to nearly satisfy $f''(x_0) = f''(x_n) = 0$. An alternative to the natural boundary condition that does not require knowledge of the derivative of f is the *not-a-knot* condition, (see [Deb2], pp. 55–56). This condition requires that S'''(x) be continuous at x_1 and at x_{n-1} .

EXERCISE SET 3.5

- 1. Determine the natural cubic spline S that interpolates the data f(0) = 0, f(1) = 1, and f(2) = 2.
- 2. Determine the clamped cubic spline s that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and satisfies s'(0) = s'(2) = 1.
- **3.** Construct the natural cubic spline for the following data.

a.	х		f(x)	b.	X	f(x)
	8.3	1	7.56492		0.8	0.22363362
	8.6	1	8.50515		1.0	0.65809197
c.	x		f(x)	d.	x	f(x)
	-0.5		-0.0247500		0.1	-0.62049958
	-0.2	5	0.3349375		0.2	-0.28398668
	0		1.1010000		0.3	0.00660095
			1		0.4	0.24842440

4. Construct the natural cubic spline for the following data.

a.	x	f(x)	b.	X	f(x)
	0	1.00000		-0.25	1.33203
	0.5	2.71828		0.25	0.800781
c.	x	f(x)	d.	х	f(x)
	0.1	-0.29004996		-1	0.86199480
	0.2	-0.56079734		-0.5	0.95802009
	0.3	-0.81401972		0	1.0986123
		•		0.5	1.2943767

- 5. The data in Exercise 3 were generated using the following functions. Use the cubic splines constructed in Exercise 3 for the given value of x to approximate f(x) and f'(x), and calculate the actual error.
 - **a.** $f(x) = x \ln x$; approximate f(8.4) and f'(8.4).
 - **b.** $f(x) = \sin(e^x 2)$; approximate f(0.9) and f'(0.9).
 - **c.** $f(x) = x^3 + 4.001x^2 + 4.002x + 1.101$; approximate $f(-\frac{1}{3})$ and $f'(-\frac{1}{3})$.
 - **d.** $f(x) = x \cos x 2x^2 + 3x 1$; approximate f(0.25) and f'(0.25).
- The data in Exercise 4 were generated using the following functions. Use the cubic splines constructed in Exercise 4 for the given value of x to approximate f(x) and f'(x), and calculate the actual error.
 - **a.** $f(x) = e^{2x}$; approximate f(0.43) and f'(0.43).
 - **b.** $f(x) = x^4 x^3 + x^2 x + 1$; approximate f(0) and f'(0).
 - **c.** $f(x) = x^2 \cos x 3x$; approximate f(0.18) and f'(0.18).
 - **d.** $f(x) = \ln(e^x + 2)$; approximate f(0.25) and f'(0.25).
- 7. Construct the clamped cubic spline using the data of Exercise 3 and the fact that
 - **a.** f'(8.3) = 3.116256 and f'(8.6) = 3.151762
 - **b.** f'(0.8) = 2.1691753 and f'(1.0) = 2.0466965
 - **c.** f'(-0.5) = 0.7510000 and f'(0) = 4.0020000
 - **d.** f'(0.1) = 3.58502082 and f'(0.4) = 2.16529366
- 8. Construct the clamped cubic spline using the data of Exercise 4 and the fact that
 - **a.** f'(0) = 2 and f'(0.5) = 5.43656
 - **b.** f'(-0.25) = 0.437500 and f'(0.25) = -0.625000