

SEQUENCE LISTING

<110> BATEMAN, JOHN
FITZGERALD, DAVID

<120> A MOLECULAR MARKER

<130> 071838.0142

<140> 10/699,035
<141> 2003-10-31

<150> PCT/AU02/00542
<151> 2002-05-02

<150> AU PR4701/01
<151> 2001-05-02

<160> 41

<170> PatentIn Ver. 3.3

<210> 1
<211> 537
<212> DNA
<213> Homo sapiens

<400> 1
ggggacctga tggccctgtct ggacagctca gccagcgtct ctcactacga gtttccccgg 60
gttcgggagt ttgtggggca gctggggct ccactgcccc tgggcaccgg gcccctgcgt 120
gccagctctgg tgcacgtggg cagtcggcca tacaccgagt tcccctcgg ccagcacagc 180
tcgggtgagg ctggccagga tgcgggtcggt gcttctgccc agcgcatggg tgacacccac 240
actggcctgg cgctggctta tgccaaaggaa cagctgtttt ctgaagcatc aggtgccccgg 300
ccaggggtgc ccaaagtgtct ggtgtgggtg acagatggcg gctccagcga ccctgtgggc 360
ccccccatgc aggagctcaa ggacctgggc gtacccgtgt tcattgttag caccggccga 420
ggcaacttcc tggagctgtc agccgctgcc tcagccctg ccgagaagca cctgcacttt 480
gtggacgtgg atgacctgca catcattgtc caagagctga ggggctccat tctcgcg 537

<210> 2
<211> 180
<212> PRT
<213> Homo sapiens

<400> 2
Arg Gly Asp Leu Met Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His
1 5 10 15

Tyr Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Pro
20 25 30

Leu Pro Leu Gly Thr Gly Ala Leu Arg Ala Ser Leu Val His Val Gly
35 40 45

Ser Arg Pro Tyr Thr Glu Phe Pro Phe Gly Gln His Ser Ser Gly Glu
50 55 60

Ala Ala Gln Asp Ala Val Arg Ala Ser Ala Gln Arg Met Gly Asp Thr
 65 70 75 80
 His Thr Gly Leu Ala Leu Val Tyr Ala Lys Glu Gln Leu Phe Ala Glu
 85 90 95
 Ala Ser Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr
 100 105 110
 Asp Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys
 115 120 125
 Asp Leu Gly Val Thr Val Phe Ile Val Ser Thr Gly Arg Gly Asn Phe
 130 135 140
 Leu Glu Leu Ser Ala Ala Ser Ala Pro Ala Glu Lys His Leu His
 145 150 155 160
 Phe Val Asp Val Asp Asp Leu His Ile Ile Val Gln Glu Leu Arg Gly
 165 170 175
 Ser Ile Leu Asp
 180

<210> 3
 <211> 1266
 <212> DNA
 <213> Mus musculus

<400> 3
 atgctgttct ggactgcgtt cagcatggct ttgagtctgc ggttggcatt ggcgcggagc 60
 agcatagagc gcggttccac agcatcagac ccccaggggg acctgttgtt cctgttggac 120
 agctcagcca gcgtgtcaca ctatgagttc tcaagagttc gggaaattgtt ggggcagctg 180
 gtggctacga tgctttcg acccggggct ctgcgtgcta gtctggtgca cgtggggcagc 240
 cagcctcaca cagagttac ttttggaccag tacagtttag gccaggctat acgggatgcc 300
 atccgtgttgc caccctaaacg tatgggtgat accaacacag gcctggact ggcttatgcc 360
 aaagaacaat tgtttgcgtt ggaaggcaggt gcccgccag gggttcccaa ggtgctggtg 420
 tgggtgacag atggggcgtc cagcgacccc gtggggccccc ctatgcagga gctcaaggac 480
 ctgggtgtca ccatcttcat tgtcagact gggcgaggca acctgttgaa gctgttggca 540
 gctgcctcgg ctccgtccga gaagcaccta cactttgtgg atgtggatga tcttcctatc 600
 attgccccggg agctgcgggg ctccataact gatgcgtatgc agccacaaca gcttcatgcc 660
 tcggagggttc tgccatgtgg ctccgcctg tcctggccgc ccctgctgac agcggactct 720
 ggttactacg tgcttggaaat ggtaccttagc ggccaaactgg caaccacaag acgccaacag 780
 ctgcccggga atgcttaccag ctggacctgg acagatctcg acccggacac agactatgaa 840
 gtatcactgc tgcttgcgtt caacgtgcac ctcttgaggc cgccagcacgt gcgagtgacgc 900
 acactgcaag aggaggccgg gccagaaacgc atcgatcatct cgcattgcgag gccgcgcagc 960
 ctccgcgtaa gctggggccccc cgcgcgttgc ccggactccgc ctctcgctta ccatgtacag 1020
 ctggacactc tgcaggggcgg gtccttagag cgcgtggagg tgccagcagg ccagaacagc 1080
 actaccgtcc agggcgttgc gcccctgcacc acttacctgg tgactgtgac tgccgccttc 1140
 cgctccggcc gccagagggc gctgtcggtt aaggcctgtt cggcctctgg cgcgcggacc 1200
 cgtgcgtccgc agtccatgcg gcccggaggct ggaccgcggg agccctgaac tgccctgcctg 1260
 ctcgtc

<210> 4
 <211> 415
 <212> PRT
 <213> Mus musculus

<400> 4
Met Leu Phe Trp Thr Ala Phe Ser Met Ala Leu Ser Leu Arg Leu Ala
1 5 10 15
Leu Ala Arg Ser Ser Ile Glu Arg Gly Ser Thr Ala Ser Asp Pro Gln
20 25 30
Gly Asp Leu Leu Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His Tyr
35 40 45
Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Thr Met
50 55 60
Ser Phe Gly Pro Gly Ala Leu Arg Ala Ser Leu Val His Val Gly Ser
65 70 75 80
Gln Pro His Thr Glu Phe Thr Phe Asp Gln Tyr Ser Ser Gly Gln Ala
85 90 95
Ile Arg Asp Ala Ile Arg Val Ala Pro Gln Arg Met Gly Asp Thr Asn
100 105 110
Thr Gly Leu Ala Leu Ala Tyr Ala Lys Glu Gln Leu Phe Ala Glu Glu
115 120 125
Ala Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr Asp
130 135 140
Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys Asp
145 150 155 160
Leu Gly Val Thr Ile Phe Ile Val Ser Thr Gly Arg Gly Asn Leu Leu
165 170 175
Glu Leu Leu Ala Ala Ala Ser Ala Pro Ala Glu Lys His Leu His Phe
180 185 190
Val Asp Val Asp Asp Leu Pro Ile Ile Ala Arg Glu Leu Arg Gly Ser
195 200 205
Ile Thr Asp Ala Met Gln Pro Gln Gln Leu His Ala Ser Glu Val Leu
210 215 220
Ser Ser Gly Phe Arg Leu Ser Trp Pro Pro Leu Leu Thr Ala Asp Ser
225 230 235 240
Gly Tyr Tyr Val Leu Glu Leu Val Pro Ser Gly Lys Leu Ala Thr Thr
245 250 255
Arg Arg Gln Gln Leu Pro Gly Asn Ala Thr Ser Trp Thr Trp Thr Asp
260 265 270
Leu Asp Pro Asp Thr Asp Tyr Glu Val Ser Leu Leu Pro Glu Ser Asn
275 280 285
Val His Leu Leu Arg Pro Gln His Val Arg Val Arg Thr Leu Gln Glu
290 295 300

Glu Ala Gly Pro Glu Arg Ile Val Ile Ser His Ala Arg Pro Arg Ser
 305 310 315 320

Leu Arg Val Ser Trp Ala Pro Ala Leu Gly Pro Asp Ser Ala Leu Gly
 325 330 335

Tyr His Val Gln Leu Gly Pro Leu Gln Gly Gly Ser Leu Glu Arg Val
 340 345 350

Glu Val Pro Ala Gly Gln Asn Ser Thr Thr Val Gln Gly Leu Thr Pro
 355 360 365

Cys Thr Thr Tyr Leu Val Thr Val Thr Ala Ala Phe Arg Ser Gly Arg
 370 375 380

Gln Arg Ala Leu Ser Ala Lys Ala Cys Thr Ala Ser Gly Ala Arg Thr
 385 390 395 400

Arg Ala Pro Gln Ser Met Arg Pro Glu Ala Gly Pro Arg Glu Pro
 405 410 415

<210> 5
 <211> 1254
 <212> DNA
 <213> Homo sapiens

<400> 5

```

atgcctccct ggacggcgct cggcctggcc ctgagcttgc ggctggcgct ggcgcggagc 60
ggcgcggagc gcggtccacc agcatcagcc ccccgggggg acctgtatgtt cctgctggac 120
agctcagcca gcgtctctca ctacgagttc tccccgggttc gggagtttgt ggggcagctg 180
gtggctccac tgccccctggg caccggggcc ctgcgtgcca gtctggtgca cgtggggcagt 240
cggccatata cccgagttccc cttcggccag cacagctcggt gtgaggctgc ccaggatgcg 300
gtgcgtgttt ctggccagcg catgggtgac acccacactg gcctggcgct ggtcttatgcc 360
aaggaacagc tgtttgctga agcatcaggt gcccggccag gggtgccaa atgtctggtg 420
tgggtgacag atggcggttc cagcgaccct gtggggccccc ccatgcagga gctcaaggac 480
ctgggcgtca ccgtgttcat tgtcagcacc gggcgaggca acttccttggaa gctgtcagcc 540
gctgcctcag cccctgcccga gaagcacctg cactttgtgg acgtggatga cctgcacatc 600
attgtccaag agctgaggggg ctccatttctc gcgatgcggc cgcagcagct ccatgccacg 660
gagatcacgt ccagcggtt cccgcctggcc tggccaccccc tgctgaccgc agactcgggc 720
tactatgtgc tggagctgggt gcccagcgcc cagccgggggg ctgcaagacg ccagcagctg 780
ccagggAACG ccacggactg gatctggggcc ggcctcgacc cggacacgga ctacgacgtg 840
gcgctagtgc ctgagtccaa cgtgcgcctc ctgaggcccc agatcctgcg ggtgcgcacg 900
cggccagagg agggccggggcc agagcgcatc gtcatctccc acgccccggcc ggcgcggctc 960
cgcgtgagtt gggcccccagc gctgggctca gcccggcgcc tcggctacca cgtgcagttc 1020
ggggccgtgc gggggggggga ggcgcagcggtt gttggagggtgc cggcggggccg caactgcacc 1080
acgctgcagg gcctggcgcc gggcacccgc tacctgggtga cctgtacccgc cgccctccgc 1140
tcggggccgcg agagcgcgct gtcccgccaa gctgcacgc cgcacggccc ggcggccgc 1200
ccacgcccccg tgccccggcgcc cccgacccccg gggaccggcca cccgtgagcc gtaa 1254
  
```

<210> 6
 <211> 418
 <212> PRT
 <213> Homo sapiens

<400> 6
 Met Leu Pro Trp Thr Ala Leu Gly Leu Ala Leu Ser Leu Arg Leu Ala
 1 5 10 15
 Leu Ala Arg Ser Gly Ala Glu Arg Gly Pro Pro Ala Ser Ala Pro Arg
 20 25 30
 Gly Asp Leu Met Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His Tyr
 35 40 45
 Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Pro Leu
 50 55 60
 Pro Leu Gly Thr Gly Ala Leu Arg Ala Ser Leu Val His Val Gly Ser
 65 70 75 80
 Arg Pro Tyr Thr Glu Phe Pro Phe Gly Gln His Ser Ser Gly Glu Ala
 85 90 95
 Ala Gln Asp Ala Val Arg Ala Ser Ala Gln Arg Met Gly Asp Thr His
 100 105 110
 Thr Gly Leu Ala Leu Val Tyr Ala Lys Glu Gln Leu Phe Ala Glu Ala
 115 120 125
 Ser Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr Asp
 130 135 140
 Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys Asp
 145 150 155 160
 Leu Gly Val Thr Val Phe Ile Val Ser Thr Gly Arg Gly Asn Phe Leu
 165 170 175
 Glu Leu Ser Ala Ala Ala Ser Ala Pro Ala Glu Lys His Leu His Phe
 180 185 190
 Val Asp Val Asp Asp Leu His Ile Ile Val Gln Glu Leu Arg Gly Ser
 195 200 205
 Ile Leu Asp Ala Met Arg Pro Gln Gln Leu His Ala Thr Glu Ile Thr
 210 215 220
 Ser Ser Gly Phe Arg Leu Ala Trp Pro Pro Leu Leu Thr Ala Asp Ser
 225 230 235 240
 Gly Tyr Tyr Val Leu Glu Leu Val Pro Ser Ala Gln Pro Gly Ala Ala
 245 250 255
 Arg Arg Gln Gln Leu Pro Gly Asn Ala Thr Asp Trp Ile Trp Ala Gly
 260 265 270
 Leu Asp Pro Asp Thr Asp Tyr Asp Val Ala Leu Val Pro Glu Ser Asn
 275 280 285
 Val Arg Leu Leu Arg Pro Gln Ile Leu Arg Val Arg Thr Arg Pro Glu
 290 295 300

Glu Ala Gly Pro Glu Arg Ile Val Ile Ser His Ala Arg Pro Arg Ser
 305 310 315 320
 Leu Arg Val Ser Trp Ala Pro Ala Leu Gly Ser Ala Ala Ala Leu Gly
 325 330 335
 Tyr His Val Gln Phe Gly Pro Leu Arg Gly Gly Glu Ala Gln Arg Val
 340 345 350
 Glu Val Pro Ala Gly Arg Asn Cys Thr Thr Leu Gln Gly Leu Ala Pro
 355 360 365
 Gly Thr Ala Tyr Leu Val Thr Val Thr Ala Ala Phe Arg Ser Gly Arg
 370 375 380
 Glu Ser Ala Leu Ser Ala Lys Ala Cys Thr Pro Asp Gly Pro Arg Pro
 385 390 395 400
 Arg Pro Arg Pro Val Pro Arg Ala Pro Thr Pro Gly Thr Ala Ser Arg
 405 410 415

Glu Pro

<210> 7
 <211> 539
 <212> DNA
 <213> Mus musculus

<400> 7
 agggggacct gttgttcctg ttggacagct cagccagcgt gtcacactat gagttctcaa 60
 gagttcgaaa atttgtgggg cagctggtgg ctacgatgtc tttcggaccc ggggctctgc 120
 gtgctagtct ggtgcacgtg ggcagccagc ctcacacaga gtttactttt gaccagtaca 180
 gttcaggcca ggctatacgg gatgccatcc gtgtgcacc ccaacgtatg ggtgatacca 240
 acacaggcct ggcactggct tatgccaaag aacaattgtt tgctgaggaa gcaggtgccc 300
 ggccagggggt tcccaaggtg ctggtgtggg tgacagatgg tggctccagc gacccctgtgg 360
 gcccccttat gcaggagctc aaggacctgg gtgtcaccat cttcattgtc agcaactggcc 420
 gaggcaacct gttggagctg ttggcagctg cctcggctcc tgccgagaag cacctacact 480
 ttgtggatgt ggatgatctt cctatcattt cccggagct gcggggctcc ataactgtat 539

<210> 8
 <211> 180
 <212> PRT
 <213> Mus musculus

<400> 8
 Gln Gly Asp Leu Leu Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His
 1 5 10 15
 Tyr Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Thr
 20 25 30
 Met Ser Phe Gly Pro Gly Ala Leu Arg Ala Ser Leu Val His Val Gly
 35 40 45
 Ser Gln Pro His Thr Glu Phe Thr Phe Asp Gln Tyr Ser Ser Gly Gln
 50 55 60

Ala Ile Arg Asp Ala Ile Arg Val Ala Pro Gln Arg Met Gly Asp Thr
 65 70 75 80

Asn Thr Gly Leu Ala Leu Ala Tyr Ala Lys Glu Gln Leu Phe Ala Glu
 85 90 95

Glu Ala Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr
 100 105 110

Asp Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys
 115 120 125

Asp Leu Gly Val Thr Ile Phe Ile Val Ser Thr Gly Arg Gly Asn Leu
 130 135 140

Leu Glu Leu Leu Ala Ala Ala Ser Ala Pro Ala Glu Lys His Leu His
 145 150 155 160

Phe Val Asp Val Asp Asp Leu Pro Ile Ile Ala Arg Glu Leu Arg Gly
 165 170 175

Ser Ile Thr Asp
 180

```
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer
      20

<400> 9
ctcaaagcca tgcgttagtcc
      20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer
      20

<400> 10
agaacgcata gtcatctcg
      20

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer
      20

<400> 11
agaacgcata gtcatctcg
      20
```

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 12
tcaaggcat atccaacaac 20

<210> 13
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 13
ctggtcatcg ccgcccttgc 20

<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 14
gaccagcggtt aattcctttc gt 22

<210> 15
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 15
ccgggttcc cggaagt 17

<210> 16
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 16
ttactggcaa catcaacagg actcctcgta tt 32

```

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 17
ccacaggact agaacacacctg ctaa 24

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 18
cctaagatga gcgcaagttg aa 22

<210> 19
<211> 9060
<212> DNA
<213> Homo sapiens

<400> 19
cctctgcatt ccagccacct gccctgggcc cagtcacaa ggaagggggc ccaagctctc 60
tgaataaaag gtgcacatga ggaccaagga ggctgcacac tgggagggga cagctccacc 120
tcctctcccc ggacacccca aaaggcgtag acgttcacaa gctgtcctgt cggcggctgc 180
tgtttgttggaa ggagtaaaagc atcctagcga gactgcaggc tcggtgtaca tctgatttac 240
tgaattttaa agtctggat gttagtgggg aagaggcgag gtgagcattt cgtgacgccc 300
aggacttaggc gggcgggga ctgcacccctt ctaggcaccc ccacccctggg caacttgc 360
acggacccca gggcagttagt tagtgcacagg agtagcccg gggtagatc tctcacagca 420
agaagatggt gtgttgctg gggctccctt ggagatgttc gtccctggg cccctggaa 480
gtgctccctc acgacggaaag gtttcctgtc agtgcggtcc cggggcctga tagtggcggt 540
gggcgggtgg ggtcacgtgt cctcaagggtc ctgaatgc 600
atccccatgt gctgttagt ggacccatgt ggtgtcctgg gcatgaaggc 660
tccccagcag gtgtgtccctt cctggccagc tgacatctt ggccaccatc 720
tgccccatctt cgccttcctt ttcttcaga agccttgcg gacctgaccc 780
cccgcgattt cccttcgcgtt tcctatcaac gtccaggacc 840
agcccttgcc acttggggcc cggttttcac acgtggggagt 900
aacagtccctg ggctgtacgc tctcaattat caccacacggc 960
gggcggggat gggccggggg ctgctgcggg gtcccgccag 1020
ggcaggcgcc aggccgggaa gccctgcggc cgcaggggaga 1080
ccgcgtgggg aaaggccggg cctgcaccccg tctgcgggtt 1140
tcgggacaca gggccctca ggtaggcgcc ggccttcgt gctgggggg 1200
tagggctcac ggctggcggtt ccccggggtt gggcgccggg 1260
cgccggccgtt cggcggtgc ggccttggcg gacagcgcc 1320
gcggcggtca cggtcacccag gtagggcggtt cccggccca 1380
ttcgccggcc cgggcaccc tcccgctgc gcctcccccgc 1440
acgtggtagc cgagcgcgcg ggctgagccc agcgctgggg 1500
cgccggccggg cgtggggat gacatgcgc tctggcccg 1560
gcggcgagct gcgtggggcc cggccacgtt cccgactccg 1620
gcctcacccg gcccgtgcg caccgcagg atctggggcc 1680
tcaggcacta gcccacgtc gtagtcgtt tccgggtcga 1740
gtggcggtcc ctggcagctt ctggcgctt gacgcccccg 1800

```

tccagcacat	agttagcccga	gtctgcggtc	agcaggggtg	gccaggccag	gcggaagccg	1860
ctggacgtga	tctccgtggc	atggagactgc	tgccggccgca	tcgcgtctgt	gggtgggtgca	1920
gggggtcagg	gaacagcggt	cagttcctcc	tccgctgctg	gagggcggcc	ctggctgatg	1980
gggaagatct	ggagatttgg	ggccccacta	ggaaagacgg	ggcccccg	ccaaggagct	2040
gctggagcca	tgccccgca	atgctgggg	tttcagaac	gtgccttggc	tgggggagga	2100
cggagggaaag	ggtgcagccc	cctcaggccc	tgtcagaac	gcccctgcct	cccttagccc	2160
caaaccagg	cctttgtgg	gaggtcag	ggccagatca	gtgaccgga	caaaggctct	2220
caaagacggc	agagtccaa	gtggcgtctg	agagcagagg	accagcccc	gcctgagtgg	2280
ccaggccggg	gtctgagggtc	agccccggctc	tctgagctgc	agcttaggaa	tgggagacca	2340
cagggggcagg	ccctgggggtt	ctggaggcgc	tgcctgcctc	gggtccccag	gagagtgtgg	2400
ggtggggttc	tccagagggg	gactcctgg	cctgtgacac	caagccccac	atagcctct	2460
gagtgaccc	gtgtggcga	ggctcataaaa	tgtctgcgt	gggttaaagc	tatcaggatc	2520
ttcctcttc	agtgtgggt	gcctggcca	cttcttccc	atccccacc	ctcagacccg	2580
gcctcttcc	caggagcccc	caccctgctg	cctggccctt	cggcactgca	gcctcaggct	2640
tttccttgg	ctgctaagg	cagccttcc	tcctggtccc	ctccaggcgc	agctgcactg	2700
ggtgacctgg	ggccactagg	ggccagacgt	ccctggggaa	accttgggg	ggccgtcca	2760
cccctctcca	accacagtc	caaccccttc	cggtcttggg	tggatgatta	accacagac	2820
ggagacttgg	tgagatcccc	agggttggca	tttttca	gctgcagcag	gctgagccag	2880
tggccgggtc	ctcatctcca	gccccagctc	cttcagggtc	tggctgggc	agggaggtcc	2940
aaaaaaaag	ccaatgggag	ctgctca	cctgcctc	gccttcctg	gtccggcctc	3000
tcagggaaacc	ctcacagtgg	gcctgcagtc	cgaacttagt	caaagccctc	ggccggctgtc	3060
cccaccagg	agaggtgccc	tgtgctct	ggggggggcag	tccctgac	ttctggctca	3120
cccctctcca	gttatgttgg	gcatgctc	gagcacatgc	tgcctcatctg	cagagtcccc	3180
agacttggaa	gcttcttc	gggcctacac	ccgggctctg	cactccctgg	ggcctcgagg	3240
tctgggttgg	acacatcagc	agggagctac	acctggaggt	ggctactcaa	gcctgcccc	3300
gtctcagcag	ggtacacggg	tcgccc	aagagtgtc	atagacaagc	tgcatca	3360
agccctgcac	cctagggtt	ccacagcccc	ggagggccctg	gcccgtctc	tggggacatg	3420
agatcttccc	aaagtcctaa	cccaagccct	ccttc	ctccca	gggctccctg	3480
ggccctgtt	cctcccgat	accgagaatg	gagccctca	gctttggac	aatgtatgtc	3540
aggatcatcca	cgtccacaaa	gtcagggtc	tttcggcag	gggctgaggc	agcggctgac	3600
agctccagga	agttgcctcg	gcccgtctg	acaatgaaca	cggtgacg	caggccctt	3660
agctcctgca	tggggggggcc	cacagggtc	ctggagccgc	catctgtc	ccacaccagc	3720
actttggca	cccttggccg	ggcacctgat	gcttcagcaa	acagctgtt	cttggcatag	3780
accagcgcca	ggccagtgt	ggtgtc	atgcgttggg	cagaagac	caccgcattc	3840
tgggcagcct	cacccgagct	gtgctggcc	aaggggaa	cggtgtatgg	ccgactgccc	3900
acgtgcacca	gactggcac	cagggcccc	gtgccc	gcagtggagc	caccagctc	3960
cccacaaact	cccgaaacccg	ggagaactcg	tagtggaga	cgctggctg	gctgtccagc	4020
aggaacatca	ggtccc	gggggctgat	gctgggtgg	ctggggaaa	ggaggaatgc	4080
tcagcctcag	gtgtggggcc	cccagac	cccacagcaa	ggcagggtcc	cccaggggccc	4140
cagcttcc	taagtggat	cttgc	cccaaagg	ctaggttgg	ggaaagagga	4200
actctaagca	agaggcctgt	acttttggg	gtttcactgc	acactggcc	tggatctag	4260
ggctctct	gggctgtgt	tatccc	atgtggaggg	gactctcc	tccaa	4320
cacac	cattcctcac	agacc	ctgc	gcca	agagtc	4380
cccccaggac	aggcctgagc	cgtggg	cttcc	gcatgg	ctt	4440
gcctgaggct	ggagttcagc	cacgc	agctgc	tgagg	ccac	4500
cacagcagca	ggggaaagg	tcggagg	acaatg	acgc	ccgat	4560
agcccagacc	ccgc	gatgtgg	ccccc	ccttcc	ccagcc	4620
tggactcaca	caaca	taac	cagc	cc	ccctcg	4680
gcttcc	tcctccgg	acctt	gggg	tgg	cc	4740
cccacca	cagg	gcgt	at	cc	cc	4800
gtgcgg	ggc	ttt	cc	cc	cc	4860
ggaaactga	ggc	ttt	cc	cc	cc	4920
gatccc	ggc	ttt	cc	cc	cc	4980
cctgg	ggc	ttt	cc	cc	cc	5040
ggctcc	gc	ttt	cc	cc	cc	5100
gcccgg	gc	ttt	cc	cc	cc	5160
ctcac	tc	ttt	cc	cc	cc	5220
cggcgt	gg	ttt	cc	cc	cc	5280

ctcgctcgct	cggggctgca	gggcgcgtca	ccgcgcggac	caggccggcc	ccgccccccgg	5340
gaggcccctc	cccgagcggc	cacaccacg	ccgaggccac	gcccacgccc	tccggcgcga	5400
gcggagggcc	acgcgcacag	accccggaga	ggcgcgcacg	agcggacccc	gacacgcagg	5460
gacacgcagc	accagccgag	atacgaccga	ggcacgcacg	cgcaggacag	cacacacaca	5520
caactccatc	tccctctccc	ggccgaggct	gtgcggccca	cgctctccac	ccctctccga	5580
cccccagccg	cgggagccga	gcagggaggt	accaggctag	gcccctccca	tgcccaccac	5640
tgccgtgact	ctgggtgctg	gggtcccagc	agccaggccc	aagagaaccc	caggggctgg	5700
cggtgtggcacc	aaaaaaacac	gtccagaccc	tggtttcgccc	ttggcctccg	cgtggaggc	5760
ggataggtgt	ctggagtaac	aggacatgt	tccacgggac	tgaccacgcag	ggatgggaag	5820
gaccatgggg	tggaaactac	aaggacacag	tggcttgaaa	ggggacacaa	gacaggaaatt	5880
cgagagagac	tcaagacacc	cacgcacactt	gggttcttg	gaggaagagg	catgggagtg	5940
ggagatgtt	ggttggggcc	ctgttccatg	ggacacact	gggcctgtta	cccatataacc	6000
ctacccatgt	agggggccag	actccaggac	ccaggacaca	cccccagcag	gactggaggg	6060
tcccactgtt	gagacaggag	ctctttagtc	ttggggcttt	ggtgaggccc	agacgagagg	6120
tggctgggt	cagggggcgt	cctgagggac	agtggctccc	agggcagatt	tcccctgctt	6180
gggtggggct	ggggcagcag	tgtcccttgg	acaggagaac	cctacccccc	ccctccctcg	6240
gagtagccat	ggcccttcc	cagggcttcc	tcagctcaga	gctgggaggt	gggggacgtg	6300
gggggggtgtc	tgcaggatg	tctcccttcc	ccccacccctc	tcctggagga	tgcgcgcgg	6360
gagaacggat	ggggctccac	aggcttccctt	cctcccttcc	aggcaggatga	gacaccgcgg	6420
ggccgtgcgg	acggccagca	ctcgactttg	cctaataaaag	gaagcagcag	gctgaggctg	6480
aggagctggc	ggcaggaaca	agggagagct	gtgtccccgc	cggcgcccc	caccccccct	6540
gccggggatc	ttggcagtgg	aggtgctggc	tgcgtccac	agacctcaga	cctcggctgg	6600
gaccagaaat	gcctgggtct	tccgccttgg	cccggtgggg	ggactttggg	tccccagagt	6660
gcaagctgt	ccacttcgag	gggcctcgcc	aggcccccca	gcccccaagta	cacaggggct	6720
gccgtggaga	tgacgctgaa	ggccgcagcc	gctggaggac	ctggggcttg	accggaagct	6780
ggctgcagac	cctgcggagg	cacgtccagg	tagtcaggca	gggagctggg	ccgagggtcc	6840
cccacccctgg	ggaggctcac	agccagtgcc	ccgcctgtcc	cccacccctcg	cccagcaggc	6900
gggccacagt	cacacctcg	ccagccttc	agggtctgacg	gggaagtttgc	cctcacttct	6960
ggaaaaaatg	agcgggttctt	cttggctgtg	actcaggcccc	tcaaggaaagc	ggccgccttc	7020
ctcccttcag	ctgcccatca	gccccgagaag	gcacaggagg	cctggcttcc	accagcctg	7080
ggcccgagatc	agccacctgc	cttgctcccg	gctctgcctg	gatgtccctcc	agtaggaga	7140
ccctcccccatt	cagctctccc	cgtccccctc	agtcttcagg	actcattttt	gtgtcctgccc	7200
ctcccccccg	tgttccacc	ccggaggagg	gacgtggaca	gagggttcca	gagagcatgg	7260
ggtcagccag	aggtgcagtg	tcagggcccc	ggccggactt	gaggcagaca	ccggaggaag	7320
cacaaatata	acagccggaa	ccctccactc	tccagggaga	agggccccgg	gtaagaggca	7380
gaggcaagga	cgggtcagggc	cagatcacag	tgggtctgg	ccccgagccc	tctgccttcc	7440
gcaggcacag	cccccgtctg	atccctggtg	cctggggccc	catgggttgg	ggagcagcct	7500
ggtttggctg	cggccacccc	gcccccacgg	tctgggcctg	ggctgtggg	gtccctgtgc	7560
ctcaactttcc	ggagccagcc	tgcctgcctg	gtctgtctgc	aggcaggatgg	agagagttcc	7620
aggaagctgg	ggaggctgt	gtcaccgggg	caccggccc	gcccccaccc	gcctttggga	7680
atgctccctc	ctccgcacaa	tccaggcttc	tgcagaagat	gaagggcctt	ttgtccccag	7740
ctggctgtgg	tcatgtttga	ccctgggtaa	aagggaact	cctgaggcct	ctgaccccac	7800
ccctgacccg	agctgaggggc	aggacgcccc	ggcccgccacc	cggcgccttt	tgttgctgtt	7860
ttcacgtatc	tcacaaacgt	actcaagcac	acacaggagc	agatggacgg	ggcgggtgagg	7920
gycagcagt	gtgaggggca	gcggcggtga	ggggcagcgg	cgtgagggg	cagcgggtcg	7980
ggcctgagggc	actgctctgg	gtgtgcctg	agcccacccc	acaacagtaa	gtggggcaga	8040
gcaggggtca	ccaagagagc	agggccacac	cagctcttag	actcaacctg	ctcaactgggg	8100
tcaaggacag	gtcttggggg	cctcgggggt	cacttttcac	ttcccaggag	cccaggcctg	8160
ccccctctggc	cccagagctg	acccccccta	gtccccctgt	ccagcagcag	ctgggggtggc	8220
gggttagacac	ctggcggtta	gcagecttgg	taggggtggg	agctgcacca	tctgcgtctg	8280
tccatccatc	cctctgtctgt	gtgctggca	cagccgcgcc	ccagcctag	tgctggggac	8340
acacaggcgc	cgggcccagca	ctgcccaggct	aggagggtgg	cgccgtaaaca	gctaggaaag	8400
atacggtcta	cttggtttcc	ctgtgagaac	agggggtcac	tggggactcg	cacgcaaggg	8460
gtaccccgagg	aagagccttc	caggcagaga	gaagggaaaccg	cgagtgcgt	gagcagggtg	8520
gggtgggcag	gagggggcctg	cgccaggact	gcagggggcag	agcaggctgg	gggccttcgg	8580
gagggggtggc	cgggtggagg	gtgttgcctg	cctcgacagg	ggcaggaggt	tcgtcacagc	8640
gaggacagag	cccgccccgg	tgggagccgg	agagcagcag	gcctgaatga	cccagggttt	8700
cctaatacgca	ggggcccttc	cttgcgttggg	tccctctact	ttgcctctct	gctgggacat	8760

ccttcctga aaggagagg aggaccat gctgcccctt cccagacac agtccagaca	8820
ggcccaggcc acagccctgg gcagacgcaa aactcccagg ggcctggact gggataggga	8880
ggaggcagca gggagggact gacatatgtc cacacaccac aaggactcc cagaggcggg	8940
tggggcgag ctggagcag gggccttagc ctcagacca gcccactcac cttggggagt	9000
tcctgccccca cagcctgccc agcttacagg cttggggca gggcaggcc agcacaggcc	9060

<210> 20
<211> 418
<212> PRT
<213> Homo sapiens

<400> 20			
Met Leu Pro Trp Thr Ala Leu Gly Leu Ala Leu Ser Leu Arg Leu Ala			
1	5	10	15
Leu Ala Arg Ser Gly Ala Glu Arg Gly Pro Pro Ala Ser Ala Pro Arg			
20	25	30	
Gly Asp Leu Met Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His Tyr			
35	40	45	
Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Pro Leu			
50	55	60	
Pro Leu Gly Thr Gly Ala Leu Arg Ala Ser Leu Val His Val Gly Ser			
65	70	75	80
Arg Pro Tyr Thr Glu Phe Pro Phe Gly Gln His Ser Ser Gly Glu Ala			
85	90	95	
Ala Gln Asp Ala Val Arg Ala Ser Ala Gln Arg Met Gly Asp Thr His			
100	105	110	
Thr Gly Leu Ala Leu Val Tyr Ala Lys Glu Gln Leu Phe Ala Glu Ala			
115	120	125	
Ser Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr Asp			
130	135	140	
Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys Asp			
145	150	155	160
Leu Gly Val Thr Val Phe Ile Val Ser Thr Gly Arg Gly Asn Phe Leu			
165	170	175	
Glu Leu Ser Ala Ala Ala Ser Ala Pro Ala Glu Lys His Leu His Phe			
180	185	190	
Val Asp Val Asp Asp Leu His Ile Ile Val Gln Glu Leu Arg Gly Ser			
195	200	205	
Ile Leu Asp Ala Met Arg Pro Gln Gln Leu His Ala Thr Glu Ile Thr			
210	215	220	
Ser Ser Gly Phe Arg Leu Ala Trp Pro Pro Leu Leu Thr Ala Asp Ser			
225	230	235	240

Gly Tyr Tyr Val Leu Glu Leu Val Pro Ser Ala Gln Pro Gly Ala Ala
 245 250 255
 Arg Arg Gln Gln Leu Pro Gly Asn Ala Thr Asp Trp Ile Trp Ala Gly
 260 265 270
 Leu Asp Pro Asp Thr Asp Tyr Asp Val Ala Leu Val Pro Glu Ser Asn
 275 280 285
 Val Arg Leu Leu Arg Pro Gln Ile Leu Arg Val Arg Thr Arg Pro Glu
 290 295 300
 Glu Ala Gly Pro Glu Arg Ile Val Ile Ser His Ala Arg Pro Arg Ser
 305 310 315 320
 Leu Arg Val Ser Trp Ala Pro Ala Leu Gly Ser Ala Ala Ala Leu Gly
 325 330 335
 Tyr His Val Gln Phe Gly Pro Leu Arg Gly Gly Glu Ala Gln Arg Val
 340 345 350
 Glu Val Pro Ala Gly Arg Asn Cys Thr Thr Leu Gln Gly Leu Ala Pro
 355 360 365
 Gly Thr Ala Tyr Leu Val Thr Val Thr Ala Ala Phe Arg Ser Gly Arg
 370 375 380
 Glu Ser Ala Leu Ser Ala Lys Ala Cys Thr Pro Asp Gly Pro Arg Pro
 385 390 395 400
 Arg Pro Arg Pro Val Pro Arg Ala Pro Thr Pro Gly Thr Ala Ser Arg
 405 410 415
 Glu Pro

<210> 21
<211> 415
<212> PRT
<213> *Mus musculus*

```

<400> 21
Met Leu Phe Trp Thr Ala Phe Ser Met Ala Leu Ser Leu Arg Leu Ala
      1           5           10          15

Leu Ala Arg Ser Ser Ile Glu Arg Gly Ser Thr Ala Ser Asp Pro Gln
      20          25          30

Gly Asp Leu Leu Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His Tyr
      35          40          45

Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Thr Met
      50          55          60

Ser Phe Gly Pro Gly Ala Leu Arg Ala Ser Leu Val His Val Gly Ser
      65          70          75          80

```

Gln Pro His Thr Glu Phe Thr Phe Asp Gln Tyr Ser Ser Gly Gln Ala
 85 90 95
 Ile Arg Asp Ala Ile Arg Val Ala Pro Gln Arg Met Gly Asp Thr Asn
 100 105 110
 Thr Gly Leu Ala Leu Ala Tyr Ala Lys Glu Gln Leu Phe Ala Glu Glu
 115 120 125
 Ala Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr Asp
 130 135 140
 Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys Asp
 145 150 155 160
 Leu Gly Val Thr Ile Phe Ile Val Ser Thr Gly Arg Gly Asn Leu Leu
 165 170 175
 Glu Leu Leu Ala Ala Ala Ser Ala Pro Ala Glu Lys His Leu His Phe
 180 185 190
 Val Asp Val Asp Asp Leu Pro Ile Ile Ala Arg Glu Leu Arg Gly Ser
 195 200 205
 Ile Thr Asp Ala Met Gln Pro Gln Gln Leu His Ala Ser Glu Val Leu
 210 215 220
 Ser Ser Gly Phe Arg Leu Ser Trp Pro Pro Leu Leu Thr Ala Asp Ser
 225 230 235 240
 Gly Tyr Tyr Val Leu Glu Leu Val Pro Ser Gly Lys Leu Ala Thr Thr
 245 250 255
 Arg Arg Gln Gln Leu Pro Gly Asn Ala Thr Ser Trp Thr Trp Thr Asp
 260 265 270
 Leu Asp Pro Asp Thr Asp Tyr Glu Val Ser Leu Leu Pro Glu Ser Asn
 275 280 285
 Val His Leu Leu Arg Pro Gln His Val Arg Val Arg Thr Leu Gln Glu
 290 295 300
 Glu Ala Gly Pro Glu Arg Ile Val Ile Ser His Ala Arg Pro Arg Ser
 305 310 315 320
 Leu Arg Val Ser Trp Ala Pro Ala Leu Gly Pro Asp Ser Ala Leu Gly
 325 330 335
 Tyr His Val Gln Leu Gly Pro Leu Gln Gly Gly Ser Leu Glu Arg Val
 340 345 350
 Glu Val Pro Ala Gly Gln Asn Ser Thr Thr Val Gln Gly Leu Thr Pro
 355 360 365
 Cys Thr Thr Tyr Leu Val Thr Val Thr Ala Ala Phe Arg Ser Gly Arg
 370 375 380

Gln Arg Ala Leu Ser Ala Lys Ala Cys Thr Ala Ser Gly Ala Arg Thr
 385 390 395 400

Arg Ala Pro Gln Ser Met Arg Pro Glu Ala Gly Pro Arg Glu Pro
 405 410 415

<210> 22
 <211> 182
 <212> PRT
 <213> Gullus gallus

<400> 22
 Ile Ala Asp Ile Val Ile Leu Val Asp Gly Ser Trp Ser Ile Gly Arg
 1 5 10 15

Phe Asn Phe Arg Leu Val Arg Leu Phe Leu Glu Asn Leu Val Ser Ala
 20 25 30

Phe Asn Val Gly Ser Glu Lys Thr Arg Val Gly Leu Ala Gln Tyr Ser
 35 40 45

Gly Asp Pro Arg Ile Glu Trp His Leu Asn Ala Tyr Gly Thr Lys Asp
 50 55 60

Ala Val Leu Asp Ala Val Arg Asn Leu Pro Tyr Lys Gly Gly Asn Thr
 65 70 75 80

Leu Thr Gly Leu Ala Leu Thr Tyr Ile Leu Glu Asn Ser Phe Lys Pro
 85 90 95

Glu Ala Gly Ala Arg Pro Gly Val Ser Lys Ile Gly Ile Leu Ile Thr
 100 105 110

Asp Gly Lys Ser Gln Asp Asp Val Ile Pro Pro Ala Lys Asn Leu Arg
 115 120 125

Asp Ala Gly Ile Glu Leu Phe Ala Ile Gly Val Lys Asn Ala Asp Ile
 130 135 140

Asn Glu Leu Lys Glu Ile Ala Ser Glu Pro Asp Ser Thr His Val Tyr
 145 150 155 160

Asn Val Ala Asp Phe Asn Phe Met Asn Ser Ile Val Glu Gly Leu Thr
 165 170 175

Arg Thr Val Cys Ser Arg
 180

<210> 23
 <211> 183
 <212> PRT
 <213> Unknown Sequence

<220>
 <223> Description of Unknown Sequence: VA domain from
 Unknown collagen VII

<400> 23
 Ala Ala Asp Ile Val Phe Leu Leu Asp Gly Ser Ser Ser Ile Gly Arg
 1 5 10 15

Ser Asn Phe Arg Glu Val Arg Ser Phe Leu Glu Gly Leu Val Leu Pro
 20 25 30

Phe Ser Gly Ala Ala Ser Ala Gln Gly Val Arg Phe Ala Thr Val Gln
 35 40 45

Tyr Ser Asp Asp Pro Arg Thr Glu Phe Gly Leu Asp Ala Leu Gly Ser
 50 55 60

Gly Gly Asp Val Ile Arg Ala Ile Arg Glu Leu Ser Tyr Lys Gly Gly
 65 70 75 80

Asn Thr Arg Thr Gly Ala Ala Ile Leu His Val Ala Asp His Val Phe
 85 90 95

Leu Pro Gln Leu Ala Arg Pro Gly Val Pro Lys Val Cys Ile Leu Ile
 100 105 110

Thr Asp Gly Lys Ser Gln Asp Leu Val Asp Thr Ala Ala Gln Arg Leu
 115 120 125

Lys Gly Gln Gly Val Lys Leu Phe Ala Val Gly Ile Lys Asn Ala Asp
 130 135 140

Pro Glu Glu Leu Lys Arg Val Ala Ser Gln Pro Thr Ser Asp Phe Phe
 145 150 155 160

Phe Phe Val Asn Asp Phe Ser Ile Leu Arg Thr Leu Leu Pro Leu Val
 165 170 175

Ser Arg Arg Val Cys Thr Thr
 180

<210> 24
 <211> 182
 <212> PRT
 <213> Homo sapiens

<400> 24
 Lys Ala Asp Ile Val Phe Leu Thr Asp Ala Ser Trp Ser Ile Gly Asp
 1 5 10 15

Asp Asn Phe Asn Lys Val Val Lys Phe Ile Phe Asn Thr Val Gly Ala
 20 25 30

Phe Asp Glu Val Asn Pro Ala Gly Ile Gln Val Ser Phe Val Gln Tyr
 35 40 45

Ser Asp Glu Val Lys Ser Glu Phe Lys Leu Asn Thr Tyr Asn Asp Lys
 50 55 60

Ala Leu Ala Leu Gly Ala Leu Gln Asn Ile Arg Tyr Arg Gly Gly Asn
 65 70 75 80

Thr Arg Thr Gly Lys Ala Leu Thr Phe Ile Lys Glu Lys Val Leu Thr
 85 90 95

Trp Glu Ser Gly Met Arg Lys Asn Val Arg Val Leu Gly Val Val Thr
 100 105 110

Asp Gly Arg Ser Gln Asp Glu Val Lys Lys Ala Ala Phe Val Ile Gln
 115 120 125

Gln Ser Gly Phe Ser Val Phe Val Val Gly Val Ala Asp Val Asp Tyr
 130 135 140

Asn Glu Leu Ala Asn Ile Ala Ser Lys Pro Ser Glu Arg His Val Phe
 145 150 155 160

Ile Val Asp Asp Phe Glu Ser Phe Glu Lys Ile Glu Asp Asn Leu Ile
 165 170 175

Thr Phe Val Cys Glu Thr
 180

<210> 25
 <211> 185
 <212> PRT
 <213> Unknown Sequence

<220>
 <223> Description of Unknown Sequence: VA domain from
 Unknown collagen VI

<400> 25
 Ala Ala Asp Ile Val Phe Leu Val Asp Ser Ser Trp Ser Ala Gly Lys
 1 5 10 15

Asp Arg Phe Leu Leu Val Gln Glu Phe Leu Ser Asp Val Val Glu Ser
 20 25 30

Leu Ala Val Gly Asp Asn Asp Phe His Phe Ala Leu Val Arg Leu Asn
 35 40 45

Gly Asn Pro His Thr Glu Phe Leu Leu Asn Thr Tyr His Ser Lys Gln
 50 55 60

Glu Val Leu Ser His Ile Ala Asn Met Ser Tyr Ile Gly Gly Ser Asn
 65 70 75 80

Gln Thr Gly Lys Gly Leu Glu Tyr Val Ile His Ser His Leu Thr Glu
 85 90 95

Ala Ser Gly Ser Arg Ala Ala Asp Gly Val Pro Gln Val Ile Val Val
 100 105 110

Leu Thr Asp Gly Gln Ser Glu Asp Gly Phe Ala Leu Pro Ser Ala Glu
 115 120 125

Leu Lys Ser Ala Asp Val Asn Val Phe Ala Val Gly Val Glu Gly Ala
 130 135 140

Asp Glu Arg Ala Leu Gly Glu Val Ala Ser Glu Pro Leu Leu Ser Met
 145 150 155 160

His Val Phe Asn Leu Glu Asn Val Thr Ser Leu His Gly Leu Val Gly
 165 170 175

Asn Leu Val Ser Cys Ile His Ser Ser
 180 185

<210> 26

<211> 185

<212> PRT

<213> Mus musculus

<400> 26

Arg Ala Asp Leu Val Phe Ile Ile Asp Ser Ser Arg Ser Val Asn Thr
 1 5 10 15

Tyr Asp Tyr Ala Lys Val Lys Glu Phe Ile Leu Asp Ile Leu Gln Phe
 20 25 30

Leu Asp Ile Gly Pro Asp Val Thr Arg Val Gly Leu Leu Gln Tyr Gly
 35 40 45

Ser Thr Val Lys Asn Glu Phe Ser Leu Lys Thr Phe Lys Arg Lys Ser
 50 55 60

Glu Val Glu Arg Ala Val Lys Arg Met Arg His Leu Ser Thr Gly Thr
 65 70 75 80

Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu Asn Ile Ala Phe Ser Glu
 85 90 95

Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn Val Pro Arg Ile Ile Met
 100 105 110

Ile Val Thr Asp Gly Arg Pro Gln Asp Ser Val Ala Glu Val Ala Ala
 115 120 125

Lys Ala Arg Asn Thr Gly Ile Leu Ile Phe Ala Ile Gly Val Gly Gln
 130 135 140

Val Asp Leu Asn Thr Leu Lys Ala Ile Gly Ser Glu Pro His Lys Asp
 145 150 155 160

His Val Phe Leu Val Ala Asn Phe Ser Gln Ile Glu Ser Leu Thr Ser
 165 170 175

Val Phe Gln Asn Lys Leu Cys Thr Val
 180 185

<210> 27

<211> 184

<212> PRT

<213> Mus musculus

<400> 27

Pro	Leu	Asp	Leu	Val	Phe	Met	Ile	Asp	Ser	Ser	Arg	Ser	Val	Arg	Pro
1				5					10					15	

Phe	Glu	Phe	Glu	Thr	Met	Arg	Gln	Phe	Leu	Val	Gly	Leu	Leu	Arg	Ser
				20					25				30		

Leu	Asp	Val	Gly	Leu	Asn	Ala	Thr	Arg	Val	Gly	Val	Ile	Gln	Tyr	Ser
				35			40					45			

Ser	Gln	Val	Gln	Ser	Val	Phe	Pro	Leu	Gly	Ala	Phe	Ser	Arg	Arg	Glu
				50			55				60				

Asp	Met	Glu	Arg	Ala	Ile	Arg	Ala	Val	Val	Pro	Leu	Ala	Gln	Gly	Thr
	65				70				75				80		

Met	Thr	Gly	Leu	Ala	Ile	Gln	Tyr	Ala	Met	Asn	Val	Ala	Phe	Ser	Glu
				85					90				95		

Ala	Glu	Gly	Ala	Arg	Pro	Ser	Glu	Glu	Arg	Val	Pro	Arg	Val	Leu	Val
				100			105				110				

Ile	Val	Thr	Asp	Gly	Arg	Pro	Gln	Asp	Arg	Val	Ala	Glu	Val	Ala	Ala
	115				120						125				

Gln	Ala	Arg	Ala	Arg	Gly	Ile	Glu	Ile	Tyr	Ala	Val	Gly	Val	Gln	Arg
	130				135					140					

Ala	Asp	Val	Gly	Ser	Leu	Arg	Thr	Met	Ala	Ser	Pro	Pro	Leu	Asp	Gln
	145				150				155				160		

His	Val	Phe	Leu	Val	Glu	Ser	Phe	Asp	Ile	Gln	Glu	Phe	Gly	Leu	Gln
				165				170				175			

Phe	Gln	Gly	Arg	Leu	Cys	Gly	Lys								
				180											

<210> 28

<211> 185

<212> PRT

<213> Mus musculus

<400> 28

Pro	Leu	Asp	Leu	Val	Phe	Ile	Ile	Asp	Ser	Ser	Arg	Ser	Val	Arg	Pro
1				5					10				15		

Leu	Glu	Phe	Thr	Lys	Val	Lys	Thr	Phe	Val	Ser	Arg	Ile	Ile	Asp	Thr
				20				25				30			

Leu	Asp	Ile	Gly	Ala	Thr	Asp	Thr	Arg	Val	Ala	Val	Val	Asn	Tyr	Ala
		35				40				45					

Ser Thr Val Lys Ile Glu Phe Gln Leu Asn Thr Tyr Ser Asp Lys Gln
 50 55 60

Ala Leu Lys Gln Ala Val Ala Arg Ile Thr Pro Leu Ser Thr Gly Thr
 65 70 75 80

Met Ser Gly Leu Ala Ile Gln Thr Ala Met Glu Glu Ala Phe Thr Val
 85 90 95

Glu Ala Gly Ala Arg Gly Pro Met Ser Asn Ile Pro Lys Val Ala Ile
 100 105 110

Ile Val Thr Asp Gly Arg Pro Gln Asp Gln Val Asn Glu Val Ala Ala
 115 120 125

Arg Ala Arg Ala Ser Gly Ile Glu Leu Tyr Ala Val Gly Val Asp Arg
 130 135 140

Ala Asp Met Glu Ser Leu Lys Met Met Ala Ser Lys Pro Leu Glu Glu
 145 150 155 160

His Val Phe Tyr Val Glu Thr Tyr Gly Val Ile Glu Lys Leu Ser Ala
 165 170 175

Arg Phe Gln Glu Thr Pro Cys Ala Leu
 180 185

<210> 29
 <211> 185
 <212> PRT
 <213> Mus musculus

<400> 29
 Pro Thr Asp Leu Val Phe Val Val Asp Ser Ser Arg Ser Val Arg Pro
 1 5 10 15

Val Glu Phe Glu Lys Val Lys Val Phe Leu Ser Gln Val Ile Glu Ser
 20 25 30

Leu Asp Val Gly Pro Asn Ala Thr Arg Val Gly Leu Val Asn Tyr Ala
 35 40 45

Ser Thr Val Lys Pro Glu Phe Pro Leu Arg Ala His Gly Ser Lys Ala
 50 55 60

Ser Leu Leu Gln Ala Val Arg Arg Ile Gln Pro Leu Ser Thr Gly Thr
 65 70 75 80

Met Thr Gly Leu Ala Leu Gln Phe Ala Ile Thr Lys Ala Leu Ser Asp
 85 90 95

Ala Glu Gly Gly Arg Ala Arg Ser Pro Asp Ile Ser Lys Val Val Ile
 100 105 110

Val Val Thr Asp Gly Arg Pro Gln Asp Ser Val Arg Asp Val Ser Glu
 115 120 125

Arg Ala Arg Ala Ser Gly Ile Glu Leu Phe Ala Ile Gly Leu Gly Arg
 130 135 140
 Val Asp Lys Ala Thr Leu Arg Gln Ile Ala Ser Glu Pro Gln Asp Glu
 145 150 155 160
 His Val Asp Tyr Val Glu Ser Tyr Asn Val Ile Glu Lys Leu Ala Lys
 165 170 175
 Lys Phe Gln Glu Ala Phe Cys Val Val
 180 185

<210> 30
 <211> 193
 <212> PRT
 <213> Homo sapiens

<400> 30
 Gln Leu Asp Ile Val Ile Val Leu Asp Gly Ser Asn Ser Ile Tyr Pro
 1 5 10 15

Trp Asp Ser Val Thr Ala Phe Leu Asn Asp Leu Leu Lys Arg Met Asp
 20 25 30

Ile Gly Pro Lys Gln Thr Gln Val Gly Ile Val Gln Tyr Gly Glu Asn
 35 40 45

Val Thr His Glu Phe Asn Leu Asn Lys Tyr Ser Ser Thr Glu Glu Val
 50 55 60

Leu Val Ala Ala Lys Lys Ile Val Gln Arg Gly Gly Arg Gln Thr Met
 65 70 75 80

Thr Ala Leu Gly Thr Asp Thr Ala Arg Lys Glu Ala Phe Thr Glu Ala
 85 90 95

Arg Gly Ala Arg Arg Gly Val Lys Lys Val Met Val Ile Val Thr Asp
 100 105 110

Gly Glu Ser His Asp Asn His Arg Leu Lys Lys Val Ile Gln Asp Cys
 115 120 125

Glu Asp Glu Asn Ile Gln Arg Phe Ser Ile Ala Ile Leu Gly Ser Tyr
 130 135 140

Asn Arg Gly Asn Leu Ser Thr Glu Lys Phe Val Glu Glu Ile Lys Ser
 145 150 155 160

Ile Ala Ser Glu Pro Thr Glu Lys His Phe Phe Asn Val Ser Asp Glu
 165 170 175

Leu Ala Leu Val Thr Ile Val Lys Thr Leu Gly Glu Arg Ile Phe Ala
 180 185 190

Leu

<210> 31
<211> 181
<212> PRT
<213> Unknown Sequence

<220>
<223> Description of Unknown Sequence: VA domain from
Unknown WARP

<400> 31
Gln Gly Asp Leu Leu Phe Leu Leu Asp Ser Ser Ala Ser Val Ser His
1 5 10 15
Tyr Glu Phe Ser Arg Val Arg Glu Phe Val Gly Gln Leu Val Ala Thr
20 25 30
Met Ser Phe Gly Pro Gly Ala Leu Arg Ala Ser Leu Val His Val Gly
35 40 45
Ser Gln Pro His Thr Glu Phe Thr Phe Asp Gln Tyr Ser Ser Gly Gln
50 55 60
Ala Ile Arg Asp Ala Ile Arg Val Ala Pro Gln Arg Met Gly Asp Thr
65 70 75 80
Asn Thr Gly Leu Ala Leu Ala Tyr Ala Lys Glu Gln Leu Phe Ala Glu
85 90 95
Glu Ala Gly Ala Arg Pro Gly Val Pro Lys Val Leu Val Trp Val Thr
100 105 110
Asp Gly Gly Ser Ser Asp Pro Val Gly Pro Pro Met Gln Glu Leu Lys
115 120 125
Asp Leu Gly Val Thr Ile Phe Ile Val Ser Thr Gly Arg Gly Asn Leu
130 135 140
Leu Glu Leu Leu Ala Ala Ala Ser Ala Pro Ala Glu Lys His Leu His
145 150 155 160
Phe Val Asp Val Asp Asp Leu Pro Ile Ile Ala Arg Glu Leu Arg Gly
165 170 175
Ser Ile Thr Asp Ala
180

<210> 32
<211> 184
<212> PRT
<213> Unknown Sequence

<220>
<223> Description of Unknown Sequence: VA domain from
Unknown cochlin

<400> 32
Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Tyr Asn Ile Gly Gln
1 5 10 15

Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala Val Met
20 25 30

Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Val Val Gln Ala Ser
35 40 45

Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ala Ala Lys
50 55 60

Glu Val Leu Phe Ala Ile Lys Glu Leu Gly Phe Arg Gly Gly Asn Ser
65 70 75 80

Asn Thr Gly Lys Ala Leu Lys His Ala Ala Gln Lys Phe Phe Ser Met
85 90 95

Glu Asn Gly Ala Arg Lys Gly Ile Pro Lys Ile Ile Val Val Phe Leu
100 105 110

Asp Gly Trp Pro Ser Asp Asp Leu Glu Glu Ala Gly Ile Val Ala Arg
115 120 125

Glu Phe Gly Val Asn Val Phe Ile Val Ser Ser Val Ala Lys Pro Thr
130 135 140

Thr Glu Glu Leu Gly Met Val Gln Asp Ile Gly Phe Ile Asp Lys Ala
145 150 155 160

Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr Gln Met Pro Ser Trp Phe
165 170 175

Gly Thr Thr Lys Tyr Val Lys Pro
180

<210> 33
<211> 186
<212> PRT
<213> Unknown Sequence

<220>
<223> Description of Unknown Sequence: VA domain from
Unknown vwf

<400> 33
Leu Leu Asp Leu Val Phe Leu Leu Asp Gly Ser Ser Arg Leu Ser Glu
1 5 10 15

Ala Glu Phe Glu Val Leu Lys Ala Phe Val Val Asp Met Met Glu Arg
20 25 30

Leu Arg Ile Ser Gln Lys Trp Val Arg Val Ala Val Val Glu Tyr His
35 40 45

Asp Gly Ser His Ala Tyr Ile Gly Leu Lys Asp Arg Lys Arg Pro Ser
 50 55 60

Glu Leu Arg Arg Ile Ala Ser Gln Val Lys Tyr Ala Gly Ser Gln Val
 65 70 75 80

Ala Ser Thr Ser Glu Val Leu Lys Tyr Thr Leu Phe Gln Ile Phe Ser
 85 90 95

Lys Ile Asp Arg Pro Glu Ala Ser Arg Ile Ala Leu Leu Leu Met Ala
 100 105 110

Ser Gln Glu Pro Gln Arg Met Ser Arg Asn Phe Val Arg Tyr Val Gln
 115 120 125

Gly Leu Lys Lys Lys Val Ile Val Ile Pro Val Gly Ile Gly Pro
 130 135 140

His Ala Asn Leu Lys Gln Ile Arg Leu Ile Glu Lys Gln Ala Pro Glu
 145 150 155 160

Asn Lys Ala Phe Val Leu Ser Ser Val Asp Glu Leu Glu Gln Gln Arg
 165 170 175

Asp Glu Ile Val Ser Tyr Leu Cys Asp Leu
 180 185

<210> 34
 <211> 85
 <212> PRT
 <213> Homo sapiens

<400> 34
 Pro Arg Asn Leu Lys Val Thr Asp Glu Thr Thr Asp Ser Phe Lys Ile
 1 5 10 15

Thr Trp Thr Gln Ala Pro Gly Arg Val Leu Arg Tyr Arg Ile Ile Tyr
 20 25 30

Arg Pro Val Ala Gly Gly Glu Ser Arg Glu Val Thr Thr Pro Pro Asn
 35 40 45

Gln Arg Arg Arg Thr Leu Glu Asn Leu Ile Pro Asp Thr Lys Tyr Glu
 50 55 60

Val Ser Val Ile Pro Glu Tyr Phe Ser Gly Pro Gly Thr Pro Leu Thr
 65 70 75 80

Gly Asn Ala Ala Thr
 85

<210> 35
 <211> 86
 <212> PRT
 <213> Mus musculus

<400> 35
 Pro Ser Gln Met Gln Val Thr Asp Val Gln Asp Asn Ser Ile Ser Val
 1 5 10 15
 Arg Trp Leu Pro Ser Thr Ser Pro Val Thr Gly Tyr Arg Val Thr Thr
 20 25 30
 Thr Pro Lys Asn Gly Leu Gly Pro Ser Lys Thr Lys Thr Ala Ser Pro
 35 40 45
 Asp Gln Thr Glu Met Thr Ile Glu Gly Leu Gln Pro Thr Val Glu Tyr
 50 55 60
 Val Val Ser Val Tyr Ala Gln Asn Arg Asn Gly Glu Ser Gln Pro Leu
 65 70 75 80
 Val Gln Thr Ala Val Thr
 85

<210> 36
 <211> 87
 <212> PRT
 <213> Unknown Sequence

<220>
 <223> Description of Unknown Sequence: F3-2 repeats from
 Unknown WARP

<400> 36
 Pro Glu Arg Ile Val Ile Ser His Ala Arg Pro Arg Ser Leu Arg Val
 1 5 10 15
 Ser Trp Ala Pro Ala Leu Gly Pro Asp Ser Ala Leu Gly Tyr His Val
 20 25 30
 Gln Leu Gly Pro Leu Gln Gly Gly Ser Leu Glu Arg Val Glu Val Pro
 35 40 45
 Ala Gly Gln Asn Ser Thr Thr Val Gln Gly Leu Thr Pro Cys Thr Thr
 50 55 60
 Tyr Leu Val Thr Val Thr Ala Ala Phe Arg Ser Gly Arg Gln Arg Ala
 65 70 75 80
 Leu Ser Ala Lys Ala Cys Thr
 85

<210> 37
 <211> 88
 <212> PRT
 <213> Homo sapiens

<400> 37
 Pro Thr Arg Leu Val Phe Ser Ala Leu Gly Pro Thr Ser Leu Arg Val
 1 5 10 15

Ser Trp Gln Glu Pro Arg Cys Glu Arg Pro Leu Gln Gly Tyr Ser Val
 20 25 30
 Glu Tyr Gln Leu Leu Asn Gly Gly Glu Leu His Arg Leu Asn Ile Pro
 35 40 45
 Asn Pro Ala Gln Thr Ser Val Val Val Glu Asp Leu Leu Pro Asn His
 50 55 60
 Ser Tyr Val Phe Arg Val Arg Ala Gln Ser Gln Glu Gly Trp Gly Arg
 65 70 75 80
 Glu Arg Glu Gly Val Ile Thr Ile
 85

<210> 38
 <211> 85
 <212> PRT
 <213> Gullus gallus

<400> 38
 Pro Gln His Leu Glu Val Asp Glu Ala Ser Thr Asp Ser Phe Arg Val
 1 5 10 15
 Ser Trp Lys Pro Thr Ser Ser Asp Ile Ala Phe Tyr Arg Leu Ala Trp
 20 25 30
 Ile Pro Leu Asp Gly Gly Glu Ser Glu Glu Val Val Leu Ser Gly Asp
 35 40 45
 Ala Asp Ser Tyr Val Ile Glu Gly Leu Leu Pro Asn Thr Glu Tyr Glu
 50 55 60
 Val Ser Leu Leu Ala Val Phe Asp Asp Glu Thr Glu Ser Glu Val Val
 65 70 75 80
 Ala Val Leu Gly Ala
 85

<210> 39
 <211> 85
 <212> PRT
 <213> Homo sapiens

<400> 39
 Pro Lys Asp Ile Thr Ile Ser Asn Val Thr Lys Asp Ser Val Met Val
 1 5 10 15
 Ser Trp Ser Pro Pro Val Ala Ser Phe Asp Tyr Tyr Arg Val Ser Tyr
 20 25 30
 Arg Pro Thr Gln Val Gly Arg Leu Asp Ser Ser Val Val Pro Asn Thr
 35 40 45
 Val Thr Glu Phe Thr Ile Thr Arg Leu Asn Pro Ala Thr Glu Tyr Glu
 50 55 60

Ile Ser Leu Asn Ser Val Arg Gly Arg Glu Glu Ser Glu Arg Ile Cys
 65 70 75 80

Thr Leu Val His Thr
 85

<210> 40
 <211> 87
 <212> PRT
 <213> Unknown Sequence

<220>
 <223> Description of Unknown Sequence: F3-1 repeat from
 Unknown WARP

<400> 40
 Pro Gln Gln Leu His Ala Ser Glu Val Leu Ser Ser Gly Phe Arg Leu
 1 5 10 15

Ser Trp Pro Pro Leu Leu Thr Ala Asp Ser Gly Tyr Tyr Val Leu Glu
 20 25 30

Leu Val Pro Ser Gly Lys Leu Ala Thr Thr Arg Arg Gln Gln Leu Pro
 35 40 45

Gly Asn Ala Thr Ser Trp Thr Trp Thr Asp Leu Asp Pro Asp Thr Asp
 50 55 60

Tyr Glu Val Ser Leu Leu Pro Glu Ser Asn Val His Leu Leu Arg Pro
 65 70 75 80

Gln His Val Arg Val Arg Thr
 85

<210> 41
 <211> 2311
 <212> DNA
 <213> Mus musculus

<220>
 <221> CDS
 <222> (30)..(1274)

<400> 41
 tcgatcaaga gccccccact ccaggcgcg atg ctg ttc tgg act gcg ttc agc 53
 Met Leu Phe Trp Thr Ala Phe Ser
 1 5

atg gct ttg agt ctg cgg ttg gca ttg gcg cgg agc agc ata gag cgc 101
 Met Ala Leu Ser Leu Arg Leu Ala Leu Ala Arg Ser Ser Ile Glu Arg
 10 15 20

ggt tcc aca gca tca gac ccc cag ggg gac ctg ttg ttc ctg ttg gac 149
 Gly Ser Thr Ala Ser Asp Pro Gln Gly Asp Leu Leu Phe Leu Leu Asp
 25 30 35 40

agc tca gcc agc gtg tca cac tat gag ttc tca aga gtt cgg gaa ttt		197
Ser Ser Ala Ser Val Ser His Tyr Glu Phe Ser Arg Val Arg Glu Phe		
45	50	55
gtg ggg cag ctg gtg gct acg atg tct ttc gga ccc ggg gct ctg cgt		245
Val Gly Gln Leu Val Ala Thr Met Ser Phe Gly Pro Gly Ala Leu Arg		
60	65	70
gct agt ctg gtg cac gtg ggc agc cag cct cac aca gag ttt act ttt		293
Ala Ser Leu Val His Val Gly Ser Gln Pro His Thr Glu Phe Thr Phe		
75	80	85
gac cag tac agt tca ggc cag gct ata cgg gat gcc atc cgt gtt gca		341
Asp Gln Tyr Ser Ser Gly Gln Ala Ile Arg Asp Ala Ile Arg Val Ala		
90	95	100
ccc caa cgt atg ggt gat acc aac aca ggc ctg gca ctg gct tat gcc		389
Pro Gln Arg Met Gly Asp Thr Asn Thr Gly Leu Ala Leu Ala Tyr Ala		
105	110	115
aaa gaa caa ttg ttt gct gag gaa gca ggt gcc cgg cca ggg gtt ccc		437
Lys Glu Gln Leu Phe Ala Glu Ala Gly Ala Arg Pro Gly Val Pro		
125	130	135
aag gtg ctg gtg tgg gtg aca gat ggt ggc tcc agc gac ccc gtg ggc		485
Lys Val Leu Val Trp Val Thr Asp Gly Ser Ser Asp Pro Val Gly		
140	145	150
ccc cct atg cag gag ctc aag gac ctg ggt gtc acc atc ttc att gtc		533
Pro Pro Met Gln Glu Leu Lys Asp Leu Gly Val Thr Ile Phe Ile Val		
155	160	165
agc act ggc cga ggc aac ctg ttg gag ctg ttg gca gct gcc tcg gct		581
Ser Thr Gly Arg Gly Asn Leu Leu Glu Leu Leu Ala Ala Ala Ser Ala		
170	175	180
cct gcc gag aag cac cta cac ttt gtg gat gtg gat gat ctt cct atc		629
Pro Ala Glu Lys His Leu His Phe Val Asp Val Asp Asp Leu Pro Ile		
185	190	195
205	210	215
att gcc cgg gag ctg cgg ggc tcc ata act gat gcg atg cag cca caa		677
Ile Ala Arg Glu Leu Arg Gly Ser Ile Thr Asp Ala Met Gln Pro Gln		
220	225	230
cag ctt cat gcc tcg gag gtt ctg tcc agt ggc ttc cgc ctg tcc tgg		725
Gln Leu His Ala Ser Glu Val Leu Ser Ser Gly Phe Arg Leu Ser Trp		
235	240	245
ccg ccc ctg ctg aca gcg gac tct ggt tac tac gtg ctg gaa ttg gta		773
Pro Pro Leu Leu Thr Ala Asp Ser Gly Tyr Tyr Val Leu Glu Leu Val		
250	255	260
cct agc ggc aaa ctg gca acc aca aga cgc caa cag ctg ccc ggg aat		821
Pro Ser Gly Lys Leu Ala Thr Thr Arg Arg Gln Gln Leu Pro Gly Asn		

gct acc agc tgg acc tgg aca gat ctc gac ccg gac aca gac tat gaa		869	
Ala Thr Ser Trp Thr Trp Thr Asp Leu Asp Pro Asp Thr Asp Tyr Glu			
265	270	275	280
gta tca ctg ctg cct gag tcc aac gtg cac ctc ctg agg ccg cag cac		917	
Val Ser Leu Leu Pro Glu Ser Asn Val His Leu Leu Arg Pro Gln His			
285	290	295	
gtg cga gta cgc aca ctg caa gag gag gcc ggg cca gaa cgc atc gtc		965	
Val Arg Val Arg Thr Leu Gln Glu Ala Gly Pro Glu Arg Ile Val			
300	305	310	
atc tcg cat gcg agg ccg cgc agc ctc cgc gta agc tgg gcc ccc gcg		1013	
Ile Ser His Ala Arg Pro Arg Ser Leu Arg Val Ser Trp Ala Pro Ala			
315	320	325	
ctt ggc ccg gac tcc gct ctc ggc tac cat gta cag ctc gga cct ctg		1061	
Leu Gly Pro Asp Ser Ala Leu Gly Tyr His Val Gln Leu Gly Pro Leu			
330	335	340	
cag ggc ggg tcc cta gag cgc gtg gag gtg cca gca ggc cag aac agc		1109	
Gln Gly Gly Ser Leu Glu Arg Val Glu Val Pro Ala Gly Gln Asn Ser			
345	350	355	360
act acc gtc cag ggc ctg acg ccc tgc acc act tac ctg gtg act gtg		1157	
Thr Thr Val Gln Gly Leu Thr Pro Cys Thr Thr Tyr Leu Val Thr Val			
365	370	375	
act gcc gcc ttc cgc tcc ggc cgc cag agg gcg ctg tcg gct aag gcc		1205	
Thr Ala Ala Phe Arg Ser Gly Arg Gln Arg Ala Leu Ser Ala Lys Ala			
380	385	390	
tgt acg gcc tct ggc gcg cgg acc cgt gct ccg cag tcc atg cgg ccg		1253	
Cys Thr Ala Ser Gly Ala Arg Thr Arg Ala Pro Gln Ser Met Arg Pro			
395	400	405	
gag gct gga ccg cgg gag ccc tgaactgcct gcctgctcgt ccacccgggg		1304	
Glu Ala Gly Pro Arg Glu Pro			
410	415		
gccctcttcc ctagccccga gagagagaca ctgctgctcg tgggtttct tgtggatgga		1364	
gtcgggtggg gagatggat gccggtcctg ccttgacca gcgttaattc cttcgtcgt		1424	
ttccccactg gtcatcgccg cccttgcctg acttccggga aacccggta gcctcacgcg		1484	
caatggcggt cctctccggt tgccagtgga gttgagcaca cggtggcct tgggcaactc		1544	
ttggcgaggg gatggacagt gtctgaggtc aggttggaga cataagaccc aggaaccgccc		1604	
ttcaggagag gaggccacag agttccaac ctgtgcacaa ggctggccc tctggatggca		1664	
gggactacgc atggcttga ggaggcggtc aggaccatcc aggtcctgcc tggcctaga		1724	
aagtggtag gagaagggaa agagagacta gtgttagacag gattcccgaa aacttcctca		1784	
aggaaaggaa agatagggag gtatgctggg aggctgtatga tggatggcattg gtttcatca		1844	

agatgtcctg ccagcctaga ggccgggatc tgtcagggtc actgactctg cttcctgcc 1904
caggacctgc actggccct cgatcagtgc caaggatgca gtctttcac aggaatggga 1964
cgagaccttg gcatttaggg cctcagggat aggagagccg cactatgaca gattctaagg 2024
gagcctcctg cttagtgta gggagcaagg tgtcatgcag gtgggctacc tcctgccatc 2084
accattaccc tggggcatct gacagatacc taagggtggt caggaacagg tttcctctca 2144
agtccctatg taggcctctc ctctcctctc agaatcattt gccttatccc aagcttactc 2204
catctcttcc ccactaatga cccggactct aacaacaata cagtcagaca gacataaact 2264
tgccctgcag tctcattaaa atgctgtatt ttctgtcaaa aaaaaaa 2311