UHPC Bridge Overlay Presented By Logan Wells	
Typical Iowa DOT overlay	
▶ 1970's lowa DOT	
Low PermeabilityMore Durable	
Low SlumpStiffer and more difficult to place	

UHPC Overlay

- ▶ Lower Permeability
- Fiber Crack Control
- Strengthening
- Durability
- Unfamiliar

- Composite Action/Bond
 Cost
 Mixing
 Material Flows Placing and Finishing
 Grinding and Grooving

Possible Benefits

Mud Creek Objectives

- Evaluate constructability on superelevation
- Test UHPC overlay durability as a maintenance application.
- Predict bridge strength improvements (Can HL-93 Loading be accommodated?)
- Research building block

The Original Bridge

- ▶ Built in 1967
- > 3 span Continuous Concrete Slab Bridge
- O° Skew
- ▶ 5% Superelevation
- Located 2.25 miles West of Brandon on Laporte road over Mud Creek

Location

Dimensions		Properties	
Roadway Width (ft)	28	Concrete Compressive Strength (ksi)	3
Out to Out Width (ft)	30	Rebar Grade (ksi)	41
Original Concrete Thickness (ft)	1.47	Concrete Modulus of Elasticity (ksi)	330
Total Length Length (ft)	100	Steel Modulus of Elasticity (ksi)	2900
Exterior Span Length (ft)	30.5		
Interior Span Length (ft)	39		

Repair and Overlay Description

- Repair patches use standard HPC
- UHPC mix provided by Lafarge North America
- ▶ Welded wire fabric (6x12-W8.5xW1.4) only placed over piers in one lane
- Mockup for testing by Iowa State
- Class A removal west abutment (Typical)
- No Class A removal on east abutment

Negative Moment Capacity

Increase amount of material available to resist tension

- ▶ UHPC
 - Cracking & Strain Limit
 - Tensile Strength
 - Concrete Interface
- Welded Wire
- Over Piers
- WWF engaged?
- Substantial Crack Control?
- ▶ 31% increase

Graybeal, B., Perry, B., And Royce, M., "UHPC Ultra-High Performance Concrete," NHI Innovations Webinar, November 18, 2010. Available i https://connectdot.connectsolutions.com/n124083201011 [Cited May 5, 2016]

Positive Moment Capacity

Increase moment arm for positive moment capacity

- Smaller compression block due to higher compressive strength
- Greater depth of Steel
- ▶ 16% increase

Can HL-93 Load be Carried?

- Yes!
- ...and No.

Cut Off Requirement Issues

- Less strict requirements in past
- Negative Moment manageable
- Positive Moments require different methods
- Iowa DOT rating policy under old codes

Moving Forward

- Is a 1.5 inch thickness appropriate?
- How can we be certain the mesh is engaged?
- ▶ Can HL-93 loading be proven?
- Can a economic and durable shear interface be achieved?
- Is the UHPC overlay viable with staged construction and associated traffic vibrations?

Questions?