Plan:

- 1. Introduce Inferential analysis
- 2. Discuss randoming sampling

Inferential Analysis: Sampling

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

- Problem: Does Sesame Street affect kids brain development?
- **Data science question:** What is the relationship between watching Sesame Street and test scores among children?
- **Type of analysis:** Inferential analysis

Sesame Street viewership

?? Test scores

Establishing & Stating Your Null and Alternative Hypotheses Helps Guide Your Analysis

Null Hypothesis:

 H_0 : Sesame Street has *no effect* on kids brain development

<u>Alternative Hypothesis</u>:

H_a: Watching Sesame Street *has an effect* on kids' brain development

Population

Population

In our Sesame street example, the <u>population</u> would be all children

the <u>sample</u> would be the children included in the study

Population

Sample

Based on the relationship we see in our sample, we can <u>infer</u> the answer to our question in our population

Population

Inference!

So we look at Sesame street viewing and test scores in a representative sample of kids

Population

Inference!

Sample

Best guess

So we look at Sesame street viewing and test scores in a representative sample of kids

Population

Inference!

Sample

