National University of Science and Technology School of Electrical Engineering and Computer Science

Department of Software Engineering

EE433: Digital Image Processing

Class: BESE-5

Lab 6: Noise reduction using spatial-domain Techniques

Date: 17th October, 2017

Time: 2pm-5pm

Instructor: Dr. Muhammad Moazam Fraz

Lab Engineer: Ms Iram Tariq Bhatti

Course Learning Outcomes (CLOs)				
Upon completion of the course, students should demonstrate the ability to:		PLO Mapping	BT Level*	
CLO 1	Understanding the fundamentals and basic concepts of image processing	PLO 1	C2	
CLO 2	Analyze images using mathematical transformations and operations	PLO 2	C4	
CLO 3	Develop solutions by using modern tools to solve practical problems.	PLO 5	C5	
	* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain			

Table of Contents

Learning Outcome	3
Goal	3
Objectives	3
Tools/Software Requirement	3
Notes:	3
Task#2 Apply different kinds of noise removal filters as given below;	6
Arithmetic mean	6
Geometric mean	6
Harmonic mean with different parameters	6
Contra harmonic mean (implementation provided with Lab6)	6
Min point filters	6
Max filters	6
Min filters	6
Median filters	6
Submission	8

Learning Outcome

CLO 2: Analyze images using mathematical transformations and operations.

Goal

The goal of this lab is to learn how to perform noise reduction using spatial domain techniques.

Objectives

- Learn how to implement the arithmetic mean filter, as well as some of its variations, such as the contra-harmonic mean, the harmonic mean, and the geometric mean filters.
- Learn how to perform order statistic filtering, including median, min, max, midpoint, and alpha-trimmed mean filters.

Tools/Software Requirement

Python 3.5 MATLAB 2016

Notes:

- Use any default Matlab images for this Lab except **pears.png**.
- Use grayscale images to demonstrate your results.
- For python look at the link below: http://scikit-image.org/docs/stable/api/skimage.util.html#random-noise
- Read documentation of following Matlab function. The documentation can be opened by writing doc <function name> in Matlab command window.

Imnoise, t, imfilter, nlfilter function, ordfilt2, medfilt2.

Task#1 Corrupt the input images with different types of noise models

- 1. 'Gaussian'
- 2. 'poisson'
- 3. 'salt & pepper'
- 4. 'speckle'
- 5. Salt only noise (implementation provided with Lab6)
- 6. Pepper only noise (implementation provided with Lab6)

Below is the demonstration for Task 1.

• Image Corrupted with Gaussian Noise:

• Image Corrupted with Pepper Noise:

• Image Corrupted with Poisson Noise:

• Image Corrupted with Salt & Pepper Noise:

• Image Corrupted with Salt Noise:

• Image Corrupted with Speckle Noise:

Task#2 Apply different kinds of noise removal filters as given below;

- 1. Arithmetic mean
- 2. Geometric mean
- 3. Harmonic mean with different parameters
- 4. Contra harmonic mean (implementation provided with Lab6)

The *contra harmonic mean filter* is used for filtering an image with either salt or pepper noise (but not both).

- 5. Min point filters
- 6. Max filters
- 7. Min filters
- 8. Median filters

Question 1: What is the effect of using the wrong sign when filtering with the contra harmonic mean filter?

Question 2: Why do you think the median filter works on salt and pepper noise but not Gaussian noise?

Below is the demonstration for Task # 2 Images with Noise Removed:

• Arithmetic mean filter:

Impact on Gaussian Noise

Impact on Pepper Noise

Impact on Poisson Noise

Impact on Salt Noise

• Min Filter:

impact on gaussian noise

impact on salt & pepper noise

impact on poisson noise

impact on speckle noise

Submission

Perform above mentioned practice tasks in Matlab or Python.

Just make a new folder named as DIP-Lab6 in existing private repository and then add the teacher as a collaborator. All the code must be in runnable format in order to get the credit.

- 1. A file with commented source code representing the work accomplished for this lab.
- 2. All files should contain author in the comments at the top of the file.
- 3. Copy the output image of each filter to the MS WORD file and give explanation of the effect of filter application as visible in respective output images.