Lecture # 20 CHE331A

Introduction:
Importance of
CRE and Definition
of rate

Design equation for Ideal Reactors,
Levenspiel plots, and multiple reactors

Basic concepts in Chemical Kinetics: Types of reactions, rate and equilibrium constants

Isothermal Reactor Design:
Batch, Mixed flow, PFR/PBR,
in terms of conversion,
concentration and molar
flowrates

Collection and Analysis of Rate Data: Constant and variable volume; differential and integral methods; halflife and initial rates; differential reactors Design of isothermal reactors for multiple reactors: selectivity/yield; series/parallel/complex reactions; best operating conditions

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

Basic Design/Analysis steps of reactors

- ► Mole Balance Equation for the specific reactor
- Rate Law for the reaction(s)
- Use collection and analysis of rate data for determining rate law and its constants
- Reaction stoichiometry single and multiple
- ► Form design/analysis equation in terms of conversion, concentration or molar flow rates
- Solve differential equation(s) to design/analyze reactors

Summary of Week 6

- Non elementary reactions and non-integer rate laws
- Reaction mechanisms of some non-elementary reactions
 - Active Intermediate
 - Pseudo-Steady-State-Hypothesis (PSSH)
- Chain Reactions
 - Thermal cracking of ethane
- Enzymatic Reactions
 - Michaelis-Menten Kinetics
 - Constants K_M and V_{max}

Post Mid-Sem Course contents

- Non − Isothermal reactors 6 lectures
- ► Non Ideal flow 4 lectures
- ► Catalysis 2 lectures
- Kinetics of Catalytic Reactions
 3 lectures
- Diffusion and Reaction in Porous Catalysts 5 lectures

- ▶ 20 lecture and 6 weeks!
- ▶ Reduce the portion and make it to 17-18

Non-isothermal reactors

- Energy balances for reactors
 - Batch
 - Mixed flow
 - o PFR/PBR
- Adiabatic reactors
- ▶ Non-adiabatic reactors
- Multiple reactors and inter-stage cooling
- Multiple steady-states

Most reactions are not carried out isothermally

- ▶ For example, an adiabatic liquid-phase reaction $A \rightarrow P$ in a PFR
- $F_{A0} \frac{dX}{dV} = -r_A$ first order reaction: $-r_A = kC_A$ and $C_A = C_{A0}(1 X)$ $\frac{dX}{dV} = \frac{kC_A}{\dot{v}_0 C_{A0}} = \frac{k}{\dot{v}_0} (1 X)$
- $k = A. exp\left(-\frac{E}{RT}\right) \qquad \text{OR} \qquad k = k_1. exp\left[\frac{E}{R}\left(\frac{1}{T_1} \frac{1}{T}\right)\right]$ $\frac{dX}{dV} = \frac{kC_A}{\dot{v}_0 C_{A0}} = \frac{k}{\dot{v}_0}(1 X) \rightarrow \frac{dX}{dV} = \frac{k_1}{\dot{v}_0}(1 X) exp\left[\frac{E}{R}\left(\frac{1}{T_1} \frac{1}{T}\right)\right]$
- ▶ To determine 'V' the relationship T = T(X) or T = T(V) is required
- These relationships are provided by Energy Balance

Energy balance done as per ESO201A

$$\sum_{inlet} \dot{E} - \sum_{outlet} \dot{E} + \dot{Q} - \dot{W} = \frac{d(E)_{CV}}{dt} \qquad \dot{E} = \frac{Enthalpy}{per\ unit\ time} = \dot{H}$$

- ▶ Further, \dot{W} is not often significant in Chemical Processes and $\dot{W} = 0$
- Steady state and adiabatic operation, $\frac{d(E)_{CV}}{dt} = 0$ and $\dot{Q} = 0$
- ▶ Thus, $\sum_{inlet} \dot{H} \sum_{outlet} \dot{H} = 0$
- ► For this reaction we will see that: $T = T_0 + \frac{-\Delta H_{Rxn}X}{c_{P_A}}$ which is T = T(X)
- ► This along with the mol balance equation can then be used to determine the volume of the reactor to achieve a particular conversion