If R is a positive constant, then the graph of  $y = \sqrt{R^2 - x^2}$  is the top half of the circle of radius R centered at the origin.

As an example, this is graphed below for R=2.



**Exercise** 1 The domain of the function  $\sqrt{4-x^2}$  is [-2], and the range is [0], [2].

Hint: This is exactly the function graphed above.

**Exercise** 1.1 The domain of the function  $\sqrt{25-x^2}$  is [-5], [5] and the range is [0], [5].

**Hint:** This is  $\sqrt{R^2 - x^2}$  for R = 5. The graph of this function is a circle with what radius?

**Exercise** 1.1.1 The domain of the function  $\sqrt{R^2 - x^2}$  is [-R], and the range is [0], [R].

**Hint:** The graph of this function is a circle with what radius?