機器學習概論

劉昭麟

國立政治大學資訊科學系

ARTIFICIAL NEURAL NETWORKS STOCHASTIC GRADIENT SEARCH

找尋函數的極值 HILL CLIMBING SEARCH

2020年12月7日 IntroML@NCCU STATE STATE

Local Search

Pure optimization problems: paths to the solution do not matter.

Source: Russel AIMA

函數曲面的起伏

$$f(x,y) = 3x^3 + 2x^2y - 8xy^2 + 3$$

$$*f(1,3) = 3 + 6 - 72 + 3 = -60$$

◆如果所欲處理的函數沒有精確(或者說很難有)的公式解的話,就可能可以靠搜尋(search)的技術來找極值

2020年12月7日 IntroML@NCCU !

Ridge

- ◆ 進行 local search 的時候,如何定義"鄰居"
- 如果鄰居定義得不好,可能會造成問題
- ◈ 視覺化:
 - https://academo.org/demos/3d-surface-plotter/?expression=x*x-y*y&xRange=-60%2C%2B60&yRange=-60%2C%2B60&resolution=40 (check (x,y)=(54,0))

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima that are not directly connected to each other. From each local maximum, all the available actions point downhill.

Source: Russel AIMA

一個極度簡單的例子

2020年12月7日 IntroML@NCCU 9

A Very Simple Case

$$y = f(x) = x^2$$

2020年12月7日 IntroML@NCCU

Search for Solution

- Why
 - ◈並不是所有的問題都有簡單的公式解
- - ◈ 問問數學家? Data scientists? Al experts?

2020年12月7日 IntroML@NCCU 1

A Basic Search Idea

◆如果先亂猜一個數字;然後尋找下一步

2020年12月7日

IntroML@NCCU

A Basic Search Idea

- ◈ 你當然可能先猜一個負數
- $x^{(i+1)} = x^i + \Delta x; \Delta x = ?$

2020年12月7日 IntroML@NCCU 1

調整的方向和幅度

2020年12月7日

一個可能的方案

$$x^{(i+1)} = x^i - \lambda f'(x^i)$$

找尋函數的極值 依賴切線斜率

2020年12月7日

IntroML@NCCU

斜率和切線

- 斜率和切線提供了數值變化趨勢的訊息
- ♦ 斜率
 - https://www.khanacademy.org/math/algebra/two-var-linear-equations/slope/v/positive-and-negative-slope

$$m = \frac{\Delta y}{\Delta x}$$

- ◆切線
 - https://www.khanacademy.org/math/ap-calculus-ab/abdifferentiation-1-new/ab-2-1/v/secant-lines-and-average-rate-ofchange

2020年12月7日 IntroML@NCCU 17

公式解(求最小值)

$$y = f(x) = x^2$$

$$\frac{dy}{dx} = \frac{d(x^2)}{dx} = 2x$$

$$\diamondsuit \frac{dy}{dx} = 2x = 0 \Rightarrow x = 0$$

2020年12月7日

簡單的程序

$$y = f(x)$$

$$\frac{dy}{dx} = \frac{df(x)}{dx}$$

$$guess = guess - \lambda \frac{dy}{dx}$$

$$guess = guess - \lambda y'$$

2020年12月7日 IntroML@NCCU

簡單的程序(2)

$$y = f(x_1, x_2)$$

$$\frac{\partial y}{\partial x_1} = \frac{\partial f(x_1, x_2)}{\partial x_1} \qquad \frac{\partial y}{\partial x_2} = \frac{\partial f(x_1, x_2)}{\partial x_2}$$

$$\hat{x}_1 = \hat{x}_1 - \lambda \frac{\partial y}{\partial x_1}$$
 $\hat{x}_2 = \hat{x}_2 - \lambda \frac{\partial y}{\partial x_2}$

Python Practice

LINEAR REGRESSION 的公式解

我們投資過很多時間

2020年12月7日 IntroML@NCCU 27

LINEAR REGRESSION 的非公式解

誤差(殘差)

◆使用E₁會正負互相抵消

回顧先前關於LR的討論

- ◆我們尋找一條直線,希望能夠將總和誤差 極小化
- ◈ 下星期我們延續函數極小化的議題

X	Y	Ŷ	E_1	$oldsymbol{E}_2$	E_3
X_0	Y_0	\hat{Y}_0	Y_0 - \hat{Y}_0	$ Y_0 - \hat{Y}_0 $	$(Y_0 - \hat{Y}_0)^2$
					$(Y_1 - \widehat{Y}_1)^2$
X_2	Y ₂	\hat{Y}_2	$Y_2 - \hat{Y}_2$	$ Y_2 - \hat{Y}_2 $	$(Y_2 - \widehat{Y}_2)^2$
X_3	Y_3	\hat{Y}_3	Y_3 - \hat{Y}_3	$ Y_3 - \hat{Y}_3 $	$(Y_3 - \widehat{Y}_3)^2$

重整一些先前的基礎

$$\hat{y} = \sum_{i=0}^{k} w_i a_i$$

$$\hat{y}_j = \sum_{i=0}^k w_i a_i^2$$

$$\hat{y} = \sum_{i=0}^{k} w_i a_i$$
 $\hat{y}_j = \sum_{i=0}^{k} w_i a_i^j$ $E = \sum_{j=1}^{n} (\hat{y}_j - y_j)^2$

X	Y	Ŷ	$\boldsymbol{E_1}$	\boldsymbol{E}_2	E_3
X ₀	Y_0	\hat{Y}_0	Y_0 - \hat{Y}_0	$Y_0 - \hat{Y}_0$	$(Y_0 - \hat{Y}_0)^2$
X_1	Y_1	\hat{Y}_1	Y_1 - \hat{Y}_1	$Y_1 - \hat{Y}_1$	$(\mathbf{Y}_1 - \widehat{\mathbf{Y}}_1)^2$
X_2	Y ₂	\hat{Y}_2	$Y_2 - \hat{Y}_2$	$Y_2 - \hat{Y}_2$	$(Y_2 - \hat{Y}_2)^2$
X_3	Y_3	\hat{Y}_3	Y_3 - \hat{Y}_3	$Y_3 - \hat{Y}_3$	$(Y_3 - \widehat{Y}_3)^2$

2020年12月7日 IntroML@NCCU

工作目標

◆找尋一組w₀, w₁, w₂, ..., w_k, 使得MSE為最小

MSE =
$$\frac{1}{n} \sum_{j=1}^{n} (\hat{y}_j - y_j)^2$$

◈ 可以利用找尋函數最小值的方法

2020年12月7日 IntroML@NCCU 33

複習一些微分

◆ 多項式微分

$$y = f(x) = ax^n$$

$$\frac{dy}{dx} = f'(x) = anx^{n-1}$$

$$z = f(x) = 3x^2 - 2x + 8$$

$$\frac{dz}{dx} = f'(x) = 6x - 2$$

◈ 特殊函數的微分

$$y = f(x) = e^x$$

$$\frac{dy}{dx} = f'(x) = e^x$$

2020年12月7日

IntroML@NCCU

34

多項式的微分

$$z = f(x,y) = 3x^3 + 3x^2y - 2xy + 8$$
$$\frac{dz}{dx} = f'(x,y) = 9x^2 + 6xy - 2y$$

◆如果 x 和 y 有關係的話,則微分會比較複雜。

$$y = f(x) = 3x^2 - 2x$$
 $z = f(x,y) = 3x^2y - 2y + 8$
 $\frac{dz}{dx} = f'(x,y) = 6xy + 3x^2 \frac{dy}{dx} - 2\frac{dy}{dx}$

$$\frac{dz}{dx} = f'(x, y) = 6x(3x^2 - 2x) + 3x^2(6x - 2) - 2(6x - 2) = 36x^3 - 18x^2 - 12x + 4$$

2020年12月7日 IntroML@NCCU 35

Sigmoid 的微分(複雜版本)

$$y = f(x) = \frac{1}{1 + e^{-x}}$$
 $\frac{dy}{dx} = f'^{(x)} = \frac{d\left(\frac{1}{1 + e^{-x}}\right)}{dx} = \frac{d(1 + e^{-x})^{-1}}{dx}$

let
$$z = 1 + e^{-x}$$

$$\frac{dy}{dx} = \frac{d(z^{-1})}{dx} = \frac{d(z^{-1})}{dz} \frac{dz}{dx} = \frac{d(z^{-1})}{dz} \frac{d(1 + e^{-x})}{dx}$$

$$\det w = e^x \qquad \frac{dy}{dx} = \frac{d(z^{-1})}{dz} \frac{d(1 + e^{-x})}{dx} = \frac{d(z^{-1})}{dz} \frac{d(w^{-1})}{dx} = \frac{d(z^{-1})}{dz} \frac{d(w^{-1})}{dw} \frac{dw}{dx}$$

$$\frac{dy}{dx} = \frac{d(z^{-1})}{dz} \frac{d(w^{-1})}{dw} \frac{dw}{dx} = (-z^{-2})(-w^{-2})e^x$$

$$\frac{dy}{dx} = \frac{-1}{(1+e^{-x})^2} \left(\frac{-1}{(e^x)^2}\right) e^x = \frac{1}{(1+e^{-x})^2} \left(\frac{1}{e^x}\right) = \frac{1}{(1+e^{-x})^2} e^{-x}$$

$$\frac{dy}{dx} = \frac{1}{(1+e^{-x})^2}e^{-x} = \frac{1}{1+e^{-x}}\frac{e^{-x}}{1+e^{-x}} = \frac{1}{1+e^{-x}}\left(1 - \frac{1}{1+e^{-x}}\right) = y(1-y)$$

2020年12月7日

IntroML@NCCU

2020年12月7日 IntroML@NCCU 37

Illustrations

$$y = f(x) = 2x + 1$$

$$z = f(y) = y^{2}$$

$$z = f(y) = y^{2} = (2x + 1)^{2} = 4x^{2} + 4x + 1$$

$$\frac{dz}{dx} = \frac{d(4x^{2} + 4x + 1)}{dx} = \frac{d(4x^{2} + 4x + 1)}{dx} = 8x + 4$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx} = \frac{d(y^{2})}{dy} \frac{d(2x + 1)}{dx} = 2y(2) = 8x + 4$$

2020年12月7日

Illustrations (2)

$$y = f(x) = (2x + 1)^{2} = 4x^{2} + 4x + 1$$
$$z = f(y) = 2y + 1$$
$$z = f(y) = 2y + 1 = 2(2x + 1)^{2} + 1$$

$$\frac{dz}{dx} = \frac{d(2(2x+1)^2+1)}{dx} = \frac{d(8x^2+8x+3)}{dx} = 16x+8$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = \frac{d(2y+1)}{dy}\frac{d((2x+1)^2)}{dx} = 2(8x+4) = 16x+8$$

2020年12月7日 IntroML@NCCU 39

Illustration(3, 變數代換)

$$y = f(x) = (2x + 1)^2 = 4x^2 + 4x + 1$$
$$z = f(y) = 2y + 1$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = \frac{d(2y+1)}{dy}\frac{d((2x+1)^2)}{dx} = 2(8x+4) = 16x+8$$

$$let m = 2x + 1$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = \frac{d(2y+1)}{dy}\frac{d((2x+1)^2)}{dx} = \frac{d(2y+1)}{dy}\frac{d(m^2)}{dm}\frac{dm}{dx}$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = \frac{d(2y+1)}{dy}\frac{d(m^2)}{dm}\frac{dm}{dx} = 2(2m)(2) = 8m = 16x + 8$$

2020年12月7日 IntroML@NCCU 40

Multiple dependency

$$z = f(x,y) = 3x + 2y$$

$$x = g(s,t) = 5s + 6t$$

$$y = h(s,t) = 8s - 7t$$

$$z = f(x,y) = 3(5s + 6t) + 2(8s - 7t) = 31s + 4t$$

$$\frac{\partial z}{\partial s} = 31 \quad \frac{\partial z}{\partial t} = 4$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = 3 \times 5 + 2 \times 8 = 31$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} = 3 \times 6 + 2 \times (-7) = 4$$

2020年12月7日 IntroML@NCCU 4:

推導 MSE 的微分 (GRADIENT)

Learning from Real Data

回顧先前關於LR的討論

- ◆我們尋找一條直線,希望能夠將總和誤差 極小化
- ◈下星期我們延續函數極小化的議題

X	Y	Ŷ	\boldsymbol{E}_1	\boldsymbol{E}_2	\boldsymbol{E}_3
X_0	Y_0	\hat{Y}_0	$Y_0 - \widehat{Y}_0$	$ Y_0 - \hat{Y}_0 $	$(Y_0 - \widehat{Y}_0)^2$
					$(Y_1 - \widehat{Y}_1)^2$
X_2	Y ₂	\hat{Y}_2	Y_2 - \hat{Y}_2	$ Y_2 - \hat{Y}_2 $	$(Y_2 - \hat{Y}_2)^2$
X_3	Y_3	\hat{Y}_3	Y_3 - \hat{Y}_3	$ Y_3 - \hat{Y}_3 $	$(Y_3 - \widehat{Y}_3)^2$

逐步推導

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (\hat{y}_j - y_j)^2$$

$$\hat{y}_j = \sum_{i=0}^k w_i a_i^j$$

$$E = \frac{1}{n} \sum_{j=1}^{n} \left(\sum_{i=0}^{k} w_{i} a_{i}^{j} - y_{j} \right)^{2}$$

$$E = \frac{1}{n} \sum_{j=1}^{n} \left(w_0 a_0^j + w_1 a_1^j + w_2 a_2^j + \dots + w_k a_k^j - y_j \right)^2$$

2020年12月7日 IntroML@NCCU 45

看起來有點困難的微分

$$E = \frac{1}{n} \sum_{j=1}^{n} \left(w_0 a_0^j + w_1 a_1^j + w_2 a_2^j + \dots + w_k a_k^j - y_j \right)^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial \left(\frac{1}{n} \sum_{j=1}^n \left(w_0 a_0^j + w_1 a_1^j + w_2 a_2^j + \dots + w_i a_i^j + \dots + w_k a_k^j - y_j\right)^2\right)}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \frac{2}{n} \sum_{j=1}^n a_i^j \left(w_0 a_0^j + w_1 a_1^j + w_2 a_2^j + \dots + w_i a_i^j + \dots + w_k a_k^j - y_j \right)$$

$$\frac{\partial E}{\partial w_i} = \frac{2}{n} \sum_{i=1}^n a_i^j (\hat{y}_j - y_j)$$

2020年12月7日

IntroML@NCCU

更新步驟

$$E = \frac{1}{n} \sum_{j=1}^{n} \left(w_0 a_0^j + w_1 a_1^j + w_2 a_2^j + \dots + w_k a_k^j - y_j \right)^2$$

$$\frac{\partial E}{\partial w_i} = \frac{2}{n} \sum_{j=1}^{n} a_i^j (\hat{y}_j - y_j)$$

$$\widehat{w}_i = \widehat{w}_i - \lambda \frac{\partial E}{\partial w_i}$$

2020年12月7日 IntroML@NCCU 47

程式操作

Python Practice

- Linear Regression using Gradient Descent.ipynb
- Linear Regression using Gradient Descent
 Multivariates.ipynb

2020年12月7日 IntroML@NCCU 49

比較公式解的推導 (講過很多次)

尋求參數使整體誤差的最小化

◆如果我們選擇*E*。

$$e_i = (y_i - \hat{y}_i)^2$$

$$e_i = (y_i - f(x_i))^2$$

$$e_i = (y_i - ax_i - b)^2$$

Error =
$$\sum_{i=1}^{i=n} e_i$$

Error = $\sum_{i=1}^{i=n} (y_i - ax_i - b)^2$
E= $\sum_{i=1}^{i=n} (y_i - ax_i - b)^2$

$$\frac{\partial E}{\partial a} = -\sum_{i=1}^{i=n} 2x_i(y_i - ax_i - b) = 0$$
$$\frac{\partial E}{\partial b} = -\sum_{i=1}^{i=n} 2(y_i - ax_i - b) = 0$$

2020年12月7日 IntroML@NCCU 51

多一些推導工作

$$\frac{\partial E}{\partial a} = -\sum_{i=1}^{i=n} 2x_i (y_i - ax_i - b) = 0 \qquad a \sum_{i=1}^{i=n} x_i^2 + b \sum_{i=1}^{i=n} x_i - \sum_{i=1}^{i=n} x_i y_i = 0$$

$$\frac{\partial E}{\partial b} = -\sum_{i=1}^{i=n} 2(y_i - ax_i - b) = 0 \qquad a \sum_{i=1}^{i=n} x_i + nb - \sum_{i=1}^{i=n} y_i = 0$$

$$b = \frac{1}{n} \sum_{i=1}^{i=n} y_i - \frac{a}{n} \sum_{i=1}^{i=n} x_i$$

$$b = \frac{1}{n} \sum_{i=1}^{i=n} y_i - \frac{a}{n} \sum_{i=1}^{i=n} x_i$$

 $b = \bar{Y} - a\bar{X}$

2020年12月7日 IntroML@NCCU

你要自己完成剩下的部分嗎?

$$-\sum_{i=1}^{i=n} 2x_i(y_i - ax_i - b) = 0 \longrightarrow \sum_{i=1}^{i=n} (ax_i + b - y_i)x_i = 0$$

$$b = \bar{Y} - a\bar{X}$$

$$a = \frac{\sum_{i=1}^{i=n} (y_i - \bar{Y})(x_i - \bar{X})}{\sum_{i=1}^{i=n} (x_i - \bar{X})^2}$$

2020年12月7日 IntroML@NCCU 53

LOGISTIC REGRESSION

基本原理

- \bullet $y = \Pr(1|a_1, ..., a_k) = \sum_{i=0}^{i=k} w_i a_i$
 - ◈ 注意我們令 a_0 = 1, w_0 就是原先的 intercept
 - ◈ 不容易限制 y 的範圍在[0,1]
- ◆ 改用下面這樣的關係,y的數值就相當自由

$$y = log\left(\frac{\Pr(1|a_1, ..., a_k)}{\Pr(0|a_1, ..., a_k)}\right) = log\left(\frac{\Pr(1|a_1, ..., a_k)}{1 - \Pr(1|a_1, ..., a_k)}\right) = \sum_{i=0}^{l=k} w_i a_i$$

$$Pr(1|a_1, \dots, a_k) = \frac{1}{1 + e^{-\sum_{i=0}^{i=k} w_i a_i}}$$

2020年12月7日 IntroML@NCCU 55

公式推導的一些細節

$$log\left(\frac{\Pr(1|a_1,\ldots,a_k)}{1-\Pr(1|a_1,\ldots,a_k)}\right) = \sum_{i=0}^{i=k} w_i a_i$$

$$\frac{\Pr(1|a_1, ..., a_k)}{1 - \Pr(1|a_1, ..., a_k)} = e^{\sum_{i=0}^{i=k} w_i a_i}$$

$$Pr(1|a_1,...,a_k) = (1 - Pr(1|a_1,...,a_k))e^{\sum_{i=0}^{i=k} w_i a_i}$$

$$\Pr(1|a_1, ..., a_k) = e^{\sum_{i=0}^{i=k} w_i a_i} - \Pr(1|a_1, ..., a_k) e^{\sum_{i=0}^{i=k} w_i a_i}$$

$$\Pr(1|a_1, ..., a_k) \left(e^{\sum_{i=0}^{i=k} w_i a_i} + 1 \right) = e^{\sum_{i=0}^{i=k} w_i a_i}$$

$$\Pr(1|a_1, ..., a_k) = \frac{e^{\sum_{i=0}^{i=k} w_i a_i}}{\left(e^{\sum_{i=0}^{i=k} w_i a_i} + 1\right)} = \frac{1}{\left(1 + e^{-\sum_{i=0}^{i=k} w_i a_i}\right)}$$

2020年12月7日

觀察數據趨勢

$$Pr(1|a_1, \dots, a_k) = \frac{1}{1 + e^{-\sum_{i=0}^{i=k} w_i a_i}}$$

- Excel demonstration
- Application
 - Educational Measurement
 - Item Response Theory (IRT)

2020年12月7日 IntroML@NCCU 57

觀察基本圖形

 $\Rightarrow \Pr(1|w_0 + w_1a_1); w_0 = 0, w_1 = 3$

2020年12月7日 IntroML@NCCU 58

CROSS ENTROPY

2020年12月7日 IntroML@NCCU

KL Divergence

KL divergence measures the "difference" between two probability distributions, p and q.

$$D(p||q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$$

$$= \sum_{i=1}^{n} p_i (\log p_i - \log q_i)$$
Therefore, the best q will minimize this quantity

quantity.

Let p be the "true" probability distribution. This quantity would be a constant for any q.

$$= \sum_{i=1}^{n} p_i \log p_i - \sum_{i=1}^{n} p_i \log q_i$$

 $= \sum_{i=1}^{n} \left(p_i \log p_i - p_i \log q_i \right)$

60

2020年12月7日 IntroML@NCCU 61

資料分析二

- http://moodle.nccu.edu.tw/mod/forum/discu ss.php?d=132365
- numpy.array.basic.intro.ipynb
- ◈ 說明學期程式作業的解答
 - assignment.ipynb
 - ◈上課說明,不可以拍照
 - ◈回家自己再做一次

2020年12月7日

IntroML@NCCU

62

A Better Choice

2020年12月7日 IntroML@NCCU 6

Simplified Representation

$$o = \begin{cases} 1 & if \ y \ge 0 \\ 0 & else \end{cases}$$

$$x_{1} \quad w_{1} \quad x_{0} = 1$$

$$x_{2} \quad w_{2} \quad w_{0}$$

$$\vdots \quad w_{n}$$

$$x_{n} \quad w_{n}$$

$$o = \frac{1}{1 + e^{-y}}$$

2020年12月7日 IntroML@NCCU

An AND Gate

$$o = \begin{cases} 1 & if \ y \ge 0 \\ 0 & else \end{cases}$$

x_1	x_2	output
0	0	0
0	1	0
1	0	0
1	1	1

2020年12月7日 IntroML@NCCU 6

An OR Gate

$$o = \begin{cases} 1 & if \ y \ge 0 \\ 0 & else \end{cases}$$

x_1	x_2	output
0	0	0
0	1	1
1	0	1
1	1	1

An XOR Gate

$$o = \begin{cases} 1 & if \ y \ge 0 \\ 0 & else \end{cases}$$

a_1	a_2	output
0	0	0
0	1	1
1	0	1
1	1	0

2020年12月7日 IntroML@NCCU 7

HOPFIELD NETWORKS

Artificial Neural Networks

- https://machinelearningmastery.com/tutorialfirst-neural-network-python-keras/
- https://www.tensorflow.org/tutorials/keras/b asic_classification
- https://www.kaggle.com/miggle/my-firstneural-network

2020年12月7日 IntroML@NCCU 7

BACKPROPAGATION

Gradually Challenging Introductions

- Conceptual introduction
 - https://medium.com/datathings/neural-networksand-backpropagation-explained-in-a-simple-wayf540a3611f5e
- A little bit more details
 - https://missinglink.ai/guides/neural-networkconcepts/backpropagation-neural-networks-processexamples-code-minus-math/
- A Relatively Simple Illustration
 - https://hmkcode.github.io/ai/backpropagation-stepby-step/

2020年12月7日 IntroML@NCCU 75

Gradually Challenging Introductions(2)

- Becoming formal
 - https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/
- More formal steps
 - https://www.kamperh.com/notes/kamper_backprop1 7.pdf
- The algorithm
 - Mitchell, p. 98
- Here is a sample Python program
 - https://www.kaggle.com/romaintha/an-introductionto-backpropagation