Assignment 2

Name: Yu Feng ID:z5094935

Qusetion1:

(a)

Breadth first search, exclude repeated states:

Position	Start1	Start2	Start3	Start4	Start5
Ν	41	173	2409	9508	58419

(b)

Breadth first search, include repeated states:

Position	Start1(N=)	Start2
N	139	1857

(c)

A* with total Manhattan distance heuristic:

Position	Start1	Start2	Start3	Start4	Start5
N	6	11	19	61	213

(d)

A* with Misplace Tiles heuristic:

Changed parts:

```
misdist(X/Y, X1/Y1, D) :-
    dif(X, X1, Dx),
    dif(Y, Y1, Dy),
    D is Dx + Dy,
    D > 0,
    D is 1,!.

misdist(X/Y, X1/Y1, D) :-
    dif(X, X1, Dx),
    dif(Y, Y1, Dy),
    D = 0.

totdist([Tile|Tiles], [Position|Positions], D) :-
    misdist(Tile, Position, D1),
    totdist(Tiles, Positions, D2),
    D is D1 + D2.
```

Position	Start1	Start2	Start3	Start4	Start5
N	20	34	768	Run out of time	Run out of time

(e)

Base on this result, the order from slowest to fastest is c>a>b>d.

(f)

Position:

Requiring 20:

5	7	4
8	2	1
	6	3

Requiring 23:

5	7	4
8	2	
6	3	1

Requiring 26:

	5	7
8	2	4
6	3	1

With A* Manhattan Distance heuristic

Requiring steps	20	23	26
N	153	336	1305

Qusetion2:

(a)

$$h(x, y, x_G, y_G) = |x - x_G| + |y - y_G|$$

(b)

- i. **No**, the Straight-Line-Distance heuristic can be used for any direction. But diagonally move can just move by 45° . and even the degree is 45, the distance is not same, Straight-Line-Distance heuristic is $\sqrt{2}$, the other is 1.
- ii. **No**, because the agent can move diagonally. For example, if the agent moves from (0,0) to (1,1), for (a) heuristic, it cost 2 steps. While in (b) heuristic, it cost just one step.

iii.

$$h(x, y, x_G, y_G) = \max(|x - x_G|, |y - y_G|)$$

Qusetion3:

(a)

Ν	Time	sequence
1	2	[+ -]
2	3	[+ 0 -]
3	4	[+ 0 0 -]
4	4	[+ +]
5	5	[+ + - 0 -]
6	5	[+ + 0]
7	6	[+ + 0 - 0 -]
8	6	[+ + 0 0]
9	6	[+ + +]
10	7	[+++0-]

n	time	sequence
11	7	[+ + + - 0]
12	7	[+ + + 0]
13	8	[+++00-]
14	8	[+++0-0]
15	8	[+++00]
16	8	[++++]
17	9	[++++0-]
18	9	[++++0]
19	9	[++++-0]
20	9	[++++0]
21	10	[++++00-]

(b)

The fastest way to get to the final is accelerate at the highest speed and slow down.

$$s = \frac{1}{2}at^2$$
 s is distance, a is acceleration, t is time. For initial speed is 0.

Because in this question, final speed must be 0.

$$s = \frac{1}{2}at_1^2 + \frac{1}{2}at_2^2$$

t1 is accelerate time, t2 is slow down time

because speed from 0 to 0. t1 = t2. Let t = t1 + t2:

$$s = a \cdot (\frac{1}{2}t)^2$$

M(n,0) is the time t. n is the distant s, and in this question |a| = 1. let them take place of s and t, the least time used is:

$$M(n,0) = 2\sqrt{n}$$

In this question, all the things are discrete. So M(n,0) must be integer so:

$$M(n,0) = \left\lceil 2\sqrt{n} \right\rceil$$

(c)

As same as (b), just change the first formula to: $s = \frac{1}{2}at^2 + vt$

$$\begin{cases} s = \frac{1}{2}at_1^2 + \frac{1}{2}at_2^2 + vt \\ at_1 + v = at_2 \end{cases}$$

a = 1

$$t_1 + t_2 = 2\sqrt{\frac{1}{2}v^2 + s} - v$$

Because it is discrete, the speed change need one step:

M(n, k) =
$$\left[2\sqrt{n + \frac{1}{2}k(k+1)} - k \right]$$

(d)

As the v-t diagram, the area of the blue part is the distance(n).

We can divide it into three parts. Red part is the n. Green part's area equals blue part's.

Let the red, green and blue M be t1, t2, t3 respectively.

$$\left(\frac{k(k+1)}{2} - n\right) = \frac{(t_2+1)t_2}{2}$$
$$(t_3+1)t_3 = \frac{(t_2+1)t_2}{2}$$
$$\frac{(k+1)k}{2} = \frac{(t_1+t_2+1)(t_1+t_2)}{2}$$

Inferred:

$$M(n,k) = \left[k + \sqrt{\frac{1}{4} + \frac{(k+1)k}{2} - n} - \frac{1}{2}\right]$$

(e)

Once a dimension gets the right position, let component of its velocity be 0, let another component get the goal. The result is the maximum of them.

$$M(n,k) = \begin{cases} \left[2\sqrt{n + \frac{1}{2}k(k+1)} \right] - k & n \ge \frac{1}{2}k(k-1) \\ \left[k + \sqrt{\frac{1}{4} + \frac{(k+1)k}{2} - n} - \frac{1}{2} \right] & n < \frac{1}{2}k(k-1) \end{cases}$$

$$h(r,c,u,v,r_G,c_G) = \max(M(r_G - r,u),M(c_G - c,v))$$