# Кислоты

<u>Кислоты</u> — сложные вещества, состоящие из атомов Н и кислотного остатка.

<u>Кислоты</u> — электролиты, при диссоциации которых образуются катионы H и анионы кислотного остатка.

# Графические (Структурные) формулы кислот



### Классификация кислот

I.

- Кислородосодержащие
- Бескислородные

II.

- ▶ Одноосновные HCl
- ▶ Двухосновные Н₂SO₄
- ▶ Трехосновные Н₃РО₄



### III. По силе

- > Сильные
- $\triangleright$  Средние  $H_3PO_4$ ,  $H_2SO_4$ , HF...
- $\triangleright$  Слабые органические,  $H_2SO_3$ ,  $H_2SiO_3$

### IV. По устойчивости

- $\triangleright$  Устойчивые  $H_2SO_4$ ,  $H_3PO_4$
- $\blacktriangleright$  Неустойчивые  $H_2CO_3$ ,  $H_2SiO_3$ ,  $H_2SO_3$ ,  $HNO_3$
- V. По растворимости в воде
  - $\triangleright$  Нерастворимые  $H_2 Si O_3$
  - Растворимые остальные
- VI. По агрегатному состоянию
  - $\triangleright$  Твердые  $H_2 Si O_3$ ,  $H_3 PO_4$
  - ightharpoonup Газы  $H_2S$ , HCl, HI, HBr без  $H_2O$
  - Жидкие остальные

# Получение кислот

I. Кислотный оксид + H<sub>2</sub>O

SiO не pearupyem  

$$SO_3+ H_2O \rightarrow H_2SO_4$$
  
 $N_2O_5+ H_2O \rightarrow 2 HNO_3$   
 $N_2O_3+ H_2O \rightarrow 2 HNO_2$   
 $Mg_2O_7+ H_2O \rightarrow HMgO_4$ 

$$!!!N^{+4}O_2 + H_2O \rightarrow HN^{+5}O_3 + HN^{+3}O_2$$
  
+ 4не характерный (характерные + 1, + 3, + 5)

II. He Me 
$$+$$
 H<sub>2</sub>

$$H_2 + Cl_2 \rightarrow 2 HCl$$
  
 $H_2 + S \rightarrow H_2 S$ 

# III. <u>Соль</u> + кислота

Реакция обмена идет до конца, если образуется более слабый электролит (осадок, газ или вода) — предпочтительнее газ

(если соль не растворима в воде, то при газе +)

Максимальной вытеснительной силой обладает  $H_2SO_4$ 

$$\frac{\stackrel{\checkmark}{Na_2SiO_3} + \stackrel{?}{2} \stackrel{\checkmark}{HCl} \rightarrow H_2SiO_3 + \stackrel{?}{2} \stackrel{?}{NaCl}}{SiO_3^{2^-} + \stackrel{?}{2} \stackrel{?}{H}^+ \rightarrow H_2SiO_3} + \stackrel{?}{2} \stackrel{?}{NaCl}$$

По этой реакции легко получаются все неустойчивые кислоты

$$CaCO_3 + \underbrace{2 H Cl}_{} \rightarrow \underbrace{Ca Cl}_{2} + CO_2 \uparrow + H_2O$$

$$CaCO_3 + \underbrace{2 H^+}_{} \rightarrow \underbrace{Ca^{2^-}}_{} + CO_2 \uparrow + H_2O$$

#### Химические свойства кислот

# Диссоциация кислот в воде

### а) Сильных кислот

$$H_{2}SO_{4} \rightarrow H^{+} + HSO_{4}^{-}$$

$$HSO_{4}^{-} \leftarrow H^{+} + SO_{4}^{2-}$$

$$H_{2}SO_{4} \rightarrow 2H^{+} + SO_{4}^{2-}$$

**1**индикаторь

#### Вывод 1

Каждая последующая стадия диссоциации идет в меньшей степени, чем в предыдущей.

#### Вывод 2

При диссоциации многоосновных кислот образуются кислые и не кислые остатки => многоосновные кислоты способны образовывать средние соли.

$$NaHSO_4$$
—средняя соль

$$Na_2 SO_4$$
 — кислая соль

Сильные кислоты принято записывать в ионных уравнениях реакции.

# b) <u>Несильные</u>

$$H_{3}PO_{4} \stackrel{\rightarrow}{\leftarrow} H^{+} + H_{2}PO_{4}^{-}$$

$$H_{2}PO_{4}^{-} \stackrel{\rightarrow}{\leftarrow} H^{+} + HPO_{4}^{2-}$$

$$HPO_{4}^{2-} \stackrel{\rightarrow}{\leftarrow} H^{+} + PO_{4}^{3-}$$

Суммарного уравнения нет, так как вторая и третья стадии диссоциации проходит очень незначительно.

Когда реагирует фосфорная кислота с основными веществами, чаще образуются дигидрофосфаты.

| Генетические ряды |          |
|-------------------|----------|
| Me                | неМе     |
| Ме                | неМе     |
| <b>↓</b>          | <b>↓</b> |
| MeO               | неМеО    |
| <b>+</b>          | <b>↓</b> |
| МеОН              | HX       |
| <b>+</b>          | <b>↓</b> |
| MeX               | MeX      |