalization helps to improve accuracy and stability of model
  - Uses multi-scale training strategy involves training model on images at multiple scales and averaging predictions - helps to improve detection performance of small objects
  - Introduces new loss function based on sum of squared errors between predicted and ground truth bounding boxes and class probabilities

- Main improvements: use of new CNN architecture called Darknet-53
  - Variant of ResNet architecture, designed specifically for object detection tasks
- Uses anchor boxes with different scales and aspect ratios: In YOLO v2, anchor boxes were all the same size
- Introduces concept of "feature pyramid networks" (FPN)
  - FPNs are a CNN architecture used to detect objects at multiple scales
  - They construct a pyramid of feature maps each level of pyramid being used to detect objects at a different scale; helps to improve detection performance on small objects
- Can handle a wider range of object sizes and aspect ratios



| Layer                    | Filters size                           | Repeat                                 | Output size                         |
|--------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
| Image                    |                                        |                                        | $416 \times 416$                    |
| Conv                     | $323 \times 3/1$                       | 1                                      | $416 \times 416$                    |
| Conv                     | $643 \times 3/2$                       | 1                                      | $208 \times 208$                    |
| Conv<br>Conv<br>Residual | $32.1 \times 1/1$<br>$64.3 \times 3/1$ | Conv   × 1<br> Conv   × 1<br> Residual | 208 × 208<br>208 × 208<br>208 × 208 |
| Conv                     | 128 3 × 3/2                            | 1                                      | 104 × 104                           |
| Conv<br>Conv<br>Residual | 64 1 × 1/1<br>128 3 × 3/1              | Conv × 2<br>Residual                   | 104 × 104<br>104 × 104<br>104 × 104 |
| Conv                     | $2563 \times 3/2$                      | 1                                      | 52 × 52                             |
| Conv<br>Conv<br>Residual | $1281 \times 1/1$<br>$2563 \times 3/1$ | Conv X 8<br>Conv X 8<br>Residual       | 52 × 52<br>52 × 52<br>52 × 52       |
| Conv                     | 5123 × 3/2                             | 1                                      | 26 × 26                             |
| Conv<br>Conv<br>Residual | $2561 \times 1/1$<br>$5123 \times 3/1$ | Conv X 8<br>Conv X 8<br>Residual       | 26 × 26<br>26 × 26<br>26 × 26       |
| Conv                     | $10243 \times 3/2$                     | 1                                      | 13 × 13                             |
| Conv<br>Conv<br>Residual | 512 1 × 1/1<br>1024 3 × 3/1            | Conv X 4<br> Conv X 4<br> Residual     | 13 × 13<br>13 × 13<br>13 × 13       |





- Use of a new CNN architecture called CSPNet
  - Stands for "Cross Stage Partial Network"
  - Variant of the ResNet architecture designed for object detection tasks
  - Has a relatively shallow structure, with only 54 convolutional layers
- Introduces a new term called "GHM loss"
  - Variant of focal loss function
  - Designed to improve model's performance on imbalanced datasets
- Improves architecture of FPNs used in YOLO v3

- Uses more complex architecture called EfficientDet based on EfficientNet network architecture
  - Allows to achieve higher accuracy and better generalization to object categories
- Trained on a larger and more diverse dataset called D5 includes a total of 600 object categories - YOLO trained on PASCAL VOC dataset (20 classes)
- Uses new method for generating anchor boxes "dynamic anchor boxes"
  - Involves using clustering algorithm to group ground truth bounding boxes into clusters and then using centroids of clusters as anchor boxes
  - Allows anchor boxes to be more aligned with detected objects' size and shape

- Also introduces concept of "spatial pyramid pooling" (SPP) type of pooling layer used to reduce spatial resolution of feature maps
  - Allows the model to see the objects at multiple scales
- YOLO v4 also uses SPP, but YOLO v5 includes several improvements to SPP architecture that allow it to achieve better results

- Uses a variant of the EfficientNet architecture called EfficientNet-L2
  - More efficient architecture than EfficientDet, with fewer parameters and a higher computational efficiency
- Can achieve state-of-the-art results on various object detection benchmarks
- Introduces a new method for generating anchor boxes, called "dense anchor boxes"

- Main improvements is use of anchor boxes
  - Uses nine anchor boxes
  - Allows to detect a wider range of object shapes and sizes compared to previous versions
  - Reduces number of false positives
- Has a higher resolution than previous versions
  - Processes images at a resolution of 608\*608 pixels, which is higher than the 416\*416 resolution used in YOLO v3
  - Allows to detect smaller objects and to have a higher accuracy overall

- New API that will make training and inference much easier on both CPU and GPU devices and the framework will support previous YOLO versions
- New features and improved performance over its predecessors

#### Conclusion

- Object detection is the problem of detecting multiple objects in an image
- Almost real time object detection can make highly responsive robot systems without complex sensors
- Prior work relies on a large architecture with numerous parts to optimize
- YOLO proposes a unified architecture, which does all the tasks in one model and by one inference over the entire image
- They show enormous speed improvement and show that they can beat most other prior work in terms of mAPs

## Example Code

Google CoLab

#### References

- [Gavrilescu et al., 2018] Gavrilescu, R., Zet, C., Fos,al au, C., Skoczylas, M., and Cotovanu, D. (2018). Faster r-cnn:an approach to real-time object detection. In 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), pages 0165–0168.
- [Girshick et al., 2016] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2016). Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1):142–158.
- [Liu et al., 2016] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer Vision ECCV 2016, pages 21–37, Cham. Springer International Publishing.
- [Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. pages 779–788.