Thesis work

Table peptides 2-50 AAR - SwissProt (555426 proteins)

Felipe Araya Barrera 201173501-3 October 7th, 2017

Introduction

I attach the table with the results obtained based on the file **uniprot_sprot.fasta** (updated in September - 555426 proteins). This table is similar to Table 1 in the file Searching the protein sequence database, with the updated results:

Length of peptide (N)	Total possible N-peptides (20^N)	Number found	Percentage found (%)
1	20	20	100
2	400	400	100
3	8000	8000	100
4	160000	159999	99.99938
5	3200000	3113509	97.29716
6	64000000	32921109	51.43923
7	1280000000	84118859	6.571786
8	25600000000	100896814	0.3941282
9	512000000000	105834330	0.02067077
10	10240000000000	108976567	0.001064224
11	204800000000000	111551595	0.00005446855
12	4.096000×10^{15}	113751287	2.777131×10^{-6}
13	8.192000×10^{16}	115660117	1.411867×10^{-7}
14	1.638400×10^{18}	117330023	7.161256×10^{-9}
15	3.276800×10^{19}	118797220	3.625403×10^{-10}
16	6.553600×10^{20}	120090802	1.832440×10^{-11}
17	1.310720×10^{22}	121236766	9.249631×10^{-13}
18	2.621440×10^{23}	122255013	4.663659×10^{-14}
19	5.242880×10^{24}	123160391	2.349098×10^{-15}
20	1.048576×10^{26}	123966286	1.182235×10^{-16}
21	2.097152×10^{27}	124685091	5.945448×10^{-18}
22	4.194304×10^{28}	125325735	2.987998×10^{-19}
23	8.388608×10^{29}	125896961	1.500809×10^{-20}
24	1.677722×10^{31}	126406287	7.534402×10^{-22}
25	3.355443×10^{32}	126859712	3.780714×10^{-23}
26	6.710886×10^{33}	127262721	1.896362×10^{-24}
27	1.342177×10^{35}	127619577	9.508399×10^{-26}
28	2.684355×10^{36}	127934582	4.765935×10^{-27}
29	5.368709×10^{37}	128211241	2.388120×10^{-28}
30	1.073742×10^{39}	128452495	1.196307×10^{-29}
31	2.147484×10^{40}	128661754	5.991280×10^{-31}
32	4.294967×10^{41}	128841734	2.999830×10^{-32}
33	8.589935×10^{42}	128994975	1.501699×10^{-33}
34	1.717987×10^{44}	129123214	7.515960×10^{-35}
35	3.435974×10^{45}	129227999	3.761030×10^{-36}

Length of peptide (N)	Total possible N-peptides (20^N)	Number found	Percentage found (%)
36	6.871948×10^{46}	129311151	1.881725×10^{-37}
37	1.374390×10^{48}	129374023	9.413199×10^{-39}
38	2.748779×10^{49}	129418106	4.708203×10^{-40}
39	5.497558×10^{50}	129444962	2.354590×10^{-40}
40	1.099512×10^{52}	129455435	1.177390×10^{-42}
41	2.199023×10^{53}	129450779	5.886740×10^{-44}
42	4.398047×10^{54}	129431855	2.942940×10^{-45}
43	8.796093×10^{55}	129399352	1.471100×10^{-46}
44	1.759219×10^{57}	129354043	7.352926×10^{-48}
45	3.518437×10^{58}	129296497	3.674827×10^{-49}
46	7.036874×10^{59}	129227572	1.836434×10^{-50}
47	1.407375×10^{61}	129147725	9.176498×10^{-52}
48	2.814750×10^{62}	129057687	4.585050×10^{-53}
49	5.629500×10^{63}	128957792	2.290751×10^{-54}
50	1.125900×10^{65}	128848422	1.144404×10^{-55}

I also attach the Table 1 of the file mentioned in the beginning, so that you can see the notorious differences of the results obtained.

TABLE I

Length of peptide	Total possible N-peptides	Number found	Percentage found
N	20**N		
2	400	400	100.0
3	8,000	7,995	99.9
4	160,000	115,817	72.4
5	3,200,000	333,965	10.4
6	64,000,000	387,925	0.61
7	1,280,000,000	399,330	0.031
8	25,600,000,000	405,682	0.0016

FAB LATEX 2