- Трехчленная рекуррентная формула

Пусть $q_n(x) = a_n x^n + b_n x^{n-1} + \dots$ Тогда справедливо представление:

$$xq_n(x) = \frac{a_n}{a_{n+1}}q_{n+1}(x) + \left(\frac{b_n}{a_n} - \frac{b_{n+1}}{a_{n+1}}\right)q_n(x) + \frac{a_{n-1}}{a_n}q_n(x)$$

Доказательство.

Разложим многочлен степени n+1 по ортогональным многочленам:

$$xq_n(x) = \sum_{m=0}^{n+1} c_{nm} q_m(x)$$

откуда $c_{nm} = 0$ при m > n+1 при этом

$$c_{nm} = (xq_n, q_m) = \int_a^b xq_n(x)q_m(x)h(x)dx = (xq_m, q_n) = c_{mn}$$

откуда $c_{nm} = 0$ при m < n-1. Получаем

$$xq_n(x) = c_{c(n+1)}q_{n+1}(x) + c_{nn}q_n(x) + c_{n(n-1)}q_{n-1}(x)$$

остается вычислить коэффициенты. Подставим в предыдущую формулу:

$$q_n(x) = a_n x^n + b_n x^{n-1} + \dots$$

Получим:

$$x(a_n x^n + b_n x^n + \dots) = c_{n(n+1)}(a_{n+1} x^{n+1} + b_{n+1} x^{n+1} + \dots) + c_{nn}(a_n x^n + b_n x^{n-1} + \dots) + c_{n(n-1)}(a_{n-1} x^{n-1} + b_{n-1} x^{n-2} + \dots)$$

Собираем коэффициенты при одинаковых степенях:

$$a_n = c_{n(n+1)}a_{n+1}(\text{при } x^{n+1}) \Rightarrow c_{n(n+1)} = \frac{a_n}{a_{n+1}}$$
$$b_n = c_{n(n+1)}b_{n+1}c_{nn}a_n(\text{при } x^n) \Rightarrow c_{nn} = \frac{b_n - \frac{a_n}{a_{n+1}}b_{n+1}}{a_n}$$

По симметрии находим $c_{n(n+1)} = c_{n(n-1)} = \frac{a_{n-1}}{a_n}$

#

Огрубляя ситуацию, можно сказать, что для любой последовательности ортогональных многочленов $q_0, q_1, q_2, \ldots, q_n, \ldots$, существует постоянные A_n, B_n, C_n такие, что:

$$q_{n+1}(x) = (A_n x + B_n)q_n(x) + C_n q_{n-1}(x)$$

Утверждение 1. Все ортогональные многочлены степени п имеют ровно п корней, причем эти корни (нули многочлена q_n) действительны, просты и расположены внутри интервала (a,b).

Доказательство.

Предположим противное: существует только k < n точек, в которых q_n меняет знак. При этом как минимум одна смена знака есть в силу:

$$\int_{a}^{b} q_0(x)q_n(x)h(x)dx = 0, \quad \forall n \ge 1$$

при этом q_0 - это константа, а $h(x) \ge 0$, значит, многочлен q_n принимает на (a,b) значения разных знаков. Обозначим нули q_n как x_1, x_2, \ldots, x_k

Введем многочлен $P_k(x) = (x - x_1)...(x - x_k)$, тогда многочлен $q_n P_k(x)$ сохраняет знак и значит:

$$\int_{a}^{b} q_{n}(x)P_{k}(x)h(x)dx \neq 0$$

что противоречит свойству ортогональности многочлена q_n любому многочлену степени, меньшей n (Если $P_m(x)$ - произвольный многочлен степени m, и n>m, то $q_n\perp P_m$)

Следствие 1. из утверждения и рекуррентной формулы:

- Два соседних многочлена не имеют общих корней.

Предположим противное: $q_n(x_0) = q_{n+1}(x_0) = 0$. Воспользуемся рекуррентной формулой:

$$xq_n(x) = \frac{a_n}{a_{n+1}}q_{n+1}(x) + \left(\frac{b_n}{a_n} - \frac{b_{n+1}}{a_{n+1}}\right)q_n(x_0) + \frac{a_{n-1}}{x_n}q_{n-1}(x_0)$$

то есть

$$0 = \frac{a_{n-1}}{a_n} q_{n-1}(x_0)$$

Значит, x_0 - корень q_{n-1} . Рассуждая аналогично, x_0 - корень $q_{n-2},...,q_0$, что противоречит свойству многочлена q_0 , равного константе $\int_a^b q_0^2(x)h(x)dx=1$

Следствие 2.

- Если x_0 - корень многочлена q_n , то соседние многочлены q_{n-1} и q_{n+1} принимают в точке x_0 значения разных знаков.

Пусть $q_n(x_0) = 0$. Воспользуемся рекуррентной формулой

$$x_0 = \frac{a_n}{a_{n+1}} q_{n+1}(x_0) + \left(\frac{b_n}{a_n} - \frac{b_{n+1}}{a_{n+1}}\right) 0 + \frac{a_{n-1}}{b_{n-1}} q_{n-1}(x_0)$$

то есть

$$\frac{a_n}{a_{n+1}}q_{n+1}(x_0) = -\frac{a_{n-1}}{a_n}q_{n+1}(x) = -\frac{a_{n-1}}{a_n}q_{n-1}(x_0)$$

причем a_m - старший коэффициент полинома q_m , положительный по построению.

Следствие 3.

-Корни многочлена q_n лежат между корнями многочлена q_{n+1}

1. Классические ортогональные многочлены

Наши основные многочлены:

Название	Обозначение	Интервал ортогональности	Весовая функция
Эрмитовы	$H_n(x)$	\mathbb{R}	e^{-x^2}
Лагерра	$L_n^{\alpha}(x)$	$(0, +\infty)$	e^{-x}
Лежандра	$P_n(x)$	(-1,1)	1

Определение 1. Функцию w(x,t) двух переменных называют производящей функиией для последовательности многочленов $q_0, q_1, \ldots, q_n, \ldots$, если ее разложение в ряд по степеням t при достаточно малых t имеет вид:

$$w(x,t) = \sum_{n=0}^{\infty} \frac{q_n(x)}{a_n} t^n$$

 $r\partial e \ a_n$ - некоторые постоянные.

Под "классическим" ортогональными многочленами мы понимаем только то многочлены, весовая функция которых удовлетворяет уравнению Пирсона:

$$\frac{h'(x)}{h(x)} = \frac{\alpha_0 \alpha_1 x}{\beta_0 + \beta_1 x + \beta_2 x^2}$$

и предельным условиям

$$\lim_{x \to a + \infty} h(x)B(x) = \lim_{x \to b - 0} h(x)A(x) = 0$$

где
$$B(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$
, $A(x) = \alpha_0 + \alpha_1 x$

Если весовая функция h которых удовлетворяют уравнению Пирсона и граничныи условиям, то

- ортогональный многочлен q_n является решением дифференциального уравнения

$$B(x)y''(x) + [A(x) + B'(x)]y'(x) - \gamma_n y(x) = 0$$

где $\gamma_n = n[\alpha_1 + (n+1)\beta_2]$

- имеет место формула Родрига:

$$q_n(x) = c_n \frac{1}{h(x)} \frac{d^n}{dx^n} [h(x)B^n(x)], \quad n = 0, 1, 2, \dots,$$

- где c_n некоторые постоянные. производные $\frac{d^m}{dx^m}[q_n(x)]$ являются классическими ортогональными многочленами с тем же промежутком ортогональности
- у многочленов $q_0, q_1, q_2, \ldots, q_n, \ldots$, существует производящая функция, выражающаяся через элементарные функции.

Способы задания ортогональных многочленов:

- ортогонализация мономов в $L_2^h(a,b)$ решение дифференциального уравнения для соответствующего n
- формула Родрига
- рекуррентное соотношение (нужно знать q_0, q_1)
- разложение производящей функции.