Math 5604 Homework 2

Jacob Hauck

February 1, 2024

Problem 1.

Consider the IVP

$$y' = f(t, y), y(0) = a.$$
 (1)

Let k > 0 be the time step for a numerical scheme to approximate y'. Assume that f is L-Lipschitz in y for all t.

1. Consider the scheme

$$y^{n+1} = y^n + kf(t_{n+1}, y^{n+1}). (2)$$

Suppose that $y(t_n) = y^n$. Using the Taylor expansion of y about t_n ,

$$y(t_{n+1}) = y(t_n) + ky'(t_n) + R_1(k),$$

where the remainder $R_1(k) = \mathcal{O}(k^2)$ as $k \to 0$. Further expanding y' about t_{n+1} and using the ODE gives

$$y(t_{n+1}) = y(t_n) + k [y'(t_{n+1}) + R_2(k)] + R_1(k)$$

= $y(t_n) + ky'(t_{n+1}) + kR_2(k) + R_1(k)$
= $y(t_n) + k f(t_{n+1}, y(t_{n+1})) + kR_2(k) + R_1(k),$

where the remainder $R_2(k) = \mathcal{O}(k)$ as $k \to 0$. Using the assumption that $y(t_n) = y^n$ and the definition of the scheme, we have

$$y(t_{n+1}) = y^n + kf(t_{n+1}, y^{n+1}) + k\left[f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y^{n+1})\right] + kR_2(k) + R_1(k)$$

= $y^{n+1} + k\left[f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y^{n+1})\right] + kR_2(k) + R_1(k)$.

Thus,

$$LTE = \left| y(t_{n+1}) - y^{n+1} \right| = k \left| f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y^{n+1}) + kR_2(k) + R_1(k) \right|.$$

We can easily show that LTE $\rightarrow 0$ as $k \rightarrow 0$, that is, that the scheme is consistent.

By the Lipschitz condition on f,

$$LTE = |y(t_{n+1}) - y^{n+1}| \le k |f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y^{n+1})| + |kR_2(k) + R_1(k)|$$

$$\le kL|y(t_{n+1}) - y^{n+1}| + |kR_2(k) + R_1(k)|.$$

For all $k < \frac{1}{L}$, we have 1 - kL > 0, so

LTE
$$\leq \frac{|kR_2(k) + R_1(k)|}{1 - kL}, \quad k < \frac{1}{L}.$$

This implies that

$$0 \leq \lim_{k \to 0} \mathrm{LTE} \leq \lim_{k \to 0} \frac{|kR_2(k) + R_1(k)|}{1 - kL} = 0$$

because $kR_2(k) + R_1(k) \to 0$ as $k \to 0$, and $1 - kL \to 1$ as $k \to 0$. That is, LTE $\to 0$ as $k \to 0$, and the scheme is consistent.

2. Consider the scheme

$$y^{n+1} = y^{n-1} + 2kf(t_n, y_n). (3)$$

Suppose that $y(t_{n-1}) = y^{n-1}$, and $y(t_n) = y^n$. Using the Taylor expansion of y about t_n to the left and to the right, we have

$$y(t_{n+1}) = y(t_n) + ky'(t_n) + R_1(k)$$

$$y(t_{n-1}) = y(t_n) - ky'(t_n) + R_2(k),$$

where the remainders $R_1(k)$ and $R_2(k)$ satisfy $R_1(k) = \mathcal{O}(k^2)$ and $R_2(k) = \mathcal{O}(k^2)$ as $k \to 0$. By the ODE and the assumptions that $y(t_{n-1}) = y^{n-1}$ and $y(t_n) = y^n$, this implies that

$$y(t_{n+1}) - y^{n-1} = y(t_{n+1}) - y(t_{n-1})$$

$$= 2ky'(t_n) + R_1(k) - R_2(k)$$

$$= 2kf(t_n, y(t_n)) + R_1(k) - R_2(k)$$

$$= 2kf(t_n, y^n) + R_1(k) - R_2(k).$$

Therefore, the LTE is given by

$$LTE = |y^{n+1} - y(t_{n+1})| = |R_1(k) - R_2(k)|.$$

Since both $R_1(k) \to 0$ and $R_2(k) \to 0$ as $k \to 0$, it follows that LTE $\to 0$ as $k \to 0$. That is, the scheme is consistent.