

Motivation

- Boston has the oldest public transit system in the nation
- How well the MBTA works has the potential to affect the entire city from citizens who use the T as their primary method of transit to businesses who need their employees to arrive on time
 - 34% of Boston commuters take the MBTA

Northeastern was historically a commuter school and many students still use the orange or green line to get to campus

Research Question:

What correlations exist between MBTA service and outside factors?

- Is there a relationship between potential delays and weather factors, day of the week, month of the year, and stops?
- Boston's demographics vary widely from neighborhood to neighborhood
- Some of these neighborhoods may be more reliant on public transportation
- Is there a relationship between better service and the demographic makeup of that area?

Data Sources

- **☐** MBTA 2020 Orange Line data
- Other MBTA informational data
- **□** Weather Underground
- **□** Boston.gov demographic data (2015-2019)
- Boston.gov geojson files

Preparing Data: Delays

- ☐ EDA and Cleaning: fixing issues with NaN, direction ID
- Merged with other data to give each row next + previous stop
- Calculated travel time between stations for each train
- Pivot tables for the time between stations based on date, station, and direction using **median** as the aggfunc
 - Joined weather and precipitation data based on date

					Pivot				
df					df.pivot(index= <mark>'foo'</mark> , columns= <mark>'bar'</mark> , values= <mark>'baz'</mark>)				
	foo	bar	baz	Z00		bar	A	В	С
0	one	А	1	×					
1	one	В	2	у		foo			
2	one	С	3	z					
3	two	А	4	q		one	1	2	3
4	two	В	5	W					
5	two	С	6	t		two	4	5	6

- Flagged data with mean > (5% * median) as 'slow days'
 - ☐ Heavy positive skew -> variability in travel times

Two ML Algorithms Used:

K-NN

Random Forest

KNN for
estimating slow
day flag - 99.5%
accuracy on test
data

RF for estimating time between stops-6.9 mean absolute error on test data

Visualizations: Highest Delay Times

Largest daily average delays: changes in service affect data 1 point: 1 day

	delay_time
service_date_day	
2020-01-18	202.952381
2020-01-25	193.452381
2020-01-26	193.976190
2020-02-08	193.357143
2020-02-15	189.238095
2020-02-16	189.904762
2020-12-12	198.619048
2020-12-13	198.261905

Visualizations: Slow Days & Slow Stations

Visualizations: Looking At Weather & Delay Times

Visualizations: Looking At Delay Times At Each Direction

Boston's Demographics

- ☐ Take each demographic statistic from dataset (ie. People without access to a vehicle), create an individual visualization for it
 - Result is a heatmap-esque plot depicting the neighborhood differences in that specific statistic
- ☐ Find the average delay time each neighborhood experiences
- ☐ Which statistic is most strongly associated with those delay times?
 - **□** Which demographic groups are the most advantaged/disadvantaged?

Room for Exploration

- Incorporate a wider range of data
 - How were delays pre-Covid?
 - ☐ Other MBTA lines?
 - How do other cities fare?
- ☐ Fill in the gaps of our demographic delay time visualization
 - Include all neighborhoods
 - More comprehensive and accurate visualization with different MBTA lines
- ☐ Relevance to current MBTA affairs
 - ☐ How can the MBTA be improved?
 - ☐ How can we ensure certain groups aren't as disadvantaged?
 - ☐ What are the causes of these delays?

Thank you for Listening!