Music Generation

Definition, Applications and Ancient techniques Yujia Yan

Algorithmic Composition?

● **Definition**: Algorithmic composition is the partial or total automation of the process of music composition. [Fernandez, Jose D, et al.

2013]

Applications:

- Generate Music for games/videos
- Computer aided composition
- Automatic arrangement
- Sonification
- Artificial music friend that accompanies you!
- And more....

Example: procedural music in No Man's Sky

Example: creating music content for video

Example: sonification

Example: happy music friends!

Let's go back to music

Music is so diverse

武満 徹 Toru Takemitsu - Vocalism AI (Artificial Intelligence)

What is music?

- 1. Music is organized sound.
- 2. But not every organized sound is music
- 3. Still hard to define
- 4. Engineers and composers may not talk about the same thing.

Musical Dice Game

- Roll a dice to generate music according to some rules
- Mozart's version: a dice to select segments to play next.
- C.P.E Bach. "A method for making six bars of double counterpoint at the octave without knowing the rules" (1758)
- Maximilian Stadler "A table for composing minuets and trios to infinity, by playing with two dices" (1780)

You can still publish papers in 21st century with these titles.

4:10	1	(\$	(to	*	dan.	1	100,000	0	
	\$:-:	4.2	2.	(1)	4-1-	4.744	100,000		
	6	100	4.7.	£	1000	d trees	161 -	- 3	
Acertae Acertae	Acres .	(\$ * · ·)	4.1.	(\$255 (\$255)	\$ - a-1	delene er 22	19, 100		
4 11111	4 111	(200s)	(\$ + e+2.)	4:37	derive	10.00	1 the		
frant's	10000	Arriver	16000	(4=====================================	4000	14 - 15 m	(#1 · · · · · · · · · · · · · · · · · · ·		
\$1.00m	\$1.000 200	\$ <u></u>	4	1000	(\$1.50) (\$2.50)	400	100		
\$ 	18000	4	1:2:	1000	4.2	響	10 1000	*	
60 - 1 2000	6:-:	10,000	4:25	42.00	\$ 1000 m	4	19,700	1	
61-1	\$	4:	4000	\$ 10°	4:20	4-11	41		
\$155 0273	60.00	(contract	400	1000	422	4-2-4 	101-	3	

Statistician's Dice: Markov Chain

- The Markov property: $p(x_t|all\ past\ values\ of\ x) = p(x_t|ctx_t)$ $where\ ctx_t = \{x_{t-1}\dots x_{t-k}\}\ is\ a\ finite\ context\ window$
- A finite history window determines the probability distribution of options. We roll a dice to choose between them.
- Rules can be manually designed or learned from data
- Nowadays, Neural Networks are more popular than a probability table based Markov Chain.

Statistician's Dice: Markov Chain

Possible Variables:

- Pitches
- Durations
- Intervals
- Chords
- And more!

Illiac suite (1957)

Illiac suite (1957)

Cellular Automata

- Rule based system
- Change the value of each cell according to the local pattern it

Of course, other dynamic systems can be used

```
main(t){
for(t=0;;t++)putchar(
(t>>7|t|t>>6)x10+4x(t&t>>13|t>>6)
);;}
discovered by: viznut
(by combining findings of
xpansive & varjohukka @ pouet.net)
```

The Grammar of Music

- Grammars are suited to represent system with hierarchical structure.
- What's the evidence of this for music? → Schenkerian Analysis

From: http://allthingslinguistic.com/post/100617668093/h ow-to-draw-syntax-trees-part-3-type-1-a

The Grammar of Music-Schenkerian Analysis

- a. Schenkerian Analysis is a methodology of music analysis of tonal music.
- b. It shows hierarchical relationships among notes, and draws conclusions about the structure of the passage from this hierarchy (foreground, midground and background).
- c. Schenkerian Analysis believes that a music piece is generated by some rules of "elaboration" from a simple "fundamental structure" (Ursatz).
- d. However, not algorithmic enough.

The Grammar of Music

- Generative Theory of Tonal Music
- More detailed rules to construct a tree structure
- Published by American composer and music theorist Fred Lerdahl and American linguist Ray Jackendoff
- Inspired by Noam Chomsky's Generative Grammar
- Still, not algorithmic enough

The Grammar of Music - CFG

How to apply the grammar to generate music?

- Context-Free Grammar
 - Rewriting Rules:
 - \bigcirc A \rightarrow BC
 - Rewrite one symbol according to a set of rules
 - Example harmony CFG
 - \bigcirc I-> I V I
 - $O V \rightarrow II6 V$
 - \bigcirc V \rightarrow 164 V
 - \bigcirc II6 \rightarrow N6
 - Example Derivation From a Simple CFG:
 - \circ I \rightarrow I V I \rightarrow I II6 V I \rightarrow I II6 I64 V I \rightarrow I N6 I64 V I

The Grammar of Music-CFG

Problem:

- Context free grammar still fails to produce some long range dependencies in music
- Rules are hard to design or learn from data

Constraint Satisfaction/Optimization

- Automatic composition as a constraint satisfaction/optimization problem
- Rules are usually manually Designed, for examples:
 - Making variations on existing composition or motif, [13,14,29];
 - Making compositions similar to reference one, [10,22];
 - Making solos or improvised melodies over or by existing templates (proposed rhythm and schedule of chords), [13,14,25];
 - Considering both melody and rhythm: concurrently, [1,14,20], or separately, [28];
 - Considering only melody composition without rhythm [15,29], or only rhythm generation without melody [5,12,31];

Constraint Satisfaction/Optimization

- Usually Genetic algorithm/Simulated Annealing are used for finding a solution that satisfy the constraint or maximizing the predefined goodness
- Very hard to design an optimization objective

Constraint based system: a simple example

What makes music sound good by Dmitri Tymoczko:

https://dmitri.mycpanel.princeton.edu/whatmakesmusicsoundgood.html

Algorithmic Composition as Recombination

- David Cope's Experiments in Musical Intelligence
- Extract patterns that appear more than once in one composer's works→ signatures
- Recombine them by pattern Matching to generate new pieces

Figure 6. EMI's recombination of segments in Figure 5, with signature (87.1) and suggested sources (t = transposition; v = variation).

