Лабораторная работа № 9

Использование протокола STP. Агрегирование каналов

Джахангиров Илгар Залид оглы

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	20

Список иллюстраций

3.1	Логическая схема локальной сети с резервным соединением	6
3.2	Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 ком-	
	мутатора msk-donskaya-sw-1	7
3.3	Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 ком-	
	мутатора msk-donskaya-sw-4	8
3.4	Пингование сервера mail и web	9
3.5	Режим симуляции движения пакетов ICMP	9
3.6	Просмотр состояния протокола STP для vlan 3	10
3.7	Настройка коммутатора msk-donskaya-sw-1 корневым	11
3.8	Режим симуляции движения пакетов ICMP к серверу web	12
3.9	Режим симуляции движения пакетов ICMP к серверу mail	12
3.10	Настройка режима Portfast	13
3.11	Настройка режима Portfast	14
3.12	Пингование mail.donskaya.rudn.ru	15
3.13	Разрыв соединения	15
	Время восстановления соединения	16
3.15	Режим работы по протоколу Rapid PVST+	16
3.16	Режим работы по протоколу Rapid PVST+	16
	Режим работы по протоколу Rapid PVST+	17
3.18	Режим работы по протоколу Rapid PVST+	17
3.19	Режим работы по протоколу Rapid PVST+	17
3.20	Пингование mail.donskaya.rudn.ru	17
3.21	Время восстановления соединения	18
3.22	Логическая схема локальной сети с агрегированным соединением	18
		19
	Настройка агрегирования каналов на msk-donskaya-cahanqirov-sw-4	19

1 Цель работы

Изучить возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

2 Задание

- 1. Сформировать резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3.
- 2. Настроить балансировку нагрузки между резервными соединениями.
- 3. Настроить режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы.
- 4. Изучить отказоустойчивость резервного соединения.
- 5. Сформировать и настроить агрегированное соединение интерфейсов Fa0/20 Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4.
- 6. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

Сформируем резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3 (рис. ??). Для этого:

- заменим соединение между коммутаторами msk-donskaya-sw-1(Gig0/2) и msk-donskaya-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-3 (Gig0/2);
- сделаем порт на интерфейсе Gig0/2 коммутатора msk-donskaya-sw-3 транковым (рис. ??);
- соединение между коммутаторами msk-donskaya-sw-1 и msk-donskayasw-4 сделаем через интерфейсы Fa0/23, не забыв активировать их в транковом режиме (рис. ??).

Рис. 3.1: Логическая схема локальной сети с резервным соединением

Рис. 3.2: Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 коммутатоpa msk-donskaya-sw-1

Рис. 3.3: Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 коммутатоpa msk-donskaya-sw-4

С оконечного устройства dk-donskaya-1 пропингуем серверы mail и web (рис. ??).

```
C:\>ping www.donskaya.rudn.ru
Pinging 10.128.0.2 with 32 bytes of data:
Reply from 10.128.0.2: bytes=32 time=1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.4:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
```

Рис. 3.4: Пингование сервера mail и web

В режиме симуляции проследим движение пакетов ICMP. Убедимся, что движение пакетов происходит через коммутатор msk-donskaya-sw-2

Рис. 3.5: Режим симуляции движения пакетов ІСМР

На коммутаторе msk-donskaya-sw-2 посмотрим состояние протокола STP для vlan 3 (рис. ??):

Рис. 3.6: Просмотр состояния протокола STP для vlan 3

В качестве корневого коммутатора STP настроем коммутатор msk-donskayasw-1 (рис. ??):

Рис. 3.7: Настройка коммутатора msk-donskaya-sw-1 корневым

Используя режим симуляции, убедимся, что пакеты ICMP пойдут от хоста dk-donskaya-1 до mail через коммутаторы msk-donskaya-sw-1 и mskdonskaya-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-2 (рис. ??).

Рис. 3.8: Режим симуляции движения пакетов ICMP к серверу web

Рис. 3.9: Режим симуляции движения пакетов ICMP к серверу mail

Настроим режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы (рис. ??):

Рис. 3.10: Настройка режима Portfast

Рис. 3.11: Настройка режима Portfast

Изучим отказоустойчивость протокола STP и время восстановления соединения при переключении на резервное соединение. Для этого используем команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1 (рис.??), а разрыв соединения обеспечим переводом соответствующего интерфейса коммутатора в состояние shutdown (рис.??).

Рис. 3.12: Пингование mail.donskaya.rudn.ru

```
msc-donskaya-cahanqirov-sw-3(config) pint q0/2
msc-donskaya-cahanqirov-sw-3(config-if) pshutdown
msc-donskaya-cahanqirov-sw-3(config-if) pshutdown
msc-donskaya-cahanqirov-sw-3(config-if) pshutdown
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to down
msc-donskaya-cahanqirov-sw-3(config-if) pshutdown
```

Рис. 3.13: Разрыв соединения

Видно, что на время восстановления соединения потребовалось 4 пинга, что достаточно долго (рис. ??). После восстановление пингование продолжило работать,

как и в начале.

```
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 3.14: Время восстановления соединения

Переключим коммутаторы в режим работы по протоколу Rapid PVST+ (рис. ??):

```
msc-donskaya-cahanqirov-sw-l#
msc-donskaya-cahanqirov-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-cahanqirov-sw-l(confiq)#spanning-tree mode rapid-pvst
msc-donskaya-cahanqirov-sw-l(confiq)#^2
msc-donskaya-cahanqirov-sw-l#
%SYS-5-CONFIG_I: Configured from console by console
wr m
Building configuration...
[OK]
```

Рис. 3.15: Режим работы по протоколу Rapid PVST+

```
msc-donskaya-cahanqirov-sw-2#
msc-donskaya-cahanqirov-sw-2#conf t
Enter continuration commands, one per line. End with CNTL/2.
msc-donskaya-cahanqirov-sw-2(config)#spanning-tree mode rapid-pvst
msc-donskaya-cahanqirov-sw-2#config)#^2
msc-donskaya-cahanqirov-sw-2#
%SYS-5-CONFIG_I: Configured from console by console
msc-donskaya-cahanqirov-sw-2#wr m
Building configuration...
[OK]
```

Рис. 3.16: Режим работы по протоколу Rapid PVST+

```
msc-donskaya-cahanqirov-sw-3f
msc-donskaya-cahanqirov-sw-3fconf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-cahanqirov-sw-3(config)#spanning-tree mode rapid-pvst
msc-donskaya-cahanqirov-sw-3(config)#^Z
msc-donskaya-cahanqirov-sw-3f
%SYS-S-CONFIG_I: Configured from console by console
msc-donskaya-cahanqirov-sw-3fwr m
Building configuration...
[OK]
```

Рис. 3.17: Режим работы по протоколу Rapid PVST+

```
msc-donskaya-cahanqirov-sw-4#
msc-donskaya-cahanqirov-sw-4#
enf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-cahanqirov-sw-4(config)#spanning-tree mode rapid-pvst
msc-donskaya-cahanqirov-sw-4(config)#^Z
msc-donskaya-cahanqirov-sw-4#
%SYS-5-CONFIG_I: Configured from console by console
```

Рис. 3.18: Режим работы по протоколу Rapid PVST+

```
msc-pavlovskaya-cahanqirov-swl#
msc-pavlovskaya-cahanqirov-swl#
sneer configuration commands, one per line. End with CNTL/Z.
msc-pavlovskaya-cahanqirov-swl (config)#spanning-tree mode rapid-pvst
msc-pavlovskaya-cahanqirov-swl#
asr-pavlovskaya-cahanqirov-swl#
asrs-config: Configured from console by console
msc-pavlovskaya-cahanqirov-swl#wr m
Building configuration...
[OK]
```

Рис. 3.19: Режим работы по протоколу Rapid PVST+

Изучим теперь отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение

```
Pinging 10.128.0.4 with 32 bytes of data:

Reply from 10.128.0.4: bytes=32 time=30ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 3.20: Пингование mail.donskaya.rudn.ru

Сразу после разрыва соединения задержки по времени вообще не было, сесть моментально перестроилась.

А вот, когда обратно вернули старое соединение потребовался 1 пинг, что достаточно быстро (рис. ??). После восстановление пингование продолжило работать, как и в начале.

```
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=11ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=23ms TTL=127
Reply from 10.128.0.4: bytes=32 time=23ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 3.21: Время восстановления соединения

Сформируем агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4 (рис. ??).

Рис. 3.22: Логическая схема локальной сети с агрегированным соединением

Настроим агрегирование каналов (режим EtherChannel) (рис. ??):

```
msc-donskaya-cahanqirov-sw-1>en
Password:
msc-donskaya-cahanqirov-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-cahanqirov-sw-1(config) #int f0/23
mac-donskaya-cahanqirov-sw-l(config-if) #no swit
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/21 (1), with msc-
donskaya-cahanqirov-sw-4 FastEthernet0/21 (104).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/22 (1), with msc-
donskaya-cahangirov-sw-4 FastEthernet0/22 (104).
%CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/20 (1), with msc-
donskaya-cahanqirov-sw-4 FastEthernet0/20 (104).
msc-donskaya-cahanqirov-sw-l(config-if) #no switchport mode trunk
msc-donskaya-cahangirov-sw-1(config-if) $4SPANTREE-2-RECV_PVID_ERR: Received 802.10 BPDD on non
trunk FastEthernet0/23 VLAN1.
ASPANTREE-2-BLOCK_PVID_LOCAL: Blocking FastEthernet0/23 on VLAN0001. Inconsistent port type.
msc-donskaya-cahanqirov-sw-1(config-if)#
```

Рис. 3.23: Настройка агрегирования каналов на msk-donskaya-cahanqirov-sw-1

```
msc-donskaya-cahanqırov-sw-4#conf t
Enter configuration commands, one per line. End with CNTL/2.
mac-donakaya-cahangirov-aw-4(config) fint range f0/20 - 23
msc-donskaya-cahanqirov-sw-4(config-if-range) #no switchport access vian 104
msc-donskaya-cahanqizov-sw-4(config-if-range)fexit
msc-donskaya-cahanqirov-sw-4(config)finterface range f0/20 - 23
msc-donskaya-cahanqirov-sw-4(config-if-range) #channel-group 1 mode on
msc-donskaya-cahanqirov-sw-4(config-if-range)#
Creating a port-channel interface Port-channel |
%LINK-5-CHANGED: Interface Port-channell, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channell, changed state to up
MEC-5-CANNOT_BUNDLE2: Fa0/23 is not compatible with Fa0/20 and will be suspended (dtp mode of
Pa0/23 is on, Fa0/201s off )
MEC-5-CANNOT BUNDLE2: Fa0/23 is not compatible with Fa0/21 and will be suspended (dtp mode of
MEC-5-CANNOT BUNDLE2: Fa0/23 is not compatible with Fa0/22 and will be suspended (dtp mode of
Pa0/23 is on, Fa0/22is off )
*LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/23, changed state to down
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan2, changed state to down %SPANTREE-2-RECV_PVID_ERR: Received 802.10 BPDU on non-trunk Port-channell VLAN1.
%SPANTREE-2-BLOCK FVID LOCAL: Blocking Port-channell on VLAN0001. Inconsistent port type.
msc-donskaya-cahanqirov-sw-4(config-if-range) [ex
```

Рис. 3.24: Настройка агрегирования каналов на msk-donskaya-cahanqirov-sw-4

4 Выводы

В результате выполнения лабораторной работы я изучил возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.