第二部分 黑盒测试

- 1. 边界值测试
- 2. 等价类测试
- 3. 基于决策表测试

等价类测试/等价类划分

- 目标:测试用例集
 - 避免冗余
 - 减少遗漏 →完备性
- 依据:
 - "集合的<u>划分"</u>:将一个集合分成互不相交的若干子集,这些子集的并是该集合的全集。
 - 子集互不相交: 无冗余
 - 子集的并为全集: 提供了一种形式的完备性

等价类测试

- 基本思想:
 - 1. 划分等价类。
 - 2. 选取测试用例:
 - 从等价类(子集)中取若干元素来代表整个等价类
 - 等价类:输入域的子集。合理地假设:在该子集中,每一个数据对于 揭露程序的错误上是等效的。
 - 将所有可能的输入数据,即程序的输入域,划分为若干部分,从每一部分中选取少数有代表性的数据作为测试用例。
 - 覆盖所有的等价类
- 关键: 如何划分等价类。
- 特点: 典型的黑盒测试方法
 - 不考虑程序的内部结构,只依据程序的规格说明来设计测试用例。

等价类测试的几种分类

基于输入的等价类测试:根据输入划分等价类基于输出的等价类测试:根据输出划分等价类

• 强等价类测试:基于多缺陷假设 弱等价类测试:基于单缺陷假设

• 健壮等价类测试: 考虑无效数据的处理

一般等价类测试:不考虑无效数据的处理

等价类

•有效等价类:

- •是指对于程序的规格说明来说,是<u>合理的,有意</u> 义的输入数据所构成的集合;
- •检验程序是否实现了预期的功能。

•无效等价类:

- •是指对于程序的规格说明来说,是<u>不合理的,无</u> <u>意义的输入</u>数据所构成的集合;
- •检验程序对于无效数据的处理—意外处理能力,可靠性

例:基于输入的等价类划分

程序有两个输入变量x1、x2, 其边界及边界内的区间如下:

 $a \le x1 \le d$ 区间为[a, b), [b, c), [c, d] $e \le x2 \le g$ 区间为[e, f), [f, g]

x1的无效区间为: x1<a, x1>d x2的无效区间为: x2<e, x2>g

弱一般等价类测试

弱: 单缺陷假设

一般: 不考虑无效值

•对每个输入变量来说:自身的各个有效区间都被覆盖即可。

不完备,未覆盖:一半的有效等价类;无效等价类

强一般等价类测试

强: 多缺陷假设

一般: 不考虑无效值

- 所有输入变量的有效组合区间都被覆盖。
- •所有的有效等价类都被覆盖。

不完备,未覆盖:无效等价类

弱健壮等价类测试

弱: 单缺陷假设

健壮: 考虑无效值

- 1. 有效等价类:同"弱一般等价类测试",保证每个输入变量各自的有效区间被覆盖即可。
- 2. 无效等价类:覆盖使得单个输入变量无效的区间。

不完备,未覆盖:多个变量同时无效的等价类

强健壮等价类测试

强: 多缺陷假设

健壮: 考虑无效值

完备性:

- •所有的输入组合都被覆盖。
- •所有的等价类都被覆盖。

例:三角形问题

第一步: 划分等价类

R1={<a,b,c>: 有三条边a、b和c的等边三角形}

R2={<a, b, c>: 有三条边a、b和c的等腰三角形}

R3={<a,b,c>: 有三条边a、b和c的不等边三角形}

R4={<**a**, **b**, **c**>: 三条边**a**、**b**和**c**不构成三角形}

[注:是基于输出的等价类划分]

第二步: 选取测试用例

三角形问题: 弱(强)一般等价类测试用例

测试用例	a	b	С	预期输出
WN1	5	5	5	等边三角形
WN2	2	2	3	等腰三角形
WN3	3	4	5	不等边三角形
WN4	4	1	2	非三角形

•为什么弱(强)一般等价类测试用例相同?

•因为: <u>每个变量的**有效区间**</u>: $1 \le a \le 200$, 只有单个区间, **没有子区间**,不同于前面坐标所示的例子。

•所以每两个变量组成的坐标系中,根据输入得到的有效区间只有一个,等价类只有一个。

•方法:覆盖所有的有效等价类,(无论强弱)

三角形问题一弱健壮等价类测试用例

测试用例	a	b	c	预期输出
WR1	-1	5	5	a取值不在允许的范围内
WR2	5	-1	5	b取值不在允许的范围内
WR3	5	5	-1	c取值不在允许的范围内
WR4	201	5	5	a取值不在允许的范围内
WR5	5	201	5	b取值不在允许的范围内
WR6	5	5	201	c取值不在允许的范围内

(注意: 预期输出如何描述"无效的输入")

- •每次只有一个变量取无效值
- •每个变量对应两个无效区间

•如: a <1, a > 200

三角形问题的强健壮等价类测试用例 (部分)

测试用例	a	b	c	预期输出
SR1	-1	-1	5	a、b取值不在允许的范围内
SR2	5	-1	-1	b、c取值不在允许的范围内
SR3	-1	5	-1	a、c取值不在允许的范围内
SR4	-1	-1	-1	a、b、c取值不在允许的范围内

- •多个变量可以同时取无效值
- •部分,补充?
 - •单个变量取无效值
 - •每个变量对应两个无效区间

三角形问题的另一种等价类划分

用基于输入的等价类划分,可以更细化,得到更丰富的测试用例:

```
D1 = \{ \langle a, b, c \rangle : a = b = c \}
D2 = {\langle a, b, c \rangle: a = b, a \neq c, a+b > c }
D3 = \{\langle a, b, c \rangle; a = c, a \neq b, a+c > b \}
D4 = \{\langle a, b, c \rangle: c = b, a \neq c, c + b > a \}
D5 = {\langle a, b, c \rangle: b \neq a \neq c, a+b>c, a+c>b, b+c>a}
D6 = \{\langle a, b, c \rangle; a \geq b + c \}
D7 = \{\langle a, b, c \rangle; b \geq a + C \}
D8 = \{ \langle a, b, c \rangle : c > a + b \}
```

[注: 这里,实际是同时考虑输入和输出,即等边,等腰,不等边,非三角形]

例: NextDate问题

一种等价类划分法:

(单个变量的)有效等价类:

 $M1 = \{ 月份: 1 \leq 月份 \leq 12 \}$

D1 = {日期: 1≤日期≤31}

Y1 = {年: 1812≤年≤2012}

(单个变量的)无效等价类:

 $M2 = \{ 月份: 月份 < 1 \}$

M3 = {月份: 月份>12}

D2 = { 日期.: 日期<1 }

D3 = {日期: 日期>31}

Y2 = {年: 年<1812}

Y3 = {年: 年>2012}

另一种划分法

(单个变量的)有效等价类: •弱一般等价类测试?

M1 = {月份:每月有30天}

M2 = {月份:每月有31天}

M3 = {月份:此月是2月}

D1 = {日期: 1≤日期≤28}

D2 = {日期: 日期=29}

D3 = {日期: 日期=30}

D4 = {日期: 日期=31}

Y1 = {年: 年=2000}

Y2 = {年: 年是闰年}

Y3 = {年: 年是平年}

用例ID	月份	日期	年	预期输出
WR1	6	14	2000	6/15/2000
WR2	7	29	1996	7/30/1996
WR3	2	30	2002	不合理输入
WR4	6	31	2000	不合理输入

•强一般等价类测试,测试用例个数?

$$3\times4\times3=36$$

•强健壮等价类测试,测试用例个数?

$$5\times6\times5=150$$

例: 佣金问题一基于输入的等价类划分

有效等价类:

```
L1 = {枪机: 1≤枪机≤70}
S1 = {枪托: 1≤枪托≤80}
B1 = {枪管: 1≤枪管≤90}
```

无效等价类:

```
L2 = {枪机: 枪机<1}
L3 = {枪机: 枪机>70}
S2 = {枪托: 枪托<1}
S3 = {枪托: 枪托>80}
B2 = {枪管: 枪管<1}
B3 = {枪管: 枪管>90}
```

例: 佣金问题一基于输出的等价类划分

销售额 = 45 × 枪机 + 30 × 枪托 + 25 × 枪管

等价类:

S1 = {<枪机,枪钎>:销售额≤1000}

S2 = {<枪机,枪钎>: 1000<销售额≤1800}

S3 = {<枪机,枪钎>:销售额>1800}

用例ID	枪机	枪托	枪管	销售额	佣金
OR1	5	5	5	500	50
OR2	15	15	15	1500	175
OR3	25	25	25	2500	360

等价类测试的特点(书P97)

- 等价类测试的弱形式不如对应的强形式全面。
- 健壮性测试适用于 "错误处理非常重要"的软件。
- 通过结合边界值测试,等价类测试可得到加强。
- 在发现"合适"的等价关系之前,可能需要进行多次尝试。

(根据输入条件) 划分等价类的原则

- •一、如果输入条件规定了取值范围,或者值的个数,则可以确定一个有效等价类和两个无效等价类;
 - •例如,在需求规格说明中,对输入条件有一句话"... 项数可以从1到999 ...",则有效等价类是"1≤项数≤999",两个无效等价类是"项数<1"或"项数>999"。
 - •又如:输入"百分制的学生成绩"?
- •二、如果输入条件规定了取值的集合,或者是规定了"必须…"的条件,这时可以确立一个有效等价类和一个无效等价类;
 - •例如:性别; "标识符应以字母开头"
- •三、如果输入是一个布尔量,则可以确立两个有效等价类和一个无效等价类
 - •例如:婚否

(根据输入条件) 划分等价类的原则

- •四、如果输入数据规定了一组值,而且程序要对每一个输入值分别进行处理,这时要对每一个规定的输入值确立一个等价类,而对于这组值之外的所有值确立一个等价类;
 - •例如:在教师工作量计算中,规定对教授、副教授、讲师和助教分别计算分数,做相应的处理。→4个有效等价类:教授、副教授、讲师和助教,1个无效等价类:所有不符合以上身分的人员的输入值的集合。
- •五、如果规定了输入数据必须遵守的规则,则可以确立一个有效等价类(符合规则)和若干个无效等价类(从不同角度违反规则)。
 - 例如, C语言规定 "一个语句必须以分号';'结束"。这时,可以确定一个有效等价类 "以';'结束",若干个无效等价类 "以':'结束"、"以','结束"、"以','结束"等。
- •六、如果确知以划分的等价类中的各元素在程序中的处理方式 不同,则应进一步划分成更小的等价类

等价类测试的步骤

1. 划分等价类,建立等价类表:

输入条件	有效等价类	无效等价类	
•••••	••••	••••	
•••••	•••••	•••••	

2. 生成测试用例:

- (1) 为每一个等价类规定一个唯一的编号;
- (2) 设计一个新的测试用例,使其覆盖<u>尽可能多的</u>尚未覆盖的<u>有效</u>等 价类; 重复这一步骤,直到所有的有效等价类均被覆盖;
- (3)设计一个新的测试用例,使其只覆盖<u>一个无效</u>等价类,重复这一步骤,直到所有的无效等价类均被覆盖。

等价类测试的步骤

• 对有效等价类: 用一个测试用例覆盖尽可能多

对无效等价类:每个测试用例只覆盖一个

• 注:必须针对每个无效等价类分别设计测试用例。

例:需求规格说明"...科技类书20册",

测试用例为"小说10册"

若被测程序对书的<u>类型的处理出错</u>且对书的<u>数量的处</u> 理出错,

则上述测试用例可能使得测试员<u>只发现其中的一个错,</u> <u>而忽略了另一个错。</u>

案例1

等价类划分法—报表日期测试

某报表处理系统要求用户输入处理报表的日期, 日期限制在2001年1月至2005年12月,即系统只 能对该段期间内的报表进行处理,如日期不在此 范围内,则显示输入错误信息。系统日期规定由 年、月的6位数字字符组成,前四位代表年,后 两位代表月。

用等价类划分法设计测试用例,测试该系统的<u>且</u> <u>期检查功能</u>。 步骤1: 等价类划分

"报表日期"输入条件的等价类表

输入条件	有效等价类	无效等价类	
报表日期的类型及长度	6位数字字符(1)	有非数字字符 少于6个数字字符 多于6个数字字符	(4) (5) (6)
年份范围	在2001~2005之间(2)	小于2001 大于2005	(7) (8)
月份范围	在1~12之间(3)	小于1 大于12	(9) (10)

步骤2:设计有效类的测试用例

对表中编号为1, 2, 3的3个有效等价类用一个测试用例覆盖

输入	预期输出	覆盖范围		
20010 5	输入有效	等价类(1)(2)(3)		

步骤3:设计无效类的测试用例

对上表中每个无效类至少设计一个测试用例

输入	预期输出	覆盖范围
001WAY	输入无效	等价类(4)
20015	输入无效	等价类(5)
2001005	输入无效	等价类(6)
200005	输入无效	等价类(7)
200805	输入无效	等价类(8)
200100	输入无效	等价类(9)
200113	输入无效	等价类(10)

不能出现相同的测试用例

思考: 案例2

等价类划分法一测试 "Pascal编译器检查标识符的功能"

- · 在Pascal语言的某一版本中有如下有关标识符的规定:
 - "标识符是由字母开头,后跟字母或数字的任意组合构成。有效字符数为8个,最大字符数为80个。"
 - "标识符必须先说明,再使用。"
 - "在同一说明语句中,标识符至少必须有一个。"
- 用等价类划分法设计测试用例,测试"Pascal编译器是否能按规定检查标识符"

总结

- 等价类测试的思想
- 有效/无效等价类
- 强/弱,健壮/一般 等价类测试
- 基于输入/输出的等价类测试
- 等价类测试的经验
 - •根据输入条件,划分等价类的原则
 - •等价类测试的步骤

0	判断正误题	针对是否对无效数据进行测试,可将等价类测试分为一般等价类测试和强等价类测试。
0	判断正 误题	强等价类测试是基于多缺陷假设
	判断正误题	在使用等价类测试时,首先划分等价类,然后生成测试用例。其生成原则是:新生成的测试用例,应尽可能多地覆盖尚未覆盖的有效等价类和无效等价类;重复生成测试用例,
	判断正 误题	通过结合边界值测试,等价类测试可得到加强。