Formalia.

- Ausgabe in der Übung am 24. November 2016
- Abgabe in der Übung am 15. Dezember 2016 oder per Mail an Marc Otto
- Gesamtpunktzahl 50 (30 Punkte plus 20 Zusatzpunkte)

Vorbereitung.

- Bezeichne \hat{a} den Vektor mit Länge eins in Richtung von a, also $\hat{a} = \frac{a}{\|a\|}$. Insbesondere bezeichne \hat{n} den Einheitsvektor in Richtung einer Rotationsachse.
- Bezeichne a^{\otimes} die schiefsymmetrische Matrix zu a, also $a^{\otimes} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$.
- Der Rotationswinkel ϕ um eine Rotationsachse sei immer so gewählt, dass $\phi \in (-\pi, +\pi]$ gilt.
- Für Rechenaufgaben kann etwa das 'ipython notebook' verwendet werden. 1
- Für Zeichenaufgaben kann etwa das Geometrie-Programm 'geogebra' verwendet werden.²

Aufgabe A (Rotation in der Ebene).

[5P|3ZP]

- 1. Gegeben sei der Winkel $\phi = 2\pi \cdot \frac{47^{\circ}}{360^{\circ}}$.
 - (a) Berechne $z = \exp(i \cdot \phi)$.
 - (b) Zeichne z in ein Koordinatensystem zusammen mit dem Einheitskreis.
 - (c) Approximiere den Kreisauschnitt zwischen $(1,0)^T$ und z durch die Strecke s zwischen den beiden Punkten, zeichne s ins Koordinatensystem ein.
 - (d) Berechne die Länge der Strecke s.

Aufgabe B (Gerichtete Winkel).

[5P|3ZP]

- 1. Zeichne das Dreick, das durch die Punkte mit den Koordinaten $A = (0,0)^T$, $B = (5,0)^T$ und $C = (4,5)^T$ aufgespannt wird.
- 2. Berechne die (positiven) Innenwinkel des Dreiecks, berechne die Summe der Innenwinkel (in Radiant und Grad).
- 3. Berechne die Vektoren $\mathbf{a} = \overrightarrow{BC} = C B$, $\mathbf{b} = \overrightarrow{CA} = A C$, $\mathbf{c} = \overrightarrow{AB} = B A$.
- 4. Bestimme die gerichteten Winkel $\angle(a,b)$ $\angle(b,c)$, und $\angle(c,a)$, berechne Ihre Summe der gerichteten Winkel (in Radiant und Grad). Benutze dazu die Funktion atan2.

Aufgabe C (Tangens-Substitution).

[5P|3ZP]

- 1. Zeichne ein Koordinatenkreuz mit x-Achse einschließlich [-4, +2] und y-Achse einschließlich [-3, +3].
- 2. Zeichne den Kreis C' um $\mathbf{c}' = (0,0)^T$ mit Radius r' = 1 und den C'' um $\mathbf{c}'' = (-1,0)^T$ mit r'' = 2.
- 3. Sei hier $\mathbf{R}(\phi) := \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$. Zeichne das Abbild $\mathbf{w}_1 = \mathbf{R}_1 \cdot \mathbf{v}$ des Vektors $\mathbf{v} = (1,0)^T$ nach Rotation mit $\mathbf{R}_1 = \mathbf{R}(\phi_1)$ für $\phi_1 = 2\pi \cdot \frac{47^\circ}{360^\circ}$. Zeichne das Abbild $\mathbf{w}_2 = \mathbf{R}_2 \cdot \mathbf{v}$ des Vektors $\mathbf{v} = (1,0)^T$ nach Rotation mit $\mathbf{R}_2 = \mathbf{R}(\phi_2)$ für $\phi_2 = 2\pi \cdot \frac{-108^\circ}{360^\circ}$.
- 4. Zeichne den Vektor u_1 von c'' durch w_1 auf C'' und zeichne den Vektor u_2 von c'' durch w_2 auf C''.

¹siehe http://ipython.org/ipython-doc/dev/interactive/htmlnotebook.html

²siehe http://www.geogebra.org/

- 5. Was sind die Lagewinkel der beiden Vektoren u_1 und u_2 in der Ebene (atan2, Werte in Radiant und Grad)? Nenne die beiden Winkel φ_1 und φ_2 . Was ist das Verhältnis von φ_i zu φ_i für i = 1 und i = 2?
- 6. Berechne die Werte $\tan(\phi_1/2)$ und $\tan(\phi_2/2)$. Könnt Ihr Streckenabschnitte in der Skizze finden, die diese Länge haben?

Aufgabe D (Rotation im Raum).

[15 P | 11 ZP]

1. Gegeben sei folgende Rotationsmatrix:

$$\boldsymbol{R}^{(1)} = \begin{pmatrix} 0.87461971 & -0.48480962 & 0 \\ 0.48480962 & 0.87461971 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Bestimme die zwei zugehörigen Einheits-Quaternionen der Form $\hat{q} = (q_0, \mathbf{q})$. Benutze dazu die Formel aus der Übung ("4-fach") und notiere alle vier berechneten Ausdrücke.
- (b) Bestimme über die Quaternionen die Rotationsachse $\hat{\boldsymbol{n}}$ und den Rotationswinkel ϕ . Benutze dazu die Formeln aus der Übung ("cos-sin").
- 2. Gegeben sei die Rotationsachse über den Einheitsvektor $\hat{\boldsymbol{n}} = (0,1,0)^T$ und der Rotationswinkel $\phi = 2\pi \cdot \frac{70^{\circ}}{360^{\circ}}$.
 - (a) Bestimme die Rotationsmatrix $\mathbf{R}^{(2)}$. Benutze dazu die Formel aus der Übung ("Euler-Rodrigues").
 - (b) Bestimme die zugehörigen Einheits-Quaternion der Form $\hat{q} = (q_0, \mathbf{q})$. Benutze dazu die Formel aus der Übung ("cos-sin").
- 3. Gegeben sei folgende Rotationsmatrix:

$$oldsymbol{R}^{(3)}=\left(egin{smallmatrix} -1&0&0\0&1&0\0&0&-1 \end{smallmatrix}
ight)$$

Verfahre wie in Aufgabe 1.

4. Warum stellt die Matrix

$$oldsymbol{S} = \left(egin{smallmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{smallmatrix}
ight)$$

keine Rotation dar? Beschreibe die geometrische Transformation der Matrix (yz-Skizze).

5. Warum stellt die Matrix

$$m{U} = \left(egin{smallmatrix} 1 & 0 & 0 \\ 0 & rac{3}{5} & rac{5}{13} \\ 0 & rac{4}{5} & rac{12}{13} \end{smallmatrix}
ight)$$

keine Rotation dar? Beschreibe die geometrische Transformation der Matrix (yz-Skizze).

6. Warum stellt die Matrix

$$\boldsymbol{V} = \left(\begin{smallmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 2 \end{smallmatrix} \right)$$

keine Rotation dar? Beschreibe die geometrische Transformation der Matrix (yz-Skizze).

- 7. Benutze die ersten drei Berechnungen.
 - (a) Berechne die Rotationsmatrix

$$R^{(1,3)} = R^{(1)} \cdot R^{(2)} \cdot R^{(3)}$$
.

(b) Berechne die Rotationsmatrix

$$\mathbf{R}^{(3,1)} = \mathbf{R}^{(3)} \cdot \mathbf{R}^{(2)} \cdot \mathbf{R}^{(1)}$$

- (c) Berechne für $\mathbf{R}^{(1,3)}$ und $\mathbf{R}^{(3,1)}$ sowohl die zugehörigen Quaternionen als auch Rotationachsen und -Winkel, wie gehabt.
- 8. Berechne die Abbilder der Vektoren $\boldsymbol{b}_1 = (2,0,0)^T$, $\boldsymbol{b}_2 = \frac{1}{\sqrt{2}} \cdot (1,1,0)^T$ und $\boldsymbol{b}_3 = \frac{1}{\sqrt{3}} \cdot (0,1,2)^T$, die mittels der beiden Rotationen $\boldsymbol{R}^{(1,3)}$ und $\boldsymbol{R}^{(3,1)}$ erzeugt werden.
- 9. Berechne die gleichen Abbilder über die Quaternionen $\hat{q}^{(1,3)}$ und $\hat{q}^{(3,1)}$. Benutze dazu die Quaternionen-Regel ("Konjugation").