# Skript Mathe 2

# 23. Mai 2018

# Inhaltsverzeichnis

| 1 | Folg | en 3                                               |
|---|------|----------------------------------------------------|
|   | 1.1  | Definition                                         |
|   | 1.2  | Beispiele                                          |
|   | 1.3  | Definition: Beschränkte und alternierende Folgen 5 |
|   | 1.4  | Beispiele                                          |
|   | 1.5  | Definition: Konvergente Folgen                     |
|   | 1.6  | Bemerkung                                          |
|   | 1.7  | Beispiele                                          |
|   | 1.8  | Satz                                               |
|   | 1.9  | Bemerkung                                          |
|   | 1.10 | Beispiel: Geometrische Folge                       |
|   |      | Beispiel                                           |
|   |      | Bemerkung: Dreiecksungleichung                     |
|   | 1.13 | Rechenregeln für Folgen                            |
|   | 1.14 | Beispiele: Rechenregeln                            |
|   | 1.15 | Satz: Einschließungsregel                          |
|   |      | Beispiele                                          |
|   | 1.17 | Satz                                               |
|   | 1.18 | Definition: Landau Symbole, O-Notation             |
|   | 1.19 | Beispiele                                          |
|   | 1.20 | Definition: Monotonie                              |
|   | 1.21 | Beispiele                                          |
|   | 1.22 | Definition                                         |
|   |      | Satz: Monotone Konvergenz                          |
|   | 1.24 | Bernoulli-Ungleichung                              |
|   |      | Beispiel: Folgen mit Grenzwert $e$                 |
|   | 1.26 | Satz: Intervallschachtelung                        |
|   |      | Beispiel                                           |
|   | 1.28 | Definition: Eulersche Zahl                         |
|   | 1.29 | Bemerkung                                          |
|   | 1.30 | Definition: Teilfolge                              |
|   | 1.31 | Beispiel                                           |
|   |      | Bemerkung                                          |
|   |      | Definition: Häufungspunkt (HP)                     |
|   | 1.34 | Beispiel                                           |
|   | 1.25 | Satz: Banzana Wajarstraß                           |

|   | 1.36 Definition: Limes inferior/superior               | 17             |
|---|--------------------------------------------------------|----------------|
|   | 1.37 Bemerkung                                         | 18             |
|   | 1.38 Beispiel                                          | 18             |
|   | 1.39 Definition: Cauchy-Folgen                         | 18             |
|   | 1.40 Satz: Cauchy-Kriterium                            | 19             |
|   | 1.41 Beispiel                                          | 19             |
|   | 1.42 Definition: Kontraktion                           | 19             |
|   | 1.43 Banachscher Fixpunktsatz                          | 20             |
| 2 | Reihen                                                 | 20             |
| _ | 2.1 Definition: Reihe                                  | 20             |
|   | 2.2 Bemerkung                                          | 20             |
|   | 2.3 Beispiele                                          | 21             |
|   | 2.4 Satz: Rechenregeln für Summen                      | 22             |
|   | 2.5 Satz: Konvergenz und Divergenzkriterien für Reihen | 22             |
|   | 2.6 Cauchy-Kriterium                                   | 22             |
|   | 2.7 Satz: Absolute Konvergenz                          | 22             |
|   | 2.8 Korollar: Dreiecksungleichung für Reihen           | 23             |
|   | 2.9 Satz: Divergenzkriterium                           | 23             |
|   | 2.10 Majorantenkriterium                               | 23             |
|   | 2.11 Bemerkung: Minorantenkriterium                    | $\frac{1}{24}$ |
|   | 2.12 Beispiele                                         | 24             |
|   | 2.13 Satz: Leibniz-Kriterium                           | 24             |
|   | 2.14 Satz: Wurzelkriterium                             | $\frac{1}{24}$ |
|   | 2.15 Beispiele                                         | 25             |
|   | 2.16 Satz: Quotientenkriterium                         | 25             |
|   | 2.17 Beispiele                                         | 26             |
|   | 2.18 Bemerkung                                         | 26             |
|   | 2.19 Umordnung von Reihen: Beispiel                    | 27             |
|   | 2.20 Definition: Umordnung                             | 27             |
|   | 2.21 Umordnungssatz                                    | 27             |
|   | 2.22 Riemannscher Umordnungssatz                       | 27             |
| 3 | Potenzreihen                                           | 27             |
| • | 3.1 Grundbegriffe und Beispiel                         | 27             |
|   | 3.2 Definition: Potenzreihen                           | 28             |
|   | 3.3 Bemerkung                                          | 28             |
|   | 3.4 Satz                                               |                |
|   | 3.5 Definition: Konvergenzradius und Intervall         | 29             |
|   | 3.6 Beispiel                                           | 29             |
|   | 3.7 Korollar                                           | 29             |
|   | 3.8 Satz: Formel von Cauchy-Hademard                   | 29             |
|   | 3.9 Beispiel                                           | 30             |
|   | 3.10 Satz: Formel von Euler                            | 30             |
|   | 3.11 Beispiel: Exponentialfunktion                     | 31             |
|   | 3.12 Bemerkung                                         | 32             |
|   | 0                                                      |                |

# 1 Folgen

# 1.1 Definition

Eine Folge  $(a_n)_{n\in\mathbb{N}}$  ist eine Abbildung von den natürlichen Zahlen  $(\mathbb{N})$  in eine beliebige Menge M (oft  $M\subseteq\mathbb{R}$ ).

 $a_n$ : n-tes Folgenglied

n: Index

Oft ist das erste Folgenglied nicht  $a_1$ , sondern z.B:  $a_7$ .

Schreibweise:  $(a_n)_{n\in\mathbb{N}}$ ,  $(a_n)_{n\geq n_0}$  oder  $(a_n)$ 

# 1.2 Beispiele

a)  $a_n = c \ \forall n \in \mathbb{N}$  (konstante Folge)

b)  $a_n = n$  (Ursprungsgerade)



c)  $a_n = (-1)^n, n \in \mathbb{N}$  (alternierend)



d)  $a_n = \frac{1}{n}$  (Nullfolge)



e) Rekursive Folgen, z.B: Fiboacci-Folge.

$$f_1 = 1, f_2 = 1, \underbrace{f_{n+1} = f_n + f_{n-1}}_{\text{Rekursions formel}}$$

$$f_3 = 1 + 1 = 2, f_4 = 3, f_5 = 5, \dots$$



f) Exponentielles Wachstum (z.B von Bakterienstämmen)

q: Wachstumsfaktor

 $X_0$ : Startpopulation

Explizit:  $X_n = q^n * X_0$ 

z.B: 
$$X_0 = 5, q = 2$$

$$\rightarrow X_1 = 10, X_2 = 20, X_3 = 40, \dots$$



g) Logistisches Wachstum

$$X_{n+1} = r \cdot X_n \cdot (1 - X_n)$$

 $r \in [0, 4]$ : Wachstums-/Sterbefaktor

 $X_n \in [0,1]$ : Relative Anzahl der Individuen in Generation n

Anzahl der Individuen in Generation n+1 hängt ab von der aktuellen Populationsgröße  $X_n$  und den vorhandenen natürlichen Ressourcen, charakterisiert durch  $(1-X_n)$ 

# 1.3 Definition: Beschränkte und alternierende Folgen

Sei  $(a_n)_{n\in\mathbb{N}}$  mit  $a_n\in\mathbb{R} \ \forall n\in\mathbb{N}$ .

- a)  $(a_n)$  heißt beschränkt : $\Leftrightarrow |a_n| \leq K$  für ein  $K \geq 0$ .
- b)  $(a_n)$  heißt alternierend, falls die Folgenglieder abwechselnd positiv und negativ sind.

# 1.4 Beispiele

Aus 1.2):

- a, c, d, g) sind beschränkt
- b, e) sind unbeschränkt
- c) ist alternierend

#### 1.5 Definition: Konvergente Folgen

a) Eine Folge  $(a_n)_{n\in\mathbb{N}}$  reeller Zahlen konvergiert gegen  $a\in\mathbb{R}$ , wenn es zu jedem  $\epsilon>0$  ein  $N\in\mathbb{N}$  gibt (das von  $\epsilon$  abhängig sein darf), so dass:

$$|a_n - a| < \epsilon \quad \forall n \ge N$$

Kurz:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \epsilon$$

b)  $a \in \mathbb{R}$  heißt Grenzwert oder Limes der Folge. Man schreibt:  $\lim_{n \to \infty} a_n = a \text{ oder } a_n \to a \text{ für } n \to \infty \text{ oder } a_n \xrightarrow[n \to \infty]{} a \text{ oder } a_n \to a.$ 

5

- c) Eine Folge  $(a_n)$  mit Limes 0 heißt Nullfolge.
- d) Eine Folge die nicht konvergent ist, heißt divergent.

# 1.6 Bemerkung

 $a_n \to a$  bedeutet anschaulich: Gibt man eine Fehlerschranke  $\epsilon > 0$  vor, so sind ab einem bestimmten  $N \in \mathbb{N}$  alle Folgenglieder weniger als  $\epsilon$  von a entfernt. Je kleiner  $\epsilon$  gewählt wird, desto größer muss im allgemeinen N gewählt werden.



Solch ein N muss sich für jedes noch so kleine  $\epsilon$  finden lassen. Ansonsten ist  $(a_n)$  divergent.

# 1.7 Beispiele

- a) Behauptung:  $a_n = \frac{1}{n}, (a_n)_{n \in \mathbb{N}}$  ist Nullfolge Beweis:
  - Wähle  $\epsilon = \frac{1}{10}$ . Dann ist für N > 10

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N} \le \frac{1}{N} \le \frac{1}{10} \quad \forall n \ge N$$

 • Allgemein (beliebiges  $\epsilon$ ) Sei  $\epsilon > 0$ . Dann ist für  $N > \frac{1}{\epsilon}$ 

$$|a_n - 0| = \frac{1}{n} \leq \frac{1}{N \geq n} \frac{1}{N} < \frac{1}{\epsilon} \quad \forall n \geq N$$

b) Behauptung:  $(a_n)_{n\in\mathbb{N}}$  mit  $a_n=\frac{n+1}{3n}$  hat Limes  $a=\frac{1}{3}$ . Beweis: Sei  $\epsilon>0$ . Dann ist für  $N\geq\frac{1}{3\epsilon}$ 

$$|a_n - n| = \left| \frac{n+1}{3n} \right| = \frac{n+1-n}{3n} = \frac{1}{3n} \le \frac{1}{3N} < \epsilon \quad \forall N \ge n$$

c) N muss nicht immer optimal gewählt werden.

$$\frac{1}{n^3+n+5} \xrightarrow[n \to \infty]{} 0$$

Sei  $\epsilon > 0$ , für  $N > \frac{1}{\epsilon}$ 

$$|a_n - a| = \frac{1}{n^3 + n + 5} \le \frac{1}{N^3 + N + 5} < \sqrt{\frac{1}{N}} < \epsilon$$

### 1.8 Satz

Jede konvergente Folge ist beschränkt.

**Beweis:** Sei  $(a_n)$  eine konvergente Folge mit Limes  $a \in \mathbb{R}$ .

Zu zeigen:  $|a_n| \leq K \ \forall a \in \mathbb{N}$ , für ein  $K \geq 0$ .

Sei  $\epsilon = 1$ ,  $(a_n)$  konvergent.

$$\Rightarrow |a_n| = |a_n - a + a| \le \underbrace{|a_n - a| + |a|}_{\text{Dreiecksungleichung}} < 1 + |a| \ \forall n \ge N$$

Setze  $K = max\{1 + |a|, |a_1|, |a_2|, ..., |a_{N-1}|\}$ 

$$\Rightarrow |a_n| \le K \ \forall n \in \mathbb{N} \quad \square$$

# 1.9 Bemerkung

Wegen 1.8:  $(a_n)$  unbeschränkt  $\Rightarrow (a_n)$  divergent.

Unbeschränkte Folgen sind also immer divergent.

# 1.10 Beispiel: Geometrische Folge

Für 
$$q \in \mathbb{R} : \lim_{n \to \infty} q^n = \begin{cases} 0, \text{falls } |q| < 1 \\ 1, \text{falls } q = 1 \end{cases}$$

Für |q| > 1 oder q = -1 ist  $(q^n)$  divergent.

Beweis:

1.) |q| < 1. Sei  $\epsilon > 0$  beliebig. Dann ist

$$(q^n - 0) = |q|^n < \epsilon \Leftrightarrow n \cdot \ln |q| < \ln(e) \quad |: \ln(q) < 0$$
  
 
$$\Leftrightarrow n > \frac{\ln(\epsilon)}{\ln |q|}$$

Für 
$$N > \frac{\ln(\epsilon)}{\ln |q|} : |q|^n < \epsilon \quad \forall n \ge N$$

2.) 
$$q = 1$$
.  $q^n = 1$   $\forall n \in \mathbb{N} \Rightarrow q^n \to 1$ 

3.) 
$$|q|>1\Rightarrow (q^n)$$
unbeschränkt $\underset{1.9}{\Rightarrow}(q^n)$  divergent

4.) 
$$q = -1 \Rightarrow q^n = (-1)^n$$
. Beweis der Divergenz später (Cauchyfolgen)

#### 1.11 Beispiel

Wegen 1.10 sind  $(\frac{1}{2^n})_{n\in\mathbb{N}}$  und  $((\frac{-7}{8})^n)_{n\in\mathbb{N}}$  Nullfolgen.



#### 1.12 Bemerkung: Dreiecksungleichung

Um Rechenregeln für Folgen in 1.13 beweisen zu können, braucht man folgende Version der  $\Delta$ -Ungleichung:

 $||a| - |b|| \le |a - b| \quad \forall a, b \in \mathbb{R}, da:$ 

$$\bullet |a - b + b| \le |a - b| + |b| \qquad \qquad |-b|$$

$$\Leftrightarrow |a| - |b| \le |a - b|$$

$$\bullet |b - a + a| \le |b - a| + |a| \qquad |-a|$$

$$\Leftrightarrow |b| - |a| \le |b - a|$$

$$\Leftrightarrow |b| - |a| \le |b - a|$$
$$\Rightarrow ||a| - |b|| \le |a - b|$$

#### 1.13 Rechenregeln für Folgen

Seien  $(a_n), (b_n)$  konvergente Folgen mit  $\lim_{n \to \infty} (a_n) = a$  und  $\lim_{n \to \infty} (b_n) = b$ .

Dann gilt:

1.) 
$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

2.) 
$$\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot a \quad \forall \lambda \in \mathbb{R}$$

3.) 
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

4.) 
$$b \neq 0 \Rightarrow \bullet \exists k \in \mathbb{N} : b_n \neq 0 \, \forall n \geq k$$

$$\bullet \left(\frac{a_n}{b_n}\right)_{n \ge k} \text{ konvergiert gegen } \frac{a}{b}$$

$$5.) \lim_{n \to \infty} |a_n| = |a|$$

Seien weiter  $(d_n), (e_n)$  reelle Folgen,  $(d_n)$  ist Nullfolge

- 6.)  $(e_n)$  beschränkt  $\Rightarrow (d_n \cdot e_n)$  ist Nullfolge
- 7.)  $|e_n| \le d_n \Rightarrow |e_n|$  ist Nullfolge

### Beweis:

1.)

Sei 
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N}$$
:

•  $|a_n - a| \le \frac{\epsilon}{2} \quad \forall n \ge N_a$ 

•  $|b_n - b| \le \frac{\epsilon}{2} \quad \forall n \ge N_b$ 

$$\Rightarrow |a_n + b_n - (a + b)| \le \underbrace{|a_n - a|}_{\le \frac{\epsilon}{2}} + \underbrace{|b_n - b|}_{\le \frac{\epsilon}{2}} < \epsilon$$

$$\forall n \ge \max\{N_a, N_b\}$$

- 2.) Für  $\lambda = 0$  gilt auch  $\lambda \cdot a_n \to 0 = \lambda \cdot a$ 
  - Für  $\lambda \neq 0$ : Sei  $\epsilon > 0$   $\Rightarrow \exists N \in \mathbb{N} : |a_n a| \leq \frac{\epsilon}{|x|} \quad \forall n \geq N$   $\Rightarrow |\lambda a_n \lambda a| = |\lambda| \cdot |a_n a| < \epsilon \quad \forall n > N \checkmark$

3.)

Satz 1.8 
$$\Rightarrow$$
  $(b_n)$  beschränkt.  
 $\Rightarrow \exists k \geq 0 : |b_n| \leq k \quad \forall n \in \mathbb{N}$   
 $\Rightarrow |a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)|$   
 $\leq |a_n - a| \cdot k + |a| \cdot |b_n - b| \quad (*)$   
Sei  $\epsilon > 0 \Rightarrow \quad \exists N_a, N_b \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2k} \quad \forall n \geq N_a$   
 $|b_n - b| < \frac{\epsilon}{2|a|} \quad \forall n \geq N_b$   
 $\Rightarrow |a_n b_n - ab| < \frac{\epsilon}{2k} \cdot k + |a| \cdot \frac{\epsilon}{|a|} = \epsilon$   
 $\forall n \geq \max\{N_a, N_b\}$ 

4.) • Z.z:  $\exists k \in \mathbb{N} : b_n \neq 0 \quad \forall n \geq k$ Es ist  $b \neq 0$  und |b| > 0.

$$\Rightarrow \exists l \in \mathbb{N} : \underbrace{|b_n - b|}_{\stackrel{\geq}{\underset{1.12}{\geq}} |b| - |b_n|} < \frac{|b|}{2} \quad \forall n \geq b$$

$$\Rightarrow \exists |b| - |b_n| < \frac{|b|}{2} \quad \forall n \geq k$$

$$\Rightarrow \frac{|b|}{2} < |b_n| > 0 \quad \forall n \geq k \text{ (***)}$$

$$\Rightarrow b_n \neq 0 \quad \forall n \geq k$$

• Z.z:  $\left(\frac{a_n}{b_n}\right)_{n \ge k}$  hat  $\frac{a}{b}$  als Limes.

Da  $\frac{a_n}{b_n}=a_n\cdot\frac{1}{b_n}$ , genügt es wegen 3.) zu zeigen, dass  $\frac{1}{b_n}\to\frac{1}{b}$ .

Sei 
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : \underline{|b_n - b| < \frac{\epsilon}{2} \cdot |b|^2}$$

$$\Rightarrow \left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b \cdot b_n} \right| \underset{(**)}{<} \frac{2}{|b|^2} \cdot |b - b_n| < \epsilon \quad \forall n \ge N$$

- 5.) mit 1.12
- 6,7.) Übung

# 1.14 Beispiele: Rechenregeln

a) 
$$\frac{(-1)^n + 5}{n} = ((-1)^n + 5) \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} 0 \text{ wegen } 1.13/6$$

$$\bullet \frac{1}{n} \to 0$$

$$\bullet |(-1)^n + 5| \le |(-1)|^n + 5 = 6$$

$$\Rightarrow (-1)^n + 5 \text{ beschränkt}$$

b) 
$$\frac{3n^2 + 1}{-n^2 + n} \to -3, \text{ denn } \lim_{n \to \infty} \frac{3n^2 + 1}{-n^2 + n} = \lim_{n \to \infty} \frac{\cancel{\mathscr{A}}(3 + \frac{1}{n^2})}{\cancel{\mathscr{A}}(-1 + \frac{1}{n})}$$

$$= \lim_{1.13/4} \frac{\lim_{n \to \infty} 3 + \frac{1}{n^2}}{\lim_{n \to \infty} 1 + \frac{1}{n}} = \frac{3}{-1} = -3$$

c) Sei  $x \in \mathbb{R}$  mit |x| > 1 und  $k \in \mathbb{N}_0$ .

**Beweis:** Es ist |x| = 1 + t für t > 0.

Für n > k:

$$|x|^{n} = (1+t)^{n} = \sum_{j=0}^{n} \underbrace{\binom{n}{j} 1^{n-j} t^{j}}_{\geq 0}$$

$$\underset{j=k+1}{\geq} \binom{n}{k+1} t^{k+1} = \frac{n(n-1) \cdot \dots \cdot (n-k)}{(k+1)!}$$

$$= n^{k+1} \cdot \frac{t^{k+1}}{(k+1)!} \pm \dots$$

$$\Rightarrow \left| \frac{n^{k}}{x^{n}} \right| = \frac{n^{k}}{(1+t)^{n}} \leq \underbrace{\cancel{n^{k}(k+1)!}}_{n^{k+1}t^{k+1} \pm \dots} \xrightarrow{n \to \infty} 0$$

d) Sei  $x\in\mathbb{R}_+$ .  $\left(\frac{x^n}{n!}\right)$  ist Nullfolge, d.h. Fakultät wächst schneller als exponentiell: Sei  $m\in\mathbb{N}$  und n>m+1>x

$$\Rightarrow \frac{x^n}{n!} = \frac{x^{n-m}}{n(n-1) \cdot \dots \cdot (m+1)} \cdot \boxed{\frac{x^m}{m!}} = c > 0$$

$$\leq c \cdot \frac{x^{n-m}}{(m+1)^{n-m}} = c \cdot \underbrace{\left(\frac{x}{m+1}\right)}_{\text{geom. Folge, } < 1} \xrightarrow{\text{1.13/6, } \atop 1.13/7} 0$$

# 1.15 Satz: Einschließungsregel

Seien  $(a_n), (b_n), (c_n)$  reelle Folgen mit

1.  $\exists k \in \mathbb{N} : a_n \le b_n \le c_n \quad \forall n \ge k$ 

2. 
$$(a_n), (c_n)$$
 konvergent und  $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (c_n)$ 

Dann ist auch  $(b_n)$  konvergent und  $\lim_{n\to\infty}(b_n)=\lim_{n\to\infty}(a_n)$ 

**Beweis:** Sei  $a := \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$  und  $\epsilon > 0$ .

$$\Rightarrow N_a, N_c : \bullet |a_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_a$$
$$\bullet |c_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_c$$

Aus 1.:

$$|b_n - a_n| = b_n - a_n \le c_n - a_n = |c_n - a_n|$$

$$\forall n \ge k$$

$$\Rightarrow |b_n - a| \le \sum_{\Delta - Ungleichung} |b_n - a_n| + |a_n - a| \le |c_n - a_n| + |a_n - a|$$

$$\le \underbrace{|c_n - a|}_{\le \frac{\epsilon}{3}} + \underbrace{|a - a_n|}_{\le \frac{\epsilon}{3}} + \underbrace{|a_n - a|}_{\le \frac{\epsilon}{3}} < \epsilon \quad \forall \max\{k, N_a, N - c\} \quad \Box$$

# 1.16 Beispiele

a) 
$$\sqrt[n]{n} \xrightarrow[n \to \infty]{} 1$$
, denn:

Sei 
$$\epsilon > 0$$
. Da  $\frac{n}{(1+\epsilon)^n} \to 0$  (1.14/c),

gibt es  $N \in \mathbb{N}$  mit  $\frac{n}{(1+\epsilon)^n} < 1 \quad \forall n \ge N$ .

$$\Rightarrow (1+\epsilon)^n > n \quad \forall n \ge N$$
$$\Rightarrow 1+\epsilon > \sqrt[n]{n}$$

Da einerseits  $\sqrt[n]{n} \ge 1 > 1 - \epsilon \ \forall n \in \mathbb{N}$ , ist

$$1 + \epsilon > \sqrt[n]{n} > 1 - \epsilon \Leftrightarrow |\sqrt[n]{n} - 1| < \epsilon \quad \forall n \ge N$$

b) 
$$\sqrt[n]{x} \to 1 \quad \forall x > 0$$

Sei 
$$x > 0 \Rightarrow \exists N \in \mathbb{N} : \boxed{\frac{1}{n} \le x \le n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \le \sqrt[n]{x} \le \sqrt[n]{n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \to 1 \text{ und } \sqrt[n]{n} \to 1 \underset{1.15}{\Rightarrow} \sqrt[n]{x} \to 1$$

#### 1.17 Satz

Sei  $(a_n)$  eine Folge nicht negativeer reeller Zahlen mit  $a_n \to a$ . Dann:

- 1.  $\lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{a_n} \quad \forall m \in \mathbb{N}$
- 2.  $\lim_{n\to\infty} a_n^q = a^q \ \forall q \in \mathbb{Q} \text{ mit } q > 0 \text{ (ohne Beweis)}$

# 1.18 Definition: Landau Symbole, $\mathcal{O}$ -Notation

Sei  $(a_n)$  eine reelle Folge mit  $a_n > 0 \quad \forall n \in \mathbb{N}$ . Dann ist

a) 
$$\mathcal{O}(A_n) = \left\{ (b_n) \left| \left( \frac{b_n}{a_n} \right) \text{beschränkt} \right. \right\}$$

b) 
$$o(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{Nullfolge} \right\}$$

 $[a_n \text{ wächst schneller als } b_n]$ 

c) 
$$a_n \sim b_n$$
, falls  $\frac{a_n}{b_n} \to 1$ 

 $\mathcal{O}, o$ heißen Landau-Symbole

# 1.19 Beispiele

- $(2n^2 + 3n + 1) \in O(n^2)$
- $(2n^2 + 3n + 1) \in o(n^3)$
- $(n_3) \in o(2^n)$
- $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$  (Stirlingsche Formel)
- $\mathcal{O}(1)$  Menge aller beschränkten Folgen
- o(1) Menge aller Nullfolgen

#### 1.20 Definition: Monotonie

Eine Folge reeller Zahlen  $(a_n)$  heißt

a) (streng) monoton steigend/wachsend, falls

$$a_{n+1} \ge (>) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise:  $(a_n) \nearrow (\text{monoton wachsend})$ 

b) (streng) monoton fallend, falls

$$a_{n+1} \le (<) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise:  $(a_n) \searrow (\text{monoton fallend})$ 

# 1.21 Beispiele

- $(a_n)$  mit  $a_n = \frac{1}{n}$  streng monoton fallend
- $(a_n)$  mit  $a_n = 1$  monoton steigend und fallend
- $(a_n)$  mit  $a_n = (-1)^n$  nicht monoton

#### 1.22 Definition

Eine reelle Folge  $(a_n)$  heißt nach oben (unten) beschränkt, falls  $\{a_n|n\in\mathbb{N}\}$  von oben (unten) beschränkt ist.

# 1.23 Satz: Monotone Konvergenz

Sei  $(a_n)$  reelle Folge:

- Falls  $(a_n) \nearrow$  und nach oben beschränkt, so konvergiert  $(a_n)$  gegen  $\sup\{a_n|n\in\mathbb{N}\}$
- Falls  $(a_n) \searrow$  und nach unten beschränkt, so konvergiert  $(a_n)$  gegen  $\inf\{a_n|n\in\mathbb{N}\}$

Beweis:

1. Sei  $(a_n) \nearrow$  und nach oben beschränkt

und seien 
$$a = \sup\{a_n | n \in \mathbb{N}\}$$
 und  $\epsilon > 0$ .

$$\Rightarrow a_n \le a \quad \forall n \in \mathbb{N}$$

 $\boldsymbol{a}$ kleinste obere Schranke

$$\Rightarrow a - \epsilon$$
 keine obere Schranke.

$$\Rightarrow \exists N \in \mathbb{N} : a - \epsilon < a_N \le a$$

$$\underset{\substack{a_n \geq a_N \\ \forall n \geq N}}{\Rightarrow} |a_n - a| = a - a_n \leq a - a_N$$

$$\Rightarrow a_n \to a$$

2. analog  $\square$ 

# 1.24 Bernoulli-Ungleichung

Im folgenden Beispiel wird die Bernoulli-Ungleichung benötigt:

$$(1+h)^n \ge 1 + nh \quad \forall h \ge -1 \forall n \in \mathbb{N}$$

Beweis mit vollständiger Induktion

# 1.25 Beispiel: Folgen mit Grenzwert e



•  $a_n = \left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{n+1}{n}\right)$  ist monoton.

Zeigen dazu: 
$$a_n \ge a_{n-1} \left( \Leftrightarrow \frac{a_n}{a_{n-1}} \ge 1 \right)$$

$$\frac{a_n}{a_{n-1}} = \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^{n-1}$$

$$= \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^n \cdot \frac{n}{n-1} = \left(\frac{n^2-1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \left(\frac{n}{n-1}\right) \underset{1.24}{\geq} \underbrace{\left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}} = 1$$

$$h = \frac{1}{n^2}$$

• 
$$b_n = \left(1 + \frac{1}{n}\right)^{1+n} = \left(\frac{n+1}{n}_{n+1}\right)$$
 ist monoton fallend.

Zeige dazu: 
$$b_n \leq b_{n-1} \left( \Leftrightarrow \frac{b_{n-1}}{b_n} \leq 1 \right)$$
Analog:  $\frac{b_{n-1}}{b_n} = \left( 1 + \frac{1}{n^2 - 1} \right)^n \left( \frac{n}{n+1} \right)$ 
Wegen  $\left( 1 + \frac{1}{n^2 - 1} \right)^n \geq 1 + \frac{n}{n^2 - 1} \geq \underbrace{1 + \frac{1}{n}}_{\frac{n+1}{n}}$  ist 
$$\frac{b_{n-1}}{b_n} \geq \frac{n+1}{n} \cdot \frac{n}{n+1} = 1$$

In Beispiel 1.27 werden wir sehen, dass

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Der Limes wird als Eulerische Zahl e bezeichnet. Dazu zunächst:

# 1.26 Satz: Intervallschachtelung

Seien  $(a_n), (b_n)$  reelle Folgen mit

- $(a_n) \nearrow$ ,  $(b_n) \searrow$
- $a_n \le b_n \quad \forall n \in \mathbb{N}$
- $b_n a_n \to 0$

Dann sind  $(a_n),(b_n)$  konvergent und besitzen den selben Limes.

**Beweis:** Es ist  $a_1 \le a_n \le b_n \le b_1 \quad \forall n \in \mathbb{N}$ 

- $\Rightarrow$   $(a_n)$  hat obere Schranke  $b_1$  $(b_n)$  hat untere Schranke  $a_1$ 
  - $(a_n), (b_n)$  konvergent.

Da  $(b_n - a_n)$  Nullfolge, sind auch die Grenzwerte gleich.

# 1.27 Beispiel

- $(a_n) \nearrow, (b_n) \searrow (\text{siehe } 1.25)$
- $(a_n) = (1 + \frac{1}{n})^n \leq (1 + \frac{1}{n}) \cdot a_n = (1 + \frac{1}{n})^{n+1} = b_n$
- $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \underbrace{\left(1 + \frac{1}{n}\right)}_{\rightarrow 1} \cdot a_n = \lim_{1.13/3} \lim_{n \to \infty} a_n$

### 1.28 Definition: Eulersche Zahl

$$e := \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n \left( = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{n+1} \right)$$

# 1.29 Bemerkung

 $(a_n)$  konvergent  $\Rightarrow (a_n)$  beschränkt. **Die Umkehrung gilt nicht!** z.B besitzt jedoch  $a_n = (-1)^n$  zwei konvergente Teilfolgen mit Limes +1 und -1.

# 1.30 Definition: Teilfolge

Sei  $(a_n)_{n\in\mathbb{N}}$  eine Folge und  $(n_k)_{k\in\mathbb{N}}$  eine streng monoton steigende Folge von Indizes. Dann heißt die Folge  $(a_{n_k})_{k\in\mathbb{N}}$  Teilfolge von  $(a_n)_{n\in\mathbb{N}}$ .

#### 1.31 Beispiel

 $a_n = (-1)^n$ 

- $n_k = 2k \Rightarrow a_{n_k} = a_{2k} = (-1)^{2k} = 1 \quad \forall k \in \mathbb{N}$
- $n_k = 2k + 1 \Rightarrow a_{n_k} = a_{2k+1} = (-1)^{2k+1} = -1 \quad \forall k \in \mathbb{N}$

# 1.32 Bemerkung

 $(a_n)$  konvergiert gegen  $a \Rightarrow \text{Jede Teilfolge von } (a_n)$  konvergiert gegen a.

# 1.33 Definition: Häufungspunkt (HP)

Sei  $(a_n)$  reelle Folge.  $h \in \mathbb{R}$  heißt Häufungspunkt von  $(a_n)$ , wenn es eine Teilfolge von  $(a_n)$  gibt, die gegen h konvergiert.

# 1.34 Beispiel

 $(a_n)$  mit  $a_n = (-1)^n + \frac{1}{n}$  hat zwei Häufungspunkte: -1 und 1.

# 1.35 Satz: Bonzano-Weierstraß

Sei  $(a_n)$  reelle Folge.  $(a_n)$  beschränkt  $\Rightarrow (a_n)$  besitzt konvergente Teilfolge

**Beweis:** Konstruiere konvergente Teilfolge  $(a_{nk})_{k \in \mathbb{N}}$ ,

 $(a_n)$  beschränkt  $\Rightarrow |a_n| \leq K \quad \forall n \in \mathbb{N} \text{ (K geeignet)}$ 

$$\Rightarrow a_n \in \underbrace{[-K, K]}_{=[A_0, B_0]} \quad \forall n \in \mathbb{N}$$

- k = 1: Halbiere  $[A_0, B_0]$ 
  - Falls in der linken Folgenhälfte unendlich viele Folgeglieder liegen, wähle eines davon aus.
  - Falls nicht, liegen in der rechten Hälfte unendlich viele. Wähle eines davon aus.

Das ausgewählte Folgenglied nennen wir  $a_{n1}$ , die Intervallhälfte aus der es stammt  $[A_1, B_1]$ .

- $\underline{k} = \underline{2}$ : Halbiere  $[A_1, B_1]$ . Wende obiges Verfahren an, um  $a_{n2} \in [A_2, B_2]$  zu bestimmen.
- usw ...

Erhalte Intervallschachtelung mit

- $(A_k) \nearrow, (B_k) \searrow$
- $A_k \leq B_k$
- $A_k = B_k = \frac{K}{2^{k-1}} \to 0$

$$\underset{1.26}{\Rightarrow} \lim_{k \to \infty} A_k = \lim_{k \to \infty} B_k$$

Da 
$$A_k \le a_{nk} \le B_k$$
, ist  $\lim_{n \to \infty} A_k = \lim_{1.15} (a_{n_k})$   $\square$ 

# 1.36 Definition: Limes inferior/superior

 $(a_n)$  reelle folge, beschränkt. Dann gibt es einen größten und einen kleinsten Häufungspunkt, den

- Limes superior von  $(a_n)$ :  $\limsup_{n\to\infty}(a_n)$ ,  $\overline{\lim}_{n\to\infty}(a_n)$
- Limes inferior von  $(a_n)$ :  $\liminf_{n\to\infty}(a_n)$ ,  $\underline{\lim}_{n\to\infty}(a_n)$

Ist  $(a_n)$  nicht beschränkt, setzt man

$$\bullet \underset{n \to \infty}{\overline{\lim}} \begin{cases} +\infty : (a_n) \text{ nicht nach oben beschränkt} \\ -\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \le -K \ \forall n \ge N \end{cases}$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \begin{cases} -\infty : (a_n) \text{ nicht nach oben beschränkt} \\ +\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \ge K \ \forall n \ge N \end{cases}$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \begin{cases} -\infty : (a_n) \text{ nicht nach oben beschränkt} \\ +\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \ge K \ \forall n \ge N \end{cases}$$

# 1.37 Bemerkung

- a)  $a_n \to \pm \infty$  in obriger Definition bedeutet, dass  $(a_n)$  (bestimmt) gegen  $\pm \infty$  divergiert. (d.h. es gibt keine weiteren endlichen Häufungspunkte)
  - z.B. divergiert  $(a_n)$  mit  $a_n = (-1)^n$  nicht bestimmt, aber  $(a_n)$  mit  $(a_n) = n$  divergiert bestimmt gegen  $\infty$
- b)  $-\infty, \infty$  sind keine reellen Zahlen. Man setzt  $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$  mit  $-\infty < x < \infty \quad \forall x \in \mathbb{R}$
- c) In  $\overline{\mathbb{R}}$  besitzt jede Folge sowohl  $\limsup$  als auch  $\liminf$ .

# 1.38 Beispiel



$$a_n = n \cdot (1 + (-1)^n) = \begin{cases} 2n, & \text{n gerade} \\ 2n + 1, & \text{n ungerade} \end{cases}$$

 $\lim\inf(a_n)=0$   $\lim\sup(a_n)=\infty$ 

### 1.39 Definition: Cauchy-Folgen

Sei  $(a_n)$  eine Folge.  $(a_n)$  heißt Cauchy-Folge (C-F) : $\Leftrightarrow \forall \epsilon > 0 \ \exists M \in \mathbb{N} : |a_n - a_k| < \epsilon \ \forall n, k \geq M$ 

# 1.40 Satz: Cauchy-Kriterium

Sei  $(a_n)$  eine Folge  $\underline{\text{in } \mathbb{R}}$  $(a_n)$  konvergiert : $\Leftrightarrow$   $(a_n)$  ist Cauchy-Folge

Beweis:  $(\Rightarrow)$ : klar  $(\Leftarrow)$ :

1. Zeige  $(a_n)$  beschränkt

Sei 
$$(a_n)$$
 C-F:  $\Rightarrow \exists R \in \mathbb{N} : |a_n - a_k| < 1$   
 $\forall n, k \geq R$ 

$$\underset{k=R}{\Rightarrow} |a_n - a_R| < 1 \quad \forall n \ge \mathbb{R}$$

$$\Rightarrow a_R - 1 < a_n < a_R + 1 \quad \forall n \ge R$$

$$\Rightarrow \min\{a_r - 1, a_1, ..., a_{R-1}\} \le a_n \le$$

$$\max\{a_R+1, a_1, ..., a_{R-1}\} \quad \forall n \in \mathbb{N}$$

 $\Rightarrow (a_n)$  ist beschränkt und besitzt

konvergente Teilfolge  $(a_{n_j})$  (1.35) mit

$$a = \lim_{j \to \infty} a_{n_j}$$

2.  $(a_n)$  ist konvergent mit  $\lim_{n\to\infty} a_n = a$ 

Sei  $\epsilon > 0$ 

$$\Rightarrow \quad \bullet \ \exists M \in \mathbb{N} : |a_n - a_k| < \frac{\epsilon}{2} \forall n, k \ge M$$

• 
$$\exists J \in \mathbb{N} : \left| a_{n_j} - a_k \right| < \frac{\epsilon}{2} \forall j \ge J$$

Wähle  $a_{n_j}$  so, dass  $j \geq J$  und  $n_j \geq M$ .

$$\Rightarrow |a_n - a| \leq \underbrace{\left\lfloor a_n - a_{n_j} \right\rfloor}_{<\frac{\epsilon}{2}} + \underbrace{\left\lfloor a_{n_j} - a \right\rfloor}_{<\frac{\epsilon}{2}} < \epsilon \quad \forall n \geq M$$

# 1.41 Beispiel

$$(a_n)$$
 mit  $a_n = (-1)^n$  ist divergent,  
denn  $|a_{n+1} - a_n| = |(-1)^{n+1} - (-1)^n|$   
 $= |(-1)^n| - |-1 - 1| = 2$ 

z.B ist für  $\epsilon = 1 \quad |a_{n+1} - a_n| \ge \epsilon \quad \forall n \in \mathbb{N}$ , was im Widerspruch zu 1.39 steht.

# 1.42 Definition: Kontraktion

Eine Abbildung  $f:[a,b] \to [a,b]$  heißt Kontraktion, falls  $\alpha \in (0,1)$  existiert, so dass

$$|f(x) - f(y)| \le \alpha |x - y|$$

z.B:  $f(x) = \frac{1}{2}x$  ist Kontraktion mit Kontraktionsfaktor  $\frac{1}{2}$ .

# 1.43 Banachscher Fixpunktsatz

Sei  $f[a,b] \rightarrow [a,b]$  eine Kontraktion. Dann:

- 1. f hat genau einen Fixpunkt  $\hat{x} \in \mathbb{R}$ , d.h. es git genau ein  $\hat{x} \in \mathbb{R} : f(\hat{x} = \hat{x})$
- 2. Für jeden beliebigen Startwert  $X_0 \in [a,b]$  konvergiert die durch  $X_n := f(X_n+1)$  definierte Folge  $(X_n)$  gegen  $\hat{x}$ .

(Ohne Beweis)

# 2 Reihen

# Grundbegriffe und Beispiele

# 2.1 Definition: Reihe

1. Sei  $(a_n)_{n\in\mathbb{N}}$  eine reelle Folge. Die Folge  $(S_k)_{k\in\mathbb{N}}$  mit

$$S_k = \sum_{i=1}^k \delta_i = \delta_1 + \dots + \delta_k$$

heißt (undendliche) Reihe, mit Schreibweise  $\sum_{i=1}^{\infty} \delta_i$ .

Die Zahl  $S_k \in \mathbb{R}$  heißt k-te <u>Partialsumme</u> der Reihe.

2. Falls  $(S_k)$  gegen  $s \in \mathbb{R}$  konvergiert, heißt die Reihe konvergent gegen s. Man schreibt:

$$\lim_{k \to \infty} (S_k) = \lim_{k \to \infty} \left( \sum_{i=1}^k a_i \right) = \sum_{i=1}^\infty a_i = s$$

Andernfalls heißt die Reihe divergent.

- 3. Entsprechend kann man für eine Folge  $(a_n)_{n\geq n_o}$  die Reihe  $\sum_{i=n_o}^{\infty}a_i$  definieren.
- 4.  $\sum_{i=1}^{\infty}$ heißt absolut konvergent, falls  $\sum_{i=1}^{\infty}|a_i|$ konvergiert.

# 2.2 Bemerkung

Falls die Folgen der Parialsummen von  $\sum_{i=n_o}^{\infty} a_i$  bestimmt gegen  $+\infty(-\infty)$  divergiert, so schreiben wir:  $\sum_{i=n_o}^{\infty} a_i = \infty(-\infty)$ 

# 2.3 Beispiele

a) 
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots = \infty$$

b)

$$\underbrace{\sum_{k=1}^{n} (-1)^k}_{S_n} = \begin{cases} -1 & \text{n ungerade} \\ 1 & \text{n gerade} \end{cases}$$

$$\Rightarrow \sum_{k=1}^{\infty} (-1)^k \text{ divergent}$$

c) Harmonische Reihe  $\sum_{k=1}^{\infty}\frac{1}{k}$  ist divergent.

$$S_n = 1 + \frac{1}{2} + \boxed{\frac{1}{3} + \frac{1}{4}} + \boxed{\frac{1}{5} + \dots + \frac{1}{8}} + \boxed{\frac{1}{9} + \dots + \frac{1}{16}} + \dots + \frac{1}{n}$$

$$> 2 \cdot \frac{1}{4} = \frac{1}{2} > 4 \cdot \frac{1}{8} = \frac{1}{2} > 8 \cdot \frac{1}{16} = \frac{1}{2}$$

$$\Rightarrow S_n > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

Per Induktion:  $S_{2^m} \geq 1 + \frac{m}{2} \xrightarrow[m \to \infty]{} \infty \Rightarrow (S_{2^m})$  divergent.

d) 
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
 konvergent



$$\text{und } \sum_{k=0}^{\infty} \frac{1}{2^k} = 2$$

e) Geometrische Reihe

Für 
$$g \in \mathbb{R}, |q| < 1$$
 gilt  $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q},$ 

denn 
$$S_n = \sum_{k=0}^{\infty} q^k = \frac{1-q^{n+1}}{1-q}$$
 (Beweis mit vollständiger Induktion)

Da 
$$q^{n+1} \xrightarrow[n \to \infty]{} 0$$
 für  $|q| < 1$  (1.10), folgt  $S_n \to \frac{1}{1-q}$ .

Andererseits ist 
$$\sum_{k=0}^{\infty} q^k$$
 divergent für  $|q| \ge 1$  (2.9)

• In Beispiel d) is 
$$q = \frac{1}{2}$$
 und  $\sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} = 2$ 

• 
$$\sum_{k=0}^{\infty} \left(-\frac{1}{2}\right)^k = \frac{1}{1-\frac{1}{2}} = \frac{2}{3}$$

Diese Reihe ist sogar absolut konvergent.

$$\bullet \sum_{k=3}^{\infty} \left(\frac{2}{3}\right)^k = \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^{k+3} = \left(\frac{2}{3}\right)^3 \cdot \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k = \left(\frac{2}{3}\right)^3 \cdot \underbrace{\frac{1}{1-\frac{2}{3}}}_{3} = \frac{8}{9}$$

Achtung bei Index-Verschiebung!

# 2.4 Satz: Rechenregeln für Summen

Gegeben seien zwei konvergente Reihen mit  $\sum_{k=1}^{\infty} a_k = a$ ,  $\sum_{k=1}^{\infty} b_k = b$  und  $c \in \mathbb{R}$ . Dann gilt:

a) 
$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} (a_k) + \sum_{k=1}^{\infty} (b_k) = a + b$$

b) 
$$\sum_{k=1}^{\infty} c - a_k = c \cdot \sum_{k=1}^{\infty} a_k = c \cdot a$$

Beweis folgt direkt aus 1.13.

# 2.5 Satz: Konvergenz und Divergenzkriterien für Reihen

Ist  $(S_n)$  mit  $S_n = \sum_{k=1}^{\infty} a_k$  nach oben beschränkt und  $a_k > 0 \ \forall k \in \mathbb{N}$ , so ist  $\sum_{k=1}^{\infty} a_k$  konvergent. (Folgt direkt aus 1.23)

# 2.6 Cauchy-Kriterium

 $\sum_{i=1}^{\infty} a_i$  konvergiert  $\Leftrightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N}$ :

$$\underbrace{|a_n + \dots + a_k|} < \epsilon \quad \forall k \ge n \ge N$$

$$\left[ = |S_k - S_{n-1}| = \left| \sum_{i=1}^k a_i - \sum_{i=1}^{n-1} a_i \right| \right]$$

(Folgt aus 1.40)

### 2.7 Satz: Absolute Konvergenz

Ist  $\sum_{i=1}^{\infty} a_i$  absolut konvergent, so ist  $\sum_{i=1}^{\infty}$  auch konvergent.

**Beweis:** Sei  $\epsilon > 0$ .  $\Rightarrow \exists N \in \mathbb{N}: |a_n| + ... + |a_k| < \epsilon \quad \forall k \geq N$ .

 $\begin{array}{ll} \operatorname{Da}\,|a_n|+\ldots+|a_k|\leq |a_n|+\ldots+|a_k|<\epsilon & \forall k\geq n\geq N,\\ \operatorname{ist}\,2.6 \text{ für } \sum_{i=1}^\infty a_i \text{ erfüllt.} \end{array}$ 

# 2.8 Korollar: Dreiecksungleichung für Reihen

Für jede absolut konvergente Reihe  $\sum_{i=1}^{\infty}a_{i}$  gilt:

$$\Big|\sum_{i=1}^{\infty} a_i\Big| \le \sum_{i=1}^{\infty} a_i |a_i|$$

**Beweis:** Sei  $\sum_{i=1}^{\infty} a_i$  absolut konvergent. Dann:

$$\bullet \lim_{k \to \infty} (S_k) = \lim_{k \to \infty} \left( \sum_{i=1}^K a_i \right)$$

$$\operatorname{Da} \lim_{k \to \infty} |S_k| = \left| \lim_{k \to \infty} \right| \quad \left[ \begin{array}{c} C_i \to c \\ \Rightarrow |C_i| \to |c| \end{array} \right. (1.13) \right],$$

$$\operatorname{ist} \lim_{k \to \infty} \left| \sum_{i=1}^k a_i \right| = \left| \sum_{i=1}^\infty a_i \right| (*)$$

$$\bullet \lim_{k \to \infty} \left( \sum_{i=1}^k |a_i| \right) = \sum_{i=1}^\infty |a_i| (**)$$

$$\operatorname{Insgesamt:} \left| \sum_{i=1}^k a_i \right| \le \sum_{i=1}^k |a_i| \quad \left| \lim_{k \to \infty} \right|$$

# 2.9 Satz: Divergenzkriterium

Ist  $\sum_{i=1}^{\infty} a_i$  konvergent, so ist  $(a_n)$  eine Nullfolge. D.h. Ist  $(a_i)$  keine Nullfolge, so divergiert  $\sum_{i=1}^{\infty} a_i$ .

 $\underset{(*),(**)}{\Leftrightarrow} \left| \sum_{i=1}^{\infty} a_i \right| \le \sum_{i=1}^{\infty} |a_i|$ 

**Beweis:**  $\sum_{i=1}^{\infty} a_i$  konvergiert  $\underset{2.6}{\Rightarrow} \forall \epsilon > 0 \ \exists N \in \mathbb{N}$ :

$$|a_n + \dots + a_k| < \epsilon \ \forall k \ge n \ge N.$$

Wähle 
$$k = 1 \Rightarrow |a_n| < \epsilon \ \forall n \ge N \Rightarrow (a_n)$$
 Nullfolge.  $\square$ 

### 2.10 Majorantenkriterium

Seien  $(a_n), (b_n)$  Folgen in  $\mathbb{R}$  mit  $0 \le a_n \le b_n$   $n \in \mathbb{N}$ . Ist dann  $\sum_{i=1}^{\infty} b_i$  konvergent, so ist auch  $\sum_{i=1}^{\infty} a_i$  konvergent.

**Beweis:** Sei 
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : |a_n + ... + a_k|$$

$$\underbrace{\leq |b_n + \dots + b_k|}_{\leq a_1 \leq b_i \ \forall i} < \epsilon \quad \forall k \geq n \geq N \quad \Box$$

# 2.11 Bemerkung: Minorantenkriterium

Unter den selben Voraussetzungen wie in 2.10 erhält man anhand von Kontraposition: Ist  $\sum_{i=1}^{\infty} a_i$  divergent, so ist auch  $\sum_{i=1}^{\infty} b_i$  divergent.

# 2.12 Beispiele

a) 
$$\sum_{i=1}^{\infty} \underbrace{\left(1 - \frac{1}{i}\right)}_{\text{Keine Nullfolge}}$$
 ist divergent. (2.9)

b) 
$$\sum_{i=1}^{\infty} \frac{1}{\sqrt{i}}$$
 ist divergent, da  $0 \le \frac{1}{i} \le \frac{1}{\sqrt{i}}$  und  $\sum_{i=1}^{\infty} \frac{1}{i}$  divergent. (2.11)

c) 
$$\sum_{i=1}^{\infty} \frac{(-1)^i}{2^i}$$
 ist konvergent, weil absolut konvergent. (2.3e, 2.7)

d) 
$$\sum_{i=0}^{\infty} \frac{(-1)^i}{i+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \dots$$
 (alternierende harminische Reihe) ist konvergent, aber nicht absolut konvergent. Die Konvergenz zeigt man mit

#### 2.13 Satz: Leibniz-Kriterium

Sei  $(a_n)$  monoton fallende Nullfolge reeller Zahlen. Dann ist  $\sum i = 0^{2n} (-1)^i a_i$  konvergent. **Beweis:** Intervallschachtelung (1.26)

$$A_n := \sum_{i=0}^{2n-1} (-1)^i a_i$$
  $B_n := \sum_{i=0}^{2n} (-1)^i a_i$ 

• 
$$(A_n)$$
  $\nearrow$ :  $A_{n+1} - A_n = \sum_{i=0}^{2n+1} (-1)^i a_i - \sum_{i=0}^{2n-1} (-1)^n a_i$   

$$= (-1)^{2n+1} a_{2n+1} + (-1)^{2n} a_{2n}$$

$$= a_{2n} - a_{2n+1} \ge 0, \text{ da } (a_n) \searrow$$

• Analog: 
$$(B_n) \searrow \bullet B_n - A_n = a_{2n} \ge 0 \Leftrightarrow A_n \le B_n \quad \forall n \in \mathbb{N}$$
  
•  $B_n - A_n = a_{2n} \to 0$ 

$$(A_n), (B_n)$$
 konvergiert mit  $\lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n \Rightarrow \sum_{i=1}^{\infty} (-1)^i a_i$  konvergent.

#### 2.14 Satz: Wurzelkriterium

Sei  $(a_n)_{n\geq 1}$  mit  $a_n\in\mathbb{R}$ . Dann:

• 
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \sum_{k=1}^{\infty} |a_k|$$
 konvergent

• 
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1 \Rightarrow \sum_{k=1}^{\infty} |a_k|$$
 divergent

•  $\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}=1$   $\leadsto$  keine allgemeine Aussage für  $\sum_{k=1}^\infty a_k$  möglich.

#### Beweis:

Sei 
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}$$

• 
$$a < 1 : \Rightarrow \exists \epsilon > 0 : a + \epsilon < 1$$
  
 $\Rightarrow \exists N \in \mathbb{N} : \sqrt[n]{|a_n|} \le a + \epsilon \quad \forall n \ge N,$   
da  $a$  größter HP von  $\sqrt[n]{|a_n|}$   
 $\Rightarrow |a_n| \le (a + \epsilon)^n \quad \forall n \ge N$   
 $\Rightarrow \sum_{k=N}^{\infty} \underbrace{(a + \epsilon)^n}_{\leq 1}$  (geometrische Reihe)

ist konvergente Majorante der Reihe $\sum_{k=N}^{\infty}|a_k|.$ 

Damit konvergiert auch 
$$\sum_{k=1}^{\infty} |a_k| = \left[\sum_{k=1}^{N-1} |a_k|\right] + \sum_{k=1}^{\infty} |a_n|$$

• 
$$a > 1 : \Rightarrow \sqrt[n]{|a_n|} > 1$$
 unendlich oft  
 $\Rightarrow |a_n| > 1$  unendlich oft  
 $\Rightarrow (a_n)$  keine Nullfolge  $\Rightarrow \sum_{k=1}^{\infty} a_k$  divergent.  $\square$ 

#### 2.15 Beispiele

a) 
$$\sum_{k=0}^{\infty} \boxed{\frac{k^3}{3^k}} \text{ konvergent, da } \varlimsup_{n\to\infty} \frac{\sqrt[n]{n^3}}{\sqrt[n]{3^n}} = \varlimsup_{n\to\infty} \frac{\left(\sqrt[n]{n^3}\right)}{3} = \frac{1}{3} < 1$$

b) 
$$\sum_{k=0}^{\infty} \frac{1}{k^{\alpha}}$$
 (allgemeine harminische Reihe) liefert  $\overline{\lim}_{n\to\infty} \frac{1}{\left(\sqrt[n]{n^{\alpha}}\right)} = 1 \quad (\alpha > 0) \to \text{keine Aussage möglich.}$ 

# 2.16 Satz: Quotientenkriterium

Sei  $(a_n)_{n\geq 1}$  eine Folge in  $\mathbb{R}$  mit  $a_n\neq 0 \quad \forall n\in \mathbb{N}$ . Dann:

• 
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{k=1}^{\infty} a_k$$
 absolut konvergent

• 
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \sum_{k=1}^{\infty} a_k$$
 divergent

$$\bullet \ \ \overline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \ \text{und} \ \underline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \le 1 \sim \text{ keine allgemeine Aussage m\"{o}glich}$$

#### Beweis:

$$\begin{split} \bullet & \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < a < 1 \quad a \in \mathbb{R} \\ \Rightarrow & \exists N \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \le a \quad \forall n \ge \mathbb{N} \\ \Rightarrow & |a_n| \le a \cdot |a_{n-1}| \le a^2 \cdot |a_{n-2}| \le \dots \le a^{n-N} \cdot |a_N| \quad \forall n \ge \mathbb{N} \end{split}$$

$$\mathrm{Da} \sum_{n=N}^{\infty} a^{n-N} |a_N| = \frac{|a_N|}{a^N} \sum_{n=N}^{\infty} a^n \text{ konvergiert (geometrische Reihe), folgt mit}$$

Majorantenkriterium, dass  $\sum_{n=N}^{\infty} |a_n|$  und somit  $\sum_{n=1}^{\infty} |a_n|$  konvergent ist.

• 
$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \exists N \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \quad \forall n \ge N$$

$$\Rightarrow |a_n| \ge |a_{n-1}| \ge \dots \ge |a_N| > 0$$

$$\Rightarrow (a_n) \text{ keine Nullfolge} \quad \square$$

### 2.17 Beispiele

a) 
$$\sum_{k=1}^{\infty} \frac{2^k}{k!} \text{ konvergiert, da} \left| \frac{a_{n+1}}{a_n} \right| = \frac{2^{n+1}}{(n+1)!} \cdot \frac{\cancel{x!}}{\cancel{2^n}} = \frac{2}{n+1} \xrightarrow[n \to \infty]{} 0$$

$$\Rightarrow \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$$

b) Wie in 2.15b ist für 
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
  $(\alpha > 0)$  keine Aussage möglich, da  $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n^{\alpha}}{(n+1)^{\alpha}} = \left( \frac{n}{n+1} \right)^{\alpha} \xrightarrow[n \to \infty]{} 1$  und somit  $\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \underline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ 

#### 2.18 Bemerkung

Mit dem Verdichtungssatz von Cauchy (den wir hier nicht zitieren), kann man zeigen, dass die allgemeine harmonische Reihe  $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$  für  $0 < \alpha < 1$  divergiert und für  $\alpha > 1$  konvergiert.

# Umordnung von Reihen: Beispiel

Man kan Reihen nicht bedenkenlos umordnen:

• 
$$1-1+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}\pm \dots$$

$$Sn = \begin{cases} 0 & \text{falls gerade} \\ \sqrt{\frac{2}{n+1}} & \text{falls n ungerade} & \xrightarrow[n \to \infty]{} 0 \end{cases}$$

• 
$$1 + \frac{1}{\sqrt{2}}\underbrace{-1}_{3} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \underbrace{\frac{1}{\sqrt{2}}}_{6} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - \underbrace{\frac{1}{\sqrt{3}}}_{9} \pm \dots$$

$$S_{3n} = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \ldots + \frac{1}{\sqrt{2n}} \ge \frac{n}{\sqrt{2n}} = \sqrt{\frac{n}{2}} \xrightarrow[n \to \infty]{} \infty$$

# **Definition: Umordnung**

 $\sum_{k=1}^{\infty}b_k$ heißt Umordnung von  $\sum_{k=1}^{\infty}a_k$ , falls eine bijektive Ābbildung  $\rho:\mathbb{N}\to\mathbb{N}$  existiert mit  $b_k=a_{\rho(k)}$ 

#### 2.21Umordnungssatz

Jede Umordnung  $\sum_{k=1}^{\infty} b_k$  einer absolut konvergenten Reihe  $\sum_{k=1}^{\infty} a_k$  in  $\mathbb{R}$  ist ebenfalls absolut konvergent und es gilt  $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} a_k$  (ohne Beweis)

#### 2.22 Riemannscher Umordnungssatz

Ist  $\sum_{k=1}^{\infty} a_k$  konvergent, aber nicht absolut konvergent, dann existiert zu jedem  $s \in \mathbb{R}$  eine Umordnung  $\sum_{k=1}^{\infty} b_k$ , mit  $\sum_{k=1}^{\infty} b_k = s$  (ohne Beweis)

#### 3 Potenzreihen

# Grundbegriffe und Beispiel

a)  $P(x) = \sum_{k=0}^{\infty} x^k$  ist für |x| < 1 absolut konvergent (geometrische Reihe), d.h für  $x \in \underbrace{(-1,1)}$ .

Konvergenzintervall (3.5)

Für |x| > 1 ist P(x) divergent.

b)  $P(X) = \sum_{k=0}^{\infty} k! (x-1)^k$  ist für  $x \neq 1$  divergent:

Quotientenkriterium liefert:

$$\left| \frac{(x+1)!(x-1)^{k+1}}{k!(x-1)^k} \right| = (k+1)(x-1) \xrightarrow[k \to \infty]{} \infty \quad \text{für } x \neq 1$$

# 3.2 Definition: Potenzreihen

Sei  $(a_n)_{n\geq 0}$  reelle Folge und seien  $x, x_0 \in \mathbb{R}$ .

$$P(x) := \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

heißt Potenzreihe mit Zentrum  $x_0$  und Koeffizienten  $a_k$ 

# 3.3 Bemerkung

- a) In Bsp 3.1a) ist  $x_0 = 0$  und  $a_k = 1 \ \forall k \in \mathbb{N}$ . In 3.1b) ist  $x_0 = 1$  und  $a_k = k!$
- b) In 3.1a) konvergiert P(x) für  $x \in (-1,1)$ , in 3.1b) lediglich für  $x = x_0 = 1$ . Es wird sich heraussstellen, dass es für eine Potenzreihe P(x) mit Zentrum  $x_0$  einen Konvergenzradius  $\rho \in \mathbb{R}_+ = [0,\infty) \cup \{\infty\}$  gibt (3.5), so dass P(x) absolut konvergent für  $x \in (x_0 - \rho, x_0 + \rho)$ , (d.h.  $|x - x_0| < \rho$ ) und divergent für  $|x - x_0| > \rho$  ist. (3.7)

Dazu zeigt man zunächst:

#### 3.4 Satz

Sei  $P(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$  und  $x \in \mathbb{R} \setminus \{x_o\}$ .

Dann:

- 1.  $P(x_1)$  konvergent  $\Rightarrow P(x)$  ist absolut konvergent  $\forall x \in \mathbb{R}$  mit  $|x x_0| < |x_1 x_0|$
- 2.  $P(x_1)$  divergent  $\Rightarrow P(x)$  ist divergent  $\forall x \in \mathbb{R}$  mit  $|x x_0| > |x_1 x_0|$

**Beweis:** 

1. P(x) konvergent  $\Rightarrow_{2.9} (a_k(x_1 - x_0)^k)$  Nullfolge

$$\Rightarrow \exists K \ge 0 : |a_k(x_1 - x_0)| \le K \forall k \in \mathbb{N}_0$$

$$\Rightarrow |a_k(x - x_0)^k| = |a_k(x_1 - x_0)^k| \cdot \left| \frac{x - x_0}{x_1 - x_0} \right|^k \le K \cdot \underbrace{\left| \frac{x - x_0}{x_1 - x_0} \right|^k}_{\le 1}$$

 $\underset{2.10}{\Rightarrow} P(x)$ absolut konvergent für  $|x-x_0|<|x_1-x_0|$  (Majorantenkriterium)

2. Sei  $P(x_1)$  divergent und  $|x-x_0|>|x_1-x_0|$ . Wäre P(x) konvergent, so wäre wegen 1. auch  $P(x_1)$  konvergent. 4

Also: P(x) divergent  $\square$ 

# 3.5 Definition: Konvergenzradius und Intervall

Sei P(x) Potenzreihe mit Zentrum  $x_0$ .

$$\rho = \sup\{|x - x_0| : P(x) \text{ mit } x \in \mathbb{R} \text{ konvergent}\} \in [0, \infty) \cup \{\infty\}$$

heißt Konvergenzradius von P(x).

Für  $\rho \in \mathbb{R}_+$  heißt  $(x_0 - \rho, x_0 + \rho)$  Konvergenzintervall von P(x). Ist  $\rho = \infty$ , so konvergiert  $P(x) \ \forall x \in \mathbb{R} \ (3.7)$ 

# 3.6 Beispiel

- a) Für  $P(x) = \sum_{k=0}^{\infty} x^k$  ist  $\rho = 1$ , denn (-1,1) ist Konvergenzintervall von  $P(x), x_0 = 0$
- b) Für  $P(x) = \sum_{k=0}^{\infty} k! (x-x_0)^k$  ist  $\rho = 0$ , denn P(x) ist nur für  $x = x_0 = 1$  konvergent.

Aus 3.4 ergibt sich direkt 3.7

#### 3.7 Korollar

Sei P(X) Potenzreihe mit Zentrum  $x_0$  und Konvergenzradius  $\rho$ .

Dann:

- 1. P(X) absolut konvergent  $\forall x \in \mathbb{R}$  mit  $|x x_0| < \rho$ .
- 2. P(X) divergent  $\forall x \in \mathbb{R}$  mit  $|x x_0| > \rho$ .
- 3. [Falls  $|x x_0| = \rho \sim$  keine allgemeine Aussage möglich]

# Berechnung von Konvergenzradien

# 3.8 Satz: Formel von Cauchy-Hademard

Sei  $(a_k)_{k\geq 0}$  Folge in  $\mathbb R$  und  $\lambda:=\varlimsup_{k\to\infty}\sqrt[k]{|a_k|}$ .  $\rho$  sei der Konvergenzradius von  $P(x)=\sum_{k=0}^\infty a_k(x-x_0)^k$ .

Dann:

$$\rho = \begin{cases} \frac{1}{\lambda} & \text{, falls } \lambda \in \mathbb{R} > 0 \\ 0 & \text{, falls } \lambda = \infty \\ \infty & \text{, falls } \lambda = 0 \end{cases}$$

Beweis: Wurzelkriterium:  $\lambda := \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k| \cdot |x - x_0|^k} = \lambda \cdot |x - x_0|$ 

$$\underbrace{\lambda \cdot |x - x_0|}_{\text{D.h. } P(x) \text{ konvergiert}} < 1 \Leftrightarrow |x - x_0| < \frac{1}{\lambda} \quad (= \rho)$$

D.h. 
$$P(x)$$
 konvergiert
$$\underbrace{\lambda \cdot |x - x_0|}_{\text{D.h. } P(x) \text{ divergiert}} > 1 \Leftrightarrow |x - x_0| > \frac{1}{\lambda} \quad (= \rho)$$

 $\Rightarrow \rho$  Konvergenzradius von P(x)

# Beispiel

Für welche  $x \in \mathbb{R}$  ist  $\sum_{k=1}^{\infty} \frac{x^k}{k}$  konvergent?

$$\bullet \overline{\lim}_{k \to \infty} \sqrt[k]{\left|\frac{1}{k}\right|} = \overline{\lim}_{k \to \infty} \frac{1}{\sqrt[k]{k}} = 1 = \lambda$$

$$\Rightarrow \rho = \frac{1}{\lambda} = 1$$

$$\Rightarrow P(x)$$
konvergent für  $x\in\overbrace{(-1,1)}^{x_0-\rho,x_0+\rho}$  und divergiert für  $|x|>1$ 

Untersuche Randwerte für  $x = \pm 1$ 

• 
$$x = 1$$
:  $P(1) = \sum_{k=1}^{\infty} \frac{1}{k}$  divergent (harmonische Reihe)

• 
$$x = -1$$
:  $P(-1) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k+1}$ 
$$= -\left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}\right)$$
konvergent (2.12d)

 $\Rightarrow P(-1)$  konvergent

Insgesamt: P(x) konvergent für [-1,1), divergent für |x| > 1 und x = 1.

#### Satz: Formel von Euler 3.10

Sei  $(a_k)_{k>0}$  Folge in  $\mathbb{R}, a_k \neq 0 \quad \forall k \in \mathbb{N}_0$ ,  $\rho$  Konvergenz radius von  $P(x) = \sum\limits_{k=0}^{\infty} a_k (x-x_0)^k.$ 

Ist 
$$\left(\left|\frac{a_k}{a_{k-1}}\right|\right)_{k\geq 0}$$
 konvergent oder bestimmt gegen  $+\infty$  divergent, so ist  $\rho = \lim_{k\to\infty} \left|\frac{a_k}{a_{k+1}}\right|$ 

**Beweis:** Wende auf P(x) das Quotientenkriterium 2.16 an.

# 3.11 Beispiel: Exponentialfunktion

$$\begin{split} &\sum_{k=0}^{\infty} \frac{x^k}{k!} \text{ konvergent } \forall x \in \mathbb{R}: \\ &\left|\frac{a_k}{a_{k+1}}\right| = \frac{1}{k!} \cdot \frac{(k+1)!}{1} = k+1 \xrightarrow[k \to \infty]{} \infty \\ &\underset{3.10}{\Rightarrow} \rho = \infty \end{split}$$

Man definiert: exp : 
$$\mathbb{R} \to \mathbb{R}$$
 mit  $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$  (Exponentialreihe)

Man kann zeigen:

- 1.  $\exp(x+y) = \exp(x) + \exp(y) \quad \forall x, y \in \mathbb{R} \text{ (mit Cauchy-Produkt, hier nicht)}$
- 2.  $\exp(x) = e^x, e \approx 2,718$  (Eulersche Zahl)

Aus 2.: 
$$e = \exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Exkurs: Wie erhält man  $\exp(x) = e^x$ ?

- 1. Definiere:  $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$  (1.28)
- 2. Zeige:  $\exp(1) = e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$  (später)
- 3. Zeige, dass Exponentialgesetze für  $\exp(x)$  gelten:  $\exp(x+y) = \exp(x) + \exp(y) \quad \forall x, y \in \mathbb{R} \text{ (hier nicht)}$
- 4. Definiere:  $e^x = \exp(x) \quad \forall x \in \mathbb{R}$

Dies stimmt dann wegen 3. mit den bekannten Rechenregeln für Potenzen und Wurzen überein:

- $\bullet \ e^n = (\exp(1))^n = \exp(n)$
- $\left(\exp\left(\frac{n}{m}\right)\right)^m = \exp(n) = e^n \quad | \sqrt[n]{r}$  $\Rightarrow \exp\left(\frac{n}{m}\right) = (e^n)^{\frac{1}{m}} = e^{\frac{n}{m}} \quad \forall n, m \in \mathbb{N}$

Für irrationale Zahlen wird  $e^x$  dann mit Hilfe von  $e^x = \exp(x)$  berechnet.

So kann auch ein Computer z.B:  $e^{\pi}$  berechnen, indem  $\exp(\pi)$  ermittelt wird.

# 3.12 Bemerkung

a) Außer der Funktion  $e^x$  gibt es auch andere Funktionen die sich als Reihe darstellen lassen, z.B wird in Mathe III gezeigt, dass

$$cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

b) Wie Beispiel 3.9 zeigt, ist auf dem Rand des Konvergenzintervalls keine allgemeine Aussage über das Konvergenzverhalten der entsprechenden Potenzreihe möglich. Für  $\rho \neq \infty$  müssen die Randwerte gesondert untersucht werden.