EAIiIB	Marcin Nalepa		Rok II	Grupa 5	Zespół 3
	Przemysław Trybała				
Temat:			Numer ćwiczenia:		
Moduł Younga			11		
Data wykonania 25.11.2015 r.	Data oddania 9.12.2015 r.	Zwrot do poprawki	Data oddania	Data zaliczenia	Ocena

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga metodą statyczną czyli za pomocą mierzenia wydłużenia drutu, wykonanego z danego materiału i obciążonego stałą siłą.

2 Wstęp teoretyczny

Wszystkie ciała, w mniejszym lub większym stopniu, ulegają odkształceniom pod wpływem działających na nie sił. Jeśli odkształcenia te znikają po usunięciu siły to mamy do czynienia z odkształceniem sprężystym.

Robert Hooke sformułował prawo określające zależność tego odkształcenia od przyłożonej siły. Zauważył on że są one wprost proporcjonalne. Prawo to określa zmianę długości Δl pręta, w zależności od długości l, przyłożonej siły F i przekroju S.

$$\Delta l = F * \frac{l}{ES} \tag{1}$$

Współczynnik E to poszukiwana stała materiałowa zwana modułem Younga. Moduł Younga można także zdefiniować jako $E=\frac{\varepsilon}{\sigma}$ gdzie ε to normalne odkształcenie względne czyli stosunek przyrostu długości do długości początkowej $\varepsilon=\Delta l/l$, a σ to naprężenie normalne. Stąd wartość modułu Younga to hipotetyczne naprężenie, przy którym ciało rozciąga się dwukrotnie. Jednak w rzeczywistości prawie żaden materiał nie wytrzyma takiego naprężenia i pęknie na długo wcześniej.

Rysunek pokazuje typową dla metali zależność odkształcenia od naprężenia. W doświadczeniu interesuje nas przedział w którym ta zależność jest liniowa, gdyż powyżej niej następuje trwałe odkształcenie badanego materiału i nie obowiązuje prawo Hooke'a. Zgodnie z tym prawem zależność rozciągnięcia Δl od siły F powinna być linią prostą $\Delta l(F)=aF+b$. Porównując to równanie prostej ze wzorem (1) pokazuje, że współczynnik kierunkowy jest równy $a=\frac{l}{ES}$, stąd

$$E = \frac{l}{aS} \tag{2}$$

co po podstawieniu wzoru na pole powierzchni koła $S=\frac{\pi d^2}{4}$ daje ostateczny, roboczy wzór na moduł Younga.

Rysunek 1: Zależność naprężenia od odkształcenia

$$E = \frac{4l}{a * \pi d^2} \tag{3}$$

Parametr a tego równania będzie wyznaczany jako współczynnik prostej regresji liniowej ze zbioru wyników.

3 Opis doświadczenia

Do doświadczenia zostały dostarczone 2 druty, stalowy i mosiężny. Na początku zostały przeprowadzone pomiary drutów użytych w ćwiczeniu, zmierzono ich średnicę i długość. Następnie jeden z drutów zamontowano na statywie przy pomocy nakrętek. Po wyzerowaniu śruby mikrometrycznej następują powtarzające się czynności dokładania ciężaru na szalkę i zapisywania otrzymanych wyników. Taką samą procedurę wykonano także dla drugiego drutu. Wyniki zapisano w tabelach.

4 Wyniki pomiarów

Tablica 1: Drut stalowy

długość l	$1067\mathrm{mm}$	$u(l) = 0.577\mathrm{mm}$	
średnica	0,79mm 0,79mm 0,79mm		
3 pomiary	0,19111111 0,19111111 0,19111111		
śr. średnica \bar{d}	$0.79\mathrm{mm}$	$u(\bar{d}) = 0.00577 \mathrm{mm}$	
Masa odważników	Ciężar [N]	Średnie wydłużenie	
[kg]	Cięzai [iv]	Δ l [mm]	
1	9,81	0,150	
2	19,62	$0,\!285$	
3	$29,\!43$	0,400	
4	$39,\!24$	0,510	
5	49,05	0,635	
6	58,86	0,725	
7	68,67	0,855	
8	78,48	0,960	
9	88,29	1,080	

Tablica 2: Drut mosiężny

długość l	$1067\mathrm{mm}$	$u(l) = 0.577\mathrm{mm}$
średnica 3 pomiary	1,20mm 1,20mm 1,20mm	
śr. średnica $ar{d}$	$1,20\mathrm{mm}$	$u(\bar{d}) = 0.00577 \text{mm}$
Masa odważników	Ciężar [N]	Średnie wydłużenie
[kg]		Δ l [mm]
1,0	9,81	0,320
2,0	19,62	0,555
2,5	$24,\!53$	0,645
3,0	29,43	0,730
$3,\!5$	$34,\!34$	0,815
4,0	39,24	0,885
$4,\!5$	$44,\!15$	0,965
5,0	49,05	1,040
5,5	$53,\!96$	1,095
6,0	58,86	1,825

5 Opracowanie wyników

Rysunek 2: Wykres zależnosci odkształcenia od ciężaru dla drutu stalowego

Rysunek 3: Wykres zależnosci odkształcenia od ciężaru dla drutu mosiężnego

Wykresy na rysunkach (2) i (3) przedstawiają wyniki z tabel w formie graficznej. Niebieskimi punktami są oznaczone pomiary, a na czerwono jest zaznaczona prosta regresji liniowej. Na wykresie (3) oznaczono punkt który wyraźnie odbiega od reszty, dlatego został on pominięty przy wyznaczaniu prostej regresji. Wartości te odbiegają od oczekiwanych prawdopodobnie z powodu stanu druta mosiężnego, który był lekko powyginany.

Wzór na moduł Younga oraz niepewność

$$E = \frac{4l}{a * \pi d^2}$$

$$\begin{split} u(E) &= \sqrt{\left(\frac{\partial E}{\partial a} * u(a)\right)^2 + \left(\frac{\partial E}{\partial l} * u(l)\right)^2 + \left(\frac{\partial E}{\partial d} * u(d)\right)^2} = \\ &= \sqrt{\left(\frac{-4*l}{a^2*\pi*d^2} * u(a)\right)^2 + \left(\frac{4}{a*\pi*d^2} * u(l)\right)^2 + \left(\frac{-8l}{a*\pi*d^3} * u(d)\right)^2} = \\ &= \sqrt{E^2 \left(\frac{-u(a)}{a}\right)^2 + E^2 \left(\frac{u(l)}{l}\right)^2 + E^2 \left(\frac{-2*u(d)}{d}\right)^2} = \\ &= E\sqrt{\left(\frac{-u(a)}{a}\right)^2 + \left(\frac{u(l)}{l}\right)^2 + \left(\frac{-2*u(d)}{d}\right)^2} \end{split}$$

Wartości parametru a zostały wyliczone w pakiecie matematycznym.

5.1 Drut stalowy

$$u(E) = \frac{4 * 1.067}{1.18 * 10^{-5} * \pi * 0.00079^{2}} \approx$$

$$\approx 184 * 10^{9} [Pa] = 184 [GPa]$$

$$u(E) = E * \sqrt{\left(\frac{-2 * 10^{-7}}{1.18 * 10^{-5}}\right)^{2} + \left(\frac{0.58}{1067}\right)^{2} + \left(\frac{-2 * 0.006}{0.79}\right)^{2}} =$$

$$= E * 0.02277 \approx 4 * 10^{9} = 4 [GPa]$$

5.2 Drut mosiężny

$$a = 1.58 * 10^{-5}$$

$$E = \frac{4 * 1.067}{1.58 * 10^{-5} * \pi * 0.0012^{2}} \approx$$

$$\approx 60 * 10^{9} [Pa] = 60 [GPa]$$

$$u(E) = E * \sqrt{\left(\frac{-3 * 10^{-7}}{1.58 * 10^{-5}}\right)^{2} + \left(\frac{0.58}{1067}\right)^{2} + \left(\frac{-2 * 0.006}{1.2}\right)^{2}} =$$

$$= E * 0.02147 \approx 1 * 10^{9} = 1 [GPa]$$

6 Podsumowanie

Obliczona wartość modułu Younga dla drutu stalowego to 184 ± 4 [GPa]. Jest to wartość która pokrywa się z wartościami tablicowymi wynoszącymi ~ 200 [GPa] i wykazującymi rozrzut około 20%. Jest to spowodowane tym że moduł Younga bardzo różni się dla różnych gatunków stali w zależności od ich składu jak i sposobu obróbki.

Modułu Younga dla drutu mosiężnego jednak, wykazuje dużą rozbierzność od oczekiwanych wartości. Doświadczenia wskazują na $60\pm1~[GPa]$ podczas gdy tablice przewidują wartości ok. 110 [GPa]. Jest to wartość która nie mieści się ani w niepewności zwykłej, ani rozszerzonej. Prawdopodobnie stan drutu, jego pozaginanie jak i wiek, mogły spowodować, że otrzymane wartości są wyraźnie nienaturalne jak dla tego materiału.