Floating Point: Recap

Format

The IEEE floating point format consists of three fields (from right to left, or from least significant to most significant): fraction, exponent, and sign. For the two most common formats, these fields are packed in either a 32-bit (single-precision, "float") or 64-bit (double-precision, "double") words.

	Single-precision	Double-precision
Fraction width (f)	23 bits (bits 0-22)	52 bits (bits 0-51)
Exponent width (e)	8 bits (bits 23-30)	11 bits (bits 52-62)
Sign width (s)	1 bit (bit 31)	1 bit (bit 63)
Bias	127 (2 ⁸ -1)	1023 (2 ¹¹ -1)

The interpretation of a given floating point representation depends on the value of the exponent field (e) (the table below assumes the single-precision floating point format; for double-precision 255 would become 2047, the rest stays the same).

Value of e	Representation	Effective exponent (E)	Effective fraction (M)	Value
e = 0	Denormalized	<i>E</i> = 1 − bias	M = 0.f	Value = 2 ^E × M
0 < e < 255	Normalized	<i>E</i> = e − bias	M = 1.f (implied 1)	Value = 2 ^E × M
e = 255	Special values	Not applicable	Not applicable	Value = ∞ or NaN

Special values include ∞ and NaN. The latter stands for Not a Number and is used to encode results that cannot be given as a real number or infinity (e.g., 0/0, $\infty - \infty$, or square root of -1).

Rounding

The IEEE floating point format specifies four rounding modes. The default mode is Round-to-even.

Mode	\$1.40	\$1.60	\$1.50	\$2.50	\$-1.50
Round-to-even	\$1	\$2	\$2	\$2	\$-2
Round-toward-zero	\$1	\$1	\$1	\$2	\$-1
Round-down	\$1	\$1	\$1	\$2	\$-2
Round-up	\$2	\$2	\$2	\$3	\$ - 1

1 of 3 3/10/19, 10:01 PM

Floating Point in C

All versions of C provide two different floating-point data types: **float** and **double**. On machines that support IEEE floating point, these data types correspond to single- and double-precision floating point.

There is no standard method in C to change the rounding mode or to get the special values such as -0, $+\infty$, $-\infty$, or *NaN*.

2 of 3 3/10/19, 10:01 PM

https://canvas.instructure.com/courses/1517115/...

3 of 3 3/10/19, 10:01 PM