Graph Data Models and Applications

Oscar Romero
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya

Graph Data Models and Data Analytics

- From a data management point of view:
 - Their extremely flexible
 - Schemaless by definition
 - Facilitate data governance
 - Facilitate ad-hoc transformations
- From a data analytics point of view:
 - Allow to exploit the data structure topology
 - Sits somewhere in between descriptive and probabilistic data analysis

Showcasing Graphs

- Crossing data from social networks it is possible to identify a graph like the one that follows:
 - In the centre there is a specific person P
 - The rest are *P* connections and connections among them
- Using sociology techniques...
 - We can identify P social foci:
 - Dense clusters of friends corresponding to long periods of interaction
 - Typically, college friends, coworkers, relatives, etc.
 - The significant other can be identified by a high dispersion rate
 - Highly connected with P connections,
 - But with a high dispersion degree wrt P social foci
- Hypothesis: when the node with higher dispersion degree Identified is not the partner, this couple is likely to split up in a period of 60 days
- L. Backstrom, J. Kleinberg. Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook https://arxiv.org/pdf/1310.6753v1.pdf

GRAPH APPLICATIONS

Extracted from:
http://www.vldb.org/pvldb/vol11/p420-sahu.pdf

Entities Represented

- Humans: e.g., employees, customers, and their interactions
- Non-Human Entities: e.g., products, transactions, or web pages
 - Products: e.g., products, orders, and transactions
 - Business and Financial Data: e.g., business assets, funds, or bitcoin transfers
 - Web Data
 - Geographic Maps: e.g., roads, bicycle sharing stations, or scenic spots
 - Digital Data: e.g., files and folders or videos and captions
 - Infrastructure Networks: e.g., oil wells and pipes or wireless sensor networks
 - Knowledge and Textual Data: e.g., keywords, lexicon terms, words, and definitions.
- RDF or Semantic Web
- Scientific: e.g., chemical molecules or biological proteins

Graph Computations

Computation	Total	R	P	A
Finding Connected Components	55	18	37	12
Neighborhood Queries (e.g., finding 2-degree neighbors of a vertex)	51	19	32	3
Finding Short / Shortest Paths	43	18	25	17
Subgraph Matching (e.g., finding all diamond patterns, SPARQL)	33	14	19	21
Ranking & Centrality Scores (e.g., PageRank, Betweenness Centrality)	32	17	15	22
Aggregations (e.g., counting the number of triangles)	30	10	20	7
Reachability Queries (e.g.,checking if u is reachable from v)	27	7	20	3
Graph Partitioning	25	13	12	5
Node-similarity (e.g., SimRank)	18	7	11	3
Finding Frequent or Densest Subgraphs	11	7	4	2
Computing Minimum Spanning Tree	9	5	4	2
Graph Coloring	7	3	4	3
Diameter Estimation	5	2	3	2

Legend

R: Researchers P: Practitioners

A: Academic publications

Machine Learning on Graphs

Through Node / Edge embeddings

(a) Machine learning computations.

Computation	Total	R	P	A
Clustering	42	22	20	15
Classification	28	10	18	2
Regression (Linear / Logistic)	11	5	6	2
Graphical Model Inference	10	5	5	2
Collaborative Filtering	9	4	5	2
Stochastic Gradient Descent	4	2	2	3
Alternating Least Squares	0	0	0	2

Traversal	Total	R	P
Breadth-first-search or variant	19	5	14
Depth-first-search or variant	12	4	8
Both	22	8	14
Neither	20	11	9

(b) Problems solved by machine learning algorithms.

Computation	Total	R	P	A
Community Detection	31	15	16	5
Recommendation System	26	10	16	2
Link Prediction	25	10	15	2
Influence Maximization	14	5	9	2

Graph Traversals Performed

POPULAR USE CASES

Fraud Detection: Banking

- Individuals / organisations asking for loans without any intention of paying them back
- Typical scenario
 - A group of two or more people organize into a fraud ring
 - 2. The ring shares a subset of legitimate contact information, for example phone numbers and addresses, combining them to create a number of synthetic identities
 - 3. Ring members open accounts using these synthetic identities
 - 4. New accounts are added to the original ones: unsecured credit lines, credit cards, overdraft protection, personal loans, etc.
 - 5. The accounts are used normally, with regular purchases and timely payments
 - 6. Banks increase the revolving credit lines over time, due to the observed responsible credit behavior
 - 7. One day the ring "busts out", coordinating their activity, maxing out all of their credit lines, and disappearing
 - 8. Sometimes fraudsters will go a step further and bring all of their balances to zero using fake checks immediately before the prior step, doubling the damage
 - 9. Collections processes ensue, but agents are never able to reach the fraudster
 - 10. The uncollectible debt is written off

White paper from Neo4J:

https://neo4j.com/use-cases/

- 1. John Smith lives at 123 NW 1st Street, San Francisco, CA 94101 (his real address) and gets a prepaid phone at 415-123-4567
- 2. Vincent Pourcet lives at 987 SW 1st Ave, San Francisco, CA
 94102 (his real address) and gets a prepaid phone at 415-987-65

Entity Link Analysis

- In fraud detection, such fraud ring analysis is called entity link analysis
- □ A ring of n people ($n \ge 2$) sharing m elements of data (such as name, date of birth, phone number, address, SSN, etc.) can create up to n^m synthetic identities, where each synthetic identity is represented as a node and it is linked to $m \times (n-1)$ other nodes, for a total of $(n^m \times m \times (n-1)) / 2$ relationships
- Relational databases cannot compute such amount of combinations (as they are translated as joins and selfjoins operations)
- In graph databases, it boils down to a graph pattern query

Graph Data Model

Pattern matching:

Recommendations

- Graph databases have democratised recommendations
- The graph database naturally represents:
 - (customers, products, categories) and the relationships between them. E.g.,
 - Who bought what,
 - who "likes" whom,
 - which purchase happened first
- Note both explicit and implicit data can be asserted in the graph database

Recommendations

- Rationale
 - With labels one can categorise products and people
 - By analysing the relationships between products and people one can infer the interests of a person
 - We can weight a product or category likelihood for a given person or person category
- We are not using expensive mining algorithms but deterministic queries!

Natural Language Processing

Sentences as basic construct

```
(:my) - (:cat) - (:eats) - (:fish)
```

- But a node can also represent a paragraph or even just a word
- Natural language processing
 - With NLP techniques, a label is attached
 Verb, noun, adjective, etc.
 - Context can be computed for each word by means of Jaccard or similar indexes
 - Weight words relevance for keyword extraction (e.g., PageRank)

GRAPH DATA MODELS

Graph Data Model in a Nutshell

- Occurrence-oriented
 - It is a schemaless data model
 - There is no explicit schema
 - Data (and its relationships) may quickly vary
 - Objects and relationships as first-class citizens
 - An object o relates (through a relationship r) to another object o'
 - Such relationship is often known as a triple (o r o')
 - Both objects and relationships may contain properties
 - Built on top of the graph theory
 - Euler (18th century)
 - More natural and intuitive than the relational model to deal with relationships

Notation (I)

- \square A **graph** G is a set of nodes and edges: G(N, E)
- *N* **Nodes** (or vertices): n₁, n₂, ... N_m
- □ E Edges are represented as pairs of nodes: (n1, n2)
 - An edge is said to be **incident** to n1 and n2
 - Also, n1 and n2 are said to be adjacent
 - An edge is drawn as a line between n₁ and n₂
 - **Directed edges** entail direction: *from* n₁ *to* n₂
 - An edge is said to be multiple if there is another edge exactly relating the same nodes
 - An hyperedge is an edge inciding in more than 2 nodes.
- Multigraph: If it contains at least one multiple edge.
- Simple graph: If it does not contain multiple edges.
- Hypergraph: A graph allowing hyperedges.

Notation (II)

- □ **Size** (of a graph): #edges
- Degree (of a node): #(incident edges)
 - The degree of a node denotes the node adjacency
 - The neighbourhood of a node are all its adjacent nodes
- Out-degree (of a node): #(edges leaving the node)
 - Sink node: A node with 0 out-degree
- In-degree (of a node): #(incoming edges reaching the node)
 - Source node: A node with 0 in-degree
- Cliques and trees are specific kinds of graphs
 - Clique: Every node is adjacent to every other node
 - Tree: A connected acyclic simple graph

Pros and Cons of Graphs

COMPARISON WITH OTHER DATA MODELS

Activity: Comparison with other Data Models

- □ (5′) Refresh the main data models
 - (10') Consider the UML class diagram below:
 - Propose a relational **and** a graph schema as optimised as possible to deal with the following queries:
 - For a given recipe, give me all the users that favorited it
 - For a given recipe, the list of ingredients it contains with their quantity and metric
 - For a given ingredient, how many users do hate it
 - For a given ingredient, all the recipes each participate
 - For a given user, all the ingredients he loves
 - List all ingredients of a recipe rated above 3 for all users in BCN
 - What are the pros and cons of each data model?

Graphs

- They are occurrence-oriented
- Occurrences are pointed by / point to related occurrences
 - Query operators do not rely on schema
 - Naturally facilitate data linking
- The schema information is embedded together with data
 - The concept of stand-alone catalog does not exit
- Purely schemaless
 - Semantics are fixed by the edge / node labels
- Difficult to benefit from sequential access. Typically, it relies on random accesses
- By definition, it follows an Open-World assumption (i.e., assumes incomplete data)

Key-oriented Models

- The relational model is schemaoriented. Document-stores and keyvalues are schemaless databases but still rely on key-based structures
- Key-oriented models need to make a strong modeling call, which unbalances the logical / physical model
 - As consequence, the degree of (de)normalisation has a big impact in queries
- Can naturally benefit from sequencial reads
- Views are either virtual definitions or, if materialised, additional stand-alone constructs
- Poor relationship semantics: the relational model only deals with FK, document-stores / key-values do not support relationships
- Relational model, and most key-value / document-stores, follow a Closed-World assumption (i.e., complete data)

The extreme modeling of graphs

GRAPHS AS CANONICAL DATA MODELS FOR INTEGRATION

Graphs As Canonical Data Model (I)

Expressiveness

- Structural expressiveness
 - Relational data model: concepts / instances, referential integrity constraint
 - Graph data model: being a purely schemaless database, labels might embed any desirable semantics

Semantic Relativeness

- Relational Model: Monolithic
 - The model semantics are fixed. Table, columns and datatypes pre-defined at design time
 - Evolution not well-handled. Adding / deleting a column or changing a datatype may have a huge impact at the physical level
 - A powerful algebra available: the relational algebra
- Graph Model: Flexible
 - New concepts / semantics can be added at any moment without drastically impacting the current data structures
 - Its flexibility allows to deal with evolution as first-class citizen
 - Powerful algebras available: For example, GraphQL is reducible to the relational algebra. In addition, other relevant operations not naturally expressable on top of the relational model (e.g., pattern matching)

Activity: The Graph Data Model

- Objective: Understand the graph data model
- Tasks:
 - 1. (10') With a teammate think of the following:
 - Assume graphs as canonical data model
 - II. First, model as graphs each source (separately):
 - I. Model schema and at least one instance for each
 - User
 - Tweet
 - Date
 - Location

- Product - Product

features

- User

- Product
- Landing
- #visits
- III. Now, relate elements from each graphs with new edges generating a unique connected graph
 - I. Look for similar or identical concepts
 - II. Think of interesting relationships you could exploit later
- IV. Now, carefully check the resulting graphs. Can you identify what is data and metadata?

Properties of the Graph Data Model

- Its semantic relativeness allow to represent any other data model
 - Highly expressive data structure
 - Nodes and edges enough to represent any modeling construct
 - Two basic structures
 - Allows to deal with semantic conflicts
 - Arbitrary semantics embedded in the edges
 - N-ary relationships can be represented by hypergraphs
 - Rich algebra
 - Mappable to the relational algebra plus topology-oriented operations to manipulate graph structures
- Arbitrary semantic annotations
 - Its structural and behavioural expressiveness allow a wide range of annotations
 - Distinguish classes / instances
 - Express rich relationships
 - Arbitrary constraints

Graph Data Models

- There is not a single graph data model
- Two main families of graphs

Property Graphs

- Born in the database field
- Not predefined semantics
- Follow a Closed-World assumption
- Generate data silos
- Algebraic operations based on graph structures

Knowledge Graphs

- Born in the knowledge representation field
- Assume the Open-World assumption
- Facilitate data sharing and linking
- Two main families
 - RDF and RDF(S)
 - Born in the semantic web field
 - Vocabulary-based pre-defined semantics
 - Combine algebraic operations with simple reasoning operations
 - Description Logics (DL)-based
 - Representation of (subsets of) first-order logic
 - Pre-defined semantics based on logics
 - Reasoning operations founded in their logics nature

Summary

- Graphs are the perfect canonical data model given their:
 - Semantic expressiveness,
 - Semantic relativeness
- As result, data and metadata (semantic annotations on data) are stored together
 - Machine-readable metadata opens the door to automatic transformations
 - Covering the right metadata artefacts, graphs help to automate the whole data integration lifecycle
- Main graph families
 - Property graphs
 - Knowledge graphs