An Introduction to
Single-Cell
RNA
Sequencing
Data

Gene Regulation

DNA

- DNA is made up of small repeating units called **nucleotides**.
- Each nucleotide consists of three components:
 - Phosphate Group (PO₄³⁻)
 - Deoxyribose Sugar (C₅H₁₀O₄)
 - Nitrogenous Base
 - Adenine (A) \rightarrow C₅H₅N₅
 - Thymine (T) \rightarrow C₅H₆N₂O₂
 - Cytosine (C) \rightarrow C₄H₅N₃O
 - Guanine (G) \rightarrow C₅H₅N₅O

DNA

- The two strands of DNA are held together by **hydrogen bonds** between nitrogenous bases.
 - Adenine (A) pairs with Thymine (T) (A–T) with 2 hydrogen bonds
 - Cytosine (C) pairs with Guanine (G) (C–G) with 3 hydrogen bonds

• The two DNA strands are **oriented in opposite directions** (one $5' \rightarrow 3'$, the

other $3' \rightarrow 5'$).

Gene

• a sequence of **nucleotides** in DNA that encodes instructions for building a **specific protein**.

Gene

- Promoter region
- Coding region
- Terminator region
- Two main steps:
- Transcription: DNA to mRNA
- Translation: mRNA to Protein

Protein

Transcription

- Steps:
- Initiation:
 - o Binding and Unwinding
- Elongation:
 - A (Adenine) → U (Uracil) (RNA has uracil instead of thymine)
 - T (Thymine) → A (Adenine)
 - C (Cytosine) → G (Guanine)
 - G (Guanine) → C (Cytosine)
- Termination
- Post-Transcriptional Modifications (in Eukaryotes):
 - o 5' Cap Addition
 - o Poly-A Tail Addition
 - o Splicing
 - Removing introns and joining exons

Exons

Translation

Initiation:

Attaching ribosome

Start Codon: AUG

Elongation:

- tRNA molecules bring amino acids to the ribosome
- Each tRNA has an **anticodon** that matches a specific **codon** on mRNA.
- The ribosome forms **peptide bonds** between amino acids, linking them into a growing **polypeptide chain**.

• Termination:

Stop Codon: UAA, UAG, UGA

Post-Translational Modifications

Gene Regulation

- Gene regulation is the process by which cells control the expression of genes, determining when, where, and to what extent specific genes are turned on (activated) or off (repressed).
- Gene regulation primarily involves **chemical modifications to DNA** rather than physically removing or attaching DNA segments.

Gene Modification

- Gene modification?
- adding, removing, or modifying specific genes or sequences of DNA.

Dynamic RNA modifications in gene expression regulation

IA Roundtree, ME Evans, T Pan, C He - Cell, 2017 - cell.com

... are also heavily **modified** and depend on the **modifications** for their ... of these different chemical **modifications** is beginning to take ... **modifications** represent a new layer of control of **genetic** ...

☆ Save 奶 Cite Cited by 2993 Related articles All 10 versions

RNA modifications modulate gene expression during development

M Frye, BT Harada, M Behm, C He - Science, 2018 - science.org

- ... of mRNA is an essential regulator of mammalian gene expression (4, 5). Other modifications
- \dots the roles of RNA **modifications** in modulating **gene expression** throughout cell differentiation \dots

☆ Save 兒 Cite Cited by 1031 Related articles All 11 versions

Nucleic acid modifications in regulation of gene expression

K Chen, BS Zhao, C He - Cell chemical biology, 2016 - cell.com

... Nucleic acids carry diverse **modifications** and employ these chemical ... **modifications** that play important regulatory roles in biological systems, especially in regulation of **gene expression**: ...

☆ Save 兒 Cite Cited by 281 Related articles All 7 versions

Histone modification levels are predictive for gene expression

R Karlić, HR Chung, J Lasserre, K Vlahoviček... - Proceedings of the ..., 2010 - pnas.org

... of histone **modifications** are necessary to accurately predict **gene expression**. We show that different sets of histone **modifications** are necessary to predict **gene expression** driven by ...

☆ Save 55 Cite Cited by 946 Related articles All 16 versions

Removing DNA Sequences: CRISPR-Cas9

Attaching DNA Sequences : PCR

Gene Modification

- Expression of genes
 - transcription factors [TFs]
 - Antagonists
 - consolidator
 - transcriptional co-factors
 - chromatin remodelers

?

• How can we determine the expression of genes in a cell?

• The answer is:

Single-cell RNA Sequencing Data

sc-RNA seq

Sample preparation

• Steps:

- Tissue dissection and cell dissociating to obtain a suspension of cells.
- Optionally cells may be selected (e.g. based on membrane markers, fluorescent transgenes or staining dyes).
- Capture single cells into individual reaction containers (e.g. wells or oil droplets).
- Extracting the RNA from each cell.

Cell Capture

- Microtitre plate based,
- Microfluidic array based
- Microfluidic droplet based

Microtitre Plates

Microfluidic Arrays

Microfluidic Droplets

Sequencing

- full-length
 - Captures the entire transcript,
 - from the 5' end to the 3' end.
 - more informative but expensive and lower throughput.
- tag-based
 - Only captures either the 5' end or the 3' end
 - Cheaper and more scalable

Raw data

- Raw data from sequencing
- FASTQ format:
 - The first line begins with '@' followed by a sequence identifier.
 - The second line contains the actual nucleotide sequence.
 - The third line starts with a '+' sign and optionally contains the same identifier.
 - The fourth line encodes the quality scores corresponding to the nucleotide sequence. @SEQ_ID_1

AGCTAGCTAGCTAGCTAGCTAGCTA

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

+

@SEQ_ID_3

TTTAAAGGCCCTTTAAAGGG

+

@SEQ_ID_4

CGTACGTACGTAGCTAGCTAGCTAGCT

+

Raw data processing

read_1 99 chr1 100 60 4M 5S = 200 300 ACGTACGT ||||||||

Count Matrix

From Reads to a Count Matrix

Matrix is cells x genes

Needs to be filtered:

- gene3 all zeros
- gene5 mostly zeros
- cell3 failed/rare cell
- cell5 failed/overamplified cell

	cell1	cell2	cell3	cell4	cell5	 cellM
gene1	93	25	0	52	3335	82
gene2	5	2	0	3	1252	12
gene3	0	0	0	0	0	0
gene4	98	21	1	1	5318	75
gene5	0	0	0	0	50	0
geneN	22	52	0	31	4313	63

Count Matrix

Each column is a sample

From Reads to a Count Matrix

Each row is a gene

GENE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	55	38	45	31	39
A1BG	71	40	100	81	41	77	58	40
A1BG-AS1	256	177	220	189	107	213	172	126
A1CF	0	1	1	0	0	0	0	0
A2LD1	146	81	138	125	52	91	80	50
A2M	10	9	2	5	2	9	8	4
A2ML1	3	2	6	5	2	2	1	0
A2MP1	0	0	2	1	3	0	2	1
A4GALT	56	37	107	118	65	49	52	37
A4GNT	0	0	0	0	1	0	0	0
AA06	0	0	0	0	0	0	0	0
AAA1	0	0	1	0	0	0	0	0
AAAS	2288	1363	1753	1727	835	1672	1389	1121
AACS	1586	923	951	967	484	938	771	635
AACSP1	1	1	3	0	1	1	1	3
AADAC	0	0	0	0	0	0	0	0
AADACL2	0	0	0	0	0	0	0	0
AADACL3	0	0	0	0	0	0	0	0
AADACL4	0	0	1	1	0	0	0	0
AADAT	856	539	593	576	359	567	521	416
AAGAB	4648	2550	2648	2356	1481	3265	2790	2118
AAK1	2310	1384	1869	1602	980	1675	1614	1108
AAMP	5198	3081	3179	3137	1721	4061	3304	2623
AANAT	7	7	12	12	4	6	2	7
AARS	5570	3323	4782	4580	2473	3953	3339	2666
*****	4451	2727	2201	2121	1240	2400	2074	1657

Quality Control

- Three main key factors : QC covariates
- Count depth
 - Low count depth damaged or broken cells
 - Very high count depth doublets
 - Threshold 500, 20,000
- The number of genes per barcode
 - Low dead cells or empty droplets
 - Very high doublets
- The fraction of counts from mitochondrial genes per barcode
 - Very high D dying or stressed cells, broken cells
 - A normal mitochondrial fraction for a healthy cell is typically less than 5–10%

Each row is a gene

GENE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	55	38	45	31	39
A1BG	71	40	100	81	41	77	58	40
A1BG-AS1	256	177	220	189	107	213	172	126
A1CF	0	1	1	0	0	0	0	0
A2LD1	146	81	138	125	52	91	80	50
A2M	10	9	2	5	2	9	8	4
A2ML1	3	2	6	5	2	2	1	0
A2MP1	0	0	2	1	3	0	2	1
A4GALT	56	37	107	118	65	49	52	37
A4GNT	0	0	0	0	1	0	0	0
AA06	0	0	0	0	0	0	0	0
AAA1	0	0	1	0	0	0	0	0
AAAS	2288	1363	1753	1727	835	1672	1389	1121
AACS	1586	923	951	967	484	938	771	635
AACSP1	1	1	3	0	1	1	1	3
AADAC	0	0	0	0	0	0	0	0
AADACL2	0	0	0	0	0	0	0	0
AADACL3	0	0	0	0	0	0	0	0
AADACL4	0	0	1	1	0	0	0	0
AADAT	856	539	593	576	359	567	521	416
AAGAB	4648	2550	2648	2356	1481	3265	2790	2118
AAK1	2310	1384	1869	1602	980	1675	1614	1108
AAMP	5198	3081	3179	3137	1721	4061	3304	2623
AANAT	7	7	12	12	4	6	2	7
AARS	5570	3323	4782	4580	2473	3953	3339	2666
*****	4454	2727	2201	2121	1240	2400	2074	1/2

Quality Control

Papers

- Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq
 - Dylan Kotliar1,2,3^{+*}, Adrian Veres1,3,4⁺, M Aurel Nagy3,5, Shervin Tabrizi2, Eran Hodis3,6, Douglas A Melton4,7, Pardis C Sabeti1,2,7

- cNMF (consensus non-negative matrix factorization)
- Activity Program
- Identity program

Organoid cell-types and activities

	G1/S Activity Program		G2/M Activity Prog	ram	Hypoxia Activity Program		
rank	GO term	p-val	GO term	p-val	GO term	p-val	
1	Cell Cycle	2x10 ⁻⁸⁴	Mitotic Cell Cycle	3x10 ⁻⁷⁷	Establish. of Protein Loc. To Endoplasmic Reticulum	3x10 ⁻³⁷	
2	Mitotic Cell Cycle	8x10 ⁻⁸¹	Cell Cycle Process	2x10 ⁻⁶⁸	Protein Loc. To Endoplasmic Reticulum	2x10 ⁻³⁵	
3	Cell Cycle Process	3x10 ⁻⁷⁷	Cell Cycle	6x10 ⁻⁶⁴	Translation Initiation	6x10 ⁻³⁷	
4	Chromosome Organization	3x10 ⁻⁷⁰	Mitotic Nuclear Division	6x10 ⁻⁶¹	Nuclear Transcribed mRNA Catabolic Process NMD	4x10 ⁻³¹	
5	DNA Metabolic Process	4x10 ⁻⁶⁹	Organelle Fission	4x10 ⁻⁵³	rRNA Metabolic Process	8x10 ⁻²⁸	
6	DNA Repair	5x10 ⁻⁵⁵	Sister Chromatid Division	1x10 ⁻⁴⁷	Ribosome Biogenesis	2x10 ⁻²⁷	

Next session