Epreuve écrite en Chimie 2015 : Corrigé modèle

I. Acides aminés et amines (14p)

II. Composés organiques oxygénés (13p)

1) a) l'alcool A est oxydé en cétone composé C : 3-méthylbutanone Système rédox :

R-CH-R' - 2 er R-C-R' + 2 H⁺
OH
$$Cr_2O_7^{2-} + 6 e^- + 14 H^+ \Rightarrow 2 Cr^{3+} + 7 H_2O$$

$$Cr_2O_7^{2-} + 3 R-CHOH-R' + 8H^+ \Rightarrow 2 Cr^{3+} + 3 R-CO-R' + 7 H_2O$$

b) i. 2-méthylpentanal

ii.

L'addition d'HCN sert à allonger la chaine carbonée d'un atome.

2) voir livre p.62

III. Estérification et saponification (17p)

1) voir livre p. 56-57

b) Départ:

$$n(acide) = \frac{m}{M} = \frac{24,4g}{122 \, g/mol} = 0,2 \, mol$$

 $n(alccol) = 0,5 \, mol$

n(alcool) = 0,324 moln(acide) = 0,024 mol

c) pour déplacer l'équilibre vers la droite et augmenter le rendement.

2) a) remplacer l'acide palmitique par l'acide oléique : CH3-(CH2)7-CH=CH-(CH2)7-COOH

$$\begin{array}{c} O \\ C + CH_{\frac{1}{2}}O \\ C + CH_{\frac{1}{2}$$

- b) -anions carboxylate adsorbés à la surface de l'eau
 - surface du liquide formée de chaines carbonées, forces d'attraction faibles, tension superficielle diminue
 - savons : agents mouillants (eau détendue) et propriétés émulsifiantes

IV. Mélange tampon (6p)

1) $n(\text{acide lactique}) = c \cdot V = 0.5 \text{ mol/L} \cdot 1 \text{ L} = 0.5 \text{ mol}$

(en mol) acide lactique + OH-
$$\rightarrow$$
 lactate + H₂O dép. 0,5 x équil. 0,5 - x x

$$pH = pKa + \log \frac{x}{0.5 - x}$$

x = n(lactate) formé = n(OH) ajouté = 0,287 mol $m(NaOH) = n \cdot M = 0,287$ mol $\cdot 40$ g/mol = 11, 5 g

2)
$$m(HCl) = 2,38 g$$

 $m(HCl) pur = 2,38 g \cdot 0,37 = 0,88 g$
 $n(HCl) = m/M = 0,024 mol$

n(acide lactique) = 0.5 mol - 0.28 mol = 0.213 mol

(en mol) lactate +
$$H_3O^+$$
 \rightarrow acide lactique + H_2O 0,213 0,024 équil. 0,263 0,237

$$pH = pKa + \log \frac{0,263}{0,231} = 3,92$$

V. Dosage d'un vinaigre. (10p)

- 1) CH₃COOH + NaOH → CH₃COONa + H₂O
- 2) Phénolphtaléine

3)
$$c0 (S) = \frac{c(NaOH) \cdot V(NaOH)}{V(S)} = 0.84 \frac{mol}{l}$$

 $c(vinaigre) = 0.84 \frac{mol}{l} \cdot \frac{250}{50} = 4.2 \frac{mol}{l}$

4)
$$K_b = 5,62 \cdot 10^{-10}$$

$$c(acetate\ au\ P.E.) = \frac{0,021\ mol}{0,021\ l + 0,025l} = 0,465\ \frac{mol}{l}$$
 $x^2 + K_b x + K_b c = 0$

$$x = [OH^{-}] = 1.6 \cdot 10^{-5} \, mol/l$$
 pOH = 4.8 pH = 9.2

5) (en mol)
$$CH_3COOH$$
 + $OH^- \rightarrow CH_3COO^- + H_2O$
dép. 0,021 0,003 0,021
équil. 0 0,003 0,021
mélange base forte et faible (négligeable)

$$pOH = -\log \frac{0,003}{0,025+0,024} = 1,2$$
 pH = 12,8

6)
$$\alpha = \sqrt{\frac{Ka}{co}} = \sqrt{\frac{1,76 \cdot 10^{-5}}{0.84}} = 0,0046$$

Le degré de dissociation d'un acide augmente à dilution croissante, loi de le Chatelier