ESS101- Modeling and Simulation Lecture 16

Paolo Falcone

Department of Signals and Systems Chalmers University of Technology Göteborg, Sweden

ESS101 – Modeling and Simulation

Today (Chapters 6, 7)

- Motivating examples
- Absolute stability of Linear Multistep Methods (scalar case)
- A-Stability
- Systems of ODEs
- Stiff systems

Absolute stability. Motivation

Convergence (consistency and zero-stability) guarantees that

$$x_n \to x(t^*)$$
, as $n \to \infty$ and $h \to 0$, with $t_n = t_0 + nh = t^*$

The approximations calculated by a LMM can be arbitrarily close to the real solution, if h is chosen arbitrarily small

What happen to x_n when h is not arbitrarily small?

Consider the IVP

$$\dot{x}(t) = -8x(t) - 40(3e^{-t/8} - 1), \quad x(0) = 100$$

The exact solution is
$$x(t) = \frac{1675}{21}e^{-8} - \frac{320}{21}e^{-t/8} + 5$$

The **FE** method results in $x_{n+1} = (1-8h)x_n + h(120e^{-t_n/8} + 40)$

The **BE** method results in $x_{n+1} = x_n - 8hx_{n+1} + h(120e^{-t_{n+1}/8} + 40)$

$$x_{n+1} = (1 - 8h)x_n + h(120e^{-t_n/8} + 40)$$

$$x_{n+1} = \frac{1}{1+8h} \left[x_n + h \left(120e^{-t_{n+1}/8} + 40 \right) \right]$$

Where the instability is coming from?

Consider the IVP

$$\dot{x}(t) = -\frac{1}{8} \left(x(t) - 5 - 5025e^{-8t} \right), \quad x(0) = 100$$

FE method

$$x_{n+1} = \left(1 - \frac{1}{8}h\right)x_n - h\left(5 - 5025e^{-8t_n}\right)$$

BE method

$$x_{n+1} = \frac{1}{1 + h/8} \left[x_n - h \left(5 - 5025 e^{-8t_{n+1}} \right) \right]$$

$$+: h = 1/3$$

•:
$$h = 1/9$$

Example. Conclusions

- FE is unstable for large h. BE is not
- Instability depends on the system dynamics
- The GE decays faster for smaller h
- Small *h* for stability may generate overaccurate results

Absolute stability

Stability depends on both *h* and the system dynamics

Hence we start by studying *absolute stability* of a convergent LMM for the *scalar model problem*

$$\dot{x}(t) = \lambda x(t)$$
, Re(λ) < 0

Unlike convergence, here h is fixed

Absolute stability

Definition (Absolute stability). A LMM method is absolutely stable if its solution x_n to the problem

$$\dot{x}(t) = \lambda x(t)$$
, Re(λ) < 0

converges to zero as $n \rightarrow \infty$

That is the LMM resembles the asymptotic behavior of our system

Absolute stability criterion

Consider a 2-step LMM method

$$x_{n+2} + \alpha_1 x_{n+1} + \alpha_0 x_n = h \left(\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n \right)$$

For our system $\dot{x}(t) = \lambda x(t)$, it becomes

$$x_{n+2} + \alpha_1 x_{n+1} + \alpha_0 x_n = \lambda h \left(\beta_2 x_{n+2} + \beta_1 x_{n+1} + \beta_0 x_n \right)$$

After rearranging

$$(1 - \lambda h \beta_2) x_{n+2} + (\alpha_1 - \lambda h \beta_1) x_{n+1} + (\alpha_0 - \lambda h \beta_0) x_n = 0$$

This is a dynamical system in DT whose solution is

$$x_n = ar_1^n + br_2^n$$

Absolute stability criterion

 r_1 and r_2 are solutions of the *characteristic (or stability)* polynomial

$$\underbrace{\left(1 - \lambda h \beta_{2}\right) r^{2} + \left(\alpha_{1} - \lambda h \beta_{1}\right) r + \left(\alpha_{0} - \lambda h \beta_{0}\right)}_{\rho(r) - \lambda h \sigma(r)} = 0$$

In order to have stability the roots r of $\rho(r)$ - $\lambda h\sigma(r)=0$ must be |r|<1

Lemma (necessary and sufficient condition for absolute stability). A LMM is absolutely stable for a given λh if and only if the roots of the stability polynomial are strictly within the unitary circle

Absolute stability region

Definition (Absolute stability region). The region of absolute stability for a two-step LMM method is the set of complex values λh that make the method absolutely stable

Example. Consider the Euler method

$$x_{n+1} = x_n + hf_n$$

Applied to the system $\dot{x}(t) = \lambda x(t)$, Re(λ) < 0

$$x_{n+1} = x_n + h\lambda x_n$$
 $\Rightarrow \rho(r) - \lambda h\sigma(r) = r - 1 - \lambda h = 0$

The stability criterion gives

$$|1 + \lambda h| < 1$$

What the largest h with $\lambda = -3 + 4j$?

$$|1 + \lambda h| < 1 \implies |1 - 3h + 4jh| < 1 \implies |1 - 3h + 4jh|^2 < 1$$

$$\Rightarrow$$
 $-8h + 25h^2 < 0 \Rightarrow h < 8 / 25$

Example. Find the stability region of the trapezoidal rule

$$x_{n+1} - x_n = \frac{1}{2}h(f_{n+1} + f_n)$$

The stability polynomial is $\left(1-\frac{1}{2}h\lambda\right)r-\left(1+\frac{1}{2}h\lambda\right)$

$$\left| \frac{1 + h\lambda/2}{1 - h\lambda/2} \right| < 1$$
 satisfied $\forall \lambda$: Re(λ) < 0

A-Stability

Definition (A-Stability). A method is A-stable if its stability region is the left half-plane of

Theorem (Dahlquist's Second Barrier Theorem).

- 1. There's no A-stable explicit LMM
- 2. An A-stable LMM cannot have p>2

Systems of ODEs

The stability results obtained so far can be easily extended to systems of ODEs

Consider the system of ODEs

$$\dot{x}(t) = Ax(t), \operatorname{Re}(\lambda_i) < 0, \forall i$$

Assuming the system has n distinct eigenvalues a coordinate transformation x=Vz exists such that

$$\dot{z}(t) = \Lambda z(t), \quad \Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

Systems of ODEs

The resulting system of ODEs consists of *n* decoupled *scalar* equations that can be studied with the results presented so far

For each equation, the roots r_i of the corresponding stability polynomial must be $|r_i| < l$

Consider the second order system

$$\dot{x}(t) = \begin{bmatrix} -11 & 100 \\ 1 & -11 \end{bmatrix} x(t),$$

with eigenvalues $\lambda_1 = -1$, $\lambda_2 = -21$.

If we use the Euler method

$$x_{1,n+1} = x_{1,n} + h(-11x_{1,n} + 100x_{2,n}),$$

$$x_{2,n+1} = x_{2,n} + h(x_{1,n} - 11x_{2,n}),$$

For Euler method we found that the stability region is

$$\left|1+\lambda_{i}h\right| < 1 \Rightarrow \begin{cases} \lambda_{i}h < 0\\ -2 < \lambda_{i}h \end{cases}$$
 $0 < h < \frac{2}{21} \approx 0.0952$

Smaller stepsize is required because of λ_2 . Fulfilling the stability requirement lead to over-accurate solution and unnecessary complexity

Stiff systems

Linear systems

$$\dot{x}(t) = Ax(t), \operatorname{Re}(\lambda_i) < 0, \forall i$$

may have eigenvalue with the real part very much different in absolute value. I.e., high condition number

$$\frac{\left|\frac{\max_{i} \operatorname{Re}(\lambda_{i})}{\min_{i} \operatorname{Re}(\lambda_{i})}\right| \qquad \textbf{Stiff systems}$$

In order to avoid over accurate solutions due to the absolute stability requirements set by the fastest eigenvalue, A-stable (*implicit*) methods should be used