This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

43)

0

U.S. Appln. 10/808,889 filed 3/25/2004

25 41 752 Offenlegungsschrift ①

21) Aktenzeichen: **2**

P 25 41 752.1

Anmeldetag:

19. 9.75

Offenlegungstag:

24. 3.77

30 Unionspriorität:

29 39 39

Erfinder:

(54) Anthelminthisch wirksame Bezeichnung:

2-Carbalkoxyamino-5(6)-phenyl-sulfonyloxybenzimidazole und

Verfahren zu ihrer Herstellung

Anmelder: Hoechst AG, 6000 Frankfurt 0

Loewe, Heinz, Dr., 6233 Kelkheim; Urbanietz, Josef, 6231 Schwalbach;

Düwel, Dieter, Dr.; Kirsch, Reinhard, Dr.; 6238 Hofheim

<u>Patentansprüche</u>

2-Carbalkoxyamino-5(6)-phenylsulfonyloxy-benzimidazole der Formel (1)

$$\begin{array}{c|c}
R_2 & & \\
\hline
R_3 & & \\
\end{array}$$

$$\begin{array}{c}
N \\
C-NH-COOR_1
\end{array}$$
(1)

in der R₁ Alkyl mit 1 bis 4 C-Atomen, R₂ und R₃ jeweils unabhängig voneinander Wasserstoff, Hydroxyl, Alkoxy mit 1 bis 4 C-Atomen, Halogen, Trifluormethyl, Alkyl mit 1 bis 4 C-Atomen Carbalkoxy mit 1 bis 4 C-Atomen im Alkoxy-Rest oder CN bedeutet.

2.) Verfahren zur Herstellung von 2-Carbalkoxy-amino-5(6)-phenyl-sulfonyloxy-benzimidazolen der Formel (1), in der R₁, R₂ und R₃, die oben angegebene Bedeutung haben, dadurch gekennzeichnet, diß man ein 2-Carbalkoxyamino-5(6)-hydroxy-benzimidazol der Formel (2)

HO
$$N$$
 $C-NH-COOR_1$ (2)

in der R_1 die gleiche Bedeutung wie in Formel (1) hat, mit einem Benzolsulfonsäurehalogenid der Formel (3),

$$\begin{array}{c|c}
R_2 & & \\
\hline
R_3 & & \\
\end{array}$$
(3)

709812/1050

in der R_2 und R_3 die gleiche Bedeutung wie in Formel (1) haben und X Fluor, Chlor oder Brom bedeutet.

HOECHST AKTIENGESELLSCHAFT

3

Aktenzeichen:

HOE 75/F 248

Datum: 18. September 1975

Dr.Km/hs

Anthelminthisch wirksame 2-Carbalkoxyamino-5(6)-phenyl-sulfonyl-oxy-benzimidazole und Verfahren zu ihrer Herstellung

2-Carbalkoxy-amino-benzimidazolylderivate mit Alkyl, Acyl-, Phenoxy- und Phenylthioresten in 5(6)-Stellung sind als Anthelmintica bekannt (P. Actor et al., Nature 215, 321 (1067); DOS 2,029,637; DOS 2,164,690; DOS 2,363,348).

Gegenstand der Erfindung sind anthelminthisch wirksame 2-Carbalkoxyamino-5(6)-phenylsulfonyloxy-benzimidazole der Formel (1)

$$\begin{array}{c|c}
R_2 & & \\
\hline
R_3 & & \\
\end{array}$$

$$\begin{array}{c}
N \\
C-NH-COOR_1
\end{array}$$
(1)

in der R₁ Alkyl mit 1 bis 4 C-Atomen, R₂ und R₃ jeweils unabhängig voneinander Wasserstoff, Hydroxyl, Alkoxy mit 1 bis 4 C-Atomen, Halogen, Trifluormethyl, Alkyl mit 1 bis 4 C-Atomen Carbalkoxy mit 1 bis 4 C-Atomen im Alkoxy-Rest oder CN bedeutet.

Als Alkylreste der Substituenten R_1 , R_2 und R_3 kommen in Betracht: Methyl, Äthyl, Propyl, Isopropyl, Butyl, sekundär-Butyl, tertiär-Butyl. Als Alkoxygruppen der Substituenten R_2 und R_3 kommen in Betracht: Methoxy, Äthoxy, Propoxy, Isopropoxy und Butoxy. Als Halogen-Atom der Substituenten R_2 und R_3 kommen in Betracht: Fluor, Chlor, Brom und Jod. Als Carbalkoxygruppen der Substituenten R_2 und R_3 kommen in Betracht: Carbomethoxy, Carbathoxy, Carbopropoxy oder Carbobutoxy.

Besonders bevorzugt sind Verbindungen der Formel (1), in denen R_1 Methyl, Äthyl, Propyl oder Butyl, R_2 Wasserstoff oder Chlor und R_3 Wasserstoff, Chlor oder Trifluormethyl bedeuten.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von 2-Carbalkoxy-amino-5(6)-phenylsulfonyloxy-benzimidazolen der Formel (1), in der R_1 , R_2 und R_3 die oben angegebene Bedeutung haben, das dadurch gekennzeichnet ist, daß man ein 2-Carbalkoxy-amino-5(6)-hydroxy-benzimidazol der Formel (2),

HO
$$N$$
 $C-NH-COOR_1$ (2)

in der R_1 die gleiche Bedeutung wie in Formel (1) hat, mit einem Benzolsulfonsäurehalogenid der Formel (3),

709812/105**0**

in der R₂ und R₃ die gleiche Bedeutung wie in Formel (1) haben und für X Fluor, Chlor oder Brom steht und Chlor besonders bevorzugt ist, in Gegenwart einer Base umsetzt.

Der Reaktionsablauf ist durch das folgende Schema dargestellt

Zur Durchführung der Reaktion suspendiert man ein 2-Carbalkoxy-amino-5(6)-hydroxy-benzimidazol der Formel (2) in einem aprotischen Lösungsmittel mit einem tertiären Amin und tropft unter Rühren eine Lösung eines Benzolsulfonsäurehalogenids der Formel (3) ein. Die Mischung wird gerührt, bis die Umsetzung beendet ist, wobei man den Zeitpunkt zweckmäßig durch eine dünnschichtchromatographische Kontrolle bestimmt.

Als 2-Carbalkoxyamino-5(6)-hydroxy-benzimidazol der Formel (2) kommen beispielsweise in Frage das

2-Carbomethoxyamino-5(6)-hydroxy-benzimidazol

2-Carboäthoxyamino-5(6)-hydroxy-benzimidazol

2-Carbisopropoxyamino-5(6)-hydroxy-benzimidazol

2-carbobutoxyamino-5(6)-hydroxy-benzimidazol

2-Carbisobutoxyamino-5(6)-hydroxy-benzimidazol

2-Carbotert.butoxyamino-5(6)-hydroxy-benzimidazol

Als aprotische Lösungsmittel seien genannt Aceton, Tetrahydrofuran, Dioxan, Diäthyläther, Diisopropyläther, Dimethylformamid, Dimethylsulfoxid, Tetramethylharnstoff und ähnliche dipolare, aprotische Lösungsmittel. Als Basen kommen infrage Alkali- oder Erdalkalihydroxide, -carbonate und -hydrogencarbonate oder tertiäre organische Basen. Als
Beispiele seien genannt: Natriumhydroxid, Natriumhydrogencarbonat,
Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Triäthylamin, Pyridin und Methyl-substituierte Pyridine.

Als Benzolsulfonsäurehalogenide der Formel (3) kommen in Betracht beispielsweise

Benzolsulfonsäure-chlorid

- 4-Chlor-benzolsulfonsäure-chlorid
- 3-Chlor-benzolsulfonsäure-chlorid
- 2-Chlor-benzolsulfonsäure-chlorid
- 2.5-Dichlor-benzolsulfonsäure-chlorid
- 3,4-Dichlor-benzolsulfonsäure-chlorid
- 3,5-Dichlor-benzolsulfonsäure-chlorid
- 4-Brom-benzolsulfonsäure-chlorid
- 3-Brom-benzolsulfonsäure-chlorid
- 2-Brom-benzolsulfonsäure-chlorid
- 4-Methyl-benzolsulfonsäure-chlorid
- 3-Methyl-benzolsulfonsäure-chlorid
- 2-Methyl-benzolsulfonsäure-chlorid
- 4-Tert.butyl-benzolsulfonsäure-chlorid
- 2,4-Dimethyl-benzolsulfonsäure-chlorid
- 2-Chlor-4-methyl-benzolsulfonsäure-chlorid
- 2-Chlor-6-methyl-benzolsulfonsäure-chlorid
- 3-Chlor-4-methyl-benzolsulfonsäure-chlorid
- 3-Chlor-6-methyl-benzolsulfonsäure-chlorid
- 4-Chlor-2-methyl-benzolsulfonsaure-chlorid
- 4-Chlor-3-methyl-benzolsulfonsäure-chlorid
- 4-Chlor-3,5-dimethyl-benzolsulfonsäure-chlorid
- 3-Trifluormethyl-benzolsulfonsäure-chlorid
- 4-Methoxy-benzolsulfonsäure-chlorid
- 3-Methoxy-benzolsulfonsäure-chlorid
- 2-Methoxy-benzolsulfonsäure-chlorid
- 4-Propoxy-benzolsulfonsäure-chlorid

709812/1050

. . .

4-Isopropoxy-benzolsulfonsäure-chlorid 4-Butoxy-benzolsulfonsäure-chlorid 4-Isobutoxy-benzolsulfonsäure-chlorid

Der Temperaturbereich der Reaktion liegt zwischen 0 und 60°C, vorzugsweise zwischen 15 und 30°C. Die Geschwindigkeit der Umsetzung hängt von der Reaktionsfähigkeit des eingesetzten Benzolsulfonsäurechlorids ab, sodaß die Dauer von wenigen Stunden bis zur Dauer eines Tages variieren kann.

Das Fortschreiten der Reaktion läßt sich durch dünnschicht-chromatographische Kontrolle verfolgen, wobei man zweckmäßig als Adsorbens Kieselgel und als Laufmittel Gemische aus Chloroform, Essigsäureäthylester und Eisessig, bevorzugt im Verhältnis 10:10:1 verwendet.

Die Reaktionsprodukte werden durch Filtrieren aus der Reaktionsmisching isoliert. Man erhält so das

```
2-Carbomethoxy-5(6)-phenylsulfonyloxy-benzimidazol
2-Carbomethoxy-5(6)-(4-chlor-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(3-chlor-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(2-chlor-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(2,5-dichlor-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(3,4-dichlor-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(3,5-dichlor-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(4-brom-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(3-brom-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(2-brom-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(4-methyl-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(3-methyl-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(2-methyl-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(4-tert.butyl-phenylsulfonyloxy)-benzimidazol
2-Carbomethoxy-5(6)-(2-chlor-4-methyl-phenylsulfonyloxy)-benzimid-
azol
```

```
2-Carbomethoxy-5(6)-(2-chlor-6-methyl-phenylsulfonyloxy)-benzimid-azol
```

2. Carbomethoxy-5(6)-(3-chlor-4-methyl-phenylsulfonyloxy)-benzimid-azol

2-Carbomethoxy-5(6)-(3-chlor-6-methyl-phenylsulfonyloxy)-benzimid-azol

```
2-Carbomethoxy-5(6)-(4-chlor-2-methyl-phenylsulfonyloxy)-benzimid-azol
```

2-Carbomethoxy-5(6)-(4-chlor-3-methyl-phenylsulfonyloxy)-benzimid-azol

2-Carbomethoxy-5(6)-(4-chlor-3,5-dimethyl-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(3-trifluormethyl-phenylsulfonyloxy)-benzimid-azol

2-Carbomethoxy-5(6)-(4-methoxy-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(3-methoxy-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(2-methoxy-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(4-propoxy-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(4-isopropoxy-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(4-butoxy-phenylsulfonyloxy)-benzimidazol

2-Carbomethoxy-5(6)-(4-isobutoxy-phenylsulfonyloxy)-benzimidazol

2-Carbäthoxyamino-5(6)-phenylsulfonyloxy-benzimidazol

2-Carbopropoxyamino-5(6)-phenylsulfonyloxy-benzimidazol

2-Carbisopropoxyamino-5(6)-phenylsulfonyloxy-benzimidazol

2-Carbobutoxyamino-5(6)-phenylsulfonyloxy-benzimidazol

2-Carbisobutoxyamino-5(6)-phenylsulfonyloxy-benzimidazol

2-Carbotert.butoxyamino-5(6)-phenylsulfonyloxy-benzimidazol

Das als Ausgangsmaterial dienende 2-Carbalkoxyamino-5(6)-hydroxybenzimidazol der Formel (2) wird nach bekannten Verfahren hergestellt; vgl. DOS 2.164.690. So setzt man 3-Nitro-4-amino-phenol mit Benzoylchlorid zu Benzoesäure-3-nitro-4-amino-phenylester um, hydriert diese Verbindung, mit Raney-Nickel zum 3,4-Diamino-derivat und setzt dies mit S-Methyl-thioharnstoffcarboxylat zu 2-Carbalkoxyamino-5-benzoyloxy-benzimidazol um, woraus mit verdünnter Natronlauge die Hydroxy-Verbindung der Formel (2) erhalten wird.

Die 2-Carbalkoxyamino-5(6)-phenylsulfonyloxy-benzimidazole gemäß der Erfindung sind wertvolle Chemotherapeutica und eignen sich zur Bekämpfung von parasitären Erkrankungen bei Mensch und Tier, wie von Helminthen und Leberegeln.

Sie sind besonders wirksam gegen eine große Anzahl von Helminthen, z.B. Haemonchus, Trichostrongylus, Ostertagia, Strongyloides, Cooperia, Chabertia, Oesophagostomum, Hyostrongylus, Ankylostoma, Askaris und Heterakis. Besonders ausgeprägt ist die Wirksamkeit gegenüber Magen-Darm-Strongyliden, von denen vor allem Wiederkäuer befallen werden. Der Befall der Tiere durch diese Parasiten führt zu großen wirtschaftlichen Schäden, weshalb die Verbindungen*der Erfindung insbesondere in Tierarzneimitteln Verwendung finden. *) gemäß

Die Wirkstoffe der Formel (1) werden je nach Lage des Falles in Dosierungen zwischen 0,5 und 50 mg pro kg Körpergewicht 1 bis 14 Tage lang verabreicht.

Zur oralen Applikation kommen Tabletten, Dragees, Kapseln, Pulver, Granulate oder Pasten in Betracht, welche die Wirkstoffe zusammen mit üblichen Hilfs- oder Trägerstoffen wie Stärke, Cellulosepulver, Talcum, Magnesiumstearat, Zucker, Gelatine, Calciumcarbonat, feinverteilter Kieselsäure, Carboxymethylcellulose oder ähnlichen Stoffen enthalten.

Zur parenteralen Applikation kommen Lösungen in Betracht, z.B. ölige Lösungen, die unter Verwendung von Sesamöl, Ricinusöl oder synthetischen Triglyceriden, ggf. mit einem Zusatz von Tokopherol als Antioxydans und/oder unter Verwendung von grenzflächenaktiven Stoffen wie Sorbitanfettsäureester hergestellt werden. Daneben kommen wäßrige Suspensionen in Betracht, die unter Verwendung von äthoxylierten Sorbitan-Fettsäureestern, ggf. unter Zusatz von Verdickungsmitteln, wie Polyäthylenglykol oder Carboxymethylcellulose, hergestellt werden.

Die Konzentrationen der Wirkstoffe gemäß der Erfindung in den damit hergestellten Präparaten liegen vorzugsweise für den Gebrauch als Veterinärarzneimittel zwischen 2 und 20 Gewichtsprozent; für den Gebrauch als Humanarzneimittel liegen die Konzentrationen der Wirkstoffe vorzugsweise zwischen 20 und 80 Gewichtsprozent.

Zur Feststellung der Wirkung der Verbindungen gemäß der Erfindung wurden chemotherapeutische Untersuchungen an ca. 30 kg schweren Schaflämmern durchgeführt, die experimentell mit Larven von Haemonchus contortus bzw. von Trichostrongylus colubriformis infiziert worden waren. Die Versuchstiere wurden in gefliesten Boxen gehalten, die täglich gründlich gereinigt wurden. Nach Ablauf der Präpatenzzeit (Zeit zwischen Infektion und Geschlechtsreife der Parasiten mit beginnender Ausscheidung von Eiern oder Larven) wurde im modifizierten McMaster-Verfahren nach Wetzel (Tierärztliche Umschau 6, 209 - 210 (1951)) die Eizahl pro Gramm Kot bestimmt. Unmittelbar danach wurde die Behandlung der Schafe (im allgemeinen 4 bis 8 Tiere pro Wirkstoff, mindestens aber 2) vorgenommen. Den Tieren wurden die Dosierungen der Verfahrensprodukte als Suspension in jeweils 10 ml einer 1%igen Tylose- Suspension appliziert. Jeweils am 7., 14. und 28. Tag nach der

Behandlung wurde wiederum nach dem vorstehend angegebenen Verfahren die Eizahl pro Gramm Kot ermittelt und ihre prozentuale Abnahme im Vergleich zum Ausgangswert vor der Behandlung errechnet.

Die Verfahrensprodukte sind nicht nur oral appliziert ausgezeichnet wirksam, sondern wirken auch parenteral in Dosierungen herab bis zu 2 mg/kg. Damit sind sie vergleichbaren Benzimidazolderivaten, insbesondere allen bekannten 5(6)-substituierten 2-Benzimidazol-carbaminaten weit überlegen.

Beispiel 1

Man suspendiert 5,15 g 2-Carbomethoxyamino-5(6)-hydroxy-benzimidazol in 100 ml Aceton und setzt 3,5 ml Triäthylamin dazu. Unter kräftigem Rühren läßt man bei Raumtemperatur eine Lösung von 4,4 g Benzolsulfonsäurechlorid in 20 ml Aceton zutropfen und rührt 10 Stunden, wobei sich die Konsistenz der Suspension deutlich ändert. Sie wird zunächst dünnflüssig und allmählich wieder dick. Nach dem Abkühlen filtriert man die festen Bestandteile ab, wäscht nacheinander mit Aceton, Wasser und Methanol aus und trocknet auf dem Dampfbad.

Zur Reinigung wird das Rohprodukt aus Eisessig/Methanol umkristal-lisiert.Die Ausbeute an 2-Carbomethoxyamino-5(6)-phenylsulfonyl-oxy-benzimidazol beträgt 6,2 g vom Zersetzungspunkt 242°C. Die dünnschichtchromatographische Kontrolle der Reaktionsmischung auf Kieselgel mit einem Gemisch von 10 ml Chloroform, 10 ml Essigsäureäthylester und 1 ml Eisessig als Laufmittel zeigt, daß der Fleck des Ausgangsmaterials verschwunden ist und an dessen Stelle derjenige des Reaktionsproduktes mit höherem R_F-Wert getreten ist.

Analog werden dargestellt unter Verwendung äquivalenter Mengen der entsprechenden Benzolsulfonsäurechloride aus 5,15 g 2-Carbo-methoxyamino-5(6)-hydroxy-benzimidazol und

- 2) 5,3 g 4-Chlor-benzolsulfonsäurechlorid
 - 6,8 g 2-Carbomethoxyamino-5(6)-(4-chlor -phenylsulfonyloxy-)-benzimidazol vom F.P. 230°C (Zers.)
- 3) 5,3 g 3-Chlor-benzolsulfonsäurechlorid
 - 6,8 g 2-Carbomethoxyamino-5(6)-(3-chlor-phenylsulfonyloxy)-benzimidazol vom F.P. 250°C (Zers.)
- 4) 6,15 g 3,4-Dichlor-benzolsulfonsäurechlorid
 - 7,4 g 2-Carbomethoxyamino-5(6)-(3,4-dichlor-phenylsulfonyloxy)-benzimidazol F.P. 255°C (Zers.)

- 5) 6,15 g 3,5-Dichlor-benzolsulfonsäure-chlorid
 7,3 g 2-Carbomethoxyamino-5(6)-(3,5-dichlor-phenylsulfonyloxy)-benzimidazol vom F.P. 280°C (Zers.)
- 6) 6,4 g 3-Brom-benzolsulfonsäurechlorid
 7,6 g 2-Carbomethoxyamino-5(6)-(3-brom-phenylsulfonyloxy)benzimidazol vom F.P. 242°C (Zers.)
- 7) 4,8 g 4-Methyl-benzolsuflonsäurechlorid
 6,4 g 2-Carbomethoxyamino-5(6)-(4-methyl-phenylsulfonyloxy)benzimidazol vom F.P. 237°C (Zers.)
- 8) 4,8 g 3-Methyl-benzolsulfonsäurechlorid 6,4 g 2-Carbomethoxyamino-5(6)-(3-methyl-phenylsulfonyloxy)benzimidazol vom F.P. 250°C (Zers.)
- 9) 6,1 g 3-Trifluormethyl-benzolsulfonsäurechlorid
 7,4 g 2-Carbomethoxyamino-5(6)-(3-trifluormethyl-phenylsulfonyloxy)-benzimidazol vom F.p. 215°C (Zers.)

Unter Verwendung von 6,1 g 3-Trifluormethyl-benzolsulfonsäurechlorid und

- 10) 5,5 g 2-Carbäthoxyamino-5(6)-hydroxy-benzimidazol
 7,7 g 2-Carbäthoxyamino-5(6)-(3-trifluormethyl-phenylsulfonyloxy)-benzimidazol vom F.P. 227°C (Zers.)
- 11) 5,9 g 2-Carbispropoxyamino-5(6)-hydroxy-benzimidazol
 8,0 g 2-Carbispropoxyamino-5(6)-(3-trifluormethyl-phenylminfonyloxy)-benzimidazol vom F.P. 205°C (Zers.)
- 12) 6,2 g 2-Carbisobutoxyamino-5(6)-hydroxy-benzimidazol
 8,2 g 2-Carbisobutoxyamino-5(6)-(3-trifluormethyl-phenylsulfonyloxy)-benzimidazol vom F.P. 243°C (Zers.)