1 Formulation and Discretization of the Problem of Pure Diffusion

• Formulation:

$$-(\kappa \phi')' = s \qquad \text{in } \Omega =]x_{\frac{1}{2}}, x_{I+\frac{1}{2}}[$$

$$\phi = \phi_{\mathrm{lf},0} \qquad \text{at } x = x_{\frac{1}{2}}$$

$$-\kappa \phi' = \phi_{\mathrm{rg},1} \qquad \text{at } x = x_{I+\frac{1}{2}}$$

• Mesh:

• Discretization:

$$-(\kappa \phi')' = s$$

$$\int_{C_{i}} (-(\kappa \phi')') dx = \int_{C_{i}} s dx$$

$$-(\kappa \phi') \Big|_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} = \int_{C_{i}} s dx$$

$$-(\mathbb{F}_{D,i+\frac{1}{2}} - \mathbb{F}_{D,i-\frac{1}{2}}) = \mathbb{S}_{i}, \quad i = 1, ..., I$$

2 Reconstructions and Matrices

• At $x_{\frac{1}{2}}$:

$$\phi_{d,\frac{1}{2}}(x) = \sum_{\alpha=0}^{d} \mathcal{R}_{\frac{1}{2},\alpha}(x - x_{\frac{1}{2}})^{\alpha}$$

 $\widehat{\mathcal{R}}_{\frac{1}{2}} = \left(\widehat{\mathcal{R}}_{\frac{1}{2},0}, \ldots, \widehat{\mathcal{R}}_{\frac{1}{2},d}\right)^T \text{ is the solution of the constrained linear least squares problem}$

$$\begin{bmatrix} \min & \sum_{j \in S_{\frac{1}{2}}} \omega_j \left[\frac{1}{h_j} \int_{C_j} \phi_{d, \frac{1}{2}}(x) dx - \phi_j \right]^2 \\ \text{s.t.} & \phi_{d, \frac{1}{2}}(x_{\frac{1}{2}}) = \phi_{\text{lf}, 0} \end{bmatrix}$$

$$\Leftrightarrow \begin{array}{|c|c|c|}\hline \min & \|A_{\frac{1}{2}}\mathcal{R}_{\frac{1}{2}} - B_{\frac{1}{2}}\|_{2}^{2}\\ \text{s.t.} & C_{\frac{1}{2}}\mathcal{R}_{\frac{1}{2}} = D_{\frac{1}{2}} \end{array}$$

So,

$$\omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \phi_{d,\frac{1}{2}} dx - \phi_{j} \right] = 0$$

$$\Leftrightarrow \omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \phi_{d,\frac{1}{2}} dx \right] = \omega_{j} \phi_{j}$$

$$\Leftrightarrow \omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \left(\sum_{\alpha=0}^{d} \mathcal{R}_{\frac{1}{2},\alpha} (x - x_{lf})^{\alpha} \right) dx \right] = \omega_{j} \phi_{j}$$

$$\Leftrightarrow \omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \left(\mathcal{R}_{\frac{1}{2},0} (x - x_{lf})^{0} + \mathcal{R}_{\frac{1}{2},1} (x - x_{lf})^{1} + \dots + \mathcal{R}_{\frac{1}{2},d} (x - x_{lf})^{d} \right) dx \right] = \omega_{j} \phi_{j}$$

$$\Leftrightarrow \omega_{j} \left[\mathcal{R}_{\frac{1}{2},0} \left(\frac{1}{h_{j}} \int_{C_{j}} (x - x_{lf})^{0} dx \right) + \mathcal{R}_{\frac{1}{2},1} \left(\frac{1}{h_{j}} \int_{C_{j}} (x - x_{lf})^{1} dx \right) + \dots + \mathcal{R}_{\frac{1}{2},d} \left(\frac{1}{h_{j}} \int_{C_{j}} (x - x_{lf})^{d} dx \right) \right] = \underbrace{\omega_{j} \phi_{j}}_{B}$$

and,

$$\begin{split} \phi_{d,\frac{1}{2}}(x_{lf}) &= \phi_{lf,0} \\ \Leftrightarrow \sum_{\alpha=0}^{d} \mathcal{R}_{\frac{1}{2},\alpha}(x_{lf} - x_{lf})^{\alpha} &= \phi_{lf,0} \\ \Leftrightarrow \mathcal{R}_{\frac{1}{2},0}\underbrace{(x_{lf} - x_{lf})^{0}}_{C} + \mathcal{R}_{\frac{1}{2},1}(x_{lf} - x_{lf})^{1} + \dots + \mathcal{R}_{\frac{1}{2},d}(x_{lf} - x_{lf})^{d} &= \underbrace{\phi_{lf,0}}_{D} \end{split}$$

Then, the matrices are:

$$A_{\frac{1}{2}} = [A_{\frac{1}{2},j\alpha}] \in \mathcal{M}_{n_S \times (d+1)}(\mathbb{R}) = \omega_j \frac{1}{h_j} \int_{C_j} (x - x_{\frac{1}{2}})^{\alpha} dx$$

$$B_{\frac{1}{2}} = [B_{\frac{1}{2},j}] \in \mathcal{M}_{n_S \times 1}(\mathbb{R}) = \omega_j \phi_j$$

$$C_{\frac{1}{2}} = [C_{\frac{1}{2},j\alpha}] \in \mathcal{M}_{1 \times (d+1)}(\mathbb{R}) = \begin{cases} 1 & \text{if } \alpha = 0 \\ 0 & \text{if } \alpha = 1, \dots, d \end{cases}$$

$$D_{\frac{1}{2}} = [D_{\frac{1}{2},j}] \in \mathcal{M}_{1 \times 1}(\mathbb{R}) = \phi_{\text{lf},0}$$

• At $x_{\frac{3}{2}}, \dots, x_{I-\frac{1}{2}}$:

$$\phi_{\mathbf{d},i+\frac{1}{2}}(x) = \sum_{\alpha=0}^{\mathbf{d}} \mathcal{R}_{i+\frac{1}{2},\alpha} (x - x_{i+\frac{1}{2}})^{\alpha},$$

 $\widetilde{\mathcal{R}}_{i+\frac{1}{2}} = \left(\widetilde{\mathcal{R}}_{i+\frac{1}{2},0}, \dots, \widetilde{\mathcal{R}}_{i+\frac{1}{2},d}\right)^{\mathrm{T}}$ is the solution of the constrained linear least squares problem

$$\left[\min \sum_{j \in S_{i+\frac{1}{2}}} \omega_j \left[\frac{1}{h_j} \int_{C_j} \phi_{\mathbf{d}, i+\frac{1}{2}}(x) \, \mathrm{d}x - \phi_j \right]^2 \right]$$

$$\begin{split} &\omega_{j}\left[\frac{1}{h_{j}}\int_{C_{j}}\phi_{\mathrm{d},i+\frac{1}{2}}\,\mathrm{d}x-\phi_{j}\right]=0\\ \Leftrightarrow &\omega_{j}\left[\frac{1}{h_{j}}\int_{C_{j}}\phi_{\mathrm{d},i+\frac{1}{2}}\,\mathrm{d}x\right]=\omega_{j}\phi_{j}\\ \Leftrightarrow &\omega_{j}\left[\frac{1}{h_{j}}\int_{C_{j}}\left(\sum_{\alpha=0}^{d}\mathcal{R}_{i+\frac{1}{2},\alpha}(x-x_{i+\frac{1}{2}})^{\alpha}\right)\mathrm{d}x\right]=\omega_{j}\phi_{j}\\ \Leftrightarrow &\omega_{j}\left[\frac{1}{h_{j}}\int_{C_{j}}\left(\mathcal{R}_{i+\frac{1}{2},0}(x-x_{i+\frac{1}{2}})^{0}+\mathcal{R}_{i+\frac{1}{2},1}(x-x_{i+\frac{1}{2}})^{1}+\cdots+\mathcal{R}_{i+\frac{1}{2},d}(x-x_{i+\frac{1}{2}})^{d}\right)\mathrm{d}x\right]=\omega_{j}\phi_{j}\\ \Leftrightarrow &\omega_{j}\left[\mathcal{R}_{i+\frac{1}{2},0}\underbrace{\left(\frac{1}{h_{j}}\int_{C_{j}}(x-x_{i+\frac{1}{2}})^{0}\,\mathrm{d}x\right)+\mathcal{R}_{i+\frac{1}{2},1}\left(\frac{1}{h_{j}}\int_{C_{j}}(x-x_{i+\frac{1}{2}})^{1}\,\mathrm{d}x\right)+\cdots+\mathcal{R}_{i+\frac{1}{2},d}\left(\frac{1}{h_{j}}\int_{C_{j}}(x-x_{i+\frac{1}{2}})^{d}\,\mathrm{d}x\right)\right]=\underbrace{\omega_{j}\phi_{j}}_{B} \end{split}$$

Then, the matrices are:

$$\begin{split} A_{i+\frac{1}{2}} &= [A_{i+\frac{1}{2},j\alpha}] \in \mathcal{M}_{n_S \times (d+1)}(\mathbb{R}) = \omega_j \frac{1}{h_j} \int_{C_j} (x - x_{i+\frac{1}{2}})^{\alpha} \, \mathrm{d}x \\ B_{i+\frac{1}{2}} &= [B_{i+\frac{1}{2},j}] \in \mathcal{M}_{n_S \times 1}(\mathbb{R}) = \omega_j \phi_j \end{split}$$

• At $x_{I+\frac{1}{2}}$:

$$\phi_{d,I+\frac{1}{2}} = \sum_{\alpha=0}^{d} \mathcal{R}_{I+\frac{1}{2},\alpha} (x - x_{rg})^{\alpha}$$

 $\widehat{\mathcal{R}}_{I+\frac{1}{2}} = \left(\widehat{\mathcal{R}}_{I+\frac{1}{2},0}, \dots, \widehat{\mathcal{R}}_{I+\frac{1}{2},d}\right)^{\mathrm{T}} \text{ is the solution of the constrained linear least squares problem}$

$$\min \sum_{j \in S_{I+\frac{1}{2}}} \omega_j \left[\frac{1}{h_j} \int_{C_j} \phi_{d,I+\frac{1}{2}}(x) dx - \phi_j \right]^2$$
s.t. $-\kappa (x_{I+\frac{1}{2}} + \epsilon) \phi_{d,I+\frac{1}{2}}(x_{I+\frac{1}{2}} + \epsilon) = \phi_{rg,1}$

 \Leftrightarrow

So,

$$\omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \phi_{\mathrm{d},I+\frac{1}{2}} \, \mathrm{d}x - \phi_{j} \right] = 0$$

$$\Leftrightarrow \omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \phi_{\mathrm{d},I+\frac{1}{2}} \, \mathrm{d}x \right] = \omega_{j} \phi_{j}$$

$$\Leftrightarrow \omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \left(\sum_{\alpha=0}^{d} \mathcal{R}_{I+\frac{1}{2},\alpha} (x - x_{\mathrm{rg}})^{\alpha} \right) \, \mathrm{d}x \right] = \omega_{j} \phi_{j}$$

$$\Leftrightarrow \omega_{j} \left[\frac{1}{h_{j}} \int_{C_{j}} \left(\mathcal{R}_{I+\frac{1}{2},0} (x - x_{\mathrm{rg}})^{0} + \mathcal{R}_{I+\frac{1}{2},1} (x - x_{\mathrm{rg}})^{1} + \dots + \mathcal{R}_{I+\frac{1}{2},d} (x - x_{\mathrm{rg}})^{d} \right) \, \mathrm{d}x \right] = \omega_{j} \phi_{j}$$

$$\Leftrightarrow \omega_{j} \left[\mathcal{R}_{I+\frac{1}{2},0} \left(\frac{1}{h_{j}} \int_{C_{j}} (x - x_{\mathrm{rg}})^{0} \, \mathrm{d}x \right) + \mathcal{R}_{I+\frac{1}{2},1} \left(\frac{1}{h_{j}} \int_{C_{j}} (x - x_{\mathrm{rg}})^{1} \, \mathrm{d}x \right) + \dots + \mathcal{R}_{I+\frac{1}{2},d} \left(\frac{1}{h_{j}} \int_{C_{j}} (x - x_{\mathrm{rg}})^{d} \, \mathrm{d}x \right) \right] = \underbrace{\omega_{j} \phi_{j}}_{B}$$

and,

$$\begin{split} &-\kappa(x_{\mathrm{rg}}+\epsilon)\phi_{\mathrm{d},I+\frac{1}{2}}(x_{\mathrm{rg}}+\epsilon) = \phi_{\mathrm{lf},1} \\ &\Leftrightarrow \sum_{\alpha=0}^{\mathrm{d}} \mathcal{R}_{I+\frac{1}{2},\alpha}\alpha(x_{\mathrm{rg}}+\epsilon-x_{\mathrm{rg}})^{\alpha-1} = -\frac{\phi_{\mathrm{lf},1}}{\kappa(x_{\mathrm{rg}}+\epsilon)} \\ &\Leftrightarrow \mathcal{R}_{I+\frac{1}{2},0} \times 0 + \mathcal{R}_{I+\frac{1}{2},1} \times 1 \times (\epsilon)^0 + \mathcal{R}_{I+\frac{1}{2},2} \times 2 \times (\epsilon)^1 + \dots + \mathcal{R}_{I+\frac{1}{2},\mathrm{d}} \times \underbrace{\mathrm{d} \times (\epsilon)^{\mathrm{d}-1}}_{C} = \underbrace{-\frac{\phi_{\mathrm{lf},1}}{\kappa(x_{\mathrm{rg}}+\epsilon)}}_{D} \end{split}$$

The matrices are:

$$A_{I+\frac{1}{2}} = [A_{I+\frac{1}{2},j\alpha}] \in \mathcal{M}_{n_S \times (d+1)}(\mathbb{R}) = \omega_j \frac{1}{h_j} \int_{C_j} (x - x_{I+\frac{1}{2}})^{\alpha} dx$$

$$B_{I+\frac{1}{2}} = [B_{I+\frac{1}{2},j}] \in \mathcal{M}_{n_S \times 1}(\mathbb{R}) = \omega_j \phi_j$$

$$C_{I+\frac{1}{2}} = [C_{I+\frac{1}{2},j\alpha}] \in \mathcal{M}_{1 \times (d+1)}(\mathbb{R}) = \begin{cases} 0 & \text{if } \alpha = 0 \\ 1 & \text{if } \alpha = 1 \\ \alpha e^{\alpha - 1} & \text{if } \alpha = 2, \dots, d \end{cases}$$

$$D_{I+\frac{1}{2}} = [D_{I+\frac{1}{2},j}] \in \mathcal{M}_{1 \times 1}(\mathbb{R}) = -\frac{\phi_{\text{rg},1}}{\kappa(x_{I+\frac{1}{2}} + \epsilon)}$$

3 Results

3.1 Type II - Dirichlet + Neumann

In this tests we will consider:

- $\overline{\Omega} = [0, 1 + \epsilon]$
- $\psi(x) = \exp(x)$
- $\psi(0) = 1$
- $\varphi_{n2} = -\exp(1+\epsilon)$
- reconstructions of degree d and d + 1

With $\epsilon = 0$:

degree d

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I	E_{∞}	O_{∞}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	1.74E-02	_
P ₃ 1.80E-03 2.04 40 1.00E-03 2.03 10 3.62E-05 — 20 2.29E-06 3.99 40 1.44E-07 3.99 10 1.05E-07 — 20 2.12E-09 5.62 20 2.01E-10 5.81	TD.	20	4.13E-03	2.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{r}_1	30	1.80E-03	2.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	1.00E-03	2.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	3.62E-05	_
10 1.05E-07 — 20 2.12E-09 5.62 30 4.34E-07 3.99 20 2.12E-09 5.62 20 2.01E-10 5.81	TD.	20	2.29E-06	3.99
10 1.05E-07 — P ₅ 20 2.12E-09 5.62 30 2.01E-10 5.81	IP 3	30	4.54E-07	3.99
\mathbb{P}_5 $\begin{array}{cccc} 20 & 2.12E-09 & 5.62 \\ 30 & 2.01E-10 & 5.81 \end{array}$		40	1.44E-07	3.99
P_5 30 2.01E-10 5.81	\mathbb{P}_5	10	1.05E-07	_
30 2.01E-10 5.81		20	2.12E-09	5.62
40 3.71E-11 5.88		30	2.01E-10	5.81
		40	3.71E-11	5.88

With $\epsilon = h^2$: degree d

degree d + 1

	I	E_{∞}	O_{∞}
	10	1.51E-02	
TD.	20	3.95E-03	1.93
\mathbb{P}_1	30	1.78E-03	1.96
	40	1.01E-03	1.97
	10	1.45E-04	
TD.	20	1.00E-05	3.86
\mathbb{P}_3	30	2.05E-06	3.92
	40	6.58E-07	3.95
\mathbb{P}_5	10	6.38E-07	
	20	1.04E-08	5.94
	30	9.23E-10	5.97
	40	1.66E-10	5.97

	I	E_{∞}	O_{∞}
	10	9.52E-03	_
TD.	20	2.51E-03	1.92
\mathbb{P}_1	30	1.14E-03	1.96
	40	6.45E-04	1.97
	10	9.73E-05	
TD.	20	6.69E-06	3.86
\mathbb{P}_3	30	1.36E-06	3.92
	40	4.38E-07	3.95
\mathbb{P}_5	10	1.30E-06	
	20	2.31E-08	5.82
	30	2.11E-09	5.90
	40	3.83E-10	5.93

With $\epsilon = \frac{h}{2}$:

degree d

degree d + 1

	I	E_{∞}	O_{∞}
	10	1.15E-01	_
TD.	20	6.30E-02	0.87
\mathbb{P}_1	30	4.31E-02	0.93
	40	3.28E-02	0.96
	10	1.21E-03	
TD.	20	1.66E-04	2.87
\mathbb{P}_3	30	5.05E-05	2.93
	40	2.16E-05	2.95
\mathbb{P}_5	10	6.56E-06	
	20	2.31E-07	4.83
	30	3.17E-08	4.90
	40	7.67E-09	4.93

	I	E_{∞}	O_{∞}
	10	9.10E-03	
TD.	20	2.28E-03	2.00
\mathbb{P}_1	30	1.02E-03	2.00
	40	5.72E-04	2.00
	10	4.61E-04	
TD.	20	6.66E - 05	2.79
\mathbb{P}_3	30	2.07E-05	2.88
	40	8.94E-06	2.92
\mathbb{P}_5	10	9.72E-06	
	20	3.63E-07	4.74
	30	5.06E-08	4.86
	40	1.24E-08	4.90

With $\epsilon = h$:

degree d

degree d + 1

	I	E_{∞}	O_{∞}
	10	2.61E-01	
TD.	20	1.33E-01	0.97
\mathbb{P}_1	30	8.94E-02	0.98
	40	6.73E-02	0.99
	10	3.62E-03	_
TD.	20	4.87E - 04	2.90
\mathbb{P}_3	30	1.48E-04	2.94
	40	6.31E-05	2.96
\mathbb{P}_5	10	2.77E-05	_
	20	9.67E - 07	4.84
	30	1.32E-07	4.91
	40	3.20E-08	4.93

	I	E_{∞}	O_{∞}
	10	1.50E-02	_
TD.	20	3.94E-03	1.92
\mathbb{P}_1	30	1.78E-03	1.96
	40	1.01E-03	1.97
	10	1.14E-03	
TD.	20	1.74E-04	2.72
\mathbb{P}_3	30	5.48E - 05	2.84
	40	2.39E-05	2.89
\mathbb{P}_5	10	3.19E-05	
	20	1.21E-06	4.73
	30	1.69E-07	4.85
	40	4.14E-08	4.89

3.2 Type I - Dirichlet + Dirichlet

In this tests we will consider:

- $\overline{\Omega} = [0, 1 + \epsilon]$
- $\psi(x) = \exp(x)$
- $\psi(0) = 1$
- $\psi(1+\epsilon) = \exp(1+\epsilon)$
- reconstructions of degree d and d+1

With $\epsilon = 0$:

degree d

-	O _∞
10 2.32E-02	
_{ID} 20 6.00E-03 1	.95
\mathbb{P}_1 30 2.70E-03 1	.97
40 1.53E-03 1	.98
10 4.03E-05	
_{ID} 20 2.72E-06 3	.89
\mathbb{P}_3 30 5.53E-07 3	.93
40 1.77E-07 3	.95
10 1.11E-07	_
_D 20 2.03E-09 5	.78
\mathbb{P}_5 30 1.89E-10 5	.86
40 3.46E-11 5	.90

With $\epsilon = h^2$: degree d

	I	E_{∞}	O_{∞}
	10	2.24E-02	_
TD.	20	5.91E-03	1.92
\mathbb{P}_1	30	2.67E - 03	1.96
	40	1.52E-03	1.97
	10	3.65E-05	
TD.	20	2.60E-06	3.81
\mathbb{P}_3	30	5.36E-07	3.89
	40	1.73E-07	3.93
\mathbb{P}_5	10	1.21E-07	
	20	2.12E-09	5.84
	30	1.94E-10	5.89
	40	3.53E-11	5.92

With $\epsilon = \frac{h}{2}$:

degree d

	I	E_{∞}	O_{∞}
	10	1.75E-02	
TD.	20	4.58E-03	1.93
\mathbb{P}_1	30	2.07E-03	1.96
	40	1.17E-03	1.97
	10	1.89E-05	
TD.	20	1.13E-06	4.06
\mathbb{P}_3	30	2.31E-07	3.91
	40	7.67E-08	3.84
\mathbb{P}_5	10	2.43E-07	
	20	4.55E-09	5.74
	30	4.26E-10	5.84
	40	7.83E-11	5.89

With $\epsilon = h$: degree d

	I	E_{∞}	O_{∞}
	10	9.40E-03	
TD.	20	2.32E-03	2.02
\mathbb{P}_1	30	1.03E-03	2.01
	40	5.77E-04	2.01
	10	1.11E-04	
πD	20	8.39E-06	3.73
\mathbb{P}_3	30	1.76E-06	3.85
	40	5.75E-07	3.89
\mathbb{P}_5	10	8.84E-07	
	20	1.71E-08	5.69
	30	1.61E-09	5.82
	40	2.97E-10	5.88