Fisica Nucleare e Subnucleare

Prof.ssa S. Leoni, a.a. 2024-25

Leonardo Cerasi¹, Lucrezia Bioni GitHub repository: LeonardoCerasi/notes

 $^{^{1}}$ leo.cerasi@pm.me

Indice

In	ndice	i
In	ntroduzione	1
Ι	Fisica Nucleare	3
1	Nuclidi	1

Introduzione

Scale di grandezza Nello studio della fisica dei nuclei e delle particelle subatomiche, le scale di grandezza tipiche sono estremamente piccole: la scala tipica delle dimensioni di un atomo è $1 \text{ Å} = 10^{-10} \text{ m}$, mentre quella del nucleo è di 4 ordini di grandezza minore ($10^{-14} \text{ m} = 10 \text{ fm}$); per un singolo nucleone, invece, le dimensioni sono dell'ordine di $1 \text{ fm} = 10^{-15} \text{ m}$, e il range tipico delle interazioni deboli è 10^{-18} m .

Per quanto riguarda la scala di energie, i processi atomici hanno energie solitamente attorno a $1\,\mathrm{eV} = 1.602\cdot 10^{-19}\,\mathrm{J}$, mentre quelli nucleari arrivano anche a $10\,\mathrm{MeV}$; per le interazioni ad alte energie studiate dalla fisica particellare, i moderni accelleratori arrivano a scale di $1\,\mathrm{TeV}$.

Per studiare la struttura dei costituenti della materia a vari livelli, è necessario utilizzare fasci di particelle (fotoni, elettroni, etc.) con determinate lunghezze d'onda (relazioni di de Broglie $\lambda = \frac{h}{p}$), corrispondenti a determinate energie: per sondare i nuclei atomici sono necessari $\lambda \sim 10\,\mathrm{fm}$ ed $E \sim 1\,\mathrm{MeV}$; per evidenziare la struttura a molti corpi del nucleo atomico servono $\lambda \sim 1\,\mathrm{fm}$ ed $E \sim 10\,\mathrm{MeV}$; se si vogliono studiare gli stati eccitati dei singoli nucleoni occorrono $\lambda \sim 10^{-3}\,\mathrm{fm}$ ed $E \sim 1\,\mathrm{GeV}$; infine, se si vuole mettere in luce la struttura composta da quark dei nucleoni, bisogna raggiungere $\lambda < 10^{-4}\,\mathrm{fm}$ ed $E > 200\,\mathrm{GeV}$.

Interazioni fondamentali I vari costituenti della materia interagiscono tramite 4 interazioni fondamentali:

- 1. interazione elettromagnetica: mediata dal fotone $(m_{\gamma} = 0)$, con coupling constant $\alpha \approx 1/137$ e raggio d'azione infinito (essendo il fotone massless);
- 2. interazione debole: mediata dai bosoni W[±] e Z⁰ ($m_W = 80.4 \,\text{GeV}$, $m_Z = 90.1 \,\text{GeV}$), con coupling constant $G_F \approx 1 \cdot 10^{-5}$) e raggio d'azione $< 10^{-3} \,\text{fm}$, dovuto al fatto che i bosoni bosoni W[±] e Z⁰ sono molto pesanti e dunque, per il principio d'indeterminazione ($\Delta E \Delta t \geq \frac{\hbar}{2}$), possono essere prodotti solo come particelle virtuali in processi di scattering per periodi di tempo estremamente brevi;
- 3. interazione forte: mediata dai gluoni ($m_g = 0$), con coupling constant $\alpha_s \approx 1$ e raggio d'azione ≈ 1 fm, dovuto al fatto che i gluoni, sebbene massless, possono interagire tra loro;
- 4. interazione gravitazionale: mediata dall'ipotetico gravitone ($m_G=0$), con coupling constant $G_N\approx 6\cdot 10^{-39}$ e raggio d'azione infinito.

Come si può notare, la gravità ha un'intensità di decine di ordini di grandezza inferiore alle altre interazioni fondamentali, per questo in ambito atomico, nucleare e particellare può essere trascurata.

2 Introduzione

Esperimenti A differenza della fisica atomica, che è descritta completamente dalla QED (Quantum Electrodynamics), la fisica nucleare non ha un'unica teoria coerente: la teoria fondamentale dell'interazione forte, la QCD (Quantum Chromodynamics), descrive le interazioni tra quark (mediate da gluoni), non quelle tra nucleoni (mediate da mesoni virtuali); inoltre, in ambito atomico le energie che entrano in gioco nei decadimenti (~ 10 MeV) sono meno dello 0.1% della massa del nucleo (espressa in unità naturali), dunque gli effetti relativistici possono essere ignorati, mentre per quanto riguarda i processi tra nucleoni le energie possono essere anche 100 volte la massa equivalente del protone, rendendo necessario l'utilizzo della meccanica quantistica relativistica; infine, bisogna considerare che sia il nucleo atomico che i nucleoni sono sistemi complessi a molti corpi, dunque, anche avendo una teoria dell'interazione tra singole coppie di costituenti, è estremamente difficile sviluppare modelli teorici per descrivere questi sistemi, e la trattazione è principalmente di natura fenomenologica, con tante teorie dei singoli processi che vengono sviluppate a partire dai dati sperimentali.

Gli esperimenti in fisica nucleare (utilizzati anche per studiare gli adroni in generale) sono principalmente di due tipi:

- 1. scattering: un fascio di particelle, di cui si conoscono energia e momento lineare, è diretto verso l'oggetto bersagio da studiare e, attraverso le variazioni di quantità cinematiche misurabili, è possibile studiare le proprietà dell'interazioni e la struttura del bersaglio (risoluzione data dalla relazione di de Broglie);
- 2. spettroscopia: nucleoni (o anche mesoni e barioni) vengono eccitati e si studiano i prodotti del decadimento di questi stati eccitati, inferendo le proprietà degli stati eccitati e le interazioni tra i prodotti di decadimento.

Sia esperimenti di scattering che esperimenti spettroscopici necessitano di energie di ordini di grandezza simili.

Nel caso dello scattering è importante studiare la sezione d'urto d'interazione (cross section), ovvero la probabilità che avvenga una determinata reazione: in base all'angolo solido $\Delta\Omega$ del rilevatore, alla cross section $\frac{d\sigma}{s\Omega}$, all'intensità I_0 del fascio incidente e alla densità numerica di particelle n_0 che attraversano lo spessore dz del rilevatore, si può calcolare il numero di particelle rilevate in funzione dell'angolo d'emissione:

$$\frac{dn(\theta)}{dt} = I_0 n_0 dz \frac{d\sigma}{d\Omega} \Delta\Omega \tag{1}$$

La cross section è un'area geometrica (l'area effettiva di collisione) ed è solitamente misurata in barn: $1 \, \text{barn} = 100 \, \text{fm}^2$; questa sezione d'urto è in realtà molto grande e misure più tipiche sono espresse in microbarn.

Parte I Fisica Nucleare

Nuclidi