Notes on 'The Geometry of Kernelized Spectral Clustering'

Alden Green

January 5, 2019

1 Analysis of normalized Laplacian embedding.

For a given set of distributions $\mathbb{P}_1, \dots, \mathbb{P}_m$ and weights w_1, \dots, w_K in the probability simplex, define the **mixture distribution**

$$\bar{\mathbb{P}} := \sum_{m=1}^K w_m \mathbb{P}_m.$$

Given a non-negative, continuous, symmetric kernel function k(x,y) and a distribution \mathbb{P} we introduce the **square root kernelized density** as the function $q \in L^2(\mathbb{P})$ given by

$$q(x) := \sqrt{\int k(x, y) d\mathbb{P}(y)}.$$

In particular, we denote the square root kernelized density of the mixture distribution \bar{P} by \bar{q} and those of the mixture components $\{\mathbb{P}_m\}_{m=1}^K$ by $\{q_m\}_{m=1}^K$.

Normalized densities and the coupling parameter. Because we typically deal with the matrix $L=D^{-1/2}AD^{-1/2}$ when performing spectral embedding, it is useful to define analogous continuum operators. In particular, we define the **normalized kernel function** \bar{k} to be

$$\bar{k}(x,y) = \frac{1}{\bar{q}(x)}k(x,y)\frac{1}{\bar{q}(y)}$$

and the normalized kernel for mixture component k_m to be

$$k_m(x,y) := \frac{k(x,y)}{q_m(x)q_m(y)}$$
 for $m = 1, \dots, K$.

Now, we introduce the ${f coupling\ parameter}$

$$C(\bar{P}) := \max_{m=1,\dots,K} \left\| k_m - w_m \bar{k} \right\|_{\mathbb{P}_m \bigotimes \mathbb{P}_m}^2$$

This controls the maximum average connection between points generated by any one mixture component \mathbb{P}_i and those generated by a different mixture component \mathbb{P}_j .