2019-10-21

Как не нужно вводить площадь?

Конструкция: Φ - пов-ть, впишем в Φ кус.-лин. пов-ть

$$\lim_{|\Delta_i| \to 0} \sum_{\Delta} S_{\Delta} \stackrel{?}{=} S_{\text{пов-ти}}$$

Контрпример: сапог Шварца

h - высота каждого k слоев

$$H - kh$$

$$k \to \infty$$

$$n \to \infty$$

В слое 2
n Δ

$$h' = \sqrt{h^2 + b^2}$$

Всего 2nk Δ

$$\pi_{l_n}$$
 a_{l_2}

$$\frac{a}{2} = R \sin \frac{\pi}{n}$$

$$a = 2R \sin \frac{\pi}{n}$$

$$b = R - R \cos \frac{\pi}{n} \quad h = \frac{H}{K}$$

$$h' = \sqrt{h^2 + R^2 (1 -]\cos \frac{\pi}{n})^2}$$

$$S = \frac{1}{2}ah' = R \sin \frac{\pi}{n} \sqrt{h^2 + R^2 (1 - \cos \frac{\pi}{n})}$$

$$\sum_{\Delta} S_{\Delta} = 2nkR \sin \frac{\pi}{n} \sqrt{\frac{H^2}{K^2} + R^2 (1 - \cos \frac{\pi}{n})^2}$$

$$\begin{split} \lim_{n,k\to\infty} 2nkR \sin\frac{\pi}{n} \sqrt{\frac{H^2}{K^2} + R^2(1-\cos\frac{\pi}{n})^2} &= \\ &= 2\pi R \lim_{n,k\to\infty} \sqrt{H^2 + R^2(1-\cos\frac{\pi}{n})^2 K^2} = \\ &= 2\pi R \sqrt{H^2 + R^2 \lim_{n,k\to\infty} K^2(1-\cos\frac{\pi}{n})^2} = \\ &= 2\pi K \sqrt{H^2 + R^2 \frac{\pi^4}{4} \lim_{k,n\to\infty} \frac{k^2}{n^4}} \end{split}$$

Если
$$k=o(n^2)\Rightarrow \pi RH$$
 Если $k=n^2\Rightarrow 2\pi R\sqrt{H^2+\frac{\pi^4}{n}R^2}\neq 2\pi RH$ Если $k=n^3\Rightarrow ...=\infty$

Почему так?

Посмотрим, что происходит, когда k растет быстрее, чем n^2

При маленьком а выходит тонкий слой и получается "помятый"
сапог Шварца

0.1 II квадратичная форма

Теорема

Если s - нат. параметризация, $k = \cos \theta = \mathrm{II}(u'(s), v'(s))$

Теорема

 $\overline{\forall}$ параметризации $\Rightarrow k \cos \theta = \frac{\mathrm{II}(u'(t); v'(t))}{\mathrm{I}(u'(t); v'(t))}$

Док-во

Пусть теперь $\psi(t)$ - произвольная параметризация

$$\psi'(s) = \frac{\varphi'(t)}{|\varphi'(t)|}$$
$$(u'(s), v'(s)) = \frac{(u'(t), v'(t))}{|\varphi'(t)|}$$
$$|\varphi'(t)| = Eu'^2(t) + 2Fu'(t)v'(t) + Gv'^2(t)$$
$$k\cos\theta = \frac{II(u'(t), v'(t))}{|\varphi'(t)|} = \frac{II(u'(t); v'(t))}{I(u'(t); v'(t))}$$

Пример

$$\begin{cases} x = R\cos\varphi\sin\psi \\ y = R\sin\varphi\cos\psi & - \text{cdepa} \\ z = R\sin\psi \end{cases}$$

$$\overline{n} = \frac{\overline{r}}{R} = (\cos\varphi\cos\psi, \sin\varphi\cos\psi, \sin\psi)$$

$$\overline{r}_{\varphi\varphi} = (-R\cos\varphi\cos\psi, -R\sin\varphi\cos\psi, 0)$$

$$L = -R\cos^2\psi$$

$$\overline{r}_{\varphi\psi} = (R\sin\varphi\sin\psi, -R\cos\varphi\sin\psi, 0)$$

$$M = 0$$

$$\overline{r}_{\psi\psi} = (-R\cos\varphi\cos\psi, -R\sin\varphi\cos\psi, -R\sin\psi)$$

$$N = -R$$

Теорема

Проекция векторов кривизны кривых на поверхности с данным касательным вектором на вектор нормали к поверхности одинаковы (все это $k\cos\theta$)

 $(u'(s_0), v'(s_0))$ - у всех таких кривых одинак.

Теорема

$$k\cos\theta=\Pi(u'(s),\ v'(s)),\$$
если s - натур. параметризация

Док-во

Пусть параметризации натуральные

Возьмем кривую: $\cos\theta=\pm 1$ (знак зависит от \overline{n}) Рассмотрим кривые с данным единичным кас. векором и $\cos\theta=\pm 1\Rightarrow$ у них одинаковые кривизны

$$k_{\triangledown} = \mathrm{II}(u'(s), \ v'(s))$$

Нормальная кривизна поверхности в направлении ∇