Incidentally, as for the Tm^{3+} -doped fluoride fiber using the 1.2 μ m band excitation, there have been no reports. However, 1.9 μ m band laser oscillation by a Tm-Ho codoped fiber into which both Tm^{3+} and holmium (Ho) are doped is reported (see, non-patent document 3). The report, however, neither utilizes the laser transition of Tm^{3+} from the 3H_4 to 3H_6 [[3H_5]] level, nor relates to the 2.3 μ m band.

Please amend the abstract at the end of the application as follows:

ABSTRACT

New fiber lasers, spontaneous emission sources, and optical fiber amplifiers are provided. Their conventional counterparts, which have a fiber doped with thulium (Tm) ions and excited by 0.67 μ m or 0.8 μ m pumping light, have a problem in that their characteristics are deteriorated with the elapse of time. The new fiber lasers, spontaneous emission sources, and optical fiber amplifiers use 1.2 μ m light as pumping light. Alternatively, they use a pumping source for exciting the thulium from the lowest energy level 3H_6 to 3H_5 excitation level. As a more preferable configuration, they improve the emission efficiency at 2.3 μ m band by <u>disclosing definig</u> Tm-doped host glass.