INTRODUCTION TO STATISTICS

LECTURE 13

LAST TIME

- Statistical tests
 - Parametric tests
 - Non-parametric tests
 - Practice in Python
- Two random variables:
 - Covariance
 - Correlation

TODAY

- Linear regression
- Recap

LOGISTICS

- Assignment 4 (part 2) was due yesterday
 - You can still submit

LOGISTICS

- Assignment 4 (part 2) was due yesterday
 - You can still submit
- Assignment 5
 - Part 1 published yesterday, due Friday, December 17, 23:59.
 - Part 1 will be published today, due Saturday, December 18, 23:59.

LOGISTICS

- Assignment 4 (part 2) was due yesterday
 - You can still submit
- Assignment 5
 - Part 1 published yesterday, due Friday, December 17, 23:59.
 - Part 1 will be published today, due Saturday, December 18, 23:59.
- Final exam
 - Tomorrow, Friday, December 18, 09:00 12:30
 - Available on Google Classroom (same as the mid-term)

LINEAR REGRESSION

• Bivariate data (x_i, y_i) , i = 1, ..., n.

- Bivariate data (x_i, y_i) , i = 1, ..., n.
- The goal: model the relationship between x and y as y = f(x) that is a close fit to the data.

- Bivariate data (x_i, y_i) , i = 1, ..., n.
- The goal: model the relationship between x and y as y = f(x) that is a close fit to the data.

Assumptions:

- x_i is not random **predictor**
- y_i , is a function of xi plus some random noise **response**

- Bivariate data (x_i, y_i) , i = 1, ..., n.
- The goal: model the relationship between x and y as y = f(x) that is a close fit to the data.

Assumptions:

- x_i is not random **predictor**
- y_i , is a function of xi plus some random noise **response**

EXAMPLE

• Francis Galton, second half of the 19th century:

Suppose we have *n* pairs of fathers and adult sons.

Let x_i and y_i be the heights of the ith father and son, respectively.

Predict the adult height of a young boy from that of his father.

- Bivariate data (x_i, y_i) , i = 1, ..., n
- y = f(x)

- Bivariate data (x_i, y_i) , i = 1, ..., n
- y = f(x)
- Linear f: y = ax + b

- Bivariate data (x_i, y_i) , i = 1, ..., n
- y = f(x)
- Linear f: y = ax + b
- Our model will predict y_i up till some error ε_i :

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

- Bivariate data (x_i, y_i) , i = 1, ..., n
- y = f(x)
- Linear f: y = ax + b
- Our model will predict y_i up till some error ε_i :

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

$$y_i = ax_i + b + \varepsilon_i$$

$$y_i = ax_i + b + \varepsilon_i$$

$$\varepsilon_i = y_i - ax_i - b$$

$$y_i = ax_i + b + \varepsilon_i$$

$$\varepsilon_i = y_i - ax_i - b$$

$$\varepsilon_i^2 = (y_i - ax_i - b)^2$$

$$y_i = ax_i + b + \varepsilon_i$$

$$\varepsilon_i = y_i - ax_i - b$$

$$\varepsilon_i^2 = (y_i - ax_i - b)^2$$

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \to \min \quad w.r.t. \ a, b$$

$$y_i = ax_i + b + \varepsilon_i$$

How to chose a and b?

$$\varepsilon_i = y_i - ax_i - b$$

$$\varepsilon_i^2 = (y_i - ax_i - b)^2$$

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \to \min \quad w.r.t. \ a, b$$

METHOD OF LEAST SQUARES

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \to \min \quad w.r.t. \ a, b$$

Partial derivatives:

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \to \min \quad w.r.t. \ a, b$$

Partial derivatives:

$$-2\sum_{i=1}^{n} x_i(y_i - ax_i - b) = 0$$

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \to \min \quad w.r.t. \ a, b$$

Partial derivatives:

$$-2\sum_{i=1}^{n} x_i(y_i - ax_i - b) = 0$$

$$-2\sum_{i=1}^{n}(y_i - ax_i - b) = 0$$

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2 \to \min \quad w.r.t. \ a, b$$

Solution:

$$a = \frac{s_{xy}}{s_{xx}}, \qquad b = \overline{y} - a\overline{x}$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}), \qquad s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Imagine that you've got the following data points:

$$(0,1)$$
 $(2,3)$ $(1,-1)$

• Imagine that you've got the following data points:

$$(0,1)$$
 $(2,3)$ $(1,-1)$

$$a=\frac{s_{xy}}{s_{xx}}, \qquad b=\overline{y}-a\overline{x}$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

 Imagine that you've got the following data points:

$$(0,1)$$
 $(2,3)$ $(1,-1)$

$$a = \frac{s_{xy}}{s_{xx}}, \qquad b = \overline{y} - a\overline{x}$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\bar{x} = \frac{1+2+1}{3} = 1$$

$$\bar{y} = \frac{1+3-1}{3} = 1$$

 Imagine that you've got the following data points:

$$(0,1)$$
 $(2,3)$ $(1,-1)$

$$a = \frac{s_{xy}}{s_{xx}},$$
 $b = \overline{y} - a\overline{x}$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$\bar{x} = \frac{1+2+1}{3} = 1$$

$$\bar{y} = \frac{1+3-1}{3} = 1$$

$$s_{xx} = \frac{(0-1)^2 + (2-1)^2 + (1-1)^2}{3-1} = 1$$

$$s_{xy} = \frac{(-1)\cdot 0 + 1\cdot 2 + 0\cdot (-2)}{3-1} = 1$$

• Imagine that you've got the following data points:

$$(0,1)$$
 $(2,3)$ $(1,-1)$

$$\boldsymbol{a} = \frac{\boldsymbol{s}_{xy}}{\boldsymbol{s}_{xx}}, \qquad \boldsymbol{b} = \overline{\boldsymbol{y}} - \boldsymbol{a}\overline{\boldsymbol{x}}$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\bar{x} = \frac{1+2+1}{3} = 1$$

$$\bar{y} = \frac{1+3-1}{3} = 1$$

$$s_{xx} = \frac{(0-1)^2 + (2-1)^2 + (1-1)^2}{3-1} = 1$$

$$s_{xy} = \frac{(-1)\cdot 0 + 1\cdot 2 + 0\cdot (-2)}{3-1} = 1$$

$$a = \frac{1}{1} = 1, \quad b = 1 - 1\cdot 1 = 0$$

• Imagine that you've got the following data points:

$$(0,1)$$
 $(2,3)$ $(1,-1)$

$$a = \frac{s_{xy}}{s_{xx}}, \qquad b = \overline{y} - a\overline{x}$$

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

$$s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\bar{x} = \frac{1+2+1}{3} = 1$$

$$\bar{y} = \frac{1+3-1}{3} = 1$$

$$s_{xx} = \frac{(0-1)^2 + (2-1)^2 + (1-1)^2}{3-1} = 1$$

$$s_{xy} = \frac{(-1)\cdot 0 + 1\cdot 2 + 0\cdot (-2)}{3-1} = 1$$

$$a = \frac{1}{1} = 1, \quad b = 1 - 1\cdot 1 = 0$$

$$y = x$$

• How good is our model? Some definitions:

- How good is our model? Some definitions:
 - **TOTAL** Sum of Squares: how much variation in there in *y*?

$$SS_{tot} = \sum (y_i - \bar{y})^2$$

- How good is our model? Some definitions:
 - **TOTAL** Sum of Squares: how much variation in there in *y*?

$$SS_{tot} = \sum (y_i - \bar{y})^2$$

MODEL Sum of Squares: how much of it the model explains?

$$SS_{mod} = \sum_{i} (\hat{y}_i - \bar{y})^2$$

- How good is our model? Some definitions:
 - **TOTAL** Sum of Squares: how much variation in there in *y*?

$$SS_{tot} = \sum (y_i - \bar{y})^2$$

MODEL Sum of Squares: how much of it the model explains?

$$SS_{mod} = \sum (\hat{y}_i - \bar{y})^2$$

• **RESIDUAL** Sum of Squares: how much the model doesn't explain?

$$SS_{res} = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - ax_i - b)^2$$

QUALITY OF THE FIT

$$SS_{tot} = \sum (y_i - \bar{y})^2$$
, $SS_{mod} = \sum (\hat{y}_i - \bar{y})^2$, $SS_{res} = \sum (y_i - \hat{y}_i)^2$
 $SS_{tot} = SS_{mod} + SS_{res}$

QUALITY OF THE FIT

$$SS_{tot} = \sum (y_i - \bar{y})^2$$
, $SS_{mod} = \sum (\hat{y}_i - \bar{y})^2$, $SS_{res} = \sum (y_i - \hat{y}_i)^2$
 $SS_{tot} = SS_{mod} + SS_{res}$

• Coefficient of determination: explained variation

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = \frac{SS_{mod}}{SS_{tot}}$$

- Datapoints (0,1) (2,3) (1,-1)
- Estimated regression line: y = x
- How good is the fit?

- Datapoints (0,1) (2,3) (1,-1)
- Estimated regression line: y = x
- How good is the fit?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} =$$

- Datapoints (0,1) (2,3) (1,-1)
- Estimated regression line: y = x
- How good is the fit?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} =$$

$$SS_{tot} =$$

$$SS_{res} =$$

- Datapoints (0,1) (2,3) (1,-1)
- Estimated regression line: y = x
- How good is the fit?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} =$$

$$SS_{tot} = \frac{(1-1)^2 + (3-1)^2 + (-1-1)^2}{3} = \frac{8}{3}$$

$$SS_{res} =$$

- Datapoints (0,1) (2,3) (1,-1)
- Estimated regression line: y = x
- How good is the fit?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} =$$

$$SS_{tot} = \frac{(1-1)^2 + (3-1)^2 + (-1-1)^2}{3} = \frac{8}{3}$$

$$SS_{res} = \frac{(0-1)^2 + (2-3)^2 + (1+1)^2}{3} = \frac{6}{3}$$

- Datapoints (0,1) (2,3) (1,-1)
- Estimated regression line: y = x
- How good is the fit?

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{6}{8} = 0.25$$

$$SS_{tot} = \frac{(1-1)^2 + (3-1)^2 + (-1-1)^2}{3} = \frac{8}{3}$$

$$SS_{res} = \frac{(0-1)^2 + (2-3)^2 + (1+1)^2}{3} = \frac{6}{3}$$

ASSUMPTIONS

- Simple linear regression: $y_i = ax_i + b + \varepsilon_i$
- Assumption: $\varepsilon_i \sim N(0, \sigma^2)$
- Homoscedasticity: errors are uniformly distributed around the regression line

HETEROSCEDASTIC

Not all the data is linear

Given the data $(x_1, y_1), ..., (x_n, y_n)$, is the following a simple linear regression model?

$$y_i = ax_i^2 + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

Given the data $(x_1, y_1), ..., (x_n, y_n)$, is the following a simple linear regression model?

$$y_i = ax_i^2 + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

YES!

Linear in terms of parameters a, b, not in terms of the data.

$$y_i = ax_i^2 + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

PRACTICE!

Google Classroom -> Lecture 12 -> Simple Linear Regression

MY HOBBY: EXTRAPOLATING

MULTIPLE LINEAR REGRESSION

• Simple linear regression: bivariate data

$$y = ax + b$$

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

MULTIPLE LINEAR REGRESSION

• Simple linear regression: bivariate data

$$y = ax + b$$

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

• Multiple linear regression: multivariate data

$$y = a_1 x_1 + a_2 x_2 + \dots + a_m x_m + b$$

$$y^{(i)} = a_1 x_1^{(i)} + \dots + a_m x_m^{(i)} + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

RECAP

WHAT WE'VE SEEN IN THIS COURSE

- Probability theory
 - Discrete and continuous random variables
 - Expectation, (co-)variance, correlation
 - Basic distributions
 - CDFs and PDFs

WHAT WE'VE SEEN IN THIS COURSE

- Probability theory
 - Discrete and continuous random variables
 - Expectation, (co-)variance, correlation
 - Basic distributions
 - CDFs and PDFs
- Descriptive Statistics
 - Summary statistics (sample mean, sample variance, median, ...)
 - Basic plots

WHAT WE'VE SEEN IN THIS COURSE

- Probability theory
 - Discrete and continuous random variables
 - Expectation, (co-)variance, correlation
 - Basic distributions
 - CDFs and PDFs
- Descriptive Statistics
 - Summary statistics (sample mean, sample variance, median, ...)
 - Basic plots
- Inferential Statistics
 - Parameter estimation
 - point estimates (maximum likelihood);
 - confidence intervals.
 - Hypothesis testing

PROBABILITY THEORY

Discrete random variables

Discrete random variables can take only <u>countably</u> many values.

Bernoulli

$$X \sim Bernoulli(p)$$
 $P(X = 1) = p$, $P(X = 0) = 1 - p$
 $E(X) = p$

Binomial

X ~ Bi(n, p),
$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, 0 \le k \le 1$$

E(X) = np

Poisson

$$X \sim Po(\lambda),$$
 $P(X = k) = \frac{e^{-\lambda \cdot \lambda^k}}{k!}, \quad k \ge 0$
 $E(X) = \lambda$

Bernoulli

$$E(X) = p$$

X ~ Bernoulli(p)
$$P(X = 1) = p$$
, $P(X = 0) = 1 - p$

Chance of success in a single trial with two outcomes

Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

Poisson

$$X \sim Po(\lambda)$$
,

$$E(X) = \lambda$$

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, \quad k \ge 0$$

Bernoulli

$$E(X) = p$$

X ~ Bernoulli(p)
$$P(X = 1) = p$$
, $P(X = 0) = 1 - p$

Chance of success in a single trial with two outcomes

Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

of successes in a series of n Bernoulli trials

Poisson

$$X \sim Po(\lambda)$$
,

$$E(X) = \lambda$$

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, \quad k \ge 0$$

Bernoulli

$$X \sim Bernoulli(p)$$

$$E(X) = p$$

X ~ Bernoulli(p)
$$P(X = 1) = p$$
, $P(X = 0) = 1 - p$

Chance of success in a single trial with two outcomes

Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

of successes in a series of n Bernoulli trials

Poisson

$$X \sim Po(\lambda)$$
,

$$E(X) = \lambda$$

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, \quad k \ge 0$$

events that occur within a fixed amount of time

Continuous random variables can take uncountably many values.

CDF & PDF

• Probability mass function (discrete random variables):

$$P(X=x)$$

• Cumulative distribution function (CDF):

$$F(x) = P(X \le x)$$

• Probability density function (PDF) (continuous random variables):

$$F(x) = \int_{-\infty}^{x} p(t)dt$$

The probability that a continuous random variable takes a particular value is...

The probability that a continuous random variable takes a particular value is 0!

Consider random variable X:

χ	1	2	3
P(X=x)	0.25	0.5	0.25

• What's the CDF of X?

$$F(x) = P(X \le x) =$$

Consider random variable X:

χ	1	2	3
P(X=x)	0.25	0.5	0.25

• What's the CDF of X?

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ \end{cases}$$

Consider random variable X:

χ	1	2	3
P(X=x)	0.25	0.5	0.25

• What's the CDF of X?

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ 0.25, & 1 \le x < 2 \end{cases}$$

Consider random variable X:

χ	1	2	3
P(X=x)	0.25	0.5	0.25

What's the CDF of X?

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ 0.25, & 1 \le x < 2 \\ 0.75, & 2 \le x < 3 \end{cases}$$

Consider random variable X:

χ	1	2	3
P(X=x)	0.25	0.5	0.25

What's the CDF of X?

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 1 \\ 0.25, & 1 \le x < 2 \\ 0.75, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

1.
$$P(X \le 3)$$

2.
$$\int_3^{+\infty} p(x) dx$$

3.
$$F(3)$$

$$4. \int_{-\infty}^{3} p(x) dx$$

1.
$$P(X \le 3)$$

2.
$$\int_3^{+\infty} p(x) dx = P(X \ge 3)$$

3.
$$F(3) = P(X < 3)$$

4.
$$\int_{-\infty}^{3} p(x)dx = F(3) = P(X < 3)$$

1.
$$P(X > 5)$$

$$2. \int_5^{+\infty} p(x) dx$$

3.
$$\int_{-\infty}^{5} p(x) dx$$

4.
$$1 - F(5)$$

1.
$$P(X > 5)$$

2.
$$\int_{5}^{+\infty} p(x)dx = P(X \ge 5)$$

3.
$$\int_{-\infty}^{5} p(x) dx = F(5) = P(X < 5)$$

4.
$$1 - F(5) = P(X \ge 5)$$

1.
$$\int_3^5 p(x) dx$$

2.
$$P(3 < X \le 5)$$

3.
$$F(3) - F(5)$$

4.
$$\int_{-\infty}^{5} p(x)dx - \int_{-\infty}^{3} p(x)dx$$

1.
$$\int_3^5 p(x)dx = F(5) - F(3) = P(3 < X \le 5)$$

2.
$$P(3 < X \le 5)$$

3.
$$F(3) - F(5) = -P(3 < X \le 5)$$

4.
$$\int_{-\infty}^{5} p(x)dx - \int_{-\infty}^{3} p(x)dx = F(5) - F(3) = P(3 < X \le 5)$$

DISCRETE RANDOM VARIABLE

• Sum up all the values a random • Same principle: variable can take, multiplying them by their probabilities:

$$E(X) = \sum_{X_i} X_i \cdot P(X = X_i)$$

CONTINUOUS RANDOM VARIABLE

$$E(X) = \int_{-\infty}^{+\infty} x \cdot p(x) dx$$

DISCRETE RANDOM VARIABLE

Sum up all the values a random variable can take, multiplying them by their probabilities:

$$E(X) = \sum_{X_i} X_i \cdot P(X = X_i)$$

$$E(X) = \int_{-\infty}^{+\infty} x \cdot p(x) dx$$

CONTINUOUS RANDOM VARIABLE

$$E(f(X)) = \sum_{X_i} f(X_i) \cdot P(X = X_i)$$

$$E(f(X)) = \int_{-\infty}^{+\infty} f(x) \cdot p(x) dx$$

Consider a random variable X:

\boldsymbol{x}	1	2	3
P(X = x)	0.25	0.5	0.25

•
$$E(X) =$$

•
$$E(X^2) =$$

Consider a random variable X:

\boldsymbol{x}	1	2	3
P(X=x)	0.25	0.5	0.25

•
$$E(X) = \frac{1}{4} + \frac{2}{2} + \frac{3}{4} = 2$$

•
$$E(X^2) =$$

Consider a random variable X:

\boldsymbol{x}	1	2	3
P(X = x)	0.25	0.5	0.25

•
$$E(X) = \frac{1}{4} + \frac{2}{2} + \frac{3}{4} = 2$$

•
$$E(X^2) = \frac{1^2}{4} + \frac{2^2}{2} + \frac{3^2}{4} = 4.5$$

$$X \sim U(1,2)$$

$$E(X) =$$

$$E\left(\frac{1}{X}\right) =$$

$$X \sim U(1,2)$$

$$E(X) = \frac{2-1}{2} = \frac{3}{2}$$

$$E\left(\frac{1}{X}\right) =$$

$$X \sim U(1,2)$$

$$E(X) = \frac{2-1}{2} = \frac{3}{2}$$

$$E\left(\frac{1}{X}\right) = \int_{1}^{2} \frac{1}{x} \cdot 1 dx =$$

$$X \sim U(1,2)$$

$$E(X) = \frac{2-1}{2} = \frac{3}{2}$$

$$E\left(\frac{1}{X}\right) = \int_{1}^{2} \frac{1}{x} \cdot 1 dx = \log 2 - \log 1 = \log 2$$

VARIANCE

DISCRETE RANDOM VARIABLE CONTINUOUS RANDOM VARIABLE

Expected squared distance between a value and the mean:

$$Var(X) = E\left(\left(X - E(X)\right)^{2}\right) = E(X^{2}) - \left(E(X)\right)^{2}$$

LINEAR COMBINATION OF NORMALLY DISTRIBUTED VARIABLES

• A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1,X_2,\dots,X_n$$
 - independent
$$X_i\sim N\left(\mu_i,\sigma_i^2\right)$$

$$Y=a_1X_1+a_2X_2+\dots+a_3X_3\Rightarrow$$

$$Y\sim N\left(\mu_Y,\sigma_Y^2\right)$$
 , $\sigma_Y^2=$

LINEAR COMBINATION OF NORMALLY DISTRIBUTED VARIABLES

• A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1,X_2,\dots,X_n$$
 - independent
$$X_i\sim N\left(\mu_i,\sigma_i^2\right)$$

$$Y=a_1X_1+a_2X_2+\dots+a_3X_3\Rightarrow$$

$$Y\sim N(\mu_Y,\sigma_Y^2)$$

$$\mu_Y=a_1\mu_1+a_2\mu_2+\dots+a_n\mu_n,\qquad \sigma_Y^2=$$

LINEAR COMBINATION OF NORMALLY DISTRIBUTED VARIABLES

• A linear combination of independent random variables having a normal distribution also has a normal distribution:

$$X_1, X_2, \dots, X_n$$
 - independent
$$X_i \sim N(\mu_i, \sigma_i^2)$$

$$Y = a_1 X_1 + a_2 X_2 + \dots + a_3 X_3 \Rightarrow$$

$$Y \sim N(\mu_Y, \sigma_Y^2)$$

$$\mu_Y = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n, \qquad \sigma_Y^2 = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2$$

CENTRAL LIMIT THEOREM

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\bar{X}_n \approx$$

CENTRAL LIMIT THEOREM

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\bar{X}_n \approx N \left(\right)$$

CENTRAL LIMIT THEOREM

Samples $X_1, X_2, ..., X_n$:

- i.i.d.
- a finite mean μ and finite variance σ^2

Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\bar{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

COVARIANCE AND CORRELATION

Covariance:

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

COVARIANCE AND CORRELATION

Covariance:

$$\sigma_{XY}^2 = E[(X - \bar{X})(Y - \bar{Y})] = E(XY) - \bar{X}\bar{Y}$$

Correlation:

$$\rho = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y} = \frac{E(X - \overline{X})(Y - \overline{Y})}{\sqrt{E(X - \overline{X})^2 E(Y - \overline{Y})^2}}$$

INFERENTIAL STATISTICS

Sample: X_1, X_2, \dots, X_n

Sample: X_1, X_2, \dots, X_n

Descriptive statistics: describe your sample

Sample: X_1, X_2, \dots, X_n

Descriptive statistics: describe your sample

$$\bar{X} = \frac{1}{n} \sum X_i$$
 —sample mean

Sample:
$$X_1, X_2, \dots, X_n$$

Descriptive statistics: describe your sample

$$\bar{X} = \frac{1}{n} \sum X_i$$
 —sample mean

$$s^2 = \frac{1}{n} \sum X_i^2 - \bar{X}^2$$
 – sample variance

Sample: X_1, X_2, \dots, X_n

$$X \sim N(\mu, \sigma^2)$$

Sample: X_1, X_2, \dots, X_n

Inferential Statistics:

$$X \sim N(\mu, \sigma^2)$$

Sample: X_1, X_2, \dots, X_n

Inferential Statistics:

$$\hat{\mu}$$
, $\hat{\sigma}^2$ — point estimates

$$X \sim N(\mu, \sigma^2)$$

Sample: X_1, X_2, \dots, X_n

Inferential Statistics:

$$\hat{\mu}$$
, $\hat{\sigma}^2$ — point estimates

$$\mu \in \overline{X} \pm z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 — confidence intervals

$$X \sim N(\mu, \sigma^2)$$

Sample: X_1, X_2, \dots, X_n

Inferential Statistics:

$$\hat{\mu}$$
, $\hat{\sigma}^2$ — point estimates

$$\mu \in \overline{X} \pm z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 — confidence intervals

$$H_0$$
: $\mu = 5$, H_1 : $\mu \neq 5$ — hypothesis testing

MAXIMUM LIKELIHOOD ESTIMATE

1. Write down the likelihood function:

Discrete:
$$L(\theta) = \prod_{i=1}^{n} P(X = Xi \mid \theta)$$
 Continuous: $L(\theta) = \prod_{i=1}^{n} p(Xi \mid \theta)$

2. Find its maximum w.r.t. the unknown parameter θ :

$$\widehat{\Theta}$$
 = argmax L(θ) w.r.t. θ

(!) In many cases, it's easier to maximize **log-likelihood**:

Discrete:
$$log L(\theta) = \sum_{i=1}^{n} log P(X=Xi \mid \theta)$$

Continuous:
$$\log L(\theta) = \sum_{i=1}^{n} \log p(Xi \mid \theta)$$

$$\widehat{\Theta}$$
 = argmax log L(θ)

• Simple linear regression:

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(o, \sigma^2)$$

• We obtain model parameters by least squares:

$$a,b: \sum (y_i - ax_i - b)^2 \rightarrow min$$

• Simple linear regression:

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(o, \sigma^2)$$

• We obtain model parameters by least squares:

$$a,b: \sum (y_i - ax_i - b)^2 \rightarrow min$$

Show that it's ML estimate of the parameters.

$$y_i = ax_i + b + \varepsilon_i,$$
 $\varepsilon_i \sim N(o, \sigma^2)$
 $y_i \sim$

$$y_i = ax_i + b + \varepsilon_i,$$
 $\varepsilon_i \sim N(o, \sigma^2)$ $y_i \sim N($

$$y_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(o, \sigma^2)$$

 $y_i \sim N(ax_i + b, \sigma)$

$$y_{i} = ax_{i} + b + \varepsilon_{i}, \qquad \varepsilon_{i} \sim N(o, \sigma^{2})$$

$$y_{i} \sim N(ax_{i} + b, \sigma)$$

$$L(a, b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{y_{i} - ax_{i} - b}{\sigma}\right)^{2}} \rightarrow max$$

$$y_{i} = ax_{i} + b + \varepsilon_{i}, \qquad \varepsilon_{i} \sim N(o, \sigma^{2})$$

$$y_{i} \sim N(ax_{i} + b, \sigma)$$

$$L(a, b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{y_{i} - ax_{i} - b}{\sigma}\right)^{2}} \rightarrow max$$

$$\Leftrightarrow (y_{i} - ax_{i} - b)^{2} \rightarrow min$$

PROPERTIES OF ESTIMATORS

BIAS

$$bias = E(T(X)) - \theta$$

VARIANCE

CONSISTENCY

"The more data we have, the closer the estimate is to the true value of the parameter"

BIAS VS VARIANCE

BIAS VS VARIANCE

CI: DEFINITION

A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(T_1,T_2)$ such that $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$ and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

- Random intervals: T_1 and T_2 are functions of random samples.
- θ is unknown, but fixed T_1 and T_2 are random

CI: A BRIEF RECAP ...mean μ You need to construct a CI for...

z-interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$$

Is true standard deviation σ known?

YES

NO

t-interval:

 \ldots standard deviation σ

$$\chi^{2}\text{-interval:}$$

$$\left[\frac{\sqrt{(n-1)s}}{\sqrt{\chi_{1-\alpha/2}^{2}}}; \frac{\sqrt{(n-1)s}}{\sqrt{\chi_{\alpha/2}^{2}}}\right]$$

CI for large samples (using CLT):

$$\bar{X} \pm \frac{s}{\sqrt{n}} z_{1-\alpha/2}$$

NO

YES

Is your data

normally

distributed?

EXAMPLE (ASSIGNMNET 4)

Suppose that the number of points a basketball team scores against a certain opponent is normally distributed with unknown mean μ and unknown variance σ^2 .

Compute a 95% interval for μ

Now suppose that you learn that $\sigma^2 = 25$. Compute a 95% interval for μ .

EXAMPLE (ASSIGNMNET 4)

Suppose that the number of points a basketball team scores against a certain opponent is normally distributed with unknown mean μ and unknown variance σ^2 .

Compute a 95% interval for μ

 σ unknown -> t-interval

Now suppose that you learn that $\sigma^2 = 25$. Compute a 95% interval for μ .

 σ known -> z-interval

EXAMPLE (ASSIGNMNET 4)

Suppose that the number of points a basketball team scores against a certain opponent is normally distributed with unknown mean μ and unknown variance σ^2 .

Compute a 95% interval for μ

$$\sigma$$
 unknown -> t-interval: $\mu = \bar{X} + t_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$

Now suppose that you learn that $\sigma^2 = 25$. Compute a 95% interval for μ .

$$\sigma$$
 known -> z-interval: $\mu = \bar{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$

A machine fills in wine bottles with a random amount of wine that follows normal distribution with unknown mean μ and unknown standard deviation σ .

You check the last 100 bottles and see that on average they were filled with $\bar{X} = 705$ ml of wine, with sample std s = 3 ml.

Which interval would you use to construct a 95%-Cl for μ ?

In a study on cholesterol levels a sample of 1000 patients was chosen.

The average plasma cholesterol levels subjects was X=6 mmol/L, with sample std s=0.4 mmol/L.

Which interval would you use to construct a 95%-CI for the true mean?

Height of a female student is a random variable following normal distribution with unknown mean μ and standard deviation $\sigma=5$ cm.

The average height of 100 female students $\bar{X}=165$ cm, and you sample std s=4 cm

Which interval would you use to construct a 95%-CI for μ ?

On a candy factory, a machine fills packs with random number of candies which follows normal distribution with unknown mean μ and unknown standard deviation σ .

In the last 50 packs, there were on average $\bar{X} = 90$ g of sweets, with sample std s = 7 g.

Which interval would you use to construct a 95%-CI for σ ?

SAMPLE SIZE DETERMINATION

- Data collection is difficult.
- How much is 'just enough'?
- Example: estimating CI for the mean, σ is know.

$$\mu \in \bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}}$$

Limit the width of the interval: $\frac{\sigma}{\sqrt{n}}z_{1-\alpha/2} \leq \epsilon$

$$n \ge \frac{\sigma^2 z_{1-\alpha/2}^2}{\epsilon^2}$$

HYPOTHESIS TESTING STEP-BY-STEP

- Collect data X
- Set up H_0 and H_1
 - two-sided or one-sided
- Chose test statistic T(X)
- Determine distribution of T assuming H_0
- Determine rejection area R
- Compute the value t of T(X) from data
- Check if it falls into the rejection area *R*
 - YES \Longrightarrow reject H_0
 - NO \Longrightarrow don't reject H_0

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.01$.

After running a statistical test, you obtain a p-value of 0.1.

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.05$.

Test statistic equals 0.5, and the $\alpha/2$ and $1-\alpha/2$ – quantiles of the corresponding distribution are ± 1.96

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.05$.

After running a statistical test, you obtain a p-value of 0.001.

You are checking a hypothesis H_0 against a two-sided alternative H_1 at the level of significance $\alpha = 0.05$.

Test statistic equals 14.5, and the $\alpha/2$ and $1-\alpha/2$ – quantiles of the corresponding distribution are ± 1.96