

Cours Réseaux

UFR de Mathématiques et Informatique Licence 3 Informatique Semestre 5

Prof. Ahmed Mehaoua Ahmed.mehaoua@u-paris.fr

Cours : Réseaux

Equipe pédagogique :

Pr. A. MEHAOUA, Professeur, responsable du cours, et chargé de TD (mardi)

Dr. N. DORTA, Maître de Conférences, chargé de TD (mercredi)

Dr E. AQUABA, Assistant d'enseignement, Chef de projet en Sécurité & Réseaux (lundi et vendredi)

Accueil des étudiants :

sur RDV - contact par émail ou en fin de cours : ahmed.mehaoua@u-paris.fr

Bibliographie:

- · Architectures des réseaux, Dromard et Seret, Pearson Edition
- transparents du cours et énoncés de TD/TP disponibles sur MOODLE et à la scolarité

Evaluation:

- une note d'examen de CC1 en présentiel en Amphi (50%) : mi semestre (mi novembre 2021)
- une note d'examen de CC2 en présentiel en salle TD (25%) : mi semestre (fin novembre 2021)
- une note de TP de CC3 en présentiel en séance de TD (25%) : fin de semestre (decembre 2021)
- une note d'examen final EX en présentiel et sans documents/ordinateurs (100%) : janvier 2021
- Calcul de la moyenne CC = 0.5CC1 + 0.25CC2 + 0.25CC3
- Calcul de la moyenne final de UE = max [EX, moy(0.5EX, 0.5CC)]

Objectifs du cours Réseaux

- 1. Etudier et comprendre le fonctionnement des réseaux informatiques
 - 1. Les architectures (logiciels, matériels)
 - 2. Les logiciels et algorithmes (Systèmes d'exploitation, protocoles)
 - 3. Les Commandes systèmes et réseaux (paramétrage, diagnostique, ...)
- 2. Réseaux locaux d'entreprises ETHERNET/WIFI (cablage, codage des signaux, algorithmes de contrôle d'accès au canal de communication)
- 3. Réseau INTERNET (adressage, routage, équipements d'interconnexion)
- 4. Travaux dirigées et pratiques avec utilisation du logiciel de diagnostique et d'analyse des réseaux (sniffer): WIRESHARK

Bonnes pratiques du cours :

- Récupérer le poly cours/TD/TP: version papier ou version electronique en ligne
- consulter le support du cours et le TD/TP de la semaine avant chaque séance
- participer activement aux séances de TD (passage aux tableaux)

Plan Général

- 1) ARCHITECTURES DES RESEAUX, DEFINITIONS
- 2) COUCHE PHYSIQUE: MATERIELS, TRANSMISSION
- 3) COUCHE LOGICIEL : COUCHE LIAISON, PROTOCOLES HDLC
- 4) LES RESEAUX LOCAUX : ETHERNET ET WIFI
- 5) RESEAU INTERNET: ADRESSAGE, NOMMAGE DES RESSOURCES
- 6) RESEAU INTERNET: ROUTAGE DES INFORMATIONS
- 7) LES EQUIPEMENTS D'INTERCONNEXION (HUB, SWITCH, GATEWAY, ...)

Chapitre 1

Réseaux Informatiques Architectures et Définitions

Plan

- DEFINITIONS ET PRINCIPES DE BASE
- CLASSIFICATION DES RESEAUX
- NORMES ET STANDARDS
- HIERARCHIE DES PROTOCOLES
- PRINCIPES DE LA COUCHE PHYSIQUE
- TYPES D'INFOS ET CODAGE SOURCE
- **□** TECHNIQUES DE TRANSMISSION

Qu'est ce qu'un réseau de communication ?

Un ensemble de ressources matériels (modem, routeur, commutateur, câblage, cartes, ...) et logiciels (procédures, règles, protocoles, systèmes d'exploitation, ...) dédiés à la transmission et l'échange d'information entre différentes entités (ordinateurs fixes et mobiles, périphériques, processus informatiques, personnes).

Les réseaux font l'objet d'un certain nombre de **spécifications techniques** et de **normes** pour garantir leurs inter-fonctionnement ou interopérabilité.

Classification des Réseaux de Communication

- type d'informations -

- Les réseaux de communications peuvent être classés en fonction du type d'informations transportées et de la nature des entités impliquées. On distingue ainsi trois principales catégories de réseaux de communication:
 - Les réseaux de télécommunications
 - Les réseaux de **télédiffusion**
 - Les réseaux Téléinformatiques

Classification des Réseaux de Communication

- Distances -

Communication Distance

Wireless communication link

WAN: Wide Area Network

WMAN: Wireless Metropolitan Area Network (GSM, 3G/4G/5G)

WLAN: Wireless Local Area Network (WIFI)

WPAN: Wireless Personal Area Network (Bluetooth)

WBAN: Wireless Body Area Network (Zigbee)

Classification Des Réseaux informatiques

- Distances -

cm

Bus des ordinateurs

ISA, PCI, USB

Réseaux personnels (PAN)

Bluetooth

Réseaux locaux (LAN)

Ethernet filaire, Ethernet sans-fil ou WiFi

Réseaux métropolitains (MAN) Gigibit Ethernet, Réseaux cablés

Réseaux étendus (WAN)

Internet, GSM/3G/4G/5G, Satellites

- 1876: Téléphonie (Graham Bell), 1880 en France
- 1906: Radiodiffusion (Branly, Ducret, Marconi)
- ☐ 1930: La télévision
- 1969: Arpanet, 1er réseau informatique
- Apparition du transistor dans les années 50
- □ Numérisation des communications téléphoniques 1970
- ☐ 1980: réseau Numéris, intégration de la voix et des données informatiques
- Numérisation de la télévision
 - 1994 MPEG Motion Picture Expert Group (codage source)
 - ✓ Représentation numérique et compression de l'information audiovisuelle
 - 1995 DVB-S (Satellite) Digital Video Broadcasting (codage canal)
 - √ Transmission numérique de l'information audiovisuelle
 - **✓ 2001 : DVB-T (Terrestre)**

La télé-informatique

- □ En 1957 Seymour Cray invente la société CDC et le 1er calculateur
- □ En 1964, Kleinrock du MIT invente la commutation de paquets
- ☐ Le réseau ARPANET apparait en 1969
- □ 1971: Email la 1ère application ARPANET inventée par le MIT
- □ En 1976, TCP/IP intégré dans ARPANET
- □ En 1979, Metcalf invente Ethernet et quitte Xerox pour créer 3Com
- ☐ Mai 1982 : 235 machines connectées sur Internet

Equipement Manufacturers

Fonctions d'un Routeur Internet

Architecture matérielle d'un réseau d'opérateur

- POP
 - ☐ Points de(Of) Présence (équipements commutateur, routeur, multiplexeur)
- Raccordement des utilisateurs sur les POP

☐ Via la boucle locale (cuivre, fibre optique)

Interconnexion des POP

Réseau maillé

□ Fibres optiques

Réseaux nationaux & Internet

Exemple de la France

Interconnexion des réseaux nationaux : Internet

Cables optiques sous-marins

www.submarinecablemap.com 100 Gbps par fibre

Réseau Local Intranet d'entreprises

Exemple d'un réseau d'entreprise

Routage IP

- scénario 1 - entres LAN Local

Routage IP

- scénario 2 - entres LAN distant

Accès à un site Web

DNS Root Servers

Designation, Responsibility, and Locations

Répartition des adresses IPv4

Rank ¢	Country or entity +	IP addresses ^[3] \$	% \$	Population (mostly 2012) ^[4]	IP addresses per 1000
	World	4,294,967,296	100.0	7,021,836,029	611.66
1	United States	1,541,605,760	35.9	313,847,465	4,911.96
	Bogons	875,310,464	20.4		
2	China China	330,321,408	7.7	1,343,239,923	245.91
3	Japan	202,183,168	4.7	127,368,088	1,587.39
4	United Kingdom	123,500,144	2.9	63,047,162	1,958.85
5	Germany	118,132,104	2.8	81,305,856	1,452.93
6	Korea, South	112,239,104	2.6	48,860,500	2,297.13
7	France	95,078,032	2.2	65,630,692	1,448.68
8	[→] Canada	79,989,760	1.9	34,300,083	2,332.06
9	■ Italy	50,999,712	1.2	61,261,254	832.50
10	⊗ Brazil	48,572,160	1.1	205,716,890	236.11

© wikipedia

Qui gère Internet

Qui normalise l'Internet?

Les Organismes Internationaux :

Les organismes de normalisation internationaux cités ci-dessous sont sous l'égide de **l'ONU** et sont les plus **actifs** dans le domaine des **réseaux** et des **télécommunications**.

- OSI (Organisation Internationale de Standardisation) ou ISO (International Organisation for Standardisation)
- UIT (Union Internationale des Télécommunications) anciennement CCITT (Comité Consultatif International Télégraphique et Téléphonique)

Les Organismes Multinationaux :

A ces organismes internationaux, s'ajoutent encore des organismes de différents continents comme l'Europe et les Etats-Unis :

- IETF (Internet Engineering Task Force)
- IEEE (Institute of Engineers in Electronic & Electrotechnic)
- ETSI European Telecommunication Standardization Institute)
- EBU (European Broadcasting Union)

A. Mehaoua

La problématique des réseaux téléinformatiques

- Comment faire communiquer les ordinateurs/processus sur une seule ligne ?
- La solution
 - ☐ Coder les données et les informations de contrôle (logique à deux états)
 - Les transmettre sur la même ligne
- Les protocoles
 - ☐ Règles de codage des informations
 - ☐ Règles de dialogue entre ordinateurs
 - ☐ Gérés par les logiciels et matériels de communication
- Les architectures
 - ☐ Cadres d'environnement et de définition des protocoles
 - ☐ Ensemble de protocoles, procédures et équipements de communications
 - ☐ Permettre l'interconnexion des réseaux hétérogènes aux moyens de dispositifs de conversion

LE MODELE DE REFERENCE ISO de L'OSI

Le Modèle de référence ISO pour Interconnexion des Systèmes Ouverts a été proposé en 1984 par l'OSI (Organisation de standardisation Internationale) :

- Modèle fondé sur un principe énoncé par Jules César :
 - « Diviser pour Régner »
- Le principe de base est la représentation des réseaux sous la forme de couche de fonctions superposées les unes aux autres.
 - Leur nombre, leur nom et leur fonction varient selon les réseaux
- L'étude du système de communication revient alors à l'étude de ses éléments élémentaires et offre une plus grande :
 - Facilité d'étude
 - Indépendance des couches
 - Souplesse d'évolution

LE MODELE ISO 7 COUCHES

Tableau 2 – Couches du modèle OSI						
Niveau	Nom	Fonction	Protocoles			
7	Couche application	Assurer l'interface avec les applications.	HTTP, FTP, tel- net, SSH, DNS			
6	Couche présentation	Formater des données (leur représentation, éventuellement leur compression).				
5	Couche session	Fournir les moyens pour organiser et synchroni- ser les dialogues et les échanges de données.				
4	Couche transport	Transporter les données et, selon le protocole, gérer les erreurs.	TCP, UDP			
3	Couche réseau	Gérer l'adressage et le routage.	IP, ICMP, IGMP ARP			
2	Couche liaison	Définir l'interface avec la carte réseau et la méthode d'accès.	Ethernet, LLC, SNAP, PPP			
1	Couche physique	Convertir des données en signaux numériques.	Ethernet, 802.3 802.5 (token ring), 802.11 (wireless)			

Architecture Logiciel Réseaux le modèle ISO (1982) vs le modèle Internet (1969)

La pile de protocoles TCP/IP

Accès à un serveur Web: le modèle client/serveur

TCP : Transmission Control Protocol

UDP : User Datagram Protocol IP : Internetworking Protocol

LE MODELE ISO Principe du routeur

Encapsulation des données

Chaque couche récupere les données de la au dessus et

- ajoute des entête d'information de controle (variables)
- Transmet la nouvelle strucuture de données à la couche inférieure

LE MODELE ISO Principe de L'encapsulation

Encapsulation des données

Trame Wifi