TD 5 - Fonctions de référence

Fonctions linéaires et affines

Exercice 1. Tracer le graphe des fonctions suivantes :

a)
$$f_1(x) = 2$$

b)
$$f_2(x) = -2x$$

c)
$$f_3(x) = x + 2$$

d)
$$f_4(x) = -x + 2$$

e)
$$f_5(x) = 2x - 1$$

f)
$$f_6(x) = -3x + 4$$

Exercice 2. On considère la famille de fonctions f(x) = c - x pour c parcourant les nombres réels. Quel point commun partagent toutes les fonctions de cette famille? Tracer les graphes de quelques-unes de ces fonctions.

Exercice 3 (*). On considère la famille de fonctions f(x) = 1 + m(x+3) pour m parcourant les nombres réels. Quel point commun partagent toutes les fonctions de cette famille? Tracer les graphes de quelques-unes de ces fonctions.

Exercice 4 (*). Trouver une équation qui définit la famille des fonctions affines de pente 2. Faire de même pour les fonctions affines qui vérifient f(2) = 1. Quelle fonction appartient aux deux familles en même temps?

Fonctions polynomiales

Exercice 5. Tracer les courbes représentatives de $f(x) = x^2$ et $g(x) = x^4$. Les fonctions f et g sont-elles paires, impaires?

Exercice 6. Tracer la courbe représentative de $f(x) = x^3$. La fonction f est-elle paire, impaire?

Exercice 7. On considère les fonctions $f(x) = x^2 + c$ pour c parcourant les nombres réels. Comment varie la courbe représentative de f quand la valeur de c varie dans \mathbb{R} ? Même question pour $g(x) = (x - c)^2$.

Exercice 8 (*). Soient P et Q les deux fonctions polynomiales définies par $P(x) = 2x^3 + 5x - 1$ et $Q(x) = -x^2 + 3x$. Calculer (P + Q)(x) = P(x) + Q(x), $(PQ)(x) = P(x) \times Q(x)$, $P(x^2)$ et Q(P(x)).

Fonctions exponentielle et logarithme

Exercice 9. Simplifier au mieux les expressions suivantes :

a)
$$e^1 \times e^2$$

b)
$$e^3 \times e^8$$

c)
$$e^4 \times e^4$$

d)
$$(e^3)^5$$

e)
$$\frac{e^8}{e^2}$$

$$f) \frac{e^7}{e^2 \times e^5}$$

g)
$$\ln(3) + \ln(5)$$

h)
$$ln(9) + ln(2)$$

i)
$$\ln\left(\frac{1}{3}\right)$$

j)
$$\ln\left(\frac{7}{5}\right)$$

$$k) \ln(4) - \ln(2$$

l)
$$ln(2^8)$$

m)
$$e^{\ln(3)}$$

n)
$$e^{\ln(10)}$$

o)
$$e^{\ln(x^2)}$$

p)
$$\ln\left(e^8\right)$$

q)
$$\ln (e^{-5})$$

r)
$$\ln (e^{-4x})$$

Exercice 10. Écrire les nombres suivants en fonction de ln(2) et ln(3):

a) ln(4)

b) ln(9)

c) $\ln(12)$

d) $\ln\left(\frac{1}{6}\right)$

- e) $\ln\left(\frac{1}{24}\right)$
- f) ln(108)

g) $\ln\left(\frac{54}{32}\right)$

h) $\ln(\sqrt{2})$

i) $\ln(\sqrt{12})$

Exercice 11. Comparer les nombres 2^{33} , 3^{22} et e^{22} ($e = e^1 \simeq 2,72$).

Exercice 12 (*). Simplifier au mieux les expressions suivantes :

a) $e^{3\ln(2)}$

b) $e^{2\ln(x)}$

c) $e^{4\ln(2x)-\ln(16)}$

d) $e^{3\ln(2x)} - e^{2\ln(3x)}$

e) $\ln\left(\ln\left(e^{e^x}\right)\right)$

f) $r^{\frac{\ln(\ln(x))}{\ln(x)}}$

Exercice 13 (*). Donner l'ensemble de définition des équations suivantes et les résoudre :

a)
$$ln(x) = 3$$

b)
$$\ln(x+5) = \ln(2-x)$$

c)
$$\ln(x^2) = \ln(x)$$

d)
$$2^{2^x} = 9$$

Résolution graphique d'équations

Exercice 14. Résoudre graphiquement les équations et inéquations suivantes :

a)
$$x - 2 = -x$$

b)
$$2x + 1 = -x$$

c)
$$3x - 4 \geqslant -x$$

d)
$$3x - 4 \geqslant x$$

Exercice 15. Tracer la courbe représentative de $f(x) = x^2 - 3x$ pour $x \in [-2, 5]$.

- a) Tracer la droite perpendiculaire à l'axe des ordonnées passant par les points de coordonnées (0, -3), (0, -1), (0, 1) et (0, 3).
- b) Déterminer graphiquement des solutions approchées des équations $x^2 3x = -3$, $x^2 3x = -1$, $x^2 3x = 1$ et $x^2 3x = 3$.
- c) Résoudre ces équations par le calcul.

Exercice 16. Résoudre graphiquement les équations suivantes :

a)
$$-2x^2 + 4x = 1$$

b)
$$-2x^2 + 4x = -1$$

c)
$$-2x^2 + 4x = 2$$

d)
$$-2x^2 + 4x = 3$$

Exercice 17. Résoudre graphiquement les équations et inéquations suivantes :

a)
$$3x^2 - x - 1 = 1$$

b)
$$3x^2 - x - 1 = 3$$

c)
$$3x^2 - x - 1 = x$$

d)
$$3x^2 - x - 1 \ge -x + 2$$

Modélisation

Exercice 18. Pour un certain médicament, la dose recommandée pour un adulte est D = 200 (mg). Pour trouver la dose appropriée pour un enfant de moins d'un an, les pharmaciens utilisent l'équation d(p) = 0,0417(p+1)D où p est le poids de l'enfant (en kg).

- a) Quelle est la pente du graphe de d? Que représente-t-elle?
- b) Quel dosage est recommandé pour un enfant de $10~\mathrm{kg}$?

Exercice 19. On place 15000 euros dans un nouveau compte d'épargne avec un taux de 5% par an. On souhaite acheter une voiture qui coûte 20000 euros. Combien d'années devra-t-on attendre pour avoir cette somme sur le compte?

Exercice 20. On introduit 100 lapins dans une zone protégée. Le nombre de lapins double tous les ans.

- a) Exprimer le nombre de lapins f(n) après n années.
- b) Donner la réciproque de cette fonction? Comment l'interpréter?
- c) Après combien d'années aura-t-on 50000 lapins?

Exercice 21. Un biologiste met 500 bactéries dans une boîte. Le nombre de bactéries double toutes les demi-heures. Combien y a-t-il de bactéries après 30 minutes? 2 heures? 4 heures?

Exercice 22. La formule $C = \frac{5}{9}(F - 32)$, où $F \ge -459,67$, exprime une température C en degré Celcius en fonction de la température en Fahrenheit F. Donner la formule permettant de convertir des degrés Celcius en degré Fahrenheit et préciser son domaine de définition.