2003 年计算机专业基础

三、

1. 条件 I 是条件 II 的充分必要条件。

证明: 充分性。

若存在 $A\subseteq X, B\subseteq Y$,使得 $R=A\times B$,则对任意 $x_1,x_2\in X,y_1,y_2\in Y$ 有 $\langle x_1,y_1\rangle\in R\wedge\langle x_2,y_2\rangle\in R$

$$\implies x_1 \in A \land y_2 \in B \tag{R = A \times B}$$

$$\Longrightarrow \langle x_1, y_2 \rangle \in R$$
 必要性。

取 $A=\operatorname{dom} R\subseteq X, B=\operatorname{ran} R\subseteq Y$,下面证明对任意 $x\in A,y\in B$ 有 $\langle x,y\rangle\in R$,从而有 $R=A\times B$ 。

 $\forall x \in X, y \in Y,$ $x \in A \land y \in B$

$$\iff \exists w (\langle x, w \rangle \in R) \land \exists z (\langle z, y \rangle \in R) \tag{dom, ran } \hat{\mathbb{Z}}(X)$$

$$\iff \exists w \exists z (\langle x, w \rangle \in R \land \langle z, y \rangle \in R)$$
 (量词辖域扩张等值式)

$$\iff \exists w \exists z (\langle x, y \rangle \in R) \tag{\$ \'e I}$$

$$\implies \langle x, y \rangle \in R$$
 (3消去)

2.

- (1) 当且仅当 N 为大于 0 的偶数时, B_N 是欧拉图。 因为 B_N 是 N-正则图。当且仅当 N 为偶数时, B_N 中每个顶点都是偶数度的。
- (2) 当且仅当 $N \ge 2$ 时, B_N 为哈密顿图。

用归纳法证明。直接验证可知 B_0 , B_1 不是哈密顿图, B_2 是哈密顿图。对任意 $N \geq 2$,若 B_N 是哈密顿图,则可如下构造 B_{N+1} 上的哈密顿圈:先取 B_{N+1} 的一半(正好是一个 B_N),寻找上面的一个哈密顿圈,从中删去任意一条边,成为哈密顿路,在 B_{N+1} 的另一半上以同样找一个哈密顿圈,删去与之对应的一条边。将两边的哈密顿路拼接成一个 B_{N+1} 上的哈密顿圈即可。

(3) 当且仅当 $N \leq 3$ 时, B_N 为可平面的。

易于验证, B_0, B_1, B_2, B_3 是可平面的。

注意到,由于 B_N 是二部图(这一点将在第 (4) 小题中证明),因此不存在长度为 3 的圈,由公式 $m \leq \frac{l}{l-2}(n-2)$ 知,若 B_N 为平面图则 $m \leq 2n-4 < 2n=4 \cdot 2^{N-1}$ 。另一方面,由图论基本定理知, $2m=N2^N$, $m=N2^{N-1}$ 。从而由 $N2^{N-1}=m<4 \cdot 2^{N-1}$ 解得 N<4。

(4) 对所有 $N \ge 1$, B_N 都是二部图。