清华大学本科生考试试题专用纸
考试课程: 复变函数引论(A卷) (闭卷考试) 考试时间: 2007年6月25日晚上7:00-9:00
系别 班级 学号 姓名 考试教室 /一教
试卷说明: 1、试题分选择题、填空题、分析与计算题、证明题 四大部分,满分 80 分。 2、选择题、填空题答在试卷上,其余题目都要答在专用答题纸上,且注明题号。
一、选择题(每小题只有一个正确答案。把每题正确答案对应的字母填入每个题前方括号内; 填错位置或者直接打√或×视为无效。每小题3分,共15分)
[] 1、下列扩充平面集合中不是单连通区域的是: A. $\{z \in \overline{\mathbb{C}} : z < 1\}$, B. $\{z \in \overline{\mathbb{C}} : z \le 1\}$, C. $\{z \in \overline{\mathbb{C}} : z > 0\}$, D. $\{z \in \overline{\mathbb{C}} : z > 1\}$.
[] 2、在其内 $\tan(z^2+1)$ 可以展开成 Laurent 级数的圆环域是: A. $0< z <\frac{\pi}{4},$ B. $\frac{\pi}{4}< z <\frac{\pi}{2},$ C. $\frac{\pi}{2}< z <+\infty,$ D. 以上都不可以。
[] 3、 $u(x,y) = x^2 - y^2$ 在复平面 \mathbb{C} 上有共轭调和函数: A. xy , B. $-xy$, C. $2xy$, D. $2x^2y^2$.
[] 4 、设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 $r(r>0)$, 那么幂级数
$\sum_{n=0}^{\infty} (Re(c_n) + Im(c_n)) z^n 的收敛半径 R 满足:$
A. $r < R$, B. $r > R$, C. $r = R$, D. 以上都有可能成立。
[] 5 、 $z = \infty$ 是 $z^2(1 - \cos \frac{1}{z})$ 的 A. 可去奇点, B. 本性奇点, C. 一级极点, D. 以上都不是。
二、 填空题 (5 小题 6 个空,每个空 3 分,共 18 分)
1、 $\oint_C Im(z)dz =$ (其中 C 为正向圆周: $ z =1$)。
2 、 $e^{\frac{1}{z-1}}$ 在 $z=0$ 的 Taylor 级数的收敛半径是, 其中含 z^2 项的系数是
3、设 C 为正向圆周: $ z =3$,则积分 $\oint_C \frac{\sin(\pi z)}{z(z-1)^2} dz =$
4 、级数 $\sum_{n=-\infty}^{9} \frac{2^n + (-3)^n}{n^4 + e^{2n}} (z-1)^{n-5}$ 的收敛圆环域为

第1页/共2页

三、分析与计算题(4题,共34分,注意:每题要有完整的分析与计算过程,只写答案没有过程不给分)

1、(6 分) 假定 $A \neq 0$ 是一个复常数,设 f(z) 是 $\mathbb{C}\setminus\{A\}$ 上的解析函数,且 z = A 是 f(z) 的极点,试求出幂级数

$$\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{(n-1)!} z^n$$

所决定的和函数 F(z), 并确定此幂级数的收敛半径 R。

2、(12分,每小题各6分)计算实积分

(1).
$$I_1 = \int_0^{2\pi} \frac{d\theta}{5 + 4\cos\theta}, \quad (2). \qquad I_2 = \int_{-\infty}^{+\infty} \frac{\cos(2x)dx}{x^2 - 4x + 8}.$$

3、(8分) 找出函数

$$f(z) = z \sin \frac{z}{z - 1}$$

在扩充复平面 $\mathbb{C} \cup \{\infty\}$ 上的所有奇点并进行分类 (**须说明理由**, **如果是极点**, **必须指出其级数**),并且算出 f(z) 在所有孤立奇点处的留数。

4、(8 分) 设 f(z) 是圆盘 $\Delta = \{z \in \mathbb{C} : |z| < 2\}$ 上的非常数解析函数,试求使得以下两式成立的一组常数 a,b,c 和 d, 其中 b,d 是正整数。

$$(1). \qquad \left(\oint_{|\zeta|=1} \frac{f(\zeta)}{\zeta-z} d\zeta\right)^6 = a \oint_{|\zeta|=1} \frac{(f(\zeta))^b}{\zeta-z} d\zeta, \qquad \forall \, z \in \{z \in \mathbb{C} : |z| < 1\}.$$

$$(2). \qquad \frac{d^6}{dz^6} \left(\oint_{|\zeta|=1} \frac{f(\zeta)}{\zeta - z} d\zeta \right) = c \oint_{|\zeta|=1} \frac{f(\zeta)}{(\zeta - z)^d} d\zeta, \ \forall \, z \in \{z \in \mathbb{C} : |z| < 1\}.$$

四、证明题 (2题, 共13分)

1、(8 分) 假设函数 f(z) = u + iv 在区域 D 内解析, 并且 $\arg f(z)$ 在 D 内是一个常数, 求证: f(z) 在区域 D 上是一个常数函数。

2、(5 分) 设 f(z) 在 \mathbb{C} 上解析,且满足 $|f(z)| \le |z|^2$. 证明: $f(z) = Kz^2$,这里 K 是某个满足 $|K| \le 1$ 的复常数。