DRONES FOR HUMANITY

Team Members' Positions

Name	Email	Position
Michael Mascari	mmascari2017@my.fit.edu	Programmer (Computer Vision/AI)
Ballard Barker	bbarker2017@my.fit.edu	Project Manager/ Structures
Matthew Backert	mbackert2017@my.fit.edu	Systems Engineer
Nicholas Davis	davisn2017@my.fit.edu	Avionics/ Propulsion/ Aerodynamics
Brendan Sanders	bsanders2017@my.fit.edu	Production/ Structures
CJ Gagni	cgagni2019@my.fit.edu	Avionics
Justin Williams	justin2017@my.fit.edu	Propulsion
Hamdan Alblooshi	halblooshi2016@my.fit.edu	Propulsion

Faculty Advisor and Client

- The CS faculty advisor for this project is Dr. Debasis Mitra
- The client for this project is the project team
- Client meetings on Thursdays at 4PM

Milestone 4

New comparison dataset

Ensemble methods

Progress Summary

Task	Completion %	To do
1. Ensemble Methods	100%	none
2. Better comparison dataset	100%	none

Task 1 – Ensemble Methods

- Three types of Neural Networks, MiniVGGY, MiniGoogLeNetY, and LeNetY, were combined to make an ensemble of neural networks.
- Take the average prediction of all three and use that as the prediction for the image.

		0.0	1.00	1.0	0	1.00	1370
		1.0	1.00	1.0	0	1.00	1354
accui		racy				1.00	2724
	macro	avg	1.00	1.0	0	1.00	2724
ei	ghted	avg	1.00	1.0	0	1.00	2724
ma	tplot	_	nd.Legen				
		Traii	ning Loss	and Acc	uracy F	INAL	
	1.00 -			<u> </u>			
	0.98 -		1 1	$\wedge \dot{\wedge} /$			
			\	V V			
Š	0.96 -	//	1 /				
Loss/Accuracy	0.94 -						
Acc			M				
/880	0.92 -		V				
9	0.90 -		V				
	0.88 -					train_acc	
						val_acc	
		0	5 1		5	20 25	5
				Epoch #			

precision recall f1-score

Task 2 – New comparison dataset

- Took a dataset of ~300 forest images from Kaggle
- Got about 96-97% accuracy with a much smaller dataset
- Gets tripped up by orange images
- Data augmentation and adding in extra orange images may increase accuracy

	precision	recall	f1-score	support
0	0.94	0.93	0.94	73
1	0.98	0.98	0.98	227
accuracy			0.97	300
macro avg	0.96	0.96	0.96	300
weighted avg	0.97	0.97	0.97	300

Milestone 5

- Task 1: Connect all physical components (Camera and Raspberry Pi)
- Task 2: Set up data stream from camera to neural network
- Task 3: Evaluation results
- Task 4: Set up GPS Chip signaling
- Task 5: Create poster for senior design