MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> January 31, 2024 Lecture 11 D3

Linear Independence: Definition

The vectors $v_1, v_2, ..., v_n$ in a vector space V, are *linearly independent*

if
$$(a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = 0, \ldots, a_n = 0)$$
.

Equivalently, for every nonezero $(a_1, ..., a_n)^T$ in \mathbb{R}^n , we have $a_1v_1 + \cdots + a_nv_n \neq 0$ in V.

The vectors v_1, \ldots, v_n are *linearly dependent* if they are not linearly independent. i.e., we can find $(a_1, \ldots, a_n)^T \neq 0$ in \mathbb{R}^n , such that $a_1v_1 + \cdots + a_nv_n = 0$ in V.

Observe: When $V = \mathbb{R}^m$, if $A = (v_1 \cdots v_n)$, then

$$Ax = x_1v_1 + \cdots + x_nv_n = 0$$
 has a **non-trivial** solution,

 $\Leftrightarrow N(A) \neq 0 \Leftrightarrow v_1, \dots, v_n$ are linearly dependent and

$$Ax = x_1v_1 + \cdots + x_nv_n = 0$$
 has only the **trivial** solution

 $\Leftrightarrow N(A) = 0 \Leftrightarrow v_1, \dots, v_n$ are linearly independent.

Linear Independence: Remarks

Remarks/Examples:

- The zero vector 0 is not linearly independent. Why?
- ② If $v \neq 0$, then it is linearly independent. Why?
- ③ v, w are not linearly independent \Leftrightarrow one is a multiple of the other \Leftrightarrow (for $V = \mathbb{R}^m$) they lie on the same line through the origin.
- **③** More generally, $v_1, ..., v_n$ are not linearly independent \Leftrightarrow one of the v_i 's can be written as a linear combination of the others, i.e., v_i is in Span{ $v_i : j = 1, ..., j \neq i$ }.
- Let A be m × n. Then rank(A) = n ⇔ N(A) = 0
 ⇔ A_{*1}, ··· , A_{*n} are linearly independent.
 In particular, if A is n × n, A is invertible ⇔ A_{*1}, ··· , A_{*n} are linearly independent.

Example: e_1, \ldots, e_n are linearly independent vectors in \mathbb{R}^n .

Rekha Santhanam Lecture 11 D3

Linear Independence: Example

Example: Are the vectors $v_1 = \begin{pmatrix} 2 & 2 & 2 \end{pmatrix}^T$, $v_2 = \begin{pmatrix} 4 & 5 & 3 \end{pmatrix}^T$, $v_3 = \begin{pmatrix} 6 & 7 & 5 \end{pmatrix}^T$ and $v_4 = \begin{pmatrix} 4 & 6 & 2 \end{pmatrix}^T$ linearly independent?

For
$$A = (v_1 \quad \cdots \quad v_4)$$
, reduced form $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

A has only 2 pivots $\Rightarrow N(A) \neq 0$, so v_1, v_2, v_3, v_4 are not independent. A non-trivial linear combination which is zero is $(1)v_1 + (1)v_2 + (-1)v_3 + (0)v_4$, or $(2)v_1 + (-2)v_2 + (0)v_3 + (1)v_4$.

• More generally, if v_1, \ldots, v_n are vectors in \mathbb{R}^m , then $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is $m \times n$.

If m < n, then $\operatorname{rank}(A) < n \Rightarrow N(A) \neq 0$. Thus

In \mathbb{R}^m , any set with more than m vectors is linearly dependent.

Summary: Vector Spaces, Span and Independence

- Vector space: A triple (V, +, *) which is closed under + and * with some additional properties satisfied by + and *.
- Subspace: A non-empty subset W of V closed under linear combinations.

Let
$$V = \mathbb{R}^m$$
, v_1, \ldots, v_n be in V , and $A = (v_1 \cdots v_n)$.

- For v in V, v is in Span $\{v_1, \dots, v_n\}$ $\Leftrightarrow Ax = v$ is consistent
- $v_1, ..., v_n$ are linearly independent $\iff N(A) = 0$ $\iff \operatorname{rank}(A) = n$.
- In particular, with n = m, A is invertible $\Leftrightarrow Ax = v$ is consistent for every v $\Leftrightarrow \operatorname{Span}\{v_1, \dots, v_n\} = \mathbb{R}^n \Leftrightarrow \operatorname{rank}(A) = n$ $\Leftrightarrow \mathcal{N}(A) = 0 \Leftrightarrow v_1, \dots, v_n$ are linearly independent.
- If $\text{Span}\{v_1, ..., v_n\} = \mathbb{R}^m$, then $m \le n$, and any subset of \mathbb{R}^m with more than m vectors is dependent.

Basis: Introduction

Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$, $v_4 = \begin{pmatrix} 5 \\ 12 \\ 13 \end{pmatrix}$, and

 $A = (v_1 \quad v_2 \quad v_3 \quad v_4)$. Can $C(A) = \text{Span}\{v_1, v_2, v_3, v_4\}$ be spanned by less than 4 vectors?

Observe:

• $v_2 = 2v_1 \& v_4 = 2v_1 + v_3 \Rightarrow C(A) = \text{Span}\{v_1, v_3\}.$ Moreover, the span of only v_1 or only v_3 is a line.

Thus, $\{v_1, v_3\}$ is a minimal spanning set for C(A).

• Clearly v_1 is not on the line spanned by v_3 or vice versa. Hence, v_1 and v_3 are linearly independent vectors in C(A). Moreover, if v is in $C(A) = \operatorname{Span}\{v_1, v_3\}$, then v_1 , v_3 , v are linearly dependent. Why?

Thus, $\{v_1, v_3\}$ is a maximal linearly independent set in C(A).

Any such set of vectors gives a basis of C(A).

Basis: Definition

Defn. A subset \mathscr{B} of a vector space V, is said to be a *basis* of V, if it is linearly independent and $\mathrm{Span}(\mathscr{B}) = V$.

Theorem: For any subset S of a vector space V, the following are equivalent:

- (i) S is a maximal linearly independent set in V
- (ii) S is linearly independent and Span(S) = V.
- (iii) S is a minimal spanning set of V.

Remark/Examples:

- Every vector space V has a basis.
- By convention, the empty set is a basis for $V = \{0\}$.
- $\{e_1, \ldots, e_n\}$ is a basis for \mathbb{R}^n , called the *standard basis*.
- A basis of \mathbb{R} is just $\{1\}$. Is this unique?
- $\{(-1 \ 1)^T, (0 \ 1)^T\}$ is a basis for \mathbb{R}^2 . So is $\{e_1, e_2\}$, as is the set consisting of columns of a 2×2 invertible matrix.
- Find a basis in all the examples seen so far.

Coordinate Vector: Definition

• Let $\mathscr{B} = \{v_1, \dots, v_n\}$ be a basis for V and v a vector in V. Span $(\mathscr{B}) = V \Rightarrow v = a_1v_1 + \dots + a_nv_n$ for scalars a_1, \dots, a_n . Linear independence \Rightarrow this expression for v is unique. Thus

Every
$$v \in V$$
 can be *uniquely* written as a linear combination of $\{v_1, \dots, v_n\}$.

Exercise: Prove this!

Definition: If $v = a_1 v_1 + \dots + a_n v_n$, then $(a_1, \dots, a_n)^T \in \mathbb{R}^n$ is called the *coordinate vector* of v w.r.t. \mathcal{B} , denoted $[v]_{\mathcal{B}}$.

Note: $[v]_{\mathscr{B}}$ depends not only on the basis \mathscr{B} , but also the order of the elements in \mathscr{B} .

Question:

How does $[v]_{\mathscr{B}}$ change, if \mathscr{B} is rewritten as $\{v_2, v_1, v_3, \ldots, v_n\}$?