8.2) b)
$$n=15$$
 $r=4$ 824 (?)
 $P(20 \le X \le 20) \stackrel{!}{=} 0.7$
 $P(20 - X \le X \le 20 - 15) \stackrel{!}{=} 0.7$
 $97 - 980 = 0.7$
 $N(\frac{5}{7}) - 1 - N(\frac{5}{7}) \stackrel{!}{=} 0.7$
 $2N(\frac{5}{7}) \stackrel{!}{=} 1.7$
 $N(\frac{5}{7}) \stackrel{!}{=} 0.85$
 $N(104) = 0.8508$
 $(9\frac{5}{7} - 1.04) = 0.7$

2)
$$\mu = 30 \sigma = 4$$

 $P(X \le 34.32) = N(\frac{34.32-30}{4}) = 0.8599 = 85.99%$

8.3) a)
$$\sigma^{2} = 72.43$$
 $\sigma = 8.511$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X > 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.95 \implies P(X \le 166) = 0.05$$

$$P(X \ge 166) = 0.05$$

8.4)
$$_{4}$$
) $_{4}$ $_{5}$ $_$

eg L(1): n ln(2) -2 = xi