Guía 3 - Parte I

Sistemas complejos en máquinas paralelas

2do Cuatrimestre 2015

Esta guía tiene como objetivo poner en práctica la realización de discretizaciones de algunas ecuaciones diferenciales parciales por el método de las diferencias finitas, su clasificación y su posterior implementación. Para los siguientes ejercicios se pide realizar las consignas: ¹

- a Clasifique la ecuación diferencial: elíptica, parabólica o hiperbólica.
- b Discretice por diferencias finitas. Intercale el uso de los métodos: explícito, crank-nicolson y fuertemente implícito.
- c Implemente la solución basándose en las rutinas para resolución de sistemas de ecuaciones lineales del práctico anterior.
- d Grafique la solución para diferentes tiempos.

Ejercicios:

1. Se tiene una cuerda de 1 m de largo completamente estirada, fijada en sus extremos a idéntica altura. La misma pesa 1g y se estira con una tensión de 40 kgf (1 kgf = 9.80665 N). A 50 cm del extremo izquierdo se tira de la cuerda 7 cm respecto de la posición del equilibrio y se la suelta. La siguiente ecuación diferencial modela el problema:

$$\frac{\partial^2 u}{\partial t^2} = \frac{T}{\mu} \frac{\partial^2 u}{\partial x^2} \tag{1}$$

Donde $x \in [0;1]$ y t > 0 son las variables espacial y temporal respectivamente. u(x,t) es la distancia que se estira la cuerda de la posición de equilibrio. $\mu = w/L$, es la densidad lineal, w es la masa, y L es el largo de la cuerda. Se desea resolver dicha ecuación en base a los siguiente datos: condiciones de contorno u(x=0,t)=0 y u(x=1,t)=0 para todo t. Condiciones iniciales u(x,t=0)=0 para todo x excepto u(x=0.5,t=0)=0.07.

- a) Calcule la velocidad de propagación de la onda en la cuerda $v=(\frac{T}{\mu})^{0.5}$
- b) ¿En cuanto tiempo (t_c) se completa un ciclo de la onda?
- c) A partir de ese valor, calcular la frecuencia $(f = \frac{1}{t_c})$ a la que vibra la cuerda. Comparar con $f = \frac{v}{2L}$
- d) Probar el ejemplo interactivo de la ecuación de la cuerda vibrante en Wolfram Demostrations Project: http://demonstrations.wolfram.com/TheVibratingString Para ejecutar la demostración debe instalar Wolrfram CDF Player: https://www.wolfram.com/cdf-player/

Nota: prestar atención a las unidades.

2. La ecuación de Burgers es una ecuación diferencial de la mecánica de los fluidos y es equivalente a la ecuación de Navier-Stokes para un fluido incompresible sin el término de presión. La versión 1D de dicha ecuación es la siguiente:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} \tag{2}$$

Donde $x \in [-0.5; 0.5]$ y t > 0 son las variables espacial y temporal respectivamente. u(x,t) la velocidad del fluido dependiente del espacio y el tiempo. Se desea resolver dicha ecuación en base a los siguiente datos: condiciones de contorno: u(-0.5;t) = 0.5, u(0.5;t) = -0.5. Condiciones iniciales: u(x;0) = 0 con $x \in (-0.5;0.5)$. Coeficientes de viscosidad $\nu = 0.01$; 0.1 y 1.

- a) ¿Qué método (explícito, cranck-nicolson, fuertemente implícito) remueve la no-linealidad de la ecuación?
- b) Analice los resultados para los distintos coeficientes de viscosidad propuestos.
- c) Analice los resultados para distintas densidades de mallado espacial.

Bibliografía:

- "Analisis Numéricos para Ingeniería". FI. UNMDP. Argentina. http://www3.fi.mdp.edu.ar/analisis/
- http://www.math.ucsb.edu/ grigoryan/124B/lecs/lec18.pdf

 $^{^1\}mathrm{Nota}$: Se recomienda realizar las implementaciones en C++ y los gráficos en Octave/Matlab.