Series 9

Sylvain Julmy

1

(a)

Proof

(1) $A \to B$ premise

(2) A premise

(3) B Modus Ponens of 1 and 2

(4) $B \to C$ premise

(5) C Modus Ponens of 3 and 4

(b)

By deduction lemma, we transform $(A \to B) \to ((B \to C) \to (A \to C))$ to $(A \to B), (B \to C), A \vdash C$:

$$(A \to B) \to ((B \to C) \to (A \to C))$$

$$(A \to B) \vdash ((B \to C) \to (A \to C))$$

$$(A \to B), (B \to C) \vdash (A \to C)$$

$$(A \to B), (B \to C), A \vdash C$$

Then we prove C:

Proof

- (1) $A \to B$ premise
- (2) A premise
- (3) B Modus Ponens of 1 and 2
- (4) $B \to C$ premise
- (5) C Modus Ponens of 3 and 4

2

We know that Γ_1 can prove A and Γ_2 , A can prove B. In order to show that $\Gamma_1 \cup \Gamma_2$, $A \vdash B$, we would construct Γ_3 by pick either a formulas from Γ_1 or Γ_2 (with respect in which they appear in the sequence) until both are empty. Clearly, Γ_3 is $\Gamma_1 \cup \Gamma_2$. Then, A will appear in the sequence and A is provable by Γ_1 . Then, B is provable because Γ_2 and A appears in Γ_3 .

3

(a)

By deduction lemma, we transform $((A \land B) \to C) \to (A \to (B \to C))$ to $((A \land B) \to C), A, B \vdash C$:

$$\frac{((A \land B) \to C) \to (A \to (B \to C))}{((A \land B) \to C) \vdash (A \to (B \to C))}$$
$$\frac{((A \land B) \to C), A \vdash (B \to C)}{((A \land B) \to C), A, B \vdash C}$$

Then we prove C:

Proof

(1)	A	premise
(2)	B	premise
(3)	$(A \to (B \to (A \land B)))$	Axiom 4
(4)	$(B \to (A \land B))$	Modus Ponens of 1 and 3
(5)	$(A \wedge B)$	Modus Ponens of 1 and 4
(6)	$((A \land B) \to C)$	premise

Modus Ponens of 5 and 6

(b)

By deduction lemma, we transform $(A \wedge B) \to (B \wedge A)$ to $(A \wedge B) \vdash (B \wedge A)$:

$$\frac{(A \land B) \to (B \land A)}{(A \land B) \vdash (B \land A)}$$

Proof

C

(7)

(1)	$(A \wedge B)$	premise
(2)	$(A \wedge B) \to A$	Axiom 3a
(3)	A	Modus Ponens of 1 and 2 $$
(4)	$(A \land B) \to B$	Axiom 3b
(5)	B	Modus Ponens of 2 and 4

- (6) $(B \to (A \to (B \land A)))$ Axiom 4
- (7) $(A \to (B \land A))$ Modus Ponens of 6 and 5
- (8) $(B \wedge A)$ Modus Ponens of 7 and 3

4

In order to show that

$$((A \land C) \lor (B \land C)) \to ((A \lor B) \land C)$$

is provable in our proof system, we will use the case distinction lemma :

$$\frac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma, (A \lor B) \vdash C}$$

By using the deduction lemma, we transform $((A \land C) \lor (B \land C)) \rightarrow ((A \lor B) \land C)$ into $((A \land C) \lor (B \land C)) \vdash ((A \lor B) \land C)$:

$$\frac{((A \land C) \lor (B \land C)) \to ((A \lor B) \land C)}{((A \land C) \lor (B \land C)) \vdash ((A \lor B) \land C)}$$

Then, if we show that Γ , $(A \wedge C) \vdash ((A \vee B) \wedge C)$ and Γ , $(B \wedge C) \vdash ((A \vee B) \wedge C)$, we could conclude by the case distinction lemma that

$$\frac{\Gamma, (A \land C) \vdash ((A \land B) \lor C) \qquad \Gamma, (B \land C) \vdash ((A \land B) \lor C)}{\Gamma, (A \land B) \lor (B \land C) \vdash ((A \land B) \lor C)}$$

Proof of Γ , $(A \wedge C) \vdash ((A \wedge B) \vee C)$

- (1) $A \wedge C$ premise
- (2) $(A \wedge C) \to A$ Axiom 3a
- (3) $(A \land C) \rightarrow C$ Axiom 3b
- (4) A Modus Ponens of 1 and 3
- (5) C Modus Ponens of 1 and 2
- (6) $A \to (A \lor B)$ Axiom 5a
- (7) $A \vee B$ Modus Ponens of 4 and 6
- (8) $(A \lor B) \to (C \to ((A \lor B) \land C))$ Axiom 4
- (9) $C \to ((A \lor B) \land C)$ Modus Ponens of 7 and 8
- (10) $(A \lor B) \land C$ Modus Ponens of 5 and 9

Proof of Γ , $(B \wedge C) \vdash ((A \wedge B) \vee C)$

- (1) $B \wedge C$ premise
- (2) $(B \wedge C) \rightarrow B$ Axiom 3a
- (3) $(B \land C) \rightarrow C$ Axiom 3b

(4)	B	Modus Ponens of 1 and 2
(5)	C	Modus Ponens of 1 and 3 $$
(6)	$B \to (A \lor B)$	Axiom 5b
(7)	$A \vee B$	Modus Ponens of 4 and 6
(8)	$(A \vee B) \to (C \to ((A \vee B) \wedge C))$	Axiom 4
(9)	$C \to ((A \vee B) \wedge C)$	Modus Ponens of 7 and 8
(10)	$(A \lor B) \land C$	Modus Ponens of 5 and 9

Finally, by case distinction lemma, we have

$$\frac{\Gamma, (A \land C) \vdash ((A \land B) \lor C) \qquad \Gamma, (B \land C) \vdash ((A \land B) \lor C)}{\Gamma, (A \land B) \lor (B \land C) \vdash ((A \land B) \lor C)}$$

5

We use the following lemma (Lemma 1) in order to prove $\Gamma \vdash \neg \neg A \to A$:

By deduction lemma, $\vdash A \to A$ is provable if and only if $\Gamma, A \vdash A$. Because A is a premise, A

Then, we prove $\vdash \neg \neg A \rightarrow A$:

Proof

$$\begin{array}{ccc} (1) & (\neg \neg A \rightarrow (A \rightarrow A)) \rightarrow ((\neg \neg A \rightarrow A) \rightarrow (\neg \neg A \rightarrow & \text{Axiom 2} \\ & A)) \end{array}$$

(2)
$$(\neg \neg A \to A) \to ((\neg \neg A \to A) \to (\neg \neg A \to A))$$
 By Lemma 1

(3)
$$(\neg \neg A \to A) \to (\neg \neg A \to A)$$
 By Lemma 1

(4)
$$\neg \neg A \rightarrow A$$
 By Lemma 1

So we have that $\Gamma \vdash \neg \neg A \to A$ holds in our proof system. Then, we have to show that the axiom set without the axiom 9 $(A \vee \neg A)$ and with the axiom 9' $(\neg \neg A \to A)$ can prove $A \vee \neg A$. So we prove $\Gamma \setminus \{A \vee \neg A\} \cup \{\neg \neg A \to A\} \vdash A \vee \neg A$.

Proof

(1)	$\neg (A \vee \neg A)$	Assumption
(2)	A	Assumption
(3)	$A \to (A \vee \neg A)$	Axiom 5a
(4)	$A \vee \neg A$	Modus Ponens of 2 and 3
(5)	\perp	Because 1 and 2 are in contrary, one is false
(6)	$\neg A$	Proof by contradiction

(7) $\neg A \rightarrow (A \lor \neg A)$ Axiom 5b

(8) $A \vee \neg A$ Modus Ponens of 6 and 7

(9) \perp Because 1 and 8 are in contrary, one is false

(10) $\neg\neg(A \lor \neg A)$ Proof by contradiction

(11) $A \vee \neg A$ Double Negation elimination (see before)