Module 1

September 21, 2020

You are currently looking at **version 1.0** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the Jupyter Notebook FAQ course resource.

0.1 Applied Machine Learning, Module 1: A simple classification task

0.1.1 Import required modules and load data file

```
In [1]: %matplotlib notebook
        import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd
        from sklearn.model_selection import train_test_split
        fruits = pd.read_table('readonly/fruit_data_with_colors.txt')
In [2]: fruits.head()
           fruit_label fruit_name fruit_subtype
                                                                        color_score
Out [2]:
                                                  mass
                                                         width
                                                                height
        0
                             apple granny_smith
                                                                   7.3
                                                                                0.55
                                                   192
                                                           8.4
                     1
                                                                   6.8
                                                                                0.59
        1
                     1
                             apple granny_smith
                                                   180
                                                           8.0
                     1
                             apple granny_smith
                                                   176
                                                           7.4
                                                                   7.2
                                                                                0.60
        3
                         mandarin
                                        mandarin
                                                    86
                                                           6.2
                                                                   4.7
                                                                                0.80
                     2
                         mandarin
                                        mandarin
                                                     84
                                                           6.0
                                                                   4.6
                                                                                0.79
In [3]: # create a mapping from fruit label value to fruit name to make results eas
        lookup_fruit_name = dict(zip(fruits.fruit_label.unique(), fruits.fruit_name
        lookup_fruit_name
```

The file contains the mass, height, and width of a selection of oranges, lemons and apples. The heights were measured along the core of the fruit. The widths were the widest width perpendicular to the height.

Out[3]: {1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}

0.1.2 Examining the data

```
In [4]: # plotting a scatter matrix
        from matplotlib import cm
        X = fruits[['height', 'width', 'mass', 'color_score']]
        y = fruits['fruit label']
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        cmap = cm.get_cmap('gnuplot')
        scatter = pd.scatter_matrix(X_train, c= y_train, marker = 'o', s=40, hist_}
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
In [5]: # plotting a 3D scatter plot
        from mpl_toolkits.mplot3d import Axes3D
        fig = plt.figure()
        ax = fig.add_subplot(111, projection = '3d')
        ax.scatter(X_train['width'], X_train['height'], X_train['color_score'], c =
        ax.set_xlabel('width')
        ax.set_ylabel('height')
        ax.set_zlabel('color_score')
        plt.show()
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
0.1.3 Create train-test split
In [6]: # For this example, we use the mass, width, and height features of each from
        X = fruits[['mass', 'width', 'height']]
        y = fruits['fruit_label']
        # default is 75% / 25% train-test split
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
0.1.4 Create classifier object
In [7]: from sklearn.neighbors import KNeighborsClassifier
        knn = KNeighborsClassifier(n_neighbors = 5)
```

0.1.5 Train the classifier (fit the estimator) using the training data

```
In [8]: knn.fit(X_train, y_train)
Out[8]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                                                        metric_params=None, n_jobs=1, n_neighbors=5, p=2,
                                                        weights='uniform')
0.1.6 Estimate the accuracy of the classifier on future data, using the test data
In [9]: knn.score(X_test, y_test)
0.1.7 Use the trained k-NN classifier model to classify new, previously unseen objects
In [15]: # first example: a small fruit with mass 20q, width 4.3 cm, height 5.5 cm
                           fruit_prediction = knn.predict([[20, 4.3, 5.5]])
                          print(fruit_prediction)
                           lookup_fruit_name[fruit_prediction[0]]
[2]
Out[15]: 'mandarin'
In [16]: # second example: a larger, elongated fruit with mass 100g, width 6.3 cm,
                          fruit_prediction = knn.predict([[100, 6.3, 8.5]])
                          print(fruit_prediction)
                           lookup_fruit_name[fruit_prediction[0]]
[4]
Out[16]: 'lemon'
0.1.8 Plot the decision boundaries of the k-NN classifier
In [17]: from adspy_shared_utilities import plot_fruit_knn
                          plot_fruit_knn(X_train, y_train, 5, 'uniform') # we choose 5 nearest n
<IPython.core.display.Javascript object>
```

<IPython.core.display.HTML object>

0.1.9 How sensitive is k-NN classification accuracy to the choice of the 'k' parameter?

0.1.10 How sensitive is k-NN classification accuracy to the train/test split proportion?

```
In [19]: t = [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2]
knn = KNeighborsClassifier(n_neighbors = 5)

plt.figure()

for s in t:

    scores = []
    for i in range(1,1000):
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_sizknn.fit(X_train, y_train)
        scores.append(knn.score(X_test, y_test))
    plt.plot(s, np.mean(scores), 'bo')

plt.xlabel('Training set proportion (%)')
plt.ylabel('accuracy');

<IPython.core.display.Javascript object>
```

<IPython.core.display.HTML object>