CORRIGÉ: FONCTIONS POLYNOMIALES DE PLUSIEURS VARIABLES

A - Fonctions polynomiales de degré inférieur ou égal à 1 et fonctions affines

A.1 C'est un simple système de deux équations à deux inconnues. On résoud et et on trouve

$$\alpha = \frac{x_1 - x}{x_1 - x_0}$$
 $\beta = \frac{x - x_0}{x_1 - x_0}$

A.2 $g(x) = \alpha g(x_0) + \beta g(x_1)$ donne, en remplaçant avec les valeurs ci-dessus :

$$g(x) = \frac{x_1 - x}{x_1 - x_0} g(x_0) + \frac{x - x_0}{x_1 - x_0} g(x_1)$$

- **A.3** Si *g* est une fonction affine, alors c'est une fonction polynomiale de degré inférieur ou égal à 1 (compte tenu de l'expression trouvée ci-dessus).
 - Réciproquement, si g est de la forme $\forall x \in \mathbb{R}$, $g(x) = x\mathbf{a} + \mathbf{b}$ avec $(\mathbf{a}, \mathbf{b}) \in \mathbb{E}^2$, on vérifie aisément que g est affine.
- **A.4** Avec $x_0 = 0$ et $x_1 = 1$, on a g(x) = (1 x)g(0) + xg(1) = x.(2,3) + (1,1). On reconnaît une équation paramétrique de la droite passant par le point (1,1) et de vecteur directeur (2,3). Il ne restait plus qu'à faire un dessin.

B - Fonctions polynomiales de degré inférieur ou égal à 2 et fonctions bi-affines symétriques.

- **B.1** $\mathcal{A}_2 \neq \emptyset$ car clairement la fonction nulle est dans \mathcal{A}_2 .
 - Soit $(f,g) \in \mathcal{A}_2^2$, soit $\lambda \in \mathbb{R}$.

Soit $u \in \mathbb{R}$, soit $(v_1, v_2) \in \mathbb{R}^2$, soit $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ tel que $\alpha_1 + \alpha_2 = 1$. Alors:

$$\begin{split} (f + \lambda g)(u, \alpha_1 v_1 + \alpha_2 v_2) &= f(u, \alpha_1 v_1 + \alpha_2 v_2) + \lambda g(u, \alpha_1 v_1 + \alpha_2 v_2) \\ &= \alpha_1 f(u, v_1) + \alpha_2 f(u, v_2) + \lambda \left[\alpha_1 g(u, v_1) + \alpha_2 g(u, v_2) \right] \\ &= \alpha_1 \left[(f + \lambda g)(u, v_1) \right] + \alpha_2 \left[(f + \lambda g)(u, v_2) \right] \end{split}$$

Donc $(f + \lambda g)(u, \cdot)$ est une fonction affine. On montre de même que $(f + \lambda g)(\cdot, v)$ est affine $\forall v \in \mathbb{R}$, d'où $f + \lambda g \in \mathcal{A}_2$.

- En conclusion, \mathscr{A}_2 est un sous-espace vectoriel de $E^{\mathbb{R}}$.
- **B.2** Supposons : $\exists (\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \in \mathbb{E}^4$ tel que $\forall (u, v) \in \mathbb{R}^2$, $f(u, v) = uv\mathbf{a} + u\mathbf{b} + v\mathbf{c} + \mathbf{d}$. Alors, à v fixé, on a $f(\cdot, v) : u \longmapsto u(v\mathbf{a} + \mathbf{b}) + (v\mathbf{c} + \mathbf{b})$ est une fonction polynômiale de degré ≤ 1 en u, donc est affine. De même pour l'application partielle $f(u, \cdot)$. Donc f est bi-affine.
 - Supposons $f \in \mathcal{A}_2$. Si $(u, v) \in \mathbb{R}^2$, on a f(u, v) = (1 - v)f(u, 0) + vf(u, 1) (car $f(u, \cdot)$ est affine), donc f(u, v) = (1 - v)[(1 - u)f(0, 0) + uf(1, 0)] + v[(1 - u)f(0, 1) + uf(1, 1)], et on a bien la forme voulue.
- **B.3** D'abord, les 4d applications proposées sont bien dans \mathcal{A}_2 , puisqu'elles sont de la forme vue dans la question précédente.
 - Soit $(\lambda_{ij})_{\substack{1 \leq j \leq d \\ 1 \leq i \leq 4}} \in \mathbb{R}^{4d}$. On suppose $\sum_{i=1}^{4} \sum_{j=1}^{d} \lambda_{ij} w_j^i = 0$.

Alors
$$\forall (u, v) \in \mathbb{R}^2$$
, $\sum_{j=1}^d [\lambda_{1j} \mathbf{e}_j + \lambda_{2j} u \mathbf{e}_j + \lambda_{3j} v \mathbf{e}_j + \lambda_{4j} u v \mathbf{e}_j] = 0$

Donc $\forall (u, v) \in \mathbb{R}^2$, $\forall j \in [1, d]$, $\lambda_{1j} + \lambda_{2j} u + \lambda_{3j} v + \lambda_{4j} u v = 0$ car $(\mathbf{e}_1, \dots, \mathbf{e}_d)$ est libre.

En prenant $(u, v) \in \{(0,0), (0,1), (1,0), (1,1)\}$ on obtient $\lambda_{ij} = 0$ pour tous i, j. En conclusion, la famille donnée est libre.

— Soit $f \in \mathcal{A}_2$. On sait qu'il existe $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \in \mathbb{E}^4$ tels que $\forall (u, v) \in \mathbb{R}^2$, $f(u, v) = uv\mathbf{a} + u\mathbf{b} + v\mathbf{c} + \mathbf{d}$. On décompose alors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_d)$:

$$\mathbf{a} = \sum_{j=1}^{d} a_j \mathbf{e}_j$$
, $\mathbf{b} = \sum_{j=1}^{d} b_j \mathbf{e}_j$, $\mathbf{c} = \sum_{j=1}^{d} c_j \mathbf{e}_j$, $\mathbf{d} = \sum_{j=1}^{d} d_j \mathbf{e}_j$.

Alors
$$\forall (u,v) \in \mathbb{R}^2$$
, $f(u,v) = \sum_{j=1}^d [a_j u v \mathbf{e}_j + b_j u \mathbf{e}_j + c_j v \mathbf{e}_j + d_j \mathbf{e}_j]$

$$\text{d'où } f = \sum_{j=1}^d \left[a_j w_j^4 + b_j w_j^3 + c_j w_j^2 + d_j w_j^1 \right] \text{ et la famille } (w_j^i)_{\substack{1 \leq j \leq d \\ 1 \leq i \leq 4}} \text{ est bien génératrice de } \mathscr{A}_2.$$

- En conclusion, cette famille est bien une base de \mathcal{A}_2 , d'où dim $\mathcal{A}_2 = 4d$.
- **B.4** Soit $f \in \mathcal{A}_2$. On sait qu'il existe $(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \in \mathbb{E}^4$ tels que $\forall (u, v) \in \mathbb{R}^2$, $f(u, v) = uv\mathbf{a} + u\mathbf{b} + v\mathbf{c} + \mathbf{d}$. On a alors $\forall (u, v) \in \mathbb{R}^2$, $f(v, u) = uv\mathbf{a} + v\mathbf{b} + u\mathbf{c} + \mathbf{d}$

Donc f est symétrique si et seulement si, pour tout $(u, v) \in \mathbb{R}^2$: $uv\mathbf{a} + u\mathbf{b} + v\mathbf{c} + \mathbf{d} = uv\mathbf{a} + v\mathbf{b} + u\mathbf{c} + \mathbf{d}$ Cela est évidemment équivalent à $\mathbf{b} = \mathbf{c}$. En reprenant les calculs et les notations de la question précédente,

cela équivaut à
$$f = \sum_{j=1}^d \left[a_j w_j^4 + b_j (w_j^3 + w_j^2) + d_j w_j^1 \right]$$
.

Ainsi, \mathscr{AS}_2 est l'ensemble des combinaisons linéaires des vecteurs de la famille $(w_j^1, w_j^2 + w_j^3, w_j^4)_{1 \le j \le d}$; c'est donc le sous-espace vectoriel engendré par cette famille ; cette famille étant libre (facile : en écrivant une combinaison linéaire nulle, on voit vite que tous les coefficients sont nuls), elle forme une base de \mathscr{AS}_2 , d'où dim $\mathscr{AS}_2 = 3d$.

- **B.5** Soit $f \in \mathscr{AS}_2$. Il existe $(\mathbf{a}, \mathbf{b}, \mathbf{d}) \in \mathbb{E}^3$ tels que, pour tout $(u, v) \in \mathbb{R}^2$, $f(u, v) = uv\mathbf{a} + (u + v)\mathbf{b} + \mathbf{d}$, d'où, pour $x \in \mathbb{R}$, $h(x) = f(x, x) = x^2\mathbf{a} + 2x\mathbf{b} + \mathbf{d}$. Ainsi, h appartient bien à $\mathbb{E}_2[x]$.
 - ℓ est linéaire : facile.
 - ℓ est surjective, car toute fonction polynomiale de degré ≤ 2 est de la forme $x \mapsto x^2 \mathbf{a} + 2x\mathbf{b} + \mathbf{d}$ pour $(\mathbf{a}, \mathbf{b}, \mathbf{d}) \in \mathbb{E}^3$, donc est l'image par ℓ de la fonction bi-affine $f: (u, v) \mapsto u v \mathbf{a} + (u + v) \mathbf{b} + \mathbf{d}$.
 - Enfin elle est injective, puisque, si $\ell(f) = 0$ alors (avec les notations précédentes) $\forall x \in \mathbb{R}$, $x^2 \mathbf{a} + 2x \mathbf{b} + \mathbf{d} = 0$ d'où, en prenant successivement x = 0, 1, -1, $\mathbf{a} = \mathbf{b} = \mathbf{b} = 0$, d'où f = 0.
- **B.6** Les applications partielles de f étant affines, et puisque toute fonction affine vérifie g(x) = (1-x)g(0) + xg(1), on a :

$$f(u,v) = (1-v)f(u,0) + vf(u,1)$$
puis $f(u,v) = (1-u)(1-v)f(0,0) + u(1-v)f(1,0) + v(1-u)f(0,1) + uvf(1,1)$
et $F(x) = (1-x)^2 f(0,0) + 2x(1-x)f(0,1) + x^2 f(1,1)$.

B.7 D'après les questions précédentes, le schéma explique comment calculer f(x,x) en considérant que :

signifie c = (1-x)a + xb (ce que l'on peut interpréter en termes de barycentre).

B.8 En notant $M_x = F(x)$, $\overrightarrow{I} = A_1$ et $\overrightarrow{J} = A_2$, on a $\overrightarrow{A_0M_x} = x \overrightarrow{I} + x^2 \overrightarrow{J}$, donc les coordonnées (X,Y) de M_x dans le repère (non orthonormé!) $(A_0; \overrightarrow{I}, \overrightarrow{J})$ vérifient $Y = X^2$.

La courbe est donc une portion de parabole.

Voir la figure ci-contre.

D'après les formules trouvées précédemment, on a :
$$f(u,v) = u v A_2 + \frac{u+v}{2} A_+ A_0 = (u v + 2u + 2v, -5u v + 2u + 2v + 1)$$

$$f(0,0) = A_0 = (0,1) = P_0, \ f(0,1) = (2,3) = P_1 \ \text{et} \ f(1,1) = (5,0) = P_2.$$

Ensuite, $f\left(\frac{2}{3},0\right)$ est le barycentre de P_0 et P_1 affectés resp. des coefficients $\frac{1}{3}$ et $\frac{2}{3}$, $f\left(\frac{2}{3},1\right)$ est le barycentre de P_1 et P_2 affectés resp. des coefficients $\frac{1}{3}$ et $\frac{2}{3}$, et enfin $F\left(\frac{2}{3}\right)$ est le barycentre de $f\left(\frac{2}{3},0\right)$ et de $f\left(\frac{2}{3},1\right)$ affectés de ces mêmes coefficients, conformément au schéma suivant :

C - Fonctions polynomiales de degré quelconque et fonctions multi-affines symétriques.

C.1 Il est facile de montrer que \mathscr{AS}_n est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}^n}$.

- a) Le nombre de termes dans la somme est $\binom{n}{k}$. Si tous les u_i sont égaux à x, chaque produit est égal **C.2** à x^k , donc $\varepsilon_k(x,\ldots,x) = \binom{n}{k} x^k$. Et cette formule reste valable pour k=0.
 - **b)** Chaque application partielle $u_j \longrightarrow \prod u_i$ est une fonction polynomiale de degré ≤ 1 en u_j , c'est à dire une fonction affine. Il en est donc de même de l'application $u_j \longmapsto \sum_{\mathbf{X} \subset [1,n]} \prod_{i \in \mathbf{X}} u_i$. Ainsi, ε_k est multi-affine.

- Si (u_1', \ldots, u_n') est une permutation de (u_1, \ldots, u_n) , on retrouve dans $\varepsilon_k(u_1', \ldots, u_n')$ tous les termes de $\varepsilon_k(u_1, \ldots, u_n)$ à l'ordre près. Les ε_k sont donc bien des éléments de \mathscr{A}_n .
- Soit $(\lambda_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$. On suppose $\sum_{k=0}^n \lambda_k \varepsilon_k = 0$.

Alors
$$\forall x \in \mathbb{R}$$
, $\sum_{k=0}^{n} \lambda_k \varepsilon_k(x, \dots, x) = 0$ et donc $\forall x \in \mathbb{R}$, $\sum_{k=0}^{n} \lambda_k \binom{n}{k} x^k = 0$, d'où $\lambda_0 = \dots = \lambda_n = 0$ (un

polynôme est nul si et seulement si tous ses coefficients sont nu

La famille $(\varepsilon_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$ est donc libre.

— (\clubsuit)Soit maintenant $f \in \mathscr{AS}_n$, et $(u_1, ..., u_n) \in \mathbb{R}^n$. On regroupe dans $f(u_1, ..., u_n)$ les termes contenant le même nombre de variables : ceux qui n'en contiennent pas, ceux qui en contiennent une seule $(u_1, u_2, ..., ou u_n)$, etc...

On obtient donc une formule de la forme : $f(u_1,...,u_n) = \sum_{k=1}^{n} P_k(u_1,...,u_n)$

avec
$$\forall k \in [0, n]$$
, $P_k(u_1, \dots, u_n) = \sum_{\substack{X \subset [1, n] \\ |X| = k}} \lambda_{k, X} \prod_{i \in X} u_i$ où les $\lambda_{k, X} \in \mathbb{R}$ (on pose $\prod_{i \in \emptyset} u_i = 1$). On a de plus, puisque $f \in \mathscr{AS}_n$:

(1)
$$\sum_{k=0}^{n} P_k(u_1, \dots, u_n) = \sum_{k=0}^{n} P_k(u_{\sigma(1)}, \dots, u_{\sigma(n)}) \text{ pour toute permutation de } \llbracket 1, n \rrbracket$$

Montrons maintenant que les P_k sont de la forme $\alpha_k \varepsilon_k$ par récurrence sur k:

On a clairement $P_0 = cste$, donc de la forme $\alpha_0 \varepsilon_0$.

Choisissons maintenant $i \in [1, n]$ et posons $u = (u_1, ..., u_n)$ avec $u_i = 1$ et $u_j = 0$ pour $j \neq i$. Alors $P_1(u) = \lambda_{1,\{i\}}$ et $\forall k \ge 2$, $P_k(u) = 0$.

On obtient donc dans l'équation (1):
$$\sum_{k=0}^{n} P_k(u) = \lambda_{1,\{i\}} = \sum_{k=0}^{n} P_k(u_{\sigma(1)}, \dots, u_{\sigma(n)}) = \lambda_{1,\sigma^{-1}(\{i\})}.$$

Cela étant vrai pour toute permutation σ , on en conclut que $\lambda_{1,\{i\}} = cste = \alpha_1$, et en reportant dans l'expression de P_1 , on obtient $P_1 = \alpha_1 \varepsilon_1$.

Supposons ainsi démontré $P_0 = \alpha_0 \varepsilon_0$, $P_1 = \alpha_1 \varepsilon_1, ..., P_{k-1} = \alpha_{k-1} \varepsilon_{k-1}$ avec $k \in [1, n-1]$.

On choisit $X_0 \subset \{1, ..., n\}$ tel que $|X_0| = k$ et on prend $u = (u_1, ..., u_n)$ tel que $u_i = 1$ si $i \in X_0$ et $u_i = 0$ sinon.

Alors:

- pour $j \ge k+1$, $P_i(u) = P_i(u_{\sigma(1)}, ..., u_{\sigma(n)}) = 0$
- pour $j \leq k-1$, $P_i(u) = P_i(u_{\sigma(1)}, \dots, u_{\sigma(n)})$ (hypothèse de récurrence)
- $P_k(u) = \lambda_{k,X_0}$

d'où, en reportant dans (1) $P_k(u) = \lambda_{k,X_0} = P_k(u_{\sigma(1)}, ..., u_{\sigma(n)}) = \lambda_{k,\sigma^{-1}(X_0)}$

Cela étant vrai pour toute permutation σ , on obtient donc $\lambda_{k,X} = cste$ (indépendante de X tel que |X| = k), donc $\lambda_{k,X} = cste = \alpha_k$, et donc $P_k = \alpha_k \varepsilon_k$.

La famille $(\varepsilon_k)_{0 \le k \le n}$ est donc génératrice de \mathscr{AS}_n ¹.

- **C.3** On a pour $0 \le k \le n$, $\ell(\varepsilon_k) = \binom{n}{k} X^k$ donc la matrice cherchée est : diag $\binom{n}{0}$, $\binom{n}{1}$,..., $\binom{n}{k}$,..., $\binom{n}{n}$) qui est clairement inversible. ℓ est donc bijective.
- **C.4** Soit $x \in \mathbb{R}$. Alors, en utilisant le fait que f est une fonction affine de la dernière variable :

$$P_{j}^{v}(x) = f(0^{n-v-j}1^{j}x^{v})$$

$$= f(\underbrace{0, \dots, 0}_{n-v-j}, \underbrace{1, \dots, 1}_{j}, \underbrace{x, \dots, x}_{v})$$

$$= (1-x)f(\underbrace{0, \dots, 0}_{n-v-j}, \underbrace{1, \dots, 1}_{j}, \underbrace{x, \dots, x}_{v-1}, 0) + xf(\underbrace{0, \dots, 0}_{n-v-j}, \underbrace{1, \dots, 1}_{j}, \underbrace{x, \dots, x}_{v-1}, 1)$$

$$= (1-x)P_{j}^{v-1}(x) + xP_{j+1}^{v-1}(x)$$

^{1.} OUF! Est-ce bien du niveau CCP?

On en déduit donc un tableau "en triangle" similaire à celui du **B.7**, avec à gauche, les n+1 points P_j^0 pour $j \in [0, n]$ puis les n points P_j^1 pour $j \in [1, n]$ etc.. jusqu'au point $P_0^n = F(x)$.

C.5 Procédure Maple possible :

```
Casteljau:=proc(PP)
local j,nu;
for nu from 1 to n do
   for j from 0 to n-nu do
      PP[j]:=evalf( (1-x)*PP[j]+x*PP[j+1] )
   od
od;
RETURN(PP[0])
end;
```

Explications: on appelle la procédure en ayant préalablement déclaré et rempli le tableau PP avec les valeurs des $P_j^0: PP[j]:=P_j^0$ pour $0 \le j \le n$. A chaque boucle de nu, le tableau contient en début de boucle les $P_j^{v-1}(x)$, et en fin de boucle les $P_j^v(x)$. En fin de procédure, on a donc dans PP[0] l'élément $P_0^n(x)=F(x)$.

D - Polynômes de Bernstein.

- **D.1** a) L'application flor_n étant linéaire par construction, les φ_i sont trivialement des formes linéaires.
 - **b)** ψ est donc une application linéaire de $\mathbb{R}_n[x]$ dans \mathbb{R}^{n+1} . Soit $F \in \text{Ker}\psi$, et $f = \text{flor}_n(F)$. Alors tous les $P_i = f(0^{n-i}1^ix^0)$ pour $i \in [0,n]$ sont nuls. Or ces P_i ne sont rien d'autre que les P_i^0 de **C.4**. Par conséquent, le calcul de F(x) par l'algorithme de De Casteljau donnera F(x) = 0. Ainsi, F = 0, $\text{Ker}\psi = \{0\}$ et ψ est injective.
 - Au vu des dimensions, elle sera donc bijective.
- **D.2** La famille $(B_i^n)_{i \in [0,n]}$ est l'image réciproque d'une base par un isomorphisme ; c'est donc une base de $\mathbb{R}_n[x]$. Les points de Bézier de $F \in \mathbb{R}_n[x]$ sont les coordonnées de $\psi(F)$. Or $\psi(B_i, n) = e_i$ donc les points de Bézier de B_i^n sont tous nuls, sauf le $i \grave{e}me$ qui vaut 1.
 - On a $\varphi_i(B_i^n) = \delta_{ij}$ donc la famille (φ_i) est la base duale de la base $(B_i^n)_{i \in [0,n]}$.
- **D.3** De cette dernière propriété, on déduit immédiatement $\forall F \in \mathbb{R}_n[x]$, $F = \sum_{i=0}^n \varphi_i(F)B_i^n$, puisque les $\varphi_i(F)$ sont les coordonnées de F dans la base $(B_i^n)_{i \in [0,n]}$ (c'est la définition de la base duale!). Si F = cste = 1, tous les points de Bézier de F valent 1, donc $\varphi_i(F) = 1$ pour tout i, ce qui donne la formule demandée.

- **D.4** Les points de Bézier de B_i^n valent 0 ou 1, donc appartiennent à [0,1]. Tous les barycentres successifs obtenus par l'algorithme de De Casteljau seront donc dans [0,1], en particulier le dernier qui est justement $B_i^n(x)$.
- **D.5** Il est clair que \widetilde{f} est multi-affine, puisque toutes ses applications partielles sont, comme celles de f, affines. Toute permutation de (u_1, \ldots, u_{n-1}) laisse f inchangée, donc \widetilde{f} aussi. Ainsi $\widetilde{f} \in \mathscr{AS}_{n-1}$.

$$\widetilde{F}(a) = \widetilde{f}(\underbrace{a, \dots, a}_{n-1 \text{ fois}}) = f(\underbrace{a, \dots, a}_{n \text{ fois}}) = F(a).$$

D'après D.3, on a
$$\widetilde{F}(a) = \sum_{i=0}^{n-1} \widetilde{f}(0^{n-i-1}1^i a^0) B_i^{n-1}(a) = \sum_{i=0}^{n-1} f(0^{n-i-1}1^i a^1) B_i^{n-1}(a) = \sum_{i=0}^{n-1} P_i^1(a) B_i^{n-1}(a).$$

On a donc $F(a) = \sum_{j=0}^{n-1} P_j^1(a) B_j^{n-1}(a)$. En prenant $F = B_i^n$ et en renommant a en x, on obtient :

$$\forall x \in \mathbb{R}, \ B_i^n(x) = \sum_{j=0}^{n-1} P_j^1(x) B_j^{n-1}(x)$$
 (*)

Or $P_j^1(x) = (1-x)P_j^0(x) + xP_{j+1}^0(x)$, où, ici, les P_j^0 sont les points de Bézier de B_i^n , qui sont nuls, sauf le $i-\grave{e}me$ qui vaut 1. Dans la somme précédente (*), il ne reste donc que deux termes, pour j=i et pour j=i-1 (et même un seul si i=0 ou i=n). Avec la convention de l'énoncé, (*) s'écrit donc : $\forall x \in \mathbb{R}, \ B_i^n(x) = (1-x)B_i^{n-1}(x) + xB_{i-1}^{n-1}(x)$.

D.6 En utilisant la formule ci-dessus et la formule dite "du triangle de Pascal" pour les coefficients binomiaux, il est facile de démontrer le résultat par récurrence sur n.

