ALGEBRA y ALGEBRA II

	1 9	3 4	5	6 1018
NOMBRE	1 4			
		1 1 1 1 1 1 1 1		

PARTE PRÁCTICA

1. Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ la transformación lineal dada por

$$T(x,y,z,w) = (-2x+2y-2z, -x+y-z, x+2z+w, -y-z-w).$$

- (a) Decidir cuáles de los siguientes vectores están en el núcleo de T: (1,1,0,-1),(1,0,-1,2),(-2,0,2,-2).
- (b) Decidir cuáles de los siguientes vectores están en la imagen de T: (1,1,1,1), (2,1,1,-2).
- (c) Dar la matriz de T con respecto a la base ordenada de \mathbb{R}^4

$$B = \{(0,0,0,1), (0,0,-1,0), (1,1,0,0), (2,0,0,0)\}.$$

- (d) Dar una base de $\operatorname{Nu}(T) \cap \operatorname{Im}(T)$ y de $\operatorname{Nu}(T) + \operatorname{Im}(T)$.
- 2. Sea β el siguiente subconjunto de \mathbb{R}^5 y W el subespacio generado por β

$$\beta = \{(1, 0, -c, 0, 1), (1, c, 1, 0, 1), (1, 1, c, 0, 1)\}.$$

- (a) Determinar para qué valores de c
 se puede completar β a una base de \mathbb{R}^5
- (b) Para cada c mostrar que existe una transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^5$ cuya imagen es W. ¿Es única?
- (c) Para cada c, Dar una base del complemento ortogonal de W.
- 3. (a) Sea P el plano de \mathbb{R}^3 dado por la ecuación 2x-y+z=1. Dar las ecuaciones normal y paramétrica de P.
 - (b) Sea \mathbb{R}^3 con el producto interno dado por: (x,y,z).(a,b,c)=xa+4yb+ya+xb+zc. Sean $u=(1,0,0),\,v=(0,1,0)$ y w=(0,0,1).
 - i. Determinar cuál o cuáles de éstos son los vectores más largos.
 - ii. Determinar el ángulo entre u y v.
 - iii. Dar un vector ortogonal a v y w.
 - (c) Calcular $det(B) det((BA)^{-1})$, donde

$$A = \begin{pmatrix} 1 & 2 & i \\ i & 1 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad y \qquad B = \begin{pmatrix} 1 & i+1 & i \\ -2i & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}.$$

- 4. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si U y W son dos subespacios de un espacio V de dimensión finita con producto interno y U y W son ortogonales, entonces $\dim(U+W)=\dim U+\dim W$.
 - (b) Si v y w son autovectores de T, entonces v+w es también autovector de T.

(c) Existen transformaciones lineales $T: \mathbb{R}^4 \to \mathbb{R}^5$ y $S: \mathbb{R}^5 \to \mathbb{R}^4$ tales que ambas composiciones $T \circ S$ y $S \circ T$ son inversibles.

PARTE TEÓRICA

- 5. Definiciones y propiedades.
 - (a) Definir núcleo e imagen de una transformación lineal.
 - (b) Definir base ortonormal de una espacio vectorial con producto interno.
 - (c) Definir matriz elemental y mostrar que el determinante de una matriz elemental es no nulo.
 - (d) Definir autovalor de una transformación lineal y definir autovector asociado. Mostrar que el conjunto de todos los autovectores asociados a un autovalor dado es un subespacio vectorial.
- 6. Enunciados y demostraciones.
 - (a) Sean V y W dos espacios vectoriales de dimensión finita y sea $T:V\to W$ una transformación lineal. Enunciar y demostrar el teorema que relaciona las dimensiones de V, W, núcleo de T e imagen de T.
 - (b) Si A es una matriz $n \times n$, probar que son equivalentes:
 - i. A es inversible.
 - ii. El sistema homogéne
o $\boldsymbol{A}\boldsymbol{X}=0,$ tiene sólo la solución trivial.
 - iii. El sistema AX = Y, tiene una solución para cada Y.