

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento IV — 2ª Prova de Avaliação Discreta

10 de janeiro de 2018 Duração: **2h**

N.° Mec.:			_ Noi	me:									
				iiic									
(Declaro qu	ıe desis	sto:)		N.° foll	nas suple	ementares:	_
0	1.	11.	2	2.	21.	1	<i>E</i> -	<i>E</i> 1.	-	F.1		<u>C1</u>	2
Questão [Cotação]	1a [20pts]	1b [15pts]	2 [25pts]	3a [15pts]	3b [15pts]	4 [20pts]	5a [10pts]	5b [15pts]	5c [20pts]	5d [25pts]	6 [20pts]	Classit (valo	
- , -													
	_	Justif	ique to	odas a	s resp	ostas	e indic	que os	cálcu	los efe	tuados	; –	
1. Seja	F:]0	$, \frac{\pi}{2} \left[\rightarrow \right]$	\mathbb{R} a fu	nção d	efinida	por F	$f(x) = \int_{0}^{x} dx$	$\int_0^{\sec x}$	$\sqrt{(1-i)}$	$\frac{1}{t^2)(4-}$	$\overline{t^2}$ dt .		
											$=, x \in]$	$0, \frac{\pi}{2}$ [.	
								(**)	$\sqrt{4}$	$-\operatorname{sen}^2$	x'	- / 2 L	
1													

[15pts]	(b) Calcule $\lim_{x\to 0^+} \frac{F(x)}{\sin x \cos x}$.
 ,	$x \to 0^+ \operatorname{sen} x \cos x$
	Continua na folha suplementar N
[25pts]	2. Calcule a área da região do plano delimitada pelo gráfico da função f definida por
	$f(x) = \frac{2 \arctan x}{1 + x^2}$
Г	e pelas retas de equações $y=0,x=-1$ e $x=1.$

	N° Me	ec: _	Nome:	
	3.			
[15pts]		(a)	Mostre que o integral impróprio $\int_1^{+\infty} x e^{-x^2} dx$ é convergente e indique o seu valor.	
		a .	Continua na folha suplementar $\int_{-\infty}^{+\infty} -x^2 = 2$	
[15pts]		(b)	Continua na folha suplementar Estude a natureza do integral impróprio $\int_1^{+\infty} x e^{-x^2} \cos^2(x) dx$ sem recorrer à definição	
[15pts]		(b)		

Continua na folha suplementar Nº

[20pt	s]

4. Estude a natureza da série $\sum_{n=1}^{+\infty}\left(\frac{1}{(n+2)!}-\frac{1}{n!}\right)$ e, em caso de convergência, indique a sua soma.

301116

- Continua na folha suplementar Nº
- 5. Verifique se as séries seguintes são convergentes e, em caso de convergência, indique se a convergência é absoluta ou simples:

[10pts]

(a)
$$\sum_{n=3}^{+\infty} \arctan(n^2 - 3).$$

Continua na folha suplementar Nº

[15pts]

(b)
$$\sum_{n=1}^{+\infty} \frac{\ln(n^3+2)}{\sqrt{n}}$$

Continua na folha suplementar Nº

[20pts]

(c)
$$\sum_{n=0}^{+\infty} \frac{(-3)^{n+1}}{(n+1)!}.$$

[25pts]

	$+\infty$	1
(d)	$\sum_{(-1)^n}$	1
(u)	\sim 1 ln	n(n+2)

Continua	na	folha	sunl	ementar	N
Commua	па	TOIIIa	Supi	Cincinai	1.4

[20pts] 6. Determine a natureza da série numérica
$$\sum\limits_{n=1}^{+\infty}(a_n+b_n)$$
 sabendo que

$$0 \le b_n \le a_n, \quad \forall n \in \mathbb{N} \quad \mathbf{e} \quad \lim_{n \to +\infty} \sqrt[n]{a_n} = \frac{1}{2}.$$

Continua na folha suplementar Nº

Formulário

$(f(x)^p)' = p (f(x))^{p-1} f'(x), \operatorname{com} p \in \mathbb{R}$	
$\left(a^{f(x)}\right)' = f'(x)a^{f(x)}\ln(a), \operatorname{com} a \in \mathbb{R}^+ \setminus \{1\}$	$(\log_a(f(x)))' = \frac{f'(x)}{f(x)\ln(a)}, \text{com } a \in \mathbb{R}^+ \setminus \{1\}$
$(\operatorname{sen}(f(x)))' = f'(x)\operatorname{cos}(f(x))$	$(\cos(f(x)))' = -f'(x)\sin(f(x))$
$(\operatorname{tg}(f(x)))' = f'(x) \sec^2(f(x))$	$(\cot g(f(x)))' = -f'(x)\operatorname{cosec}^{2}(f(x))$
$(\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$	$(\csc(f(x)))' = -f'(x)\csc(f(x))\cot(f(x))$
$(\arcsin(f(x)))' = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$	$(\arccos(f(x)))' = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$
$(\operatorname{arctg}(f(x)))' = \frac{f'(x)}{1 + (f(x))^2}$	$(\operatorname{arccotg}(f(x))' = -\frac{f'(x)}{1 + (f(x))^2}$

$1 + \operatorname{tg}^2(x) = \sec^2(x)$, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$	$1 + \cot^2(x) = \csc^2(x)$, para $x \neq k\pi$, $k \in \mathbb{Z}$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$sen(x \pm y) = sen x cos y \pm cos x sen y$
$\cos^2(x) = \frac{1 + \cos(2x)}{2}$	$\operatorname{sen}^2(x) = \frac{1 - \cos(2x)}{2}$