Process Mining: Data Science in Action

Learning Dependency Graphs

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Heuristic mining: Two main phases

- Here we focus on learning dependency graphs (first phase).
- Inspired by heuristics miner (but many variations are possible).

Running example: C-net

Example event log with some outliers

outliers (not in model)

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

Problems of the Alpha algorithm with log

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

Frequencies matter!

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times |\{1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}|$$

Counting direct succession

information loss when frequencies are ignored

 $\leq i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}$

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, e \rangle^1, \langle a, e \rangle^{10}, \langle a, d, e, e \rangle^2, \langle a, d, d, e, e \rangle^1]$$

 $|>_L|$ a b c d e a 0 11 11 a 0 11 11 a 11 a

Dependency measure Taking into account concurrency

$$|a>_L b| = \sum_{\sigma \in L} L(\sigma) \times |\{1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}|$$

direct succession

dependency measure

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Two values: Direct succession and dependency

$$|a>_{L} b| = \sum_{\sigma \in L} L(\sigma) \times |\{1 \le i < |\sigma| \mid \sigma(i) = a \land \sigma(i+1) = b\}|$$

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

- Both need to be above predefined thresholds!
- Otherwise, no causality!

TU/e

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Sequence pattern

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

TU/e

Included arc (assuming thresholds ≥1 and ≥0.5)

XOR-split pattern

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Included arcs (assuming thresholds ≥1 and ≥0.5)

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

XOR-join pattern

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Included arcs (assuming thresholds ≥1 and ≥0.5)

TU/e

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

AND-split pattern

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

illustrates why $>_{L}$ is not enough and \Rightarrow_{L} is needed

Included arcs (assuming thresholds ≥1 and ≥0.5)

AND-join pattern

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

illustrates why $>_{L}$ is not enough and \Rightarrow_{L} is needed

Included arcs (assuming thresholds ≥1 and ≥0.5)

a> _L b = 5	b> _L a = 5
a⇒ _L b = 0/11	b⇒ _L a = 0/11
$ a>_L c = 5$	b> _L c = 5
$ a\Rightarrow_L c = 5/6$	b⇒ _L c = 5/6
c> _L a = 0 c⇒ _L a = -5/6	$ c>_{L}b = 0$ $ c\Rightarrow_{L}b = 5/6$

TU/e

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Loop pattern

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

Loop pattern

 $|a \Rightarrow_L b|$ is the value of the dependency relation between a and b:

$$|a \Rightarrow_{L} b| = \begin{cases} \frac{|a >_{L} b| - |b >_{L} a|}{|a >_{L} b| + |b >_{L} a| + 1} & \text{if } a \neq b \\ \frac{|a >_{L} a|}{|a >_{L} a| + 1} & \text{if } a = b \end{cases}$$

illustrates why self loops are handled differently (otherwise 0)

$$|a\rangle_{L}a| = 0$$
 $|b\rangle_{L}a| = 0$ $|c\rangle_{L}a| = 0$ $|c\rangle_{L}a| = 0$ $|c\rangle_{L}a| = 0$ $|c\rangle_{L}a| = -3/4$ $|c\rangle_{L}b| = 7$ $|b\rangle_{L}b| = 3$ $|c\rangle_{L}b| = 0$ $|a\rangle_{L}b| = 7/8$ $|b\rangle_{L}b| = 3/4$ $|c\rangle_{L}b| = -7/8$ $|c\rangle_{L}b| = -7/8$ $|c\rangle_{L}c| = 0$ $|a\rangle_{L}c| = 3/4$ $|b\rangle_{L}c| = 7$ $|c\rangle_{L}c| = 0$ $|c\rangle_{L}c| = 0/1$

Included arcs (assuming thresholds ≥1 and ≥0.5)

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Example revisited

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

$ >_L $	а	b	С	d	e
а	0	11	11	13	5
b	0	0	10	0	11
С	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Question: What are $|a\Rightarrow_L b|$ and $|d\Rightarrow_L d|$?

$$L = [\langle a, e \rangle^5, \langle a, b, c, e \rangle^{10}, \langle a, c, b, e \rangle^{10}, \langle a, b, e \rangle^1, \langle a, c, e \rangle^1, \langle a, d, e \rangle^{10}, \langle a, d, d, e \rangle^2, \langle a, d, d, d, e \rangle^1]$$

$ >_L $	а	b	С	d	e
а	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Compute the dependency measures $|a\Rightarrow_l b|$ and $|d\Rightarrow_l d|$

Dependency measures computed for all activity pairs

$ \Rightarrow_L $	a	b	С	d	e
a	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -0.92$	$\frac{10-10}{10+10+1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
d	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
e	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

Two example values: $|a\Rightarrow_L b|$ and $|d\Rightarrow_L d|$

$ \Rightarrow_L $	a		b		C	d	e
a	$\frac{0}{0+1} = 0$	11-	$\frac{-0}{0+1} = 0.9$	$\frac{11-0}{11+0+}$	$_{1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -$	0.92	$\frac{0}{0+1} = 0$	$\frac{10-}{10+1}$	$\frac{10}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -$	$0.92 \frac{10}{10}$	$\frac{0-10}{+10+1} = 0$	0 + 0	$\overline{1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
$ >_L $	а	b	С	d	e	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
а <i>b</i>	$0 \\ 0$	0	11 10	13 0	11	$\frac{0-13}{0+13+1} = -0.93$	11=1
c	0	10	0	0	11	$\lfloor b \rfloor$ is the value of the dependent	
d e	0 0	0	0	4 0	13 0	$ a \Rightarrow_{L} b = \begin{cases} \frac{ a >_{L} b - b >}{ a >_{L} b + b >_{L}} \\ \frac{ a >_{L} a }{ a >_{L} a + 1} \end{cases}$	$ \frac{ L a }{ a +1} \text{if } a \neq b \\ \text{if } a = b $

Dependency graph using a lower threshold

(at least 2 direct successions and a dependency of at least 0.7)

$ \Rightarrow_L $	а	b	С	d	e
а	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\frac{0-11}{0+11+1} = -0.92$	$\frac{10-10}{10+10+1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
d	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
e	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

$ >_L $	а	b	c	d	e
а	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

Dependency graph using a higher threshold

(at least 5 direct successions and a dependency of at least 0.9)

$ \Rightarrow_L $	а	b	С	d	e
а	$\frac{0}{0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{11-0}{11+0+1} = 0.92$	$\frac{13-0}{13+0+1} = 0.93$	$\frac{5-0}{5+0+1} = 0.83$
b	$\left \frac{0 - 11}{0 + 11 + 1} = -0.92 \right $	$\frac{0}{0+1} = 0$	$\frac{10-10}{10+10+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
c	$\left \frac{0 - 11}{0 + 11 + 1} = -0.92 \right $	$\frac{10-10}{10+10+1} = 0$	$\frac{0}{0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{11-0}{11+0+1} = 0.92$
d	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0-0}{0+0+1} = 0$	$\frac{0-0}{0+0+1} = 0$	$\frac{4}{4+1} = 0.80$	$\frac{13-0}{13+0+1} = 0.93$
e	$\frac{0-5}{0+5+1} = -0.83$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-11}{0+11+1} = -0.92$	$\frac{0-13}{0+13+1} = -0.93$	$\frac{0}{0+1} = 0$

$ >_L $	а	b	c	d	e
а	0	11	11	13	5
b	0	0	10	0	11
c	0	10	0	0	11
d	0	0	0	4	13
e	0	0	0	0	0

Computing the dependency graph

- 1. Set thresholds for the minimal number of direct successions and the dependency measure.
- 2. Count direct successions.
- 3. Compute dependency measures.
- 4. Draw dependency graph while including only arcs that meet both thresholds.

Practice doing this yourself on small example logs!

Disco

(different kind of dependency graphs, but idea of thresholds is similar)

Next step: Learn splits and joins

