Pre-lecture brain teaser

What is the running time of the following algorithm:

Consider computing f(x, y) by recursive function + memoization.

$$f(s,s) = \sum_{i=1}^{min(x,y)} x * f(x+y-i, i-1), \Rightarrow o(n)$$

$$f(0,y) = y \qquad f(x,0) = x.$$

$$f(x,y) = x+y-i = x+y-i$$

$$f(x+y-i, i-1), \Rightarrow o(n)$$

$$f(x,y) = y \qquad f(x,0) = x.$$

The resulting algorithm when computing f(n, n) would take:

- (a) $O(n^2)$
- (b) $O(n^3)$

 $\mathcal{O}(n) \cdot \mathcal{O}(n^2) = \mathcal{O}(n^3)$

- (c) $O(2^n)$
- (d) $O(n^n)$
- (e) The function is ill defined it can not be computed.

ECE-374-B: Lecture 13 - Dynamic Programming II

Instructor: Abhishek Kumar Umrawal

March 5, 2024

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

What is the running time of the following algorithm:

Consider computing f(x, y) by recursive function + memoization.

$$f(x,y) = \sum_{i=1}^{\min(x,y)} x * f(x+y-i, i-1),$$

$$f(0,y) = y \qquad f(x,0) = x.$$

The resulting algorithm when computing f(n, n) would take:

- (a) $O(n^2)$
- (b) $O(n^3)$
- (c) $O(2^n)$
- (d) $O(n^n)$
- (e) The function is ill defined it can not be computed.

Recipe for Dynamic Programming

- 1. Develop a recursive backtracking style algorithm ${\mathcal A}$ for given problem.
- 2. Identify structure of subproblems generated by \mathcal{A} on an instance I of size n
 - 2.1 Estimate number of different subproblems generated as a function of n. Is it polynomial or exponential in n?
 - 2.2 If the number of problems is "small" (polynomial) then they typically have some "clean" structure.
- 3. Rewrite subproblems in a compact fashion.
- Rewrite recursive algorithm in terms of notation for subproblems.
- Convert to iterative algorithm by bottom up evaluation in an appropriate order.
- 6. Optimize further with data structures and/or additional ideas.

Edit Distance and Sequence Alignment

Spell Checking Problem

Given a string "<u>exponen</u>" that is not in the dictionary, how should a <u>spell checker</u> suggest a <u>nearby</u> string?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a <u>nearby</u> string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a distance between them?

Spell Checking Problem

Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a <u>nearby</u> string?

What does nearness mean?

Question: Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a distance between them?

Edit Distance: minimum number of "edits" to transform x into y.

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between **FOOD** and **MONEY** is at least 4:

$$\underbrace{\frac{FOOD}{\uparrow}}_{\text{Substitution}} \xrightarrow{\text{Insortion}} \underbrace{MONOD}_{\text{Sub}} \xrightarrow{\text{MONED}} \underbrace{\uparrow}_{\text{Sub}} \underbrace{MONEY}_{\text{Sub}}$$

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

mismatched letters mean substitution.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i,j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1,1), (2,2), (3,3), (4,5)\}$.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i,j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1,1),(2,2),(3,3),(4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications

- Spell-checkers and Dictionaries
- Unix diff
- DNA sequence alignment ... but, we need a new metric

Sequence alignment problem - Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost δ .
- [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Sequence alignment problem - Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost δ .
- [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{pq} = 1$.

Edit distance as alignment

An Example

Example

Alternative:

Or a really stupid solution (delete string, insert other string):

 $Cost = 19\delta$.

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

374

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

373

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

What is the edit distance between...

What is the minimum edit distance for the following two strings, if insertion/deletion/change of a single character cost 1 unit?

37

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

Sequence Alignment

Input Given two words X and Y, and gap penalty δ and mismatch costs α_{pq}

Goal Find alignment of minimum cost

Edit distance: The algorithm

Edit distance - Basic observation

Let
$$X = \alpha x$$
 and $Y = \beta y$

 α, β : strings.

x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider last column of alignment of the two strings:

α	X
β	y

or

or

αx	
β	у

Prefixes must have optimal alignment!

Problem Structure

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the m^{th} position of X remains unmatched or the n^{th} position of Y remains unmatched.

- Case x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- Case x_m is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- Case y_n is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Subproblems and Recurrence

$x_1 \dots x_{i-1}$	Xi	or	$x_1 \dots x_{i-1}$	X	or	$x_1 \dots x_{i-1} x_i$	
$y_1 \dots y_{j-1}$	Уј	Oi	$y_1 \cdots y_{j-1} y_j$		Oi	$y_1 \dots y_{j-1}$	Уj

Optimal Costs

Let Opt(i,j) be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$.

Then

$$\operatorname{Opt}(i,j) = \min egin{cases} lpha_{x_i y_j} + \operatorname{Opt}(i-1,j-1), \ \delta + \operatorname{Opt}(i-1,j), \ \delta + \operatorname{Opt}(i,j-1) \end{cases}$$

Subproblems and Recurrence

$x_1 \dots x_{i-1}$	Xi	or	$x_1 \dots x_{i-1}$	X	or	$x_1 \dots x_{i-1} x_i$	
$y_1 \dots y_{j-1}$	Уj	Oi	$y_1 \cdots y_{j-1} y_j$		Oi	$y_1 \dots y_{j-1}$	Уj

Optimal Costs

Let Opt(i,j) be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$.

Then

$$\operatorname{Opt}(i,j) = \min egin{cases} lpha_{x_i y_j} + \operatorname{Opt}(i-1,j-1), \ \delta + \operatorname{Opt}(i-1,j), \ \delta + \operatorname{Opt}(i,j-1) \end{cases}$$

Base Cases: Opt $(i,0) = \delta \cdot i$ and Opt $(0,j) = \delta \cdot j$

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n] Array COST stores cost of matching two chars. Thus COST[a,b] give the cost of matching character a to character b.

```
\begin{split} EDIST(A[1..m], B[1..n]) \\ \text{If } & (m=0) \text{ return } n\delta \\ \text{If } & (n=0) \text{ return } m\delta \\ m_1 &= \delta + EDIST(A[1..(m-1)], B[1..n]) \\ m_2 &= \delta + EDIST(A[1..m], B[1..(n-1)])) \\ m_3 &= COST[A[m], B[n]] + EDIST(A[1..(m-1)], B[1..(n-1)]) \\ \text{return } \min(m_1, m_2, m_3) \end{split}
```

	ε	D	R	E	A	D
ε						
D						
Ε						
Ε						
D						

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1, j-1), \\ \delta + \operatorname{Opt}(i-1, j), \\ \delta + \operatorname{Opt}(i, j-1) \end{cases}$$

- Opt(i, 0) = δ · i
 Opt(0, j) = δ · j

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1					
Ε	2					
Ε	3					
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{\mathsf{x}_i \mathsf{y}_j} + \mathrm{Opt}(i-1,j-1), \\ \delta + \mathrm{Opt}(i-1,j), \\ \delta + \mathrm{Opt}(i,j-1) \end{cases}$$

•
$$\operatorname{Opt}(0,j) = \delta \cdot$$

	ε	D	R	Ε	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Ε	2					
Ε	3					
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min \begin{cases} \alpha_{\mathsf{x}_i \mathsf{y}_j} + \mathrm{Opt}(i-1,j-1), \\ \delta + \mathrm{Opt}(i-1,j), \\ \delta + \mathrm{Opt}(i,j-1) \end{cases}$$

• Opt
$$(0,j) = \delta \cdot j$$

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Ε	2	1	1	1	2	3
Ε	3					
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min egin{cases} lpha_{\mathsf{x}_i y_j} + \mathrm{Opt}(i-1,j-1), \ \delta + \mathrm{Opt}(i,j-1), \ \delta + \mathrm{Opt}(i,j-1) \end{cases}$$

• Opt
$$(0,j) = \delta \cdot j$$

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Ε	2	1	1	1	2	3
Ε	3	2	2	1	2	3
D	4					

$$\operatorname{Opt}(i,j) =$$

$$\min egin{cases} lpha_{\mathsf{x}_i \mathsf{y}_j} + \operatorname{Opt}(i-1,j-1), \ \delta + \operatorname{Opt}(i,j-1), \ \delta + \operatorname{Opt}(i,j-1) \end{cases}$$

•
$$\operatorname{Opt}(0,j) = \delta \cdot j$$

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Ε	2	1	1	1	2	3
Ε	3	2	2	1	2	3
D	4	3	3	2	2	2

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	4
Ε	2	1	1	1	2	3
Ε	3	2	2	1	2	3
D	4	3	3	2	2	2

D	R	Е	Α	D
D	Е	Е		D

Example: DEED and DREAD

	ε	D	R	E	A	D	
ε	0	1	2	3	4	5	
D	1	0	1	2	3	4	
Ε	2	1	1	1	2	3	
Ε	3	2	2	1	2	3	
D	4	3	3	2	2	2	

Example: DEED and DREAD

	ε	D	R	E	A	D	
ε	0	1	2	3	4	5	
D	1	0	1	2	3	4	
Ε	2	1	1	1	2	3	
Ε	3	2	2	1	2	3	
D	4	3	3	2	2	2	

Dynamic programming algorithm for

edit-distance

As part of the input...

The cost of aligning a character against another character

Σ: Alphabet

We are given a <u>cost</u> function (in a table):

$$\forall b, c \in \Sigma$$
 $COST[b][c] = \text{cost of aligning } b \text{ with } c.$ $\forall b \in \Sigma$ $COST[b][b] = 0$

 δ : price of deletion of insertion of a single character

Dynamic program for edit distance

```
EDIST(A[1..m], B[1..n])
      int M[0..m][0..n]
      for i = 1 to m do M[i, 0] = i\delta
      for j = 1 to n do M[0, j] = j\delta
      for i = 1 to m do
             for j = 1 to n do
                    M[i][j] = \min \begin{cases} COST \left[ A[i] \right] \left[ B[j] \right] + M[i-1][j-1], \\ \delta + M[i-1][j], \\ \delta + M[i][i-1] \end{cases}
```

Dynamic program for edit distance

```
EDIST(A[1..m], B[1..n])
      int M[0..m][0..n]
      for i = 1 to m do M[i, 0] = i\delta
      for j = 1 to n do M[0, j] = j\delta
      for i = 1 to m do
            for j = 1 to n do
                  M[i][j] = \min \begin{cases} COST[A[i]][B[j]] + M[i-1][j-1], \\ \delta + M[i-1][j], \\ \delta + M[i][i-1] \end{cases}
```

Analysis

- Running time is O(mn).
- Space used is O(mn).

Reducing space for edit distance

Matrix and DAG of computation of edit distance

Figure 1: Iterative algorithm in previous slide computes values in row order.

Optimizing Space

Recall

$$M(i,j) = \min egin{cases} lpha_{x_iy_j} + M(i-1,j-1), \ \delta + M(i-1,j), \ \delta + M(i,j-1) \end{cases}$$

- Entries in j^{th} column only depend on $(j-1)^{st}$ column and earlier entries in j^{th} column
- Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

	ε	D	R	E	A	D
ε						
D						
Ε						
Ε						
D						

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1					
Ε	2					
Ε	3					
D	3					

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0				
Ε	2	1				
Ε	3	2				
D	3	3				

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1			
E	2	1	1			
Ε	3	2	2			
D	3	3	3			

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2		
Ε	2	1	1	1		
Ε	3	2	2	1		
D	3	3	3	2		

	ε	D	R	E	A	D
ε	0	1	2	3	4	5
D	1	0	1	2	3	
Ε	2	1	1	1	2	
Ε	3	2	2	1	2	
D	3	3	3	2	2	

	ε	D	R	E	A	D	
ε	0	1	2	3	4	5	
D	1	0	1	2	3	4	
Ε	2	1	1	1	2	3	
Ε	3	2	2	1	2	3	
D	3	3	3	2	2	2	

Computing in column order to save space

Figure 2: M(i,j) only depends on previous column values. Keep only two columns and compute in column order.

Space Efficient Algorithm

$$\begin{aligned} &\textbf{for all } i \ \textbf{ do } N[i,0] = i\delta \\ &\textbf{for } j = 1 \ \textbf{to } n \ \textbf{ do} \\ &N[0,1] = j\delta \ (* \ \text{corresponds to } M(0,j) \ *) \\ &\textbf{for } i = 1 \ \textbf{to } m \ \textbf{ do} \\ &N[i,1] = \min \begin{cases} \alpha_{x_iy_j} + N[i-1,0] \\ \delta + N[i-1,1] \\ \delta + N[i,0] \end{cases} \\ &\textbf{for } i = 1 \ \textbf{to } m \ \textbf{ do} \\ &\text{Copy } N[i,0] = N[i,1] \end{aligned}$$

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

Analyzing Space Efficiency

- From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm — see notes and Kleinberg-Tardos book.

Longest Common Subsequence Problem

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC BACBAD ABAZDC BACBAD

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC ABAZDC BACBAD BACBAD

Example
LCS between ABAZDC and BACBAD is 4 via ABAD

LCS Problem

Definition

LCS between two strings X and Y is the length of longest common subsequence between X and Y.

ABAZDC ABAZDC BACBAD BACBAD

Example

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

Start off with A[1...m] and B[1...n] and reason the following:

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - One or neither of the end characters are in the LCS. Therefore:

$$\max \big(LCS(A[1...m-1], B[1...n] \big), LCS(A[1...m], B[1...n-1]) \big)$$

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - One or neither of the end characters are in the LCS. Therefore:

$$\max(LCS(A[1...m-1], B[1...n]), LCS(A[1...m], B[1...n-1]))$$

• Assuming A[m] = B[n]

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - One or neither of the end characters are in the LCS. Therefore:

$$\max \big(LCS \big(A[1...m-1], B[1...n] \big), LCS \big(A[1...m], B[1...n-1] \big) \big)$$

- Assuming A[m] = B[n]
 - A[m] and B[n] are both in the LCS. Therefore:

$$LCS(A[1...m], B[1...n]) = 1 + LCS(A[1...m-1], B[1...n-1])$$

Start off with A[1...m] and B[1...n] and reason the following:

- Assuming $A[m] \neq B[n]$
 - One or neither of the end characters are in the LCS. Therefore:

$$\max \big(LCS \big(A[1...m-1], B[1...n] \big), LCS \big(A[1...m], B[1...n-1] \big) \big)$$

- Assuming A[m] = B[n]
 - A[m] and B[n] are both in the LCS. Therefore:

$$LCS(A[1...m], B[1...n]) = 1 + LCS(A[1...m-1], B[1...n-1])$$

Base Case: A is empty or B is empty

LCS recursive definition

A[1..n], B[1..m]: Input strings.

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ 1 + LCS(i-1,j-1) & A[i] = B[j] \end{cases}$$

LCS recursive definition

A[1..n], B[1..m]: Input strings.

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \max \begin{pmatrix} LCS(i-1,j), \\ LCS(i,j-1) \end{pmatrix} & A[i] \neq B[j] \\ 1 + LCS(i-1,j-1) & A[i] = B[j] \end{cases}$$

Running time: Similar to edit distance... O(nm) Space: O(m) space.

Longest common subsequence is just edit distance for the two sequences...

A, B: input sequences, Σ : "alphabet" all the different values in A and B

$$\forall b, c \in \Sigma : b \neq c$$
 $COST[b][c] = +\infty.$ $\forall b \in \Sigma$ $COST[b][b] = 1$

1: price of deletion of insertion of a single character

Longest common subsequence is just edit distance for the two sequences...

A, B: input sequences, Σ : "alphabet" all the different values in A and B

$$\forall b, c \in \Sigma : b \neq c$$
 $COST[b][c] = +\infty.$ $\forall b \in \Sigma$ $COST[b][b] = 1$

1 : price of deletion of insertion of a single character

										ED	LCS
Maximum ED	D	R	Е	Α	D					9	
Min LCS						D	E	Е	D	9	U
Sub-opt ED	D	R	Е	Α	D					8	1
Sub-opt LCS					D	Е	Е	D		0	1
Min ED	D	R	Е	Α		D				6	3
Max LCS	D		Е		E	D				0	5

Longest common subsequence is just edit distance for the two sequences...

A, B: input sequences, Σ : "alphabet" all the different values in A and B

$$\forall b, c \in \Sigma : b \neq c$$
 $COST[b][c] = +\infty.$ $\forall b \in \Sigma$ $COST[b][b] = 1$

1: price of deletion of insertion of a single character

Length of longest common sub-sequence = m + n - ed(A, B)