Истраживачка станица Петница

ПРОЈЕКАТ Семинар математике

Експериментална класификација кубних форми над коначним пољима

Полазници Данило Ранђеловић Марко Лазић Меншори Душан Драгутиновић Димитрије Глукчевић

Београд, $ga\overline{u}y$ м $\kappa aga\ \overline{u}pega\overline{u}e\ pag$

Садржај

1	Увод	1			
2	Основни појмови	2			
3	Особине форми				
	3.1 Идентификатор	. 4			
	3.2 Карактеристика	. 6			
4	Класификација малих форми				
	4.1 Квадратне форме у пољу карактеристике два	. 8			
	4.2 Квадратне форме у пољу карактеристике већем од два	. 9			
5	Репрезентација	11			

Увод

Основни појмови

Дефиниција 2.1. Прстен свих мултиваријабилних полинома над n променљивих, над пољем \mathbb{F} , означаваћемо са $\mathbb{F}[X_1, X_2, \dots, X_n]$.

Дефиниција 2.2. Хомогени полином P степена d над пољем F у n променљивих дефинишемо као

$$P(x_1, x_2, \dots, x_n) = \sum_{i_1 + i_2 + \dots + i_n = d} c_{i_1, i_2, \dots, i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

где су сви коефицијенти c_i у пољу \mathbb{F} .

Дефиниција 2.3. Прстен свих хомогених мултиваријабилних полинома степена d над n променљивих у пољу \mathbb{F} означаваћемо са $\mathbb{F}[X_1, X_2, \dots, X_n]_d$.

У наставку рада, подразумеваћемо да радимо у пољу \mathbb{F}_p , коначном пољу просте карактеристике p. Даље, прстен из претходне дефиниције означаваћемо са $\mathbb{F}_p[X]_d^n$, а његове елементе називаћемо формама.

Дефиниција 2.4. $O\bar{u}u\bar{u}y$ линеарну $\bar{v}py\bar{u}y$ димензије n над пољем \mathbb{F} дефинишемо као

$$GL_n(\mathbb{F}) := \{ g \in \mathbb{M}_{n \times n}(\mathbb{F}) \mid \det(g) \neq 0 \}$$

заједно са операцијом множења матрица.

Другим речима, ово је група свих линеарних аутоморфизама векторског простора димензије n.

Дефиниција 2.5. $\Pi poc \overline{w}op \ \overline{u}poменљивих V_n$ је скуп свих n-торки са елементима из поља \mathbb{F}_p .

Скуп V_n можемо еквивалентно посматрати као векторски простор матрица димензија $1 \times n$ над пољем \mathbb{F}_p , односно као скуп $\mathbb{M}_{1 \times n}(\mathbb{F}_p)$.

Дефиниција 2.6. Нека је $x=[x_1,x_2,\ldots,x_n]\in \mathbb{V}_n$. Тада за $g\in GL_n(\mathbb{F}_p)$ дефинишемо функцију $\circ:GL_n(\mathbb{F}_p)\times \mathbb{V}_n\longrightarrow \mathbb{V}_n$ са

$$\circ (g,x) \coloneqq [x_1,x_2,\ldots,x_n]g^T.$$

Тврдња 2.1. Функција \circ представља дејство групе $GL_n(\mathbb{F}_p)$ на скуп \mathbb{V}_n .

Доказ. Довољно је проверити аксиоме дејства:

- $\bullet \circ (e, x) = xe^T = xe = x.$
- $\bullet \circ (g, \circ (h, x)) = \circ (g, xh^T) = xh^Tg^T = x(gh)^T = \circ (gh, x).$

Имајући ово у виду, дејство линеарног пресликавања $g \in GL_n(\mathbb{F}_p)$ на елемент $x \in \mathbb{V}_n$ означаваћемо са gx. Приметимо да ово дејство представља инвертибилну линеарну смену променљивих.

Дефиниција 2.7. Релацију \sim на скупу $\mathbb{F}_p[X]_d^n$ дефинишемо на следећи начин:

$$q_1 \sim q_2 \Leftrightarrow (\exists g \in GL_n(\mathbb{F}_p)) \ (\forall x \in \mathbb{V}_n) \ q_1(x) = q_2(gx).$$

Тврдња 2.2. Релација \sim је релација еквиваленције.

Доказ. Доказујемо редом рефлексивност, симетричност и транзитивност ове релације:

- Одабиром g = e добијамо $q \sim q$.
- Из $q_1(x) = q_2(qx)$ следи и $q_2(x) = q_1(q^{-1}x)$.
- Из $q_1(x) = q_2(gx)$ и $q_2(x) = q_3(hx)$ следи и $q_1(x) = q_3(hgx)$.

Кажемо да су форме q_1 и q_2 еквивален \overline{w} не ако и само ако $q_1 \sim q_2$, и тада g називамо надре \overline{b} еним ау \overline{w} омор ϕ измом.

Са $\mathcal{A}(n,d,p)$ означавамо скуп класа еквиваленције ове релације. За фиксне тројке $(n,d,p), n \geq 2$, оценићемо $|\mathcal{A}|$ поступком који се може генерализовати на форме вишег степена, не ослањајући се на познате резултате добијене карактеризацијом квадратних форми.

Особине форми

Тројку (n,d,p) сматрамо унапред фиксираном. Подразумевамо да ознаке користе ову одређену тројку уколико није другачије речено. Такође, подразумевамо да форме припадају управо прстену $\mathbb{F}_p[X]_d^n$.

3.1 Идентификатор

Дефиниција 3.1. Нека је q форма. За $k=0,1,\ldots,p-1$ дефинишемо κ ласе $oc\overline{u}a\overline{u}\kappa a\ k$

$$C_k(q) := \{x \in \mathbb{V}_n \mid q(x) = k\}.$$

Приметимо да важи $\bigsqcup_{i=0}^{p-1} \mathcal{C}_i(q) = \mathbb{V}_n$. Другим речима, скуп $\{\mathcal{C}_i(q)\}_{i=0}^{p-1}$ представља $pas\delta ujaњe$ скупа \mathbb{V}_n .

Дефиниција 3.2. Нека је q форма. $Иден\overline{u}u\phi u\kappa a\overline{u}op$ форме q је скуп

$$\mathbb{I}_q := \{(k, |\mathcal{C}_k(q)|) \mid k = 0, 1, 2, \dots, p - 1\}.$$

Јасно је да свака форма индукује једно разбијање скупа \mathbb{V}_n . Поставља се следеће питање:

Aа ли можемо класификова \bar{u} и форме на основу разбијања које индукују?

Другим речима, можемо ли искористити изглед разбијања да опишемо дејство произвољног елемента $GL_n(\mathbb{F}_p)$ на посматрану форму? Делимичан одговор нам даје следећа теорема.

Теорема 3.1. Нека су a и b две еквивалентне форме. Тада

$$\mathbb{I}_a = \mathbb{I}_b$$
.

Доказ. Нека је $g \in GL_n(\mathbb{F}_p)$ један надређени аутоморфизам ове две форме. Нека је $k \in \{0,1,2,\ldots,p-1\}$ произвољно. Доказаћемо да је функција $f_k: \mathcal{C}_k(a) \longrightarrow \mathcal{C}_k(b)$ дефинисана са

$$f_k(x) = gx$$

добро дефинисана бијекција. Заиста, нека је $x \in \mathcal{C}_k(a)$ произвољно. Приметимо

$$b(f_k(x)) = b(gx) = a(x) = k$$

одакле $f_k(x) \in \mathcal{C}_k(b)$, па је f_k заиста добро дефинисана. Имајући у виду да је g аутоморфизам простора \mathbb{V}_n , функција f_k је рестрикција дејства елемента g на скуп $\mathcal{C}_k(a)$, па самим тим мора важити

$$|\mathcal{C}_k(a)| \leq |\mathcal{C}_k(b)|.$$

Слично, g^{-1} је надређени аутоморфизам између b и a, па можемо закључити да у претходној неједнакости важи једнакост, одакле следи тврђење.

Често ћемо се служити контрапозицијом ове теореме.

Лема 3.1. Нека су a и b две форме са различитим идентификаторима. Тада a и b нису еквивалентне.

Приметимо да смо у доказу теореме 3.1 доказали нешто јаче од њене почетне тврдње; не само да постојање аутоморфизма g гарантује да су скупови $C_k(a)$ и $C_k(b)$ исте кардиналности, већ је ово фиксно g изоморфизам између поменутих скупова *за свако* $k \in \{0, 1, 2, \ldots, p-1\}$.

Знајући да је g линеарна трансформација, закључујемо да је структура \mathbb{V}_n одржана не само унутар класа истог остатка, већ и између елемената класа различитих остатака.

3.2 Карактеристика

Констатујмо сада два позната тврђења алгебре.

Тврдња 3.1. Свако поље **F** је домен јединствене факторизације.

Лема 3.2. Уколико је K домен јединствене факторизације, тада је и прстен полинома K[X] домен јединствене факторизације.

Узастопним примењивањем леме 3.2 можемо закључити и да је прстен $\mathbb{F}_p[X]_d^n$ такође домен јединствене факторизације. Мотивисани овим, доказујемо лему која следи.

Лема 3.3. Нека је q иредуцибилна форма. Тада је свака њој еквивалентна форма такође иредуцибилна.

Доказ. Претпоставимо супротно; нека је q_1 произвољна редуцибилна форма која је еквивалентна форми q. Тада, за неко g, можемо написати

$$q(x) = q_1(gx) = a(gx)b(gx)$$

за две неконстантне (ненула) форме a и b. Ово очито контрадиктује иредуцибилност форме q.

Сада смо спремни да уведемо још једну особину форми која је заједничка свим формама унутар исте класе еквиваленције релације \sim .

Дефиниција 3.3. Нека је q форма. За i = 1, 2, ..., d дефинишемо $c_i(q)$ као број иредуцибилних форми степена i које улазе у факторизацију форме q.

Дефиниција 3.4. Нека је q форма. $\mathit{Kapak}\overline{\mathit{mepuc}}\overline{\mathit{muka}}$ форме q је скуп

$$\mathcal{K}_q := \{(i, c_i(q)) \mid i = 1, 2, \dots, d\}.$$

Теорема 3.2. Нека су a и b две еквивалентне форме. Тада

$$\mathcal{K}_a = \mathcal{K}_b$$
.

 $\ensuremath{\mathcal{A}}$ оказ. По леми 3.3, надређени аутоморфизам форми a и b одржава иредуцибилност сваке форме која улази у факторизацију форме a. Дакле, трансформацијом тих иредуцибилних форми добијамо факторизацију форме b, одакле следи тврђење.

Поново, наводимо контрапозицију ове теореме.

Лема 3.4. Нека су a и b две форме са различитим карактеристикама. Тада a и b нису еквивалентне.

Следећа теорема, у комбинацији са лемом 3.4, нам дозвољава да конструишемо међусобно нееквивалентне форме.

Теорема 3.3. Нека је A произвољан скуп облика

$$A = \{(i, b_i) \mid (\forall i \in \{1, 2, \dots, d\}) \ b_i \in \mathbb{N}_0\}.$$

Тада важи еквиваленција

$$(\exists q) \ \mathcal{K}_q = A \Longleftrightarrow \sum_{i=1}^d ib_i = d.$$

Доказ. Доказујемо оба смера еквиваленције одвојено.

- (\Rightarrow) Лева страна једнакости представља допринос сваке иредуцибилне форме степену форме q, који износи d.
- (\Leftarrow) За свако $i \in \{1, 2, ..., d\}$, одаберимо по b_i иредуцибилних форми степена i. Њихов производ је управо форма степена d.

У наставку се бавимо конкретним тројкама (n,d,p), где ћемо форме најпре класификовати по њиховој карактеристици, а затим и по идентификатору.

Класификација малих форми

Број различитих моничних монома степена d у n променљивих износи $\binom{n+d-1}{d}$. Свака оваква t-торка једнозначно кореспондира хомогеном полиному из $\mathbb{F}_p[X]_d^n$. Лако се проверава да је пресликавање задато са

$$(c_1, c_2, ..., c_t) \in \mathbb{F}_p^t \longleftrightarrow \sum_{i_1 + i_2 + ... + i_n = d} c_{i_1, i_2, ..., i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

добро дефинисана бијекција, уколико кажемо да c_k представља коефицијент уз k-ти по реду лексикографски најмањи моном. Надаље, ова t-торка је \bar{u} ридружена одговарајућој форми.

Тврдња 4.1. Елементе прстена $\mathbb{F}_p[X]_d^n$ можемо посматрати као векторски простор димензије $t=\binom{n+d-1}{d},$ над пољем скалара $\mathbb{F}_p.$

Овај векторски простор надаље означавамо са \mathbb{V}_t . Појам линеарне зависности (и независности) форми дефинишемо као и у сваком другом векторском простору.

4.1 Квадратне форме у пољу карактеристике два

Теорема 4.1. Нека је $q \in \mathbb{F}_2[X]_2^n$ произвољна форма. Тада је она или иредуцибилна, или је еквивалентна некој од следећих форми:

- $a(x) \equiv 0$ (a je нула-форма)
- $a(x) = x_1 x_2$.
- $a(x) = x_1^2$.

Притом, наведене форме никада нису међусобно еквивалентне.

Доказ. У случају када је q иредуцибилна или нула-форма, тврђење следи. Нека је даље q(x) = b(x)c(x), где су b и c линеарне форме. Разликујемо два случаја:

• Форме b и c су линеарно независне. Нека је g надређени аутоморфизам форми x_1 и b, као и форми x_2 и c (посматрајући их као елементе векторског простора V_n). Овакво g постоји, зато што линеарна независност b и c не нарушава инвертибилност трансформације. Приметимо

$$x_1 x_2 = b(gx)c(gx) = q(gx)$$

одакле следи тврђење.

• Форме b и c су линеарно зависне. С обзиром на то да радимо у пољу карактеристике два, мора важити b(x) = c(x). Нека је g надређени аутоморфизам форми x_1 и b. Уочимо

$$x_1^2 = b(gx)^2 = q(gx)$$

одакле следи тврђење.

Остаје да докажемо да поменуте форме никада нису међусобно еквивалентне; међутим, ово следи директно из леме 3.4.

Све иредуцибилне форме имају исту карактеристику. Ради њихове даље класификације, служићемо се њиховим идентификаторима у једном од следећих поглавља.

4.2 Квадратне форме у пољу карактеристике већем од два

Коначна поља карактеристике веће од два захтевају посебан коментар због појаве квадратних неостатака.

Теорема 4.2. Нека је $q \in \mathbb{F}_p[X]_2^n$ произвољна форма. Тада је она или иредуцибилна, или је еквивалентна некој од следећих форми:

- $a(x) \equiv 0$
- $a(x) = x_1 x_2$

- $a(x) = x_1^2$
- $a(x) = \omega x_1^2$, где је ω примитивни корен по модулу p.

Притом, наведене форме никада нису међусобно еквивалентне.

Доказ. Случај када је q иредуцибилна, нула-форма или производ две линеарно независне форме, спроводимо као у доказу теореме 4.1. Нека је сада q(x) = b(x)c(x), где су b и c две линеарно зависне форме. Разликујемо два случаја:

• b(x) = kc(x), где је k квадратни остатак по модулу p. Нека је $j \in \mathbb{F}_p$ такво да $k = j^2$. Сада је очито

$$q(x) = (jc(x))^2$$

па можемо поступити слично доказу теореме 4.1. Оваква форма је еквивалентна форми x_1^2 .

• b(x) = lc(x), где је l квадратни неостатак по модулу p. Може се доказати да је $l = \omega j^2$ за неко $j \in \mathbb{F}_p$. Сада је

$$q(x) = \omega(jc(x))^2$$

одакле сличним поступком из доказа теореме 4.1 закључујемо да је оваква форма еквивалентна форми ωx_1^2 .

Иако форме x_1^2 и ωx_1^2 имају исту карактеристику, њихови идентификатори нису исти. Наиме, примећујемо

$$|\mathcal{C}_1(x_1^2)| \ge 1 > 0 = |\mathcal{C}_1(\omega x_1^2)|$$

па су ове форме заиста нееквивалентне.

5

Репрезентација

Дефиниција 5.1. Репрезентација групе G над векторским простором \mathbb{F}^n представља хомоморфизам $\rho: G \longrightarrow GL_n(\mathbb{F})$

Дефиниција 5.2. Дефинишемо репрезентацију $\varphi:GL_n(\mathbb{F}_p)\longrightarrow GL_t(\mathbb{F}_p)$ на следећи начин. За свако $g\in GL_n(\mathbb{F}_p),\ \varphi(g)$ је елемент $GL_t(\mathbb{F}_p)$ такав да је за сваки полином $f(x)\in \mathbb{F}[X]_d^n,\ x\in \mathbb{V}_n$ и њему придружен $f_t\in \mathbb{F}^t$ важи

$$f(gx) = \varphi(g)f_t$$

Имплементација алгоритма који мора да рачуна дејство групе над полиномима која представља хомогене полиноме као елементе \mathbb{F}^t а дејство као множење матрицом избегава репетитивну употребу симболичких калкулација, што знатно смањује време извршавања алгоритма. Дејство елемената $\varphi(g)$ над \mathbb{F}^t је управо множење вектора матрицом. Калкулација $\varphi(g)$ је тривијална.