DRIVE:

Data-driven Road Intelligence for Vehicular Environments

Mario Köpcke, Jonas Werner 15. April 2025

Konzept & Design

Kontext:

Verkehrsfluss in einer Stadt, bestehend aus einem Straßennetz mit Ampeln und Autos

Ziel:

Verkehrsfluss optimieren, um Reisezeiten zu reduzieren

→ Ampeln befähigen, intelligente Entscheidungen zu treffen

Konzept & Design - Agenten

Autos (Simple Reflex Agent)

- Performance Measure: kürzeste Distanz durch Verkehrsnetz
- Environment: Verkehrsnetz bestehend aus Straßen, Kreuzungen mit Ampeln, Start- und Zielpunkten
- Actuators: Ziel suchen; kürzesten Pfad berechnen; fahren; anhalten
- Sensors: Kamera, GPS

Ampeln (Utility-based Agent)

- Performance Measure: Menge an Autos, die pro Tick eine Ampel überqueren (durchschnittliche Wartezeiten der Autos)
- Environment: Verkehrsnetz bestehend aus Straßen, Kreuzungen mit Ampeln, Start- und Zielpunkten
- Actuators: Anpassung der Ampelschaltungen; Vorhersage, wie viele Autos bei Ampel ankommen werden
- Sensors: Kamera

Umsetzung: Spieltheorie

- Autos als strategische Spieler:
 - Wählen individuell den kürzesten Pfad
 - → Zielkonflikte durch Überlastung bestimmter Routen
- Ampeln als eigenständige Akteure:
 - Optimieren lokal den Durchfluss
 - → Konkurrenz zwischen Kreuzungen entsteht
- Interessenskonflikte zwischen Autos und Ampeln:
 - Autos wollen minimale Wartezeit, Ampeln maximieren lokalen Verkehrsfluss

Umsetzung: Optimierung

Entscheidungsvariablen: Öffnen oder Schließen von angrenzenden Straßen

 $x_{lt} \in \{0,1\}$ mit: $l \in L$: Auswahl der offenen Straße (lane) vom Typ l mit $L = \{angrenzende Straße\}$, $t \in T$: Zeitpunkt vom Typ t mit $T = [0;6] \in \mathbb{N}$

Restriktionen:

• Jede Ampel kann nur exakt eine Straße gleichzeitig öffnen

$$\sum_{l \in L} x_{lt} = 1 \quad \forall t$$

• Jede Ampel kann nur alle 5 Ticks ihre Entscheidung ändern ("Cooldown")

$$\sum_{t \in T} (x_{lt-1} - x_{lt})^2 \le 1 \quad \forall l$$

Zielfunktion: Den Verkehrsfluss an jeder Ampel maximieren

$$f(x) = \sum_{t \in T} \sum_{l \in L} x_{lt} \cdot q_{lt} \to max! \qquad q_{lt} : Anzahl wartender Autos pro Straße l zum Zeitpunkt t$$

Umsetzung: Machine Learning

Ziel:

Punktuelle Vorhersage der Autos an einer Ampel pro Straße

Zweck:

Input für die Optimierung der Ampelschaltung

Bedingungen:

- Daten müssen lokal verfügbar sein
- Modell sollte leichtgewichtig sein

Verfahren:

Supervised Learning - Regression

$$X = \begin{pmatrix} Time \\ Centrality \\ Is_Entrypoint \\ Distance \end{pmatrix} ----- y = Num_Cars$$

Modellauswahl

R2-Score:

RMSE:

XGB Regressor – Hyperparameter Optimierung

Hyperparameter

colsample_bytree = 1.0 gamma = 0 learning_rate = 0.3 max_depth = 8 min_child_weight = 5 n_estimators = 300

Live-Demo

Auswirkung der Komplexität der Umgebung auf den Verkehrsfluss und die Wartezeiten

Auswirkung der Optimierungs-Modi auf den Verkehrsfluss und die Wartezeiten

Auswirkung der Komplexität der Umgebung

Auswirkung der Komplexität der Umgebung

Auswirkung der Optimierungs-Modi

Auswirkung der Optimierungs-Modi

Auswirkung der Optimierungs-Modi

Ausblick

- Realistische Ampelinteraktion: Autos stehen in Reihe, begrenzte Durchfahrt pro Zeitschritt
- Kontinuierliches Lernen im Machine Learning
- Einführung einer maximalen Wartezeit pro Auto
- Nutzung mehrerer Fahrspuren
- Adaptive Routenwahl basierend auf gelernten Wartezeiten
- Globale Optimierung durch Kommunikation zwischen Autos und Ampeln (zentrale Steuerung)

Danke

Mario Köpcke, Jonas Werner

DRIVE:

Data-driven Road Intelligence for Vehicular Environments

Mario Köpcke, Jonas Werner 15. April 2025

Anhang

Projekt

https://github.com/Jonas-wastaken/ias_project

Aufgabenteilung

- Mesa Model: 50/50
- LightAgent: Mario
- CarAgent: Jonas
- Graphvisualisierung: Jonas
- Optimierung: Mario
- Machine Learning: Jonas
- Auswertung Analyse: Mario