Lecture 7: MIP Models Foic Scheduling

https://powcoder.com

Outline

- Time-indexed Formulation for JSP
- DisjonceroPraigration Formula

https://powcoder.com

Readings

Applegate & Cook, A Computational Study of the Job-Shop Scheduling Problem, ORSA Journal on Computing, 3(2), 149-156, 1991
 Ku & Beck, Revisiting Off-the-Shelf

Ku & Beck, Revisiting Off-the-Shelf Mixed Integer Programming and Constraint Programming Models for Job Shop Scheduling, Computers & Operations Research, 73, 165-173, 2016

MILP Basics

$$\sum c_i x_i$$

Objective function

Assignment Project Exancold be ≤, =, or ≥

s.t.

Constraints

 $i \in V$ $j \in C$ Add WeChat powcoder

$$V = V_I \cup V_R$$

$$x_i$$
 $\mathbb{Z}, \forall i \in V_I$

Integer variables

$$x_i \in \mathbb{R}, \forall i \in V_R$$

Continuous variables

Continuous (linear) relaxation: poly-time soluble!

Job Shop Scheduling

Where Do We Start?

Assignment Project Exam Help

https://powcoder.com

Time-Indexed MIP

- The main decision variable represents whether a fob starts at the pt or not
 - Variables are dindeked by time

Notation

- \mathcal{H} is the set of all time-points
- $T_{jt} = \{t-p_j+1,\ldots,t\}$ Set of time points defined by t and j
- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j, i) s.t. i is constrained to be after j
- $x_{jt} = 1$ iff operation j starts at time t

What Constraints Do We Need?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Where:

- \mathcal{H} is the set of all time-points
- $-T_{jt} = \{t p_j + 1, \dots, t\}$
- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j, i) s.t. i is constrained to be after j
- $x_{it} = 1$ iff operation j starts at time t

Time-Indexed JSP MIP

 C_{max} min

s. t.
$$\sum_{t \in \mathcal{H}} x_{jt} = 1$$

All operations start only once

$$\sum_{j \in \mathcal{J}_k} \sum_{t' \in T_{jt}} \mathbf{Assign} \mathbf{ment} \ \mathbf{Project} \ \mathbf{E}_{\mathbf{xam}} \ \mathbf{kesp}_{\mathbf{rce}} \ \mathbf{constraints}$$

$$\sum (t+p_j)x_{jt} \stackrel{\text{https://powcoder.com}}{\leq} is the largest end-time$$

$$\sum_{t \in \mathcal{H}} (t + p_j) x_{jt} \leq \sum_{t \in \mathcal{H}} (t) x_{it}$$
Add WeChat powcoder
Precedence constraints

$$x_{jt} \in \{0, 1\}$$

$$\forall j \in \mathcal{J}, \ \forall t \in \mathcal{H}$$

Where:

- \mathcal{H} is the set of all time-points
- $-T_{it} = \{t p_i + 1, \dots, t\}$
- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j,i) s.t. i is constrained to be after j
- $x_{jt} = 1$ iff operation j starts at time t

© J. Christopher Beck 2020

$$\sum_{j \in \mathcal{J}_k} \sum_{t' \in T_{jt}} x_{jt'} \le 1$$

$$\forall k \in \mathcal{K}, \forall t \in \mathcal{H}$$

$$T_{jt} = \{t - p_j + 1, \dots, t\}$$

Goal: Make sure we are not over-capacity on the blue resource at t = 10

Assignment Project Exam Help

Time-Indexed JSP MIP

 C_{max} min

s. t.
$$\sum_{t \in \mathcal{H}} x_{jt} = 1$$

All activities start only once

$$\sum_{j \in \mathcal{J}_k} \sum_{t' \in T_{jt}} \mathbf{Assign} \mathbf{ment} \ \mathbf{Project} \ \mathbf{E}_{\mathbf{xam}} \ \mathbf{kesp}_{\mathbf{rce}} \ \mathbf{constraints}$$

$$\sum (t+p_j)x_{jt} \stackrel{\text{https://powcoder.com}}{\leq} is the largest end-time$$

$$\sum_{t \in \mathcal{H}} (t + p_j) x_{jt} \leq \sum_{t \in \mathcal{H}} (t) x_{it}$$
Add WeChat powcoder
Precedence constraints

$$x_{jt} \in \{0, 1\}$$

$$\forall j \in \mathcal{J}, \ \forall t \in \mathcal{H}$$

Where:

- \mathcal{H} is the set of all time-points
- $-T_{it} = \{t p_i + 1, \dots, t\}$
- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j,i) s.t. i is constrained to be after j © J. Christopher Beck 2020
- $x_{jt} = 1$ iff operation j starts at time t

Questions?

Disjunctive MIP

- The main decision variable represents the sequence between each pair of operations://powcoder.com
 - A before Bore By Before Ader

Notation

- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j, i) s.t. i is constrained to be after j
- M a big constant
- S_i is the start-time of operation j
- $z_{ji} = 1$ iff operation i is scheduled after operation j

What Constraints Do We Need?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Where:

- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j,i) s.t. i is constrained to be after j
- -M a big constant
- S_j is the start-time of operation j
- $z_{ji} = 1$ iff operation i is scheduled after operation j

Disjunctive JSP MIP

$$\begin{array}{ll} \min & C_{max} \\ \text{s. t.} & S_j + p_j \leq C_{max} \\ & S_j + p_j \leq \mathbf{AS} \text{signment Project ExamPresidence constraints} \\ & S_j \geq S_i + p_i - M \cdot z_{ji} \\ & S_i \geq S_j + p_j - M \cdot (1-z_{ji}) \\ & 0 \leq S_j \leq |\mathcal{H}| \text{ Add WeChat powcoder} \in \mathcal{J} \\ & z_{ji} \in \{0,1\} \\ & \forall j,i \in \mathcal{J}_k, \forall k \in \mathcal{K} \end{array}$$

Where:

- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j,i) s.t. i is constrained to be after j
- M a big constant
- S_i is the start-time of operation j
- $z_{ji} = 1$ iff operation i is scheduled after operation j

© J. Christopher Beck 2020

$$S_j \ge S_i + p_i - M \cdot z_{ji}$$
 $j, i \in \mathcal{J}$
 $S_i \ge S_j + p_j - M \cdot (1 - z_{ji})$ $j, i \in \mathcal{J}$

$$j, i \in \mathcal{J}_k, j < i, \forall k \in \mathcal{K}$$

 $j, i \in \mathcal{J}_k, j < i, \forall k \in \mathcal{K}$

- z_{ji} = 1 → operation i is after operation j
 Assignment Project Exam Help
 S_i ≥ S_i + p_i M: redundant since S_i ≥ 0

 - $S_i \ge S_i^{\frac{\text{https://pqwcoder.com}}{precedence}} Constraint$
- $z_{ii} = 0$
 - $S_i \ge S_i + p_i M \times 0$: precedence constraint
 - $S_i \ge S_i + p_i M$: redundant since $S_i \ge 0$

Disjunctive JSP MIP

$$\min C_{max}$$

s. t.
$$S_j + p_j \le C_{max}$$

C_{max} is the largest end-time

 $S_j + p_j \leq S_s$ ignment Project ExamPredence constraints

$$S_j \geq S_i + p_i - M \cdot z_{ji}$$

$$S_j \ge S_i + p_i - M \cdot z_{ji}$$

 $S_i \ge S_j + p_j - M \cdot (1 - z_{ji})$ Resource constraints

$$0 \leq S_j \leq |\mathcal{H}|$$
 Add WeChat powcoder $\in \mathcal{J}$

$$z_{ji} \in \{0, 1\}$$

$$\forall j, i \in \mathcal{J}_k, \forall k \in \mathcal{K}$$

© J. Christopher Beck 2020

Where:

- \mathcal{J}_k is the set of operations on resource $k \in \mathcal{K}$
- \mathcal{E} is the set of all operation pairs (j,i) s.t. i is constrained to be after j
- M a big constant
- S_i is the start-time of operation j
- $z_{ji} = 1$ iff operation i is scheduled after operation j

Questions?

So is time-indexed useless?

Which is Best?

Problem	Disjunctive		Time-Indexed	
	Assignmentilly	ojogt	Examel(Lelparith)	Opt
3×3	0.00 / 0.00	10	0.02 / 0.01	10
4×3	ht ops://øpo v	/code	r.com 0.04 / 0.03	10
5×3	0.01 / 0.01	10	0.17 / 0.17	10
3×6	Addi WeCl	natlpo	wcode@.18 / 0.18	10
3×8	0.01 / 0.01	10	0.44 / 0.42	10
3×10	0.01 / 0.01	10	0.94 / 0.85	10
8×8	0.59 / 0.58	10	3001.69 / 2478.13	2
10×10	5.95 / 5.30	10	_10	-
15×15	-	-	#	#
20×15	-	-	#	#

Results with CPLEX (default parameters)

What Happened Today?

- MIP models for JSP
 - Time-indexed model Exam Help
 - Disjunctive/podepder.com