ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Тема работы: Составление алгоритмов и написание программ на языке			
MATLAB			
Вариант: 1			
Исходные данные:			
Значения коэффициентов a, b, c, d, интервал [xmin, xmax], значение точности ϵ			
Функция $y = ax^3 + bx^2 + cx + d$			
Содержание пояснительной записки:			
Задание на курсовую работу, Аннотация на русском и английском языках,			
Содержание, Введение, Блок-схема алгоритма решения задач, Текст			
программы, Результаты, Заключение, Список использованных источников			
Предполагаемый объем пояснительной записки:			
Не менее 20 страниц.			

АННОТАЦИЯ

Результатом данной курсовой работы является программа, вычисляющая корни нелинейного алгебраического уравнения с использованием заданных пользователем коэффициентов.

Для достижения цели были поставлены следующие задачи:

- 1. Изучить литературу по данной теме, используя справочники, лекции, ресурсы Интернета;
- 2. Определить способы, при помощи которых можно написать оптимизированную и компактную программу для выполнения определенной задачи;
- 3. В основной части программы использовать как можно больше скриптов/функций.

Методы и приемы: анализ научной литературы и собранной информации по теме курсовой работы, сравнительный анализ, классификация и использование отобранного материала.

SUMMARY

The result of this course work is a program to compute the roots of nonlinear algebraic equations using user-defined factors.

To achieve the goal the following **tasks**:

- 1. To study the literature on the subject, using guides, lectures, Internet resources;
- 2. Identify ways in which you can write an optimized and compact program to perform a specific task;
- 3. In the main part of the program as much as possible to use scripts/functions.

Methods and techniques: analysis of scientific literature and gathered information about the course work, comparative analysis, classification and use of the selected material.

СОДЕРЖАНИЕ

ВВЕД	ВВЕДЕНИЕ		
1. Б.	ЛОК СХЕМА АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ	5	
1.1.	Блок схема алгоритма основной части программы	5	
1.2.	Блок схема функции fromkeyboard()	6	
1.3.	Блок схема функции fromfile()		
1.4.	Блок схема функции Bisection(a,b,c,d,eps,xmin,xmax)	8	
1.5.	Блок схема функции FalsePos (a,b,c,d,eps,xmin,xmax)		
1.6.	Блок схема функции outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)	10	
1.7.	Блок схема функции outInFile(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)	11	
1.8.	Блок схема функции f(a,b,c,d,x)	12	
2. K	ОД ПРОГРАММЫ	13	
2.1.	Код основной части программы	13	
2.2.	Код функции fromkeyboard()	14	
2.3.	Код функции fromfile()	14	
2.4.	Код функции Bisection(a,b,c,d,eps,xmin,xmax)	15	
2.5.	Код функции FalsePos(a,b,c,d,eps,xmin,xmax)	16	
2.6.	Код функции outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)	17	
2.7.	Код функции outInFile(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)	17	
2.8.	Код функции f(a,b,c,d,x)	17	
3. Pl	ЕЗУЛЬТАТЫ	18	
3.1.	Файл данных	18	
3.2.	Файл результатов	19	
3.3.	Протокол работы программы	20	
ЗАКЛ	ЮЧЕНИЕ	21	
СПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	22	

ВВЕДЕНИЕ

Цель: написать программу, которая выполняет численное решение нелинейного алгебраического уравнения функции методом, выбранным пользователем; построить график и выделить значение корня; вывести результат в файл, на экран или в файл и на экран, по выбору пользователя.

Методы и приемы: Для сокращения объема кода основной программы используются функции для: ввода данных из файла или с клавиатуры; расчета корней заданной функции одним из двух методов: «Метод половинного деления», «Метод ложного положения»; вывода данных различными способами.

1. БЛОК СХЕМА АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ

1.1. Блок схема алгоритма основной части программы

1.2. Блок схема функции «fromkeyboard()»

Функция осуществляет ввод данных пользователем с клавиатуры

а, b, c, d – коэффициенты уравнения eps – значение точности [xmin;xmax] – границы интервала exit – переменная, которая показывает, нужно ли выйти из цикла

1.3. Блок схема функции «fromfile()»

Функция осуществляет ввод данных из файла

a, b, c, d – коэффициенты уравнения eps – значение точности [xmin;xmax] – границы интервала

1.4. Блок схема функции «Bisection(a,b,c,d,eps,xmin,xmax)»

Функция ищет решение уравнения типа $y = ax^3 + bx^2 + cx + d \ \ \text{методом половинного}$ деления

а, b, c, d – коэффициенты уравнения eps – значение точности [xmin;xmax] – границы интервала resx – вектор значений х resy – вектор значений у

1.5. Блок схема функции «FalsePos (a,b,c,d,eps,xmin,xmax)»

Функция ищет решение уравнения типа $y = ax^3 + bx^2 + cx + d$ методом ложного положения

а, b, c, d – коэффициенты уравнения eps – значение точности [xmin;xmax] – границы интервала resx – вектор значений х resy – вектор значений у

1.6. Блок схема функции «outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)»

Функция осуществляет вывод результата на экран пользователя

а, b, c, d – коэффициенты уравнения eps – значение точности [xmin;xmax] – границы интервала ansx – найденный корень уравнения resx – вектор значений х resy – вектор значений у

1.7. Блок схема функции «outInFile(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)»

Функция осуществляет вывод результата в файл

а, b, c, d – коэффициенты уравнения eps – значение точности [xmin;xmax] – границы интервала ansx – найденный корень уравнения resx – вектор значений х resy – вектор значений у

1.8. Блок схема функции f(a,b,c,d,x)

Функция осуществляет расчет значения у от заданного ей значения \mathbf{x}

а, b, c, d – коэффициенты уравнения

2. КОД ПРОГРАММЫ

2.1. Код основной части программы

```
clc
clear all
data=menu('Выберите способ ввода данных', 'Ввод с клавиатуры', 'Считывание из
файла', 'Завершить программу');
switch data
    case 1
        [a,b,c,d,eps,xmin,xmax]=fromkeyboard();
        [a,b,c,d,eps,xmin,xmax]=fromfile();
    otherwise
        error('Вы не выбрали способ ввода данных');
method=menu('Выберите метод поиска корня','Метод половинного деления','Метод ложного
положения', 'Завершить программу');
switch method
        [ansx,ansy,resx,resy] = Bisection(a,b,c,d,eps,xmin,xmax);
        method='половинного деления';
        [ansx,ansy,resx,resy] = FalsePos(a,b,c,d,eps,xmin,xmax);
        method='ложного положения';
    otherwise
        error('Вы не выбрали метод поиска корня');
end
output=menu('Выберите способ вывода полученных данных', 'Вывод на экран', 'Вывод в
файл', 'Вывод в файл и на экран', 'Завершить программу');
switch output
    case 1
        outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method);
    case 2
        outInFile(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method);
    case 3
        outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method);
        outInFile(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method);
    otherwise
        error('Вы не выбрали способ вывода данных');
end
x=xmin:xmax;
y=a*x.^3+b*x.^2+c*x+d;
plot(x,y,'b-')
title('\Gammaрафик функции у(x)')
xlabel('Значения х')
ylabel('Значения у')
hold on
plot(ansx,ansy,'r*')
hold off
```

2.2. Код функции fromkeyboard()

```
function [a,b,c,d,eps,xmin,xmax] = fromkeyboard()
while(1)
    a=input('Введите коэффициент a\n');
   b=input('Введите коэффициент b\n');
   c=input('Введите коэффициент c\n');
   d=input('Введите коэффициент d\n');
   eps=input('Введите точность расчета\n');
   if eps<0
        error('Значение точности расчета должно быть положительным');
   xmin=input('Введите xmin\n');
   xmax=input('Введите xmax\n');
   exit=input('Если вы ввели верные данные, то введите "1",\nесли хотите повторить ввод,
то введите "0"\n');
   if exit==(1)
        break
end
end
```

2.3. Код функции fromfile()

```
function [a,b,c,d,eps,xmin,xmax] = fromfile()

fileIn=fopen('input.txt','r');
a=fscanf(fileIn,'%f',1);
b=fscanf(fileIn,'%f',1);
c=fscanf(fileIn,'%f',1);
d=fscanf(fileIn,'%f',1);
eps=fscanf(fileIn,'%f',1);
if eps<0
    error('Значение точности расчета должно быть положительным');
end
xmin=fscanf(fileIn,'%f',1);
xmax=fscanf(fileIn,'%f',1);
fclose(fileIn);</pre>
```

2.4. Код функции Bisection(a,b,c,d,eps,xmin,xmax)

```
function [xcp,ycp,resx,resy] = Bisection(a,b,c,d,eps,xmin,xmax)
n=1;
m=1;
x(n) = xmin;
x(n+1) = xmax;
y(n) = f(a,b,c,d,x(n));
y(n+1) = f(a,b,c,d,x(n+1));
if y(n) * y(n+1) > 0
    error('Уравнение с введенными коэффициентами не имеет решения в заданном интервале');
xcp=(x(n)+x(n+1))/2;
ycp=f(a,b,c,d,xcp);
resx(m) = (x(n));
resx(m+1) = (x(n+1));
resx(m+2) = (xcp);
resy(m) = (y(n));
resy(m+1) = (y(n+1));
resy(m+2) = (ycp);
if y(n) *ycp>0
    x(n) = xcp;
    y(n) = ycp;
else
    x(n+1) = xcp;
    y(n+1) = ycp;
end
m=4;
while abs(ycp)>eps
    xcp=(x(n)+x(n+1))/2;
    ycp=f(a,b,c,d,xcp);
    if y(n) *ycp>0
        x(n) = xcp;
        y(n) = ycp;
    else
        x(n+1) = xcp;
        y(n+1) = ycp;
    resx(m) = (xcp);
    resy(m) = (ycp);
    m=m+1;
end
end
```

2.5. Код функции FalsePos(a,b,c,d,eps,xmin,xmax)

```
function [X, yX, resx, resy] = FalsePos(a, b, c, d, eps, xmin, xmax)
n=1;
m=1;
x(n) = xmin;
x(n+1) = xmax;
y(n) = f(a,b,c,d,x(n));
y(n+1) = f(a,b,c,d,x(n+1));
if y(n) * y(n+1) > 0
    error('Уравнение с введенными коэффициентами не имеет решения в заданном интервале');
X=x(n)-y(n)*(x(n+1)-x(n))/(y(n+1)-y(n));
yX=f(a,b,c,d,X);
resx(m) = (x(n));
resx(m+1) = (x(n+1));
resx(m+2) = (X);
resy(m) = (y(n));
resy(m+1) = (y(n+1));
resy(m+2) = (yX);
if y(n)*yX>0
    x(n)=X;
    y(n) = yX;
else
    x(n+1)=X;
    y(n+1) = yX;
end
m=4;
while abs(yX)>eps
    X=x(n)-y(n)*(x(n+1)-x(n))/(y(n+1)-y(n));
    yX=f(a,b,c,d,X);
    if y(n)*yX>0
        x(n)=X;
        y(n) = yX;
    else
        x(n+1) = X;
        y(n+1) = yX;
    resx(m) = (X);
    resy(m) = (yX);
    m=m+1;
end
end
```

2.6. Код функции outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)

```
function [] = outOnScreen(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)
disp('Значения коэффициентов уравнения')
fprintf('a = %g , b = %g , c = %g , d = %g\n',a,b,c,d);
disp('Интервал')
fprintf('%g <= x <= %g\n',xmin,xmax);
disp('Значение точности')
fprintf('epsilon = %g\n',eps);
fprintf('Metod %s\n',method);
disp('Корень:')
disp(ansx)
disp('Значения x Значения y')
for m=1:length(resx);
   fprintf('x(%d)=%-5.3f \ty(%d)=%-5.3f\n',m,resx(m),m,resy(m));
end
end</pre>
```

2.7. Код функции outInFile(a,b,c,d,eps,xmax,xmin,resx,resy,ansx,method)

2.8. Код функции f(a,b,c,d,x)

```
function [y] = f(a,b,c,d,x)

y=a*x^3+b*x^2+c*x+d;

end
```

3. РЕЗУЛЬТАТЫ

3.1. Файл данных

3.2. Файл результатов

```
output.txt × +
   Значения коэффициентов уравнения
    a = 0.001, b = -0.125, c = 4.9, d = -30
 з Интервал
    -50 <= x <= 50
   Значение точности
 5
   epsilon = 0.01
 6
 7 Метод половинного деления
8
   Корень:
    7.4585
9
10 Значения х
                        Значения у
11 x(1) = -50.000 y(1) = -712.500
12 x(2)=50.000
                    y(2) = 27.500
13
   x(3) = 0.000
                    y(3) = -30.000
                   y(4)=30.000
14 x(4)=25.000
15 x(5)=12.500
                    y(5) = 13.672
16 x(6)=6.250
                    y(6) = -4.014
                   y(7) = 5.775
17
   x(7) = 9.375
18 x(8)=7.813
                   y(8)=1.129
                   y(9)=-1.379
19 x (9) = 7.031
20
   x(10) = 7.422
                    y(10) = -0.110
21 x(11)=7.617
                  y(11)=0.513
22 x (12)=7.520
                   y(12)=0.203
23 x(13)=7.471
                   y(13)=0.047
                  y(14) = -0.031
   x(14) = 7.446
25 x(15)=7.458
                  y(15)=0.008
```

3.3. Протокол работы программы

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной работы была создана программа, которая выполняет численное решение нелинейного алгебраического уравнения функции, а именно $y = ax^3 + bx^2 + cx + d$ при заданных пользователем или файлом коэффициентах a, b, c, d.

В качестве результата программа выводит:

- 1. Значения коэффициентов уравнения
- 2. Интервал значений х
- 3. Значение точности є
- 4. Метод, который использовался для расчетов
- 5. Найденный корень
- 6. Значения x и соответствующие им значения y

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. А.Л. Стариченков, Л.А. Чугунов Алгоритмизация и программирование в среде МАТLAB. СПб.: СПбГЭТУ «ЛЭТИ», 2016. 108 с.
- 2. Курбатова Е.А. MATLAB 7. Самоучитель. Издательство: Вильямс. Год издания: 2005г. 256 с.
- 3. Алексеев Е.Р., Чеснокова О.В. MATLAB 7. Самоучитель. ISBN: 5-477-00283-2. Издательство "НТ Пресс" 2006г. 464 с.
- 4. Поршнев С.В. МАТLAВ 7. Основы работы и программирования. Учебник. ISBN: 5-9518-0137-0. Издательство "Бином. Лаборатория знаний" 2006г. 320 с.
- 5. Н.Н. Мартынов. Matlab 7. Элементарное введение. М: "Кудиц-Образ", 2005г, 416 с.