

Enarx

Protection for data in use

Mike Bursell
Office of the CTO

https://enarx.io

Nathaniel McCallum Sr. Principal Engineer

The Problem

The Need for Confidentiality and Integrity

- Banking & Finance
- Government & Public Sector
- Telco
- IoT
- HIPAA
- GDPR
- Sensitive enterprise functions
- Defense
- Human Rights NGOs
- ...

Virtualization Stack

Application Middleware Userspace Kernel Bootloader Hypervisor Firmware BIOS EFI CPU | Management Engine

Container Stack

Application

Middleware

Userspace

Container Engine

Kernel

Bootloader

Hypervisor

Firmware

BIOS EFI

CPU | Management Engine

https://xkcd.com/2166/

THE MODERN TECH STACK

The Plan

The Principles

Don't trust the host
Don't trust the host owner
Don't trust the host operator
All hardware cryptographically
verified
All software audited and
cryptographically verified

Trusted Execution Environments

Trusted Execution Environments

TEE is a protected area within the host, for execution of sensitive workloads

Trusted Execution Environments

TEE is a protected area within the host, for execution of sensitive workloads

- Memory Confidentiality
- Integrity Protection
- General compute
- HWRNG

Trusted Execution Environments

Q. "But how do I know that it's a valid TEE?"

- Memory Confidentiality
- Integrity Protection
- General compute
- HWRNG

Trusted Execution Summary

Q. "But how do I know that it's a valid TEE?"

A. Attestation

- Memory Confidentiality
- Integrity Protection
- General compute
- HWRNG

Trusted Execution Summary

Attestation includes:

- Diffie-Hellman Public Key
- Hardware Root of Trust
- TEE Measurement

- Memory Confidentiality
- Integrity Protection
- General compute
- HWRNG

Trusted Execution Summary

Attestation includes:

- Diffie-Hellman Public Key
- Hardware Root of Trust
- TEE Measurement

- Memory Confidentiality
- Integrity Protection
- General compute
- HWRNG

Trusted Execution Models

Process-Based

VM-Based

- Intel SGX (not upstream)
- RISC-V Sanctum (no hardware)

- AMD SEV
- IBM PEF (no hardware)
- Intel MKTME (no attestation¹)

Not a TEE: TrustZone, TPM

Trusted Execution: Process-Based

PROS

Access to system APIs from Keep

• Unfiltered system API calls from Keep

CONS

- Application redesign required
- Untested security boundary
- Fantastic for malware
- Lock-in

Trusted Execution: Virtual Machine-Based

PROS

- Strengthening of existing boundary
- Run application on existing stacks
- Bidirectional isolation
- Limits malware

CONS

- Hardware emulation
- Heavy weight for microservices
- CPU architecture lock-in
- Duplicated kernel pages
- Host-provided BIOS

Open hybrid cloud and Enarx

Step 1: on premises

Internal dev

Step 1: on premises

Step 2: private cloud

Step 2: private cloud

Step 2: private cloud

Step 3: public cloud

Step 4: hybrid cloud

Step 5: hybrid multicloud

Step 6: Enarx hybrid multicloud

New options for workloads with Enarx

Mix and match for different workload types & Enarx

Mix and match for different workload types & Enarx

Mix and match for different workload types & Enarx

Mix and match for different workload types & Enarx

Mix and match for different workload types & Enarx

New options for orchestration with Enarx

Mix and match for different workload types & Enarx

Value of the trusted stack

Hardware platform

RHEL

Hardware platform

Openshift

RHEL

Hardware platform

Host view

Trusted — — Untrusted — —

Benefits the tenant/client

Hardware platform

Benefits the cloud provider/host owner

How trusted stacks help Client view (hoped)

Benefits the tenant/client

Benefits the cloud provider/host owner

Trusted — Semi-trusted — -

How trusted stacks help Client view (actual)

How trusted stacks help Client view (actual)

How trusted stacks help Client view (with Enarx)

How trusted stacks help Client view (with Enarx)

On which technology do I build my application?

Introducing Enarx

Enarx Principles

- 1. We don't trust the host owner
- 2. We don't trust the host software
- 3. We don't trust the host users
- 4. We don't trust the host hardware
 - a. ... but we'll make an exception for CPU + firmware

Enarx Design Principles

- 1. Minimal Trusted Computing Base
- 2. Minimum trust relationships
- 3. Deployment-time portability
- Network stack outside TCB
- 5. Security at rest, in transit and in use
- 6. Auditability
- 7. Open source
- 8. Open standards
- 9. Memory safety
- 10. No backdoors

Enarx Architecture

Keep - process or VM-based

- Core Keep
- Platform-specific
 - Hardware (CPU): silicon vendor
 - o Firmware: silicon vendor
 - Software: Enarx

Architecture varies between VM/Process-based platforms

WebAssembly (WASM)

- W3C standard
- Stack Machine ISA
- Sandboxed
- Supported by all browsers
- Exploding in the "serverless" space
- Implementations improving rapidly
 - o cranelift and wasmtime

WebAssembly System API (<u>WASI</u>)

- W3C Standards Track
- Heavily inspired by a subset of POSIX
- Primary goals:
 - Portability
 - Security
- libc implementation on top
- Capability-based security:
 - No absolute resources
 - Think: openat() but not open()

Language Bindings (libc, etc.)

Compilation targets and includes, e.g.

• Rust: --target wasm32-wasi

Application

- Written by
 - Tenant (own development)
 OR
 - 3rd party vendor
- Standard development tools
- Compiled to WebAssembly
- Using WASI interface

Enarx is a Development Deployment Framework

Best Practices? On By Default.

- 1. No Plaintext Networking (see cipherpipe)
- 2. No Plaintext Persisted Data
- 3. Independent Keep RNG
- 4. All Host APIs reviewed for data leakage

Bare Metal Virtual Machine Container Serverless

	Abstracts HW	Abstracts Linux	Abstracts Protocol
Bare Metal	Virtual Machine	Container	Serverless

Just enough legacy support to enable trivial application portability. Homogeneity to enable radical deployment-time portability. No interfaces which accidentally leak data to the host. Bridges process-based and VM-based TEE models. No operating system to manage.

Process flow

Enarx architectural components

Enarx attestation process diagram

Demo Time!

What will I see?

What will I see?

What will I see?

	May be provided unbaskage of the best provided	** 4 Emily 1 Emily Emily 1 E
[nathaniel@sev demo]\$ time	e ./target/debug/demo	
		ļ

What did I see?

What did I see? (SEV)

What did I see (SGX)?

What did I see?

Intel SGX

SGX Local Attestation

SGX Remote Attestation

SGX Secure Session

AMD SEV

SEV Attestation

SEV Secure Session

Enarx Virtualization Architecture

VM-based Keep

 An Enarx application, compiled to WebAssembly, makes a WASI call, causing a transition from the JIT-compiled code into our guest userspace Rust code.

- 1. An Enarx application, compiled to WebAssembly, makes a WASI call, causing a transition from the JIT-compiled code into our guest userspace Rust code.
- 2. The hand-crafted Rust code translates the WASI call into a Linux read() syscall, leaving Ring 3 to jump into the µKernel, which handles some syscalls internally.

- 1. An Enarx application, compiled to WebAssembly, makes a WASI call, causing a transition from the JIT-compiled code into our guest userspace Rust code.
- 2. The hand-crafted Rust code translates the WASI call into a Linux read() syscall, leaving Ring 3 to jump into the uKernel, which handles some syscalls internally.
- 3. (Future work) Guest µKernel passes the syscall request to the host (Linux) kernel. As an optimization, some syscalls may be handled by the host (Linux) kernel directly.

- 1. An Enarx application, compiled to WebAssembly, makes a WASI call, causing a transition from the JIT-compiled code into our guest userspace Rust code.
- 2. The hand-crafted Rust code translates the WASI call into a Linux read() syscall, leaving Ring 3 to jump into the µKernel, which handles some syscalls internally.
- 3. (Future work) Guest µKernel passes the syscall request to the host (Linux) kernel. As an optimization, some syscalls may be handled by the host (Linux) kernel directly.
- 4. All syscalls which cannot be handled internally by the host kernel must cause a vmexit in the host VMM. Any syscalls which can be handled directly in the VMM are be handled immediately to avoid future context switches.

- 1. An Enarx application, compiled to WebAssembly, makes a WASI call, causing a transition from the JIT-compiled code into our guest userspace Rust code.
- 2. The hand-crafted Rust code translates the WASI call into a Linux read() syscall, leaving Ring 3 to jump into the µKernel, which handles some syscalls internally.
- 3. (Future work) Guest µKernel passes the syscall request to the host (Linux) kernel. As an optimization, some syscalls may be handled by the host (Linux) kernel directly.
- 4. All syscalls which cannot be handled internally by the host kernel must cause a vmexit in the host VMM. Any syscalls which can be handled directly in the VMM are be handled immediately to avoid future context switches.
- 5. In some cases, the VMM will have to re-enter the host kernel in order to fulfil the request. This is the slowest performance path and should be avoided wherever possible.

- An Enarx application, compiled to WebAssembly, makes a WASI call, causing a transition from the JIT-compiled code into our guest userspace Rust code.
- 2. The hand-crafted Rust code translates the WASI call into a Linux read() syscall, leaving Ring 3 to jump into the µKernel, which handles some syscalls internally.
- 3. (Future work) Guest µKernel passes the syscall request to the host (Linux) kernel. As an optimization, some syscalls may be handled by the host (Linux) kernel directly.
- 4. All syscalls which cannot be handled internally by the host kernel must cause a vmexit in the host VMM. Any syscalls which can be handled directly in the VMM are be handled immediately to avoid future context switches.
- In some cases, the VMM will have to re-enter the host kernel in order to fulfil the request. This is the slowest performance path and should be avoided wherever possible.

Enarx Status

Current Status

- 1. SEV: Fully attested demo w/ custom assembly.
 - a. Ketuvim: KVM library with SEV support
- 2. SGX: Fully attested demo w/ data delivery.
- 3. PEF: Ongoing discussions with POWER team.
- 4. WASM/WASI: Demo with some basic WASI functions.

Still To Do

https://github.com/enarx/enarx/issues/1

- Merge Ketuvim with rust-vmm
- Build:
 - Hypervisor
 - µKernel
 - WASI syscall propagation?
- Complete WASM JIT
- TLS networking stack
- Secure Clock?
- Research new platforms
- Openshift integration
- Much more...

Enarx Design Principles

- 1. Minimal Trusted Computing Base
- 2. Minimum trust relationships
- 3. Deployment-time portability
- Network stack outside TCB
- 5. Security at rest, in transit and in use
- 6. Auditability
- 7. Open source
- 8. Open standards
- 9. Memory safety
- 10. No backdoors

We Need Your Help!

Website: https://enarx.io

Code: https://github.com/enarx

Gitter: https://gitter.im/enarx/

Master plan: https://github.com/enarx/enarx/issues/1

License: Apache 2.0

Language: Rust

Questions?

https://enarx.io

