Infinite families of k-vertex-critical (P_5, C_5) -free graphs

Ben Cameron Chính T. Hoàng

January 20, 2023

1 New infinite families of k-vertex-critical graphs

There are surprisingly few such constructions for H-free graphs when H is the disjoint union of paths. The most commonly used is the $2P_2$ -free infinite family of k-vertex-critical graphs from [9], as this family has turned out to have much richer structure than was originally identified. Another very recent construction is Chudnovsky et al.'s [6] infinite family of 4-vertex-critical P_7 -free graphs. My careful analysis of these two constructions with Hoàng led to the following generalization:

Let G(q, k) be a graph on vertex set $\{v_0, v_1, ..., v_{kq}\}$ where, with each integer taken modulo kq+1, the neighbourhood of vertex v_i is $\{v_{i-1}, v_{i+1}\} \cup \{v_{i+kj+m} : m = 2, 3, ...k-1 \text{ and } j = 0, 1, ..., q-1\}$.

The graph G(q, k) can be shown to be (k + 1)-vertex-critical for all $q \ge 1$ and $k \ge 3$ and $\{G(q, 3) : q \ge 1\}$ is equivalent to the infinite family in [?] and $\{G(q, 4) : q \ge 1\}$ is equivalent to the infinite family in [9]. Further, G(q, k) is $(2P_2, K_3 + P_1)$ -free (where K_n is the complete graph of order n) for all $k \ge 4$ thus answering an open question posed in [9]. Our new construction is also very natural in the sense that $G(1, k) \cong K_{k+1}$ and $G(2, k) \cong \overline{C_{2k+1}}$ for all k, the prototypical (k+1)-vertex-critical graphs from the Strong Perfect Graph Theorem [7].

For a given q and k and for $0 \le i \le k-1$, let $V_i = \{v_t : t \equiv i \pmod{k}\}$. It is clear that the V_i 's partition the vertex set of G(q, k).

Lemma 1.1. For $1 \le i \le k$, V_i is a stable set of G(q,k) and the only edge in V_0 is v_0v_{qk} .

Proof. Since $2 \le kj + m \le k(q-1)$, it follows that $i \not\equiv i + kj + m \pmod{qk+1}$ for all i. Further, $qk+1 \ge 3$ for all q,k for which inf qk is defined, so the only edge between v_i and v_{i+1} (respectively v_i and v_{i-1}) where $i \equiv i+1 \pmod{qk+1}$ (respectively $i \equiv i-1 \pmod{qk+1}$) is v_0v_{qk} .

Lemma 1.2. For all $k \ge 4$ and $q \ge 1$, G(q, k) is $2K_2$ -free.

Proof. Let G = G(q,k) and suppose G is not $2K_2$ -free. By symmetry, we may suppose without loss of generality that v_0 belongs to an induced $2K_2$. Let $v_\ell, x, y \in V(G)$ such that $\{v_0, v_\ell, x, y\}$ induces a $2K_2$ in G such that $v_0 \sim v_\ell$ and $x \sim y$. It is clear by the definition of G that $N(v_0) = \{v_1, v_{qk}\} \cup V_2 \cup V_3 \cup \cdots \cup V_{k-1}$. Therefore, if $\{x, y\} \not\subseteq (V_0 \setminus \{v_0, v_{qk}\}) \cup V_1$, then v_0 will be adjacent to x or y, contradicting our assumption. Since $x \sim y$, $\{x, y\} \subseteq (V_0 \setminus \{v_0, v_{qk}\}) \cup (V_1 \setminus \{v_1\})$, and both $V_1 \setminus \{v_1\}$ and $V_0 \setminus \{v_0, v_{qk}\}$ are stable sets from Lemma 1.1, it follows that (without loss of generality) $x \in V_0 \setminus \{v_0, v_{qk}\}$ and $y \in V_1 \setminus \{v_1\}$. There are now only three cases to consider.

Case 1: $v_{\ell} \in V_2 \cup V_3 \cup \cdots \cup V_{k-2}$. Let $\ell' = \ell \pmod{k}$. By assumption, $2 \leq \ell' \leq k-2$. For $v_{hk} \in V_0$ where $\ell < hk \leq qk$, we have that $hk = \ell + k(h-1) + (k-\ell')$, so $v_{hk} \in N(v_{\ell})$. For $v_{hk} \in V_0$ where $qk < hk < \ell$, we have that $hk = \ell' + k(h-1) + (k-\ell'+1) \pmod{qk+1}$, so $v_{hk} \in N(v_{\ell})$. It follows

that $V_0 \subseteq N(v_\ell)$ and, thus, $v_\ell \sim x$. This contradicts our assumption on the induced $2K_2$ in G.

Case 2: $v_{\ell} \in V_{k-1}$. Similarly to the previous case, we find that $V_1 \subseteq N(v_{ell})$ since

$$\{v_{(k-1)+qj+2}: j=0,1,\ldots,q-1\} \cup \{v_{(k-1)+qj+3}: j=0,1,\ldots,q-1\} \subseteq N(y)$$

by definition. Therefore, $y \sim v_{\ell}$ which again contradicts our assumption on the induced $2K_2$ in G.

Case 3: $v_{\ell} \in \{v_{qk}, v_1\}$. If $v_{\ell} = v_1$, then since $1 + jk + m \mod qk + 1 = 1 + jk + m$ for all $0 \le j \le q - 1$ and $2 \le m \le k - 1$, we can obtain all v_h such that $v_h \in V_0$ in the set $\{v_{1+(q-1)j+(k-1)}: j = 0, 1, \ldots, q-1\}$. Thus, Since $1 + jk + m \mod qk + 1 = 1 + jk + m$ for all $0 \le j \le q - 1$ and $2 \le m \le k - 1$, we can obtain all v_h such that $v_h \in V_{k-1}$ in the set $\{v_{1+(q-1)j+(k-2)}: j = 0, 1, \ldots, q-1\}$. Thus, $x \sim v_{\ell} = v_1$ which contradicts our assumption on the induced $2K_2$ in G. Similarly, for $v_{\ell} = v_{qk}$, we get that $y \sim v_{\ell}$ which again contradicts our assumption on the induced $2K_2$ in G.

All three cases together show that G is $2K_2$ -free.

Lemma 1.3. For all $k \geq 5$ and $q \geq 1$, G(q, k) is C_5 -free.

Proof. Let $k \geq 5$, $q \geq 1$, and G = G(q, k). Suppose by way of contradiction that G contains an induced C_5 . Without loss of generality suppose v_0 is on an induced C_5 in G and let $\{v_0, v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4}\}$ induce a C_5 in G such that $v_0 \sim v_{i_1}, v_0 \sim v_{i_4}$, and $v_{i_j} \sim v_{i_{j+1}}$ for j = 1, 2, 3. By similar arguments to the proof of Lemma 1.2, we must have, without loss of generality, $v_{i_2} \in V_0 \setminus \{v_0, v_{qk}\}$ and $v_{i_3} \in V_1 \setminus \{v_1\}$. Further, since $N(v_0) = \{v_1, v_{qk}\} \cup V_2 \cup V_3 \cup \cdots \cup V_{k-1}$, we must have $\{v_{i_4}, v_{i_5}\} \subseteq V_2 \cup V_3 \cup \cdots \cup V_{k-1}$. By a similar argument to that of Case 1 of the proof of Lemma 1.2 and since $v_1 \sim v_{qk}$, we must have $v_{i_4} \in V_{k-1}$ (or else $v_{i_2} \sim v_{i_4}$) and $v_{i_3} \in V_j$ for some $2 \leq j \leq k-2$. Further, j = k-2, or else $v_{i_1} \sim v_{i_4}$. But now since $k \geq 5$, and therefore $k-2 \geq 3$, we have $v_{i_3} \sim v_{i_1}$. This contradicts our assumption on the induced C_5 . Therefore, G is C_5 -free.

Note our proof of the following lemma is adapted directly from Theorem 2.4 of [9] where it was shown that G(q, 4) (under the name G_p) is 4-vertex-critical for all q.

Lemma 1.4. For all $k \geq 3$ and $q \geq 1$, G(q, k) is k-vertex-critical.

Proof. Let G = G(q, k). Note that for all $0 \le i \le (q-1)k+1$, the set $\{v_{i+j} : j = 0, 1, \ldots, k-1\}$ induces a K_{k-1} . Thus, $\chi(G) \ge k-1$. Suppose G is (k-1)-colourable, and without loss of generality, let vertices v_i be assigned colour i for $i = 0, 1, \ldots, k-1$. We now must have vertex v_j be assigned colour $j \mod k$ for all $k \le j \le qk-1$. But now $N(v_{qk})$ contains all k-1 colours. So G is not (k-1)-colourable. From Lemma 1.1, however, this partial colouring is valid and we may give vertex v_{qk} colour k to get that $\chi(G) = k$. Since v_{qk} is the only vertex with colour k, it follows by the symmetry of G that G is k-vertex-critical.

Theorem 1.5. There are infinitely many k-vertex-critical (P_5, C_5) -free graphs for all $k \geq 6$.

Proof. The proof follows from Lemma 1.2, Lemma 1.3, and Lemma 1.4. \Box

2 State of (P_5, H) -free graphs when H is of order 5

In this section we detail in a table whether there are only finitely many or infinitely many k-critical (P_5, H) -free graphs for all nonisomorphic graphs H of order 5. This is to make progress on the open problem raised in [5]. For table, see this site for all graph names: https://www.graphclasses.org/smallgraphs.html#

Graph	Graph name	finite/infinite	reference
●0 ●1 ●2 ●3 ●4	$\overline{K_5}$	finite	Ramsey's Theorem [14]
●●●1 ●2 ●3 ●4	$P_2 + 3P_1$	finite	[4]
00 	$P_3 + 2P_1$	finite	[1]
0.1			
2 03	$claw+P_1$	unknown	
	$K_{1,4}$	finite	[12] (see also [13, Theorem 1])
• 2	$2K_2 + P_1$	infinite	Contains $2K_2$ [9]
• z	$P_4 + P_1$	unknown	
	$P_{3} + P_{2}$	infinite	Contains $2K_2$ [9]
• • •	$K_3 + 2P_1$	infinite	Contains $K_3 + P_1$ [5, 9]
2 2 2	chair	finite $k \le 5$, unknown $k \ge 6$	[11]
3 02	co-dart	infinite	Contains $K_3 + P_1$ [5, 9]
	$\overline{\operatorname{diamond} + P_1}$	unknown	
	$C_4 + P_1$	unknown	
	banner	finite	[2, Theorem 3(i)]
•	${\rm diamond} + P_1$	infinite	Contains $K_3 + P_1$ [5, 9]
	bull	finite $k = 5$, unknown $k \ge 6$	[10]

* 1			
	dart	unknown	
	$K_{2,3}$	finite	[12]
	$\overline{K_3 + 2P_2}$	unknown	
	P_5	infinite	Contains $2K_2$ [9]
	$K_3 + P_2$	infinite	Contains $2K_2$ [9]
2	co-banner	infinite	Contains $2K_2$ [9] (see also [2])
	butterfly	infinite	Contains $2K_2$ [9]
	C_5	infinite	this paper
0	$\overline{P_5}$	finite	[8]
	gem	finite	[3] (see also our P_5 , gem)-free paper)
2	kite	infinite	Contains $K_3 + P_1$ [5, 9]
•	$K_4 + P_1$	infinite	Contains $K_3 + P_1$ [5, 9]
	$\overline{\operatorname{claw} + K_1}$	infinite	Contains $K_3 + P_1$ [5, 9]
	$\overline{P_3 + 2P_1}$	unknown	
	paraglider or $\overline{P_3 + P_2}$	finite	[3]
	W_4	unknown	
	$K_5 - e$	unknown	
	K_5	infinite $k = 5$, unknown $k \ge 6$	[9]

References

- [1] T. Abuadas, B. Cameron, C. T. Hoàng, and J. Sawada. Vertex-critical $(p_3 + \ell p_1)$ -free and vertex-critical (gem, co-gem)-free graphs. preprint, arXiv: 2206.03422[math.CO], 2022.
- [2] C. Brause, M. Geißer, and I. Schiermeyer. Homogeneous sets, clique-separators, critical graphs, and optimal χ -binding functions. Discrete Appl. Math., 320:211–222, 2022.
- [3] Q. Cai, J. Goedgebeur, and S. Huang. Some results on k-critical P_5 -free graphs. preprint, arXiv: 2108.05492[math.CO], 2021.
- [4] B. Cameron, C. T. Hoàng, and J. Sawada. Dichotomizing k-vertex-critical H-free graphs for H of order four. Discrete Appl. Math., 312:106–115, 2022. Ninth Workshop on Graph Classes, Optimization, and Width Parameters.
- [5] K. Cameron, J. Goedgebeur, S. Huang, and Y. Shi. k-critical graphs in P_5 -free graphs. Theoretical Computer Science, 864:80–91, 2021.
- [6] M. Chudnovsky, J. Goedgebeur, O. Schaudt, and M. Zhong. Obstructions for three-coloring graphs without induced paths on six vertices. J. Combin., Ser. B, 140:45–83, 2020.
- [7] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Ann. of Math., 164(1):51–229, 2006.
- [8] H. S. Dhaliwal, A. M. Hamel, C. T. Hoàng, F. Maffray, T. J. D. McConnell, and S. A. Panait. On color-critical $(P_5,\text{co-}P_5)$ -free graphs. <u>Discrete Appl. Math.</u>, 216:142–148, 2017.
- [9] C. T. Hoàng, B. Moore, D. Recoskie, J. Sawada, and M. Vatshelle. Constructions of k-critical P_5 -free graphs. Discrete Appl. Math., 182:91–98, 2015.
- [10] S. Huang, J. Li, and W. Xia. Critical (P_5, bull) -free graphs. preprint, arXiv : 2211.04179[math.CO], 2022.
- [11] S. Huang and Z. Li. Critical (P_5 ,chair)-free graphs. preprint, arXiv: 2301.02436[math.CO], 2022.
- [12] M. Kamiński and A. Pstrucha. Certifying coloring algorithms for graphs without long induced paths. Discrete Appl. Math., 261:258–267, 2019.
- [13] V. Lozin and D. Rautenbach. Some results on graphs without long induced paths. <u>Inform.</u> Process. Lett., 88(4):167–171, 2003.
- [14] F. P. Ramsey. On a problem of formal logic. Proc. Lond. Math. Soc., (s2-30):264-286, 1928.