1. Show that in a simple linear regression model, F statistic for the F test for regression and t statistic for the test of $H_0: \beta_1 = 0$ are equivalent, that is, $F = t^2$. Show this by using the formulas for the test statistics.

$$H_0: \beta_1 = 0$$
 are equivalent, that is, $F = t^2$. Show this by using the formulas for the test statistics.
For t-test, the formula for the test statistics is
$$\frac{1}{2} + \frac{1}{2} + \frac{1}$$

$$\hat{y}_{i} = \hat{\beta}_{i} + \hat{\beta}_{i} \chi_{i}, \, \hat{\beta}_{i} = \hat{y} - \hat{\beta}_{i} \hat{\chi}_{i}, \, S_{0} \quad \hat{y}_{i} = \hat{y} - \hat{\beta}_{i} \hat{\chi}_{i} + \hat{\beta}_{i} \chi_{i}, \, \hat{y}_{i} - \hat{y} = \hat{\beta}_{i} \\
S_{0} \quad L\hat{y}_{i} - \hat{y})^{2} = \hat{\beta}_{i}^{2} (\chi_{i} - \hat{\chi})^{2} \\
For F-test, the formula for the test statistics is
$$F = \frac{MsReg}{MSE} = \underbrace{\frac{2i}{3}}_{MSE} L\hat{y}_{i} - \hat{y})^{2} = \underbrace{\hat{\beta}_{i}^{2}}_{MSE} (\chi_{i} - \hat{\chi})^{2} - \underbrace{\hat{\beta}_{i}^{2}}_{SE^{2}(\hat{\beta}_{i})}$$$$

- 2. Consider the simple linear regression model with normal errors, $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $\varepsilon_i \sim$ independent $N(0,\sigma^2)$, i=1,...,n. A linear transformation of a variable w involves replacing w with a new variable $w^* = d + cw$, where c and d are constants. Explain how the quantities $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$, R^2 and the test of $H_0: \beta_1 = 0$ are affected by the following linear transformations. Provide mathematical justification for your
 - a. Each value of the predictor x_i is replaced by cx_i , where c is a non-zero constant. For example, the data set has age in months and we convert this to age in years by dividing by 12.
 - Each value of x_i is replaced by $x_i + d$. For example, we subtract the mean \bar{x} from each x_i .
 - Each value of the response y_i is replaced by ky_i , for a non-zero constant k. For example, suppose that we convert income from units of \$1 to units of \$1000, by dividing by 1000.
 - d. Each value of v_i is replaced by $v_i + d$. For example, we subtract the mean \overline{v} from each v_i .
 - Verify your answers to (a)-(d) by fitting models that regress HEIGHT on AGE in the SPIROMETRY data set. Fit models that: convert age in months to age in years; subtract mean age; convert height in cm to height in inches; subtract mean height. Compare to the model using the original scaling of the variables.

$$\hat{\beta}_{i} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}, \quad \hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{x}, \quad \hat{\beta}_{0}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n - 2}, \quad R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}, \quad \text{test score } t = \frac{\beta_{1}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{x} = \overline{y} - \hat{\beta}_{1} C \overline{x} = \hat{\beta}_{0}$$

$$\frac{\hat{\beta}_{0}}{\hat{\beta}_{0}} = \overline{y} - \hat{\beta}_{1} \overline{x} = \overline{y} - \hat{\beta}_{1} C \overline{x} = \hat{\beta}_{0}$$

$$\frac{\hat{\beta}_{0}}{\hat{\beta}_{0}} = \overline{y} - \hat{\beta}_{1} \overline{x} = \overline{y} - \hat{\beta}_{1} C \overline{x} = \hat{\beta}_{0}$$

$$\frac{\hat{\beta}_{0}}{\hat{\beta}_{0}} = \overline{y} - \hat{\beta}_{1} \overline{x} = \overline{y} - \hat{\beta}_{1} C \overline{x} = \hat{\beta}_{0}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}'\bar{\chi} = \bar{y} - \hat{\beta}_{1}'\hat{\zeta} = \hat{\beta}_{0}'$$

$$\beta_0 = y - \beta_1 \chi = y - \frac{1}{C} \beta_1 C \chi = \beta_0$$

$$\hat{\beta}' \times 1 + \hat{\beta}' = \frac{1}{C} \hat{\beta}' C \chi + \hat{\beta} - \hat{\gamma}. \quad C$$

$$\hat{y}_{i}' = \hat{\beta}_{i}' \chi_{i}' + \hat{\beta}_{o}' = \frac{1}{C} \hat{\beta}_{i} C \chi_{i} + \hat{\beta}_{o} = \hat{y}_{i}', SO$$

$$\hat{\beta}^{2} = \hat{\delta}^{2} \text{ and } R^{2}' = R^{2}$$

So Pi will become thi. Po, B2, R2, test result will not change.

b.
$$\chi_i' = \chi_i + d$$
, $\bar{\chi}' = \bar{\chi} + d$, so $\chi_i' - \bar{\chi}' = \chi_i - \bar{\chi}$.
So $\beta_i' = \beta_i$

$$\hat{\beta}_{0}' = \hat{y} - \hat{\beta}_{1}' \hat{x}' = \hat{y} - \hat{\beta}_{1}(\hat{x} + \hat{x}) = \hat{\beta}_{0} - \hat{\beta}_{1}\hat{x}$$

 $\hat{y}_{i}=\hat{\beta}_{i}'x_{i}'+\hat{\beta}_{i}'=\hat{\beta}_{i}(x_{i}+d)+\hat{\beta}_{i}-\hat{\beta}_{i}d=\hat{\beta}_{i}x_{i}+\hat{\beta}_{i}=\hat{y}_{i}$ So $\hat{\beta}'=\hat{\beta}'$ and $\hat{R}'=\hat{R}'$. Since $\hat{\beta}_{i}$, $\hat{\beta}$ and $\hat{x}_{i}-\hat{x}$ do not change, then test score t does not change. So Bi, 62, R2, test result will not change. Bo will become B-Bid.

C.
$$y'_{i} = ky_{i}$$
, $y' = ky_{i}$. $\beta'_{i} = k\beta_{i}$. $\beta'_{o} = ky_{i} - k\beta_{i}$. $x = k\beta_{o}$. $y''_{i} = \beta'_{o} + \beta'_{i}$. $x_{i} = k\beta_{o} + k\beta_{i}$. $x_{i} = ky_{i}$. $x_{i} = k\beta_{o} + k\beta_{i}$. $x_{i} = ky_{i}$. $y''_{i} = k\beta_{o} + k\beta_{i}$. $y''_{i} = ky_{i}$. $y''_{i} = k\beta_{o} + k\beta_{i}$. $y''_{i} = k\beta_{i}$. y''_{i}

So p. will become kp., p. will become kp., 62 will become k262. R2 and test score will not change.

d.
$$y'_{i} = y_{i} + d$$
, $\bar{y}' = \bar{y} + d$, $y'_{i} - \bar{y}' = y_{i} - \bar{y}$. So $\hat{\beta}'_{i} = \hat{\beta}_{i}$.

 $\hat{\beta}'_{i} = \bar{y}' - \hat{\beta}'_{i} \bar{x} = \bar{y} + d - \hat{\beta}_{i} \bar{x} = \hat{\beta}_{i} + d$

$$\hat{\beta}_{i} = \hat{y}' - \hat{\beta}_{i}' \hat{x} = \hat{y} + d - \hat{\beta}_{i} \hat{x} = \hat{\beta}_{i} + d$$

$$\hat{y}_{i}' = \hat{\beta}_{i}' + \hat{\beta}_{i}' \hat{x}_{i} = \hat{\beta}_{i} + d + \hat{\beta}_{i}' \hat{x}_{i} = \hat{y}_{i} + d$$

$$S_{0} = \frac{1}{4} - \frac{1}{4} = \frac{1}{4} + \frac{1}{4} - \frac{1}{4} = \frac{1}{4$$

So
$$y'_1 - \hat{y}'_1 = y_1 + d - \hat{y}_1 - d = y_1 - \hat{y}_1 - \hat{y}'_1 - \hat{y}'_1 = \hat{y}_1 - \hat{y}$$

So $\hat{G}^2' = \hat{G}^2$. $R^2' = R^2$. Since \hat{F}_1 and \hat{G}_2 do not change, then test score t does not change.

So Pi, 62, R2, test result will not change. Bo will become Botd.

e. Original model:

	Root MSE	4.40138	R-Square	0.8580						
	Dependent Mean	104.61972	Adj R-Sq	0.8559						
	Coeff Var	4.20702								
	Parameter Estimates									
Variable	Label D	Paramete F Estimate			Pr > t					

X	= 53	. 53055
ÿ	=104	1.61972

		Para	meter Estima	ites		
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	75.92256	1.49942	50.63	<.0001
AGE	Age (Months)	1	0.53609	0.02626	20.42	<.0001
					-	

mode (a):

So Pi will become 12 Pi. Po, E2, R2, test result will not change.

model (b):

1	OUL MISE		4.40130	ix-oquare	0.0000	
D	Dependent Mean		104.61972	Adj R-Sq	0.8559	
Coeff Var		4.20702				
Parameter Estimates						
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	104.61972	0.52235	200.29	<.0001
AGE_sub		1	0.53609	0.02626	20.42	<.0001

So Pi, 62, R2 and test result will not change. Po will become Po + Pix= y.

model (c):

$$\hat{\beta}_{1}' = \frac{1}{2.54} \hat{\beta}_{1} = 0.21106$$

$$\hat{\beta}_{0}' = \frac{1}{2.54} \hat{\beta}_{0} = 29.89077$$

$$\hat{\beta}' = \frac{1}{2.54} \hat{\beta}_{0} = 1.7328, 50 \hat{\beta}^{2'} = (\frac{1}{2.54})^{2} \hat{\beta}^{2}.$$

So p., Po, & will be come 2.54 their original values. R'and test result will not change.

mode (d):

	Dependent Mea	n 9	9.859153E-9	Adj R-Sq	0.8559	
	Coeff Var	4	4642538851			
		Para	meter Estima	ites		
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	-28.69716	1.49942	-19.14	<.0001
	Age (Months)	1	0.53609	0.02626	20.42	<.0001

So \(\hat{\beta}, \hat{\beta}^2\), \(\hat{R}^2\) and test result will not change. \(\hat{\beta}\) will become \(\hat{\beta} - \hat{\beta} = - \hat{\beta}, \overline{\chi}

and the standard deviation is 139.2653897. The mean of length is 9.6483186 and the standard deviation is 1.9114560. The mean of svcs is 43.1592918 and the standard deviation is 15.2008613. From their histograms, the distribution of risk is left-skewed. The distribution of nurses and length is right-skewed. The distribution of svcs is a normal distribution.

From the table, the mean of *risk* is 4.3548673 and the standard deviation is 1.3409080. The mean of *nurses* is 173.2477876

Model a:

Model b:

Model C:

that for 0.1.

30

linearity.

For model b, the loess fits in the plots confirm that 0.2 is a good smoothing value. Residuals for smoothing parameter value 0.2 exhibit less pattern (a "null" plot) than others. And the plot for smoothing parameter value 0.2 is smoother than that for 0.1.

0.1 and 0.2 exhibit less pattern (a "null" plot) than others. And the plot for smoothing parameter value 0.2 is smoother than that for 0.1.

For model a, the loess fits in the plots confirm that 0.2 is a good smoothing value. Residuals for smoothing parameter value

From the above plots, we notice three models are all nonlinear and all three models can become linear by some transforma-

Fit Diagnostics for risk

Fit Diagnostics for risk_tran1

tions. For model a, we should make power transformation for Y or root transformation for X and here we take square root of X. The results are as follows:

Residuals for risk

Residuals for risk_tran1

For model b, we should make power transformation for Y or root transformation for X and here we take square of Y. The results are as follows:

For model c, we should make root transformation for Y or power transformation for X and here we take square root of Y. The results are as follows: Fit Diagnostics for nur_tran1 Residuals for nur_tran1 10

20 40 60 80 0.0 0.4 0.8 0.0 0.4 0.8 SVCS Residual Proportion Less From the plots above, it seems that $E(\epsilon_i) = 0$ for all i. And the error variance are roughly constant across all observations. Also, from QQ plot, all points roughly follow a straight line. So the assumptions of the normal error regression model are approximately met. So it is linear and root transformation for Y or power transformation for X is an appropriate strategy to 4. For the simple linear regression model, show that (a) $\frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = \frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2}$ and (b) $Cov(\bar{Y}, \hat{\beta}_1) = 0$.

(1)
$$\mathcal{L}(X_i - \overline{X})(Y_i - \overline{Y}) = \mathcal{L}(X_i - \overline{X})Y_i - \mathcal{L}(X_i - \overline{X})\overline{Y} = \mathcal{L}(X_i - \overline{X})Y_i - \overline{Y}(\mathcal{L}X_i - \mathcal{L}\overline{X})$$

Since $\mathcal{L}(X_i - \mathcal{L}\overline{X}) = 0$, then $\mathcal{L}(X_i - \overline{X})(Y_i - \overline{Y}) = \mathcal{L}(X_i - \overline{X})Y_i$.

Since
$$\Sigma x_i - \Sigma x = 0$$
, then $\Sigma (x_i - \overline{x})(Y_i - \overline{Y}) = \Sigma (x_i - \overline{x})Y_i$.
So $\Sigma (x_i - \overline{x})(Y_i - \overline{Y}) - \Sigma (x_i - \overline{x})Y_i$

So
$$\underline{\mathcal{L}}(X_i - \bar{X})(Y_i - \bar{Y}) = \underline{\mathcal{L}}(X_i - \bar{X})Y_i$$

 $\underline{\mathcal{L}}(X_i - \bar{X})^2 = \underline{\mathcal{L}}(X_i - \bar{X})^2$
(2) $Cov(\bar{Y}, \beta_i) = Cov(\underline{\underline{\mathcal{L}}}\underline{Y_i}, \underline{\mathcal{L}}C_iY_i) = \frac{1}{h}Cov(\underline{\mathcal{L}}\underline{Y_i}, \underline{\mathcal{L}}C_iY_i), \text{ where } C_i = \frac{x_i - \bar{x}}{\underline{\mathcal{L}}(x_i - \bar{x})^2}$
Since $Y_i \sim \text{indep } N(\beta_0 + \beta_1 X_i, \beta_i)$, then $cov(Y_i, Y_j) = 0$ if $i \neq j$.
 $So Cov(\bar{Y}, \beta_i) = \frac{1}{h}Cov(\underline{\mathcal{L}}\underline{Y_i}, \underline{\mathcal{L}}C_iY_i) = \frac{1}{h}\underline{\mathcal{L}}C_iV_{ar}(Y_i) = \frac{\delta^2}{h}\underline{\mathcal{L}}C_i = \frac{\delta^2}{h}\underline{\mathcal{L}}(x_i - \bar{x})^2} = 0$

So
$$\underline{\Sigma}(X_i - \bar{X})(Y_i - \bar{Y}) = \underline{\Sigma}(X_i - \bar{X})Y_i$$

 $\underline{\Sigma}(X_i - \bar{X})^2 = \underline{\Sigma}(X_i - \bar{X})^2$
2) $Cov(\bar{Y}, \beta_i) = Cov(\underline{\Sigma}\underline{Y}_i, \underline{\Sigma}C_i\underline{Y}_i) = \frac{1}{n}Cov(\underline{\Sigma}\underline{Y}_i, \underline{\Sigma}C_i\underline{Y}_i)$, where