STAT 479: Homework 1

Due: 11:59PM January 31, 2025 by Canvas

Part 1: Probability Basics

1. Conditional Probabilities

(10 points)

Suppose we roll two dice. Let A be the event "the sum is greater than 7," and B be the event "the first die shows a 4." Select the correct answers for the following probabilities:

- (a) P(A):
 - A. $\frac{5}{12}$
 - B. $\frac{7}{12}$
 - C. $\frac{1}{6}$
 - D. $\frac{1}{2}$
- (b) $P(A \cap B)$:
 - A. $\frac{1}{6}$
 - B. $\frac{1}{10}$
 - C. $\frac{5}{36}$
 - D. $\frac{1}{4}$
- (c) P(A|B):
 - A. $\frac{1}{3}$
 - B. $\frac{5}{12}$
 - C. $\frac{2}{3}$
 - D. $\frac{3}{4}$
- (d) Are A and B independent?
 - A. Yes, $P(A \cap B) = P(A) \cdot P(B)$.
 - B. No, $P(A \cap B) \neq P(A) \cdot P(B)$.

Answer: Write your solution here. For multiple choice questions, only the letter answer is required.

- (a)
- (b)

STAT 479 HW 1

(c)		
(d)		

2. Bayes' Rule (10 points)

A medical test for a rare disease has the following properties, where T is the test and D is the disease:

- $P(T^+|D) = 0.95$,
- $P(T^+|\neg D) = 0.02$,
- P(D) = 0.001.
- (a) Using Bayes' rule, compute $P(D|T^+)$. Select the correct answer:
 - A. 0.32
 - B. 0.047
 - C. 0.019
 - D. 0.001
- (b) At what P(D) would the test give 95% confidence?
 - A. 0.10
 - B. 0.20
 - C. 0.30
 - D. 0.50

Answer:

- (a)
- (b)

3. Continuous Random Variables

(10 points)

The probability density function (PDF) of a continuous random variable X is:

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Is f(x) a valid PDF? Select the correct answer:
 - A. Yes, $\int_{-\infty}^{\infty} f(x)dx = 1$.

STAT 479 HW 1

- B. No, f(x) does not integrate to 1.
- (b) Compute $P(0.25 \le X \le 0.75)$. Select the correct answer:
 - A. 0.25
 - B. 0.50
 - C. 0.75
 - D. 1.00
- (c) Determine the expected value E[X]. Select the correct answer:
 - A. 0.25
 - B. 0.33
 - C. 0.50
 - D. 0.67
- (d) Determine the variance of X. Select the correct answer:
 - A. 0.056
 - B. 0.111
 - C. 0.167
 - D. 0.222

Answer:

- (a)
- (b)
- (c)
- (d)

4. Joint and Marginal Probabilities

(10 points)

Two random variables X and Y have the following joint probability mass function (PMF):

$$P(X = x, Y = y) = \begin{cases} \frac{x+y}{10}, & x, y \in \{1, 2\}, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Which property must hold for P(X,Y) to be a valid joint PMF?
 - A. $P(X = x, Y = y) \ge 0$ for all x, y.
 - B. $\sum_{x} \sum_{y} P(X = x, Y = y) = 1$.
 - C. Both (A) and (B).

STAT 479 HW 1

D. None of the above.	
-----------------------	--

(b)) Compute	the	marginal	probability	P	(X)	= 1	L)	
-----	-----------	-----	----------	-------------	---	-----	-----	----	--

- A. 0.30
- B. 0.35
- C. 0.40
- D. 0.45
- (c) Compute the conditional probability $P(Y = 2 \mid X = 2)$.
 - A. 0.40
 - B. 0.50
 - C. 0.60
 - D. 0.70

Α	n	TT	TO	r	•
$\boldsymbol{\Delta}$	113	7 VI	V C	1	

- (a)
- (b)
- (c)

Part 2: Estimation

5. MLE and MAP for a Possibly Biased Coin

(10 points)

Suppose you are flipping a coin that might be biased (i.e., the probability of heads θ is unknown and not necessarily 0.5). You flip the coin n times and observe k heads.

- (a) Using the Bernoulli likelihood function, what is the Maximum Likelihood Estimate (MLE) for θ ?
 - A. $\frac{r_i}{l}$
 - B. $\frac{k}{n}$
 - C. $\vec{k} \cdot n$
 - D. $1 \frac{k}{n}$
- (b) Suppose you have prior knowledge that the coin is likely close to fair, modeled using a Beta prior $\theta \sim \text{Beta}(\alpha, \beta)$. The posterior distribution is:

Posterior(
$$\theta$$
|data) $\propto \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}$.

What is the MAP estimate for θ ?

- A. $\frac{k}{n}$
- B. $\frac{k+\alpha-1}{n+\alpha+\beta-2}$
- C. $\frac{k}{n+\alpha+\beta}$
- D. $\frac{k+\alpha}{n+\beta}$

Answer:

- (a)
- (b)

Part 2: Estimation

6. MLE and MAP for a Possibly Biased Coin

(10 points)

Suppose you are flipping a coin that might be biased (i.e., the probability of heads θ is unknown and not necessarily 0.5). You flip the coin n times and observe k heads.

- (a) Using the Bernoulli likelihood function, what is the Maximum Likelihood Estimate (MLE) for θ ?
 - A. $\frac{\eta}{h}$
 - B. $\frac{k}{n}$

STAT 479

HW 1

C.
$$k \cdot n$$

D.
$$1 - \frac{k}{n}$$

(b) Suppose you have prior knowledge that the coin is likely close to fair, modeled using a Beta prior $\theta \sim \text{Beta}(\alpha, \beta)$. The posterior distribution is:

Posterior(
$$\theta$$
|data) $\propto \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1}$.

What is the MAP estimate for θ ?

- A. $\frac{1}{2}$
- B. $\frac{k+\alpha-1}{n+\alpha+\beta-2}$
- C. $\frac{k}{n+\alpha+\beta}$
- D. $\frac{k+\alpha}{n+\beta}$

Answer:

- (a)
- (b)
- (c)
- (d)

7. Poisson Distribution

(10 points)

The Poisson distribution models the probability of observing a count x_i with the rate parameter λ :

$$P(x_i|\lambda) = \frac{\lambda^{x_i}e^{-\lambda}}{x_i!}.$$

- (a) Which of the following represents the likelihood function $L(\lambda)$ for a single observation x_1 ?
 - A. $\frac{\lambda^{x_1}e^{-\lambda}}{x_1!}$
 - B. $\lambda x_1 e^{-\lambda}$
 - C. $\lambda^{x_1-1}e^{-\lambda}$
 - D. λe^{-x_1}
- (b) Which of the following represents the likelihood function $L(\lambda)$ for n independent observations x_1, x_2, \ldots, x_n ?
 - A. $\prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$
 - B. $\prod_{i=1}^{n} \lambda x_i e^{-\lambda}$

STAT 479 HW 1

C.
$$\sum_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$

D.
$$\prod_{i=1}^{n} \lambda^{x_i-1} e^{-\lambda}$$

(c) Which of the following represents the log-likelihood function $\log L(\lambda)$?

A.
$$\sum_{i=1}^{n} x_i \log \lambda - n\lambda - \sum_{i=1}^{n} \log(x_i!)$$
B.
$$n\lambda - \sum_{i=1}^{n} x_i \log \lambda - \sum_{i=1}^{n} \log(x_i!)$$
C.
$$n \log \lambda - n\lambda - \sum_{i=1}^{n} \log(x_i!)$$

B.
$$n\lambda - \sum_{i=1}^{n} x_i \log \lambda - \sum_{i=1}^{n} \log(x_i!)$$

C.
$$n \log \lambda - n\lambda - \sum_{i=1}^{n} \log(x_i!)$$

D.
$$\sum_{i=1}^{n} x_i \lambda - n \lambda$$

(d) What is the MLE for λ , the rate parameter?

A.
$$\frac{\sum_{i=1}^{n} x_i}{n}$$

B.
$$\sum_{i=1}^{n} x_i$$

C.
$$n \cdot \sum_{i=1}^{n} x_i$$

D.
$$\frac{n}{\sum_{i=1}^{n} x_i}$$

Answer:

- (c)

8. Deriving Backpropagation from MLE

(10 points)

Consider a neural network with one hidden layer. The network's output is given by:

$$\hat{y} = \sigma(w_2 \cdot h),$$

where:

- $h = \sigma(w_1 \cdot x)$,
- $\sigma(z)$ is the sigmoid activation function defined as $\sigma(z) = \frac{1}{1 + e^{-z}}$,
- w_1 and w_2 are weights,
- \bullet x is the input.

Assume that the training data (x,y) are drawn i.i.d. from a distribution, and the network is trained using Maximum Likelihood Estimation (MLE). For binary classification, the likelihood of the data is given by:

$$P(y|x, w_1, w_2) = \hat{y}^y (1 - \hat{y})^{1-y},$$

where \hat{y} is the predicted probability for the positive class.

STAT 479

HW 1

- (a) Which of the following represents the negative log-likelihood \mathcal{L} ?
 - A. $-y \log \hat{y} (1 y) \log(1 \hat{y})$
 - B. $y \log(1 \hat{y}) + (1 y) \log \hat{y}$
 - C. $\hat{y} \cdot y + (1 \hat{y}) \cdot (1 y)$
 - D. $y \cdot \hat{y} + (1 y) \cdot (1 \hat{y})$
- (b) What is the gradient of \mathcal{L} with respect to w_2 ?
 - A. $(\hat{y} y) \cdot h$
 - B. $(y \hat{y}) \cdot h$
 - C. $\hat{y} \cdot (1-h)$
 - D. $y \cdot (1 \hat{y})$
- (c) What is the gradient of \mathcal{L} with respect to w_1 ?
 - A. $(\hat{y} y) \cdot w_2 \cdot \sigma'(w_1 \cdot x) \cdot x$
 - B. $(\hat{y} y) \cdot \sigma'(w_1 \cdot x) \cdot x$
 - C. $(\hat{y} y) \cdot w_2 \cdot x$
 - D. $(\hat{y} y) \cdot \sigma'(x) \cdot w_2$

Answer:

- (a)
- (b)
- (c)