AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Previously Presented) A method of flow controlling InfiniBand			
2	receive traffic, comprising:			
3	maintaining a single memory structure for queuing InfiniBand traffic			
4	received via multiple virtual lanes and multiple queue pairs;			
5	identifying a first packet payload received via a first virtual lane and a first			
6	queue pair;			
7	determining whether the first payload can be stored in the memory			
8	structure without exceeding a portion of the memory structure allocated to the			
9	first virtual lane;			
0	determining whether the first payload can be stored in the memory			
1	structure without exceeding a portion of the memory structure allocated to the			
2	first queue pair;			
13	if storing the first payload in the memory structure would exceed said			
4	portion of the memory structure allocated to the first queue pair, determining			
5	whether the first queue pair is enabled to use a shared portion of the memory			
6	structure to store payloads of packets received via the first queue pair; and			
17	maintaining a second memory configured to store, for each of the multiple			
8	queue pairs that is active, one or more parameters associated with operation of			
9	said queue pair, wherein said parameters include:			
20	a maximum number of message credits advertisable by said queue			
21	pair;			

22	a maximum number of memory structure buffers dedicated to			
23	storing payloads of packets received via said queue pair;			
24	an indicator configured to indicate whether said queue pair is			
25	enabled to use a set of shared memory structure buffers; and			
26	a number of shared memory structure buffers in said set of shared			
27	memory structure buffers, wherein said shared memory structure buffers			
28	are available for use by said queue pair to store payloads of packets			
29	received via said queue pair if:			
30	said queue pair has used said maximum number of memory			
31	structure buffers; and			
32	said indicator indicates that said queue pair is enabled to			
33	use said set of shared memory structure buffers; and			
34	a maximum number of message credits advertisable by said queue			
35	pair when said queue pair starts using said shared memory structure			
36	buffers.			
1	2-10. (Cancelled)			
1	11. (Previously Presented) A computer readable medium storing			
2	instructions that, when executed by a computer, cause the computer to perform a			
3	method of flow controlling InfiniBand receive traffic, the method comprising:			
4	maintaining a single memory structure for queuing InfiniBand traffic			
5	received via multiple virtual lanes and multiple queue pairs;			
6	identifying a first packet payload received via a first virtual lane and a first			
7	queue pair;			
8	determining whether the first payload can be stored in the memory			
9	structure without exceeding a portion of the memory structure allocated to the			
10	first virtual lane;			

1	determining whether the first payload can be stored in the memory		
12	structure without exceeding a portion of the memory structure allocated to the		
3	first queue pair;		
4	if storing the first payload in the memory structure would exceed said		
5	portion of the memory structure allocated to the first queue pair, determining		
6	whether the first queue pair is enabled to use a shared portion of the memory		
17	structure to store payloads of packets received via the first queue pair; and		
8	maintaining a second memory configured to store, for each of the multiple		
9	queue pairs that is active, one or more parameters associated with operation of		
20	said queue pair, wherein said parameters include:		
21	a maximum number of message credits advertisable by said queue		
22	pair;		
23	a maximum number of memory structure buffers dedicated to		
24	storing payloads of packets received via said queue pair;		
25	an indicator configured to indicate whether said queue pair is		
26	enabled to use a set of shared memory structure buffers; and		
27	a number of shared memory structure buffers in said set of shared		
28	memory structure buffers, wherein said shared memory structure buffers		
29	are available for use by said queue pair to store payloads of packets		
30	received via said queue pair if:		
31	said queue pair has used said maximum number of memory		
32	structure buffers; and		
33	said indicator indicates that said queue pair is enabled to		
34	use said set of shared memory structure buffers; and		
35	a maximum number of message credits advertisable by said queue		
36	pair when said queue pair starts using said shared memory structure		
37	buffers		

12-29. (Cancelled)

1	30. (Previously Presented) A method of avoiding locking, in receive			
2	InfiniBand queues, the method comprising:			
3	maintaining a single memory structure for reassembling InfiniBand traffic			
4	received via multiple virtual lanes and multiple queue pairs;			
5	identifying a first packet payload received via a first queue pair that is			
6	idle, wherein the first queue pair is considered idle if no traffic from the first			
7	queue pair is stored in said single memory structure;			
8	for each other queue pair for which traffic from said queue pair is stored in			
9	said single memory structure, determining whether sufficient space in the single			
10	memory structure is reserved for reassembling said traffic;			
11	storing the first packet payload in said single memory structure only if			
12	sufficient space in the single memory structure is available for reassembling said			
13	traffic; and			
14	maintaining a second memory configured to store, for each of the multiple			
15	queue pairs that is active, one or more parameters associated with operation of			
16	said queue pair, wherein said parameters include:			
17	a maximum number of message credits advertisable by said queue			
18	pair;			
19	a maximum number of memory structure buffers dedicated to			
20	storing payloads of packets received via said queue pair;			
21	an indicator configured to indicate whether said queue pair is			
22	enabled to use a set of shared memory structure buffers; and			
23	a number of shared memory structure buffers in said set of shared			
24	memory structure buffers, wherein said shared memory structure buffers			
25	are available for use by said queue pair to store payloads of packets			
26	received via said queue pair if:			

27	said queue pair has used said maximum number of memory			
28	structure buffers; and			
29	said indicator indicates that said queue pair is enabled to			
30	use said set of shared memory structure buffers; and			
31	a maximum number of message credits advertisable by said queue			
32	pair when said queue pair starts using said shared memory structure			
33	buffers.			
1	31. (Cancelled)			
1	32. (Previously Presented) An apparatus for flow controlling received			
2	InfiniBand traffic, comprising:			
3	a single memory structure configured to queue payloads of InfiniBand			
4	traffic received via multiple virtual lanes and multiple queue pairs;			
5	a resource manager configured to manage the memory structure;			
6	a first module configured to facilitate the advertisement of virtual lane			
7	credits;			
8	a second module configured to facilitate the advertisement of queue pair			
9	credits; and			
10	a second memory configured to store, for each of the multiple queue pairs			
11	that is active, one or more parameters associated with operation of said queue			
12	pair, wherein said parameters include:			
13	a maximum number of message credits advertisable by said queue			
14	pair;			
15	a maximum number of memory structure buffers dedicated to			
16	storing payloads of packets received via said queue pair;			
17	an indicator configured to indicate whether said queue pair is			
18	enabled to use a set of shared memory structure buffers; and			

19	a number of shared memory structure buffers in said set of shared			
20	memory structure buffers, wherein said shared memory structure buffers			
21	are available for use by said queue pair to store payloads of packets			
22	received via said queue pair if:			
23	said queue pair has used said maximum number of memory			
24	structure buffers; and			
25	said indicator indicates that said queue pair is enabled to			
26	use said set of shared memory structure buffers; and			
27	a maximum number of message credits advertisable by said queue			
28	pair when said queue pair starts using said shared memory structure			
29	buffers.			
1	33-55. (Cancelled)			
1	56. (Previously Presented) A method of flow controlling InfiniBand			
2	receive traffic, comprising:			
3	maintaining a single memory structure for queuing InfiniBand traffic			
4	received via multiple virtual lanes and multiple queue pairs;			
5	maintaining a second memory configured to store, for each of the multiple			
6	queue pairs that is active, one or more parameters associated with operation of			
7	said queue pair, wherein said parameters include a maximum number of message			
8	credits advertisable by said queue pair;			
9	identifying a first packet payload received via a first virtual lane and a first			
10	queue pair;			
11	determining whether the first payload can be stored in the memory			
12	structure without exceeding a portion of the memory structure allocated to the			
13	first virtual lane;			
14	determining whether the first payload can be stored in the memory			

15	structure without exceeding a portion of the memory structure allocated to the			
16	first queue pair; and			
17	if storing the first payload in the memory structure would exceed said			
18	portion of the memory structure allocated to the first queue pair, determining			
19	whether the first queue pair is enabled to use a shared portion of the memory			
20	structure to store payloads of packets received via the first queue pair.			
1	57. (Previously Presented) The method of claim 56, wherein the			
2	second memory is further configured to store one or more additional parameters			
3	associated with operation of said queue pair, wherein said additional parameters			
4	include:			
5	a maximum number of memory structure buffers dedicated to storing			
6	payloads of packets received via said queue pair;			
7	an indicator configured to indicate whether said queue pair is enabled to			
8	use a set of shared memory structure buffers; and			
9	a number of shared memory structure buffers in said set of shared memory			
10	structure buffers, wherein said shared memory structure buffers are available for			
11	use by said queue pair to store payloads of packets received via said queue pair if			
12	said queue pair has used said maximum number of memory			
13	structure buffers; and			
14	said indicator indicates that said queue pair is enabled to use said			
15	set of shared memory structure buffers; and			
16	a maximum number of message credits advertisable by said queue			
17	pair when said queue pair starts using said shared memory structure			
18	buffers.			

58. (Previously Presented) The method of claim 56, further comprising:

1

3	allocating a portion of the memory structure to each of the multiple virtua			
4	lanes; and			
5	allocating a portion of the memory structure to each of the multiple queue			
6	pairs.			
1	59. (Previously Presented) The method of claim 56, wherein the			
2	memory structure comprises a set of linked lists of memory structure buffers,			
3	including one linked list for each of the multiple queue pairs that are active.			
1	60. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	dropping the first payload if the first payload cannot be stored in the			
4	memory structure without exceeding the portion of the memory structure			
5	allocated to the first virtual lane.			
1	61. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	issuing a Retry, Not Ready, Negative Acknowledgement (RNR-NAK) if			
4	the first payload cannot be stored in the memory structure without			
5	exceeding a portion of the memory structure allocated to the first queue			
6	pair; and			
7	the first queue pair is not enabled to use the shared portion of the			
8	memory structure.			
1	62. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	issuing a Retry, Not Ready, Negative Acknowledgement (RNR-NAK) if:			
4	the first payload cannot be stored in the memory structure without			

5	exceeding a portion of the memory structure allocated to the first queue			
6	pair;			
7	the first queue pair is enabled to use the shared portion of the			
8	memory structure; and			
9	the shared portion of the memory structure is full.			
1	63. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	defining one or more dedicated thresholds in the portion of the memory			
4	structure allocated to the first queue pair; and			
5	for each of said dedicated thresholds, identifying a number of message			
6	credits the queue pair may advertise when the amount of the memory structure			
7	used by the queue pair exceeds said dedicated threshold.			
1	64. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	defining one or more shared thresholds in the shared portion of the			
4	memory structure; and			
5	for each of said shared thresholds, identifying a number of message credit			
6	the queue pair may advertise when the amount of the shared portion used by the			
7	multiple queue pairs exceeds said shared threshold.			
1	65. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	receiving a request on a second queue pair to perform an RDMA (Remote			
4	Direct Memory Access) Read operation; and			
5	based on an amount of data expected to be received via the RDMA Read			
6	operation, reserving a sufficient number of buffers in the memory structure.			

1	66. (Previously Presented) The method of claim 56, further			
2	comprising:			
3	in the single memory structure, reassembling the queued InfiniBand traffic			
4	into outbound communications;			
5	receiving a payload on an idle queue pair, wherein a queue pair is idle if			
6	no traffic from the queue pair is stored in the single memory structure; and			
7	only queuing the payload in the single memory structure if sufficient space			
8	in the single memory structure is reserved for completing reassembly of outbound			
9	communications on each non-idle queue pair.			
1	67. (Previously Presented) A computer readable medium storing			
2	instructions that, when executed by a computer, cause the computer to perform a			
3	method of flow controlling InfiniBand receive traffic, the method comprising:			
4	maintaining a single memory structure for queuing InfiniBand traffic			
5	received via multiple virtual lanes and multiple queue pairs;			
6	maintaining a second memory configured to store, for each of the multiple			
7	queue pairs that is active, one or more parameters associated with operation of			
8	said queue pair, wherein said parameters include a maximum number of message			
9	credits advertisable by said queue pair;			
10	identifying a first packet payload received via a first virtual lane and a first			
11	queue pair;			
12	determining whether the first payload can be stored in the memory			
13	structure without exceeding a portion of the memory structure allocated to the			
14	first virtual lane;			
15	determining whether the first payload can be stored in the memory			
16	structure without exceeding a portion of the memory structure allocated to the			
17	first queue pair; and			
18	if storing the first payload in the memory structure would exceed said			

19	portion of the memory structure allocated to the first queue pair, determining			
20	whether the first queue pair is enabled to use a shared portion of the memory			
21	structure to store payloads of packets received via the first queue pair.			
1	68. (Previously Presented) The computer readable medium of claim			
2	67, wherein the second memory is further configured to store one or more			
3	additional parameters associated with operation of said queue pair, wherein said			
4	additional parameters include:			
5	a maximum number of memory structure buffers dedicated to storing			
6	payloads of packets received via said queue pair;			
7	an indicator configured to indicate whether said queue pair is enabled to			
8	use a set of shared memory structure buffers; and			
9	a number of shared memory structure buffers in said set of shared memory			
10	structure buffers, wherein said shared memory structure buffers are available for			
11	use by said queue pair to store payloads of packets received via said queue pair if:			
12	said queue pair has used said maximum number of memory			
13	structure buffers; and			
14	said indicator indicates that said queue pair is enabled to use said			
15	set of shared memory structure buffers; and			
16	a maximum number of message credits advertisable by said queue pair			
17	when said queue pair starts using said shared memory structure buffers.			
1	69. (Previously Presented) The computer readable medium of claim			
2	67, wherein the method further comprises:			
3	defining one or more dedicated thresholds in the portion of the memory			
4	structure allocated to the first queue pair; and			

credits the queue pair may advertise when the amount of the memory structure

for each of said dedicated thresholds, identifying a number of message

5

1	70.	(Previously Presented) The computer readable medium of claim			
2	67, wherein the method further comprises:				
3	defini	defining one or more shared thresholds in the shared portion of the			
4	memory struc	memory structure; and			
5	for ea	ch of said shared thresholds, identifying a number of message credits			
6	the queue pai	r may advertise when the amount of the shared portion used by the			
7	multiple queue pairs exceeds said shared threshold.				
1	71.	(Previously Presented) The computer readable medium of claim			
2	67, wherein the method further comprises issuing a Retry, Not Ready, Negative				
3	Acknowledge	Acknowledgement (RNR-NAK) only if one of:			
4	(a)	the first payload cannot be stored in the memory structure without			
5	exceeding a portion of the memory structure allocated to the first queue				
6	pair; and				
7		the first queue pair is not enabled to use the shared portion of the			
8	memory structure; and				
9	(b)	the first payload cannot be stored in the memory structure without			
10	exceeding a portion of the memory structure allocated to the first queue				
11	pair;				
12		the first queue pair is enabled to use the shared portion of the			
13	memory structure; and				
14		the shared portion of the memory structure is full.			
1	72.	(Previously Presented) A method of avoiding locking in receive			
2	InfiniBand qu	InfiniBand queues, the method comprising:			
3	maintaining a single memory structure for reassembling InfiniBand traffic				

used by the queue pair exceeds said dedicated threshold.

5	maintaining a second memory configured to store, for each of the multiple
6	queue pairs that is active, one or more parameters associated with operation of
7	said queue pair, wherein said parameters include a maximum number of message
8	credits advertisable by said queue pair;
9	identifying a first packet payload received via a first queue pair that is
10	idle, wherein the first queue pair is considered idle if no traffic from the first
11	queue pair is stored in said single memory structure;
12	for each other queue pair for which traffic from said queue pair is stored in
13	said single memory structure, determining whether sufficient space in the single
14	memory structure is reserved for reassembling said traffic; and
15	storing the first packet payload in said single memory structure only if
16	sufficient space in the single memory structure is available for reassembling said
17	traffic.
1	73. (Previously Presented) The method of claim 72, wherein the
2	second memory is further configured to store one or more additional parameters
3	associated with operation of said queue pair, wherein said additional parameters
4	include:
5	a maximum number of memory structure buffers dedicated to storing
6	payloads of packets received via said queue pair;
7	an indicator configured to indicate whether said queue pair is enabled to
8	use a set of shared memory structure buffers; and
9	a number of shared memory structure buffers in said set of shared memory
10	structure buffers, wherein said shared memory structure buffers are available for
11	use by said queue pair to store payloads of packets received via said queue pair if:
12	said queue pair has used said maximum number of memory
13	structure buffers; and

received via multiple virtual lanes and multiple queue pairs;

14	said indicator indicates that said queue pair is enabled to use said
15	set of shared memory structure buffers; and
16	a maximum number of message credits advertisable by said queue
17	pair when said queue pair starts using said shared memory structure
18	buffers.
1	74. (Original) The method of claim 72, wherein said determining
2	comprises, for each said other queue pair:
3	identifying an amount of space in said single memory structure reserved
4	for said other queue pair; and
5	comparing said amount of reserved space to an amount of space expected
6	to be needed to complete reassembly of said traffic from said other queue pair.
1	75. (Currently Amended) An apparatus for flow controlling received
2	InfiniBand traffic, comprising:
3	a single memory structure configured to queue payloads of InfiniBand
4	traffic received via multiple virtual lanes and multiple queue pairs;
5	a second memory configured to store, for each of the multiple queue pairs
6	that is active, one or more parameters associated with operation of said queue
7	pair, wherein said parameters include: include a maximum number of message
8	credits advertisable by said queue pair;
9	a maximum number of message credits advertisable by said queue
10	pair;
11	a maximum number of memory structure buffers dedicated to
12	storing payloads of packets received via said queue pair;
13	an indicator configured to indicate whether said queue pair is
14	enabled to use a set of shared memory structure buffers;
15	a number of shared memory structure buffers in said set of shared

16	memory structure buffers, wherein said shared memory structure buffers
17	are available for use by said queue pair to store payloads of packets
18	received via said queue pair if:
19	said queue pair has used said maximum number of
20	memory structure buffers; and
21	said indicator indicates that said queue pair is
22	enabled to use said set of shared memory structure buffers;
23	<u>and</u>
24	a maximum number of message credits advertisable by said queue
25	pair when said queue pair starts using said shared memory structure
26	buffers;
27	a resource manager configured to manage the memory structure;
28	a first module configured to facilitate the advertisement of virtual lane
29	credits; anderedits;
30	a second module configured to facilitate the advertisement of queue pair
31	credits.
1	76. (Cancelled)
1	77. (Previously Presented) The apparatus of claim 75, wherein said
2	single memory structure comprises multiple linked lists of memory structure
3	buffers, including one linked list for each of the multiple queue pairs that is
4	active.
1	78. (Previously Presented) The apparatus of claim 75, wherein said
2	first module comprises an InfiniBand link core.
1	79. (Previously Presented) The apparatus of claim 75, wherein said

2	second module comprises an acknowledgement generator configured to generate
3	transport layer acknowledgements.
1	80. (Previously Presented) The apparatus of claim 75, further
2	comprising a processor interface configured to facilitate the programming of
3	operating parameters associated with the multiple virtual lanes and the multiple
4	queue pairs.
1	81. (Previously Presented) The apparatus of claim 75, further
2	comprising:
3	a first memory configured to store one or more parameters associated with
4	operation of a first virtual lane.
1	82. (Previously Presented) The apparatus of claim 81, wherein said
2	one or more parameters include:
3	a count of the number of memory structure buffers currently used to store
4	payloads of packets received via the first virtual lane; and
5	a threshold, wherein a first packet is dropped if storing the payload of the
6	first packet would cause said count to exceed said threshold.
1	83. (Previously Presented) The apparatus of claim 75, wherein said
2	one or more parameters further include:
3	one or more dedicated thresholds, wherein each said dedicated threshold
4	identifies a subset of said maximum number of memory structure buffers; and
5	for each said dedicated threshold, a number of message credits

advertisable by said queue pair when said queue pair uses said subset of said

maximum number of memory structure buffers.

6

1	84. (Previously Presented) The apparatus of claim 75, wherein said
2	one or more parameters further include:
3	one or more shared thresholds, wherein each said shared threshold
4	identifies a subset of said number of shared memory structure buffers; and
5	for each said shared threshold, a number of message credits advertisable
6	by said queue pair when said queue pair uses said subset of said number of shared
7	memory structure buffers