Обработка пропусков в данных

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
import scipy.stats as stats
```

In [2]:

data = pd.read_csv('/Users/da.karpov/Desktop/MAFA/УЧЕБА/2 сем/ML_MSc_1course/датасеты/net flix_titles.csv', sep=",")

In [3]:

data.head()

Out[3]:

des	listed_in	duration	rating	release_year	date_added	country	cast	director	title	type	show_id	
In where t inl i	International TV Shows, TV Dramas, TV Sci-Fi &	4 Seasons	TV- MA	2020	August 14, 2020	Brazil	João Miguel, Bianca Comparato, Michel Gomes, R	NaN	3%	TV Show	s1	0
deva earthqua Mexi	Dramas, International Movies	93 min	TV- MA	2016	December 23, 2016	Mexico	Demián Bichir, Héctor Bonilla, Oscar Serrano,	Jorge Michel Grau	7:19	Movie	s2	1
When a recruit i d	Horror Movies, International Movies	78 min	R	2011	December 20, 2018	Singapore	Tedd Chan, Stella Chung, Henley Hii, Lawrence	Gilbert Chan	23:59	Movie	s3	2
postapo world, rob	Action & Adventure, Independent Movies, Sci- Fi	80 min	PG- 13	2009	November 16, 2017	United States	Elijah Wood, John C. Reilly, Jennifer Connelly	Shane Acker	9	Movie	s4	3
A brillian of s becom	Dramas	123 min	PG- 13	2008	January 1, 2020	United States	Jim Sturgess, Kevin Spacey, Kate Bosworth, Aar	Robert Luketic	21	Movie	s 5	4

In [4]:

data.shape

Out[4]:

(7787, 12)

```
In [5]:
data.dtypes
Out[5]:
                object
show_id
                object
type
title
                object
director
                object
cast
                object
                object
country
date added
                object
                 int64
release_year
                object
rating
duration
                object
listed_in
                object
description
                object
dtype: object
In [6]:
data.isnull().sum()
Out[6]:
                    0
show id
                    0
type
title
                    0
                2389
director
                 718
cast
country
                 507
date added
                  10
release year
                    0
rating
                    7
duration
                   0
listed in
                    0
                    0
description
dtype: int64
In [7]:
data.isnull().mean()
Out[7]:
show_id
                0.00000
type
                0.000000
title
                0.000000
director
                0.306793
                0.092205
cast
                0.065109
country
date added 0.001284
release_year 0.000000
rating
                0.000899
duration
                0.000000
                0.000000
listed in
description
                0.000000
dtype: float64
```

Удаление колонок

Можно и необходимо удалить непоказательный столбец - director как в этом столбце наблюдается более **30%** пропущенных значений.

```
In [8]:
# Колонки, которые можно удалить:
colsForDel = ['director']
```

```
In [9]:
dataWithoutColumns = data.drop(columns=colsForDel)
dataWithoutColumns.shape
Out[9]:
(7787, 11)
```

Таким образом мы получили более достоверные данные, при этом потеряли 1 из 12 признаков, но не потеряли количество строк

Удаление строк с пропусками

Попробуем удалить строки с пропусками из следующих колонок: **name, host_name.** В данных колнках пропусков меньше **5%,** что позволяет удалить часть экспериментов без потери самих колонок.

```
In [10]:
colsForDelExp = ['rating', 'date_added']

In [11]:
# Удаление пропусков
data_drop_exp = data[colsForDelExp].dropna()
data_drop_exp.shape

Out[11]:
(7770, 2)
```

Посмотрим, как это повлияло на данные и их распределение:

Скопировал из лекции функцию для вывода графиков с распределениями

```
def plot_hist_diff(old_ds, new_ds, cols):
    """
    Pashица между распределениями до и после устранения пропусков
    """
    for c in cols:
        fig, ax = plt.subplots(figsize=(10,10))
        ax.title.set_text('Поле - ' + str(c))
        old ds[c].hist(bins=50, ax=ax, density=True, color='green')
```

new ds[c].hist(bins=50, ax=ax, color='blue', density=True, alpha=0.5)

```
In [13]:
```

plt.show()

In [12]:

```
plot_hist_diff(data, data_drop_exp, colsForDelExp)
```


Заметна небольшая разница только на признаке date_added во второй колонке

Заполнение значений для одного признака

В данном датасете имеются пропуски только в категориальных признаках, поэтому рассмотрим избавление от них разными способами:

Заполнение наиболее распространенным значением категории для поля **name**

```
In [14]:
```

```
dataNew = data[['country', 'cast']].copy()
```

In [15]:

In [16]:

```
dataNew['country'] = dataNewFreqImpCountry
dataNew['cast'] = dataNewFreqImpCast
```

In [17]:

```
plot_hist_diff(data.head(200), dataNew.head(200), ['country', 'cast'])
```


In [18]:

plot_hist_diff(data, dataNew, ['country'])

Данный признак оказался не очяень показательным на данной задаче, поэтому рассмотрим эту же задачу на признаке - rating

```
In [19]:
```

```
dataNewRating = data[['rating']].copy()
```

In [20]:

```
imputerRating = SimpleImputer(strategy='most_frequent',
```

```
fill_value=None)
dataNewFreqImpRating = imputerRating.fit_transform(dataNewRating[['rating']].values)
```

In [21]:

```
dataNewRating['rating'] = dataNewFreqImpRating
```

In [22]:

```
plot_hist_diff(data, dataNewRating, ['rating'])
```


In [23]:

In [24]:

```
dataNewRating['rating'] = dataNewConstRating
```

In [25]:

mlar biar diff/data daraManDatina [[marimal]]

In [26]:

```
GarageType_cat_na_temp, _, _ = impute_column(dataNewRating, 'rating', 'constant', fill_v
alue_param='NA')
```

In [28]:

```
dataNewRating['rating'] = GarageType_cat_na_temp
```

In [29]:

plot hist diff(data, dataNewRating, ['rating'])

Преобразование категориальных признаков в числовые

Для данной задачи я выбрал другой датасет.

In [30]:

data2 = pd.read_csv('/Users/da.karpov/Desktop/MAFA/УЧЕБА/2 сем/ML_MSc_1course/датасеты/go ogleplaystore.csv', sep=",")

- ----

ın [31]:

data2.head(10)

Out[31]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19 M	10,000+	Free	0	Everyone	Art & Design	January 7, 2018
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Art & Design;Pretend Play	January 15, 2018
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	Art & Design	August 1, 2018
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	June 8, 2018
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	June 20, 2018
5	Paper flowers instructions	ART_AND_DESIGN	4.4	167	5.6M	50,000+	Free	0	Everyone	Art & Design	March 26, 2017
6	Smoke Effect Photo Maker - Smoke Editor	ART_AND_DESIGN	3.8	178	19 M	50,000+	Free	0	Everyone	Art & Design	April 26, 2018
7	Infinite Painter	ART_AND_DESIGN	4.1	36815	29M	1,000,000+	Free	0	Everyone	Art & Design	June 14, 2018
8	Garden Coloring Book	ART_AND_DESIGN	4.4	13791	33M	1,000,000+	Free	0	Everyone	Art & Design	September 20, 2017
9	Kids Paint Free - Drawing Fun	ART_AND_DESIGN	4.7	121	3.1M	10,000+	Free	0	Everyone	Art & Design;Creativity	July 3, 2018
4											Þ

Так как это уже другой датасет, необходимо проверить его на нулевые значения.

In [32]:

data2.dtypes

Out[32]:

App	object
Category	object
Rating	float64
Reviews	object
Size	object
Installs	object
Type	object
Price	object
Content Rating	object
Canrac	ohicat

```
Last Updated
                    object
Current Ver
                     object
Android Ver
                     object
dtype: object
In [33]:
data2.isnull().sum()
Out[33]:
                       0
App
                       0
Category
                    1474
Rating
Reviews
                       0
                       0
Size
                       0
Installs
                       1
Type
                       0
Price
Content Rating
                       1
Genres
                       0
Last Updated
Current Ver
                       3
Android Ver
dtype: int64
В пункте "Category" нет ни одного нулевого значения. Именно поэтому далее я буду рассматривать его. В этой
колонке описывается категория, к которой относится приложение.
In [34]:
data2.shape
Out[34]:
(10841, 13)
In [35]:
cat data = data2[['Category']]
In [36]:
print(data2['Category'].unique().size)
data2['Category'].unique()
34
Out[36]:
array(['ART AND DESIGN', 'AUTO AND VEHICLES', 'BEAUTY',
        'BOOKS_AND_REFERENCE', 'BUSINESS', 'COMICS', 'COMMUNICATION', 'DATING', 'EDUCATION', 'ENTERTAINMENT', 'EVENTS', 'FINANCE',
        'FOOD AND DRINK', 'HEALTH AND FITNESS', 'HOUSE AND HOME',
        'LIBRARIES_AND_DEMO', 'LIFESTYLE', 'GAME', 'FAMILY', 'MEDICAL',
        'SOCIAL', 'SHOPPING', 'PHOTOGRAPHY', 'SPORTS', 'TRAVEL AND LOCAL',
        'TOOLS', 'PERSONALIZATION', 'PRODUCTIVITY', 'PARENTING', 'WEATHER',
        'VIDEO PLAYERS', 'NEWS AND MAGAZINES', 'MAPS AND NAVIGATION',
        '1.9'], dtype=object)
Видно, что всего уникальных значений у этого признака - 34. Следовательно, этот признак можно закодировать
целочисленными значениями.
In [37]:
```

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

GEIITED

In [38]:

le = LabelEncoder()

ONJECL

```
cat enc le = le.fit transform(data2[['Category']])
/Users/da.karpov/opt/anaconda3/lib/python3.9/site-packages/sklearn/preprocessing/ label.p
y:115: DataConversionWarning: A column-vector y was passed when a 1d array was expected.
Please change the shape of y to (n_samples, ), for example using ravel().
  y = column or 1d(y, warn=True)
In [39]:
np.unique(cat enc le)
Out[39]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33])
In [40]:
le.inverse transform([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 1
       17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33])
Out[40]:
array(['1.9', 'ART_AND_DESIGN', 'AUTO_AND_VEHICLES', 'BEAUTY',
       'BOOKS_AND_REFERENCE', 'BUSINESS', 'COMICS', 'COMMUNICATION', 'DATING', 'EDUCATION', 'ENTERTAINMENT', 'EVENTS', 'FAMILY',
        'FINANCE', 'FOOD AND DRINK', 'GAME', 'HEALTH_AND_FITNESS',
        'HOUSE AND HOME', 'LIBRARIES AND DEMO', 'LIFESTYLE',
       'MAPS_AND_NAVIGATION', 'MEDICAL', 'NEWS AND MAGAZINES',
       'PARENTING', 'PERSONALIZATION', 'PHOTOGRAPHY', 'PRODUCTIVITY', 'SHOPPING', 'SOCIAL', 'SPORTS', 'TOOLS', 'TRAVEL_AND_LOCAL',
        'VIDEO PLAYERS', 'WEATHER'], dtype=object)
In [41]:
print(data2['Type'].unique().size)
data2['Type'].unique()
Out[41]:
array(['Free', 'Paid', nan, '0'], dtype=object)
Так как в типе есть одно пропущенное значение, я просто удалю строку, в которой оно содержится.
In [42]:
colsForDelExp = ['Type']
data drop exp = data2[colsForDelExp].dropna()
data drop exp.shape
Out[42]:
(10840, 1)
In [43]:
print(data drop exp['Type'].unique().size)
data_drop_exp['Type'].unique()
3
Out[43]:
array(['Free', 'Paid', '0'], dtype=object)
Теперь в данной колонке осталось только 3 значения: бесплатное 0 и платное.
In [44]:
ohe = OneHotEncoder()
```

```
cat_enc_ohe = ohe.fit_transform(data_drop_exp[['Type']])
In [45]:
data drop exp[['Type']].shape
Out[45]:
(10840, 1)
In [46]:
cat enc ohe.shape
Out[46]:
(10840, 3)
In [47]:
cat enc ohe.todense()[7030:7040]
Out[47]:
matrix([[0., 1., 0.],
        [0., 1., 0.],
        [0., 1., 0.],
        [0., 1., 0.],
        [0., 1., 0.],
        [0., 1., 0.],
        [0., 1., 0.],
        [0., 0., 1.],
        [0., 1., 0.],
        [0., 1., 0.]])
In [48]:
data2[['Type']][7030:7040]
Out[48]:
     Type
7030 Free
7031 Free
7032 Free
7033 Free
7034 Free
7035 Free
7036 Free
7037 Paid
7038 Free
7039 Free
In [49]:
pd.get_dummies(data_drop_exp[['Type']])[7030:7040]
Out[49]:
     Type_0 Type_Free Type_Paid
7030
         0
                  1
                           0
```

7031

7032

0

1

0

0

7033	Type_0	Type_Free	Type_Pai@
7034	0	1	0
7035	0	1	0
7036	0	1	0
7037	0	0	1
7038	0	1	0
7039	0	1	0

Нормализация данных

In [50]:

```
data2 = pd.read_csv('/Users/da.karpov/Desktop/MAFA/УЧЕВА/2 cem/ML_MSc_1course/датасеты/go
ogleplaystore.csv', sep=",")
```

In [51]:

```
fig, ax = plt.subplots(figsize=(10,10))
data2['Rating'].hist(bins=60, ax=ax, density=True, color='green')
```

Out[51]:

<AxesSubplot:>


```
2.5 5.0 7.5 10.0 12.5 15.0 17.5
```

In [52]:

```
def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    # ructorpamma
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
```

In [53]:

```
diagnostic plots(data2, 'Rating')
```


Логарифмическое преобразование

In [54]:

```
data2['RatingLog'] = np.log(data2['Rating'])
diagnostic_plots(data2, 'RatingLog')

/Users/da.karpov/opt/anaconda3/lib/python3.9/site-packages/pandas/core/arraylike.py:397:
RuntimeWarning: invalid value encountered in log
  result = getattr(ufunc, method)(*inputs, **kwargs)
```


Обратное преобразование

In [55]:

```
data2['RatingRev'] = 1/(data2['Rating'])
diagnostic_plots(data2, 'RatingRev')
```


Квадратный корень

In [56]:

```
data2['Ratingsqr'] = data2['Rating']**(1/2)
diagnostic_plots(data2, 'Ratingsqr')
```


Возведение в степень

In [57]:

```
data2['RatingExp1'] = data2['Rating']**(1/1.5)
```


Преобразование Бокса-Кокса

In [58]:

```
data2['RatingBoxcox'], param = stats.boxcox(data2['Rating'])
print('Оптимальное значение \( \lambda = \{ \} \)'.format(param))
diagnostic_plots(data2, 'RatingBoxcox')

/Users/da.karpov/opt/anaconda3/lib/python3.9/site-packages/scipy/stats/_morestats.py:913:
RuntimeWarning: invalid value encountered in log
   logdata = np.log(data)
/Users/da.karpov/opt/anaconda3/lib/python3.9/site-packages/scipy/stats/_morestats.py:924:
RuntimeWarning: invalid value encountered in log
   return (lmb - 1) * np.sum(logdata, axis=0) - N/2 * np.log(variance)
```

Оптимальное значение $\lambda = 8.472135811722177$

Преобразование Йео-Джонсона

In [59]:

```
# Необходимо преобразовать данные к действительному типу data2['Rating'] = data2['Rating'].astype('float')
```

```
data2['RatingYeojohnson'], param = stats.yeojohnson(data2['Rating'])
print('Оптимальное значение λ = {}'.format(param))
diagnostic_plots(data2, 'RatingYeojohnson')
```

Оптимальное значение $\lambda = 8.472135811722177$

In [60]:

```
fig, ax = plt.subplots(figsize=(10,10))
data2['RatingYeojohnson'].hist(bins=100, ax=ax, density=True, color='green')
```

Out[60]:

<AxesSubplot:>

