5 WHAT IS CLAIMED IS:

1. A method for alleviating pain in a patient suffering from chronic pain comprising administering to said patient an analysesic effective amount of a compound of the formula:

10

15

20

25

wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl, heterocyclic, lower cycloalkyl, lower, cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron

- withdrawing group or electron donating group wherein the electron donating group or electron withdrawing group is acyclic; and wherein heterocyclic in R_2 and R_3 is furyl, thienyl, pyrazolyl, pyrrolyl, imidazolyl, indolyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl,
- piperidyl, pyrrolinyl, piperazinyl, quinolyl, triazolyl, tetrazolyl, isoquinolyl, benzofuryl, benzothienyl, morpholinyl, benzoxazolyl, tetrahydrofuryl, pyranyl, indazolyl, purinyl, indolinyl, pyrazolindinyl, imidazolinyl, imidazolindinyl, pyrrolidinyl, furazanyl, N-methylindolyl, methylfuryl, pyridazinyl, pyrimidinyl, pyrazinyl, epoxy, aziridino, oxetanyl or azetidinyl;

Z is O, S, S(O)_a, NR_6 ', or PR_4 ;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

 $\label{eq:ZY taken together is NR4NR5R7, NR4OR5, ONR4R7, OPR4R5, PR4OR5, SNR4R7, NR4SR7, SPR4R5, PR4SR7, NR4PR5R6 or PR4NR5R7, \\$

$$NR_4C-R_5$$
, SCR_5 , NR_4C-OR_5 , $SC-OR_5$;

 $\parallel \qquad \parallel \qquad \parallel \qquad \parallel \qquad \parallel$

O O O O

30

25

20

 R_6 ' is hydrogen, lower alkyl, lower alkenyl, or lower alkynyl and R_4 may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

 R_4 , R_5 and R_6 are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower

alkynyl, wherein R_4 , R_5 and R_6 may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

 R_7 is $COOR_8$, COR_8 , hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, which R_7 may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

 R_{B} is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4; and

a is 1-3.

10

15

20

25

30

35

- 2. The method according to Claim 1 wherein one of R_2 and R_3 is hydrogen.
- 3. The method according to Claim 1 wherein n is 1.
 - 4. The method according to Claim 1 wherein one of $\rm R_2$ and $\rm R_3$ is hydrogen and n is 1.
 - 5. The method according to Claim 1 wherein R is aryl lower alkyl and R, is lower alkyl.
 - 6. The method according to Claim 1 wherein

 R_{2} and R_{3} are independently hydrogen, lower alkyl, heterocyclic, heterocyclic loweralkyl, or ZY;

Z is O, NR_4 or PR_4 ;

Y is hydrogen or lower alkyl; or

ZY is $NR_5R_6R_7$, NR_5OR_6 , ONR_5R_7 , $NR_5C_7R_6$ or $NR_5C_7C_6$.

7. The method according to Claim 6 wherein

.

5 R₂ is hydrogen and R₃ is hydrogen, lower alkyl, heterocyclic, heterocyclic loweralkyl or ZY; Z is O, NR, or PR,; 10 Y is hydrogen, lower alkyl; or ZY is $NR_5NR_6R_7$, NR_5OR_6 , ONR_5R_7 , NR_5C-R_6 or NR_5C-OR_6 . 15 The method according to Claim 6 wherein R_2 is hydrogen and R_3 is lower alkyl, which may be unsubstituted or substituted with an electron 20 donating or electron withdrawing group, NR₄OR₅, or ONR₄R₇. 9. The method according to Claim 8 wherein R, is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR4OR6 or ONR4R7, wherein R4, R_s and R_7 are independently hydrogen or lower alkyl, R is 25 aryl loweralkyl, which aryl group may be unsubstituted or substituted with an electron withdrawing group and R, is lower alkyl. The method according to Claim 9 wherein aryl is phenyl. 30 11. The method according to claim 6 wherein one of R, and R, is heterocyclic. The method according to Claim 11 wherein heterocyclic is heteroaromatic. The method according to Claim 11 wherein

aryl is phenyl and is unsubstituted or substituted with

The method according to Claim 9 wherein

R₃ is furyl, pyridyl, thienyl or thiazolyl.

35

halo.

- 5 15. The method according to Claim 1 wherein the compound is
 - (R) -N-Benzyl-2-acetamide-3-methoxypropionamide;

O-methyl-N-acetyl-D-serine-m-

10 fluorobenzylamide;

O-methyl-N-acetyl-D-serine-p-fluorobenzylamide;

N-acetyl-D-phenylglycinebenzylamide;

D-1,2-(N, O-dimethylhydroxylamino)-2-acetamide acetic acid benzylamide;

D-1,2-(O-methylhydroxylamino)-2-acetamido acetic acid benzylamide.

- 16. The method according to Claim 1 wherein the pain is neuropathic pain.
- 20 17. The method according to Claim 6 wherein the pain is neuropathic pain.
 - 18. The method according to Claim 1 wherein the pain is nociceptive pain.
 - 19. The method according to Claim 6 wherein the pain is nociceptive pain.
 - 20. A method for the prophylaxis or treatment of migraine headaches in a subject, comprising administering to said patient a headache relieving effective amount of a compound of the formula:

30

25

. 15

20

25

30

$$R - NH - \left\{ \begin{array}{c|c} R_2 \\ C - CNH \end{array} \right\}_{In} C - R_1$$

$$O R_3 O$$

10 wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

 R_2 and R_3 are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower alkyl heterocyclic lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R_2 and R_3 may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group;

Z is O, S, S(O), NR, or PR_{a} ;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or

substituted with an electron donating group or an electron withdrawing group, or

 $\label{eq:ZY taken together is $NR_4NR_5R_7$, NR_4OR_5, ONR_4R_7, OPR_4R_5, PR_4OR_5, SNR_4R_7, NR_4SR_7, SPR_4R_5 or PR_4SR_7, $NR_4PR_5R_6$ or $PR_4NR_5R_7$,$

10

25

35

$$NR_4C-R_5$$
, SCR_5 , NR_4C-OR_5 , $SC-OR_5$; $\parallel \qquad \parallel \qquad \parallel \qquad \parallel$ O O O O

 R_4 , R_5 and R_6 are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R_4 , R_5 and R_6 may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

 R_7 is $COOR_8$ or COR_8 , hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, which R_7 may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

 R_8 is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4;

a is 1-3;

30 wherein

heterocyclic contains from 3 up to 18 ring atoms and up to a total of 17 ring carbon atoms containing 1 to 4 hetero ring atoms selected from the group consisting of nitrogen, oxygen and sulfur.

21. The method according to Claim 20 wherein one of R_2 and R_3 is hydrogen.

- 5 22. The method according to Claim 20 wherein n is 1.
 - 23. The method according to Claim 20 wherein one of $\rm R_2$ and $\rm R_3$ is hydrogen and n is 1.
- 24. The method according to Claim 20 wherein R is aryl lower alkyl and R₁ is lower alkyl.
 - 25. The method according to Claim 20 wherein R_2 and R_3 are independently hydrogen, lower alkyl, aryl, aryllower alkyl, heterocyclic, heterocyclic loweralkyl or ZY;
- Is $Z ext{ is 0, NR}_4 ext{ or } PR_4;$

Y is hydrogen, lower alkyl, aryl, aryl loweralkyl, heterocyclic or heterocyclic lower alkyl; or

ZY taken together is $NR_4NR_5R_7$, NR_4OR_5 , ONR_4R_7 , NR_4C-R_5 , or NR_4C-OR_5 ; and

25

30

35

 $\rm R_4,\ R_5$ and $\rm R_7$ are independently hydrogen, lower alkyl, aryl or aryl lower alkyl.

26. The method according to Claim 25 wherein R_2 is hydrogen and R_3 is lower alkyl, aryl, aryllower alkyl, heterocyclic or heterocyclic lower alkyl, or ZY;

Z is O, NR4 or PR4;

Y is hydrogen, lower alkyl, aryl, aryl loweralkyl, heterocyclic or heterocyclic lower alkyl; or ZY taken together is $NR_4R_5R_7$, NR_4OR_5 , ONR_4R_7 ,

 NR_4C-R_5 , or NR_4C-OR_5 ; and \parallel O

15

- R_4 , R_5 and R_7 are independently hydrogen, lower alkyl, aryl or aryl lower alkyl.
- 27. The method according to Claim 26 wherein R_2 is hydrogen and R_3 is lower alkyl, which may be unsubstituted or substituted with an electron donating or electron withdrawing group, NR_5OR_6 , or ONR_5R_7 .
 - 28. The method according to Claim 26 wherein R_3 is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR_4OR_5 or ONR_4R_7 , wherein R_4 , R_5 and R_7 are independently hydrogen or lower alkyl, R is aryl loweralkyl, which aryl group may be unsubstituted or substituted with an electron withdrawing group and R_1 is lower alkyl.
- 20 29. The method according to Claim 26 wherein R_3 is heterocyclic.
 - 30. The method according to Claim 29 wherein heterocyclic is heteroaromatic.
- 31. The method according to Claim 30 wherein R_3 is furyl, pyridyl, thienyl or thiazolyl.
 - 32. The method according to Claim 28 wherein aryl is phenyl.
 - 33. The method according to Claim 28 wherein aryl is phenyl and is unsubstituted or substituted with halo.
 - 34. The method according to Claim 20 wherein the compound is
 - (R) -N-Benzyl-2-acetamide-3-methoxypropionamide;

O-methyl-N-acetyl-D-serine-p-fluorobenzylamide;

N-acetyl-D-phenylglycinebenzylamide;

D-1,2-(N, O-dimethylhydroxylamino)-2-acetamide acetic acid benzylamide; or

D-1,2-(O-methylhydroxylamino)-2-acetamido acetic acid benzylamide.

35. A method of treating a patient suffering from bipolar disease comprising administering thereto a therapeutically effective amount of a compound for treating bipolar disease, said compound having the formula:

20

10

15

$$R - NH - \begin{bmatrix} & & & \\ & & \\ & &$$

wherein

25 R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

 R_1 is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl, heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each

unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

 R_2 and R_3 are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R_2 and R_3 may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group;

Z is O, S, S(O)_a, NR_4 , or PR_4 ;

10

25

30

35

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

ZY taken together is $NR_4NR_5R_7$, NR_4OR_5 , ONR_4R_7 , OPR_4R_5 , PR_4OR_5 , SNR_4R_7 , NR_4SR_7 , SPR_4R_5 or PR_4SR_7 , $NR_4PR_5R_6$ or $PR_4NR_5R_7$,

$$NR_4C-R_5$$
, SCR_5 , NR_4C-OR_5 , $SC-OR_5$;

 $\parallel \qquad \parallel \qquad \parallel \qquad \parallel$
 $O \qquad O \qquad O \qquad O$

 R_4 , R_5 and R_6 are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R_4 , R_5 and R_6 may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

 R_7 is $COOR_8$, COR_8 , hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl wherein R_7 may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

5 R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and n is 1-4; and 10 a is 1-3. 36. The method according to Claim 35 wherein one of R2 and R3 is hydrogen. The method according to Claim 35 wherein 37. n is 1. 15 38. The method according to Claim 35 wherein one of R, and R, is hydrogen and n is 1. The method according to Claim 35 wherein 39. R is aryl lower alkyl and R, is lower alkyl. The method according to Claim 35 wherein 20 R2 and R3 are independently lower alkyl, aryl, aryllower alkyl, heterocyclic, heterocyclic lower alkyl, or ZY; Z is O, NR, or PR,; Y is hydrogen, lower alkyl, aryl, aryl loweralkyl, heterocyclic or heterocyclic lower alkyl; or 25 ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, NR₄C-R₅, or NR₄C-OR₅; and ∥. 0 30 R_4 , R_5 and R_7 are independently hydrogen, lower

alkyl, aryl or aryl lower alkyl.

The method according to Claim 40 wherein R, is hydrogen and R, is lower alkyl, aryl, aryllower alkyl, heterocyclic, heterocyclic lower alkyl or ZY;

Z is O, NR, or PR,;

Y is hydrogen, lower alkyl, aryl, aryl loweralkyl, heterocyclic or heterocyclic lower alkyl; or ZY taken together is $NR_4NR_5R_7$, NR_4OR_5 , ONR_4R_7 , NR_4C-R_5 , or NR_4C-OR_5 ; and

10 0 0

15

- $\mbox{R}_{4}, \mbox{ R}_{5}$ and \mbox{R}_{7} are independently hydrogen, lower alkyl, aryl or aryl lower alkyl.
- 42. The method according to Claim 41 wherein R_2 is hydrogen and R_3 is lower alkyl, which may be unsubstituted or substituted with an electron donating or electron withdrawing group, NR_4OR_5 , or ONR_4R_7 .
 - 43. The method according to Claim 41 wherein R_3 is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR_4OR_5 or ONR_4R_7 , wherein R_4 , R_5 and R_7 are independently hydrogen or lower alkyl, R is aryl loweralkyl, which aryl group may be unsubstituted or substituted with an electron withdrawing group and R_1 is lower alkyl.
- 25 44. The method according to Claim 41 wherein R_3 is heterocyclic.
 - 45. The method according to Claim 44 wherein heterocyclic is heteroaromatic.
- 46. The method according to Claim 45 wherein R_3 is furyl, pyridyl, thienyl or thiazolyl.
 - 47. The method according to Claim 43 wherein aryl is phenyl.
- 48. The method according to Claim 43 wherein aryl is phenyl and is unsubstituted or substituted with halo.

49. The method according to Claim 35 wherein the compound is (R)-N-Benzyl-2-acetamide-3-methoxy-propionamide;

O-methyl-N-acetyl-D-serine-m-fluorobenzylamide;

O-methyl-N-acetyl-D-serine-p-fluorobenzylamide;

N-acetyl-D-phenylglycinebenzylamide;

D-1,2-(N, O-dimethylhydroxylamino)-2-acetamide acetic acid benzylamide;

D-1,2-(0-methylhydroxylamino)-2-acetamido acetic acid benzylamide.

50. A method for treating a disorder in a mammal resulting from abnormal activity at the glycine, site of the NMDA receptor in neurons of said mammal comprising administering to said mammal a therapeutically effective amount of a compound to interact with the glycine, site of the NMDA receptor, said compound having the formula:

$$\begin{array}{c|c} R_2 \\ \hline \\ R-NH - \begin{bmatrix} -C-CNH - \end{bmatrix}_n & C-R_1 \\ \hline \\ O & R_3 & O \end{array}$$

5 wherein

10

15

20

25

30

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl, heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group;

Z is O, S, $S(O)_a$, NR_4 , or PR_4 ;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

 $\label{eq:ZY taken together is NR4NR5R7, NR4OR5, ONR4R7, OPR4R5, PR4OR5, SNR4R7, NR4SR7, SPR4R5 or PR4SR7, NR4PR5R6 or PR4NR5R7, \\$

10

15

20

25

30

35

 R_4 , R_5 and R_6 are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R_4 , R_5 and R_6 may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

 R_7 is $COOR_8$ or COR_8 , hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, which R_7 may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

 R_{B} is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4; and

a is 1-3.

51. The method according to Claim 1 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, carboxyamido, trifluoromethyl, lower alkoxy carbonyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, mercapto, loweralkylthio, and lower alkyldithio.

52. The method according to Claim 20 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, loweralkoxy carbonyl, lower alkenyl, lower alkynyl, formyl, aryl, arylloweralkanoyl,

- carboxyamido, hydroxy, loweralkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, aryl, aryl lower alkanoyl, trifluoromethyl, aryloxy, lower alkylthio, mercapto, and lower alkyldithio.
- the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, loweralkoxy carbonyl, lower alkenyl, lower alkynyl, formyl, aryl, arylloweralkanoyl, carboxyamido, hydroxy, loweralkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, aryl, aryl lower alkanoyl, trifluoromethyl, aryloxy, lower alkylthio, mercapto, and lower alkyldithio.
- 54. The method according to Claim 50 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, carboxyamido, trifluoromethyl, lower alkoxy carbonyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, mercapto, loweralkylthio, and lower alkyldithio.
 - 55. The method according to Claim 1 wherein the carbon atom which is substituted by $\rm R_2$ and $\rm R_3$ is in the D configuration.
- 56. The method according to Claim 20 wherein the carbon atom which is substituted by R_2 and R_3 is in the D configuration.
 - 57. The method according to Claim 35 wherein the carbon atom which is substituted by $\rm R_2$ and $\rm R_3$ is in the D configuration.

5 58. The method of Claim 1 wherein the compound is of the formula:

wherein

10

15

Ar is aryl which is unsubstituted or substituted with an electron donating or electron withdrawing group, and

Q is loweralkoxy.

- 59. The method according to Claim 56 wherein Ar is unsubstituted aryl or aryl substituted with halo.
- 20 60. The method according to Claim 56 wherein Q is methoxy.
 - 61. The method according to Claim 56 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.
- 25 62. The method according to Claim 56 wherein the carbon atom which is bonded to CH_2Q is in the D configuration.
 - 63. The method according to Claim 20 wherein Ar is unsubstituted aryl or aryl substituted with halo wherein the compound has the formula:

35

- 5
- and Q is lower alkoxy.
- 64. The method according to Claim 63 wherein Q is methoxy.
- 65. The method according to Claim 63 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.
 - 66. The method according to Claim 63 wherein the carbon atom which is bonded to CH_2Q is in the D configuration.
- 15 67. The method according to Claim 63 wherein the carbon atom which is bonded to CH_2Q is in the D configuration.
 - 68. The method of Claim 35 wherein the compound is of the formula:

25

wherein

Ar is aryl which is unsubstituted or substituted with an electron donating or electron withdrawing group, and

Q is loweralkoxy.

69. The method according to Claim 68 wherein Ar is unsubstituted aryl or aryl substituted with halo.

- 70. The method according to Claim 68 wherein Q is methoxy.
 - 71. The method according to Claim 68 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.
- 10 72. The method according to Claim 68 wherein the carbon atom which is bonded to CH_2Q is in the D configuration.