

Betriebssysteme | J.1

Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

J | Verklemmungen
Betriebssysteme

Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

Überblick

Überblick der Themenabschnitte

- A Organisatorisches
- B Zahlendarstellung und Rechnerarithmetik

- C Aufbau eines Rechnersystems
- D Einführung in Betriebssysteme
- E Prozessverwaltung und Nebenläufigkeit
- F Dateiverwaltung
- G Speicherverwaltung
- H Ein-, Ausgabe und Geräteverwaltung
- I Virtualisierung 🖁 🖽
- J Verklemmungen BS
- K Rechteverwaltung

Inhaltsüberblick

Verklemmung

- Begriff
 - Motivation, Voraussetzung
 - Betriebsmittel, Betriebsmittelgraph
- Vermeidung
- Verhinderung
- Erkennung
- Erholung

Einordnung

Betroffene physikalische Ressourcen

Motivation

Dinierende Philosophen

- Philosophen denken oder essen
 - "The life of a philosopher consists of an alternation of thinking and eating." (Dijkstra, 1971)
- zum Essen zwei Gabeln nötig
 - jeweils eine Gabel zwischen zwei Philosophen

Philosophen können verhungern, wenn sie sich "dumm" anstellen!

Motivation (2)

Problem der Verklemmung (Deadlock)

- Beispielsituation:
 - alle Philosophen nehmen zuerst linke Gabel und versuchen dann rechte Gabel aufzunehmen
 - Implementierung durch Semaphore

```
Philosoph 0

forks[0].p(); [1].p(); [2].p(); [3].p(); [4].p(); [4].p(); [6].p();
```

- zweite Operation (rot) blockiert in allen Philosophen
- → System ist verklemmt: Philosophen warten alle auf ihre Nachbarn

Motivation (3)

Problem der Verklemmung (Deadlock)

- Problemkreise:
 - Vermeidung und Verhinderung von Verklemmungen
 - Erkennung und Erholung von Verklemmungen

Problem der Verklemmung (Livelock)

- Prozesse laufen, machen aber keinen substantiellen Fortschritt
 - hier nicht betrachtet

Betriebsmittel / Ressourcen

Beispiele

- CPU, Drucker, Geräte (Platten, CD-ROM, Floppy, Audio, usw.)
- virtuelle Betriebsmittel der Anwendung oder des Betriebssystems, z.B. Gabeln der Philosophen

Unterscheidung von Typ und Instanz

- Typ definiert ein Betriebsmittel eindeutig
- Instanz ist eine Ausprägung des Typs
 - Anwendung benötigt eine Instanz eines Typs, egal welche
 - z.B. CPU: Anwendung benötigt eine von mehreren gleichen CPUs
 - z.B. Drucker: Anwendung benötigt einen von mehreren gleichen Druckern
 - z.B. Gabeln: jede Gabel ist eigener Typ

Betriebsnutzung

Nutzung erfolgt in drei Schritten

- Anfordern des Betriebsmittels (Belegung)
 - blockiert evtl. falls Betriebsmittel nur exklusiv benutzt werden kann
 - z.B. Gabelaufnahme: nur exklusiv
 - z.B. Öffnen einer Datei: exklusiv oder nicht-exklusiv
- Nutzen des Betriebsmittels
 - z.B. Gabel: Philosoph kann essen
 - z.B. Datei: Anwendung kann lesen und schreiben
- Freigeben des Betriebsmittels
 - z.B. Gabel: Philosoph legt Gabel wieder zwischen die Teller
 - z.B. Datei: Datei wird geschlossen

Voraussetzungen

Voraussetzungen für Verklemmung (Deadlock)

- vier notwendige Bedingungen
 - exklusive Belegung
 - mindestens ein Betriebsmitteltyp exklusiv belegbar
 - Nachforderungen von Betriebsmittel möglich
 - ein Prozess hält bereits Betriebsmittel und fordert weiteres an
 - kein Entzug von Betriebsmitteln möglich
 - Betriebsmittel können nicht zurück gefordert werden bis der Prozess sie wieder freigibt
 - zirkuläres Warten
 - Ring von Prozessen, in dem jeder auf ein Betriebsmittel wartet, das der Nachfolger im Ring besitzt

Voraussetzungen (2)

Beispiel der Philosophen

- exklusive Belegung: ja
- Nachforderungen von Betriebsmittel möglich: ja
- Entzug von Betriebsmitteln: nicht vorgesehen
- zirkuläres Warten: ja

```
Philosoph 0

forks[0].p();

forks[1].p();

[2].p();

[3].p();

[4].p();

[0].p();
```

```
Philosoph 0 → Philosoph 1 → Philosoph 2 → Philosoph 3 → Philosoph 4
```

Betriebsmittelgraph

Veranschaulichung von Belegungen und Anforderungen

nur exklusive Belegungen betrachtet

- ableitbare Regeln
 - kein Zyklus im Graph → keine Verklemmung
 - Zyklus im Graph und nur eine Instanz pro Typ → Verklemmung
 - Zyklus ist notwendige Bedingung

Betriebsmittelgraph (2)

Beispiel fünf Philosophen

■ Zyklus und eine Instanz pro Typ → Verklemmung

Betriebsmittelgraph (3)

Beispiel mit Zyklus ohne Verklemmung

sobald P3 Betriebsmittel zurückgibt wird Zyklus aufgelöst

Betriebssysteme | J.2

Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

Inhaltsüberblick

Verklemmung

- Begriff
 - Motivation, Voraussetzung
 - Betriebsmittel, Betriebsmittelgraph
- Vermeidung
- Verhinderung
- Erkennung
- Erholung

Vermeidung von Verklemmungen

Ansatz zur Vermeidung

- Vermeidung der notwendigen Bedingungen (Avoidance)
- exklusive Betriebsmittel
 - in der Regel nicht vermeidbar
- Nachforderung von Betriebsmitteln
 - Ansatz: alle Betriebsmittel auf einmal anfordern
 - z.B. beide Gabeln in atomarer Belegung (beide oder keine)
 - Nachteile
 - ungenutzte aber belegte Betriebsmittel vorhanden
 - Aushungerung möglich: Betriebsmittel nie verfügbar

Vermeidung von Verklemmungen (2)

Ansatz zur Vermeidung (fortges.)

- kein Entzug von Betriebsmitteln
 - Ansatz: Entzug erlauben
 - mit Belegung werden gehaltene Betriebsmittel freigegeben und gleich wieder zusammen mit neuen angefordert
 - während Warten auf neue Betriebsmittel werden bisher gehaltene frei für andere
 - möglich für CPU und Speicher (durch Auslagerung)
 - unmöglich für Drucker und ähnliche

Zyklus

 Ansatz: totale Ordnung in der Betriebsmittel ausschließlich angefordert werden dürfen

Vermeidung von Verklemmungen (3)

Zyklusvermeidung

- Beispiel fünf Philosophen
 - Anforderung der Gabeln nur in aufsteigender Gabelnummern

```
Philosoph 0

forks[0].p();

forks[1].p();

[2].p();

[3].p();

[4].p();
```

- kein Zyklus mehr möglich
- keine Verklemmung mehr möglich

Vermeidung von Verklemmungen (4)

Zyklusvermeidung (fortges.)

- Realisierung
 - Fehlermeldung bei Verletzung der Ordnung
 - Rückgabe der Betriebsmittel
 - Anforderung in richtiger Reihenfolge
 - nicht immer realisierbar
 - z.B. weil nächste Anforderung nicht bekannt und Rückgabe mitten in der Operation nicht möglich

Verhinderung

Ansatz zur Verhinderung

- Systemzustand, in dem Verklemmung entstehen könnte, wird vermieden (Prevention)
 - Voraussetzung: bekannt, welche Betriebsmittel angefordert und freigegeben werden und in welcher Reihenfolge
- sicherer Zustand
 - System gerät nicht in Verklemmung
- unsicherer Zustand
 - System wird sich verklemmen läuft aber noch
- unmöglicher Zustand
 - z.B. Semantik von Semaphoren verletzt
 - zwei Prozesse haben P-Operation durchgeführt

Verhinderung

Beispiel

■ zwei Prozesse mit Belegung zweier Semaphore A und B

Verhinderung (2)

Beispiel

zwei Prozesse mit Belegung zweier Semaphore A und B

Verhinderung (3)

Beispiel

■ zwei Prozesse mit Belegung zweier Semaphore A und B

Verhinderung (4)

Ansatz zur Verhinderung

- Erkennung der unsicheren Zustände
 - System verhindert Eintritt in unsicheren Zustand
 - z.B. mit Hilfe des Bankers-Algorithmus

Verhinderung (3)

Beispiel

Ablauf mit Verklemmungsverhinderung

Erkennung

Erkennung von Verklemmungen

- Zykluserkennung im Betriebsmittelgraph
 - kann auf Wartegraph reduziert werden
 - Wartegraph zeigt, welcher Prozess auf welchen anderen wartet
 - nur für Betriebsmittel mit einer Instanz pro Typ möglich
- graphische Reduktionsmethode
 - anwendbar auf Betriebsmittel mit mehreren Instanzen pro Typ
 - hier nicht näher behandelt

Erkennung (2)

Überlegungen zum Einsatz

- Einsatz sehr rechenzeitaufwändig
 - Verklemmungen eher selten
 - zu häufiger Einsatz: Verschwendung von Ressourcen
 - zu seltener Einsatz: Durchsatz sinkt, kein Fortschritt
- mögliche Vorgehensweisen
 - Einsatz, wenn Belegung blockiert
 - periodisch mit niedriger Rate
 - Einsatz, wenn Durchsatz oder Auslastung sinkt

Erholung

Erholung von Verklemmungen

- Verklemmung erkannt: Was tun?
 - manuelle Beseitigung
 - System erholt sich selbständig
- Abbrechen von Prozessen
 - terminierte Prozesse geben ihre Betriebsmittel wieder frei
 - alle verklemmten Prozesse abbrechen: großer Schaden
 - einen Prozess abbrechen und Erkennung wiederholen

■ Probleme:

- Verlust von berechneter Information
- Rücksetzbarkeit von bisherigen Effekten des Prozesses
 - Konsistenz von Daten

Einsatzgebiete

Einsatz von Antiverklemmungsmaßnahmen

- in Betriebssystemen
 - interne Vermeidung durch Ordnung auf Betriebsmitteln
- in Anwendungsprozessen
 - bisher keine Unterstützung durch das Betriebssystem
- in Datenbanksystemen
 - typischerweise ausgefeilte Verklemmungserkennung und -auflösung
 - Rücksetzbarkeit von Datenbanktransaktionen unterstützt Erholung

Inhaltsüberblick

Verklemmung

- Begriff
 - Motivation, Voraussetzung
 - Betriebsmittel, Betriebsmittelgraph
- Vermeidung
- Verhinderung
- Erkennung
- Erholung