Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	harray $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	harray $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	earray $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	, 30, 80, 48] into	a minimum he	ap using the line	ar time heap bui
Convert the a	array $a = [10, 24]$ how the order of a	, 42, 66, 33, 9, 2 all items after ea	30, 80, 48] into	a minimum he	ap using the line	ar time heap bui

b) De	ert 25 into the heap lete 39 from the hea	ap.				
b) De	lete 39 from the hea	ap.				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
	laims to have inven	ted a sorting a				
C. It is	s not comparison-bases only doing it on a series not stable of X is wrong		the worst o	case		
E. FIC	of A is wrong					

5.	Assuming that all keys involved are different, a max-heap that is also a binary search tree must consist of (choose
	the most accurate answer):
	A. at most 2 nodes
	B. a root node, or be empty
	C a root node

6. Given the binary search tree below:

- a) Delete node 48 in the tree.
- b) Delete node 16 in the tree.
- c) Delete node 12 in the tree by using the minimum key in the right subtree.
- d) Delete node 12 in the tree by using the maximum key in the left subtree.

7.	Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A , the keys to the left of the search path; B the keys on the search path; and C , the keys to the right of the search path. Professor Bunyan claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Is this true? If so, explain how this is the case. If not, give a possible counterexample to the professor's claim.