$$\begin{array}{c} \textbf{Newton Backward Interpolation Method} \\ y = y_n + \frac{v}{1!} \Delta \ y_{n\text{-}1} + \frac{v \ (v+1)}{2!} \Delta^2 \ y_{n\text{-}2} + \frac{v \ (v+1)(v+2)}{3!} \Delta^3 \ y_{n\text{-}3} + + \frac{v \ (v+1)(v+2)...(v+n+1)}{n!} \Delta^n \ y_0 \end{array}$$

Now, $v = \frac{x - xn}{h}$

Example 1:

Age	Annual			
(Years)	Premium			
24	28.06			
28	30.19			
32	32.75			
36	34.94			
40	40			

Using Newton's Backward Interpolation Formula, find out the annual premium at the age of 33.

Can we apply Newton Forward Interpolation Method? Yes. Why? Because $x_1-x_0 = x_2-x_1 = x_3-x_2 = x_n -x_{n-1}=h=4$

4	Α	В	С	D	E	F	G	Н
1	x=	33						
2	h=	4						
3	v=	-1.75						
4	Age in years		Annual Pro	emium (Rs)				
5	\mathbf{x}_0	24	y _o	28.06	Δу	$\Delta^2 y$	Δ^3 y	$\Delta^4 y$
6					2.13			
7	x_1	28	y ₁	30.19		0.43		
8					2.56		-0.8	
9	\mathbf{x}_2	32	y ₂	32.75		-0.37	$\Delta^4 y_{n-4} =$	4.04
10					2.19	$\Delta^{3} y_{n-3} =$	3.24	
11	\mathbf{x}_3	36	y ₃	34.94	$\Delta y_{n-2}^2 =$	2.87		
12				Δ y _{n-1} =	5.06			
13	X ₄	40	$y_4 = \Delta y_n =$	40				
14								
15	y=	33.27467						
4.00								

$$y = y_n + \frac{v}{1!} \Delta y_{n-1} + \frac{v(v+1)}{2!} \Delta^2 y_{n-2} + \frac{v(v+1)(v+2)}{3!} \Delta^3 y_{n-3} + \dots + \frac{v(v+1)(v+2)...(v+n+1)}{n!} \Delta^n y_0$$

$$y = 33.27467$$