Cálculo Numérico – BCC760

Raízes de equações algébricas e transcendentes

Departamento de Computação

Página da disciplina

http://www.decom.ufop.br/bcc76o/

- Dada uma função y = f(x), o objetivo deste capítulo é a determinação valores $x = \xi$ tais que $f(\xi) = o$.
- Estes valores são chamados de raízes da equação f(x) = 0 ou zeros da função y = f(x).
- Será tratado o caso em que ξ é um número real.

 Geometricamente, conforme mostra a figura, estes valores são os pontos de interseção do gráfico de y = f(x) com o eixo das abscissas.

- Se y = f(x) é um polinômio quadrático, cúbico ou biquadrado, então os seus zeros podem ser determinados por meio de processos algébricos.
- Para polinômios de grau superior, estes processos não existem, é necessário, então, utilizar métodos numéricos.
- Quando y = f(x) é uma função transcendente, para as quais não existe método geral para obter os seus zeros, também é necessária a utilização de métodos numéricos.

• Os **métodos numéricos** utilizados são iterativos, portanto, por meio deles é possível obter uma solução, normalmente, aproximada.

 Faz-se necessário, então definir o que é uma solução (raiz) aproximada.

Raiz aproximada

Sendo ε uma precisão desejada, diz-se que um ponto x_k é uma aproximação para uma raiz ξ , de uma equação f(x) = o, se satisfizer as condições:

(i)
$$|f(x_k)| < \varepsilon$$

(ii)
$$|x_k - \xi| < \varepsilon$$

Conforme mostrado a seguir, estas duas condições não são equivalentes.

• Caso 1 $f(x_k) < \varepsilon$ $|x_k - \xi| >> \varepsilon$

Caso 2
$$|x_k - \xi| < \epsilon$$
$$f(x_k) >> \epsilon$$

Raiz múltipla

Uma raiz, ξ , de uma equação f(x) = o, tem multiplicidade m se:

$$f(\xi) = f'(\xi) = f''(\xi) = \dots = f^{m-1}(\xi) = oef^m(\xi) \neq o$$

Onde $f^{j}(\xi)$, j = 1, 2, ..., m; é a derivada de ordem j da função y = f(x) calculada no ponto ξ .

Exemplo

$$f(x) = x^4 - 5.x^3 + 6.x^2 + 4.x - 8 = 0$$

$$f(2) = 0$$

$$f'(x) = 4.x^3 - 15.x^2 + 12.x + 4 \Rightarrow f'(2) = 0$$

$$f''(x) = 12.x^2 - 30.x + 12 \Rightarrow f''(2) = 0$$

$$f'''(x) = 24.x - 30 \Rightarrow f'''(2) \neq 0$$

Portanto, $\xi = 2$ é uma raiz com multiplicidade 3.

Fases na determinação de raízes

• Fase 1: Isolamento das raízes

É feita a delimitação, a enumeração e a separação das raízes com o objetivo de determinar intervalos que contenham, cada um, uma única raiz.

• Fase 2: Refinamento

São utilizados métodos numéricos, com precisão pré-fixada, para calcular cada raiz. Todos eles pertencem à classe dos métodos iterativos.

Teorema (Cauchy-Bolzano)

Seja y = f(x) uma função contínua em um intervalo [a, b].

(i) Se f(a) × f(b) < o, então a equação f(x) = o tem um número ímpar de raízes no intervalo [a, b]. Além disso, se f '(x) preservar o sinal em [a, b] então a raiz é única.

Número ímpar de raízes

Raiz com multiplicidade ímpar

Teorema (Cauchy-Bolzano)

Seja y = f(x) uma função contínua em um intervalo [a, b].

(ii) Se $f(a) \times f(b) > o$, então a equação f(x) = o tem um número par de raízes ou nenhuma raiz no intervalo [a, b].

Número par de raízes

Raiz com multiplicidade par

Não há raiz

Formas de isolar as raízes

•Tabelar a função que dá origem à equação e analisar as mudanças de sinal.

tabela de pontos $[x_i, f(x_i)], i = 1, 2, ..., n.$

Exemplo

Isole as raízes positivas da equação

$$f(x) = x^5 - 6.x^4 - 14.x^3 + 72.x^2 + 44.x - 180 = 0.$$

Sabendo-se que elas são em número de três e estão situadas no intervalo (0, 7)Inicialmente, estabelece-se um passo h = 1 e gera-se uma tabela de pontos.

X	0	1	2	3	4	5	6	7
f(x)	-180	- 83	20	- 21	- 260	- 535	- 348	1255

Tendo em vista que $f(1) \times f(2) < 0$, $f(2) \times f(3) < 0$ e $f(6) \times f(7) < 0$ e considerando o Teorema 2.1, conclui-se que a equação dada tem uma raiz em cada um dos intervalos:

Formas de isolar as raízes

•Análise gráfica da função

Procedimento I: esboçar o gráfico de y = f(x), com o objetivo de detectar intervalos que contenham, cada um, uma única raiz.

Procedimento II: decompor a equação f(x) = 0, se possível, na forma equivalente g(x) - h(x) = 0, onde os gráficos de y = g(x) e y = h(x) sejam conhecidos e mais simples. Neste caso, as abscissas dos pontos de interseção de y = g(x) e y = h(x) são as raízes de f(x) = 0.

Exemplo – Procedimento I

Seja a equação $f(x) = x^3 - 9.x + 3 = 0$. Conforme mostra a figura 2.3, ela tem três raízes isoladas nos intervalos (-4, -3); (0, 1) e (2,3).

Exemplo - Procedimento II

$$f(x) = e^{x} + x^{2} - 2 = 0$$

 $g(x) = e^{x} e h(x) = 2 - x^{2}$

Estudo especial das Equações Polinomiais

•Toda as equação da forma:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

onde $a_i \in \Re \ \forall \ i = 0, 1, ..., n$; é dita polinomial. Tem-se, ainda, que n é um número natural denominado grau da equação.

- •Uma equação polinomial de grau n tem exatamente n raízes, reais ou complexas, contando cada raiz de acordo com a sua multiplicidade.
- •Se os coeficientes de uma equação polinomial forem reais, então as suas raízes complexas ocorrerão em pares conjugados.
- •Uma equação polinomial de grau ímpar, com coeficientes reais, tem, no mínimo, uma raiz real.

Delimitação das raízes reais

•Limite Superior das Raízes Positivas (LSRP) Teorema de Lagrange

Seja $f(x) = a_n x^n + a_{n-1} x^{n-1} + + a_1 x + a_0 = o$ uma equação algébrica de grau n na qual $a_n > o$ e $a_0 \ne o$. Para limite superior das suas raízes positivas, caso existam, pode ser tomado o número:

$$L = 1 + (n-k) \frac{M}{a_n}$$

Onde k é o grau do primeiro termo negativo e M o módulo do menor coeficiente negativo. (n-k) é o grau da raíz.

Exemplo

Determine o limite superior das raízes positivas da equação

$$f(x) = x^5 - 2x^4 - 7x^3 + 9x^2 + 8x - 6 = 0.$$

Solução

Tem-se que k = 4, M = 7. Sendo assim L = 8

$$L = 1 + n - k \sqrt{\frac{M}{a_n}}$$

Delimitação das raízes reais

Limite Inferior das Raízes Negativas (LIRN)

- (i) Toma-se a equação auxiliar $f_1(x) = f(-x) = o$.
- (ii) Aplica-se o teorema de Lagrange em $f_1(x) = o$ para determinar L_1 , que é o limite superior das suas raízes positivas.
- (iii) Sendo assim, $(-L_1)$ é o limite inferior das raízes negativas de f(x) = o.

Exemplo

$$f(x) = x^5 - 2x^4 - 7x^3 + 9x^2 + 8x - 6 = 0.$$

$$f_1(x) = f(-x) = (-x)^5 - 2(-x)^4 - 7(-x)^3 + 9(-x)^2 + 8(-x) - 6 = 0.$$

$$f_1(x) = -x^5 - 2x^4 + 7x^3 + 9x^2 - 8x - 6 = 0.$$

De acordo com o teorema de Lagrange a5 deve ser maior que zero.

$$f_1(x) = x^5 + 2x^4 - 7x^3 - 9x^2 + 8x + 6 = 0.$$

Tem-se, então, que k = 3, M = 9. Assim, $L_1 = 4 \Rightarrow -L_1 = -4$

Enumeração das raízes reais

•Regra de Sinais de Descartes

O número de raízes positivas de uma equação polinomial é igual ao número de variações de sinal na sequência dos seus coeficientes ou é menor por um inteiro par.

Para obter o número de raízes negativas, basta trocar x por -x e determinar o número de raízes positivas de f(-x) = o, o qual será o número de raízes negativas de f(x) = o.

Exemplo

$$f(x) = x^5 - 2x^4 - 7x^3 + 9x^2 + 8x - 6 = 0.$$

- \rightarrow Raízes positivas: +1, -2, -7, +9, +8, -6 \Rightarrow 3 ou 1
- → Raízes negativas

Tomando $f_1(x) = -x^5 - 2x^4 + 7x^3 + 9x^2 - 8x - 6 = 0$ do exemplo 4.3 tem-se que a seqüência dos coeficientes é - 1, - 2, + 7, + 9, - 8, - 6. Portanto a equação tem **2 ou nenhuma raiz negativa**

Enumeração das raízes reais

• Sequência de Sturm - Definição

Chama-se sequência de Sturm de uma equação polinomial f(x) = 0, de grau n, o conjunto de polinômios f(x), $f_1(x)$, $f_2(x)$, $f_3(x)$, ..., $f_k(x)$; $k \le n$.

O primeiro termo é o polinômio que origina a equação, o segundo é a sua primeira derivada, ou seja, $f_1(x) = f'(x)$ e, de $f_2(x)$ em diante, cada termo é o resto, com o sinal trocado, da divisão dos dois termos anteriores. A sequência se encerra quando se obtém um resto constante.

Enumeração das raízes reais

•Sequência de Sturm – Propriedades

- (i) Se f(x) = o tem raízes múltiplas, então o último termo da sequência é uma constante nula.
- (ii) Para nenhum valor de x dois termos consecutivos da sequência podem se anular.
- (iii) Se, para algum valor de x, um termo médio da sequência se anula, então os termos vizinhos terão valores numéricos de sinais opostos.

Enumeração das raízes reais

• Teorema de Sturm

Seja N(α) o número de variações de sinal apresentado pela sequência de Sturm quando cada um dos seus termos é avaliado em x = α .

O número de raízes reais de uma equação polinomial, que não possua raízes múltiplas, em um intervalo (a, b), é igual a N(a) - N(b).

Exemplo 1

$$f(\mathbf{x}) = \mathbf{x}^3 - 3x + 1$$

$$f_1(x) = 3x^2 - 3$$

$$f_2(x) = 2x - 1$$

$$f_3(x) = \frac{9}{4}$$

$$\begin{array}{c|c}
3x^2 + 0x - 3 & 2x - 1 \\
-3x^2 + \frac{3}{2}x - 3 & \frac{3}{2}x + \frac{3}{4} \\
\hline
\frac{\frac{3}{2}x - 3}{-\frac{3}{2}x + \frac{3}{4}} \\
-\frac{9}{4}
\end{array}$$

Exemplo 1

$$f(\mathbf{x}) = \mathbf{x}^3 - 3x + 1$$

$$f_1(x) = 3x^2 - 3$$

$$f_2(x) = 2$$

$$f_3(x) = \frac{9}{4}$$

\boldsymbol{x}	f_0	f_1	f_2	f_3
-2	1	+	1	+
-1	+	0		+
0	+	_		+
1	-	0	+	+
2	+	+	+	+

Figura 1: Gráfico de $f(x) = x^3 - 3x + 1$ no intervalo (-2, 2).

Resolução de Equações Não lineares Fase 2 – Refinamento

Método da Bisseção

Seja y = f(x) uma função contínua em um intervalo [a,b] que contém uma, e só uma, raiz, ξ , da equação f(x) = 0.

A ideia básica do Método da Bisseção é reduzir o intervalo [a, b] dividindo-o, de forma sucessiva, ao meio.

As iterações são realizadas da forma mostrada a seguir

1)
$$x_1 = \frac{a+b}{2}$$
 \Rightarrow Se $f(a).f(x_1) < 0$ então
$$\begin{cases} \xi \in (a, x_1) \\ a_1 = a \\ b_1 = x_1 \end{cases}$$

2)
$$x_1 = \frac{a+b}{2} \Rightarrow Se \ f(a_1).f(x_1) > 0$$
 então
$$\begin{cases} \xi \in (x_1,b) \\ a_1 = x_1 \\ b_1 = b \end{cases}$$

3)
$$x_1 = \frac{a+b}{2} \Rightarrow Se \ f(x_1) = 0$$
 então $\xi = x_1$

4) O processo continua até que $(b_k - a_k) \le \epsilon$ e, então, ξ é \forall $x \in [a_k, b_k]$.

1)
$$x_1 = \frac{a+b}{2}$$
 \Rightarrow Se
$$\begin{cases} f(a) < 0 \\ f(b) > 0 \end{cases}$$
 então
$$\begin{cases} \xi \in (a, x_1) \\ a_1 = a \\ b_1 = x_1 \end{cases}$$

2)
$$x_2 = \frac{a_1 + b_1}{2} \Rightarrow Se \begin{cases} f(a_1) < 0 \\ f(b_1) > 0 \end{cases} \text{ então } \begin{cases} \xi \in (x_2, b_1) \\ a_2 = x_2 \\ b_2 = b_1 \end{cases}$$

3) O processo continua até que $(b_k - a_k) \le \epsilon$ e, então, ξ é \forall $x \in [a_k, b_k]$.

• Interpretação geométrica

Função de iteração

$$x_k = \frac{a_{k-1} + b_{k-1}}{2}, k = 1, 2, 3, ...$$

Critério de parada

O processo iterativo é finalizado quando se obtém um intervalo cujo tamanho é menor ou igual a uma precisão pré-estabelecida e, então, qualquer ponto nele contido pode ser tomado como uma estimativa para a raiz; ou quando for atingido um número máximo de iterações previamente estabelecido.

Critério de convergência

Se y = f(x) for contínua em [a, b] e f(a).f(b) < o, então o método da Bisseção gera uma sequência que converge para uma raiz de f(x) = o.

•Exemplo

Seja estimar a raiz de $f(x) = x^3 - 9x + 3 = 0$ contida no intervalo (0, 1) com precisão $\varepsilon = 0.065$.

Solução

Tem-se. que f(o) = 3 e f(1) = -5.

Os resultados obtidos são apresentados a seguir.

• Resultados obtidos

k	a _{k-1}	b_{k-1}	b_{k-1} - a_{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375

k	a _{k-1}	b_{k-1}	b_{k-1} - a_{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5		

k	a _{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)	
1	0	1	1	0.5	-1.375	
2	0	0.5	0.5	0.25	0.765	

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	0.765
3	0.25	0.5	0.25		

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	0.765
3	0.25	0.5	0.25	0.375	

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)	
1	0	1	1	0.5	-1.375	
2	0	0.5	0.5	0.25	0.765	
3	0.25	0.5	0.25	0.375	-0.322	

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	0.765
3	0.25	0.5	0.25	0.375	-0.322
4	0.25	0.375	0.125		

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	0.765
3	0.25	0.5	0.25	0.375	-0.322
4	0.25	0.375	0.125	0.313	

k	a_{k-1}	b_{k-1}	b _{k-1} - a _{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	0.765
3	0.25	0.5	0.25	0.375	-0.322
4	0.25	0.375	0.125	0.313	0.213

Resultados obtidos

k	a_{k-1}	b_{k-1}	b_{k-1} - a_{k-1}	$\mathbf{x}_{\mathbf{k}}$	f(x _k)
1	0	1	1	0.5	-1.375
2	0	0.5	0.5	0.25	0.765
3	0.25	0.5	0.25	0.375	-0.322
4	0.25	0.375	0.125	0.313	0.213
5	0.313	0.375	0.062	*****	*****

Note que
$$(b_4 - a_4) < \varepsilon$$

• Portanto, para a precisão estabelecida, qualquer ponto do intervalo [0,313; 0,375] pode ser tomado como uma estimativa para a raiz.

• Estimativa do numero de iterações

Dada uma precisão ε e um intervalo inicial [a, b], estimar o número k de iterações para obter $b_k - a_k \le \varepsilon$.

$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b - a}{2^k} \le \varepsilon \implies 2^k \ge \frac{b - a}{\varepsilon}, k = 1, 2, ...$$

Utilizando logaritmo em qualquer base, tem-se que

$$k \ge \frac{\log (b-a) - \log(\epsilon)}{\log 2}$$

• Estimativa do numero de iterações – Exemplo

Seja estimar o número de iterações necessário para calcular uma raiz de uma equação f(x) = 0, situada no intervalo (2, 3), com precisão 0,01 utilizando o método da bisseção.

$$k \ge \frac{\log (b-a) - \log(\epsilon)}{\log(2)} = \frac{\log (3-2) - \log(0.01)}{\log(2)} = \frac{2}{0.301} = 6.6$$

Portanto $k \ge 7$

- Isole as raízes (com tabelamento h=1), sabendo que há 2 negativas e 3 positivas em (-4,0) e (0,8)
- Calcule a menor raíz positiva com precisão 0,040 em no máximo 6 iterações.

$$f(x) = x^5 - 2x^4 - 7x^3 + 9x^2 + 8x - 6 = 0$$

Raízes negativas

X	- 4	- 3	- 2	- 1	0
f(x)	- 982	- 165	6	- 1	- 6

Raízes positivas

X	0	1	2	3	4	5	6	7	8
f(x)	- 6	3	- 10	- 9	234	1.259	4.038	10.095	21.626

$$k \ge \frac{\log(1-0) - \log(0,040)}{\log(2)} \implies K \ge 4,6 \implies k = 5$$

k	a	b	f(a)	f(b)	b - a	X_k	$f(x_k)$
01	0,000	1,000	- 6,000	3,000	1,000	0,500	- 0,719
02	0,500	1,000	- 0,719	3,000	0,500	0,750	1,714
03	0,500	0,750	- 0,719	1,714	0,250	0,625	0,597
04	0,500	0,625	- 0,719	0,597	0,125	0,563	- 0,042
05	0,563	0,625	- 0,042	0,597	0,062	0,594	0,283
06	0,563	0,594	- 0,042	0,283	0,031		

intervalo [0,563; 0,594]

Resolução de Equações Não lineares Fase 2 – Refinamento

Método da Falsa Posição

Seja y = f(x) uma função contínua em um intervalo [a,b] que contém uma, e só uma, raiz, ξ , da equação f(x) = 0.

O Método da Falsa Posição consiste em dividir, de forma sucessiva, o intervalo [a, b] no ponto em que a reta que passa por [a, f(a),] e [b, f(b)] intercepta o eixo das abscissas.

A figura a seguir ilustra o processo.

• Interpretação geométrica

1) Se
$$f(a).f(x_1) < 0$$
 então
$$\begin{cases} \xi \in (a, x_1) \\ a = a \\ b = x_1 \end{cases}$$

2) Se
$$f(a_1).f(x_1) > 0$$
 então
$$\begin{cases} \xi \in (x_1, b) \\ a = x_1 \\ b = b \end{cases}$$

3) Se
$$f(x_1) = 0$$
 então $\xi = x_1$

4) O processo continua até precisão pré-fixada ε.

Equação da reta

$$\begin{vmatrix} x & f(x) & 1 \\ a & f(a) & 1 \\ b & f(b) & 1 \end{vmatrix} = 0$$

$$x.f(a) + b.f(x) + a.f(b) - b.f(a) - a.f(x) - x.f(b) = 0$$

$$x_k.f(a) + a.f(b) - b.f(a) - x_k.f(b) = 0$$

$$x_k = \frac{-a.f(b) + b.f(a)}{-f(b) + f(a)}$$

 $x_k \cdot [-f(b) + f(a)] + a \cdot f(b) - b \cdot f(a) = 0$

Função de iteração

$$x_k = \frac{a.f(b) - b.f(a)}{f(b) - f(a)}, k = 1, 2, ...$$

Critério de parada

O processo iterativo é finalizado quando se obtém x_k , k = 0, 1, 2, ...; tal que $|f(x_k)|$ seja menor ou igual a uma precisão pré-estabelecida e, então, x_k é tomado como uma estimativa para a raiz; ou quando for atingido um número máximo de iterações previamente estabelecido.

Critério de convergência

Se y = f(x) for contínua em [a, b] e f(a).f(b) < o, então o método da Falsa Posição gera uma sequência que converge para uma raiz de f(x) = o.

Exemplo

Seja estimar a raiz de $f(x) = x^3 - 9x + 3 = 0$ contida no intervalo (0, 1) com precisão $\varepsilon = 0.065$.

Solução

k	a	b	X_k	f(x _k)	b-a
1	0	1	0.375	-0,322	1
2	0	0.375	0.339	-0,012	0,375

Portanto, considerando a precisão estabelecida, $x_2 = 0,339$ é uma estimativa para a raiz.

Calcule uma raiz da equação $f(x) = x^4 - 14x^2 + 24x - 10 = 0$ usando o método da falsa posição com precisão 0,006 e um máximo de 5 iterações.

- a) Limites das raízes reais (Teorema de Lagrange)
- b) Enumeração das raízes reais
 - b.1) Regra dos sinais de Descartes
 - b.2) Teorema de Sturm Enumeração das raízes positivas
- c) Separação das raízes positivas
- d) Cálculo da maior raiz positiva

	$x \rightarrow$
$f(x) = x^4 - 14x^2 + 24x - $	10
$f_1(x) = 4x^3 - 28x + 24$	
$f_2(x) = 7x^2 - 18x + 10$	
$f_3(x) = 7,2x - 9,3$	
$f_4(x) = 1,5$	
$N(x) \rightarrow$	

Calcule uma raiz da equação $f(x) = x^4 - 14x^2 + 24x - 10 = 0$ usando o método da falsa posição com precisão 0,006 e um máximo de 5 iterações.

- a) Limites das raízes reais (Teorema de Lagrange)
- a.1) Limite superior positivo \rightarrow k = 2, M = 14 \rightarrow L = 4,7 \Rightarrow L = 5
- a.2) Limite inferior negativo \rightarrow k = 2, M = 24 \rightarrow L₁ = 5,9 \Rightarrow L₁ = -6

Calcule uma raiz da equação $f(x) = x^4 - 14x^2 + 24x - 10 = 0$ usando o método da falsa posição com precisão 0,006 e um máximo de 5 iterações.

b) Enumeração das raízes reais

b.1) Regra dos sinais de Descartes

 \rightarrow Raízes positivas: +1, -14, +24, -10 \Rightarrow 3 ou 1

 \rightarrow Raízes negativas: +1, -14, -24, -10 \Rightarrow 1 raiz

Calcule uma raiz da equação $f(x) = x^4 - 14x^2 + 24x - 10 = 0$ usando o método da falsa posição com precisão 0,006 e um máximo de 5 iterações.

b.2) Teorema de Sturm – Enumeração das raízes positivas

$x \rightarrow$	0	5
$f(x) = x^4 - 14x^2 + 24x - 10$	I	+
$f_1(x) = 4x^3 - 28x + 24$	+	+
$f_2(x) = 7x^2 - 18x + 10$	+	+
$f_3(x) = 7,2x - 9,3$	I	+
$f_4(x) = 1,5$	+	+
$N(x) \rightarrow$	3	0

Número de raízes positivas \rightarrow N(0) – N(5) = 3 – 0 = 3

Calcule uma raiz da equação $f(x) = x^4 - 14x^2 + 24x - 10 = 0$ usando o método da falsa posição com precisão 0,006 e um máximo de 5 iterações.

c) Separação das raízes positivas

X	f(x)
0	- 10
1	1
2	- 2
3	17

Há uma raiz em cada um dos seguintes intervalos: (0; 1); (1; 2) e (2; 3)

Calcule uma raiz da equação $f(x) = x^4 - 14x^2 + 24x - 10 = 0$ usando o método da falsa posição com precisão 0,006 e um máximo de 5 iterações.

d) Cálculo da maior raiz positiva

Fazendo uma bisseção no intervalo (2, 3), tem-se que f(2,5) = 1,563. Portanto, a raiz está no intervalo (2, 2,5).

k	a	b	f(a)	f(b)	X_k	f(x _k)
01	2	2,5	- 2	1,563	2,281	- 1,029
02	2,281	2,5	- 1,029	1,563	2,368	- 0,231
03	2,368	2,5	- 0,231	1,563	2,385	- 0,041
04	2,385	2,5	- 0,041	1,563	2,388	- 0,005

Para a precisão estabelecida, $x_4 = 2,388$ é uma estimativa para a maior raiz positiva da equação.

Obs: verifica-se que o tamanho do último intervalo, (2,388; 2,5); é 0,112.

Resolução de Equações Não lineares Fase 2 – Refinamento

Método de Newton-Raphson

•Seja y = f(x) uma função contínua em um intervalo [a, b] que contém uma, e só uma, raiz da equação f(x) = o e que, nele, f'(x) e f''(x) preservam o sinal e não se anulam.

O Método de Newton-Raphson consiste em:

- •atribuir uma estimativa inicial $x_o \in [a, b]$ para uma raiz de f(x) = o;
- •gerar uma sequência de estimativas, $\{x_k\}$, k = 1, 2, 3,...; onde cada ponto é a interseção da reta tangente a y = f(x), em $[x_{k-1}, f(x_{k-1})]$, com o eixo das abscissas.

Resolução de Equações Não lineares Fase 2 – Refinamento – Método de Newton-Raphson

• Interpretação geométrica

Resolução de Equações Não lineares Fase 2 – Refinamento – Método de Newton-Raphson

Função de iteração

$$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}, k=1, 2, ...$$

Critério de parada

O processo iterativo é finalizado quando é obtido x_k , k = 1, 2, ...; tal que $|x_k - x_{k-1}|$ ou $|f(x_k)|$ é menor ou igual a uma precisão estabelecida e, então, x_k é tomado como uma estimativa para a raiz; ou quando for atingido um número máximo de iterações estabelecido.

Resolução de Equações Não lineares Fase 2 – Refinamento – Método de Newton-Raphson

Critério de convergência (condições suficientes)

Seja [a, b] um intervalo que contém uma, e somente uma, raiz da equação f(x) = o. A sequência x_k , k = 1, 2, ...; gerada pelo método de Newton-Raphson será convergente se:

- (i) f '(x) e f ' '(x) não se anulam e preservam o sinal no intervalo [a, b]
- (ii) o valor inicial $x_o \in [a, b]$ for tal que $f(x_o) \times f''(x_o) > o$.

Em geral, afirma-se que o método gera uma sequência convergente desde que x_o seja escolhido "suficientemente próximo" da raiz.

$$S(t) = 69.2 - 19.6t - 39.2e^{-0.5.t} = 0$$

$$S(3) = 1,653 e S(4) = -14,505.$$

S'(t) =
$$19,6.(e^{-0,5.t}-1) < 0 \forall t \in [3, 4]$$

S ''(t) = -9,8.e
$$^{-0,5.t}$$
 < 0 \forall t \in \Re

0 4	,000	- 14,505	- 16,947	

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
; $k = 0, 1, 2, 3,$

k	t_k	$S(t_k)$	$S'(t_k)$	$ t_k - t_{k-1} $
0	4,000	- 14,505	- 16,947	
1	3,144	- 0,561	- 15,530	0,856
2	3,108	- 0,004	- 15,457	0,036
3	3,108			0,000

 $t \cong 3,108s$

Resolução de Equações Não lineares

Considerações finais

•Os três métodos podem ser comparados quanto à **existência e velocidade de convergência** e também quanto ao **esforço computacional**, de modo a facilitar a escolha do mais adequado para cada situação.

Resolução de Equações Não lineares Considerações finais

- •O método mais simples (exige pouco esforço computacional) e robusto é o da bisseção, que apresenta como grande vantagem o fato de sempre gerar uma sequência convergente.
- •É contudo um método de **baixa velocidade de convergência**, apresentando como curiosidade o fato de gerar uma sequência que converge para a raiz sempre com a mesma velocidade.
- •Pela sua robustez, é bom como **método preliminar** para a obtenção de um intervalo de pequeno tamanho, dentro do qual se encontra uma raiz da equação.

Resolução de Equações Não lineares Considerações finais

- •O método da falsa posição também é uma técnica robusta que apresenta a vantagem de **gerar uma sequência que sempre converge e, além disto, mais rapidamente** do que o método da bisseção.
- •Entretanto, quando a **convergência para a raiz só se faz a partir de um dos extremos do intervalo**, esta se torna lenta, podendo igualar-se à do método da bisseção.
- •O método de Newton-Raphson é sem dúvida o método que **proporciona a maior velocidade convergência**. Apresenta, entretanto, algumas desvantagens.

Resolução de Equações Não lineares Considerações finais

- •As condições de convergência são mais restritivas.
- •Obriga o cálculo, em cada iteração, do valor numérico da função e da sua primeira derivada.
- •Se a derivada tiver uma forma analítica complicada, a sua avaliação pode exigir muito esforço computacional.
- •Se o valor da primeira derivada for grande, a convergência será lenta.
- •Para os casos em que a utilização do método de Newton-Raphson se mostrar inviável, pode-se recorrer ao método da Falsa Posição.

Cálculo Numérico

Final do curso.

Muito obrigado!

Exemplo 2

Enumere as raízes reais da equação $f(x) = x^5 - 2x^4 - 7x^3 + 9x^2 + 8x - 6 = 0$ utilizando a regra dos sinais de Sturm e sabendo-se que estão nos intervalos (-4, 0) e (0, 8).

$x \rightarrow$	- 4	0	8
$f(x) = x^5 - 2x^4 - 7x^3 + 9x^2 + 8x - 6$	-	-	+
$f_1(x) = 5x^4 - 8x^3 - 21x^2 + 18x + 8$	+	+	+
$f_2(x) = 3.4x^3 - 3.7x^2 - 7.8x + 5.4$	-	+	+
$f_3(x) = 12,4x^2 - 4,3x - 12$	+	-	+
$f_4(x) = 5,4x - 2,9$	-	-	+
$f_5(x) = 10,7$	+	+	+
$N(x) \rightarrow$	5	3	0

Número de raízes negativas \rightarrow N(-4) – N(0) = 5 - 3 = 2

Número de raízes positivas \rightarrow N(0) – N(8) = 3 – 0 = 3