04 - Iteration Control Structures

Ex. No).	: 4.1		Date:	
Regist	ter No.:	23070130	09	Name:	Shaun Machado K
		f a numl			
	nine the number)		number (i.e., all positi	ve intege	er values that evenly divide
	For exa	ample:			
	Inpu	Result			
1 2 4 5 20	1200				
Pro	gram	1:			
k=int(iı	nput())				
I=[]					
for i in	range(1	,k+1):			
if(k%	⁄₀i==0):				
l.a	append(i)			

Output:

for j in I:

print(j,end=' ')

	Input	Expected	Got	
~	20	1 2 4 5 10 20	1 2 4 5 10 20	~
~	5	1 5	1 5	~
~	13	1 13	1 13	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Ex. No. : 4.2 Date:

Register No.: 230701309 Name: Shaun Machado K

Non Repeated Digit Count

Write a program to find the count of non-repeated digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number >= 1 and <= 25000. Some examples are as below.

If the given number is 292, the program should return 1 because there is only 1 non-repeated digit '9' in this number

If the given number is 1015, the program should return 2 because there are 2 non-repeated digits in this number, '0', and '5'.

If the given number is 108, the program should return 3 because there are 3 non-repeated digits in this number, '1', '0', and '8'.

If the given number is 22, the function should return 0 because there are NO non-repeated digits in this number.

For example:

Input	Resul t
292	1
1015	2
108	3
22	0

```
n=int(input())
l=[]
k=[]
while n>0:
a=n%10
n=n//10
l.append(a)
for i in range(len(l)):
    if l.count(l[i])==1:
        k.append(l[i])
print(len(k))
```


Ex. No. : 4.3 Date:

Register No.: 230701309 Name: Shaun Machado K

Prime Checking

Write a program that finds whether the given number N is Prime or not. If the number is prime, the program should return 2 else it must return 1.

Assumption: $2 \le N \le 5000$, where N is the given number.

Example1: if the given number N is 7, the method must return 2 Example2: if the given number N is 10, the method must return 1

For example:

Input R	esult
7	2
10	1

Program:

```
a=int(input())
for i in range(2,a):
    if(a%2==0):
        flag=0
    elif(a%i!=0):
        flag=1
    else:
        flag=0
    if(flag==1):
    print("2")
elif(flag==0):
    print("1")
```

	Input	Expected	Got	
~	7	2	2	~
~	10	1	1	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

Ex. No. : 4.4 Date:

Register No.: 230701309 Name:

Next Perfect Square

Given a number N, find the next perfect square greater than N.

Input Format:

Integer input from stdin.

Output Format:

Perfect square greater than N.

Example Input:

10

Output:

16

Program:

```
a=int(input())
c=[]
for i in range(0,a):
    b=i**2
    if(b>a):
        c.append(b)
```

print(c[0])

	Input	Expected	Got	
~	10	16	16	~

Passed all tests! ✓

Correct

Marks for this submission: 1.00/1.00.

Ex. No. : 4.5 Date:

Register No.: 230701309 Name: Shaun Machado K

Nth Fibonacci

Write a program to return the nth number in the fibonacci series. The value of N will be passed to the program as input.

NOTE: Fibonacci series looks like -

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . and so on.

i.e. Fibonacci series starts with 0 and 1, and continues generating the next number as the sum of the previous two numbers.

- first Fibonacci number is 0,
- second Fibonacci number is 1,
- third Fibonacci number is 1,
- fourth Fibonacci number is 2,
- fifth Fibonacci number is 3,
- sixth Fibonacci number is 5,
- seventh Fibonacci number is 8, and so on.

```
For example:
Input:
7
Output
8
```

```
a=[0,1]
for i in range(0,100):
    a.append(a[-1]+a[-2])
q=int(input())
print(a[q-1])
```


Ex. No.	:	4.6	Date:
Register No.:			Name:

Disarium Number

A Number is said to be Disarium number when the sum of its digit raised to the power of their respective positions becomes equal to the number itself. Write a program to print number is Disarium or not.

Input Format: Single Integer Input from stdin. Output Format: Yes or No. Example Input: 175 Output: Yes Explanation 1^1 + 7^2 +5^3 = 175 Example Input: 123 Output: No For example: Inp Res ut ult 175 Yes 123 No

import math

```
n=int(input())
a=len(str(n))
sum=0
x=n
while(x!=0):
r=x%10
sum=int(sum+math.pow(r,a))
a-=1
x=x//10
if(sum==n):
    print("Yes")
else:
    print("No")
```


Ex. No. : 4.7 Date:

Register No.: Name:

Sum of Series

Write a program to find the sum of the series 1 + 11 + 111 + 1111 + ... + n terms (n will be given as input from the user and sum will be the output)

Sample Test Cases

Test Case 1

Input

4

Output

1234

Explanation:

as input is 4, have to take 4 terms.

1 + 11 + 111 + 1111

Test Case 2

Input

6

Output

123456

For example:

Program:

n=int(input())

b=1

sum=0

for i in range(1,n+1):

```
sum+=b
```

b=(b*10)+1

print(sum)

Ex. No.	:	4.8	Date:
Register No.:			Name:

Unique Digit Count

Write a program to find the count of unique digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number ≥ 1 and ≤ 25000 . For e.g.

If the given number is 292, the program should return 2 because there are only 2 unique digits '2' and '9' in this number

If the given number is 1015, the program should return 3 because there are 3 unique digits in this number, '1', '0', and '5'.

For example:

Input R	esult
292	2
1015	3

Program: a=int(input()) b=[] while a>0: c=a%10 a=a//10 b.append(c) b=list(set(b)) print(len(b))

292	202	2	2	~
292	292	2	2	~
1015	1015	3	3	~
123	123	3	3	~
ssed all te			3	

Ex. No.	:	4.9	Date:
Register No.:	i i		Name:

Product of single digit

Given a positive integer N, check whether it can be represented as a product of single digit numbers.

Input Format:

Single Integer input.

Output Format:

Output displays Yes if condition satisfies else prints No.

Example Input:

14

Output:

Yes

Example Input:

13

Output:

No

```
a=int(input())
flag=0
for i in range(10):
    for j in range(10):
        if(i*j==a):
            flag=1
            break
if(flag==1):
        print("Yes")
else:
    print("No")
```


Ex. No.	:	4.10	Date:
Register No.:			Name:

Perfect Square After adding One

Given an integer N, check whether N the given number can be made a perfect square after adding 1 to it.

Input Format:

Single integer input.

Output Format:

Yes or No.

Example Input:

24

Output:

Yes

Example Input:

26

Output:

No

For example:

Input	Resul t
24	Yes

Program:

import math

n=int(input())

a=n+1

sr=int(math.sqrt(a))

```
if(sr*sr==a):
    print("Yes")
else:
    print("No")
```

