Hidden layers **Neural Network Programming Fundamentals** Learn the essentials of implementing neural networks effectively

Visib outpu layer

Objective

⇔ Goal

Learn the **fundamentals** of neural network programming

Important Techniques

Implement neural networks effectively with:

Vectorization

Avoid for-loops → Process entire training set at once

- **₹** Two-Phase Computation
- Forward Propagation
- Backward Propagation

Simplify concepts using Logistic Regression as an introductory model

Binary Classification Example

Classify an image as either cat (1) or not cat (0)

∃ Input (x)

A digital image represented as pixel values

Output (y)

A value of **0** or **1** representing the class

Cat

Not Cat

Representing an Image in a Computer

Image Storage

An image is stored as three matrices, each representing a color channel:

Red

Green

Blue

‡ Feature Vector

The image is converted into a long vector by unrolling all pixel values

Example: 64×64 Pixel Image

3 matrices of 64×64 pixels

$$64 \times 64 \times 3 = 12,288$$

Number of input features (nx)

Preparing the Training Data

A training example consists of a pair (x, y):

Input vector (image features)

 \rightarrow

Output label (0 or 1)

Training Set

Contains m examples:

Representing Data in Matrices

m Matrix Organization

To simplify programming and perform **efficient computations**:

Input Matrix X

Dimensions: $(n_x \times m)$

Each column = one training example

Output Matrix Y

Dimensions: (1 × m)

Each column = label corresponding to example in X

X Matrix

nx rows = features m columns = examples

Y Matrix

1 row = labels m columns = examples

Standard Notation Used

m

Number of Training Examples

Total examples in the dataset

nx

Number of Input Features

e.g., number of pixels in the image

X

Input Matrix

Size: $(n_x \times m)$

Y

Output Matrix

Size: **(1 × m)**

Notation Pattern

Single Example

(x, y)

Multiple Examples

(X, Y)

$$(x^1, y^1), (x^2, y^2), ..., (x^m, y^m) \rightarrow (X, Y)$$

Extension to Neural Networks

This representation pattern is also used when building multi-layer neural networks, where:

- Each layer has its own matrices
- Dimensions follow consistent patterns
- Vectorized operations apply across layers

Key Insight

Understanding this notation is **fundamental** to implementing neural networks efficiently