ETL Process Report

1. Introduction

The ETL (Extract, Transform, Load) process is a critical stage in data warehousing. In this project, ETL was implemented to generate, clean, transform, and load synthetic retail sales data into a SQLite-based Data Warehouse for analytical purposes.

The ETL pipeline ensures that the data is:

- **Accurate** Errors and invalid records are removed.
- **Consistent** Data is formatted and typed correctly.
- Analysis-ready Structured for OLAP and reporting.

2. ETL Process Overview

The ETL process is broken down into three main phases:

A. Extract

- **Objective:** Gather the raw data for processing.
- Implementation:
 - o **Synthetic data generation** using the Faker library and NumPy.
 - o 1000 sales records simulated for 100 unique customers.
 - Attributes include:
 CustomerID, Country, Product, Category, Quantity, UnitPrice, InvoiceDate.
 - o Data saved to **retail sales.csv** before transformation for backup.

1	CustomerID	Country	Product	Category	Quantity	UnitPrice	InvoiceDate
2	CUST052	Canada	Product_15	Home	8	61	2025-07-24 16:38:42.898746
3	CUST083	Japan	Product_11	Home	24	100	2023-10-20 16:38:42.898746
4	CUST003	Australia	Product_2	Toys	44	30	2024-07-24 16:38:42.898746
5	CUST064	France	Product_1	Toys	22	89	2024-01-31 16:38:42.898746

B. Transform

- **Objective:** Clean and prepare data for the warehouse.
- Transformation Steps:

- o Missing Value Removal Dropped any incomplete rows.
- o Data Type Enforcement Ensured InvoiceDate is a datetime.
- o **Outlier Removal** Filtered out rows where Quantity <= 0 or UnitPrice <= 0.
- o New Feature Creation Computed TotalSales = Quantity × UnitPrice.
- o **Time Filtering** Selected only transactions from the last year
- Dimension Table Creation:
 - Customer Dimension: Aggregated purchases and orders per customer.
 - Time Dimension: Derived Year, Quarter, Month, and Day from InvoiceDate.

C. Load

- Objective: Store the transformed data in the warehouse.
- Implementation:
 - o Target: SQLite database (retail dw.db).
 - Loaded:
 - Customer Dim Customer attributes and purchase metrics.
 - TimeDim Time hierarchy for OLAP analysis.
 - SalesFact Transaction facts linked to dimensions.

3. ETL Workflow Diagram

```
Synthetic Data Generation

↓

Raw Data CSV

↓

Data Cleaning & Transformation

↓

Dimension Tables ↔ Fact Table

↓

SQLite Data Warehouse
```

4. Key Features in the Code

- 1. Logging:
 - Tracks each ETL stage:

```
logging.info("Starting ETL process...")
logging.info(f"Generated {len(df)} rows.")
logging.info("ETL process completed successfully.")
```

2. Reproducibility:

• Random seeds (Faker.seed(42), np.random.seed(42)) ensure repeatable results.

3. Scalability:

• Code can easily handle larger datasets by adjusting num rows.

5. Benefits of the ETL Process

- Synthetic data allows for safe testing without real customer information.
- Automated process Entire ETL can be run with a single command.
- Warehouse-ready data Clean, structured, and linked for OLAP.

6. Conclusion

This ETL pipeline successfully bridges the gap between raw synthetic data and structured warehouse-ready datasets.

It prepares a **Customer Dimension**, **Time Dimension**, and **Sales Fact Table** that integrate seamlessly into OLAP analysis for trend discovery and decision-making.