Matematická analýza II

Stručné výpisky

Viktor Soukup, Lukáš Salak

Obsah

1	Met	rické prostory
	1.1	Definice metrického prostoru
	1.2	Euklidovský prostor \mathbb{E}_n
	1.3	Diskrétní prostor
	1.4	Podprostor
	1.5	Spojité zobrazení
	1.6	Triviality
		1.6.1 Identické zobrazení
		1.6.2 Vložení podprostoru
		1.6.3 Složení spojitých zobrazení je spojité
	1.7	Věta o konvergenci
	1.8	Okolí
	1.9	Otevřená a uzavřená množina
	1.10	Uzávěr
		Vlastnosti zobrazení mezi metrickými prostory
		Silně ekvivalentní metriky
		Vzory a obrazy
		1.13.1 Obraz
		1.13.2 Vzor
	1 14	Reálná funkce o n proměnných
		Součiny
		Věta o spojitých zobrazeních
	1.10	veta o spojitych zobrazemen
2	Pare	ciální derivace
	2.1	Definice a značení
	2.2	Totální diferenciál
		2.2.1 Definice
		2.2.2 Tvrzení o spojitosti funkce a totálním diferenciálu
		2.2.3 Věta o totálním diferenciálu
	2.3	Pravidla pro počítání parciálních derivací
		2.3.1 Věta pro derivaci složených funkcí o více proměnných
		2.3.2 Důsledek (Řetízkové Pravidlo)
	2.4	Aritmetická pravidla z řetězového násobení
	2.1	2.4.1 Násobení
		2.4.2 Dělení
	2.5	Lagrangeova věta ve více proměnných
	$\frac{2.6}{2.6}$	Tvrzení o záměnnosti pořadí při parciálních derivacích
	2.0	2.6.1 Důsledek tvrzení o záměnnosti
	2.7	Věta o konvergentní podposloupnosti
	2.1	veta o konvergentini podposiodpilosti
3	Kon	npaktní prostory
	3.1	Definice kompaktního prostoru
	3.2	Tvrzení o podprostoru kompaktního prostoru
	3.3	Tvrzení o uzavřenosti podprostoru
	3.4	Tvrzení o omezenosti kompaktního prostoru
	3.5	Věta o součinu kompaktních prostorů
	3.6	Věta : podprostor euklidovského prostoru je kompaktní právě když je omezený a uzavřený 13
	3.7	Tvrzení: obraz spojitého zobrazení je kompaktní
	3.8	Tvrzení: každá spojitá funkce na kompaktním prostoru nabýva maxima i minima
	3.9	Věta o vzájemně jednoznačném spojitém zobrazení
	3.10	Definice cauchyovské posloupnosti $(x_n)_n$
		Tvrzení o konvergenci cauchyovské posloupnosti $(x_n)_n$ 13
		Definice úplného metrického prostoru
		Tvrzení: Podprostor úplného prostoru je úplný právě když je uzavřený
		Tvrzení: Každý kompaktní prostor je úplný
	0.10	Lemma o cauchyovske posloupnosti

	3.16 Věta: Součin úplných prostorů je úplný	
4	Implicitní funkce1 4.1 Ilustrační příklady1 $4.1.1$ Obecný příklad1 $4.1.2$ Příklad pro $F(x,y) = x^2 + y^2 - 1$ 1 4.2 Věta o implicitní funkci1 4.3 Věta o implicitních funkcích1 4.4 Definice Jacobiho determinantu1	14 15 15
5	Extrémy 1 5.1 Věta o hledání extrémů funkcí 1 5.2 Definice Regulárního zobrazení 1 5.3 Tvrzení o obrazu regulární funkce 1 5.4 Tvrzení o inverzi regulárního zobrazení 1 5.4.1 Důsledek tvrzení o inverzi regulárního zobrazení 1	17 17 17
6	Objemy a obsahy16.1 Vlastnosti	1 8
7	Stejnoměrná spojitost17.1 Definice stejnoměrné spojitosti17.2 Věta o stejnoměrné spojitosti1	
8	Opakování 1 8.1 Riemannův integrál v jedné proměnné 1 8.1.1 Riemannův integrál 1 8.1.2 Tvrzení o existenci Riemannova integrálu 1 8.1.3 Věta: Existence Riemannova integrálu pro spojité funkce v ℝ 2 8.1.4 Integrální věta o střední hodnotě 2 8.1.5 Základní věta analýzy 2 8.1.6 Důsledky základní věty analýzy 2	19 20 20 20
9	9.1 Pomocné definice	23 23 23

1 Metrické prostory

1.1 Definice metrického prostoru

Metrický prostor : $(X, d), d: X \times X \to \mathbb{R}$, kde platí:

- $d(x, y \ge 0, d(x, y) \iff x = y$
- $\bullet \ d(x,y) = d(y,x)$
- $d(x,z) \leq d(x,y) + d(y,z)$ (trojúhelníková nerovnost)

Příklady:

$$(\mathbb{R}, |x-y|),$$

 $(\mathbb{C}, |x-y|)$

Pozor: trojúhelníková nerovnost v $(\mathbb{C}, |x-y|)$ není tak triviální jako v \mathbb{R} .

1.2 Euklidovský prostor \mathbb{E}_n

Definujeme jako (\mathbb{R}^n, d) , kde d:

$$d((x_1,...,x_n),(y_1,...,y_n)) = \sqrt{\sum_i (x_i - y_i)^2}$$

Pro nás zvlášť důležitý, známy v podobě vektorového prostoru \mathbf{V}_n se skalárním součinem $\mathbf{u}v$ a normou $||\mathbf{u}|| = \sqrt{\mathbf{u}\mathbf{u}}$ a vzdáleností $||\mathbf{u} - \mathbf{v}||$

1.3 Diskrétní prostor

Definujeme jako (X, d), kde d(x, y) = 1 pro $x \neq y$

1.4 Podprostor

Buď (X,d) metrický prostor. Pak (Y,d') je podprostor, kde $Y\subseteq X$ a d'(x,y)=d(x,y).

1.5 Spojité zobrazení

 $f:(X,d)\to (Y,d')$ je spojité zobrazení, pokud

$$\forall x \in X, \forall \epsilon > 0 \\ \exists \delta > 0: d(x,y) < \delta \Rightarrow d'(f(x),f(x)) < \epsilon$$

1.6 Triviality

1.6.1 Identické zobrazení

$$(X,d) \to (X,d)$$

1.6.2 Vložení podprostoru

$$j=(x\mapsto x):(Y,d')\to (X,d)$$

1.6.3 Složení spojitých zobrazení je spojité

Pokud jsou $f:(X,d)\to (Y,d')$ a $g:(Y,d')\to (Z,d'')$ spojité, pak i

$$g \circ f : (X, d) \to (Z, d'')$$

je spojité.

1.7 Věta o konvergenci

Zobrazení $f:(X_1,d_1)\to (X_2,d_2)$ je spojité právě když pro každou konvergentní $(x_n)_n v(X_1,d_1)$ posloupnost $(f(x_n))_n$ konverguje v (X_2,d_2) a platí $\lim_n f(x_n) = f(\lim_n x_n)$.

Důkaz: Buď f spojitá a nechť $\lim_n x_n = x$. Pro $\epsilon > 0$ svolme ze spojitosti $\delta > 0$ tak aby $d_2(f(y), f(x)) < \epsilon$ pro $d_1(x, y) < \delta$. Podle definice konvergence posloupnosti existuje n_0 takové, že pro $n \geq n_0$ je $d_1(x_n, x) < \delta$. Tedy je-li $n \leq n_0$ máme $d_2(f(x_n), f(x)) < \epsilon$ a potom $\lim_n f(x_n) = f(\lim_n x_n)$.

1.8 Okolí

$$\Omega(x, \epsilon) = \{ y | d(x, y) < \epsilon \}$$

Užití: "U je okolí x" $\equiv \exists \epsilon > 0, \Omega(x, \epsilon) \subseteq U$

1.9 Otevřená a uzavřená množina

 $U \subseteq (X,d)$ je **otevřená**, pokud je okolím *každého* svého bodu.

 $V \subseteq (X,d)$ je **uzavřená**, pokud $\forall (x_n)_n \subseteq A$ je konvergentní v X je $\lim_n x_n$ v A.

1.10 Uzávěr

Uzávěr A je $\overline{A} = \{x | d(x, A) = 0\}$

1.11 Vlastnosti zobrazení mezi metrickými prostory

Buďte (X_1, d_1) a (X_2, d_2) metrické prostory a buď zobrazení $f: X_1 \to X_2$. Následující jsou potom ekvivalentní:

- 1. f je spojité.
- 2. $\forall x \in X_1$ a \forall okolí V bodu f(x) existuje okolí U bodu x takové, že $f[U] \subseteq V$.
- 3. \forall otevřenou U v X_2 je vzor $f^{-1}[U]$ otevřený v X_1 .
- 4. \forall uzavřenou A v X_2 je vzor $f^{-1}[U]$ uzavřený v X_1 .
- 5. $\forall A \subseteq X_1 \text{ je } f[\overline{A}] \subseteq \overline{f[A]}$

1.12 Silně ekvivalentní metriky

Buďte d_1, d_2 metriky. d_1 a d_2 na téže jsou silně ekvivalentní, pokud

$$\exists \alpha, \beta > 0 : \alpha d_1(x, y) \le d_2(x, y) \le \beta d_1(x, y)$$

1.13 Vzory a obrazy

$$f: X \to Y, A \subseteq X, B \subseteq Y$$

1.13.1 Obraz

Obraz podmnožiny $A \subseteq X$ v Y:

$$f[A] = \{ f(x) | x \in A \}$$

1.13.2 Vzor

Vzor podmnožiny $B \subseteq Y$ v X:

$$f^{-1}[B] = \{x | f(x) \in B\}$$

$$X \underset{f^{-1}[-]}{\overset{f[-]}{\rightleftharpoons}} Y$$

Platí:

$$f[A] \subseteq B \equiv A \subseteq f^{-1}[B],$$

$$f[f^{-1}[B]] \subseteq B...f^{-1}[f[A]] \supseteq A$$

Pozor: f^{-1} má dvá významy:

- inverze $f^{-1}: Y \to X$, nemusí existovat
- část v symbolu $f^{-1}[-]$, má smysl vždy

1.14 Reálná funkce o n proměnných

$$f: D \to \mathbb{R}, D \subseteq \mathbb{E}_n$$

Podobně jako ve funkcích jedné proměnné se nemůžeme omezit na případy, kdy definiční obor je celý prostor \mathbb{E}_n . V Případě funkcí jedné proměnné byly definiční obory obvykle intervaly nebo jednoduchá sjednocení intervalů. Tady budou definiční obory D složitější, často (ale né vždy) otevřené množiny v \mathbb{E}_n .

O D se často mluví jako o oblasti na níž je funkce definovaná. To není termín (ve specifických kontextech slovo "oblast" termín je, tady ne).

1.15 Součiny

Pro $(X_1, d_i), i = 1, ..., n$ definujeme na kartézskem součinu $\prod_{i=1}^n X_i$ metriku

$$d((x_1, ..., x_n), (y_1, ..., y_n)) = \max_i d_i(x_i, y_i)$$

Získaný

$$\left(\prod_{i=1}^{n} X_i, d_i\right) = \prod_{i=1}^{n} (X_i, d_i)$$

se nazývá součin prostorů (X_i, d_i) . Píše se též

$$(X_1, d_1) \times \cdots \times (X_n, d_n).$$

1.16 Věta o spojitých zobrazeních

- 1. Projekce $p_i = ((x_i)_i \mapsto x_j) : \prod_{i=1}^n (X_i, d_i) \to (X_j, d_j)$ jsou spojitá zobrazení.
- 2. Buďte $f_j:(Y,d')\to (X_j,d_j)$ libovolná spojitá zobrazení. Potom jednoznačně určené zobrazení $f:(Y,d')\to\prod_{i=1}^n(X_i,d_i)$ splňujíci $p_j\circ f=f_j$, totiž zobrazení definované předpisem $f(y)=(f_1(y),...,f_n(y))$, je spojité.

Jak to vypadá:

Existuje přesně jedno f takové, že

$$p_i \circ f = f_i$$

a je spojité.

2 Parciální derivace

2.1 Definice a značení

Pro $f(x_1,...,x_n)$ vezmeme

$$\phi_k(t) = f(x_1, ..., x_{k-1}, t, x_{k+1}, ...x_n)$$

... $t = x_k$...

Parciální derivace funkce f podle x_k (v bodě $(x_1,...,x_n)$) je (obvyklá) derivace funkce ϕ_k ,

$$\lim_{h \to 0} \frac{f(x_1, ..., x_{k-1}, x_k + h, x_{k+1}, ...x_n) - f(x_1, ...)}{h}.$$

Označení

$$\frac{\partial f(x_1,...(x_n)}{\partial x_k} \text{ nebo } \frac{\partial f}{\partial x_k}(x_1,...,x_n),$$

Pro f(x,y) píšeme

$$\frac{\partial f(x,y)}{\partial x}$$
 a $\frac{\partial f(x,y)}{\partial y}$, atd.

Když $\frac{\partial f(x_1,...,x_n)}{\partial x_k}$ existuje pro všechna $(x_1,...,x_n)$ v nějaké oblastiDmáme funkci

$$\frac{\partial f}{\partial x_k}: D \to \mathbb{R}.$$

Když budeme mluvit o parciální derivaci bude vždy zřejmé máme-li na mysli funkci, nebo jen číslo (hodnotu té limity nahoře).

2.2 Totální diferenciál

Nespojitá funkce f může mít po souřadnicích má obě parciální derivace v každém bodě, to však ale neimplikuje spojitost.

existence parciálních derivací neimplikuje spojitost!

Budeme potřebovat něco silnejšího. Připomeňte si tvrzení ekvivalentní se standardní derivací: Existuje μ konvergujíci k 0 při $h\to 0$ a A takové, že

$$f(x+h) - f(x) = Ah + |h| \cdot \mu(h)$$

Geometrický pohled: f(x+h) - f(x) = Ah vyjadřuje tečnu ke grafu funkce v bodě (x, f(x)). $|h| \cdot \mu(h)$ je jakási malá chyba.

Mysleme podobně o funkci f(x,y) a uvažujme plochu

$$S = \{(t, u, f(t, u)) : (t, u) \in D\}.$$

Dvě parciální derivace vyjadřují směry dvou tečných přímek k S vbode (x, y, f(x, y)), ale <u>ne tečnou rovinu</u>, která teprve bude uspokojivé rozšíření faktu nahoře.

Pro $\mathbf{x} \in \mathbb{E}_n$ definujeme

$$||\mathbf{x}|| = \max_{i} |x_i|$$

To bude místo absolutní hodnoty, místo h bude n-tice blízká nule.

2.2.1 Definice

Funkce f má totální diferenciál v bodě ${\bf x}$ existuje-li funkce μ spojitá v okolí U bodu o taková, že $\mu({\bf o})=0$ a čísla $A_1,...,A_n$ pro která

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} A_k h_k + ||\mathbf{h}|| \mu(\mathbf{h}).$$

2.2.2 Tvrzení o spojitosti funkce a totálním diferenciálu

Nechť má funkce f totální diferenciál v bodě ${\bf a}$. Potom platí, že

- 1. f je spojitá v \mathbf{a} ,
- 2. f má všechny parciální derivace v \mathbf{a} , a to s hodnotami

$$\frac{\partial f(\mathbf{a})}{\partial x_k} = A_k.$$

Důkaz:

1. Máme

$$|f(\mathbf{x} - \mathbf{y})| \le |\mathbf{A}(\mathbf{x} - \mathbf{y})| + |\mu(\mathbf{x} - \mathbf{y})| \cdot ||\mathbf{x} - \mathbf{y}||$$

a limita na pravé straně pro $\mathbf{y} \to \mathbf{x}$ je 0.

2. Máme

$$\frac{1}{h}(f(...x_{k-1},x_k+h,x_{k+1},...)-f(x_1,...))=A_k+\mu((...,0,h,0,...))\frac{||(0,...,h,...,0)||}{h},$$

a limita na pravé straně je zřejmě A_k

Teď již spojitost dostaneme. Vidíme, že v případě funkcí jedné proměnné není rozdíl mezi existencí derivace v bodě **a** a vlastností mít totální diferenciál v tomto bodě. V případě více proměnných je však tento rozdíl zcela zásadní. Může být trochu překvapujíci, že zatímco existence parciálních derivací mnoho neznamená, existence spojitých parciálních derivací je něco úplně jiného.

2.2.3 Věta o totálním diferenciálu

Buď

$$\mathbf{h}^{(0)} = \mathbf{h}, \mathbf{h}^{(1)} = (0, h_2, ..., h_n), \mathbf{h}^{(2)} = (0, 0, h_3, ..., h_n)$$
 atp.

(takže $\mathbf{h}^{(n)} = \mathbf{0}$). Potom máme

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{k=1}^{n} (f(\mathbf{a} + \mathbf{h}^{(k-1)}) - f(\mathbf{a} + \mathbf{h}^{(k)})) = M.$$

Podle Lagrangeovy věty existují $0 \le \Theta_k \le 1$ takové, že

$$f(\mathbf{a} + \mathbf{h}^{(k-1)}) - f(\mathbf{a} + \mathbf{h}^{(k)}) = \frac{\partial f(a_1, ..., a_{k-1}, a_k + \theta_k h_k, a_{k+1}, ..., a_n)}{\partial x_k} h_k$$

a můžeme pokračovat

$$\begin{split} M &= \sum \frac{\partial f(a_1, \dots a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} h_k = \\ &= \sum \frac{\partial f(\mathbf{a})}{\partial x_k} + \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) h_k = \\ &= \sum \frac{\partial f(\mathbf{a})}{\partial x_k} h_k + ||\mathbf{h}|| \sum \left(\frac{\partial f(a_1, \dots, a_k + \Theta_k h_k, \dots, a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) \frac{h_k}{||\mathbf{h}||}. \end{split}$$

Položíme

$$\mu(\mathbf{h}) = \sum \left(\frac{\partial f(a_1, ..., a_k + \Theta_k h_k, ..., a_n)}{\partial x_k} - \frac{\partial f(\mathbf{a})}{\partial x_k} \right) \frac{h_k}{||\mathbf{h}||}.$$

Jelikož $\left|\frac{h_k}{||\mathbf{h}||}\right| \leq 1$ a jelikož jsou funkce $\frac{\partial f}{\partial x_k}$ spojité, $\lim_{\mathbf{h}\to\mathbf{0}}\mu(\mathbf{h})=0$.

Můžeme tedy schematicky psát spojité PD \Longrightarrow TD \Longrightarrow PD

2.3 Pravidla pro počítání parciálních derivací

Aritmetická pravidla jsou stejná jako pro obyčejné derivace(tady totiž obyčejnými derivacemi jsou). Trochu jinak tomu je u pravidla pro skládání. Pro derivace jedné proměnné se dokazuje z formule

$$f(a+h) - f(a) = Ah + |h|\mu(h)$$

tedy z diferenciálu(který je pro ně totéž jako existence derivace). Pravidlo pro skládání v Pravidlo pro skládání v nejjednodušší podobě následuje.

2.3.1 Věta pro derivaci složených funkcí o více proměnných

Nechť má $f(\mathbf{x})$ totální diferenciál v bodu **a**. Nechť mají $g_k(t)$ derivace v bodě b a nechť je $g_k(b) = a_k$ pro k = 1, ...n. Položme

$$F(t) = f(\mathbf{g}(t)) = f(g_1(t), ...g_n(t)).$$

Potom má F derivaci v b, totiž

$$F'(b) = \sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_k} \cdot g'_k(b).$$

Důkaz:

$$\begin{split} \frac{1}{h}(F(b+h) - F(b)) &= \frac{1}{h}(f(\mathbf{g}(b+h)) - f(\mathbf{g}(b)) = \\ &= \frac{1}{h}(f(\mathbf{g}(b) + (\mathbf{g}(b+h) - \mathbf{g}(b))) - f(\mathbf{g}(b)) = \\ &= \sum_{k=1}^{n} A_k \frac{g_k(b+h) - g_k(b)}{h} + \mu(\mathbf{g}(b+h) - \mathbf{g}(b)) \max_k \frac{|g_k(b+h) - g_k(b)|}{h}. \end{split}$$

Máme li $\lim_{h\to 0} \mu(\mathbf{g}(b+h)-\mathbf{g}(b))=0$ jelikož jsou funkce g_k spojité v b. Jelikož funkce g_k mají derivace, jsou $\max_k \frac{|g_k(b+h)-g_k(b)|}{h}$ omezené v dostatečně malém okolí nuly. Limita poslední sčítance je tedy nula a máme

$$\lim_{h \to 0} \frac{1}{h} (F(b+h) - F(b)) = \lim_{h \to 0} \sum_{k=1}^{n} A_k \frac{g_k(b+h) - g_k(b)}{h} =$$

$$= \sum_{k=1}^{n} A_k \lim_{h \to 0} \frac{g_k(b+h) - g_k(b)}{h} = \sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_k} g'_k(b)$$

Co se děje geometricky: Tečná nadrovina vyjádřená diferenciálem vnější funkce f nemá žádny důvod preferovat hlavní osy v nichž se dějí derivace vnitřních funkcí. Proto by tady jen parciálni derivace nestačily.

2.3.2 Důsledek (Řetízkové Pravidlo)

Nechť má $f(\mathbf{x})$ totální diferenciál v bodě **a**. Nechť mají funkce $g_k(t_1,...,t_r)$ parciální derivace v $\mathbf{b} = (b_1,...,b_r)$ a nechť je $g_k(\mathbf{b}) = a_k$ pro k = 1,...,n. Potom má funkce

$$(f \circ \mathbf{g})(t_1, ..., t_r) = f(\mathbf{g}(t)) = f(g_1(t), ..., g_n(t))$$

všechny parciální derivace v b, a platí

$$\frac{\partial (f \circ \mathbf{g})(\mathbf{b})}{\partial t_j} = \sum_{k=1}^n \frac{\partial f(\mathbf{a})}{\partial x_k} \cdot \frac{\partial g_k(\mathbf{b})}{\partial t_j}.$$

Skládali jsme

$$\mathbb{E}_k \xrightarrow{\mathbf{g}} \mathbb{E}_n \xrightarrow{f} \mathbb{R}$$

Skládejme místo f m-tici funkcí $\mathbf{f} = (f_1, ..., f_m)$, tedy $\mathbf{f} : \mathbb{E}_n \to \mathbb{E}_M$

$$\mathbb{E}_k \xrightarrow{\mathbf{g}} \mathbb{E}_n \xrightarrow{f} \mathbb{E}_m$$

Pravidlo z předchozí věty dá tedy

$$\frac{\partial (f_i \circ \mathbf{g})(b)}{\partial t_j} = \sum_{k=1}^n \frac{\partial f_i(\mathbf{a})}{\partial x_k} \cdot \frac{\partial g_k(\mathbf{b})}{\partial t_j}.$$

Zavedeme-li matice $D\mathbf{f} = \left(\frac{\partial f_i(\mathbf{a})}{\partial x_k}\right)_{ik}$ je $D(\mathbf{f} \circ \mathbf{g} = D\mathbf{f} \cdot D\mathbf{g}$ (napravo násobení matic), a tak to má být. $D\mathbf{h}$ je matice lineární aproximace funkce \mathbf{h} : lineární aproximace se skládají spolu s aproximovanými funkcemi.

2.4 Aritmetická pravidla z řetězového násobení

2.4.1 Násobení

$$f(u,v) = u \cdot v$$

Potom $\frac{\partial f}{\partial u}=v$ a $\frac{\partial f}{\partial v}=u$ a pro $u=\psi(x)$ a $v=\phi(x)$ platí:

$$(\phi(x), \psi(y))' = \frac{\partial f}{\partial u} \phi'(x) + \frac{\partial f}{\partial v} \psi'(x) = \phi(x) \psi'(x) + \phi'(x) \psi(x)$$

2.4.2 Dělení

$$f(u,v) = \frac{u}{v}$$

Potom $\frac{\partial f}{\partial u} = \frac{1}{v}$ a $\frac{\partial f}{\partial v} = -\frac{u}{v^2}$ a pro $u = \psi(x)$ a $v = \phi(x)$ platí:

$$\left(\frac{\phi(x)}{\psi(x)}\right)' = \frac{\partial f}{\partial u}\phi'(x) - \frac{\partial f}{\partial v} = \psi'(x) = \frac{1}{\psi(x)}\phi'(x) + \frac{1}{\psi(x)^2}\psi'(x) = \frac{\psi(x)\phi'(x) - \phi(x)\psi'(x)}{\psi(x)^2}$$

2.5 Lagrangeova věta ve více proměnných

Nechť má f spojité parciální derivace v konvexní otevřené množině $U \subseteq \mathbb{E}_n$. Potom pro libovolné dva body $x, y \in D \exists 0 \le \theta \le 1$ takové, že:

$$f(\mathbf{y}) - f(\mathbf{x}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x} + \theta(\mathbf{y} - \mathbf{x}))}{\partial x_j} (y_j - x_j)$$

Důkaz: Mějme \mathbf{g} , pro které platí $g_j(t) = x_j + t(y_j - x_j)$. Potom máme $F(t) = f \circ \mathbf{g} = (\mathbf{x} + t(\mathbf{y} - \mathbf{x}))$ a

$$F'(t) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_j} g'_j(t) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_j} (y_j - x_j)$$

Podle Lagrangeovy věty:

$$f(\mathbf{y}) - f(\mathbf{x}) = F(1) - F(0) = F'(\theta)$$

Poznámka: Často se užívá v tomto tvaru:

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x} + \theta \mathbf{h})}{\partial x_j} h_j$$

(Porovnej s formulí pro totální diferenciál)

2.6 Tvrzení o záměnnosti pořadí při parciálních derivacích

Mějme funkci f(x,y) takovou, že existují parciální derivace $\frac{\partial^2 f}{\partial x \partial y}$ a $\frac{\partial^2 f}{\partial y \partial x}$, které jsou spojité v nějakém okolí bodu (x,y). Potom:

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}$$

Důkaz: Pokusíme se spočíst obě derivace v jednom kroku, tedy počítejme limitu $\lim_{h\to 0} F(h)$ funkce

$$F(h) = \frac{f(x+h,y+h) - f(x,y+h) - f(x+h,y) + f(x,y)}{h^2}$$

Položíme li

$$\varphi_h(y) = f(x+h, y) - f(x, y) \text{ a}$$

$$\psi_k(x) = f(x, y+k) - f(x, y),$$

dostaneme pro F(h) dva výrazy:

$$F(h) = \frac{1}{h^2} (\varphi_h(y+h) - \varphi_h(y))$$
$$F(h) = \frac{1}{h^2} (\psi_h(x+h) - \psi_h(x)).$$

První: Funkce φ_h má derivaci (podle y, jinou proměnnou nemá)

$$\varphi'_h(y) = \frac{\partial f(x+h,y)}{\partial y} - \frac{\partial f(x,y)}{\partial y}$$

a tedy podle Lagrangeovy formule

$$F(h) = \frac{1}{h^2} (\varphi_h(y+h) - \varphi_h(y)) = \frac{1}{h} \varphi_h'(y+\theta_1 h)$$
$$= \frac{\partial f(x+h,y+\theta_1 h)}{\partial y} - \frac{\partial f(x,y+\theta_1 h)}{\partial y}.$$

Potom znovu, podle L. formule,

$$F(h) = \frac{\partial}{\partial x} \left(\frac{\partial f(x + \theta_2 h, y + \theta_1 h)}{\partial y} \right)$$

pro nějaká θ_1, θ_2 mezi 0 a 1.

Druhá, $\frac{1}{h^2}(\varphi_h(x+h)-\varphi_h(x)))$ dá podobně

$$F(h) = \frac{\partial}{\partial y} \left(\frac{\partial f(x + \theta_4 h, y + \theta_2 h)}{\partial x} \right)$$

Obě $\frac{\partial}{\partial y}(\frac{\partial f}{\partial x})$ a $\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})$ jsou spojité (x,y), a $\lim_{h\to 0} F(h)$ můžeme počítat z kteréhokoli výrazu (první nebo druhá):

$$\lim_{h\to 0} F(h) = \frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial^2 f(x,y)}{\partial y \partial x}.$$

2.6.1 Důsledek tvrzení o záměnnosti

Nechť má funkce f v proměnných spojité parciální derivace do řádu k. Potom hodnoty těchto derivací záleží pouze na tom, kolikrát bylo derivováno v každé z proměnných $x_1, ..., x_n$.

Tedy za daných předpokladů můžeme obecné parciální derivace řádu $r \leq k$ psát

$$\frac{\partial^r f}{\partial x_1^{r_1} \partial x_2^{r_2} ... \partial x_n^{r_n}} \text{ kde } r_1 + r_2 + \cdots + r_n = r$$

 $(r_i = 0 \text{ indukuje absenci symbolu } \partial x_i)$

2.7 Věta o konvergentní podposloupnosti

Z každé posloupnosti na kompaktním intervalu lze vybrat konvergentní podposloupnost.

Explicitně: Mějme $a, b \in \mathbb{R}$ taková, že $\forall n : a \leq x_n \leq b$. Potom existuje podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$ která konverguje v \mathbb{R} a platí $a \leq \lim_n x_{k_n} \leq b$

Důkaz: Vezměme

$$M = \{x : x \in \mathbb{R}, x \le x_n \text{ pro nekonečně mnoho n}\}$$

M je neprázdná a omezená protože $a \in M$ a b je horní mez M. Musí tedy existovat s = sup(M) a platí $a \le s \le b$. Dále, pro každé n je množina

$$K(n) = \{k : s - \frac{1}{n} < x_k < s + \frac{1}{n}\}$$

nekonečná: skutečně, máme $x>s-\varepsilon$ takové, že $x_n>x$ pro nekonečně mnoho n, zatím co podle definice množiny M je jen konečně mnoho n takových, že $x_n\geq s+\varepsilon$.

Zvolme k_1 tak, aby

$$s-1 < x_{k_{12}} < s+1$$
.

Mějme zvolena $k_1 < k_2 < \cdots < k_n$ taková, že j = 1, ..., n

$$s - \frac{1}{j} < x_{k_j} < s + \frac{1}{j}.$$

Jelikož K(n+1) je nekonečná, můžeme zvolit $k_{n+1} > k_n$ tak, aby

$$s - \frac{1}{n+1} < x_{k_{n+1}} < s + \frac{1}{n+1}.$$

Takto zvolená podposloupnost $(x_{k_n})_n$ naší $(x_n)_n$ zřejmě konverguje k s.

3 Kompaktní prostory

3.1 Definice kompaktního prostoru

Metrický prostor (X, d) je kompaktní, pokud každá posloupnost v něm obsahuje konvergentní podposloupnost.

3.2 Tvrzení o podprostoru kompaktního prostoru

Podprostor kompaktního prostoru je kompaktní právě když je uzavřený.

Důkaz:

- 1. Buď Y uzavřený podprostor kompaktního X a buď $(y_n)_n$ podposloupnost v Y. Jako posloupnost v X má podposloupnost s limitou a z uzavřenosti je tato limita v Y.
- 2. Nechť Y není uzavřená. Potom existuje posloupnost $(y_n)_n$) v Y konvergentní v X taková, že $y = \lim_n y_n \notin Y$. Potom $(y_n)_n$ nemůže mít podposloupnost konvergentní v Y protože každá její podposloupnost konverguje k y.

3.3 Tvrzení o uzavřenosti podprostoru

Buď (X,d) libovolný metrický prostor a buď podprostor $Y\subseteq X$ kompaktní. Potom Y je uzavřený v (X,d).

Důkaz: Nechť $(y_n)_n$ posloupnost v Y konverguje v X k limitě y. Potom každá podposloupnost $(y_n)_n$ konverguje k y a tedy je $y \in Y$.

Metrický prostor (X, d) je omezený, jestliže pro nějaké K platí, že

$$\forall x, y \in X : d(x, y) < K.$$

3.4 Tvrzení o omezenosti kompaktního prostoru

Každý kompaktní prostor je omezený.

Důkaz: Zvolme x_1 libovolně a x_n tak, aby $d(x_1, x_n) > n$. Posloupnost $(x_n)_n$ nemá konvergentní podposloupnost; kdyby x byla limita takové podposloupnosti, bylo by pro dost velké n nekonečně mnoho členů této podposloupnosti blíže k x_1 než $d(x_1, x_n) + 1$, což je spor.

3.5 Věta o součinu kompaktních prostorů

Součin konečně mnoha kompaktních prostorů je kompaktní.

Důkaz: Stačí dokázat pro součin dvou prostorů.

Buďte $(X, d_1), (X, d_2)$ kompaktní a buď $((x_n, y_n))_n$ posloupnost v $X \times Y$. Zvolme konvergentní podposloupnost $(x_{k_n})_n$ posloupnosti $(x_k)_n$ a konvergentní podposloupnost $(y_{k_k})_n$ posloupnosti $(y_{k_k})_n$. Potom je

 $((x_{k_{l_n}}, y_{k_{l_n}}))_n$

konvergentní podposloupnost posloupnosti $((x_n, y_n))_n$.

Kompaktní interval v \mathbb{E}_n : součin intervalů $\langle a_i, b_i \rangle$

3.6 Věta : podprostor euklidovského prostoru je kompaktní právě když je omezený a uzavřený

Podprostor euklidovského prostoru \mathbb{E}_n je kompaktní právě když je uzavřený a omezený.

Důkaz:

- 1. Že je uzavřený a omezený už víme.
- 2. Buď nyní $Y \subseteq \mathbb{E}_n$ omezený a uzavřený. Jelikož je omezený, je pro dostatečně velký kompaktní interval $Y \subseteq J^n \subseteq \mathbb{E}_n.$

 J^n je kompaktní jako součin intervalů $\langle a_i, b_i \rangle$, a jelikož je Y uzavřený v \mathbb{E}_n je též uzavřený v J^n a tedy kompaktní.

3.7 Tvrzení: obraz spojitého zobrazení je kompaktní

Buď $f:(X,d)\to (Y,d')$ spojité zobrazení a buď $A\subseteq X$ kompaktní. Potom je f[A] kompaktní.

Důkaz: Buď $(y_n)_n$ posloupnost v f[A]. Zvolme $x_n \in A$ tak, aby $y_n = f(x_n)$. Buď $(x_{k_n})_n$ konvergentní podposloupnost Potom je $(y_{k_n})_n = (f(x_{k_n}))_n$ konvergentní podposloupnost $(x_n)_n$.

3.8 Tvrzení: každá spojitá funkce na kompaktním prostoru nabýva maxima i minima

Buď (X,d) kompaktní. Potom každá spojitá funkce $f:(X,d)\to\mathbb{R}$ nabývá maxima i minima.

Důkaz: Buď $Y = f[X] \subseteq \mathbb{R}$ kompaktní. Je to tedy omezená množina a musí mít supremum M a infimum m. Zřejmě máme d(m,Y) = d(M,Y) = 0 a jelikož Y je uzavřená, $m,M \in Y$. Víme, že spojitá f je charakterizována tím, že všechny vzory uzavřených množin jsou uzavřené. Nyní vidíme, že je-li definiční obor kompaktní, platí též, že obrazy uzavřených podmnožin jsou uzavřené. Z toho plyne následujíci:

3.9 Věta o vzájemně jednoznačném spojitém zobrazení

Je-li (X,d) kompaktní a je-li $f:(X,d)\to (Y,d')$ vzájemně jednoznačné spojité zobrazení, pak je f homeomorfismus.

Obecněji: Nechť $f:(X,d)\to (Y,d')$ je spojité zobrazení. Mějme potom $g:(X,d)\to (Z,d'')$ a $h:(Y,d')\to (Z,d'')$ takové, že $h\circ f=g$. Potom je h spojité.

Důkaz: Buď B uzavřená v Z. Potom je $A = g^{-1}[B]$ uzavřená \implies kompaktnost v $X \implies f[A]$ je kompaktní \implies uzavřená v Y. Jelikož je f zobrazení na, máme $f[f^{-1}[C]] = C \forall C$. Proto je

$$h^{-1}[B] = f[f^{-1}[h^{-1}[B]]] = f[(h \circ f)^{-1}[B]] = f[q^{-1}[B]] = f[A]$$

uzavřená.

3.10 Definice cauchyovské posloupnosti $(x_n)_n$

Posloupnost $(x_n)_n$ v (X,d) je **Cauchyovská**, jestliže

$$\forall \epsilon > 0 \exists n_0 : m, n \geq n_0 \implies d(x_m, x_n) < \epsilon$$

3.11 Tvrzení o konvergenci cauchyovské posloupnosti

Nechť má Cauchyovská posloupnost konvergentní podposloupnost. Potom posloupnost konverguje k limitě podposloupnosti.

Důkaz: Nechť je $(x_n)_n$ Cauchyovská a nechť $\lim_n x_{k_n} = x$. Buď $d(x_m, x_n) < \varepsilon$ pro $m, n \ge n_1$ a $d(x_{k_n}, x) \le \varepsilon$ pro $n \ge n_2$. Položíme-li $n_0 = \max(n_1, n_2)$, máme pro $n \ge n_0$ (protože $k_n \ge n$)

$$d(x_n, x) \le d(x_n, x_{k_n}) + d(x_{k_n}, x) < 2\varepsilon.$$

3.12 Definice úplného metrického prostoru

Metrický prostor (X,d) je **úplný**, pokud v něm každá Cauchyovská posloupnost konverguje.

3.13 Tvrzení: Podprostor úplného prostoru je úplný právě když je uzavřený

Podprostor úplného je úplný, právě když je uzavřený.

Důkaz:

- 1. Buď $Y \subseteq (X, d)$ uzavřený. Buď $(y_n)_n$ Cauchyovská v Y. Potom je Cauchyovská a tedy konvergentní v X a kvůli uzavřenosti je limita v Y.
- 2. Nechť Y není uzavřený. Potom existuje posloupnost $(y_n)_n$ v Y konvergentní v X taková, že $\lim_n y_n \notin Y$. Potom je $(y_n)_n$ Cauchyovská v X a jelikož je vzálenost stejná, též v Y. Ale v Y nekonverguje.

3.14 Tvrzení: Každý kompaktní prostor je úplný

Každý kompaktní prostor je úplný.

Důkaz: Cauchyovská posloupnost má podle kompaktnosti konvergentní podposloupnost a tedy konverguje.

3.15 Lemma o cauchyovské posloupnosti

Posloupnost $(x_1^1,...,x_1^n),(x_1^2,...,x_n^2),...,(x_1^k,...,x_n^k),...$ je Cauchyovská v $\prod_{i=1}^n (X_i,d_i)$ právě když každá z posloupností $(x_i^k)_k$ je Cauchyovská v (X_i,d_i) .

 $\begin{array}{ll} \mathbf{D\mathring{u}kaz:} \implies \text{plyne bezprostředně z toho, že } d_i(u_i,v_i) \leq d((u_j)_j,(v_j)_j). \\ \Leftarrow : \text{Nechť je každá } (x_i^k)_k \text{ Cauchyovská. Pro } \varepsilon > 0 \text{ a } i \text{ zvolme } k_i \text{ tak, aby pro } k,l \geq k_i \text{ bylo } d_i(x_i^k,x_i^l) < \varepsilon. \\ \text{Potom pro } k,l \geq \max_i k_i \text{ máme} \\ d((x_1^k,...,x_n^k),(x_1^l,...,x_n^l)) < \varepsilon. \end{array}$

3.16 Věta: Součin úplných prostorů je úplný

Součin úplných prostorů je úplný. Speciálně, \mathbb{E}_n je úplný.

3.16.1 Důsledek

Podprostor Y euklidovského prostoru \mathbb{E}_n je úplný, právě když je uzavřený.

4 Implicitní funkce

4.1 Ilustrační příklady

4.1.1 Obecný příklad

Mějme spojité reálné funkce $F_i(x_1,...,x_m,y_1,...,y_n)$ pro každé $i\in\{1,...,n\}$ v n+m proměnných. Určuje systém rovnic

$$F_1(x_1, ..., x_m, y_1, ..., y_n) = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$F_n(x_1, ..., x_m, y_1, ..., y_n) = 0$$

v nějakém smyslu funkce

$$f_i \equiv y_i(x_1, ..., x_m)$$

pro $i \in \{1, ..., n\}$? Pokud ano, jak a kde je určuje a jaké mají funkce vlastnosti?

Konkrétněji viz následující příklad.

4.1.2 Příklad pro $F(x,y) = x^2 + y^2 - 1$

Mějme $F(x,y) = x^2 + y^2 - 1$, neboli rovnici

$$x^2 + y^2 = 1$$

Několik pozorování:

- Pro některá x_0 jako například $x_0 < -1$ řešení neexistuje, o funkci y(x) nemluvě.
- Přestože řešení v nějakém okolí x_0 existuje, nemůžeme v nějakých situacích hovořit o funkci. Potřebujeme kolem řešení (x_0, y_0) vymezit okolí jak x_0 , tak y_0 .
- Máme také případy, jako ten, kdy $x_0 = 1$, kde je v okolí mnoho řešení, ale žádný(ani jednostranný) interval, kde by y bylo jednoznačné.

V případě F(x, y) už zádná další situace nenastane.

4.2 Věta o implicitní funkci

Buď F(x,y) reálná funkce definovaná v nějakém okolí bodu (x_0,y_0) . Nechť má F spojité parciální derivace do řádu $k \ge 1$ a nechť platí:

$$F(x_0, y_0) = 0$$

$$\left| \frac{\partial F(x_0, y_0)}{\partial y} \right| \neq 0$$

Potom $\exists \delta > 0$ a $\Delta > 0$ takové, že $\forall x \in (x_0 - \delta, x_0 + \delta) \exists ! y \in (y_0 - \Delta, y_0 + \Delta) : F(x, y) = 0$. Dále, označíme-li toto jediné y jako y = f(x), potom získaná $f: (x_0 - \delta, x_0 + \delta) \to \mathbb{R}$ má spojité derivace do řádu k.

4.3 Věta o implicitních funkcích

Buď te $F_i(\mathbf{x}, y_1, ..., y_m)$ pro $i \in 1, ..., m$ funkce n + m proměnných se spojitými parciálními derivacemi do řádu $k \ge 1$. Buď

$$\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{o}$$

 \mathbf{a}

$$\frac{D(\mathbf{F})}{D(\mathbf{y})}(\mathbf{x}^0, \mathbf{y}^0) \neq 0$$

Potom existují $\delta > 0$ a $\Delta > 0$ takové, že pro každé

$$\mathbf{x} \in (x_1^0 - \delta, x_1^0 + \delta) \times \cdots \times (x_n^0 - \delta, x_n^0 + \delta)$$

existuje právě jedno

$$\mathbf{y} \in (y_1^0 - \Delta, y_1^0 + \Delta) \times \cdots \times (y_m^0 - \Delta, y_m^0 + \Delta)$$

takové, že

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$$

4.4 Definice Jacobiho determinantu

Pro konečnou posloupnost funkcí

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = (F_1(\mathbf{x}, y_1, ..., y_m), ..., F_m(\mathbf{x}, y_1, ..., y_m))$$

a pro $\mathbf{y} = (y_1, ..., y_m)$ se definuje **Jacobiho determinant**(Jacobián) jako

$$\frac{D(\mathbf{F})}{D(\mathbf{y})} = \det\left(\frac{\partial F_i}{\partial y_j}\right)_{i,j \in \{1,\dots,m\}}$$

5 Extrémy

5.1 Věta o hledání extrémů funkcí

Buď te $f, g_1, ..., g_k$ reálné funkce definované na otevřené množině $D \subseteq \mathbb{E}_n$. Nechť mají spojité parciální derivace. Nechť je hodnost matice

$$M = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \cdots & \frac{\partial g_k}{\partial x_n} \end{pmatrix}$$

maximální, tedy k, v každém bodě oboru D.

Jestliže funkce f nabývá v bodě $\mathbf{a} = (a_1, ..., a_n)$ lokálního extrému podmíněného vazbami

$$g_i(x_1, ..., x_n) = 0 \forall i \in \{1, ..., k\}$$

pak existují čísla $\lambda_1,...,\lambda_k$ taková, že $\forall i\in 1,...,n$ platí

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{i=1}^k \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0$$

Důkaz: Matice M má hodnost k právě když aspoň jedna její $k \times k$ podmatice M je regulární (a tedy má nenulový determinant). Dejme tomu,

$$0 \neq \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \cdots & \frac{\partial g_k}{\partial x_n} \end{vmatrix}$$

Potom podle věty o implicitních funkcích máme okolí bodu a funkce $\phi_i(x_{k+1},...,x_n)$ se spojitými parciálními derivacemi takové, že (pišme $\tilde{\mathbf{x}}$ pro $(x_{k+1},...,x_n)$)

$$g_i(\phi_1(\tilde{\mathbf{x}}),...,\phi_k(\tilde{\mathbf{x}},\tilde{\mathbf{x}})=0 \text{ pro } i=1,...,k.$$

tedy lokální maximum nebo minimum funkce $f(\mathbf{x})$ v a podmíněné danými vazbami dává lokální maximum či minimum (nepodmíněné) funkce

$$F(\tilde{\mathbf{x}}) = f(\phi_1(\tilde{\mathbf{x}}), ..., \phi_k(\tilde{\mathbf{x}}), \tilde{\mathbf{x}}),$$

v $\tilde{\mathbf{a}}$, a tedy je

$$\frac{\partial F(\tilde{\mathbf{a}})}{\partial x_i} = 0 \text{ pro } i = k+1, ..., n,$$

to jest, podle řetízkového pravidla

$$\sum_{r=1}^{k} \frac{\partial f(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} + \frac{\partial f(\mathbf{a})}{\partial x_i} \text{ pro } i = k+1, ..., n.$$

Derivováním konstantní $g_i(\phi_1(\tilde{\mathbf{x}},...,\phi_k(\tilde{\mathbf{x}}),\tilde{\mathbf{x}})=0$ dostaneme pro j=1,...,k

$$\sum_{r=1}^{k} \frac{\partial g_j(\mathbf{a})}{\partial x_r} \cdot \frac{\partial \phi_r(\tilde{\mathbf{a}})}{\partial x_i} + \frac{\partial g_j(\mathbf{a})}{\partial x_i} \text{ pro } i = k+1, ..., n.$$

Dále použijeme znovu vlastnost toho, že determinant je nenulový. Vzhledem k hodnosti matice má systém lineárních rovnic

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^n \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0, i = 1, ..., k$$

jediné řešení $\lambda_1,...,\lambda_k$. To jsou rovnosti z tvrzení, ale jen pro $i \leq k$. Musíme ještě dokázat, že to platí i pro i > k.

$$\begin{split} \frac{\partial f(\mathbf{a})}{\partial} + \sum_{j=1}^{n} \lambda_{j} \cdot \frac{\partial g_{j}(\mathbf{a})}{\partial x_{i}} &= \\ &= -\sum_{r=1}^{k} \frac{\partial f(\mathbf{a})}{\partial x_{r}} \cdot \frac{\partial \phi_{r}(\tilde{\mathbf{a}})}{\partial x_{i}} - \sum_{j=1}^{k} \lambda_{j} \cdot \sum_{r=1}^{k} \frac{\partial g_{j}(\mathbf{a})}{\partial x_{r}} \cdot \frac{\partial \phi_{r}(\tilde{\mathbf{a}})}{\partial x_{i}} &= \\ &= -\sum_{r=1}^{n} \left(\frac{\partial f(\mathbf{a})}{\partial x_{i}} + \sum_{j=1}^{n} \lambda_{j} \cdot \frac{\partial g_{j}(\mathbf{a})}{\partial x_{i}} \right) \frac{\partial \phi_{r}(\tilde{\mathbf{a}})}{\partial x_{i}} &= \\ &= -\sum_{r=1}^{n} 0 \cdot \frac{\partial \phi_{r}(\tilde{\mathbf{a}})}{\partial x_{i}} &= 0. \end{split}$$

5.2 Definice Regulárního zobrazení

Buď $U \subseteq \mathbb{E}_n$ otevřená a nechť mají f_i pro $i \in 1,...,n$ spojité parciální derivace. Výsledné zobrazení

$$\mathbf{f} = (f_1, ..., f_n) : U \to \mathbb{E}_n$$

je regulární, jestliže

$$\forall \mathbf{x} \in U : \frac{D(\mathbf{f})}{D(\mathbf{x})}(\mathbf{x}) \neq 0$$

5.3 Tvrzení o obrazu regulární funkce

Je-li $\mathbf{f}: U \to \mathbf{E}_n$ regulární, je obraz $\mathbf{f}[V]$ každé otevřené podmnožiny $V \subseteq U$ otevřený.

Důkaz: Vezměme $f(\mathbf{x}^0) = \mathbf{y}^0$. Definujeme $\mathbf{F}: V \times \mathbb{E}_n \to \mathbb{E}_n$ předpisem

$$F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i.$$

Potom je $\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{0}$ a $\frac{D(\mathbf{F})}{D(\mathbf{x})} \neq 0$, a tedy můžeme použít větu o IF a dostaneme $\delta > 0$ a $\Delta > 0$: $\forall \mathbf{y}$: $||\mathbf{y} - \mathbf{y}^0|| < \delta \exists \mathbf{x} : ||\mathbf{x} - \mathbf{x}^0|| < \Delta$ a $F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i = 0$. To znamená, že máme $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ (pozor, y_i jsou zde proměnné, x_j hledané funkce a

 $\Omega(\mathbf{y}^0, \delta) = \{\mathbf{y}: ||\mathbf{y} - \mathbf{y}^0|| < \delta \subseteq \mathbf{f}[V]\}.$

5.4 Tvrzení o inverzi regulárního zobrazení

Buď $\mathbf{f}: U \to \mathbf{E}_n$ regulární zobrazení. Potom $\forall \mathbf{x}^0 \in U$ otevřené okolí V takové, že restrikce $\mathbf{f}|V$ je prosté zobrazení. Navíc, zobrazení $\mathbf{g}: f[V] \to \mathbb{E}_n$ inverzní k $\mathbf{f}|V$ je regulární.

Důkaz: Znovu použijeme zobrazení $\mathbf{F} = (F_1, ..., F_n)$, kde $F_i(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}) - y_i$. Pro dost malé $\Delta > 0$ máme právě jedno $\mathbf{x} = \mathbf{g}(\mathbf{y})$ takové, že $\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$ a $||\mathbf{x} - \mathbf{x}^0|| < \Delta$. Toto \mathbf{g} má navíc spojité parciální derivace. Máme

$$D(id) = D(\mathbf{f} \circ \mathbf{g}) = D(\mathbf{f}) \cdot D(\mathbf{g}).$$

Podle řetízkového pravidla (a věty o násobení determinantů) je

$$\frac{D(\mathbf{f})}{D(\mathbf{x})} \cdot \frac{D(\mathbf{g})}{D(\mathbf{v})} = \det D(\mathbf{f}) \cdot \det D(\mathbf{g}) = 1$$

a tedy je pro každé $\mathbf{y} \in \mathbf{f}[V], \partial D(\mathbf{g})D(\mathbf{y})(\mathbf{y}) \neq 0.$

5.4.1 Důsledek tvrzení o inverzi regulárního zobrazení

Prosté regulární zobrazení $\mathbf{f}:U\to\mathbb{E}_n$ má regulární inverzi $\mathbf{g}:\mathbf{f}[U]\to\mathbb{E}_n$

6 Objemy a obsahy

 $A \subseteq \mathbb{E}_m$ (speciálne \mathbb{E}_2)

6.1 Vlastnosti

- $A \subseteq B \implies \mathbf{vol}(A) \le \mathbf{vol}(B)$
- $A, B \text{ disjunktn} \implies \mathbf{vol}(A \cup B) = \mathbf{vol}(A) + \mathbf{vol}(B)$
- vol je zachován isometrii
- V \mathbb{E}_2 : **vol** $(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1)(b_2 a_2)$
- V \mathbb{E}_n : vol $(\prod_i \langle a_i, b_i \rangle = (b_1 a_1) \cdot \cdot \cdot \cdot \cdot (b_n a_n)$

Obecně platí:

 $\mathbf{vol}(A \cup B) = \mathbf{vol}(A) + \mathbf{vol}(B) - \mathbf{vol}(A \cap B).$

7 Stejnoměrná spojitost

7.1 Definice stejnoměrné spojitosti

Řekneme, že $f:(X,d)\to (Y,d')$ je stejnoměrně spojité, je-li

$$\forall \varepsilon \exists \delta : d(x,y) < \delta \implies d'(f(x),f(y)) < \varepsilon$$

Příklad:

 $f = (x \mapsto x^2) : \mathbf{R} \to \mathbf{R}$ je spojitá, ale ne stejnoměrně spojitá. Máme $|f(x) - f(y)| = |x + y| \cdot |x - y|$; tedy abychom dostali $|f(x) - f(y)| < \varepsilon$ v blízkosti x = 100 potřebujeme δ stokrát menší než v blízkosti x = 1.

7.2 Věta o stejnoměrné spojitosti

Je-li (X,d) kompaktní, je každé spojité $f:(X,d)\to (Y,d')$ stejnoměrně spojité. Zejména to platí pro spojité reálné funkce na kompaktních intervalech.

Důkaz: Nechť $f:(X,d)\to (Y,d')$ není stejnoměrně spojité. Potom $\exists \varepsilon>0: \forall n\exists x_n,y_n:$

$$d(x_n, y_n) < \frac{1}{n}$$

ale

$$d'(f(x_n), f(y_n)) \ge \varepsilon$$
.

Zvolme konvergentní podposloupnost $(x_{k_n})_n$ posloupnosti $(x_n)_n$. Označme $a=\lim_n x_{k_n}$. Potom podle $d(x_n,y_n)<\frac{1}{n}$ je též $a=\lim_n y_{k_n}$. Podle $d'(f(x_n),f(y_n))\geq \varepsilon$ nemůže být $f(a)=\lim_n f(x_{k_n})$ a zároveň $f(a)=\lim_n f(y_{k_n})$, a tedy f není ani spojité.

8 Opakování

8.1 Riemannův integrál v jedné proměnné

 $Rozd\check{e}len\acute{\iota}$ intervalu $\langle a,b\rangle$: posloupnost

$$P: a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

Zjemnění:

$$P': a = t'_0 < t'_1 < \dots < t'_{n-1} < t_m = b$$

$$kde \{t_j: j = 1, \dots, n-1\} \subseteq \{t'_j: j = 1, \dots, m-1\}.$$

Jemnost rozdělení $P: \mu(P) = \max_j (t_j - t_{j-1})$. Pro omezenou $f: J = \langle a, b \rangle \to \mathbf{R}$ a P definujeme dolní a horní součty

$$s(f, P) = \sum_{j=1}^{n} m_j (t_j - t_{j-1}) \text{ resp.}$$

$$S(f, P) = \sum_{j=1}^{n} M_j(t_j - t_{j-1})$$

kde

$$m_j = \inf\{f(x) : t_{j-1} \le x \le t_j\}, M_j = \sup\{f(x) : t_{j-1} \le x \le t_j\}.$$

 \bullet Pokud P'zjemňuje Pdostáváme

$$s(f, P) \le s(f, P')$$
 a $S(f, P) \ge S(f, P')$

• Pro každá dvě P_1, P_2 je

$$s(f, P_1 \leq S(f, P_2))$$
.

8.1.1 Riemannův integrál

$$\begin{split} & \underline{\int}_a^b f(x) dx = \sup\{s(f,P): P \text{ rozdělení}\} \text{ a } \overline{\int}_a^b f(x) dx = \inf\{S(f,P): P \text{ rozdělení}\} \\ & \text{Prvnímu se říka dolní Riemannův integrál } f \text{ přes } \langle a,b \rangle, \text{ druhé je horní Riemannův integrál.} \\ & \text{Je li } \int_a^b f(x) dx = \overline{\int}_a^b f(x) dx \text{ označujeme společnou hodnotu} \end{split}$$

$$\int_{a}^{b} f(x)dx$$

a nazýváme ji Riemannův integrál funkce f přes $\langle a, b \rangle$.

8.1.2 Tvrzení o existenci Riemannova integrálu

Riemannův integrál $\int_a^b f(x)dx$ existuje právě když $\forall \varepsilon > 0 \exists$ rozdělení P takové, že

$$S(f, P) - s(f, P) < \varepsilon$$
.

Důkaz:

1. Nechť $\int_a^b f(x) dx$ existuje a nechť $\varepsilon > 0$. Potom existují rozdělení P_1 a P_2 takové, že

$$S(f, P_1) < \int_a^b f(x)dx + \frac{\varepsilon}{2}$$
 a $s(f, P_2) > \int_a^b f(x)dx + \frac{\varepsilon}{2}$

Potom je pro společné zjemnění P těch dvou P_1, P_2

$$S(f,P) - s(f,P) < \int_a^b f(x)dx + \frac{\varepsilon}{2} - \int_a^b f(x)dx + \frac{\varepsilon}{2} = \varepsilon.$$

2. Nechť druhé tvrzení platí. Zvolme $\varepsilon > 0$: $S(f,P) - s(f,P) < \varepsilon$. Potom je

$$\overline{\int}_{a}^{b} f(x)dx \le S(f, P) < s(f, P) + \varepsilon \le \int_{a}^{b} f(x)dx + \varepsilon,$$

a jelikož ε bylo libovolně malé, vidíme, že $\overline{\int}_a^b f(x) dx = \underline{\int}_a^b f(x) dx.$

8.1.3 Věta: Existence Riemannova integrálu pro spojité funkce v $\mathbb R$

Pro každou spojitou $f:\langle a,b\rangle\to\mathbb{R}$ Riemannův integrál $\int_a^b f$ existuje. **Důkaz:** Pro $\varepsilon>0$ zvolme $\delta>0$ tak, aby

$$|x-y| < \delta \implies |f(x) - f(y)| < \frac{\varepsilon}{b-a}$$
.

Je-li $\mu(P) < \delta$ máme $t_j - t_{j-1} < \delta$ pro všechna j, a tedy

$$M_{j} - m_{j} = \sup\{f(x) : t_{j-1} \le x \le t_{j}\} - \inf\{f(x) : t_{j-1} \le x \ leqt_{j}\} \le \sup\{|f(x) - f(y)| : t_{j-1} \le x, y \le t_{j}\} \le \frac{\varepsilon}{b - a}$$

takže

$$S(f,P) - s(f,P) = \sum (M_j - m_j)(t_j - t_{j-1}) \le \frac{\varepsilon}{b-a} \sum (t_j - t_j - 1) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

8.1.4 Integrální věta o střední hodnotě

Buď $f:\langle a,b\rangle\to\mathbb{R}$ spojitá. Potom existuje $c\in\langle a,b\rangle$ takové, že

$$\int_{a}^{b} f(x) dx = f(c)(b-a)$$

Důkaz: Položme $m = \min\{f(x)|a \le x \le b\}$ a $M = \max\{f(x)|a \le x \le b\}$ Zřejmě

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

Existuje tedy K takové, že $m \le K \le M$ a $\int_a^b f(x) \, dx = K(b-a)$. Jelikož f je spojitá, existuje $c \in \langle a, b \rangle$ takové, že K = f(c).

8.1.5 Základní věta analýzy

Buď $f:\langle a,b\rangle\to\mathbb{R}$ spojitá. Pro $x\in\langle a,b\rangle$ definujeme

$$F(x) = \int_{a}^{x} f(t) dt$$

Potom je F'(x) = f(x)

Důkaz: Pro $h \neq 0$ máme

$$\frac{1}{h}(F(x+h) - f(x)) = \frac{1}{h} \left(\int_{a}^{x+h} f - \int_{a}^{x} f \right) = \frac{1}{h} \int_{x}^{x+h} f = \frac{1}{h} f(x+\theta h) h = f(x+\theta h)$$

8.1.6 Důsledky základní věty analýzy

1. Spojitá funkce $f:\langle a,b\rangle\to\mathbb{R}$ má na intervalu (a,b) primitivní funkci spojitou na $\langle a,b\rangle$. Pro kteroukoli primitivní funkci G funkce f na (a,b) spojitou na $\langle a,b\rangle$ platí

$$\int_{a}^{b} f(t)dt = G(b) - G(a).$$

2. Integrálni věta o střední hodnotě:

$$F(b) - F(a) = \int_{a}^{b} f(c)(b - a) = F'(c)(b - a)$$

9 Riemannův integrál ve více proměnných

9.1 Pomocné definice

V \mathbb{E}_n : Kompaktní interval (n-rozměrný) je

$$J = \langle a_1, b_1 \rangle \times \cdots \times \langle a_n, b_n \rangle$$

(interval nebo cihla)

Rozdělení intervalu J je posloupnost $P = (P^1, ... P^n)$ rozdělení:

$$P^j: a_j = t_{j0} < t_{j1} < \dots < t_{j,n_j-1} < t_{j,n_j} = b_j$$

Intervalům

$$\langle t_{1,i_1}, t_{1,i_1+1} \rangle \times \cdots \times \langle t_{n,i_n}, t_{n,i_n+1} \rangle$$

říkáme cihly rozdělení P a $\mathcal{B}(P)$ je množina všech cihel rozdělení P. Je to skoro disjunktní rozklad intervalu J. Různe cihly z $\mathcal{B}(P)$ se totiž setkávají jen v podmnožinách okrajů, tedy v množinách objemu 0. Máme tedy:

$$\mathbf{vol}(J) = \sum {\{\mathbf{vol}(B) : B \in \mathcal{B}(J)\}}.$$

Jemnost rozdělení *Diametr* intervalu $J = \langle r_1, s_1 \rangle \times \cdots \times \langle r_n, s_n \rangle$ je

$$\mathbf{diam}(J) = \max_{i} (s_i - r_i)$$

Jemnost rozdělení P je

$$\mu(P) = \max\{\mathbf{diam}(B) : B \in \mathcal{B}(P)\}.$$

Zjemnění

Rozdělení $Q = (Q^1, ... Q^n)$ zjemňuje rozdělení $P = (P^1, ..., P^n)$ jestliže každé Q^j zjemňuje P^j . Zjemňení Q rozdělení P vytváří rozdělení Q_B cihel $B \in \mathcal{B}(P)$ a máme skoro disjunktní sjednocení

$$\mathcal{B}(Q) = \bigcup \{ \mathcal{B}(Q_B) : B \in \mathcal{B}(P) \}.$$

Každá dvě rozdělení P,Q n-rozměrného kompaktního intervalu J mají spoločné zjemnění: \implies Je dána

omezená $f:J\to\mathbb{R}$ na n-rozměrném kompaktním intervalu J a $B\subseteq J$ je n-rozměrný kompaktní podinterval intervalu J. Položme

$$m(f, B) = \inf\{f(\mathbf{x}) : \mathbf{x} \in B\}$$
 a

$$M(f,B) = \sup\{f(\mathbf{x}) : \mathbf{x} \in B\}.$$

Fakt: $m(f, B) \leq M(f, B)$ a je-li $C \subseteq B$, pak

$$m(f,C) \ge m(f,B)$$
 a $M(f,C) \le M(f,B)$.

Pro rozdělení P intervalu J a omezenou funkci $f: J \to \mathbb{R}$ definujeme

$$s_J(f,P) = \sum \{m(f,B) \cdot \mathbf{vol}(B) : B \in \mathcal{B}(P)\},$$

$$S_J(f,P) = \sum \{M(f,B) \cdot \mathbf{vol}(B) : B \in \mathcal{B}(P)\}.$$

Obecné pozorování:

 $f:X\to\mathbb{R}$ je omezená, $X=\bigcup X_i, X_i=\bigcup X_{ij}$ jsou konečná skoro disjunktní sjednocení.

$$M_i = \sup\{f(x) : x \in X_i\},\$$

$$M_{ij} = \sup\{f(x) : x \in X_{ij}\}\$$

Triviálně $M_{ij} \leq M_i$ (M_i je horní mez množiny $\{f(x) : x \in X_{ij}\}$). Tedv:

$$\sum M_i \mathbf{vol}(X_i) = \sum_i M_i \sum_j \mathbf{vol}(X_{ij}) =$$

$$= \sum_{ij} M_i \mathbf{vol}(X_{ij}) \ge \sum_{ij} M_{ij} \mathbf{vol}(X_{ij})$$

a podobně pro infima.

Tvrzení: Nechť Q zjemňujě P. Potom

$$s(f,Q) \ge s(f,P)$$
 a $S(f,Q) \le S(f,P)$

Důkaz: Použijeme předchozí pozorování pro $\{X_i|i\} = \mathcal{B}(P), \{X_{ij}|j\} = \mathcal{B}(Q_B)$ a samozřejmě i pro $\{X_{ij}|ij\} = \mathcal{B}(Q)$.

Tvrzení: Pro libovolná dvě rozdělení P,Q intervalu J máme $s(f,P) \leq S(f,Q)$.

Důkaz: Jelikož je triviálně $s(f, P) \leq S(f, P)$, použitím společného zjemnění R rozdělení P, Q dostaneme

$$s(f, P) \le s(f, R) \le S(f, R) \le S(f, Q).$$

Množina $\{s(f,P)|P$ rozdělení $\}$ je tedy shora omezená a můžeme definovat dolní Riemannův integrál funkce f přes J jako

$$\underline{\int}_{J} f(\mathbf{x}) d\mathbf{x} = \sup\{s(f, P) | P \text{ rozdělení}\};$$

podobně definujeme horní Riemannův integrál

$$\overline{\int}_{J} f(\mathbf{x}) d\mathbf{x} = \inf \{ S(f, P) | P \text{ rozdělení} \}.$$

Jsou-li si rovny, máme Riemannův integrál funkce f přes J; značení:

$$\int_I f(\mathbf{x}) d\mathbf{x}$$
 nebo prostě $\int_I f$

Jiné značení:

$$\int_{J} f(x_1, ..., x_n) dx_1, ... x_n$$

nebo

$$\int_{I} f(x_1, ..., x_n) dx_1 dx_2 \cdots dx_n$$

Tvrzení: Riemannův integrál $\int_J f(\mathbf{x}) d\mathbf{x}$ existuje právě když $\forall \varepsilon > 0 \exists$ rozdělení P :

$$S_J(f, P) - s_J(f, P) < \varepsilon$$
.

Důkaz: nerovnost dává

$$S_J(f,P) < \varepsilon + s_J(f,P)$$

a z toho máme

$$\overline{\int} \leq S_J(f, P) < \varepsilon + s_J(f, P) \leq \varepsilon + \int \leq \varepsilon + \overline{\int};$$

kde ε může být libovolně malé.

9.2 Tvrzení o existenci Riemannova integrálu

Riemannův integrál $\int_I f(\mathbf{x}) d\mathbf{x}$ existuje právě když $\forall \epsilon > 0$ existuje rozdělení P takové, že

$$S_J(f,P) - s_J(f,P) < \epsilon$$

Důkaz: Nerovnost dává

$$S_J(f, P) < \epsilon + s_J(f, P)$$

z toho dostaneme

$$\overline{\int} \le S_J(f, P) \le \epsilon + s_J(f, P) \le \epsilon + \int \le \epsilon + \overline{\int}$$

pro libovolně malé ϵ

9.3 Věta: Každá spojitá funkce na n-rozměrnem kompaktním intervalu má Riemannův integrál

Každá spojitá funkce $f:J\to\mathbb{R}$ na n-rozměrném kompaktním intervalu má Riemannův integrál $\int_J f$.

Důkaz: V \mathbb{E}_n budeme používat vzdálenost σ definovanou předpisem

$$\sigma(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$$

Jelikož je fstejnoměrně spojitá, můžeme pro $\epsilon>0$ zvolit $\delta>0$ takové, že

$$\sigma(\mathbf{x}, \mathbf{y}) < \delta \Rightarrow |f(\mathbf{x} - f(\mathbf{y}))| < \frac{\epsilon}{\operatorname{vol}(J)}$$

Připomeňme si jemnost $\mu(P)$. Je-li $\mu(P) < \delta$ je diam $(B) < \delta$ pro všechny $B \in \mathcal{B}(P)$ a tedy

$$M(f, B) - m(f, B) = \sup\{f(\mathbf{x}) | \mathbf{x} \in B\} - \inf\{f(\mathbf{x}) | \mathbf{x} \in B\} \le$$

$$\leq \sup\{|f(\mathbf{x}) - f(\mathbf{y})| : \mathbf{x}, \mathbf{y} \in B\} = \frac{\epsilon}{\operatorname{vol}(J)}$$

takže

$$\begin{split} S(f,P) - s(f,P) &= \sum \{ (M(f,B) - m(f,B)) \cdot \operatorname{vol}(B) | B \in \mathcal{B}(P) \} \leq \\ &\leq \frac{\epsilon}{\operatorname{vol}(J)} \sum \{ \operatorname{vol}(B) | B \in \mathcal{B}(P) \} = \frac{\epsilon}{\operatorname{vol}(J)} \operatorname{vol}(J) = \epsilon \end{split}$$

9.4 Fubiniova věta

Vezměme součin $J=J'\times J''\subseteq \mathbb{E}_{m+n}$ intervalů $J'\subseteq \mathbb{E}_m,\ J''\subseteq \mathbb{E}_n$. Nechť existuje

$$\int_{I} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \mathbf{y}$$

a nechť pro každé $\mathbf{x} \in J'$, resp. $\mathbf{y} \in J''$, existuje

$$\int_{J'} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \quad \text{resp.} \quad \int_{J''} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

Potom je

$$\int_{J} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \mathbf{y} = \int_{J'} \left(\int_{J''} f(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) d\mathbf{x} = \int_{J''} \left(\int_{J'} f(\mathbf{x}, \mathbf{y}) d\mathbf{x} \right) d\mathbf{y}$$

Tedy ve dvou proměnných

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} f(x, y) \, dy \right) \, dx$$

ve třech proměnných

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\int_{a_{3}}^{b_{3}} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1}$$

a obecně

$$\int_{J} f = \int_{a_{1}}^{b_{1}} \left(\int_{a_{2}}^{b_{2}} \left(\dots \left(\int_{a_{n}}^{b_{n}} f(x_{1}, x_{2}, \dots, x_{n}) dx_{n} \right) \dots \right) dx_{2} \right) dx_{1}$$

Důkaz: Položme

$$F(\mathbf{x}) = \int_{U'} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$$

Dokážeme, že $\int_{I'} F$ existuje a že

$$\int_{I} f = \int_{I'} F$$

Zvolme rozdělení P intervalu J tak, aby

$$\int f - \epsilon \le s(f, P) \le S(f, P) \le \int f + \epsilon$$

Toto rozdělení je tvořeno rozděleními P' intervalu J' a P'' intervalu J''. Máme

$$\mathcal{B}(P) = \{B' \times B'' | B' \in \mathcal{B}(P'), B'' \in \mathcal{B}(P'')\}$$

a každá cihla P se objeví jako právě jedno $B' \times B''$. Potom je

$$F(\mathbf{x}) \leq \sum_{B'' \in \mathcal{B}(P'')} \max_{\mathbf{y} \in B''} f(\mathbf{x}, \mathbf{y}) \cdot \text{vol} B''$$

a tedy

$$\begin{split} S(F,P') &\leq \sum_{B' \in \mathcal{B}(P')} \max_{\mathbf{x} \in B'} \left(\sum_{B'' \in \mathcal{B}} (P'') \max_{\mathbf{y} \in B''} f(\mathbf{x}, \mathbf{y}) \cdot \operatorname{vol}(B'') \right) \cdot \operatorname{vol}(B') \leq \\ &\leq \sum_{B' \in \mathcal{B}(P')} \sum_{B'' \in \mathcal{B}(P'')} \max_{(\mathbf{x}, \mathbf{y}) \in B' \times B''} f(\mathbf{x}, \mathbf{y}) \cdot \operatorname{vol}(B'') \cdot \operatorname{vol}(B') \leq \\ &\leq \sum_{B' \times B'' \in \mathcal{B}(P)} \max_{\mathbf{z} \in B' \times B''} f(\mathbf{z}) \cdot \operatorname{vol}(B' \times B'') = \\ &= S(f, P) \end{split}$$

a podobně

$$s(f, P) \le s(F, P')$$

Máme tedy

$$\int_{I} f - \epsilon \le s(F, P') \le \int_{I'} F \le S(F, P) \le \int_{I} f + \epsilon$$

a $\int_{I'} F$ je roven $\int_{I} f$.

9.5 Lebesgueův integrál

Riemannův integrál je intuitivně velmi uspokojivý a počítá to, co chceme, pokud tedy funguje. Jeho užití má ale několik problémů:

- Nemusí existovat i pro některé přirozeně definované funkce, nebo přinejmenším není snadno vidět, zda existuje.
- Nemůžeme provádět užitečné operace(limity, derivování) dost univerzálně.

Lebesgueův integrál je rozšíření Riemannova integrálu, kde můžeme dělat prakticky cokoliv, za snadno zapamatelných podmínek. Několik Lebesgueovských pravidel:

- 1. Je-li interval a Riemannův integrál $\int_J f$ existuje, shoduje se s Lebesgueovým.
- 2. Pokud $\int_{D_n} f$ f existuje pron=1,2,...,existuje i

$$\int_{\bigcup D_n} f$$

3. Pokud $\int_D f_n$ existuje a posloupnost $(f_n)_n$ je monotónní, platí

$$\int_{D} \lim_{n} f_{n} = \lim_{n} \int_{D} f_{n}$$

4. Pokud $\int_D f_n$ existuje a $|f_n| \leq g$ pro nějaké g pro které existuje $\int_D g,$ platí

$$\int_{D} \lim_{n} f_{n} = \lim_{n} \int_{D} f_{n}$$

5. Je-li Domezená, $|f_n(x)| \leq C$ a $\int_D f_n$ existují, platí

$$\int_{D} \lim_{n} f_{n} = \lim_{n} \int_{D} f_{n}$$

6. Buď U okolí bodu t_0 a g takové, že existují $\int_D g$ a $\int_D f(t,x) dx$ a $\forall t \in U \setminus \{t_0\} : |f(t,x)| \leq g(x)$ (potom

$$\int_{D} f(t_0, x) dx = \lim_{t \to t_0} \int_{D} f(t, x) dx$$

7. Jestliže pro integrovatelnou g platí

$$\left| \frac{\partial f(t,x)}{\partial t} \right| \le g(x)$$

a v nějakém okolí U bodu t_0 všechno dává smysl(?), potom platí

$$\int_{D} \frac{\partial f(t_0, -)}{\partial t} = \frac{d}{dt} \int_{D} f(t_0, -)$$

9.6 Tietzeova věta

Buď Y uzavřený podprostor metrického prostoru X. Potom můžeme každou spojitou reálnou funkci f na Y takovou, že $\forall x \in Y : a \leq f(x) \leq b$ rozšířit na stejně omezenou spojitou funkci g na X.