Homework Set #4

Due: Wednesday, December 23, 2020.

1. Complex vs. Real

Let

• $V_1 = \mathcal{C}^n$, i.e., the *n*-dimensional complex vector space, equipped with the inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle_C = \mathbf{y}^* \mathbf{x},$$
 (1)

• $V_2 = \Re^{2n}$, i.e., the 2n-dimensional real vector space, equipped with the inner product

$$\langle \mathbf{u}, \mathbf{v} \rangle_R = \mathbf{v}^T \mathbf{u},$$
 (2)

• $\Gamma: \mathcal{C}^n \to \Re^{2n}$ is a mapping between the two vector spaces, where

$$\Gamma(\mathbf{x}) = \begin{bmatrix} \Re e\{\mathbf{x}\} \\ \mathcal{I}m\{\mathbf{x}\} \end{bmatrix}, \tag{3}$$

• $\mathbf{A} \in \mathcal{C}^{n \times n}$ define a linear mapping $f: \mathcal{C}^n \to \mathcal{C}^n$, such that for any $\mathbf{x} \in \mathcal{C}^n$

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x},\tag{4}$$

• $g: \Re^{2n} \to \Re^{2n}$ is the mapping corresponding to f such that, for any $\mathbf{x} \in V_1$

$$g(\Gamma(\mathbf{x})) = \Gamma(f(\mathbf{x})). \tag{5}$$

If we explicitly write the linear mapping g as

$$g(\mathbf{u}) = \mathcal{A}\mathbf{u}, \qquad \forall \mathbf{u} \in \Re^{2n},$$
 (6)

- (a) Write \mathcal{A} in terms of \mathbf{A} .
- (b) What type of matrix is A, if **A** is Hermitian?
- (c) What type of matrix is A, if A is Unitary?
- (d) What type of matrix is A, if **A** is Skew-Hermitian?
- (e) For $\mathbf{x}, \mathbf{y} \in C^n$, write $\langle \Gamma(\mathbf{x}), \Gamma(\mathbf{y}) \rangle_R$, in terms of $\langle ., . \rangle_C$.

2. Cayley Transformation

Prove that if **A** is skew hermitian then

$$\mathbf{U} = (\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1} \tag{7}$$

is unitary.

3. Yet another way to obtain a unitary matrix

Prove that if $P_{\mathbf{V}}$ is an orthogonal projection matrix, then $\mathbf{U} = \mathbf{I} - 2P_{\mathbf{V}}$ is unitary.

4. Rigid Transformations

Let $\mathbf{R}(\theta)$ represent a 2 × 2 rotation matrix

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \tag{8}$$

where given a position vector $\mathbf{x} \in \Re^{2\times 1}$, $\mathbf{R}(\theta)\mathbf{x}$ corresponds to its θ degree counter-clockwise rotated version.

- (a) Find the eigenvalue decomposition for $\mathbf{R}(\theta)$.
- (b) Given $\theta_1, \theta_2 \in \Re$, can we claim that $\mathbf{R}(\theta_1)\mathbf{R}(\theta_2) = \mathbf{R}(\theta_2)\mathbf{R}(\theta_1)$?
- (c) A rigid transformation is defined in terms of a rotation $\mathbf{R}(\theta)$ and a translation $\mathbf{t} \in \Re^{\mathbf{2}}$ as

$$\mathbf{y} = \mathbf{R}(\theta)\mathbf{x} + \mathbf{t}.\tag{9}$$

Note through a vector space extension trick, we can write

$$\begin{bmatrix} \mathbf{y} \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{R}(\theta) & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}}_{\mathbf{T}(\theta, \mathbf{t})} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}, \tag{10}$$

so that the rigid transformation is defined as a matrix multiplication for the extended vectors.

Find the eigenvalue decomposition for $T(\theta, t)$.

- (d) Can we claim that $\mathbf{T}(\theta_1, \mathbf{t_1})\mathbf{T}(\theta_2, \mathbf{t_2}) = \mathbf{T}(\theta_2, \mathbf{t_2})\mathbf{T}(\theta_1, \mathbf{t_1})$ in general? How about for $\mathbf{T}(\theta, \mathbf{t_1})\mathbf{T}(\theta, \mathbf{t_2}) = \mathbf{T}(\theta, \mathbf{t_2})\mathbf{T}(\theta, \mathbf{t_1})$? How about $\mathbf{T}(\mathbf{0}, \mathbf{t_1})\mathbf{T}(\mathbf{0}, \mathbf{t_2}) = \mathbf{T}(\mathbf{0}, \mathbf{t_2})\mathbf{T}(\mathbf{0}, \mathbf{t_1})$? Can you explain your answers based on what is expected from a rigid motion?
- 5. Missed Programming huh?... This is simple, don't worry!

Generate a 10×10 random complex unitary matrix in Matlab/Python/Julia. Only built-in functions you are allowed to use are *eig* and *randn*. Everytime your code is executed, it is expected to generate a different random unitary matrix. No online code submission is needed: just write down your code on your solution sheet.