```
from google.colab import drive

drive.mount('/content/gdrive')
    Mounted at /content/gdrive

import numpy as np
import pandas as pd

df = pd.read_csv('/content/gdrive/MyDrive/data.csv')

#Task 1--
df.head()
```

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	v i
0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	
1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	
2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	
3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	
4	2014- 05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	

```
#task 2--
df.info()
```

RangeIndex: 4600 entries, 0 to 4599 Data columns (total 18 columns): Non-Null Count Dtype # Column --- ----------4600 non-null object 4600 non-null float64 0 date price 1 4600 non-null float64 2 bedrooms bathrooms 4600 non-null float64 sqft_living 4600 non-null int64 sqft_lot 4600 non-null int64 5 6 floors 4600 non-null float64 waterfront 4600 non-null int64 4600 non-null view int64 condition 4600 non-null int64 4600 non-null 10 sqft_above int64 11 sqft basement 4600 non-null int64 4600 non-null 12 yr_built int64 13 yr_renovated 4600 non-null int64 14 street 4600 non-null object 15 city 4600 non-null object 16 statezip 4600 non-null object 17 country 4600 non-null object dtypes: float64(4), int64(9), object(5) memory usage: 647.0+ KB

<class 'pandas.core.frame.DataFrame'>

```
#task 3--
df.describe(include='all')
```

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	4600	4.600000e+03	4600.000000	4600.000000	4600.000000	4.600000e+03	4600.
unique	70	NaN	NaN	NaN	NaN	NaN	
top	2014- 06-23 00:00:00	NaN	NaN	NaN	NaN	NaN	
freq	142	NaN	NaN	NaN	NaN	NaN	
mean	NaN	5.519630e+05	3.400870	2.160815	2139.346957	1.485252e+04	1.
std	NaN	5.638347e+05	0.908848	0.783781	963.206916	3.588444e+04	0.
min	NaN	0.000000e+00	0.000000	0.000000	370.000000	6.380000e+02	1.
25%	NaN	3.228750e+05	3.000000	1.750000	1460.000000	5.000750e+03	1.

#task 4-#(find the null values)

df.isnull()

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4595	False	False	False	False	False	False	False	False	False
4596	False	False	False	False	False	False	False	False	False
4597	False	False	False	False	False	False	False	False	False
4598	False	False	False	False	False	False	False	False	False
4599	False	False	False	False	False	False	False	False	False
4600 ro	ws × 18	3 column	s						

#finding null values

df.isnull().any()

False
False

#finding null values in numerical

df.isnull().sum()

date price 0 0 bedrooms bathrooms sqft_living 0 sqft_lot 0 floors 0 waterfront 0 view condition sqft_above 0 sqft_basement 0 yr_built yr_renovated 0 street 0 city 0 statezip 0 country 0 dtype: int64

#selecting a specific data type

df.select_dtypes(exclude='object')

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view
0	3.130000e+05	3.0	1.50	1340	7912	1.5	0	0
1	2.384000e+06	5.0	2.50	3650	9050	2.0	0	4
2	3.420000e+05	3.0	2.00	1930	11947	1.0	0	0
3	4.200000e+05	3.0	2.25	2000	8030	1.0	0	0
4	5.500000e+05	4.0	2.50	1940	10500	1.0	0	0
4595	3.081667e+05	3.0	1.75	1510	6360	1.0	0	0
4596	5.343333e+05	3.0	2.50	1460	7573	2.0	0	0
4597	4.169042e+05	3.0	2.50	3010	7014	2.0	0	0
4598	2.034000e+05	4.0	2.00	2090	6630	1.0	0	0
4599	2.206000e+05	3.0	2.50	1490	8102	2.0	0	0
4600 -	uua v 19 aalumaa	`						•

#selecting a specific data type

df.select_dtypes(include='object')

	date	street	city	statezip	country
0	2014-05-02 00:00:00	18810 Densmore Ave N	Shoreline	WA 98133	USA
1	2014-05-02 00:00:00	709 W Blaine St	Seattle	WA 98119	USA
2	2014-05-02 00:00:00	26206-26214 143rd Ave SE	Kent	WA 98042	USA
3	2014-05-02 00:00:00	857 170th PI NE	Bellevue	WA 98008	USA
4	2014-05-02 00:00:00	9105 170th Ave NE	Redmond	WA 98052	USA
4595	2014-07-09 00:00:00	501 N 143rd St	Seattle	WA 98133	USA
4596	2014-07-09 00:00:00	14855 SE 10th PI	Bellevue	WA 98007	USA
4597	2014-07-09 00:00:00	759 Ilwaco Pl NE	Renton	WA 98059	USA
4598	2014-07-10 00:00:00	5148 S Creston St	Seattle	WA 98178	USA
4599	2014-07-10 00:00:00	18717 SE 258th St	Covington	WA 98042	USA

4600 rows × 5 columns

df['city'].unique()

```
'Auburn', 'Des Moines', 'Bothell', 'Federal Way', 'Kirkland',
'Issaquah', 'Woodinville', 'Normandy Park', 'Fall City', 'Renton',
'Carnation', 'Snoqualmie', 'Duvall', 'Burien', 'Covington',
'Inglewood-Finn Hill', 'Kenmore', 'Newcastle', 'Mercer Island',
'Black Diamond', 'Ravensdale', 'Clyde Hill', 'Algona', 'Skykomish',
               'Tukwila', 'Vashon', 'Yarrow Point', 'SeaTac', 'Medina', 'Enumclaw', 'Snoqualmie Pass', 'Pacific', 'Beaux Arts Village', 'Preston', 'Milton'], dtype=object)
df['city'].value_counts()
                                    1573
      Seattle
       Renton
                                     293
      Bellevue
                                     286
      Redmond
                                     235
      Issaquah
                                     187
      Kirkland
                                     187
      Kent
                                     185
      Auburn
                                     176
      Sammamish
                                     175
      Federal Way
                                     148
      Shoreline
                                     123
      Woodinville
                                     115
      Maple Valley
      Mercer Island
                                       86
      Burien
                                       74
      Snoqualmie
                                       71
      Kenmore
                                       66
      Des Moines
                                       58
      North Bend
                                       50
      Covington
                                       43
      Duvall
                                       42
      Lake Forest Park
                                       36
      Bothell
                                       33
      Newcastle
                                       33
      SeaTac
                                       29
      Tukwila
                                       29
      Vashon
      Enumclaw
                                       28
      Carnation
                                       22
      Normandy Park
      Clyde Hill
                                       11
      Medina
                                       11
      Fall City
      Black Diamond
      Ravensdale
      Pacific
      Algona
      Yarrow Point
      Skykomish
      Preston
      Milton
      Inglewood-Finn Hill
                                        1
      Snoqualmie Pass
                                        1
      Beaux Arts Village
      Name: city, dtype: int64
df['statezip'].value_counts()
      WA 98103
                      148
      WA 98052
                      135
      WA 98117
                      132
      WA 98115
                      130
      WA 98006
                      110
      WA 98047
                        6
      WA 98288
                        3
      WA 98050
      WA 98354
      WA 98068
                        1
      Name: statezip, Length: 77, dtype: int64
df.head()
```

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vi
0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	
1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	
2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	
3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	
	2014-								

#removing the unwanted columns

df=df.drop('date',axis=1)
df.head()

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condi
0	313000.0	3.0	1.50	1340	7912	1.5	0	0	
1	2384000.0	5.0	2.50	3650	9050	2.0	0	4	
2	342000.0	3.0	2.00	1930	11947	1.0	0	0	
3	420000.0	3.0	2.25	2000	8030	1.0	0	0	
4	550000.0	4.0	2.50	1940	10500	1.0	0	0	

pd.get_dummies(df['city'])

	Algona	Auburn	Beaux Arts Village	Bellevue	Black Diamond	Bothell	Burien	Carnation	Clyde Hill	Cov:
0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	1	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
4595	0	0	0	0	0	0	0	0	0	
4596	0	0	0	1	0	0	0	0	0	
4597	0	0	0	0	0	0	0	0	0	
4598	0	0	0	0	0	0	0	0	0	
4599	0	0	0	0	0	0	0	0	0	
4600 rows × 44 columns										

 ${\it from \ sklearn.preprocessing \ import \ Label Encoder}$

 ${\it from \ sklearn.preprocessing \ import \ Label Encoder}$

df.head()

```
le=LabelEncoder()

df['city']=le.fit_transform(df['city'])

le2=LabelEncoder()

df['street']=le2.fit_transform(df['street'])

le3=LabelEncoder()

df['statezip']=le3.fit_transform(df['statezip'])

df.head()
```

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condi
0	313000.0	3.0	1.50	1340	7912	1.5	0	0	
1	2384000.0	5.0	2.50	3650	9050	2.0	0	4	
2	342000.0	3.0	2.00	1930	11947	1.0	0	0	
3	420000.0	3.0	2.25	2000	8030	1.0	0	0	
4	550000.0	4.0	2.50	1940	10500	1.0	0	0	

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condi
0	313000.0	3.0	1.50	1340	7912	1.5	0	0	
1	2384000.0	5.0	2.50	3650	9050	2.0	0	4	
2	342000.0	3.0	2.00	1930	11947	1.0	0	0	
3	420000.0	3.0	2.25	2000	8030	1.0	0	0	
4	550000.0	4.0	2.50	1940	10500	1.0	0	0	

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	S
143	4 3.0	2.00	2030	24829	1.0	0	0	4	
318	6 2.0	2.25	2550	6000	2.0	0	0	5	
189	0 4.0	1.75	2020	7029	1.0	0	0	4	
316	5 5.0	3.00	2300	8214	2.0	0	0	3	
302	8 4.0	2.50	2810	10613	2.0	0	0	3	

from sklearn.preprocessing import MinMaxScaler,StandardScaler

```
s = StandardScaler()
xtrainscaled = s.fit_transform(x_train)
xtrainscaled
     array([[-0.44452388, -0.21181271, -0.12278639, ..., -2.06688598,
             -1.85076584, 0.
                                    ],
            [-1.53946892, 0.10764252, 0.41390256, ..., 0.77740664,
              0.73353088, 0. ],
            [\ 0.65042116,\ -0.53126793,\ -0.13310733,\ \ldots,\ 0.44278398,
             -0.36718809, 0.
                               ],
            [ 0.65042116, 0.74655298, 0.48614915, ..., 0.77740664,
            0.82924557, 0. ],
[ 0.65042116, -0.53126793, -0.27760051, ..., 0.77740664,
                                   ],
              1.45139108, 0.
            [-0.44452388, 0.42709775, -0.50466122, ..., -0.64473967, -0.60647483, 0. ]])
xtestscaled = s.transform(x_test)
xtestscaled
     array([[-0.44452388, 0.42709775, -0.39113087, ..., 0.77740664,
              0.39852945, 0. ],
            [-0.44452388, -0.21181271, -0.1743911, ..., 0.77740664,
             1.164247 , 0. ],
            [ 1.7453662 , 1.38546344, 1.11572658, ..., 0.77740664,
              0.82924557, 0.
            [-0.44452388, -0.21181271, -0.62851252, ..., 0.77740664,
              1.02067496, 0.
                                   ],
            [-0.44452388, -0.53126793, -1.03102923, ..., -1.89957465,
            -1.6114791 , 0. ],
[-0.44452388, 0.42709775, 0.2487675 , ..., -0.812051 ,
             -1.6114791 , 0.
             -1.03719095, 0.
                                   ]])
#Task5-Build ML model with linear regression(Target column is price)
df=df[['price','sqft_lot']]
df
                  price sqft_lot
           3 130000e+05
       0
                             7912
```

```
2.384000e+06
                              9050
           3.420000e+05
       2
                             11947
       3
            4.200000e+05
                              8030
       4
            5.500000e+05
                             10500
      4595 3.081667e+05
                              6360
      4596 5.343333e+05
                              7573
      4597 4.169042e+05
                              7014
      4598 2.034000e+05
                              6630
      4599 2.206000e+05
                              8102
     4600 rows × 2 columns
x=df['sqft_lot']
y=df['price']
```

```
import matplotlib.pyplot as plt
plt.scatter(x,y)
plt.xlabel('sqft_lot')
plt.ylabel('price')
     Text(0, 0.5, 'price')
             1e7
         2.5
         2.0
         1.5
         1.0
         0.5
         0.0
                                      0.4
               0.0
                          0.2
                                                 0.6
                                                            0.8
                                                                        1.0
                                           sqft_lot
                                                                             1e6
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.4,random_state=23)
x_train=np.array(x_train).reshape(-1,1)
x_train
     array([[50994],
            [ 5611],
            [54450],
            [10650],
            [10362],
            [ 9600]])
x_test=np.array(x_test).reshape(-1,1)
x_test
     array([[12686],
            [ 6176],
            [ 5000],
            ...,
[18200],
            [ 6178],
            [ 1282]])
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
      ▼ LinearRegression
      LinearRegression()
```

```
c=lr.intercept_
     536155.0620619762
m=lr.coef_
     array([1.14128005])
y_pred_train=m*x_train+c
y_pred_train.flatten()
     array([594353.49699467, 542558.78442946, 598297.76085174, ..., 548309.69460763, 547981.00595288, 547111.35055383])
y_pred_train1=lr.predict(x_train)
y_pred_train1
     array([594353.49699467, 542558.78442946, 598297.76085174, ...,
             548309.69460763, 547981.00595288, 547111.35055383])
plt.scatter(x_train,y_train)
plt.scatter(x_train,y_pred_train1,color='red')
plt.xlabel('sqft_lot')
plt.ylabel('price')
     Text(0, 0.5, 'price')
              1e7
         2.5
         2.0
         1.5
         1.0
          0.5
          0.0
                            100000
                                            200000
                                                          300000
                                                                          400000
```

```
plt.scatter(x_train,y_train)
plt.plot(x_train,y_pred_train1,color='red')
plt.xlabel('sqft_lot')
plt.ylabel('price')
```

sqft_lot

plt.ylabel('price')

```
Text(0, 0.5, 'price')
         2.5
         2.0
lr.fit(x_test,y_test)
     ▼ LinearRegression
     LinearRegression()
y_pred_test=m*x_test+c
y_pred_test.flatten()
     array([550633.34079195, 543203.60765841, 541861.46231815, ...,
            556926.35899446, 543205.89021851, 537618.18308766])
y_pred_test1=lr.predict(x_test)
y_pred_test1
     array([549447.25197015, 546132.66709383, 545533.90337424, ...,
            552254.72063498, 546133.68539947, 543640.87317913])
plt.scatter(x_test,y_test)
plt.scatter(x_test,y_pred_test1,color='red')
plt.xlabel('sqft_lot')
plt.ylabel('price')
     Text(0, 0.5, 'price')
           1e6
         4
         3
         1
             0.0
                        0.2
                                   0.4
                                              0.6
                                                         0.8
                                                                    1.0
                                         sqft_lot
                                                                         1e6
plt.scatter(x_test,y_test)
plt.plot(x_test,y_pred_test1,color='red')
plt.xlabel('sqft_lot')
```

```
https://colab.research.google.com/drive/1aEQ0uXzySmWps5bYDy8-M3FwSpiiZhfk#printMode=true
```

Text(0, 0.5, 'price')

"Therefore the linear model is satisfied for both train and test data."

'Therefore the linear model is satisfied for both train and test data.'

