KOMBINATORIK-POSTER

--- Das Urnen-Modell ---

Die Kombinatorik beschäftigt sich mit der Bestimmung der Anzahl möglicher Anordnungen (Sortierungen) oder Auswahlen (Stichproben) von unterscheidbaren oder nicht unterscheidbaren Objekten mit oder ohne Beachtung der Reihenfolge. Sie bildet eine wesentliche Grundlage für die Wahrscheinlichkeitsrechung.

httn://docs.tx7.de/TT-VX0

Abkürzungen:

U = Grundgesamtheit (Menge der Kugeln in der Urne) | n = Anzahl der Elemente (der Kugeln) in U | z = Ziehungen (Auswahl) aus U | k = Anzahl gleicher Kugeln

enge	Werden alle Kugeln aus der Urne herausgenommen/gezogen?							
Betrachtete Menge	ja		nein					
Betra	=> Anordnung (Sortierung) (z=n)		=> Auswahl (Stichprobe) (z <n v="" z="">n)</n>					
Reihenfolge	Soll die Reihenfolge beachtet werden?							
	Die Reihenfolge muss bei einer Anordnung/Sortierung immer beachtet werden, sonst ist das Ergebnis identisch mit der Ausgangslage / Grundgesamtheit.		ja		nein			
Re	=> Permutation * (1, 2,, z)		=> Variation ** {a,b} ≠ {b,a}		=> Kombination *** {a,b} = {b,a}			
Unterscheid- barkeit	Gibt es gleiche (nicht unterscheidbare) Kugeln in der Urne? ****		Werden gezogene Kugeln zurückgelegt (= Wiederholungen)? *****					
	ja	nein	ja (z <n z="" ∨="">n)</n>	nein (z <n)< td=""><td>ja (z<n z="" ∨="">n)</n></td><td>nein (z<n)< td=""></n)<></td></n)<>	ja (z <n z="" ∨="">n)</n>	nein (z <n)< td=""></n)<>		
	[1]	[2]	[3]	[4]	[5]	[6]		
Formel(n)	$\frac{n!}{k_1! \times k_2! \times \cdots \times k_s!}$ $= \binom{n}{k_1, k_2, \cdots, k_s}$ Multi- bzw. Polynomial-koeffizent	n!	n^2	$\frac{n!}{(n-z)!}$ $= \binom{n}{z} \times z!$	$\frac{(n+z-1)!}{(n-1)! \times z!}$ $= \binom{n+z-1}{z}$	$\frac{n!}{(n-z)! \times z!}$ $= \binom{n}{z} = \binom{n}{n-z}$ Binomialkoefizient		
	Beispiele							
	Transpositionsverfahren	Ausverkauftes Kino	Passwörter	Sitzordnung	Briefmarkenserien	Lotto (6 aus 49)		
Beispiel	Wieviele Möglichkeiten gibt es, den Klartext MONOTON zu transponieren?	Ein kleines Kino mit 10 Plätzen und freier Platzwahl ist ausverkauft. Wieviele Möglichkeiten zur Belegung der Sitzplätze gibt es?	Für ein 6-stelliges Passwort sind nur die Ziffern 0 - 9 und die deutschen Großbuch- staben zugelassen. Wieviele mögliche Passwörter gibt es?	Ein Besprechungsraum hat 10 Sitzplätze. Wieviele mögliche Verteilungen für die Plätze gibt es, wenn genau 8 Teilnehmer den Raum belegen?	Das Porto für einen Brief beträgt 5 €. Zum frankieren stehen 1€ Marken aus 3 Serien zur Verfügung. Wieviel Möglichkeiten zur Freimachung gibt es?	Wieviele Möglichkeiten gibt es beim klassischen Lotto aus 49 Zahlen 6 zu ziehen?		
Die "Kugeln" aus der Urne	Die Buchstaben: U = {M, N, N, O, O, O, T}	Die Plätze: U = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}	Die Ziffern und Buchstaben: U = {0, 1, 2,, 9} ∪ {A, B, C,, Z}	Die Plätze: U = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}	Die Briefmarken: U = {S1, S2, S3}	Die 49 Zahlen/Kugeln: U = {1, 2, 3,, 49}		
	$n = 7$, $k_1 = 2$, $k_2 = 3$ (k_1 mit 2xN und k_2 mit 3xO)	n = 10	n = 36	n = 10	n = 3	n = 49		
hl der ıngen	7 Ziehungen	10 Ziehungen	6 Ziehungen	8 Ziehungen	5 Ziehungen	6 Ziehungen		
Anzahl Ziehung	z = 7 (= n)	z = 10	z = 6	z = 8	z = 5	z = 6		
Lösung	$\frac{7!}{2! \times 3!} = \frac{5.040}{2 \times 6}$	10!	$(10+26)^6 = 36^6$	$\frac{10!}{(10-8)!}$	$\frac{(3+5-1)!}{2! \times 5!}$	(⁴⁹ ₆)		
				$=\frac{10!}{2!}$	$=\frac{7!}{2!\times 5!}$	$= \frac{49!}{(49-6)! \times 6!}$		
						$= \frac{49!}{(43)! \times 6!}$		
	= 420	= 3.628.800	= 2.176.782.336	= 1.814.400	= 21	= 13.983.816		

© Tom Gries - v2.2.0 vom 01.06.2023

- * Wenn genau alle Kugeln aus der Urne gezogen werden, handelt es sich IMMER um eine Permutation. Es kommt bei Permutationen immer auf die Reihenfolge an.
- ** Bei Kombinationen kommt es nicht auf die Reihenfolge an, sondern nur auf die Menge an.
- *** Bei Variationen kommt es auf Reihenfolge und Menge an.
- **** Es gibt kein Zurücklegen bei Permutationen.
- ***** Ein Zurücklegen entspricht Wiederholungen.

Farblegende:

Frage	Ja-Antwort	Nein-Antwort	Definition	Formel				