Sequence models

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Feedforward models

- (Fixed) order of computation
 - Lower to upper layers
- Once we have the result
 - Discard all activations

Would you use this to drive a car?

Would you use this to drive a car?

Would you use this to drive a car?

- Hopefully not
 - Independent decision for each frame
 - No state or memory

How should we keep state around?

Recurrent neural networks

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Recurrent neural networks (RNN)

- A network that
 - applies same computation multiple times
 - keeps some state around

Formal definition

- Basic recurrent unit
 - $\mathbf{h}_t = f_{\mathbf{h}}(\mathbf{x}_t, \mathbf{h}_{t-1}, \theta_{\mathbf{h}})$
- Initial state \mathbf{h}_0
 - Learned
 - Zero

Elman networks

 Recurrent connection within layer

Jordan networks

 Recurrent connection from output to input

General RNNs

- Feed forward network
 - With feedback connections

Example: Language understanding

- Reading comprehension
 - Sequence in
 - Vector out

Example: Language generation

- Generate a sentence
 - Vector in
 - Sequence out

Example: Translation

- Translate sentence from one language to another
 - Sequence in
 - Sequence out

The many RNNs

Training recurrent networks

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Recurrent Networks

- Processes a sequence
- Feedback connections

How do we train RNNs?

- No longer a simple forward and backward pass
 - Cycles

Solution: unrolling through time

Unrolling through time

- Unrolled RNN (T steps)
 - Feed forward network
 - Shared parameters
- Trained with backprop

Unrolling through time - Issues

- Long unrolling
 - Computationally expensive
 - Vanishing or exploding gradients

Computation

- Solution (hack)
 - Cut RNN after n steps
 - Set h=0

Vanishing and exploding gradients - Simple example

Linear RNN

•
$$\mathbf{h}_t = \alpha \mathbf{h}_{t-1} + \mathbf{x}_t$$

• For large t

•
$$a > 1$$
 $\frac{\partial}{\partial \mathbf{x}_0} \mathbf{h}_t = \alpha^t \to \infty$

•
$$a < 1$$
 $\frac{\partial}{\partial \mathbf{x}_0} \mathbf{h}_t = \alpha^t \to 0$

Preventing vanishing and exploding gradients

- Generative models
 - Use ground truth inputs

Preventing vanishing and exploding gradients

- Exploding gradients
 - Gradient clipping

$$\nabla \mathcal{E}' = \nabla \mathcal{E} \min \left(1, \frac{\epsilon}{|\nabla \mathcal{E}|} \right)$$

- Vanishing gradients
 - Different RNN structure

LSTMs and GRUs

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Long short-term memory

- Two recurrent connections
 - Long-term c
 - Short term h
 - Input x
 - Output h

Cell state

- Cell state c
 - Only multiplication and addition
 - Shortcut
 - Similar to ResNets

Input

- Input
 - X
 - Previous h

Forget gate

- \bullet Forget gate f
 - Clears cell state

Input gate

- ullet Input gate i
 - Allows state update

State update

- State update
 - tanh

Output

- Output gate o
 - Produce an output?
- Output h
 - tanh of cell state

LSTMs

 Can learn to keep state for up to 100 time steps

Fewer vanishing gradients

Short cut

Gated Recurrent Units

- Simpler LSTM
 - Single state
 - Fewer gates
 - Similar performance

LSTM/GRU Networks

LSTM / GRU applications

- Hand writing synthesis
- Natural language processing
- Image generation

Image source: Demo by Alex Graves http://www.cs.toronto.edu/~graves/

hi how are you?

salut comment ca va?

Image source: Gregor et al., https://arxiv.org/pdf/1502.04623.pdf

- Generating Sequences With Recurrent Neural Networks, Graves, arXiv 2013
- Sequence to Sequence Learning with Neural Networks, Sutskever et al., NIPS 2014
- DRAW: A Recurrent Neural Network For Image Generation, Gregor et al., ICML 2015

Temporal convolutions

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Recurrent models

- Advantages
 - Variable input length
 - Variable output length
 - Structured output
- Disadvantage
 - Hard to train
 - Cannot learn dependencies longer than 100 steps

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, Bai etal., arXiv 2018

Temporal convolutional networks

Dilated convolution

Exponential growth in receptive field

 5-10 layers, receptive field > 100 steps

Sequence generation using convolutions

- Causal (masked) convolutions
 - Only look into past
- Auto-regressive model
 - $P(y_0|x) \cdot P(y_1|x, y_0) \cdot P(y_2|x, y_0, y_1) \cdot \dots$

- Conditional image generation with pixelcnn decoders, Van den Oord et al., NIPS 2016
- WaveNet: A generative model for raw audio, Van Den Oord et al., arXiv 2016

Causal convolution

- Input: $\mathbf{X} \in \mathbb{R}^{T \times C_1}$
- Kernel: $\mathbf{w} \in \mathbb{R}^{w \times C_1 \times C_2}$

 x_0 x_1 x_2 x_3

 z_0 z_1 z_2

 Z_3

• Bias: $\mathbf{b} \in \mathbb{R}^{C_2}$

• Output:
$$\mathbf{Z}_{t,b} = \mathbf{b}_c + \sum_{i=0}^{w-1} \sum_{j=0}^{C_1-1} \mathbf{X}_{t+i-w,b+j} \mathbf{w}_{i,j}$$

Causal convolution implementation

Regular convolution

 x_0

 x_1

 x_2

 x_3

Shift output

 z_0

 z_1 z_2

Training with temporal convolutions

- Labels
 - input and output/loss
- Very efficient
 - fully convolutional

Inference with temporal convolutions

- Step by step
 - Harder to implement efficiently

Sampling in sequence models

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Sampling

- Example temporal convolutional network
 - Autoregressive

$$P(y_0, y_1, y_2, ...) = P(y_0 | x) \cdot P(y_1 | x, y_0) \cdot P(y_2 | x, y_0, y_1) \cdot ...$$

Objective find

•
$$\hat{y} = \arg \max_{y} P(y_0, y_1, y_2, ...)$$

Greedy sampling

$$P(y_0, y_1, y_2, ...) = P(y_0 | x) \cdot P(y_1 | x, y_0) \cdot P(y_2 | x, y_0, y_1) \cdot ...$$

Pick sequentially

$$\hat{y}_t = \arg \max_{y_t} P(y_t | x, \hat{y}_0, \hat{y}_1, ...)$$

- Single sample
- Not optimal

Sequential sampling

$$P(y_0, y_1, y_2, ...) = P(y_0 | x) \cdot$$

- For n iterations
 - Sample sequentially

$$\hat{y}_t \sim P(y_t | x, \hat{y}_0, \hat{y}_1, \dots)$$

- Unbiased sampling
 - Not sample efficient

$$P(y_1 | x, y_0) \cdot P(y_2 | x, y_0, y_1) \cdot$$

Beam search

- Biased sampling
 - High likelihood samples
- Generally works best

- $\bullet \ \ \text{Keep top k samples } S$
 - Largest $P(y_0)$
- For t steps
 - For each $\hat{y}_0, \hat{y}_1, \ldots \in S$
 - Compute $P(x, \hat{y}_0, \hat{y}_1, ..., y_t)$
 - $\bullet \ \ \text{Keep top k samples } S$

Case study: WaveNet

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

WaveNet

- Autoregressive model for sound synthesis and speech recognition
 - Generates raw waveform
 - Quantized in 8-bit
 - $P(y_t | x, y_0, ..., y_{t-1})$

WaveNet - basic building block

- Dilated causal convolution
- Gated activation units

WaveNet

- Input
 - Causal generation y
- Output
 - $P(y_t | x, y_0, ..., y_{t-1})$

x3

WaveNet

 State-of-the-art music and English speech generation

• Slow

Parallel WaveNet

- Inverse Autoregressive Flow (IAF)
 - Transform noise into sound
 - Single feed forward pass
 - No sampling
- Trained to mimic original WaveNet
- 500k samples / sec, 10x real time
 - Used by Google Assistant

Parallel WaveNet: Fast High-Fidelity Speech Synthesis, van den Oord et al., arXiv 2017

January 23, 2024

```
[2]: %pylab inline
     import torch
     docs = open('docs.txt').read()
     char_set = np.unique(list(docs))
     device = torch.device('cuda') if torch.cuda.is_available() else torch.
      →device('cpu')
     print('device = ', device)
    %pylab is deprecated, use %matplotlib inline and import the required libraries.
    Populating the interactive namespace from numpy and matplotlib
    device = cuda
[3]: one_hot = torch.as_tensor(np.array(list(docs))[None,:] == np.array(char_set)[:
      →, None]).float()
     def make_random_batch(batch_size, seq_len):
         B = []
         for i in range(batch_size):
             s = np.random.choice(one_hot.size(1)-seq_len)
             B.append(one_hot[:,s:s+seq_len])
         return torch.stack(B, dim=0)
[4]: class TCN(torch.nn.Module):
         def __init__(self, layers=[32,64,128,256]):
             super().__init__()
             c = len(char_set)
             \Gamma = []
             total_dilation = 1
             for 1 in layers:
                 L.append(torch.nn.ConstantPad1d((2*total_dilation,0), 0))
                 L.append(torch.nn.Conv1d(c, 1, 3, dilation=total_dilation))
                 L.append(torch.nn.ReLU())
                 total_dilation *= 2
                 c = 1
             self.network = torch.nn.Sequential(*L)
             self.classifier = torch.nn.Conv1d(c, len(char_set), 1)
```

```
def forward(self, x):
             return self.classifier(self.network(x))
     tcn = TCN()
[5]: tcn(one_hot[None,:,:100]).shape
[5]: torch.Size([1, 107, 100])
[6]: %load_ext tensorboard
     import tempfile
     log_dir = tempfile.mkdtemp()
     %tensorboard --logdir {log_dir} --reload_interval 1
    <IPython.core.display.HTML object>
[7]: import torch.utils.tensorboard as tb
     n_iterations = 10000
     batch_size = 128
     seq_len = 256
     logger = tb.SummaryWriter(log_dir+'/tcn1', flush_secs=1)
     # Create the network
     tcn = TCN().to(device)
     # Create the optimizer
     optimizer = torch.optim.Adam(tcn.parameters())
     # Create the loss
     loss = torch.nn.CrossEntropyLoss()
     one_hot = one_hot.to(device)
     # Start training
     for iterations in range(n_iterations):
         batch = make_random_batch(batch_size, seq_len+1)
         batch_data = batch[:,:,:-1]
         batch_label = batch[:,:,1:].argmax(dim=1)
         o = tcn(batch_data)
         loss_val = loss(o, batch_label)
         logger.add_scalar('train/loss', loss_val, global_step=iterations)
         optimizer.zero_grad()
         loss_val.backward()
```

```
optimizer.step()
[8]: # Inference
     def sample(m, length=100):
        S = list("Model")
         for i in range(length):
             data = torch.as_tensor(np.array(S)[None,:] == np.array(char_set)[:
      →, None]).float()
             o = m(data[None])[0,:,-1]
             s = torch.distributions.Categorical(logits=o).sample()
             S.append(char_set[s])
        return "".join(S)
    print( sample(tcn.cpu()) )
    Modelul porise infiest a nece-words,
    From Coear sut encome
    To wimmy of dierted, or such him one
    I ever a
[]:
```

Attention and transformers

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Attention and transformers

- Alternative to convolutions
 - Flexible in time
 - Popular in natural language processing

Attention

Attention

Weighted average

attention
$$(\mathbf{q}, \{\mathbf{k}_0, \mathbf{k}_1, ...\}, \{\mathbf{v}_0, \mathbf{v}_1, ...\})$$

$$= \frac{\sum_{t} \mathbf{v}_{t} \exp\left(\mathbf{k}_{t}^{\mathsf{T}} \mathbf{q} / \sqrt{d}\right)}{\sum_{t} \exp\left(\mathbf{k}_{t}^{\mathsf{T}} \mathbf{q} / \sqrt{d}\right)}$$

Query Key Value

Multi-head attention

 Multiple attentions concatenated

multihead
$$(\mathbf{q}, \{\mathbf{k}_0, \mathbf{k}_1, ...\}, \{\mathbf{v}_0, \mathbf{v}_1, ...\})$$

 $= \sum_{i} \operatorname{attention} \left(\tilde{\mathbf{T}}_{i} \mathbf{q}, \{ \mathbf{T}_{i} \mathbf{k}_{0}, \mathbf{T}_{i} \mathbf{k}_{1}, \dots \}, \{ \mathbf{W}_{i} \mathbf{v}_{0}, \mathbf{W}_{i} \mathbf{v}_{1}, \dots \} \right)$

Positional encoding

- Attention is time-invariant
 - Add time back as a feature
 - sine and cosine of position

Transformer

- Feed forward
- Easy to train
 - Similar to Temporal CNN
- Causal attention
 - Auto-regressive

Transformer

- Faster to train
- Better performance
- State of the art performance

Bert

- Large transformer trained unsupervised
 - Predict masked out word
 - Predict next sentence
- Fine-tuned on NLP tasks
 - State-of-the-art for 6 month

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al., arXiv 2018

Summary

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

RNNs / LSTMs / GRUs

- Seem like a good idea
 - Too hard to train
 - No longer widely used

Temporal Convolutional Networks

- Fast and efficient training
 - Work well for structured data

Attention / Transformers

- Fast and efficient training
 - Better deals with irregular spacing
 - State-of-the-art in NLP

