

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 May 2002 (30.05.2002)

PCT

(10) International Publication Number
WO 02/42441 A2

(51) International Patent Classification⁷: C12N 9/64,
15/57, C07K 16/40, C12N 5/10, G01N 33/563, A61K
38/48

A-1090 Vienna (AT). ANTOINE, Gerhard [DE/AT];
Holunderweg 11, A-2301 Gross-Enzersdorf (AT). KER-
SCHBAUMER, Randolph [AT/AT]; Peter Jordan Strasse
32-34/17, A-1190 Vienna (AT). TAGLIAVACCA, Luig-
ina [IT/IT]; Via Ugo la Malfa, 3C, Piltello, I-20093 Milano
(IT). ZIMMERMANN, Klaus [DE/AT]; Harlacherweg
2/2/19, A-1220 Vienna (AT). VOELKEL, Dirk [DE/AT];
Podhagskygasse 2/17, A-1220 Vienna (AT).

(21) International Application Number: PCT/EP01/13391

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(22) International Filing Date:
20 November 2001 (20.11.2001)

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(25) Filing Language: English

Published:

— without international search report and to be republished
upon receipt of that report

(26) Publication Language: English

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(30) Priority Data:
09/721,254 22 November 2000 (22.11.2000) US
09/833,328 12 April 2001 (12.04.2001) US

(71) Applicant (for all designated States except US): BAXTER
AKTIENGESELLSCHAFT [AT/AT]; Industriestrasse
67, A-1221 Vienna (AT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LAEMMLE,
Bernhard [CH/CH]; Schuetzenweg 3, CH-3065 Bolligen (CH). GERRITSEN, Helena, Elisabeth [CH/CH];
Sentenstrasse 14, CH-5623 Boswil (CH). FURLAN,
Miha [CH/CH]; Liebeggweg 7, CH-3006 Bern (CH).
TURECEK, Peter [AT/AT]; Hauptstrasse 59g, A-3400
Klosterneuburg (AT). SCHWARZ, Hans-Peter [AT/AT];
Schindlergasse 32, A-1180 Vienna (AT). SCHEI-
FLINGER, Friedrich [AT/AT]; Michelbeuerngasse 4/17,

WO 02/42441 A2

(54) Title: VON WILLEBRAND FACTOR (vWF) CLEAVING PROTEASE POLYPEPTIDE, NUCLEIC ACID ENCODING THE
POLYPEPTIDE AND USE OF POLYPEPTIDE

(57) Abstract: The invention relates to a vWF cleaving protease (vWF-cp) polypeptide, a nucleic acid molecule encoding the amino acid sequence of a vWF-cp polypeptide and a composition comprising the polypeptide. The invention also relates to the use of the vWF cleaving protease polypeptide for production of vWF cleaving protease polypeptide binding molecules and for production of a preparation for prophylaxis and therapy of thrombosis and thromboembolic disease.

BEST AVAILABLE COPY

**von Willebrand Factor (vWF) cleaving protease polypeptide,
nucleic acid encoding the polypeptide and use of
polypeptide**

5

Field of the Invention

The invention relates to a vWF cleaving protease (vWF-cp) polypeptide or a partial sequence thereof, a nucleic acid molecule encoding the amino acid sequence of a vWF -cp polypeptide, and a composition comprising the polypeptide.

10

The invention also relates to the use of the vWF-cp polypeptide for production of anti-vWF-cp polypeptide antibodies and for production of a preparation for prophylaxis and therapy of thrombosis and thromboembolic disease.

15

Background of the Invention

vWF is a glycoprotein circulating in plasma as a series of multimers ranging in size from about 500 to 20,000 kD. Multimeric forms of vWF are composed of 250 kD polypeptide subunits linked together by disulfide bonds.

20

vWF mediates the initial platelet adhesion to the subendothelium of a damaged vessel wall, though only the largest multimers appear to exhibit haemostatic activity. Such vWF multimers having large molecular masses are stored in the Weibel Palade bodies of endothelial cells, and it is believed that endothelial cells secrete these large polymeric forms of vWF. Those forms of vWF which have a low molecular weight (low molecular weight or LMW vWF) are believed to arise from proteolytic cleavage of the larger multimers.

30

A small portion of the vWF present in normal plasma circulates as 189, 176 and 140 kD fragments resulting from

proteolytic degradation of vWF *in vivo*, the 140 kD fragment being derived from the N-terminal region, and the 176 kD fragment from the C-terminal region of the subunit. When low molecular weight (LMW) forms of vWF are isolated from
5 normal human plasma and subjected to SDS-PAGE (polyacrylamide gel electrophoreses) after disulfide reduction, an unusually high portion of vWF fragments are found. This finding is compatible with the view that LMW forms of vWF have been partially or predominantly derived
10 from large multimers by proteolytic degradation.

The proteolytic degradation of vWF is a physiological process in healthy individuals, yet in patients suffering from von Willebrand disease (vWD) type 2A it may be accelerated, and as a consequence these patients lack the
15 vWF multimers with the largest molecular masses. A lack of large vWF multimers and an increased level of proteolytic fragments are also observed in acquired von Willebrand disease (vWD) associated with myeloproliferation syndrome, indicating increased *in vivo* proteolysis in this condition
20 as well.

In patients with thrombotic thrombocytopenic purpura (TTP), on the other hand, unusually large vWF multimers are detected, and increased vWF binding to platelets has been demonstrated in these patients (Moake et al. 1982, N. Engl.
25 J. Med. 307: 1432-1435). Familial TTP is associated with a severe congenital deficiency of vWF protease, while the presence of vWF-cleaving proteases inhibiting autoantibodies has been observed in patients with non-familial TTP.

30 The large multimers of vWF associated with TTP normally disappear after a patient is transfused with normal fresh frozen plasma. Presently, plasma exchange is

the most important treatment for TTP, although significant side effects have been reported with this therapy. The existence of a severe congenital deficiency of vWF protease has been established in patients with familial TTP and the presence of a vWF-cleaving protease inhibiting autoantibodies has been observed in patients with non-familial TTP.

Several proteases have been shown to be able to cleave vWF, thereby impairing its binding affinity for platelets. However, in vitro the cleavage of vWF with these proteases in each case results in cleavage products different from the fragments derived from *in vivo* cleavage.

Thus, for example, while plasmin is capable of cleaving several peptide bonds in vWF, plasmin-treated vWF retains a high molecular weight core region retaining about 70% of its platelet agglutinating activity (determined as ristocetin cofactor). A 34 kD peptide is split from the N-termini of individual vWF subunits in the early stages of plasmin treatment, and epitope mapping of such plasmin-induced fragments show that these fragments originated from regions of the vWF subunit that are different from the vWF fragments present in circulating plasma.

Porcine pancreatic elastase and various serine proteases released from human leukocytes have also been shown to degrade vWF proteolytically with a resultant loss of large multimers. Epitope mapping of the degradation products again indicates that these fragments also differ from those present in normal plasma and in vWD type 2A. In addition, a calpain-like protease released from human platelets has been shown to degrade large vWF multimers and to create vWF fragments similar to those observed *in vivo*.

Summary of the Invention

It is an object of the invention to provide for a vWF cleaving protease (vWF-cp) polypeptide or a partial sequence thereof.

5 It is another object of the invention to provide for a composition comprising a vWF-cp polypeptide.

It is an object of the present invention to provide for a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of a vWF-cp 10 polypeptide.

It is also an object of the invention to provide for recombinant vWF-cp polypeptide.

It is another object of the invention to provide a method of production of a recombinant vWF-cp polypeptide.

15 It is also an object of the invention to provide for a method of purification of vWF using a vWF-cp polypeptide or a partial sequence thereof.

It is also an object of the invention to provide for anti-vWF-cp polypeptide ligands.

20

Brief Description of the Drawing

Fig. 1 shows the schematic purification scheme of the vWF-cp from plasma.

25 Fig. 2 shows the SDS-PAGE of purified of vWF-cp polypeptides under non-reducing (A) and reducing conditions in the presence of DTT (B).

Fig. 3 shows the partial nucleotide and amino acid sequence of the vWF-cp polypeptide.

30 Fig. 4 shows the schematic drawing of the genomic localization of the vWF-cleaving protease gene.

Fig. 5 shows the complete amino acid and nucleotide sequence of the vWF-cleaving protease. Start and end of the

signal peptide, metalloprotease, the cystein rich region (ACR), thromspondin type 1 motif (TSP 1), and disintegrin like motif (RGD) domains are indicated by arrows. Furin cleavage site, catalytic site and Met-turn are underlined.

5 The putative N-glycosylation sites are indicated by asteriks.

Fig. 6 shows the schematic representation of the domain organization of the vWF-cleaving protease and those of the human members of the ADAM-TS family. The domain structures of the vWF-cleaving protease (ADAMTS 13) and of all known human ADAMTS proteins are shown. ADAMTS 10 cannnot be found in databases and ADAMTS 11 is identical to ADAMTS 5.

Fig. 7 shows Western blot analysis of cells transfected with a vector comprising vWF-cp polypeptide encoding sequences, with lane 1: standard molecular weight marker, lane 2: control vector cDNA3.1(+) and lane 3: vector pCMV-vWFcp. The specific vWF-cp polypeptide band is indicated by the arrow.

Fig. 8 shows SDS-Page of vWF-cp activity on vWF with lane 1: purified plasmatic vWF as control, lane 2: vWF incubated with normal human plasma, lane 3: vWF incubated with buffer as control, lane 4: vWF incubated with of cell lysate of SK-Hep cells transfected with control vector cDNA3.1(+) and lane 5: vWF incubated with of cell lysate of SK Hep cells transfected with vWF-cp expressing vector pCMV-vWFcp.

Detailed Description of the Invention

In accordance with one of the objects of the invention there is provided a vWF-cp polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID. NO.

1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a). Polypeptide molecules can also have at least 90%, or at least 95% 5 identity to the amino acid sequence of (a). The polypeptide preferably has an amino acid sequence as shown in Fig. 5 or a partial sequence thereof of at least 12, preferably at least 15 amino acids. Preferably, the vWF-cp polypeptide has vWF cleaving activity. The vWF-cp polypeptide of the 10 invention preferably retains vWF protease activity in the presence of serine protease inhibitor and a calpain protease inhibitor. The serine protease inhibitor can be diisopropyl fluorofophosphate or any analogue thereof which has serine protease inhibitor activity. The calpain 15 inhibitor can be Z-Leu-Leu-Tyr-CHN2 or any analogue thereof having calpain inhibitor activity.

The term "polypeptide" means a chain of amino acid residues linked through peptide bonds between the α -carboxyl carbon of one amino acid residue and the α -nitrogen of the next amino acid, and comprising 10 or more amino acid residues joint together. The polypeptide may contain other than the 20 gene-encoded amino acids. 20 "Polypeptide" refers both to short chains, such as peptides, oligopeptides, or oligomers, and to longer chains, generally referred to as proteins. "Polypeptide" include amino acid sequences modified either by natural processes, such as posttranslational modifications, or chemical modifications, which are known in the art. 25 Modifications can occur anywhere in the polypeptide. The modification may lead to a variant of the polypeptide which 30

may differ in amino acid sequence from original polypeptide by one or more substitutions, additions, deletions, fusions or any combination, or a naturally occurring variant, such as an allelic variant or non-naturally occurring variant
5 made by mutagenesis or genetic engineering. The "Polypeptide" may be in form of an unprocessed or partial processed precursor, the "mature" polypeptide, or a fragment having an amino acid sequence that entirely is the same as a part, but not all, of the amino acid sequence of
10 the longer a polypeptide chain. Fragment may be a shorter single continuous region of the longer chain, or comprised within a larger polypeptide of which they form a part. A Fragment of polypeptide may include, for example a truncated polypeptide having a partial amino acid sequence
15 of the vWF-cp. A "Fragment" can be a biological active fragment that mediate vWF cleaving protease activity, including those with similar activity or improved activity, or with decreased activity.

"Identity" means the identity of the amino acid
20 sequence of a polypeptide to the amino acid sequence of a polypeptide comprising the sequence of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 or SEQ ID NO. 5. "At least 80% identity", means that the amino acid sequence is identical except that the polypeptide sequence differs in
25 not less than 20 amino acids per 100 amino acids. "At least 90%" or "at least 95% identity" means a difference of not less than 10, or not less than 5 amino acids per 100 amino acids.

The term "vWF cleaving protease" (vWF-cp) means a
30 protein or polypeptide having vWF cleaving activity and cleaves vWF high molecular vWF multimers in molecules of

lower molecular weight which still have vWF activity and properties.

The term "vWF cleaving protease polypeptide" means a polypeptide having at least 10 amino acid residues. The 5 complete amino acid sequence of the unprocessed polypeptide comprises 1427 amino acids. The "mature" polypeptide, which is a part of the larger unprocessed polypeptide should normally begin with or near amino acid 75, beginning with AAGGILH, and continuing to the carboxyl terminus. The 10 mature vWF cleaving protease has a calculated polypeptide mass of about 145 KD. Additional amino acids which contains secretory or leader sequences, pro-sequences, sequences which aid purification or identification such as multiple His residues, a FLAG tag or and additional sequence for 15 stability during recombinant production, can be included.

The term "vWF cleaving activity" means a physiological vWF cleaving activity which is defined by (1) the cleaving vWF at the peptide bond 842Tyr-843Met, (2) having a direct proteolytic activity which converts vWF having a singlet 20 structure to vWF having a satellite structure, and (3) retaining activity in the presence of a serine protease inhibitor such as diisopropyl fluorophosphate (DFP) and in the presence of a calpain protease inhibitor such as carbobenzyloxy (Z) peptidyl diazomethylketone inhibitor (Z- 25 Leu-Leu-Tyr-CHN₂). The proteolytic entities provided with the present invention may also act indirectly via another effector protein, for example a protease. This polypeptide can form an active vWF cleaving complex together with a metal ion selected from the group consisting Ca⁺⁺, Sr⁺⁺, Mg⁺⁺ and Ba⁺⁺. The preferred metal ion is Ca⁺⁺. This active 30 complex is able to cleave vWF in a physiological manner as

described above. The vWF cleaving activity of the polypeptide according to the present invention may be determined by any method described in the art, such as the method according to Furlan et al. (1996, Blood 87: 4223-4234) or as described in WO 00/50904. Alternatively, a collagen binding assay, e.g. as described in EP 0 816 852, can also be used as a test system.

According to one aspect, the invention provides for an isolated polypeptide comprising an amino acid sequence having at least 80% identity to the amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5. According to one embodiment of this aspect of the invention the isolated polypeptide comprises an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5.

The term "isolated" means altered from the natural state and/or removed from its original environment.

The invention also provides for a substantially pure vWF-cp polypeptide comprising (a) an amino acid sequence of selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

The term "substantially pure" means purity as high as the relative proportions of polypeptide chains with the vWF-cp activity present in an amount of above 50%, especially above 80%, most preferred about 90%, of total protein compared to the vWF protease activity in plasma. The purity is determined by a purity as determined by SDS-

PAGE (silver stained or Commassie stained) and Western blot and a ratio of vWF protease polypeptide to total protein amount, said purity is preferably greater than about 98%. If the purified vWF-cp polypeptide is purified from plasma 5 the preparation contains between 0.001% and 1%, preferably 0.002% of the initial amount of plasma protein, and at least 1%, preferably at least 2.3% of the initial enzyme activity, which may be partially inactivated during the purification procedure. The preparation comprising a vWF - 10 cp polypeptide according to the present invention is essentially free of vWF or vWF fragments, i.e. having a vWF content of below 5%, preferably below the detection limit of an assay used to detect vWF, such as a collagen-assay described in EP 0 816 852.

15 The substantially pure vWF-cp polypeptide exhibits an apparent molecular weight of about 180 KD, 170 KD, 160 kD or 120 KD in SDS-PAGE analysis under reducing conditions.

20 The substantially pure vWF protease polypeptide exhibits an apparent molecular weight of about 150 KD, 140 kD, 130 kD or 110 KD in SDS-PAGE analysis under non-reducing conditions.

25 The SDS-PAGE is performed under reducing conditions or non-reducing conditions. It is well known in the art, that molecular weight determination using SDS PAGE results in the detection of apparent molecular masses, which may be different from the molecular masses of the native, non-denatured protein.

30 Analysis of non-denatured material by mass spectrometry showed very broad peaks of high molecular weight. This finding is in agreement with appearance, in gel filtration experiments, suggesting that the proteins in this preparation tend to polymerize under physiologic

conditions (a property of clusterin).

The polypeptide of the invention can be isolated from any source which comprising a vWF-cp polypeptide.

5 The term "source" means human plasma, a supernatant of a cell culture expressing a vWF -cp polypeptide according to the present invention, milk or other body fluids of transgenic animals expressing the polypeptide of the invention.

10 Purification of vWF-cp polypeptide can be performed by a combination of chromatographic steps including immunoaffinity chromatography, gel filtration, and ion exchange chromatography. For example, the first purification step can be immunoaffinity chromatography, the 15 second step can be gel filtration, followed by one or more additional immunoaffinity chromatography steps. A further purification can be performed using ion exchange chromatography, preferably anion exchange chromatography and at least one affinity chromatography. Further 20 purification steps can be performed using ion exchange chromatography, gel filtration and further affinity chromatography steps.

25 According to one aspect of the invention there is provided a composition comprising a vWF-cp polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of 30 (a).

The composition of the invention comprising the polypeptide may further comprise a divalent metal ion

selected from the group of Ca²⁺, Sr²⁺, Ba²⁺ and Mg²⁺.

A further aspect of the present invention relates to a complex of isolated vWF-cp polypeptide having vWF-cp activity, vWF and a metal ion selected from the group consisting of Ca²⁺, Sr²⁺, Ba²⁺ and Mg²⁺. The preparation may comprise divalent metal ions in a concentration of about 1 to 10⁶ ions per polypeptide molecule with vWF protease activity and can contain vWF -cp polypeptide in an essentially purified form.

The composition may comprise clusterin or an analog or derivative thereof having clusterin activity. With relation to the activity of the protein, the term "derivative" or "analog" of clusterin refers to a polypeptide that show the same characteristics as the native clusterin protein.

Clusterin is a heterodimeric glycoprotein consisting of two non-identical subunits, with a molecular mass of approximately 80 kDa (Rosenberg et al. 1995, Int. J. Biochem. Cell Biol. 27: 633-645; Tschopp et al. 1994, Clin. Exp. Immunol. 97(Suppl. 2): 11-14). It is produced in a wide array of tissues and found in most biologic fluids. The physiologic functions described in the prior art include complement regulation, lipid transport, sperm maturation, initiation of apoptosis, endocrine secretion, membrane protection and promotion of cell interactions. It has been found that the unusually high stability of the vWF -cp polypeptide of the present invention in circulating plasma is associated with the presence of clusterin and that the half-life of vWF cleaving protease activity *in vivo* is between 1 and 4 days, while other proteases in plasma have half-lives in the range of seconds to hours. The ratio of clusterin to vWF protease polypeptide in a

composition according to the present invention is preferably in a range of 10M:1M to 1M:10M, and more preferably the ratio of clusterin and vWF is in the equimolar range. In human plasma, the concentration of vWF-cleaving protease is 2 - 10 mg/liter whereas that of clusterin is 50 - 400 mg/liter plasma (the molar ratio of vWF-cleaving protease to clusterin in human plasma is about 1:20 - 1:100).

10 In accordance with one of the objects of the invention there is provided a nucleic acid molecule comprising a nucleic acid sequence encoding vWF-cp polypeptide having (a) an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ 15 ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

The term "nucleic acid molecule" means a polynucleotide and generally refers to any DNA or RNA, which also includes variants of the DNA or RNA, the DNA or 20 RNA which may be modified or unmodified, single- and double stranded or a mixture thereof, or a short polynucleotide, generally referred to as oligonucleotides. A typical variant of a polynucleotide differs in nucleotide sequence from the original polynucleotide in sequence and may or may 25 not alter the amino acid sequence of the polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions or truncations in the polypeptide sequence of the polypeptide. The polynucleotide sequence 30 may be modified to improve recombinant expression. Such modification includes use of highly translated codons. Nucleic acid sequence which do hybridize with the DNA

sequence as shown in Fig. 5 or partial sequence encoding an amino acid of at least 12 amino acid are within the scope of the present invention. Hybridization Techniques are well known to the skilled artisan.

5

According to another aspect of the invention there is provided an expression vector comprising a nucleic acid molecule comprising a nucleic acid sequence encoding a vWF-cp polypeptide having (a) an amino acid sequence of selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ 10 ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).

The nucleic acid molecule of the invention can be used for constructing expression systems providing appropriate elements for replication of vector within a host cells and expression of the DNA which can then be used for the expression of a polypeptide having vWF cleaving protease activity according to the present invention. The 20 nucleic acid sequence may be modified to improve expression, such as addition of a Kozak sequence.

The expression vector may comprise, for example, in the direction of transcription, a transcriptional regulatory region and a translational initiation region 25 functional in a host cell, a DNA sequence comprising a polynucleotide expressing a VWF -cp polypeptide according to the present invention and translational and transcriptional termination regions functional in said host cell, wherein expression of the nucleic sequence is regulated by the initiation and termination regions. The 30 expression vector may also contain elements for the replication of the nucleotide. Examples of DNA expression

vectors are pBPV, pSVL, pRc/CMV, pRc/RSV, myogenic vector systems, pCDNA3 based vector (Invitrogen) or vectors derived from viral systems, for example from vaccinia virus, adenoviruses, adeno-associated virus, herpes viruses, retroviruses or baculo viruses. Suitable mammalian expression vectors usually contain one or more eukaryotic transcription units that are capable of expression in mammalian cells. The transcription unit is comprised of at least a promoter element to mediate transcription of foreign DNA sequences. Suitable promoters for mammalian cells are known in the art and include viral promoters such as that from simian virus 40 (SV40), cytomegalovirus (CMV), Rous sarcoma virus (RSV), adenovirus (ADV), bovine papilloma virus (BPV) or other promoters selected from the group of methallothionein promoter and β -Actin promoter. Other promoters known in the art are also applicable for expression.

The expression vector containing the nucleic acid sequence which encodes the vWF-cp polypeptide according to the present invention can be used to transform host cells which then produce the polypeptide. The transformed host cells can be grown in a cell culture system to produce the polypeptide *in vitro*. The host cells can excrete the polypeptide having vWF protease activity into the cell culture medium from which it can be prepared or the polypeptide can be isolated from the cell lysate.

The expression vector comprising the nucleic acid molecule encoding a polypeptide comprising (a) an amino acid sequence of selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity

to the amino acid sequence of (a) can be transformed or transfected into a host cells for expression of the recombinant polypeptide. Suitable host cells include any cell capable of producing vWF -cp polypeptide after being 5 transformed or transfected. Preferred cells include bacterial cells, yeast, insect cells or animal cells. The host cell may be a cell derived from the body of a mammal, for example fibroblasts, keratinocytes, hematopoietic cells, hepatocytes or myoblasts, which are transformed *in vitro* with an expression vector system carrying a nucleic acid according to the present invention and re-implanted 10 into the mammal. The polypeptide according to the present invention encoded by said nucleic acid will be synthesized by these cells *in vivo* and they will exhibit a desired 15 biological activity in the mammal.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC). Exemplary mammalian host cells include particularly 20 primate cell lines and rodent cell lines, including transformed cell lines. Preferably for stable integration of the vector DNA, and for subsequent amplification of the integrated vector DNA, both by conventional methods, Chinese hamster ovary (CHO) cells are employed as a 25 mammalian host cell of choice. Other suitable cell lines include, but are not limited to, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS-1), human hepatocellular carcinoma cells (e.g., Hep G2), human adenovirus transformed 293 cells, HEK 293cells, SKHep 30 cells, mouse L-929 cells, HaK hamster cell lines, murine 3T3 cells derived from Swiss, Balb-c or NIH mice and a number of other cell lines. Another suitable mammalian cell

line is the CV-1 cell line. Normal diploid cells, cell strains derived from in vitro culture of primary tissue, as well as primary explants, are also suitable. Candidate cells may be genotypically deficient in the selection gene, or may contain a dominantly acting selection gene.

Host cells can be either transformed cells or untransformed cells. The host cells are preferably those expressing furin either naturally or after being genetically engineered to express recombinant furin.

The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening and product production and purification are known in the art.

The host cell transformed with a vector carrying the vWF-cp polypeptide en coding nucleic acid may then be cultured under suitable conditions if desired, with amplification introduced genes. Effective conditions include, but are not limited to, appropriate media, bioreactor, temperature, pH and oxygen conditions that permit protein production. The method of this present invention therefore comprises culturing a suitable cell or cell line, which has been transformed with a nucleic acid sequence encoding a amino acid sequence of the vWF-cp polypeptide, the coding sequence under the control of a transcriptional regulatory sequence. The expressed polypeptide is then recovered, isolated and purified from the culture medium if secreted by the cells or from the cell, if expressed intracellularly by appropriate means known to one of skill in the art.

The nucleic acid molecule of the invention or a fragment thereof can be expressed in a eukaryotic or

prokaryotic microorganism system, such as fungi, including yeast, or bacteria. Fragments can include truncated forms of the vWF cleaving protease. Examples of truncation include, but are not limited to, N-or C-terminal deletions.

5

The nucleic acid molecule of invention may also be used to generate transgenic animals, which express said polypeptide *in vivo*. In one embodiment of this specific application, the transgenic animals may express the vWF -cp polypeptide in endogenous glands, for example in mammary glands from which the said proteins are secreted. In the case of the mammary glands, said vWF protease polypeptide is secreted into the milk of the animals from which said proteins can be prepared. The animals may be mice, cattle, pigs, goats, sheep, rabbits or any other economically useful animal.

The vWF-cp polypeptide of the invention can be used in a method of purification of vWF by providing as a ligand for vWF a vWF-cp polypeptide of the invention, contacting a solution comprising vWF with the vWF-cp polypeptide ligand under conditions whereby vWF is bound to the ligand and recover from said ligand purified vWF. The vWF-cp polypeptide ligand may be bound to a solid carrier.

25

Furthermore, the vWF-cp polypeptide of the invention can also be used for the development of vWF-cp polypeptide binding molecules using techniques known in the art. The binding molecules can be anti-vWF-cp polypeptide antibodies which can be produced by immunization of an animal with a polypeptide of the invention and isolation of anti-vWF-cp polypeptide antibodies from the animal.

"Antibodies" as used herein includes polyclonal and monoclonal antibodies, chimeric antibodies, single chain, and humanized antibodies, as well as Fab fragments, including the products of an Fab or other immunoglobulin expression library, peptides or peptidomimetics. Monoclonal antibodies can be produced according to methods well known in the art. Other binding molecules can be derivatives of a antibody, such as a single chain antibody, a Fab-, or Fab'2-fragment, a chimeric antibody, or a peptide or a peptidomimetic, which can be obtained by known methods such as e.g. the phage display method.

Within the aspect of the invention, a vWF-cp polypeptide binding molecule selected from the group of single chain antibodies, Fab- or Fab'2-fragment or polypeptides with vWF protease binding site can be produced by a method, wherein a phage display library is screened for anti-vWF-cp polypeptide binding molecule, the nucleic acid sequence of positive clones is determined and a nucleic acid molecule comprising the sequence is cloned into an expression vector.

The development of the antibodies, antibody derivatives, peptidomimetics or any other molecule which binds vWF-cp polypeptide can be accomplished according methods known to the prior art (Greer et al. 1994, J. Med. Chem. 37: 1035-1054; Kemp 1990, Trends Biotechnol. 8: 249-255).

The vWF-cp polypeptide binding molecule of the invention may be used as a ligand to purify vWF-cp. Such a method can be performed by contacting a solution comprising vWF-cp polypeptide with the vWF-cp polypeptide binding molecule under conditions whereby vWF-cp polypeptide is bound to the binding molecule and recovering purified vWF-

cp polypeptide by selectively eluting vWF-cp polypeptide from the vWF-cp binding molecule. The vWF-cp binding molecule may be bound to a solid carrier.

5 The vWF-cp polypeptide binding molecule can be also be used in a method for detection of vWF-cp polypeptide in a sample. Thereby a solution suspected to contain vWF-cp polypeptide is contacted with a vWF-cp polypeptide binding molecule as described above under conditions allowing the
10 formation of a complex of vWF-cp polypeptide/vWF-cp polypeptide binding molecule and detection of the complex.

The vWF-cp polypeptide of the invention can be used, for example, to process plasmatic or recombinantly produced vWF. Recombinant vWF (r-vWF) can be produced in CHO cells, e.g. according to Fischer et al. (1995. FEBS Lett 375: 259-262). The r-vWF recovered in this manner is available as a mature vWF and has a singlet structure, i.e. it differs from plasma-derived vWF, which always has a characteristic satellite structure when examined on 2% SDS agarose gels. US5,854,403 teaches that r-vWF is comprised of multimers with high structural integrity which is retained even after purification and treatment for the inactivation of viruses. The intact structure of the r-vWF is defined by a result of electrophoretic analysis consisting of multimer bands with an absence of satellite bands. To prepare an r-vWF preparation having a structure more closely corresponding to that of plasma-derived vWF from r-vWF with singlet structure, r-vWF is treated with the vWF protease
25 polypeptide or a composition comprising the vWF-protease polypeptide of the present invention, and optionally metal ions and/or clusterin.
30

According to one aspect of the invention, the vWF-cp polypeptide can be used for the production of a preparation for the prophylaxis and therapy of diseases that show supranormal vWF content or an increased level of high-molecular weight vWF in patients, such as a thromboembolic disease. This can result in thromboses and thromboembolic diseases. For example, thrombotic thrombocytopenic purpura (TTP), Henoch-Schönlein purpura, preeclampsia, neonatal thrombocytopenia or haemolytic-uremic syndrome. By administering an effective dose of a polypeptide of the invention and having a vWF protease activity, this can lead to reduction of the content of high molecular weight vWF multimers in the patients, resulting in effective therapy of these diseases. The disease can be selected from the thromboembolic disease is thrombotic thrombocytic purpura (TTP), Henoch-Schönlein purpura, preeclampsia, neonatal thrombocytopenia or hemolyticuremic syndrome.

The invention is described in the following examples, without being limited thereto.

25

30

Examples**Example 1:****Isolation of vWF-cp polypeptides**

5 1.1. Preparation of an IgG-eTTP-coupled affinity gel. The
IgG-eTTP is isolated by aid of a 20 ml protein A-
Sepharose® (diameter 1.6 cm) in TBS, pH 7.4. Pheresis
plasma of a patient suffering from acquired TTP
("erworbenes" TTP; eTTP), which previously had been assayed
10 for its inhibitor content relative to the vWF-cleaving
protease is applied to the column in a volume of 50 ml.
After subsequent rinsing with TBS, pH 7.4, the bound IgGs
are step-wise eluted with citrate, 0.1 M, pH 4.0, and
glycine, 0.1 M, pH 2.7. The fractions immediately are
15 brought to a physiological pH by adding Tris, 1.5 M, pH
8.8, and dialysed against TBS, pH 7.4. The Affi-Gel® Hz is
coupled according to the producer's instructions with the
IgG-eTTP which had been ished out of the protein A-
Sepharose® with a pH of 4.0. The column material prepared
20 in this manner first is ished as prescribed, subsequently
it is washed 3 times alternatingly with 50 ml of buffer B
and 200 ml of buffer A (chapter 1.7). Prior to use,
intensive rinsing with buffer A is carried out in each
instance.

25

1.2 First Step

As the starting material, 100 ml of pooled CPD plasma
which had come from at least three donors and had been
stored at -20°C, is used after centrifuging at 2,500 rpm
30 (1,100g) for 5 min. At a relatively low flow rate (FR: 30
ml/h), the plasma is loaded on a 200 ml chromatographic

column with IgG-eTTP Affi-Gel® Hz (hydrazide, diameter 2.6 cm) which had been equilibrated in buffer A. After washing with at least 400 ml of buffer A over night at the same flow rate, a 200 ml desalting gel filtration column (Bio-
5 Gel® P-6DG, diameter 2.6 cm) and a 10 ml protein G-
Sepharose® (diameter 1.6 cm), which previously also had been rinsed with buffer A, is connected thereto. After the flow rate had been increased to 100 ml/h, the proteins bound to Affi-Gel Hz are eluted directly with 50 ml of
10 buffer B onto the Bio-Gel® P-6DG so as to remove from the proteins the NaSCN that had been in buffer B. The proteins which had been eluted from the desalting column prior to the NaSCN are led through the protein G Sepharose® without interruption, where they are freed from the IgGs. Here, the
15 flow rate is lowered to 50 ml/h so as to extend the dwell time of the proteins in the 10 ml column. For regeneration, the protein G-Sepharose® is shortly washed with buffer C, and the eluted IgG fraction is stored for analysis.

The first step is carried out 8 times before the
20 collected fractions which had been frozen at -20°C are pooled and further processed.

1.3 Second Step

The pooled fractions from 8 chromatographies of the
25 first step are diluted 1:1 with H₂O so as to obtain an ionic strength at which the desired proteins would bind to the anion exchange column (High Q Support®). The sample whose volume is from 1,500 to 1,800 ml, depending on the charge used, is checked for its pH and its ionic strength
30 and applied over night at a FR of 90 ml/h through a 50 ml

column with Therasorb® (diameter 1.6 cm) onto a 5 ml High Q Support® (diameter 1.6 cm). Both, Therasorb and High Q Support® had previously been equilibrated in buffer D.

5 After washing with approximately 150 ml of buffer D, the Therasorb is disconnected, and the 25 ml Lentil Lectin Sepharose® (diameter 1.6 cm) which had been equilibrated in buffer E is connected to follow the High Q Support®. At a FR of 60 ml/h, the proteins bound to High Q Support are immediately eluted with buffer E directly to the Lentil

10 Lectin-Sepharose®. The proteins which bound to the Lentil Lectin-Sepharose® can be eluted in two steps with buffers G and H and canbe collected. The proteins which had remained bound to Therasorb and High Q Support® are washed out with buffer C or buffer F, respectively, and discarded

15 after an analysis.

For regeneration, before being used, the Lentil Lectin-Sepharose® in each case is rinsed according to the producer's instruction 3 times alternatingly with 20 ml each of buffers I and J, the High Q Support is rinsed 20 successively with 10 ml each of NaOH 1N and NaCl 1M.

1.4 Third Step

The pooled fractions which had been eluted from the Lentil Lectin-Sepharose® with buffer H are dialysed three 25 times for a total of 4 h, each against 1 l of buffer D, and again applied to the High Q Support at a flow rate of 60 ml/h. Connected thereinfront is a 5 ml heparin-Sepharose (diameter 1.4 cm), which likewise had been equilibrated in buffer D. After the application of the sample, it is rinsed 30 with approximately 50 ml of buffer D, the heparin-Sepharose

is disconnected, and a 500 ml Sephadryl® S-300 HR (diameter 2.6 cm), which had been equilibrated in buffer L, is connected thereto. The proteins bound to High Q Support are directly eluted to the gel filtration column with 10 ml
5 of buffer K. The exclusion chromatography is effected at a flow rate of 42 ml/h, and the fractions are collected at 7 ml each. The proteins which are more strongly bound to High Q Support® are again eluted with buffer F, those which remained adhered to the heparin-Sepharose, with
10 buffer K.

1.5 Fourth Step

The pool of the active fractions from the third step is applied without treatment at a FR of 10 ml/h to a 1 ml
15 anti- α_2 -macroglobulin column (flow rate 0.7 cm) which had been equilibrated in buffer L. The anti- α_2 -macroglobulin column is prepared by immobilization according to the instructions, of rabbit-anti- α_2 -macroglobulin antibodies at a concentration of 4.9 mg/ml on CNBr-activated
20 Sepharose. The proteins bound thereon are eluted with NaSCN 3M in buffer L and with buffer C and stored for analysis.

Table 1: List of buffers

buffer A	Tris NaCl Na ₃ -citrate Na acid	10 mM 0.15 M 1mM 0.02%	pH 7.4
buffer B	NaSCN in buffer A	3.0M	pH 7.4
buffer C	glycine Na acid	0.1M 0.02%	pH 2.7
buffer D	Tris NaCl	10mM 75mM	pH 7.4
buffer E	Tris NaCl MnCl ₂	20mM 0.5M 1 mM	pH 7.4
buffer F	Tris NaCl	10mM 1.0M	pH 7.4
buffer G	Tris NaCl Methyl- α -D-mannopyranoside	20mM 0.5M 30mM	pH 7.4
buffer H	Tris NaCl Methyl- α -D-mannopyranoside	20mM 0.5M 0.3M	pH 7.4
buffer I	Tris NaCl	20mM 0.5M	pH 8.5
buffer J	Na acetate NaCl	20mM 0.5M	pH 5.5
buffer K	Tris NaCl	10mM 0.5M	pH 7.4
buffer L (TBS)	Tris NaCl	10mM 0.15M	pH 7.4

Table 2: List of Chromatographic materials

Material	Provider /Company
affi-gel hydrazide gel®: for immobilizing specific IgG's	Bio-Rad, Hercules, CA, USA
anti- α_2 -macroglobulin column: isolation of α_2 -macroglobulin	applicant's own production (see 1.5): rabbit-anti-human- α_2 -macroglobulin antibody on CNBr activated Sepharose 4B; 4.9 mg/ml
Bio-Gel® P6-DG, medium: gel filtration with exclusion limit > 6kDa	Bio-Rad
CNBr activated Sepharose 4B®: for immobilizing proteins	Amersham Pharmacia Biotech, Uppsala, S
heparin Sepharose, HITrap® 5ml: affinity chromatography: binds various proteins	Amersham Pharmacia
High Q Support®, Macro-Prep: strong anion exchanger	Bio-Rad
IgG-eTTP Affi-gel Hz: for binding vWF-protease	applicant's own production (see 1.1.): IgG-eTTP on Affi-gel Hz hydrazide
Lentil Lectin-Sepharose 4B: affinity chromatography: binds to sugar residues of proteins	Amersham Pharmacia
protein A Sepharose® CL-4B. binds IgG of type 1, 2 and 4	Amersham Pharmacia
protein G Sepharose® 4FF: isolation of IgGs of all types	Amersham Pharmacia
Sephacryl® S-300 HR: gel filtration for MWs 10,000 to 1,500,000	Amersham Pharmacia
Therasorb: coupled with sheep-anti-human-Ig-antibodies: isolation of human immunoglobulins	Serag-Wiessner, Naila, D

1.6 *Fifth Step*

Alternatively, or in addition to step four, an anti-clusterin column chromatography as a further step can be applied. The samples are prepared identically to the anti-

5 α_2 - macroglobulin-column using anti-clusterin antibodies.

1.7. SDS-Page reduced/non-reduced

The final preparation from the third step of isolation is electrophoresed on a 1.5 mm-thick SDS-polyacrylamide gel

10 according to Laemmli (1970, Nature, 227: 680-685). A gradient of 4 to 12% polyacrylamide is used for fractionation of proteins. After electrophoresis under non-reducing or reducing conditions (final concentration 65 mmol/l dithiotreitol DTT), the proteins are made visible

15 by silver stain or Commassie blue stain (Fig. 2). Under non-reducing conditions bands having a molecular weight (MW) of about 150 kD, 140 KD, 130 KD and 110 KD are detectable and under reducing conditions of about 180 KD, 170 KD, 160 kD and 120 KD.

20

1.8 Determination of vWF protease activity

The different fractions isolated by the purification process as described above are tested for vWF cleaving activity by the method as described by Furlan et al.

25 (1996. Blood 87: 4223-4234).

30

Example 2:**Amino acid sequencing and amino acid analysis of the vWF-cp polypeptide**

5 The final protein preparation from the third step of isolation is electrophoresed on a 1.5 mm-thick SDS-polyacrylamide gel according to Laemmli (1970, Nature, 227: 680-685). A gradient of 4 to 12% polyacrylamide is used for fractionation of high molecular weight proteins, and a
10 gradient of 8 to 12% polyacrylamide for low molecular weight proteins. After electrophoresis under non-reducing or reducing conditions (final concentration 65 mmol/l dithiotreitol), the proteins are blotted onto PVDF-membranes and stained for 2 min with 0.25% Coomassie Blue
15 in 45% methanol, 9% acetic acid and 46% H₂O. After rinsing with a mixture of 50% methanol, 10% acetic acid and 40% H₂O, the visible protein bands are cut out and analyzed on a Procise-CLC Sequencer (Foster City, CA) at the Chemical Institute of the University of Bern.

20 The N-terminal amino acid sequence of polypeptide bands separated by SDS-PAGE of purified vWF-cleaving protease is shown in Table 3.

25

30

Table 3: Determination of N-terminal amino acid sequence of vWF-cp

Molecular weight	Amino Acid sequence
350 kDa unreduced	Ser-Val-Ser-Gly-Lys-Pro-Gln-Tyr-Met-Val*
150 kDa unred.	Ala-Ala-Gly-Gly-Ile
140 kDa unreduced	Ala-Ala-Gly-Gly-Ile
130 kDa unreduced	Ala-Ala-Gly-Gly-Ile
110 kDa unreduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu
70 kDa unreduced	Asp/Ser-Gln/Leu-Thr/Met-Val/Pro-Ser/Phe**
180 kDa reduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu
170 kDa reduced	Ala-Ala-Gly-Gly-Ile
160 kDa reduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val-Gly
120 kDa reduced	Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val-Gly
40 kDa reduced	Asp-Gln-Thr-Val-Ser**

* identified as α_2 -macroglobulin

** identified as clusterin

Analysis of the composition of the amino acids is performed from the same sample as used for amino acid sequencing. The protein bands are hydrolyzed in the gas phase over 6 N HCl for 22 hours at 110°C and the amino acids are determined by high-performance liquid chromatography. Four unreduced polypeptide bands from SDS-PAGE of purified vWF-cp with M_r 150, 140, 130, and 110 kDa are analyzed. The results are shown in Tab. 4.

Table 4: Amino acid composition of isolated vWF-cp polypeptide

Amino acid	No. residues/100 residues			
	150 kDa	140 kDa	130 kDa	110 kDa
Asx	6.7	7.0	7.4	8.3
Glx	12.2	12.0	12.8	11.8
Ser	8.4	8.9	8.8	9.2
Gly	11.8	12.1	12.1	12.9
His	2.5	2.3	2.5	2.4
Arg	8.3	7.6	8.1	7.2
Thr	5.6	5.5	5.6	5.7
Ala	10.1	9.5	9.6	8.2
Pro	8.9	8.5	8.3	8.1
Tyr	2.1	2.7	2.3	2.4
Val	7.0	6.9	6.7	6.5
Ile	2.7	2.9	2.6	3.0
Leu	10.0	9.9	9.1	9.7
Phe	2.6	2.8	2.6	3.2
Lys	1.0	1.3	1.3	1.4

Example 3:**Identification of the vWF-cp gene**

The nucleic acid coding sequence of the amino acid sequence of peptide AAGGILHLELLVAVG (SEQ. ID. NO. 2) of the N-terminal 15 residues of the purified plasmatic human vWF-cp is determined and corresponds to the nucleic acid sequence GCT GCA GGC GGC ATC CTA CAC CTG GAG CTG CTG GTG GCC GTG GGC (SEQ. ID. No. 9). A database searching in the NCBI GenBank (<http://www.ncbi.nlm.nih.gov/>) showed the location of the corresponding nucleic acid sequence GCT GCA GGC GGC ATC CTA CAC CTG GAG CTG CTG GTG GCC GTG GGC (SEQ.ID.No. 9) on chromosome 9 clone RP11-244N20 (AL158826, GI11544459). Thus the nucleotide sequence from base 150001 to 185911 is screened for potential exons. Consecutive overlapping genome-segments with various lengths (1500 bases-5000 bases) are analysed using search engines that are queried via the internet-explorer. The genomic sequence segments, its translations and the results of the search are managed using the 'Vectors NTI Suitel v.5.2' computer-program (Informax Inc., USA). The sequence of RP11-244N20 has a size of approximately 185 kb and the identified nucleic acid sequence starts at position 156.653. Use of an exon search program (Grail, <http://compbio.ornl.gov/Grail-1.3>) allowed identification of about 30 putative exons upstream and downstream of position 156.653. The first four exons of the search are translated into the corresponding amino acid sequence and these sequences are searched for homologies. This search revealed that each sequence displays high homology with the amino acid sequence of the family of human disintegrin and metalloproteinases with thrombospondin motifs (ADAM-TS).

In order to connect the putative exons poly-A -RNA from

liver is reverse transcribed and the cDNA is then PCR amplified with primers specific for some of the putative exons (Table 5). The PCR products of primers 6142 (SEQ.ID.No.16)-6277 (SEQ.ID.No.17), 6142 (SEQ.ID.No.16)-
5 6546 (SEQ.ID.No.18), 6351 (SEQ.ID.No. 19)-6546 (SEQ.ID.No.
18), 6278 (SEQ.ID.No. 21)-6407 (SEQ.ID.No. 20), 6346
(SEQ.ID.No. 23)-6395 (SEQ.ID.No. 24) and 6406 (SEQ.ID.No.
25)-6506 (SEQ.ID.No. 26) (derived from putative exons 1-6,
3-11, 6-11, 10-14, 13-16, 14-23, respectively) revealed
10 bands of the expected size. After sequencing an open
reading frame from exon 1 to exon 23 located near to the 3'
end of clone RP11-244N20 can be identified. The 3' end of
the cDNA sequence is examined by PCR amplification of the
cDNA using forward primer 6548 (SEQ.ID.No. 27) of exon 22
15 and the specific MC18 sequence of the RT primer spdT. The
resulting fragment of a size approximately to 1.8 kb is
sequenced and after database search the 3' part of the new
cDNA sequence can be located on region q34 (AC002325) on
chromosome 9.
20 The unknown sequence of the gene at the 5' end is
identified by 5' -RACE and sequencing of the resulting PCR
product revealed two additional exons. None of the next
five exons upstream of exon 1-2 can be connected by PCR to
the already known cDNA sequence. All together 29 exons with
25 a cDNA size of 4.6 kb are found. The vWF -cleaving
protease gene spans approximately 37 kb, a schematic
drawing of the localization of the exons is shown in Figure
4. The complete cDNA sequence is depicted in Figure 5.

Table 5 Sequences of Primers Used for Reverse Transcription, PCR and Cloning

		spdT	5' -GAGCAAATTCCCTGTACTGAC (T) ₃₀ NN-3' (SEQ.ID.No. 12)	production of cDNA
MC18		5' -GAGCAAATTCCCTGTACTGAC-3' (SEQ.ID.No. 13)	specific part of spdT	
6434	5	5' -GACCACGGTATGCACGGTGCAC-3' (SEQ.ID.No. 14)	anchor Primer	
6275		5' -CTCAGGGTTGATGGTCTGGCT-3' (SEQ.ID.No. 15)	exon 5 reversed	
6142		5' -CGGGCTGCAGGGGGATCCTACACCTGGAG-3' (SEQ.ID.No. 16)	exon 3 forward	
6277		5' -AATGGTGAATCCCAGTCGAG-3' (SEQ.ID.No. 17)	exon 6 reversed	
6546		5' -TGGAGGTAGCACCAACACA-3' (SEQ.ID.No. 18)	exon 11 reversed	
6351	10	5' -GAGTGCCTGATGGTAACCG-3' (SEQ.ID.No. 19)	exon 6 forward	
6407		5' -GAGCCCTCCGGGGCTGCA-3' (SEQ.ID.No. 20)	exon 14 reversed	
6278		5' -CGCTCCCTGGGGAGCTGACC-3' (SEQ.ID.No. 21)	exon 10 forward	
6561		5' -CTCACCATCGTCCCTCCCCAT-3' (SEQ.ID.No. 22)	exon 23 reversed	
6346		5' -ATCATGAAGGGGGAGACAGC-3' (SEQ.ID.No. 23)	exon 13 forward	
6395	15	5' -CCTGGAGGGGTCCCAGATG-3' (SEQ.ID.No. 24)	exon 16 reversed	
6406		5' -TGCAGCCCCACGGAAGGGCTC-3' (SEQ.ID.No. 25)	exon 14 forward	
6506		5' -CAGGGCTCCAGGGCTGCAGGC-3' (SEQ.ID.No. 26)	exon 23 reversed	
6548		5' -AGGAAGAGCTGTGGCCTG-3' (SEQ.ID.No. 27)	exon 22 forward	
6725		5' -GACGGGGCCAGCCGGGGCTGCAGGGGGATCCTACAC-3' (SEQ.ID.No. 28)	exon 3 forward -SfiI	
6276	20	5' -GGCCCTCGAGGGTCCCTCCAGG-3' (SEQ.ID.No. 29)	exon 29 reversed -XbaI	

Determination of Similarities to Other Proteins

The SMART program (<http://smart.embl-heidelberg.de>) is searched for domain architectures of the protease and identified protein modules including a signal peptide with its

5 transmembrane region, a furin cleavage site, a metalloprotease domain, i.e. a Zn -protease catalytic site consensus sequence (HEXXH), a Met turn, a disintegrin domain, a cysteine-rich region, and thrombospondin type 1 (TSP-1) motifs (Figure 6). These modules are also shared by members of the novel ADAMTS
10 15 (for a disintegrin and metalloprotease with thrombospondin type 1 motif) metalloproteinase family (Tang 1999. FEBS Lett. 445:223-225; Tang 2001. Int. J. Biochem. Cell Biol. 33:33-44). The amino acid sequence of the vWF cleaving protease is aligned with all the human ADAMTS protein sequences, which are
15 listed by the human genome organization (HUGO) gene nomenclature committee

<http://www.gene.ucl.ac.uk/nomenclature/genefamily/adamts.html>

A schematic representation of the domains is shown in Figure 6. In contrast to the ADAMTS proteins our putative new member
20 25 of this family lacks a prodomain. However, examination of the amino acid sequences of the next five putative exons upstream of exon 1-2 showed no sequence homologies to ADAMTS proteins. In addition, no signal peptide sequences can be found on these exons. We thus named the vWF -cleaving protease ADAMTS13.

25 The deduced amino acid sequence is also compared with the EMBL protein database (<http://ww2.ebi.ac.uk>). Exons 9 to 16 correspond partly to an already submitted hypothetical 39.9 kDa protein located on chromosome 9 and termed open reading frame 8 (C9ORF8, XM 005647, GI12735207). In addition exon 26 30 to 29 correspond to the hypothetical protein DKFZp434C2322 (NM032252, GI14149974) (Wiemann et al. 2001. Genome Res. 11: 422-435).

Example 4:**Affinity purification of von Willebrand Factor (vWF)**

The peptide with the sequence AAGGILHLELLV (SEQ.ID.No. 1) is synthesized on a solid-phase support following the 5 method of Barany et al. (1980. Solid-phase Peptide Synthesis. In: *The Peptides*. vol. 2 ,Gross, E. and Meienhofer, J. (eds.) Academic, New York, SEITEN). After cleavage and de-protection of the peptide, the peptide is purified by ion-exchange chromatography. The peptide is 10 characterized by reverse phase HPLC on a C8 silica column with gradient elution in trifluoro acetic acid with acetonitrile. The peptide showed no major byproducts.

The peptide is solubilized in a concentration of 5 mg/mL in 0.1 molar phosphate buffer pH 7.5 and incubated 15 with a pre-activated gel suitable for affinity chromatography (Actigel, ALD-Superflow, Sterogene). Prior to coupling of the peptide to the gel the pre-activated matrix is excessively washed with the same phosphate buffer. One volume of the pre-washed gel is then mixed with 20 one volume of the peptide solution to be immobilized and subsequently 0.1 volume portions of a solution of 0.1 molar cyanoborohydride (NaCNBH₃) in 0.1 molar phosphate buffer pH 7.5. The gel is suspended in this solution and shaked for 15 hours at room temperature. Subsequently the gel is 25 washed on a sinter funnel with a 10-fold volume of the phosphate buffer containing 150 mmolar NaCl and with 5 volumes of the phosphate buffer containing 2 molar NaCl. Then the gel is equilibrated with an access of 0.1 molar phosphate buffer pH 7.0.

30 The gel is then transferred into a chromatographic column having a dimension of diameter to gel bed height of

1:4. By determining the peptide concentration the solution of the incubation supernatant after separation from the gel and the washing solutions the amount of peptide coupled to the affinity matrix is calculated. The coupling rate is
5 85%.

The gel is subsequently used to purify vWF from a Factor VIII (FVIII)/vWF complex. A FVIII/vWF complex concentrate is produced according to US 4,814,435 containing vWF in a concentration of 260 U vWF:Ag/ml and a
10 specific activity of 13.5 U vWF:Ag/mg Protein. The concentrate is diluted with 20 mM phosphate buffer pH 7.0 to a final vWF concentration of 6 U vWF:Ag/mL. A volume of 20 ml of this solution is subjected to the affinity column with immobilized peptide described above. After washing the
15 column with 10 ml of the phosphate buffer the vWF specifically bound to the peptide ligand is eluted by a linear gradient from 0-2 mol/l NaCl in phosphate buffer at a flow rate of 1 ml / minute. Fractions of 1 ml are collected and their optical density is determined at
20 280 nm. All fractions are measured for their content of vWF antigen determined by a specific ELISA method (Asserachrom vWF, Boehringer, Mannheim). Measurement showed a specific peak of vWF eluting from the peptide at a NaCl concentration of 100 mmol/l, while most of the protein
25 measured by UV-absorption eluted prior to the vWF fraction with the washing buffer. The vWF containing fractions are pooled and measured for vWF activity. The vWF in this pool had a specific activity of 95 U vWF/mg protein and is essentially free from other proteins.

30

Example 5:**Anti-vWF-cp polypeptide antibodies**

The peptide with the sequence AAGGILHLELLV (SEQ.ID.No. 1) is synthesized and purified as described in example 4.

5 The peptide is then used to immunize 3 months old BALB/c mice with the following protocol: A primary subcutaneous injection of 100 µg peptide antigen emulsified in Freund's complete adjuvant in 100 µl followed by intra-peritoneal boosts of 100 µg peptide antigen in phosphate buffered saline at monthly intervals.

10

The anti-peptide titer is tested by routine ELISA method using purified peptide as screening antigen. After the final boost the spleens are taken from the mice for cell fusion. Cell fusion is carried out according to a 15 standard protocol originally described by Köhler et al. (1975, Nature 256:495-497). Anti-peptide antibodies producing hybridoma cell lines are screened by standard techniques with the purified peptide as screening antigen essentially based on a conventional ELISA methodology.

20 After cloning a cell line can be isolated with a high expression level of an antibody specific for the screening peptide with the sequence AAGGILHLELLV. This cell line is cultured on serum-free culture medium and grown to high density. The supernatant of the cell culture is harvested 25 by centrifugation to remove cells and the monoclonal antibody containing supernatant is concentrated by ultra-diafiltration and conditioned for further use.

The monoclonal antibody obtained had a high selectivity for the vWF cleaving protease as described by 30 Furlan et al. (1996, Blood 87: 4223-4234). This monoclonal antibody is immobilized to a polystyrene ELISA plate in a carbonate/bi-carbonate buffer, 0.05 molar, pH 9.6, at a

concentration of 5 µg immunoglobuline/ml overnight (16 hours) at 4°C, with each 100 µl of coating solution per well. The coating solution is removed from the wells and replaced by a solution of bovine serum albumin (BSA) at a 5 concentration of 100 µg/ml at a volume of 100 µL per well, for 2 hours. The BSA solution is removed and the wells are washed with phosphate buffered saline. The pre-coated plates are then incubated with either samples of platelet poor plasma from healthy human plasma donors or platelet 10 poor plasma from patients with an unclear diagnosis of either thrombotic thrombocytopenic purpura (TTP) or hemolytic uremic syndrome (HUS). After incubation of the plasma samples with the antibody coated ELISA plates as in a routine sandwich ELISA system, after 3 hours the plasma 15 is removed from the wells. Wells are washed with phosphate buffered saline and incubated with the monoclonal antibody directed against the peptide with the sequence AAGGILHLELLV, conjugated with horse radish peroxidase following the method of Wilson et al. (1978. In: 20 *Immunofluorescence and Related Staining Techniques*; Knapp, W. Holubar, K. and Wick, G (eds.), Elsevier/North Holland, Amsterdam, 215) and detected by the OPT reagent as described by Cathy et al, (1989. *ELISA and related enzyme immunoassays*, In: *Antibodies II a practical approach*. Cathy 25 D (ed.), IRL Press Eynsham Oxford England, 97).

Based on the level of the samples from the healthy human plasma donors a normal range is established. Plasmas from patients with HUS had a vWF protease activity equivalent to healthy humans while patients with TTP had a 30 decreased protease activity as confirmed by an assay based on a different assay principle as described in WO 00/50904.

Example 6:**Cloning of the vWF cleaving protease gene**

Human salivary gland poly A+ RNA is purchased from

Clontech. First strand cDNA is obtained using Expand

5 reverse transcriptase (Hoffmann La Roche) and oligo d(T) primer according to the manufacturer's instructions. PCR is performed using 5' CGGCAGGATCCTACACCTGG 3' (SEQ.ID.NO. 10) and 5' AATGGTGACTCCCAGGTCGA 3' (SEQ.ID.NO. 11) as primers with 10 ng of salivary gland cDNA as template and 10 U of

10 Hot Star Taq polymerase (Qiagen). The thermal cycling parameters are an initial incubation at 94° C for 15 minutes followed by 45 cycles of 94° C (50 sec), 50° C (50 sec), 72° C (2 min). PCR products are directly sequenced in both directions using the BigDye Terminator Cycle

15 Sequencing Ready Reaction Kit (PerkinElmer Life Science).

The obtained DNA sequence is used to scan the genomic data base using BLAST (basic local alignment search tool) programs and matched to the chromosome 9 clone RP11-224N20. DNA sequence is translated to amino acids sequence using

20 ExPASy proteomic tools. The DNA and translated amino acid sequence corresponding to 4 putative exons of chromosome 9q34 is shown in Fig. 5.

RT-PCR fragments encompassing either the pre-prosequence or the mature domains of the vWF cleaving protease are cloned into vector pDrive (Qiagen) by PCR cloning. For amplification of mature vWF-cp the primer #6601 (5'-AGCGGTCTATGGCTGCAGGCCATCCTACACC-3') (SEQ.ID. NO. 30) and #6617 (5'-AGCCTCGAGCTGGCCAGACACGGAACAAAT-3') (SEQ.ID.NO. 31) are used. The resulting DNA-fragment is

25 ligated to the T-overlaps of vector pDrive. The construct comprising mature vWF-cp is called pFP H251/8. For

30 amplification of pre-prosequence of vWF-cp the primer

#66128 (5'-GGCGAATTCATGCACCAGCGTCACCCCG- 3') (SEQ. ID. NO. 32) and #6787 (5'-ACAGCATTAAACTAAGCCGCC-3') (SEQ.ID.NO. 33) are used. The resulting DNA-fragment is inserted into vector pDrive. The resulting construct is called pFP H262-
5 35/14.

Example 7

Expression of vWF cleaving protease

The eukaryotic expression vector pcDNA3.1(+) (Invitrogen)
10 is used for the expression of the full-length vWF cleaving protease (vWF-cp) under control of the human CMV promoter.

A 4.12 kB EcoRI/XhoI fragment is excised from the plasmid pFP H251/8, the fragment encompassing the cDNA sequence
15 encoding the mature vWF-cp from nucleotide nt 223 to 4284 (without pre-pro-sequence from nt 1 to nt 222) and inserted into the EcoRI/XhoI sites of pcDNA3.1(+). To complete the 5' -end of the cDNA to add the leader and propeptide sequence, a PCR is performed using plasmid pFP H262-35/14
20 which contains the cDNA sequence of vWF-cp from nt -10 (10 nt upstream from start codon ATG) to nt +824 in vector pDrive (Qiagen) as template and direct primer 6839 (5'-
GATCGAATTCGCCGCCACCATGCACCAGCGTCACCC CCG- 3') (SEQ.ID.NO.
34), harbouring the Kozak consensus sequence (underlined)
25 for the optimal context for the recognition of the start codon, and reverse primer 3113 (5'- CGGATAACAATTTCACACAGG- 3') (SEQ.ID.NO. 35), which binds in the lacZ region of pDrive vector. PCR is accomplished under standard reaction conditions using HotStar DNA polymerase (Qiagen) and Q-
30 solution (Qiagen). The amplified fragment comprising nt -10 to +824 is cut with EcoRI and AscI and used to replace the EcoRI/AscI fragment of the incomplete clone containing only

the mature sequence of vWF-cp. The latter construct encoding the complete sequence of vWF-cp called pCMV-vWFcp is further used for transfection and expression studies in mammalian cells.

5

For expression of vWF-cp, SKHep cells (ATCC) cells are transiently transfected with plasmid pCMV-vWFcp and, in parallel as a control with parental vector cDNA3.1(+), using Lipofectamine 2000 (Life Technologies, Inc).

10 Transfected cells are cultivated under standard conditions in DMEM/HAM's F12(1:1) medium (GIBCO) with 10% fetal calf serum, at a temperature of 37°C and 5% CO₂.

vWF-cp expression is analysed by Western blot, whereby
15 samples of conditioned medium and cell harvest are subjected to SDS-PAGE on a 4%stacking/6% separation gel and Western-blot analysis is performed using anti-vWF-cp TTP patient plasma containing polyclonal anti-vWF-cp antibodies and goat-anti-hu-IgG (Fab-specific AB, SIGMA). VWF-cp specific bands are visualized by BCIP/NBT detection.

VWF-cp could be detected in sample of the cell lysate and seems to be mainly cell-associated. The results of the
25 Westernblot analysis is shown in Figure 7, showing specific protein band of vWF-cp at about molecular weight of about 170kD reacting with patient sera.

The cell lysate of the vWF-cp expressing cells are further tested for vWF-cp activity according to the method as
30 described by Furlan et al. (1996. Blood 87: 4235-4244) and vWF multimer analysis is performed in 1% SDS-agarose gel as described by Ruggeri et al. (1981. Blood 57: 1140-1143)

(Fig. 8). The biological activity of the vWF-cp expressed in mammalian cells could be clearly shown as high molecular weight vWF is degraded to vWF molecules having lower molecular weight (Fig. 8, lane 5).

Claims:

1. A vWF-cp polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).
5
2. The polypeptide according to claim 1 encoding a polypeptide having an amino sequence as shown in Fig. 10 5 or a partial sequence of at least 12 amino acids thereof.
3. The polypeptide according to claim 1 or 2 having a 15 vWF-cp activity.
4. The polypeptide according to any of the claims 1- 20 3, wherein said polypeptide retains vWF cleaving protease activity in the presence of serine protease inhibitor and a calpain protease inhibitor.
5. An isolated polypeptide comprising an amino acid sequence having at least 80% identity to the amino acid sequence selected from the group of SEQ ID. NO 1, 25 SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5.
6. An isolated polypeptide comprising an amino acid sequence selected from the group of SEQ ID. NO 1, 30 SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5.

7. A substantially pure vWF -cp polypeptide selected from the group of a polypeptide comprising (a) an amino acid sequence selected from the group of SEQ ID. NO 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4 and SEQ ID NO. 5, or (b) an amino acid sequence having at least 80% identity to the amino acid sequence of (a).
5
8. A substantially pure vWF -cp polypeptide according to claim 7, wherein said polypeptide exhibiting an apparent molecular weight of about 180 KD, 170 kD, 160 kD or 120 KD in SDS-PAGE analysis under reducing conditions.
10
9. A substantially pure vWF -cp polypeptide according to claim 7, wherein said polypeptide exhibiting an apparent molecular wight of about 150 KD, 140 kD, 130 kD or 110 KD in SDS-PAGE analysis under non-reducing conditions.
15
10. A composition comprising a polypeptide according to any of the claims 1 - 9.
20
11. A composition according to claim 10 further comprising a divalent metal ion selected from the group of Ca^{2+} , Sr^{2+} , Ba^{2+} and Mg^{2+} .
25
12. A composition according to claim 10 or 11 comprising clusterin or an analog or derivative thereof having clusterin activity.
30
13. A nucleic acid molecule comprising a nucleic acid sequence encoding a vWF-cp polypeptide according to

any of the claims 1 to 7.

14. The nucleic acid molecule according to claim 13
encoding a vWF-cp polypeptide as shown in Fig. 5 or a
5 partial sequence thereof.

15. An expression vector comprising a nucleic acid
molecule according to claim 13.

10 16. A host cell comprising an expression vector
according to claim 15.

17. A method for production of a vWF-cp protease
polypeptide comprising the steps of
15 - growing a host cell according to claim 16 in a
nutrient medium under conditions to express said
polypeptide
- harvesting said polypeptide expressed and
- isolating said polypeptide.

20 18. A method of purification of vWF comprising the
steps of
- providing as a ligand a vWF-cp polypeptide according
to any of the claims 1 to 7,
25 - contacting a solution comprising vWF with said
polypeptide ligand under conditions whereby vWF is
bound to said ligand and
- recovering from said ligand purified vWF.

30 19. A method for production of anti-vWF cp
polypeptide antibodies wherein an animal is
immunized with a vWF-cp polypeptide according to any

of the claims 1 to 7 and anti-vWF-cp polypeptide antibodies are isolated from said animal.

20. A vWF-cp polypeptide binding molecule selected from
5 the group of antibodies, single chain antibodies, Fab-
or Fab'2-fragment, peptide or polypeptides with vWF
protease binding site, obtainable by a method wherein
a phage display library is screened for anti-vWF-cp
polypeptide binding molecule, the nucleic acid
10 sequence of positive clones are determined and a
nucleic acid molecule comprising the sequence is
cloned into an expression vector.

21. A method for purification of vWF -cp polypeptide
15 comprising the step of contacting a solution
comprising vWF -cp polypeptide with vWF protease
polypeptide binding molecule according to claim 20,
under conditions whereby vWF -cp polypeptide is bound
to said vWF -cp polypeptide binding molecule,
20 selectively eluting vWF -cp polypeptide from said
binding molecule and recovering purified vWF.

22. A method for detection of vWF -cp polypeptide in a
sample, wherein a solution suspected to contain vWF -
25 cp is contacted with a vWF-cp polypeptide binding
molecule according to claim 20, to allow the formation
of an vWF -cp polypeptide/ binding molecule complex
and detection said complex.

30 23. Use of a vWF-cp polypeptide according to any of the
claims 1 to 7 for the production of a preparation for
prophylaxis and therapy of thrombosis and

thromboembolic disease.

24. Use according to claim 23, wherein the
thromboembolic disease is thrombotic thrombocytic
purpura (TTP), Henoch-Schönlein purpura, preeclampsia,
5 neonatal thrombocytopenia or hemolyticuremic syndrome.

PURIFICATION SCHEME

1. Purification Step

Figure 1

2. Purification Step

Figure 1

3. Purification Step

Pooled Eluate from Step 2

Affinity Chromatography

Heparin-Sepharose 5ml

Dialysis

Anion Exchange Chromatography

High Q Support® 5 ml

Gel Filtration

Sephacryl ® S-300 HR 500 ml

Elution of vWF Protease with NaCl 0.5 M

Figure 1

Optional: 4. Purification Step

Pooled Eluate from Step 3

Affinity Chromatography

Anti- α_2 -Macroglobulin-column 1ml

and/or optional

Affinity Chromatography

Anti-Clusterin column

Figure 1

Figure 2

gctgcaggcggcatcctacacacctggagctgctgggtggccgtggggccccgatgtc
A A G G I L H L E L L V A V G P D V
ttccaggctcaccaggaggacacagagcgctatgtgctcaccaacctaacaatcggggca
F Q A H Q E D T E R Y V L T N L N I G A
gaactgcttcgggaccctggggctcagttcgggtgcacctggtaagatggtcat
E L L R D P S L G A Q F R V H L V K M V I
tctgacagagcctgagggtgccccaaatatacagccaacctcacctcgccctgctgagc
L T E P E G A P N I T A N L T S S L L S
gtctgtgggtggagccagaccatcaaccctgaggacgacacggatcctggccatgctgac
V C G W S Q T I N P E D D T D P G H A D
ctggtcctctatatcacttaggttgcacctggagttgcctgatggtaaccggcaggtgcgg
L V L Y I T R F D L E L P D G N R Q V R
ggcgtcacccagctggcggcctgctcccaacctggagctgcctcattaccgaggac
G V T Q L G G A C S P T W S C L I T E D
actggcttcgacacctggagtcaccatt
T G F D L G V T I

Figure 3

Figure 4

Figure 5B

Figure 5C

Figure 6

Figure 7

Figure 8

SEQUENCE LISTING

5 <110> Baxter AG
5
10 <120> von Willebrand factor(vWF)cleaving protease polypeptide, nucleic acid encoding the polypeptide and use of polypeptide
10 <130> FA247
10
15 <140>
15 <141>
15
15 <150> 09/721,254
15 <151> 2000-11-22
15
20 <150> 09/833,328
20 <151> 2001-04-12
20
20 <160> 35
20
25 <170> PatentIn Ver. 2.1
25
25 <210> 1
25 <211> 12
25 <212> PRT
25 <213> Homo sapiens
25
30 <400> 1
30 Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val
30 1 5 10
35 <210> 2
35 <211> 15
35 <212> PRT
35 <213> Homo sapiens
35
40 <400> 2
40 Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly
40 1 5 10 15
45 <210> 3
45 <211> 148
45 <212> PRT
45 <213> Homo sapiens
45
50 <400> 3
50 Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly Pro
50 1 5 10 15
55 Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr
55 20 25 30
55 Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala
55 35 40 45

Gln Phe Arg Val His Leu Val Lys Met Val Ile Leu Thr Glu Pro Glu
50 55 60

5 Gly Ala Pro Asn Ile Thr Ala Asn Leu Thr Ser Ser Leu Leu Ser Val
65 70 75 80

Cys Gly Trp Ser Gln Thr Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly
10 85 90 95

His Ala Asp Leu Val Leu Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro
100 105 110

Asp Gly Asn Arg Gln Val Arg Gly Val Thr Gln Leu Gly Gly Ala Cys
15 115 120 125

Ser Pro Thr Trp Ser Cys Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu
130 135 140

20 Gly Val Thr Ile
145

<210> 4
25 <211> 1353
<212> PRT
<213> Homo sapiens

<400> 4
30 Ala Ala Gly Gly Ile Leu His Leu Glu Leu Leu Val Ala Val Gly Pro
1 5 10 15

Asp Val Phe Gln Ala His Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr
20 25 30

35 Asn Leu Asn Ile Gly Ala Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala
35 40 45

Gln Phe Arg Val His Leu Val Lys Met Val Ile Leu Thr Glu Pro Glu
40 50 55 60

Gly Ala Pro Asn Ile Thr Ala Asn Leu Thr Ser Ser Leu Leu Ser Val
45 65 70 75 80

Cys Gly Trp Ser Gln Thr Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly
50 85 90 95

His Ala Asp Leu Val Leu Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro
55 100 105 110

Asp Gly Asn Arg Gln Val Arg Gly Val Thr Gln Leu Gly Gly Ala Cys
55 115 120 125

Ser Pro Thr Trp Ser Cys Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu
55 130 135 140

Gly Val Thr Ile Ala His Glu Ile Gly His Ser Phe Gly Leu Glu His
145 150 155 160

Asp Gly Ala Pro Gly Ser Gly Cys Gly Pro Ser Gly His Val Met Ala
5 165 170 175

Ser Asp Gly Ala Ala Pro Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser
180 185 190

10 Arg Arg Gln Leu Leu Ser Leu Leu Ser Ala Gly Arg Ala Arg Cys Val
195 200 205

Trp Asp Pro Pro Arg Pro Gln Pro Gly Ser Ala Gly His Pro Pro Asp
15 210 215 220

Ala Gln Pro Gly Leu Tyr Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala
225 230 235 240

Phe Gly Pro Lys Ala Val Ala Cys Thr Phe Ala Arg Glu His Leu Asp
20 245 250 255

Met Cys Gln Ala Leu Ser Cys His Thr Asp Pro Leu Asp Gln Ser Ser
260 265 270

Cys Ser Arg Leu Leu Val Pro Leu Leu Asp Gly Thr Glu Cys Gly Val
25 275 280 285

Glu Lys Trp Cys Ser Lys Gly Arg Cys Arg Ser Leu Val Glu Leu Thr
30 290 295 300

Pro Ile Ala Ala Val His Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser
305 310 315 320

Pro Cys Ser Arg Ser Cys Gly Gly Val Val Thr Arg Arg Arg Gln
35 325 330 335

Cys Asn Asn Pro Arg Pro Ala Phe Gly Gly Arg Ala Cys Val Gly Ala
340 345 350

Asp Leu Gln Ala Glu Met Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln
40 355 360 365

Leu Glu Phe Met Ser Gln Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu
45 370 375 380

Arg Ser Ser Pro Gly Gly Ala Ser Phe Tyr His Trp Gly Ala Ala Val
385 390 395 400

Pro His Ser Gln Gly Asp Ala Leu Cys Arg His Met Cys Arg Ala Ile
50 405 410 415

Gly Glu Ser Phe Ile Met Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr
420 425 430

Arg Cys Met Pro Ser Gly Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys
55 435 440 445

Val Ser Gly Ser Cys Arg Thr Phe Gly Cys Asp Gly Arg Met Asp Ser
450 455 460

5 Gln Gln Val Trp Asp Arg Cys Gln Val Cys Gly Gly Asp Asn Ser Thr
465 470 475 480

Cys Ser Pro Arg Lys Gly Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr
485 490 495

10 Val Thr Phe Leu Thr Val Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala
500 505 510

Asn His Arg Pro Leu Phe Thr His Leu Ala Val Arg Ile Gly Gly Arg
515 520 525

15 Tyr Val Val Ala Gly Lys Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro
530 535 540

20 Ser Leu Leu Glu Asp Gly Arg Val Glu Tyr Arg Val Ala Leu Thr Glu
545 550 555 560

Asp Arg Leu Pro Arg Leu Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln
565 570 575

25 Glu Asp Ala Asp Ile Gln Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly
580 585 590

Asn Leu Thr Arg Pro Asp Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro
595 600 605

30 Arg Gln Ala Trp Val Trp Ala Ala Val Arg Gly Pro Cys Ser Val Ser
610 615 620

35 Cys Gly Ala Gly Leu Arg Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala
625 630 635 640

Arg Lys Glu Leu Val Glu Thr Val Gln Cys Gln Gly Ser Gln Gln Pro
645 650 655

40 Pro Ala Trp Pro Glu Ala Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp
660 665 670

Ala Val Gly Asp Phe Gly Pro Cys Ser Ala Ser Cys Gly Gly Gly Leu
675 680 685

45 Arg Glu Arg Pro Val Arg Cys Val Glu Ala Gln Gly Ser Leu Leu Lys
690 695 700

50 Thr Leu Pro Pro Ala Arg Cys Arg Ala Gly Ala Gln Gln Pro Ala Val
705 710 715 720

Ala Leu Glu Thr Cys Asn Pro Gln Pro Cys Pro Ala Arg Trp Glu Val
725 730 735

55 Ser Glu Pro Ser Ser Cys Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu
740 745 750

Glu Asn Glu Thr Cys Val Pro Gly Ala Asp Gly Leu Glu Ala Pro Val
755 760 765

5 Thr Glu Gly Pro Gly Ser Val Asp Glu Lys Leu Pro Ala Pro Glu Pro
770 775 780

Cys Val Gly Met Ser Cys Pro Pro Gly Trp Gly His Leu Asp Ala Thr
785 790 795 800

10 Ser Ala Gly Glu Lys Ala Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly
805 810 815

Ala Gln Ala Ala His Val Trp Thr Pro Ala Ala Gly Ser Cys Ser Val
820 825 830

15 Ser Cys Gly Arg Gly Leu Met Glu Leu Arg Phe Leu Cys Met Asp Ser
835 840 845

20 Ala Leu Arg Val Pro Val Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys
850 855 860

Pro Gly Ser Arg Arg Glu Val Cys Gln Ala Val Pro Cys Pro Ala Arg
865 870 875 880

25 Trp Gln Tyr Lys Leu Ala Ala Cys Ser Val Ser Cys Gly Arg Gly Val
885 890 895

Val Arg Arg Ile Leu Tyr Cys Ala Arg Ala His Gly Glu Asp Asp Gly
900 905 910

30 Glu Glu Ile Leu Leu Asp Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu
915 920 925

35 Pro Gln Glu Ala Cys Ser Leu Glu Pro Cys Pro Pro Arg Trp Lys Val
930 935 940

Met Ser Leu Gly Pro Cys Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg
945 950 955 960

40 Arg Ser Val Ala Cys Val Gln Leu Asp Gln Gly Gln Asp Val Glu Val
965 970 975

Asp Glu Ala Ala Cys Ala Ala Leu Val Arg Pro Glu Ala Ser Val Pro
980 985 990

45 Cys Leu Ile Ala Asp Cys Thr Tyr Arg Trp His Val Gly Thr Trp Met
995 1000 1005

50 Glu Cys Ser Val Ser Cys Gly Asp Gly Ile Gln Arg Arg Arg Asp Thr
1010 1015 1020

Cys Leu Gly Pro Gln Ala Gln Ala Pro Val Pro Ala Asp Phe Cys Gln
1025 1030 1035 1040

55 His Leu Pro Lys Pro Val Thr Val Arg Gly Cys Trp Ala Gly Pro Cys
1045 1050 1055

Val Gly Gln Gly Thr Pro Ser Leu Val Pro His Glu Glu Ala Ala Ala
1060 1065 1070

5 Pro Gly Arg Thr Thr Ala Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser
1075 1080 1085

Gln Ala Arg Gly Leu Leu Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu
1090 1095 1100

10 Leu Pro Gly Pro Gln Glu Asn Ser Val Gln Ser Ser Ala Cys Gly Arg
1105 1110 1115 1120

Gln His Leu Glu Pro Thr Gly Thr Ile Asp Met Arg Gly Pro Gly Gln
1125 1130 1135

15 Ala Asp Cys Ala Val Ala Ile Gly Arg Pro Leu Gly Glu Val Val Thr
1140 1145 1150

20 Leu Arg Val Leu Glu Ser Ser Leu Asn Cys Ser Ala Gly Asp Met Leu
1155 1160 1165

Leu Leu Trp Gly Arg Leu Thr Trp Arg Lys Met Cys Arg Lys Leu Leu
25 1170 1175 1180

Asp Met Thr Phe Ser Ser Lys Thr Asn Thr Leu Val Val Arg Gln Arg
1185 1190 1195 1200

Cys Gly Arg Pro Gly Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu
30 1205 1210 1215

Ala Pro Glu Thr Phe Tyr Arg Glu Cys Asp Met Gln Leu Phe Gly Pro
1220 1225 1230

35 Trp Gly Glu Ile Val Ser Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala
1235 1240 1245

Gly Gly Cys Arg Leu Phe Ile Asn Val Ala Pro His Ala Arg Ile Ala
40 1250 1255 1260

Ile His Ala Leu Ala Thr Asn Met Gly Ala Gly Thr Glu Gly Ala Asn
1265 1270 1275 1280

Ala Ser Tyr Ile Leu Ile Arg Asp Thr His Ser Leu Arg Thr Thr Ala
45 1285 1290 1295

Phe His Gly Gln Gln Val Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala
1300 1305 1310

50 Glu Met Glu Phe Ser Glu Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg
1315 1320 1325

Gly Gln Tyr Trp Thr Leu Gln Ser Trp Val Pro Glu Met Gln Asp Pro
55 1330 1335 1340

Gln Ser Trp Lys Gly Lys Glu Gly Thr
1345 1350

5 <210> 5
5 <211> 1427
5 <212> PRT
5 <213> Homo sapiens
10 <400> 5
10 Met His Gln Arg His Pro Arg Ala Arg Cys Pro Pro Leu Cys Val Ala
1 5 10 15
15 Gly Ile Leu Ala Cys Gly Phe Leu Leu Gly Cys Trp Gly Pro Ser His
20 20 25 30
15 Phe Gln Gln Ser Cys Leu Gln Ala Leu Glu Pro Gln Ala Val Ser Ser
20 35 40 45
20 Tyr Leu Ser Pro Gly Ala Pro Leu Lys Gly Arg Pro Pro Ser Pro Gly
50 55 60
25 Phe Gln Arg Gln Arg Gln Arg Gln Arg Arg Ala Ala Gly Gly Ile Leu
25 65 70 75 80
His Leu Glu Leu Leu Val Ala Val Gly Pro Asp Val Phe Gln Ala His
85 90 95
30 Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr Asn Leu Asn Ile Gly Ala
100 105 110
35 Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala Gln Phe Arg Val His Leu
115 120 125
35 Val Lys Met Val Ile Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr
130 135 140
40 Ala Asn Leu Thr Ser Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr
145 150 155 160
45 Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu
165 170 175
45 Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val
180 185 190
50 Arg Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys
195 200 205
50 Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala His
210 215 220
55 Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro Gly Ser
225 230 235 240

Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly Ala Ala Pro
245 250 255

5 Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser Arg Arg Gln Leu Leu Ser
260 265 270

Leu Leu Ser Ala Gly Arg Ala Arg Cys Val Trp Asp Pro Pro Arg Pro
275 280 285

10 Gln Pro Gly Ser Ala Gly His Pro Pro Asp Ala Gln Pro Gly Leu Tyr
290 295 300

Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala Phe Gly Pro Lys Ala Val
305 310 315 320

15 Ala Cys Thr Phe Ala Arg Glu His Leu Asp Met Cys Gln Ala Leu Ser
325 330 335

Cys His Thr Asp Pro Leu Asp Gln Ser Ser Cys Ser Arg Leu Leu Val
20 340 345 350

Pro Leu Leu Asp Gly Thr Glu Cys Gly Val Glu Lys Trp Cys Ser Lys
355 360 365

25 Gly Arg Cys Arg Ser Leu Val Glu Leu Thr Pro Ile Ala Ala Val His
370 375 380

Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser Pro Cys Ser Arg Ser Cys
385 390 395 400

30 Gly Gly Val Val Thr Arg Arg Arg Gln Cys Asn Asn Pro Arg Pro
405 410 415

Ala Phe Gly Gly Arg Ala Cys Val Gly Ala Asp Leu Gln Ala Glu Met
35 420 425 430

Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln Leu Glu Phe Met Ser Gln
435 440 445

40 Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu Arg Ser Ser Pro Gly Gly
450 455 460

Ala Ser Phe Tyr His Trp Gly Ala Ala Val Pro His Ser Gln Gly Asp
465 470 475 480

45 Ala Leu Cys Arg His Met Cys Arg Ala Ile Gly Glu Ser Phe Ile Met
485 490 495

Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr Arg Cys Met Pro Ser Gly
50 500 505 510

Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys Val Ser Gly Ser Cys Arg
515 520 525

55 Thr Phe Gly Cys Asp Gly Arg Met Asp Ser Gln Gln Val Trp Asp Arg
530 535 540

Cys Gln Val Cys Gly Gly Asp Asn Ser Thr Cys Ser Pro Arg Lys Gly
545 550 555 560

5 Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr Val Thr Phe Leu Thr Val
565 570 575

Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala Asn His Arg Pro Leu Phe
580 585 590

10 Thr His Leu Ala Val Arg Ile Gly Gly Arg Tyr Val Val Ala Gly Lys
595 600 605

Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro Ser Leu Leu Glu Asp Gly
610 615 620

15 Arg Val Glu Tyr Arg Val Ala Leu Thr Glu Asp Arg Leu Pro Arg Leu
625 630 635 640

Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln Glu Asp Ala Asp Ile Gln
20 645 650 655

Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly Asn Leu Thr Arg Pro Asp
660 665 670

25 Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro Arg Gln Ala Trp Val Trp
675 680 685

Ala Ala Val Arg Gly Pro Cys Ser Val Ser Cys Gly Ala Gly Leu Arg
690 695 700

30 Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala Arg Lys Glu Leu Val Glu
705 710 715 720

Thr Val Gln Cys Gln Gly Ser Gln Gln Pro Pro Ala Trp Pro Glu Ala
35 725 730 735

Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp Ala Val Gly Asp Phe Gly
740 745 750

40 Pro Cys Ser Ala Ser Cys Gly Gly Leu Arg Glu Arg Pro Val Arg
755 760 765

Cys Val Glu Ala Gln Gly Ser Leu Leu Lys Thr Leu Pro Pro Ala Arg
770 775 780

45 Cys Arg Ala Gly Ala Gln Gln Pro Ala Val Ala Leu Glu Thr Cys Asn
785 790 795 800

Pro Gln Pro Cys Pro Ala Arg Trp Glu Val Ser Glu Pro Ser Ser Cys
50 805 810 815

Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu Glu Asn Glu Thr Cys Val
820 825 830

55 Pro Gly Ala Asp Gly Leu Glu Ala Pro Val Thr Glu Gly Pro Gly Ser
835 840 845

Val Asp Glu Lys Leu Pro Ala Pro Glu Pro Cys Val Gly Met Ser Cys
850 855 860

5 Pro Pro Gly Trp Gly His Leu Asp Ala Thr Ser Ala Gly Glu Lys Ala
865 870 875 880

Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly Ala Gln Ala Ala His Val
885 890 895

10 Trp Thr Pro Ala Ala Gly Ser Cys Ser Val Ser Cys Gly Arg Gly Leu
900 905 910

Met Glu Leu Arg Phe Leu Cys Met Asp Ser Ala Leu Arg Val Pro Val
915 920 925

15 Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys Pro Gly Ser Arg Arg Glu
930 935 940

20 Val Cys Gln Ala Val Pro Cys Pro Ala Arg Trp Gln Tyr Lys Leu Ala
945 950 955 960

Ala Cys Ser Val Ser Cys Gly Arg Gly Val Val Arg Arg Ile Leu Tyr
965 970 975

25 Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile Leu Leu Asp
980 985 990

Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gln Glu Ala Cys Ser
995 1000 1005

30 Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met Ser Leu Gly Pro Cys
1010 1015 1020

35 Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg Arg Ser Val Ala Cys Val
1025 1030 1035 1040

Gln Leu Asp Gln Gly Gln Asp Val Glu Val Asp Glu Ala Ala Cys Ala
1045 1050 1055

40 Ala Leu Val Arg Pro Glu Ala Ser Val Pro Cys Leu Ile Ala Asp Cys
1060 1065 1070

Thr Tyr Arg Trp His Val Gly Thr Trp Met Glu Cys Ser Val Ser Cys
1075 1080 1085

45 Gly Asp Gly Ile Gln Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala
1090 1095 1100

50 Gln Ala Pro Val Pro Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val
1105 1110 1115 1120

Thr Val Arg Gly Cys Trp Ala Gly Pro Cys Val Gly Gln Gly Thr Pro
1125 1130 1135

55 Ser Leu Val Pro His Glu Glu Ala Ala Ala Pro Gly Arg Thr Thr Ala
1140 1145 1150

Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser Gln Ala Arg Gly Leu Leu
1155 1160 1165

5 Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln Glu
1170 1175 1180

Asn Ser Val Gln Ser Ser Ala Cys Gly Arg Gln His Leu Glu Pro Thr
1185 1190 1195 1200

10 Gly Thr Ile Asp Met Arg Gly Pro Gly Gln Ala Asp Cys Ala Val Ala
1205 1210 1215

Ile Gly Arg Pro Leu Gly Glu Val Val Thr Leu Arg Val Leu Glu Ser
1220 1225 1230

15 Ser Leu Asn Cys Ser Ala Gly Asp Met Leu Leu Leu Trp Gly Arg Leu
1235 1240 1245

20 Thr Trp Arg Lys Met Cys Arg Lys Leu Leu Asp Met Thr Phe Ser Ser
1250 1255 1260

Lys Thr Asn Thr Leu Val Val Arg Gln Arg Cys Gly Arg Pro Gly Gly
1265 1270 1275 1280

25 Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu Ala Pro Glu Thr Phe Tyr
1285 1290 1295

Arg Glu Cys Asp Met Gln Leu Phe Gly Pro Trp Gly Glu Ile Val Ser
1300 1305 1310

30 Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala Gly Gly Cys Arg Leu Phe
1315 1320 1325

Ile Asn Val Ala Pro His Ala Arg Ile Ala Ile His Ala Leu Ala Thr
35 1330 1335 1340

Asn Met Gly Ala Gly Thr Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile
1345 1350 1355 1360

40 Arg Asp Thr His Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val
1365 1370 1375

Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu
45 1380 1385 1390

Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu
1395 1400 1405

50 Gln Ser Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys
1410 1415 1420

Glu Gly Thr
55 1425

<210> 6
<211> 4585
<212> DNA
<213> Homo sapiens

5 <400> 6
cccattccat actgaccaga ttcccagtca ccaaggcccc ctctcaactcc gctccactcc 60
tcgggctggc tctcctgagg atgcaccagc gtcacccccc ggcagaatgc cctccctct 120
gtgtggccgg aatccttgcc tggctttc tcctggctg ctggggaccc tcccatttcc 180
10 agcagagttg tcttcaggtt ttggagccac aggccgtgtc ttcttacttg agccctggtg 240
ctcccttaaa aggccgcctt ccttccctg gttccagag gcagaggcag aggtagggc 300
gggctgcagg cggcatccta cacctggagc tgctggtgcc cgtggggccc gatgtcttcc 360
aggctcacca ggaggacaca gagcgctatg tgctcaccaa cctcaacatc gggcagaac 420
tgcttcggga cccgtccctg ggggctcagt ttgggtgca cctggtaag atggtcattc 480
15 tgacagagcc tgagggtgct ccaaataatca cagccaacct cacctcggtcc ctgctgagcg 540
tctgtgggtg gagccagacc atcaaccctg aggacgacac ggatcctggc catgctgacc 600
tggtcctcta tatcaactagg tttgacctgg agttgcctga tgtaaccgg caggtgcggg 660
gcgtcaccca gctgggcggt gcctgctccc caacctggag ctgcctcatt accgaggaca 720
ctggcttcga cctggagtc accattgccc atgagattgg gcacagcttc ggcctggagc 780
20 acgacggcgc gccccggcagc ggctgcggcc ccagcggaca cgtatggct tcggacggcg 840
ccgcgcggcc cgccggcctc gcctggtccc cctgcagccg cggcagctg ctgagcctgc 900
tcagcgcagg acgggcgcgc tgctgtggg acccgccgcg gcctcaaccc gggccggcgg 960
ggcacccggcc ggatgcgcag cctggctct actacagcgc caacgagcag tgccgcgtgg 1020
ccttcggccc caaggctgtc gcctgcaccc tcgcccaggaa gcacctggat atgtgccagg 1080
25 ccctctcctg ccacacagac ccgctggacc aaagcagctg cagccgcctc ctgcgttcctc 1140
tcctggatgg gacagaatgt ggctggaga agtgggtgtc caagggtcgc tgccgcctcc 1200
tggggagct gacccata gcagcgtgc atgggcgtg gtctagctgg ggtccccgaa 1260
gtccttgctc ccgcctcctgc ggaggaggtg tggcaccag gaggcggcag tgcaacaacc 1320
ccagacctgc ctttgggggg cgtcatgtt ttgggtgtca cctccaggcc gagatgtgca 1380
30 acactcagggc ctgcgagaag acccagctgg agttcatgtc gcaacagtgc gccaggaccc 1440
acggccagcc gctgcgcctc tccctggcg gcgcctccctt ctaccactgg ggtgtgtctg 1500
taccacacag ccaagggat gctctgtgca gacacatgtg ccggccatt ggcgagagct 1560
tcatcatgaa gcgtggagac agttcctcg atgggacccg gtgtatgcca agtggccccc 1620
gggaggacgg gaccctgagc ctgtgtgtgt cggcagctg caggacattt ggctgtgtatg 1680
35 gtaggatgga ctcccagcag gtatggaca ggtgccaggt gtgtggtggg gacaacagca 1740
cgtcagccc acggaaaggc tcttcacag ctggcagagc gagagaatat gtcacgtttc 1800
tgacagttac ccccaacctg accagtgtct acattgcca ccacaggcct ctcttcacac 1860
acttggcggt gaggatcgg aggcgctatg tcgtggctgg gaagatgagc atctccctta 1920
acaccaccta cccctccctc ctggaggatg gtctgtgtca gtacagagtgc gcccctcaccg 1980
40 aggaccggct gccccgcctg gaggagatcc gcatctgggg acccctccag gaagatgtgt 2040

;

acatccaggt ttacaggcgg tatggcgagg agtatggcaa cctcacccgc ccagacatca 2100
ccttcaccta cttccagcct aagccacggc aggcctgggt gtggggcgct gtgcgtggc 2160
cctgctcggt gagctgtggg gcagggctgc gctgggtaaa ctacagctgc ctggaccagg 2220
ccaggaagga gttggtgag actgtccagt gccaaaggag ccagcagcca ccagcgtggc 2280
5 cagaggcctg cgtgctcgaa ccctgccctc cctactggc ggtggagac ttccggccat 2340
gcagcgcctc ctgtgggggt ggctgcggg agcggccagt gcgcgtgcgtg gaggcccagg 2400
gcagcctctt gaagacattt cccccagccc ggtgcagagc agggggccag cagccagctg 2460
tggcgctgga aacctgcaac ccccagccct gcctgccag gtgggaggtg tcagagccca 2520
gctcatgcac atcagctggt ggagcaggcc tggcctgga gaacgagacc tgtgtgccag 2580
10 gggcagatgg cctggaggtt ccagtgactg agggggcctgg ctccgttagat gagaagctgc 2640
ctgccccctga gcctgtgtc gggatgtcat gtccctccagg ctggggccat ctggatgcca 2700
cctctgcagg ggagaaggct ccctccccat gggcagcat caggacgggg gctcaagctg 2760
cacacgtgtg gaccctgcg gcagggtcgt gctccgtctc ctgcgggcga ggtctgtatgg 2820
agctgcgttt cctgtgcattt gactctgccc tcaggggtgcc tgccaggaa gagctgtgtg 2880
15 gcctggcaag caagcctggg agccggcggg aggtctgcca ggctgtcccg tgccctgctc 2940
ggtggcagta caagctggcg gcctgcagcg tgagctgtgg gagaggggtc gtgcggagga 3000
tcctgtattt tgcccgccatggggagg acgtatggta ggagatcctg ttggacacccc 3060
agtgccagg gctgcctcgc ccggAACCCC aggaggcctg cagcctggag ccctgccac 3120
ctaggtggaa agtcatgtcc ctggccat gttcggccag ctgtggccctt ggcactgcta 3180
20 gacgctcggt gcctgtgtc cagctcgacc aaggccagga cgtggaggtg gacgaggcgg 3240
cctgtgcggc gctggtgccgg cccgaggcca gtgtccctg tctcattgcc gactgcacct 3300
accgctggca tggatggacc tggatggagt gctctgtttc ctgtggggat ggcattccagc 3360
gccggcgtga cacctgcctc ggacccagg cccaggccgc tggccagct gatttctgcc 3420
agcacttgcc caagccgggt actgtgcgtg gctgctggc tggccctgt gtggacacagg 3480
25 gtacgcccag cctggtgcacc caccaagaag ccgctgtctc aggacggacc acagccaccc 3540
ctgctgggtgc ctccctggag tggtcccagg cccggggcct gctcttctcc ccggctcccc 3600
agcctcggcg gctcctgccc gggcccccagg aaaactcagt gcagtccagt gcctgtggca 3660
ggcagcacct tgagccaaca ggaaccattt acatgcgagg cccaggccag gcagactgtg 3720
cagtggccat tggcgccccc ctggggagg tggtgaccct ccgcgtccctt gagagttctc 3780
30 tcaactgcag tgcggggac atttgctgc ttggggccg gtcacccctgg aggaagatgt 3840
gcaggaagct gttggacatg actttcagct ccaagaccaa caccgtggc gtgaggcagc 3900
gctgcggcg gccaggaggt ggggtgctgc tgcgttatgg gagccagctt gtcctgaaa 3960
ccttctacag agaatgtgac atgcagctt ttggccctg gggtaatac gtgagccct 4020
cgctgagtcc agccacgagt aatgcagggg gctgcggcctt ctccattaaat gtggctccgc 4080
35 acgcacggat tgccatccat gcctggcca ccaacatggg cgctgggacc gagggagcca 4140
atgcccagcta catcttgcattt cggacacccc acagctttag gaccacagcg ttccatggc 4200
agcaggtgtt ctactggag tcaagagca gccaggctga gatggagttc agcgagggtt 4260
tcctgaaggc tcaggccagc ctgcggggcc agtactggac cctccaatca tgggtaccgg 4320

agatgcagga ccctcagtcc tggaaaggaa aggaaggaac ctgagggtca ttgaacattt 4380
 gttccgtgtc tggccagccc tggagggttg acccctggtc tcagtgcattt ccaattcgaa 4440
 cttttccaa tcttaggtat ctactttaga gtcttctcca atgtccaaaa ggctaggggg 4500
 ttggaggtgg ggactctgga aaagcagccc ccatttcctc ggttaccaat aaataaaaca 4560
 5 tgcaggcaaa aaaaaaaaaaaa aaaaaa 4585

<210> 7
 <211> 4284
 10 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 15 <222> (1)...(4284)

<400> 7
 atg cac cag cgt cac ccc cg^g gca aga tgc cct ccc ctc tgt gtg gcc 48
 Met His Gln Arg His Pro Arg Ala Arg Cys Pro Pro Leu Cys Val Ala
 20 1 5 10 15

gga atc ctt gcc t^gt ggc ttt ctc ctg ggc tgc tgg gga ccc tcc cat 96
 Gly Ile Leu Ala Cys Gly Phe Leu Leu Gly Cys Trp Gly Pro Ser His
 25 20 25 30

ttc cag cag agt t^gt ctt cag gct ttg gag cca cag gcc gtg tct tct 144
 Phe Gln Gln Ser Cys Leu Gln Ala Leu Glu Pro Gln Ala Val Ser Ser
 35 40 45

tac ttg agc cct ggt gct ccc tta aaa ggc cgc cct cct tcc cct ggc 192
 Tyr Leu Ser Pro Gly Ala Pro Leu Lys Gly Arg Pro Pro Ser Pro Gly
 30 50 55 60

ttc cag agg cag agg cag agg cag agg cgg gct gca ggc ggc atc cta 240
 Phe Gln Arg Gln Arg Gln Arg Arg Ala Ala Gly Gly Ile Leu
 35 65 70 75 80

cac ctg gag ctg ctg gtg gcc gtg ggc ccc gat gtc ttc cag gct cac 288
 His Leu Glu Leu Leu Val Ala Val Gly Pro Asp Val Phe Gln Ala His
 40 85 90 95

cag gag gac aca gag cgc tat gtg ctc acc aac ctc aac atc ggg gca 336
 Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr Asn Leu Asn Ile Gly Ala
 45 100 105 110

gaa ctg ctt cgg gac ccg tcc ctg ggg gct cag ttt cgg gtg cac ctg 384
 Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala Gln Phe Arg Val His Leu
 115 120 125

50 gtg aag atg gtc att ctg aca gag cct gag ggt gct cca aat atc aca 432
 Val Lys Met Val Ile Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr
 130 135 140

	gcc aac ctc acc tcg tcc ctg ctg agc gtc tgt ggg tgg agc cag acc	480
	Ala Asn Leu Thr Ser Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr	
145	150	155
150	160	
5	atc aac cct gag gac gac acg gat cct ggc cat gct gac ctg gtc ctc	528
	Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu	
	165	170
	175	
10	tat atc act agg ttt gac ctg gag ttg cct gat ggt aac cgg cag gtg	576
	Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val	
	180	185
	190	
15	cgg ggc gtc acc cag ctg ggc ggt gcc tgc tcc cca acc tgg agc tgc	624
	Arg Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys	
	195	200
	205	
20	ctc att acc gag gac act ggc ttc gac ctg gga gtc acc att gcc cat	672
	Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala His	
	210	215
	220	
25	gag att ggg cac agc ttc ggc ctg gag cac gac ggc gcg ccc ggc agc	720
	Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro Gly Ser	
	225	230
	235	240
30	ggc tgc ggc ccc agc gga cac gtg atg gct tcg gac ggc gcc gcg ccc	768
	Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly Ala Ala Pro	
	245	250
	255	
35	cgc gcc ggc ctc gcc tgg tcc ccc tgc agc cgc cgg cag ctg ctg agc	816
	Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser Arg Arg Gln Leu Leu Ser	
	260	265
	270	
40	ctg ctc agc gca gga cgg gcg cgc tgc gtg tgg gac ccc ccg cgg cct	864
	Leu Leu Ser Ala Gly Arg Ala Arg Cys Val Trp Asp Pro Pro Arg Pro	
	275	280
	285	
45	caa ccc ggg tcc gcg ggg cac ccg ccc gat ggc cag cct ggc ctc tac	912
	Gln Pro Gly Ser Ala Gly His Pro Pro Asp Ala Gln Pro Gly Leu Tyr	
	290	295
	300	
50	tac agc gcc aac gag cag tgc cgc gtg gcc ttc ggc ccc aag gct gtc	960
	Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala Phe Gly Pro Lys Ala Val	
	305	310
	315	320
55	gcc tgc acc ttc gcc agg gag cac ctg gat atg tgc cag gcc ctc tcc	1008
	Ala Cys Thr Phe Ala Arg Glu His Leu Asp Met Cys Gln Ala Leu Ser	
	325	330
	335	
55	tgc cac aca gac ccg ctg gac caa agc agc tgc agc cgc ctc ctc gtt	1056
	Cys His Thr Asp Pro Leu Asp Gln Ser Ser Cys Ser Arg Leu Leu Val	
	340	345
	350	
55	cct ctc ctg gat ggg aca gaa tgt ggc gtg gag aag tgg tgc tcc aag	1104
	Pro Leu Leu Asp Gly Thr Glu Cys Gly Val Glu Lys Trp Cys Ser Lys	
	355	360
	365	

ggt	cgc	tgc	cgc	tcc	ctg	gtg	gag	ctg	acc	ccc	ata	gca	gca	gtg	cat	1152	
Gly	Arg	Cys	Arg	Ser	Leu	Val	Glu	Leu	Thr	Pro	Ile	Ala	Ala	Val	His		
370					375						380						
5																	
ggg	cgc	tgg	tct	agc	tgg	ggt	ccc	cga	agt	cct	tgc	tcc	cgc	tcc	tgc	1200	
Gly	Arg	Trp	Ser	Ser	Trp	Gly	Pro	Arg	Ser	Pro	Cys	Ser	Arg	Ser	Cys		
385					390						395				400		
10	gga	gga	ggt	gtg	gtc	acc	agg	agg	cgg	cag	tgc	aac	aac	ccc	aga	cct	1248
Gly	Gly	Gly	Val	Val	Thr	Arg	Arg	Arg	Gln	Cys	Asn	Asn	Pro	Arg	Pro		
					405					410				415			
15	gcc	ttt	ggg	ggg	cgt	gca	tgt	gtt	ggt	gct	gac	ctc	cag	gcc	gag	atg	1296
Ala	Phe	Gly	Gly	Arg	Ala	Cys	Val	Gly	Ala	Asp	Leu	Gln	Ala	Glu	Met		
					420					425				430			
20	tgc	aac	act	cag	gcc	tgc	gag	aag	acc	cag	ctg	gag	ttc	atg	tgc	caa	1344
Cys	Asn	Thr	Gln	Ala	Cys	Glu	Lys	Thr	Gln	Leu	Glu	Phe	Met	Ser	Gln		
					435					440				445			
25	cag	tgc	gcc	agg	acc	gac	ggc	cag	ccg	ctg	cgc	tcc	tcc	cct	ggc	ggc	1392
Gln	Cys	Ala	Arg	Thr	Asp	Gly	Gln	Pro	Leu	Arg	Ser	Ser	Pro	Gly	Gly		
					450					455				460			
30	gcc	tcc	ttc	tac	cac	tgg	ggt	gct	gct	gta	cca	cac	agc	caa	ggg	gat	1440
Ala	Ser	Phe	Tyr	His	Trp	Gly	Ala	Ala	Val	Pro	His	Ser	Gln	Gly	Asp		
					465					470				475			
35	gct	ctg	tgc	aga	cac	atg	tgc	cgg	gcc	att	ggc	gag	agc	ttc	atc	atg	1488
Ala	Leu	Cys	Arg	His	Met	Cys	Arg	Ala	Ile	Gly	Glu	Ser	Phe	Ile	Met		
					485					490				495			
40	aag	cgt	gga	gac	agc	ttc	ctc	gat	ggg	acc	ccg	tgt	atg	cca	agt	ggc	1536
Lys	Arg	Gly	Asp	Ser	Phe	Leu	Asp	Gly	Thr	Arg	Cys	Met	Pro	Ser	Gly		
					500					505				510			
45	ccc	cgg	gag	gac	ggg	acc	ctg	agc	ctg	tgt	gtg	tgc	ggc	agc	tgc	agg	1584
Pro	Arg	Glu	Asp	Gly	Thr	Leu	Ser	Leu	Cys	Val	Ser	Gly	Ser	Cys	Arg		
					515					520				525			
50	aca	ttt	ggc	tgt	gat	ggt	agg	atg	gac	tcc	cag	cag	gta	tgg	gac	agg	1632
Thr	Phe	Gly	Cys	Asp	Gly	Arg	Met	Asp	Ser	Gln	Gln	Val	Trp	Asp	Arg		
					530					535				540			
55	tgc	cag	gtg	tgt	ggt	ggg	gac	aac	agc	acg	tgc	agc	cca	ccg	aag	ggc	1680
Cys	Gln	Val	Cys	Gly	Gly	Asp	Asn	Ser	Thr	Cys	Ser	Pro	Arg	Lys	Gly		
					545					550				555			
55	tct	ttc	aca	gct	ggc	aga	gca	gaa	tat	gtc	acg	ttt	ctg	aca	gtt	1728	
Ser	Phe	Thr	Ala	Gly	Arg	Ala	Arg	Glu	Tyr	Val	Thr	Phe	Leu	Thr	Val		
					565					570				575			
55	acc	ccc	aac	ctg	acc	agt	gtc	tac	att	gcc	aac	cac	agg	cct	ctc	ttc	1776
Thr	Pro	Asn	Leu	Thr	Ser	Val	Tyr	Ile	Ala	Asn	His	Arg	Pro	Leu	Phe		
					580					585				590			

	aca cac ttg gcg gtg agg atc gga ggg cgc tat gtc gtg gct ggg aag Thr His Leu Ala Val Arg Ile Gly Gly Arg Tyr Val Val Ala Gly Lys 595 600 605	1824
5	atg agc atc tcc cct aac acc acc tac ccc tcc ctc ctg gag gat ggt Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro Ser Leu Leu Glu Asp Gly 610 615 620	1872
10	cgt gtc gag tac aga gtg gcc ctc acc gag gac cgg ctg ccc cgc ctg Arg Val Glu Tyr Arg Val Ala Leu Thr Glu Asp Arg Leu Pro Arg Leu 625 630 635 640	1920
15	gag gag atc cgc atc tgg gga ccc ctc cag gaa gat gct gac atc cag Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln Glu Asp Ala Asp Ile Gln 645 650 655	1968
20	gtt tac agg cgg tat ggc gag gag tat ggc aac ctc acc cgc cca gac Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly Asn Leu Thr Arg Pro Asp 660 665 670	2016
	atc acc ttc acc tac ttc cag cct aag cca cgg cag gcc tgg gtg tgg Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro Arg Gln Ala Trp Val Trp 675 680 685	2064
25	gcc gct gtg cgt ggg ccc tgc tcg gtg agc tgt ggg gca ggg ctg cgc Ala Ala Val Arg Gly Pro Cys Ser Val Ser Cys Gly Ala Gly Leu Arg 690 695 700	2112
30	tgg gta aac tac agc tgc ctg gac cag gcc agg aag gag ttg gtg gag Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala Arg Lys Glu Leu Val Glu 705 710 715 720	2160
35	act gtc cag tgc caa ggg agc cag cag cca cca gcg tgg cca gag gcc Thr Val Gln Cys Gln Gly Ser Gln Gln Pro Pro Ala Trp Pro Glu Ala 725 730 735	2208
40	tgc gtg ctc gaa ccc tgc cct ccc tac tgg gcg gtg gga gac ttc ggc Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp Ala Val Gly Asp Phe Gly 740 745 750	2256
	cca tgc agc gcc tcc tgt ggg ggt ggc ctg cgg gag cgg cca gtg cgc Pro Cys Ser Ala Ser Cys Gly Gly Leu Arg Glu Arg Pro Val Arg 755 760 765	2304
45	tgc gtg gag gcc cag ggc agc ctc ctg aag aca ttg ccc cca gcc cgg Cys Val Glu Ala Gln Gly Ser Leu Leu Lys Thr Leu Pro Pro Ala Arg 770 775 780	2352
50	tgc aga gca ggg gcc cag cag cca gct gtg gcg ctg gaa acc tgc aac Cys Arg Ala Gly Ala Gln Gln Pro Ala Val Ala Leu Glu Thr Cys Asn 785 790 795 800	2400
55	ccc cag ccc tgc cct gcc agg tgg gag gtg tca gag ccc agc tca tgc Pro Gln Pro Cys Pro Ala Arg Trp Glu Val Ser Glu Pro Ser Ser Cys 805 810 815	2448

	aca tca gct ggt gga gca ggc ctg gcc ttg gag aac gag acc tgt gtg Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu Glu Asn Glu Thr Cys Val 820 825 830	2496
5	cca ggg gca gat ggc ctg gag gct cca gtg act gag ggg cct ggc tcc Pro Gly Ala Asp Gly Leu Glu Ala Pro Val Thr Glu Gly Pro Gly Ser 835 840 845	2544
10	gta gat gag aag ctg cct gcc cct gag ccc tgt gtc ggg atg tca tgt Val Asp Glu Lys Leu Pro Ala Pro Glu Pro Cys Val Gly Met Ser Cys 850 855 860	2592
15	cct cca ggc tgg ggc cat ctg gat gcc acc tct gca ggg gag aag gct Pro Pro Gly Trp Gly His Leu Asp Ala Thr Ser Ala Gly Glu Lys Ala 865 870 875 880	2640
20	ccc tcc cca tgg ggc agc atc agg acg ggg gct caa gct gca cac gtg Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly Ala Gln Ala Ala His Val 885 890 895	2688
25	tgg acc cct gcg gca ggg tcg tgc tcc gtc tcc tgc ggg cga ggt ctg Trp Thr Pro Ala Ala Gly Ser Cys Ser Val Ser Cys Gly Arg Gly Leu 900 905 910	2736
30	atg gag ctg cgt ttc ctg tgc atg gac tct gcc ctc agg gtg cct gtc Met Glu Leu Arg Phe Leu Cys Met Asp Ser Ala Leu Arg Val Pro Val 915 920 925	2784
35	cag gaa gag ctg tgt ggc ctg gca agc aag cct ggg agc cgg cgg gag Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys Pro Gly Ser Arg Arg Glu 930 935 940	2832
40	gtc tgc cag gct gtc ccg tgc cct gct cgg tgg cag tac aag ctg gcg Val Cys Gln Ala Val Pro Cys Pro Ala Arg Trp Gln Tyr Lys Leu Ala 945 950 955 960	2880
45	gcc tgc agc gtg agc tgt ggg aga ggg gtc gtg cgg agg atc ctg tat Ala Cys Ser Val Ser Cys Gly Arg Gly Val Val Arg Arg Ile Leu Tyr 965 970 975	2928
50	tgt gcc cgg gcc cat ggg gag gac gat ggt gag gag atc ctg ttg gac Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile Leu Leu Asp 980 985 990	2976
55	acc cag tgc cag ggg ctg cct cgc ccg gaa ccc cag gag gcc tgc agc Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gln Glu Ala Cys Ser 995 1000 1005	3024
	ctg gag ccc tgc cca cct agg tgg aaa gtc atg tcc ctt ggc cca tgt Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met Ser Leu Gly Pro Cys 1010 1015 1020	3072
	tcg gcc agc tgt ggc ctt ggc act gct aga cgc tgc gtg gcc tgt gtg Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg Arg Ser Val Ala Cys Val 1025 1030 1035 1040	3120

	cag ctc gac caa ggc cag gac gtg gag gtg gac gag gcg gcc tgc tgc Gln Leu Asp Gln Gly Gln Asp Val Glu Val Asp Glu Ala Ala Cys Ala 1045 1050 1055	3168
5	gcg ctg gtg cgg ccc gag gcc agt gtc ccc tgc att gcc gac tgc Ala Leu Val Arg Pro Glu Ala Ser Val Pro Cys Leu Ile Ala Asp Cys 1060 1065 1070	3216
10	acc tac cgc tgg cat gtt ggc acc tgg atg gag tgc tct gtt tcc tgc Thr Tyr Arg Trp His Val Gly Thr Trp Met Glu Cys Ser Val Ser Cys 1075 1080 1085	3264
15	ggg gat ggc atc cag cgc cgg cgt gac acc tgc ctc gga ccc cag gcc Gly Asp Gly Ile Gln Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala 1090 1095 1100	3312
20	cag gcg cct gtg cca gct gat ttc tgc cag cac ttg ccc aag ccg gtg Gln Ala Pro Val Pro Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val 1105 1110 1115 1120	3360
	act gtg cgt ggc tgc tgg gct ggg ccc tgc gtg gga cag ggt acg ccc Thr Val Arg Gly Cys Trp Ala Gly Pro Cys Val Gly Gln Gly Thr Pro 1125 1130 1135	3408
25	agc ctg gtg ccc cac gaa gaa gcc gct gct cca gga cgg acc aca gcc Ser Leu Val Pro His Glu Ala Ala Ala Pro Gly Arg Thr Thr Ala 1140 1145 1150	3456
30	acc cct gct ggt gcc tcc ctg gag tgg tcc cag gcc cgg ggc ctg ctc Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser Gln Ala Arg Gly Leu Leu 1155 1160 1165	3504
35	tcc tcc ccg gct ccc cag cct cgg cgg ctc ctg ccc ggg ccc cag gaa Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln Glu 1170 1175 1180	3552
40	aac tca gtg cag tcc agt gcc tgc ggc agg cag cac ctt gag cca aca Asn Ser Val Gln Ser Ser Ala Cys Gly Arg Gln His Leu Glu Pro Thr 1185 1190 1195 1200	3600
	gga acc att gac atg cga ggc cca ggg cag gca gac tgc gca. gtc gcc Gly Thr Ile Asp Met Arg Gly Pro Gly Gln Ala Asp Cys Ala Val Ala 1205 1210 1215	3648
45	att ggg cgg ccc ctc ggg gag gtg gtg acc ctc cgc gtc ctt gag agt Ile Gly Arg Pro Leu Gly Glu Val Val Thr Leu Arg Val Leu Glu Ser 1220 1225 1230	3696
50	tct ctc aac tgc agt gcg ggg gac atg ttg ctg ctt tgg ggc cgg ctc Ser Leu Asn Cys Ser Ala Gly Asp Met Leu Leu Trp Gly Arg Leu 1235 1240 1245	3744
55	acc tgg agg aag atg tgc agg aag ctg ttg gac atg act ttc agc tcc Thr Trp Arg Lys Met Cys Arg Lys Leu Leu Asp Met Thr Phe Ser Ser 1250 1255 1260	3792

	aag acc aac acg ctg gtg agg cag cgc tgc ggg cgg cca gga ggt Lys Thr Asn Thr Leu Val Val Arg Gln Arg Cys Gly Arg Pro Gly Gly 1265 1270 1275 1280	3840
5	ggg gtg ctg ctg cgg tat ggg agc cag ctt gct cct gaa acc ttc tac Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu Ala Pro Glu Thr Phe Tyr 1285 1290 1295	3888
10	aga gaa tgt gac atg cag ctc ttt ggg ccc tgg ggt gaa atc gtg agc Arg Glu Cys Asp Met Gln Leu Phe Gly Pro Trp Gly Glu Ile Val Ser 1300 1305 1310	3936
15	ccc tcg ctg agt cca gcc acg agt aat gca ggg ggc tgc cgg ctc ttc Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala Gly Gly Cys Arg Leu Phe 1315 1320 1325	3984
20	att aat gtg gct ccg cac gca cgg att gcc atc cat gcc ctg gcc acc Ile Asn Val Ala Pro His Ala Arg Ile Ala Ile His Ala Leu Ala Thr 1330 1335 1340	4032
	aac atg ggc gct ggg acc gag gga gcc aat gcc agc tac atc ttg atc Asn Met Gly Ala Gly Thr Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile 1345 1350 1355 1360	4080
25	cgg gac acc cac agc ttg agg acc aca gcg ttc cat ggg cag cag gtg Arg Asp Thr His Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val 1365 1370 1375	4128
30	ctc tac tgg gag tca gag agc agc cag gct gag atg gag ttc agc gag Leu Tyr Trp Glu Ser Glu Ser Ser Gln Ala Glu Met Glu Phe Ser Glu 1380 1385 1390	4176
35	ggc ttc ctg aag gct cag gcc agc ctg cgg ggc cag tac tgg acc ctc Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu 1395 1400 1405	4224
40	caa tca tgg gta ccg gag atg cag gac cct cag tcc tgg aag gga aag Gln Ser Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys 1410 1415 1420	4272
	gaa gga acc tga Glu Gly Thr 1425	4284
45	<210> 8 <211> 1427 <212> PRT <213> Homo sapiens	
50	<400> 8 Met His Gln Arg His Pro Arg Ala Arg Cys Pro Pro Leu Cys Val Ala 1 5 10 15	
55	Gly Ile Leu Ala Cys Gly Phe Leu Leu Gly Cys Trp Gly Pro Ser His 20 25 30	

	Phe Gln Gln Ser Cys Leu Gln Ala Leu Glu Pro Gln Ala Val Ser Ser			
	35	40	45	
5	Tyr Leu Ser Pro Gly Ala Pro Leu Lys Gly Arg Pro Pro Ser Pro Gly			
	50	55	60	
	Phe Gln Arg Gln Arg Gln Arg Gln Arg Arg Ala Ala Gly Gly Ile Leu			
	65	70	75	80
10	His Leu Glu Leu Leu Val Ala Val Gly Pro Asp Val Phe Gln Ala His			
	85	90	95	
15	Gln Glu Asp Thr Glu Arg Tyr Val Leu Thr Asn Leu Asn Ile Gly Ala			
	100	105	110	
	Glu Leu Leu Arg Asp Pro Ser Leu Gly Ala Gln Phe Arg Val His Leu			
	115	120	125	
20	Val Lys Met Val Ile Leu Thr Glu Pro Glu Gly Ala Pro Asn Ile Thr			
	130	135	140	
	Ala Asn Leu Thr Ser Ser Leu Leu Ser Val Cys Gly Trp Ser Gln Thr			
	145	150	155	160
25	Ile Asn Pro Glu Asp Asp Thr Asp Pro Gly His Ala Asp Leu Val Leu			
	165	170	175	
	Tyr Ile Thr Arg Phe Asp Leu Glu Leu Pro Asp Gly Asn Arg Gln Val			
30	180	185	190	
	Arg Gly Val Thr Gln Leu Gly Gly Ala Cys Ser Pro Thr Trp Ser Cys			
	195	200	205	
35	Leu Ile Thr Glu Asp Thr Gly Phe Asp Leu Gly Val Thr Ile Ala His			
	210	215	220	
	Glu Ile Gly His Ser Phe Gly Leu Glu His Asp Gly Ala Pro Gly Ser			
	225	230	235	240
40	Gly Cys Gly Pro Ser Gly His Val Met Ala Ser Asp Gly Ala Ala Pro			
	245	250	255	
	Arg Ala Gly Leu Ala Trp Ser Pro Cys Ser Arg Arg Gln Leu Leu Ser			
45	260	265	270	
	Leu Leu Ser Ala Gly Arg Ala Arg Cys Val Trp Asp Pro Pro Arg Pro			
	275	280	285	
50	Gln Pro Gly Ser Ala Gly His Pro Pro Asp Ala Gln Pro Gly Leu Tyr			
	290	295	300	
	Tyr Ser Ala Asn Glu Gln Cys Arg Val Ala Phe Gly Pro Lys Ala Val			
	305	310	315	320
55	Ala Cys Thr Phe Ala Arg Glu His Leu Asp Met Cys Gln Ala Leu Ser			
	325	330	335	

Cys His Thr Asp Pro Leu Asp Gln Ser Ser Cys Ser Arg Leu Leu Val
340 345 350

5 Pro Leu Leu Asp Gly Thr Glu Cys Gly Val Glu Lys Trp Cys Ser Lys
355 360 365

Gly Arg Cys Arg Ser Leu Val Glu Leu Thr Pro Ile Ala Ala Val His
10 370 375 380

Gly Arg Trp Ser Ser Trp Gly Pro Arg Ser Pro Cys Ser Arg Ser Cys
385 390 395 400

Gly Gly Gly Val Val Thr Arg Arg Arg Gln Cys Asn Asn Pro Arg Pro
15 405 410 415

Ala Phe Gly Gly Arg Ala Cys Val Gly Ala Asp Leu Gln Ala Glu Met
420 425 430

20 Cys Asn Thr Gln Ala Cys Glu Lys Thr Gln Leu Glu Phe Met Ser Gln
435 440 445

Gln Cys Ala Arg Thr Asp Gly Gln Pro Leu Arg Ser Ser Pro Gly Gly
25 450 455 460

Ala Ser Phe Tyr His Trp Gly Ala Ala Val Pro His Ser Gln Gly Asp
465 470 475 480

Ala Leu Cys Arg His Met Cys Arg Ala Ile Gly Glu Ser Phe Ile Met
30 485 490 495

Lys Arg Gly Asp Ser Phe Leu Asp Gly Thr Arg Cys Met Pro Ser Gly
500 505 510

35 Pro Arg Glu Asp Gly Thr Leu Ser Leu Cys Val Ser Gly Ser Cys Arg
515 520 525

Thr Phe Gly Cys Asp Gly Arg Met Asp Ser Gln Gln Val Trp Asp Arg
40 530 535 540

Cys Gln Val Cys Gly Asp Asn Ser Thr Cys Ser Pro Arg Lys Gly
545 550 555 560

Ser Phe Thr Ala Gly Arg Ala Arg Glu Tyr Val Thr Phe Leu Thr Val
45 565 570 575

Thr Pro Asn Leu Thr Ser Val Tyr Ile Ala Asn His Arg Pro Leu Phe
580 585 590

50 Thr His Leu Ala Val Arg Ile Gly Gly Arg Tyr Val Val Ala Gly Lys
595 600 605

Met Ser Ile Ser Pro Asn Thr Thr Tyr Pro Ser Leu Leu Glu Asp Gly
55 610 615 620

Arg Val Glu Tyr Arg Val Ala Leu Thr Glu Asp Arg Leu Pro Arg Leu
625 630 635 640

5 Glu Glu Ile Arg Ile Trp Gly Pro Leu Gln Glu Asp Ala Asp Ile Gln
645 650 655

Val Tyr Arg Arg Tyr Gly Glu Glu Tyr Gly Asn Leu Thr Arg Pro Asp
660 665 670

10 Ile Thr Phe Thr Tyr Phe Gln Pro Lys Pro Arg Gln Ala Trp Val Trp
675 680 685

Ala Ala Val Arg Gly Pro Cys Ser Val Ser Cys Gly Ala Gly Leu Arg
690 695 700

15 Trp Val Asn Tyr Ser Cys Leu Asp Gln Ala Arg Lys Glu Leu Val Glu
705 710 715 720

20 Thr Val Gln Cys Gln Gly Ser Gln Gln Pro Pro Ala Trp Pro Glu Ala
725 730 735

Cys Val Leu Glu Pro Cys Pro Pro Tyr Trp Ala Val Gly Asp Phe Gly
740 745 750

25 Pro Cys Ser Ala Ser Cys Gly Gly Leu Arg Glu Arg Pro Val Arg
755 760 765

Cys Val Glu Ala Gln Gly Ser Leu Leu Lys Thr Leu Pro Pro Ala Arg
770 775 780

30 Cys Arg Ala Gly Ala Gln Gln Pro Ala Val Ala Leu Glu Thr Cys Asn
785 790 795 800

35 Pro Gln Pro Cys Pro Ala Arg Trp Glu Val Ser Glu Pro Ser Ser Cys
805 810 815

Thr Ser Ala Gly Gly Ala Gly Leu Ala Leu Glu Asn Glu Thr Cys Val
820 825 830

40 Pro Gly Ala Asp Gly Leu Glu Ala Pro Val Thr Glu Gly Pro Gly Ser
835 840 845

Val Asp Glu Lys Leu Pro Ala Pro Glu Pro Cys Val Gly Met Ser Cys
850 855 860

45 Pro Pro Gly Trp Gly His Leu Asp Ala Thr Ser Ala Gly Glu Lys Ala
865 870 875 880

50 Pro Ser Pro Trp Gly Ser Ile Arg Thr Gly Ala Gln Ala Ala His Val
885 890 895

Trp Thr Pro Ala Ala Gly Ser Cys Ser Val Ser Cys Gly Arg Gly Leu
900 905 910

55 Met Glu Leu Arg Phe Leu Cys Met Asp Ser Ala Leu Arg Val Pro Val
915 920 925

Gln Glu Glu Leu Cys Gly Leu Ala Ser Lys Pro Gly Ser Arg Arg Glu
930 935 940

5 Val Cys Gln Ala Val Pro Cys Pro Ala Arg Trp Gln Tyr Lys Leu Ala
945 950 955 960

Ala Cys Ser Val Ser Cys Gly Arg Gly Val Val Arg Arg Ile Leu Tyr
965 970 975

10 Cys Ala Arg Ala His Gly Glu Asp Asp Gly Glu Glu Ile Leu Leu Asp
980 985 990

Thr Gln Cys Gln Gly Leu Pro Arg Pro Glu Pro Gln Glu Ala Cys Ser
995 1000 1005

15 Leu Glu Pro Cys Pro Pro Arg Trp Lys Val Met Ser Leu Gly Pro Cys
1010 1015 1020

Ser Ala Ser Cys Gly Leu Gly Thr Ala Arg Arg Ser Val Ala Cys Val
20 1025 1030 1035 1040

Gln Leu Asp Gln Gln Asp Val Glu Val Asp Glu Ala Ala Cys Ala
1045 1050 1055

25 Ala Leu Val Arg Pro Glu Ala Ser Val Pro Cys Leu Ile Ala Asp Cys
1060 1065 1070

Thr Tyr Arg Trp His Val Gly Thr Trp Met Glu Cys Ser Val Ser Cys
1075 1080 1085

30 Gly Asp Gly Ile Gln Arg Arg Asp Thr Cys Leu Gly Pro Gln Ala
1090 1095 1100

Gln Ala Pro Val Pro Ala Asp Phe Cys Gln His Leu Pro Lys Pro Val
35 1105 1110 1115 1120

Thr Val Arg Gly Cys Trp Ala Gly Pro Cys Val Gly Gln Gly Thr Pro
1125 1130 1135

40 Ser Leu Val Pro His Glu Glu Ala Ala Ala Pro Gly Arg Thr Thr Ala
1140 1145 1150

Thr Pro Ala Gly Ala Ser Leu Glu Trp Ser Gln Ala Arg Gly Leu Leu
1155 1160 1165

45 Phe Ser Pro Ala Pro Gln Pro Arg Arg Leu Leu Pro Gly Pro Gln Glu
1170 1175 1180

Asn Ser Val Gln Ser Ser Ala Cys Gly Arg Gln His Leu Glu Pro Thr
50 1185 1190 1195 1200

Gly Thr Ile Asp Met Arg Gly Pro Gly Gln Ala Asp Cys Ala Val Ala
1205 1210 1215

55 Ile Gly Arg Pro Leu Gly Glu Val Val Thr Leu Arg Val Leu Glu Ser
1220 1225 1230

Ser Leu Asn Cys Ser Ala Gly Asp Met Leu Leu Leu Trp Gly Arg Leu
1235 1240 1245

5 Thr Trp Arg Lys Met Cys Arg Lys Leu Leu Asp Met Thr Phe Ser Ser
1250 1255 1260

Lys Thr Asn Thr Leu Val Val Arg Gln Arg Cys Gly Arg Pro Gly Gly
1265 1270 1275 1280

10 Gly Val Leu Leu Arg Tyr Gly Ser Gln Leu Ala Pro Glu Thr Phe Tyr
1285 1290 1295

Arg Glu Cys Asp Met Gln Leu Phe Gly Pro Trp Gly Glu Ile Val Ser
1300 1305 1310

15 Pro Ser Leu Ser Pro Ala Thr Ser Asn Ala Gly Gly Cys Arg Leu Phe
1315 1320 1325

Ile Asn Val Ala Pro His Ala Arg Ile Ala Ile His Ala Leu Ala Thr
20 1330 1335 1340

Asn Met Gly Ala Gly Thr Glu Gly Ala Asn Ala Ser Tyr Ile Leu Ile
1345 1350 1355 1360

25 Arg Asp Thr His Ser Leu Arg Thr Thr Ala Phe His Gly Gln Gln Val
1365 1370 1375

Leu Tyr Trp Glu Ser Glu Ser Gln Ala Glu Met Glu Phe Ser Glu
30 1380 1385 1390

Gly Phe Leu Lys Ala Gln Ala Ser Leu Arg Gly Gln Tyr Trp Thr Leu
1395 1400 1405

35 Gln Ser Trp Val Pro Glu Met Gln Asp Pro Gln Ser Trp Lys Gly Lys
1410 1415 1420

Glu Gly Thr
1425

40

<210> 9
<211> 45
<212> DNA

45 <213> Artificial Sequence

<220>
<221> primer_bind
<222> (1)..(45)

50 <400> 9
gctgcaggcg gcatcctaca cctggagctg ctgggtggccg tgggc 45

55 <210> 10
<211> 20
<212> DNA

```
<213> Artificial Sequence

<220>
<221> primer_bind
<222> (1)..(20)

5 <400> 10
cggcgggatc ctacacctgg 20

10 <210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

15 <220>
<221> primer_bind
<222> (1)..(20)

20 <400> 11
aatggtgact cccaggtcga 20

25 <210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

30 <220>
<221> primer_bind
<222> (1)..(20)

35 <400> 12
gagcaaattc ctgtactgac 20

40 <210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

45 <220>
<221> primer_bind
<222> (1)..(20)

50 <400> 13
gagcaaattc ctgtactgac 20

55 <210> 14
<211> 22
<212> DNA
<213> Artificial Sequence

60 <220>
<221> primer_bind
```

<222> (1)..(22)

5 <400> 14
gaccacgcgt atcgacgtcg ac 22

10 <210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

15 <220>
<221> primer_bind
<222> (1)..(21) 21

20 <400> 15
ctcagggttg atggtctggc t 21

25 <210> 16
<211> 30
<212> DNA
<213> Artificial Sequence

30 <220>
<221> primer_bind
<222> (1)..(30) 30

35 <400> 16
cgggctgcag gcgggatcct acacctggag 30

40 <210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

45 <220>
<221> primer_bind
<222> (1)..(21) 21

50 <400> 17
aatggtgact cccaggtcga g 21

55 <210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
<222> (1)..(20) 20

<400> 18
tggaggtcag caccaacaca 20

5 <210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

10 <220>
<221> primer_bind
<222> (1)..(20)

<400> 19
gagttgcctg atggtaaccg 20

15 <210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

20 <220>
<221> primer_bind
<222> (1)..(20)

<400> 20
gagcccttcc gtgggctgca 20

25

30 <210> 21
<211> 21
<212> DNA
<213> Artificial Sequence

35 <220>
<221> primer_bind
<222> (1)..(21)

<400> 21
cgctccctgg tggagctgac c 21

40 <210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

45 <220>
<221> primer_bind
<222> (1)..(20)

50 <400> 22
ctcaccatcg tcctccccat 20

55 <210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

```
<220>
<221> primer_bind
<222> (1)..(21)
5
<400> 23
atcatgaagc gtggagacag c

10 <210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

15 <220>
<221> primer_bind
<222> (1)..(20)

20 <400> 24
cctggagggg tccccagatg 20

25 <210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

30 <220>
<221> primer_bind
<222> (1)..(20)

35 <400> 25
tgcagcccac ggaagggctc 20

40 <210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

45 <220>
<221> primer_bind
<222> (1)..(20)

50 <400> 26
cagggctcca ggctgcaggc 20

55 <210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

60 <220>
<221> primer_bind
<222> (1)..(20)
```

<400> 27
aggaagagct gtgtggcctg 20

5 <210> 28
<211> 39
<212> DNA
<213> Artificial Sequence

10 <220>
<221> primer_bind
<222> (1)..(39)

<400> 28
15 gacgcggccc agccggccgc tgcaggcggc atcctacac 39

<210> 29
<211> 34
20 <212> DNA
<213> Artificial Sequence

<220>
<221> primer_bind
25 <222> (1)..(34)

<400> 29
ggccctcgag cggttccttc ctttcccttc cagg 34

30 <210> 30
<211> 35
<212> DNA
<213> Artificial Sequence

35 <220>
<221> primer_bind
<222> (1)..(35)

<400> 30
40 agcggtgtct atggctgcag gcggcatcct acacc 35

<210> 31
45 <211> 30
<212> DNA
<213> Artificial Sequence

<220>
50 <221> primer_bind
<222> (1)..(30)

<400> 31
55 agcctcgagc tggccagaca cggAACAAAT 30

<210> 32
<211> 29
<212> DNA
<213> Artificial Sequence
5
<220>
<221> primer_bind
<222> (1)...(29)

10 <400> 32
ggcgaattca tgcaccagcg tcaccccccg 29

15 <210> 33
<211> 21
<212> DNA
<213> Artificial Sequence

20 <220>
<221> primer_bind
<222> (1)...(21)

<400> 33
acagcattaa actaaggccgc c 21
25

<210> 34
<211> 40
<212> DNA
30 <213> Artificial Sequence

<220>
<221> primer_bind
<222> (1)...(40)
35

<400> 34
gatcgaattc gccggccacc atgcaccaggc gtcaccccccg 40

40 <210> 35
<211> 21
<212> DNA
<213> Artificial Sequence.

45 <220>
<221> primer_bind
<222> (1)...(21)

<400> 35
cggtataacaa tttcacacag g 21
50

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.