Making Self-Stabilizing Algorithms for any Locally Quasi-Greedy Problem

Johanne Cohen, Laurence Pilard, Mikaël Rabie, Jonas Sénizergues

6 mars 2025 Séminaire

Introduction

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Locally Greedy:

- $\Delta + 1$ -coloring
- Maximal Independent Set (MIS)

Mendable Problems

 $\Gamma^*: V \to \mathcal{O} \cup \{\bot\}$ is a **Partial Solution** if :

- O is the Output Set,
- $\forall u \in V : \Gamma^*(u) \neq \bot \Rightarrow$ we can complete the labels of the neighbors of u.

Balliu et. al, Local Mending, 2022

A problem is T-Mendable if, from any partial solution Γ^* and any $v \in V$ such that $\Gamma^*(v) = \bot$, there exists Γ' :

- $\Gamma'(v) \neq \bot$
- $\forall u \neq v, \Gamma'(u) = \bot \Leftrightarrow \Gamma^*(u) = \bot$
- $\forall u \in V$, $dist(u, v) > T \Rightarrow \Gamma'(u) = \Gamma^*(u)$

Example: 4-coloring the Grid

Example: 4-coloring the Grid

Example : 4-coloring the Grid

Example: 4-coloring the Grid

Self-Stability: Possibility to reach a solution from any configuration.

- Failures
- Slow dynamic network

Self-Stability: Possibility to reach a solution from any configuration.

- Failures
- Slow dynamic network

Self-Stability: Possibility to reach a solution from any configuration.

- Failures
- Slow dynamic network

Self-Stability: Possibility to reach a solution from any configuration.

- Failures
- Slow dynamic network

Self-Stability: Possibility to reach a solution from any configuration.

- Failures
- Slow dynamic network

Self-Stability: Possibility to reach a solution from any configuration.

- Failures
- Slow dynamic network

Computational Setting - State Model

Each node :

- Limited memory $f(\Delta)$, no identifiers.
- When activated : has access to the memory of its neighbors.

Scheduler:

- Subset of agents activated at each round.
- Gouda Fair : If $\mathcal C$ appears infinitely often and $\mathcal C \to \mathcal C'$
 - $\Rightarrow \mathcal{C}'$ appears infinitely often.

Goal:

- Define the set of *Stable configurations* and their output.
- From any stable configuration, only stable configurations can be reached.
- From any configuration, a stable configuration is reachable.

(Similar to probabilistic scheduler without time consideration.)

From Distance-*k* Coloring to LOCAL

$$\mathcal{C}: V \to [c]$$
 is a **Distance-** K c -**Coloring** if For all $uv \in V^2$, $dist(u, v) \leq K \Rightarrow \mathcal{C}(u) \neq \mathcal{C}(v)$.

From Distance- $\ensuremath{\mathcal{K}}$ Coloring to Greedy Problems

LOCAL Simulation

LOCAL Model:

- Unique identifiers.
- Synchronous rounds.
- k-rounds is equivalent to knowing neighborhood at distance k.

LOCAL Simulation:

- From a distance-2K coloring, a node can compute its radius-K neighborhood :
 - At first, each node knows its radius-0 neighborhood.
 - With the radius-0 neighborhood of your neighbors, you know your radius-1.
 - With the radius-i neighborhood of your neighbors, you know your radius-i + 1.
- Having unique colors/identifiers in radius-i removes any ambiguity.
- Each node can simulate a LOCAL algorithm that runs on at most K rounds.

Solving Mendable Problems

Balliu et. al, Local Mending, 2022

Let Π be a T-mendable L_{CL} problem. Π can be solved in $O(T\Delta^{2T})$ rounds in the L_{OCAL} model if we are given a distance-2T+1 coloring.

How to simulate the LOCAL algorithm :

- Compute the distance-2T + 1 coloring.
- Compute a distance- $O(T\Delta^{2T})$ coloring for making fake "unique identifiers".
- For each node, compute the radius- $O(T\Delta^{2T})$ neighborhood.
- Give the output of the LOCAL algorithm on this neighborhood.

Computing a (k, k-1)-Ruling Set

(a, b)-Ruling Set S:

- $\forall u, v \in S^2$, $dist(u, v) \geq a$.
- $\forall u \notin S$, $dist(u, S) \leq b$.
- (2,1)-Ruling Set is MIS.
- (k, k-1)-Ruling Set is Distance-k MIS.
- A distance-k coloring is a partition into (k + 1, k)-ruling sets : Each set corresponds to one of the colors.

Idea of the Algorithm

Each node u has 3 elements :

- $d_u \in [0, k-1]$
 - Each node keeps their distance to the ruling set candidates.
 - $d_u = 0$ means that u is candidate (called Leader).
- $\operatorname{err}_u \in \{0,1\}$
 - Nodes keep in their memory if an error is detected.
 - Errors are transmitted to nodes with smaller d_u .
 - Leaders with an error reset $d_{ii} = k 1$.
 - When $d_{ij} = k 1$, the error is removed.
- $\bullet \ \, \text{For every } i \in \llbracket 1, \left \lfloor \frac{k}{2} \right \rfloor 1 \rrbracket : \mathsf{c}_{i,u} \in \mathbb{Z}/4\mathbb{Z} \text{ and } \mathsf{b}_{i,u} \in \{\uparrow, \downarrow\}$
 - Clock system to synchronize to the closest leader.
 - One clock for each distance from d_u to $\left\lfloor \frac{k}{2} \right\rfloor$.

Keeping your Distances

Each node u stores a distance integer $d_u \in [0, k-1]$:

- If $d_u = 0$, u is a leader (i.e. une the Ruling Set)
- If $d_u>0$, we need that $\min\{d_v:v\in N(u)\}=d_u-1$ If it is not the case, $d_u=\min\{\min\{d_v:v\in N(u)\}+1,k-1\}$
- If ∀v ∈ N(u), d_v = k − 1, d_u = 0

 u becomes a new leader.

 (Scheduler ensures that several nodes in that situation will not be an issue.)
- If there is $v \in N(u)$ with $|d_u d_v| \ge 2$, $err_u = 1$.
- If there are two leaders v_1 and v_2 in your closed neighborhood, $d_{v_1} = d_{v_2} = k 1$.

Incr Leader::

if
$$(d_u=0) \wedge (\forall v \in N(u), d_v=1 \wedge c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v} : b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_u = \ell \wedge \forall v \in \textit{N}(u), d_v = \ell - 1 \Rightarrow (c_{d_U,u} = c_{d_U,v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_U,u} := \uparrow \colon c_{d_U,u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \wedge (\forall v \in N(u), d_v=1 \wedge c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v} : b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_u = \ell \wedge \forall v \in \textit{N}(u), d_v = \ell - 1 \Rightarrow (c_{d_U,u} = c_{d_U,v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_U,u} := \uparrow \colon c_{d_U,u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \wedge (\forall v \in N(u), d_v=1 \wedge c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v} : b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_u = \ell \wedge \forall v \in \textit{N}(u), d_v = \ell - 1 \Rightarrow (c_{d_U,u} = c_{d_U,v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_U,u} := \uparrow \colon c_{d_U,u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in \mathit{N}(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v} : b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_{u}=\ell \wedge \forall v \in \mathit{N}(u), d_{v}=\ell-1 \Rightarrow (c_{d_{U},u}=c_{d_{U},v}-1 \wedge b_{\ell,v}=\downarrow) \\ \text{then } b_{d_{U},u}:=\uparrow\colon c_{d_{U},u}:=c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in \mathit{N}(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v} : b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_{u}=\ell \wedge \forall v \in \textit{N}(u), d_{v}=\ell-1 \Rightarrow (c_{d_{u},u}=c_{d_{u},v}-1 \wedge b_{\ell,v}=\downarrow) \\ \text{then } b_{d_{u},u}:=\uparrow\colon c_{d_{u},u}:=c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in \mathit{N}(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v}$; $b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_{u} = \ell \wedge \forall v \in \mathcal{N}(u), d_{v} = \ell - 1 \Rightarrow (c_{d_{U},u} = c_{d_{U},v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_{U},u} := \uparrow\colon c_{d_{U},u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in \mathit{N}(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v}$; $b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_u = \ell \wedge \forall v \in \textit{N}(u), d_v = \ell - 1 \Rightarrow (c_{d_U,u} = c_{d_U,v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_U,u} := \uparrow \colon c_{d_U,u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in \mathit{N}(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v}$; $b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_u = \ell \wedge \forall v \in \textit{N}(u), d_v = \ell - 1 \Rightarrow (c_{d_U,u} = c_{d_U,v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_U,u} := \uparrow \colon c_{d_U,u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in N(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v}$; $b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_u = \ell \wedge \forall v \in \textit{N}(u), d_v = \ell - 1 \Rightarrow (c_{d_U,u} = c_{d_U,v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_U,u} := \uparrow \colon c_{d_U,u} := c_{\ell,v} \end{array}$$

Incr Leader::

if
$$(d_u=0) \land (\forall v \in N(u), d_v=1 \land c_{\ell,u}-c_{\ell,v}=0)$$

then $c_{\ell,u}:=c_{\ell,u}+1$

Sync 1+ down::

if
$$0 < d_u < \ell \land \forall v \in N(u), d_v = d_u - 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} - 1 \land b_{\ell,v} = \downarrow)$$
 then $c_{\ell,u} := c_{\ell,v}$; $b_{\ell,u} := \downarrow$

Sync 1+ up ::

if
$$0 < d_u < \ell \land \forall v \in \mathit{N}(u), d_v = d_u + 1 \Rightarrow (c_{\ell,u} = c_{\ell,v} \land b_{\ell,v} = \uparrow)$$
 then $b_{\ell,u} := \uparrow$

$$\begin{array}{l} \text{if } d_{u} = \ell \wedge \forall v \in \mathcal{N}(u), d_{v} = \ell - 1 \Rightarrow (c_{d_{U},u} = c_{d_{U},v} - 1 \wedge b_{\ell,v} = \downarrow) \\ \text{then } b_{d_{U},u} := \uparrow\colon c_{d_{U},u} := c_{\ell,v} \end{array}$$

Stable Configurations

A leader *u* is **Locally Stable** if :

- $N\left(u,\frac{k}{2}\right)$ is synchronized with the right distances.
- $N(u, k-1) \setminus N\left(u, \frac{k}{2}\right)$ have coherent distances.

A configuration is **Stable** if:

- The set S of leaders is a (k, k-1)-ruling set.
- $N\left(S, \frac{k}{2}\right)$ is synchronized with their leaders.
- Each node knows its exact distance to S.

From any configuration:

- If two leaders are too close, we can remove them.
- If a leader has no leader too close, we can make it locally stable.

Computing a Distance-K Coloring

$$C: V \to [c]$$
 is a **Distance-** K c -**Coloring** if For all $uv \in V^2$, $dist(u, v) \le K \Rightarrow C(u) \ne C(v)$

- Such a coloring can be created with a partition into (K + 1, K)-ruling sets : Each set corresponds to one of the colors.
- Our algorithm can be composed.

Theorem

There exists a distance-K Δ^K -coloring self-stabilizing algorithm using $f(\Delta, K)$ states.

Conclusion

Open Questions

Theorem

Let Π be a problem with mending radius k. Π can be solved under the Gouda Daemon by a self-stabilizing algorithm, using $f(\Delta, \Pi)$ states.

Open Questions

Theorem

Let Π be a problem with mending radius k. Π can be solved under the Gouda Daemon by a self-stabilizing algorithm, using $f(\Delta, \Pi)$ states.

- With randomness, what should be the complexity?
- Can we use other Daemons to compute a ruling set?
- Can we be robust to byzantine agents?

Open Questions

Theorem

Let Π be a problem with mending radius k. Π can be solved under the Gouda Daemon by a self-stabilizing algorithm, using $f(\Delta, \Pi)$ states.

- With randomness, what should be the complexity?
- Can we use other Daemons to compute a ruling set?
- Can we be robust to byzantine agents?

