Maxime CORLAY

TP2 Computational Statistics

Exercice 1:

1.

• Tirer $U \sim \mathcal{U}([0,1])$

• Soit $J = \min\{j \in [1, n] | U \le \sum_{k=1}^{j} p_k\}$

• Poser $X = x_I$

2. Testons avec n = 5, $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $x_5 = 5$, $p_1 = 0.1$, $p_2 = 0.6$, $p_3 = 0.2$, $p_4 = 0.05$ et $p_5 = 0.05$. Voir le notebook correspondant.

3. Sans surprise, les fréquences obtenues sont très proches des probabilités initiales.

Exercice 2:

1.

• $\theta = \left(\left(\alpha_j\right)_{j \in [\![1,m]\!]}, \left(\mu_j\right)_{j \in [\![1,m]\!]}, \left(\Sigma_j\right)_{j \in [\![1,m]\!]}\right)$ ce qui fait un total de $m + dm + \frac{d(d-1)}{2}m = \frac{m}{2}(d^2+d+2)$ paramètres, en notant d la dimension de chaque x_i

2.
$$\mathcal{L}(x_1, ..., x_n; \theta) = \prod_{i=1}^n \sum_{j=1}^m \alpha_j \sqrt{\frac{1}{(2\pi)^d \det \Sigma_j}} \exp\left(-\frac{1}{2}(x_i - \mu_j)^T \Sigma_j^{-1}(x_i - \mu_j)\right)$$

Pour passer au log, il est peu pratique de garder la somme sur j. On peut introduire des variables latentes Z_i (vecteurs aléatoires) vérifiant $\mathbb{P}\big(\{Z_{ik}=0 \ pour \ tout \ k \neq j\} \cap \big\{Z_{ij}=1\big\}\big) = \alpha_j$.

$$\mathcal{L}(x_1,\ldots,x_n,z;\theta) = \prod_{i=1}^n \prod_{j=1}^m \left(\alpha_j \sqrt{\frac{1}{(2\pi)^d \det \Sigma_j}} \exp\left(-\frac{1}{2} \left(x_i - \mu_j\right)^T \Sigma_j^{-1} \left(x_i - \mu_j\right)\right)\right)^{z_{ij}}$$

3. Voir le reste sur le notebook correspondant.

Exercice 3:

Voir dans le notebook.