А. Максимальное произведение кратное 15

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 4 мегабайта ввод: стандартный ввод

ввод: стандартный вывод вывод: стандартный вывод

Дана последовательность чисел $a_1, a_2, ..., a_n$. Вам нужно найти два числа из этой последовательности, чьё произведение делится на 15 и при этом максимально.

Входные данные

На вход подаётся число n ($2 \le n \le 10^6$). Далее идёт n строк, в i-й из них строк записано число a_i ($1 \le a_i \le 10^7$). Гарантируется, что искомые числа найдутся.

Выходные данные

Выведите наибольшее произведение двух чисел из последовательности, которое делится на 15.

Пример

пример	
входные данные	Сору
4 30	
30	
1	
3	
5	
выходные данные	Сору
150	

В. Треугольник максимальной площади

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

> ввод: стандартный ввод вывод: стандартный вывод

На вход подаётся N координат точек на плоскости. Необходимо (на этих точках) такой треугольник максимальной площади, что одна из его сторон лежит на оси OX и при этом треугольник не имеет общих точек с осью OY.

Входные данные

В первой строке дано число N ($3 \le N \le 3000$) — число точек на плоскости. Далее следует N строк с координатами x_i и y_i ($-10^3 \le x_i, y_i \le 10^3$), разделёнными пробелом. Каждая координата имеет не более двух знаков после запятой.

Выходные данные

Если соответствующего треугольника нет, выведите 0, иначе выведите площадь найденного треугольника. Ваш ответ будет засчитан если его абсолютная или относительная погрешность не превосходит 10^{-4} .

Пример

ример	
входные данные	Сору
3	
1.5 0	
2.5 0	
3.3 8.0	
выходные данные	Сору
4.0000000	

С. Угадайте число

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Загадано число x от 1 до N. Вам известно число N, вы должны угадать число x, используя для этого наименьшее возможное число запросов вида «Верно ли, что a < x?». Строго говоря, пусть T(A, x, N) — количество запросов, которое нужно некоторому детерминированному алгоритму A, чтобы угадать данное число x при заданном N. Ваше решение будет засчитано, если число запросов, которое вы затратите не превосходит $\min_{A} \max_{x} T(A, x, N)$. При этом, когда вы угадаете число, нужно задать последний (дополнительный) запрос, в котором будет указано это число и получить ответ 1.

Обратите внимание, что интерактор в данной задаче является адаптивным. Это значит, что число \boldsymbol{x} не фиксируется заранее и может меняться по ходу взаимодействия. Однако, гарантируется, что в любой момент времени есть хотя бы одно число \boldsymbol{x} , которое согласуется со всеми ответами на ваши запросы.

Протокол взаимодействия

В начале программа получает на вход число N ($2 \le N \le 2000$). В качестве запроса вы можете вывести число a. Если x > a, в ответ вы получите 2, если меньше -0, если x = a, то 1. В случае, если попытки закончились, ответы на вопросы прекращаются и программа получает сообщение No attempts left.

После вывода не забывайте делать перенос строки и сбрасывать буфер потока вывода. Иначе, вы получите вердикт Idleness limit exceeded. Для того, чтобы сделать сброс буфера потока вывода, используйте:

- fflush(stdout) или cout.flush() в C++;
- System.out.flush() B Java;
- flush (output) B Pascal;
- stdout.flush() B Python;
- обратитесь к документации для остальных языков.

Пример

входные данные	Сору
10	
0	
2	
0	
1	
выходные данные	Сору
6	
3	
5	
4	

Примечание

В примере было загадано число 4.

D. k-й элемент

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 128 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

На вход подается массив целых чисел. После получения каждого числа нужно вывести k-е по величине число среди уже полученных (иными словами, то число, которое стояло бы на k-м месте, если бы мы отсортировали уже полученную часть массива по возрастанию).

Входные данные

В первой строке даны натуральные числа n — количество чисел и k — номер элемента, который надо выводить ($1 \le n \le 10^5$, $1 \le k \le 10$). Далее идут n чисел a_i ($-10^9 \le a_i \le 10^9$), по одному в строке.

Выходные данные

Выведите n чисел, i-е из них равно k-му в порядке возрастания среди первых i элементов массива a. Если $i \le k$, то выведите максимальный из первых i элементов.

Если i < k, то выведите максимальный из первых i элементов. Примеры входные данные Copy 3 1 3 2 1 Copy выходные данные 2 1 сору входные данные 6 2 1 8 0 -1 -1 Copy выходные данные 1 1 8 8 -1 входные данные Copy 6 3 2 1 3 2 1 Copy выходные данные 3 3 3 3 2 2

Е. Максимальная подпоследовательность

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 128 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Даны две строки s и t. Для каждого суффикса строки s определите, верно ли, что он содержит t в качестве подпоследовательности.

Суффикс строки – это подстрока, на которую строка кончается. У строки столько же непустых суффиксов, какая у неё длина.

Входные данные

Строки s и t, состоящие из маленьких латинских букв. Длины обеих строк не менее 1 и не более 10^5 .

Выходные данные

Примеры

Пусть n – длина строки s. Для каждого i от 1 до n выведите на отдельной строке слово уеs, если строка s[i..n] содержит t в качестве подпоследовательности и слово n0, если не содержит.

входные данные	Сору
ab a	
выходные данные	Copy
yes no	
входные данные	Сору
ab b	
выходные данные	Сору
yes yes	
входные данные	Сору
aaa a	
выходные данные	Сору
yes yes yes	
входные данные	Сору
aaa b	
выходные данные	Сору
no no no	
входные данные	Сору
abc ac	
выходные данные	Сору
yes no no	

F. Arrays

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

You are given two arrays A and B consisting of integers, sorted in non-decreasing order. Check whether it is possible to choose k numbers in array A and choose m numbers in array B so that any number chosen in the first array is strictly less than any number chosen in the second array.

Input

The first line contains two integers n_A , n_B ($1 \le n_A$, $n_B \le 10^5$), separated by a space — the sizes of arrays Aand B, correspondingly.

The second line contains two integers k and m ($1 \le k \le n_A$, $1 \le m \le n_B$), separated by a space.

The third line contains n_A numbers $a_1, a_2, \dots a_{n_A}$ ($-10^9 \le a_1 \le a_2 \le \dots \le a_{n_A} \le 10^9$), separated by spaces elements of array A.

The fourth line contains n_B integers $b_1, b_2, \dots b_{n_B}$ (- $10^9 \le b_1 \le b_2 \le \dots \le b_{n_B} \le 10^9$), separated by spaces elements of array B.

Output

Print "YES" (without the quotes), if you can choose k numbers in array A and m numbers in array B so that any number chosen in array A was strictly less than any number chosen in array B. Otherwise, print "NO" (without the quotes).

Examples

input	Сору
3 3	
2 1	
1 2 3	
3 4 5	
output	Сору
YES	

input	Сору
3 3 3 3 1 2 3	
3 3	
1 2 3	
3 4 5	
output	Сору
output	

input	Сору
5 2	
3 1 1 1 1 1 1	
11111	
2 2	
output	Сору
YES	

Note

In the first sample test you can, for example, choose numbers 1 and 2 from array A and number 3 from array B(1 < 3 and 2 < 3).

In the second sample test the only way to choose k elements in the first array and m elements in the second one is to choose all numbers in both arrays, but then not all the numbers chosen in A will be less than all the numbers chosen in $B:3 \not< 3$.

G. Минимальная сумма расстояний

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Дано n точек на плоскости A_1,A_2,\ldots,A_n , надо найти такую точку B, что сумма расстояний $\sum_{i=1}^n dist_1(B,A_i)$ от нее до всех A_i минимальна. Расстояние между двумя точками A и B в этой задаче измеряется по формуле $dist_1(A,B)=|A_x-B_x|+|A_y-B_y|$ (это называется l_1 метрикой). Точки A_i могут совпадать между собой и с оптимальной B.

Входные данные

4

В первой строке одно натуральное число n ($1 \le n \le 200000$). В следующих n строках даны описания точек - целые числа x_i и y_i ($-10^9 \le x_i, y_i \le 10^9$).

Выходные данные Выведите одно целое число - искомую минимальную сумму расстояний в описанной метрике. Примеры входные данные Copy 1 2 0 1 Copy выходные данные 2 Copy входные данные 3 0 0 0 0 0 0 выходные данные Copy 0 Copy входные данные 3 1 2 2 3 3 4 выходные данные Copy

Н. Интерактивные инверсии

ограничение по времени на тест: 8 секунд ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Рассмотрим два массива:

$$a_1 \leq a_2 \leq \cdots \leq a_n$$

$$b_1 \leq b_2 \leq \cdots \leq b_m$$

Вам необходимо посчитать количество пар i,j таких что $a_i \leq b_j$. При этом непосредственного доступа к элементам массива у вас не будет — всё, что вы можете делать это задавать вопросы вида «Верно ли, что $a_i \leq b_j$?». Вам нужно посчитать ответ, задав не более n+m таких вопросов.

Протокол взаимодействия

В первой строке входных данных будут содержаться два числа n и m ($1 \le n, m \le 10^5$).

Считав их, вы можете задавать вопросы в формате ? і ј, на которые вам ответят YES если $a_i \leq b_j$ или NO если это не верно.

Когда вы уверены, что ответ равен $oldsymbol{x}$, вы должны сообщить об этом, выведя сообщение ! x.

He забудьте сбрасывать буфер вывода командой cout.flush() после того, как вы что-то вывели.

Пример

Примечание

В тестовом примере были загаданы последовательности $a = \{1, 2, 3\}$ и $b = \{2, 4\}$. Протокол взаимодействия соответствует следующему:

- 1. Сравниваем a_1 и b_1 , получаем YES, то есть, $a_1 \leq b_1$.
- 2. Сравниваем a_1 и b_2 , получаем YES, то есть, $a_1 \leq b_2$.
- 3. Сравниваем a_2 и b_1 , получаем YES, то есть, $a_2 \leq b_1$.
- 4. Сравниваем a_2 и b_2 , получаем YES, то есть, $a_2 \le b_2$.
- 5. Сравниваем a_3 и b_1 , получаем NO, то есть, $a_3 > b_1$.
- 6. Выводим ответ таких пар 5 штук, т.к. $a_i \leq b_j$ для всех наборов, кроме $a_3 = 3$ и $b_1 = 2$.