Binary Phase Shift Keying modulation for FPGA with Python/Amaranth

Time & Frequency department

N. Gallone

under the direction of J.-M. Friedt and G. Goavec-Merou slides and references at

https://github.com/oscimp/amaranth_twstft

Outline

About BPSK modulation

Amaranth implementation

Plan

- About BPSK modulation
- 2 Amaranth implementation

Common modulation techniques

Amplitude Modulated (AM) radio signals

- Amplitude Modulated (AM) radio signals
- Frequency Modulated (FM) radio signals

- Amplitude Modulated (AM) radio signals
- Frequency Modulated (FM) radio signals
- N-Phase Shift Keying (NPSK) modulation

- Amplitude Modulated (AM) radio signals
- Frequency Modulated (FM) radio signals
- N-Phase Shift Keying (NPSK) modulation

Plan

- 1 About BPSK modulation
- 2 Amaranth implementation

Architecture to describe

In the end...

- Overview of three modulation techniques
- Code your own version of a BPSK mixing algorithm using amaranth (3 steps):
 - 1 demultiplying the clock signal to create a carrier signal
 - 2 demultiplying the clock signal to cadence the modulation
 - 3 create a binary version of the signal mixing operation