Aufgabe 1. Es gilt eine surjektive Funktion von S_n in die Menge P aller Partitionen von $\{1,\ldots,n\}$ zu konstruieren.

Beobachtung: Zerlegt man ein $\pi \in S_n$ in disjunkte Zyklen z_1, \ldots, z_m und interpretiert man die Zyklen $z = (k_1 \ldots k_j)$ als $\overline{z} = \{k_1, \ldots, k_j\}$ so ergibt $\{\overline{z}_1, \ldots, \overline{z}_m\}$ eine Menge von Mengen die $\in P$ ist. Beweis: Zu zeigen ist, dass für $\{\overline{z}_1, \ldots, \overline{z}_m\}$ die Bedingungen einer Partition gelten. Nach der Definition von Zyklen gilt $\overline{z}_i \in \mathcal{P}(\{1, \ldots, n\}), \ \overline{z}_i \neq \emptyset$ und $\overline{z}_1 \cup \cdots \cup \overline{z}_m = \{1, \ldots, n\}$. Weiters gilt $\overline{z}_i \cap \overline{z}_j = \emptyset$ für $i \neq j$ nachdem die Zyklen disjunkt sind.

Die gesuchte Funktion geht gemäß der obigen Beobachtung vor. Diese Funktion ist surjektiv, für alle $p \in P$ gibt es ein $\pi \in S_n$ mit $f(\pi) = p$, nachdem für den Inhalt einer beliebigen Partition $p = \{u_1, \ldots, u_k\} \in P$ und für (gemäß der obigen Ausführungen uminterpretierten) disjunkte Zyklen gleiche Bedingungen gelten. Die Funktion ist allerdings nicht injektiv, nachdem zwei verschiedene Zyklen — etwa (1 2 3) und (1 3 2) — zur gleichen Menge uminterpretiert werden.

Aufgabe 2. Könnte kein Topf leer sein, so würde es $\binom{n}{k}$ Möglichkeiten zur Aufteilung geben. Nachdem dies nicht der Fall ist, muss $\binom{n}{k}$ (keine leeren Töpfe), $\binom{n}{k-1}$ (ein leerer Topf), $\binom{n}{k-2}$ (zwei leeren Töpfe), ..., $\binom{n}{k-k}$ (k leere Töpfe) berechnet und summiert werden.

Aufgabe 3. Wenn die Reihenfolge der Bücher irrelevant wäre, so würde $\binom{n+k-1}{k-1}$ die Anzahl der Möglichkeiten modellieren, sie zu platzieren. Man denke die Böden zu "Separatoren" um. Dann gibt es für k Böden immer k-1 Separatoren, weil der erste Separator zwischen dem ersten und zweiten (und nicht unter dem ersten) "Stock" liegt. Im Kontext des Binomialkoeffizienten gibt es dann insgesamt n+k-1 mögliche Positionen zwischen denen k-1 Separatoren verschoben werden können.

		$\binom{n+k-1}{k-1}$	\mathbf{n}	k	$\left(\begin{smallmatrix} n+k-1\\k-1\end{smallmatrix}\right)$	
1	1	1	2	1	1	
1	2	2	2	2	3	
1	3	3	2	3	6	
1	4	4	2	4	10	

Nachdem die Reihenfolge der Bücher relevant ist, muss dieser Wert noch um die Anzahl der möglichen Permutationen der Menge der Bücher, $|S_n| = n!$, skaliert werden.