Types of data and describing data with summary statistics

DATA SCIENCE FOR BIOLOGISTS STEPHANIE J. SPIELMAN, PHD

Types of data

How you analyze and visualize data depends on the type of data you have

Quantitative data

- Continuous
- Discrete (includes count data)

Categorical data

- Nominal
- Ordinal
- Binary*

Human data type	R data type
Quantitative continuous	Numeric (double)
Quantitative discrete	Numeric (integer)
Categorical nominal	Character or factor
Categorical ordinal	Factor
Categorical binary	Factor or logical

Quantitative data

Continuous

Any real-number value within some range

Discrete

- Values are in indivisible units, i.e. whole or counting numbers
- Includes count data (number of cups of coffee per day, number of amino acids...)

Categorical data

Nominal

• Hair color, eye color, sex genotypes (XX, XY, XXY, XYY, XO, ...)

Ordinal – categories with a natural ordering

- Bad, fair, good, excellent
- A, B, C, D

Binary

- Yes/No
- True/False

Data types translated

Human data type	R data type
Quantitative continuous	Numeric (double)
Quantitative discrete	Numeric (integer)
Categorical nominal	Character or factor
Categorical ordinal	Factor
Categorical binary	Factor or logical

Measures of Location

Continuous

Mean

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Median

- For odd *n*, the $\left(\frac{n+1}{2}\right)th$ observation
- For even n, the average of the $\left(\frac{n}{2}\right)th$ and $\left(\frac{n}{2}+1\right)th$ observation

Discrete or categorical

Mode

- The most frequent appearing observation in the distribution
- 1, 2, 2, 2, 3, 4, 4, 5, 6 **> 2**
- Large, large, small → Large

Measures of location in distributions

Measures of spread

Range

Standard deviation and variance

Interquartile range

Range

Difference between largest and smallest value in a distribution

- 1, 2, 3, 7, 9 → 8
- 1, 2, 3, 7, 9, 500 → 499

Range is very sensitive to extreme observations and becomes very unwieldy very quickly.

Standard deviation and variance

Generally discussed in the context of mean

Deviance describes how each nth data point deviates from mean \overline{Y} :

$$\circ$$
 $Y_1 - \overline{Y}$, $Y_2 - \overline{Y}$, $Y_3 - \overline{Y}$, ..., $Y_n - \overline{Y}$

Standard deviation of a sample

$$s = \frac{1}{n-1} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}$$

Variance

 \circ s^2

Interquartile range

Generally discussed in the context of median

Quartiles divide the data into four equal parts ("quar"!)

Interquartile range (IQR) is the difference between the third and first quartile

• How much of the data does the IQR encompass?

Five number summary: min, Q1, median, Q3, max

Mean or median?

The median is much more robust to outliers compared to the mean.

Measures of variability

Coefficient of variation is the standard deviation of a sample expressed as a percentage of the sample mean (aka normalized)

- $\circ COV = \frac{s}{\overline{Y}} \times 100\%$
- Useful measure for comparing variability between two differently-scaled datasets

Visualizing data

Different types of plots are used to represent different types of data

Continuous data

Histogram

Density plot

Boxplot

Violin plot

Discrete data

Bar plot

Comparing two continuous variables

Scatterplot

Trend over time

Line plot

"Directory of data visualizations" (ch5)

Histogram

Using histograms to describe distributions

Density plots smoothen histograms

Boxplot

Graphical representation of a fivenumber summary

"Whiskers" calculated as data within +/- 1.5 IQR

Boxplots: The plot thickens*

Visualizing amounts/proportions

Barplot

Barplots for quantitative data

The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, orange juice or ascorbic acid (a form of vitamin C and coded as 'VC').

Why you should NEVER USE barplots for quantitative data

http://journals.plos.org/plosbiology/article?id =10.1371/journal.pbio.1002128

It's just an awful way to visualize DATA

Friends don't let friends make bar plots!

https://onlinelibrary.wiley.com/doi/full/10.1111/modl.12386

Scatterplot

Time series data

§ 2003

100

125

150

175 Value