UNIVERSAL

CONJUNTOS

Elementos de Álgebra

Conceptos

Los conceptos de "conjunto" y "elemento" se utilizan, en matemática, como términos básicos y su significado coincide con los que conocemos en nuestro idioma

Notación:

Conjuntos: letras mayúsculas: A, B, C, ..., X, Y, Z

Elementos: letras minúsculas: a, b, c, ..., x, y, z

Simbolos $\in y \notin$

Dado un conjunto A

- $a \in A$: "a" es un objeto de A, es decir, "a" cumple con la condición que define al conjunto A
- $a \in A$ se lee: "a" pertenence a A, "a" es un elemento de A, "a" está en A o "a" en A
- $a \notin A$: "a" no es un objeto de A, es decir, "a" no cumple con la condición que define al conjunto A
- $a \notin A$ se lee: "a" no pertenence a A, "a" no es un elemento de A o "a" no está en A
- $a \notin A$ equivale $a \sim (a \in A)$, esto es,

$$a \notin A \iff \sim (a \in A)$$

CONJUNTOS NUMERICOS

Algunos conjuntos numéricos importantes poseen su propio símbolo:

N : es el conjunto de todos los números naturales

 \mathbb{N}_0 : es el conjunto de todos los números naturales más el número cero

Z : es el conjunto de todos los números enteros

 \mathbb{Z}^+ : es el conjunto de todos los números enteros positivos, este conjunto coincide con el conjunto de los números naturales.

 \mathbb{Z}^- : es el conjunto de todos los números enteros negativos

Q : es el conjunto de todos los números racionales

I : es el conjunto de todos los números irracionales

 \mathbb{R} : es el conjunto de todos los números reales

 \mathbb{R}^+ : es el conjunto de todos los números reales positivos

 \mathbb{R}^- : es el conjunto de todos los números reales negativos

 \mathbb{R}^* : es el conjunto de todos los números reales no nulos

C : es el conjunto de todos los números complejos

Conjuntos por Extensión y Comprensión

Un conjunto está bien definido, o bien determinado, cuando podemos precisar cuáles son sus elementos. Una forma de hacerlo es por <u>EXTENSIÓN</u> nombrando uno a uno todos los objetos que lo componen y encerrando esta lista entre llaves. Por ejemplo, si el conjunto A está formado por los elementos 1, 2, 3 y 4 podemos describir este conjunto escribiendo:

$$A = \{1, 2, 3, 4\}.$$

Este método de describir un conjunto puede ser poco práctico o imposible en algunos casos, y deberemos usar otras formas de notación. Por ejemplo, {1, 2, 3, ..., 99, 100} describe el conjunto de todos los números enteros positivos menores o iguales que 100.

Otras veces, para definir un conjunto lo hacemos por <u>COMPRENSIÓN</u> indicando una propiedad común a todos sus elementos y tal que sólo sus elementos la tengan. Así por ejemplo, los elementos del conjunto $A = \{1, 2, 3, 4\}$ pueden ser caracterizados como aquellos elementos x que cumplen la propiedad: $x \in \mathbb{N}$ y x < 5. Escribimos entonces:

$$A = \{ x \in \mathbb{N} \colon x < 5 \}$$

Conjuntos Especiales

Conjunto Universal: está formado por todos los elementos que intervienen en la disciplina de estudio

Al conjunto universal lo fijaremos con anterioridad al desarrollo del tema que estemos tratando. Lo denotaremos con $\mathcal U$

Conjunto vacío: es el conjunto que carece de elementos

Puede ser definido por cualquier propiedad que sea una contradicción. Lo notaremos por " \emptyset " o $\{\ \}$

Conjunto Unitario: es el que tiene un único elemento.

Inclusión

Inclusión

<u>Definición</u>: Dados dos conjuntos A y B, se dice que A está incluido en B, o que A es un parte de B, o que A es un subconjunto de B, o que B contiene A, si todo elemento de A pertenece a B. Se escribe $A \subseteq B$ o $B \supseteq A$.

$$A \subseteq B \iff \text{para todo } x : x \in A \Rightarrow x \in B.$$

OPERACIONES ENTRE CONJUNTOS

Complemento de un conjunto

Sea $\mathcal U$ un conjunto universal y sea A un subconjunto de $\mathcal U$

Definición

El **complemento** de A consiste de todos los elementos de U que no pertenecen a A. Notaremos

$$A' = \{ x \in \mathcal{U} : x \notin A \}$$

Lógicamente: $x \in A' \iff x \notin A \iff \sim (x \in A)$ y

$$x \notin A' \iff \sim (x \in A') \iff \sim \sim (x \in A) \iff x \in A$$

Notaciones: $A' = A^{C} = CA = -A$

Diagrama de Venn de A'

Ejemplo

- a) Dados los conjuntos $U = \{x \in \mathbb{Z} / |x| \le 10\}$, $A = \{x \in \mathbb{N} / x < 11\}$, $B = \{x \in \mathbb{Z} / -3 \le x < 2\}$, $C = \{x \in \mathbb{Z} / x = 2k, k \in \mathbb{Z}, -8 \le x \le 10\}$ y $D = \{-5, -1, 0, 1, 3\}$, encontrar los siguientes conjuntos:
 - i. D' A, realizar el diagrama de Venn.
 - ii. $A' (C \cup B)$, realizar el diagrama de Venn.

Unión de Conjuntos

<u>Definición</u>: Dados dos conjuntos A y B, se llama *unión* de A y B al conjunto formado por todos los elementos que pertenecen a A ó a B. En notación:

$$A \cup B = \{ x \in U : x \in A \text{ \'o } x \in B \}$$

EJEMPLO

$$U = \{x \in Z: -9 < x \le 7\}$$

$$A = \{x \in Z: x = 4n, n \in Z, -1 \le n < 2\}$$

$$B = \{-6, -4, 0, 4, 6\}$$

$$A \cup B = \{-6, -4, 0, 4, 6\}$$

De la definición resulta que $A \subseteq A \cup B$ y $B \subseteq A \cup B$.

Propiedades de Unión

- Idempotencia: $A \cup A = A$
- Conmutativa: $A \cup B = B \cup A$
- Asociativa: $(A \cup B) \cup C = A \cup (B \cup C)$

Intersección de Conjuntos

<u>Definición</u>: Dados dos conjuntos A y B, se llama *intersección de* A y B, y se indica $A \cap B$, al conjunto cuyos elementos son los elementos comunes a A y a B, es decir los elementos que pertenecen simultáneamente a los dos conjuntos.

$$A \cap B = \{ x \in U : x \in A \ y \ x \in B \}$$

De la definición se desprende inmediatamente que $A \cap B \subseteq A$ y $A \cap B \subseteq B$.

Ejemplo

$$U = \{x \in Z: -9 < x \le 7\}$$

$$B = \{-6, -4, 0, 4, 6\}$$

$$C = \{x \in Z: x \ge -2 \land x < 5\}$$

$$B\cap C=\{0,4\}$$

Propiedades de Intersección

- Idempotencia: $A \cap A = A$
- Conmutativa: $A \cap B = B \cap A$
- Asociativa: $(A \cap B) \cap C = A \cap (B \cap C)$

Teorema 1: $A \subseteq B \iff A \cup B = B$

Teorema 2: $A \subseteq B \iff A \cap B = A$

Leyes de Absorción

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

Leyes Distributivas

1.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$2. \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Sea $\mathcal U$ un conjunto universal y $A,\ B$ y C subconjuntos de $\mathcal U$

- \bigcirc $A \subseteq A \cup B$, $B \subseteq A \cup B$, $A \cap B \subseteq A$, $A \cap B \subseteq B$
- **1** Idempotencia: $A \cup A = A$, $A \cap A = A$
- **6** Conmutativa: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- \bigcirc $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$, $A \cup \mathcal{U} = \mathcal{U}$, $A \cap \mathcal{U} = A$
- ① Distributivas: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 1 Leyes de absorción: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
- $\emptyset' = \mathcal{U}, \quad \mathcal{U}' = \emptyset, \quad (A')' = A$
- 1 De Morgan: $(A \cup B)' = A' \cap B'$, $(A \cap B)' = A' \cup B'$

Diferencia

Definición

Sean A y B subconjuntos de un conjunto universal, se llama **diferencia** entre A y B, al conjunto formado por los elementos que pertenecen a A y no pertenecen a B. Notaremos A–B.

$$A-B = \{x \in \mathcal{U} : x \in A \land x \notin B\}$$

Lógicamente

$$x \in A - B \iff x \in A \land x \notin B$$

Diagrama de Venn de $A \cap B$

Propiedades

Proposición

Sea \mathcal{U} un conjunto universal y A y B sunconjuntos de \mathcal{U} . Entonces

$$\bigcirc$$
 $A - B \subseteq A$, $B - A \subseteq B$

Ejemplo

- a) Dados los conjuntos $U = \{x \in \mathbb{Z} / |x| \le 10\}$, $A = \{x \in \mathbb{N} / x < 11\}$, $B = \{x \in \mathbb{Z} / -3 \le x < 2\}$, $C = \{x \in \mathbb{Z} / x = 2k, k \in \mathbb{Z}, -8 \le x \le 10\}$ y $D = \{-5, -1, 0, 1, 3\}$, encontrar los siguientes conjuntos:
 - i. D' A, realizar el diagrama de Venn.
 - ii. $A' (C \cup B)$, realizar el diagrama de Venn.

Producto Cartesiano

Definición

Sean A y B dos conjuntos no vacíos, el **producto cartesiano** entre los conjuntos A y B es el conjunto de pares ordenados donde la primera componente del par es un elemento de A y la segunda componente del par es un elementos de B. Notaremos $A \times B$

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Lógicamente:

$$(a,b) \in A \times B \iff a \in A \land b \in B$$

Observaciones:

- Si A es el conjunto vacío o B es el conjunto vacío entonces el producto cartesiano no está definido
- Es importante el orden en que se efectúa el producto cartesiano de los conjuntos porque en algunos casos A × B ≠ B × A
- Si A = B notaremos A^2 para indicar $A \times A$.

Conjuntos de Partes

Definición

Dado un conjunto A, el conjunto formado por los subconjuntos de A, es el conjunto de las partes de A. Notaremos $\mathcal{P}(A)$

$$\mathcal{P}(A) = \{X : X \subseteq A\}$$

Lógicamente

$$X \in \mathcal{P}(A) \iff X \subseteq A$$

Observaciones:

 $m{\circ}$ $\mathcal{P}(A)$ nunca es vacío, pues como $\emptyset\subseteq A$ y $A\subseteq A$ cualquiera sea A, entonces $\emptyset\in\mathcal{P}(A)$ y $A\in\mathcal{P}(A)$

 Sea A es un conjunto finito. La cantidad de elementos del conjunto A lo notaremos con #A o |A|, es decir, si A es un conjunto con "n" elementos entonces #A = n o |A| = n.

Si #A = n entonces el conjunto $\mathcal{P}(A)$ tiene 2^n elementos, es decir, $\#\mathcal{P}(A) = 2^n$