1.) Q1

- a. The entropy of this collection is approximately .9991
- b. The information gain compared to entropy is .2294
- c. My guess for the best split would be a1 as a1 produces 0 for the + class
- d. Based on the Gini index, a1 is the best split

Below is the proof of work

$$E(p,n) = \frac{-p}{p+n} \log (p) - \frac{n}{p+n} \log (\gamma_{p+n})$$

$$= \frac{-4}{9} \log (\frac{4}{4}) - \frac{9}{4} \log_2(\frac{6}{4})$$

information Gein

best split al produced the best split What is the best spit between altaz according to the sinn: index? A1 4/4[1-(3/4)2-(1/4)2]+5/4[1-1/5)2 -{4/5}] = ,344 A2 5/a[1-(2/5)2-(3/5)2]+4/a[1-(4/2)2-(2/4)27 =0.4889 Al has the better split

- 1.) Q2
 - a. A would be the best option to splitBelow is proof of work

Classification error rete

A	B	C	+	•
1	T	†	5	20
+ F T H H	٦ ا	+++++	20	20
F	F F	T	0	05000
I	-	[- l	D	Ø
-	- -	F	25	0
F	Ł	F	200000	25

$$T = 1 - M c \times \left(\frac{25}{25}, \frac{0}{25}\right) = \frac{0}{25} = 0$$

$$F = 1 - M c \times \left(\frac{25}{75}, \frac{0}{75}\right) = \frac{50}{75} = .333$$

$$\Delta A = .25$$

A	B	C	+	1
T F L	T T	+++	0	20
THT.	FFT	TFFF	20000	50
1 1 1	ナナー	FF	25)	0 0 0 0 25

The best attribute to split with

$$BT = \frac{20}{50}$$
 $BF = \frac{20}{50}$

$$C\tau = \frac{25}{50} = 0$$

(23			MI	м		ino	2					
1	3)	4		.73	. (1	۵۰.						
2		+ + 00 + +1		. 64	•	.03		.15					
13	>	0		.44	- (.68		-35 .47 .45					
14		0	-	67		-31		.41					
5		(. 64	.45		.45						
6	-	(+)		47		.69 .38 .65		-13					
12345048				08	1 . 3	.38		.55					
		(15		.05		.67					
5	, , ,			94	.73								
PPNNR	5 5 0 2 .H	5 5 0 3 .02	15 5 4 0 - 53	1000		.67 30 2 5 .37 0	1 3 4 33	2034	2 0 3 5 .28	0 0 5	00000		
PR				٠				-		D			

	+	+	_	-,	+	-		+,	+		
an b	.01	<u>,</u> o3	. 04	<u>,</u> 05	.09	.31	. 38	-45	.61	.68_	1.00_
TP	5	4	3	3	3	2	7	2	1	6	0
FP	5	5	5	4	3	3.	2.	1	1	1	0
TN	0	1.,'	0	_\	2	3.	3	3	4	5	15
FN	0	0 0	2	2.	2	2	3	4.	7	4	3
IBIS	1		·	.6	.4	.5	.4	.25	.2	6	6
FPR	1	.43		-6	16	.5	. 4	· 33	. 2	.14	0

The graphs have a fairly similar shape to them as compared to my python program