Tarea IMU (C.Esferica):

Para registrar la evolución de un móvil se le coloca una <u>unidad de medición inercial</u> (IMU, <u>inertial measurement unit</u>) que permite medir, entre otros parámetros, las componentes del vector rotación \mathbf{w}_{21} del móvil (sistema 2) respecto de un sistema inercial (sistema 1 fijo). La IMU almacena las componentes de \mathbf{w}_{21} en el sistema móvil. Es decir, almacena \mathbf{w}_{21} en la forma $\mathbf{w}_{21} = \boldsymbol{\omega}_x \mathbf{i}_2 + \boldsymbol{\omega}_y \mathbf{j}_2 + \boldsymbol{\omega}_z \mathbf{k}_2$

En el archivo adjunto Tarea_IMU_Datos.xls se proporcionan los datos registrados por la IMU.

En el instante inicial $t_0 = 0$ se sabe que $\varphi(t_0) = 0.1$ rad, $\theta(t_0) = 0.2$ rad y $\psi(t_0) = 0.3$ rad

Se pide determinar, utilizando técnicas de cálculo numérico (diferenciación y/o integración numéricas), lo siguiente:

- 1. Ángulos de Euler $\varphi = \varphi(t)$, $\theta = \theta(t)$ y $\psi = \psi(t)$.
- 2. Rotaciones de Euler $\dot{\varphi} = \dot{\varphi}(t)$, $\dot{\theta} = \dot{\theta}(t)$ y $\dot{\psi} = \dot{\psi}(t)$.
- 3. Componentes del vector rotación \mathbf{w}_{21} en el sistema inercial (sistema 1 fijo): $\mathbf{w}_{21} = \omega_{x1}\mathbf{i}_1 + \omega_{y1}\mathbf{j}_1 + \omega_{z1}\mathbf{k}_1$

Notas:

- o Se recomienda resolver el problema en EXCEL
- Se debe proporcionar una tabla, preferiblemente en EXCEL, donde aparezcan cada una de las magnitudes pedidas en función del tiempo. Se puede utilizar como plantilla el propio archivo de datos Tarea_IMU_Datos.xls
- o Se deben representar gráficamente los resultados:
 - \circ Los tres ángulos de Euler en función de t se representarán en una gráfica única
 - \circ Las tres rotaciones de Euler en función de t se representarán en una gráfica única
 - o Las tres componentes ω_{x1} , ω_{y1} , ω_{z1} en función de t se representarán en una gráfica única
- o Como solución, deberá entregarse:
 - o Un manuscrito donde se explique la estrategia seguida para la resolución del problema
 - o El código Matlab/Octave utilizado, convenientemente comentando
 - o Las gráficas generadas (pueden incluirse en el manuscrito)
- Se recomienda consultar el contenido de la página siguiente sobre paso de "Base de Euler" a la "Base Móvil" y viceversa.
- Se recomienda utilizar integración numérica. Es decir, a partir de las rotaciones de Euler $\dot{\phi} = \dot{\phi}(t)$, $\dot{\theta} = \dot{\theta}(t)$, $\dot{\psi} = \dot{\psi}(t)$ se podrían estimar los ángulos de Euler del modo siguiente:

$$\begin{split} & \phi(t_{i+1}) = \phi(t_i) + \dot{\phi}(t_i) \cdot \Delta t \\ & \theta(t_{i+1}) = \theta(t_i) + \dot{\theta}(t_i) \cdot \Delta t \\ & \psi(t_{i+1}) = \psi(t_i) + \dot{\psi}(t_i) \cdot \Delta t \\ & \Delta t = t_{i+1} - t_i \end{split}$$

Paso de la "Base de Euler" a la "Base Móvil" y viceversa

Las ecuaciones que aparecen en el apartado 5.9 de la RCF-T5 podrían escribirse matricialmente del modo siguiente:

$$\begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \sin(\theta)\sin(\psi) & \cos(\psi) & 0 \\ \sin(\theta)\cos(\psi) & -\sin(\psi) & 0 \\ \cos(\theta) & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$

Lo anterior puede verse como un cambio de sistema de referencia, donde el vector $\begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$, que son las

componentes del vector rotación en la "Base de Euler" se multiplica por la matriz \mathbf{M} para obtener el vector $\begin{bmatrix} \omega_x \\ \omega_y \end{bmatrix}$ que son las componentes del vector rotación en la "Base Móvil". Dicha matriz \mathbf{M} sería la siguiente:

$$\mathbf{M} = \begin{bmatrix} \sin(\theta)\sin(\psi) & \cos(\psi) & 0\\ \sin(\theta)\cos(\psi) & -\sin(\psi) & 0\\ \cos(\theta) & 0 & 1 \end{bmatrix}$$

Si lo que se quiere es realizar la transformación inversa, es decir, pasar de las componentes en la "Base Móvil" a la "Base de Euler", lo que habría que hacer sería multiplicar por la matriz inversa de **M**:

$$\mathbf{M}^{-1} = \begin{bmatrix} \sin(\psi)/\sin(\theta) & \cos(\psi)/\sin(\theta) & 0\\ \cos(\psi) & -\sin(\psi) & 0\\ -\frac{\cos(\theta)\sin(\psi)}{\sin(\theta)} & -\frac{\cos(\theta)\cos(\psi)}{\sin(\theta)} & 1 \end{bmatrix}$$

Por tanto:

$$\begin{bmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} \sin(\psi) / \sin(\theta) & \cos(\psi) / \sin(\theta) & 0 \\ \cos(\psi) & -\sin(\psi) & 0 \\ -\frac{\cos(\theta) \sin(\psi)}{\sin(\theta)} & -\frac{\cos(\theta) \cos(\psi)}{\sin(\theta)} & 1 \end{bmatrix} \cdot \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$